Complemento de Álgebra Homológica

Edmundo Martins

22 de março de 2023

Este documento contém algumas anotações adicionais referentes à disciplina *Tópicos de Álgebra* ministrada pelo professor Eduardo do Nascimento Marcos durante o primeiro semestre de 2023 como parte do Programa de Pós-Graduação em Matemática do IME-USP. O documento em questão não tem a proposta de servir como notas de aula para o curso, mas apenas como um conjunto de notas adicionais destrinchando algumas coisas que foram discutidas durante as aulas.

1 Aula 1 - 15/03/2023

1.1 Módulos

Nessa subseção relembramos brevemente o significado de módulo sobre um anel. Suponha que A seja um anel não necessariamente comutativo, mas contendo uma unidade 1_A . Intuitivamente, um A-módulo à esquerda é um grupo abeliano juntamente com uma ação de A sobre esse grupo abeliano.

- **1.1 Definição.** Um A-módulo à esquerda é um conjunto M munido de duas operações $+: M \times M \to M$ e $\cdot: A \times M \to M$ sujeitas às seguintes condições:
 - 1. M é um grupo abeliano com relação à operação +;
 - 2. $a \cdot (m+n) = a \cdot m + a \cdot n$ para quaisquer $a \in A$ e $m, n \in M$;
 - 3. $(a+b) \cdot m = a \cdot m + b \cdot m$ para quaisquer $a, b \in A$ e $m \in M$;
 - 4. $a \cdot (b \cdot m) = (ab) \cdot m$ para quaisquer $a, b \in A$ e $m \in M$;
 - 5. $1_A \cdot m = m$ para qualquer $m \in M$.

Por vezes, alguns autores consideram módulos sobre anéis sem unidade, de forma que a última condição deve ser omitida. Nesse contexto, os A-módulos que satisfazem a última propriedade são ditos unitários.

A definição acima pode ser facilmente alterada para obtermos a noção de um A-módulo à direita, ou seja, com os escalares de A agindo da forma $m \cdot a$ ao invés de $a \cdot m$. Vamos ver agora que, embora os conceitos de módulos à esquerda e à direita não sejam exatamente iguais, existe uma relação próxima entre os dois.

Dado um anel A qualquer, podemos considerar um outro anel $A^{\rm op}$ cuja operação de soma é a mesma, mas cuja operação de multiplicação é a oposta, ou seja, definimos $a \cdot_{\rm op} b \coloneqq ba$, onde a justaposição indica a multiplicação já existente em A. O fato de A já ser um anel garante que essa multiplicação oposta também faça de $A^{\rm op}$ um anel.

Suponha agora que M seja um A-módulo à esquerda. Podemos obter um A^{op} -módulo à direita M^{op} considerando a mesma operação de soma, e definido o produto por escalares $\cdot : M \times A^{\mathrm{op}} \to M$

por meio da fórmula $m \cdot a := a \cdot m$ para todo $a \in A^{\text{op}}$ e $m \in M$. A verifcação de que isso define de fato uma estrutura de A^{op} -módulo à direita é tranquila. A parte mais interessante é verificar a "associatividade" do produto por escalares. Dados $a, b \in A^{\text{op}}$ e $m \in M$, temos

$$(m \cdot a) \cdot b = b \cdot (m \cdot a) = b \cdot (a \cdot m) = (ba) \cdot m = (a \cdot_{\text{op}} b) \cdot m = m \cdot (a \cdot_{\text{op}} b).$$

Analogamente, todo A-módulo à direita dá origem a um A^{op} -módulo à esquerda. Combinando essas duas construções, e o fato que $(A^{\mathrm{op}})^{\mathrm{op}} = A$, obtemos a equivalência abaixo.

1.2 Proposição. Existe um isomorfismo de categorias $A - \mathsf{Mod} \cong \mathsf{Mod} - A^{\mathrm{op}}$.

Em particular, se A é comutativo, então $A^{op} = A$, e o resultado acima implica o seguinte:

1.3 Corolário. Se A é um anel comutativo, existe um isomorfismo de categorias $A - \mathsf{Mod} \cong \mathsf{Mod} - A$.

Isso explica porque no caso comutativo é comum ignorarmos a distinção entre módulos à esquerda e à direita.

