metoda

Sekwencjonowanie Nowej Generacji z wykorzystaniem zestawu TruSight One Expanded Sequencing Panel firmy Illumina, który umożliwia analizę 6699 genów o udokumentowanym znaczeniu klinicznym. Sekwencjonowanie obejmujące 298 cykli przeprowadzono w aparacie NextSeq 550 firmy Illumina. Minimalne* pokrycie uzyskano dla 99% badanych regionów. Analiza końcowa w zakresie regionów kodujących wybranych genów przeprowadzona została z użyciem oprogramowania Variant Studio v.3.0, SureCall v.4.1 oraz IGV v.2.3. Predykcję bioinformatyczną przeprowadzono z wykorzystaniem platform Mutation Taster, SIFT oraz PolyPhen. Klasyfikację patogenności określono na podstawie wytycznych ACMG. Uwaga! Zastosowana metoda nie pozwala na detekcję zmian liczby kopii genów (CNV).

Tabela 1. Panel onkologiczny obejmujący geny, których defekty prowadzą do chorób nowotworowych.

	ABCB11	ALK AMELY AMELY			
	APC	ADIDA	AMELX	AMELY	
	ATRX	ARID1A	ASXL1	AMELY	ANKRD26
	BCL10	AUTS2	AXIN2	ATM BASA	ATR
		BCL2	BCL3	BAP1	BARD1
	BCOR	BLM	BMPR1A	BCL6	BCL9
	BRCA2	BRIP1	BUB1B	BRAF	BRCA1
	CCND1	CDC73	CDH1	BUB3	CBL
	CDKN1C	CDKN2A		CDK4	CDKN1B
	CLCN5	COL7A1	CEBPA	CEP57	CHEK2
	DDB2	DDX3X	CREBBP	CTNNB1	CYLD
	DOCK8	EGFR	DICER1	DIS3L2	DKC1
	ERCC2	ERCC3	ELANE.	EP300	EPCAM
	EXT1	EXT2	ERCC4	ERCC5	ETV6
	FANCB		EZH2	FAH	FANCA
		FANCE	FANCD2	FANCE	FANCE
	FANCG	FANCI	FANCL	FANCM	FBXW7
	FH ,	FLCN H3F3A	GATA2	GBA	GJB2
	GPC3		HFE	HMBS	HOXB13
	HRAS	IKZF1 KDM6A	ITK KIE1D0	JAK1	JAK2
dany	JAK3	KRAS	KIF1Bβ LIG4	KIT	KMT2A
nel	KMT2D	MED12	MEN1	MAP2K1	MAX
nów	LZTR1	MLH3	MLLT3	MET	MLH1
	MLH1 MUTYH	NBN	NF1	MSH2 NF2	MSH6
	NOP10	NOTCH1	NRAS	NSD1	NHP2
	PALB2	PAX5	PDGFRA	PHF6	NTHL1
	PMS2	POLD1	POLE		PHOX2B
	PRKCD	PRSS1	PTCH1	POLH	PRKAR1A
	PTPN11	RAD50	RAD51C	PTCH2	PTEN
	RAG1	RAG2	RB1	RAD51D	RAF1
	RHBDF2	RIT1	RMRP	RECQL4	RET
	RPL35A	RPL5	RPS10	RPL11 RPS17	RPL26
	RPS24	RPS26	RPS7	RRAS	RPS19
	SAMD9	SBDS	SDHAF2		RUNX1
	SDHD	SERPINA1	SETBP1	SDHB	SDHC
	SLC25A13	SLX4	SMAD4	SH2B3	SH2D1A
	SMARCE1	SOS1	SOS2	SMARCA4	SMARCB1
	STK11	SUFU	TERC	SRY	STAT3
	TGFBR1	TINF2	TJP2	TERT	TFRC
	TRIM28	TRIM37	TSC1	TMEM127	TP53
	UBE2T	UROD	VHL	TSC2 WAS	TYK2
43.77	WT1	XPA wencji brana pod uwagę pod	VDO	XRCC2	WRN

Niezbędna jest porada genetyczna w celu dokładnego omówienia uzyskanego wyniku oraz określenia ryzyka genetycznego.