Trường Đại học Bách Khoa T
p HCM

Bộ môn: Toán Ứng Dụng

- o O o -

Đề thi Học kỳ 2 năm học 2018-2019 Môn: Phương pháp tính

Thời gian làm bài 90 phút

LƯU Ý:

- Sinh viên ghi đầy đủ Họ, Tên, MSSV và làm bài trực tiếp lên đề thi.
- Sinh viên **được** sử dụng tài liệu, máy tính bỏ túi, **không được** sử dụng máy tính có chức năng lập trình.
- Đề thi gồm 10 câu (2 mặt trên 1 tờ giấy A4). Mọi thắc mắc, sinh viên ghi trực tiếp lên đề thi.
- Gọi m và n là hai chữ số cuối cùng của mã số sinh viên (m là chữ số hàng chục, n là chữ số hàng đơn vị, $0 \le m, n \le 9$). Đặt $\mathcal{M} = \frac{m+2n+10}{10}$. Ví dụ nếu mã số sinh viên là 15115276 thì m=7, m=6 và $\mathcal{M} =$
- Sinh viên tự điền vào bảng sau. Nếu không điền, bài thi bị xem là không hợp lệ.

Họ và tên		Điểm
MSSV	Chữ ký giám thị 1	
\mathcal{M}	Chữ ký giám thị 2	

Điểm toàn bài

YÊU CẦU:

- Không làm tròn kết quả trung gian. Không ghi đáp án ở dạng phân số.
- Đáp số ghi vào bài thi **phải được** làm tròn đến 4 chữ số sau dấu phẩy thập phân.
- Câu 1. Cho phương trình $x = \left(\frac{10}{4+x}\right)^{\frac{1}{2}}$ trong khoảng cách ly nghiệm [1, M]. Chọn $x_0 = M$. Tính sai số tiên nghiệm và sai số hậu nghiệm của x_3 theo phương pháp lặp đơn.

Kết quả: $\Delta_{x_3}(\mathbf{HN}) =$; $\Delta_{x_3}(\mathbf{TN}) =$

Câu 2. Cho hệ $\begin{cases} 10x_1 - Mx_2 - 3x_3 = 1 \\ -2x_1 + 20x_2 + x_3 = 3 \end{cases}$ với $\begin{pmatrix} 0.5 \\ 0.2 \\ 6x_1 + 2x_2 + 10x_3 = M \end{pmatrix}$. Dùng phương pháp lặp Jacobi, tìm sai số $\Delta x^{(2)}$ của vector lặp thứ hai $x^{(2)}$ theo công thức hậu nghiệm với chuẩn một.

Kết quả: $\Delta x^{(2)} =$ _____

Câu 3. Cho hệ $\begin{cases} 10x_1 - x_2 + x_3 - x_4 = 1 \\ -x_1 + 11x_2 - x_3 + 3x_4 = 2 \\ 2x_1 - x_2 + 12x_3 + x_4 = 3 \\ 6x_1 + 2x_2 + Mx_3 + 20x_4 = M \end{cases}$ với $x^{(0)} = \begin{pmatrix} 1 \\ 2 \\ -1 \\ -2 \end{pmatrix}$. Sử dụng phương

pháp lặp Gauss - Seidel, tìm vector lặp thứ ba $x^{(3)}$

Kết quả: $x^{(3)} =$

P'(1.8) = 2.4 và nội suy giá trị của hàm số tại x = 2.3

Kết quả: a =______; P(2.3) =______

Câu 5. Cho bảng số
$$x$$
 1.2 1.4 1.6 1.8 2.0 y 0.65 1.25 2.35 1.15 M

Dùng phương pháp bình phương cực tiểu tìm hàm $y(x) = A\sqrt{x^3} + Bx^3 + 2C$ xấp xỉ bảng số liêu trên.

Kết quả: $A = \underline{\hspace{1cm}}; B = \underline{\hspace{1cm}}; C = \underline{\hspace{1cm}}$

Tìm a sao cho tích phân $\int_{2.0}^{3.2} \left[x \sqrt{f(x)} + x^2 \right] = 12.5$ theo phương pháp Simpson

Kết quả: a =_____

Câu 7. Giải phương trình vi phân $y' = x + y - \sin(x + y)$ với điều kiện y(1.0) = M. Tìm y(1.2) và y(1.4) với bước chia h=0.2 theo công thức Runge - Kutta 4.

 $\underline{\textbf{K\acute{e}t} \ \textbf{qu\'{a}:}} \ y(1.2) = \underline{\hspace{1cm}}; \ y(1.4) = \underline{\hspace{1cm}}$ Câu 8. Giải phương trình vi phân $y' = x^2 - M\sqrt{x+y}$ với điều kiện y(1.0) = 1. Tính gần đúng y(1.6) với bước chia h=0.1 theo phương pháp Euler cải tiến.

Kết quả: y(1.6) =

Câu 9. Cho phương trình vi phân bậc 2: $e^x y''(x) - xy'(x) + y(x) = x + M$ với điều kiện ban đầu y(1)=0 và y'(1)=M. Tính gần đúng y(1.4) với bước chia h=0.2 bằng phương pháp Euler cải tiến. **B**ổI HCMUT-CNCP

Kết quả: y(1.4) =_____

 Câu 10. Cho bài toán biên $\left\{\begin{array}{ll} My''+xy'-2x^2y=x^2(x-1)\\ y(0.5)=2.5 & y(1.5)=M \end{array}\right.,$ dùng phương pháp sai phân hữu hạn tính gần đúng y(0.75), y(1.0), y(1.25) với bước h = 0.25.

Kết quả: $y(0.75) = _{\underline{}}; y(1.0) = _{\underline{}}; y(1.25) = _{\underline{}}$

Giảng viên ra đề

PHÓ CHỦ NHIỆM BỘ MÔN

Ths. Hoàng Hải Hà

TS. Trần Ngọc Diễm