Week 6

SA23001071 杨哲睿

1.x.1

Suppose that Ω is bounded and that $1 \le p \le q \le \infty$. Prove $L^q(\Omega) \subset L^p(\Omega)$ (Hint: use Holders inequality.) Give examples to show that the inclusion is strict if p < q and false if Ω is not bounded.

Proof:

Holder inequality:

$$\forall \frac{1}{p} + \frac{1}{q} = 1, f \in L^p(\Omega), g \in L^q(\Omega) \quad \left\| f \cdot g \right\|_1 \leq \left\| f \right\|_p \cdot \left\| g \right\|_q$$

设 $f\in L^q(\Omega), q<\infty$, 即 $\left\|f\right\|_q<+\infty$, 即

$$\left(\int_{\Omega} |f|^q \, \mathrm{d}x\right)^{\frac{1}{q}} < +\infty \Rightarrow \int_{\Omega} |f|^q \, \mathrm{d}x < +\infty$$

那么:

$$\int_{\Omega} |f|^p \cdot 1 \, \mathrm{d}x \le \left(\int_{\Omega} \left(|f|^p \right)^{\frac{q}{p}} \, \mathrm{d}x \right)^{\frac{p}{q}} \left(\int_{\Omega} 1 \, \mathrm{d}x \right)^{\frac{q-p}{q}} = \left(\int_{\Omega} |f|^q \, \mathrm{d}x \right)^{\frac{p}{q}} (m(\Omega))^{\frac{q}{q-p}}$$

考虑到 $m(\Omega) < +\infty$, 那么

$$\int_{\Omega} |f|^p \, \mathrm{d}x < +\infty$$

即 $\|f\|_p < \infty, f \in L^{p(\Omega)}$ 。如果 $q = \infty$,即有

$$\operatorname{ess\,sup}\{f(x)\} = M < \infty$$

那么使得 |f(x)| > M 的 x 组成零测集,那显然 $\forall p < \infty$:

$$\int_{\Omega} |f|^p \, \mathrm{d}x < m(\Omega) M^p < \infty$$

此时 $f \in L^p$ 依然是成立的。综上, $L^q(\Omega) \subset L^p(\Omega), \forall 1 \leq p \leq q \leq \infty$

下面的例子是说 p < q 时,包含关系严格的:考虑定义在 $\Omega = (0,1)$ 上的函数 $f(x) = \frac{1}{2\sqrt{x}}$,它明显不是 L^2 的,因为:

$$\int_{(0,1)} |f(x)|^2 dx = \frac{1}{4} \int_{(0,1)} \frac{1}{x} dx = \infty$$

但它是 L^1 的,这是因为:

$$\int_{(0,1)} f(x) \, \mathrm{d}x = \int_{(0,1)} \frac{1}{2\sqrt{x}} \, \mathrm{d}x = 1 < \infty$$

下面的例子是说, $m(\Omega)<\infty$ 是必要的: 考虑定义在 $\Omega=[1,\infty)$ 上的函数 $f(x)=\frac{1}{x}$,它是 L^2 的:

$$\int_{[1,\infty)} \frac{1}{x^2} \, \mathrm{d}x = 1$$

但它不是 L^1 的:

$$\int_{[1,\infty)} \frac{1}{x} \, \mathrm{d}x = \infty$$

1.x.2

Show that the set of bounded, continuous functions on a domain Ω forms a Banach space with norm $\|\cdot\|_{L^\infty(\Omega)}$

Proof: 任取 f_n 为 $C(\Omega)$ 中的柯西列,即

$$||f_n - f_m|| \to 0 \quad (n, m \to \infty)$$

定义

$$f(x) = \lim_{n \to \infty} f_n(x)$$

这样的定义是合理的, 因为 $\forall x \in \Omega$,

$$|f_n(x) - f_m(x)| \to 0 \quad (n, m \to \infty)$$

即 $f_{n(x)}$ 是柯西列。

若不然,即 $\exists \varepsilon > 0, \forall N, \exists m, n > N$ 由 $f_n - f_m \in C(\Omega)$ 可知,存在开球 $B_N(x)$ 满足 $|f_n - f_m|$ 在 $B_N(x)$ 上恒大于 ε ,而 $m(B_N(x)) > 0$,这与 $||f_n - f_m|| \to 0$ 矛盾。

