

EN.600.475 Machine Learning

Regularization

Raman Arora Lecture 8 February 20, 2017

- · Model complexity and overfitting
- Shrinkage methods: ridge regression, Lasso

Slides credit: Greg Shakhnarovich 1

Review

Review: noise model and log-likelihood

• Statistical model: noise as a Gaussian random variable

$$y = f(\mathbf{x}; \mathbf{w}) + \nu, \qquad \nu \sim \mathcal{N}(\nu; 0, \sigma^2)$$

equivalent to $p(y|\mathbf{x}; \mathbf{w}, \sigma) = \mathcal{N}(y; f(\mathbf{x}; \mathbf{w}), \sigma^2)$

• Maximizing log-likelihood under this model

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmax}} \sum_{i} \log p(y_i | \mathbf{x}_i; \mathbf{w}, \sigma)$$

is equivalent to least-squares regression

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i} (y_i - f(\mathbf{x}_i; \mathbf{w}))^2$$

Review: Decomposition of error

Approximation error

$$E\left[\left(y-\mathbf{w}^{*T}\mathbf{x}\right)^{2}\right]$$

Estimation error

$$E\left[\left(\mathbf{w}^{*T}\mathbf{x} - \hat{\mathbf{w}}^{T}\mathbf{x}\right)^{2}\right]$$

- Approximation error: due to the failure to include optimal predictor in the model class, plus inherent uncertainty in y|x
- Estimation error: due to failure to select the best predictor in the chosen model class; could be reduced with more data

3

Review

Review: generalized linear regression

$$f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 \phi_1(\mathbf{x}) + w_2 \phi_2(\mathbf{x}) + \dots + w_m \phi_m(\mathbf{x}),$$

• Still the same ML estimation technique applies:

$$\hat{\mathbf{w}} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y}$$

where ${f X}$ is the *design matrix*

$$\begin{bmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \phi_2(\mathbf{x}_1) & \dots & \phi_m(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \phi_2(\mathbf{x}_2) & \dots & \phi_m(\mathbf{x}_2) \\ \dots & \dots & \dots & \dots & \dots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \phi_2(\mathbf{x}_N) & \dots & \phi_m(\mathbf{x}_N) \end{bmatrix}$$

Polynomial regression

• Consider 1D for simplicity:

$$f(x; \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_m x^m.$$

- No longer linear in x but still linear in \mathbf{w} !
- Define $\phi(x) = [1, x, x^2, \dots, x^m]^T$
- Then, $f(x; \mathbf{w}) = \mathbf{w} \cdot \phi(x)$ and we are back to the familiar simple linear regression. The least squares solution:

$$\hat{\mathbf{w}} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y}, \text{ where } \mathbf{X} = \begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^m \\ 1 & x_2 & x_2^2 & \dots & x_2^m \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 1 & x_N & x_N^2 & \dots & x_N^m \end{bmatrix}$$

5

General linear regression

General additive regression models

• A general extension of the linear regression model:

$$f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 \phi_1(\mathbf{x}) + w_2 \phi_2(\mathbf{x}) + \ldots + w_m \phi_m(\mathbf{x}),$$

where $\phi_j(\mathbf{x}): \mathcal{X} \to \mathbb{R}, j=1,\ldots,m$ are the basis functions.

ullet This is still linear in ${f w}$,

$$f(\mathbf{x}; \mathbf{w}) = \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x})$$

even when ϕ is non-linear in the inputs x.

