## **Project Informal Report**

Cristian Barahona

#### 1. Executive Summary

The following report provides valuable insights into the effectiveness of implementing a predictive model in the business' fraud detection system. The model selected utilizes a Random Forest machine learning algorithm to identify potentially fraudulent transactions and alert them in real time processing. The report highlights the accuracy and efficiency of the final model, as well as the financial implications of selecting different cutoffs scores for fraud detection. We recommend setting up a **cutoff score of 3%** for fraud detection in out-of-time transactions, as it provides a near-optimal performance, while still providing a margin of safety. The out-of-time fraud detection rate at 3% for the selected model is **0.577**. This recommendation leads to expected savings of approximately **\$21,000,000** in OOT transactions when projected for the entire year. Overall, the report demonstrates the importance of utilizing advanced analytics tools to combat fraud and protect the company's financial assets.

#### 2. Data Description

The dataset is Credit Card Transaction Data, which contains information of US government organization card transactions, in the year 2010. The data is a collection of 96,753 records including 10 fields.

The following tables show summarized statistics for the 2 numeric and 8 categorical fields in the dataset.

#### a. Numeric Fields Table

| Field Name | #Records<br>With Values | % Populated | #Zeros | Min      | Max        | Mean      | Most Common | Stdev            |
|------------|-------------------------|-------------|--------|----------|------------|-----------|-------------|------------------|
| Date       | 96,753                  | 100%        | 0      | 1/1/2010 | 12/31/2010 | 6/25/2010 | 2/28/2010   | 98 days 21:38:57 |
| Amount     | 96,753                  | 100%        | 0      | 0.01     | 3,102,046  | 427.9     | 3.62        | 10,006           |

#### b. Categorical Fields Table

| Field Name        | # Records With<br>Values | % Populated | #Zeros | # Unique<br>Values | Most Common  |
|-------------------|--------------------------|-------------|--------|--------------------|--------------|
| Recnum            | 96,753                   | 100.00%     | 0      | 96,753             | 1            |
| Cardnum           | 96,753                   | 100.00%     | 0      | 1,645              | 5142148452   |
| Merchnum          | 93,378                   | 96.51%      | 0      | 13,091             | 930090121224 |
| Merch description | 96,753                   | 100.00%     | 0      | 13,126             | GSA-FSS-ADV  |
| Merch state       | 95,558                   | 98.76%      | 0      | 227                | TN           |
| Merch zip         | 92,097                   | 95.19%      | 0      | 4,567              | 38118        |
| Transtype         | 96,753                   | 100.00%     | 0      | 4                  | Р            |
| Fraud             | 96,753                   | 100.00%     | 95,694 | 2                  | 0            |

#### 3. Data Cleaning

The first step in building a predictive model for fraud detection is to clean the data.

We first filter our data to consider **exclusions**. In this case, we remove the outlier transaction (<3,000,000) and include only purchases.

Now, we look at our raw data types and null value counts:

| Field             | # Null |
|-------------------|--------|
| Recnum            | 0      |
| Cardnum           | 0      |
| Date              | 0      |
| Merchnum          | 3198   |
| Merch description | 0      |
| Merch state       | 1020   |
| Merch zip         | 4300   |
| Transtype         | 0      |
| Amount            | 0      |
| Fraud             | 0      |

- We see that `Merchnum`, `Merch state`, `Merch zip`, have null values that need to be addressed. To do this we create a dictionary that maps merchant numbers to their descriptions, for all non-null pairs.
- Then, we fill null merchant numbers that have a mapped description. (i.e., merchant numbers that can be identified, since their description is linked to a merchant number in other observations)
- Similar to the logic used above, we map zip codes to states to identify null state values.
- We change non-US states to 'foreign', and fill all the remaining values of 'Merch state' by 'unknown'.
- We follow the same logic to map 'Merch zip' to their descriptions, and finally change all missing values to 'unknown'.

# 4. Variable Creation

The following table summarizes the variables created by category. A total of 2,227 variables were created in this process:

| Description                                                                                                                                                                                        | # Variables<br>Created |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Day of the week target encoded: average fraud percentage of that day                                                                                                                               | 1                      |
| Day Since:<br>Number of days since a transaction with that entity was seen                                                                                                                         | 21                     |
| Amount: {Avg,max,median,total,actual/avg,actual/max,actual/med,actual/total} transaction amount with that entity over the past {0, 1, 3, 7, 14, 30, 60} days                                       | 1176                   |
| Frequency: Number of transactions with that entity over the past {0, 1, 3, 7, 14, 30, 60} days                                                                                                     | 147                    |
| <b>Velocity Change:</b> Number/Amount of transactions with that entity seen in the past {0,1} days divided by the avg. number of transactions with the same entity over the past {7,14,30,60} days | 336                    |
| Ratio: Number of transactions with that entity seen in the past {0,1} days divided by the number of days since the last transaction.                                                               | 168                    |
| Variability: Amount variability (difference) in transactions with that entity seen in the past {7,14,30,60} days                                                                                   | 378                    |

#### 5. Feature Selection

The main goal is to **reduce dimensionality** by taking the candidate variables created previously and selecting the **most relevant** variables for fraud prediction. To do so, we are going to first run a **filter**, which ranks each candidate variable individually using a score metric (in this case, we'll use KS score), and selects the X variables with highest score. Then, we will run a **wrapper**, which evaluates the entire set of variables (therefore, it accounts for correlation between variables) and narrows the candidate variables to a final selection.

