Descriptive Statistics: Part 2/2 (Ch 3)

Yifan Zhu

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile

Numerical Summaries

Parameters

Descriptive Statistics: Part 2/2 (Ch 3)

Yifan Zhu

Iowa State University

Theoretical
Quantile-Quantile

Numerical Summaries

Parameters

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical Quantile-Quantile Plots

Numerical Summaries

Yifan Zhu

Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile
Plots

Numerical Summarie

Quantiles of the Bullet Penetration Depth Distributions

	Quantiles of the bullet renetration beptit bishibations					
• (P	$\left(\underbrace{i5}_{20}\right)$	<i>i</i> th Smallest 230 Grain Data Point = $Q(\frac{i5}{20})$	<i>i</i> th Smallest 200 Grain Data Point = $Q(\frac{i5}{20})$		
i = 20 x 0.23 + 0.3	1	.025	27.75	58.00		
40.3	2	.075	37.35	58.65		
	3	.125	38.35	59.10		
= 5.5	4	.175	38.35	59.50		
	ر 5	.225	38.75	59.80		
	1 6	.275	39 <u>.75</u>	60.70		
	7	.325	40.50	61.30		
	8	.375	41.00	61.50		
	9	.425	41.15	62.30		
	10	.475	42.55	62.65		
	11	.525	42.90	62.95		
	12	.575	43.60	63.30		
	13	.625	43.85	63.55		
	14	.675	47.30	63.80		
	15	.725	47.90	64.05		
	16	.775	48.15	64.65		
	17	.825	49.85	65.00		
	18	.875	51.25	67.75		
	19	.925	51.60	70.40		
	20	.975	(56.00)	71.70		

Descriptive Statistics: Part 2/2 (Ch 3)

Yifan Zhu

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile

Numerical Summaries

arameters

4 / 27

Theoretical
Quantile-Quantile

umerical ımmaries

Parameters

$$Q(.5) = .5Q(.475) + .5Q(.525) = .5(42.55) + .5(42.90) = 42.725 \text{ mm}$$
 $Q(.75) = .5Q(.725) + .5Q(.775) = .5(47.90) + .5(48.15) = 48.025 \text{ mm}$

$$Q(.75) = .5Q(.725) + .5Q(.775) = .5(47.90) + .5(48.15) = 48.025 \text{ mm}$$

$$Q(.75) = .5Q(.725) + .5Q(.775) = .5(47.90) + .5(48.15) = 48.025 \text{ mm}$$

$$Q(.75) = .5Q(.775) = .5(47.90) + .5(48.15) = 48.025 \text{ mm}$$

$$Q(.75) + 1.5Q(.75) = .5(47.90) + .5(48.15) = 48.025 \text{ mm}$$

$$Q(.75) + 1.5Q(.75) = .5(47.90) + .5(48.15) = 48.025 \text{ mm}$$

Q(.25) = .5Q(.225) + .5Q(.275) = .5(38.75) + .5(39.75) = 39.25 mm

Step 2:

Example: bullet data

Descriptive Statistics: Part 2/2 (Ch 3)

Yifan Zhu

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile

umerical ımmaries

 $\begin{array}{l} {\sf Quantile\text{-}Quantile} \\ ({\sf QQ}) \ {\sf Plots} \end{array}$

Theoretical
Quantile-Quantile

Numerical Summaries

) orometers

Quantile-Quantile (QQ) Plots

Theoretical Quantile-Quantile Plots

Numerical Summaries

- Quantile quantile (QQ) plot: a scatterp ot of the sorted values of one dataset on the sorted values of another dataset.
 - ► This plot is used to tell if the distributional shapes of the datasets are the same or different.
 - If the points in the plot lie in a straight line, the distributional shapes are the same.
 - Otherwise, the shapes are different
 - The datasets must be univariate, numerical, and of the same size

Descriptive Statistics: Part 2/2 (Ch 3)

Yifan Zhu

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile

Numerical Summaries

I heoretical
Quantile-Quantile
Plots

Summaries

Parameters

Quantile-quantile (QQ) plot: a scatterplot of the sorted values of one dataset on the sorted values of another dataset.

- This plot is used to tell if the distributional shapes of the datasets are the same or different.
 - If the points in the plot lie in a straight line, the distributional shapes are the same.
 - Otherwise, the shapes are different
- ► The datasets must be univariate, numerical, and of the same size.

Quantile-Quantile
Plots

Numerical Summaries

Parameters

Quantile-quantile (QQ) plot: a scatterplot of the sorted values of one dataset on the sorted values of another dataset.

- This plot is used to tell if the distributional shapes of the datasets are the same or different.
 - If the points in the plot lie in a/straight line, the distributional shapes are the same.
 - Otherwise, the shapes are different
- ► The datasets must be univariate, numerical, and of the same size.

Theoretical
Quantile-Quantile
Plots

Numerical Summaries

Quantile-quantile (QQ) plot: a scatterplot of the sorted values of one dataset on the sorted values of another dataset.

