

4. (Amended) The pharmaceutical composition according to claim 3, wherein the disease accompanied by abnormal vascular function in which lipid deposition in the blood vessel is involved is selected from the group consisting of arteriosclerosis, cardiac acute coronary syndrome, restenosis after percutaneous transluminal coronary angioplasty, obstructive arteriosclerosis, obstructive thrombotic vasculitis, atherosclerosis, cerebral infarction, intermittent claudication, lower limb gangrene, renal vascular hypertension, renal arterial aneurysm and renal infarction.

6. (Twice Amended) A preventive or therapeutic agent for diseases accompanied by abnormal vascular function in which lipid depositino in the blood vessel is involved comprising a quinazoline derivative represented by the formula (1):

contd.
B/2

wherein, the ring A represents an aryl ring,

~~R¹ represents a hydroxy group, an amino group, or a lower alkylamino group having 1 to 4 carbons that may be substituted with a carboxylic group, a lower aralkylamino group having 7 to 10 carbons that may be substituted with a carboxylic group, an amino group acylated with a lower fatty acid having 1 to 4 carbons that may be substituted with a carboxylic group, an amino group acylated with an aromatic carboxylic acid that may be substituted with a carboxylic group, an amino group acylated with a heteroaromatic carboxylic acid that may be substituted with a carboxylic group, an amino group sulfonylated with a lower alkanesulfonic acid having 1 to 4 carbons that may be substituted with a carboxylic group, an amino group sulfonylated with an aromatic sulfonic acid that may be substituted with a carboxylic group, an amino group sulfonylated with a heteroaromatic sulfonic acid that may be substituted with a carboxylic group, a lower alkyl group having 1 to 4 carbons substituted with a carboxylic group, or a lower alkylene group having 2 to 4 carbons substituted with a carboxylic group;~~

~~R² and R³, which may be the same or different, represent a hydrogen, a lower alkyl group having 1 to 4 carbons that may be substituted, a halogen atom, a hydroxy group, a lower alkoxy group having 1 to 4 carbons, an amino group, a lower alkylamino group having 1 to 4 carbons that may be substituted, a lower aralkylamino group having 7 to 10 carbons that may be substituted, an amino group acylated with a lower fatty acid having 1 to 4 carbons that may be substituted with a carboxylic group, an amino group acylated with an aromatic carboxylic acid that may be substituted with a carboxylic group, an amino group acylated with a heteroaromatic carboxylic acid that may be substituted with a~~

contd.

82
carboxylic group, an amino group sulfonated with a lower alkanesulfonic acid having 1 to 4 carbons that may be substituted with a carboxylic group, an amino group sulfonated with an aromatic sulfonic acid that may be substituted with a carboxylic group, an amino group sulfonated with a heteroaromatic sulfonic acid that may be substituted with a carboxylic group, or a carboxylic group; or

when the ring A is a benzene ring, R¹ and R², together with the benzene ring to be substituted, may form a fused heterocyclic ring that may be substituted with a carboxylic acid, and a carbon atom in said fused heterocyclic ring may form a carbonyl group wherein R³ is as defined above; and

X represents a hydrogen atom, a lower alkyl group having 1 to 4 carbons, a lower alkoxy group having 1 to 4 carbons, a halogen atom, a hydroxy group, an amino group, or a nitro group;

or a pharmaceutically acceptable salt thereof.

7. (Twice Amended) A pharmaceutical composition comprising a quinazoline derivative represented by the formula (1):

contd.

B2

(1)

wherein, the ring A represents an aryl ring,

R^1 represents a hydroxy group, an amino group, or a lower alkylamino group

having 1 to 4 carbons that may be substituted with a carboxylic group, a lower aralkylamino group having 7 to 10 carbons that may be substituted with a carboxylic group, an amino group acylated with a lower fatty acid having 1 to 4 carbons that may be substituted with a carboxylic group, an amino group acylated with an aromatic carboxylic acid that may be substituted with a carboxylic group, an amino group acylated with a heteroaromatic carboxylic acid that may be substituted with a carboxylic group, an amino group sulfonylated with a lower alkanesulfonic acid having 1 to 4 carbons that may be substituted with a carboxylic group, an amino group sulfonylated with an aromatic sulfonic

contd.
B2

acid that may be substituted with a carboxylic group, an amino group sulfonated with a heteroaromatic sulfonic acid that may be substituted with a carboxylic group, a lower alkyl group having 1 to 4 carbons substituted with a carboxylic group, or a lower alkylene group having 2 to 4 carbons substituted with a carboxylic group;

R^2 and R^3 , which may be the same or different, represent a hydrogen, a lower alkyl group having 1 to 4 carbons that may be substituted, a halogen atom, a hydroxy group, a lower alkoxy group having 1 to 4 carbons, an amino group, a lower alkylamino group having 1 to 4 carbons that may be substituted, a lower aralkylamino group having 7 to 10 carbons that may be substituted, an amino group acylated with a lower fatty acid having 1 to 4 carbons that may be substituted with a carboxylic group, an amino group acylated with an aromatic carboxylic acid that may be substituted with a carboxylic group, an amino group acylated with a heteroaromatic carboxylic acid that may be substituted with a carboxylic group, an amino group sulfonated with a lower alkanesulfonic acid having 1 to 4 carbons that may be substituted with a carboxylic group, an amino group sulfonated with an aromatic sulfonic acid that may be substituted with a carboxylic group, an amino group sulfonated with a heteroaromatic sulfonic acid that may be substituted with a carboxylic group, or a carboxylic group; or

when the ring A is a benzene ring, R^1 and R^2 , together with the benzene ring to be substituted, may form a fused heterocyclic ring that may be substituted with a carboxylic acid, and a carbon atom in said fused heterocyclic ring may form a carbonyl group wherein R^3 is as defined above; and

contd.
B2

X represents a hydrogen atom, a lower alkyl group having 1-4 carbons, a lower alkoxy group having 1 to 4 carbons, a halogen atom, a hydroxy group, an amino group, or a nitro group;
or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier therefor.

Kindly add new claims 11-17 as follows:

B/3
SUB
W
--11. A method for preventing or treating a disease accompanied by abnormal vascular function in which lipid deposition in the blood vessel is involved comprising administering to a patient in need of such a prevention or treatment a chymase inhibitor in an amount effective for said prevention or treatment.

12. A method according to claim 11, wherein the disease accompanied by abnormal vascular function in which lipid deposition in the blood vessel is involved is selected from the group consisting of arteriosclerosis, cardiac acute coronary syndrome, restenosis after percutaneous transluminal coronary angioplasty, obstructive arteriosclerosis, obstructive thrombotic vasculitis, atherosclerosis, cerebral infarction, intermittent claudication, lower limb gangrene, renal vascular hypertension, renal arterial aneurysm and renal infarction.

contd.

B3

13. A method according to claim 11, wherein the chymase inhibitor is a quinazoline derivative represented by the formula (1):

wherein, the ring A represents an aryl ring,

R¹ represents a hydroxy group, an amino group, or a lower alkylamino group having 1 to 4 carbons that may be substituted with a carboxylic group, a lower aralkylamino group having 7 to 10 carbons that may be substituted with a carboxylic group, an amino group acylated with a lower fatty acid having 1 to 4 carbons that may be substituted with a carboxylic group, an amino group acylated with an aromatic carboxylic acid that may be substituted with a carboxylic group, an amino group acylated with a heteroaromatic carboxylic acid that may be substituted with a carboxylic group, an amino

contd.

1B 3
Su b
D'
group sulfonylated with a lower alkanesulfonic acid having 1 to 4 carbons that may be substituted with a carboxylic group, an amino group sulfonylated with an aromatic sulfonic acid that may be substituted with a carboxylic group, an amino group sulfonylated with a heteroaromatic sulfonic acid that may be substituted with a carboxylic group, a lower alkyl group having 1 to 4 carbons substituted with a carboxylic group, or a lower alkylene group having 2 to 4 carbons substituted with a carboxylic group;

R^2 and R^3 , which may be the same or different, represent a hydrogen, a lower alkyl group having 1 to 4 carbons that may be substituted, a halogen atom, a hydroxy group, a lower alkoxy group having 1 to 4 carbons, an amino group, a lower alkylamino group having 1 to 4 carbons that may be substituted, a lower aralkylamino group having 7 to 10 carbons that may be substituted, an amino group acylated with a lower fatty acid having 1 to 4 carbons that may be substituted with a carboxylic group, an amino group acylated with an aromatic carboxylic acid that may be substituted with a carboxylic group, an amino group acylated with a heteroaromatic carboxylic acid that may be substituted with a carboxylic group, an amino group sulfonylated with a lower alkanesulfonic acid having 1 to 4 carbons that may be substituted with a carboxylic group, an amino group sulfonylated with an aromatic sulfonic acid that may be substituted with a carboxylic group, an amino group sulfonylated with a heteroaromatic sulfonic acid that may be substituted with a carboxylic group, or a carboxylic group; or

when the ring A is a benzene ring, R^1 and R^2 , together with the benzene ring to be substituted, may form a fused heterocyclic ring that may be substituted with a carboxylic

contd.

