The group G is isomorphic to the group labelled by [24, 7] in the Small Groups library. Ordinary character table of $G \cong C2 \times (C3 : C4)$:

	1a	4a	2a	2b	3a	4b	4c	2c	6a	6b	4d	6c
χ_1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	-1	1	1	1	-1	-1	-1	1	1	-1
χ_3	1	-1	1	1	1	-1	-1	1	1	1	-1	1
χ_4	1	1	-1	1	1	-1	1	-1	-1	1	-1	-1
χ_5	1	-E(4)	-1	-1	1	E(4)	E(4)	1	-1	-1	-E(4)	1
χ_6	1	E(4)	-1	-1	1	-E(4)	-E(4)	1	-1	-1	E(4)	1
χ_7	1	-E(4)	1	-1	1	-E(4)	E(4)	-1	1	-1	E(4)	-1
χ_8	1	E(4)	1	-1	1	E(4)	-E(4)	-1	1	-1	-E(4)	-1
χ_9	2	0	-2	-2	-1	0	0	2	1	1	0	-1
χ_{10}	2	0	-2	2	-1	0	0	-2	1	-1	0	1
χ_{11}	2	0	2	-2	-1	0	0	-2	-1	1	0	1
χ_{12}	2	0	2	2	-1	0	0	2	-1	-1	0	-1

Trivial source character table of $G \cong C2 \times (C3 : C4)$ at p = 3:

Normalisers N_i	N_1							N_2										
p-subgroups of G up to conjugacy in G				P_1							P_2							
Representatives $n_j \in N_i$			2a	2b	4b	4c	2c	4d	1a	2a	4a	2b	4b	2c	4c	4d		
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12}$	3	1	3	3	1	1	3	1	0	0	0	0	0	0	0	0		
$ 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} $	3	-1	-3	3	1	-1	-3	1	0	0	0	0	0	0	0	0		
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} $	3	-1	3	3	-1	-1	3	-1	0	0	0	0	0	0	0	0		
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} $	3	1	-3	3	-1	1	-3	-1	0	0	0	0	0	0	0	0		
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} $	3	-E(4)	-3	-3	E(4)	E(4)	3	-E(4)	0	0	0	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	3	E(4)	-3	-3	-E(4)	-E(4)	3	E(4)	0	0	0	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12}$	3	-E(4)	3	-3	-E(4)	E(4)	-3	E(4)	0	0	0	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12}$	3	E(4)	3	-3	E(4)	-E(4)	-3	-E(4)	0	0	0	0	0	0	0	0		
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	1	-1	1	-1	1	-1	-1	1	-1	1	1	-1	-1	1	-1		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	-1	1	1	-1	-1	1	-1	1	1	-1	1	-1	1	-1	-1		
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1		
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} $	1	-E(4)	1	-1	-E(4)	E(4)	-1	E(4)	1	1	-E(4)	-1	-E(4)	-1	E(4)	E(4)		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	E(4)	1	-1	E(4)	-E(4)	-1	-E(4)	1	1	E(4)	-1	E(4)	-1	-E(4)	-E(4)		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	E(4)	-1	-1	-E(4)	-E(4)	1	E(4)	1	-1	E(4)	-1	-E(4)	1	-E(4)	E(4)		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	-E(4)	-1	-1	E(4)	E(4)	1	-E(4)	1	-1	-E(4)	-1	E(4)	1	E(4)	-E(4)		

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1, 12, 5)(2, 16, 8)(3, 18, 10)(4, 19, 11)(6, 21, 14)(7, 22, 15)(9, 23, 17)(13, 24, 20)]) \cong C3$

 $N_1 = Group([(1,2,4,7)(3,6,9,13)(5,16,11,22)(8,19,15,12)(10,21,17,24)(14,23,20,18),(1,3)(2,6)(4,9)(5,10)(7,13)(8,14)(11,17)(12,18)(15,20)(16,21)(19,23)(22,24),(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24),(1,5,12)(2,8,16)(3,10,18)(4,11,19)(6,14,21)(7,15,22)(9,17,23)(13,20,24)]) \\ \cong C2 \times (C3 : C4) \\ N_2 = Group([(1,12,5)(2,16,8)(3,18,10)(4,19,11)(6,21,14)(7,22,15)(9,23,17)(13,24,20),(1,24,7)(3,6,9,13)(5,16,11,22)(8,19,15,12)(10,21,17,24)(14,23,20,18),(1,3)(2,6)(4,9)(5,10)(7,13)(8,14)(11,17)(12,18)(15,20)(16,21)(19,23)(22,24),(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,21)(19,23)(22,24),(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,21)(19,23)(22,24),(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,21)(19,23)(22,24),(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,21)(19,23)(22,24),(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,21)(19,23)(22,24),(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,21)(19,23)(22,24),(1,4)(2,7)(3,9)(14,21)(14,23)(14,21)(14,23)(14,21)(14,23)(14,2$