Estatística: Aplicação ao Sensoriamento Remoto

SER 204 - ANO 2024

Intervalo de Confiança

Camilo Daleles Rennó

camilo.renno@inpe.br http://www.dpi.inpe.br/~camilo/estatistica/

Intervalo de Confiança

Um parâmetro pode ser estimado através de um único valor (estimador pontual)

Qual a probabilidade de que \overline{X} tenha exatamente o valor de μ ?

$$P(\bar{X} = \mu) = 0$$
 (improvável)

Uma alternativa é definir um intervalo de estimativas mais prováveis de acordo com a distribuição teórica da estatística (estimador), que é uma v.a.

Para isso, é necessário conhecer esta distribuição

$$X = \{X_1, X_2, \dots, X_n\}$$
 amostra aleatória

 $X_i \sim ?(\mu, \sigma^2)$ distribuição desconhecida, μ desconhecido, mas σ^2 conhecido

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

Se $X_i \sim N(\mu, \sigma^2)$ ou se *n* for grande (ou seja, adotando-se o TLC):

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$
 $E(\bar{X}) = \mu \quad Var(\bar{X}) = \frac{\sigma^2}{n}$

$$X \sim ?(\mu, \sigma^2)$$
 distribuição desconhecida, μ desconhecido, mas σ^2 conhecido

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$
 se X tiver distribuição normal ou n for grande (TLC)

$$\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1)$$
 (Normal Padrão)

$$X \sim ?(\mu, \sigma^2)$$
 distribuição desconhecida, μ desconhecido, mas σ^2 conhecido

$$\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$$
 se X tiver distribuição normal ou n for grande (TLC)

$$\left(\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}\right) N(0,1)$$
 (Normal Padrão)

$$P(-z < \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} < z) = 1 - \alpha$$

$$P(-z\frac{\sigma}{\sqrt{n}} < \bar{X} - \mu < z\frac{\sigma}{\sqrt{n}}) = 1 - \alpha$$

$$P(\bar{X} - z\frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + z\frac{\sigma}{\sqrt{n}}) = 1 - \alpha$$

IC para μ

Exemplo: uma v.a. qualquer tem uma distribuição desconhecida com média μ também desconhecida e variância σ^2 = 16. Retira-se uma amostra de 36 valores e calcula-se a média amostral. Construa um IC de 95% para μ supondo que \overline{X} = 12,7.

$$P(\overline{X} - z\frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z\frac{\sigma}{\sqrt{n}}) = 0.95$$

