Package 'stokes'

June 15, 2022

Type Package
Title The Exterior Calculus
Version 1.1-3
Depends spray (>= 1.0-18), R (>= 3.5.0)
Suggests knitr, Deriv, testthat, markdown, rmarkdown, emulator
VignetteBuilder knitr
Imports permutations (>= 1.0-4), partitions, methods, mathjaxr, disordR (>= 0.0-8)
Maintainer Robin K. S. Hankin hankin.robin@gmail.com
Description Provides functionality for working with tensors, alternating tensors, wedge products, Stokes's theorem, and related concepts from the exterior calculus. Functionality for Grassman algebra is provided. The canonical reference would be: M. Spivak (1965, ISBN:0-8053-9021-9) `Calculus on Manifolds".
License GPL-2
LazyData yes
<pre>URL https://github.com/RobinHankin/stokes</pre>
BugReports https://github.com/RobinHankin/stokes/issues RdMacros mathjaxr R topics documented:
stokes-package Alt as.1form as.1form coeffs consolidate contract cross dovs 1 dx 1

2 stokes-package

	hodge	13
	inner	14
	issmall	15
	keep	16
	kform	17
	kinner	19
	ktensor	20
	Ops.kform	22
	print.stokes	23
	rform	24
	scalar	25
	symbolic	27
	transform	28
	vector_cross_product	30
	volume	31
	wedge	32
	zap	33
	zero	34
Index		36

stokes-package

The Exterior Calculus

Description

Provides functionality for working with tensors, alternating tensors, wedge products, Stokes's theorem, and related concepts from the exterior calculus. Functionality for Grassman algebra is provided. The canonical reference would be: M. Spivak (1965, ISBN:0-8053-9021-9) "Calculus on Manifolds".

Details

The DESCRIPTION file:

Package: stokes
Type: Package

Title: The Exterior Calculus

Version: 1.1-3

Depends: spray (>= 1.0-18), R (>= 3.5.0)

Suggests: knitr, Deriv, testthat, markdown, rmarkdown, emulator

VignetteBuilder: knitr

Imports: permutations (>= 1.0-4), partitions, methods, mathjaxr, disordR (>= 0.0-8)

Authors@R: person(given=c("Robin", "K. S."), family="Hankin", role = c("aut", "cre"), email="hankin.robin@gma

Maintainer: Robin K. S. Hankin hankin.robin@gmail.com

Description: Provides functionality for working with tensors, alternating tensors, wedge products, Stokes's theorem

License: GPL-2 LazyData: yes

URL: https://github.com/RobinHankin/stokes
BugReports: https://github.com/RobinHankin/stokes/issues

RdMacros: mathjaxr

Author: Robin K. S. Hankin [aut, cre] (https://orcid.org/0000-0001-5982-0415)

stokes-package 3

Index of help topics:

Alt Alternating multilinear forms

Ops.kform Arithmetic Ops Group Methods for 'kform' and

'ktensor' objects

as.1form Coerce vectors to 1-forms

coeffs Extract and manipulate coefficients consolidate Various low-level helper functions

contract Contractions of k-forms cross Cross products of k-tensors

dovs Dimension of the underlying vector space

dxElementary formshodgeHodge star operatorinnerInner product operator

issmall Is a form zero to within numerical precision?

keep or drop variables

kform k-forms

kinner Inner product of two kforms

ktensor k-tensors

print.stokes Print methods for k-tensors and k-forms

rform Random kforms and ktensors

scalar Lose attributes stokes-package The Exterior Calculus

symbolic Symbolic form

transform Linear transforms of k-forms vector_cross_product The Vector cross product

volume The volume element wedge Wedge products

zap Zap small values in k-forms and k-tensors

zeroform Zero tensors and zero forms

Generally in the package, arguments that are k-forms are denoted K, k-tensors by U, and spray objects by S. Multilinear maps (which may be either k-forms or k-tensors) are denoted by M.

Author(s)

NA

Maintainer: Robin K. S. Hankin hankin.robin@gmail.com

References

- J. H. Hubbard and B. B. Hubbard 2015. *Vector calculus, linear algebra and differential forms:* a unified approach. Ithaca, NY.
- M. Spivak 1971. Calculus on manifolds, Addison-Wesley.

See Also

spray

```
## Some k-tensors:
U1 <- as.ktensor(matrix(1:15,5,3))</pre>
```

4 Alt

```
U2 <- as.ktensor(cbind(1:3,2:4),1:3)
## Coerce a tensor to functional form, here mapping V^3 -> R (here V=R^15):
as.function(U1)(matrix(rnorm(45),15,3))
## Tensor cross-product is cross() or %X%:
U1 %X% U2
## A k-form is an alternating k-tensor:
K1 <- as.kform(cbind(1:5,2:6),rnorm(5))</pre>
K2 <- kform_general(3:6,2,1:6)</pre>
K3 <- rform(9,3,9,runif(9))</pre>
## The distributive law is true
(K1 + K2) ^ K3 == K1 ^ K3 + K2 ^ K3 \# TRUE to numerical precision
## Wedge product is associative (non-trivial):
(K1 ^ K2) ^ K3
K1 ^ (K2 ^ K3)
## k-forms can be coerced to a function and wedge product:
f <- as.function(K1 ^ K2 ^ K3)</pre>
## E is a a random point in V^k:
E <- matrix(rnorm(63),9,7)</pre>
## f() is alternating:
f(E)
f(E[,7:1])
## The package blurs the distinction between symbolic and numeric computing:
dx <- as.kform(1)</pre>
dy <- as.kform(2)</pre>
dz <- as.kform(3)</pre>
dx ^ dy ^ dz
K3 ^ dx ^ dy ^ dz
```

Alt

Alternating multilinear forms

Description

Converts a k-tensor to alternating form

Usage

```
Alt(S,give_kform)
```

Alt 5

Arguments

S A multilinear form, an object of class ktensor

give_kform Boolean, with default FALSE meaning to return an alternating k-tensor [that is, an object of class ktensor that happens to be alternating] and TRUE meaning to

return a k-form [that is, an object of class kform]

Details

Given a k-tensor T, we have

$$Alt(T) (v_1, \dots, v_k) = \frac{1}{k!} \sum_{\sigma \in S_k} sgn(\sigma) \cdot T (v_{\sigma(1)}, \dots, v_{\sigma(k)})$$

Thus for example if k = 3:

$$Alt(T) (v_1, v_2, v_3) = \frac{1}{6} \begin{pmatrix} +T (v_1, v_2, v_3) & -T (v_1, v_3, v_2) \\ -T (v_2, v_1, v_3) & +T (v_2, v_3, v_1) \\ +T (v_3, v_1, v_2) & -T (v_3, v_2, v_1) \end{pmatrix}$$

and it is reasonably easy to see that Alt(T) is alternating, in the sense that

$$Alt(T) (v_1, \dots, v_i, \dots, v_j, \dots, v_k) = -Alt(T) (v_1, \dots, v_j, \dots, v_i, \dots, v_k)$$

Function Alt() is intended to take and return an object of class ktensor; but if given a kform object, it just returns its argument unchanged.

