

University of Exeter

College of Engineering, Mathematics and Physical Sciences ECM3735 - Group 8

Finding the optimal strategy for the dice game 'Pig'

Authors

- S. Bayliss
- A. Dunford
- E. Morison
- J. Peet
- L. Sutton

C. Crawford R. Jones C. Nash A. Smith

Supervisor
Dr. B. Cooper

Abstract

Insert abstract here

Contents

1	Intr	roduction 2
	1.1	Aims and Objectives
	1.2	History of Pig
		1.2.1 Basics of Pig
		1.2.2 Nellers Work
	1.3	Optimal Stratergy
	1.4	Preliminary Findings
		2
2	Met	$ ext{thodology}$
	2.1	Group Organisation
		2.1.1 Meetings
		2.1.2 Creation of Prject Plan
	2.2	Piglet
	2.2	2.2.1 Hand Written notes
		2.2.2 Coding Pig
		2.2.3 Piglet Findings
	2.3	
	2.3	
		2.3.1 Expansion from Piglet
	0.4	2.3.2 Debugging of the code
	2.4	Behavioural Economics
	2.5	Statistical Testing
		2.5.1 Fair test
		2.5.2 Theory of Hypothosis testing
		2.5.3 Running of tests
3	E:	m dings
J	3.1	Pig
	3.1	
	2.0	3.1.1 Did we solve Pig
	3.2	Behavioural Economics
		3.2.1 Do players stick to their risk preference
		3.2.2 Players Interactions
	3.3	Statistical Testing
		3.3.1 Non-transitivity
		3.3.2 Testing against our optimal
		3.3.3 Testing against Nellers optimal
	C	
4		nclusions 3
	4.1	Overall findings
		Determination of human affects on the optimal stratergy
	/1 .7	L'ompanique to Nollong grantoners

1 Introduction

Suppose I have 2 stratergies A and B. Consider that it is A's turn and we are in postion (i, j, k) where i is A's banked points, j is B's banked points, and k is A's points so far on this turn. Let P_{ijk} denote probability of A winning from that position and Q_{ijk} denote probability of B winning from the equivalent position (where i then represents B's banked points ect). Then,

$$p_{ijk} = \frac{1}{6}(1 - Q_{ij0}) + \frac{1}{6}\sum_{r=2}^{6} P_{ijk+r}$$
(1)

if A rolls and

$$p_{ijk} = 1 - Q_{jik} \tag{2}$$

if A holds.

1.1 Aims and Objectives

josh

1.2 History of Pig

Liam

- 1.2.1 Basics of Pig
- 1.2.2 Nellers Work

1.3 Optimal Stratergy

chris C

1.4 Preliminary Findings

chris N

2 Methodology

2.1 Group Organisation

Mia

- 2.1.1 Meetings
- 2.1.2 Creation of Prject Plan
- 2.2 Piglet

Chris C

- 2.2.1 Hand Written notes
- 2.2.2 Coding Pig
- 2.2.3 Piglet Findings
- 2.3 Pig

anthony and rhodri

2.3.1 Expansion from Piglet

I DID SOMETHING IOMPORTANT HERE

2.3.2 Debugging of the code

2.4 Behavioural Economics

Mia and Josh

2.5 Statistical Testing

eliot and sam

- 2.5.1 Fair test
- 2.5.2 Theory of Hypothosis testing
- 2.5.3 Running of tests

3 Findings

- 3.1 Pig
- 3.1.1 Did we solve Pig

YES

- 3.2 Behavioural Economics
- 3.2.1 Do players stick to their risk preference
- 3.2.2 Players Interactions
- 3.3 Statistical Testing
- 3.3.1 Non-transitivity
- 3.3.2 Testing against our optimal
- 3.3.3 Testing against Nellers optimal

4 Conclusions

- 4.1 Overall findings
- 4.2 Determination of human affects on the optimal stratergy
- 4.3 Comparison to Nellers stratergy

References