Index

Entries in bold are R functions [a,b) include b but not a, \\ double backslash in file paths, 17 1 parameter "1" as the intercept, 109 ^ for powers and roots, 28, 281 1:6 generate a sequence 1 to 6, 282 { } in defining functions, 24 = = ("double equals") logical EQUALS, 100, in for loops, 42 157, 166, 244 <- gets operator, 5 != logical NOT EQUAL, 83 < less than, 20 for barplot, 244 > greater than, 20 influence testing, 161, 201 1st Quartile with summary, 19, 52 with subsets, 144 3D plots introduction, 300 - remove a term from a model, 107 3rd Quartile with summary, 19, 52 / division, 288 a intercept in linear regression, 125 / nesting of explanatory variables, 107, 176 a priori contrasts, 209 "\n" new line in output, with cat, 292 abline function for adding straight lines to a plots, 127 + add a term to a model, 107 \$ component selection, 123, 300, 303 after Ancova, 193 %% modulo, 27 in Anova, 156 %*% matrix multiplication, 302 with a linear model as its argument, 130 %in% nesting of explanatory variables, 108 **abline(0,2)** draw a line with a = 0 and b = 2, **abline(h=3)** draw a horizontal line at y = 3, & logical AND, 20 I logical OR, 20 **abline(lm(y~x))** draw a line with a and bI conditioning ("given"), 107, 298 estimated from the linear model y~x, 146, () arguments to functions, 19 (a,b] from and including a, up to but not **abline(v=10)** draw a vertical line at x = 10, including b, 273, 295 absence of evidence, 3 * main effects and interaction terms in a model, acceptance null hypothesis, 4 additivity mis-specification, 124 * multiplication, 288 age effects longitudinal data, 180 : generate a sequence; e.g. 1:6, 20, 282 age-at-death data using glm, 113 : interaction between two explanatory variables, aggregation and randomization, 10 aggregation count data, 241 [[]] subscripts for lists, 291 AIC Akaike's Information Criterion, 208 [] subscripts, 19, 289 air pollution correlations, 95

aliasing introduction, 164, 222	array function creating an array specifying its
analysis of covariance see Ancova	dimensions, 290
analysis of deviance count data, 229	arrays 289
proportion data, 259	as.character for labels, 169
analysis of variance see Anova	in barplot labels, 244
Ancova, 187	as.matrix 91
contrasts, 22	as.numeric 182
model formulae, 111	as.vector 182
order matters, 189	to estimate proportions, 237
subscripts, 224	with tapply , 245, 259
with binary response, 275	assignment, $<$ - not =, 282
with count data, 237	association, contingency tables, 89
anova and Anova: anova is an R function for	asymptotic exponential in non-linear
comparing two models, while Anova	regression, 149
stands for analysis of variance	attach a dataframe, 17, 23, 47
anova analysis of deviance, 257	autocorrelation random effects, 179
Ancova, 191	average of proportions, 259
comparing models, 121	averaging speeds, 30
function for comparing models, 147	axis change tic mark locations, 285
model simplification, 175	axis labels changing font size, cex.lab, 284
non-linear regression, 150	
test="Chi", 235, 271, 278	b slope in linear regression, 125
test="F", 257	b = SSXY/SSX, 134
with contrasts, 214	barplot factorial experiments, 172
Anova essence of, 157	frequencies, 241
choice, 1	negative binomial distribution, 243
introduction, 155	table using tapply, 234
longhand calculations for one-way, 159	two data sets compared, 102 with error bars, 168
model formula, 110, 164, 222	with two sets of bars, 244
one-way, 155	Bernoulli distribution $n = 1, 270$
Anova table in regression, 136	binary response variable, 2
one-way Anova, 160	Ancova, 275
and non-orthogonal data, 106	introduction, 269
antilogs exp, 28, 281	using glm, 113
ants in trees, 90	binom.test exact binomial test, 83
aov function for fitting linear models with	binomial variance/mean ratio, 114
categorical explanatory variables	binomial data introduction, 247
analysis of variance models, 120	binomial denominator, 247
competition example, 211	binomial distribution dbinom density
Error for rats example, 183	function, 248
factorial experiments, 173	pbinom probabilities
model for analysis of variance, 160	qbinom quantiles
multiple error terms using Error, 176	rbinom random numbers
with contrasts, 213	binomial errors glm , 115
appearance of graphs, improvements, 284	logit link, 117
arcsine transformation of percentage	binomial test comparing two proportions with
data, 248	prop.test, 84
arithmetic mean definition, 24	binomial trials Bernoulli distribution, 269
with summary, 19	blank plots use type="n" , 42

blocks, 8	chi-square contingency tables, 85
split plot design, 176	choice of model, usually a compromise, 124
and paired t-test, 82	choose combinatorial function in R,
bootstrap confidence interval for mean, 46	classical tests, 65
hypothesis testing with single samples, 66	clear the workspace rm(list=ls()) , 22
bounded count data, 118, 227	clumps, selecting a random individual, 10
bounded proportion data, 117, 247	coef extract coefficients from a model object,
bounded errors in glm , 115	121, 258
box and whisker plots see boxplot	coefficients Ancova, 191
boxplot function, 53	Anova, 212
garden ozone, 77	binary infection, 276
notch=T for hypothesis testing, 296	coef function, 258
with split, 296	extract, as in model\$coef, 258
	factorial experiments, 173
c concatenation function, 5, 282	gam , 154
making a vector, 25, 28, 33, 287	glm with Gamma errors, 264
calculator, 281	of a system of linear equations, 304
cancer with distance example, 228	quadratic regression, 147
canonical link functions glm , 117	regression, 129, 144
cars list, 291	regression with proportion data, 253
Cartesian coordinates, 125	treatment contrasts, 166
cat function for formatted output, 292	with contrasts, 213
categorical variables in data frames, 1, 15	cohort effects in longitudinal data, 180
use cut to create from continuous, 273,	col="red" colour in barplot, 241
295	column totals in contingency tables, 86
cbind function to bind columns together	columns selecting from an array, 290
in Ancova, 260	selecting using subscripts, 19
making contrasts, 212	columnwise data entry for matrices, 89, 301
proportion data, 253, 256	comparing two distributions with
creating the response variable for propor-	Kolmogorov-Smirnov, 100
tion data, 247	comparing two means, 75
ceiling function for "the smallest integer	comparing two proportions, 84
greater than", 25	comparing two variances, 73
censoring introduction, 265	competition experiment, 167, 211
central, a function for central tendency, 292	complex text on plots using expression, 285
central limit theorem, introduction, 55	component selection \$, 123
central tendency central function, 292	concatenation function, c, 282, 287
introduction, 23	conditioning in model formulae using I, 107
cex a function for character expansion	confidence intervals as error bars, 169
changing font size, 284	introduction, 45
chance and variation, 2	constant variance glm , 117
changing font size cex , 284	model checking, 144
character mode for variable, 244	contingency tables dangers of aggregation, 234
character expansion cex, 284	introduction, 85
checking the model, introduction, 121	rather than binary analysis, 270
chi squared comparing two distributions, 245	continuous variables, 2
test="Chi", 235	convert to categorical using cut, 295
distribution pchisq probabilites	in data frames, 15
qchisq quantiles	using cut to create categorical variables,
chisq.test Pearson's Chi-squared test, 89	273

