Modelagem Molecular

Introdução a modelagem, docking e dinâmica molecular (Foco em Doenças

Apresentaç ão

- Primeiro contato com trabalho na Fiocruz (2008)
- Graduação em Biomedicina na Unirio (2012)
- Ent Esti 15 anos no meio acadêmico
- Comecei a usar Simulação de Dinâmica Molecular (2014)
- Cor
 Ent
 10 anos de bioinformática estrutural
- Entrei no Doutorado do PPGBq da UFRJ (2020)

Definição

• Modelagem molecular é a investigação de estruturas e propriedades moleculares usando química computacional e técnicas de visualização gráfica para fornecer uma representação tridimensional plausível sob um dado conjunto de circunstâncias.

• No nosso caso, modelaremos proteín se moléculas fundamentais para o

Por que proteínas?

funcionamento de estruturas biológicas;

Estruturalmente mais rígidas do que lipídios ou açúcares;

Muitos dados experimentais em que possamos nos basear.

Oque são Proteínas?

• Polímeros de aminoácidos

Estrutura de um aminoácido

A Sequência Determina **Estrutura**

Estrutura

Primária >3S4O_1|Chains A, B|Protein tyrosine phosphatase-like protein|Leishmania major (5664) GPGSMNATLIDCCDPQKPSRVLFHFLILDAPSPSNLPTYIKELQHRGVRHLVRVCGPTYD ATLVKSRGIDVHSWPFDDGAPPTRAVLDSWLKLLDTELARQQEDPSVPPPTIGVHCVAG LGRAPILVALALVEYGNVSALDAIALIREKRKGAINQTQMHWITKYKR

Para pequenas proteínas globulares, a estrutura nativa depende somente de sua sequência

Anfinsen CB (1973)

Sequência Determina Estrutura

Nelson et al. 2011

Energia e Conformações

- Moléculas com menos energia são mais estáveis;
- Proteínas podem assumir posições com menos energia;
- A essas posições, é dado o nome de: Conformações Estáveis
- A conformação funcional é chamada conformação nativa

Postulado de Anfinsen

As conformações nativas são:

Únicas

Só tem UM mínimo

Estáveis

Se a conformação muda, ela volta ao estado nativo

Cineticamente Acessíveis

A conformação nativa não pode estar em um ponto impossível de ser acessado

Problema

Cyrus Levinthal

Uma proteína com 100 resíduos de aminoácidos teria de percorrer 10300 conformações

Uma proteína demora µs a ms para chegar à sua conformação

Tem que haver algum modo de guiar o folding!

- A forma nativa não é a de menor energia!
- Nenhuma dessas conformações é funcional, mas todas são estáveis
- Toda proteína pode assumir essa conformação

Introdução a modelagem, docking e dinâmica molecular - Vicente Salgado Pires e RSG-Brazil

Conformational substates

Problema s?

Essas poses são energeticamente próximas

Pode haver transições aleatórias entre elas

Não são únicos!

Raskatov (2017)

O que é uma cadeira?

O que é uma cadeira?

O que é uma cadeira?

E Isso?

Essas cadeiras são iguais? Por que?

Proteínas com funções parecidas têm estruturas parecidas, mas não iguais)

Malato desidrogenase de *L. major*

Malato desidrogenase de L. mexicana

Malato desidrogenases alinhadas

RMSD

$$RMSD = \sqrt{\frac{\sum (dist ancia\ entre\ atomos)^2}{n umero\ de\ atomos}}$$

A Comparação entre uma estrutura com a outra

 Oque entendemos a partir da estrutura?

1 - Estudo Como a Proteína Funciona?

Kelpsas V et al. (2021)

- Oque entendemos a partir da estrutura?
- 1 Estudos funcionais.
- Quais são os impactos de mudanças na estrutura

Patel B et al. (2021)

- Oque entendemos a partir da estrutura?
- 1 Estudos funcionais.
- 2 Estudos comparativos.
- 3 De A interação com ligantes pode ajudar na manutenção da saúde?

Barazorda-Ccahuana HL et al. (2023)

- Oque entendemos a partir da estrutura?
- 1 Estudos funcionais.
- 2 Estudos comparativos.
- 3 Desenho racional de fármacos.
- 4 Desenho de enzimas

Como produzir enzimas mais eficientes em algum processo?

Kiss G et al. (2013)

- Mas já existem DBs de estruturas e modelos
- 1 É feito um sequenciamento do genoma

- 1 É feito um sequenciamento do genoma
- 2 É descoberto um gene

- Modelar?

 1 É feito um sequenciamento do genoma
- 2 É descoberto um gene
- 3 Traduzido em sequência de aminoácidos

- Modelar?

 1 É feito um sequenciamento do genoma
- 2 É descoberto um gene
- 3 Traduzido em sequência de aminoácidos

>3S4O_1|Chains A, B|Protein tyrosine phosphatase-like protein|Leishmania major (5664) GPGSMNATLIDCCDPQKPSRVLFHFLILDAPSPS NLPTYIKELQHRGVRHLVRVCGPTYDATLVKSRG IDVHSWPFDDGAPPTRAVLDSWLKLLDTELARQ QEDPSVPPPTIGVHCVAGLGRAPILVALALVEYG NVSALDAIALIREKRKGAINQTQMHWITKYKR

- Modelar?

 1 É feito um sequenciamento do genoma
- 2 É descoberto um gene
- 3 Traduzido em sequência de aminoácidos

>3S4O_1|Chains A, B|Protein tyrosine phosphatase-like protein|Leishmania major (5664) GPGSMNATLIDCCDPQKPSRVLFHFLILDAPSPS NLPTYIKELQHRGVRHLVRVCGPTYDATLVKSRG IDVHSWPFDDGAPPTRAVLDSWLKLLDTELARQ QEDPSVPPPTIGVHCVAGLGRAPILVALALVEYG NVSALDAIALIREKRKGAINQTQMHWITKYKR

- Mas já existem DBs de estruturas e modelos
- Peptídeos sintéticos

Como estudar essa forma antes de produzir esse composto?

Resumindo:

Estudo estrutural precisa de estrutura. Se não tem, **MODELE!**

O Que Tem Em Um Arquivo De Estrutura?

MOTA	2523	NE	ARG	A	156	-10.615	-9.758	1.967	1.00	88.63	T.	1
MOTA	2524	HE	ARG	A	156	-11.186	-9.732	2.799	1.00	88.63	E	1
ATOM	2525	NH1	ARG	A	156	-8.549	-10.450	1.146	1.00	88.63	N	1
MOTA	2526	HH11	ARG	A	156	-8.750	-10.270	0.172	1.00	88.63	E	1
ATOM	2527	HH12	ARG	A	156	-7.631	-10.820	1.346	1.00	88.63	E	1
ATOM	2528	NH2	ARG	A	156	-9.021	-10.680	3.295	1.00	88.63	T.	1
ATOM	2529	HH21	ARG	A	156	-9.611	-10.602	4.111	1.00	88.63	É	1
ATOM	2530	HH22	ARG	A	156	-8.047	-10.900	3.452	1.00	88.63	E	I
MOTA	2531	CZ	ARG	A	156	-9.408	-10.291	2.113	1.00	88.63	C	1
ATOM	2532	N	LEU	A	157	-13,403	-3.956	2.759	1.00	90.47	N	1
ATOM	2533	H	LEU	A	157	-13.524	-3.794	1.770	1.00	90.47	E	1
ATOM	2534	CA	LEU	A	157	-13.107	-2.780	3.590	1.00	90.47		*
MOTA	2535	HA	LEU	A	157	-12.855	-3.113	4.597	1.00	90.47	E	ł
MOTA	2536	C	LEU	A	157	-14,313	-1.840	3.776	1.00	90.47	C	
MOTA	2537	CB	LEU	A	157	-11.885	-2.035	3.021	1.00	90.47	Ċ	*
ATOM	2538	HB2	LEU	A	157	-12.137	-1.663	2.028	1.00	90.47	E	I.
MOTA	2539	нвз	LEU	A	157	-11.688	-1.168	3.652	1.00	90.47	E	1
ATOM	2540	0	LEU	A	157	-14.157	-0.625	3.902	1.00	90.47	0	9
ATOM	2541	CG	LEU	A	157	-10,587	-2.849	2.926	1.00	90.47		
MOTA	2542	HG	LEU	A	157	-10.717	-3.684	2.237	1.00	90.47	E	Ŧ.
MOTA	2543	CDI	LEU	A	157	-9.486	-1.942	2.390	1.00	90.47		
ATOM	2544	HD11	LEU	A	157	-8.540	-2.482	2.340	1.00	90.47	E	1
MOTA	2545	HD12	LEU	A	157	-9.383	-1.071	3.037	1.00	90.47	E	I
MOTA	2546	HD13	LEU	A	157	-9.753	-1.588	1.395	1.00	90.47	E	£.
MOTA	2547	CD2	LEU	A	157	-10.159	-3.392	4.286	1.00	90.47	C	
ATOM	2548	HD21	LEU	A	157	-9.167	-3.837	4.208	1.00	90.47	E	1
MOTA	2549	HD22	LEU	A	157	-10.861	-4.159	4.614	1.00	90.47	E	I
MOTA	2550	HD23	LEU	A	157	-10.135	-2.587	5.020	1.00	90.47	E	1
ATOM	2551	N	ARG	A	158	-15.540	-2.379	3.798	1.00	79.53	N	1
ATOM	2552	H	ARG	A	158	-15.627	-3.379	3.683	1.00	79.53	E	1
ATOM	2553	CA	ARG	A	158	-16,703	-1.610	4.267	1.00	79.53	C	
MOTA	2554	HA	ARG	A	158	-16.652	-0.596	3.869	1.00	79.53	E	ł
ATOM	2555	C	ARG	A	158	-16.636	-1.474	5.789	1.00	79.53	0	
ATOM	2556	CB	ARG	A	158	-18,028	-2.231	3.808	1.00	79.53		1
ATOM	2557	HB2	ARG	A	158	-18.052	-3.288	4.074	1.00	79.53	F	I
MOTA	2558	HB3	ARG	A	158	-18.836	-1.727	4.337	1.00	79.53	F-	1
MOTA	2559	0	ARG	A	158	-17.051	-2.383	6.506	1.00	79.53	0)
MOTA	2560	CG	ARG	A	158	-18.259	-2.067	2.302	1.00	79.53	0	2
ATOM	2561	HG2	ARG	A	158	-18.116	-1.025	2.018	1.00	79.53	E	H
ATOM	2562	HG3	ARG	A	158	-17.542	-2.688	1.764	1.00	79.53	E	1
ATOM	2563	CD	ARG	A	158	-19.689	-2.495	1.949	1.00	79.53	- C	1

Esse é o exemplo de um pedaço de um arquivo no formato .PDB

O Que Tem Em Um Arquivo De Estrutura?

ATOM	2523	NE	ARG	A	156	-10.615	-9.758	1.967	1.00	88.63	N
ATOM	2524	HE			156	-11.186		2.799		88.63	H
ATOM	2525		ARG				-10.450	1.146	1.00	88.63	N
ATOM		HH11					-10.270	0.172		88.63	H
ATOM	2527	HH12					-10.820	1.346		88.63	H
ATOM	2528		ARG				-10.680	3.295		88.63	N
ATOM		HH21					-10.602	4.111		88.63	H
ATOM		HH22					-10.900	3.452		88.63	H
ATOM	2531	CZ			156		-10.291	2.113		88.63	C
MOTA	2532	N	LEU	A	157	-13.403	-3.956	2.759	1.00	90.47	N
ATOM	2533	H	LEU				-3.794	1.770	1.00	90.47	H
ATOM	2534	CA	LEU				-2.780	3.590	1.00	90.47	C
ATOM	2535	HA.			157	-12.855		4.597	1.00	90.47	H
MOTA	2536	C	LEU	A	157		-1.840	3.776	1.00	90.47	C
ATOM	2537	CB			157	-11.885		3.021	1.00	90.47	C
ATOM	2538	HB2	LEU			-12.137	-1.663	2.028		90.47	H
ATOM	2539		LEU			-11,688	-1.168	3.652		90.47	H
ATOM	2540	0	LEU			-14.157	-0.625	3.902	1.00	90.47	0
ATOM	2541	CG	LEU	A	157	-10.587	-2.849	2.926	1.00	90.47	C
ATOM	2542	HG	LEU	A	157	-10.717	-3.684	2.237	1.00	90.47	H
ATOM	2543	CDI	LEU	A	157	-9.486	-1.942	2.390	1.00	90.47	C
ATOM	2544	HD11	LEU	A	157	-8.540	-2,482	2.340	1.00	90.47	H
MOTA	2545	HD12	LEU	A	157	-9.383	-1.071	3.037	1.00	90.47	H
ATOM	2546	HD13	LEU	A	157	-9.753	-1.588	1.395	1.00	90.47	H
MOTA	2547	CD2	LEU	A	157	-10.159	-3.392	4.286	1.00	90.47	C
MOTA	2548	HD21	LEU	A	157	-9.167	-3.837	4.208	1.00	90.47	H
ATOM	2549	HD22	LEU	A	157	-10.861	-4.159	4.614	1.00	90.47	H
ATOM	2550	HD23	LEU	A	157	-10.135	-2.587	5.020	1.00	90.47	H
MOTA	2551	N	ARG	A	158	-15.540	-2.379	3.798	1.00	79.53	N
ATOM	2552	H	ARG	A	158	-15.627	-3.379	3.683	1.00	79.53	H
ATOM	2553	CA	ARG	A	158	-16.703	-1.610	4.267	1.00	79.53	C
MOTA	2554	HA	ARG	A	158	-16,652	-0.596	3.869	1.00	79.53	H
ATOM	2555	C	ARG	A	158	-16.636	-1.474	5.789	1.00	79.53	C
ATOM	2556	CB	ARG	A	158	-18,028	-2.231	3.808	1.00	79.53	C
ATOM	2557	HB2	ARG	A	158	-18.052	-3.288	4.074	1.00	79.53	H
MOTA	2558	HB3	ARG	A	158	-18.836	-1.727	4.337	1.00	79.53	H
ATOM	2559	0	ARG	A	158	-17.051	-2.383	6.506	1.00	79.53	0
MOTA	2560	CG	ARG	A	158	-18.259	-2.067	2.302	1.00	79.53	c
ATOM	2561	HG2	ARG	A	158	-18.116	-1.025	2.018	1.00	79.53	H
MOTA	2562	HG3	ARG	A	158	-17.542	-2.688	1.764	1.00	79.53	H
ATOM	2563	CD	ARG	A	158	-19.689	-2.495	1.949	1.00	79.53	C

O que tem nessa parte?

- ATOM
- HETATOM
- REMARK

O Que Tem Em Um Arquivo De Estrutura?

ATOM	2523	NE	ARG	A	156	-10,615	-9.758	1.967	1.00	88.63	N	
ATOM	2524	HE			156	-11.186		2.799		88.63	H	
ATOM	2525	79107000	ARG				-10.450	1.146	1.00	88.63	N	
ATOM							-10.270	0.172		88.63	H	
ATOM	2527	HH12					-10.820	1.346		88.63	H	
ATOM	2528		ARG				-10.680	3.295		88.63	N	
ATOM	VGC 577 5A 57	HH21					-10.602	4.111		88.63	H	
ATOM	100000000000000000000000000000000000000	HH22					-10.900	3.452		88.63	H	
ATOM	2531	CZ			156		-10.291	2.113		88.63	C	
ATOM	2532	N	LEU				-3.956	2.759		90.47	N	
ATOM	2533		LEU				-3.794	1.770		90.47	H	
ATOM	2534		LEU				-2.780	3.590		90.47	C	
ATOM	2535	HA.			157	-12.855		4.597		90.47	H	
MOTA	2536	C	LEU			-14.313		3.776		90.47	C	
ATOM	2537	CB			157	-11.885		3.021		90.47	C	
ATOM	2538	72323	LEU			-12.137	-1.663	2.028		90.47	H	
ATOM	2539	1000000	LEU			-11.688	-1.168	3.652		90.47	H	
ATOM	2540	0			157	-14.157		3.902		90.47	0	
ATOM	2541	CG	LEU			-10,587		2.926		90.47	C	
ATOM	2542	HG	LEU			-10.717		2.237		90.47	H	
ATOM	2543	CD1	LEU			-9.486		2.390		90.47	C	
ATOM	2544	HD11				-8.540		2.340	1.00	90.47	H	
ATOM	0.000,000,000,000	HD12				-9.383		3.037		90.47	H	
ATOM	2546	HD13	LEU	A	157	-9.753		1.395	1.00	90.47	H	
MOTA	2547	CD2	LEU	A	157	-10.159	-3.392	4.286	1.00	90.47	C	
ATOM	2548	HD21	LEU	A	157	-9.167	-3.837	4.208	1.00	90.47	H	
ATOM	2549	HD22				-10.861	-4.159	4.614	1.00	90.47	H	
MOTA	2550	HD23	LEU	A	157	-10.135	-2.587	5.020	1.00	90.47	H	
ATOM	2551	N			158	-15.540		3.798	1.00	79.53	N	
ATOM	2552	H	ARG	A	158	-15.627	-3.379	3.683	1.00	79.53	H	
ATOM	2553	CA	ARG	A	158	-16.703	-1.610	4.267	1.00	79.53	C	
MOTA	2554		ARG	A	158	-16,652	-0.596	3.869	1.00	79.53	H	
ATOM	2555	C	ARG	A	158	-16.636	-1.474	5.789	1.00	79.53	C	
ATOM	2556	CB	ARG	A	158	-18.028	-2.231	3.808	1.00	79.53	C	
ATOM	2557	HB2	ARG	A	158	-18.052	-3.288	4.074	1.00	79.53	H	
MOTA	2558	HB3	ARG	A	158	-18,836	-1.727	4.337	1.00	79.53	H	
ATOM	2559				158	-17.051	-2.383	6.506	1.00	79.53	0	
ATOM	2560	CG	ARG			-18.259		2.302	1.00	79.53	c	
ATOM	2561	HG2	ARG			-18.116	-1.025	2.018		79.53	H	
ATOM	2562	HG3	ARG	A	158	-17.542	-2.688	1.764	1.00	79.53	H	
ATOM	2563	600mHz	ARG			-19.689		1.949		79.53	C	