## a. Exploration

First, we are going to explore different parameters combinations and models for the filter and wrapper to see which gives us the best results. For the filter, we are going to modify the **number of variables** selected (*num\_filter*) and for the wrapper we are going to test different **models** (*LGBM-FS, LGBM-BS, Random Forest*).

#### i. LGBM - Forward Selection

We tested this model for 3 different *num filter* values: **100, 200, 400**.

These are around 5-20% of the total number of candidate variables (~2,000).







- The plots show that performance is better when we increase the number of variables (num\_filter) that are given to the wrapper.
- We also see that saturation occurs around the 8-9 features (as shown by the red area in the 3<sup>rd</sup> plot).

# ii. Random Forest – Forward Selection

Again, we tested this model for 3 different *num\_filter* values: 100, 200, 400.







- Here, the performance is overall lower than the previous model, although we also see that it increases as we increase the number of input variables
- This suggest that this model is a better choice when the input number is larger, as it doesn't reach saturation as quickly as the LGBM model.

# iii. LGBM – Backward Selection

Finally, we try the LGBM with backward selection. Since this model takes longer to run, we tested only for these *num\_filter* values: 50, 75, 100.







• This model performs worse than the LGBM – Forward Selection model, although it was tried with a fewer number of variables. With 100 variables, it reaches saturation around the 35 features.

Since our goal is **dimensionality reduction** and **model performance**, we are going to use the LGBM – Forward Selection model for feature selection, which delivers the best performance with fewer variables selection.

For the final number of variables, we'll select 20, which is about twice the number of variables where saturation is reached.

#### b. Variable Selection

The following table shows the **final 20 variables** selected, ordered by the wrapper, and with their respective filter (KS) scores:

| Wrapper<br>Order | Variable                    | Filter Score |  |  |
|------------------|-----------------------------|--------------|--|--|
| 1                | card_merch_total_14         | 0.630048     |  |  |
| 2                | card_zip3_max_14            | 0.629515     |  |  |
| 3                | card_zip3_count_7           | 0.387860     |  |  |
| 4                | Merchnum_desc_total_1       | 0.528445     |  |  |
| 5                | Merchnum_desc_max_1         | 0.523694     |  |  |
| 6                | Merchnum_desc_med_3         | 0.429393     |  |  |
| 7                | card_zip3_variability_max_3 | 0.385868     |  |  |
| 8                | zip3_variability_avg_3      | 0.405014     |  |  |
| 9                | merch_zip_total_14          | 0.440019     |  |  |
| 10               | merch_zip_max_3             | 0.514481     |  |  |
| 11               | Card_Merchnum_desc_total_60 | 0.595019     |  |  |
| 12               | state_des_med_3             | 0.425545     |  |  |
| 13               | Merchnum_desc_total_7       | 0.517123     |  |  |
| 14               | merch_zip_max_1             | 0.522153     |  |  |
| 15               | card_merch_total_30         | 0.615461     |  |  |
| 16               | Card_Merchnum_desc_total_30 | 0.606280     |  |  |
| 17               | Card_Merchnum_Zip_total_30  | 0.612931     |  |  |
| 18               | Card_Merchnum_Zip_total_14  | 0.627421     |  |  |
| 19               | state_des_total_14          | 0.490872     |  |  |
| 20               | Merchnum_desc_max_3         | 0.516808     |  |  |

#### 6. Model Exploration

In this section, the main goal is to **build and tune predictive models** using the dataset with the final variable selection (20 variables) created in the previous section. Our response variable is **Fraud** classification (whether a transaction is fraudulent or not), and the **measure of goodness** used to compare and evaluate the models will be **Fraud detection rate at 3%** (FDR3%).

To do so, we are going to first prepare the data for modeling by scaling features and 'holding out' the last 2 months of data (out of time), which will be later used for evaluation (it's important to note that in a real-world scenario, this OOT data wouldn't be available, and the model can only be evaluated using 'test' data).

Then, we will train different models and try different hyperparameter combinations, to select a final model with the best combination.

