The claims defining the invention are as follows:

1. An isoflavone compound or analogue thereof of the general formula I:

$$\begin{array}{c|c}
R_1 & A \\
Z & B
\end{array}$$
(I)

5 in which

R₁ and R₂ are independently hydrogen, hydroxy, OR₉, OC(O)R₁₀, OS(O)R₁₀, CHO, C(O)R₁₀, COOH, CO₂R₁₀, CONR₃R₄, alkyl, haloalkyl, aryl, arylalkyl, thio, alkylthio, amino, alkylamino, dialkylamino, nitro or halo,

Z is hydrogen, and

10 W is R₁, A is hydrogen, hydroxy, NR₃R₄/or thio, and B is selected from

$$R_5$$
 R_5 R_5 R_5 R_5 R_5 R_5

W is R₁, and A and B taken together with the carbon atoms to which they are attached form a six-membered ring selected from

$$X \rightarrow R_6$$
 $X \rightarrow R_6$ $Y \rightarrow R_6$ $Y \rightarrow R_6$ $Y \rightarrow R_6$

15 W, A and B taken together with the groups to which they are associated comprise

$$R_{1}$$
 R_{1}
 R_{2}
 R_{3}
 R_{6}
 R_{1}
 R_{6}
 R_{1}
 R_{6}
 R_{1}
 R_{6}
 R_{1}
 R_{6}
 R_{1}
 R_{2}
 R_{2}
 R_{2}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{6}
 R_{7}
 R_{8}
 R_{8}
 R_{8}
 R_{8}
 R_{8}
 R_{8}
 R_{8}
 R_{9}
 R_{1}
 R_{2}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{6}
 R_{7}
 R_{8}
 R_{8}
 R_{8}
 R_{8}
 R_{8}
 R_{8}
 R_{9}
 R_{1}
 R_{2}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{5}
 R_{6}
 R_{7}
 R_{8}
 R_{8}
 R_{8}
 R_{8}
 R_{9}
 R_{9

and A taken together with the groups to which they are associated comprise

$$R_{1}$$
 R_{1}
 R_{2}
 R_{2}
 R_{3}
 R_{4}
 R_{1}
 R_{1}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{5}
 R_{5}
 R_{5}
 R_{5}
 R_{5}

wherein

5

(1)

R₃ is hydrogen, alkyl, aryl, arylalkyl, an amino acid, C(O)R₁₁ where R₁₁ is hydrogen alkyl, aryl, arylalkyl or an amino acid, or CO2R12 where R12 is hydrogen, alkyl, haloalkyl, aryl or arylalkyl,

10 R₄ is hydrogen, alkyl or aryl,

> or R₃ and R₄ taken together with the nitrogen to which they are attached comprise pyrrolidinyl or piperidinyl

R₅ is hydrogen, C(O)R₁₁ where R₁₁ is as previously defined, or CO₂R₁₂ where R₁₂ is as previously defined,

R₆ is hydrogen, hydroxy, alkyl, aryl, amino, thio, NR₃R₄, COR₁₁ where R₁₁ is as 15 previously defined, CO₂R₁₂ where R₁₂ is as previously defined or CONR₃R₄,

 R_7 is hydrogen, $C(O)R_{11}$ where R_{11} is as previously defined, alkyl, haloalkyl, aryl, arylalkyl or Si(R₁₃)₃ where each R₁₃ is independently hydrogen, alkyl or aryl,

R₈ is hydrogen, hydroxy, alkoxy or alkyl,

 R_9 is alkyl, haloalkyl, aryl, arylalkyl, $C(O)R_{11}$ where R_{11} is as previously defined, or $Si(R_{13})_3$ where R_{13} is as previously defined,

