RNA-seq Quantification

Hubert Rehrauer

RNA-seq: A census of RNA molecules

 RNA-seq aims at determining the transcriptional activity at each gene locus

- A mammal cell has 20'000 30'000 gene loci
- They can give rise to >100'000 different RNA sequences
- In a typical cell at a given time there are between 100'000 to 500'000 mRNA molecules plus other RNA molecules
- This corresponds to 10-30 picograms
- For a bulk RNA-seq experiment we typically start with >= 100ng from 100'000 or more cells

RNA-seq: A census of RNA molecules

- library preparation includes fragmentation and amplification
 → billions of RNA fragments
- The sequencing is then a sampling process that "randomly" selects
 20 – 50 Mio fragments and determines their nucleotide sequence
- The typical mRNA length is 1000 3000 nt
- fragments to be sequenced are in the range 150 – 400 nt

RNA-seq Experiment

 Note: DNAse eliminates the genomic DNA

Read mapping and counting (ideal)

Read mapping and counting (today)

Read mapping and counting (today)

Abundance estimates

Abundance of what???

- Biologically relevant:
 - gene level:
 - # molecules transcribed from one gene locus
 - isoform level:
 - # molecules of a specific isoform transcribed from one gene
- Feasible with RNA-seq:
 - relative fractions
- Naïve approach for abundance estimate:
 - # reads that uniquely map to a gene locus
 - → biased by length, discards information in multi-mapping reads
- More elaborate approaches consider multi-mappers and isoform lengths

RNA-seq comes with absolute counts but relative abundances

Gene	Sample 1 [Bn transcripts]	Sample 1 [Mio sequenced reads]	Sample 2 [Bn transcripts]	Sample 2 [Mio sequenced reads]
gene a	10	0.5	10	0.2
gene b	10	0.5	10	0.2
gene c	10	0.5	10	0.2
gene d	10	0.5	10	0.2
gene e	160	8.0	460	9.2
total	200	10	500	10

With RNA-seq different amounts of starting material will give the identical numbers of reads!

The read count for a gene is always relative to the counts for the other genes.

Number of reads and expression level

	Sample 1	Sample 2	Sample 3
Gene A	5	3	8
Gene B	17	23	42
Gene C	10	13	27
Gene D	752	615	1203
Gene E	1507	1225	2455

- Gene E has about twice as many reads aligned to it as Gene D
- What does it mean?

1) Gene E is expressed with twice as many transcripts as Gene D

2) Both genes are expressed with the same number of transcripts but Gene E is twice as long as Gene D

Number of Reads per Gene

- The number of reads sequenced per gene depends on
 - relative gene expression (relative to the other genes)
 - gene length
 - sequencing depth
- The number of reads that can be aligned to a gene depends additionally
 - expression of other genes that have identical sequences
 - sequencing errors
 - allele sequences
 - mapper settings, e.g. STAR

Model-free Counting of Overlapping reads – Count Modes

Straightforward Counting Modes

- unique reads
- unique reads + multi-reads randomly assigned
- unique reads + multi-reads proportionally assigned
- •
- Do not count multi-reads towards all genes they align to.
 In that case the sum of the counts could be larger than the number of reads

RNA-seq model

$$\alpha_t = P[\text{read from transcript } t] = \frac{1}{Z} \rho_t l_t$$

with:

$$\rho_t$$
 expression level / abundance / fraction

$$l_t$$
 transcript length

$$Z = \sum \rho_t l_t \quad \text{normalization factor}$$

The normalization factor is the weighted mean length of the transcripts.

RNA-seq model

Estimation of the probability that a read is from a specific transcript:

$$\hat{\alpha}_t = \frac{X_t}{N} = \frac{\text{\#reads mapping to transcript } t}{\text{\#mappable reads in total}}$$

Abundance estimates:

$$\hat{\rho}_t \propto \frac{\alpha_t}{l_t}$$

Definition of expression levels

Reads Per Kilobase per Million of mapped reads

RPKM for transcript
$$t = 10^6 \times 10^3 \times \frac{X_t}{l_t N}$$

Transcripts Per Million Transcripts

TPM for transcript
$$t = 10^6 \times Z \times \frac{X_t}{l_t N}$$

Preferable is TPM because it is independent of the transcriptome

Maximum Likelihood Estimation

The estimated abundances represent unique MLE estimates

with
$$\alpha = \{\alpha_t\}_{t \in T}$$

$$L[\alpha] = \prod_{t \in T} \prod_{f \in F_t} P[f \in t] \frac{1}{l_t}$$

$$= \prod_{t \in T} \prod_{f \in F_t} \alpha_t \frac{1}{l_t}$$

$$= \prod_{t \in T} \left(\frac{\alpha_t}{l_t}\right)^{X_t}$$

Effective Transcript Length

 Since fragments have a non-zero length the read probabilities depend actually on an effective length:

$$l_t := \text{transcript length} - \text{fragment length} + 1$$

- For simplicity we continue to use the symbol without tilde but will always assume it is the effective length
- The effective length represents the stretch of the transcript from which I can get a fragment that I can then map back to the transcript
- > The effective length must also consider mappability!
- → Mappability does depend on mapping algorithm, mutations, ...

