Напоминание: \mathcal{A} нормальный оператор $\mathcal{A}\mathcal{A}^* = \mathcal{A}^*\mathcal{A}$

$$\forall x, y \in V \qquad (\mathcal{A}x, \mathcal{A}y) = (\mathcal{A}^*x, \mathcal{A}^*y)$$

Теорема 1 (Канонический вид матрицы нормального оператора в унитарном пространстве).

 $\mathcal{A} \in End(V), (V(\cdot, \cdot))$ унитарное пространство

 \mathcal{A} нормальный оператор $\Leftrightarrow \exists \ \underline{o.н.б.} \ V \ makoй, что матрица оператора <math>\mathcal{A}$ в этом базисе будет иметь диагональный вид.

$$\Lambda = diag(\lambda_1 \dots \lambda_n) = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}, \quad \lambda_i \in \mathbb{C}, npu \text{ этом}$$

матрица оператора \mathcal{A}^* , очевидно, также будет иметь диагональный вид

$$\overline{\Lambda} = diag(\overline{\lambda_1}, \dots \overline{\lambda_n}) = \begin{pmatrix} \overline{\lambda_1} & 0 \\ & \ddots & \\ 0 & \overline{\lambda_n} \end{pmatrix}$$

Замечание.

- 1. Очевидно, что о.н.б. состоит из с.в. (попарно-ортог. и нрмиров.) λ соотв. с.ч.
- 2. ∀ нормальный оператор в унитарном пр-ве является о.п.с. Обратное, вообще говоря, неверно. Не всякий о.п.с. имеет именно <u>о.н.б.</u>, в котором матрица опер. диагона.

Доказательство.

(
$$\Leftarrow$$
) очевидно, в о.н.б.
$$A^{\textcircled{*}} = A^* = \overline{A^T} = \overline{\Lambda^T} = diag(\overline{\lambda}_1 \dots \overline{\lambda}_n)$$

$$A^{\textcircled{*}} = AA^{\textcircled{*}} \Rightarrow \mathcal{A}$$
 нормальный оператор

$$(\Rightarrow)$$
 v_1 с.в. \mathcal{A} соотв. с.ч. $\lambda_1 \Rightarrow v_1$ с.в. \mathcal{A}^* с.ч. $\overline{\lambda}_1$

 $L:=span(v_1)$ инвариант. отн-но $\mathcal A$ и $\mathcal A^*\Rightarrow L^\perp$ инвар. отн-но $\mathcal A$ и $\mathcal A^*$

 $\Rightarrow \mathcal{A}|_{L^{\perp}}$ и $\mathcal{A}^*|_{L^{\perp}}$ останутся взаимно-сопряж. и нормальн.

Докажем м.м.и.: (по dimV=n)

- 1. база: n = 1 утв. очев.
- 2. инд. предпол. \square верно для n=k
- 3. инд. переход дока
эем что тогда верно n=k+1?

$$L = span(v_1)$$
 $V = L \oplus L^{\perp}$ $dimL^{\perp} = k \Rightarrow$ по инд. предпол.

$$(\mathcal{A}|_{L^{\perp}}$$
 и $\mathcal{A}^*|_{L^{\perp}}$ тоже нормальные) \exists о.н.б. $v_2, v_3, \ldots, v_{k+1}$ т.ч.

матрица \mathcal{A} будет иметь вид $diag(\lambda_1 \dots \lambda_{k+1})$,

а матрица $\mathcal{A}^* - diag(\overline{\lambda}_2 \dots \overline{\lambda}_{k+1})$

$$L \oplus L^{\perp} = V = span(v_1, v_2, \dots, v_{k+1})$$
 $Av_1 = \lambda_1 v_1$ попарно ортог. и нормир.

⇒ матрица будет иметь блочно-диагональный вид

Следствие 1.

 \mathcal{A} нормальный оператор в <u>унитарном</u> пр-ве $V\Leftrightarrow V=\bigoplus_{c, \cdot \iota}V_{\lambda}$ собств. подпр. $V_{\lambda}\perp V_{\mu}$ $\lambda \neq \mu$

Доказательство. Очевидно из теоремы.

Следствие 2. $A_{n\times n}$ $a_{ij}\in\mathbb{C}$ $A^*=\overline{A^T}$

 \forall норм. матрицы $A \ (AA^* = A^*A) \ \exists \ y$ нитарн. матрица $T \ (T^* = T^{-1}),$

$$m$$
.ч. $T^{-1}AT = \overline{T^T}AT = \Lambda = diag(\lambda_1 \dots \lambda_n)$, где λ_i с.ч. матрицы A

 \mathcal{A} оказательство. A в канонич. базисе \mathbb{C}^n — матрица оператора \mathcal{A}

$$A^{(*)} = A^* = \overline{A^T}$$

матрица соотв. \mathcal{A}^*

 $A^*A = AA^* \Rightarrow \mathcal{A}$ нормальн. \Rightarrow применяем теорему

 \exists о.н.б. $v_1 \dots v_n \leadsto T = T_{e \to v}$

т.к. о.н.б. $\overline{T^T} = T^* = T^{-1}$, т.е. T унитарн. \Rightarrow по формуле преобр. матрицы в новом базисе

$$A' = T^{-1}AT = \overline{T}^T AT = \Lambda = diag(\lambda_1 \dots \lambda_n)$$

 $\sqsupset V(\cdot,\cdot)$ евклидово про-во

не все корни хар. мн-на вещ. \Rightarrow не все корни это с.ч. оператора

$$(\underline{\text{cm. 7.6}})$$
 $V_{\mathbb C}$ – комплексификация V $\forall x,y\in V\leftrightarrow z=x+iy\in V_{\mathbb C}$ $e_1\dots e_n$ базис $V\to e_1\dots e_n$ базис $V_{\mathbb C}$ $v_1\dots v_k$ лин. нез. $\Leftrightarrow \overline{v}_1\dots \overline{v}_k$ лин. нез. $\overline{z}=x-iy$

Определение 1. Определим скалярное (псевдоскал.) пр-ве на $V_{\mathbb{C}}$:

Упр.: удовлетворить 1-4 свойства псевдоскал. пр-я $(V_{\mathbb{C}},(\cdot,\cdot))$ унит. пр-во

$$\underline{\mathrm{Vnp}}.: \overline{(z_1,z_2)} = (\overline{z}_1,\overline{z}_2) \qquad \forall z_1,z_2 \in V_{\mathbb{C}}$$

$$\mathcal{A} \in End(V)$$
 $\mathcal{A}_{\mathbb{C}} \in End(V)$ продолжение вещ. опер. \mathcal{A} на $V_{\mathbb{C}}$ $\mathcal{A}_{\mathbb{C}}(x+iy) = \mathcal{A}x + i\mathcal{A}y$

$$x,y\in V$$
 $e_1\dots e_n$ базис $V\leadsto e_1\dots e_n$ базис $V_{\mathbb C}$

$$\mathcal{A} \leftrightarrow A_{\text{вещ.}}$$
 $\mathcal{A}_{\mathbb{C}} \leftrightarrow A_{\text{вещ.}}$

Утверждение. $\overline{(\mathcal{A}_{\mathbb{C}})^* = (\mathcal{A}^*)_{\mathbb{C}}}$

Доказательство. $e_1 \dots e_n$ о.н.б. $V \Rightarrow e_1 \dots e_n$ базис $V_{\mathbb{C}}$

$$(e_k,e_j)_{\mathbb C}=(e_k+i\cdot \mathbb 0,e_j+i\cdot \mathbb 0)=(e_k,e_j)=\delta_{kj}\Rightarrow$$
 о.н.б. в $V_{\mathbb C}$

