Geometric morphometrics

Landmark analyses

Manuel F. G. Weinkauf

Univerzita Karlova, Prague, Czech Republic

26-27 August 2022

Section 1

Introduction

Describe the true overall shape

- We use the *x* and *y*-coordinates of well-defined elements of the structure as they are
- The coordinates of different structures are superimposed to make them comparable

Describe the true overall shape

- We use the *x* and *y*-coordinates of well-defined elements of the structure as they are
- The coordinates of different structures are superimposed to make them comparable
- Advantage: Great for structures with many morphologically homologue features

Describe the true overall shape

- We use the *x* and *y*-coordinates of well-defined elements of the structure as they are
- The coordinates of different structures are superimposed to make them comparable
- Advantage: Great for structures with many morphologically homologue features
- **Disadvantage:** Not all structures have good landmarks (and some issues with phylogenetic studies because landmarks are not independent of each other)

The types of landmarks

- Landmarks are points that are well defined in all specimens
- Three types of landmarks can be distinguished
 - Type I landmarks/anatomical landmarks: Well defined and biologically homologous points, for instance points where bones meet, nerve canal openings, tubercles
 - 2 Mathematical landmarks: Defined on the basis of geometric properties
 - 1 Type II landmarks: Points that are defined by a local property, such as maximum curvature of the shell
 - 2 Type III landmarks: Landmarks at extremal points of a structure (e.g. the tip of the finger bone) or at constructed points (e.g. the centroid of the eye cavity)

Type I

•Type I •Type II

Hospitality in ancient Greece

We now have x- and y-coordinates of corresponding (morphological homologous) points ⇒ in contrast to outline semi-landmarks we could analyse them as they are

Hospitality in ancient Greece

- We now have x- and y-coordinates of corresponding (morphological homologous) points ⇒ in contrast to outline semi-landmarks we could analyse them as they are
- But first, we need to talk about an old Greek fella named Procrustes

- We extract landmarks from different individuals
 - They may be from different sexes
 - They may be from different ontogenetic stages

- We extract landmarks from different individuals
 - They may be from different sexes
 - They may be from different ontogenetic stages

- We extract landmarks from different individuals
 - They may be from different sexes
 - They may be from different ontogenetic stages
- ⇒ Specimen size and image cropping are factors that influences landmark position

- We extract landmarks from different individuals
 - They may be from different sexes
 - They may be from different ontogenetic stages
- ⇒ Specimen size and image cropping are factors that influences landmark position
- We only want pure shape information, without noise

■ Centres all shapes in the dataset at the origin {0, 0, [0]}

- Centres all shapes in the dataset at the origin {0, 0, [0]}
- Scales all shapes to unit size

- Centres all shapes in the dataset at the origin {0, 0, [0]}
- Scales all shapes to unit size
- Rotates all shapes to similar orientation

- Centres all shapes in the dataset at the origin {0, 0, [0]}
- Scales all shapes to unit size
- Rotates all shapes to similar orientation
- ⇒ Removes arbitrary shape and size information, only pure shape information remains

- Specimen 1
- Specimen 2

- Specimen 1
- Specimen 2

- Specimen 1
- Specimen 2

$$D_i = \sqrt{\Delta x_i^2 + \Delta y_i^2}$$

Procrustes distance D_P :

$$D_P = \sum_{i=1}^n D_i$$

 Scales, translates, and rotates all shapes until the total of all Procrustes distances is minimized

- Scales, translates, and rotates all shapes until the total of all Procrustes distances is minimized
- All remaining Procrustes distances between landmark configuration are true shape differences between specimens
- Procrustes distances are the major measurement of differences between shapes in landmark analyses in further analyses

An example: Salamander heads

An example: Salamander heads

But beware!

- Procrustes superimposition removes degrees of freedom from the data
 - 1 4 df for 2 D-data
 - 2 −7 df for 3 D-data
- ⇒ Standard methods must be adapted for this

But beware!

