北京大学数学科学学院期末试题

2013 -2014 学年第 1 学期

考试科目:		高等代数 I		考试时间:		2014	年	1月	3日
姓	名:			**	믁:	· · · · · · · · · · · · · · · · · · ·			
太計	新北6	省大 縣 海分 100	4						

- 1. (8分) 设 $f(x) = x^3 + (1+t)x^2 + 4x + 2u$, $g(x) = x^3 + tx^2 + 2u$ 的最大公 因式 d(x) 是一个二次多项式,求 t, u 的值。
- 2. (18分)(1) 判断整系数多项式 $f(x) = x^4 10x^2 + 1$ 在有理数域 Q 中的可约性,并给出原因。 (2) 令 $V = \{h(x) \in \mathbf{Q}[\mathbf{x}] \mid \mathbf{f}(\mathbf{x}) \mid \mathbf{h}(\mathbf{x})\}$. 计算商空间 $\mathbf{Q}[\mathbf{x}]/\mathbf{V}$ 的基和维数。
- 3. (24 分) 设 $f(x), g(x) \in \mathbf{F}[\mathbf{x}], d(x)$ 和 m(x) 分别是 f(x) 和 g(x) 最大公因 式和最小公倍式. 若 $A \in M_{n \times n}(\mathbf{F})$,令 $W_1 = \{X \in \mathbf{F}^n \mid \mathbf{f}(\mathbf{A})\mathbf{X} = \mathbf{0}\}, W_2 = \{X \in \mathbf{F}^n \mid \mathbf{g}(\mathbf{A})\mathbf{X} = \mathbf{0}\}, W_3 = \{X \in \mathbf{F}^n \mid \mathbf{d}(\mathbf{A})\mathbf{X} = \mathbf{0}\}, W_4 = \{X \in \mathbf{F}^n \mid \mathbf{m}(\mathbf{A})\mathbf{X} = \mathbf{0}\}.$ (1) 证明 $W_3 = W_1 \cap W_2$; (2) 证明 $W_4 = W_1 + W_2$; (3) 给出 $W_4 = W_1 \oplus W_2$ 成立的一个充要条件。
- 4. (1)(10 分) 已知下列两组多项式

$$S_1: 1, x, x^2, \cdots, x^{n-1},$$

$$S_2: \prod_{j\neq 1} (x-a_j), \prod_{j\neq 2} (x-a_j), \cdots, \prod_{j\neq n} (x-a_j) (\stackrel{\omega}{=} i \neq j \exists j, a_i \neq a_j, 1 \leq i, j \leq n),$$

证明 S_2 是线性空间 $\{f(x) \in \mathbb{F}[x] \mid \deg(f(x)) \le n-1\}$ 的基, (2)(10 分) 求第一组基 S_1 到第二组基 S_2 的过渡矩阵; (3)(10 分) 求第二组基 S_2 到第一组基 S_1 的过渡矩阵.

- 5. $(10 \, \mathcal{G})$ 设 $f(x_1, \dots, x_n)$ 是反对称多项式, 即对任意一个 n 元排列 $i_1 i_2 \dots i_n$ 都有 $f(x_{i_1}, \dots, x_{i_n}) = (-1)^{\tau(i_1 i_2 \dots i_n)} f(x_1, \dots, x_n)$. 证明存在对称多项式 $g(x_1, \dots, x_n)$ 满足 $f(x_1, \dots, x_n) = g(x_1, \dots, x_n) \prod_{1 \leq i < j \leq n} (x_i x_j)$.
- 6. (10 分) 设线性子空间 $0 \neq V_i \neq V$ $(i \in \{1, \dots, s\})$ 是线性空间 V 的真子空间。证明 $\bigcup_{i=1}^{s} V_i \neq V$.