| Nome: |  |  |
|-------|--|--|
| Nº:   |  |  |
|       |  |  |



Departamento de Engenharia Informática Faculdade de Ciências e Tecnologia Universidade de Coimbra

## Multimédia (LEI)

20 de Junho de 2025 Exame Normal

Duração: 2h

|        | , .       |
|--------|-----------|
| Notas  | prévias:  |
| ITOLUS | pi cvius. |

| 1) | Consulta permitida: consulta fornecida ou slides das aulas teóricas (impressos e sem quaisquer notas, |
|----|-------------------------------------------------------------------------------------------------------|
|    | excepto marcadores de índice e highlights).                                                           |
| 2) | É permitido o uso de calculadora (não programável).                                                   |
| 3) | Qualquer tentativa de fraude conduzirá à anulação da prova para todos os intervenientes e activação   |
|    | do procedimento disciplinar da Universidade de Coimbra.                                               |

4) Escolha múltipla: as respostas erradas subtraem 25% da cotação da pergunta.
5) As cotações das questões poderão sofrer alterações ligeiras para beneficiar a maioria dos alunos.

|    | ,                                                                                                                                                                |                       |       | ,     |        | ,                |        | 0     | •     |        | ,     |                     |              |        |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------|-------|--------|------------------|--------|-------|-------|--------|-------|---------------------|--------------|--------|
| 1. | (5%) Uma imagem<br>MB. Qual a resoluçã                                                                                                                           | io provável o         | la me | sma   | ?      |                  |        |       |       |        |       |                     | dimensão     | de 1.4 |
|    | □ 640x480                                                                                                                                                        | □ 800x600             |       |       | 1024   | lx76             | 8      | ×     | Stan  | dard I | HD    | ☐ Full HD           |              |        |
| 2. | (5%) Para represe                                                                                                                                                |                       |       | = 57° | °, S = | 65%              | %, B = | = 559 | %, nc | o mode | elo d | e cor RGB (esca     | ala 0 a 255  | ), que |
|    | R = 140, G = 136<br>□ R = 140, G = 102                                                                                                                           | B = 49                |       |       |        | 255, (<br>140, ( |        |       |       |        |       | □ R = 255, G =      | = 136, B = 5 | 53     |
| 3. | (2.5%) Uma imag<br>( <b>perceptuais</b> ) que                                                                                                                    | · ·                   | -     |       |        |                  |        |       |       | . O ni | úmei  | ro máximo de        | cores dis    | tintas |
|    |                                                                                                                                                                  | □8                    | -     |       | 16     |                  |        |       | 256   |        |       | <b>≥</b> >256       |              |        |
| 4. | (5%) Considere uma imagem codificada através do codec JPEG. O conteúdo de um bloco 8x8 do canal Y é o apresentado abaixo. Qual o valor do coeficiente DC da DCT? |                       |       |       |        |                  |        |       |       |        |       |                     |              |        |
|    |                                                                                                                                                                  |                       | 0     | 0     | 150    | 150              | 150    | 150   | 150   | 150    |       |                     |              |        |
|    |                                                                                                                                                                  |                       | 0     |       |        | 150              |        |       |       |        |       |                     |              |        |
|    |                                                                                                                                                                  |                       |       |       |        | 150              |        |       |       |        |       |                     |              |        |
|    |                                                                                                                                                                  |                       | -     |       |        | 150              |        |       |       |        |       |                     |              |        |
|    |                                                                                                                                                                  |                       | 150   |       |        |                  |        |       |       | 0      |       |                     |              |        |
|    |                                                                                                                                                                  |                       | 150   |       |        |                  |        |       |       | 0      |       |                     |              |        |
|    |                                                                                                                                                                  |                       | 150   |       |        |                  |        |       |       | 0      |       |                     |              |        |
|    | □ 100                                                                                                                                                            | □ 200                 | 150   |       |        |                  | 150    |       | -     | 0      |       | <b>5</b> 000        |              |        |
|    | □ 100                                                                                                                                                            | □ 300                 |       | ⊔'    | 476.:  | 3                |        | Ц     | 600   |        |       | <b>⊠</b> 900        |              |        |
|    |                                                                                                                                                                  |                       |       |       |        |                  |        |       |       |        |       |                     |              |        |
| 5. | (2.5%) No codec <b>m</b>                                                                                                                                         | <b>p3</b> , a análise | em f  | requ  | ênci   | a é fe           | eita e | em q  | uant  | as ban | ıdas  | de frequência?      |              |        |
|    | □ 4                                                                                                                                                              | _ 8 □                 |       |       |        |                  |        |       | 32    |        |       | □ 11 <del>5</del> 2 |              |        |

