Generated on 2016-10-09 23:51:10 by gEcon version 1.0.0 (2016-10-09) Model name: tc_rs_templ

Index sets

$$COUNTRY = \{F, H\}$$

1 CONSUMER $c \in COUNTRY$

1.1 Optimisation problem

$$\max_{K_t^{\langle c \rangle}, C_t^{\langle c \rangle}, H_t^{\langle c \rangle}, I_t^{\langle c \rangle}} U_t^{\langle c \rangle} = \beta \mathcal{E}_t \left[U_{t+1}^{\langle c \rangle} \right] + (1 - \eta)^{-1} \left(C_t^{\langle c \rangle^{\mu}} \left(1 - H_t^{\langle c \rangle} \right)^{1 - \mu} \right)^{1 - \eta}$$

$$(1.1)$$

s.t.

$$C_t^{\langle c \rangle} + I_t^{\langle c \rangle} + T_t^{\langle c \rangle} = \pi_t^{\langle c \rangle} + TR_t^{\langle c \rangle} + K_{t-1}^{\langle c \rangle} r_t^{\langle c \rangle} + H_t^{\langle c \rangle} W_t^{\langle c \rangle} - \psi^{\langle c \rangle} K_{t-1}^{\langle c \rangle} \left(-\delta^{\langle c \rangle} + K_{t-1}^{\langle c \rangle} I_t^{\langle c \rangle} \right)^2 \quad \left(\lambda^{c}_t^{\langle c \rangle} \right)$$

$$(1.2)$$

$$K_t^{\langle c \rangle} = I_t^{\langle c \rangle} + K_{t-1}^{\langle c \rangle} \left(1 - \delta^{\langle c \rangle} \right) \quad \left(\lambda^{\text{CONSUMER}^2 \langle c \rangle} \atop t \right)$$
 (1.3)

1.2 First order conditions

$$-\lambda^{\text{CONSUMER}^{2} \langle c \rangle}_{t} + \beta \left(\left(1 - \delta^{\langle c \rangle} \right) E_{t} \left[\lambda^{\text{CONSUMER}^{2} \langle c \rangle}_{t+1} \right] + E_{t} \left[\lambda^{c \langle c \rangle}_{t+1} \left(r_{t+1}^{\langle c \rangle} - \psi^{\langle c \rangle} \left(-\delta^{\langle c \rangle} + K_{t}^{\langle c \rangle^{-1}} I_{t+1}^{\langle c \rangle} \right)^{2} + 2\psi^{\langle c \rangle} K_{t}^{\langle c \rangle^{-1}} I_{t+1}^{\langle c \rangle} \left(-\delta^{\langle c \rangle} + K_{t}^{\langle c \rangle^{-1}} I_{t+1}^{\langle c \rangle} \right) \right] \right) = 0 \quad \left(K_{t}^{\langle c \rangle} \right)$$

$$(1.4)$$

$$-\lambda_{t}^{c\langle c\rangle} + \mu C_{t}^{\langle c\rangle^{-1+\mu}} \left(1 - H_{t}^{\langle c\rangle} \right)^{1-\mu} \left(C_{t}^{\langle c\rangle^{\mu}} \left(1 - H_{t}^{\langle c\rangle} \right)^{1-\mu} \right)^{-\eta} = 0 \quad \left(C_{t}^{\langle c\rangle} \right)$$

$$(1.5)$$

$$\lambda_{t}^{c\langle c\rangle}W_{t}^{\langle c\rangle} + \left(-1 + \mu\right)C_{t}^{\langle c\rangle^{\mu}}\left(1 - H_{t}^{\langle c\rangle}\right)^{-\mu}\left(C_{t}^{\langle c\rangle^{\mu}}\left(1 - H_{t}^{\langle c\rangle}\right)^{1 - \mu}\right)^{-\eta} = 0 \quad \left(H_{t}^{\langle c\rangle}\right) \tag{1.6}$$

$$\lambda^{\text{CONSUMER}^{2} \langle c \rangle}_{t} + \lambda^{c \langle c \rangle}_{t} \left(-1 - 2\psi^{\langle c \rangle} \left(-\delta^{\langle c \rangle} + K_{t-1}^{\langle c \rangle} I_{t}^{\langle c \rangle} \right) \right) = 0 \quad \left(I_{t}^{\langle c \rangle} \right)$$

$$(1.7)$$

2 FIRM $c \in COUNTRY$

2.1 Optimisation problem

$$\max_{K^{\mathbf{d}_{t}^{\langle c \rangle}}, H^{\mathbf{d}_{t}^{\langle c \rangle}}, Y_{t}^{\langle c \rangle}, \pi_{t}^{\langle c \rangle}} \Pi_{t}^{\langle c \rangle} = \pi_{t}^{\langle c \rangle} \tag{2.1}$$

s.t.

$$Y_{t}^{\langle c \rangle} = Z_{t}^{\langle c \rangle} H_{t}^{\mathrm{d} \langle c \rangle^{1 - \alpha^{\langle c \rangle}}} K_{t}^{\mathrm{d} \langle c \rangle^{\alpha^{\langle c \rangle}}} \quad \left(\lambda^{\mathrm{FIRM}^{1} \langle c \rangle} \right)$$
 (2.2)

$$\pi_t^{\langle c \rangle} = Y_t^{\langle c \rangle} - H_t^{\mathrm{d}\langle c \rangle} W_t^{\langle c \rangle} - r_t^{\langle c \rangle} K_t^{\mathrm{d}\langle c \rangle} \quad \left(\lambda^{\mathrm{FIRM}^2} {}^{\langle c \rangle} \right)$$
 (2.3)

2.2 First order conditions

$$-\lambda^{\text{FIRM}^{2} \langle c \rangle}_{t} r_{t}^{\langle c \rangle} + \alpha^{\langle c \rangle} \lambda^{\text{FIRM}^{1} \langle c \rangle}_{t} Z_{t}^{\langle c \rangle} H_{t}^{d \langle c \rangle^{1 - \alpha^{\langle c \rangle}}} K_{t}^{d \langle c \rangle^{-1 + \alpha^{\langle c \rangle}}} = 0 \quad \left(K_{t}^{d \langle c \rangle} \right)$$

$$(2.4)$$

$$-\lambda^{\text{FIRM}^{2}}{}^{\langle c \rangle}_{t}W_{t}^{\langle c \rangle} + \lambda^{\text{FIRM}^{1}}{}^{\langle c \rangle}_{t}Z_{t}^{\langle c \rangle}\left(1 - \alpha^{\langle c \rangle}\right)H_{t}^{d\langle c \rangle^{-\alpha^{\langle c \rangle}}}K_{t}^{d\langle c \rangle^{\alpha^{\langle c \rangle}}} = 0 \quad \left(H_{t}^{d\langle c \rangle}\right)$$

$$(2.5)$$

$$-\lambda^{\text{FIRM}_{t}^{1\langle c\rangle}} + \lambda^{\text{FIRM}_{t}^{2\langle c\rangle}} = 0 \quad \left(Y_{t}^{\langle c\rangle}\right) \tag{2.6}$$

$$1 - \lambda^{\text{FIRM}^2 \langle c \rangle}_{t} = 0 \quad \left(\pi_t^{\langle c \rangle} \right) \tag{2.7}$$

2.3 First order conditions after reduction

$$-r_t^{\langle c \rangle} + \alpha^{\langle c \rangle} Z_t^{\langle c \rangle} H_t^{\mathbf{d}_t^{\langle c \rangle} 1 - \alpha^{\langle c \rangle}} K_t^{\mathbf{d}_t^{\langle c \rangle} - 1 + \alpha^{\langle c \rangle}} = 0 \quad \left(K_t^{\mathbf{d}_t^{\langle c \rangle}} \right)$$

$$(2.8)$$

$$-W_t^{\langle c \rangle} + Z_t^{\langle c \rangle} \left(1 - \alpha^{\langle c \rangle} \right) H_t^{\mathrm{d}\langle c \rangle} K_t^{\mathrm{d}\langle c \rangle} = 0 \quad \left(H_t^{\mathrm{d}\langle c \rangle} \right)$$

$$(2.9)$$

3 EQUILIBRIUM

3.1 Identities

$$\sum_{c \in COUNTRY} TR_t^{\langle c \rangle} = 0 \tag{3.1}$$

 \sim

$$c \in COUNTRY: \quad K_t^{\operatorname{d}\langle c \rangle} = K_{t-1}^{\langle c \rangle}$$
 (3.2)

$$c \in COUNTRY: \quad H_t^{\mathrm{d}\langle c \rangle} = H_t^{\langle c \rangle}$$
 (3.3)

$$c \in COUNTRY: \quad T_t^{\langle c \rangle} = G_t^{\langle c \rangle}$$

$$(3.4)$$

$$\lambda_{t}^{c\langle H \rangle} = \lambda_{t}^{c\langle F \rangle} \tag{3.5}$$

