In [1]:

pip install plotly

Requirement already satisfied: plotly in c:\users\vivek\anaconda3\lib\site -packages (5.9.0)

Requirement already satisfied: tenacity>=6.2.0 in c:\users\vivek\anaconda3

\lib\site-packages (from plotly) (8.0.1)

Note: you may need to restart the kernel to use updated packages.

In [2]:

```
import pandas as pd
import plotly.express as px
import seaborn as sns
import matplotlib.pyplot as plt
```

In [3]:

```
df=pd.read_csv("dataset.csv")
df.head()
```

Out[3]:

	VIN (1-10)	County	City	State	Postal Code	Model Year	Make	Model	Electric Vehicle Type
0	JTMEB3FV6N	Monroe	Key West	FL	33040	2022	ТОУОТА	RAV4 PRIME	Plug-in Hybrid Electric Vehicle (PHEV)
1	1G1RD6E45D	Clark	Laughlin	NV	89029	2013	CHEVROLET	VOLT	Plug-in Hybrid Electric Vehicle (PHEV)
2	JN1AZ0CP8B	Yakima	Yakima	WA	98901	2011	NISSAN	LEAF	Battery Electric Vehicle (BEV)
3	1G1FW6S08H	Skagit	Concrete	WA	98237	2017	CHEVROLET	BOLT EV	Battery Electric Vehicle (BEV)
4	3FA6P0SU1K	Snohomish	Everett	WA	98201	2019	FORD	FUSION	Plug-in Hybrid Electric Vehicle (PHEV)
4 0									•

In [4]:

df.isna().sum()

Out[4]:

VIN (1-10)	0
County	0
City	0
State	0
Postal Code	0
Model Year	0
Make	0
Model	20
Electric Vehicle Type	0
Clean Alternative Fuel Vehicle (CAFV) Eligibility	0
Electric Range	0
Base MSRP	0
Legislative District	286
DOL Vehicle ID	0
Vehicle Location	24
Electric Utility	443
2020 Census Tract dtype: int64	0

In [5]:

df.dtypes

Out[5]:

VIN (1-10)	object
County	object
City	object
State	object
Postal Code	int64
Model Year	int64
Make	object
Model	object
Electric Vehicle Type	object
Clean Alternative Fuel Vehicle (CAFV) Eligibility	object
Electric Range	int64
Base MSRP	int64
Legislative District	float64
DOL Vehicle ID	int64
Vehicle Location	object
Electric Utility	object
2020 Census Tract	int64
dtype: object	

In [6]:

df=df.dropna()
df.head()

Out[6]:

	VIN (1-10)	County	City	State	Postal Code	Model Year	Make	Model	Electric Vehicle Type
2	JN1AZ0CP8B	Yakima	Yakima	WA	98901	2011	NISSAN	LEAF	Battery Electric Vehicle (BEV)
3	1G1FW6S08H	Skagit	Concrete	WA	98237	2017	CHEVROLET	BOLT EV	Battery Electric Vehicle (BEV)
4	3FA6P0SU1K	Snohomish	Everett	WA	98201	2019	FORD	FUSION	Plug-in Hybrid Electric Vehicle (PHEV)
5	5YJ3E1EB5J	Snohomish	Bothell	WA	98021	2018	TESLA	MODEL 3	Battery Electric Vehicle (BEV)
6	1N4AZ0CP4D	Snohomish	Everett	WA	98203	2013	NISSAN	LEAF	Battery Electric Vehicle (BEV)
								3	(Ph Ba Ele Ve Ba Ele Ve

In [7]:

df[df.duplicated()]

Out[7]:

	VIN (1- 10)	County	City	State	Postal Code	Model Year	Make	Model	Electric Vehicle Type	Clean Alternative Fuel Vehicle (CAFV) Eligibility	Electric Range	Base MSRP
4												

```
In [8]:
```

```
df = df.reset_index(drop=True)
df.head()
```

Out[8]:

	VIN (1-10)	County	City	State	Postal Code	Model Year	Make	Model	Electric Vehicle Type
0	JN1AZ0CP8B	Yakima	Yakima	WA	98901	2011	NISSAN	LEAF	Battery Electric Vehicle (BEV)
1	1G1FW6S08H	Skagit	Concrete	WA	98237	2017	CHEVROLET	BOLT EV	Battery Electric Vehicle (BEV)
2	3FA6P0SU1K	Snohomish	Everett	WA	98201	2019	FORD	FUSION	Plug-in Hybrid Electric Vehicle (PHEV)
3	5YJ3E1EB5J	Snohomish	Bothell	WA	98021	2018	TESLA	MODEL 3	Battery Electric Vehicle (BEV)
4	1N4AZ0CP4D	Snohomish	Everett	WA	98203	2013	NISSAN	LEAF	Battery Electric Vehicle (BEV)
4									•

