CITY UNIVERSITY OF HONG KONG

Course code and title : MA1200 Calculus and Basic Linear Algebra I

Session : Semester A, 2016/2017

Time allowed : Three hours

This paper has **SIX** pages (including this cover page).

A brief table of derivatives is attached on pages 5 and 6.

Instructions to candidates:

1. This paper has **TEN** questions.

2. Attempt ALL questions.

3. Each question carries 10 marks.

This is a closed-book examination.

Candidates are allowed to use the following materials/aids:

Non-programmable calculators

Materials/aids other than those stated above are not permitted. Candidates will be subject to disciplinary action if any unauthorised materials or aids are found on them.

Question 1

The functions f(x) and g(x) are defined by f(x)=2x-3, for $x \in \mathbb{R}$, $g(x)=\frac{1}{x-2}$, for $x \in \mathbb{R} \setminus \{2\}$.

Find, in a similar form

(a) the inverse function
$$f^{-1}(x)$$
, (5 marks)

(b) the composite function
$$(g \circ f)(x)$$
. (5 marks)

In each case state the largest possible domain and the range of the function.

Question 2

Evaluate the following limits:

(a)
$$\lim_{x \to 0} \frac{\sinh x}{x}$$
 , (3 marks)

(b)
$$\lim_{x \to \infty} \cos^{-1} \left(\frac{1-x}{1+x} \right)$$
, (3 marks)

(c)
$$\lim_{x \to 0^{-}} \frac{2}{3 + e^{\frac{1}{x}}}$$
 (4 marks)

Question 3

An ellipse has equation $9x^2 + 25y^2 + 36x - 50y - 164 = 0$.

(c) Find the equation of the tangent to the ellipse at the point
$$P\left(2, \frac{14}{5}\right)$$
 (4 marks)

Question 4

(a) In 263 A.D., a Chinese Mathematician, Liu Hui proposed a method to compute an approximation to the value of π .

Given a unit circle, he calculated the area of inscribed and circumscribed regular hexagon as shown in Figure 1, thus obtaining lower and upper bounds for the area of the unit circle (= π sq.unit). Find the areas of hexagon ABCDEF and hexagon PQRSTU, correct your answers to 3 decimal places.

Figure 1

(6 marks)

(b) Find, in radians, the general solution of the trigonometric equation $\sin(5x) = -\frac{1}{2}$.

(4 marks)

Question 5

(a) Differentiate with respect to x:

(i)
$$x^3 e^{-2x}$$
, (3 marks)

(ii)
$$\log_e(\cot x + \csc x)$$
 . (3 marks)

(b) Find the general formula for the *n*th derivative of the function $F(x) = \frac{3x}{x+3}$ with respect to x.

Question 6

(a) A curve has parametric equations $x = t - t^{-1}$, $y = t + t^{-1}$, for $t \in (0, \infty)$.

Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ in terms of t . (5 marks)

(b) Differentiate with respect to x:

(i)
$$(\cos x)^x$$
, (3 marks)

(ii)
$$\sqrt{\cos x} + (\cos x)^x$$
 (2 marks)

Question 7

Given that $(x^2 + \sqrt{2}x + 1)$ is a factor of $x^4 + 1$, express $\frac{4x^3 + 8x}{x^4 + 1}$ as partial fractions. (10 marks)

Question 8

(a) If
$$y = (1 + x^2)^{-\frac{1}{2}} \log_e (x + \sqrt{x^2 + 1})$$
, show that $(1 + x^2) \frac{dy}{dx} + xy = 1$. (3 marks)

(b) Deduce that
$$(1+x^2)\frac{d^{n+2}y}{dx^{n+2}} + (2n+3)x\frac{d^{n+1}y}{dx^{n+1}} + (n+1)^2\frac{d^ny}{dx^n} = 0$$
. (3 marks)

(c) Hence, or otherwise, find the expansion of $(1+x^2)^{\frac{1}{2}}\log_e(x+\sqrt{x^2+1})$ in ascending powers of x as far as the term in x^5 .

(4 marks)

Question 9

The equation of a curve is $y = \frac{x+4}{x(x+3)}$, for $x \in \mathbb{R} \setminus \{-3,0\}$.

(a) Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$. (3 marks)

- (b) Show that $P\left(-6, -\frac{1}{9}\right)$ and $Q\left(-2, -1\right)$ are the stationary points of the curve. (4 marks)
- (c) Use the second derivative test, determine the nature of the stationary points P and Q.