4 EXOG

4.1 Identities

$$c \in COUNTRY: \quad G_t^{\mathrm{d}\langle c \rangle} = \epsilon_t^{\mathrm{G}\langle c \rangle} + \phi_t^{\mathrm{G}\langle c \rangle} G_{t-1}^{\mathrm{d}\langle c \rangle}$$

$$\tag{4.1}$$

$$c \in COUNTRY: \quad Z_t^{\langle c \rangle} = e^{\epsilon^{\mathbf{Z}_t^{\langle c \rangle}} + \phi^{\mathbf{Z}_t^{\langle c \rangle}} \log Z_{t-1}^{\langle c \rangle}}$$

$$(4.2)$$

$^{\circ}$ 5 Equilibrium relationships (before expansion and reduction)

$$-\sum_{c \in COUNTRY} TR_t^{\langle c \rangle} = 0 \tag{5.1}$$

$$\lambda_{t}^{c\langle F \rangle} - \lambda_{t}^{c\langle H \rangle} = 0 \tag{5.2}$$

$$c \in COUNTRY: \quad K_{t-1}^{\langle c \rangle} - K_{t}^{d \langle c \rangle} = 0$$
 (5.3)

$$c \in COUNTRY: -\lambda^{CONSUMER^{2} \langle c \rangle}_{t} + \beta \left(\left(1 - \delta^{\langle c \rangle} \right) E_{t} \left[\lambda^{CONSUMER^{2} \langle c \rangle}_{t+1} \right] + E_{t} \left[\lambda^{c \langle c \rangle}_{t+1} \left(r_{t+1}^{\langle c \rangle} - \psi^{\langle c \rangle} \left(-\delta^{\langle c \rangle} + K_{t}^{\langle c \rangle}^{-1} I_{t+1}^{\langle c \rangle} \right)^{2} + 2\psi^{\langle c \rangle} K_{t}^{\langle c \rangle}^{-1} I_{t+1}^{\langle c \rangle} \left(-\delta^{\langle c \rangle} + K_{t}^{\langle c \rangle}^{-1} I_{t+1}^{\langle c \rangle} \right) \right) \right] \right) = 0$$

$$(5.4)$$

$$c \in COUNTRY: \quad \lambda^{CONSUMER^{2 \langle c \rangle}}_{t} + \lambda^{c \langle c \rangle}_{t} \left(-1 - 2\psi^{\langle c \rangle} \left(-\delta^{\langle c \rangle} + K_{t-1}^{\langle c \rangle}^{-1} I_{t}^{\langle c \rangle} \right) \right) = 0$$

$$(5.5)$$

$$c \in COUNTRY: \quad -\lambda_t^{\langle c \rangle} + \mu C_t^{\langle c \rangle^{-1+\mu}} \left(1 - H_t^{\langle c \rangle} \right)^{1-\mu} \left(C_t^{\langle c \rangle^{\mu}} \left(1 - H_t^{\langle c \rangle} \right)^{1-\mu} \right)^{-\eta} = 0$$
 (5.6)

$$c \in COUNTRY: \quad -\pi_t^{\langle c \rangle} + \Pi_t^{\langle c \rangle} = 0$$
 (5.7)

$$c \in COUNTRY: \quad -r_t^{\langle c \rangle} + \alpha^{\langle c \rangle} Z_t^{\langle c \rangle} H_t^{\mathbf{d}_t^{\langle c \rangle} 1 - \alpha^{\langle c \rangle}} K_t^{\mathbf{d}_t^{\langle c \rangle} - 1 + \alpha^{\langle c \rangle}} = 0$$
 (5.8)

$$c \in COUNTRY: \quad G_t^{\langle c \rangle} - T_t^{\langle c \rangle} = 0$$
 (5.9)

$$c \in COUNTRY: \quad H_t^{\langle c \rangle} - H_t^{\langle c \rangle} = 0$$
 (5.10)

$$c \in COUNTRY: \quad -W_t^{\langle c \rangle} + Z_t^{\langle c \rangle} \left(1 - \alpha^{\langle c \rangle} \right) H_t^{\mathrm{d}\langle c \rangle - \alpha^{\langle c \rangle}} K_t^{\mathrm{d}\langle c \rangle} = 0 \tag{5.11}$$

$$c \in C\!O\!U\!N\!T\!R\!Y\!: \quad -Y_t^{\langle c \rangle} + Z_t^{\langle c \rangle} H_t^{\mathrm{d}\langle c \rangle^{1-\alpha^{\langle c \rangle}}} K_t^{\mathrm{d}\langle c \rangle^{\alpha^{\langle c \rangle}}} = 0 \tag{5.12}$$

$$c \in COUNTRY: \quad -Z_t^{\langle c \rangle} + e^{\epsilon^{\mathbf{Z}_t^{\langle c \rangle}} + \phi^{\mathbf{Z}_t^{\langle c \rangle}} \log Z_{t-1}^{\langle c \rangle}} = 0$$

$$(5.13)$$

$$c \in COUNTRY: \quad \lambda_t^{c\langle c \rangle} W_t^{\langle c \rangle} + (-1 + \mu) C_t^{\langle c \rangle^{\mu}} \left(1 - H_t^{\langle c \rangle} \right)^{-\mu} \left(C_t^{\langle c \rangle^{\mu}} \left(1 - H_t^{\langle c \rangle} \right)^{1 - \mu} \right)^{-\eta} = 0$$

$$(5.14)$$

$$c \in COUNTRY: \quad \epsilon_{t}^{G\langle c \rangle} - G_{t}^{d\langle c \rangle} + \phi_{t}^{G\langle c \rangle} G_{t-1}^{d\langle c \rangle} = 0$$

$$(5.15)$$

$$c \in COUNTRY: \quad I_t^{\langle c \rangle} - K_t^{\langle c \rangle} + K_{t-1}^{\langle c \rangle} \left(1 - \delta^{\langle c \rangle} \right) = 0 \tag{5.16}$$

$$c \in COUNTRY: \quad U_t^{\langle c \rangle} - \beta \mathcal{E}_t \left[U_{t+1}^{\langle c \rangle} \right] - (1 - \eta)^{-1} \left(C_t^{\langle c \rangle^{\mu}} \left(1 - H_t^{\langle c \rangle} \right)^{1 - \mu} \right)^{1 - \eta} = 0$$

$$(5.17)$$

$$c \in COUNTRY: \quad -\pi_t^{\langle c \rangle} + Y_t^{\langle c \rangle} - r_t^{\langle c \rangle} K_t^{\mathrm{d}\langle c \rangle} - H_t^{\mathrm{d}\langle c \rangle} W_t^{\langle c \rangle} = 0 \tag{5.18}$$

$$c \in COUNTRY: \quad \pi_t^{\langle c \rangle} - C_t^{\langle c \rangle} - I_t^{\langle c \rangle} - I_t^{\langle c \rangle} + TR_t^{\langle c \rangle} + K_{t-1}^{\langle c \rangle} r_t^{\langle c \rangle} + H_t^{\langle c \rangle} W_t^{\langle c \rangle} - \psi^{\langle c \rangle} K_{t-1}^{\langle c \rangle} \left(-\delta^{\langle c \rangle} + K_{t-1}^{\langle c \rangle} I_t^{\langle c \rangle} \right)^2 = 0 \tag{5.19}$$

