These slides are being provided with permission from the copyright for CS2208 use only. The slides must not be reproduced or provided to anyone outside of the class.

All download copies of the slides and/or lecture recordings are for personal use only. Students must destroy these copies within 30 days after receipt of final course evaluations.

Tutorial 02: Signed Numbers

Computer Science Department

CS2208: Introduction to Computer Organization and Architecture

Fall 2022-2023

Instructor: Mahmoud R. El-Sakka

Office: MC-419

Email: elsakka@csd.uwo.ca

Phone: 519-661-2111 x86996

Signed Numbers

- □ Computer designers have adopted various techniques to represent negative numbers, including
 - sign and magnitude,
 - biased representation, and
 - o two's complement.

■ Example 1-a: Convert –743₈ to binary using sign and magnitude method

```
743<sub>8</sub>

→ 1111 100 011<sub>2</sub>

→ 111100011<sub>2</sub>
```

```
0 = 000

1 = 001

2 = 010

3 = 011

4 = 100

5 = 101

6 = 110

7 = 111
```

```
-743_{8}
```

→ 1111100011₂

■ <u>Example 1-b</u>: Convert +743₈ to binary using *sign and magnitude* method

```
743<sub>8</sub>

→ 111 100 011<sub>2</sub>

→ 111100011<sub>2</sub>
```

```
0 = 000

1 = 001

2 = 010

3 = 011

4 = 100

5 = 101

6 = 110

7 = 111
```

 \rightarrow 01111100011₂

■ Example 2-a: Convert –AB.BA₁₆ to binary using sign and magnitude method unsigned

AB.BA₁₆

- **→**1010 1011.1011 1010₂
- → 10101011.1011101₂

-AB.BA₁₆

→110101011.1011101₂

```
0 = 0000
```

$$1 = 0001$$

$$2 = 0010$$

$$3 = 0011$$

$$4 = 0100$$

$$5 = 0101$$

$$6 = 0110$$

$$7 = 0111$$

$$8 = 1000$$

$$9 = 1001$$

$$A = 1010$$

$$B = 1011$$

$$C = 1100$$

$$D = 1101$$

$$E = 1110$$

$$F = 1111$$

value

■ Example 2-b: Convert +AB.BA₁₆ to binary using sign and magnitude method unsigned

AB.BA₁₆

- \rightarrow 1010 1011.1011 1010₂
- \rightarrow 10101011.1011101₂

+AB.BA₁₆

→010101011.1011101₂

```
0 = 0000
```

$$1 = 0001$$

$$2 = 0010$$

$$3 = 0011$$

$$4 = 0100$$

$$5 = 0101$$

$$6 = 0110$$

$$7 = 0111$$

$$8 = 1000$$

$$9 = 1001$$

$$A = 1010$$

$$B = 1011$$

$$C = 1100$$

$$D = 1101$$

$$E = 1110$$

$$F = 1111$$

value

■ Example 3-a: Convert –0.0A₁₆ to binary using sign and magnitude method unsigned

 $0.0A_{16}$

- $\rightarrow 0000.0000 \ 1010_2$
- \rightarrow 0.0000101₂

 $-0.0A_{16}$

→ 10.0000101₂

0 = 0000 1 = 0001

2 = 0010

3 = 0011

4 = 0100

5 = 0101

6 = 0110

7 = 0111

8 = 1000

9 = 1001

A = 1010

B = 1011

C = 1100

D = 1101

E = 1110

F = 1111

value

Example 3-b: Convert +0.0A₁₆ to binary using *sign and magnitude* method

 $0.0A_{16}$

- $\rightarrow 0000.0000 \ 1010_2$
- \rightarrow 0.0000101₂

 $+0.0A_{16}$

 \rightarrow 00.0000101₂

unsigned value

0 = 0000

1 = 0001

2 = 0010

3 = 0011

4 = 0100

5 = 0101

6 = 0110

7 = 0111

8 = 1000

9 = 1001

A = 1010

B = 1011

C = 1100

D = 1101

E = 1110

F = 1111

Biased Representation

■ **Example 4**: Encode −14₁₀ using **excess-32** representation method (a.k.a. **biased representation**)