contour overlay on image plots, 301	covariates in the linear predictor, 116
contr.treatment treatment contrasts, 214	CRAN address, xii
contrast coefficients, 210	critical value and rejection of the null
contrast conventions compared, 218	hypothesis, 78
contrast sum of squares example by hand, 217	F-test, 73
contrasts Ancova, 223	rule of thumb for $t = 2, 67$
as factor attribute, 212	Student's t, 77
Helmert, 219	criticism of a model, introduction, 119
introduction, 166, 209	mis-specification, 124
sum, 221	cross-sectional studies longitudinal data, 180
treatment, 218	cumprod cumulative product function, 90
contrasts=c("contr.treatment",	cumulative distribution function, Kolmogorov-
"contr.poly")) options, 214	Smirnov, 100
controls, 8	current model, 103
Cook's distance plot in model checking, 144	curvature and model simplification, 103
cor correlation in R, 95	in regression, 145
paired data, 97	model checking, 121
cor.test scale dependent correlation, 98	multiple regression, 195
significance of correlation, 97	curves on plots, Ancova with Poisson errors,
correct=F in chisq.test, 89	239
corrected sums of squares Ancova, 190	cut, produce category data from continuous,
one-way Anova, 162	273, 295
correction factor hierarchical designs, 183	
correlation and paired-sample t-test, 81	d.f. see degrees of freedom
contingency tables, 89	dangers of contingency tables, 234
introduction, 93	data, fitting models to, 103
partial, 96	data Ancovacontrasts, 224
problems of scale-dependence, 98	cases, 240
variance of differences, 97	cells, 229
correlation coefficient r, 93	clusters, 228
correlation of explanatory variables model	compensation, 188
checking, 121	competition, 167, 211
multiple regression, 195	Daphnia, 294
correlation structure, random effects, 179	das, 51
count data analysis of deviance, 229	deaths, 263
analysis using contingency tables, 85	decay, 146
Fisher's Exact Test, 92	f.test.data, 74
introduction, 227	fisher, 92
negative binomial distribution, 242	flowering, 260
on proportions, 249	gardens, 39
Poisson errors, 118	germination, 255
using glm , 113	growth, 172
counting, use table, 294	hump, 153
using sum(d>0) , 83	induced, 235
elements of vectors using table function,	infection, 275
55	isolation, 271
counts, 1	jaws, 149
covariance and the variance of a difference, 76	light, 64
introduction, 93	oneway, 155
paired samples, 81	ozone, 195, 2999

paired, 97	negative binomial, 242
pig, 297	Normal, 286
pollute, 95	Poisson, 240
productivity, 98	deparse, in plot labels, 168
rats, 181	derived variable analysis longitudinal data, 181
results, 296	detach a dataframe, 22, 31, 287
sexratio, 253	deviations, introduction, 33
sheep, 265	diet supplement example, 172
skewdata, 47, 70	diff function generating differences, 55
smoothing, 152	differences vs. paired t-test, 82
species, 237	differences between means aliasing, 222
splits, 295	in Anova model formula, 165
splityield, 176	differences between slopes Ancova, 192
streams, 81	differences between intercepts Ancova, 192
sulphur.dioxide, 202	dim dimensions of an object,
t.test.data, 77	dimensions of a matrix, 91
tannin, 128	dimensions of an array, 290
twosample, 94	dimensions of an object $x < -1:12$;
wings, 100	$\dim(x) < c(3,4)$
worms, 17	division /, 288
yvalues, 23	dnbinom function for probability density of the
data dredging using cor , 95	negative binomial, 243
data editing, 53	dnorm, 60
data exploration, 195	plot of, 68
data frame, introduction, 15	probability density of the Normal
data summary one sample case, 51	distribution, 57
dataframe create using cbind , 297	dominant eigenvalue, 303
create using read.table , 287	dredging through data using cor , 95
name the same as variable name, 299	drop elements of an array using negative
dbinom binomial density function	subscripts, 289
death data introduction, 263	drop the last element of an array using length ,
deer jaws example, 149	289
degree of fit r^2 , 142	dt density function of Student's t, plot of, 68
degrees of freedom checking for	dummy variables in the Anova model formula,
pseudoreplication, 182	164
contingency tables, 88 definition, 36	duration of experiments, 12
•	E. D C/Ct-1 forin
factorial experiments, 172	$E = R \times C/G$ expected frequencies in
in a paired t-test, 83	contingency tables, 86
in an F test of two variances, 41, 73	each in repeats, 297
in Anova, 158	edges, selecting a random individual, 10
in different models, 104	effect size and power, 9
in nested designs, 182	factorial experiments, 173
in the linear predictor, 116	fixed effects, 179
model simplification, 145	one-way Anova, 163
number of parameters, 37	eigen function for eigenvalues and
one-way Anova, 160	eigenvectors, 303
spotting pseudoreplication, 13	eigenvalues, eigen function, 303
deletion tests, steps involved, 103, 105	eigenvectors, extract using \$, 303
density function binomial,	else with the if function, 27

empty plots use type="n" , 42	extreme value distribution in survival
equations and model formulae, 111	analysis, 267
equals in lists =	extrinsic aliasing, 222
equals, logical == ("double equals")	eye colour, contingency tables, 85
Error with aov, introduction, 109	
model formulae, 107	F as logical False, 18
multiple error terms in aov, 176	F distribution pf probabilties,
error bars, function for drawing, 168	qf qualitles,
least significant difference, 171	F ratio, 74
on proportions, 274	in regression, 137
overlap and significance, 169	F-test, comparing two variances, 41
error correction, 53	factor, numerical factor levels, 182
error structure introduction, 114	factor levels Fisher's Exact Test, 92
model criticism, 119	generate with gl, 283
error sum of squares SSE in regression, 129	informative, 179, 185
error variance contrast sum of squares, 217	in model formula, 164
in regression, 136	reduction in model simplification, 104
error.bars function for plotting, 168	use split to separate vectors, 295
errors Poisson for count data, 227	factorial, Fisher's Exact Test, 90
eta the linear predictor, 115	function using cumprod , 90
even numbers, %%2 is zero, 27	factorial designs, introduction, 155
everything varies, 2	factorial experiments introduction, 171
exact binomial test binom.test , 83	model formulae, 110
exit a function using stop , 83	factor-level reduction in model simplification,
exp antilogs (base e) in R, 28	174
predicted value, 148	factors categorical variables in Anova, 1, 155
with glm and quasipoisson errors, 229	in data frames, 15
expectation of the vector product, 93	plot, 167
expected frequencies $E = R \times C / G$, 86	failure data, introduction, 1, 263
Fisher's Exact Test, 90	using glm, 113
negative binomial distribution, 243	failures proportion data, 247
experiment, 8	FALSE or F, influence testing, 161
experimental design, 7	logical variable, 18
explained variation in Anova, 158	falsifiable hypotheses, 3
in regression, 136	family, error structures in glm , 115
explanatory power of different	family=binomial binary response variable, 270
models, 104	proportion data, 260
explanatory variables, 1	family=poisson for count data, 227
choice of, 104	
continuous regression, 125	famous five; sums, sums of squares and sums of
	products, 132
dangers of aggregation, 234	file names, 17
model formulae, 107 removal in model simplification, 104	fill colour for legends, 172
	in barplot legend, 234, 244
specifying; see predict	fisher.test Fisher's Exact Test, 91
transformation, 107	with 2 arguments as factor
unique values for each binary response,	levels, 92
270	Fisher's Exact Test, contingency
exponential errors, in survival analysis, 266	tables, 90
expression, complex text on plots, 285	Fisher's F-Test see F-test,
extract \$, 299	fit of different models, 104

