SỞ GD & ĐT NGHỆ AN LIÊN TRƯỜNG THPT

Kỳ THI THỬ THPT QUỐC GIA LẦN 2 - NĂM 2018 Bài thi: TOÁN HOC

Thời gian làm bài: 90 phút, không kể thời gian phát đề

(Đề thi gồm có 06 trang)

A. C_{30}^5 .

D. A_{20}^4 .

Mã đề thi: 106

A. $\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx.$ **B.** $\int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx.$ C. $\int_{a}^{b} f(x)g(x)dx = \int_{a}^{b} f(x)dx$. $\int_{a}^{b} [f(x) - g(x)]dx = \int_{a}^{b} f(x)dx - \int_{a}^{b} g(x)dx$. **Câu 3:** Biết f(x) là hàm liên tục trên R và $\int_{0}^{9} f(x)dx = 9$. Khi đó $\int_{1}^{4} f(3x-3)dx$ là **A.** 27. **Câu 4:** Trong không gian với hệ trục tọa độ Oxyz cho mặt phẳng (P): -x + y + 3z - 2 = 0. Phương trình mặt phẳng (α) đi qua A(2;-1;1) và song song với (P) là: **A.** x - y + 3z + 2 = 0. **B.** -x + y - 3z = 0. **C.** -x + y + 3z = 0. **D.** -x - y + 3z = 0. **Câu 5:** Trong không gian với hệ tọa độ vuông góc *Oxyz*, cho đường thẳng $d:\begin{cases} x=2+3t\\ y=5-4t \end{cases}$; $t\in R$ và điểm A(1;2;3). Đường thẳng đi qua A và song song với đường thẳng d có véc tơ chỉ phương là: **B.** $\vec{u} = (3; -4; -7)$. **C.** $\vec{u} = (-3; -4; -7)$. **D.** $\vec{u} = (-3; -4; 7)$. **A.** $\vec{u} = (3; -4; 7).$ **Câu 6:** Số đường tiệm cận đứng và ngang của đồ thị hàm số $y = \frac{3x+1}{x^2-4}$ là: **B.** 1. **A.** 3. **C.** 2. Câu 7: Cắt hình nón đỉnh S bởi một mặt phẳng đi qua trục, ta được một tam giác vuông cân, cạnh huyển bằng $a\sqrt{2}$. Thể tích khối nón bằng: **B.** $\frac{\pi a^3 \sqrt{2}}{1}$. C. $\frac{\pi a^2 \sqrt{2}}{12}$. **D.** $\frac{\pi a^3 \sqrt{2}}{12}$. **Câu 8:** Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình chữ nhật, cạnh AB = a, AD = 2a, cạnh bên SA vuông góc với mặt phẳng đáy, góc giữa cạnh SD và mặt phẳng đáy bằng 60° . Thể tích V của khối chóp S.ABCD là **C.** $V = \frac{a^3}{2}$. **D.** $V = \frac{4a^3}{\sqrt{2}}$. **B.** $4a^3\sqrt{3}$. **A.** $V = \frac{2a^3}{\sqrt{2}}$. **Câu 9:** Phương trình $(\sqrt{2}-1)^x + (\sqrt{2}+1)^x - 2\sqrt{2} = 0$ có tích các nghiệm là **Câu 10:** Ho các nguyên hàm của hàm số $f(x) = e^{2x+3}$ là

Họ và tên thi sinh: Số báo danh: Số báo

Câu 2: Cho hai hàm số f(x) và g(x) liên tục trên K, $a,b \in K$. Khẳng định nào sau đây là khẳng định

Câu 1: Cho tập hợp M có 30 phần tử. Số tập con gồm 5 phần tử của M là:

A.
$$\int f(x)dx = \frac{1}{3}e^{2x+3} + C.$$

B.
$$\int f(x)dx = e^{2x+3} + C$$
.

C.
$$\int f(x)dx = \frac{1}{2}e^{2x+3} + C$$
.

D.
$$\int f(x)dx = 2e^{2x+3} + C.$$

Câu 11: Tiếp tuyến của đồ thị hàm số $y = \frac{x^3}{3} - 2x^2 + 3x + 1$ song song với đường thẳng y = 3x + 1 có phương trình là:

A.
$$y = 3x - \frac{29}{3}$$
.

B.
$$y = 3x - \frac{29}{3}$$
; $y = 3x + 1$.

C.
$$y = 3x + \frac{29}{3}$$
.

D.
$$y = 3x - 1$$
.

Câu 12: Cho các số thực dương a,b,c với $c \neq 1$. Khẳng định nào sau đây là **sai?**

