Hypothesis testing 3: Two-sample tests

Y. Polyanskiy, D. Shah, J. Tsitsiklis

6.S077

2018

Outline:

- Recap (p-value)
- Two-sample tests: paired an unpaired
- t-test: same variance and different variance
- Testing equality of distributions: KS-test, G-test, qqplot
- Testing for independence
- Confounding

Review

Definition

Statistical hypotheses:

- ullet H: data X_1,\ldots,X_n distributed according to $P\in\mathcal{C}_0$
- ullet K: data X_1,\ldots,X_n distributed according to $P\in\mathcal{C}_1$

where C_0, C_1 are COLLECTIONS OF DISTRIBUTIONS.

Remarks:

- Find statistic $T(X_1,\ldots,X_n)$ with pprox same dist. under all $P\in\mathcal{C}_0$
- Test: If $T \ge t_{\alpha}$ then REJECT
- t_{α} is chosen depending on required size:

$$\max_{P \in \mathcal{C}_0} P[T \ge t_{\alpha}] \le \alpha .$$

• Alternatively, report p-value: If $T(x_1, \ldots, x_n) = t_{obs}$

$$p = \max_{P \in \mathcal{C}_0} P[T \ge t_{obs}]$$

(aka "probability of same or more extreme data under null")

Comparison (two-sample) testing

Examples:

- A/B testing in marketing
- one algorithm vs another
- one stock vs another
- new drug vs placebo

Comparison (two-sample) testing

Examples:

- A/B testing in marketing
- one algorithm vs another
- one stock vs another
- new drug vs placebo

Two principal situations:

- Paired data:
 - each client tries both products
 - each input is evaluated using both algorithms
 - each day both stocks are evaluated
 - Unpaired data:
 - each client tries only one product
 - each input is evaluated on only one product
 - each day can probe only one stock

Two-sample testing (paired data)

- Paired data:
 - each client tries both products
 - each input is evaluated using both algorithms
 - each day both stocks are evaluated
- Statistical formalism: $(X_i,Y_i) \stackrel{iid}{\sim} P_{X,Y}$

$$H: \mathbb{E}[X] \le \mathbb{E}[Y]$$
 $K: \mathbb{E}[X] > \mathbb{E}[Y]$

Two-sample testing (paired data)

- Paired data:
 - each client tries both products
 - each input is evaluated using both algorithms
 - each day both stocks are evaluated
- Statistical formalism: $(X_i, Y_i) \stackrel{iid}{\sim} P_{X,Y}$

$$H: \mathbb{E}[X] \le \mathbb{E}[Y]$$
 $K: \mathbb{E}[X] > \mathbb{E}[Y]$

- For paired data can always reduce to one-sample case
- E.g. for real-valued measurements: $Z_i \triangleq X_i Y_i$

$$H: \mathbb{E}[Z] \le 0$$
 $K: \mathbb{E}[Z] > 0$

Two-sample testing (paired data)

- Paired data:
 - each client tries both products
 - each input is evaluated using both algorithms
 - each day both stocks are evaluated
- Statistical formalism: $(X_i, Y_i) \stackrel{iid}{\sim} P_{X,Y}$

$$H: \mathbb{E}[X] \le \mathbb{E}[Y]$$
 $K: \mathbb{E}[X] > \mathbb{E}[Y]$

- For paired data can always reduce to one-sample case
- E.g. for real-valued measurements: $Z_i \triangleq X_i Y_i$

$$H: \mathbb{E}[Z] \le 0$$
 $K: \mathbb{E}[Z] > 0$

- Hence use z-test or t-test (or Wald test)
- Already had example before

Two-sample testing (unpaired data)

- Unpaired data:
 - each client tries only one product
 - each input is evaluated on only one product
 - each day can probe only one stock
- Statistical formalism: $X_i \stackrel{iid}{\sim} P_X, Y_i \stackrel{iid}{\sim} P_Y$

$$H: \mathbb{E}[X] \le \mathbb{E}[Y]$$
 $K: \mathbb{E}[X] > \mathbb{E}[Y]$

What to do?

Two-sample testing (unpaired data)

- Unpaired data:
 - each client tries only one product
 - each input is evaluated on only one product
 - each day can probe only one stock
- Statistical formalism: $X_i \stackrel{iid}{\sim} P_X, Y_i \stackrel{iid}{\sim} P_Y$

$$H: \mathbb{E}[X] \le \mathbb{E}[Y]$$
 $K: \mathbb{E}[X] > \mathbb{E}[Y]$

- What to do?
- General idea:

$$\frac{\hat{\mu}_X - \hat{\mu}_Y}{\hat{se}} \lesssim t_{\alpha}$$
 ACCEPT/REJECT

(aka two-sample t-test)

- Hypothesis testing:
 - $lacksquare X_i \overset{iid}{\sim} P_X$, n samples, $\mu_X = \mathbb{E}[X]$
 - $ightharpoonup Y_i \overset{iid}{\sim} P_Y$, m samples, $\mu_Y = \mathbb{E}[Y]$
 - Assumption: $Var[X] = Var[Y] = \sigma^2$
 - ... same (but unknown!) variance of both samples
 - ▶ One-sided: $H: \mu_X \leq \mu_Y$ vs $K: \mu_X > \mu_Y$
- General idea:

$$\frac{\hat{\mu}_X - \hat{\mu}_Y}{\widehat{se}} \lesssim t_{\alpha}$$
 ACCEPT/REJECT

- Hypothesis testing:
 - $lacksquare X_i \stackrel{iid}{\sim} P_X$, n samples, $\mu_X = \mathbb{E}[X]$
 - $ightharpoonup Y_i \overset{iid}{\sim} P_Y$, m samples, $\mu_Y = \mathbb{E}[Y]$
 - Assumption: Var[X] = Var[Y] =
 - ... same (but unknown!) variance of
 - ▶ One-sided: $H: \mu_X \leq \mu_Y$ vs K:
- General idea:

$$\frac{\hat{\mu}_X - \hat{\mu}_Y}{\widehat{se}} \lesssim t_{\alpha}$$
 ACC

 $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$

$$\bar{Y}_m = \frac{1}{m} \sum_{j=1}^m Y_j$$

• Let us try $T_0 = \bar{X}_n - \bar{Y}_m$ (sample means)

Need to normalize!

