Lecture Notes: Abstract Algebra — Properties of Isomorphisms (Course By: Alvaro Lozano-Robledo)

Thobias K. Høivik

March 11, 2025

Theorems

Let $\phi: G \to H$ be a group isomorphism. Then:

Theorem 1. $\phi^{-1}: H \to G$ is also an isomorphism.

Proof. Since $\phi: G \to H$ is an isomorphism $\Rightarrow \phi$ is a bijection and therefore there exists an inverse map $\phi^{-1}: H \to G$ and since ϕ is a bijection we know ϕ^{-1} is a bijection. Observe

$$h, k \in H \Rightarrow \exists a, b, \in G : \phi(a) = h \land \phi(b) = k$$
$$\therefore \phi^{-1}(hk) = \phi^{-1}(\phi(a)\phi(b))$$
$$= \phi^{-1}(\phi(ab)) = ab = \phi^{-1}(h)\phi^{-1}(k)$$

thus ϕ^{-1} is an isomorphism.

Theorem 2. |G| = |H|, the cardinalities of G and H are the same.

Proof. ϕ is an isomorphism $\Rightarrow \phi$ is a bijection and bijections between sets are how we define two sets to have the same cardinality.

Theorem 3. If G is abelian, then H is abelian.

Proof. Take $h, k \in H$ arbitrary elements, then

$$\exists a, b \in G : \phi(a) = h \land \phi(b) = k$$
$$\phi(ab) = \phi(ba)$$
$$\phi(a)\phi(b) = \phi(b)\phi(a)$$
$$hk = kh$$

Since we took h and k to be arbitrary elements of H, we have shown all elements of H commute, hence H is abelian. \Box

Theorem 4. If G is cyclic, then H is cyclic.

Proof. Let's assume $G = \langle a \rangle$ and take $h \in H$ arbitrary.

$$\exists b \in G : h = \phi(b)$$

$$b \in G = \langle a \rangle \Rightarrow b = a^n, n \in \mathbb{Z}^+$$

$$\phi(b) = \phi(a^n) = \phi(a)^n = \phi(a)\phi(a) \dots \phi(a)$$

$$\therefore h = \phi(a)^n$$

Since we took h to be arbitrary $h = \phi(a)^n \forall h \in H$, thus $H = \langle \phi(a) \rangle$.

Theorem 5. If G has a subgroup of order n, then H has a subgroup of order n.

Proof. Let $J \subseteq G$ be a subgroup with |J| = n, and consider its image under ϕ :

$$\phi[J] = \{\phi(a) \mid a \in J\} \subseteq H.$$

We verify that $\phi[J]$ is a subgroup of H: Closure: If $h, k \in \phi[J]$, then there exist $a, b \in J$ such that $h = \phi(a)$ and $k = \phi(b)$. Since J is a subgroup, $ab^{-1} \in J$. Applying ϕ , we get

$$hk^{-1} = \phi(a)\phi(b)^{-1} = \phi(ab^{-1}) \in \phi[J].$$

So, $\phi[J]$ is closed under the group operation. **Identity:** Since J is a subgroup, it contains the identity element e_G . Applying ϕ , we obtain

$$\phi(e_G) = e_H \in \phi[J].$$

Thus, $\phi[J]$ contains the identity element of H. **Inverses:** If $h \in \phi[J]$, then $h = \phi(a)$ for some $a \in J$. Since J is a subgroup, $a^{-1} \in J$, so

$$\phi(a^{-1}) = \phi(a)^{-1} = h^{-1} \in \phi[J].$$

Hence, $\phi[J]$ contains inverses. Thus, $\phi[J]$ is a subgroup of H. Now, to show $|\phi[J]| = |J| = n$, we need ϕ to be injective on J, meaning $\ker \phi \cap J = \{e_G\}$. This holds if ϕ is injective or if J is mapped bijectively onto $\phi[J]$. In that case, $|\phi[J]| = |J| = n$, as required. Thus, if ϕ is injective on J, then H has a subgroup of order n, completing the proof.

Theorem 6. All cyclic groups of infinite order are isomorphic to the integers under addition. Which means that there is only one infinite cyclic group structure.

Proof. Let G be a group, $|G| = \infty$, and $G = \langle a \rangle$. Let $\phi : \mathbb{Z} \to G$, $\phi(n) = a^n$. Then:

$$g \in G \Rightarrow g = a^m, m \in \mathbb{Z}$$

 $\Rightarrow \phi(m) = g$

making ϕ surjective and

$$\phi(n) = \phi(m) \Rightarrow a^n = a^m$$
$$a^{n-m} = e \Rightarrow n - m = 0 (: |G| = \infty) \Rightarrow n = m$$

thus ϕ is injective. Lastly

$$\phi(n+m) = a^{n+m} = a^n a^m = \phi(n)\phi(m)$$