

A reffirgerator working on the Reveresed Carnot Cycle has COP of 4. It works as a heat pump and consumes 1 kw, the heating effect will be	*2/2	
O 4		
35		
① 1		
* HEAT ENGINE WORKS ON WHICH LAW OF THERMODYNAMICS	2/2	
○ FIRST LAW		
SECOND LAW KELVIN PLANK STATEMENT	✓	
SECOND LAW CLAUSIUS STATEMENT		
○ THIRD LAW		
✓ REFRIGERATOR AND HEAT PUMP WORKS ON WHICH LAW OF THERMODYNAMICS	*2/2	
○ FIRST LAW		
SECOND LAW KELVIN PLANK STATEMENT		
SECOND LAW CLAUSIUS STATEMENT	✓	
○ THIRD LAW		

✓ The expression INTEGRAL OF Pdv for obtaining work is applicable to *	2/2
Non flow Reversible Process	✓
Steady flow Reversible Process	
Non flow adiabatic process	
Non flow irreversible process	
None of the above	
1 and 2 both	
Other:	
The Value of Universal Gas Constant is *	0/2
8314.3 Nm/Kg moleK	
287 Nm/kgK	
8.3143 KJ/Kgmole K	×
287 KJ/KgK	
Other:	
Correct answer	
8314.3 Nm/Kg moleK	
Feedback COP OF REF +1 = COP OF HP	
COLOL NET TI - COF OF TIF	

✓ APPRAISE ISOBARIC PROCESS *	1/1
PRESSURE CONSTSNT	~
O VOLUME CONSTANT	
ENTHALPY CONSTANT	
ENTROPY CONSTANT	
Other:	
✓ APPRAISE ISOCHORIC PROCESS *	1/1
O PRESSURE CONSTSNT	
O VOLUME CONSTANT	✓
O ENTHALPY CONSTANT	
ENTROPY CONSTANT	
Other:	
The Value of GENERAL GAS CONSTANT FOR AIR IS *	0/2
The Value of GENERAL GAS CONSTANT FOR AIR IS * 8314.3 Nm/Kg moleK	0/2
	0/2
8314.3 Nm/Kg moleK	0/2
8314.3 Nm/Kg moleK287 Nm/kgK	0/2
8314.3 Nm/Kg moleK287 Nm/kgK8.3143 KJ/Kgmole K	
 8314.3 Nm/Kg moleK 287 Nm/kgK 8.3143 KJ/Kgmole K 287 KJ/KgK 	
 8314.3 Nm/Kg moleK 287 Nm/kgK 8.3143 KJ/Kgmole K 287 KJ/KgK Other: 	
 8314.3 Nm/Kg moleK 287 Nm/kgK 8.3143 KJ/Kgmole K 287 KJ/KgK Other: Correct answers	
 ■ 8314.3 Nm/Kg moleK □ 287 Nm/kgK □ 287 KJ/KgK □ 0ther: Correct answers ■ 8314.3 Nm/Kg moleK ■ 287 Nm/kgK 	
 ■ 8314.3 Nm/Kg moleK □ 287 Nm/kgK □ 8.3143 KJ/Kgmole K ■ 287 KJ/KgK □ 0ther: Correct answers ■ 8314.3 Nm/Kg moleK ■ 287 Nm/kgK Feedback	
 ■ 8314.3 Nm/Kg moleK □ 287 Nm/kgK □ 287 KJ/KgK □ 0ther: Correct answers ■ 8314.3 Nm/Kg moleK ■ 287 Nm/kgK 	

 $This \ content \ is \ neither \ created \ nor \ endorsed \ by \ Google. \ \underline{Report \ Abuse} - \underline{Terms \ of \ Service} - \underline{Privacy \ Policy}$

Google Forms