FYS2140 - Kvantefysikk

Oskar Idland

Innhold

Ι	Hi	istoris	sk Utvikling	2			
1	Bruddet med Klassisk Fysikk						
	1.1	Hva ei	r Kvantemekanikk?	3			
		1.1.1	Energikvantisering	3			
		1.1.2	Bølge-Partikkel-dualitet	3			
		1.1.3	Egentilstand og superposisjon	3			
		1.1.4	Heisenberg's uskarphetsrelasjon	4			
		1.1.5	Paulis eksklusjonsprinsipp	4			
	1.2	Enhet	er i Kvantefysikk	4			
		1.2.1	Lengde	4			
		1.2.2	Energi	4			
		1.2.3	Masse	5			
		1.2.4	Andre Konstanter	5			
		1.2.5	Coulomb-potensialet	5			
		1.2.6	Nyttige Tabeller	5			

$\begin{array}{c} \text{Del I} \\ \text{Historisk Utvikling} \end{array}$

Kapittel 1

Bruddet med Klassisk Fysikk

1.1 Hva er Kvantemekanikk?

Kvantemekanikk forsøker å beskrive fysiske systemer på kvante nivå. Her står Schrödinger's likning sentralt.

1.1.1 Energikvantisering

Energi i Kvantemekanikken er ikke en kontinuerlig størrelse. Den har diskrée verdier. Dette kalles energikvantisering. Dette gjelder både fotoner og elektroner.

1.1.2 Bølge-Partikkel-dualitet

Vi vet ikke helt hva er partikkel er, men det vi vet er at de har egenskaper som minner om partikler og bølger. Dette kalles bølge-partikkel-dualiteten. Vi kan skyte ut fotoner i små energi pakker eller kvanter hvor de vil oppføre seg som partikler, men som en ser i dobbelspalteeksperimentet kan de likevel oppføre seg som bølger på samme tid. Da trenger vi Schrödinger's bølgeligning.

1.1.3 Egentilstand og superposisjon

En partikkel med kvantisert energien ϵ_n befinner seg i en tilstand som er beskrevet av bølgefunksjonen ψ_n . Dette kalles en energi-egentilstand. En partikkel kan være i flere energi-egentilstander samtidig. Dette kalles superposisjon. Vi kan tenke på Schrödinger's katt som en partikkel som er i en superposisjon av to energi-egentilstander, død og levende. Da får vi følgende:

$$\psi = c_{\text{død}} \cdot \psi_{\text{død}} + c_{\text{levende}} \cdot \psi_{\text{levende}}$$

Hvis vi måler tilstanden til katten vil vi få én av de to tilstandene. Enten død eller levende. Da ender vi opp i det som kalles egentilstand fra bølgefunksjonen/superposisjon. Sannsynligheten for at katten er død er da $|c_{\rm død}|^2$ og Sannsynligheten for at katten er levende er $|c_{\rm levende}|^2$. Det eneste Kvantemekanikken kan fortelle oss er sannsynligheten for at katten er i en tilstand, ikke om den er i den tilstanden eller ikke, før vi måler det.

1.1.4 Heisenberg's uskarphetsrelasjon

I klassisk mekanikk er foreksempel posisjon \mathbf{x} og bevegelsesmengde \mathbf{p} uavhengig størrelser. I Kvantemekanikken impliserer via Heisenberg's uskarphetsrelasjon at en ikke kan observerer begge til en vilkårlig presisjon. Dette uttrykkes via følgende formel

$$\Delta \mathbf{p} \Delta \mathbf{x} \ge \frac{\hbar}{2}$$

hvor $\Delta \mathbf{x}$ er usikkerheten i posisjon og $\Delta \mathbf{p}$ er usikkerheten i bevegelsesmengde. Dette er bare en merkbart på atomært nivå, men gjelder teknisk sett alltid.

