# Johns Hopkins Engineering

#### Module 1: Boolean & Digital Logic

EN605.204 Computer Organization



#### Introduction

- How do bits change/flow through digital circuits?
- What is Boolean logic?
- How do digital circuits implement Boolean logic?

#### What is a "bit"?

- Computer circuits are based on Boolean algebra
- Boolean algebra operates on 1's and 0's
- Claude Shannon showed the relationship between Boolean algebra and digital circuits in 1930's

## Logical NOT

- Takes in a single bit as input and negates ("flips") it
- Can be denoted using the ~ or ¬ character

| Input (X) | Output (¬X) |  |
|-----------|-------------|--|
| 0         | 1           |  |
| 1         | 0           |  |

## Logical OR

- Takes two bits as input and outputs a 1 if either input was a 1
- Can be denoted using the V, U, or + character

| Input (X, Y) |   | Output (X∨Y) |  |
|--------------|---|--------------|--|
| 0            | 0 | 0            |  |
| 0            | 1 | 1            |  |
| 1            | 0 | 1            |  |
| 1            | 1 | 1            |  |

## Logical AND

- Takes two bits as input and outputs a 1 if both inputs were 1
- Can be denoted using the ∧, ∩, or \* character

| Input | (X, Y) Output (X∧Y) |   |  |
|-------|---------------------|---|--|
| 0     | 0                   | 0 |  |
| 0     | 1                   | 0 |  |
| 1     | 0                   | 0 |  |
| 1     | 1                   | 1 |  |

## Logical XOR

- Two bits as input and outputs a 1 if exactly one input was a 1
- Can be denoted using the ⊗ character

| Input | t (X, Y) Output (X⊗Y) |   |  |
|-------|-----------------------|---|--|
| 0     | 0                     | 0 |  |
| 0     | 1                     | 1 |  |
| 1     | 0                     | 1 |  |
| 1     | 1                     | 0 |  |

## Logical NOR

Two bits as input and outputs a 1 if no inputs were a 1

| Input (X, Y) |   | Output ¬(X∨Y) |  |
|--------------|---|---------------|--|
| 0            | 0 | 1             |  |
| 0            | 1 | 0             |  |
| 1            | 0 | 0             |  |
| 1            | 1 | 0             |  |

## Logical NAND

Two bits as input and outputs a 1 if at least 1 bit was a 0

| Input (X, Y) |   | , Y) Output ¬(X∧Y) |  |
|--------------|---|--------------------|--|
| 0            | 0 | 1                  |  |
| 0            | 1 | 1                  |  |
| 1            | 0 | 1                  |  |
| 1            | 1 | 0                  |  |

# Logic Gates



#### Combinational Logic

- Computer logic is implemented using physical "gates"
- Gates can be strung together to build more complex logic

- Example: AND(OR(W, X), OR(Y, Z))
  - Input: {0, 0, 0, 1}
  - = AND(OR(0, 0), OR(0, 1))
  - = AND(0, 1)
  - $\bullet$  = 0



#### Universal Logic Gates

NOR and NAND gates are "universal"; they can simulate any

logical operation



# Laws of Boolean Logic

| Input (X, Y)    | Output ¬(X∧Y)                                                                                             |          |
|-----------------|-----------------------------------------------------------------------------------------------------------|----------|
| Identity        | X∧1 = X                                                                                                   | X∨0 = X  |
| Complementation | X∧¬X = 0                                                                                                  | X∨¬X = 1 |
| Double Negation | ¬(¬X) = X                                                                                                 |          |
| Idempotent      | X∧X = X                                                                                                   | XvX = X  |
| Dominance       | X∧0 = 0                                                                                                   | X¬1 = 1  |
| Commutative     | $X \wedge Y = Y \wedge X$                                                                                 |          |
| Associative     | $X \wedge Y \wedge Z = X \wedge (Y \wedge Z) = (X \wedge Y) \wedge Z$                                     |          |
| Distributive    | $X \land (Y \lor Z) = (X \land Y) \lor (X \land Z)$<br>$X \lor (Y \land Z) = (X \lor Y) \land (X \lor Z)$ |          |

#### DeMorgan's Law

- (X OR Y) and (X AND Y) are called "propositions"
- ¬(X OR Y) = ¬X AND ¬Y
  - The proposition X OR Y fails if X and Y are false
  - Ex: "I don't like the Cowboys (X) or Patriots (Y)" = "I don't like the Cowboys (X) and I don't like the Patriots (Y)."
- $\neg (X \text{ AND } Y) = \neg X \text{ OR } \neg Y$ 
  - The proposition fails if either X is false or Y is false
  - Ex: "I don't want a sandwich unless it has both ham (X) and cheese (Y)." = "I don't want a sandwich if it doesn't ham (X) or if it doesn't have cheese (Y)."