We claim:

1. A compound represented by formula I:

5

wherein

R represents independently for each occurrence H, alkyl, aryl, aralkyl, or alkenyl; and

A represents independently for each occurrence aryl or heteroaryl.

- 10 2. The compound of claim 1, wherein R represents independently for each occurrence H or alkyl.
 - 3. The compound of claim 1, wherein A is heteroaryl.
 - 4. The compound of claim 1, wherein A is heteroaryl, and R represents independently for each occurrence H or alkyl.
- 15 5. The compound of claim 1, wherein A is selected from the group consisting of:

R represents independently for each occurrence H, alkyl, aryl, or a bond to the nathphyl ring of the compound represented by formula I.

6. The compound of claim 1, wherein A is selected from the group consisting of:

R represents independently for each occurrence H, alkyl, aryl, or a bond to the nathphyl ring of the compound represented by formula I.

7. A compound represented by formula II:

15 wherein

5

- R, R₁, R₂, and R₃ represent independently for each occurrence H, alkyl, aryl, aralkyl, or alkenyl.
- 8. The compound of claim 7, wherein R represents independently for each occurrence H or alkyl.
- 5 9. The compound of claim 7, wherein R represents independently for each occurrence H.
 - The compound of claim 7, wherein R₁ represents independently for each occurrence H or alkyl.
- 11. The compound of claim 7, wherein R₁ represents independently for each occurrence H.
 - 12. The compound of claim 7, wherein R₂ represents independently for each occurrence H, alkyl, or aryl.
 - 13. The compound of claim 7, wherein R₂ represents independently for each occurrence alkyl.
- 15 14. The compound of claim 7, wherein R₂ represents independently for each occurrence methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, or pentyl.
 - 15. The compound of claim 7, wherein R₂ represents independently for each occurrence methyl or isopropyl.
- 16. The compound of claim 7, wherein R₃ represents independently for each occurrence 20 H, alkyl, or aryl.
 - 17. The compound of claim 7, wherein R₃ represents independently for each occurrence aryl.
 - 18. The compound of claim 7, wherein R₃ represents independently for each occurrence an optionally substituted phenyl group.
- 25 19. The compound of claim 7, wherein R₃ represents independently for each occurrence 3,5-dimethylphenyl.
 - 20. The compound of claim 7, wherein R is H, R₁ is H, R₃ is H, and R₂ is alkyl.
 - 21. The compound of claim 7, wherein R is H, R_1 is H, R_3 is H, and R_2 is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, or pentyl.

- 22. The compound of claim 7, wherein R is H, R_1 is H, R_3 is H, and R_2 is methyl.
- 23. The compound of claim 7, wherein R is H, R₁ is H, R₃ is H, and R₂ is isopropyl.
- 24. The compound of claim 7, wherein R is H, R₁ is H, R₂ is H, and R₃ represents independently for each occurrence aryl.
- 5 25. The compound of claim 7, wherein R is H, R₁ is H, R₂ is H, and R₃ represents independently for each occurrence an optionally substituted phenyl group.
 - 26. The compound of claim 7, wherein R is H, R₁ is H, R₂ is H, and R₃ is 3,5-dimethylphenyl.
 - 27. The compound of claim 7, wherein said compound is a chiral.
- 10 28. The compound of claim 7, wherein said compound is a single diastereomer.
 - 29. A compound represented by formula III:

Ш

15 wherein

R, R_1 , R_2 , and R_3 represent independently for each occurrence H, alkyl, aryl, aralkyl, or alkenyl.

- 30. The compound of claim 29, wherein R represents independently for each occurrence H or alkyl.
- 20 31. The compound of claim 29, wherein R represents independently for each occurrence H.
 - 32. The compound of claim 29, wherein R₁ represents independently for each occurrence H or alkyl.

33. The compound of claim 29, wherein R_1 represents independently for each occurrence H.

- 34. The compound of claim 29, wherein R₂ represents independently for each occurrence H, alkyl, or aryl.
- 5 35. The compound of claim 29, wherein R₂ represents independently for each occurrence alkyl.
 - 36. The compound of claim 29, wherein R₂ represents independently for each occurrence methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, or pentyl.
- 37. The compound of claim 29, wherein R₃ represents independently for each occurrence H, alkyl, or aryl.
 - 38. The compound of claim 29, wherein R₃ represents independently for each occurrence aryl.
 - 39. The compound of claim 29, wherein R₃ represents independently for each occurrence an optionally substituted phenyl group.
- 15 40. The compound of claim 29, wherein R₃ represents independently for each occurrence 3,5-dimethylphenyl.
 - 41. The compound of claim 29, wherein R is H, R₁ is H, R₃ is H, and R₂ is alkyl.
 - 42. The compound of claim 29, wherein R is H, R₁ is H, R₃ is H, and R₂ is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, or pentyl.
- 20 43. The compound of claim 29, wherein R is H, R₁ is H, R₃ is H, and R₂ is methyl.
 - 44. The compound of claim 29, wherein R is H, R₁ is H, R₃ is H, and R₂ is isopropyl.
 - 45. The compound of claim 29, wherein R is H, R₁ is H, R₂ is H, and R₃ represents independently for each occurrence aryl.
- The compound of claim 29, wherein R is H, R₁ is H, R₂ is H, and R₃ represents independently for each occurrence an optionally substituted phenyl group.
 - 47. The compound of claim 29, wherein R is H, R₁ is H, R₂ is H, and R₃ is 3,5-dimethylphenyl.
 - 48. The compound of claim 29, wherein said compound is a single enantiomer.

