epiworld

0.0-1

Generated by Doxygen 1.9.1

1 Example: 00-hello-world	1
2 Benchmarking	3
3 Contributor Code of Conduct	5
4 epiworld c++ template library	7
4.1 Main features	. 7
4.2 Algorithm	. 7
4.3 Hello world (C++)	. 8
4.4 Surveillance simulation	. 8
4.4.1 Preliminary results	. 9
4.4.2 Cases detected	. 10
5 MIT License	11
6 model1	13
7 epiworld: A fast and flexible ABM framework for epidemiological	15
7.1 Features	. 15
7.2 Example use cases	. 16
7.3 Other alternatives	. 16
7.4 Existing Alternatives	. 16
7.5 Appendix	. 16
7.5.1 Code example	. 16
7.5.2 Speed benchmark	. 17
7.5.3 Implementation	. 17
7.6 References	. 18
8 EPI Simulator	19
8.1 Disease dynamics	. 19
8.2 Network dynamics	. 19
8.3 Contagion dynamics	. 19
8.4 Time dynamics	. 19
8.5 Updating agent's status	. 20
8.5.1 Other parameters	. 20
9 Namespace Index	21
9.1 Namespace List	. 21
10 Hierarchical Index	23
10.1 Class Hierarchy	. 23
11 Class Index	25
11.1 Class List	25

12 File Index	29
12.1 File List	29
13 Namespace Documentation	31
13.1 epiworld::sampler Namespace Reference	31
13.1.1 Detailed Description	31
13.1.2 Function Documentation	31
13.1.2.1 make_sample_virus_neighbors()	31
13.1.2.2 make_update_susceptible()	32
13.1.2.3 sample_virus_single()	32
13.2 sampler Namespace Reference	34
13.2.1 Detailed Description	34
13.2.2 Function Documentation	34
13.2.2.1 make_sample_virus_neighbors()	34
13.2.2.2 make_update_susceptible()	35
13.2.2.3 sample_virus_single()	35
14 Class Documentation	39
14.1 AdjList Class Reference	39
14.1.1 Constructor & Destructor Documentation	39
14.1.1.1 AdjList()	39
14.1.2 Member Function Documentation	40
14.1.2.1 read_edgelist()	40
14.2 epiworld::AdjList Class Reference	40
14.2.1 Constructor & Destructor Documentation	41
14.2.1.1 AdjList()	41
14.2.2 Member Function Documentation	41
14.2.2.1 read_edgelist()	41
14.3 Agent < TSeq > Class Template Reference	42
14.3.1 Detailed Description	44
14.3.2 Member Function Documentation	44
14.3.2.1 operator()()	44
14.3.2.2 swap_neighbors()	45
14.3.3 Friends And Related Function Documentation	45
14.3.3.1 default_rm_entity	45
14.4 epiworld::Agent < TSeq > Class Template Reference	46
14.4.1 Detailed Description	48
14.4.2 Member Function Documentation	48
14.4.2.1 operator()()	48
14.4.2.2 swap_neighbors()	49
14.4.3 Friends And Related Function Documentation	49
14.4.3.1 default_rm_entity	49
14.5 AgentsSample < TSeq > Class Template Reference	49

14.5.1 Detailed Description	50
14.5.2 Constructor & Destructor Documentation	50
14.5.2.1 AgentsSample()	50
14.6 epiworld::AgentsSample < TSeq > Class Template Reference	51
14.6.1 Detailed Description	51
14.6.2 Constructor & Destructor Documentation	52
14.6.2.1 AgentsSample()	52
14.7 DataBase < TSeq > Class Template Reference	52
14.7.1 Detailed Description	54
14.7.2 Member Function Documentation	54
14.7.2.1 generation_time()	55
14.7.2.2 get_transmissions()	55
14.7.2.3 operator==() [1/3]	55
14.7.2.4 operator==() [2/3]	56
14.7.2.5 operator==() [3/3]	56
14.7.2.6 record_virus()	56
14.7.2.7 reproductive_number()	56
14.7.2.8 transition_probability()	57
14.8 epiworld::DataBase < TSeq > Class Template Reference	57
14.8.1 Detailed Description	59
14.8.2 Member Function Documentation	59
14.8.2.1 generation_time()	59
14.8.2.2 get_transmissions()	60
14.8.2.3 operator==()	60
14.8.2.4 record_virus()	60
14.8.2.5 reproductive_number()	61
14.8.2.6 transition_probability()	61
14.9 Entities < TSeq > Class Template Reference	61
14.9.1 Detailed Description	62
14.10 epiworld::Entities < TSeq > Class Template Reference	62
14.10.1 Detailed Description	63
14.11 Entities_const < TSeq > Class Template Reference	63
14.11.1 Detailed Description	63
14.12 epiworld::Entities_const< TSeq > Class Template Reference	64
14.12.1 Detailed Description	64
14.13 Entity < TSeq > Class Template Reference	65
14.13.1 Friends And Related Function Documentation	65
14.13.1.1 default_rm_entity	65
14.14 epiworld::Entity < TSeq > Class Template Reference	66
14.14.1 Friends And Related Function Documentation	66
14.14.1.1 default_rm_entity	66
14.15 epiworld::Fvent < TSeg > Struct Template Reference	67

14.15.1 Detailed Description	67
14.15.2 Constructor & Destructor Documentation	67
14.15.2.1 Event()	67
14.16 Event < TSeq > Struct Template Reference	68
14.16.1 Detailed Description	69
14.16.2 Constructor & Destructor Documentation	69
14.16.2.1 Event()	69
14.17 epiworld::GlobalEvent< TSeq > Class Template Reference	70
14.17.1 Detailed Description	70
14.17.2 Constructor & Destructor Documentation	71
14.17.2.1 GlobalEvent()	71
14.18 GlobalEvent < TSeq > Class Template Reference	71
14.18.1 Detailed Description	71
14.18.2 Constructor & Destructor Documentation	72
14.18.2.1 GlobalEvent()	72
14.19 epiworld::LFMCMC< TData > Class Template Reference	72
14.19.1 Detailed Description	73
14.20 LFMCMC < TData > Class Template Reference	73
14.20.1 Detailed Description	74
14.21 epiworld::Model < TSeq > Class Template Reference	75
14.21.1 Detailed Description	83
14.21.2 Member Function Documentation	83
14.21.2.1 add_globalevent()	83
14.21.2.2 clone_ptr()	83
14.21.2.3 events_add()	84
14.21.2.4 events_run()	84
14.21.2.5 load_agents_entities_ties()	85
14.21.2.6 reset()	85
14.21.2.7 run_multiple()	85
14.21.2.8 set_agents_data()	86
14.21.2.9 set_name()	86
14.21.2.10 write_data()	86
14.21.3 Member Data Documentation	87
14.21.3.1 initial_states_fun	87
14.21.3.2 rbinomd	87
14.21.3.3 rexpd	87
14.21.3.4 rgammad	88
14.21.3.5 rlognormald	88
14.21.3.6 rnormd	88
14.21.3.7 runifd	88
14.21.3.8 time_elapsed	88
14.22 Model < TSeq > Class Template Reference	89

14.22.1 Detailed Description	97
14.22.2 Member Function Documentation	97
14.22.2.1 add_globalevent()	97
14.22.2.2 clone_ptr()	97
14.22.2.3 events_add()	98
14.22.2.4 events_run()	98
14.22.2.5 load_agents_entities_ties()	99
14.22.2.6 reset()	99
14.22.2.7 run_multiple()	99
14.22.2.8 set_agents_data()	00
14.22.2.9 set_name()	00
14.22.2.10 write_data()	00
14.22.3 Member Data Documentation	01
14.22.3.1 initial_states_fun	01
14.22.3.2 rbinomd	01
14.22.3.3 rexpd	01
14.22.3.4 rgammad	02
14.22.3.5 rlognormald	02
14.22.3.6 rnormd	02
14.22.3.7 runifd	02
14.22.3.8 time_elapsed	02
$14.23 \; epiworld:: epimodels:: Model Diff Net < TSeq > Class \; Template \; Reference \; \dots \; \dots \; \dots \; 1 $	03
14.23.1 Detailed Description	04
$14.24 \ ModelDiffNet < TSeq > Class \ Template \ Reference \qquad \dots \qquad $	04
14.24.1 Detailed Description	06
$14.25 \; epiworld:: epimodels:: Model SEIR < TSeq > Class \; Template \; Reference \; . \; . \; . \; . \; . \; . \; . \; . \; . \; $	06
14.25.1 Detailed Description	07
14.25.2 Member Function Documentation	80
14.25.2.1 initial_states()	80
14.25.3 Member Data Documentation	80
14.25.3.1 update_exposed_seir	80
14.25.3.2 update_infected_seir	09
14.26 ModelSEIR < TSeq > Class Template Reference	09
14.26.1 Detailed Description	10
14.26.2 Member Function Documentation	10
14.26.2.1 initial_states()	10
14.26.3 Member Data Documentation	11
14.26.3.1 update_exposed_seir	11
14.26.3.2 update_infected_seir	11
$14.27 \; epiworld:: epimodels:: Model SEIRCONN < TS eq > Class \; Template \; Reference \qquad . \qquad . \qquad . \qquad . \qquad . \qquad 1 \\$	12
14.27.1 Constructor & Destructor Documentation	13
14.27.1.1 ModelSEIRCONN()	13

14.27.2 Member Function Documentation	13
14.27.2.1 clone_ptr()	14
14.27.2.2 initial_states()	14
14.27.2.3 reset()	14
14.28 ModelSEIRCONN < TSeq > Class Template Reference	15
14.28.1 Constructor & Destructor Documentation	16
14.28.1.1 ModelSEIRCONN()	16
14.28.2 Member Function Documentation	16
14.28.2.1 clone_ptr()	16
14.28.2.2 initial_states()	17
14.28.2.3 reset()	17
14.29 ModelSEIRCONNLogit < TSeq > Class Template Reference	18
14.29.1 Constructor & Destructor Documentation	19
14.29.1.1 ModelSEIRCONNLogit()	19
14.30 epiworld::epimodels::ModelSEIRD< TSeq > Class Template Reference	19
14.30.1 Detailed Description	21
14.30.2 Constructor & Destructor Documentation	21
14.30.2.1 ModelSEIRD() [1/2]	21
14.30.2.2 ModelSEIRD() [2/2]	22
14.30.3 Member Data Documentation	22
14.30.3.1 update_exposed_seir	22
14.31 ModelSEIRD< TSeq > Class Template Reference	23
14.31.1 Detailed Description	24
14.31.2 Constructor & Destructor Documentation	24
14.31.2.1 ModelSEIRD() [1/2]	24
14.31.2.2 ModelSEIRD() [2/2]	25
14.31.3 Member Data Documentation	25
14.31.3.1 update_exposed_seir	25
14.32 epiworld::epimodels::ModelSEIRDCONN< TSeq > Class Template Reference	26
14.32.1 Constructor & Destructor Documentation	27
14.32.1.1 ModelSEIRDCONN()	27
14.32.2 Member Function Documentation	28
14.32.2.1 clone_ptr()	28
14.32.2.2 initial_states()	28
14.32.2.3 reset()	28
14.33 ModelSEIRDCONN < TSeq > Class Template Reference	29
14.33.1 Constructor & Destructor Documentation	30
14.33.1.1 ModelSEIRDCONN()	30
14.33.2 Member Function Documentation	31
14.33.2.1 clone_ptr()	31
14.33.2.2 initial_states()	31
14.33.2.3 reset()	32

14.34 epiworld::epimodels::ModelSIR< TSeq > Class Template Reference	132
14.34.1 Detailed Description	133
14.34.2 Member Function Documentation	133
14.34.2.1 initial_states()	134
14.35 ModelSIR < TSeq > Class Template Reference	134
14.35.1 Detailed Description	135
14.35.2 Member Function Documentation	135
14.35.2.1 initial_states()	136
14.36 epiworld::epimodels::ModelSIRCONN< TSeq > Class Template Reference	136
14.36.1 Constructor & Destructor Documentation	137
14.36.1.1 ModelSIRCONN()	137
14.36.2 Member Function Documentation	138
14.36.2.1 clone_ptr()	138
14.36.2.2 initial_states()	138
14.36.2.3 reset()	139
14.37 ModelSIRCONN < TSeq > Class Template Reference	139
14.37.1 Constructor & Destructor Documentation	140
14.37.1.1 ModelSIRCONN()	140
14.37.2 Member Function Documentation	141
14.37.2.1 clone_ptr()	141
14.37.2.2 initial_states()	141
14.37.2.3 reset()	141
14.38 epiworld::epimodels::ModelSIRD < TSeq > Class Template Reference	142
14.38.1 Detailed Description	143
14.38.2 Constructor & Destructor Documentation	143
14.38.2.1 ModelSIRD()	143
14.38.3 Member Function Documentation	144
14.38.3.1 initial_states()	144
14.39 ModelSIRD< TSeq > Class Template Reference	144
14.39.1 Detailed Description	145
14.39.2 Constructor & Destructor Documentation	145
14.39.2.1 ModelSIRD()	145
14.39.3 Member Function Documentation	146
14.39.3.1 initial_states()	146
14.40 epiworld::epimodels::ModelSIRDCONN< TSeq > Class Template Reference	147
14.40.1 Constructor & Destructor Documentation	148
14.40.1.1 ModelSIRDCONN()	148
14.40.2 Member Function Documentation	148
14.40.2.1 clone_ptr()	148
14.40.2.2 reset()	149
14.41 ModelSIRDCONN< TSeq > Class Template Reference	149
14.41.1 Constructor & Destructor Documentation	150

14.41.1.1 ModelSIRDCONN()
14.41.2 Member Function Documentation
14.41.2.1 clone_ptr()
14.41.2.2 reset()
14.42 epiworld::epimodels::ModelSIRLogit < TSeq > Class Template Reference
14.42.1 Constructor & Destructor Documentation
14.42.1.1 ModelSIRLogit()
14.42.2 Member Function Documentation
14.42.2.1 clone_ptr()
14.42.2.2 reset()
14.43 ModelSIRLogit < TSeq > Class Template Reference
14.43.1 Constructor & Destructor Documentation
14.43.1.1 ModelSIRLogit()
14.43.2 Member Function Documentation
14.43.2.1 clone_ptr()
14.43.2.2 reset()
14.44 epiworld::epimodels::ModelSIS< TSeq > Class Template Reference
14.44.1 Detailed Description
14.45 ModelSIS < TSeq > Class Template Reference
14.45.1 Detailed Description
14.46 epiworld::epimodels::ModelSISD< TSeq > Class Template Reference
14.46.1 Detailed Description
14.47 ModelSISD< TSeq > Class Template Reference
14.47.1 Detailed Description
14.48 epiworld::epimodels::ModelSURV < TSeq > Class Template Reference
14.49 ModelSURV < TSeq > Class Template Reference
14.50 Network< Nettype, Nodetype, Edgetype > Class Template Reference
14.51 epiworld::PersonTools< TSeq > Class Template Reference
14.52 PersonTools < TSeq > Class Template Reference
14.53 epiworld::Progress Class Reference
14.53.1 Detailed Description
14.54 Progress Class Reference
14.54.1 Detailed Description
14.55 epiworld::Queue < TSeq > Class Template Reference
14.55.1 Detailed Description
14.56 Queue < TSeq > Class Template Reference
14.56.1 Detailed Description
14.57 RandGraph Class Reference
14.58 epiworld::SAMPLETYPE Class Reference
14.59 SAMPLETYPE Class Reference
14.60 epiworld::Tool < TSeq > Class Template Reference
14.60.1 Detailed Description

14.61 Tool < TSeq > Class Template Reference	. 173
14.61.1 Detailed Description	. 175
14.62 epiworld::Tools < TSeq > Class Template Reference	. 175
14.62.1 Detailed Description	. 175
14.63 Tools < TSeq > Class Template Reference	. 176
14.63.1 Detailed Description	. 176
14.64 epiworld::Tools_const< TSeq > Class Template Reference	. 177
14.64.1 Detailed Description	. 177
14.65 Tools_const< TSeq > Class Template Reference	. 177
14.65.1 Detailed Description	. 178
14.66 epiworld::UserData < TSeq > Class Template Reference	. 178
14.66.1 Detailed Description	. 179
14.66.2 Constructor & Destructor Documentation	. 180
14.66.2.1 UserData()	. 180
14.67 UserData < TSeq > Class Template Reference	. 180
14.67.1 Detailed Description	. 181
14.67.2 Constructor & Destructor Documentation	. 181
14.67.2.1 UserData()	. 181
14.68 epiworld::vecHasher< T > Struct Template Reference	. 182
14.68.1 Detailed Description	. 182
14.69 vecHasher< T > Struct Template Reference	. 182
14.69.1 Detailed Description	. 182
14.70 epiworld::Virus< TSeq > Class Template Reference	. 183
14.70.1 Detailed Description	. 184
14.71 Virus < TSeq > Class Template Reference	. 185
14.71.1 Detailed Description	. 186
14.72 epiworld::Viruses< TSeq > Class Template Reference	. 187
14.72.1 Detailed Description	. 187
14.73 Viruses < TSeq > Class Template Reference	. 188
14.73.1 Detailed Description	. 188
14.74 epiworld::Viruses_const< TSeq > Class Template Reference	. 188
14.74.1 Detailed Description	. 189
14.75 Viruses_const< TSeq > Class Template Reference	. 189
14.75.1 Detailed Description	. 190
45 File De companyation	404
15 File Documentation	191
15.1 include/epiworld/agent-meat-state.hpp File Reference	
15.1.1 Detailed Description	. 192
Index	193

Example: 00-hello-world

Output from the program:

```
SIMULATION STUDY
Name of the model
                           : (none)
Population size : 10000
Agents' data
                            : (none)
Number of entities : 0
Days (duration) : 100 (of 100)
Number of viruses : 1
Last run elapsed t : 16.00ms
Last run speed : 59.75 million agents x day / second
Rewiring : off
Global events:
  (none)
Virus(es):
 - covid 19 (baseline prevalence: 50 seeds)
Tool(s):
  - vaccine (baseline prevalence: 50.00%)
Model parameters:
 (none)
Distribution of the population at time 100:
  - (0) Susceptible: 9950 -> 0
- (1) Exposed: 50 -> 0
- (2) Recovered: 0 -> 9399
- (3) Removed: 0 -> 601
Transition Probabilities:
 - Susceptible 0.87 0.13 0.00 0.00 - Exposed 0.00 0.83 0.15 0.01 - Recovered 0.00 0.00 1.00 0.00 - Removed 0.00 0.00 0.00 1.00
```

Benchmarking

Here we keep a list of scenarios where we compare epiworld with other ABM simulation engines. Although the comparison is made at the speed level, we also list features of capabilities and main differences between the engines.

4 Benchmarking

Contributor Code of Conduct

As contributors and maintainers of this project, we pledge to respect all people who contribute through reporting issues, posting feature requests, updating documentation, submitting pull requests or patches, and other activities.

We are committed to making participation in this project a harassment-free experience for everyone, regardless of level of experience, gender, gender identity and expression, sexual orientation, disability, personal appearance, body size, race, ethnicity, age, or religion.

Examples of unacceptable behavior by participants include the use of sexual language or imagery, derogatory comments or personal attacks, trolling, public or private harassment, insults, or other unprofessional conduct.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct. Project maintainers who do not follow the Code of Conduct may be removed from the project team.

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by opening an issue or contacting one or more of the project maintainers.

This Code of Conduct is adapted from the Contributor Covenant (http://contributor-covenant.org), version 1.0.0, available at http://contributor-covenant.org/version/1/0/0/

epiworld c++ template library

4.1 Main features

This C++ template-header-only library provides a general framework for epidemiologic simulation. The main features of the library are:

- 1. Four key classes: Model, Person, Tool, and Virus.
- 2. The model features a social networks of Persons.
- 3. Persons can have multiple Tools as a defense system.
- 4. Tools can reduce contagion rate, transmissibility, death rates, and improve recovery rates.
- 5. Viruses can mutate (generating new variants).
- 6. Models can feature multiple states, e.g., HEALTHY, SUSCEPTIBLE, etc.
- 7. Models can have an arbitrary number of parameters.
- 8. **REALLY FAST** About 6.5 Million person/day simulations per second.

4.2 Algorithm

Setup

- · Create viruses.
- · Create tools (arbitrary).
- · Set model parameters (arbitrary).
- Create global events (e.g., surveillance).
- · Set up the population: small world network (default).
- Set up rewiring (optional).
- Set states (arbitrary number of them).

Run

- 1. Distribute the tool(s) and virus(es)
- 2. For each t in 1 -> Duration:
 - Update state for susceptible/infected/removed(?)
 - Mutate virus(es) (each individual)
 - · Run Global events (e.g., surveillance)
 - · Run rewiring algorithm

Along update:

- · Contagion events are applied recorded.
- · New variants are recorded.
- · Optional user data is recorded.

4.3 Hello world (C++)

```
#include "include/epiworld/epiworld.hpp"
int main()
  // Creating a virus
 epiworld::Virus<> covid19("covid 19");
 covid19.set_infectiousness(.8);
  // Creating a tool
 epiworld::Tool<> vax("vaccine");
 vax.set_contagion_reduction(.95);
// Creating a model
  epiworld::Model<> model;
  // Adding the tool and virus
 model.add_virus(covid19, .01);
 model.add_tool(vax, .5);
  // Generating a random pop
 model.population_from_adjlist(
   epiworld::rgraph_smallworld(1000, 5, .2)
 // Initializing setting days and seed
model.init(60, 123123);
 // Running the model
model.run();
 model.print();
 return;
```

4.4 Surveillance simulation

- Incubation time of the disease $\sim~\text{Gamma}$ (3, ~1)
- Duration of the disease \sim Gamma (12, 1)
- · Probability of becoming symptomatic: 0.9
- Prob. of transmission: 1.0.
- · Vaccinated population: 25%
- · Vaccine efficacy: .9.
- Vaccine reduction on transmission: 0.5.
- Surveillance program of x% of the population at random.
- · Individuals who test positive become isolated.

4.4.1 Preliminary results

```
# With low surveillance
pop_size <- 20e3
pop_seed <- pop_size * .01
s_levels <- c(0.0001, 0.002)
system(sprintf("./07-surveillance.o %i %i 100 %.04f 2>&1", pop_seed, pop_size, s_levels[1]), intern = TRUE)
 cat(sep = "\n")
## Running the model...
##
##
##
## SIMULATION STUDY
##
                   : 20000
## Population size
## Days (duration)
                  : 200 (of 200)
## Number of variants : 1
## Last run elapsed t : 505.00ms
## Rewiring
                    : off
##
## Virus(es):
## - Covid19 (baseline prevalence: 100 seeds)
## Tool(s):
##
   - Vaccine (baseline prevalence: 25.00%)
##
## Model parameters:
                           : 12.0000
## - Infect period
## - Latent period
## - Latent period : 3.0000
## - Prob of symptoms : 0.7000
## - Prob of transmission : 1.0000
## - Prob. death
                           : 0.0010
## - Prob. reinfect
                          : 0.1000
## - Surveilance prob. : 1.0e-04
## - Vax efficacy : 0.9000
## - Vax redux transmision : 0.5000
##
\#\# Distribution of the population at time 200:
## - Total susceptible (S) : 19900 -> 2106
## - Total recovered (S)
                                            0 -> 17369
## - Total latent (I)
                                          100 -> 109
## - Total symptomatic (I)
                                           0 -> 155
                                           0 -> 2
## - Total symptomatic isolated (I) :
##
   - Total asymptomatic (I)
  - Total asymptomatic isolated (I) :
                                           0 -> 0
##
## - Total removed (R)
                                           0 -> 187
##
## (S): Susceptible, (I): Infected, (R): Recovered
## _
hist1 <- read.csv("07-surveillance_hist.txt", sep = " ")</pre>
surv1 <- read.csv("07-surveillance_user_data.txt", sep = " ")</pre>
# With high surveillance
system(sprintf("./07-surveillance.o %i %i 100 %.04f 2>&1", pop_seed, pop_size, s_levels[2]), intern = TRUE)
 cat(sep = "\n")
## Running the model...
##
##
##
## SIMULATION STUDY
## Population size : 20000 . 200 (duration)
## Days (duration)
                    : 200 (of 200)
## Number of variants : 1
## Last run elapsed t : 530.00ms
## Rewiring
##
## Virus(es):
```

```
## - Covid19 (baseline prevalence: 100 seeds)
## Tool(s):
## - Vaccine (baseline prevalence: 25.00%)
##
## Model parameters:
## - Infect period
                           : 12.0000
                          : 3.0000
##
   - Latent period
## - Prob of symptoms
                            : 0.7000
  - Prob of transmission : 1.0000
                           : 0.0010
   - Prob. death
##
   - Prob. reinfect
##
                            : 0.1000
  - Surveilance prob.
                           : 0.0020
## - Vax efficacy
                          : 0.9000
##
   - Vax redux transmision : 0.5000
##
\#\# Distribution of the population at time 200:
  - Total susceptible (S)
##
                                       : 19900 -> 2125
## - Total recovered (S)
                                              0 -> 17325
  - Total latent (I)
                                             100 -> 109
##
##
   - Total symptomatic (I)
                                              0 -> 155
## - Total symptomatic isolated (I)
                                               0 -> 8
                                      :
## - Total asymptomatic (I)
                                              0 -> 76
##
   - Total asymptomatic isolated (I) :
                                               0 -> 1
  - Total removed (R)
                                               0 -> 201
##
## (S): Susceptible, (I): Infected, (R): Recovered
## _
hist2 <- read.csv("07-surveillance_hist.txt", sep = " ")</pre>
surv2 <- read.csv("07-surveillance_user_data.txt", sep = " ")</pre>
hist_comb <- rbind(
 cbind(sim = as.character(s_levels[1]), hist1),
 cbind(sim = as.character(s_levels[2]), hist2)
qqplot(hist\_comb, aes(x = date, y = counts + 1, colour = state, linetype=sim)) +
 geom_line() +
 # scale_y_log10() +
labs(y = "Counts (log)")
```

4.4.2 Cases detected

MIT License

Copyright (c) 2021 George G. Vega Yon

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

12 MIT License

model1

The dynamics of the simulation process are:

- 1. Discrete Markov process.
- 2. The simulation has the following parameters:
 - a. New variant emergence at rate X. b. For each variant k:
 - Unvaccinated individuals become sick rate C(k),
 - Mortality rate D(k),
 - Recovery rate H(k),
 - Vaccines have an efficaccy rate $\mathbb{E}\left(v,k\right)$ and pseudo vaccines (recovered) have efficacy rate $\mathbb{E}\left(r,k\right)$ $< \mathbb{E}\left(v,k\right)$. In general, the probability of i acquiring the disease k from j will be equal to

```
``` P(i gets the disease from j | their states) = C(k) * (1 - E(i,k)) * (1 - E(j,k)) ```
```

where (i, j) in (u, v, r). Efficacy rate for unvaccinated is zero.

- Vaccinated individuals have a reduced mortality rate D(k,v) > D(k), and recovered individuals D(k,r) in (D(k,v), D(k)]
- Vaccinated individuals have an increased recovery rate H (k, v) > H (k), whereas recovered's rate H (k, r) in [H(k), H(k, v)).

The sum of mortality and recovery rates is less than one since the difference represents no change.

- c. Each country vaccinates citizens at rate V function of A (availability) and B (citizens' acceptance rate.) d. In each country i, the entire population N(i) distributes between the following states:
  - Healthy unvaccinated (N (i,t,u)),
  - Healthy vaccinated ( $\mathbb{N}(i,t,v)$ ),
  - Deceased (N(i,t,d)),
  - Recovered (N(i,t,r)),
  - Unvaccinated and sick with variant (N(i,t,s,k|u))k., and
  - Vaccinated and sick with variant (N (i,t,s,k|v)) k .

