Análise de Algoritmos

Slides de Paulo Feofiloff

[com erros do coelho e agora também da cris]

Introdução

CLRS 2.2 e 3.1 AU 3.3, 3.4 e 3.6

Essas transparências foram adaptadas das transparências do Prof. Paulo Feofiloff e do Prof. José Coelho de Pina.

Exemplo: número de inversões

Problema: Dada uma permutação p[1...n], determinar o número de inversões em p.

Uma inversão é um par (i, j) de índices de p tal que i < j e p[i] > p[j].

Entrada:

Exemplo: número de inversões

Problema: Dada uma permutação p[1...n], determinar o número de inversões em p.

Uma inversão é um par (i, j) de índices de p tal que i < j e p[i] > p[j].

Entrada:

Saída: 11

Inversões:
$$(1,3)$$
, $(2,3)$, $(4,5)$, $(2,6)$, $(4,6)$, $(5,6)$, $(4,7)$, $(4,8)$, $(7,8)$, $(4,9)$ e $(7,9)$.

Número de inversões

```
CONTA-INVERSÕES (p, n)
1 c \leftarrow 0
2 para i \leftarrow 1 até n-1 faça
3 para j \leftarrow i+1 até n faça
4 se p[i] > p[j]
5 então c \leftarrow c+1
6 devolva c
```

Número de inversões

```
CONTA-INVERSÕES (p, n)
1 c \leftarrow 0
2 para i \leftarrow 1 até n-1 faça
3 para j \leftarrow i+1 até n faça
4 se p[i] > p[j]
5 então c \leftarrow c+1
6 devolva c
```

Se a execução de cada linha de código consome 1 unidade de tempo, o consumo total é ...

Se a execução de cada linha de código consome 1 unidade de tempo, o consumo total é:

linha	todas as execuções da linha		
1	=	1	
2	=	n	
3	=	$\sum_{i=2}^{n} i = (n+2)(n-1)/2$	
4	=	$\sum_{i=1}^{n-1} i = n(n-1)/2$	
5	\leq	$\sum_{i=1}^{n-1} i = n(n-1)/2$	
6	=	1	
total	<u> </u>	$(3/2)n^2 + n/2 + 1$	

Se a execução de cada linha de código consome 1 unidade de de tempo, o consumo total é:

linha	todas as execuções da linha		
1	=	1	
2	=	n	
3	=	$\sum_{i=2}^{n} i = (n+2)(n-1)/2$	
4	=	$\sum_{i=1}^{n-1} i = n(n-1)/2$	
5	\leq	$\sum_{i=1}^{n-1} i = n(n-1)/2$	
6	=	1	
total	<u> </u>	$(3/2)n^2 + n/2 + 1$	

O algoritmo CONTA-INVERSÕES consome não mais que $(3/2)n^2 + n/2 + 1$ unidades de tempo.

Se a execução de cada linha de código consome um tempodiferente, o consumo total é:

linha	todas as execuções da linha		
1	=	1	$\times t_1$
2	=	n	$\times t_2$
3	=	(n+2)(n-1)/2	$\times t_3$
4	=	n(n-1)/2	$\times t_4$
5	\leq	n(n-1)/2	$\times t_5$
6	=	1	$\times t_6$
total		2	

เบเสเ

Se a execução de cada linha de código consome um tempo diferente, o consumo total é:

linha todas as execuções da linha

1
 =
 1

$$\times t_1$$

 2
 =
 n
 $\times t_2$

 3
 =
 $(n+2)(n-1)/2$
 $\times t_3$

 4
 =
 $n(n-1)/2$
 $\times t_4$

 5
 $\leq n(n-1)/2$
 $\times t_5$

 6
 =
 1
 $\times t_6$

total
$$\leq \left(\frac{t_3+t_4+t_5}{2}\right)n^2 + \left(t_2 + \frac{t_3-t_4-t_5}{2}\right)n + (t_1-t_3+t_6)$$

= $c_2n^2 + c_1n + c_0$,

onde c_2 , c_1 e c_0 são constantes que dependem da máquina.

Se a execução de cada linha de código consome um tempo diferente, o consumo total é:

linha todas as execuções da linha

1	= 1	$\times t_1$
2	= n	$\times t_2$
3	= (n+2)(n-1)/2	$\times t_3$
4	= n(n-1)/2	$\times t_4$
5	$\leq n(n-1)/2$	$ imes t_5$
6	= 1	$\times t_6$

total
$$\leq \left(\frac{t_3+t_4+t_5}{2}\right)n^2 + \left(t_2 + \frac{t_3-t_4-t_5}{2}\right)n + (t_1-t_3+t_6)$$

= $c_2n^2 + c_1n + c_0$,

onde c_2 , c_1 e c_0 são constantes que dependem da máquina. n^2 é para sempre! Está nas entranhas do algoritmo!

