Reglunarfræði T 501

Sýnidæmi kafli 3

31. ágúst 2015

Þorgeir Pálsson Davíð Örn Jóhannesson E3.3 Obtain a state variable matrix for a system with a differential equation

$$\frac{d^3y}{dt^3} + 4\frac{d^2y}{dt^2} + 6\frac{dy}{dt} + 8y = 20u(t).$$

E3.3 Obtain a state variable matrix for a system with a differential equation

$$\frac{d^3y}{dt^3} + 4\frac{d^2y}{dt^2} + 6\frac{dy}{dt} + 8y = 20u(t).$$

E3.3 The system in phase variable form is

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u$$
$$y = \mathbf{C}\mathbf{x}$$

where

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -8 & -6 & -4 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0 \\ 0 \\ 20 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}.$$

E3.4 A system can be represented by the state vector differential equation of Equation (3.16), where

$$\mathbf{A} = \left[\begin{array}{cc} 0 & 4 \\ -1 & -4 \end{array} \right].$$

Find the characteristic roots of the system.

E3.4 A system can be represented by the state vector differential equation of Equation (3.16), where

$$\mathbf{A} = \left[\begin{array}{cc} 0 & 4 \\ -1 & -4 \end{array} \right].$$

Find the characteristic roots of the system.

E3.4 The charactersitic roots, denoted by λ , are the solutions of $\det(\lambda \mathbf{I} - \mathbf{A}) = 0$. For this problem we have

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \det\left(\begin{bmatrix} \lambda & -4 \\ 1 & \lambda + 4 \end{bmatrix} \right) = \lambda(\lambda + 4) + 4 = \lambda^2 + 4\lambda + 4 = 0 \ .$$

Therefore, the characteristic roots are

$$\lambda_1 = -2$$
 and $\lambda_2 = -2$.

E3.5 A system is represented by a block diagram as shown in Figure E3.5. Write the state equations in the form of Equations (3.16) and (3.17).

FIGURE E3.5 Block diagram.

E3.5 A system is represented by a block diagram as shown in Figure E3.5. Write the state equations in the form of Equations (3.16) and (3.17).

FIGURE E3.5 Block diagram.

E3.5 From the block diagram we determine that the state equations are

$$\dot{x}_2 = -(fk+d)x_2 + ax_1 + fu$$

 $\dot{x}_1 = -kx_2 + u$

and the output equation is

$$y = bx_2$$
.

Therefore,

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u$$
$$y = \mathbf{C}\mathbf{x} + \mathbf{D}u ,$$

where

$$\mathbf{A} = \begin{bmatrix} 0 & -k \\ a & -(fk+d) \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 \\ f \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 0 & b \end{bmatrix} \text{ and } \mathbf{D} = \begin{bmatrix} 0 \end{bmatrix}.$$

E3.9 A multi-loop block diagram is shown in Figure E3.9. The state variables are denoted by x_1 and x_2 . (a) Determine a state variable representation of the closed-loop system where the output is denoted by y(t) and the input is r(t). (b) Determine the characteristic equation.

FIGURE E3.9 Multi-loop feedback control system.

E3.9 A multi-loop block diagram is shown in Figure E3.9. The state variables are denoted by x_1 and x_2 . (a) Determine a state variable representation of the closed-loop system where the output is denoted by y(t) and the input is r(t). (b) Determine the characteristic equation.

FIGURE E3.9 Multi-loop feedback control system.

E3.9 Analyzing the block diagram yields

$$\dot{x}_1 = -x_1 + \frac{1}{2}x_2 + r$$

$$\dot{x}_2 = x_1 - \frac{3}{2}x_2 - r$$

$$y = x_1 - \frac{3}{2}x_2 - r.$$

In state-variable form we have

$$\dot{\mathbf{x}} = \begin{bmatrix} -1 & \frac{1}{2} \\ 1 & -\frac{3}{2} \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} r, \quad y = \begin{bmatrix} 1 & -\frac{3}{2} \end{bmatrix} \mathbf{x} + \begin{bmatrix} -1 \end{bmatrix} r.$$

The characteristic equation is

$$s^{2} + \frac{5}{2}s + 1 = (s+2)(s+\frac{1}{2}) = 0$$
.

E3.10 A hovering vehicle control system is represented by two state variables, and [13]

$$A = \left[\begin{array}{cc} 0 & 12 \\ -1 & -7 \end{array} \right].$$

- (a) Find the roots of the characteristic equation.
- (b) Find the state transition matrix $\Phi(t)$.

