

Aprendizado de Máquina Aula 7.4 - Algoritmos de agrupamento

Adriano Rivolli

rivolli@utfpr.edu.br

Especialização em Inteligência Artificial

Universidade Tecnológica Federal do Paraná (UTFPR) Câmpus Cornélio Procópio Departamento de Computação

Conteúdo

- 1 K-means
- 2 Hierárquico
- 3 DBSCAN

Visão geral dos métodos

Fonte: https://scikit-learn.org/stable/modules/clustering.html

×

K-means

Visão geral

- Algoritmo mais popular e amplamente utilizado
- Baseado em centroide
- O usuário define o número de clusters
- É um algoritmo iterativo que gera grupos sem sobreposição
- Características principais:
 - Simplicidade
 - Velocidade
 - Escalabilidade

×

Etapas do algoritmo

- Inicialização
 - Número de grupos
 - Inicializa os centroides de modo aleatório
- Atribuição
 - ► Calcula a distância de todos os pontos para o centroide
 - Atribui cada instância para o centroide mais próximo
- Alteração
 - Recalcula os centroides conforme as instâncias de cada grupo
 - ▶ Repete a Etapa 2 e 3 até a convergência
- Convergência
 - Não há mais alterações dos centroides
 - Número máximo de iterações

Visualização

Fonte:

https://www.learnbymarketing.com/wp-content/uploads/2015/01/

Exemplos

- Ferramenta de visualização:
 - https://www.naftaliharris.com/blog/ visualizing-k-means-clustering/
- Agrupamento do dataset Iris:
 - https://scikit-learn.org/stable/auto_ examples/cluster/plot_cluster_iris.html
- Agrupamento do dataset Digitos:
 - https://scikit-learn.org/stable/auto_ examples/cluster/plot_kmeans_digits.html

Possíveis problemas

Soluções

- Redução do espaço das características
- Seleção do número de grupos adequadamente
- Usar diferentes inicializações

Como escolher o número correto de k?

- Método da Silhouette
 - ► Calcular a medida para diferentes valores de k
 - Usar o k que resulta no mais alto valor
- Se os resultados forem ruins, considerar usar outro método

×

Vantagens e desvantagens

- Simplicidade
- Obtém grupos bem separados
- Eficiente mesmo para grandes datasets

- Sensível à inicialização (não determinístico)
- Dificuldade com grupos não esféricos
- Grupos desbalanceados
- Por se tratar de um algoritmo guloso pode convergir a um mínimo local

Variações

■ K-means++

► Inicializa os centroides de tal maneira que eles fiquem distantes uns dos outros

K-Medoides

- ► Ao invés de usar um centroide usa um medoide
- Um medoide é um ponto real existente no dataset

■ Mini-batch K-means

- Utiliza subconjuntos dos dados para calcular os grupos
- As instâncias são amostradas aleatoriamente a cada iteração

>

×

Hierárquico

Introdução

- Uma família de métodos que cria grupos aninhados
- O agrupamento pode ser visualizado no formato de uma árvore (dendrograma)
- A raiz da árvore corresponde a um grupo com todas as instâncias
- As folhas correspondem as instâncias individuais

Dendrograma

Fonte: Autoria própria

Abordagens

■ Aglomerativa

- Cada instância é considerada um grupo
- A cada etapa une os dois grupos mais próximos

Divisiva

- ► Todo o conjunto é considerado um grupo
- ▶ A cada etapa divide-se o grupo em duas partes

Calcular a distância entre grupos

Fonte: FACELI, K.; LORENA, A. C.; GAMA, J.; ALMEIDA, T. A; CARVALHO, A. C. P. L. F. Inteligência Artificial: Uma abordagem de Aprendizado de Máquina. 2. ed., Rio de Janeiro: LTC, 2022.