A short vignette is provided with the package: type vignette("Alt") at the commandline.

Value

Returns an alternating k-tensor. To work with k-forms, which are a much more efficient representation of alternating tensors, use as.kform().

Author(s)

Robin K. S. Hankin

See Also

kform

```
(X <- ktensor(spray(rbind(1:3),6)))
Alt(X)
Alt(X,give_kform=TRUE)

S <- as.ktensor(expand.grid(1:3,1:3),rnorm(9))
S
Alt(S)
issmall(Alt(S) - Alt(Alt(S))) # should be TRUE; Alt() is idempotent</pre>
```

6 as.1form

```
a <- rtensor()
V <- matrix(rnorm(21),ncol=3)
LHS <- as.function(Alt(a))(V)
RHS <- as.function(Alt(a,give_kform=TRUE))(V)
c(LHS=LHS,RHS=RHS,diff=LHS-RHS)</pre>
```

as.1form

Coerce vectors to 1-forms

Description

Given a vector, return the corresponding 1-form; the exterior derivative of a 0-form (that is, a scalar function). Function grad() is a synonym.

Usage

```
as.1form(v)
grad(v)
```

Arguments

V

A vector with element i being $\partial f/\partial x_i$

Details

The exterior derivative of a k-form ϕ is a (k+1)-form $d\phi$ given by

$$\mathbf{d}\phi\left(P_{\mathbf{x}}\left(\mathbf{v}_{i},\ldots,\mathbf{v}_{k+1}\right)\right) = \lim_{h \to 0} \frac{1}{h^{k+1}} \int_{\partial P_{\mathbf{x}}\left(h\mathbf{v}_{1},\ldots,h\mathbf{v}_{k+1}\right)} \phi$$

We can use the facts that

$$\mathbf{d}\left(f\,dx_{i_1}\wedge\cdots\wedge dx_{i_k}\right) = \mathbf{d}f\wedge dx_{i_1}\wedge\cdots\wedge dx_{i_k}$$

and

$$\mathbf{d}f = \sum_{j=1}^{n} (D_j f) \ dx_j$$

to calculate differentials of general k-forms. Specifically, if

$$\phi = \sum_{1 \le i_i < \dots < i_k \le n} a_{i_1 \dots i_k} dx_{i_1} \wedge \dots \wedge dx_{i_k}$$

then

$$\mathbf{d}\phi = \sum_{1 \le i_i < \dots < i_k \le n} \left[\sum_{j=1}^n D_j a_{i_1 \dots i_k} dx_j \right] \wedge dx_{i_1} \wedge \dots \wedge dx_{i_k}.$$

The entry in square brackets is given by grad(). See the examples for appropriate R idiom.

coeffs 7

Value

A one-form

Author(s)

Robin K. S. Hankin

See Also

kform

Examples

```
as.1form(1:9) # note ordering of terms
as.1form(rnorm(20))
grad(c(4,7)) ^ grad(1:4)
```

coeffs

Extract and manipulate coefficients

Description

Extract and manipulate coefficients of ktensor and kform objects; this using the methods of the **spray** package.

Details

To see the coefficients of a kform or ktensor object, use coeffs(), which returns a disord object (this is actually spray::coeffs()). Replacement methods also use the methods of the **spray** package.

Author(s)

Robin K. S. Hankin

```
(a <- kform_general(5,2,1:10))
coeffs(a) # a disord object
coeffs(a)[coeffs(a)%2==1] <- 100 # replace every odd coeff with 100
a
coeffs(a*0)</pre>
```

8 consolidate

consolidate

Various low-level helper functions

Description

Various low-level helper functions used in Alt() and kform()

Usage

```
consolidate(S)
kill_trivial_rows(S)
include_perms(S)
kform_to_ktensor(S)
```

Arguments

S

Object of class spray

Details

Low-level helper functions.

- Function consolidate() takes a spray object, and combines any rows that are identical up to a permutation, respecting the sign of the permutation
- Function kill_trivial_rows() takes a spray object and deletes any rows with a repeated entry (which have k-forms identically zero)
- Function include_perms() replaces each row of a spray object with all its permutations, respecting the sign of the permutation
- Function ktensor_to_kform() coerces a k-form to a k-tensor

Value

The functions documented here all return a spray object.

Author(s)

Robin K. S. Hankin

See Also

```
ktensor,kform,Alt
```

```
(S <- spray(matrix(c(1,1,2,2,1,3,3,1,3,5),ncol=2,byrow=TRUE),1:5))
kill_trivial_rows(S)  # (rows 1 and 3 killed, repeated entries)
consolidate(S)  # (merges rows 2 and 4)
include_perms(S)  # returns a spray object, not alternating tensor.</pre>
```

contract 9

contract

Contractions of k-forms

Description

A contraction is a natural linear map from k-forms to k-1-forms.

Usage

```
contract(K,v,lose=TRUE)
contract_elementary(o,v)
```

Arguments

K	A k-form
0	Integer-valued vector corresponding to one row of an index matrix
lose	Boolean, with default TRUE meaning to coerce a 0-form to a scalar and FALSE meaning to return the formal $0\text{-}\mathrm{form}$
V	A vector; in function ${\tt contract()}$, if a matrix, interpret each column as a vector to contract with

Details

Given a k-form ϕ and a vector \mathbf{v} , the contraction $\phi_{\mathbf{v}}$ of ϕ and \mathbf{v} is a k-1-form with

$$\phi_{\mathbf{v}}\left(\mathbf{v}^{1},\ldots,\mathbf{v}^{k-1}\right) = \phi\left(\mathbf{v},\mathbf{v}^{1},\ldots,\mathbf{v}^{k-1}\right)$$

provided k > 1; if k = 1 we specify $\phi_{\mathbf{v}} = \phi(\mathbf{v})$.