```
Total sick are N(i,t,k,s) = sum(g in \{u,v\}) N(i,t,k,s|g)
```

Globally, we keep track of the prevalence of new variants. Variants can disappear if no more individuals port the variant, i.e., the prevalence rate P(k,t) = sum(i) N(i,s,k) equals zero.

d. Vaccines are manufactured at each country at rates  $\mathbb{M}(i)$  and uniformly shared with other countries at rate  $\mathbb{S}(i)$ . c. Population flows between each country pair (i,j) at a rate  $\mathbb{F}(i,j)$ . Flows between countries do not change Population and are symmetric.

14 model1

- 3. The simulation process is as follows:
  - (a) Countries are initialized with a total population N(i).
  - (b) Variant zero initializes at a random location i, with an initial prevalence P(k,t) = N(i,t,k).
  - (c) For time t in (0,T) do:
    - a. Unvaccinated individuals can become sick of variant  ${\bf k}$  with probability:
    - ```  $Pr(h->s|i,t,k,u) \sim sum(g in \{u,v\}) (N(i,t-1,s,k|g) + sum(j != i) F(i,j) * N(j,t-1,s,k|g)) * C(k) / (N(i) + sum(j != i) N(j)) ```$
    - b. Vaccinated individuals can become sick of variant k with probability:  $\Pr(v->s|i,t,k,v) \sim \Pr(h->s|i,t,k) * (1 E(v,k))$ .
    - b. Recovered individuals can become sick of variant k with probability:  $\Pr(v->s|i,t,k,r) \sim \Pr(h->s|i,t,k) * (1 E(r,k))$ .
    - c. Sick individuals with variant k die with probability D(k) or recover with probability H(k), otherwise they stay infected; with the rates depending on their vaccination status v or n.
    - d. Unvaccinated individuals vaccinate in country i with probability  $P(u->v) \sim V(A(i,t), B(i))$ .
    - e. The country vaccine supply changes.

# epiworld: A fast and flexible ABM framework for epidemiological

simulations George G. Vega Yon, Ph.D. 2024-04-05

epiworld is a fast and flexible agent-based modeling (ABM) framework for epidemiological simulations. Designed in C++, it can simulate large populations with complex interactions. The framework is designed to be modular, allowing users to extend and modify the model to suit their needs quickly. Besides the C++ library, an R package (epiworldR), a ShinyApp (epiworldRShiny), and a Python library (epiworldpy) are available to interact with the model.

#### 7.1 Features

**Header-only**: epiworld is a header-only template library, making it easy to integrate into existing projects. It is distributed as a collection of files and as a single header file.

**A framework**: epiworld is designed to be a flexible framework for building epidemiological simulations. It provides a set of core components that can be easily extended and modified to suit the user's needs.

**Fast**: epiworld is designed for speed. It is implemented in C++ and uses efficient data structures and algorithms to ensure simulations dash. Furthermore, epiworld is designed to take advantage of multi-core processors, allowing simulations to be run in parallel (see the benchmark section for more details).

**Complex disease dynamics**: epiworld supports complex disease dynamics, including the evolution of the disease over time. For instance, diseases can accumulate mutations.

**Open-source**: With funding from the Centers for Disease Control and Prevention [CDC], epiworld is open-source and available under the MIT license, meaning it is entirely free. The source code is available on GitHub.

#### 7.2 Example use cases

As a framework, <code>epiworld</code> can simulate various epidemiological scenarios. This section provides some possible use cases for the package:

- Geographically informed models: With the ability to model complex interactions between agents, the library can simulate geographically informed models featuring multiple regions with different populations and individuals moving between regions.
- Non-pharmaceutical interventions (NPIs): The library has been used to simulate NPIs featuring masking and social distancing. Furthermore, its architecture allows for deploying interventions that are reactive to the model's state, such as a mask mandate that only activates when the prevalence of the disease reaches a certain threshold.
- Vaccination strategies: The library can simulate different vaccination strategies, including prioritizing certain groups for vaccination, varying the vaccination rate, and modeling the impact of vaccine hesitancy.
- **Disease evolution**: The library can simulate the evolution of the disease over time, including the emergence of new variants and the impact of these variants on the spread of the disease.
- **Population comorbidities**: The library can model the impact of population comorbidities on the spread of the disease, including how different comorbidities affect the transmission and severity of the disease.

#### 7.3 Other alternatives

### 7.4 Existing Alternatives

The following table from Meyer and Vega Yon (2023) shows existing alternatives to epiworld, including **ABM** (Ma 2023), **abmR** (Gochanour, Fernandez-Lopez, and Contina 2023), **cystiSim** (Devleesschauwer and Braae 2016), **villager** (Thelen et al. 2022), and **RNetLogo** (Thiele, Kurth, and Grimm 2012).[^1]

Package	Multiple	Multiple Tools	Multiple Runs	Global Ac-	Built-In Epi
	Viruses			tions	Models
epiworldR	yes	yes	yes	yes	yes
ABM	-	-	-	yes	yes
abmR	-	-	yes	-	-
cystiSim	-	yes	yes	-	-
villager	-	-	-	yes	-
RNetLogo	-	yes	yes	yes	-

A benchmark comparing epiworld's speed with other software packages can be found in the benchmark section.

## 7.5 Appendix

#### 7.5.1 Code example

The following code snippet shows a simple example of how to use epiworld to simulate an epidemic, particularly the Susceptible-Infected-Recovered model [SIR]:

7.5 Appendix 17

```
#include "epiworld.hpp'
using namespace epiworld;
int main()
 // epiworld already comes with a couple
 // of models, like the SIR
 epimodels::ModelSIR<> hello(
 "COVID-19", // Name of the virus
 0.01,
 // Initial prevalence
 // Initial prevalence
// Transmission probability
 0.9,
 // Recovery probability
 0.3
);
 // We can simulate agents using a small-world network
 // with 100,000 individuals, in this case
 hello.agents_smallworld(100000, 4L, false,
 // Running the model and printing the results // Setting the number of days (100) and seed (122)
 hello.run(100, 122);
 hello.print();
 return 0;
```

#### The output could look something like the following:

```
SIMULATION STUDY
 : Susceptible-Infected-Recovered (SIR)
Name of the model
Population size
 : 100000
Agents' data
 : (none)
Number of entities
 : 0
Days (duration)
 : 100 (of 100)
Number of viruses
Last run elapsed t : 103.00ms
 : 96.34 million agents x day / second
Last run speed
Rewiring
 : off
Global events:
Virus(es):
 - COVID-19 (baseline prevalence: 1.00%)
Tool(s):
 (none)
Model parameters:
 - Recovery rate
 : 0.3000
 - Transmission rate : 0.9000
- (0) Susceptible : 99000 -> 2565

- (1) Infected : 1000 -> 366
 - (2) Recovered
Transition Probabilities:
 - Susceptible 0.96 0.04 0.00
 - Suscepti - Infected 0.00 0.70 0.10 0.00 0.00 1.00
```

#### 7.5.2 Speed benchmark

The following figure shows the time measured in seconds that each of the benchmarked software packages took to simulate a SIR model featuring 50,000 agents for 100 days.

#### 7.5.3 Implementation

The following figure illustrates the model composition process used in epiworld. Generally, users can add an arbitrary number of states, viruses, tools, and events to a single model. The flexibility of epiworld's API provides a simple way to extend the model's capabilities.

#### 7.6 References

Devleesschauwer, Brecht, and Uffe Christian Braae. 2016. cystiSim: Agent-Based Model for Taenia\_solium Transmission and Control. https://CRAN.R-project.org/package=cystiSim.

Gochanour, Benjamin, Javier Fernandez-Lopez, and Andrea Contina. 2023. *abmR: Agent-Based Models in R.* https://doi.org/10.1111/2041-210X.14014.

Ma, Junling. 2023. ABM: Agent Based Model Simulation Framework. https://CRAN.R-project.← org/package=ABM.

Meyer, Derek, and George G Vega Yon. 2023. "epiworldR: Fast Agent-Based Epi Models." *Journal of Open Source Software* 8 (90): 5781. https://doi.org/10.21105/joss.05781.

Thelen, Thomas, Gerardo Aldana, Marcus Thomson, and Toni Gonzalez. 2022. *Villager: A Framework for Designing and Running Agent Based Models.* https://CRAN.R-project.org/package=villager.

Thiele, Jan C., Winfried Kurth, and Volker Grimm. 2012. "RNetLogo: An R Package for Running and Exploring Individual-Based Models Implemented in NetLogo." *Methods in Ecology and Evolution* 3 (3): 480−83. https⊷://doi.org/10.1111/j.2041-210X.2011.00180.x.

 $[^{1}]$ : Although other ABM frameworks are available, the table focuses on those most relevant (and popular) to epidemiological simulations.

## **EPI Simulator**

#### 8.1 Disease dynamics

Diseases continuously evolve in time. Changes in their genetic sequence make them more or less resistant to the particular version of the vaccine. Mutations also affect the transmissibility level and mortality rate of the disease. Using this approach allows making vaccination efficacy a function of compatibility between the variant and the vaccine.

When an individual becomes infected, the disease accumulates mutations in the new host. Ultimately, there is no single version of the disease present in the model, but rather an infinite number of them, each slightly different from the other.

#### 8.2 Network dynamics

We can assume that the Population is organized in fully connected blocks for the first version of the model. Block sizes and the number of connections between blocks are Poisson random variables. Individuals interact with all the members of their blocks, and bridging individuals allow the disease to move across blocks.

#### 8.3 Contagion dynamics

The transmission of the disease will be governed by the number of vaccinated, infected, and recovered within each block. Transmission between blocks will be treated in the same way, although individuals bridging the block will only interact with others within the block and their direct connections across the blocks.

#### 8.4 Time dynamics

Time dynamics has two components, how biology evolves and how agents react.

The model develops as a continuous-time Markov process. Each block of individuals takes action at rates  $\mathbb{L}\left(\frac{1}{N}\right)$  function of the local number of infections. This way, if

20 EPI Simulator

#### 8.5 Updating agent's status

Like most other components, updating agents' states can be personalized. A naive approach allows agents to get infected with a single virus or stay as-is. The probability of this event is conditional on acquiring at most one virus. Since these are independent events, the conditional probability is computed as follows:

#### Where

```
P(only variant k) = P(k) * Prod(m!=v) (1 - P(m))

P(at most 1) = P(None) + Sum(v in variants) P(v) * Prod(m != v) (1 - P(m))

P(None) = Prod(v in variants) (1 - P(v))
```

Furthermore, the (Variant, Person) pairs are treated independently.

#### 8.5.1 Other parameters

- · Who did you get the infection from.
- · Omicron is 1.5 more infectious than delta.
- · Surveillance:
  - Pull people to be tested at random.
  - Or at symptoms.
  - A mix of the two.
- Define a class for passing extra functions and datasets, for example, testing surveillance.
- · Exposed people become infectious after k days.
- Network changesthe can be a function of an ERGM. Apply K steps throughout time.
- · Add progress bar.

# Namespace Index

## 9.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:

epiworld	::sampler									
	Functions for sampling viruses	 	 	 	 		 		 	31
sampler										
	Functions for sampling viruses									34

22 Namespace Index

# **Hierarchical Index**

## 10.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

AdjList
epiworld::AdjList
Agent < TSeq >
epiworld::Agent < TSeq >
AgentsSample < TSeq >
$epiworld:: Agents Sample < TSeq > \dots $
DataBase < TSeq >
epiworld::DataBase< TSeq >
Entities < TSeq >
epiworld::Entities< TSeq >
Entities_const< TSeq >
epiworld::Entities_const< TSeq >
Entity < TSeq >
epiworld::Entity< TSeq >
epiworld::Event < TSeq >
Event< TSeq >
epiworld::GlobalEvent< TSeq >
GlobalEvent< TSeq >
epiworld::LFMCMC< TData >
LFMCMC< TData >
epiworld::Model < TSeq >
Model < TSeq >
epiworld::Model < EPI_DEFAULT_TSEQ >
ModelSEIRCONN < TSeq >
ModelSEIRCONNLogit < TSeq >
ModelSEIRDCONN < TSeq >
ModelSIRCONN< TSeq >
ModelSIRDCONN < TSeq >
ModelSIRLogit < TSeq >
ModelSURV < TSeq >
epiworld::epimodels::ModelSEIRCONN< TSeq >
epiworld::epimodels::ModelSEIRDCONN< TSeq >
epiworld::epimodels::ModelSIRCONN < TSeq >
epiworld::epimodels::ModelSIRDCONN< TSeq >
epiworld::epimodels::ModelSIRLogit< TSeq >

24 Hierarchical Index

epiworld::epimodels::ModelSURV < TSeq >
$ \   \text{epiworld::} \\ \text{Model} < \text{int} > \dots $
ModelDiffNet< TSeq >
ModelSEIR < TSeq >
ModelSEIRD < TSeq >
ModelSIR < TSeq >
ModelSIRD< TSeq >
ModelSIS < TSeq >
ModelSISD< TSeq >
epiworld::epimodels::ModelDiffNet< TSeq >
epiworld::epimodels::ModelSEIR < TSeq >
epiworld::epimodels::ModelSEIRD< TSeq >
epiworld::epimodels::ModelSIR < TSeq >
epiworld::epimodels::ModelSIRD < TSeq >
$epiworld::epimodels::ModelSIS < TSeq > \dots $
epiworld::epimodels::ModelSISD< TSeq >
Network< Nettype, Nodetype, Edgetype >
epiworld::PersonTools< TSeq >
PersonTools < TSeq >
epiworld::Progress
Progress
$epiworld:: Queue < TSeq > \dots $
$Queue {\ldots\ldots\ldots170}$
RandGraph
epiworld::SAMPLETYPE
SAMPLETYPE 172
$epiworld:: Tool < TSeq > . \ . \ . \ . \ . \ . \ . \ . \ . \ .$
$Tool \! < TSeq \! > \dots \qquad \qquad$
$epiworld:: Tools < TSeq > \dots $
Tools < TSeq >
$epiworld:: Tools\_const < TSeq > \dots $
$Tools\_const < TSeq > \dots $
$epiworld:: User Data < TSeq > \dots $
$UserData < TSeq > \dots $
$epiworld:: vec Hasher < T > \ \dots \ \ \ \ \ \ \ \ \ \ \ \ \ \  \  \  $
$vecHasher < T > \hspace{0.5cm} \ldots \hspace{0.5cm} 182$
$epiworld:: Virus < TSeq > \dots $
Virus < TSeq >
$epiworld:: Viruses < TSeq > \dots $
Viruses < TSeq >
epiworld::Viruses_const< TSeq >
Viruses_const< TSeq >

# **Chapter 11**

# **Class Index**

# 11.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

AdjList	39
epiworld::AdjList	40
Agent< TSeq >	
Agent (agents)	42
epiworld::Agent< TSeq >	
Agent (agents)	46
AgentsSample < TSeq >	
Sample of agents	49
epiworld::AgentsSample < TSeq >	
Sample of agents	51
DataBase < TSeq >	
Statistical data about the process	52
epiworld::DataBase < TSeq >	
Statistical data about the process	57
Entities < TSeq >	
Set of Entities (useful for building iterators)	61
epiworld::Entities< TSeq >	
Set of Entities (useful for building iterators)	62
Entities_const< TSeq >	
Set of Entities (const) (useful for iterators)	63
epiworld::Entities_const< TSeq >	
Set of Entities (const) (useful for iterators)	64
Entity < TSeq >	65
epiworld::Entity< TSeq >	66
epiworld::Event< TSeq >	
Event data for update an agent	67
Event< TSeq >	
Event data for update an agent	68
epiworld::GlobalEvent< TSeq >	
Template for a Global Event	70
GlobalEvent< TSeq >	
Template for a Global Event	71
epiworld::LFMCMC< TData >	
Likelihood-Free Markov Chain Monte Carlo	72
LFMCMC< TData >	
Likelihood-Free Markov Chain Monte Carlo	73

26 Class Index

epiworld	::Model < TSeq >	
•	Core class of epiworld	75
Model<	·	
	Core class of epiworld	89
eniworld	::epimodels::ModelDiffNet< TSeq >	
оричопа	Template for a Network Diffusion Model	103
ModelDif	fNet< TSeq >	103
Modelbli	·	104
	Template for a Network Diffusion Model	104
epiworld	::epimodels::ModelSEIR< TSeq >	
	Template for a Susceptible-Exposed-Infected-Removed (SEIR) model	106
ModelSE	EIR< TSeq >	
	Template for a Susceptible-Exposed-Infected-Removed (SEIR) model	109
epiworld:	::epimodels::ModelSEIRCONN< TSeq >	112
ModelSE	EIRCONN < TSeq >	115
ModelSE	EIRCONNLogit < TSeq >	118
epiworld	::epimodels::ModelSEIRD< TSeq >	
	Template for a Susceptible-Exposed-Infected-Removed-Deceased (SEIRD) model	119
ModelSF	EIRD< TSeg >	
	Template for a Susceptible-Exposed-Infected-Removed-Deceased (SEIRD) model	123
oniworld	::epimodels::ModelSEIRDCONN< TSeq >	126
•	EIRDCONN TSeq >	129
	·	129
epiworia	::epimodels::ModelSIR< TSeq >	400
	Template for a Susceptible-Infected-Removed (SIR) model	132
ModelSII	R< TSeq >	
		134
	::epimodels::ModelSIRCONN< TSeq >	136
ModelSII	RCONN< TSeq >	139
epiworld:	::epimodels::ModelSIRD< TSeq >	
	Template for a Susceptible-Infected-Removed-Deceased (SIRD) model	142
ModelSII	RD< TSeq >	
	Template for a Susceptible-Infected-Removed-Deceased (SIRD) model	144
eniworld	::epimodels::ModelSIRDCONN< TSeq >	147
	RDCONN< TSeq >	149
	::epimodels::ModelSIRLogit< TSeq >	152
	RLogit< TSeq >	155
	::epimodelS::ModelSIS< TSeq >	133
epiworia		450
	Template for a Susceptible-Infected-Susceptible (SIS) model	158
ModelSIS	S< TSeq >	
	Template for a Susceptible-Infected-Susceptible (SIS) model	159
epiworld	::epimodels::ModelSISD< TSeq >	
	Template for a Susceptible-Infected-Susceptible-Deceased (SISD) model	161
ModelSIS	SD< TSeq >	
	Template for a Susceptible-Infected-Susceptible-Deceased (SISD) model	162
epiworld:	::epimodels::ModelSURV < TSeq >	164
	JRV < TSeq >	166
	< Nettype, Nodetype, Edgetype >	168
	::PersonTools< TSeq >	168
•	pols< TSeq >	168
	::Progress	100
epiwonu	A simple progress bar	160
D	· · · ·	168
Progress		400
	A simple progress bar	169
epiworld	::Queue < TSeq >	
	Controls which agents are verified at each step	169
Queue<	•	
	Controls which agents are verified at each step	170
RandGra		171
epiworld	::SAMPLETYPE	171

11.1 Class List

SAMPLETYPE	172
epiworld::Tool< TSeq >	
Tools for defending the agent against the virus	172
Tool< TSeq >	
Tools for defending the agent against the virus	173
epiworld::Tools< TSeq >	
Set of tools (useful for building iterators)	175
Tools< TSeq >	
Set of tools (useful for building iterators)	176
epiworld::Tools_const< TSeq >	
Set of Tools (const) (useful for iterators)	177
Tools_const< TSeq >	
Set of Tools (const) (useful for iterators)	177
epiworld::UserData < TSeq >	
Personalized data by the user	178
UserData < TSeq >	
Personalized data by the user	180
epiworld::vecHasher< T >	
Vector hasher	182
vecHasher< T >	
Vector hasher	182
epiworld::Virus< TSeq >	
Virus	183
Virus< TSeq >	405
Virus	185
epiworld::Viruses< TSeq >	407
Set of viruses (useful for building iterators)	187
Viruses < TSeq >	400
Set of viruses (useful for building iterators)	188
epiworld::Viruses_const< TSeq >	188
Set of Viruses (const) (useful for iterators)	100
<del>-</del>	189
Set of Viruses (const) (useful for iterators)	109

28 Class Index

# **Chapter 12**

# File Index

# 12.1 File List

Here is a list of all documented files with brief descriptions:

epiworld.hpp
include/epiworld/adjlist-bones.hpp??
include/epiworld/adjlist-meat.hpp
include/epiworld/agent-bones.hpp
include/epiworld/agent-events-meat.hpp
include/epiworld/agent-meat-state.hpp
Sampling functions are getting big, so we keep them in a separate file
include/epiworld/agent-meat-virus-sampling.hpp
include/epiworld/agent-meat.hpp??
include/epiworld/agentssample-bones.hpp
include/epiworld/config.hpp
include/epiworld/database-bones.hpp
include/epiworld/database-meat.hpp
include/epiworld/entities-bones.hpp
include/epiworld/entity-bones.hpp
include/epiworld/entity-meat.hpp
include/epiworld/epiworld-macros.hpp
include/epiworld/epiworld.hpp
include/epiworld/globalevent-bones.hpp
include/epiworld/globalevent-meat.hpp
include/epiworld/misc.hpp
include/epiworld/model-bones.hpp??
include/epiworld/model-meat-print.hpp
include/epiworld/model-meat.hpp
include/epiworld/network-bones.hpp
include/epiworld/ <b>progress.hpp</b>
include/epiworld/queue-bones.hpp??
include/epiworld/randgraph.hpp
include/epiworld/random_graph.hpp??
include/epiworld/seq_processing.hpp
include/epiworld/tool-bones.hpp
include/epiworld/tool-meat.hpp??
include/epiworld/tools-bones.hpp
include/epiworld/ <b>userdata-bones.hpp</b>
include/epiworld/ <b>userdata-meat.hpp</b>

30 File Index

include/epiworld/virus-bones.hpp
include/epiworld/virus-meat.hpp
include/epiworld/viruses-bones.hpp
include/epiworld/math/lfmcmc.hpp???
include/epiworld/math/lfmcmc/lfmcmc-bones.hpp
include/epiworld/math/lfmcmc/lfmcmc-meat-print.hpp
include/epiworld/math/lfmcmc/lfmcmc-meat.hpp
include/epiworld/models/diffnet.hpp
include/epiworld/models/globalevents.hpp??
include/epiworld/models/init-functions.hpp
include/epiworld/models/models.hpp??
include/epiworld/models/seir.hpp ??
include/epiworld/models/seirconnected.hpp??
include/epiworld/models/seirconnected_logit.hpp??
include/epiworld/models/seird.hpp
include/epiworld/models/seirdconnected.hpp
include/epiworld/models/sir.hpp
include/epiworld/models/sirconnected.hpp
include/epiworld/models/sird.hpp ??
include/epiworld/models/sirdconnected.hpp??
include/epiworld/models/sirlogit.hpp??
include/epiworld/models/sis.hpp
include/epiworld/models/sisd.hpp ??
include/epiworld/models/surveillance.hpp
tests/ <b>tests.hpp</b>

# **Chapter 13**

# **Namespace Documentation**

## 13.1 epiworld::sampler Namespace Reference

Functions for sampling viruses.

#### **Functions**

```
 template<typename TSeq >
 std::function< void(Agent< TSeq > *, Model< TSeq > *)> make_update_susceptible (std::vector<
 epiworld_fast_uint > exclude={})
```

Make a function to sample from neighbors.

```
 template<typename TSeq = int>
 std::function< Virus< TSeq > *(Agent< TSeq > *, Model< TSeq > *)> make_sample_virus_neighbors
 (std::vector< epiworld_fast_uint > exclude={})
```

Make a function to sample from neighbors.

```
 template<typename TSeq = int>
 Virus< TSeq > * sample_virus_single (Agent< TSeq > *p, Model< TSeq > *m)
```

Sample from neighbors pool of viruses (at most one)

### 13.1.1 Detailed Description

Functions for sampling viruses.

#### 13.1.2 Function Documentation

#### 13.1.2.1 make\_sample\_virus\_neighbors()

Make a function to sample from neighbors.

This is akin to the function default\_update\_susceptible, with the difference that it will create a function that supports excluding states from the sampling frame. For example, individuals who have acquired a virus can be excluded if in incubation state.

#### **Template Parameters**

#### **Parameters**

exclude	unsigned vector of states that need to be excluded from the sampling
---------	----------------------------------------------------------------------

#### Returns

Virus<TSeq>\* of the selected virus. If none selected (or none available,) returns a nullptr;

#### 13.1.2.2 make\_update\_susceptible()

Make a function to sample from neighbors.

This is akin to the function default\_update\_susceptible, with the difference that it will create a function that supports excluding states from the sampling frame. For example, individuals who have acquired a virus can be excluded if in incubation state.

#### **Template Parameters**

TSeq	

#### **Parameters**

#### Returns

Virus<TSeq>\* of the selected virus. If none selected (or none available,) returns a nullptr;

#### 13.1.2.3 sample\_virus\_single()

Sample from neighbors pool of viruses (at most one)

This function samples at most one virus from the pool of viruses from its neighbors. If no virus is selected, the function returns a nullptr, otherwise it returns a pointer to the selected virus.

This can be used to build a new update function (EPI\_NEW\_UPDATEFUN.)

#### **Template Parameters**

TSeq	

#### **Parameters**

р	Pointer to person
m	Pointer to the model

#### Returns

Virus<TSeq>\* of the selected virus. If none selected (or none available,) returns a nullptr;

## 13.2 sampler Namespace Reference

Functions for sampling viruses.

#### **Functions**

```
 template<typename TSeq >
 std::function< void(Agent< TSeq > *, Model< TSeq > *)> make_update_susceptible (std::vector<
 epiworld_fast_uint > exclude={})
```

Make a function to sample from neighbors.

```
 template<typename TSeq = int>
 std::function< Virus< TSeq > *(Agent< TSeq > *, Model< TSeq > *)> make_sample_virus_neighbors
 (std::vector< epiworld_fast_uint > exclude={})
```

Make a function to sample from neighbors.

```
 template < typename TSeq = int>
 Virus < TSeq > * sample_virus_single (Agent < TSeq > *p, Model < TSeq > *m)
 Sample from neighbors pool of viruses (at most one)
```

### 13.2.1 Detailed Description

Functions for sampling viruses.

#### 13.2.2 Function Documentation

#### 13.2.2.1 make\_sample\_virus\_neighbors()

Make a function to sample from neighbors.

This is akin to the function default\_update\_susceptible, with the difference that it will create a function that supports excluding states from the sampling frame. For example, individuals who have acquired a virus can be excluded if in incubation state.

#### **Template Parameters**

#### **Parameters**

exclude unsigned vector of states that need to be excluded from the sampling

#### Returns

Virus<TSeq>\* of the selected virus. If none selected (or none available,) returns a nullptr;

#### 13.2.2.2 make\_update\_susceptible()

Make a function to sample from neighbors.

This is akin to the function default\_update\_susceptible, with the difference that it will create a function that supports excluding states from the sampling frame. For example, individuals who have acquired a virus can be excluded if in incubation state.

#### **Template Parameters**

TSeq	

#### **Parameters**

exclude	unsigned vector of states that need to be excluded from the sampling
---------	----------------------------------------------------------------------

#### Returns

Virus<TSeq>\* of the selected virus. If none selected (or none available,) returns a nullptr;

#### 13.2.2.3 sample\_virus\_single()

Sample from neighbors pool of viruses (at most one)

This function samples at most one virus from the pool of viruses from its neighbors. If no virus is selected, the function returns a nullptr, otherwise it returns a pointer to the selected virus.

This can be used to build a new update function (EPI\_NEW\_UPDATEFUN.)

Temi	nlate	Par	ame	ters
ICIIII	νιαις	, ı aı	ann	LUIS

TSeq	

#### **Parameters**

р	Pointer to person
m	Pointer to the model

### Returns

Virus<TSeq>\* of the selected virus. If none selected (or none available,) returns a nullptr;

# **Chapter 14**

# **Class Documentation**

# 14.1 AdjList Class Reference

#### **Public Member Functions**

- AdjList (const std::vector < int > &source, const std::vector < int > &target, int size, bool directed)
   Construct a new Adj List object.
- AdjList (AdjList &&a)
- AdjList (const AdjList &a)
- AdjList & operator= (const AdjList &a)
- void read\_edgelist (std::string fn, int size, int skip=0, bool directed=true)

Read an edgelist.

- std::map< int, int > operator() (epiworld\_fast\_uint i) const
- void **print** (epiworld\_fast\_uint limit=20u) const
- size t vcount () const

Number of vertices/nodes in the network.

• size\_t ecount () const

Number of edges/arcs/ties in the network.

- std::vector< std::map< int, int > > & get\_dat ()
- bool is\_directed () const

true if the network is directed.

#### 14.1.1 Constructor & Destructor Documentation

### 14.1.1.1 AdjList()

Construct a new Adj List object.

Ids in the network are assume to range from 0 to size - 1.

#### **Parameters**

source	Unsigned int vector with the source
target	Unsigned int vector with the target
size	Number of vertices in the network.
directed	Bool true if the network is directed

### 14.1.2 Member Function Documentation

### 14.1.2.1 read\_edgelist()

```
void AdjList::read_edgelist (
 std::string fn,
 int size,
 int skip = 0,
 bool directed = true) [inline]
```

Read an edgelist.

Ids in the network are assume to range from 0 to size - 1.

#### **Parameters**

fn	Path to the file
skip	Number of lines to skip (e.g., 1 if there's a header)
directed	true if the network is directed
size	Number of vertices in the network.

The documentation for this class was generated from the following files:

- · include/epiworld/adjlist-bones.hpp
- include/epiworld/adjlist-meat.hpp

# 14.2 epiworld::AdjList Class Reference

#### **Public Member Functions**

- AdjList (const std::vector< int > &source, const std::vector< int > &target, int size, bool directed)
   Construct a new Adj List object.
- AdjList (AdjList &&a)
- AdjList (const AdjList &a)
- AdjList & operator= (const AdjList &a)
- void read\_edgelist (std::string fn, int size, int skip=0, bool directed=true)

Read an edgelist.

- std::map< int, int > operator() (epiworld\_fast\_uint i) const
- void **print** (epiworld\_fast\_uint limit=20u) const
- size\_t vcount () const

Number of vertices/nodes in the network.

size\_t ecount () const

Number of edges/arcs/ties in the network.

- std::vector< std::map< int, int > > & get\_dat ()
- bool is\_directed () const

true if the network is directed.

### 14.2.1 Constructor & Destructor Documentation

### 14.2.1.1 AdjList()

Construct a new Adj List object.

lds in the network are assume to range from 0 to size - 1.

#### **Parameters**

source	Unsigned int vector with the source
target	Unsigned int vector with the target
size	Number of vertices in the network.
directed	Bool true if the network is directed

#### 14.2.2 Member Function Documentation

#### 14.2.2.1 read\_edgelist()

```
void AdjList::read_edgelist (
 std::string fn,
 int size,
 int skip = 0,
 bool directed = true) [inline]
```

Read an edgelist.

lds in the network are assume to range from 0 to size - 1.

#### **Parameters**

fn	Path to the file
skip	Number of lines to skip (e.g., 1 if there's a header)
directed	true if the network is directed
size	Number of vertices in the network.

The documentation for this class was generated from the following file:

· epiworld.hpp

## 14.3 Agent < TSeq > Class Template Reference

#### Agent (agents)

#include <agent-bones.hpp>

#### **Public Member Functions**

- Agent (Agent < TSeq > &&p)
- Agent (const Agent < TSeq > &p)
- Agent < TSeq > & operator = (const Agent < TSeq > & other\_agent)
- · int get\_id () const

Id of the individual.

- VirusPtr< TSeq > & get\_virus ()
- ToolPtr< TSeq > & get\_tool (int i)
- Tools < TSeq > get\_tools ()
- const Tools\_const< TSeq > get\_tools () const
- size\_t get\_n\_tools () const noexcept
- void mutate\_virus ()
- void add\_neighbor (Agent < TSeq > &p, bool check\_source=true, bool check\_target=true)
- void swap\_neighbors (Agent < TSeq > &other, size\_t n\_this, size\_t n\_other)

Swaps neighbors between the current agent and agent other

- std::vector< Agent< TSeq > \* > get neighbors ()
- size\_t get\_n\_neighbors () const
- void change\_state (Model < TSeq > \*model, epiworld\_fast\_uint new\_state, epiworld\_fast\_int queue=0)
- const epiworld\_fast\_uint & get\_state () const
- void reset ()
- bool has\_tool (epiworld\_fast\_uint t) const
- · bool has\_tool (std::string name) const
- bool has tool (const Tool < TSeq > &t) const
- bool has\_virus (epiworld\_fast\_uint t) const
- bool has\_virus (std::string name) const
- bool has\_virus (const Virus < TSeq > &v) const
- void print (Model < TSeq > \*model, bool compressed=false) const
- Entities < TSeq > get\_entities ()
- const Entities const< TSeq > get\_entities () const
- const Entity < TSeq > & get\_entity (size\_t i) const
- Entity < TSeq > & get\_entity (size\_t i)
- size t get n entities () const
- bool operator== (const Agent < TSeq > & other) const
- bool operator!= (const Agent < TSeq > &other) const

#### Add/Remove Virus/Tool

Any of these is ultimately reflected at the end of the iteration.

#### **Parameters**

tool	Tool to add
virus	Virus to add
state_new	state after the change
queue	

- void add\_tool (ToolPtr< TSeq > tool, Model< TSeq > \*model, epiworld\_fast\_int state\_new=-99, epiworld fast int queue=-99)
- void add\_tool (Tool < TSeq > tool, Model < TSeq > \*model, epiworld\_fast\_int state\_new=-99, epiworld ← fast\_int queue=-99)
- void set\_virus (VirusPtr< TSeq > virus, Model< TSeq > \*model, epiworld\_fast\_int state\_new=-99, epiworld fast int gueue=-99)
- void **set\_virus** (Virus< TSeq > virus, Model< TSeq > \*model, epiworld\_fast\_int state\_new=-99, epiworld fast int gueue=-99)
- void add\_entity (Entity < TSeq > &entity, Model < TSeq > \*model, epiworld\_fast\_int state\_new=-99, epiworld fast int gueue=-99)
- void rm\_tool (epiworld\_fast\_uint tool\_idx, Model < TSeq > \*model, epiworld\_fast\_int state\_new=-99, epiworld fast int queue=-99)
- void rm\_tool (ToolPtr< TSeq > &tool, Model< TSeq > \*model, epiworld\_fast\_int state\_new=-99, epiworld fast int gueue=-99)
- void rm\_virus (Model < TSeq > \*model, epiworld\_fast\_int state\_new=-99, epiworld\_fast\_int queue=-99)
- void rm\_entity (epiworld\_fast\_uint entity\_idx, Model< TSeq > \*model, epiworld\_fast\_int state\_new=-99, epiworld\_fast\_int queue=-99)
- void rm\_entity (Entity < TSeq > &entity, Model < TSeq > \*model, epiworld\_fast\_int state\_new=-99, epiworld fast int queue=-99)
- void rm\_agent\_by\_virus (Model< TSeq > \*model, epiworld\_fast\_int state\_new=-99, epiworld\_fast\_int queue=-99)

Agent removed by virus.

#### Get the rates (multipliers) for the agent

#### **Parameters**

v A pointer to a virus.

#### Returns

epiworld double

- epiworld double **get susceptibility reduction** (VirusPtr< TSeg > v, Model< TSeg > \*model)
- epiworld double get transmission reduction (VirusPtr < TSeq > v, Model < TSeq > \*model)
- epiworld double get recovery enhancer (VirusPtr< TSeq > v, Model< TSeq > \*model)
- epiworld\_double get\_death\_reduction (VirusPtr< TSeq > v, Model< TSeq > \*model)
- double & operator() (size\_t j)

Access the j-th column of the agent.

- double & operator[] (size\_t j)
- double operator() (size t j) const
- double operator[] (size\_t j) const

#### **Friends**

