

ICS141: Discrete Mathematics for Computer Science I

Dept. Information & Computer Sci., University of Hawaii

Jan Stelovsky
based on slides by Dr. Baek and Dr. Still
Originals by Dr. M. P. Frank and Dr. J.L. Gross
Provided by McGraw-Hill

- gcd(84,96) =
- $_{2.}$ Icm(84,96) =
- $gcd(84,96) \times Icm(84,96) =$

Hints

- What's the prime factorization of 84?
- What's the prime factorization of 96?
- Try the primes 2, 3 and 7

Chapter 3. The Fundamentals

3.6 Integers and Algorithms

Review: Greatest Common Divisor

The greatest common divisor gcd(a,b) of integers a,b (not both 0) is the largest integer d that is a divisor both of a and of b.

$$d = \gcd(a,b) = \max(d: d|a \wedge d|b)$$

$$\Leftrightarrow d|a \wedge d|b \wedge \forall e \in \mathbf{Z}, (e|a \wedge e|b) \rightarrow (d \ge e)$$

If the prime factorizations are written as $a = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n}$ and $b = p_1^{b_1} p_2^{b_2} \dots p_n^{b_n}$, then the GCD is given by:

$$\gcd(a,b) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \dots p_n^{\min(a_n,b_n)}.$$

- Example: $84 = 2^2 \cdot 3^1 \cdot 7^1$ and $96 = 2^5 \cdot 3^1 \cdot 7^0$
 - $\gcd(84,96) = 2^2 \cdot 3^1 \cdot 7^0 = 2 \cdot 2 \cdot 3 = 12.$

Review: Least Common Multiple

Icm(a,b) of positive integers a, b, is the smallest positive integer that is a multiple both of a and of b. E.g. lcm(6,10) = 30

$$m = \text{lcm}(a,b) = \min(m: a|m \land b|m)$$

 $\Leftrightarrow a|m \land b|m \land \forall n \in \mathbf{Z}: (a|n \land b|n) \rightarrow (m \leq n)$

If the prime factorizations are written as $a = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n}$ and $b = p_1^{b_1} p_2^{b_2} \dots p_n^{b_n}$, then the LCM is given by:

$$lcm(a,b) = p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} \dots p_n^{\max(a_n,b_n)}.$$

- Example: $84 = 2^2 \cdot 3^1 \cdot 7^1$ and $96 = 2^5 \cdot 3^1 \cdot 7^0$
 - $lcm(84,96) = 2^5 \cdot 3^1 \cdot 7^1 = 32 \cdot 3 \cdot 7 = 672$.

GCD and LCM

■ **Theorem**: Let *a* and *b* be positive integers. Then

$$ab = \gcd(a,b) \cdot \operatorname{lcm}(a,b)$$

- Example
 - $a = 84 = 2 \cdot 2 \cdot 3 \cdot 7 = 2^{2} \cdot 3^{1} \cdot 7^{1}$
 - $b = 96 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 = 2^{5} \cdot 3^{1} \cdot 7^{0}$
 - $ab = (2^2 \cdot 3^1 \cdot 7^1) \cdot (2^5 \cdot 3^1 \cdot 7^0) = 2^2 \cdot 3^1 \cdot 7^0 \cdot 2^5 \cdot 3^1 \cdot 7^1$ $= 2^{\min(2,5)} \cdot 3^{\min(1,1)} \cdot 7^{\min(1,0)} \cdot 2^{\max(2,5)} \cdot 3^{\max(1,1)} \cdot 7^{\max(1,0)}$
 - $= \gcd(a,b) \cdot \operatorname{lcm}(a,b)$

Integers and Algorithms

- Topics:
 - Base-b representations of integers.
 - Especially: binary, hexadecimal, octal.
 - Algorithms for computer arithmetic:
 - Binary addition and multiplication.
 - Euclidean algorithm for finding GCD's.

