Jedenáctá přednáška

NAIL062 Výroková a predikátová logika

Jakub Bulín (KTIML MFF UK) Zimní semestr 2023

Jedenáctá přednáška

Program

- korektnost rezoluce
- lifting lemma a úplnost rezoluce
- LI-rezoluce a Prolog
- elementární ekvivalence

Materiály

Zápisky z přednášky, Sekce 8.6-8.7 z Kapitoly 8, Sekce 9.1 z Kapitoly 9

8.6 Korektnost a úplnost

Korektnost rezolučního kroku

Tvrzení: Mějme klauzule C_1 , C_2 a jejich rezolventu C. Platí-li v nějaké struktuře A klauzule C_1 a C_2 , potom v ní platí i C.

Důkaz: Buď $C_1=C_1'\sqcup\{A_1,\ldots,A_n\}$, $C_2=C_2'\sqcup\{\neg B_1,\ldots,\neg B_m\}$, a $C=C_1'\sigma\cup C_2'\sigma$, kde $S\sigma=\{A_1\sigma\}$ (a σ je nejobecnější). Klauzule jsou otevřené formule, proto platí i jejich instance:

$$\mathcal{A} \models C_1 \sigma$$
 a $\mathcal{A} \models C_2 \sigma$

Po aplikaci unifikace máme:

$$C_1 \sigma = C_1' \sigma \cup \{A_1 \sigma\}$$

$$C_2 \sigma = C_2' \sigma \cup \{\neg A_1 \sigma\}$$

Chceme ukázat, že $A \models C[e]$ pro lib. ohodnocení e.

- Je-li $\mathcal{A} \models A_1\sigma[e]$, potom $\mathcal{A} \not\models \neg A_1\sigma[e]$ a musí $\mathcal{A} \models C_2'\sigma[e]$. Tedy i $\mathcal{A} \models C[e]$.
- Je-li $\mathcal{A} \not\models A_1 \sigma[e]$, musí být $\mathcal{A} \models C_1' \sigma[e]$ a opět $\mathcal{A} \models C[e]$. \square

Korektnost rezoluce

Věta (O korektnosti	rezoluce): Pokud je CNF formule S rezoluc	í
zamítnutelná, potom	e nesplnitelná.	

Důkaz: Víme, že $S \models_R \square$, vezměme tedy nějaký rezoluční důkaz
\square z S . Kdyby existoval model $\mathcal{A} \models S$, díky korektnosti rezolučního
pravidla bychom dokázali (indukcí podle délky důkazu) i $\mathcal{A} \models \Box$,
což ale není možné.

Lifting lemma

úplnost rezoluce dokážeme převedením na případ výrokové logiky: rezoluční důkaz 'na úrovni VL' je možné 'zvednout' na úroveň PL

Lifting lemma: Buďte C_1 a C_2 klauzule s disj. množ. proměnných, C_1^* a C_2^* jejich základní instance, C^* rezolventa C_1^* a C_2^* . Potom C_1 a C_2 mají rezolventu C takovou, že C^* je základní instance C. (důkaz na příštím slidu)

Důsledek: Buď S CNF formule a označme S^* množinu všech jejích základních instancí. Pokud $S^* \vdash_R C^*$ pro nějakou základní klauzuli C^* ('na úrovni VL'), potom existuje klauzule C a základní substituce σ taková, že $C^* = C\sigma$ a $S \vdash_R C$ ('na úrovni PL').

Důkaz: Snadno z Lifting lemmatu indukcí dle délky důkazu. □

Důkaz Lifting lemmatu

Nechť $C_1^*=C_1\tau_1$ a $C_2^*=C_2\tau_2$, τ_1 a τ_2 zákl. substituce nesdílející žádnou proměnnou. Najdeme rezolventu C, že $C^*=C\tau_1\tau_2$.

Buď C^* rezolventa C_1^* a C_2^* přes literál $P(t_1,\ldots,t_k)$. Víme, že:

$$C_1 = C_1' \sqcup \{A_1, \dots, A_n\}, \text{ kde } \{A_1, \dots, A_n\} \tau_1 = \{P(t_1, \dots, t_k)\}$$

 $C_2 = C_2' \sqcup \{\neg B_1, \dots, \neg B_m\}, \{\neg B_1, \dots, \neg B_m\} \tau_2 = \{\neg P(t_1, \dots, t_k)\}$

Tedy $(\tau_1\tau_2)$ unifikuje $S = \{A_1, \dots, A_n, B_1, \dots, B_m\}$. Buď σ nejob. unifikace pro S z Unifikačního algoritmu. Zvolme $C = C'_1\sigma \cup C'_2\sigma$.