#### a. Model Tuning

In the following table, we explore different hyperparameter combinations for each of the models to see which gives us the **best results**.

| MODEL               |        |              | PARAMETER          | S                 |                  | Ave                   | erage FDR @          | 3%                  |
|---------------------|--------|--------------|--------------------|-------------------|------------------|-----------------------|----------------------|---------------------|
|                     | # Vars | рє           | enaty              | С                 | solver           | Train                 | Test                 | ООТ                 |
|                     | 20     |              | L2                 | 1                 | lbgs             | 0.636                 | 0.649                | 0.305               |
|                     | 20     |              | L2                 | 0.1               | lbgs             | 0.656                 | 0.648                | 0.334               |
|                     | 20     |              | L2                 | 0.01              | lbgs             | 0.652                 | 0.657                | 0.341               |
|                     | 20     |              | L1                 | 1                 | saga             | 0.646                 | 0.633                | 0.328               |
| Logistic Regression | 20     | L1           |                    | 0.1               | saga             | 0.654                 | 0.640                | 0.330               |
|                     | 20     | L2           |                    | 0.01              | saga             | 0.658                 | 0.655                | 0.345               |
|                     | 10     | L2           |                    | 1                 | lbgs             | 0.657                 | 0.654                | 0.353               |
|                     | 10     |              | L1                 | 0.1               | saga             | 0.659                 | 0.655                | 0.245               |
|                     | 10     |              | L2                 | 0.01              | saga             | 0.676                 | 0.656                | 0.355               |
|                     | # Vars | max          | _depth             | min_samples_split | min_samples_leaf | Train                 | Test                 | ООТ                 |
|                     | 20     |              | 20                 | 2                 | 4                | 0.963                 | 0.717                | 0.334               |
|                     | 20     |              | 20                 | 4                 | 100              | 0.805                 | 0.764                | 0.549               |
|                     | 20     |              | 10                 | 4                 | 10               | 0.829                 | 0.724                | 0.372               |
|                     | 20     |              | 10                 | 4                 | 100              | 0.797                 | 0.769                | 0.560               |
| Decision Tree       | 20     |              | 8                  | 2                 | 100              | 0.782                 | 0.753                | 0.544               |
| Decision free       | 10     |              | lone               | 2                 | 1                | 0.799                 | 0.741                | 0.549               |
|                     | 10     |              | 10                 | 4                 | 100              | 0.794                 | 0.741                | 0.562               |
|                     | 10     |              | 20                 | 2                 | 100              | 0.794                 | 0.749                | 0.359               |
|                     | 10     |              | 20                 | 2                 | 100              |                       |                      |                     |
|                     | # Vars | _            |                    |                   |                  | 0.803<br><b>Train</b> | 0.755<br><b>Test</b> | 0.556<br><b>OOT</b> |
|                     |        | n_estimators | max_depth          | min_samples_split | min_samples_leaf |                       | 1                    |                     |
|                     | 20     | 100          | None               | 2                 | 1                | 1.000                 | 0.862                | 0.530               |
|                     | 20     | 100          | 20                 | 2                 | 100              | 0.803                 | 0.778                | 0.552               |
|                     | 20     | 200          | 20                 | 2                 | 100              | 0.799                 | 0.773                | 0.554               |
|                     | 20     | 200          | 10                 | 4                 | 100              | 0.786                 | 0.759                | 0.546               |
|                     | 20     | 400          | 10                 | 4                 | 50               | 0.817                 | 0.792                | 0.560               |
| Random Forest       | 20     | 400          | 20                 | 8                 | 50               | 0.863                 | 0.803                | 0.566               |
|                     | 20     | 400          | 20                 | 2                 | 50               | 0.865                 | 0.807                | 0.566               |
|                     | 10     | 100          | 10                 | 2                 | 1                | 0.954                 | 0.851                | 0.554               |
|                     | 10     | 200          | 10                 | 4                 | 100              | 0.812                 | 0.782                | 0.570               |
|                     | 10     | 400          | 20                 | 2                 | 50               | 0.862                 | 0.821                | 0.577               |
|                     | 10     | 400          | 10                 | 2                 | 100              | 0.807                 | 0.794                | 0.571               |
|                     | # Vars | n_estimators | max_depth          | num_leaves        | learning_rate    | Train                 | Test                 | ООТ                 |
|                     | 20     | 20           | 2                  | 31                | 0.1              | 0.773                 | 0.760                | 0.546               |
|                     | 20     | 100          | None               | 31                | 0.1              | 1.000                 | 0.848                | 0.388               |
|                     | 20     | 100          | 20                 | 50                | 0.1              | 1.000                 | 0.849                | 0.386               |
|                     | 20     | 200          | 10                 | 50                | 0.01             | 0.959                 | 0.861                | 0.423               |
| Boosted Tree (LGBM) | 20     | 400          | 10                 | 50                | 0.001            | 0.881                 | 0.821                | 0.476               |
| 2000:00 1100 (202)  | 20     | 400          | 20                 | 20                | 0.0005           | 0.805                 | 0.765                | 0.550               |
|                     | 20     | 400          | 50                 | 20                | 0.0001           | 0.768                 | 0.752                | 0.543               |
|                     | 10     | 20           | 2                  | 31                | 0.1              | 0.768                 | 0.758                | 0.553               |
|                     | 10     | 100          | 10                 | 50                | 0.0001           | 0.807                 | 0.768                | 0.436               |
|                     | 10     | 200          | 20                 | 20                | 0.0005           | 0.792                 | 0.764                | 0.555               |
|                     | # Vars | activation   | hidden_layer_sizes | alpha             | solver           | Train                 | Test                 | ООТ                 |
|                     | 20     | relu         | (100, )            | 0.00001           | adam             | 0.879                 | 0.809                | 0.406               |
|                     | 20     | relu         | (10, )             | 0.00001           | adam             | 0.763                 | 0.741                | 0.513               |
|                     | 20     | relu         | (20, )             | 0.0001            | adam             | 0.798                 | 0.765                | 0.508               |
|                     | 20     | tanh         | (20, )             | 0.00001           | adam             | 0.810                 | 0.789                | 0.524               |
|                     | 20     | tanh         | (100, )            | 0.0001            | sgd              | 0.683                 | 0.661                | 0.366               |
| Neural Network      | 20     | relu         | (100, 2)           | 0.0001            | sgd              | 0.716                 | 0.699                | 0.462               |
|                     | 20     | tanh         | (25, )             | 0.00001           | lbfgs            | 0.913                 | 0.787                | 0.376               |
|                     | 20     | tanh         | (10, )             | 0.000001          | lbfgs            | 0.836                 | 0.813                | 0.431               |
|                     | 20     | tanh         | (25, )             | 0.000001          | adam             | 0.824                 | 0.803                | 0.509               |
|                     | 10     | relu         | (3, )              | 0.00001           | adam             | 0.691                 | 0.667                | 0.437               |
|                     | 10     | relu         | (100, )            | 0.0001            | adam             | 0.837                 | 0.817                | 0.476               |
|                     | 10     | tanh         | (20, )             | 0.00001           | adam             | 0.785                 | 0.763                | 0.544               |

