Module 1 Notes For AIM 100

What is AI

A computer system doing things that normally would require human intelligence.

Types of AI

- 1. Artificial Narrow Intelligence
 - AI that simulates human intelligence at one thing
 - Example: When your camera can recognize you're in the camera frame and blur the background.
- 2. Artificial General Intelligence
 - AI that simulates human intelligence at everything
 - Much less developed. Think Terminator and human-robots.

General Notes

- Syllabus
- AI Lecture Slideshow
- Goal-setting Article

Wolf Example

```
wolf_classifier() {
    // Does it have two ears?
    // Does it have wiskers?
    // Does it have four legs?
    // Does it have a grey pelt?
}
```

- Classifier depicts one thing from another.
- If all the values are true, it's classified as a "wolf".

The issue with this classifier is that it will not be able to differentiate between a wolf and a dog that looks like a wolf.

• The way to get around this is **Supervised Learning**.

Academic Pathway

- CGC AI Page
- Academic Flowchart
- CGC Degree

• AI involves a lot of math.

AI Libraries

- OpenVINO
 - Documentation
- Pandas
- OpenCV
- \bullet Scikit-Learn
- Numpy
- PyTorch
- Keras
- Natural Language Toolkit
- Hugging Face

Labs

- Lab Link
 - What is Machine Learning
 - Creating a No-Code Regression Model
- Azure Studio Classic

- For the automotive lab, you will need to use the **Filter Based Feature Selection** node with the Raw data from the first node as its input in order to see the feature weights.
 - After it's done: Right click > Preview Data > Features

Model Example

• Student Grades

When working with models, first create a dataset to train your model, and another dataset for testing real world data to determine accuracy.

- This can be done by splitting your dataset if you only have the one.
 - A 70/30 split is a good base.

Useful Terms

- Mean Absolute Error (MAE): The average of absolute errors. An error is the difference between the predicted value and the actual value.
- Root Mean Squared Error (RMSE): The square root of the average of squared errors of predictions made on the test dataset.
- Relative Absolute Error: The average of absolute errors relative to the absolute difference between actual values and the average of all actual values.
- Relative Squared Error: The average of squared errors relative to the squared difference between the actual values and the average of all actual values.
- Coefficient of Determination: Also known as the R squared value, this statistical metric indicates how well a model fits the data.

Linear Regression

Linear regression uses a straight line:

- The plotted points are **observations**.
- The regression line is based on the least squares method.

The goal is to minimize the errors between the estimated value and the actual value:

Positive Relationship

- ${\bf b0}$ is the **Y-Intercept** and ${\bf b1}$ is the slope.
- Y is the Dependent Variable
 - The outcome
- ${\bf X}$ is the Independent Variable and is what we:
 - control
 - change
 - manipulate

Negative Relationship

- $\mathbf{b0}$ is the **Y-Intercept** and $\mathbf{b1}$ is the slope.
- ullet Y is the **Dependent Variable**
 - The outcome
- $\bullet~$ X is the Independent Variable and is what we:
 - control
 - change
 - manipulate