Implementation of 4 Clustering Algorithms: K-Means, DBSCAN, MeanShift and Agglomerative on a customer dataset and their comparison


```
#Importing Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
import warnings
warnings.filterwarnings("ignore")

from sklearn.metrics import silhouette_score
from scipy.cluster.hierarchy import linkage
from scipy.cluster.hierarchy import dendrogram
from scipy.cluster.hierarchy import cut_tree

#Importing dataset
data = pd.read_csv('Customers.csv')
print("There are {} rows and {} columns in the dataset".format(data.shape[0], data.shape[1]))
```

There are 200 rows and 5 columns in the dataset

Exploratory Data Analysis (EDA)

data.head()

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40

data.describe()

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

```
data.isnull().sum()
CustomerID
```

CustomerID 0
Gender 0
Age 0
Annual Income (k\$) 0
Spending Score (1-100) 0
dtype: int64

```
males_age = data[data['Gender']=='Male']['Age']
females_age = data[data['Gender']=='Female']['Age']
age\_bins = range(15,75,5)
#males histogram
fig2, (ax1,ax2) = plt.subplots(1,2, figsize=(12,5), sharey=True)
sns.distplot(males_age, bins=age_bins, kde=False, color='#0066ff', ax=ax1, hist_kws=dict(edgecolor="k",linewidth=2))
ax1.set_xticks(age_bins)
ax1.set_ylim(top=25)
ax1.set_title('Males')
ax1.set_ylabel('Count')
ax1.text(45,23, 'TOTAL count: {}'.format(males_age.count()))
ax1.text(45,22, 'Mean age: {:.1f}'.format(males_age.mean()))
#females histogram
fig2, (ax1,ax2) = plt.subplots(1,2, figsize=(12,5), sharey=True)
sns.distplot(females_age, bins=age_bins, kde=False, color='#cc66ff', ax=ax1, hist_kws=dict(edgecolor="k",linewidth=2))
ax1.set_xticks(age_bins)
ax1.set_ylim(top=25)
ax1.set title('Females')
ax1.set_ylabel('Count')
ax1.text(45,23, 'TOTAL count: {}'.format(females_age.count()))
ax1.text(45,22, 'Mean age: {:.1f}'.format(females_age.mean()))
plt.show()
```


Kolgomorov-Smirnov test shows that the differences between these two groups are statistically insignificant

```
def labeler(pct, allvals):
    absolute = int(pct/100.*np.sum(allvals))
return "{:.1f}%\n({:d})".format(pct,absolute)
sizes = [males_age.count(), females_age.count()]
fig0, ax1 = plt.subplots(figsize =(6,6))
wedges, texts, autotexts = ax1.pie(sizes,
                                   autopct=lambda pct: labeler(pct, sizes),
                                   radius=1,
                                   colors=['#0066ff', '#cc66ff'],
                                   startangle=90,
                                   textprops=dict(color='w'),
                                   wedgeprops=dict(width=0.7, edgecolor='w'))
ax1.legend(wedges, ['male', 'female'],
          loc='center right',
          bbox_to_anchor=(0.7,0,0.5,1))
ha='center', va='center')
plt.setp(autotexts, size=12, weight='bold')
ax1.axis('equal')
plt.show()
```



```
males_income = data[data['Gender']=='Male']['Annual Income (k$)']
females_income = data[data['Gender']=='Female']['Annual Income (k$)']
my_bins = range(10, 150, 10)
#males histogram
fig2, (ax1,ax2,ax3) = plt.subplots(1,3, figsize=(18,5))
sns.distplot(males_income, bins=my_bins, kde=False, color='#0066ff', ax=ax1, hist_kws=dict(edgecolor="k",linewidth=2))
ax1.set_xticks(my_bins)
ax1.set_yticks(range(0,24,2))
ax1.set_ylim(0,22)
ax1.set_title('Males')
ax1.set_ylabel('Count')
ax1.text(85,19, 'Mean income: {:.1f}k$'.format(males_income.mean()))
ax1.text(85,18, 'Median income: {:.1f}k$'.format(males_income.median()))
ax1.text(85,17, 'Std. deviation: {:.1f}k$'.format(males_income.std()))
#females histogram
fig2, (ax1,ax2,ax3) = plt.subplots(1,3, figsize=(18,5))
sns.distplot(females_income, bins=my_bins, kde=False, color='#0066ff', ax=ax1, hist_kws=dict(edgecolor="k",linewidth=2))
ax1.set_xticks(my_bins)
ax1.set_yticks(range(0,24,2))
ax1.set_ylim(0,22)
ax1.set_title('Females')
ax1.set_ylabel('Count')
ax1.text(85,19, 'Mean income: {:.1f}k$'.format(females_income.mean()))
ax1.text(85,18, 'Median income: {:.1f}k$'.format(females_income.median()))
ax1.text(85,17, 'Std. deviation: {:.1f}k$'.format(females_income.std()))
plt.show()
```



```
#boxplot
sns.boxplot(x='Gender',y='Annual Income (k$)', data=data, ax=ax3)
ax3.set_title('Boxplot of Annual Income')
plt.show()

plt.figure(figsize=(10, 6)) # Adjust the size as needed
sns.boxplot(x='Gender', y='Annual Income (k$)', data=data)
plt.title('Boxplot of Annual Income')
plt.show()
```



```
print('Kolgomorov-Smirnov test p-value: {:.2f}'.format(stats.ks_2samp(males_income, females_income)[1]))
```