- Hypothesis testing:
 - $lacksquare X_i \overset{iid}{\sim} P_X$, n samples, $\mu_X = \mathbb{E}[X]$
 - $ightharpoonup Y_i \overset{iid}{\sim} P_Y$, m samples, $\mu_Y = \mathbb{E}[Y]$
 - Assumption: $Var[X] = Var[Y] = \sigma^2$
 - ... same (but unknown!) variance of both samples
 - ▶ One-sided: $H: \mu_X \leq \mu_Y$ vs $K: \mu_X > \mu_Y$
- General idea:

- Let us try $T_0 = \bar{X}_n \bar{Y}_m$ (sample means) Need to normalize!
- Problem: What is $Var[T_0]$? $Var[T_0] = Var[\bar{X}_n] + Var[\bar{Y}_m] = \sigma^2 \left(\frac{1}{n} + \frac{1}{m}\right) \qquad \sigma^2 \text{ unknown}$

- Hypothesis testing:
 - $lacksquare X_i \stackrel{iid}{\sim} P_X$, n samples, $\mu_X = \mathbb{E}[X]$
 - $ightharpoonup Y_i \overset{iid}{\sim} P_Y$, m samples, $\mu_Y = \mathbb{E}[Y]$
 - Assumption: $Var[X] = Var[Y] = \sigma^2$
 - ... same (but unknown!) variance of both samples
 - ▶ One-sided: $H: \mu_X \leq \mu_Y$ vs $K: \mu_X > \mu_Y$
- General idea:

- Let us try $T_0 = \bar{X}_n \bar{Y}_m$ (sample means) Need to normalize!
- Problem: What is $Var[T_0]$?

$$\operatorname{Var}[T_0] = \operatorname{Var}[\bar{X}_n] + \operatorname{Var}[\bar{Y}_m] = \sigma^2 \left(\frac{1}{n} + \frac{1}{m}\right)$$
 σ^2 unknown

• Unbiased estimator: $\widehat{\sigma^2} = \frac{1}{n+m-2} \left(\sum_{i=1}^n (X_i - \bar{X}_n)^2 + \sum_{j=1}^m (Y_j - \bar{Y}_m)^2 \right)$

(aka pooled estimator of variance)

two-sample t-statistic (pooled variance)

$$T = \frac{\bar{X}_n - \bar{Y}_m}{\sqrt{\frac{1}{n} + \frac{1}{m}}\sqrt{\widehat{\sigma^2}}}$$

$$\widehat{\sigma^2} = \frac{1}{n+m-2}\left(\sum_{i=1}^n (X_i - \bar{X}_n)^2 + \sum_{j=1}^m (Y_j - \bar{Y}_m)^2\right)$$
 and \bar{X}_n , \bar{Y}_m are sample means.

By LLN and CLT:

$$\frac{\bar{X}_n - \bar{Y}_m}{\sqrt{\frac{1}{n} + \frac{1}{m}}} \rightarrow \mathcal{N}(0, \sigma^2)$$

$$\widehat{\sigma^2} \rightarrow \sigma^2$$

• ... Thus $T \to \mathcal{N}(0,1)$ as $n, m \to \infty$.

- Hypothesis testing:
 - $lacksquare X_i \overset{iid}{\sim} P_X$, n samples, $\mu_X = \mathbb{E}[X]$
 - $ightharpoonup Y_i \overset{iid}{\sim} P_Y$, m samples, $\mu_Y = \mathbb{E}[Y]$
 - Assumption: $Var[X] = Var[Y] = \sigma^2$
 - ▶ One-sided: $H: \mu_X \leq \mu_Y$ vs $K: \mu_X > \mu_Y$
 - ► Two-sided: $H: \mu_X = \mu_Y$ vs $K: \mu_X \neq \mu_Y$
- Test statistic: $T=rac{ar{X}_n-ar{Y}_m}{\sqrt{rac{1}{n}+rac{1}{m}}}rac{1}{\sqrt{\widehat{\sigma^2}}}$
- Thus select thresholds from approximating $T \approx \mathcal{N}(0, 1)$:

$$T>z_{lpha}$$
 REJECT one-sided $|T|>z_{rac{lpha}{2}}$ REJECT two-sided

• If samples are $pprox \mathcal{N}$, then $T pprox \mathtt{scipy.stats.t.pdf}(\cdot,\mathtt{n}+\mathtt{m}-\mathtt{2})$ (and thus replace z_{lpha} with lpha-quantile of ...ditto...)

- Hypothesis testing:
 - $igwedge X_i \overset{iid}{\sim} P_X$, n samples, $\mu_X = \mathbb{E}[X]$
 - $ightharpoonup Y_i \overset{iid}{\sim} P_Y$, m samples, $\mu_Y = \mathbb{E}[Y]$
 - Assumption: $Var[X] = Var[Y] = \sigma^2$
 - ▶ One-sided: $H: \mu_X \leq \mu_Y$ vs $K: \mu_X > \mu_Y$
 - ► Two-sided: $H: \mu_X = \mu_Y$ vs $K: \mu_X \neq \mu_Y$
- Test statistic: $T=\frac{\bar{X}_n-\bar{Y}_m}{\sqrt{\frac{1}{n}+\frac{1}{m}}}\frac{1}{\sqrt{\widehat{\sigma^2}}}$
- Thus select thresholds from approximating $T \approx \mathcal{N}(0, 1)$:

$$T>z_{lpha}$$
 REJECT one-sided $|T|>z_{rac{lpha}{2}}$ REJECT two-sided

- If samples are $pprox \mathcal{N}$, then $T pprox \mathtt{scipy.stats.t.pdf}(\cdot,\mathtt{n}+\mathtt{m}-\mathtt{2})$ (and thus replace z_lpha with lpha-quantile of ...ditto...)
- Remember: pooled variance assumes HOMOSCEDASTICITY
- Example: signals (or patients) measured on the same noisy equipment.