	•									
z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,4960	0,4920	0,4880	0,4840	0,4801	0,4761	0,4721	0,4681	0,4641
0,1	0,4602	0,4562	0,4522	0,4483	0,4443	0,4404	0,4364	0,4325	0,4286	0,4247
0,2	0,4207	0,4168	0,4129	0,4090	0,4052	0,4013	0,3974	0,3936	0,3897	0,3859
0,3	0,3821	0,3783	0,3745	0,3707	0,3669	0,3632	0,3594	0,3557	0,3520	0,3483
0,4	0,3446	0,3409	0,3372	0,3336	0,3300	0,3264	0,3228	0,3192	0,3156	0,3121
0,5	0,3085	0,3050	0,3015	0,2981	0,2946	0,2912	0,2877	0,2843	0,2810	0,2776
0,6	0,2743	0,2709	0,2676	0,2643	0,2611	0,2578	0,2546	0,2514	0,2483	0,2451
0,7	0,2420	0,2389	0,2358	0,2327	0,2296	0,2266	0,2236	0,2206	0,2177	0,2148
0,8	0,2119	0,2090	0,2061	0,2033	0,2005	0,1977	0,1949	0,1922	0,1894	0,1867
0,9	0,1841	0,1814	0,1788	0,1762	0,1736	0,1711	0,1685	0,1660	0,1635	0,1611
1,0	0,1587	0,1562	0,1539	0,1515	0,1492	0,1469	0,1446	0,1423	0,1401	0,1379
1,1	0,1357	0,1335	0,1314	0,1292	0,1271	0,1251	0,1230	0,1210	0,1190	0,1170
1,2	0,1151	0,1131	0,1112	0,1093	0,1075	0,1056	0,1038	0,1020	0,1003	0,0985
1,3	0,0968	0,0951	0,0934	0,0918	0,0901	0,0885	0,0869	0,0853	0,0838	0,0823
1,4	0,0808	0,0793	0,0778	0,0764	0,0749	0,0735	0,0721	0,0708	0,0694	0,0681
1,5	0,0668	0,0655	0,0643	0,0630	0,0618	0,0606	0,0594	0,0582	0,0571	0,0559
1,6	0,0548	0,0537	0,0526	0,0516	0,0505	0,0495	0,0485	0,0475	0,0465	0,0455
1,7	0,0446	0,0436	0,0427	0,0418	0,0409	0,0401	0,0392	0,0384	0,0375	0,0367
1,8	0,0359	0,0351	0,0344	0,0336	0,0329	0,0322	0.0314	0,0307	0,0301	0,0294
1,9	0,0287	0,0281	0,0274	0,0268	0,0262	0,0256	0,0250	0,0244	0,0239	0,0233
2,0	0,0228	0,0222	0,0217	0,0212	0,0207	0,0202	0,0197	0,0192	0,0188	0,0183
2,1	0,0179	0,0174	0,0170	0,0166	0,0162	0,0158	0,0154	0,0150	0,0146	0,0143
2,2	0,0139	0,0136	0,0132	0,0129	0,0125	0,0122	0,0119	0,0116	0,0113	0,0110
2,3	0,0107	0,0104	0,0102	0,0099	0,0096	0,0094	0,0091	0,0089	0,0087	0,0084
2,4	0,0082	0,0080	0,0078	0,0075	0,0073	0,0071	0,0069	0,0068	0,0066	0,0064
2,5	0,0062	0,0060	0,0059	0,0057	0,0055	0,0054	0,0052	0,0051	0,0049	0,0048
2,6	0,0047	0,0045	0,0044	0,0043	0,0041	0,0040	0,0039	0,0038	0,0037	0,0036
2,7	0,0035	0,0034	0,0033	0,0032	0,0031	0,0030	0,0029	0,0028	0,0027	0,0026
2,8	0,0026	0,0025	0,0024	0,0023	0,0023	0,0022	0,0021	0,0021	0,0020	0,0019
2,9	0,0019	0,0018	0,0018	0,0017	0,0016	0,0016	0,0015	0,0015	0,0014	0,0014
3,0	0,0013	0,0013	0,0013	0,0012	0,0012	0,0011	0,0011	0,0011	0,0010	0,0010

Exemplo: uma v.a. qualquer tem uma distribuição desconhecida com média μ também desconhecida e variância σ^2 = 16. Retira-se uma amostra de 36 valores e calcula-se a média amostral. Construa um IC de 95% para μ supondo que \overline{X} = 12,7.

$$P(\overline{X} - z\frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z\frac{\sigma}{\sqrt{n}}) = 0.95$$

$$P(12,7-1,96\frac{4}{\sqrt{36}} < \mu < 12,7+1,96\frac{4}{\sqrt{36}}) = 0,95$$

$$P(12,7-1,307 < \mu < 12,7+1,307) = 0,95$$

$$P(11,393 < \mu < 14,007) = 0,95$$

Mas o que significa realmente este IC?

Como Interpretar o IC para μ ?

Suponha uma v.a. X normalmente distribuída com $\mu=10$ e $\sigma^2=4$ \rightarrow $X\sim N(10,4)$ Sorteia-se 50 valores aleatoriamente e calcula-se \overline{X} . Em seguida determina-se o IC para μ com 95% de confiança, ou seja

$$P(\bar{X}-1,96\frac{2}{\sqrt{50}} < \mu < \bar{X}+1,96\frac{2}{\sqrt{50}}) = 0,95$$

$$P(\bar{X} - 0.5544 < \mu < \bar{X} + 0.5544) = 0.95$$
 (O IC varia para cada amostra!!!)

Através de simulações, foram gerados inúmeros IC, um para cada amostra...

Interpretação: 95% dos possíveis IC obtidos a partir de uma amostra de tamanho 50, conterão de fato a verdadeira média μ (ver IC.xls)

$$P(\bar{X} - z\frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + z\frac{\sigma}{\sqrt{n}}) = 1 - \alpha$$

Como poderíamos obter intervalos de confiança mais estreitos, ou seja, com limites mais próximos da média verdadeira u?