Kolgomorov-Smirnov test p-value: 0.78

```
males_spending = data[data['Gender']=='Male']['Spending Score (1-100)']
females_spending = data[data['Gender']=='Female']['Spending Score (1-100)']
spending_bins = range(0,105,5)
#males histogram
fig2, (ax1,ax2,ax3) = plt.subplots(1,3, figsize=(18,5))
sns.distplot(males_spending, bins=spending_bins, kde=False, color='#0066ff', ax=ax1, hist_kws=dict(edgecolor='k",linewidth=2))
ax1.set_xticks(spending_bins)
ax1.set_xlim(0,100)
ax1.set_yticks(range(0,17,1))
ax1.set_ylim(0,16)
ax1.set_title('Males')
ax1.set_ylabel('Count')
ax1.text(59,15, 'Mean spending score: {:.1f}'.format(males_spending.mean()))
ax1.text(85,18, 'Median spending score: {:.1f}'.format(males_spending.median()))
ax1.text(85,17, 'Std. deviation spending score: {:.1f}'.format(males_spending.std()))
#females histogram
fig2, (ax1,ax2,ax3) = plt.subplots(1,3, figsize=(18,5))
sns.distplot(females_spending, bins=spending_bins, kde=False, color='#cc66ff', ax=ax1, hist_kws=dict(edgecolor="k",linewidth=2))
ax1.set_xticks(spending_bins)
ax1.set xlim(0,100)
ax1.set_yticks(range(0,17,1))
ax1.set_ylim(0,16)
ax1.set_title('Females')
ax1.set_ylabel('Count')
ax1.text(50,15, 'Mean spending score: {:.1f}'.format(females_spending.mean()))
ax1.text(85,18, 'Median spending score: {:.1f}'.format(females_spending.median()))
ax1.text(85,17, 'Std. deviation spending score: {:.1f}'.format(females_spending.std()))
plt.show()
```



```
plt.figure(figsize=(10, 6)) # Adjust the size as needed
sns.boxplot(x='Gender', y='Spending Score (1-100)', data=data)
plt.title('Boxplot of spending score')
plt.show()
```



```
print('Kolgomorov-Smirnov test p-value: {:.2f}'.format(stats.ks_2samp(males_spending, females_spending)[1]))
```

Kolgomorov-Smirnov test p-value: 0.29

```
medians_by_age_group = data.groupby(["Gender", pd.cut(data['Age'],age_bins)]).median()
medians_by_age_group.index = medians_by_age_group.index.set_names(['Gender', 'Age_group'])
medians_by_age_group.reset_index(inplace=True)
```


Correlations

There is a negligible correlation between age and annule income of customers for both sex

Slope is almost parallel to x-axis

```
#Calculating Pearson's correlations
corr1, _ = pearsonr(males_age.values, males_spending.values)
corr2, _ = pearsonr(females_age.values, females_spending.values)
{\tt sns.lmplot('Age', 'Spending \ Score \ (1-100)', \ data=data, \ hue='Gender',}\\
               aspect=1.5)
plt.text(65,65, 'Pearson: {:.2f}'.format(corr1),color ='blue')
plt.text(13,83, 'Pearson: {:.2f}'.format(corr2),color ='#d97900')
Text(13, 83, 'Pearson: -0.38')
      100
       80
  Spending Score (1-100)
                                                                                                      Pearson: -0.28
                                                                                                                      Male
                                                                                                                      Female
       40
       20
              20
                                 30
                                                                        50
                                                                                           60
```