Qual o número desse elemento?

MOTA	2523	NE	ARG	A	156	-10.615	-9.758	1.967	1.00	88.63	N
MOTA	2524	HE	ARG	A	156	-11.186	-9.732	2.799	1.00	88.63	H
ATOM	2525	NH1	ARG	A	156	-8.549	-10.450	1.146	1.00	88.63	N
ATOM	2526	HH11	ARG	A	156	-8.750	-10.270	0.172	1.00	88.63	H
MOTA	2527	HH12	ARG	A	156	-7.631	-10.820	1.346	1.00	88.63	H
MOTA	2528	NH2	ARG	A	156	-9.021	-10.680	3.295	1.00	88.63	N
ATOM	2529	HH21	ARG	A	156	-9.611	-10.602	4.111	1.00	88.63	H
ATOM	2530	HH22	ARG	A	156	-8.047	-10.900	3.452	1.00	88.63	H
MOTA	2531	CZ	ARG	A	156	-9.408	-10.291	2.113	1.00	88.63	C:
MOTA	2532	N	LEU	A	157	-13,403	-3.956	2.759	1.00	90.47	N
ATOM	2533	H	LEU	A	157	-13.524	-3.794	1.770	1.00	90.47	H
ATOM	2534	CA	LEU	A	157	-13.107	-2.780	3.590	1.00	90.47	C
MOTA	2535	HA.	LEU	A	157	-12.855	-3.113	4.597	1.00	90.47	H
MOTA	2536	C	LEU	A	157	-14,313	-1.840	3.776	1.00	90.47	C
ATOM	2537	CB	LEU	A	157	-11.885	-2.035	3.021	1.00	90.47	C
ATOM	2538	HB2	LEU	A	157	-12.137	-1.663	2.028	1.00	90.47	H
MOTA	2539	HB3	LEU	A	157	-11.688	-1.168	3.652	1.00	90.47	H
ATOM	2540	0	LEU	A	157	-14.157	-0.625	3.902	1.00	90.47	0
ATOM	2541	CG	LEU	A	157	-10,587	-2.849	2.926	1.00	90.47	C
MOTA	2542	HG	LEU	A	157	-10.717	-3.684	2.237	1.00	90.47	H
MOTA	2543	CD1	LEU	A	157	-9.486	-1.942	2.390	1.00	90.47	C
ATOM	2544	HD11	LEU	A	157	-8.540	-2.482	2.340	1.00	90.47	H
MOTA	2545	HD12	LEU	A	157	-9.383	-1.071	3.037	1.00	90.47	H
MOTA	2546	HD13	LEU	A	157	-9.753	-1.588	1.395	1.00	90.47	H
MOTA	2547	CD2	LEU	A	157	-10.159	-3.392	4.286	1.00	90.47	C.
ATOM	2548	HD21	LEU	A	157	-9.167	-3.837	4.208	1.00	90.47	H
ATOM	2549	HD22	LEU	A	157	-10.861	-4.159	4.614	1.00	90.47	H
MOTA	2550	HD23	LEU	A	157	-10.135	-2.587	5.020	1.00	90.47	H
MOTA	2551	N	ARG	A	158	-15.540	-2.379	3.798	1.00	79.53	N
MOTA	2552	H	ARG	A	158	-15.627	-3.379	3.683	1.00	79.53	H
MOTA	2553	CA	ARG	A	158	-16,703	-1.610	4.267	1.00	79.53	C
MOTA	2554	HA	ARG	A	158	-16.652	-0.596	3.869	1.00	79.53	H
ATOM	2555	C	ARG	A	158	-16.636	-1.474	5.789	1.00	79.53	C
ATOM-	2556	CB	ARG	A	158	-18,028	-2.231	3.808	1.00	79.53	C
ATOM	2557	HB2	ARG	A	158	-18.052	-3.288	4.074	1.00	79.53	H
MOTA	2558	HB3	ARG	A	158	-18.836	-1.727	4.337	1.00	79.53	H
ATOM	2559	0	ARG	A	158	-17.051	-2.383	6.506	1.00	79.53	0
MOTA	2560	CG	ARG	A	158	-18.259	-2.067	2.302	1.00	79.53	c
MOTA	2561	HG2	ARG	A	158	-18.116	-1.025	2.018	1.00	79.53	H
ATOM	2562	HG3	ARG	A	158	-17.542	-2.688	1.764	1.00	79.53	H
MOTA	2563	CD	ARG	A	158	-19.689	-2.495	1.949	1.00	79.53	C

O que é esse elemento?