Base-b Number Systems

- Ordinarily, we write base-10 representations of numbers, using digits 0-9.
- But, 10 isn't special! Any base b > 1 will work.
- For any positive integers n and b, there is a unique sequence $a_k a_{k-1} \dots a_1 a_0$ of digits $a_i < b$ such that:

$$n = a_k b^k + a_{k-1} b^{k-1} + a_{k-2} b^{k-2} + \dots + a_1 b^1 + a_0$$

$$= \sum_{i=0}^{k} a_i b^i$$
The "base-b expansion of n"

• Notation: $n = (a_k a_{k-1} ... a_1 a_0)_b$

Particular Bases of Interest

- Base b = 10 (decimal):
 - 10 digits: 0,1,2,3,4,5,6,7,8,9.
- Base b = 2 (binary):
 - 2 digits: 0,1. ("Bits"="binary digits.")
- Base b = 8 (octal):8 digits: 0,1,2,3,4,5,6,7.
- Base b = 16 (hexadecimal):
 - 16 digits: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Hex digits give groups of 4 bits

Used only because we have 10 fingers

Used internally in all modern computers

Octal digits correspond to groups of 3 bits

Examples

- Example 1: Decimal expansion of the integer with binary expansion (101011111)₂?
 - $(1010111111)_2$ $= 1 \cdot 2^8 + 0 \cdot 2^7 + 1 \cdot 2^6 + 0 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2 + 1$ $= (351)_{10}$
- <u>Example 2</u>: Decimal expansion of the integer with hexadecimal expansion (2AE0B)₁₆?
 - $(2AE0B)_{16} = 2.16^4 + 10.16^3 + 14.16^2 + 0.16 + 11$ = $(175627)_{10}$

Converting to Base b

(An algorithm, informally stated.)

- To convert any integer n to any base b > 1:
- To find the value of the rightmost (lowestorder) digit, simply compute n mod b.
- Now, replace n with the quotient.
- Repeat above two steps to find subsequent digits, until n is gone (= 0).

Exercise: Write this out in pseudocode...

University of Hawaii

Converting to Base b

$$n = bq_0 + a_0$$

$$= b(bq_1 + a_1) + a_0$$

$$= b^2q_1 + ba_1 + a_0$$

$$= b^2(bq_2 + a_2) + ba_1 + a_0$$

$$= b^3q_2 + b^2a_2 + ba_1 + a_0$$

$$= b^3(b \cdot 0 + a_3) + b^2a_2 + ba_1 + a_0$$

$$= a_3b^3 + a_2b^2 + a_1b + a_0$$

$$= (a_3a_2a_1a_0)_b$$

Examples

- Example 3: Find the base 8, i.e. octal, expansion of (12345)₁₀
 - 12345 = 8·1543 + 1
 - 1543 = 8·192 + 7
 - 192 = 8·24 + 0
 - = 24 = 8.3 + 0
 - 3 = 8.0 + 3
 - Therefore, $(12345)_{10} = (30071)_8$

Binary ↔ **Hexadecimal**

@ The McGraw-Hill Companies, Inc. all rights reserved.

TABLE 1 Hexadecimal, Octal, and Binary Representation of the Integers 0 through 15.																
Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hexadecimal	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
Octal	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17
Binary	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100	1101	1110	1111

• Hexadecimal expansion of
$$(11 \ 1110 \ 1011 \ 1100)_2$$

 $0011 = 3$ E B C

$$\therefore$$
 (11 1110 1011 1100)₂ = (3EBC)₁₆

Binary expansion of (A8D)₁₆

$$(A)_{16} = (1010)_2$$
, $(8)_{16} = (1000)_2$, $(D)_{16} = (1101)_2$

$$\therefore$$
 (A8D)₁₆ = (1010 1000 1101)₂

Addition of Binary Numbers

Carry: 111000

10111 + 11100 110011

- Carry = [bitSum / 2]
- $s_{bitIndex} = bitSum \mod 2 = bitSum 2 \cdot carry$

Addition of Binary Numbers

```
procedure add(a_{n-1}...a_0, b_{n-1}...b_0): binary representations of
   non-negative integers a, b)
  carry := 0
  for bitIndex := 0 to n-1 begin
                                               {go through bits}
       bitSum := a_{bitIndex} + b_{bitIndex} + carry
                                               {2-bit sum}
       carry := |bitSum / 2|
                                               {high bit of sum}
       s_{bitIndex} := bitSum - 2 \cdot carry
                                               {low bit of sum}
  end
  s_n := carry
```