Function contract_elementary() is a low-level helper function that translates elementary k-forms with coefficient 1 (in the form of an integer vector corresponding to one row of an index matrix) into its contraction with \mathbf{v} .

There is an extensive vignette in the package, vignette("contract").

Value

Returns an object of class kform.

Author(s)

Robin K. S. Hankin

References

Steven H. Weintraub 2014. "Differential forms: theory and practice", Elsevier (Definition 2.2.23, chapter 2, page 77).

See Also

wedge,lose

10 cross

Examples

```
contract(as.kform(1:5),1:8)
contract(as.kform(1),3)  # 0-form

## Now some verification [takes ~10s to run]:
#0 <- kform(spray(t(replicate(2, sample(9,4))), runif(2)))
#V <- matrix(rnorm(36),ncol=4)
#jj <- c(
# as.function(o)(V),
# as.function(contract(o,V[,1,drop=TRUE]))(V[,-1]), # scalar
# as.function(contract(o,V[,1:2]))(V[,-(1:2),drop=FALSE]),
# as.function(contract(o,V[,1:3]))(V[,-(1:3),drop=FALSE]),
# as.function(contract(o,V[,1:4],lose=FALSE))(V[,-(1:4),drop=FALSE])
#)

#print(jj)
#max(jj) - min(jj) # zero to numerical precision</pre>
```

cross

Cross products of k-tensors

Description

Cross products of k-tensors

Usage

```
cross(U, ...)
cross2(U1,U2)
```

Arguments

U,U1,U2Object of class ktensorFurther arguments, currently ignored

Details

Given a k-tensor S and an l-tensor T, we can form the cross product $S \otimes T$, defined as

$$S \otimes T(v_1, ..., v_k, v_{k+1}, ..., v_{k+l}) = S(v_1, ..., v_k) \cdot T(v_{k+1}, ..., v_{k+l}).$$

Package idiom for this includes cross(S,T) and S %X% T; note that the cross product is not commutative. Function cross() can take any number of arguments (the result is well-defined because the cross product is associative); it uses cross2() as a low-level helper function.

Value

The functions documented here all return a spray object.

dovs 11

Note

The binary form %X% uses uppercase X to avoid clashing with %x% which is the Kronecker product in base R.

Author(s)

Robin K. S. Hankin

References

Spivak 1961

See Also

ktensor

Examples

```
(A <- ktensor(spray(matrix(c(1,1,2,2,3,3),2,3,byrow=TRUE),1:2)))
(B <- ktensor(spray(10+matrix(4:9,3,2),5:7)))
cross(A,B)

A %X% B - B %X% A

Va <- matrix(rnorm(9),3,3)
Vb <- matrix(rnorm(38),19,2)

LHS <- as.function(A %X% B)(cbind(rbind(Va,matrix(0,19-3,3)),Vb))
RHS <- as.function(A)(Va) * as.function(B)(Vb)

c(LHS=LHS,RHS=RHS,diff=LHS-RHS)</pre>
```

dovs

Dimension of the underlying vector space

Description

A k-form $\omega \in \Lambda^k(V)$ maps V^k to the reals, where $V = \mathcal{R}^n$. Function dovs() returns n, the dimensionality of the underlying vector space. The function itself is almost trivial, returning the maximum of the index matrix.

Usage

```
dovs(K)
```

Arguments

Κ

A k-form

dx

Value

Returns a non-negative integer

Author(s)

Robin K. S. Hankin

Examples

```
dovs(rform())
table(replicate(20,dovs(rform(3))))
```

dx

Elementary forms

Description

Objects dx, dy and dz are the three elementary one-forms on three-dimensional space. These objects can be generated by running script 'vignettes/dx.Rmd', which includes some further discussion and technical documentation and creates file 'dx.rda' which resides in the data/ directory.

The default method includes options to print these objects more intuitively than the default. Use

```
options(kform_symbolic_print = "dx")
```

.

Usage

```
data(dx)
```

Details

See the vignette for an extended discussion.

Author(s)

Robin K. S. Hankin

References

• M. Spivak 1971. _Calculus on manifolds_, Addison-Wesley

See Also

```
d,print.kform
```

hodge 13

Examples

```
dx
hodge(dx)
hodge(dx,3)

options(kform_symbolic_print = 'dx')  # shows dx dy dz
dx
dx^dz
hodge(dx,3)

options(kform_symbolic_print = NULL)  # revert to default
```

hodge

Hodge star operator

Description

Given a k-form, return its Hodge dual

Usage

```
hodge(K, n=dovs(K), g, lose=TRUE)
```

Arguments

K	Object of class kform
n	Dimensionality of space, defaulting the the largest element of the index
g	Diagonal of the metric tensor, with missing default being the standard metric of the identity matrix. Currently, only entries of ± 1 are accepted
lose	Boolean, with default TRUE meaning to coerce to a scalar if appropriate

Value

Given a k-form, in an n-dimensional space, return a (n-k)-form.

Note

Most authors write the Hodge dual of ψ as $*\psi$ or $*\psi$, but Weintraub uses $\psi*$.

Author(s)

Robin K. S. Hankin

See Also

wedge

14 inner

Examples

```
(o <- kform_general(5,2,1:10))
hodge(o)

Faraday <- kform_general(4,2,runif(6)) # Faraday electromagnetic tensor
minsk <- c(-1,1,1,1) # Minkowski metric
hodge(Faraday,g=minsk)
Faraday==Faraday|>hodge(g=minsk)|>hodge(g=minsk)|>hodge(g=minsk)|>hodge(g=minsk)|>hodge(g=minsk)|>hodge(dx,3) == dy^dz

## Some edge-cases:
hodge(scalar(1),2)
hodge(zero(5),9)
hodge(volume(5))
hodge(volume(5),lose=TRUE)
hodge(scalar(7),n=9)
```

inner

Inner product operator

Description

The inner product

Usage

inner(M)

Arguments

М

square matrix

Details

The inner product of two vectors \mathbf{x} and \mathbf{y} is usually written $\langle \mathbf{x}, \mathbf{y} \rangle$ or $\mathbf{x} \cdot \mathbf{y}$, but the most general form would be $\mathbf{x}^T M \mathbf{y}$ where M is a matrix. Noting that inner products are multilinear, that is $\langle \mathbf{x}, a\mathbf{y} + b\mathbf{z} \rangle = a \langle \mathbf{x}, \mathbf{y} \rangle + b \langle \mathbf{x}, \mathbf{z} \rangle$ and $\langle a\mathbf{x} + b\mathbf{y}, \mathbf{z} \rangle = a \langle \mathbf{x}, \mathbf{z} \rangle + b \langle \mathbf{y}, \mathbf{z} \rangle$, we see that the inner product is indeed a multilinear map, that is, a tensor.

