Projeto Final 06 avanços 2a. semana

NSGC - Neural Spell & Grammar Checker (en/pt)

Rafael Ito 03/06/2020

Plano da Apresentação

- Planejamento/Cronograma original
- O que foi realizado na semana
- O que será feito na próxima
- Planejamento/Cronograma atualizado

Planejamento/Cronograma original

Semana 2: 28/maio → 03/junho

- Leitura do último artigo (GECToR).
- o Teste de modelos com diferentes números de parâmetros (base, large, etc).
- Comparação em termos de qualidade e custo computacional de corretores baseados em BERT e T5.
- Uso de diferentes métricas para calcular palavras/sentenças mais próximas da que está em análise (edit distance, SBERT).
- Proposta da arquitetura final.
- o Compilação dos diferentes testes produzidos na semana anterior.

O que foi realizado na semana

- Estudo sobre distância e similaridade entre strings
- Código:
 - esqueleto da arquitetura do corretor
 - métrica de similaridade entre palavras
 - avaliação nos datasets
 - adaptação do código da métrica GLEU

JFLEG dataset and GLEU metric

Original: they just creat impression such well that people are drag to buy it .

Minimal edit: They just create an impression so well that people are dragged to buy it.

Fluency edit: They just create such a good impression that people are compelled to buy it.

GUG corpus (Grammatical/Ungrammatical)

- 3.1k sentences written by English language learners for the TOEFL exam
- **GUG score:** (1–4, where 4 is perfect or native sounding, and 1 incomprehensible)
- **Evaluation metric:** GLEU (Generalized Language Understanding Evaluation)

GLEU:

- based on BLEU
- score fluency in addition to minimal edits
- penalize n-grams that should have been changed in the system output but were left unchanged

2015 - [GLEU] Ground Truth for Grammatical Error Correction Metrics (Napoles et al., 2015)

2016 - [GLEU] GLEU Without Tuning (Napoles et al., 2016)

2017 - [JFLEG] JFLEG: A Fluency Corpus and Benchmark for Grammatical Error (Napoles et al., 2017)

Late paper

Neural Machine Translation (NMT)-based → pre-trained Transformer-NMT-based sequence generation → sequence tagging

Evaluation:

- CoNLL-2014
- BEA

Encoder	CoNI	LL-2014	(test)	BEA-2019 (dev)				
Effecter	P	R	$\mathbf{F_{0.5}}$	P	R	$\mathbf{F_{0.5}}$		
LSTM	51.6	15.3	35.0	-	-	-		
ALBERT	59.5	31.0	50.3	43.8	22.3	36.7		
BERT	65.6	36.9	56.8	48.3	29.0	42.6		
GPT-2	61.0	6.3	22.2	44.5	5.0	17.2		
RoBERTa	67.5	38.3	58.6	50.3	30.5	44.5		
XLNet	64.6	42.6	58.5	47.1	34.2	43.8		

Table 6: Varying encoders from pretrained Transformers in our sequence labeling system. Training was done on data from training stage II only.

2020 - [GECTOR] GECTOR - Grammatical Error Correction: Tag, Not Rewrite (Omelianchuk et al., 2020)

CoNLL-2014 dataset

Task: GEC (Grammatical Error Correction)

NUCLE corpus (the NUS Corpus of Learner English)

Collection of 1,414 essays written by students that have English as a 2nd language at the National University of Singapore (NUS).

- Only test set available publicly!
- Fulfilled the <u>form</u> signing the license agreement
- Sent an email to the staff

NUCLE Release 3.3 Posta in arrivo x

Please find attached the NUCLE Release 3.3 and the preprocessing script.

