

A service of the National Library of Medicine and the National Institutes of Health

My NCBI (Sign.In) (Registe

'> NCBI			w.pubmed.g	o v				(zigu tu) (Registeri
All Databases	PubMed	Nucleotrae	Protein	Genome	Structure	OM:M	PMC	Journals	Books
Search PubMed	fo .	#14 AND #11			Preview	Go Clear			
	Limits Pre	eview/Index Histo	י) Clipboard	d Details					
About Entrez NCBI Too!bar Text Version	To combine Search num	ory will be lost aft e searches use # be abers may not be co ery # to add to stra	fore search n	umber, e.g., #	2 AND #6.				
Entrez PubMed	Search		I	Most Recent	Queries			Time	Result
Overview Help I FAQ	#15 Searc	h #14 AND #11						13:01:23	<u> 10</u>
Tutorials	#14 Searc	h "Receptors, Ep	b Family"[N	1eSH]				12:51:37	715
New/Noteworthy E-Utilities	#12 Searc	h #5 AND #11						12:51:00) 1
L-Otimics	#13 Searc	h #8 AND #5						12:50:31	Ţ
PubMed Services	#11 Searc	h "Drug Design"	[MeSH] OR	"Crystallogr	aphy, X-Ray"	[MeSH]		12:49:24	41218
Journals Database MeSH Database	#8 Searc	h "Crystallograp	hy, X-Ray"	MeSHI		•		12:48:26	27122
Single Citation Matcher Batch Citation Matcher Clinical Queries Special Queries	#5 Searc	h "Receptors, Ep	b Family"[N	MAJR)				12:48:02	2 <u>266</u>
LinkOut My NCBI	Clear Histor	y-							

Related Resources Order Documents NLM Mobile NLM Catalog NLM Gateway TOXNET Consumer Health Clinical Alerts Clnical Trials.gov PubMed Central

> Write to the Help Desk NCBI | NLM | NIH Department of Health & Human Services Privacy Statement | Freedom of Information Act | Disclaimer

10/601,324 (Search History)

Mai 13 2006 04 32 14

3/21/2006

A service of the National Library of Medicine and the National Institutes of Health

My NCBI [7] [Sign.In] (Register)

All Databases	PubMed Nucleotine Protein Genome Structure QMIM PMC	Journa's	Books
Search PubMed	for #14 AND #11 Go Clear Save Search		
	Limits Preview/Index History Clipboard Details		
	Display Summary Show 20 Sort by Send to		
About Entrez NCBI Too!bar	All: 10 Review: 1 🛣		
Text Version	Items 1 - 10 of 10	(One page.
Entrez PubMed	1: Janes PW, Saha N, Barton WA, Koley MV, Wimmer-Kleikamp SH, Nievergall E, Blobel CP, Himanen JP, Lackmann M, Nikoloy DB.	Related Artic	des, Links
Overview Help FAQ	Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for eph	nrin cleavag	e in
Tutorials New/Noteworthy E-Utilities	☐ trans. Cell. 2005 Oct 21;123(2):291-304. PMID: 16239146 [PubMed - indexed for MEDLINE]		
	· ·	Related Artic	clae Links
PubMed Services Journals Database	7 2: Mancia F. Shapiro L.	Related Artis	Ges, Links
MeSH Database Single Citation Matcher Batch Citation Matcher	ADAM and Eph: how Ephrin-signaling cells become detached. Cell. 2005 Oct 21;123(2):185-7. PMID: 16239135 [PubMed - indexed for MEDLINE]		
Clinical Queries Special Queries	T. 3: Kaban K. Herbst RS.	Related Arti	cles, Links
LinkOut My NCBI	Angiogenesis as a target for cancer therapy.		
Related Resources	Hematol Oncol Clin North Am. 2002 Oct;16(5):1125-71. Review. PMID: 12512387 [PubMed - indexed for MEDLINE]		
Order Documents NLM Mobile NLM Catalog	T 4: Nowakowski J, Cronin CN, McRee DE, Knuth MW, Nelson CG, Pavletich NP, Rogers J, Sang BC, Scheibe DN, Swanson RV, Thompson DA.	Related Arti	des, Links
NLM Gateway TOXNET Consumer Health	Structures of the cancer-related Aurora-A, FAK, and EphA2 protein kinases from nanovolun Structure. 2002 Dec;10(12):1659-67. PMID: 12467573 [PubMed - indexed for MEDLINE]	ne crystallog	graphy.
Clinical Alerts ClinicalTrials.gov PubMed Central	☐ 5: Baldisseri DM, Margolis JW, Weber DJ, Koo JH, Margolis FL.	Related Arti	cles, Links
Cobined Central	Olfactory marker protein (OMP) exhibits a beta-clam fold in solution: implications for target and olfactory signal transduction. J Mol Biol. 2002 Jun 7;319(3):823-37. PMID: 12054873 [PubMed - indexed for MEDLINE]	t peptide int	eraction
	6: Smith PC. Firestein S. Hunt JF.	Related Arti	icles, Links
	The crystal structure of the olfactory marker protein at 2.3 A resolution. J Mol Biol. 2002 Jun 7;319(3):807-21. PMID: 12054872 [PubMed - indexed for MEDLINE]		
	7: Himanen JP, Rajashankar KR, Lackmann M, Cowan CA, Henkemeyer M, Nikolov DB.	Related Arti	icles. Links
	Crystal structure of an Eph receptor-ephrin complex. Nature. 2001 Dec 20-27;414(6866):933-8. PMID: 11780069 [PubMed - indexed for MEDLINE]		
	8: Wybenga-Groot LE, Baskin B, Ong SH, Tong J, Pawson T, Sicheri F.	Related Arti	icles, Links
	Structural basis for autoinhibition of the Ephb2 receptor tyrosine kinase by the unphosphory juxtamembrane region. Cell. 2001 Sep 21;106(6):745-57. PMID: 11572780 [PubMed - indexed for MEDLINE]	lated	
	☐ 9: Thanos CD, Goodwill KE, Bowie IU.	Related Arti	icles, Links
	Oligomeric structure of the human EphB2 receptor SAM domain. Science. 1999 Feb 5;283(5403):833-6. PMID: 9933164 [PubMed - indexed for MEDLINE]		
	10: Himanen JP, Henkemeyer M, Nikoloy DB.	Related Arti	icles, Links
	Crystal structure of the ligand-binding domain of the receptor tyrosine kinase EphB2. Nature. 1998 Dec 3;396(6710):486-91. PMID: 9853759 [PubMed - indexed for MEDLINE]		
	Display Summary Show 20 Sort by Send to		
	to the term of the second of t		

Write to the Help Desk NCBI | NLM | NIH Department of Health & Human Services Privacy Statement | Freedom of Information Act | Disclaimer

Mai 13 2006 04:32 14

STN Search Summary 10/601324

=> d his

(FILE 'HOME' ENTERED AT 14:23:12 ON 21 MAR 2006)

FILE 'MEDLINE, CAPLUS, BIOSIS, WPIDS, AGRICOLA, EMBASE' ENTERED AT

14:24:41 ON 21 MAR 2006

SET PLURALS ON PERM

SET ABBR ON PERM

L1 278 S ((EPHA2 RECEPTOR) OR (EPHA2 PROTEIN) OR (EPHA2 RECEPTOR TYROS

L2 3252 S ((EPHRIN? RECEPTOR?) OR (EPH? RECEPTOR?)

OR (EPH? PROTEIN?) O

L3 12679414 S (ATOMIC OR CRYSTAL? OR STRUCTUR? OR 3D OR ?DIMENSIONAL? OR ?R

L4 58 S L1 AND L3

L5 1115 S L2 AND L3

L6 49 DUP REM L4 (9 DUPLICATES REMOVED)

L7 814 DUP REM L5 (301 DUPLICATES REMOVED)

From: Dali Server 10/601,324

```
FSSP
         FAMILIES OF STRUCTURALLY SIMILAR PROTEINS, VERSION 1.0 (Apr 1 1995)
         Tue Mar 21 16:48:01 GMT 2006 for dali on s030-014.ebi.ac.uk
CREATED
         Dali ver. 2.0: Holm, L., Sander, C. (1993) J.Mol.Biol. 233,123-138
METHOD
DATABASE 7062 protein chains
         6252-A
HEADER
COMPND
SOURCE
AUTHOR
SEQLENGTH
           263
            77
NALIGN
WARNING
         pairs with Z<2.0 are structurally dissimilar
## SUMMARY: PDB/chain identifiers and structural alignment statistics
 NR. STRID1 STRID2 Z RMSD LALI LSEQ2 %IDE REVERS PERMUT NFRAG TOPO PROTEIN
   1: 6252-A 1m14-A 30.8 1.7 244
                                   307
                                         36
                                              0
                                                       0
TRANSFERASE
                 epidermal growth factor receptor fragment
   2: 6252-A 1fmk
                   27.7 3.5 246
                                  438
                                                            6 S
                                         44
                                                0
PHOSPHOTRANSFERASE
                      tyrosine-protein kinase src fragmen
   3: 6252-A 1b6c-B 25.0 2.7 240
                                   326
                                         26
                                                0
                                                       0
                                                           15 S
                                                                   COMPLEX
(ISOMERASE/PROTEIN KINASE) fk506-binding prote
  4: 6252-A 1t53-A 22.1 2.9 223
                                   291
                                         27
                                                0
                                                       0
                                                            24 S
  5: 6252-A 1hcl 21.6 3.3 234
                                   294
                                                            14 S
                                                                   PROTEIN
          human cyclin-dependent kinase 2 (cdk2)
  6: 6252-A lia8-A 21.4 2.5 222
                                   272
                                         22
                                                0
                                                       0
                                                            14 S
TRANSFERASE
                chkl checkpoint kinase fragment
                                                   (homo sa
  7: 6252-A lomw-A 21.1 2.8 237
                                   614
                                        21
                                                       0
                                                            15 S
                 g-protein coupled receptor kinase 2 (grk2,
  8: 6252-A 1cdk-A 20.3 3.3 240
                                   343
                                       23
                                             0
                                                            12 S
                                                                   COMPLEX
(TRANSFERASE/INHIBITOR)
                        camp-dependent protein
  9: 6252-A 1wbp-A 20.2 2.8 232
                                   350
                                        15
                                               0
                                                       0
                                                            18 S
TRANSFERASE
                 serineTHREONINE-PROTEIN KINASE SPRK1 (srpk
 10: 6252-A 2bdw-A 19.7 3.0 224
                                   309
                                        19
                                             0
                                                           17 S
TRANSFERASE
                hypothetical protein klle8.ld fragment Mut
 11: 6252-A lcsn 19.7 3.5 233
                                   293
                                        17
                                               0
                                                       0
                                                           18 S
PHOSPHOTRANSFERASE
                      casein kinase-1
                                        (schizosaccharomyc
 12: 6252-A 1jwh-A 18.3 2.7 225
                                  336
                                        15
                                            0 0
                                                            20 S
TRANSFERASE
             casein kinase ii, alpha chain (ck ii, cat
 13: 6252-A 1zar-A 10.0 3.7 165
                                  267
                                        12
                                             0
                                                           14 S
TRANSFERASE rio2 kinase
                                  (archaeoglobus fulgidus) arch
 14: 6252-A 1zao-A 9.8 3.6 164
                                   271 12
                                             0
TRANSFERASE
                rio2 serine kinase
                                        (archaeoglobus fulgidu
 15: 6252-A ltqi-A 9.8 3.7 165
                                   269 12
                                             0
                                                      0
                                                                   RIBOSOME
                                                           14 S
     conserved hypothetical protein (rio2)
                                             (archa
 16: 6252-A 1ztf-A 9.5 3.4 161
                                  243
                                        16
                                              0
                                                           19 S
                riol serine protein kinase
TRANSFERASE
                                             (archaeoglobus
 17: 6252-A 1j7i-A 6.6 4.9 159
                                 260
                                        10
                                               0
                                                           23 S
TRANSFERASE
                aminoglycoside 3'-phosphotransferase (aph
 18: 6252-A 1cja-A 5.2 3.8 143 327 10
                                                    0
TRANSFERASE actin-fragmin kinase fragment
                                                   (physarum p
                                              0
 19: 6252-A 1w2c-A 4.4 4.3 131 265 9
                                                   0
                                                           18 S
TRANSFERASE
               inositol-trisphosphate 3-kinase a (inosito
```

	20: 6252- TRANSFERASI							0 e kinase		18	S	
	21: 6252-					259		e killase	0	15	c	
	TRANSFERASE							3-kinase	-	13	5	
	22: 6252-							0	0	17	C	
	TRANSFERASI							related p	-	17	5	
	23: 6252-							o 0		7	c	EL ECTRON
	TRANSPORT	_							U	,	5	ELECTRON
	24: 6252-							0	0	15	c	
	TRANSFERASE						onefer	ace (knt:		13	3	
	25: 6252-			4.3	80	118	10	0	0	7	s	SENSORY
	TRANSDUCTIO							-	U	,	5	SENSORI
	26: 6252-							0	0	۵	S	
!	STRUCTURAL							-		,	5	
•	27: 6252-								0	·7	c	METAL
	TRANSPORT								U	′	3	MEIAD
·	28: 6252-						9	0	0	7	s	
,	TRANSFERASE									,	5	
	29: 6252-							0	0	7	s	DNA
,	BINDING PRO								U	′	۵	DNA
•	30: 6252-	A Inlx-A	2 9	3 5	81	104		01933	0	6	s	ALLEDCEN
•		n allerg							U	0	5	ALLERGEN .
	31: 6252-							um p 0	0	17	c	
1	PHOSPHOINOS	TTTDE 3-	KINASE	CAMM	110 1	npoeuj ogi	tu hatidw		U	17	5	
•	32: 6252-	A 1sr2-A	2 8	3 0	75	116	naciuy.	0	- 0	8	C	
-	TRANSFERASE							-		٥	5	
	33: 6252-					161	4	0	0 11 10 10	7	C	META
1	BINDING PRO								U	,	S	METAL
•	34: 6252-						5	, 0 .	0	_		TROM
9	STORAGE AND								U	5	5	IRON
•	35: 6252-	A 2fha	2 7	4.1			5	0	0	8	C	TROM
9	STORAGE									0	5	IRON
_	36: 6252-							0	0	7	s	CTCNIAI TNG
I	PROTEIN							_	U	,	5	SIGNALING
	37: 6252-						8	0	0	11	c	
	38: 6252-					126		0	0		S	CHAPERONE
		llar pro							U	5	a	CHAPERONE
	39: 6252-					94		0	0	7	s	COMPLEX
((ISOMERASE/								J	,	5	COMPLEX
	40: 6252-	A li5n-A	2.6	4.2	80	128	4	0	0	7	c	
7	ransferase									,	5	
	41: 6252-							0	0	7	S	TOXIN
		nia pest							•	,	_	IONIN
	42: 6252-	A laga-A	2.6	4.3	83	162		0	0	8	S	MEMBRANE
I	PROTEIN								V	Ü	5	PIEPIDRAIVE
	43: 6252-					159		0	0	7	S	DNA-
F	SINDING PRO								Ū	,		DIAM-
	44: 6252-	A 1dd5-A	2.6	3.8	67		6		0	5	c	RIBOSOME
		ome recy							Ū	,	5	KIDOSOME
	45: 6252-								0	4	q	
S	STRUCTURAL	GENOMICS	. UNKNO	OWN FU	NCTION	J	hypoth	netical n	ro	-	5	
	46: 6252-					137		0	0	7	g	
S	STRUCTURAL									,	_	
	47: 6252-					163	5	0	0	7	S	CELL
74	ADHESION								v	•	5	(1111
	48: 6252-					_	_	0	0	5	s	PROTEIN
E	BINDING								Ū	J	_	-1101011
								-				

40. 6252 A 1 21 A 2 5 4 1 70 140	6 0	0	6 S	DROWETN
49: 6252-A 1rj1-A 2.5 4.1 70 148 BINDING invertase inhibitor (nicot		U	0 5	PROTEIN
50: 6252-A lqsp-A 2.5 3.6 78 165	5 0	0	7 S	STONAL THE
	•	U	15	SIGNALING
PROTEIN ypd1 biological_unit (sacch	_	^	7 C	CVTOVINE
51: 6252-A lax8 2.5 4.9 77 130	8 0	0	7 S	CYTOKINE
obesity protein (leptin) Mutant bio	_	^	0.0	
52: 6252-A lvjx-A 2.4 4.1 78 145	9 0	0	9 S	
STRUCTURAL GENOMICS, UNKNOWN FUNCTION	putative ferri		<i>c c</i>	
53: 6252-A 1r72-A 2.4 2.8 57 205	4 0	0	6 S	MDMAT
54: 6252-A 1j7r-A 2.4 3.7 70 77	7 0	0	6 S	METAL
BINDING PROTEIN calcium vector protein	-	^	11 0	
55: 6252-A 2cdw-A 2.3 4.6 100 408	4 0		11 S	DA CONTO TO T
56: 6252-A 2b17-A 2.3 2.8 57 77	2 0	0	5 S	BACTERIAL
PROTEIN enterocine a immunity protein		_		TT 7,000 01-
57: 6252-A 256b-A 2.3 3.4 69 106	7 0	0	6 S	ELECTRON
	(escher	_	• -	
58: 6252-A lylm-A 2.3 4.6 85 139		0	8 S	
STRUCTURAL GENOMICS, UNKNOWN FUNCTION	hypothetical p		_	
59: 6252-A loxj-A 2.3 3.3 72 170		0	7 S	RNA
BINDING PROTEIN RNA-binding protein smax				
60: 6252-A locr-C 2.3 3.9 82 261	5 0	0	7 S	
OXIDOREDUCTASE cytochrome c oxidase (fe	_	C		
61: 6252-A 1m62-A 2.3 4.6 62 87	3 0	0	6 S	CHAPERONE
bag-family molecular chaperone regui				
	6 0	0	7 S	ELECTRON
TRANSPORT cytochrome c' (rhodobacter	r capsula			
63: 6252-A 1c17-M 2.3 4.7 81 142	9 0	0	8 S	MEMBRANE
PROTEIN atp synthase subunit c atp syn	nthase s			
64: 6252-A 1a48 2.3 3.1 41 298	7 0	0	6 S	ATP
BINDING PROTEIN phosphoribosylaminoimida	azole-succi			
65: 6252-A lyux-A 2.2 4.1 81 200	5 0	0	8 S	
OXIDOREDUCTASE nigerythrin Mutant	(desulfovibrio	vulg		
	7 0	0	8 S	ISOMERASE
5-methylthioribose-1-phosphate isome	erase fra			
67: 6252-A 1w09-A 2.2 3.6 63 92	10 0	0	6 S	CHAPERONE
alpha-hemoglobin stabilizing protein				
68: 6252-A lvr8-A 2.2 3.9 65 132	14 0	0	9 S	SIGNALING
PROTEIN gtp binding regulator fragment				
* **	3 0	0	7 S	
STRUCTURAL GENOMICS, UNKNOWN FUNCTION				
70: 6252-A 2d2s-A 2.1 4.5 78 217	9 0	0	7 S	
ENDOCYTOSIS/EXOCYTOSIS exocyst complex co		-	. •	·
71: 6252-A 1jdc 2.1 3.3 41 418	5 0	0	6 S	HYDROLASE
1,4-alpha maltotetrahydrolase (malto	-	J	5 5	and the state of t
72: 6252-A 1fft-C 2.1 4.4 80 185	5 0	0	8 S	·
OXIDOREDUCTASE ubiquinol oxidase ubiqui		_	0 0	
73: 6252-A 1f88-A 2.1 4.7 100 338	7 0		11 S	
	aurus species	т.о		
74: 6252-A 2mhr 2.0 8.0 69 118	3 0	0	5 S	OXYGEN
BINDING Myohemerythrin Sipunculan		U	<i>.</i> .	OATOLIN
75: 6252-A 1mqv-A 2.0 4.2 72 123	worm (themis	0	6 S	ELECTRON
-	opseudom	U	0 3	ELECTION
76: 6252-A 1jr8-A 2.0 3.7 75 105	opseudom 8 0	0	6 S	
OXIDOREDUCTASE erv2 protein, mitochond:	•	=	0 3	
77: 6252-A 1c3w-A 2.0 4.0 92 222	3 0		11 S	ION
	= =	U	11 2	TOM
TRANSPORT bacteriorhodopsin (ground state	re with rab			

.

