

TRIBOMECHADYNAMICS LABORATORY

- Pioneering research at the crossroads of structural dynamics, contact mechanics, and tribology
- Goals include optimizing interfacial component design in terms of weight, wear, and properties
- Website: https://brake.rice.edu/

BACKGROUND

A confocal microscope is needed to scan surface roughness for analyzing moving parts sliding against each other

PROBLEM

These types of microscopes are not only costly but also require multiple days to complete a scan and map results

PROJECT GOAL

Design and build the optical unit of a cost-effective confocal microscope that can complete scans within 24 hours while achieving micrometer-level resolution

STAGE 1: Background Research

YouTube Video

"DIY Scanning Laser Microscope"

https://www.youtube.com/watch?v=9TYIQ4urcg8&t=294s

The Basic Idea

A laser is projected onto the penny using lenses and mirrors, and then bounces off the penny into a sensor to analyze results

STAGE 2: Design

Two methods for beam expander

1.) A simple approach

2.) Complex, but "cleans up" laser beam

Final CAD Design (SOLIDWORKS)

STAGE 3: Building

BILL OF MATERIALS:

2 Positive meniscus lens (\$20)

https://www.edmundoptics.com/p/10mm-dia-x-58mm-fl-positive-meniscus-lens-grade-2-/32768?gad_source=4&gclid=Cj0KCQjwsPCyBhD4ARIsAPaaRf1fohC62fO6my2kN9y-7Psza5jOjtKID0Bpc7V9zxN1Dy_ao5a1NeMaAkIPEALw_wcB_

Negative meniscus lens (\$5)

https://www.edmundoptics.com/p/14mm-dia-x21mm-fl-negative-meniscus-lens-grade-2-/32828?gad_source=1&gclid=Cj0KCQjwsPCyBhD4ARIsAPaaRf3waCyNvdMe66LA2Gvc6TCrhBTQkUZ1SF4YGVIvD7NTSjx-idvDdWAaAI_uEALw_wcB

50-50 beam splitter (\$25)

https://www.edmundoptics.com/p/20-x-2828-x-25mm-elliptical-beamsplitter-50r50t/1062?gad_source=4&gclid=Cj0KCQjwsPCyBhD4ARIsAPaaRf14JbS1FhC9th3y61p5EH4LLTGiz-Bev-8hsclaFOLSjuA8 dKTakwaAoaKEALw wcB

20x infinity objective (\$30)

https://amscope.com/products/a20x-v300?tw_source=google&tw_adid=&tw_campaign=20842288248&gad_source=1&gclid=Cj0KCQjwsPCyBhD4ARIsAPaaRf2-KvrWAQi3hjdeNz5gCWL3_sD51AyKde4-X6UPyXW5gGSEEjaWp0aApt8EALw_wcB

Photodiode (\$25)

https://www.digikey.com/en/products/detail/marktech-optoelectronics/MT03-

004/5866634?utm adgroup=&utm source=google&utm medium=cpc&utm campaign=Pmax Texas%20Brand%20Awareness&utm term=&utm content=&utm id=go cmp-20669065899 adg- ad- dev-m ext- prd-5866634 sig-

Cj0KCQjwsPCyBhD4ARIsAPaaRf09SVdTmuNaMBZGDXhUFCj09fSAYpeUg8woxw_vWoWKZKBvbYZN8pYaAvSiEALw_wcB&gad_source=1&gbraid=0AAAAADrbLlgvbbyRGwn09gt6c XWJCj0cb&gclid=Cj0KCQjwsPCyBhD4ARIsAPaaRf09SVdTmuNaMBZGDXhUFCj09fSAYpeUg8woxw_vWoWKZKBvbYZN8pYaAvSiEALw_wcB

Mirror (\$27)

https://www.edmundoptics.com/p/32-x-32mm-laser-diode-mirror/2038/

3D Printing (PRUSA)

3D Printed Microscope Stage Parts

From OpenFlexure.org

COMPLETE OPTICAL UNIT

RESULTS

The optical unit was deemed successful by faculty professor Dr. Matthew Brake and will be continued to be worked on in the electrical aspect by his graduate researchers