MOTA	2523	NE	ARG	A 1.	56	-10.615	-9.758	1.967	1.00	88.63	N
MOTA	2524	HE	ARG	A 1	56	-11,186	-9.732	2.799	1.00	88.63	H
ATOM	2525	NH1	ARG	A 1	56	-8.549	-10.450	1.146	1.00	88.63	N
MOTA	2526	HH11	ARG	A 1	56	-8.750	-10.270	0.172	1.00	88.63	H
ATOM	2527	HH12	ARG	A 1	56	-7.631	-10.820	1.346	1.00	88.63	H
MOTA	2528	NH2	ARG	A 1	56	-9.021	-10.680	3.295	1.00	88.63	N
ATOM	2529	HH21	ARG	A 1	56	-9,611	-10.602	4.111	1.00	88.63	H
MOTA	2530	HH22	ARG	A 1	56	-8.047	-10.900	3.452	1.00	88.63	H
MOTA	2531	CZ	ARG	A 1	56	-9.408	-10.291	2.113	1.00	88.63	C:
MOTA	2532	N	LEU	A 1	57	-13,403	-3.956	2.759	1.00	90.47	N
MOTA	2533	H	LEU	A 1	57	-13.524	-3.794	1.770	1.00	90.47	H
ATOM	2534	CA	LEU	A 1	57	-13.107	-2.780	3.590	1.00	90.47	C
MOTA	2535	HA	LEU	A 13	57	-12.855	-3.113	4.597	1.00	90.47	H
MOTA	2536	C	LEU	A 1	57	-14.313	-1.840	3.776	1.00	90.47	C
ATOM	2537	CB	LEU	A 1	57	-11.885	-2.035	3.021	1.00	90.47	C
MOTA	2538	HB2	LEU	A 1	57	-12.137	-1.663	2.028	1.00	90.47	H
MOTA	2539	нва	LEU	A 1	57	-11.688	-1.168	3.652	1.00	90.47	H
ATOM	2540	0	LEU	A 1	57	-14.157	-0.625	3.902	1.00	90.47	0
MOTA	2541	CG	LEU	A 1	57	-10.587	-2.849	2.926	1.00	90.47	C
ATOM	2542	HG	LEU	A 1	57	-10.717	-3.684	2.237	1.00	90.47	H
MOTA	2543	CD1	LEU	A 1	57	-9.486	-1.942	2.390	1.00	90.47	C
ATOM	2544	HD11	LEU	A 1	57	-8.540	-2,482	2.340	1.00	90.47	H
MOTA	2545	HD12	TEA	A 1	57	-9.383	-1.071	3.037	1.00	90.47	H
ATOM	2546	HD13	LEU	A 1	57	-9.753	-1.588	1.395	1.00	90.47	H
MOTA	2547	CD2	LEU	A 1	57	-10.159	-3.392	4.286	1.00	90.47	C.
MOTA	2548	HD21	LEU	A 1	57	-9.167	-3.837	4.208	1.00	90.47	H
MOTA	2549	HD22	LEU	A 1	5.7	-10.861	-4.159	4.614	1.00	90.47	H
MOTA	2550	HD23	LEU	A 1	57	-10.135	-2.587	5.020	1.00	90.47	H
MOTA	2551	N	ARG	A 1	58	-15.540	-2.379	3.798	1.00	79.53	N
ATOM	2552	H	ARG	A 1		-15.627	-3.379	3.683	1.00	79.53	H
MOTA	2553	CA	ARG	A 1	58	-16.703	-1.610	4.267	1.00	79.53	C
MOTA	2554	HA	ARG	A 1.	58	-16.652	-0.596	3.869	1.00	79.53	H
ATOM	2555	C	ARG	A 1	58	-16.636	-1.474	5.789	1.00	79.53	C
MOTA	2556	CB	ARG	A 1	58	-18,028	-2.231	3.808	1.00	79.53	C
ATOM	2557	HB2	ARG	A 1	58	-18.052	-3.288	4.074	1.00	79.53	H
MOTA	2558	HB3	ARG	A 1	58	-18.836	-1.727	4.337	1.00	79.53	H
ATOM	2559	0	ARG	A 1	58	-17.051	-2.383	6.506	1.00	79.53	0
MOTA	2560	CG	ARG	A 1	58	-18.259	-2.067	2.302	1.00	79.53	С
MOTA	2561	HG2		A 1		-18.116	-1.025	2.018		79.53	H
MOTA	2562	HG3	ARG		58	-17.542	-2.688	1.764		79.53	H
ATOM	2563	CD	ARG	A 1	58	-19.689	-2.495	1.949	1.00	79.53	C

Esse elemento é de qual resíduo?