- This plot is used to tell if the distributional shapes of the datasets are the same or different.
 - If the points in the plot lie in a straight line, the distributional shapes are the same.
 - ▶ Otherwise, the shapes are different.
- The datasets must be univariate, numerical, and of the same size.

Quantile-Quantile Plots

Numerical Summaries

Parameters

Quantile-quantile (QQ) plot: a scatterplot of the sorted values of one dataset on the sorted values of another dataset.

- This plot is used to tell if the distributional shapes of the datasets are the same or different.
 - If the points in the plot lie in a straight line, the distributional shapes are the same.
 - ▶ Otherwise, the shapes are different.
- The datasets must be univariate, numerical, and of the same size.

XIII- Xn danser 1 Yiii yn domnset 2

(xi,yi)

i	$\frac{i5}{20}$	ith Smallest 2 Data Point =	
		_	
1	.025	27.75	\ /
2	.075	37.35	58.65
3	.125	38.35	59.10
4	.175	38.35	59.50
5	.225	38.75	59.80
6	.275	39.75	60.70
7	.325	40.50	61.30
8	.375	41.00	61.50
9	.425	41.15	62.30
10	.475	42.55	62.65
11	.525	42.90	62.95
12	.575	43.60	63.30
13	.625	43.85	63.55
14	.675	47.30	63.80
15	.725	47.90	64.05
16	.775	48.15	64.65
17	.825	49.85	65.00
18	.875	51.25	67.75
19	.925	51.60	70.40
20	.975	56.00	71.70

Descriptive Statistics: Part 2/2 (Ch 3)

Yifan Zhu

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantil
Plots

lumerical iummaries

Quantile-Quantil

Summaries

Parameters

The points lie in approximately a straight line, so the 200-grain depths are similarly shaped in distribution to the 230-grain depths.

Theoretical
Quantile-Quantile
Plots

Summaries

Parameters

► The points lie in approximately a straight line, so the 200-grain depths are similarly shaped in distribution to the 230-grain depths.

Theoretical Quantile-Quantile Plots

Theoretical Quantile-Quantile Plots

Summaries

Parameters

- Theoretical quantile-quantile (QQ) plot: a scatterplot with:
 - The sorted values $x_1, x_2, \dots x_n$ of some real data set on the x axis.
 - $Q(\frac{1-.5}{n}), Q(\frac{2-.5}{n}), \dots, Q(\frac{n-.5}{n})$ on the y axis
 - Q is some theoretical quantile function: the quantile function we would expect from a dataset if that dataset had a certain shape.
- Example theoretical quantile functions:
 - "Standard" bell-shaped (or normally-distributed) data should have:

$$Q(p) \approx 4.9(p^{0.14} - (1-p)^{0.14})$$

"Exponentially distributed" data (a kind of highly right-skewed data) should have:

$$Q(p) pprox -\lambda^{-1}\log(1-p)$$

where λ is some constant.

► The sorted values $x_1, x_2, ... x_n$ of some real data set on the x axis.

 $Q(\frac{1-.5}{n}), Q(\frac{2-.5}{n}), \dots, Q(\frac{n-.5}{n})$ on the y axis

Q is some theoretical quantile function: the quantile function we would expect from a dataset if that dataset had a certain shape.

Example theoretical quantile functions

"Standard" bell-shaped (or normally-distributed) data should have:

$$Q(p) \approx 4.9(p^{0.14} - (1-p)^{0.14})$$

"Exponentially distributed" data (a kind of highly right-skewed data) should have:

$$Q(p) pprox -\lambda^{-1}\log(1-p)$$

where λ is some constant.

Descriptive Statistics: Part 2/2 (Ch 3)

Yifan Zhu

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical Quantile-Quantile Plots

Numerical Summaries

► The sorted values $x_1, x_2, ... x_n$ of some real data set on the x axis.

 $Q(\frac{1-.5}{n}), Q(\frac{2-.5}{n}), \dots, Q(\frac{n-.5}{n})$ on the y axis.

Q is some theoretical quantile function: the quantile function we would expect from a dataset if that dataset had a certain shape.

- Example theoretical quantile functions:
 - "Standard" bell-shaped (or normally-distributed) data should have:

$$Q(p) \approx 4.9(p^{0.14} - (1-p)^{0.14})$$

"Exponentially distributed" data (a kind of highly right-skewed data) should have:

$$Q(p) \approx -\lambda^{-1} \log(1-p)$$

where λ is some constant

Descriptive Statistics: Part 2/2 (Ch 3)

Yifan Zhu

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical Quantile-Quantile Plots

> lumerical Summaries

The sorted values $x_1, x_2, \dots x_n$ of some real data set on the x axis

 $Q(\frac{1-.5}{n}), Q(\frac{2-.5}{n}), \dots, Q(\frac{n-.5}{n})$ on the y axis.

