

Sequence and Series

CONTENTS

Part-1 :	Definition of Sequence	3-2F	to 3-4F
Part-2 ;	Tests for Convergence	3-4F	to 3-9F

Part-3: Fourier Series 3-9F to 3-19F

Half Range Fourier Sine 3-19F to 3-26F and Cosine Series

3-2 F (Sem-2)

Sequence and Series

PART-1

Definition of Sequence and Series with Examples, Convergence of Sequence and Series.

CONCEPT OUTLINE

Sequence : An ordered set of real number $a_1, a_2, a_3, ..., a_n$ is called a sequence and is denoted by (a_n) . If the number of terms is unlimited, then the sequence is said to be an infinite sequence and a_n is its general

Series : If $u_1, u_2, u_3, \dots, u_n, \dots$ be an infinite sequence of real numbers, then

 $u_1+u_2+u_3+.....+u_n+.....\infty$ is called an infinite series. An infinite series is denoted by Σu_n and the

sum of its first n terms is denoted by s_n . Convergence, Divergence and Oscillation of a Sequence:

If $\lim_{n \to \infty} a_n = l$ is finite and unique, the sequence is said to be convergent.

If $\lim(a_n)$ is infinite $(\pm \infty)$, the sequence is said to be divergent.

If $\lim_{n \to \infty} (a_n)$ is not unique, the sequence is said to be oscillatory.

Convergence, Divergence and Oscillation of a Series: Consider the infinite series $\Sigma u_n = u_1 + u_2 + u_3 + \dots + u_n + \dots + u_n$ and let the sum of the first n terms be $s_n = u_1 + u_2 + u_3 + \dots + u_n$ Clearly, s_n is a function of n and as n increases indefinitely three possibilities arises:

- i. If s_n tends to a finite limit as $s_n \to \infty$, the series Σu_n is said to be convergent.
- ii. If s_n tends to $\pm \infty$ as $n \to \infty$, the series Σu_n is said to be divergent. iii. If s_n does not tend to a unique limit as $n \to \infty$, then the series Σu_n is said to be oscillatory or non-convergent.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 3.1. Examine the following sequence for convergence:

i.
$$a_n = \frac{n^2 - 2n}{3n^2 + n}$$

ii.
$$a_n = 2^n$$

iii.
$$a_n = 3 + (-1)^n$$
.

3-1 F (Sem-2)

Answer

- $\lim_{n\to\infty} \left(\frac{n^2 2n}{3n^2 + n} \right) = \lim_{n\to\infty} \frac{1 2/n}{3 + 1/n} = 1/3 \text{ which is finite and unique. }$ the sequence (a_n) is convergent.
- $\lim_{n\to\infty} (2^n) = \infty$. Hence the sequence (a_n) is divergent.
- $\lim [3 + (-1)^n] = 3 + 1 = 4$, when *n* is even

=3-1=2, when n is odd

i.e., this sequence doesn't have a unique limit. Hence it oscillates

Que 3.2. Examine the following series for convergence:

5-4-1+5-4-1+5-4-1+...

Answer

Here, $s_n = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$

Clearly in this case, s_n does not tend to a unique limit. Hence the series is oscillatory.

Que 3.3. Test the following series for convergence:

i.
$$\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \dots \infty$$

ii.
$$1 + \frac{1}{2^2} + \frac{2^2}{3^3} + \frac{3^3}{4^4} + \dots \infty$$

Answer

We have $u_n = \frac{2n-1}{n(n+1)(n+2)} = \frac{1}{n^2} \frac{2-1/n}{(1+1/n)(1+2/n)}$

Taking $v_n = 1/n^2$, we have

$$\therefore \lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \frac{2 - 1/n}{(1 + 1/n)(1 + 2/n)} = \frac{2 - 0}{(1 + 0)(1 + 0)}$$

= 2, which is finite and non zero.

Hence, both Σu_n and Σv_n converge or diverge together but $\Sigma v_n = \Sigma 1/n^2$ is known to be convergent. Hence Σu_n is also convergent.

