(10)
$$T(n) = 3T(\frac{n}{2}) + n^2$$

Solⁿ:
$$T(n) = aT(\frac{n}{b}) + f(n)$$

 $a > 1, b > 1$

On comparing

$$a = 3$$
, $b = 2$, $f(n) = n^2$
Now, $c = \log_b a = \log_2 3 = 1.584$
 $n^c = n^{1.584} < n^2$
 $f(n) > n^c$
 $f(n) > n^c$

(2.)
$$T(n) = 4T(n/2) + n^2$$

Solⁿ: $a \ge 1$, $b \ge 1$
 $a = 4$, $b = 2$, $f(n) = n^2$
 $c = log_2 4 = 2$
 $n^2 = f(n) = n^2$
 $T(n) = f(n^2 | a_0, n)$

$$T(n) = O(n^{2}\log_{2}n)$$

$$(5)T(n) = 16T(\frac{n}{4}) + n$$

$$Sol^{n} = 16, b = 4$$

$$f(n) = n$$

$$c = \log_{4}16 = \log_{4}(4)^{2} = 2$$

$$n^{2} = n^{2}$$

$$f(n) < n^{2}$$

 $\therefore T(n) = O(n^2)$

(3°)
$$T(n) = T(n/2) + 2^n$$

 $Soln_0^n = 1$
 $b = 2$
 $f(n) = 2^n$
 $c = log_0 = log_2 c = 0$
 $n^c = n^c = 1$
 $f(n) = 0(2^n)$

(4.)
$$T(n) = 2^n T(n/2) + n^n$$

 $Sol^n = a = 2^n$
 $b = 2$, $f(n) = n^n$
 $C = log_b = a = log_2 = 2^n$
 $= n$

$$n^{c_3} n^{c_2}$$

... $f(n) = n^{c_2}$

... $T(n) = O(n^2 \log_2 n)$

(6.)
$$T(n) = 2T(n/2) + n\log n$$

 $Soln: a = 2, b = 2$
 $f(n) = n\log n$
 $c = \log_2 2 = 1$
 $\therefore n^c = n^c = n$
Hence, $n\log n > n$
 $\therefore f(n) > n^c$
 $\therefore T(n) = O(n\log n)$

(7)
$$T(n) = 2T(\frac{n}{2}) + n/\log n$$

 Sol^n : $a = 2$, $b = 2$, $f(n) = n/\log n$
 $c = \log_2 2 = 1$
 $\therefore n^c = n^2 = n$

Since,
$$\frac{n}{\log n} < n$$

 $\therefore f(n) < n^c$
 $\therefore T(n) = O(n)$

(9.)
$$T(n) = 0.5 T(\frac{n}{2}) + 1/n$$

Soln: $a = 0.5$, $b = 2$
Since acc. to Master Theorem
 $a \ge 1$, but here a is 0.5
So, we cannot apply Master
Theorem.

(11.)
$$4T(n_2) + logn$$

 Sol^n : $a = 4, b = 2, f(n) = logn$
 $c = log_b a = log_2 4 = 2$
 $n^c = n^2$
 $f(n) = logn$
 $f(n) = logn$
 $f(n) \times n^2$
 $f(n) \times n^2$
 $f(n) \times n^2$
 $f(n) = 0 \cdot n^2$

$$(8.)$$
 $T(n) = 2T(\frac{\eta}{4}) + n^{0.51}$
 $Sol^{n}: a = 2, b = 4, f(n) = n^{0.51}$
 $c = log_{b}a = log_{4}2 = 0.5$
 $n^{c} = n^{0.5}$
 $since, n^{0.5} < n^{0.51}$
 $f(n) > n^{c}$
 $T(n) = O(n^{0.51})$

(10")
$$T(n) = 16T(\frac{n}{4}) + n!$$

Sol": $a = 16$, $b = 4$, $f(n) = n!$
 $c = \log_b a = \log_4 16 = 2$
Now, $n = n^2$
As $n! > n^2$
 $T(n) = O(n!)$