1.2 Módulos como ações de um anel

No início da parte anterior mencionamos que, intuitivamente, um módulo sobre um anel é dado pela ação de um anel sobre um grupo abeliano. Note que a operação de produto por escalares $\cdot: A \times M \to M$ é análoga à operação $G \times X \to X$ usada para definir a ação de um grupo G sobre um conjunto X.

Na Teoria de Grupos, um fato interessante é que uma ação de grupo pode ser definida também em termos de um morfismo de grupos $G \to \operatorname{Sym}(X)$, onde $\operatorname{Sym}(X)$ denota o grupo simétrico de X, ou seja, o grupo formado por todas as bijeções $X \to X$. Nosso objetivo nessa parte é mostrar que um módulo também pode ser pensado como uma família de transformações de um objeto parametrizada pelos elementos do anel em questão.

Se M é um grupo abeliano qualquer, lembre-se que um endomorfismo de M é simplesmente um morfismo de grupos $f: M \to M$ do grupo para si mesmo. O conjunto de todos esses endomorfismos é denotado por $\operatorname{End}(M)$. A operação de soma em M pode ser estendida pontualmente para uma operação análoga em $\operatorname{End}(M)$: dados $f, g \in \operatorname{End}(M)$, definimos $f+g: M \to M$ pela fórmula

$$(f+g)(m) := f(m) + g(m) \quad \forall m \in M.$$

Uma verificação rotineira mostra que f+g define realmente um endormofismo do grupo M, portanto temos de fato uma operação binária $+: \operatorname{End}(M) \times \operatorname{End}(M) \to \operatorname{End}(M)$. As propriedades algébricas da adição em M garantem que essa operação defina uma estrutura de grupo em $\operatorname{End}(M)$, na qual o elemento neutro é dado pelo endormofismo constante $\operatorname{ct}_{M,0}: M \to M$, e na qual o inverso -f de um endomorfismo f é definido pela fórmula

$$(-f)(m) := -f(m) \quad \forall m \in M.$$

O mais interessante é que o conjunto $\operatorname{End}(M)$ possui outra operação binária advinda da composição de funções. É fácil mmostrar que, dados endomorfismos $f, g \in \operatorname{End}(M)$, sua composição $g \circ f : M \to M$ define um outro endomorfismo, o que nos permite então definir uma operação binária $\circ : \operatorname{End}(M) \times \operatorname{End}(M) \to \operatorname{End}(M)$. Fazendo alguns cálculos diretos podemos mostrar que essa operação goza das seguintes propriedades:

- 1. $g \circ (f_1 + f_2) = g \circ f_1 + g \circ f_2$ para quaisquer $f_1, f_2, g \in \text{End}(M)$;
- 2. $(g_1 + g_2) \circ f = g_1 \circ f + g_2 \circ f$ para quaisquer $f, g_1, g_2 \in \text{End}(M)$;

- 3. $h \circ (g \circ f) = (h \circ g) \circ f$ para quaisquer $f, g, h \in \text{End}(M)$;
- 4. $id_M \circ f = f \circ id_M = f$ para qualquer $f \in End(M)$.

Em outras palavras, as operações + e \circ juntas definem uma estrutura de *anel* no conjunto de endomorfismos $\operatorname{End}(M)$. Esse é o ingrediente necessário para definirmos uma ação de um anel sobre um grupo abeliano.

1.4 Definição. Uma **ação** de um anel A sobre um grupo abeliano M é um morfismo de anéis $\varphi: A \to \operatorname{End}(M)$.

Assim, uma ação de A sobre M define, para cada $a \in A$, um endomorfismo $\varphi_a := \varphi(a) \in \operatorname{End}(M)$, e essa coleção parametrizada de endormofismos satisfaz as seguintes propriedades:

- 1. $\varphi_a + \varphi_b = \varphi_{a+b}$ para quaisquer $a, b \in A$;
- 2. $\varphi_b \circ \varphi_a = \varphi_{ba}$ para quaisquer $a, b \in A$;
- 3. $\varphi_{1_A} = \mathrm{id}_M$.

Suponha agora que M seja um A-módulo à esquerda. Dado $a \in A$ qualquer, definimos um mapa $\ell_a: M \to M$ pela fórmula

$$\ell_a(m) \coloneqq a \cdot m \quad \forall m \in M.$$

Esse mapa ℓ_a define na verdade um endomorfismo de M, pois por hipótese o produto por escalares distribui sobre a soma em M, de forma que obtemos um elemento $\ell_a \in \operatorname{End}(M)$.

Variando o elemento $a \in A$ em questão define então um mapa $\ell : A \to \operatorname{End}(M)$ dado pela regra $a \mapsto \ell_a$. As propriedades da operação de produtos por escalares garantem que esse mapa seja um morfismo de anéis:

- a igualdade $(a+b) \cdot m$ implica a igualdade $\ell_{a+b} = \ell_a + \ell_b$;
- a igualadade $(ab) \cdot m = a \cdot (b \cdot m)$ implica a igualdade $\ell_{ab} = \ell_a \circ \ell_b$;
- a igualdade $1_A \cdot m = m$ implica a igualdade $\ell_{1_A} = \mathrm{id}_M$.

Assim, a estrutura de A-módulo em M induz uma ação de A sobre M por meio do morfismo $\ell:A\to \operatorname{End}(M)$. Em certo sentido, esse morfismo é análogo ao morfismo $G\to \operatorname{Sym}(G)$ que aparece na demonstração do Teorema de Cayley.

Existe também uma construção inversa. Dada uma ação $\varphi:A\to \operatorname{End}(M)$ do anel A sobre o grupo abeliano M, considere o produto por escalares $\cdot_{\varphi}:A\times M\to M$ definido pela fórmula

$$a \cdot_{\varphi} m := \varphi_a(m) \quad \forall a \in A, \ \forall m \in M.$$

O fato de φ ser um morfismo de anéis garante que esse produto \cdot_{φ} defina juntamente com a soma + uma estrutura de A-módulo à esquerda em M:

- a igualdade $\varphi_{a+b} = \varphi_a + \varphi_b$ implica a igualdade $(a+b) \cdot_{\varphi} m = a \cdot_{\varphi} m + b \cdot_{\varphi} m$;
- o fato de φ_a ser um endomorfismo implica a igualdade $a \cdot_{\varphi} (m+n) = a \cdot_{\varphi} m + b \cdot_{\varphi} n$;
- a igualdade $\varphi_{ab} = \varphi_a \circ \varphi_b$ implica a igualdade $(ab) \cdot_{\varphi} m = a \cdot_{\varphi} (b \cdot_{\varphi} m);$
- a igualdade $\varphi_{1_A} = \mathrm{id}_M$ implica a igualdade $1_A \cdot_\varphi m = m$.

É possível mostrar que essas duas construções são inversas uma da outra, o que nos leva ao resultado abaixo.

1.5 Teorema. A noção de A-módulo à esquerda é equivalente à noção de ação de um anel sobre um grupo abeliano.

Essa equivalência provavelmente pode ser formulada em termos categóricos, mas eu não sei ao certo como fazer isso. É claro que temos a categoria de A-módulos à esquerda A – Mod, mas como interpretar morfismos de anéis do tipo $A \to \operatorname{End}(M)$ como objetos de alguma categoria?

1.3 Álgebras sobre anéis

Nessa subseção, consideramos outra estrutura algébrica mais rica do que a de módulo sobre um anel. Intuitivamente, uma álgebra sobre um anel consiste de um módulo sobre o anel em questão equipado com uma operação adicional de multiplicação que é compatível com as operações e soma produto por escalares já existentes. As condições exatas de compatibilidade estão formuladas na definição abaixo.

- **1.6 Definição.** Seja A um anel qualquer com unidade. Uma A-álgebra consiste de um conjunto M juntamente com três operações $+: M \times M \to M, \cdot: A \times M \to M$ e $*: M \times M \to M$ sujeitas às seguintes condições:
 - 1. M é um grupo abeliano com relação à operação de soma +;
 - 2. as operações + e \cdot juntas fazem de M um A-módulo à esquerda;
 - 3. a operação * é A-bilinear.

A operação A-bilinear * é comumante chamada de multiplicação, e é mais comum denotar seus valores por justaposição, ou seja, escrevemos mn no lugar de m*n. Levando em conta essa notação, a condição de A-bilinearidade da multiplicação pode ser descrita mais explicitamente em termos das seguintes igualdades:

- (i) $(m_1 + m_2)n = m_1n + m_2n$ para quaisquer $m_1, m_2, n \in M$;
- (ii) $m(n_1 + n_2) = mn_1 + mn_2$ para quaisquer $m, n_1, n_2 \in M$;
- (iii) $(a \cdot m)n = a \cdot (mn)$ para quaisquer $a \in A$ e $m, n \in M$;
- (iv) $m(a \cdot n) = a \cdot (mn)$ para quaisquer $a \in A$ e $m, n \in M$.

