Multivariate Bayesian Linear Regression

MLAI Lecture 12

Neil D. Lawrence

Department of Computer Science Sheffield University

21st October 2012

Outline

Bayesian Polynomials

Revisit Olympics Data

- Use Bayesian approach on olympics data with polynomials.
- Choose a prior $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \alpha \mathbf{I})$ with $\alpha = 1$.
- Choose noise variance $\sigma^2 = 0.01$

Sampling the Prior

- Always useful to perform a 'sanity check' and sample from the prior before observing the data.
- ullet Since $\mathbf{t} = \mathbf{\Phi}\mathbf{w} + oldsymbol{\epsilon}$ just need to sample

$$w \sim \mathcal{N}(0, \alpha)$$

$$oldsymbol{\epsilon} \sim \mathcal{N}\left(oldsymbol{0}, \sigma^2
ight)$$

with $\alpha = 1$ and $\epsilon = 0.01$.

Left: fit to data, *Right*: marginal log likelihood. Polynomial order 0, model error 76.292, $\sigma^2 = 0.268$, $\sigma = 0.518$.

Left: fit to data, *Right*: marginal log likelihood. Polynomial order 1, model error 57.991, $\sigma^2 = 0.0609$, $\sigma = 0.247$.

Left: fit to data, *Right*: marginal log likelihood. Polynomial order 2, model error 55.155, $\sigma^2 = 0.0391$, $\sigma = 0.198$.

Left: fit to data, *Right*: marginal log likelihood. Polynomial order 3, model error 53.683, $\sigma^2 = 0.0301$, $\sigma = 0.173$.

Left: fit to data, *Right*: marginal log likelihood. Polynomial order 4, model error 54.301, $\sigma^2 = 0.0277$, $\sigma = 0.166$.

Left: fit to data, *Right*: marginal log likelihood. Polynomial order 5, model error 54.177, $\sigma^2 = 0.0249$, $\sigma = 0.158$.

Left: fit to data, *Right*: marginal log likelihood. Polynomial order 6, model error 54.415, $\sigma^2 = 0.0236$, $\sigma = 0.154$.

Model Fit

- Marginal likelihood doesn't always increase as model order increases.
- Bayesian model always has 2 parameters, regardless of how many basis functions (and here we didn't even fit them).
- Maximum likelihood model over fits through increasing number of parameters.
- Revisit maximum likelihood solution with validation set.

Left: fit to data, *Right*: model error. Polynomial order 0, training error -4.0526, validation error 2.0524, $\sigma^2 = 0.240$, $\sigma = 0.490$.

Left: fit to data, *Right*: model error. Polynomial order 1, training error -17.519, validation error -4.4127, $\sigma^2 = 0.0582$, $\sigma = 0.241$.

Left: fit to data, *Right*: model error. Polynomial order 2, training error -20.159, validation error 2.7275, $\sigma^2 = 0.0441$, $\sigma = 0.210$.

Left: fit to data, *Right*: model error. Polynomial order 3, training error -22.172, validation error 105.8, $\sigma^2 = 0.0357$, $\sigma = 0.189$.

Left: fit to data, *Right*: model error. Polynomial order 4, training error -23.781, validation error 578.29, $\sigma^2 = 0.0301$, $\sigma = 0.173$.

Left: fit to data, *Right*: model error. Polynomial order 5, training error -24.136, validation error 746.57, $\sigma^2 = 0.0290$, $\sigma = 0.170$.

Left: fit to data, *Right*: model error. Polynomial order 6, training error -28.528, validation error 3.3585e+05, $\sigma^2 = 0.0183$, $\sigma = 0.135$.

Left: fit to data, *Right*: model error. Polynomial order 0, training error 76.292, validation error 1.761, $\sigma^2 = 0.240$, $\sigma = 0.490$.

Left: fit to data, *Right*: model error. Polynomial order 1, training error 57.991, validation error 6.6482, $\sigma^2 = 0.0778$, $\sigma = 0.279$.

Left: fit to data, *Right*: model error. Polynomial order 2, training error 55.155, validation error 3.8897, $\sigma^2 = 0.0467$, $\sigma = 0.216$.

Left: fit to data, *Right*: model error. Polynomial order 3, training error 53.683, validation error -7.3484, $\sigma^2 = 0.0392$, $\sigma = 0.198$.

Left: fit to data, *Right*: model error. Polynomial order 4, training error 54.301, validation error -4.5232, $\sigma^2 = 0.0353$, $\sigma = 0.188$.

