General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

AgRISTARS

in the interest of early and wide dissomination of Earth Resources Survey Program information and without liability for any use made thereot."

Soil Moisture

E83 10392

A Joint Program for Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing

January 1980

DATA DOCUMENTATION FOR THE BARE SOIL EXPERIMENT AT THE UNIVERSITY OF ARKANSAS

(E83~10392) DATA DOCUMENTATION FOR THE BARE N83-33283 SOIL EXPERIMENT AT THE UNIVERSITY OF ARKANSAS Technical Report, 9 Jul. - 19 Oct. 1979 (Arkansas Univ.) 209 p HC A10/MF A01 Unclas CSC1 02C G3/43 00392

Gary D. Hancock, William P. Waite and Hubert D. Scott University of Arkansas Department of Electrical Engineering Fayetteville, Arkansas 72701

NASA

SM-A0-04008 4. Title and Subtitive Data Documentation for the Bare Soil Experiment At The University of Arkansas 7. Author(s) Gary D. Hancock Hilliam P. Waite, Principal Investigator Hubert D. Scott, Co-Principal Investigator Hubert D. Scot	SM-A0-04008 4. Title and Subtitle Data Documentation for the Bare Soil Experiment At The University of Arkansas 7. Author(s) Gary D. Hancock William P. Waite, Principal Investigator Hubert D. Scott, Co-Principal Investigator 9. Performing Organization Name and Address Department of Electrical Engineering University of Arkansas Fayetteville, Arkansas 72701 Tech Monitor: K. Demel	5. Report Date January 1980 6. Performing Organization Code 8. Performing Organization Report No. 10. Work Unit No.			
Data Documentation for the Bare Soil Experiment At The University of Arkansas 7. Authorisi Gary D. Hancock Hilliam P. Naite, Principal Investigator Hubert D. Scott, Co-Principal Investigator University of Arkansas Payetteville, Arkansas 72701 Tech Monitor: K. Demel 2. Spensoring Agency Name and Address NASA - Johnson Space Center Houston, Texas 77058 8. Supplementary Notes 9. Supplem	Data Documentation for the Bare Soil Experiment At The University of Arkansas 7. Author(s) Gary D. Hancock William P. Waite, Principal Investigator Hubert D. Scott, Co-Principal Investigator 9. Performing Organization Name and Address Department of Electrical Engineering University of Arkansas Fayetteville, Arkansas 72701 Tech Monitor: K. Demel	January 1980 6. Performing Organization Code 8. Performing Organization Report No. 10. Work Unit No.			
Data Documentation for the Bare Soil Experiment At The University of Arkansas 7. Authorisi Gary D. Hancock Hilliam P. Naite, Principal Investigator Hubert D. Scott, Co-Principal Investigator University of Arkansas Payetteville, Arkansas 72701 Tech Monitor: K. Demel 2. Spensoring Agency Name and Address NASA - Johnson Space Center Houston, Texas 77058 8. Supplementary Notes 9. Supplem	Data Documentation for the Bare Soil Experiment At The University of Arkansas 7. Author(s) Gary D. Hancock William P. Waite, Principal Investigator Hubert D. Scott, Co-Principal Investigator 9. Performing Organization Name and Address Department of Electrical Engineering University of Arkansas Fayetteville, Arkansas 72701 Tech Monitor: K. Demel	January 1980 6. Performing Organization Code 8. Performing Organization Report No. 10. Work Unit No.			
Authorisi Gary D. Hancock Hilliam P. Waite Co-Principal Investigator Hubert D. Scott, Co-Principal Investigator	At The University of Arkansas 7. Author(s) Gary D. Hancock William P. Waite, Principal Investigator Hubert D. Scott, Co-Principal Investigator 9. Performing Organization Name and Address Department of Electrical Engineering University of Arkansas Fayetteville, Arkansas 72701 Tech Monitor: K. Demel	Performing Organization Code Report No. 10. Work Unit No.			
At The University of Arkansas 7. Authorid Gary D. Hancock Hilliam P. Naite, Principal Investigator Hubert D. Scott, Co-Principal Investigator Hubert D. Scott, Co-Principal Investigator University of Arkansas Payetteville, Arkansas 72701 Tech Monitor: K. Demel 2. Sponsoring Agency Name and Address HASA - Johnson Space Center Houston, Texas 77058 8. Authorid 8. Performing Organization Report No. 11. Contract or Grant No. 12. Sponsoring Agency Name and Address NASA - Johnson Space Center Houston, Texas 77058 8. Supplementary Notes 8. Authorid 8. Authorid 8. Performing Organization Report No. 11. Contract or Grant No. 12. Sponsoring Agency Name and Address NASA - Johnson Space Center Houston, Texas 77058 13. Type of Report and Period Covered Bully 9 - October 19, 1979 14. Sponsoring Agency Code 15. Supplementary Notes 16. Authorid 17. Key Word (Supplement at the University of Arkansas was conducted from July through October and investigated the reflectivities of several controlled moisture test plots. These test plots were of a similar soil texture which was clay loan and were prepared to give a desired initial soil moisture and density profile. Measurements were conducted on the plots as the soil water redistributed for both long term and diurnal cycles. These measurements included reflectivity, gravimetric and volumetric soil moisture, soil moisture potential, and soil temperature. ORIGHNAL PAGE IS OF POOR QUALITY 18. Distribution Statement 19. No. of Pages 22. Price* 19. Price*	At The University of Arkansas 7. Awthor(s) Gary D. Hancock William P. Waite, Principal Investigator Hubert D. Scott, Co-Principal Investigator 9. Performing Organization Name and Address Department of Electrical Engineering University of Arkansas Fayetteville, Arkansas 72701 Tech Monitor: K. Demel	8. Performing Organization Report No. 10. Work Unit No.			
Mark Principal Investigator	Gary D. Hancock William P. Waite, Principal Investigator Hubert D. Scott, Co-Principal Investigator 9. Performing Organization Name and Address Department of Electrical Engineering University of Arkansas Fayetteville, Arkansas 72701 Tech Monitor: K. Demel	10. Work Unit No.			
Milliam P. Waite, Principal Investigator	William P. Waite, Principal Investigator Hubert D. Scott, Co-Principal Investigator 9. Performing Organization Name and Address Department of Electrical Engineering University of Arkansas Fayetteville, Arkansas 72701 Tech Monitor: K. Demel				
Department of Electrical Engineering University of Arkansas Fayetteville, Arkansas Fayettev	9. Performing Organization Name and Address Department of Electrical Engineering University of Arkansas Fayetteville, Arkansas 72701 Tech Monitor: K. Demel				
Department of Electrical Engineering University of Arkansas Tayoteville, Arkansas 72701 Tech Monitor: K. Demel 2. Sponsoring Agency Name and Address NASA - Johnson Space Center Houston, Texas 77058 6. Supplementary Notes 6. Abstract The 1979 bare soil experiment at the University of Arkansas was conducted from July through October and investigated the reflectivities of several controlled moisture test plots. These test plots were of a similar soil texture which was clay loan; and were prepared to give a desired initial soil moisture and density profile. Measurements were conducted on the plots as the soil water redistributed for both long term and diurnal cycles. These measurements included reflectivity, gravimetric and volumetric soil moisture, soil moisture potential, and soil temperature. ORIGINAL PAGE IS OF POOR QUALITY 18. Distribution Statement 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*	Department of Electrical Engineering University of Arkansas Fayetteville, Arkansas 72701 Tech Monitor: K. Demel	11. Contract or Grant No.			
University of Arkansas Fayetteville, Arkansas 72701 Tech Monitor: K. Demel 2. Sponsoring Agency Name and Address NASA - Johnson Space Center Houston, Texas 77058 6. Abstract The 1979 bare soil experiment at the University of Arkansas was conducted from July through October and investigated the reflectivities of several controlled moisture test plots. These test plots were of a similar soil texture which was clay loan and were prepared to give a desired initial soil moisture and density profile. Measurements were conducted on the plots as the soil water redistributed for both long term and diurnal cycles. These measurements included reflectivity, gravimetric and volumetric soil moisture, soil moisture potential, and soil temperature. ORIGINAL PAGE IS OF POOR QUALITY 18. Distribution Statement 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*	University of Arkansas Fayetteville, Arkansas 72701 Tech Monitor: K. Demel	11. Contract or Grant No.			
Fayetteville, Arkansas 72701 Tech Monitor: K. Demel 2. Sponsoring Agency Name and Address MASA - Johnson Space Center Houston, Texas 77058 6. Supplementary Notes 6. Supplementary Notes 6. Supplementary Notes 6. Abstract The 1979 bare soil experiment at the University of Arkansas was conducted from July through October and investigated the reflectivities of several controlled moisture test plots. These test plots were of a similar soil texture which was clay loan and were prepared to give a desired initial soil moisture and density profile. Measurements were conducted on the plots as the soil water redistributed for both long term and diurnal cycles. These measurements included reflectivity, gravimetric and volumetric soil moisture, soil moisture potential, and soil temperature. ORIGINAL PAGE IS OF POOR QUALITY 7. Key Words (Suggested by Author(s)) Soil Moisture, Radar, Bistatic Reflectance, Field Measurements 18. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*	Fayetteville, Arkansas 72701 Tech Monitor: K. Demel				
2. Sponsoring Agency Name and Address NASA - Johnson Space Center Houston, Texas 77058 6. Supplementary Notes 6. Abstract The 1979 bare soil experiment at the University of Arkansas was conducted from July through October and investigated the reflectivities of several controlled moisture test plots. These test plots were of a similar soil texture which was clay loan and were prepared to give a desired initial soil moisture and density profile. Measurements were conducted on the plots as the soil water redistributed for both long term and diurnal cycles. These measurements included reflectivity, gravimetric and volumetric soil moisture, soil moisture potential, and soil temperature. ORIGINAL PAGE IS OF POOR QUALITY 7. Key Words (Suppested by Authoris) Soil Moisture, Radar, Bistatic Reflectance, Field Measurements 18. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*		NAC 0 14251			
NASA - Johnson Space Center Houston, Texas 77058 6. Supplementary Notes 6. Abstract The 1979 bare soil experiment at the University of Arkansas was conducted from July through October and investigated the reflectivities of several controlled moisture test plots. These test plots were of a similar soil texture which was clay loan and were prepared to give a desired initial soil moisture and density profile. Measurements were conducted on the plots as the soil water redistributed for both long term and diurnal cycles. These measurements included reflectivity, gravimetric and volumetric soil moisture, soil moisture potential, and soil temperature. ORIGINAL PAGE IS OF POOR QUALITY 7. Key Words (Suggested by Author(s)) Soil Moisture, Radar, Bistatic Reflectance, Field Measurements 18. Distribution Statement 21. No. of Pages 22. Price*					
NASA - Johnson Space Center Houston, Texas 77058 6. Supplementary Notes 6. Abstract The 1979 bare soil experiment at the University of Arkansas was conducted from July through October and investigated the reflectivities of several controlled moisture test plots. These test plots were of a similar soil texture which was clay loan and were prepared to give a desired initial soil moisture and density profile. Measurements were conducted on the plots as the soil water redistributed for both long term and diurnal cycles. These measurements included reflectivity, gravimetric and volumetric soil moisture, soil moisture potential, and soil temperature. ORIGINAL PAGE IS OF POOR QUALITY 7. Key Words (Suggested by Author(s)) Soil Moisture, Radar, Bistatic Reflectance, Field Measurements 18. Distribution Statement 21. No. of Pages 22. Price*		Technical Report			
### Abstract The 1979 bare soil experiment at the University of Arkansas was conducted from July through October and investigated the reflectivities of several controlled moisture test plots. These test plots were of a similar soil texture which was clay loan and were prepared to give a desired initial soil moisture and density profile. Measurements were conducted on the plots as the soil water redistributed for both long term and durnal cycles. These measurements included reflectivity, gravimetric and volumetric soil moisture, soil moisture potential, and soil temperature. **ORIGINAL PAGE IS** OF POOR QUALITY* 7. Key Words (Suggested by Author(s)) Soil Moisture, Radar, Bistatic Reflectance, field Measurements 18. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price**	2. Sponsoring Agency Name and Address				
6. Supplementary Notes 6. Abstract The 1979 bare soil experiment at the University of Arkansas was conducted from July through October and investigated the reflectivities of several controlled moisture test plots. These test plots were of a similar soil texture which was clay lown and were prepared to give a desired initial soil moisture and density profile. Measurements were conducted on the plots as the soil water redistributed for both long term and diurnal cycles. These measurements included reflectivity, gravimetric and volumetric soil moisture, soil moisture potential, and soil temperature. ORIGINAL PAGE IS OF POOR QUALITY 77. Key Words (Suggested by Authoris) Soil Moisture, Radar, Bistatic Reflectance, Field Measurements 18. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*	NASA - Johnson Space Center				
16. Abstract The 1979 bare soil experiment at the University of Arkansas was conducted from July through October and investigated the reflectivities of several controlled moisture test plots. These test plots were of a similar soil texture which was clay loan and were prepared to give a desired initial soil moisture and density profile. Measurements were conducted on the plots as the soil water redistributed for both long term and diurnal cycles. These measurements included reflectivity, gravimetric and volumetric soil moisture, soil moisture potential, and soil temperature. ORIGINAL PAGE IS OF POOR QUALITY 77. Key Words (Suggested by Author(s)) Soil Moisture, Radar, Bistatic Reflectance, Field Measurements 18. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*	Houston, Texas 77058	14. Sponsoring Agency Code			
OF POOR QUALITY 17. Key Words (Suggested by Author(s)) Soil Moisture, Radar, Bistatic Reflectance, Field Measurements 18. Distribution Statement 20. Security Classif. (of this page) 21. No. of Pages 22. Price*	July through October and investigated the reflectivities of several controlled moisture test plots. These test plots were of a similar soil texture which was clay loan and were prepared to give a desired initial soil moisture and density profile. Measurements were conducted on the plots as the soil water redistributed for both long term and diurnal cycles. These measurements included reflectivity, gravimetric and volumetric soil moisture, soil moisture potential,				
Soil Moisture, Radar, Bistatic Reflectance, Field Measurements 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*	ORIGINAL PAGE IS OF POOR QUALITY				
Field Measurements 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*					
	17. Key Words (Suggested by Author(s)) 18. Distribution State	iment			
	Soil Moisture, Radar, Bistatic Reflectance,	ment			
	Soil Moisture, Radar, Bistatic Reflectance, Field Measurements				

DATA DOCUMENTATION FOR

THE BARE SOIL EXPERIMENT AT

THE UNIVERSITY OF ARKANSAS

JULY 9 - OCTOBER 19, 1979

Gary D. Hancock

William P. Waite, Principal Investigator Hubert D. Scott, Co-Principal Investigator

January 1980

Table of Contents

	Page
List of Figures	iii
List of Tables	v
Abstract	, i.v
1.0 Introduction	1
2.0 Test Plot Description and Preparation	2
2.1 Initial Plot Preparation	3
2.2 Test Plot Cycle Designation and Duration	4
2.3 Final Plot Preparation	6
3.0 Experiment Instrumentation	8
3.1 Bistatic Reflectometer Instrumentation	10
3.2 Tensiometer Instrumentation	16
3.3 Temperature and Humidity Instrumentation	18
4.0 Experiment Data	19
4.1 Rainfall Data	20
4.2 Reflectivity Data	22
4.3 Soil Moisygre and Bulk Density Data	38
4.4 Air and Soil Temperature Data	48
4.5 Diurnal Data	53
References	62
Appendix A: Reflectivity Measurement Record	
Appendix B: Rainfall Data	
Appendix C: Reflectivity Data	
Annondia De Craviametria Nadatura Data	

- Appendix E: Bulk Density Data
- Appendix F: Volumetric Moisture Data
- Appendix G: Temperature Measurement Record
- Appendix H: Air and Soil Temperature Data
- Appendix I: Plot | Diurnal Cycle Data
 - .1: Reflectivity Data
 - .2: Gravimetric Moisture Data
 - .3: Volumetric Moisture Data
 - .4: Air and Soil Temperature Data
- Appendix J: Plot 4 Diurnal Cycle Data
 - .l: Reflectivity Data
 - .2: Gravimetric Moisture Data
 - .3: Volumetric Moisture Data
 - .4: Air and Soil Temperature Data

ORIGINAL PAGE IS OF POOR QUALITYLL of Figures

		Page
Figure 1.	Instrumentation Diagram of Controlled Moisture Test Plots.	9
2.	Block Diegram of Bistatic Reflectometer Instrumentation.	11
3.	Exemple of Datum From the Alfred Network Analyzer System.	14
4.	Example of Datum From H/P Network Analyzer System.	15
5.	Graph of Significant Rainfall of the Summer of 1979.	21
6.	1.25 Ghs Maflectivity vs. Time For Plot #1	23
7.	1.25 Ghs leflectivity vs. Time For Plot #2	24
8.	1.25 Ghr Reflectivity vs. Time For Plot #3	25
9.	1.25 Gh; teflectivity vs. Time For Plot #4	26
10.	1.25 Ghz Reflectivity vs. Time For Plot #5	27
11.	6 Ghz Reflectivity vs. Time For Plot #1	28
12.	6 Ghz Reflectivity vs. Time For Plot #2	29
13.	6 Ghz Reflectivity vs. Time For Plot #3	30
14.	6 Ghz Reflectivity vs. Time For Plot #4	31
15.	6 Ghz Reflectivity vs. Time For Plot #5	32
16.	Example of Multi-layer Effect For Plot #2	33
17.	Example of Multi-layer Effect For Plot #3	3,4
18.	Example of Multi-layer Effect For Plot #4	35
19.	Example of Multi-layer Effect For Plot #5	36
20.	Figure Showing Plot Quadrant Designation	39
21.	Depiction of E and W Designation Used In The Soil Sampling of Plots 3, 4, and 5.	40
22.	O-lcm Volumetric Moisture vs. Time For Plot #1	43

			Pag
Figure	23.	O-lcm Volumetric Moisture vs. Time For Plot #2	44
	24.	O-lcm Volumetric Moisture vs. Time For Plot #3	45
	25.	0-1cm Volumetric Moisture vs. Time For Plot #4	46
	26.	0-1cm Volumetric Moisture vs. Time For Plot #5	47
	27.	0-1cm Soil Temperature vs. Time For Plot #1	49
	28.	O-1cm Soil Temperature vs. Time For Plot #2	50
	29.	O-1cm Soil Temperature vs. Time For Plot #3	51
	30.	O-1cm Soil Temperature vs. Time For Plot #4	52
	31.	The 1.25 Ghz Reflectivity vs. Time for the	
		Diurnal Cycle of Plot #1	54
	32.	The 6.0 Ghz Reflectivity vs. Time for the	
		Diurnal Cycle of Plot #1	55
	33.	The 0-1 cm Depth Volumetric Moisture Content	
		vs. Time for the Diurnal Cycle of Plot #1	56
	34.	The 1 cm Depth Soil Temperature vs. Time for	
		the Diurnal Cycle of Plot #1	57
	35.	The 1.25 Ghz Reflectivity vs. Time for the Diurnal	
		Cycle of Plot #4	58
	36.	The 6.0 Ghz Reflectivity vs. Time for the Diurnal	
		Cycle of Plot #4	59
	37.	The 0-1 cm Depth Volumetric Moisture Content vs.	
		Time for the Diurnal Cycle of Plot #4	60
	38.	The 1 cm Soil Temperature vs. Time for the Diurnal	
		Cycle of Plot #4	61

LIST OF TABLES

TABLE		Page
1	Plot Cycle Designation and Duration	5
2	Bistatic Reflectometer System Parameters	12
3	Temperature and Soil Moisture Potential Instrumentation	17
4	Soil Sampling Intervals	42

The 1979 bare soil experiment at the University of Arkansas was conducted from July through October and investigated the reflectivities of several controlled moisture test plots. These test plots were of a similar soil texture which was clay loam and were prepared to give a desired initial soil moisture and density profile. Measurements were conducted on the plots as the soil water redistributed for both long term and diurnal cycles. These measurements included reflectivity, gravimetric and volumetric soil moisture, soil moisture potential, and soil temperature.

American con Constitute and Conference and Conferen

Recent laboratory and field measurements conducted at the University of Arkansas dealing with layered media indicated that the reflectivity of the soil was not only a function of its texture and moisture but the density of the soil. These observations gave the impetus for the 1979 Bare Soil Experiment which was to investigate under field conditions the changes in reflectivity of similar textured soils with controlled initial moisture and density profiles for both diurnal and long term cycles.

The experiment took place over the period from July 9 to October 19, 1979 at the University of Arkansas Agricultural Experiment Station #1 with the cooperation of the Agronomy Department. Measurements of the experiment that coincided with those of the reflectivity were soil moisture profile, bulk density profile, soil moisture potential profile, soil temperature profile, and air temperature. These measurements will be used to determine the sensitivity of the reflectivity to soil moisture and density as well as to provide a data base to duplicate the field experiment using a multilayer coherent reflectivity model.

This report states the methods used for test plot preparation, obtainment of reflectivity and ground truth data, and presents the data of the experiment.

2.0 TEST PLOT DESCRIPTION AND PREPARATION

As previously stated the location of the experiment was the University of Arkansas Agricultural Experimental Station #1. The choice of this site allowed for accessibility and provided soils of a common texture which was clay loam.

Two different test plot areas at the site were employed for the experiment. These two areas were separated by a distance of 25 meters and lay adjacent to a wheat field. Because of the plot areas position with respect to each other, a designation of north plot and south plot was used to differentiate between them.

ORIGINAL PAGE IT OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

2.1 INITIAL PLOT PREPARATION

Initial plot preparation consisted of tilling a plot area and boxing a portion of the area with a 4.57 by 4.57 meter wooden frame. This wooden frame was constructed of 2.5 by 30 centimeter pine boards. The boards of the frame were placed into the soil to a depth of approximately 20 centimeters leaving 10 centimeters of the board above the soil surface. Framing a plot in this manner clearly designated the plot area, aided in plot irrigation and levelling, and confined the soil moisture redistribution to a specific area.

2.2 TEST PLOT CYCLE DESIGNATION AND DURATION

The period of the experiment encompassed the span of time from July 9 to October 19, 1979. This period was divided into five separate time intervals in which each time interval marked a different test plot cycle. A numerical designation references each test plot cycle in order to show the time interval of measurement. A listing of the test plot numbers, time intervals and plot locations is given in Table 1.

TABLE 1. PLOT CYCLE DESIGNATION AND DURATION

Plot #	Start Date	End Date	Plot Location
1	7/9	7/30	North
2	8/6	8/14	South
3	8/21	9/4	South
4	9/6	9/19	South
5	9/21	10/19	South

2.3 FINAL PLOT PREPARATION

Final plot preparation included plot irrigation, retilling and levelling as required by the objectives of the experiment for a particular initial soil moisture content and density. The following paragraphs give a brief description of the final cultivation of the individual test plot cycles.

The final preparation of test plot 1 gave it an appearance similar to that of a very weathered bare field. The procedure that achieved this began June 30, 1979 with the retilling and levelling of the soil. This cultivation was followed with periodic irrigation over the interval prior to initiation of plot measurements on the morning of July 9. The irrigation process involved flooding the soil plot to attain a saturated condition and then allowing the water to infiltrate into the soil. During this interval of periodic irrigation, an amount of approximately 6.85 centimeters of rain fell upon the plot surface. The combination of the irrigation process and rainfall dramatically aided in the smoothing and compaction of the soil giving the plot its weathered appearance and large initial moisture content.

The goal of the experiment after the termination of plot #1 was to achieve test plots with a loose upper soil horizon of at least 15 centimeters in depth. This objective stemmed from the desire to observe test plots that simulated freshly cultivated fields as an initial condition as they were weathered by the environment.

Previous experience with plot 1 showed that flooding the plot to gain a saturated condition destroyed the surface roughness structures and compacted the soil. Using a sprinkler system for irrigation tended to have the same effects as flooding but less dramatically in that this system caused local flooding in the plot. This local flooding caused non-uniform soil roughness structures and densities over the plot area: both undesired conditions.

The method used to gain the desired results was to till and level the test plot, irrigate using a sprinkler system, allow the moisture to redistribute for an appropriate period of time, and retill and level. This final tilling loosened the soil, gave a uniform initial soil content in the tilled horizon, and re-established the soil surface roughness structure.

The above procedure was followed for the final of plots 2, 3, and 4. Each plot with the exception of plot 2 was given a higher initial moisture content than its predecessor by successively increasing the amount of irrigation and decreasing the time allowed for moisture redistribution before retilling. Varying the cultivation in this manner not only gave increased surface moisture but also gave increases in the density of the tilled horizon and larger soil surface structures.

Test plot 5 was simply a continuation of plot 4. A rain event marked the time interval change to the new plot. No steps were taken to artificially change the initial conditions of the plot because the objective for this plot was to observe the long effects of natural weathering.

3.0 EXPERIMENT INSTRUMENTATION

Immediately after the completion of final plot preparation the plot under test was instrumented as shown in Figure 1. Instrumentation included a bistatic reflectometer for soil reflectivity measurement, tensiometers for soil moisture potential estimation, and a data logger with thermocouples and humidity sensors for the determination of soil temperature profiles, air temperature, and humidity.

REFLECTOMETER RECEIVER PLATFORM ORICHMAL PAGE IS OF POOR QUALITY DATA LOGGER CONTROLLED MOISTURE PLOT 4.6 m x 4.6 m REFLECTOMETE'R TRANSMITTER PLATFORM

TENSIOMETER

THERMOCOUPLE

BANKS

BANKS

FIGURE 1. INSTRUMENTATION DIAGRAM FOR BOTH NORTH AND SOUTH PLOTS OF THE 1979 BARE SOIL EXPERIMENT AT THE UNIVERSITY OF ARKANSAS

The reflectivity data was gathered utilizing a bistatic reflectometer system measuring at the specular angle of 45°. This reflectometer system featured separate antenna support platforms of the same construction for both the transmit and receive portions of the device. The system also featured dual standard gain horn antennas for the bandwidths of 1 to 2 Ghz and 4 to 8 Ghz. A 1 to 2 Ghz and a 4 to 8 Ghz antenna was mounted on each antenna support platform in a parallel side by side arrangement. The transmitter portion of the system consisted of a microwave sweep oscillator mainframe with individual sweep plug-ins for the 1 to 2 and 4 to 8 Ghz bandwidths. Receiver implementation was accomplished by using a network analyzer as a ratiometer and an X-Y plotter to furnish a permanent record of the data. Table 2 gives a listing of the reflectometer parameters used in the system, and Figure 2 shows a block diagram with system cable interconnects.

System calibration was external and employed a thin sheet of aluminum. The calibration procedure involved placing the aluminum sheet over the soil area to be illuminated and making a swept frequency measurement of the power reflected from the aluminum sheet. After the removal of the aluminum calibration plate, a swept frequency measurement of the reflected power from the bare soil was made. The ratio of these two swept frequency measurements eliminates system parameters and gives the reflectivity of the bare soil. A more detailed description of a bistatic reflectometer using this calibration procedure is given in Waite, et.al., 1973.

An Alfred 8000/7051 sweep network analyzer was initially used in the experiment. This network analyzer required the recording of the individual X-Y plots of the reflected power for the aluminum sheet calibration and the bare soil measurements from which the soil reflectivity was reduced by hand.

BLOCK DIAGRAM OF BISTATIC REPLECTOMETER INTRIMENTATION FIGURE 2.

And the second s

TABLE 2. BISTATIC REFLECTOMETER SYSTEM PARAMETERS

Incidence Angle: 45°
Slant Range: 3.75m

Antennas:

Type: Standard Gain Horn Mounting: Dual Bistatic

Polarization: HH

Operation:

Type: FM-CW

Bandwidths: 1-2 Ghz, 4-8 Ghz

Frequency Sweep: Continuous over the bandwidths

External Calibration: Aluminum plate

This instrument was replaced at the beginning of plot 3 by an H-P network analyzer system that included a storage normalizer unit.

The addition of this storage normalizer brought to the system the capability to store and to ratio the calibration measurement with the bare soil measurement giving the soil reflectivity in a direct manner for recording. An example of the recorded output of the Alfred Network analyzer taken from the data of plot 2 is shown in Figure 3, and an example of the output of the H-P network analyzer system taken from the data of plot 3 is given in Figure 4.

3.2 TENSIOMETER INSTRUMENTATION

The tensiometer is a device for measuring soil moisture potential.

The devices used in this experiment consisted of a porous ceramic membrane connected to a simple mercury manometer by a plastic tube filled with water.

Each soil test plot employed three banks of tensiometers placed about the plot as shown in Figure 1. Each tensiometer in a bank was placed at different depths in the soil to give a soil moisture potential profile. The depths of the soil at which the tensiometers were placed are given in Table 3. At the present time the tensiometer data is under review and not included in this document.