To encode a number using *excess-32* method, you need to add 32 to that number.

$$\Box -14_{10} + 32_{10} = 18_{10}$$

 \square 18₁₀ is the *excess-32* representation of -14_{10}

To decode an *excess-32* value to its original value, you need to subtract 32.

$$\square 18_{10} - 32_{10} = -14_{10}$$

Biased Representation

■ <u>Example 5</u>: Encode 14₁₀ using <u>excess-127</u> representation method (a.k.a. <u>biased representation</u>)

To encode a number using *excess-127* method, you need to add 127 to that number.

$$\square 14_{10} + 127_{10} = 141_{10}$$

 \square 141₁₀ is the *excess-127* representation of 14₁₀

To decode an *excess-127* value to its original value, you need to subtract 127.

$$\square 141_{10} - 127_{10} = 14_{10}$$

- □ In binary arithmetic, the *two* 's *complement* of a number is formed by
 - Subtracting the number from 2^n .

The *two* 's complement of 01100101_2 is $100000000_2 - 01100101_2 = 10011011_2$

In binary system,
the sign is encoded as:
MSD = 0 → positive
MSD = 1→ negative

Flipping (inverting) all the bits of the number and adding 1.

The *two* 's complement of 01100101_2 is $10011010_2 + 1_2 = 10011011_2$.

Just for the sake of completeness, in radix R systems, the sign is encoded as: MSD < R/2 → positive MSD ≥ R/2→ negative,

- o Processing all the bits of the number from the <u>least significant bit</u> (LSB) towards the <u>most significant bit</u> (MSB)
 - > copying all the zeros until the first 1 is reached,
 - > copying that 1,
 - > flipping (inverting) all the remaining bits.

The *two* 's complement of 01100100_2 is 10011100_2 . The *two* 's complement of 01100101_2 is 10011011_2 .

■ *Example 6*:

Convert +AB.BA₁₆ and -AB.BA₁₆ to binary using *2's complement* method

AB.BA₁₆

- \rightarrow 1010 1011.1011 1010₂
- → 10101011.1011101₂
- +AB.BA₁₆
 - \rightarrow 010101011.1011101₂
- -AB.BA₁₆
 - $\rightarrow 101010100.0100011_2$

unsigned value

0 = 0000

1 = 0001

2 = 0010

3 = 0011

4 = 0100

5 = 0101

6 = 0110

7 = 0111

8 = 1000

9 = 1001

A = 1010

B = 1011

C = 1100

D = 1101

E = 1110

F = 1111

■ *Example 7*:

Convert +0.0A₁₆ and -0.0A₁₆ to binary using **2's** complement method

 $0.0A_{16}$

- $\rightarrow 0000.0000 \ 1010_2$
- **→** 0.0000101₂

 $+0.0A_{16}$

- **→** 00.0000101₂
- $-0.0A_{16}$
 - → 11.1111011₂

unsigned value

0 = 0000

1 = 0001

2 = 0010

3 = 0011

4 = 0100

5 = 0101

6 = 0110

7 = 0111

8 = 1000

9 = 1001

A = 1010

B = 1011

C = 1100

D = 1101

E = 1110

F = 1111

Signed Numbers

Binary pattern	Unsigned	Signed-and-magnitude	2's complement	Excess-8
0000	0	+0	+0	-8
0001	1	+1	+1	– 7
0010	2 3	+2	+2	- 6
0011	3	+3	+3	- 5
0100	4	+4	+4	-4
0101	5	+5	+5	-3
0110	6	+6	+6	-2
0111	7	+7	+7	-1
1000	8	-0	-8	+ 0
1001	9	$-\frac{1}{2}$	- 7	+1
1010	10	$-\frac{2}{3}$	<u> – 6</u>	+2
1011	11	-3	- 5	+3
1100	12	-4	-4	+4
1101	13	-5	-3	+5
1110	14	<u> </u>	$-\frac{2}{1}$	+6
1111	15	<u> </u>	- l	+7

For a given *n* bit binary pattern

What is the number of zeros for various values of n?