- Hypothesis testing:
 - $lacksquare X_i \stackrel{iid}{\sim} P_X$, n samples, $\mu_X = \mathbb{E}[X]$, $\mathrm{Var}[X] = \sigma_X^2$
 - $lacksymbol{\mathsf{Y}}_i \stackrel{iid}{\sim} P_Y$, m samples, $\mu_Y = \mathbb{E}[Y]$, $\operatorname{Var}[Y] = \sigma_Y^2$
 - ▶ One-sided: $H: \mu_X \leq \mu_Y$ vs $K: \mu_X > \mu_Y$
 - ► Two-sided: $H: \mu_X = \mu_Y$ vs $K: \mu_X \neq \mu_Y$
- Let us try $T_0 = \bar{X}_n \bar{Y}_m$ (sample means) Need to normalize!
- Problem: What is $Var[T_0]$? $Var[T_0] = Var[\bar{X}_n] + Var[\bar{Y}_m] = \frac{\sigma_X^2}{2} + \frac{\sigma_Y^2}{2}$ σ 's unknown

- Hypothesis testing:
 - $lacksquare X_i \overset{iid}{\sim} P_X$, n samples, $\mu_X = \mathbb{E}[X]$, $\operatorname{Var}[X] = \sigma_X^2$
 - $ightharpoonup Y_i \overset{iid}{\sim} P_Y$, m samples, $\mu_Y = \mathbb{E}[Y]$, $\operatorname{Var}[Y] = \sigma_Y^2$
 - ▶ One-sided: $H: \mu_X \leq \mu_Y$ vs $K: \mu_X > \mu_Y$
 - $\qquad \text{Two-sided:} \quad H: \mu_X = \mu_Y \quad \text{vs} \quad K: \mu_X \neq \mu_Y$
- Let us try $T_0 = \bar{X}_n \bar{Y}_m$ (sample means) Need to normalize!
- Problem: What is $\mathrm{Var}[T_0]$? $\mathrm{Var}[T_0] = \mathrm{Var}[\bar{X}_n] + \mathrm{Var}[\bar{Y}_m] = \frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m} \qquad \sigma$'s unknown
- Use unbiased estimators:

$$\widehat{\sigma_X^2} = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

$$\widehat{\sigma_Y^2} = \frac{1}{m-1} \sum_{i=1}^m (Y_i - \bar{Y}_m)^2$$

- Hypothesis testing:
 - $\begin{array}{l} \stackrel{\scriptstyle \cdot}{\blacktriangleright} X_i \stackrel{iid}{\sim} P_X \text{, } n \text{ samples, } \mu_X = \mathbb{E}[X], \quad \operatorname{Var}[X] = \sigma_X^2 \\ \stackrel{\scriptstyle \cdot}{\blacktriangleright} Y_i \stackrel{iid}{\sim} P_Y \text{, } m \text{ samples, } \mu_Y = \mathbb{E}[Y], \quad \operatorname{Var}[Y] = \sigma_Y^2 \end{array}$

 - ▶ One-sided: $H: \mu_X \leq \mu_Y$ vs $K: \mu_X > \mu_Y$
 - ► Two-sided: $H: \mu_X = \mu_Y$ vs $K: \mu_X \neq \mu_Y$

two-sample *t*-statistic (unequal variance)

$$T = \frac{\bar{X}_n - \bar{Y}_m}{\sqrt{\frac{\widehat{\sigma_X^2}}{n} + \frac{\widehat{\sigma_Y^2}}{m}}}$$

• Asymptotically normal: $T \approx \mathcal{N}(0,1)$, so use z_{α} or $z_{\alpha/2}$

- Hypothesis testing:
 - $\begin{array}{l} \stackrel{iid}{\blacktriangleright} X_i \stackrel{iid}{\sim} P_X \text{, } n \text{ samples, } \mu_X = \mathbb{E}[X] \text{,} & \mathrm{Var}[X] = \sigma_X^2 \\ \stackrel{iid}{\blacktriangleright} Y_i \stackrel{iid}{\sim} P_Y \text{, } m \text{ samples, } \mu_Y = \mathbb{E}[Y] \text{,} & \mathrm{Var}[Y] = \sigma_Y^2 \end{array}$

 - ▶ One-sided: $H: \mu_X \leq \mu_Y$ vs $K: \mu_X > \mu_Y$
 - ► Two-sided: $H: \mu_X = \mu_Y$ vs $K: \mu_X \neq \mu_Y$

two-sample t-statistic (unequal variance)

$$T = \frac{\bar{X}_n - \bar{Y}_m}{\sqrt{\frac{\widehat{\sigma_X^2}}{n} + \frac{\widehat{\sigma_Y^2}}{m}}}$$

- Asymptotically normal: $T \approx \mathcal{N}(0,1)$, so use z_{α} or $z_{\alpha/2}$
- Small # samples: distribution unknown (even if P_X , P_Y both \mathcal{N}).
- ...aka Behrens-Fisher problem

- Hypothesis testing:
 - $\begin{array}{l} \stackrel{iid}{\blacktriangleright} X_i \stackrel{iid}{\sim} P_X, \ n \ \text{samples}, \ \mu_X = \mathbb{E}[X], \quad \text{Var}[X] = \sigma_X^2 \\ \stackrel{iid}{\blacktriangleright} Y_i \stackrel{iid}{\sim} P_Y, \ m \ \text{samples}, \ \mu_Y = \mathbb{E}[Y], \quad \text{Var}[Y] = \sigma_Y^2 \end{array}$

