

Introduction to Applied Machine Learning

BUMIC + DSC React Series

Applications of Deep Learning

Cool things using deep learning

- Computer Vision
 - Tesla recognizing items on a street
- b. Text generation
 - OpenAI GPT3 can solve almost any language task in a few examples
- Reinforcement Learning

Learning from data

We have some data D

Make an assumption about D

$$y=b+mx \ \hat{f}= heta_0+ heta_1 x$$

What is learning?

The approximation of some unknown function f based on some data D.

$$egin{aligned} f: X &
ightarrow Y \ \hat{f} &= heta_0 + heta_1 x \end{aligned}$$

How do we set the parameters? How do we know what assumptions to make?

Intro to Deep Learning

What is Deep Learning

Deep learning is a subset of machine learning

What is Deep Learning

Deep learning learns from data using a class of functions known as Neural Networks

A neural network maps an input to an output

Biological Neuron vs. Artificial Neuron

A cartoon drawing of a biological neuron (left) and its mathematical model (right).

What is a Neural Network?

Steps to Train a NN

Forward propagation

Push example through the network to get a predicted output

Compute the cost

Calculate difference between predicted output and actual data

Compute the cost

Calculate difference between predicted output and actual data

Where i is the ith training example and m is the number of training examples

Backward propagation - "Update"

Push back the derivative of the error and apply to each weight, such that next time it will result in a lower error

https://hmkcode.github.io/ai/backpropagation-step-by-step/

Convolutional Neural Networks

Image Data

- Images are commonly represented in code as a 3D array of pixels. Here, we notice 3 represents RGB values
- In vanilla neural networks, we would simply flatten this 3D array into a 3072 length vector. However, by doing this, we lose spatial correlation between pixels close to other pixels

Image Data

 In 2012 a paper called AlexNet out competed state of the art image classification models through the usage of kernels (also called filters)

Kernel

- Kernel: a small matrix used for feature detection on an image
 - Also called a filter
- Usage
 - Superimpose the kernel over a section of an image
 - Do element-wise multiplication
 between the weights in the kernel and
 the values in the image
 - Record the sum of the multiplications

Example Convolution

Example: Multiply the 5x5 image by a 3x3 kernel with weights:

1 0 1 0 1 0 1 0 1

The output? Sum of weight times part of image to a single number.

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Convolved Feature

Kernel example

6	3	2
4	3	1
3	5	5

*

= sum

19

Section of an image

Kernel

Kernel example (cont.)

This image section contains the same values as before, but they have been rearranged, resulting in a greater activation with this kernel

Example Convolution

- Note that the output is smaller than the input
- This can be prevented by using padding around the edges of the image.

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

Padding

- Before padding:
 - 7x7 input, 3x3 filter creating a 5x5 sized output
- After padding:
 - 9x9 input, 3x3 filter creating a 7x7 sized output which maintains the same size as our input
- Edges and corners aren't as accurate but in practice this works well enough

Stride

- Here, the kernel is moving one pixel at a time ("stride" = 1)
- The kernel can move by more than one pixel at a time
- Size = (N F) / Stride + 1

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

Stride

- Increasing stride decreases the size of the output
- Here, stride = 2
- (N F) / Stride + 1

$$(7-3)/2+1=3$$

Dimensionality Practice

- What would be the output size of a 5x5x3 filter with a 32x32x3 image and a stride of 1?
- (N F) / Stride + 1

Dimensionality Practice

- $\bullet \quad (32 5) / 1 + 1 = 28$
- Now let's say we had a stride of 2,
 - \circ (32 5) / 2 + 1 = 14.5
 - Fractional size means the filter hangs off the input
 - We wouldn't use this stride value consequently

Intentionally Shrinking Output Size

- Now, let's say you want to shrink your outputs (which are inputs to the next layer) to reduce operations.
- You can do this by either increasing the stride
 - (N F)/Stride + 1
- Alternatively, you can use a pooling layer

Conv Layer Output

- Use multiple kernels for multiple activation maps
- In this example, we have 6 activation maps each created through a different filter with its own set of weights and biases

Pooling Layers

feature

feature

- Limitation of output of Convolutional Layers:
 - Record the precise position of features in the input
 - Small movements in the position of the feature in the input image will result in a different feature map
- Solution: Pooling Layers
 - Lower resolution version of input is created with large and important structure elements preserved
 - Reduces the computational cost by reducing the number of parameters to learn

Max Pooling

Extracts the sharpest features of an image, making it more general

Average Pooling

Takes average feature of an image, minimize overfitting

Dropout

1. First, what is overfitting?

- a. Overfitting is when the neural network corresponds too closely to the dataset, and cannot be generalized. This tends to happen when a model is excessively complex relative to the data
- b. Conversely, underfitting is when the network cannot capture the underlying trend of the dataset which may happen if your network is not complicated enough.

Dropout - How can we solve overfitting?

1. Training phase

- a. Each weight has a probability *p* that they will be multiplied by zero (dropped). This probability is often set to 0.5, which is considered to be close to optimal for a wide range of networks and tasks
- b. This has the effect of removing random connections between activations effectively creating a new network/outlook on the data per each train set

(b) After applying dropout.

Dropout - How can we solve overfitting?

2. Post Train

- a. After training weights will be abnormally high as they were adjusted assuming only (1-p) percent of the weights would be summed together and used.
- b. To fix this we normalize weights to lower the expectation of each weight. We do this by scaling each weight by 1/p
- c. "This makes sure that for each unit, the expected output from it under random dropout will be the same as the output during pretraining." ~Dropout: A Simple Way to Prevent Neural Networks from Overfitting
 - i. http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Convolutional Neural Network

So what does our network look like?

