MC Practicals

1. Frequency Reuse (MATLAB)

```
clc
clear all
                                            Total Geographical Service Area= 4200
                                            Cluster size 1= 7
close all
                                            Total number of radio channels= 1001
a=input('Total Geographical Service Area= ');
                                            Area of each cell= 12
n1=input('Cluster size 1= ');
                                            No of channels/cell=
s=input('Total number of radio channels= ');
                                                143
acell=input('Area of each cell= ');
%Part 1
                                            System Capacity
                                                    50050
k1=s/n1;
disp('No of channels/cell=');
                                            Frequency Reuse Factor= 12
disp(k1);
                                            Minimum Reusable distance=
m1=a/(n1*acell);
                                                25.7897
c1=m1*s;
disp('System Capacity');
                                            Cluster size 2= 4
                                            No of channels/cell=
disp(c1);
                                              250.2500
%Part 2
q=input('Frequency Reuse Factor=');
                                            System Capacity
r=sqrt((2*acell)/(3*sqrt(3)));
                                              8.7588e+004
d=q*r;
disp('Minimum Reusable distance=');
                                            % Change in System Capacity
                                                 75
disp(d);
%Part 3
n2=input('Cluster size 2= ');
k2=s/n2;
disp('No of channels/cell=');
disp(k2);
m2=a/(n2*acell);
c2=m2*s;
disp('System Capacity');
disp(c2);
change=((c2-c1)/c1)*100;
disp('% Change in System Capacity');
disp(change);
```

2. Handoff Algorithm (MATLAB)

```
clc
clear all
close all
pr=-85;
ph=-95;
k1=0;
k2=30;
sig=6;
D=50;
d=0:0.1:50;
u1=k1-(k2.*(log(d)));
u2=k1-(k2.*(log(D-d)));
a=(u1-pr)/sig;
b=(u2-pr)/sig;
c=(u1-ph)/sig;
p=(pr-u2)/sig;
e=(u2-ph)/sig;
f=(pr-u1)/sig;
Pout=qfunc(a).*qfunc(b);
Pass1=qfunc(c).*qfunc(p);
Pass2=qfunc(e).*qfunc(f);
figure(1)
subplot(2,2,1)
plot(d,Pout);
subplot(2,2,2)
plot(d,Pass1);
subplot(2,2,3)
plot(d,Pass2);
subplot(2,2,4)
plot(d,Pass1);
hold on
plot(d,Pass2);
```


3. Adaptive Modulation (Simulink)

QAM

QPSK

4. Rayleigh and Rician (Simulink)

5. Orthogonal Walsh Code (MATLAB)

```
clear all
close all
A=[1101001];
B=[1100000];
c=A.*B;
d=sum(c);
if (mod(d,2)==0)
  disp("Orthogonal");
else
  disp("Not Orthogonal");
end
P=[-1 1 -1 1 -1 1 -1 1];
Q=[-1 -1 1 1 -1 -1 1];
R=[-1 1 1 -1 -1 1 1 -1];
S=[-1 -1 -1 -1 1 1 1 1];
I=(P+Q+R+S).*R;
                  %try for R; P+Q; P+Q+R as well
m=sum(l);
n=m/8;
if (n==1)
  disp("Message Received")
else
  disp("Message Lost")
end
```

OUTPUT:

P+Q will give output "Message Lost", the rest will give "Message Received"

6. GSM and CDMA Sums (SCILAB)

```
clc
clear all
//1
Rb=270833;
Tb=1/Rb;
B=0.3/Tb;
B=B/1000;
mprintf('1) 3dB Bandwidth for Gaussian LPF = %f KHz\n',B);
//2
Rb=270833;
C=Rb/0.4;
B=200000;
T=C/B;
SN=(2^T)-1;
SNdB=10*log10(SN);
mprintf('\n 2) The corresponding required theoretical S/N = %f\n', SNdB);
//3
C=270833;
B=200000;
BW=C/B;
mprintf('\n 3) Bandwidth Efficiency = %f\n',BW);
//4
B=1250;
R=9.6
SRmindB=3;
SRmaxdB=9;
SRmin=10^(3/10);
SRmax=10^(9/10);
Mmin=(B/R)*(1/SRmax);
Mmax=(B/R)*(1/SRmin);
mprintf('\n 4) The IS-95 CDMA system can support %i to %f users',Mmin,Mmax);
```

OUTPUT

- 1) 3dB Bandwidth for Gaussian LPF = 81.249900 KHz
- 2) The corresponding required theoretical S/N = 9.754256
- 3) Bandwidth Efficiency = 1.354165
- 4) The IS-95 CDMA system can support 16 to 65.258754 users

7. Radio Propagation Models Sums (SCILAB)

```
clc
clear all
c=3*10^8;
//Q1
grdb1=5
pt=113
r1=11000
gr1=10^(grdb1/10)
eirp1=pt*gr1
disp('Q1')
disp("EIRP is")
disp(eirp1)
pd1=eirp1/(4*%pi*r1^2)*10^9
disp("Power density in nW/m2 is")
disp(pd1)
//Q2
disp('Q2')
f2=800*10^6
ht2=30
hv2=2
r2=10000
Lpm2=40*log10(r2)-20*log10(ht2)-20*log10(hv2);
disp("Path loss using Ray propogation is")
disp(Lpm2)
Lpf2=32.4+20*log10(r2/1000)+20*log10(f2/10^6)
disp("Path loss using Space propogation is")
disp(Lpf2)
//Q3
disp('Q3')
pt3=100
103=30
pt3dbm=10*log10(pt3*1000)
disp("Pt in dB is")
disp(pt3dbm)
pr3dbm=-100
lp3=pt3dbm-pr3dbm
disp("Lp in dB is")
disp(lp3)
r3=10^((lp3-l03)/40)
disp("Radio Coverage in km is")
disp(r3/1000)
```

```
//Q4
disp('Q4')
fc4=800
ht4=30
hr4=2
lph4=68.75+26.16*log10(fc4)-13.82*log10(30)+(44.9-6.55*log10(ht4))*log10(10)
disp("Free space path loss in dB is")
disp(lph4)
lf4=110.5
disp("Difference between two path loss values in dB is")
dif4=lph4-lf4
disp(dif4)
//Q5
disp('Q5')
f5=900*10^6
r5=1000
lam5=c/f5
lpf5=20*log10(4*%pi*r5/lam5)
disp("Free space path loss in dB is")
disp(lpf5)
//Q6
disp('Q6')
pt6=10
gt6=9
gr6=4
f6=250
r6=25
tl6=20
pt6=10*log10(pt6*1000)
disp("Pt in dB is")
disp(pt6)
lpf6=32.44+20*log10(r6)+20*log10(f6)
disp("Path loss in dB is")
disp(lpf6)
tcl6=3/100
tloss6=tcl6*tl6
disp("Transmitter antenna cable loss in dB is")
disp(tloss6)
rloss6=0.2
disp("Power Delivered in dBm is")
pd6=pt6+gt6+gr6-lpf6-tloss6-rloss6
disp(pd6)
```

Q1

EIRP is 357.33738 Power density in nW/m2 is 235.0083

Q2

Path loss using Ray propogation is 124.43697 Path loss using Space propogation is 110.4618

Q3

Pt in dB is
50.
Lp in dB is
150.
Radio Coverage in km is
1.

Q4

Free space path loss in dB is 159.50587 Difference between two path loss values in dB is 49.005874

Q5

Free space path loss in dB is 91.526622

Q6

Pt in dB is
40.
Path loss in dB is
108.3576
Transmitter antenna cable loss in dB is
0.6
Power Delivered in dBm is
- 56.1576