```
class Model < TSeq >
```

- class Virus < TSeq >
- class Tool < TSeq >
- class Tools < TSeq >
- class Tools\_const< TSeq >
- class Queue < TSeq >
- class Entities < TSeq >
- class AgentsSample < TSeq >
- void default\_add\_virus (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_add\_tool (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_add\_entity (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_rm\_virus (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_rm\_tool (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_rm\_entity (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_change\_state (Event< TSeq > &a, Model< TSeq > \*m)

#### 14.3.1 Detailed Description

```
template<typename TSeq> class Agent< TSeq >
```

Agent (agents)

**Template Parameters** 

TSeq | Sequence type (should match TSeq across the model)

#### 14.3.2 Member Function Documentation

#### 14.3.2.1 operator()()

Access the j-th column of the agent.

If an external array has been specified, then these two functions can be used to access additional agent's features not included in the model.

The operator[] method is with no boundary check, whereas the operator() method checks boundaries. The former can result in a segfault.

#### **Parameters**



#### Returns

double&

#### 14.3.2.2 swap\_neighbors()

Swaps neighbors between the current agent and agent other

#### **Parameters**

other	
n_this	
n_other	

### 14.3.3 Friends And Related Function Documentation

#### 14.3.3.1 default\_rm\_entity

- < Last entity of the agent
- < Last agent of the entity

The documentation for this class was generated from the following files:

- include/epiworld/agent-bones.hpp
- include/epiworld/agent-meat.hpp

## 14.4 epiworld::Agent < TSeq > Class Template Reference

#### Agent (agents)

#include <epiworld.hpp>

#### **Public Member Functions**

- Agent (Agent < TSeq > &&p)
- Agent (const Agent < TSeq > &p)
- Agent< TSeq > & operator= (const Agent< TSeq > &other\_agent)
- · int get id () const

Id of the individual.

- VirusPtr< TSeq > & get\_virus ()
- ToolPtr< TSeq > & get\_tool (int i)
- Tools < TSeq > get\_tools ()
- const Tools\_const< TSeq > get\_tools () const
- size\_t get\_n\_tools () const noexcept
- void mutate\_virus ()
- void add\_neighbor (Agent < TSeq > &p, bool check\_source=true, bool check\_target=true)
- void swap\_neighbors (Agent < TSeq > &other, size\_t n\_this, size\_t n\_other)

Swaps neighbors between the current agent and agent other

- std::vector< Agent< TSeq > \* > get\_neighbors ()
- size\_t get\_n\_neighbors () const
- void change\_state (Model < TSeq > \*model, epiworld\_fast\_uint new\_state, epiworld\_fast\_int queue=0)
- const epiworld\_fast\_uint & get\_state () const
- void reset ()
- · bool has tool (epiworld fast uint t) const
- · bool has tool (std::string name) const
- bool has\_tool (const Tool < TSeq > &t) const
- · bool has\_virus (epiworld\_fast\_uint t) const
- bool has\_virus (std::string name) const
- bool has\_virus (const Virus < TSeq > &v) const
- void print (Model < TSeq > \*model, bool compressed=false) const
- Entities < TSeq > get\_entities ()
- const Entities\_const< TSeq > get\_entities () const
- const Entity < TSeq > & get\_entity (size\_t i) const
- Entity < TSeq > & get\_entity (size\_t i)
- size\_t get\_n\_entities () const
- bool operator== (const Agent < TSeq > &other) const
- bool operator!= (const Agent < TSeq > &other) const

#### Add/Remove Virus/Tool

Any of these is ultimately reflected at the end of the iteration.

#### Parameters

tool	Tool to add
virus	Virus to add
state_new	state after the change
queue	

- void add\_tool (ToolPtr< TSeq > tool, Model< TSeq > \*model, epiworld\_fast\_int state\_new=-99, epiworld\_fast\_int queue=-99)
- void add\_tool (Tool < TSeq > tool, Model < TSeq > \*model, epiworld\_fast\_int state\_new=-99, epiworld 
  fast int queue=-99)
- void set\_virus (VirusPtr< TSeq > virus, Model< TSeq > \*model, epiworld\_fast\_int state\_new=-99, epiworld fast int gueue=-99)
- void set\_virus (Virus < TSeq > virus, Model < TSeq > \*model, epiworld\_fast\_int state\_new=-99, epiworld fast int queue=-99)
- void add\_entity (Entity < TSeq > &entity, Model < TSeq > \*model, epiworld\_fast\_int state\_new=-99, epiworld fast int gueue=-99)
- void rm\_tool (epiworld\_fast\_uint tool\_idx, Model < TSeq > \*model, epiworld\_fast\_int state\_new=-99, epiworld fast int gueue=-99)
- void rm\_tool (ToolPtr< TSeq > &tool, Model< TSeq > \*model, epiworld\_fast\_int state\_new=-99, epiworld fast int gueue=-99)
- void rm\_virus (Model < TSeq > \*model, epiworld\_fast\_int state\_new=-99, epiworld\_fast\_int queue=-99)
- void rm\_entity (epiworld\_fast\_uint entity\_idx, Model < TSeq > \*model, epiworld\_fast\_int state\_new=-99, epiworld fast int gueue=-99)
- void rm\_entity (Entity < TSeq > &entity, Model < TSeq > \*model, epiworld\_fast\_int state\_new=-99, epiworld fast int gueue=-99)
- void rm\_agent\_by\_virus (Model < TSeq > \*model, epiworld\_fast\_int state\_new=-99, epiworld\_fast\_int queue=-99)

Agent removed by virus.

#### Get the rates (multipliers) for the agent

#### **Parameters**

v A pointer to a virus.

#### Returns

epiworld\_double

- epiworld double get susceptibility reduction (VirusPtr < TSeq > v, Model < TSeq > \*model)
- epiworld double get\_transmission\_reduction (VirusPtr< TSeq > v, Model< TSeq > \*model)
- epiworld\_double get\_recovery\_enhancer (VirusPtr< TSeq > v, Model< TSeq > \*model)
- epiworld double get death reduction (VirusPtr< TSeq > v, Model< TSeq > \*model)
- double & operator() (size\_t j)

Access the j-th column of the agent.

- double & operator[] (size\_t j)
- double operator() (size\_t j) const
- double operator[] (size\_t j) const

#### **Friends**

- class Model < TSeq >
- class Virus < TSeq >
- class Tool < TSeq >
- class Tools < TSeq >
- class Tools\_const< TSeq >
- class Queue < TSeq >
- class Entities < TSeq >

- class AgentsSample < TSeq >
- void default\_add\_virus (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_add\_tool (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_add\_entity (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_rm\_virus (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_rm\_tool (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_rm\_entity (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_change\_state (Event< TSeq > &a, Model< TSeq > \*m)

#### 14.4.1 Detailed Description

```
\label{template} \begin{tabular}{ll} template < typename TSeq > \\ class epiworld::Agent < TSeq > \\ \end{tabular}
```

Agent (agents)

**Template Parameters** 

TSeq

Sequence type (should match TSeq across the model)

#### 14.4.2 Member Function Documentation

### 14.4.2.1 operator()()

Access the j-th column of the agent.

If an external array has been specified, then these two functions can be used to access additional agent's features not included in the model.

The operator[] method is with no boundary check, whereas the operator() method checks boundaries. The former can result in a segfault.

#### **Parameters**



Returns

double&

#### 14.4.2.2 swap\_neighbors()

Swaps neighbors between the current agent and agent other

#### **Parameters**

other	
n_this	
n_other	

### 14.4.3 Friends And Related Function Documentation

#### 14.4.3.1 default\_rm\_entity

- < Last entity of the agent
- < Last agent of the entity

The documentation for this class was generated from the following file:

· epiworld.hpp

# 14.5 AgentsSample < TSeq > Class Template Reference

#### Sample of agents.

```
#include <agentssample-bones.hpp>
```

### **Public Member Functions**

• AgentsSample ()=delete

Default constructor.

AgentsSample (const AgentsSample < TSeq > &a)=delete

Copy constructor.

AgentsSample (AgentsSample < TSeq > &&a)=delete

Move constructor.

- **AgentsSample** (Model < TSeq > &model\_, size\_t n, std::vector < size\_t > states\_={}, bool truncate=false)
- AgentsSample (Model < TSeq > \*model, Entity < TSeq > &entity\_, size\_t n, std::vector < size\_t > states ←
   \_={}, bool truncate=false)
- AgentsSample (Model < TSeq > \*model, Agent < TSeq > &agent\_, size\_t n, std::vector < size\_t > states ←
   \_={}, bool truncate=false)

Sample from the agent's entities.

- std::vector< Agent< TSeq > \* >::iterator begin ()
- std::vector< Agent< TSeq > \* >::iterator end ()
- Agent < TSeq > \* operator[] (size\_t n)
- Agent< TSeq > \* operator() (size\_t n)
- size\_t size () const noexcept

### 14.5.1 Detailed Description

```
template<typename TSeq> class AgentsSample< TSeq >
```

Sample of agents.

This class allows sampling agents from Entity<TSeq> and Model<TSeq>.

**Template Parameters** 

TSeq	

#### 14.5.2 Constructor & Destructor Documentation

#### 14.5.2.1 AgentsSample()

Sample from the agent's entities.

For example, how many individuals the agent contacts in a given point in time.

#### **Template Parameters**

#### **Parameters**

agent⊷	
_	
n	Sample size
truncate	If the agent has fewer than $n$ connections, then truncate = true will automatically reduce the number of possible samples. Otherwise, if false, then it returns an error.

The documentation for this class was generated from the following file:

• include/epiworld/agentssample-bones.hpp

## 14.6 epiworld::AgentsSample < TSeq > Class Template Reference

Sample of agents.

#include <epiworld.hpp>

#### **Public Member Functions**

• AgentsSample ()=delete

Default constructor.

AgentsSample (const AgentsSample < TSeq > &a)=delete

Copy constructor.

AgentsSample (AgentsSample < TSeq > &&a)=delete

Move constructor.

- **AgentsSample** (Model < TSeq > &model\_, size\_t n, std::vector < size\_t > states\_={}, bool truncate=false)
- AgentsSample (Model < TSeq > \*model, Entity < TSeq > &entity\_, size\_t n, std::vector < size\_t > states ←
   \_={}, bool truncate=false)
- AgentsSample (Model < TSeq > \*model, Agent < TSeq > &agent\_, size\_t n, std::vector < size\_t > states ←
   \_={}, bool truncate=false)

Sample from the agent's entities.

- std::vector< Agent< TSeq > \* >::iterator begin ()
- std::vector < Agent < TSeq > \* >::iterator end ()
- Agent< TSeq > \* operator[] (size\_t n)
- Agent< TSeq > \* operator() (size\_t n)
- size\_t size () const noexcept

## 14.6.1 Detailed Description

 $\label{template} \begin{tabular}{ll} template < typename TSeq > \\ class epiworld::AgentsSample < TSeq > \\ \end{tabular}$ 

Sample of agents.

This class allows sampling agents from Entity<TSeq> and Model<TSeq>.

#### **Template Parameters**

TSea	
1004	

#### 14.6.2 Constructor & Destructor Documentation

#### 14.6.2.1 AgentsSample()

Sample from the agent's entities.

For example, how many individuals the agent contacts in a given point in time.

### **Template Parameters**

TSeq	

#### **Parameters**

agent⊷	
_	
n	Sample size
truncate	If the agent has fewer than $n$ connections, then truncate = true will automatically reduce the number of possible samples. Otherwise, if false, then it returns an error.

The documentation for this class was generated from the following file:

· epiworld.hpp

# 14.7 DataBase < TSeq > Class Template Reference

Statistical data about the process.

```
#include <database-bones.hpp>
```

#### **Public Member Functions**

- DataBase (Model < TSeq > &m)
- DataBase (const DataBase < TSeq > &db)
- void record virus (Virus < TSeq > &v)

Registering a new variant.

- void record\_tool (Tool < TSeq > &t)
- void set\_seq\_hasher (std::function< std::vector< int >(TSeq)> fun)
- void reset ()
- Model < TSeq > \* get\_model ()
- · void record ()
- const std::vector< TSeq > & get\_sequence () const
- const std::vector< int > & get\_nexposed () const
- · size t size () const
- void write\_data (std::string fn\_virus\_info, std::string fn\_virus\_hist, std::string fn\_tool\_info, std::string fn\_tool\_hist, std::string fn\_transmission, std::string fn\_transmiss
- void record\_transmission (int i, int j, int virus, int i\_expo\_date)
- size\_t get\_n\_viruses () const
- · size t get n tools () const
- void set user data (std::vector< std::string > names)
- void add user data (std::vector< epiworld double > x)
- void add\_user\_data (epiworld\_fast\_uint j, epiworld\_double x)
- UserData < TSeq > & get\_user\_data ()
- std::vector< epiworld\_double > transition\_probability (bool print=true) const

Calculates the transition probabilities.

- bool operator== (const DataBase < TSeq > &other) const
- bool operator!= (const DataBase < TSeq > &other) const
- bool operator== (const DataBase< std::vector< int >> &other) const
- bool operator== (const DataBase< std::vector< int >> &other) const

#### Get recorded information from the model

#### **Parameters**

what std::string, The state, e.g., 0, 1, 2, ...

#### Returns

In get\_today\_total, the current counts of what.

In get\_today\_virus, the current counts of what for each virus.

In get\_hist\_total, the time series of what

In get\_hist\_virus, the time series of what for each virus.

In get\_hist\_total\_date and get\_hist\_virus\_date the corresponding date

- int get\_today\_total (std::string what) const
- · int get today total (epiworld fast uint what) const
- void get\_today\_virus (std::vector< std::string > &state, std::vector< int > &id, std::vector< int > &counts) const
- void get\_hist\_total (std::vector< int > \*date, std::vector< std::string > \*state, std::vector< int > \*counts) const
- void get\_hist\_virus (std::vector< int > &date, std::vector< int > &id, std::vector< std::string > &state, std::vector< int > &counts) const
- void get\_hist\_tool (std::vector< int > &date, std::vector< int > &id, std::vector< std::string > &state, std::vector< int > &counts) const

void get\_hist\_transition\_matrix (std::vector< std::string > &state\_from, std::vector< std::string > &state\_to, std::vector< int > &date, std::vector< int > &counts, bool skip\_zeros) const

void get\_transmissions (std::vector< int > &date, std::vector< int > &source, std::vector< int > &target, std::vector< int > &virus, std::vector< int > &source\_exposure\_date) const

Get the transmissions object.

- void get transmissions (int \*date, int \*source, int \*target, int \*virus, int \*source exposure date) const
- MapVec\_type< int, int > reproductive\_number () const
   Computes the reproductive number of each case.
- void reproductive\_number (std::string fn) const
- void generation\_time (std::vector< int > &agent\_id, std::vector< int > &virus\_id, std::vector< int > &time, std::vector< int > &gentime) const
- void **generation\_time** (std::string fn) const

#### **Friends**

- class Model < TSeq >
- void default\_add\_virus (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_add\_tool (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_rm\_virus (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_rm\_tool (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_change\_state (Event< TSeq > &a, Model< TSeq > \*m)

### 14.7.1 Detailed Description

template < typename TSeq > class DataBase < TSeq >

Statistical data about the process.

**Template Parameters** 

TSeq	

### 14.7.2 Member Function Documentation

#### 14.7.2.1 generation\_time()

```
template<typename TSeq >
void DataBase< TSeq >::generation_time (
 std::vector< int > & agent_id,
 std::vector< int > & virus_id,
 std::vector< int > & time,
 std::vector< int > & gentime) const [inline]
```

#### Calculates the generating time

#### **Parameters**

agent_id,virus_id,time,gentime	vectors where to save the values agent_id
--------------------------------	-------------------------------------------

#### 14.7.2.2 get\_transmissions()

```
template<typename TSeq >
void DataBase< TSeq >::get_transmissions (
 std::vector< int > & date,
 std::vector< int > & source,
 std::vector< int > & target,
 std::vector< int > & virus,
 std::vector< int > & source_exposure_date) const [inline]
```

Get the transmissions object.

#### **Parameters**

date	
source	
target	
virus	
source_exposure_date	

### 14.7.2.3 operator==() [1/3]

< Date when the source acquired the varia,

#### 14.7.2.4 operator==() [2/3]

#### 14.7.2.5 operator==() [3/3]

### 14.7.2.6 record\_virus()

< Date when the source acquired the varia

Registering a new variant.

#### **Parameters**

*v* Pointer to the new virus. Since viruses are originated in the agent, the numbers simply move around. From the parent virus to the new virus. And the total number of infected does not change.

### 14.7.2.7 reproductive\_number()

```
template<typename TSeq >
MapVec_type< int, int > DataBase< TSeq >::reproductive_number [inline]
```

Computes the reproductive number of each case.

By definition, whereas it computes R0 (basic reproductive number) or Rt/R (the effective reproductive number) will depend on whether the virus is allowed to circulate naïvely or not, respectively.

#### **Parameters**

*fn* File where to write out the reproductive number.

#### 14.7.2.8 transition\_probability()

Calculates the transition probabilities.

#### Returns

```
std::vector< epiworld_double >
```

The documentation for this class was generated from the following files:

- · include/epiworld/database-bones.hpp
- · include/epiworld/database-meat.hpp

# 14.8 epiworld::DataBase < TSeq > Class Template Reference

Statistical data about the process.

```
#include <epiworld.hpp>
```

#### **Public Member Functions**

```
 DataBase (Model < TSeq > &m)
```

- DataBase (const DataBase < TSeq > &db)
- void record\_virus (Virus < TSeq > &v)

Registering a new variant.

- void record\_tool (Tool < TSeq > &t)
- void set\_seq\_hasher (std::function< std::vector< int >(TSeq)> fun)
- · void reset ()
- Model < TSeq > \* get\_model ()
- · void record ()
- const std::vector< TSeq > & get\_sequence () const
- const std::vector< int > & get\_nexposed () const
- size\_t size () const

void write\_data (std::string fn\_virus\_info, std::string fn\_virus\_hist, std::string fn\_tool\_info, std::string fn\_tool\_hist, std::string fn\_total\_hist, std::string fn\_transmission, std::string fn\_transition, std::string fn\_const

- void record\_transmission (int i, int j, int virus, int i\_expo\_date)
- size\_t get\_n\_viruses () const
- size\_t get\_n\_tools () const
- void set\_user\_data (std::vector< std::string > names)
- void add\_user\_data (std::vector< epiworld\_double > x)
- void add user data (epiworld fast uint j, epiworld double x)
- UserData < TSeq > & get user data ()
- std::vector< epiworld double > transition probability (bool print=true) const

Calculates the transition probabilities.

- bool operator== (const DataBase < TSeq > &other) const
- bool operator!= (const DataBase < TSeq > &other) const

#### Get recorded information from the model

#### **Parameters**

what std::string, The state, e.g., 0, 1, 2, ...

#### Returns

In get\_today\_total, the current counts of what.

In get\_today\_virus, the current counts of what for each virus.

In get\_hist\_total, the time series of what

In get\_hist\_virus, the time series of what for each virus.

In get\_hist\_total\_date and get\_hist\_virus\_date the corresponding date

- int get\_today\_total (std::string what) const
- · int get\_today\_total (epiworld\_fast\_uint what) const
- void get today total (std::vector < std::string > \*state=nullptr, std::vector < int > \*counts=nullptr) const
- void get\_today\_virus (std::vector< std::string > &state, std::vector< int > &id, std::vector< int > &counts) const
- void get\_hist\_total (std::vector< int > \*date, std::vector< std::string > \*state, std::vector< int > \*counts) const
- void get\_hist\_virus (std::vector< int > &date, std::vector< int > &id, std::vector< std::string > &state, std::vector< int > &counts) const
- void get\_hist\_tool (std::vector< int > &date, std::vector< int > &id, std::vector< std::string > &state, std::vector< int > &counts) const
- void get\_hist\_transition\_matrix (std::vector< std::string > &state\_from, std::vector< std::string > &state to, std::vector< int > &date, std::vector< int > &counts, bool skip\_zeros) const
- void get\_transmissions (std::vector< int > &date, std::vector< int > &source, std::vector< int > &target, std::vector< int > &virus, std::vector< int > &source\_exposure\_date) const

Get the transmissions object.

- void get transmissions (int \*date, int \*source, int \*target, int \*virus, int \*source exposure date) const
- MapVec\_type< int, int > reproductive\_number () const

Computes the reproductive number of each case.

· void reproductive\_number (std::string fn) const

- void generation\_time (std::vector< int > &agent\_id, std::vector< int > &virus\_id, std::vector< int > &time, std::vector< int > &gentime) const
- void generation\_time (std::string fn) const

#### **Friends**

- class Model < TSeq >
- void default\_add\_virus (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_add\_tool (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_rm\_virus (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_rm\_tool (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_change\_state (Event< TSeq > &a, Model< TSeq > \*m)

#### 14.8.1 Detailed Description

```
template<typename TSeq> class epiworld::DataBase< TSeq>
```

Statistical data about the process.

**Template Parameters** 

TSeq

#### 14.8.2 Member Function Documentation

#### 14.8.2.1 generation\_time()

Calculates the generating time

**Parameters** 

agent\_id,virus\_id,time,gentime | vectors where to save the values agent\_id

#### 14.8.2.2 get\_transmissions()

```
template<typename TSeq >
void DataBase< TSeq >::get_transmissions (
 std::vector< int > & date,
 std::vector< int > & source,
 std::vector< int > & target,
 std::vector< int > & virus,
 std::vector< int > & source_exposure_date) const [inline]
```

Get the transmissions object.

#### **Parameters**

date	
source	
target	
virus	
source_exposure_date	

#### 14.8.2.3 operator==()

- < Date of the transmission eve
- < Id of the sour
- < Id of the targ
- < Id of the varia
- < Date when the source acquired the varia

#### 14.8.2.4 record\_virus()

Registering a new variant.

#### **Parameters**

*v* Pointer to the new virus. Since viruses are originated in the agent, the numbers simply move around. From the parent virus to the new virus. And the total number of infected does not change.

# 14.8.2.5 reproductive\_number()

```
template<typename TSeq >
MapVec_type< int, int > DataBase< TSeq >::reproductive_number [inline]
```

Computes the reproductive number of each case.

By definition, whereas it computes R0 (basic reproductive number) or Rt/R (the effective reproductive number) will depend on whether the virus is allowed to circulate naïvely or not, respectively.

## **Parameters**

*fn* File where to write out the reproductive number.

# 14.8.2.6 transition\_probability()

Calculates the transition probabilities.

# Returns

```
std::vector< epiworld_double >
```

The documentation for this class was generated from the following file:

· epiworld.hpp

# 14.9 Entities < TSeq > Class Template Reference

Set of Entities (useful for building iterators)

```
#include <entities-bones.hpp>
```

# **Public Member Functions**

```
 Entities (Agent< TSeq > &p)
 std::vector< Entity< TSeq > * >::iterator begin ()
 std::vector< Entity< TSeq > * >::iterator end ()
 Entity< TSeq > & operator() (size_t i)
```

- Entity < TSeq > & operator[] (size\_t i)
- size\_t size () const noexcept
- bool **operator==** (const Entities < TSeq > &other) const

## **Friends**

- class Entity< TSeq >
- class Agent < TSeq >

# 14.9.1 Detailed Description

```
template < typename TSeq> class Entities < TSeq >
```

Set of Entities (useful for building iterators)

**Template Parameters** 



The documentation for this class was generated from the following files:

- include/epiworld/agent-bones.hpp
- · include/epiworld/entities-bones.hpp

# 14.10 epiworld::Entities < TSeq > Class Template Reference

Set of Entities (useful for building iterators)

```
#include <epiworld.hpp>
```

## **Public Member Functions**

- Entities (Agent < TSeq > &p)
- std::vector< Entity< TSeq > \* >::iterator begin ()
- std::vector< Entity< TSeq > \* >::iterator end ()
- Entity < TSeq > & operator() (size\_t i)
- Entity< TSeq > & operator[] (size t i)
- size\_t size () const noexcept
- bool operator== (const Entities < TSeq > &other) const

## **Friends**

- class Entity< TSeq >
- class Agent < TSeq >

# 14.10.1 Detailed Description

 $\label{template} \begin{tabular}{ll} template < typename TSeq > \\ class epiworld::Entities < TSeq > \\ \end{tabular}$ 

Set of Entities (useful for building iterators)

**Template Parameters** 



The documentation for this class was generated from the following file:

· epiworld.hpp

# 14.11 Entities\_const < TSeq > Class Template Reference

Set of Entities (const) (useful for iterators)

#include <entities-bones.hpp>

# **Public Member Functions**

- Entities\_const (const Agent < TSeq > &p)
- std::vector< Entity< TSeq > \* >::const\_iterator begin ()
- std::vector< Entity< TSeq > \* >::const\_iterator end ()
- const Entity < TSeq > & operator() (size\_t i)
- const Entity < TSeq > & operator[] (size\_t i)
- size\_t size () const noexcept
- bool operator== (const Entities\_const< TSeq > &other) const

# **Friends**

- class Virus < TSeq >
- class Agent < TSeq >

# 14.11.1 Detailed Description

template<typename TSeq> class Entities\_const< TSeq >

Set of Entities (const) (useful for iterators)

# **Template Parameters**

TSeq	
,	

The documentation for this class was generated from the following file:

• include/epiworld/entities-bones.hpp

# 14.12 epiworld::Entities\_const< TSeq > Class Template Reference

```
Set of Entities (const) (useful for iterators)
```

```
#include <epiworld.hpp>
```

## **Public Member Functions**

- Entities\_const (const Agent < TSeq > &p)
- std::vector< Entity< TSeq > \* >::const\_iterator begin ()
- std::vector< Entity< TSeq > \* >::const\_iterator end ()
- const Entity < TSeq > & operator() (size t i)
- const Entity < TSeq > & operator[] (size\_t i)
- size\_t size () const noexcept
- bool operator== (const Entities\_const < TSeq > &other) const

# **Friends**

- class Virus < TSeq >
- class Agent < TSeq >

# 14.12.1 Detailed Description

template<typename TSeq>
class epiworld::Entities\_const< TSeq>

Set of Entities (const) (useful for iterators)

**Template Parameters** 

TSeq	

The documentation for this class was generated from the following file:

· epiworld.hpp

# 14.13 Entity < TSeq > Class Template Reference

# **Public Member Functions**

- Entity (std::string name)
- void add\_agent (Agent < TSeq > &p, Model < TSeq > \*model)
- void add\_agent (Agent < TSeq > \*p, Model < TSeq > \*model)
- void rm\_agent (size\_t idx)
- size\_t size () const noexcept
- void set\_location (std::vector< epiworld double > loc)
- std::vector< epiworld\_double > & get\_location ()
- std::vector < Agent < TSeq > \* >::iterator begin ()
- std::vector< Agent< TSeq > \* >::iterator end ()
- std::vector< Agent< TSeq > \* >::const iterator begin () const
- std::vector < Agent < TSeq > \* >::const\_iterator end () const
- Agent< TSeq > \* operator[] (size\_t i)
- int get\_id () const noexcept
- const std::string & get\_name () const noexcept
- void set\_state (epiworld\_fast\_int init, epiworld\_fast\_int post)
- void set\_queue (epiworld\_fast\_int init, epiworld\_fast\_int post)
- void get\_state (epiworld fast int \*init, epiworld fast int \*post)
- void get\_queue (epiworld\_fast\_int \*init, epiworld\_fast\_int \*post)
- · void reset ()
- bool operator== (const Entity < TSeq > &other) const
- bool operator!= (const Entity < TSeq > &other) const

## **Friends**

- class Agent < TSeq >
- class AgentsSample < TSeq >
- class Model < TSeq >
- void default\_add\_entity (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_rm\_entity (Event< TSeq > &a, Model< TSeq > \*m)

## 14.13.1 Friends And Related Function Documentation

## 14.13.1.1 default rm entity

- < Last entity of the agent
- < Last agent of the entity
- < Last entity of the agent
- < Last agent of the entity

The documentation for this class was generated from the following files:

- · include/epiworld/agent-bones.hpp
- · include/epiworld/entity-bones.hpp
- include/epiworld/entity-meat.hpp

# 14.14 epiworld::Entity < TSeq > Class Template Reference

## **Public Member Functions**

- Entity (std::string name)
- void add\_agent (Agent < TSeq > &p, Model < TSeq > \*model)
- void add\_agent (Agent < TSeq > \*p, Model < TSeq > \*model)
- void rm\_agent (size\_t idx)
- · size\_t size () const noexcept
- void set\_location (std::vector< epiworld\_double > loc)
- std::vector< epiworld\_double > & get\_location ()
- std::vector< Agent< TSeq > \* >::iterator begin ()
- std::vector< Agent< TSeq > \* >::iterator end ()
- std::vector < Agent < TSeq > \* >::const iterator begin () const
- $std::vector < Agent < TSeq > * >::const_iterator end () const$
- Agent< TSeq > \* operator[] (size\_t i)
- int get\_id () const noexcept
- · const std::string & get\_name () const noexcept
- void **set\_state** (epiworld\_fast\_int init, epiworld\_fast\_int post)
- · void set queue (epiworld fast int init, epiworld fast int post)
- void get\_state (epiworld\_fast\_int \*init, epiworld\_fast\_int \*post)
- void get queue (epiworld fast int \*init, epiworld fast int \*post)
- · void reset ()
- bool operator== (const Entity < TSeq > &other) const
- bool operator!= (const Entity < TSeq > &other) const

# **Friends**

- class Agent < TSeq >
- class AgentsSample < TSeq >
- class  $\mathbf{Model} \! < \! \mathbf{TSeq} \! > \!$
- void default add entity (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_rm\_entity (Event< TSeq > &a, Model< TSeq > \*m)

## 14.14.1 Friends And Related Function Documentation

# 14.14.1.1 default\_rm\_entity

- < Last entity of the agent
- < Last agent of the entity

The documentation for this class was generated from the following file:

epiworld.hpp

# 14.15 epiworld::Event < TSeq > Struct Template Reference

Event data for update an agent.

#include <epiworld.hpp>

## **Public Member Functions**

Event (Agent < TSeq > \*agent\_, VirusPtr < TSeq > virus\_, ToolPtr < TSeq > tool\_, Entity < TSeq > \*entity ←
 \_, epiworld\_fast\_int new\_state\_, epiworld\_fast\_int queue\_, ActionFun < TSeq > call\_, int idx\_agent\_, int idx\_object\_)

Construct a new Event object.

# **Public Attributes**

- Agent < TSeq > \* agent
- VirusPtr< TSeq > virus
- ToolPtr< TSeq > tool
- Entity < TSeq > \* entity
- epiworld\_fast\_int new\_state
- · epiworld\_fast\_int queue
- ActionFun< TSeq > call
- · int idx agent
- int idx\_object

# 14.15.1 Detailed Description

 $\label{template} \begin{tabular}{ll} template < typename TSeq > \\ struct epiworld::Event < TSeq > \\ \end{tabular}$ 

Event data for update an agent.

**Template Parameters** 

TSeq

# 14.15.2 Constructor & Destructor Documentation

# 14.15.2.1 Event()

```
VirusPtr< TSeq > virus_,
ToolPtr< TSeq > tool_,
Entity< TSeq > * entity_,
epiworld_fast_int new_state_,
epiworld_fast_int queue_,
ActionFun< TSeq > call_,
int idx_agent_,
int idx_object_) [inline]
```

Construct a new Event object.

All the parameters are rather optional.

#### **Parameters**

agent_	Agent over who the action will happen
virus_	Virus to add
tool_	Tool to add
virus_idx	Index of virus to be removed (if needed)
tool_idx	Index of tool to be removed (if needed)
new_←	Next state
state_	
queue_	Efect on the queue
call_	The action call (if needed)
idx_←	Location of agent in object.
agent_	
idx_←	Location of object in agent.
object_	

The documentation for this struct was generated from the following file:

· epiworld.hpp

# 14.16 Event < TSeq > Struct Template Reference

Event data for update an agent.