83

acid, and a carbon atom in said fused heterocyclic ring may form a carbonyl group wherein R³ is as defined above; and

Sub 11 X represents a hydrogen atom, a lower alkyl group having 1-4 carbons, a lower alkoxy group having 1 to 4 carbons, a halogen atom, a hydroxy group, an amino group, or a nitro group;

or a pharmaceutically acceptable salt thereof.

14. A method according to claim 12, wherein the chymase inhibitor is a quinazoline derivative represented by the formula (1):

wherein, the ring A represents an aryl ring,

contd.

~~R¹ represents a hydroxy group, an amino group, or a lower alkylamino group having 1 to 4 carbons that may be substituted with a carboxylic group, a lower aralkylamino group having 7 to 10 carbons that may be substituted with a carboxylic group, an amino group acylated with a lower fatty acid having 1 to 4 carbons that may be substituted with a carboxylic group, an amino group acylated with an aromatic carboxylic acid that may be substituted with a carboxylic group, an amino group acylated with a heteroaromatic carboxylic acid that may be substituted with a carboxylic group, an amino group sulfonylated with a lower alkanesulfonic acid having 1 to 4 carbons that may be substituted with a carboxylic group, an amino group sulfonylated with an aromatic sulfonic acid that may be substituted with a carboxylic group, an amino group sulfonylated with a heteroaromatic sulfonic acid that may be substituted with a carboxylic group, a lower alkyl group having 1 to 4 carbons substituted with a carboxylic group, or a lower alkylene group having 2 to 4 carbons substituted with a carboxylic group;~~

~~R² and R³, which may be the same or different, represent a hydrogen, a lower alkyl group having 1 to 4 carbons that may be substituted, a halogen atom, a hydroxy group, a lower alkoxy group having 1 to 4 carbons, an amino group, a lower alkylamino group having 1 to 4 carbons that may be substituted, a lower aralkylamino group having 7 to 10 carbons that may be substituted, an amino group acylated with a lower fatty acid having 1 to 4 carbons that may be substituted with a carboxylic group, an amino group acylated with an aromatic carboxylic acid that may be substituted with a carboxylic group, an amino group acylated with a heteroaromatic carboxylic acid that may be substituted with a carboxylic group, an amino group sulfonylated with a lower alkanesulfonic acid having 1 to~~

contd.

B3
4 carbons that may be substituted with a carboxylic group, an amino group sulfonylated with an aromatic sulfonic acid that may be substituted with a carboxylic group, an amino group sulfonylated with a heteroaromatic sulfonic acid that may be substituted with a carboxylic group, or a carboxylic group; or

when the ring A is a benzene ring, R¹ and R², together with the benzene ring to be substituted, may form a fused heterocyclic ring that may be substituted with a carboxylic acid, and a carbon atom in said fused heterocyclic ring may form a carbonyl group wherein R³ is as defined above; and

X represents a hydrogen atom, a lower alkyl group having 1-4 carbons, a lower alkoxy group having 1 to 4 carbons, a halogen atom, a hydroxy group, an amino group, or a nitro group;

or a pharmaceutically acceptable salt thereof.

Rule 1.126

15

14. A method for suppressing lipid deposition in a blood vessel comprising administering to a patient in need of such treatment a chymase inhibitor in an amount effective for suppressing lipid deposition in the blood vessel.

