126

Example

=

- Consider the following predicates:
 - \Box E(x) = "x is an even integer"
 - P(x) = x is prime
 - Q(x,y) = "integer x equals integer y"
 - \Box L(x,y) = "integer x is less than integer y"
- Using the above predicates and appropriate quantifiers, symbolize the following. Assume the universe of discourse is all positive integers.
 - □ F(x) = "x is between 1 and 9, x is even, and x is prime."
 - There is exactly one integer between 1 and 9, which is both even and prime.

Solution

- Using
 - \Box E(x) = "x is an even integer"
 - P(x) = x is prime
 - \bigcirc Q(x,y) = "integer x equals integer y"
 - L(x,y) = "integer x is less than integer y"
- F(x) = "x is between 1 and 9, x is even, and x is prime."
- There is exactly one integer between 1 and 9, which is both even and prime.
 - $\exists x [F(x) \land \forall y (F(y) \to Q(y,x))]$

19

Nested Quantifiers

- When we have more than one variable in a predicate, one way to make a proposition is to use nested quantifiers.
- When using nested quantifiers, we must pay attention to the order in which they are used.

5

Quantification of Two Variables

When True?	When False?
	When True?

Quantification of Two Variables proposition When True? When False? $\forall x \ \forall y \ P(x, y)$ P(x, y) is true for every There is a pair x, y for pair x, y. which P(x, y) is false. $\forall y \ \forall x \ P(x, y)$ $\forall x \exists y P(x, y)$ $\exists x \ \forall y \ P(x, y)$ There is a pair x, y for P(x, y) is false for every $\exists x \; \exists y \; P(x, y)$ which P(x, y) is true. $\exists y \; \exists x \; P(x, y)$

proposition	When True?	When False?
$\forall x \ \forall y \ P(x, y)$ $\forall y \ \forall x \ P(x, y)$	P(x, y) is true for every pair x, y .	There is a pair x , y for which $P(x, y)$ is false.
$\forall x \; \exists y \; P(x,y)$	For every <i>x</i> there is a <i>y</i> for which $P(x, y)$ is true. <i>y</i> may depend on <i>x</i>	There is an x such that $P(x,y)$ is false for every y .
$\exists x \ \forall y \ P(x,y)$	There is a fixed <i>x</i> such that <i>P</i> (<i>x</i> , <i>y</i>) is true for every <i>y</i> . Once <i>x</i> is decided, it cannot change.	For every x there is a y for which $P(x, y)$ is false
$\exists x \exists y \ P(x, y)$ $\exists y \exists x \ P(x, y)$	There is a pair x , y for which $P(x, y)$ is true.	P(x, y) is false for every pair x, y .

Examples

- Let P(x, y) denote "x + y = 5."
 - \Box The universe of discourse for both *x* and *y* is {1, 2, 3, 4}
- Find the truth value for $\forall x \ \forall y \ P(x, y)$
 - □ Solution:
- Find the truth value for $\exists y \exists x \ P(x, y)$
 - □ Solution:

5

Examples

- Let P(x, y) denote "x + y = 5."
- \Box The universe of discourse for both *x* and *y* is {1, 2, 3, 4}
- Find the truth value for $\forall x \ \forall y \ P(x, y)$
 - \Box Solution: False; x = 1 and y = 3, x + y = 4
- Find the truth value for $\exists y \exists x \ P(x, y)$
 - □ *Solution:* True; x = 3 and y = 2, x + y = 5

132

Examples

- Let P(x, y) denote "x + y = 5."
 - □ The universe of discourse for both x and y is $\{1, 2, 3, 4\}$
- Find the truth value for $\forall x \exists y P(x, y)$
 - □ Solution:
- Find the truth value for $\exists x \forall y P(x, y)$
 - □ Solution:

5

Examples

- Let P(x, y) denote "x + y = 5."
 - □ The universe of discourse for both x and y is $\{1, 2, 3, 4\}$
- Find the truth value for $\forall x \exists y P(x, y)$
 - □ *Solution*: True; for any *x*, there exists a *y* such that *x* + *y*=5; *x*=1, *y*=4; *x*=2, *y*=3; *x*=3, *y*=2; *x*=4, *y*=1;...
- Find the truth value for $\exists x \ \forall y \ P(x, y)$
 - □ Solution: False; there is no such (fixed) x that for each y, we would have x + y = 5;
 - *x*=1, *y*=1; *x*=2, *y*=2; *x*=3, *y*=3; *x*=4, *y*=4;

Example

- Consider the following predicates:
 - \Box E(x) = "x is an even integer"
 - P(x) = x is prime
 - Q(x,y) ="integer x equals integer y"
 - L(x,y) = "integer x is less than integer y"
- Using the above predicates and appropriate quantifiers, symbolize the following proposition. Assume the universe of discourse is all positive integers.
 - There are two distinct prime integers whose sum is even.