 - ▶ One-sided: $H: \mu_X \leq \mu_Y$ vs $K: \mu_X > \mu_Y$
 - ► Two-sided: $H: \mu_X = \mu_Y$ vs $K: \mu_X \neq \mu_Y$

two-sample t-statistic (unequal variance)

$$T = \frac{\bar{X}_n - \bar{Y}_m}{\sqrt{\frac{\widehat{\sigma}_X^2}{n} + \frac{\widehat{\sigma}_Y^2}{m}}}$$

- Asymptotically normal: $T \approx \mathcal{N}(0,1)$, so use z_{α} or $z_{\alpha/2}$
- Small # samples: distribution unknown (even if P_X , P_Y both \mathcal{N}).
- ...aka Behrens-Fisher problem
- Welch correction: $T \approx \text{Student-t with d.o.f.} = (\text{hard})$

- Hypothesis testing:
 - $X_i \overset{iid}{\sim} P_X$, n samples, $\mu_X = \mathbb{E}[X]$, $\operatorname{Var}[X] = \sigma_X^2$
 - $igwedge Y_i \stackrel{iid}{\sim} P_Y$, m samples, $\mu_Y = \mathbb{E}[Y]$, $Var[Y] = \sigma_Y^2$
 - $\qquad \qquad \text{ One-sided: } \quad H:\mu_X \leq \mu_Y \quad \text{ vs } \quad K:\mu_X > \mu_Y$
 - ► Two-sided: $H: \mu_X = \mu_Y$ vs $K: \mu_X \neq \mu_Y$

two-sample t-statistic (unequal variance)

$$T = \frac{\bar{X}_n - \bar{Y}_m}{\sqrt{\frac{\widehat{\sigma_X^2}}{n} + \frac{\widehat{\sigma_Y^2}}{m}}}$$

- Asymptotically normal: $T \approx \mathcal{N}(0,1)$, so use z_{α} or $z_{\alpha/2}$
- Small # samples: distribution unknown (even if P_X, P_Y both \mathcal{N}).
- ...aka Behrens-Fisher problem
- Welch correction: $T \approx \text{Student-t}$ with d.o.f.= (hard)
- Bootstrap: Simulate dist. of T with $\tilde{X}_i \sim \mathcal{N}(0, \widehat{\sigma_X^2}), \, \tilde{Y}_i \sim \mathcal{N}(0, \widehat{\sigma_X^2})$

- Setting:
 - ► Hypothesis: F. Dostoevsky's sentences are longer than M. Twain's:

$$\mathsf{null}\ H: \mu_{MT} < \mu_{FD}$$

- ▶ Two novels: 1. Tom Sawyer vs 2. Crime and Punishment
- ➤ X_i lengths of sentences in novel 1
- ▶ Y_j lengths of sentences in novel 2
- First, look at histograms

3:

- Setting:
 - ► Hypothesis: F. Dostoevsky's sentences are longer than M. Twain's:

$$\mathsf{null}\ H: \mu_{MT} < \mu_{FD}$$

- ► Two novels: 1. Tom Sawyer vs 2. Crime and Punishment
- X_i lengths of sentences in novel 1
- Y_j lengths of sentences in novel 2
- First, look at histograms
- Ok, let's do a t-test (unequal var.)
 - Novel 1: $\hat{\mu}_1 = 105.6, \hat{\sigma}_1 = 90.1, n_1 = 3622$
 - Novel 2: $\hat{\mu}_2 = 93.8, \hat{\sigma}_2 = 79.0, n_2 = 11906$
 - ► T-statistic: $t = \frac{\hat{\mu}_1 \hat{\mu}_2}{\sqrt{\hat{\sigma}_1^2/n_1 + \hat{\sigma}_2^2/n_2}} = 7.11$
 - ▶ p-value $p = 5 \cdot 10^{-13}$. Sound REJECT

- Setting:
 - ► Hypothesis: F. Dostoevsky's sentences are longer than M. Twain's:

$$\mathsf{null}\ H: \mu_{MT} < \mu_{FD}$$

- ► Two novels: 1. Tom Sawyer vs 2. Crime and Punishment
- ➤ X_i lengths of sentences in novel 1
- $ightharpoonup Y_j$ lengths of sentences in novel 2
- First, look at histograms
- Ok, let's do a *t*-test (unequal var.)
 - Novel 1: $\hat{\mu}_1 = 105.6, \hat{\sigma}_1 = 90.1, n_1 = 3622$
 - Novel 2: $\hat{\mu}_2 = 93.8, \hat{\sigma}_2 = 79.0, n_2 = 11906$
 - ► T-statistic: $t = \frac{\hat{\mu}_1 \hat{\mu}_2}{\sqrt{\hat{\sigma}_1^2/n_1 + \hat{\sigma}_2^2/n_2}} = 7.11$
 - ▶ p-value $p = 5 \cdot 10^{-13}$. Sound REJECT
- Histograms are alike, but we got $p \ll 1$? How?

 $Sample-mean\ amplifies\ (and\ Gaussianizes)\ subtle\ differences.$

More than two groups, non-parametric tests

What we did not cover:

- Could have more than two groups
 - ► The null-hypothesis:

$$H: \mu_1 = \mu_2 = \dots = \mu_K$$

Test-statistic is (sort of):

$$F = (\hat{\mu}_1 - \hat{\mu})^2 + \dots + (\hat{\mu}_K - \hat{\mu})^2$$

- Asymptotically $\chi^2()$ -distributed under null.
- ▶ Known as F-test
- Such multiple-group problems have cool name: ANOVA

More than two groups, non-parametric tests

What we did not cover:

- Could have more than two groups
 - The null-hypothesis:

$$H: \mu_1 = \mu_2 = \dots = \mu_K$$

Test-statistic is (sort of):

$$F = (\hat{\mu}_1 - \hat{\mu})^2 + \dots + (\hat{\mu}_K - \hat{\mu})^2$$

- Asymptotically χ^2 ()-distributed under null.
- ▶ Known as *F*-test
- Such multiple-group problems have cool name: ANOVA
- Non-parametric tests:
 - lacktriangledown t-tests are "parametric": exactly size-lpha only for Gaussian distributions.
 - Exactly size-α tests w/o assumptions?