A.
$$\log_c ab = \log_c b + \log_c a$$
.

B.
$$\log_c \frac{a}{b} = \frac{\log_c a}{\log_c b}$$
.

$$\mathbf{C.} \log_c \sqrt{b} = \frac{1}{2} \log_c b.$$

D.
$$\log_c \frac{a}{b} = \log_c a - \log_c b$$
.

Câu 13: Giá trị nhỏ nhất của hàm số $y = \frac{x^2 + 3}{x + 1}$ trên đoạn [-4, -2] là:

A.
$$\min_{[-4;-2]} y = -7$$
.

B.
$$\min_{[-4;-2]} y = -\frac{19}{3}$$
. **C.** $\min_{[-4;-2]} y = -8$.

C.
$$\min_{[-4;-2]} y = -8$$
.

D.
$$\min_{[-4;-2]} y = -6.$$

Câu 14: Gọi r là bán kính đường tròn đáy và l là độ dài đường sinh của hình trụ. Diện tích xung quanh của hình trụ là:

A.
$$2\pi r^2 l$$
.

B.
$$\pi rl$$
.

C.
$$2\pi lr$$
.

D.
$$\frac{1}{3}\pi rl$$
.

Câu 15: Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên:

Khẳng định nào sau đây là đúng?

- **A.** Hàm số có giá tri cực tiểu bằng -2 và giá tri cực đại bằng 2.
- **B.** Hàm số có giá trị lớn nhất bằng 2 và giá trị nhỏ nhất bằng -2.
- C. Hàm số đạt cực đại tại x = -1 và đạt cực tiểu tại x = 2.
- **D.** Hàm số có đúng một cực tri.

Câu 16: Hai số phức $z_1 = 2 + 3i$, $z_2 = 1 + i$. Giá trị của biểu thức $|z_1 + 3z_2|$ là:

A.
$$\sqrt{55}$$
.

D.
$$\sqrt{61}$$
.

Câu 17: Gọi z_0 là nghiệm phức có phần ảo dương của phương trình $z^2 + 2z + 10 = 0$. Tính iz_0 ?

A.
$$iz_0 = 3 - i$$
.

B.
$$iz_0 = -3i + 1$$
.

C.
$$iz_0 = -3 - i$$
.

D.
$$iz_0 = 3i - 1$$
.

Câu 18: Các khoảng đồng biến của hàm số $y = x^4 - 8x^2 - 4$ là:

A.
$$(-\infty; -2)$$
 và $(0; 2)$.

B.
$$(-2;0)$$
 và $(2;+\infty)$.

C.
$$(-2;0)$$
 và $(0;2)$.

D.
$$\left(-\infty;-2\right)$$
 và $\left(2;+\infty\right)$.

Câu 19: Trong không gian Oxyz, cho điểm A(1;-2;3). Hình chiếu vuông góc của điểm A lên mặt phẳng (Oxy) là điểm M có tọa độ:

A. M(1;-2;0).

B. M(0;-2;3).

C. M(1;0;3).

D. M(2;-1;0).

Câu 20: Cho số phức z thỏa mãn |z-1|=|z-2+3i|. Tập hợp các điểm biểu diễn số phức z là:

- **A.** Đường tròn tâm I(1;2), bán kính R=1.
- **B.** Đường thẳng có phương trình 2x-6y+12=0.
- C. Đường thẳng có phương trình x-3y-6=0.
- **D.** Đường thẳng có phương trình x-5y-6=0.

Câu 21: Đồ thị sau đây là của hàm số nào?

B.
$$y = x^3 + 3x + 1$$
.

C.
$$y = -x^3 - 3x + 1$$

D.
$$y = -x^3 + 3x + 1$$

Câu 22: Trong các mệnh đề sau, mệnh đề nào sai?

A.
$$\lim_{x \to -\infty} \left(\sqrt{x^2 - x + 1} + x - 2 \right) = \frac{-3}{2}$$
.

B.
$$\lim_{x \to -1^{-}} \frac{3x+2}{x+1} = -\infty.$$

C.
$$\lim_{x \to +\infty} \left(\sqrt{x^2 - x + 1} + x - 2 \right) = +\infty.$$

D.
$$\lim_{x \to -1^+} \frac{3x+2}{x+1} = -\infty.$$

Câu 23: Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d_1 : $\begin{cases} x = 1 - 2t \\ y = 3 + 4t \end{cases}$

 d_2 : $\begin{cases} y = 2 + 2t \end{cases}$. Khẳng định nào sau đây là đúng?

