OIPE A DENDER OF TRADEMARK

SEQUENCE LISTING

<110>	Brockhaus, et a	al.				
<120>	Human TNF Recep	otor				
<130>	01017/40451C					
<140> <141>	US 08/444,791 1995-05-19					
<150> <151>	US 08/095,640 1993-07-21					
<150> <151>	US 07/580,013 1990-09-10			s		
<150> <151>	CH 1347/90 1990-04-20			• 4		
<150> <151>	CH 746/90 1990-03-08					
<150> <151>	CH 3319/89 1989-09-12					
<160>	26					
<170>	PatentIn version	on 3.3				
<210><211><212><213>	1 2111 DNA Homo sapiens					
<400> gaatto	1 :gggg gggttcaaga	tcactgggac	caggccgtga	tctctatgcc	cgagtctcaa	60
ccctca	actg tcaccccaag	gcacttggga	cgtcctggac	agaccgagtc	ccgggaagcc	120
ccagca	actgc cgctgccaca	ctgccctgag	cccaaatggg	ggagtgagag	gccatagctg	180
tctggd	atgg gcctctccac	cgtgcctgac	ctgctgctgc	cgctggtgct	cctggagctg	240
ttggtg	gggaa tatacccctc	aggggttatt	ggactggtcc	ctcacctagg	ggacagggag	300
aagaga	agata gtgtgtgtcc	ccaaggaaaa	tatatccacc	ctcaaaataa	ttcgatttgc	360
tgtaco	aagt gccacaaagg	aacctacttg	tacaatgact	gtccaggccc	ggggcaggat	420
acggad	tgca gggagtgtga	gagcggctcc	ttcaccgctt	cagaaaacca	cctcagacac	480
tgcct	agct gctccaaatg	ccgaaaggaa	atgggtcagg	tggagatctc	ttcttgcaca	540
gtggad	cggg acaccgtgtg	tggctgcagg	aagaaccagt	accggcatta	ttggagtgaa	600
aacctt	ttcc agtgcttcaa	ttgcagcctc	tgcctcaatg	ggaccgtgca	cctctcctgc	660
caggag	gaaac agaacaccgt	gtgcacctgc	catgcaggtt	tctttctaag	agaaaacgag	720
tgtgt	tcct gtagtaactg	taagaaaagc	ctggagtgca	cgaagttgtg	cctaccccag	780
attgag	gaatg ttaagggcac	tgaggactca	ggcaccacag	tgctgttgcc	cctggtcatt	840

ttctttggtc tttqcctttt atccctcctc ttcattggtt taatgtatcg ctaccaacgg 900 960 tggaagtcca agctctactc cattgtttgt gggaaatcga cacctgaaaa agagggggag cttgaaggaa ctactactaa gcccctggcc ccaaacccaa gcttcagtcc cactccaggc 1020 ttcacccca ccctgggctt cagtcccgtg cccagttcca ccttcacctc cagctccacc 1080 1140 tatacccccg gtgactgtcc caactttgcg gctccccgca gagaggtggc accaccctat cagggggctg accecatect tgcgacagec etegeeteeg accecatece caaceceett 1200 cagaagtggg aggacagcgc ccacaagcca cagagcctag acactgatga ccccgcgacg 1260 ctgtacgccg tggtggagaa cgtgcccccg ttgcqctgqa aggaattcgt gcggcgccta 1320 gggctgagcg accacgagat cgatcggctg gagctgcaga acgggcgctg cctgcgcgag 1380 gegeaataca geatgetgge gacetggagg eggegeaege egeggegega ggeeaegetg 1440 gagetgetgg gaegegtget eegegaeatg gaeetgetgg getgeetgga ggaeategag .. 1500 gaggegettt geggeeeege egeeeteeeg eeegegeeea gtetteteag atgaggetge 1560 1620 gcccctgcgg gcagctctaa ggaccgtcct gcgagatcgc cttccaaccc cacttttttc tggaaaggag gggtcctgca ggggcaagca ggagctagca gccgcctact tggtgctaac 1680 ccctcgatgt acatagcttt tctcagctgc ctgcgcgccg ccgacagtca gcgctgtgcg 1740 cgcggagaga ggtgcgccgt gggctcaaga gcctgagtgg gtggtttgcg aggatgaggg 1800 acgctatgcc tcatgcccgt tttgggtgtc ctcaccagca aggctgctcg ggggcccctg 1860 1920 gttttgtttt taaatcaatc atgttacact aatagaaact tggcactcct gtgccctctg 1980 cctggacaag cacatagcaa gctgaactgt cctaaggcag gggcgagcac ggaacaatgg 2040 ggccttcagc tggagctgtg gacttttgta catacactaa aattctgaag ttaaaaaaaa 2100 aacccgaatt c 2111