$$C\tau_{1}\tau_{2} = (C'_{1}\sigma \cup C'_{2}\sigma)\tau_{1}\tau_{2} = C'_{1}\sigma\tau_{1}\tau_{2} \cup C'_{2}\sigma\tau_{1}\tau_{2} = C'_{1}\tau_{1}\tau_{2} \cup C'_{2}\tau_{1}\tau_{2}$$

$$= C'_{1}\tau_{1} \cup C'_{2}\tau_{2} = (C_{1} \setminus \{A_{1}, \dots, A_{n}\})\tau_{1} \cup (C_{2} \setminus \{\neg B_{1}, \dots, \neg B_{m}\})\tau_{2}$$

$$= (C_{1}^{*} \setminus \{P(t_{1}, \dots, t_{k})\}) \cup (C_{2}^{*} \setminus \{\neg P(t_{1}, \dots, t_{k})\}) = C^{*}$$

Zde = plyne z vlastnosti 'navíc' Unif. algoritmu $(\tau_1\tau_2) = \sigma(\tau_1\tau_2)$, a = z toho, že jde o základní substituce nesdílející proměnnou.

Úplnost rezoluce

Věta (O úplnosti rezoluce): Je-li CNF formule <i>S</i> nesplnitelná, potom je zamítnutelná rezolucí.
Důkaz: Množina S^* všech základních instancí klauzulí z S je také nesplnitelná (důsledek Herbrandovy věty). Úplnost výrokové rezoluce dává $S^* \models_R \square$ ('na úrovni VL').
Z důsledku Lifting lemmatu dostáváme klauzuli C a základní substituci σ takové, že $C\sigma = \square$ a $S \vdash_R C$ ('na úrovni PL').
Ale protože prázdná klauzule \square je instancí C , musí být $C = \square$. Tím jsme našli rezoluční zamítnutí $S \models_R \square$.

8.7 LI-rezoluce

Lineární důkaz a LI-důkaz

Lineární důkaz klauzule C z formule S je konečná posloupnost

$$\begin{bmatrix} C_0 \\ B_0 \end{bmatrix}, \begin{bmatrix} C_1 \\ B_1 \end{bmatrix}, \dots, \begin{bmatrix} C_n \\ B_n \end{bmatrix}, C_{n+1}$$

kde: B_0 a C_0 jsou varianty klauzulí z S, $C_{n+1} = C$,

- C_{i+1} je rezolventa C_i a B_i
- B_i varianta klauzule z S nebo $B_i = C_j$ pro nějaké j < i.
- Lineární zamítnutí S je lineární důkaz \square z S
- Ll-důkaz je lin. důkaz, kde vš. B_i jsou varianty klauzulí z S
- C Ll-dokazatelná z S, $S \vdash_{LI} C$, pokud existuje Ll-důkaz
- S je Ll-zamítnutelná, pokud $S \vdash_{LI} \square$
- korektnost (lineární i Ll-rezoluce) je zřejmá

Úplnost LI-rezoluce pro Hornovy formule

- **Věta (O úplnosti lineární rezoluce):** C má lineární důkaz z S, právě když má rezoluční důkaz z S (tj. $S \vdash_R C$). **Důkaz:** převodem na VL (Lifting lemma zachovává linearitu) **Věta (O úplnosti LI-rezoluce pro Hornovy formule):** Je-li Hornova formule T splnitelná, a $T \cup \{G\}$ je nesplnitelná pro cíl G, potom $T \cup \{G\} \vdash_{LI} \Box$, a to LI-zamítnutím, které začíná cílem G. **Důkaz:** úplnost ve VL + Herbrandova věta + Lifting lemma
 - Hornova formule: množina Hornových klauzulí
 - Hornova klauzule: nejvýše jeden pozitivní literál
 - Pravidlo: klauzule s 1 pozitivním a alespoň 1 negativním literálem
 - Fakt: pozitivní jednotková klauzule
 - Cíl: neprázdná klauzule bez pozitivního literálu
 - Programové klauzule: pravidla a fakta
 - Program: Hornova formule obsahující jen programové klauzule

Program v Prologu

```
son(X,Y):-father(Y,X),man(X). \{son(X,Y),\neg father(Y,X),\neg man(X)\}

son(X,Y):-mother(Y,X),man(X). \{son(X,Y),\neg mother(Y,X),\neg man(X)\}

man(charlie). \{man(charlie)\}

father(bob,charlie). \{father(bob,charlie)\}

mother(alice,charlie). \{mother(alice,charlie)\}

?-son(charlie,X).
```

LI-rezoluce v Prologu

Platí v programu daný existenční dotaz, $P \models (\exists X) son(charlie, X)$?