3-4 F (Sem-2)

Sequence and Series

Here $u_n = \frac{n^n}{(n+1)n+1} = \frac{1}{n+1} \cdot \left(\frac{n}{n+1}\right)^2$, ignoring the first term.

$$\begin{split} \lim_{n\to\infty} \left(\frac{u_n}{v_n}\right) &= \lim_{n\to\infty} \frac{n}{n+1} \cdot \lim_{n\to\infty} \left(\frac{n}{n+1}\right)^n \\ &= \lim_{n\to\infty} \left(\frac{1}{1+1/n}\right) \cdot \lim_{n\to\infty} \frac{1}{(1+1/n)^n} = 1 \cdot \frac{1}{e} \neq 0 \end{split}$$

Now since Σv_n is divergent, therefore Σv_n is also divergent.

Que 3.4. Determine the nature of the series:

i.
$$\frac{\sqrt{2}-1}{3^3-1} + \frac{\sqrt{3}-1}{4^3-1} + \frac{\sqrt{4}-1}{5^3-1} + \dots \infty$$

We have $u_n = \frac{\sqrt{(n+1)} - 1}{(n+2)^3 - 1} = \frac{\sqrt{n} \left[(1+1/n) - 1/\sqrt{n} \right]}{n^3 \left[(1+2/n)^3 - 1/n^3 \right]}$

$$\lim_{n\to\infty} \frac{u_n}{v_n} = \lim_{n\to\infty} \frac{\sqrt{[(1+1/n)-1/\sqrt{n}]}}{[(1+2/n)^3-1/n^3]} = 1 \neq 0$$
Since Σv_n is convergent, therefore Σu_n is also convergent.

ii. Here
$$u_n = \frac{1}{n} \sin \frac{1}{n} = \frac{1}{n} \left[\frac{1}{n} - \frac{1}{3! \, n^3} + \frac{1}{5! \, n^5} - \dots \right]$$

$$= \frac{1}{n^2} \bigg[1 - \frac{1}{3! \, n^2} + \frac{1}{5! \, n^4} - \ldots \bigg]$$
 Taking $v_n = 1/n^2$, we have

$$\lim_{n\to\infty}\frac{u_n}{v_n}=\lim_{n\to\infty}\left[1-\frac{1}{3!\,n^2}+\frac{1}{5!\,n^4}-\cdots\right]=1\neq 0$$
 Since Σv_n is convergent, therefore Σu_n is also convergent.

PART-2

Tests for Convergence of Series (Ratio Test, D'Alembert's Test, Raabe's Test).

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 3.5. Discuss in detail about D' Alembert's test or ratio test, Also give its limitations.

Answer

D'Alembert's Test or Ratio Test:

In a positive term series Σu_n , if

$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \lambda, \text{ then the series converges for } \lambda < 1 \text{ and diverges}$$
 for $\lambda > 1$.

Case I: When,
$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \lambda < 1$$

By definition of a limit, we can find a positive number $r \ (<1)$ such that

$$\frac{u_{n+1}}{u_n} < r \text{ for all } n > m$$

Leaving out the first
$$m$$
 terms, let the series be $u_1+u_2+u_3+\ldots$. So that $\frac{u_2}{u_1} < r$, $\frac{u_3}{u_2} < r$, $\frac{u_4}{u_3} < r$,.... and so on. Then $u_1+u_2+u_3+\ldots\ldots\infty$
$$= u_1 \left(1 + \frac{u_2}{u_1} + \frac{u_3}{u_2} \frac{u_2}{u_1} + \frac{u_4}{u_3} \frac{u_3}{u_2} \frac{u_2}{u_1} + \ldots\ldots\infty\right) .$$

$$< u_1 \left(1 + r + r^2 + r^3 + \ldots\ldots\infty\right)$$

$$= \frac{u_1}{1-r}, \text{ which is finite quantity. Hence } \Sigma u_n \text{ is convergent. } [\because r < 1]$$

Case II: When,
$$\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=\lambda>1$$

By definition of limit, we can find m, such that $\frac{u_{n+1}}{n} \ge 1$ for all $n \ge m$.

