Graph Theory

Personal Research

Juan Scerri

B.Sc. (Hons)(Melit.) Computing Science and Mathematics (Second Year)

March 9, 2023

Conjecture 1 (Erdős–Gyàrfàs Conjecture). Every simple graph G with minimum degree 3 contains a simple cycle whose length is a power of two.

At first glance there does not seem any clear way to approach the problem. So instead we will define a weaker version of the conjecture. Hopefully, the machinery developed for solving the weaker conjecture will prove to be useful when tackling the full conjecture.

Conjecture 2. Every simple graph G with minimum degree 3 contains a simple cycle whose length is even.

We will try to approach this by assuming that the all cycles are of odd length. Now we need to look at the most general way cycles of odd length can interact with each other.

Definition 1. Let C be a cycle. C is said to be a k-mod-cycle if and only if the length of C is divisible by k.

Definition 2. A 2-mod-cycle is said to be an even cycle. And a non-2-mod-cycle is a said to be an odd cycle.

Proposition 1. If G and H are two odd cycles connected by at least two edges (let this graph be F), then F contains an even cycle.

Proof. Let $V(G) = \{g_1, g_2, \dots, g_k\}$ and $V(H) = \{h_1, h_2, \dots, h_l\}$ where k and l are odd numbers greater than 3. Pick any two vertices in V(G) say g_a and g_b and pick any two vertices in V(H) say h_c and h_d such that $h_c \neq h_d$. h_c and h_d cannot be equal because if they where and $g_a = g_b$, then we would have connected the cycles with only one unique edge but we want do do so with two distinct edges.

Since, the length of G is odd picking any two vertices (even the same vertex) will split the cycle into two, a segment having even length and a segment having odd length. Similarly, this will happen on H as well. Starting from h_c , traverse the even path to h_d . Crossover, to H using the edge connected to h_d . Say this is connected to g_b . From g_b traverse the even path to g_a . Then crossover again to h_c . This completes the cycle and the cycle is even since both paths have the same parity and we are adding g_b because of the two crossovers.

Proposition 2. If G and H are two odd cycles and they share at least 2 and at most $\max\{V(G), V(H)\} - 1$ vertices (let this graph be F), then F contains an even cycle.

TODO: Add exposition as to why I arrived at this point.

Figure 1: Smallest non-trivial case

So all the different paths in the above configuration are the following:

- 1. $v_1v_2v_4v_3$
- 2. $v_1v_2v_4v_3$
- 3. $v_1v_2v_4v_3$
- 4. $v_1v_2v_4v_4$

TODO: Introduce labels for this case only because technically this is a multigraph. However, it is still a valid case for analysis in our case.

Figure 2: The 3 case

about the ambiguity of our notation since these are not multigraphs).

3

- 1. $v_1v_2v_5v_4v_1$
- 2. $v_2v_3v_6v_5v_2$
- 3. $v_1v_4v_6v_3v_1$
- 4. $v_1v_2v_5v_6v_4v_2$
- 5. $v_1v_2v_3v_6v_4v_1$
- **6.** $v_2v_3v_1v_4v_5v_2$
- 7. $v_2v_3v_1v_4v_5v_6v_2$
- 8. $v_1v_2v_3v_6v_5v_4v_1$
- 9. $v_4v_5v_2v_1v_3v_6v_4$

Note: From what I recall you can only have an even number of crossings across the bridges formed. An odd number of crossings is impossible. Since you would connect back to something which you already visited which is not actually your returning node.