MOTA	2523	NE	AR	G Z	Α :	56	-10.615	-9.758	1.967	1.00	88.63	N
ATOM	2524	HE	AR	G 7	A :	56	-11,186	-9.732	2.799	1.00	88.63	H
ATOM	2525	NH1	AR	G 2	4	56	-8.549	-10.450	1.146	1.00	88.63	N
ATOM	2526	HH11	AR	G Z	A S	56	-8.750	-10.270	0.172	1.00	88.63	H
ATOM	2527	HH12	AR	G J	A :	56	-7.631	-10.820	1.346	1.00	88.63	H
MOTA	2528	NH2	AR	G 2	4	56	-9.021	-10.680	3.295	1.00	88.63	N
ATOM	2529	HH21	AR	5 8	A :	56	-9.611	-10.602	4.111	1.00	88.63	H
MOTA	2530	HH22	AR	G Z	A :	56	-8.047	-10.900	3.452	1.00	88.63	H
MOTA	2531	CZ	AR	Ġ /	A :	56	-9.408	-10.291	2.113	1.00	88.63	C
MOTA	2532	N	LE	J Z	4	5.7	-13,403	-3.956	2.759	1.00	90.47	N
ATOM	2533	H	LE	J. Z	4	57	-13.524	-3.794	1.770	1.00	90.47	H
ATOM	2534	CA	LE	3 2	A :	57	-13.107	-2.780	3.590	1.00	90.47	C
MOTA	2535	HA.	LE	J Z	A :	57	-12.855	-3.113	4.597	1.00	90.47	H
MOTA	2536	C	LE	J Z	4	57	-14.313	-1.840	3.776	1.00	90.47	C
ATOM	2537	CB	LE	0 2	4	57	-11.885	-2.035	3.021	1.00	90.47	C
MOTA	2538	HB2	LE	0.2	A :	57	-12.137	-1.663	2.028	1.00	90.47	H
MOTA	2539	нвз	LE	J Z	A :	57	-11.688	-1.168	3.652	1.00	90.47	H
ATOM	2540	0	LE	U I	A :	57	-14.157	-0.625	3.902	1.00	90.47	0
ATOM	2541	CG	LE	J Z	4	57	-10,587	-2.849	2.926	1.00	90.47	C
ATOM	2542	HG	LE	J Z	4	57	-10.717	-3.684	2.237	1.00	90.47	H
MOTA	2543	CD1	LE	U 2	A :	57	-9.486	-1.942	2.390	1.00	90.47	C
ATOM	2544	HD11	LE	o a	4	57	-8.540	-2.482	2.340	1.00	90.47	H
MOTA	2545	HD12	LE	U Z	A :	57	-9.383	-1.071	3.037	1.00	90.47	H
ATOM	2546	HD13	LE	0.2	A .	57	-9.753	-1.588	1.395	1.00	90.47	H
MOTA	2547	CD2	LE	U S	A :	57	-10.159	-3.392	4.286	1.00	90.47	C.
ATOM	2548	HD21	LE	0.7	4	57	-9.167	-3.837	4.208	1.00	90.47	H
ATOM	2549	HD22	LE	IJ. Z	A :	57	-10.861	-4.159	4.614	1.00	90.47	H
MOTA	2550	HD23	LE	0 2	A :	57	-10.135	-2.587	5.020	1.00	90.47	H
ATOM	2551	N	AR	G 2	A :	58	-15.540	-2.379	3.798	1.00	79.53	N
ATOM	2552	H	AR	3 8	A :	58	-15.627	-3.379	3.683	1.00	79.53	H
MOTA	2553	CA	AR	G I	A :	58	-16.703	-1.610	4.267	1.00	79.53	C
MOTA	2554	HA	AR	G /	A :	58	-16.652	-0.596	3.869	1.00	79.53	H
ATOM	2555	C	AR	G 8	A :	58	-16.636	-1.474	5.789	1.00	79.53	C
ATOM	2556	CB	AR	G Z	4	58	-18,028	-2.231	3.808	1.00	79.53	C
ATOM	2557	HB2	AR	G 2	4	58	-18.052	-3.288	4.074	1.00	79.53	H
MOTA	2558	HB3	AR	G Z	A :	58	-18.836	-1.727	4.337	1.00	79.53	H
ATOM	2559	0	AR	5 /	4	58	-17.051	-2.383	6.506	1.00	79.53	0
MOTA	2560	CG	AR	G 2	4	58	-18.259	-2.067	2.302	1.00	79.53	C
MOTA	2561	HG2	AR	G A	A :	58	-18.116	-1.025	2.018	1.00	79.53	H
MOTA	2562	HG3	AR	G å	A :	58	-17.542	-2.688	1.764	1.00	79.53	H
ATOM	2563	CD	AR	G Z	A :	58	-19.689	-2.495	1.949	1.00	79.53	C

É de qual cadeia?