Důsledek: Pro program P a cíl $G = \{ \neg A_1, \dots, \neg A_k \}$ v proměnných X_1, \dots, X_n jsou následující ekvivalentní:

- $P \models (\exists X_1) \dots (\exists X_n) (A_1 \wedge \dots \wedge A_k)$
- $P \cup \{G\}$ má Ll-zamítnutí začínající G

Důkaz: Plyne z Důkazu sporem a Úplnosti LI-rezoluce pro Hornovy formule (Program je vždy splnitelný).

Je-li odpověď na dotaz kladná, chceme znát i výstupní substituci σ , tj. složení unifikací z rez. kroků, zúženné na proměnné v G. Platí:

$$P \models (A_1 \land \cdots \land A_k)\sigma$$

Příklady

?-son(charlie,X).

 ${\neg son(c, X)}$ ------ ${\neg mother(X, c), \neg man(c)}$ - ${\neg mother(X, c)}$ - ${\neg mother(X, c)}$

 $\{man(c)\}$

 $\{son(X', Y'), \neg mother(Y', X'), \neg man(X')\}$

X=alice výstupní substituce
$$\sigma = \{X/a\}$$

 $\{mother(a, c)\}$

 $\{X/a\}$

ČÁST III – POKROČILÉ PARTIE

Kapitola 9: Teorie modelů

Teorie modelů

- vztah mezi vlastnostmi teorií a tříd jejich modelů
- bližší matematice než informatice a aplikacím
- jen několik vybraných dostupných výsledků
- + co je třeba pro Gödelovy věty (Kapitola 10)
- + co se nevešlo jinam

9.1 Elementární ekvivalence

Teorie struktury

Teorie struktury A (v jazyce L):

$$\mathsf{Th}(\mathcal{A}) = \{ \varphi \mid \varphi \text{ je L-sentence a } \mathcal{A} \models \varphi \}$$

Např. pro standardní model aritmetiky $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ říkáme Th $(\underline{\mathbb{N}})$ aritmetika přirozených čísel, je nerozhodnutelná (neexistuje algoritmus, který pro každou φ doběhne a odpoví, zda $T \models \varphi$)

Pozorování: Nechť A je L-struktura a T je L-teorie.

- $\mathsf{Th}(\mathcal{A})$ je kompletní teorie
- $A \in M_L(T) \Rightarrow Th(A)$ je (kompletní) jednoduchá extenze T
- $A \in M_L(T)$, T kompletní $\Rightarrow Th(A) = Csq_L(T) \sim T$

Elementární ekvivalence

L-struktury \mathcal{A} a \mathcal{B} jsou elementárně ekvivalentní ($\mathcal{A} \equiv \mathcal{B}$), pokud v nich platí tytéž *L*-sentence, neboli: $\mathcal{A} \equiv \mathcal{B} \Leftrightarrow \operatorname{Th}(\mathcal{A}) = \operatorname{Th}(\mathcal{B})$

Například pro $\langle \mathbb{R}, \leq \rangle$, $\langle \mathbb{Q}, \leq \rangle$, $\langle \mathbb{Z}, \leq \rangle$

- $\langle \mathbb{R}, \leq \rangle \equiv \langle \mathbb{Q}, \leq \rangle$: snadno pomocí hustoty
- $\langle \mathbb{Q}, \leq \rangle \not\equiv \langle \mathbb{Z}, \leq \rangle$: v $\langle \mathbb{Z}, \leq \rangle$ má každý prvek bezprostředního následníka, v $\langle \mathbb{Q}, \leq \rangle$ ne, tedy $\varphi \in \mathsf{Th}(\langle \mathbb{Z}, \leq \rangle) \setminus \mathsf{Th}(\langle \mathbb{Q}, \leq \rangle)$ pro následující sentenci:

$$\varphi = (\forall x)(\exists y)(x \le y \land \neg x = y \land (\forall z)(x \le z \rightarrow z = x \lor y \le z))$$

Kompletní jednoduché extenze

Pro teorii T nás hlavně zajímá, jak vypadají modely.

- T je kompletní, právě když má jediný model až na elementární ekvivalenci (všechny modely jsou elementárně ekvivalentní)
- Modely T až na elementární ekvivalenci jednoznačně odpovídají kompletním jednoduchým extenzím T, ty jsou tvaru $\mathsf{Th}(\mathcal{A})$ pro $\mathcal{A} \in \mathsf{M}(T)$, kde $\mathcal{A} \equiv \mathcal{B} \Leftrightarrow \mathsf{Th}(\mathcal{A}) = \mathsf{Th}(\mathcal{B})$

Místo hledání modelů stačí najít kompletní jednoduché extenze!

Motivace: ukážeme, že lze-li efektivně popsat všechny kompletní jednoduché extenze efektivně dané teorie, potom je rozhodnutelná.