вV:

$$\mathcal{A} \leftrightarrow A$$
 $\mathcal{A}_{\mathbb{C}} \leftrightarrow A$

$$\mathcal{A}^* \leftrightarrow A^T = A^* \qquad (\mathcal{A}^*)_{\mathbb{C}} \leftrightarrow A^* = A^T$$

$$\mathcal{A}_{\mathbb{C}} \leftrightarrow A$$
 в о.н.б. $V_{\mathbb{C}} \Rightarrow (\mathcal{A}_{\mathbb{C}})^* \leftrightarrow \overline{A^T}_{\text{вещ.}} = A^T = A^*$

 \Rightarrow матрицы операторов $(\mathcal{A}_{\mathbb{C}})^*$ и $(\mathcal{A}^*)_{\mathbb{C}}$ совпадают в о.н.б. \Rightarrow

$$\Rightarrow$$
 совпадают в любом базисе $\Rightarrow (\mathcal{A}_{\mathbb{C}})^* = (\mathcal{A}^*)_{\mathbb{C}}$

Следствие: \mathcal{A} норм. опер. в евклид. $V\Rightarrow\mathcal{A}_{\mathbb{C}}$ норм. опер. в $V_{\mathbb{C}}$ (очевидно).

Теорема 2 (Канонический вид матрицы нормального оператора в евклидовом пр-ве).

$$\mathcal{A} \in End(V), (V, (\cdot, \cdot))$$
 евкл. пр-во

 ${\cal A}$ норм. onep. $\Leftrightarrow \exists \ o.н. b. \ V \ makoŭ, что матрица оператора <math>{\cal A}$ в этом basuce by dem иметь bлочнодиагональный вид:

$$\Lambda = \begin{pmatrix} \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_k \end{pmatrix} & & & 0 \\ & & & \begin{pmatrix} \Phi_1 \end{pmatrix} & & \\ & & & \ddots & \\ & 0 & & & \begin{pmatrix} \Phi_m \end{pmatrix} \end{pmatrix}, \ \textit{rde} \qquad \qquad \Phi_j = \begin{pmatrix} \alpha_j & \beta_j \\ -\beta_j & \alpha_j \end{pmatrix} \quad \alpha_j, \beta_j \in \mathbb{R}$$

При этом матрица оператора \mathcal{A}^* , очевидно, также будет иметь блочно-диаг. вид: Λ^T

3амечание. Очевидно, $\lambda_1 \dots \lambda_k$ собств. ч. $\mathcal A$ и первые k векторов базиса – это о. н. с. в.

Доказательство. (\Leftarrow)

$$\Lambda\Lambda^T=\Lambda^T\Lambda$$
 (упр.)
$$\updownarrow \qquad \text{ о.н.б. } A^{\stackrel{\bullet}{(*)}}=A^*=A^T \text{ т.к. евкл.} \qquad \Rightarrow \mathcal{A} \text{ норм. опер.}$$
 $AA^*=A^*A$

$$(\Rightarrow)$$
 \mathcal{A} норм. опер. \rightarrow $\mathcal{A}_{\mathbb{C}}$ продолж. \mathcal{A} на $V_{\mathbb{C}} \underset{\text{с.не-вие 1}}{\Leftrightarrow} V_{\mathbb{C}} = \bigoplus_{\lambda \text{ с.н. } \mathcal{A}_{\mathbb{C}}} V_{\lambda}$ $V_{\lambda \perp \nu_{\mu}}$

т.е. все корни

$$\chi_{A_{\mathbb{C}}}$$

$$\chi_{\mathcal{A}}(t) = \chi_{\mathcal{A}_{\mathbb{C}}}(t)$$
 (cm. 7.6)

1.
$$\lambda \in \mathbb{R}$$
 корень $\chi_{\mathcal{A}}$ $(\chi_{\mathcal{A}}(\lambda) = 0) \Rightarrow \lambda$ с.ч. $\mathcal{A}_{\mathbb{C}}$ с.в. $\omega = \underbrace{u + iv}_{u, v \text{ с.в. для } \mathcal{A}} (u, v \in Ker(\mathcal{A} - \lambda \mathcal{E}))$

$$\mathcal{A}_{\mathbb{C}}\omega = \mathcal{A}u + i\mathcal{A}v = \lambda u + i\lambda v = \lambda(u+iv) = \lambda\omega$$

