1 Wstęp

Celem ćwiczenia jest zapoznanie się z zjawiskami występującymi w nieliniowych obwodach elektrycznych, pomiar charakterystycznych parametrów dla obwodów nieliniowych oraz wyznaczenie charakterystyki napięciowoprądowej.

2 Spis przyrządów

- zestaw laboratoryjny
- dwa multimetry
- generator sygnału okresowego
- dekada rezystorowa
- oscyloskop

3 Pomiar charakterystyki napięciowo-prądowej elementu nieliniowego

Na zestawie laboratoryjnym ustawiliśmy odpowiednie połączenie układu pomiarowego (Rysunek 1). Rezystor R_N dobraliśmy tak aby układ posiadał jeden stateczny punkt równowagi przy dowolonym napięciu wejściowym. Manipulator rezystora R_1 ustawiliśmy na pozycję "0" co według instrukcji odpowiada rezystancji $R_1 \approx 10~\Omega$.

Rysunek 1: Układ do pomiaru charakterystyki napięciowo-prądowej

Następnie zwiększaliśmy napięcie zasilacza i dokonywaliśmy pomiaru prądu i napięcia. Najpierw sprawdziliśmy gdzie znajdują się minima i maksima lokalne naszej charakterystyki napięciowo-prądowej i w okolicach tych punktów mierzyliśmy dokładniej by zwiększyć dokładność charakterystyki. W tabeli zaznaczyliśmy maksimum lokalne zielonym kolorem i minimum lokalne czerwonym kolor.

L.p	U[V]	I[mA]	L.p	U[V]	I[mA]	L.p	U[V]	I[mA]
1	0	0	15	2.75	7.89	29	7	2.78
2	0.15	0.01	16	2.85	7.98	30	7.5	3.93
3	0.3	0.01	17	2.95	7.73	31	8	5.1
4	0.45	0.01	18	3.15	7.09	32	9	7.5
5	0.6	0.02	19	3.25	6.77	33	9.5	8.66
6	0.75	0.11	20	4	4.06	34	10	9.81
7	0.9	0.5	21	4.5	2.2	35	11	12.18
8	1	0.84	22	5	0.52	36	12	14.59
9	1.3	2.08	23	5.2	0.18			
10	1.6	3.34	24	5.4	0.14			
11	1.9	4.64	25	5.6	0.16			
12	2.35	6.53	26	5.9	0.38			
13	2.45	6.93	27	6	0.58			
14	2.55	7.29	28	6.5	1.65			

Rysunek 2: Wyniki pomiarów charakterystyki napięciowo-prądowej

4 Obserwacja zjawisk w obwodzie z niestatecznym punktem pracy

W układzie pomiarowym jak na Rysunku 1 ustawiliśmy . Kolejno stopniowo zwiększaliśmy napięcie zasilacza w celu zaobserwowania skoku napięcia punktu $A^{'}$ do $A^{''}$. Następnie zmniejszaliśmy stopniowo napięcie w celu zaobserwowania przeskoku napięcia z punktu B' do $B^{''}$. Odczytane wartości:

Punkty Pracy	U[V]	I[mA]
A'	2.84	7.97
Α''	6.26	1.11
В'	5.2	0.15
В''	2.23	6.05

Rysunek 3: Tabela punktów pracy

W celu sprawdzenia poprawności zbadanych pomiarów obliczam współczynniki "a" prostej. Jeżeli współczynniki będą zbliżone do siebie to odczytanie punkty można uznać za prawidłowe.

$$\Delta U_A = 6.26 - 2.84 = 3.42 [V]$$

$$\Delta I_A = 7.97 - 1.11 = 6.86 [mA]$$

$$tg_A \alpha = \frac{\Delta I_A}{\Delta U_A} = \frac{0.00686}{3.42} = 0.002$$

$$\Delta U_B = 5.2 - 2.23 = 2.97 [V]$$

$$\Delta I_B = 6.05 - 0.15 = 5.9 [V]$$

$$tg_B \alpha = \frac{\Delta I_B}{\Delta U_B} = \frac{0.0059}{2.97} = 0.00199$$

$$a = 0.001995$$

Z przeprowadzonych obliczeń wynika, że proste są do siebie równoległe. Obliczono rezystancję $R_1=\frac{1}{a}=\frac{1}{0.001995}=501~\Omega$ Zmierzona za pomocą omomierza wartość rezystancji $R_1=530\Omega$

5 Wnioski

W ćwiczeniu badamy nieliniowy element rezystancyjny. Udało się nam wyznaczyć charakterystykę napięciowo-prądową elementu nieliniowego i przypomina ona charakterystyke, którą się spodziewaliśmy. Podczas obserwacji zjawisk w obwodzie z niestatecznym punktem pracy udało się nam wyznaczyć dokładne wartości dwóch punktów pracy i obserwować zachowanie się układu w okolicach tego punktu pracy. Rezystancja obliczona z pomocą linii przecinających punkty pracy odbiega znacznie od rezystancji zmierzonej omomierzem, wynika to prawdopodobnie z błędów pomiarowych.