As duas primeiras propriedades mostram que a multiplicação distribui sobre a soma em ambos os lados, enquanto as duas últimas mostram que a multiplicação é em algum sentido compatível com o produto por escalares, os quais "transitam livremente por dentro da multiplicação". Veremos logo mais que existem diferentes "sabores" de A-álgebras caracterizados por propriedades adicionais impostas sobre a operação de multiplicação.

Existe uma definição natural de transformação entre duas álgebras. Formalmente, dadas duas A-álgebras M e N, uma função $f:M\to N$ é um morfismo de A-álgebras se satisfaz as seguintes condições:

- 1. f(m+n) = f(m) + f(n) para todos $m, n \in M$;
- 2. $f(a \cdot m) = a \cdot f(m)$ para todo $m \in M$ e $a \in A$;
- 3. f(mn) = f(m)f(n) para todo $m, n \in M$.

As duas primeiras condições dizem que f é um morfismo de A-módulos, enquanto a terceira diz que f é compatível com as operações de multiplicação existentes em M e N.

É tranquilo mostrar que dois morfismos de A-álgebras podem ser compostos para definir um novo morfismo de A-álgebras, e também que o mapa idêntico id $_M: M \to M$ define um morfismo de A-álgebras. Podemos então definir uma categoria A – Alg cujos objetos são A-álgebras e cujos morfismos são morfismos de A-álgebras.

Agora introduzimos algumas propriedades adicionais que uma álgebra pode ou não satisfazer.

1.7 Definição. Uma A-álgebra M é dita

- unitária se existe um elemento $1_M \in M$ tal que as igualdades $1_M m = m = m 1_M$ sejam válidas para todo $m \in M$;
- comutativa se a igualdade mn = nm é válida para quaisquer $m, n \in M$;
- associativa se a igualdade $(m_1m_2)m_3 = m_1(m_2m_3)$ é válida para quaisquer $m_1, m_2, m_3 \in M$.

Vejamos alguns exemplos interessantes relacionados às propriedades acima.

- **1.8 Exemplo.** Dado um anel com unidade qualquer A, podemos considerar a A-álgebra $M_n(A)$ de matrizes $n \times n$ com entradas em A. Essa é uma A-álgebra associativa e unitária, sendo a unidade dada pela matriz identidade, mas ela só é comutativa quando A é comutativo e n é igual a 1.
- **1.9 Exemplo.** Seja M um A-módulo sobre um anel com unidade. Um endomorfismo de A-módulos de M é por definição um morfismo de A-módulo do tipo $M \to M$. Considere o conjunto $\operatorname{End}_A(M)$ formado por todos os endomorfismos do A-módulo M. Note que $\operatorname{End}_A(M)$ é diferente do conjunto de endomorfismos $\operatorname{End}(M)$ do grupo abeliano M, pois neste último desconsideramos a compatibilidade dos mapas com o produto por escalares. Assim como no caso em que M é apenas um grupo abeliano, a operação de soma em + pode ser estendida para uma operação de soma + : $\operatorname{End}_A(M) \times \operatorname{End}_A(M) \to \operatorname{End}_A(M)$ no conjunto de endomorfismos de A-módulos.

$$(S+T)(m) := S(m) + T(m) \quad \forall m \in M.$$

No contexto atual em que M é também um A-módulo, podemos estender também o produto por escalares para uma operação análoga $\cdot: A \times \operatorname{End}_A(M) \to \operatorname{End}_A(M)$. Formalmente, dados $a \in A$ e $T \in \operatorname{End}_A(M)$, definimos um novo mapa $a \cdot T: M \to M$ pela fórmula

$$(a \cdot T)(m) := a \cdot T(m) \quad \forall m \in M.$$

Uma conta tranquila mostra que $a \cdot T$ define de fato um endomorfismo de A-módulos de M, o que nos permite considerar então uma operação de produto por escalares $\cdot : A \times \operatorname{End}_A(M) \to \operatorname{End}_A(M)$. Veja que essa operação goza das seguintes propriedades:

- 1. $a \cdot (S+T) = a \cdot S + a \cdot T$, pois em M vale que $a \cdot (m+n) = a \cdot m + a \cdot n$;
- 2. $(a+b) \cdot T = a \cdot T + b \cdot T$, pois em M vale que $(a+b) \cdot m = a \cdot m + b \cdot m$;
- 3. $a \cdot (b \cdot T) = (ab) \cdot T$, pois em M vale que $a \cdot (b \cdot m) = (ab) \cdot m$;
- 4. $1_A \cdot T = T$, pois em M vale que $1_A \cdot m = m$.