What is the range for various values of n?

Number of zeros 1 Range

$$(2^{n-1}-1) \rightarrow 2^{n-1}-$$

1 2 1 1 0
$$\rightarrow$$
 2ⁿ⁻¹ - 1 $-(2^{n-1} - 1) \rightarrow$ 2ⁿ⁻¹ - 1 $-(2^{n-1}) \rightarrow$ 2ⁿ⁻¹ - 1 $-(2^{n-1}) \rightarrow$ 2ⁿ⁻¹ - 1

$$\begin{array}{c}
 1 \\
 -(2^{n-1}) \longrightarrow 2^{n-1} - 1
\end{array}$$

Unsigned

■ Example 8: Convert 11011.11011₂ to decimal, assuming that it is an unsigned number.

```
11011_{2} \rightarrow 27_{10}
0.11011_{2} \rightarrow 0.84375_{10}
11011.11011_{2} \rightarrow 27.84375_{10}
```

Another method:

$$11011.11011_{2} = 11011111011_{2} / 100000_{2}$$

$$= 891_{10} / 32_{10}$$

$$= 27.84375_{10}$$

■ Example 9: Convert 11011.11011₂ to decimal, assuming that it is encoded using sign and magnitude method.

Another method:

11011.11011₂
$$\rightarrow$$
 -1011.11011₂
1011.11011₂ = 1011111011₂ / 100000₂
= 379₁₀ / 32₁₀ = 11.84375₁₀
11011.11011₂ \rightarrow -11.84375₁₀

■ Example 10: Convert 11011.11011₂ to decimal, assuming that it is encoded using 2's complement method.

```
\begin{array}{c} 11011.11011_{2} \implies negative \ number \\ 11011.11011_{2} \implies -00100.00101_{2} \\ 00100_{2} \implies 4_{10} \\ 0.00101_{2} \implies 0.15625_{10} \\ 00100.00101_{2} \implies 4.15625_{10} \\ 11011.11011_{2} \implies -4.15625_{10} \end{array}
```

Another method:

```
\begin{array}{c} 11011.11011_{2} \implies negative\ number \\ 11011.11011_{2} \implies -00100.00101_{2} \\ 00100.00101_{2} = 0010000101_{2} /\ 1000000_{2} \\ = 133_{10} /\ 32_{10} = 4.15625_{10} \end{array}
```


■ The following numbers represent the same value, which is $+14_{10}$

■ By Converting these numbers into the *2's complement*, you get

■ Example 11: Convert 11011₂ to decimal, <u>assuming</u> that it is encoded using 2's complement method.

- 11011_2 → negative number
- $\blacksquare 11011_2 \rightarrow -00101_2$
- \bullet 00101₂ \rightarrow 5₁₀
- $\blacksquare 11011_2 \rightarrow -5_{10}$

■ Example 12: Convert 1111011₂ to decimal, assuming that it is encoded using 2's complement method.

- 1111011_2 → negative number
- \blacksquare 1111011₂ \rightarrow -0000101₂
- \bullet 0000101₂ \rightarrow 5₁₀
- $1111011_2 \rightarrow -5_{10}$

■ Example 13: Convert 1111111011₂ to decimal, <u>assuming</u> that it is encoded using 2's complement method.

- 1111111011₂ → negative number
- \blacksquare 1111111011₂ \rightarrow -000000101₂
- \bullet 000000101₂ \rightarrow 5₁₀
- \blacksquare 1111111011₂ \rightarrow -5₁₀