Question 1

Correct

Mark 1.00 out of 1.00

Feladat

Adott egy vektor: $x=(x_1,\ldots,x_n)$. Ki szeretnénk számolni az

$$S = \sum\limits_{i=1}^n rac{1}{x_i}$$

összeget.

Egészítse ki a lenti ablakban az

S =

kezdetű sort úgy, hogy ezt az összeget kapjuk. Ne használjon for-ciklust!

Ne feledkezzen meg a sorvégi pontosvesszőről!

Kiegészítő információk:

Az x minden eleme nullától különböző.

Ennél a feladatnál tilos a for, while ciklusok használata.

For example:

Test	Result
x=[-1,5,1,3]; disp(fun(x))	0.533333
x=[4,5,-1,2,3,1,6]; disp(fun(x))	1.45

Answer: (penalty regime: 0 %)

Reset answer

	Test	Expected	Got	
~	x=[-1,5,1,3]; disp(fun(x))	0.533333	0.533333	~

Question 2

Correct

Mark 1.00 out of 1.00

Feladat

Az

$$x=rac{x^3+4x-2}{8}$$

egyenlet egy megoldását szeretnénk tudni.

Be lehet látni, hogy tetszőleges $x_0 \in [-1,1]$ kezdőértékből elindulva az

$$x_k = rac{x_{k-1}^3 + 4x_{k-1} - 2}{8}$$

sorozat ($k=1,2,\ldots$) az egyenlet egy megoldásához tart.

A lenti ablakban egészítse ki a kódot úgy, hogy $y=x_6$ értékét adja vissza, ha a kezdőérték az x0 nevű változóban adott.

Kiegészítő információk:

A kódnak csak a kért értéket kell visszaadnia, a köztes értékekre nem vagyunk kíváncsiak.

For example:

Test	Result
disp(fun(0))	-0.519162
disp(fun(0.5))	-0.505184

Answer: (penalty regime: 0 %)

Reset answer

	Test	Expected	Got	
~	disp(fun(0.5))	-0.505184	-0.505184	~
~	disp(fun(-0.5))	-0.53725	-0.53725	~
~	disp(fun(0.8))	-0.495825	-0.495825	~

Passed all tests! ✓

► Show/hide question author's solution (Octave)