- There are weak negative corrleations (<0.5) between age and spending score of customers for both sex groups
- slope is slight negative here
- It says that with increase in age there is decrease in spending score

- There is a negligible correlation between annual income and spending score of customers for both sex groups

CLUSTERING - 1.K Means, 2.DBSCAN, 3.MeanShift, 4.Agglomerative

K-Means

```
from sklearn.cluster import KMeans

#subset with numeric variables only
X_numerics = data[['Age','Annual Income (k$)', 'Spending Score (1-100)']]

X_numerics.head()
```

	Age	Annual Income (k\$)	Spending Score (1-100)
0	19	15	39
1	21	15	81
2	20	16	6
3	23	16	77
4	31	17	40

```
# k-means with some arbitrary k
kmeans = KMeans(n_clusters=4, max_iter=50)
kmeans.fit(X_numerics)
kmeans.labels
array([3, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3,
      0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3,
      0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 2, 1, 2, 1, 2, 1, 2,
      1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2,
      1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2,
      1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2,
      1, 2])
# elbow-curve/SSD
ssd = []
range_n_clusters = [2, 3, 4, 5, 6, 7, 8]
for num_clusters in range_n_clusters:
   kmeans = KMeans(n_clusters=num_clusters, max_iter=50)
   kmeans.fit(X_numerics)
   ssd.append(kmeans.inertia_)
# plot the SSDs for each n clusters
# ssd
plt.plot(ssd)
[<matplotlib.lines.Line2D at 0x14573124070>]
 200000
175000
150000
125000
 100000
 75000
 50000
# silhouette analysis
range_n_clusters = [2, 3, 4, 5, 6, 7, 8]
for num_clusters in range_n_clusters:
    # intialise kmeans
    kmeans = KMeans(n_clusters=num_clusters, max_iter=50)
    kmeans.fit(X_numerics)
    cluster_labels = kmeans.labels_
    silhouette_avg = silhouette_score(X_numerics, cluster_labels)
    print("For n_clusters={0}, the silhouette score is {1}".format(num_clusters, silhouette_avg))
For n_clusters=2, the silhouette score is 0.293166070535953
For n clusters=3, the silhouette score is 0.3839349967742105
For n_clusters=4, the silhouette score is 0.40546302077733304
For n_clusters=5, the silhouette score is 0.44428597560893024
For n_clusters=6, the silhouette score is 0.4523443947724053
For n_clusters=7, the silhouette score is 0.43978902692261157
For n_clusters=8, the silhouette score is 0.4280971079746162
# final model with k=6
kmeans = KMeans(n_clusters=6, max_iter=50)
kmeans.fit(X_numerics)
```

ssd.append(kmeans.inertia_)

plt.plot(ssd)

[<matplotlib.lines.Line2D at 0x145732ab250>]


```
# final model with k=5
kmeans = KMeans(n_clusters=5, max_iter=50)
kmeans.fit(X_numerics)
ssd.append(kmeans.inertia_)
plt.plot(ssd)
```

[<matplotlib.lines.Line2D at 0x14573300970>]


```
KM_6_clusters = KMeans(n_clusters=6, init='k-means++').fit(X_numerics)
ssd.append(KM_6_clusters.inertia_)
plt.plot(ssd)
```

[<matplotlib.lines.Line2D at 0x145734ae340>]


```
KM_6_clustered = X_numerics.copy()
KM_6_clustered.loc[:,'Cluster'] = KM_6_clusters.labels_
```

fig1, (axes) = plt.subplots(1,2,figsize=(12,5)) scat_1 = sns.scatterplot('Annual Income (k\$)', 'Spending Score (1-100)', data=KM_6_clustered, hue='Cluster', ax=axes[0], palette='Set1', legend='full') sns.scatterplot('Age', 'Spending Score (1-100)', data=KM_6_clustered, hue='Cluster', ax=axes[0], palette='Set1', legend='full')

 $axes[0].scatter(KM_6_clusters.cluster_centers_[:,1], KM_6_clusters.cluster_centers_[:,2], marker='s',s=40, c="blue") \\ axes[1].scatter(KM_6_clusters.cluster_centers_[:,0], KM_6_clusters.cluster_centers_[:,0], KM_6_cluster_center_centers_[:,0], KM_6_cluster_center_center_[:,0], KM_6_cluster_cent$