- After exploring different parameter combinations for 20 variables, the models were tested with 10 variables, and all of them performed better in the OOT data when the number of variables was reduced.
- The 'best' (OOT) performance for each model is highlighted in red, and was the combination selected for model comparison.

# b. Model Comparison

• The following plot shows the comparison for all 5 models tuned using the best hyperparameter combination found in part 1.

- The boxplot shows the variation of the **FDR3% score** in train, test, and OOT data, across the 10 different iterations for each model.
- Overall, a good model will have **similar train/test** scores (no overfitting), and **good test/OOT** scores (performs well on unseen data).



• We observe that the **Random Forest** model performs best in the 3 data subsets, and all models except for Logistic Regression have a reasonably good performance in OOT.

#### 7. Final Model Performance

The final model selected is a **Random Forest** model with the **10 best variables** and the following hyperparameters:

- *n\_estimators* (# of trees) = 400
- $max\_depth$  (tree depth) = 20
- min\_samples\_split (min # of samples in each node) = 2
- min\_samples\_leaves = 50

We will now summarize the final model's performance in the **training**, **testing**, and **validation** (**OOT**) sets, by grouping each set into bins (100 bins total) and calculating the number of 'goods' and 'bads' in each bin.

The following tables show these summarized statistics for the first 20 bins, and the total records are displayed in the top (green).