Q is some **theoretical quantile function**: the quantile function we would *expect* from a dataset if that dataset had a certain shape.

- Example theoretical quantile functions:
 - "Standard" bell-shaped (or normally-distributed) data should have:

$$Q(p) \approx 4.9(p^{0.14} - (1-p)^{0.14})$$

"Exponentially distributed" data (a kind of highly right-skewed data) should have:

$$Q(p) \approx -\lambda^{-1} \log(1-p)$$

where λ is some constant.

Descriptive Statistics: Part 2/2 (Ch 3)

Yifan Zhu

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical Quantile-Quantile Plots

> Numerical Summaries

▶ The sorted values $x_1, x_2, ... x_n$ of some real data set on the x axis.

 $Q(\frac{1-.5}{n}), Q(\frac{2-.5}{n}), \dots, Q(\frac{n-.5}{n})$ on the y axis.

▶ *Q* is some **theoretical quantile function**: the quantile function we would *expect* from a dataset if that dataset had a certain shape.

Example theoretical quantile functions:

"Standard" bell-shaped (or normally-distributed) data should have:

$$Q(p) \approx 4.9(p^{0.14} - (1-p)^{0.14})$$

"Exponentially distributed" data (a kind of highly right-skewed data) should have:

$$Q(p) \approx -\lambda^{-1} \log(1-p)$$

where λ is some constant.

Descriptive Statistics: Part 2/2 (Ch 3)

Yifan Zhu

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical Quantile-Quantile Plots

> lumerical ummaries

Theoretical quantile-quantile (QQ) plots

- ► Theoretical quantile-quantile (QQ) plot: a scatterplot with:
 - ► The sorted values $x_1, x_2, ... x_n$ of some real data set on the x axis.
 - $Q(\frac{1-.5}{n}), Q(\frac{2-.5}{n}), \dots, Q(\frac{n-.5}{n})$ on the y axis.
 - Q is some theoretical quantile function: the quantile function we would expect from a dataset if that dataset had a certain shape.
- Example theoretical quantile functions:
 - "Standard" bell-shaped (or normally-distributed) data should have:

$$Q(p) \approx 4.9(p^{0.14} - (1-p)^{0.14})$$

"Exponentially distributed" data (a kind of highly right-skewed data) should have:

$$Q(p) \approx -\lambda^{-1} \log(1-p)$$

where λ is some constant.

Descriptive Statistics: Part 2/2 (Ch 3)

Yifan Zhu

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical Quantile-Quantile Plots

Numerical Summaries

Theoretical quantile-quantile (QQ) plots

- Theoretical quantile-quantile (QQ) plot: a scatterplot with:
 - ► The sorted values $x_1, x_2, ... x_n$ of some real data set on the x axis.
 - $ightharpoonup Q(\frac{1-.5}{n}), Q(\frac{2-.5}{n}), \ldots, Q(\frac{n-.5}{n})$ on the y axis.
 - ▶ *Q* is some **theoretical quantile function**: the quantile function we would *expect* from a dataset if that dataset had a certain shape.
- Example theoretical quantile functions:
 - "Standard" bell-shaped (or normally-distributed) data should have:

$$Q(p) \approx 4.9(p^{0.14} - (1-p)^{0.14})$$

"Éxponentially distributed" data (a kind of highly right-skewed data) should have:

right-skewed data) should have:
$$Q(p) \approx -\sqrt{1 \log(1-p)}$$
 where $\sqrt{1}$ s some constant. $\sqrt{1}$

Descriptive Statistics: Part 2/2 (Ch 3)

Yifan Zhu

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical Quantile-Quantile Plots

Numerical Summaries

Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile
Plots

Summaries

- Normal quantile-quantile (QQ) plot: a theoretical QQ plot where the quantile function, Q, is the quantile function for "standard" bell-shaped (normally-distributed) data.
- ▶ If the points in a normal QQ plot are in a straight line the dataset in question is normally-distributed and bell-shaped. Otherwise, the data is not normally-distributed (but still could be bell-shaped).

Quantile-Quantile (QQ) Plots

Theoretical Quantile-Quantile Plots

Summaries

- Normal quantile-quantile (QQ) plot: a theoretical QQ plot where the quantile function, Q, is the quantile function for "standard" bell-shaped (normally-distributed) data.
- ▶ If the points in a normal QQ plot are in a straight line, the dataset in question is <u>normally-distributed</u> and bell-shaped. Otherwise, the data is not normally-distributed (but still could be bell-shaped).

Example: towel breaking strength data

Descriptive Statistics: Part 2/2 (Ch 3)

Yifan Zhu

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical Quantile-Quantile Plots

Numerical Summaries

arameters?