ALIGNMENTS 1 - 30 SeqNo PDBNo AA STRUCTURE BP1 BP2 ACC OCC 605 A T 0 0 0 0 1 2 606 A T 0 5 R Ws Qh N Te . 3 607 A E В 74 0A 0 5 Ib Eb Rh T . . . -a Ve . 10 L I Th . 608 A I 0 0 0 . . L A Hh 4 Hh Hh Yh . . Ye . \ldots T H Fe Fh Ve \ldots 609 A H 0 0 14 K P Ih . Rh 5 >> 0 Rh Rh Kh Lh . R 6 610 A P T 34 S+ 18 Eg Rg Ah Rg M . Ms Lg Nt Sh Gt Qg Lh 0 0 0 Lh Lh Lh Kh . Lh . 7 611 A S T 34 S+ 0 0 0 21 Tg Eg Rh Sg Et Eg Nt Dg Gt Dh Vt Dg Vh Vh Vh Sh Kh . Mh . Ae . Dg . 8 612 A C T <4 S+ 21 Eg Sg Th Ag Nt D Dt Qg Rt Nh Ht Dg V 0 0 0 Wh . Ke . Dg . Ys Lh . . 21 Fe Le I Gb Fe We Fe Fe Ye Ye Ye Y 9 613 A V E < -B 0A 0 28 Ve . Gh . Ds Ds Ib Ih . Ie . 21 Ke Re Ve S Qe De Se Ee He De Ke Q Ae 10 614 A T E -B 27 0A 0 Ae Ae T Ys . . A . Ee . Ke . +B 20 Ke Le Le R Ke Le Ve Re Ve Ve Lb Ie 26 QΑ 0 11 615 A R E Ie Ie A R . P Fe . 23 Ie Ee Qe L Ve Ve He Ie Ie Ke Ge V Ge 12 616 A Q E 0 0 0 Ge Ge G C Ie . Ie. Le. 0A 0 23 Ke Ve Ee T Ee Qe Re Ke Re Ee Re Rb Ke 13 617 A K E -B 25 Ke Ke G Ve Ee . Ne . Se . 23 Ve Ke Se Le Ke Te Ie Te Ke Ee Re K Le 14 618 A V E +B 24 0A 0 Le Le Ve Ke Re . Κ. 15 619 A I E 22 Le Le Ie Se Ie Le Ie Le Le Le Ie L Me 0 0 0 Me Me Ie D S S 16 620 A G \mathbf{E} -B 23 0A Ge Ge Se T E . D М 21 S Qe Ke Re Ee E Re Te We Ke Ee R Ee 17 621 A A E -B 22 0A 0 Ee Ee T . Ks . Gb . 622 A G 22 Gt G Ge Ge G G G G G G 18 0 0 G G G M Gt. G 21 At Cs Rt St Ts At Gs Ss Hs At Ss Ks Ks 19 623 A E S S+ 0 0 0 Ks Ks Ks S Gs _ 22 Ft Fs Ft Yt Ys Yt Fs Fs Fs Ft Fs Ys Es 20 624 A F S s-0 0 0 Es Es Es Ps Tt . Ls . 22 Ge G Ge Gs G G G S Se G Se Se 21 625 A G S s-0 0 0 Se Se Ae As Es . Re . 25 Te Ee Ee Se Ve Ee Ee Re Te Ve Ve Ee Ae 22 626 A E E -B 17 0A 0 R . Re . Ae Ae Ne Ke G S 25 Ve Ve Ve Le Ve Ve Ve Ve Ve Ie Ve Ve 23 627 A V E -BC 16 39A 0 Ve Ve Ve Le Fe Fe . Ae . 25 Ye We We Le Ye Qe Ye Me We Re Fe Fe 24 628 A Y E -BC 14 38A 0 Fe Fe Fe Ye Fe Ke Le . Ve . 25 Ke Me Re Qs Ke Le Ge Le Le Re Ee Ee Ne 25 629 A K E +BC 13 37A 0 Ne Ne Y Ke Fe Ae Te . Ke . 26 Ge Ge Ge F Ae Ae Ce Ve Se Ce Ge A Ce 26 630 A G E -BC 11 36A 0 Ce Ce A Le Ve A T . Ve . Ce . -BC 10 26 Le Te Ke Q Re Ve Re Ke We Ve Te I Ye 27 631 A M E 35A 0 Ye Ye D Ve Ee Gs Yt . Le . Ve .

. .

An Information Portal to Biological Macromolecular Structures

As of Tuesday Mar 14, 2006 dithere are 35579 Structures 📦 | PDB Statistics 🚱 @ POB ID or keyword C Author SEARCH (A) Advanced Search

Contact Us | Help | Print Page Structure Summary Biology & Chemistry Haterials & Methods Sequence Details Geometry Home Search Structure Results 1MQB 📓 Images and Visualization Crystal Structure of Ephrin A2 (ephA2) ■ 1MQB Receptor Protein Kinase Download Files Nowakowski, J., Cronin, FASTA Sequence C.N., McRee, D.E., Knuth, Display Files M.W., Nelson, C., Pavletich, Authors Display Molecule N., Rogers, J., Sang, B.C., Scheibe, D.N., Swanson, R.V., Thompson, ■ Structural Reports Structure Analysis Nowakowski, J., Cronin, C.N., McRee, D.E., Knuth, M.W., Nelson, C., Pavletich, N., Rogers, J., Sang, B.C., Scheibe, D.N., Swanson, R.V., Thompson, D.A. Structures of the Cancer Related Aurora-A, FAK and EphA2 Protein Kinases from Nanovolume Crystallography Structure v10 pp.1659-1667. Help Primary Citation [Abstract] Deposition 2002-09-16 Release 2003-09-History Experimental Type X-RAY DIFFRACTION Data N/A Method Resolution R-Value R-Free Space Group **Parameters** 0.236 2.30 0.288 P 3₂ 2 1 (obs.) Length a 72.13 b 72.13 c 241.62 **Unit Cell** Angles alpha 90.00 beta 90.00 gamma 120.00 Molecular multimer (protein homodimer (333 Description residues)) Asymmetric Polymer: 1 Molecule: Ephrin type-A receptor 2 Fragment: Kinase Domain Unit Chains: A, B; EC No.: 2.7.1.112 Functional Transferase Class Source Polymer: 1 Scientific Name: Homo sapiens Common Name: Human Expression system: Homo sapiens

Display Options KING lmol WebMol Protein Workshop OuickPDB All Images

Related PDB Entries	id 1MQ4 1MP8	RE	Q4 IS 1	OR PR	OTEIN						(EPHA2) se (FAK)
Chemical Component	Identifier N	ame				Form	ula	Drug Simil	arity	Ligan Struct	d Ligand ture Interaction
		HOSPHOA CID-ADEN				С ₁₀ Н Р ₃	I ₁₇ N ₆ O ₁₂	{ Vie	w]	[Vie	w][View]
SCOP Classification	Domain Info	Class	Fold		Superfar	nily	Family		Domair	1	Species
(version 1.59)	d1mqba_	Alpha and beta proteins (a+b)	Protei kinase (PK-lil	-like	Protein kinase- (PK-like		Protein kinases, catalytic subunit	:	epha2 recept tyrosir kinase	ie .	Human (Homo sapiens)
	d1mqbb_	Alpha and beta proteins (a+b)	Protei kinase (PK-li)	-like	Protein kinase- (PK-like		Protein kinases, catalytic subunit	:	epha2 recept tyrosir kinase	ne .	Human (Homo sapiens)
CATH	Domain	Class		Archite	ecture	Торо	logy		Н	omolog	y
Classification (version v2.6.0)	1mqbA1	Alpha E	Beta	2-Lay Sand			phorylas se; doma			nospho nase;	rylase domain 1
	1mqbA2	Mainly	Alpha	Ortho Bundi	gonal le	(Pho	sferase sphotran ain 1	sfera	se); (P	ansfer hosph main	otransferase)
	1mqbB1	Alpha £	Beta	2-Lay Sand		Phos Kina	phorylas se; doma	e sin 1		nospho nase;	rylase domain 1
	1mqbB2	Mainly	Alpha	Ortho Bundl	gonal le	(Pho	sferase sphotran ain 1	sfera	se); (P	ansfer hosph main	otransferase)
GO Terms	Polymer		Molecu			Biolo	gical Proc	ess	C	ellular C	Component
	Ephrin type	-A receptor	•	activit proteii tyrosir	ń-	•	protein acid phosph transm	oryla	tion	• m	nembrane

RCSB PDB : Structure Explorer

2 (1MQB:A, B)

ephrin receptor activityATP binding

receptor protein tyrosine kinase signaling pathway

© RCSB Protein Data Bank

OM protein - protein search, using sw model

Run on: March 21, 2006, 22:35:54; Search time 207.279 Seconds

(without alignments)

2068.873 Million cell updates/sec

Title: US-10-601-324-1

Perfect score: 5177

Sequence: 1 MELQAARACFALLWGCALAA......RIAYSLLGLKDQVNTVGIPI 976

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 2443163 segs, 439378781 residues

Total number of hits satisfying chosen parameters: 2443163

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : A_Geneseq_21:*

1: geneseqp1980s:*
2: geneseqp1990s:*
3: geneseqp2000s:*
4: geneseqp2001s:*

5: geneseqp2002s:*

6: geneseqp2003as:*

7: genesegp2003bs:*

8: geneseqp2004s:*

9: geneseqp2005s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		*					
Result		Query					
No.	Score	Match	Length	DB	ID	Description	Į.
1	5177	100.0	976	7	ADE40423	Ade40423 Hu	.man eph
2	5177	100.0	976	8	ADL61214	Adl61214 Hu	man pro
3	5177	100.0	976	8	ADN03964	Adn03964 An	tipsori
4	5177	100.0	976	9	ADU79818	Adu79818 Hu	man Eph
5	5177	100.0	976	9	ADU79822	Adu79822 Hu	man Eph
6	5177	100.0	976	9	ADV94805	Adv94805 Hu	man ADP
7	5177	100.0	987	8	ADX97538	Adx97538 Pa	ncreati
8	5147	99.4	976	7	ADJ95092	Adj95092 No	vel NOV
9	5147	99.4	976	9	ADW96093	Adw96093 Hu	man Eph
10	5147	99.4	976	9	ADZ66185	Adz66185 Ep	hA2 pol
11	5147	99.4	976	9	AEB72892	Aeb72892 Hu	man rec
12	5141	99.3	1035	9	ADZ66203	Adz66203 Pr	otein e
13	5141	99.3	1035	9	AEB80023	Aeb80023 Hu	ıman Eph
14	5141	99.3	1035	9	AEB72910	Aeb72910 Fu	sion pr

15	5048.5	97.5	963	8	ABM83447	Abm83447 Human dia
16	4748.5	91.7	977	9	AEA55026	Aea55026 Mouse tyr
17	4748.5	91.7	977	9	AEA55035	Aea55035 Mouse eph
18	2892	55.9	535	9	ADU79824	Adu79824 Extracell
19	2696.5	52.1	574	9	ADZ66213	Adz66213 Protein e
20	2696.5	52.1	574	9	AEB80034	Aeb80034 Human Eph
21	2696.5	52.1	574	9	AEB72921	Aeb72921 Fusion pr
22	2692	52.0	502	9	ADZ66206	Adz66206 Primary a
23	2692	52.0	502	9	AEB80026	Aeb80026 Human Eph
24	2692	52.0	502	9	AEB72913	Aeb72913 Human Eph
25	2692	52.0	563	9	ADZ66208	Adz66208 Protein e
26	2692	52.0	563	9	AEB80028	Aeb80028 Human Eph
27	2692	52.0	563	9	AEB72915	Aeb72915 Fusion pr
28	2692	52.0	581	9	ADZ66210	Adz66210 LLOss-PES
29	2692	52.0	581	9	AEB80030	Aeb80030 Human Eph
30	2692	52.0	581	9	AEB80032	Aeb80032 Human Eph
31	2692	52.0	581	9	AEB72917	Aeb72917 Fusion pr
32	2692	52.0	581	9	AEB72919	Aeb72919 Fusion pr
33	2650	51.2	991	2	AAR85090	Aar85090 EPH-like
34	2637	50.9	1037	6	ABR44241	Abr44241 Tyrosine
35	2632	50.8	1037	5	ABG61868	Abg61868 Prostate
36	2632	50.8	1037	7	ADE31683	Ade31683 Human 141
37	2629	50.8	1041	9	ADV97895	Adv97895 Murine pr
38	2622.5	50.7	953	5	ABP52826	Abp52826 Human rec
39	2604.5	50.3	975	5	ABP52827	Abp52827 Human Ehk
40	2570	49.6	998	2	AAR85092	Aar85092 EPH-like
41	2566	49.6	998	2	AAW03421	Aaw03421 Mouse dev
42	2551	49.3	1005	2	AAW83147 ·	Aaw83147 Rat recep
43	2519.5	48.7	986	2	AAR85091	Aar85091 EPH-like
44	2519.5	48.7	986	7	ADD46395	Add46395 Human Pro
45	2519.5	48.7	986	8	ADO17780	Adq17780 Human sof

GenCore version 5.1.7

Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

Run on: March 21, 2006, 22:46:54; Search time 49.2101 Seconds

(without alignments)

1639.734 Million cell updates/sec

Title: US-10-601-324-1

Perfect score: 5177

Sequence: 1 MELQAARACFALLWGCALAA.....RIAYSLLGLKDQVNTVGIPI 976

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 572060 seqs, 82675679 residues

Total number of hits satisfying chosen parameters: 572060

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : Issued_Patents_AA: *

1: /cgn2_6/ptodata/1/iaa/5_COMB.pep:*

2: /cgn2_6/ptodata/1/iaa/6_COMB.pep:*

3: /cgn2_6/ptodata/1/iaa/H_COMB.pep:*

4: /cgn2_6/ptodata/1/iaa/PCTUS_COMB.pep:*

5: /cgn2_6/ptodata/1/iaa/RE_COMB.pep:*
6: /cgn2_6/ptodata/1/iaa/backfiles1.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		ક			•		
Result		Query					
No.	Score	Match	Length	DB	ID	Description	
1	5177	100.0	976	 1	US-08-449-645A-18	Sequence 18	Appl
2	5177	100.0	976	1	US-08-702-367A-18	Sequence 18	, Appl
3	5177	100.0	976	2	US-09-949-016-6499	Sequence 64	99, Ap
4	5177	100.0	976	4	PCT-US95-04681-18	Sequence 18	, Appl
5	5147	99.4	1013	2	US-09-949-016-7991	Sequence 79	91, Ap
6	5120.5	98.9	977	1	US-08-673-789-8	Sequence 8,	Appli
7	2650	51.2	991	1	US-08-449-645A-13	Sequence 13	, Appl
8	2650	51.2	991	1	US-08-702-367A-13	Sequence 13	, Appl
9	2650	51.2	991	4	PCT-US95-04681-13	Sequence 13	, Appl
10	2634.5	50.9	967	1	US-08-449-645A-30	Sequence 30	, Appl
11	2634.5	50.9	967	1	US-08-702-367A-30	Sequence 30), Appl
12	2622.5	50.7	953	2	US-09-751-389-7	Sequence 7,	Appli
13	2604.5	50.3	975	2	US-09-751-389-8	Sequence 8,	Appli
14	2570	49.6	998	1	US-08-449-645A-17	Sequence 17	, Appl
15	2570	49.6	998	1	US-08-702-367A-17	Sequence 17	, Appl
16	2570	49.6	998	2	US-09-949-016-6501	Sequence 65	01, Ap
17	2570	49.6	998	4	PCT-US95-04681-17	Sequence 17	, Appl
18	2570	49.6	1005	2	US-09-949-016-9901	Sequence 99	01, Ap