More than two groups, non-parametric tests

What we did not cover:

- Could have more than two groups
 - ► The null-hypothesis:

$$H: \mu_1 = \mu_2 = \dots = \mu_K$$

Test-statistic is (sort of):

$$F = (\hat{\mu}_1 - \hat{\mu})^2 + \dots + (\hat{\mu}_K - \hat{\mu})^2$$

- Asymptotically $\chi^2()$ -distributed under null.
- ▶ Known as F-test
- Such multiple-group problems have cool name: ANOVA
- Non-parametric tests:
 - lacktriangledown t-tests are "parametric": exactly size-lpha only for Gaussian distributions.
 - Exactly size- α tests w/o assumptions?
 - ▶ Yes! And they are beautiful: Wilcoxon sum-rank tests
 - ▶ Key: sort $X_1, ..., X_n$ and $Y_1, ..., Y_m$. If $P_X = P_Y$ then ranks of X's and Y's are uniformly distributed on [n + m].

Two-sample tests: beyond means

- Sometimes we may not be interested in means (e.g. data non-numerical)
- ... but still want to know if there is some effect
- Typical setting:
 - $ightharpoonup X_i \stackrel{iid}{\sim} P_X$, n samples
 - $Y_i \stackrel{iid}{\sim} P_Y$, m samples

Two-sample tests: beyond means

- Sometimes we may not be interested in means (e.g. data non-numerical)
- ... but still want to know if there is some effect
- Typical setting:
 - $ightharpoonup X_i \stackrel{iid}{\sim} P_X$, n samples
 - $Y_i \stackrel{iid}{\sim} P_Y$, m samples
- Two cases: continuous and discrete data

Equality of distributions: Kolmogorov-Smirnov

- Last time: How to test $X \sim P_0$ with given (cts) P_0 .
- Main observation: $\sqrt{n}\cdot \sup_t |\hat{F}_X(t) F_0(t)|$ has known distribution (under null)

Equality of distributions: Kolmogorov-Smirnov

- Last time: How to test $X \sim P_0$ with given (cts) P_0 .
- Main observation: $\sqrt{n}\cdot \sup_t |\hat{F}_X(t) F_0(t)|$ has known distribution (under null)
- Setting:
 - $ightharpoonup X_i \overset{iid}{\sim} P_X$, n samples
 - $Y_i \stackrel{iid}{\sim} P_Y$, m samples

two-sample Kolmogorov-Smirnov statistic

$$KS = \sqrt{\frac{nm}{n+m}} \cdot \sup_{t} |\hat{F}_X(t) - \hat{F}_Y(t)|$$

- Known distribution independent (!) of $P_X = P_Y$
 - \dots so just simulate on uniform to get p-value!
- Analytical formulae for $n, m \to \infty$. Use:

$${\tt scipy.stats.ks_2samp}({\tt x_samp}, {\tt y_samp})$$

Equality of distributions: Quantile-Quantile plots

- Setting:
 - $ightharpoonup X_i \stackrel{iid}{\sim} P_X$, n samples
 - $ightharpoonup Y_i \stackrel{iid}{\sim} P_Y$, m samples
 - $H: P_X = P_Y$ vs $K: P_X \neq P_Y$
- qqplot:
 - ▶ Step 1. Sort data: $X_{(1)} \leq \cdots \leq X_{(n)}$ and $Y_{(1)} \leq \cdots \leq Y_{(m)}$
 - ▶ Step 2. Suppose m = n (general case is similar)
 - Step 3. Plot pairs $(X_{(i)}, Y_{(i)})$
- MAGIC: Under null, should get a straight line
- Example 1: $P_X = P_Y = \mathcal{N}(0,1)$

- Setting:
 - $ightharpoonup X_i \stackrel{iid}{\sim} P_X$, n samples
 - $ightharpoonup Y_i \stackrel{iid}{\sim} P_Y$, m samples
 - $H: P_X = P_Y \quad \text{vs} \quad K: P_X \neq P_Y$
- qqplot:
 - ▶ Step 1. Sort data: $X_{(1)} \leq \cdots \leq X_{(n)}$ and $Y_{(1)} \leq \cdots \leq Y_{(m)}$
 - ▶ Step 2. Suppose m = n (general case is similar)
 - ▶ Step 3. Plot pairs $(X_{(i)}, Y_{(i)})$
- MAGIC: Under null, should get a straight line
- Example 1: $P_X = P_Y = \mathcal{N}(0, 1)$
- Example 2: $P_X = \mathcal{N}(0,1)$, $P_Y = \chi^2(\mathtt{df} = 5)$.

- Setting:
 - $ightharpoonup X_i \overset{iid}{\sim} P_X$, n samples
 - $Y_i \stackrel{iid}{\sim} P_Y$, m samples

- discrete X's and Y's. Example:
 - Two hospitals
 - Hospital 1 sample: Cured, Cured, Died, ..., Cured
 - ► Hospital 2 sample: Cured, Cured, Cured, ..., Died

- Setting:
 - $ightharpoonup X_i \overset{iid}{\sim} P_X$, n samples
 - $Y_i \stackrel{iid}{\sim} P_Y$, m samples

- discrete X's and Y's. Example:
 - Two hospitals
 - Hospital 1 sample: Cured, Cured, Died, ..., Cured
 - ► Hospital 2 sample: Cured, Cured, Cured, ..., Died

Summarize data in table:

	Hospital 1	Hospital 2
Died	3	10
Cured	33	54

Question: Columns generated by the same dist?