fitted values definition, 131	gets function <-, 5, 17
from a model object, 121	gl generate levels for factors, 283
glm , 116	glm analysis of deviance, 230, 253
proportion data, 253	Ancova with binomial errors, 253
fitting models to data, 103	Ancova with poisson errors, 237
fixed effects, introduction, 178	binary infection, 276
for loops, 42, 47, 56, 66	binary response variable, 270
drawing error bars, 168	cancers example, 228
for plotting residuals, 131	Gamma errors, 264
model of population growth, 303	introduction, 113, 120
negative binomial distribution, 243	proportion data, 253
residuals in Anova, 156	regression with proportion data, 253
with abline and split, 296	saturated model with Poisson errors, 235
format, output using cat, 292	gradient see slope,
formula, model for Anova, 164	grand mean, aliasing, 222
frac fractions in text, 285	graphs, improving appearance, 284
F-ratio, contrast sum of squares, 217	graphs, two adjacent, par(mfrow=c(1,2)) , 152
one-way Anova, 160	graphs, two by two array, par(mfrow=c(2,2)),
frequencies count data, 227	196
using table , 230, 294	Gregor Mendel effect, 13
frequency distributions, introduction, 240	grouped.Data introduction, 298
F-test, introduction, 73	grouping random effects, 178
functions written in R, 24, 292	
error bars, 168	h, leverage measure, 124
exit using stop, 83	hair colour, contingency tables, 85
for a sign test, 83	harmonic mean, 30, 292
for variance, 37	header = T , 17, 23
Leslie matrix evaluation, 302	Helmert contrasts Ancova, 224
leverage, 124	example, 219
mcheck, 123	help in R, 31
median, 27	?function name, 31
negative binomial distribution, 243	help.search, 31
	heteroscedasticity introduction, 122
gam generalized additive models, 119, 120, 152	model checking, 121, 144
data exploration, 195	multiple regression, 199
introduction, 152	hierarchical designs, correction factor, 183
library(mgcv), 153	hierarchy random effects, 179
with a binary response, 279	rats example, 181
y~s(x), 153	hist function for producing histograms, 23
Gamma distribution, variance/mean ratio, 114	speed, 65
Gamma errors glm , 115	values, 70
introduction, 263	with bootstrap, 66
reciprocal link, 117	with skew, 54
gardenA, 39	histograms, see hist
Gaussian distribution in survival analysis, 267	history(Inf) for list of input commands, 22
generalized additive models see gam ,	honest significant differences TukeyHSD , 226
generalized linear model see glm,	horizontal lines on plot abline(h=3)
generate factor levels gl , 283	how many samples? plot of variance and
generic functions for model objects, 120	sample size, 43
geometric mean, definition, 28, 292	humped relationships significance testing, 154
geometric ilican, ucinintion, 20, 272	numped relationships significance testing, 134

model simplification, 103	calculations longhand, 135
testing for, 152	differences between intercepts, 192
testing a binary response model, 279	estimate, 134
hypotheses good and bad, 3, 11	maximum likelihood estimate, 6, 129
hypotheses testing, 44	removing from models, 110
using chi-square, 88	treatment contrasts, 166
with F, 74	intercepts Ancova, 223
with 1, 71	interquartile range, 65
I "as is" in multiple regression, 198, 204	plots, 167
introduction, 109	intrinsic aliasing, 222
model formulas, 280	inverse, and harmonic means, 30
,	
identity link glm, 116	invisible(NULL) in mcheck, 123
Normal errors, 117	is.factor, 284
if function, 27	1 64 7 11 11 11 1 2 242
with stop, 83	k of the negative binomial distribution, 242
if with logical subscripts, 20	key see legend,
image 3D plot with colour intensity, 301	with plot(groupedData), 298
incidence functions using logistic regression,	kinds of years, 13
269, 271	known values in a system of linear equations,
independence, 8	304
independence assumption in contingency	Kolmogorov-Smirnov, ks.test, comparison of
tables, 85	two distributions, 100
independence of errors, 13	ks.test wing length data, 101
random effects, 178	kurtosis definition, 71
index in one-variable plots, 52	error structure, 114
induced defences example, 234	function for, 72
infection example, 275	values, 72
inference with single samples, 65	
influence introduction, 123	labels changing font size, cex.lab, 284
model checking, 144	for barplot , 244
model criticism, 120	orientation, las, 284
one-way Anova, 161	lattice library for trellis plots, 299
testing in multiple regression, 201	least significant difference (LSD) error bars,
informative factor levels, fixed effects, 179	171
initial conditions, 12, 14	introduction, 170
input from keyboard using scan (), 282	least-squares estimates of slope and intercept in
insecticide, 11	linear regression, 129
interaction, multiple regression, 195	legend barplot with two sets of bars, 234, 244
terms with continuous explanatory	plot function for keys, 172
	length function for determining the length of a
variables, 108	-
terms in the linear predictor, 116	vector, 24, 25, 31, 53, 69
terms model formulae, 107	drop the last element of an array, 289
terms in multiple regression, 198	in a sign test function, 83
terms, removal in model simplification,	length with tapply , 295
104	Leslie matrix, introduction, 301
interaction.plot split plot example, 177	levels of factors, 1
interactions factorial experiments, 155	levels, generate with gl , 282
selecting variables, 205	levels, use split to separate vectors, 295
value of tree models, 204	levels introduction, 175
intercept a, 125	model simplification, 174

proportion data, 253	in regression, 141
regression in Ancova, 187	linear models, 120
with contrasts, 212	the predict function, 131
"levels gets" comparing two distributions, 245	lme linear mixed effects model, 120, 180
factor-level reduction, 175	handling pseudoreplication, 176
with contrasts, 214	lo smoothing in gam, 119
leverage and SSX, 124	locator function for determining coordinates on
leverage function, 123, 124	as plot, 126
influence testing, 123	with barplot, 172
library ctest for classical tests, 66	loess local regression non-parametric
lattice for trellis plots, 297	models
mgcv for gam, 153, 196, 279	fit a polynomial surface, 120
nlme for mixed effects models, 298	panel.loess, 299
survival for survival analysis, 265	log exponential decay, 147
tree for tree models, 197, 202	log logarithms (base e) in R, 28, 281
line format using "\n", 292	log link for count data, 118
linear equations solving systems of linear	Poisson errors, 117
equations, 304	log odds, logit, 252
linear function, 6	log transformation in multiple
linear mixed effects model lme, 180	regression, 199
linear predictor introduction, 115	log y, scale of response variable, 104
logit link, 248	logarithms and variability, 29
linear regression example using growth and	logical equals ("double equals" ==) in
tannin, 128	subscripts, 224
linearizing the logistic, 250	logical subscripts, 166, 289
lines adds lines to a plots (cf. points), 48, 126	logical tests using subscripts, 20
binary response variable, 272	logical variables, T or F , 18
drawing error bars, 168	in data frames, 15
dt and dnorm, 68	logistic model, caveats, 262
exponential decay, 148	logistic S-shaped model for proportion data,
for errors with proportion data, 274	248
non-linear regression, 151	distribution in survival analysis, 267
ordered x values, 152	logistic regression, binary response variable,
over histograms, 57	269
polynomial regression, 147	example, 253
showing residuals, 131	logit link binomial errors, 117
type="response" for proportion data, 255	definition, 250
with glm and quasipoisson errors, 229	log-linear models for count data, 228
with qt , 67	longitudinal data analysis, 180
with subscripts, 157	loops in R, see for loops
link, log for count data, 227	LSD least significant difference, 170
link function complementary log-log, 270	plots, 171
introduction, 116	lty line type (e.g. dotted is lty=2), 48
logit, 250, 270	
list, in non-linear regression, 150	m ₃ third moment, 69
lists, subscripts, 192, 291	m ₄ fourth moment, 71
liver, rats example, 181	marginal totals in contingency tables, 85
lm	margins in contingency tables, 85
lm fit a linear model lm(y~x), 129	matrices, columnwise data entry, 89
Ancova, 189	introduction, 301

