МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Параллельные алгоритмы»

Тема: Реализация структур данных без блокировок

Студент гр. 0303	 Пичугин М.В.
Преподаватель	Сергеева Е.И.

Санкт-Петербург

Цель работы.

Изучение и практическая реализация потокобезопасной очереди без блокировок на основе атомарных операций.

Задание.

Выполняется работы 2. Реализовать основе очередь, на удовлетворяющую lock-free гарантии прогресса. Протестировать доступ к реализованной структуре случае данных В нескольких потоков производителей и потребителей.

Выполнение работы.

Был разработан класс LockFree, представляющий собой очередь без применения блокировок. Для этого класса реализованы два метода:

push(T val) — добавляет новый элемент val в конец очереди.

pop(T& val) — извлекает элемент из начала очереди и сохраняет его значение в переменной val.

Данный класс использует атомарную операцию CAS (Compare and Set), что обеспечивает выполнение условия Lock-Free.

Для оценки производительности очереди без блокировки проведено исследование, варьируя количество производителей и потребителей. Полученные значения были сравнены с результатами работы очереди с применением блокировок. В связи с тем, что программа может теоретически выполняться бесконечно, было установлено ограничение времени выполнения в 3 секунды. Результаты исследования и выполнения программы представлены в таблицах 1-3.

Таблица 1 — Результат работы программы при использовании очереди с грубой блокировкой

Количество	Количество	Произведённые	Умноженные
производителей	потребителей	пары матриц	пары матриц
1	1	10339	1047
1	5	4231	2921
5	1	5660	437

5	5	5910	1558

Таблица 2 — Результат работы программы при использовании очереди с тонкой блокировкой

Количество	Количество	Произведённые	Умноженные
производителей	потребителей	пары матриц	пары матриц
1	1	11262	1103
1	5	4333	3038
5	1	5721	494
5	5	5933	1602

Таблица 3 — Результат работы программы при использовании очереди без блокировки

Количество	Количество	Произведённые	Умноженные
производителей	потребителей	пары матриц	пары матриц
1	1	12169	1268
1	5	4817	2799
5	1	5822	512
5	5	6326	1604

Анализ данных в таблицах позволяет сделать вывод о том, что производительность очереди без применения блокировок превышает производительность очереди с использованием как грубых, так и тонких блокировок. Это объясняется тем, что в случае очереди без блокировок не происходит полной остановки всей структуры данных.

Вывод.

лабораторной работы была В ходе выполнения создана потокобезопасная безблокировочная, очередь решения для задачи взаимодействия производителя потребителя. И Экспериментально установлено, что данная очередь без блокировок оказывается более эффективной по сравнению с очередями, использующими блокировки. Это достигнуто за счет применения атомарных операций, что способствовало увеличению уровня параллелизма.