Recent work on Discriminative Training

Dan Povey & Phil Woodland

Apr 24th 2003

Cambridge University Engineering Department

Discriminative Training

- ... JM gnisu ton steining HMM parameters not using ML ...

 ●
- ... but maximising some other criterion (e.g. MMI) which reflects goodnessof-recognition of train-data
- Recent work at Cambridge on discriminative training includes:
- Work on implementing MMI for LVCSR (using lattices)
- Minimum Phone Error (MPE)
- Also (won't cover today but)
- * Adaptation, e.g. gender adaptation with discriminative training (MPE-MAP)
- * SAT for discriminative training (relates to MLLR)

Werview

- MPE objective function
- Typical results for MPE vs MMI vs ML
- Overview of implementation issues

(APE) Minimum Phone Error

• Maximise the following function:

$$\mathcal{F}_{\text{MPE}}(\lambda) = \sum_{r}^{R} \sum_{s} P_{\lambda}(s|\mathcal{O}_{r}) Raw$$
Phone Accuracy (s, s_{r})

- i.e. an average of phone accuracy, weighted by sentence likelihood
- where ${
 m RawPhoneAccuracy}(s,s_r)$ is $\#{
 m phones}$ in reference, minus $\#{
 m phone}$
- When maximising criterion, we try to increase likelihood of sentences which are more accurate than average

(IMM) noitemolal leutuM mumixeM

•
$$\mathcal{F}_{MIE}(\lambda) = \sum_{r=1}^{R} \log \frac{\sum_{s} p_{\lambda}(\mathcal{O}_{r}|s_{r})^{\kappa} P(s_{r})^{\kappa}}{p_{\lambda}(\mathcal{O}_{r}|s_{r})^{\kappa} P(s_{r})^{\kappa}}$$

Equals posterior probability of correct sentence given data & HMM

Povey: Minimum Phone Error

Comparison of objective functions (for 2 sentences)

Prior Information for robust parameter estimates

- Discriminative objective functions make it difficult to get robustly estimated model parameters (overtraining)
- This is especially true of MPE
- We use a technique we call I-smoothing, to back off parameters to the ML values where there is not enough training data for a Gaussian
- Mathematically, I-smoothing is like MAP
- We use a prior over the parameter values, center of prior is at ML estimate
 In I-smoothing, evidence is discriminative objective function
- (in MAP, evidence is speaker-dependent ML objective function)
- Without I-smoothing, MPE is worse than MMI and gives only small improvement over ML

Improvement vs. ML

- Relative improvement of MPE vs ML, on various corpora (no MLLR)
- (etab gninisat to struome bne sazis tas MMH gniviev dtiw) •
- Shows how improvement varies with ratio of train-data to # Gaussians in HMM set

IMM behtoome-I, IMM hit and it is no no insignation of MPE with MMI, I-smoothed MMI

E.g. of MPE for an evaluation Switchboard system

- From 2002 NIST evaluation, tested on subset of 2001 development data
- Our system was the best

%£.3	%9.82	%L'0E	MLLR
%9 ⁻ 6	30.1%	33.3%	Nº MLLR
% Kel impr	MPE	٦M	(%MERs)

- This year we improved our system further, but were slightly beaten
- (although the winning result was a combination of results from two other sites)

34M To noitesimited

- Optimised in a number of iterations; on each iteration, optimise an auxiliary function (as in ML)
- Uses a "weak-sense" auxiliary function (see next slide)
- To construct the auxiliary function, need differential of objective function w.r.t.
 data-likelihood of each phone in the lattice
- Need to find this differential without enumerating each possible sentence in the lattice
- This can be calculated efficiently using an algorithm similar to the forward-

Auxiliary functions

Use of (a) strong-sense and (b) weak-sense auxiliary functions for function optimisation

- at a local point $\lambda=\lambda'$, but \leq objf everywhere else
- Weak-sense auxf has same differential around local point $\lambda = \lambda'$

On another topic...

- Interesting question:
- Should we be looking for complex or simple solutions to the speech recognition
- Clearly simple is better if we have the choice, but ...
- Is there a "simple" solution?
- Traditional science expects simple solutions (e.g. physics)
- What if a problem has no simple solution?

"Soluble" vs "Insoluble" problems.

Goodness of solution for the best solution with a particular description length,

"Soluble" vs "Insoluble" problems cont'd

- If this is right, we can't find a "solution" that can be written in a few pages
- ... so what can we do (other than give up)?
- Some ideas:
- Find convienient ways of creating and transmitting complex solutions to the
- problem

 Find new representations of the solution (e.g. weird new programming
- language)

 Swap code (and write programs so this is possible)
- Use evolution (not maths research) as a model for how to solve the problem