Breaking Strength and Standard Normal Quantiles							
i	$\frac{1}{i5}$	i5 Breaking Strength Quantile	$\frac{i5}{10}$ Standard Normal Quantile \bigcirc	Clpi			
1	.05	7.583	-1.65	Cyr			
2	.15	8,527	-1.04				
3	.25	8,572	67				
4	.35	8,577	39				
5	.45	9,011	13				
6	.55	9,165	.13				
7	.65	9,471	.39				
8	.75	9,614	.67				
9	.85	9,614	1.04				
10	.95	10,688	1.65				

Example: towel breaking strength data

➤ The points are roughly straight-line-shaped, so the breaking strength data is roughly bell-shaped and normally-distributed.

Descriptive Statistics: Part 2/2 (Ch 3)

Yifan Zhu

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile
Plots

Numerical Summaries

Descriptive Statistics: Part 2/2 (Ch 3)

Yifan Zhu

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical Quantile-Quantile Plots

Numerical Summaries

Quantile-Quantile (QQ) Plots

Theoretical Quantile-Quantile Plots

Summaries

Parameters

Since the points in the normal QQ plot are not quite arranged in a straight line, the 200-grain penetration depths are not quite normally-distributed. However, the departure from normality is not severe.

The QQ plot of the bullet data from before revealed that the 200-grain depths had the same distributional shape as the 200-grain bullet depths. Thus, the 230-grain bullet data is not quite normally-distributed either.

Quantile-Quantile (QQ) Plots

Theoretical Quantile-Quantile Plots

Numerical Summaries

Parameters 4 8 1

➤ Since the points in the normal QQ plot are not quite arranged in a straight line, the 200-grain penetration depths are not quite normally-distributed. However, the departure from normality is not severe.

The QQ plot of the bullet data from before revealed that the 200-grain depths had the same distributional shape as the 200-grain bullet depths. Thus, the 230-grain bullet data is not quite normally-distributed either.

T also make QQ plot.

Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile

Numerical Summaries

Parameters

Numerical Summaries

Parameters

Yifan Zhu

Numerical summaries

- ► Numerical summary (statistic)
 - A number or list of numbers calculated using the data (and only the data).
 - Numerical summaries highlight important features of the data (shape, center, spread, outliers).
- Examples:
 - ► Measures of center:
 - Arithmetic mean
 - Median
 - Mode
 - Measures of spread:
 - Sample variance
 - Sample standard deviation
 - Range
 - ► IOF
 - ► Measures of shape
 - All the quantiles together
 - Skew (beyond the scope of the class)
 - Kurtosis (beyond the scope of the class)

Descriptive Statistics: Part 2/2 (Ch 3)

Yifan Zhu

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical Quantile-Quantile Plots

Numerical Summaries

► Numerical summary (statistic)

- A number or list of numbers calculated using the data (and only the data).
- Numerical summaries highlight important features of the data (shape, center, spread, outliers).

Examples

- ► Measures of center:
 - Arithmetic mear
 - Mediar
 - Mode
- Measures of spread
 - Sample variance
 - Sample standard deviation
 - Range
 - ► IQF
- Measures of shape
 - All the quantiles together
 - Skew (beyond the scope of the class)
 - Kurtosis (beyond the scope of the class)

Descriptive Statistics: Part 2/2 (Ch 3)

Yifan Zhu

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile
Plots

Numerical Summaries

► Numerical summary (statistic)

- A number or list of numbers calculated using the data (and only the data).
- Numerical summaries highlight important features of the data (shape, center, spread, outliers).
- Examples:
 - Measures of center:
 - Arithmetic mean
 - Median
 - Mode
 - Measures of spread:
 - Sample variance
 - Sample standard deviation
 - Range
 - ► IOF
 - Measures of shape
 - All the quantiles together
 - Skew (beyond the scope of the class)
 - Kurtosis (beyond the scope of the class)

Descriptive Statistics: Part 2/2 (Ch 3)

Yifan Zhu

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile
Plots

Numerical Summaries

► Numerical summary (statistic)

- A number or list of numbers calculated using the data (and only the data).
- Numerical summaries highlight important features of the data (shape, center, spread, outliers).
- Examples:
 - Measures of center:
 - Arithmetic mean
 - Median
 - Mode
 - Measures of spread
 - ► Sample variance
 - Sample standard deviation
 - Range
 - ► IOF
 - Measures of shape
 - All the quantiles together
 - Skew (beyond the scope of the class)
 - Kurtosis (beyond the scope of the class)

Descriptive Statistics: Part 2/2 (Ch 3)

Yifan Zhu

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical Quantile-Quantile Plots

Numerical Summaries

► Numerical summary (statistic)

- A number or list of numbers calculated using the data (and only the data).
- Numerical summaries highlight important features of the data (shape, center, spread, outliers).
- Examples:
 - Measures of center:
 - Arithmetic mean
 - Median
 - Mode
 - Measures of spread:
 - ► Sample variance
 - Sample standard deviation
 - Rang
 - ► IQF
 - Measures of shape
 - All the quantiles together
 - Skew (beyond the scope of the class)
 - Kurtosis (beyond the scope of the class)

