Mixing Times of Self-Organizing Lists and Biased Permutations

Sarah Miracle

Georgia Institute of Technology

Joint work with

Prateek Bhakta

Dana Randall

Amanda Streib

Biased Card Shuffling

- pick a pair of adjacent cards uniformly at random
- put j ahead of i with probability $p_{j,i} = 1$ $p_{i,j}$

This is related to the "Move-Ahead-One Algorithm" for self-organizing lists.

What is already known?

- Uniform bias: If $p_{i,j} = \frac{1}{2} \forall i, j$ then M_{nn} mixes in $\theta(n^3 \log n)$ [Wilson]
- Constant bias: If $p_{i,j} = p > \frac{1}{2} \forall i < j$, then M_{nn} mixes in $\theta(n^2)$ time [Benjamini, Berger, Hoffman, Mossel]

If $p_{i,j} \ge \frac{1}{2} \ \forall \ i < j$ we say the chain is *positively biased*.

 \underline{Q} : If the $\{p_{ij}\}$ are positively biased, is M_{nn} always rapidly mixing?

Conjecture (Fill): If $\{p_{ij}\}$ satisfy a "regularity" condition, then the spectral gap is minimized when $p_{ij} = 1/2 \ \forall i,j$

- proved this conjecture for n ≤ 4

What is already known?

- Uniform bias: If p_{i,j} = ½∀ i, j then M_{nn} mixes in θ(n³ log n) [Wilson]
- Constant bias: If $p_{i,j} = p > \frac{1}{2} \ \forall \ i < j$, then M_{nn} mixes in $\theta(n^2)$ time [Benjamini, Berger, Hoffman, Mossel]
- Linear extensions of a partial order: If $p_{i,j} = \frac{1}{2}$ or 1 $\forall i < j$, then M_{nn} mixes in $O(n^3 \log n)$ time [Bubley, Dyer]
- M_{nn} is fast for two new classes: "Choose your weapon" and "League hierarchies" [Bhakta, M., Randall, Streib]
- M_{nn} can be slow even when the chain is positively biased [Bhakta, M., Randall, Streib]

Talk Outline

- 1. Background
 - 2. New Classes of Bias where M_{nn} is fast
 - Choose your Weapon
 - League Hierarchies
 - 3. M_{nn} can be slow

The mixing time

Definition: The total variation distance is

$$||P^t,\pi|| = \max_{x \in \Omega} \frac{1}{2} \sum_{y \in \Omega} |P^t(x,y) - \pi(x)|.$$

Definition: Given &, the mixing time is

$$\tau(\varepsilon) = \min \{t: ||P^{t'}, \pi|| < \varepsilon, \forall t' \ge t\}.$$

A Markov chain is rapidly mixing if $\tau(\varepsilon)$ is poly(n, $\log(\varepsilon^{-1})$). (or polynomially mixing)

A Markov chain is slowly mixing if $\tau(\varepsilon)$ is at least $\exp(n)$.

Choose your weapon

Given $r_{1, ..., r_{n-1}}$ $r_i \ge 1/2$.

<u>Thm 1</u>: Let $p_{i,j} = r_i \quad \forall i < j$. Then M_{NN} is rapidly mixing.

Proof sketch:

- A. Define auxiliary Markov chain M'
- B. Show M' is rapidly mixing
- C. Compare the mixing times of M_{NN} and M'
- M' can swap pairs that are not nearest neighbors
 - Maintains the same stationary distribution
 - Allowed moves are based on inversion tables

Inversion Tables

Inversion Table I_{σ} :

 $I_{\sigma}(i) = \#$ elements j > i appearing before i in σ

The map I is a bijection from S_n to $T = \{(x_1, x_2, ..., x_n): 0 \le x_i \le n-i\}.$

Inversion Tables

Permutation σ :

Inversion Table I_{σ} :

3 3 2 3 0 0 0

M' on Inversion Tables

- choose a column i uniformly
- w.p. r_i : subtract 1 from x_i (if $x_i>0$)
- w.p. 1- r_i: add 1 to x_i (if $x_i < n-i$)

M' is just a product of n independent biased random walks

 \Rightarrow M' is rapidly mixing.

