LECTURE 33

Dr.Vani V

Source: Textbook 1 & Textbook 2

Cluster Analysis: Basic Concepts and Methods

- Cluster Analysis: Basic Concepts
- **Partitioning Methods**
- Hierarchical Methods <

- **Density-Based Methods**
- Grid-Based Methods
- **Evaluation of Clustering**
- Summary

Hierarchical Clustering

Use distance matrix as clustering criteria. This method does not require the number of clusters **k** as an input, but needs a termination condition

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram

A tree like diagram that records the sequences of

merges or splits

AGNES (Agglomerative Nesting)

Introduced in Kaufmann and Rousseeuw (1990)
Implemented in statistical packages, e.g., Splus
Use the **single-link** method and the dissimilarity matrix
Merge nodes that have the least dissimilarity
Go on in a non-descending fashion
Eventually all nodes belong to the same cluster

Dendrogram: Shows How Clusters are Merged

Decompose data objects into a several levels of nested partitioning (tree of clusters), called a <u>dendrogram</u>

A <u>clustering</u> of the data objects is obtained by <u>cutting</u> the dendrogram at the desired level, then each <u>connected component</u> forms a cluster

Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 - 1. Compute the proximity matrix
 - 2. Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity matrix
 - 6. Until only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

DIANA (Divisive Analysis)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical analysis packages, e.g., Splus
- Inverse order of AGNES
- Eventually each node forms a cluster on its own

Distance between Clusters

- Single link: smallest distance between an element in one cluster and an element in the other, i.e., $dist(K_i, K_j) = min(t_{ip}, t_{jq})$
- **Complete link:** largest distance between an element in one cluster and an element in the other, i.e., $dist(K_i, K_j) = max(t_{ip}, t_{jq})$
- **Average:** avg distance between an element in one cluster and an element in the other, i.e., $dist(K_i, K_j) = avg(t_{ip}, t_{jq})$
- Centroid: distance between the centroids of two clusters, i.e.,
 dist(K_i, K_j) = dist(C_i, C_j)
- Medoid: distance between the medoids of two clusters, i.e., $dist(K_i, K_j) = dist(M_i, M_j)$
 - Medoid: a chosen, centrally located object in the cluster

Cluster Distance Measures

- Single link: smallest distance between an element in one cluster and an element in the other, i.e., d(C_i, C_j) = min{d(x_{ip}, x_{iq})}
- Complete link: largest distance between an element in one cluster and an element in the other, i.e., d(C_i, C_j) = max{d(x_{ip}, x_{jq})}
- Average: avg distance between elements in one cluster and elements in the other, i.e.,

$$d(C_i, C_j) = avg\{d(x_{ip}, x_{jq})\}$$

Cluster Distance Measures

Example: Given a data set of five objects characterised by a single continuous feature, assume that there are two clusters: C_1 : $\{a, b\}$ and C_2 : $\{c, d, e\}$.

a	b	С	d	е

- 1. Calculate the distance matrix.
- 2. Calculate three cluster distances between C1 and C2.

	а				е
а	0	1	3	4	5
b	1	0	2	3	4
С	3	2	0	1	2
d	4	3	1	0	1
е	5	4	2	1	0

Single link

$$dist(C_1, C_2) = min\{d(a, c), d(a, d), d(a, e), d(b, c), d(b, d), d(b, e)\}$$
$$= min\{3, 4, 5, 2, 3, 4\} = 2$$

Complete link

$$dist(C_1, C_2) = \max\{d(a, c), d(a, d), d(a, e), d(b, c), d(b, d), d(b, e)\}$$
$$= \max\{3, 4, 5, 2, 3, 4\} = 5$$

Average

$$dist(C_1, C_2) = \frac{d(a, c) + d(a, d) + d(a, e) + d(b, c) + d(b, d) + d(b, e)}{6}$$
$$= \frac{3 + 4 + 5 + 2 + 3 + 4}{6} = \frac{21}{6} = 3.5$$

Centroid, Radius and Diameter of a Cluster (for numerical data sets)