24	19	2568	49.6	994	2	US-08-368-776A-12	Sequence 12, Appl
22 2560.5 49.5 993 2 US-08-368-776A-11 Sequence 11, Appl 23 2551 49.3 1005 1 US-08-469-537A-103 Sequence 103, App 24 2537 49.0 982 1 US-08-673-789-4 Sequence 4, Appli 25 2532.5 48.9 986 1 US-08-673-789-3 Sequence 3, Appli 26 2520 48.7 983 1 US-08-449-645A-21 Sequence 21, Appl 27 2520 48.7 983 1 US-08-702-367A-21 Sequence 21, Appl 28 2520 48.7 983 4 PCT-US95-04681-21 Sequence 21, Appl 29 2519.5 48.7 986 1 US-08-449-645A-15 Sequence 21, Appl 30 2519.5 48.7 986 1 US-08-702-367A-15 Sequence 15, Appl 31 2519.5 48.7 986 1 US-08-702-367A-15 Sequence 15, Appl 32 2519.5 48.7 986 4 PCT-US95-04681-15 Sequence 15, Appl 33 2518.5 48.6 983 1 US-08-162-809-16 Sequence 7171, Ap 33 2518.5 48.6 983 1 US-08-162-809-16 Sequence 16, Appl 34 2518 48.6 983 2 US-09-771-161A-227 Sequence 10, Appl 36 2517 48.6 983 1 US-08-167-919A-10 Sequence 10, Appl 36 2517 48.6 983 2 US-09-442-649-10 Sequence 10, Appl 38 2514.5 48.6 983 2 US-09-751-389-6 Sequence 10, Appl 39 2512.5 48.5 1104 1 US-08-222-616-36 Sequence 36, Appl 40 2512.5 48.5 1104 2 US-09-982-610-36 Sequence 36, Appl 41 2512.5 48.5 1104 2 US-09-982-610-36 Sequence 36, Appl 42 2512.5 48.5 1104 4 PCT-US95-04228-36 Sequence 36, Appl 42 2512.5 48.5 1104 4 PCT-US95-04228-36 Sequence 36, Appl 43 2463.5 47.6 1035 2 US-09-751-389-4 Sequence 2, Appli 44 2461 47.5 1036 2 US-09-751-389-2 Sequence 2, Appli	20	2566	49.6	998	2	US-08-368-776A-2	Sequence 2, Appli
23 2551 49.3 1005 1 US-08-469-537A-103 Sequence 103, App 24 2537 49.0 982 1 US-08-673-789-4 Sequence 4, Appli 25 2532.5 48.9 986 1 US-08-673-789-3 Sequence 3, Appli 26 2520 48.7 983 1 US-08-449-645A-21 Sequence 21, Appl 27 2520 48.7 983 1 US-08-702-367A-21 Sequence 21, Appl 28 2520 48.7 983 4 PCT-US95-04681-21 Sequence 21, Appl 29 2519.5 48.7 986 1 US-08-449-645A-15 Sequence 15, Appl 30 2519.5 48.7 986 1 US-08-702-367A-15 Sequence 15, Appl 31 2519.5 48.7 986 4 PCT-US95-04681-15 Sequence 15, Appl 32 2519.5 48.7 987 4 PCT-US95-04681-15 Sequence 15, Appl 32 2519.5 48.7 997 2 US-09-949-016-7171 Sequence 15, Appl 33 2518.5 48.6 983 1 US-08-162-809-16 Sequence 16, Appl 34 2518 48.6 983 2 US-09-771-161A-227 Sequence 16, Appl 36 2517 48.6 983 2 US-09-771-161A-227 Sequence 10, Appl 37 2517 48.6 983 2 US-09-742-649-10 Sequence 10, Appl 38 2514.5 48.6 983 2 US-09-742-649-10 Sequence 10, Appl 39 2512.5 48.5 1104 1 US-08-222-616-36 Sequence 36, Appl 40 2512.5 48.5 1104 2 US-08-446-648-36 Sequence 36, Appl 41 2512.5 48.5 1104 2 US-09-982-610-36 Sequence 36, Appl 42 2512.5 48.5 1104 4 PCT-US95-04228-36 Sequence 36, Appl 42 2512.5 48.5 1104 4 PCT-US95-04228-36 Sequence 36, Appl 43 2463.5 47.6 1035 2 US-09-751-389-4 Sequence 2, Appli 44 2461 47.5 1036 2 US-09-751-389-2	21	2566	49.6	998	4	PCT-US96-00419-2	Sequence 2, Appli
24	22	2560.5	49.5	993	2	US-08-368-776A-11	Sequence 11, Appl
25 2532.5 48.9 986 1 US-08-673-789-3 Sequence 3, Appli 26 2520 48.7 983 1 US-08-449-645A-21 Sequence 21, Appl 27 2520 48.7 983 1 US-08-702-367A-21 Sequence 21, Appl 28 2520 48.7 983 4 PCT-US95-04681-21 Sequence 21, Appl 29 2519.5 48.7 986 1 US-08-449-645A-15 Sequence 15, Appl 30 2519.5 48.7 986 1 US-08-702-367A-15 Sequence 15, Appl 31 2519.5 48.7 986 4 PCT-US95-04681-15 Sequence 15, Appl 32 2519.5 48.7 997 2 US-09-949-016-7171 Sequence 7171, Ap 33 2518.5 48.6 983 1 US-08-162-809-16 Sequence 16, Appl 34 2518 48.6 983 2 US-09-771-161A-227 Sequence 227, App 35 2517 48.6 983 1 US-08-167-919A-10 Sequence 10, Appl 36 2517 48.6 983 2 US-09-442-649-10 Sequence 10, Appl 38 2514.5 48.6 968 2 US-09-751-389-6 Sequence 10, Appl 39 2512.5 48.5 1104 1 US-08-222-616-36 Sequence 36, Appl 40 2512.5 48.5 1104 2 US-08-446-648-36 Sequence 36, Appl 42 2512.5 48.5 1104 2 US-09-982-610-36 Sequence 36, Appl 42 2512.5 48.5 1104 4 PCT-US95-04228-36 Sequence 36, Appl 43 2463.5 47.6 1035 2 US-09-751-389-4 Sequence 2, Appli 44 2461 47.5 1036 2 US-09-751-389-2 Sequence 2, Appli	23	2551	49.3	1005	1	US-08-469-537A-103	Sequence 103, App
26	24	2537	49.0	982	1	US-08-673-789-4	Sequence 4, Appli
27 2520 48.7 983 1 US-08-702-367A-21 Sequence 21, Appl 28 2520 48.7 983 4 PCT-US95-04681-21 Sequence 21, Appl 29 2519.5 48.7 986 1 US-08-449-645A-15 Sequence 15, Appl 30 2519.5 48.7 986 1 US-08-702-367A-15 Sequence 15, Appl 31 2519.5 48.7 986 4 PCT-US95-04681-15 Sequence 15, Appl 32 2519.5 48.7 997 2 US-09-949-016-7171 Sequence 7171, Ap 33 2518.5 48.6 983 1 US-08-162-809-16 Sequence 16, Appl 34 2518 48.6 983 2 US-09-771-161A-227 Sequence 227, App 35 2517 48.6 983 1 US-08-167-919A-10 Sequence 10, Appl 36 2517 48.6 983 2 US-08-715-106-10 Sequence 10, Appl 37 2517 48.6 983 2 US-09-442-649-10 Sequence 10, Appl 38 2514.5 48.6 968 2 US-09-751-389-6 Sequence 6, Appli 39 2512.5 48.5 1104 1 US-08-222-616-36 Sequence 36, Appl 40 2512.5 48.5 1104 2 US-08-446-648-36 Sequence 36, Appl 41 2512.5 48.5 1104 2 US-09-982-610-36 Sequence 36, Appl 42 2512.5 48.5 1104 4 PCT-US95-04228-36 Sequence 36, Appl 43 2463.5 47.6 1035 2 US-09-751-389-4 Sequence 2, Appli 44 2461 47.5 1036 2 US-09-751-389-2 Sequence 2, Appli	25	2532.5	48.9	986	1	US-08-673-789-3	Sequence 3, Appli
28	26	2520	48.7	983	1	US-08-449-645A-21	Sequence 21, Appl
29 2519.5 48.7 986 1 US-08-449-645A-15 Sequence 15, Appl 30 2519.5 48.7 986 1 US-08-702-367A-15 Sequence 15, Appl 31 2519.5 48.7 986 4 PCT-US95-04681-15 Sequence 15, Appl 32 2519.5 48.7 997 2 US-09-949-016-7171 Sequence 7171, Ap 33 2518.5 48.6 983 1 US-08-162-809-16 Sequence 16, Appl 34 2518 48.6 983 2 US-09-771-161A-227 Sequence 227, App 35 2517 48.6 983 1 US-08-167-919A-10 Sequence 10, Appl 36 2517 48.6 983 2 US-08-715-106-10 Sequence 10, Appl 37 2517 48.6 983 2 US-09-442-649-10 Sequence 10, Appl 38 2514.5 48.6 968 2 US-09-751-389-6 Sequence 6, Appli 39 2512.5 48.5 1104 1 US-08-222-616-36 Sequence 36, Appl 40 2512.5 48.5 1104 2 US-08-446-648-36 Sequence 36, Appl 41 2512.5 48.5 1104 2 US-09-982-610-36 Sequence 36, Appl 42 2512.5 48.5 1104 4 PCT-US95-04228-36 Sequence 36, Appl 43 2463.5 47.6 1035 2 US-09-751-389-4 Sequence 2, Appli 44 2461 47.5 1036 2 US-09-751-389-2 Sequence 2, Appli	27	2520	48.7	983	1	US-08-702-367A-21	Sequence 21, Appl
30 2519.5 48.7 986 1 US-08-702-367A-15 Sequence 15, Appl 31 2519.5 48.7 986 4 PCT-US95-04681-15 Sequence 15, Appl 32 2519.5 48.7 997 2 US-09-949-016-7171 Sequence 7171, Ap 33 2518.5 48.6 983 1 US-08-162-809-16 Sequence 16, Appl 34 2518 48.6 983 2 US-09-771-161A-227 Sequence 227, App 35 2517 48.6 983 1 US-08-167-919A-10 Sequence 10, Appl 36 2517 48.6 983 2 US-08-715-106-10 Sequence 10, Appl 37 2517 48.6 983 2 US-09-442-649-10 Sequence 10, Appl 38 2514.5 48.6 968 2 US-09-751-389-6 Sequence 6, Appli 39 2512.5 48.5 1104 1 US-08-222-616-36 Sequence 36, Appl 40 2512.5 48.5 1104 2 US-08-446-648-36 Sequence 36, Appl 41 2512.5 48.5 1104 2 US-09-982-610-36 Sequence 36, Appl 42 2512.5 48.5 1104 4 PCT-US95-04228-36 Sequence 36, Appl 43 2463.5 47.6 1035 2 US-09-751-389-4 Sequence 2, Appli 44 2461 47.5 1036 2 US-09-751-389-2 Sequence 2, Appli	28	2520	48.7	983	4	PCT-US95-04681-21	Sequence 21, Appl
31 2519.5 48.7 986 4 PCT-US95-04681-15 Sequence 15, Appl 32 2519.5 48.7 997 2 US-09-949-016-7171 Sequence 7171, Ap 33 2518.5 48.6 983 1 US-08-162-809-16 Sequence 16, Appl 34 2518 48.6 983 2 US-09-771-161A-227 Sequence 227, App 35 2517 48.6 983 1 US-08-167-919A-10 Sequence 10, Appl 36 2517 48.6 983 2 US-09-742-649-10 Sequence 10, Appl 37 2517 48.6 983 2 US-09-751-389-6 Sequence 10, Appl 38 2514.5 48.6 968 2 US-09-751-389-6 Sequence 6, Appli 39 2512.5 48.5 1104 1 US-08-222-616-36 Sequence 36, Appl 40 2512.5 48.5 1104 2 US-09-982-610-36 Sequence 36, Appl 41 2512.5 48.5 1104 2 US-09-982-610-36 Sequence 36, Appl 42 2512.5	29	2519.5	48.7	986	1	US-08-449-645A-15	Sequence 15, Appl
32 2519.5 48.7 997 2 US-09-949-016-7171 Sequence 7171, Ap 33 2518.5 48.6 983 1 US-08-162-809-16 Sequence 16, Appl 34 2518 48.6 983 2 US-09-771-161A-227 Sequence 227, App 35 2517 48.6 983 1 US-08-167-919A-10 Sequence 10, Appl 36 2517 48.6 983 2 US-09-442-649-10 Sequence 10, Appl 37 2517 48.6 983 2 US-09-751-389-6 Sequence 10, Appl 38 2514.5 48.6 968 2 US-09-751-389-6 Sequence 6, Appli 39 2512.5 48.5 1104 1 US-08-222-616-36 Sequence 36, Appl 40 2512.5 48.5 1104 2 US-09-982-610-36 Sequence 36, Appl 41 2512.5 48.5 1104 2 US-09-982-610-36 Sequence 36, Appl 42 2512.5 48.5 1104 4 PCT-US95-04228-36 Sequence 36, Appl 43 2463.5	30	2519.5	48.7	986	1	US-08-702-367A-15	Sequence 15, Appl
33 2518.5 48.6 983 1 US-08-162-809-16 Sequence 16, Appl 34 2518 48.6 983 2 US-09-771-161A-227 Sequence 227, App 35 2517 48.6 983 1 US-08-167-919A-10 Sequence 10, Appl 36 2517 48.6 983 2 US-08-715-106-10 Sequence 10, Appl 37 2517 48.6 983 2 US-09-442-649-10 Sequence 10, Appl 38 2514.5 48.6 968 2 US-09-751-389-6 Sequence 6, Appli 39 2512.5 48.5 1104 1 US-08-222-616-36 Sequence 36, Appl 40 2512.5 48.5 1104 2 US-08-446-648-36 Sequence 36, Appl 41 2512.5 48.5 1104 2 US-09-982-610-36 Sequence 36, Appl 42 2512.5 48.5 1104 4 PCT-US95-04228-36 Sequence 36, Appl 43 2463.5 47.6 1035 2 US-09-751-389-4 Sequence 2, Appli 44 2461 47.5 1036 2 US-09-751-389-2 Sequence 2, Appli	31	2519.5	48.7	986	4	PCT-US95-04681-15	Sequence 15, Appl
34 2518 48.6 983 2 US-09-771-161A-227 Sequence 227, App 35 2517 48.6 983 1 US-08-167-919A-10 Sequence 10, Appl 36 2517 48.6 983 2 US-08-715-106-10 Sequence 10, Appl 37 2517 48.6 983 2 US-09-442-649-10 Sequence 10, Appl 38 2514.5 48.6 968 2 US-09-751-389-6 Sequence 6, Appl 39 2512.5 48.5 1104 1 US-08-222-616-36 Sequence 36, Appl 40 2512.5 48.5 1104 2 US-09-982-610-36 Sequence 36, Appl 41 2512.5 48.5 1104 2 US-09-982-610-36 Sequence 36, Appl 42 2512.5 48.5 1104 4 PCT-US95-04228-36 Sequence 36, Appl 43 2463.5 47.6 1035 2 US-09-751-389-4 Sequence 2, Appli 44 2461 47.5 1036 2 US-09-751-389-2 Sequence 2, Appli	32	2519.5	48.7	997	2	US-09-949-016-7171	Sequence 7171, Ap
35	33	2518.5	48.6	983	1	US-08-162-809-16	Sequence 16, Appl
36 2517 48.6 983 2 US-08-715-106-10 Sequence 10, Appl 37 2517 48.6 983 2 US-09-442-649-10 Sequence 10, Appl 38 2514.5 48.6 968 2 US-09-751-389-6 Sequence 6, Appl 39 2512.5 48.5 1104 1 US-08-222-616-36 Sequence 36, Appl 40 2512.5 48.5 1104 2 US-08-446-648-36 Sequence 36, Appl 41 2512.5 48.5 1104 2 US-09-982-610-36 Sequence 36, Appl 42 2512.5 48.5 1104 4 PCT-US95-04228-36 Sequence 36, Appl 43 2463.5 47.6 1035 2 US-09-751-389-4 Sequence 4, Appli 44 2461 47.5 1036 2 US-09-751-389-2 Sequence 2, Appli	34	2518	48.6	983	2	US-09-771-161A-227	Sequence 227, App
37 2517 48.6 983 2 US-09-442-649-10 Sequence 10, Appl 38 2514.5 48.6 968 2 US-09-751-389-6 Sequence 6, Appli 39 2512.5 48.5 1104 1 US-08-222-616-36 Sequence 36, Appl 40 2512.5 48.5 1104 2 US-08-446-648-36 Sequence 36, Appl 41 2512.5 48.5 1104 2 US-09-982-610-36 Sequence 36, Appl 42 2512.5 48.5 1104 4 PCT-US95-04228-36 Sequence 36, Appl 43 2463.5 47.6 1035 2 US-09-751-389-4 Sequence 4, Appli 44 2461 47.5 1036 2 US-09-751-389-2 Sequence 2, Appli	35	2517	48.6	983	1	US-08-167-919A-10	Sequence 10, Appl
38 2514.5 48.6 968 2 US-09-751-389-6 Sequence 6, Appli 39 2512.5 48.5 1104 1 US-08-222-616-36 Sequence 36, Appl 40 2512.5 48.5 1104 2 US-08-446-648-36 Sequence 36, Appl 41 2512.5 48.5 1104 2 US-09-982-610-36 Sequence 36, Appl 42 2512.5 48.5 1104 4 PCT-US95-04228-36 Sequence 36, Appl 43 2463.5 47.6 1035 2 US-09-751-389-4 Sequence 4, Appli 44 2461 47.5 1036 2 US-09-751-389-2 Sequence 2, Appli	36	2517	48.6	983	2	US-08-715-106-10	Sequence 10, Appl
39 2512.5 48.5 1104 1 US-08-222-616-36 Sequence 36, Appl 40 2512.5 48.5 1104 2 US-08-446-648-36 Sequence 36, Appl 41 2512.5 48.5 1104 2 US-09-982-610-36 Sequence 36, Appl 42 2512.5 48.5 1104 4 PCT-US95-04228-36 Sequence 36, Appl 43 2463.5 47.6 1035 2 US-09-751-389-4 Sequence 4, Appli 44 2461 47.5 1036 2 US-09-751-389-2 Sequence 2, Appli	37	2517	48.6	983	2	US-09-442-649-10	Sequence 10, Appl
40 2512.5 48.5 1104 2 US-08-446-648-36 Sequence 36, Appl 41 2512.5 48.5 1104 2 US-09-982-610-36 Sequence 36, Appl 42 2512.5 48.5 1104 4 PCT-US95-04228-36 Sequence 36, Appl 43 2463.5 47.6 1035 2 US-09-751-389-4 Sequence 4, Appli 44 2461 47.5 1036 2 US-09-751-389-2 Sequence 2, Appli	38	2514.5	48.6	968	2	US-09-751-389-6	Sequence 6, Appli
41 2512.5 48.5 1104 2 US-09-982-610-36 Sequence 36, Appl 42 2512.5 48.5 1104 4 PCT-US95-04228-36 Sequence 36, Appl 43 2463.5 47.6 1035 2 US-09-751-389-4 Sequence 4, Appli 44 2461 47.5 1036 2 US-09-751-389-2 Sequence 2, Appli	39	2512.5	48.5	1104	1	US-08-222-616-36	Sequence 36, Appl
42 2512.5 48.5 1104 4 PCT-US95-04228-36 Sequence 36, Appl 43 2463.5 47.6 1035 2 US-09-751-389-4 Sequence 4, Appli 44 2461 47.5 1036 2 US-09-751-389-2 Sequence 2, Appli	40	2512.5	48.5	1104	2	US-08-446-648-36	Sequence 36, Appl
43 2463.5 47.6 1035 2 US-09-751-389-4 Sequence 4, Appli 44 2461 47.5 1036 2 US-09-751-389-2 Sequence 2, Appli	41	2512.5	48.5	1104	2	US-09-982 - 610-36	Sequence 36, Appl
44 2461 47.5 1036 2 US-09-751-389-2 Sequence 2, Appli	42	2512.5	48.5	1104	4	PCT-US95-04228-36	Sequence 36, Appl
	43	2463.5	47.6	1035	2	US-09-751-389-4	
45 2387 46.1 995 1 US-08-162-809-18 Sequence 18, Appl	44	2461	47.5	1036	2	US-09-751-389-2	Sequence 2, Appli
	45	2387	46.1	995	1	US-08-162-809-18	Sequence 18, Appl

GenCore version 5.1.7

Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

March 21, 2006, 23:02:20 ; Search time 167.762 Seconds Run on:

(without alignments)

2430.838 Million cell updates/sec

US-10-601-324-1 Title:

Perfect score: 5177

1 MELQAARACFALLWGCALAA......RIAYSLLGLKDQVNTVGIPI 976 Sequence:

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

1867569 seqs, 417829326 residues Searched:

Total number of hits satisfying chosen parameters: 1867569

Minimum DB seg length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0% Maximum Match 100%

Listing first 45 summaries

Database : Published Applications_AA_Main: *

1: /cgn2_6/ptodata/1/pubpaa/US07_PUBCOMB.pep:* 2: /cgn2_6/ptodata/1/pubpaa/US08_PUBCOMB.pep:*

3: /cgn2_6/ptodata/1/pubpaa/US09_PUBCOMB.pep:*

4: /cgn2_6/ptodata/1/pubpaa/US10A_PUBCOMB.pep:*

5: /cgn2_6/ptodata/1/pubpaa/US10B_PUBCOMB.pep:*
6: /cgn2_6/ptodata/1/pubpaa/US11_PUBCOMB.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		용				
Result		Query				
No.	Score	Match	Length	DB	ID	Description
1	5177	100.0	976	4	US-10-366-288-2	Sequence 2, Appli
2	5177	100.0	976	4	US-10-648-593-138	Sequence 138, App
3	5177	100.0	976	5	US-10-616-403-6	Sequence 6, Appli
4	5147	99.4	976	4	US-10-287-226-320	Sequence 320, App
5	5147	99.4	976	5	US-10-897-711-2	Sequence 2, Appli
6	2697	52.1	- 991	5	US-10-732-923-13667	Sequence 13667, A
7	2677	51.7	1013	5	US-10-732-923-13668	Sequence 13668, A
8	2650	51.2	991	3	US-09-823-187-44	Sequence 44, Appl
9	2632	50.8	1037	4	US-10-316-124-3	Sequence 3, Appli
10	2632	50.8	1037	4	US-10-353-690-40	Sequence 40, Appl
11	2632	50.8	1037	6	US-11-064-551-3	Sequence 3, Appli
12	2629	50.8	1041	5	US-10-840-512-215	Sequence 215, App
13	2622.5	50.7	953	4	US-10-412-277-7	Sequence 7, Appli
14	2604.5	50.3	975	4	US-10-412-277-8	Sequence 8, Appli
15	2576	49.8	985	4	US-10-029-020-61	Sequence 61, Appl
16	2574	49.7	998	3	US-09-823-187-43	Sequence 43, Appl
17	2570	49.6	998	3	US-09-823-187-40	Sequence 40, Appl
18	2566	49.6	998	3	US-09-823-187-42	Sequence 42, Appl

19	2549	49.2	1005	4	US-10-029-020-63	Sequence	63, Appl
20	2542.5	49.1	993	3	US-09-823-187-39	Sequence	39, Appl
21	2542.5	49.1	993	3	US-09-823-187-41	Sequence	41, Appl
22	2522.5	48.7	983	5	US-10-732-923-13675	Sequence	13675, A
23	2519.5	48.7	986	5	US-10-723-860-597	Sequence	597, App
24	2519.5	48.7	986	5	US-10-756-149-4880	Sequence	4880, Ap
25	2519.5	48.7	997	5	US-10-450-763-36048	Sequence	36048, A
26	2519.5	48.7	1026	5	US-10-450-763-53290	Sequence	53290, A
27	2518	48.6	983	3	US-09-771-161A-227	Sequence	227, App
28	2518	48.6	983	4	US-10-205-823-97	Sequence	97, Appl
29	2518	48.6	983	4	US-10-345-680-2	Sequence	2, Appli
30	2518	48.6	983	4	US-10-295-027-602	Sequence	602, App
31	2518	48.6	983	4	US-10-029-020-59	Sequence	59, Appl
32	2518	48.6	983	6	US-11-051-454-97	Sequence	97, Appl
33	2515	48.6	983	5	US-10-794-514A-467	Sequence	467, App
34	2515	48.6	983	5	US-10-489-125B-11	Sequence	11, Appl
35	2514.5	48.6	968	4	US-10-412-277-6	Sequence	6, Appli
36	2512.5	48.5	1104	3	US-09-982-610-36	Sequence	36, Appl
37	2469.5	47.7	1130	5	US-10-840-512-216	Sequence	216, App
38	2467	47.7	1036	3	US-09-971-708-2	Sequence	2, Appli
39	2467	47.7	1036	4	US-10-245-752-104	Sequence	104, App
40	2467	47.7	1036	4	US-10-245-859-104	Sequence	104, App
41	2467	47.7	1036	4	US-10-245-103-104	Sequence	104, App
42	2467	47.7	1036	4	US-10-245-107-104	Sequence	104, App
43	2467	47.7	1036	4	US-10-245-143-104	Sequence	104, App
44	2467	47.7	1036	4	US-10-245-771-104	Sequence	104, App
45	2467	47.7	1036	4	US-10-245-851-104	Sequence	104, App

OM protein - protein search, using sw model

March 21, 2006, 23:03:25; Search time 23.8594 Seconds Run on:

(without alignments)

