## CSC 411 Design and Analysis of Algorithms

## Chapter 4 Decrease-and-Conquer - Part 2

Instructor: Minhee Jun

junm@cua.edu

## Three major variations of Decrease-and-Conquer

- <u>Decrease by a constant</u> (usually by 1):
  - Graph traversal algorithms (DFS and BFS)
  - Insertion sort
  - Topological sorting
  - Algorithms for generating combinatorial objects
- <u>Decrease by a constant factor</u> (usually by half)
  - Binary search
  - Fake-Coin Problem
  - Russian Peasant Multiplication
- <u>Variable size decrease</u>
  - Computing a Median and the Selection Problem
  - Interpolation Search
  - Searching and Insertion in a Binary Search Tree

#### 4.4 Decrease-by-Constant-Factor Algorithms

 In this variation of decrease-and-conquer, instance size is reduced by the same factor (typically, 2)

- Examples:
  - Binary search and the method of bisection
  - Fake-coin puzzle
  - Russian peasant method
  - Josephus problem (Not cover)

## 4.4.1 Binary Search

- A remarkably efficient algorithm for searching in a sorted array
- ullet Compare a search key K with the array's middle element A[m]

$$\begin{array}{c}
K \\
\uparrow \\
\underline{A[0] \dots A[m-1]} \quad A[m] \quad \underline{A[m+1] \dots A[n-1]} \\
\text{search here if} \\
K < A[m]
\end{array}$$

## **Binary Search: Example**

Let us apply binary search to searching for K = 70 in the array

|   | 3 | 14 | 27 | 31 | 39  | 42 | 55 | 70 | 74 | 81 | 85  | 93 | 98 |
|---|---|----|----|----|-----|----|----|----|----|----|-----|----|----|
| 1 |   |    |    |    | l . |    |    |    |    |    | I . |    | I  |

The iterations of the algorithm are given in the following table:

## **Binary Search: Pseudocode**

```
ALGORITHM BinarySearch(A[0..n-1], K)
    //Implements nonrecursive binary search
    //Input: An array A[0..n-1] sorted in ascending order and
             a search key K
    //Output: An index of the array's element that is equal to K
             or -1 if there is no such element
    l \leftarrow 0; r \leftarrow n-1
    while l \leq r do
         m \leftarrow \lfloor (l+r)/2 \rfloor
         if K = A[m] return m
         else if K < A[m] \ r \leftarrow m-1
         else l \leftarrow m+1
    return -1
```

## **Analysis of Binary Search**

- Time efficiency
  - worst-case recurrence:

$$C_{worst}(n) = C_{worst}(\lfloor n/2 \rfloor) + 1$$
 for  $n > 1$ ,  $C_{worst}(1) = 1$ 

- For  $n = 2^k$ ,  $C_{worst}(2^k) = k + 1 = \log_2 n + 1$
- The solution:

$$C_{worst}(n) = \lfloor log_2 n \rfloor + 1 = \lceil log_2(n+1) \rceil$$

This is VERY fast: e.g.,  $C_{worst}(n) \in \Theta(\log n)$ 

## **Analysis of Binary Search**

- Optimal for searching a sorted array
- Limitations: must be a sorted array (not linked list)
- Has a continuous counterpart called **bisection method** for solving equations in one unknown f(x) = 0.

#### **Exercise 4.4**

**3. a.** What is the largest number of key comparisons made by binary search in searching for a key in the following array?

|    | 3 | 14 | 27 | 31 | 39 | 42 | 55  | 70 | 74 | 81 | 85 | 93 | 98 |
|----|---|----|----|----|----|----|-----|----|----|----|----|----|----|
| -1 |   |    |    |    |    |    | l . |    |    |    |    |    |    |

**b.** List all the keys of this array that will require the largest number of key comparisons when searched for by binary search.