## a. Training Performance

| Training            | # Red     | # Records # Goods # Bads Fraud Rate |                |         |        |                    |                     |                    |                     |                 |       |       |  |
|---------------------|-----------|-------------------------------------|----------------|---------|--------|--------------------|---------------------|--------------------|---------------------|-----------------|-------|-------|--|
|                     | 587       | 779                                 | 58:            | 196     | 58     | 33                 | 0.0099              | 18508              |                     |                 |       |       |  |
|                     |           |                                     | Bin Statistics |         |        |                    |                     | Cum                | nulative Statistics |                 |       |       |  |
| Population<br>Bin % | # Records | # Goods                             | # Bads         | % Goods | % Bads | Total #<br>Records | Cumulative<br>Goods | Cumulative<br>Bads | % Goods             | % Bads<br>(FDR) | KS    | FPR   |  |
| 1                   | 588       | 238                                 | 350            | 40.48%  | 59.52% | 588                | 238                 | 350                | 0.41%               | 60.03%          | 59.63 | 0.68  |  |
| 2                   | 588       | 468                                 | 120            | 79.59%  | 20.41% | 1176               | 706                 | 470                | 1.21%               | 80.62%          | 79.40 | 1.50  |  |
| 3                   | 587       | 553                                 | 34             | 94.21%  | 5.79%  | 1763               | 1259                | 504                | 2.16%               | 86.45%          | 84.29 | 2.50  |  |
| 4                   | 588       | 566                                 | 22             | 96.26%  | 3.74%  | 2351               | 1825                | 526                | 3.14%               | 90.22%          | 87.09 | 3.47  |  |
| 5                   | 588       | 574                                 | 14             | 97.62%  | 2.38%  | 2939               | 2399                | 540                | 4.12%               | 92.62%          | 88.50 | 4.44  |  |
| 6                   | 588       | 573                                 | 15             | 97.45%  | 2.55%  | 3527               | 2972                | 555                | 5.11%               | 95.20%          | 90.09 | 5.35  |  |
| 7                   | 588       | 580                                 | 8              | 98.64%  | 1.36%  | 4115               | 3552                | 563                | 6.10%               | 96.57%          | 90.47 | 6.31  |  |
| 8                   | 587       | 577                                 | 10             | 98.30%  | 1.70%  | 4702               | 4129                | 573                | 7.09%               | 98.28%          | 91.19 | 7.21  |  |
| 9                   | 588       | 583                                 | 5              | 99.15%  | 0.85%  | 5290               | 4712                | 578                | 8.10%               | 99.14%          | 91.05 | 8.15  |  |
| 10                  | 588       | 583                                 | 5              | 99.15%  | 0.85%  | 5878               | 5295                | 583                | 9.10%               | 100.00%         | 90.90 | 9.08  |  |
| 11                  | 588       | 588                                 | 0              | 100.00% | 0.00%  | 6466               | 5883                | 583                | 10.11%              | 100.00%         | 89.89 | 10.09 |  |
| 12                  | 587       | 587                                 | 0              | 100.00% | 0.00%  | 7053               | 6470                | 583                | 11.12%              | 100.00%         | 88.88 | 11.10 |  |
| 13                  | 588       | 588                                 | 0              | 100.00% | 0.00%  | 7641               | 7058                | 583                | 12.13%              | 100.00%         | 87.87 | 12.11 |  |
| 14                  | 588       | 588                                 | 0              | 100.00% | 0.00%  | 8229               | 7646                | 583                | 13.14%              | 100.00%         | 86.86 | 13.11 |  |
| 15                  | 588       | 588                                 | 0              | 100.00% | 0.00%  | 8817               | 8234                | 583                | 14.15%              | 100.00%         | 85.85 | 14.12 |  |
| 16                  | 588       | 588                                 | 0              | 100.00% | 0.00%  | 9405               | 8822                | 583                | 15.16%              | 100.00%         | 84.84 | 15.13 |  |
| 17                  | 587       | 587                                 | 0              | 100.00% | 0.00%  | 9992               | 9409                | 583                | 16.17%              | 100.00%         | 83.83 | 16.14 |  |
| 18                  | 588       | 588                                 | 0              | 100.00% | 0.00%  | 10580              | 9997                | 583                | 17.18%              | 100.00%         | 82.82 | 17.15 |  |
| 19                  | 588       | 588                                 | 0              | 100.00% | 0.00%  | 11168              | 10585               | 583                | 18.19%              | 100.00%         | 81.81 | 18.16 |  |
| 20                  | 588       | 588                                 | 0              | 100.00% | 0.00%  | 11756              | 11173               | 583                | 19.20%              | 100.00%         | 80.80 | 19.16 |  |

• In the **training** data, the model labels approx. 0.99% (583 out of 58,779) of transactions as 'bads'.

