More Baseline Classifiers

- Isolation forest (100 trees, 0.1 contamination)
- Random forest (100 trees)
 - W. feature importance
- Decision tree classifier

More Baseline Classifiers (cont.)

Datasets	GLADC] IF	RF	DT
MMP	0.696 ± 0.042	0.462 ∓ 0.013	0.372 ∓ 0.005	0.423 ∓ 5.551
HSE	0.618 ± 0.110	0.423 ∓ 0.009	0.557 ∓ 0.005	0.512 ∓ 0.000
p53	0.649 ± 0.216	→ 0.472 ∓ 0.008	0.502 ∓ 0.008	0.589 ∓ 0.000
BZR	0.715 ± 0.067			
DHFR	0.612 ± 0.041			
COX2	0.615 ± 0.044			
ENZYMES	0.583 ± 0.035			
IMDB	0.656 ± 0.023			
AIDS	0.993 ± 0.005	1		
NCI1	0.683 ± 0.011	0.486 ∓ 0.015	0.693 ∓ 0.016	0.663 ∓ 0.013

Feature Importance (NCI1)

RF D1

Feature Importance (p53)

RF DT

Feature Importance (MMP)

RF DT

Feature Importance (HSE)

RF DT

GANs (Brainstorm)

- Existing implementations:
 - MolGAN: https://arxiv.org/abs/1805.11973
 - https://github.com/yongqyu/MolGAN-pytorch
 - GraphGAN: https://ojs.aaai.org/index.php/AAAI/article/view/11872
- Different alternatives:
 - Simply replace graph encoder module from GLADC with custom GAN module and keep the rest intact.
 - We could also avoid computing I2 and I3 losses (latent and contrastive) to keep things simple at first (since we determined that their presence is not significant to the results)
 - After the fake graph is generated, the graph anomaly detection module uses a simple formula to evaluate if the loss is exceptionally higher.
 - Can we use a ML approach for this last step (perhaps using another network).
 - We have a Discriminator from previous module that has learnt to distinguish between real and fake graphs, will that be of help?