Descriptive Statistics: Part 2/2 (Ch 3)

Yifan Zhu

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile
Plots

Numerical Summaries

- A number or list of numbers calculated using the data (and only the data).
- Numerical summaries highlight important features of the data (shape, center, spread, outliers).
- Examples:
 - Measures of center:
 - ► Arithmetic mean ← Sample mean
 - Median
 - Mode
 - Measures of spread:
 - Sample variance
 - Sample standard deviation
 - Range
 - ► IOF
 - Measures of shape
 - ► All the quantiles together
 - Skew (beyond the scope of the class)
 - Kurtosis (beyond the scope of the class)

Descriptive Statistics: Part 2/2 (Ch 3)

Yifan Zhu

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical Quantile-Quantile

Numerical Summaries

► Numerical summary (statistic)

- A number or list of numbers calculated using the data (and only the data).
- Numerical summaries highlight important features of the data (shape, center, spread, outliers).
- Examples:
 - Measures of center:
 - Arithmetic mean
 - Median
 - Mode
 - Measures of spread:
 - Sample variance
 - Sample standard deviation
 - Ra
 - ► IOR
 - ► Measures of shape
 - All the quantiles together
 - Skew (beyond the scope of the class)
 - Kurtosis (beyond the scope of the class)

Descriptive Statistics: Part 2/2 (Ch 3)

Yifan Zhu

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile
Plots

Numerical Summaries

► Numerical summary (statistic)

- A number or list of numbers calculated using the data (and only the data).
- Numerical summaries highlight important features of the data (shape, center, spread, outliers).
- Examples:
 - Measures of center:
 - Arithmetic mean
 - Median
 - Mode
 - ► Measures of spread:
 - Sample variance
 - Sample standard deviation
 - Range
 - IOR
 - Measures of shape
 - ► All the quantiles together
 - Skew (beyond the scope of the class)
 - Kurtosis (beyond the scope of the class)

Descriptive Statistics: Part 2/2 (Ch 3)

Yifan Zhu

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical Quantile-Quantile Plots

Numerical Summaries

A number or list of numbers calculated using the data (and only the data).

Numerical summaries highlight important features of the data (shape, center, spread, outliers).

Examples:

Measures of center:

Arithmetic mean

Median

Mode

Measures of spread:

Sample variance

Sample standard deviation

Range

IQR

Measures of shape

► All the quantiles together

► Skew (beyond the scope of the class)

Kurtosis (beyond the scope of the class)

Descriptive Statistics: Part 2/2 (Ch 3)

Yifan Zhu

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical Quantile-Quantile Plots

Numerical Summaries

A number or list of numbers calculated using the data (and only the data).

Numerical summaries highlight important features of the data (shape, center, spread, outliers).

Examples:

Measures of center:

Arithmetic mean

Median

Mode

► Measures of spread:

► Sample variance

Sample standard deviation

Range

IQR

Measures of shape:

All the quantiles together

Skew (beyond the scope of the class)

Kurtosis (beyond the scope of the class)

Descriptive Statistics: Part 2/2 (Ch 3)

Yifan Zhu

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile
Plots

Numerical Summaries

► Numerical summary (statistic)

- A number or list of numbers calculated using the data (and only the data).
- Numerical summaries highlight important features of the data (shape, center, spread, outliers).
- Examples:
 - Measures of center:
 - Arithmetic mean
 - Median
 - Mode
 - ► Measures of spread:
 - Sample variance
 - Sample standard deviation
 - Range
 - ► IQR
 - Measures of shape:
 - ► All the quantiles together
 - Skew (beyond the scope of the class)
- ther

Descriptive Statistics: Part 2/2 (Ch 3)

Yifan Zhu

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile
Plots

Numerical Summaries

A number or list of numbers calculated using the data (and only the data).

Numerical summaries highlight important features of the data (shape, center, spread, outliers).

Examples:

Measures of center:

Arithmetic mean

Median

Mode

Measures of spread:

Sample variance

Sample standard deviation

Range

► IQR

Measures of shape:

► All the quantiles together

Skew (beyond the scope of the class)

Kurtosis (beyond the scope of the class)

Descriptive Statistics: Part 2/2 (Ch 3)

Yifan Zhu

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical Quantile-Quantile

Numerical Summaries

Yifan Zhu

Boxplots

Quantile-Quantile (QQ) Plots

Plots Numerical

Summaries

- Arithmetic mean:
 - $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
 - Arr Here, $\overline{x} = \frac{1}{6}(0+1+1+2+3+5) = 2$
- ► Median: *Q*(0.5)
 - A shortcut to calculating Q(0.5) is:
 - $Q(0.5) = x_{\lceil n/2 \rceil}$ if *n* is odd
 - $Q(0.5) = (x_{n/2} + x_{n/2+1})/2$ if *n* is ever
 - ightharpoonup Here, Q(0.5) = (1+2)/2 = 1.5
- Mode (of a discrete or categorical dataset)
 - the most frequently-occurring value
 - ightharpoonup Here, mode = 1.

