U.S.N.					

08

BMS College of Engineering, Bengaluru-560019

(Autonomous Institute, Affiliated to VTU, Belgaum)

December 2015 Semester End Main Examinations

Course:Data Structures with C

Course Code:15IS3DCDSC

Max Marks: 100

Date:15.12.2015

Instruction: Answer any five full questions choosing one from each unit.

UNIT-I

- 1. a) Provide an example for structure within a structure." Only one field of the union is active at any given time", explain with an example.
 - b) How does the fast transpose of a sparse matrix work? Provide proper analysis of **06** fast transpose.
 - c) Develop 'C' function for sparse matrix multiplication.

UNIT-II

- 2. a) Implement push and pop operations of a stack using dynamically allocated array representation. Also include a check for the underflow and overflow conditions.
 - b) Demonstrate the evaluation of the postfix expression $12 32 ^ 3 * 6 / + along$ **05** with the stack trace.
 - Develop a recursive 'C'routine to find the sum of digits of a given number. Show
 the recursion tree for sample input.

UNIT-III

- 3. a) Develop a C program to perform the following operations on a queue 10 implemented using linked list
 - i) Insert
 - ii) Delete
 - iii) Display
 - b) Distinguish between linked lists and arrays. Mention their relative advantages **05** and disadvantages.
 - c) Implement a C routine to reverse the given singly linked list so that the last **05** element becomes the first and vice versa.

4.	a)	Explain with a C program, the implementation of a circular queue using arrays.					
	b)	Implement the following operations on a singly linked list					
		i) free all the nodes.					
		ii) Insert a value to the left of K th position.					
		iii) Identify the node with the maximum value.					
		UNIT-IV					
5. a)	a)	Illustrate linked representation for a doubly linked circular list. Write 'C'	10				
	functions for						
		i) Insertion at K th position.					
		ii) Deletion from front end.					
	b)	Define a binary tree. Explain linked representation of the same.	04				
	c)	Build a 'C' function for inorder traversal of a binary tree, and provide the trace.	06				
		UNIT-V					
6. a)	a)	Construct the expression tree for the following expression and perform in-order	08				
		and post-order for the same.					
		(A+(B-C))*((D-E) / (F+G-H))					
	b)	Develop a program to implement insert operation on Binary search trees.	08				
	c)	Differentiate between tree and a graph, explain with an example.	04				
		OR					
7. a) b)	a)	Implement a C routine to construct a threaded binary tree.	08				
	In order to get the information stored in a Binary Search Tree in the descending	06					
		order, in what order should we traverse? Design and implement C routine for the same.					
	c)	Explain the various representation of disjoint sets.	06				
	- /	1					
