1. (Exercise 1/Fall 2019 Final)

Let (a,b) be an interval of \mathbb{R} and f a real valued function on (a,b) which is uniformly zero outside a compact subset K of (a,b). Show that there is an $\alpha > 0$ such that f(x) = 0 if x is $(a,a+\alpha)$ or $(b-\alpha,b)$.

Solution:

2. (Exercise 2/Fall 2019 Final)

Let (X, ρ) be a metric space.

(a) Let K be a compact subset of X. Define

$$diam K = \sup \{ \rho(x, y) : x \in K, y \in K \}.$$

Show that there is a u and v in K such that $diam K = \rho(u, v)$.

- (b) Let K_n be a sequence of compact subsets of X such that $K_{n+1} \subset K_n$ and $diam K_n$ converges to
- 0. Show that there is an l in X such that $\bigcap_{n=1}^{\infty} K_n = \{l\}$. Recall that by definition a compact set is non-empty.

Solution:

3. (Exercise 3/Fall 2019 Final)

Let V be an open subset of \mathbb{R}^d and $||.||_{\infty}$ the usual norm on $L^{\infty}(V)$. If f is continuous and bounded in V, show that $||f||_{\infty} = \sup\{|f(x)| : x \in V\}$.

Solution:

4. (Exercise 4/Fall 2019 Final)

Find an a in \mathbb{R} such that defining $f(x,t)=x^ae^{-tx}$, for $(x,t)\in[0,1]\times[0,\infty)$, f is continuous, the function $t\to f(x,t)$ is in $L^1([0,\infty))$ for all x in [0,1], but the function $g(x)=\int_0^\infty f(x,t)dt$ is not continuous in [0,1]. Is there a function h in $L^1([0,\infty))$ such that $f(x,t)\leq h(t)$ for all x in [0,1] and almost all t in $[0,\infty)$?

Solution:

5. (Exercise 5/Fall 2019 Final)

Let
$$f$$
 be in $L^1(\mathbb{R})$. Show that $\lim_{x \to +\infty} \int_{-\infty}^{\infty} f(t) \cos(xt) dt = 0$.

Solution: