Command Reference: NewStatisticTimeSeriesFromEnsemble()

Create a time series containing a statistic determined from a time series ensemble

Version 10.01.00, 2011-11-27

The NewStatisticTimeSeriesFromEnsemble() command uses data from time series in an ensemble to calculate a statistic for each interval in the ensemble, and assigns the statistic value to the corresponding interval in the result. For example, for a statistic of Mean applied to a daily time series, all January 1, 1970 values will be used for the sample and the mean value will be assigned to January 1, 1970 in the output time series. Leap year values will be included if they are included in the period of the ensemble.

The following dialog is used to edit the command and illustrates the syntax for the command.

NewStatisticTimeSeriesFromEnsemble() Command Editor

The command syntax is as follows:

NewStatisticTimeSeriesFromEnsemble(Parameter=Value,...)

The following older command syntax is updated to the above syntax when a command file is read:

TS Alias = NewStatisticTimeSeriesFromEnsemble(Parameter=Value,...)

Command Parameters

Parameter	Description	Default
EnsembleID	The identifier for the ensemble to analyze.	None – must be
		specified.
NewTSID	The time series identifier to be assigned to the new time	None – use the same
	series, which is useful to avoid confusion with the original	identifier as the
	time series. This parameter may be required in the	original time series.
	future.	
Alias	The alias to assign to the time series, as a literal string or	None – must be
	using the special formatting characters listed by the	specified.
	command editor. The alias is a short identifier used by	
	other commands to locate time series for processing, as an	
	alternative to the time series identifier (TSID).	
Statistic	The statistic to compute. See the Available Statistics	None – must be
	table below.	specified.
Allow	The number of missing values allowed in the sample of	Missing values are
Missing	values in order to produce a result. This capability should	ignored in the sample
Count	be used with care because it may result in data that are not	used to compute the
	representative of actual conditions.	statistic.
MinimumSample	The minimum number of values in the sample that are	Use the sample with
Size	required to compute the statistic.	no restrictions,
		although some
		statistics may have
		requirements.
AnalysisStart	The date/time for the analysis start, using a precision that	Analyze the full
	matches the original time series.	period.
AnalysisEnd	The date/time for the analysis start, using a precision that	Analyze the full
	matches the original time series.	period.
OutputStart	The date/time for the output start, using a precision that	Output the full
	matches the original time series. An output period longer	period.
	than the analysis period will result in missing values in	•
	output.	
OutputEnd	The date/time for the output start, using a precision that	Output the full
	matches the original time series. An output period longer	period.
	than the analysis period will result in missing values in	•
	output.	
	<u> </u>	ı

Available Statistics

Statistic	Description	Limitations
Exceedance	The data value corresponding to a 10%	Small sample size will skew –
Probability10	chance of value being exceeded.	see statistic details.
Exceedance	The data value corresponding to a 30%	Small sample size will skew –
Probability30	chance of value being exceeded.	see statistic details.
Exceedance	The data value corresponding to a 50%	Small sample size will skew –
Probability50	chance of value being exceeded.	see statistic details.
Exceedance	The data value corresponding to a 70%	Small sample size will skew –
Probability70	chance of value being exceeded.	see statistic details.
Exceedance	The data value corresponding to a 90%	Small sample size will skew –

Statistic	Description	Limitations
Probability90	chance of value being exceeded.	see statistic details.
Max	Maximum of all values in the sample.	None.
Mean	Mean of all values in the sample.	None.
Median	Median of all values in the sample.	None.
Min	Minimum of all values in the sample.	None.

Statistic Details

Statistic	Description
Exceedance Probability*	 The statistic for each time step in the analysis period is computed as follows: The data values are extracted for each trace with missing values being ignored. The sample size is n. The data values are sorted into ascending order. Exceedance probabilities are computed for the number of sample values according to Weibull plotting positions as follows (for i=1,,n):

Examples

The following example command file illustrates how to compute the mean statistic for one monthly data:

The following figure illustrates the results:

NewStatisticTimeSeriesFromEnsemble_Table

NewStatisticTimeSeriesFromEnsemble() Command Results