- Setting:
 - $ightharpoonup X_i \overset{iid}{\sim} P_X$, n samples
 - $Y_i \stackrel{iid}{\sim} P_Y$, m samples

- discrete X's and Y's. Example:
 - Two hospitals
 - Hospital 1 sample: Cured, Cured, Died, ..., Cured
 - Hospital 2 sample: Cured, Cured, Cured, ..., Died
 - Summarize data in table:

	Hospital 1	Hospital 2
Died	3	10
Cured	33	54

- Question: Columns generated by the same dist?
- Restate as follows:
 - ▶ New data: (U_i, V_i) with $U \in \{\text{Died}, \text{Cured}\}$, $V \in \{1, 2\}$
 - ▶ Assume $(U_i, V_i) \stackrel{iid}{\sim} P_{U,V}$ and have n+m such samples*
 - $ightharpoonup H:U\perp\!\!\!\perp V$ vs $K:U\not\perp\!\!\!\perp V$

- Setting:
 - $ightharpoonup X_i \overset{iid}{\sim} P_X$, n samples
 - $Y_i \stackrel{iid}{\sim} P_Y$, m samples

$$H: P_X = P_Y \quad \text{vs} \quad K: P_X \neq P_Y$$

- discrete X's and Y's. Example:
 - Two hospitals
 - ▶ Hospital 1 sample: Cured, Cured, Died, ..., Cured
 - ► Hospital 2 sample: Cured, Cured, Cured, ..., Died
 - ► Summarize data in table:

	Hospital 1	Hospital 2
Died	3	10
Cured	33	54

- Question: Columns generated by the same dist?
- Restate as follows:
 - ▶ New data: (U_i, V_i) with $U \in \{\text{Died}, \text{Cured}\}$, $V \in \{1, 2\}$
 - ▶ Assume $(U_i, V_i) \stackrel{iid}{\sim} P_{U.V}$ and have n + m such samples*
 - $lacksquare H:U\perp\!\!\!\perp V$ vs $K:U\perp\!\!\!\!\perp V$
 - *subtlety: Orig. question was not symmetric in U,V (had samples $P_{U|V=1}$ and $P_{U|V=2}$) iid approx ok for $n,m\gg 1$

- New problem
 - $(U_i, V_i) \stackrel{iid}{\sim} P_{U,V}$, ℓ -samples
 - lacksquare U is t-valued, i.e. $U \in [t] \triangleq \{1, \dots, t\}$
 - ▶ V is s-valued, i.e. $U \in [s] \triangleq \{1, \ldots, s\}$
 - $\blacktriangleright \quad H:U \perp\!\!\!\perp V \quad \text{vs} \quad K:U \not\perp\!\!\!\perp V$

- New problem
 - $ightharpoonup (U_i, V_i) \stackrel{iid}{\sim} P_{U,V}$, ℓ -samples
 - ▶ U is t-valued, i.e. $U \in [t] \triangleq \{1, \ldots, t\}$
 - ▶ V is s-valued, i.e. $U \in [s] \triangleq \{1, \dots, s\}$
 - $\blacktriangleright \quad H:U \perp\!\!\!\perp V \quad \text{vs} \quad K:U \not\perp\!\!\!\perp V$
- Recall generalized likelihood ratio test:

The G-statistic (general)

$$G \triangleq -2\log \frac{P_0^*(x_1, \dots, x_n)}{P_1^*(x_1, \dots, x_n)}$$

$$P_0^*(x_1, \dots, x_n) = \max_{P \in \mathcal{C}_0 \cup \mathcal{C}_1} P(x_1, \dots, x_n)$$

$$P_1^*(x_1, \dots, x_n) = \max_{P \in \mathcal{C}_0 \cup \mathcal{C}_1} P(x_1, \dots, x_n)$$

- New problem
 - $(U_i, V_i) \stackrel{iid}{\sim} P_{U,V}$, ℓ -samples
 - ▶ U is t-valued, i.e. $U \in [t] \triangleq \{1, \ldots, t\}$
 - ▶ V is s-valued, i.e. $U \in [s] \triangleq \{1, \dots, s\}$
 - $\blacktriangleright \quad H:U \perp\!\!\!\perp V \quad \text{vs} \quad K:U \not\perp\!\!\!\perp V$
- Recall generalized likelihood ratio test:

The G-statistic (test for independence)

$$G_{norm} \triangleq 2\ell D(\hat{P}_{U,V} || \hat{P}_{U} \times \hat{P}_{V})$$

$$D(Q_{1} || Q_{2}) \triangleq \sum_{(a,b)} Q_{1}(a,b) \log_{e} \frac{Q_{1}(a,b)}{Q_{2}(a,b)}$$

- New problem
 - $ightharpoonup (U_i, V_i) \stackrel{iid}{\sim} P_{U,V}$, ℓ -samples
 - ▶ U is t-valued, i.e. $U \in [t] \triangleq \{1, \ldots, t\}$
 - ▶ V is s-valued, i.e. $U \in [s] \triangleq \{1, \ldots, s\}$
 - $\blacktriangleright \quad H:U \perp\!\!\!\perp V \quad \text{vs} \quad K:U \not\perp\!\!\!\perp V$
- Recall generalized likelihood ratio test:

The G-statistic (test for independence)

$$G_{norm} \triangleq 2\ell D(\hat{P}_{U,V} || \hat{P}_{U} \times \hat{P}_{V})$$

$$D(Q_{1} || Q_{2}) \triangleq \sum_{(a,b)} Q_{1}(a,b) \log_{e} \frac{Q_{1}(a,b)}{Q_{2}(a,b)}$$

- Empirical dist: $\hat{P}_{U,V}(a,b)=rac{|\{i:U_i=a,V_i=b\}|}{\ell},\hat{P}_U(a)=rac{|\{i:U_i=a\}|}{\ell}$
- $(\hat{P}_U \times \hat{P}_V)(a,b) = \hat{P}_U(a) \times \hat{P}_V(b)$