Choose your weapon

Given $r_{1,...,r_{n-1}}$ $r_{i} \ge 1/2$.

<u>Thm 1</u>: Let $p_{i,j} = r_i \quad \forall i < j$. Then M_{NN} is rapidly mixing.

Proof sketch:

- ✓ A. Define auxiliary Markov chain M'
- ✓ B. Show M' is rapidly mixing
 - C. Compare the mixing times of M_{NN} and M'

Inversion Tables

Permutation σ :

Inversion Table I_{σ} :

3 3 2 3 0 0 0

 $I_{\sigma}(i) = \#$ elements j > i appearing before i in σ

M' on Permutations

- choose a card i uniformly
- swap element i with the first j>i to the left w.p. r_i
- swap element i with the first j>i to the right w.p. 1-r_i

M' on Inversion Tables

- choose a column i uniformly
- w.p. r_i : subtract 1 from x_i $(if x_i > 0)$
- w.p. 1- r_i : add 1 to x_i $(if x_i < n-i)$

Comparing M' and M_{nn}

M' on Permutations

- choose a card i uniformly
- swap element i with the first j>i to the left w.p. r_i
- j>i to the left w.p. r_i swap element i with the first j>i to the right w.p. 1-r_i

Want stationary dist.:

$$\pi(\sigma) = \prod_{i < j : \sigma(i) > \sigma(j)} \frac{p_{ij}}{p_{ji}} Z$$

Permutation σ :

 $\frac{P'(\sigma,\tau)}{P'(\tau,\sigma)} = \frac{\pi(\tau)}{\pi(\sigma)}$

 $\frac{p_{2,1} p_{2,3} p_{1,3}}{p_{1,2} p_{3,2} p_{3,1}} = \frac{p_{2,3}}{p_{3,2}}$ $= r_2 = p_{2,3}$

Let T be a binary tree with leaves labeled $\{1,...,n\}$. Given $q_v \ge 1/2$ for each *internal* vertex v.

Thm 2: Let $p_{i,j} = q_{i \wedge j}$ for all i < j. Then M_{NN} is rapidly mixing.

Let T be a binary tree with leaves labeled $\{1,...,n\}$. Given $q_v \ge 1/2$ for each *internal* vertex v.

<u>Thm 2:</u> Let $p_{i,j} = q_{i \wedge j}$ for all i < j. Then M_{NN} is rapidly mixing.

Let T be a binary tree with leaves labeled $\{1,...,n\}$. Given $q_v \ge 1/2$ for each *internal* vertex v.

Thm 2: Let $p_{i,j} = q_{i \wedge j}$ for all i < j. Then M_{NN} is rapidly mixing.

Let T be a binary tree with leaves labeled $\{1,...,n\}$. Given $q_v \ge 1/2$ for each *internal* vertex v.

Thm 2: Let $p_{i,j} = q_{i \wedge j}$ for all i < j. Then M_{NN} is rapidly mixing.

Proof sketch:

- A. Define auxiliary Markov chain M'
- B. Show M' is rapidly mixing
- C. Compare the mixing times of M_{NN} and M'
- M' can swap pairs that are not nearest neighbors
 - Maintains the same stationary distribution
 - Allowed moves are based on the binary tree T

Let T be a binary tree with leaves labeled $\{1,...,n\}$. Given $q_v \ge 1/2$ for each *internal* vertex v.

Thm 2: Let $p_{i,j} = q_{i \wedge j}$ for all i < j. Then M_{NN} is rapidly mixing.

Let T be a binary tree with leaves labeled $\{1,...,n\}$. Given $q_v \ge 1/2$ for each *internal* vertex v.

Thm 2: Let $p_{i,i} = q_{i \wedge i}$ for all i < j. Then M_{NN} is rapidly mixing.

Let T be a binary tree with leaves labeled $\{1,...,n\}$. Given $q_v \ge 1/2$ for each *internal* vertex v.

