Bài Tập (Các phép toán số học cho số nguyên)

---0Oo---

Các bài tập chương này được trích dẫn và dịch lại từ:

Computer Organization and Design: The Hardware/Software Interface, Patterson, D. A., and J. L. Hennessy, Morgan Kaufman, Third Edition, 2011.

Bảng 1:

Operation	Operand A	Operand B	Result indicating overflow
A + B	≥0	≥ 0	< 0
A + B	< 0	< 0	≥ 0
A – B	≥ 0	< 0	< 0
A – B	< 0	≥ 0	≥ 0

Bài số 1 Cho bảng sau với các số được viết trong hệ nhị phân

	A	В
a.	01000101	01011010
b.	01100110	00101100
c.	11001000	01100111
d.	11110111	11101101

- 1. Giả sử A và B là số dùng 8 bit lưu trữ, theo dạng số **có dấu** dùng bù hai. Tính A + B
- 2. Giả sử A và B là số dùng 8 bit lưu trữ, theo dạng số **có dấu** dùng bù hai. Tính A B
- 3. Giả sử A và B là số dùng 8 bit lưu trữ, theo dạng số **không dấu**. Tính A + B (chỉ tính cho c và d)

Đáp án:

1.

a.

$$A = 69_{(10)} = 0100 \ 0101$$

$$B = 90_{(10)} = 0101 \ 1010$$

$$A + B = 1001 \ 1111 - overflow$$

(do cộng hai số dương mà tổng là số âm – tương ứng hàng 1 trong bảng 1=> tràn)

Vậy: $A + B = 127_{(10)}$ và bị tràn

(Kiểm chứng lại: $69_{(10)} + 90_{(10)} = 159_{(10)}$ mà giá trị dương lớn nhất của số có dấu dùng 8 bits bù 2 là 127, rõ ràng phép toàn này bị tràn số)

b.

$$A = 102_{(10)} = 0110\ 0110$$

$$B = 44_{(10)} = 0010\ 1100$$

$$A + B = 1001\ 0010 - \text{overflow}$$

$$(do\ công\ hai\ số\ dương\ mà tổng\ là\ số\ am \Rightarrow \text{tràn})$$

$$Vây\ A + B = 127_{(10)}\ và\ bị\ tràn$$

$$(Kiểm\ chứng\ lại:\ 102_{(10)} + 44_{(10)} = 146\ mà\ giá\ trị\ dương\ lớn\ nhất\ của\ số\ có\ dấu\ dũng\ 8$$

$$bits\ bù\ 2\ là\ 127,\ rõ\ ràng\ phép\ toàn\ này\ bị\ tràn\ số)$$
c.
$$A = 1100\ 1000$$

$$B = 0110\ 0111$$

$$A + B = 0010\ 1111$$

$$(Tổng\ của\ một\ số\ dương\ và\ một\ số\ am\ không\ bao\ giờ\ xảy\ ra\ tràn)$$

$$Vây\ A + B = 0010\ 1111 = 47_{(10)}$$

$$(Kiểm\ chứng\ lại:\ A = 1100\ 1000 = -56_{(10)}$$

$$B = 0110\ 0111 = 103_{(10)}$$

$$A + B = -56_{(10)} + 103_{(10)} = 47_{(10)}$$
d.
$$A = 1111\ 0111$$

$$B = 1110\ 0100$$

$$(Tổng\ của\ 2\ số\ am\ ra\ kết\ quả\ là\ một\ số\ âm\ => không\ xảy\ ra\ tràn\ số)$$

$$Vây\ A + B = 1110\ 0100 = -28$$

$$(Kiểm\ chứng\ lại:\ A = 1111\ 0111 = -9_{(10)}$$

$$B = 1110\ 1101 = -19_{(10)}$$

$$B = 1110\ 1101 = -19_{(10)}$$

$$A + B = -9 + (-19) = -28_{(10)}$$
2.
a.
$$A = 69_{(10)} = 01000101$$

$$B = 90_{(10)} = 01010110$$

$$B - A + bù\ 2\ của\ B = 1110\ 1011$$

$$(Phép\ thràng\ và\ nà\ số\ dương\ và\ một\ số\ âm\ thì\ không\ bao\ giờ\ bị\ tràng}$$

$$Vây\ A - B = 11101011 = -21_{(10)}$$

$$(Kiểm\ chứng\ lại:\ 69_{(10)} - 90_{(10)} = -21_{(10)})$$
b.
$$A = 102_{(10)} = 0110\ 0110$$

