Análisis de algoritmos y estructuras de datos

Tarea corta #2

Ericka Melissa Araya Hidalgo-C20553

Instrucciones:

Cree una tabla comparativa con todos los algoritmos de ordenamiento estudiados en clase.

- 1. Ordenamiento por Inserción (Insertion Sort)
- 2. Ordenamiento por Selección (Selection Sort)
- 3. Ordenamiento por Mezcla (Merge Sort)
- 4. Ordenamiento por Montículos (*Heap Sort*)
- 5. Ordenamiento por Conteo (Counting Sort)
- 6. Ordenamiento por Residuos (*Radix Sort*)

Para cada algoritmo, incluya la siguiente información usando la notación asintótica:

- 1. Tiempo de duración para el mejor caso.
- 2. Tiempo de duración para el peor caso.
- 3. Tiempo de duración para el caso promedio.
- 4. Estimación del espacio requerido.

Tabla:

Algoritmo	Mejor Caso	Peor Caso	Caso Promedio	Espacio Requerido
Inserción (Insertion Sort)	$\Omega(n)$	O(n²)	Θ(n²)	0(1)
Selección (Selection Sort)	$\Omega(n^2)$	O(n²)	Θ(n²)	0(1)
Mezcla (Merge Sort)	$\Omega(n \log n)$	O(n log n)	Θ(n log n)	O(n)
Montículos (Heap Sort)	$\Omega(n \log n)$	O(n log n)	O(n log n)	O(1)
Conteo (Counting Sort)	$\Omega(n+k)$	O(n+k)	Θ(n+k)	O(k)
Residuos (Radix Sort)	$\Omega(nk)$	O(nk)	Θ(nk)	O(n*k)

Nota:

[&]quot;n" representa el tamaño del arreglo a ordenar.

[&]quot;k" representa el rango de valores posibles en el arreglo (número de dígitos para Radix Sort).