MODELING THE MODELER: A NORMATIVE THEORY OF EXPERIMENTAL DESIGN

Evan Piermont

Royal Holloway, University of London

joint with

Fernando Payró

UAB, BSE & CODE

Antai College of Economics and Management, Jiao Tong University April 2025

- Decision theoretic analysis of experiments: analyst's preference over experiments
- ♦ The value of an exp is determined by what it allows to identify
- In principle any kind of experiment, but adapt the analysis to revealed preference
 - Laboratory economics experiments
 - Any agent who can probe at the preference of other agents

- We propose three normative principles for experimental design
 - minimal rationality properties, independent of specific motivations
 - We will specifically think about revealed preference experiments
- We show that they imply a particular representation
 - Relates a experiment to the expected value of identification
 - Unifies many distinct models of experimentation
 - Axiomatic characterization for Bayesian Experimental Design
 - Test for analyst to make sure they do not have an "agenda"

- \diamond A space of parameters \mathcal{U}
- \diamond Experiment A has possible observable outcomes $\{P_1, \ldots, P_n\}$
- ♦ Observing *P* identifies a set of parameters:
 - \diamond $W_{A,P} \subseteq \mathcal{U}$ consistent with observation
- \diamond An "ideal" experiment should induce a partition over \mathcal{U}
 - Not always possible (some parameters might not uniquely determine an observation)

Ranking over experiments should reflect the value of potential identification

Normative Principles

Structural Invariance: Two experiments that identify the sets of parameters are equally valued

Information Monotonicity: Experiments that induce sharper identification are (weakly) better

Identification Separability: The value of identifying a set of parameters should *not* depend on counterfactuals

Expected Identification Value

These principles characterize ranking according to expected identification value

- \diamond Exists some au: for $W \subseteq \mathcal{U}, au(W)$ is the value of identifying W
- Experiments are valued according to:

$$F(A, \mathcal{P}) = \sum_{P \in \mathcal{P}} \tau(W_{A,P}) \mu(W_{A,P})$$

 \diamond where μ is the (exogenous) prior probability

Special Case: Entropy

$$\tau(W) = -\log(\mu(W))$$

⋄ Value of experiment is expected reduction in entropy

Special Case: Hypothesis Testing

$$\tau(W) = \begin{cases} 1 & \text{if } W \subseteq W^* \text{ or } W^* \subseteq W^c \\ 0 & \text{otherwise} . \end{cases}$$

- \diamond Hypothesis: the parameter lies in W^*
- Value of exp is the probability the hypothesis can be accepted or rejected

Special Case: Actions

$$\tau(W) = \max_{a \in \mathbb{A}} \int_{W} \xi(a, u) d\mu.$$

- \diamond The analyst will take action $a \in \mathbb{A}$
- \diamond Utility of outcome depends on the parameter: $\xi(a, u)$
- ♦ Value of exp is expected value of conditionally optimal action

Related literature

Decision Theory

- Dekel, Lipman and Rustichini (2001) "Representing Preferences with a Unique Subjective State Space"
- ♦ Gilboa and Lerher (1991) "The value of information-An axiomatic approach"
- ♦ Ergin and Sarver (2015) "Hidden actions and preferences for timing of resolution of uncertainty"

Statistics

- Lindley (1972) "Bayesian statistics: A review"
- ♦ Chaloner and Verdinelli (1995) "Bayesian experimental design: A review"

The state of the s

 	a 300 j 200 (1.10)	Grentiey runneere	0 . 0 . 2.

An analyst (she) wishes to infer a subject's (he) utility function over Z:

- \diamond Revealed Preference: she should offer a menu $A\subseteq Z$ and observe the subject's choice
- subjects choice
- Different menus offer different "inference" opportunities

Ranking over menus will depend on the goals for the analyst

Experimental Environment

- \diamond Z set of alternatives
- $\diamond \ \mathcal{U} \subseteq \{u: Z \to \mathbb{R}\}$ set of utility functions over Z
- $\diamond \Omega$ algebra of measurable sets of $\mathcal U$
- $\diamond \mu$ prior over (\mathcal{U}, Ω)

The tuple $(Z, \mathcal{U}, \Omega, \mu)$ constitutes a theory for a Bayesian experimenter