49. A method of detecting and quantifying an analyte in a sample, comprising the steps of:

contacting a sample optionally comprising an analyte with a compound of claim 7; measuring the fluorescence of said compound of claim 7 in said sample; and comparing said fluorescence measurement to the fluorescence of said compound of claim 7 in the absence of said sample.

50. The method of claim 49, wherein the analyte is a cation.

- 51. The method of claim 49, wherein the analyte is a alkali, alkaline earth, or transition metal ion.
- 10 52. The method of claim 49, wherein the analyte is a alkali or alkaline earth metal ion.
 - 53. The method of claim 49, wherein the analyte is a lithium, sodium, potassium, magnesium, calcium, or strontium metal ion.
 - 54. The method of claim 49, wherein the analyte is a sodium, potassium, or calcium metal ion.
- 15 55. The method of claim 49, wherein the analyte is a transition metal ion.
 - 56. The method of claim 49, wherein the analyte is a copper, iron, nickel, manganese, cobalt, chromium, vanadium, titanium, zirconium, rhodium, palladium, silver, cadmium, mercury, gold, platinum, or hafnium ion.
- 57. The method of claim 49, wherein the analyte is a copper, iron, nickel, or manganese ion.
 - 58. The method of claim 49, wherein the analyte is a copper ion.
 - 59. The method of claim 49, wherein the analyte is a Cu^{2+} .
 - 60. A method of detecting and quantifying an analyte in a sample, comprising the steps of:
- contacting a sample optionally comprising an analyte with a compound of claim 29; measuring the fluorescence of said compound of claim 29 in said sample; and comparing said fluorescence measurement to the fluorescence of said compound of claim 29 in the absence of said sample.

61. The method of claim 60, wherein the analyte is a compound that comprises a hydrogen atom capable of participating in a hydrogen bond.

62. The method of claim 60, wherein the analyte is a compound that comprises a hydroxyl, carboxylic acid, amine, amide, thiol, or percarboxylic acid functional group.

- 63. The method of claim 60, wherein the analyte is a compound that comprises a hydroxyl, carboxylic acid, or amine functional group.
- 64. The method of claim 60, wherein the analyte is a compound that comprises a hydroxyl functional group.
- 10 65. The method of claim 60, wherein the analyte is a compound that comprises a carboxylic acid functional group.
 - 66. The method of claim 60, wherein the analyte is a chiral compound that comprises a hydrogen atom capable of participating in a hydrogen bond.
- 67. The method of claim 60, wherein the analyte is a chiral compound that comprises a hydroxyl, carboxylic acid, amine, amide, thiol, or percarboxylic acid functional group.
 - 68. The method of claim 60, wherein the analyte is a chiral compound that comprises a hydroxyl, carboxylic acid, or amine functional group.
- 69. The method of claim 60, wherein the analyte is a chiral compound that comprises a hydroxyl functional group.
 - 70. The method of claim 60, wherein the analyte is a chiral compound that comprises a carboxylic acid functional group.
 - 71. A method of detecting and quantifying an analyte in a sample, comprising the steps of:
- contacting a sample optionally comprising an analyte with a compound of claim 7; measuring the fluorescence of said compound of claim 7 in said sample; and comparing said fluorescence measurement to the fluorescence of said compound of claim 7 in the absence of said sample.
- 72. The method of claim 71, wherein the analyte is a compound that comprises a hydrogen atom capable of participating in a hydrogen bond.

73. The method of claim 71, wherein the analyte is a compound that comprises a hydroxyl, carboxylic acid, amine, amide, thiol, or percarboxylic acid functional group.

- 74. The method of claim 71, wherein the analyte is a compound that comprises a hydroxyl, carboxylic acid, or amine functional group.
 - 75. The method of claim 71, wherein the analyte is a compound that comprises a hydroxyl functional group.
 - 76. The method of claim 71, wherein the analyte is a compound that comprises a carboxylic acid functional group.
- The method of claim 71, wherein the analyte is a chiral compound that comprises a hydrogen atom capable of participating in a hydrogen bond.
 - 78. The method of claim 71, wherein the analyte is a chiral compound that comprises a hydroxyl, carboxylic acid, amine, amide, thiol, or percarboxylic acid functional group.
- The method of claim 71, wherein the analyte is a chiral compound that comprises a hydroxyl, carboxylic acid, or amine functional group.
 - 80. The method of claim 71, wherein the analyte is a chiral compound that comprises a hydroxyl functional group.
- 81. The method of claim 71, wherein the analyte is a chiral compound that comprises a carboxylic acid functional group.
 - 82. The method of claims 60-70, wherein R is H, R₁ is H, R₂ is H, and R₃ represents independently for each occurrence aryl.
 - 83. The method of claim 71-81, wherein R is H, R₁ is H, R₂ is H, and R₃ represents independently for each occurrence aryl.