1.1.5 Paulis eksklusjonsprinsipp

To fermioner (f.eks elektroner, protoner, kvarker og nøytrinoer) akn ikke befinne seg i samme tilstand (dvs. samme energi samme sted). Dette ser vi i atomer hvor elektronene fyller opp skall slik at nye elektroner må fylle opp et nytt skall.

1.2 Enheter i Kvantefysikk

1.2.1 Lengde

For å unngå ekstremt små eller store tall bruker vi litt smarte enheter. Kvante-fysikken operer på størrelser fra 10^{-8} til 10^{18} m. Nanometer (nm) er 10^{-9} m, femtometer (fm) er 10^{-15} m og ångstrøm (Å) er 10^{-10} m / 0.1nm.

1.2.2 Energi

For energi brukes til vanlig Joule, men energien i kvantemekanikken er så liten som 10^{-19} J. Da bruker vi eV (elektronvolt) som er $1.602 \cdot 10^{-19}$ C. Dette kommer fra at 1J er likt med 1C · 1V. Da er 1 eV den kinetiske energien et elektron får når den akselereres gjennom en potensialdifferensen på 1V.

1.2.3 Masse

Istedet for å bruke k
g for å måle masse kan vi heller bruke $\rm MeV/c^2$. Dette kommer fra likninge
n $E=mc^2$. Ser vi på hvileenergien til med enheten eV får vi

$$E_0^{\text{elektron}} = m_e c^2 = 5.11 \cdot 10^5 \text{eV}$$

Løser vi dette for massen m_e får vi

$$m_e=E_0^{\rm elektron}/c^2=0.511~{\rm MeV}/c^2$$

1.2.4 Andre Konstanter

Placks konstant

$$h = 6.626 \cdot 10^{-34} \text{ Js} = 4.135 \cdot 10^{-15} \text{ eVs}$$

 $\hbar = \frac{h}{2\pi} = 1.055 \cdot 10^{-34} \text{Js} = 6.582 \cdot 10^{-16} \text{eVs}$
 $hc = 1240 \text{ eV nm(MeV fm)}$
 $\hbar c = 197.3 \text{ eV nm(MeV fm)}$

Noen ganger kan det lønne seg å gange en brøk med c oppe og nede for å få inn konstanten $\hbar c$. Utrykket under hadde medført veldig små størrelser (10^{-34} og 10^{-31}) og dermed ville det blitt vanskelig å regne med.

$$\frac{h}{m_e c} = \frac{hc}{m_e c^2} = \frac{1240 \text{eV nm}}{0.511 \cdot 10^6} \approx 0.002 nm$$

1.2.5 Coulomb-potensialet

$$V(r) = \frac{e^2}{4\pi\epsilon_0 r} = \frac{k_e e^2}{2}, \qquad k_e e^2 = 1.44 \text{eV nm}$$

1.2.6 Nyttige Tabeller

Tabell 1.1: Standard metrisk notasjon for tierpotenser

Potens	prefiks	symbol	Potens	prefiks	symbol
10^{-1}	desi	d	10 ¹	deka	da
10^{-2}	centi	c	10^{2}	hekto	h
10^{-3}	milli	m	10^{3}	kilo	k
10^{-6}	mikro	μ	106	mega	M
10^{-9}	nano	n	109	giga	G
10^{-12}	pico	p	10^{12}	tera	T
10^{-15}	femto	f	10^{15}	peta	P
10^{-18}	atto	a	10^{18}	exa	E

