

FIRST SEMESTER 2022-2023 <u>Course Handout (Part II)</u>

Date: 24.08.2022

Course No.

: BIO G512

Course Title

: Molecular Mechanism Of Gene Expression

Instructor-in-Charge

: K. NAGA MOHAN

Instructors

: Anuhya Anne and Sushma S Kumar

1. Course Description:

Prokaryotic and eukaryotic genomes and their topology: DNA - protein interactions; RNA transcription and transcriptional control; DNA replication; transcription in yeast; RNA processing; translation; mechanism of gene expression in pro and eukaryotes..

2. Scope & Objective:

The course is designed mainly to impart knowledge of how genomes are organized in bacteria, viruses and eukaryotes, chromatin structure and histone variants, replication and repair of genomic DNA, molecular tools used for studying gene expression, transcriptional mechanisms in prokaryotes and eukaryotes, epigenetic modifications influencing transcription in eukaryotes, post-transcriptional processing in eukaryotes, mRNA transport and regulation of mRNA levels in eukaryotes, translational mechanisms in prokaryotes and eukaryotes, regulation of gene expression in prokaryotes and eukaryotes. Through this course, the students would understand the genetic regulatory mechanisms in the context of various biological processes.

3. Text Book:

Lewin's Genes XII by Jocelyn E. Krebs, Elliott S. Goldstein, Stephen T. Kilpatrick, Jones and Bartlett Learning, 2017.

Reference Book:

- 1. Molecular Biology of Gene: Watson, Baker, Bell, Gann, Lavine&Losick (7th Ed).
- 2. Molecular Cell Biology: Harvey Lodish, Arnold Berk, S Lawrence Zipursky, Paul Matsudaira, David Baltimore, and James Darnell (2016) 8th edition, Macmillan learning
- 3. Research papers and reviews

4. Course Plan:

Lect	Learning Objective	Topics to be covered	Text	Reference	
No			Book	Book Chapters	
			Chapter	RB 1	RB 2
1-3	Understanding the	Evidence of DNA and RNA as genetic	1	2	1
	basis of heredity, the	materials, genes encode polypeptides			
	nature and function	and RNAs, overview of transmission of			
	of genetic material	genetic material and flow of genetic			
		information			
4-8	Techniques used in	Restriction endonucleases, Cloning	2	7	5

		. D C. 1			
	studying gene				
	expression	DNA sequencing, PCR and RT-PCR,			
		Blotting methods, DNA microarrays,			
		Protein-DNA interactions, Chromatin			
		immunoprecipitation, Gene knockouts,			
	_	transgenics and Genome editing			
9-10	Structures of DNA	Overview of the DNA double helix,	-	4-5	4
	and RNA	Alternative forms of DNA (A- and Z-			
		DNA) their locations and functions,			
		Structures of RNA and their functions.			
4-7	Organization of	Prokaryotic genomes: Organization of	4-7	8	6
	genes and genomes	genes in bacterial and viral genomes			
	in prokaryotes and	Eukaryotic genomes: Organization of			
	eukaryotes	genes and genomes in yeast and higher			
		eukaryotes, C-value paradox, non-			
		coding sequences and their importance			
8-11		Eukaryotic chromatin: Nucleosomes-	8	8	6
		10nm and 30nm structures, histone			
		variants and their functional role,			
		organization into mitotic chromosomes			
		and banding patterns, Centromere and			
		telomeres.			
12-18	Maintenance of the	DNA replication, recombination, repair,	9-16	9-12	4
	genome	and transposition			
19-27	Transcriptional	Prokaryotes: Transcriptional initiation,	17-21	13-14	7-8
	mechanisms	elongation and termination.			
		Eukaryotes: Transcriptional initiation,			
		elongation, termination, RNA splicing			
		and processing, mRNA stability,			
		catalytic RNA			
28-30	Translation and	Translational mechanisms in	22-23	15-16	4
_0 50	genetic code	prokaryotes and eukaryotes, nature of			•
	Schette code	the genetic code			
31-35	Regulation of gene	Prokaryotes: Regulation of <i>lac</i> operon,	24-25	18	7-8
01-00	expression	regulation of <i>trp</i> operon, regulation of	∠ , -∠∪	10	/ - U
	CAPI COSIUII	lytic and lysogenic phases in			
		bacteriophages			
36-40	-	Eukaryotes: mechanisms transcriptional	26-30	19-21	7-8
30-40		1		13-21	/-0
		activation, epigenetic regulation and	Class		
		regulatory RNA, Gene regulation	Notes		
		during development, Large-scale gene			
		silencing			

Laboratory plan:

The main objective of the experiments planned is to relate the understanding of genome composition and epigenetic dynamics associated with gene expression. To develop analytical skills, the students are first asked to read about the subject matter, discuss in the class on the experiment to be conducted, its purpose and anticipated results. The students are then asked to write their own observations and inferences in own language as pdf files and not through mutual discussions and copying. Plagiarism check will be made and accordingly marks are awarded.

S. No.	List of experiments				
Part I: Understanding the dinucleotide composition in the context of vertebrate genome evolution.					
1	Reagent and plasticware preparation				
2	Isolation of genomic DNA from mammalian cells				
3	Checking the quality of genomic DNA and its quantification				
4	Use of restriction enzymes in studying the dinucleotide (CG, GC and TA) abundance				
5	Visualization of repeat sequences by restriction enzyme digestion				
Part II: U	Part II: Understanding the levels of DNA methylation in repeat elements, an imprinted gene and an				
autosoma	autosomal promoter CpG island.				
6	Estimation of DNA methylation in genomic DNAs by digestion with methylation-				
	sensitive, insensitive, and specific enzymes.				
7	Designing primers for methylation analysis using bisulfite-treated DNA.				
8	Estimation of DNA methylation levels in the IAP repeat sequence, an autosomal and an				
	imprinted gene (Snrpn).				
9	Understanding the experimental regulatory systems to control gene expression in				
	mammals: Using the <i>tet</i> off system to turn off <i>Dnmt1</i> transcription using doxycycline and				
	measuring the resultant <i>Dnmt1</i> transcript levels in the treated cells.				
10	Comparing the effects of loss of <i>Dnmt1</i> transcripts on DNA methylation levels in IAP				
	elements, autosomal and imprinted genes.				
11	Optional experiment: Measurement of transcript levels of the target sequences listed for				
	experiment 8.				

5. Evaluation Scheme:

No	Evaluation Component	Duration	Date and Time	Weightage	Remarks
				(%)	
1	Mid Sem	1.5 hours	01/11 1.30 - 3.00PM	25%	СВ
2.	Practical components:	Variable	-	25%	OB
	Lab Notes and the				
	quality of the				
	experimental results				
	obtained.				
3.	Explanation of Results	Variable	_	15%	OB
	(Observation and				
	Inference) and quiz				

	based on the experiments conducted.				
4.	Comprehensive	3 hours	21/12 FN	35%	СВ
	Examination				

CB: Closed Book examination OB: Open Book examination

- **6. Chamber Consultation Hour:** To be announced in the class
- **7. Notices:** Notices will be displayed on the Course Management System (CMS)
- **8. Make-up Policy:** Make up will be granted only for valid reasons with prior permission from the Instructor In-charge.
- **9. Academic Honesty and Integrity Policy**: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

INSTRUCTOR-IN-CHARGE BIO G512