(2)
$$T(n) = sqst(n)T(n/2) + logn$$

Solⁿ: $a = Jn$, $b = 2$
 $\therefore c = log_b a = log_2 Jn = \frac{1}{2} log_2 h$
 $\frac{1}{2} log_2 n < log(n)$
 $\frac{1}{2} log_2 n < log(n)$
 $\therefore f(n) > n^c$
 $\therefore T(n) = O(f(n))$
 $= O(log(n))$

(13.)
$$T(n) = 3T(n/2) + n$$

Soln: $a = 3$, $b = 2$, $f(n) = h$
 $c = log_b a = log_2 3 = l \cdot 5849$
 $\Rightarrow n^c = n^1 \cdot 5849$
 $\therefore n < n^1 \cdot 5849$
 $\Rightarrow f(n) < n^c$
 $T(n) = 0 (n^{1.5849})$

$$T(n) = O(n^{1.5849})$$

$$T(n) = 4T(n/2) + Cn$$

$$Sol^{n} = 4, b = 2$$

$$C = log_{0}a = log_{2}4 = 2$$

$$n^{c} = n^{2}$$

$$Cn < n^{2} (for any constant)$$

$$f(n) < n^{c}$$

$$T(n) = O(n^{2})$$

(17)
$$T(n) = 3T(n/3) + n/2$$

 $Sol^n: a = 3, b = 3$
 $c = log_a b = log_3 3 = 1$
 $f(n) = n/2$
 $\therefore n^c = n^c = n$
As, $M/2 \le n$
 $\therefore f(n) \le n^c$

 $: T(n) = \theta(n)$

(14.)
$$T(n) = 3T(n/3) + sqrt(n)$$

Solⁿ: $a = 3$, $b = 3$
 $c = log_b a = log_3 3 = 1$
 $n^c = n^1 = n$
As, $sqrt(n) < n$
 $f(n) < n^c$
 $f(n) = 0(n)$

(16.)
$$T(n) = 3T(n/4) + nlog n$$

 $Sol^n: a = 3, b = 4, f(n) = nlog n$
 $C = log_b a = log_4 3 = 0.792$
 $n^c = n^{0.792}$
 $n = n^{0.792}$
 $n = n = n = 0$

(18)
$$T(n) = 6T(n/3) + n^2 \log n$$

 $a = 6$, $b = 3$
 $C = \log_b a = \log_3 6 = 1.6309$
 $h^c = n^{1.6309}$
As $h^{1.6309} < n^2 \log_n n$
 $\therefore T(n) = 0 (n^2 \log_n)$

(9.)
$$T(n) = 4T(n_{12}) + n\log n$$

Soln: $a = 4$, $b = 2$, $f(n) = \frac{n}{\log n}$
 $c = \log_b a = \log_2 4 = 2$
 $n^c = n^2$
 $\vdots \cdot \frac{n}{\log n} < n^2$
 $\vdots \cdot T(n) = O(n^2)$

(21.)
$$T(n) = 7T(n/3) + n^2$$

 Sol^m : $a = 7$, $b = 3$, $f(n) = n^2$
 $C = log_b \alpha = log_3 7 = 1.7712$
 $n^c = n^{1.7712}$
 $n^1 = n^{1.7712} < n^2$
 $n^2 = n^{1.7712} < n^2$
 $n^2 = n^{1.7712} < n^2$

(20)
$$T(n) = 64 T(n/8) - n^2 \log n$$

 Sol^n : $a = 64$, $b = 8$
 $c = \log_8 a = \log_8 64 = \log_8 (8)^2$
 $c = 2$
 $\therefore n^c = n^2$
 $\therefore n^2 \log_9 n n^2$
 $\therefore T(n) = O(n^2 \log_9 n)$

(22)
$$T(n) = T(n/2) + n(2-(osn))$$

 Sol^n : $a = 1$, $b = 2$
 $c = log_b a = log_2 l = 0$
 $h^c = h^o = 1$
 $h(2-(osn)) > h^c$
 $T(n) = 0 (h(2-(osn)))$