 $B = 44_{(10)} = 00101100$

$$A - B = A + bù 2 của B = 0011 1010$$

Phép trừ hai số dương, tức tổng của một số dương và một số âm thì không bao giờ bị tràn)

$$V$$
ây A – B = 0011 1010 = $58_{(10)}$

(Kiểm chứng lại: $102_{(10)} - 44_{(10)} = 58_{(10)}$)

c.

$$A = 1100 \ 1000$$

B = 01100111

Bù 2 của B = 1001 1001

$$A - B = A + b\dot{u} \ 2 \ c\dot{u}a \ B = 0110 \ 0001 \Longrightarrow overflow$$

(Do đây là phép toán trừ của một số âm trừ số dương, hay phép toán cộng của hai số âm, mà tổng lại là số dương, tương ứng với hàng thứ 4 hoặc hàng thứ 2 trong bảng 1 => overflow)

$$Vay A - B = -128$$

(Kiểm chứng lại:
$$A = 11001000 = -56_{(10)}$$

$$B = 01100111 = 103_{(10)}$$

 $A-B=-56-103=-159_{(10)}$ mà giá trị âm nhỏ nhất của số có dấu 8 bit bù 2 là -128, nên phép toán bị tràn)

d.

$$A = 1111 \ 0111$$

$$B = 1110 \ 1101$$

Bù hai của $B = 0001 \ 0011$

$$A - B = A + bù 2 của B = 0000 1010$$

(Đây là phép toán trừ một số âm cho một số âm, tức phép toán cộng một số âm và một số dương => chắc chắn không bị tràn)

$$V$$
ây A + B = 0000 1010 = 10₍₁₀₎

(Kiếm chứng lại:
$$A = 1111 \ 0111_2 = -9_{(10)}$$

$$B = 1110 \ 1101_2 = -19_{(10)}$$

$$A - B = -9 - (-19) = 10_{(10)}$$

3.

a.

$$A = 69_{(10)} = 0100 \ 0101$$

$$B = 90_{(10)} = 0101 \ 1010$$

$$A + B = 0 1001 1111$$
, không bi tràn

Vậy:
$$A + B = 1001 \ 1111 = 159_{(10)}$$

(Kiểm chứng lai: $69 + 90 = 159_{(10)}$

tầm giá trị của số không dấu 8 bits là từ 0 tới 255 nên phép toán này không bị tràn)

$$\begin{array}{ll} A = 102_{(10)} = 0110\ 0110 \\ B = 44_{(10)} = & 0010\ 1100 \\ A + B = & 0\ 1001\ 0010\ , \, không bị tràn \\ Vây\ A + B = 1001\ 0010\ = 146_{(10)} \end{array}$$

(Kiểm chứng lại: $102 + 44 = 146_{(10)}$

tầm giá trị của số không dấu 8 bits là từ 0 tới 255 nên phép toán này không bị tràn)

c.

$$A = 200_{(10)} = 1100 \ 1000$$

 $B = 103_{(10)} = 0110 \ 0111$
 $A + B = \frac{1}{1} \ 0010 \ 1111 => \text{ overflow}$
 $Vay A + B = 255_{(10)} \ va \ bi \ tran$

(Kiểm chứng lại $200 + 103 = 303_{(10)}$, mà giá trị lớn nhất của số không dấu 8 bit là 255, nên rõ ràng phép toán này bị tràn số)

d.

$$A = 247 = 1111 \ 0111$$

 $B = 237 = 1110 \ 1101$
 $A + B = \frac{1}{1} \ 1110 \ 0100 => \text{ overflow}$
 $V_{4}^{2}y \ A + B = 255_{(10)} \ v_{4}^{2}b_{1}^{2}t_{1}^{2}$

(Kiểm chứng lại $247 + 237 = 484_{(10)}$, mà giá trị lớn nhất của số không dấu 8 bit là 255, nên rõ ràng phép toán này bị tràn số)

Bài số
Cho các số như bảng sau (dùng cho câu 1 và 2)

	$\mathcal{E} \setminus \mathcal{E}$	
a	50(8)	23 ₍₈₎
b	66(8)	04(8)

1. Giả sử số biểu diễn theo kiểu **không dấu 6 bit**, tính toán phép nhân A và B theo cấu trúc phần cứng như hình 1

Hình 1.

