Practical Course: Machine Learning in Graphics, Vision and Language

Final presentation

Daniela Kemp, Simon Frank, Mohamed Elsherif, Gwent Krause & Tim Rebig

Self-Supervised Learning for Medical Image Analysis

Self-Supervised Learning for Medical Image Analysis

- Classical data labeling requires expert knowledge making it expensive
- Need to reduce the necessity for annotated data
- Contrastive Learning:
 - SimCLR and MoCo dominant approaches, but hardware intensive
- Barlow Twins SOTA-method underexplored in the medical domain

Pre-training Method: Barlow-Twins

Barlow-Twins Architectures

Trainable Parameters: 20.6 mio

- Resnet18 11.2 mio

- Projection Head 9.4 mio

Projection Heads:

- FC layer, batchnorm, ReLU
- FC layer, batchnorm, ReLU
- FC layer

Read-out head: MLP

ResNet-18 Architecture

Curating medical datasets

MIMeta datasets and toolbox

- Multiple medical domains
- Provides a unified interface for loading data sets
- Images standardized to 224 x 224 pixels
- Standardised data splits

Axial organ slices

Colorectal cancer

Chosen datasets for experiments

Barlow-Twin Pretraining

- Datasets: Axial Organ Slices, Coronal Organ Slices, Sagittal Organ Slices (similar domains) (3.948 images in the training set)
- Wrapper for the MIMeta Data loader to load multiple datasets
- Hyperparameters:

o epochs: 1000

batch size: 256

learning rate: 0.03

optimizer: Adam

Fine-tuning Setup

- Imagenet pre-training as comparison
- Two different training method
 - Freeze Backbone train only linear Read-out head with 5.6k parameter

Fine-tuning Setup

- Imagenet pre-training as comparison
- Two different training method
 - Freeze Backbone train only linear Read-out head with 5.6k parameter
 - Train the whole model

Accuracy: Comparison

Accuracy: Comparison

Accuracy: Comparison

Colorectal Cancer Histopathology Dataset

- 107180 Total Images
- Also pretraining using Barlow Twins

Accuracies

Accuracies

Barlow-Twins + only Linear Read-out-head, 100% Data

(96.64% accuracy)

Barlow-Twins + only Linear Read-out head, 100% Data

(96.64% accuracy)

Barlow-Twins + only Linear Read-out head, 100% Data

(96.64% accuracy)

Comparison - Barlow-Twins + only Linear Read-out head

Comparison - Barlow-Twins + only Linear Read-out head

60

40

20

=

0.5% Training data

TSNE Projection of Colorectal Cancer feature vectors by Resnet18 pretrained with Barlow Twins

TSNE Projection of Colorectal Cancer feature vectors by Resnet18 pretrained on ImageNet

Barlow-Twins Conclusion

- On large dataset:
 - Marginal improvements observed
- On small dataset:
 - Pretrained features exhibit superior generalization
 - Limited fine-tuning necessary
 - Overfitting was observed during fine-tuning of the whole model
- Pre-training facilitates effective natural clustering