- New problem
 - $ightharpoonup (U_i, V_i) \stackrel{iid}{\sim} P_{U,V}$, ℓ -samples
 - ▶ U is t-valued, i.e. $U \in [t] \triangleq \{1, \ldots, t\}$
 - ▶ V is s-valued, i.e. $U \in [s] \triangleq \{1, \dots, s\}$
 - $\blacktriangleright \quad H:U \perp\!\!\!\perp V \quad \text{vs} \quad K:U \not\perp\!\!\!\perp V$
- Recall generalized likelihood ratio test:

The *G*-statistic (test for independence)

$$G_{norm} \triangleq 2\ell D(\hat{P}_{U,V} || \hat{P}_{U} \times \hat{P}_{V})$$
$$D(Q_{1} || Q_{2}) \triangleq \sum_{(a,b)} Q_{1}(a,b) \log_{e} \frac{Q_{1}(a,b)}{Q_{2}(a,b)}$$

- Empirical dist: $\hat{P}_{U,V}(a,b)=rac{|\{i:U_i=a,V_i=b\}|}{\ell},\hat{P}_U(a)=rac{|\{i:U_i=a\}|}{\ell}$
- $(\hat{P}_U \times \hat{P}_V)(a,b) = \hat{P}_U(a) \times \hat{P}_V(b)$
- Strong MAGIC: $G_{norm} \approx \chi^2((t-1)(s-1))$ as $\ell \to \infty$

- New problem
 - $ightharpoonup (U_i, V_i) \stackrel{iid}{\sim} P_{U,V}$, ℓ -samples
 - ▶ U is t-valued, i.e. $U \in [t] \triangleq \{1, \ldots, t\}$
 - ▶ V is s-valued, i.e. $U \in [s] \triangleq \{1, \ldots, s\}$
 - $\blacktriangleright \quad H:U \perp\!\!\!\perp V \quad \text{vs} \quad K:U \not\perp\!\!\!\perp V$
- Resulting test:
 - ► Compute $G_{norm} \triangleq 2\ell D(\hat{P}_{U,V} || \hat{P}_{U} \times \hat{P}_{V})$
 - ▶ Compare to $(1-\alpha)$ -quantile of $\chi^2((t-1)(s-1))$
 - Alternatively,

$$p$$
-value = $\mathbb{P}[\chi^2((t-1)(s-1)) > G_{norm}]$.

lacktriangledown Or scipy.stats.chi2.sf(G_{norm} ,df=(t-1)(s-1))

- New problem
 - $(U_i, V_i) \stackrel{iid}{\sim} P_{U,V}$, ℓ -samples
 - ▶ U is t-valued, i.e. $U \in [t] \triangleq \{1, ..., t\}$
 - ▶ V is s-valued, i.e. $U \in [s] \triangleq \{1, \ldots, s\}$
 - $lackbox{ iny }H:U\perp\!\!\!\perp V \quad ext{vs} \quad K:\overline{U\not\perp\!\!\!\perp V}$
- Resulting test:
 - ► Compute $G_{norm} \triangleq 2\ell D(\hat{P}_{U,V} || \hat{P}_{U} \times \hat{P}_{V})$
 - ▶ Compare to $(1-\alpha)$ -quantile of $\chi^2((t-1)(s-1))$
 - Alternatively,

$$p$$
-value = $\mathbb{P}[\chi^2((t-1)(s-1)) > G_{norm}]$.

• Or scipy.stats.chi2.sf(G_{norm} ,df=(t-1)(s-1))

	Hospital 1	Hospital 2
Died	3	10
Cured	33	54

p-value = 0.28

- For 2x2 case don't need to be so fancy
- Test: $X \sim \text{Bino}(n, p_1), Y \sim \text{Bino}(m, p_2)$ and null $H: p_1 = p_2$.
- Do the two-sided *t*-test:

$$T = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n} + \frac{\hat{p}_2(1-\hat{p}_2)}{m}}}$$

with
$$\hat{p}_1 = X/n$$
 and $\hat{p}_2 = Y/m$;

• Same data as before (3:33, 10:54).

- For 2x2 case don't need to be so fancy
- Test: $X \sim \text{Bino}(n, p_1), Y \sim \text{Bino}(m, p_2)$ and null $H: p_1 = p_2$.
- Do the two-sided t-test:

$$T = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n} + \frac{\hat{p}_2(1-\hat{p}_2)}{m}}}$$

with
$$\hat{p}_1 = X/n$$
 and $\hat{p}_2 = Y/m$;

- Same data as before (3:33, 10:54).
- p-value: p = 0.2595 (using $T \approx \mathcal{N}(0,1)$)

- For 2x2 case don't need to be so fancy
- Test: $X \sim \text{Bino}(n, p_1), Y \sim \text{Bino}(m, p_2)$ and null $H: p_1 = p_2$.
- Do the two-sided t-test:

$$T = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n} + \frac{\hat{p}_2(1-\hat{p}_2)}{m}}}$$

with $\hat{p}_1 = X/n$ and $\hat{p}_2 = Y/m$;

- Same data as before (3:33, 10:54).
- p-value: p = 0.2595 (using $T \approx \mathcal{N}(0,1)$)
- p-value: p = 0.262 (Welch corrected)
- p-value: $p = 0.260 \pm 0.001$ Bootstrap 1: equal-mean Binomial X,Y
- p-value: $p = 0.261 \pm 0.005$ Bootstrap 2: equal-mean Normal X,Y

- For 2x2 case don't need to be so fancy
- Test: $X \sim \text{Bino}(n, p_1), Y \sim \text{Bino}(m, p_2)$ and null $H: p_1 = p_2$.
- Do the two-sided *t*-test:

$$T = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n} + \frac{\hat{p}_2(1-\hat{p}_2)}{m}}}$$

with $\hat{p}_1 = X/n$ and $\hat{p}_2 = Y/m$;

- Same data as before (3:33, 10:54).
- p-value: p = 0.2595 (using $T \approx \mathcal{N}(0,1)$)
- p-value: p = 0.262 (Welch corrected)
- p-value: $p = 0.260 \pm 0.001$ Bootstrap 1: equal-mean Binomial X,Y
- p-value: $p = 0.261 \pm 0.005$ Bootstrap 2: equal-mean Normal X,Y
- So why fancy G-test?

