Commutative Algebra

October 8, 2020

0 Introduction

Commutative Algebra is the study of commutative rings and the spaces on which those rings act, namely modules. It was developed from two key sources: algebraic geometry, and algebraic number theory.

In algebraic geometry we are focused on polynomial rings over a field k, whilst in number theory we are focused on \mathbb{Z} , the ring of rational integers. Much of this work was done by Grothedieck, but the subject goes back much further, at least to Hilbert who wrote a series of papers on polynomial invariant theory in the late nineteenth century.

As an example, take Σ_n , the symmetric group on the set $\{1, 2, ..., n\}$. Σ_n acts on $k[x_1, ..., x_n]$ by permuting the variables, so that $(\sigma f)(x_1, ..., x_n) = f(x_{\sigma^{-1}(1)}, ..., x_{\sigma^{-1}(n)})$. σ_n acts here via ring automorphisms, and it is then natural to consider the **ring of invariants**, given by $\{f \in k[\mathbf{x}] : \sigma f = f \ \forall \sigma \in \Sigma_n] := S$. S is a ring, **the ring of symmetric polynomials**. We can consider the elementary symmetric functions, which are:

$$e_1(x_1, \dots, x_n) = x_1 + \dots + x_n$$

$$e_2(x_1, \dots, x_n) = \sum_{i < j} x_i x_j$$

$$\vdots$$

$$e_n(x_1, \dots, x_n) = x_1 \dots x_n$$

In fact, S is generated as a ring by these e_i , and there are canonical maps $k[y_1, \ldots, y_n] \to S$ such that $Y_i \mapsto e_i$, which is a ring isomorphism.

Hilbert showed that S is finitely generated, and moreover for many other groups, not just symmetric groups.

Along the way, he proved four very deep theorems:

- Basis theorem
- Nullstellensatz
- The polynomial nature of the Hilbert function (leading to the beginnings of dimension theory)
- The syzygy theorem (leading to the beginnings of homological theory of polynomial rings)

In 1921 Emmy Noether extracted the key property that made the basis theorem, namely that a commutative ring is **noetherian** if every ideal is finitely generated (there are several equivalent definitions).

Theorem 0.1 (Hilbert's Basis Theorem). If R is a commutative noetherian ring, then R[x] is also noetherian.

Corollary 0.2. If k is a field, then $k[x_1, ..., x_n]$ is noetherian.

Noether developed a theory of ideals for noetherian rings, for example the existence of primary decomposition, which generalises factorisation into primes in noetherian rings.

Link between Commutative Algebra and Algebraic Geometry

The starting point for this link is the **fundamental theorem of algebra**, which says that $f \in \mathbb{C}[x]$ is determined up to scalar multiples by its zeros up to multiplicity. Given $f \in \mathbb{C}[x_1, \ldots, x_n]$, there is a polynomial function $\mathbb{C}^n \to \mathbb{C}$ given by $(a_1, \ldots, a_n) \mapsto f(a_1, \ldots, a_n)$.

Different polynomials will yield different functions, and so $\mathbb{C}[x_1,\ldots,x_n]$ can be viewed as a ring of polynomial functions on complex affine n-space.

More specifically, given $I \subseteq \mathbb{C}[x_1, \ldots, x_n]$, we can define the **set of common zeros**, $Z(I) = \{(a_1, \ldots, a_n) \in \mathbb{C}^n : f(a_1, \ldots, a_n) = 0 \ \forall f \in I\}$, called an **(affine) algebraic set**.

Remarks:

- One can replace I by the ideal generated by I, and you get the same algebraic set. Similarly, replacing an ideal by a generating set of the ideal leaves the algebraic set. The basis theorem asserts that any algebraic set is the set of common zeros of some finite set of polynomials.
- $\bigcap_j Z(I_j) = Z(\bigcup_j I_j), \bigcup_{j=1}^n Z(i_j) = Z(\prod_{j=1}^n I_j)$, for ideal I_j . If we define a topology on \mathbb{C}^n by calling these algebraic sets the closed sets, we get the **Zariski toplogy**, which is a rather coarser topology on \mathbb{C}^n than the usual topology.
- For $S \subseteq \mathbb{C}^n$, we can define $I(S) = \{ f \in \mathbb{C}[x_1, \dots, x^n] : f(a_1, \dots, a_n) = 0 \ \forall (a_1, \dots, a_n) \in S \}$. This is an *ideal* of $\mathbb{C}[x_1, \dots, x_n]$, and it is *radical*, i.e. $f^r \in I(S) \implies f \in I(S)$. The Nullstellensatz is a family of results asserting that the correspondence

$$I \mapsto Z(I)$$
$$I(S) \leftrightarrow S$$

gives a bijection between the radical ideals in $\mathbb{C}[x_1,\ldots,x_n]$ and the algebraic subsets of \mathbb{C}^n . In particular, the maximal ideals of $\mathbb{C}[x_1,\ldots,x_n]$ correspond to points in \mathbb{C}^n

Dimension

A large portion of the course deals with the dimension of rings. We can define it in three main ways:

- The maximal length of a chain of prime ideals.
- In a geometric context in terms of growth rates.
- The transcendence degree of a field of fractions.