TABLE 3. TEMPERATURE AND SOIL MOISTURE POTENTIAL INSTRUMENTATION

Measurement	Device	# of Banks	# per Bank	Interval (cm)
Soil Temperature	Thermocouple	3	8	1, 2, 3, 4, 5, 10, 24, 30
Air Temperature	Thermocouple	3	2	30, 150 (above soil surface)
Soil Moisture Potential	Tensiometer	3	8	1, 2, 3, 4, 5, 10, 24, 37

3.3 TEMPERATURE AND HUMIDITY INSTRUMENTATION

Another objective of the experiment was to monitor the air and soil temperatures on a continuing basis. This goal was achieved by deploying thermocouples about the plot and using a data logger to sense and record the thermocouple voltages.

The plot arrangement of the thermocouples was similar to that of the tensiometers in that three banks of thermocouples were employed. The locations of the thermocouple banks coincided with that of the tensiometer banks as shown in Figure 1. Each bank contained a total of ten thermocouples. Two of these thermocouples were positioned above the soil surface for air temperature measurements and the remaining eight thermocouples were placed at various depths in the soil to give a soil temperature profile. Table 3 provides a summary of the thermocouple placement.

In order to provide a minimum of disturbance to soil structure, a specially designed device was constructed to place the thermocouples in the soil. This tool employed a slant angle method of insertion to gain the desired y rtical depth.

The data logger used to measure the thermocouple voltages was a multifunctional instrument that could be preset to record at specific intervals
on a twenty-four hour basis. Besides thermal measurements, the data logger
coupled with special sensors also measured relative humidity, but these
humidity sensors failed during the course of plot 2 and could not be replaced before the end of the experiment. Although the humidity data is
available, it is not included in this document since it does not cover the
majority of the experiment.

4.0 EXPERIMENT DATA

Measurements of the experiment included soil reflectivity, soil moisture content, bulk density, air temperature, soil temperature, soil moisture potential, relative humidity, and rainfall. All of these measurements were made in conjunction with that of the reflectivity. A record giving the dates and times of the reflectivity measurements is presented in Appendix A. The following narratives present the individual datum of the measurements for the experiment.

4.1 RAINFALL DATA

The rainfall datum was collected daily at 0800 at a weather station located approximately one kilometer from the test site. Figure 5 is a graph of the significant rainfall during the summer and graphically indicates that the summer was unusually wet. A summary of the rainfall data is given in Appendix B.

4.2 REFLECTIVITY DATA

The reflectivity data of the experiment are presented in Appendix C.

Figures 6 through 10 show the daily and long term variations of the reflectivity at 1.25 Ghz for the five plots, whereas Figures 11 through 15 give the same for the reflectivity at 6 Ghz.

In order to meet the objectives of conducting measurements for diurnal and long term time periods, the frequency of the measurements for the initial three plots had the following schedule. At the start of each of these three plots the rate of measurement was three per day: morning, solar noon, and afternoon. As the soil moisture redistributed, the solar noon measurement was eliminated leaving the rate at two a day. The rate was further reduced to only the afternoon measurement as the test plot cycle moved into a long term measurement interval.

The primary goal for the remaining two plots was to monitor the soil over a long term period at a reduced rate of measurement. The regiment for plot 4 was to initially make at least one afternoon measurement a day, accomplish a diurnal experiment, and then reduce measurements to one every other day. With the rainfall event of August 20, test plot 4 was redesignated plot 5, and the rate of measurement further reduced to two per week. Measurements of the experiment were terminated October 19 giving a total measurement span of 43 days for plots 4 and 5.

Another objective of the experiment was to observe any coherent multilayer effects in the reflectivity data. No significant multilayer effects were seen in any of the 1 to 2 Ghz reflectivity data, but all of the plots with the exception of plot 1 show multilayer effects in the 4 to 8 Ghz bandwidth reflectivity data. Figures 16 through 19 give examples of these

FIGURE 6. 1.25Ghz REFLECTIVITY vs. TIME FOR PLOT 1

-25-

-27-

FIGURE 11. 6.0 Ghz REFLECTIVITY VS. TIME FOR PLOT 1

FIGURE 12. 6.0 Ghz REFLECTIVITY VS. TIME FOR PLOT 2

FIGURE 13. 6.0 Ghz REFLECTIVITY VS. TIME FOR PLOT 3

6.0 Ghz REFLECTIVITY vs. TIME FOR PLOT 4

FIGURE 14.

-31-

FIGURE 15. 6.0 Ghz REFLECTIVITY VS. TIME FOR PLOT 5

-34-

effects for each respective plot. The reasons that the multilayer effects did not form for the 1 to 2 Ghz data and the 4 to 8 Ghz data of plot 1 are attributed to several factors that hindered the redistribution of the soil moisture from the soil surface. These factors were the compaction of the soil of plot 1, the significant amounts of rainfall on plots 1, 2 and 3; and the mild weather during plots 4 and 5 typically consisting of warm days and cold nights with large morning dew accumulations.

ORIGINAL PAGE IS OF POOR QUALITY

4.3 SOIL MOISTURE AND BULK DENSITY DATA

Soil moisture sampling was conducted immediately after each reflectivity measurement. The soil sampling techniques used were refined and changed as the experiment progressed in order to meet the requirements and objectives of the experiment.

As previously stated an objective of the reflectivity measurement was to observe coherent multilayer effects caused by the soil. This objective made it desirable to know the moisture gradient in the upper centimeter of the soil surface. It was with this desire in mind that the first centimeter of soil surface was sampled at quarter centimeter increments for plot 1 and 2. A specially designed trowel was to have been used for this sampling for both plots but a core tool had to be substituted for plot 1 because of its compacted soil surface. Soil samples were taken from four different locations for each measurement. The locations in these two test plots are given by the quadrants shown in Figure 20. Because soil moisture is a destructive test and the test plots had a finite area, it was necessary to reduce the number of soil sampling locations to two for plots 3, 4, and 5. The areas for the soil sampling locations were on the east and west sides of the test plots and were dubbed E and W, respectively. These soil sampling locations are depicted in Figure 21.

Rainfall weathers the soil surface, and as a consequence, the bulk density of soil may be changed by rainfall. Because of the frequent rainfall during the summer and its resultant effects, bulk density measurement of plot 1 was hindered and the bulk density testing of plot 2 eliminated. An obvious solution to this problem would have been to sample more frequently for bulk density. But bulk density sampling is, like soil moisture sampling if not more so, a

FIGURE 20. PLOT QUADRANT DESIGNATION

FIGURE 21. E AND W DESIGNATION USED IN THE SOIL SAMPLING FOR PLOTS 3, 4, AND 5

destructive test. Due to the finite area of the test plot, it was impractical to separately conduct frequent soil moisture and bulk density sampling.

This problem was overcome for the soil measurements of test plots 3, 4, and 5 by using a simple plastic cylinder to take soil samples of known volume at the various soil depth intervals. This method allowed the soil sample to serve for both the soil moisture and bulk density measurement.

The soil sampling intervals of the different test plots are given in Table 4. Note that the first centimeter of soil for test plots 3, 4, and 5 was sampled in half-centimeter intervals. All soil samples were immediately weighed after sampling and oven dried at 105°C for a period of twenty-four hours.

The gravimetric, average bulk density, and volumetric moisture content data are given in Appendices C, D, and E, respectively. It should be noted that the initial bulk densities of plot 3 are substituted for those of plot 2. This was necessary because rain eliminated the bulk density testing of plot 2. In order to acquire similar bulk densities and provide a basis for the substitution, a particular objective of plot 3 was to prepare the plot in as similar a manner as possible to that of plot 2. Figures 22 through 26 depict the 0-1 centimeter volumetric moisture content variation for the five different plot cycles.

original page is of poor quality

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 4. SOIL SAMPLING INTERVALS

Plot Number	Depth Interval (cm)
1	025, .2550, .5075, .75-1.0, 1-2, 2-4
2	025, .2550, .5075, .75-1.0, 1-2, 2-5, 5-9, 9-15
3, 4, and 5	05, .5-1.0, 1-2, 2-5, 5-9, 9-15

-43-

FIGURE 23. THE 0-1 CM DEPTH INTERVAL VOLUMETRIC MOISTURE vs. TIME FOR PLOT 2

FIGURE 24. THE 0-1 CM DEPTH INTERVAL VOLUMETRIC MOISTURE vs. TIME FOR PLOT 3

FIGURE 26. THE 0-1 CM DEPTH INTERVAL VOLUMETRIC MOISTURE vs. TIME FOR PLOT 5

4.4 AIR AND SOIL TEMPERATURE DATA

The goal of the thermal portion of the experiment was to monitor the air and soil temperature on a diurnal basis. Implementation of this objective led to the collection of a large volume of data obtained under various soil meteorlogical conditions. As a consequence of this, the thermal data base was considered to be sufficient at the end of plot 4 to model the experiment; as a result this portion of the experiment was terminated on September 12, 1979. A record of the temperature measurements is given in Appendix F. Extracts of the temperature data are given in Appendix G. Because of the large number of temperature data, only those measurements that coincide with the reflectivity measurements are present.

A quadrant number designation gives the bank location in the test plot of the thermocouple used to measure an individual thermal datum. This quadrant designation was adhered to for all of the test plots and it is the same as that for the soil moisture sampling for test plots 1 and 2 given in Figure 19. The long term variation of the average 0-1 centimeter soil temperature is depicted in Figures 27 through 30 for the four plots of the thermal measurement.

FIGURE 27. THE 1 CM DEPTH SOIL TEMPERATURE vs. TIME FOR PLOT 1

FIGURE 28. THE 1 CM DEPTH SOIL TEMPERATURE vs. TIME FOR PLOT 2

-

TIME FOR PLOT 3

4.5 DIURNAL DATA

Diurnal measurements were conducted during the measurement intervals of Plot 1 and Plot 4. The measurement techniques employed for the diurnals were consistent with those of the particular plot intervals.

The diurnal cycle of Plot 1 began July 26 at 0615. Measurements were conducted through the day at two hour intervals until 2010 when this cycle had to be terminated because of rain. The reflectivity, gravimetric and volumetric moisture, and the air and soil temperature data of this diurnal are presented in Appendix I. Figures 31 through 34 graphically depict the hourly variation of the 1.25 Ghz reflectivity, 6.0 Ghz reflectivity, 0-1 cm volumetric moisture content, and the 1 cm soil temperature, respectively.

The data for the diurnal cycle of Plot 4 are summarized in Appendix J in a similar manner as the diurnal data of Plot 1. The diurnal cycle of Plot 4 began August 10 at 0635 with measurements continuing to 2230 at two hour intervals. A measurement was made at 0700 of the next day to complete the cycle. The hourly variations of the 1.25 Ghz reflectivity, the 6.0 Ghz reflectivity, the 0-1 cm volumetric moisture, and the 1 cm soil temperature of this diurnal cycle are shown in Figures 35 through 38, respectively.

FIGURE 31. THE 1.25 Ghz REFLECTIVITY VS. TIME FOR THE DIURNAL CYCLE OF PLOT 1

FIGURE 32. THE 6.0 Ghz REFLECTIVITY vs.
TIME FOR THE DIURNAL CYCLE
OF PLOT 1

FIGURE 33. THE 0-1 CM VOLUMETRIC MOISTURE CONTENT vs. TIME FOR THE DIURNAL CYCLE OF PLOT 1

FIGURE 34. THE 1 CM SOIL TEMPERATURE VS. TIME FOR THE DIURNAL CYCLE OF PLOT 1

THE 1.25 Ghz REFLECTIVITY VS. TIME FOR THE DIURNAL CYCLE OF PLOT 4

FIGURE 35.

-58-

FIGURE 36. THE 6.0 Ghz REFLECTIVITY vs. TIME FOR THE DIURNAL CYCLE OF PLOT 4

FIGURE 37. THE 0-1 CM DEPTH VOLUMETRIC SOIL MOISTURE CONTENT vs. TIME FOR THE DIURNAL CYCLE OF PLOT 4

FIGURE 38. THE 1 CM DEPTH SOIL TEMPERATURE VS. TIME FOR THE DIURNAL CYCLE OF PLOT 4

REFERENCES

Waite, W. P.; Cook, K. R.; and Bryan, B. B.: "Broad Spectrum Microwave Systems for Remotely Measuring Soil Moisture Content". Water Resources Center Publication No. 18, University of Arkansas, 1973.

APPENDIX A REFLECTIVITY MEASUREMENT RECORD

REFLECTIVITY MEASUREMENT RECORD

Plot #	Date	Time	Comments
1	7/9	1034 1230 1610	Rain ending at 0730. Light showers 1645.
	7/10	0900 1323 1605	
	7/11	0855 1315 1618	
	7/12	0905 1110 1320	
	7/13	0915 1300 1603	
	7/14	0835 1621	
	7/15	1600	
	7/16	0940 1117	Thunder storms in the afternoon continuing through $7/17$.
	7/18	0900 1345 1635	
	7/19	0830 1400 1610	
	7/20	0845 1330 1615	
	7/21	0845 1615	
	7/22	1615	·
	7/23	0900 1320 1615	

Plot #	Date	Time	Comments
1	7/24	0845 1345 1600	
	7/25	0920 1330 1620	
	7/26	0615 0815 1000 1220 1405 1612 1755 2010	Began diurnal. Light rain starting at 2230 and continuing through the night and next day.
	7/30	0855	
2	8/6	1145 1530	
	8/7	0930 1330 1620	
	8/8	0900 1350 1600	
	8/9	0940 1618	
	8/10	0915 1535	Rain at 1630.
	8/14	0920	
3	8/21	1120 1121 1600	Replaced Alfred Network Analyzer with H-P Network Analyzer and storage normalizer.
	8/22	0935 1315 1615	

Plot #	<u>nate</u>	Time	Comments
3	8/23	0900 1330 1610	Rain from 0430 to 0700.
	8/24	0845 1545	
	8/25	1415	
	8/26	1610	
	8/27	1010	Thunder showers in the afternoon.
	8/28	1410	Thunder showers in the morning.
	8/29	1445	
	8/30	1545	
	9/4	1045	Took bulk density to 30cm in center of plot.
4	9/6	1500	
	9/7	0920 1430	
	9/8	1435	
	9/9	1415	
	9/10	0635 0735 1000 1145 1400 1605 1800 2005 2230	Started diurnal.
	9/11	0705 1500	
	9/12	1515	Started less frequent measurement schedule.
	9/13	1535	
	9/14	1325	

Plot #	Date	Time	Comments						
4	9/17	1435							
	9/19	1500							
5	9/21	1450	Rained 9/20. Further decreased measurements to twice a week.						
	9/25	1510							
	9/28	1505							
	10/2	1505							
	10/5	1430							
	10/9	1525							
	10/12	1720							
	10/16	1500	Rained 9/15 from 1200 to 1520.						
	10/19	1445							

APPENDIX B RAINFALL DATA

RAINFALL (CM).

(Reported at the University of Arkansas Farm from July 1 to Oct. 22, 1979)

Date	Rainfall (CM)
7/1	5.08
7/2	.10
7/6	.71
7/7	•53
7/8	.20
7/9	.23
7/17	Trace
7/18	2.67
7/27	1.42
7/28	5.08
7/29	Trace
8/1	.48
8/4	.91
8/5	.05
8/11	1.35
8/12	Trace
8/15	.28
8/16	. 05
8/21	.38
8/23	. 74
8/28	.13
8/29	1.24
9/6	.05
9/20	Trace
9/21	1.32
10/16	. 76
10/17	Trace
10/22	2.21

APPENDIX C REFLECTIVITY DATA

REFLECTIVITY MEASUREMENTS

ORIGINAL PAGE IS OF POOR QUALITY

POWER REFLECTION COEFFICIENT P

PLOT NO. 1	POLARIZATION:				
. 202	INCIDENCE ANGLE:	45 ⁰			

7/9		_					INCI	DENCE AND	SLE: 45°
7/9					FREQUE	NCY (GHz)		
1230	E 7	TIME	1.125	1.25	1.375	1.5	1.625	1.75	1.875
1323	:	1230	.575	.562	.592	.596	.579	.562	.610 .556 .562
1315		1323	.507	.522	.566	.566	.566	.562	.582 .550 .543
1110		1315	.452	.442	.498	.501	.507	.513	.569 .537 .537
1300		1110	.543	.543	.575	.582	.575	.556	.484 .556 .537
1621 .490 .484 .507 .495 .468 .442 7/15 1600 .484 .484 .513 .513 .490 .479 7/16 940 .522 .516 .540 .537 .513 .504 .600 .522 .516 .540 .537 .513 .504		1300	.513	.531	.531	. 543	.531	.543	.550 .537 .495
7/16 940 .522 .516 .540 .537 .513 .504									.519 .427
7/10	5	1600	.484	.484	.513	.513	.490	.479	.470
									.495 .490
1345 .559 .546 .579 .582 .575 .572		1345	.559	• 546	.579	.582	•575	.572	.569 .582 .543

REFLECTIVITY MEASUREMENTS POWER REFLECTION COEFFICIENT ρ

PLOT NO. 1

POLARIZATION: H
INCIDENCE ANGLE: 45°

	FREQUENCY (GHz)											
DATE	TIME	1.125	1.25	1.375	1.5	1.625	1.75	1.875				
7/19	830	.540	.528	.553 .543	.556 .543	.534 .525	.525 .531	.519 .528				
	1400 1610	.510 .501	.510 .507	.534	.531	.519	. 525	.525				
7/20	845	.528	.525	.550	.550		.531					
	1330 1615	.476 .501	.476 .504	.513 .519								
7/21		.513	.495 .507	.525 .566								
7/22	1615	.513 .490	.490			.501						
7/23	900 1320	.501	.490 .479		.516	.498 .490	.498 .476	.510 .481 .462				
	1615	.481	.481		.504	.476	.454					
7/24	845 1345 1600	.504 .437 .470	.507 .442 .462	.534 .487 .495	.525 .481 .484		.495 .439 .439	.495 .437 .432				
7/25	920 1330 1620	.479 .432 .434	.468 .424 .410	.525 .473 .439	.468	.452	.437					
7/26	615 815 1000 1220 1405 1612 1755 2010	.447 .449 .454 .442 .439 .452 .457	.429 .417 .424 .437 .422 .437 .410	.465 .452 .465 .479 .470 .479 .454	.473 .452 .473 .468 .473 .479 .468	.457 .434 .468 .473 .468 .465 .452	. 447 . 417 . 447 . 457 . 452 . 457 . 439 . 479	.419 .460 .454 .462 .447				
7/30	855	.501	.504	.550	.562	.575	. 582	.592				

ORIGINAL PAGE IS OF FOOR QUALITY

REFLECTIVITY MEASUREMENTS

POWER REFLECTION COEFFICIENT P

PLOT NO. 1	POLARIZATION:				
	INCIDENCE ANGLE:	45 ⁰			

						INCIDE	NCE ANGLE:	45
				FREQUEN	CY (GHz)			
DATE	TIME	5.0	5.5	6.0	6.5	7.0	7.5	
7/9	1014.	.537	.606	.596	.507	.490	.417	
·	1315	,638	.638	.582	.556	.490	.442	
	1605	. 585	.582	.575	•546	.513	.468	
7/10	910	•550	.576	.501	.468	.481	.427	
	1312	.585	.603	.603	.617	.585	. 534	
	1555	.617	.603	.575	.550	.513	.457	
7/11	845	.575	. 589	. 569	• 550	.537	.452	
•	1350	.543	.543	.550	.543	.490	.398	
	1616	.550	.537	.507	.495	.490	.457	
7/12	856	.575	.569	.537	.501	.495	.437	
	1325	.624	.582	.531	.513	.519	.447	
7/13	900	.575	.550	.519	.490	.468	.380	
.,	1325	. 589	. 543	.484	.462	.442	.385	
	1600	.543	. 562	.556	.519	.479	.433	
7/14	844	.589	.543	.490	.479	.462	.389	
. ,	1609	.398	.457	.447	.380	.372	.320	

REFLECTIVITY MEASUREMENTS

POWER REFLECTION COEFFICIENT P

ORIGINAL PAGE IS OF POOR QUALITY

PLOT NO. 1 POLARIZATION: H
INCIDENCE ANGLE: 45°

			F	REQUENCY	(GHz)		
DATE	TIME	5.0	5.5	6.0	6.5	7.0	7.5
7/15	1610	.513	.507	.479	.452	.417	.367
7/16	840	.525	.501	.481	.457	.447	.410
	1120	.582	.562	.543	.510	.454	.391
7/18	845	.617	.582	.531	.513	.519	.429
	1400	.498	. 495	.484	.462	.407	. 347
	1615	.537	.556	.569	.550	.490	.432
7/19	845	.507	.513	.507	.465	.444	.394
	1330	.457	. 465	.468	. 449	.412	.372
	1630	. 507	.487	.454	.427	.412	.376
7/20	830	.490	.510	.525	.490	.444	.376
	1.340	.396	.410	.419	.391	.345	. 295
	1600	.452	.468	.470	.452	.414	.407
7/21	850	.487	.519	.495	.447	.432	.374
,,	1600	.396	.389	.389	.374	. 347	.313
7/22	1630	.403	.376	.343	.331	.313	.275
7/23	845	.410	.410	.387	.353	.331	.282
•	1330	.351	.355	-361	.343	، 299	.254
	1600	.318	.333	.337	.320	.280	.243
7/24	900	.394	.403	.391	.353	.329	.288
.,	1330	.376	.353	.325	.311	- 307	.279
	1615	.374	.359	.355	.341	.331	.309
7/25	915	.417	. 389	.369	.341	.318	.279
,,	1345	.361	.355	.351	.331	.320	.287
	1600	.309	.309	.316	.307	. 283	.256
7/26	620	.335	.351	.367	.351	.320	.259
.,	810	.374	.398	.398	.367	.361	.339
	1005	.355	.351	.324	.300	.292	.259
	1215	.359	.361	.351	.316	.295	. 269
	1410	.341	.327	.316	.307	.299	.280
	1605	.365	.347	.331	.313	.307	.287
	1810	.341	.341	.322	.302	.316	.311
	2000	.324	.355	.359	.313	.304	.292
7/30	905	.498	.516	. 504	.465	.427	.382

REFLECTIVITY MEASUREMENTS $\mbox{POWER REFLECTION COEFFICIENT } \rho$

ORIGINAL PAGE IS OF POOR QUALITY

PLOT NO. 2

POLARIZATION: H
INCIDENCE ANGLE: 45°

						INC	IDENCE	ANGLE: 4	5
				FREQUE	NCY (GH:	z)			
DATE	TIME	1.125	1.25	1.375	1.5	1.625	1.75	1.875	
8/6	1145	.262	.259	.292	.318	.302	.295	.280	
	1530	.274	.255	.288	.306	.274	.256	.233	
8/7	0930	.235	.235	.260	.285	.268	.253	.243	
	1330	.253	.247	.282	.304	.277	.260	.240	
	1620	.220	.214	.243	.259	.230	.214	.197	
8/8	0900	.228	.231	.248	.272	.251	.237	.219	
	1350	.216	.209	.232	.247	.218	.197	.180	
	1600	.193	.193	.221	.229	.205	.186	.172	
8/9	0940	.207	.213	.229	.232	.210	.198	.183	
	1618	.175	.173	.188	.196	.175	.154	.135	
8/10	0915	.193	.197	.209	.214	.191	.177	.159	
	1535	.168	.166	.184	.187	.164	.144	.125	
8/14	0920	.156	.266	.314	.337	.320	.300	.275	

ORIGINAL PAGE IS OF POOR QUALITY

REFLECTIVITY MEASUREMENTS

POWER REFLECTION COEFFICIENT O

PLOT NO	. 2						POLARIZATION: INCIDENCE ANGLE:		
DATE	TIME	5.0	5.5	FREQUENCY 6.0	(GHz) 6.5	7.0	7.5		
8/6	1135	. 289	.186	.130	.142	.156	.166		
	1530	.016	.010	<.003	<.003	<.002	.009		
	1600	.010	<.005	<.004	<.003	.015	.318		
8/7	0930	.053	.055	.051	.041	.035 .	.028		
	1330	<.036	<.027	.034	.050	.066	.075		
	1608	<.026	.028	.041	.057	.069	.082		
8/8	0900	.039	.038	.035	.030	.030	.029		
	1340	.030	.051	.077	.108	.131	.128		
	1600	.068	.087	.109	.129	.139	.134		
8/9	0930	.058	.062	.067	.069	.067	.068		
	1630	.122	.109	.108	.110	.107	•094		
8/10	0905	.133	.123	.123 .	.127	.127	.124		
	1545	.171	.152	.150	.147	•134	.119		
8/14	0915	.305	.299	.265	.248	.234	.205		

ORIGINAL PAGE IS OF POOR QUALITY

REFLECTIVITY MEASUREMENTS

POWER REFLECTION COEFFICIENT P

PLOT NO.	PLOT NO. 3 POLARIZATION: H INCIDENCE ANGLE: 45°										
					FREQUENCY	(GHz)					
	DATE	TIME	1.125	1.25	1.375	1.5	1.625	1.75	1.875		
	8/21	1121	.162	.178	.204	.213	.185	.161	.142		
		1600	.191	.218	.254	.285	.268	.247	.215		
	8/22	0935	.223	.259	.269	.304	.289	.271	.247		
		1315	.180	.184	.216	.277	.269	.253	.224		
		1615	.145	.171	.195	.222	.210	.191	.166		
	8/23	0900	.401	.449	.490	.525	,537	.531	.525		
		1330	.266	.309	.355	.380	.382	.376	.370		
		1610	.252	.281	.329	.355	.347	.343	.320		
	8/24	0845	.263	.302	.343	.370	.359	.355	.347		
		1545	.213	.249	. 285	.324	.307	.292	.274		
	8/25	1415	.189	.227	.252	.299	.294	.279	.256		
	8/26	1610	.181	.214	.246	.269	.262	.250	.232		
	8/27	(010	.189	.227	.256	.277	.266	.250	.236		
	8/28	1410	.432	.479	• 534	.589	.589	.582	.589		
	8/29	1445	.221	.256	.295	.328	.314	.302	.292		
	8/30	1545	.223	.254	.285	•313	.294	.287	.253		
	9/4	1045	.194	.219	.257	.247	.232	.215	.218		

REFLECTIVITY MEASUREMENTS

POWER REFLECTION COEFFICIENT P

ORIGINAL PAGE IS OF POOR QUALITY

PLOT NO. 3 POLARIZATION: H
INCIDENCE ANGLE: 45°

				FREQUENCY	(GHz)			
DATE	TIME	5.0	5.5	6.0	6.5	7.0	7.5	
8/21	1130	.193	.138	.100	.101	.099	.091	
	1610	.026	.011	.007	• 004	.006	.012	
8/22	0915	.031	.023	.023	.028	.035	.031	
	1330	.007	.002	.002	.009	.024	.039	
	1610	.009	.007	.012	.025	.049	.060	
8/23	0900	.282	.288	.251	.224	.213	.200	
	1330	.279	.272	.251	.240	.235	.221	
	1620	.186	.174	.172	.172	.172	.153	
8/24	0840	.246	.254	. 229	.207	.207	.185	
	1545	.072	.052	.042	.035	.039	.035	
8/25	1415	.032	.019	.015	.015	.025	.032	
8/26	1620	.032	.019	.020	.020	.031	.046	
8/27	1000	.060	.048	.043	.035	.036	.039	
8/28	1415	.513	.465	.457	.479	.519	.519	
8/29	1445	.263	.254	.262	. 288	.350	.355	
8/30	1545	.142	.120	.114	.112	.112	.115	
9/04	1040	.143	.136	.118	.130	.132	.127	

REFLECTIVITY MEASUREMENTS FOWER REFLECTION COEFFICIENT ρ

		Mano 1	KELFECT	LON COER	L TO TEL	IT b			
PLOT NO.	4						POLAF	RIZATION:	Н
							INCIDENC	E ANGLE:	45 °
				FREQ	UENCY	(GHz)			
DATE	TIME	1.125	1.25	1.375	1.5	1.625	1.75	1.875	
09/06	1500	.399	.325	.328	.297	.249	.228	.217	
09/07	0920	.242	.236	. 256	. 263	.243	.225	.203	
	1430	.254	.252	.291	.299	.287	.279	.256	
09/08	1435	.269	.279	.324	.357	.351	.343	.318	
09/09	1415	.287	.305	.355	.385	.378	.363	.327	
09/10	0635	. 247	.253	, 296	.309	.307	. 299	.268	
	0735	.251	.250	.276	.285	.274	.260	.231	
	1000	.266	.276	.317	.355	.355	.343	.336	
	1145	.271	.291	.341	.376	.376	.396	.394	
	1400	.276	.289	.335	.363	.363	.345	.307	
	1605	.292	.303	.355	.383	.385	.378	.339	
	1800	.277	.286	.349	.385	.387	.380	.332	
	2005	.218	.224	.269	. 299	.304	.301	.289	
	2230	.260	.273	.324	.353	.363	.359	.346	
09/11	0705	.254	.263	.304	.320	.322	.322	. 280	
	1500	.299	.307	.366	.362	.335	.317	.272	
09/12	1515	. 287	.297	.341	.326	.306	. 289	. 248	
09/13	1535	.299	.328	.387	.401	.409	.366	.313	