matrix function in R, 89	caveats, 106
with ncol , 301	factorial experiments, 174
with nrow , 304	factor-level reduction, 174
matrix multiplication %*%, 302	multiple regression, 195, 207
maximal model, 103	non-linear regression, 150
maximum. with summary, 19	order matters, 106
-	
max, 52	steps involved, 105
maximum likelihood definition, 5	with contrasts, 213
estimates in linear regression, 129	models, fitting to data, 103
estimate of k of the negative binomial, 243	mis-specification, 124
mcheck function for model checking, 122	modulo %%
mean function determining arithmetic mean, 25	for barplot , 244
mean, arithmetic, 48, 165, 287	remainder, 27
geometric, 28	with logical subscripts, 289
harmonic, 30	moments of a distribution, 69, 71
mean age at death with censoring, 268	multiple comparisons, 226
mean squared deviation, introduction, 36	multiple error terms, introduction, 109
means, tapply for tables, 166, 233	multiple graphs per page, $par(mfrow=c(1,2))$,
two-way tables using tapply , 173	152
measurement error, 181	multiple regression, introduction, 195
med function for determining medians, 27, 52	difficulties in, 207
median built-in function, 27	minimal adequate model, 199
with summary, 19	model formulae, 111
writing a function, 25	number of parameters, 208
mgcv, binomial, 279	quadratic terms, 147
Michelson's light data, 64	multiplication, *, 288
minimal adequate model, 4, 8, 103	n, sample size, 8
analysis of deviance, 233	and degrees of freedom, 37
multiple regression, 199	and influence, 124
minimum, min, with summary, 19, 52	and power, 9
mis-specified model, introduction, 124	and standard error, 44
mixed effects models, 14	
library(nlme), 297	name component in mcheck, 123
mode, the most frequent value, 23	names in barplot, 168, 241
model for Anova, 164	names of variables in a dataframe, 17, 47
contingency tables, 85	natural experiments, 12
linear regression, 164	ncol , number of columns on a matrix, 301
model checking, introduction, 121	negative binomial distribution definition, 242
in regression, 143	dnbinom density function, 243
using mcheck, 123	pnbinom probabilities
model criticism, introduction, 119	qnbinom quantiles
model formula for Anova, 164	rnbinom random number generator
equations, 111	negative correlation in contingency tables, 89
examples, 110	negative skew, 71
introduction, 106	negative subscripts to drop elements of an array.
symbols used, 107	289
model objects, generic functions, 120	nested Anova, model formulae, 111
model selection, 5	nesting model formulae, 107
model simplification analysis of deviance, 257	of explanatory variables, %in% , 108
Ancova, 188	new line of output using "\n", 292
, 100	or output using ur , 2/2

nice numbers in model simplification, 106	rejection and critical values, 78
nlme library for mixed effects models, 297	with F-tests, 74
non-linear mixed effects model, 120, 180	null model y~1 , 103, 109
nls non-linear least squares models, 120, 149	numbers as factor levels, 182
deer jaws example, 150	numeric, definition of the mode of a variable,
non-constant variance count data, 118, 227	47, 66
model criticism, 119	
proportion data, 117, 247	observational data, 8
non-linear least squares, see nls	observed frequencies in contingency tables, 87
non-linear mixed effects model, see nlme	Occam's Razor, 7
non-linear regression introduction, 149	and choice of test, 73
non-linear terms in model formulae, 107	contingency tables, 85
use of nls , 113	odd numbers, % %2 is one, 27
non-linearity in regression, 145	odds, p/q , definition, 249
non-Normal errors introduction, 122	offset in model formulae, 107
count data, 118, 227	one-sample t-test, 82
model checking, 121	one-way Anova introduction, 155
model criticism, 119	options contrasts=c("contr.helmert",
proportion data, 117, 247	"contr.poly")), 224
non-orthogonal data observational	contrasts=c("contr.sum",
studies, 14	"contr.poly")), 225
order matters, 190	contrasts=c("contr.treatment",
non-orthogonal designs Anova tables, 106	"contr.poly")), 214, 218, 225
non-parametric smoothers gam, 119	order function, 292
pairs, 196	in sorting dataframes, 20
with a binary response, 279	with scatter plots, 152
Normal variance/mean ratio, 114	with subscripts, 293
Normal and Student's t distributions	order matters Ancova, 189, 194
compared, 68	in model simplification, 106
Normal calculations using z, 61	non-orthogonal data, 14
Normal curve, drawing the, 60	ordering, introduction, 292
Normal distribution, introduction, 55	orthogonal contrasts, 209
dnorm density function, 57, 286	orthogonal designs, 14
pnorm probabilities, 59	Anova tables, 106
qnorm quantiles, 60	outer function to generate predictions for 3D
rnorm random numbers, 42, 285	plots, 301
Normal errors identity link, 117	with plot groupedData , 298
model checking, 144	outliers definition, 51, 65
Normal q-q plot in model checking, 144	in box and whisker plots, 54
normality, tests of, 64	output formatted using cat, 292
not equal, !=, 83	new line using "\n", 292
notch=T in boxplot for significance testing, 77,	overdispersion and transformation of
167	explanatory variables, 254
plots for Anova, 171	model criticism, 120
with boxplot, 296	no such thing with binary data, 271
nrow, number of rows in a matrix, 301	proportion data, 248, 249
n-shaped humped relationships, 152	use quasibinomial for proportion data,
nuisance variables, marginal totals in	use quasipoisson for count data, 228
contingency tables, 85	over-parameterization in multiple regression,
null hypotheses, 3	195

ozone and lettuce growth in gardens, 39, 162	Pearson's chi-squared definition, 87
	for comparing two distributions, 245
Π Greek Pi, meaning the product of, 28	Pearson's Product-Moment Correlation,
p number of parameters, 37	cor.test, 97
and influence, 124	percentage data and the arcsine transformation
in the linear predictor, 115	248
estimated parameters in the model, 104	from counts, 247
p values, 3	percentiles, 52
compared for t-test and Wilcoxon Rank	plots, 167
Sum Test, 81	in box and whisker plots, 54
paired samples t-test, 81	with summary, 19
pairs mutli-panel scatterplots, 195	pf cumulative probability from the F
SO ₂ example, 202	distribution, 41
palette, grey-scale, 301	in F-tests, 74
hsv, the "heat colours", 301	in regression, 137
rainbow, 301	one-way Anova, 160
terrain.colors, 301	piece-wise regression, with a binary response,
topo.colours, 301	279
panel function in xyplot, 299	pigs, example, 297
panel plots, scale dependent correlation, 99	Pivot Table in Excel, 17
panel.smooth in pairs, 195	plot 5, 33, 42, 47, 68, 146
SO ₂ example, 202	3-dimensional, 300
par graphics parameters, 146, 285	abline for adding straight lines, 127
par(mfrow=c(1,1)) single graph per page, 146	adding points to a plot, 42
par(mfrow=c(1,2)) two graphs side by side,	binary response variable, 275
123, 152, 241, 253, 272, 275	box and whisker, 167
$\mathbf{par}(\mathbf{mfrow} = \mathbf{c}(2,2)) \text{ four plots in a } 2 \times 2 \text{ array,}$	compensation example, 189
196	correlation, 94
parallel lines in Ancova, 191	count data, 228
parameter estimation in non-linear regression,	groupedData object, 298
149	growth and tannin, 128
	_
parameters 2-parameter model, 6	improving appearance, 284
and modelling, 103	in Anova, 155
in different models, 104	in error checking, 53
in multiple regression, 204	las=1 for vertical axis labels, 284
of graphics system, par, 285	multiple using pairs , 195, 202
parsimony, 7	multiple using par(mfrow=c(1,2)) ,
and modelling, 103	152
model criticism, 119	non-linear scatterplot, 149
partial correlation, introduction, 96	proportion data, 253, 260
paste to concatenate text, 285	regression with proportion data, 255
path analysis, 96	scale dependent correlation, 98
path name for files, 17	the locator function for determining
pattern in the residuals, heteroscedasticity, 122	coordinates, 126
pch with split, 237	type="n" for blank plotting area, 67, 126
pch=16 146	192, 296
solid circle plotting symbols, 128	with index, 52
with split, 296	with split , 237
pchisq cumulative probability of chi squared	plot(model) introduction, 121
distribution, 245	for gam , 153, 196