Given a square matrix M, function inner(M) returns the 2-form that maps \mathbf{x}, \mathbf{y} to $\mathbf{x}^T M \mathbf{y}$. Nonsquare matrices are effectively padded with zeros.

A short vignette is provided with the package: type vignette("inner") at the commandline.

Value

Returns a k-tensor, an inner product

issmall 15

Author(s)

Robin K. S. Hankin

See Also

kform

Examples

```
inner(diag(7))
inner(matrix(1:9,3,3))

## Compare the following two:
Alt(inner(matrix(1:9,3,3)))  # An alternating k tensor
as.kform(inner(matrix(1:9,3,3))) # Same thing coerced to a kform

f <- as.function(inner(diag(7)))
X <- matrix(rnorm(14),ncol=2)  # random element of (R^7)^2
f(X) - sum(X[,1]*X[,2]) # zero to numerical precision

## verify positive-definiteness:
g <- as.function(inner(crossprod(matrix(rnorm(56),8,7))))
stopifnot(g(kronecker(rnorm(7),t(c(1,1))))>0)
```

issmall

Is a form zero to within numerical precision?

Description

Given a k-form, return TRUE if it is "small"

Usage

```
issmall(M, tol=1e-8)
```

Arguments

M Object of class kform or ktensor tol Small tolerance, defaulting to 1e-8

Value

Returns a logical

Author(s)

Robin K. S. Hankin

16 keep

Examples

```
o <- kform_general(4,2,runif(6))
M <- matrix(rnorm(36),6,6)

discrepancy <- o - pullback(pullback(o,M),solve(M))
issmall(discrepancy) # should be TRUE
is.zero(discrepancy) # might be FALSE</pre>
```

keep

Keep or drop variables

Description

Keep or drop variables

Usage

```
keep(K, yes)
discard(K, no)
```

Arguments

K Object of class kform

yes, no Specification of dimensions to either keep (yes) or discard (no), coerced to a free

object

Details

Function keep(omega, yes) keeps the terms specified and discard(omega, no) discards the terms specified. It is not clear to me what these functions mean from a mathematical perspective.

Value

The functions documented here all return a kform object.

Author(s)

Robin K. S. Hankin

See Also

lose

```
(o <- kform_general(7,3,seq_len(choose(7,3)))) keep(o,1:4) # keeps only terms with dimensions 1-4 discard(o,1:2) # loses any term with a "1" in the index
```

kform 17

Description

Functionality for dealing with k-forms

Usage

```
kform(S)
as.kform(M,coeffs,lose=TRUE)
kform_basis(n, k)
kform_general(W,k,coeffs,lose=TRUE)
is.kform(x)
d(i)
## S3 method for class 'kform'
as.function(x,...)
```

Arguments

n	Dimension of the vector space $V = \mathbb{R}^n$
i	Integer
k	A k -form maps V^k to R
W	Integer vector of dimensions
M,coeffs	Index matrix and coefficients for a k-form
S	Object of class spray
lose	Boolean, with default TRUE meaning to coerce a 0-form to a scalar and FALSE meaning to return the formal 0-form
x	Object of class kform
	Further arguments, currently ignored

Details

A k-form is an alternating k-tensor. In the **stokes** package, k-forms are represented as sparse arrays (spray objects), but with a class of c("kform", "spray"). The constructor function kform() takes a spray object and returns a kform object: it ensures that rows of the index matrix are strictly nonnegative integers, have no repeated entries, and are strictly increasing. Function as.kform() is more user-friendly.

- kform() is the constructor function. It takes a spray object and returns a kform.
- as.kform() also returns a kform but is a bit more user-friendly than kform().
- kform_basis() is a low-level helper function that returns a matrix whose rows constitute a basis for the vector space $\Lambda^k(\mathbb{R}^n)$ of k-forms.
- kform_general() returns a kform object with terms that span the space of alternating tensors.
- is.kform() returns TRUE if its argument is a kform object.
- d() is an easily-typed synonym for as .kform(). The idea is that d(1) = dx, d(2)=dy, $d(5)=dx^5$, etc. Also note that, for example, $d(1:3)=dx^dy^dz$, the volume form.

18 kform

Recall that a k-tensor is a multilinear map from V^k to the reals, where $V = \mathbb{R}^n$ is a vector space. A multilinear k-tensor T is alternating if it satisfies

$$T(v_1, ..., v_i, ..., v_j, ..., v_k) = -T(v_1, ..., v_j, ..., v_i, ..., v_k)$$

In the package, an object of class kform is an efficient representation of an alternating tensor.

Function kform_basis() is a low-level helper function that returns a matrix whose rows constitute a basis for the vector space $\Lambda^k(\mathbb{R}^n)$ of k-forms:

$$\phi = \sum_{1 \le i_1 < \dots < i_k \le n} a_{i_1 \dots i_k} dx_{i_1} \wedge \dots \wedge dx_{i_k}$$

and indeed we have:

$$a_{i_1\dots i_k} = \phi\left(\mathbf{e}_{i_1},\dots,\mathbf{e}_{i_k}\right)$$

where e_j , $1 \le j \le k$ is a basis for V.

Value

All functions documented here return a kform object except as.function.kform(), which returns a function, and is.kform(), which returns a Boolean.

Note

Hubbard and Hubbard use the term "k-form", but Spivak does not.

Author(s)

Robin K. S. Hankin

References

Hubbard and Hubbard; Spivak

See Also

ktensor,lose

```
as.kform(cbind(1:5,2:6),rnorm(5))
kform_general(1:4,2,coeffs=1:6) # used in electromagnetism

K1 <- as.kform(cbind(1:5,2:6),rnorm(5))
K2 <- kform_general(5:8,2,1:6)
K1^K2 # or wedge(K1,K2)

d(1:3)
dx^dy^dz # same thing

d(sample(9)) # coeff is +/-1 depending on even/odd permutation of 1:9

f <- as.function(wedge(K1,K2))</pre>
```

kinner 19

kinner

Inner product of two kforms

Description

Given two k-forms α and β , return the inner product $\langle \alpha, \beta \rangle$. Here our underlying vector space V is \mathbb{R}^n .

