

Modèle de régression linéaire

Master 1

Traitement Numérique des Données Sylvie Gibet

1

1

2

Machine learning: deux étapes

- Deux étapes dans le processus de machine learning
 - Phase d'entraînement (training) : l'algorithme apprend sur une partie des données
 - □ Phase de test : test sur une autre partie des données

3

3

Training set (apprentissage)	Taille en m2	Prix en 1000 * € 386
prix des maisons	189	106
	138	265
	76	149
	•••	

- Objectif : apprendre à partir de ces données comment prédire les coûts des maisons
- Notation
 - m: nombre d'exemples d'apprentissage
 - □ x: variables d'entrée / features $x^{(1)}$ = 189□ y: variable de sortie/ target variable $x^{(2)}$ = 127(x, y) : un exemple d'apprentissage $y^{(1)}$ = 386

(x⁽ⁱ⁾, y⁽ⁱ⁾): ith exemple de l'apprentissage (ith ligne)

4

4

6

8

	Taille en m2	Prix en 1000 * €
Training set (apprentissage)	189	386
prix des maisons	127	106
	138	265
	76	149

Comment choisir la fonction de mapping h?

Hypothèse : on prend une droite (fonction linéaire de la variable x) :

$$\hat{\mathbf{y}} = \mathbf{h}_{\theta}(\mathbf{x}) = \mathbf{\theta}_0 + \mathbf{\theta}_1 \mathbf{x}$$

x : variable d'entrée de la régression linéaire, ici la taille des maisons

ŷ : variable estimée (sortie) : prix des maisons

 θ_{i} : paramètres (2 paramètres, θ_{0} et $\theta_{\text{1}})$

Comment choisir les paramètres θ_0 et θ_1 ?

9

9

10

Fonction coût

Fonction coût: définition

- Fonction qui va nous permettre d'évaluer la qualité de la droite qui approxime des données
- Peut s'exprimer comme une distance entre les données et la droite
 - Se ramène à la somme des distances entre chaque exemple contenu dans les données et sa "projection" sur la droite

13

13

14

16

Idée : on choisit θ_0 et θ_1 de telle façon que la prédiction y = $h_{\theta}(x)$ soit "proche" de y pour nos exemples de training (x, y) □ On veut que la valeur $(h_{\theta}(x) - y) \text{ soit aussi petite que possible pour toutes les valeurs du training set}$

Une façon de faire est de minimiser le coût quadratique :

 $(h_{\theta}(x) - y)^2$ pour tout le training set, suivant les paramètres θ_0, θ_1

17

17

18

Idée : on choisit θ_0 et θ_1 de telle façon que la prédiction y = $h_{\theta}(x)$ soit "proche" de y pour nos exemples de training (x, y)

 $J(\theta_0, \theta_1) = \frac{1}{2m} \cdot \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Minimiser J(θ_0 , θ_1) suivant θ_0 , θ_1

 $J(\theta_0, \theta_1)$: fonction coût encore appelée erreur quadratique

19

19

□ Idée : on choisit θ_0 et θ_1 de telle façon que la prédiction y = h_{\theta}(x) soit "proche" de y pour nos exemples de training (x, y)

$$J(\theta_0, \theta_1) = \frac{1}{2m} \cdot \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Minimiser J(θ_0 , θ_1) suivant θ_0 , θ_1

 $J(\theta_0 \ , \theta_1 \)$: fonction coût encore appelée erreur quadratique

Bonne fonction d'erreur pour beaucoup de problèmes de régression

20

20

Fonction de coût Intuition I un seul paramètre θ_1

21

21

- □ <u>Hypothèse</u>: $h_{\theta}(x) = \theta_0 + \theta_1 x$ avec $x : input, y = h_{\theta}(x) : output$
- □ Paramètres : θ_0 , θ_1

$$J(\theta_0, \theta_1) = \frac{1}{2m} \cdot \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

□ Fonction coût:

 $\begin{array}{c} \square \ \underline{\text{But}} : & \text{minimiser} \ \text{J}(\theta_0,\,\theta_1) \\ \theta_0,\,\theta_1 \end{array}$

22

22

□ Hypothèse : $y = h_{\theta}(x) = \theta_0 + \theta_1 x$ □ Paramètres : θ_0 , θ_1

