Modelo OSI y TCP/IP: Conceptos y Relaciones Una visión detallada de los modelos de referencia de red Presentado por: Especialista en Redes

Introducción al Modelo OSI

El **Modelo de Interconexión de Sistemas Abiertos (OSI)** es un marco de referencia conceptual creado por la ISO en 1980 para estandarizar las comunicaciones entre diferentes sistemas.

Propósito principal:

Permitir la comunicación entre sistemas de diferentes fabricantes mediante un conjunto de capas estandarizadas.

Estructura:

7 capas jerárquicas, cada una con funciones específicas y bien definidas.

Importancia:

Facilita el diseño, desarrollo y resolución de problemas en redes de comunicaciones.

Relación entre OSI y TCP/IP

El modelo **TCP/IP** (también conocido como **DoD** o **DARPA**) es un conjunto de protocolos de red que precede al modelo OSI.

Origen del modelo TCP/IP

Desarrollado en la década de 1970 por Vinton Cerf y Robert E. Kahn para la red ARPANET del Departamento de Defensa de EE.UU.

Diferencias principales:

- TCP/IP tiene 4 capas frente a las 7 de OSI
- TCP/IP es **práctico e implementado**, OSI es teórico
- TCP/IP combina varias capas de OSI en una sola

Correspondencia entre capas:

Capa OSI	Capa TCP/IP	
7. Aplicación	Aplicación	
6. Presentación		
5. Sesión		
4. Transporte	Transporte	
3. Red	Internet	
2. Enlace de Datos	Acceso a Red	
1. Física		

Comparación Visual: OSI vs TCP/IP 7 Aplicación 6 Presentación (Combina capas 5, 6, 7 de OSI) 5 Sesión 4 Transporte 3 Red 2 Internet 2 Enlace de Datos 1 Física (Combina capas 1, 2 de OSI)

Capa Física

Funciones Principales

- Transmisión de bits a través del medio físico
- Establecer y mantener conexiones físicas
- Definir características eléctricas, mecánicas y funcionales
- **Determinar dirección** de transmisión (simplex, half duplex, full duplex)

Componentes

Componentes Pasivos:

○ Cables

Conectores

Antenas

Componentes Activos:

🚠 Hubs

Tarjetas de red

Repetidores

Representación de datos

La capa física define cómo se representan los bits (1 y 0) mediante señales eléctricas, ópticas o electromagnéticas.

Tecnologías Principales

A

Ethernet

Transmisión por cable en LAN

Wi-Fi

Redes inalámbricas IEEE 802.11

Bluetooth

Comunicación a corta distancia

DSL

Línea de abonado digital

USB

Conexión de dispositivos periféricos

Fibra óptica

Transmisión por luz pulsada

Características de Transmisión

- Velocidad de transmisión: Mbps, Gbps
- Modo de transmisión: Simplex, Half duplex, Full duplex
- Topología: Estrella, bus, anillo, malla

Capa Internet (DOD)

Funciones Principales

- Enrutamiento de paquetes entre redes
- Direccionamiento lógico de hosts
- Fragmentación y reensamblaje de paquetes
- Independencia de la tecnología de red subyacente

≡: Protocolos Principales

Direccionamiento IP

IPv4 vs IPv6				
Característica	IPv4	IPv6		
Tamaño de dirección	32 bits	128 bits		
Notación	Decimal (192.168.1.1)	Hexadecimal (2001:0db8::1)		
Direcciones totales	~4.3 mil millones	~340 undecillones		

N Proceso de Enrutamiento

- **Destino:** Determinar la mejor ruta hacia el destino
- Salto: Enviar paquete al siguiente router (hop)
- TTL: Disminuir Time To Live en cada salto
- Entrega: Llegar al host de destino final

X Fragmentación de Paquetes

- División: Paquetes grandes se fragmentan si exceden MTU
- Identificación: Cada fragmento lleva el mismo ID
- Reensamblaje: Destino reconstruye el paquete original

Capa de Transporte

† Funciones Principales

- Comunicación extremo a extremo entre procesos
- Segmentación y reensamblaje de datos
- Control de flujo y de errores
- Multiplexación mediante números de puerto

Comparación Detallada

Característica	ТСР	UDP
Conexión	Orientada a conexión	Sin conexión
Fiabilidad	Alta	Ваја
Velocidad	Más lenta	Más rápida
Uso de recursos	Mayor	Menor
Tamaño de cabecera	20-60 bytes	8 bytes

Elección del protocolo

La elección entre TCP y UDP depende de los requisitos específicos de la aplicación: fiabilidad vs velocidad, control de flujo vs simplicidad.

Capa de Aplicación

III Funciones Principales

- Interfaz entre aplicaciones y red
- Protocolos para servicios específicos
- Formato e intercambio de datos
- Acceso a servicios de red

La capa de aplicación TCP/IP combina las funciones de las capas 5, 6 y 7 del modelo OSI:

> 7 **Aplicación**

6 Presentación

5 Sesión

Protocolos Principales

HTTP/HTTPS

Transferencia de hipertexto para la web

FTP

Transferencia de archivos

SMTP

Envío de correos electrónicos

DNS

Resolución de nombres de dominio

DHCP

Configuración automática de red

Telnet

Acceso remoto a terminal

□ Aplicaciones por Protocolo

HTTP/HTTPS:

Navegadores web

E Comercio electrónico

Servicios en la nube

FTP:

1 Transferencia de archivos

□ Actualización de sitios web

SMTP:

≧ Clientes de correo

> Servidores de correo

DNS:

Q Resolución de dominios

Filtrado de contenido

Característica clave

Los protocolos de aplicación definen el formato y la información de control necesarios para funciones específicas de comunicación en Internet.

Conclusiones

Conceptos Clave

- OSI: Modelo teórico con 7 capas para estandarizar comunicaciones
- TCP/IP: Modelo práctico con 4 capas, base de Internet
- → Correspondencia: TCP/IP combina múltiples capas de OSI
- Capa Física: Transmisión de bits a través de medios físicos
- Capa Internet: Enrutamiento y direccionamiento IP
- [↑] Capa Transporte: TCP (confiable) vs UDP (rápido)
- Capa Aplicación: Protocolos para servicios específicos

Reflexión Final

Comprender estos modelos es fundamental para diseñar, implementar y solucionar problemas en redes de comunicaciones. Aunque TCP/IP es el modelo práctico predominante, OSI proporciona un marco conceptual valioso para entender la complejidad de las comunicaciones en red.

Comparación Visual

🗘 Importancia en la Práctica

- Diseño de arquitecturas de red eficientes
- Diagnóstico y resolución de problemas
- Implementación de medidas de seguridad
- Optimización del rendimiento