and transformation of explanatory	predict , function to predict values from a
variables, 253	model for specified values of the
for tree models, 197	explanatory variables, 121, 131
glm with Gamma errors, 264	binary response variable, 272
heteroscedasticity, 122	non-linear regression, 151
model checking, 143	polynomial regression, 147
multiple regression, 201, 207	type="response" for proportion data,
one-way Anova, 160	239, 255
SO_2 example, 202	with glm and quasipoisson errors, 229
plot.gam with a binary response, 279	predicted value, standard error of \hat{y} , 141
plots, box and whisker, 167	prediction errors, model criticism, 119
pairs for many scatterplots, 195	predictions, 12
for binary response example, 271	probabilities, contingency tables, 85
plotting symblols pch in plot, 128	probability density, binomial distribution
pnorm probabilities from the Normal	Normal, 57
distribution, 59	negative binomial distribution, 242
probabilities of z values, 62	Poisson distribution, 240
points adding points to a plot (cf. lines), 42, 126	products, cumprod function for cumulative
with gam plot, 153	products, 90
with split , 192, 237, 261, 296	products as interaction terms, 108
with subscripts, 157	prop.test binomial test for comparing two
Poisson distribution definition, 240	proportions, 84
dpois density function	proportion, transformation from logit, 252, 258
ppois probabilities	proportion data introduction, 1, 247
qpois quantiles	analysis of deviance, 255
rpois random number generator	Ancova, 260
variance/mean ratio, 114	binomial errors, 117
poisson errors count data, 227	rather than binary analysis, 270
glm for count data, 115, 118	using glm , 113
log link, 117	proportions from tapply with as.vector, 237,
scale of response variable, 104	258
pollution, example of multiple regression, 202	pseudoreplication, 13
poly polynomial regression, 108	analysis with, 176
polygon function for shading complex shapes,	checking degrees of freedom, 182
64	Error terms in aov, 109
polynomial regression, introduction, 145	removing it, 180
polynomial terms, model formulae, 111	split plots, 177
population growth, simulation model, 303	pt cumulative probabilities of Student's
positive correlation, and paired-sample t-test,	t distribution
81	garden ozone, 78
contingency tables, 89	test for skew, 70
power, probability of rejecting a false null	
hypothesis, 9	qchisq quantiles of the chi-square
functions for estimating sample size, 10	distribution, 88
power.anova.test	qf quantiles of the F distribution, 73
power.prop.test	contrast sum of squares, 218
power.t.test, 10	in regression, 137
power, 2/3 scale of response variable, 104	one-way Anova, 160
powers ^, 28, 281	qnorm quantiles of the Normal
p/q, see odds	distribution, 60

qqline introduction, 64	from the negative binomial distribution,
mcheck, 123	rnbinom
qqnorm introduction, 64	from the Poisson distribution, rpois
in regression, 143	from the uniform distribution, runif , 56
mcheck, 123	randomization in sampling and experimental
qt quantiles of the t distribution,	design, 7, 10
45, 48, 67	randomizing variable selection, 205
confidence interval for mean, 170	range function returning maximum and
critical value of Student's t, 77	minimum, 33, 288
quadratic regression. introduction, 145	rank function in R, 80
multiple regression, 198	read.table introduction, 17, 23, 39, 47
quadratic terms for assessing non-linearity of	reading data from a file, 17, 286
response, 124	reciprocal link with Gamma errors, 117
in a binary response model, 278	reciprocals, 30, 281
model formulae, 111	regression introduction, 125
removal in model simplification, 104	anova table, 136
quantile function in R, 47	at different factor levels Ancova, 187
quantiles, in box and whisker plots, 54	binary response variable, 269
quantiles of the binomial distribution using	by eye, 128
qbinom	calculations longhand, 132
of the chi-square distribution using qchisq ,	choice, 1
88	exponential decay, 147
of the F distribution usibng qf, 73, 137,	linear, 125
160	logistic, 252
of the Normal distribution using qnorm,	model formulae, 110, 111
60	non-linear, 149
of the Poisson distribution using qpois	parameter estimation in non-linear, 149
of the t distribution usibng qt, 45	piece-wise, 279
quartile plots, 167	polynomial, 108, 145
with summary, 19	predict in non-linear, 151
quasibinomial analysis of deviance, 257	quadratic, 145
family for overdispersed proportion data,	removing the intercept, 110
252	summary in non-linear, 151
quasipoisson analysis of deviance, 231	testing for humped relationships, 152
family for overdispersed count data, 228	testing for non-linearity, 145
,	regular patterns, the binomial distribution,
r correlation coefficient, 93	rejection critical values, 78
in terms of covariance, 95	null hypothesis, 3, 4
in terms of SSXY, 94	using F-tests, 74
R download, xii	relative growth rate with percentage data, 249
R language, xi	removing variables with rm , 22, 287
r^2 as a measure of explanatory power of a	rep function for generating repeats, 80, 283
model, 105	error bars, 168
definition, 142	for subject identities, 297
r2 = SSR/SSY, 143	LSD bars, 171
random effects introduction, 178	repeat function, 80
longitudinal data, 181	text, 80
uninformative factor levels, 185	repeated measures, 8
random numbers from the normal distribution,	random effects, 179
rnorm, 42, 285	repeats, generating repeats, see rep
- ,,	1 , 6 r

replace=T sampling with replacement, 47	for shuffling, replace=F , 47, 205
replication 7, 8, 9	sample size and degrees of freedom, 37
checking with table, 168	sampling with replacement; sample with
residual deviance in proportion data, 252	replace=T, 47
residual errors, 4	saturated model, 103
residual plots in model checking, 143	contingency tables, 235
residuals definition, 3, 131	saving your work from an R session, 22
and influence, 123	scale location plot, used in model checking, 144
extract residuals from a model object, 121	scale of response variable choice of, 104
in Anova, 156	scale parameter, overdispersion, 251
model checking, 121	scale-dependent correlation, 98
pattern and heteroscedasticity, 120, 122	scan() input from keyboard, 282
response, predict with type="response" , 239,	scatter, measuring degree of fit with r^2 , 142
258, 272	scatterplot, graphic for regression, 125
response variable and the choice of model, 1, 113	sd standard deviation function in R, 57
regression, 125	seed production compensation example, 192
types of, 2	selecting a random individual, 10
rev with order in sorting dataframes, 21	selecting certain columns of an array, 290
rev(sort(y)) sort into reverse order, 293	selecting certain rows of an array, 290
rm removing variables from the work space, 22, 31	selection of components from objects using \$, 123
rm(list=ls()) clear everything, 22	selection of models, introduction, 119
rnorm random normally distributed numbers, 42, 285	self-starting functions in non-linear regression, 149
root y, scale of response variable, 104	seq generate a series, 48, 57, 60, 68, 282
roots, ^(fraction), 28, 281	for 3D plot axes, 300
in calculating geometric mean, 28	values for x axis in predict , 229
row names in data frames, 15	sequence generation, see seq
row totals contingency tables, 86	serial correlation, 51
row.names in read.table, 17	random effects, 181
rows selecting from an array, 290	sex discrimination, test of proportions, 84
selecting using subscripts, 19	shuffling using sample , 205
rules of thumb	sign test definition, 83
leverage $> 2p/n$, 124	garden ozone, 84
parameters in multiple regression $p < n/3$,	significance 3
204	in boxplots using notch=T , 77
power 80% requires $n = 8 s^2/d^2$, 9	of correlation using cor.test , 97
t > 2 is significant, 68	overlap of error bars, 169
runif uniform random numbers, 56	significant differences in contingency tables, 87 simplicity see Occam's Razor
Σ Greek Sigma, meaning summation, 24	simplification, see model simplification
s smoothing in gam, 119	simulation model of population growth, 303
S language, background, xi	simulation experiment on the central limit
s(x) smoother in gam, 153	theorem, 56
$\sum_{y} (y - \bar{y}) = 0 \text{ proof, } 35$	single sample tests, 51
$\sum (y - a - bx) = 0 \text{ proof, } 132$	skew definition, 69
sample , function for sampling at random from a	asymmetric confidence intervals, 49
vector, 47	error structure, 114
with replacement, replace=T, 66	function for, 69
selecting variables, 205	in histograms, 55

