SABANCI UNIVERSITY

Faculty of Engineering and Natural Sciences CS 302 Automata Theory Fall 2019

NOTES ON THE ANATOMY OF A PDA

Let $P = (Q, \Sigma, \Gamma, \delta, s, Z_0, F)$ be a given PDA and let

$$(q, w, \gamma) \mid --- {}^{n}(p, e, e) \dots (1)$$

be a computation of P. In what follows all computations follow the same path as in (1), that is, the same transition sequence used in (1) is used.

(Fact 1) For any $u \in \Sigma^*$, $\beta \in \Gamma^*$ we have $(q, wu, \gamma\beta) \mid --- {}^n(p, u, \beta)$

Proof of Fact 1

Given

$$(q, w, \gamma) \mid ---^{n}(p, e, e) \dots \dots \dots \dots (1)$$

we prove the result by induction on n

n=1 Case

If n=1 then we must have w=a where $a \in \Sigma$ or a=e; $\gamma=X \in \Gamma$ and $(p,e) \in \delta(q,a,X)$

which implies that $(q, au, X\beta)$ |--- " (p, u, β) by definition of the δ function.

Now assume that $(q, w, \gamma) \mid ---^n(p, e, e)$ implies that $(q, wu, \gamma\beta) \mid ---^n(p, u, \beta)$

(induction hypothesis) and prove that:

$$(q, w, \gamma) \mid ---^{n+1}(p, e, e)$$
 implies that $(q, wu, \gamma\beta) \mid ---^{n+1}(p, u, \beta)$

But letting $(q, w, \gamma) := (q, aw', Y\gamma') \mid --- (q', w', \xi\gamma')$ where we assume that $(q', \xi) \in \delta(q, a, Y)$ we have

 $(q, w, \gamma) := (q, aw', Y\gamma') \mid --- (q', w', \xi\gamma') \mid --- (p, e, e)$ and by induction hypothesis

 $(q', w'u, \xi \gamma'\beta))$ |--- " (p, u, β) and for the case n=1 applied to the first step of the computation above

 $(q, wu, \gamma\beta)$ |--- $(q', w'u, \xi\gamma'\beta)$ we conclude that $(q, wu, \gamma\beta)$ |--- $^{n+1}$ (p, u, β)

(Fact 2)

Conversely if

$$(q, wu, \gamma\beta)$$
 |--- " (p, u, β) (2)

Then again using the same path in (2) we conclude that

$$(q, w, \gamma) \mid ---^n (p, e, e) \dots (3)$$
 provided that:

$$(q, wu, \gamma\beta)$$
 |--- k $(q_k, v_k u, \gamma_k \beta)$ with $|\gamma_k| > 0$ for all $0 \le k < n$ (4)

(Condition (4) is referred to as the *no top-of-the-stack exposure of* β throughout the computation path)

Proof of Fact 2

To prove the converse fact we again use induction on n. The case for n=1 is trivial and we omit the proof. Hence given

$$(q, wu, \gamma\beta) \mid ---^{n+1} (p, u, \beta) \dots (2)$$

using the same mechanism in the proof of *Fact 1* and the implication $|\gamma| > 0$ of the additional assumption (no top-of-the-stack exposure of β) of *Fact 2* we have

$$(q, wu, \gamma\beta) := (q, aw'u, Y\gamma'\beta) \mid --- (q', w'u, \xi\gamma'\beta)) \mid --- {}^{n}(p, u, \beta)$$

and hence by the induction hypothesis

$$(q', w', \xi \gamma'))|_{---}^{n}(p, e, e)$$

Also using the n=1 case

$$(q, w, \gamma) := (q, aw', Y\gamma') \mid --- (q', w', \xi\gamma') \mid --- (p, e, e)$$
 which proves the result.

(*Fact 3*)

Let
$$(q, w, X_1 X_2 ... X_m) | ---^n (p, e, e)(5)$$

where
$$X_i \in \Gamma$$
 for $j = 1, 2, ..., m$

then along the computational path defined by (5) above, for each j = 1, 2, ..., m there exists a **unique** integer n(j), a segmentation $u_i v_i$ of w (i.e. $w = u_i v_i$) and a state q_i such that

$$(q, w, X_1 X_2 ... X_m) \mid -- \stackrel{n(j)}{=} (q_j, v_j, X_j X_{j+1} ... X_m) (6)$$

and

$$(q, w, X_1 X_2 ... X_m) \mid ---^k (q', w', v_j, \gamma X_j X_{j+1} ... X_m) ... (7)$$

with $|\gamma| > 0$ for all $0 \le k < n(j)$. Note n(1) = 0 and $q_1 = q$.