Leaving out the first m terms, let the series be

$$u_1 + u_2 + u_3 + \dots$$
 so that $\frac{u_2}{u_1} \ge 1$, $\frac{u_3}{u_2} \ge r$, $\frac{u_4}{u_3} \ge 1$,.... and so on.

$$\begin{aligned} u_1 + u_2 + u_3 + u_4 + \dots + u_n &= u_1 \left(1 + \frac{u_2}{u_1} + \frac{u_3}{u_2} \frac{u_2}{u_1} + \dots \right) \\ &\geq u_1 \left(1 + 1 + 1 + \dots \text{ to } n \text{ terms} \right) = nu_1 \end{aligned}$$

 $\lim_{n\to\infty} (u_1+u_2+\ldots+u_n) \ge \lim_{n\to\infty} (nu_1)$, which tends to infinity. Hence Σu_n

B. Limitations of D'Alembert's Test:

Ratio test fails when $\lambda = 1$.

This test makes no reference to the magnitude of u_{n+1}/u_n but concerns only with the limit of this ratio.

Que 3.6. Test for convergence of the following series :
$$i. \quad \frac{1}{2\sqrt{1}} + \frac{x^2}{3\sqrt{2}} + \frac{x^4}{4\sqrt{3}} + \frac{x^6}{5\sqrt{4}} + \dots \infty$$

i. We have,
$$u_n = \frac{x^{2n-2}}{(n+1)\sqrt{n}}$$
 and $u_{n+1} = \frac{x^{2n}}{(n+2)\sqrt{(n+1)}}$

$$\begin{split} & \lim_{n \to \infty} \frac{u_n}{u_{n+1}} = \lim_{n \to \infty} \frac{x^{2n-2}}{(n+1)\sqrt{n}} \frac{(n+2)\sqrt{(n+1)}}{x^{2n}} \\ & = \lim_{n \to \infty} \left[\frac{n+2}{n+1} \binom{n+1}{n}^{\frac{1}{2}} \right] x^{-2} \\ & = \lim_{n \to \infty} \left[\frac{1+2/n}{1+1/n} \sqrt{(1+1/n)} \right] x^{-2} = x^{-2} \end{split}$$
 Hence Σu_n converges if $x^{-2} > 1$ i.e., for $x^2 < 1$ and diverges for $x^2 > 1$.

If
$$x^2 = 1$$
, then, $u_n = \frac{1}{(n+1)\sqrt{n}} = \frac{1}{n^{3/2}} \frac{1}{1+1/n}$

Taking $v_n=\frac{1}{n^{3/2}}$, we get $\lim_{n\to\infty}\frac{u_n}{v}=\lim_{n\to\infty}\frac{1}{1+1/n}=1$, a finite quantity.

.. Both Σu_n and Σv_n converge or diverge together. But $\Sigma v_n = \sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ is a

 Σu_n is also convergent. Hence the given series converges if $x^2 \le 1$ and diverges if $x^2 > 1$.

ii. Here,
$$\frac{u_n}{u_{n+1}} = \frac{2^n - 2}{2^n + 1} x^{n-1} \frac{2^{n+1} + 1}{2^{n+1} - 2} \frac{1}{x^n} = \frac{1 - \frac{2}{2^n}}{1 + \frac{1}{2^n}} \frac{2 + \frac{1}{2^n}}{2 - \frac{2}{2^n}} \frac{1}{x^n}$$

$$\therefore \lim_{n \to \infty} \frac{u_n}{u_{n+1}} \stackrel{!}{=} \frac{1-0}{1+0} \frac{2+0}{2-0} \frac{1}{x} = \frac{1}{x}$$

Thus by ratio test, Σu_n converges for $x^{-1} > 1$ i.e., for x < 1 and diverges for x > 1. But it fails for x = 1.

Que 3.7. Discuss the convergence of the series.

