Übungen zur Algebra I

Wintersemester 2020/21

Universität Heidelberg Mathematisches Institut Prof. Dr. A. Schmidt Dr. M. Leonhardt

Blatt 10

Abgabetermin: Freitag, 29.01.2021, 9:15 Uhr

Aufgabe 1. (Galoisgruppe) (6 Punkte) Es sei $f = X^4 + 2X^2 + 2 \in \mathbb{F}_3[X]$. Bestimmen Sie einen Zerfällungskörper L von f über \mathbb{F}_3 sowie die Galoisgruppe und sämtliche Zwischenkörper von L/\mathbb{F}_3 .

Aufgabe 2. (Kreisteilungspolynome) (6 Punkte, je 3 Punkte)

- (a) Es sei $\Phi_n(X) \in \mathbb{Z}[X]$ das *n*-te Kreisteilungspolynom. Zeigen Sie $\Phi_{2n}(X) = \Phi_n(-X)$ für ungerade $n \geq 3$. (Hinweis: Vergleichen Sie Grade und Nullstellen der beiden Polynome.)
- (b) Es sei K ein beliebiger Körper und $n \in \mathbb{N}$ nicht durch char(K) teilbar. Wir betrachten

$$\Psi_n(X) := \prod_{\substack{\zeta \in \mu_n(\overline{K}) \\ \text{primitiv}}} (X - \zeta) \in \overline{K}[X].$$

Außerdem sei $\Phi_n(X) = \sum_{i=0}^n a_i X^i$ und $\overline{\Phi}_n(X) = \sum_{i=0}^n \overline{a}_i X^i \in K[X]$, wobei $\overline{a}_i \in K$ das Bild von $a_i \in \mathbb{Z}$ unter dem eindeutigen Ringhomomorphismus $\mathbb{Z} \to K$ ist. Zeigen Sie $\Psi_n(X) = \overline{\Phi}_n(X)$. (Hinweis: Argumentieren Sie wie in Variante 2 des Beweises von 4.46.)

Aufgabe 3. (Diskriminante) (6 Punkte) Es sei K ein Körper und \overline{K} ein algebraischer Abschluss von K. Weiter sei $f \in K[X]$ ein Polynom vom Grad $n \geq 1$ und $\alpha_1, \ldots, \alpha_n$ die Nullstellen von f in \overline{K} . Wir definieren

$$\delta_f := \prod_{1 \le i < j \le n} (\alpha_i - \alpha_j) \in \overline{K}$$

und nennen $\Delta_f := a_n^{2n-2} \delta_f^2 \in \overline{K}$ die *Diskriminante* von f, wobei a_n der Leitkoeffizient von f sei.

- (a) (1 Punkt) Zeigen Sie, dass $\Delta_f \neq 0$ genau dann, wenn f separabel ist.
- (b) (1 Punkt) Zeigen Sie, dass für quadratische $f = aX^2 + bX + c$ (mit $a \neq 0$) gilt: $\Delta_f = b^2 4ac$.
- (c) (2 Punkte) Für den Rest der Aufgabe sei f separabel. Es sei L der Zerfällungskörper von f in \overline{K} . Wir fassen $G := \operatorname{Gal}(L/K)$ wie üblich als Untergruppe der \mathfrak{S}_n auf via

$$\varphi \colon G \hookrightarrow \mathfrak{S}_n, \quad \sigma \mapsto \varphi(\sigma) \quad \text{gegeben durch} \quad \sigma(\alpha_i) = \alpha_{\varphi(\sigma)(i)} \text{ für alle } i \in \{1, \dots, n\}.$$

Zeigen Sie $\sigma(\delta_f) = \operatorname{sgn}(\varphi(\sigma)) \cdot \delta_f$.

- (d) (1 Punkt) Folgern Sie $\Delta_f \in K$.
- (e) (1 Punkt) Nun sei char $(K) \neq 2$. Zeigen Sie, dass $\varphi(G) \subset \mathfrak{A}_n := \ker(\operatorname{sgn})$ genau dann, wenn $\Delta_f \in (K^{\times})^2$.