2. Giả sử số biểu diễn theo kiểu **không dấu 6 bit**, tính toán phép nhân A và B theo cấu trúc phần cứng như hình 2

Cho các số như bảng sau (dùng cho câu 3 và 4)

a	110110(2)	101100(2)
b	30(8)	07(8)

- 3. Giả sử số biểu diễn theo kiểu **có dấu 6 bit**, tính toán phép nhân A và B theo cấu trúc phần cứng như hình 1
- 4. Giả sử số biểu diễn theo kiểu **có dấu 6 bit**, tính toán phép nhân A và B theo cấu trúc phần cứng như hình 2

Đáp án:

1.

a.

$$\begin{array}{l} A = 50_{(8)} = 101000 \\ B = 23_{(8)} = 010011 \end{array}$$

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial values	01 001 <mark>1</mark>	0000 0010 1000	0000 0000 0000
1	1.1a: 1→ Prod = Prod + Mcand	01 0011	0000 0010 1000	0000 0010 1000
	2: Shift left Multiplicand	01 0011	0000 0101 0000	0000 0010 1000
	3: Shift right Multiplier	00 100 <mark>1</mark>	0000 0101 0000	0000 0010 1000
2	1.1a: $1 \rightarrow \text{Prod} = \text{Prod} + \text{Meand}$	00 1001	0000 0101 0000	0000 0111 1000
	2: Shift left Multiplicand	00 1001	0000 1010 0000	0000 0111 1000
	3: Shift right Multiplier	00 010 <mark>0</mark>	0000 1010 0000	0000 0111 1000
3	1: 0 → No operation	00 0100	0000 1010 0000	0000 0111 1000
	2: Shift left Multiplicand	00 0100	0001 0100 0000	0000 0111 1000
	3: Shift right Multiplier	00 001 <mark>0</mark>	0001 0100 0000	0000 0111 1000
4	1: 0 → No operation	00 0010	0001 0100 0000	0000 0111 1000
	2: Shift left Multiplicand	00 0010	0010 1000 0000	0000 0111 1000
	3: Shift right Multiplier	00 000 <mark>1</mark>	0010 1000 0000	0000 0111 1000
5	1.1a: 1→ Prod = Prod + Mcand	00 0001	0010 1000 0000	0010 1111 1000
	2: Shift left Multiplicand	00 0001	0101 0000 0000	0010 1111 1000
	3: Shift right Multiplier	00 000 <mark>0</mark>	0101 0000 0000	0010 1111 1000
6	1: 0 → No operation	00 0000	101 0000 0000	0010 1111 1000
	2: Shift left Multiplicand	00 0000	1010 0000 0000	0010 1111 1000
	3: Shift right Multiplier	00 0000	1010 0000 0000	0010 1111 1000

Kết quả: $A \times B = 0010111111000 = 1370_{(8)}$

$$\begin{array}{l} A = 66_{(8)} = 110110 \\ B = 04_{(8)} = 000100 \end{array}$$

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial values	00 010 <mark>0</mark>	00 0011 0110	0000 0000 0000
1	1: 0 → No operation	00 0100	00 0110 1100	0000 0000 0000
	2: Shift left Multiplicand	00 0010	00 0110 1100	0000 0000 0000
	3: Shift right Multiplier	00 001 <mark>0</mark>	00 0110 1100	0000 0000 0000
2	1: 0 → No operation	00 0010	00 0110 1100	0000 0000 0000
	2: Shift left Multiplicand	00 0010	00 1101 1000	0000 0000 0000
	3: Shift right Multiplier	00 000 <mark>1</mark>	00 1101 1000	0000 0000 0000
3	1.1a: $1 \rightarrow \text{Prod} = \text{Prod} + \text{Mcand}$	00 0001	00 1101 1000	0000 1101 1000
	2: Shift left Multiplicand	00 0001	01 1011 0000	0000 1101 1000
	3: Shift right Multiplier	00 000 <mark>0</mark>	01 1011 0000	0000 1101 1000
4	1: 0 → No operation	00 0000	01 1011 0000	0000 1101 1000
	2: Shift left Multiplicand	00 0000	11 0110 0000	0000 1101 1000
	3: Shift right Multiplier	00 000 <mark>0</mark>	11 0110 0000	0000 1101 1000
5	1: 0 → No operation	00 0000	11 0110 0000	0000 1101 1000
	2: Shift left Multiplicand	00 0000	10 110 00000	0000 1101 1000
	3: Shift right Multiplier	00 000 <mark>0</mark>	10 110 00000	0000 1101 1000
6	1: 0 → No operation	00 0000	10 110 00000	0000 1101 1000
	2: Shift left Multiplicand	00 0000	01 10 000000	0000 1101 1000
	3: Shift right Multiplier	00 0000	01 10 000000	0000 1101 1000