| 6. (5%) Imagine que tem uma música PCM com qualidade de CD. Essa música é comprimida através codec AAC com taxa de compressão 15:1, resultando um ficheiro com 3.6 MB. Qual a duração da mús em causa? Considere 1K = 1000. |                                                               |                                                                      |                                                                                          |                                                                        |                                                                                                           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                             | □ 1m38s                                                       |                                                                      | □ 4m17s                                                                                  | <b>≥</b> 5m06s                                                         | □ 5m54s                                                                                                   |  |
| 7.                                                                                                                                                                                                                          | , 5. Sabendo que:                                             | i) o ficheiro será o $x_p[n+1] = \frac{1}{2}x[n]$ alores dos resíduo | codificado com o c<br>$  + \frac{1}{4}x[n-1] + \frac{1}{4}x$<br>s $e[n], n = 3, 4, 5$ (p | codec <u>FLAC</u> ; ii) e o $x[n-2]$ ( $x_p[n+1]$ é o oor essa ordem)? | $x[n] = \{0, 1, 2, 4, 2, 1\}, n = 0, 1,$ modelo de previsão utilizado é valor previsto para a amostra     |  |
| 8.                                                                                                                                                                                                                          | (2.5%) Nas frames ☐ 4:4:4 ☐ Todas as anterio                  |                                                                      | qual o esquema de<br>□ 4:2:2<br>□ Nenhuma d                                              | _                                                                      | utilizado? 🔀 4:2:0                                                                                        |  |
| 9.                                                                                                                                                                                                                          | (2.5%) As frames opção.                                       | I podem servir d                                                     | e referência a ou                                                                        | tras frames em qı                                                      | ue codec(s)? Escolha a melhor                                                                             |  |
|                                                                                                                                                                                                                             | □ MJPEG □ MPEG-1                                              |                                                                      | ☐ MPEG-2 e MPI<br>☐ MPEG-4 AVC                                                           | EG-4                                                                   | ĭ Em toda a família MPEG                                                                                  |  |
| 10                                                                                                                                                                                                                          | . (2.5%) Na família<br>canal?                                 | de codecs MPEG                                                       | , a análise para c                                                                       | ompensação de m                                                        | novimento é efectuada em que                                                                              |  |
|                                                                                                                                                                                                                             | □ P                                                           | □ Cb e Cr                                                            | □В                                                                                       | <b>∠</b> Y                                                             | ☐ Y, Cb e Cr                                                                                              |  |
| 11                                                                                                                                                                                                                          | . (5%) Um vídeo a 3<br>1 e N = 15, é comp<br>□ 9.2 : 1        |                                                                      | codec MPEG-1. Qu                                                                         |                                                                        | erminada pelos parâmetros M = ressão esperado?                                                            |  |
| 12.                                                                                                                                                                                                                         | sabe-se que existe                                            | em 340 vídeos re<br>ídeos, 202 dos qua<br>ure?                       | elevantes para a                                                                         | query em causa.                                                        | pesquisa baseada em exemplo,<br>Na pesquisa realizada, foram<br>a pesquisa realizada em termos<br>□ 83.6% |  |
| 13.                                                                                                                                                                                                                         | normalizadas no in                                            | ntervalo [0, 1]: F1<br>nínimo de 0.25 pa                             | = (0.6, 0.34), F2<br>ra utilização de fe                                                 | = (0.8, 0.22), F3 =<br>atures num sistem                               | es, (m, dp), para 3 features (0.26, 0.46). Assumindo que é na de MMIR, que features serão                 |  |
| 14.                                                                                                                                                                                                                         | (5%) A magnitude<br>[0, 200, 100, 150, 7<br>□ 240             |                                                                      |                                                                                          |                                                                        | apresenta os seguintes valores:<br>Hz?<br>□ 720                                                           |  |
| 15                                                                                                                                                                                                                          | . (2.5%) mp3 está p<br>□ CorePNG está pa<br>☑ MPEG-1 está pai | ıra MOV                                                              | mo:<br>□ MPEG-1 está p<br>□ AVI está para (                                              |                                                                        | □ MPEG-4 AVC está para AVI                                                                                |  |

16. (2.5%) Numa imagem JPEG, todos os píxeis de um dado bloco 8x8 são pretos. Sem fazer cálculos, indique o valor do coeficiente DC e do 1º coeficiente AC (varrimento em zig-zag) desse bloco. Justifique.

```
(10%) RGB = 0 (tudo preto) -> Y=0
(45%) DC = k x média da tonalidade = k x 0 = 0
(45%) AC = 0, uma vez que não há variações de tonalidades
```

17. (5%) Devido a um número elevado de queixas, a empresa PhotoLQ, retirou do mercado o seu último produto: uma máquina fotográfica digital com profundidade de cor true color que armazena as fotografias no formato GIF. Analise a causa do insucesso, referindo o que poderia ter sido feito para o minorar (mas mantendo o formato GIF).

