Assignment 2.2 Exercises: 1, 5, 7, 8, 10, 11

Exercise 2.2.1

(2.2.1a):

$$f(x, y, z) = x^{3} + x^{2} + 2x + 3y - z^{2} + z$$
 (lex)

$$= x^{3} + x^{2} - z^{2} + 2x + 3y + z$$
 (grlex)

$$= x^{3} + x^{2} - z^{2} + 2x + 3y + z$$
 (grevlex)

 $\operatorname{multideg}(f) = (3, 0, 0). \ \operatorname{LM}(f) = x^3. \ \operatorname{LT}(f) = x^3.$

(2.2.1b):

$$\begin{aligned} & \text{lex} = -3x^5yz^4 + 2x^2y^8 - xy^4 + xyz^3 & \text{LM}(f) = x^5yz^4 & \text{LT}(f) = -3x^5yz^4 & \text{multideg}(f) = (5, 1, 4) \\ & \text{grlex} = -3x^5yz^4 + 2x^2y^8 - xy^4 + xyz^3 & \text{LM}(f) = x^5yz^4 & \text{LT}(f) = -3x^5yz^4 & \text{multideg}(f) = (5, 1, 4) \\ & \text{grevlex} = 2x^2y^8 - 3x^5yz^4 + xyz^3 - xy^4 & \text{LM}(f) = x^2y^8 & \text{LT}(f) = 2x^2y^8 & \text{multideg}(f) = (2, 8, 0). \end{aligned}$$

Exercise 2.2.5

Proof. In order to show that grevlex is a monomial order according to Definition 1, we must prove the following conditions: first, that $>_{grevlex}$ is a linear ordering on $\mathbb{Z}^n_{\geq 0}$, second, that if $\alpha >_{grevlex} \beta$ and $\gamma \in \mathbb{Z}^n_{\geq 0}$, then $\alpha + \gamma >_{grevlex} \beta + \gamma$, third, that $>_{grevlex}$ is well-ordering on $\mathbb{Z}^n_{\geq 0}$.

- (i): Let $a, b \in \mathbb{Z}_{\geq 0}^n$ with $a \neq b$. We have three cases. If |a| > |b|, then $a >_{grevlex} b$. Similarly, if |b| > |a|, then $b >_{grevlex} a$. The third case is when |a| = |b|. If the rightmost nonzero entry of a b is negative, then $a >_{grevlex} b$. If it is positive, this implies that the rightmost nonzero entry of b a is negative, so $b >_{grevlex} a$. Therefore, grevlex is a total order.
- (ii): Let $a >_{grevlex} b$. We have two cases. If |a| > |b|, then |a+c| = |a| + |c| > |b| + |c| = |b+c|, thus $a+c>_{grevlex} b+c$. If |a| = |b|, then the rightmost nonzero entry of a-b is negative by construction. Note that (a+c)-(b+c)=a-b, so it follows that the rightmost nonzero entry of (a+c)-(b+c) is negative. Thus $a+c>_{grevlex} b+c$.
- (iii): To show that this relation is well-ordering, we must show that an arbitrary sequence $a(1) >_{grevlex} a(2) >_{grevlex} \dots$ is finite. Note that, for an arbitrary |a(i)|, there exists some m with |a(i)| = |a(m)| for $i \ge m$. (This occurs because > is well-ordering). This implies that the sequence must be finite since there is a finite number of $a \in \mathbb{Z}_{>0}^n$ with |a| = |a(m)|.

Therefore, grevlex is a monomial order.

Exercise 2.2.7

(2.2.7a):

Proof. Assume, by way of contradiction, that a < 0. This implies that a + a = 2a < a. This allows us to create an infinite decreasing sequence of terms such that $0 > a > 2a > 3a > \dots$, which contradicts part (iii) of the definition of monomial orders.

(2.2.7b):

Proof. Let x^a, x^b be arbitrary monomials such that x^a divides x^b . We wish to show that $a \leq b$. x^a dividing x^b implies that there exists a monomial x^c such that $x^b = x^c x^a$. Equating exponents yields b = c + a, which gives $b - a = c \in \mathbb{Z}^n_{\geq 0}$. By our proof of Exercise 2.2.7a, we can conclude that $b - a \geq 0$ so $a \leq b$ as desired.