Left: fit to data, *Right*: model error. Polynomial order 5, training error 54.177, validation error -9.0875, $\sigma^2 = 0.0326$, $\sigma = 0.181$.

Left: fit to data, *Right*: model error. Polynomial order 6, training error 54.415, validation error -0.077841, $\sigma^2 = 0.0305$, $\sigma = 0.175$.

Regularized Mean

- Validation fit here based on mean solution for **w** only.
- For Bayesian solution

$$\boldsymbol{\mu}_{\mathsf{w}} = \left[\sigma^{-2} \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi} + \alpha^{-1} \mathbf{I} \right]^{-1} \sigma^{-2} \mathbf{\Phi}^{\mathsf{T}} \mathbf{t}$$

instead of

$$\mathbf{w}^* = \left[\mathbf{\Phi}^ op \mathbf{\Phi}
ight]^{-1} \mathbf{\Phi}^ op \mathbf{t}$$

- Two are equivalent when $\alpha \to \infty$.
- Equivalent to a prior for **w** with infinite variance.
- In other cases αI regularizes the system (keeps parameters smaller).

Sampling the Posterior

- Now check samples by extracting w from the posterior.
- ullet Now for $\mathbf{t} = oldsymbol{\Phi} \mathbf{w} + oldsymbol{\epsilon}$ need

$$w \sim \mathcal{N}\left(oldsymbol{\mu}_w, oldsymbol{\mathsf{C}}_w
ight)$$

with
$$\mathbf{C}_w = \left[\sigma^{-2}\mathbf{\Phi}^{\top}\mathbf{\Phi} + \alpha^{-1}\mathbf{I}\right]^{-1}$$
 and $\boldsymbol{\mu}_w = \mathbf{C}_w\sigma^{-2}\mathbf{\Phi}^{\top}\mathbf{t}$

$$oldsymbol{\epsilon} \sim \mathcal{N}\left(oldsymbol{0}, \sigma^2
ight)$$

with $\alpha = 1$ and $\epsilon = 0.01$.

Marginal Likelihood

• The marginal likelihood can also be computed, it has the form:

$$p(\mathbf{t}|\mathbf{X}, \sigma^2, \alpha) = \frac{1}{(2\pi)^{\frac{N}{2}} |\mathbf{K}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}\mathbf{t}^{\top}\mathbf{K}^{-1}\mathbf{t}\right)$$

where $\mathbf{K} = \alpha \mathbf{\Phi} \mathbf{\Phi}^{\top} + \sigma^2 \mathbf{I}$.

 So it is a zero mean N-dimensional Gaussian with covariance matrix K.

Computing the Expected Output

- Given the posterior for the parameters, how can we compute the expected output at a given location?
- Output of model at location x_i is given by

$$y(\mathbf{x}_i; \mathbf{w}) = \phi_i^{\top} \mathbf{w}$$

- We want the expected output under the posterior density, $p(\mathbf{w}|\mathbf{t}, \mathbf{X}, \sigma^2, \alpha)$.
- Mean of mapping function will be given by

$$\langle y(\mathbf{x}_i; \mathbf{w}) \rangle_{p(\mathbf{w}|\mathbf{t}, \mathbf{X}, \sigma^2, \alpha)} = \phi_i^{\top} \langle \mathbf{w} \rangle_{p(\mathbf{w}|\mathbf{t}, \mathbf{X}, \sigma^2, \alpha)}$$

= $\phi_i^{\top} \mu_w$

Variance of Expected Output

• Variance of model at location x_i is given by

$$var(y(\mathbf{x}_i; \mathbf{w})) = \langle (y(\mathbf{x}_i; \mathbf{w}))^2 \rangle - \langle y(\mathbf{x}_i; \mathbf{w}) \rangle^2$$

$$= \phi_i^\top \langle \mathbf{w} \mathbf{w}^\top \rangle \phi_i - \phi_i^\top \langle \mathbf{w} \rangle \langle \mathbf{w} \rangle^\top \phi_i$$

$$= \phi_i^\top \mathbf{C}_i \phi_i$$

where all these expectations are taken under the posterior density, $p(\mathbf{w}|\mathbf{t}, \mathbf{X}, \sigma^2, \alpha)$.

Reading

- Section 3.7–3.8 of Rogers and Girolami (pg 122–133).
- Section 3.4 of Bishop (pg 161–165).

References I

- C. M. Bishop. *Pattern Recognition and Machine Learning*. Springer-Verlag, 2006. [Google Books] .
- S. Rogers and M. Girolami. *A First Course in Machine Learning*. CRC Press, 2011. [Google Books] .