06 类型的幂

LATEX Definitions are here.

泛性质

默认函子 $\stackrel{c}{ o}$: $(C \times C) \stackrel{Cat}{ o} C$ 在范畴 C 中有下述性质 :

• $(c_1 \times c) \xrightarrow{c} c_2 \overset{\text{Set}}{\cong} c \xrightarrow{c} (c_1 \xrightarrow{c} c_2) \overset{\text{Set}}{\cong} c_1 \xrightarrow{c} (c \xrightarrow{c} c_2)$ —— c 为任意 C 中对象。此即为幂的泛性质,亦表示了指数加乘法之间的运算关系。

函子性

如何证明 → 构成函子呢?请看

- $\overset{\mathsf{c}}{\to} : [(\underline{\mathsf{c}_1}\mathrm{id} \cdot \underline{\mathsf{c}_2}\mathrm{id})] \longmapsto \underline{\mathsf{c}_1 \overset{\mathsf{c}}{\to} \mathsf{c}_2}]\mathrm{id}$ 即函子 \to 能**保持恒等箭头**;
- $\overset{\mathsf{c}}{\to}: (f_1 \overset{\mathsf{c}}{\circ} f_1' \cdot f_2 \overset{\mathsf{c}}{\circ} f_2') \longmapsto (f \overset{\mathsf{c}}{\circ} f')$ —— 即函子 $\overset{\mathsf{c}}{\to}$ **保持箭头复合运算** 。

 下图有助于形象理解证明过程:

下图 (自上到下分别为图 1 和图 2)后面会用到。

范畴 C 内任意两对象 c_1 和 c_2 间的箭头构成一个集合 $c_1 \xrightarrow{c} c_2$, 说明 \xrightarrow{c} 只能将两个对象打到一个集合;下面使 \xrightarrow{c} 升级为函子: 若还知道箭头 f_1^{op} : $c_1 \xrightarrow{c} c_1$ 以及 f_2 : $c_2 \xrightarrow{c} c_2$,则规定

(i) Note

不难看出

图 2 有助于理解。

・ よ: $C \xrightarrow{\mathsf{Cat}} (C^{\mathsf{op}} \xrightarrow{\mathsf{Set}} \mathsf{Set})$ $\mathsf{c}_2 \longmapsto (\mathsf{c}_2 \xrightarrow{\mathsf{C}_2}) = (-\xrightarrow{\mathsf{c}} \mathsf{c}_2)$ 构成一个函子 $f_2 \longmapsto (f_2 \xrightarrow{\mathsf{c}_2}) = (-\xrightarrow{\mathsf{c}} \mathsf{f}_2) = (-\overset{\mathsf{c}}{\mathsf{c}} \mathsf{f}_2)$ 构成一个函子间映射,即自然变换 该函子称作是**米田嵌入**。

• $(c_1 \xrightarrow{c} _) : C^{\circ} \xrightarrow{c_{at}} Set$ 为函子且 $(c_1 \xrightarrow{c} _) : c \longmapsto (c_1 \xrightarrow{c} c)$, 且对任意 $f : c \xrightarrow{c} c'$ 有 $(c_1 \xrightarrow{c} _) : f \longmapsto (c_1 \xrightarrow{f}) = (_{:c_1} id \xrightarrow{f}) = c_1 \xrightarrow{(c_1 \xrightarrow{f})}$ 图 2 有助于理解 。

(i) Note

不难看出

• 尤:
$$C^{op} \xrightarrow{Cat} (C \xrightarrow{Set} Set)$$

 $c_1 \longmapsto (c_1 \xrightarrow{c})$ 构成一个函子
 $f_1^{op} \longmapsto (f_1^{op} \xrightarrow{c}) = (f_1^{op} \xrightarrow{c})$ 构成一个函子间映射,即自然变换
该函子戏称为**尤达嵌入**。

积闭范畴

这里插个题外话:

若范畴包含终对象,所有类型的积以及指数,则可将其称作积闭范畴;

若范畴包含始对象,所有类型的和,则可将其称作是余积闭范畴;

若范畴满足上述条件,则可称作双积闭范畴。

很明显我们讨论的范畴 C 就是**双积闭范畴**。