Proof of Fact 3

Given

$$(q, w, X_1 X_2 ... X_m) \mid ---^n (p, e, e) ... (3)$$

we use induction on n for the proof.

For n=1 case, (3) implies that w=a where $a \in \Sigma$ or a=e; m=1 and $(p,e) \in \delta(q,a,X_1)$

The conclusion then trivially holds where n(1)=0; $q_1=q$ and w=a=e a $(u_1=e, v_1=a)$ since $(q, a, X_1) \mid -e^{\theta} (q, a, X_1)$. Now assume the conclusion holds for n and prove it for n+1. Thus we assume that

$$(q, w, X_1 X_2 ... X_m) \mid ---^{n+1} (p, e, e)(4)$$

and expand the first transition in (4) as

with n transitions. If we let the corresponding unique integers for $Y_1, Y_2, ..., Y_p, X_2, X_3, ..., X_m$ as n'(1) to n'(p+m-1) then the unique integer corresponding to X_j (from state q) is n'(p+j-1)+1 which implies that n(j) = n'(p+j-1)+1 for j=2,...,m and similarly if q'_k are the states and u'_k and v'_k are the segmentations of w' for each k=1,...,p+m-1 we conclude that , using also the initial step before the last n steps, $q_j = q'_{p+j-1}$ and $w = a u'_{p+j-1} v'_{p+j-1}$ and hence $u_j = a u'_{p+j-1}$; $v_j = v'_{p+j-1}$ for j=2,...,m. The remaining details follow from the induction hypothesis.

(Fact 4)

Suppose that (5) above holds then there is a unique segmentation

$$w = w_1 w_2 \dots w_m$$
 such that for $j = 1, 2, \dots, m$

$$(q_j, w_j, X_j) \mid ---^{k(j)} (q_{j+1}, e, e) \dots (8)$$

with k(j) := n(j+1) - n(j) and $q_{m+1} := p$ and n(m+1) := n and w_j are related to u_j and v_j (see Fact 3 above) by :

$$u_j = w_1 ... w_j$$
 and $v_j = w_{j+1} ... w_m$

Proof of Fact 4

We use Fact(3) to prove Fact(4). This time we use induction on m, that is, the number of active stack symbols. For m=1 the result trivially follows from Fact(3). Assume the result holds for m and prove it for m+1. Now using Fact(3)

$$(q, w, X_1 X_2 ... X_{m+1}) \mid --- \stackrel{n(2)}{=} (q_2, v_1, X_2 X_3 ... X_{m+1}) ... (6)$$

where $w = u_1 v_1$. Now we can use Fact (2) with $u = v_1$ and $\beta = X_2 X_3 ... X_m$ to conclude that

$$(q, u_1, X_1) \mid --- \mid (q_2, e, e)$$
 where $k(1) = n(2) - n(1) = n(2) - 0 = n(2)$ as required for $j=1$.

Now using the induction hypothesis we conclude that the original premiss

$$(q_2, v_1, X_2 ... X_{m+1}) \mid ---^{n-n(2)} (p, e, e)$$

yields the required results for j=2, ..., m+1 where k(j)=n(j+1)-n(j).

The input segmentation for v_1 is $v_1 = w_2 \dots w_{m+1}$ which follows from the induction hypothesis and the fact that $w_1 = u_1$ completes the entire segmentation. Remaining minor details are left to the reader.

(Fact 5)

If for
$$j = 1, 2, ..., m$$

$$(q_j, w_j, X_j) \mid ---^{k(j)} (q_{j+1}, e, e) \dots (9)$$

then

$$(q, w, X_1 X_2 ... X_m) \mid ---^n (p, e, e)$$

where $w := w_1 w_2 \dots w_m$, $p := q_{m+1}$ and $q := q_1$.

