Extending Layerwise Relevance Propagation using Semiring Annotations

Antoine Groudiev L3, ENS Ulm

Silviu Maniu – Supervisor SLIDE Team, LIG

Tuesday, July 9th

Plan

Introduction

Problem statement
Layerwise Relevance Propagation
Semiring-based provenance annotations

Extending LRP

Applications

Image mask computation
Network pruning using LRP ranking
Comparison to image perturbation

Problem statement

Layerwise Relevance Propagation

Layerwise Relevance Propagation

Propagation rules

Initialization:

$$R_i^{(L)} = \begin{cases} a_i^{(L)} & \text{if } i = y\\ 0 & \text{otherwise} \end{cases} \tag{1}$$

LRP-0 rule:

$$R_j^{(l)} = \sum_k \frac{a_j^{(l)} w_{j,k}}{\sum_{j'} a_{j'}^{(l)} w_{j',k}} R_k^{(l+1)}$$
(2)

Other rules exist (LRP- ϵ , LRP- γ , $z^{\mathcal{B}}$)

Layerwise Relevance Propagation

Results visualization

Pertinence of LRP results

Semiring-based provenance annotations

Definition (Semiring)

A semiring $(\mathbb{K}, \oplus, \otimes, \mathbf{0}, \mathbf{1})$ is composed of a set \mathbb{K} , binary operators \oplus and \otimes such that

- \otimes distributes over $\oplus,$ verifying the following properties:
 - $-(\mathbb{K},\oplus,\mathbf{0})$ is a commutative monoid
 - $(\mathbb{K}, \otimes, \mathbf{1})$ is a monoid such that $\mathbf{0}$ is absorbing

Example

The following structures are semirings:

- Real semiring: $(\mathbb{R}, +, \times, 0, 1)$
- Boolean semiring: $(\{\bot, \top\}, \lor, \land, \bot, \top)$
- Counting semiring: $(\mathbb{N}, +, \times, 0, 1)$
- Viterbi semiring: $([0,1], \max, \times, 0, 1)$

Plan

Extending LRP

Image mask computation

Network pruning using LRP ranking

Comparison to image perturbation

Simplifying LRP rule

Remove the denominator:

$$R_j^{(l)} = \sum_k \frac{a_j^{(l)} w_{j,k}^{(l)}}{\sum_{j'} a_{j'}^{(l)} w_{j',k}^{(l)}} R_k^{(l+1)} \longrightarrow R_j^{(l)} = \sum_k a_j^{(l)} w_{j,k}^{(l)} \cdot R_k^{(l+1)}$$

Semiring generalization of the LRP rule

Consider a semiring $(\mathbb{K}, \oplus, \otimes, \mathbf{0}, \mathbf{1})$

Conversion functions for activations, weights:

$$\Theta_a: \mathbb{R} \longrightarrow \mathbb{K}$$

 $\Theta_w: \mathbb{R} \longrightarrow \mathbb{K}$

Initialization:

$$R_i^{(L)} = \begin{cases} \Theta_a \left(a_i^{(L)} \right) & \text{if } i = y \\ \mathbf{0} & \text{otherwise} \end{cases}$$
 (3)

Propagation rule:

$$R_j^{(l)} = \bigoplus_k \Theta_a\left(a_j^{(l)}\right) \otimes \Theta_w\left(w_{j,k}^{(l)}\right) \otimes R_k^{(l+1)} \tag{4}$$

Boolean Semiring

$$(\{\bot,\top\},\lor,\land,\bot,\top)$$

$$\Theta_a = a \longmapsto egin{cases} \top & \text{if } a \geq \theta_a \\ \bot & \text{otherwise} \end{cases}$$

$$\Theta_w = w \longmapsto \begin{cases} \top & \text{if } w \ge \theta_w \\ \bot & \text{otherwise} \end{cases}$$

Influence of the thresholds

Counting Semiring

$$(\mathbb{N}, +, \times, 0, 1)$$

$$\Theta_a = a \longmapsto \begin{cases} 1 & \text{if } a \ge \theta_a \\ 0 & \text{otherwise} \end{cases}$$

$$\Theta_w = w \longmapsto \begin{cases} 1 & \text{if } w \ge \theta_w \\ 0 & \text{otherwise} \end{cases}$$

Plan

Applications

Image mask computation Network pruning using LRP ranking Comparison to image perturbation

Class-wise mask - Boolean semiring

Applications <u></u>0000

All classes mask - Boolean semiring

Class-wise mask - Counting semiring

Reference

Class min (5 examples)

Class max (5 examples)

Class average (5 examples)

Class min

Class max Class average (100 examples)(100 examples)(100 examples)

All classes mask - Counting semiring

All classes max

All classes min (50 examples)

All classes min (1000 examples)

All classes max (1000 examples)

All classes average (50 examples)

All classes average (1000 examples)

Comparison to dataset mean

Applications 00000

Figure: Relevance mean over the training dataset

Applications

Applications

Comparison to image perturbation

Figure: Accuracies per attack zone

- [1] Sebastian Bach et al. "On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation". In: *PLOS ONE* (2015), pp. 1–46. DOI: 10.1371/journal.pone.0130140. URL: https://doi.org/10.1371/journal.pone.0130140.
- [2] Ruth C Fong and Andrea Vedaldi. "Interpretable explanations of black boxes by meaningful perturbation". In: *Proceedings of the IEEE international conference on computer vision*. 2017, pp. 3429–3437. URL: https://arxiv.org/abs/1704.03296.
- [3] Robert Geirhos et al. "Shortcut learning in deep neural networks". In: *Nature Machine Intelligence* 2 (2020), pp. 665–673.
- [4] Todd J Green, Grigoris Karvounarakis, and Val Tannen. "Provenance semirings". In: Proceedings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems. 2007, pp. 31–40.
- [5] Grégoire Montavon et al. "Layer-Wise Relevance Propagation: An Overview". In: Explainable Al: Interpreting, Explaining and Visualizing Deep Learning. Springer International Publishing, 2019, pp. 193–209. URL: https://doi.org/10.1007/978-3-030-28954-6_10.
- [6] Yann Ramusat, Silviu Maniu, and Pierre Senellart. "Provenance-Based Algorithms for Rich Queries over Graph Databases". In: EDBT 2021 - 24th International Conference on Extending Database Technology. 2021. URL: https://inria.hal.science/hal-03140067.