ALWNI UMITI Sulle mappe Non è possibile avere coppie diverse con medesime diare, come per exemplo è necessario fore per una coppia (costo, prodotto). É possibile modificare majori fore un dence di coppicion base alla chiavi per al esempio, fore RANGE QUERY per KICK & KZ. mappe ordinate: sono definiti secondo ordinantento totale ha senso definire quind: le interrogazioni di troo nearest neighbour -dato k dare la chiare più viona di valore max < x - dato k daro la chiare minima che è » k Definire le operazioni: - get (k): restituisce la coppia, o la coppie, con chare. K - put (k,0): insense la coppia (k,0) - remove (k): n'impove la cappia (a la cappie) con chave k - subMap(k, ,kz) restituisce una mappa con tutte
le chiai k, < K < Kz VANTAGGI SVANTAGO oil set he costo O(logn) el'agrunte he costo O(n)

per marca binaria
-possibilità di fere submap

	7																			
50	16	May	0:																	
	1)	bn	ove	ام	200	1510N	e p	015	a	Sir	rst	m		ì;	=	G	nd	(K)	
							-											-	′	
	2)	Vr	صدد	pc	5,30	one hyher	014 Entro	a 1 (k z	્રે ઇડ .)	itra		Ĺ.	2 F	Fr	vq(K	۷)			
	3)	re	stik	rre	O	orenor	٠. ١	majoj	,)0.	Con	en	tru	٢	٤,			,1			
					,	0, 6 0,		-,			O .,				,	,	د ۲			
		J1		- t	(1/)	G														
		V(Z)	rort	2017	ı(k) c)	1/res	stitu	SCR	00	ان ی	tm	e la	emc	nta	3.0	10	^	~ A P	20	s K
		w	hole	(j.	s, ze()-189	ex	== to	xble	[i].g	ct Ke	y())			K	,) () (
			٠, ١	. l																
		2 re	tum	<u> </u>																
		7																		
ريا	1	1	ē,	cost	0 e	levati	6 0	1	ins	ren m	ens	٤	ca	ŊĊ	داإ	42	ıor	٠ <u>.</u>		
		とり) , 1	trovo	Vη	imp	lener	112	rich	e p	10		Hic	ر ۱۵ د	te	•				

ALBER BINARY d. RICERCA (BST) Albero binario i cui nodi contenzono coppie CHIEVE - VALORE. La proprietà delle bet è che, se vi e a sono vispoettivamente. Il fissio sinistro e destro di un nodo u, allora $\kappa e y(v) \leq \kappa e y(u) \leq \kappa e y(w)$ N.B. i nodi pro csterni henno associati Nucu, la vicerca di una chave dirento facile, in quanto s. soguono o percors: secondo la proprietà. Les Search() l'assinta di una chieve ourriverà sempre su un nodo "fostia". Si inscrisce il nodo e lo si espande RIMORETONI Corco se la chare k esiste sull'albero. Se esiste possiamo basarci su 3 possibilità: · Chari esterne · chime v he come follo una folla w · i fisti di V sono INTERNI

per chave esterne basta climinare la chiare. Sc la chrave e esterna, e possibile usare successor, scaniziando le chrais - trova il nodo w con chiace immediatamente Successiva a K (successor (le))
- Copia Key (w) e valore in v - rimuou w c il fisho sinistro. es. remove (3) - successor (3) = succ. - find(3) = node node: key = Succ. key nove. value .. - succe Remove. Prestazioni O(h), con h l'alkeza dell'albera. Se he nlog si parls di AVE Predicessor e successor lidea del predicessor, successor è simmetrica, à quella che data la chave k, il suo predicessore e rel sottoalboro sinistro, se esso he chiau massione di K. Se invece la chae e massione del nodo visitato allora :1 predocessore può trovarsi nell'alsero destro soco so contiene una chiare minore o usuale alla se alternati c proprio il nodo stesso

Sub Map Alaprithm subMap (v, K, Kz, Suffer) { if (v==null) return; · (K, > V. Key) sub Map (v. right Child (), K. Kz, buffer); else f subMap (V. left Child (), K, Kz, Suffer) if (K2 >, V. KC4) { buffer add (v. pair); submap (v. njhtchild(), k, kz, buffer). La visita de poò rendere in vocita, una visita ordinata, in mamere crescente è la visita sinneticica Come si è detto, l'efficienza delli algoritmi dipende per d, più dall'alteradell'albero, che nul caso missone sorà logn, mo nul caso pograe anche n JUA 02U C-

AVL trees Si usa un fattore d. bilanciamento B(v) di un nodo V, per capire. B(v) = height (v. left) - height (v. right) un albero s, dice BILANCIATO IN AUTERA se osni nodo V ha fattore d, bilancamento (pro) } E in gamale tenuto come record dentro le informationi del Proposizione L'alterza d. un albero AVL ad n nodi e los(n) dim. indico con h(h) il nomero minimo di nodi di un alsero AVL di altezza h. S. in the osservando che h(1)=1 porche un nodo di altere 1 ha sentre 1 solo nodo, e h(2), 2 porche un ave bilandato deve avere ALMENO 2 nodi. Ora un albero AVL con il numero minino di nodi e di altersa h > 3 e' tale che ontramó: : suo: sottoalteri Sono AUL con numaro maimo di nodi · 1 d alterra h-1 } Gattore d. Gilancorrento ≤ 1 • 1 radice Ly MINIMO 1, MASSIMO Quind, $h = \begin{cases} h & \text{per } h \leq 2 \\ h & \text{her} \end{cases} + n(h-2)$ fibonacci!

17 1210 a costivire limiti superon.
n(h-1) > n(h-2)
n(h) > 2n(h-2) <
h(h) > 2(2 h(h-4))
$h(n) > 2^{i} n(h-2i)$ $h = 1$ $h(n) > 2^{i} n(h-2i)$ $h = 1$ $h(n) > 2^{2}$
Faccio : los di entramsii ; member $\log(h(n)) > \frac{h}{2} - 1$
=> h < 2 log(h(n)) + 2 L) l'albero AVL che momorizza n voi hz un altezza mnore di 2 log(n) + 2