Sub

C1

16

15. A method according to claim 14, wherein the chymase inhibitor is a quinazoline derivative represented by the formula (1):

(1)

Sub

C1

wherein, the ring A represents an aryl ring,

R¹ represents a hydroxy group, an amino group, or a lower alkylamino group

having 1 to 4 carbons that may be substituted with a carboxylic group, a lower aralkylamino group having 7 to 10 carbons that may be substituted with a carboxylic group, an amino group acylated with a lower fatty acid having 1 to 4 carbons that may be substituted with a carboxylic group, an amino group acylated with an aromatic carboxylic acid that may be substituted with a carboxylic group, an amino group acylated with a heteroaromatic carboxylic acid that may be substituted with a carboxylic group, an amino group sulfonylated with a lower alkanesulfonic acid having 1 to 4 carbons that may be substituted with a carboxylic group, an amino group sulfonylated with an aromatic sulfonic

cont'd.
10/3

acid that may be substituted with a carboxylic group, an amino group sulfonated with a heteroaromatic sulfonic acid that may be substituted with a carboxylic group, a lower alkyl group having 1 to 4 carbons substituted with a carboxylic group, or a lower alkylene group having 2 to 4 carbons substituted with a carboxylic group;

Sub C1

R^2 and R^3 , which may be the same or different, represent a hydrogen, a lower alkyl group having 1 to 4 carbons that may be substituted, a halogen atom, a hydroxy group, a lower alkoxy group having 1 to 4 carbons, an amino group, a lower alkylamino group having 1 to 4 carbons that may be substituted, a lower aralkylamino group having 7 to 10 carbons that may be substituted, an amino group acylated with a lower fatty acid having 1 to 4 carbons that may be substituted with a carboxylic group, an amino group acylated with an aromatic carboxylic acid that may be substituted with a carboxylic group, an amino group acylated with a heteroaromatic carboxylic acid that may be substituted with a carboxylic group, an amino group sulfonated with a lower alkanesulfonic acid having 1 to 4 carbons that may be substituted with a carboxylic group, an amino group sulfonated with an aromatic sulfonic acid that may be substituted with a carboxylic group, an amino group sulfonated with a heteroaromatic sulfonic acid that may be substituted with a carboxylic group, or a carboxylic group; or

when the ring A is a benzene ring, R^1 and R^2 , together with the benzene ring to be substituted, may form a fused heterocyclic ring that may be substituted with a carboxylic acid, and a carbon atom in said fused heterocyclic ring may form a carbonyl group wherein R^3 is as defined above; and

contd.
B-3

X represents a hydrogen atom, a lower alkyl group having 1-4 carbons, a lower alkoxy group having 1 to 4 carbons, a halogen atom, a hydroxy group, an amino group, or a nitro group;
or a pharmaceutically acceptable salt thereof.

Sub
C
17
16. A method for preventing or treating a disease accompanied by abnormal vascular function in which lipid deposition in the blood vessel is involved, wherein said disease is selected from the group consisting of arteriosclerosis, cardiac acute coronary syndrome, restenosis after percutaneous transluminal coronary angioplasty, obstructive arteriosclerosis, obstructive thrombotic vasculitis, atherosclerosis, cerebral infarction, intermittent claudication, lower limb gangrene, renal vascular hypertension, renal arterial aneurysm and renal infarction, comprising administering to a patient in need of such treatment a quinazoline derivative represented by the formula (1):

contd.
B3

(1)

Sub
Cl

wherein, the ring A represents an aryl ring,

R^1 represents a hydroxy group, an amino group, or a lower alkylamino group

having 1 to 4 carbons that may be substituted with a carboxylic group, a lower aralkylamino group having 7 to 10 carbons that may be substituted with a carboxylic group, an amino group acylated with a lower fatty acid having 1 to 4 carbons that may be substituted with a carboxylic group, an amino group acylated with an aromatic carboxylic acid that may be substituted with a carboxylic group, an amino group acylated with a heteroaromatic carboxylic acid that may be substituted with a carboxylic group, an amino group sulfonylated with a lower alkanesulfonic acid having 1 to 4 carbons that may be substituted with a carboxylic group, an amino group sulfonylated with an aromatic sulfonic

contd.
103

acid that may be substituted with a carboxylic group, an amino group sulfonated with a heteroaromatic sulfonic acid that may be substituted with a carboxylic group, a lower alkyl group having 1 to 4 carbons substituted with a carboxylic group, or a lower alkylene group having 2 to 4 carbons substituted with a carboxylic group;