## b. Testing Performance

| Testing             | # Red     | cords   | # Go                  | oods    | # B    | ads                | Frauc               | l Rate             |                     |                 |       |       |  |
|---------------------|-----------|---------|-----------------------|---------|--------|--------------------|---------------------|--------------------|---------------------|-----------------|-------|-------|--|
|                     | 25:       | 191     | 248                   | 394     | 29     | 97                 | 0.0117              | 789925             |                     |                 |       |       |  |
|                     |           |         | <b>Bin Statistics</b> |         |        |                    |                     | Cum                | nulative Statistics |                 |       |       |  |
| Population<br>Bin % | # Records | # Goods | # Bads                | % Goods | % Bads | Total #<br>Records | Cumulative<br>Goods | Cumulative<br>Bads | % Goods             | % Bads<br>(FDR) | KS    | FPR   |  |
| 1                   | 252       | 94      | 158                   | 37.30%  | 62.70% | 252                | 94                  | 158                | 0.38%               | 53.20%          | 52.82 | 0.59  |  |
| 2                   | 252       | 190     | 62                    | 75.40%  | 24.60% | 504                | 284                 | 220                | 1.14%               | 74.07%          | 72.93 | 1.29  |  |
| 3                   | 252       | 239     | 13                    | 94.84%  | 5.16%  | 756                | 523                 | 233                | 2.10%               | 78.45%          | 76.35 | 2.24  |  |
| 4                   | 252       | 242     | 10                    | 96.03%  | 3.97%  | 1008               | 765                 | 243                | 3.07%               | 81.82%          | 78.75 | 3.15  |  |
| 5                   | 252       | 244     | 8                     | 96.83%  | 3.17%  | 1260               | 1009                | 251                | 4.05%               | 84.51%          | 80.46 | 4.02  |  |
| 6                   | 251       | 248     | 3                     | 98.80%  | 1.20%  | 1511               | 1257                | 254                | 5.05%               | 85.52%          | 80.47 | 4.95  |  |
| 7                   | 252       | 249     | 3                     | 98.81%  | 1.19%  | 1763               | 1506                | 257                | 6.05%               | 86.53%          | 80.48 | 5.86  |  |
| 8                   | 252       | 250     | 2                     | 99.21%  | 0.79%  | 2015               | 1756                | 259                | 7.05%               | 87.21%          | 80.15 | 6.78  |  |
| 9                   | 252       | 250     | 2                     | 99.21%  | 0.79%  | 2267               | 2006                | 261                | 8.06%               | 87.88%          | 79.82 | 7.69  |  |
| 10                  | 252       | 250     | 2                     | 99.21%  | 0.79%  | 2519               | 2256                | 263                | 9.06%               | 88.55%          | 79.49 | 8.58  |  |
| 11                  | 252       | 252     | 0                     | 100.00% | 0.00%  | 2771               | 2508                | 263                | 10.07%              | 88.55%          | 78.48 | 9.54  |  |
| 12                  | 252       | 248     | 4                     | 98.41%  | 1.59%  | 3023               | 2756                | 267                | 11.07%              | 89.90%          | 78.83 | 10.32 |  |
| 13                  | 252       | 251     | 1                     | 99.60%  | 0.40%  | 3275               | 3007                | 268                | 12.08%              | 90.24%          | 78.16 | 11.22 |  |
| 14                  | 252       | 252     | 0                     | 100.00% | 0.00%  | 3527               | 3259                | 268                | 13.09%              | 90.24%          | 77.14 | 12.16 |  |
| 15                  | 252       | 250     | 2                     | 99.21%  | 0.79%  | 3779               | 3509                | 270                | 14.10%              | 90.91%          | 76.81 | 13.00 |  |
| 16                  | 252       | 250     | 2                     | 99.21%  | 0.79%  | 4031               | 3759                | 272                | 15.10%              | 91.58%          | 76.48 | 13.82 |  |
| 17                  | 251       | 251     | 0                     | 100.00% | 0.00%  | 4282               | 4010                | 272                | 16.11%              | 91.58%          | 75.47 | 14.74 |  |
| 18                  | 252       | 251     | 1                     | 99.60%  | 0.40%  | 4534               | 4261                | 273                | 17.12%              | 91.92%          | 74.80 | 15.61 |  |
| 19                  | 252       | 252     | 0                     | 100.00% | 0.00%  | 4786               | 4513                | 273                | 18.13%              | 91.92%          | 73.79 | 16.53 |  |
| 20                  | 252       | 251     | 1                     | 99.60%  | 0.40%  | 5038               | 4764                | 274                | 19.14%              | 92.26%          | 73.12 | 17.39 |  |

• In the **testing** data, the model labels approx. 1.18% (297 out of 25,191) of transactions as 'bads'.