A.
$$d_1 \perp d_2$$
.

B.
$$d_1 \equiv d_2$$
.

$$\mathbf{C}$$
. d_1 và d_2 chéo nhau.

D.
$$d_1 / / d_2$$
.

Câu 24: Tập nghiệm của bất phương trình $3^{x+2} \ge \frac{1}{9}$ là:

A.
$$[0;+\infty)$$
.

B.
$$(-\infty;4)$$
.

C.
$$(-\infty;0)$$
.

D.
$$[-4; +\infty)$$
.

Câu 25: Đồ thị của hàm số $y = \frac{ax+b}{cx+d}$ như hình vẽ. Mệnh đề nào sau đây là đúng?

B.
$$ad > 0, ab < 0.$$

C.
$$bd < 0, ab > 0.$$

D.
$$bd > 0, ad > 0.$$

Câu 26: Tích phân $I = \int_{-1}^{2} 3x.e^{x} dx$ nhận giá trị nào sau đây: **A.** $I = \frac{3e^{3} + 6}{e^{-1}}$. **B.** $I = \frac{3e^{3} - 6}{e^{-1}}$. **C.** $I = \frac{3e^{3} + 6}{e}$. **D.** $I = \frac{3e^{3} + 6}{e^{-1}}$.

A.
$$I = \frac{3e^3 + 6}{e^{-1}}$$

B.
$$I = \frac{3e^3 - 6}{e^{-1}}$$
.

C.
$$I = \frac{3e^3 + 6}{e}$$
.

D.
$$I = \frac{3e^3 + 6}{-e}$$
.

Câu 27: Trong không gian Oxyz, mặt phẳng (α) đi qua điểm M(1;2;1) và cắt các tia Ox, Oy, Oz lần lượt tại A, B, C sao cho độ dài OA, OB, OC theo thứ tự lập thành một cấp số nhân có công bội bằng 2. Tính khoảng cách từ gốc tọa độ O tới mặt phẳng (α) .

A. $\frac{4}{\sqrt{21}}$.	B. $\frac{\sqrt{21}}{21}$.	C. $\frac{3\sqrt{21}}{7}$.	

Câu 28: Cho cấp số nhân (u_n) thỏa mãn $\begin{cases} u_1 + u_2 + u_3 = 13 \\ u_4 - u_1 = 26 \end{cases}$. Tổng 8 số hạng đầu của cấp số nhân (u_n) là

A.
$$S_8 = 1093$$
.

B.
$$S_8 = 3820$$
.

C.
$$S_8 = 9841$$
.

D.
$$S_8 = 3280$$
.

D. $9\sqrt{21}$.

Câu 29: Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(0;0;-3), B(2;0;-1) và mặt phẳng (P): 3x-8y+7z-1=0. Điểm C(a;b;c) là điểm nằm trên mặt phẳng (P), có hoành độ dương để tam giác ABC đều. Tính a-b+3c.

Câu 30: Cho $f(x) = a \ln \left(x + \sqrt{x^2 + 1}\right) + b \sin x + 6$ với $a, b \in R$. Biết $f\left(\log \left(\log e\right)\right) = 2$. Tính giá trị của $f(\log(\ln 10))$.

A. 4.

Câu 31: Số giá trị nguyên của tham số m thuộc $\begin{bmatrix} -2;4 \end{bmatrix}$ để hàm số $y = \frac{1}{3}(m^2 - 1)x^3 + (m+1)x^2 + 3x - 1$ đồng biến trên R là:

A. 3.

B. 5.

C. 0.

Câu 32: Cho x, y > 0 và thỏa mãn $\begin{cases} x^2 - xy + 3 = 0 \\ 2x + 3y - 14 \le 0 \end{cases}$. Tính tổng giá trị lớn nhất và nhỏ nhất của biểu thức

$$P = 3x^2y - xy^2 - 2x^3 + 2x ?$$

Câu 33: m_0 là giá trị của tham số m để đồ thị hàm số $y = x^4 + 2mx^2 - 1$ có 3 điểm cực trị lập thành một tam giác có diện tích bằng $4\sqrt{2}$. Mệnh đề nào sau đây là đúng?

A.
$$m_0 \in (-1;1]$$
.

B.
$$m_0 \in (-2; -1]$$
.

C.
$$m_0 \in (-\infty; -2]$$
.

D.
$$m_0 \in (-1;0)$$
.

Câu 34: Cho $X = \{0,1,2,3,...,15\}$. Chọn ngẫu nhiên 3 số trong tập hợp X. Tính xác suất để trong 3 số được chọn không có hai số liên tiếp.