Given series is

 $\Sigma u_n = \sum_{n=1}^{\infty} \frac{n!}{n^n}$

Here, $\frac{u_n}{u_{n+1}} = \frac{n!}{n^n} \cdot \frac{(n+1)^{n+1}}{(n+1)!} = \frac{(n+1)^n}{n^n} = \left(1 + \frac{1}{n}\right)^n$

 $\lim_{n\to\infty}\frac{u_n}{u_{n+1}}=\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e, \text{ which is }>1. \text{ Hence the given series is}$

 $\frac{x}{1+x} + \frac{x^2}{1+x^2} + \frac{x^3}{1+x^3} + \dots \infty$

Que 3.8. Examine the convergence of the series:

convergent

Here, $u_n = \frac{x^n}{1+x^n}$ and $u_{n+1} = \frac{x^{n+1}}{1+x^{n+1}}$

 $\lim_{n \to \infty} \frac{u_n}{u_{n+1}} = \lim_{n \to \infty} \left(\frac{x^n}{x^{n+1}} \frac{1 + x^{n+1}}{1 + x^n} \right) = \lim_{n \to \infty} \left(\frac{1 + x^{n+1}}{x + x^{n+1}} \right)$

 $=\frac{1}{x}$, if x < 1

 $[::x^{n+1}\to 0 \text{ and } n\to\infty]$

Also, $\lim_{n\to\infty} \frac{u_n}{u_{n+1}} = \lim_{n\to\infty} \left(\frac{1+1/x^{n+1}}{1+x/x^{n+1}} \right) = 1$, if x > 1. By ratio test, $\sum u_n$ converges for x < 1 and fails for $x \ge 1$.

Hence the given series converges for x < 1 and diverges for $x \ge 1$. When x = 1, $\Sigma u_n = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots \infty$, which is divergent.

3-8 F (Sem-2)

Answer

Que 3.9. Explain Raabe's test in brief.

In the positive term series $\sum u_n$, if $\lim_{n\to\infty} n\left(\frac{u_n}{u_{n+1}}-1\right)=k$, then the series converges for k > 1 and diverges for k < 1, but the test fails for k = 1,

When k > 1, choose a number p such that k > p > 1, and compare $\sum u_n$

with the series $\sum_{n^p} \frac{1}{n}$ which is convergent since p > 1.

 $\therefore \Sigma u_n$ will converge, if from and after some term,

or if, $\frac{u_n}{u_{n+1}} > 1 + \frac{p}{n} + \frac{p(p-1)}{2n^2} + \dots$ $\frac{u_n}{u_{n+1}} > \frac{(n+1)^p}{n^p} \text{ or } \left(1 + \frac{1}{n}\right)^p$

or if, $n\left(\frac{u_n}{u_{n+1}} - 1\right) > p + \frac{p(p-1)}{2n} + \dots$

or if, $\lim_{n\to\infty} n\left(\frac{u_n}{u_{n+1}}-1\right) > \lim_{n\to\infty} \left[p+\frac{p(p-1)}{2n}+\dots\right]$

i.e., if k > p, which is true. Hence, $\sum u_n$ is convergent. The other case when k < 1 can be proved similarly.

Que 3.10. Test for convergence of the following the series:

i. $\sum \frac{4 \cdot 7 \dots (3n+1)}{1 \cdot 2 \dots n} x^{2n}$

Answer

i. Here, $\frac{u_n}{u_{n+1}} = \frac{4 \cdot 7 \dots (3n+1)}{1 \cdot 2 \dots n} x^n + \frac{4 \cdot 7 \dots (3n+4)}{1 \cdot 2 \dots (n+1)} x^{n+1} = \frac{n+1}{3n+4} \frac{1}{x}$

 $= \left[\frac{1+1/n}{3+4/n} \right] \frac{1}{x}$

 $\lim_{n\to\infty}\frac{u_n}{u_{n+1}}=\frac{1}{3x}$ diverges for $x > \frac{1}{3}$. But it fails for $x = \frac{1}{3}$. Thus by ratio test, the series converges for $\frac{1}{3x} > 1$, i.e. for $x < \frac{1}{3}$ and