#

6 Equilibrium relationships (after expansion and reduction)

$$-\lambda_{t}^{c\langle F \rangle} + \mu C_{t}^{\langle F \rangle^{-1+\mu}} \left(1 - H_{t}^{\langle F \rangle} \right)^{1-\mu} \left(C_{t}^{\langle F \rangle^{\mu}} \left(1 - H_{t}^{\langle F \rangle} \right)^{1-\mu} \right)^{-\eta} = 0$$

$$(6.1)$$

$$\lambda_{t}^{c\langle F \rangle} - \lambda_{t}^{c\langle H \rangle} = 0 \tag{6.2}$$

$$-\lambda_{t}^{c\langle H \rangle} + \mu C_{t}^{\langle H \rangle^{-1+\mu}} \left(1 - H_{t}^{\langle H \rangle} \right)^{1-\mu} \left(C_{t}^{\langle H \rangle^{\mu}} \left(1 - H_{t}^{\langle H \rangle} \right)^{1-\mu} \right)^{-\eta} = 0$$

$$(6.3)$$

$$-r_t^{\langle F \rangle} + \alpha^{\langle F \rangle} Z_t^{\langle F \rangle} K_{t-1}^{\langle F \rangle} H_t^{\langle F \rangle^{1-\alpha^{\langle F \rangle}}} = 0$$

$$(6.4)$$

$$-r_t^{\langle H \rangle} + \alpha^{\langle H \rangle} Z_t^{\langle H \rangle} K_{t-1}^{\langle H \rangle}^{-1 + \alpha^{\langle H \rangle}} H_t^{\langle H \rangle}^{1 - \alpha^{\langle H \rangle}} = 0$$

$$(6.5)$$

$$-W_t^{\langle F \rangle} + Z_t^{\langle F \rangle} \left(1 - \alpha^{\langle F \rangle} \right) K_{t-1}^{\langle F \rangle} \alpha^{\langle F \rangle} H_t^{\langle F \rangle} = 0 \tag{6.6}$$

$$-W_t^{\langle H \rangle} + Z_t^{\langle H \rangle} \left(1 - \alpha^{\langle H \rangle} \right) K_{t-1}^{\langle H \rangle} H_t^{\langle H \rangle^{-\alpha^{\langle H \rangle}}} = 0$$

$$(6.7)$$

$$-Y_t^{\langle F \rangle} + Z_t^{\langle F \rangle} K_{t-1}^{\langle F \rangle} H_t^{\langle F \rangle} ^{1 - \alpha^{\langle F \rangle}} = 0$$

$$(6.8)$$

$$-Y_t^{\langle H \rangle} + Z_t^{\langle H \rangle} K_{t-1}^{\langle H \rangle} {\alpha^{\langle H \rangle}}^{\alpha^{\langle H \rangle}} H_t^{\langle H \rangle} {1 - \alpha^{\langle H \rangle}} = 0 \tag{6.9}$$

$$-Z_t^{\langle F \rangle} + e^{\epsilon^{Z \langle F \rangle}_t + \phi^{Z \langle F \rangle} \log Z_{t-1}^{\langle F \rangle}} = 0 \tag{6.10}$$

$$-Z_t^{\langle H \rangle} + e^{\epsilon^{Z_t^{\langle H \rangle}} + \phi^{Z_t^{\langle H \rangle}} \log Z_{t-1}^{\langle H \rangle}} = 0$$
(6.11)

$$\beta \left(-\left(1 - \delta^{\langle F \rangle}\right) E_t \left[\lambda^{c \langle F \rangle}_{t+1} \left(-1 - 2\psi^{\langle F \rangle} \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle^{-1}} I_{t+1}^{\langle F \rangle} \right) \right) \right] + E_t \left[\lambda^{c \langle F \rangle}_{t+1} \left(r_{t+1}^{\langle F \rangle} - \psi^{\langle F \rangle} \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle^{-1}} I_{t+1}^{\langle F \rangle} \right)^2 + 2\psi^{\langle F \rangle} K_t^{\langle F \rangle^{-1}} I_{t+1}^{\langle F \rangle} \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle^{-1}} I_{t+1}^{\langle F \rangle} \right) \right) \right] + \lambda^{c \langle F \rangle}_{t} \left(-1 - 2\psi^{\langle F \rangle} \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle^{-1}} I_{t+1}^{\langle F \rangle} \right) \right) \right) + \lambda^{c \langle F \rangle}_{t} \left(-1 - 2\psi^{\langle F \rangle} \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle^{-1}} I_{t+1}^{\langle F \rangle} \right) \right) \right) + \lambda^{c \langle F \rangle}_{t} \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle^{-1}} I_{t+1}^{\langle F \rangle} \right) \right) \right) + \lambda^{c \langle F \rangle}_{t} \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \right) \right) + \lambda^{c \langle F \rangle}_{t} \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \right) \right) + \lambda^{c \langle F \rangle}_{t} \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + K_t^{\langle F \rangle} \right) \left(-\delta^{\langle$$

$$\beta \left(-\left(1-\delta^{\langle \mathbf{H}\rangle}\right) \mathbf{E}_{t} \left[\lambda^{\mathbf{c}^{\langle \mathbf{H}\rangle}}_{t+1} \left(-1-2\psi^{\langle \mathbf{H}\rangle}\left(-\delta^{\langle \mathbf{H}\rangle}+K_{t}^{\langle \mathbf{H}\rangle^{-1}}I_{t+1}^{\langle \mathbf{H}\rangle}\right)\right)\right] + \mathbf{E}_{t} \left[\lambda^{\mathbf{c}^{\langle \mathbf{H}\rangle}}_{t+1} \left(r_{t+1}^{\langle \mathbf{H}\rangle}-\psi^{\langle \mathbf{H}\rangle}\left(-\delta^{\langle \mathbf{H}\rangle}+K_{t}^{\langle \mathbf{H}\rangle^{-1}}I_{t+1}^{\langle \mathbf{H}\rangle}\right)^{2} + 2\psi^{\langle \mathbf{H}\rangle}K_{t}^{\langle \mathbf{H}\rangle^{-1}}I_{t+1}^{\langle \mathbf{H}\rangle}\left(-\delta^{\langle \mathbf{H}\rangle}+K_{t}^{\langle \mathbf{H}\rangle^{-1}}I_{t+1}^{\langle \mathbf{H}\rangle}\right)\right)\right]\right) + \lambda^{\mathbf{c}^{\langle \mathbf{H}\rangle}}_{t} \left(-1-2\psi^{\langle \mathbf{H}\rangle}\left(-\delta^{\langle \mathbf{H}\rangle}+K_{t}^{\langle \mathbf{H}\rangle^{-1}}I_{t+1}^{\langle \mathbf{H}\rangle}\right)\right)\right] + \lambda^{\mathbf{c}^{\langle \mathbf{H}\rangle}}_{t} \left(-1-2\psi^{\langle \mathbf{H}\rangle}\left(-\delta^{\langle \mathbf{H}\rangle}+K_{t}^{\langle \mathbf{H}\rangle^{-1}}I_{t+1}^{\langle \mathbf{H}\rangle}\right)\right)\right) + \lambda^{\mathbf{c}^{\langle \mathbf{H}\rangle}}_{t} \left(-\delta^{\langle \mathbf{H}\rangle}+K_{t}^{\langle \mathbf{H}\rangle}+K_{t}^{\langle \mathbf{H}\rangle}\right)\right)$$

