LIF15 – Théorie des langages formels Sylvain Brandel 2019 – 2020 sylvain.brandel@univ-lyon1.fr

CM 8

GRAMMAIRES

Exemple

- − L = $a(ab \cup ba)*b$.
- Mots générés : un a suivi de ab ou ba un certain nombre de fois suivi d'un b
- Un mot de L peut naturellement être décomposé en un début, un milieu et une fin

$$S \rightarrow aE$$

 $E \rightarrow abE$

 $E \rightarrow baE$

 $E \rightarrow b$

Génération

$$S \rightarrow aE \rightarrow aabE \rightarrow aabbaE \rightarrow aabbab$$

$$S \rightarrow aE \rightarrow abaE \rightarrow ababaE \rightarrow ababaabE \rightarrow ababaabb$$

- Grammaire algébrique, ou hors-contexte (ang. *Context-free*)
 - Un ensemble de symboles terminaux à partir desquels sont construits les mots du langage (a et b dans l'exemple)
 - Un ensemble de symboles non terminaux (S et E dans l'exemple) parmi lesquels on distingue un symbole particulier (souvent S pour Start)
 - Un ensemble fini de règles ou production de la forme symbole non terminal → suite finie de symboles terminaux et / ou non terminaux
- Grammaire contextuelle

(ang. Context-sensitive)

- Dans les règles, le symbole non terminal est entouré de deux mots appelés le contexte
- Grammaire générale
 - Pas de restriction sur les règles

- Grammaire algébrique : quadruplet G = (V, Σ, R, S) où
 - Σ est un ensemble fini de symboles terminaux appelé alphabet
 - V est un ensemble fini de symboles non terminaux tels que $V \cap \Sigma = \emptyset$
 - S ∈ V est le symbole initial
 - R ⊂ V × (V ∪ Σ)*

de la forme $A \rightarrow w$

Les éléments de R sont appelés règles ou productions

- Grammaire contextuelle
 - $R \subset (V \cup \Sigma)^* V (V \cup \Sigma)^* \times (V \cup \Sigma)^*$ de la forme uAv \rightarrow uwv
- Grammaire générale
 - $R \subset (V \cup \Sigma)^* V (V \cup \Sigma)^* \times (V \cup \Sigma)^*$ de la forme $z \to w$

Dérivation directe

```
Soient u et v \in (V \cup \Sigma)^*
On dit que v dérive directement de u, et on note u \Rightarrow_G v, ssi \exists x, y, w \in (V \cup \Sigma)^*, \exists A \in V tels que u = xAy et v = xwy et A \rightarrow w \in R
```

Exemple

En utilisant la grammaire G définie par les règles suivantes :

 $S \rightarrow aE$

 $E \rightarrow abE \mid baE \mid b$

on obtient aabE \Rightarrow_G aabbaE par application de la règle E \rightarrow baE

Dérivation

La relation \Rightarrow_G^* est la fermeture réflexive transitive de la relation \Rightarrow_G

Dérivation

```
Soient u et v \in (V \cup \Sigma)^*
On dit que v dérive de u, et on note u \Rightarrow_G^* v
ssi \exists w_0, ..., w_n \in (V \cup \Sigma)^* tels que
u = w_0 et v = w_n et w_i \Rightarrow_G w_{i+1} \ \forall \ i < n
```

La suite $w_0 \Rightarrow_G w_1 \Rightarrow_G ... \Rightarrow_G w_n$ est appelée une dérivation

(lorsqu'il n'y a pas d'ambiguïté, on peut omettre la référence à la grammaire G dans les symboles \Rightarrow_G et \Rightarrow_G^*)

La valeur de n ($n \ge 0$) est la longueur de la dérivation

Langage engendré

```
Soit G = (V, \Sigma, R, S) une grammaire algébrique
Le langage engendré par G, noté L(G), est :
L(G) = \{ w \in \Sigma^* \mid S \Rightarrow_G^* w \}
```

- Langage algébrique
 - Un langage est dit algébrique s'il peut être engendré par une grammaire algébrique

Exemple

```
G = (V, \Sigma, R, S) avec :

- V = { S, E }

- \Sigma = { a, b }

- R = { S \rightarrow EE, E \rightarrow EEE | bE | Eb | a }
```

La chaîne ababaa peut être dérivée de plusieurs façons :