- diminuindo-se o nível de confiança quanto menor $1-\alpha$, menor será zmas maior será a probabilidade do IC não conter a verdadeira μ !

$$P(|Z|>z)=\alpha$$
 nível de significância
$$P(-z < Z < z) = 1-\alpha$$
 nível de confiança

- aumentando-se o tamanho da amostra ← melhor opção quanto maior n menor será a variância $de \bar{X}$

E possível obter ICs com 100% de confiança?

Não $P(-\infty < \mu < +\infty) = 1$

$$P(x_a < \frac{(n-1)s^2}{\sigma^2} < x_b) = 1 - \alpha$$

$$P\left(\frac{1}{x_b} < \frac{\sigma^2}{(n-1)s^2} < \frac{1}{x_a}\right) = 1 - \alpha$$

$$P(x_a < \chi_{n-1}^2 < x_b) = 1 - \alpha$$

$$P\left(\frac{(n-1)s^{2}}{x_{b}} < \sigma^{2} < \frac{(n-1)s^{2}}{x_{a}}\right) = 1 - \alpha$$

IC para σ^2

Exemplo: uma v.a. qualquer tem uma distribuição normal com média μ e variância σ^2 desconhecidas. Retira-se uma amostra de 25 valores e calcula-se a variância amostral. Construa um IC de 95% para σ^2 supondo que $s^2=2,34$.

$$P\left(\frac{(n-1)s^2}{x_b} < \sigma^2 < \frac{(n-1)s^2}{x_a}\right) = 0,95$$

Distribuição χ^2

$$P(\chi_{24}^2 > x_a) = 0,975$$
$$P(\chi_{24}^2 > x_b) = 0,025$$

g	0,005	0,010	0,025	0,050	0,100	0,900	0,950	0,975	0,990	0,995
1	7,88	6,63	5,02	3,84	2,71	0,016	0,0039	0,0010	0,00016	0,00004
2	10,60	9,21	7,38	5,99	4,61	0,21	0,10	0,051	0,020	0,010
3	12,84	11,34	9,35	7,81	6,25	0,58	0,35	0,22	0,11	0,072
4	14,86	13,28	11,14	9,49	7,78	1,06	0,71	0,48	0,30	0,21
5	16,75	15,09	12,83	11,07	9,24	1,61	1,15	0,83	0,55	0,41
6	18,55	16,81	1 45	12,59	10,64	2,20	1,64	1 4	0,87	0,68
7	20,28	18,48	1 1	14,07	12,02	2,83	2,17	1	1,24	0,99
8	21,95	20,09	1 53	15,51	13,36	3,49	2,73	2 3	1,65	1,34
9	23,59	21,67	4 12	16,92	14,68	4,17	3,33	4	2,09	1,73
10	25,19	23,21	24,48	18,31	15,99	4,87	3,94	3,25	2,56	2,16
11	26,76	24,72	21,92	19,68	17,28	5,58	4,57	3,82	3,05	2,60
12	28,30	26,22	23,34	21,03	18,55	6,30	5,23	4,40	3,57	3,07
13	29,82	27,69	24,74	22,36	19,81	7,04	5,89	5,01	4,11	3,57
14	31,32	29,14	26,12	23,68	21,06	7,79	6,57	5,63	4,66	4,07
15	32,80	30,58	27,49	25,00	22,31	8,55	7,26	6,26	5,23	4,60
16	34,27	32,00	28,85	26,30	23,54	9,31	7,96	6,91	5,81	5,14
17	35,72	33,41	30,19	27,59	24,77	10,09	8,67	7,56	6,41	5,70
18	37,16	34,81	31,53	28,87	25,99	10,86	9,39	8,23	7,01	6,26
19	38,58	36,19	32,85	30,14	27,20	11,65	10,12	8,91	7,63	6,84
20	40,00	37,57	34,17	31,41	28,41	12,44	10,85	9,59	8,26	7,43
21	41,40	38,93	35,48	32,67	29,62	13,24	11,59	10,28	8,90	8,03
22	42,80	40,29	36,78	33,92	30,81	14,04	12,34	10,98	9,54	8,64
23	44,18	41,64	38,08	35,17	32,01	14,85	13,09	11,69	10,20	9,26
24	45,56	42,98	39,36	36,42	33,20	15,66	13,85	12,40	10,86	9,89
25	46,93	44,31	40,65	37,65	34,38	16,47	14,61	13,12	11,52	10,52
26	48,29	45,64	41,92	38,89	35,56	17,29	15,38	13,84	12,20	11,16
27	49,64	46,96	43,19	40,11	36,74	18,11	16,15	14,57	12,88	11,81
28	50,99	48,28	44,46	41,34	37,92	18,94	16,93	15,31	13,56	12,46
29	52,34	49,59	45,72	42,56	39,09	19,77	17,71	16,05	14,26	13,12
30	53,67	50,89	46,98	43,77	40,26	20,60	18,49	16,79	14,95	13,79
40	66,77	63,69	59,34	55,76	51,81	29,05	26,51	24,43	22,16	20,71
50	79,49	76,15	71,42	67,50	63,17	37,69	34,76	32,36	29,71	27,99
60	91,95	88,38	83,30	79,08	74,40	46,46	43,19	40,48	37,48	35,53
70	104,21	100,43	95,02	90,53	85,53	55,33	51,74	48,76	45,44	43,28
80	116,32	112,33	106,63	101,88	96,58	64,28	60,39	57,15	53,54	51,17
90	128,30	124,12	118,14	113,15	107,57	73,29	69,13	65,65	61,75	59,20
100	140,17	135,81	129,56	124,34	118,50	82,36	77,93	74,22	70,06	67,33
										_