<u>Thm 2:</u> Let $p_{i,j} = q_{i \wedge j}$ for all i < j. Then M_{NN} is rapidly mixing.

Let T be a binary tree with leaves labeled $\{1,...,n\}$. Given $q_v \ge 1/2$ for each *internal* vertex v.

<u>Thm 2:</u> Let $p_{i,j} = q_{i \wedge j}$ for all i < j. Then M_{NN} is rapidly mixing.

Markov chain M' allows a transposition if it corresponds to an ASEP move on one of the internal vertices.

What about the Stationary Distribution?

Want stationary distribution:

$$\pi(\sigma) = \prod_{i < j : \sigma(i) > \sigma(j)} \frac{p_{ij, -2}}{p_{ji}}$$

Permutation σ :

Permutation τ :

$$\frac{P'(\sigma,\tau)}{P'(\tau,\sigma)} = \frac{\pi(\tau)}{\pi(\sigma)} = \frac{p_{5,1} p_{5,3} p_{8,6} p_{9,6} p_{6,1} p_{6,3} p_{8,5} p_{9,6} p_{6,5}}{p_{1,5} p_{3,5} p_{6,8} p_{6,9} p_{1,6} p_{3,6} p_{5,8} p_{6,9} p_{5,6}} = \frac{p_{6,5}}{p_{5,6}}$$

P'
$$(\sigma,\tau) = 1 - v_{5^{\circ}6} = p_{6,5}$$

Markov chain M' allows a transposition if it corresponds to an ASEP move on one of the internal vertices.

Each ASEP is rapidly mixing \Rightarrow M' is rapidly mixing.

 M_{NN} is also rapidly mixing if $\{p\}$ is weakly regular. i.e., for all i, $p_{i,j} < p_{i,j+1}$ if j > i. (by comparison)

So M_{NN} is rapidly mixing when

Choose your weapon:

$$p_{i,j} = r_i \ge 1/2 \quad \forall i < j$$

Tree hierarchies:

$$p_{i,j} = q_{i^{i}} > 1/2 \ \forall \ i < j$$

Talk Outline

- 1. Background
- 2. New Classes of Bias where M_{nn} is fast
 - Choose your Weapon
 - League Hierarchies
- 3. M_{nn} can be slow

But.....M_{NN} can be slow

Thm 3: There are examples of positively biased $\{p_{ij}\}$ for which M_{NN} is slowly mixing.

1. Reduce to biased lattice paths

always in order
$$p_{ij} = \begin{cases} 1 & \text{if } i < j \leq \frac{n}{2} & \text{or } \frac{n}{2} < i < j \\ 1 & 2 & 3 & \dots & \frac{n}{2} & \frac{n}{2} + 1 & \dots & n \end{cases}$$

Permutation σ :

Slow mixing example

Thm 3: There are examples of positively biased $\{p\}$ for which M_{NN} is slowly mixing.

- 1. Reduce to biased lattice paths
- 2. Define bias on individual cells (non-uniform growth proc.)

$$p_{ij} = \begin{cases} 1 & \text{if } i < j \leq \frac{n}{2} \text{ or } \frac{n}{2} < i < j \\ 1/2 + 1/n^2 & \text{if } i + (n-j+1) < M \\ 1 - \delta & \text{otherwise} \end{cases}$$

Each choice of p_{ij} where $i \le \frac{n}{2} < j$ determines the bias on square (i, n-j+1) ("fluctuating bias")

[Greenberg, Pascoe, Randall]

Slow mixing example

Thm 3: There are examples of positively biased $\{p\}$ for which M_{NN} is slowly mixing.

- 1. Reduce to biased lattice paths
- 2. Define bias on individual cells
- 3. Show that there is a "bad cut" in the state space

Implies that M_{NN} can take exp. time to reach stationarity.

Therefore biased card shuffling can be slow too!

Open Problems

- Is M_{NN} always rapidly mixing when {p_{i,j}} are positively biased and satisfy a *regularity condition*? (i.e., p_{i,i} is decreasing in i and j)
- 2. When does bias speed up or slow down a chain?

Thank you!