PLOT NO.	4	•					POLA:	н 45 ^о	
				FREQ	UENCY	(GHz)	INCLUEN	or mions.	43
DATE	TIME	1.125	1.25	1.375	1.5	1.625	1.75	1.875	
09/14	1325	.280	.304	.364	.387	.370	.349	.309	
09/17	1435	. 304	.319	.360	.376	.376	.372	.330	
09/19	1500	.313	.317	.356	.380	.363	.367	.331	

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

REFLECTIVITY MEASUREMENTS POWER REFLECTION COEFFICIENT ρ

			,				
PLOT N	0. 4					POLARIZATION INCIDENCE ANG	
				FREQUE	NCY (GHz)		
DATE	TIME	5.0	5.5	6.0	6.5	7.0	7.5
9/06	1505	6.55×10 ⁻²	5.21x10 ⁻²	4.11x10 ⁻²	3.43×10^{-2}	2.35x10 ⁻²	1.26x10 ⁻²
9/07	0910	5.89×10 ⁻²	6.17×10 ⁻²	4.45×10 ⁻²	3.57×10 ⁻²	2.57×10 ⁻²	1.68×10 ⁻²
	1435	2.00x10 ⁻²	1.28×10 ⁻²	8.22×10^{-3}	6.24×10^{-3}	3.70×10^{-3}	5.83x10 ⁻⁴
9/08	1440	1.72×10 ⁻²	1.18×10 ⁻²	7.49x10 ⁻³	4.93x10 ⁻³	2.82×10 ⁻³	8.22×10 ⁻⁴
9/09	1420	7.47×10^{-3}	4.10×10 ⁻³	1.70x10 ⁻³	3.76×10 ⁻⁴	2.24×10 ⁻³	1.5x10 -2
9/10	0630	3.35x10 ⁻²	3.27×10 ⁻²	2.47x10 ⁻²	2.32×10 ⁻²	2.10×10 ⁻²	2.32x10 ⁻²
	0730	3.35×10^{-2}	3.43×10^{-2}	3.57×10^{-2}	3.20×10^{-2}	2.20×10^{-2}	2.09×10^{-2}
	1005	2.99×10^{-2}	2.20x10 ⁻²	1.98×10 ⁻²	1.77×10^{-2}	1.08x10 ⁻²	1.04×10^{-2}
	1145	2.25x10 ⁻²	1.20x10 ⁻²	6.43×10^{-3}	4.17×10^{-3}	8.71×10^{-4}	2.79×10^{-3}
	1405	1.48×10^{-2}	9.13×10^{-3}	1.10×10^{-3}	9.55×10^{-3}	3.89×10^{-3}	5.56×10^{-3}
	1600	6.35×10^{-2}	7.08×10^{-2}	2.19×10^{-2}	2.62×10^{-2}	1.49×10^{-2}	1.12x10 ⁻²
	1805	1.59×10^{-2}	8.32×10^{-3}	1.26×10 ⁻²	1.37×10^{-2}	1.07x10 ⁻²	8.56×10^{-3}
	2000	2.08×10^{-2}	1.68×10 ⁻²	1.94x10 ⁻²	1.85×10^{-2}	1.48x10 ⁻²	1.53×10^{-2}
	2235	2.90x10 ⁻²	2.09×10^{-2}	2.32×10^{-2}	2.35×10^{-2}	1.73×10^{-2}	1.32×10^{-2}
9/11	0700	5.31x10 ⁻²	5.19x10 ⁻²	5.34×10 ⁻²	6.03x10 ⁻²	5.10x10 ⁻²	4.44×10 ⁻²
	1505	1.68×10^{-2}	8.32×10^{-3}	8.09×10^{-3}	6.31×10^{-3}	6.81×10^{-3}	1.04×10^{-2}
9/12	1600	2.46x10 ⁻²	1.10×10 ⁻²	7.12x10 ⁻²	7.87x10 ⁻³	7.86×10 ⁻³	7.86×10 ⁻³
9/13	1530	3.31x10 ⁻²	2.09x10 ⁻²	2.40x10 ⁻²	2.11x10 ⁻²	2.09x10 ⁻²	1.91x10 ⁻²
9/14	1345	3.04x10 ⁻²	1.93×10 ⁻²	1.86x10 ⁻²	1.12x10 ⁻²	3.89x10 ⁻³	4.68x10 ⁻³

REFLECTIVITY MEASUREMENTS OF POOR QUALITY POWER REFLECTION COEFFICIENT ρ PLOT NO. 4 POLARIZATION: H INCIDENCE ANGLE: 45 FREQUENCY (GHz) DATE TIME 5.0 5.5 6.0 6.5 7.0 7.5 9/17 1430 2.69×10^{-2} 1.95×10^{-2} 2.12×10^{-2} 1.32×10^{-2} 1.40×10^{-2} 1.07×10^{-2} 9/19 1505 2.33×10^{-2} 2.48×10^{-2} 2.71×10^{-2} 1.82×10^{-2} 1.16×10^{-2} 8.00×10^{-3}

ORIGINAL PAGE IS OF POOR QUALITY

PLOT NO. 5

POLARIZATION: H
INCIDENCE ANGLE: 45°

FREQUENCY (GHz)

DATE	TIME	1.125	1.25	1.375	1.5	1.625	1.75	1.875
09-21	1450	.367	.408	.447	.479	.452	.415	.370
09-25	1510	.306	.313	.355	.363	.337	.322	.294
09-28	1505	.285	.282	.306	.311	.307	.316	.320
10-02	1505	.260	.281	.302	.306	.269	.259	.257
10-05	1430	.245	.256	.284	.300	.284	.282	.274
10-09	1525	.207	.224	.241	.266	.265	.254	.241
10-12	1720	.197	.215	.239	.268	.274	.250	.223
10-16	1500	.299	.308	.333	.345	.326	.307	.292
10-19	1445	.222	.240	.260	.272	.253	.231	.225

original page is of poor quality

PLOT NO). 5					POLARIZATION:		
						INCIDENCE	ANGLE: 45°	
				FREQUENCY	(GHz)			
DATE	TIME	5.0	5.5	6.0	6.5	7.0	7.5	
09-21	1445	.263	.229	.193	.154	.145	.118	
09-25	1515	3.24×10^{-2}	2.80x10 ⁻²		2.07×10^{-2}	1.15×10^{-2}	3.94×10^{-3}	
09-28	1520	8.47×10^{-4}	_	4.88x10 ⁻⁴		_		
10-02	1510	9.77×10^{-3}	_	7.77×10^{-3}		_		
10-05	1420	_	_	6.17×10^{-3}				
10-09	1530	_	_	9.95×10^{-3}				
10-12	1710	2.76×10 ⁻²	_	1.02×10^{-2}	_	_	_	
10-16	1510	.123	_	5.07×10^{-2}	_			
10-19	1440	6.77×10^{-3}	3.48×10^{-3}	2.73×10^{-3}	2.00×10^{-4}	1.97×10^{-3}	9.73×10^{-4}	

APPENDIX D GRAVIMETRIC MOISTURE DATA

ORIGINAL PAGE IS OF POOR QUALITY

SOIL MOISTURE MEASUREMENTS

GRAVIMETRIC MOISTURE CONTENT $\Theta_{_{\mathbf{W}}}(GM/GM)$

Plot No. 1 Date: 7/09/79

Plot N	Date	: //09/	79					
				DEPTH INT	ERVAL (CM)			
Time	Quad	025	.255	.575	.75-1	0-1	1-2	2-4
1000	I	.364	.292	.270	.261	.292	.280	.295
	II	.386	.267	.265	.262	.295	. 242	. 282
	III	.272	.226	.213	.223	.234	. 245	.243
	IA	.311	.239	.236	.221	.252	. 224	.231
Plot r	nean	.329	.256	.246	.242	.268	.248	.263
1200	I	and their team was	.200	.164	.167	.177	.182	.237
	II	.277	.233	.287	.193	. 248	. 225	.245
	III	.250	.250	.233	.214	.237	.186	.190
	IV	.308	.214	.175	.188	.224	.210	.220
Plot t	nean	.278	.224	.215	.191	.221	.201	.223
1600	I	.342	.257	.242	.206	.262	.236	.249
	II	.305	.315	.247	.233	.275	.218	.208
	III	.260	.216	.190	.184	.213	.182	.185
	IV	.301	.201	.204	.194	.225	.204	.239
Plot i	mean	.287	.247	.221	. 204	.244	.210	.220

• [

SOIL MOISTURE MEASUREMENTS

GRAVIMETRIC MOISTURE CONTENT $\theta_{_{\mathbf{W}}}$ (GM/GM)

Plot No. 1 Date: 7/10/79

I LUC A	100 100 2										
				DEPTH INT	ERVAL (CM)						
Time	Quad	025	.255	.575	.75-1	0-1	1-2	2-4			
0900	I	.440	.271	.246	.240	.299	.242	.253			
	II	.293	.270	.211	.250	.256	.242	.208			
	III	.248	.229	.184	.152	.203	.185	.210			
	IV	280	.219	.212	.197	.227	.213	.204			
Plot n	nean	.315	.247	.213	.210	.246	.221	.219			
1300	I	.316	.268	.257	.282	.281	.208	.214			
	II	.216	.184	.151	.120	.168	.197	.109			
	III	. 309	.273	.168	.188	.235	.171	.215			
	IV	.231	.195	.177	.181	.196	.215	.200			
Plot	mean	.268	.230	.188	.193	.220	.198	.205			
1600	I	.396	.307	and their state	.180	.296	.207	.220			
	II	.212	.273	.313	.271	.267	.217	.201			
	III	.316	.250	.259	.224	.262	.208	.216			
	IV	.238	.206	.187	.202	.208	.196	.197			
Plot	mean	.291	.259	.253	.219	.258	.207	.209			

GRAVIMETRIC MOISTURE CONTENT θ_w (GM/GM)

Plot No. 1 Date: 7/11/79

	DEPTH INTERVAL (CM)							
Quad	025	,255	.575	.75-1	0-1	1-2	2-4	
I	. 284	. 288	gave and have been	.210	.260	.188	.222	
II	.231	.244	.209	.245	.232	.236	.207	
III	.261	.246	.226	.161	.224	. 205	.217	
IV	.319	.200	.212	.189	.230	.199	.199	
mean	.274	.195	.216	.201	.237	.207	.211	
I	.346	.353	.199	.151	.262	.211	.212	
II	.221	.208	.199	.331	. 239	.233	.207	
III	.172	.145	.190	.169	.169	.169	.177	
IV	.159	.174	.179	.144	.164	.160	.176	
mean	.225	.220	.192	.199	.209	.193	.193	
I	. 268	.179	.129	.230	.202	.206	.223	
II	.263	.230	.170	that same tired tree	.221	.189	.185	
ııı	.183	.177	.129	.130	.155	.132	.181	
IV	took teen some Tip	.114	.153	.137	.135	.171	.177	
Mean	.238	.175	.145	.166	.178	.175	.192	
	I III IV mean I III IV mean I III IV IV mean I III IV	I .284 II .231 III .261 IV .319 mean .274 I .346 II .221 III .172 IV .159 mean .225 I .268 II .263 III .183 IV	I .284 .288 II .231 .244 III .261 .246 IV .319 .200 mean .274 .195 I .346 .353 II .221 .208 III .172 .145 IV .159 .174 mean .225 .220 I .268 .179 II .263 .230 III .183 .177 IV114	Quad 025 .255 .575 I .284 .288 II .231 .244 .209 III .261 .246 .226 IV .319 .200 .212 mean .274 .195 .216 I .346 .353 .199 II .221 .208 .199 III .172 .145 .190 IV .159 .174 .179 mean .225 .220 .192 I .268 .179 .129 II .263 .230 .170 III .183 .177 .129 IV114 .153	Quad O25 .255 .575 .75-1 I .284 .288 .210 II .231 .244 .209 .245 III .261 .246 .226 .161 IV .319 .200 .212 .189 mean .274 .195 .216 .201 I .346 .353 .199 .151 II .221 .208 .199 .331 III .172 .145 .190 .169 IV .159 .174 .179 .144 mean .225 .220 .192 .199 I .268 .179 .129 .230 II .263 .230 .170 III .183 .177 .129 .130 IV .114 .153 .137	Quad 025 .255 .575 .75-1 0-1 I .284 .288 .210 .260 II .231 .244 .209 .245 .232 III .261 .246 .226 .161 .224 IV .319 .200 .212 .189 .230 mean .274 .195 .216 .201 .237 I .346 .353 .199 .151 .262 II .221 .208 .199 .331 .239 III .172 .145 .190 .169 .169 IV .159 .174 .179 .144 .164 mean .225 .220 .192 .199 .209 I .268 .179 .129 .230 .202 II .263 .230 .170 .221 III .183 .177 .129 .130 .155 IV .114 .153 .137	Quad 025 ,255 .575 .75-1 0-1 1-2 I .284 .288 .210 .260 .188 II .231 .244 .209 .245 .232 .236 III .261 .246 .226 .161 .224 .205 IV .319 .200 .212 .189 .230 .199 mean .274 .195 .216 .201 .237 .207 I .346 .353 .199 .151 .262 .211 II .221 .208 .199 .331 .239 .233 III .172 .145 .190 .169 .169 .169 IV .159 .174 .179 .144 .164 .160 mean .225 .220 .192 .199 .209 .193 I .268 .179 .129 .230 .202 .206 II .263 .230 .170 .221 .189<	

GRAVIMETRIC MOISTURE CONTENT $\boldsymbol{\theta}_{_{\!\boldsymbol{W}}}$ (GM/GM)

Plot No. 1 Date: 7/12/79

TIOL	10, 1						,	
				DEPTH INT	ERVAL (CM)			
Time	Quad	025	.255	.575	.75-1	0-1	1-2	2-4
0900	I	.272	.295	spec have local made	.141	.236	.165	.224
	II	. 252	.237	.211	.203	.226	.223	.223
	III	.185	.219	.179	.209	.198	.190	.207
	IV.	.258	.191	. 203	.161	.203	.183	.180
Plot	mean	.242	.236	.198	.179	.216	.190	.209
1300	I	.156	.098	.147	.177	.145	.165	.173
	II	.126	.168	.134	.117	.136	.156	.162
	III	.097	.199	.077	.104	.119	.173	.187
	IV	.090	.143	.138	.135	.127	.166	,192
Plot	mean	.117	.152	.124	. 133	.132	.165	.179
1600	I	.209	.151	•087	.150	.149	.321	.203
	II	.176	.261	.107	.166	.176	.276	.178
	III	.039	.141	.245	.263	.173	.203	.194
	IV	.152	.089	.096	.097	.109	.138	.156
Plot	mean	.144	.161	.134	.169	.152	. 234	.183

GRAVIMETRIC MOISTURE CONTENT θ_{w} (GM/GM)

Plot No. 1 Date: 7/13/79

* ***							,,	
				DEPTH INT	ERVAL (CM)			
Time	Quad	025	. 25 5	.575	.75-1	0-1	1-2	2-4
0900	I	.209	.163	.086	1544 MED BAN SAME	.153	.205	.214
	II	.272	.374	.261	.216	.281	.023	
	III	.158	.257	.241	.230	.222	.210	.184
	IV.	.228	. 203	.195	.205	.208	.195	.171
Plot	mean	.217	.249	.196	.217	.216	.158	.190
1300	I	.241	.170	,134	.137	.171	.169	.169
	II	.256	.270	. 294	man firm hade grade	.273	. 204	.195
	III	.093	.131	was now had blad	.123	.116	.150	.168
	IV	.103	.094	.118	.134	.112	.153	.175
Plot	mean	.173	.166	.182	.131	.168	.169	.177
1600	I	.213	.081	.150	.109	.138	.170	.188
	II	.204	.180	.140	.161	.171	.189	.186
	III	.079	.082	.087	.120	.092	.140	.157
	IV	.041	.099	.119	.172	.108	.096	.175
Plot	mean	.134	.111	.124	.141	.127	.149	.177

GRAVIMETRIC MOISTURE CONTENT $\theta_{_{\mathbf{W}}}$ (GM/GM)

Date: 7/14/79 Plot No. 1

DEPTH INTERVAL (CM)

Time	Quad	025	.255	.575	.75-1	0-1	1-2	2-4
0900	I	.284	.063	.104	.177	.158	.202	.188
	II	.140	.090	.124	.132	.120	.149	.190
	III	.058	.061	. 06 7	.155	.087	.156	.162
	IV	.098	.074	.087	.123	.095	.123	.167
Plot n	nean .	.145	.072	.096	.147	.115	.158	.178

.129

.141

.163

.141

.130

.199

III

IV

Plot mean

GRAVIMETRIC MOISTURE CONTENT $\theta_{_{\rm ty}}$ (GM/GM)

Plot N	No. 1					Dat	e: 7/10	5/79	
	DEPTH INTERVAL (CM)						1)		
Time	Quad	025	.255	.575	.75-1	0-1	1-2	2-4	
0900	I	.317	.153	.176	,159	.201	.165	.194	
	rı	. 206	.229	.189	.118	.186	.231	.191	

.139

.121

.156

.126

.141

.136

.134

.132

.163

.162

.160

.152

.136

.171 .177

GRAVIMETRIC MOISTURE CONTENT $\theta_{_{\mathbf{W}}}$ (GM/GM)

Plot No. 1 Date: 7/17/79

						3766.61	n	4 C 3
Time	Quad	025	.255	.575	.75-1	0-1	1-2	2-4
0830	1	.279	.283	.197	.224	.246	.222	.218
	11	.291	.241	.227	.216	.244	.228	.188
	111	. 286	. 202	.190	.169	.212	.178	.192
	IV	. 340	.271	.290	.251	.288	.237	. 269
Plot v	nean	.299	.249	.226	.215	, 247	.216	.217

GRAVIMETRIC MOISTURE CONTENT θ_w (GM/GM)

Plot No. 1 Date: 7/18/79

DEPTH INTERVAL (CM) 0-1 1-2 2-4 .75-1 Time Quad 0-.25 .25-.5 .5-.75 .170 .208 .192 .205 .179 0900 I .275 .184 .206 .176 .162 .194 .183 .233 II . 202 .167 . 206 .181 .215 .235 III .207 , 209 .210 .235 .203 .174 IV .250 .212 .201 .208 .168 .205 .198 .200 Plot mean .241 .207 .159 .208 .146 .132 .147 1340 I .212 .195 .180 II .203 .199 .152 .176 .183 .200 .186 .194 .186 .192 .168 IJI .183 .181 .218 .191 .196 .211 . 185 ΙV .281 .189 .197 .178 .175 .173 .186 .220 Plot mean .204 .217 .163 .184 .169 .207 Ι .196 1600 .202 .149 .181 .148 II .149 .149 .151 .193 .143 .122 .161 .125 III .215 .163 .081 .125 .170 .173 .119 .105 .194 IV

.155

.196

.170

.155

.135

.141

.189

Plot mean

GRAVIMETRIC MOISTURE CONTENT $\theta_{_{\mathbf{W}}}(\text{GM/GM})$

Plot No. 1 Date: 7/19/79

Plot N	lo. 1					Date	Date: //19//9		
				DEPTH INT	ERVAL (CM)				
Time	Quad	025	.255	.575	.75-1	0-1	1-2	2-4	
0900	I	.213	.170	.160	.159	.176	.210	.211	
	II .	.348	. 255	.285	.191	.270	.199	.222	
	ııı	dest form ging dest	time page and that	.202	.188	.195	.184	.183	
	IV	.211	.181	.148	.135	.170	.176	.194	
Plot n	nean	.257	.202	.199	.208	.202	.192	.203	
1350	I	.202	.124	.142	.169	.159	.189	.177	
	II	.192	.200	. 205	.172	.192	.176	.208	
	III	.139	.137	.162	.154	.148	.184	.172	
	IV	.304	.199	.199	.180	.221	.219	.217	
Plot n	nean	.209	.165	.177	.169	.180	.192	.194	
1600	I	.162	.119	.165	.214	.165	.251	.179	
	II	.196	.170	.192	.234	.198	.286	.189	
	III	.150	.148	.084	.122	.126	.153	.178	
	IV	.205	.150	.116	.156	.157	.158	.165	
Plot r	mean	.178	.147	.139	.182	.161	.212	.178	

GRAVIMETRIC MOISTURE CONTENT $\boldsymbol{\theta}_{\mathbf{w}}$ (GM/GM)

Plot No. 1 Date: 7/20/79

DEPTH INTERVAL (CM) .5-.75 .75-1 0-1 1-2

Time	Quad	025	.255	.575	.75-1	0-1	1-2	2-4
1300	I	.265	.151	.128	.153	.174	.178	.195
	II	. 275	.176	.193	.172	.204	.174	.203
	III	.106	.146	.110	.114	.119	.142	.171
	IV	.132	.077	.096	.107	.103	.147	.174
Plot n	nean	.193	.138	.132	.137	.150	.160	.186

ORIGINAL PAGE IS OF POOR QUALITY

SOIL MOISTURE MEASUREMENTS

GRAVIMETRIC MOISTURE CONTENT $\boldsymbol{\theta}_{_{\mathbf{W}}}$ (GM/GM)

Plot No. 1 Date: 7/23/79

1100	10. 1					Date	Date: 7/23/19		
				DEPTH INT	erval (CM)				
Time	Quad	025	.255	.575	.75-1	0-1	1-2	2-4	
0800	I	.085	.106	.160	.073	.159	.117	.172	
	II	.213	.158	.173	.150	.174	.178	.180	
	III	.111	.145	.121	.144	.130	.147	.151	
	IV	.081	.065	.099	.122	.092	.141	.163	
Plot mean		.123	.119	.138	.122	.139	.146	.167	
1300	I	.025	.068	.090	.083	.067	.148	.160	
	II	.208	.180	.153	.171	.178	.187	.176	
	III	.075	.151	.144	.102	.118	.155	.172	
	IV	.033	.047	.123	.111	.079	.148	, 140	
Plot n	nean	.085	.112	.128	.117	.110	.160	.162	
1600	I	.016	.025	.121	.130	.073	.162	.180	
	II	.023	.060	. 208	.076	.092	.129	.173	
	III	.024	.081	.099	.082	.072	.126	.158	
	IV	.033	.217	.222	.119	.148	.129	.153	
Plot r	nean	.024	.095	.163	.102	.096	.137	.166	

GRAVIMETRIC MOISTURE CONTENT θ_{w} (GM/GM)

Plot No. 1 Date: 7/24/79

DEPTH INTERVAL (CM) Time Quad 0 - .25.25-.5 .5-.75 .75-1 0 - 11-2 2-4 I . 094 0900 .039 .107 .069 .077 .119 .136 II .230 .226 .168 .137 .190 .189 .186 III .093 .105 .140 .143 .120 .164 .167 IV .118 .125 .120 .124 .122 .160 .169 Plot mean .126 .120 .139 .125 .127 .158 .165 I .063 .090 1330 .073 .073 .125 .137 ΙΙ .263 .085 .092 .109 .137 .161 .175 .075 III .044 .052 .141 .064 .079 .142 IV .018 .109 .073 .085 .071 .133 .142 .077 .099 Plot mean .108 .083 .090 .125 .149 1600 Ι .0.0 .008 .033 .056 .024 .096 .137 .160 .156 .180 .148 .161 .170 .181 II III .103 .073 .122 .099 .147 .158 ------.058 .052 .091 .110 IV .035 .059 .127 Plot mean .065 .081 .085 .104 .086 .131 .151

GRAVIMETRIC MOISTURE CONTENT $\theta_{_{\mathbf{W}}}(GM/GM)$

Plot No. 1 Date: 7/25/79

Plot N	10. I						•	•
				DEPTH INT	ERVAL (CM)	•		
Time	Quad	025	.255	.575	.75-1	0-1	1-2	2-4
0830	ı	.002	.007	.124	.086	.072	.153	.157
	II	.188	Street, dones dones dones	gains, print (note \$100)	.150	.169	.168	.184
	III	.197	.121	.132	.205	.164	.164	.172
	IV	.052	.122	.092	.172	.111	.152	.183
Plot	mean	.110	.107	.116	.153	.129	.159	.174
1600	I	.025	.076	.077	.117	.074	.147	.152
	II	.173	.154	.161	.159	.162	.162	.166
	III	.036	.109	.129	.130	.101	.113	.156
	IV	.026	.069	.132	.131	.090	.145	.158
Plot	mean	.065	.102	.125	.134	.107	.142	.158

GRAVIMETRIC MOISTURE CONTENT $\theta_{_{\mathbf{W}}}(\text{GM/GM})$

Plot No. 1 Date: 7/26/79

LTOC !	10. 1					244	. //2	3113
			•	DEPTH INT	erval (cm)		
Time	Quad	025	.255	.575	. 75–1	0-1	1-2	2-4
0600	I	.181	.094	.153	.141	.142	.156	
	II	.136	.129	.171	.224	.165	.235	.160
	III	.089	.150	.097	.129	.116	.155	.162
	IV	.078	.102	.144		.108	.129	.147
Plot n	nean	.121	.119	.141	.165	.133	.169	.156
0800	I	.104	.046	.072	.080	.076	.133	.130
	II	.171	.145	.178	.172	.167	.145	.155
	III	.210	.223	, 118	.085	.159	.167	.165
	IV	.056	.142	.146	.153	.124	.154	.147
Plot	mean	.135	.139	.129	.123	.131	.150	.149
1000	I	.043	.094	.075	.086	.075	.164	منط مهم بعد است
	II	.160	.179	.153	.168	.165	.106	.149
	III	.075	.162	.161	.116	.129	.148	.160
	IV	.023	.057	.118	.134	.083	.152	.160
Plot i	mean	.075	.123	.127	.126	.113	.143	.156

GRAVIMETRIC MOISTURE CONTENT θ_{tr} (GM/GM)

Date: 7/26/79 Plot No. 1

DEPTH INTERVAL (CM) Time Quad 0-.25 .25-.5 .5-.75 .75-1 0-1 1-2 2-4 T, .098 .109 .208 .074 .122 .139 .169 1200 II .198 .137 .183 .171 .172 -.231 .141 .121 .126 .111 .167 III .054 .099 .117 .107 .111 .135 .145 IV .120 Plot mean .122 .157 .120 .129 .147 .182 .118 .116 .160 .163 I .106 .174 1400 .070 .113 .156 II . 229 .255 .186 . 197 .217 .222 .188 .172 .194 .165 III .174 .222 .104 .149 .168 .157 IV .154 .147 .141 .113 Plut mean .129 .174 .165 .177 .161 .186 .160 .163 .145 I .179 .154 .128 ____ 1600 .196 .221 II .147 .112 .133 .134 .132 III .015 .039 .084 .147 .071 .142 .157 ${\tt IV}$.110 .119 .143 .143 .176 .085 .105

.086

.108

.126

.135

.119

.161

.167

Plot mean

GRAVIMETRIC MOISTURE CONTENT θ (GM/GM)

Plot No. 1 Date: 7/26/79

Plot	No. 1					Date	: //2	0//9
				DEPTH INT	ERVAL (CM)	•		
Time	Quad	025	.255	.575	.75-1	0-1	1-2	2-4
1800	I	.000	.017	.370	.104	.048	.155	.160
	II	.210	.227	.164	.176	. 194	.184	.151
	ııı	.000	.008	.069	.143	.055	.144	.170
	IV	.029	.113	.127	.125	.099	.153	.151
Plot	mean	.060	.091	.108	.137	.099	.159	.158
2000	I	.019	.032	.089	.150	.073	.160	.145
	II	.197	.121	.153	.110	.145	.183	.161
	III	.120	.130	.132	.166	.137	.163	
	IV	.088	.110	.131	.154	.121	.151	.159
Plot n	nean	.106	.098	.126	.145	.119	.164	.155

GRAVIMETRIC MOISTURE CONTENT $\boldsymbol{\theta}_{_{\boldsymbol{\varpi}}}$ (GM/GM)

Plot No. 1 Date: 7/30/79

DEPTH INTERVAL (CM) .25-.5 .5-.75 .75-1 0-1 1-2 Time Quad 0 - .252-4 .032 .169 .219 0900 I .203 .273 .229 11 .296 .220 .296 .193 .380 .288 .183 III .169 .186 .194 .182 .184 .185 .124 .188 17 .196 .210 .171 .219 .199 .163 .208 .199 Plot mean .253 .206 .171 ,224 .190

GRAVIMETRIC MOISTURE CONTENT $\boldsymbol{\theta}_{_{\boldsymbol{W}}}$ (GM/GM)

Plot No. 2

Date: 8/6/79

Time	Quad	025	.255	.575	.75-1	1-2	25	5-9	9-15
1200	I	.041	.115	.125	.136	.154	.155	.155	.171
	II	.058	.1.17	.137	.136	.143	.166		(150 may 1844
	III	.037	.110	.142	.145	.127	.138	.184	.195
	IV	.087	.156	.171	.174	.183	.235	the trip step	Mes 620 AND
Plot mean		.056	.125	.144	.148	.152	.174	.170	.183
1545	I	.014	.043	.058	.056	.134	.144	.124	.144
	II	.013	.010	.036	.073	.135	.157	(NO AND SHIP	
	III	.010	.048	.127	.153	.156	.160	.175	.201
	IV	.022	.079	.107	.138	.153	.171		
Plot mean		.015	.045	.082	.105	.145	.158	.150	.173