Arithmetic mean:

- $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
 - Here, $\bar{x} = \frac{1}{6}(0+1+1+2+3+5) = 2$
- ▶ Median: *Q*(0.5)
 - A shortcut to calculating Q(0.5) is:
 - $ightharpoonup Q(0.5) = x_{\lceil n/2 \rceil}$ if n is odd
 - $Q(0.5) = (x_{n/2} + x_{n/2+1})/2$ if *n* is ever
 - ightharpoonup Here, Q(0.5) = (1+2)/2 = 1.5
- Mode (of a discrete or categorical dataset)
 - the most frequently-occurring value
 - ightharpoonup Here, mode = 1

Yifan Zhu

Boxplots

Quantile-Quantile (QQ) Plots

Quantile-Quantil Plots

Numerical Summaries

- Arithmetic mean:
 - $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
 - ightharpoonup Here, $\overline{x} = \frac{1}{6}(0+1+1+2+3+5) = 2$
- ightharpoonup Median: Q(0.5)
 - A shortcut to calculating Q(0.5) is:
 - $Q(0.5) = x_{\lceil n/2 \rceil}$ if *n* is odd
 - $Q(0.5) = (x_{n/2} + x_{n/2+1})/2$ if n is even
 - ightharpoonup Here, Q(0.5) = (1+2)/2 = 1.5
- ► Mode (of a discrete or categorical dataset)
 - the most frequently-occurring value
 - ightharpoonup Here, mode = 1.

► Arithmetic mean:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
Here, $\overline{x} = \frac{1}{6} (0 + 1 + 1 + 2 + 3 + 5) = 2$

- ► Median: *Q*(0.5)
 - A shortcut to calculating Q(0.5) is:
 - $P = Q(0.5) = x_{[n/2]}$ if *n* is odd
 - $Q(0.5) = (x_{n/2} + x_{n/2+1})/2$ if *n* is ever
 - ► Here, Q(0.5) = (1+2)/2 = 1.5
- ► Mode (of a discrete or categorical dataset)
 - ▶ the most frequently-occurring value
 - ightharpoonup Here, mode = 1.

Descriptive Statistics: Part 2/2 (Ch 3)

Yifan Zhu

Boxplots

Quantile-Quantile (QQ) Plots

Quantile-Quantile

Numerical Summaries

- Arithmetic mean:

 - ► $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ ► Here, $\bar{x} = \frac{1}{6} (0 + 1 + 1 + 2 + 3 + 5) = 2$
- ► Median: Q(0.5).

Summaries

- Arithmetic mean:

 - ► $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ ► Here, $\bar{x} = \frac{1}{6} (0 + 1 + 1 + 2 + 3 + 5) = 2$
- ► Median: Q(0.5).
 - \triangleright A shortcut to calculating Q(0.5) is:

- Arithmetic mean:

 - ► $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ ► Here, $\bar{x} = \frac{1}{6} (0 + 1 + 1 + 2 + 3 + 5) = 2$
- ► Median: Q(0.5).
 - \triangleright A shortcut to calculating Q(0.5) is:
 - \triangleright $Q(0.5) = x_{\lceil n/2 \rceil}$ if n is odd

Theoretical Quantile-Quantile

Numerical Summaries

Parameters

- Arithmetic mean:

► $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ ► Here, $\bar{x} = \frac{1}{6} (0 + 1 + 1 + 2 + 3 + 5) = 2$

► Median: Q(0.5).

n=5, T5/27 A shortcut to calculating Q(0.5) is:

$$Q(0.5) = x_{\lceil n/2 \rceil} \text{ if } n \text{ is odd}$$

$$Q(0.5) = (x_{n/2} + x_{n/2+1})/2$$
 if *n* is even.

$$ightharpoonup$$
 Here, $Q(0.5) = (1+2)/2 = 1.5$

- ► Mode (of a discrete or categorical dataset) (X 3+1 X 4)/2

Theoretical

- Arithmetic mean:

 - ► $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ ► Here, $\bar{x} = \frac{1}{6} (0 + 1 + 1 + 2 + 3 + 5) = 2$
- ► Median: Q(0.5).
 - \triangleright A shortcut to calculating Q(0.5) is:
 - \triangleright $Q(0.5) = x_{\lceil n/2 \rceil}$ if n is odd
 - $Q(0.5) = (x_{n/2} + x_{n/2+1})/2$ if *n* is even.
 - ightharpoonup Here, Q(0.5) = (1+2)/2 = 1.5

Numerical Summaries

- Arithmetic mean:

