Université de Carthage Ecole Suprieure de la Statistique et de l'Analyse de l'Information

Année Universitaire 2011-2012 1ère Année

Examen final Méthodes d'estimation

Mai 2012

Enseignants: Mme H. Mallek et Mr H. Rammeh Durée : 1h 30mn

(01 page)

Exercice 1 Soit $X_1,...,X_n$ un n-échantillon d'une loi de Poisson de paramètre $\lambda > 0$.

- 1. Calculer l'information de Fisher associée au modèle.
- 2. En déduire que \overline{X} est un estimateur efficace de θ .

Exercice 2 Soit $X_1,...,X_n$ un n-échantillon de X suivant la loi de densité

$$f_{\lambda}(x,\theta) = \frac{(\lambda+1) x^{\lambda}}{\theta^{\lambda+1}} \mathbb{1}_{]0,\theta[}(x)$$

où $\lambda > -1$ est un réel connu et θ est inconnu.

- 1. Construire M_n , l'estimateur de θ par la méthode des moments d'ordre 1. Vérifier que M_n est sans biais de θ .
- 2. Exprimer la loi asymptotique de M_n .
- 3. Construire un intervalle de confiance de niveau asymptotique 1α pour θ .
- 4. Déterminer une statistique exhaustive T_n pour le modèle.
- 5. Donner la loi de T_n et calculer son espérance.
- 6. Vérifier que cette statistique est complète.
- 7. Construire V_n , l'estimateur du maximum de vraisemblance de θ .
- 8. A partir de V_n , construire un estimateur U_n sans biais de θ .
- 9. Vérifier que U_n est un estimateur $uvmb(esbvm)de \theta$.
- 10. Vérifier que la loi de $S_n = \frac{\max X_i}{\theta}$ ne dépend pas de θ et donner sa fonction de répartition.
- 11. En déduire un intervalle de confiance de niveau 1α pour θ .

Correction Exercice 1 1. 2 points

$$I(\theta) = \frac{n}{\lambda}$$

2. 2 points

$$BCR\left(\theta\right) = \frac{\lambda}{n}$$

Correction Exercice 2

$$f_{\lambda}(x,\theta) = \frac{(\lambda+1) x^{\lambda}}{\theta^{\lambda+1}} \mathbb{1}_{]0,\theta[}(x)$$

1. 2 points

$$E\left(X\right) = \int_{0}^{\theta} \frac{(\lambda+1)x^{\lambda+1}}{\theta^{\lambda+1}} dx = \left[\frac{(\lambda+1)}{(\lambda+2)\theta^{\lambda+1}} x^{\lambda+2}\right]_{0}^{\theta} = \frac{(\lambda+1)}{(\lambda+2)} \theta$$

On
$$a \ q(\theta) = E_{\theta}[g(X)] \ avec \ q: \theta \longmapsto \frac{(\lambda+1)}{(\lambda+2)}\theta \ et \ g: x \longmapsto x$$

$$\theta = q^{-1} (E_{\theta} [g(X)]) = q^{-1} (E_{\theta} [X]) = \frac{(\lambda + 2)}{(\lambda + 1)} E_{\theta} [X]$$

D'où $M_n = \frac{(\lambda+2)}{(\lambda+1)}\overline{X}$ est un estimateur de θ par la méthode des moments.

$$E\left(M_{n}\right) = \frac{\left(\lambda+2\right)}{\left(\lambda+1\right)} E\left(\overline{X}\right) = \frac{\left(\lambda+2\right)}{\left(\lambda+1\right)} E\left(X\right) = \theta$$

2. 2 points

Considérons l'application $h: m_1 \longmapsto \frac{(\lambda+2)}{(\lambda+1)} m_1.h$ est continue et possède une dérivée par raport à m_1 continue.

$$E\left(X^2\right) = \int\limits_0^\theta \frac{(\lambda+1)x^{\lambda+2}}{\theta^{\lambda+1}} dx = \left[\frac{(\lambda+1)}{(\lambda+3)\theta^{\lambda+1}} x^{\lambda+3}\right]_0^\theta = \frac{(\lambda+1)}{(\lambda+3)} \theta^2.$$

Donc le moment d'ordre 2 de X existe.