<matplotlib.collections.PathCollection at 0x1456f14c430>


```
KM_5_clusters = KMeans(n_clusters=5, init='k-means++').fit(X_numerics)
ssd.append(KM_5_clusters.inertia_)
plt.plot(ssd)
```

[<matplotlib.lines.Line2D at 0x14574777370>]

<matplotlib.collections.PathCollection at 0x1457335bc10>


```
KM 5 clusters.labels
```

```
array([2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
```

```
# assign the label
X_numerics['cluster_id'] = KM_5_clusters.labels_
X_numerics.head()
```

	Age	Annual Income (k\$)	Spending Score (1-100)	cluster_id
0	19	15	39	2
1	21	15	81	3
2	20	16	6	2
3	23	16	77	3
4	31	17	40	2

KM_6_clusters.labels_

```
# assign the Label
X_numerics['cluster_id'] = KM_6_clusters.labels_
X_numerics.head()
```

Age Annual Income (k\$) Spending Score (1-100) cluster_id 0 19 15 39 3 1 21 15 81 2 2 20 16 6 3 3 23 16 77 2 4 31 17 40 3

```
KM5_clustered = X_numerics.copy()
KM5_clustered.loc[:,'Cluster'] = KM_5_clusters.labels_
```

```
KM5_clust_sizes = KM5_clustered.groupby('Cluster')
KM5_clust_sizes.columns = ["KM5_size"]
KM5_clust_sizes.describe()
```

Annual Income Age ... cluster_id Labels min 25% 50% 75% max count mean std min 25% 50% 75% max count mean ... 75% max count mean std Cluster **0** 39.0 32.692308 3.728650 27.0 30.0 32.0 35.50 40.0 39.0 86.538462 ... 1.0 1.0 39.0 2.000000 0.000000 2.0 2.0 2.0 2.0 **1** 36.0 40.666667 11.496583 19.0 34.0 41.5 47.25 59.0 36.0 87.750000 ... 2.0 2.0 36.0 0.055556 0.232311 0.0 0.0 0.0 0.0 1.0 23.0 26.304348 ... **2** 23.0 45.217391 13.228607 19.0 35.5 46.0 53.50 67.0 4.0 4.0 23.0 4.000000 0.000000 4.0 4.0 4.0 4.0 4.0 3 23.0 25.521739 5.273170 18.0 21.5 24.0 30.00 35.0 23.0 26.304348 ... 3.0 3.0 23.0 2.739130 0.688700 1.0 3.0 4 79.0 43.088608 16.478572 18.0 27.0 47.0 54.50 70.0 79.0 55.291139 ... 0.0 2.0 79.0 0.987342 0.112509 0.0 1.0 1.0 1.0 1.0 5 rows x 40 columns

```
KM6_clustered = X_numerics.copy()
KM6_clustered.loc[:,'Cluster'] = KM_6_clusters.labels_

KM6_clust_sizes = KM6_clustered.groupby('Cluster')
KM6_clust_sizes.columns = ["KM6_size"]
KM6_clust_sizes.describe()
```

	Age								Annual (k\$)	Income	 cluste	er_id	Labels							
	count	mean	std	min	25%	50%	75%	max	count	mean	 75%	max	count	mean	std	min	25%	50%	75%	max
Cluster																				
0	35.0	41.685714	10.897305	19.0	35.00	43.0	47.50	59.0	35.0	88.228571	 2.0	2.0	35.0	0.000000	0.000000	0.0	0.0	0.0	0.0	0.0
1	38.0	27.000000	7.032742	18.0	21.00	26.5	31.75	40.0	38.0	56.657895	 0.0	3.0	38.0	1.000000	0.000000	1.0	1.0	1.0	1.0	1.0
2	22.0	25.272727	5.257030	18.0	21.25	23.5	29.75	35.0	22.0	25.727273	 3.0	3.0	22.0	2.818182	0.588490	1.0	3.0	3.0	3.0	3.0
3	21.0	44.142857	13.089254	19.0	35.00	45.0	53.00	67.0	21.0	25.142857	 4.0	4.0	21.0	4.000000	0.000000	4.0	4.0	4.0	4.0	4.0
4	45.0	56.155556	8.543886	43.0	49.00	54.0	65.00	70.0	45.0	53.377778	 0.0	4.0	45.0	1.133333	0.625227	1.0	1.0	1.0	1.0	4.0
5	39.0	32.692308	3.728650	27.0	30.00	32.0	35.50	40.0	39.0	86.538462	 1.0	1.0	39.0	2.000000	0.000000	2.0	2.0	2.0	2.0	2.0

