HYPERBOLIC FUNCTIONS

SOME SOLVED EXAMPLES:

1. If $\tanh x = \frac{1}{2}$, $find \sinh 2x$ and $\cosh 2x$

Solution: $\tan hx = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{1}{2}$

$$\therefore \frac{e^{2x}-1}{e^{2x}+1} = \frac{1}{2} \quad \therefore 2e^{2x} - 2 = e^{2x} + 1 \quad \therefore e^{2x} = 3$$

Now, $\sin h2x = \frac{e^{2x} - e^{-2x}}{2} = \frac{3 - (1/3)}{2} = \frac{4}{3}$ Now, $\cos h2x = \frac{e^{2x} + e^{-2x}}{2} = \frac{3 + (1/3)}{2} = \frac{5}{3}$

2. Solve the equation $7 \cosh x + 8 \sinh x = 1$ for real values of x.

Solution: $7 \cosh x + 8 \sinh x = 1$

Putting the values of coshx and sin hx, we get

$$\therefore 7\left(\frac{e^x + e^{-x}}{2}\right) + 8\left(\frac{e^x - e^{-x}}{2}\right) = 1$$

$$\therefore 7e^{x} + 7e^{-x} + 8e^{x} - 8e^{-x} = 2$$
 $\therefore 15e^{x} - e^{-x} = 2$

 $15e^{2x} - 2e^x - 1 = 0$ Solving it as a quadratic equation in e^x ,

$$e^x = \frac{2 \pm \sqrt{4 - 4(15)(-1)}}{2(15)} = \frac{2 \pm 8}{30} = \frac{1}{3} \text{ or } -\frac{1}{5}$$

$$\therefore x = \log\left(\frac{1}{2}\right) \text{ or } x = \log\left(-\frac{1}{5}\right)$$

Since x is real,
$$x = log(\frac{1}{3}) = -log 3$$

3. If $sinh^{-1}a + sinh^{-1}b = sinh^{-1}x$ then prove that $x = a\sqrt{1 + b^2} + b\sqrt{1 + a^2}$

Solution: Let $\sin h^{-1} \ a = \alpha$, $\sin h^{-1} \ b = \beta$ and $\sin h^{-1} \ x = \gamma$

We are given $sinh^{-1}a + sinh^{-1}b = sinh^{-1}x$ $\therefore \alpha + \beta = \gamma$

$$\therefore \sinh(\alpha + \beta) = \sinh \gamma$$

$$\therefore \sinh \alpha \cosh \beta + \cosh \alpha \sinh \beta = \sinh \gamma \dots (A)$$

But $\sinh \alpha = a$, $\sinh \beta = b$, $\sinh \gamma = x$

$$\therefore \cos h \ \alpha = \sqrt{1 + \sin h^2 \alpha} = \sqrt{1 + a^2} \quad \text{and} \quad \cos h \ \beta = \sqrt{1 + \sin h^2 \beta} = \sqrt{1 + b^2}$$

Putting this values in (A), we get $a\sqrt{1+b^2}+b\sqrt{1+a^2}=x$

4. Prove that $16 \sinh^5 x = \sinh 5x - 5 \sinh 3x + 10 \sinh x$

Solution: LHS= $16 \sin^5 x$ = $16 \left(\frac{e^x - e^{-x}}{2}\right)^5$ = $\frac{16}{32} (e^{5x} - 5e^{4x}e^{-x} + 10e^{3x}e^{-2x} - 10e^{2x}e^{-3x} + 5e^xe^{-4x} - e^{-5x})$ = $\frac{1}{2} (e^{5x} - 5e^{3x} + 10e^x - 10e^{-x} + 5e^{-3x} - e^{-5x})$ using binomial expansion

$$= \left(\frac{e^{5x} - e^{-5x}}{2}\right) - 5\left(\frac{e^{3x} + e^{-3x}}{2}\right) + 10\left(\frac{e^{x} - e^{-x}}{2}\right)$$
$$= \sinh 5x - 5\sinh 3x + 10\sinh x = RHS$$