The inner product is a symmetric bilinear form defined in two stages. First, we specify its behaviour on decomposable k-forms $\alpha = \alpha_1 \wedge \cdots \wedge \alpha_k$ and $\beta = \beta_1 \wedge \cdots \wedge \beta_k$ as

$$\langle \alpha, \beta \rangle = \det \left(\langle \alpha_i, \beta_j \rangle_{1 \le i, j \le n} \right)$$

and secondly, we extend to the whole of $\Lambda^k(V)$ through linearity.

Usage

kinner(o1,o2,M)

Arguments

o1,o2 Objects of class kform

M Matrix

Value

Returns a real number

Note

There is a vignette available: type vignette("kinner") at the command line.

Author(s)

Robin K. S. Hankin

See Also

hodge

20 ktensor

Examples

```
a <- (2*dx)^(3*dy)
b <- (5*dx)^(7*dy)
kinner(a,b)
det(matrix(c(2*5,0,0,3*7),2,2)) # mathematically identical, slight numerical mismatch
```

ktensor

k-tensors

Description

Functionality for k-tensors

Usage

```
ktensor(S)
as.ktensor(M,coeffs)
is.ktensor(x)
## S3 method for class 'ktensor'
as.function(x,...)
```

Arguments

M,coeffs	Matrix of indices and coefficients, as in spray(M, coeffs)
S	Object of class spray
X	Object of class ktensor
	Further arguments, currently ignored

Details

A k-tensor object S is a map from V^k to the reals R, where V is a vector space (here R^n) that satisfies multilinearity:

$$S(v_1, \ldots, av_i, \ldots, v_k) = a \cdot S(v_1, \ldots, v_i, \ldots, v_k)$$

and

$$S(v_1, \dots, v_i + v_i', \dots, v_k) = S(v_1, \dots, v_i, \dots, x_v) + S(v_1, \dots, v_i', \dots, v_k).$$

Note that this is *not* equivalent to linearity over V^{nk} (see examples).

In the **stokes** package, k-tensors are represented as sparse arrays (spray objects), but with a class of c("ktensor", "spray"). This is a natural and efficient representation for tensors that takes advantage of sparsity using **spray** package features.

Function as.ktensor() will coerce a *k*-form to a *k*-tensor via kform_to_ktensor().

ktensor 21

Value

All functions documented here return a ktensor object except as.function.ktensor(), which returns a function.

Author(s)

Robin K. S. Hankin

References

Spivak 1961

See Also

cross,kform,wedge

```
ktensor(rspray(4,powers=1:4))
as.ktensor(cbind(1:4,2:5,3:6),1:4)
## Test multilinearity:
k <- 4
n <- 5
u <- 3
## Define a randomish k-tensor:
S <- ktensor(spray(matrix(1+sample(u*k)%%n,u,k),seq_len(u)))</pre>
## And a random point in V^k:
E <- matrix(rnorm(n*k),n,k)</pre>
E1 <- E2 <- E3 <- E
x1 <- rnorm(n)</pre>
x2 <- rnorm(n)
r1 <- rnorm(1)
r2 <- rnorm(1)
# change one column:
E1[,2] <- x1
E2[,2] <- x2
E3[,2] < r1*x1 + r2*x2
f <- as.function(S)</pre>
r1*f(E1) + r2*f(E2) - f(E3) # should be small
## Note that multilinearity is different from linearity:
r1*f(E1) + r2*f(E2) - f(r1*E1 + r2*E2) # not small!
```

22 Ops.kform

Ops.kform

Arithmetic Ops Group Methods for kform and ktensor objects

Description

Allows arithmetic operators to be used for k-forms and k-tensors such as addition, multiplication, etc., where defined.

Usage

```
## $3 method for class 'kform'
Ops(e1, e2 = NULL)
## $3 method for class 'ktensor'
Ops(e1, e2 = NULL)
```

Arguments

e1,e2

Objects of class kform or ktensor

Details

The functions Ops.kform() and Ops.ktensor() pass unary and binary arithmetic operators ("+", "-", "*", "/" and "^") to the appropriate specialist function by coercing to spray objects.

For wedge products of k-forms, use wedge() or %^% or ^; and for cross products of k-tensors, use cross() or %X%.

Value

All functions documented here return an object of class kform or ktensor.

Note

A plain asterisk, "*" behaves differently for ktensors and kforms. Given two ktensors T1, T2, then "T1*T2" will return the their tensor cross product. This on the grounds that the idiom has only one natural interpretation. But its use is discouraged (use %X% or cross() instead). An asterisk can also be used to multiply a tensor by a scalar, as in T1*5.

An asterisk cannot be used to multiply two kforms K1, K2, as in K1*K2, which will always return an error. This on the grounds that it has no sensible interpretation in general and you probably meant to use a wedge product, K1*K2. Note that multiplication by scalars is acceptable, as in K1*6. Further note that K1*K2 returns an error even if one or both is a 0-form (or scalar), as in K1*scalar(3). This behaviour may change in the future.

In the package the caret ("^") evaluates the wedge product; note that %^% is also acceptable. Of course, if S is a kform object, it is very tempting [but inccorrect!] to interpret "S^3" as something like "S to the power 3". In package idiom, "S^3" is interpreted as S*3 = S+S+S. Further, if we interpret a caret as a power, idiom such as "2^S" becomes meaningless. See also the note at Ops.clifford in the **clifford** package.

Powers simply do not make sense for alternating forms: S %% S is zero identically. Here the caret is interpreted consistently as a wedge product, and if one of the factors is numeric it is interpreted as a zero-form (that is, a scalar). Thus $S^2 = 2^S = S + S$, and indeed $S^n = S + N$.

print.stokes 23

Powers are not implemented for ktensors on the grounds that a ktensor to the power zero is not defined.

Note that one has to take care with order of operations, as package idiom is not quite associative if we mix ^ with *:

```
dx ^ (6*dy) is perfectly acceptable, but
```

 $(dx ^6)*dy)$ will return an error, as will the unbracketed form $dx ^6 *dy$. In the second case we attempt to use an asterisk to multiply two k-forms, which triggers the error.

