MATHEMATIK

UNTERRICHT - ABITUR 2025

Inhaltsverzeichnes

Anal	ytische Geometrie	1
1.1	2024-08-14 - note_title	1
1.2	2024-08-19 - Schnittwinkel berechnen	1
Stoch	nastik	2
	2024-08-28 - Einleitung	
2.1.1	Beipsiel: Faires Spiel	2
2.1.2	Aufgaben:	2
	2.1.2.1 S. 238 Aufgabe 1	2
2.1.3	Roulett	3
Form	eln	4
Bibli	ographie	5

Analytische Geometrie

1.1 2024-08-14 - note_title

Bei zwei windschiefen Geraden wird erst eine Hilfebene hinzugezogen. Diese muss folgende Bedingungen erfüllen:

- eine der beiden Geraden muss in der Ebene liegen
- die andere muss parrallel zu ihr verlaufen

Die Ebene E enthält die Gerade g und die andere Gerade verläuft parrallel. Der **Normalenvektor** der Ebene verläuft dabei **orthogonal** zu den beiden **Richtungsvektoren** der Geraden.

Aufstellen der Ebene

Danach einfach

1

1

1.2 2024-08-19 - Schnittwinkel berechnen

Tipp: Zwei gleiche Dinge (z. B. Gerade und Gerade): Cosinus. Zwei unterscheidliche

Dinge (z. B. Gerade und Ebene): Cosinus

Herleitung unter: Winkel zwischen zwei Vektoren

Aufgaben

Stochastik

2.1 2024-08-28 - Einleitung

Statistik vs Stochastik

Stochastik ist die Vorhersage Statistik ist die Auswertung der Vargangenheit

Satz: Die Wahrscheinlichkeiten der Egebnisse eines Zufallsexperiments sind Zahlen im intervall [0; 1] mit Summe 1. Sie bilden eine Wahrscheinlichkeitsverteilung. Sie sind die Prognosen für die relativen Häufigkeiten bei vielen Versuchswiederholungen.

Definition: Wenn jedem Ergebnis eines Zufallsexperiments ein Zahlenwert zugeordnet wird, spricht man von einer **Zufallsgröße**. Die **Wahrscheinlichkeitsverteilung** ener Zufallsrgöße X ist eine Tabelle, bei der jedem Wert k von X die Wahrscheinlichkeit P(X = k) zugeordnet ist. Für eine Zufallsgröße X mit den Werten $x_1, x_2, ..., x_n$ heißt $\mu = x_1 \cdot P(X = x_1) + x_2 \cdot P(X = x_2) ... + x_n \cdot P(X = x_n)$ **Erwartungswert** von X. Er gibt an, welchen Mittelwert man bei ausreichend großer Versuchsanzahl auf lange Sicht erwartet.

2.1.1 Beipsiel: Faires Spiel

Beim Glücksspeil mit einem Würfel soll das Doppelte der Augenzahl (in Euro) ausgezahlt werden.

- a) Bestimmen Sie die Auszahlung, die der Spieler im Mittel erwarten kann.
- b) Geben Sie an, wie hoch der Einsatz sein muss, damit das Glücksspiel fair ist.

Als fair bezeichnet man ein Spiel, bei dem der Erwartungswert für den Gewinn null ist. Gewinn = Auszahlung - Einsatz

- a) Wegen $\mu = \frac{1}{6}(2+4+6+8+10+12) = \frac{42}{6} = 7$
- b) Dei Einsatz sollte dem Erwartungswert entsprechen. So hat der anbieter des Glückspieles zwar keinen gewinn, aber auf lange sicht auch keinen direkten Verlust und die Teilnehmenden habe eine faiere Chanche.

2.1.2 Aufgaben:

2.1.2.1 S. 238 Aufgabe 1

Gewinn (Chips)	Wahrscheinlichkeit
-1	$\frac{1}{4}$
0	$\frac{1}{2}$
1	$\frac{1}{4}$

a) Warum ist die Tabelle korrekt?

Es gibt vier verschiedene Möglichkeiten für die Münzen zu fallen wenn 0 gleich Zahl und 1 gleich Kopf, sind das folgende Möglichkeiten: 00,01,10,11. Jede dieser Möglichkeiten tritt mit der selben Wahrscheinlichkeit auf $(\frac{1}{4})$. In zwei der Fällen (10,01) bekommt man einen Chip zurück, ist also selber auf 0. Wenn der Fall 00 auftritt, verliert man den gesetzten Chip und bei 11 gewinnt man einen

2.1.3 Roulett

Erwartungswert bei 1Euro Einsatz:

$$\mu = \frac{1}{37}(36) = \frac{36}{37} \approx 0.97$$

Formeln

Bibliographie