Regards, Lin Qian

BEA dataset

Building Educational Applications 2019 Shared Task: Grammatical Error Correction (GEC)

- Cambridge English Write & Improve (W&I) corpus (Yannakoudakis et al., 2018)
 - online web platform that assists non-native English students with their writing
 - o letters, stories, articles and essays
 - CEFR level
 - A (beginner)
 - B (intermediate)
 - C (advanced)
- LOCNESS corpus (Granger, 1998)
 - essays written by native English students
 - N (native)

Already tokenised with spaCy

Metric: ERRANT

2017 - [ERRANT] Automatic Annotation and Evaluation of Error Types for Grammatical Error Correction [University of Cambridge] (Bryant et al., 2017)

2019 - [BEA] The BEA-2019 Shared Task on Grammatical Error Correction [University of Cambridge] (Bryant et al., 2019)

String similarity and distance

Edit distance:

- Levenshtein distance (insertions, deletions or substitutions)
- Damerau–Levenshtein distance (insertions, deletions, substitutions or **transposition**)
- Jaro distance (only transposition)

$$D(i,j) = \min \begin{cases} D(i-1,j) & + \text{ del}[x(i)] \\ D(i,j-1) & + \text{ ins}[y(j)] \\ D(i-1,j-1) & + \text{ sub}[x(i),y(j)] \end{cases}$$

											10			
											0			
											p			
2	j	a	s	d	f	g	h	j	k	1	;	'	j	
3		z	х	c	v	b	n	m	,		/			

The Edit Distance Table

P Proc														
ge Proc	N	9												
	0	8												
	Ι	7												
	Τ	6												
	N	5	$0; \text{ if } S_1(i) = S_2(j)$											
	Е	4		,										
	Т	3												
	N	2												
	I	1												
	#	0	1	2	3	4	5	6	7	8	9			
		#	Е	Χ	Е	С	U	T	I	0	N			

https://web.stanford.edu/class/cs124/lec/med.pdf

Code

```
[349] 1 # mask tokens
   2 for i in range(len(input_ids)):
        input_ids[i][i+1] = tokenizer.mask_token_id
   4 input_ids
tensor([[ 101, 103, 117, 1142, 1331, 1110, 1515, 170, 1992, 1849, 119, 102],
         <u>[ 101, 8094,  103,</u> 1142, 1331, 1110, 1515,  170, 1992, 1849,  119,  102],
         [ 101, 8094, 117, 103, 1331, 1110, 1515, 170, 1992, 1849, 119, 102],
         [ 101, 8094, 117, 1142, 103, 1110, 1515, 170, 1992, 1849, 119, 102],
         [ 101, 8094, 117, 1142, 1331, 103, 1515, 170, 1992, 1849, 119, 102],
         [ 101, 8094, 117, 1142, 1331, 1110, 103, 170, 1992, 1849, 119, 102],
         [ 101, 8094, 117, 1142, 1331, 1110, 1515, 103, 1992, 1849, 119, 102],
         [ 101, 8094, 117, 1142, 1331, 1110, 1515, 170, 103, 1849, 119, 102],
         [ 101, 8094, 117, 1142, 1331, 1110, 1515, 170, 1992, 103, 119, 102],
         [ 101, 8094, 117, 1142, 1331, 1110, 1515, 170, 1992, 1849, 103, 102]])
```

https://colab.research.google.com/drive/194LQ5UyrmFJOKUPL7gyAcDFkcfWF3gV1?authuser=1#scrollTo=gTGvw969QXgO

O que será feito na próxima semana

- Avaliação e definição do modelo a ser usado (BERT e/ou T5)
- Organização do notebook
- Entrega do corretor neural em inglês

Planejamento/Cronograma atualizado

Semana 3: 04/junho → 10/junho

(entrega do corretor em inglês)

- Decidir o modelo a ser usado
- Começar o corretor em inglês
- Finalização do corretor para inglês.
- Avaliação de performance entre BERT e T5.

Semana 4: 11/junho → 17/junho

(entrega do corretor em português)

- o Aplicação do procedimento que melhor funcionou para o inglês, mas agora com textos em português.
- Possíveis pequenos ajustes devido a mudança de idioma.
- o Finalização do corretor para português.
- Criação de um dataset artificial em português com erros ortográficos para avaliação