

SINGLE-CHIP IEEE 802.11b/g/n 1T1R WLAN

DATASHEET

(CONFIDENTIAL: Development Partners Only)

Rev. 0.1 3 Aug 2012 Track ID:

Realtek Semiconductor Corp.

No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan

COPYRIGHT

©2011 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written permission of Realtek Semiconductor Corp.

DISCLAIMER

Realtek provides this document "as is", without warranty of any kind. Realtek may make improvements and/or changes in this document or in the product described in this document at any time. This document could include technical inaccuracies or typographical errors.

TRADEMARKS

Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document are trademarks/registered trademarks of their respective owners.

USING THIS DOCUMENT

This document is intended for the software engineer's reference and provides detailed programming information.

Though every effort has been made to ensure that this document is current and accurate, more information may have become available subsequent to the production of this guide.

REVISION HISTORY

Revision	Release Date	Summary
0.1	2012/08/03	Preliminary release

Table of Contents

1.	GE	NERAL DESCRIPTION	1
2.	FEA	ATURES	3
3.	API	PLICATION DIAGRAM	5
	3.1. 3.2. 3.3.	SINGLE-BAND 11n (1x1) SOLUTION WITH SINGLE ANTENNA	6
4.	PIN	ASSIGNMENTS	7
	4.1.	PACKAGE IDENTIFICATION	7
5.	PIN	DESCRIPTIONS	7
	5.1. 5.2. 5.3. 5.4. 5.5.	USB Bus Transceiver Interface Power Pins RF Interface LED Interface Clock and Other Pins	8 9
6.	ELI	ECTRICAL AND THERMAL CHARACTERISTICS	
	6.1. 6.2. 6.2. 6.2.	- · · · · · · · · · · · · · · · · · · ·	. 11 . <i>11</i>
7.	INT	TERFACE TIMING SPECIFICATION	. 13
,	7.1.	USB Bus during Power On Sequence	. 13
8.	ME	CHANICAL DIMENSIONS	. 14
	8.1.	MECHANICAL DIMENSIONS NOTES	. 14
9.	OR	DERING INFORMATION	. 15

List of Tables

TABLE 1.	USB BUS TRANSCEIVER INTERFACE	8
TABLE 2.	POWER PINS.	8
TABLE 3.	RF Interface	8
TABLE 4.	LED Interface	9
TABLE 5.	CLOCK AND OTHER PINS.	10
Table 6.	TEMPERATURE LIMIT RATINGS	11
Table 7.	DC CHARACTERISTICS	11
TABLE 8.	3.3V GPIO DC CHARACTERISTICS	11
Table 9.		
TABLE 10		
TABLE 11		13
TABLE 12	ORDERING INFORMATION	15

List of Figures

Figure 1. Single-Band 11n (1x1) Solution	5
FIGURE 2. SINGLE-BAND 11N (1x1) DUAL ANTENNA DIVERSITY SOLUTION	
FIGURE 3. SINGLE-BAND 11N (1x1) DUAL ANTENNA SOLUTION	7
Figure 4. Pin Assignments.	
FIGURE 5. RTL8188ETV USB BUS POWER ON SEQUENCE	13

1. General Description

The Realtek RTL8188ETV is a highly integrated single-chip 802.11n Wireless LAN (WLAN) network USB interface (USB 1.0/1.1/2.0 compliant) controller. It combines a WLAN MAC, a 1T1R capable WLAN baseband, and WLAN RF in a single chip. The RTL8188ETV provides a complete solution for a high throughput performance integrated wireless LAN device.

The RTL8188ETV WLAN baseband implements Orthogonal Frequency Division Multiplexing (OFDM) with 1 transmit and 1 receive path and is compatible with the IEEE 802.11n specification. Features include one spatial stream transmission, short guard interval (GI) of 400ns, spatial spreading, and transmission over 20MHz and 40MHz bandwidth.

For legacy compatibility, Direct Sequence Spread Spectrum (DSSS), Complementary Code Keying (CCK) and OFDM baseband processing are included to support all IEEE 802.11b and 802.11g data rates. Differential phase shift keying modulation schemes, DBPSK and DQPSK with data scrambling capability, are available, and CCK provides support for legacy data rates, with long or short preamble. The high-speed FFT/IFFT paths, combined with BPSK, QPSK, 16QAM, and 64QAM modulation of the individual subcarriers and rate compatible punctured convolutional coding with coding rate of 1/2, 2/3, 3/4, and 5/6, provide higher data rates of 54Mbps and 150Mbps for IEEE 802.11g and 802.11n OFDM respectively.

