Logic and Computer Design Fundamentals Chapter 5 – Counters

Charles Kime & Thomas Kaminski

© 2004 Pearson Education, Inc. Terms of Use

(Hyperlinks are active in View Show mode)

Counters

 <u>Counters</u> are sequential circuits which "count" through a specific state sequence. They can <u>count up</u>, <u>count</u> <u>down</u>, or <u>count through other fixed sequences</u>. Two distinct types are in common usage:

Ripple Counters

- Clock is connected to the flip-flop clock input on the LSB bit flip-flop
- For all other bits, a flip-flop output is connected to the clock input, thus circuit is not truly synchronous
- Output change is delayed more for each bit toward the MSB.
- Resurgent because of low power consumption

Synchronous Counters

- Clock is directly connected to the flip-flop clock inputs
- Logic is used to implement the desired state sequencing

Ripple Counter

• How does it work?

 When there is a positive edge on the clock input of A, A complements

• The clock input for flipflop B is the complemented output of flip-flop A

 When flip A changes from 1 to 0, there is a positive edge on the clock input of B causing B to complement

Clock

Ripple Counter (continued)

- These circuits are called *ripple counters* because each edge sensitive transition (positive in the example) causes a change in the next flip-flop's state.
- The changes "ripple" upward through the chain of flip-flops, i. e., each transition occurs after a clock-to-output delay from the stage before.

Ripple Counter: 4-bit Upward Counter

- Remember J-K toggles when both J and K are '1'
- The bubble on the clock means negative-edge triggered
- When Q0 goes from '1' to '0' (as if a negative-edge has been triggered to clock of Q1), Q1 toggles
- When Q1 goes from '1' to '0',Q2 toggles
- When Q2 goes from '1' to '0',
 Q3 toggles

Ripple Counter: 4-bit Upward Counter

- When Q0 goes from '1' to '0'

 (as if a negative-edge has been triggered to clock of Q1), Q1 toggles
- When Q1 goes from '1' to '0', Q2 toggles
- When Q2 goes from '1' to '0', Q3 toggles
- What about the last sequence: how it goes from '1111' to '0000'?

Upward	Counting	Sequence

Q ₃	Q ₂	Q ₁	Q ₀	_
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Synchronous Counters

• To eliminate the "ripple" effects, use a common clock for each flip-flop and a combinational circuit to generate the next state.

For an up-counter, use an incrementer =>

4-bit Synchronous Counter with J-K

	(a) JK Flip-F	lop	
Q (t)	Q(t+1)	J	к
0.	0	0	·x
0	1	1	x
1	0	X	1
1	1	x	0

		esent state	t			Next state				ı	Flip-flo	p inpu	ts		
Q ₃	Q ₂	Q ₁	Q ₀	Q ₃	Q ₂	Q ₁	Q ₀	J _{Q3}	K _{Q3}	J _{Q2}	K _{Q2}	J _{Q1}	K _{Q1}	J _{Q0}	Kqo
0	0	0	0	0	0	0	1	0	×	0	×	0	×	1	×
0	0	0	1	0	0	1	0	0	×	0	×	1	\times	×	1
0	0	1	0	0	0	1	1	0	×	0	×	×	0	1	×
0	0	1	1	0	1	0	0	0	×	1	×	×	1	×	1
0	1	0	0	0	1	0	1	0	×	\times	0	0	×	1	×
0	1	0	1	0	1	1	0	0	×	×	0	1	×	×	1
0	1	1	0	0	1	1	1	0	×	×	0	×	0	1	X
0	1	1	1	1	0	0	0	1	×	×	1	×	1	×	1
1	0	0	0	1	0	0	1	×	0	0	×	0	×	1	×
1	0	0	1	1	0	1	0	×	0	0	×	1	×	×	1
1	0	1	0	1	0	1	1	×	0	0	×	×	0	1	X
1	0	1	1	1	1	0	0	×	0	1	×	×	1	×	1
1	1	0	0	1	1	0	1	×	υ	×	0	0	×	1	×
1	1	0	1	1	1	1	0	×	0	X	0 .	1	×	×	1
1	1	1	0	1	1	1	1	×	0	×	0	X	0	1	×
1	1	1	1,	0	0	0	0	×	1	×	1	×	1	×	1

K-Maps

х	x	X	х
х	x	х	Х
		1	

$$K_{Q3} = Q_0Q_1Q_2$$

х	х	х	х
		1	
		1	
х	х	х	х

$$K_{Q2} = Q_0Q_1$$

$$J_{\mathbf{Q}2} = \mathbf{Q}_0 \mathbf{Q}_1$$

Х

Х

 $K_{Q1} = Q_0$

х

Х

Х

х

Equations

EN has been added to control the operation of the counter

$$\begin{split} J_{Q0} &= K_{Q0} = EN \\ J_{Q1} &= K_{Q1} = Q_0 \cdot EN \\ J_{Q2} &= K_{Q2} = Q_0 \cdot Q_1 \cdot EN \\ J_{Q3} &= K_{Q3} = Q_0 \cdot Q_1 \cdot Q_2 \cdot EN \end{split}$$

This relations could be generalized

$$J_{Qi} = K_{Qi} = Q_0 \cdot Q_1 \cdot Q_2 \cdot \dots \cdot Q_{i-1} \cdot EN$$

- A Carry Output (CO) has been added so that the counter could be extended to more stages
- The implementation might be positive/negative edge triggered

Count enable EN \mathbf{Q}_1 \mathbf{Q}_2 Q_3 Carry output CO Clock

Logic Diagram

Arbitrary Counter: Problem Statement

Design an arbitrary counter that repeatedly follows the following sequence:
0, 1, 2, 4, 5, 6, 0, 1, 2, 4, 5, 6, 0. . .

Arbitrary Counter: State Diagram

(b) State diagram

Arbitrary Counter: State Table

☐ TABLE 5-8
State Table and Flip-Flop Inputs for Counter

ī	Preser State		N	ext St	ate		F	ilp-Flo	op Inpo	ıts	
<u> </u>	В	С	A	В	С	J _A	K _A	JB	K _B	J _C	Κc
0	0	0	0	0	1	0	×	0	×	1	×
0	0	1	0	1	0	0	×	1	×	×	1
0	1	0	1	0	0	1	×	×	1	0	×
1	0	0	1	0	1	×	0	0	×	1	×
1	0	1	1	1	0	×	0	1	×	×	1
1	1	0	0	0	0	×	1	×	1	0	×

$$J_A = B$$
 $K_A = B$
 $J_B = C$ $K_B = 1$
 $J_C = \overline{B}$ $K_C = 1$

(a) JK Flip-Flop							
Q (t)	Q(t+1)	J	κ				
0	0	0	·x				
0	1	1	X				
1	0	X	1				
1	1	х	0				

Arbitrary Counter: Logic Diagram

$$J_A = B$$
 $K_A = B$
 $J_B = C$ $K_B = 1$
 $J_C = \overline{B}$ $K_C = 1$