E3.10 A hovering vehicle control system is represented by two state variables, and [13]

$$A = \begin{bmatrix} 0 & 6 \\ -1 & -5 \end{bmatrix}.$$

- (a) Find the roots of the characteristic equation.
- (b) Find the state transition matrix $\Phi(t)$.

E3.10 (a) The characteristic equation is

$$\det[\lambda \mathbf{I} - \mathbf{A}] = \det \begin{bmatrix} \lambda & -12 \\ 1 & (\lambda + 7) \end{bmatrix} = \lambda(\lambda + 7) + 12 = (\lambda + 4)(\lambda + 3) = 0.$$

So, the roots are $\lambda_1 = -4$ and $\lambda_2 = -3$.

(b) We note that

$$\Phi(s) = [s\mathbf{I} - \mathbf{A}]^{-1} = \begin{bmatrix} s & -12 \\ 1 & s+7 \end{bmatrix}^{-1} = \frac{1}{(s+4)(s+3)} \begin{bmatrix} s+7 & 12 \\ -1 & s \end{bmatrix}.$$

Taking the inverse Laplace transform yields the transition matrix

$$\Phi(t) = \begin{bmatrix} 4e^{-3t} - 3e^{-4t} & 12e^{-3t} - 12e^{-4t} \\ -e^{-3t} + e^{-4t} & -3e^{-3t} + 4e^{-4t} \end{bmatrix}.$$

E3.18 Consider a system represented by the following differential equations:

$$Ri_1 + L_1 \frac{di_1}{dt} + v = v_a$$

$$L_2 \frac{di_2}{dt} + v = v_b$$

$$i_1 + i_2 = C \frac{dv}{dt}$$

E3.18 Consider a system represented by the following differential equations:

$$Ri_1 + L_1 \frac{di_1}{dt} + v = v_a$$

$$L_2 \frac{di_2}{dt} + v = v_b$$

$$i_1 + i_2 = C \frac{dv}{dt}$$

E3.18 The governing equations of motion are

$$Ri_1 + L_1 \frac{di_1}{dt} + v = v_a$$

$$L_2 \frac{di_2}{dt} + v = v_b$$

$$i_L = i_1 + i_2 = C \frac{dv}{dt} .$$

Let $x_1 = i_1, x_2 = i_2, x_3 = v, u_1 = v_a$ and $u_2 = v_b$. Then,

$$\dot{\mathbf{x}} = \begin{bmatrix} -\frac{R}{L_1} & 0 & -\frac{1}{L_1} \\ 0 & 0 & -\frac{1}{L_2} \\ \frac{1}{C} & \frac{1}{C} & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} \frac{1}{L_1} & 0 \\ 0 & \frac{1}{L_2} \\ 0 & 0 \end{bmatrix} \mathbf{u}$$
$$y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \mathbf{x} + [0] \mathbf{u} .$$

E3.22 Consider the system in state variable form

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u$$
$$y = \mathbf{C}\mathbf{x} + \mathbf{D}u$$

with

$$\mathbf{A} = \begin{bmatrix} 3 & 2 \\ 3 & 4 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \mathbf{C} = \begin{bmatrix} 1 & 0 \end{bmatrix}, \text{ and } \mathbf{D} = \begin{bmatrix} 0 \end{bmatrix}.$$

(a) Compute the transfer function G(s) = Y(s)/U(s).
 (b) Determine the poles and zeros of the system. (c) If possible, represent the system as a first-order system

$$\dot{x} = ax + bu$$
$$y = cx + du$$

where a, b, c, and d are scalars such that the transfer function is the same as obtained in (a).

E3.22 Consider the system in state variable form

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u$$
$$y = \mathbf{C}\mathbf{x} + \mathbf{D}u$$

with

$$\mathbf{A} = \begin{bmatrix} 3 & 2 \\ 3 & 4 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \mathbf{C} = \begin{bmatrix} 1 & 0 \end{bmatrix}, \text{ and } \mathbf{D} = \begin{bmatrix} 0 \end{bmatrix}.$$

(a) Compute the transfer function G(s) = Y(s)/U(s).
 (b) Determine the poles and zeros of the system. (c) If possible, represent the system as a first-order system

$$\dot{x} = ax + bu$$
$$y = cx + du$$

E3.22 The transfer function is

$$G(s) = \frac{s-6}{s^2-7s+6}$$
.

The poles are at $s_1 = 1$ and $s_2 = 6$. The zero is at s = 6. So, we see that there is a pole-zero cancellation. We can write the system in state variable form as

$$\dot{x} = x - \sqrt{2}u$$
$$y = -\frac{\sqrt{2}}{2}x$$

and the transfer function is

$$G(s) = \frac{1}{s-1} \ .$$