An **experiment** $e = (A, \mathcal{P})$ is a pair:

- $\diamond \ A \subseteq Z$ is finite decision problem
- $\diamond \mathscr{P}$ is a partition of A

- Represents observability constraints
- Allows for dynamic experiments, non-lab settings, etc

Example: Dynamic Games

Consider a dynamic game:

- ♦ Computer randomizes 50-50
- Subject's strategies:

$$A = \left\{ \begin{array}{l} (i, a, c), (i, b, c), (i, a, d), (i, b, d), \\ (o, a, c), (o, a, d), (o, b, c), (o, b, d) \end{array} \right\}$$

There are observable paths:
 (o), (i, a), (i, b), (i, c), and (i, d)

Example: Dynamic Games

Now consider the following partitions of A

$$\mathscr{P}_{L} = \left\{ egin{array}{l} \left\{ egin{array}{l} (o,a,c),(o,b,c),\ (o,a,d),(o,b,d) \end{array}
ight\}, \ \left\{ egin{array}{l} (i,a,c),(i,a,d) \end{array}
ight\}, \ \left\{ egin{array}{l} (i,b,c),(i,b,d) \end{array}
ight\}, \ \left\{ egin{array}{l} (o,a,c),(o,b,c),\ (o,a,d),(o,b,d) \end{array}
ight\}, \ \left\{ egin{array}{l} (i,a,c),(i,b,c) \end{array}
ight\}, \ \left\{ egin{array}{l} (i,a,d),(i,b,d) \end{array}
ight\}, \end{array}
ight\}$$

Given an experiment, (A, \mathcal{P}) , define the *identified set*:

$$W_{A,P} = \{ u \in \mathcal{U} \mid P \cap \operatorname{argmax}_{x \in A} u(x) \neq \emptyset \}$$

- \diamond Observing $P \in \mathscr{P}$ identifies that the subject's utility is in $W_{A,P}$
- \diamond We require for an experiment (A, \mathscr{P}) that for any $P, Q \in \mathscr{P}$
 - (1) $W_{A,P} \in \Omega$ measurability
 - (2) $\mu(W_{A,P} \cap W_{A,Q}) = 0$ zero μ -prob of ties

Example: EU Preferences

We can example identifying EU preferences as an example:

- $\diamond Z$ is lotteries over $\{a, b, c\}$
- $\diamond \mathcal{U}$ is affine functions

$$\left\{\frac{2}{3}a + \frac{1}{3}b, \frac{2}{3}a + \frac{1}{3}c, \frac{1}{3}a + \frac{1}{3}b + \frac{1}{3}c\right\}$$

μ -equivalence

Call $\{W_1, ..., W_n\}$ and $\{V_1, ..., V_m\}$, families of subsets of \mathcal{U} , μ -equivalent if for all W_i and V_i :

$$\mu(W_i) = \mu(W_i \cap V_j)$$
 for some j and,
 $\mu(V_i) = \mu(W_i \cap V_j)$ for some i

- Such collections identify the same sets of utilities up to a measure zero
- \diamond Take [0,1] with λ the Lebesgue measure. The following are λ -equivalent:
 - $\diamond \{[0, \frac{1}{2}), (\frac{1}{2}, 1]\}; \{[0, \frac{1}{2}), \{\frac{1}{2}\}, (\frac{1}{2}, 1]\}, \{[0, \frac{1}{2}], [\frac{1}{2}, 1]\}$

Rich Experimental Settings

We say a set of experiments $\mathbb E$ is *rich* if

- (1) $(A, \mathscr{P}) \in \mathbb{E} \to (A, \mathscr{Q}) \in \mathbb{E}$ whenever \mathscr{Q} is a coarsening of \mathscr{P}
- (2) For any finite Ω -measurable partition of \mathcal{U} , there exists an experiment (A,\mathscr{P}) such that $\{W_{A,P}\}_{P\in\mathscr{P}}$ is μ equivalent

- Any partition can be approximated up to 0 probability events
- $\diamond~$ For the EU model, the set of all experiments is rich for any "regular" μ

Primitive

- ♦ Our primitive is a ranking ≽ over the set of all random experiments
- \diamond A *random experiment* is a lottery over some (fixed) rich set $\mathbb E$

The state of the s

"Two experiments that identify the sets of parameters are equally valued"

(P1) - Structural Invariance

If $\{W_{A,P}|P\in\mathscr{P}\}$ is μ -equivalent to $\{W_{B,Q}|Q\in\mathscr{Q}\}$ then $(A,\mathscr{P})\sim(B,\mathscr{Q})$.

