⑩日本国特許庁(JP)

⑪特許出願公開

② 公開特許公報(A) 平2-152251

3 Int. Cl. 5

識別記号 庁內整理番号 ③公開 平成2年(1990)6月12日

H 01 L 21/68 21/205 21/31

7454-5F 7739-5F Α 8223-5F 6810-5F В Ĉ

審査請求 未請求 請求項の数 1 (全6頁)

気発明の名称 縦型半導体製造システム

> 20特 類 昭63-305162

22) H 頤 昭63(1988)12月3日

迎発 日日 ⑪出 願 人 株式会社フレンドテツ

幹 夫 神奈川県川崎市多摩区長尾6丁目20番3号

神奈川県川崎市多摩区長尾6丁目20番3号

ク研究所

明 福 老

1. 発明の名称

疑型半導体製造システム

2. 特許請求の範囲

上下方向に、仕切られた空間の各段位置にプロ セスチャンパー(2)を設置し、当該複数の経型 配置されたプロセスチャンパー (2)の前面側に ウェハーのロード・アンロード機構を設けたこと を特徴とする疑型半導体製造システム。

3. 発明の詳細な説明

〔産業上の利用分野〕

本発明は、半導体装置の製造に関し、特に、半 導体装置の製造等における積々の皮膜形成。エッ チング処理を同時に行うことのできる疑型半導体 製造システムに関するものである。

「従来の技術」

半導体装置の製造においては、種々の皮膜を形 成する必要があり、例えば、シリコン酸化酸、シ リコンマ化膜、ポリシリコンなどを気相成長させ る。成長温度の低温化のため、アラズマを利用す ることもある。いずれの場合も、成長温度は異な り、川いるガスの種類も異なっている。従って、 専用の反応装置が必要であり、処理すべきウェハ 一は、カセットに収容した状態で各席用の反応装 消まで運搬する必要があり、この間のウェハー保 背には汚染防止の手段をとらなければならない。

気相成長の一例として、古典的なエピタキシャ ル成長には、疑型反応管中にカーボンサセプター を配置し、塩化シリコンガスを上方から供給する ものであった。この装置は、枚葉式であり、処理 **收数の改善のため、ウェハーを周囲に多数枚セッ** トできるサセプタを備えた装置が開発されてきた

シリコン酸化酸を始めとする上記の各種の皮膜 の気相成長にあたっては、現状では、ホット・ウ ェール型の C V D 装置が主流であり、模型の反応

上述した経型炉および機型炉において、さらに 処理枚数の改善を図るとすると、気流自体を複数 配置する以外に方策がな(、疑型炉にあっては、 複数の炉を疑に配置し、ウェハーカセットを供給 するシステムが提案されている。

また、模型炉では、拡散炉としては、古くから、炉芯件を横に複数配置して、おのおのにウェハーカセットを供給する装置を備えて、処理枚数の改善を図っている。

所で、半導体デバイスは益々小型化すると共に 複雑な構造をとるようになってきており、反応が えの流れや温度分布などの微妙な違いにより、ウェハー間分布、ウェハー内分布の均一性が保てない場合が発生してきた。即ち、上記のホット・ウェール型のCVD装置において、反応がスの人口 例と出口側とでは、供給する反応ガス(2種以上 の組み合わせ)の分圧変動が生じる。従って、バッチ内で均一に調整することが難しい。特に、シ

層間絶縁膜形成プロセスが一台の装置で均一且つ 平田に自動形成できるとされている。

(発明が解決しようとする問題点)

上記のマルチプロセス装置では、中央に多角形 乃至円形の真空室を設け、その周囲に独立した排 気系の複数のプロセスチャンパーを配した構造で あり、設置できるチャンパーの数に制限があり、 規定以上の増設が不可能である。更にチャンパー を増設しようとすると、同じ装置系を併置する必 でかある。装置全体は全て平面的な配置となるた め、床面積が多くなる欠点がある。

又、多数のチャンバーに対して、ウェハーのチャンバーへの出し入れのロボットが一台のため、同時にウェハーをセットしたり、取り出したりすることはできない。

(問題点を解決するための手段)

上記の問題点を解決するため、本発明では、上 下方向に、仕切られた空間の各段位置にプロセス リコンオキシナイトライド形成時に、反応ガスは モノンラン、アンモニア、一酸化溶液の3成分と なり、ますますその過度が難しくなる。

そこで、各ウェハーは、それぞれ特別に制御された雰囲気の中に置き、再現性良く加工する枚葉式装置では、ウェハーの大口径化にも対応し続く、また、一台の装置で各種製造プロセスに柔軟に対応できる利点があるが、一時に処理できる枚数が限られている。これを改善するために、一台の装置に複数のチャンパーを設けて同時に同じ処理を行うマルチキャンパー方式が提案され、スパック装置。プラギマCVI装置にて採用され始めている。

更に一最近の報告では、複数のチャンパーにて同しプロセスではなく、各チャンパー値に異なる種類のプロセスを実行できる機能を持たせたマルチプロセス装置が登場してきている。例えば、第3回に示す様に、4つのプロセスチャンパーを用意し、プラズマCVD、減圧CVD、プラズマエッチ、スパッタエッチを行うことで、多層配線の