首先, $\|f-f_n\| \to 0$ $(n \to \infty)$: 任取 $\forall \varepsilon > 0, \exists N > 0, \forall n, m > N$

$$||f_m - f_n|| < \varepsilon$$

即 $\forall x \in \Omega, |f_m(x) - f_n(x)| < \varepsilon$, 在其中令 $m \to \infty$, 可得

$$\forall x, |f_n(x) - f(x)| < \varepsilon$$

这就是

$$||f_n - f|| \to 0 \quad (N \to \infty)$$

我们需要说明, f(x) 是连续的: 固定x, 任取 $\forall \varepsilon > 0$, 因为 $\|f_n - f\| \to 0$, 所以存在n使得:

$$\forall x \in \Omega, \quad |f_n(x) - f(x)| < \frac{\varepsilon}{3}$$

而 $f_n \in C(\Omega)$ 所以 $\exists \delta > 0$, 使得 $\left| f_{n(x)} - f_{n(y)} \right| < \frac{\varepsilon}{3}$,此时

$$|f(x)-f(y)|<\left|f(x)-f_{n(y)}\right|+|f_n(x)-f(x)|+|f_n(y)-f(y)|<\varepsilon$$

这说明 f 连续, 即 $f \in C(\Omega)$ 。

我们还需要说明 f(x) 是有界的。首先存在n使得:

$$||f_n - f|| < 1 \Rightarrow \forall x \in \Omega ||f_n(x) - f(x)|| < 1$$

而 f_n 本身是有界的, 即 $\sup_x \left| f_{n(x)} \right| = M < \infty$ 那么:

$$|f(x)| \le |f_n(x)| + |f_n(x) - f(x)| = M + 1 < \infty$$

所以f是有界的。

综上我们说明了任何柯西列都收敛,因此Ω上的有界连续函数全体构成Banach空间。

1.x.3

Suppose that Ω is bounded and that $f_j \to f$ in $L^p(\Omega)$. Using Holder's inequality prove that:

$$\int_{\Omega} f_j(x) \, \mathrm{d}x \to \int_{\Omega} f(x) \, \mathrm{d}x \quad \text{as } j \to \infty$$

Proof:

$$\begin{split} \int_{\Omega} & \left| f_j(x) - f(x) \right| \mathrm{d}x \leq \left(\int_{\Omega} \left| f_j - f \right|^p \mathrm{d}x \right)^{\frac{1}{p}} \left(\int_{\Omega} 1 \, \mathrm{d}x \right)^{\frac{p}{p-1}} \\ &= \left(\int_{\Omega} \left| f_j - f \right|^p \mathrm{d}x \right)^{\frac{1}{p}} (m(\Omega))^{\frac{p}{p-1}} \end{split}$$

一方面 Ω 有界,即 $m(\Omega)<\infty$;另一方面 $f_j\to f$,即 $\int_{\Omega} \left|f_j-f\right| \mathrm{d}x\to 0 \ (j\to\infty)$ 。那么

$$\int_{\Omega} |f_j(x) - f(x)| \, \mathrm{d}x \to 0 \quad (j \to \infty)$$

而

$$0 \leq \left| \int_{\Omega} f_j(x) \, \mathrm{d}x - \int_{\Omega} f(x) \, \mathrm{d}x \right| \leq \int_{\Omega} \left| f_j(x) - f(x) \right| \mathrm{d}x$$

那么

$$\int_{\Omega} f_j(x) \, \mathrm{d}x \to \int_{\Omega} f(x) \, \mathrm{d}x \quad \text{as } j \to \infty$$

1.x.6

Let $\Omega = [0, 1]$ and $1 \le p < \infty$. Show that the function f defined:

$$f(x) \coloneqq \sum_{n=1}^{\infty} 2^{-n} \log \lvert x - r_n \rvert$$

is in $L^p(\Omega)$, and moreover, that $\|f - f_j\|_p \to 0$ as $j \to \infty$ (Hint: first show that $\log x \in L^p$ and then use the fact that L^p is a Banach space)

Proof: 首先 $\log x \in L^p$,这是因为:

$$\int_{[0,1]} |\log x|^p \, dx = \int_0^\infty e^{-x} x^p \, dx = \Gamma(p+1) < \infty$$

同理,

$$\int_{[0,1]} |\log(x - r_n)|^p dx = \int_{[0,r_n]} |\log(x - r_n)|^p dx + \int_{[r_n,1]} |\log(x - r_n)|^p dx$$

$$< 2\Gamma(p+1) < \infty$$

定义 $f_j(x) = \sum_{n=1}^j 2^{-n} \log \lvert x - r_n \rvert$,显然 $f_j \in L^{p(\Omega)}$ 。 那么: $\forall j, k > N$

$$\begin{split} \|f_j - f_k\| &= \left\| \sum_{n=j+1}^k 2^{-n} \log | \ x - r_n | \right\| \\ &\leq \sum_{n=j+1}^k 2^{-n} \|\log |x - r_n| \| \\ &< 2\Gamma(p+1) \sum_{n=j+1}^k 2^{-n} \\ &= 2^{2-n} \Gamma(p+1) \to 0 \quad (N \to \infty) \end{split}$$

这说明了 $\left\{f_j\right\}$ 是Cauchy列,而 $L^{p(\Omega)}$ 是Banach空间,所以其收敛到函数 $f\in L^p(\Omega)$