Case Study: Vacuum Cleaner Speed Control

Timeline

Challenge: Vacuum Cleaner Speed Control

Challenge: Vacuum Cleaner Speed Control – Description

- Develop the "speed control" module such that:
 - The design follows a time triggered approach
 - Design is implemented using test-driven development approach
 - Used test design techniques are:
 - Equivalence partitioning
 - Boundary value analysis
 - State transition testing up to 1-switch coverage

Suggested Readings

Time-Triggering Reference

Test-Driven Development Reference

Testing Techniques Reference

Vacuum Cleaner Speed Control Specifications

- There are 3 speeds: minimum, medium and maximum speeds
- Default speed = medium
- There are 3 switches that can control the speed: "+ve", "-ve" and "p"
- If "+ve" switch is pre-pressed, speed increases by 1 step if speed! = maximum
- If "-ve" switch is pre-pressed, speed decreases by 1 step if not speed! = minimum
- ☐ If "p" switch is pressed for 30 seconds, speed decreases by 1 step if not speed! = minimum
- Priority of switches is:
 - "p" switch
 - "-ve" switch
 - "+ve" switch

Motor Angles Specifications

- The speed control sets the motor angle according to the speed
 - Minimum speed → 140 degrees
 - Medium speed → 90 degrees
 - Maximum speed → 10 degrees

Tools

- Code::Blocks v20.03
- Unity C Test Harness
- CMock is a plus

Deliverables

- ☐ Your CV
- Full project folder (speedcontrol_firstname_secondname.zip)
 - □ Please, use led_controller.zip as reference for project structure: <u>https://drive.google.com/file/d/1BbSCAk0ZPfurkmFMvU-llCtSg_p_PaKK/view?usp=sharing</u>
- Doxygen Documentation (doxygen_firstname_secondname.zip)
 - Source code documentation
 - Test documentation including testing techniques used for every test case
 - This should be in HTML format
- Please, submit your deliveries before deadline using this form: https://forms.gle/ueyidkPvEqmjR5Gz9

How to Simulate HW on PC?

A text file will simulate the switches data (switch.txt)

```
"+ye" switch state "-ye" switch state "p" switch state "p" switch press time in ms pre_pressed pre_released pressed 15 released released 0
```

Another text file will store the set motor angle (motor.txt)

```
Motor angle
170
140
```

- Both files should be inside the project folder structure and the project should run without problems
- Every line should correspond to a test case

How to Simulate HW on PC? cont'd

How We Evaluate?

- 1. CV quality, if OK we go to
- 2. Doxygen folder, if OK we go to
- Project folder (correct operation + code quality)

We will

- ☐ Conduct 1 concept session to explain an example module developed by TDD Feb 26th
- Conduct 1 session to speak about last internship wave March 3rd

- To contact us:
 - www.swift-act.com
 - training@swift-act.com