チャンパー (2) を設置し、当該複数の縦型配置 されたプロセスチャンパー (2) の前面側にはウェハーのロード・アンロード機構を設けたことを 特徴とする縦型半導体製造システムとしている。

(作用)

 、スパッタリンプ、アラズマセルフクリーニンク付き熱CVD、ドライエッチングに適した内部構造、例えば、下行平板型の電極(、ス供給)構造を持ち、各々の処理に適した内部圧力とするために、この排気ポンプを動作させる。 プロセスチャンパーの排気ポンプ側とは反対の前面側によれいでは、ウェハーカセットの人出を行うロード・アンロード機構を設けるが、この機構としては、アロセスチャンパーの前面側には各チャンペーにまたがって共通するカセット収納室を設ける。前面側の他の位置にカセット収納室を設ける。

カセットエレベータは、各プロセスチャンバー に連接して、上下方向にエレベーク動作を行い、 カセットを任意の位置段に運ぶ。

各プロセスチャンバーの前面位置には、各チャンパーにウェハーを出し入れするウェハーロード・アノロード機構を設ける。即ち、運ばれたウェハーカセットから、一枚ププウェハーを抜き取ってプロセスチャンバーに送り、所定のプロセスが終

壁に向かってカセットの出し人れを行う様にする のがよい。この様な方式は、所謂スルーザウォー ル方式と称されている。

であり、また、処理のための反応がス系も必要であり、また、処理のための反応がス系も必要であり、これらは、前述の支柱にとりつけるのが源がのチャンで表し、がス系は全て先の壁の一方にあり、補條作業、増設は全容易は化のため、チャンがもには配費による。以後は他のため、チャンが連ずることでである。同様に、発展電極も小さと、チャンが上のできる。同様に、発展である。同様に、発展である。同様に、発展である。同様に、発展である。同様に、発展である。同様に、発展である。同様に、発展である。同様に、発展である。同様に、発展である。一様に、発展である。一様に、大きである。一様に、大きである。一様に、大きである。一様に、大きである。一様によりである。一様によりできる。

実用的には、クリーンルームは3~ 3.5mの高 さがあるので、旨く設計すれば6~7チャンパー 了したら、カセット収納室にあるカセットに処理 済ウェハーを移し返すウェハー杉送機構(ロボット)が配置されている。この移送機構は、ウェハーを平板様の先端に乗せて水平方向に移動する形式のものであってもよいし、伸縮自在のロボット でもよい。より好ましくは、チャンパーでの加熱 時間を短縮するため、各プロセスチャンパーの前 面位置には、ウェハー数置台を設けておき、この 台にヒーターを内蔵させ、プリヒートをさせ、そ の後、上記のロード・アンロード機構により、ウェハーをチャンパーに移すのがよい。

カセット収納室は、プロセスチャンバーの前面 側の他の位置に設けられていて、処理済みウェハ ーを収納し、この位置からカセット毎取り出す。 カセット収納室は、各段にて独立にしてもよい

が、 放上段または最下段に集積できる機構とする のがよい。

カセットエレベータとウェハー移送機構(ロボット)ならびにカセット収納室は前方外壁面が共 通の面となる様にすることができ、作業者はこの

を連ねることも可能である。

(定施例)

第1図および第2図を参照して、本発明の実施 例になる経費半導体製造システムを説明する。

第1図は、本発明実施例の疑型システムの構成を示す断面図であり、1は装置全体の支柱となるポールであり、このポールには、各プロセスチャンパー2とポンプ3とがパランスをとって難械的に固定されている。ポンプ3は通常の形式のポンプでよく、その排気側はダクト4(第2図)を介して外気に導かれる。

このプロセスチャンパー2とボンプ3との対は、 第1図の例では3組として例示されているが、これは所定のプロセス数に応じて選択できる。また 、プロセスチャンパー2は、スパッタリング、プ ラズマCVD、熱CVD、ドライエッチングのい ずれかの専用チャンパーとして備えつけることが できるが、マルチプロセスの観点から、異なるプ ロセスの連続処理(例えば、平坦化プロセスでの 各種、V D とエッチバックプロセス)を実行できる様な内部構造を持つようにしておりができ、図の例では、反応ガスをシャワー状に順射できる上部電桶 5 と、ウェハーを所定の温度に加熱できるとニューを内蔵したド部電極 6 を飼えたチャンパーが各々のプロセスチャンパー内に設置されている

プロセスチャンパー2の上部には、マッチング ボックス7が配置されており、このマッチングギックス7は、発展電源8から発生された高周波(一般には13.75 HHz)を上部電板5に印加する際の インピーダンスマッチンプの機能を果たす。

プロガスチャンパーに対する反応ガスの供給は、 前述の通り、上部電極5の内部を通してチャンパー内に導入されるが、ガスの供給はこれに限定されるものではなく、マッチングボックス7の左端 側から導入することもできる。