ORIGINAL PAGE IS OF POOR QUALITY

GRAVIMETRIC MOISTURE CONTENT θ $_{W}$ (GM/GM)

Plot No. 2

Date: 8/7/79

DEPTH	INTERVAL	(CM)
-------	----------	------

Time	Quad	025	.255	.575	.75-1	1-2	2-5	5-9	9-15
0945	I	.023	.١١67	.131	.131	.143	.146	.158	.157
	II	.022	.01/0	.112	.1.27	.139	.162	geld (jeep £779	
	III	.025	080.	.107	.136	.150	.149	.172	.194
	IA	.014	.062	.123	.150	.165	.191	gene desty dates	
Plot mean		.021	.072	.118	.136	.149	.162	.165	.176
1330	I	.007	.009	.042	.085	.128	.135	.142	.144
	II	.006	.008	.040	.083	.136	.159	ton are ton	
	III	.003	.014	.091	.134	.151	.168	.169	.184
	IV	.005	.054	.125	.153	.171	.179		
Plot mean		.005	.021	.075	.114	.147	.160	.156	.164
1630	I	.003	.006	.005	.034	.105	.137	.167	.184
	II	.003	.003	.015	.040	.116	.140		
	III	.005	.008	.005	.118	.165	.174	.176	.201
	IV	.006	.017	.057	.096	.160	.173		
Plot mean		.004	.009	.021	.072	.137	.1.56	.172	.193

GRAVIMETRIC MOISTURE CONTENT $\theta_{_{MF}}$ (GM/GM)

Plot No. 2 Date: 8/8/79

Time	Quad	025	.255	.575	. 751	1-2	2-5	5-9	9-15
0900	I	.011	.041	.075	.115	.149	.141	.139	.153
	II	.011	.018	.052	.105	.142	.1.48		
	III	.014	.048	.099	.132			.180	.189
	IV	.010	.032	.093	.1.30	.157	.179		500 THE 500
Plot mean		.012	.035	.080	.121	.149	.150	.160	.171
1400	I	.005	.005	.011	.036	.114	.150	.154	.162
	II	.005	.005	.012	.060	.116	.143	86	
	III	.004	.006	.026	.079	.154	.165	.183	.204
	IV	.002	.003	.046	.094	.140	.159		
Plot mean		.004	.005	.024	.068	.131	.154	.169	.183
1615	I	.004	.005	.036	.089	.121	.147	.149	.152
	II	.003	.012	.051	.114	.134	.164		
	III	.003	.012	.068	.083	.151	.156	.165	.183
	IV	.005	.011	.045	.107	.139	.164	2000 2000 2000	ans and and
Plot mean		.004	.010	.050	.098	.136	.158	.157	.168

ORICINAL PAGE IS OF FOOR QUALITY

SOIL MOISTURE MEASUREMENTS

GRAVIMETRIC MOISTURE CONTENT $\theta_{_{\mathbf{W}}}$ (GM/GM)

Plot No. 2

Date: 8/9/79

Time	Quad	0=,25	.255	.575	.75~1	1-2	2-5	5=0	9-15
0915	t	.022	.034	.093	.116	.146	.153	Section for the	.172
	11	.024	.104	.070	.105	,131	.163	Cod kod god	gang Bilik dalah
	111	.014	.022	.043	.086	,133	.154	.170	.176
	1V	.019	.047	.061	.143	.144	.164	alia krak Mirk	Gest test test
Plot mean		.020	.052	.067	.113	.139	.158	.170	.174
1600	1	.004	.007	.025	.071	.126	.140	.147	.162
	t i	, 004	.007	.034	.081	.142	.157	-	made 6300 from
	111	.004	.009	.020	.034	.114	.168	.182	.193
	ıv	.005	,009	.037	.110	.168	.183	414 944 dyk	igens Winds Green
Plot mean		,004	.008	.029	.074	.138	.162	.165	.178

ORIGINAL PAGE IS OF POOR QUALITY

SOIL MOISTURE MEASUREMENTS

GRAVIMETRIC MOISTURE CONTENT $\theta_{_{\mathbf{W}}}$ (GM/GM)

Plot No. 2 Date: 8/10/79

Time	Quad	025	.255	.575	.75-1	1-2	2-5	5-9	9-15
0900	I	.019	.048	.099	.116	.138	.136	.156	.163
	II	.015	.018	.047	.082	.172	.162	1000 State ACT	ters 545 650
	III	.015	.018	.035	.082	.132	.145	.156	.166
	IV	.017	.042	.058	.108	.154	.158	wa en eu	Said Said Said
Plot mean		.017	.032	.060	.097	.149	.150	.156	.165
1545	I	.006	.008	.009	.012	.063	.146	.138	.173
	II	.004	.006	.009	.018	.075	.137		bel stå geg
	ııı	.006	.013	.032	.072	.111	.154	.166	.201
	ΙV	.017	.034	.090	.129	.161	.185	part from these	print man man
Plot mean		.008	.015	.035	.058	.103	.156	.152	.187

ORIGINAL PAGE IS OF POOR QUALITY

GRAVIMETRIC MOISTURE CONTENT $\theta_{_{\mathbf{W}}}$ (GM/GM)

SOIL MOISTURE MEASUREMENTS

DATE	TIME	AREA			DEPTH	INTERVAL	(CM)		
			0-12	½-1	0-1	1-2	2-5	5-9	9-15
8/21	1215	E W AVG	.158 .161 .160	.196 .186 .191	.179 .156 .168	.210 .189 .200	.206 .185 .196	.180 .177 .179	.198 .188 .193
	1615	E W AVG	.035 .037 .036	.170 .155 .163	.109 .079 .094	.184 .192 .188	.204 .187 .196	.201 .184 .193	.204 .182 .193
8/22	0945	E W AVG	.107 .066 .0865	.172 .177 .175	.120 .118 .119	.201 .234 .218	.186 .179 .183	.188 .176 .182	.195 .193 .194
	1400	E W AVG	.020 .035 .028	.116 .164 .140	.025 .083 .054	.181 .189 .185	.178 .194 .186	.182 .228 .205	.205 .218 .212
	1645	E W AVG	.050 .020 .035	.152 .027 .090	.069 .021 .045	.178 .218 .198	.195 .147 .171	.213 .186 .200	.208 .189 .199
8/23	0900	E W AVG	.264 .239 .252	.256 .240 .248	.259 .246 .253	.258 .239 .249	.249 .236 .243	.264 .291 .278	.239 .224 .232
	1645	E W AVG	.079 .064 .071	.169 .132 .150	.095 .082 .089	.184 .163 .173	.201 .180 .190	.216 .202 .209	.212 .196 .204
8/24	0900	E W AVG	.169 .147 .158	.1.84 .175 .180	.167 .143 .155	.195 .182 .188	.195 .181 .188	.199 .203 .201	.200 .190 .195
	1600	E W AVG	.023 .028 .025	.115 .133 .124	.038 .037 .038	.158 .160 .159	167 .168 .167	.179 .186 .183	.283 .193 .238

GRAVIMETRIC MOISTURE CONTENT $\theta_{_{\hspace{-.1em}W}}$ (GM/GM)

ORIGINAL PAGE IS OF POOR QUALITY

DATE	TIME	AREA			DEPTH	INTERVA	L (CM)		
			0-1/2	¹ 2-1	0-1	1-2	2-5	5-9	9-15
8/25	1430	E W AVG	.010 .019 .014	.064 .115 .090	.039 .033 .036	.140 .179 .159	.154 .187 .171	.175 .184 .180	.185 .181
8/26	1430	E	.017	.105	.029	.148	.168	.189	.184
		W AVG	.009	.100 .103	.030 .030	.144 .146	.165 .166	.179 .184	.180 .184
8/27	1030	E W AVG	.035 .034 .035	.067 .123 .095	.045 .063 .054	.151 .160 .156	.169 .162 .165	.184 .177 .181	.194 .174 .181
8/28	1430	E W AVG	.265 .185 .225	.241 .181 .211	.251 .192 .216	.239 .191 .215	.235 .209 .222	.241 .215 .228	.229 .2121 .220
8/29	1500	E W AVG	.074 .067 .070	.110 .117 .114	.091 .092 .092	.143 .135 .139	.173 .167 .170	.212 .184 .198	.195 .183 .189
8/30	1600	E W AVG	.059 .051 .055	.127 .138 .132	.064 .064 .064	.145 .171 .158	.175 .174	.191 .187	.205 .185 .195
9/4	1115	MIDDLE	.058	.135	.070	.167	.173	.183	.190
							15-20	20-25	25-30
							.206	.196	.178

GRAVIMETRIC MOISTURF CONTENT $\Theta_{\overline{W}}$ (C M/C M)

PLOUSO, .

DATE	TIME	ARFA			DEPTH	ANTI RVAI	. (CM)		
			()-12	12= 1	0-1	1	? - 5	5-0	9-15
9/6	1515	i.	.127	.182	.142	,202	.187	,200	.205
7.4		W	.172	,200	,199	, 224	.225	,233	. 224
		AVG	.149	.191	.171	.213	.206	.216	.217
9/7	0930	<u> </u>	.124	.185	.132	,194	.194	.196	.195
7, .	** 9 6	W	.166	.202	.173	.217	.226	.230	. 230
		AVG	.145	.194	.153	.206	.210	.213	.213
	1445	E	.023	.084	.057	.184	.195	.208	.207
		W	.115	.206	.063	.217	. 209	.219	.229
		AVG	.069	.145	.060	.200	.202	.213	.218
9/8	1430	E	.049	.116	.059	,195	.186	.205	.214
<i>37</i> C	A. 7	W	.091	.164	.148	.198	.197	.206	.220
		AVG	.070	.139	.104	.196	.192	.206	.217
9/9	1415	E	.036	.056	.042	.178	.191	.213	.222
27.3	2-12-3	W	.059	.170	.085	.208	.202	.225	.233
		AVG	.047	.113	.064	.193	.197	.219	.227
9/10	0630	E	.056	.119	.098	.174	.175	.188	.192
.,	0.00	W	.110	.174	.147	.188	.194	.213	.219
		AVG	.083	.146	.123	.181	.185	.201	.205
	0745	r	.034	.060	.041	.118	.169	.177	.189
		W .	.031	.059	.091	.129	.176	.180	.198
		AVG	.032	.059	.066	.124	.173	.179	.193
	1000	E	.038	.127	.063	.163	.169	.178	.173
		K	.093	.176	.123	.191	.210	.208	.192
		AVG	.066	.151	.093	.177	.189	.193	.182
	1200	E	.050	.136	.085	.181	.186	.191	.206
		W	.097	.184	.122	.203	.202	.214	.213
		AVG	.074	.160	.103	.192	.194	.203	.209
	1400	E	.022	.133	.076	.169	.188	.194	. 205
	-	W	.071	.168	.141	.187	.184	.196	.198
		AVG	.047	.150	.108	.178	.186	.195	.202

ORIGINAL PAGE IS OF POOR QUALITY GRAVIMETRIC MOISTURE CONTENT θ_{w} (GM/GM)

DATE	TIME	AREA			DEPTH	INTERVAL	(CM)		
			0-1/2	¹ ⁄₂-1	0-1	12	2-5	5-9	9-15
9/10	1600	E	.008	.055	.013	.167	.180	.202	.199
		W	.028	.139	.064	.168	.188	.201	.215
		AVG	.018	.097	.039	.168	.184	.202	.207
	1800	E	.264	.156	.060	.186	.187	.200	.195
		W	.075	.145	.075	.170	.173	.197	.219
		AVG	.1.69	.150	.068	.178	.180	.198	.207
	2000	E	.044	.107	.067	.157	.180	.177	.222
		W	. 054	.119	.062	.168	.194	.208	.201
		AÙG	.049	.113	.065	.162	.187	.193	.211
	2245	E	.033	.077	.049	.162	.182	.212	.198
		W	.084	.114	.125	.184	.196	.188	.209
		AVG	.059	.096	.087	,173	.189	.200	.204
9/11	0715	E	.047	.093	.049	.143	.170	.204	.190
		W	.072	.132	.076	.192	.189	.213	.230
		AVG	.060	.112	.063	.168	.180	.209	.210
	1500	E	.018	.072	.022	.163	.179	.201	.200
		W	.066	.150	.102	.194	.204	.211	.180
		AVG	.042	.111	.062	.178	.191	.206	.190
9/12	1500	E	.031	.029	.027	.052	.121	.164	.160
		W	.029	.056	.030	.182	.191	.225	.222
		AVG	.030	.043	.028	.117	.156	.195	.191
9/13	1445	E	.022	.059	.025	.148	.156	.195	.186
		W	.028	.143	.046	.208	.205	.227	.232
		AVG	.025	.101	.036	.178	.180	.211	.209
9/14	1400	E	.008	.017	.012	.121	.177	.183	.185
		W	.013	.039					.210
		AVG	.011	.028	,013	.129	.172	.192	.197
9/17	1500	E	.015	.039	.026	.146	חלו	170	102
7/1/	1300	W	.013	.059	.028	.136	.170	.179	.192
		AVG	.016	.031	.027	.136	.168 .169	.197 .188	.205
9/19	1500	E	.011	.019	.019	060	165	1 0 /	
コ/ ナス	1700	W.	.032	.140	.019	.060 .183	.165	.184	.189
		AVG	.032	.079	.079		.190	.203	. 206
		AVG.	. 022	.0/9	.049	.122	.178	.193	.198

GRAVIMETRIC MOISTURE CONTENT θ_{W} (GM/GM)

ORIGINAL PROPERTY OF POOR QUARKE

DATE	TIME	AREA			DEPTH	INTERVAL	(CM)		
			0-12	½-1	0-1	1-2	2-5	5-9	9-15
9/21	1430	E	.243	.231	.228	.234	.209	.220	.210
		W	. 209	.221	.223	.213	.208	.223	.217
		AVG	.226	.226	.225	.224	.209	.221	.213
9/25	1530	E	.038	.114	.053	.185	.188	.208	.217
•		W	.049	.141	.047	.192	.197	.220	.244
		AVG	.044	.128	.050	.188	.192	.214	.230
9/28	1530	E	.021	.027	.023	.093	.150	.181	.181
-,		W	.025	.055	.029	.121	.156	.179	.190
		AVG	.023	.041	.026	.107	.153	.180	.185
10/2	1530	E	.019	.072	.018	.133	.168	,178	.188
, -		W	.026	.083	.039	.134	.150	.170	.194
		AVG	.022	.077	.028	.134	159	.174	.191
10/5	1430	E	.017	.024	.025	.079	.164	.184	.177
20,0		W	.017	. 052	.019	.113	.146	.180	.173
		AVG	.017	. 038	.022	.096	.155	.182	.175
10/9	1600	E	.030	.041	.034	.080	.123	.188	.181
10/2		W	.044	.083	.046	.137	.156	.193	96
		AVG	.037	.062	.040	.108	.140	.191	.186
10/12	1630	E	.019	.070	.034	.151	.148	.173	.189
10, 11	2000	W	.024	.044	.030	.138	.162	.188	.168
		AVG	.021	.057	.040	.144	.155	.180	.179
10/16	1500	E	.147	.140	.155	.173	.167	.174	.188
10/10		W	.134	.135	.127	.154	.163	.189	.188
		AVG	.141	.138	.141	.163	.165	.181	.188
10/19	1500	MIDDLE	.042	.089	.055	.159	.159	.175	.187

ORIGINAL PAGE IS OF POOR QUALITY

APPENDIX E
BULK DENSITY DATA

DEPTH	INTERVAL	(CM)	BULK	DENSITY	(GM/CM ³)
	0-5			1.500	W.
	5-10			1,660	
1	10-15			1.485	

DEPTH INTERVAL (CM)	BULK DENSITY (GM/CM ³)
0-12	1.486
¹ 2-1	1.197
0-1	1.249
1-2	1.134
2-5	1.002
5–9	1.057
9-15	1.038
15–20	1.007
20–25	1.152
25-30	1.650

PLOT	NO.	3
THOT	110 ·	J

DATE INTERVAL: 8/21 through 8/22	•
DEPTH INTERVAL (CM)	BULK DENSITY (GM/CM ³)
0-12	1.486
¹ 2-1	1.197
0-1	1.249
1-2	1.134
2-5	1.002
5-9	1.057
9–15	1.038
15–20	1.007
20–25	1.152
25~30	1.650
DATE INTERVAL: 8/23 through 8/27	
$0^{-\frac{1}{2}}$	1.578
¹ 2-1	1.472
0-1	1.457
1-2	1.111
2-5	1.083
5-9	1.057
9–15	1.038
15–20	1.007
20-25	1.152
25–30	1.650

DATE INTERVA	L: 8/28	through	9/4
--------------	---------	---------	-----

DATE INTERVAL: 8/28	through 9/4	
DEPTH INTERVAL (CM)	В	ULK DENSITY (GM/CM ³)
0-1/2		1.546
½-1		1.512
0-1		1.525
1-2		1.181
2-5		0.969
5-9		1.057
9-15		1.038
15-20		1.007
20-25		1.152
25-30		1,650

PLOT NO. 4

DATE INTERVAL: 9/6 through 9/14

DEPTH :	INTERVAL	(CM)	BULK	DENSITY	(GM/CM ³)
(0- ¹ 2			1.565	
1	¹ 2-1			1.451	
(0-1			1.493	
	1-2			1.254	
:	2-5			1.153	
:	5-9			1.153	
9	9-15			1.187	

BULK DENSITY (GM/CM³)

DEPTH INTERVAL ((CM) BULK DENSITY	(GM/CM ³)
0-12	1.507	
1 ₂ 1.	1.457	
0-1	1.490	
1-2	1.240	
2-5	1.136	
5-9	1.308	
9-15	1.533	

APPENDIX F VOLUMETRIC MOISTURE DATA

VOLUMETRIC MOISTURE CONTENT O (CM3/CM3)

PLOT NO. 1 DATE: 7/9/79

			DEPTH IN	TERVAL (C	CM)		
TIME QUAD	025	.255	.575	.75-1	0-1	1-2	2-4
1000 I	.546	.438	.405	.392	.438	.420	.443
II	.579	.401	.398	.393	.443	.363	.423
III	.408	.339	.320	.335	.351	.368	.365
IV	.467	.359	.354	.332	.378	.336	.347
PLOT MEAN	.500	.384	.369	.363	.402	.372	.395
1200 I	No. 000 600	.300	.246	.251	.266	.273	.356
II	.416	.350	.431	.290	.372	338	.368
III	.375	.375	.350	.321	.356	.279	.285
IV	.462	.321	.263	.282	.336	.315	.330
PLOT MEAN	.417	.336	.323	.287	.332	.302	.335
1600 I	.513	206	262	200	000	05/	
			.363	.309	.393		.374
II	.458	.473	.371	.350	.413	.327	.312
III	.390	.324	.285	.276	.320	.273	.278
IV	.452	.302	.306	.291	.338	.306	.359
PLOT MEAN	.431	.371	.332	.306	.366	.315	.330

ORIGINAL PAGE IS OF POOR QUALITY

SOIL MOISTURE MEASUREMENTS $\text{VOLUMETRIC MOISTURE CONTENT } \Theta_{_{\mathbf{V}}} \text{ (CM}^{3}/\text{CM}^{3})$

PLOT N	10. 1						DATE:	7/10/79
				DEPTH I	NTERVAL (CM)		.,,
TIME	QUAD	025	.255	.575	.75-1	0-1	1-2	2-4
0900	I	.660	.407	.369	.360	.449	.363	.380
	II	.440	.405	.317	.375	.384	.363	.312
	III	.372	.344	.276	.228	.305	.278	.315
	IV	.420	.329	.318	.300	.341	.320	.306
PLOT M	EAN	.473	.371	.320	.315	.369	.332	. 329
1300	I	.474	.402	.386	.423	.422	.312	.321
	II	.324	.276	.227	.180	.252	.296	.285
	III	.464	.410	.252	.282	.353	.257	.323
	IV	.347	.293	.266	.272	.294	.323	.300
PLOT M	EAN	.402	.345	.282	.290	.330	.297	.308
1600	I	.594	.461	Rate title ham	.270	.444	.311	.330
	II	.318	.410	.470	.407	.401	.326	, ٦02
	III	.474	.375	.389	.336	.393	.312	.324
	IV	.357	.309	.281	.303	.312	.294	.296
PLOT M	EAN	,437	.389	.380	.329	.387	.311	, 314

ORIGINAL PAGE IS OF POOR QUALITY

SOIL MOISTURE MEASUREMENTS

VOLUMETRIC MOISTURE CONTENT $\Theta_{_{\mathbf{V}}}$ (CM 3 /CM 3)

PLOT NO. 1 DATE: 7/11/79

1201 1	.						<i>D</i> ,	, 11, 12
				DEPTH IN	TERVAL (C	M)		
TIME	QUAD	025	.255	.5~.75	.75-1	0-1	1-2	2-4
0900	I	.426	.432	OMD SELE SEN	.315	.390	.282	.333
	II	.347	.366	.314	.368	.348	.354	.311
	III	.392	.369	.339	.242	.336	.308	.326
	IV	•479 ·	.300	.318	.284	.345	.299	.299
PLOT M	EAN	.411	.293	.324	.302	.356	.311	.317
1300	I	.519	.530	.299	.227	.393	.317	.318
1300								
	II	.332	.312	.299	.497	.359	.350	.311
	III	.258	.218	.285	.254	.254	.254	.266
	IV	.239	.261	.269	.216	.246	.240	.264
PLOT M	EAN	.338	.330	.288	.299	.314	.314	.314
1600	I	.402	.269	.194	.345	.303	.309	.335
	II	.395	.345	.255	Pring 4000 0000	.332	.284	.278
	III	.275	.266	.194	.195	.233	.198	.272
	IV	***	.171	.230	.206	.203	.257	.266
PLOT M	EAN	.357	.263	.218	.249	.267	.263	.288

ORIGINAL PACE IS OF POOR QUALITY

SOIL MOISTURE MEASUREMENTS

VOLUMETRIC MOISTURE CONTENT $\Theta_{_{\mathbf{V}}}$ (CM 3 /CM 3)

PLOT NO. 1 DATE: 7/12/79

				DEPTH IN	TERVAL (C	M)		
TIME	QUAD	025	.255	.575	.75-1	0-1	1-2	2-4
0900	I	.408	.443	and the 145	.212	.354	.248	.336
	II	.378	.356	.317	.305	.339	.335	.335
	III	.278	.329	.269	.314	.297	.285	.311
	IV	.387	.287	.305	.242	.305	.275	.270
PLOT M	EAN	.363	.354	.297	. 269	.324	.285	.314
1300	I	.234	.147	.221	.266	.218	.248	.260
1500	II	.189						
			.252	.201	.176	.204	.234	.243
	III	.146	.299	.116	.156	.179	.260	.281
	IV	.135	.215	.207	.203	.191	.249	.288
PLOT M	EAN	.176	.228	.186	.200	.198	.248	.269
1600	I	. 314	.227	.131	.225	.224	.482	.305
	II	.264	.392	.161	.249	.264	.414	.267
	III	.059	.212	.368	.395	.260	.305	.291
	IV	.228	.134	.144	.146	.164	.207	.234
PLOT M	EAN	.216	.242	.201	.254	.228	.351	.275

volumetric moisture content $\Theta_{\mathbf{v}}$ (cm³/cm³)

PLOT NO. 1 DATE: 7/13/79

			DE	PTH INTERVA	L (CM)			
TIME	QUAD	025	.255	.575	.75-1	0-1	1-2	2-4
0900	I	.314	.245	.129		.230	.308	.321
	II	.408	.561	.392	.324	.422	.035	-
	III	.237	.386	.362	.345	.333	.315	.276
	IV	. 342	.305	.293	.308	.312	.293	.257
PLOT MEAN		.326	.255	.201	.206	.257	.254	.254
1300	_	262	orr	001	206	0.57	0.57	05/
	I	.362	.255	.201	.206	.257	.254	.254
	II	.384	.405	.441		.410	.306	.293
	III	.140	.197	and may may	.185	.174	.225	.252
	IV	.155	.141	.177	.201	.168	.230	.263
PLOT MEAN	1	.260	.249	.273	.197	.252	.254	.266
1600	I	.320	.122	.225	.164	.207	.255	.282
	II	.306	.270	.210	.242	.257	.284	.279
	III	.119	.123	.131	.180	.138	.210	.236
	IV	.062	.149	.179	.258	.162	.144	.263
PLOT MEA	1	.201	.167	.186	.212	.191	.224	.266

SOIL MOISTURE MEASUREMENTS

volumetric moisture content o_v (cm³/cm³)

PLOT N	10. 1							7/14/79		
		3		TERVAL (C	L (CM)					
TIME	QUAD	025	.255	.575	.75-1	0-1	1-2	2-4		
0900	r	.426	.095	.156	.266	.237	. 303	.282		
	11	.210	.135	.186	.198	.180	.224	.285		
	III	.087	.092	.101	.234	.131	.234	.243		
	ıv	.147	.111	.131	.185	.143	.185	.251		
PLOT M	EAN	.218	.108	.144	.221	.173	.237	.267		

ORIGINAL PAGE IS OF POOR QUALITY

VOLUMETRIC MOISTURE CONTENT $\Theta_{_{\mathbf{V}}}$ (CM 3 /CM 3)

PLOT NO. 1 DATE: 7/16/79

		DEPTH INTERVAL (CM)									
TIME	QUAD	025	.255	.575	.75-1	0-1	1-2	2-4			
0900	ı	.476	.230	.264	.239	.302	.248	.291			
	II	.309	.344	.284	.177	.279	.347	.287			
	III	.212	.194	.209	.189	.201	.228	.243			
	IV	.195	.212	.182	.212	.198	.204	.240			
PLOT M	IEAN	. 299	.245	.234	.204	.245	.257	.266			

ORIGINAL PAGE IS OF POOR QUALITY

SOIL MOISTURE MEASUREMENTS

volumetric moisture content $\Theta_{\mathbf{v}}$ (cm³/cm³)

PLOT NO. 1 DATE: 7/17/79

		DEPTH INTERVAL (CM)								
TIME	QUAD	0-,25	.255	.575	.75-1	0-1	1-2	2-4		
0830	I	.419	.425	.296	.336	.369	.333	.327		
	ıı	.437	.362	.341	.324	.366	.342	.282		
	ııı	.429	.303	. 285	.254	.318	.267	.288		
	IV	.510	.407	.435	.377	.432	.356	.404		
PLOT 1	MEAN	.449	.374	.339	.323	.371	.324	.326		

ORIGINAL PAGE IS OF POOR QUALITY

volumetric moisture content $\Theta_{\mathbf{v}}$ (cm³/cm³)

PLOT NO. 1 DATE: 7/18/79

				DEPTH IN	TERVAL (C	M)		
TIME	QUAD	025	.255	.S=.75	.75-1	0-1	1-2	2-4
0900	I	.413	.269	克 伯 苏尔克 阿里	.255	.312	.288	.308
	ıı	.350	.309	.264	.243	.291	.275	.276
	ııı	.311	.323	.353	.251	، 309	.272	.303
	IV	.375	.305	.318	.261	.315	.353	.314
PLOT M	EAN	.362	.302	.312	.252	.308	.297	.300
1340	I	.318	.221	.219	.198	.239	.312	.311
	rr	. 305	.299	.228	. 264	.275	.293	.270
	ırı	.275	.252	.268	.300	.279	.291	.279
	ıv	.422	.294	.317	.278	.327	.287	.272
PLOT M	EAN	.330	.267	.263	.260	.279	.296	.284
1600	r	. 294	.254	.311	. 245	.276	.306	.326
	II	.224	.224	.227	.222	.224	.272	.303
	ırı	.323	.245	.215	.183	.242	.188	.290
	IV	.291	.122	.179	.158	.188	.255	.260
PLOT M	IEAN	.284	.21.2	.233	.203	.233	.255	.294

VOLUMETRIC MOISTURE CONTENT O (CM³/CM³)

PLOT NO. 1 DATE: 7/19/79

				DEPTH INTER	VAL (CM)			
TIME	QUAD	025	.255	.575	.75-1	0-1	1-2	2-4
0900	r	.320	.255	.240	.239	.264	.315	.317
	II.	.522	.383	.428	.287	.405	.299	.333
	rrr	Time Title Young	title Ving Swg	.303	.282	.293	.276	.275
	rv	.317	.272	.222	.203	.255	. 264	.291
PLOT ME	EAN	.386	.303	.299	.312	.303	.288	.305
1350	I	.303	.186	.213	. 254	.239	. 284	.266
	rr	.288	.300	.308	.258	.288	. 264	.312
	ııı	.209	.206	.243	.231	.222	.276	.258
	1.V	.456	.299	.299	.270	. 332	.329	.326
PLOT ME	AN	.314	.248	.266	.254	.270	.288	.291
1600	r	.243	.1.79	.248	.321	.248	.377	.269
	rr	. 294	.255	.288	.351	.297	.429	.284
	rrr	.225	.222	.126	.183	.189	.230	.267
	ΙV	.308	.225	.174	. 234	.236	.237	.248
PLOT MEA	\N	.267	.22].	.209	.273	. 242	.318	.267