Solution

- Using
 - \Box E(x) = "x is an even integer"
 - P(x) = x is prime
 - Q(x,y) ="integer x equals integer y"
 - L(x,y) = "integer x is less than integer y"
- There are two distinct prime integers whose sum is even.
 - □ Solution: $\exists x \exists y [\neg Q(x,y) \land E(x+y) \land P(x) \land P(y)]$

136

Once again: How are these questions related?

- 1. Does p logically imply c?
- 2. Is the proposition $(p \rightarrow c)$ a tautology?
- 3. Is the proposition $(\neg p \lor c)$ is a tautology?
- 4. Is the proposition $(\neg c \rightarrow \neg p)$ is a tautology?
- 5. Is the proposition $(p \land \neg c)$ is a contradiction?

5

Formal Proofs

- A proof is equivalent to establishing a logical implication chain
- Given premises (hypotheses) $h_1, h_2, ..., h_n$ and conclusion c, to give a *formal proof* for establishing that the hypotheses logically imply the conclusion, entails establishing the logical implication

$$h_1 \wedge h_2 \wedge \ldots \wedge h_n \Rightarrow c$$

To do so, we need to give a finite chain

 p_1, p_2, \dots, c of wffs such that each wff p_r is:

- Rule I: one of the premises or a tautology, or
- Rule II: p_r can logically be implied by one or more propositions p_k where $1 \le k < r$.

where $1 \le k < t$

Pro	001	f N	/lethoo	ds			
			Direct	Direct	Contrapositive	Contradiction	
	р	с	$p \rightarrow c$	$\neg p \lor c$	$\neg c \rightarrow \neg p$	<i>p</i> ∧¬ <i>c</i>	
	Т	Т	Т	Т	Т	F	
	Т	F	F	F	F	Т	
	F	Т	T	T	Т	F	
	F	F	T	T	Т	F	
5							143

Terminology

- Axiom or Postulate: An underlying assumptions/postulates to begin the logical argument with.
- Rules of inference: Logical facts and implications used to draw conclusions from the given postulates.
- Proof: A sequence of propositions that forms a valid argument.
- Fallacies: Incorrect reasoning

5

Terminology...

- Theorem: A proposition that can be shown to be true.
- Lemma: A simple theorem used in the proof of other theorems.
- Corollary: A fact that can be immediately deduced from a Theorem/Lemma.
- Conjecture: A proposition whose correctness is

unknown.

Rules of inference

- Rules of inference are used to deduce conclusions from hypotheses. These are the logical implication questions for which the answer is YES
- Consider the question:

Does $[p \land (p \rightarrow q)]$ logically imply q

- □ The answer is YES as $[p \land (p \rightarrow q)] \rightarrow q$ is a tautology
- It is the basis of the rule of inference called *modus ponens*, which can be represented by the symbolic form

$$\frac{\stackrel{r}{p} \rightarrow q}{\therefore q}$$
which means

 $\mbox{\ \ \, }$ Given that both p and $p\to q$ are true, we can conclude that q is true. In other words

 $[p \land (p \rightarrow q)]$ logically implies q

	Rules	of Inferer	ice		
	<i>p</i> ∴ <i>p</i> ∨ <i>q</i>	p logically implies (p \times q)	$p \to (p \lor q)$ is a tautology	Addition	
	<i>p</i> ∧ <i>q</i>	(p \land q) logically implies p	$(p \land q) \rightarrow p$ is a tautology	Simplification	
	<i>p q</i> ∴ <i>p</i> ∧ <i>q</i>	$[(p) \land (q)]$ logically implies $(p \land q)$	$[(p) \land (q)] \rightarrow (p \land q)$ is a tautology	Conjunction	
	$\begin{array}{c} p \\ p \rightarrow q \\ \therefore q \end{array}$	$[p \land (p \rightarrow q)]$ <pre>logically implies</pre>	$[p \land (p \to q)] \to q$ is a tautology	Modus ponens	
5		•		1	48

Rules	of Inference.		
$ \begin{array}{c} \neg q \\ p \to q \\ \hline \therefore \neg p \end{array} $	$ \begin{bmatrix} \neg q \land (p \rightarrow q) \\ \text{logically implies} \\ \neg p \end{bmatrix} $	$[\neg q \land (p \to q)] \to \neg p$ is a tautology	Modus tollens
$p \to q$ $q \to r$ $\therefore p \to r$	$[(p \rightarrow q) \land (q \rightarrow r)]$ logically implies $(p \rightarrow r)$	$[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$ is a tautology	Hypothetical syllogism
<i>p</i> ∨ <i>q</i> ¬ <i>p</i> ∴ <i>q</i>	$[(p \lor q) \land \neg p]$ <pre>logically implies</pre>	$[(p \lor q) \land \neg p] \to q$ is a tautology	Disjunctive syllogism
$ \begin{array}{c} p \lor q \\ \neg p \lor r \\ \hline \therefore q \lor r \end{array} $	$[(p \lor q) \land (\neg p \lor r)]$ <pre>logically implies</pre> $q \lor r$	$[(p \lor q) \land (\neg p \lor r)] \rightarrow q \lor r$ is a tautology	Resolution
5			149

Rule of Inference	Name	Comments
$\forall x \ P(x)$ $\therefore \ P(c)$	Universal Specification/Instantiation (US) or (UI)	for any <i>c</i> in the domain, we get to choose <i>c</i>
$\frac{P(c)}{\dots \forall x \ P(x)}$	Universal generalization (UG)	for an arbitrary <i>c</i> , not a particular one
$\exists x \ P(x)$ $\therefore \ P(c)$	Existential Specification/Instantiation (ES) or (EI)	for some specific c (unknown)
$\frac{P(c)}{\therefore \exists x \ P(x)}$	Existential generalization (EG)	Finding one c such that $P(c)$

Example:
 Given:
 h₁ = p → q, h₂ = q → r, h₃ = p, c = r
 we want to prove, that is, establish the logical implication that h₁ ∧ h₂ ∧ h₃ ⇒ c.
We can use any of the following approaches
 Using Truth Table
 Using derivations
 Using a chain of logical implications
 Note that if A ⇒ B and B ⇒ C then A ⇒ C


```
Does (p \rightarrow q) \land (q \rightarrow r) \land p \Rightarrow r?

Chain Method

• h_1 = p \rightarrow q, h_2 = q \rightarrow r, h_3 = p, c = r

We want to prove that h_1 \land h_2 \land h_3 \Rightarrow c

1. p Rule I

2. p \rightarrow q Rule I

3. q Rule II, modus ponens
4. q \rightarrow r Rule I

5. r Rule II, 3&4, modus ponens
```

Example

• Prove the theorem:

"If integer n is odd, then n^2 is odd."

- Solution:
 - \Box It is given that *n* is an odd integer.
 - □ Thus n = 2k + 1, for some integer k.
 - $Thus n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$
 - \Box Therefore, n^2 is odd.

__

Example

- Prove that if integer 3 is even, then all integers greater than 1 are even.
 - □ Proof:
 - 3 is even Premise
 2 is even Math Fact
 3+2 is even Math Fact & Premise
 - 4 is even Math Fact5 is even Math Fact & Premise
 -

5

Example: Hypothetical Syllogism

Let

$$h_1 = p \longrightarrow q$$

$$h_2 = q \longrightarrow s$$

$$c = p \longrightarrow s$$

We want to establish $h_1 \wedge h_2 \Rightarrow c$.

Use only Modus ponens rule.

```
Solution

(p \rightarrow q) \land (q \rightarrow s) \Rightarrow p \rightarrow s

1. p \rightarrow q Premise
2. q \rightarrow s Premise
3. p Assumption (p = False, NTP)
4. q 3 & 1, Modus Ponens (MP)
5. s 4 & 2, MP
6. p \rightarrow s
```