$$V_{\lambda} = (Ker(\mathcal{A}-\lambda\mathcal{E}))_{\mathbb{C}} \qquad V_{\lambda} = span(v_{1}\dots v_{k}) \qquad v_{j} \text{ попарно-орт. и норм.}$$

$$\ker(\mathcal{A}-\lambda\mathcal{E}) = span(v_{1}\dots v_{k})$$

$$\ker(\mathcal{A}-\lambda\mathcal{E}) = span(v_{1}\dots v_{k})$$

$$\uparrow_{\mathbb{R}}$$

$$\mu = \alpha + i\beta \in \mathbb{C} \qquad \alpha,\beta \in \mathbb{R} \ (\beta \neq 0) \qquad \chi_{\mathcal{A}}(\mu) = 0 \qquad \Rightarrow \chi_{\mathcal{A}}(\overline{\mu}) = 0$$

$$\uparrow_{\text{тоже корень, причем}} \overline{\mu} \text{ тоже корень, причем}$$

$$\chi_{\mathcal{A}}(\mu) = 0 \qquad \Rightarrow \chi_{\mathcal{A}}(\overline{\mu}) = 0$$

$$\chi_{\mathcal{A}}(\mu) = 0 \qquad \uparrow_{\text{той же кр-ти}} \overline{\mu} \text{ той же кр-ти}$$

2. $\mu = \alpha + i\beta \in \mathbb{C}$ $\alpha, \beta \in \mathbb{R} \ (\beta \neq 0)$ корень χ_A

$$\Rightarrow \boxed{\begin{array}{c} \alpha \pm i\beta \text{ c.ч. } \mathcal{A}_{\mathbb{C}} \\ \alpha + i\beta \text{ c.ч. } z \text{ c.в.} \Rightarrow \alpha - i\beta \ \overline{z} \text{ c.в.} \end{array}}$$
(7.6)

 $\Rightarrow \begin{bmatrix} \alpha \pm i\beta \text{ с.ч. } \mathcal{A}_{\mathbb{C}} \\ \alpha + i\beta \text{ с.ч. } z \text{ с.в.} \Rightarrow \alpha - i\beta \ \overline{z} \text{ с.в.} \end{bmatrix} (7.6)$ $u, v \in V \qquad z = u + iv \\ \overline{z} = u - iv \text{ св-ва норм. опер.} (z, \overline{z})_{\mathbb{C}} = 0 \qquad \text{т.к. с.в. различных с.ч.}$

$$(z,\overline{z})_{\mathbb{C}} = (u+iv,u-iv) = (u,u)-(v,v)+i(\underbrace{(u,v)+(v,u)}_{\text{\tiny T.K. ebkj.l.} = (u,v)}) = 0$$

$$\Leftrightarrow \left\{ \begin{array}{ll} (u,u) &=& (v,v) \\ (u,v) &=& 0 \end{array} \right. \Leftrightarrow \left[\left\{ \begin{array}{ll} \|u\| = \|v\| \\ u \perp v \end{array} \right] \qquad \left[\begin{array}{ll} u = Re \ z \\ v = Im \ z \end{array} \right] \qquad \left[\begin{array}{ll} u = \frac{z + \overline{z}}{2} \\ v = \frac{z - \overline{z}}{2i} \end{array} \right]$$

$$L_{\mathbb{C}} = (span(u, v))_{\mathbb{C}} = span(z, \overline{z})$$

Т.к. z и \overline{z} с. в. $\mathcal{A}_{\mathbb{C}}$, то $L_{\mathbb{C}}$ и $L_{\mathbb{C}}^{\perp}$ инвар. отн-но $\mathcal{A}_{\mathbb{C}}$ и $\mathcal{A}_{\mathbb{C}}^*$

3.
$$V_{\mathbb{C}} = \bigoplus_{\substack{\lambda \text{ BeIII.}}} V_{\lambda} \qquad \bigoplus_{\substack{L_{\mathbb{C}} \\ (\mu_{j}, \overline{\mu}_{j})}} \int_{\mathbb{C}} \prod_{\substack{j = \alpha_{j} + i\beta_{j} \\ \text{c.y. } A_{\mathbb{C}}}} v_{j} = u_{j} + iv_{j} \qquad u_{j} = Re \ z_{j}$$