MOTA	2523	NE	ARG	A	156	-10.615	-9.758	1.967	1.00	88.63	N
MOTA	2524	HE	ARG	A	156	-11.186	-9.732	2.799	1.00	88.63	H
ATOM	2525	NH1	ARG	A	156	-8.549	-10.450	1.146	1.00	88.63	N
ATOM	2526	HH11	ARG	A	156	-8.750	-10.270	0.172	1.00	88.63	H
MOTA	2527	HH12	ARG	A	156	-7.631	-10.820	1.346	1.00	88.63	H
MOTA	2528	NH2	ARG	A	156	-9.021	-10.680	3.295	1.00	88.63	N
ATOM	2529	HH21	ARG	A	156	-9.611	-10.602	4.111	1.00	88.63	H
ATOM	2530	HH22	ARG	A	156	-8.047	-10.900	3.452	1.00	88.63	H
MOTA	2531	CZ	ARG	A	156	-9.408	-10.291	2.113	1.00	88.63	C
MOTA	2532	N	LEU	A	157	-13,403	-3.956	2.759	1.00	90.47	N
MOTA	2533	H	LEU	A	157	-13.524	-3.794	1.770	1.00	90.47	H
ATOM	2534	CA	LEU	A	157	-13.107	-2.780	3.590	1.00	90.47	C
MOTA	2535	HA.	LEU	A	157	-12.855	-3.113	4.597	1.00	90.47	H
MOTA	2536	C	LEU	A	157	-14.313	-1.840	3.776	1.00	90.47	C
ATOM	2537	CB	LEU	A	157	-11.885	-2.035	3.021	1.00	90.47	c
ATOM	2538	HB2	LEU	A	157	-12.137	-1.663	2.028	1.00	90.47	H
MOTA	2539	нвз	LEU	A	157	-11.688	-1.168	3.652	1.00	90.47	H
MOTA	2540	0	LEU	A	157	-14.157	-0.625	3.902	1.00	90.47	0
ATOM	2541	CG	LEU	A	157	-10,587	-2.849	2.926	1.00	90.47	C
ATOM	2542	HG	LEU	A	157	-10.717	-3.684	2.237	1.00	90.47	H
MOTA	2543	CD1	LEU	A	157	-9.486	-1.942	2.390	1.00	90.47	C
MOTA	2544	HD11	LEU	A	157	-8.540	-2,482	2.340	1.00	90.47	H
MOTA	2545	HD12	LEU	A	157	-9.383	-1.071	3.037	1.00	90.47	H
MOTA	2546	HD13	LEU	A	157	-9.753	-1.588	1.395	1.00	90.47	H
MOTA	2547	CD2	LEU	A	157	-10.159	-3.392	4.286	1.00	90.47	C.
ATOM	2548	HD21	LEU	A	157	-9.167	-3.837	4.208	1.00	90.47	H
ATOM	2549	HD22	LEU	A	157	-10.861	-4.159	4.614	1.00	90.47	H
MOTA	2550	HD23	LEU	A	157	-10.135	-2.587	5.020	1.00	90.47	H
MOTA	2551	N	ARG	A	158	-15.540	-2.379	3.798	1.00	79.53	N
ATOM	2552	H	ARG	A	158	-15.627	-3.379	3.683	1.00	79.53	H
MOTA	2553	CA	ARG	A	158	-16.703	-1.610	4.267	1.00	79.53	C
MOTA	2554	HA	ARG	A	158	-16.652	-0.596	3.869	1.00	79.53	H
ATOM	2555	C	ARG	A	158	-16.636	-1.474	5.789	1.00	79.53	C
ATOM	2556	CB	ARG	A	158	-18,028	-2.231	3.808	1.00	79.53	C
ATOM	2557	HB2	ARG	A	158	-18.052	-3.288	4.074	1.00	79.53	H
MOTA	2558	HB3	ARG	A	158	-18,836	-1.727	4.337	1.00	79.53	H
MOTA	2559	0	ARG	ā	158	-17.051	-2.383	6.506	1.00	79.53	0
MOTA	2560	CG	ARG	A	158	-18.259	-2.067	2.302	1.00	79.53	C
MOTA	2561	HG2	ARG	A	158	-18.116	-1.025	2.018	1.00	79.53	H
ATOM	2562	HG3	ARG	A	158	-17.542	-2.688	1.764	1.00	79.53	H
MOTA	2563	CD	ARG	A	158	-19.689	-2.495	1.949	1.00	79.53	C

Esse resíduo está em qual posição na sequência?

MOTA	2523	NE	ARG	A	156	-10.615	-9.758	1.967	1.00	88.63	N
MOTA	2524	HE	ARG	A	156	-11.186	-9.732	2.799	1.00	88.63	H
ATOM	2525	NH1	ARG	A	156	-8.549	-10.450	1.146	1.00	88.63	N
MOTA	2526	HH11	ARG	A	156	-8.750	-10.270	0.172	1.00	88.63	H
ATOM	2527	HH12	ARG	A	156	-7.631	-10.820	1.346	1.00	88.63	H
ATOM	2528	NH2	ARG	A	156	-9.021	-10.680	3.295	1.00	88.63	N
ATOM	2529	HH21	ARG	A	156	-9.611	-10.602	4.111	1.00	88.63	H
ATOM	2530	HH22	ARG	A	156	-8.047	-10.900	3.452	1.00	88.63	H
MOTA	2531	CZ	ARG	A	156	-9.408	-10.291	2.113	1.00	88.63	C
MOTA	2532	N	LEU	A	157	-13.403	-3.956	2.759	1.00	90.47	N
MOTA	2533	H	LEU	A	157	-13.524	-3.794	1.770	1.00	90.47	H
ATOM	2534	CA	LEU	A	157	-13.107	-2.780	3.590	1.00	90.47	C
MOTA	2535	HA.	LEU	A	157	-12.855	-3.113	4.597	1.00	90.47	H
MOTA	2536	C	LEU	A	157	-14.313	-1.840	3.776	1.00	90.47	C
ATOM	2537	CB	LEU	A	157	-11.885	-2.035	3.021	1.00	90.47	C
ATOM	2538	HB2	LEU	A	157	-12.137	-1.663	2.028	1.00	90.47	H
MOTA	2539	нвз	LEU	A	157	-11.688	-1.168	3.652	1.00	90.47	H
MOTA	2540	0	LEU	A	157	-14.157	-0.625	3.902	1.00	90.47	0
ATOM	2541	CG	LEU	A	157	-10,587	-2.849	2.926	1.00	90.47	C
ATOM	2542	HG	LEU	A	157	-10.717	-3.684	2.237	1.00	90.47	H
MOTA	2543	CD1	LEU	A	157	-9.486	-1.942	2.390	1.00	90.47	C
ATOM	2544	HD11	LEU	A	157	-8.540	-2,482	2.340	1.00	90.47	H
MOTA	2545	HD12	LEU	A	157	-9.383	-1.071	3.037	1.00	90.47	H
ATOM	2546	HD13	LEU	A	157	-9.753	-1.588	1.395	1.00	90.47	H
MOTA	2547	CD2	LEU	A	157	-10.159	-3.392	4.286	1.00	90.47	C.
ATOM	2548	HD21	LEU	A	157	-9.167	-3.837	4.208	1.00	90.47	H
ATOM	2549	HD22	LEU	A	157	-10.861	-4.159	4.614	1.00	90.47	H
MOTA	2550	HD23	LEU	A	157	-10.135	-2.587	5.020	1.00	90.47	H
MOTA	2551	N	ARG	A	158	-15.540	-2.379	3.798	1.00	79.53	N
MOTA	2552	H	ARG	A	158	-15.627	-3.379	3.683	1.00	79.53	H
MOTA	2553	CA	ARG	A	158	-16,703	-1.610	4.267	1.00	79.53	C
MOTA	2554	HA	ARG	A	158	-16.652	-0.596	3.869	1.00	79.53	H
ATOM	2555	C	ARG	A	158	-16.636	-1.474	5.789	1.00	79.53	C
ATOM	2556	CB	ARG	A	158	-18,028	-2.231	3.808	1.00	79.53	C
ATOM	2557	HB2	ARG	A	158	-18.052	-3.288	4.074	1.00	79.53	H
MOTA	2558	HB3	ARG	A	158	-18.836	-1.727	4.337	1.00	79.53	H
MOTA	2559	0	ARG	A	158	-17.051	-2.383	6.506	1.00	79.53	0
MOTA	2560	CG	ARG	A	158	-18.259	-2.067	2.302	1.00	79.53	С
MOTA	2561	HG2	ARG	A	158	-18.116	-1.025	2.018	1.00	79.53	H
ATOM	2562	HG3	ARG	A	158	-17.542	-2.688	1.764	1.00	79.53	H
ATOM	2563	CD	ARG	A	158	-19.689	-2.495	1.949	1.00	79.53	C