Met Gly Leu Ser Thr Val Pro Asp Leu Leu Pro Leu Val Leu Leu 1 5 10 15

Glu Leu Leu Val Gly Ile Tyr Pro Ser Gly Val Ile Gly Leu Val Pro 20 25 30

His Leu Gly Asp Arg Glu Lys Arg Asp Ser Val Cys Pro Gln Gly Lys 35 . 40 45

<210> 2

<211> 455

<212> PRT

<213> Homo sapiens

<400> 2

Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys Thr Lys Cys His Lys 55 Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro Gly Gln Asp Thr Asp Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala Ser Glu Asn His Leu Arg His Cys Leu Ser Cys Ser Lys Cys Arg Lys Glu Met Gly Gln Val Glu Ile Ser Ser Cys Thr Val Asp Arg Asp Thr Val Cys Gly Cys Arg Lys Asn Gln Tyr Arg His Tyr Trp Ser Glu Asn Leu Phe Gln Cys Phe 130 135 140 Asn Cys Ser Leu Cys Leu Asn Gly Thr Val His Leu Ser Cys Gln Glu Lys Gln Asn Thr Val Cys Thr Cys His Ala Gly Phe Phe Leu Arg Glu . Asn Glu Cys Val Ser Cys Ser Asn Cys Lys Lys Ser Leu Glu Cys Thr Lys Leu Cys Leu Pro Gln Ile Glu Asn Val Lys Gly Thr Glu Asp Ser 200 Gly Thr Thr Val Leu Leu Pro Leu Val Ile Phe Phe Gly Leu Cys Leu 215 Leu Ser Leu Leu Phe Ile Gly Leu Met Tyr Arg Tyr Gln Arg Trp Lys Ser Lys Leu Tyr Ser Ile Val Cys Gly Lys Ser Thr Pro Glu Lys Glu 245 Gly Glu Leu Glu Gly Thr Thr Lys Pro Leu Ala Pro Asn Pro Ser Phe Ser Pro Thr Pro Gly Phe Thr Pro Thr Leu Gly Phe Ser Pro Val 275 280

Pro Ser Ser Thr Phe Thr Ser Ser Ser Thr Tyr Thr Pro Gly Asp Cys

295

290

305	Asn	· ·	Ala	Ala	310	Arg	Arg	GIU	vai	315	Pro	PIO	Tyr	GIN	320		
Ala	Asp	Pro	Ile	Leu 325	Ala	Thr	Ala	Leu	Ala 330	Ser	Asp	Pro	Ile	Pro 335	Asn		
Pro	Leu	Gln	Lys 340	Trp	Glu	Asp	Ser	Ala 345	His	Lys	Pro	Gln	Ser 350	Leu	Asp		
Thr	Asp	Asp 355	Pro	Ala	Thr	Leu	Tyr 360	Ala	Val	Val	Glu	Asn 365	Val	Pro	Pro		
Leu	Arg 370	Trp	Lys	Glu	Phe	Val 375	Arg	Arg	Leu	Gly	Leu 380	Ser	Asp	His	Glu		
Ile 385	Asp	Arg	Leu	Glu	Leu 390	Gln	Asn	Gly	Arg	Cys 395	Leu	Arg	Glu	Ala	Gln 400		-
Tyr	Ser	Met	Leu	Ala 405		Tṛp	Arg	Arg	Arg 410	Thr	Pro	Arg	Arg	Glu 415	Ala		
Thr	Leu	Glu	Leu 420	Leu	Gly	Arg	Val	Leu 425	Arg	Asp	Met	Asp	Leu 430	Leu	Gly		
Cys	Leu	Glu 435	Asp	Ile	Glu	Glu	Ala 440	Leu	Cys	Gly	Pro	Ala 445	Ala	Leu	Pro		
Pro	Ala 450	Pro	Ser	Leu	Leu	Arg 455											
<210 <211 <212 <213	l> 2 2> I	3 2339 DNA Homo	sap:	iens													
<400 tcgg		ccg (tgtgl	tgacı	tc ct	gtga	aggad	c ago	cacat	taca	ccca	agcto	ctg :	gaact	gggtt		60
ccc	gagt	gct (tgag	ctgt	gg ct	cccg	gctgt	ago	ctct	gacc	aggt	tggaa	aac	tcaa	gcctgc	1	20
acto	ggga	aac a	agaa	ccgca	at ct	gcad	cctgo	c ago	gccc	ggct	ggta	actgo	ege (gctga	agcaag	1	80
cag	gaggg	ggt g	gccg	gctgi	tg cg	gege	gct	g cc	gaagt	tgcc	gcc	cggg	ctt (cggc	gtggcc	2	40
agad	cag	gaa (ctgaa	aacat	tc ag	gacgt	tggtg	g tgo	caago	cct	gtg	ccc	3 9 9	gacgi	tctcc	3	00
															gccatc	3	60
															atggcc		20
															ccaagt		80
CCAC	122CC	rca (3020	COCE	c a:	acca(~C+C(~ rr/	~CT (7)		caat	-aaa	~CC /	CACC	CCCCA	5	40