```
#include <config.hpp>
```

# **Public Member Functions**

Event (Agent < TSeq > \*agent\_, VirusPtr < TSeq > virus\_, ToolPtr < TSeq > tool\_, Entity < TSeq > \*entity ←
 \_, epiworld\_fast\_int new\_state\_, epiworld\_fast\_int queue\_, ActionFun < TSeq > call\_, int idx\_agent\_, int idx\_object\_)

Construct a new Event object.

# **Public Attributes**

- Agent < TSeq > \* agent
- VirusPtr< TSeq > virus
- ToolPtr< TSeq > tool
- Entity< TSeq > \* entity
- · epiworld\_fast\_int new\_state
- · epiworld\_fast\_int queue
- ActionFun< TSeq > call
- · int idx agent
- int idx\_object

# 14.16.1 Detailed Description

```
template<typename TSeq> struct Event< TSeq >
```

Event data for update an agent.

**Template Parameters** 



# 14.16.2 Constructor & Destructor Documentation

# 14.16.2.1 Event()

Construct a new Event object.

All the parameters are rather optional.

## **Parameters**

agent_	Agent over who the action will happen
virus_	Virus to add
tool_	Tool to add

#### **Parameters**

virus_idx	Index of virus to be removed (if needed)
tool_idx	Index of tool to be removed (if needed)
new_←	Next state
state_	
queue_	Efect on the queue
call_	The action call (if needed)
idx_←	Location of agent in object.
agent_	
idx_←	Location of object in agent.
object_	

The documentation for this struct was generated from the following files:

- · include/epiworld/agent-bones.hpp
- include/epiworld/config.hpp

# 14.17 epiworld::GlobalEvent< TSeq > Class Template Reference

Template for a Global Event.

#include <epiworld.hpp>

# **Public Member Functions**

- GlobalEvent (GlobalFun < TSeq > fun, std::string name, int day=-99)
   Construct a new Global Event object.
- void operator() (Model < TSeq > \*m, int day)
- void **set\_name** (std::string name)
- std::string **get\_name** () const
- void set\_day (int day)
- int get\_day () const
- · void print () const
- bool operator== (const GlobalEvent < TSeq > &other) const
- bool **operator!=** (const GlobalEvent< TSeq > &other) const

# 14.17.1 Detailed Description

 $\label{template} \begin{tabular}{ll} template < typename TSeq > \\ class epiworld::GlobalEvent < TSeq > \\ \end{tabular}$ 

Template for a Global Event.

Global events are functions that Model<TSeq> executes at the end of a day.

# 14.17.2 Constructor & Destructor Documentation

## 14.17.2.1 GlobalEvent()

Construct a new Global Event object.

## **Parameters**

fun	A function that takes a Model <tseq> * as argument and returns void.</tseq>
name	A descriptive name for the action.
day	The day when the action will be executed. If negative, it will be executed every day.

The documentation for this class was generated from the following file:

· epiworld.hpp

# 14.18 GlobalEvent < TSeq > Class Template Reference

Template for a Global Event.

```
#include <globalevent-bones.hpp>
```

# **Public Member Functions**

- GlobalEvent (GlobalFun < TSeq > fun, std::string name, int day=-99)
   Construct a new Global Event object.
- void operator() (Model < TSeq > \*m, int day)
- void set\_name (std::string name)
- std::string get\_name () const
- void set\_day (int day)
- int get\_day () const
- · void print () const
- bool operator== (const GlobalEvent< TSeq > &other) const
- bool operator!= (const GlobalEvent < TSeq > &other) const

# 14.18.1 Detailed Description

```
template<typename TSeq> class GlobalEvent< TSeq>
```

Template for a Global Event.

Global events are functions that Model<TSeq> executes at the end of a day.

## 14.18.2 Constructor & Destructor Documentation

## 14.18.2.1 GlobalEvent()

Construct a new Global Event object.

#### **Parameters**

fun	A function that takes a Model <tseq> * as argument and returns void.</tseq>
name	A descriptive name for the action.
day	The day when the action will be executed. If negative, it will be executed every day.

The documentation for this class was generated from the following files:

- include/epiworld/globalevent-bones.hpp
- include/epiworld/globalevent-meat.hpp

# 14.19 epiworld::LFMCMC < TData > Class Template Reference

Likelihood-Free Markov Chain Monte Carlo.

```
#include <epiworld.hpp>
```

# **Public Member Functions**

- void **run** (std::vector< epiworld\_double > param\_init, size\_t n\_samples\_, epiworld\_double epsilon\_)
- LFMCMC (TData &observed data )
- void set\_observed\_data (TData &observed\_data\_)
- void set\_proposal\_fun (LFMCMCProposalFun< TData > fun)
- void set\_simulation\_fun (LFMCMCSimFun< TData > fun)
- void **set\_summary\_fun** (LFMCMCSummaryFun< TData > fun)
- void set kernel fun (LFMCMCKernelFun< TData > fun)
- size\_t get\_n\_samples () const
- size\_t get\_n\_statistics () const
- size\_t get\_n\_parameters () const
- epiworld\_double get\_epsilon () const
- const std::vector< epiworld\_double > & get\_params\_now ()
- const std::vector< epiworld\_double > & get\_params\_prev ()
- const std::vector< epiworld\_double > & get\_params\_init ()
- const std::vector< epiworld\_double > & get\_statistics\_obs ()

- const std::vector< epiworld\_double > & get\_statistics\_hist ()
- const std::vector< bool > & get\_statistics\_accepted ()
- const std::vector< epiworld double > & get\_posterior\_lf\_prob ()
- const std::vector< epiworld double > & get\_drawn\_prob ()
- std::vector< TData > \* get\_sampled\_data ()
- void set\_par\_names (std::vector< std::string > names)
- void set\_stats\_names (std::vector< std::string > names)
- std::vector< epiworld\_double > get\_params\_mean ()
- $std::vector < epiworld_double > get_stats_mean ()$
- void print ()

#### Random number generation

#### **Parameters**

eng

- void set rand engine (std::mt19937 &eng)
- std::mt19937 & get rand endgine ()
- · void seed (epiworld fast uints)
- void set rand gamma (epiworld double alpha, epiworld double beta)
- epiworld\_double runif ()
- epiworld\_double rnorm ()
- epiworld\_double rgamma ()
- epiworld\_double **runif** (epiworld\_double lb, epiworld\_double ub)
- epiworld\_double **rnorm** (epiworld\_double mean, epiworld\_double sd)
- epiworld\_double **rgamma** (epiworld\_double alpha, epiworld\_double beta)

## 14.19.1 Detailed Description

template<typename TData> class epiworld::LFMCMC< TData >

Likelihood-Free Markov Chain Monte Carlo.

**Template Parameters** 

TData Type of data that is generated

The documentation for this class was generated from the following file:

· epiworld.hpp

# 14.20 LFMCMC < TData > Class Template Reference

Likelihood-Free Markov Chain Monte Carlo.

#include <lfmcmc-bones.hpp>

### **Public Member Functions**

- void run (std::vector< epiworld\_double > param\_init, size\_t n\_samples\_, epiworld\_double epsilon\_)
- · LFMCMC (TData & observed data )
- void set\_observed\_data (TData &observed\_data\_)
- void set\_proposal\_fun (LFMCMCProposalFun< TData > fun)
- void set simulation fun (LFMCMCSimFun < TData > fun)
- void set\_summary\_fun (LFMCMCSummaryFun < TData > fun)
- void set\_kernel\_fun (LFMCMCKernelFun< TData > fun)
- size t get n samples () const
- size\_t get\_n\_statistics () const
- size t get n parameters () const
- epiworld\_double get\_epsilon () const
- const std::vector< epiworld\_double > & get\_params\_now ()
- const std::vector< epiworld\_double > & get\_params\_prev ()
- const std::vector< epiworld\_double > & get\_params\_init ()
- const std::vector< epiworld double > & get statistics obs ()
- const std::vector< epiworld\_double > & get\_statistics\_hist ()
- const std::vector< bool > & get\_statistics\_accepted ()
- const std::vector< epiworld double > & get\_posterior\_lf\_prob ()
- const std::vector< epiworld double > & get drawn prob ()
- std::vector< TData > \* get sampled data ()
- void set\_par\_names (std::vector< std::string > names)
- void set\_stats\_names (std::vector< std::string > names)
- std::vector< epiworld\_double > get\_params\_mean ()
- std::vector< epiworld double > get\_stats\_mean ()
- · void print ()

## Random number generation

#### **Parameters**

eng

- void set rand engine (std::mt19937 &eng)
- std::mt19937 & get\_rand\_endgine ()
- void seed (epiworld\_fast\_uint s)
- · void set rand gamma (epiworld double alpha, epiworld double beta)
- epiworld\_double runif ()
- epiworld\_double rnorm ()
- epiworld double rgamma ()
- epiworld\_double runif (epiworld\_double lb, epiworld\_double ub)
- epiworld\_double rnorm (epiworld\_double mean, epiworld\_double sd)
- epiworld double rgamma (epiworld double alpha, epiworld double beta)

# 14.20.1 Detailed Description

template < typename TData > class LFMCMC < TData >

Likelihood-Free Markov Chain Monte Carlo.

## **Template Parameters**

TData	Type of data that is generated
-------	--------------------------------

The documentation for this class was generated from the following files:

- include/epiworld/math/lfmcmc/lfmcmc-bones.hpp
- include/epiworld/math/lfmcmc/lfmcmc-meat-print.hpp
- include/epiworld/math/lfmcmc/lfmcmc-meat.hpp

# 14.21 epiworld::Model < TSeq > Class Template Reference

Core class of epiworld.

```
#include <epiworld.hpp>
```

Collaboration diagram for epiworld::Model < TSeq >:



# **Public Member Functions**

- DataBase < TSeq > & get\_db ()
- epiworld\_double & operator() (std::string pname)
- size\_t size () const
- void load\_agents\_entities\_ties (std::string fn, int skip)

Associate agents-entities from a file.

• size\_t get\_n\_viruses () const

Number of viruses in the model.

• size\_t get\_n\_tools () const

Number of tools in the model.

- · epiworld\_fast\_uint get\_ndays () const
- epiworld\_fast\_uint get\_n\_replicates () const
- void set\_ndays (epiworld\_fast\_uint ndays)
- bool get\_verbose () const
- Model < TSeq > & verbose\_off ()
- Model < TSeq > & verbose\_on ()

· int today () const

The current time of the model.

void write\_data (std::string fn\_virus\_info, std::string fn\_virus\_hist, std::string fn\_tool\_info, std::string fn\_tool\_hist, std::string fn\_total\_hist, std::string fn\_transmission, std::string fn\_transmissio

Wrapper of DataBase::write\_data

- std::map< std::string, epiworld\_double > & params ()
- virtual void reset ()

Reset the model.

- const Model < TSeq > & print (bool lite=false) const
- Model < TSeq > && clone () const
- void get\_elapsed (std::string unit="auto", epiworld\_double \*last\_elapsed=nullptr, epiworld\_double \*total\_
   elapsed=nullptr, std::string \*unit\_abbr=nullptr, bool print=true) const
- void add\_globalevent (std::function< void(Model< TSeq > \*)> fun, std::string name="A global action", int date=-99)

Set a global action.

- void add\_globalevent (GlobalEvent< TSeq > action)
- GlobalEvent < TSeq > & get\_globalevent (std::string name)

Retrieve a global action by name.

GlobalEvent < TSeq > & get\_globalevent (size\_t i)

Retrieve a global action by index.

· void rm\_globalevent (std::string name)

Remove a global action by name.

· void rm globalevent (size ti)

Remove a global action by index.

- void run\_globalevents ()
- · void clear state set ()
- const std::vector< VirusPtr< TSeq > > & get\_viruses () const
- const std::vector< epiworld\_double > & get\_prevalence\_virus () const
- const std::vector< bool > & get\_prevalence\_virus\_as\_proportion () const
- const std::vector< ToolPtr< TSeq > > & get\_tools () const
- Virus< TSeq > & get\_virus (size\_t id)
- Tool < TSeq > & get\_tool (size\_t id)
- void set agents data (double \*data , size t ncols )

Set the agents data object.

- double \* get\_agents\_data ()
- size\_t get\_agents\_data\_ncols () const
- void set\_name (std::string name)

Set the name object.

- std::string get\_name () const
- bool operator== (const Model < TSeq > & other) const
- bool operator!= (const Model < TSeq > &other) const
- void events run ()

Executes the stored action.

## Set the backup object

backup can be used to restore the entire object after a run. This can be useful if the user wishes to have individuals start with the same network from the beginning.

void set\_backup ()

## Random number generation

#### **Parameters**

eng	Random number generator
S	Seed

- void set rand engine (std::mt19937 &eng)
- std::mt19937 & get\_rand\_endgine ()
- void seed (size\_t s)
- void set rand norm (epiworld double mean, epiworld double sd)
- void set rand unif (epiworld double a, epiworld double b)
- void set rand exp (epiworld double lambda)
- void set rand gamma (epiworld double alpha, epiworld double beta)
- void set rand lognormal (epiworld double mean, epiworld double shape)
- void set\_rand\_binom (int n, epiworld\_double p)
- epiworld\_double runif ()
- epiworld\_double runif (epiworld\_double a, epiworld\_double b)
- epiworld double rnorm ()
- epiworld\_double rnorm (epiworld\_double mean, epiworld\_double sd)
- epiworld double rgamma ()
- epiworld double rgamma (epiworld double alpha, epiworld double beta)
- epiworld double rexp ()
- epiworld double rexp (epiworld double lambda)
- epiworld double rlognormal ()
- epiworld double **riognormal** (epiworld double mean, epiworld double shape)
- int rbinom ()
- int **rbinom** (int n, epiworld\_double p)

#### Add Virus/Tool to the model

This is done before the model has been initialized.

## **Parameters**

V	Virus to be added
t	Tool to be added
preval	Initial prevalence (initial state.) It can be specified as a proportion (between zero and one,) or an integer indicating number of individuals.

- void add\_virus (Virus < TSeq > &v, epiworld double preval)
- void add\_virus\_n (Virus< TSeq > &v, epiworld\_fast\_uint preval)
- void add\_virus\_fun (Virus < TSeq > &v, VirusToAgentFun < TSeq > fun)
- void add\_tool (Tool < TSeq > &t, epiworld\_double preval)
- void add\_tool\_n (Tool< TSeq > &t, epiworld\_fast\_uint preval)
- void add\_tool\_fun (Tool< TSeq > &t, ToolToAgentFun< TSeq > fun)
- void add\_entity (Entity < TSeq > e)
- · void rm virus (size t virus pos)
- void rm\_tool (size\_t tool\_pos)
- void rm\_entity (size\_t entity\_pos)

# Accessing population of the model

### Parameters

fn	std::string Filename of the edgelist file.
skip	int Number of lines to skip in fn.
directed	bool Whether the graph is directed or not.
size	Size of the network.
al	AdjList to read into the model.

- void agents\_from\_adjlist (std::string fn, int size, int skip=0, bool directed=false)
- void agents\_from\_edgelist (const std::vector< int > &source, const std::vector< int > &target, int size, bool directed)
- void agents\_from\_adjlist (AdjList al)
- · bool is directed () const
- std::vector< Agent< TSeq > > & get\_agents ()

Returns a reference to the vector of agents.

std::vector< epiworld\_fast\_uint > get\_agents\_states () const

Returns a vector with the states of the agents.

std::vector< Viruses\_const< TSeq > > get\_agents\_viruses () const

Returns a const vector with the viruses of the agents.

std::vector< Viruses< TSeq >> get\_agents\_viruses ()

Returns a vector with the viruses of the agents.

- std::vector< Entity< TSeq > > & get\_entities ()
- Model < TSeq > & agents\_smallworld (epiworld\_fast\_uint n=1000, epiworld\_fast\_uint k=5, bool d=false, epiworld double p=.01)
- void agents\_empty\_graph (epiworld\_fast\_uint n=1000)

#### Functions to run the model

#### **Parameters**

seed	Seed to be used for Pseudo-RNG.
ndays	Number of days (steps) of the simulation.
fun	In the case of run_multiple, a function that is called after each experiment.

- void update state ()
- void mutate virus ()
- void next ()
- virtual Model < TSeq > & run (epiworld\_fast\_uint ndays, int seed=-1)

Runs the simulation (after initialization)

void run\_multiple (epiworld\_fast\_uint ndays, epiworld\_fast\_uint nexperiments, int seed\_=-1, std::function
 void(size\_t, Model< TSeq > \*)> fun=make\_save\_run< TSeq >(), bool reset=true, bool verbose=true, int nthreads=1)

# Rewire the network preserving the degree sequence.

This implementation assumes an undirected network, thus if  $\{(i,j), (k,l)\} \rightarrow \{(i,l), (k,j)\}$ , the reciprocal is also true, i.e.,  $\{(j,i), (l,k)\} \rightarrow \{(j,k), (l,i)\}$ .

### **Parameters**

proportion	Proportion of ties to be rewired.
------------	-----------------------------------

### Returns

A rewired version of the network.

- void set\_rewire\_fun (std::function< void(std::vector< Agent< TSeq >> \*, Model< TSeq > \*, epiworld\_double)> fun)
- void set\_rewire\_prop (epiworld\_double prop)
- epiworld\_double **get\_rewire\_prop** () const
- void rewire ()

# Export the network data in edgelist form

#### **Parameters**

fn	std::string. File name.	
source	Integer vector	
target	Integer vector	

When passing the source and target, the function will write the edgelist on those.

- · void write edgelist (std::string fn) const
- void write\_edgelist (std::vector< int > &source, std::vector< int > &target) const

## Manage state (states) in the model

The functions get\_state return the current values for the states included in the model.

#### **Parameters**

```
lab std::string Name of the state.
```

#### Returns

add\_state\* returns nothing.
get\_state\_\* returns a vector of pairs with the states and their labels.

- void add state (std::string lab, UpdateFun < TSeq > fun=nullptr)
- const std::vector< std::string > & get states () const
- const std::vector< UpdateFun< TSeq > > & get\_state\_fun () const
- · void print\_state\_codes () const

## **Initial states**

These functions are called before the simulation starts.

#### **Parameters**

proportions↔	Vector of proportions for each state.
queue_	Vector of queue for each state.

virtual Model < TSeq > & initial\_states (std::vector < double >, std::vector < int >)

## Setting and accessing parameters from the model

Tools can incorporate parameters included in the model. Internally, parameters in the tool are stored as pointers to an std::map<> of parameters in the model. Using the epiworld\_fast\_uint method directly fetches the parameters in the order these were added to the tool. Accessing parameters via the std::string method involves searching the parameter directly in the std::map<> member of the model (so it is not recommended.)

The par() function members are aliases for get\_param().

In the case of the function read\_params, users can pass a file listing parameters to be included in the model. Each line in the file should have the following structure:

```
[name of parameter 1]: [value in double]
[name of parameter 2]: [value in double]
```

The only condition for parameter names is that these do not include a colon.

#### **Parameters**

initial_val	
pname	Name of the parameter to add or to fetch
fn	Path to the file containing parameters

#### Returns

The current value of the parameter in the model.

- epiworld double add\_param (epiworld double initial val, std::string pname)
- void read params (std::string fn)
- epiworld\_double **get\_param** (epiworld\_fast\_uint k)
- epiworld\_double get\_param (std::string pname)
- void set param (std::string pname, epiworld double val)
- epiworld double par (std::string pname)

# Set the user data object

### **Parameters**

names string vector with the names of the variables.

- void set\_user\_data (std::vector< std::string > names)
- void add\_user\_data (epiworld\_fast\_uint j, epiworld\_double x)
- void add user data (std::vector< epiworld double > x)
- UserData< TSeq > & get\_user\_data ()

# Queuing system

When queueing is on, the model will keep track of which agents are either in risk of exposure or exposed. This then is used at each step to act only on the aforementioned agents.

- void queuing\_on ()
  - Activates the queuing system (default.)
- Model < TSeq > & queuing\_off ()

Deactivates the queuing system.

· bool is\_queuing\_on () const

Query if the queuing system is on.

Queue < TSeq > & get\_queue ()

Retrieve the Queue object.

# Get the susceptibility reduction object

## **Parameters**



### Returns

epiworld\_double

- void set\_susceptibility\_reduction\_mixer (MixerFun< TSeq > fun)
- void set\_transmission\_reduction\_mixer (MixerFun < TSeq > fun)
- void set\_recovery\_enhancer\_mixer (MixerFun< TSeq > fun)
- void set\_death\_reduction\_mixer (MixerFun < TSeq > fun)

## **Protected Member Functions**

```
• void dist_tools ()
```

- · void dist\_virus ()
- void chrono\_start ()
- void chrono end ()
- void events\_add (Agent< TSeq > \*agent\_, VirusPtr< TSeq > virus\_, ToolPtr< TSeq > tool\_, Entity< TSeq > \*entity\_, epiworld\_fast\_int new\_state\_, epiworld\_fast\_int queue\_, ActionFun< TSeq > call\_, int idx\_
   agent\_, int idx\_object\_)

Construct a new Event object.

### **Protected Attributes**

```
std::string name = ""
 Name of the model.

 DataBase< TSeq > db = DataBase<TSeq>(*this)

std::vector< Agent< TSeq >> population = {}
• bool using backup = true

 std::vector< Agent< TSeq > > population_backup = {}

• bool directed = false
std::vector< VirusPtr< TSeq >> viruses = {}
std::vector< epiworld_double > prevalence_virus = {}
 Initial prevalence_virus of each virus.
std::vector< bool > prevalence virus as proportion = {}

 std::vector< VirusToAgentFun< TSeq > > viruses_dist_funs = {}

std::vector< ToolPtr< TSeq >> tools = {}

 std::vector< epiworld double > prevalence_tool = {}

std::vector< bool > prevalence_tool_as_proportion = {}

 std::vector< ToolToAgentFun< TSeq > > tools dist funs = {}

std::vector< Entity< TSeq >> entities = {}
std::vector< Entity< TSeq >> entities_backup = {}

 std::mt19937 engine

 std::uniform_real_distribution runifd

• std::normal_distribution rnormd
· std::gamma distribution rgammad
· std::lognormal_distribution rlognormald

 std::exponential distribution rexpd

 std::binomial_distribution rbinomd

 std::function< void(std::vector< Agent< TSeq >> *, Model< TSeq > *, epiworld_double)> rewire_fun

• epiworld_double rewire_prop = 0.0

 std::map< std::string, epiworld double > parameters

• epiworld_fast_uint ndays = 0
· Progress pb

 std::vector< UpdateFun< TSeq > > state fun = {}

 Functions to update states.
std::vector< std::string > states labels = {}
 Labels of the states.

 std::function< void(Model< TSeq > *)> initial_states_fun

• epiworld_fast_uint nstates = 0u
• bool verbose = true
• int current date = 0
• std::chrono::time point< std::chrono::steady clock > time start
```

std::chrono::time\_point< std::chrono::steady\_clock > time\_end

- std::chrono::duration< epiworld\_double, std::micro > time\_elapsed
- epiworld fast uint n\_replicates = 0u
- std::vector < GlobalEvent < TSeq > > globalevents
- Queue < TSeq > queue
- bool **use\_queuing** = true
- std::vector< Event< TSeq >> events = {}

Variables used to keep track of the events to be made regarding viruses.

epiworld\_fast\_uint nactions = 0u

## Auxiliary variables for AgentsSample<TSeq> iterators

These variables+objects are used by the AgentsSample< TSeq> class for building efficient iterators over agents. The idea is to reduce the memory allocation, so only during the first call of AgentsSample< TSeq>::Agents← Sample(Model< TSeq>) these vectors are allocated.

- std::vector< Agent< TSeq > \* > sampled\_population
- size t sampled\_population\_n = 0u
- $std::vector < size_t > population_left$
- size t population left n = 0u

## **Agents features**

Optionally, a model can include an external data source pointing to agents information. The data can then be access through the Agent: operator() method.

- double \* agents\_data = nullptr
- size\_t agents\_data\_ncols = 0u

## **Friends**

- class Agent < TSeq >
- class AgentsSample < TSeq >
- class DataBase< TSeq >
- class Queue < TSeq >

## **Tool Mixers**

These functions combine the effects tools have to deliver a single effect. For example, wearing a mask, been vaccinated, and the immune system combine together to jointly reduce the susceptibility for a given virus.

- MixerFun< TSeq > susceptibility\_reduction\_mixer = susceptibility\_reduction\_mixer\_default<TSeq>
- MixerFun< TSeq > transmission reduction mixer = transmission reduction mixer default<TSeq>
- MixerFun< TSeq > recovery enhancer mixer = recovery enhancer mixer default<TSeq>
- MixerFun < TSeq > death\_reduction\_mixer = death\_reduction\_mixer\_default < TSeq >
- std::vector< epiworld\_double > array\_double\_tmp
- std::vector< Virus< TSeq > \* > array virus tmp
- virtual Model < TSeq > \* clone ptr ()

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

- Model ()
- Model (const Model < TSeq > &m)
- Model (Model < TSeq > &m)
- Model (Model < TSeq > &&m)
- Model < TSeq > & operator= (const Model < TSeq > &m)
- virtual ∼Model ()
- void clone\_population (std::vector< Agent< TSeq > > &other\_population, std::vector< Entity< TSeq > > &other\_entities, Model< TSeq > \*other\_model, bool &other\_directed) const
- void clone\_population (const Model < TSeq > &other\_model)

# 14.21.1 Detailed Description

```
template<typename TSeq> class epiworld::Model< TSeq >
```

Core class of epiworld.

The model class provides the wrapper that puts together Agent, Virus, and Tools.

# **Template Parameters**

TSeq	Type of sequence. In principle, users can build models in which virus and human sequence is	
	represented as numeric vectors (if needed.)	

# 14.21.2 Member Function Documentation

# 14.21.2.1 add\_globalevent()

Set a global action.

## **Parameters**

fun	A function to be called on the prescribed date	
name	Name of the action.	
date	Integer indicating when the function is called (see details)	

When date is less than zero, then the function is called at the end of every day. Otherwise, the function will be called only at the end of the indicated date.

# 14.21.2.2 clone\_ptr()

```
template<typename TSeq >
Model< TSeq > * Model< TSeq >::clone_ptr [inline], [protected], [virtual]
```

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

## **Parameters**

сору

# 14.21.2.3 events\_add()

# Construct a new Event object.

## **Parameters**

agent_	Agent over which the action will be called
virus_	Virus pointer included in the action
tool_	Tool pointer included in the action
entity_	Entity pointer included in the action
new_←	New state of the agent
state_	
call_	Function the action will call
queue_	Change in the queue
idx_←	Location of agent in object.
agent_	
idx_←	Location of object in agent.
object_	

# 14.21.2.4 events\_run()

```
template<typename TSeq >
void Model< TSeq >::events_run [inline]
```

Executes the stored action.

#### **Parameters**

model←	Model over which it will be executed.
_	

# 14.21.2.5 load\_agents\_entities\_ties()

Associate agents-entities from a file.

The structure of the file should be two columns separated by space. The first column indexing between 0 and nagents-1, and the second column between 0 and nentities - 1.

#### **Parameters**

fn	Path to the file.
skip	How many rows to skip.

### 14.21.2.6 reset()

```
template<typename TSeq >
void Model< TSeq >::reset [inline], [virtual]
```

Reset the model.

Resetting the model will:

- · clear the database
- restore the population (if set\_backup() was called before)
- · re-distribute tools
- · re-distribute viruses
- · set the date to 0

# 14.21.2.7 run\_multiple()

## **Parameters**

ndavs	Multiple runs of the simulation

# 14.21.2.8 set\_agents\_data()

Set the agents data object.

The data should be an array with the data stored in a column major order, i.e., by column.

## **Parameters**

data⊷	Pointer to the first element of an array of size size() *	
_	ncols	
ncols⊷	Number of features included in the data.	
_		

# 14.21.2.9 set\_name()

```
template<typename TSeq >
void Model< TSeq >::set_name (
 std::string name) [inline]
```

Set the name object.

#### **Parameters**

name

# 14.21.2.10 write\_data()

```
std::string fn_total_hist,
std::string fn_transmission,
std::string fn_transition,
std::string fn_reproductive_number,
std::string fn_generation_time) const [inline]
```

Wrapper of DataBase::write\_data

#### **Parameters**

fn_virus_info	Filename. Information about the virus.
fn_virus_hist	Filename. History of the virus.
fn_tool_info	Filename. Information about the tool.
fn_tool_hist	Filename. History of the tool.
fn_total_hist	Filename. Aggregated history (state)
fn_transmission	Filename. Transmission history.
fn_transition	Filename. Markov transition history.
fn_reproductive_number	Filename. Case by case reproductive number

# 14.21.3 Member Data Documentation

# 14.21.3.1 initial\_states\_fun

Function to distribute states. Goes along with the function

# 14.21.3.2 rbinomd

## 14.21.3.3 rexpd

# 14.21.3.4 rgammad

```
template<typename TSeq >
std::gamma_distribution epiworld::Model< TSeq >::rgammad [protected]
Initial value:
 std::gamma_distribution<>()
14.21.3.5 rlognormald
template<typename TSeq >
std::lognormal_distribution epiworld::Model< TSeq >::rlognormald [protected]
Initial value:
 std::lognormal_distribution<>()
14.21.3.6 rnormd
template<typename TSeq >
std::normal_distribution epiworld::Model< TSeq >::rnormd [protected]
Initial value:
 std::normal_distribution<>(0.0)
14.21.3.7 runifd
{\tt template}{<}{\tt typename}~{\tt TSeq}~{>}
std::uniform_real_distribution epiworld::Model< TSeq >::runifd [protected]
Initial value:
 std::uniform_real_distribution<> (0.0, 1.0)
14.21.3.8 time_elapsed
template<typename TSeq >
std::chrono::duration<epiworld_double,std::micro> epiworld::Model< TSeq >::time_elapsed [protected]
Initial value:
```

The documentation for this class was generated from the following file:

std::chrono::duration<epiworld\_double,std::micro>::zero()

· epiworld.hpp

# 14.22 Model < TSeq > Class Template Reference

Core class of epiworld.

#include <model-bones.hpp>

Collaboration diagram for Model < TSeq >:



# **Public Member Functions**

- DataBase < TSeq > & get\_db ()
- epiworld\_double & operator() (std::string pname)
- size\_t size () const
- void load\_agents\_entities\_ties (std::string fn, int skip)

Associate agents-entities from a file.

• size\_t get\_n\_viruses () const

Number of viruses in the model.

• size\_t get\_n\_tools () const

Number of tools in the model.

- epiworld\_fast\_uint get\_ndays () const
- epiworld\_fast\_uint **get\_n\_replicates** () const
- void set\_ndays (epiworld\_fast\_uint ndays)
- bool get\_verbose () const
- Model < TSeq > & verbose\_off ()
- Model < TSeq > & verbose\_on ()
- · int today () const

The current time of the model.

void write\_data (std::string fn\_virus\_info, std::string fn\_virus\_hist, std::string fn\_tool\_info, std::string fn\_tool\_hist, std::string fn\_transmission, std::string fn\_transmiss

Wrapper of DataBase::write\_data

- std::map< std::string, epiworld\_double > & params ()
- · virtual void reset ()

Reset the model.

- const Model < TSeq > & print (bool lite=false) const
- Model < TSeq > && clone () const
- void **get\_elapsed** (std::string unit="auto", epiworld\_double \*last\_elapsed=nullptr, epiworld\_double \*total\_
   elapsed=nullptr, std::string \*unit\_abbr=nullptr, bool print=true) const

void add\_globalevent (std::function< void(Model< TSeq > \*)> fun, std::string name="A global action", int date=-99)

Set a global action.

- void add\_globalevent (GlobalEvent < TSeq > action)
- GlobalEvent < TSeq > & get\_globalevent (std::string name)

Retrieve a global action by name.

GlobalEvent < TSeq > & get\_globalevent (size\_t i)

Retrieve a global action by index.

• void rm\_globalevent (std::string name)

Remove a global action by name.

• void rm\_globalevent (size\_t i)

Remove a global action by index.

- void run\_globalevents ()
- void clear state set ()
- const std::vector< VirusPtr< TSeq > > & get\_viruses () const
- const std::vector< epiworld double > & get\_prevalence\_virus () const
- const std::vector< bool > & get\_prevalence\_virus\_as\_proportion () const
- const std::vector< ToolPtr< TSeq > > & get\_tools () const
- Virus < TSeq > & get\_virus (size t id)
- Tool < TSeq > & get\_tool (size\_t id)
- void set agents data (double \*data , size t ncols )

Set the agents data object.

- double \* get agents data ()
- · size\_t get\_agents\_data\_ncols () const
- void set\_name (std::string name)

Set the name object.

- std::string **get\_name** () const
- bool operator== (const Model < TSeq > &other) const
- bool operator!= (const Model < TSeq > & other) const
- void events\_run ()

Executes the stored action.

### Set the backup object

backup can be used to restore the entire object after a run. This can be useful if the user wishes to have individuals start with the same network from the beginning.

void set\_backup ()

## Random number generation

## **Parameters**

eng	Random number generator
s	Seed

- void set rand engine (std::mt19937 &eng)
- std::mt19937 & get\_rand\_endgine ()
- void seed (size\_t s)
- void set\_rand\_norm (epiworld\_double mean, epiworld\_double sd)
- void **set\_rand\_unif** (epiworld\_double a, epiworld\_double b)
- void set\_rand\_exp (epiworld\_double lambda)
- void **set\_rand\_gamma** (epiworld\_double alpha, epiworld\_double beta)

- void set\_rand\_lognormal (epiworld\_double mean, epiworld\_double shape)
- void set rand binom (int n, epiworld double p)
- epiworld\_double runif ()
- epiworld\_double runif (epiworld\_double a, epiworld\_double b)
- epiworld double rnorm ()
- epiworld\_double rnorm (epiworld\_double mean, epiworld\_double sd)
- epiworld double rgamma ()
- epiworld double **rgamma** (epiworld double alpha, epiworld double beta)
- epiworld double rexp ()
- epiworld double rexp (epiworld double lambda)
- epiworld\_double rlognormal ()
- epiworld\_double **rlognormal** (epiworld\_double mean, epiworld\_double shape)
- int rbinom ()
- int **rbinom** (int n, epiworld\_double p)

## Add Virus/Tool to the model

This is done before the model has been initialized.

#### **Parameters**

٧	Virus to be added
t	Tool to be added
preval Initial prevalence (initial state.) It can be specified as a proportion (between zero and one,) integer indicating number of individuals.	

- void add\_virus (Virus < TSeq > &v, epiworld\_double preval)
- void add\_virus\_n (Virus < TSeq > &v, epiworld fast uint preval)
- void add\_virus\_fun (Virus< TSeq > &v, VirusToAgentFun< TSeq > fun)
- void add\_tool (Tool < TSeq > &t, epiworld\_double preval)
- void add tool n (Tool < TSeq > &t, epiworld fast uint preval)
- void add\_tool\_fun (Tool< TSeq > &t, ToolToAgentFun< TSeq > fun)
- void add\_entity (Entity < TSeq > e)
- void rm\_virus (size\_t virus\_pos)
- · void rm tool (size t tool pos)
- void rm\_entity (size\_t entity\_pos)

## Accessing population of the model

# **Parameters**

fn	std::string Filename of the edgelist file.
skip	int Number of lines to skip in fn.
directed	bool Whether the graph is directed or not.
size	Size of the network.
al	AdjList to read into the model.

- void agents\_from\_adjlist (std::string fn, int size, int skip=0, bool directed=false)
- void agents\_from\_edgelist (const std::vector< int > &source, const std::vector< int > &target, int size, bool directed)
- void agents from adjlist (AdjList al)
- · bool is\_directed () const
- std::vector< Agent< TSeq > > & get\_agents ()

Returns a reference to the vector of agents.

• std::vector< epiworld\_fast\_uint > get\_agents\_states () const

Returns a vector with the states of the agents.

- std::vector< Viruses\_const< TSeq >> get\_agents\_viruses () const Returns a const vector with the viruses of the agents.
- std::vector < Viruses < TSeq > > get\_agents\_viruses ()
  - Returns a vector with the viruses of the agents.
- std::vector< Entity< TSeq > > & get\_entities ()
- Model < TSeq > & agents\_smallworld (epiworld\_fast\_uint n=1000, epiworld\_fast\_uint k=5, bool d=false, epiworld\_double p=.01)
- void agents empty graph (epiworld fast uint n=1000)

#### Functions to run the model

#### **Parameters**

seed	Seed to be used for Pseudo-RNG.
ndays	Number of days (steps) of the simulation.
fun	In the case of run_multiple, a function that is called after each experiment.

- void update state ()
- void mutate virus ()
- void next ()
- virtual Model < TSeq > & run (epiworld\_fast\_uint ndays, int seed=-1)
   Runs the simulation (after initialization)
- void run\_multiple (epiworld\_fast\_uint ndays, epiworld\_fast\_uint nexperiments, int seed\_=-1, std::function
   void(size\_t, Model< TSeq > \*)> fun=make\_save\_run< TSeq >(), bool reset=true, bool verbose=true, int nthreads=1)

# Rewire the network preserving the degree sequence.

This implementation assumes an undirected network, thus if  $\{(i,j), (k,l)\} \rightarrow \{(i,l), (k,j)\}$ , the reciprocal is also true, i.e.,  $\{(j,i), (l,k)\} \rightarrow \{(j,k), (l,i)\}$ .

## Parameters

proportion	Proportion of ties to be rewired.
proportion	Troportion of the borrowned.

### Returns

A rewired version of the network.

- void set\_rewire\_fun (std::function< void(std::vector< Agent< TSeq >> \*, Model< TSeq > \*, epiworld\_double)> fun)
- void set\_rewire\_prop (epiworld\_double prop)
- epiworld\_double get\_rewire\_prop () const
- void rewire ()

## Export the network data in edgelist form

## **Parameters**

fn	std::string. File name.
source	Integer vector
target	Integer vector

When passing the source and target, the function will write the edgelist on those.

- · void write\_edgelist (std::string fn) const
- void write\_edgelist (std::vector< int > &source, std::vector< int > &target) const

## Manage state (states) in the model

The functions get\_state return the current values for the states included in the model.

#### **Parameters**

```
lab std::string Name of the state.
```

#### Returns

add\_state\* returns nothing.

get\_state\_\* returns a vector of pairs with the states and their labels.

- void add\_state (std::string lab, UpdateFun < TSeq > fun=nullptr)
- const std::vector< std::string > & get\_states () const
- const std::vector< UpdateFun< TSeq > > & get\_state\_fun () const
- · void print\_state\_codes () const

#### **Initial states**

These functions are called before the simulation starts.

#### **Parameters**

proportions← -	Vector of proportions for each state.
queue_	Vector of queue for each state.

virtual Model < TSeq > & initial\_states (std::vector < double >, std::vector < int >)

# Setting and accessing parameters from the model

Tools can incorporate parameters included in the model. Internally, parameters in the tool are stored as pointers to an std::map<> of parameters in the model. Using the epiworld\_fast\_uint method directly fetches the parameters in the order these were added to the tool. Accessing parameters via the std::string method involves searching the parameter directly in the std::map<> member of the model (so it is not recommended.)

The par() function members are aliases for get\_param().

In the case of the function read\_params, users can pass a file listing parameters to be included in the model. Each line in the file should have the following structure:

```
[name of parameter 1]: [value in double]
[name of parameter 2]: [value in double]
...
```

The only condition for parameter names is that these do not include a colon.

## **Parameters**

initial_val	
pname	Name of the parameter to add or to fetch
fn	Path to the file containing parameters

#### Returns

The current value of the parameter in the model.

- epiworld\_double add\_param (epiworld\_double initial\_val, std::string pname)
- void read\_params (std::string fn)
- epiworld\_double **get\_param** (epiworld\_fast\_uint k)
- epiworld\_double **get\_param** (std::string pname)
- void **set\_param** (std::string pname, epiworld\_double val)
- epiworld double par (std::string pname)

### Set the user data object

#### **Parameters**

names

string vector with the names of the variables.

- void set\_user\_data (std::vector< std::string > names)
- void add user data (epiworld fast uint j, epiworld double x)
- void add\_user\_data (std::vector< epiworld\_double > x)
- UserData< TSeq > & get\_user\_data ()

## Queuing system

When queueing is on, the model will keep track of which agents are either in risk of exposure or exposed. This then is used at each step to act only on the aforementioned agents.

• void queuing\_on ()

Activates the queuing system (default.)

Model < TSeq > & queuing\_off ()

Deactivates the queuing system.

• bool is\_queuing\_on () const

Query if the queuing system is on.

Queue < TSeq > & get\_queue ()

Retrieve the Queue object.

# Get the susceptibility reduction object

## **Parameters**



## Returns

epiworld\_double

- void set\_susceptibility\_reduction\_mixer (MixerFun< TSeq > fun)
- void set\_transmission\_reduction\_mixer (MixerFun < TSeq > fun)
- void set\_recovery\_enhancer\_mixer (MixerFun < TSeq > fun)
- void set\_death\_reduction\_mixer (MixerFun < TSeq > fun)

# **Protected Member Functions**

- void dist\_tools()
- void dist\_virus ()

- void chrono\_start ()
- void chrono\_end ()

Construct a new Event object.

### **Protected Attributes**

```
std::string name = ""
 Name of the model.

 DataBase< TSeq > db = DataBase<TSeq>(*this)

std::vector< Agent< TSeq > > population = {}
• bool using backup = true

 std::vector< Agent< TSeq > > population_backup = {}

 bool directed = false

• std::vector < VirusPtr < TSeq > > viruses = {}
• std::vector< epiworld double > prevalence virus = {}
 Initial prevalence_virus of each virus.

 std::vector< bool > prevalence virus as proportion = {}

 std::vector< VirusToAgentFun< TSeq >> viruses_dist_funs = {}

std::vector< ToolPtr< TSeq >> tools = {}
std::vector< epiworld double > prevalence tool = {}
std::vector< bool > prevalence_tool_as_proportion = {}

 std::vector< ToolToAgentFun< TSeq > > tools dist funs = {}

std::vector< Entity< TSeq >> entities = {}

 std::vector< Entity< TSeq >> entities_backup = {}

std::mt19937 engine
· std::uniform real distribution runifd
· std::normal distribution rnormd

 std::gamma_distribution rgammad

 std::lognormal_distribution rlognormald

 std::exponential distribution rexpd

• std::binomial_distribution rbinomd

 std::function< void(std::vector< Agent< TSeq >> *, Model< TSeq > *, epiworld double)> rewire fun

• epiworld_double rewire_prop = 0.0

 std::map< std::string, epiworld_double > parameters

epiworld_fast_uint ndays = 0
· Progress pb

 std::vector< UpdateFun< TSeq > > state fun = {}

 Functions to update states.
std::vector< std::string > states_labels = {}
 Labels of the states.

 std::function< void(Model< TSeq > *)> initial_states_fun

• epiworld fast uint nstates = 0u
• bool verbose = true
• int current date = 0

 std::chrono::time_point< std::chrono::steady_clock > time_start

 std::chrono::time_point< std::chrono::steady_clock > time_end

• std::chrono::duration< epiworld double, std::micro > time elapsed
• epiworld_fast_uint n_replicates = 0u

 std::vector< GlobalEvent< TSeq >> globalevents
```

Queue < TSeq > queue

- bool use\_queuing = true
- std::vector< Event< TSeq > > events = {}

Variables used to keep track of the events to be made regarding viruses.

• epiworld\_fast\_uint nactions = 0u

## Auxiliary variables for AgentsSample<TSeq> iterators

These variables+objects are used by the AgentsSample<TSeq> class for building efficient iterators over agents. The idea is to reduce the memory allocation, so only during the first call of AgentsSample<TSeq>::Agents← Sample(Model<TSeq>) these vectors are allocated.

- std::vector < Agent < TSeq > \* > sampled\_population
- size\_t sampled\_population\_n = 0u
- std::vector< size\_t > population\_left
- size\_t population\_left\_n = 0u

# **Agents features**

Optionally, a model can include an external data source pointing to agents information. The data can then be access through the Agent: operator() method.

- double \* agents\_data = nullptr
- size\_t agents\_data\_ncols = 0u

#### **Friends**

- class Agent < TSeq >
- class AgentsSample < TSeq >
- class DataBase< TSeq >
- class Queue < TSeq >

## **Tool Mixers**

These functions combine the effects tools have to deliver a single effect. For example, wearing a mask, been vaccinated, and the immune system combine together to jointly reduce the susceptibility for a given virus.

- MixerFun< TSeq > susceptibility\_reduction\_mixer = susceptibility\_reduction\_mixer\_default<TSeq>
- MixerFun< TSeq > transmission\_reduction\_mixer = transmission\_reduction\_mixer\_default<TSeq>
- MixerFun< TSeq > recovery enhancer mixer = recovery enhancer mixer default<TSeq>
- MixerFun< TSeq > death\_reduction\_mixer = death\_reduction\_mixer\_default<TSeq>
- std::vector< epiworld double > array\_double\_tmp
- std::vector< Virus< TSeq > \* > array\_virus\_tmp
- virtual Model < TSeq > \* clone\_ptr ()

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

- Model ()
- Model (const Model < TSeq > &m)
- Model (Model < TSeq > &m)
- Model (Model < TSeq > &&m)
- Model < TSeq > & operator= (const Model < TSeq > &m)
- virtual ∼Model ()
- void clone\_population (std::vector< Agent< TSeq > > &other\_population, std::vector< Entity< TSeq > > &other\_entities, Model< TSeq > \*other\_model, bool &other\_directed) const
- void clone\_population (const Model < TSeq > &other\_model)

#### 14.22.1 Detailed Description

```
template<typename TSeq> class Model< TSeq>
```

Core class of epiworld.

The model class provides the wrapper that puts together Agent, Virus, and Tools.

#### **Template Parameters**

TSeq	Type of sequence. In principle, users can build models in which virus and human sequence is
	represented as numeric vectors (if needed.)

#### 14.22.2 Member Function Documentation

#### 14.22.2.1 add\_globalevent()

```
template<typename TSeq >
void Model< TSeq >::add_globalevent (
 std::function< void(Model< TSeq > *) > fun,
 std::string name = "A global action",
 int date = -99) [inline]
```

Set a global action.

#### **Parameters**

fun	A function to be called on the prescribed date
name	Name of the action.
date	Integer indicating when the function is called (see details)

When date is less than zero, then the function is called at the end of every day. Otherwise, the function will be called only at the end of the indicated date.

#### 14.22.2.2 clone\_ptr()

```
template<typename TSeq >
Model< TSeq > * Model< TSeq >::clone_ptr [inline], [protected], [virtual]
```

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

#### **Parameters**

сору

#### 14.22.2.3 events\_add()

Construct a new Event object.

#### **Parameters**

agent_	Agent over which the action will be called
virus_	Virus pointer included in the action
tool_	Tool pointer included in the action
entity_	Entity pointer included in the action
new_←	New state of the agent
state_	
call_	Function the action will call
queue_	Change in the queue
idx_←	Location of agent in object.
agent_	
idx_←	Location of object in agent.
object_	

#### 14.22.2.4 events\_run()

```
template<typename TSeq >
void Model< TSeq >::events_run [inline]
```

Executes the stored action.

#### **Parameters**

model←	Model over which it will be executed.

#### 14.22.2.5 load\_agents\_entities\_ties()

Associate agents-entities from a file.

The structure of the file should be two columns separated by space. The first column indexing between 0 and nagents-1, and the second column between 0 and nentities - 1.

#### **Parameters**

fn	Path to the file.
skip	How many rows to skip.

#### 14.22.2.6 reset()

```
template<typename TSeq >
void Model< TSeq >::reset [inline], [virtual]
```

Reset the model.

Resetting the model will:

- · clear the database
- restore the population (if set\_backup() was called before)
- · re-distribute tools
- · re-distribute viruses
- set the date to 0

#### 14.22.2.7 run\_multiple()

#### **Parameters**

ndays	Multiple runs of the simulation

#### 14.22.2.8 set\_agents\_data()

Set the agents data object.

The data should be an array with the data stored in a column major order, i.e., by column.

#### **Parameters**

	data⇔	Pointer to the first element of an array of size size () *
	_	ncols
Ì	ncols⇔	Number of features included in the data.
- 1		

#### 14.22.2.9 set\_name()

```
template<typename TSeq >
void Model< TSeq >::set_name (
 std::string name) [inline]
```

Set the name object.

#### **Parameters**

name

#### 14.22.2.10 write\_data()

```
std::string fn_total_hist,
std::string fn_transmission,
std::string fn_transition,
std::string fn_reproductive_number,
std::string fn_generation_time) const [inline]
```

Wrapper of DataBase::write\_data

#### **Parameters**

fn_virus_info	Filename. Information about the virus.
fn_virus_hist	Filename. History of the virus.
fn_tool_info	Filename. Information about the tool.
fn_tool_hist	Filename. History of the tool.
fn_total_hist	Filename. Aggregated history (state)
fn_transmission	Filename. Transmission history.
fn_transition	Filename. Markov transition history.
fn_reproductive_number	Filename. Case by case reproductive number

#### 14.22.3 Member Data Documentation

#### 14.22.3.1 initial\_states\_fun

Function to distribute states. Goes along with the function

### 14.22.3.2 rbinomd

#### 14.22.3.3 rexpd

```
template<typename TSeq >
std::exponential_distribution Model< TSeq >::rexpd [protected]

Initial value:
=
 std::exponential_distribution<>()
```

#### 14.22.3.4 rgammad

```
template<typename TSeq >
std::gamma_distribution Model< TSeq >::rgammad [protected]
Initial value:
 std::gamma_distribution<>()
14.22.3.5 rlognormald
template<typename TSeq >
std::lognormal_distribution Model< TSeq >::rlognormald [protected]
Initial value:
 std::lognormal_distribution<>()
14.22.3.6 rnormd
template<typename TSeq >
std::normal_distribution Model< TSeq >::rnormd [protected]
Initial value:
 std::normal_distribution<>(0.0)
14.22.3.7 runifd
template<typename TSeq >
std::uniform_real_distribution Model< TSeq >::runifd [protected]
Initial value:
 std::uniform_real_distribution<> (0.0, 1.0)
14.22.3.8 time_elapsed
{\tt template}{<}{\tt typename}~{\tt TSeq}~{>}
std::chrono::duration<epiworld_double,std::micro> Model< TSeq >::time_elapsed [protected]
Initial value:
 std::chrono::duration<epiworld_double,std::micro>::zero()
```

The documentation for this class was generated from the following files:

- include/epiworld/agent-bones.hpp
- · include/epiworld/model-bones.hpp
- include/epiworld/model-meat-print.hpp
- include/epiworld/model-meat.hpp

# 14.23 epiworld::epimodels::ModelDiffNet< TSeq > Class Template Reference

Template for a Network Diffusion Model.

#include <epiworld.hpp>

Inheritance diagram for epiworld::epimodels::ModelDiffNet< TSeq >:



Collaboration diagram for epiworld::epimodels::ModelDiffNet< TSeq >:



#### **Public Member Functions**

- ModelDiffNet (ModelDiffNet < TSeq > &model, std::string innovation\_name, epiworld\_double prevalence, epiworld\_double prob\_adopt, bool normalize\_exposure=true, double \*agents\_data=nullptr, size\_t data\_
   ncols=0u, std::vector < size\_t > data\_cols={}, std::vector < double > params={})
- ModelDiffNet (std::string innovation\_name, epiworld\_double prevalence, epiworld\_double prob\_adopt, bool normalize\_exposure=true, double \*agents\_data=nullptr, size\_t data\_ncols=0u, std::vector< size\_t > data
  \_cols={}, std::vector< double > params={})

#### **Public Attributes**

- bool normalize\_exposure = true
- std::vector< size\_t > data\_cols
- std::vector< double > params

## **Static Public Attributes**

- static const int **NONADOPTER** = 0
- static const int ADOPTER = 1

#### **Additional Inherited Members**

## 14.23.1 Detailed Description

```
template<typename TSeq = int>
class epiworld::epimodels::ModelDiffNet< TSeq >
```

Template for a Network Diffusion Model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
initial_prevalence	epiworld_double Initial prevalence
initial_efficacy	epiworld_double Initial susceptibility_reduction of the immune system
initial_recovery	epiworld_double Initial recovery rate of the immune system

The documentation for this class was generated from the following file:

· epiworld.hpp

# 14.24 ModelDiffNet< TSeq > Class Template Reference

Template for a Network Diffusion Model.

```
#include <diffnet.hpp>
```

Inheritance diagram for ModelDiffNet< TSeq >:



Collaboration diagram for ModelDiffNet< TSeq >:



#### **Public Member Functions**

- ModelDiffNet (ModelDiffNet< TSeq > &model, std::string innovation\_name, epiworld\_double prevalence, epiworld\_double prob\_adopt, bool normalize\_exposure=true, double \*agents\_data=nullptr, size\_t data\_cols=0u, std::vector< size\_t > dat
- ModelDiffNet (std::string innovation\_name, epiworld\_double prevalence, epiworld\_double prob\_adopt, bool normalize\_exposure=true, double \*agents\_data=nullptr, size\_t data\_ncols=0u, std::vector< size\_t > data← \_cols={}, std::vector< double > params={})

#### **Public Attributes**

- bool normalize\_exposure = true
- std::vector< size\_t > data\_cols
- std::vector< double > params

#### **Static Public Attributes**

- static const int NONADOPTER = 0
- static const int ADOPTER = 1

#### **Additional Inherited Members**

#### 14.24.1 Detailed Description

template<typename TSeq = int> class ModelDiffNet< TSeq >

Template for a Network Diffusion Model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
initial_prevalence	epiworld_double Initial prevalence
initial_efficacy	epiworld_double Initial susceptibility_reduction of the immune system
initial_recovery	epiworld_double Initial recovery rate of the immune system

The documentation for this class was generated from the following file:

• include/epiworld/models/diffnet.hpp

# 14.25 epiworld::epimodels::ModelSEIR< TSeq > Class Template Reference

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

#include <epiworld.hpp>

Inheritance diagram for epiworld::epimodels::ModelSEIR< TSeq >:



Collaboration diagram for epiworld::epimodels::ModelSEIR< TSeq >:



#### **Public Member Functions**

- ModelSEIR (ModelSEIR< TSeq > &model, std::string vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld\_double avg\_incubation\_days, epiworld\_double recovery\_rate)
- ModelSEIR (std::string vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld
  double avg incubation days, epiworld double recovery rate)
- ModelSEIR< TSeq > & initial\_states (std::vector< double > proportions\_, std::vector< int > queue\_={})
   Set up the initial states of the model.

#### **Public Attributes**

- epiworld::UpdateFun< TSeq > update\_exposed\_seir
- epiworld::UpdateFun< TSeq > update\_infected\_seir

#### **Static Public Attributes**

- static const int **SUSCEPTIBLE** = 0
- static const int EXPOSED = 1
- static const int INFECTED = 2
- static const int REMOVED = 3

### **Additional Inherited Members**

#### 14.25.1 Detailed Description

template<typename TSeq = int>
class epiworld::epimodels::ModelSEIR< TSeq >

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	epiworld_double Initial prevalence the immune system
transmission_rate	epiworld_double Transmission rate of the virus
avg_incubation_days	epiworld_double Average incubation days of the virus.
recovery_rate	epiworld_double Recovery rate of the virus.

#### 14.25.2 Member Function Documentation

#### 14.25.2.1 initial\_states()

Set up the initial states of the model.

#### **Parameters**

proportions⇔	Double vector with the following values:
_	0: Proportion of non-infected agents who are removed.
	• 1: Proportion of exposed agents to be set as infected.

Reimplemented from epiworld::Model < int >.

# 14.25.3 Member Data Documentation

#### 14.25.3.1 update\_exposed\_seir

#### 14.25.3.2 update\_infected\_seir

The documentation for this class was generated from the following file:

· epiworld.hpp

# 14.26 ModelSEIR < TSeq > Class Template Reference

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

```
#include <seir.hpp>
```

Inheritance diagram for ModelSEIR < TSeq >:



Collaboration diagram for ModelSEIR< TSeq >:



#### **Public Member Functions**

- ModelSEIR (ModelSEIR< TSeq > &model, std::string vname, epiworld\_double prevalence, epiworld\_
   double transmission\_rate, epiworld\_double avg\_incubation\_days, epiworld\_double recovery\_rate)
- **ModelSEIR** (std::string vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld double avg\_incubation\_days, epiworld\_double recovery\_rate)
- ModelSEIR< TSeq > & initial\_states (std::vector< double > proportions\_, std::vector< int > queue\_={})

  Set up the initial states of the model.

#### **Public Attributes**

- epiworld::UpdateFun< TSeq > update\_exposed\_seir
- epiworld::UpdateFun< TSeq > update\_infected\_seir

#### **Static Public Attributes**

- static const int SUSCEPTIBLE = 0
- static const int **EXPOSED** = 1
- static const int INFECTED = 2
- static const int **REMOVED** = 3

#### **Additional Inherited Members**

#### 14.26.1 Detailed Description

```
template < typename TSeq = int > class ModelSEIR < TSeq >
```

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	epiworld_double Initial prevalence the immune system
transmission_rate	epiworld_double Transmission rate of the virus
avg_incubation_days	epiworld_double Average incubation days of the virus.
recovery_rate	epiworld_double Recovery rate of the virus.

#### 14.26.2 Member Function Documentation

#### 14.26.2.1 initial\_states()

```
template<typename TSeq >
ModelSEIR< TSeq > & ModelSEIR< TSeq >::initial_states (
```

```
std::vector< double > proportions_,
std::vector< int > queue_ = {}) [inline], [virtual]
```

Set up the initial states of the model.

#### **Parameters**

# proportions Double vector with the following values: 0: Proportion of non-infected agents who are removed. 1: Proportion of exposed agents to be set as infected.

Reimplemented from epiworld::Model < int >.

#### 14.26.3 Member Data Documentation

#### 14.26.3.1 update exposed seir

#### 14.26.3.2 update\_infected\_seir

The documentation for this class was generated from the following file:

• include/epiworld/models/seir.hpp

# 14.27 epiworld::epimodels::ModelSEIRCONN< TSeq > Class Template Reference

Inheritance diagram for epiworld::epimodels::ModelSEIRCONN < TSeq >:



Collaboration diagram for epiworld::epimodels::ModelSEIRCONN< TSeq >:



#### **Public Member Functions**

ModelSEIRCONN (ModelSEIRCONN < TSeq > &model, std::string vname, epiworld\_fast\_uint n, epiworld
 —double prevalence, epiworld\_double contact\_rate, epiworld\_double transmission\_rate, epiworld\_double avg\_incubation\_days, epiworld\_double recovery\_rate)

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

- ModelSEIRCONN (std::string vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_double contact\_rate, epiworld\_double transmission\_rate, epiworld\_double avg\_incubation\_days, epiworld\_double recovery\_rate)
- ModelSEIRCONN< TSeq > & run (epiworld\_fast\_uint ndays, int seed=-1)

Runs the simulation (after initialization)

• void reset ()

Reset the model.

```
 Model < TSeq > * clone_ptr ()
```

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

ModelSEIRCONN< TSeq > & initial\_states (std::vector< double > proportions\_, std::vector< int > queue ← \_={})

Set the initial states of the model.

#### **Static Public Attributes**

- static const int **SUSCEPTIBLE** = 0
- static const int **EXPOSED** = 1
- static const int INFECTED = 2
- static const int RECOVERED = 3

#### **Additional Inherited Members**

#### 14.27.1 Constructor & Destructor Documentation

#### 14.27.1.1 ModelSEIRCONN()

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	Initial prevalence (proportion)
contact_rate	Average number of contacts (interactions) per step.
transmission_rate	Probability of transmission
recovery_rate	Probability of recovery

#### 14.27.2 Member Function Documentation

#### 14.27.2.1 clone\_ptr()

```
template<typename TSeq >
Model< TSeq > * ModelSEIRCONN< TSeq >::clone_ptr [inline], [virtual]
```

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

#### **Parameters**

```
сору
```

Reimplemented from epiworld::Model < EPI\_DEFAULT\_TSEQ >.

#### 14.27.2.2 initial\_states()

Set the initial states of the model.

#### **Parameters**

proportions↔	Double vector with a single element:
_	The proportion of non-infected individuals who have recovered.

 $\label{eq:local_problem} \mbox{Reimplemented from epiworld::} \mbox{Model} < \mbox{EPI\_DEFAULT\_TSEQ} >.$ 

#### 14.27.2.3 reset()

```
template<typename TSeq >
void ModelSEIRCONN< TSeq >::reset [inline], [virtual]
```

Reset the model.

Resetting the model will:

- · clear the database
- restore the population (if set\_backup() was called before)
- · re-distribute tools
- · re-distribute viruses
- set the date to 0

Reimplemented from epiworld::Model < EPI\_DEFAULT\_TSEQ >.

The documentation for this class was generated from the following file:

· epiworld.hpp

# 14.28 ModelSEIRCONN< TSeq > Class Template Reference

Inheritance diagram for ModelSEIRCONN< TSeq >:



Collaboration diagram for ModelSEIRCONN < TSeq >:



#### **Public Member Functions**

ModelSEIRCONN (ModelSEIRCONN < TSeq > &model, std::string vname, epiworld\_fast\_uint n, epiworld
 —double prevalence, epiworld\_double contact\_rate, epiworld\_double transmission\_rate, epiworld\_double
 avg\_incubation\_days, epiworld\_double recovery\_rate)

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

- **ModelSEIRCONN** (std::string vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_double contact\_rate, epiworld\_double transmission\_rate, epiworld\_double avg\_incubation\_days, epiworld\_double recovery\_rate)
- ModelSEIRCONN
   TSeq > & run (epiworld\_fast\_uint ndays, int seed=-1)

Runs the simulation (after initialization)

· void reset ()

Reset the model.

Model < TSeq > \* clone\_ptr ()

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

ModelSEIRCONN< TSeq > & initial\_states (std::vector< double > proportions\_, std::vector< int > queue ← \_={})

Set the initial states of the model.

#### **Static Public Attributes**

- static const int **SUSCEPTIBLE** = 0
- static const int **EXPOSED** = 1
- static const int INFECTED = 2
- static const int **RECOVERED** = 3

#### **Additional Inherited Members**

#### 14.28.1 Constructor & Destructor Documentation

#### 14.28.1.1 ModelSEIRCONN()

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	Initial prevalence (proportion)
contact_rate	Average number of contacts (interactions) per step.
transmission_rate	Probability of transmission
recovery_rate	Probability of recovery

# 14.28.2 Member Function Documentation

### 14.28.2.1 clone\_ptr()

```
template<typename TSeq >
Model< TSeq > * ModelSEIRCONN< TSeq >::clone_ptr [inline], [virtual]
```

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

#### **Parameters**

сору

Reimplemented from epiworld::Model < EPI\_DEFAULT\_TSEQ >.

#### 14.28.2.2 initial\_states()

Set the initial states of the model.

#### **Parameters**

proportions↔	Double vector with a single element:
_	The proportion of non-infected individuals who have recovered.

Reimplemented from epiworld::Model < EPI\_DEFAULT\_TSEQ >.

#### 14.28.2.3 reset()

```
template<typename TSeq >
void ModelSEIRCONN< TSeq >::reset [inline], [virtual]
```

Reset the model.

Resetting the model will:

- · clear the database
- restore the population (if set\_backup() was called before)
- · re-distribute tools
- · re-distribute viruses
- set the date to 0

Reimplemented from epiworld::Model < EPI\_DEFAULT\_TSEQ >.

The documentation for this class was generated from the following file:

• include/epiworld/models/seirconnected.hpp

# 14.29 ModelSEIRCONNLogit < TSeq > Class Template Reference

Inheritance diagram for ModelSEIRCONNLogit < TSeq >:



Collaboration diagram for ModelSEIRCONNLogit< TSeq >:



#### **Public Member Functions**

ModelSEIRCONNLogit (ModelSEIRCONNLogit < TSeq > &model, std::string vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_double contact\_rate, epiworld\_double transmission\_rate, epiworld\_double avg\_incubation\_days, epiworld\_double recovery\_rate, double \*covars, std::vector< double > logit params)

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

ModelSEIRCONNLogit (std::string vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_
 double contact\_rate, epiworld\_double transmission\_rate, epiworld\_double avg\_incubation\_days, epiworld
 double recovery\_rate double \*covars, std::vector< double > logit\_params)

#### **Public Attributes**

- std::vector< epiworld::Agent<> \* > tracked\_agents\_infected = {}
- std::vector< epiworld::Agent<> \* > tracked agents infected next = {}
- bool tracked\_started = false
- int tracked\_ninfected = 0
- int tracked\_ninfected\_next = 0

#### **Additional Inherited Members**

#### 14.29.1 Constructor & Destructor Documentation

#### 14.29.1.1 ModelSEIRCONNLogit()

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	Initial prevalence (proportion)
contact_rate	Reproductive number (beta)
transmission_rate	Probability of transmission
recovery_rate	Probability of recovery

The documentation for this class was generated from the following file:

• include/epiworld/models/seirconnected logit.hpp

# 14.30 epiworld::epimodels::ModelSEIRD< TSeq > Class Template Reference

Template for a Susceptible-Exposed-Infected-Removed-Deceased (SEIRD) model.

```
#include <epiworld.hpp>
```

Inheritance diagram for epiworld::epimodels::ModelSEIRD< TSeq >:



Collaboration diagram for epiworld::epimodels::ModelSEIRD< TSeq >:



#### **Public Member Functions**

ModelSEIRD (ModelSEIRD < TSeq > &model, std::string vname, epiworld\_double prevalence, epiworld\_
 double transmission\_rate, epiworld\_double avg\_incubation\_days, epiworld\_double recovery\_rate, epiworld
 \_double death\_rate)

Constructor for the SEIRD model.

ModelSEIRD (std::string vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld
 — double avg\_incubation\_days, epiworld\_double recovery\_rate, epiworld\_double death\_rate)

Constructor for the SEIRD model.

• ModelSEIRD< TSeq > & initial\_states (std::vector< double > proportions\_, std::vector< int > queue\_={})

#### **Public Attributes**

- epiworld::UpdateFun< TSeq > update\_exposed\_seir
- epiworld::UpdateFun< TSeq > update\_infected

#### **Static Public Attributes**

- static const int **SUSCEPTIBLE** = 0
- static const int EXPOSED = 1
- static const int INFECTED = 2
- static const int **REMOVED** = 3
- static const int **DECEASED** = 4

#### **Additional Inherited Members**

#### 14.30.1 Detailed Description

```
template<typename TSeq = int>
class epiworld::epimodels::ModelSEIRD< TSeq >
```

Template for a Susceptible-Exposed-Infected-Removed-Deceased (SEIRD) model.

#### 14.30.2 Constructor & Destructor Documentation

#### 14.30.2.1 ModelSEIRD() [1/2]

Constructor for the SEIRD model.

#### **Template Parameters**

TSeq Type of the sequence used in the model.
----------------------------------------------

#### Parameters

model	Reference to the SEIRD model.
vname	Name of the model.
prevalence	Prevalence of the disease.
transmission_rate	Transmission rate of the disease.
avg_incubation_days	Average incubation period of the disease.
recovery_rate	Recovery rate of the disease.
death_rate	Death rate of the disease.

#### 14.30.2.2 ModelSEIRD() [2/2]

```
template<typename TSeq >
ModelSEIRD< TSeq >::ModelSEIRD (
 std::string vname,
 epiworld_double prevalence,
 epiworld_double transmission_rate,
 epiworld_double avg_incubation_days,
 epiworld_double recovery_rate,
 epiworld_double death_rate) [inline]
```

Constructor for the SEIRD model.

#### **Parameters**

vname	Name of the model.
prevalence	Initial prevalence of the disease.
transmission_rate	Transmission rate of the disease.
avg_incubation_days	Average incubation period of the disease.
recovery_rate	Recovery rate of the disease.
death_rate	Death rate of the disease.

#### 14.30.3 Member Data Documentation

#### 14.30.3.1 update\_exposed\_seir

```
template<typename TSeq = int>
epiworld::UpdateFun<TSeq> epiworld::epimodels::ModelSEIRD< TSeq >::update_exposed_seir
```

#### Initial value:

```
= [](
 epiworld::Agent<TSeq> * p,
 epiworld::Model<TSeq> * m
) -> void {
 auto v = p->get_virus();
 if (m->runif() < 1.0/(v->get_incubation(m)))
 p->change_state(m, ModelSEIRD<TSeq>::INFECTED);
 return;
}
```

The documentation for this class was generated from the following file:

· epiworld.hpp

# 14.31 ModelSEIRD < TSeq > Class Template Reference

Template for a Susceptible-Exposed-Infected-Removed-Deceased (SEIRD) model.

#include <seird.hpp>

Inheritance diagram for ModelSEIRD< TSeq >:



Collaboration diagram for ModelSEIRD< TSeq >:



## **Public Member Functions**

ModelSEIRD (ModelSEIRD < TSeq > &model, std::string vname, epiworld\_double prevalence, epiworld\_
 double transmission\_rate, epiworld\_double avg\_incubation\_days, epiworld\_double recovery\_rate, epiworld
 \_double death\_rate)

Constructor for the SEIRD model.

• ModelSEIRD (std::string vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld couble avg\_incubation\_days, epiworld\_double recovery\_rate, epiworld\_double death\_rate)

Constructor for the SEIRD model.

• ModelSEIRD < TSeq > & initial states (std::vector < double > proportions , std::vector < int > queue ={})

# **Public Attributes**

- epiworld::UpdateFun< TSeq > update\_exposed\_seir
- epiworld::UpdateFun< TSeq > update\_infected

#### **Static Public Attributes**

- static const int **SUSCEPTIBLE** = 0
- static const int **EXPOSED** = 1
- static const int **INFECTED** = 2
- static const int **REMOVED** = 3
- static const int **DECEASED** = 4

#### **Additional Inherited Members**

# 14.31.1 Detailed Description

```
template < typename TSeq = int > class ModelSEIRD < TSeq >
```

Template for a Susceptible-Exposed-Infected-Removed-Deceased (SEIRD) model.

#### 14.31.2 Constructor & Destructor Documentation

#### 14.31.2.1 ModelSEIRD() [1/2]

Constructor for the SEIRD model.

#### **Template Parameters**

TSe	p	Type of the sequence used in the model.

#### Parameters

model	Reference to the SEIRD model.
vname	Name of the model.
prevalence	Prevalence of the disease.
transmission_rate	Transmission rate of the disease.
avg_incubation_days	Average incubation period of the disease.
recovery_rate	Recovery rate of the disease.
death_rate	Death rate of the disease.

#### 14.31.2.2 ModelSEIRD() [2/2]

```
template<typename TSeq >
ModelSEIRD< TSeq >::ModelSEIRD (
 std::string vname,
 epiworld_double prevalence,
 epiworld_double transmission_rate,
 epiworld_double avg_incubation_days,
 epiworld_double recovery_rate,
 epiworld_double death_rate) [inline]
```

Constructor for the SEIRD model.

#### **Parameters**

vname	Name of the model.
prevalence	Initial prevalence of the disease.
transmission_rate	Transmission rate of the disease.
avg_incubation_days	Average incubation period of the disease.
recovery_rate	Recovery rate of the disease.
death_rate	Death rate of the disease.

#### 14.31.3 Member Data Documentation

#### 14.31.3.1 update\_exposed\_seir

```
template<typename TSeq = int>
epiworld::UpdateFun<TSeq> ModelSEIRD< TSeq >::update_exposed_seir
```

# Initial value:

```
= [](
 epiworld::Agent<TSeq> * p,
 epiworld::Model<TSeq> * m
) -> void {
 auto v = p->get_virus();
 if (m->runif() < 1.0/(v->get_incubation(m)))
 p->change_state(m, ModelSEIRD<TSeq>::INFECTED);
 return;
}
```

The documentation for this class was generated from the following file:

• include/epiworld/models/seird.hpp

# 14.32 epiworld::epimodels::ModelSEIRDCONN< TSeq > Class Template Reference

Inheritance diagram for epiworld::epimodels::ModelSEIRDCONN < TSeq >:



Collaboration diagram for epiworld::epimodels::ModelSEIRDCONN< TSeq >:



#### **Public Member Functions**

ModelSEIRDCONN (ModelSEIRDCONN< TSeq > &model, std::string vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_double contact\_rate, epiworld\_double transmission\_rate, epiworld\_← double avg\_incubation\_days, epiworld\_double recovery\_rate, epiworld\_double death\_rate)

 $Template\ for\ a\ Susceptible-Exposed-Infected-Removed\ (SEIR)\ model.$ 

- **ModelSEIRDCONN** (std::string vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_double contact\_rate, epiworld\_double transmission\_rate, epiworld\_double avg\_incubation\_days, epiworld\_double recovery rate, epiworld double death rate)
- ModelSEIRDCONN < TSeq > & run (epiworld\_fast\_uint ndays, int seed=-1)

Runs the simulation (after initialization)

• void reset ()

Reset the model.

```
 Model < TSeq > * clone_ptr ()
```

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

ModelSEIRDCONN
 TSeq > & initial\_states (std::vector< double > proportions\_, std::vector< int > queue\_={})

Set up the initial states of the model.

#### **Static Public Attributes**

- static const int **SUSCEPTIBLE** = 0
- static const int **EXPOSED** = 1
- static const int INFECTED = 2
- static const int **REMOVED** = 3
- static const int **DECEASED** = 4

#### **Additional Inherited Members**

#### 14.32.1 Constructor & Destructor Documentation

#### 14.32.1.1 ModelSEIRDCONN()

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	Initial prevalence (proportion)
contact_rate	Average number of contacts (interactions) per step.
transmission_rate	Probability of transmission
recovery_rate	Probability of recovery
death_rate	Probability of death

#### 14.32.2 Member Function Documentation

#### 14.32.2.1 clone\_ptr()

```
template<typename TSeq >
Model< TSeq > * ModelSEIRDCONN< TSeq >::clone_ptr [inline], [virtual]
```

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

#### **Parameters**

сору

Reimplemented from epiworld::Model < EPI\_DEFAULT\_TSEQ >.

#### 14.32.2.2 initial\_states()

Set up the initial states of the model.

#### **Parameters**

proportions → Double vector with the following values:
 0: Proportion of non-infected agents who are removed.
 1: Proportion of exposed agents to be set as infected.

Reimplemented from epiworld::Model < EPI DEFAULT TSEQ >.

#### 14.32.2.3 reset()

```
template<typename TSeq >
void ModelSEIRDCONN< TSeq >::reset [inline], [virtual]
```

Reset the model.

Resetting the model will:

- · clear the database
- restore the population (if set\_backup() was called before)
- · re-distribute tools
- · re-distribute viruses
- set the date to 0

Reimplemented from epiworld::Model < EPI\_DEFAULT\_TSEQ >.

The documentation for this class was generated from the following file:

· epiworld.hpp

# 14.33 ModelSEIRDCONN < TSeq > Class Template Reference

Inheritance diagram for ModelSEIRDCONN< TSeq >:



Collaboration diagram for ModelSEIRDCONN< TSeq >:



#### **Public Member Functions**

ModelSEIRDCONN (ModelSEIRDCONN< TSeq > &model, std::string vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_double contact\_rate, epiworld\_double transmission\_rate, epiworld\_← double avg\_incubation\_days, epiworld\_double recovery\_rate, epiworld\_double death\_rate)

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

- **ModelSEIRDCONN** (std::string vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_double contact\_rate, epiworld\_double transmission\_rate, epiworld\_double avg\_incubation\_days, epiworld\_double recovery\_rate, epiworld\_double death\_rate)
- ModelSEIRDCONN
   TSeq > & run (epiworld\_fast\_uint ndays, int seed=-1)

Runs the simulation (after initialization)

· void reset ()

Reset the model.

Model < TSeq > \* clone\_ptr ()

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

ModelSEIRDCONN< TSeq > & initial\_states (std::vector< double > proportions\_, std::vector< int > queue\_={})

Set up the initial states of the model.

#### **Static Public Attributes**

- static const int SUSCEPTIBLE = 0
- static const int EXPOSED = 1
- static const int INFECTED = 2
- static const int REMOVED = 3
- static const int **DECEASED** = 4

#### **Additional Inherited Members**

#### 14.33.1 Constructor & Destructor Documentation

#### 14.33.1.1 ModelSEIRDCONN()

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	Initial prevalence (proportion)
contact_rate	Average number of contacts (interactions) per step.
transmission_rate	Probability of transmission
recovery_rate	Probability of recovery
death_rate	Probability of death

#### 14.33.2 Member Function Documentation

#### 14.33.2.1 clone\_ptr()

```
template<typename TSeq >
Model< TSeq > * ModelSEIRDCONN< TSeq >::clone_ptr [inline], [virtual]
```

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

#### **Parameters**

сору

Reimplemented from epiworld::Model < EPI\_DEFAULT\_TSEQ >.

## 14.33.2.2 initial\_states()

Set up the initial states of the model.

#### **Parameters**

proportions←	Double vector with the following values:
_	0: Proportion of non-infected agents who are removed.
	• 1: Proportion of exposed agents to be set as infected.

 $\label{lem:lemented_lemented_lemented} \textbf{Reimplemented from epiworld::} \\ \textbf{Model} < \textbf{EPI\_DEFAULT\_TSEQ} >.$ 

#### 14.33.2.3 reset()

```
template<typename TSeq >
void ModelSEIRDCONN< TSeq >::reset [inline], [virtual]
```

Reset the model.

Resetting the model will:

- · clear the database
- restore the population (if set\_backup() was called before)
- · re-distribute tools
- · re-distribute viruses
- set the date to 0

Reimplemented from epiworld::Model < EPI\_DEFAULT\_TSEQ >.

The documentation for this class was generated from the following file:

• include/epiworld/models/seirdconnected.hpp

# 14.34 epiworld::epimodels::ModelSIR< TSeq > Class Template Reference

Template for a Susceptible-Infected-Removed (SIR) model.

```
#include <epiworld.hpp>
```

Inheritance diagram for epiworld::epimodels::ModelSIR < TSeq >:



Collaboration diagram for epiworld::epimodels::ModelSIR< TSeq >:



# **Public Member Functions**

- **ModelSIR** (ModelSIR< TSeq > &model, std::string vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate)
- **ModelSIR** (std::string vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld\_← double recovery rate)
- ModelSIR < TSeq > & initial\_states (std::vector < double > proportions\_, std::vector < int > queue\_={})
   Set the initial states of the model.

# **Additional Inherited Members**

# 14.34.1 Detailed Description

template<typename TSeq = int>
class epiworld::epimodels::ModelSIR< TSeq >

Template for a Susceptible-Infected-Removed (SIR) model.

# **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
initial_prevalence	epiworld_double Initial prevalence
initial_efficacy	epiworld_double Initial susceptibility_reduction of the immune system
initial_recovery	epiworld_double Initial recovery_rate rate of the immune system

# 14.34.2 Member Function Documentation

# 14.34.2.1 initial\_states()

Set the initial states of the model.

### **Parameters**

proportions↔	Double vector with a single element:
_	The proportion of non-infected individuals who have recovered.

Reimplemented from epiworld::Model < int >.

The documentation for this class was generated from the following file:

· epiworld.hpp

# 14.35 ModelSIR < TSeq > Class Template Reference

 $\label{thm:conditional} \mbox{Template for a Susceptible-Infected-Removed (SIR) model.}$ 

```
#include <sir.hpp>
```

Inheritance diagram for ModelSIR< TSeq >:



Collaboration diagram for ModelSIR < TSeq >:



# **Public Member Functions**

- **ModelSIR** (ModelSIR< TSeq > &model, std::string vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate)
- ModelSIR (std::string vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld\_
   double recovery\_rate)
- ModelSIR < TSeq > & initial\_states (std::vector < double > proportions\_, std::vector < int > queue\_={})
   Set the initial states of the model.

# **Additional Inherited Members**

# 14.35.1 Detailed Description

template<typename TSeq = int> class ModelSIR< TSeq >

Template for a Susceptible-Infected-Removed (SIR) model.

# **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
initial_prevalence	epiworld_double Initial prevalence
initial_efficacy	epiworld_double Initial susceptibility_reduction of the immune system
initial_recovery	epiworld_double Initial recovery_rate rate of the immune system

# 14.35.2 Member Function Documentation

# 14.35.2.1 initial\_states()

Set the initial states of the model.

### **Parameters**

proportions↔	Double vector with a single element:
_	The proportion of non-infected individuals who have recovered.

Reimplemented from epiworld::Model < int >.

The documentation for this class was generated from the following file:

• include/epiworld/models/sir.hpp

# 14.36 epiworld::epimodels::ModelSIRCONN< TSeq > Class Template Reference

Inheritance diagram for epiworld::epimodels::ModelSIRCONN< TSeq >:



Collaboration diagram for epiworld::epimodels::ModelSIRCONN< TSeq >:



# **Public Member Functions**

ModelSIRCONN (ModelSIRCONN < TSeq > &model, std::string vname, epiworld\_fast\_uint n, epiworld
 —double prevalence, epiworld\_double contact\_rate, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate)

Template for a Susceptible-Infected-Removed (SIR) model.

- **ModelSIRCONN** (std::string vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_double contact\_rate, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate)
- ModelSIRCONN
   TSeq > & run (epiworld\_fast\_uint ndays, int seed=-1)

Runs the simulation (after initialization)

· void reset ()

Reset the model.

• Model < TSeq > \* clone\_ptr ()

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

ModelSIRCONN< TSeq > & initial\_states (std::vector< double > proportions\_, std::vector< int > queue ← \_={})

Set the initial states of the model.

## **Additional Inherited Members**

# 14.36.1 Constructor & Destructor Documentation

# 14.36.1.1 ModelSIRCONN()

Template for a Susceptible-Infected-Removed (SIR) model.

### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	Initial prevalence (proportion)
contact_rate	Average number of contacts (interactions) per step.
transmission_rate	Probability of transmission
recovery_rate	Probability of recovery

# 14.36.2 Member Function Documentation

## 14.36.2.1 clone\_ptr()

```
template<typename TSeq >
Model< TSeq > * ModelSIRCONN< TSeq >::clone_ptr [inline], [virtual]
```

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

### **Parameters**

сору

Reimplemented from epiworld::Model < EPI\_DEFAULT\_TSEQ >.

# 14.36.2.2 initial\_states()

Set the initial states of the model.

# Parameters

proportions↔	Double vector with a single element:
_	The proportion of non-infected individuals who have recovered.

 $\label{eq:control_equation} \mbox{Reimplemented from epiworld::} \mbox{Model} < \mbox{EPI\_DEFAULT\_TSEQ} >.$ 

## 14.36.2.3 reset()

```
template<typename TSeq >
void ModelSIRCONN< TSeq >::reset [inline], [virtual]
```

Reset the model.

Resetting the model will:

- · clear the database
- restore the population (if set\_backup() was called before)
- · re-distribute tools
- · re-distribute viruses
- set the date to 0

Reimplemented from epiworld::Model < EPI\_DEFAULT\_TSEQ >.

The documentation for this class was generated from the following file:

· epiworld.hpp

# 14.37 ModelSIRCONN< TSeq > Class Template Reference

Inheritance diagram for ModelSIRCONN< TSeq >:



Collaboration diagram for ModelSIRCONN< TSeq >:



# **Public Member Functions**

ModelSIRCONN (ModelSIRCONN < TSeq > &model, std::string vname, epiworld\_fast\_uint n, epiworld
 \_double prevalence, epiworld\_double contact\_rate, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate)

Template for a Susceptible-Infected-Removed (SIR) model.

- **ModelSIRCONN** (std::string vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_double contact\_rate, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate)
- ModelSIRCONN
   TSeq > & run (epiworld\_fast\_uint ndays, int seed=-1)

Runs the simulation (after initialization)

· void reset ()

Reset the model.

Model < TSeq > \* clone\_ptr ()

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

ModelSIRCONN< TSeq > & initial\_states (std::vector< double > proportions\_, std::vector< int > queue ← \_={})

Set the initial states of the model.

# **Additional Inherited Members**

#### 14.37.1 Constructor & Destructor Documentation

#### 14.37.1.1 ModelSIRCONN()

Template for a Susceptible-Infected-Removed (SIR) model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	Initial prevalence (proportion)
contact_rate	Average number of contacts (interactions) per step.
transmission_rate	Probability of transmission
recovery_rate	Probability of recovery

# 14.37.2 Member Function Documentation

# 14.37.2.1 clone\_ptr()

```
template<typename TSeq >
Model< TSeq > * ModelSIRCONN< TSeq >::clone_ptr [inline], [virtual]
```

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

#### **Parameters**



Reimplemented from epiworld::Model < EPI\_DEFAULT\_TSEQ >.

# 14.37.2.2 initial\_states()

Set the initial states of the model.

## **Parameters**

proportions↔	Double vector with a single element:
_	The proportion of non-infected individuals who have recovered.

Reimplemented from epiworld::Model < EPI\_DEFAULT\_TSEQ >.

#### 14.37.2.3 reset()

```
template<typename TSeq >
void ModelSIRCONN< TSeq >::reset [inline], [virtual]
```

Reset the model.

Resetting the model will:

· clear the database

- restore the population (if set\_backup() was called before)
- · re-distribute tools
- · re-distribute viruses
- set the date to 0

Reimplemented from epiworld::Model < EPI\_DEFAULT\_TSEQ >.

The documentation for this class was generated from the following file:

• include/epiworld/models/sirconnected.hpp

# 14.38 epiworld::epimodels::ModelSIRD< TSeq > Class Template Reference

Template for a Susceptible-Infected-Removed-Deceased (SIRD) model.

#include <epiworld.hpp>

Inheritance diagram for epiworld::epimodels::ModelSIRD< TSeq >:



 $\label{local_control_control} \mbox{Collaboration diagram for epiworld::epimodels::} \mbox{ModelSIRD} < \mbox{TSeq} > :$ 



### **Public Member Functions**

- ModelSIRD < TSeq > & initial\_states (std::vector < double > proportions\_, std::vector < int > queue\_={})
   Set the initial states of the model.
- ModelSIRD (ModelSIRD < TSeq > &model, std::string vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate, epiworld\_double death\_rate)

Constructs a new SIRD model with the given parameters.

• **ModelSIRD** (std::string vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld ouble recovery\_rate, epiworld\_double death\_rate)

### **Additional Inherited Members**

## 14.38.1 Detailed Description

```
template < typename TSeq = int > class epiworld::epimodels::ModelSIRD < TSeq >
```

Template for a Susceptible-Infected-Removed-Deceased (SIRD) model.

# 14.38.2 Constructor & Destructor Documentation

# 14.38.2.1 ModelSIRD()

Constructs a new SIRD model with the given parameters.

#### **Parameters**

model	The SIRD model to copy from.	
vname	The name of the vertex associated with this model.	
prevalence	The initial prevalence of the disease in the population.	
transmission_rate	The rate at which the disease spreads from infected to susceptible individuals.	
recovery_rate	The rate at which infected individuals recover and become immune.	
death_rate	The rate at which infected individuals die.	

# 14.38.3 Member Function Documentation

# 14.38.3.1 initial\_states()

Set the initial states of the model.

#### **Parameters**

proportions Double vector with two elements:
 The proportion of non-infected individuals who have recovered.
 The proportion of non-infected individuals who have died.

Reimplemented from epiworld::Model < int >.

The documentation for this class was generated from the following file:

· epiworld.hpp

# 14.39 ModelSIRD< TSeq > Class Template Reference

Template for a Susceptible-Infected-Removed-Deceased (SIRD) model.

```
#include <sird.hpp>
```

Inheritance diagram for ModelSIRD< TSeq >:



Collaboration diagram for ModelSIRD< TSeq >:



## **Public Member Functions**

- ModelSIRD < TSeq > & initial\_states (std::vector < double > proportions\_, std::vector < int > queue\_={})
   Set the initial states of the model.
- ModelSIRD (ModelSIRD < TSeq > &model, std::string vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate, epiworld\_double death\_rate)

Constructs a new SIRD model with the given parameters.

ModelSIRD (std::string vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld
 —double recovery\_rate, epiworld\_double death\_rate)

# **Additional Inherited Members**

# 14.39.1 Detailed Description

```
template<typename TSeq = int> class ModelSIRD< TSeq >
```

Template for a Susceptible-Infected-Removed-Deceased (SIRD) model.

# 14.39.2 Constructor & Destructor Documentation

## 14.39.2.1 ModelSIRD()

Constructs a new SIRD model with the given parameters.

### **Parameters**

model	The SIRD model to copy from.	
vname	The name of the vertex associated with this model.	
prevalence	The initial prevalence of the disease in the population.	
transmission_rate	The rate at which the disease spreads from infected to susceptible individuals.	
recovery_rate	The rate at which infected individuals recover and become immune.	
death_rate	The rate at which infected individuals die.	

# 14.39.3 Member Function Documentation

# 14.39.3.1 initial\_states()

Set the initial states of the model.

## **Parameters**

proportions⇔	Double vector with two elements:
_	The proportion of non-infected individuals who have recovered.
	The proportion of non-infected individuals who have died.

Reimplemented from epiworld::Model < int >.

The documentation for this class was generated from the following file:

• include/epiworld/models/sird.hpp

# 14.40 epiworld::epimodels::ModelSIRDCONN< TSeq > Class Template Reference

Inheritance diagram for epiworld::epimodels::ModelSIRDCONN < TSeq >:



Collaboration diagram for epiworld::epimodels::ModelSIRDCONN< TSeq >:



## **Public Member Functions**

ModelSIRDCONN (ModelSIRDCONN 
 TSeq > &model, std::string vname, epiworld\_fast\_uint n, epiworld 
 \_double prevalence, epiworld\_double contact\_rate, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate, epiworld\_double death\_rate)

Template for a Susceptible-Infected-Removed (SIR) model.

- ModelSIRDCONN (std::string vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_double contact\_rate, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate, epiworld\_double death\_← rate)
- ModelSIRDCONN
   TSeq > & run (epiworld\_fast\_uint ndays, int seed=-1)

Runs the simulation (after initialization)

• void reset ()

Reset the model.

Model < TSeq > \* clone ptr ()

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

# **Static Public Attributes**

- static const int **SUSCEPTIBLE** = 0
- static const int INFECTED = 1
- static const int **RECOVERED** = 2
- static const int **DECEASED** = 3

# **Additional Inherited Members**

### 14.40.1 Constructor & Destructor Documentation

# 14.40.1.1 ModelSIRDCONN()

Template for a Susceptible-Infected-Removed (SIR) model.

# Parameters

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	Initial prevalence (proportion)
contact_rate	Average number of contacts (interactions) per step.
transmission_rate	Probability of transmission
recovery_rate	Probability of recovery
death_rate	Probability of death

# 14.40.2 Member Function Documentation

# 14.40.2.1 clone\_ptr()

```
template<typename TSeq >
Model< TSeq > * ModelSIRDCONN< TSeq >::clone_ptr [inline], [virtual]
```

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

**Parameters** 

сору

Reimplemented from epiworld::Model < EPI\_DEFAULT\_TSEQ >.

#### 14.40.2.2 reset()

```
template<typename TSeq >
void ModelSIRDCONN< TSeq >::reset [inline], [virtual]
```

Reset the model.

Resetting the model will:

- · clear the database
- restore the population (if set\_backup() was called before)
- · re-distribute tools
- · re-distribute viruses
- · set the date to 0

Reimplemented from epiworld::Model < EPI\_DEFAULT\_TSEQ >.

The documentation for this class was generated from the following file:

· epiworld.hpp

# 14.41 ModelSIRDCONN< TSeq > Class Template Reference

Inheritance diagram for ModelSIRDCONN < TSeq > :



Collaboration diagram for ModelSIRDCONN< TSeq >:



# **Public Member Functions**

ModelSIRDCONN (ModelSIRDCONN < TSeq > &model, std::string vname, epiworld\_fast\_uint n, epiworld 
 \_double prevalence, epiworld\_double contact\_rate, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate, epiworld\_double death\_rate)

Template for a Susceptible-Infected-Removed (SIR) model.

- **ModelSIRDCONN** (std::string vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_double contact\_rate, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate, epiworld\_double death\_← rate)
- ModelSIRDCONN< TSeq > & run (epiworld\_fast\_uint ndays, int seed=-1)

Runs the simulation (after initialization)

• void reset ()

Reset the model.

Model < TSeq > \* clone\_ptr ()

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

### **Static Public Attributes**

- static const int SUSCEPTIBLE = 0
- static const int INFECTED = 1
- static const int **RECOVERED** = 2
- static const int **DECEASED** = 3

### **Additional Inherited Members**

# 14.41.1 Constructor & Destructor Documentation

## 14.41.1.1 ModelSIRDCONN()

Template for a Susceptible-Infected-Removed (SIR) model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	Initial prevalence (proportion)
contact_rate	Average number of contacts (interactions) per step.
transmission_rate	Probability of transmission
recovery_rate	Probability of recovery
death_rate	Probability of death

### 14.41.2 Member Function Documentation

# 14.41.2.1 clone\_ptr()