Author(s)

Robin K. S. Hankin

Examples

```
## dx_1 ^ dx_2 + 6dx_5 ^ dx_6:
as.kform(1) ^ as.kform(2) + 6*as.kform(5) ^ as.kform(6)

k1 <- kform_general(4,2,rnorm(6))
k2 <- kform_general(4,2,rnorm(6))

E <- matrix(rnorm(8),4,2)
as.function(k1+k2)(E)

## verify linearity, here 2*k1 + 3*k2:
as.function(2*k1+3*k2)(E)-(2*as.function(k1)(E) + 3*as.function(k2)(E))
## should be small</pre>
```

print.stokes

Print methods for k-tensors and k-forms

Description

Print methods for objects with options for printing in matrix form or multivariate polynomial form

Usage

```
## S3 method for class 'kform'
print(x, ...)
## S3 method for class 'ktensor'
print(x, ...)
```

Arguments

```
\mathbf{x} k-form or k-tensor ... Further arguments (currently ignored)
```

Details

The print method is designed to tell the user that an object is a tensor or a k-form. It prints a message to this effect (with special dispensation for zero tensors), then calls the spray print method.

24 rform

Value

Returns its argument invisibly.

Note

The print method asserts that its argument is a map from V^k to R with $V=R^n$. Here, n is the largest element in the index matrix. However, such a map naturally furnishes a map from $(R^m)^k$ to R provided that $m \geq n$ via the natural projection from R^n to R^m . Formally this would be $(x_1,\ldots,x_n)\mapsto (x_1,\ldots,x_n,0,\ldots,0)\in R^m$. In the case of the zero k-form or k-tensor, "n" is to be interpreted as "any $n\geq 0$ ".

By default, the print method uses the **spray** print methods, and as such respects the polyform option. However, setting polyform to TRUE can give misleading output, because **spray** interprets objects as multivariate polynomials not differential forms (and in particular uses the caret to signify powers).

It is much better to use options ktensor_symbolic_print or kform_symbolic_print instead. If these options are non-null, the print method uses as.symbolic() to give an alternate way of displaying k-tensors and k-forms. Set kform_symbolic_print to "dx" for output like "dx ^ dz" and "txyz" for output like "dt ^ dx", useful in relativistic physics with a Minkowski metric. More detail is given at symbolic.Rd and the dx vignette.

Author(s)

Robin K. S. Hankin

See Also

```
as.symbolic
```

Examples

```
rform()
rtensor()
## spray print options work:
options(polyform = TRUE)
rtensor()
## reset to default
options(polyform = FALSE)
```

rform

Random kforms and ktensors

Description

Random k-form objects and k-tensors, intended as quick "get you going" examples

scalar 25

Usage

```
rform(terms=9,k=3,n=7,coeffs,ensure=TRUE)
rtensor(terms=9,k=3,n=7,coeffs)
```

Arguments

terms Number of distinct terms

k,n A k-form maps V^k to R, where $V = R^n$

coeffs The coefficients of the form; if missing use seq_len(terms)

ensure Boolean with default TRUE meaning to ensure that the dovs() of the returned

value is in fact equal to n. If FALSE, sometimes the dovs() is strictly less than n

because of random sampling

Details

What you see is what you get, basically.

Note that argument terms is an upper bound, as the index matrix might contain repeats which are combined.

Value

All functions documented here return an object of class kform or ktensor.

Author(s)

Robin K. S. Hankin

Examples

```
rform()
rform() %^% rform()
rtensor() %X% rtensor()
rform() ^ dx
rform() ^ dx ^ dy
```

scalar

Lose attributes

Description

Scalars: 0-forms and 0-tensors

26 scalar

Usage

```
scalar(s,lose=FALSE)
is.scalar(M)
    Oform`(s,lose=FALSE)
## S3 method for class 'kform'
lose(M)
## S3 method for class 'ktensor'
lose(M)
```

Arguments

s A scalar value; a number

M Object of class ktensor or kform

lose In function scalar(), Boolean with TRUE meaning to return a normal scalar,

and default FALSE meaning to return a formal 0-form or 0-tensor

Details

A k-tensor (including k-forms) maps k vectors to a scalar. If k=0, then a 0-tensor maps no vectors to a scalar, that is, mapping nothing at all to a scalar, or what normal people would call a plain old scalar. Such forms are created by a couple of constructions in the package, specifically scalar(), kform_general(1,0) and contract(). These functions take a lose argument that behaves much like the drop argument in base extraction.

Function lose() takes an object of class ktensor or kform and, if of arity zero, returns the coefficient.

Note that function kform() always returns a kform object, it never loses attributes.

A 0-form is not the same thing as a zero tensor. A 0-form maps V^0 to the reals; a scalar. A zero tensor maps V^k to zero.

Value

The functions documented here return an object of class kform or ktensor, except for is.scalar(), which returns a Boolean.

Author(s)

Robin K. S. Hankin

See Also

zeroform

```
o <- scalar(5)
o
lose(o)
kform_general(1,0)
kform_general(1,0,lose=FALSE)</pre>
```

symbolic 27

symbolic

Symbolic form

Description

Returns a character string representing k-tensor and k-form objects in symbolic form. Used by the print method if either option kform_symbolic_print or ktensor_symbolic_print is non-null.

Usage

as.symbolic(M,symbols=letters,d="")

Arguments

M Object of class kform or ktensor; a map from V^k to R, where $V=R^n$ symbols

A character vector giving the names of the symbols

String specifying the appearance of the differential operator

Details

Spivak (p89), in archetypically terse writing, states:

A function f is considered to be a 0-form and $f \cdot \omega$ is also written $f \wedge \omega$. If $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ is differentiable, then $Df(p) \in \Lambda^1(\mathbb{R}^n)$. By a minor modification we therefore obtain a 1-form df, defined by

$$df(p)(v_p) = Df(p)(v)$$

Let us consider in particular the 1-forms $d\pi^i$. It is customary to let x^i denote the function π^i (On \mathbb{R}^3 we often denote x^1 , x^2 , and x^3 by x, y, and z). This standard notation has obvious disadvantages but it allows many classical results to be expressed by formulas of equally classical appearance. Since $dx^i(p)(v_p) = d\pi^i(p)(v_p) = D\pi^i(p)(v) = v^i$, we see that $dx^1(p), \ldots, dx^n(p)$ is just the dual basis to $(e_1)_p, \ldots, (e_n)_p$. Thus every k-form ω can be written

$$\omega = \sum_{i_1 < \dots < i_k} \omega_{i_1, \dots, i_k} dx^{i_1} \wedge \dots \wedge dx^{i_k}.$$

Function as.symbolic() uses this format. For completeness, we add (p77) that k-tensors may be expressed in the form

$$\sum_{i_1,\ldots,i_k=1}^n a_{i_1,\ldots,i_k} \cdot \phi_{i_1} \otimes \cdots \otimes \phi_{i_k}.$$

and this form is used for k-tensors.