- Structural properties of experiments are irrelevant
- Also, 0-probability events are irrelevant

Consider our EU maximizing subject choosing lotteries over $\{a, b, c\}$.

EXP A: $A = \{a, \frac{1}{2}a + \frac{1}{2}b, \frac{1}{2}a + \frac{1}{2}c, \frac{1}{2}b + \frac{1}{2}c\}$

EXP B : $B = \{a, b, c\}$

 $A' = \{ \frac{6}{10}b + \frac{4}{10}c, \frac{4}{10}b + \frac{6}{10}c \}.$

 $B' = \{\frac{2}{3}a + \frac{1}{3}b, \frac{2}{3}a + \frac{1}{3}c, \frac{1}{3}a + \frac{1}{3}b + \frac{1}{3}c\}.$

Linearity states that

 $x \in \arg\max_{A} u(\cdot)$ $y \in \arg\max_{B} u(\cdot)$ if and only if $\alpha x + (1-\alpha)y \in \arg\max_{\alpha A + (1-\alpha)B} u(\cdot)$

 \diamond Therefore, observing A followed by A' is equivalent to observing $\frac{1}{2}A + \frac{1}{2}A'$

- Structural invariance reflects the symmetries of the given domain
- ♦ With linear utility, the symmetry is *translation invariance*:

Structural Invariance for Expected Utility

$$(A, \{P_1, \dots P_n\}) \sim (A + B, \{P_1 + B, \dots P_n + B\})$$

This isn't exactly correct, since $\{P_1+B,\ldots P_n+B\}$ might have overlaps....

"Experiments that induce sharper identification are (weakly) better"

(P2) - Information Monotonicity

If \mathscr{P} refines \mathscr{Q} then $(A,\mathscr{P})\succcurlyeq (A,\mathscr{Q}).$

⋄ Preference respects Blackwell order

"The value of identification not depend on counterfactuals"

(P3) - Identification Separability

$$\frac{1}{2}(A,\mathscr{P}) + \frac{1}{2}(A,\mathscr{Q}) \sim \frac{1}{2}(A,\mathscr{P}_B\mathscr{Q}) + \frac{1}{2}(A,\mathscr{Q}_B\mathscr{P}).$$

 \diamond \mathscr{P} and \mathscr{Q} partitions of A and $B\subseteq A$, then $\mathscr{P}_B\mathscr{Q}$ denotes the partition that coincides with \mathscr{P} over B and with \mathscr{Q} over $A\setminus B$

Consider decision problem A (from before) with the following partitions

 \diamond The set B is the two south-east lotteries (in teal)

Theorem

Let \succeq be an expected utility preference, represented by index $F: \mathbb{E} \to \mathbb{R}$.

Then \succeq satisfies P1-3 if and only if there exists a $\tau:\Omega\to\mathbb{R}$ such that:

Then
$$\geqslant$$
 satisfies P1-3 if and only if there exists a $\tau: \mathcal{U} \to \mathbb{R}$ such that:

 $F(A, \mathcal{P}) = \sum \tau(W_{A,P}) \mu(W_{A,P})$

$$P \in \mathscr{P}$$

 $\diamond \tau(W)\mu(W|V) + \tau(V \setminus W)(1 - \mu(W|V)) > \tau(V)$

 ϕ $\mu(W) = \mu(V)$ implies $\tau(W) = \tau(V)$

- with $W \subseteq V$ implies

Representation reflects our normative principles:

$$F(A, \mathscr{P}) = \sum_{P \in \mathscr{P}} \tau(W_{A,P}) \mu(W_{A,P})$$

- \diamond Only dependents on $W_{A,P} \to \text{Structural Invariance}$

♦ Additive → Identification Separability

 $\forall \tau(W)\mu(W|V) + \tau(V \setminus W)(1 - \mu(W|V)) \ge \tau(V)$ Monotonicity

