Интеграл Лебега

А. Плахин, Н. Аверьянов

Клуб теории вероятностей ФЭН ВШЭ

25 сентября 2021

Мотивация

Интеграл Римана, этот противоестественный кусок тошнотворной математической архаики, идет на помойку истории, а интегрирование выносится в отдельный курс "теории меры". Для многих прикладных задач интеграл Лебега - это, конечно, перебор, но тут достаточно школярского определения интеграла как площади под графиком, вполне уместного в курсе "математического анализа для студентов ПТУ

Миша Вербицкий

Recap

 (X,Σ,μ) – пространство с мерой

- X некоторое множество произвольной природы
- Σ сигма-алгебра на множестве X
- $\mu:\Sigma \to [0,\infty]$ мера (функция обладающая некоторыми свойствами)

Равномерная сходимость: $\lim_{n \to \infty} \sup |f_n - f| = 0$

Интеграл Лебега для простых функций

Наша цель – определить интеграл на произвольном измеримом пространстве (X, Σ, μ) . Назовем функцию s простой (и измеримой), если $s(x) = \sum_{i=1}^n \alpha_i \mathbb{I}_{A_i}$. Для начала определим понятие интеграла именно для таких функций.

Определение

Пусть $s(x) = \sum_{i=1}^n \alpha_i \mathbb{I}_{A_i}$ – простая функция. Тогда интегралом данной функции по множеству $E \in \Sigma$ будет называть следующую величину:

$$\int_{E} s d\mu = \sum_{i=1}^{n} \alpha_{i} \mu(A_{i} \cap E)$$

Пример

$$\int_{X} \mathbb{I}_{A} d\mu = \mu(A)$$

Интеграл Лебега от измеримой функции

Определение

Пусть $f:X \to \mathbb{R}$ — некоторая неотрицательная измеримая функция, а $E \in \Sigma$. Тогда интегралом от нашей функции будем называть:

$$\int_{E} f d\mu = \sup \int_{E} s d\mu$$

Супремум берется по всем простым функциям s, таким что $0 \leq s(x) \leq f(x), \forall x \in X$

Свойства интеграла

$$0 \le f \le g \Rightarrow \int_{E} f d\mu \le \int_{E} g d\mu$$

②
$$A \subseteq B$$
; $A, B \in \Sigma$; $f \ge 0 \Rightarrow \int_A f d\mu \le \int_B f d\mu$

$$f \geq 0; c \geq 0 \Rightarrow \int_{E} c f d\mu = c \int_{E} f d\mu$$

$$f(x) = 0 \ \forall x \in E \Rightarrow \int_{F} f d\mu = 0$$

$$\bullet f \ge 0 \Rightarrow \int_{E} f d\mu = \int_{X} \mathbb{I}_{E} f d\mu$$

Линейность

Утверждение

Пусть s и t это две простые функции $s\geq 0$ и $t\geq 0$. Для $E\in \Sigma$ зададим функцию $\varphi(E)=\int_E sd\mu$. Тогда φ – мера на (X,Σ) и более того:

$$\int_X (s+t)d\mu = \int_X sd\mu + \int_X td\mu$$

Доказательство первого факта достаточно тривиально:

$$\varphi(E) = \int_{E} s d\mu = \sum_{i=1}^{n} \alpha_{i} \mu(A_{i} \cap E)$$

Каждое отображение $E\mapsto \mu(A_i\cap E)$ будет мерой, как их сумма.

Lebesgue's Monotone Convergence Theorem

Утверждение

Пусть f_n это последовательность измеримых функций на X, и предположим, что:

- **1** $0 \le f_1(x) \le f_2(x) \le ...$ for each $x \in X$
- 2 $f_n(x) \to f(x)$ as $n \to \infty$, for each $x \in X$

Тогда f измеримая и $\int_X f_n d\mu o \int_X f d\mu$ при $n o \infty$

Следствие

Предположим, что $f \geq 0$, $g \geq 0$ и каждая из этих функций является интегрируемой. Тогда f+g интегрируема и:

$$\int_{X} (f+g)d\mu = \int_{X} f d\mu + \int_{X} g d\mu$$

Fun facts

Следствие

Предположим, что функция $f\geq 0$ интегрируема. Тогда отображаение $\varphi:E\to \int_E f d\mu$ является мерой на (X,Σ)

Определение

Комплекснозначная функция f на X называется интегрируемой (по Лебегу) по мере μ , если |f| интегрируема. Множество всех таких функций обозначается $\mathcal{L}^1(X,\mu)$. Для $f=u+iv\in\mathcal{L}^1(X,\mu)$, определим:

$$\int_X f d\mu = \int_X u_+ d\mu - \int_X u_- d\mu + i \int_X v_+ d\mu - i \int_X v_- d\mu$$

Fun facts

Утверждение

If $f, g \in \mathcal{L}^1(X, \mu)$ and $a, b \in \mathbb{C}$, then $af + bg \in \mathcal{L}^1(X, \mu)$ and:

$$\int_X (af+bg)d\mu = a\int_X fd\mu + b\int_X gd\mu$$

Замечание

The above result says that the space $\mathcal{L}^1(X,\mu)$ is a (complex) linear space.

Утверждение

For any $f \in \mathcal{L}^1(X,\mu)$:

$$\left| \int_{\mathbf{Y}} f d\mu \right| \leq \int_{\mathbf{Y}} |f| d\mu$$

10

Lebesgue's Dominated Convergence Theorem

Let f_n be a sequence of complex-valued measurable functions on X such that

- **1** $f_n(x) \to f(x)$, as $n \to \infty$, for every $x \in X$ (pointwise convergence);
- each $x \in X$ (the sequence f_n is dominated by g(x) for all $n \in N$ and each $x \in X$ (the sequence f_n is dominated by g(x)).

Then $f \in \mathcal{L}^1(X,\mu)$ and $\int_X f_n d\mu \to \int_X f d\mu$ as $n \to \infty$. Furthermore, $\int_X |f_n - f| d\mu \to 0$, as $n \to \infty$