Lưu ý: từ lần lặp thứ 4, multiplier bằng 0, thì có thể dừng, kết quả của Product kể từ đây không bị thay đổi.

Kết quả: $A \times B = 0000 \ 1101 \ 1000 = 330_{(8)}$

2.

a.
$$A = 50_{(8)} = 101000$$

 $B = 23_{(8)} = 010011$

Step	Action	Multiplicand	Product/Multiplier
0	Initial Vals	101 000	000 000 010 011
1	Prod = Prod + Mcand	101 000	101 000 010 011
	Rshift Product	101 000	010 100 001 001
2	Prod = Prod + Mcand	101 000	111 100 001 001
	Rshift Mplier	101 000	011 110 000 100
3	Isb=0, no ap	101 000	011 110 000 100
	Rshift Mplier	101 000	001 111 000 010
4	Isb=0, no ap	101 000	001 111 000 010
	Rshift Mplier	101 000	000 111 100 001
5	Prod = Prod + Mcand	101 000	101 111 100 001
	Rshift Mplier	101 000	010 111 110 000
6	Isb = 0, no op	101 000	010 111 110 000
	Rshift Mplier	101 000	001 011 111 000

Kết quả $A \times B = 0010111111000 = 1370_{(8)}$

b.
$$A = 66_{(8)} = 110110$$

 $B = 04_{(8)} = 000100$

Step	Action	Multiplicand	Product/Multiplier
0	Initial Vals	110 110	000 000 000 100
1	Isb = 0, no op	110 110	000 000 000 100
	Rshift Mplier	110 110	000 000 000 010
2	Isb = 0, no op	110 110	000 000 000 010
	Rshift Mplier	110 110	000 000 000 001
3	Prod = Prod + Mcand	110 110	110 110 000 001
	Rshift Product	110 110	011 011 000 000
4	Isb = 0, no op	110 110	011 011 000 000
	Rshift Mplier	110 110	001 101 100 000
5	Isb = 0, no op	110 110	001 101 100 000
	Rshift Mplier	110 110	000 110 110 000
6	Isb = 0, no op	110 110	000 110 110 000
	Rshift Mplier	110 110	000 011 011 000

Kết quả $A \times B = 000011011000 = 330_{(8)}$

3. (Số có dấu 6 bits)

a.

A = 101100 \Longrightarrow A là số âm, bù 2 của A = 010100 (A = -24)

 $B = 110111 \rightarrow B \text{ là số âm, bù 2 của } B = 001001 \text{ (B} = -11)$