R₁₀ is hydrogen, alkyl, haloalkyl, amino, aryl, arylalkyl, an amino acid, alkylamino or dialkylamino,

the drawing "---" represents either a single bond or a double bond,

X is O, NR4 or S, and

Y is

5

10 wherein

R₁₄, R₁₅ and R₁₆ are independently hydrogen, hydroxy, OR₉, OC(O)R₁₀, OS(O)R₁₀, CHO, C(O)R₁₀, COOH, CO₂R₁₀, CONR₃R₄, alkyl, haloalkyl, aryl, arylalkyl, thio, alkylthio, amino, alkylamino, dialkylamino, nitro or halo,

with the proviso that

15 when

 R_1 is hydroxy, or $O(0)R_A$ where R_A is alkyl or an amino acid, and

R₂ is hydrogen, hydroxy, OR_B where R_B is an amino acid or C(O)R_A where R_A is as previously defined, and

W is hydrogen, then

20 Y is not 4-hydroxyphenyl or 4-alkylphenyl;

when

 R_1 is hydroxy, or $OC(\Phi)R_A$ where R_A is alkyl or an amino acid, and

 R_2 is hydrogen, hydroxy, OR_B where R_B is an amino acid or $C(O)R_A$ where R_A is as

25 previously defined, and

Y is 4-hydroxyphenyl or 4-alkylphenyl, then

W is not hydrogen;

- 31 -

when

 R_1 is hydroxy, or OC(O) R_A where R_A is alkyl or an amino acid, and

Y is 4-hydroxyphenyl or 4-alkylphenyl, and

W is hydrogen, then

is not hydrogen, hydroxy, OR_B where R_B is an amino acid or C(O)R_A where R_A is as previously defined; and

when

10

 R_2 is hydrogen, hydroxy, OR_B where R_B is an amino acid or $C(O)R_A$ where R_A is as previously defined, and

Y is 4-hydroxyphenyl or 4-alky/phenyl, and

W is hydrogen, then

 R_1 is not hydroxy, or $OC(O)R_A$ where R_A is alkyl or an amino acid.

2. An isoflavone compound or analogue thereof of the general formula II:

$$R_1$$
 R_2
 R_1
 R_2
 R_3
 R_4
 R_2
 R_3

in which

R₁ and R₂ are independently hydrogen, hydroxy, OR₉, OC(O)R₁₀, OS(O)R₁₀, CHO,
C(O)R₁₀, COOH, CO₂R₁₀, CONR₃R₄, alkyl, haloalkyl, aryl, arylalkyl, thio, alkylthio, amino, alkylamino, dialkylamino, nitro or halo,

Z_A is OR₉, OC(O)R₁₀, OS(O)R₁₀, CHO, C(O)R₁₀, COOH, CO₂R₁₀, CONR₃R₄, alkyl, haloalkyl, aryl, arylalkyl, thio, alkylthio, amino, alkylamino, dialkylamino, nitro or halo, and

25 W is R₁, A is hydrogen, hydroxy, NR₃R₄ or thio, and B is selected from

WO 01/17986

PCT/AU00/01056

W is R₁, and A and B taken together with the carbon atoms to which they are attached form a six-membered ring selected from

$$\begin{array}{c|c} X & R_6 \\ Y & X & R_6 \\ \hline & X & R_6$$

5 W, A and B taken together with the groups to which they are associated comprise

$$R_1$$
 R_2
 R_3
 R_4
 R_6
 R_1
 R_6
 R_7
 R_8
 R_9
 R_9

W and A taken together with the groups to which they are associated comprise

and
$$A$$
 taken together with the groups to which they are associated comprise R_8
 R_1
 R_1
 R_2
 R_3
 R_4
 R_4

$$R_5$$
 R_5
 R_5
 R_5

wherein

5

10

R₃ is hydrogen, alkyl, aryl, arylalkyl, an/amino acid, C(O)R₁₁ where R₁₁ is hydrogen alkyl, aryl, arylalkyl or an amino acid, or CO₂R₁₂ where R₁₂ is hydrogen, alkyl, haloalkyl, aryl or arylalkyl,

R₄ is hydrogen, alkyl or aryl,

or R₃ and R₄ taken together with the nitrogen which they are attached are pyrrolidinyl or piperidinyl,