#### c. Evaluation Performance

| ООТ                 | # Records |         | # Go           | oods    | # B    | ads                   | Fraud               | Rate               |         |                 |       |       |  |
|---------------------|-----------|---------|----------------|---------|--------|-----------------------|---------------------|--------------------|---------|-----------------|-------|-------|--|
|                     | 124       | 127     | 122            | 248     | 1      | 79                    | 0.014               | 40412              |         |                 |       |       |  |
|                     |           |         | Bin Statistics |         |        | Cumulative Statistics |                     |                    |         |                 |       |       |  |
| Population<br>Bin % | # Records | # Goods | # Bads         | % Goods | % Bads | Total #<br>Records    | Cumulative<br>Goods | Cumulative<br>Bads | % Goods | % Bads<br>(FDR) | KS    | FPR   |  |
| 1                   | 124       | 55      | 69             | 44.35%  | 55.65% | 124                   | 55                  | 69                 | 0.45%   | 38.55%          | 38.10 | 0.80  |  |
| 2                   | 125       | 99      | 26             | 79.20%  | 20.80% | 249                   | 154                 | 95                 | 1.26%   | 53.07%          | 51.82 | 1.62  |  |
| 3                   | 124       | 115     | 9              | 92.74%  | 7.26%  | 373                   | 269                 | 104                | 2.20%   | 58.10%          | 55.90 | 2.59  |  |
| 4                   | 124       | 123     | 1              | 99.19%  | 0.81%  | 497                   | 392                 | 105                | 3.20%   | 58.66%          | 55.46 | 3.73  |  |
| 5                   | 124       | 120     | 4              | 96.77%  | 3.23%  | 621                   | 512                 | 109                | 4.18%   | 60.89%          | 56.71 | 4.70  |  |
| 6                   | 125       | 123     | 2              | 98.40%  | 1.60%  | 746                   | 635                 | 111                | 5.18%   | 62.01%          | 56.83 | 5.72  |  |
| 7                   | 124       | 122     | 2              | 98.39%  | 1.61%  | 870                   | 757                 | 113                | 6.18%   | 63.13%          | 56.95 | 6.70  |  |
| 8                   | 124       | 122     | 2              | 98.39%  | 1.61%  | 994                   | 879                 | 115                | 7.18%   | 64.25%          | 57.07 | 7.64  |  |
| 9                   | 124       | 124     | 0              | 100.00% | 0.00%  | 1118                  | 1003                | 115                | 8.19%   | 64.25%          | 56.06 | 8.72  |  |
| 10                  | 125       | 120     | 5              | 96.00%  | 4.00%  | 1243                  | 1123                | 120                | 9.17%   | 67.04%          | 57.87 | 9.36  |  |
| 11                  | 124       | 120     | 4              | 96.77%  | 3.23%  | 1367                  | 1243                | 124                | 10.15%  | 69.27%          | 59.13 | 10.02 |  |
| 12                  | 124       | 123     | 1              | 99.19%  | 0.81%  | 1491                  | 1366                | 125                | 11.15%  | 69.83%          | 58.68 | 10.93 |  |
| 13                  | 125       | 123     | 2              | 98.40%  | 1.60%  | 1616                  | 1489                | 127                | 12.16%  | 70.95%          | 58.79 | 11.72 |  |
| 14                  | 124       | 124     | 0              | 100.00% | 0.00%  | 1740                  | 1613                | 127                | 13.17%  | 70.95%          | 57.78 | 12.70 |  |
| 15                  | 124       | 124     | 0              | 100.00% | 0.00%  | 1864                  | 1737                | 127                | 14.18%  | 70.95%          | 56.77 | 13.68 |  |
| 16                  | 124       | 123     | 1              | 99.19%  | 0.81%  | 1988                  | 1860                | 128                | 15.19%  | 71.51%          | 56.32 | 14.53 |  |
| 17                  | 125       | 123     | 2              | 98.40%  | 1.60%  | 2113                  | 1983                | 130                | 16.19%  | 72.63%          | 56.44 | 15.25 |  |
| 18                  | 124       | 124     | 0              | 100.00% | 0.00%  | 2237                  | 2107                | 130                | 17.20%  | 72.63%          | 55.42 | 16.21 |  |
| 19                  | 124       | 120     | 4              | 96.77%  | 3.23%  | 2361                  | 2227                | 134                | 18.18%  | 74.86%          | 56.68 | 16.62 |  |
| 20                  | 124       | 122     | 2              | 98.39%  | 1.61%  | 2485                  | 2349                | 136                | 19.18%  | 75.98%          | 56.80 | 17.27 |  |

• In the evaluation data, the model labels approx. 1.44% (179 out of 12,427) of transactions as 'bads'.

#### 8. Financial Curves

The following chart shows the financial curves for different score cutoffs (i.e., what percentage of transactions are flagged as fraudulent). The green line shows the gains (savings) for every fraud that is correctly detected. The red line shows losses for false positives (non-fraudulent transaction flagged as fraudulent). The blue line shows the overall savings (total gains – losses).



- From the chart, we see that the score cutoff that maximizes **overall savings** is approximately 2.7%.
- We recommend using a score cutoff of **3%**, which is still close to the optimal, but "safer", as it will flag a higher number of transactions.

#### 9. Summary

This report offers valuable insights into the effectiveness of implementing a predictive model in the business's fraud detection system.

In the first section, a description of the dataset used is provided, including summary tables for both categorical and numerical fields. The raw dataset included a total of 96,753 records across 10 fields. Since the original dataset included some null values and records that we didn't want our model to train on, the data cleaning process handled both the exclusion of these records (non-purchase transactions, different currency) and the imputation of missing values for the 'Merch zip', 'Merch num', and 'Zip code' fields.