1170.855 Million cell updates/sec

Title: US-10-601-324-1

Perfect score: 5177

1 MELQAARACFALLWGCALAA......RIAYSLLGLKDQVNTVGIPI 976 Sequence:

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

169630 seqs, 28622889 residues Searched:

Total number of hits satisfying chosen parameters: 169630

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Published_Applications_AA_New:* Database :

1: /cgn2_6/ptodata/1/pubpaa/US08_NEW_PUB.pep:*

2: /cgn2_6/ptodata/1/pubpaa/US06_NEW_PUB_pep:* 3: /cgn2_6/ptodata/1/pubpaa/US07_NEW_PUB.pep:*
4: /cgn2_6/ptodata/1/pubpaa/PCT_NEW_PUB.pep:*
5: /cgn2_6/ptodata/1/pubpaa/US09_NEW_PUB.pep:*
6: /cgn2_6/ptodata/1/pubpaa/US10_NEW_PUB.pep:*

7: /cgn2 6/ptodata/1/pubpaa/US11_NEW_PUB.pep:*

8: /cgn2 6/ptodata/1/pubpaa/US60_NEW_PUB.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		ક				
Result		Query				
No.	Score	Match	Length	DB	ID	Description
		- 				
1	5177	100.0	976	7	US-11-072-175-138	Sequence 138, App
2	5147	99.4	976	6	US-10-966-483-2	Sequence 2, Appli
3	5147	99.4	976	6	US-10-511-273-1	Sequence 1, Appli
4	5147	99.4	976	7	US-11-233-796-2	Sequence 2, Appli
5	5147	99.4	976	7	US-11-203-251A-77	Sequence 77, Appl
6	5141	99.3	1035	6	US-10-966-483-20	Sequence 20, Appl
7	5141	99.3	1035	7	US-11-021-441-4	Sequence 4, Appli
8	2696.5	52.1	574	6	US-10-966-483-31	Sequence 31, Appl
9	2696.5	52.1	574	7	US-11-021-441-15	Sequence 15, Appl
10	2692	52.0	502	6	US-10-966-483-23	Sequence 23, Appl
11	2692	52.0	502	7	US-11-021-441-7	Sequence 7, Appli
12	2692	52.0	563	6	US-10-966-483-25	Sequence 25, Appl
13	2692	52.0	563	7	US-11-021-441-9	Sequence 9, Appli
14	2692	52.0	581	6	US-10-966-483-27	Sequence 27, Appl
15	2692	52.0	581	6	US-10-966-483-29	Sequence 29, Appl
16	2692	52.0	581	7	US-11-021-441-11	Sequence 11, Appl

17	2692	52.0	581	7	US-11-021-441-13	Sequence	13, Appl
18	2651	51.2	1015	7	US-11-203-251A-82	Sequence	82, Appl
19	2633	50.9	1037	7	US-11-203-251A-81	Sequence	81, Appl
20	2576	49.8	985	7	US-11-113-424-61	Sequence	61, Appl
21	2570	49.6	998	7	US-11-203-251A-83	Sequence	83, Appl
22	2549	49.2	1005	7	US-11-113-424-63	Sequence	63, Appl
23	2519.5	48.7	986	7	US-11-203-251A-80	Sequence	80, Appl
24	2518	48.6	983	7	US-11-113-424-59	Sequence	59, Appl
25	2515	48.6	983	7	US-11-203-251A-78	Sequence	78, Appl
26	2466.5	47.6	1035	7	US-11-113-424-20	Sequence	20, Appl
27	2457	47.5	1052	7	US-11-113-424-22	Sequence	22, Appl
28	2392	46.2	976	7	US-11-203-251A-76	Sequence	76, Appl
29	2387	46.1	995	7	US-11-113-424-62	Sequence	62, Appl
30	2375.5	45.9	1005	7	US-11-203-251A-84	Sequence	84, Appl
31	2370	45.8	987	6	US-10-770-726-61	Sequence	61, Appl
32	2370	45.8	987	7	US-11-203-251A-87	Sequence	87, Appl
33	2364	45.7	456	6	US-10-966-483-34	Sequence	34, Appl
34	2364	45.7	456	7	US-11-021-441-18	Sequence	18, Appl
35	2357.5	45.5	1055	7	US-11-072-175-139	Sequence	139, App
36	2357.5	45.5	1055	7	US-11-203-251A-86	Sequence	86, Appl
37	2356.5	45.5	1055	7	US-11-169-041-155	Sequence	155, App
38	2356.5	45.5	1055	7	US-11-051-720-1417	Sequence	1417, Ap
39	2318	44.8	984	7	US-11-113-424-60	Sequence	60, Appl
40	2312	44.7	984	7	US-11-203-251A-85	Sequence	85, Appl
41	2281.5	44.1	998	7	US-11-203-251A-88	Sequence	88, Appl
42	2265.5	43.8	998	6	US-10-510-524-1	Sequence	1, Appli
43	2195	42.4	490	6	US-10-966-483-42	Sequence	42, Appl
44	2195	42.4	490	7	US-11-021-441-26	Sequence	26, Appl
45	2179	42.1	479	6	US-10-966-483-36	Sequence	36, Appl

9

GenCore version 5.1.7 Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

Run on: March 21, 2006, 22:41:59; Search time 41.0084 Seconds

(without alignments)

2289.959 Million cell updates/sec

Title: US-10-601-324-1

Perfect score: 5177

Sequence: 1 MELQAARACFALLWGCALAA......RIAYSLLGLKDQVNTVGIPI 976

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 283416 seqs, 96216763 residues

Total number of hits satisfying chosen parameters: 283416

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : PIR 80:*

1: pir1:*
2: pir2:*
3: pir3:*

3: pir3:*
4: pir4:*

윷

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result No.	Score	Query Match	Length	DB	ID	Description
1	5177	100.0	976	2	A36355	protein-tyrosine k
2	4748.5	91.7	977	2	S49004	tyrosine kinase Mp
3	4589.5	88.7	975	2	I48974	receptor-protein t
4	2677	51.7	1013	2	I50615	receptor-type prot
5	2650	51.2	991	2	I78843	receptor protein-t
6	2576	49.8	985	2	I51549	receptor tyrosine
7	2571	49.7	981	2	S51604	receptor-like tyro
8	2570	49.6	998	2	I58351	receptor protein-t
9	2566	49.6	998	2	JC5672	receptor tyrosine
10	2549	49.2	1005	2	S49015	receptor tyrosine
11	2524.5	48.8	986	2	S78059	protein-tyrosine k
12	2522.5	48.7	983	2	B45583	receptor tyrosine
13	2519.5	48.7	986	2	178844	receptor protein-t
14	2518	48.6	983	2	A38224	protein-tyrosine k
15	2491	48.1	983	2	A45583	receptor tyrosine
16	2387	46.1	995	2	A56599	embryo kinase 5 -
17	2349.5	45.4	970	2	I78842	receptor protein-t
18	2336.5	45.1	948	2	S51605	receptor-like tyro
19	2322	44.9	984	1	A34076	protein-tyrosine k
20	2318	44.8	984	2	A39753	protein-tyrosine k

21	2295.5	44.3	988	2	I50611	protein-tyrosine k
22	2285	44.1	898	2	S47489	receptor tyrosine
23	2283	44.1	893	2	S51603	receptor-like tyro
24	2272	43.9	993	2	I48653	mouse developmenta
25	2265.5	43.8	998	2	S37627	protein-tyrosine k
26	2245	43.4	849	2	I50617	protein-tyrosine k
27	2212.5	42.7	985	2	I51672	receptor tyrosine
28	2193	42.4	877	2	I48967	brain-specific kin
29	2179.5	42.1	938	2	149071	protein kinase - m
30	2148.5	41.5	952	2	150612	protein-tyrosine k
31	2135	41.2	426	2	148759	protein-tyrosine k
32	2133	41.2	987	2	A54092	protein-tyrosine k
33	2112	40.8	987	2	I48652	mouse developmenta
34	2091.5	40.4	987	2	I48953	eph-related recept
35	1796.5	34.7	1006	2	JC5526	kinase-defective E
36	1667.5	32.2	1019	2	T13039	tyrosine kinase re
37	1416	27.4	490	2	150613	protein-tyrosine k
38	1390.5	26.9	612	2	S33506	protein-tyrosine k
39	1365	26.4	1122	2	T42400	Eph receptor tyros
40	1364.5	26.4	480	2	148760	protein-tyrosine k
41	1342	25.9	478	2	A57174	protein-tyrosine k
42	1248.5	24.1	610	2	I48612	developmental kina
43	1248.5	24.1	626	2	I48614	developmental kina
44	1243	24.0	605	2	JC5673	receptor tyrosine
45	1241	24.0	919	2	T29581	hypothetical prote

OM protein - protein search, using sw model

Run on: March 21, 2006, 22:37:09; Search time 217.717 Seconds

(without alignments)

3162.796 Million cell updates/sec

Title: US-10-601-324-1

Perfect score: 5177

Sequence: 1 MELQAARACFALLWGCALAA......RIAYSLLGLKDQVNTVGIPI 976

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 2166443 segs, 705528306 residues

Total number of hits satisfying chosen parameters: 2166443

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0% Maximum Match 100%

Listing first 45 summaries

Database : UniProt 05.80:*

1: uniprot_sprot:*
2: uniprot_trembl:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		*					
Result		Query					
No.	Score	Match	Length	DB	ID	Descrip	tion
1	5177	100.0	976	1	EPHA2_HUMAN	p29317	homo sapien
2	5147	99.4	976		Q8N3Z2_HUMAN		homo sapien
3			977		EPHA2 MOUSE		mus musculu
_	4748.5				-		
4	3765.5		974	2	Q6DII4_XENTR		xenopus tro
5	3747.5	72.4	976	2	Q6NTV5_XENLA	Q6ntv5	xenopus lae
6	3738.5	72.2	963	2	Q5FWW9_XENLA	Q5fww9	xenopus lae
7	3673	70.9	977	2	Q9PWR5_XENLA	Q9pwr5	xenopus lae
8	2819.5	54.5	984	2	Q6NZS1_BRARE	Q6nzs1	brachydanio
9	2738.5	52.9	1042	2	Q4RXA0_TETNG	Q4rxa0	tetraodon n
10	2677	51.7	1013	1	EPHA5_CHICK	P54755	gallus gall
11	2632	50.8	1037	1	EPHA5_HUMAN	P54756	homo sapien
12	2592	50.1	969	2	Q7Z3F2_HUMAN	Q7z3f2	homo sapien
13	2583.5	49.9			Q7ZYM7_XENLA	Q7zym7	xenopus lae
14	2582.5	49.9	986	1	EPA4A_XENLA	Q91845	xenopus lae
15	2576	49.8	985	1	EPA4B_XENLA	Q91694	xenopus lae
16	2574	49.7	998	1	EPHA7_RAT	P54759	rattus norv
17	2573	49.7	994	2	Q8R381_MOUSE	Q8r381	mus musculu
18	2571	49.7	998	2	Q8BSU8_MOUSE	Q8bsu8	mus musculu
19	2569	49.6	998	1	EPHA7_HUMAN	Q15375	homo sapien
20.	2566	49.6	998	1	EPHA7_MOUSE		mus musculu
21	2565.5	49.6	1017		Q59FT4_HUMAN	-	homo sapien
22	2554	49.3	969	2	Q98TD0_CHICK	Q98td0	gallus gall

23	2549	49.2	1005	1	EPHA5_RAT	P54757 rattus norv
24	2542.5	49.1	993	1	EPHA7_CHICK	O42422 gallus gall
25	2530.5	48.9	986	2	Q5ZEW1_BRARE	Q5zew1 brachydanio
26	2529.5	48.9	984	2	Q8BRB1_MOUSE	Q8brb1 mus musculu
27	2529.5	48.9	984	2	Q8C3U1_MOUSE	Q8c3u1 mus musculu
28	2529.5	48.9	986	2	Q80VZ2_MOUSE	Q80vz2 mus musculu
29	2524.5	48.8	986	1	EPHA4_CHICK	Q07496 gallus gall
30	2524.5	48.8	986	1	EPHA4_MOUSE	Q03137 mus musculu
31	2522.5	48.7	983	1	EPHA3_CHICK	P29318 gallus gall
32	2519.5	48.7	986	1	EPHA4_HUMAN	P54764 homo sapien
33	2518	48.6	983	1	EPHA3_HUMAN	P29320 homo sapien
34	2517.5	48.6	984	1	EPHA3_RAT	008680 rattus norv
35	2511	48.5	983	2	Q6P4R6_HUMAN	Q6p4r6 homo sapien
36	2491	48.1	983	1	EPHA3_MOUSE	P29319 mus musculu
37	2470.5	47.7	949	2	Q58F15_HUMAN	Q58f15 homo sapien
38	2463.5	47.6	1035	1	EPHA6_MOUSE	Q62413 mus musculu
39	2452	47.4	927	2	Q99KA8_MOUSE	Q99ka8 mus musculu
40	2427.5	46.9	981	1	EPHA3_BRARE	O13146 brachydanio
41	2398	46.3	976	1	EPHA1_HUMAN	P21709 homo sapien
42	2396.5	46.3	977	1	EPHA1_MOUSE	Q60750 mus musculu
43	2390.5	46.2	977	2	Q6IR19_MOUSE	Q6ir19 mus musculu
44	2375.5	45.9	1005	1	EPHA8_HUMAN	P29322 homo sapien
45	2373	45.8	1004	1	EPHB2_CHICK	P28693 gallus gall

OM protein - protein search, using sw model

March 21, 2006, 23:07:20 ; Search time 187 Seconds Run on:

(without alignments)

655.544 Million cell updates/sec

Title: US-10-601-324-1_COPY_605_883

Perfect score: 279

1 TTEIHPSCVTRQKVIGAGEF......FADIVSILDKLIRAPDSLKT 279 Sequence:

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

2443163 seqs, 439378781 residues Searched:

Word size :

Total number of hits satisfying chosen parameters: 2443163

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Listing first 45 summaries

A_Geneseq_21:* Database :

1: geneseqp1980s:*

2: geneseqp1990s:*

3: geneseqp2000s:*
4: geneseqp2001s:*
5: geneseqp2002s:*
6: geneseqp2003as:*

7: geneseqp2003bs:*

8: geneseqp2004s:*

9: geneseqp2005s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		ક				
Result No.	Score	Query Match	Length	DB	ID	Description
				-		
1	279	100.0	456	9	ADZ66216	Adz66216 Primary a
2	279	100.0	456	9	AEB80037	Aeb80037 Human Eph
3	279	100.0	456	9	AEB72924	Aeb72924 Human Eph
4	279	100.0	479	9	ADZ66218	Adz66218 Protein e
5	279	100.0	479	9	AEB80039	Aeb80039 Human Eph
6	279	100.0	479	9	AEB72926	Aeb72926 Fusion pr
7	279	100.0	490	9	ADZ66223	Adz66223 Protein e
8	279	100.0	490	9	AEB80045	Aeb80045 Human Eph
9	279	100.0	490	9	AEB72932	Aeb72932 Fusion pr
10	279	100.0	497	9	ADZ66220	Adz66220 Protein e
11	279	100.0	497	9	AEB80043	Aeb80043 Human Eph
12	279	100.0	497	9	AEB80041	Aeb80041 Human Eph
13	279	100.0	497	9	AEB72928	Aeb72928 Fusion pr
14	279	100.0	497	9	AEB72930	Aeb72930 Fusion pr
15	279	100.0	963	8	ABM83447	Abm83447 Human dia

16	279	100.0	976	7	ADE40423	Ade40423 Human eph
17	279	100.0	976	7	ADJ95092	Adj95092 Novel NOV
18	279	100.0	976	8	ADL61214	Adl61214 Human pro
19	279	100.0	976	8	ADN03964	Adn03964 Antipsori
20	279	100.0	976	9	ADU79818	Adu79818 Human Eph
21	279	100.0	976	9	ADU79822	Adu79822 Human Eph
22	279	100.0	976	9	ADV94805	Adv94805 Human ADP
23	279	100.0	976	9	ADW96093	Adw96093 Human Eph
24	279	100.0	976	9	ADZ66185	Adz66185 EphA2 pol
25	279	100.0	976	9	AEB72892	Aeb72892 Human rec
26	279	100.0	987	8	ADX97538	Adx97538 Pancreati
27	279	100.0	1035	9	ADZ66203	Adz66203 Protein e
28	279	100.0	1035	9	AEB80023	Aeb80023 Human Eph
29	279	100.0	1035	9	AEB72910	Aeb72910 Fusion pr
30	77	27.6	977	9	AEA55026	Aea55026 Mouse tyr
31	77	27.6	977	9	AEA55035	Aea55035 Mouse eph
32	55	19.7	55	6	ABU83030	Abu83030 Human rec
33	36	12.9	308	7	ADA39525	Ada39525 Human kin
34	36	12.9	308	8	ADS18041	Ads18041 Human nov
35	36	12.9	334	7	ADF12512	Adf12512 Consensus
36	36	12.9	534	8	ADX91454	Adx91454 Plant ful
37	36	12.9	558	8	ADX91452	Adx91452 Plant ful
38	36	12.9	942	7	ADA39523	Ada39523 Human kin
39	36	12.9	942	8	ADS18039	Ads18039 Human nov
40	36	12.9	948	2	AAW83148	Aaw83148 Rat recep
41	36	12.9	948	5	ABP52824	Abp52824 Rat recep
42	36	12.9	1035	5	ABG70391	Abg70391 Human Eph
43	36	12.9	1035	5	ABP52823	Abp52823 Mouse rec
44	36	12.9	1035	7	ADF12510	Adf12510 Murine Ep
45	36	12.9	1036	4	AAG67398	Aag67398 Amino aci

OM protein - protein search, using sw model

March 21, 2006, 23:15:00; Search time 48 Seconds Run on:

(without alignments)

480.552 Million cell updates/sec

Title: US-10-601-324-1_COPY_605_883

Perfect score: 279

1 TTEIHPSCVTRQKVIGAGEF......FADIVSILDKLIRAPDSLKT 279 Sequence:

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched: 572060 seqs, 82675679 residues

Word size :

Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Listing first 45 summaries

Issued_Patents_AA: * Database :

1: /cgn2_6/ptodata/1/iaa/5_COMB.pep:*

2: /cgn2_6/ptodata/1/iaa/6_COMB.pep:*
3: /cgn2_6/ptodata/1/iaa/H_COMB.pep:*
4: /cgn2_6/ptodata/1/iaa/PCTUS_COMB.pep:*
5: /cgn2_6/ptodata/1/iaa/RE_COMB.pep:*

6: /cgn2_6/ptodata/1/iaa/backfiles1.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		- 6				
Result		Query				
No.	Score	Match	Length	DB	ID	Description
1	279	100.0	976	1	US-08-449-645A-18	Sequence 18, Appl
2	279	100.0	976	1	US-08-702-367A-18	Sequence 18, Appl
3	279	100.0	976	2	US-09-949-016-6499	Sequence 6499, Ap
4	279	100.0	976	4	PCT-US95-04681-18	Sequence 18, Appl
5	279	100.0	1013	2	US-09-949-016-7991	Sequence 7991, Ap
6	173	62.0	977	1	US-08-673-789-8	Sequence 8, Appli
7	55	19.7	55	1	US-08-456-647B-42	Sequence 42, Appl
8	55	19.7	55	1	US-08-237-401A-42	Sequence 42, Appl
9	54	19.4	54	1	US-08-469-537A-29	Sequence 29, Appl
10	38	13.6	687	1	US-08-449-645A-29	Sequence 29, Appl
11	38	13.6	687	1	US-08-702-367A-29	Sequence 29, Appl
12	36	12.9	308	2	US-10-004-542-4	Sequence 4, Appli
13	36	12.9	308	2	US-10-430-797-4	Sequence 4, Appli
14	36	12.9	942	2	US-10-004-542-2	Sequence 2, Appli
15	36	12.9	942	2	US-10-430-797-2	Sequence 2, Appli
16	36	12.9	948	1	US-08-469-537A-101	Sequence 101, App
17	36	12.9	948	2	US-09-751-389-5	Sequence 5, Appli
18	36	12.9	1035	2	US-09-751-389-4	Sequence 4, Appli