Thực hiện phép nhân bù 2 của A cho bù 2 của B

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial values	00 100 <mark>1</mark>	0000 0001 0100	0000 0000 0000
1	1a: 1 → Prod = Prod + Mcand	00 1001	0000 0001 0100	0000 0001 0100
	2: Shift left Multiplicand	00 1001	0000 0010 1000	0000 0001 0100
	3: Shift right Multiplier	00 010 <mark>0</mark>	0000 0010 1000	0000 0001 0100
2	1: 0 → No operation	00 0100	0000 0010 1000	0000 0001 0100
	2: Shift left Multiplicand	00 0100	0000 0101 0000	0000 0001 0100
	3: Shift right Multiplier	00 001 <mark>0</mark>	0000 0101 0000	0000 0001 0100
3	1: 0 → No operation	00 0010	0000 0101 0000	0000 0001 0100
	2: Shift left Multiplicand	00 0010	0000 1010 0000	0000 0001 0100
	3: Shift right Multiplier	00 000 <mark>1</mark>	0000 1010 0000	0000 0001 0100
4	1a: 1 → Prod = Prod + Mcand	00 0001	0000 1010 0000	0000 1011 0100
	2: Shift left Multiplicand	00 0001	0001 0100 0000	0000 1011 0100
	3: Shift right Multiplier	00 000 <mark>0</mark>	0001 0100 0000	0000 1011 0100
5	1: 0 → No operation	00 0000	0001 0100 0000	0000 1011 0100
	2: Shift left Multiplicand	00 0000	0010 1000 0000	0000 1011 0100
	3: Shift right Multiplier	00 000 <mark>0</mark>	0010 1000 0000	0000 1011 0100
6	1: 0 → No operation	00 0000	0010 1000 0000	0000 1011 0100
	2: Shift left Multiplicand	00 0000	0101 0000 0000	0000 1011 0100
	3: Shift right Multiplier	00 0000	0101 0000 0000	0000 1011 0100

Vậy: Bù 2 của A x bù 2 của B = 0000 1011 0100 =
$$264_{(8)}$$
 \Rightarrow A × B = $264_{(8)}$ **b.** A = $30_{(8)}$ = 011000 => A là số dương B = $07_{(8)}$ = 000111=> B là số dương Thực hiện phép nhân A với B như số không dấu (sinh viên tự vẽ bảng) Kết quả: A × B = $250_{(8)}$

4.

a

A = 101100 → A là số âm, bù 2 của A = 010100 (A = −24)

 $B = 110111 \rightarrow B$ là số âm, bù 2 của B = 001001 (B = -11)

Thực hiện phép nhân bù 2 của A cho bù 2 của B như số không dấu

Iteration	Step	Multiplicand	Product/Multiplier
0	Initial values	01 0100	000000 00100 <mark>1</mark>
1	Prod = Prod + Mcand	01 0100	010100 001001
	Rshift Prod.	01 0100	00101000010 <mark>0</mark>
2	Lsb = $0 \rightarrow$ No operation	01 0100	001010000100
	Rshift Prod.	01 0100	00010100001 <mark>0</mark>
3	Lsb = $0 \rightarrow$ No operation	01 0100	000101000010
	Rshift Prod.	01 0100	000010 100001
4	Prod = Prod + Mcand	01 0100	010110 100001
	Rshift Prod.	01 0100	001011 01000 <mark>0</mark>
5	Lsb = $0 \rightarrow$ No operation	01 0100	001011 010000
	Rshift Prod.	01 0100	000101 10100 <mark>0</mark>
6	Lsb = $0 \rightarrow$ No operation	01 0100	000101 10100 <mark>0</mark>
	Rshift Prod.	01 0100	0000101 10100

Vậy: Bù 2 của
$$A \times$$
 bù 2 của $B = 0000101\ 10100 = 264_{(8)}$ $\Rightarrow A \times B = 264_{(8)}$

b.

 30×07

 $A = 30_{(8)} = 011000 => A là số dương$

 $B = 07_{(8)} = 000111 => B$ là số dương

Thực hiện phép nhân A với B như số không dấu

Step	Action	Multiplicand	Product/Multiplier
0	Initial Vals	011 000	0 000 000 000 111
1	Prod = Prod + Mcand	011 000	0 011 000 000 111
	Rshift Mplier	011 000	0 001 100 000 011
2	Prod = Prod + Moand	011 000	0 100 100 000 011
	Rshift Product	011 000	0 010 010 000 001
3	Prod = Prod + Moand	011 000	0 101 010 000 001
	Rshift Mplier	011 000	0 010 101 000 000
4	Isb = 0, no op	011 000	0 010 101 000 000
	Rshift Mplier	011 000	0 001 010 100 000
5	Isb=0, no ap	011 000	0 001 010 100 000
	Rshift Mplier	011 000	0 000 101 010 000
6	Isb = 0, no ap	011 000	0 000 101 010 000
	Rshift Mplier	011 000	0 000 010 101 000

Bài số 3

1. Cho A =
$$50_{(16)}$$

B = $23_{(16)}$

 $B=23_{(16)}^{}$ Giả sử số biểu diễn theo kiểu **không dấu 8 bit**, tính toán phép nhân A và B theo cấu trúc phần cứng như hình 2

2.
$$A = 66_{(16)}$$

 $B = 04_{(16)}$

Giả sử số biểu diễn theo kiểu không dấu 8 bit, tính toán phép nhân A và B theo cấu trúc phần cứng như hình 2

Đáp án:

1.

$$A = 50_{16} = 0101 \ 0000_2$$

$$B = 23_{16} = 0010 \ 0011_2$$

Iteration	Step	Multiplicand	Product/ Multiplier
0	Initial values	0101 0000	0000 0000 0010 0011
1	Prod = Prod + Mcand	0101 0000	0101 0000 0010 0011
	Shift right Product	0101 0000	0010 1000 0001 0001
2	Prod = Prod + Mcand	0101 0000	0111 1000 0001 0001
	Shift right Product	0101 0000	0011 1100 0000 1000
3	lsb = 0, no op	0101 0000	0011 1100 0000 1000
	Shift right Product	0101 0000	0001 1110 0000 0100
4	lsb = 0, no op	0101 0000	0001 1110 0000 0100
	Shift right Product	0101 0000	0000 1111 0000 0010
5	lsb = 0, no op	0101 0000	0000 1111 0000 0010

	Shift right Product	0101 0000	0000 0111 1000 0001
6	1sb = 0, no op	0101 0000	0101 0111 1000 0001
	Shift right Product	0101 0000	0010 1011 1100 0000
7	lsb = 0, no op	0101 0000	0010 1011 1100 0000
	Shift right Product	0101 0000	0001 0101 1110 0000
8	lsb = 0, no op	0101 0000	0001 0101 1110 0000
	Shift right Product	0101 0000	0000 1010 1111 0000

$$V$$
ậy A × B = 0000 1010 1111 0000 = AF0₍₁₆₎

2.

$$\begin{array}{l} A = 66_{16} = 0110 \ 0110_2 \\ B = 04_{16} = 0000 \ 0100_2 \end{array}$$

Iteration	Step	Multiplicand	Product/ Multiplier
0	Initial values	0110 0110	0000 0000 0000 0100
1	1sb = 0, no op	0110 0110	0000 0000 0000 0100
	Shift right Product	0110 0110	0000 0000 0000 0010
2	Prod = Prod + Mcand	0110 0110	0000 0000 0000 0010
	Shift right Product	0110 0110	0000 0000 0000 0001
3	1sb = 0, no op	0110 0110	0110 0110 0000 0001
	Shift right Product	0110 0110	0011 0011 0000 0000
4	1sb = 0, no op	0110 0110	0011 0011 0000 0000
	Shift right Product	0110 0110	0001 1001 1000 0000
5	1sb = 0, no op	0110 0110	0001 1001 1000 0000
	Shift right Product	0110 0110	0000 1100 1100 0000
6	1sb = 0, no op	0110 0110	0000 1100 1100 0000
	Shift right Product	0110 0110	0000 0110 0110 0000
7	1sb = 0, no op	0110 0110	0000 0110 0110 0000
	Shift right Product	0110 0110	0000 0011 0011 0000
8	1sb = 0, no op	0110 0110	0000 0011 0011 0000
	Shift right Product	0110 0110	0000 0001 1001 1000

Vậy A × B = 0000 0001 1001 1000 = $198_{(16)}$

Bài số 4

Thực hiện phép chia không dấu A/B theo cấu trúc phần cứng như hình, biết máy tính dùng 6 bit biểu diễn các số.

	A	В
a.	40(8)	21 ₍₈₎
b.	25(8)	44 ₍₈₎

Lưu ý: câu b, khi thực hiện A/B, dùng 6 bit, chạy theo giải thuật chia sẽ không đúng; nếu dùng lớn hơn 6 bit thì đúng.

Sinh viên trả lời các câu hỏi sau:

- Vì sao lại không đúng? Gợi ý các giải pháp để giải quyết trường hợp này
- Thực hiện lại câu b lần lượt với hai trường hợp sau:
 - \circ **B** = 34₍₈₎
 - \circ B = 44₍₈₎ và A, B dùng số 8 bit để biểu diễn