Свободная энергия и интеллект

Интеллект из первых принципов

Новая научная революция

Механика (косная материя)

Н. Коперник

Свидетельства

Теория

А. Тьюринг

Д. Хинтон

К. Фристон

Математика интеллекта

Интеллект, как имманентное свойство сложных адаптивных систем

Что такое интеллект?

- Внутренняя мотивация поведения Потребность в достижении целей
- Способность к обучению Способность достигать разные цели

Скорость обучения достижения новых целей (скорость адаптации к новой обстановке)

Модель интеллекта: Reinforcement Learning

AFEHT:
$$a \leftarrow \pi(s) = \underset{a}{\operatorname{argmax}} Q(s, a)$$

Мир:
$$W(s,a) \rightarrow (r,s')$$

Ценности:
$$Q(s,a) \leftarrow \left\langle \sum_{t \geq 0} \gamma^t r_t \right\rangle_{\pi}$$

Ожидание будущих наград Награда

План

• Природа целесообразного поведения

Интеллект как имманентное свойство сложных адаптивных систем Свободная энергия как инструмент моделирования интеллекта

• Моделирование психики

Когнитивные переменные как модель «хорошего регулятора» Уравнения психодинамики — быстрая минимизация свободной энергии Уравнения обучения — медленная минимизация свободной энергии (RL)

• Уровни интеллекта

От интуитивного поведения — к рациональному мышлению От Model-free — к Model-based RL

Диссипативные системы

$$\dot{x} = f(x) + \xi(t)$$

Механика: простое адаптивное поведение

Интеллект: сложное адаптивное поведение

$$\mathcal{F}(t) \equiv \int dx \, p(x,t) [\ln p(x,t) - \ln p(x)]$$
$$= D(p(x,t)||p(x)) \ge 0$$

$$\dot{\mathcal{F}}(t) \le 0$$

 $\dot{x} = \Gamma \nabla \ln p(x) + \xi(t)$

Порождающая модель

Обучение – приобретение знаний

Uнmелnеkm — способность к обучению: $IQ = -\dot{\mathcal{F}}(t)$

Моделирование интеллекта

Интеллект
$$\longrightarrow$$
 $\mathcal{F}(t) = D\big(p(x,t)||p(x)\big) \geq 0$ (Свободная энергия)
$$\mathcal{F}(m) = D\big(q(x,m)||p(x)\big) \geq 0$$
 (Вариационная свободная энергия)
$$\dot{\mathcal{F}}(m) \leq 0$$
 обучения

 $\dot{\mathcal{F}}(t) \leq 0$

Мозг, как адаптивная система

w — состояние мира

s — показания сенсоров

a – действия актуаторов

m — состояние мозга

Тело для мозга — часть мира. Главная задача мозга — активное поддержание параметров тела в заданных пределах p(s)

– сенсомоторная граница

Мозг, как адаптивная система

W — состояние мира

s — показания сенсоров

a – действия актуаторов

m — состояние мозга

$$m$$
 – состояние мозга

$$\dot{x} = f(x) + \xi(t)$$
 \Rightarrow $\dot{m} = f_m(m,s) + \xi(t)$ Восприятие $\dot{a} = f_a(m,a) + \xi(t)$ Действия

у b − сенсомоторная граница

Два способа описания мозга

Когнитивные переменные $m{m}$

$$p(x) = p(w,b,m) = p(w|b)p(m|b)p(b)$$

Сложность сознания определяется сенсомоторным аппаратом

$$dim(\mathbf{M}) = dim(b) \ll dim(m)$$

Преодоление границы

$$m(b) \equiv \underset{m}{arg \max} p(m|b)$$
 Формирование сознания (бессознательно)

Отражение мира в сознании

Когнитивное состояние мозга m

 $M: m \leftrightarrow w$

Воспринимаемое состояние мира ${m w}$

Психодинамика

$$\dot{\boldsymbol{m}} = -\Gamma_{mm} \nabla_{m} \mathcal{F}(\boldsymbol{m}, b)$$

Свободная энергия

$$\mathcal{F}(\boldsymbol{m},b) = D(p(w|\boldsymbol{m})||p(w,b,\boldsymbol{m}))$$

Вариационная свободная энергия

$$\mathcal{F}(\boldsymbol{m},b) = D(q(w|\boldsymbol{m})||p(w,b,\boldsymbol{m}))$$

Вариационная модель мира

$$\min_{q} \mathcal{F}(\boldsymbol{m}, b) \Rightarrow q(w|\boldsymbol{m}) = p(w|\boldsymbol{m})$$

