Úkol #3 Úloha 1 Str.: 1 / 2

Úloha 1: Uvažujme systém čísel s pohyblivou čárkou o základu $\beta=10$, s rozsahem exponentů ± 20 a se strojovým epsilon $\varepsilon_{mach}=10^{-5}$. Dále předpokládejme, že tento systém nepodléha normě IEEE a nepoužívá subnormální čísla. Z definice strojového epsilon $\varepsilon_{mach}=\beta^{1-t}$ plyne t=6, kde t je počet čísel mantisy. V tomto systému provedeme následující výpočty:

a)
$$1 + 10^{-7}$$

 $f(1 + 10^{-7}) = 1,00000 \cdot 10^{0} + 1,00000 \cdot 10^{-7} \approx 1,00000 \cdot 10^{0} + 0,00000 \cdot 10^{0} = 1,00000 \cdot 10^{0}$

b)
$$1 + 10^3$$

 $f(1 + 10^3) = 1,00000 \cdot 10^0 + 1,00000 \cdot 10^3 = 0,00100 \cdot 10^3 + 1,00000 \cdot 10^3 = 1,00100 \cdot 10^3$

c)
$$1 + 10^7$$

 $f(1 + 10^7) = 1,00000 \cdot 10^0 + 1,00000 \cdot 10^7 \approx 0,00000 \cdot 10^7 + 1,00000 \cdot 10^7 = 1,00000 \cdot 10^7$

d)
$$10^{10} + 10^3$$

 $fl(10^{10} + 10^3) = 1,00000 \cdot 10^{10} + 1,00000 \cdot 10^3 \approx 1,00000 \cdot 10^{10} + 0,00000 \cdot 10^{10} = 1,00000 \cdot 10^{10}$

e)
$$10^{10}/10^{-15}$$

 $f(10^{10}/10^{-15}) = (1,00000 \cdot 10^{10})/(1,00000 \cdot 10^{-15}) = 1,00000 \cdot 10^{25} = 100000 \cdot 10^{20}$

f)
$$10^{-10} \cdot 10^{-15}$$

 $fl(10^{-10} \cdot 10^{-15}) = 1,00000 \cdot 10^{-10} \cdot 1,00000 \cdot 10^{-15} = 1,00000 \cdot 10^{-25} = 0,00001 \cdot 10^{-20}$

Nyní určíme, který z následujících výpočtů v systému čísel s pohyblivou řádovou čárkou povede k překročení číselného rozsahu směrem k nule, jestliže uvažujeme systém bez subnormálních čísel s UFL= 10^{-38} .

a)
$$a = \sqrt{b^2 + c^2}$$
, kde $b = 1, c = 10^{-25}$.

Dosazením hodnot za b a c máme

$$a = \sqrt{1^2 + (10^{-25})^2} = \sqrt{1 + 10^{-50}}$$

Vidíme, že zde dochází k překročení číselného rozsahu směrem k nule u čísla c^2 . Nahradíme-li jej při výpočtu nulou, nedopustíme se "moc velké chyby", neboť číslo 10^{-50} je o něco blíž k nule než číslo 10^{-38} . Položíme-li tedy c^2 rovnu nule, tak ve výsledku k podtečení nedojde.

b)
$$a = \sqrt{b^2 + c^2}$$
, kde $b = c = 10^{-25}$.

Dosazením hodnot za b a c máme

$$a = \sqrt{(10^{-25})^2 + (10^{-25})^2} = \sqrt{2 \cdot 10^{-50}}$$

Opět zde dochází k překročení číselného rozsahu směrem k nule a to u čísla 10^{-50} . Nahradímeli nyní hodnotu 10^{-50} nulou dostname výsledek výpočtu a=0. Což je naprostý nesmysl, neboť platí $a=\sqrt{2\cdot 10^{-50}}=\sqrt{2}\cdot 10^{-25}$. Takže není zde rozumné hodnotu 10^{-50} nahrazovat nulou a výsledkem výpočtu bude překročení číselného rozsahu směrem k nule.

Úkol #3 Úloha 1 Str.: 2/2

c)
$$u = (v \cdot w)/(y \cdot z)$$
, kde $v = 10^{-15}$, $w = 10^{-30}$, $y = 10^{-20}$, $z = 10^{-25}$.

Dosazením hodnot za b a c máme

$$a = (10^{-15} \cdot 10^{-30})/(10^{-20} \cdot 10^{-25}) = 10^{-45}/10^{-45}.$$

I zde tomu není jinak, než v předchozích případech. Dochází zde k překročení číselného rozsahu směrem k nule. Nahrazovat zde hodnoty 10^{-45} nulou nemá cenu, neboť bychom dostali neurčitý výraz 0/0. Přesto vidíme, že výsledek výpočtu je roven číslu 1. Předpokládáme-li, že se výrazy vyhodnocují zleva do prava a násobení má nejvyšší prioritu operací, pak by měl být výsledek výpočtu přinejmenším varovné hlášení, že došlo k podtečení nebo, že výsledek je nedefinovaný (neurčitý) výraz. Ovšem toto závisí na daném tvůrci softwaru, jak tyto "nekalosti" ošetří.