VOLUMETRIC MOISTURE CONTENT O (CM3/CM3)

PLOT NO. 1 DATE: 7/20/79

TIME	QUAD	025	.255	.575	.75-1	0-1	1-2	2 4
1300	ı	.398	,227	.192	.230	.261	.267	.293
	rı	,413	.264	.290	.258	.306	.261	.305
	ııı	.159	.219	.165	.171	.179	.213	.257
	IV	.198	.116	.144	.161	.155	.221	.261
PLOT ME	AN	.290	.207	.198	.206	.225	.240	.279

volumetric moisture content $\Theta_{\mathbf{v}}$ (cm³/cm³)

PLOT NO. 1 DATE: 7/23/79

			1	EPTH INTERV	/AL (CM)			
TIME	QUAD	025	.255	.575	.75-1	0-1	1-2	2-4
0800	r	.128	.159	.240	.110	.239	.176	.258
	11	.320	.237	.260	.225	.261	.267	.270
	III	.167	.218	.182	.216	.195	.221	.227
	vı	.122	.098	.149	.183	.138	.212	.245
PLOT ME	AN	.185	.179	.207	.183	.209	.219	.251
1300	I	.038	.102	.135	.125	.101	.222	.240
	rr	.312	.270	.230	.257	.267	.281	.264
	ııı	.113	.227	.216	.153	.177	.233	.258
	IV	.050	.071	.185	.167	.119	.222	.210
PLOT MI	EAN	.128	.168	.192	.176	.165	.240	.243
1600	I	.024	.038	.182	.195	.110	.243	.270
	II	.035	.090	.312	.114	.138	.194	.260
	1. 1. 1.	.036	.122	.149	.123	.108	.189	.237
	IV	.050	.326	.333	.179	.222	.194	.230
PLOT MI	EAN	.036	.143	.245	.153	.144	.206	.249

VOLUMETRIC MOISTURE CONTENT Θ_v (CM³/CM³)

PLOT NO. 1 DATE: 7/24/79

]	DEPTH INTERV	AL (CM)			
TIME	QUAD	025	.255	.575	.75-1	0-1	1-2	2-4
0900	I	.059	.161	.104	.141	.116	.179	.204
	II	.345	.252	.339	.206	,285	.284	.279
	III	.140	.158	.210	.215	.180	.246	.251
	IV	.177	.188	.180	.186	.183	.240	.254
PLOT ME	AN	.180	.189	.209	.188	.191	.237	.248
1330	I		.095	.135	.110	.110	.188	.206
	II	.395	.128	.138	.164	.206	.242	.263
	III	.066	.078	.212	.096	.113	.119	.213
	IV	.027	.164	.110	.128	.107	.200	.213
PLOT ME	EAN	.162	.116	.149	.125	.135	.188	.224
1600	I	.000	.012	.050	.084	.036	.144	.206
	II	.240	.234	.270	.222	.242	.255	.272
	III	gang gans Sires	.155	.110	.183	.149	.221	.237
	IV	.053	.087	.078	.137	.089	.165	.191
PLOT M	EAN	.098	.122	.128	.156	.129	.197	.227

Volumetric moisture content $\Theta_{\mathbf{v}}$ (cm³/cm³)

PLOT NO. 1 DATE: 7/25/79

		DEPTH INTERVAL (CM)									
TIME	QUAD	025	.255	.575	.75-1	0-1	1-2	2-4			
0830	I	.003	.116	.186	.129	.108	.230	.236			
	II	.282	Ores takes speed.	arra 6000	.225	.254	, 252	.276			
	III.	.300	.182	.198	.308	.246	.246	.258			
	IV	.078	.183	.138	.258	.167	.228	.275			
PLOT MEAN	N	.165	.161	.174	.230	.194	.239	.261			
1600	I	.038	.114	.116	.176	.111	.221	.228			
	II	.260	.231	.242	.239	.243	.243	.249			
	III	.054	.164	.194	.195	.152	.170	.234			
	IV	.039	.104	.198	.197	.135	.218	.237			
PLOT MEAN	N	.098	.153	.188	.201	.161	.213	.237			

VOLUMETRIC MOISTURE CONTENT O (CM³/CM³)

ORIGINAL PAGE IS OF POOR QUALITY

PLOT NO. 1 DATE: 7/26/79

			1	DEPTH INTERV	/AL (CM)			
TIME	QUAD	025	.255	.575	.75-1	0-1	1-2	2-: 4
0600	I	.272	.141	.230	.212	.213	.234	pag era ma
	ıı	.204	.194	.257	.336	.248	.353	.240
	ııı	.134	.225	.146	.194	.174	.233	.243
	IV .	.117	.153	.216		.162	.194	.221
PLOT ME	EAN	.182	.179	.212	.248	.200	.254	.234
0800	I	.156	.069	.108	.120	.114	.200	.195
	II	.257	.218	_267	.258	.251	.218	.233
	III	.315	.335	.177	.128	.239	.251	.248
	IV	.084	.213	.219	.230	.186	.231	.221
PLOT ME	EAN	.203	.209	.194	.185	.197	.225	.224
1000	I	.065	.141	.113	.129	.113	.246	
	II	.240	.269	.230	.252	.248	.159	.224
	III	.113	.243	.242	.174	.194	.222	.240
	IV	.035	.086	.177	.201	.125	.228	.240
PLOT MI	EAN	.113	.185	.191	.189	.170	.215	.234

OF POOR QUALITY ORIGINAL PACE IS

SOIL MOISTURE MEASUREMENTS

VOLUMETRIC MOISTURE CONTENT Θ_{V} (CM³/CM³)

PLOT NO. 1 DATE: 7/26/79

		DEPTH INTERVAL (CM)						
TIME	QUAD	0-,25	.255	.575	.75-1	0-1	1-2	2-1,
1200	I	.147	.164	.312	.111	.183	.209	.254
	II	.297	.206	.275	.257	.258	and one day	104 (46 104
	III	.081	.212	.182	.189	.167	.251	.347
	IV	.180	.149	.176	.161	.167	.203	.218
PLOT MEAN	Ÿ	.177	.183	.236	.180	.194	.221	.273
1400	I	.105	.170	.159	.261	.174	.240	.245
	ıı	.344	.383	.279	.296	.326	.333	.234
	ııı	.156	.261	.333	.282	.258	.291	.248
	IV	.170	.231	.221	.224	.212	.252	.236
PLOT MEAN	N	.194	.261	.248	.266	. 242	.279	.240
1600	r	.192	tion and last	.269		.231	.245	.218
	II	.168	.200	.201	.221	.198	.294	.332
	III	.023	.059	.126	.221	.107	.213	.236
	IV	.264	.128	.158	.165	.178	.215	.215
PLOT MEA	N	.162	.129	.189	.203	.179	.242	.251

VOLUMETRIC MOISTURE CONTENT Θ_{v} (CM3/CM3)

PLOT NO. 1 DATE: 7/26/79

		DEPTH INTERVAL (CM)										
TIME	QUAD	025	.255	.575	.75-1	0-1	1-2	2.4				
1800	I	.000	.025	.105	.156	.072	.233	.240				
	II	.315	.341	.246	.264	.291	.276	.227				
	III .	.000	.012	.104	.215	.083	.216	.255				
	IV	.044	.170	.191	.188	.149	.230	.227				
PLOT MEAN	N	.090	.137	.162	.206	.149	.239	.237				
2000	I	.029	.048	.134	.225	.110	.240	.218				
	II	.296	.182	.230	.165	.218	.275	.242				
	III	.180	.195	.198	.249	.206	.245					
	IV	.132	.165	.197	.231	.182	.227	.239				
PLOT MEAN	N.	.159	.147	.189	.218	.179	.246	.233				

volumetric moisture content Θ_{v} (cm³/cm³)

PLOT NO. 1 DATE: 7/30/79

	DEPTH INTERVAL (CM)													
TIME	QUAD	025	.255	.575	.75-1	0-1	1-2	2-4						
0900	I	eve less man	.305	.048	.410	.254	.344	.329						
	ıı	.570	.432	.444	.330	. 444	.275	.290						
	III	.273	.186	.276	.278	.254	.279	.291						
	IV .	.294	.315	.257	.329	.299	. 245	.282						
PLOT ME	AN	.380	.309	. 257	.336	.312	. 285	.299						

SOIL MOISTURE MEASUREMENTS VOLUMETRIC MOISTURE CONTENT $\theta_{_{\mathbf{V}}}$ (CM $^3/\text{Cm}^3)$

					v	•							
PLOT N	0. 2				* .			DATE:	8/6/79				
			DEPTH INTERVAL (CM)										
TIME	QUAD	025	.255	.575	.75-1	1-2	2-5	5-9	9-15				
1200	I	.061	.171	.150	.163	.175	.155	.164	.177				
	II	.086	.174	.164	.163	.162	.166						
	III	.055	.163	.170	.174	.144	.138	.194	.202				
	IV	.129	.232	.205	.208	.208	.235		palls bear gran				
PLOT M	EAN	.083	.186	.172	.177	.172	.174	.180	.190				
1545	I	.021	.064	.069	.067	.152	.144	.131	.149				
	II	.019	.015	.043	.087	.153	.157		-				
	III	.015	.071	.152	.183	.177	.160	.185	.209				
	IV	.033	.117	.128	.165	.174	.171	**** (****	-				
PLOT M	EAN	.022	.067	.098	.126	.164	.158	.159	.180				

SOII. MOISTURE MEASUREMENTS VOLUMETRIC MOISTURE CONTENT $\theta_{_{\mathbf{V}}}$ (CM $^3/\text{cm}^3)$

PLOT N	0.2				·			DATE:	8/7/79
				D	EPTH INT	ERVAL (CM)		
TIME	QUAD	025	. 255	.575	.75-1	1-2	2-5	5-9	9-15
0945	I	.034	.100	. 157	.157	.162	.146	.167	.163
	II	.033	.119	.134	.152	.158	.162		
	III	.037	.119	.128	.163	.170	.149	.182	. 201
	IV	.059	.092	.147	.180	.187	.191	State Space State	
PLOT M	IEAN	.031	.107	.141	.163	.169	.162	.174	.183
1330	I	.010	.013	.050	.102	.145	.135	.150	.149
1330	II	.009	.013	.048	.099	.154	.159		. 147
	III	.004	.021	.109	.160	.171	.168	. 179	. 191
	IV	.007	.080	.150	.183	.194	.179		best here two
PLOT M	IEAN	.007	.031	.090	.136	.167	.160	.165	.170
1630	I	.004	.009	.006	.041	.119	.137	.177	.191
	II	.004	.004	.018	.048	.132	.140	\$100 Disk \$100	*****
	III	.007	.012	.006	.141	.187	.174	.186	.209
	IV	.009	.025	.068	.115	.181	.173		
PLOT M	IEAN	.006	.013	.025	.086	.155	.156	.182	.200

SOIL MOISTURE MEASUREMENTS VOLUMETRIC MOISTURE CONTENT $\boldsymbol{\theta}_{_{\boldsymbol{V}}}$ (CM $^3\text{CM}^3$)

					V "	•			
PLOT N	0. 2							DATE:	8/8/79
				ומ	EPTH INT	ERVAL (CM)		
TIME	QUAD	025	.255	.575	.75-1	1-2	2-5	5-9	9-15
0900	I	.016	.061	.090	.138	.169	.141	.147	.159
	II	.016	.027	.062	.126	.161	.158	-	210 440 550
	III	.021	.071	.119	.158			.190	.196
	IV	.015	.048	.111	.156	.178	.179		VIII VAN 2240.
PLOT M	EAN	.018	.052	.096	.145	.169	.150	.169	.177
		•							
1400	I	.007	.007	.013	.043	.129	.150	.163	.168
	II	.007	.007	.014	.072	.132	.143		
	III	.006	.009	.031	.095	.175	.165	.193	.212
	IV	.003	.004	.055	.113	.159	.159		****
PLOT M	EAN	.006	.007	.029	.081	.149	.154	.179	.190
1615	I	.006	.007	.043	.107	.137	.147	.157	.158
	II	.004	.018	.061	.136	.152	.164		
	III	.004	.018	.081	.099	.171	.156	.174	.190
	IV	.007	.016	.054	.128	.158	.164	47,000	
PLOT M	EAN	.006	.015	.060	.117	.154	.158	.166	.174

SOIL MOISTURE MEASUREMENTS VOLUMETRIC MOISTURE CONTENT $\theta_{_{\mathbf{V}}}$ (CM $^3/\text{CM}^3)$

PLOT	NO. 2				•			DATE:	8/9/79
				DI	EPTH INT	ERVAL (CM)		• •
TIME	QUAD	025	.255	.575	.75-1	1-2	2-5	59	9-15
0915	I	.033	.051	.111	.139	.166	.153	and and put	.179
	II	.036	.155	.084	.126	.149	.162		
	III	.021	.033	.051	.103	.151	.154	.180	.183
	IV	.028	.070	.073	.171	.163	.164		and 544 1440
PLOT	MEAN	.030	.077	.080	.135	.158	.158	.180	.181
1600	I	•006	.010	.030	.085	.14?	.140	.155	.168
	II	.006	.010	.041	.097	.161	.157		
	III	.006	.013	.024	.041	.129	.168	.192	.200
	IV	.007	.013	.044	.132	.191	.183		<u></u>
PLOT	MEAN	, 006	.012	.035	.089	.156	.162	.174	.185

SOIL MOISTURE MEASUREMENTS VOLUMETRIC MOISTURE CONTENT $\theta_{_{\mathbf{V}}}$ (CM $^{3}/\text{Cm}^{3}$)

PLOT N	ю. 2				"v `		•	DATE:	8/10/79
				D	EPTH INT	erval (CM)	200 m and 200 m	0, 20, 19
TIME	QUAD	025	.255	.575	.75-1	1-2	2-5	5-9	9-15
0900	r	.028	.071	.119	.139	.156	.136	.165	.169
	11	.022	.027	.056	.098	.195	.162		family from some
	III	022	.027	.042	.098	.150	.145	.165	.172
	IV	025	.062	.069	.129	.175	.158	great being thody	half helf door
PLOT M	EAN	025	.048	.072	.116	.169	.150	.165	.171
1545	1	009	.012	.011	.014	.071	.146	.146	.180
	r 2.	7006	.009	.011	.022	.085	.137	draw band large	they percure.
	III	:009	.019	.038	.086	.126	.154	.175	. 209
	IV	025	.051	.108	.154	.183	. 185	aloni pang 49,70	***
PLOT M	EAN	012	.022	.042	.069	.117	.156	.161	. 194

VOLUMETRIC MOISTURE CONTENT $\theta_{_{\mathbf{V}}}$ (CM 3 /CM 3)

DATE	TIME	AREA			DEPTH	lnterval	(CM)		
			0-12	12-1	0-1	1-2	2-5	5-9	9-15
8/21	1215	E W AVG	.235 .239 .237	.235 .223 .229	.224 .195 .210	.238 .214 .226	.206 .185 .196	.190 .187 .189	.206 .201 .201
	1615	E W AVG	.052 .055 .054	.204 .186 .195	.136 .099 .118	.209 .218 .214	.204 .187 .196	.213 .195 .204	.212 .189 .201
8/22	0945	· E W AVG	.159 .098 .129	.206 .212 .209	.150 .147 .149	.228 .265 .247	.186 .179 .183	.199 .186 .193	.202 .200 .201
	1400	E W AVG	.030 .052 .041	.139 .196 .168	.031 .104 .068	.205 .214 .210	.178 .194 .186	.192 .241 .217	.213 .226 .220
	1645	E W AVG	.074 .030 .052	.182 .032 .107	.086 .026 .056	.202 .247 .225	.195 .147 .171	.225 .197 .211	.216 .196 .206
8/23	0900	E W AVG	.417 .377 .397	.377 .353 .365	.377 .358 .368	.289 .266 .278	.270 .256 .263	.279 .308 .294	.248 .233 .241
	1645	E W AVG	.125 .100 .113	.249 .194 .222	.139 .119 .129	.205 .181 .193	.218 .195 .207	.228 .213 .221	.220 .203 .212
8/24	0900	E W AVG	.267 .232 .250	.271 .258 .264	.243 .208 .226	.217 .203 .210	.211 .196 .204	.210 .215 .213	.208 .197 .203
	1600	E W AVG	.036 .044 .040	.169 .195 .182	.055 .054 .055	.175 .177 .176	.181 .182 .181	.189 .197 .193	.293 .200 .247

VOLUMETRIC MOISTURE CONTENT $\theta_{\mathbf{v}}$ (CM³/CM³)

DATE	TIME	AREA			DEPTH	INTERVAL	(CM)		
			0-1/2	½-1	0-1	1-2	2-5	5-9	9-15
8/25	1430	E W AVG	.016 .030 .023	.095 .170 .132	.057 .048 .052	.155 .196 .177	.167 .203 .185	.185 .194 .190	.192 .188 .190
8/26	1430	E W AVG	.026 .014 .020	.155 .147 .151	.043 .043 .043	.164 .160 .162	.182 .178 .180	.200 .189 .194	.195 .187 .191
8/27	1030	. E W AVG	.055 .054 .055	.099 .182 .140	.066 .092 .079	.168 .178 .173	.183 .175 .179	.195 .187 .191	.201 .181 .191
8/28	1430	E W AVG	.409 .286 .348	.364 .273 .318	.383 .293 .338	.282 .226 .254	.227 .202 .215	.255 .227 .241	.237 .220 .229
8/29	1500	E W AVG	.115 · .103 .109	.167 .177 .172	.139 .141 .140	.169 .159 .164	.168 .162 .165	.224 .194 .209	.203 .190 .196
8/30	1600	E W AVG	.092 .079 .085	.193 .208 .200	.098 .097 .097	.171 .202 .187	.169 .168 .169	.202 .198 .200	.212 .192 .202
9/4	1115	MIDDLE	.089	.205	.106	.197	.168	.194	.197
							15-20 .207	20-25 .226	25-30 .292

volumetric moisture content θ_v (cm³/cm³)

DATE	TIME	AREA			DEPTH	INTERVAL	(CM)		
			0-12	12-1	0-1	1-2	2-5	5-9	9-15
9/6	1515	E	.198	.265	.213	.253	.216	.230	.244
		W	.269	.290	.297	.281	.260	.268	.272
		AVG	.234	.277	.255	.267	.238	.249	.258
9/7	0930	E	.194	.269	.198	.243	.223	.226	.231
		N	.259	.293	.258	.273	.261	.265	.274
		AVG	.226	.281	.228	.258	.242	.246	.252
	1445	E	.036	.122	.084	.231	.224	.240	.246
		W	.179	.299	.093	.272	.241	.252	.272
		AVG	.108	.211	.089	.251	.232	.246	.259
9/8	1430	E	.076	.168	.088	.244	.215	.236	.254
		W	.092	.246	,127	.261	.233	.259	.276
		AVG	.074	.164	.095	.242	.227	.252	.270
9/10	0630	E	.088	.172	.146	.218	.202	.21.7	.228
		W	.171	.252	.220	.236	.223	.246	.260
		AVG	.130	.212	.183	.227	.213	.231	.244
	0745	E	.053	.087	.061	.148	.195	.204	.224
		W	.048	.086	.136	.162	.203	.208	.234
		AVG	.050	.086	.098	.155	.199	.206	.229
	1000	Е	.060	.184	.094	.205	.195	.205	.205
		W	.146	.255	.183	.239	.242	.240	.227
		AVG	.103	.219	.139	.222	.218	.222	.216
	1200	Е	.078	.198	.127	.226	.214	.220	.245
		W	.152	.267	.182	.254	.233	.247	.253
		AVG	.115	.233	.1.54	.240	.224	.234	.249
	1400	Е	.035	.193	.114	.212	.217	.223	.244
		W	.111	.244	, 21.0	.235	.212	.225	.235
		AVG	.073	.218	.162	.224	.215	.224	.240

VOLUMETRIC MOISTURE CONTENT θ_v (CM³/CM³)

DATE	TIME	AREA) DEPTH	INTERVAL	(CM)		
			0-12	¹₂-1	0-1	1-2	2-5	5-9	9-15
9/10	1600	E W AVG	.012 .043 .028	.080 .202 .141	.020 .096 .058	.210 .211 .210	.208 .217 .212	.233 .232 .232	.236 .255 .245
	1800	E W AVG	.412 .117 .265	.226 .210 .218	.090 .112 .101	.234 .213 .223	.216 .200 .208	.230 .227 .229	.232 .260 .246
	2000	E W AVG	.068 .084 .076	.155 .173 .164	.100 .093 .096	.197 .210 .204	.208 .224 .216	.204 .240 .222	.263 .239 .251
	2245	E W AVG	.052 .131 .092	.112 .165 .139	.073 .187 .130	.203 .231 .217	.210 .226 .218	.244 .217 .231	.235 .248 .242
9/11	0715	E W AVG	.074 .113 .093	.135 .191 .163	.073 .114 .093	.180 .241 .210	.196 .218 .207	.235 .245 .240	.225 .274 .249
	1500	E W AVG	.0277 .103 .065	.105 .218 .162	.034 .152 .093	.204 .243 .224	.207 .235 .221	.231 .244 .237	.237 .212 .225
9/12	1500	E W AVG	.049 .034 .0417	.042 .082 .062	.040 .044 .042	.065 .228 .146	.140 .220 .180	.190 .260 .224	.190 .263 .227
9/13	1445	E W AVG	.035 .045 .040	.085 .207 .1.46	.038 .069 .053	.186 .261 .223	.180 .236 208	.225 .261 .243	.221 .275 .248
9/14	1400	E W AVG	.013 .021 .017	.025 .056 .041	.018 .021 .020	.152 .171 .162	.204 .192 .198	.212 .232 .222	.219 .249 .234
9/17	1500	E W AVG	.023 .028 .025	.057 .080 .068	.038 .041 .039	.183 .171 .176	.196 .194 .195	.207 .227 .217	.227 .244 .235
9/19	1500	E W AVG	.017 .050 .034	.029 .218 .124	.028 .117 .073	.076 .229 .152	.190 .220 .205	.212 .234 .223	. 224 . 245 . 235

VOLUMETRIC MOISTURE CONTENT θ_v (CM³/CM³)

PLOT NO. 5

DATE	TIME	AREA		,	DEP	TH INTER	VAL (CM)	•	
			0-1/2	½-1	0-1	1-2	2-5	5-9	9-15
9/21	1430	E W AVG	.366 .314 .340	.336 .322 .329	.339 .332 .336	.291 .264 .277	.238 .237 .237	.288 .291 .290	.321 .332 .327
9-25	1530	e W AVG	.057 .074 .066	.166 .206 .186	.079 .070 .075	.229 .238 .233	.213 .224 .219	.272 .288 .280	.332 .373 .353
9-28	1530	W AVG	.031 .037 .034	.040 .080 .060	.035 .043 .039	.116 .150 .133	.171 .178 .174	.237 .235 .237	.277 .291 .284
10/2	1530	E W AVG	.028 .039 .033	.105 .120 .113	.026 .058 .042	.165 .166 .166	.191 .171 .181	.233 .223 .228	.289 .297 .293
10/5	1430	E W AVG	.025 .026 .025	.035 .076 .056	.038 .028 .033	.098 .140 .119	.186 .165 .176	.241 .235 .238	.271 .266 .269
10/9	1600	E W AVG	.045 .066 .056	.059 .121 .090	.051 .069 .060	.099 .170 .134	.140 .177 .159	.246 .252 .249	.277 .301 .245
10/12	1630	E W AVG	.028 .036 .032	.102 .064 .083	.050 .044 .047	.187 .171 .179	.169 .185 .177	.226 .246 .236	.290 .258 .274
10/16	1500	E W AVG	.221 .202 .212	.204 .197 .200	.231 .189 .210	.215 .190 .203	.190 .185 .187	.227 .247 .237	.289 .289 .289
10/19	1500	MIDDLE	.064	.130	.083	.197	.181	.229	.286

APPENDIX G TEMPERATURE MEASUREMENT RECORD

DATE	TIME	COMMENTS	DATE	TIME	COMMENTS
709	859		713	809	
709	1344	Relative	713	839	
709	1601	Humidity	713	909	
710	830	Sensors at 5cm	713	939	
710	1329	and 100cm	713	1009	
710	1503	Worked	713	1039	
711	800	Throughout	713	1109	
711	1249	Plot 1	713	1139	
711	1653	1106 1	713	1209	
712	659	Inconsis-	712	1239	
712	719	tent	713	1309	
712	739	Measurement	713	1339	
712	809	Time At	713	1409	
712	829	Start Of	713	1429	
712	859	Plot Due	713	1459	
712	929	To Problems	713	1529	
712	959	With The	713	1559	
712	1029	DL-520	713	1629	
712	1059		713	1659	
712	1129		713	1729	
712	1159		713	1759	
712	1229		713	1829	
712	1259		71.3	1859	
712	1329		713	1929	
712	1359		713	1959	
712	1429		713	2029	Data Logger Reset To
712	1459		714	39	Make Measurements In
712	1529		714	239	Two Hour Intervals
712	1559		714	439	•
712	1659		714	639	
712	1729		714	839	
712	1759		714	1339	
712	1829		714	1628	
712	1859		714	1839	
712	1929		714	1939	
712	1959		714	2139	
712	2007		714	2339	
712	2107		715	139	
712	2207		715	339	
712	2307		715	539	
713	7		715	739	
713	107		715	839	
713	207		715	1039	
713	307		715	1239	
713	407		715	1439	
713	507		715	1617	
713	607		715	1839	
713	702		715	2039 2239	
713	719		715		
713	739		71.6	39	

PLOT # 1 (con't) TEMPERATURE MEASUREMENT TIMES

DATE	TIME	COMMENTS	DATE	TIME	COMMENTS
716	239		720	439	Measurements
716	439		720	836	In Four Hour
716	639		720	1239	Intervals
716	739		720	1939	Data Logger
716	939		720	2339	Inconsistent
716	1131		721	339	In Four
716	1139		721	739	Hour Interval
716	1239		721	1139	
716	1439		721	1539	
716	1639		721	1939	
716	1839		721	2339	
716	2039		722	239	
716	2239		722	639	
717	39		722	1039	
717	239		722	1439	
717	439		723	239	
717	639		723	639	
717	839		723	1039	
717	1030	Daha Tasasa	723	1439	
717	1139	Data Logger	723	1839	
717	1339	Inconsistent	723	2239	
717	1539	In Two	724	139	
717	1739	Hour	724	539	
717	1939	Interval	724	939	
71.7	2029		724	1339	
717	2239		724	1739	
718	39		724	2139	
718	239		725	139	
718	439		725	539	
718	639		725	839	
718	839		725	1239	
718	1039		725	1639 2039	
718 718	1239 1439		725 726	39	
718	1639		726	439	
718 718	1839		726	601	Start Of
718	2039		726	802	Diurnal
718	2239		726	1039	
719	39		726	1234	
719	239		726	1400	
719	439		726	1632	
719	639		726	1816	
719	739		726	1957	
719	939				
719	1139				
719	1339				
719	1439				
719	1639				
719	2039	Data Logger			
720	39	Reset To			
		Make			

Plot	#	2
------	---	---

DATE	TIME	COMMENTS	DATE	TIME	COMMENTS
806	1139		808	1339	
806	1239	Relative	808	1439	
806	1339	Humidity	808	1539	
806	1439	Sensor	808	1639	
806	1539	At 5 cm	808	1739	
806	1639	Quit Work-	808	1839	
806	1739	ing Properly	808	1939	
806	1839	Between	808	2039	
806	1939	Plots 1	808	2139	
806	2039	and 2.	808	2239	
806	2139	Sensor at	808	2339	
806	2239	100 cm	809	39	
806	2339	Worked	809	139	
807	. 39	Through-	809	239	
807	139	out Plot	809	339	
807	239	2	809	439	
807	339		809	539	
807	439	Repaired	809	639	
807	539	Data Logger	809	739	
807	639	Between	809	839	
807	739	Plots 1	809	939	
807	839	and 2.	809	1039	
807	939	Set For	809	1139	
807	1039	Hourly	809	1239	
807	1139	Measurement	809	1339	
807	1239		809	1439	
807	1339		809	1538	
807	1439		809	1639	
807	1539		809	1739	
807	1639		809	1838	
807	1739	•	809	1939	
807	1839		809	2039	
807	1939		809	2139	
807	2039		809	2239	
807	2139		809	2339	
807	2239		810	39 139	
807	2339		810 810	239	
808	39 139		810	339	
808	239		810	439	
308 808	339		810	539	
808	439		810	639	
808	539		810	739	
808	639		810	839	
808	739		810	939	
808	839		810	1039	
808	939		810	1139	
808	1039		810	1239	
808	1139		810	1339	
808	1239		810	1439	
-			810	1539	