Ligações

- Ligação mínima (single linkage)
 - ▶ Menor distância entre os membros de 2 grupos
 - Produz grupos conectados (bom para formatos não elípticos)
 - Suscetível a ruídos e outliers
- Ligação máxima (complete linkage)
 - ▶ Maior distância entre os membros de 2 grupos
 - Produz grupos mais compactos, porém desbalanceados
 - Menos suscetível a ruídos e outliers
- Ligação média (average linkage)
 - Distância média entre os membros de 2 grupos
 - Meio-termo entre as 2 abordagens anteriores

Ligações

- Ligação Centroide (centroid linkage)
 - Calcula a distância entre os dois centroides
- Ligação Ward (Ward linkage)
 - Minimiza a soma das distâncias entre os pontos e o centroide
 - Mede o quanto se aumenta de variabilidade ao unir os grupos
 - Essa é a mesma abordagem implícita utilizada pelo K-means

×

Ligações (comparação)

Determinando o número de grupos

- Inspeção visual
 - Altura das junções
 - ► Forma do dendrograma
- Critério de qualidade
 - Otimização de uma medida de validação interna/externa

Vantagens e desvantagens

- Visualização intuitiva
- Escolhe o número de grupos depois
- Flexível para diferentes formas
- Útil para análise de dados

- Computacionalmente mais caro
- Sensível a ruídos e *outliers*
- Depende da escolha da medida de ligação

Variações

- Adicionar restrições nas ligações
 - Definir uma matriz com as instâncias que podem ser conectadas
 - Definir outras regras de ligações
- Bisecting K-means
 - Uma variação que roda k-means combinado com o agrupamento hierárquico

DBSCAN

Introdução

- D ensity-B ased S patial C lustering of A pplications with N oise
- Encontra grupos com alta densidade de amostras separados por regiões de baixa densidade
- Encontra qualquer forma no espaço
- Robusto a ruídos e *outliers*
 - A abordagem permite que instâncias não sejam agrupadas

Core point

- Alta densidade:
 - O raio de um ponto central contém um número mínimo de amostras
- Um grupo é definido por:
 - ▶ Um conjunto de pontos centrais
 - Um conjunto de pontos que estão no raio de um ponto central (border point)

Ruídos

- Pontos que não ponto central e nem ponto de borda
- Pontos que não fazem parte do raio de nenhum ponto central
- Estes pontos não fazem parte de nenhum grupo
- São considerados *outliers*

Hiperparâmetros

- **■ Eps** (*epsilon*)
 - A distância máxima entre duas amostras para que uma seja considerada vizinha da outra
- Min samples
 - O número de amostras (ou peso total) em uma vizinhança para que um ponto seja considerado como ponto central.

Epsilon

- A análise do valor de k obtido pode indicar uma boa escolha deste hiperparâmetro
- Valores pequenos podem fazer com que a maioria dos pontos de dados sejam classificados como ruído
- Valores grandes podem fazer com que *clusters* diferentes se fundam, reduzindo a capacidade de detectar estruturas de cluster mais refinadas

Minímo de instâncias

- Controla o quão tolerante o algoritmo é em relação ao ruído
- Valores pequenos podem levar à identificação de mais clusters, aumentando a sensibilidade ao ruído
- Valores grandes tornam o algoritmo mais robusto ao ruído, mas podem falhar na identificação de clusters menores
- Um ponto de partida é a dimensionalidade do conjunto de dados mais um ou dois

Etapas do algoritmo

- Identificar os pontos centrais, pontos de bordas e ruídos
- Formar grupos ao redor dos pontos centrais
- Associar os pontos de bordas aos seus respectivos grupos
- Marcar os pontos de ruídos

```
Simulador: https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/
```


Vantagens e desvantagens

- Ótimo para grupos de alta versus baixa densidade
- Grupos em formato arbitrário
- Robustez para *outliers* e ruído
- Não requer a escolha de k
- Usado para detecção de anomalias
- Determinístico

- Dificuldade em encontrar clusters de densidades variadas
- Sensibilidade à escolha dos hiperparâmetros
- Desafios com dados de alta dimensão

Variações

■ HDBSCAN

► Explora diferentes escalas de densidade enquanto o DBSCAN é globalmente homogêneo

OPTICS

É considerado uma generalização do DBSCAN, usando uma faixa de valores eps