A counterexample to show that the converse is not true is the monomials x^3y and x^2y^2 using lex order. Note that $x^3y>_{lex}x^2y^2$ but x^2y^2 does not divide x^3y .

(2.2.7c):

Proof. Let $a \in \mathbb{Z}_{\geq 0}^n$. We wish to show that a is the smallest element of $a + \mathbb{Z}_{\geq 0}^n$. Let $b \in \mathbb{Z}_{\geq 0}^n$ be arbitrary. Then for any $a + b \in a + \mathbb{Z}_{\geq 0}^n$, we have that x^a divides x^{a+b} , so by Exercise 2.2.7b, $a + b \geq a$. Since b is arbitrary, we can conclude that a is the smallest element of the set $a + \mathbb{Z}_{\geq 0}^n$.

Exercise 2.2.8 A matrix is in echelon form if all zero rows are below all nonzero rows, and if the first nonzero entry in a nonzero row is a 1, and is to the right of the first nonzero entries of the rows above. To incorporate the ordering given in equation (2) of the text, we define the polynomial $f_i = a_{i1}x_1 + \ldots + a_{in}x_n$ representing a row of a matrix where a_{ij} is the term on the *i*-th row and *j*-th column of a matrix with n columns.

For all $f_i \neq 0$, LC(f_i) corresponds to the first nonzero entry on the *i*-th row, so LC(f_i) = 1. The condition that the first nonzero entry of the *i*-th row is to the right of the first nonzero entries of higher rows implies that LT(f_i) > LT(f_j) for i < j. Therefore we can define a matrix A to be in row echelon form when there exists an m with $1 \leq m \leq n$ such that LT(f_1) > ... > LT(f_m), LC(f_1) = ... = LC(f_m) = 1, and f_{m+1} = ... = f_n = 0.

Exercise 2.2.10 This is not true for $\mathbb{Z}_{\geq 0}^n$. A counterexample is $\mathbb{Z}_{\geq 0}^3$ in which there exist an infinite number of monomials in the form (0, x, 0) with x > 0 such that (1, 0, 0) > (0, x, 0) > (0, 0, 1).

It is true for the grlex order on $\mathbb{Z}^n_{\geq 0}$ because for any $a \in \mathbb{Z}^n_{\geq 0}$, there is only a finite number of b such that $a >_{grlex} b$. This is because $a >_{grlex} b$ implies that $|a| \geq |b|$. Since for any nonnegative integer n, there is a finite number of b such that $|b| \leq n$, it must follow that there are only a finite number of b such that $|b| \leq |a|$.

Exercise 2.2.11

(2.2.11a):

Proof. Let $f = x_1^a + x_2^a + \ldots$ where $x_1^a > x_2^a > \ldots > x_i^a$ are ordered monomials, and let $m = x^b$. We have that $a_1 + b > a_2 + b > \ldots > a_i + b$, so $x^{a_1 + b}$ is the leading monomial of mf. Since the leading coefficient of this term is LC(f), it follows that LT(mf) = mLT(f). \square

(2.2.11b):

Proof. Let $x^{a_1} > \ldots > x^{a_n}$ be the monomials of f and let $x^{b_1} > \ldots > x^{b_n}$ be the monomials of g. We then have that $x^{a_1+b_1} \geq x^{a_i+b_i}$. This is then the leading monomial of fg, with coefficient $LC(f) \cdot LC(g)$. Therefore $LT(fg) = LT(f) \cdot LT(g)$ as desired.

(2.2.11c): No. A counterexample is given by defining $f_1 = 1$, $f_2 = -1$, $g_1 = x$, $g_2 = x + y$ using $>_{lex}$. Then $f_1g_1 + f_2g_2 = x - (x + y) = -y$, but

$$LM(f_1) \cdot LM(g_1) = LM(f_1g_1) = LM(f_2) \cdot LM(g_2) = LM(f_2g_2) = x.$$