Plot # 3 TEMPERATURE MEASUREMENT TIMES

DATE TIME COMMENTS DATE TIME	COMMENTS
821 1639 Relative 824 139	
821 1739 Humidity 824 239	
821 1839 Sensor At 824 339	
821 1939 100 cm Quit 824 439	
821 2039 Working Be- 824 539	
821 2139 tween Plots 824 639	
821. 2239 2 and 3 824 739	
821 2339 824 839	
822 39 824 939	
822 139 Plot 3 824 1039	
822 239 Data Logger 824 1139	
822 739 Set For 824 1239	
822 839 Hourly 824 1339	
822 939 Measurements 824 1439	
822 1039 824 1539	
822 1139 324 1639	
822 1239 824 1739	
822 1339 824 1839	
822 1439 824 1939	
822 1539 824 2039	
822 1639 824 2139	
822 1.739 324 2239	
822 1839 824 2339	
822 1939 825 39	
822 2039 825 139	
822 2139 825 239	
822 2239 825 339	
822 2339 825 439	
823 39 825 539	
823 139 825 639	
823 239 825 739	
823 339 825 839	
823 439 825 939	
823 538 825 1039	
823 639 825 1139	
823 739 825 1239	
823 839 825 1339	
823 939 825 1439	
823 1039 825 1539	
823 1139 825 1639	
823 1239 825 1739	
823 1639 825 1839	
823 1739 825 1939 823 1839 825 2039	
823 1839 825 2039 823 1939 825 2139	
823 1939 825 2139 823 2039 825 2239	
823 2139 825 2339	
823 2239 826 39	
823 2339 826 139	

Plot /	3 (con't)	TEMPERATURE	MEASUREMENT	TIMES	
DATE	TIME	COMMENTS	DATE	TIME	COMMENTS
826	339		828	539	
826	439		828	639	
826	539		828	739	
826	639		829	1439	
826	739				
826	839				
826	939				
826	1039				
826	1139				
826 826	1239 1339				
826	1439				
826	1539				
826	1639				
826	1739				
826	1839				
826	1939				
826	2039				
826	2139				
826	2239				
826	2339				
827	39				
827	1.39				
827	239				
827	339 430				
827	439				
827 827	539 639				
827 827	739				
827	839				
827	939				
827	1039				
827	1139				
827	1239				
827	1339				
827	1439				
827	1539				
827	1639				
827	1739				
827	1839				
827 827	1939 2039				
827 827	2139				
827	2239				
827	2339				
828	39				
828	139				
828	239				
828	339				
828	439				•

Plot # 4	TEMPERATURE	MEASUREMENT	TIMES

DATE	TIME	COMMENTS	DATE	TIME	COMMENTS
906	1515	Checks Of	911	1739	
907	1430	Equipment	911	1839	
909	1415	Prior To	911	1939	
909	1840	Full Run	911	2039	
909	1939	On Plot	911	2139	
909	2039	4	911	2239	
909	2139		911	2339	
909	2239	Hourly	912	39	
909	2339	Measurements	912	139	
910	39	For Plot	912	239	
910	1.39	4 Started	912	339	
910	239		912	439	
910	339		912	539	
910	439		912	639	
9.0	539	Ohana OF	912	739	
9.0	639	Start Of	912	839	
910	739	Diurnal	912	939	
910 910	839		912 912	1039	
910	979 1039		912	1139 1239	
910	1139		912	1339	
910	1239		912	1439	
910	1339		714	1435	
910	1439				
9,0	1539				
9.0	1639				
910	1735			D40E 10	
910	1: 9			PAGE IS	
910	1939	OF	POOR	QUALITY	
910	2039				
410	2139				
910	2239				
910	2239				
911	39				
911	139				
911	239				
911	339				
911	439				
911 911	539 639				
911	732				
911	839				
911	939				
911	1039				
911	1139				
911	1239				
911	1339				
911	1439				
911	1539				
911	1639				

APPENDIX H AIR AND SOIL TEMPERATURE DATA

ORIGINAL PAGE IS OF POOR QUALITY

										٠.	,, OO,	, 40	/ teat 1				
AIR TEMP 150 CM 30 CM	25.02 25.60	26.29 26.19	25.90 26.09	25,73 25,96	30.09 31.17	30.58 30.78	30.48 30.78	30.39 30.91	32.43 32.92	33.02 33.22	32.14 32.14	32,60 32,76	24.82 25.02	25.80 26.38	24,73 25,90	25.12 25.77	
2 FM 3 FM 5 FM 10 FM 15 CM 24 CM 30 CM	23, 34, 23, 34, 23, 14, 22, 87, 22, 97, 23, 45, 23, 55	24.43 24.73 23.46 23.16 23.36 23.85 24.33	24.33 24.14 23.65 23.65 23.85 24.43 24.73	24.11 28.07 23.42 23.23 23.39 23.98 24.20	31.54 32.05 31.07 24.77 25.02 23.16 22,48	30.58 30.78 29.21 26.19 24.82 23.85 23.55	32.05 31.46 30.00 27.26 25.41 23.65 23.55	31.39 31.43 30.09 26.74 25.08 23.55 23.20	07 32.83 33.02 32.73 38.97 27.07 24.33 23.46	31.95 32.14 30.68 28.04 26.48 24.63 24.04	33.80 33.61 32.63 29.51 27.46 25.02 24.33	2.86 32.92 32.01 32.18 27.00 24.66 23.94	22.87 22.87 22.48 22.68 23.07 23.55 23.75	24.04 24.24 23.% 23.07 23.36 23.85 24.33	23.85 23.75 23.46 23.55 23.94 24.43 25.02	23,59 23,62 23,10 23,10 23,46 23,94 24,37	
5	24.48	25, 41	24.35	25,47	92.26	31,36	33.02	99,91	35.07	32,73	34.78 3	34.19 32.86	25.21.2	24.63.2	24.24 2	24.69	
CI IAFIRANT	}	11	111	AVG	j	- -	III	AVG	I -wi	II	} }	AVG	}~	Z II		AVG	
TIME	0.00				1344				1601				630				
ria te	709				709				602				710				

TEMPERATURE MEASUREMENTS FOR PLOT

TEMP	FRATUR	TEMPERATURE MEASUREMENTS		FOR PLOT	# <u>+ </u>	1100	Ω Σ Έ		() () () () () () () () () ()
DATE	TIME	GUADRANT	- CM	2 CM	₩ 0		13	CM 24 CM 30 CM	150 CM 30 CM
710	1329	j !	33,90	32,34	32.14	31.75	27.17 24.	92 22.58 22.09	30.19 30.58
		i-i	33.61	32: 53	33.02	30,97	27.07 25.	51 23.85 23.55	31.65 32.53
		jund jund juni	34,19	32, 83	32, 63	31.07	27.65 25.31	31 23.65 23.26	30.58 32.05
		AVG	33,90	32,57	32,60	31.26	27.30 25.25	25 23.36 22.97	30.81 31.72
710	1503	jen e(31.26	31,36	31.56	31.46	29.90 26.77	77 24.14 23.16	29.51 30.09
		™	31.36	31.26	31.36	31.07	28.73 26.9	97 24.53 24.04	30.09 31.54
		H	32,24	31,75	31.85	31.36	29.31 27.3	26 24.82 24.14	29.80 30.97
		AVĢ	31.62	31.46	31.59	31.30	29.31 27.00	00 24.50 23.78	29.50 30.87
711	008	j -i	21.60	21.80	21.89	22,19	22,97 23.55	55 24.43 24.53	22,58 23,26
		I	22,19	22.09	22.19	22, 19	22.77 23.26	26 24.24 24.43	23.55 23.65
			21,99	21.99	21.99	22,19	22,97 23,85	35 24.73 24.92	22.38 23.07
		AVG	21.93	21.96	22.02	22.19	22.90 23.55	55 24,46 24.63	22.84 23.33
711	1249	ļ-vi	35.46	33.31	33,12	32,63	27.56 24.92	72 26.19 22.77	30,39 31,65
		-	33.41	31.75	32.34	29.61	26.29 25.2	21 24.24 23.94	31.36 33.51
		<u> </u>	34.78	33.31	32,73	31.17	27.36 25.3	31 23.85 23.46	31.36 33.61
		AVG	34.55	32.79	32,73	31.13	27,07 25,15	5 24.76 23.39	31.04 32.92

TEMP	>	33.02 34.49	32.53 34.09	33.12 33.90	32.89 34.16	25.02 25.90	26.38 26.09	26.38 26.77	25.93 26.25	30.97 31.56	30.19 29.21	\$0.70 30.19	30,29 30,32	31.07 32.24	31.17 32.14	31.36 32.14	31.20 32.18
ENTS FOR PLOT 1	4-4	35,75 34.88 34.97 34.58 31.17 29.12 26.09 24.73	34.39 33.90 33.90 32.73 29.61 28.04 25.60 24.92	36.53 35.75 35.56 34.49 31.26 29.12 26.48 25.51	35.56 34.84 34.81 33,93 30,68 28,76 26,06 25.05	23.75 22.97 23.26 23.07 22.77 23.36 24.14 24.04	25.60 25.02 25.21 23.85 22.77 22.97 23.75 23.94	23.07 22.87 22.77 22.87 22.97 23.46 24.53 24.63	24.14 23.62 23.75 23.26 22.84 23.26 24.14 24.20	30,68 29.02 29.12 28.24 25.02 24.04 23.75 23.55	27.75 27.75 27 75 27.36 24.92 24.14 23.55 23.65	30,68 29.31 28.82 27.26 24.82 24.14 24.24 24.24	29.70 28.69 28.56 27.62 24.92 24.11 23.85 23.81	34.88 34.58 34.78 33.90 28.92 26.58 24.33 23.75	33.41 32.92 33.12 31.17 27.17 25.51 24.24 23.94	34.58 33.70 33.31 31.85 28.63 26.48 24.73 24.33	34.29 33.74 33.74 32.31 28.24 26.19 24.43 24.0 1
TEMPERATURE MEASUREME	GUADRANT	ļuni	þesi þesi		AVG	i— i	<u>⊢</u> ;	H H	AVIG	ļ-mi	I H	— —	AVĞ	-	þend þend	fred fred fred	AVG
FRATURE	TIME	1653				000 000				1050				1329			
TEMP	DATE	711				712				712				712			

Original page is of poor quality

TFMP	ERATUR	TEMPERATURE MEASUREMENTS FOR	MENTS	FOR PLOT	11 1	Ç	i N L				, C
NATF	TIME	CULANGANT	L M	W 2	3 CM	<u>ا</u> ا	10 01	E CA	24 CM	30 CM	150 CM 30 CM
713	506	 -	25.02	23.85	24.24	23,85	23.26	23.46	24.14	24.04	27,46 27,75
		—	25.80	25.12	25.31	24,24	23.07	23.07	23,85	24.04	27.46 27.95
		III	24.33	24.14	24.04	23,94	23,75	24.04	24.92	25.02	27.95 28.14
		AVG	25.05	24,37	24.53	24.01	23,36	23,52	24.30	24.37	27.62 27.95
713	1309	 	36.14	33,70	33.90	32,83	28.34	26.38	24.82	24.43	34.00 34.88
		þæd þæd	99° 91	31.95	32,44	29.90	26.48	25,31	24.63	24.33	33,31 33,90
		 	34.68	33,12	32.53	31.07	28.34	26.58	25.51	25,21	33.41 34.39
		AVG	34.71	32,92	32.96	31,26	27.72	26.09	24.99	24.66	33.57 34.39
713	1559	 	34, 49	33,22	33,61	33,02	30°00	28,43	25, 99	25,02	33,41 33,80
		I	31.95	31,36	31,56	30,19	27,95	26.87	25.31	24.82	32,53 33,02
		III	33, 90	33.41	33,22	32,14	29,90	28.24	26.38	25.60	33,41 32,53
		AVĒ	33,44	32,66	32.79	31.78	29.28	27.85	25.90	25, 15	33,12 33,12
714	0 00 00	j i	23,75	22,97	23.26	23, 16	22,87	23.26	23,55	23.46	25,70 25,60
		 	24,92	24,43	24,53	23,85	23.07	23.16	23,55	23,75	26.09 26.29
			24.04	23,94	23, 85	23,65	23,75	24.14	24,73	24.82	26.38 26.68
		AVG	24.24	23.78	23.88	23,55	23,23	23.52	23,94	24.01	26.06 26.19

										OR OF		VAL DOR	PAG QIJA	e is				
	≥	34,78 35,17	34,29 34,58	34.29 33.02	34,45 34,26	29.12 29.21	29.41 30.58	30.00 30.48	29.51 30.09	(30,29 30,97	30.78 30.97	30.39 31.17	30,48 31,04	26.29 26.97	26.29 26.68	26.48 26.87	26.35 26.84
TEMPERATURE MEASUREMENTS FOR PLOT 1	1 CM 2 CM 3 CM 5 CM 1	35,66 34,19 34,39 33,80 30,78 28,82 25,90 24,73	32.34 31.85 32.05 31.07 28.73 27.26 25.41 24.73	35.56 34.78 34.58 33.41 31.95 29.02 26.58 25.70	34.52 33.61 33.67 32.76 30.48 28.37 25.96 25.05	29.31 29.41 29.70 29.61 28.53 27.85 26.19 25.51	28,43 28,24 28,24 28,14 27,17 26,38 25,31 24,82	29.21 28.92 29.12 28.92 28.53 27.75 26.48 25.80	28.99 28.86 29.02 28.89 28.08 27.33 25.99 25.38		29,31 27.85 28,14 27,36 25,21 24,82 24,92 24,92	30,87 29,80 30,09 28,24 25,51 25,02 24,92 24,92	28.34 27.75 27.26 26.68 25.70 25.60 25.70 25.80	29.51 28.47 28.50 27.43 25.47 25.15 25.18 25.21	29.90 31.07 31.26 39.76 27.95 26.29 24.73 24.53	28.82 29.21 29.21 29.31 27.36 26.09 24.82 24.63	29.31 29.70 29.70 29.61 27.75 26.29 25.41 25.21	29.34 30.00 30.06 32.89 27.69 26.22 24.99 24.79
E MEASUF	QUADRANT	 -	<u></u>	H	AVG	 -	 	⊢	AVG		 	 	H	AVG	 -	<u>_</u>	H	AVG
ERATUR	TIME	1628				1617					\$3.00 \$3.00				1130			
TEMP	DATE	714				715					716				716			

ORIGINAL PAGE IS OF POOR QUALITY

AIR TEMP	150 CM 30 CM	21.60 22.09	21.50 22.29	22.19 22.68	21.76 22.35	28,43 29.51	28.34 29.02	29.31 30.78	28,69 29,77	28,43 30,39	28,24 29,41	28,04 28,53	28,24 29,44	18.09 18.09	17,60 17,99	18,48 18,97	18.06 18.35
MENTS FOR PLOT 1 TEMP	4	21,99 21,31 21,70 21,70 21,70 22,19 22,87 23,16	23,16 22,77 22,77 21,99 21,50 21,89 22,48 22,77	21,60 21,70 21.89 21.89 22,29 22,77 23.36 23.65	22,25 21,93 22,12 21.86 21.83 22.29 22.90 23.20	33.61 33.02 33.22 32,44 27.75 25.51 23.65 23.46	33.02 32,34 32,44 31.17 27.17 25.31 23.55 23.26	34.29 33.12 32.92 31.46 27.65 25.51 24.04 23.65	33,64 32,83 32,86 31,69 27,52 25,44 23,75 23,46	00 41 30 04 30,44 30,05 28,73 26,87 24,43 23,75	4 31,65 31,75 30,78 27.95	33,51 33,12 33,02 31,85 28,82 26,77 24,63 23,94	33,02 32,34 32,40 31,56 28,50 26,71 24,43 23,81	18.38 18.77 18.97 19.36 20.33 21.21 22.48 22.77	18,28 18,28 18,38 18,67 19,75 20,63 21,99 22,38	19.16 19.26 19.36 19.65 20.63 21.60 22.87 23.16	18,61 18,77 18,90 19,23 20,24 21,15 22,45 22,77
TEMPERATURE MEASUREMENTS	DUATERANT	Şuni	þeri Jenn	fund fund	AVG	H	þan; þans	⊢ i ⊢ i ⊢ -i	AVG	۰	-i i i	<u> </u>	AVG	1-4	 	III	AVG
FATUR	TIME	6 6 6 6				1439				0	N 9 1			739			
TEMPE	nATF	718				718				() 	<u>.</u>			719			

												V i.			a Arima h. m			
	AIR TEMP 150 CM 30 CM	28.92 30.87	28.82 30.29	28.73 30.58	28.82 30.58	29.21 30.58	29.80 30.97	29.41 29.61	29.48 30.39	!	22,48,22,68	22.19 23.16	23.55 24.24	22.74 23.36	28.24 29.41	27.85 28.73	28.92 30.97	28.34 29.70
	NT 1 CM 2 CM 3 CM 5 CM 10 CM 15 CM 24 CM 30 CM	34.88 32.92 33.02 32.05 27.36 25.31 23.36 23.07	33.51 32.05 32.44 29.90 25.80 24.24 22.97 22.87	34.39 32.83 32.24 30.39 26.87 25.02 23.65 23.36	34,26 32,60 32,57 30,78 26,68 24,86 23,33 23,10	31.65 30.97 31.17 30.68 27.85 26.38 23.65 22.77	31.26 30.58 30.87 29.61 26.77 25.21 23.46 22.68	34.19 33.02 32.73 21.80 28.82 26.97 24.43 23.65	32.37 31.52 31.59 27.36 27.82 26.19 23.85 23.03		70.12 70.	22.87 22.19 22.48 21.60 21.60 21.70 22.77 23.07	21.41 21.31 21.31 21.41 21.80 22.58 23.55 23.94	21.76 21.50 21.67 21.41 21.60 22.12 23.16 23.49	30.68 30.00 30.19 29.51 26.19 24.63 23.16 23.07	28.73 27.95 28.14 26.97 24.82 24.14 23.07 22.97	30.87 30.09 29.70 28.73 26.19 24.63 23.75 23.55	30.09 29.34 29.34 28.40 25.73 24.46 23.33 23.20
E MEASU	RUARRANT	J	⊢	jesi jesi jesi	AVG	J ener ¹	!	 	AVG	ļ	4	I	 	AVG	ju d	⊢	₩.	AVG
ERATUR	TIME	1339				1639				00 00 70) ! ;				1239			
TEMP	DATE	719				719				720	i I				720			

AIR TEMP	150 CM 30 CM	24.04 23.75	24.04 23.75	24,63 24.04	24.24 23.85	17.70 17.50	16.72 17.60	18,48 18,77	17.63 17.96	22,48 34.39	32,73 33,41	30.87 30.58	28.69 32.79	29.41 30.78	29.51 31.17	30,29 32,53	29,74 31,49
NTS FOR PLOT 1	-	25.02 26.48 24.77 27.56 27.26 26.77 24.92 23.65	25.02 25.12 25.21 26.09 26.38 25.90 24.53 23.85	27,56 27.85 28.14 28.73 28.92 28.04 25.99 24.92	25.86 26.48 26.71 27.46 27.52 26.90 25.15 24.14	18,09 18.58 18.67 19.16 20.24 20.92 22.29 22.38	18,19 18,19 18,38 18,77 19,55 20,53 21.89 22,19	19,45 19,55 19,65 20,14 21,11 22,09 23,16 23,46	18.58 18.77 18,90 19.36 20.30 21.18 22.45 22.68	35 75 34.39 34.58 33,90 29.51 27.17 24.24 23.46	31.46 31.65	37.22 35.66 35.27 33.70 29.80 27.17 24.43 24.14	35,14 33,83 33,83 32,63 28,99 26,77 24,20 23,65	34.58 34.00 34.19 33.61 28.92 26.38 23.65 22.97	32.53 22.38 22.38 31.36 27.75 25.51 23.46 23.07	34,97 34,19 34,09 32,83 29,12 26,68 24,53 23,94	34.03 30.19 30.22 32.60 28.60 26.19 23.88 23.33
TEMPERATURE MEASUREMENTS	GUADRANT	j i	i i	III	AUF	þ~i	II		AVG	}-	-i jaar i	 	AVG	J	þæi þæi	 	AVG
RATURE	TIME	1939				739				0 0 1) () 			1439			
TEMPE	DATE	720				721				Ĉ	-1 >> ₀			722			

ORIGINAL PAGE IS OF POOR QUALITY

FRATIJRI T TME	TEMPFRATURE MEASUREMEN ATE TIME QUADRANT 1	ENTS FOR PLOT 1 SOIL TEMP	AIR TEMP 150 CM 30 CM
1039	H	29.31 28.24 28.43 27.36 24.33 23.46 25.36 23.46	28,43 28,43
	I	28.63 28.14 28.43 27.26 24.53 23.55 23.16 23.26	28.43 28.82
		28.43 27.85 27.46 26,48 24.53 23.94 23.94 24.14	28.63 29.31
	AVG	28.79 28.08 28.11 27.04 24.46 23.65 23.49 23.62	28.50 28.86
1439	1	32.34 30.39 30.68 30.39 27.85 26.29 24.33 23.75	32.34 33.02
	II	30.58 29.80 30.00 28.92 26.87 25.51 24.04 23.65	32.53 33.90
	II	32.92 31.65 31.36 30.29 28.14 26.58 24.92 24.43	32.73 33.70
	AVG	31,95 30,61 30,68 29,87 27,62 26,12 24,43 23,94	32,53 33,54
1839	þ ansif	26.58 27.65 27.95 28.53 27.65 26.68 24.92 24.04	28.82 28.63
	11	26.87 27.07 26.87 27.56 26.97 26.19 24.63 23.94	28.92 28.92
	III	28.82 29.12 29.31 29.61 28.82 27.65 25.90 25.12	29.51 29.31
	AVG	27.43 27.95 28.04 28.56 27.82 26.84 25.15 24.37	29.08 28.95
939	⊷	27.65 25.51 25.70 25.12 23.85 23.65 23.85 23.85	28.73 29.02
	Fi Fi	27.85 26.77 27.07 25.80 24.14 23.75 23.75 23.85	29.12 30.09
	H	26.68 25.90 25.60 25.02 24.43 24.43 24.63 24.73	29.70 31.07
	AVG	27.39 26.06 26.12 25.31 24. 4 23.94 24.07 24.14	29.18 30.06

MPERATUR	TEMPERATURE MEASUREMENTS	FOR PLOT 1	AIR TEMP
TIME	CLIATIRANT	1 CM 2 CM 3 CM 5 CM 10 CM 15 CM 24 CM 30 CM	150 CM 30 CM
1339	þeri	31.95 31.07 31.36 30.97 27.95 26.29 24.53 24.04	31.36 31.85
	j ⊷i jani	30.87 30.19 30.39 29.41 26.77 25.41 24.24 24.04	32.05 33.02
	III	31.95 30.97 30.78 30.09 28.04 26.58 25.12 24.73	32.63 33.51
	AVG	31.59 30.74 30.84 30.16 27.59 26.09 24.63 24.27	32.01 32.79
724 1739	j	31.36 31,17 31.36 31.46 28.92 27.26 25.12 24.24	32.73 32.24
	<u></u> ⊢	30.68 30.58 30.78 30.39 28.34 26.87 25.02 24.33	33.51 33.61
	IlI	33.80 33.31 33.22 32.63 30.29 28.24 26.19 25.41	33,90 34,88
	AVG	31.95 31.69 31.78 31.49 29.18 27.46 25.44 24.66	33,38 33,57
725 839	₩	26.09 24.63 24.82 24.73 24.53 24.73 24.92 24.92	27.65 28.04
	þest þest	26.38 25.41 25.70 24.53 23.85 24.24 24.63 24.63	27.65 28.92
	III	25.31 25.12 25.02 24.82 24.82 25.02 25.31 25.31	27.75 28.14
	AVG	25.93 25.05 25.18 24.69 24.40 24.66 24.95 24.95	27.69 28.37
725 1239	11	29.02 28.92 29.21 28.92 26.77 25.80 24.53 24.24	28.34 28.43
	; ;	29.41 29.21 29.41 28.73 26.77 25.80 24.73 24.43	28.43 29.12
	II	30.00 29.70 29.61 29.02 27.36 26.29 25.31 25.02	29.02 29.70
	ĄŲĢ	29.48 29.28 29.41 28.89 26.97 25.96 24.86 24.56	28.60 29.08

ORI	GINAL	Page	
	POOR		1

TEME	FFATIR	TEMPERATURE MEASUREMENTS	FOR PLOT 1	
NATE	TIME	GUADRANT	T 1 CM 2 CM 3 CM 5 CM 10 CM 15 CM 24 CM 30 CM	AIR TEMP
725	1639	-	34.09 32.34 32.53 32.14 28.82 27.17 24.92 24.14	34.00 34.19
		H	33.12 32.24 32.44 31.07 28.43 27.46 25.21 24.53	34,49 35,27
		I	36.63 25.60 25.12 33.31 30.19 28.04 25.99 25.4	1 34.49 33.12
		AVĢ	34.62 30.06 30.03 32.18 29.15 27.56 25.38 24.6	9 34.32 34.19
726	601	 -	22.29 22.77 22.87 23.36 24.14 24.63 24.92 24.92	21.80 21.80
		1 -4	22.38 22.48 22.48 22.97 23.75 24.33 25.02 25.02	21.80 21.80
		jani jani	22.97 23.16 23.26 23.55 24.43 25.02 25.60 25.51	21.89 21.80
		AVG	22.55 22.81 22.87 23.29 24.11 24.66 25.18 25.15	21.83 21.80
726	802	I	22.77 23.07 23.26 23.36 23.65 24.04 24.43 24.53	23.65 23.46
		jool	23.07 23.07 22.97 23.16 23.46 23.85 24.43 24.53	23.46 23.46
		111	23.65 23.75 23.85 23.85 24.33 24.82 25.31 25.31	23.85 23.94
		AVG	23.16 23.29 23.36 23.46 23.81 24.24 24.73 24.79	23.65 23.62
726	1039	þest	25.41 24.63 24.63 24.53 24.14 24.04 24.14 24.24	25.90 25.90
		II	24.92 24.43 24.73 24.33 23.75 23.85 24.04 24.14	25.99 26.38
			25.60 25.21 25.12 24.92 24.63 24.63 24.82 24.92	26.38 26.87
		AVG	25.31 24.76 24.82 24.60 24.17 24.17 24.33 24.43	26.09 26.38

	AIR TEMP 150 CM 30 CM	.17 27.56	27.75 28.73	3.14 28.82	27.69 28.37	28.82 29.12	29,02 30,00	29.90 30.58	29.25 29.90	27.36 27.46	27.36 28.14	.65 28.14	.46 27.91	25, 70, 25, 80		1	25.99 26.19	
•	CM 150 C	14 27.	24	82 28.								31 27	27					
	1 30	24.	1 24.	2 24.82	3 24.40	3 24.33	3 24.63	2 25.02	24.66	2 24, 43	2 24,63	25.	24.79	3 24,04			24.92	1
	24 CM	24.14	24.24	24.92	24.43	24.53	24.63	25.12	24.76	24.82	25.12	25.70	25.21	24, 43	57 VC		25.51	1
	8	. 43	24.33	12	24.63	72	25,31	25.90 3	25.44	26.19	26.48	27.17	26.61	io N			26.58.2	
	115	24		1 25.		28.								C.				
FOR PLOT 1	10 CM	24.63	24.73	25.51	24.95	25.99	26.29	26.77	26.35	27.07	27.26	28.24	27.52	26.09	25. 99		27-26	. (
	-001L	25,80	25.90	26.29	25.99	28.14	28.34	28.82	28.43	28.24	28.34	29.21	28.60	26,48		i ;	27.36	
	0 CM	26.09	26.58	26.87	26.51	28.73	29.41	29,61	29.25	28.04	28.43	29,31	28.60	20.99 .99			77.36	
	N CM	25.80	26.48	26.97	26.42	28.43	29,21	29.80	29.15	27,75	28.34	29.21	28.43	25,90.3			Z/*Z6 .	000
	I CM	26.29	26.77	27.46 2	26.84	28.92.2	29.51 2	30.29 2	29,57	27.36 2	28.34	29.12 2	28.27 2	25.02.2			Z /0°/Z	()(
TEMPERATURE MEASUREMENTS	QUADRANT											ርላ		N	C/	(N	
E MEA	GUMD	-	H	III	AVG	H	⊢ -	I	AVG	 i	I	II	AVG	j -	}) }	 	2
FRATUR	TIME	1234				1400				1632				1816				
TEMPE	DATE	726				726				726				726				

ORIGINAL PAGE IS OF POOR QUALITY

	AIR TEMP	24.82 24.73	24.82 24.82	24.92 24.92	24.84 24.82
TEMPERATURE MEASUREMENTS FOR PLOT 1	1 CM 2 CM 3 CM 5 CM 10 CM 15 CM 24 CM 30 CM	24.14 25.12 25.21 25.70 26.69 25.99 25.31 24.82	25.02 25.31 25.31 25.70 25.99 26.09 25.51 25.12	25.70 25.99 26.19 26.58 26.77 26.58 25.99 25.02	24.95 25.47 25.57 25.99 26.29 26.22 25.60 24.99
E MEASUR	QUADRANT	H	 	 -	AVG
PERATUR	TIME	1957			
TEM	DATE	726			