For commutative rings, all three give the same answer. There is in fact a fourth method, using homological algebra, which in the case of "nice" noetherian rings also gives the same answer.

Most of this theory dates back to 1920-1950. Rings of dimension 0 are called *artinian* rings, and in dimension 1 there are special properties which are important in number theory, particularly in the study of algebraic curves.

1 Noetherian Rings: Definitions and Examples

Throughout this section, R is a commutative ring with a 1.

Lemma 1.1. Let M be a (left) R-module. The following are equivalent:

- 1. All submodules of M (including M itself) are finitely generated.
- 2. The ascending chain condition (ACC) holds: there are no strictly increasing infinite chains of submodules.
- 3. The maximum condition of submodules holds: and nonempty set S of submodules of M has a maximal element L, i.e. $L \subseteq L', L' \in S \implies L = L'$.

Proof.

 $\underline{1. \Longrightarrow 2.}$ Suppose there is a strictly increasing chain $N_1 \subsetneq N_2 \subsetneq \ldots$, and let $N = \bigcup_{i=1}^{\infty} N_i$. By 1 N is finitely generated, say by m_1, \ldots, m_r . Each m_i lies in some N_{n_i} . Then let $n = \max_i n_i$, so that $m_i \in N_n$. Then $N_n = M$, contradicting strict ascent.

 $\underline{2. \Longrightarrow 3.}$ Assume ACC. Pick $M_1 \in S$. If it is the maximal member then we're done. If not, there is $M_2 \supseteq M_1$. If M_2 is maximal, then we're done, otherwise there is some $M_3 \supseteq M_2$, and so on. By ACC this process terminates, and we get a maximal element.

 $\underline{3. \Longrightarrow 1.}$ Let $N \triangleleft M$, and let S be the collection of all finitely generated submodules of N. Then $S \neq \emptyset$ since it contains the 0 submodule. So S contains a maximal member, say L. We then claim N = L. If $x \in N$ then $L + Rx \in S$, and by maximality of L, $x \in L$.

Definition 1.2. An R-module satisfying 1, 2, 3 is noetherian.

Lemma 1.3. Let $N \triangleleft M$. Then M is noetherian if and only if N and M/N are noetherian.

Proof.

 \implies Let M be noetherian, so that all its submodules are finitely generated. This property is inherited by N. Also, the submodules of M/N are all of the form Q/N with $Q \triangleleft M$ containing N. If M is noetherian, then Q is finitely generated, say by x_1, \ldots, x_r . Then $x_1 + N, \ldots, x_r + N$ generates Q/N.

 $\begin{subarray}{ll} \begin{subarray}{ll} \longleftarrow Let $N,M/N$ be noetherian, and let $L_1\subset L_2\subset L_3\subset\ldots$ be a strictly increasing chain of submodules of M. Set $Q_i/N=(L_i+N)/N$, and $N_i=L_i\cap N$. These give ascending chains of submodules of M/N and N respectively. By ACC there are r,s with $Q_i/N=Q_r/N$ for $i\geq r$, $N_i=N_s$ for $i\geq s$. Let $k=\max\{r,s\}$. Then we claim $L_i=L_k$ for $i\geq k$. Pick $\ell\in L_i$, $i\geq k$. Then $\ell+N\in Q_k/N$, and so there is some $\ell'\in L_k$ such that $\ell-\ell'\in N\cap L_i=N\cap L_k$. So $\ell\in L_k$, and the claim is proved. Hence our original ascending chain was not strictly increasing, ℓ. $\square$$

Lemma 1.4. 1. If M, N are R-modules, then $M \oplus N$ is noetherian iff M and N are noetherian.

- 2. If M_1, \ldots, M_n are R-modules then $M_1 \oplus \ldots \oplus M_n$ is noetherian iff each M_i is noetherian.
- 3. If M is noetherian then every homomorphic image of M is noetherian.
- 4. Suppose M can be expressed as a sum of finitely many submodules (not necessarily as a direct sum) $M = M_1 + \ldots + M_n$. Then M is noetherian iff each M_i is.

Proof. 1. $M \cong N/N$, so this follows by **1.3**.

- 2. Apply 1 and induction on n.
- 3. If $\theta: M \to N$ then im $\theta \cong M/\ker \theta$, so apply 1.3.
- 4. The forwards direction follows as $M_i \triangleleft M$. For the reverse, there is a map from $M_1 \oplus \ldots \oplus M_n \to M$, $(m_1, \ldots, m_n) \mapsto m_1 + \ldots + m_n$, and then apply 2 and 3.

Definition 1.5. A ring R is **noetherian** if it is noetherian as a (left) R-module

Remark: Submodules of R as an R-module are the same as ideals of R as a ring, and so the ACC for modules gives us the ACC for ideals.

Lemma 1.6. Let R be a noetherian ring. Then any finitely generated R-module M is noetherian.

4