೮

$$\lambda_t^{c\langle F \rangle} W_t^{\langle F \rangle} + \left(-1 + \mu \right) C_t^{\langle F \rangle^{\mu}} \left(1 - H_t^{\langle F \rangle} \right)^{-\mu} \left(C_t^{\langle F \rangle^{\mu}} \left(1 - H_t^{\langle F \rangle} \right)^{1-\mu} \right)^{-\eta} = 0 \tag{6.14}$$

$$\lambda_{t}^{c\langle H \rangle} W_{t}^{\langle H \rangle} + (-1 + \mu) C_{t}^{\langle H \rangle^{\mu}} \left(1 - H_{t}^{\langle H \rangle} \right)^{-\mu} \left(C_{t}^{\langle H \rangle^{\mu}} \left(1 - H_{t}^{\langle H \rangle} \right)^{1-\mu} \right)^{-\eta} = 0$$

$$(6.15)$$

$$\epsilon^{G \langle F \rangle}_{t} - G^{d \langle F \rangle}_{t} + \phi^{G \langle F \rangle} G^{d \langle F \rangle}_{t-1} = 0 \tag{6.16}$$

$$\epsilon^{G \langle H \rangle}_{t} - G^{d \langle H \rangle}_{t} + \phi^{G \langle H \rangle} G^{d \langle H \rangle}_{t-1} = 0 \tag{6.17}$$

$$I_t^{\langle F \rangle} - K_t^{\langle F \rangle} + K_{t-1}^{\langle F \rangle} \left(1 - \delta^{\langle F \rangle} \right) = 0 \tag{6.18}$$

$$I_t^{\langle H \rangle} - K_t^{\langle H \rangle} + K_{t-1}^{\langle H \rangle} \left(1 - \delta^{\langle H \rangle} \right) = 0 \tag{6.19}$$

$$U_t^{\langle F \rangle} - \beta E_t \left[U_{t+1}^{\langle F \rangle} \right] - (1 - \eta)^{-1} \left(C_t^{\langle F \rangle^{\mu}} \left(1 - H_t^{\langle F \rangle} \right)^{1 - \mu} \right)^{1 - \eta} = 0$$
 (6.20)

$$U_t^{\langle \mathrm{H} \rangle} - \beta \mathrm{E}_t \left[U_{t+1}^{\langle \mathrm{H} \rangle} \right] - (1 - \eta)^{-1} \left(C_t^{\langle \mathrm{H} \rangle \mu} \left(1 - H_t^{\langle \mathrm{H} \rangle} \right)^{1 - \mu} \right)^{1 - \eta} = 0$$
 (6.21)

$$-C_{t}^{\langle F \rangle} - G_{t}^{d\langle F \rangle} - I_{t}^{\langle F \rangle} - TR_{t}^{\langle H \rangle} + Y_{t}^{\langle F \rangle} - \psi^{\langle F \rangle} K_{t-1}^{\langle F \rangle} \left(-\delta^{\langle F \rangle} + K_{t-1}^{\langle F \rangle} - I_{t}^{\langle F \rangle} \right)^{2} = 0$$

$$(6.22)$$

$$-C_{t}^{\langle \mathrm{H} \rangle} - G_{t}^{\mathrm{d} \langle \mathrm{H} \rangle} - I_{t}^{\langle \mathrm{H} \rangle} + TR_{t}^{\langle \mathrm{H} \rangle} + Y_{t}^{\langle \mathrm{H} \rangle} - \psi^{\langle \mathrm{H} \rangle} K_{t-1}^{\langle \mathrm{H} \rangle} \left(-\delta^{\langle \mathrm{H} \rangle} + K_{t-1}^{\langle \mathrm{H} \rangle}^{-1} I_{t}^{\langle \mathrm{H} \rangle} \right)^{2} = 0 \tag{6.23}$$

7 Steady state relationships (before expansion and reduction)

$$-\sum_{c \in COUNTRY} TR_{ss}^{\langle c \rangle} = 0 \tag{7.1}$$

$$\lambda_{ss}^{c\langle F \rangle} - \lambda_{ss}^{c\langle H \rangle} = 0 \tag{7.2}$$

$$c \in COUNTRY: -\lambda^{\text{CONSUMER}^{2\langle c \rangle}}_{\text{ss}} + \beta \left(\lambda^{\text{CONSUMER}^{2\langle c \rangle}}_{\text{ss}} \left(1 - \delta^{\langle c \rangle} \right) + \lambda^{c\langle c \rangle}_{\text{ss}} \left(r_{\text{ss}}^{\langle c \rangle} - \psi^{\langle c \rangle} \left(-\delta^{\langle c \rangle} + I_{\text{ss}}^{\langle c \rangle} K_{\text{ss}}^{\langle c \rangle}^{-1} \right)^{2} + 2\psi^{\langle c \rangle} I_{\text{ss}}^{\langle c \rangle} K_{\text{ss}}^{\langle c \rangle}^{-1} \left(-\delta^{\langle c \rangle} + I_{\text{ss}}^{\langle c \rangle} K_{\text{ss}}^{\langle c \rangle}^{-1} \right) \right) \right) = 0$$

$$(7.3)$$

$$c \in COUNTRY: \quad \lambda^{CONSUMER^{2} \langle c \rangle}_{ss} + \lambda^{c \langle c \rangle}_{ss} \left(-1 - 2\psi^{\langle c \rangle} \left(-\delta^{\langle c \rangle} + I_{ss}^{\langle c \rangle} K_{ss}^{\langle c \rangle^{-1}} \right) \right) = 0$$

$$(7.4)$$

$$c \in COUNTRY: -\lambda_{ss}^{c\langle c \rangle} + \mu C_{ss}^{\langle c \rangle^{-1+\mu}} \left(1 - H_{ss}^{\langle c \rangle} \right)^{1-\mu} \left(C_{ss}^{\langle c \rangle^{\mu}} \left(1 - H_{ss}^{\langle c \rangle} \right)^{1-\mu} \right)^{-\eta} = 0$$

$$(7.5)$$

$$c \in COUNTRY: \quad -\pi_{ss}^{\langle c \rangle} + \Pi_{ss}^{\langle c \rangle} = 0$$
 (7.6)

$$c \in COUNTRY: \quad -r_{ss}^{\langle c \rangle} + \alpha^{\langle c \rangle} Z_{ss}^{\langle c \rangle} H_{ss}^{d_{ss}^{\langle c \rangle} 1 - \alpha^{\langle c \rangle}} K_{ss}^{d_{ss}^{\langle c \rangle} - 1 + \alpha^{\langle c \rangle}} = 0$$

$$(7.7)$$

$$c \in COUNTRY: \quad G_{ss}^{d \langle c \rangle} - T_{ss}^{\langle c \rangle} = 0$$
 (7.8)

$$c \in COUNTRY: \quad H_{ss}^{\langle c \rangle} - H_{ss}^{\langle c \rangle} = 0$$
 (7.9)

$$c \in COUNTRY: K_{ss}^{\langle c \rangle} - K_{ss}^{\langle c \rangle} = 0$$
 (7.10)

$$c \in COUNTRY: \quad -W_{ss}^{\langle c \rangle} + Z_{ss}^{\langle c \rangle} \left(1 - \alpha^{\langle c \rangle} \right) H_{ss}^{d \langle c \rangle} K_{ss}^{d \langle c \rangle} = 0$$

$$(7.11)$$

$$c \in COUNTRY: -Y_{ss}^{\langle c \rangle} + Z_{ss}^{\langle c \rangle} H_{ss}^{d \langle c \rangle} {}^{1-\alpha^{\langle c \rangle}} K_{ss}^{d \langle c \rangle} {}^{\alpha^{\langle c \rangle}} = 0$$

$$(7.12)$$

$$c \in COUNTRY: \quad -Z_{ss}^{\langle c \rangle} + e^{\epsilon^{\mathbf{Z}\langle c \rangle}_{ss} + \phi^{\mathbf{Z}\langle c \rangle} \log Z_{ss}^{\langle c \rangle}} = 0$$
 (7.13)

$$c \in COUNTRY: \quad \lambda_{ss}^{c\langle c \rangle} W_{ss}^{\langle c \rangle} + (-1 + \mu) C_{ss}^{\langle c \rangle^{\mu}} \left(1 - H_{ss}^{\langle c \rangle} \right)^{-\mu} \left(C_{ss}^{\langle c \rangle^{\mu}} \left(1 - H_{ss}^{\langle c \rangle} \right)^{1 - \mu} \right)^{-\eta} = 0$$

$$(7.14)$$

$$c \in COUNTRY: \quad \epsilon_{ss}^{G\langle c \rangle} - G_{ss}^{d\langle c \rangle} + \phi_{ss}^{G\langle c \rangle} G_{ss}^{d\langle c \rangle} = 0$$
 (7.15)

$$c \in COUNTRY: \quad I_{ss}^{\langle c \rangle} - K_{ss}^{\langle c \rangle} + K_{ss}^{\langle c \rangle} \left(1 - \delta^{\langle c \rangle} \right) = 0 \tag{7.16}$$

$$c \in COUNTRY: \quad U_{ss}^{\langle c \rangle} - \beta U_{ss}^{\langle c \rangle} - (1 - \eta)^{-1} \left(C_{ss}^{\langle c \rangle^{\mu}} \left(1 - H_{ss}^{\langle c \rangle} \right)^{1 - \mu} \right)^{1 - \eta} = 0$$

