핵심 기술 조사 및 실험

MUD

Meeting Using Deep Learning

201600599 김아연 2019.09.24

CONTENTS

- 01 Part 소개
- 02 기술 소개
- 03 실험
- 04 향후 계획

1.Part 소개

원시 텍스트 문서 주제 분류

- 딥러닝을 이용하여 문서의 주제를 자동으로 분류하는 시스템을 구현합니다.
- STT를 통해 생성된 하나의 원시 텍스트에는 한 가지 이상의 주제가 담겨있습니다.
- 문서 내 담겨있는 주제의 개수를 몰라도 자동으로 여러 주제로 분류해줍니다.

머신러닝과 딥러닝

■ 머신러닝

- 프로그래머가 룰을 정해주던 기존의 방식과 달리 컴퓨터가 직접 물을 학습합니다.
- 즉 , 입력 데이터를 의미 있는 데이터로 변환, 유용한 표현을 학습하는 것입니다.
- 사람의 감독하에 훈련하는 것인지 그렇지 않은 것인지에 따라 지도학습과 비지도학습으로 구분됩니다.

머신러닝과 딥러닝

▪ 딥러닝

- 딥러닝은 연속된 충(layer)을 쌓아 올려 신경망이라는 모델을 사용해 학습합니다.
- **학습**은 입력을 타겟에 매핑하기 위해 모든 층의 **가중치 값을 찾는 것**입니다.
- 예측(Y')과 실제 타겟(Y)의 차이를 측정하기 위해 손실함수를 사용합니다.
- 훈련 반복을 통해 손실값을 최소화하는 것을 목적으로 한다.

RNN(Recurrent Neural Network)

- 입력과 출력을 시퀀스 단위로 처리하는 모델입니다.
- 이전의 데이터가 그 다음 데이터 출력에 영향을 줍니다.
- 음성인식, 언어 모델링, 번역, 이미지 캡셔닝 등 여러 분야에서 성과를 내고 있습니다.
- 바닐라 RNN은 비교적 짧은 시퀀스(sequence)에 대해서만 효과를 보이는 단점이 있습니다.

LSTM(Long Short-Term Memory)

- RNN의 장기 의존성 문제를 해결합니다.
- RNN의 hidden state에 cell state를 추가한 구조입니다.
- LSTM은 은닉층의 메모리 셀에 **입력 게이트, 망각 게이트, 출력 게이트**를 추가하여 불 필요한 기억을 지우고, 기억해야할 것들을 정합니다.

■ 케라스

<작업 흐름>

- 1. 입력 텐서와 타깃 텐서로 이루어진 훈련 데이터를 정의
- 2. 입력과 타깃을 매핑하는 층으로 이루 어진 **네트워크(모델)**를 정의
- 3. 손실 함수, 옵티마이저, 모니터링하기 위한 **측정 지표를 선택**하여 학습 과 정을 설정
- 4. 훈련 데이터에 대해 모델의 fit() 메서 드를 **반복적으로 호출**
- 케라스는 딥러닝 모델을 간편하게 만들고 훈련시킬 수 있는 파이썬을 위한 **딥러닝 프레임워크**이다.
- 사용하기 쉬운 API를 가지고 있어 딥러닝 모델의 프로토타입을 빠르게 만들 수 있다.
- 케라스로 작성한 코드는 아무런 변경 없이 언제든지 백엔드를 바꿀 수 있다.

예제 - 로이터 뉴스 분류

1. 데이터 준비: <로이터 뉴스>

1.1 훈련용 뉴스 기사: 8982 / 테스트용 뉴스 기사: 2246/ 카테고리: 46 1.2 단어 사용, 문서 길이 지정: max_word = 1000, max_len = 100

2. LSTM모델 생성

```
model = Sequential()
model.add(Embedding(1000, 120))
model.add(LSTM(120))
model.add(Dense(46, activation='softmax'))
```

3. 모델 컴파일

```
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
```

4. 모델 반복 학습

■ 적용

1. 사용한 데이터: <네이버지식백과>

1.1 훈련용: 80000 / 테스트용: 20000/ 카테고리: 5

	타겟	1	2	₃ 입력	4
0	기술공학	기계자동차금속	백 도어 내장 공구 박스	백 도어 설치 장통 말 공구 진열 방식 수납 때문 미관 사용 상의 장점	0
1	기술공학	컴퓨터통신IT	재핑 효과 [zapping effect, -效果]	채널 중간 채널 시청률 현상 재핑 이란 방송 프로그램 시작 전후 노출 광고 피 위해	0
2	문화예술	미술	경매 외에는 어떤 미술시장이 있나	미술관 달리 화랑 회사 그림 위 목적 전시 곳 돈 주머니 미술품 쇼핑 위해 화랑 매	1
3	문화예술	음악	약 [籥]	약 단소 세로 취구 입김 불어 구멍 개 공 손가락 여 구멍 개 예종 수용 아악 통해	1
4	인문과학	인문과학 일반	청유형 문장	말 이 이 행동 요청 문장 말 문장 끝 종결 어미 자기 생각 느낌 이 여러 가지 방	2

- 1.2 입력 데이터
 - 명사만 사용
 - 불용어 지정: 것,이,그,수,등....
- 1.3 단어 사용, 문서 길이 지정 max_word = 5000, max_len = 500

■ 적용

3. 결과

1111

Out[506]: array([3])

```
print("정확도 : %.4f" % (model.evaluate(X_test, y_test)[1]))

20000/20000 [========] - 25s 1ms/step
정확도 : 0.8083

#L_category_num = {'기술공학': 0, '문화예술': 1, '인문과학': 2, '역사문화': 3, '사회과학': 4}

str = ['만드로이드 스마트폰 갤럭시 새롭게 탄생 아이폰 쓰레기 애플 컴퓨터 보안 장비 보안 이슈 블록제인 안드로이드 스마트폰 갤럭시 새롭게 탄생
Out[495]: arra ([0], dtype=int64) 기술공학

str = ['''조선시대 일제강점기 한국사 역사 고구려 신라 백제
```

dtype=int64) 역사문화

4. 향후 계획

■ 적용 과정

4. 향후 계획

■ 고려할 점

1. 좋은 품질의 데이터셋 구하기

 회의 데이터는 구하기가 쉽지 않다. 카테고리 분류가 많은 지식백과를 크 롤링하여 데이터로 사용하려 하였지만 데이터가 좋지 않다고 판단하였다.

2. 문단 단위 지정

회의는 구어체이다 보니 문단 지정이 되어있지 않다. 어떠한 기준으로 문단을 나누어야 좋은 결과가 나올지 실험을 계속 해보아야한다.

3. 학습 전 데이터 전처리

 형태소 분석기는 어떤 것을 사용할 지, 단어는 어떤 품사를 사용할 지, 불용어 지정을 어떻게 해야할 지 생각해보아야한다.

4. 추가 실험을 통해 더 좋은 신경망 모델 생성

- 더 크거나 작은 층을 사용하여 보며 보다 좋은 성능을 내는 모델을 생성한다.

5. 출처 및 참고 문헌

출처

	항목	출처
1	그림1	https://devblog.zum.com/279
2	모두의 딥러닝	https://thebook.io/006958/
3	케라스 창시자에게 배우는 딥러닝	https://thebook.io/006975/
4	모두를 위한 머신러닝/딥러닝 강의	http://hunkim.github.io/ml/
5		
6		
7		
9		
10		

감사합니다