Sequence and Series

Sequence and Series

$$a_{n} = \left[\pi x \frac{\sin n\pi x}{n\pi} - \pi \left(-\frac{\cos n\pi x}{n^{2} \pi^{2}} \right) \right]_{0}^{1}$$

$$+ \left[\pi (2 - x) \frac{\sin n\pi x}{n\pi} - (-\pi) \left(-\frac{\cos n\pi x}{n^{2} \pi^{2}} \right) \right]_{1}^{2}$$

$$= \left[\frac{\cos n\pi}{n^{2} \pi} \frac{-1}{n^{2} \pi} \right] + \left[\frac{-\cos 2n\pi}{n^{2} \pi} + \frac{\cos n\pi}{n^{2} \pi} \right]$$

$$= \frac{2}{n^{2} \pi} \left[\cos n\pi - 1 \right] = \frac{2}{n^{2} \pi} \left[(-1)^{n} - 1 \right]$$

$$= \begin{cases} 0, & \text{if } n \text{ is even} \\ -\frac{4}{\pi n^{2}}, & \text{if } n \text{ is odd} \end{cases}$$

$$b_{n} = \int_{0}^{2} f(x) \sin n\pi x \, dx$$

$$= \int_{0}^{1} \pi x \sin n\pi x \, dx + \int_{1}^{2} \pi (2 - x) \sin n\pi x \, dx$$

$$= \left[\pi x \left(-\frac{\cos n\pi x}{n\pi} \right) - \pi \left(-\frac{\sin n\pi x}{n^{2} \pi^{2}} \right) \right]_{0}^{1}$$

$$+ \left[\pi (2 - x) \left(-\frac{\cos n\pi x}{n\pi} \right) - (-\pi) \left(-\frac{\sin n\pi x}{n^{2} \pi^{2}} \right) \right]_{1}^{2}$$

$$= \left[-\frac{\cos n\pi}{n} \right] + \left[\frac{\cos n\pi}{n} \right] = 0$$

$$f(x) = \frac{\pi}{n} - \frac{4}{n} \left(\frac{\cos n\pi}{n^{2}} + \frac{\cos 3\pi x}{n^{2}} + \frac{\cos 5\pi x}{n^{2}} + \dots \right)$$

Que 3.13. Express f(x) = |x|; $-\pi < x < \pi$ as Fourier series.

AKTU 2013-14, Marks 10

Answer

Since f(-x) = |-x| = |x| = f(x) $\therefore f(x)$ is an even function and hence $b_n = 0$

Let
$$f(x) = |x| = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$$

Where
$$a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx = \frac{2}{\pi} \int_0^{\pi} |x| dx = \frac{2}{\pi} \int_0^{\pi} x dx = \frac{2}{\pi} \left[\frac{x^2}{2} \right]_0^{\pi} = \pi$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_0^{\pi} |x| \cos nx dx$$

$$a_{n} = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx \, dx$$

$$= \frac{2}{\pi} \left[x \left(\frac{\sin nx}{n} \right) - 1 \left(\frac{-\cos nx}{n^{2}} \right) \right]_{0}^{\pi}$$

$$= \frac{2}{\pi} \left[\frac{\cos n\pi}{n^{2}} - \frac{1}{n^{2}} \right] = \frac{2}{\pi n^{2}} (-1)^{n} - 1]$$

$$a_{n} = \begin{cases} 0, & \text{if } n \text{ is even} \\ \frac{-4}{\pi n^{2}}, & \text{if } n \text{ is odd} \end{cases}$$

$$|x| = \frac{\pi}{2} - \frac{4}{\pi} \left(\cos x + \frac{\cos 3x}{3^{2}} + \frac{\cos 5x}{5^{2}} + \dots \right)$$
Que 3.14. Expand $f(x) = x \sin x$ as a Fourier series in $0 < x < 2\pi$.