$$(7.17)$$

$$c \in COUNTRY: \quad -\pi_{ss}^{\langle c \rangle} + Y_{ss}^{\langle c \rangle} - r_{ss}^{\langle c \rangle} K_{ss}^{d \langle c \rangle} - H_{ss}^{d \langle c \rangle} W_{ss}^{\langle c \rangle} = 0$$

$$(7.18)$$

$$c \in COUNTRY: \quad \pi_{ss}^{\langle c \rangle} - C_{ss}^{\langle c \rangle} - I_{ss}^{\langle c \rangle} - T_{ss}^{\langle c \rangle} + TR_{ss}^{\langle c \rangle} + r_{ss}^{\langle c \rangle} K_{ss}^{\langle c \rangle} + H_{ss}^{\langle c \rangle} W_{ss}^{\langle c \rangle} - \psi^{\langle c \rangle} K_{ss}^{\langle c \rangle} \left(-\delta^{\langle c \rangle} + I_{ss}^{\langle c \rangle} K_{ss}^{\langle c \rangle}^{-1} \right)^2 = 0$$

$$(7.19)$$

~1

8 Steady state relationships (after expansion and reduction)

$$-\lambda_{\rm ss}^{\rm c\langle F\rangle} + \mu C_{\rm ss}^{\rm \langle F\rangle^{-1} + \mu} \left(1 - H_{\rm ss}^{\rm \langle F\rangle}\right)^{1-\mu} \left(C_{\rm ss}^{\rm \langle F\rangle^{\mu}} \left(1 - H_{\rm ss}^{\rm \langle F\rangle}\right)^{1-\mu}\right)^{-\eta} = 0 \tag{8.1}$$

$$\lambda_{ss}^{c\langle F \rangle} - \lambda_{ss}^{c\langle H \rangle} = 0 \tag{8.2}$$

$$-\lambda_{\rm ss}^{\rm c\langle H\rangle} + \mu C_{\rm ss}^{\langle H\rangle^{-1+\mu}} \left(1 - H_{\rm ss}^{\langle H\rangle}\right)^{1-\mu} \left(C_{\rm ss}^{\langle H\rangle^{\mu}} \left(1 - H_{\rm ss}^{\langle H\rangle}\right)^{1-\mu}\right)^{-\eta} = 0 \tag{8.3}$$

$$-r_{\rm ss}^{\langle {\rm F} \rangle} + \alpha^{\langle {\rm F} \rangle} Z_{\rm ss}^{\langle {\rm F} \rangle} H_{\rm ss}^{\langle {\rm F} \rangle}^{1 - \alpha^{\langle {\rm F} \rangle}} K_{\rm ss}^{\langle {\rm F} \rangle}^{-1 + \alpha^{\langle {\rm F} \rangle}} = 0 \tag{8.4}$$

$$-r_{\rm ss}^{\langle \rm H \rangle} + \alpha^{\langle \rm H \rangle} Z_{\rm ss}^{\langle \rm H \rangle} H_{\rm ss}^{\langle \rm H \rangle}^{1 - \alpha^{\langle \rm H \rangle}} K_{\rm ss}^{\langle \rm H \rangle}^{-1 + \alpha^{\langle \rm H \rangle}} = 0 \tag{8.5}$$

$$-G_{ss}^{d\langle F \rangle} + \phi^{G\langle F \rangle} G_{ss}^{d\langle F \rangle} = 0 \tag{8.6}$$

$$-G_{ss}^{(H)} + \phi^{G(H)}G_{ss}^{(H)} = 0 \tag{8.7}$$

$$-W_{\rm ss}^{\langle F \rangle} + Z_{\rm ss}^{\langle F \rangle} \left(1 - \alpha^{\langle F \rangle} \right) H_{\rm ss}^{\langle F \rangle} K_{\rm ss}^{\langle F \rangle} K_{\rm ss}^{\langle F \rangle} = 0 \tag{8.8}$$

$$-W_{\rm ss}^{\langle {\rm H} \rangle} + Z_{\rm ss}^{\langle {\rm H} \rangle} \left(1 - \alpha^{\langle {\rm H} \rangle} \right) H_{\rm ss}^{\langle {\rm H} \rangle} {\alpha^{\langle {\rm H} \rangle}} K_{\rm ss}^{\langle {\rm H} \rangle} {\alpha^{\langle {\rm H} \rangle}} = 0 \tag{8.9}$$

$$-Y_{\rm ss}^{\langle F \rangle} + Z_{\rm ss}^{\langle F \rangle} H_{\rm ss}^{\langle F \rangle}^{1 - \alpha^{\langle F \rangle}} K_{\rm ss}^{\langle F \rangle}^{\alpha^{\langle F \rangle}} = 0 \tag{8.10}$$

$$-Y_{\rm ss}^{\langle {\rm H} \rangle} + Z_{\rm ss}^{\langle {\rm H} \rangle} H_{\rm ss}^{\langle {\rm H} \rangle^{1 - \alpha^{\langle {\rm H} \rangle}}} K_{\rm ss}^{\langle {\rm H} \rangle^{\alpha^{\langle {\rm H} \rangle}}} = 0 \tag{8.11}$$

$$-Z_{\rm ss}^{\langle F \rangle} + e^{\phi^{Z \langle F \rangle} \log Z_{\rm ss}^{\langle F \rangle}} = 0 \tag{8.12}$$

$$-Z_{\rm ss}^{\langle \rm H \rangle} + e^{\phi^{\rm Z}^{\langle \rm H \rangle} \log Z_{\rm ss}^{\langle \rm H \rangle}} = 0 \tag{8.13}$$