gctgaaggga gca	actggcga	cttcgctctt	ccagttggac	tgattgtggg	tgtgacagcc	600
ttgggtctac taa	taatagg	agtggtgaac	tgtgtcatca	tgacccaggt	gaaaaagaag	660
cccttgtgcc tgc	agagaga	agccaaggtg	cctcacttgc	ctgccgataa	ggcccggggt	720
acacagggcc ccg	gagcagca	gcacctgctg	atcacagcgc	cgagctccag	cagcagctcc	780
ctggagagct cgg	gccagtgc	gttggacaga	agggcgccca	ctcggaacca	gccacaggca	840
ccaggcgtgg agg	gccagtgg	ggccggggag	gcccgggcca	gcaccgggag	ctcagcagat	900
tetteecetg gtg	gccatgg	gacccaggtc	aatgtcacct	gcatcgtgaa	cgtctgtagc	960
agctctgacc aca	agctcaca	gtgctcctcc	caagccagct	ccacaatggg	agacacagat	1020
tccagcccct cgg	gagteece	gaaggacgag	caggtcccct	tctccaagga	ggaatgtgcc	1080
tttcggtcac ago	tggagac	gccagagacc	ctgctgggga	gcaccgaaga	gaagcccctg	1140
ccccttggag tgd	cctgatgc	tgggatgaag	cccagttaac	caggccggtg	tgggctgtgt	1200
cgtagccaag gtg	gctgagc	cctggcagga	tgaccctgcg	aaggggccct	ggtccttcca	1260
ggcccccacc act	aggactc	tgaggctctt	tctgggccaa	gttcctctag	tgccctccac	1320
agccgcagcc tcd	cctctgac	ctgcaggcca	agagcagagg	cagcgagttg	tggaaagcct	1380
ctgctgccat ggd	gtgtccc	tctcggaagg	ctggctgggc	atggacgttc	ggggcatgct	1440
ggggcaagtc cct	gagtctc	tgtgacctgc	cccgcccagc	tġcacctgcc	agcctggctt	1500
ctggagccct tgg	gttttt	gtttgtttgt	ttgtttgttt	gtttgtttct	ccccctgggc	1560
tctgcccagc tct	ggcttcc	agaaaacccc	agcatccttt	tctgcagagg	ggctttctgg	1620
agaggaggga tgo	etgeetga	gtcacccatg	aagacaggac	agtgcttcag	cctgaggctg	1680
agactgcggg atg	gtcctgg	ggctctgtgc	agggaggagg	tggcagccct	gtagggaacg	1740
gggtccttca agt	tagctca	ggaggcttgg	aaagcatcac	ctcaggccag	gtgcagtggc	1800
tcacgcctat gat	cccagca	ctttgggagg	ctgaggcggg	tggatcacct	gaggttagga	1860
gttcgagacc ago	ectggcca	acatggtaaa	accccatctc	tactaaaaat	acagaaatta	1920
gccgggcgtg gtg	ggcgggca	cctatagtcc	cagctactca	gaagcctgag	gctgggaaat	1980
cgtttgaacc cgg	ggaagcgg	aggttgcagg	gagccgagat	cacgccactg	cactccagcc	2040
tgggcgacag ago	egagagtc	tgtctcaaaa	gaaaaaaaaa	aagcaccgcc	tccaaatgct	2100
aacttgtcct ttt	gtaccat	ggtgtgaaag	tcagatgccc	agagggccca	ggcaggccac	2160
catattcagt gct	gtggcct	gggcaagata	acgcacttct	aactagaaat	ctgccaattt	2220
tttaaaaaag taa	agtaccac	tcaggccaac	aagccaacga	caaagccaaa	ctctgccagc	2280
cacatccaac ccc	eccacctg	ccatttgcac	cctccgcctt	cactccggtg	tgcctgcag	2339

