МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Факультет обшей и прикладной физики

Определение C_p/C_V методом адиабатического расширения гааз

Автор: Студент гр. Б02-304 Головинов. Г.А.

Долгопрудный, 2024

Аннотация

Цель работы: определение отношения C_p/C_V для воздуха или углекислого газа по измерению давления в стеклянном сосуде. Измерения производятся сначала для адиабатического расширения гааз, а затем после нагревания сосуда и газа до комнатной температуры.

В работе используются: стеклянный сосуд; U-образный жидкостный манометр; резиновая группа; газгольдер с углексилым газом.

1 Основные теоретические сведения

Экспериментальная установка

Рис. 1: Установка для определения отношения C_p/C_V

На рисунке сосуд A (объем ≈ 20 л.), кран K, U-образный жидкостный манометр М. Кран K_1 и резиновая груша позволяют создавать избыточное давление воздуха. Углекислый газ подается из газгольдера.

В начале опыта газ в сосуде A находится при комнатной температуре T_1 , давлении P_1 , несколько превышающем атмосферное давление P_0 . После открытия крана K давление и температура газа будут понижаться.

Этот процесс приближенно можно считать адиабатическим. Приближение основано на том, что равновесие в газах по давлению наступает намного быстрее, чем равновесие по температуре. Соответсвтенно будем считать Δt_P – время установления равновесия по давлению сильно меньше, чем Δt_T – время установления равновесия по температуре.

Необходимо также учесть тот факт, что на это предположение влияет размер клапана, если он слишком мал, то предположение неверно. Поэтому если $\Delta t_P \ll \Delta t_T$, то любой процесс за время Δt между интервалами установления можно считать приближенно адиабатическим.

Уравнение адиабаты

Первое начало термодинамики:

$$\delta Q + \delta A^{\text{над газом}} = dU \tag{1}$$

При адиабатическом процессе $\delta Q = 0$, Тогда

$$\delta Q = dU + \delta A = 0 \tag{2}$$

где δA — работа газа. В свою очередь изменение внутренней энергии и работа идеального газа выражаются

$$dU = C_V dT (3)$$

$$\delta A = pdV \tag{4}$$

Далее нам потребуется уравнение Менделеева-Клапейрона:

$$pV = \nu RT \tag{5}$$

Для удобства будущих рассчетов будем использовать $\nu=1$, подставим уравнение Менделеева-Клапейрона и (3), (4) в уравнение (2) и получим

$$C_V \frac{dT}{T} + R \frac{dV}{V} = 0 (6)$$

при постоянной C_V уравнение (6) можно проинтегрировать:

$$C_V \ln T + R \ln V = const \tag{7}$$

$$TV^{R/C_V} = const (8)$$

Используя еще раз соотношение (5), а также уравнение Майера:

$$C_p - C_V = R \tag{9}$$

получим

$$pV^{\gamma} = const \tag{10}$$

где $\gamma = C_p/C_V$ – называется *показателем* адиабаты.

Нам в работе удобно перейти к переменным p и T:

$$\left(\frac{p_1}{p_2}\right)^{\gamma-1} = \left(\frac{T_1}{T_2}\right)^{\gamma} \tag{11}$$

Здесь мы обозначаем индексом «1» состояние до открытия крана, а «2» – состояние после открытия крана и установления равновесия давлений.

После адиабатического (с учетом приближения) расширения газа $p_2 = p_0$ — атмосферное давление. Температура T_2 будет ниже комнатной, так как работа осуществляется за счет внутренней энергии газа. Когда мы закроем кран, газ начнет медленно (относительно изменения давления при расширении) нагреваться изохорически до комнатной температуры.

При изохорическом нагревании выполняется соотношение

$$\frac{p_2}{T_2} = \frac{p_3}{T_1} \tag{12}$$

здесь p_3 – давление после нагревания, T_1 – комнатная температура (такая же, что и перед открытием клапана). С помощью этого соотношения можно выбросить из уравнения (11) отношение температур и получить:

$$\left(\frac{p_3}{p_2}\right)^{\gamma} = \left(\frac{p_1}{p_2}\right)^{\gamma - 1} \tag{13}$$

Учитывая, что давление в состоянии «2» равно атмосферному (p_0) , то показатель адиабаты можно найти используя соотношение:

$$\gamma = \frac{\ln(p_1/p_0)}{\ln(p_1/p_3)} \tag{14}$$

Итого, показатель адиабаты находится с помощью 3-х неизвестных: атмосферного давления и давлений в состояниях «1» и «3». Их можно можно выразить как атмосферное давление плюс некоторая небольшая

разница, которую мы будем измерять с помощью U-образного манометра M.

$$p_1 = p_0 + \rho g h_1, \qquad p_3 = p_0 + \rho g h_3$$

где ρ – плотность жидкости, h_1 – высота столба в состоянии «1», h_3 – в состоянии «3». Далее преобразуем уравнение γ с учетом этих соотношений:

$$\gamma = \frac{\ln([p_0 + \rho g h_1]/p_0)}{\ln([p_0 + \rho g h_1]/[p_0 + \rho g h_3])} = \frac{\ln(1 + \rho g h_1/p_0)}{\ln(1 + \rho g h_1/p_0) - \ln(1 + \rho g h_3/p_0)}$$

Считая, что разница между атмосферным давлением и давлением в системе сильно меньше чем само атмосферное давление, логарифмы можно разложить в ряд Тейлора. Примем следующие обозначения:

$$\frac{\rho g h_1}{p_0} = x_1 \to 0, \qquad \frac{\rho g h_3}{p_0} = x_3 \to 0$$

$$\gamma = \frac{\ln(1+x_1)}{\ln(1+x_1) - \ln(1+x_3)} =
= \frac{x_1 - \frac{1}{2}x_1^2 + o(x_1^2)}{x_1 - \frac{1}{2}x_1^2 + o(x_1^2) - (x_3 - \frac{1}{2}x_3^2 + o(x_3^2))} \approx
\approx \frac{x_1}{x_1 - x_3} = \frac{h_1}{h_1 - h_3}$$
(15)

Время вытекания газа

Вязкостью газа пренебрежем.

При открытии клапана K по газу со скоростью звука будет распространятся волна, которая дойдет до дна за L/c, где L — высота сосуда, c — скорость звука. Через несколько таких интервалов времени можно считать, что весь газ придет в движение и будет двигаться с некоторой скорость v. Этот процесс будем считать квазистационарным. Скорость v можно найти из уравнения Бернулли для несжимаемой среды (изменением плотности пренебрегаем в силу небольшой разницы давлений газа и атмосферы).

$$v = \sqrt{\frac{2(p - p_0)}{\rho_0}} \tag{16}$$