```
template<typename TSeq >
Model< TSeq > * ModelSIRDCONN< TSeq >::clone_ptr [inline], [virtual]
```

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

# **Parameters**

сору

 $\label{eq:local_equation} \textbf{Reimplemented from epiworld::} \\ \textbf{Model} < \textbf{EPI\_DEFAULT\_TSEQ} >.$ 

# 14.41.2.2 reset()

```
template<typename TSeq >
void ModelSIRDCONN< TSeq >::reset [inline], [virtual]
```

Reset the model.

Resetting the model will:

- · clear the database
- restore the population (if set\_backup() was called before)
- · re-distribute tools
- · re-distribute viruses
- · set the date to 0

Reimplemented from epiworld::Model < EPI\_DEFAULT\_TSEQ >.

The documentation for this class was generated from the following file:

• include/epiworld/models/sirdconnected.hpp

# 14.42 epiworld::epimodels::ModelSIRLogit< TSeq > Class Template Reference

Inheritance diagram for epiworld::epimodels::ModelSIRLogit < TSeq >:



 $\label{logit} \mbox{Collaboration diagram for epiworld::epimodels::ModelSIRLogit< TSeq>:$ 



### **Public Member Functions**

ModelSIRLogit (ModelSIRLogit < TSeq > &model, std::string vname, double \*data, size\_t ncols, std::vector < double > coefs\_infect, std::vector < double > coefs\_recover, std::vector < size\_t > coef\_infect\_cols, std → ::vector < size\_t > coef\_recover\_cols, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate, epiworld\_double prevalence)

Template for a Susceptible-Infected-Removed (SIR) model.

- ModelSIRLogit (std::string vname, double \*data, size\_t ncols, std::vector< double > coefs\_infect, std
   ::vector< double > coefs\_recover, std::vector< size\_t > coef\_infect\_cols, std::vector< size\_t > coef
   \_recover\_cols, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate, epiworld\_double prevalence)
- ModelSIRLogit < TSeq > & run (epiworld\_fast\_uint ndays, int seed=-1)

Runs the simulation (after initialization)

Model < TSeq > \* clone\_ptr ()

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

· void reset ()

Reset the model.

# **Public Attributes**

```
 std::vector< double > coefs_infect
```

- std::vector< double > coefs\_recover
- std::vector< size t > coef infect cols
- std::vector< size t > coef\_recover\_cols

## **Additional Inherited Members**

# 14.42.1 Constructor & Destructor Documentation

#### 14.42.1.1 ModelSIRLogit()

Template for a Susceptible-Infected-Removed (SIR) model.

#### **Parameters**

vname	Name of the virus.
coefs_infect	Double ptr. Infection coefficients.
coefs_recover	Double ptr. Recovery coefficients.
ncoef_infect	Unsigned int. Number of infection coefficients.
ncoef_recover	Unsigned int. Number of recovery coefficients.
coef_infect_cols	Vector <unsigned int="">. Ids of infection vars.</unsigned>
coef_recover_cols	Vector <unsigned int="">. Ids of recover vars.</unsigned>
model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	Initial prevalence (proportion)
contact_rate	Average number of contacts (interactions) per step.
prob_transmission	Probability of transmission
prob_recovery	Probability of recovery

# 14.42.2 Member Function Documentation

# 14.42.2.1 clone\_ptr()

```
template<typename TSeq >
Model< TSeq > * ModelSIRLogit< TSeq >::clone_ptr [inline], [virtual]
```

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

# **Parameters**

сору

Reimplemented from epiworld:: $Model < EPI\_DEFAULT\_TSEQ >$ .

### 14.42.2.2 reset()

```
template<typename TSeq >
void ModelSIRLogit< TSeq >::reset [inline], [virtual]
```

Reset the model.

Resetting the model will:

- · clear the database
- restore the population (if set\_backup () was called before)

- · re-distribute tools
- · re-distribute viruses
- · set the date to 0

Reimplemented from epiworld::Model < EPI\_DEFAULT\_TSEQ >.

The documentation for this class was generated from the following file:

· epiworld.hpp

# 14.43 ModelSIRLogit < TSeq > Class Template Reference

Inheritance diagram for ModelSIRLogit< TSeq >:



Collaboration diagram for ModelSIRLogit < TSeq >:



#### **Public Member Functions**

ModelSIRLogit (ModelSIRLogit < TSeq > &model, std::string vname, double \*data, size\_t ncols, std::vector < double > coefs\_infect, std::vector < double > coefs\_recover, std::vector < size\_t > coef\_infect\_cols, std ← ::vector < size\_t > coef\_recover\_cols, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate, epiworld\_double prevalence)

Template for a Susceptible-Infected-Removed (SIR) model.

- ModelSIRLogit (std::string vname, double \*data, size\_t ncols, std::vector< double > coefs\_infect, std
   ::vector< double > coefs\_recover, std::vector< size\_t > coef\_infect\_cols, std::vector< size\_t > coef
   \_recover\_cols, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate, epiworld\_double prevalence)
- ModelSIRLogit < TSeq > & run (epiworld\_fast\_uint ndays, int seed=-1)

Runs the simulation (after initialization)

Model < TSeq > \* clone\_ptr ()

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

· void reset ()

Reset the model.

# **Public Attributes**

```
 std::vector< double > coefs_infect
```

- std::vector< double > coefs\_recover
- std::vector< size t > coef infect cols
- std::vector< size t > coef\_recover\_cols

## **Additional Inherited Members**

# 14.43.1 Constructor & Destructor Documentation

#### 14.43.1.1 ModelSIRLogit()

Template for a Susceptible-Infected-Removed (SIR) model.

#### **Parameters**

vname	Name of the virus.
coefs_infect	Double ptr. Infection coefficients.
coefs_recover	Double ptr. Recovery coefficients.
ncoef_infect	Unsigned int. Number of infection coefficients.
ncoef_recover	Unsigned int. Number of recovery coefficients.
coef_infect_cols	Vector <unsigned int="">. Ids of infection vars.</unsigned>
coef_recover_cols	Vector <unsigned int="">. Ids of recover vars.</unsigned>
model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	Initial prevalence (proportion)
contact_rate	Average number of contacts (interactions) per step.
prob_transmission	Probability of transmission
prob_recovery	Probability of recovery

# 14.43.2 Member Function Documentation

### 14.43.2.1 clone\_ptr()

```
template<typename TSeq >
Model< TSeq > * ModelSIRLogit< TSeq >::clone_ptr [inline], [virtual]
```

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

# **Parameters**

copy

Reimplemented from epiworld:: $Model < EPI\_DEFAULT\_TSEQ >$ .

### 14.43.2.2 reset()

```
template<typename TSeq >
void ModelSIRLogit< TSeq >::reset [inline], [virtual]
```

Reset the model.

Resetting the model will:

- · clear the database
- restore the population (if  $set\_backup$  () was called before)

- · re-distribute tools
- · re-distribute viruses
- · set the date to 0

Reimplemented from epiworld::Model < EPI\_DEFAULT\_TSEQ >.

The documentation for this class was generated from the following file:

• include/epiworld/models/sirlogit.hpp

# 14.44 epiworld::epimodels::ModelSIS< TSeq > Class Template Reference

Template for a Susceptible-Infected-Susceptible (SIS) model.

#include <epiworld.hpp>

Inheritance diagram for epiworld::epimodels::ModelSIS< TSeq >:



Collaboration diagram for epiworld::epimodels::ModelSIS < TSeq >:



# **Public Member Functions**

- **ModelSIS** (ModelSIS< TSeq > &model, std::string vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate)
- **ModelSIS** (std::string vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld\_← double recovery\_rate)

# **Static Public Attributes**

- static const int SUSCEPTIBLE = 0
- static const int INFECTED = 1

# **Additional Inherited Members**

# 14.44.1 Detailed Description

```
template<typename TSeq = int>
class epiworld::epimodels::ModelSIS< TSeq >
```

Template for a Susceptible-Infected-Susceptible (SIS) model.

#### **Parameters**

vname	std::string Name of the virus
initial_prevalence	epiworld_double Initial prevalence
initial_efficacy	epiworld_double Initial susceptibility_reduction of the immune system
initial_recovery	epiworld_double Initial recovery_rate rate of the immune system

The documentation for this class was generated from the following file:

· epiworld.hpp

# 14.45 ModelSIS< TSeq > Class Template Reference

Template for a Susceptible-Infected-Susceptible (SIS) model.

#include <sis.hpp>

Inheritance diagram for ModelSIS< TSeq >:



Collaboration diagram for ModelSIS < TSeq >:



# **Public Member Functions**

- **ModelSIS** (ModelSIS< TSeq > &model, std::string vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate)
- **ModelSIS** (std::string vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld\_← double recovery\_rate)

# **Static Public Attributes**

- static const int **SUSCEPTIBLE** = 0
- static const int INFECTED = 1

# **Additional Inherited Members**

# 14.45.1 Detailed Description

template<typename TSeq = int> class ModelSIS< TSeq >

Template for a Susceptible-Infected-Susceptible (SIS) model.

#### **Parameters**

vname	std::string Name of the virus
initial_prevalence	epiworld_double Initial prevalence
initial_efficacy	epiworld_double Initial susceptibility_reduction of the immune system
initial_recovery	epiworld_double Initial recovery_rate rate of the immune system

The documentation for this class was generated from the following file:

• include/epiworld/models/sis.hpp

# 14.46 epiworld::epimodels::ModelSISD< TSeq > Class Template Reference

Template for a Susceptible-Infected-Susceptible-Deceased (SISD) model.

#include <epiworld.hpp>

Inheritance diagram for epiworld::epimodels::ModelSISD< TSeq >:



 $\label{local_control_control} \mbox{Collaboration diagram for epiworld::epimodels::} \mbox{ModelSISD} < \mbox{TSeq} > :$ 



# **Public Member Functions**

ModelSISD (ModelSISD< TSeq > &model, std::string vname, epiworld\_double prevalence, epiworld\_
 double transmission\_rate, epiworld\_double recovery\_rate, epiworld\_double death\_rate)

• **ModelSISD** (std::string vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld double recovery\_rate, epiworld\_double death\_rate)

# **Additional Inherited Members**

# 14.46.1 Detailed Description

template<typename TSeq = int>
class epiworld::epimodels::ModelSISD< TSeq >

Template for a Susceptible-Infected-Susceptible-Deceased (SISD) model.

### **Parameters**

vname	std::string Name of the virus
initial_prevalence	epiworld_double Initial prevalence
initial_efficacy	epiworld_double Initial susceptibility_reduction of the immune system
initial_recovery	epiworld_double Initial recovery_rate rate of the immune system
inital_death	epiworld_double Initial death_rate of the immune system

The documentation for this class was generated from the following file:

· epiworld.hpp

# 14.47 ModelSISD< TSeq > Class Template Reference

Template for a Susceptible-Infected-Susceptible-Deceased (SISD) model.

#include <sisd.hpp>

Inheritance diagram for ModelSISD< TSeq >:



Collaboration diagram for ModelSISD< TSeq >:



# **Public Member Functions**

- **ModelSISD** (ModelSISD< TSeq > &model, std::string vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld\_double recovery\_rate, epiworld\_double death\_rate)
- **ModelSISD** (std::string vname, epiworld\_double prevalence, epiworld\_double transmission\_rate, epiworld double recovery\_rate, epiworld\_double death\_rate)

# **Additional Inherited Members**

# 14.47.1 Detailed Description

template < typename TSeq = int> class ModelSISD < TSeq >

Template for a Susceptible-Infected-Susceptible-Deceased (SISD) model.

### **Parameters**

vname	std::string Name of the virus
initial_prevalence	epiworld_double Initial prevalence
initial_efficacy	epiworld_double Initial susceptibility_reduction of the immune system
initial_recovery	epiworld_double Initial recovery_rate rate of the immune system
inital_death	epiworld_double Initial death_rate of the immune system

The documentation for this class was generated from the following file:

• include/epiworld/models/sisd.hpp

# 14.48 epiworld::epimodels::ModelSURV< TSeq > Class Template Reference

Inheritance diagram for epiworld::epimodels::ModelSURV< TSeq >:



Collaboration diagram for epiworld::epimodels::ModelSURV < TSeq >:



# **Public Member Functions**

# Construct a new ModelSURV object

The ModelSURV class simulates a survaillence model where agents can be isolated, even if asyptomatic.

#### **Parameters**

vname	String. Name of the virus
prevalence	Integer. Number of initial cases of the virus.
efficacy_vax	Double. Efficacy of the vaccine (1 - P(acquire the disease)).
latent_period	Double. Shape parameter of a Gamma (latent_period, 1) distribution. This coincides with the expected number of latent days.

#### **Parameters**

infect_period	Double. Shape parameter of a Gamma (infected_period, 1) distribution. This coincides with the expected number of infectious days.
prob_symptoms	Double. Probability of generating symptoms.
prop_vaccinated	Double. Probability of vaccination. Coincides with the initial prevalence of vaccinated individuals.
prop_vax_redux_transm	Double. Factor by which the vaccine reduces transmissibility.
prop_vax_redux_infect	Double. Factor by which the vaccine reduces the chances of becoming infected.
surveillance_prob	Double. Probability of testing an agent.
prob_transmission	Double. Raw transmission probability.
prob_death	Double. Raw probability of death for symptomatic individuals.
prob_noreinfect	Double. Probability of no re-infection.

This model features the following states:

- · Susceptible
- Latent
- · Symptomatic
- · Symptomatic isolated
- · Asymptomatic
- · Asymptomatic isolated
- · Recovered
- · Removed

#### Returns

An object of class epiworld\_surv

- ModelSURV ()
- ModelSURV (ModelSURV < TSeq > &model, std::string vname, epiworld\_fast\_uint prevalence=50, epiworld\_double efficacy\_vax=0.9, epiworld\_double latent\_period=3u, epiworld\_double infect\_period=6u, epiworld\_double prob\_symptoms=0.6, epiworld\_double prop\_vaccinated=0.25, epiworld\_double prop-vax\_redux\_transm=0.5, epiworld\_double prop\_vax\_redux\_infect=0.5, epiworld\_double surveillance\_tob=0.001, epiworld\_double prob\_transmission=1.0, epiworld\_double prob\_death=0.001, epiworld\_tob=0.001, epiworld\_tob=0.001,
- ModelSURV (std::string vname, epiworld\_fast\_uint prevalence=50, epiworld\_double efficacy\_vax=0. ← 9, epiworld\_double latent\_period=3u, epiworld\_double infect\_period=6u, epiworld\_double prob\_← symptoms=0.6, epiworld\_double prop\_vaccinated=0.25, epiworld\_double prop\_vax\_redux\_transm=0.5, epiworld\_double prop\_vax\_redux\_infect=0.5, epiworld\_double surveillance\_prob=0.001, epiworld\_double prob transmission=1.0, epiworld\_double prob death=0.001, epiworld\_double prob noreinfect=0.9)

# **Additional Inherited Members**

The documentation for this class was generated from the following file:

· epiworld.hpp

# 14.49 ModelSURV < TSeq > Class Template Reference

Inheritance diagram for ModelSURV < TSeq >:



Collaboration diagram for ModelSURV < TSeq >:



# **Public Member Functions**

# Construct a new ModelSURV object

The ModelSURV class simulates a survaillence model where agents can be isolated, even if asyptomatic.

### **Parameters**

vname	String. Name of the virus
prevalence	Integer. Number of initial cases of the virus.
efficacy_vax	Double. Efficacy of the vaccine (1 - P(acquire the disease)).
latent_period	Double. Shape parameter of a Gamma (latent_period, 1) distribution.  This coincides with the expected number of latent days.
infect_period	Double. Shape parameter of a Gamma (infected_period, 1) distribution. This coincides with the expected number of infectious days.
prob_symptoms	Double. Probability of generating symptoms.

#### **Parameters**

prop_vaccinated	Double. Probability of vaccination. Coincides with the initial prevalence of
	vaccinated individuals.
prop_vax_redux_transm	Double. Factor by which the vaccine reduces transmissibility.
prop_vax_redux_infect	Double. Factor by which the vaccine reduces the chances of becoming infected.
surveillance_prob	Double. Probability of testing an agent.
prob_transmission	Double. Raw transmission probability.
prob_death	Double. Raw probability of death for symptomatic individuals.
prob_noreinfect	Double. Probability of no re-infection.

This model features the following states:

- · Susceptible
- Latent
- · Symptomatic
- · Symptomatic isolated
- · Asymptomatic
- · Asymptomatic isolated
- · Recovered
- · Removed

#### Returns

An object of class epiworld\_surv

- · ModelSURV ()
- **ModelSURV** (ModelSURV < TSeq > &model, std::string vname, epiworld\_fast\_uint prevalence=50, epiworld\_double efficacy\_vax=0.9, epiworld\_double latent\_period=3u, epiworld\_double infect\_period=6u, epiworld\_double prob\_symptoms=0.6, epiworld\_double prop\_vaccinated=0.25, epiworld\_double prop← \_vax\_redux\_transm=0.5, epiworld\_double prop\_vax\_redux\_infect=0.5, epiworld\_double surveillance\_← prob=0.001, epiworld\_double prob\_transmission=1.0, epiworld\_double prob\_death=0.001, epiworld\_← double prob\_noreinfect=0.9)
- **ModelSURV** (std::string vname, epiworld\_fast\_uint prevalence=50, epiworld\_double efficacy\_vax=0. ← 9, epiworld\_double latent\_period=3u, epiworld\_double infect\_period=6u, epiworld\_double prob\_← symptoms=0.6, epiworld\_double prop\_vaccinated=0.25, epiworld\_double prop\_vax\_redux\_transm=0.5, epiworld\_double prop\_vax\_redux\_infect=0.5, epiworld\_double surveillance\_prob=0.001, epiworld\_double prob\_transmission=1.0, epiworld\_double prob\_death=0.001, epiworld\_double prob\_noreinfect=0.9)

# **Additional Inherited Members**

The documentation for this class was generated from the following file:

• include/epiworld/models/surveillance.hpp

# 14.50 Network< Nettype, Nodetype, Edgetype > Class Template Reference

### **Public Member Functions**

- NType ()
- Edgetype **operator()** (int i, int j)
- bool is\_directed () const
- size\_t vcount () const
- size\_t ecount () const
- void add\_edge (int i, int j)
- void **rm\_edge** (int i, int j)

The documentation for this class was generated from the following file:

• include/epiworld/network-bones.hpp

# 14.51 epiworld::PersonTools < TSeq > Class Template Reference

The documentation for this class was generated from the following file:

· epiworld.hpp

# 14.52 PersonTools < TSeq > Class Template Reference

The documentation for this class was generated from the following file:

• include/epiworld/config.hpp

# 14.53 epiworld::Progress Class Reference

A simple progress bar.

```
#include <epiworld.hpp>
```

# **Public Member Functions**

- Progress (int n\_, int width\_)
- void start ()
- void next ()
- void **end** ()

# 14.53.1 Detailed Description

A simple progress bar.

The documentation for this class was generated from the following file:

· epiworld.hpp

# 14.54 Progress Class Reference

A simple progress bar.

```
#include progress.hpp>
```

# **Public Member Functions**

- Progress (int n\_, int width\_)
- · void start ()
- void next ()
- void end ()

# 14.54.1 Detailed Description

A simple progress bar.

The documentation for this class was generated from the following file:

• include/epiworld/progress.hpp

# 14.55 epiworld::Queue < TSeq > Class Template Reference

Controls which agents are verified at each step.

```
#include <epiworld.hpp>
```

# **Public Member Functions**

- void operator+= (Agent < TSeq > \*p)
- void operator-= (Agent< TSeq > \*p)
- epiworld\_fast\_int & operator[] (epiworld\_fast\_uint i)
- void reset ()
- bool operator== (const Queue < TSeq > &other) const
- bool operator!= (const Queue < TSeq > &other) const

# **Static Public Attributes**

- static const int NoOne = 0
- static const int OnlySelf = 1
- static const int **Everyone** = 2

# **Friends**

class Model < TSeq >

# 14.55.1 Detailed Description

```
template<typename TSeq> class epiworld::Queue< TSeq>
```

Controls which agents are verified at each step.

The idea is that only agents who are either in an infected state or have an infected neighbor should be checked. Otherwise it makes no sense (no chance to recover or capture the disease).

**Template Parameters** 



The documentation for this class was generated from the following file:

· epiworld.hpp

# 14.56 Queue < TSeq > Class Template Reference

Controls which agents are verified at each step.

```
#include <queue-bones.hpp>
```

# **Public Member Functions**

- void operator+= (Agent < TSeq > \*p)
- void operator-= (Agent < TSeq > \*p)
- epiworld\_fast\_int & operator[] (epiworld\_fast\_uint i)
- · void reset ()
- bool operator== (const Queue < TSeq > &other) const
- bool operator!= (const Queue < TSeq > &other) const

# **Static Public Attributes**

- static const int **NoOne** = 0
- static const int OnlySelf = 1
- static const int **Everyone** = 2

#### **Friends**

- class  $\mathbf{Model} < \mathbf{TSeq} >$ 

# 14.56.1 Detailed Description

template < typename TSeq > class Queue < TSeq >

Controls which agents are verified at each step.

The idea is that only agents who are either in an infected state or have an infected neighbor should be checked. Otherwise it makes no sense (no chance to recover or capture the disease).

#### **Template Parameters**



The documentation for this class was generated from the following files:

- · include/epiworld/agent-bones.hpp
- · include/epiworld/queue-bones.hpp

# 14.57 RandGraph Class Reference

# **Public Member Functions**

- RandGraph (int N )
- void init (int s)
- void set\_rand\_engine (std::mt19937 &e)
- epiworld\_double runif ()

The documentation for this class was generated from the following file:

• include/epiworld/random\_graph.hpp

# 14.58 epiworld::SAMPLETYPE Class Reference

# **Static Public Attributes**

- static const int MODEL = 0
- static const int **ENTITY** = 1
- static const int AGENT = 2

The documentation for this class was generated from the following file:

· epiworld.hpp

# 14.59 SAMPLETYPE Class Reference

# **Static Public Attributes**

- static const int MODEL = 0
- static const int **ENTITY** = 1
- static const int AGENT = 2

The documentation for this class was generated from the following file:

• include/epiworld/agentssample-bones.hpp

# 14.60 epiworld::Tool < TSeq > Class Template Reference

Tools for defending the agent against the virus.

```
#include <epiworld.hpp>
```

#### **Public Member Functions**

- Tool (std::string name="unknown tool")
- void set\_sequence (TSeq d)
- void set\_sequence (std::shared\_ptr< TSeq > d)
- std::shared\_ptr< TSeq > get\_sequence ()
- void set\_name (std::string name)
- std::string **get\_name** () const
- Agent< TSeq > \* get\_agent ()
- int get\_id () const
- void set\_id (int id)
- void set\_date (int d)
- int get\_date () const
- void **set\_state** (epiworld\_fast\_int init, epiworld\_fast\_int post)
- void **set\_queue** (epiworld\_fast\_int init, epiworld\_fast\_int post)
- void get\_state (epiworld\_fast\_int \*init, epiworld\_fast\_int \*post)
- void **get queue** (epiworld fast int \*init, epiworld fast int \*post)
- bool operator== (const Tool < TSeq > &other) const
- bool operator!= (const Tool < TSeq > &other) const
- · void print () const

#### Get and set the tool functions

#### **Parameters**

V	The virus over which to operate
fun	the function to be used

#### Returns

epiworld\_double

- epiworld\_double get\_susceptibility\_reduction (VirusPtr< TSeq > v, Model< TSeq > \*model)
- $\bullet \ \ \text{epiworld\_double} \ \ \textbf{get\_transmission\_reduction} \ \ (\text{VirusPtr} < \text{TSeq} > \text{v}, \ \ \textbf{Model} < \text{TSeq} > * \text{model}) \\$
- epiworld\_double get\_recovery\_enhancer (VirusPtr< TSeq > v, Model< TSeq > \*model)
- epiworld\_double get\_death\_reduction (VirusPtr< TSeq > v, Model< TSeq > \*model)
- void set\_susceptibility\_reduction\_fun (ToolFun < TSeq > fun)
- void set\_transmission\_reduction\_fun (ToolFun < TSeq > fun)
- void set\_recovery\_enhancer\_fun (ToolFun< TSeq > fun)
- void set\_death\_reduction\_fun (ToolFun < TSeq > fun)
- void set\_susceptibility\_reduction (epiworld\_double \*prob)
- void set\_transmission\_reduction (epiworld\_double \*prob)
- void set\_recovery\_enhancer (epiworld\_double \*prob)
- void set\_death\_reduction (epiworld\_double \*prob)
- void set\_susceptibility\_reduction (epiworld\_double prob)
- void **set\_transmission\_reduction** (epiworld\_double prob)
- void set\_recovery\_enhancer (epiworld\_double prob)
- void set\_death\_reduction (epiworld\_double prob)

#### **Friends**

- class Agent < TSeq >
- class Model < TSeq >
- void default\_add\_tool (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_rm\_tool (Event< TSeq > &a, Model< TSeq > \*m)

# 14.60.1 Detailed Description

```
template < typename TSeq > class epiworld::Tool < TSeq >
```

Tools for defending the agent against the virus.

**Template Parameters** 

TSeq	Type of sequence

The documentation for this class was generated from the following file:

· epiworld.hpp

# 14.61 Tool < TSeq > Class Template Reference

Tools for defending the agent against the virus.

```
#include <tool-bones.hpp>
```

#### **Public Member Functions**

- Tool (std::string name="unknown tool")
- void set\_sequence (TSeq d)
- void set\_sequence (std::shared\_ptr< TSeq > d)
- std::shared\_ptr< TSeq > get\_sequence ()
- void set name (std::string name)
- std::string get\_name () const
- Agent < TSeq > \* get\_agent ()
- int get id () const
- · void set\_id (int id)
- · void set date (int d)
- int get date () const
- void **set\_state** (epiworld\_fast\_int init, epiworld\_fast\_int post)
- void set\_queue (epiworld\_fast\_int init, epiworld\_fast\_int post)
- void get state (epiworld fast int \*init, epiworld fast int \*post)
- void get queue (epiworld fast int \*init, epiworld fast int \*post)
- bool operator== (const Tool < TSeq > &other) const
- bool operator!= (const Tool < TSeq > &other) const
- · void print () const
- bool operator== (const Tool < std::vector < int >> &other) const
- bool operator== (const Tool < std::vector < int >> &other) const

#### Get and set the tool functions

#### **Parameters**

V	The virus over which to operate
fun	the function to be used

#### Returns

# epiworld\_double

- epiworld\_double **get\_susceptibility\_reduction** (VirusPtr< TSeq > v, Model< TSeq > \*model)
- epiworld\_double get\_transmission\_reduction (VirusPtr< TSeq > v, Model< TSeq > \*model)
- epiworld double get recovery enhancer (VirusPtr< TSeq > v, Model< TSeq > \*model)
- epiworld double get death reduction (VirusPtr< TSeq > v, Model< TSeq > \*model)
- void set\_susceptibility\_reduction\_fun (ToolFun < TSeq > fun)
- void set\_transmission\_reduction\_fun (ToolFun < TSeq > fun)
- void set recovery enhancer fun (ToolFun < TSeq > fun)
- void set death reduction fun (ToolFun < TSeq > fun)
- void set\_susceptibility\_reduction (epiworld\_double \*prob)
- void set\_transmission\_reduction (epiworld\_double \*prob)
- void set\_recovery\_enhancer (epiworld\_double \*prob)
- void set death reduction (epiworld double \*prob)
- void set susceptibility reduction (epiworld double prob)
- void set\_transmission\_reduction (epiworld\_double prob)
- void set\_recovery\_enhancer (epiworld\_double prob)
- void set\_death\_reduction (epiworld\_double prob)

#### **Friends**

- class Agent < TSeq >
- class Model < TSeq >
- void default\_add\_tool (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_rm\_tool (Event< TSeq > &a, Model< TSeq > \*m)

# 14.61.1 Detailed Description

```
template<typename TSeq> class Tool< TSeq>
```

Tools for defending the agent against the virus.

**Template Parameters** 

TSeq Type of s	equence
----------------	---------

The documentation for this class was generated from the following files:

- · include/epiworld/agent-bones.hpp
- include/epiworld/tool-bones.hpp
- · include/epiworld/tool-meat.hpp

# 14.62 epiworld::Tools < TSeq > Class Template Reference

Set of tools (useful for building iterators)

```
#include <epiworld.hpp>
```

# **Public Member Functions**

- Tools (Agent < TSeq > &p)
- std::vector< ToolPtr< TSeq > >::iterator **begin** ()
- std::vector< ToolPtr< TSeq > >::iterator end ()
- ToolPtr < TSeq > & operator() (size\_t i)
- ToolPtr < TSeq > & operator[] (size\_t i)
- size\_t size () const noexcept
- · void print () const noexcept

# **Friends**

- class Tool < TSeq >
- class Agent < TSeq >

# 14.62.1 Detailed Description

```
template<typename TSeq> class epiworld::Tools< TSeq >
```

Set of tools (useful for building iterators)

# **Template Parameters**

TSeq	

The documentation for this class was generated from the following file:

· epiworld.hpp

# 14.63 Tools < TSeq > Class Template Reference

Set of tools (useful for building iterators)

```
#include <tools-bones.hpp>
```

# **Public Member Functions**

- Tools (Agent < TSeq > &p)
- std::vector< ToolPtr< TSeq > >::iterator **begin** ()
- std::vector< ToolPtr< TSeq > >::iterator end ()
- ToolPtr< TSeq > & operator() (size t i)
- ToolPtr< TSeq > & operator[] (size\_t i)
- size\_t size () const noexcept
- · void print () const noexcept

# **Friends**

- class Tool < TSeq >
- class Agent < TSeq >

# 14.63.1 Detailed Description

template<typename TSeq> class Tools< TSeq>

Set of tools (useful for building iterators)

**Template Parameters** 



The documentation for this class was generated from the following files:

- · include/epiworld/agent-bones.hpp
- include/epiworld/tools-bones.hpp

# 14.64 epiworld::Tools\_const< TSeq > Class Template Reference

Set of Tools (const) (useful for iterators)

#include <epiworld.hpp>

#### **Public Member Functions**

- Tools const (const Agent < TSeq > &p)
- std::vector< ToolPtr< TSeq > >::const\_iterator begin () const
- std::vector< ToolPtr< TSeq > :::const\_iterator end () const
- const ToolPtr< TSeq > & operator() (size\_t i)
- const ToolPtr< TSeq > & operator[] (size\_t i)
- size\_t size () const noexcept
- · void print () const noexcept

### **Friends**

- class Tool < TSeq >
- class Agent < TSeq >

# 14.64.1 Detailed Description

template<typename TSeq>
class epiworld::Tools\_const< TSeq >

Set of Tools (const) (useful for iterators)

**Template Parameters** 



The documentation for this class was generated from the following file:

· epiworld.hpp

# 14.65 Tools\_const< TSeq > Class Template Reference

Set of Tools (const) (useful for iterators)

#include <tools-bones.hpp>

# **Public Member Functions**

- Tools\_const (const Agent < TSeq > &p)
- std::vector< ToolPtr< TSeq > >::const\_iterator begin () const
- std::vector< ToolPtr< TSeq > >::const\_iterator end () const
- const ToolPtr< TSeq > & operator() (size\_t i)
- const ToolPtr< TSeq > & operator[] (size\_t i)
- · size\_t size () const noexcept
- · void print () const noexcept

### **Friends**

- class Tool < TSeq >
- class Agent < TSeq >

# 14.65.1 Detailed Description

template<typename TSeq> class Tools\_const< TSeq>

Set of Tools (const) (useful for iterators)

**Template Parameters** 



The documentation for this class was generated from the following files:

- · include/epiworld/agent-bones.hpp
- include/epiworld/tools-bones.hpp

# 14.66 epiworld::UserData < TSeq > Class Template Reference

Personalized data by the user.