Proof of Fact 5

We are given that

$$(q_j, w_j, X_j) \mid --- \stackrel{k(j)}{=} (q_{j+1}, e, e) \dots (7)$$

for j = 1, 2, ..., m and asked to prove that

$$(q, w, X_1 X_2 ... X_m) \mid ---^n (p, e, e)$$

where
$$n := k(1) + k(2) + ... + k(m)$$
, $q_1 := q$, $q_{m+1} := p$ and $w := w_1 w_2 ... w_m$

We prove this by using induction on m. For m=1 the result is trivial since the conclusion and the premiss are identical. Now assume the statement is true for m and assuming (7) holds for

j=1,2,...,m+1 we shall prove that

$$(q, w, X_1 X_2 ... X_{m+1}) \mid ---^n (p, e, e)$$

Using Fact (2) and (7) for j=1

$$(q, w_1u, X_1\beta)$$
 |--- $k(1)$ $(q_2, u, \beta) = (q_2, w_2 w_3 ... w_{m+1}, X_2 X_3 ... X_{m+1}) ... (8)$

where we chose $u = w_2 w_3 ... w_{m+1}$ and $\beta = X_2 X_3 ... X_{m+1}$ in applying Fact (2)

Now we can invoke the induction hypothesis since the depth of the stack is m and write

$$(q_2, w_2 w_3 ... w_{m+1}, X_2 X_3 ... X_{m+1}) | ---^{n'} (p, e, e) ... (9)$$

where n' = k(2) + k(3) + ... + k(m+1). Combining (8) and (9) we arrive at

$$(q, w_1 w_2 ... w_{m+1}, X_1 X_2 ... X_{m+1}) | --- {}^{k(1)+n'} (p, e, e)$$

which proves *Fact (5)*.

The facts below show that the constructed equivalent CFG to a PDA is indeed equivalent!

For the given PDA $P = (Q, \Sigma, \Gamma, \delta, s, Z_0, F)$ define a CFG, $G = (V, \Sigma, R, S)$ where

$$V = \{S\} \cup \{ [qXp] | p,q \in Q, X \in \Gamma \} \dots (10)$$

In addition to the initial productions namely

$$S \rightarrow [s Z_0 p]$$

where s is the initial state and p takes values over Q and we have the following productions in R:

whenever $(q_1, X_1 X_2 ... X_m) \in \delta(q, a, X)$ there are productions

$$[qXp] \rightarrow a[q_1X_1q_2]...[q_mX_mp].....(11)$$

for all possible $q_2, ..., q_m, p \in Q$ and if $(q_1, e) \in \delta(a, q, X)$

 $[qXq_1] \rightarrow a$ is a production.

(Fact 6)

If
$$(q, w, X) \mid -p * (p, e, e)$$
 then $[q X p] \Rightarrow_G * w$

Proof of Fact 6

Again we use induction on n. For n=1

(q, w, X) |-- (p, e, e) implies w=a or w=e and $(p,e) \in \delta(q,a,X)$ hence

 $[qXp] \rightarrow a$ which proves the result.

Now given $(q, w, X) \mid -r^{n+1} (p, e, e)$ in order to use induction on n we first evaluate the first step of the computation as below:

 $(q, aw', X) \mid --- (q_1, w', X_1 X_2 \dots X_m)$ where we assumed that

 $(q_1, X_1 X_2 ... X_m) \in \delta(q, a, X)$. Now by definition of the productions of G we have

$$[qXp] \rightarrow a [q_1 X_1 q_2] \dots [q_m X_m p] \dots (12)$$

are productions for all possible $q_2, q_3, ..., q_m, p \in Q$. Since

$$(q_1, w', X_1 X_2 ... X_m) \mid --^n (p, e, e)$$

which by Fact 4 implies for j = 1, ..., m there are states q'_{i} for j = 1, ..., m+1 where

$$q'_{m+1} := p$$
, $q'_{1} = q_{1}$ such that

 $(q'_j, w'_j, X_j) \mid -- {}^{k(j)} (q'_{j+1}, e, e)$ where each k(j) < n+1 and by the induction hypothesis and choosing $q_j := q'_j$ for j=1,2,...,m and $p := q'_{m+1}$ in (12) $[q'_j X_j q'_{j+1}] \rightarrow w'_j$ and the result

follows by recalling that $w' = w'_1 w'_2 ... w'_m$; w = a w' and a leftmost derivation of (12) yields

w.

