MPTCP 패킷 간단 정리

MPTCP 패킷

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
			Ki	nd							Len	gth	١			•	Sub	typ	е												
													Suk	otyp (var	e-s iab	ped le l	ific eng	da th)	ta	_											

<그림1> TCP Header 중 TCP options

- MPTCP 패킷은 TCP options에 정의
- Kind 필드
 - MPTCP를 특정하는 값이 담기게 되면 해당 TCP 패킷은 MPTCP 관련 패킷으로 인식
- Length 필드
 - MPTCP 패킷 헤더의 길이를 나타냄
- Subtype 필드
 - MPTCP 패킷 유형을 나타냄
 - MP_CAPABLE, MP_JOIN, MP_FAIL, MP_FASTCLOSE : 연결 요청 및 종료 관련 Subtype
 - ADD_ADDR, REMOVE_ADDR: 주소 추가 및 제거 관련 Subtype
 - MP_PRIO: MPTCP Backup 모드일 시 경로 전환 관련 Subtype

MPTCP 연결 관련 패킷

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
			Ki	nd							Len	gth				!	Sub	typ	e		Ver	sior	า	С		r	ese	rve	d		s
											C	pti	on	Ser	dei	''s l	Key	(64	bit	s)					•						
											0						Key th =														

<그림2> MP_CAPABLE 패킷 형식

- Subtype : MP_CAPABLE
 - 첫 Subflow 연결 시 사용하는 패킷

- C 필드
 - 오류 검출을 위한 Checksum 수행 여부
- S 필드
 - SHA1 해시 기능을 사용한 해시 기반 메시지 인증 코드(HMAC-SHA1) 사용 여부
- Option Sender's Key (64bits) 필드
 - 추후 추가될 Subflow의 인증 절차를 위해 사용
- Option Receiver's Key (64bits) 필드
 - 초기 접속 과정에서 주고받는 해시 기반 인증 코드

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
			K	ind							Len	gth	1			!	Sub	typ	е				В			Ad	ddre	ess	ID		
	Receiver's Token (32bits)																														
	Sender's Random Number (32bits)																														

<그림3> MP_JOIN 패킷 형식

- Subtype: MP_JOIN
 - 추가적인 Subflow 연결 시 사용하는 패킷
- B 필드
 - 해당 Subflow를 Primary Subflow로 사용할지 Backup Subflow로 사용할지를 나타냄
- Address ID 필드
 - 패킷을 발신한 호스트를 나타냄
 - 이 필드를 활용해 호스트간 동일 경로를 사용하는 중복 Subflow 생성을 방지
- Receiver's Token (32bits) 필드
 - MPTCP 양 호스트 간의 연결을 확인
- Sender's Random Number (32bits) 필드
 - 해시 기반 연결을 위해 사용

MPTCP 데이터 송 · 수신 관련 패킷

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
			Ki	nd							Len	gth	1			9	Sub	typ	е			re	serv	/ed			F	m	М	а	Α
									Da	ta A	АСК	(4	or	8 о	cte	ts, c	dep	end	ing	on	fla	gs)									
							Da	ta s	equ	uen (ce r	nun	nbe	r (4	or	8 o	cte	ts, c	dep	end	ling	or	ı fla	ıgs)							
										Sı	ıbfl	ow	sec	que	nce	nu	mb	er (4 o	ctet	s)								M a A		
			[Data	a-Le	evel	Lei	ngtl	า (2	oc	tets	s)									Che	ecks	sum	(2	oct	ets))				

<그림4> Data Sequence Signal (DSS) 패킷 형식

- Receiver는 MPTCP를 활용 시 여러 경로를 통해 데이터를 수신 받을 것이다. 이러한 경우 여러 경로를 통해 전송된 패킷들의 재조합이 필요하다. 이때에 사용하는 패킷이 DSS 패킷이다. DSS 패킷은 모든 데이터(연결요청, 경로전환 등은 제외) 패킷 및 ACK 패킷에 사용된다.
- MPTCP는 기존 TCP 와는 달리 다수의 Subflow를 이용하고 각 Subflow 간의 전송속도, 지연시간 등의 차이로 인해 패킷 순서를 재배열 해야 하기 때문에 Data sequence number와 Subflow sequence number를 사용.
- F 필드
 - Subflow 연결 종료 시 사용되는 Data FIN
- m 필드
 - Data Sequence Number의 크기를 4Byte 혹은 8Byte 인지 결정
- M 필드
 - Data sequence number, Subflow sequence number, Data-Level Length, Checksum필드 들의 포함 여부
- a 필드
 - Data ACK의 크기를 4Byte 혹은 8Byte 인지 결정
- A 필드
 - Data ACK 포함 여부
- Data sequence number 필드
 - 호스트가 발신한 전송 데이터 중에서 해당 패킷 순서
- Subflow sequence number 필드
 - 해당 Subflow의 전송 된 패킷들 중에서의 순서

MPTCP 경로 전환 패킷

			Ki	nd							Len	gth	1			9	Subt	type	e				В		A	ddr	ess	ID	(op	t)	
0	1	2	3	4	5	6	7	l 8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

<그림5> MP_PRIO 패킷 형식

- Subtype : MP_PRIO
 - MPTCP가 Backup 모드로 동작할 때 사용되는 패킷
 - Subflow를 primary에서 backup으로 전환하거나 그 반대로 전환할 때 사용
- B 필드
 - 해당 Subflow를 Primary로 사용할 지의 여부
 - 이 값에 따라 주 전송 경로 사용 여부를 상대 호스트에게 알림

MPTCP 연결 요청 패킷 흐름도

<그림6> MPTCP Subflow 연결 요청 흐름도

- 최초 Subflow 연결
 - 기존 TCP의 3-way handshake 과정에서 MPTCP의 MP_CAPABLE가 부착되었다.
 - 이 과정에서 MP_CAPABLE 헤더의 Key 들을 주고받아 인증을 수행한다.

- 최초 Subflow 연결 임으로 기존에 연결 되어있던 Subflow가 존재하지 않으므로 해당 Subflow를 통해 곧바로 데이터 전송이 수행된다.
- 추가 Subflow 연결
 - 추가적인 Subflow 연결 시에는 4-way handshake에 MPTCP의 MP_JOIN이 부착되었다.
 - 이 때 헤더에 포함된 *HMAC 정보를 사용하여 해시 기반 인증을 수행한다.
 - 이 때 추가된 subflow는 MP_JOIN 메시지의 B 옵션 필드 값에 따라 *CMT모드를 할지 Backup모드를 할지 결정한다.
 - Backup 모드로 연결되었을 시에는 MP_PRIO 패킷을 통해 primary와 backup 경로가 전환된다.

*HMAC : Hash-based Message Authentication Code

*CMT: Concurrent Multipath Transfer

참고문헌

• 조형준, 신성진, 한동혁, 전종문, "Multipath-TCP 기술 개요 및 무선 망 적용을 위한 요구 사항", KNOM Review, Vol. 17, No. 2, December 2014, pp. 22-33.