```
#include <epiworld.hpp>
```

#### **Public Member Functions**

- UserData (Model < TSeq > &m)
- UserData (Model < TSeq > \*m)
- UserData (std::vector< std::string > names)

Construct a new User Data object.

- std::vector< std::string > & get\_names ()
- std::vector< int > & get\_dates ()
- std::vector< epiworld\_double > & get\_data ()

- void get\_all (std::vector< std::string > \*names=nullptr, std::vector< int > \*date=nullptr, std::vector< epiworld\_double > \*data=nullptr)
- epiworld\_fast\_uint nrow () const
- epiworld\_fast\_uint ncol () const
- void write (std::string fn)
- · void print () const

# Append data

#### **Parameters**

Χ	A vector of length ncol() (if vector), otherwise a epiworld_double.
Ĺ	Index of the data point, from 0 to ncol () - 1.

- void add (std::vector< epiworld\_double > x)
- void add (epiworld\_fast\_uint j, epiworld\_double x)

#### Access data

#### **Parameters**

	Row (0 through ndays - 1.)	
j	Column (0 through ncols()).	

#### Returns

epiworld double&

- epiworld double & operator() (epiworld fast uint i, epiworld fast uint j)
- epiworld\_double & **operator()** (epiworld\_fast\_uint i, std::string name)

# **Friends**

- class Model < TSeq >
- class  ${\bf DataBase}{<}{\,{\sf TSeq}}{\,>}$

# 14.66.1 Detailed Description

template<typename TSeq> class epiworld::UserData< TSeq >

Personalized data by the user.

**Template Parameters** 

TSeq	

# 14.66.2 Constructor & Destructor Documentation

#### 14.66.2.1 UserData()

Construct a new User Data object.

#### **Parameters**

The documentation for this class was generated from the following file:

· epiworld.hpp

# 14.67 UserData < TSeq > Class Template Reference

Personalized data by the user.

```
#include <userdata-bones.hpp>
```

# **Public Member Functions**

- UserData (Model < TSeq > &m)
- UserData (Model < TSeq > \*m)
- UserData (std::vector< std::string > names)

Construct a new User Data object.

- std::vector< std::string > & get\_names ()
- std::vector< int > & get\_dates ()
- std::vector< epiworld\_double > & get\_data ()
- void **get\_all** (std::vector< std::string > \*names=nullptr, std::vector< int > \*date=nullptr, std::vector< epiworld\_double > \*data=nullptr)
- · epiworld\_fast\_uint nrow () const
- epiworld\_fast\_uint **ncol** () const
- void write (std::string fn)
- void **print** () const

#### Append data

#### **Parameters**

Х	A vector of length ncol () (if vector), otherwise a epiworld_double.	
j	Index of the data point, from 0 to ncol () - 1.	

- void add (std::vector< epiworld\_double > x)
- void **add** (epiworld\_fast\_uint j, epiworld\_double x)

#### Access data

#### **Parameters**

i	Row (0 through ndays - 1.)	
j	Column (0 through ncols()).	

#### Returns

epiworld\_double&

- epiworld\_double & operator() (epiworld\_fast\_uint i, epiworld\_fast\_uint j)
- epiworld\_double & operator() (epiworld\_fast\_uint i, std::string name)

# **Friends**

- class Model < TSeq >
- class DataBase< TSeq >

# 14.67.1 Detailed Description

```
template<typename TSeq> class UserData< TSeq>
```

Personalized data by the user.

**Template Parameters** 

TSeq

# 14.67.2 Constructor & Destructor Documentation

# 14.67.2.1 UserData()

Construct a new User Data object.

# **Parameters**

names A vector of names. The length of the vector sets the number of columns to record.

The documentation for this class was generated from the following files:

- · include/epiworld/database-bones.hpp
- · include/epiworld/userdata-bones.hpp
- include/epiworld/userdata-meat.hpp

# 14.68 epiworld::vecHasher< T > Struct Template Reference

Vector hasher.

```
#include <epiworld.hpp>
```

# **Public Member Functions**

• std::size\_t operator() (std::vector< T > const &dat) const noexcept

# 14.68.1 Detailed Description

```
\label{template} \begin{split} & \text{template} \! < \! \text{typename T} \! > \\ & \text{struct epiworld::vecHasher} \! < \text{T} > \end{split}
```

Vector hasher.

**Template Parameters** 



The documentation for this struct was generated from the following file:

· epiworld.hpp

# 14.69 vecHasher < T > Struct Template Reference

Vector hasher.

```
#include <misc.hpp>
```

# **Public Member Functions**

std::size\_t operator() (std::vector< T > const &dat) const noexcept

# 14.69.1 Detailed Description

```
\label{template} \begin{split} & \text{template}\!<\!\text{typename T}\!> \\ & \text{struct vecHasher}\!<\!\text{T}\!> \end{split}
```

Vector hasher.

#### **Template Parameters**



The documentation for this struct was generated from the following file:

· include/epiworld/misc.hpp

# 14.70 epiworld::Virus < TSeq > Class Template Reference

#### Virus.

```
#include <epiworld.hpp>
```

# **Public Member Functions**

- Virus (std::string name="unknown virus")
- void mutate (Model < TSeq > \*model)
- void set\_mutation (MutFun< TSeq > fun)
- std::shared\_ptr< TSeq > get\_sequence ()
- void set\_sequence (TSeq sequence)
- Agent < TSeq > \* get\_agent ()
- void set\_agent (Agent < TSeq > \*p)
- void set\_date (int d)
- int get\_date () const
- void set\_id (int idx)
- int get\_id () const
- void set\_name (std::string name)
- std::string get\_name () const
- $std::vector < epiworld_double > \& get_data ()$
- bool **operator==** (const Virus< TSeq > &other) const
- bool operator!= (const Virus < TSeq > &other) const
- void **print** () const

#### Get and set the tool functions

#### **Parameters**

٧	The virus over which to operate
fun	the function to be used

#### Returns

epiworld\_double

- epiworld\_double get\_prob\_infecting (Model< TSeq > \*model)
- epiworld\_double get\_prob\_recovery (Model < TSeq > \*model)
- epiworld\_double get\_prob\_death (Model < TSeq > \*model)
- epiworld\_double get\_incubation (Model< TSeq > \*model)
- void post\_recovery (Model < TSeq > \*model)

- void set\_post\_recovery (PostRecoveryFun< TSeq > fun)
- void **set\_post\_immunity** (epiworld\_double prob)
- void set\_post\_immunity (epiworld\_double \*prob)
- void set\_prob\_infecting\_fun (VirusFun< TSeq > fun)
- void set\_prob\_recovery\_fun (VirusFun< TSeq > fun)
- void set\_prob\_death\_fun (VirusFun < TSeq > fun)
- void set\_incubation\_fun (VirusFun < TSeq > fun)
- void set\_prob\_infecting (const epiworld\_double \*prob)
- void set prob recovery (const epiworld double \*prob)
- void set prob death (const epiworld double \*prob)
- void set\_incubation (const epiworld\_double \*prob)
- void **set\_prob\_infecting** (epiworld\_double prob)
- void set\_prob\_recovery (epiworld\_double prob)
- void set\_prob\_death (epiworld\_double prob)
- void set\_incubation (epiworld\_double prob)

#### Get and set the state and queue

After applied, viruses can change the state and affect the queue of agents. These function sets the default values, which are retrieved when adding or removing a virus does not specify a change in state or in queue.

#### **Parameters**

init	After the virus/tool is added to the agent.
end	After the virus/tool is removed.
removed	After the agent (Agent) is removed.

- void set\_state (epiworld\_fast\_int init, epiworld\_fast\_int end, epiworld\_fast\_int removed=-99)
- void set\_queue (epiworld\_fast\_int init, epiworld\_fast\_int end, epiworld\_fast\_int removed=-99)
- void get\_state (epiworld\_fast\_int \*init, epiworld\_fast\_int \*end, epiworld\_fast\_int \*removed=nullptr)
- void get\_queue (epiworld\_fast\_int \*init, epiworld\_fast\_int \*end, epiworld\_fast\_int \*removed=nullptr)

# **Friends**

- class Agent < TSeq >
- class Model < TSeq >
- class DataBase < TSeq >
- void  $default\_add\_virus$  (Event< TSeq > &a, Model< TSeq > \*m)
- void default\_rm\_virus (Event< TSeq > &a, Model< TSeq > \*m)

# 14.70.1 Detailed Description

 $\label{template} \begin{tabular}{ll} template < typename TSeq > \\ class epiworld:: Virus < TSeq > \\ \end{tabular}$ 

### Virus.

**Template Parameters** 

TSeq

Raw transmisibility of a virus should be a function of its genetic sequence. Nonetheless, transmisibility can be

reduced as a result of having one or more tools to fight the virus. Because of this, transmisibility should be a function of the agent.

The documentation for this class was generated from the following file:

· epiworld.hpp

# 14.71 Virus < TSeq > Class Template Reference

#### Virus.

#include <virus-bones.hpp>

## **Public Member Functions**

- Virus (std::string name="unknown virus")
- void mutate (Model < TSeq > \*model)
- void set mutation (MutFun < TSeq > fun)
- std::shared\_ptr< TSeq > get\_sequence ()
- void set\_sequence (TSeq sequence)
- Agent < TSeq > \* get\_agent ()
- void set\_agent (Agent < TSeq > \*p)
- void set\_date (int d)
- · int get\_date () const
- void set\_id (int idx)
- int get\_id () const
- void **set\_name** (std::string name)
- std::string get\_name () const
- std::vector< epiworld\_double > & get\_data ()
- bool operator== (const Virus < TSeq > &other) const
- bool operator!= (const Virus < TSeq > &other) const
- · void print () const
- bool operator== (const Virus< std::vector< int >> &other) const
- bool operator== (const Virus< std::vector< int >> &other) const

#### Get and set the tool functions

# **Parameters**

٧	The virus over which to operate
fun	the function to be used

#### Returns

epiworld\_double

- epiworld\_double get\_prob\_infecting (Model< TSeq > \*model)
- epiworld\_double get\_prob\_recovery (Model < TSeq > \*model)
- epiworld\_double get\_prob\_death (Model < TSeq > \*model)
- epiworld\_double get\_incubation (Model < TSeq > \*model)
- void post\_recovery (Model < TSeq > \*model)

- void set\_post\_recovery (PostRecoveryFun< TSeq > fun)
- void **set\_post\_immunity** (epiworld\_double prob)
- void set\_post\_immunity (epiworld\_double \*prob)
- void set\_prob\_infecting\_fun (VirusFun< TSeq > fun)
- void set\_prob\_recovery\_fun (VirusFun< TSeq > fun)
- void set\_prob\_death\_fun (VirusFun < TSeq > fun)
- void set\_incubation\_fun (VirusFun < TSeq > fun)
- void set\_prob\_infecting (const epiworld\_double \*prob)
- void set prob recovery (const epiworld double \*prob)
- void set prob death (const epiworld double \*prob)
- void set\_incubation (const epiworld\_double \*prob)
- void **set\_prob\_infecting** (epiworld\_double prob)
- void set\_prob\_recovery (epiworld\_double prob)
- void set\_prob\_death (epiworld\_double prob)
- void set\_incubation (epiworld\_double prob)

#### Get and set the state and queue

After applied, viruses can change the state and affect the queue of agents. These function sets the default values, which are retrieved when adding or removing a virus does not specify a change in state or in queue.

#### **Parameters**

init	After the virus/tool is added to the agent.	
end	After the virus/tool is removed.	
removed	After the agent (Agent) is removed.	

- void set\_state (epiworld\_fast\_int init, epiworld\_fast\_int end, epiworld\_fast\_int removed=-99)
- void **set\_queue** (epiworld\_fast\_int init, epiworld\_fast\_int end, epiworld\_fast\_int removed=-99)
- void get\_state (epiworld\_fast\_int \*init, epiworld\_fast\_int \*end, epiworld\_fast\_int \*removed=nullptr)
- void get\_queue (epiworld\_fast\_int \*init, epiworld\_fast\_int \*end, epiworld\_fast\_int \*removed=nullptr)

# **Friends**

- class Agent < TSeq >
- class Model < TSeq >
- class DataBase < TSeq >
- void default\_add\_virus (Event < TSeq > &a, Model < TSeq > \*m)
- void default\_rm\_virus (Event< TSeq > &a, Model< TSeq > \*m)

# 14.71.1 Detailed Description

template < typename TSeq > class Virus < TSeq >

### Virus.

**Template Parameters** 

TSeq

Raw transmisibility of a virus should be a function of its genetic sequence. Nonetheless, transmisibility can be

reduced as a result of having one or more tools to fight the virus. Because of this, transmisibility should be a function of the agent.

The documentation for this class was generated from the following files:

- · include/epiworld/agent-bones.hpp
- include/epiworld/virus-bones.hpp
- · include/epiworld/virus-meat.hpp

# 14.72 epiworld::Viruses< TSeq > Class Template Reference

Set of viruses (useful for building iterators)

```
#include <epiworld.hpp>
```

# **Public Member Functions**

- Viruses (Agent < TSeq > &p)
- std::vector < VirusPtr < TSeq > >::iterator begin ()
- std::vector< VirusPtr< TSeq > >::iterator end ()
- VirusPtr< TSeq > & operator() (size\_t i)
- VirusPtr< TSeq > & operator[] (size\_t i)
- · size\_t size () const noexcept
- · void print () const noexcept

# **Friends**

- class Virus < TSeq >
- class Agent < TSeq >

# 14.72.1 Detailed Description

template<typename TSeq> class epiworld::Viruses< TSeq>

Set of viruses (useful for building iterators)

**Template Parameters** 



The documentation for this class was generated from the following file:

· epiworld.hpp

# 14.73 Viruses < TSeq > Class Template Reference

Set of viruses (useful for building iterators)

```
#include <viruses-bones.hpp>
```

#### **Public Member Functions**

- Viruses (Agent < TSeq > &p)
- std::vector< VirusPtr< TSeq > >::iterator begin ()
- std::vector < VirusPtr < TSeq > >::iterator end ()
- VirusPtr< TSeq > & operator() (size\_t i)
- VirusPtr< TSeq > & operator[] (size\_t i)
- size\_t size () const noexcept
- · void print () const noexcept

### **Friends**

- class Virus < TSeq >
- class Agent < TSeq >

# 14.73.1 Detailed Description

template<typename TSeq> class Viruses< TSeq>

Set of viruses (useful for building iterators)

**Template Parameters** 



The documentation for this class was generated from the following files:

- include/epiworld/agent-bones.hpp
- include/epiworld/viruses-bones.hpp

# 14.74 epiworld::Viruses\_const < TSeq > Class Template Reference

Set of Viruses (const) (useful for iterators)

#include <epiworld.hpp>

#### **Public Member Functions**

- Viruses\_const (const Agent < TSeq > &p)
- std::vector< VirusPtr< TSeq > >::const\_iterator begin () const
- std::vector< VirusPtr< TSeq > >::const\_iterator end () const
- const VirusPtr< TSeq > & operator() (size\_t i)
- const VirusPtr< TSeq > & operator[] (size\_t i)
- · size\_t size () const noexcept
- · void print () const noexcept

#### **Friends**

- class Virus < TSeq >
- class Agent < TSeq >

# 14.74.1 Detailed Description

template<typename TSeq>
class epiworld::Viruses\_const< TSeq>

Set of Viruses (const) (useful for iterators)

**Template Parameters** 



The documentation for this class was generated from the following file:

· epiworld.hpp

# 14.75 Viruses\_const< TSeq > Class Template Reference

Set of Viruses (const) (useful for iterators)

```
#include <viruses-bones.hpp>
```

### **Public Member Functions**

- Viruses\_const (const Agent < TSeq > &p)
- std::vector< VirusPtr< TSeq > >::const\_iterator begin () const
- std::vector< VirusPtr< TSeq > >::const\_iterator end () const
- const VirusPtr< TSeq > & operator() (size\_t i)
- const VirusPtr< TSeq > & operator[] (size\_t i)
- · size\_t size () const noexcept
- · void print () const noexcept

# **Friends**

- class Virus< TSeq >
- class Agent < TSeq >

# 14.75.1 Detailed Description

template<typename TSeq> class Viruses\_const< TSeq>

Set of Viruses (const) (useful for iterators)

**Template Parameters** 



The documentation for this class was generated from the following files:

- include/epiworld/agent-bones.hpp
- include/epiworld/viruses-bones.hpp

# **Chapter 15**

# **File Documentation**

# 15.1 include/epiworld/agent-meat-state.hpp File Reference

Sampling functions are getting big, so we keep them in a separate file.

#include "agent-meat-virus-sampling.hpp"
Include dependency graph for agent-meat-state.hpp:



192 File Documentation

This graph shows which files directly or indirectly include this file:



# **Functions**

- template<typename TSeq = EPI\_DEFAULT\_TSEQ>
   void default\_update\_susceptible (Agent< TSeq > \*p, Model< TSeq > \*m)
- template<typename TSeq = EPI\_DEFAULT\_TSEQ> void **default\_update\_exposed** (Agent< TSeq > \*p, Model< TSeq > \*m)

# 15.1.1 Detailed Description

Sampling functions are getting big, so we keep them in a separate file.

Author

George G. Vega Yon (g.vegayon en gmail)

Version

0.1

Date

2022-06-15

Copyright

Copyright (c) 2022

# Index

```
add globalevent
 Entities const< TSeq >, 63
 epiworld::Model < TSeq >, 83
 Entity < TSeq >, 65
 Model < TSeq >, 97
 default rm entity, 65
 epiworld::AdjList, 40
AdjList, 39
 AdjList, 39
 AdjList, 41
 epiworld::AdjList, 41
 read edgelist, 41
 read edgelist, 40
 epiworld::Agent < TSeq >, 46
Agent < TSeq >, 42
 default_rm_entity, 49
 default_rm_entity, 45
 operator(), 48
 operator(), 44
 swap neighbors, 48
 swap neighbors, 45
 epiworld::AgentsSample < TSeq >, 51
AgentsSample
 AgentsSample, 52
 epiworld::DataBase< TSeq >, 57
 AgentsSample < TSeq >, 50
 epiworld::AgentsSample < TSeq >, 52
 generation_time, 59
AgentsSample < TSeq >, 49
 get transmissions, 60
 AgentsSample, 50
 operator==, 60
 record_virus, 60
clone ptr
 reproductive_number, 61
 epiworld::epimodels::ModelSEIRCONN< TSeq >,
 transition_probability, 61
 epiworld::Entities < TSeq >, 62
 epiworld::epimodels::ModelSEIRDCONN< TSeq
 epiworld::Entities const< TSeq >, 64
 >, 128
 epiworld::Entity< TSeq >, 66
 epiworld::epimodels::ModelSIRCONN< TSeg >,
 default rm entity, 66
 epiworld::epimodels::ModelDiffNet< TSeq >, 103
 epiworld::epimodels::ModelSIRDCONN< TSeq >,
 epiworld::epimodels::ModelSEIR < TSeq >, 106
 initial states, 108
 epiworld::epimodels::ModelSIRLogit< TSeq >,
 update exposed seir, 108
 154
 update_infected_seir, 108
 epiworld::Model < TSeq >, 83
 epiworld::epimodels::ModelSEIRCONN < TSeq >, 112
 Model < TSeq >, 97
 clone ptr, 113
 ModelSEIRCONN < TSeq >, 116
 initial states, 114
 ModelSEIRDCONN < TSeq >, 131
 ModelSEIRCONN, 113
 ModelSIRCONN< TSeq >, 141
 reset, 114
 ModelSIRDCONN< TSeq >, 151
 epiworld::epimodels::ModelSEIRD< TSeg >, 119
 ModelSIRLogit < TSeq >, 157
 ModelSEIRD, 121, 122
 update_exposed_seir, 122
DataBase < TSeq >, 52
 epiworld::epimodels::ModelSEIRDCONN< TSeq >,
 generation time, 54
 126
 get transmissions, 55
 clone_ptr, 128
 operator==, 55, 56
 initial_states, 128
 record_virus, 56
 ModelSEIRDCONN, 127
 reproductive_number, 56
 reset, 128
 transition probability, 57
 epiworld::epimodels::ModelSIR< TSeq >, 132
default rm entity
 initial states, 133
 Agent < TSeq >, 45
 epiworld::epimodels::ModelSIRCONN < TSeq >, 136
 Entity < TSeq >, 65
 clone ptr, 138
 epiworld::Agent < TSeq >, 49
 initial states, 138
 epiworld::Entity< TSeq >, 66
 ModelSIRCONN, 137
 reset, 138
Entities < TSeq >, 61
```

194 INDEX

epiworld::epimodels::ModelSIRD< TSeq >, 142	Event< TSeq >, 68
initial_states, 144	Event, 69
ModelSIRD, 143	events_add
epiworld::epimodels::ModelSIRDCONN< TSeq >, 147	epiworld::Model < TSeq >, 84
clone_ptr, 148	Model < TSeq >, 98
ModelSIRDCONN, 148	events_run
reset, 149	epiworld::Model < TSeq >, 84
epiworld::epimodels::ModelSIRLogit< TSeq >, 152	Model < TSeq >, 98
clone_ptr, 154	concretion time
ModelSIRLogit, 153	generation_time
reset, 154	DataBase< TSeq >, 54
epiworld::epimodels::ModelSIS< TSeq >, 158	epiworld::DataBase< TSeq >, 59
epiworld::epimodels::ModelSISD< TSeq >, 161	get_transmissions
epiworld::epimodels::ModelSURV < TSeq >, 164	DataBase < TSeq >, 55
epiworld::Event< TSeq >, 67	epiworld::DataBase< TSeq >, 60
Event, 67	GlobalEvent
epiworld::GlobalEvent< TSeq >, 70	epiworld::GlobalEvent< TSeq >, 71
GlobalEvent, 71	GlobalEvent $<$ TSeq $>$ , 72
epiworld::LFMCMC< TData >, 72	GlobalEvent< TSeq >, 71
epiworld::Model < TSeq >, 75	GlobalEvent, 72
add_globalevent, 83	
clone_ptr, 83	include/epiworld/agent-meat-state.hpp, 191
events_add, 84	initial_states
events run, 84	epiworld::epimodels::ModelSEIR< TSeq >, 108
initial_states_fun, 87	epiworld::epimodels::ModelSEIRCONN< TSeq >
load_agents_entities_ties, 85	114
rbinomd, 87	epiworld::epimodels::ModelSEIRDCONN< TSeq
reset, 85	>, 128
rexpd, 87	epiworld::epimodels::ModelSIR< TSeq >, 133
rgammad, 87	epiworld::epimodels::ModelSIRCONN< TSeq >,
rlognormald, 88	138
rnormd, 88	epiworld::epimodels::ModelSIRD< TSeq >, 144
run_multiple, 85	ModelSEIR< TSeq >, 110
runifd, 88	ModelSEIRCONN < TSeq >, 117
set_agents_data, 86	ModelSEIRDCONN< TSeq >, 131
	ModelSIR< TSeq >, 135
set_name, 86	ModelSIRCONN< TSeq >, 141
time_elapsed, 88	ModelSIRD< TSeq >, 146
write_data, 86	initial states fun
epiworld::PersonTools< TSeq >, 168	epiworld::Model< TSeq >, 87
epiworld::Progress, 168	Model < TSeq >, 101
epiworld::Queue< TSeq >, 169	
epiworld::sampler, 31	LFMCMC< TData >, 73
make_sample_virus_neighbors, 31	load_agents_entities_ties
make_update_susceptible, 32	epiworld::Model< TSeq >, 85
sample_virus_single, 32	Model < TSeq >, 98
epiworld::SAMPLETYPE, 171	
epiworld::Tool < TSeq >, 172	make_sample_virus_neighbors
epiworld::Tools< TSeq >, 175	epiworld::sampler, 31
epiworld::Tools_const< TSeq >, 177	sampler, 34
epiworld::UserData < TSeq >, 178	make_update_susceptible
UserData, 180	epiworld::sampler, 32
epiworld::vecHasher< T >, 182	sampler, 35
epiworld::Virus< TSeq >, 183	Model < TSeq >, 89
epiworld::Viruses< TSeq >, 187	add_globalevent, 97
epiworld::Viruses_const< TSeq >, 188	clone_ptr, 97
Event	events_add, 98
epiworld::Event< TSeq >, 67	events_run, 98
Event< TSeq >, 69	initial_states_fun, 101
• •	miliai_states_tun, 101

INDEX 195

load_agents_entities_ties, 98	ModelSIRD
rbinomd, 101	epiworld::epimodels::ModelSIRD< TSeq >, 143
reset, 99	ModelSIRD< TSeq >, 145
rexpd, 101	ModelSIRD< TSeq >, 144
rgammad, 101	initial states, 146
rlognormald, 102	ModelSIRD, 145
rnormd, 102	ModelSIRDCONN
run_multiple, 99	epiworld::epimodels::ModelSIRDCONN< TSeq >,
runifd, 102	148
set_agents_data, 100	ModelSIRDCONN< TSeq >, 150
set_name, 100	ModelSIRDCONN< TSeq >, 149
time_elapsed, 102	clone_ptr, 151
write_data, 100	ModelSIRDCONN, 150
ModelDiffNet< TSeq >, 104	reset, 151
ModelSEIR< TSeq >, 109	ModelSIRLogit
initial_states, 110	epiworld::epimodels::ModelSIRLogit< TSeq >,
update_exposed_seir, 111	153
update_infected_seir, 111	ModelSIRLogit< TSeq >, 156
ModelSEIRCONN	ModelSIRLogit < TSeq >, 155
epiworld::epimodels::ModelSEIRCONN< TSeq >,	clone_ptr, 157
113	ModelSIRLogit, 156
ModelSEIRCONN< TSeq >, 116	reset, 157
ModelSEIRCONN< TSeq >, 115	ModelSIS< TSeq >, 159
clone_ptr, 116	ModelSISD< TSeq >, 162
initial_states, 117	ModelSURV< TSeq >, 166
ModelSEIRCONN, 116	
reset, 117	Network< Nettype, Nodetype, Edgetype >, 168
ModelSEIRCONNLogit	
ModelSEIRCONNLogit< TSeq >, 119	operator()
ModelSEIRCONNLogit < TSeq >, 118	Agent< TSeq >, 44
ModelSEIRCONNLogit, 119	epiworld::Agent< TSeq >, 48
ModelSEIRD	operator==
epiworld::epimodels::ModelSEIRD< TSeq >, 121,	DataBase< TSeq >, 55, 56
122	epiworld::DataBase< TSeq >, 60
ModelSEIRD< TSeq >, 124, 125	Develop Tools (TOos) 100
ModelSEIRD< TSeq >, 123	PersonTools < TSeq >, 168
ModelSEIRD, 124, 125	Progress, 169
update_exposed_seir, 125	Queue < TSeq >, 170
ModelSEIRDCONN	44040 (1004), 170
epiworld::epimodels::ModelSEIRDCONN< TSeq	RandGraph, 171
>, 127	rbinomd
ModelSEIRDCONN< TSeq >, 130	epiworld::Model < TSeq >, 87
ModelSEIRDCONN< TSeq >, 129	Model < TSeq >, 101
clone_ptr, 131	read_edgelist
initial_states, 131	AdjList, 40
ModelSEIRDCONN, 130	epiworld::AdjList, 41
reset, 132	record_virus
ModelSIR< TSeq >, 134	
·	epiworld::DataBase< TSeq >, 60
initial_states, 135 ModelSIRCONN	reproductive_number
	DataBase< TSeq >, 56
epiworld::epimodels::ModelSIRCONN< TSeq >, 137	epiworld::DataBase< TSeq >, 61
ModelSIRCONN< TSeq >, 140	reset
•	epiworld::epimodels::ModelSEIRCONN< TSeq >,
ModelSIRCONN < TSeq >, 139	114
clone_ptr, 141	epiworld::epimodels::ModelSEIRDCONN< TSeq
initial_states, 141	>, 128
ModelSIRCONN, 140	epiworld::epimodels::ModelSIRCONN< TSeq >,
reset, 141	138

196 INDEX

epiworld::epimodels::ModelSIRDCONN< TSeq >, 149			epiworld::epimodels::ModelSEIR< TSeq >, 108 epiworld::epimodels::ModelSEIRD< TSeq >, 122		
epiworld::epimodels::ModelSIRLogit<	TSeq	>,	ModelSEIR< TSeq >, 111 ModelSEIRD< TSeq >, 125		
epiworld::Model < TSeq >, 85			update_infected_seir		
Model < TSeq >, 99			epiworld::epimodels::ModelSEIR< TSeq >, 108		
ModelSEIRCONN< TSeq >, 117			ModelSEIR< TSeq >, 111		
•			UserData		
ModelSEIRDCONN < TSeq >, 132					
ModelSIRCONN < TSeq >, 141			epiworld::UserData < TSeq >, 180		
ModelSIRDCONN < TSeq >, 151			UserData < TSeq >, 181		
ModelSIRLogit< TSeq >, 157			UserData < TSeq >, 180		
rexpd			UserData, 181		
epiworld::Model < TSeq >, 87			yeal lachar < T > 100		
Model < TSeq >, 101			vecHasher< T >, 182		
rgammad			Virus < TSeq >, 185		
epiworld::Model < TSeq >, 87			Viruses< TSeq >, 188		
Model < TSeq >, 101			Viruses_const< TSeq >, 189		
rlognormald			write data		
epiworld::Model< TSeq >, 88			write_data		
Model < TSeq >, 102			epiworld::Model < TSeq >, 86		
rnormd			Model < TSeq >, 100		
epiworld::Model < TSeq >, 88					
Model < TSeq >, 102					
run_multiple					
epiworld::Model < TSeq >, 85					
Model < TSeq >, 99					
runifd					
epiworld::Model< TSeq >, 88 Model< TSeq >, 102					
sample_virus_single					
epiworld::sampler, 32					
sampler, 35					
sampler, 34					
make_sample_virus_neighbors, 34					
make_update_susceptible, 35					
sample_virus_single, 35					
SAMPLETYPE, 172					
set_agents_data					
epiworld::Model < TSeq >, 86					
Model < TSeq >, 100					
set_name					
epiworld::Model < TSeq >, 86					
Model < TSeq >, 100					
swap_neighbors					
Agent< TSeq >, 45					
epiworld::Agent< TSeq >, 48					
Kara alaman					
time_elapsed					
epiworld::Model < TSeq >, 88					
Model < TSeq >, 102					
Tool< TSeq >, 173					
Tools < TSeq >, 176					
Tools_const< TSeq >, 177					
transition_probability					
DataBase < TSeq >, 57					
epiworld::DataBase< TSeq >, 61					
update_exposed_seir					