EQUIVALENT FORMULATIONS OF A SUBMANIFOLD IN \mathbb{R}^n

WILLIAM GAO

Suppose U, V are open in \mathbb{R}^n . A diffeomorphism $h: U \to V$ is a \mathcal{C}^{∞} function with \mathcal{C}^{∞} inverse.

Theorem 0.1. Suppose $M \subseteq \mathbb{R}^n$. The following are equivalent:

- (1) (preimage) for all $a \in M$ there exists a neighbourhood U of a and a C^{∞} function $f: U \to \mathbb{R}^{n-k}$ such that $M \cap U = f^{-1}(0)$ and Df(x) has rank n-k on $M \cap U$.
- (2) (implicit function) for all $a \in M$ there exists a rectangular neighbourhood $V \times W \subseteq \mathbb{R}^k \times \mathbb{R}^{n-k}$ of a such that $M \cap (V \times W)$ is the graph of a C^{∞} function $g: V \to W$ defined by z = g(y).
- (3) (diffeomorphism) for all $a \in M$ there exists a neighbourhood U of a, an open set V in \mathbb{R}^n , and a diffeomorphism $h: U \to V$ such that $h(M \cap U) = V \cap (\mathbb{R}^k \times \{0\}^{n-k})$.
- (4) (coordinate charts) for all $a \in M$, there exists a neighbourhood U of a in \mathbb{R}^n , an open set $W \subseteq \mathbb{R}^k$, and an injective \mathcal{C}^{∞} function $\varphi : W \to \mathbb{R}^n$ such that $\varphi(W) = M \cap U$, φ has rank k on W, and for every Ω open in W, $\varphi(\Omega) = \varphi(W) \cap \Omega'$ for some Ω' open in \mathbb{R}^n .
- *Proof.* (1) \Longrightarrow (2). $f: \mathbb{R}^k \times \mathbb{R}^{n-k} \to \mathbb{R}^{n-k}$ satisfies the hypotheses of the implicit function theorem, so there exist neighbourhoods V of $a_1 \in \mathbb{R}^k$ and W of $a_2 \in \mathbb{R}^{n-k}$ along with a \mathcal{C}^{∞} function $g: V \to W$ such that z = g(y) satisfies f(y,g(y)) = 0; that is, $(y,g(y)) \in f^{-1}(0) = M \cap U$. Since $(y,g(y)) \in V \times W$, $M \cap (V \times W)$ is the graph of g.
- (2) \Longrightarrow (1). By the \mathcal{C}^{∞} coordinate change $f: V \times W \to \mathbb{R}^{n-k}$ defined by f(y,z) = z g(y), $M \cap (V \times W) = f^{-1}(o)$ and Df(x) has rank n-k on $M \cap (V \times W)$.
- (2) \Longrightarrow (3). Let $U = V \times W$. By the \mathcal{C}^{∞} coordinate change h(y, z) = (y, z g(y)), we have $h(M \cap U) = V \cap (\mathbb{R}^k \times \{0\}^{n-k})$.
- (3) \Longrightarrow (1). Let $f(x) = (h_{k+1}(x), \dots, h_n(x))$. $f: U \to \mathbb{R}^{n-k}$ is C^{∞} , $M \cap U = f^{-1}(0)$, and since Dh(x) has rank n, Df(x) has rank n-k on $M \cap U$.
- (3) \Longrightarrow (4). Let $W = V \cap (\mathbb{R}^k \times 0)$ and let $\varphi = h^{-1} : W \to U$. Indeed, φ is \mathcal{C}^{∞} , injective, has rank k on W because h has rank n, and if Ω is open in W then $\varphi(\Omega)$ is open in $\varphi(W)$ by continuity of h.
- (4) \Longrightarrow (3). Given $a \in M$, let $b \in W$ satisfy $\varphi(b) = a$. We may assume without loss of generality that $\frac{\partial(\varphi_1, \cdots, \varphi_k)}{\partial(y_1, \cdots, y_k)}$ has rank k on W. Define $\psi : W \times \mathbb{R}^{n-k} \to \mathbb{R}^n$ by

$$(y,z)\mapsto (\varphi_1(y),\cdots,\varphi_k(y),\varphi_{k+1}(y)+z_1,\cdots,\varphi_n(y)+z_{n-k}).$$

Now $D\psi(y,z)$ has block form

$$\begin{pmatrix} \frac{\partial (\varphi_1 \cdots \varphi_k)}{\partial (y_1 \cdots y_k)} (y, z) & O \\ * & I \end{pmatrix},$$

and thus has rank n. By the inverse function theorem, there exist neighbourhoods V'' of (b,0) and U'' of a such that $\psi:V''\to U''$ is a diffeomorphism. Since U'' is open, $\varphi(U'')=\varphi(W)\cap U'$ for some U' open in \mathbb{R}^n . Let $U=U'\cap V''$ and $V=\psi^{-1}(U)$. Then $U\cap M=\{\varphi(a):(a,0)\in V\}=\{\psi(a,0):(a,0)\in V\}$, so

$$\begin{split} h(U \cap M) &= \psi^{-1}(U \cap M), \\ &= \psi^{-1}(\{\psi(a,0) : (a,0) \in V\}, \\ &= V \cap (\mathbb{R}^k \times 0), \end{split}$$

as desired. \Box

We are now justified in calling a set M in \mathbb{R}^n a submanifold if it satisfies any of the above conditions.