The RTL8188ETV WLAN Controller builds in an enhanced signal detector, an adaptive frequency domain equalizer, and a soft-decision Viterbi decoder to alleviate severe multi-path effects and mutual interference in the reception of multiple streams.

Efficient IQ-imbalance, DC offset, phase noise, frequency offset, and timing offset compensations are provided for the radio frequency front-end. Selectable digital transmit and receive FIR filters are provided to meet transmit spectrum mask requirements and to reject adjacent channel interference, respectively.

The RTL8188ETV WLAN Controller supports fast receiver Automatic Gain Control (AGC) with synchronous and asynchronous control loops among antennas, antenna diversity functions, and adaptive transmit power control function to obtain the better performance in the analog portions of the transceiver.

The RTL8188ETV WLAN MAC supports 802.11e for multimedia applications, 802.11i for security, and 802.11n for enhanced MAC protocol efficiency. Using packet aggregation techniques such as A-MPDU with

BA and A-MSDU, protocol efficiency is significantly improved. Power saving mechanisms such as Legacy Power Save, and U-APSD, reduce the power wasted during idle time, and compensates for the extra power required to transmit OFDM. The RTL8188ETV provides simple legacy and 20MHz/40MHz co-existence mechanisms to ensure backward and network compatibility.

2. Features

General

- 46-pin QFN
- CMOS MAC, Baseband PHY, and RF in a single chip for IEEE 802.11b/g/n compatible WLAN
- Complete 802.11n solution for 2.4GHz band
- 72.2Mbps receive PHY rate and 72.2Mbps transmit PHY rate using 20MHz bandwidth
- 150Mbps receive PHY rate and 150Mbps transmit PHY rate using 40MHz bandwidth
- Compatible with 802.11n specification
- Backward compatible with 802.11b/g devices while operating in 802.11n mode

Interface

■ Complies with USB 1.0/1.1/2.0 for WLAN

Standards Supported

- IEEE 802.11b/g/n compatible WLAN
- IEEE 802.11e QoS Enhancement (WMM)
- 802.11i (WPA, WPA2). Open, shared key, and pair-wise key authentication services

WLAN MAC Features

- Frame aggregation for increased MAC efficiency (A-MSDU, A-MPDU)
- Low latency immediate High-Throughput Block Acknowledgement (HT-BA)
- PHY-level spoofing to enhance legacy compatibility

- Power saving mechanism
- Channel management and co-existence
- Transmit Opportunity (TXOP) Short Inter-Frame Space (SIFS) bursting for higher multimedia bandwidth

WLAN PHY Features

- IEEE 802.11n OFDM
- One Transmit and one Receive path (1T1R)
- 20MHz and 40MHz bandwidth transmission
- Short Guard Interval (400ns)
- DSSS with DBPSK and DQPSK, CCK modulation with long and short preamble
- OFDM with BPSK, QPSK, 16QAM, and 64QAM modulation. Convolutional Coding Rate: 1/2, 2/3, 3/4, and 5/6
- Maximum data rate 54Mbps in 802.11g and 150Mbps in 802.11n
- Hardware antenna diversity in per packet base
- Selectable receiver FIR filters
- Programmable scaling in transmitter and receiver to trade quantization noise against increased probability of clipping
- Fast receiver Automatic Gain Control (AGC)
- On-chip ADC and DAC

Peripheral Interfaces

- General Purpose Input/Output (7 pins)
- Three configurable LED pins

3. Application Diagram

3.1. Single-Band 11n (1x1) Solution with Single Antenna

Figure 1. Single-Band 11n (1x1) Solution

3.2. Single-Band 11n (1x1) Solution with Transmit & Receive Diversity

Figure 2. Single-Band 11n (1x1) Transmit & Receive Diversity solution

3.3. Single-Band 11n (1x1) Solution with Receive Diversity

Figure 3. Single-Band 11n (1x1) Transmit & Receive Diversity sSolution

4. Pin Assignments

Figure 4. Pin Assignments

4.1. Package Identification

'Green' package is indicated by a 'G' in the location marked 'T' in Figure 4.