$$\beta \left(\lambda^{c\langle F \rangle}_{ss} \left(r_{ss}^{\langle F \rangle} - \psi^{\langle F \rangle} \left(-\delta^{\langle F \rangle} + I_{ss}^{\langle F \rangle} K_{ss}^{\langle F \rangle}^{-1} \right)^{2} + 2\psi^{\langle F \rangle} I_{ss}^{\langle F \rangle} K_{ss}^{\langle F \rangle}^{-1} \left(-\delta^{\langle F \rangle} + I_{ss}^{\langle F \rangle} K_{ss}^{\langle F \rangle}^{-1} \right) \right) - \lambda^{c\langle F \rangle}_{ss} \left(-1 - 2\psi^{\langle F \rangle} \left(-\delta^{\langle F \rangle} + I_{ss}^{\langle F \rangle} K_{ss}^{\langle F \rangle}^{-1} \right) \right) \left(1 - \delta^{\langle F \rangle} \right) \right) + \lambda^{c\langle F \rangle}_{ss} \left(-1 - 2\psi^{\langle F \rangle} \left(-\delta^{\langle F \rangle} + I_{ss}^{\langle F \rangle} K_{ss}^{\langle F \rangle}^{-1} \right) \right) \left(1 - \delta^{\langle F \rangle} \right) \right) + \lambda^{c\langle F \rangle}_{ss} \left(-1 - 2\psi^{\langle F \rangle} \left(-\delta^{\langle F \rangle} + I_{ss}^{\langle F \rangle} K_{ss}^{\langle F \rangle}^{-1} \right) \right) \left(1 - \delta^{\langle F \rangle} \right) \right) + \lambda^{c\langle F \rangle}_{ss} \left(-1 - 2\psi^{\langle F \rangle} \left(-\delta^{\langle F \rangle} + I_{ss}^{\langle F \rangle} K_{ss}^{\langle F \rangle}^{-1} \right) \right) \left(1 - \delta^{\langle F \rangle} \right) \right) + \lambda^{c\langle F \rangle}_{ss} \left(-1 - 2\psi^{\langle F \rangle} \left(-\delta^{\langle F \rangle} + I_{ss}^{\langle F \rangle} K_{ss}^{\langle F \rangle}^{-1} \right) \right) \left(-\delta^{\langle F \rangle} \right) \left(-\delta^{\langle F \rangle} + I_{ss}^{\langle F \rangle} K_{ss}^{\langle F \rangle}^{-1} \right) \left(-\delta^{\langle F \rangle} + I_{ss}^{\langle F \rangle} K_{ss}^{\langle F \rangle}^{-1} \right) \right) \left(-\delta^{\langle F \rangle} + I_{ss}^{\langle F \rangle} K_{ss}^{\langle F \rangle}^{-1} \right) \left(-\delta^{\langle F \rangle} + I_{ss}^{\langle F \rangle} K_{ss}^{\langle F \rangle}^{-1} \right) \left(-\delta^{\langle F \rangle} + I_{ss}^{\langle F \rangle} K_{ss}^{\langle F \rangle}^{-1} \right) \left(-\delta^{\langle F \rangle} + I_{ss}^{\langle F \rangle} K_{ss}^{\langle F \rangle}^{-1} \right) \left(-\delta^{\langle F \rangle} + I_{ss}^{\langle F \rangle} K_{ss}^{\langle F \rangle}^{-1} \right) \left(-\delta^{\langle F \rangle} + I_{ss}^{\langle F \rangle} K_{ss}^{\langle F \rangle}^{-1} \right) \left(-\delta^{\langle F \rangle} + I_{ss}^{\langle F \rangle} K_{ss}^{\langle F \rangle}^{-1} \right) \left(-\delta^{\langle F \rangle} K_{ss}^{\langle F \rangle} K_{ss}^{\langle F \rangle}^{-1} \right) \left(-\delta^{\langle F \rangle} K_{ss}^{\langle F \rangle} K_{ss}^{\langle F \rangle}^{-1} \right) \left(-\delta^{\langle F \rangle} K_{ss}^{\langle F \rangle} K_{ss}^{\langle F \rangle}^{-1} \right) \left(-\delta^{\langle F \rangle} K_{ss}^{\langle F \rangle} K_{ss}^{\langle F \rangle}^{-1} \right) \left(-\delta^{\langle F \rangle} K_{ss}^{\langle F \rangle} K_{ss}^{\langle F \rangle}^{-1} \right) \left(-\delta^{\langle F \rangle} K_{ss}^{\langle F \rangle} K_{ss}^{\langle F \rangle}^{-1} \right) \left(-\delta^{\langle F \rangle} K_{ss}^{\langle F \rangle} K_{ss}^{\langle F \rangle}^{-1} \right) \left(-\delta^{\langle F \rangle} K_{ss}^{\langle F \rangle} K_{ss}^{\langle F \rangle} K_{ss}^{\langle F \rangle}^{-1} \right) \left(-\delta^{\langle F \rangle} K_{ss}^{\langle F \rangle} K_{ss}^{\langle F \rangle} K_{ss}^{\langle F \rangle}^{-1} \right) \left(-\delta^{\langle F \rangle} K_{ss}^{\langle F \rangle}^{-1} \right) \left(-\delta^{\langle F \rangle} K_{ss}^{\langle F \rangle} K_{$$

 ∞

 $\beta \left(\lambda_{\text{ss}}^{\text{c}\langle \text{H} \rangle} \left(r_{\text{ss}}^{\langle \text{H} \rangle} - \psi^{\langle \text{H} \rangle} \left(-\delta^{\langle \text{H} \rangle} + I_{\text{ss}}^{\langle \text{H} \rangle} K_{\text{ss}}^{\langle \text{H} \rangle}^{-1} \right)^{2} + 2\psi^{\langle \text{H} \rangle} I_{\text{ss}}^{\langle \text{H} \rangle} K_{\text{ss}}^{\langle \text{H} \rangle}^{-1} \left(-\delta^{\langle \text{H} \rangle} + I_{\text{ss}}^{\langle \text{H} \rangle} K_{\text{ss}}^{\langle \text{H} \rangle}^{-1} \right) \right) - \lambda_{\text{ss}}^{\text{c}\langle \text{H} \rangle} \left(-1 - 2\psi^{\langle \text{H} \rangle} \left(-\delta^{\langle \text{H} \rangle} + I_{\text{ss}}^{\langle \text{H} \rangle} K_{\text{ss}}^{\langle \text{H} \rangle}^{-1} \right) \right) \left(1 - \delta^{\langle \text{H} \rangle} \right) \right) + \lambda_{\text{ss}}^{\text{c}\langle \text{H} \rangle} \left(-\delta^{\langle \text{H} \rangle} + I_{\text{ss}}^{\langle \text{H} \rangle} K_{\text{ss}}^{\langle \text{H} \rangle}^{-1} \right) \right) \left(1 - \delta^{\langle \text{H} \rangle} \right) + \lambda_{\text{ss}}^{\text{c}\langle \text{H} \rangle} \left(-\delta^{\langle \text{H} \rangle} + I_{\text{ss}}^{\langle \text{H} \rangle} K_{\text{ss}}^{\langle \text{H} \rangle}^{-1} \right) \right) \left(1 - \delta^{\langle \text{H} \rangle} \right) \left(-\delta^{\langle \text{H} \rangle} + I_{\text{ss}}^{\langle \text{H} \rangle} K_{\text{ss}}^{\langle \text{H} \rangle}^{-1} \right) \right) \left(-\delta^{\langle \text{H} \rangle} + I_{\text{ss}}^{\langle \text{H} \rangle} K_{\text{ss}}^{\langle \text{H} \rangle}^{-1} \right) \left(-\delta^{\langle \text{H} \rangle} + I_{\text{ss}}^{\langle \text{H} \rangle} K_{\text{ss}}^{\langle \text{H} \rangle}^{-1} \right) \right) \left(-\delta^{\langle \text{H} \rangle} + I_{\text{ss}}^{\langle \text{H} \rangle} K_{\text{ss}}^{\langle \text{H} \rangle}^{-1} \right) \left(-\delta^{\langle \text{H} \rangle} + I_{\text{ss}}^{\langle \text{H} \rangle} K_{\text{ss}}^{\langle \text{H} \rangle}^{-1} \right) \left(-\delta^{\langle \text{H} \rangle} + I_{\text{ss}}^{\langle \text{H} \rangle} K_{\text{ss}}^{\langle \text{H} \rangle}^{-1} \right) \right) \left(-\delta^{\langle \text{H} \rangle} + I_{\text{ss}}^{\langle \text{H} \rangle} K_{\text{ss}}^{\langle \text{H} \rangle}^{-1} \right) \left(-\delta^{\langle \text{H} \rangle} + I_{\text{ss}}^{\langle \text{H} \rangle} K_{\text{ss}}^{\langle \text{H} \rangle}^{-1} \right) \right) \left(-\delta^{\langle \text{H} \rangle} + I_{\text{ss}}^{\langle \text{H} \rangle} K_{\text{ss}}^{\langle \text{H} \rangle}^{-1} \right) \left(-\delta^{\langle \text{H} \rangle} + I_{\text{ss}}^{\langle \text{H} \rangle} K_{\text{ss}}^{\langle \text{H} \rangle}^{-1} \right) \right) \left(-\delta^{\langle \text{H} \rangle} + I_{\text{ss}}^{\langle \text{H} \rangle} K_{\text{ss}}^{\langle \text{H} \rangle}^{-1} \right) \left(-\delta^{\langle \text{H} \rangle} + I_{\text{ss}}^{\langle \text{H} \rangle} K_{\text{ss}}^{\langle \text{H} \rangle}^{-1} \right) \left(-\delta^{\langle \text{H} \rangle} + I_{\text{ss}}^{\langle \text{H} \rangle} K_{\text{ss}}^{\langle \text{H} \rangle}^{-1} \right) \left(-\delta^{\langle \text{H} \rangle} + I_{\text{ss}}^{\langle \text{H} \rangle} K_{\text{ss}}^{\langle \text{H} \rangle}^{-1} \right) \left(-\delta^{\langle \text{H} \rangle} + I_{\text{ss}}^{\langle \text{H} \rangle} K_{\text{ss}}^{\langle \text{H} \rangle}^{-1} \right) \right) \left(-\delta^{\langle \text{H} \rangle} + I_{\text{ss}}^{\langle \text{H} \rangle} K_{\text{ss}}^{\langle \text{H} \rangle}^{-1} \right) \left(-\delta^{\langle \text{H} \rangle} + I_{\text{ss}}^{\langle \text{H} \rangle} K_{\text{ss}}^{\langle \text{H} \rangle}^{-1} \right) \left(-\delta^{\langle \text{H} \rangle} + I_{\text{ss}}^{\langle \text{H} \rangle} K_{\text{ss}}^{\langle \text{H} \rangle}^{-1} \right) \left(-\delta^{\langle \text{H} \rangle} + I_{\text{ss}}^{\langle \text{H} \rangle} K_{\text{ss}}^{\langle \text{H} \rangle}^{-1} \right) \left(-\delta^{\langle \text{H} \rangle} + I_{\text{ss}}^{\langle \text{H} \rangle} K_{\text{ss$