19	36	12.9	1036	2	US-09-751-389-2	Sequence	2, Appli
20	30	10.8	397	2	US-09-949-016-11445	Sequence	11445, A
21	30	10.8	612	1	US-08-673-789-11	Sequence	11, Appl
22	30	10.8	945	2	US-09-949-016-8172	Sequence	8172, Ap
23	30	10.8	951	1	US-08-162-809-2	Sequence	2, Appli
24	30	10.8	970	1	US-08-673-789-7	Sequence	7, Appli
25	30	10.8	970	1	US-08-449-645A-11	Sequence	11, Appl
26	30	10.8	970	1	US-08-702-367A-11	Sequence	11, Appl
27	30	10.8	970	4	PCT-US95-04681-11	Sequence	11, Appl
28	30	10.8	973	1	US-08-162-809-8	Sequence	8, Appli
29	30	10.8	973	1	US-08-162-809-10	Sequence	10, Appl
30	30	10.8	984	1	US-08-673-789-6	Sequence	6, Appli
31	30	10.8	984	2	US-09-949-016-6502	Sequence	6502, Ap
32	30	10.8	988	1	US-08-162-809-14	Sequence	14, Appl
33	30	10.8	993	1	US-08-348-143-1	Sequence	1, Appli
34	30	10.8	993	1	US-08-571-785-1	Sequence	1, Appli
35	30	10.8	993	2	US-09-192-435-1	Sequence	1, Appli
36	30	10.8	993	2	US-09-558-340-1	Sequence	1, Appli
37	30	10.8	994	2	US-08-542-635-2	Sequence	2, Appli
38	30	10.8	995	1	US-08-162-809-18	Sequence	18, Appl
39	30	10.8	995	1	US-08-673-789-5	Sequence	5, Appli
40	30	10.8	998	1	US-08-449-645A-20	Sequence	20, Appl
41	30	10.8	998	1	US-08-702-367A-20	-	20, Appl
42	30	10.8	998	4	PCT-US95-04681-20		20, Appl
43	30	10.8	1011	1	US-08-162-809-12	Sequence	12, Appl
44	29	10.4	993	2	US-08-368-776A-11	-	11, Appl
45	29	10.4	994	2	US-08-368-776A-12	Sequence	12, Appl

OM protein - protein search, using sw model

March 21, 2006, 23:16:40 ; Search time 163 Seconds Run on:

(without alignments)

715.180 Million cell updates/sec

Title: US-10-601-324-1_COPY_605_883

Perfect score: 279

1 TTEIHPSCVTRQKVIGAGEF......FADIVSILDKLIRAPDSLKT 279 Sequence:

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched: 1867569 seqs, 417829326 residues

Word size :

Total number of hits satisfying chosen parameters: 1867569

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Listing first 45 summaries

Published Applications_AA_Main: * Database :

1: /cgn2_6/ptodata/1/pubpaa/US07_PUBCOMB.pep:*

2: /cgn2_6/ptodata/1/pubpaa/US08_PUBCOMB.pep:*

3: /cgn2_6/ptodata/1/pubpaa/US09_PUBCOMB.pep:*
4: /cgn2_6/ptodata/1/pubpaa/US10A_PUBCOMB.pep:*
5: /cgn2_6/ptodata/1/pubpaa/US10B_PUBCOMB.pep:*
6: /cgn2_6/ptodata/1/pubpaa/US11_PUBCOMB.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		ቔ				
Result		Query				
No.	Score	Match	Length	DB	ID	Description 0
1	279	100.0	976	- 	US-10-366-288-2	Sequence 2, Appli
_				-		Sequence 320, App
2	279	100.0	976	4	US-10-287-226-320	-
3	279	100.0	976	4	US-10-648-593-138	Sequence 138, App
4	279	100.0	976	5	US-10-616-403-6	Sequence 6, Appli
5	279	100.0	976	5	US-10-897-711-2	Sequence 2, Appli
6	124	44.4	297	5	US-10-794-493-15	Sequence 15, Appl
7	55	19.7	55	3	US-09-158-722-42	Sequence 42, Appl
8	36	12.9	308	4	US-10-430-797-4	Sequence 4, Appli
9	36	12.9	308	4	US-10-843-129-4	Sequence 4, Appli
10	36	12.9	334	3	US-09-971-708-5	Sequence 5, Appli
11	36	12.9	337	5	US-10-794-493-16	Sequence 16, Appl
12	36	12.9	534	4	US-10-425-114-54118	Sequence 54118, A
13	36	12.9	558	4	US-10-425-114-54116	Sequence 54116, A
14	36	12.9	942	4	US-10-430-797-2	Sequence 2, Appli
15	36	12.9	942	4	US-10-843-129-2	Sequence 2, Appli
16	36	12.9	948	4	US-10-412-277-5	Sequence 5, Appli
17	36	12.9	976	5	US-10-732-923-13613	Sequence 13613, A
18	36	12.9	1035	3	US-09-971-708-3	Sequence 3, Appli

19	36	12.9	1035	4	US-10-412-277-4	Sequence 4, Appli
20	36	12.9	1035	4	US-10-029-020-20	Sequence 20, Appl
21	36	12.9	1036	3	US-09-971-708-2	Sequence 2, Appli
22	36	12.9	1036	4	US-10-245-752-104	Sequence 104, App
23	36	12.9	1036	4	US-10-245-859-104	Sequence 104, App
24	36	12.9	1036	4	US-10-245-103-104	Sequence 104, App
25	36	12.9	1036	4	US-10-245-107-104	Sequence 104, App
26	36	12.9	1036	4	US-10-245-143-104	Sequence 104, App
27	36	12.9	1036	4	US-10-245-771-104	Sequence 104, App
28	36	12.9	1036	4	US-10-245-851-104	Sequence 104, App
29	36	12.9	1036	4	US-10-245-883-104	Sequence 104, App
30	36	12.9	1036	4	US-10-237-535-104	Sequence 104, App
31	36	12.9	1036	4	US-10-238-183-104	Sequence 104, App
32	36	12.9	1036	4	US-10-238-283-104	Sequence 104, App
33	36	12.9	1036	4	US-10-238-370-104	Sequence 104, App
34	36	12.9	1036	4	US-10-245-055-104	Sequence 104, App
35	36	12.9	1036	4	US-10-245-147-104	Sequence 104, App
36	36	12.9	1036	4	US-10-245-730-104	Sequence 104, App
37	36	12.9	1036	4	US-10-245-739-104	Sequence 104, App
38	36	12.9	1036	4	US-10-246-210-104	Sequence 104, App
39	36	12.9	1036	4	US-10-239-196-104	Sequence 104, App
40	36	12.9	1036	4	US-10-243-024-104	Sequence 104, App
41	36	12.9	1036	4	US-10-243-409-104	Sequence 104, App
42	36	12.9	1036	4	US-10-245-621-104	Sequence 104, App
43	36	12.9	1036	4	US-10-245-880-104	Sequence 104, App
44	36	12.9	1036	4	US-10-245-033-104	Sequence 104, App
45	36	12.9	1036	4	US-10-243-095-104	Sequence 104, App

OM protein - protein search, using sw model

March 21, 2006, 23:29:01; Search time 23 Seconds Run on:

(without alignments)

347.208 Million cell updates/sec

Title: US-10-601-324-1_COPY_605_883

Perfect score: 279

1 TTEIHPSCVTRQKVIGAGEF......FADIVSILDKLIRAPDSLKT 279 Sequence:

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched: 169630 seqs, 28622889 residues

Word size :

Total number of hits satisfying chosen parameters: 169630

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Listing first 45 summaries

Published_Applications_AA_New:* Database :

1: /cgn2 6/ptodata/1/pubpaa/US08_NEW_PUB.pep:*

2: /cgn2_6/ptodata/1/pubpaa/US06_NEW_PUB.pep:*
3: /cgn2_6/ptodata/1/pubpaa/US07_NEW_PUB.pep:*
4: /cgn2_6/ptodata/1/pubpaa/PCT_NEW_PUB.pep:*

/cgn2_6/ptodata/1/pubpaa/PCT_NEW_PUB.pep:*

5: /cgn2_6/ptodata/1/pubpaa/US09_NEW_PUB.pep:*

6: /cgn2_6/ptodata/1/pubpaa/US10_NEW_PUB.pep:*

7: /cgn2 6/ptodata/1/pubpaa/US11_NEW_PUB.pep:* 8: /cgn2_6/ptodata/1/pubpaa/US60_NEW_PUB.pep:*

Pred. No. is the number of results predicted by chance to have a

score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		8				
Result		Query				
No.	Score	Match	Length	DB	ID	Description
	270	100 0	456	6	US-10-966-483-34	Sequence 34, Appl
1	279	100.0		-		-
2	279	100.0	456	7	US-11-021-441-18	Sequence 18, Appl
3	279	100.0	479	6	US-10-966-483-36	Sequence 36, Appl
4	279	100.0	479	7	US-11-021-441-20	Sequence 20, Appl
5	279	100.0	490	6	US-10-966-483-42	Sequence 42, Appl
6	279	100.0	490	7	US-11-021-441-26	Sequence 26, Appl
7	279	100.0	497	6	US-10-966-483-38	Sequence 38, Appl
8	279	100.0	497	6	US-10-966-483-40	Sequence 40, Appl
9	279	100.0	497	7	US-11-021-441-22	Sequence 22, Appl
10	279	100.0	497	7	US-11-021-441-24	Sequence 24, Appl
11	279	100.0	976	6	US-10-966-483-2	Sequence 2, Appli
12	279	100.0	976	6	US-10-511-273-1	Sequence 1, Appli
13	279	100.0	976	7	US-11-233-796-2	Sequence 2, Appli
14	279	100.0	976	7	US-11-072-175-138	Sequence 138, App
15	279	100.0	976	7	US-11-203-251A-77	Sequence 77, Appl

16	279	100.0	1035	6	US-10-966-483-20	Sequence	20, Appl
17	279	100.0	1035	7	US-11-021-441-4	Sequence	4, Appli
18	36	12.9	1035	7	US-11-113-424-20	Sequence	20, Appl
19	36	12.9	1052	7	US-11-113-424-22	Sequence	22, Appl
20	30	10.8	984	7	US-11-113-424-60	Sequence	60, Appl
21	30	10.8	984	7	US-11-203-251A-85	Sequence	85, Appl
22	30	10.8	987	6	US-10-770-726-61	Sequence	61, Appl
23	30	10.8	987	7	US-11-203-251A-87	Sequence	87, Appl
24	30	10.8	995	7	US-11-113-424-62	Sequence	62, Appl
25	30	10.8	998	6	US-10-510-524-1	Sequence	1, Appli
26	30	10.8	998	7	US-11-203-251A-88	Sequence	88, Appl
27	30	10.8	1055	7	US-11-169-041-155	Sequence	155, App
28	30	10.8	1055	7	US-11-072-175-139	Sequence	139, App
29	30	10.8	1055	7	US-11-203-251A-86	Sequence	86, Appl
30	30	10.8	1055	7	US-11-051-720-1417	Sequence	1417, Ap
31	29	10.4	998	7	US-11-203-251A-83	Sequence	83, Appl
32	28	10.0	987	6	US-10-949-720-395	Sequence	395, App
33	28	10.0	987	7	US-11-203-251A-89	Sequence	89, Appl
34	28	10.0	990	6	US-10-821-234-1201	Sequence	1201, Ap
35	25	9.0	985	7	US-11-113-424-61	Sequence	61, Appl
36	25	9.0	986	7	US-11-203-251A-80	Sequence	80, Appl
37	23	8.2	983	7	US-11-113-424-59	Sequence	59, Appl
38	23	8.2	983	7	US-11-203-251A-78	Sequence	78, Appl
39	23	8.2	1005	7	US-11-113-424-63	Sequence	63, Appl
40	23	8.2	1015	7	US-11-203-251A-82	Sequence	82, Appl
41	23	8.2	1037	7	US-11-203-251A-81	Sequence	81, Appl
42	20	7.2	1005	7	US-11-203-251A-84	Sequence	84, Appl
43	15	5.4	15	6	US-10-966-483-16	Sequence	16, Appl
44	15	5.4	976	7	US-11-203-251A-76	Sequence	76, Appl
45	12	4.3	1124	7	US-11-195-197-9	Sequence	9, Appli

OM protein - protein search, using sw model

March 21, 2006, 23:11:05; Search time 40 Seconds Run on:

(without alignments)

671.112 Million cell updates/sec

Title: US-10-601-324-1_COPY_605_883

Perfect score: 279

1 TTEIHPSCVTRQKVIGAGEF......FADIVSILDKLIRAPDSLKT 279 Sequence:

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched: 283416 segs, 96216763 residues

Word size :

Total number of hits satisfying chosen parameters: 283416

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Listing first 45 summaries

PIR_80:* Database :

1: pir1:*

2: pir2:*
3: pir3:*
4: pir4:*

9

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		ъ				
Result No.	Score	Query Match	Length	DB	ID	Description
-			- 	- -		
1	279	100.0	976	2	A36355	protein-tyrosine k
2	77	27.6	426	2	148759	protein-tyrosine k
3	77	27.6	975	2	I48974	receptor-protein t
4	77	27.6	977	2	S49004	tyrosine kinase Mp
5	36	12.9	334	2	T43450	hypothetical prote
6	36	12.9	948	2	S51605	receptor-like tyro
7	30	10.8	84	2	A24910	probable tyrosine
8	30	10.8	275	2	I48761	protein-tyrosine k
9	30	10.8	478	2	A57174	protein-tyrosine k
10	30	10.8	480	2	I48760	protein-tyrosine k
11	30	10.8	612	2	S33506	protein-tyrosine k
12	30	10.8	938	2	I49071	protein kinase - m
13	30	10.8	952	2	150612	protein-tyrosine k
14	30	10.8	970	2	178842	receptor protein-t
15	30	10.8	984	2	A39753	protein-tyrosine k
16	30	10.8	985	2	I51672	receptor tyrosine
17	30	10.8	988	2	150611	protein-tyrosine k
18	30	10.8	993	2	I48653	mouse developmenta
19	30	10.8	995	2	A56599	embryo kinase 5 -
20	30	10.8	998	2	S37627	protein-tyrosine k
						<u>.</u>

21	29	10.4	998	2	I58351	receptor protein-t
22	29	10.4	998	2	JC5672	receptor tyrosine
23	28	10.0	987	2	A54092	protein-tyrosine k
24	28	10.0	987	2	I48652	mouse developmenta
25	28	10.0	987	2	148953	eph-related recept
26	25	9.0	849	2	I50617	protein-tyrosine k
27	25	9.0	985	2	I51549	receptor tyrosine
28	25	9.0	986	2	I78844	receptor protein-t
29	25	9.0	986	2	S78059	protein-tyrosine k
30	23	8.2	55	2	PT0186	protein-tyrosine k
31	23	8.2	57	2	S35727	protein-tyrosine k
32	23	8.2	490	2	150613	protein-tyrosine k
33	23	8.2	877	2	148967	brain-specific kin
34	23	8.2	893	2	S51603	receptor-like tyro
35	23	8.2	898	2	S47489	receptor tyrosine
36	23	8.2	981	2	S51604	receptor-like tyro
37	23	8.2	983	2	B45583	receptor tyrosine
38	23	8.2	983	2	A38224	protein-tyrosine k
39	23	8.2	983	2	A45583	receptor tyrosine
40	23	8.2	991	2	178843	receptor protein-t
41	23	8.2	1005	2	S49015	receptor tyrosine
42	23	8.2	1013	2	I50615	receptor-type prot
43	19	6.8	57	2	PT0193	protein-tyrosine k
44	19	6.8	57	2	PT0188	protein-tyrosine k
45	19	6.8	57	2	PT0187	protein-tyrosine k

OM protein - protein search, using sw model

Run on: March 21, 2006, 23:07:50; Search time 231 Seconds

(without alignments)

852.132 Million cell updates/sec

Title: US-10-601-324-1_COPY_605_883

Perfect score: 279

Sequence: 1 TTEIHPSCVTRQKVIGAGEF......FADIVSILDKLIRAPDSLKT 279

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched: 2166443 seqs, 705528306 residues

Word size : 0

Total number of hits satisfying chosen parameters: 2166443

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Listing first 45 summaries

Database : UniProt_05.80:*

g.

1: uniprot_sprot:*
2: uniprot_trembl:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		₹				
Result		Query		DD.	TD	Description
No.	Score	matcn	Length		ID	
1	279	100.0	976	1	EPHA2_HUMAN	P29317 homo sapien
2	279	100.0	976	2	Q8N3Z2_HUMAN	Q8n3z2 homo sapien
3	160	57.3	253	2	Q96HF4_HUMAN	Q96hf4 homo sapien
4	77	27.6	977	1	EPHA2_MOUSE	Q03145 mus musculu
5	55	19.7	55	2	Q90ZJ1_CHICK	Q90zj1 gallus gall
6	52	18.6	963	2	Q5FWW9_XENLA	Q5fww9 xenopus lae
7	52	18.6	974	2	Q6DII4_XENTR	Q6dii4 xenopus tro
8	52	18.6	976	2	Q6NTV5_XENLA	Q6ntv5 xenopus lae
9	52	18.6	977	2	Q9PWR5_XENLA	Q9pwr5 xenopus lae
10	48	17.2	57	2	Q91999_XENLA	Q91999 xenopus lae
11	36	12.9	328	2	Q4T461_TETNG	Q4t461 tetraodon n
12	36	12.9	334	2	Q9UF33_HUMAN	Q9uf33 homo sapien
13	36	12.9	356	2	Q4T7X3_TETNG	Q4t7x3 tetraodon n
14	36	12.9	639	2	Q8CCN2_MOUSE	Q8ccn2 mus musculu
15	36	12.9	948	1	EPHA6_RAT	P54758 rattus norv
16	36	12.9	963	2	Q4RQW0_TETNG	Q4rqw0 tetraodon n
17	36	12.9	976		Q90ZN9_BRARE	Q90zn9 brachydanio
18	36	12.9			Q4RV12_TETNG	Q4rv12 tetraodon n
19	36	12.9	1035	1	EPHA6_MOUSE	Q62413 mus musculu
20	36	12.9	1072		Q4SWLO_TETNG	Q4swl0 tetraodon n
21	32	11.5	780		Q4SQX3_TETNG	Q4sqx3 tetraodon n
22	31	11.1	536	2	Q70W06_CIOIN	Q70w06 ciona intes

. 23	31	11.1	1006	2	Q4H3M7_CIOIN	Q4h3m7	ciona intes
24	30	10.8	84	2	Q7LZG9_CHICK	Q7lzg9	gallus gall
25	30	10.8	88	2	Q4RDZ6_TETNG	Q4rdz6	tetraodon n
26	30	10.8	179	2	Q4TFI7_TETNG	Q4tfi7	tetraodon n
27	30	10.8	570	2	Q4S771_TETNG	Q4s771	tetraodon n
28	30	10.8	885	2	Q4RVA1_TETNG	Q4rval	tetraodon n
29	30	10.8	902	1	EPB1B_XENLA	Q91736	xenopus lae
30	30	10.8	938	2	Q60669_MOUSE	Q60669	mus musculu
31	30	10.8	943	2	Q8CBE2_MOUSE	Q8cbe2	mus musculu
32	30	10.8	946	2	Q5TFU3_HUMAN	Q5tfu3	homo sapien
33	30	10.8	950	2	Q4SP88_TETNG	Q4sp88	tetraodon n
34	30	10.8	972	2	Q5T0U6_HUMAN	Q5t0u6	homo sapien
35	30	10.8	974	1	EPHB3_XENLA	Q91735	xenopus lae
36	30	10.8	974	2	Q6DFG4_XENLA	Q6dfg4	xenopus lae
37	30	10.8	974	2	Q6NRE9_XENLA	Q6nre9	xenopus lae
38	30	10.8	984	1	EPHB1_CHICK	Q07494	gallus gall
39	30	10.8	984	1	EPHB1_HUMAN	P54762	homo sapien
40	30	10.8	984	1	EPHB1_RAT	P09759	rattus norv
41	30	10.8	984	2	Q8CBF3_MOUSE	Q8cbf3	mus musculu
42	30	10.8	984	2	Q6PG23_MOUSE	Q6pg23	mus musculu
43	30	10.8	985	1	EPB1A_XENLA	Q91571	xenopus lae
44	30	10.8	987	2	Q5T0U8_HUMAN	Q5t0u8	homo sapien
45	30	10.8	988	1	EPHB3_CHICK	Q07498	gallus gall

OM nucleic - protein search, using frame_plus_n2p model

Run on: March 21, 2006, 23:29:51; Search time 36.1 Seconds

(without alignments)

2227.322 Million cell updates/sec

Title: US-10-601-324-2

Perfect score: 1741

Sequence: 1 gaccccaaccaggctgtgtt.....ggctccccagcacgagcggc 915

Scoring table: BLOSUM62

Xgapop 10.0 , Xgapext 0.5 Ygapop 10.0 , Ygapext 0.5 Fgapop 6.0 , Fgapext 7.0 Delop 6.0 , Delext 7.0

Searched: 2443163 seqs, 439378781 residues

Total number of hits satisfying chosen parameters: 4886326

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Command line parameters:

-MODEL=frame+_n2p.model -DEV=xlp

-Q=/abss/ABSSWEB_spool/US10601324/runat_21032006_124020_20217/app_query.fasta_1

-DB=A Geneseq -QFMT=fastan -SUFFIX=n2p.rag -MINMATCH=0.1 -LOOPCL=0 -LOOPEXT=0

-UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi -LIST=45

-DOCALIGN=200 -THR_SCORE=pct -THR_MAX=100 -THR_MIN=0 -ALIGN=15 -MODE=LOCAL

-OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000 -HOST=abss02p

-USER=US10601324_@CGN_1_1_348_@runat_21032006_124020_20217 -NCPU=6 -ICPU=3

-NO MMAP -NEG SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG -DEV_TIMEOUT=120

-WARN_TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7

-YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7

Database : A_Geneseq_21:*

1: geneseqp1980s:*

2: geneseqp1990s:*

3: geneseqp2000s:*
4: geneseqp2001s:*

5: geneseqp2001s:*

6: geneseqp2003as:*

7: geneseqp2003bs:*

7. geneseqp2003bs.