negative, 71	calculations longhand, 135
values, 70	SSXY corrected sum of products, 94, 133
slope <i>b</i> , 125	Ancova, 190
calculations longhand, 135	calculations longhand, 135
definition, 126	shortcut formula, 134
differences between slopes, 192	SSY total sum of squares defined, 133
maximum likelihood estimate, 6, 129	calculations longhand, 135
standard error, 139	in Anova, 156
slopes Ancova, 223	null model, 109
removal in model simplification, 104	one-way Anova, 162
smoothing gam, 119	SSY = SSR + SSE, 138
model formulae, 111	stable age distribution, dominant eigenvector,
panel.smooth in pairs, 195	303
solve solving systems of linear equations, 304	standard deviation, sd function in R, 57
sort function for sorting a vector, 25, 292	and skew, 69
rev(sort(y)) for reverse order, 293	in calculating z, 62
sorting a dataframe, 20	standard error
sorting, introduction, 292	as error bars, 169
spaces in variable names or factor levels, 17	difference between two means, 77, 165
spatial autocorrelation random effects, 179	Helmert contrasts, 221
spatial correlation and paired t-test, 82	mean, 44, 165
spatial pseudoreplication, 14	of a proportion, 274
Spearman's Rank Correlation, 99	of kurtosis, 71
split for species data, 237	of skew, 69
proportion data, 262	of slope and intercept in linear regression,
	1 1
separate on the basis of factor levels, 192,	139
separate on the basis of factor levels, 192, 295	139 standard normal deviate, see <i>z</i>
295	standard normal deviate, see z
	standard normal deviate, see z start, initial parameter values in nls, 150
295 split-plots Error terms, 109	standard normal deviate, see <i>z</i> start, initial parameter values in nls , 150 statistical modelling, introduction, 103
295 split-plots Error terms, 109 introduction, 177 Anova model formulae, 111	standard normal deviate, see <i>z</i> start, initial parameter values in nls , 150 statistical modelling, introduction, 103 status with censoring, 265
295 split-plots Error terms, 109 introduction, 177 Anova model formulae, 111 different plotting symbols, 296	standard normal deviate, see <i>z</i> start, initial parameter values in nls , 150 statistical modelling, introduction, 103
split-plots Error terms, 109 introduction, 177 Anova model formulae, 111 different plotting symbols, 296 spreadsheets and data frames, 16	standard normal deviate, see <i>z</i> start , initial parameter values in nls , 150 statistical modelling, introduction, 103 status with censoring, 265 step automated model simplification, 276 and AIC
split-plots Error terms, 109 introduction, 177 Anova model formulae, 111 different plotting symbols, 296 spreadsheets and data frames, 16 sqrt square root function in R, 46, 48, 69	standard normal deviate, see <i>z</i> start, initial parameter values in nls, 150 statistical modelling, introduction, 103 status with censoring, 265 step automated model simplification, 276 and AIC stop exit from a function, 83
split-plots Error terms, 109 introduction, 177 Anova model formulae, 111 different plotting symbols, 296 spreadsheets and data frames, 16 sqrt square root function in R, 46, 48, 69 square root function, see sqrt	standard normal deviate, see <i>z</i> start, initial parameter values in nls, 150 statistical modelling, introduction, 103 status with censoring, 265 step automated model simplification, 276 and AIC stop exit from a function, 83 straight line, 6
split-plots Error terms, 109 introduction, 177 Anova model formulae, 111 different plotting symbols, 296 spreadsheets and data frames, 16 sqrt square root function in R, 46, 48, 69 square root function, see sqrt SSA explained variation in Anova, 159	standard normal deviate, see <i>z</i> start, initial parameter values in nls, 150 statistical modelling, introduction, 103 status with censoring, 265 step automated model simplification, 276 and AIC stop exit from a function, 83 straight line, 6 strong inference, 12
split-plots Error terms, 109 introduction, 177 Anova model formulae, 111 different plotting symbols, 296 spreadsheets and data frames, 16 sqrt square root function in R, 46, 48, 69 square root function, see sqrt	standard normal deviate, see <i>z</i> start, initial parameter values in nls, 150 statistical modelling, introduction, 103 status with censoring, 265 step automated model simplification, 276 and AIC stop exit from a function, 83 straight line, 6 strong inference, 12 Student's t-distribution introduction, 67
split-plots Error terms, 109 introduction, 177 Anova model formulae, 111 different plotting symbols, 296 spreadsheets and data frames, 16 sqrt square root function in R, 46, 48, 69 square root function, see sqrt SSA explained variation in Anova, 159 one-way Anova, 163 shortcut formula, 162	standard normal deviate, see <i>z</i> start, initial parameter values in nls, 150 statistical modelling, introduction, 103 status with censoring, 265 step automated model simplification, 276 and AIC stop exit from a function, 83 straight line, 6 strong inference, 12 Student's t-distribution introduction, 67 pt probabilities, 70, 78
split-plots Error terms, 109 introduction, 177 Anova model formulae, 111 different plotting symbols, 296 spreadsheets and data frames, 16 sqrt square root function in R, 46, 48, 69 square root function, see sqrt SSA explained variation in Anova, 159 one-way Anova, 163 shortcut formula, 162 SSC contrast sum of squares, 217	standard normal deviate, see <i>z</i> start, initial parameter values in nls, 150 statistical modelling, introduction, 103 status with censoring, 265 step automated model simplification, 276 and AIC stop exit from a function, 83 straight line, 6 strong inference, 12 Student's t-distribution introduction, 67 pt probabilities, 70, 78 qt quantiles, 45, 67, 77
split-plots Error terms, 109 introduction, 177 Anova model formulae, 111 different plotting symbols, 296 spreadsheets and data frames, 16 sqrt square root function in R, 46, 48, 69 square root function, see sqrt SSA explained variation in Anova, 159 one-way Anova, 163 shortcut formula, 162	standard normal deviate, see <i>z</i> start, initial parameter values in nls, 150 statistical modelling, introduction, 103 status with censoring, 265 step automated model simplification, 276 and AIC stop exit from a function, 83 straight line, 6 strong inference, 12 Student's t-distribution introduction, 67 pt probabilities, 70, 78 qt quantiles, 45, 67, 77 Student's t-test statistic, 78
split-plots Error terms, 109 introduction, 177 Anova model formulae, 111 different plotting symbols, 296 spreadsheets and data frames, 16 sqrt square root function in R, 46, 48, 69 square root function, see sqrt SSA explained variation in Anova, 159 one-way Anova, 163 shortcut formula, 162 SSC contrast sum of squares, 217 SSE error sum of squares, 129	standard normal deviate, see <i>z</i> start, initial parameter values in nls, 150 statistical modelling, introduction, 103 status with censoring, 265 step automated model simplification, 276 and AIC stop exit from a function, 83 straight line, 6 strong inference, 12 Student's t-distribution introduction, 67 pt probabilities, 70, 78 qt quantiles, 45, 67, 77
split-plots Error terms, 109 introduction, 177 Anova model formulae, 111 different plotting symbols, 296 spreadsheets and data frames, 16 sqrt square root function in R, 46, 48, 69 square root function, see sqrt SSA explained variation in Anova, 159 one-way Anova, 163 shortcut formula, 162 SSC contrast sum of squares, 217 SSE error sum of squares, 129 in Ancova, 191 in Anova, 158	standard normal deviate, see <i>z</i> start, initial parameter values in nls, 150 statistical modelling, introduction, 103 status with censoring, 265 step automated model simplification, 276 and AIC stop exit from a function, 83 straight line, 6 strong inference, 12 Student's t-distribution introduction, 67 pt probabilities, 70, 78 qt quantiles, 45, 67, 77 Student's t-test statistic, 78 normal errors and constant variance, 76 subjects, random effects, 179
split-plots Error terms, 109 introduction, 177 Anova model formulae, 111 different plotting symbols, 296 spreadsheets and data frames, 16 sqrt square root function in R, 46, 48, 69 square root function, see sqrt SSA explained variation in Anova, 159 one-way Anova, 163 shortcut formula, 162 SSC contrast sum of squares, 217 SSE error sum of squares, 129 in Anova, 191 in Anova, 158 in regression, 143	standard normal deviate, see <i>z</i> start, initial parameter values in nls, 150 statistical modelling, introduction, 103 status with censoring, 265 step automated model simplification, 276 and AIC stop exit from a function, 83 straight line, 6 strong inference, 12 Student's t-distribution introduction, 67 pt probabilities, 70, 78 qt quantiles, 45, 67, 77 Student's t-test statistic, 78 normal errors and constant variance, 76 subjects, random effects, 179 subscripts [] introduction, 53, 289
split-plots Error terms, 109 introduction, 177 Anova model formulae, 111 different plotting symbols, 296 spreadsheets and data frames, 16 sqrt square root function in R, 46, 48, 69 square root function, see sqrt SSA explained variation in Anova, 159 one-way Anova, 163 shortcut formula, 162 SSC contrast sum of squares, 217 SSE error sum of squares, 129 in Anova, 191 in Anova, 158 in regression, 143 one-way Anova, 163	standard normal deviate, see <i>z</i> start, initial parameter values in nls, 150 statistical modelling, introduction, 103 status with censoring, 265 step automated model simplification, 276 and AIC stop exit from a function, 83 straight line, 6 strong inference, 12 Student's t-distribution introduction, 67 pt probabilities, 70, 78 qt quantiles, 45, 67, 77 Student's t-test statistic, 78 normal errors and constant variance, 76 subjects, random effects, 179 subscripts [] introduction, 53, 289 barplot with two sets of bars, 244
split-plots Error terms, 109 introduction, 177 Anova model formulae, 111 different plotting symbols, 296 spreadsheets and data frames, 16 sqrt square root function in R, 46, 48, 69 square root function, see sqrt SSA explained variation in Anova, 159 one-way Anova, 163 shortcut formula, 162 SSC contrast sum of squares, 217 SSE error sum of squares, 129 in Ancova, 191 in Anova, 158 in regression, 143 one-way Anova, 163 the sum of the squares of the residuals, 131	standard normal deviate, see <i>z</i> start, initial parameter values in nls, 150 statistical modelling, introduction, 103 status with censoring, 265 step automated model simplification, 276 and AIC stop exit from a function, 83 straight line, 6 strong inference, 12 Student's t-distribution introduction, 67 pt probabilities, 70, 78 qt quantiles, 45, 67, 77 Student's t-test statistic, 78 normal errors and constant variance, 76 subjects, random effects, 179 subscripts [] introduction, 53, 289 barplot with two sets of bars, 244 data selection, 166
split-plots Error terms, 109 introduction, 177 Anova model formulae, 111 different plotting symbols, 296 spreadsheets and data frames, 16 sqrt square root function in R, 46, 48, 69 square root function, see sqrt SSA explained variation in Anova, 159 one-way Anova, 163 shortcut formula, 162 SSC contrast sum of squares, 217 SSE error sum of squares, 129 in Anova, 191 in Anova, 158 in regression, 143 one-way Anova, 163	standard normal deviate, see <i>z</i> start, initial parameter values in nls, 150 statistical modelling, introduction, 103 status with censoring, 265 step automated model simplification, 276 and AIC stop exit from a function, 83 straight line, 6 strong inference, 12 Student's t-distribution introduction, 67 pt probabilities, 70, 78 qt quantiles, 45, 67, 77 Student's t-test statistic, 78 normal errors and constant variance, 76 subjects, random effects, 179 subscripts [] introduction, 53, 289 barplot with two sets of bars, 244 data selection, 166 factor-level reduction, 175
split-plots Error terms, 109 introduction, 177 Anova model formulae, 111 different plotting symbols, 296 spreadsheets and data frames, 16 sqrt square root function in R, 46, 48, 69 square root function, see sqrt SSA explained variation in Anova, 159 one-way Anova, 163 shortcut formula, 162 SSC contrast sum of squares, 217 SSE error sum of squares, 129 in Ancova, 191 in Anova, 158 in regression, 143 one-way Anova, 163 the sum of the squares of the residuals, 131 S-shaped curve logistic, 248 SSR Ancova, 190	standard normal deviate, see <i>z</i> start, initial parameter values in nls, 150 statistical modelling, introduction, 103 status with censoring, 265 step automated model simplification, 276 and AIC stop exit from a function, 83 straight line, 6 strong inference, 12 Student's t-distribution introduction, 67 pt probabilities, 70, 78 qt quantiles, 45, 67, 77 Student's t-test statistic, 78 normal errors and constant variance, 76 subjects, random effects, 179 subscripts [] introduction, 53, 289 barplot with two sets of bars, 244 data selection, 166 factor-level reduction, 175 for computing subsets of data, 100
split-plots Error terms, 109 introduction, 177 Anova model formulae, 111 different plotting symbols, 296 spreadsheets and data frames, 16 sqrt square root function in R, 46, 48, 69 square root function, see sqrt SSA explained variation in Anova, 159 one-way Anova, 163 shortcut formula, 162 SSC contrast sum of squares, 217 SSE error sum of squares, 129 in Ancova, 191 in Anova, 158 in regression, 143 one-way Anova, 163 the sum of the squares of the residuals, 131 S-shaped curve logistic, 248 SSR Ancova, 190 in regression, 143	standard normal deviate, see <i>z</i> start, initial parameter values in nls, 150 statistical modelling, introduction, 103 status with censoring, 265 step automated model simplification, 276 and AIC stop exit from a function, 83 straight line, 6 strong inference, 12 Student's t-distribution introduction, 67 pt probabilities, 70, 78 qt quantiles, 45, 67, 77 Student's t-test statistic, 78 normal errors and constant variance, 76 subjects, random effects, 179 subscripts [] introduction, 53, 289 barplot with two sets of bars, 244 data selection, 166 factor-level reduction, 175 for computing subsets of data, 100 in data frames, 19
split-plots Error terms, 109 introduction, 177 Anova model formulae, 111 different plotting symbols, 296 spreadsheets and data frames, 16 sqrt square root function in R, 46, 48, 69 square root function, see sqrt SSA explained variation in Anova, 159 one-way Anova, 163 shortcut formula, 162 SSC contrast sum of squares, 217 SSE error sum of squares, 129 in Ancova, 191 in Anova, 158 in regression, 143 one-way Anova, 163 the sum of the squares of the residuals, 131 S-shaped curve logistic, 248 SSR Ancova, 190	standard normal deviate, see <i>z</i> start, initial parameter values in nls, 150 statistical modelling, introduction, 103 status with censoring, 265 step automated model simplification, 276 and AIC stop exit from a function, 83 straight line, 6 strong inference, 12 Student's t-distribution introduction, 67 pt probabilities, 70, 78 qt quantiles, 45, 67, 77 Student's t-test statistic, 78 normal errors and constant variance, 76 subjects, random effects, 179 subscripts [] introduction, 53, 289 barplot with two sets of bars, 244 data selection, 166 factor-level reduction, 175 for computing subsets of data, 100