$S \Rightarrow EE$	$S \Rightarrow EE$	$S \Rightarrow EE$	$S \Rightarrow EE$
\Rightarrow EEEE	⇒aE	⇒Ea	\Rightarrow aE
\Rightarrow aEEE	\Rightarrow aEEE	\Rightarrow EEEa	\Rightarrow aEEE
\Rightarrow abEEE	\Rightarrow abEEE	\Rightarrow EEbEa	\Rightarrow aEEa
\Rightarrow abaEE	\Rightarrow abaEE	\Rightarrow EEbaa	\Rightarrow abEEa
\Rightarrow ababEE	\Rightarrow ababEE	\Rightarrow EbEbaa	⇒ abEbEa
\Rightarrow ababaE	⇒ ababaE	\Rightarrow Ebabaa	⇒ ababEa
\Rightarrow ababaa	\Rightarrow ababaa	\Rightarrow ababaa	\Rightarrow ababaa
(a)	(b)	(c)	(d)

- Types de dérivations
 - (a) et (b) : chaque étape de la dérivation consiste à transformer le nonterminal le plus à gauche. On appelle ce genre de dérivation une dérivation la-plus-à-gauche (ang. left-most derivation)
 - (c): dérivation la-plus-à-droite (ang. right-most derivation) où le symbole transformé à chaque étape est le non-terminal le plus à droite
 - (d): dérivation ni plus-à-droite, ni plus-à-gauche
- Une suite de dérivations peut être visualisée par un arbre de dérivation ou arbre syntaxique (ang. parse tree)
 - Un tel arbre indique quelles sont les règles appliquées aux nonterminaux
 - Il n'indique pas l'ordre d'application des règles
 - Les feuilles de l'arbre représentent la chaîne dérivée

- Grammaire ambiguë
 - Lorsqu'une grammaire peut produire plusieurs arbres distincts associés à un même mot, ont dit que la grammaire est ambiguë
- Grammaires équivalentes
 - Deux grammaires qui engendrent le même langage sont dites équivalentes

- Il existe des langages algébriques qui ne sont pas rationnels
- Grammaire linéaire à droite
 - G = (V, Σ , R, S) telle que R \subseteq V \times Σ^* (V \cup { ε })

(rappel : dans une grammaire algébrique (non régulière), $R \subseteq V \times (V \cup \Sigma)^*$)

- Grammaire linéaire à gauche
 - G = (V, Σ , R, S) telle que R \subseteq V × (V \cup { ε }) Σ^*
- Grammaire régulière
 - Grammaire linéaire à droite ou linéaire à gauche

Hiérarchie de Chomsky

- Type 3
 - Grammaires régulières
 Langages réguliers
 - Automates à états finis
- Type 2
 - Grammaires algébriques
 Langages algébriques
 - Automates à pile
- Type 1
 - Grammaires contextuelles
 - Machines de Turing à mémoire linéairement bornée
- Type 0
 - Grammaires générales
 Langages récursivement énumérables
 - Machines de Turing
- Inclusion
 - T3 \subset T2 \subset T1 \subset T0

Exemple

```
G = (V, \Sigma, R, S) avec :

- V = { S }

- \Sigma = { a, b }

- R = { S \rightarrow aaS | bbS | \varepsilon }

grammaire régulière : L(G) = (aa \cup bb)*
```

Théorème

Un langage est rationnel si et seulement si il est engendré par une grammaire régulière.

- Ce théorème exprime que tout langage rationnel est algébrique (et non l'inverse).
- On peut utiliser la preuve de ce théorème pour :
 - passer d'un automate (déterministe ou non) à une grammaire,
 - passer d'une grammaire à un automate.

Exemple (G ⇒ M)
G = (V, Σ, R, S) une grammaire régulière avec :
V = { S, X, Y }
Σ = { a, b }
R = { S → aX | bY, X → aS | a, Y → bS | b }

- Soit M tel que L(M) = L(G). Pour chaque non-terminal de G on crée un état dans M de la façon suivante :
 - Si A → wB ∈ R alors on crée dans M une transition de l'état A vers l'état
 B étiquetée par w
 - Si A → w ∈ R alors on crée dans M une transition de l'état A vers l'état
 F, où F est le seul état introduit dans M qui ne correspond à aucun non-terminal de G

Exemple (M ⇒ G)
 Soit l'automate :

- Soit G une grammaire régulière telle que L(G) = L(M). Pour chaque transition de M on crée une règle dans G de la façon suivante :
 - Pour toute transition de l'état p vers l'état q étiquetée par w, on crée la règle correspondante dans G : P → wQ,
 - Pour tout état final f de M, on crée dans G une règle d'effacement : $F \rightarrow \varepsilon$.