- For 2x2 case don't need to be so fancy
- Test: $X \sim \text{Bino}(n, p_1), Y \sim \text{Bino}(m, p_2)$ and null $H: p_1 = p_2$.
- Do the two-sided *t*-test:

$$T = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n} + \frac{\hat{p}_2(1-\hat{p}_2)}{m}}}$$

with
$$\hat{p}_1 = X/n$$
 and $\hat{p}_2 = Y/m$;

- Same data as before (3:33, 10:54).
- p-value: p = 0.2595 (using $T \approx \mathcal{N}(0,1)$)
- p-value: p = 0.262 (Welch corrected)
- p-value: $p=0.260\pm0.001$ Bootstrap 1: equal-mean Binomial X,Y
- p-value: $p=0.261\pm0.005$ Bootstrap 2: equal-mean Normal X,Y
- So why fancy G-test?
- Because it also works for r hospitals and s outcomes.

Testing quality of classifiers

Comparing quality of classifiers

Consider the following problem:

- ullet Test set of size n is given
- Two predictors (classifiers) are tested
- The base one has 1% error.
- The new one has e% error
- Question: What e is significant (to declare new one is better)?

Testing quality of classifiers

Comparing quality of classifiers

Consider the following problem:

- ullet Test set of size n is given
- Two predictors (classifiers) are tested
- The base one has 1% error.
- The new one has e% error
- Question: What *e* is significant (to declare new one is better)?
- Can form a 2x2 contingency table and run a G-test
- Some sample numbers:
 - For n = 10000 (MNIST, CIFAR) we have

$$e < 0.65\%$$
 or $e > 1.45\%$

For n = 1000 we have

$$e < 0.13\%$$
 or $e > 2.6\%$

are significant (at p = 0.05)

- We learned how to test comparative hypotheses.
- BIG ISSUE: Confounding in observational studies
- Observational vs controlled study.
 - Observational study: groups self-selected
 - Randomized controlled study: groups assigned

- We learned how to test comparative hypotheses.
- BIG ISSUE: Confounding in observational studies
- Observational vs controlled study.
 - Observational study: groups self-selected
 - Randomized controlled study: groups assigned
- Cartoon example: "drinking beer makes you bald"

	Bald	Not bald
Drinks beer	49%	2%
no beer	1%	48%

- We learned how to test comparative hypotheses.
- BIG ISSUE: Confounding in observational studies
- Observational vs controlled study.
 - Observational study: groups self-selected
 - Randomized controlled study: groups assigned
- Cartoon example: "drinking beer makes you bald"

	Bald	Not bald
Drinks beer	49%	2%
no beer	1%	48%

Confounding factor: gender

- We learned how to test comparative hypotheses.
- BIG ISSUE: Confounding in observational studies
- Observational vs controlled study.
 - Observational study: groups self-selected
 - Randomized controlled study: groups assigned
- Cartoon example: "drinking beer makes you bald"

	Bald	Not bald
Drinks beer	49%	2%
no beer	1%	48%

Confounding factor: gender

 $correlation \neq causation$

BIG ISSUE: Confounding in observational studies.

Observational vs controlled study.

- Observational study: groups self-selected
- Randomized controlled study: groups assigned
- Real example:
 - Quinn et al [Nature'1999]: "Myopia and ambient lighting at night"
 - Eyeball development vs infant night sleep

Sleep condition	Fraction developing myopia
Darkness	10%
Night light	34%
Room light	55%

- Good sample size: n = 479
- ▶ Sound statistics (*p*-value < 0.00001)
- ▶ Physiologically plausible: "The duration of the daily light period has been shown to affect eye growth in chicks"

BIG ISSUE: Confounding in observational studies.

Observational vs controlled study.

- Observational study: groups self-selected
- Randomized controlled study: groups assigned
- Real example:
 - Quinn et al [Nature'1999]: "Myopia and ambient lighting at night"
 - Eyeball development vs infant night sleep

Sleep condition	Fraction developing myopia
Darkness	10%
Night light	34%
Room light	55%

- Good sample size: n = 479
- ▶ Sound statistics (*p*-value < 0.00001)
- ▶ Physiologically plausible: "The duration of the daily light period has been shown to affect eye growth in chicks"
- ► Gwiazda et al [Nature'2000]: could not reproduce

BIG ISSUE: Confounding in observational studies.

Observational vs controlled study.

- Observational study: groups self-selected
- Randomized controlled study: groups assigned
- Real example:
 - Quinn et al [Nature'1999]: "Myopia and ambient lighting at night"
 - Eyeball development vs infant night sleep

Sleep condition	Fraction developing myopia
Darkness	10%
Night light	34%
Room light	55%

- Good sample size: n = 479
- ▶ Sound statistics (*p*-value < 0.00001)
- ▶ Physiologically plausible: "The duration of the daily light period has been shown to affect eye growth in chicks"
- ► Gwiazda et al [Nature'2000]: could not reproduce
- ▶ ... but: myopic parents are more likely to leave night light on

What can we do about confounding?

- Use common sense:
 - ► E.g. want to learn about effect of third kid on women labor market
 - Cannot do R.C.T.
 - Note: families with two kids of same sex are more likely to have third (by 6%)
 - ... use this for checking if two groups have similar unemployment

Confounding

- Big area of research (Causal Inference)
- Rough idea: conditional independence testing
- ullet If suspect relation between X and Y is confounded by Z can test:

$$X \perp \!\!\! \perp Y|Z$$

pro-term "controlling for Z"

