					İ
		l	l	l	i
学籍番号					i
」 相田 ')	1				10-11

- **1** ある直交座標系において方程式 $x^2-2x-y^2-3y-1=0$ で表される図形 (曲線) を $\mathcal C$ とする。原点の移動(座標の平行移動)によって座標変換したら, $\mathcal C$ の方程式が $aX^2+bY^2=c$ になったとする。このときの以下の間に答えなさい。
 - (1)(x,y) と (X,Y)の関係式を答えなさい。(3点)
 - (2) XY-座標系における $\mathcal C$ の方程式 $aX^2+bY^2=c$ の定数 a,b,c を求めなさい. (4点)

- 2 ${O, \vec{e_1}, \vec{e_2}}$ を平面の直交座標系とする。次の問に答えなさい。(各 3 点)
 - (1) $\vec{e'}_1 = \frac{1}{2}\vec{e}_1 \frac{\sqrt{3}}{2}\vec{e}_2, \vec{e'}_2 = p\vec{e}_1 + q\vec{e}_2$ と基底を変換するとき,

$$(\vec{e'}_1 \vec{e'}_2) = (\vec{e}_1 \vec{e}_2) A$$

を満たす行列 A(変換行列)を求めなさい.

- (2) $\{O, \vec{e_1}, \vec{e_2}\}$ 座標系における点 P の座標を (x,y), $\{O, \vec{e'_1}, \vec{e'_2}\}$ 座標系における点 P の座標を (x',y') とする.このとき,(x,y) と (x',y') の関係式(変換式)を答えなさい.
- (3) $\{O, \vec{e'}_1, \vec{e'}_2\}$ が定める座標系も直交座標系となるとき,p,q の値を求めなさい.ただし,A の行列式の値は正であるとする.

③ 行列
$$A_1=\left(\begin{array}{cc} 1 & 1 \\ 1 & 2 \end{array}\right), A_2=\left(\begin{array}{cc} 2 & -1 \\ 3 & 1 \end{array}\right)$$
、ベクトル $\vec{d_1}=\left(\begin{array}{cc} -3 \\ 1 \end{array}\right), \vec{d_2}=\left(\begin{array}{cc} 1 \\ -1 \end{array}\right)$ に対し、点変換 f_1,f_2 を

$$f_1(\vec{p}) = A_1 \vec{p} + \vec{d_1}, \quad f_2(\vec{p}) = A_2 \vec{p} + \vec{d_2}$$

点/40 点

で定義する。以下の問に答えなさい。(各4点)

- (1) f_1 と f_2 の合成を $f_1 \circ f_2(\vec{p}) = B_1\vec{p} + \vec{v}_1$ とする. このとき、行列 B_1 とベクトル \vec{v}_1 を求めなさい.
- (2) f_1 の逆変換を $f_1^{-1}(\vec{p}) = B_2\vec{p} + \vec{v}_2$ とする.このとき,行列 B_2 とベクトル \vec{v}_2 を求めなさい.
- (3) $f_2 = f_1 \circ g$ を満たす点変換 g を $g(\vec{p}) = B_3 \vec{p} + \vec{v}_3$ とする. このとき、行列 B_3 とベクトル \vec{v}_3 を求めなさい.

- $\boxed{\textbf{4}} \quad \text{ 行列 } R_{\theta} = \left(\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array} \right), \ \ S_{\phi} = \left(\begin{array}{cc} \cos\phi & \sin\phi \\ \sin\phi & -\cos\phi \end{array} \right)$ に対し、次の問に答えなさい。(各 4 点)
 - (1) $R_{\theta}R_{\phi}=R_{\theta+\phi}$ が成り立つことを示しなさい。
 - (2) R_{θ}^{-1} を求めなさい.
 - (3) $S_{\theta} = AR_{\theta}$ を満たす行列 A を求めなさい.