Em outras palavras, quando M é um A-módulo, o conjunto de endomorfismos (de módulos!) End $_A(M)$ carrega por si só uma estrutura de A-módulo também.

Até o momento, as operações de soma e produto por escalar tornam $\operatorname{End}_A(M)$ um A-módulo também. O mais interesante é que a operação de composição nos permite definir um tipo de multiplicação em $\operatorname{End}_A(M)$, ou seja, dados dois endomorfismos $S, T: M \to M$, definindo $ST := S \circ T$ obtemos um novo endormorfismo, e portanto uma operação de multiplicação $\operatorname{End}_A(M) \times \operatorname{End}_A(M) \to \operatorname{End}_A(M)$. Vejamos algumas das propriedades satisfeitas por essa multiplicação. Dados $R, S, T \in \operatorname{End}_A(M)$, usando as definições anteriores vemos que a igualdade

$$[(R+S)T](m) = (R+S)(T(m)) = R(T(m)) + S(T(m)) = (RT)(m) + (ST)(m) = (RT+ST)(m)$$

é válida para todo $m \in M$, o que significa que temos uma igualdade (R+S)T = RT + ST a nível de endomorfismos. Se considerarmos também um escalar $a \in A$, vale que

$$[(a \cdot S)T](m) = (a \cdot S)(T(m)) = a \cdot S(T(m)) = a \cdot (ST)(m) = [a \cdot (ST)](m)$$

para todo $m \in M$, portanto temos a igualdade $(a \cdot S)T = a \cdot (ST)$.

Os dois argumentos acima mostram que a operação de multiplicação (= composição) de endomorfismos é A-linear no primeiro argumento. É claro que contas totalmente análogas mostram que também vale a A-linearidade no segundo argumento, o que significa que temos na verdade uma multiplicação que é A-bilinear. Concluímos enfim que temos de fato uma A-álgebra de endomorfismos $\operatorname{End}_A(M)$. Como a multiplicação de dois endormofismos é definida em termos da operação de composição, a qual é sabidamente associativa, $\operatorname{End}_A(M)$ é um exemplo de álgebra associativa. Além disso, a função idêntica $\operatorname{id}_M: M \to M$ é um endomorfismo que satisfaz as igualdades $\operatorname{id}_M T = T\operatorname{id}_M = T$ para todo endomorfismo T, portanto $\operatorname{End}_A(M)$ é também uma álgebra unitária. Entretanto, em geral não há nenhum motivo que garanta que a igualdade ST = TS seja válida para endomorfismos S e T quaisquer, de forma que a A-álgebra $\operatorname{End}_A(M)$ é em geral não-comutativa.

O exemplo anterior pode ser visto como um caso particular desse segundo exemplo. Isso é porque, dado um anel comutativo com unidade A, podemos considerar o produto A^n como um A-módulo com as operações definidas separadamente em cada coordenada, logo temos também a A-álgebra de endomorfismos $\operatorname{End}_A(A^n)$ construída acima. Fixando uma base para A^n visto como A-módulo, temos a construção usual da Álgebra Linear que associa a cada endomorfismo $T:M\to M$ uma matriz $[T]\in M_n(A)$. Isso estabelece ao menos uma bijeção entre $\operatorname{End}_A(A^n)$ e $M_n(A)$, e uma conta tediosa mostra que na verdade essa bijeção é compatível com as duas estruturas de A-álgebra presentes, de forma que temos na verdade um isomorfismo de A-álgebras $\operatorname{End}_A(A^n)\cong M_n(A)$.

1.10 Exemplo. Seja A um anel comutativo com unidade. Dado um conjunto qualquer X, seja F(X,A) o conjunto de todas as funções de tipo $X \to A$. As operações existentes em A podem ser estendidas pontualmente para F(X,A):

- dados $f, g \in F(X, A)$, definimos $f + g : X \to A$ por (f + g)(x) := f(x) + g(x) para todo $x \in X$;
- dados $f \in F(X, A)$ e $a \in A$, definimos $a \cdot f : X \to A$ por $(a \cdot f)(x) \coloneqq af(x)$ para todo $x \in X$;
- dados $f, g \in F(X, A)$, definimos $fg: X \to A$ pela fórmula $(fg)(x) \coloneqq f(x)g(x)$ para todo $x \in X$.