Exemplo: uma v.a. qualquer tem uma distribuição normal com média μ e variância σ^2 desconhecidas. Retira-se uma amostra de 25 valores e calcula-se a variância amostral. Construa um IC de 95% para σ^2 supondo que $s^2=2,34$.

$$P\left(\frac{(n-1)s^{2}}{x_{b}} < \sigma^{2} < \frac{(n-1)s^{2}}{x_{a}}\right) = 0,95$$

$$P\left(\frac{24.2,34}{39,36} < \sigma^2 < \frac{24.2,34}{12,40}\right) = 0,95$$

$$P(1,43 < \sigma^2 < 4,53) = 0,95$$

Intervalo de Confiança para μ com σ^2 desconhecida

$$X \sim N(\mu, \sigma^2)$$
 $\mu \in \sigma^2$ desconhecidos

$$P(-t < \frac{\bar{X} - \mu}{\frac{s}{\sqrt{n}}} < t) = 1 - \alpha$$

$$P(-t\frac{s}{\sqrt{n}} < \bar{X} - \mu < t\frac{s}{\sqrt{n}}) = 1 - \alpha$$

$$P(\bar{X} - t\frac{s}{\sqrt{n}} < \mu < \bar{X} + t\frac{s}{\sqrt{n}}) = 1 - \alpha$$

$$P(-t < T < t) = 1 - \alpha$$

IC para μ

Intervalo de Confiança para μ com σ^2 desconhecida

Exemplo: uma v.a. qualquer tem uma distribuição normal com média μ e variância σ^2 desconhecidas. Retira-se uma amostra de 25 valores e calcula-se a média amostral e a variância amostral. Construa um IC de 95% para μ supondo que $\overline{X}=12,7$ e $s^2=16$.

$$P(\overline{X} - t\frac{s}{\sqrt{n}} < \mu < \overline{X} + t\frac{s}{\sqrt{n}}) = 0.95$$

