Recor from Honday

- (I) Numerical (in portionar stochastic) methods are necessary to determine the properties of interacting many-body generaline systems, because pert. Hierry and saddle paint approximations Can fail (and they do in many interesting coses).
- (II) Stochostic methods we the path sitegral formolation of QM. This means that appetation values are computed like so:

$$\langle O \rangle = \frac{1}{2} \int D[x(z)] e^{-\sum_{E} [x(z)]} O[x(z)] e^{-\sum_{E} [x(z)]}$$
Example: (B)

For each two-

For each trajectory we compute $\frac{1}{B} \int_{0}^{B} \chi^{2}(z) dz$ and odd it with weight lesp $\{-S_{E}[x(c)]\}$

Gebudation right V

14
I Stochastic methods are based on the central limit theorem
Example: Causider y distributed according to P(y)
P(y)>0 Pry A (See plats)
Example: Causider y distributed according to P(y) P(y)>0 (See plots)
Drawing samples of y according to Ply) and putting them in bins according to their value will eventually reproduce Ply) as a histogram.
Now consider (0) = Joy O(y) P(y) = "True mean"
62 = (192) - (0)2 = "True Laughed Leeve for " (com.)
Question: Can I approximate $\langle 0 \rangle_{N} 12 O(y_{N}) = \overline{O}$ taking y distributed Nameles according to $P(y)$? (See plots)
(See Phots)
P(O)) (arge Nourples. Western of Surples.
arge Namples. Whyangles

 $\langle 0 \rangle \simeq \bar{0} \pm \frac{\delta}{\bar{W}_{suples}}$

We don't know the true (0), so this fluorem fells us how to estimate it.

We also don't know the true σ , but we can estimate it as $\sigma \simeq \overline{0^2} - \overline{0}^2$

In QM, where
$$\langle 0 \rangle = \frac{1}{2} \int \mathcal{D}[\chi(z)] e^{-S_{\overline{z}}[\chi(z)]} \mathcal{O}[\chi(z)] = \int \mathcal{D}[\chi(z)] \mathcal{D}[\chi(z)] \mathcal{D}[\chi(z)] \mathcal{D}[\chi(z)]$$

We can etemate

$$\langle O \rangle \simeq \overline{O} = \frac{1}{N_{\text{surples}}} \sum_{N=0}^{N_{\text{surples}}} \langle O[x_{ij}^{*}] \rangle$$

P[xie]= e - SE[xiz)]

Formember: This works only if

P is well defend as a probability: PRO >, 0 "postive semider"

[PRODOX = 1 "normalizable" s

Hain problem: How to generate configurations distributed according to P[x(2)].

-> Sampling strategies

1 Samo	la. 3	tratam
THE STREET	and 8	manedies
	~y~	~~

· Had-bath

· Hobropolis — typical for Ising model! — Markon drain - based

· Hybrid

All of them can generate good samples if used property.

- Equilobrated

· Uncorrelated