Notação O

Intuitivamente...

- $O(f(n)) \approx funções que não crescem mais rápido que <math>f(n)$
 - \approx funções menores ou iguais a um múltiplo de f(n)

$$n^2$$
 $(3/2)n^2$ $9999n^2$ $n^2/1000$ etc.

crescem todas com a mesma velocidade

Notação O

Intuitivamente...

- $O(f(n)) \approx funções que não crescem mais rápido que <math>f(n)$
 - \approx funções menores ou iguais a um múltiplo de f(n)

$$n^2$$
 $(3/2)n^2$ $9999n^2$ $n^2/1000$ etc.

crescem todas com a mesma velocidade

- $n^2 + 99n$ é $O(n^2)$
- $33n^2$ é $O(n^2)$
- $9n + 2 \text{ \'e } O(n^2)$
- $0,00001n^3 200n^2$ não é $O(n^2)$

Definição

Sejam T(n) e f(n) funções dos inteiros nos reais. Dizemos que T(n) é O(f(n)) se existem constantes positivas c e n_0 tais que

$$T(n) \leq c f(n)$$

para todo $n \ge n_0$.

Mais informal

T(n) é O(f(n)) se existe c>0 tal que

$$T(n) \leq c f(n)$$

para todo n suficientemente GRANDE.


```
T(n) é O(f(n)) lê-se "T(n) é O de f(n)" ou "T(n) é da ordem de f(n)"
```

T(n) é O(f(n)) lê-se "T(n) é O de f(n)" ou "T(n) é da ordem de f(n)"

Exemplo 1

 $10n^2 \, \text{\'e} \, \mathrm{O}(n^3)$.

T(n) é O(f(n)) lê-se "T(n) é O de f(n)" ou "T(n) é da ordem de f(n)"

Exemplo 1

 $10n^2 \, \text{\'e} \, \mathrm{O}(n^3)$.

Prova: Para $n \ge 0$, temos que $0 \le 10n^2 \le 10 n^3$.

T(n) é O(f(n)) lê-se "T(n) é O de f(n)" ou "T(n) é da ordem de f(n)"

Exemplo 1

 $10n^2 \, \text{\'e} \, \mathrm{O}(n^3)$.

Prova: Para $n \ge 0$, temos que $0 \le 10n^2 \le 10 n^3$.

Outra prova: Para $n \ge 10$, temos $0 \le 10n^2 \le n \times n^2 = 1n^3$.

T(n) é O(f(n)) lê-se "T(n) é O de f(n)" ou "T(n) é da ordem de f(n)"

Exemplo 1

 $10n^2 \, \text{\'e} \, \mathrm{O}(n^3)$.

Prova: Para $n \ge 0$, temos que $0 \le 10n^2 \le 10 n^3$.

Outra prova: Para $n \ge 10$, temos $0 \le 10n^2 \le n \times n^2 = 1n^3$.

Exemplo 2

 $\lg n \in O(n)$.

T(n) é O(f(n)) lê-se "T(n) é O de f(n)" ou "T(n) é da ordem de f(n)"

Exemplo 1

 $10n^2 \, \text{\'e} \, \mathrm{O}(n^3)$.

Prova: Para $n \ge 0$, temos que $0 \le 10n^2 \le 10 n^3$.

Outra prova: Para $n \ge 10$, temos $0 \le 10n^2 \le n \times n^2 = 1n^3$.

Exemplo 2

 $\lg n \in O(n)$.

Prova: Para $n \ge 1$, tem-se que $\lg n \le 1 n$.

Mais exemplos

Exemplo 3

$$20n^3 + 10n \log n + 5 \text{ \'e } O(n^3)$$
.

Mais exemplos

Exemplo 3

 $20n^3 + 10n \log n + 5 \in O(n^3)$.

Prova: Para $n \ge 1$, tem-se que

$$20n^3 + 10n \lg n + 5 \le 20n^3 + 10n^3 + 5n^3 = 35n^3.$$

Mais exemplos

Exemplo 3

$$20n^3 + 10n \log n + 5 \text{ \'e } O(n^3).$$

Prova: Para $n \geq 1$, tem-se que

$$20n^3 + 10n \lg n + 5 \le 20n^3 + 10n^3 + 5n^3 = 35n^3.$$

Outra prova: Para $n \ge 10$, tem-se que

$$20n^3 + 10n \lg n + 5 \le 20n^3 + n n \lg n + n \le 20n^3 + n^3 + n^3 = 22n^3.$$