5. Pin Descriptions

The following signal type codes are used in the tables:

I: Input O: Output

T/S: Tri-State bi-directional input/output pin S/T/S: Sustained Tri-State

O/D: Open Drain P: Power pin

5.1. USB Bus Transceiver Interface

Table 1. USB bus Transceiver Interface

Symbol	Type	Pin No	Description
HSDM/HSDP	I	27/26	USB Receive Differential Pair

5.2. Power Pins

Table 2. Power Pins

Symbol	Type	Pin No	Description
LX_SPS	P	22	Switching Regulator Output
VD33A	P	4,9,12,	VDD 3.3V for Analog
VD33D	P	23,28,40,41	VDD 3.3V for Digital
VD12A	P	7,8,13,25	Analog 1.2V Regulator Output
VD12D	P	17,42	Digital 1.2V Regulator Output
GND	P	21,47	Ground

5.3. RF Interface

Table 3. RF Interface

Symbol	Type	Pin No	Description			
TRSWN	О	45	Transmit/Receive			
			Shared with LED2, can be selected by control register			
PAPE	О	1	2.4GHz Transmit Power Amplifier Power Enable 0			
TRSWP	О	46	Transmit/Receive			
TXPA_OP	О	2	RF TX Negative Signal			
TXPA_ON	0	3	RF TX Positive Signal			
RX_IP	I	5	RF RX Positive Signal			
RX_IN	I	6	RF RX Negative Signal			
ANT_SEL_P	О	44	Antenna Control Positive Signal			
			Shared with LED0, can be selected by control register			
ANT_SEL_N	О	15	Antenna Control Negative Signal			
			Shared with LED1, can be selected by control register			
ANT_SEL_2	0	16	Antenna Control Extend Signal			

5.4. LED Interface

Table 4. LED Interface

Symbol	Type	Pin No	Description	
LED0	О	44	LED Pins (Active Low)	
			Shared with ANT_SEL_P, can be selected by control register	
LED1	О	15	LED Pins (Active Low)	
			Shared with ANT_SEL_N, can be selected by control register	
LED2	О	33	LED Pins (Active Low)	
			Shared with GPIO5, can be selected by control register	

5.5. Clock and Other Pins

Table 5. Clock and Other Pins

Symbol	Type	Pin No	Description			
XI	I	11	25/40MHz OSC Input			
			Input of 25/40MHz Crystal clock reference			
XO	О	10	Output of 25/40MHz Crystal Clock Reference			
PDn	I	32	This Pin can Externally Shutdown RTL8188CE without Extra Power Switch			
REXT	О	24	Band gap. It needs to link 24k resister pull down.			
USB_XTAL_SEL	I	30	Trap Function: Decide to use the 25/40Mhz crystal by this pin power on latch low or high.			
			USB_XTAL_SEL = 1, XTAL frequency is 40MHz			
			USB_XTAL_SEL = 0, XTAL frequency is 25MHz			
GPIO0/WLAN_ACT	Ю	36	General Purpose Input/Output Pin or Bluetooth Coexistence WLAN_ACT Pin			
			The WLAN_ACT signal indicates when WLAN is either transmitting or receiving in the 2.4GHz ISM band.			
GPIO2/BT_STATE	IO	37	General Purpose Input/Output Pin or Bluetooth Coexistence BT_STAT Pin			
			The BTSTAT signal indicates when normal Bluetooth packets are being transmitted or received.			
GPIO3/BT_PRI	IO	38	General Purpose Input/Output Pin or Bluetooth Coexistence BT_PRI Pin			
			The BTPRI signal indicates when a high priority Bluetooth packet is being transmitted or received.			
GPIO4	IO	35	General Purpose Input/Output Pin			
GPIO5/LED2	IO	33	General Purpose Input/Output Pin			
			Shared with LED2, can be selected by control register			
GPIO7	Ю	34	This pin can also support WLAN Radio off function with host interface remaining connected.			
GPIO8/CK_OUT	IO	14	General Purpose Input/Output Pin			
			Buffered 25/40M clock outputs for other peripheral IC			
NC	NA	18,19,20 ,29,31, 39, 43	No connect. Let it open.			