Value

Returns a noquote character string.

28 transform

Author(s)

Robin K. S. Hankin

See Also

```
print.stokes,dx
```

Examples

```
(o <- kform_general(3,2,1:3))
as.symbolic(o,d="d",symbols=letters[23:26])</pre>
```

transform

Linear transforms of k-forms

Description

Given a k-form, express it in terms of linear combinations of the dx_i

Usage

```
pullback(K,M)
stretch(K,d)
```

Arguments

K Object of class kform

Matrix of transformation

d Numeric vector representing the diagonal elements of a diagonal matrix

Details

Function pullback() calculates the pullback of a function. A vignette is provided at 'pullback.Rmd'. Suppose we are given a two-form

$$\omega = \sum_{i < j} a_{ij} dx_i \wedge dx_j$$

and relationships

$$dx_i = \sum_r M_{ir} dy_r$$

then we would have

$$\omega = \sum_{i < j} a_{ij} \left(\sum_{r} M_{ir} dy_r \right) \wedge \left(\sum_{r} M_{jr} dy_r \right).$$

transform 29

The general situation would be a k-form where we would have

$$\omega = \sum_{i_1 < \dots < i_k} a_{i_1 \dots i_k} dx_{i_1} \wedge \dots \wedge dx_{i_k}$$

giving

$$\omega = \sum_{i_1 < \dots < i_k} \left[a_{i_1, \dots, i_k} \left(\sum_r M_{i_1 r} dy_r \right) \wedge \dots \wedge \left(\sum_r M_{i_k r} dy_r \right) \right].$$

The transform() function does all this but it is slow. I am not 100% sure that there isn't a much more efficient way to do such a transformation. There are a few tests in tests/testthat and a discussion in the stokes vignette.

Function stretch() carries out the same operation but for M a diagonal matrix. It is much faster than transform().

Value

The functions documented here return an object of class kform.

Author(s)

Robin K. S. Hankin

References

S. H. Weintraub 2019. Differential forms: theory and practice. Elsevier. (Chapter 3)

See Also

wedge

```
# Example in the text:
K <- as.kform(matrix(c(1,1,2,3),2,2),c(1,5))
M <- matrix(1:9,3,3)
pullback(K,M)

# Demonstrate that the result can be complicated:
M <- matrix(rnorm(25),5,5)
pullback(as.kform(1:2),M)

# Numerical verification:
o <- rform(terms=2,n=5)

o2 <- pullback(pullback(o,M),solve(M))
max(abs(coeffs(o-o2))) # zero to numerical precision

# Following should be zero:
pullback(as.kform(1),M)-as.kform(matrix(1:5),c(crossprod(M,c(1,rep(0,4)))))

# Following should be TRUE:
issmall(pullback(o,crossprod(matrix(rnorm(10),2,5))))</pre>
```

30 vector_cross_product

```
# Some stretch() use-cases:

p <- rform()
p
stretch(p,seq_len(7))
stretch(p,c(1,0,0,1,1,1,1))  # kills dimensions 2 and 3</pre>
```

Description

The vector cross product is defined in elementary school for pairs of vectors in \mathbb{R}^3 as

$$\mathbf{u} \times \mathbf{v} = (u_2v_3 - u_3v_2, u_2v_3 - u_3v_2, u_2v_3 - u_3v_2).$$

However, this may easily be generalized to a product from n-1-tuples of vectors in \mathbb{R}^3 . Vignette vector_cross_product gives a discussion.

Usage

```
vector_cross_product(M)
```

Arguments

М

Matrix with one more row than column; columns are interpreted as vectors

Details

See vignette vector_cross_product

Value

Returns a vector

Author(s)

Robin K. S. Hankin

See Also

cross

volume 31

Examples

```
vector_cross_product(matrix(1:6,3,2))

M <- matrix(rnorm(30),6,5)
LHS <- hodge(as.1form(M[,1])^as.1form(M[,2])^as.1form(M[,3])^as.1form(M[,4])^as.1form(M[,5]))
RHS <- as.1form(vector_cross_product(M))
LHS-RHS  # zero to numerical precision

# Alternatively:
hodge(Reduce(`^`, sapply(seq_len(5), function(i){as.1form(M[,i])}, simplify=FALSE)))</pre>
```

volume

The volume element

Description

The volume element in n dimensions

Usage

```
volume(n)
is.volume(K,n=dovs(K))
```

Arguments

n Dimension of the space

K Object of class kform

Details

Spivak phrases it well (theorem 4.6, page 82):

If V has dimension n, it follows that $\Lambda^n(V)$ has dimension 1. Thus all alternating n-tensors on V are multiples of any non-zero one. Since the determinant is an example of such a member of $\Lambda^n(V)$ it is not surprising to find it in the following theorem:

Let v_1, \ldots, v_n be a basis for V and let $\omega \in \Lambda^n(V)$. If $w_i = \sum_{j=1}^n a_{ij}v_j$ then

$$\omega\left(w_{1},\ldots,w_{n}\right)=\det\left(a_{ij}\right)\cdot\omega\left(v_{1},\ldots v_{n}\right)$$

(see the examples for numerical verification of this).

Neither the zero k-form, nor scalars, are considered to be a volume element.

Value

Function volume() returns an object of class kform; function is.volume() returns a Boolean.

Author(s)

Robin K. S. Hankin

32 wedge

References

Spivak

See Also

```
zeroform,as.1form,dovs
```

Examples

```
dx^dy^dz == volume(3)

p <- 1
for(i in 1:7){p <- p ^ as.kform(i)}
p
p == volume(7)  # should be TRUE

o <- volume(5)
M <- matrix(runif(25),5,5)
det(M) - as.function(o)(M)  # should be zero

is.volume(d(1) ^ d(2) ^ d(3) ^ d(4))
is.volume(d(1:9))</pre>
```

wedge

Wedge products

Description

Wedge products of k-forms

Usage

```
wedge2(K1,K2)
wedge(x, ...)
```

Arguments

```
K1,K2,x,... k-forms
```

Details

Wedge product of k-forms.