8: geneseqp2004s:*

9: geneseqp2005s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

*

Result Query

No. Score Match Length DB ID Description

1	1590	91.3	456	9	ADZ66216	Adz66216	Primary a
2	1590	91.3	456	9	AEB80037		Human Eph
3	1590	91.3	456	9	AEB72924		Human Eph
4	1590	91.3	479	9	ADZ66218		Protein e
5	1590	91.3	479	9	AEB80039		Human Eph
6	1590	91.3	479	9	AEB72926		Fusion pr
7	1590	91.3	490	9	ADZ66223	Adz66223	Protein e
8	1590	91.3	490	9	AEB80045	Aeb80045	Human Eph
9	1590	91.3	490	9	AEB72932	Aeb72932	Fusion pr
10	1590	91.3	497	9	ADZ66220	Adz66220	Protein e
11	1590	91.3	497	9	AEB80043	Aeb80043	Human Eph
12	1590	91.3	497	9	AEB80041	Aeb80041	Human Eph
13	1590	91.3	497	9	AEB72928	Aeb72928	Fusion pr
14	1590	91.3	497	9	AEB72930	Aeb72930	Fusion pr
15	1590	91.3	963	8	ABM83447	Abm83447	Human dia
16	1590	91.3	976	7	ADE40423	Ade40423	Human eph
17	1590	91.3	976	7	ADJ95092	Adj95092	Novel NOV
18	1590	91.3	976	8	ADL61214	Ad161214	Human pro
19	1590	91.3	976	8	ADN03964	Adn03964	Antipsori
20	1590	91.3	976	9	ADU79818	Adu79818	Human Eph
21	1590	91.3	976	9	ADU79822	Adu79822	Human Eph
22	1590	91.3	976	9	ADV94805	Adv94805	Human ADP
23	1590	91.3	976	9	ADW96093	. Adw96093	Human Eph
24	1590	91.3	976	9	ADZ66185	Adz66185	EphA2 pol
25	1590	91.3	976	9	AEB72892	Aeb72892	Human rec
26	1590	91.3	987	8	ADX97538	Adx97538	Pancreati
27	1590	91.3	1035	9	ADZ66203	Adz66203	Protein e
28	1590	91.3	1035	9	AEB80023		Human Eph
29	1590	91.3	1035	9	AEB72910		Fusion pr
30	1544	88.7	977	9	AEA55026		Mouse tyr
31	1544	88.7	977	9	AEA55035	Aea55035	Mouse eph
32	1194.5	68.6	710	2	AAR75714	Aar75714	Eph-relat
33	1194.5	68.6	722	2	AAR75705		Eph-relat
34	1194.5	68.6	744	2	AAR75713		Eph-relat
35	1192.5	68.5	877	2	AAW71628	Aaw71628	Mouse Bsk
36	1192.5	68.5	1041	9	ADV97895		Murine pr
37	1189.5	68.3	953	5	ABP52826		Human rec
38	1189.5	68.3	975	5	ABP52827	-	Human Ehk
39	1189.5	68.3	991	2	AAR85090		EPH-like
40	1189.5	68.3	1037	5	ABG61868		Prostate
41	1189.5	68.3	1037	6	ABR44241		Tyrosine
42	1189.5	68.3	1037	7	ADE31683		Human 141
43	1184.5	68.0	928	2	AAR97853		Rat REK7
44	1177.5	67.6	1005	2	AAW83147		Rat recep
45	1156.5	66.4	849	2	AAR75706	Aar75706	Eph-relat

OM nucleic - protein search, using frame_plus_n2p model

Run on: March 21, 2006, 23:45:21; Search time 8.1 Seconds

(without alignments)

1867.858 Million cell updates/sec

Title: US-10-601-324-2

Perfect score: 1741

Sequence: 1 gaccccaaccaggctgtgtt.....ggctccccagcacgagcggc 915

Scoring table: BLOSUM62

 Xgapop
 10.0 , Xgapext
 0.5

 Ygapop
 10.0 , Ygapext
 0.5

 Fgapop
 6.0 , Fgapext
 7.0

 Delop
 6.0 , Delext
 7.0

Searched: 572060 seqs, 82675679 residues

Total number of hits satisfying chosen parameters: 1144120

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Command line parameters:

-MODEL=frame+_n2p.model -DEV=xlp

-Q=/abss/ABSSWEB_spool/US10601324/runat_21032006_124025_20308/app_query.fasta_1

-DB=Issued_Patents_AA -QFMT=fastan -SUFFIX=n2p.rai -MINMATCH=0.1 -LOOPCL=0

-LOOPEXT=0 -UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi

-LIST=45 -DOCALIGN=200 -THR_SCORE=pct -THR_MAX=100 -THR_MIN=0 -ALIGN=15

-MODE=LOCAL -OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000

-HOST=abss02p -USER=US10601324 @CGN 1 1_71_@runat_21032006_124025_20308

-NCPU=6 -ICPU=3 -NO MMAP -NEG_SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG

-DEV TIMEOUT=120 -WARN TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6

-FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7

Database : Issued_Patents_AA: *

1: /cgn2_6/ptodata/1/iaa/5_COMB.pep:*

2: /cgn2_6/ptodata/1/iaa/6_COMB.pep:*

3: /cgn2_6/ptodata/1/iaa/H_COMB.pep:*

4: /cgn2_6/ptodata/1/iaa/PCTUS_COMB.pep:*

5: /cgn2_6/ptodata/1/iaa/RE_COMB.pep:*

6: /cgn2_6/ptodata/1/iaa/backfiles1.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result No.	Score	Query Match	Length	DB	ID	Description
1	1590	91.3	976	1	US-08-449-645A-18	Sequence 18, Appl
2	1590	91.3	976	1	US-08-702-367A-18	Sequence 18, Appl
3	1590	91.3	976	2	US-09-949-016-6499	Sequence 6499, Ap

4	1590	91.3	976	4	PCT-US95-04681-18	Sequence	18, Appl
5	1590	91.3	1013	2	US-09-949-016-7991	_	7991, Ap
6	1569	90.1	977	1	US-08-673-789-8		8, Appli
7	1194.5	68.6	490	1	US-08-673-789-13		13, Appl
8	1194.5	68.6	710	1	US-08-162-809-22		22, Appl
9	1194.5	68.6	722	1	US-08-162-809-4	_	4, Appli
10	1194.5	68.6	744	1	US-08-162-809-20	-	20, Appl
11	1192.5	68.5	877	1	US-08-673-789-2		2, Appli
12	1189.5	68.3	953	2	US-09-751-389-7	-	7, Appli
13	1189.5	68.3	967	1	US-08-449-645A-30	•	30, Appl
14	1189.5	68.3	967	1	US-08-702-367A-30	-	30, Appl
15	1189.5	68.3	975	2	US-09-751-389-8	•	8, Appli
16	1189.5	68.3	991	1	US-08-449-645A-13		13, Appl
17	1189.5	68.3	991	1	US-08-702-367A-13	•	13, Appl
18	1189.5	68.3	991	4	PCT-US95-04681-13	-	13, Appl
19	1184.5	68.0	928	1	US-08-442-248-2	•	2, Appli
20	1184.5	68.0	928	1	US-08-440-815-2	-	2, Appli
21	1184.5	68.0	928	2	US-08-486-449-2	-	2, Appli
22	1184.5	68.0	928	2	US-08-578-684-2	•	2, Appli
23	1177.5	67.6	1005	1	US-08-469-537A-103	-	103, App
24	1156.5	66.4	849	1	US-08-162-809-6	-	6, Appli
25	1156.5	66.4	986	1	US-08-673-789-3	-	3, Appli
26	1154.5	66.3	849	1	US-08-673-789-10	_	10, Appl
27	1152.5	66.2	986	1	US-08-449-645A-15	Sequence	15, Appl
28	1152.5	66.2	986	1	US-08-702-367A-15		15, Appl
29	1152.5	66.2	986	4	PCT-US95-04681-15	Sequence	15, Appl
30	1152.5	66.2	997	2	US-09-949-016-7171		7171, Ap
31	1152.5	66.2	1104	1	US-08-222-616-36	Sequence	36, Appl
32	1152.5	66.2	1104	2	US-08-446-648-36	Sequence	36, Appl
33	1152.5	66.2	1104	2	US-09-982-610-36	Sequence	36, Appl
34	1152.5	66.2	1104	4	PCT-US95-04228-36	Sequence	36, Appl
35	1151.5	66.1	968	2	US-09-751-389-6	Sequence	6, Appli
36	1151.5	66.1	983	1	US-08-162-809-16	Sequence	16, Appl
37	1149.5	66.0	982	1	US-08-673-789-4	Sequence	4, Appli
38	1149.5	66.0	983	1	US-08-449-645A-21	Sequence	21, Appl
39	1149.5	66.0	983	1	US-08-702-367A-21	Sequence	21, Appl
40	1149.5	66.0	983	2	US-09-771-161A-227	Sequence	227, App
41	1149.5	66.0	983	4	PCT-US95-04681-21	Sequence	21, Appl
42	1146.5	65.9	983	1	US-08-167-919A-10	Sequence	10, Appl
43	1146.5	65.9	983	2	US-08-715-106-10	Sequence	10, Appl
44	1146.5	65.9	983	2	US-09-442-649-10	Sequence	10, Appl
45	1143.5	65.7	998	1	US-08-449-645A-17	Sequence	17, Appl

OM nucleic - protein search, using frame_plus_n2p model

Run on: March 22, 2006, 00:04:02; Search time 34.1 Seconds

(without alignments)

2242.310 Million cell updates/sec

Title: US-10-601-324-2

Perfect score: 1741

Sequence: 1 gaccccaaccaggctgtgtt.....ggctccccagcacgagcggc 915

Scoring table: BLOSUM62

Xgapop 10.0 , Xgapext 0.5 Ygapop 10.0 , Ygapext 0.5 Fgapop 6.0 , Fgapext 7.0 Delop 6.0 , Delext 7.0

Searched: 1867569 seqs, 417829326 residues

Total number of hits satisfying chosen parameters: 3735138

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Command line parameters:

-MODEL=frame+_n2p.model -DEV=xlp

-Q=/abss/ABSSWEB spool/US10601324/runat_21032006_124031_20479/app_query.fasta_1

-DB=Published_Applications_AA_Main -QFMT=fastan -SUFFIX=n2p.rapbm

-MINMATCH=0.1 -LOOPCL=0 -LOOPEXT=0 -UNITS=bits -START=1 -END=-1

-MATRIX=blosum62 -TRANS=human40.cdi -LIST=45 -DOCALIGN=200 -THR_SCORE=pct

-THR MAX=100 -THR MIN=0 -ALIGN=15 -MODE=LOCAL -OUTFMT=pto -NORM=ext

-HEAPSIZE=500 -MINLEN=0 -MAXLEN=200000000 -HOST=abss02p

-USER=US10601324_@CGN_1_1_307_@runat_21032006_124031_20479 -NCPU=6 -ICPU=3

-NO_MMAP -NEG_SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG -DEV_TIMEOUT=120

-WARN TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7

-YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7

Database : Published Applications_AA_Main:*

1: /cgn2_6/ptodata/1/pubpaa/US07_PUBCOMB.pep:*

2: /cgn2_6/ptodata/1/pubpaa/US08_PUBCOMB.pep:*

3: /cgn2_6/ptodata/1/pubpaa/US09_PUBCOMB.pep:*
4: /cgn2_6/ptodata/1/pubpaa/US10A_PUBCOMB.pep:*

5: /cgn2 6/ptodata/1/pubpaa/US10B_PUBCOMB.pep:*

6: /cgn2 6/ptodata/1/pubpaa/US11_PUBCOMB.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed,

and is derived by analysis of the total score distribution.

Result No.	Score	Length	DB	ID	Description		
1	1590	91.3		_	US-10-366-288-2	Sequence 2, Appli	
2	1590	91.3	976	4	US-10-287-226-320	Sequence 320, App	

3	1590	91.3	976	4	US-10-648-593-138	-	138, App
4	1590	91.3	976	5	US-10-616-403-6	_	6, Appli
5	1590	91.3	976	5	US-10-897-711-2		2, Appli
6	1523.5	87.5	297	5	US-10-794-493-15	Sequence	
7	1194.5	68.6	490	5	US-10-732-923-13669	Sequence	13669, A
8	1194.5	68.6	827	5	US-10-732-923-13666	•	13666, A
9	1194.5	68.6	991	5	US-10-732-923-13667	Sequence	13667, A
10	1194.5	68.6	1013	5	US-10-732-923-13668	-	13668, A
11	1192.5	68.5	1041	5	US-10-840-512-215	Sequence	215, App
12	1189.5	68.3	369	5	US-10-732-923-13681	Sequence	13681, A
13	1189.5	68.3	953	4	US-10-412-277-7	Sequence	7, Appli
14	1189.5	68.3	975	4	US-10-412-277-8	Sequence	8, Appli
15	1189.5	68.3	991	3	US-09-823-187-44	Sequence	44, Appl
16	1189.5	68.3	1037	4	US-10-316-124-3	Sequence	3, Appli
17	1189.5	68.3	1037	4	US-10-353-690-40	Sequence	40, Appl
18	1189.5	68.3	1037	6	US-11-064-551-3	Sequence	3, Appli
19	1185.5	68.1	295	5	US-10-794-493-13	Sequence	13, Appl
20	1184.5	68.0	928	2	US-08-578-684-2	Sequence	2, Appli
21	1177.5	67.6	1005	4	US-10-029-020-63	Sequence	63, Appl
22	1152.5	66.2	295	5	US-10-794-493-12	Sequence	12, Appl
23	1152.5	66.2	985	4	US-10-029-020-61	Sequence	61, Appl
24	1152.5	66.2	986	5	US-10-723-860-597	Sequence	597, App
25	1152.5	66.2	986	5	US-10-756-149-4880	Sequence	4880, Ap
26	1152.5	66.2	997	5	US-10-450-763-36048	Sequence	36048, A
27	1152.5	66.2	1026	5	US-10-450-763-53290	Sequence	53290, A
28	1152.5	66.2	1104	3	US-09-982-610-36	Sequence	36, Appl
29	1151.5	66.1	968	4	US-10-412-277-6	Sequence	6, Appli
30	1151.5	66.1	983	5	US-10-732-923-13675	Sequence	13675, A
31	1149.5	66.0	983	3	US-09-771-161A-227	Sequence	227, App
32	1149.5	66.0	983	4	US-10-205-823-97	Sequence	97, Appl
33	1149.5	66.0	983	4	US-10-345-680-2	Sequence	2, Appli
34	1149.5	66.0	983	4	US-10-295-027-602		602, App
35	1149.5	66.0	983	4	US-10-029-020-59	Sequence	59, Appl
36	1149.5	66.0	983	5	US-10-794-514A-467	Sequence	467, App
37	1149.5	66.0	983	5	US-10-489-125B-11	Sequence	11, Appl
38	1149.5	66.0	983	6	US-11-051-454-97	Sequence	97, Appl
39	1147.5	65.9	295	5	US-10-794-493-11	Sequence	11, Appl
40	1143.5	65.7	295	5	US-10-794-493-6	Sequence	6, Appli
41	1143.5	65.7	295	5	US-10-794-493-9		9, Appli
42	1143.5	65.7	993	3	US-09-823-187-39		39, Appl
43	1143.5	65.7	993	3	US-09-823-187-41	_	41, Appl
44	1143.5	65.7	998	3	US-09-823-187-40	-	40, Appl
45	1142.5	65.6	295	5	US-10-794-493-8	-	8, Appli
				_		•	

OM nucleic - protein search, using frame_plus_n2p model

Run on: March 22, 2006, 00:05:47; Search time 3.6 Seconds

(without alignments)

1454.997 Million cell updates/sec

Title: US-10-601-324-2

Perfect score: 1741

Sequence: 1 gaccccaaccaggctgtgtt.....ggctccccagcacgagcggc 915

Scoring table: BLOSUM62

Xgapop 10.0 , Xgapext 0.5 Ygapop 10.0 , Ygapext 0.5 Fgapop 6.0 , Fgapext 7.0 Delop 6.0 , Delext 7.0

Searched: 169630 segs, 28622889 residues

Total number of hits satisfying chosen parameters: 339260

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Command line parameters:

-MODEL=frame+_n2p.model -DEV=xlp

-Q=/abss/ABSSWEB spool/US10601324/runat_21032006_124034_20541/app_query.fasta_1

-DB=Published Applications_AA_New -QFMT=fastan -SUFFIX=n2p.rapbn -MINMATCH=0.1

-LOOPCL=0 -LOOPEXT=0 -UNITS=bits -START=1 -END=-1 -MATRIX=blosum62

-TRANS=human40.cdi -LIST=45 -DOCALIGN=200 -THR_SCORE=pct -THR_MAX=100

-THR MIN=0 -ALIGN=15 -MODE=LOCAL -OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0

-MAXLEN=2000000000 -HOST=abss02p

-USER=US10601324_@CGN_1_1_17_@runat_21032006_124034_20541 -NCPU=6 -ICPU=3

-NO MMAP -NEG SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG -DEV_TIMEOUT=120

-WARN_TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7

-YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7

Database : Published_Applications_AA_New:*

1: /cgn2_6/ptodata/1/pubpaa/US08_NEW_PUB.pep:*

2: /cgn2_6/ptodata/1/pubpaa/US06_NEW_PUB.pep:*

3: /cgn2_6/ptodata/1/pubpaa/US07_NEW_PUB.pep:*

4: /cgn2_6/ptodata/1/pubpaa/PCT_NEW_PUB.pep:*

5: /cgn2_6/ptodata/1/pubpaa/US09_NEW_PUB.pep:*

6: /cgn2_6/ptodata/1/pubpaa/US10_NEW_PUB.pep:*

7: /cgn2_6/ptodata/1/pubpaa/US11_NEW_PUB.pep:*

8: /cgn2 6/ptodata/1/pubpaa/US60_NEW_PUB.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result Query