- algoritmus, který pro vstup (i, j) vypíše j-tý axiom i-té kompletní jednoduché extenze (v nějakém očíslování)
- algoritmus, který postupně vygeneruje všechny axiomy teorie

Schopnost efektivně popsat kompletní jedn. extenze je vzácná, vyžaduje silné předpoklady, ale u mnoha důležitých teorií to lze.

Příklad: DeLO*

Teorie hustého lin. uspořádání (DeLO*) je extenze teorie uspořádání o linearitu (dichotomii), hustotu, a někdy se přidává netrivialita:

- $x \le y \lor y \le x$
- $x \le y \land \neg x = y \rightarrow (\exists z)(x \le z \land z \le y \land \neg z = x \land \neg z = y)$
- $(\exists x)(\exists y)(\neg x = y)$

Tvrzení: Buď $\varphi = (\exists x)(\forall y)(x \leq y)$ a $\psi = (\exists x)(\forall y)(y \leq x)$. Následující jsou právě všechny kompletní jednoduché extenze DeLO*:

• DeLO = DeLO* $\cup \{\neg \varphi, \neg \psi\}$

 $\bullet \quad \mathsf{DeLO}^- = \mathsf{DeLO}^* \, \cup \, \{\varphi, \neg \psi\}$

• $DeLO^+ = DeLO^* \cup \{\neg \varphi, \psi\}$

• $\mathsf{DeLO}^\pm = \mathsf{DeLO}^* \, \cup \, \{\varphi, \psi\}$

Stačí ukázat, že jsou kompletní. Potom už je zřejmé, že žádná další kompletní jednoduchá extenze DeLO* nemůže existovat.

Jak ukážeme, kompletnost plyne z faktu, že jsou ω -kategorické, tj. mají jediný spočetný model až na izomorfismus.

Důsledky Löwenheim-Skolemovy věty bez rovnosti

Připomeňme:

Věta (L.-S. bez rovnosti): Ve spočetném jazyce bez rovnosti má každá bezesporná teorie spočetně nekonečný model.

Jednoduchý důsledek:

Důsledek: Je-li L spočetný bez rovnosti, potom ke každé L-struktuře existuje elementárně ekvivalentní spočetně nekonečná struktura.

Důkaz: $\mathsf{Th}(\mathcal{A})$ je bezesporná (má model \mathcal{A}), tedy dle L.-S. věty má spočetně nekonečný model $\mathcal{B} \models \mathsf{Th}(\mathcal{A})$, to znamená $\mathcal{B} \equiv \mathcal{A}$. \square

Bez rovnosti tedy nelze vyjádřit např. 'model má právě 42 prvků'.

Důsledky Löwenheim-Skolemovy věty s rovností

V důkazu L.-S. věty máme kanonický model pro bezespornou větev tabla z T pro $F\perp$; pro jazyk s rovností stačí faktorizovat dle =^A:

Věta (L.-S. s rovností): Ve spočetném jazyce s rovností má každá bezesporná teorie spočetný model (konečný, nebo nekonečný).

I tato verze má snadný důsledek pro konkrétní struktury:

Důsledek: Je-li *L* spočetný s rovností, ke každé nekonečné *L*-struktuře existuje elem. ekvivalentní spočetně nekonečná struktura.

Důkaz: Mějme nekonečnou L-strukturu \mathcal{A} . Stejně jako v důkazu Důsledku bez rovnosti najdeme spočetně nekonečnou $\mathcal{B} \equiv \mathcal{A}$.

Protože v \mathcal{A} neplatí pro žádné $n \in \mathbb{N}$ sentence vyjadřující 'existuje nejvýše n prvků' (což lze pomocí rovnosti snadno zapsat), neplatí ani v \mathcal{B} , tedy \mathcal{B} nemůže být konečná.

Spočetné algebraicky uzavřené těleso

- algebraicky uzavřené těleso: každý polynom nenulového stupně v něm má kořen
- \mathbb{Q} není, $x^2 2$ nemá v \mathbb{Q} kořen
- \mathbb{R} není, $x^2 + 1$ nemá v \mathbb{R} kořen
- lacktriangle $\mathbb C$ je algebraicky uzavřené, ale je nespočetné

Algebraickou uzavřenost vyjádříme sentencemi ψ_n , pro n > 0:

$$(\forall x_{n-1}) \dots (\forall x_0)(\exists y)(y^n + x_{n-1} \cdot y^{n-1} + \dots + x_1 \cdot y + x_0) = 0$$

kde y^k je zkratka za term $y \cdot y \cdot \cdots \cdot y$

Důsledek: Existuje spočetné algebraicky uzavřené těleso.

Důkaz: Dle Důsledku L.S. věty (s rovností) existuje spočetně nekonečná $\mathcal{A} \equiv \mathbb{C}$. Protože \mathbb{C} je těleso a splňuje ψ_n pro všechna n > 0, je i \mathcal{A} algebraicky uzavřené těleso.