On a alors
$$\sqrt{n} (M_n - \theta) \stackrel{\text{Loi}}{\leadsto} \mathcal{N} (0, \sigma_h^2)$$

$$\sigma_h^2 = Var\left[\frac{\partial h}{\partial m_1}X\right] = \left(\frac{(\lambda+2)}{(\lambda+1)}\right)^2 Var\left[X\right] = \left(\frac{(\lambda+2)}{(\lambda+1)}\right)^2 \theta^2 \left(\frac{(\lambda+1)}{(\lambda+3)} - \left(\frac{(\lambda+1)}{(\lambda+2)}\right)^2\right)$$

$$\sigma_h^2 = \theta^2 \left(\frac{(\lambda+2)^2}{(\lambda+1)(\lambda+3)} - 1 \right).$$

3. 2 points

$$\sqrt{n}\left(M_n-\theta\right) \stackrel{\text{Loi}}{\leadsto} \mathcal{N}\left(0,\sigma_h^2\right)$$

Posons
$$q = F_{\mathcal{N}(0,1)}^{-1} \left(1 - \frac{\alpha}{2}\right)$$
 et $\omega = \frac{(\lambda+2)^2 - (\lambda+1)(\lambda+3)}{(\lambda+1)(\lambda+3)}$

$$P\left[-q \le \sqrt{n} \frac{M_n - \theta}{\sigma_h} \le q\right] = 1 - \alpha$$

$$P\left[-q \le \sqrt{n} \frac{M_n - \theta}{\theta \sqrt{\omega}} \le q\right] = 1 - \alpha$$

$$P\left[-\frac{\sqrt{\omega}}{\sqrt{n}}q \le \left(\frac{M_n}{\theta} - 1\right) \le \frac{\sqrt{\omega}}{\sqrt{n}}q\right] = 1 - \alpha$$

$$P\left[1 - \frac{\sqrt{\omega}}{\sqrt{n}}q \le \frac{M_n}{\theta} \le 1 + \frac{\sqrt{\omega}}{\sqrt{n}}q\right] = 1 - \alpha$$

D'où l'intervalle de confiance de niveau asymptotique pour θ :

$$IC_{1-\alpha}(\theta) = \left[\frac{M_n}{1+\frac{\sqrt{\omega}}{\sqrt{n}}q}; \frac{M_n}{1-\frac{\sqrt{\omega}}{\sqrt{n}}q}\right]$$

$$IC_{1-\alpha}(\theta) = \left[\frac{M_n}{1 + \frac{(\lambda+2)^2 - (\lambda+1)(\lambda+3)}{n(\lambda+1)(\lambda+3)} F_{\mathcal{N}(0,1)}^{-1} \left(1 - \frac{\alpha}{2}\right)} ; \frac{M_n}{1 - \frac{(\lambda+2)^2 - (\lambda+1)(\lambda+3)}{n(\lambda+1)(\lambda+3)} F_{\mathcal{N}(0,1)}^{-1} \left(1 - \frac{\alpha}{2}\right)} \right]$$

4. 2 points

$$\mathcal{L}(\underline{x},\theta) = \exp\left(n\ln(\lambda+1) + \lambda \sum_{i=1}^{n} \ln x_{i} - n(\lambda+1)\ln\theta\right) \mathbb{1}_{\{\min x_{i}>0\}} \mathbb{1}_{\{\max x_{i}<\theta\}}$$

$$\mathcal{L}(\underline{x},\theta) = \exp\left(-n(\lambda+1)\ln\theta\right) \mathbb{1}_{\{\max x_{i}<\theta\}} \cdot \exp\left(n\ln(\lambda+1) + \lambda \sum_{i=1}^{n} \ln x_{i}\right) \mathbb{1}_{\{\min x_{i}>0\}}$$

$$\mathcal{L}(\underline{x},\theta) = g(T_{n},\theta) \cdot h(\underline{x})$$

$$avec \ g(T_{n},\theta) = \exp\left(-n(\lambda+1)\ln\theta\right) \mathbb{1}_{\{\max x_{i}<\theta\}}$$

$$et \ h(\underline{x}) = \exp\left(n\ln(\lambda+1) + \lambda \sum_{i=1}^{n} \ln x_{i}\right) \mathbb{1}_{\{\min x_{i}>0\}}$$

 $T_n = \max X_i$ est donc une statistique exhaustive.

5. 2 points

$$F_{T}(x) = P_{\theta} \left[\max X_{i} < x \right] = \prod_{i=1}^{n} P_{\theta} \left[X_{i} < x \right] = \left(F_{X}(x) \right)^{n}$$

$$F_{X}(x) = \int_{0}^{x} \frac{(\lambda+1)t^{\lambda}}{\theta^{\lambda+1}} dt = \left[\frac{t^{\lambda+1}}{\theta^{\lambda+1}} \right]_{0}^{x} = \frac{x^{\lambda+1}}{\theta^{\lambda+1}}$$

$$F_{T}(x) = \left(\frac{x^{\lambda+1}}{\theta^{\lambda+1}} \right)^{n} = \left(\frac{x}{\theta} \right)^{n(\lambda+1)} \mathbb{1}_{]0,\theta[}(x) + \mathbb{1}_{\{x>\theta\}}$$

$$f_{T}(x) = \frac{n(\lambda+1)}{\theta^{n(\lambda+1)}} x^{n(\lambda+1)-1} \mathbb{1}_{]0,\theta[}(x)$$

$$E_{\theta} \left[T_{n} \right] = \int_{0}^{\theta} \frac{n(\lambda+1)}{\theta^{n(\lambda+1)}} x^{n(\lambda+1)} dx = \frac{n(\lambda+1)}{\theta^{n(\lambda+1)}} \left[\frac{x^{n(\lambda+1)+1}}{n(\lambda+1)+1} \right]_{0}^{\theta} = \frac{n(\lambda+1)}{n(\lambda+1)+1} \theta.$$

