Systemy operacyjne 2016

Lista zadań nr 9

Na zajęcia?

Należy przygotować się do zajęć czytając następujące rozdziały książek:

- Stallings (wydanie siódme): 12
- Tanenbaum (wydanie czwarte): 4.1 4.5

UWAGA! W trakcie prezentacji rozwiązań należy zdefiniować i wyjaśnić pojęcia, które zostały oznaczone **wytłuszczoną** czcionką.

FreeBSD: Połączenia między strukturami jądra przechowującymi vnode. D – bufor brudny, C – bufor czysty.

FreeBSD: Struktura do buforowania bloków.

V – numer vnode, X – pozycja względem początku pliku.

Zadanie 1. Podaj wywołania systemowe jądra *Linux* służące do operowania na **plikach**. Jakie **atrybuty** mogą być skojarzone z plikiem¹? Opisz różnicę w rozumieniu pojęcia **typu pliku** przez system operacyjny i użytkownika. Jak rozwiązano dostęp do konfiguracji i funkcjonalności specyficznej dla urządzenia – np. zmiany rozdzielczości ekranu, wysunięcia tacki napędu optycznego?

Zadanie 2. Opisz pobieżnie następujące metody przydziału przestrzeni dyskowej dla pliku: **ciągła**, **listowa**, **indeksowana**, **i-węzeł**. Jakie struktury danych są wykorzystywane do:

- dostępu do wybranych fragmentów pliku?
- przechowywania informacji o wolnych obszarach?

Jaki jest narzut pamięciowy utrzymywania tych struktur? Podaj górne ograniczenie na ilość operacji dyskowych wymaganych do wczytania dowolnego bloku dysku.

Zadanie 3. Rozważmy struktury danych używane przez metody przydziału z poprzedniego zadania. Jakie są konsekwencje ich częściowego uszkodzenia? Jakie błędy można naprawić i w jaki sposób? Na czym polega **defragmentacja** przestrzeni dyskowej? Opisz techniki zapobiegania fragmentacji – tj. stosowanie obszarów (ang. *extent*) i odroczone przydzielanie bloków (ang. *delayed allocation*).

Zadanie 4. Rozważamy hierarchiczną strukturę **katalogów** – czym różni się **ścieżka absolutna**, **relatywna** i **znormalizowana**? Podaj wywołania systemowe jądra *Linux* służące do operowania na katalogach. Wymień **atrybuty**, które mogą być powiązane z katalogiem. Jak implementowane są **dowiązania twarde** (ang. *hard link*), a jak **dowiązania symboliczne** (ang. *soft link*)?

Zadanie 5. W jaki sposób system plików z i-węzłami przechowuje katalogi? Jak przechowywać długie nazwy plików, aby nie marnotrawić miejsca na dysku? Zaproponuj dyskową strukturę danych do przechowywania dużych katalogów (kilkadziesiąt tysięcy plików). Chcemy z użyciem minimalnej ilości dostępów do dysku:

- pobrać i-węzeł pliku z danego katalogu,
- usunąć wpis z katalogu.

Wskazówka: Pomyśl o hybrydowej strukturze danych posiadającej cechy B-drzewa i tablicy mieszającej.

Zadanie 6. W jakim celu nowoczesne systemy operacyjne implementują interfejs **wirtualnego systemu plików**? Wyjaśnij znaczenie struktury vnode w systemie *FreeBSD*. Proces chce zmodyfikować zawartość pliku o zadanym numerze **deskryptora** – jak system operacyjny ma znaleźć funkcję, która wykonuje to zadanie? Rozważmy **punkt montażowy** systemu plików na przenośnym dysku *USB*. Co się stanie, jeśli użytkownik usunie fizycznie urządzenie z zamontowanym systemem plików?

Zadanie 7. Na podstawie rysunku z poprzedniej strony opowiedz jak można zorganizować **pamięć podręczną dla bloków** (ang. *block cache*). Chcemy szybko dowiadywać się czy dany fragment pliku jest w pamięci operacyjnej. Jednocześnie w jakimś wątku jądra chcemy uspójniać brudne bufory z pamięcią drugorzędną. Kiedy leniwe zapisywanie zawartości brudnych buforów jest niebezpieczne?

Zadanie 8. Opisz uniksowy system kontroli dostępu do plików. Czemu każdy plik ma właściciela i grupę? Podaj znaczenie bitów rwx dla plików i katalogów. Opisz znaczenie dodatkowych bitów uprawnień: set-uid, set-gid, sticky. Przedstaw algorytm sprawdzania uprawnień dostępu do określonej ścieżki pliku przez zadanego użytkownika. Podaj przykład, w którym standardowy system kontroli dostępu jest zbyt ograniczony i należy użyć ACL (ang. access control list).

¹Zajrzyj do podręcznika systemowego stat(2), chattr(1) i xattr(7).

Zadanie 9. Wymień kroki niezbędne do realizacji poniższych operacji i wyjaśnij jak awaria zasilania może przyczynić się do naruszenia **spójności** struktur systemu plików lub zawartości plików.

- 1. Usunięcie pliku z katalogu.
- 2. Dopisanie kilku bloków na koniec otwartego pliku.

Pokaż jak wykorzystać **księgowanie** do zapobiegania awariom systemu plików. Czym różni się **księgowanie metadanych** od **księgowania danych**? Dlaczego operacje składowane w **dzienniku** muszą być **idempotentne**?

Zadanie 10 (bonus). Księgowanie nie chroni przed usterkami sprzętowymi oraz ludzką głupotą – w tym celu korzystamy z **kopii zapasowych**. Jakie są różnice między **kopią pełną**, **przyrostową** i **różnicową**? Jaki wcześniej poznany mechanizm jest używany do tworzenia **migawek**? Czy mogą one pełnić rolę kopii zapasowych? Gdzie wykorzystuje się **wersjonujące systemy plików**?

Zadanie 11 (bonus). Opisz i porównaj funkcje systemu *Linux* do **blokowania plików** i **rekordów** – odpowiednio flock(2) i fcntl(2). Czy systemy uniksowe implementują **blokady obowiązkowe** (ang. *mandatory locks*) czy **doradcze** (ang. *advisory locks*)? Zaproponuj strukturę danych do przechowywania informacji o blokadach rekordów.