6 rows × 40 columns

```
from mpl toolkits.mplot3d import Axes3D
fig = plt.figure(figsize=(7,7))
ax = Axes3D(fig, rect=[0, 0, .99, 1], elev=20, azim=210)
ax.scatter(KM5_clustered['Age'],KM5_clustered['Annual Income (k$)'],
           KM5 clustered['Spending Score (1-100)'],
           c=KM_5_clusters.labels_,
           s=35, edgecolor='k', cmap=plt.cm.Set1)
ax.w xaxis.set ticklabels([])
ax.w yaxis.set_ticklabels([])
ax.w zaxis.set ticklabels([])
ax.set_xlabel('Age')
ax.set ylabel('Annual Income (k$)')
ax.set zlabel('Spending Score (1-100)')
ax.set_title('3D view of K-Means 5 clusters')
ax.dist = 12
plt.show()
```



```
KM_6_clustered = X_numerics.copy()
KM_6_clustered.loc[:,'Cluster'] = KM_6_clusters.labels_
```

3D view of K-Means 6 clusters

DBSCAN Clustering Algorithm

```
from sklearn.cluster import DBSCAN
```

```
from itertools import product

eps_values = np.arange(8,12.75,0.25) #eps values to be investigated
min_samples = np.arange(3,10) #min_samples values to be investigated

DBSCAN_params = list(product(eps_values, min_samples))

no_of_clusters = []
sil_score = []
for p in DBSCAN_params:
    DBS_clustering = DBSCAN(eps=p[0], min_samples=p[1]).fit(X_numerics)
    no_of_clusters.append(len(np.unique(DBS_clustering.labels_)))
    sil_score.append(silhouette_score(X_numerics, DBS_clustering.labels_))
```

```
tmp = pd.DataFrame.from_records(DBSCAN_params, columns=['Eps','Min_samples'])
tmp['No_of_clusters'] = no_of_clusters
pivot_1 = pd.pivot_table(tmp, values='No_of_clusters', index='Min_samples', columns='Eps')
fig, ax = plt.subplots(figsize=(12,6))
sns.heatmap(pivot_1, annot=True, annot_kws={"size":16}, cmap="YlGnBu", ax=ax)
ax.set_title('Number of clusters')
plt.show()
```


From the above heatmap the number of clusters can range from 4 to 17.

Given sample size of 3 observations and eps = 8, it have 17 clusters.

```
tmp = pd.DataFrame.from_records(DBSCAN_params, columns=['Eps','Min_samples'])
tmp['Sil_score'] = sil_score
pivot_1 = pd.pivot_table(tmp, values='Sil_score', index='Min_samples', columns='Eps')
fig, ax = plt.subplots(figsize=(18,6))
sns.heatmap(pivot_1, annot=True, annot_kws={"size":10}, cmap="YlGnBu", ax=ax)
plt.show()
```


The silhouette score in the above heatmap is 0.26 for eps value=12.5 and sample size=4.

This is Global Maximum

```
DBS_clustering = DBSCAN(eps=12.5, min_samples=4).fit(X_numerics)

DBSCAN_clustered = X_numerics.copy()
DBSCAN_clustered.loc[:,'Cluster'] = DBS_clustering.labels_

DBSCAN_clust_sizes = DBSCAN_clustered.groupby('Cluster')
DBSCAN_clust_sizes.columns = ["DBSCAN_size"]
DBSCAN_clust_sizes.describe()
```

