Complex Analysis Homework 9

Colin Williams

December 7, 2020

Question 2

Locate and classify the singularities in \mathbb{C} for f(z) equal to the following functions.

(a)
$$\frac{z}{z^2 - 1}$$

• Note that the denominator can be written as $z^2 - 1 = (z - 1)(z + 1)$. Then it is clear that z = 1 and z = -1 are both isolated singularities of f since $f \in H(D'(1,1))$ and $f \in H(D'(-1,1))$ where D'(a,r) is the punctured disk centered at a with radius r. Furthermore, if we notice that

$$\lim_{z \to 1} |f(z)| = \lim_{z \to 1} \left| \frac{z}{(z+1)(z-1)} \right| = \frac{1}{2} \lim_{z \to 1} \left| \frac{1}{z-1} \right| = \infty \quad \text{and}$$

$$\lim_{z \to -1} |f(z)| = \lim_{z \to -1} \left| \frac{z}{(z-1)(z+1)} \right| = \frac{1}{2} \lim_{z \to -1} \left| \frac{1}{z+1} \right| = \infty,$$

- then we can deduce that z = 1 and z = -1 are both poles for f(z). In particular, they would both be poles of order 1 since if we consider them as zeroes of the denominator, $g(z) = z^2 1$, then clearly $g(\pm 1) = 0$, but $g'(\pm 1) = \pm 2 \neq 0$.
- (b) $\tan^2(z)$
 - First, recall the definition of $\tan(w) = \frac{\sin(w)}{\cos(w)}$. Thus, $\tan^2(z) = \frac{\sin^2(z)}{\cos^2(z)}$ and we have singularities precisely when $\cos^2(z) = 0$. Furthermore, we know that $\cos(z) = 0$ if and only if $z = \frac{\pi}{2} + \pi k$ for $k \in \mathbb{Z}$. Let $z_k = \frac{\pi}{2} + \pi k$ for some $k \in \mathbb{Z}$, then we can see

$$\lim_{z \to z_k} |f(z)| = \lim_{z \to z_k} \left| \frac{\sin^2(z)}{\cos^2(z)} \right| = \lim_{z \to z_k} \left| \frac{1}{\cos^2(z)} \right| = \infty$$

• so we can see that these singularities are actually poles. Thus $z = \frac{\pi}{2} + \pi k$ for $k \in \mathbb{Z}$ are all poles for f(z). We can determine the order of these poles by considering them as zeroes of the denominator and finding the order of them as zeroes. Consider $g(z) = \cos^2(z)$ and let $z_k = \frac{\pi}{2} + \pi k$. We have already seen that $g(z_k) = 0$ for all k. Now consider $g'(z) = -2\cos(z)\sin(z)$, we also have that $g'(z_k) = 0$ for all k. Going further, we find $g''(z) = 2\sin^2(z) - 2\cos^2(z)$. However, $g''(z_k) = 2 \neq 0$ for all k. From this, we conclude that all z_k 's are actually poles of order 2.

(c)
$$\frac{z}{1 - e^z}$$

• Notice at z = 0, the denominator is equal to $1 - e^0 = 0$ which means z = 0 is a singularity for f. If we replace e^z with its Taylor Expansion centered at 0, we can observe the following:

$$f(z) = \frac{z}{1 - e^z} = \frac{z}{1 - \sum_{n=0}^{\infty} \frac{z^n}{n!}}$$

$$= \frac{z}{1 - \left(1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots\right)}$$

$$= \frac{-z}{z + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots}$$

$$= -\left(\sum_{n=1}^{\infty} \frac{z^{n-1}}{n!}\right)^{-1}$$
 for all $z \neq 0$

- Thus, we have found a suitable extension function for f. Since f(z) is equal to that last series at all points $z \neq 0$, then we can simply extend f to have the value of that series at z = 0. This means we're extending f to satisfy f(0) = -1 since this series is equal to -1 at 0. Lastly, we can notice that this is the negative reciprocal of a power series which converges in all of $\mathbb C$ and is never equal to zero; thus, it is analytic in all of $\mathbb C$. This leads us to the conclusion that z = 0 is a removable singularity for z = 0.
- (d) e^{-1/z^4}
 - Since the function $\frac{1}{z^4}$ is not defined at z=0, we have that z=0 is a singularity for f. I will consider the series expansion of f centered around z=0. To do this, recall that

$$e^{w} = \sum_{n=0}^{\infty} \frac{w^{n}}{n!}$$

$$\implies e^{-1/z^{4}} = \sum_{n=0}^{\infty} \frac{(-1/z^{4})^{n}}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{z^{4n}n!}$$

• Thus, we can see that $a_{-n} \neq 0$ for infinitely many $n \in \mathbb{N}$ in the Laurent Series expansion of f which indicates that z = 0 is an essential singularity for f