(*Fact 7*)

If
$$[qXp] \Rightarrow_G^* w$$
 then $(q, w, X) \mid ---p^* (p, e, e)$

Proof of Fact 7

The proof is similar to that of *Fact 6*. This time we use induction on the steps of a leftmost derivation that yields w. For n=1 we have $[q \ X \ p] \Rightarrow w$ which implies that w=a or w=e and $(p.e) \in \delta(q, a, X)$ that further implies $(q, a, X) \mid --- (p, e)$

Now we prove the case for $[q X p] \Rightarrow^{n+1} w$. We perform a first step of the derivation which in general yields

$$[qXp] \Rightarrow a [q_1X_1 q_2] [q_2X_2 q_3] \dots [q_m X_m p]$$

where $q_2, ..., q_m, p$ take values in Q and q_1 takes a value dictated by a transition

$$(q_1, X_1 X_2 \dots X_m) \in \delta(q, a, X)$$

Hence we have

$$(q, aw', X) \mid --- (q_1, w', X_1 X_2 ... X_m)$$

Now since the steps of derivation for each

$$[q_i X_i q_{i+1}] \Rightarrow w'_i$$
, $j=1, ..., m-1$ and $[q_m X_m p] \Rightarrow w'_m$

is necessarily less than n+1, the induction hypothesis can be applied which leads to

$$(q_j, w'_j, X_j)$$
 |--- (q_{j+1}, e, e) for $j=1, ..., m-1$ and

$$(q_m, w'_m, X_m) \mid --- (p, e, e)$$

which by Fact 4 implies that

$$(q_1, w'_1 w'_2 ... w'_m, X_1 X_2 ... X_m) | -- (p,e,e)$$
 and therefore

$$[q X p] \Rightarrow aw'_1 w'_2 \dots w'_m = w$$
 implies that

$$(q, w, X) = (q, aw', X) \mid -- (q_1, w', X_1 X_2 ... X_m) \mid -- (p, e, e)$$

which proves Fact 7

(Fact 8)

 $L_P = L_G$

Proof of Fact 8

To prove that $L_P = L_G$ we first use $Fact \ 6$ with q=s (initial state) and $X = Z_{\theta}$ (initial stack) and use the *empty stack acceptance criterion* which proves that $L_P \subseteq L_G$. Conversely we use $Fact \ 7$ after the first derivation step which is $S \Rightarrow [s \ Z_{\theta} \ p]$ for an appropriate p which yields a string w, that is, $S \Rightarrow [s \ Z_{\theta} \ p] \Rightarrow^* w$, and apply $Fact \ 7$ which proves that $L_G \subseteq L_P$.

This concludes the proofs for all the *Facts*.

An Illustrative Example

Consider the single state PDA

$$P = (\{q\}, \{a,b\}, \{a,b,Z_{\theta}\}, \delta, q, Z_{\theta}, \{q\})$$

that accepts by empty stack the language

 $L = \{ \omega \in (a+b)^* \mid \#as = \#bs \}$ with the following δ - transitions:

$$(q, a, Z_{\theta}) \rightarrow (q, aZ_{\theta})$$
(1)

$$(q, b, Z_{\theta}) \rightarrow (q, bZ_{\theta}) \dots (2)$$

$$(q, a, a) \to (q, aa)$$
(3)

$$(q, b, b) \rightarrow (q, bb)$$
(4)

$$(q, a, b) \to (q, e)$$
(5)

$$(q, b, a) \rightarrow (q, e)$$
(6)

$$(q, e, Z_0) \to (q, e)$$
(7)

Using the definition justified by Fact 1 to Fact 8 above G = (V, T, P, S) is

$$T = \{a,b\}$$

$$V = \{S, [q Z_0 q], [qaq], [qbq]\}$$

Letting
$$Z := [q Z_0 q]$$
, $A := [qaq]$, $B := [qbq]$

$$V = \{S, Z, A, B\}$$

and **P** becomes the set:

$$S \rightarrow Z$$
; $Z \rightarrow a$ $A Z \mid b$ $B Z \mid e$ (using (1),(2) and (7)); $A \rightarrow aAA \mid b$ (using (3) and (5)); $B \rightarrow aAA \mid b$