Medical Image Analysis

Guest Lecture, 2018-10-04

Anders Heyden

Centre for Mathematical Sciences

Lund University

Advertisement

- FMAN30
- Medical Image Analysis
- 7.5hp
- Study period 2
- 4 hand-ins
- http://www.maths.lth.se/course/medim/2018/

Learning objectives

- Describe different image acquisition techniques used in medical imaging, e.g. X-Ray, CT, MR, Ultrasound, PET, Scint and SPECT.
- Explain and use medical image analysis algorithms to perform registration, segmentation and classification
- Decide on appropriate algorithms for solving medical image analysis problems
- Implement automated medical analysis systems
- Validate the results of automated medical analysis systems

Research on Medical Image Analysis

- Mathematical imaging group
 - http://www2.maths.lth.se/matematiklth/vision/
- Cardiac MR Group
 - http://www.med.lu.se/klinvetlund/klinisk_fysiologi/forskning/c ardiac_mr_group

Examples

Detection and Diagnosis of Kidney Lesions Scandinavian Conference on Image Analysis, 2011

	LDA	QDA	ANN
Area under ROC curve (AUC)	0.964	0.935	0.960
Sensitivity (%)	96.5	96.5	96.5
Specificity (%)	84.8	61.2	83.4
Positive Predictive value (%)	35.0	17.4	32.9
Negative Predictive value (%)	99.7	99.5	99.6
Mis-classification rate (%)	14.2	36.0	15.6

Diagnosis of Pulmonary Embolism

European Journal of Nuclear Medicine, 2000

Segmentation – shape variation methods Understanding both appearance and shape

Segmenting white blood cells

Septum segmentation in ultrasound images

Fig. 2. The inter-ventricular septum marked with a yellow line obtained with our shortest path segmentation

Fig. 10. Assessment: bulges towards the right ventricle. s=0.896.

Segmentation of the Zona Pellucida

SCINT - Heart

Segmentation results

Exini Diagnostics

MR – knee injuries

SPECT – brain (dementia)

Gated SCINT - heart

Longitudinal expansion of left ventricle

Digital Pathology (prostate biopsies)

Digital stain separation to reduce variations between different labs

Typical stain variation:

Digital stain separation:

This makes it possible to normalize the stains individually, thus making different stain concentrations look similar.

Deep Learning Approach (CNN)

Idea for Deep Learning:

Let the computer itself optimize an algorithm by training on a large dataset.

Typically optimizes 100 000 to 100 000 000 parameters.

Convolutional Neural Networks specially designed for image analysis.

Segmentation Results

Segmentation into: Background, Stroma, Epithelial Cytoplasm and Nuclei

Original Images:

Ground Truth Segmentation:

Results:

Classification Results

Classification into four classes: Benign, Gleason 3, Gleason 4 and Gleason 5

Accuracies when RGB images are used as input:

Validation data Training data	Dataset A	Dataset B
Dataset A	93 %	32 %
Dataset B	60 %	75 %

Accuracies when stain separated images are used as input:

Validation data Training data	Dataset A	Dataset B
Dataset A	91 %	46 %
Dataset B	60 %	77 %

Accuracies for when the datasets are combined are 84 % for both types of inputs.

Details on Registration

RANSAC-based registration

- Given a tentative list of point correspondences and a geometric transformation
- Select at random a minimum number of point correspondences needed to determine the transformation
- Calculate the transformation
- Determine the number of inliers and outliers
- Repeat a pre-determined number of iterations
- Estimate the best transformation from all inliers in the set containing most inlieers

Euclidean (rigid)

- Two point correspondences needed
- The rotation angle can be determined by the angle between the lines between the points
- The translation can be determined from a linear system of equations

Similarity (rigid+scale)

- Two point correspondences needed
- The scale can be determined from the quotient of the distances between the points
- The rotation angle can be determined by the angle between the lines between the points
- The translation can be determined from a linear system of equations

Affine

- Two affine transformation contains 6 parameters
- Thus three point corresondences are needed
- The transformation can be obtained directly from a linear set of equations obtained from y=Ax+t for the three different point correspondences.