General additive regression models

$$f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 \phi_1(\mathbf{x}) + w_2 \phi_2(\mathbf{x}) + \ldots + w_m \phi_m(\mathbf{x}),$$

• Still the same ML estimation technique applies:

$$\hat{\mathbf{w}} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y}$$

where X is the *design matrix*

$$\begin{bmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \phi_2(\mathbf{x}_1) & \dots & \phi_m(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \phi_2(\mathbf{x}_2) & \dots & \phi_m(\mathbf{x}_2) \\ \dots & \dots & \dots & \dots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \phi_2(\mathbf{x}_N) & \dots & \phi_m(\mathbf{x}_N) \end{bmatrix}$$

(for convenience we will denote $\phi_0(\mathbf{x}) \equiv 1$)

7

√ □ →

Overfitting and complexity

Model complexity and overfitting

• Data drawn from 3rd order model:

How to avoid overfitting

- The basic idea: if a model overfits (is too sensitive to data) it will be unstable. I.e. removal part of the data will change the fit significantly.
- We can hold out part of the data; this is validation (val) set, or development (dev) set.
- Fit the model to the rest, and then test on the heldout data.
- What are the problems of this approach?
 - If the heldout set too small, we are susceptible to chance.
 - If it's too large, we get overly pessimistic (training on too little data compared to what we could do).

9

Overfitting and complexity

Cross-validation

- The improved holdout method: *k*-fold *cross-validation*
 - Partition data into k roughly equal parts;
 - Train on all but j-th part, test on j-th part

Cross-validation

- The improved holdout method: *k*-fold *cross-validation*
 - Partition data into k roughly equal parts;
 - Train on all but j-th part, test on j-th part

11 **◆ □ ▶**

Overfitting and complexity

Cross-validation

- ullet The improved holdout method: k-fold cross-validation
 - \bullet Partition data into k roughly equal parts;
 - Train on all but j-th part, test on j-th part

Cross-validation

- The improved holdout method: k-fold cross-validation
 - Partition data into k roughly equal parts;
 - Train on all but j-th part, test on j-th part

 x_1 x_N

• An extreme case: leave-one-out cross-validation

$$\hat{L}_{cv} = \frac{1}{N} \sum_{i=1}^{N} (y_i - f(\mathbf{x}_i; \hat{\mathbf{w}}_{-i}))^2$$

where $\hat{\mathbf{w}}_{-i}$ is fit to all the data but the *i*-th example.

13

Overfitting and complexity

Cross-validation: example

- This is a very good estimate, although expensive to compute
 - Need to run N estimation problems each on N-1 examples!
 - An important research area: devising tricks for efficiently computing cross-validation estimates (by taking advantage of overlap between folds).

Cross-validation: example

$$m=1: L=1.4, \hat{L}_{\rm cv}=2.6$$

$$m = 5: L = 0.3, \hat{L}_{cv} = 2.7$$

$$m=3: L=0.4, \hat{L}_{\rm cv}=1.3$$

$$m=5: L=0.3, \hat{L}_{\rm cv}=2.7 \quad m=10: L=0, \hat{L}_{\rm cv}=4\times 10^4$$

15

4 🗇 ▶

Overfitting and complexity

Understanding overfitting

- Cross validation provides some means of dealing with overfitting
- What is the source of overfitting? Why do some models overfit more than others?
- We can try to get some insight by thinking about the estimation process for model parameters

Roadmap

- So far: least squares regression (with arbitrary feature functions)
 - Closed form solution for maximum likelihood
 - Overfitting is a problem
- Today: regularization main tool to combat overfitting
- Also: gradient descent as an alternative to closed form solution

17

Complexity and overfitting

Controlling for overfitting

- More complex model (10th degree) overfits more than simple model (linear)
- Pure ERM would always prefer complex models
- Holdout/validation/cross-validation is a way to control for this in model selection

Model complexity - intuition

- Intuitively, the complexity of the model can be measured by the number of "degrees of freedom" (independent parameters).
 - The more complex the model, the more data needed to fit
 For a given number of points, a more complex model more likely to overfit.

m=1, 2 parameters

m=10, 11 parameters

• This is an issue only because of finite training data!

