COMBINING NLP AND KNOWLEDGE-BASED METHODS

A practical perspective

Daniel Vila Suero recogn.ai @dvilasuero

KCAP 2017 | Austin | Texas

Whoam

- Did my PhD thesis at Ontology Engineering Group, UPM 2016 on ontology-based data access for semi-structured data.
- Founded recogn.ai in 2017
- spaCy contributor and developer since spaCy 1.X. Contributed training code and Spanish Models (embeddings, NER, Parsing, POS)

Outline

- An introduction to NLP tasks and modern tooling.
- From named entity recognition to entity linking.
- Distributed word representations in practice: finding, training and using word vectors.
- Knowledge graph embeddings.

NLP tasks

And modern tooling

Typical workflow

- Tokenize text
- Split into sentences: sentence boundary detection
- Annotate sentences, tokens and spans: lemmas, part-of-speech tags, named entities, text categorization, etc.
- Parse syntax: dependency parsing
- Extract structured data: triples, slots, intent, etc.

Typical issues

- Need to use **different tools for different tasks**: sentence segmentation, lemmatization, POS, etc.
- Difficult integration across tools: pipelines.
- Training new models is a cumbersome process.

NLP toolkits

	SPACY	SYNTAXNET	NLTK	CORENLP
Programming language	Python	C++	Python	Java
Neural network models	S		8	
Integrated word vectors		8	8	8
Multi-language support	Ø			S
Tokenization				
Part-of-speech tagging	⊘		Ø	S
Sentence segmentation				
Dependency parsing	S		8	
Entity recognition		8	Ø	
Coreference resolution	8	8	8	

Other tools: IXApipes, Freeling, Gate, etc.

Source: https://spacy.io/usage/facts-figures#benchmarks

spaCy

- High quality documentation, focus on production (and research)
- Good integration with deep learning libraries (e.g., PyTorch, AllenNLP).
- Training and fine-tuning new models is a not an after-thought.

Tokenization

```
import spacy
text = "This is a sentence. And this is another sentence."
nlp = spacy.load('en')
doc = nlp(text)
for token in doc:
    print(token, token.pos_)
>>
  This DET
  is VERB
  a DET
  sentence NOUN
  . PUNCT
  •••••
```

Sentence boundary detection

```
import spacy
text = "This is a sentence. And this is another sentence."
nlp = spacy.load('en')
doc = nlp(text)
for sent in doc.sents:
    print([(token, token.pos_) for token in sent])
>>
  [(This, 'DET'), (is, 'VERB'), (a, 'DET'), (sentence, 'NOUN'), (., 'PUNCT')]
  [(And, 'CCONJ'), (this, 'DET'), (is, 'VERB'), (another, 'DET'), (sentence, 'NOUN'),
  (., 'PUNCT')]
```

Part-of-speech tagging and dependency parsing

```
import spacy
text = "This is a sentence. And this is another sentence."
nlp = spacy.load('en')
doc = nlp(text)
for token in doc:
    print(token, token.pos_, token.dep_, token.head)
>>
   This DET nsubj is
   is VERB ROOT is
   a DET det sentence
   sentence NOUN attr is
   . PUNCT punct is
```

Named Entity Recognition

```
import spacy
text = "Daniel Vila is visiting Austin, Texas"
nlp = spacy.load('en')
doc = nlp(text)
for ent in doc.ents:
    print(ent, ent.label_, [token.dep_ for token in ent])
>>
  Daniel Vila PERSON ['compound', 'nsubj']
  Austin GPE ['dobj']
  Texas GPE ['appos']
```

Hands-on

Get started with spaCy notebook

Custom components for knowledge-based methods

What and how?

1. How easy is to integrate custom components and pipelines?

Example: use dependencies tree for extracting subject-predicate-object triples

1. How easy is to integrate custom components and pipelines?

Example: use NER annotations to perform entity linking

2. Is there a consistent data model to annotate at different levels?

Annotations at different levels: Tokens, Spans, Doc

Example: add a relation extraction classifier and keep annotating, using span-level entity annotations and token-level dependency annotations

3. How easy is to fine-tune existing models or train new ones?

Other example: DEPS/POS for new languages using Universal Dependencies

How? Pipelines

```
import spacy

text = "Daniel Vila is visiting Austin, Texas"

nlp = spacy.load('en')

print(nlp.pipe_names) # Default processing components for en model

>>

['tagger', 'parser', 'ner']
```