5. Prove that $16\cos h^5 x = \cosh 5x + 5\cosh 3x + 10\cosh x$

Solution:
$$l.h.s = 16 \cosh^5 x$$
 $= 16 \left(\frac{e^x + e^{-x}}{2}\right)^5$ [By Binomial Theorem] $= \frac{16}{32} [e^{5x} + 5e^{4x} e^{-x} + 10e^{3x}e^{-2x} + 10e^{2x}e^{-3x} + 5e^x e^{-4x} + e^{-5x}]$ $= \frac{(e^{5x} + e^{-5x})}{2} + 5\frac{(e^{3x} + e^{-3x})}{2} + 10\frac{(e^x + e^{-x})}{2}$ $= \cos h \cdot 5x + 5 \cos h \cdot 3x + 10 \cos h \cdot x = r \cdot h.s$

6. Prove that $\frac{1}{1 - \frac{1}{1 - \frac{1}{1 - \cosh^2 x}}} = \cosh^2 x$

Solution:
$$l.h.s = \frac{1}{1 - \frac{1}{1 - \frac{1}{-\sin h^2 x}}} = \frac{1}{1 - \frac{1}{1 + \cos e c \, h^2 x}} = \frac{1}{1 - \frac{1}{\cot h^2 x}} = \frac{1}{1 - \tan h^2 x}$$
$$= \frac{1}{1 - \frac{\sin h^2 x}{\cos h^2 x}} = \frac{\cos h^2 x}{\cos h^2 x - \sin h^2 x} = \cos h^2 x$$

- 7. If $u = \log \tan \left(\frac{\pi}{4} + \frac{\theta}{2}\right)$, Prove that
 - (i) $\cosh u = \sec \theta$
- (ii) $\sinh u = \tan \theta$
- (iii) $\tanh u = \sin \theta$

(iv)
$$\tanh \frac{u}{2} = \tan \frac{\theta}{2}$$

Solution: (i)
$$u = \log \tan \left(\frac{\pi}{4} + \frac{\theta}{2}\right)$$

$$\therefore e^{u} = \tan \left(\frac{\pi}{4} + \frac{\theta}{2}\right) = \frac{1 + \tan \theta / 2}{1 - \tan \theta / 2}$$

$$\therefore e^{-u} = \frac{1 - \tan \theta / 2}{1 + \tan \theta / 2}$$

$$\therefore \cosh u = \frac{e^{u} + e^{-u}}{2}$$

$$= \frac{1}{2} \left[\frac{(1+2\tan\theta/2+\tan^2\theta/2)+(1-2\tan\theta/2+\tan^2\theta/2)}{1-\tan^2\theta/2} \right]$$

$$= \frac{1}{2} \left(\frac{2+2\tan^2\theta/2}{1-\tan^2\theta/2} \right) \qquad = \frac{1+\tan^2\theta/2}{1-\tan^2\theta/2} = \frac{1}{\cos\theta} = \sec\theta$$

(ii)
$$\sinh u = \sqrt{\cosh^2 u - 1} = \sqrt{\sec^2 \theta - 1} = \sqrt{\tan^2 \theta} = \tan \theta$$

(iii)
$$\tanh u = \frac{\sinh u}{\cosh u} = \frac{\tan \theta}{\sec \theta} = \frac{\frac{\sin \theta}{\cos \theta}}{\frac{1}{\cos \theta}} = \sin \theta$$

(iv)
$$\tan h\left(\frac{u}{2}\right) = \frac{\sin h(u/2)}{\cos h(u/2)} = \frac{2\sin h(u/2).\cos h(u/2)}{2\cos h(u/2)\cos h(u/2)} = \frac{\sin hu}{1+\cos hu} = \frac{\tan \theta}{1+\sec \theta}$$
(By (i) and (ii))

8. If $\cosh x = \sec \theta$, Prove that

(i)
$$x = \log(\sec \theta + \tan \theta)$$
 (ii) $\theta = \frac{\pi}{2} - 2\tan^{-1}(e^{-x})$ (iii) $\tanh \frac{x}{2} = \tan \frac{\theta}{2}$

Solution: (i) $\cosh x = \sec \theta$

$$\therefore \frac{e^x + e^{-x}}{2} = \sec \theta$$
 By definition $\cos hx = \frac{e^x + e^{-x}}{2}$

$$e^x - 2\sec\theta + e^{-x} = 0$$
 $(e^x)^2 - 2e^x\sec\theta + 1 = 0$

Solving the quadratic in e^x ,

$$e^x = sec\theta \pm \sqrt{sec^2\theta - 1} = sec\theta \pm tan\theta$$

$$\therefore x = \log(\sec\theta \pm \tan\theta) = \pm \log(\sec\theta + \tan\theta)$$