lm for Ancova, 224	two-way Anova, 175
residuals in Anova, 156	with contrasts, 215
with for loops, 47, 56, 66	sums of squares in hierarchical designs, 183
with order, 293	suppress axis labelling xaxt="n", 285
using the which function, 53	Surv Kaplan-Meier survivorship function, 265
subset in model checking, 144	survfit plot survivorship curves, 265
influence testing, 161	survival analysis introduction, 2, 263
multiple regression, 201	library(survival), 265
subsets of data using logical subscripts, 100	survivorship curves, plot(surfit), 265
substitute, complex text on plots, 286	survreg analysis of deviance, 265
in plot labels, 168	symbols in model formulae, 107
successes, proportion data, 247	symbols on plots complex text on plots, 285
sulphur dioxide, multiple regression, 202	different symbols, 296
sum function for calculating totals,	systems of linear equations, using solve, 304
24, 31, 69	
sum contrasts, 221	T logical True, 18
sum of squares introduction, 35	t distribution see Student's t distribution,
computation, 39	t.test garden ozone, 79
contrast sum of squares, 217	one sample, 82
shortcut formula, 38	paired=T, 82
summary introduction, 121	wing length data, 101
analysis of deviance, 256	table, function for counting elements in vectors,
Ancova, 193	55
Ancova with poisson errors, 237	binary response variable, 275
factorial experiments, 173	checking replication, 168
glm with Gamma errors, 264	counting frequencies, 294
glm with poisson errors, 228	counting values in a vector, 100
in model simplification, 105	determining frequency distribution, 230,
in regression, 141	241
non-linear regression, 150, 151	with cut , 273
of a vector, 52	tables of means introduction, 294
regression with proportion data, 253	tapply on proportions, 261
speed, 65	tails of the Normal distribution, 59, 60
split plot aov , 176	tails of the Normal and Student's t compared,
with data frames, 17	68
with quasipoisson errors, 228	tapply for tables of means, 166, 193, 233, 294
summary(model)	for proportions, 259
gam, 154	function in R, 80
piece-wise regression, 280	mean age at death, 263
with survreg, 265	mean age at death with censoring, 268
summary.aov	reducing vector lengths, 182
Ancova, 190	table of totals, with sum , 80, 162
in regression, 142	table of variances, with var, 263
one-way Anova, 160	two-way tables of means, 173
summary.lm	with contrasts, 216
Ancova, 223	with count data, 230
effect sizes in Anova, 163	with cut , 273
factorial experiments, 173	with length , 295
Helmert contrasts, 220	temporal autocorrelation random effects, 179
in Anova, 212	temporal correlation model checking, 121
	Table Contraction model checking, 121