)

original page is of poor quality

								-		Kan	heal I					
AIR TEMP	31.	32.05 32.63	32.92 34.88	32.34 33.05	36.44 37.61	37.51 40.05	36.14 37.02	36.70 38.23	29.31 29.80	29.41 30.48	30.09 31.65	29.61 30.65	35, 36, 35, 95		35,66 37,41	35,40 36,99
1 CM 2 CM 3 CM 5 CM 10 CM 15 CM 24 CM 30 CM	32.44 31.26 31.36 28.82 26.29 25.21 24.43 24.43	26.38 26.29 26.38 26.29 25.41 25.21 24.53 24.24	31.34 29.02 28.34 27.36 26.77 25.41 25.21 25.31	30.06 28.86 28.69 27.49 26.16 25.28 24.73 24.66	39.27 38.00 38.29 34.88 31.65 29.70 26.97 26.09	33.31 34.00 32,73 31.95 28.04 27.56 25.99 25.31	34.68 33.61 33.41 32.73 31.95 29.51 27.56 26.58	35,75 35,20 34,81 33,18 30,55 28,92 26,84 25,99	28.63 27.46 27.56 25.60 24.04 23.94 24.73 24.82	30.00 29.02 27.95 26.29 24.43 24.33 24.43 24.73	26.87 25.60 25.31 24.92 24.92 25.12 25.60 25.99	28.50 27.36 26.94 25.60 24.46 24.46 24.92 25.18	39.07 37.61 37.71 34.88 30.48 28.14 25.80 25.31	35,36 34,88 32.92 31.07 26,58 26,29 25,31 24.92	37.22 34.09 33.41 32.05 30,78 28,14 26.77 26.38	37,22 35,53 34,68 32,66 29,28 27,52 25,96 25,54
CUADRANT	 	1	IL	AVG	₩	juni juni	just Just Just	AVG	} -	H	þest þest	AVG	-	11	III	AVG
TIME	1130				1539				000				1339			
NATE	ጸሰሉ				808				807				807			

TEMPERATURE MEASUREMENTS FOR PLOT 2

								10 10	RIGINA POC		age Uali	is Ty				
TEMP	36.24	37.22	34.29	35.92	25.02	27.7	27,75	26.84	34.58	35.17	36.05	35.27	35.07	35,85	34,39	33.19
AIR 150 CM	34.68	35,17	34.19	34,68	24.63	26.29	26.58	25.83	33.51	33.51	33,70	33.57	34.49	34.09	33.61	34.06
CM 24 CM 30 CM	.00 26 77 25,99	.75 25.99 25.21	29.80 27.95 26.97	.18 26.97 26.06	23,36 24,24 24,53	53 25.02 25.60	90 26.48 26.68	24.60 25.25 25.60	14 26.09 25.80	.77 25.70 25.41	53 25.41 26.97	82 25.73 26.06	58 27.75 26.87	43 26.68 25.99	48 28.63 27.75	83 27.69 26.87
TEMP	31,95 30,	28.24 27.	31,56 29.	30,58 29.	22.77 23.	24,43 24,	25.21.25.	24.14 24.	30.48 28.14	27.07 26.	30.58 28.	29.38 27.	32.92 30.58	28,92,28,	32.73 30.48	31.52 29.83
SOTL 5 CM	34,68	31.07	32,14	32.63	23.07	24.43	24.92	24.14	35,07	31.46	31.65	32, 73	36.24	32.73	33.41	34.13
WU c	36,73	31.36	32.34	33, 48	23,46	25.02	24.82	24.43	37,80	33.12	32,73	34.55	39,17	33,31	33.80	35,43
WU C	34.63	31.85	32,44	33,64	23, 75	25, 70	24,73	24.73	37.80	34.88	33.31	92°9	38,97	34,29	33,90	35,72
Σ.	37,41	31.56	33.41	34.13	24,53	26.48	24.73	25.25	39,46	35,46	36.24	37.06	40.15	33,61	34,29	36,01
CHANRANT	J	11	 	AVG	}	II	 	AVG	J	11	II	AVG	H	II	III	AVG
F .	1639				Ø. (*) (*)				1339				1530			
NATE	807				808				808				808			

1

TEMPERATURE MEASUPEMENTS FOR PLOT 2

ORIGINAL PAGE IS OF POOR QUALITY

•)

TEMP	FRATUR	TEMPERATURE MEASUREMENTS	FOR PLOT 2	
TATE	TIME	RUARRANT	1 CM 2 CM 3 CM 5 CM 10 CM 15 CM 24 CM 30 CM	AIR TEMP 150 CM 30 CM
809	939	_	27.85 26.97 26.97 25.41 24.43 24.43 25.12 25.21	27.46 27.85
			29.12 28,43 27.46 26,48 24,92 24,92 25,02 25,12	28.34 29.80
			27.17 26.38 26.19 25.99 25.99 26.29 26.58 26.77	28.63 30.00
		AVG	28.04 27.26 26.87 25.96 25.12 25.21 25.57 25.70	28, 14 29, 21
809	1639	jeni	34.68 34.68 34.68 33.22 31.75 30.00 27.36 26.48	30.39 30.97
		⊢ ; }~;	31.26 31.17 30.97 30.78 28.24 27.85 26.48 25.70	31.07 32.14
			32,73 32,14 32,14 31,75 31,36 29,80 28,24 27,56	30.97 31.75
		AVG	32.89 32.66 32.60 31.92 30.45 29.21 27.36 26.58	30.81 31.62
810	666	⊱- i	23.26 23.16 22.97 22.87 22.68 23.46 24.14 24.14	24.24 24.04
		junj junj	24.53 24.43 24.43 24.24 24.14 24.04 24.53 24.43	25.12 25.31
		 	25.51 25.21 25.31 25.21 25.21 25.41 25.90 26.09	25.12 25.21
٠		AVG	24.43 24.27 24.24 24.11 24.01 24.30 24.86 24.89	24.82 24.84
810	1539	►ï	38.10 38.10 38.19 35.95 32.14 29.80 27.07 26.58	32.14 32.53
		H	33.02 33.41 32.53 31.75 27.95 27.65 26.29 25.70	33.31 34.09
		H H	34,97 34,09 33,80 33,31 32,34 30,09 28,34 27,65	33,90 34,39
		AVG	35,36 35,20 34,84 33,67 30,81 29,18 27,23 26,64	33.12 33.67

ORIGINAL PAGE IS OF POOR QUALITY

											•						
! ! 0	20	Ċ.	78	C.	6	÷ 5	77	60 %	9	07	SO	23	47	5.07	5.17	3,02	4.42
T M M	30	Q.	É	ñ	33	22	22	22	22	(0)	32,	34	32	35	35	33	3.34
010	ζ. <u>Ω</u>	S	3,02	o. Ku	2,66	22,29	2,29	(C)	Q	1.36	30.97	35.46	32.60	33.70	33.90	1.95	დ. დ
)	150	(Y)	33	'n	či O	N	22	21	23.	31	ñ	ñ	M	m	m	31	8
!	S	(%) 574	(n) (n)	6	Ö.	. 46	8	87	06	36	45	40	49	.73	ις (Ο	F	63
	30	Ņ	24.	io N	80	e e	લં સ	S.	Š	23,	83	23	e N	24.	Ŕ	50	24
	CM	ðo. 09	(C)	Ø.	25, 80	23,07	\$. 52	(C)	v 4 •© □	23.65	. 16	24.04	23.62	25, 90	24.53	60"	Ö
	24		23.	년 (일 년				S	(N (N		e N					t 26	S
	E in	ir. O	SV. 48	27.85	26,71	23, 16	21.70	21,70	22, 19	3,46	23.46	25, 31	24.07	25,51	25,80	28,24	26,51
ũ	Card.	() i	8 36				ल्ड व	() ()		62.00					14 2		
<u>0</u> 12 1-	10 CT	10°C	6 8	28, 73	29,08	22,58		(). 2 (§)	21,73	26.09	25, 21	27.07	26.12	30.09	28.1	29,41	29, 21
 1-		(0)	(); •()	774 (10)			7	20	ين د.	N							
Č Q	00 G	Ç.	Ç	o.	29,57	() () ()		eri Ni	e Ci	i.	28.34	24.04	25.86	28,63	29,90	30.09	29.54
er:	E C	36,05	\$20	Ñ,	(0) (0)	22°, 38	0	S . 85	(()) (0) s	ů.	.02	30, 78	.92	33,80	30,00	30.00	,26
nT .	m		$\widetilde{(r)}$	00	(L) (A)		N N		रून पित्र	Ŕ	Ċ.		ŢŢ.				$\overline{\circ}$
ō.	£	., 63	<u>्</u>	29.33	3 3	22,00	\(\frac{1}{2}\)	8	()) () 	8.80	°. 70	(C)	31,82	34.09	5,19	29,80	31,36
FNR	0	34	(C)				8	Ñ M	Ñ S	(r) (r) (r)	e Si In	0			0 0 0		
SEN	1 CM	33,27	(*) (*) (*)	50.03	다. (건 (건)	22, 09	21.89	22, 19	22,08	0000	32,05	34,29	34, 03	34.78	30, 78	29.80	31,78
EME		(6		Ç.	(*)	(N)	(\4	(A	ÚΛ	m:	(r)	·	er.	(f)	(r)	M	(i)
A H	GUADRANT	{	[red	(-	es	[ami	j ews	1-	ø.	نسبا	j -	₽⊷i	Ö	j- v-i		H	ල
Ē.	A) iii	•	[{	000 000		(t erl	i	GUR		 		AVG		 -	jest jest	AVG
THIF	Щ	Ç.				000				1330				1639			
FFA	TWT-	1639				Û.								16			
TEMPERATURE MEASUREMENTS	NATE	Š				22 23 30 30 30 30 30 30 30 30 30 30 30 30 30				(N) (N) (M)				S S S			
•	Ē	₩.															

ORIGINAL PARE IS OF POOR QUALITY

AIR TEMP	150 CM 30 CM	25.51 25.02	23.75 24.43	27.17 26.19	25.47 25.21	29.31 30.48	27.36 28.63	29.31 28.34	28,66 29,15	32,05 33,12	30,39 31,36	29.41 29.90	30.61 31.46	22,97 22.38	23.07 23.75	24,04 24,33	23.36 23.49
PLOT 3	CM S CM S CM 1	5.31 24.43 22.68 22.48 23.36 23.46 23.75	24.63 23.85 23.07 21.60 21.50 22:19 22.38	23.07 21.80 21.11 21.11 21.41 22.77 23.07	24.33 23.36 22.29 21.73 22.09 22.81 23.07	33,51 31,65 25,31 25,80 23,85 24,04 23.85	27,56 26,87 25,90 23.36 22.38 22.38 22.48	31,75 29.61 27.36 25.41 23.85 23.16 22.97	30,94 29,38 26.19 24.86 23,36 23.20 23.10	32,63 31.95 28.24 29.12 26.19 26.38 25.41	27.85 27.65 27.46 26.68 25.21 24.24 23.55	28.04 28.43 28.73 28.34 27.56 25.99 25.51	29,51 29,34 28,14 28,54 26,32 25,54 24,82	21.31 21.11 22.09 21.89 23.46 23.36 23.85	20.82 20.24 20.14 20.04 21.02 21.80 22.19	19,75 19,65 20,24 20,72 21,41 22,77 23,07	20.63 20.33 20.82 20.89 21.96 22.64 23.03
IENTS FOR	1 CM 2	26.87 25	26,29 24	23.94 23	25.70 24	35.07 34	29.70 2	33.31 3	32.70 3	33.22	27,95 2	28,14 2	29,77 2	21.41	21.89 2	20.14 1	21,15
TEMPERATURE MEASUREMENTS	DUADRANT	-	 	}—; }—≟ }—	AVG	}	Ţì	 	AVG	j ;	Þ.	}{ }!	AVG	5	⊢ ;	 	AVG
FRATURE	TIME	69.6 69.6				1230				1639				00 00			
TEMPE	ATF	0.23 0.23				() () ()				() () ()				824			

	•										ORI	GINA POO	L PA	ge Ali	is Ty			
	150 CM 30 CM	31.65 32.34	30.48 31.17	29.02 30.29	30.39 31.26	29.12 31.65	30.09 31.26	29.21 31.07	29.48 31.33	29.90 29.70	29,90 30,68	29.61.30.00	29.80 30.13	į	25.60 26.58	26.48 26.58	26.29 26.48	26.12 26.55
TEMPERATURE MEASUREMENTS FOR PLOT 3	-	35,44 34,48 33,90 28,04 29,31 25,51 25,70 24,73	33.02 31.46 30.78 30.19 27.36 24.92 24.04 23.46	30,29 30,39 30,58 30,29 29,21 27,75 25,51 24,92	32,92 32,18 31,75 29,51 28,63 26,06 25,08 24,37	40.63 38.68 36.93 27.75 29.70 24.24 24.53 23.46	35,75 33,02 32,14 31,46 26,87 24,04 23,07 22,58	37.51 35.95 33.90 31.56 28.92 26.77 24.43 24.04	37,97 35,88 34,29 30,26 28,50 25,02 24,01 23,36	34,29 33,12 32,73 28 14 29,41 25,02 25,51 24,24	29,41 29,02 28,92 28,82 27.07 24,92 23,75 22,97	30.68 30.68 30.48 30.29 29.12 27.95 25.80 25.21	31,46 30,94 30.71 29.08 28.53 25.96 25.02 24.14		78.92 27.85 26.68 23.07 23.26 22.87 22.87 22.87	24.53 24.14 23.94 23.75 22,48 22,48 22.58 22.58	27.36 26.77 24.92 23.55 22.97 22.68 22.87 22.97	26.94 26.25 25.18 23.46 22,90 22,68 22.77 22.81
E MEASURE	PLINERANT	 -	June June	J	AVG	;	 -	III	AVG	- -		⊢ ! ├ ~;	AVR	ŀ	نيس	—	III	ΘŃΘ
FRATUR	TIME	1500				1439				1639				000	* 0 .			
TEMP	nATF	824				8 8 8				826				000	N			

oricinal page is of poor quality

	AIR TEMP 150 CM 30 CM	20.43 20.63	21.11 20.92	20.82 21.11	20.79 20.89	32,63 32,83	33,51 33,70	32,44 33,51	32.86 33.35
TEMPERATURE MEASUREMENTS FOR PLOT 3	1 CM 2 CM 3 CM 5 CM 10 CM 15 CM 24 CM 30 CM 1	29	21.31 21.31 21.41 21.41 21.60 22.29 22.77 22.87	21.99 22.09 22.29 22.77 23.16 23.55 24.33 24.53	21.37 21.57 21.76 22.32 22.45 23.07 23,49 23.68	37.80 36.63 34.78 27.17 28.43 24.63 24.82 24.04	30.29 29.51 29.80 29.31 27.46 25.02 25.21 23.85	32,44 31,95 30,87 29,70 28,34 26,97 25,12 24,92	33.51 32.70 31.82 28.73 28.08 25.54 25.05 24.27
MENTS FI	M.	20.82	21.3	21.99	21,37	37,80	30,29 2	32,44	
MEASURE	O I IADPANT	- -	II	⊢ : ⊢ :	AVG	 -	junt Junt	 - 	AVG
ERATURE	TIME	739				1439	,		
TEMP	NATE	0. C- 0.				800			

TEMP	4 30 CM	1 30.09	0 30,19	1 29.80	1 30,03	8 34.00	92 29.51	24 30,29	25 31.26	9. 46. 0. 0.	P	NAL 00R 85.08 0	31.75	32.28 42.24 71174	.06 10.18	.45 10.28	.87 10.28	.13 10.25
AIR TEMP	150 CM	29.61	29.70	29.21	29.51	30,58	28.9	28.2	29.2	31, 07.	; ; !	29.70	30.00	30.26	11.0	1 + T	10.8	
	5 CM 10 CM 15 CM 24 CM 30 CM	25.60 25.99 23.46 23.65 22.97	28.92 25.51 23.55 22,97 22.77	29,70 28,14 26,68 24,63 24,24	28.08 26.55 24.56 23.75 23.33	26.19 27.46 23.94 24.14 23.65	29.21 23.94 22.77 22.48 22.58	29,90 27,75 26,19 24,43 24,43	28,43 26.38 24.30 23.68 23.55	50 70 50 70 70 51		28.43 22.19 20.82 20.63 20.82	28.24 25.80 24.24 22.77 22.58	27.46 25.15 22.71 22.19 22.06	21.41 20.92 23.26 23.16 23.65	15,26 18,19 20,04 20,92 21,50	18,28 19,65 gr.53 22,38 22,68	18.32 19.58 21.28 22.15 22.61
4	Σ	29,80 2	28,63 2	30.29 2	29.57	34,29	29,61	32,05	31.98	(((34.0	29.12	30.78	31.39	17,60	14.87	16.92	16.46
OR PLOT	Σ	30.08	28,92	30,68	06,95	35,66	30,39	33.22	33,09		36.05	30, 29	32,05	32,79	16.53	14.38	16.14	15,68
ENTS F	E C	29,51	29,12	30,78	29,80	37,32	31.65	34,29	34.42	1	00. 49	33,22	33,70	35.14	15.84	13.70	15, 95	15.03
TEMPERATURE MEASUREMENTS FOR	OHADPANT	}—	F F	jeni jeni	AVG	نحو	 	⊢ : ⊢:	AVG		 	jeeri jeeri	þeri þeri	AVG	-	H	}! }!	AVG
FRATIIFI	TIME	212				907 1430					1415				699 699			
TEMP	rATF	906				907					606				910			

								C	ORIGI OF PO		P/ OU	age Jali	is TV					
TEMD	£ 5	5,45 12,92	3.79 14.77	6.04 16.92	5.10 14.87	2,48 23,36	1.70 22.97	.55 23.85	22.58 23.39	34.29.21	74 *	.65 28.34	32.24 30.19	29,41 29,25	32.44 34.19	30.78 31.65	31.65 31,46	31.62 32.44
Ì	150	**	÷	Ŧ	y-i	SZ	21	23	N	ő	น	27	m	Ċ	m	ίņ	en L	(r)
FOR PLOT 4	2 CM 3 CM 5 CM 1	16.33 17.11 20.82 20.24 22.48 22.38 22.97	15.36 15.45 15.75 17.80 19.45 20.63 21.21	16.14 16.72 17.89 19.26 20.43 22.29 22.77	15.94 16.43 18.15 19.10 20.79 21.76 22.32	23.07 21.89 20.72 20.33 21.80 21.80 22.29	17.99 17.89 17.99 17.89 18.87 19.55 20.53	19.55 19.26 18.77 18.97 19.55 21.31 21.80	20,20 19,68 19,16 19,06 20,07 20,89 21,54	67 CC 01 CC 0C CC 71 CC 07 CC CO 0C 03 OC	20.02 44.00 40.10 44.47 44.17 44.	20,53 20,33 20,33 19,55 19,45 19,75 20,33	26.38 25.12 22.97 21.60 20.82 21.11 21.50	25,83 24,76 21,99 21.44 20,85 21.02 21.44	35.17 33.51 25.21 26.09 22.87 23.07 22.68	28,24 27,07 26,29 21,21 20,63 20,63 20,92	31.07 29.61 27.46 25.41 23.94 22.58 22.48	31,49 30.06 26.32 24.24 22.48 22.09 22.02
ENT®	1 CM	15,75	15.36	15,65	υ. Ω	24.04	17,99	20,43	20,82	7	4. 4.	21.11	27.75	27,10	37.61	31.46	32,63	33,90
TEMPERATURE MEASUREMENTS	GUADRANT	, -	þeri þer	+-n !i !:	AVG	i—i	₩	 	÷ ĐÁĐ	٠		T	III .	AVG	j en,	H	Junes Junes Junes Junes	AVG
FATUR	TIME	739				626				0	r F		•		1339			
TEMPE	NATE	910				910				Č	2				010			

												RIGI OF P	nal Oor	PAG QU/	ae ali'	is Ty				
AIR TEMP		32.53 35.36	30.87 31.95	29.51 30.87	30.97 32.73	30,78 30,68	į	30,39 31,26	29.80 30.39	30,32 30,78	22.97 22.19	22.77 22.19	22.29 21.89	22.68 22.09		18.48 16.72	18.87 17.80	18.87 18.09	18.74 17.54	
TEMPERATURE MEASUREMENTS FOR PLOT 4	1 CM 2 CM 3 CM 5 CM 1	37,90 36,34 35,36 27.56 29,41 24,33 24,73 23,55	35.07 31.95 30.58 30.19 24.82 22.29 21.50 21.21	31.56 31.17 30,78 29,70 27.75 26.19 23.75 23.26	34.84 33,15 32,24 29,15 27,33 24,27 23,33 22,68	21 22 85 76 60 76 48 30 81 30 82 36 88 35 13		29.02 28.14 27.65 27.75 25.99 24.14 22.97 22.38	30,48 30,29 30,09 29,80 28,73 27,56 25,51 25,02	30,84 30,68 30,45 28,99 28,53 25,93 25,02 24,17	26.68 27.75 28.63 28.53 29.21 26.68 26.97 25.70	22,97 23,55 23,65 23,94 24,63 24,04 23,26 25,51	25.02 25.80 26.29 27.17 27.26 26.87 25.51 24.92	24,89 25,70 26,19 26,55 27,04 25,86 25,25 25,38		21.21 22.19 22.87 5.60 25.41 25.80 25.90 25.51	18.67 19,26 19,36 19.75 21.80 22.58 22.87 22.68	20,43 21,11 21,80 22,97 23,85 24,63 24,92 24,73	20,11 20.85 21.34 22.77 23.68 24.33 24.56 24.30	
" MEASUR	QUADRANT	ध्य	 	11 1	AVG	٢	- 1	F	H	AVG	⊢ ÷	 i	þæi þæi þæi	AVG	. •	H	II	 	AVG	
EFATUR	TIME	1.00 0.00 0.00				0 1 •	ρ () 				1939					2239				
TEMP	DATE	910				6					910					910				

OT OT O	150 CM 30 CM	13.89 13.01	14,57 13,79	14.28 13.79	14.25 13.53	32,34 34,88	31.07 31.65	30.19 30.78	31.20 32.44	26.77 29.41	27.85 29.70	26.58 27.07	27.07 28.73
TEMPERATURE MEASUREMENTS FOR PLOT 4	TICM 2 CM 3 CM 10 CM 15 CM 24 CM 30 CM	17,11 17,70 18,58 21,70 21,21 22,97 22,87 23,26	15.75 16.14 16.33 16.82 18.87 20.33 21.02 21.41	16.82 17.41 17.89 19.36 20.33 21.21 22.68 22.97	16.56 17.08 17.60 19.29 20.14 21.50 22.19 22.55	36.05 34.78 34.00 27.46 29.21 24.33 24.53 23.55	33,51 30,87 29,70 29,41 25,12 22,77 21,99 21,50	31.17 30.87 30.48 29.51 27.75 26.29 23.94 23.55	33,57 32,13 31,39 28,79 27,36 24,46 23,49 22,87	30.29 29.02 28,43 24,63 25,21 22,87 23,16 22,38	30,68 27.85 26.97 26.19 22.77 21.70 22.77 22.97	28,73 28,53 27,46 26,09 23,75 23,36 22,38 22,48	29,90 28,47 27,62 25,64 23,91 22,64 22,77 22,61
E MEASURI	CHIAPPRANT	Janu .	}	form form form	AVĞ	⊱ -,	11	 	AVG	j	jumi justi	II	AVG
FRATUR	TIME	667				1539				1439			
TEMP	NATE	6				4				010			

APPENDIX I PLOT 1 DIURNAL CYCLE DATA

I.1
REFLECTIVITY DATA

REFLECTIVITY MEASUREMENTS

ORIGINAL PAGE IS OF POOR QUALITY

POWER REFLECTION COEFFICIENT P

PLOT NO.	1, Diurnal	Cycle					LARIZATI ENCE ANG		
				FREQU	ENCY (GH2	:)			
DATE	TIME	1.125	1.25	1.375	1.5	1.625	1.75	1.875	
7/26	615 815 1000 1220 1405 1612 1755 2010	.447 .449 .454 .442 .439 .452 .427	.429 .417 .424 .437 .422 .437 .410 .439	.465 .452 .465 .479 .470 .479 .454	.473 .452 .473 .468 .473 .479 .468	.457 .434 .468 .473 .468 .465 .452	.447 .417 .447 .457 .452 .457 .439	.447 .419 .460 .454 .462 .447 .444	
		F 0		·	ENCY (GHz				
	4.0.0	5.0	5.5	6.0	6.5	7.0	7.5		
	620	.335	.351	.367	.351	.320	.259		
	810	.374	.398	. 398	. 367		.339		
	1005	.355	.351	.324	.300	. 292	. 259		
	1215	. 359	.361	.351	.316	.295	.269		
	1410	.341	.327	.316	.307	.299	. 280		
	1605	.365	.347	.331	.313	.307	.287		
	1010	0/1							

.322

.359

.302

.313

.316

.304

.311

.292

.341

.324

.341

.355

1810

2000

I.2
GRAVIMETRIC MOISTURE DATA

GRAVIMETRIC MOISTURE CONTENTO (GM/GM)

lot No. 1, Diurnal Cycle

Date: 7/26/79

DEPTH	INTERVAL	(CM)	

ı, ıme	Quad	025	.255	.575	.75-1	0-1	1-2	2-4
0600	I	.181	.094	.153	.141	.142	.156	
	II	.136	.129	.171	.224	.165	.235	.160
	III	.089	.150	.097	.129	.116	.155	.162
	IV	.078	.102	.144		.108	.129	.147
Plot r	nean	.121	.119	.141	.165	.133	.169	.156
0800	I	.104	.046	.072	.080	.076	.133	.130
	II	.171	. 145	.178	.172	.167	.145	.155
	III	.210	.223	.118	.085	.159	.167	.165
	IV	.056	.142	.146	.153	.124	.154	.147
Plot	mean	.135	.139	.129	.123	.131	.150	.149
1000	I	.043	.094	.075	.086	.075	.164	جمع مدن وس
	II	.160	.179	.153	.168	.165	.106	.149
	III	.075	.162	.161	.116	.129	.148	.160
	IV	.023	.057	.118	.134	.083	.152	.160
Plot	mean	.075	.123	.127	.126	.113	.143	.156

original page is of poor quality

SOIL MOISTURE MEASUREMENTS

GRAVIMETRIC MOISTURE CONTENT $\theta_{\mathbf{w}}$ (GM/GM)

Plot No. 1, Diurnal Cycle

Date: 7/26/79

	•	•						
				DEPTH INT	ERVAL (CM)		
Time	Quad	025	.255	. 5 75	.75-1	0-1	1-2	2-4
1200	I	.098	.109	.208	.074	.122	.139	.169
	11	. 198	.137	.183	.171	.172		page (may game & L7
	III	. 054	.141	.121	.126	.111	.167	.231
	IV	.120	.099	.117	.107	.111	.135	.145
Plot	nean	.118	.122	.157	.120	.129	.147	.182
1400	I	.070	.113	.106	.174	.116	.160	.163
	II	.229	.255	.186	.197	.217	.222	.156
	III	.104	.174	.222	.188	.172	.194	.165
	IV	.113	.154	.147	.149	.141	.168	.157
Plot	mean	.129	.174	.165	.177	.161	.186	.160
1600	I	.128		.179	ere ere ere ere	.154	.163	.145
	II	.112	.133	.134	.147	.132	.196	.221
	III	.015	.039	.084	.147	.071	.142	.157
	IV.	.176	.085	.105	.110	.119	.143	.143
Plot	mean	.108	.086	.126	.135	.119	.161	.167

GRAVIMETRIC MOISTURE CONTENT θ_{w} (GM/GM)

Plot No. 1, Diurnal Cycle

Date: 7/26/79

LIOC !	10. I, D.	Lurnal Cyc.	LE			Date	. //2	3/13
				DEPTH INT	ERVAL (CM))		
Time	Quad	025	.255	.575	.75-1	G-1	1-2	2-4
1800	I	.000	.017	.070	.104	.048	.155	.160
	II	.210	.227	.164	.176	.194	.184	.151
	III	.000	.008	.069	.143	.055	.144	.170
	IV	.029	.113	.127	.125	.099	.153	.151
Plot	mean	.060	.091	.108	.137	.099	.159	.158
2000	I	.019	.032	.089	.150	.073	.160	.145
	II	.197	.121	.153	.110	.145	.183	.161
	III	.120	.130	.132	.166	.137	.163	•• •• ••
	IV	.088	.110	.131	.154	.121	.151	.159
Plot m	ean	. 106	.098	.126	.145	.119	.164	.155

I.3 VOLUMETRIC MOISTURE DATA

VOLUMETRIC MOISTURE CONTENT $\theta_{_{\mathbf{V}}}$ (CM 3 /CM 3)

