CMPUT463/563 Probabilistic Graphical Models

Approximate Inference: Sampling

Lili Mou

Dept. Computing Science, University of Alberta

lmou@ualberta.ca

Outline

- MC Sampling: CDF sampling, rejection sampling, importance sampling, self-normalized IS
- MCMC: dependent sampling
 - Gibbs sampling (posterior sampling)
 - Metropolis—Hastings
- Applications
 - Restricted Boltzmann machine
 - Unsupervised text generation (not required for exams)

Sampling

- Sampling is widely used to estimate certain quantities that involve randomness
- E.g.: estimate P(head) of a coin
 - It's arguable the classical mechanics is deterministic, as no quantum effect is expected in this process.
 - The outcome of tossing a coin is a deterministic function of initial velocity, position, angle, gravity, etc. Thus, P(head) is a function of P(init velocity), P(init pos), P(init angle), etc. However, computing such a function is intractable.
- A much easier approach is to toss the coin M times, with outcomes $X^{(1)}, X^{(2)}, \dots, X^{(M)}$. Then,

$$\widehat{\Pr}(head) = \frac{1}{M} \sum_{m=1}^{M} X^{(m)}$$

Forward (Causal) Sampling

- Sample a variable conditioned on its parent(s)
 - Topologically sort all variables
 - Sample $X_i \sim P(X_i | \operatorname{Par}(X_i))$
- Works well for Bayesian networks in the unconstrained case
- Does not work for MN and constrained BN in general
- We need more efforts in investigating sampling methods

Monte Carlo: Sampling from CDF

- Probabilistic density function (PDF) Pr[a ≤ x ≤ b] = ∫_a^b f(x) dx
 Cumulative density function (CDF) F(x) = ∫_{-∞}^x f(u) du = Pr[u ≤ x]
 Sampling procedure u ~ U[0,1]; x = CDF⁻¹(u)

Main drawbacks

- CDF not analytic, especially the conditional CDF for multivariate distributions
- Fun facts: In computer science, randomized algorithms can be divided to
 - Las Vegas algorithms: always give the correct result. E.g., randomized quick sort
 - Monte Carlo algorithms: may (usually) generate wrong results. E.g., in machine learning, a Monte Carlo approach usually refers to sampling methods

MC: Rejection Sampling

- To sample from $p(x) = \frac{1}{Z}\widetilde{p}(x)$
- We instead sample $x \sim q(x)$
- Accept the sample x with probability $\frac{p(x)}{k \cdot q(x)}$

where k is a constant s.t. $kq(x) \ge \widetilde{p}(x), \forall x$

• Reject
$$x$$
 w.p. $1 - \frac{\widetilde{p}(x)}{k \cdot q(x)}$

Efficiency?

MC: Importance Sampling

- Goal: To compute $\mathbb{E}_{x \sim p(x)}[f(x)]$
- Instead of sampling $x \sim p(x)$, we plan to sample from q(x)

$$\mathbb{E}_{x \sim p(x)}[f(x)] = \int f(x)p(x)dx$$

$$= \int f(x) \frac{p(x)}{q(x)} q(x) dx$$

$$= \mathbb{E}_{x \sim q(x)}[f(x)w(x)]$$

$$= \mathbb{E}_{x \sim q(x)}[f(x)w(x)] \quad \text{where} \quad w(x) = \frac{p(x)}{q(x)}$$

in the importance weight

$$\approx \frac{1}{M} \sum_{m=1}^{M} f(x^{(m)}) w(x^{(m)})$$

MC: Self-Normalized IS

- Goal: To compute $\mathbb{E}_{x \sim p(x)}[f(x)]$ with only $\tilde{p}(x)$
- We still sample from q(x)

$$\mathbb{E}_{x \sim p(x)}[f(x)] = \frac{\mathbb{E}_{x \sim q}[f(x)w(x)]}{\mathbb{E}_{x \sim q}[w(x)]}$$

where importance weight $w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$ may be given by unnormalized measures

HW: Proof the above equation and give a Monte Carlo estimate

Markov Chain Monte Carlo

- Monte Carlo (MC) sampling is also known as **independent** sampling. If $X^{(1)}, X^{(2)}, \dots, X^{(M)}$ are MC samples, then they are iid.
- MC sampling may still be inadequate, e.g., PGM inference questions. Thus, Markov Chain Monte Carlo (MCMC) methods are developed.
- MCMC is also known as **dependent** sampling. If $X^{(1)}, X^{(2)}, \dots, X^{(M)}$ are MCMC samples, then
 - They are dependent sampling
 - Ideally, $X^{(M)}$ shall converge to an unbiased sample from a desired distribution