(50%) Causa: GIF apenas suporta 256 cores (35%), o que é muito inferiror aos 16M cores possíveis com true color -> perda notória de qualidade, sobretudo se se usarem palestes estáticas (15%), como aparenta ser o caso.

(50%) Solução para minorar: Utilizar GIF com palestes adaptativas (15%), com as cores estatisticamente mais relevantes (10%), e dithering (15%), criando a ilusão de cores não presentes na palete (10%)

Outros: espaço ocupado (10%)

18. (5%) A máquina fotográfica Panasonic Lumix DMC-ZX1 permite a gravação de pequenos filmes no formato MOV. Esses vídeos são comprimidos com compensação de movimento?

(50%) Não se sabe (15%), dado que o formato MOV pode utilizar vários codecs (35%).

(25%) Se for um codec da família MPEG, suporta.

(25%) Se for o codec MJPEG, não suporta (na verdade é este o codec, pelo que não suporta).

19. (7.5%) O codec mp3 tira partido do mecanismo perceptual de mascaragem simultânea de som. Explique sucintamente em que consite, qual o modo de operação dessa funcionalidade no mp3 e qual a sua utilidade.

(40%) Mascaragem simultânea: um som de baixa intensidade na mesma banda crítica que um som de alta intensidade tende a não ser audível (ou audível com menos realce).

(30%) O mp3 tira partido desta funcionalidade reduzindo o número de bits de quantização dos coeficientes da MDCT.

(30%) Caso o ruído de quantização resultante esteja abaixo do limiar de mascaragem, o ruído não será ouvido. Assim, consegue-se comprimir o ficheiro, mantendo uma qualidade perceptualmente boa.

20. (10%) O Maestro Vítor de Almeida criou um ficheiro de 2 seg com a nota Lá tocada num diapasão (tom quase puro e com amplitude aproximadamente constante), com as seguintes características: som com qualidade de CD, monoaural e sem compressão. Em seguida, gravou o ficheiro em formato mp3 e AAC, com a mesma frequência de amostragem do original. Qual o impacto das características específicas dessa gravação na taxa de compressão alcançável, tendo em consideração os mecanismos de compressão possíveis em cada um dos codecs?

| compressão possíveis em cada um dos codecs?                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (35%) Tom puro:                                                                                                                                                                                                           |
| -> Uma só frequência fundamental (não há harmónicos, ou têm amplitude quase nula) -> não há mascaragem simultânea (por só haver um componente de frequência)                                                              |
| (30%) -> em cada janela, a MDCT apenas vai ter um pico (os restantes coeficientes serão nulos) -> muita compressão (praticamente não destrutiva), em qualquer dos casos                                                   |
| (35%) AAC: o método de Long Term Prediction é aplicado, pelo facto do sinal ser repetitivo (periódico e com amplitude quase constante) -> só é necessário codificar um período compressão ainda maior (só esta parte 40%) |
| Outros: Joint Stereo não aplicado por ser monoaural (5%)                                                                                                                                                                  |
|                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                           |

21. (10%) Em que consiste o vácuo semântico e qual o seu impacto (semantic gap) em sistemas de Multimedia Information Retrieval? De que maneira se pode estreitar esse vácuo?

(50%) Vácuo semântico: vazio de significado entre as features de baixo-nível (tipicamente utilizadas) e a cognição/compreensão humana (25%)

Só low-level -Z não se conseguem captar conteitos de alto-nível (12.5%)

Pesquisas com base em critérios de alto-nível podem, no entanto, ocasionar dificuldades, uma vez que:
-É difícil criar features computacionais que representem com precisão de conceitos de alto-nível (ex emoção) (12.5%)

| 50%1 | Estreita | г. |
|------|----------|----|

-Avançar a investigação e desenvolvimento de features de alto-nível mais rpecisas, e.g, através de técnicas de machine learning

-Aplicar técnicas de fusão de informação (e.g., aúdio e letra, aúdio e imagem, etc.) -> a combinação de várias fontes é mais informativa