Distribuição t de Student

$$P(T_{24} > t) = 0,025$$

$$P(T_{24} > 2,064) = 0,025$$

	g	0,1	0,05	0,025	0,01	0,005
	1	3,078	6,314	12,706	31,821	63,656
	2	1,886	2,920	4,303	6,965	9,925
	3	1,638	2,353	3_182	4,541	5,841
	4	1,533	2,132	2 76	3,747	4,604
	5	1,476	2,015	2 71	3,365	4,032
•	6	1,440	1,943	2 17	3,143	3,707
	7	1,415	1,895	2,65	2,998	3,499
	8	1,397	1,860	2,306	2,896	3,355
	9	1,383	1,833	2,262	2,821	3,250
	10	1,372	1,812	2,228	2,764	3,169
	11	1,363	1,796	2,201	2,718	3,106
	12	1,356	1,782	2,179	2,681	3,055
	13	1,350	1,771	2,160	2,650	3,012
_	14	1,345	1,761	2,145	2,624	2,977
	15	1,341	1,753	2,131	2,602	2,947
	16	1,337	1,746	2,120	2,583	2,921
	17	1,333	1,740	2,110	2,567	2,898
	18	1,330	1,734	2,101	2,552	2,878
	19	1,328	1,729	2,093	2,539	2,861
_	20	1,325	1,725	2,086	2,528	2,845
	21	1,323	1,721	2,080	2,518	2,831
	22	1,321	1,717	2,074	2,508	2,819
	23	1,319	1,714	2,069	2,500	2,807
	> 24	1,318	1,711	2,064	2,492	2,797
٠,	25	1,316	1,708	2,060	2,485	2,787
	26	1,315	1,706	2,056	2,479	2,779
	27	1,314	1,703	2,052	2,473	2,771
	28	1,313	1,701	2,048	2,467	2,763
	29	1,311	1,699	2,045	2,462	2,756
	30	1,310	1,697	2,042	2,457	2,750
	40	1,303	1,684	2,021	2,423	2,704
	50	1,299	1,676	2,009	2,403	2,678
	60	1,296	1,671	2,000	2,390	2,660
	120	1,289	1,658	1,980	2,358	2,617
	∞	1,282	1,645	1,960	2,326	2,576

Intervalo de Confiança para μ com σ^2 desconhecida

Exemplo: uma v.a. qualquer tem uma distribuição normal com média μ e variância σ^2 desconhecidas. Retira-se uma amostra de 25 valores e calcula-se a média amostral e a variância amostral. Construa um IC de 95% para μ supondo que $\overline{X}=12,7$ e $s^2=16$.

$$P(\overline{X} - t\frac{s}{\sqrt{n}} < \mu < \overline{X} + t\frac{s}{\sqrt{n}}) = 0.95$$

$$P(12,7-2,064\frac{4}{\sqrt{25}} < \mu < 12,7+2,064\frac{4}{\sqrt{25}}) = 0,95$$

$$P(12,7-1,6512 < \mu < 12,7+1,6512) = 0,95$$

$$P(11,0488 < \mu < 14,3512) = 0,95$$

Intervalo de Confiança para proporção p

$$\hat{p} \sim N(p, \frac{pq}{n})$$

$$P(-z < \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}} < z) = 1 - \alpha$$

$$P(\hat{p} - z\sqrt{\frac{pq}{n}}$$

$$P(\hat{p} - z\sqrt{\frac{\hat{p}\hat{q}}{n}}$$

$$P(-z < Z < z) = 1 - \alpha$$

Intervalos de Confiança (Resumo)

para
$$\mu \begin{cases} N(0,1) & \text{se } \sigma^2 \text{ \'e conhecida} \\ t_{n-1} & \text{se } \sigma^2 \text{ \'e desconhecida} \end{cases}$$
 para $\sigma^2 \left\{ \chi^2_{n-1} \right\}$

É possível também construir IC de modo a comparar parâmetros de 2 populações (ver o material extra desse tema)

No entanto, esse propósito será melhor abordado em Testes de Hipótese

Intervalos de Confiança (Resumo)

Observações importantes:

- Os ICs são construídos a partir de uma distribuição que relaciona o estimador pontual ao seu parâmetro;
- Para se conseguir ICs mais estreitos, conservando-se o mesmo nível de confiança, deve-se aumentar o tamanho da amostra;
- Caso o IC seja utilizado para verificar se o parâmetro para o qual o IC foi construído tem um determinado valor, deve-se aceitar qualquer valor presente dentro do intervalo, considerando o nível de confiança adotado;

Ex: se o IC para
$$\mu$$
 for $P(20,3 < \mu < 43,8) = 0.95$

$$\mu$$
 pode ser 30? SIM μ pode ser 21? SIM μ pode ser 45? NÃO

* "não se pode negar que ela seja 30" ou "não há razões para discordar que a verdadeira média μ seja de fato 30"

considerando 95% de confiança

(se mudar o nível de confiança, pode-se mudar a conclusão)

Intervalo de Confiança (estimação de parâmetro)

Intervalo de Credibilidade (ocorrência de valores simulados)