<210> 4 <211> 392

<212> PRT

<213> Homo sapiens

<400> 4

Ser Asp Thr Val Cys Asp Ser Cys Glu Asp Ser Thr Tyr Thr Gln Leu 1 5 10 15

Trp Asn Trp Val Pro Glu Cys Leu Ser Cys Gly Ser Arg Cys Ser Ser 20 25 30

Asp Gln Val Glu Thr Gln Ala Cys Thr Arg Glu Gln Asn Arg Ile Cys 35 40 45

Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu Ser Lys Gln Glu Gly Cys 50 55 60

Arg Leu Cys Ala Pro Leu Pro Lys Cys Arg Pro Gly Phe Gly Val Ala 65 70 75 80

Arg Pro Gly Thr Glu Thr Ser Asp Val Val Cys Lys Pro Cys Ala Pro 85 90 95

Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr Asp Ile Cys Arg Pro His 100 105 110

Gln Ile Cys Asn Val Val Ala Ile Pro Gly Asn Ala Ser Arg Asp Ala 115 120 125

Val Cys Thr Ser Thr Ser Pro Thr Arg Ser Met Ala Pro Gly Ala Val 130 135 140

His Leu Pro Gln Pro Val Ser Thr Arg Ser Gln His Thr Gln Pro Ser 145 150 155 160

Pro Glu Pro Ser Thr Ala Pro Ser Thr Ser Phe Leu Leu Pro Met Gly 165 170 175

Pro Ser Pro Pro Ala Glu Gly Ser Thr Gly Asp Phe Ala Leu Pro Val 180 185 190

Gly Leu Ile Val Gly Val Thr Ala Leu Gly Leu Leu Ile Ile Gly Val 195 200 205

Val Asn Cys Val Ile Met Thr Gln Val Lys Lys Pro Leu Cys Leu 210 215 220

Gln Arg Glu Ala Lys Val Pro His Leu Pro Ala Asp Lys Ala Arg Gly 225 230 235 240

Thr Gln Gly Pro Glu Gln Gln His Leu Leu Ile Thr Ala Pro Ser Ser 245 250 255

Ser Ser Ser Ser Leu Glu Ser Ser Ala Ser Ala Leu Asp Arg Ala 260 265 270

Pro Thr Arg Asn Gln Pro Gln Ala Pro Gly Val Glu Ala Ser Gly Ala 275 280 285

Gly Glu Ala Arg Ala Ser Thr Gly Ser Ser Ala Asp Ser Ser Pro Gly 290 295 300

Gly His Gly Thr Gln Val Asn Val Thr Cys Ile Val Asn Val Cys Ser 305 310 315 320

Ser Ser Asp His Ser Ser Gln Cys Ser Ser Gln Ala Ser Ser Thr Met 325 330 335

Gly Asp Thr Asp Ser Ser Pro Ser Glu Ser Pro Lys Asp Glu Gln Val 340 345 350

Pro Phe Ser Lys Glu Glu Cys Ala Phe Arg Ser Gln Leu Glu Thr Pro 355 360 365

Glu Thr Leu Leu Gly Ser Thr Glu Glu Lys Pro Leu Pro Leu Gly Val 370 380

Pro Asp Ala Gly Met Lys Pro Ser

<210> 5

<211> 28

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic peptide

<220>

<221> misc_feature

<222> (25)..(25)

