Herleitung des Gram-Schmidt Verfahrens

Sven Pfiffner

December 15, 2018

Ziel: Es sei $B = \{v_1, v_2, ...\}$ die Basis eines beliebigen Unterraums U in \mathbb{R}^n . Wenden wir Gram-Schmidt auf B an, so erhalten wir $B' = \{v'_1, v'_2, ...\}$, wobei B' eine Orthonormalbasis des selben Unterraums U ist.

Herleitung: Wir wählen einen beliebigen, möglichst günstigen, Vektor in B um B' aufzubauen. Da wir das System auf diesen "aufbauen", ist er trivialerweise bereits Orthogonal und muss nur normalisiert werden.

$$v_1' = \frac{v_1}{||v_1||}$$

Da wir erreichen wollen, dass B' Orthonormalbasis von U ist, müssen wir nun jeden weiteren Vektor $v_i \in B$ so anpassen, dass er orthonormal zu jedem $v_i' \in B'$ steht. Dazu führen wir folgende iterative schritte auf alle v_i aus:

$$\tilde{v}_i = v_i - \sum_{j=1}^{i-1} \left\langle v_j', v_i \right\rangle v_j' \tag{1}$$

$$v_i' = \frac{\tilde{v_i}}{||\tilde{v_i}||} \tag{2}$$

1. Dieser Schritt Orthogonalisiert v_i zu jedem $v_j \in B'|(j < i)$.

Es sei v_1' ein normierter Vektor und v_2 ein beliebiger, zu v_1' linear unabängiger Vektor. Gesucht ist $\tilde{v_2}$, ein zu v_1' orthogonaler Vektor. (Siehe Bild)

Wie sich sehen lässt, kann $\tilde{v_2}$ dargestellt werden als linearkombination von v_1' und v_2

$$\tilde{v_2} = v_2 - \alpha * v_1'$$

Um nun das unbekannte α zu umgehen, nutzen wir aus, dass v_1' bereits normiert ist und damit gilt $|v_1'|=1$. Einige geschickte Umformungen ergeben dann:

$$\begin{split} \tilde{v_2} &= v_2 - \alpha * v_1' \\ &= v_2 - (\alpha * |v_1'|) * v_1' \\ &= v_2 - \left(|v_1| * |v_2| * \frac{\alpha * |v_1'|}{|v_2|} \right) * v_1' \\ &= v_2 - (|v_1| * |v_2| * \cos \angle (v_1', v_2)) * v_1' \\ &= v_2 - \langle v_1', v_2 \rangle * v_1' \end{split}$$

2. Hier normieren wir den gefundenen Orthogonalvektor auf Länge 1, indem wir eine Skalarmultiplikation mit dem Inversen seiner Länge ausführen. Es sei $v_1' = norm(v_1)$, so gilt:

$$v_1 = |v_1| * v_1'$$

$$\implies v_1' = \frac{v_1}{|v_1|}$$