19

√□ →

Complexity and overfitting

Penalizing model complexity

- Idea 1: restrict model complexity based on amount of data
 - \bullet Rule of thumb: ≈ 10 examples per parameter
- Idea 2: directly penalize by the number of parameters. Akaike information criterion (AIC): maximize

$$\log p\left(X \mid \widehat{\mathbf{w}}\right) - \#\mathsf{params}$$

• But: Definition of model complexity as a number of parameters is a bit too simplistic. Consider feature vector

$$\phi x = \begin{bmatrix} 1 & x & -2x & 2x & x^2 & \frac{1}{2}x^2 \end{bmatrix}$$

Does linear regression $\phi(x) \to y$ really have 6 parameters?

ullet Idea: look at the behavior of the values of \mathbf{w}^*

Linear regression complexity

• Example: polynomial regression, true [from Bishop, Ch. 1]

• Value of the optimal (ML) regression coefficients:

	m = 0	m = 1	m = 3	m = 9
w_0^*	0.19	0.82	0.31	0.35
w_1^*		-1.27	7.99	232.37
w_2^*			-25.43	-5321.83
$egin{array}{c} w_2^* \ w_3^* \ w_4^* \end{array}$			17.37	48568.31
w_4^*				-231639.30
$w_{5}^{\overline{*}}$				640042.26
w_6^*				-1061800.52
$w_6^* \\ w_7^*$				1042400.18
w_8^*				-557682.99
w_9^*				125201.43

21

Regularization

Description length

- Intuition: should penalize not the parameters, but the number of bits required to encode the parameters
- With finite set of parameter values, these are equivalent
- With "infinite" set, we can limit the effective number of degrees of freedom by restricting the value of the parameters.
- Then we have penalized log-likelihood:

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmax}} \left\{ \frac{1}{2} \sum_{i=1}^{N} \log p(\mathsf{data}_i; \mathbf{w}) - \mathsf{penalty}(\mathbf{w}) \right\}$$

Shrinkage methods

- Shrinkage methods impose penalty on the size of w
- ullet We can measure "size" in a few different ways. Let us start with L_2 norm:

$$\mathbf{w}_{\mathsf{ridge}}^* = \underset{\mathbf{w}}{\operatorname{argmax}} \left\{ \sum_{i=1}^{N} \log p(\mathsf{data}_i; \mathbf{w}) - \lambda \|\mathbf{w}\|^2 \right\}$$

in regression "data $_i$ " = $y_i|\mathbf{x}_i$

- This is ridge regression; λ is the regularization parameter
- ullet Does it matter that log-likelihood is not averaged? Consider relative effect of the value of λ

23

${\sf Regularization}$

Ridge regression

$$\mathbf{w}_{\mathsf{ridge}}^* = \operatorname*{argmin}_{\mathbf{w}} \left\{ \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2 + \lambda \sum_{j=1}^{m} w_j^2 \right\}$$

- Recall: $\mathbf{w} = [w_0, w_1, \dots, w_m]$
- Usually do not include w_0 in regularization (why?)
- Closed form solution:

$$\widehat{\mathbf{w}}_{\mathsf{ridge}}^* = (\lambda \mathbf{I} + \mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}.$$

 Careful: solution not invariant to scaling! Should normalize input before solving.

Lasso regression

• The L_1 -penalized maximum likelihood under Gaussian noise model:

$$\mathbf{w}_{\mathsf{lasso}}^* = \underset{\mathbf{w}}{\operatorname{argmax}} \left\{ -\sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2 - \lambda \sum_{j=1}^{m} |w_j| \right\}$$

- This is still concave (i.e. unique maximum), but not "smooth" (differentiable).
- Can solve it efficiently using convex programming methods or first-order numerical optimization (gradient descent)
- Why is it called "lasso"?
 least absolute shrinkage and selection operator

25 **4** ∄ ▶

${\sf Regularization}$

Optimization of ridge regression

Can rewrite the optimization problem

$$\min_{\mathbf{w}} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2 + \lambda \sum_{j=1}^{m} w_j^2$$

in the proper objective/constraint form:

$$\min_{\mathbf{w}} \sum_{i=1}^{N} \left(y_i - \mathbf{w} \cdot \mathbf{x}_i\right)^2$$
 subject to $\sum_{i=1}^{m} w_j^2 \leq t$

• Correspondence $\lambda \Rightarrow t$ can be shown using Lagrange multipliers.