- Procrustes superimposition removes degrees of freedom from the data
 - 1 −4 df for 2 D-data
 - 2 −7 df for 3 D-data
- ⇒ Standard methods must be adapted for this
- The superimposition is applied to the entire shape as a whole
- ⇒ Procrustes-superimposed landmarks are collinear
 - 1 Only allows to investigate variation in entire shape, not compare individual parts of the shape
 - 2 Strong variation in one part of the shape is re-distributed across entire shape

The Pinocchio Effect

- Shape variation can be strongly localized in small part of the organism
- For instance sauropod dinosaur's neck length

The Pinocchio Effect

- Shape variation can be strongly localized in small part of the organism
- For instance sauropod dinosaur's neck length

The Pinocchio Effect

- Shape variation can be strongly localized in small part of the organism
- For instance sauropod dinosaur's neck length
- Solution: Generalized resistant fit

Rohlf and Slice (1990) Syst. Zool. 39 (1): 40-59

R

Example of landmark data preparation

For a look at landmark data preparation in R, we move on to exercise № 4

Open the exercise sheet for instructions and code examples

- Landmark data analysis

Section 2

Landmark data analysis

We now have a multivariate dataset

- After superimposition, we can do the usual things with the landmark data
 - 1 PCA to visualize differences
 - Cluster analyses to define groups
 - 3 LDA/CVA to distinguish a priori defined groups
 - 4 MANOVA to test for between-group differences

We can also visualize shape changes

- Suppose we have two shapes (e.g. two species)
- We can imagine the landmarks of one shape to be drawn on a thin, flat, stiff, yet flexible plate
- We can then bend and deform that shape until the landmarks fit those of the other shape

Hammer and Harper (2006) Paleontological Data Analysis (Blackwell: Malden, Oxford, Carlton)

The principal of the thin-plate spline

The principal of the thin-plate spline

Example: Our salamanders

- P. jordani
- P. teyahalee

The principal of the thin-plate spline

Example: Our salamanders

- P. jordani
 - P. teyahalee

- P. jordani
- P. teyahalee

Example: Our salamanders

From P. jordani to P. teyahalee . . .

- P. jordani
- P. teyahalee

Example: Our salamanders

- From *P. jordani* to *P. teyahalee* . . .
 - 1 . . . the posterior skull lifted up

P. jordaniP. teyahalee

Example: Our salamanders

- From *P. jordani* to *P. teyahalee* . . .
 - 1 . . . the posterior skull lifted up
 - 2 . . . the mid-skull became thicker

P. jordaniP. teyahalee

Example: Our salamanders

- From *P. jordani* to *P. tevahalee* . . .
 - 1 . . . the posterior skull lifted up
 - 2 . . . the mid-skull became thicker
 - 3 . . . the snout became shorter in expense of the posterior skull

P. jordaniP. teyahalee

Going further with thin-plate splines

- Thin-plate splines are the basis for a lot of techniques in geometric morphometrics
 - Principal and partial warps to decompose morphological change
 - 2 Relative warps to find groupings by comparing all specimens with the mean shape
 - 3 Disparity analyses to quantify morphological variation

Partial warps

- Separates morphological deformation into
 - 1 Affine component of uniform shape deformation
 - 2 Non-affine components of localized deformation on different scales

Relative warps

- PCA of the bending energy matrix for transformation between each shape and the mean shape
- Allows to separate groups amongst dataset

MacLeod (2010) Palaeontology Newsletter 75: PaleoMath101-21

Disparity analysis

- Measure of morphological variation within a taxonomic or morphological group
- Usually based on Riemannian shape variation within groups

Weinkauf et al. (2019) PLoS ONE 14 (10): e0223490

Additional thin-plate spline uses

R

Example of landmark data analysis

For a look at landmark data analysis in R, we move on to exercise № 5

Open the exercise sheet for instructions and code examples