 (3 marks)

Question 10

- (a) Prove from first principles that $\frac{d}{dx}(\sin x) = \cos x$. (5 marks) (Hint: You may use $\sin A - \sin B = 2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$.)
- (b) Let $F(x) = |\sin x|$, for $x \in \mathbb{R}$. Determine whether F(x) is differentiable at x = 0. Give your reason. (5 marks)

Short Table of Derivatives of y = f(u) with respect to x, where u is a function of x

Functions, $y = f(u)$	Derivative of y with respect to x
y = c, where c is a constant.	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$
y = cu, where c is a constant.	$\frac{\mathrm{d}y}{\mathrm{d}x} = c\frac{\mathrm{d}u}{\mathrm{d}x}$
$y = u^p$, where p is a constant.	$\frac{\mathrm{d}y}{\mathrm{d}x} = pu^{p-1} \frac{\mathrm{d}u}{\mathrm{d}x}$
y = u + v	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}u}{\mathrm{d}x} + \frac{\mathrm{d}v}{\mathrm{d}x}$
y = uv	$\frac{\mathrm{d}y}{\mathrm{d}x} = u\frac{\mathrm{d}v}{\mathrm{d}x} + v\frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \frac{u}{v}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{v\frac{\mathrm{d}u}{\mathrm{d}x} - u\frac{\mathrm{d}v}{\mathrm{d}x}}{v^2}$
y = f(u), where u is a function of x .	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}f(\mathrm{u})}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}, \text{ the chain rule}$
$y = \log_a u, a > 0.$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{u} \log_a e \frac{\mathrm{d}u}{\mathrm{d}x}$
$y=a^u, \ a>0.$	$\frac{\mathrm{d}y}{\mathrm{d}x} = a^u \log_e a \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = e^u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = e^u \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = u^{v}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = vu^{v-1}\frac{\mathrm{d}u}{\mathrm{d}x} + u^v \log_e u \frac{\mathrm{d}v}{\mathrm{d}x}$
$y = \sin u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \cos u \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \cos u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\sin u \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \tan u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sec^2 u \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \cot u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\mathrm{cosec}^2 u \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \sec u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sec u \tan u \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \csc u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\mathrm{cosec}u\mathrm{cot}u\frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \sin^{-1} u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{1 - u^2}} \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \cos^{-1} u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-1}{\sqrt{1 - u^2}} \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \tan^{-1} u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1+u^2} \frac{\mathrm{d}u}{\mathrm{d}x}$

Functions, $y = f(u)$	Derivative of y with respect to x
$y = \cot^{-1} u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{2} \frac{\mathrm{d}u}{\mathrm{d}x}$
	$\frac{dx}{dx} = -\frac{1}{1+u^2} \frac{dx}{dx}$
$y = \sec^{-1} u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{ u \sqrt{u^2 - 1}} \frac{\mathrm{d}u}{\mathrm{d}x}$
	1 1
$y = \csc^{-1}u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{ u \sqrt{u^2 - 1}} \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \sinh u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \cosh u \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \cosh u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sinh u \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \tanh u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{sech}^2 u \frac{\mathrm{d}u}{\mathrm{d}x}$
y 101111 0	
$y = \coth u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\mathrm{cosech}^2 u \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \operatorname{sech} u$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\mathrm{sech}u\tanh u\frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \operatorname{cosech} u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\mathrm{cosech}u\mathrm{coth}u\frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \sinh^{-1} u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{1+u^2}} \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \cosh^{-1} u$	$\frac{dv}{dv} = \frac{1}{1} \frac{du}{dv}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{u^2 - 1}} \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \tanh^{-1} u$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1 - u^2} \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \coth^{-1} u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1 - u^2} \frac{\mathrm{d}u}{\mathrm{d}x}$
	$\frac{\mathrm{d}x}{\mathrm{d}x} = 1 - u^2 \mathrm{d}x$
$y = \operatorname{sech}^{-1} u$ $y = \operatorname{cosech}^{-1} u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{u\sqrt{1-u^2}} \frac{\mathrm{d}u}{\mathrm{d}x}$
	$\frac{\mathrm{d}x}{u\sqrt{1-u^2}} \frac{\mathrm{d}x}{\mathrm{d}x}$ $\frac{\mathrm{d}y}{u\sqrt{1-u^2}} = -\frac{1}{u\sqrt{1-u^2}} \frac{\mathrm{d}u}{u\sqrt{1-u^2}}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{ u \sqrt{u^2 + 1}} \frac{\mathrm{d}u}{\mathrm{d}x}$
	$ u \forall u + 1 $