Computational Physics (PHYS514) Final Project

Mehmet Eren Erken Koç University

Newton

This part gives calculations of the structures of various types of stars in Newtonian gravity, general relativity (GR), and alternative theories of gravity which try to surpass GR.

1 From the Stellar Structure Equations to the Lane–Emden Equation

1.1 Stellar Structure in Newtonian Gravity

We start with the standard Newtonian equations for hydrostatic equilibrium in a spherically symmetric star:

1. Mass Continuity:

$$\frac{dm}{dr} = 4\pi r^2 \rho(r),$$

2. Hydrostatic Equilibrium:

$$\frac{dp}{dr} = -\frac{Gm(r)\rho(r)}{r^2}.$$

where:

• m(r): mass enclosed within radius r,

• $\rho(r)$: mass density,

• p(r): pressure,

• G: gravitational constant.

1.2 Polytropic Equation of State

We then close the system using a polytropic equation of state:

$$p = K\rho^{\gamma} = K\rho^{1+\frac{1}{n}},$$

where:

- K: constant related to the microphysics of the stellar material,
- n: polytropic index,
- $\gamma = 1 + \frac{1}{n}$: adiabatic index.

1.3 Dimensionless Variables

To simplify the equations, we introduce dimensionless variables (e.g., Lane–Emden variables):

$$\theta = \left(\frac{\rho}{\rho_c}\right)^{1/n}, \quad \xi = \frac{r}{r_0},$$

where:

- ρ_c : central density,
- $r_0 = \sqrt{\frac{(n+1)K\rho_c^{1/n-1}}{4\pi G}}$: scaling factor for radius.

Substituting $\rho(r) = \rho_c \theta^n(\xi)$ into the equations and using r_0 , we transform the ODEs into the Lane–Emden equation.

1.4 The Lane–Emden Equation

The final result of this procedure is the Lane-Emden equation of index n:

$$\boxed{\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{d\theta}{d\xi} \right) + \theta^n = 0.}$$

The corresponding boundary conditions at the center $(\xi = 0)$ are: 1. $\theta(0) = 1$, since $\rho(0) = \rho_c$, 2. $\theta'(0) = 0$, for regularity at the origin.

Thus, the Lane-Emden problem is defined by:

$$\begin{cases} \frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{d\theta}{d\xi} \right) + \theta^n = 0, \\ \theta(0) = 1, \quad \theta'(0) = 0. \end{cases}$$

1.5 Series Expansion at the Center

We verify the regularity condition near $\xi=0$ by performing a power-series expansion. Assume:

$$\theta(\xi) = 1 + a_2 \xi^2 + a_4 \xi^4 + \dots$$

Plugging this into the Lane–Emden equation yields the coefficients a_2, a_4, \ldots A calculation from Newton.ipynb part A gives:

$$\theta(\xi) = 1 - \frac{1}{6}\xi^2 + \frac{n}{120}\xi^4 - \cdots,$$

confirming $\theta'(0) = 0$.