A.
$$\frac{13}{35}$$
.

B.
$$\frac{7}{20}$$
.

C.
$$\frac{20}{35}$$
.

D.
$$\frac{13}{20}$$

Câu 35: Tổng các nghiệm của phương trình $2\cos^2 x + \sqrt{3}\sin 2x = 3$ trên $\left(0; \frac{5\pi}{2}\right)$ là:

A.
$$\frac{7\pi}{6}$$
.

B.
$$\frac{7\pi}{3}$$

C.
$$\frac{7\pi}{2}$$
.

D.
$$2\pi$$

Câu 36: Trong không gian với hệ trục tọa độ Oxyz cho mặt phẳng (P): x+y-z-3=0 và hai điểm A(1;1;1), B(-3;-3;-3). Mặt cầu (S) đi qua hai điểm A, B và tiếp xúc với (P) tại điểm C. Biết rằng Cluôn thuộc 1 đường tròn cố định. Tính bán kính của đường tròn đó.

A.
$$R = 4$$
.

B.
$$R = 6$$
.

C.
$$R = \frac{2\sqrt{33}}{3}$$

C.
$$R = \frac{2\sqrt{33}}{3}$$
. **D.** $R = \frac{2\sqrt{11}}{3}$.

Câu 37: Gọi S là tập hợp các giá trị của tham số m để phương trình $\left(\frac{1}{9}\right)^x - m\left(\frac{1}{3}\right)^x + 2m + 1 = 0$ có nghiệm.

Tập $R \setminus S$ có bao nhiều giá trị nguyên?

A. 4.

B. 9.

C. 0.

D. 3.

Câu 38: Cho hàm số y = f(x) liên tục trên $R \setminus \{0; -1\}$ thỏa mãn các điều kiện $f(1) = -2 \ln 2$ và $x(x+1) \cdot f'(x) + f(x) = x^2 + x$. Giá trị của $f(2) = a + b \ln 3$ $(a, b \in Q)$. Tính $a^2 + b^2$.

A.
$$\frac{25}{4}$$
.

B.
$$\frac{9}{2}$$
.

C.
$$\frac{5}{2}$$
.

D.
$$\frac{13}{4}$$
.

Câu 39: Biết rằng hai số phức z_1, z_2 thỏa mãn $|z_1 - 3 - 4i| = 1$ và $|z_2 - 3 - 4i| = \frac{1}{2}$. Số phức z có phần thực là a và phần ảo là b thỏa mãn 3a-2b=12 . Giá trị nhỏ nhất của $P=\left|z-z_1\right|+\left|z-2z_2\right|+2$ bằng

A.
$$P_{\min} = \frac{\sqrt{9945}}{11}$$
.

B.
$$P_{\min} = 5 - 2\sqrt{3}$$
.

A.
$$P_{\min} = \frac{\sqrt{9945}}{11}$$
. **B.** $P_{\min} = 5 - 2\sqrt{3}$. **C.** $P_{\min} = \frac{\sqrt{9945}}{13}$. **D.** $P_{\min} = 5 + 2\sqrt{5}$.

D.
$$P_{\min} = 5 + 2\sqrt{5}$$

Câu 40: Cho hình thang cong (H) giới hạn bởi các đường $y = \ln(x+1)$, trục hoành và đường thẳng x = e - 1. Tính thể tích khối tròn xoay thu được khi quay hình (H) quanh trục Ox.

A.
$$e-2$$
.

B.
$$2\pi$$
.

C.
$$\pi e$$
.

D.
$$\pi(e-2)$$
.

Câu 41: Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác ABC vuông tại A, AB = a, BC = 2a. Gọi M, N, P lần lượt là trung điểm của AC, CC', A'B và H là hình chiếu của A lên BC. Tính khoảng cách giữa MP và NH.

A.
$$\frac{a\sqrt{3}}{4}$$
.

B.
$$a\sqrt{6}$$
.

C.
$$\frac{a\sqrt{3}}{2}$$
.

Câu 42: Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của AB và AC, E là điểm trên cạnh CD với ED = 3EC. Thiết diện tạo bởi mặt phẳng (MNE) và tứ diện ABCD là:

- A. Tam giác MNE.
- **B.** Tứ giác MNEF với F là điểm bất kỳ trên cạnh BD.
- **C.** Hình bình hành *MNEF* với F là điểm trên cạnh BD mà EF / /BC.
- **D.** Hình thang MNEF với F là điểm trên cạnh BD mà EF / BC.