$$\lambda_{\rm ss}^{c\langle F \rangle} W_{\rm ss}^{\langle F \rangle} + (-1 + \mu) C_{\rm ss}^{\langle F \rangle^{\mu}} \left(1 - H_{\rm ss}^{\langle F \rangle} \right)^{-\mu} \left(C_{\rm ss}^{\langle F \rangle^{\mu}} \left(1 - H_{\rm ss}^{\langle F \rangle} \right)^{1 - \mu} \right)^{-\eta} = 0 \tag{8.16}$$

$$\lambda_{\rm ss}^{\rm c\langle H\rangle}W_{\rm ss}^{\langle H\rangle} + (-1+\mu)C_{\rm ss}^{\langle H\rangle\mu}\left(1 - H_{\rm ss}^{\langle H\rangle}\right)^{-\mu}\left(C_{\rm ss}^{\langle H\rangle\mu}\left(1 - H_{\rm ss}^{\langle H\rangle}\right)^{1-\mu}\right)^{-\eta} = 0 \tag{8.17}$$

$$I_{\rm ss}^{\langle F \rangle} - K_{\rm ss}^{\langle F \rangle} + K_{\rm ss}^{\langle F \rangle} \left(1 - \delta^{\langle F \rangle} \right) = 0 \tag{8.18}$$

$$I_{\rm ss}^{\langle {\rm H} \rangle} - K_{\rm ss}^{\langle {\rm H} \rangle} + K_{\rm ss}^{\langle {\rm H} \rangle} \left(1 - \delta^{\langle {\rm H} \rangle} \right) = 0 \tag{8.19}$$

$$U_{\rm ss}^{\langle F \rangle} - \beta U_{\rm ss}^{\langle F \rangle} - (1 - \eta)^{-1} \left(C_{\rm ss}^{\langle F \rangle \mu} \left(1 - H_{\rm ss}^{\langle F \rangle} \right)^{1 - \mu} \right)^{1 - \eta} = 0 \tag{8.20}$$

$$U_{\rm ss}^{\langle \rm H \rangle} - \beta U_{\rm ss}^{\langle \rm H \rangle} - (1 - \eta)^{-1} \left(C_{\rm ss}^{\langle \rm H \rangle \mu} \left(1 - H_{\rm ss}^{\langle \rm H \rangle} \right)^{1 - \mu} \right)^{1 - \eta} = 0 \tag{8.21}$$

$$-C_{\rm ss}^{\langle {\rm F} \rangle} - G_{\rm ss}^{{\rm d} \langle {\rm F} \rangle} - I_{\rm ss}^{\langle {\rm F} \rangle} - TR_{\rm ss}^{\langle {\rm H} \rangle} + Y_{\rm ss}^{\langle {\rm F} \rangle} - \psi^{\langle {\rm F} \rangle} K_{\rm ss}^{\langle {\rm F} \rangle} \left(-\delta^{\langle {\rm F} \rangle} + I_{\rm ss}^{\langle {\rm F} \rangle} K_{\rm ss}^{\langle {\rm F} \rangle^{-1}} \right)^2 = 0 \tag{8.22}$$

$$-C_{\rm ss}^{\langle {\rm H} \rangle} - G_{\rm ss}^{{\rm d}^{\langle {\rm H} \rangle}} - I_{\rm ss}^{\langle {\rm H} \rangle} + TR_{\rm ss}^{\langle {\rm H} \rangle} + Y_{\rm ss}^{\langle {\rm H} \rangle} - \psi^{\langle {\rm H} \rangle} K_{\rm ss}^{\langle {\rm H} \rangle} \left(-\delta^{\langle {\rm H} \rangle} + I_{\rm ss}^{\langle {\rm H} \rangle} K_{\rm ss}^{\langle {\rm H} \rangle}^{-1} \right)^2 = 0 \tag{8.23}$$

9

9 Steady-state values

	Steady-state value
$\lambda^{\mathrm{c}\langle \mathrm{F} angle}$	0.3934
$\lambda^{\mathrm{c}\langle\mathrm{H} angle}$	0.3934
$r^{\langle \mathrm{F} angle}$	0.0351
$r^{\langle { m H} angle}$	0.0351
$C^{\langle \mathrm{F} \rangle}$	0.9578
$C^{\langle { m H} angle}$	0.9578
$G^{\mathrm{d}^{\langle \mathrm{F} \rangle}}$	0
$G^{\mathrm{d}\langle\mathrm{H} angle}$	0
$H^{\langle \mathrm{F} angle}$	0.2645
$H^{\langle { m H} angle}$	0.2645
$I^{\langle \mathrm{F} angle}$	0.3816
$I^{\langle { m H} angle}$	0.3816
$K^{\langle \mathrm{F} angle}$	15.2627
$K^{\langle { m H} angle}$	15.2627
$TR^{\langle { m H} \rangle}$	0
$U^{\langle \mathrm{F} \rangle}$	-125.6048
$U^{\langle { m H} angle}$	-125.6048
$W^{\langle \mathrm{F} \rangle}$	3.0384
$W^{\langle { m H} angle}$	3.0384
$Y^{\langle \mathrm{F} angle}$	1.3393
$Y^{\langle { m H} angle}$	1.3393
$Z^{\langle { m F} angle}$	1
$Z^{\langle { m H} angle}$	1

10 The solution of the 1st order perturbation

Matrix P

Matrix Q

Matrix R

	$G_{t-1}^{\operatorname{d}\langle \mathrm{F}\rangle}$	$G^{\mathrm{d}\langle\mathrm{H} angle}_{\ t-1}$	$K_{t-1}^{\langle { m F} angle}$	$K_{t-1}^{\langle { m H} angle}$	$Z_{t-1}^{\langle \mathrm{F} angle}$	$Z_{t-1}^{\langle \mathrm{H} \rangle}$
$\lambda_t^{c\langle F \rangle}$	0.1022	0.1022	-0.0091	-0.0091	-0.1072	-0.1072
$\lambda_{t}^{c\langle H \rangle}$ $r_{t}^{\langle F \rangle}$	0.1022	0.1022	-0.0091	-0.0091	-0.1072	-0.1072
$r_t^{ m \langle F angle}$	0.0044	0.0044	-0.0012	-0.0004	0.0497	-0.0046
$r_t^{\langle { m H} angle}$	0.0044	0.0044	-0.0004	-0.0012	-0.0046	0.0497
$C_t^{\langle \mathrm{F} \rangle}$	-0.1525	-0.1525	0.0187	0.0136	0.3448	0.1599
$C_t^{\langle \mathrm{H} \rangle}$	-0.1525	-0.1525	0.0136	0.0187	0.1599	0.3448
$H_t^{ m \langle F angle}$	0.0554	0.0554	0.0023	-0.0049	0.2054	-0.0581
$H_t^{ m \langle H angle}$	0.0554	0.0554	-0.0049	0.0023	-0.0581	0.2054
$I_t^{\langle \mathrm{F} angle}$	-0.1542	-0.1542	-0.0296	0.0244	2.2856	-1.0704
$I_t^{\langle { m H} angle}$	-0.1542	-0.1542	0.0244	-0.0296	-1.0704	2.2856
$TR_t^{\langle \mathrm{H} \rangle}$	-0.475	0.475	0.053	-0.053	-0.7338	0.7338
$U_{t}^{\langle \mathrm{F} angle}$	-3.1408	-3.1408	0.1608	0.2366	0.053	8.3603
$U_t^{\langle \mathrm{H} \rangle}$	-3.1408	-3.1408	0.2366	0.1608	8.3603	0.053
$W_{\star}^{\langle \mathrm{F} \rangle}$	-0.2547	-0.2547	0.0689	0.0227	1.9424	0.2672
$W_t^{\langle \mathrm{H} \rangle}$	-0.2547	-0.2547	0.0227	0.0689	0.2672	1.9424
$Y_t^{\langle \mathrm{F} angle}$	0.1684	0.1684	0.0422	-0.015	1.8966	-0.1767
$Y_t^{\langle { m H} angle}$	0.1684	0.1684	-0.015	0.0422	-0.1767	1.8966