 - ► $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ ► Here, $\bar{x} = \frac{1}{6} (0 + 1 + 1 + 2 + 3 + 5) = 2$
- ► Median: Q(0.5).
 - \triangleright A shortcut to calculating Q(0.5) is:
 - \triangleright $Q(0.5) = x_{\lceil n/2 \rceil}$ if n is odd
 - $Q(0.5) = (x_{n/2} + x_{n/2+1})/2$ if *n* is even.
 - ightharpoonup Here, Q(0.5) = (1+2)/2 = 1.5
- Mode (of a discrete or categorical dataset)

- Arithmetic mean:

 - ► $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ ► Here, $\bar{x} = \frac{1}{6} (0 + 1 + 1 + 2 + 3 + 5) = 2$
- ► Median: Q(0.5).
 - \triangleright A shortcut to calculating Q(0.5) is:
 - \triangleright $Q(0.5) = x_{\lceil n/2 \rceil}$ if n is odd
 - $Q(0.5) = (x_{n/2} + x_{n/2+1})/2$ if *n* is even.
 - ightharpoonup Here, Q(0.5) = (1+2)/2 = 1.5
- Mode (of a discrete or categorical dataset)
 - the most frequently-occurring value

- Arithmetic mean:

 - ► $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ ► Here, $\bar{x} = \frac{1}{6} (0 + 1 + 1 + 2 + 3 + 5) = 2$
- ► Median: Q(0.5).
 - \triangleright A shortcut to calculating Q(0.5) is:
 - \triangleright $Q(0.5) = x_{\lceil n/2 \rceil}$ if n is odd
 - $Q(0.5) = (x_{n/2} + x_{n/2+1})/2$ if *n* is even.
 - ightharpoonup Here, Q(0.5) = (1+2)/2 = 1.5
- Mode (of a discrete or categorical dataset)
 - the most frequently-occurring value
 - ightharpoonup Here, mode = 1.

Measures of spread

- Sample variance

- ample variance $s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} \overline{x})^{2}$ Here, $s^{2} = \frac{1}{6-1} [(0-2)^{2} + (1-2)^{2} + (1-2)^{2} + (2-2)^{2}$ $(2)^2 + (3-2)^2 + (5-2)^2 = 3.2$
- Sample standard deviation

•
$$s = \sqrt{s^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

- ightharpoonup Here, $s = \sqrt{3.2} = 1.78885438199983$
- Range
 - Range = Maximum Minimum
 - ▶ Here, Range = 5 0 = 5
- Interquartile range
 - ightharpoonup IQR = Q(0.75) Q(0.25)
 - ▶ Here, IQR = 3 1 = 2.

Descriptive Statistics: Part 2/2 (Ch 3)

Yifan Zhu

Boxplots

Quantile-Quantile

Quantile-Quantile

Numerical Summaries

Your turn: sensitivity to outliers

owlier

Compare:

	_	_	-	<i>x</i> ₄	-	-
x_i	0	1	1	2	3	5
$\frac{i5}{n}$.083	0.25	0.417	2 0.583	0.75	0.917

to:

which measures of center and spread differ drastically between the x_i 's and the y_i 's? Which ones are about the same?

Descriptive Statistics: Part 2/2 (Ch 3)

Yifan Zhu

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile

Numerical Summaries

Answers: sensitivity to outliers

Descriptive Statistics: Part 2/2 (Ch 3)

Yifan Zhu

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical Quantile-Quantile

Numerical Summaries

Data	x _i	Уi
Mean	2	136210582.666667
Median	1.5	1.5
Mode		1
Sample Variance	<u>3.2</u>	11131993 <mark>46940192</mark> 32
Sample Std. Dev.	1.78885438199983	333646421.671235
Range	5	817263489
IQR	2	2
	_	_

(QQ) Plots
Theoretical
Quantile-Quantile

Plots Numerical

Summaries

Parameters

Numerical summaries sensitive to outliers and skewness:

- Mean Sample mean
- Sample variance
- Sample standard deviation
- Range
- Less sensitive numerical summaries:
 - Median
 - Mode
 - ► IQR

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical Quantile-Quantile Plots

Numerical Summaries

Parameters

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile

Numerical Summaries

Statistic: numerical summary of data on the sample

- Parameter: numerical summary of a theoretical distribution or data on an entire population.
 - Population mean ("true" mean): $V = \frac{1}{N} \sum_{i=1}^{N} V_{i} \text{ if } N \text{ the finite}$
 - $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$ if N the *finite* population size $\overline{x} \approx \mu$.
 - ► Population variance ("true" variance):
 - $ightharpoonup \sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i \mu)^2$ if N the finite population size $ightharpoonup s^2 \approx \sigma^2$.
 - Population standard deviation ("true" standard deviation):
 - - \triangleright $s \approx \sigma$.