욯

No. Score Match Length DB ID Description

1	1590	91.3	456	6	US-10-966-483-34	Sequence	34, Appl
2	1590	91.3	456	7	US-11-021-441-18	Sequence	
3	1590	91.3	479	6	US-10-966-483-36	Sequence	
4	1590	91.3	479	7	US-11-021-441-20	Sequence	• •
5	1590	91.3	490	6	US-10-966-483-42	Sequence	
6	1590	91.3	490	7	US-11-021-441-26	Sequence	• •
7	1590	91.3	497	6	US-10-966-483-38	Sequence	
8	1590	91.3	497	6	US-10-966-483-40	Sequence	
9	1590	91.3	497	7	US-11-021-441-22	Sequence	
10	1590	91.3	497	7	US-11-021-441-24	Sequence	
11	1590	91.3	976	6	US-10-966-483-2	Sequence	
12	1590	91.3	976	6	US-10-511-273-1	-	1, Appli
13	1590	91.3	976	7	US-11-233-796-2	Sequence	2, Appli
14	1590	91.3	976	7	US-11-072-175-138	Sequence	138, App
15	1590	91.3	976	7	US-11-203-251A-77	Sequence	77, Appl
16	1590	91.3	1035	6	US-10-966-483-20	Sequence	20, Appl
17	1590	91.3	1035	7	US-11-021-441-4	Sequence	4, Appli
18	1189.5	68.3	1015	7	US-11-203-251A-82	Sequence	82, Appl
19	1189.5	68.3	1037	7	US-11-203-251A-81	Sequence	81, Appl
20	1177.5	67.6	1005	7	US-11-113-424-63	Sequence	63, Appl
21	1152.5	66.2	985	7	US-11-113-424-61	Sequence	61, Appl
22	1152.5	66.2	986	7	US-11-203-251A-80	Sequence	80, Appl
23	1149.5	66.0	983	7	US-11-113-424-59	Sequence	59, Appl
24	1149.5	66.0	983	7	US-11-203-251A-78	Sequence	78, Appl
25	1143.5	65.7	998	7	US-11-203-251A-83		83, Appl
26	1117.5	64.2	984	7	US-11-203-251A-85	Sequence	85, Appl
27	1114.5	64.0	984	7	US-11-113-424-60	Sequence	60, Appl
28	1106.5	63.6	987	6	US-10-770-726-61	Sequence	61, Appl
29	1106.5	63.6	987	7	US-11-203-251A-87	Sequence	87, Appl
30	1106.5	63.6	1055	7	US-11-169-041-155	Sequence	155, App
31	1106.5	63.6	1055	7	US-11-072-175-139	Sequence	139, App
32	1106.5	63.6	1055	7	US-11-203-251A-86	Sequence	86, Appl
33	1106.5	63.6	1055	7	US-11-051-720-1417	Sequence	1417, Ap
34	1105.5	63.5	995	7	US-11-113-424-62	Sequence	62, Appl
35	1090.5	62.6	1035	7	US-11-113-424-20	Sequence	20, Appl
36	1090.5	62.6	1052	7	US-11-113-424-22	Sequence	22, Appl
37	1087.5	62.5	998	6	US-10-510-524-1	Sequence	1, Appli
38	1087.5	62.5	998	7	US-11-203-251A-88	Sequence	88, Appl
39	1043.5	59.9	1005	7	US-11-203-251A-84	Sequence	84, Appl
40	1038.5	59.6	987	6	US-10-949-720-395	Sequence	395, App
41	1038.5	59.6	987	7	US-11-203-251A-89	Sequence	89, Appl
42	1038.5	59.6	990	6	US-10-821-234-1201	-	1201, Ap
43	970	55.7	976	7	US-11-203-251A-76	Sequence	76, Appl
44	770.5	44.3	1006	7	US-11-203-251A-90	Sequence	90, Appl
45	620.5	35.6	258	6	US-10-877-346-75	Sequence	75, Appl
~ -						-	

OM nucleic - protein search, using frame_plus_n2p model

Run on: March 21, 2006, 23:36:36; Search time 8.9 Seconds

(without alignments)

1978.390 Million cell updates/sec

Title: US-10-601-324-2

Perfect score: 1741

Sequence: 1 gaccccaaccaggctgtgtt.....ggctccccagcacgagcggc 915

Scoring table: BLOSUM62

Xgapop 10.0 , Xgapext 0.5 Ygapop 10.0 , Ygapext 0.5 Fgapop 6.0 , Fgapext 7.0 Delop 6.0 , Delext 7.0

Searched: 283416 segs, 96216763 residues

Total number of hits satisfying chosen parameters: 566832

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Command line parameters:

-MODEL=frame+_n2p.model -DEV=xlp

-Q=/abss/ABSSWEB_spool/US10601324/runat_21032006_124023_20268/app_query.fasta_1

-DB=PIR -QFMT=fastan -SUFFIX=n2p.rpr -MINMATCH=0.1 -LOOPCL=0 -LOOPEXT=0

-UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi -LIST=45

-DOCALIGN=200 -THR_SCORE=pct -THR_MAX=100 -THR_MIN=0 -ALIGN=15 -MODE=LOCAL

-OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=200000000 -HOST=abss02p

-USER=US10601324_@CGN_1_1_63_@runat_21032006_124023_20268 -NCPU=6 -ICPU=3

-NO_MMAP -NEG_SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG -DEV_TIMEOUT=120

-WARN_TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7

-YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7

Database : PIR_80:*

1: pir1:*

2: pir2:*
3: pir3:*

4: pir4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result	Score	Query Match I	onath	פח	TD	Description		
No.	50016	maccii i			+D			
1	1590	91.3	976	2	A36355	protein-tyrosine k		
2	1551	89.1	426	2	I48759	protein-tyrosine k		
3	1544	88.7	977	2	\$49004	tyrosine kinase Mp		
4	1519	87.2	975	2	I48974	receptor-protein t		
5	1194.5	68.6	490	2	I50613	protein-tyrosine k		

6	1194.5	68.6	1013	2	150615
7	1192.5	68.5	877	2	148967
8	1189.5	68.3	991	2	I78843
9	1184.5	68.0	898	2	S47489
10	1177.5	67.6	893	2	S51603
11	1177.5	67.6	981	2	S51604
12	1177.5	67.6	1005	2	S49015
13	1156.5	66.4	849	2	I50617
14	1153.5	66.3	986	2	S78059
15	1152.5	66.2	985	2	I51549
16	1152.5	66.2	986	2	I78844
17	1151.5	66.1	983	2	B45583
18	1149.5	66.0	983	2	A38224
19	1143.5	65.7	998	2	I58351
20	1135.5	65.2	998	2	JC5672
21	1121.5	64.4	983	2	A45583
22	1114.5	64.0	984	2	A39753
23	1111.5	63.8	952	2	150612
24	1106.5	63.6	480	2	148760
25	1105.5	63.5	995	2	A56599
26	1103.5	63.4	478	2	A57174
27	1102.5	63.3	970	2	178842
28	1091.5	62.7	948	2	S51605
29	1088.5	62.5	988	2	I50611
30	1088	62.5	985	2	I51672
31	1087.5	62.5	998	2	S37627
32	1083.5	62.2	993	2	148653
33	1049.5	60.3	938	2	149071
34	1044.5	60.0	612	2	S33506
35	1038.5	59.6	987	2	A54092
36	1035.5	59.5	987	2	148953
37	1029.5	59.1	987	2	148652
38	994.5	57.1	372	2	S23363
39	974	55.9	1019	2	T13039
40	941	54.0	984	1	A34076
41	793.5	45.6	919	2	T29581
42	781	44.9	1122	2	T42400
43	770.5	44.3	1006	2	JC5526
44	724	41.6	275	2	I48761
45	633.5	36.4	334	2	T43450

receptor-type prot brain-specific kin receptor protein-t receptor tyrosine receptor-like tyro receptor-like tyro receptor tyrosine protein-tyrosine k protein-tyrosine k receptor tyrosine receptor protein-t receptor tyrosine protein-tyrosine k receptor protein-t receptor tyrosine receptor tyrosine protein-tyrosine k protein-tyrosine k protein-tyrosine k embryo kinase 5 protein-tyrosine k receptor protein-t receptor-like tyro protein-tyrosine k receptor tyrosine · protein-tyrosine k mouse developmenta protein kinase - m protein-tyrosine k protein-tyrosine k eph-related recept mouse developmenta protein-tyrosine k tyrosine kinase re protein-tyrosine k hypothetical prote Eph receptor tyros kinase-defective E protein-tyrosine k hypothetical prote GenCore version 5.1.7

Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM nucleic - protein search, using frame plus_n2p model

Run on: March 21, 2006, 23:30:21; Search time 50.6 Seconds

(without alignments)

2551.614 Million cell updates/sec

Title: US-10-601-324-2

Perfect score: 1741

Sequence: 1 gaccccaaccaggctgtgtt.....ggctccccagcacgagcggc 915

Scoring table: BLOSUM62

Xgapop 10.0 , Xgapext 0.5 Ygapop 10.0 , Ygapext 0.5 Fgapop 6.0 , Fgapext 7.0 Delop 6.0 , Delext 7.0

Searched: 2166443 seqs, 705528306 residues

Total number of hits satisfying chosen parameters: 4332886

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Command line parameters:

-MODEL=frame+_n2p.model -DEV=xlp

-Q=/abss/ABSSWEB spool/US10601324/runat_21032006_124022_20229/app_query.fasta_1

-DB=UniProt -QFMT=fastan -SUFFIX=n2p.rup -MINMATCH=0.1 -LOOPCL=0 -LOOPEXT=0

-UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi -LIST=45

-DOCALIGN=200 -THR_SCORE=pct -THR_MAX=100 -THR_MIN=0 -ALIGN=15 -MODE=LOCAL

-OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=200000000 -HOST=abss02p

-USER=US10601324_@CGN_1_1_466_@runat_21032006_124022_20229 -NCPU=6 -ICPU=3

-NO_MMAP -NEG_SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG -DEV_TIMEOUT=120

-WARN_TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7

-YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7

Database : UniProt_05.80:*

1: uniprot_sprot:*

2: uniprot_trembl:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result No.	Score	Query Match	Length :	DB 	ID	Description
1	1590	91.3	976	1	EPHA2_HUMAN	P29317 homo sapien
2	1590	91.3	976	2	Q8N3Z2_HUMAN	Q8n3z2 homo sapien
3	1544	88.7	977	1	EPHA2 MOUSE	Q03145 mus musculu
4	1424.5	81.8	974	2	Q6DII4_XENTR	Q6dii4 xenopus tro
5	1412.5	81.1	963	2	Q5FWW9_XENLA	Q5fww9 xenopus lae
6	1407.5	80.8	976	2	Q6NTV5 XENLA	Q6ntv5 xenopus lae
7	1355	77.8	977	2	Q9PWR5 XENLA	Q9pwr5 xenopus lae

	•						_
8	1309.5	75.2	712	2	Q4SC90_TETNG		tetraodon n
9	1274.5	73.2	1042	2	Q4RXA0_TETNG	-	tetraodon n
10	1246.5	71.6	666	2	073876_BRARE		brachydanio
11	1246.5	71.6	984	2	Q6NZS1_BRARE		brachydanio
12	1194.5	68.6	1013	1	EPHA5_CHICK		gallus gall
13	1192.5	68.5	877	1	EPHA5_MOUSE	Q60629	mus musculu
14	1189.5	68.3	369	2	Q95K57_MACFA	Q95k57	macaca fasc
15	1189.5	68.3	819	2	Q6PFV6_MOUSE	Q6pfv6	mus musculu
16	1189.5	68.3	1017	2	Q59FT4_HUMAN	Q59ft4	homo sapien
17	1189.5	68.3	1037	1	EPHA5_HUMAN	P54756	homo sapien
18	1181.5	67.9	969	2	Q7Z3F2_HUMAN	Q7z3f2	homo sapien
19	1177.5	67.6	1005	1	EPHA5_RAT	P54757	rattus norv
20	1156.5	66.4	986	1	EPHA4_CHICK	Q07496	gallus gall
21	1153.5	66.3	927	2	Q99KA8_MOUSE	Q99ka8	mus musculu
22	1153.5	66.3	986	1	EPHA4_MOUSE	Q03137	mus musculu
23	1153.5	66.3	986	2	Q80VZ2 MOUSE	Q80vz2	mus musculu
24	1152.5	66.2	711	2	Q53TAO HUMAN	Q53ta0	homo sapien
25	1152.5	66.2	949	2	Q58F15_HUMAN	Q58f15	homo sapien
26	1152.5	66.2	985	1	EPA4B_XENLA	Q91694	xenopus lae
27	1152.5	66.2	986	1	EPHA4 HUMAN	P54764	homo sapien
28	1152.5	66.2	986	2	Q7ZYM7 XENLA	Q7zym7	xenopus lae
29	1152	66.2	986	1	EPA4A_XENLA	Q91845	xenopus lae
30	1151.5	66.1	664	2	Q4RYX7_TETNG	Q4ryx7	tetraodon n
31	1151.5	66.1	983	1	EPHA3_CHICK	P29318	gallus gall
32	1151.5	66.1	986	2	Q5ZEW1_BRARE	Q5zew1	brachydanio
33	1149.5	66.0	983	1	EPHA3 HUMAN	P29320	homo sapien
34	1149.5	66.0	984	2	Q8BRB1 MOUSE	Q8brb1	mus musculu
35	1149.5	66.0	984	2	Q8C3U1 MOUSE	Q8c3u1	mus musculu
36	1145.5	65.8	983	2	Q6P4R6_HUMAN	Q6p4r6	homo sapien
37	1143.5	65.7	993	1	EPHA7 CHICK	042422	gallus gall
38	1143.5	65.7	998	1	EPHA7 HUMAN	Q15375	homo sapien
39	1142.5	65.6	963	2	Q4RQWO TETNG	Q4rqw0	tetraodon n
40	1142.5	65.6	984	1	EPHA3 RAT	008680	rattus norv
41	1142.5	65.6	998	1	EPHA7 RAT	P54759	rattus norv
42	1139.5	65.5	994	2	Q8R381 MOUSE	Q8r381	mus musculu
43	1139.5	65.5		2	Q8BSU8_MOUSE	Q8bsu8	mus musculu
44	1135.5	65.2	998	1	EPHA7 MOUSE		mus musculu
45	1134.5	65.2	976	2	Q90ZN9 BRARE	Q90zn9	brachydanio
	· · -		_			-	-

OM protein - protein search, using sw model

March 21, 2006, 22:35:54; Search time 70.7212 Seconds Run on:

(without alignments)

2068.873 Million cell updates/sec

Title: US-10-601-324-3

Perfect score: 1759

1 MSYYHHHHHHDYDIPTTENL.....LKTLADFDPRVSIRLPSTSG 333 Sequence:

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

2443163 segs, 439378781 residues Searched:

2443163 Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

A_Geneseq_21:* Database :

1: geneseqp1980s:*

2: geneseqp1990s:*

3: geneseqp2000s:*

4: geneseqp2001s:*

5: geneseqp2002s:*
6: geneseqp2003as:*

7: geneseqp2003bs:*

8: geneseqp2004s:* 9: geneseqp2005s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		ક				
Result		Query				
No.	Score	Match	Length	DΒ	ID	Description
				- -		
1	1590.5	90.4	456	9	ADZ66216	Adz66216 Primary a
2	1590.5	90.4	456	9	AEB80037	Aeb80037 Human Eph
3	1590.5	90.4	456	9	AEB72924	Aeb72924 Human Eph
4	1590.5	90.4	963	8	ABM83447	Abm83447 Human dia
5	1590.5	90.4	. 976	7	ADE40423	Ade40423 Human eph
6	1590.5	90.4	976	7	ADJ95092	Adj95092 Novel NOV
7	1590.5	90.4	976	8	ADL61214	· Adl61214 Human pro
8	1590.5	90.4	976	8	ADN03964	Adn03964 Antipsori
9	1590.5	90.4	976	9	ADU79818	Adu79818 Human Eph
10	1590.5	90.4	976	9	ADU79822	Adu79822 Human Eph
11	1590.5	90.4	976	9	ADV94805	Adv94805 Human ADP
12	1590.5	90.4	976	9	ADW96093	Adw96093 Human Eph
13	1590.5	90.4	976	9	ADZ66185	Adz66185 EphA2 pol
14	1590.5	90.4	976	9	AEB72892	Aeb72892 Human rec
15	1590.5	90.4	987	8	ADX97538	Adx97538 Pancreati

16	1590.5	90.4	1035	9	ADZ66203	Adz66203	Protein e
17	1590.5	90.4	1035	9	AEB80023	Aeb80023	Human Eph
18	1590.5	90.4	1035	9	AEB72910	Aeb72910	Fusion pr
19	1590	90.4	479	9	ADZ66218	Adz66218	Protein e
20	1590	90.4	479	9	AEB80039	Aeb80039	Human Eph
21	1590	90.4	479	9	AEB72926	Aeb72926	Fusion pr
22	1590	90.4	490	9	ADZ66223	Adz66223	Protein e
23	1590	90.4	490	9	AEB80045	Aeb80045	Human Eph
24	1590	90.4	490	9	AEB72932	Aeb72932	Fusion pr
25	1590	90.4	497	9	ADZ66220	Adz66220	Protein e
26	1590	90.4	497	9	AEB80043	Aeb80043	Human Eph
27	1590	90.4	497	9	AEB80041	Aeb80041	Human Eph
28	1590	90.4	497	9	AEB72928	Aeb72928	Fusion pr
29	1590	90.4	497	9	AEB72930	Aeb72930	Fusion pr
30	1544	87.8	977	9	AEA55026	Aea55026	Mouse tyr
31	1544	87.8	977	9	AEA55035	Aea55035	Mouse eph
32	1201	68.3	710	2	AAR75714	Aar75714	Eph-relat
33	1201	68.3	722	2	AAR75705	Aar75705	Eph-relat
34	1201	68.3	744	2	AAR75713	Aar75713	Eph-relat
35	1199	68.2	877	2	AAW71628	Aaw71628	Mouse Bsk
36	1199	68.2	1041	9	ADV97895	Adv97895	Murine pr
37	1196	68.0	953	5	ABP52826	Abp52826	Human rec
38	1196	68.0	975	5	ABP52827	Abp52827	Human Ehk
39	1196	68.0	991	2	AAR85090	Aar85090	EPH-like
40	1196	68.0	1037	5	ABG61868	Abg61868	Prostate
41	1196	68.0	1037	6	ABR44241	Abr44241	Tyrosine
42	1196	68.0	1037	7	ADE31683	Ade31683	Human 141
43	1191	67.7	928	2	AAR97853	Aar97853	Rat REK7
44	1184	67.3	1005	2	AAW83147		Rat recep
45	1156.5	65.7	849	2	AAR75706	Aar75706	Eph-relat

OM protein - protein search, using sw model

March 21, 2006, 22:46:54; Search time 16.7899 Seconds Run on:

(without alignments)

1639.734 Million cell updates/sec

Title: US-10-601-324-3

Perfect score: 1759

1 MSYYHHHHHHDYDIPTTENL.....LKTLADFDPRVSIRLPSTSG 333 Sequence:

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

572060 seqs, 82675679 residues Searched:

572060 Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Issued Patents AA:* Database :

1: /cgn2_6/ptodata/1/iaa/5_COMB.pep:* 2: /cgn2_6/ptodata/1/iaa/6_COMB.pep:*

3: /cgn2_6/ptodata/1/iaa/H_COMB.pep:*
4: /cgn2_6/ptodata/1/iaa/PCTUS_COMB.pep:*
5: /cgn2_6/ptodata/1/iaa/RE_COMB.pep:*
6: /cgn2_6/ptodata/1/iaa/backfiles1.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		*					
Result		Query					
No.	Score	Match	Length	DB	ID	Description	
						0	1
1	1590.5	90.4	976	1	US-08-449-645A-18	Sequence 18, Ap	_
2	1590.5	90.4	976	1	US-08-702-367A-18	Sequence 18, Ap	pΙ
3	1590.5	90.4	976	2	US-09-949-016-6499	Sequence 6499,	Аp
4	1590.5	90.4	976	4	PCT-US95-04681-18	Sequence 18, Ap	pl
5	1590.5	90.4	1013	2	US-09-949-016-7991	Sequence 7991,	Аp
6	1569.5	89.2	977	1	US-08-673-789-8	Sequence 8, App)li
7	1201	68.3	490	1	US-08-673-789-13	Sequence 13, Ap	pl
8	1201	68.3	710	1	US-08-162-809-22	Sequence 22, Ap	pl
9	1201	68.3	722	1	US-08-162-809-4	Sequence 4, App)li
10	1201	68.3	744	1	US-08-162-809-20	Sequence 20, Ap	pl
11	1199	68 ⁻ .2	877	1	US-08-673-789-2	Sequence 2, App	oli
12	1196	68.0	953	2	US-09-751-389-7	Sequence 7, App	oli
13	1196	68.0	967	1	US-08-449-645A-30	Sequence 30, Ap	pl
14	1196	68.0	967	1	US-08-702-367A-30	Sequence 30, Ap	pl
15	1196	68.0	975	2	US-09-751-389-8	Sequence 8, App	oli
16	1196	68.0	991	1	US-08-449-645A-13	Sequence 13, Ap	pl
17	1196	68.0	991	1	US-08-702-367A-13	Sequence 13, Ap	pl
18	1196	68.0	991	4	PCT-US95-04681-13	Sequence 13, Ap	pl