6. Electrical and Thermal Characteristics

6.1. Temperature Limit Ratings

Table 6. Temperature Limit Ratings

Parameter	Minimum	Maximum	Units
Storage Temperature	-55	+125	°C
Ambient Operating Temperature	0	70	°C
Junction Temperature	0	125	°C

6.2. DC Characteristics

6.2.1. Power Supply Characteristics

Table 7. DC Characteristics

Symbol	Parameter	Minimum	Typical	Maximum	Units
VD33A, VD33D	3.3V I/O Supply Voltage	3.0	3.3	3.6	V
VD12A, VD12D	1.2V Core Supply Voltage	1.10	1.2	1.32	V
VD15A, VD15D	1.5V Supply Voltage	1.425	1.5	1.575	V
IDD33	3.3V Rating Current	-	-	600	mA

6.2.2. Digital IO Pin DC Characteristics

Table 8. 3.3V GPIO DC Characteristics

Symbol	Parameter	Minimum	Normal	Maximum	Units
V_{IH}	Input high voltage	2.0	3.3	3.6	V
$V_{\rm IL}$	Input low voltage		0	0.9	V
V_{OH}	Output high voltage	2.97		3.3	V
V_{OL}	Output low voltage	0	-	0.33	V

Table 9. 2.8V GPIO DC Characteristics

Symbol	Parameter	Minimum	Normal	Maximum	Units
V_{IH}	Input high voltage	1.8	2.8	3.1	V
$V_{\rm IL}$	Input low voltage		0	0.8	V
V_{OH}	Output high voltage	2.5		3.1	V
V_{OL}	Output low voltage	0	-	0.28	V

Table 10. 1.8V GPIO DC Characteristics

Symbol	Parameter	Minimum	Normal	Maximum	Units
V_{IH}	Input high voltage	1.7	1.8	2.0	V
$V_{\rm IL}$	Input low voltage		0	0.8	V
V_{OH}	Output high voltage	1.62		1.8	V
V_{OL}	Output low voltage	0		0.18	V

7. Interface Timing Specification

7.1. USB Bus during Power On Sequence

Figure 5. RTL8188ETV USB Bus Power On Sequence

Ton: The main power ramp up duration

 T_{por} : The power on reset releases and power management unit executes power on tasks

Tattach: USB attach state

T_{k-state}: the duration from resister attached to USB host starting card detection procedure

The power on flow description:

After main 3.3V ramp up, the internal power on reset is released by power ready detection circuit and the power management unit will be enabled. The power management unit enables the internal regulator and clock circuits.

The power management unit also enables the USB circuits.

USB analog circuits attach resisters to indicate the insertion of the USB device

Table 11. The typical timing range

	Unit	Min	Typical	Max
Ton	ms	-	1.5	5
Tpor	ms		2	10
Tattach	ms	2	7	15
T _{k-state}	ms	50	250	

8. Mechanical Dimensions

8.1. Mechanical Dimensions Notes

Symbol	Dimension in mm			Dimension in inch		
Syllibol	Min	Nom	Max	Min	Nom	Max
A	0.75	0.85	1.00	0.030	0.034	0.039
A_1	0.00	0.035	0.05	0.000	0.001	0.002
A_2	0.55	0.65	0.80	0.022	0.026	0.032
A_3	0.20 REF			0.008 REF		
b	0.15	0.20	0.25	0.006	0.008	0.010
D	6.50BSC			0.256BSC		
D2	4.85	5.1	5.35	0.191	0.201	0.211
Е	4.5BSC		0.177BSC			
E2	2.25	2.5	2.75	0.088	0.098	0.108
e	0.40BSC		0.016BSC			
L	0.30	0.40	0.50	0.012	0.016	0.020

Notes:

 $1. \quad CONTROLLING\ DIMENSION: MILLIMETER (mm).$

2. REFERENCE DOCUMENTL: JEDEC MO-220.

9. Ordering Information

Table 12. Ordering Information

Part Number	Package	Status
RTL8188ETV-CG	QFN-46, 'Green' Package	Engineering Samples

Note: See page 7 for package identification.

Realtek Semiconductor Corp. Headquarters

No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan, R.O.C.

www.realtek.com