Onde esse resíduo está? (coordenada XYZ)

Como fazer um bom modelo?

1 - Copiando de uma referência

MSA

Principal programa de modelagem comparativa

Modeller

Program for Comparative Protein Structure Modelling by Satisfaction of Spatial Restraints

MSA

Principal programa de modelagem comparativa

MSA

Principal programa de modelagem comparativa

Vantagens:

Rápido

Confiável

Você Pode Explorar outras Conformações

Ugur I et al (2018)

• Desvantagens:

Depende de Molde Falta de Variação Nos Modelos

Esse é seu query

• Desvantagens:

Depende de Molde Falta de Variação Nos Modelos

Esse é seu query

Esse é seu molde

• Desvantagens:

Depende de Molde Falta de Variação Nos Modelos

Esse é seu query

Esse é seu molde

Modelo

Como fazer um bom modelo?

- 1 Copiando de uma referência
- 2 Por descrições

Modelagem *Ab initio* e por threading

	Ab initio	Threading
O que significa?	Do começo	Por costura
O que fazem?	Modela estrutura sem referência	Modela estrutura sem referência
Como fazem?	Por conceitos puramente físicos	Montando fragmentos como referência
Tem Restrições?	Não	Precisa desses fragmentos
Exemplo	Rosetta	I-Tasser

Fluxograma antiga de Métodos de Modelagem

Retirado de Verli, 2014

Como fazer um bom modelo?

- 1 Copiando de uma referência
- 2 Por descrições
- 3 Com inteligência artificial

Fluxograma Atual de Métodos de Modelagem

Inteligência Artificial

- 1. Muitos descritores;
- 2. Muito dados de referência pra treinamento;
- 3. I.A. faz abstrações complexas nos descritores do grupo de treinamento pra encontrar **PADRÕES**;
- 4. Encontrou padrão, aplica a qualquer dado!

AlphaFol d

- Algoritmo do momento
- Modelagem com confiabilidade de estrutura experimentalmente resolvida
- Escala bem com hardware

Resolve muitos problemas de proteínas difíceis

https://www.deepmind.com/research/highlighted-research/alphafold

acessíveis

https://github.com/sokrypton/ColabFold

Making Protein folding access	ible to all vi	a Google Co	olab! 🔗		
Notebooks	monomers	complexes	mmseqs2	jackhmmer	templates
AlphaFold2 mmseqs2	Yes	Yes	Yes	No	Yes
<u>AlphaFold2_batch</u>	Yes	Yes	Yes	No	Yes
AlphaFold2 (from Deepmind)	Yes	Yes	No	Yes	No
relax amber (relax input structure)					
<u>ESMFold</u>	Yes	Maybe	No	No	No
BETA (in development) notebooks					
RoseTTAFold2	Yes	Yes	Yes	No	WIP
<u>OmegaFold</u>	Yes	Maybe	No	No	No
OLD retired notebooks					
<u>RoseTTAFold</u>	Yes	No	Yes	No	No
AlphaFold2 advanced	Yes	Yes	Yes	Yes	No
AlphaFold2 complexes	No	Yes	No	No	No
AlphaFold2_jackhmmer	Yes	No	Yes	Yes	No
AlphaFold2 noTemplates noMD					
AlphaFold2 noTemplates yesMD					

	ence from your local computer:	
Escolher arquiv	Nenhum arquivo escolhido	
	where results will be sent to)	
Email: (mandatory,		
Email: (mandatory,	where results will be sent to)	
Email: (mandatory,	where results will be sent to)	
Email: (mandatory, D: (optional, your	where results will be sent to)	d).
Email: (mandatory, D: (optional, your Predict protein	where results will be sent to) given name of the protein) function based on structure model (running time may be double	d).
Email: (mandatory, D: (optional, your	where results will be sent to) given name of the protein) function based on structure model (running time may be double	d).

Como saber se o que eu fiz deu certo? (Validação)

Medidas de Qualidade

pLDDT

Medidas de Distância

Pausa!