Chromatin structure and Gene expression

I. Repressive chromatin

Thursday, 29th October, 2015

Andy Bannister

a.bannister@gurdon.cam.ac.uk

Nuclear - chromosome compaction

The 'power' of histones

HISTONES are highly conserved, small, basic proteins

(H3/H4) tetramer binds DNA

Two (H2A/H2B) dimers bind either side of the tetramer

DNA wraps around a histone octamer to form a nucleosome

Histone Type	Molecular Weight	Number of Amino Acids	Approx. Content of Basic Amino Acids
H1	17,000–28,000	200–265	27% lysine, 2% arginine
H2A	13,900	129–155	11% lysine, 9% arginine
H2B	13,800	121–148	16% lysine, 6% arginine
H3	15,300	135	10% lysine, 15% arginine
H4	11,300	102	11% lysine, 4% arginine

Histone octamer organizes 145bp of DNA: the nucleosome

- Each core histone dimer
 has 6 DNA binding surfaces
 that organize 3 DNA turns;
- The histone octamer
 organizes 145 bp of DNA
 in 1.75 helical turns of DNA:
 48 nm of DNA packaged in a
 disc 6x11nm

Structure of the nucleosome

Luger et al., Nature 389, 251-260 (1997)

Helps to understand the structure of higher order chromatin

Chromatin and Gene Expression

Heterochromatin

General Repression

- highly condensed
- inactive
- nr centromeres/telomeres

Euchromatin

Contains Active Genes

- extended structure
- active

<u>Chromatin Derepression leads to transcription</u>

n vitro, **naked** DNA + basal TFs + RNA pollI = accurate and efficient transcription - stimulated by activator proteins

In vivo, DNA is compacted into nucleoprotein structures (CHROMATIN)

This is highly repressive towards transcription

NEED TO DEREPRESS IN ORDER TO ALLOW EFFICIENT TRANSCRIPTION

- REMODELLING FACTORS (ATP-dependent)
- HISTONE MODIFYING ENZYMES
- FACILITATORS OF ELONGATION

Identification of FACT

(FAcilitates Chromatin Transcription)

Approach

- 1) Assemble chromatin on promoter template in vitro (Gal4 sites)
- 2) Add activator and allow remodelling
- 3) Purify remodelled template (gel filtration)
- 4) Add back purified components or nuclear extract and check
- for (i) INITIATION and (ii) ELONGATION

Results

Modifications on histone H3 tail

But how do we monitor these modifications in vivo at specific loci?

<u>:hIP-seq</u>

Histone acetylation regulates transcription

Transcriptional activation

H (CH_2)₄

ε-N-acetyl-lysine

lysine

neutralizes lysine's positive charge

- Direct mechanism
- Providing binding platform(s)

Methylation of lysines and arginines within histones affects chromatin structure and transcription

So what do we need for an epigenetic (histone) code?

Term	Definition
Writer	An enzyme that introduces a posttranslational modification(s) into a given protein (e.g., a histone methyltransferase).
Eraser	An enzyme that removes a posttranslational modification from a protein (e.g., a histone demethylase).
Reader	A protein or complex that binds specifically to a posttranslationally modified protein, with favorable binding energy contingent upon this modification. Effectors and presenters (see below) are subsets of the more general "reader" category.
Effector	A binding module or domain that binds specifically to a posttranslationally modified substrate, and this binding event recruits other activities contained within the same polypeptide or complex to which it belongs. These recruited activities fall into four general classes: (1) ATP-dependent remodeling of the chromatin fiber, (2) stabilization of a higher order chromatin structure, (3) further posttranslational modification introduction or removal by enzymatic activity (writer or eraser activity), or (4) other gene regulatory effects (e.g., direct recruitment of RNA polymerase II machinery). Effector domains lack enzymatic activity and are analogous to "adaptors" in phosphorylation-dependent signaling pathways (see Seet et al. [2006] for a recent review).
Presenter	A special type of reader module that is able to bind a particular sequence discriminating for a pattern of posttranslational modifications and then present a side chain of this bound epitope for further modification. The presenter serves as accessory factors to writer modules to enable or enhance the activity of the writer on a given substrate.

Let's look at histone methylation as an example......

R and K methylation comes in a number of flavours......

Writing a histone methylation mark

H3K4 methyltransferase other binding partners core complex MLL WDR5 enzymatic recruitment substrate recognition

strongly influenced by complex association

Generally speaking, different histone lysine methylations are associated with different transcriptional activities and they are differentially localized

Reversing (erasing) histone methylation

Reading the mark

A model for the formation of heterochromatin

Euchromatin active

Heterochromatin inactive

Histone modifying enzyme recruitment mechanisms

Noncoding RNAs are the major output of the human genome

Genome composition

The landscape of <u>long noncoding RNAs</u> in the human transcriptome

Matthew K Iyer^{1,2,1}, Yashar S Niknafs^{1,3,1}, Rohit Malik^{1,4}, Udit Singhal^{1,5}, Anirban Sahu^{1,4}, Yasuyuki Hosono¹, Terrence R Barrette¹, John R Prensner¹, Joseph R Evans^{1,6}, Shuang Zhao^{1,6}, Anton Poliakov¹, Xuhong Cao^{1,5}, Saravana M Dhanasekaran^{1,4}, Yi-Mi Wu¹, Dan R Robinson¹, David G Beer^{6,7}, Felix Y Feng^{1,6,8}, Hariharan K Iyer⁹ & Arul M Chinnaiyan^{1,2,4,5,8,10}

Potential molecular mechanisms of long noncoding RNAs (IncRNAs)

A. Transcription in *cis* displaces DNA-bound factors that inhibit (left) or activate (right) transcription of a neighbouring gene

B. Nascent ncRNA transcripts function as tethers for chromatin-modifying complexes and/or transcriptional regulators, which can have either activating (left) or repressive (right) activities

Potential molecular mechanisms of long noncoding RNAs

- C. Trans-acting ncRNAs can serve as platforms for the assembly of protein complexes. Target sites are specified by DNA-binding proteins
- D. trans ncRNAs specify target sites by forming hybrids with complementary DNA sequences, and thus recruit chromatin modifiers and transcriptional regulator

E. IncRNAs also modulate the activity of protein

Using CLIP to identify RNAs bound to proteins

Reading:

Regulation of chromatin by histone modifications Bannister AJ and Kouzarides T *Cell Res.*, 2011, Vol 21: 381-395.

Chromatin modifications and their function. Kouzarides T *Cell*, 2007, Vol 128: 693-705.

Recommended:

Genome regulation by long noncoding RNAs. Rinn JL and Chang HY Annu. Rev. Biochem., 2012, Vol 81: 145-166