Badanie rezonansu w szeregowym obwodzie LC

Marcin Tomecki, Mateusz Siedlarz, Tomasz Węcławski Politechnika Śląska

1 Wstęp teoretyczny

Drgania wymuszone są to drgania, które zostały wywołane przez zewnętrzne źródło energii o zmiennym natężeniu.

Równania różniczkowe wyglądają następująco:

$$U = R \frac{dQ}{dT} \tag{1}$$

Napięcie na oporniku(1)

dQ- wzrost dobroci układu

dt - przyrost czasu

R - rezystancja

$$U_L = L \frac{d^2 Q}{dt^2} \tag{2}$$

Napięcie na cewce(2)

$$U_C = \frac{Q}{C} \tag{3}$$

Napięcie na kondensatorze(3)

C- pojemość kondensatora

Z prawa Kirchoffa dla tego układu równanie wygląda następująco:

$$U_L + U_C + U = U_0 \cos \Omega t \tag{4}$$

Po podstawieniu:

$$\frac{d^2Q}{dt^2} + \frac{RdQ}{dt} + \frac{Q}{C} = I_0 \cos \Omega t \tag{5}$$

Co po zróżniczkowaniu daje:

$$\frac{d^2I}{dt^2} + \frac{RdI}{Ldt} + \frac{I}{LC} = \frac{U_0\Omega}{L}\sin\Omega t \tag{6}$$

 ${\cal I}$ - natężenie

Rezonans to zjawisko gwałtownego wzrostu amplitudy drgań, gdy częstość drgań, drgań wymuszających zbliża się do częstości drgań własnych.

Częstotliwość rezonansowa jest to taka częstotliwość, przy której występuje zjawisko rezonansu, co skutkuje silnym wzrostem amplitudy drgań układu.

$$f = \frac{\omega}{2\pi} = \frac{1}{2\sqrt{LC}} \tag{7}$$

Wzór na częstotliwość rezonansową (wzór Thomsona) (7)

Szerokość połówkowa krzywej rezonansowej jest to szerokość pomiędzy punktami wykresu, które przyjmują połowę wartości maksymalnej. Określona jest wzorem:

$$\Delta f = \frac{f_0}{Q} \tag{8}$$

Dobroć układu drgającego określa ile razy amplituda wymuszonych drgań rezonansowych jest większa niż analogiczna amplituda w obszarze częstości nierezonansowych. Wyraża się ją wzorem:

$$Q = 2\pi \frac{E_d}{E_s} = 2\pi f_r \frac{E_d}{p} \tag{9}$$

Aby w układzie miał miejsce rezonans, musi być spełnione równanie:

$$\omega L = \frac{1}{\omega C} \tag{10}$$

Przesunięcie fazowe względem napięcia wymuszającego wynosi:

$$\phi_r = \frac{\sqrt{\omega_0^2 - 2\beta^2}}{\beta} \tag{11}$$

 $\beta = \frac{R}{2L}$ - współczynnik tłumienia

 $\omega_0 = \sqrt{\frac{1}{LC}}$ - częstość drgań własnych

2 Pomiary

f [Hz]	U [V]	I [mA]	U _L [V]	U _c [V]
2186	2,008	0,77	0,472	2,487
2296	2,004	0,83	0,533	2,54
2402	1,995	0,89	0,596	2,593
2498	2,005	0,96	0,67	2,68
2603	2	1,03	0,74	2,743
2708	2,011	1,12	0,832	2,846
2804	2,005	1,19	0,918	2,924
2907	1,996	1,28	1,018	3,013
2997	2,013	1,39	1,129	3,145
3205	1,996	1,61	1,392	3,384
3401	2,016	1,93	1,75	3,756
3607	1,993	2,28	2,172	4,73
3810	2,004	2,81	2,796	5,54
3997	1,98	3,42	3,538	6,46
4208	2,01	4,58	5,88	8,28
4406	2,018	6,37	8,67	11,06
4606	1,992	9,58	13,83	16,05
4804	1,993	15,91	24,38	25, 79
4909	2,017	18,58	29,38	29,68

f [Hz]	U [V]	I [mA]	U _L [V]	U _c [V]
6200	2,003	3,77	7,61	4,85
6300	1,998	3,52	7,25	4,47
6394	2,011	3,34	7,03	4,2
6597	1,996	2,96	6,49	2,573
6807	2,015	2,69	6,16	2,263
7005	2	2,44	5,83	1,992
7293	2,016	2,2	5, 56	1,717
7602	2,01	1,96	5, 29	1,47
7907	2,015	1,78	5,12	1,284
8210	1,991	1,61	4,92	1,119
8516	2,011	1,5	4,87	1,004
8799	1,99	1,38	4,75	0,897
9197	2,007	1,27	4,73	0,791
9610	2,013	1,16	4,71	0,696
10040	2,015	1,05	4,69	0,61
10410	1,993	0,96	4,64	0,544
10810	2,014	0,91	4,7	0,494
11200	2	0,82	4,68	0,441
11590	2,009	0,76	4,73	0,40