6. 1 point

Soit ϕ une application mesurable telle que pour tout θ , $E_{\theta}[\phi(T_n)] = 0$.

$$E_{\theta}\left[\phi\left(T_{n}\right)\right]=0, \forall \theta>0$$

$$\iff \int_{0}^{\theta} \phi(T_n) \frac{n(\lambda+1)}{\theta^{n(\lambda+1)}} x^{n(\lambda+1)-1} dx = 0, \forall \theta > 0$$

Si u désigne l'application à intégrer, $u: x \longmapsto \phi(T_n) \frac{n(\lambda+1)}{\theta^{n(\lambda+1)}} x^{n(\lambda+1)-1}$.

Soit v une primitive de u.

maximum de vraisemblance.

$$\int_{0}^{\theta} \phi(T_n) \frac{n(\lambda+1)}{\theta^{n(\lambda+1)}} x^{n(\lambda+1)-1} dx = 0, \forall \theta > 0$$

 $\iff v(\theta) - v(0) = 0, \forall \theta > 0. \ v \ est \ donc \ constante \ et \ u \ est \ nulle.$

Donc $\phi(T_n) \frac{n(\lambda+1)}{\theta^{n(\lambda+1)}} x^{n(\lambda+1)-1} = 0 \Longrightarrow \phi = 0$ et T_n est complète.

7.1 point

$$\mathcal{L}\left(\underline{x},\theta\right) = \exp\left(n\ln\left(\lambda+1\right) + \lambda \sum_{i=1}^{n} \ln x_{i} - n\left(\lambda+1\right) \ln \theta\right) \mathbb{1}_{\{\min x_{i} > 0\}} \mathbb{1}_{\{\max x_{i} < \theta\}}$$

Il s'agit d'une fonction strictement décroissante en θ sur l'intervalle $]\max x_i, +\infty[$. Son maximum est donc en $\max x_i$ et $V_n = \max X_i = T_n$ est l'unique estimateur du

8. 1 point

$$E(V_n) = E[T_n] = \frac{n(\lambda+1)}{n(\lambda+1)+1}\theta. \Longrightarrow U_n = \frac{n(\lambda+1)+1}{n(\lambda+1)} \max X_i \text{ est sans biais } de \theta.$$

9. 1 point

$$E\left[U_{n}\right] = \theta < +\infty.$$

 U_n est un estimateur sans biais de θ et fonction d'une statistique exhaustive complète. Il est donc uvmb de θ .

10. 2 points

$$S_n = \frac{\max X_i}{\theta} = \frac{T_n}{\theta} \qquad \theta > 0$$

$$f_S(x) = \theta f_T(\theta x) = \theta \frac{n(\lambda+1)}{\theta^{n(\lambda+1)}} (\theta x)^{n(\lambda+1)-1} \mathbb{1}_{]0,\theta[}(\theta x)$$

$$f_S(x) = n(\lambda + 1) x^{n(\lambda+1)-1} \mathbb{1}_{[0,1]}(x)$$

la loi de S_n ne dépend donc pas de θ .

$$F_S(x) = \int_0^x n(\lambda + 1) t^{n(\lambda + 1) - 1} dt = \left[t^{n(\lambda + 1)} \right]_0^t = x^{n(\lambda + 1)} \mathbb{1}_{]0,1[}(x) + \mathbb{1}_{\{x \ge 1\}}.$$

11. 2 points

Soit $I_S(\alpha, \beta)$ un intervalle de dispersion de S_n . Les caractéristiques de la distribution étant inconnue, on prendra par commodité $\beta = \frac{\alpha}{2}$

$$P\left[Q_S\left(\frac{\alpha}{2}\right) \le \frac{\max X_i}{\theta} \le Q_S\left(1 - \frac{\alpha}{2}\right)\right] = 1 - \alpha$$

$$P\left[\frac{\max X_i}{Q_S\left(1-\frac{\alpha}{2}\right)} \le \theta \le \frac{\max X_i}{Q_S\left(\frac{\alpha}{2}\right)}\right] = 1 - \alpha$$

On a $Q_S(y) = F_S^{-1}(y) = \sqrt[n(\lambda+1)]{x}$. D'où l'intervalle de confiance de niveau $1 - \alpha$ pour θ :

$$IC_{1-\alpha}\left(\theta\right) = \left\lceil \frac{\max X_i}{\frac{n(\lambda+1)\sqrt{1-\frac{\alpha}{2}}}{2}} \le \theta \le \frac{\max X_i}{\frac{n(\lambda+1)\sqrt{\frac{\alpha}{2}}}{2}} \right\rceil.$$