INTRODUCCIÓN A GRAFOS

75.41 - ALGORITMOS Y PROGRAMACIÓN II

DEFINICIONES

UN GRAFO G ES UN PAR ORDENADO G=(V,E) DONDE:

- V ES UN CONJUNTO DE VÉRTICES (O NODOS)
- E ES UN CONJUNTO DE ARISTAS (O ARCOS)

UN GRAFO G ES DIRIGIDO (O DIGRAFO) SI SUS ARISTAS TIENEN SENTIDO

GRAFO (NO DIRIGIDO)

DIGRAFO (DIRIGIDO)

UN GRAFO G ES PESADO SI SUS ARISTAS TIENEN PESOS ASIGNADOS

EL PESO DE LA ARISTA PUEDE REPRESENTAR DIFERENTES COSAS SEGÚN EL PROBLEMA (COSTOS, DISTANCIAS, CAPACIDADES, ETC)

GRAFO PESADO

EL ORDEN DE UN GRAFO ES LA CANTIDAD DE VÉRTICES O IVI EL TAMAÑO DE UN GRAFO ES LA CANTIDAD DE ARISTAS O IEI EL GRADO DE UN VÉRTICE ES LA CANTIDAD DE ARISTAS INCIDENTES

ORDEN: 5 TAMAÑO: 7

UN GRAFO ES NULO SI NO POSEE VÉRTICES NI ARISTAS UN GRAFO ES VACÍO SI POSEE VÉRTICES PERO NO ARISTAS

GRAFO NULO

GRAFO VACÍO

UNA ARISTA ES UN BUCLE CUANDO CONECTA AL VÉRTICE CONSIGO MISMO. UN GRAFO ES SIMPLE CUANDO NO POSEE BUCLES NI ARISTAS PARALELAS.

UN GRAFO ES COMPLETO CUANDO CONTIENE TODAS LAS ARISTAS POSIBLES.

GRAFOS COMPLETOS

GRAFOS INCOMPLETOS

UN CAMINO ES UNA SECUENCIA DE VÉRTICES (UNIDOS POR ARISTAS). EN UN CAMINO NO PUEDE HABER VÉRTICES REPETIDOS.

DIFERENTES CAMINOS EN UN GRAFO

CUANDO UN CAMINO EMPIEZA Y TERMINA EN EL MISMO VÉRTICE, SE LE DICE CICLO. UN GRAFO ES ACÍCLICO SI NO POSEE CICLOS.

GRAFO CON CICLOS

GRAFO ACÍCLICO

UN GRAFO (NO DIRIGIDO) ES CONEXO SI PARA CUALQUER PAR DE VÉRTICES EXISTE AL MENOS UN CAMINO ENTRE ELLOS

GRAFO CONEXO

GRAFO NO CONEXO

EN UN DIGRAFO, UN PAR DE VÉRTICES {A,B} SON FUERTEMENTE CONEXOS SI EXISTE UN CAMINO DE A HACIA B Y OTRO DE B HACIA A. SI PARA LOGRAR DICHOS CAMINOS ES NECESARIO REEMPLAZAR UNA O MAS ARISTAS POR ARISTAS SIN SENTIDO, SE DICE QUE SON DÉBILMENTE CONEXOS. SI TODOS LOS PARES {A,B} SON FUERTEMENTE CONEXOS, EL DIGRAFO ES FUERTEMENTE CONEXO.

DIGRAFO
FUERTEMENTE CONEXO

DIGRAFO
DÉBILMENTE CONEXO

DIGRAFO NO CONEXO

UN GRAFO ES UN ÁRBOL SI ES CONEXO Y ACÍCLICO.

ÁRBOL

GRAFO NO ÁRBOL

RECORRIDOS

EN PROFUNDIDAD

EL RECORRIDO EN PROFUNDIDAD CONSISTE EN IR RECORRIENDO EL GRAFO EMPEZANDO DESDE UN VÉRTICE CUALQUIERA, Y A CADA PASO SE VISITA UN VÉRTICE ADYACENTE AL ÚLTIMO VISITADO.

LA FORMA MÁS SENCILLO DE PENSARLO ES CON UNA PILA:

- 1. APILAR UN VÉRTICE
- 2. QUITAR UN VÉRTICE DE LA PILA, VISITARLO
- 3. APILAR LOS VÉRTICES ADYACENTES AL ACTUAL
- 4. REPETIR DESDE (2) HASTA QUEDARSE SIN VÉRTICES

PILA:

1

PILA:

2

5

PILA:

2

4

6

10

PILA:

2

4

6

13

9

VISITADOS: 1 5 10

PILA:

VISITADOS: 1 5 10 9

PILA:

VISITADOS: 1 5 10 9 12

PILA:

PILA:

2

4

6

13

3

8

VISITADOS: 1 5 10 9 12 11 7

PILA:

2

4

6

13

3

VISITADOS: 1 5 10 9 12 11 7 8

PILA:

VISITADOS: 1 5 10 9 12 11 7 8 3 13 6 4 2

A LO ANCHO

EL RECORRIDO A LO ANCHO CONSISTE EN IR RECORRIENDO EL GRAFO EMPEZANDO DESDE UN VÉRTICE CUALQUIERA, Y LUEGO SE VAN VISITANDO LOS VÉRTICES ADYACENTES MAS CERCANOS.

LA FORMA MÁS SENCILLO DE PENSARLO ES CON UNA COLA:

- 1. ENCOLAR UN VÉRTICE
- 2. QUITAR UN VÉRTICE DE LA COLA, VISITARLO
- 3. ENCOLAR LOS VÉRTICES ADYACENTES AL ACTUAL
- 4. REPETIR DESDE (2) HASTA QUEDARSE SIN VÉRTICES

COLA:

1

COLA:

2

5

COLA:

5

3

7

COLA:

3

7

4

6

10

COLA:

7

4

6

10

8

9

VISITADOS: 1 2 5 3

COLA:

4

6

10

8

9

11

VISITADOS: 1 2 5 3 7

COLA:

6

10

8

9

11

COLA:

10

8

9

11

13

COLA:

8

9

11

13

VISITADOS: 1 2 5 3 7 4 6 10

COLA:

9

11

13

12

VISITADOS: 1 2 5 3 7 4 6 10 8

COLA:

VISITADOS: 1 2 5 3 7 4 6 10 8 9 11 13 12

¿PREGUNTAS?