いずれにしても、反応ガスの供給にあたっては 、そのための配管が必要であり、その配管類 9 は 一括して支柱に取りつけるが、第 2 図に示した通。 り発展電概8の反対側にバランスを取って機械的 に固定する。第1回においては、簡単のため、発 限電概8とガス系9の対は図示を省略してある。

次に、処理すべき半導体ウェハー10の機送機構 口について説明する。この実施例では、第2図の 上面図を参照して明らかな通り、プロセスチャン パー2の前面側には、カセットエレベータ機構が あり、これは上下方向に延びていて、各チャンパ 一位週までウェハーカセットを機送する。

同じく前面側で、各プロセスチャンパー 2 の前面には、魔送されてきたカセットからウェハーを一枚づつ抜き取り、ゲート12を通ってプロセスチャンパー内にウェハー10をセットし、処理が終了したらプロセスチャンパーからウェハーを取り出して、各段位置に備えられたカセット収納至13へウェハーを収納する動作を行っウェハー移送機構(ロボット)14 が設けられている。

ゲート12は言うまでもなく 殿送機構側とプロセスチャンパー 2 の間にあって、両者を気密に分離することができ、また、ウェハーの導入・導出特

にはゲートが開いて、ウェハーの通道を可能とする。

従って、第1図及び第2回の例では、カセット エレベータ機構目が上下のプロセスチャンパーに またがって垂直の柱状となっており、各プロセス チャンパー位置にて水平方向にウェハー移送機構 (ロボット)とカセット収納室を聞む仕切りがな されており、必要な空間を展少としており、排気 に関する時間の類的を図っている。

なお、図示していないが、カセットエレベータ 11の暖下段にカセットのロードロック機構が備え られており、このロードロック機構を用いてカセ ットを複数人れ、処理済カセ、 は各カセット収 納室から取り出す。

次に、木実施例装置の使用方法について説明す。 5。

カセットエレベータ11の後下段にあるロードロック機構付きカセット収納室に複数のカセットを 設置し、第1図の優下段にて排気と記した箇所よ りカセット提送機構部の排気を行う。各プロセス チャンパーは、各々のポンプ3にて予め所定圧力まで排気しておく。カセット機送機構部での非気が完了したら、カセットエレベータ機構目によって、例えば最上段の位置まで接送し、その位置にで大変は関係を展下段まで下降させ、カセットを取り出し、搬送機構にて、カセットを取り出し、搬送機構にていた。更収納ボックスから次のカセットを取り出し、搬送機構を展下段まで下降させ、カセット収納ボックスから次のカセットを取り出し、搬送機構に、ボックスから次のカセットを取り出し、搬送機構に、ボックスから次のカセットを取り出し、搬送機構に、ボックスから次のカセットを取り出し、光送機構に、ボックスから次のカセットを取り出し、光送機構に、その位置にでロックしておく。

各段位覆のウェハー杉送ロボット14は、当該位置にロックしておかれたカセットからウェハーを一枚づつ取り出し、前述の手順にて、プロセスチャンパー内の下部電積6のとにウェハー10をセットし、所定のプロセスが定了したら、そのウェハーを取り出してカセット収納室13に収納する。この操作をウェハーの数だけ吸り返して各、プロ

セスチャンパーでの処理を完了する。

し記の実施例においては、各カセットのウェハーに対して、同一または異なるプロセスを実行するものであったが、異なるプロセスを順次実行できる様にカセットエレベータを駆使することができる。

なお、上記の実施例では、ボールを設けて各チャンパーを固定した構造としたが、概を上下方向に設けておき、この各棚の中にチャンパー他を設置していくことも可能である。また、各チャンパーは異なる処理ができる様に独立排気としているが、全てのチャンパーにて同一条件での処理を行う場合には、ボンブは一台でよい。

「発明の効果」

以上の通り、本発明では、マルチプロセスチャンパーを縦積みとしてシステムを構成したので、 床面積の縮小化が実現できる。また、ボールまた は概に対してプロセスチャンパーを取りつけてい く縦型のシステムであるので、増設が容易であり

ー、11はカセットエレベータ、12はゲート、13は カセット収納室、14はウェハー移送ロボットであ る。 、また、いずれかのチャン 一の構作をしている 間も他のチャンパーにてプロセスを実行できるし 、装置全体の補作も簡便となし得る利点がある。

勿論、カセットを接送機構内部で移送している 限りは、ウェハー上への腹撲の付着はない。所謂 、スルーザウェールの方式であれば、カセット収 納空13からカセットを取り出し、再度カセット収 納ポックスにセットとして、次のプロセスを実行 する場合では、直埃の付着は左程問題にはならない。

4. 図面の簡単な説明

第1図は本発明の本実施例になる疑型システムの構成を示す新面図であり、第2図は、第1図のシステムの上面図、第3回は従来提案されているマルチプロセスシステムの上面図である。

図中、1 は装置全体の支柱となるボール、2 は プロセスチャンバー2、3 はピンプ3.5 は上部 電板、6 は下部電板6、7 はマッチングボックス 、8 は発振電線、9 はガス平、10 は半導体ウェハ

本発明実施例の擬型汉元4の断面回 第 1 回

本発明実施例システムの上面図 第 2 図

従来システムの上面図 第3図