PLOT NO. 1, Diurnal Cycle

DATE: 7/26/79

		•	1	DEPTH INTERV	/AL (CM)			
TIME	QUAD	025	.255	.575	.75-1	0-1	1-2	2-4
0600	r	.272	.141	.230	.212	.213	.234	Table 5000 MM
	II .	.204	.194	.257	.336	.248	.353	.240
	ııı	.134	.225	.146	.194	.174	.233	.243
	IV	.117	.153	.216	ana tota 444	.162	.194	.221
PLOT ME	AN	.182	.179	.212	.248	.200	.254	.234
0800	I	.156	.069	.108	.120	.114	.200	.195
	II	.257	.218	.267	.258	.251	.218	.233
	III	.315	.335	.177	.128	.239	.251	.248
	ıv	.084	.213	.219	.230	.186	.231	.221
PLOT ME	AN	.203	.209	.194	.185	.197	.225	.224
1000	I	.065	.141	.113	.129	.113	.246	and that each
	II	.240	.269	.230	.252	.248	.159	.224
	ııı	.113	.243	.242	.174	.194	.222	.240
	IV	.035	.086	.177	.201	.125	.228	.240
PLOT ME	AN	.113	.185	.191	.189	.170	.215	.234

VOLUMETRIC MOISTURE CONTENT θ_v (CM³/CM³)

PLOT NO. 1, Diurnal Cycle

DATE: 7/26/79

			I	DEPTH INTERV	/AL (CM)			
TIME	QUAD	025	.255	.575	.75-1	0-1	1-2	2-4
1200	I	.147	.164	.312	.111	.183	.209	.254
	ΙΙ	.297	.206	.275	.257	.258	1500 med drap	
	III	.081	.212	.182	.189	.167	.251	.347
	IV	.180	.149	.176	.161	.167	,203	.218
PLOT MEA	AN	.177	.183	.236	.180	.194	.221	.273
	-	105	170	150	261	17/	240	27.5
1400	I	.105	.170	.159	.261	.174	.240	.245
	II	.344	.383	.279	.296	.326	.333	.234
	III	.156	.261	.333	.282	.258	.291	.248
	IV	.170	.231	.221	.224	.212	.252	.236
PLOT ME	AN	.194	.261	.248	.266	.242	.279	.240
1600	I	.192		.269		.231	.245	.218
	II	.168	.200	.201	,221	.198	.294	.332
	III	.023	.059	.126	.221	.107	.213	.236
	IV	.264	.128	.158	.165	.178	.21.5	.215
PLOT MEA	۸N	.162	.129	.189	.203	.179	.242	.251

VOLUMETRIC MOISTURE CONTENT θ_{v} (CM³/CM³)

PLOT NO. 1, Diurnal Cycle

DATE: 7/26/79

				DEPTH INTERV	AL (CM)			
TIME 4	QUAD	025	.255	.575	.75-1	0-1	1-2	2.4
1800	ĭ	.000	.026	.105	.156	.072	.233	.240
	II	.315	.341	.246	.264	.291	.276	.227
	111	.000	.012	.104	.215	.083	.216	.255
	IV	.044	.170	.191	.188	.149	.230	.227
PLOT N		.090	.137	.162	.206	.149	.239	.237
2000	r	.029	.048	.134	. 225	.110	.240	.218
	ıı	.296	.182	.230	.165	.218	.275	.242
	III	.180	.195	.198	.249	.206	.245	
	ıv	.132	.165	.197	.231	.182	.227	.239
PLOT		.159	.147	.189	.218	.179	.246	.233

1.4

AIR AND SOIL TEMPERATURE DATA

original page is of poor quality

AIP TFMP	150 CM 30 CM	21.80 21.80	21.80 21.80	21.89 21.80	21.83 21.80	23.65 23.46	23,44, 23,44	23.85 23.94	23,45 23,42	25, 90, 25, 90	•	25, 99, 2A, 38	24,38 24.87	24.09.24.38	27.17 27.54	27.75 28.73	28,14 28,82	27 69 28,37
TEMPERATURE MEASUREMENTS FOR PLOT 1	T-	22,20 22,77 22,87 22,34 24,14 24,43 24,92 24,92	22, 38, 22, 48, 22, 97, 23, 75, 24, 33, 25, 62, 25, 62	00 07 09.14 09.04 03.55 04.4° 05.00 05.60 25.51	22, 45, 22, 81, 22, 87, 23, 29, 24, 11, 24, 66, 25, 18, 25, 15	00,77 99.07 93.24 93.45 94.65 94.04 94.43 24.53	09,07 09 07 00,07 03,14 03,44 03,85 24,49 24,53	93 75 93,75 93,85 93,85 24 33 94,82 95,31 25,31	29,14 23 20 23,24 23,44 23,81 24,24 24,73 24,79		04, 41, 04, 60, 04, 63, 04, 13, 74, 14, 74, 13, 74, 14, 14, 14, 14, 14, 14, 14, 14, 14, 1	04,02 04,43 04 73 04,33 03 75 23,85 24,04 04,14	of kn of 01 of 10 04,00 04.63 04.63 04.82 04.90	05 31 24 76 24,82 24,60 24 17 24,17 24,33 24,43	24 29 25 80 24 69 25,80 24,43 24,43 24,14 24,14	24,77 24,48 24,58 25,90 24,78 24,33 24,24 24,24	27.44 24.97 24,87 24,09 25,51 25,12 24,92 24,82	26 84 26,49 26,51 25,00 24,05 24,63 24,43 24 40
T MFASIIFF	CHIANFANT	ļan	Jose Jun	tur P	AVG	-	1	111	AWR		 	⊢	111	AUG		} 	111	AVR
PATIF	TIME	401				g CO8					1030				1034			
TEMPE	NATE	724				754					704				704			

ORIGINAL	Onvrila
OF POOR	Evoce is

	4 150 CM 30 CM	2 28,82 29,12	00°05 30°06 E	29,90,30,58	A 29,25 29,90	3 27,34 27,44	3 27,36 28,14	27,45 28,14	9 97.46 27.01	4 25,70.25,80	4 25,41 25,90	2 25,99 26,19	0 25,70 25,96	0 24 82 24 73	0	2 24,82 24,82	7 24.97 24.92	94.86.24.82
ŭ X	4	14 25,00 25,12 24,53 24,33	34 26,29 05,31 04,63 24 , 63	82 26, 77 25, 90 25, 12, 25, 02	43 26,25 25,44 24,76 24.66	28,24 27,07 24,19 24,82 24,43	34 07,26 26 48 25,12 24,63	29,21,28,24,27,17,25,70,25,*3	28.43 28.40 28.40 27.52 24.41 25.21 24.79	48 26,09 25,51 24,43 24,04	29 25,99 25,70 24,43 24,34	34 27, 24 24, 58 25, 51 24, 92	71 26,45 25,93 24,86 24,40	00 70 10 50 50 50 70 71 50		25,70 25,00 26,00 25.51 25,12	24,58 24,77 24,58 25,99 25,02	25.99 24.29 24.32 25.40 24.99
TEMPERATURE MEASUREMENTS FOR PLOT 1	T L CM O CM O CM	98,99 98,48 98,78 98,14	99,51,99,91,99,41,98,34	30 29 29,80 29,81 28,82	00 57 0 15 00,05 08,43	97,36,97,75,98,64,98,	28,34 28,34 28,43 28,34	29 12 29 21 29,31 29,	28 27 28 43 28,40 28.	25,02 25,90 25,99 26,48 26,09 25,51	24,09 25,99 25,90 26,29	07 07 07,24 27,34 27,34 07,04 24,58	26,06 26,38 26,42 26,71 26,45 25,93 24,86	00 00 00 00		25,02-25,31-25,31-25,	25,70 25 00 26,19 26.	2표 9독 2독 47 2독 독7 2독
= MFASIIPE	OHADPANT	} -	þ þ	jum jum	AWG	⊢	T	 -	פטפ	 	 	111	AVR	٠	-	1	111	AUG
RATI IR	TIMF	1400				1632				1816				i U	\ '\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
TEMPE	NATE	701.				704				704				í	7.5%			

APPENDIX J PLOT 4 DIURNAL CYCLE DATA

J.1
REFLECTIVITY DATA

ORIGINAL PAGE IS OF POOR QUALITY

PLOT	NO.	a.	Diurnal	Cycle

DATE

9/10

9/11

POLARIZATION:	H
INCIDENCE ANGLE:	45 ⁰

						TIN	CIDENCE .	MNGTE:	45
			FR	EQUENCY (GHz)				
DATE	TIME	1.125	1,25	1.375	1.5	1.625	1.75	1.875	;
9/10	0635	.247	.253	.296	.309	.307	.299	.268	
	0735	.251	.250	.276	.285	.274	.260	.231	
	1000	. 266	.276	.317	.355	.355	.343	.336	
	1145	.271	.291	.341	.376	.376	. 196	.394	
	1400	, 276	.289	.335	.363	.363	.345	.307	
	1605	. 292	.303	.335	.383	.385	.378	.339	
	1800	.277	.286	.349	.385	. 387	.380	.332	
	2005	. 218	.224	.269	.299	.304	.301	.289	
	2230	.260	.273	.324	.353	.363	.359	.346	
9/11	0705	.254	. 263	.304	. 320	.322	.322	. 280	
	1500	.299	.307	.366	. 362	.335	.317	.272	
			FF	REQUENCY ((GHz)				
7146	5.0		5,5	6.0		6.5	7.0)	7.5
0630	3.35x10		27×10 ⁻²	2.47×10		.32×10 ⁻²	2.10x1		2.32×10 ⁻²
0730	3.35×10	-2 3.4	3x10 ⁻²	3.57×10		.20x10 ⁻²	2.20x1	_	2.09x10 ⁻²
1005	2.99x10	-2 2.2	20×10 ⁻²	1.98×10		.77x10 ⁻²	1.08x1		1.04×10^{-2}
1145	2.25x10		20×10 ⁻²	6.43x10		.17×10 ⁻³	8.71x1		2.79×10^{-3}
1405	1.48×10	⁻² 9.1	L3x10 ⁻³	1.10x10		.55x10 ⁻³	3.89x1	_	5.56×10^{-3}
1600	6.35×10		08×10 ⁻²	2.19x10		.62x10 ⁻²	1.49x1		1.12×10^{-2}
1805	1.59xl0		32×10 ⁻³	1.26x10		.37×10 ⁻²	1.07xl		8.56×10^{-3}
2000	2.08×10		58×10 ⁻²	1.94×10		.85×10 ⁻²	1.48x1		1.53×10^{-2}
2235	2.90×10	⁻² 2.0	09x10 ⁻²	2.32x10	0^{-2} 2	.35×10 ⁻²	1.73x1		1.32×10^{-2}
0700	3.32×10	⁻² 5.:	19x10 ⁻²	5.34x1	o ⁻² 6	$.03 \times 10^{-2}$	5.10x1	LO ⁻²	4.44×10^{-2}
1505	1.68×10	⁻² 8.3	32×10 ⁻³	8.09x10		$.31 \times 10^{-3}$	6.81x		1.04×10^{-2}

J.2

GRAVIMETRIC MOISTURE DATA

GRAVIMETRIC MOISTURE CONTENT $\boldsymbol{\theta}_{_{\boldsymbol{W}}}$ (GM/GM)

PLOT NO. 4, Diurnal Cycle

DATE	TIME	AREA			DEPTH I	NTERVAL	(CM)		
			0-12	¹ 2-1	0-1	1-2	2-5	5-9	9-15
9/10	0630	E W	.056	.119	.098	.174 .188	.175 .194	.188 .213	.192
		AVG	.083	.146	.123	.181	.185	.201	. 205
	0745	E W	.034	.060 .059	.041 .091	.118	.169 .176	.177 .180	.189 .198
		AVG	.032	.059	.066	.124	.173	.179	.193
	1000	E W	.038 .093	.127 .176	.063 .123	.163 .191	.169 .210	.178 .208	.173 .192
		AVG	.066	.151	.093	.177	.189	.193	.182
	1200	E W	.050 .097	.136 .184	.085	.181 .203	.186 .202	.191 .214	.206
		AVG	.074	.160	.103	.192	.194	. 203	.209
	1400	E W	.022 .071	.133 .168	.076 .141	.169 .187	.188 .184	.194 .196	.205 .198
		AVG	.047	.150	.108	.178	.186	.195	.202
	1600	E W	.008 .028	.055 .139	.013	.167 .168	.180 .188	.202 .201	.199 .215
		AVG	.018	.097	.039	.168	.184	. 202	. 207
	1800	E W	.264 .075	.156 .145	.060 .075	.186 .170	.187 .173	.200 .197	.195 .219
		AVG	.169	.150	.068	.178	.180	.198	.207
	2000	E W	.044 .054	.107 .119	.067 .062	.157 .168	.180 .194	.177 .208	.222
		AVG	.049	.113	.065	.162	.187	.193	.211
	2245	E W	.033 .084	.077 .114	.049 .125	.162 .184	.182 .196	.212 .188	.198 .209
		AVG	.059	.096	.087	.173	.189	. 200	. 204
9/11	0715	E W	.047 .072	.093 .132	.049 .076	.143 .192	.170 .189	.204 .213	.190 .230
		AVG	.060	.112	.063	.168	.180	. 209	.210
	1500	E W	.018 .066	.072 .150	.022	.163 .194	.179 .204	.201 .211	.200 .180
		AVG	.042	.111	.062	.178	.191	.206	.190

VOLUMETRIC MOISTURE DATA

VOLUMETRIC MOISTURE CONTENT θ_v (CM³/CM³)

ORIGINAL PAGE IS OF POOR QUALITY

PLOT NO. 4, Diurnal Cycle

DATE	TIME	AREA			Depth	Interval	(CM)		
			0-1/2	½-1	0-1	1-2	2-5	5-9	9-15
9/10	0630	E W AVG	.088 .171 .130	.172 .252 .212	.146 .220 .183	.218 .236 .227	.202 .223 .213	.217 .246 .231	.228 .260 .244
	0745	E W AVG	.053 .048 .050	.087 .086 .086	.061 .136 .098	.148 .162 .155	.195 .203 .199	.204 .208 .206	.224 .234 .229
	1000	E W AVG	.060 .146 .103	.184 .255 .219	.094 .183 .139	.205 .239 .222	.195 .242 .218	.205 .240 .222	.205 .227 .216
	1200	E W AVG	.078 .152 .115	.198 .267 .233	.127 .182 .154	.226 .254 .240	.214 .233 .224	.220 .247 .234	.245 .253 .249
	1400	E W AVG	.035 .111 .073	.193 .244 .218	.11.4 .210 .162	.212 .235 .224	.217 .212 .215	.223 .225 .224	.244 .235 .240
	1600	E W AVG	.012 .043 .028	.080 .202 .141	.020 .096 .058	.210 .211 .210	.208 .217 .212	.233 .232 .232	.236 .255 .245
	1800	E W AVG	.412 .117 .265	.226 .210 .218	.090 .112 .101	.234 .213 .223	.216 .200 .208	.230 .227 .229	.232 .260 .246
	2000	E W AVG	.068 .084 .076	.155 .173 .164	.100 .093 .096	.197 .210 .204	.208 .224 .216	.204 .240 .222	.263 .239 .251
	2245	E W AVG	.052 .131 .092	.112 .165 .139	.073 .187 .130	.203 .231 .217	.210 .226 .218	.244 .217 .231	.235 .248 .242
9/11	0715	E W AVG	.074 .113 093	.135 .191 .163	.073 .114 .093	.180 .241 .210	.196 .218 .207	.235 .245 .240	.225 .274 .249
	1500	E W AVG	.0277 .103 .065	.105 .218 .162	.034 .152 .093	.204 .243 .224	.207 .235 .221	.231 .244 .237	.237 .212 .225

J.4

AIR AND SOIL TEMPERATURE DATA

AMET GIA	Σ	11 04 10.18	11 45 10.28	10,87,10,28	11.13 10,25	15,45 12,92	13,70 14,77	14.04 14 92	15 10 14,87	21,70.21,99	20 33 18 38	21,21,21,89	21,11 20,74	22,48 23 24	21, 70, 22, 97	22,55 22,65	99,58 93,99
FMFNTS FOR PLOT 4	T WO S WO S WO T	15 84 17 53 17 60 31 41 30 92 33,26 33 16 33,65	13 70 14 38 14,87 15,06 18 19 00,04 00,90 01,50	15 55 14 14 14 00 18,08 19 45 00 53 00,38 00,48	15,00 15 48 14 44 18,30 10,58 01 08 00 15 20,41	15 75 16 33 17 11 20,50 20,04 00,48 00,38 02,97	15 37, 15,37, 15,45,15,75,17,80,19,45,00,73,01,01	15 K5 1K 14 1K 70 17 89 19 0K 0N 43 00,09 00 77	15,58 15,94 16 43 18 15 19 10 20,79 21,76 22 32	10 06 18 07 18 67 00 43 00 04 00,10 01,00 00,68	19 06 18 67 18 09 17 80 17 50 18 77 19 85 00 53	15 94 15 84 16,53 17,11 18,19 19 96 91,11 91,70	18 15 17,83 17 74 18 45 18 58 30 07 30,98 21.43	04 NA 03 NT 01 R9 ON 70 ON 33 01 RN 01 RN 00 09	17 99 17,99 17 89 17 99 17 89 18 87 19 55 20,53	20,43 to 45 to 24 t8,77 t8,97 to,45 2t 3t 2t 80	20 82 20,20 18 48 19,14 19,04 20,07 20,89 21,54
TEMPERATURE MEASUREMENTS	ก็เเอกค _ื อกป	⊢	⊢ ⊢	111	AUG	}	þar Þar	1 1 1	AUG	۳	⊱- jes	} }	AUG	+	1	1 1 1	AUG
FRATIIFI	T MF	007				790				000				959			
TEMPE	חבחח	010				910				010				910			

CRIGINAL PAGE IS OF POOR QUALITY

NR TEMP	150 CM 30 CM	25,99 24,68	25.21 24.63	29.51 28.53	26,90 26,61	28,34 29,21	27,65 28,34	32,24 30,19	29,41,29,25	30,29 31,07	29.21 30.68	31,85 31,34	30,45 31,04	32.44 34.19	30,78 31,65	31,65 31,46	31,62 32,44
	15 CM 24 CM 30 CM 150	21,80 21,40 22,19 25	18,87 19,75 20,14 25	19,55 20,82 21,21 25	20,07 20,72 21.18 24	28,82,22,68,23,16,22,29,22,19,22,48, 28	19,45 19,75 20,33	21.11.21.50	20,85 21.02 21.44 2	31,24,23,85,24,73,22,48,22,48,39		21,41 21,70	21,31 21.54	23.07 22.68	20,63,20,63,20,92	23,94 22,58 22,48 3	33,90 31.49 30.04 26,32 24,24 22,48 22.09 22.02 3
TFMD	10 CM	21,50	0 0 0 0	19,65	10,85	68 23,16 22	19,55	22,97 21,60 20,82	01,09 21.44 20	85 24,73 22	20.92 19.94 19.65	25,41 23,3k 22,19	23,39 22,68 21,44	25,23 26,09 22,87	21,21		.32 24.24 22
PLOT 4	MU O MU E W	7.25,51.21,31	1 20,72 20,24	8 21,89 20,43	5 22,71 20,64		3 20,33 20,33	0.00	25,83 24,74 21.	2 31.26 23.	1 20.72 20.	27,85	27,78 26.61 23.	25, 17, 22, 51, 25.	28,24 27,07 24,39	32,63 31,07 29,61 27,46 25,41	19 30,06 26.
MENTS FOR PI	T CM 2 FM	70, 47, 57, 97	23.16.21.31	24,04 22,68	25, 25, 23, 65	32,44 30,58	21, 11, 20, 53	27,75 26,38	27,10.25,8	25, 27, 33, 12	21, 60 21, 11	30,87,29.12	29.25 27.7	37.61 35.1	31.46 28.7	32,63 31.0	33°60 31.4
TEMPERATURE MEASUREMENTS FOR	OU ICTIFICANȚ	Jun	<u>-</u>	} } }	AUG	j -	ļus ļus	 	AVG	} -	jes jes	 	AVG		11	T T T	AVG
FRATUR	TIME	1020				0.00					-			1330			
TEMP	NATE	910				010				910	•			910			

								OR! OF	einal Poor	PAC QUI	au I	9 Y				
0 T C	150 FM 30 FM	91,56 92,14	30,97,32,24	30,09 31,85	30,87 32,08	32,53 35,34	30,87.31.95	29,51 30.87	30,97 32,73	33,02,34,05	31,24,32,05	30, 78, 30, 87	31,49 32,99	30,78 30,48	30,39 31,24	95,05 08,05
TEMPERATURE MEDGURFMENTS FOR PLOT 4	THE STM STM THE	37.80 35.56 34.39 34.09 37 46 33 36 33.46 32.68	33,70 30 30 52 12 28,43 22,58 50,43 20 33 20,43	31 45 30 97 30 00 38,53 34,29 34 43 32,29 22,19	34 39 32,31 31,17 27,75 25,44 22,77 22,02 21,74	37 90 34 34 35,34 27,54 29,41 24,33 24,73 23,55	35 07 31 95 30,58 30,19 24,82 22,29 21,50 21,21	31,54 31 17 30,78 29,70 27,75 24,19 23,75 23,26	34 84 33,15 32,24 39,15 37,33 24 27 23,33 29,48	34 94 35 75 35,97 98,43 30,58 95,41 95,80 94,43	30,58 00,10 08 53 08,53 25,80 03,34 02,09 21,70	31 45 31,46 30,97 99,90 98,24 96,87 94,73 24,24	32,83 32,11 31,50 29 02 28,21 25 21 24,27 23,46	33 N2 33 K1 33,K1 29,41 30,87 2K.09 2K,58 25,12	29 N2 28,14 27,45 27,75 25,99 24,14 22,97 22,38	30,48 30,29 30,09 29,80 28,73 27,56 25,51 25,02
F MFASII	CI IADRANT	-	11	111	AUR	b	<u>+</u>	1 1 1	AUG	 	jun.	<u>-</u>	AUA	-	j j	-
FRATHR	T 1MF	1430				4 000 000				1439				47 49		
TEMP	nate	910				010				010				010		

30,32 30,78

30,84 30,48 30,45 28,99 28,53 25,93 25,02 34,17

AUG

150 FM 30 CM	24. 48 24.48	26.58 26.87	26.87 24.29	24.71.24.55	22.07 22.19	22, 77 22.19	22,29 21.89	22.48 22.09		21.46 20.24	3 21.40 20 24	5 21.02.20.33	0 21.41 20.27	1		7 19,04 17,99	18.47 18.09	53 19,03 17.99	
	4 10 CM 15 CM 74 LM	20 16	25,00 25,31 74.14 75.05 25.51	28,04 27,95	25.70 26.97 25.70	28,53 74 71 77 	78 40 10 10 10		24 89 25,70 24,19 24,55 27,04 25,86 71,01	0, 10 07 85, 28, 04 24, 58 24, 77 25,80		1	74,73	24,50 25,34 (0.7)	25,21 24,97 27 07 24,38 24,58 25,80	77.22 21. 22 37 23. 34 23. 16 22.77	20 92 21.07 71-30 15.07 25.41 25.02	87 93,34 74,55 73,55 as as on 05 24,53	
FNTS FIR PLOT	MJ C MJ L	90,31 30,58 9			57,69 58,57	24, 48 27 75	22 97 22 55	95,02.95.80	24 89 25,70	!	04,80 05,80	01,01.01.00	22,44,24,14	00,14,00,08		4/ 3/ 56	on. 14 on 9	22,19.22.8	21.84 22.7
MFAGIIPEM	CILIDERRANT	j -r	-	 	AUR	-	11	111	500)	11		AVR		-	 	111	AVG
TEMPERATURE MEASUREMENTS FOR	חאדד דדאח	910 1839				910 1939					910 9039					010 2120			

ATR TEMP	150 FM 30 FM	20,24 17,21	10,55 18,38	19 36 17,89	10,71 17,83	18.48 16 72	18,87 17.80	18,87 18,09	18,74 17,54	18,58 17,01	18,19 16,82	18, 38, 17, 31	18,38 17,11	14.82 14.04	17.21 16.43	16,80 16,43	16,95 16,30
FOR PLOT 4	O FM O FM TO FM 15 FM 24 FM SO FM	0 73 16 73 94 26,38 26,19 26 69 26 26 25 73	A 13 94 20 14 20,53 22 32 32 37 52 97 22,77	1 01 80 00 KR 03,75 04 KR 05,00 05,10 24,90	0 01 63 00 05 08,55 04,40 04 60 04,79 04,46	1 00,10 00,87 05 kn 05,41 05,80 05,90 05,51	7 19 26 19 36 19,75 21,80 32 58 22,87 22,68	3 21 11 21,80 22,97 29,85 24 63 24,92 24,73	1 20,85 21 34 22,77 23 48 24,33 34,54 24,30	13 21, 50 02, 19 25, 12 24, 73 25, 41 25, 60 25, 51	19 18 77 18 97 19,06 91,31 99,19 99,58 99,58	15 00,59 01,01 00,00 02,04 02,04 04,63 24.63	15 20 27 20,79 22,15 23,10 23 85 24,27 24,24	14 on 80 ot kn 04 43 04,14 of no of 01 05.01	70 18 28 18 48 18,47 20,92 21 89 22 38 22,38	19 34 20,04 20,53 21,60 22,77 23 55 24,33 24,43	19.03 19 71 90,90 91,57 92,61 93,49 93,98 94,01
FNTS CT	Σ -	00 00	10,16	91	. 62 00	91.91	18 47	50.43	20, 11	59,00	18,09	19 75	10 45	20.04	17.70	10,24	19,03
TEMPERATURE MEASUREMENTS	CHIANGANT	-	<u>-</u>	111	AUG	jan-	- -	111	AUG) -	-	1 4 1	AUR	 	1.1	111	AVG
क्षा । ह	TIME	0000				6000				Gi.				1 20			
TEME'S	NATE	910				910				911				011			

	150 CM 30 CM	16,04 15,26	14,43 15,34	15.75 15 55	14,07 15,39	16,14 15,06	14.14.15.45	14,04 15,45	14 10 15,32	16.04.14.87	15 84 14 77	15 75 15,04	15,88,14,90	0 0 0 0 0 0	5.05 14. 53	15,0K 14,K7	14 97 14 47	15,03 14,57
	1 CM O FM S FM 10 CM 15 FM O4 FM 30 CM	19,34 50 14 51,02 53,94 59,45 54,73 54,82 54,95	17 21 17 89 18 09 18,28 20,43 21,40 22,19 22,29	19 45 19 45 20,04 21,21 22 29 22 87 24,14 24,24	18 74 19 17 19 71 91,15 99 19 98 67 98 79 99,81	18,87 19,75 00,53 03,55 03,07 04,53 04,43 04,73	14 99 17 41 17 80 17,80 90,14 91,31 91,89 92,19	19,88 19 06 19 45 20,53 21,89 22,68 23,75 24,04	18 09 18 74 19 32 20 K3 21 70 22 84 23 34 23 K5	18 38 19 06 00 00 18 30 68 30 68 14 34 59	16 62 17 11 17 91 17 70 19 75 91 09 91 70 91 99	17 89 18 48 19 96 90 94 91 41 99 99 93 55 93,75	17 63 18 08 18 87 00, 37 91, 08 00, 51 03 13 93,40	10 10 10 00 10 00 00 00 00 00 00 11 00 11 00 11	47.47. 12.67. 47.17. 47.17. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12	14 00 14 80 17 01 17.41 10 45 00 80 01,50 01,80	17 50 18 19 18,77 19 94 91 N2 91,89 99 94 92,45	17 94 17 93 18 45 90 01 90 99 99 99 87 93,9k
F MFASIIFF	пнапваит	-	<u>.</u>	111	400	H		-	AUG	þs.	 	111	500	}-		-	111	AUG
FRATUR	TIME	050				444				420				n, G	•			
TF MP	natr'	911				-711								Ş	•			

	150 CM 30 CM	13,89 13 01	14,57,13,79	14,28 19 79	14,25 13,53	15, 94, 15, 3K	15,55 15,84	14.43 16 60	15, 97, 15, 94
	TEMPOLIMENT OF MERCHES OF SOLUTION OF THE SOLU	17 11 17 70 18 58 91 70 91 91 99 97 99 87 94	15 75 14 14 14 33 14 82 18 87 50,33 51,02 51,41	14 80 17 41 17,89 19 34 00,83 01,01 00 48 00,97	14 54 17,08 17 40 19,29 20,14 21 50 22,19 22,55	17 50 17 00 18 48 01 50 01 00 00,07 00,04	14,72 17,01 17,01 17,21 18 77 20,14 20,82 21,41	17 50 17 80 18 08 19 04 00,04 01,11 00 48 09 77	17 24 17 40 17 03 19 39 20 01 91,41 29,15 22 51
THEF MFASHE	MF OUBTIFANT	1 657	1 1	T T T	AUG	7 7 9 1	-	111	AWG
TEMPERG.	NATE TIME	24 - 17				4 7 9			

ORIGINAL PAGE IS OF POOR QUALITY