	Age								Annual (k\$)	Income	 Spendii Score (cluster	_id						
	count	mean	std	min	25%	50%	75%	max	count	mean	 75%	max	count	mean	std	min	25%	50%	75%	max
Cluster																				
-1	18.0	36.944444	12.316762	20.0	32.00	34.5	36.50	67.0	18.0	74.000	 77.75	99.0	18.0	2.611111	1.974511	0.0	0.5	3.0	4.75	5.0
0	112.0	39.142857	16.002735	18.0	24.00	37.0	50.00	70.0	112.0	48.250	 58.25	92.0	112.0	2.491071	1.355639	0.0	1.0	2.0	4.00	4.0
1	8.0	53.250000	7.382412	42.0	48.25	53.5	58.50	64.0	8.0	27.750	 14.25	17.0	8.0	3.000000	0.000000	3.0	3.0	3.0	3.00	3.0
2	34.0	32.882353	3.859382	27.0	30.00	32.0	36.00	40.0	34.0	82.000	 90.75	97.0	34.0	5.000000	0.000000	5.0	5.0	5.0	5.00	5.0
3	24.0	45.583333	8.303570	34.0	39.25	44.0	52.50	59.0	24.0	85.875	 23.25	39.0	24.0	0.000000	0.000000	0.0	0.0	0.0	0.00	0.0
4	4.0	20.750000	2.872281	19.0	19.00	19.5	21.25	25.0	4.0	76.250	 10.50	12.0	4.0	0.000000	0.000000	0.0	0.0	0.0	0.00	0.0

6 rows x 32 columns

cluster -1 is an outlier. There are 18 outliers present

```
DBS_clustering.labels_
array([ 0, 0, -1, 0, 0, 0, -1, -1, 1, 0, -1, -1, 1,
                                                  0, -1, 0,
      0, 0, -1, 0, 0, 1, 0, 1,
                                 0,
                                     0,
                                        0, 0,
                                               0, 1,
                                                     0, 1,
      1, 0, 1, 0, 0, 0, -1,
                             0,
                                 0,
                                    0,
                                       0,
                                           0,
                                               0,
                                                  0,
                                                     0,
                                                         0,
                                                            0,
          0,
             0,
                0,
                    0,
                       0,
                          0,
                              0,
                                 0,
                                     0,
                                        0,
                                           0,
                                               0,
                                                  0,
                                                      0,
                                0,
                0,
                   0,
                       0,
                             0,
                                    0, 0,
                                               0,
                                                     0,
      0, 0, 0,
                                           0,
                          0,
                                                  0,
                                                         0.
         0,
             0,
                0,
                    0,
                       0,
                          0,
                              0,
                                 0,
                                     0,
                                        0,
                                           0,
                                               0,
                                                  0,
                                                      0,
                                                         0,
                   0,
                          0,
                                 0,
                                        0,
             0,
                                                         0,
      0,
                0,
                       0,
                              0,
                                    0,
                                           0,
                                               0,
                                                  0,
                                                      0,
         0,
                                                            0,
      0,
          0,
             0,
                0,
                    2,
                       0,
                          2,
                              0,
                                 2,
                                     3,
                                        2,
                                           3,
                                               2,
                                                  0,
                                                     2,
                                                         4,
                                                            2,
                                        0,
             4,
                2,
                   3, 2, 0,
                             2, 4, 2,
                                                     3,
                                                         2,
                                                            3,
      3, 2,
                                           2,
                                               3,
                                                  2,
      2, 3, 2,
                3, 2, -1, 2, 3, 2, 4, 2, 3,
                                               2, 3, 2, 3, 2,
      3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
      -1, 3, 2, 3, -1, -1, 2, -1, -1, -1, -1, -1], dtype=int64)
```

DBSCAN created 5 clusters plus outlier cluster [-1]. Sizes of cluster 0-4 vary significantly

```
# assign the label
X_numerics['cluster_id'] = DBS_clustering.labels_
X_numerics.head(10)
```

	Age	Annual Income (k\$)	Spending Score (1-100)	cluster_id
0	19	15	39	0
1	21	15	81	0
2	20	16	6	-1
3	23	16	77	0
4	31	17	40	0
5	22	17	76	0
6	35	18	6	-1
7	23	18	94	-1
8	64	19	3	1
9	30	19	72	0

```
# assign the label
X_numerics['cluster_id'] = DBS_clustering.labels_
X_numerics.tail(10)
```

	Age	Annual Income (k\$)	Spending Score (1-100)	cluster_id
190	34	103	23	3
191	32	103	69	-1
192	33	113	8	-1
193	38	113	91	2
194	47	120	16	-1
195	35	120	79	-1
196	45	126	28	-1
197	32	126	74	-1
198	32	137	18	-1
199	30	137	83	-1


```
dbscan_clustered = X_numerics.copy()
dbscan_clustered.loc[:,'Cluster'] = DBS_clustering.labels_
```

```
dbscan_clust_sizes = dbscan_clustered.groupby('Cluster')
dbscan_clust_sizes.columns = ["dbscan_size"]
dbscan_clust_sizes.describe()
```