19	1191	67.7	928	1	US-08-442-248-2	Sequence	2, Appli
20	1191	67.7	928	1	US-08-440-815-2	Sequence	2, Appli
21	1191	67.7	928	2	US-08-486-449-2	Sequence	2, Appli
22	1191	67.7	928	2	US-08-578-684-2	Sequence	2, Appli
23	1184	67.3	1005	1	US-08-469-537A-103	Sequence	103, App
24	1156.5	65.7	849	1	US-08-162-809-6	Sequence	6, Appli
25	1156.5	65.7	986	1	US-08-673-789-3	Sequence	3, Appli
26	1154.5	65.6	849	1	US-08-673-789-10	Sequence	10, Appl
27	1152.5	65.5	986	1	US-08-449-645A-15	Sequence	15, Appl
28	1152.5	65.5	986	1	US-08-702-367A-15	Sequence	15, Appl
29	1152.5	65.5	986	4	PCT-US95-04681-15	Sequence	15, Appl
30	1152.5	65.5	997	2	US-09-949-016-7171	Sequence	7171, Ap
31	1152.5	65.5	1104	1	US-08-222-616-36	Sequence	36, Appl
32	1152.5	65.5	1104	2	US-08-446-648-36	Sequence	36, Appl
33	1152.5	65.5	1104	2	US-09-982-610-36	Sequence	36, Appl
34	1152.5	65.5	1104	4	PCT-US95-04228-36	Sequence	36, Appl
35	1151.5	65.5	968	2	US-09-751-389-6	Sequence	6, Appli
36	1151.5	65.5	983	1	US-08-162-809-16	Sequence	16, Appl
37	1151	65.4	998	1	US-08-449-645A-17	Sequence	17, Appl
38	1151	65.4	998	1	US-08-702-367A-17	Sequence	17, Appl
39	1151	65.4	998	2	US-09-949-016-6501	Sequence	6501, Ap
40	1151	65.4	998	4	PCT-US95-04681-17	Sequence	17, Appl
41	1151	65.4	1005	2	US-09-949-016-9901	Sequence	9901, Ap
42	1149.5	65.3	982	1	US-08-673-789-4	Sequence	4, Appli
43	1149.5	65.3	983	1	US-08-449-645A-21	Sequence	21, Appl
44	1149.5	65.3	983	1	US-08-702-367A-21	Sequence	21, Appl
45	1149.5	65.3	983	2	US-09-771-161A-227	Sequence	227, App

OM protein - protein search, using sw model

Run on: March 21, 2006, 23:02:20 ; Search time 57.2383 Seconds

(without alignments)

2430.838 Million cell updates/sec

US-10-601-324-3 Title:

Perfect score: 1759

1 MSYYHHHHHHDYDIPTTENL.....LKTLADFDPRVSIRLPSTSG 333 Sequence:

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

1867569 segs, 417829326 residues Searched:

Total number of hits satisfying chosen parameters: 1867569

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0% Maximum Match 100%

Listing first 45 summaries

Published_Applications_AA_Main:* Database :

1: /cgn2_6/ptodata/1/pubpaa/US07_PUBCOMB.pep:*

2: /cgn2_6/ptodata/1/pubpaa/US08_PUBCOMB.pep:*

3: /cgn2_6/ptodata/1/pubpaa/US09_PUBCOMB.pep:*

4: /cgn2_6/ptodata/1/pubpaa/US10A_PUBCOMB.pep:*

5: /cgn2_6/ptodata/1/pubpaa/US10B_PUBCOMB.pep:*
6: /cgn2_6/ptodata/1/pubpaa/US11_PUBCOMB.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		*				
Result		Query				
No.	Score	Match	Length	DB	ID	Description
1	1590.5	90.4	976	4	US-10-366-288-2	Sequence 2, Appli
2	1590.5	90.4	976	4	US-10-287-226-320	Sequence 320, App
3	1590.5	90.4	976	4	US-10-648-593-138	Sequence 138, App
4	1590.5	90.4	976	5	US-10-616-403-6	Sequence 6, Appli
5	1590.5	90.4	976	5	US-10-897-711-2	Sequence 2, Appli
6	1523.5	86.6	297	5	US-10-794-493-15	Sequence 15, Appl
7	1201	68.3	490	5	US-10-732-923-13669	Sequence 13669, A
8	1201	68.3	827	5	US-10-732-923-13666	Sequence 13666, A
9	1201	68.3	991	5	US-10-732-923-13667	Sequence 13667, A
10	1201	68.3	1013	5	US-10-732-923-13668	Sequence 13668, A
11	1199	68.2	1041	5	US-10-840-512-215	Sequence 215, App
12	1196	68.0	369	5	US-10-732-923-13681	Sequence 13681, A
13	1196	68.0	953	4	US-10-412-277-7	Sequence 7, Appli
14	1196	68.0	975	4	US-10-412-277-8	Sequence 8, Appli
15	1196	68.0	991	3	US-09-823-187-44	Sequence 44, Appl
16	1196	68.0	1037	4	US-10-316-124-3	Sequence 3, Appli
17	1196	68.0	1037	4	US-10-353-690-40	Sequence 40, Appl
18	1196	68.0	1037	6	US-11-064-551-3	Sequence 3, Appli

19	1191	67.7	928	2	US-08-578-684-2	Sequence	2, Appli
20	1185.5	67.4	295	5	US-10-794-493-13	Sequence	13, Appl
21	1184	67.3	1005	4	US-10-029-020-63	Sequence	63, Appl
22	1152.5	65.5	295	5	US-10-794-493-12	Sequence	12, Appl
23	1152.5	65.5	985	4	US-10-029-020-61	Sequence	61, Appl
24	1152.5	65.5	986	5	US-10-723-860-597	Sequence	597, App
25	1152.5	65.5	986	5	US-10-756-149-4880	Sequence	4880, Ap
26	1152.5	65.5	997	5	US-10-450-763-36048	Sequence	36048, A
27	1152.5	65.5	1026	5	US-10-450-763-53290	Sequence	53290, A
28	1152.5	65.5	1104	3	US-09-982-610-36	Sequence	36, Appl
29	1151.5	65.5	968	4	US-10-412-277-6	Sequence	6, Appli
30	1151.5	65.5	983	5	US-10-732-923-13675	Sequence	13675, A
31	1151	65.4	993	3	US-09-823-187-39	Sequence	39, Appl
32	1151	65.4	993	3	US-09-823-187-41	Sequence	41, Appl
33	1151	65.4	998	3	US-09-823-187-40	Sequence	40, Appl
34	1150	65.4	998	3	US-09-823-187-43	Sequence	43, Appl
35	1149.5	65.3	983	3	US-09-771-161A-227	Sequence	227, App
36	1149.5	65.3	983	4	US-10-205-823-97	Sequence	97, Appl
37	1149.5	65.3	983	4	US-10-345-680-2	Sequence	2, Appli
38	1149.5	65.3	983	4	US-10-295-027-602	Sequence	602, App
39	1149.5	65.3	983	4	US-10-029-020-59	Sequence	59, Appl
40	1149.5	65.3	983	5	US-10-794-514A-467	Sequence	467, App
41	1149.5	65.3	983	5	US-10-489-125B-11	Sequence	11, Appl
42	1149.5	65.3	983	6	US-11-051-454-97	Sequence	97, Appl
43	1147.5	65.2	295	5	US-10-794-493-11	Sequence	11, Appl
44	1143.5	65.0	295	5	US-10-794-493-6	Sequence	6, Appli
45	1143.5	65.0	295	5	US-10-794-493-9	Sequence	9, Appli

OM protein - protein search, using sw model

March 21, 2006, 23:03:25 ; Search time 8.14056 Seconds Run on:

(without alignments)

1170.855 Million cell updates/sec

Title: US-10-601-324-3

Perfect score: 1759

1 MSYYHHHHHHDYDIPTTENL.....LKTLADFDPRVSIRLPSTSG 333 Sequence:

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

169630 seqs, 28622889 residues Searched:

Total number of hits satisfying chosen parameters: 169630

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Published_Applications_AA_New: * Database :

1: /cgn2_6/ptodata/1/pubpaa/US08_NEW_PUB.pep:*

2: /cgn2_6/ptodata/1/pubpaa/US06_NEW_PUB.pep:*

3: /cgn2_6/ptodata/1/pubpaa/US07_NEW_PUB.pep:*

4: /cgn2_6/ptodata/1/pubpaa/PCT_NEW_PUB.pep:*

5: /cgn2_6/ptodata/1/pubpaa/US09_NEW_PUB.pep:*
6: /cgn2_6/ptodata/1/pubpaa/US10_NEW_PUB.pep:*
7: /cgn2_6/ptodata/1/pubpaa/US11_NEW_PUB.pep:*

8: /cgn2 6/ptodata/1/pubpaa/US60_NEW_PUB.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result No.	Score	Query Match	Length	DB	ID	Description
1	1590.5	90.4	456	6	US-10-966-483-34	Sequence 34, Appl
2	1590.5	90.4	456	7	US-11-021-441 - 18	Sequence 18, Appl
3	1590.5	90.4	976	6	US-10-966-483-2	Sequence 2, Appli
4	1590.5	90.4	976	6	US-10-511-273-1	Sequence 1, Appli
5	1590.5	90.4	976	7	US-11-233-796-2	Sequence 2, Appli
6	1590.5	90.4	976	7	US-11-072-175-138	Sequence 138, App
7	1590.5	90.4	976	7	US-11-203-251A-77	Sequence 77, Appl
8	1590.5	90.4	1035	6	US-10-966-483-20	Sequence 20, Appl
9	1590.5	90.4	1035	7	US-11-021-441-4	Sequence 4, Appli
10	1590	90.4	479	6	US-10-966-483-36	Sequence 36, Appl
11	1590	90.4	479	7	US-11-021-441-20	Sequence 20, Appl
12	1590	90.4	490	6	US-10-966-483-42	Sequence 42, Appl
13	1590	90.4	490	7	US-11-021-441-26	Sequence 26, Appl
14	1590	90.4	497	6	US-10-966-483-38	Sequence 38, Appl
15	1590	90.4	497	6	US-10-966-483-40	Sequence 40, Appl
16	1590	90.4	497	7	US-11-021-441-22	Sequence 22, Appl

17	1590	90.4	497	7	US-11-021-441-24	Sequence	24, Appl
18	1196	68.0	1015	7	US-11-203-251A-82	Sequence	82, Appl
19	1196	68.0	1037	7	US-11-203-251A-81	Sequence	81, Appl
20	1184	67.3	1005	7	US-11-113-424-63	Sequence	63, Appl
21	1152.5	65.5	985	7	US-11-113-424-61	Sequence	61, Appl
22	1152.5	65.5	986	7	US-11-203-251A-80	Sequence	80, Appl
23	1151	65.4	998	7	US-11-203-251A-83	Sequence	83, Appl
24	1149.5	65.3	983	7	US-11-113-424-59	Sequence	59, Appl
25	1149.5	65.3	983	7	US-11-203-251A-78	Sequence	78, Appl
26	1118.5	63.6	984	7	US-11-203-251A-85	Sequence	85, Appl
27	1115.5	63.4	984	7	US-11-113-424-60	Sequence	60, Appl
28	1107.5	63.0	987	6	US-10-770-726-61	Sequence	61, Appl
29	1107.5	63.0	987	7	US-11-203-251A-87	Sequence	87, Appl
30	1107.5	63.0	1055	7	US-11-169-041-155	Sequence	155, App
31	1107.5	63.0	1055	7	US-11-072-175-139	Sequence	139, App
32	1107.5	63.0	1055	7	US-11-203-251A-86	Sequence	86, Appl
33	1107.5	63.0	1055	7	US-11-051-720-1417	Sequence	1417, Ap
34	1106.5	62.9	995	7	US-11-113-424-62	Sequence	62, Appl
35	1091.5	62.1	998	6	US-10-510-524-1	Sequence	1, Appli
36	1091.5	62.1	998	7	US-11-203-251A-88	Sequence	88, Appl
37	1090.5	62.0	1035	7	US-11-113-424-20	Sequence	20, Appl
38	1090.5	62.0	1052	7	US-11-113-424-22	Sequence	22, Appl
39	1050	59.7	1005	7	US-11-203-251A-84	Sequence	84, Appl
40	1044.5	59.4	987	6	US-10-949-720-395	Sequence	395, App
41	1044.5	59.4	987	7	US-11-203-251A-89	Sequence	89, Appl
42	1044.5	59.4	990	6	US-10-821-234-1201	Sequence	1201, Ap
43	970	55.1	976	7	US-11-203-251A-76	Sequence	76, Appl
44	772.5	43.9	1006	7	US-11-203-251A-90	Sequence	90, Appl
45	620.5	35.3	258	6	US-10-877-346-75	Sequence	75, Appl

GenCore version 5.1.7

Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

March 21, 2006, 22:41:59; Search time 13.9916 Seconds Run on:

(without alignments)

2289.959 Million cell updates/sec

US-10-601-324-3 Title:

Perfect score: 1759

1 MSYYHHHHHHDYDIPTTENL.....LKTLADFDPRVSIRLPSTSG 333 Sequence:

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

283416 seqs, 96216763 residues Searched:

Total number of hits satisfying chosen parameters: 283416

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

PIR 80:* Database :

1: pir1:*

2: pir2:*

3: pir3:*
4: pir4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		*				
Result		Query				
No.	Score	Match	Length	DB	ID	Description
		- 				
1	1590.5	90.4	976	2	A36355	protein-tyrosine k
2	1551	88.2	426	2	I48759	protein-tyrosine k
3	1544	87.8	977	2	S49004	tyrosine kinase Mp
4	1519	86.4	975	2	I48974	receptor-protein t
5	1201	68.3	490	2	I50613	protein-tyrosine k
6	1201	68.3	1013	2	I50615	receptor-type prot
7	1199	68.2	877	2	I48967	brain-specific kin
8	1196	68.0	991	2	178843	receptor protein-t
9	1191	67.7	898	2	S47489	receptor tyrosine
10	1184	67.3	893	2	S51603	receptor-like tyro
11	1184	67.3	981	2	S51604	receptor-like tyro
12	1184	67.3	1005	2	S49015	receptor tyrosine
13	1156.5	65.7	849	2	I50617	protein-tyrosine k
14	1153.5	65.6	986	2	S78059	protein-tyrosine k
15	1152.5	65.5	985	2	I51549	receptor tyrosine
16	1152.5	65.5	986	2	I78844	receptor protein-t
17	1151.5	65.5	983	2	B45583	receptor tyrosine
18	1151	65.4	998	2	I58351	receptor protein-t
19	1149.5	65.3	983	2	A38224	protein-tyrosine k
20	1143	65.0	998	2	JC5672	receptor tyrosine

21	1121.5	63.8	983	2	A45583	receptor tyrosine
						• •
22	1115.5	63.4	984	2	A39753	protein-tyrosine k
23	1112.5	63.2	952	2	150612	protein-tyrosine k
24	1107.5	63.0	480	2	I48760	protein-tyrosine k
25	1106.5	62.9	995	2	A56599	embryo kinase 5 -
26	1105.5	62.8	970	2	I78842	receptor protein-t
27	1104.5	62.8	478	2	A57174	protein-tyrosine k
28	1091.5	62.1	948	2	S51605	receptor-like tyro
29	1091.5	62.1	998	2	S37627	protein-tyrosine k
30	1089	61.9	985	2	I51672	receptor tyrosine
31	1088.5	61.9	988	2	I50611	protein-tyrosine k
32	1087.5	61.8	993	2	148653	mouse developmenta
33	1053.5	59.9	938	2	I49071	protein kinase - m
34	1047	59.5	612	2	S33506	protein-tyrosine k
35	1044.5	59.4	987	2	A54092	protein-tyrosine k
36	1041.5	59.2	987	2	148953	eph-related recept
37	1035.5	58.9	987	2	I48652	mouse developmenta
38	994.5	56.5	372	2	S23363	protein-tyrosine k
39	974	55.4	1019	2	T13039	tyrosine kinase re
40	942.5	53.6	984	1	A34076	protein-tyrosine k
41	811.5	46.1	919	2	T29581	hypothetical prote
42	799	45.4	1122	2	T42400	Eph receptor tyros
43	772.5	43.9	1006	2	JC5526	kinase-defective E
44	724	41.2	275	2	I48761	protein-tyrosine k
45	633.5	36.0	334	2	T43450	hypothetical prote

GenCore version 5.1.7

Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

Run on: March 21, 2006, 22:37:09; Search time 74.2827 Seconds

(without alignments)

3162.796 Million cell updates/sec

Title: US-10-601-324-3

Perfect score: 1759

Sequence: 1 MSYYHHHHHHDYDIPTTENL.....LKTLADFDPRVSIRLPSTSG 333

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 2166443 seqs, 705528306 residues

Total number of hits satisfying chosen parameters: 2166443

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : UniProt_05.80:*

Q.

1: uniprot_sprot:*
2: uniprot_trembl:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		ሄ					
Result		Query					
No.	Score	Match	Length	DB	ID	Descrip	tion
1	1590.5	90.4	976	1	EPHA2_HUMAN	P29317	homo sapien
2	1590.5	90.4	976	2	Q8N3Z2_HUMAN	Q8n3z2	homo sapien
3	1544	87.8	977	1	EPHA2_MOUSE	Q03145	mus musculu
4	1424.5	81.0	974	2	Q6DII4_XENTR	Q6dii4	xenopus tro
5	1412.5	80.3	963	2	Q5FWW9_XENLA	Q5fww9	xenopus lae
6	1407.5	80.0	976	2	Q6NTV5_XENLA	Q6ntv5	xenopus lae
7	1355	77.0	977	2	Q9PWR5_XENLA	Q9pwr5	xenopus lae
8	1309.5	74.4	712	2	Q4SC90_TETNG		tetraodon n
9	1278.5	72.7	1042	2	Q4RXA0_TETNG	Q4rxa0	tetraodon n
10	1246.5	70.9	666	2	073876_BRARE	073876	brachydanio
11	1246.5	70.9	984	2	Q6NZS1_BRARE	Q6nzs1	brachydanio
12	1201	68.3	1013	1	EPHA5_CHICK	P54755	gallus gall
13	1199	68.2	877	1	EPHA5_MOUSE	Q60629	mus musculu
14	1196	68.0	369	2	Q95K57_MACFA		macaca fasc
15	1196	68.0	819	2	Q6PFV6_MOUSE	Q6pfv6	mus musculu
16	1196	68.0	1017	2	Q59FT4_HUMAN	_	homo sapien
17	1196	68.0	1037	1	EPHA5_HUMAN		homo sapien
18	1188	67.5	969	2	Q7Z3F2_HUMAN		homo sapien
19	1184	67.3	1005	1	EPHA5_RAT		rattus norv
20	1156.5	65.7	986	1	EPHA4_CHICK		gallus gall
21	1153.5	65.6	927	2	Q99KA8_MOUSE	-	mus musculu
22	1153.5	65.6	986	1	EPHA4_MOUSE	Q03137	mus musculu

23	1153.5	65.6	986	2	Q80VZ2_MOUSE	Q80vz2 mus musculu
24	1152.5	65.5	711	2		Q53ta0 homo sapien
25	1152.5	65.5	949	2	Q58F15_HUMAN	Q58f15 homo sapien
26	1152.5	65.5	985	1	EPA4B_XENLA	Q91694 xenopus lae
27	1152.5	65.5	986	1	EPHA4_HUMAN	P54764 homo sapien
28	1152.5	65.5	986	2	Q7ZYM7_XENLA	Q7zym7 xenopus lae
29	1152	65.5	986	1	EPA4A_XENLA	Q91845 xenopus lae
30	1151.5	65.5	664	2	Q4RYX7_TETNG	Q4ryx7 tetraodon n
31	1151.5	65.5	983	1	EPHA3_CHICK	P29318 gallus gall
32	1151.5	65.5	986	2	Q5ZEW1_BRARE	Q5zew1 brachydanio
33	1151	65.4	993	1	EPHA7_CHICK	042422 gallus gall
34	1151	65.4	998	1	EPHA7_HUMAN	Q15375 homo sapien
35	1150	65.4	998	1	EPHA7_RAT	P54759 rattus norv
36	1149.5	65.3	983	1	EPHA3_HUMAN	P29320 homo sapien
37	1149.5	65.3	984	2	Q8BRB1_MOUSE	Q8brb1 mus musculu
38	1149.5	65.3	984	2	Q8C3U1_MOUSE	Q8c3u1 mus musculu
39	1147	65.2	998	2	Q8BSU8_MOUSE	Q8bsu8 mus musculu
40	1145.5	65.1	983	2	Q6P4R6_HUMAN	Q6p4r6 homo sapien
41	1143	65.0	998	1	EPHA7_MOUSE	Q61772 mus musculu
42	1142.5	65.0	963	2	Q4RQW0_TETNG	Q4rqw0 tetraodon n
43	1142.5	65.0	984	1	EPHA3_RAT	008680 rattus norv
44	1142	64.9	994	2	Q8R381_MOUSE	Q8r381 mus musculu
45	1139	64.8	976	2	Q90ZN9_BRARE	Q90zn9 brachydanio