Matrix S

11 Model statistics

11.1 Basic statistics

	Steady-state value	Std. dev.	Variance	Loglin
$r^{\langle { m H} angle}$	0.0351	0.0051	0	N
$C^{\langle { m H} angle}$	0.9578	0.034	0.0012	N
$G^{\mathrm{d}^{\langle \mathrm{H} angle}}$	0	0.0922	0.0085	N
$H^{\langle { m H} angle}$	0.2645	0.0249	0.0006	N
$I^{ m \langle H angle}$	0.3816	0.2411	0.0581	N
$K^{\langle { m H} angle}$	15.2627	0.8242	0.6794	N
$TR^{\langle \mathrm{H} \rangle}$	0	0.1586	0.0252	N
$U^{\langle { m H} angle}$	-125.6048	0.7839	0.6144	N
$W^{\langle { m H} angle}$	3.0384	0.1864	0.0348	N
$Y^{\langle { m H} angle}$	1.3393	0.2022	0.0409	N
$Z^{\langle { m H} angle}$	1	0.0922	0.0085	N

11.2 Correlation matrix

	$r^{\langle { m H} angle}$	$C^{\langle {\rm H} \rangle}$	$G^{\mathrm{d}\langle\mathrm{H} angle}$	$H^{\langle {\rm H} \rangle}$	$I^{\langle { m H} angle}$	$K^{\langle {\rm H} \rangle}$	$T\!R^{\langle {\rm H} \rangle}$	$U^{\langle {\rm H} \rangle}$	$W^{\langle {\rm H} \rangle}$	$Y^{\langle { m H} angle}$	$Z^{\langle { m H} angle}$
$r^{\langle { m H} angle}$	1	0.659	0.554	0.918	0.888	0.193	0.623	-0.274	0.889	0.934	0.983
$C^{\langle \mathrm{H} \rangle}$		1	0.06	0.562	0.592	0.393	0.241	0.314	0.889	0.712	0.769
$G^{\mathrm{d}\langle\mathrm{H} angle}$			1	0.625	0.391	0.151	0.493	-0.39	0.38	0.545	0.5
$H^{\langle { m H} angle}$				1	0.813	0.512	0.469	-0.445	0.878	0.981	0.927
$I^{ m \langle H angle}$					1	0.231	0.817	-0.501	0.792	0.829	0.874
$K^{\langle { m H} angle}$						1	-0.15	-0.259	0.511	0.527	0.325
$TR^{\langle { m H} \rangle}$							1	-0.534	0.398	0.454	0.55
$U^{\langle { m H} \rangle}$								1	-0.064	-0.303	-0.197
$W^{\langle { m H} angle}$									1	0.954	0.958
$Y^{\langle { m H} angle}$										1	0.968
$Z^{\langle { m H} angle}$											1

11.3 Cross correlations with the reference variable $(Y^{\langle H \rangle})$

	$\sigma[\cdot]$ rel. to $\sigma[Y^{\langle H \rangle}]$	$Y_{t-4}^{\langle \mathrm{H} \rangle}$	$Y_{t-3}^{\langle { m H} angle}$	$Y_{t-2}^{\langle \mathrm{H} \rangle}$	$Y_{t-1}^{\langle \mathrm{H} \rangle}$	$Y_t^{\langle {\rm H} \rangle}$	$Y_{t+1}^{\langle \mathrm{H} \rangle}$	$Y_{t+2}^{\langle { m H} angle}$	$Y_{t+3}^{\langle { m H} angle}$	$Y_{t+4}^{\langle { m H} angle}$
$r_t^{\langle { m H} angle}$	0.025	0.28	0.415	0.57	0.744	0.934	0.583	0.301	0.081	-0.085
$C_t^{\langle { m H} angle}$	0.168	0.053	0.174	0.324	0.503	0.712	0.562	0.425	0.301	0.192
$G_t^{\operatorname{d}\langle \mathrm{H} angle}$	0.456	0.118	0.202	0.301	0.415	0.545	0.373	0.229	0.113	0.021
$H_t^{ m \langle H angle}$	0.123	0.187	0.344	0.529	0.741	0.981	0.725	0.501	0.309	0.148
$I_t^{\langle { m H} angle}$	1.192	0.283	0.401	0.532	0.676	0.829	0.5	0.239	0.037	-0.113
$K_t^{\langle { m H} angle}$	4.076	-0.182	-0.06	0.097	0.292	0.527	0.661	0.714	0.707	0.656
$TR_t^{\langle \mathrm{H} \rangle}$	0.785	0.293	0.339	0.384	0.423	0.454	0.145	-0.081	-0.237	-0.336
$U_t^{\langle \mathrm{H} \rangle}$	3.876	-0.155	-0.196	-0.236	-0.273	-0.303	-0.189	-0.095	-0.021	0.037
$W_t^{\langle { m H} angle}$	0.922	0.134	0.291	0.479	0.701	0.954	0.726	0.522	0.345	0.193
$Y_t^{\langle { m H} angle}$	1	0.171	0.333	0.525	0.748	1	0.748	0.525	0.333	0.171
$Z_t^{ m \langle H angle}$	0.456	0.229	0.377	0.549	0.747	0.968	0.656	0.398	0.188	0.024

11.4 Autocorrelations

	Lag 1	Lag 2	Lag 3	Lag 4
$r^{\langle { m H} angle}$	0.704	0.456	0.254	0.093
$C^{\langle { m H} angle}$	0.75	0.529	0.338	0.177
$G^{\mathrm{d}^{\langle \mathrm{H} angle}}$	0.713	0.471	0.271	0.11
$H^{\langle { m H} angle}$	0.748	0.525	0.333	0.171
$I^{\langle { m H} angle}$	0.698	0.447	0.244	0.083
$K^{\langle { m H} angle}$	0.956	0.852	0.709	0.546
$TR^{\langle \mathrm{H} \rangle}$	0.72	0.482	0.283	0.122
$U^{\langle { m H} \rangle}$	0.731	0.499	0.303	0.142
$W^{\langle { m H} angle}$	0.748	0.526	0.334	0.173
$Y^{\langle { m H} angle}$	0.748	0.525	0.333	0.171
$Z^{\langle { m H} angle}$	0.713	0.471	0.271	0.11

11.5 Variance decomposition

	$\epsilon^{\mathrm{Z}\langle\mathrm{F} angle}$	$\epsilon^{\mathrm{Z}\langle\mathrm{H}\rangle}$	$\epsilon^{G\langle F\rangle}$	$\epsilon^{G\langle H \rangle}$
$r^{\langle { m H} angle}$	0.002	0.987	0.005	0.005
$C^{\langle \mathrm{H} \rangle}$	0.059	0.657	0.142	0.142
$G^{\mathrm{d}^{\langle \mathrm{H} angle}}$	0	0.25	0	0.75
$H^{\langle { m H} angle}$	0.051	0.88	0.035	0.035
$I^{\langle { m H} angle}$	0.214	0.78	0.003	0.003
$K^{\langle { m H} angle}$	0.208	0.785	0.003	0.003
$TR^{\langle \mathrm{H} \rangle}$	0.437	0.437	0.063	0.063
$U^{\langle { m H} \rangle}$	0.733	0.041	0.113	0.113
$W^{\langle { m H} angle}$	0.005	0.968	0.014	0.014
$Y^{\langle { m H} angle}$	0.021	0.969	0.005	0.005
$Z^{\langle { m H} angle}$	0	1	0	0

12 Impulse response functions

Figure 1: Impulse responses $(C^{\langle F \rangle}, C^{\langle H \rangle}, H^{\langle F \rangle}, H^{\langle H \rangle}, TR^{\langle H \rangle})$ to $\epsilon^{Z^{\langle F \rangle}}$ shock shock

Figure 3: Impulse responses $(C^{\langle F \rangle}, C^{\langle H \rangle}, H^{\langle F \rangle}, H^{\langle H \rangle}, TR^{\langle H \rangle})$ to $\epsilon^{Z^{\langle H \rangle}}$ shock shock