<223> Xaa = unknown amino acid

<400> 5

Leu Val Pro His Leu Gly Asp Arg Glu Lys Arg Asp Ser Val Cys Pro 1 5 10 15

Gln Gly Lys Tyr Ile His Pro Glu Xaa Asn Ser Ile 20 25

```
<210> 6
 <211> 15
<212> PRT
 <213> Artificial sequence
 <220>
 <223> Synthetic peptide
 <400> 6
 Ser Thr Pro Glu Lys Glu Gly Glu Leu Glu Gly Thr Thr Lys
 <210> 7
 <211> 18
 <212> PRT
 <213> Artificial sequence
 <220>
 <223> Synthetic peptide
· <400> 7.
 Ser Gln Leu Glu Thr Pro Glu Thr Leu Leu Gly Ser Thr Glu Glu Lys
 Pro Leu
 <210> 8
 <211> 4
 <212> PRT
 <213> Artificial sequence
 <220>
 <223> Synthetic peptide
 <400> 8
 Val Phe Cys Thr
 <210>
 <211>
        16
 <212> PRT
 <213> Artificial sequence
 <220>
 <223> Synthetic peptide
 <400> 9
 Asn Gln Pro Gln Ala Pro Gly Val Glu Ala Ser Gly Ala Gly Glu Ala
                                     10
 <210> 10
 <211> 18
<212> PRT
```

```
<213> Artificial sequence
<220>
<223> Synthetic peptide
<220>
<221> misc_feature <222> (8)..(8)
<223> Xaa = unknown amino acid
<400> 10
Leu Pro Ala Gln Val Ala Phe Xaa Pro Tyr Ala Pro Glu Pro Gly Ser
Thr Cys
<210> 11
<211> 13
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<220>
<221> misc_feature
<222>
       (2)..(2)
<223> Xaa = unknown amino acid
<400> 11
Ile Xaa Pro Gly Phe Gly Val Ala Tyr Pro Ala Leu Glu
<210> 12
<211> 4
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 12
Leu Cys Ala Pro
<210> 13
<211>
<212> PRT
<213> Artificial sequence
<220>
```

<223> Synthetic peptide

```
<400> 13
Val Pro His Leu Pro Ala Asp
<210> 14
<211> 15
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<220>
<221> misc_feature
<222> (9)..(10)
<223> Xaa = unknown amino acid
<220>
<221> misc_feature
<222> (13)..(13)
<222> (13)..(13)
<223> Xaa = unknown amino acid
<400> 14
Gly Ser Gln Gly Pro Glu Gln Gln Xaa Xaa Leu Ile Xaa Ala Pro
<210> 15
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 15
Leu Val Pro His Leu Gly Asp Arg Glu
                5
<210> 16
<211>
       27
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic primer
<400> 16
                                                                         27
agggagaaga gagatagtgt gtgtccc
<210> 17
<211> 41
<212> DNA
<213> Artificial sequence
```

<220>

```
<223> Synthetic primer
<400> 17
aagcttggcc aggatccagc tgactgactg atcgcgagat c
                                                                     41
<210> 18
<211> 41
<212> DNA
<213> Artificial sequence
<220>
<223> Antisense primer
gatctcgcga tcagtcagtc agctggatcc tggccaagct t
                                                                     41
<210> 19
<211>
      38
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic primer
<400> 19
cacagggatc catagctgtc tggcatgggc ctctccac
                                                                     38
<210>
      20
<211>
      44
<212> DNA
<213> Artificial sequence
<220>
<223> Antisense primer
<400> 20
cccggtacca gatctctatt atgtggtgcc tgagtcctca gtgc
                                                                     44
<210> 21
<211> 19
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic primer
<400> 21
gatccagaat tcataatag
                                                                     19
<210> 22
<211>
      19
<212> DNA
<213> Artificial sequence
<220>
<223> Antisense primer
<400> 22
```

gtaceta	atta tgaattetg	19
<210><211><212><212><213>	23 31 DNA Artificial sequence	
<220>		
<223> <400>	Synthetic primer	
gcacca	cata atagagatct ggtaccggga a	31
<210><211><211><212><213>	24 25 DNA Artificial sequence	-
<220> <223>	Antisense primer	
<400> cccggta	24 acca gatctctatt atgtg	25
<210><211><212><212><213>		
<220> <223>	Synthetic primer	
<400> tacgage	25 ctcg gccatagctg tctggcatg	.29
<210><211><211><212><213>	26 29 DNA Artificial sequence	
<220> <223>	Synthetic primer	
<400> atagage	26 ctct gtggtgcctg agtcctcag	29