The transport of the tr

- ♦ Entropy is a common measure of information
- Entropy of a probability measure is

$$-\sum_{x \in \text{SUDD}(\mu)} \log(\mu(x))\mu(x)$$

 The experimenter's value for an experiment is the (expected) entropy of the induced identification

$$F(A, \mathcal{P}) = -\sum_{P \in \mathcal{P}} \log(\mu(W_{A,P})) \mu(W_{A,P})$$

We can specialize each of the normative principals to this context

Structural Invariance for Entropy: Symmetry

Fix
$$(A, \{P_1, \dots, P_n\})$$
 and $(B, \{Q_1, \dots, Q_n\})$. Then if for all $i < r$

Fix
$$(A, \{P_1, \dots P_n\})$$
 and $(B, \{Q_1, \dots Q_n\})$. Then if for all $i \leq n$,

 $(A, \{P_1 \dots P_n\}) \succeq (B, \{Q_1 \dots Q_n\}).$

it follows that

implies structural invariance:

Fix
$$(A,\{P_1,\dots P_n\})$$
 and $(B,\{Q_1,\dots Q_n\})$. Then if for all $i\leq |\mu(W_{B,Q_i})-\frac{1}{n}|\geq |\mu(W_{A,P_i})-\frac{1}{n}|$

- \diamond Fix $(A, \mathscr{P} = \{P_1, \dots P_n\})$ and let $\mathscr{P}^1 = \{P_1^1, \dots P_n^1\}$ partition P_1 .
- \diamond Then $\mathscr{P}^{\dagger} = \{P_1^1, \dots P_n^1, P_2, \dots P_n\}$ is also partition of A.
- \diamond As if observing \mathscr{P} and then if P_1 is realized, further observing \mathscr{P}^1
- $\diamond \mathscr{P}$ observed with prob 1, \mathscr{P}^1 observed with probability $\mu(W_A \otimes A)$ \diamond Let $(B, \mathcal{Q} = \{Q_1, \dots, Q_k\})$ with $\mu(W_{B,Q_i}) = \mu(W_{A,P_1} \mid W_{A,P_1})$
- conditional on realization of P_1
- \diamond Observing \mathscr{Q} has same 'informational content' as observing \mathscr{P}^1

(A,\mathscr{P})	P_1	P_2	P_3	P_4
L	<u>'</u>			

Option	1

Option 2

 \diamond Observe \mathscr{P}^\dagger with prob lpha

 \diamond Observe ${\mathscr P}$ with prob α

 $\diamond \ \ \text{Observe nothing with prob} \ (1-\alpha)$

 \diamond Observe \mathscr{Q} with prob $(1-\alpha)$

 $\diamond~$ To be indifferent α must capture the likelihood of reviving extra information

 \diamond This is $\alpha = \frac{1}{1 + \mu(W_{A,P_1})}$

Identification Separability for Entropy

Fix $(A, \mathscr{P} = \{P_1, \dots P_n\})$ and $\mathscr{P}^{\dagger} = \{P_1^1, \dots P_n^1, P_2, \dots P_n\}$.

Fix
$$(A, \mathscr{S} = \{P_1, \dots P_n\})$$
 and $\mathscr{S}^{\dagger} = \{P_1^{\dagger}, \dots P_k^{\dagger}, P_2, \dots \}$
Set $\alpha = \frac{1}{2}$

Set $\alpha = \frac{1}{1 + \mu(W_{AP_1})}$.

$$\alpha(A, \mathscr{P}^{\dagger}) + (1 - \alpha)(A, \{A\}) \sim \alpha(A, \mathscr{P}) + (1 - \alpha)(B, \mathscr{Q})$$

Then if $(B, \{Q_1, \ldots, Q_k\})$ is such that $\mu(W_{B,Q_i}) = \mu(W_{A,P_i} \mid W_{A,P_1})$, it follows

that

Theorem

111001011

Let \succcurlyeq be an expected utility preference.

is an utility index for ≽

 $F(A, \mathcal{P}) = -\sum_{P \in \mathcal{P}} \log(\mu(W_{A,P})) \mu(W_{A,P})$

Thank You!