The basics: 04 grouped analysis

Ari Anisfeld

9/8/2020

Questions

group_by and summarize

1. midwest is a data set that comes bundled with tidyverse. In an earlier lab you calculated the population of Ohio in the following way.

```
midwest %>%
filter(state == "OH")
summarize(total_population = sum(poptotal))
```

With group_by you can calculate the total population of all the states at once!

```
midwest %>%
group_by(...) %>%
summarize(total_population = sum(poptotal))
```

- 2. For each state in the midwest data, calculate total area.
- 3. For each state in the midwest data, calculate the proportion of counties that are in a metro area (inmetro).¹
- 4. For each state, calculate the proportion of people with a college degree and also with high school degrees.
 - First, use mutate to calculate the number of people with the degree type.
 - Then, use group_by and summarize to calculate the proportions.

group_by and mutate

1. Add a column to midwest called pop_state that equals the state population. Compare your result to what you calculated early.

```
# fill in the ... with approriate code
midwest %>%
  group_by( ... ) %>%
  mutate(pop_state = ... )
```

2. Building off the previous question, create a column that shows the number of people living below the poverty line (percbelowpoverty) in each county. Look at your results to make sure they make sense.

¹Recall that the mean() of a column of 0 and 1s tell you the proportion of 1s.

count

1. Reproduce this table using count().

2. Reproduce this table using add_count().

```
## # A tibble: 6 x 3
## # Groups: inmetro [2]
    state inmetro
##
    <chr>
           <int> <int>
## 1 IL
             0 287
## 2 IL
               0 287
## 3 IL
              0 287
## 4 IL
              1 150
## 5 IL
               0
                  287
## 6 IL
               0 287
```

```
# fill in the ... with the appropriate code.
midwest %>%
    select(state, inmetro) %>%
    ... %>%
    head()
```

1. Reproduce the following table

```
## # A tibble: 10 x 3
##
     state inmetro
##
     <chr> <int> <int>
## 1 IL
             0
                    74
## 2 IL
                1
                    28
## 3 IN
                0
                    55
## 4 IN
                1
                    37
## 5 MI
                0
                    58
## 6 MI
                1 25
## 7 OH
                0
                    48
## 8 OH
                    40
                1
## 9 WI
                    52
## 10 WI
                1
                    20
```

Solutions

```
1. midwest %>%
    group_by(state) %>%
    summarize(total_population = sum(poptotal))
```

```
2. midwest %>%
    group_by(state) %>%
    summarize(total_area = sum(area))
3. midwest %>%
    group_by(state) %>%
    summarize(prop_in_metro = mean(inmetro))
4. midwest %>%
    mutate(pop_with_hs = perchsd * poptotal,
           pop_with_college = percollege * poptotal) %>%
    group_by(state) %>%
    summarize(total_population = sum(poptotal),
              perc_with_hs = sum(pop_with_hs)/total_population,
              perc_with_college = sum(pop_with_college)/total_population,)
  You might have been tempted to do it in the following way, but this underestimates the statewide ra
    midwest %>%
      group_by(state) %>%
```

group_by and mutate

summarise(perc_with_hs = mean(perchsd))

```
1. midwest %>%
    group_by(state) %>%
    mutate(pop_state = sum(poptotal))
```

2. A careful analyst would say this is wrong, because we do not know the poverty status of each and every person in the counties (see percpovertyknown). A challenge problem is to find the lower and upper bound on the number of people with poverty per county.

count

```
1. midwest %>%
    count(inmetro)
  ## # A tibble: 2 x 2
  ##
       inmetro
  ##
         <int> <int>
  ## 1
             0
                  287
  ## 2
             1
                  150
2. # fill in the ... with the appropriate code.
   midwest %>%
      select(state, inmetro) %>%
```

add_count(inmetro) %>% head()

3.	##	# 1	\ tibb]	Le: 10	X	3
	##		state	inmetr	0	n
	##		<chr>></chr>	<int< th=""><th>></th><th><int></int></th></int<>	>	<int></int>
	##	1	IL		0	74
	##	2	IL		1	28
	##	3	IN		0	55
	##	4	IN		1	37
	##	5	MI		0	58
	##	6	MI		1	25
	##	7	OH		0	48
	##	8	OH		1	40
	##	9	WI		0	52
	##	10	WI		1	20