How? Adding components

```
import spacy
def custom_processor(doc):
   # Do something with doc here: add annotations, merge spans, ...
    return doc
nlp = spacy.load('en')
nlp.add_pipe(custom_processor, name='silly_processor', first=True)
print(nlp.pipe_names)
  ['tagger', 'parser', 'ner', 'silly_processor']
```

How? Adding stateful components

```
class CustomComponent(object):
    name = 'still silly'
    def ___init___(self, config):
        # We can initialize this with settings
        self.config = config
    def __call__(self, doc):
        # Do things
        return doc
nlp = spacy.load('en')
custom_component = CustomComponent({})
nlp.add_pipe(custom_component)
print(nlp.pipe_names)
                                 >> ['tagger', 'parser', 'ner','still_silly']
```

How? Adding attributes (labels, annotations..)

```
from spacy.tokens import Doc, Span, Token
experiment_keywords = ['experiment', 'results', 'validation', 'experimental']
is_experiment_keyword =
   lambda token: token.lower_ in experiment_keywords
is experiment part =
   lambda text: any([token.lower_ in experiment_keywords for token in text])
Token.set_extension('is_experiment_keyword', getter=is_experiment_keyword)
Doc.set_extension('has_experiment_part', getter=is_experiment_part)
Span.set_extension('is_experiment_part', getter=is_experiment_part)
```

How? Adding attributes (labels, annotations..)

```
doc = nlp(u"This section presents the experimental results.")
print(doc._.has_experiment_part)
print(doc[4:5]._.is_experiment_part)
print(doc[1:2]._.is_experiment_part)
>> True, True, False
```

Detecting and disambiguating entities

Hands on: From entity recognition to entity linking

Basic idea

Create a **custom entity linking component** consuming NER annotations and extending them with URIs to LOD entities.

Basic steps

- Init the custom entity linking component with the service URL.
- ▶ **Get entity annotations** from builtin NER component.
- Call the service with NER annotations.
- Get potential links from service.
- Annotate spaCy Doc and Spans accordingly

Entity Linking highlighted methods

- Babelfy:
 - ▶ Entity Linking meets Word Sense Disambiguation: a Unified Approach. (Moro et al., TACL 2014)
 - Joint identification of senses and entities in BabelNet
- Agdistis: Best paper award ISWC'14, new version to be presented at KCAP-2017!
 - ▶ AGDISTIS Graph-Based Disambiguation of Named Entities using Linked Data (Usbeck et al. ISWC 2017)
 - MAG: A Multilingual, Knowledge-base Agnostic and Deterministic Entity Linking Approach (Moussallem et al. KCAP 2017)
 - Multilingual, knowledge-based agnostic (DBpedia, Wikidata)

Hands-on

Using AGDISTIS services for linking entities to DBpedia

- Check lib/linkers.py
- Use AgdistisEntityLinker
- ▶ Get similarities across surface forms of linked entities: which is the most dissimilar?

Custom linker design

```
from spacy.tokens import Doc, Span, Token
class AgdistisEntityLinker(object):
    name = 'agdistis linker'
    def __init__(self, lang='en', param='text'):
        # Setup language and service
        # Setup custom extension attributes for Span and Doc
    def call (doc):
        # Use NER annotations from doc.ents to build endpoint query
        # Call service endpoint
        # Add entity linking annotations to doc and ent Spans
        return doc
```


Distributed word representations

Intuitions and practice

Components

word2vec

- Distributed representations of words and phrases and their compositionality (Mikolov et al. NIPS 2013)
- Widely used C implementation and pre-trained vectors
- Two training methods:
 - Negative sampling
 - Hierarchical softmax
- Two context representations:
 - Continuous Bag of Words (CBOW)
 - Skip-grams

word2vec

- Represent each word as *d* dimensional vector.
- Represent each context as *d* dimensional vector.
- Init all vectors to random weights.
- Arrange vectors in two matrices.

word2vec: SGNS

- while(text):
 - Extract a window:

```
Turing was [educated at Hazelhurst Preparatory School]

C1 C2 W C3 C4
```

Try setting the vector values such that:

```
p(wc_1) + p(wc_2) + p(wc_3) + p(wc_4) is high
```

Create a corrupt example by picking a random word w'

```
Turing was [educated at banana Preparatory School]

C1 C2 W' C3 C4
```