In []:

In [9]:

```
df["County"].unique()
```

Out[9]:

```
In [10]:
```

```
df["Electric Vehicle Type"].unique()
```

Out[10]:

In [11]:

```
df['Model Year'].plot(kind='box')
```

Out[11]:

<AxesSubplot:>

In [12]:

```
df=df[df['Model Year']>=2010]
```

In [13]:

```
df["Model Year"].unique()
```

Out[13]:

```
array([2011, 2017, 2019, 2018, 2013, 2016, 2020, 2021, 2022, 2015, 2014, 2012, 2023, 2010], dtype=int64)
```

In [14]:

```
plt.figure(figsize=(4,3))
sns.countplot(x = "Model Year", data = df )
plt.xticks(rotation = 90)
plt.show()
```


In [15]:

```
plt.figure(figsize=(4,3))
sns.distplot(df["Model Year"], bins = 25,)
plt.show()
```

C:\Users\Vivek\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

In [16]:

```
df["Model Year"].value_counts()
Out[16]:
2022
        26455
2021
        18277
2018
        14190
2020
        10998
2019
        10216
         8598
2017
2016
         5709
2015
         4918
2013
         4669
2014
         3665
2023
         1863
2012
         1695
2011
          835
2010
            24
Name: Model Year, dtype: int64
In [17]:
```

```
plt.figure(figsize=(4,3))
sns.countplot(x = "Electric Vehicle Type", data = df )
plt.xticks(rotation = 4)
plt.show()
```


In [18]:

```
df["Electric Vehicle Type"].value_counts()
```

Out[18]:

Battery Electric Vehicle (BEV) 85692 Plug-in Hybrid Electric Vehicle (PHEV) 26420 Name: Electric Vehicle Type, dtype: int64

In [19]:

```
plt.figure(figsize=(6,5))
sns.countplot(x = "Make", data = df )
plt.xticks(rotation = 90)
plt.show()
```



```
In [20]:
```

```
df["Make"].value_counts()
```

Out[20]:

TESLA	51860
NISSAN	12846
CHEVROLET	10139
FORD	5766
BMW	4660
KIA	4469
TOYOTA	4366
VOLKSWAGEN	2507
AUDI	2320
VOLVO	2256
CHRYSLER	1780
HYUNDAI	1407
JEEP	114 3
RIVIAN	883
FIAT	820
PORSCHE	817
HONDA	788
MINI	631
MITSUBISHI	585
POLESTAR	557
MERCEDES-BENZ	503
SMART	271
JAGUAR	218
LINCOLN	167
CADILLAC	108
LUCID MOTORS	65
SUBARU	59
LAND ROVER	38
LEXUS	33
FISKER	19
GENESIS	18
AZURE DYNAMICS	7
TH!NK	3
BENTLEY	3

In [21]:

df["City"].value_counts()

Out[21]:

```
Seattle
              20285
                5918
Bellevue
Redmond
                4197
Vancouver
                4012
Kirkland
                3597
Malott
                   1
Rockport
                   1
Bucoda
                   1
Grays River
                   1
Uniontown
```

Name: Make, dtype: int64

Name: City, Length: 435, dtype: int64

In [22]:

```
plt.figure(figsize=(16,8))
sns.countplot(x = "Model Year", data = df, hue="Electric Vehicle Type")
plt.show()
```


Applying Plotly

px.scatter(df,x="Model Year",y="Electric Vehicle Type")

ectric Vehicle Type

.

In [24]:

px.scatter(df,x="Model Year",y="Make")

In [25]:

px.scatter(df,x="Model Year",y="City")

In [26]:

px.box(df,x="Model Year")

In [27]:

px.box(df,x="Model Year",y="Make")

In [28]:

px.box(df,x="Model Year",y="City")

In [29]:

px.pie(df,values="Model Year",names="Make")


```
In [30]:
```

```
px.pie(df,values="Model Year",names="City")
```

-0.0713% -0.0731% -0.0767% -0.0767% -0.0793% -0.0794% -0.0847% -0.0874% -0.0874% -0.0883% -0.0827% -0.0927% -0.0927% -0.0927% -0.0927% -0.0927% -0.0927% -0.0927% -0.0927% -0.0963% -0.0972% -0.102% -0.103% -0.104%

0.105%

E 200/

Conclusion:- Tesla performs better amng all the other companies with 46.3% of Market Share

Recomendations:- Remaining Companies should focus on Marketing Strategies and Technology Development

In []: