

SOLUTION By completing the square we rewrite the equation as

Def. 1) Traces are curves of intersection of surfaces with planes that are parallel to the coordinate planes.

 $x^2+y^2+z^2=1$ surface type?

 $\frac{2 - k}{x^{2} + y^{2} + k^{2} - 1} \Rightarrow x^{3} + y^{2} = 1 - k^{2}$

sphere cont. qt (0,0,0), rad = |

2) A cylinder is a surface that consists of all lines (called rulings) perallel to a given line and pass through a given plane, curve.

 \underline{x} . $Z = x^2$ in 3D (y free)

ex. x2+y2=1 (7 free)

Det. A quadric surface is the graph of a degree 2 egin in x,y,t:

 $Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0$

where A,B,..., I real constants, and at least one of A, B, C is ± 0 .

Note Translations & rotations can bring any quadric surface to one of these two standard forms:

 $Ax^2 + By^2 + Cz^2 + J = 0$, or $Ax^2 + By^2 + Iz = 0$

ex. Sketch z = x2+y2)

Solin: Fix $z = k^2$. Then $x^2 + y^2 = k^2$

$$\frac{2x.}{x^{2}+y^{2}-z^{2}=1}$$

$$\frac{2}{x^{2}+y^{2}-z^{2}+1}$$

$$\frac{2}{x^{2}+y^{2}-z^{2}+1}$$

help classify & draw quadric surfaces, use chart/table.

ex. Classify the quadric surface $w/eg/h = x^2 + 2z^2 - 6x - y + 10 = 0$.

Solin: Complete the square

$$\chi^2 - 6\chi + 9 - 9 + 2\xi^2 - y + 10 = 0$$

$$(x-3)^2 + 2z^2 - y = -1$$

$$(x-3)^2+2z^2=u-1$$

 $(x-3)^2 + 2z^2 = y-1$

 $(x-3)^{2} + 2z^{2} - y = -1$ $(x-3)^{2} + 2z^{2} - y = -1$ $x^{2} + z^{2} - y = -1$ $\chi^2 + z^2 - (y-1) = 0$ $x^2 + \xi^2 - y = 0$

elliptic paraboloid

Identity Quadric Surfaces

 $(x-3)^2+22^2=y-1$

2nd deg. polyn egn
in x, y, z