*Sub
C1*

R^2 and R^3 , which may be the same or different, represent a hydrogen, a lower alkyl group having 1 to 4 carbons that may be substituted, a halogen atom, a hydroxy group, a lower alkoxy group having 1 to 4 carbons, an amino group, a lower alkylamino group having 1 to 4 carbons that may be substituted, a lower aralkylamino group having 7 to 10 carbons that may be substituted, an amino group acylated with a lower fatty acid having 1 to 4 carbons that may be substituted with a carboxylic group, an amino group acylated with an aromatic carboxylic acid that may be substituted with a carboxylic group, an amino group acylated with a heteroaromatic carboxylic acid that may be substituted with a carboxylic group, an amino group sulfonated with a lower alkanesulfonic acid having 1 to 4 carbons that may be substituted with a carboxylic group, an amino group sulfonated with an aromatic sulfonic acid that may be substituted with a carboxylic group, an amino group sulfonated with a heteroaromatic sulfonic acid that may be substituted with a carboxylic group, or a carboxylic group; or

when the ring A is a benzene ring, R^1 and R^2 , together with the benzene ring to be substituted, may form a fused heterocyclic ring that may be substituted with a carboxylic acid, and a carbon atom in said fused heterocyclic ring may form a carbonyl group wherein R^3 is as defined above; and

contd.
18/3
X represents a hydrogen atom, a lower alkyl group having 1-4 carbons, a lower alkoxy group having 1 to 4 carbons, a halogen atom, a hydroxy group, an amino group, or a nitro group;
Sub C
or a pharmaceutically acceptable salt thereof,
in an amount effective for treating said diseases accompanied by abnormal vascular function.

18
17. A method for suppressing lipid deposition in a blood vessel comprising administering to a patient in need of such treatment a quinazoline derivative represented by the formula (1):

contd.
 B^3

(1)

Sub
Cl

wherein, the ring A represents an aryl ring,

R¹ represents a hydroxy group, an amino group, or a lower alkylamino group

having 1 to 4 carbons that may be substituted with a carboxylic group, a lower aralkylamino group having 7 to 10 carbons that may be substituted with a carboxylic group, an amino group acylated with a lower fatty acid having 1 to 4 carbons that may be substituted with a carboxylic group, an amino group acylated with an aromatic carboxylic acid that may be substituted with a carboxylic group, an amino group acylated with a heteroaromatic carboxylic acid that may be substituted with a carboxylic group, an amino group sulfonylated with a lower alkanesulfonic acid having 1 to 4 carbons that may be substituted with a carboxylic group, an amino group sulfonylated with an aromatic sulfonic

contd.

133

acid that may be substituted with a carboxylic group, an amino group sulfonated with a heteroaromatic sulfonic acid that may be substituted with a carboxylic group, a lower alkyl group having 1 to 4 carbons substituted with a carboxylic group, or a lower alkylene group having 2 to 4 carbons substituted with a carboxylic group;

Sub C

R^2 and R^3 , which may be the same or different, represent a hydrogen, a lower alkyl group having 1 to 4 carbons that may be substituted, a halogen atom, a hydroxy group, a lower alkoxy group having 1 to 4 carbons, an amino group, a lower alkylamino group having 1 to 4 carbons that may be substituted, a lower aralkylamino group having 7 to 10 carbons that may be substituted, an amino group acylated with a lower fatty acid having 1 to 4 carbons that may be substituted with a carboxylic group, an amino group acylated with an aromatic carboxylic acid that may be substituted with a carboxylic group, an amino group acylated with a heteroaromatic carboxylic acid that may be substituted with a carboxylic group, an amino group sulfonated with a lower alkanesulfonic acid having 1 to 4 carbons that may be substituted with a carboxylic group, an amino group sulfonated with an aromatic sulfonic acid that may be substituted with a carboxylic group, an amino group sulfonated with a heteroaromatic sulfonic acid that may be substituted with a carboxylic group, or a carboxylic group; or

when the ring A is a benzene ring, R^1 and R^2 , together with the benzene ring to be substituted, may form a fused heterocyclic ring that may be substituted with a carboxylic acid, and a carbon atom in said fused heterocyclic ring may form a carbonyl group wherein R^3 is as defined above; and

contd.

B3

Sub

C1

X represents a hydrogen atom, a lower alkyl group having 1-4 carbons, a lower alkoxy group having 1 to 4 carbons, a halogen atom, a hydroxy group, an amino group, or a nitro group;
or a pharmaceutically acceptable salt thereof,
in an amount effective for suppressing lipid deposition in the blood vessel.--