Aufgabe 4. (Quadratisches Reziprozitätsgesetz) (6 Punkte) Es seien p, q zwei verschiedene ungerade Primzahlen. Für zu q teilerfremdes $a \in \mathbb{Z}$ definieren wir das Leqendre-Symbol durch

Ziel dieser Aufgabe ist ein Beweis des Quadratischen Reziprozitätsgesetzes (1), welches eine Beziehung herstellt zwischen der Frage, ob p ein Quadrat modulo q ist, und der Frage, ob q ein Quadrat modulo p ist. Es gilt

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}} = \begin{cases} -1, & \text{falls } p, q \equiv 3 \pmod{4}, \\ 1, & \text{sonst.} \end{cases}$$
(1)

Unser Beweis¹ beruht auf der Untersuchung des Zerfällungskörpers L des Polynoms $f = X^p - 1$ über \mathbb{F}_q und insbesondere der Frage, ob das Bild der Galoisgruppe $G := \operatorname{Gal}(L/\mathbb{F}_q)$ unter der üblichen Einbettung $G \hookrightarrow \mathfrak{S}_p$ (durch Wirkung auf den Nullstellen von f) in der alternierenden Gruppe \mathfrak{A}_p liegt. Zeigen Sie:

(a) (1 Punkt) Das Legendre-Symbol ist *multiplikativ*, d.h. für $a, b \in \mathbb{Z}$ teilerfremd zu q gilt $\left(\frac{ab}{q}\right) = \left(\frac{a}{q}\right)\left(\frac{b}{q}\right)$. Außerdem gilt

$$\left(\frac{-1}{q}\right) = (-1)^{\frac{q-1}{2}} = \begin{cases} 1, & \text{falls } q \equiv 1 \pmod{4}, \\ -1, & \text{falls } q \equiv 3 \pmod{4}. \end{cases}$$

(Hinweis: Blatt 6, Aufgabe 3(c).)

(b) (2 Punkte) Das Bild von G in \mathfrak{S}_p ist genau dann in \mathfrak{A}_p enthalten, wenn

$$1 = (-1)^{\frac{p-1}{2}\frac{q-1}{2}} \left(\frac{p}{q}\right).$$

(Hinweis: Benutzen Sie Aufgabe 3 sowie (ohne Beweis) die Formel $\Delta_f = (-1)^{n(n-1)/2}((1-n)^{n-1}b^n + n^nc^{n-1})$ für Polynome der Form $f = X^n + bX + c$.)

Nun sei $\sigma \in G$ der q-Frobenius, d.h. $\sigma(x) = x^q$ für alle $x \in L$. Nach Wahl einer primitiven p-ten Einheitswurzel ζ_p können wir die Nullstellen μ_p von f mit $\mathbb{Z}/p\mathbb{Z}$ identifizieren und die von σ auf $\mathbb{Z}/p\mathbb{Z}$ induzierte Permutation π is gerade die Multiplikation mit q, d.h. $\pi(a) = qa$ für $a \in \mathbb{Z}/p\mathbb{Z}$ (dies alles ist nicht zu zeigen, siehe Satz 4.50 aus der Vorlesung). Es sei $k := \operatorname{ord}_{(\mathbb{Z}/p\mathbb{Z})^{\times}}(q)$. Zeigen Sie:

(c) (1 Punkt) Es gilt $sgn(\pi) = (-1)^{(k-1)\frac{(p-1)}{k}}$.

(Hinweis: Bestimmen Sie die Zykeldarstellung von π , indem sie zunächst den Zykel, in dem $1 \in \mathbb{Z}/p\mathbb{Z}$ liegt, bestimmen. Was wissen Sie dann über das Signum von Zykeln der Länge k?)

(d) (2 Punkte) Folgern Sie aus (c), dass das Bild von G genau dann in \mathfrak{A}_p enthalten ist, wenn

$$1 = \left(\frac{q}{p}\right),\,$$

und folgern Sie (1) mit Hilfe von (b).

(Hinweis: Wählen Sie einen Erzeuger γ von \mathbb{F}_p^{\times} . Welche Potenzen von γ sind Quadrate in \mathbb{F}_p^{\times} ?)

¹Es gibt mehr als 200 verschiedene Beweise des Quadratischen Reziprozitätsgesetzes. Die ersten acht vollständigen Beweise stammen von Gauß.