DESENVOLVIMENTO DE UM PIPELINE DE DADOS PARA MODELAÇÃO DO NÍVEL FREÁTICO EM REGADIO: APLICAÇÃO À ZV TEJO

Diogo PINTO¹, Manuel CAMPAGNOLO², João ROLIM¹, Maria do Rosário CAMEIRA¹

¹ LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, DCEB/Eng Rural, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa; ²Centro de Estudos Florestais, Laboratório Associado TERRA, DCEB/Matemática, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa

INTRODUÇÃO

A gestão sustentável da água subterrânea em áreas regadas requer modelos de previsão fiáveis para a profundidade do nível freático. O seu desenvolvimento requer séries temporais extensas e de qualidade, bem como de bases de dados relacionais robustas para organização da informação.

OBJETIVO: desenvolvimento de um pipeline estruturado, composto por etapas sequenciais que permitem a recolha, organização e análise da informação relevante

MATERIAIS E MÉTODOS

A metodologia CRISP-DM orienta o desenvolvimento do projeto em etapas sequenciais, facilitando a compreensão das necessidades do modelo preditivo final.

Figura 1 – Metodologia CRISP-DM

A etapa de *Data Preparation* tem como objetivo consolidar, limpar e organizar os dados históricos de forma estruturada, permitindo avaliar a sua qualidade e utilidade no modelo de previsão do nível freático, que será desenvolvido numa fase posterior.

A região em estudo é a zona vulnerável do Tejo e suas envolventes. As variáveis em análise são a precipitação, a profundidade do aquífero, a sua concentração em nitratos e condutividade elétrica (Quadro 1).

RESULTADOS

A base de dados relacional, representada na Figura 2, serve para armazenar e organizar os dados recolhidos da plataforma nacional SNIRH (Sistema Nacional de Informação de Recursos Hídricos). Centralizaram-se informações essenciais para a análise da dinâmica do nível freático em áreas de regadio, integrando as medições de precipitação, piezometria e qualidade de água subterrânea (concentração de nitratos e condutividade elétrica).

Permitiu, também, fazer uma análise prévia dos períodos e das estações a considerar.

disponibilidade de dados.

Nas Figuras 3 e 4 apresenta-se a classificação dos pontos de monitorização de acordo com a

Figura 3 – Indicador-chave de desempenho das variáveis: piezometria e precipitação

Figura 4 – Indicador-chave de desempenho das variáveis: nitratos e condutividade

Quadro 1 – Metadados das variáveis em estudo

Variável	MinMax Temporal	Freq Registo	Pontos	Unidades	Zona
Precipitação	1979-10-01 2025-03-15	diário	70	(mm)	ZVT e envolvente
Piezometria	1974-10-01 2025-01-16	indeterminado	73	(m)	ZVT_aquiferos
Nitratos	2000-03-01 2023-10-25	indeterminado	112	(mg/l)	ZVT_aquiferos
Condutividade elétrica	2000-03-01 2023-10-25	indeterminado	103	(uS/cm)	ZVT_aquiferos

A análise exploratória da densidade temporal dos dados, permitiu definir o período de 1980 a 2025 para o modelo de piezometria e de 2000 a 2023 o modelo de qualidade. Evidencia-se uma falha generalizada no registo destas variáveis entre os períodos de 2011 e 2014.

O tratamento prévio permitiu verificar algumas tendências (decrescentes) da profundidade da água no solo.

CONCLUSÕES

Precipitação

Condutividad

Nitrato

Esta etapa de preparação dos dados, ainda que inicial, revelou-se de grande importância, pois permitiu avaliar o volume e a distribuição temporal dos dados disponíveis, identificando inconsistências e pontos de monitorização com maior fiabilidade. Este passo da estruturação do pipeline assegura a adequação dos dados para a fase seguinte: o desenvolvimento de modelos preditivos do nível freático e da qualidade da água subterrânea na região da zona vulnerável do Tejo.

AGRADECIMENTOS

Path4Med Project: Horizon-IA 101156867; LEAF - UIDB/04129/2020; Terra - LA/P/0092/2020

