응용계량경제학 7주차 과제 201547130 윤요섭

- 1. 다음 용어를 설명하시오.
- 1.1.신뢰수준과 유의수준 1.2 1종오류 1.3.자유도 1.4.임계값 1.5.양측검정과 단측검정 1.7 p값
- 1.1 신뢰수준: 모수 β_2 를 추정하기 위해 구간을 설정하고 어느 범위 구간안에서 모수 β_2 값이 존재할 확률을 제시하는데, 이 때 어느 범위 구간 $(1-\alpha)$ 를 신뢰수준이라고 하며, 이 때 검 정의 유의수준 α 는 실제로 참인 귀무가설을 기각할 확률이다.
- 1.2 1종 오류: 귀무가설이 참인데, 이를 기각하는 오류를 제 1종 오류라고 한다.
- 1.3 자유도: 단일 모수로써, t-부포 모양을 통제한다.
- 1.4 임계값: 자유도에 대해 백분위 값이다.
- 1.5 양측검정과 단측검정: 귀무가설이 있을 때, 대립가설을 설정하는 방식의 차이이다. 가령 귀무가 설 $H_0: \beta_k = C$ 일 때, $H_0: \beta_k > \text{or} < C$ 로 대립가설을 설정하는 경우가 단측검정이고, $H_0: \beta_k \neq C$ 로 대립가설을 설정하는 경우가 양측검정이다.
- 2. 다음과 같이 10개 가구의 연간 가구소득과 소비지출액이 있다. 6주차 과제 문제풀이와 함께 다음 질문에 답하시오.
- 2.1 한계소비성향 β_2 가 O이라고 주장하는 이가 있다. 이에 대한 가설의 진위여부를 검정하시오(교과서 111쪽 참고). 단 유의수준 α 는 O.O5이다.
- $H_0: \beta_2=0,\ H_1: \beta_2
 eq 0$ 을 설정하고, $t_c \le t$ 혹은 $t \le -t_c$ 일 때, 귀무가설을 기각하고 대립가설을 채택한다. 이 때, t는 18.451845이고, t_c 는 2.306이므로, 한계소비성향 β_2 가 이이라는 주장은 옳지 않다.
- 2.2. 한계소비성향 β_2 가 0.2이라고 주장하는 이가 있다. 이에 대한 가설의 진위여부를 검정하시 $2(\Box A)$ 110쪽 참고) 단, 유의수준 α 는 0.05이다.
- $H_0: \beta_2 = 0.2$, $H_1: \beta_2 \neq 0.2$ 을 설정하고, $t_c \leq t$ 혹은 $t \leq -t_c$ 일 때, 귀무가설을 기각해야 한다. 이 때, t는 0.45004이고, t_c 는 2.306이기 때문에 귀무가설을 기각할 수 없다. 따라서, 95% 신뢰수준으로 한계소비성향 β_2 가 0.2이라는 주장은 옳다고 할 수 있다.
- 2.3. 한계소비성향 β_2 가 0.3보다 크거나 같다고 주장하는 이가 있다. 이에 대한 가설의 진위여부를 검정하시오(교과서 109-110쪽 참고) 단, 유의수준 α 는 0.01이다.

 $H_0: \beta_2 \geq 0.3, \ H_1: \beta_2 < 0.3$ 을 설정하고, $-t_c \geq t$ 일 때, 귀무가설을 기각하고 대립가설을 채택한다. 이 때, t는 -0.85508이고, $-t_c$ 는 -3.355이기 때문에 귀무가설을 기각할 수 없다. 따라서, 99% 신뢰수준으로 한계소비성향 β_2 가 0.3보다 크거나 같다는 주장은 옳다고 할 수 있다.

개인구분(i) 소득 $(x_i, 만원)$ 소비지출액 $(y_i, 만원)$

1.	1000	500
2.	2000	700
3	3000	1000
4	4000	1200

5	5000	1400
6	1000	600
7	2000	800
8	3000	1000
9	4000	1100
10	5000	1350

3. 다음과 같이 sas 소프트웨어를 이용하여 표본회귀식을 추정하였다. 관측치 수 52가구, 유의수 준은 0.01을 기준으로 하자. 이때 표본회귀식은 $\hat{y_i} = b_1 + b_2 * x_i$,이다.

	계수	표준오차 $se(b_i)$	t값	p값
b_1	96.12	40.0	2.403	0.01
b_2	(A)	0.20	2,678	0,0005

3.1 A 값을 구하시오.

$$t = \frac{b_2 - C}{0.20} = 2.678$$
이므로 A는 $0.5356 + C$ 라고 할 수 있다.

- 3.2 A 값이 한계소비성향이라고 하자.
- 이 한계소비성향 β_2 가 O이라고 주장하는 이가 있다. 이 주장이 옳은지 여부를 검정하시오. 단 유 의수준 α 는 O.O1이다. p값과 상관없이 유의수준(α)에 따른 임계치 t_c 와 t값을 비교해서 가설검 정을 하시오.

 $H_0: \beta_2=0,\ H_1: \beta_2 \neq 0$ 을 설정했을 때, A는 0.5356라고 할 수 있다. $t_c \leq t$ 혹은 $t \leq -t_c$ 일 때, 귀무가설을 기각하고 대립가설을 채택한다. t_c 는 2.678이고 t는 2.678이므로, 귀무가설을 기각하고 대립가설을 채택한다.

3.2 한계소비성향이 O이 아닐 확률은 얼마나 될까? t값에 대응되는 p-값(p-value)을 이용하여 설명하시오.

$$p = P[t_{(0.995,\,50)} \geq 2.678] \, + P[t_{(0.005,\,50)} \leq -\,2.678] \, = \,0.0005$$
 이므로

p-값은 0.0005이고, 유의수준은 0.01이므로 p값이 유의수준보다 작다고 할 수 있다.

이 때, 양측검정에 대한 p-값은 2.678의 오른쪽에 대한 확률과 -2.678의 왼쪽에 대한 확률을 합한 것으로 한계소비성향이 O이 아닐 확률은 O.O5%라고 할 수 있다.