temporal pseudoreplication, 13	paired samples, 81
test statistic for Student's t, 78	rule of thumb for $t = 2$, 174
test="Chi" contingency table, 235	TukeyHSD, Tukey's Honest significant
test="F" anova, 257	differences, 226
tests of hypotheses, 11, 44	two sample problems, 73
tests of normality, 64	t-test with paired data, 82
text function to add text to a plot, 126	two-parameter model, linear regression, 125
complex text on plots, 285	two-tailed tests, 74
text(model) for tree models, 197, 202	Fisher's Exact Test, 91
theory, 8	two-way Anova, model formulae, 110
three-dimensional plots, introduction, 300	Type I Errors, 4, 88
three-way Anova, model formulae, 110	Type II Errors, 4
thresholds in piece-wise regression, 279	type="b" both points and lines, 47
tic marks, axis to change locations, 285	type="1" line rather than points in plot, 57, 60
tidying up, remove and detach, 287	type="n" for blank plots, 42, 47, 157, 192
ties, problems in Wilcoxon Rank Sum Test, 80	proportion data, 262
tilde ~ means "is modelled as a function of" in	with split , 296
lm or aov, 129	type="response", model output on
model formulae, 106	back-transformed scale
time at death, 1	Ancova with poisson errors, 239
time series, random effects, 179	with binary data, 272
time series, 14	with proportion data, 255, 259, 262
time-at-death data, introduction, 263	unavalained variation 4
transformation	unexplained variation, 4
arcsine for percentage data, 248	in Anova, 158
count data, 227	in regression, 136
explanatory variables, 107, 253	uniform random numbers with runif function, 56
from logit to p, 252, 258	
linear models, 113	uninformative factor levels, 108
logistic, 250	rats example, 185
model criticism, 119 model formulae, 111	unplanned comparisons, <i>a posteriori</i> contrasts, 209
*	
the linear predictor, 115 transpose, using concatenate, c , 297	unreliability, estimation of, 44 intercept, 140
transpose function for a matrix, t	predicted value, 141
treatment contrasts introduction, 166, 218	slope, 139
treatment totals, contrast sum of squares, 217	update in model simplification, 105, 110, 144,
in Anova, 161	121
tree models, 120	after step, 278
advantages of, 204	analysis of deviance, 231, 253
data exploration, 195	contingency table, 234
ozone example, 197	multiple regression, 198, 204
SO ₂ example, 202	using variance to estimate unreliability, 44
trees, selecting a random individual, 10	testing hypotheses, 44
trellis plots in library(lattice) , 297	5 71
Tribolium, 11	var variance function in R, 38, 48, 69, 74, 287
TRUE or T , influence testing, 161	var(x,y) function for covariance, 95
logical variable, 18	var.test F-test in R, 41
true and false hypotheses, 4	for garden ozone, 75
t-test definition, 76	wing length data, 101

variable names in dataframes, 16, 287	proportion data, 247
variable has same name as dataframe, use	Welch Two Sample t-test, 79
\$, 299	which, R function to find subscripts, 53
variance, definition and derivation, 33	whiskers in box and whisker plots, 54
and corrected sums of squares, 133	wilcox.test Wilcoxon Rank Sum Test, 66, 80
and power, 9	Wilcoxon Rank Sum Test, 66
and sample size, 42	non-normal errors, 79
and standard error, 44	wing length data, paired barplot, 102
constancy in a glm, 117	worms dataframe, 15
count data, 227	writing functions in R, see functions
data on time-at-death, 263	_
F-test to compare two variances, 41	x, continuous explanatory variable in
formula, 37	regression, 125
gamma distribution, 263	xaxt="n" suppress axis labelling, 285
in Anova, 155	xlab labels for the x axis, 42, 47
minimizing estimators, 5	font size, use cex.lab , 285
of a difference, 76, 98	in Anova, 155
of the binomial distribution, 248	xlim scale of x axis, 126
plot against sample size, 43	xyplot introduction, 299
random effects, 178	library(lattice), 297
sum of squares / degrees of freedom, 37,	scale dependent correlation, 99
137	with cut , 299
var function in R, 38, 287	
VCA, variance components analysis, 181	y response variable in regression, 125
variance components analysis, 181	y~1 null model, 109
rats example, 184	y~x-1 removing the intercept, 110
variance constancy model checking, 144	Yates' correction Pearson's Chi-squared test, 89
variance function, random effects, 179	yield experiment, split plot example, 176
variance/mean ratio	ylab labels for the y axis, 42, 47
aggregation in count data, 241	font size, use cex.lab, 285
examples, 114	in Anova, 155
regular patterns,	with deparse , 168
variation, 2	ylim controlling the scale of the y axis in plots
using logs in graphics, 29	29, 33, 56, 126
variety and split, 260	in Anova, 155
VCA, see variance components analysis,	
vector functions in R, 287	z of the Normal distribution, 60
vertical lines on plots, abline(v=10) ,	approximation in Wilcoxon Rank Sum Test, 81
weak inference, 12	zero term negative binomial distribution,
web address of this book, xii	242
weights model criticism, 119	Poisson distribution, 240