Représentation fréquentielle d'un signal

Exercice 1.

Les spectres du son d'un violon et d'une flûte sont représentés ci-dessous.

- 1) Quelle est la fréquence du fondamentale de ces deux sons?
- 2) Justifier que ces deux notes sont identiques?
- 3) Qu'est-ce qui différencie ces deux sons?

Exercice 2.

La figure ci-dessous donne l'évolution temporelle d'un signal.

La seconde figure représente ce même signal sous un aspect fréquentiel.

- 1) Quelle est la forme de ce signal?
- 2) Quelle est sa période?
- 3) Déterminer sa valeur moyenne et son amplitude?
- 4) Quelle est la fréquence de son fondamental?
- 5) Que dire des harmoniques de rang pair?
- 6) Déterminer une approximation de sa valeur efficace à partir de son spectre d'amplitude.

Exercice 3.

La figure ci-dessous donne l'allure générale du spectre d'amplitude d'un signal triangulaire.

Données:

$$A_0 = 250 \text{ mV}$$

$$A_1 = 203 \text{ mV}$$

- 1) Quelle est la fréquence f_1 du fondamentale?
- 2) En déduire la fréquence f et la période T du signal triangulaire.
- 3) Quels sont les rangs des harmoniques présents dans le spectre?
- 4) En déduire leur fréquence, leur pulsation et leur amplitude en complétant le tableau suivant :

n	0	1	2	3	4	5	6
f_n							
ω_n							
A_n							

- 5) Quelle est la valeur moyenne du signal?
- 6) Compléter l'expression mathématique du signal :

$$u(t) = \dots + \min(\dots t + \frac{\pi}{2}) + \min(\dots t + \frac{\pi}{2}) + \min(\dots t + \frac{\pi}{2})$$

7) A l'aide d'un logiciel de traitement numérique (tableur, langage Python, ...), représenter graphiquement la fonction u(t) sur deux périodes. L'allure obtenue est-elle conforme?

Exercice 4.

La figure ci-dessous donne le spectre RMS en dBV d'une tension périodique u(t).

Rang	0	1	2	3	4	5	6	7	8
f (Hz)									
U (dBV)									
<i>U</i> (V)									

- 1) Quelle fonction d'un oscilloscope permet d'obtenir ce type de courbe?
- 2) Quels sont les rangs des harmoniques présents sur ce spectre?
- 3) Préciser les fréquences de ces harmoniques (compléter le tableau).
- 4) Quelle est la fréquence du signal?
- 5) Mesurer les niveaux de ces harmoniques en dBV (compléter le tableau).
- **6)** Que dire des niveaux de tension inférieures à $-40 \, \text{dBV}$?
- 7) En déduire les niveaux correspondant en V (compléter le tableau).
- 8) Justifier que ce signal n'est pas alternatif?
- 9) Calculer le taux de distorsion harmonique du signal u(t). Conclure.

Exercice 5.

Soit une tension périodique dont évolution en fonction du temps est donnée par la figure suivante :

Sa décomposition en série de Fourier est de la forme suivante :

$$u(t) = 4 + 12,4\sqrt{2}\sin(\omega t + 0,51) + 6,2\sqrt{2}\sin(2\omega t - 0,93) + 7,7\sqrt{2}\sin(3\omega t + 0,69) + 3,2\sqrt{2}\sin(5\omega t + 1,2)$$

- 1) Vérifier que la fréquence de cette tension est f = 200 Hz?
- 2) Sur l'expression de la décomposition en série de Fourier au-dessus, mettre en évidence (entourer avec une légende) le fondamental, la composante continue et la composante alternative du signal.
- 3) Combien d'harmoniques comporte la tension u(t)? Donner la fréquence de chaque harmonique.
- 4) Tracer son spectre VRMS.
- 5) Quelle la valeur moyenne de cette tension?
- 6) Montrer que la valeur efficace de cette tension vaut 16,7V.
- 7) Quelle est la mesure indiquée par un oscilloscope dans chacun des cas donnés par le tableau cidessous?

Couplage	CC	CC	CA	CA	
Type mesure	MOY CYCLE	RMS CYCLE	MOY CYCLE	RMS CYCLE	
Valeur					