□ Fonction coût :

$$J(\theta_0, \theta_1) = \frac{1}{2m} \cdot \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\square \text{ But : minimiser J}(\theta_0, \theta_1)$$

 θ_0, θ_1

Problème simplifié

 $h_{\theta}(\mathbf{x}) = \theta_1 \mathbf{x}$

$$\theta_0 = 0$$

 $\underset{\theta_1}{\mathsf{minimiser}}\,\mathsf{J}(\theta_1)$

23

24

$h_{\theta}(x)$ (pour θ_1 fixe, c'est une fonction de x)	$J(heta_1)$ (fonction du paramètre $ heta_1$)	
y = 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0		
25	25	

 $J(\theta_1)$

26

 $h_{\theta}(x)$ (pour θ_1 fixe, c'est une fonction de x) (fonction du paramètre $\theta_{\rm l})$

26

28

30

32

34

 $J(\theta_1)$ (pour θ_1 fixe, c'est une fonction de x) (fonction du paramètre θ_1) $\theta_1=1$ 3 2 θ_1 =0.5 $J(heta_1)$ θ_1 =0 -0.5 0 0.5 1 1.5 2 2 3 θ_1 $\mathsf{h}_{\theta \mathtt{1}}(\mathsf{x}) = 0$ minimiser $J(\theta_1)$ $(\theta_1=0)$ J(0) = 2.3 θ_1 36

38

□ <u>Hypothèse</u>: $h_{\theta}(x) = \theta_0 + \theta_1 x$

□ Paramètres: θ_0 , θ_1

□ <u>Fonction coût</u>: $J(\theta_0, \theta_1) = \frac{1}{2m} \cdot \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

39

39

40

44

46

48

50

52

□ Fonction coût: $J(\theta_0, \theta_1)$ $J(\theta_0, \theta_1, \theta_2, \dots \theta_n)$

 $\begin{array}{ccc} & \underline{\text{But}} : \text{minimiser J}(\theta_0,\,\theta_1) & & \text{minimiser J}(\theta_0,\,\theta_1,\theta_2,\dots\,\theta_n) \\ & & \theta_0,\,\theta_1 & & \theta_0,\,\theta_1,\theta_2,\dots\,\theta_n \end{array}$

53

53

□ Fonction coût: $J(\theta_0, \theta_1)$ $J(\theta_0, \theta_1, \theta_2, \dots \theta_n)$

 $\begin{array}{ccc} & \underline{\text{But}} : \text{minimiser J}(\theta_0,\,\theta_1) & & \text{minimiser J}(\theta_0,\,\theta_1,\theta_2,\dots\,\theta_n) \\ & & \theta_0,\,\theta_1 & & \theta_0,\,\theta_1,\theta_2,\dots\,\theta_n \end{array}$

□ Algorithme:

- $\hfill\Box$ Commencer avec $\theta_0,\,\theta_1$ (initial guesses, e.g., $\theta_0\!=\!0,\,\theta_1\!\!=\!\!0$)
- $\begin{tabular}{ll} \square Changer θ_0, θ_1 pour réduire $J(\theta_0,\,\theta_1)$ jusqu'à atteindre un minimum \\ \end{tabular}$

54

54

Algorithme de descente de gradient

Algorithme:

Répéter jusqu'à convergence :

Repeat {

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

until $\theta_0,\,\theta_1$ converge :

Mises à jour simultanées de $\,\theta_0,\,\theta_1\,$

52

62

Gradient Descent Algorithm

Algorithm:

Répéter jusqu'à convergence :

Repeat {

Paramètre α : taux d'apprentissage Contrôle la façon dont on prend la descente de plus grande pente (plus ou moins vite)

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Mises à jour simultanées

temp₀ = θ_0 - α . dérivée(θ_0 , θ_1)

 $temp_1 = \theta_1 - \alpha$. $dérivée(\theta_0, \theta_1)$

 $\theta_0 = \text{temp}_0$

 $\theta_1 = temp_1$

Implémentation fausse

temp₀ = θ_0 - α . dérivée(θ_0 , θ_1)

 $\theta_0 = \text{temp}_0$

temp₁ = θ_1 - α . dérivée(θ_0 , θ_1)

 $\theta_1 = temp_1$

63

63

Exercice: Supposez que θ_0 =1, θ_1 =2, et qu'on met à jour simultanément θ_0 et θ_1 en utilisant la règle: θ_i = θ_i + rac($\theta_0\theta_1$).

