Impact of data-splits on generalization: Identifying COVID-19 from cough and context

Makunda Sharma*, Nikhil Shenoy*, Jigar Doshi*, Piyush Bagad *, Aman Dalmia, Saurabh Rane, Amrita Mahale, Neeraj Agarwal, Rahul Panicker

Introduction

- We consider the application of classifying COVID from non-COVID patients using cough data acquireable from a phone
- There have been several independent works in this direction, however, **none of them report** performance across clinically relevant data-splits.
- We compute the performance where the development and test sets are split in time (retrospective validation) and across sites/hospitals (broad validation) as defined here.
 Although there is meaningful generalization across these splits the performance significantly varies (up to 10% AUC score)
- We are releasing the code and checkpoints with this paper https://github.com/WadhwaniAI/cough-against-covid

Our Proposed Solution

- We use Resnet++ as the classifier that ingests spectrogram representations of audio as input and predicts probability of the presence of COVID-19
- For our context-based classification task, we leverage TabNet as our classifier.
- For our final prediction we use a simple ensembling scheme that averages the predictions from the two classifiers.

Dataset

- We collect this dataset from individuals the day they undergone a COVID-19 swab test, from **27 testing sites** across the country.
- In addition, **contextual data** such as symptoms, travel history, contact with confirmed case and demographic information etc is collected
- Unlike crowd-sourced datasets that rely on self-reported COVID-19 status, our **ground-truth is lab test** (RT-PCR) results from the healthcare facilities
- This dataset consists of **12,780 cough sounds** from **4,260** individuals. 1,394 have a positive test result and 2866 remaining are tested negatives.

Data Splitting Strategies

Data Visualization

Wadhwani Institute for Artificial Intelligence

- Given the clinical uncertainty of this task and the use of deep learning for it, it is essential for clinicians to qualitatively understand the model behaviour and its predictions.
- As a sanity check, we employ GradCAM++ to compute these saliency map. We consistently observe that the focus-areas are on and around the cough bouts.
- For the context-based classifier, we use Local Interpretable Model-agnostic Explanations (LIME) to understand which specific features help the model differentiate between COVID+ and COVID- patients at an instance level.

Results

Model	Task 1	Task 2	Task 3	Task 1 - Symptomatic	Task 1 - Asymptomatic
Cough-based	0.787	0.690	0.761	0.820	0.713
Context-based	0.718	0.650	0.669	0.610	0.730
Ensembling	0.797	0.718	0.774	0.816	0.740

- Data Splitting Tasks:
 - Task 1: Random data split (Typical in ML)
 - Task 2: Time-based data split (Simulating deployment)
 - Task 3: Site-wise data split (Using in new environment)
- Symptomatic: individual has at least one of fever, cough or dyspnea.
- We observe that it is easiest to generalize on the random split followed by time-based and site-based.
- We hypothesize that this difference arises from the shift in label distribution across the splits.
- This highlights the importance of selecting splits carefully since high-performant models on a randomized split may not generalize well in a deployment setting.