Figur 1.1

Tabell 1.2: Nyttige konstanter

Tabell 1.2: Nyttige konstanter				
Konstant	symbol	verdi		
Lyshastighet	c	$2.998 \times 10^8 \; \mathrm{m/s}$		
Permittivitet i vakuum	ϵ_0	$8.854 \times 10^{-12} \; \mathrm{F/m}$		
Elektronladning	e	$1.602 \times 10^{-19} \text{ C}$		
Coulombs konstant	$k_e = 1/4\pi\epsilon_0$	$8.988 \times 10^9 \; \mathrm{Nm^2/C^2}$		
	$k_e e^2$	$1.440~\mathrm{eVnm}$		
Plancks konstant	h	$6.626 \times 10^{-34} \text{ Js} =$		
		$4.136 \times 10^{-15} \; \mathrm{eVs}$		
	$\hbar = h/2\pi$	$1.055 \times 10^{-34} \text{ Js} =$		
		$6.582 \times 10^{-16} \; \mathrm{eVs}$		
	hc	$1240~{ m eVnm}$		
	$\hbar c$	$197.3~\mathrm{eVnm}$		
Finstrukturkonstant	$\alpha = k_e e^2/\hbar c$	1/137.036		
Bohr-radius	$a_0 = \hbar^2/m_e k_e e^2$	0.05292 nm		
Hydrogenatomets grunntilstand	$-k_e e^2/2a_0$	$-13.61 \mathrm{eV}$		
Elektronets gyromagnetiske faktor	g_e	2.002		
Kjernemagneton	$\mu_N = e\hbar/2m_p$	$3.152 imes 10^{-14} \; \mathrm{MeV} / \mathrm{T}$		
Gravitasjonskonstant	G_N	$6.674\times 10^{-11}~\rm Nm^2/kg^2$		
Boltzmanns konstant	k_B	$1.381 \times 10^{-23} \text{ J/K} =$		
		$8.617 \times 10^{-5} \; \mathrm{eV} / \mathrm{K}$		

Figur 1.2

Tabell 1.3: Masser til viktige partikler

Partikkel	i kg	$i MeV/c^2$	$i u = 1.661 \times 10^{-27} \mathrm{kg}$
elektron	$9.109 \times 10^{-31} \text{ kg}$	$0.511~{ m MeV}/{ m c}^2$	0.000549 u
proton	$1.672 \times 10^{-27} \text{ kg}$	$938.3~{ m MeV}/{ m c}^2$	1.007277 u
nøytron	$1.675 \times 10^{-27} \text{ kg}$	$939.6~{ m MeV}/{ m c}^2$	1.008665 u
hydrogen	$1.673 \times 10^{-27} \ \rm kg$	$938.8~\rm MeV/c^2$	1.007825 u

Figur 1.3

Tabell 1.4: Nyttige forhold for partikler. ^a				
Bølgeegenskaper for frie tilstander				
For $m \geq 0$, både relativistisk og ikke-relativistisk				
Energi	$E = h\nu = \hbar\omega$			
Bevegelsesmeng de og $bølgetall^b$	$p = \hbar k = h/\lambda$	$k = 2\pi/\lambda$		
Vinkelfrekvens og frekvens	$\omega = 2\pi\nu$	$\nu = c/\lambda$		
Partik kelegenskaper for frie tilstander				
For $m = 0$, kun relativistisk				
Energi og hastighet ^b	E = pc	v = c		
For $m>0$, relativistisk				
Energi	$E = \frac{mc^2}{\sqrt{1 - v^2/c^2}}$ $p = \frac{1}{c}\sqrt{E^2 - (mc^2)^2}$			
Bevegelsesmeng $\mathrm{d}\mathrm{e}^b$	$p = \frac{1}{c}\sqrt{E^2 - (mc^2)^2}$			
For $m>0$, ikke-relativis tisk c				
Energi inkl. hvilænergi	$E = \frac{mv^2}{2} + mc^2$			
Bevegelsesmeng de^b	p = mv			

Figur 1.4

^a Merk de lignende symbolene for hastighet v og frekvens ν .

^b Merk at bevegelsesmengde $p=|\mathbf{p}|$, bølgetall $k=|\mathbf{k}|$, og hastighet $v=|\mathbf{v}|$ også har retning .

^c Tommelfingerregel: Bruk relativistisk når v/c>1%.