Deep Imbalanced Regression

Yang Y, Zha K, Chen Y, Wang H, Katabi D

ICML 2021

Presenter: Gianmarco Midena

26 November 2024

Overview

Continuous target value y

Problem Settings

- $\{(\mathbf{x}_i,y_i)\}_{i=1}^N$: training set
- $\mathbf{x}_i \in \mathbb{R}^d$: input
- $y_i \in \mathcal{Y}$: continuous label or target
- $b_i \in \mathcal{B}$: discrete label or target
- $\mathcal{Y} \subset \mathbb{R}$: continuous label space
- $\mathfrak{B} = \{1, \dots, M\} \subset \mathbb{Z}^+$: index space
 - lacktriangle divides $\mathcal Y$ into M groups (bins) with equal intervals $[t_j,t_{j+1})$
 - $\{[t_0, t_1), \ldots, [t_{M-1}, t_M)\}$: discrete label space
 - $t_k \in \mathcal{Y}$
 - minimum resolution
 - ★ e.g., $\delta y \triangleq t_{j+1} t_j = 1$ in age estimation
- $\hat{y}_i = g(\mathbf{z}_i) \in \mathbb{R}$: predicted continuous label
- $\mathbf{z}_i = f(\mathbf{x}_i; \theta) \in \mathbb{R}^{d'}$: learned representation
- θ : trainable model parameters

Evaluation

- Divide target space into disjoint regions (bins)
 - ► *Many-shot*: > 100 training examples
 - ▶ *Medium-shot*: 20-100 training examples
 - ► Few-shot: < 20 training examples
 - ► Zero-shot: 0 training examples
 - Inspired by Liu et al. 2019

Metrics

- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- ► Pearson Correlation (PCC)
- ► Geometric Mean Error (GM)

$$GM = \sqrt[n]{\prod_{i=1}^{n} |y_i - \hat{y}_i|}$$

★ Pros: + fairness (uniformity) in prediction

Datasets - Overview

Dataset	Target type	Target ra	nge Bin size	Max bin densi	ty I	Min bin densit	y # Training set	#	Val. set	# Test set
IMDB-WIKI-DIR	Age	0 - 186	5 1	7,149	Π	1	191,509	:	11,022	11,022
AgeDB-DIR	Age	0 - 101	1 1	353		1	12,208		2,140	2,140
STS-B-DIR	Text similarity score	0 - 5	0.1	428		1	5,249		1,000	1,000
NYUD2-DIR	Depth	0.7 - 1	0.1	1.46×10^{8}		1.13×10^6	50,688 (3.51 × 10	9)	-	654 (8.70 × 10 ⁵)
SHHS-DIR	Health condition score	0 - 100) 1	275	T	0	1,892		369	369

(Training) Datasets - Label Distributions

Label Distribution Smoothing (LDS)

Test Error on Categorical vs. Continuous Label Space

(a) CIFAR-100 (subsampled)

(b) IMDB-WIKI (subsampled)

The LDS Algorithm

Feature Distribution Smoothing (FDS)

- FDS improves feature statistics calibration:
 - High similarity only in neighbourhood
 - ▶ Gradually decreasing similarity as the target becomes smaller or larger

- FDS improves feature statistics calibration:
 - High similarity only in neighbourhood
 - ▶ Gradually decreasing similarity as the target becomes smaller or larger

- FDS improves feature statistics calibration:
 - High similarity only in neighbourhood
 - Gradually decreasing similarity as the target becomes smaller or larger

- FDS improves feature statistics calibration:
 - High similarity only in neighbourhood
 - Gradually decreasing similarity as the target becomes smaller or larger

The FDS Algorithm

Baselines (1/2)

- Vanilla: neglects data imbalance
- Synthetic samples
 - ► SMOTER (Torgo et al. 2013)
 - Defines frequent and rare regions using label density.
 - Creates synthetic samples for pre-defined rare regions by linearly interpolating both inputs and labels.
 - ► SMOGN (Branco et al. 2017): augments SMOTER with Gaussian noise
- Focal-R

$$\frac{1}{n} \sum_{i=1}^{n} \sigma(|\beta e_i|)^{\gamma} e_i$$

- ► Error-aware loss
- ▶ Maps the absolute error into [0, 1].
- e_i : L_1 error for the *i*-th sample
- \triangleright β , γ : hyper-parameters
- ▶ Inspired by Focal Loss (Lin 2017) for classification

Baselines (2/2)

- Regressor re-training (RRT)
 - Two-stage training
 - Train encoder
 - Re-train regressor with inverse re-weighting and frozen encoder.
 - ▶ Inspired by Kang et al. 2019
- Cost-sensitive re-weighting: re-weighting schemes based on label distribution
 - Inverse-frequency weighting (INV)
 - Square-root weighting variant (SQINV)

Results (1/2)

Figure: MAE gains of LDS + FDS over the vanilla model, on a curated subset of IMDB-WIKI-DIR.

Performance gains esp. for extrapolation & interpolation

Results (2/2)

Metrics		MA	E↓			GM ↓			
Shot	All	w/ data	Interp.	Extrap.	All	w/ data	Interp.	Extrap.	
VANILLA	11.72	9.32	16.13	18.19	7.44	5.33	14.41	16.74	
Vanilla + LDS	10.54	8.31	14.14	17.38	6.50	4.67	12.13	15.36	
Vanilla + FDS	11.40	8.97	15.83	18.01	7.18	5.12	14.02	16.48	
Vanilla + LDS + FDS	10.27	8.11	13.71	17.02	6.33	4.55	11.71	15.13	
Ours (best) vs. Vanilla +1.45 +1.21 +2.42 +1.17 +1.11 +0.78 +2.70 +1.61									

Table: Interpolation & extrapolation results on a curated subset of IMDB-WIKI-DIR.

Best results by smoothing both label & feature distributions

References

- Branco, Paula, Luís Torgo, and Rita P Ribeiro (2017). "SMOGN: a pre-processing approach for imbalanced regression". In: First international workshop on learning with imbalanced domains: Theory and applications. PMLR, pp. 36–50.
- Kang, Bingyi et al. (2019). "Decoupling representation and classifier for long-tailed recognition". In: arXiv preprint arXiv:1910.09217.
- Lin, T (2017). "Focal Loss for Dense Object Detection". In: arXiv preprint arXiv:1708.02002.
- Liu, Ziwei et al. (2019). "Large-scale long-tailed recognition in an open world". In: *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 2537–2546.
- Torgo, Luís et al. (2013). "Smote for regression". In: *Portuguese conference on artificial intelligence*. Springer, pp. 378–389.
- Yang, Yuzhe et al. (2021). "Delving into deep imbalanced regression". In: *International conference on machine learning*. PMLR, pp. 11842–11851.