Психодинамика как байесовский вывод

$$\dot{\boldsymbol{m}} = -\Gamma_{mm} \nabla_{m} \mathcal{F}(\boldsymbol{m}, b)$$

$$\mathcal{F}(\mathbf{m}, b) = D(q(w|\mathbf{m})||p(w, b, \mathbf{m}))$$

$$= D(q(w|\mathbf{m})||p(w|b, \mathbf{m})p(b, \mathbf{m}))$$

$$= D(q(w|\mathbf{m})||p(w|b, \mathbf{m})) - \ln p(b, \mathbf{m})$$

$$\min_{q} \mathcal{F}(\boldsymbol{m}, b) \Rightarrow \mathcal{F}(\boldsymbol{m}, b) \rightarrow -\ln p(b, \boldsymbol{m}) \longleftarrow$$
 Evidence

$$\min_{q} \mathcal{F}(\boldsymbol{m}, b) \Rightarrow q(w|\boldsymbol{m}) \rightarrow p(w|b, \boldsymbol{m}) \qquad \longleftarrow \quad \textit{Posterior}$$

Когнитивный акт

$$p(x_t) = p(s_t, w_t | \mathbf{m}_t)$$
 $\mathbf{m}_t = \underset{m}{\operatorname{argmax}} p(m | s_{t-1})$

Обучение

$$\mathcal{F}(\boldsymbol{m}, s) = D(q(\boldsymbol{w}|\boldsymbol{m})||p(s, \boldsymbol{w}|\boldsymbol{m}))$$

$$\approx p(\boldsymbol{w}|s, \boldsymbol{m})$$

$$\mathcal{F}(\boldsymbol{m}_t, s_t) = \int d\boldsymbol{w} \ q(\boldsymbol{w}, s_t | \boldsymbol{m}) \ln \frac{q(\boldsymbol{w}, s_t | \boldsymbol{m})}{p(\boldsymbol{w}, s_t | \boldsymbol{m})}$$

$$\mathcal{F}(\boldsymbol{m}_t) = D(q(s, w|\boldsymbol{m}_t)||p(s, w|\boldsymbol{m}_t))$$

Чему учится мозг?

Чему учится мозг?

Новое знание при взаимодействии с миром

Риск отклонения от нормативных параметров

Reinforcement Learning

Пример: MountainCar (reward + exploration)

Tschantz A., et al. Reinforcement learning through active inference. arXiv preprint arXiv:2002.12636 (2020)

Ожидаемая свободная энергия — модель мышления

$$\mathcal{F}(\boldsymbol{m}) = D(q(s, w|\boldsymbol{m})||p(s, w|\boldsymbol{m}))$$

◆ Обучение на реальных ошибках

$$\tilde{\mathcal{F}}(m{m}_{0:T}) = Dig(q(s_{0:T}, w_{0:T} | m{m}_{0:T}) || p(s_{0:T}, w_{0:T} | m{m}_{0:T})ig)$$
 — Обучение на воображаемых ошибках

Рациональное поведение (цепочки воображаемых когнитивных актов)

Мышление – воображаемое взаимодействии с миром

Усиление интеллекта за счет воображения

Мышление – планирование поведения

$$ilde{\mathcal{F}}(\pi) = \sum_{t=0}^T \int \mathrm{d}w_t \mathrm{d}s_t q(w_t, s_t | \pi) \left[\ln q(w_t, s_t | \pi) - \ln p(w_t, s_t | \pi) \right]$$
 Воображаемая цепочка когнитивных состояний $= -\sum_{t=0}^T \left[ilde{r}_t(\pi) + ilde{u}_t(\pi) \right] = -Q(\pi)$ — Ценность стратегии $\pi = \mathbf{m}_{0:T}$ — Ожидаемый Ожидаемые новые знания (комбинаторный взрыв) $= -D$ — Ожидаемые новые знания $= D$ — Сильный интеллект: $T \to \infty$

Model-based vs model-free RL: Atari

Robine (2020) Discrete Latent Space World Models for Reinforcement Learning

Лестница Перла

Модели, основанные на:

- Наблюдениях (*see* models)
 Как коррелируют между собой наблюдаемые параметры?
- Интервенциях (*do* models)
 Что будет, если изменить условия эксперимента?
- Воображении (counterfactuals models)
 Что было бы, если бы мы поступили по-другому?

Statistics

Model-free RL

Model-based RL

Модели разных уровней несводимы друг к другу!

Выводы

- Теория интеллекта выводится из первых принципов
 - Знания информация, необходимая для адаптации (выживания)
 - Обучение накопление знаний
 - Интеллект присущая адаптивным системам способность к обучению
 - Любопытство присущее интеллекту стремление к обучению
 - Эмоции субъективная оценка качества адаптации
 - Мышление усиление интеллекта за счет воображения
- Искусственный интеллект
 - Будет обладать психикой со всеми ее атрибутами
 - Не похожей на нашу (сенсоры и актуаторы другой природы)

Глобальный интеллект

 10^{10} чел × 10^{11} FLOPS = 10^{21} FLOPS

× 1000 каждые 10 лет