WRITTEN ASSIGNMENT 1 McGill University NICHOLAS HAYEK

Based on lectures by Prof. Eyal Goren

CONTENTS

Question 1	1
Question 2	2
Question 3	3
Question 4	4
Question 5	5
Question 6	6

1 NICHOLAS HAYEK

Submitting Questions 1, 2, 3, 4, 5, 6

QUESTION 1

Assume the principle of induction holds. Consider a non-empty subset of \mathbb{N} with 1 element. Trivially, that element is the least element of \mathbb{N} .

 $n \rightarrow n + 1$ step:

Consider a nonempty subset $A \in \mathbb{N}$ with n+1 elements. We may split this set into two disjoint sets, $A_1 \cup A_{i \geq 2}$. The singleton A_1 contains one element a_1 , and $A_{i \geq 2}$, which contains n elements, has a least element a_2 by our assumption. The least element of A, then, is $\min\{a_1, a_2\}$

QUESTION 2

Let $C_1 = 1$, $C_2 = 2$, $C_3 = 3$. Conjecture that $C_4 = 2 + 3 = 5$ and $C_5 = 3 + 5 = 8$ (it can be shown by counting). We have the recurrence relation $C_n = C_{n-1} + C_{n-2}$. Before proving the discrete equation for C_n , note the following polynomial:

$$\phi^2 - \phi - 1 = 0 \implies \phi = \frac{1 \pm \sqrt{5}}{2}$$

Base cases: n = 1, 2:

$$C_{1} = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{2} - \left(\frac{1-\sqrt{5}}{2} \right)^{2} \right]$$

$$= \frac{1}{\sqrt{5}} \left[\left(1 + \frac{1+\sqrt{5}}{2} \right)^{2} - \left(1 + \frac{1-\sqrt{5}}{2} \right)^{2} \right]$$

$$= \frac{1}{\sqrt{5}} \left[\left(1 + \frac{1+\sqrt{5}}{2} \right) - \left(1 + \frac{1-\sqrt{5}}{2} \right) \right]$$

$$= \frac{1}{\sqrt{5}} \left(\frac{2\sqrt{5}}{2} \right) = 1$$

$$= \frac{1}{\sqrt{5}} \left[\sqrt{5} + \left(\frac{1+\sqrt{5}}{2} \right)^{2} - \left(\frac{1-\sqrt{5}}{2} \right)^{2} \right]$$

$$= \frac{1}{\sqrt{5}} \left[\sqrt{5} + \sqrt{5} \right] = 2$$

Note that step (2) for C_1 uses the polynomial identity, and step (3) for C_2 uses the result from C_1 .

Take C_n and C_{n+1} to be true. We'll show $C_{n, n+1} \rightarrow C_{n+2}$

$$C_{n+2} = C_{n+1} + C_n$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{n+2} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n+2} \right] + \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{n+1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n+1} \right]$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{n+2} + \left(\frac{1 + \sqrt{5}}{2} \right)^{n+1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n+2} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n+1} \right]$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{n} \left[\frac{1 + \sqrt{5}}{2} + \left(\frac{1 + \sqrt{5}}{2} \right)^{2} \right] - \left(\frac{1 - \sqrt{5}}{2} \right)^{n} \left[\frac{1 - \sqrt{5}}{2} + \left(\frac{1 - \sqrt{5}}{2} \right)^{2} \right] \right]$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{n} \left(\frac{1 + \sqrt{5}}{2} \right)^{n} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} \right] \quad \text{from our polynomial}$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{n+3} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n+3} \right] = C_{n+2}$$

3 NICHOLAS HAYEK

QUESTION 3

 (\Longrightarrow) Let $f:A\to B$ be a bijective function. We can then construct $f^{-1}:B\to$ A, where $f^{-1}(b) = a$ if f(a) = b.

- Since f is injective, $f^{-1}(b)$ has exactly one solution
- Since f is surjective, the entire domain B of f^{-1} is well defined

$$\implies f^{-1}$$
 is a valid function

- f(a) has exactly one solution, so f^{-1} is injective
- The entire domain of f is defined, so $\forall a \in A \exists b : f(a) = b$, meaning, $\forall a \in A \exists b : f^{-1}(b) = a$, or f^{-1} is surjective.

$$\implies f^{-1}: B \to A \text{ is bijective}$$

$$f(f^{-1}(B)) = f(A) = B \implies f \circ f^{-1} = 1_B$$

$$f^{-1}(f(A)) = f^{-1}(B) = A \implies f^{-1} \circ f = 1_A$$

Thus, we've found a suitable g such that the above conditions are satisfied.

 (\Leftarrow) Let $g: B \to A$ exist such that $f \circ g = 1_B$ and $g \circ f = 1_A$, with $f: A \to B$.

- 1. $f(g(B)) = B \implies f(C) = B$, where $C \subseteq A$. But we have that f maps all of A, so in fact f(A) = B. This implies that $\forall a \in A$ there exists some $c \in C$ such that $f(c) = f(a) = b \in B$. Let $a \ne c$. Then we have f(g(b) = c) = band f(g(b) = a) = b, which cannot happen, since g is well-defined $\frac{1}{2}$. Thus, a = c, f(A) = B, and f injective.
- 2. $g(f(A)) = A \implies g(D) = A$, where $D \subseteq B$. But g maps all of B, and thus $f(A) = B \implies f$ is surjective.