Optimization for Lasso

Similarly, for Lasso:

$$\min_{\mathbf{w}} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2$$

$$\mathsf{subject} \ \mathsf{to} \sum_{j=1}^m |w_j| \leq \, t$$

ullet Compare shape of the penalty as a function of w_j :

27

◆ 🗗 →

Regularization

Lasso vs. ridge: geometry of error surfaces

ullet An equivalent formulation for L_p regularization: constrained maximization

$$\hat{\mathbf{w}} = \underset{\mathbf{w}: \sum_{j=1}^{m} |w_j|^p \le \beta}{\operatorname{argmax}} - \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2.$$

- With sufficiently large λ (=sufficiently small β) lasso leads to sparsity.
- Must explicitly solve the above optimization problem – e.g., using Lagrange multipliers.

Choice of λ

• Example [from Bishop, Ch. 1]: 9th deg polynomial with varying λ :

ullet Most often: choose λ by (cross) validation

29

4 🗗 ▶

Regularization

Example: lasso vs. ridge regularization paths

• Example: prostate data [Hastie, Tibshirani and Friedman] Red lines: choice of λ by 10-fold CV.

General view of L_q penalty

ullet Can be creative in design of penalty function $\|\mathbf{w}\|_q$

- ullet For q>1, no sparsity is achieved.
- ullet For q < 1, non-convex
- What about L_0 ?

$$\min_{\mathbf{w}} \sum (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2 \quad \text{s.t. } |\{w_j : w_j > 0\}| \le M$$

is NP-hard

31

Gradient descent

Beyond closed form solution

• So far: solve (least squares) regression with a closed form solution

$$\mathbf{w}^* = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y}$$

- Sometimes we can not do this. E.g., the data matrix is too large to compute the pseudoinverse for
- If we move away from simple squared loss (e.g., in PS1: asymmetric loss) also lose the closed form solution
- Alternative: numerical optimization gradient descent
- Consider (for now) convex or concave functions

Gradient ascent/descent

• The idea behind gradient ascent: "hill climbing" on the function surface.

- Start at a (random) location
- Make steps in the direction of maximal altitude increase.
- An equivalent: gradient *descent* on the *convex* loss $-\log p\left(y\mid\mathbf{x};\mathbf{w}\right)$

33

∢ 🗗 ▶

Gradient descent

Gradient descent algorithm on $f(\mathbf{X}, \mathbf{y}; \mathbf{w})$

- Iteration counter t = 0
- ullet Initialize $\mathbf{w}^{(t)}$ (to zero or a small random vector)
- for $t = 1, \ldots$: compute gradient

$$\mathbf{g}^{(t)} = \nabla f\left(\mathbf{X}, \mathbf{y}; \mathbf{w}^{(t-1)}\right)$$

update model

$$\mathbf{w}^{(t)} = \mathbf{w}^{(t-1)} - \eta \mathbf{g}^{(t)}$$

check for convergence

ullet The learning rate η controls the step size

Gradient descent convergence

- Generally, for convex functions, gradient descent will converge
- ullet Setting the learning rate η may be very important to ensure rapid convergence

From Lecun et al, 1996

35 **4** ∄ ▶

Gradient descent

Gradient descent convergence

- A lot of theory on convergence of gradient descent
- Usually relies on various properties of the objective function: strong convexity, smoothness, etc.
- In practice, need to monitor the objective, tweak learning rate, and consider stopping ("convergence") criteria
- Common criteria (often use a combination):
 - Maximum number of iterations (time budget)
 - Minimum required change in objective value (loss)
 - Minimum required change in model parameters (w)
- If stopped because of max iterations: may not have converged
- Problematic criteria: monitor absolute (not relative) value of something like objective or parameters. Often hard to know what the "right" value for these is.