(we can prove that $log(\sec \theta - \tan \theta) = -log(\sec \theta + \tan \theta)$)

(ii) Let
$$tan^{-1}e^{-x} = \alpha$$
 $\therefore e^{-x} = \tan \alpha$ $\therefore e^x = \cot \alpha$

Now, by data
$$\sec \theta = \cos hx = \frac{e^x + e^{-x}}{2} = \frac{\cot \alpha + \tan \alpha}{2}$$

$$2 \sec \theta = \cot \alpha + \tan \alpha = \frac{\cos \alpha}{\sin \alpha} + \frac{\sin \alpha}{\cos \alpha} = \frac{2}{\sin 2\alpha}$$

$$\therefore \cos\theta = \sin 2\alpha = \cos\left(\frac{\pi}{2} - 2\alpha\right)$$

$$\therefore \theta = \frac{\pi}{2} - 2\alpha = \frac{\pi}{2} - 2tan^{-1}(e^{-x})$$

(iii)
$$\tan h \frac{x}{2} = \frac{e^{x/2} - e^{-x/2}}{e^{x/2} + e^{-x/2}} = \frac{e^{x} - 1}{e^{x} + 1} = \frac{\sec \theta + \tan \theta - 1}{\sec \theta + \tan \theta + 1} = \frac{1 + \sin \theta - \cos \theta}{1 + \sin \theta + \cos \theta}$$

$$= \frac{(1 - \cos \theta) + \sin \theta}{(1 + \cos \theta) + \sin \theta} = \frac{2\sin^{2}(\theta/2) + 2\sin(\theta/2)\cos(\theta/2)}{2\cos^{2}(\theta/2) + 2\sin(\theta/2)\cos(\theta/2)} = \frac{\sin(\theta/2)}{\cos(\theta/2)} = \tan \frac{\theta}{2}$$

SOME PRACTICE PROBLEMS

- **1.** If $\tanh x = 2/3$, find the value of x and then $\cosh 2x$.
- **2.** Solve the equation for real values of x, $17 \cosh x + 18 \sinh x = 1$.
- **3.** If $6 \sinh x + 2 \cosh x + 7 = 0$, find $\tanh x$.
- **4.** If $cosh^{-1}a + cosh^{-1}b = cosh^{-1}x$, then prove that $a\sqrt{b^2 1} + b\sqrt{a^2 1} = \sqrt{x^2 1}$.
- 5. If $cosh^6x = a cosh 6x + b cosh 4x + c cosh 2x + d$, Prove that 25a 5b + 3c 4d = 0

- Prove that $\cosh^7 x = \frac{1}{64} [\cosh 7x + 7 \cosh 5x + 21 \cosh 3x + 35 \cosh x]$ 6.
- If $\cos \alpha \cosh \beta = x/2$, $\sin \alpha \sinh \beta = y/2$, show that 7.
 - $\sec(\alpha i\beta) + \sec(\alpha + i\beta) = \frac{4x}{x^2 + y^2}$
 - (ii) $\sec(\alpha i\beta) \sec(\alpha + i\beta) = \frac{-4iy}{x^2 + y^2}$
- Prove that $cosech x + coth x = coth \frac{x}{2}$ 8.
- Prove that $(\cosh x + \sinh x)^n = \cosh nx + \sinh nx$
- Prove that $\left(\frac{\cosh x + \sinh x}{\cosh x \sinh x}\right)^n = \cosh 2nx + \sinh 2nx$
- If $\log \tan x = y$, prove that $\cosh ny = \frac{1}{2} [tan^n x + cot^n x]$ and sinh(n + 1)y + sinh(n - 1)y = 2 sinh ny cosec 2x
- **12.** Prove that $\frac{1}{1 \frac{1}{1 \frac{1}{1 + (1 + b^2)^2}}} = -\sinh^2 x$
- If $\cosh u = \sec \theta$, prove that **13**.
 - $sinh u = tan \theta$ (i)
- (ii) $tanh u = sin \theta$
- (iii) $u = \log \left[\tan \left(\frac{\pi}{4} + \frac{\theta}{2} \right) \right]$

ANSWERS

- 1. $\frac{1}{2}\log 5$, $\frac{13}{5}$
- 2. $x = -\log 5$ 3. $\frac{3}{5}$, $\frac{-15}{17}$