#### 4.4.2 Fake-Coin Puzzle

- There are n identically looking coins one of which is fake.
   Design an efficient algorithm for detecting the fake coin.
  - There is a balance scale but there are no weights; the scale can tell whether two sets of coins weigh the same and, if not, which of the two sets is heavier (but not by how much).
  - Assume that the fake coin is known to be lighter than the genuine ones.

#### Fake-Coin Puzzle

We can easily set up a recurrence relation for the number of weighings W(n) needed by this algorithm in the worst case:

$$W(n) = W(\lfloor n/2 \rfloor) + 1$$
 for  $n > 1$ ,  $W(1) = 0$ .

This stuff should look elementary by now, if not outright boring.

- But wait: it would be more efficient to divide the coins not into two but into three piles of about n/3 coins each.
  - Accordingly, we should expect the number of weighings to be about  $\log_3 n$ , which is smaller than  $\log_2 n$ .

#### **General Balance Strategy**

- On each step, put  $\lceil n/3 \rceil$  of the *n* coins to be searched on each side of the scale.
  - If the scale tips to the left, then:
    - The lightweight fake is in the right set of  $\lceil n/3 \rceil \approx n/3$  coins.
  - If the scale tips to the right, then:
    - The lightweight fake is in the left set of  $\lceil n/3 \rceil \approx n/3$  coins.
  - If the scale stays balanced, then:
    - The fake is in the remaining set of  $n-2\lceil n/3\rceil \approx n/3$  coins that were not weighed!
- Except if  $n \mod 3 = 1$  then we can do a little better by weighing  $\lfloor n/3 \rfloor$  of the coins on each side.

#### Fake-Coin Puzzle

- Assume that the fake coin is known to be <u>lighter</u> than the genuine ones:
  - Decrease by factor 2 algorithm  $\rightarrow O(\log_2 n)$
  - Decrease by factor 3 algorithm  $\rightarrow O(\log_3 n)$ 
    - We need w weighing with a balance to find a light counterfeit coin among  $3^w$  coins.
    - So, the number of required weighings with n coins is  $w = \lceil \log_3 n \rceil$  .

## 4.4.3 Russian Peasant Multiplication

- The problem:
  - Compute the product of two positive integers n and m
- Can be solved by a decrease-by-half algorithm based on the following formulas.
  - For even values of n:  $n \cdot m = \frac{n}{2} \cdot 2m$ .
  - For odd values of n:  $n \cdot m = \frac{n-1}{2} \cdot 2m + m.$

### Russian Peasant Multiplication: Example

Note: Method reduces to adding m's values corresponding to odd n's.

| n  | m    |                      | n  | m    |      |
|----|------|----------------------|----|------|------|
| 50 | 65   |                      | 50 | 65   |      |
| 25 | 130  |                      | 25 | 130  | 130  |
| 12 | 260  | (+130)               | 12 | 260  |      |
| 6  | 520  |                      | 6  | 520  |      |
| 3  | 1040 |                      | 3  | 1040 | 1040 |
| 1  | 2080 | (+1040)              | 1  | 2080 | 2080 |
|    | 2080 | +(130 + 1040) = 3250 |    |      | 3250 |
|    |      | (a)                  |    | (b)  |      |

**FIGURE 4.11** Computing  $50 \cdot 65$  by the Russian peasant method.

#### **Exercise 4.4**

- **11. a.** Apply the Russian peasant algorithm to compute  $26 \cdot 47$ .
  - **b.** From the standpoint of time efficiency, does it matter whether we multiply *n* by *m* or *m* by *n* by the Russian peasant algorithm?