This proves (a). For (b), let $g: B \to A$ be only injective such that g(B) = C, a strict subset of A. By our construction, f(C) = B exactly, meaning $\forall a \in$ $A \setminus C \ \exists c \in C : f(a) = f(c) = b \text{ and } a \neq c, \text{ for some } b \in B, \text{ since } f \text{ must map all } c.f. \text{ Pigeonhole Principle}$ of *A*. Thus, *f* cannot be injective, but is surjective.

QUESTION 4

Consider an n by n grid of lattice points, and denote the first column as c = 0 and the first row as r = 0. Then, the nth diagonal (connecting (0, n) and (n, 0)) will contain n + 1 lattice points.

Consider each lattice point in r = 0. If we count the total number of lattice points as shown in the diagram, with (0,0) being the 0^{th} point, we can express a recursive formula for a unique #, a_n , of the point (0, n):

This last identity is well known. We have:

$$2a_{n} = 2(1 + 2 + \dots + n)$$

$$= (1 + 2 + \dots + n)$$

$$+ (n + [n-1] + \dots + 1)$$

$$= n(n+1)$$

$$a_{n} = a_{n-1} + n \text{ with } a_{0} = 0$$

$$= a_{n-2} + (n-1) + n$$

$$\vdots$$

$$= a_{0} + 1 + 2 + \dots + (n-1) + n$$

$$= \frac{n^{2} + n}{2}$$

From here, we can define a general form for the entire grid, N(m, n):

 $N(0, c) = a_c$ using the explicit formula derived

 $N(1, c) = a_{c+1} + 1$, since our counting procedure "pulls down" from the c + 1th column directly above.

N(2, c) pulls down from N(1, c), and so $N(2, c) = N(1, [c+1]) + 1 = a_{c+2} + 2$

$$N(r,c) = a_{c+r} + r$$

$$\Longrightarrow N(r,c) = \frac{(c+r)^2 + (c+r)}{2} + r$$

Real proof not asked for, Our counting procedure ensures that each lattice point is assigned a unique though natural number, with no repetitions, and so N(r, c) is bijective.

5 NICHOLAS HAYEK

QUESTION 5

Let $|A_1| = |A_2|$ and $|B_1| = |B_2|$.

Then, $\exists f: A_1 \rightarrow A_2$ and $g: B_1 \rightarrow B_2$, both bijective.

 $\text{Let } h(a_1,b_1) = \langle f(a_1),g(b_1)\rangle \ \ \forall (a_1,b_1) \in A_1 \times B_1 \text{ and } \forall \langle f(a_1),g(b_1)\rangle \in A_2 \times B_2.$

Since *f* and *g* are injective, we have:

$$f(a_1) = f(a'_1) \implies a_1 = a'_1$$

$$g(b_1) = g(b'_1) \implies b_1 = b'_1$$

Thus, if $\langle f(a_1), g(b_1) \rangle = \langle f(a_1'), g(b_1') \rangle$, then $a_1 = a_1'$ and $b_1 = b_1' \implies h$ is injective.

Since *f* and *g* are surjective, we have:

$$\forall a_2 \in A_2 \ \exists a_1 \quad : f(a_1) = a_2$$

$$\forall b_2 \in B_2 \ \exists b_1 \quad : f(b_1) = b_2$$

And so, $\forall (a_2, b_2) \in A_2 \times B_2 \exists (a_1, b_1) \in A_1 \times B_1 \text{ such that }$

$$\langle f(a_1), g(b_1) \rangle = (a_2, b_2) \implies h \text{ is surjective}$$

h is a bijection between $A_1 \times B_1$ and $A_2 \times B_2$, so

$$|A_1 \times B_1| = |A_2 \times B_2|$$

QUESTION 6

We'll construct two injections to show $|\mathbb{N}| = |\mathbb{Q}|$

From class, note that $|\mathbb{N}| = |\mathbb{Z}|$ and $|\mathbb{Z}| = |\mathbb{Z} \times \mathbb{Z}|$

$$\implies |\mathbb{N}| = |\mathbb{Z} \times \mathbb{Z}|$$

Let $q \in \mathbb{Q}$ be such that $q = \frac{a}{b}$ in its most reduced form (i.e. for any $a, b \in \mathbb{N}$, a and b have no common factors $\neq 1$). Further, if q is negative, let a be negative and b be positive.

Then, an ordered pair (a, b) defines a unique $q \in \mathbb{Q}$ such that, if (a, b) = (a', b'), then $\frac{a}{b} = \frac{a'}{b'} = q$. Clearly, the function $q \to (a, b)$, for all $q \in \mathbb{Q}$, is injective. Thus, $|\mathbb{Q}| \le |\mathbb{Z} \times \mathbb{Z}| = |\mathbb{N}| \implies |\mathbb{Q}| \le |\mathbb{N}|$.

Let $\mathbb{N} \to \mathbb{Q}$ be such that $n \to \frac{1}{n}$, where $\frac{1}{n} \forall n \in \mathbb{N}$ is a defined subset of \mathbb{Q} .

 $\frac{1}{n} = \frac{1}{n'} \implies 1 = \frac{n}{n'} \implies n' = n \implies \text{our function is injective. } |\mathbb{N}| \le |\mathbb{Q}|.$

By Cantor-Bernstein, we have $|\mathbb{N}| = |\mathbb{Q}|$