University of Innsbruck, Institute of Ecology, Austria | peng.zhao@uibk.ac.at

Background

Estimates of net ecosystem CO₂ exchange (NEE) have been attracting a lot of attention because of the important role of CO₂ in global climate change. The contribution of advection to CO₂ flux measurements is often ignored in the estimation of NEE, even though some studies reported that more realistic estimates of night-time and daily total NEE could be gathered if horizontal and vertical advection was accounted for.

Objectives

- To quantify the contribution of advection to NEE at grasslands.
- To study the advection flux terms in differently complex terrain types in the Alps.

Conclusions

- Both the horizontal and vertical advection contributed more significantly to the CO₂ flux at night time than at daytime at most sites.
- At the flatter sites, horizontal advection played a more important role than the vertical advection, and vice versa at the steep site.
- The above-canopy advection contributed more to the CO_2 flux than within-canopy advection due to short canopy heights.
- Large variability of NEE measured by the three chambers indicates the challenge of comparing chamber and micrometeorological fluxes resulting from the heterogeneity of the grassland surface.

<u>Acknowledgements</u>

This study is funded by the Austrian National Science Fund (FWF). We thank the colleagues of the Biomet group, Univ. of Innsbruck, and the contribution by KIT/IMK-IFU, and the Forests and Biogeochemical Cycles research group, Research and Innovation Centre, Fondazione Edmund Mach.

References

Aubinet M., et al., 2010. Agricultural and Forest Meteorology 150, 655–664. Hammerle, A. et al., 2007. Boundary-Layer Meteorology 122, 397–416. Lüers, J. et al., 2014. Arbeitsergebnisse 58, 22 pp. Mauder, M. & Foken, T., 2011. Arbeitsergebnisse 46, 58 pp. Siebicke, L. et al., 2012. Theoretical and Applied Climatology 109, 109–131. Wohlfahrt, G. et al., 2008. Journal of Geophysical Research 113, 8110.