Markov Chain

- Markov Chain
 - At step t, the state probability is $p^{(t)}$, i.e.,

$$p_i^{(t)} = \Pr[s^{(t)} = i]$$

- Transition probability T, i.e., $T_{ij} = \Pr[s^{(t+1)} = j \mid s^{(t)} = i]$
- Observations
 - -T is normalized in each row
 - The probability of the next step $\boldsymbol{p}^{(t+1)} = T^{\mathsf{T}} \boldsymbol{p}^{(t)}$

A Very Difficult Theorem

- Thm. Regular Markov chains converges to a unique stationary distribution. (Not proved in this course)
 - Regular Markov chain: There exists some k such that for every two states s, s', the probability of going from s to s' with exactly k steps is non-zero.
- Applying MC to sampling:
 - Design a MC such that the stationary distribution is the desired distribution to sample from. Sampling follows the MC.

Gibbs Sampling

- Gibbs sampling (sampling from the posterior)
 - Pick an arbitrary $X^{(0)} = (X_1^{(0)}, \dots, X_n^{(0)})$
 - For $t = 1, 2, \dots,$
 - Pick $i \in \{1, 2, \dots, n\}$
 - Sample $X_i^{(t)} \sim P(X_i | X_{-i}^{(t-1)})$

•
$$X^{(t)} = (X_1^{(t-1)}, \dots, X_{i-1}^{(t-1)}, X_i^{(t)}, X_{i+1}^{(t-1)}, \dots, X_n^{(t-1)})$$

 X_{-i} refers to all variables except X_i

Gibbs Sampling

- Computing posterior is efficient in PGMs
 - The posterior of a variable only concerns its neighbors

$$P(X_i | X_{-i}) = \frac{\prod_{\phi: i \in \text{scope}(\phi)} \phi(X) \cdot \prod_{\phi: i \notin \text{scope}(\phi)} \phi(X_{-i})}{\sum_{X_i'} \prod_{\phi: i \in \text{scope}(\phi)} \phi(X') \cdot \prod_{\phi: i \notin \text{scope}(\phi)} \phi(X_{-i})}$$

- Correctness. To show the joint distribution $P(X_i, X_{-i})$ is satisfies the stationary property: $P(X') = \sum_{X} P(X) P(X'|X)$
- Consider any $X'=(X'_1,\cdots,X'_n)$. Then, X can only differ by X_i . We assume $X=(X'_1,\cdots,X_i,\cdots X'_n)$.

RHS =
$$\sum_{X_i} P(X_i, X'_{-i}) P(X'_i | X'_{-i}) = P(X'_{-i}) P(X'_i | X'_{-i}) = LHS$$

= $P(X)$

Metropolis — Hastings Sampler

Input

- An arbitrary desired distribution p(x)

Output

- An unbiased sample $x \sim p(x)$

Algorithm

- Start from an arbitrary initial state $x^{(0)}$
- For every step t g(x'|x): arbitrary proposal distribution

Propose a new state $x' \sim g(x'|x^{(t)})$

Accept
$$x'$$
 w.p. $A(x'|x) = \min \left\{ 1, \frac{p(x')g(x^{(t)}|x')}{p(x)g(x'|x^{(t)})} \right\}$, i.e.,

$$x^{(t+1)} = x'$$

Reject x' otherwise, i.e., $x^{(t+1)} = x^{(t)}$

- Return $x^{(t)}$ with a large t

Proof Sketch

Detailed balance property = > Stationary distribution

If

$$\forall x, y, \qquad \pi(x) \cdot \mathcal{T}_{x \to y} = \pi(y) \cdot \mathcal{T}_{y \to x}$$

Then

 $\pi(x)$ is a stationary distribution

Because

$$\forall x, \qquad \pi(x) = \sum_{y} \pi(y) \mathcal{T}_{y \to x} = \sum_{y} \pi(x) \mathcal{T}_{x \to y} = \pi(x)$$

Proof Sketch (Cont.)