- Centroid: the "middle" of a cluster $C_m = \frac{\sum_{i=1}^{N} (t_{ip})}{N}$
- Radius: square root of average distance from any point of the cluster to its centroid $R_m = \sqrt{\frac{\sum_{i=1}^{N} (t_{ip} - c_m)^2}{N}}$
- Diameter: square root of average mean squared distance between all pairs of points in the cluster

$$D_{m} = \sqrt{\frac{\sum_{i=1}^{N} \sum_{i=1}^{N} (t_{ip} - t_{iq})^{2}}{N(N-1)}}$$

Starting Situation

Start with clusters of individual points and a proximity matrix

21/01/22

p12

Intermediate Situation

■ After some merging steps, we have some clusters

	C1	C2	C3	C4	C5
<u>C1</u>					
<u>C2</u>					
<u>C3</u>					
C5					

Proximity Matrix

Intermediate Situation

■ We want to merge the two closest clusters (C2 and C5) and

After Merging

■ The question is "How do we update the proximity matrix?"

	p1	p2	р3	p4	p5	<u> </u>
<u>p1</u>						
<u>p2</u>						_
<u>p2</u> <u>p3</u>						
<u>p4</u> <u>p5</u>						

Proximity Matrix

- MIN
- MAX
- Group Average
- Diotopoo Potuson Contro
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	рЗ	p4	p5	<u> </u>
<u>p1</u>						
<u>p2</u>						
<u>p2</u> p3						
<u>p4</u> <u>p5</u>						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

Proximity Matrix

	p1	p2	рЗ	p4	p5	<u>.</u>
<u>p1</u>						
<u>p2</u> <u>p3</u>						
p4 p5						
p5						

- MIN
- MAX
- Group Average
- Distance Between Centroids

- **Proximity Matrix**
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	рЗ	p4	p5	<u>.</u>
<u>p1</u>						
p2						
<u>p2</u> <u>p3</u>						
n4						
p4 p5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

Proximity Matrix

	p1	p2	рЗ	p4	p5	<u>.</u> .
p1						
<u>p2</u> <u>p3</u>						
<u>p4</u> <u>p5</u>						

- **MIN**
- MAX
- Group Average
 - Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

Proximity Matrix

Single Link – Complete Link

- Another way to view the processing of the hierarchical algorithm is that we create links between their elements in order of increasing distance
 - The MIN Single Link, will merge two clusters when a single pair of elements is linked
 - The MAX Complete Linkage will merge two clusters when all pairs of elements have been linked.

21/01/22 82

Hierarchical Clustering: MIN

	1	2	3	4	5	6
1	0	.24	.22	.37	.34	.23
2	.24	0	.15	.20	.14	.25
3	.22	.15	0	.15	.28	.11
4	.37	.20	.15	0	.29	.22
5	.34	.14	.28	.29	0	.39
6	.23	.25	.11	.22	.39	0

Nested Clusters

Dendrogram

Hierarchical Clustering: MAX

Nested Clusters

Dendrogram

	1	2	3	4	5	6
1	0	.24	.22	.37	.34	.23
2	.24	0	.15	.20	.14	.25
3	.22	.15	0	.15	.28	.11
4	.37	.20	.15	0	.29	.22
5	.34	.14	.28	.29	0	.39
6	.23	.25	.11	.22	.39	0

Cluster Similarity: Group Average

Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

$$\frac{\sum_{p_i \in Cluster_i} proximity(p_i, p_j)}{proximity(Cluster_i, Cluster_j) = \frac{p_i \in Cluster_i}{p_j \in Cluster_j}}$$

 Need to use average connectivity for scalability since total proximity favors large clusters

	1	2	3	4	5	6
1	0	.24	.22	.37	.34	.23
2	.24	0	.15	.20	.14	.25
3	.22	.15	0	.15	.28	.11
4	.37	.20	.15	0	.29	.22
5	.34	.14	.28	.29	0	.39
6	.23	.25	.11	.22	.39	0

Hierarchical Clustering: Group

Average

Nested Clusters

Dendrogram

	1	2	3	4	5	6
1	0	.24	.22	.37	.34	.23
2	.24	0	.15	.20	.14	.25
3	.22	.15	0	.15	.28	.11
4	.37	.20	.15	0	.29	.22
5	.34	.14	.28	.29	0	.39
6	.23	.25	.11	.22	.39	0

Hierarchical Clustering: Group Average

- Compromise between Single and Complete Link
- Strengths
 - Less susceptible to noise and outliers
- Limitations
 - Biased towards globular clusters