	Age								Annual II (k\$)	ncome	 cluste	er_id	Labels							
	count	mean	std	min	25%	50%	75%	max	count	mean	 75%	max	count	mean	std	min	25%	50%	75%	max
Cluster																				
-1	18.0	36.944444	12.316762	20.0	32.00	34.5	36.50	67.0	18.0	74.000	 3.75	4.0	18.0	2.166667	1.581139	0.0	0.5	2.0	3.75	4.0
0	112.0	39.142857	16.002735	18.0	24.00	37.0	50.00	70.0	112.0	48.250	 3.00	4.0	112.0	1.553571	1.064067	0.0	1.0	1.0	1.00	4.0
1	8.0	53.250000	7.382412	42.0	48.25	53.5	58.50	64.0	8.0	27.750	 4.00	4.0	8.0	4.000000	0.000000	4.0	4.0	4.0	4.00	4.0
2	34.0	32.882353	3.859382	27.0	30.00	32.0	36.00	40.0	34.0	82.000	 1.00	1.0	34.0	2.000000	0.000000	2.0	2.0	2.0	2.00	2.0
3	24.0	45.583333	8.303570	34.0	39.25	44.0	52.50	59.0	24.0	85.875	 2.00	2.0	24.0	0.000000	0.000000	0.0	0.0	0.0	0.00	0.0
4	4.0	20.750000	2.872281	19.0	19.00	19.5	21.25	25.0	4.0	76.250	 2.00	2.0	4.0	0.000000	0.000000	0.0	0.0	0.0	0.00	0.0

6 rows × 40 columns

MeanShift Clustering Algorithm ¶

```
# k-means with some arbitrary k
ms = MeanShift(bandwidth=25)
ms.fit(X_numerics)
ms.labels_
4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3,
     0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1,
    2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1,
     2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1,
     2, 1], dtype=int64)
from sklearn.cluster import MeanShift, estimate_bandwidth
ms=MeanShift(bandwidth=25).fit(X_numerics)
X_numerics['Labels'] = ms.labels_
plt.figure(figsize=(12,8))
sns.scatterplot(X_numerics['Annual Income (k$)'], X_numerics['Spending Score (1-100)'], hue=X_numerics['Labels'],
          palette = sns.color_palette('hls', np.unique(ms.labels_).shape[0]))
plt.plot()
plt.title('MeanShift')
plt.show()
```



```
MS_clustered = X_numerics.copy()
MS_clustered.loc[:,'cluster'] = ms.labels_

# assign the label
X_numerics['cluster_id'] = ms.labels_
X_numerics.head(10)
```

	Age	Annual Income (k\$)	Spending Score (1-100)	cluster_id	Labels
0	19	15	39	4	4
1	21	15	81	3	3
2	20	16	6	4	4
3	23	16	77	3	3
4	31	17	40	4	4
5	22	17	76	3	3
6	35	18	6	4	4
7	23	18	94	3	3
8	64	19	3	4	4
9	30	19	72	3	3

```
ms_clustered = X_numerics.copy()
ms_clustered.loc[:,'Cluster'] = ms.labels_

ms_clust_sizes = ms_clustered.groupby('Cluster')
ms_clust_sizes.columns = ["ms_size"]
ms_clust_sizes.describe()
```

	Age				(k\$)	Income	 cluste	er_id	Labels											
	count	mean	std	min	25%	50%	75%	max	count	mean	 75%	max	count	mean	std	min	25%	50%	75%	max
Cluster																				
0	79.0	42.860759	16.603779	18.0	27.0	47.0	54.50	70.0	79.0	55.303797	 0.0	0.0	79.0	1.000000	0.000000	1.0	1.0	1.0	1.0	1.0
1	39.0	32.692308	3.728650	27.0	30.0	32.0	35.50	40.0	39.0	86.538462	 1.0	1.0	39.0	2.000000	0.000000	2.0	2.0	2.0	2.0	2.0
2	36.0	41.166667	11.182895	19.0	34.0	42.5	47.25	59.0	36.0	87.722222	 2.0	2.0	36.0	0.027778	0.166667	0.0	0.0	0.0	0.0	1.0
3	23.0	25.521739	5.273170	18.0	21.5	24.0	30.00	35.0	23.0	26.304348	 3.0	3.0	23.0	2.739130	0.688700	1.0	3.0	3.0	3.0	3.0
4	23.0	45.217391	13.228607	19.0	35.5	46.0	53.50	67.0	23.0	26.304348	 4.0	4.0	23.0	4.000000	0.000000	4.0	4.0	4.0	4.0	4.0