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile
Plots

Numerical Summaries

Statistics and parameters

Descriptive Statistics: Part 2/2 (Ch 3)

Yifan Zhu

Statistic: numerical summary of data on the *sample*

Parameter: numerical summary of a theoretical distribution or data on an entire population. Unknown fixed

Boxplots

Quantile-Quantile

Summaries

- Statistic: numerical summary of data on the sample
- Parameter: numerical summary of a theoretical distribution or data on an entire population.
 - ► Population mean ("true" mean):
 - $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$ if N the *finite* population size $\overline{x} \approx \mu$.
 - ► Population variance ("true" variance):
 - Population standard deviation ("true" standard deviation):
 - $\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i \mu)^2}$ if N is the *finite* population size.
 - \triangleright $s \approx \sigma$.

- Statistic: numerical summary of data on the sample
- Parameter: numerical summary of a theoretical distribution or data on an entire population.
 - Population mean ("true" mean):
 - $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$ if N the *finite* population size. $\overline{x} \approx \mu$.
 - Population variance ("true" variance): $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2 \text{ if } N \text{ the } \text{finite population } s$ $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2 \text{ if } N \text{ the } \text{finite population } s$
 - Population standard deviation ("true" standard deviation):
 - $\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i \mu)^2}$ if N is the *finite* population size
 - \triangleright $s \approx \sigma$.

Quantile-Quantile

Summaries

- **Statistic**: numerical summary of data on the *sample*
- ▶ Parameter: numerical summary of a theoretical distribution or data on an entire population.
 - Population mean ("true" mean): N = ∞ Ε(X)
 - $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i \text{ if } \underline{N} \text{ the } \text{finite population size.}$ $\lambda = \mu. \quad \lambda \leq \lambda , \quad \overline{\lambda} \to M, \quad \lambda \to \infty$

- Statistic: numerical summary of data on the sample
- ▶ **Parameter**: numerical summary of a theoretical distribution or data on an entire *population*.
 - Population mean ("true" mean):
 - $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$ if N the *finite* population size.
 - $ightharpoonup \overline{x} \approx \mu$.
 - Population variance ("true" variance):

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$
 if N the *finite* population size $s^2 \approx \sigma^2$.

- Population standard deviation ("true" standard deviation):
 - $\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i \mu)^2}$ if N is the *finite* population size
 - \triangleright $s \approx \sigma$.

Numerical Summaries

- Statistic: numerical summary of data on the sample
- ▶ **Parameter**: numerical summary of a theoretical distribution or data on an entire *population*.
 - Population mean ("true" mean):
 - $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$ if N the *finite* population size.
 - $ightharpoonup \overline{x} \approx \mu$.
 - Population variance ("true" variance):
 - $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i \mu)^2$ if N the *finite* population size.
 - Population standard deviation ("true" standard deviation):
 - $\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i \mu)^2}$ if N is the *finite* population size.
 - \triangleright $s \approx \sigma$

Summaries

- Statistic: numerical summary of data on the sample
- Parameter: numerical summary of a theoretical distribution or data on an entire population.
 - Population mean ("true" mean):
 - $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$ if N the *finite* population size.
 - $ightharpoonup \overline{x} \approx \mu$.
 - Population variance ("true" variance):
 - Population standard deviation ("true" standard deviation):
 - $\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i \mu)^2}$ if N is the *finite* population size
 - \triangleright $s \approx \sigma$

- Statistic: numerical summary of data on the sample
- **Parameter**: numerical summary of a theoretical distribution or data on an entire *population*.
 - Population mean ("true" mean):
 - $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$ if N the *finite* population size.
 - $ightharpoonup \overline{x} \approx \mu$.
 - Population variance ("true" variance):
 - $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i \mu)^2 \text{ if } N \text{ the } finite \text{ population size.}$ $s^2 \approx \sigma^2.$
 - Population standard deviation ("true" standard deviation):
 - $\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i \mu)^2}$ if N is the *finite* population size.
 - \triangleright $s \approx \sigma$.

- ▶ Statistic: numerical summary of data on the sample
- ▶ **Parameter**: numerical summary of a theoretical distribution or data on an entire *population*.
 - Population mean ("true" mean):
 - $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$ if N the *finite* population size.
 - $ightharpoonup \overline{x} \approx \mu$.
 - Population variance ("true" variance):
 - $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i \mu)^2$ if N the *finite* population size. $\sigma^2 \approx \sigma^2$.
 - Population standard deviation ("true" standard deviation):
 - $\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i \mu)^2}$ if *N* is the *finite* population size.
 - \triangleright $s \approx \sigma$.

- Statistic: numerical summary of data on the sample
- **Parameter**: numerical summary of a theoretical distribution or data on an entire *population*.
 - Population mean ("true" mean):
 - $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$ if N the *finite* population size.
 - $ightharpoonup \overline{x} \approx \mu$.
 - Population variance ("true" variance):
 - $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i \mu)^2 \text{ if } N \text{ the } finite \text{ population size.}$ $s^2 \approx \sigma^2.$
 - Population standard deviation ("true" standard deviation):
 - $\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i \mu)^2}$ if *N* is the *finite* population size.
 - \triangleright $s \approx \sigma$.