return $s_n ... s_0$: binary representation of integer s

ICS 141: Discrete Mathematics I – Fall 2011

Multiplication of Binary Numbers

$$ab = a(b_0 \cdot 2^0 + b_1 \cdot 2^1 + \dots + b_{n-1} \cdot 2^{n-1})$$

$$= a(b_0 \cdot 2^0) + a(b_1 \cdot 2^1) + \dots + a(b_{n-1} \cdot 2^{n-1})$$

110 ϵ

 \times 101 b

110

0000 shift 1 bit to the left, i.e. append 1 extra 0-bit 11000 shift 2 bit to the left, i.e. append 2 extra 0-bits

11110

Multiplication of Binary Numbers

$$ab = a(b_0 \cdot 2^0 + b_1 \cdot 2^1 + \dots + b_{n-1} \cdot 2^{n-1})$$

$$= a(b_0 \cdot 2^0) + a(b_1 \cdot 2^1) + \dots + a(b_{n-1} \cdot 2^{n-1})$$

procedure $multiply(a_{n-1}...a_0, b_{n-1}...b_0)$: binary representations of positive integers a,b)

product := 0
for
$$i := 0$$
 to $n-1$
if $b_i = 1$ then

i extra 0-bits appended after the digits of *a*

 $\downarrow i$ times

 $product := add(a_{n-1}...a_00...0, product)$

return product

Division with Remainder

```
procedure div-mod(a \in \mathbb{Z}, d \in \mathbb{Z}^+)
   {quotient & remainder of a/d}
   q := 0
   r := |a|
   while r \ge d begin
        r := r - d
        q := q + 1
   end
   if a < 0 and r > 0 then begin {a is a negative}
        r := d - r
        q := -(q + 1)
   end
   \{q = a \text{ div } d \text{ (quotient)}, r = a \text{ mod } d \text{ (remainder)}\}
```


- Finding GCDs by comparing prime factorizations can be difficult when the prime factors are not known!
- Euclid discovered: Let a = bq +r, where a, b, q, and r are integers. Then gcd(a,b) = gcd(b,r) (i.e. gcd(a,b) = gcd(b, (a mod b)))
 - Example: gcd(36, 24) = gcd(24, 12)
- Sort a, b so that a > b, and then (given b > 1)
 (a mod b) < b, so problem is simplified.

Euclid's Algorithm Example

- $gcd(372, 164) = gcd(164, 372 \mod 164)$
 - 372 mod 164 = 372 164[372/164] = 372 - 164·2 = 372 - 328 = 44
- $gcd(164, 44) = gcd(44, 164 \mod 44)$
 - 164 mod 44 = 164 44[164/44] = 164 - 44·3 = 164 - 132 = 32
- $gcd(44, 32) = gcd(32, 44 \mod 32) = gcd(32, 12)$ = $gcd(12, 32 \mod 12) = gcd(12, 8)$ = $gcd(8, 12 \mod 8) = gcd(8, 4)$ = $gcd(4, 8 \mod 4) = gcd(4, 0) = 4$

Euclid's Algorithm Pseudocode


```
procedure gcd(a, b: positive integers)
```

```
x := a
y:=b
while y \neq 0 begin
    r := x \mod y;
    x := y;
    y := r
end
return x \{x = \gcd(a, b)\}
```

Proof That Euclid's Algorithm Works

■ Theorem 0: gcd(a,b) = gcd(b,c) if $c = a \mod b$.