4932	2,004	18,47	29,4	29,43
4952	2,016	18,45	29,44	29,23
4967	2,016	18,34	29,3	28,94
4980	2	17,97	28,8	28,3
4996	2,015	17,81	28,63	27,96
5022	1,99	16,94	27,34	26,43
5049	2,011	16,38	26,56	26,41
5073	1,999	15,97	25,49	24,18
5102	2,001	15,03	24,18	22,68
5147	1,989	13,7	22,2	20,49
5212	2,002	12,09	19,89	17,92
5302	2,017	10,29	17,2	15
5402	2,001	8,64	14,74	12,4
5500	2,004	7,49	13,05	10,6
5609	2,013	6,51	11,6	9,06
5710	2,01	5,78	10,52	7,93
5810	2,016	5,23	9,72	7,08
5898	2,012	4,81	9,1	6,43
5993	2,011	4,43	8,55	5,85
6097	2,008	4,08	8,05	5,31

12000	2,005	0,7	4,77	0,363
12490	2,002	0,67	4,83	0,334
13000	2,005	0,61	4,91	0,297
13510	1,989	0,53	4,92	0,262
14010	2,01	0,48	5,06	0,238
14460	1,998	0,42	5,09	0,214
15100	2,016	0,06	5,24	0,188
15610	2	0,03	5, 28	0,167
16130	2,013	0,02	5,42	0,151
16620	2,003	0,02	5,47	0,135
17210	2,008	0,01	5,6	0,12
18030	2,003	0,01	5,73	0,099
18710	1,99	0	5,82	0,084
19340	2,003	0	5,98	0,073
20000	1,993	0	6,07	0,061
21020	2,001	0	6,31	0,046
22010	1,994	0	6,47	0,033
23000	2,013	0	6,72	0,023
24000	2,001	0	6,87	0,015
25000	1,993	0	7,03	0,01

3 Obliczenia i rachunek niepewności

$$R = \frac{U_0}{I_{max}} \tag{12}$$

$$u(R) = \sqrt{\left(\frac{u(U_0)}{I_{max}}\right)^2 + \left(-u(I_{max}) \cdot \frac{U_0}{I_{max}^2}\right)^2}$$
 (13)

propagacja niepewności(13)

$$Q_T = \frac{1}{R} \sqrt{\frac{L}{C}} \tag{14}$$

teoretyczna dobroć układu rezonansowego (14)

$$u_a = \frac{\psi}{\sqrt{3}} \tag{15}$$

Gdzie ψ to:

$$1.8\% \cdot W + 30\mu A$$
 (16)

niepewność miernika cyfrowego - amperomierza(16)

$$1.2\% \cdot W + 3V \tag{17}$$

niepewność miernika cyfrowego - woltomierza(17)

$$0.1\% \cdot W + 3Hz \tag{18}$$

niepewność generatora sygnału(18)

$$\Delta f = \frac{f_r}{Q_T} \tag{19}$$

$$u(Q_T) = \sqrt{\left(\sqrt{\frac{L}{C}} \cdot \frac{-u(R)}{R^2}\right)^2} \tag{20}$$

niepewność pomiarowa teoretycznej dobroci układu rezonansowego (20)

$$I = \frac{I_{max}}{\sqrt{2}} \tag{21}$$

$$\Delta f = 453Hz \tag{22}$$

4 Zestawienie wyników końcowych

L [mH]	45	
C [nF]	20	
U(R) [Ohm]	1,227486223	
R [Ohm]	107,8825528	
f,[Hz]	4909	
u(f _r) [Hz]	4,57	
Qt	13,90400914	
Δf _t [Hz]	359,6085094	
U(Qt)	253,5159872	
Δf [Hz]	453	
Q	10,83664459	
u(Q)	0,01008005139	
I ₀ [mA]	18,58	
U(I ₀) [mA]	16,18369285	
cos(φ)	1	

5 Wnioski

Teoretyczne wartości, które zostały przyjęte okazały się być błędne. Po pomiarach i obliczeniach wartość częstotliwości rezonansowej dla danej indukcyjności (45mH) i pojemności (20nF) różniła się od wartości teoretycznej i wyniosła 4909Hz. Różnica ta mogła wynikać z niepewności urządzeń pomiarowych i wahań napięć generatora. Z niepoprawności tej częstotoliwości dobroć teoretyczna również się różniła od wartości obliczonej.

Obliczona teoretyczna wartość natężenia prądu w rezonansie zgadza się z wartością pomiarową. Obliczenia wykazały brak przesunięcia fazowego.