Multi-reads

- Reads that cannot be uniquely assigned to one transcript were ignored so far
- Multi-reads can occur
 - if a read aligns more than once in the genome
 - if at an alignment position there is more than one transcript defined
- Multi-reads do occur due to homology not due to pure chance
- Percentage of multi-reads is typically low < 5%
- Ignoring multi-reads leads to
 - loss of information
 - biased expression estimates (e.g. for genes in gene families)

Considering Multi-reads

Define a compatibility matrix

$$\mathbf{Y} = \left\{ y_{ft} \right\}_{f \in F, t \in T}$$

with

$$y_{ft} = \begin{cases} 1 \text{ if read } f \text{ aligns to transcript } t \\ 0 \text{ else} \end{cases}$$

The likelihood is now:

$$L[\alpha] = \prod_{f} \left(\sum_{t} y_{ft} \frac{\alpha_{t}}{l_{t}} \right)$$

but now abundances have to be estimated iteratively

Iterative Estimation

Three step algorithm

- 1. Estimate abundances based on uniquely mapping reads only
- For each multi-read, divide it between the transcripts to which it maps, proportionally to their abundances estimated in the first step
- 3. Recompute abundances based on updated counts for each transcript
- 4. Continue with Step 2

Expectation Maximization Estimation

functional genomics center zurich

Transcript abundance estimation with Cufflinks

Trapnell 2010, Nature Biotechnology

General Formulation of Abundance Estimation

A full model for the abundance estimation should consider:

- position bias
- fragment-length distribution
- sequencing errors
- site-specific bias
- •

Example Implementations

Pachter: Cufflinks

Dewey: RSEM

Fast approaches to get the Read-Transcript Compatibility Matrix

- · Sailfish: lightweight alignment
- Salmon: improvement of sailfish
- kallisto: pseudo-alignments

Sailfish

- No read alignment only kmer lookup (very fast)
- Iterative resolution of ambiguous k-mers
- Original version treated kmers of a read as independent

Salmon

Quantification with pseudo-alignments

- Instead of hashing the transcriptome build a de Bruijn graph
- Find k-mer hits in the de Bruijn graph
- Identifies only transcripts that are consistent with all k-mer hits

Performance comparison

Fig. 6 ROC curves indicating performance of quantification methods based on differential expression analysis of **a** an experimental dataset and **b** a simulation dataset. Seven quantification methods are shown. *FP* false positive, *TP* true positive

Performance Comparison

Read Counting Accuracy

Uniqueness: Isoform-level vs gene-level

Accuracy: Isoform-level vs gene-level

Isoform level has higher variability

Biological Issue: SNPs

- SNPs may lead to false positives in differential expression because fewer reads map to non-reference alleles
- Note: Sequencing enables allele-specific expression values

Cufflinks and Related

- Pachter, L. Models for transcript quantification from RNA-Seq. arXiv preprint arXiv:1104.3889 (2011).
- Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L.
 Improving RNA-Seq expression estimates by correcting for fragment bias Genome Biology doi:10.1186/ gb-2011-12-3-r22
- Roberts A, Pimentel H, Trapnell C,
 Pachter L.

 Identification of novel transcripts in
 annotated genomes using RNA-Seq
 Bioinformatics doi:10.1093/
 bioinformatics/btr355

• RSEM:

Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. *BMC Bioinformatics* **12**, 323 (2011).

• MISO:

Katz, Y., Wang, E. T., Airoldi, E. M. & Burge, C. B. Analysis and design of RNA sequencing experiments for identifying isoform regulation. *Nat Methods* **7**, 1009–1015 (2010)

• MMSEQ:

Turro, E. et al. Haplotype and isoform specific expression estimation using multimapping RNA-seq reads. *Genome Biol* **12**, R13 (2011).

NSMAP:

Xia, Z., Wen, J., Chang, C.-C. & Zhou, X. NSMAP: a method for spliced isoforms identification and quantification from RNA-Seq. *BMC Bioinformatics* **12**, 162 (2011).