Quelles sont les valeurs résultantes de θ_0 et θ_1 ?

- $\theta_0 = 1$ and $\theta_1 = 2$
- $\theta_0 = 1 + rac(2)$ and $\theta_1 = 2 + rac(2)$
- $\theta_0 = 2 + rac(2)$ and $\theta_1 = 1 + rac(2)$
- $\theta_0 = 1 + rac(2)$ and $\theta_1 = 2 + rac((1 + rac(2)).2))$

64

64

Descente du gradient Intuition

65

65

Algorithme de descente du gradient

Algorithm:

Répéter jusqu'à convergence

Repeat {

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Mise à jour simultanée de θ_0 et θ_1

Supposons que nous ayons uniquement θ_{1}

66

66

Algorithme de descente du gradient

- $\ \square$ Si α est trop grand, la descente de grandient peut "overshooter" le minimum (osciller de part et d'autre). l'algoritme peut ne pas converger, ou même diverger.
- ullet Si α est trop petit, la descente de gradient peut être (trop) lente

67

67

Algorithme de descente du gradient

- La descente de gradient peut converger vers un minimum local, avec un taux α fixé.
- Lorsqu'on approche le minimum local, la descente de gradient va prendre automatiquement de plus petits incréments : ainsi, pas besoin de diminuer α au cours du temps.

68

Université Bretagne Sud

Descente du gradient pour la régression linéaire

70

70

74

Régression: coût quadratique

- □ Algorithme de descente de gradient : peut tomber dans un minimum local, dépendant du point de départ de l'algorihtme (initialisation des paramètres θ_0 et θ_1).
- Régression linéaire : la descente de gradient appliquée à une fonction coût quadratique :
 - La fonction coût est toujours une fonction convexe (bowlshaped)
 - Avec une telle méthode, impossible de tomber dans un minimum local, il n'y a qu'un seul minimum global.

75

75

76

78

80

82

Parmi les propositions suivantes, lesquelles sont vraie ? Sélectionnez toutes les bonnes réponses

- $\hfill\Box$ Pour que la descente de gradient converge, il faut que le taux α décroisse au cours du temps.
- □ La descente de gradient trouve toujours le minimum global de toute fonction coût $J(\theta_0, \theta_1)$.
- $\hfill\Box$ La descente de gradient peut converger même si α est maintenu fixe (mais α ne peut pas être trop grand, sinon l'algorithme peut ne pas converger).
- Pour le choix spécifique de fonction coût utilisé dans la régression linéaire, il n'y a pas d'optimum local (autre que l'optimum global).

84

84

Algorithm de descente du gradient

Linear Regression Model

Repeat {

$$\theta_{j} = \theta_{j} - \alpha \frac{\theta}{\partial \theta_{j}} J(\theta_{j})$$
(for j = 1 and j = 0)
until convergence
}

$$\begin{cases} h_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 \mathbf{x} \\ \theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta) \end{cases}$$

$$(\text{for j = 1 and j = 0})$$

$$\text{until convergence}$$

85

85

Algorithme de descente du gradient

$$\frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) = \frac{\partial}{\partial \theta_{j}} \cdot \frac{1}{2m} \cdot \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$= \frac{\partial}{\partial \theta_{j}} \cdot \frac{1}{2m} \cdot \sum_{i=1}^{m} (\theta_{0} + \theta_{1}x^{(i)} - y^{(i)})^{2}$$

$$j = 0 : \frac{\partial}{\partial \theta_{0}} J(\theta_{0}, \theta_{1}) = \frac{1}{m} \cdot \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$j = 1 : \frac{\partial}{\partial \theta_{1}} J(\theta_{0}, \theta_{1}) = \frac{1}{m} \cdot \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x^{(i)}$$

86

Algorithme de descente du gradient

Repeat until convergence {

$$j = 0 : \theta_0 = \theta_0 - \frac{1}{m} \cdot \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$j = 1 : \theta_1 = \theta_1 - \frac{1}{m} \cdot \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) . x^{(i)}$$

} \rightarrow update θ_0 and θ_1 simultaneously

87

87