Câu 43: Phương trình $|x^3 - 3x| = m^2 + m$ có 6 nghiệm phân biệt khi và chỉ khi

A.
$$m > 0$$
.

B.
$$m < -2$$
 hoặc $m > 1$.

$$\mathbf{C}_{\bullet} - 1 < m < 0.$$

D.
$$-2 < m < -1$$
 hoặc $0 < m < 1$.

Câu 44: Một vật đang chuyển động với vận tốc v = 20(m/s) thì thay đổi vận tốc với gia tốc được tính theo thời gian t là $a(t) = -4 + 2t(m/s^2)$. Tính quãng đường vật đi được để từ thời điểm thay đổi gia tốc đến lúc vật đạt vận tốc bé nhất.

A.
$$\frac{104}{3}$$
 m.

D.
$$\frac{104}{6}$$
 m.

Câu 45: Trong không gian với hệ tọa độ vuông góc Oxyz, cho mặt phẳng (P): x+2y+z-4=0 và đường thẳng $d: \frac{x+1}{2} = \frac{y}{1} = \frac{z+2}{2}$. Phương trình đường thẳng Δ nằm trong mặt phẳng (P), đồng thời cắt và vuông góc với đường thẳng d là:

A.
$$\frac{x-1}{5} = \frac{y-1}{-1} = \frac{z-1}{-3}$$
.

B.
$$\frac{x-1}{5} = \frac{y+1}{-1} = \frac{z-1}{2}$$
.

C.
$$\frac{x-1}{5} = \frac{y-1}{2} = \frac{z-1}{3}$$
.

D.
$$\frac{x+1}{5} = \frac{y+3}{-1} = \frac{z-1}{3}$$
.

Xem Video chữa đề trên YouTube: https://youtu.be/nmL0NpSIxvc Anh Đức - Hà Đông - Hà Nội

Câu 46: Cho hàm số y = f(x) có đạo hàm liên tục trên R và đồ thị của hàm số y = f'(x) như hình vẽ. Số điểm cực trị của hàm số y = f(x) + 2xlà:

B. 1.

D. 2.

Câu 47: Cho hình lăng trụ tam giác đều ABC.A'B'C' có góc giữa hai mặt phẳng (A'BC) và (ABC)bằng 60° , cạnh AB = a. Tính thể tích V của khối lăng trụ ABC.A'B'C'.

A.
$$V = \frac{\sqrt{3}}{4}a^3$$
.

B.
$$V = \frac{3}{4}a^3$$
.

C.
$$V = \frac{3\sqrt{3}}{8}a^3$$
. **D.** $V = \sqrt{3}a^3$.

D.
$$V = \sqrt{3}a^3$$
.

Câu 48: Biết rằng hệ số của x^{n-2} trong khai triển $\left(x - \frac{1}{4}\right)^n$ bằng 31. Tìm n.

A.
$$n = 32$$
.

B.
$$n = 30$$
.

C.
$$n = 31$$
.

D.
$$n = 33$$
.

Câu 49: Cho hình chóp *S.ABC*. Tam giác *ABC* vuông tại *A*, AB = 1cm, $AC = \sqrt{3}cm$. Tam giác *SAB*, *SAC* lần lượt vuông góc tại B và C. Khối cầu ngoại tiếp hình chóp S.ABC có thể tích bằng $\frac{5\sqrt{5\pi}}{6}cm^3$. Tính khoảng cách từ C tới (SAB).

A.
$$\frac{\sqrt{5}}{2}$$
 cm.

B.
$$\frac{\sqrt{5}}{4}$$
 cm.

C.
$$\frac{\sqrt{3}}{2}$$
 cm.

Câu 50: Cho hình lăng trụ tam giác ABC.A'B'C' có đáy là tam giác ABC vuông tại A, AB = 3, AC = 4, $AA' = \frac{\sqrt{61}}{2}$. Hình chiếu của B' lên mặt phẳng (ABC) là trung điểm cạnh BC, M là trung điểm cạnh A'B'. Cosin của góc tạo bởi mp(AMC') và mp(A'BC) bằng

A.
$$\frac{11}{\sqrt{3157}}$$
.

B.
$$\frac{\sqrt{13}}{65}$$
.

C.
$$\frac{33}{\sqrt{3517}}$$
.

D.
$$\frac{33}{\sqrt{3157}}$$
.