Novamente, contas rotineiras usando as propriedades algébricas das operações em A nos permitem mostrar que as operações definidas acima munem F(X,A) de uma estrutura de A-álgebra. Como a multiplicação em F(X,A) é definida em termos da multiplicação em A, a qual

é comutativa, F(X, A) é também uma álgebra associativa. Além disso, a função $\operatorname{ct}_{X,1_A}: X \to A$ que é constante e igual a 1_A é uma unidade bilateral para a operação de multiplicação em F(X, A), portanto temos uma A-álgebra unitária. Por fim, como o anel A é comutativo por hipótese, o mesmo vale para a multiplicação em F(X, A), portanto esta é uma A-álgebra comutativa.

1.4 Álgebras via anéis e vice-versa

Nessa subseção vamos discutir como certos tipos de álgebras podem ser definidas em termos de anéis e vice-versa. Se quisermos mais precisos, vamos mostrar que existe uma correspondência entre certas A-álgebras e morfismos de anéis cujo domínio é A. Durante esta subseção, consideraremos apenas anéis comutativos e com unidade, e os morfismos de anéis serão unitários, ou seja, mapearão a unidade de um anel para a unidade de outro.

Suponha que M seja uma A-álgebra unitária, comutativa e associativa. Deixando de lado momentaneamente a operação de produto por escalares, as operações de some e multiplicação juntas definem uma estratura de anel comutativo no conjunto M. Veja que para que isso seja verdade é essencial que a A-álgebra inicial seja realmente unitária, comutativa e associativa.

E qual é a relevância da operação de produto por escalares nessa estrutura de anel em M? Usando tal operação podemos definir uma função $\varphi_M:A\to M$ dada por $\varphi_M(a):=a\cdot 1_M$. Usando as propriedades algébricas da estrutura de A-álgebra em M vemos que valem as seguintes igualdades:

- $\varphi_M(1_A) = 1_A \cdot 1_M = 1_M;$
- $\varphi_M(a+b) = (a+b) \cdot 1_M = a \cdot 1_M + b \cdot 1_M = \varphi_M(a) + \varphi_M(b)$ para quaisquer $a, b \in A$;
- $\varphi_M(ab) = (ab) \cdot 1_M = (a \cdot 1_M)(b \cdot 1_M) = \varphi_M(a)\varphi_M(b)$ para quaisquer $a, b \in A$.

Vemos então que $\varphi_M: A \to M$ é um morfismo de anéis que é normalmente chamado de morfismo estrutural da A-álgebra M.

Agora, lembremos que, se CRing denota a categoria de anéis comutativos e morfismos de anéis, podemos considerar a categoria co-slice $A \setminus \mathsf{CRing}$. Os objetos dessa categoria são dados por morfismos de anéis cujo domínio é A, e, dados dois objetos $A \stackrel{\varphi}{\to} R$ e $A \stackrel{\psi}{\to} R'$, um morfismo do primeiro para o segundo é por definição um morfismo de anéis $\theta : R \to R'$ satisfazendo a igualdade $\theta \circ \varphi = \psi$, ou seja, fazendo comutar o triângulo abaixo.

Dada uma A-álgebra unitária, comutativa e associativa M, podemos encarar o morfismo estrutural $\varphi_M:A\to M$ como um objeto da categoria $A\backslash\mathsf{CRing}$. Nosso objetivo é mostrar que essa construção é funtorial.

Suponha então que N seja uma outra A-álgbera unitária, associativa e comutativa, e considere um morfismo unitário de A-álgebras $f:M\to N$, ou seja, a igualdade $f(1_M)=1_N$ deve ser válida. É imediato então que f pode ser visto também como um morfismo de anéis. Além disso, para qualquer $a\in A$ temos que

$$f(\varphi_M(a)) = f(a \cdot 1_M) = a \cdot f(1_M) = a \cdot 1_N = \varphi_N(a),$$

de forma que f faz comutar o diagrama abaixo.

Isso significa que f pode ser visto então como um morfismo do tipo

$$(A \overset{\varphi_M}{\to} M) \overset{f}{\longrightarrow} (A \overset{\varphi_N}{\to} N)$$

na categoria co-slice $A \backslash \mathsf{CRing}$.