Try setting the vector values such that:

```
p(w'c_1) + p(w'c_2) + p(w'c_3) + p(w'c_4) is low
```

word2vec

- Result intuitions:
 - wc for good word-context pairs is high
 - wc for bad word-context pairs is low
 - Words that share many contexts get close to each other
 - Contexts that share many words get close to each other

Interesting reads

- Similar to Distributional lexical semantics methods:
 - Neural Word Embeddings as Implicit Matrix Factorization (Levy and Goldberg, NIPS 2014):
 - SGNS very similar to factorizing traditional word-context PMI matrix.
- Big impact of algorithmic and hyper-parameter choices:
 - Improving Distributional Similarity with Lessons Learned from Word Embeddings (Levy, Goldberg, Dagan, ACL 2015)
- Sebastian Ruder's blog post series "On Word Embeddings"

Other methods

- ▶ GloVe:
 - ▶ Glove: Global vectors for word representation (Pennington, Socher, Manning, ACL 2014)
 - Fast and implementation + pre-trained English vectors available
- Facebook's Fasttext:
 - Enriching Word Vectors with Subword Information (Bojanowski, Grave, Joulin, Mikolov, 2016)
 - Fast and implementation + pre-trained multi-language vectors available
- Google's Swievel
 - Swivel: Improving Embeddings by Noticing What's Missing (Shazeer, et al. 2016)
 - Tensorflow implementation available

Enriching word representations

Using external knowledge

Enriching representations with external knowledge

Introduce knowledge from external sources to enforce external semantics within learned word representations

Enriching representations with external knowledge

- Two types of approach (Joint learning and retrofitting):
- 1. Modify training process and objective: Jointly learning word representations and semantic relations together.
 - ▶ Improving lexical embeddings with semantic knowledge (Yu and Dredze, ACL 2014). Uses PPDB and Wordnet and modifies word2vec training with a linear combination of objectives (CBOW + RCM). Code available at https://github.com/Gorov/JointRCM
 - Rc-net: A general framework for incorporating knowledge into word representations (Xu et al. 2014). Relational and categorical knowledge.

RC-net

Figure 1: Knowledge graph contains two forms of knowledge: relational knowledge and categorical knowledge.

Rc-net: A general framework for incorporating knowledge into word representations (Xu et al. 2014)

RC-net

Figure 4: The architecture of RC-NET. The objective is to learn word representations and relation representations based on text stream, relational knowledge, and categorical knowledge.

Rc-net: A general framework for incorporating knowledge into word representations (Xu et al. 2014)

Enriching representations with external knowledge: Retrofitting

- Retrofitting Word Vectors to Semantic Lexicons (Faruqui et al, 2011)
- Adjust learned word vectors with Semantic Lexicons
- Advantage: Applicable to word vectors trained with any other method.
- Intuition: word reps learned are still close to each other but also close to neighbours in semantic lexicon.
- Code available: https://github.com/mfaruqui/retrofitting

Enriching representations with external knowledge

Retrofitting Word Vectors to Semantic Lexicons (Faruqui et al, 2011)

Retrofitting

```
def retrofit(wordVecs, lexicon, numIters):
  newWordVecs = deepcopy(wordVecs)
  wvVocab = set(newWordVecs.keys())
  loopVocab = wvVocab.intersection(set(lexicon.keys()))
  for it in range(numIters):
    # loop through every node also in ontology (else just use data estimate)
    for word in loopVocab:
      wordNeighbours = set(lexicon[word]).intersection(wvVocab)
      numNeighbours = len(wordNeighbours)
      #no neighbours, pass - use data estimate
      if numNeighbours == 0:
        continue
      # the weight of the data estimate if the number of neighbours
      newVec = numNeighbours * wordVecs[word]
      # loop over neighbours and add to new vector (currently with weight 1)
      for ppWord in wordNeighbours:
        newVec += newWordVecs[ppWord]
      newWordVecs[word] = newVec/(2*numNeighbours)
  return newWordVecs
```

Using word vectors

What, where and how

Training new vectors

- C libraries:
 - GloVe.
 - Facebook's Fasttext.
- ▶ Gensim: Python library for unsupervised methods over large corpora
 - Includes bindings and re-implementations of most common algorithms
 - Extra tooling for visualization, corpus management, evaluation.