ARTU 2014-15, Marks 10

Answer
$$f(x) = x \sin x \; ; \quad 0 < x < 2\pi$$

$$a_{0} = \frac{1}{\pi} \int_{0}^{2\pi} x \sin x \, dx = \frac{1}{\pi} \left[x \left(-\cos x \right) + \sin x \right]_{0}^{2\pi} = \frac{1}{\pi} \left[-2\pi \right]$$

$$a_{0} = -2$$

$$a_{n} = \frac{1}{\pi} \int_{0}^{2\pi} x \sin x \cos nx \, dx$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} x \left[\sin \left(1 + n \right) x + \sin \left(1 - n \right) x \right] \, dx$$

$$= \frac{1}{2\pi} \left[-x \frac{\cos (n+1)x}{n+1} + \frac{\sin (n+1)x}{(n+1)^{2}} + \frac{x \cos (n-1)x}{(n-1)^{2}} \right]_{0}^{2\pi}$$

$$= \frac{1}{2\pi} \left[-\frac{2\pi}{n+1} + \frac{2\pi}{n-1} \right] = \frac{1}{n-1} - \frac{1}{n+1}$$
When $n = 1$, we have
$$a_{1} = \frac{1}{\pi} \int_{0}^{2\pi} x \sin x \cos x \, dx = \frac{1}{2\pi} \int_{0}^{2\pi} x \sin 2x \, dx$$

$$= \frac{1}{2\pi} \left[x \left(\frac{-\cos 2x}{2} \right) + \frac{\sin 2x}{4} \right]_{0}^{2\pi} = \frac{1}{2\pi} \left[-\frac{2\pi}{2} \right]$$

Que 3.15. Find the Fourier series to represent the function f(x)

given by

$$f(x) = \begin{cases} -K & \text{for } -\pi < x < 0 \\ K & \text{for } 0 < x < \pi \end{cases}$$

Hence show that $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$. AKTU 2015-16, Marks 10

Answer

$$f(x) = \begin{cases} -K & \text{for } -\pi < x < 0 \\ K & \text{for } 0 < x < \pi \end{cases}$$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{-\pi}^{0} (-K) dx + \frac{1}{\pi} \int_{0}^{\pi} K dx$$

 $a_{0} = 0$ $a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx$ $= \frac{1}{\pi} \int_{-\pi}^{0} -K \cos nx \, dx + \frac{1}{\pi} \int_{0}^{\pi} K \cos nx \, dx$ $a_{n} = -\frac{K}{\pi} \left[\frac{\sin nx}{n} \right]_{-\pi}^{0} + \frac{K}{\pi} \left[\frac{\sin nx}{n} \right]_{0}^{\pi}$ $a_{n} = 0$ $b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} (-K \sin nx) \, dx + \frac{1}{\pi} \int_{0}^{\pi} K \sin nx \, dx$ $= \frac{1}{\pi} \left[-K \left(\frac{-\cos nx}{n} \right) \right]_{-\pi}^{0} + \frac{1}{\pi} \left[-K \left(\frac{-\cos nx}{n} \right) \right]_{-\pi}^{0}$ $= \frac{K}{\pi} \left[\frac{1}{n} - \frac{(-1)^{n}}{n} - \frac{(-1)^{n}}{n} + \frac{1}{n} \right]$ $b_{n} = \frac{K}{\pi} \left[\frac{2}{n} - \frac{2(-1)^{n}}{n} \right]$ $= \begin{cases} 0, & \text{if } n \text{ is even} \\ \frac{4K}{n\pi}, & \text{if } n \text{ is odd} \end{cases}$ $f(x) = a_{0} + \sum_{n=1}^{\infty} a_{n} \cos nx + \sum_{n=1}^{\infty} b_{n} \sin nx$ $= b_{1} \sin x + b_{2} \sin 2x + b_{3} \sin 3x + \dots$ $f(x) = \frac{4K}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right]$ Now putting $x = \frac{\pi}{2}$ $f\left(\frac{\pi}{2} \right) = K = \frac{4K}{\pi} \left[1 + \frac{1}{3} (-1) + \frac{1}{5} (1) + \frac{1}{7} (-1) + \dots \right]$ $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$