## Three major variations of Decrease-and-Conquer

- Decrease by a constant (usually by 1):
  - Graph traversal algorithms (DFS and BFS)
  - Insertion sort
  - Topological sorting
  - Algorithms for generating combinatorial objects
- Decrease by a constant factor (usually by half)
  - Binary search
  - Fake-Coin Problem
  - Russian Peasant Multiplication
- Variable size decrease
  - Computing a Median and the Selection Problem
  - Interpolation Search
  - Searching and Insertion in a Binary Search Tree

## 4.5 Variable-Size-Decrease Algorithms

 In the variable-size-decrease variation of decrease-andconquer, instance size reduction varies from one iteration to another

#### Examples:

- Computing a Median and the Selection Problem
- Interpolation Search
- Searching and Insertion in a Binary Search Trees
- The Game of Nim (Not cover)

#### 4.5.1 Computing Median and Selection Algorithm

- The selection problem
  - finding the *k*-th smallest element in a list of *n* numbers. This number is called the *k*-th **order statistic**.
  - For k = 1 or k = n, we can simply scan the list in question to find the smallest or largest element, respectively.
  - For k = n/2,
    - This middle value is called the **median**, and it is one of the most important notions in mathematical statistics.
    - We can find the k-th smallest element in a list by sorting the list first and then selecting the k-th element in the output of a sorting algorithm.
    - The time of such an algorithm is determined by the efficiency of the sorting algorithm used.

#### Partition-based Algorithm for the Selection Problem

- Sorting the entire list is most likely overkill since the problem asks not to order the entire list but just to find its 4th smallest element.
- Partition of the list.
  - we can take advantage of the idea of **partitioning** a given list around some value *p* of, say, its first element.



 In general, this is a rearrangement of the list's elements so that the left part contains all the elements smaller than or equal to p, followed by the **pivot** p itself, followed by all the elements greater than or equal to p.

#### Partition-based Algorithm for the Selection Problem

- Assuming that the list is indexed from 1 to n:
  - If p = k, the problem is solved;
  - if p > k, look for the k-th smallest element in the left part;
  - if p < k, look for the (k-s)-th smallest element in the right part.
- The algorithm can simply continue until s = k.



#### Pseudocode of the Partition-based Algorithm

```
ALGORITHM Quickselect(A[l..r], k)

//Solves the selection problem by recursive partition-based algorithm

//Input: Subarray A[l..r] of array A[0..n-1] of orderable elements and

// integer k (1 \le k \le r - l + 1)

//Output: The value of the kth smallest element in A[l..r]

s \leftarrow LomutoPartition(A[l..r]) //or another partition algorithm

if s = k - 1 return A[s]

else if s > l + k - 1 Quickselect(A[l..s-1], k)

else Quickselect(A[s+1..r], k-1-s)
```

#### Pseudocode of the Partition-based Algorithm

```
ALGORITHM LomutoPartition(A[l..r])
    //Partitions subarray by Lomuto's algorithm using first element as pivot
    //Input: A subarray A[l..r] of array A[0..n-1], defined by its left and right
             indices l and r (l \le r)
    //Output: Partition of A[l..r] and the new position of the pivot
    p \leftarrow A[l]
    s \leftarrow l
    for i \leftarrow l + 1 to r do
         if A[i] < p
             s \leftarrow s + 1; swap(A[s], A[i])
    swap(A[l], A[s])
    return s
```

**EXAMPLE** Apply the partition-based algorithm to find the median of the following list of nine numbers: 4, 1, 10, 8, 7, 12, 9, 2, 15. Here,  $k = \lceil 9/2 \rceil = 5$  and our task is to find the 5th smallest element in the array.

We use the above version of array partitioning, showing the pivots in bold.

| 0 | 1 | 2  | 3 | 4 | 5  | 6 | 7  | 8  |
|---|---|----|---|---|----|---|----|----|
| s | i |    |   |   |    |   |    |    |
| 4 | 1 | 10 | 8 | 7 | 12 | 9 | 2  | 15 |
|   | S | i  |   |   |    |   |    |    |
| 4 | 1 | 10 | 8 | 7 | 12 | 9 | 2  | 15 |
|   | S |    |   |   |    |   | i  |    |
| 4 | 1 | 10 | 8 | 7 | 12 | 9 | 2  | 15 |
|   |   | S  |   |   |    |   | i  |    |
| 4 | 1 | 2  | 8 | 7 | 12 | 9 | 10 | 15 |
|   |   | S  |   |   |    |   |    | i  |
| 4 | 1 | 2  | 8 | 7 | 12 | 9 | 10 | 15 |
| 2 | 1 | 4  | 8 | 7 | 12 | 9 | 10 | 15 |