Cluster Similarity: Ward's Method

- Similarity of two clusters is based on the increase in squared error (SSE) when two clusters are merged
 - Like group average if distance between points is distance squared
- Less susceptible to noise and outliers
- Biased towards globular clusters
- Hierarchical analogue of K-means
 - Can be used to initialize K-means

Hierarchical Clustering: Comparison

Agglomerative Algorithm

- The Agglomerative algorithm is carried out in three steps:
 - 1) Convert all object features into a distance matrix
 - Set each object as a cluster
 (thus if we have Nobjects, we
 will have N clusters at the
 beginning)
 - 3) Repeat until number of cluster is one (or known # of clusters)
 - Merge two closest clusters
 - Update "distance matrix"

Problem: clustering analysis with agglomerative algorithm

$$d_{AB} = \left(\left(1 - 1.5 \right)^2 + \left(1 - 1.5 \right)^2 \right)^{\frac{1}{2}} = \sqrt{\frac{1}{2}} = 0.7071$$

$$d_{DF} = \left(\left(3 - 3 \right)^2 + \left(4 - 3.5 \right)^2 \right)^{\frac{1}{2}} = 0.5$$
Euclidean distance

distance matrix

Merge two closest clusters (iteration 1)

Update distance matrix (iteration 1)

$$d_{(D,F)\to A} = \min(d_{DA}, d_{FA}) = \min(3.61, 3.20) = 3.20$$

$$d_{(D,F)\to B} = \min(d_{DB}, d_{FB}) = \min(2.92, 2.50) = 2.50$$

$$d_{(D,F)\to C} = \min(d_{DC}, d_{FC}) = \min(2.24, 2.50) = 2.24$$

$$d_{E\to(D,F)} = \min(d_{ED}, d_{EF}) = \min(1.00, 1.12) = 1.00$$

Merge two closest clusters (iteration 2)

■ Update distance matrix (iteration 2)

Merge two closest clusters/update distance matrix (iteration 3)

■ Merge two closest clusters/update distance matrix (iteration 4)

■ Result (meeting termination condition)

Dendrogram tree representation

- 1. In the beginning we have 6 clusters: A, B, C, D, E and F
- 2. We merge clusters D and F into cluster (D, F) at distance 0.50
- 3. We merge cluster A and cluster B into (A, B) at distance 0.71
- 4. We merge clusters E and (D, F) into ((D, F), E) at distance 1.00
- 5. We merge clusters ((D, F), E) and C into (((D, F), E), C) at distance 1.41
- 6. We merge clusters (((D, F), E), C) and (A, B) into ((((D, F), E), C), (A, B)) at distance 2.50
- 7. The last cluster contain all the objects, thus conclude the computation

Dendrogram tree representation: "clustering" USA states

100

Strengths of Hierarchical Clustering

- Do not have to assume any number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendrogram at the proper level
- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Hierarchical Clustering: Problems and Limitations

- Computational complexity in time and space
- Once a decision is made to combine two clusters, it cannot be undone
- No objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Difficulty handling different sized clusters and convex shapes
 - Breaking large clusters

Exercise

Given a data set of five objects characterized by a single continuous feature:

	а	b	С	d	е
Feature	1	2	4	5	6

Apply the agglomerative algorithm with single-link, complete-link and averaging cluster distance measures to produce three dendrogram trees, respectively.

	а	b	С	d	e
а	0	1	3	4	5
b	1	0	2	3	4
С	3	2	0	1	2
d	4	3	1	0	1
е	5	4	2	1	0
					J

Summary

- Hierarchical algorithm is a sequential clustering algorithm
 - Use distance matrix to construct a tree of clusters (dendrogram)
 - Hierarchical representation without the need of knowing # of clusters (can set termination condition with known # of clusters)
- Major weakness of agglomerative clustering methods
 - Can never undo what was done previously
 - Sensitive to cluster distance measures and noise/outliers
 - Less efficient: O ($n^2 \log n$), where n is the number of total objects
- There are several variants to overcome its weaknesses
 - BIRCH: scalable to a large data set
 - ROCK: clustering categorical data
 - CHAMELEON: hierarchical clustering using dynamic modelling