R₅ is hydrogen, C(O)R₁₁ where R₁₁ is as previously defined, or CO₂R₁₂ where R₁₂ is as previously defined,

R₆ is hydrogen, hydroxy, alkyl, aryl, amino, thio, NR₃R₄, COR₁₁ where R₁₁ is as previously defined, CO₂R₁₂ where R₁₂ is as previously defined or CONR₃R₄,

R₇ is hydrogen, C(O)R₁, where R₁ is as previously defined, alkyl, haloalkyl, aryl, arylalkyl or Si(R₁₃), where each R₁₃ is independently hydrogen, alkyl or aryl,

15 R₈ is hydrogen, hydroxy, alkoxy or alkyl,

R₉ is alkyl, haloalkyl, aryl, arylalkyl, C(O)R₁₁ where R₁₁ is as previously defined, or Si(R₁₃)₃ where R₁₃ is as previously defined,

R₁₀ is hydrogen, alkyl, haloalkyl, amino, aryl, arylalkyl, an amino acid, alkylamino or dialkylamino,

20 the drawing "---" represents either a single bond or a double bond,

X is O, NR₄ or S, and

Y is

wherein

- 34 -

R₁₄, R₁₅ and R₁₆ are independently hydrogen, hydroxy, OR₉, OC(O)R₁₀, OS(O)R₁₀, CHO, C(O)R₁₀, COOH, CO₂R₁₀, CONR₃R₄, alkyl, haloalkyl, aryl, arylalkyl, thio, alkylthio, amino, alkylamino, dialkylamino, nitro or halo.

3. A compound of formulae I as defined in claim 1 or of formula II as defined in claim 2 selected from the group consisting of:

6

5

10

20

- 36 -

A method for the treatment, prophylaxis, amelioration, defence against, and/or prevention of menopausal syndrome including hot flushes, anxiety, depression, mood swings, night sweats, headaches, and urinary incontinence; osteoporosis; premenstrual syndrome, including fluid retention, cyclical mastalgia, and dysmenorrhoea; Reynaud's Syndrome; Reynaud's Phenomenon, Buergers Disease; coronary artery spasm; migraine headaches; hypertension; benign prostatic hypertrophy; all forms of cancer including breast cancer; uterine cancer; ovarian cancer; testicular cancer; large bowel cancer; endometrial cancer; prostatic cancer; uterine cancer; artherosclerosis; Alzheimers disease; inflammatory diseases including inflammatory bowel disease, ulcerative colitis, Crohns disease; rheumatic diseases including rheumatoid arthritis; acne; baldness including male pattern baldness (alopecia hereditaria); psoriasis; diseases associated with oxidant stress including cancer; myocardial infarction; stroke; arthritis; sunlight induced skin damage or cataracts (the "therapeutic indications") which comprises administering to a subject a therapeutically effective amount of one or more compounds selected from formulae I and 15 II.

Use of one or more compounds selected from formulae I and II for the manufacture of a medicament for the treatment, amelioration, defence against, prophylaxis and/or prevention of one or more therapeutic indications according to claim 4.

Use of one or more compounds selected from formulae I and II in the treatment, amelioration, defence against, prophylaxis and/or prevention of one or more therapeutic indications according to claim 4.

An agent for the treatment, prophylaxis, amelioration, defence against and/or 25 treatment of the therapeutic indications according to claim 4 which comprises one or more compounds selected from formulae I and II either alone or in association with one or more carriers or excipients.

- 37 **-**

- 8. A therapeutic composition which comprises one or more compounds selected from formulae I and II in association with one or more pharmaceutical carriers and/or excipients.
- 9. A drink or food-stuff, which contains one or more compounds selected from formulae I and II.
 - 10. A microbial culture or a food-stuff containing one or more microbial strains which microorganisms produce one or more compounds selected from formulae I and II.
 - 11. One or more microorganisms which produce one or more compounds selected from formulae I and II.

15

10

[/] 20

í