Proof:

- First, $c = a \mod b$ implies $\exists t$: a = bt + c.
- Let $g = \gcd(a,b)$, and $g' = \gcd(b,c)$.
- Since g|a and g|b (thus g|bt) we know g|(a-bt), i.e. g|c. Since $g|b \wedge g|c$, it follows that $g \le \gcd(b,c) = g'$.
- Now, since g'|b (thus g'|bt) and g'|c, we know g'|(bt+c), i.e., g'|a. Since g'|a ∧ g'|b, it follows that g' ≤ gcd(a,b) = g.
- Since we have shown that both $g \le g'$ and $g' \le g$, it must be the case that g = g'. ■

- In binary, negative numbers can be conveniently represented using two's complement notation.
- In this scheme, a string of n bits can represent any integer i such that $-2^{n-1} \le i < 2^{n-1}$.
- The leftmost bit is used to represent the sign (0:positive, 1:negative integer)
- The negation of any *n*-bit two's complement number $a = a_{n-1}...a_0$ is given by $\overline{a_{n-1}...a_0} + 1$.

The bitwise logical complement of the *n*-bit string $a_{n-1}...a_0$.

Two's Complement Example

$$-2^2 \le i < 2^2$$
$$(-2^{n-1} \le i < 2^{n-1})$$

value	3-bit pattern					
3	0 1 1					
2	010					
1	0 0 1					
0	000					
- 1	111					
– 2	110					
3	101					
<u>–4</u>	100					

- To obtain the results for
 -4 ≤ n ≤ -1, consider |n|, then
 - In the binary representation of |n|, replace each 0 by 1, and each 1 by 0,
 This is the one's complement of n.
 - Add 1 (i.e. 001) to the result from the previous step.
 This is the two's complement of n.

Example

Subtraction of Binary Numbers

procedure subtract(
$$a_{n-1}...a_0$$
, $b_{n-1}...b_0$: binary two's complement reps. of integers a , b)

return $add(a, add(\overline{b}, 1)) \{ a + (-b) \}$

Note that this fails if either of the adds causes a carry into or out of the *n*−1 position, since 2ⁿ⁻²+2ⁿ⁻² ≠ -2ⁿ⁻¹, and -2ⁿ⁻¹ + (-2ⁿ⁻¹) = -2ⁿ isn't representable!
We call this an *overflow*.

Modular Exponentiation

- Problem: Given large integers b (base), n (exponent), and m (modulus), efficiently compute bⁿ mod m.
 - Note that bⁿ itself may be completely infeasible to compute and store directly.
 - E.g. if n is a 1,000-bit number, then bⁿ itself will have far more <u>digits</u> than there are atoms in the universe!
- Yet, this is a type of calculation that is commonly required in modern cryptographic algorithms!

Algorithm Concept

The binary expansion of n

Note that:

$$b^{n} = b^{n_{k-1} \cdot 2^{k-1} + n_{k-2} \cdot 2^{k-2} + \dots + n_{0} \cdot 2^{0}}$$

$$= (b^{2^{k-1}})^{n_{k-1}} \times (b^{2^{k-2}})^{n_{k-2}} \times \dots \times (b^{2^{0}})^{n_{0}}$$

- We can compute b to various powers of 2 by repeated squaring.
 - Then multiply them into the partial product, or not, depending on whether the corresponding n_i bit is 1.
- Crucially, we can do the mod m operations <u>as we go</u> <u>along</u>, because of the various identity laws of modular arithmetic.
- All the numbers stay small.

Modular Exponentiation

procedure modularExponentiation(b: integer,

$$n = (n_{k-1}...n_0)_2$$
, m : positive integers)

$$x := 1$$
 {accumulates the result}

$$b2i := b \mod m$$
 { $b^{2^i} \mod m$; $i=0$ initially}

for
$$i := 0$$
 to $k-1$ begin {go thru all k bits of n }

if
$$n_i = 1$$
 then $x := (x \cdot b2i) \mod m$

$$b2i := (b2i \cdot b2i) \mod m$$

end

return x

$$b^{2^{i+1}} = b^{2 \cdot 2^{i}} = (b^{2^{i}}) \cdot (b^{2^{i}})$$

 $\{x \text{ equals } b^n \text{ mod } m\}$