**EXAMPLE** Apply the partition-based algorithm to find the median of the following list of nine numbers: 4, 1, 10, 8, 7, 12, 9, 2, 15. Here,  $k = \lceil 9/2 \rceil = 5$  and our task is to find the 5th smallest element in the array.

| 0 | 1 | 2 | 3 | 4 | 5  | 6 | 7  | 8  |
|---|---|---|---|---|----|---|----|----|
|   |   |   | S | i |    |   |    |    |
|   |   |   | 8 | 7 | 12 | 9 | 10 | 15 |
|   |   |   |   | S | i  |   |    |    |
|   |   |   | 8 | 7 | 12 | 9 | 10 | 15 |
|   |   |   |   | S |    |   |    | i  |
|   |   |   | 8 | 7 | 12 | 9 | 10 | 15 |
|   |   |   | 7 | 8 | 12 | 9 | 10 | 15 |

#### Efficiency of the Partition-based Algorithm

- Best case (average split in the middle):
  - C(n) = C(n/2) + n
  - $C(n) \in \Theta(n)$
- Worst case (degenerate split):
  - $C(n) \in \Theta(n^2)$

- How to avoid the worst case?
  - If we can find a more sophisticated way of choosing a pivot element

#### **Exercise 4.5**

**2.** Apply quickselect to find the median of the list of numbers 9, 12, 5, 17, 20, 30, 8.

## 4.5.2 Interpolation Search

- Interpolation search takes into account the value of the search key in order to find the array's element to be compared with the search key.
  - Unlike binary search, which always compares a search key with the middle value of a given sorted array.
- Example: a telephone book
  - if we are searching for someone named Brown, we open the book not in the middle but very close to the beginning, unlike our action when searching for someone named, say, Smith.

## **Interpolation Search**

• Searches a sorted array similar to binary search but estimates location of the search key in A[l ... r] by using its value v.



## **Interpolation Search**

- After comparing v with A[x],
  - the algorithm either stops (if they are equal) or
  - proceeds by searching in the same manner among the elements indexed either between l and x-1 or between x+1 and r, depending on whether A[x] is smaller or larger than v.



## **Efficiency of Interpolation Search**

- The size of the problem's instance is reduced, but we cannot tell a priori by how much.
- The analysis of the algorithm's efficiency shows that interpolation search uses fewer than  $\log_2\log_2 n + 1$  key comparisons on the average when searching in a list of n random keys.
- This function grows so slowly that the number of comparisons is a very small constant for all practically feasible inputs (see Problem 6 in this section's exercises).
- But in the worst case, interpolation search is only linear, which must be considered a bad performance (why?).

# 4.5.3 Searching and Insertion in a Binary Search Tree

- Searching for an element of a given value v in such a tree
- Recursively,
  - If the tree is empty, the search ends in failure.
  - Otherwise, we compare v with the tree's root K(r).
    - If they match, a desired element is found and the search can be stopped;
    - Otherwise, we continue with the search
      - in the left subtree of the root, if v < K(r)
      - in the right subtree, if v > K(r).
- On each iteration of the algorithm, the problem of searching in a binary search tree is reduced to searching in a smaller binary search tree.

# 4.5.3 Searching and Insertion in a Binary Search Tree

- The most sensible measure of the size of a search tree is its height;
  - the decrease in a tree's height normally changes from one iteration to another of the binary tree search
  - a variable-size-decrease algorithm.



# Efficiency: Searching and Insertion in a Binary Search Tree

- Worst case:  $\Theta(n)$ .
  - A tree is constructed by successive insertions of an increasing or decreasing sequence of keys



- Average-case efficiency:  $\Theta(\log n)$ .
  - More precisely, the number of key comparisons needed for a search in a binary search tree is about  $2 \ln n \approx 1.39 \log_2 n$ .