пара сопряж. корни χ_A

пара сопряж.
$$L^j_{\mathbb C} = span(u_j,v_j)$$
 компл. корней $\chi_{\mathcal A}$

$$\Rightarrow V_{\mathbb{C}} = span$$
 св-ва вещ. \mathcal{A} для λ вещ. попарно-ортог. $(u_j \perp v_j)$

 \Rightarrow матрица $\mathcal{A}_{\mathbb{C}}$ в этом базисе имеет блочно-диагон. вид

$$\Lambda = \begin{pmatrix} \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & \lambda_k \end{pmatrix} & 0 \\ & & & & & \\ \hline{\Phi_1} & & & & \\ \hline{\Phi_2} & & & & \\ \hline{\Phi_3} & & & & \\ \hline{\Phi_2} & & & & \\ \hline{\Phi_3} & & & \\ \hline{\Phi_3} & & & \\ \hline{\Phi_2} & & & \\ \hline{\Phi_3} & & & \\ \hline{\Phi_3} & & & \\ \hline{\Phi_2} & & & \\ \hline{\Phi_3} & & & \\ \hline{\Phi_2} & & & \\ \hline{\Phi_3} & & & \\ \hline{\Phi_3} & & & \\ \hline{\Phi_3} & & & \\ \hline{\Phi_2} & & \\ \hline{\Phi_3} & & \\ \hline{\Phi_3} & & \\ \hline{\Phi_3} & & \\ \hline{\Phi_4} & & \\ \hline{\Phi_2} & & \\ \hline{\Phi_3} & & \\ \hline{\Phi_4} & & \\ \hline{\Phi_5} & & \\ \hline{\Phi_6} & & \\ \hline{\Phi_7} &$$

Базис у нас получился ортогональный, теперь осталось его отнормировать.

$$\begin{split} \|u\| &= \|v\| \\ 1 &= \|z\|^2 = (z,z) = \|u\|^2 + \|v\|^2 = 2\|u\|^2 \Rightarrow \|u\| = \|v\| = \frac{1}{\sqrt{2}} \\ z \text{ и } \overline{z} \leadsto \sqrt{2}z \text{ и } \sqrt{2}\overline{z} \leadsto \frac{u \leadsto \sqrt{2}u}{v \leadsto \sqrt{2}v} \to \frac{\|u\| = 1}{\|v\| = 1} \end{split}$$

Матрица $\mathcal{A}_{\mathbb{C}}$ в этом базисе вез. \Rightarrow то и у \mathcal{A} такая же матрица

Следствие 1. $A_{n\times n}$ $a_{ij}\in\mathbb{R}$ $A^*=A^T$

 \forall <u>норм.</u> матрицы A $(AA^T=A^TA)$ \exists <u>ортог.</u> матрица T $(T^T=T^*=T^{-1})$

$$m.$$
ч.
$$T^{-1}AT = T^TAT = \Lambda = \begin{pmatrix} \begin{pmatrix} \lambda_1 & \ddots & \\ & & \lambda_k \end{pmatrix} & 0 & \\ & & & \Phi_1 & \\ & 0 & & \ddots & \\ & & & \Phi_m \end{pmatrix},$$

$$\lambda_s$$
 с.ч. \mathcal{A} $\Phi_j = \begin{pmatrix} lpha_j & eta_j \ -eta_j & lpha_j \end{pmatrix}$ $\mu_j = lpha_j + ieta_j \quad ext{компл. сопряж.}$

 $\overline{\mu}_j = \alpha_j - i \beta_j$ корни хар. мн-на A

Доказательство. См. док-во следствия 2 к т-ме о кан. виде в унит. пр-ве

 $T=T_{e
ightarrow v}$ v о.н.б. в евкл. пр-ве T – ортогон. $T^{-1}=T^T$