5 rows × 40 columns

Agglomerative Clustering


```
from scipy.cluster import hierarchy
 from scipy.spatial import distance_matrix
 dist = distance_matrix(X_numerics, X_numerics)
 print(dist)
 [[ 0.
                   42.07136794 33.03028913 ... 117.16654813 124.55520864
    130.20752666]
  [ 42.07136794
                    0.
                                  75.02666193 ... 111.7855089 137.7824372
    122.36829655]
   [ 33.03028913 75.02666193 0.
                                                ... 129.92690253 122.26610323
   143.81585448]
   [117.16654813 111.7855089 129.92690253 ... 0.
                                                                     57.11392125
     14.35270009]
   [124.55520864 137.7824372 122.26610323 ... 57.11392125 0.
     65.06919394]
   [130.20752666 122.36829655 143.81585448 ... 14.35270009 65.06919394
      0.
                 ]]
 Z = hierarchy.linkage(dist, 'complete')
 plt.figure(figsize=(18,50))
 dendro = hierarchy.dendrogram(Z, leaf_rotation = 0, leaf_font_size = 12, orientation='right')
   51
43
45
68
65
61
27
23
21
31
35
25
17
9
39
37
15
13
5
3
    1
33
Z = hierarchy.linkage(dist, 'average')
plt.figure(figsize=(18,50))
dendro = hierarchy.dendrogram(Z, leaf_rotation = 0, leaf_font_size = 12, orientation='right')
 183
181
179
189
189
185
191
187
163
145
175
143
135
151
141
127
123
171
165
177
169
169
 139
Agg_clustered = X_numerics.copy()
Agg_clustered.loc[:,'Cluster'] = agglom.labels_
Agg_clust_sizes = Agg_clustered.groupby('Cluster')
Agg_clust_sizes.columns = ["Agg_size"]
Agg_clust_sizes.describe()
```

```
Agg_clustered = X_numerics.copy()
Agg_clustered.loc[:,'Cluster'] = agglom.labels_

Agg_clust_sizes = Agg_clustered.groupby('Cluster')
Agg_clust_sizes.columns = ["Agg_size"]
Agg_clust_sizes.describe()

Age Annual Income (k$) ... cluster_id Labels
```

	Age								Annual	Income (k\$)	 clust	er_id	Labels							
	count	mean	std	min	25%	50%	75%	max	count	mean	 75%	max	count	mean	std	min	25%	50%	75%	max
Cluster																				
0	35.0	41.685714	10.897305	19.0	35.0	43.0	47.50	59.0	35.0	88.228571	 2.0	2.0	35.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	83.0	42.156627	16.533397	18.0	27.0	45.0	54.00	70.0	83.0	54.759036	 0.0	3.0	83.0	1.0	0.0	1.0	1.0	1.0	1.0	1.0
2	39.0	32.692308	3.728650	27.0	30.0	32.0	35.50	40.0	39.0	86.538462	 1.0	1.0	39.0	2.0	0.0	2.0	2.0	2.0	2.0	2.0
3	20.0	24.850000	5.029126	18.0	21.0	23.0	29.25	35.0	20.0	24.950000	 3.0	3.0	20.0	3.0	0.0	3.0	3.0	3.0	3.0	3.0
4	23.0	45.217391	13.228607	19.0	35.5	46.0	53.50	67.0	23.0	26.304348	 4.0	4.0	23.0	4.0	0.0	4.0	4.0	4.0	4.0	4.0

5 rows × 40 columns

COMPARISON:

Cluster	KM5_size	KM6_size	DBSCAN_size	MS_size	Agg_size
-1	NaN	NaN	18.0	NaN	NaN
0	23.0	39.0	112.0	79.0	35.0
1	79.0	44.0	8.9	39.0	83.0
2	30.0	35.0	34.0	36.0	39.0
3	36.0	22.0	24.0	23.0	20.0
4	23.0	22.0	4.0	23.0	23.0
5	NaN	38.0	NaN	NaN	NaN