MH Sampler satisfies detailed balance

$$- \forall x, y, \text{ if } x \neq y, \ p(x) \cdot \mathcal{T}_{x \to y} = p(x) \cdot g(y|x) \cdot \min \left\{ 1, \frac{p(y)g(x|y)}{p(x)g(y|x)} \right\}$$
 (1)

$$p(y) \cdot \mathcal{T}_{y \to x} = p(y) \cdot g(x \mid y) \cdot \min \left\{ 1, \frac{p(x)g(y \mid x)}{p(y)g(x \mid y)} \right\}$$
(2)

- W.L.O.G., we assume $p(x)g(y|x) \ge p(y)g(x|y)$

$$(1) = p(y) \cdot g(x \mid y)$$

$$(2) = p(y) \cdot g(x \mid y)$$

 $\forall x, y, \text{ if } x = y, p(x)\mathcal{T}_{x \to y} = p(y)\mathcal{T}_{y \to x} \text{ also holds}$

Applications: Restricted Boltzmann Machine

Restricted Boltzmann Machine

- v: observable variables; h: hidden variables
- EM training:
 - Gradient $\mathbb{E}_{h \sim P(h|v)}[f_i] \mathbb{E}_{h,v \sim P(h,v)}[f_i]$
 - First term is easy
 - Second term can be estimated by MCMC.
 - In principle, Gibbs sampling should work in sequence. However, since $v_i \perp v_j | \boldsymbol{h}$, we can sample $\boldsymbol{v} | \boldsymbol{h}$ in parallel; since $h_i \perp h_j | \boldsymbol{v}$, we can sample $\boldsymbol{h} | \boldsymbol{v}$ in parallel

Applications: Restricted Boltzmann Machine

ullet Given observed $oldsymbol{v}^{(0)}$, we should perform

$$- h^{(1)} \sim P(h | v^{(0)})$$

$$-v^{(1)} \sim P(v | h^{(1)})$$

- Until $\boldsymbol{h}^{(\infty)}, \boldsymbol{v}^{(\infty)}$ for estimating $\mathbb{E}_{\boldsymbol{h}, \boldsymbol{v} \sim P(\boldsymbol{h}, \boldsymbol{v})}[f_i]$
- Hinton's contrastive divergence (CD)
 - CD-n uses $\boldsymbol{h}^{(n)}, \boldsymbol{v}^{(n)}$ to estimate $\mathbb{E}_{\boldsymbol{h}, \boldsymbol{v} \sim P(\boldsymbol{h}, \boldsymbol{v})}[f_i]$
 - CD-1 uses $h^{(1)}, v^{(1)}$

Applications: Unsupervised Text Generation

- Search objective
 - Scoring function measuring text quality

$$s(\mathbf{y}) = s_{LM}(\mathbf{y}) \cdot s_{Semantic}(\mathbf{y})^{\alpha} \cdot s_{Task}(\mathbf{y})^{\beta}$$

- Search algorithm
 - Currently we are using stochastic local search

Search Algorithm

Local edits for $\mathbf{y}' \sim \text{Neighbor}(\mathbf{y}_t)$

- General edits
 - Word deletion
 - Word insertion

Gibbs in Metropolis

- Task specific edits
 - Reordering, swap of word selection, etc.

Search Algorithm

Example: Metropolis—Hastings sampling

Start with y_0 # an initial candidate sentence

Loop within budget at step *t*:

$$\mathbf{y'} \sim \text{Neighbor}(\mathbf{y}_t) \text{ # a new candidate in the neighbor} \\ A(\mathbf{x'}|\mathbf{x}_{t-1}) = \min\{1, A^*(\mathbf{x'}|\mathbf{x}_{t-1})\} \\ A^*(\mathbf{x'}|\mathbf{x}_{t-1}) = \frac{\pi(\mathbf{x'})g(\mathbf{x}_{t-1}|\mathbf{x'})}{\pi(\mathbf{x}_{t-1})g(\mathbf{x'}|\mathbf{x}_{t-1})} \\$$
 Either reject or accept $\mathbf{y'}$

If accepted, $\mathbf{y}_t = \mathbf{y}'$, or otherwise $\mathbf{y}_t = \mathbf{y}_{t-1}$

Return the best scored y*

Search Algorithm

Example: Simulated annealing

Start with y_0 # an initial candidate sentence

Loop within budget at step *t*:

 $\mathbf{y}' \sim \text{Neighbor}(\mathbf{y}_t)$ # a new candidate in the neighbor

Either reject or accept \mathbf{y}'

$$p(\operatorname{accept}|\mathbf{x}_*, \mathbf{x}_t, T) = \min\left(1, e^{\frac{f(\mathbf{x}_*) - f(\mathbf{x}_t)}{T}}\right)$$

If accepted, $\mathbf{y}_t = \mathbf{y}'$, or otherwise $\mathbf{y}_t = \mathbf{y}_{t-1}$

Return the best scored y**

