INFERENCE:

Knowledge base
$$\Delta = \{\beta_1, \beta_2, \dots \beta_n\}$$

Set of sentences
 $\beta_1 \wedge \beta_2 \dots \wedge \beta_0$

QUERY &

Does
$$\Delta$$
 imply α ?
$$\Delta \models \alpha \quad \text{reads} : \Delta \quad \text{implies} \quad \alpha, \quad \Delta \quad \text{entails} \quad \alpha$$

$$\alpha \quad \text{follows} \quad \text{from} \quad \Delta.$$

INFERENCE METHODS:

1. TRUTH TABLE (MODEL ENUMERATION):

- 2. INFERENCE RULES:
 - * Keep applying inference rule until you get what you want.

 RESOLUTION

```
3. By REDUCTION SAT (Satisfiability) - SEARCA (SAT)

4. Converting RB (knowledge Base) into "tractable forms"

(advanced qui
                                                                                  (advanced queries)
```

METHOD 1: TRUTH TOBLES, ENUMERATING MODELS

KB A: A, AUB => C

Query & : C

		Does		マドベ		DFX	itt M(D) 5 1	m(a)
	A	8	C	A	A UB => C	4	×	
1	T	Т	T	✓	✓	✓	✓	
2	T	T	F	✓	x	*	×	
3	丁	F	Τ	✓	V	~	✓	
4	T	F	F	✓	×	×	x	
5	F	۲	7	×	✓	×	✓	
b	P	Т	F	×	X	×	×	
7	F	F	τ	×	✓	X	✓	
8	F	F	F	X	√	×	×	
						{i, s}	{1,3,5,7}	

DIJADVANTACIE:

Exponential time in number of variables.

ADVANTAGEL:

- * Easy, fallback
- * Can test equivalence etc.

REFUTATION THEOREM:

D ⊨ α : Δ implies α

An7d contractory

not satisfiable

Assume α is false and prove that Δ is false. i.e. $m(\Delta \wedge 7d)$ is null set.

Reducing logical implication to SAT solving/

D => d

74 => 70

& V 7 A is always true

7 (x v 70) is not satisfiable

72 14

We want M(D) = M(d)

$$M(\Delta n 7a) = \phi$$

METHOD 2: INFERENCE BULES:

Pattern 3

Modus Ponens:

OR - INTRODUCTION:

AND - INTRODUCTION:

INFERENCE RULES R

$$\Delta \vdash_{R} \alpha : \alpha \text{ derived from } \Delta \text{ using inference}$$
 $\text{tules } R$.

Are the rules complete?

INFERENCE RULES R ARE COMPLETE

if
$$\Delta \models \alpha$$
 then $\Delta \models \alpha$.

INPERENCE RULES R ARE SOUND

if
$$\Delta \vdash \alpha$$
 then $\Delta \vdash \alpha$.

RESOLUTION:

Resolution is typically applied to CNF.

We resolved TAVC with BYTCVX over variable

C and we got the resolvent TAVBVX.

=> Is it complete?

No!

D = AUB

d = Augul

Δ K Aesolution a but Δ F α

But resolution is "refutation complete" if applied to a CNF.

REFUTATION COMPLETE:

It will derive a contradiction if CNF is unsatisfiable.

So connect $\Delta \models A$ to $\Delta \wedge \forall A$ and then convert into $CNF \rightarrow Apply$ resolution.

UNIT RESOLUTION:

When you resolve 2 clauses, one of them is unit.

Resolution -> exponential time

Unit Resolution -> Linear time! But it is not refutation

complete.

RELOLUTION EXAMPLE:

D: A V 78 => C

C => DV 7E

EVO

a: A => 0

Is D F a

DATA prove unsat

Contradiction => A Fd

no contradiction => △ ⊭d

Assume D is in CNF

A: TAYC 7d : A

8×c 70

7C V D V 78

610

- O. TAYL
- 1. BYC
- 2. 7CVD V 7E
- 3. END
- 4. A
- 5.70
- 6 · C 0,4

しいけ

- 7. DVJE
- しらけ

- 8. 78
- 5,7

0,6

Joit

- 9. E
- 3,5
- Unit

10 - Contradiction

On7d is unsat

Δ⊨α

RESDUTEON

PRODF.

CONVERTIND SENTENCES INTO CAF:

Any sentence can be converted into CNF.

- 2. Use de Morgan's law to push negations inside $7(\alpha \wedge \beta) \rightarrow 7d \vee 7\beta$ $7(\alpha \vee \beta) \rightarrow 7d \wedge 7\beta$
- 3. Distribute V over Λ $(\alpha \wedge \beta) \vee \delta \longrightarrow (\alpha \vee \delta) \wedge (\beta \vee \delta)$

EXAMPLE:

1.
$$(A \Rightarrow (BVC)) \land ((BVC) \Rightarrow A)$$

 $(\forall A \lor (BVC)) \land (\forall (BVC) \lor A)$

2. (7AV(BYC)) N((78 A7C) VA)

Clause 1: 7 AYBUC

3. (7BVA) N(7CVA)

Clauses:

78 YBYL

AVBF

JCYA

(TAVBUC) ~ (TBVA) ~ (TLVA)