Value

The functions documented here return an object of class kform.

zap 33

Note

In general use, use wedge() or ^ or %^%, as documented under Ops. Function wedge() uses low-level helper function wedge2(), which takes only two arguments.

A short vignette is provided with the package: type vignette("wedge") at the commandline.

Author(s)

Robin K. S. Hankin

See Also

0ps

Examples

```
k1 <- as.kform(cbind(1:5,2:6),1:5)
k2 <- as.kform(cbind(5:7,6:8,7:9),1:3)
k3 <- kform_general(1:6,2)

a1 <- wedge2(k1,wedge2(k2,k3))
a2 <- wedge2(wedge2(k1,k2),k3)

is.zero(a1-a2)  # NB terms of a1, a2 in a different order!

# This is why wedge(k1,k2,k3) is well-defined. Can also use ^: k1 ^ k2 ^ k3</pre>
```

zap

Zap small values in k-forms and k-tensors

Description

Equivalent to zapsmall()

Usage

```
zap(X)
## S3 method for class 'kform'
zap(X)
## S3 method for class 'ktensor'
zap(X)
```

Arguments

Χ

Tensor or k-form to be zapped

Details

Given an object of class ktensor or kform, coefficients close to zero are 'zapped', i.e., replaced by '0', using base::zapsmall().

Note, zap() actually changes the numeric value, it is not just a print method.

34 zero

Value

Returns an object of the same class

Author(s)

Robin K. S. Hankin

Examples

```
S <- rform(7)
S == zap(S)</pre>
```

zero

Zero tensors and zero forms

Description

Correct idiom for generating zero k-tensors and k-forms

Usage

```
zeroform(n)
zerotensor(n)
```

Arguments

n

Arity of the k-form or k-tensor

Value

Returns an object of class kform or ktensor.

Note

Idiom such as as.ktensor(rep(1,n),0) and as.kform(rep(1,5),0) and indeed as.kform(1:5,0) is incorrect as the arity of the tensor is lost.

A 0-form is not the same thing as a zero tensor. A 0-form maps V^0 to the reals; a scalar. A zero tensor maps V^k to zero.

Author(s)

Robin K. S. Hankin

See Also

scalar

zero 35

```
zerotensor(5)
zeroform(3)

x <- rform(k=3)
x*0 == zeroform(3)  # should be true
x == x + zeroform(3)  # should be true

y <- rtensor(k=3)
y*0 == zerotensor(3)  # should be true
y == y+zerotensor(3)  # should be true

## Following idiom is plausible but fails because as.ktensor(coeffs=0)
## and as.kform(coeffs=0) do not retain arity:

## as.ktensor(1+diag(5)) + as.ktensor(rep(1,5),0)  # fails
## as.kform(matrix(1:6,2,3)) + as.kform(1:3,0)  # also fails</pre>
```

Index

* datasets	dx, 12, 28
dx, 12	dy (dx), 12
* package	dz (dx), 12
stokes-package, 2	
* symbolmath	general_kform(kform), 17
coeffs, 7	grad(as.1form), 6
Ops.kform, 22	
print.stokes, 23	Hodge (hodge), 13
%X% (cross), 10	hodge, 13, <i>19</i>
%^% (wedge), 32	
oform (scalar), 25	include_perms(consolidate), 8
or or in (scarar), 25	inner, 14
Alt, 4, 8	inner_product(inner), 14
as.1form, 6, 32	is.form(kform), 17
as.function.kform(kform), 17	is.kform(kform), 17
as.function.ktensor (ktensor), 20	is.ktensor(ktensor), 20
as.kform (kform), 17	is.scalar(scalar), 25
	is.tensor(ktensor),20
as.ktensor(ktensor), 20	is.volume(volume), 31
as.symbolic, 24	issmall, 15
as.symbolic(symbolic),27	
coeff (coeffs), 7	keep, 16
	kform, 5, 7, 8, 15, 17, 21
coeffs, 7	kform_basis(kform), 17
coeffs, kform-method (coeffs), 7	kform_general (kform), 17
coeffs, ktensor-method (coeffs), 7	kform_to_ktensor(consolidate), 8
coeffs.kform(coeffs),7	kill_trivial_rows(consolidate), 8
coeffs.ktensor(coeffs),7	kinner, 19
coeffs<- (coeffs), 7	ktensor, <i>8</i> , <i>11</i> , <i>18</i> , 20
<pre>coeffs<-,kform-method (coeffs), 7 coeffs<-,ktensor-method (coeffs), 7</pre>	
	lose, 9, 16, 18
coeffs <kform(coeffs),7< td=""><td>lose (scalar), 25</td></kform(coeffs),7<>	lose (scalar), 25
coeffs <ktensor(coeffs),7< td=""><td>lose_repeats (consolidate), 8</td></ktensor(coeffs),7<>	lose_repeats (consolidate), 8
consolidate, 8	0 13
contract, 9	Ops, 33
contract_elementary (contract), 9	Ops (Ops.kform), 22
cross, 10, 21, 30	Ops.kform, 22
cross2 (cross), 10	nalyform (print stakes) 22
d 12	polyform (print.stokes), 23
d, 12	print.kform, 12
d (kform), 17	print.kform(print.stokes), 23
discard (keep), 16	print.ktensor(print.stokes), 23
dovs, 11, 32	print.stokes, 23, 28
drop (scalar), 25	pull-back (transform), 28
drop.free (keep), 16	pullback(transform), 28

INDEX 37

```
push-forward (transform), 28
pushforward (transform), 28
retain (keep), 16
rform, 24
rkform (rform), 24
rktensor (rform), 24
rtensor (rform), 24
scalar, 25, 34
spray, 3
star (hodge), 13
stokes (stokes-package), 2
stokes-package, 2
stokes_symbolic_print(print.stokes), 23
\textit{stretch}\,(\textit{transform}),\, 28
symbolic, 27
transform, 28
value<- (coeffs), 7
vector\_cross\_product, 30
volume, 31
wedge, 9, 13, 21, 29, 32
wedge2 (wedge), 32
zap, 33
zapsmall (zap), 33
zaptiny (zap), 33
zero, 34
zeroform, 26, 32
zeroform (zero), 34
zerotensor (zero), 34
```