After cleaning the data, we created as many variables as possible by combining different entities, and calculating frequencies, variability, velocity change, amount, days since, and other ratios to create a large number of variables. A total of 2,227 variables was created in this step. In the next section, the total number of variables was reduced to only 20, by running a filter and then a wrapper. Here, the main objective was dimensionality reduction and model performance, so we used the LGBM – Forward Selection model, which delivered the best performance with fewer variables selection.

Once the features were selected, different models were trained and tested in the training, testing, and OOT datasets, with a wide variety of hyperparameters. Here, our response variable was Fraud classification (whether a transaction is fraudulent or not), and the measure of goodness used to compare and evaluate the models was Fraud detection rate at 3% (FDR3%). The model comparison showed that the Random Forest model performs best in the 3 data subsets.

We finally evaluated the selected model's performance. In the evaluation data, the model labeled approximately 1.44% (179 out of 12,427) of transactions as fraudulent. In OOT data, the model has a FDR @3% of 0.577. The score cutoff recommendation leads to expected savings of approximately \$21,000,000 in OOT transactions when projected for the entire year.

#### 1. Data Description

The dataset is **Credit Card Transaction Data**, which contains information of US government organization card transactions, in the **year 2010**. The data is a collection of **96,753** records including **10 fields**.

#### 2. Summary Tables

#### **Numeric Fields Table**

| Field Name | #Records<br>With Values | % Populated | #Zeros | Min      | Max        | Mean      | Most Common | Stdev            |
|------------|-------------------------|-------------|--------|----------|------------|-----------|-------------|------------------|
| Date       | 96,753                  | 100%        | 0      | 1/1/2010 | 12/31/2010 | 6/25/2010 | 2/28/2010   | 98 days 21:38:57 |
| Amount     | 96,753                  | 100%        | 0      | 0.01     | 3,102,046  | 427.9     | 3.62        | 10,006           |

#### **Categorical Fields Table**

| Field Name        | # Records With<br>Values | % Populated | #Zeros | # Unique<br>Values | Most Common  |
|-------------------|--------------------------|-------------|--------|--------------------|--------------|
| Recnum            | 96,753                   | 100.00%     | 0      | 96,753             | 1            |
| Cardnum           | 96,753                   | 100.00%     | 0      | 1,645              | 5142148452   |
| Merchnum          | 93,378                   | 96.51%      | 0      | 13,091             | 930090121224 |
| Merch description | 96,753                   | 100.00%     | 0      | 13,126             | GSA-FSS-ADV  |
| Merch state       | 95,558                   | 98.76%      | 0      | 227                | TN           |
| Merch zip         | 92,097                   | 95.19%      | 0      | 4,567              | 38118        |
| Transtype         | 96,753                   | 100.00%     | 0      | 4                  | Р            |
| Fraud             | 96,753                   | 100.00%     | 95,694 | 2                  | 0            |

#### 3. Visualization of Each Field

## 1) Field Name: Amount

Description: Transaction amount. The histogram shows the distribution of transaction amounts. The frequencies are shown in log scale, and only transactions up to \$5,000 are shown in the chart (99.68% of total transactions).



## 2) Field Name: Date

Description: Transaction date. The first distribution shows the number of **daily** transactions across the year 2010. The second distribution shows the number of **weekly** transactions across the year 2010. The third distribution shows the number of **monthly** transactions across the year 2010.







# 3) Field Name: Recnum

Description: Ordinal unique positive integer for each transaction record, from 1 to 96,753.

# 4) Field Name: Cardnum

Description: Credit card number. There are a total of 1,645 unique card numbers. The distribution shows the top 15 field values. The most common number is '5142148452', with a total count of 1,192.



#### 5) Field Name: Merchnum

Description: Merchant (business) number. There are a total of 13,092 unique merchant numbers. The distribution shows the top 15 field values. The most common number is '930090121224', with a total count of 9,310.



#### 6) Field Name: Merch description

Description: Merchant (business) description. There are a total of 13,126 unique merchant descriptions. The distribution shows the top 15 field values. The most common description is 'GSA-FSS-ADV', with a total count of 1,688.



## 7) Field Name: Merch state

Description: Merchant's state. The distribution shows the top 15 field values of business' state. The most common state is Tennessee (TN), with a total count of 12,035.



# 8) Field Name: Merch zip

Description: Merchant's zip code. The distribution shows the top 15 field values of business' zip code. The most common zip code is '38118', with a total count of 11,868.



#### 9) Field Name: Transtype

Description: Transaction types. The distribution shows the top 15 field values of transaction types. The most common transaction type is 'P', with a total count of 96,398.



## 10) Field Name: fraud

Description: Fraud identification label. Fraud = 0 (Not fraudulent), Fraud =1 (Fraud identified). The total count of fraud = 0 is 95,694. The total count of fraud = 1 is 1,059.