Where to find raw text

- N-gram counts and language models from the CommonCrawl (LREC 2014):
 - Deduped multiple langs: http://data.statmt.org/ngrams/deduped/
- CommonCrawl:
 - LanguageCrawl: A Generic Tool for Building Language Models Upon Common-Crawl, (Szymon Roziewski, Wojciech Stokowiec, LREC 2016)

Where to find vectors

- > spaCy medium and large models ship with pre-trained vectors.
- Fasttext trained on Wikipedia for 294 languages:
 - https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md

Tutorial: Using fastText vectors for tweet classification

Embedding knowledge graphs

Introduction

Introduction

- Similar intuition as word2vec
- Embed a knowledge graph in a latent space, where:
 - ▶ Entities and relations are represented as continuous vectors and similar entities/relations are close to each other.
- Overview of methods:
 - A Review of Relational Machine Learning for Knowledge Graphs (Nickel et al. 2015)

- ▶ **Link prediction** for knowledge base completion: Predict probability of missing facts.
- ▶ Automatic knowledge base construction: Combined with textbased information extraction and relation extraction to build KGs from raw text.
- Others: Entity resolution, link-based clustering, question answering

Example application

Knowledge Vault: A Web-Scale Approach to Probabilistic Knowledge Fusion (Dong et al. KDD 2014)

Fig. 7. Architecture of the Knowledge Vault.

Methods

Method	W	N18	FB15k	
	raw	filtered	raw	filtered
TransE (Bordes et al., 2013)	75.4	89.2	34.9	47.1
Rescal (Nickel et al., 2012)	-	92.8	-	58.7
Fast-TransR (Lin et al., 2015)	81.0	94.6	48.8	69.8
HolE (Nickel et al., 2016)	-	94.9	-	73.9
TransE++ (Nickel et al., 2016)	-	94.3	-	74.9
Fast-TransD (Lin et al., 2015)	78.5	91.9	49.9	75.2
ReverseModel (Dettmers et al., 2017)	-	96.9	-	78.6
HolE+Neg-LL (Trouillon and Nickel, 2017)	-	94.7	-	82.5
Complex (Trouillon et al., 2017)	-	94.7	-	84.0
R-GCN (Schlichtkrull et al., 2017)	-	96.4	-	84.2
ConvE (Dettmers et al., 2017)	_	95.5	_	87.3
DistMul (Kadlec et al., 2017)	-	94.6	-	89.3
Ensemble DistMul (Kadlec et al., 2017)	-	95.0	-	90.4
IRN (Shen et al., 2016)	-	95.3	-	92.7
fastText - train	80.6	94.9	52.3	86.5
fastText - train+valid	83.2	97.6	53.4	89.9

Table 1: Raw and filtered Hit@10 on WN18 and FB15k. All the numbers are taken from their paper. Above, methods that should achieve better performance with a finer hyper-parameter grid, below, methods that were properly tuned. Higher the better.

Fast Linear Model for Knowledge Graph Embeddings (Joulin et al. AKBC WS-NIPS 2017)

TransE

- Inspired by word2vec
- Represent relations as translation in the embedding space:
 - Subject + Relation type ≈ object
- Training method: Negative sampling, corrupted triples.
- Translating Embeddings for Modeling Multi-relational Data (Bordes et al. NIPS 2013)Fast Linear Model for Knowledge Graph Embeddings

Implementations

- scikit-kge library by Nickel: https://github.com/mnick/scikit-kge
- ConvE (Convolutional 2D Knowledge Graph Embeddings) in PyTorch by Dettmers: https://github.com/TimDettmers/ConvE
- ▶ KGE-server (**V. Fernández Rico** Ontology Engineering Group), extends scikit-kge with:
 - Build train/test data from SPARQL queries
 - Scalable training with different methods (GloVE, TransE, etc.)
 - Index embedding vectors with Spotify Annoy for similarity endpoints.

KGE-server

≡ KGE-Webapp								
Datasets	Available da	Available datasets						
Γrain Algorithms								
Tasks								
	cancione Música de f	Add dataset						
	Musica de i	Dataset title						
		Dataset description						
					CANCEL	SUBMIT		

DATASET SERVICES

KGE-server

■ KGE-Webapp

Datasets

Train Algorithms

KGE-server

■ KGE-Webapp

Datasets

Train Algorithms

KGE-server

■ KGE-Webapp

Datasets

Train Algorithms

THANK YOU!

daniel@recogn.ai
@dvilasuero