Working with eye-tracking data

Dawn Liu
Department of Psychology, University of Essex
ECEM Conference, Eye-tracking workshop
20 June 2019

Workshop materials are available on:

https://github.com/dliuxi/ECEM

Basic terminology of gaze

- Fixations
- Saccades
- Area of Interest
- Transitions
- Scan path

T. Blascheck, K. Kurzhals, M. Raschke, M. Burch, D. Weiskopf & T. Ertl / State-of-the-Art of Visualization for Eye Tracking Data

Figure 2: Gaze points are spatially and temporally aggregated into fixations. Fixations are connected by saccades and have a certain duration represented by the radius. A temporal order of fixations is a gaze, however, only if the fixations are within an AOI. An AOI is a region of specific interest on the stimulus. A saccade from one AOI to the next is called a transition. A complete sequence of fixations and saccades is called a scanpath.

Blascheck, T., Kurzhals, K., Raschke, M., Burch, M., Weiskopf, D., & Ertl, T. (2014, June). State-of-the-art of visualization for eye tracking data. In *Proceedings of Eurographics Conference on Visualization* (Vol. 2014).

Fixations: where did we look?

What we want:

List of screen coordinates for each fixation (i.e., point where eye looked at)

	В	C	D	F	F	G	- 11
A Participant_ID		Fixation_Duration	Fixation Index	Fixation_X	Fixation_Y	Fixation_Total	Н
6			1	885.3	552.4	65	
6		187	2	829.3	628.8	65	
6		150	3	769.8	999	65	
6		144	4	887.9	978.1	65	
6	61	189	5	905.5	631.6	65	
6	61	135	6	950.6	639.4	65	
6		116	7	914.9	401.7	65	
6		172	8	916.9	350.1	65	
6		61	9	802.2	802.7	65	
6		137	10	805.1	679.4	65	
6		85	11	795.6	620.6	65	
6		230	12	775.1	641.4	65	
6		108	13	889.3	959.4	65	
6		110 175	14 15	829.1 718.7	988.2 986.8	65 65	
6		307	16	1072.5	1010.9	65	
6		140	17	920.4	630.7	65	
6		175	18	814.7	620.4	65	
6		220	19	910.4	356.3	65	
6		112	20	970.8	595.8	65	
6		131	21	899.3	624.4	65	
6		106	22	835.8	625.4	65	
6	61	33	23	854.4	645.7	65	
6	61	255	24	941.9	639.8	65	
6		392	25	964	643.1	65	
6		303	26	803.1	650.4	65	
6		230	27	889.9	660.7	65	
6		210	28	948.6	662.1	65	
6		202	29	985.7	662.2	65	
6		82	30	945.3	396.2	65	
6		188 277	31 32	922.2 911.8	448.9 350	65 65	
6		84	33	901	590.4	65	
6		189	34	891	596.1	65	
6		321	35	1099.7	1003.6	65	
6		179	36	1113.9	1050	65	
6			37	1086.3		65	
6			38	1094.1	981.6	65	
6		133	39	1134.2		65	
6			40	880.4		65	
6			41	894.1	020.0	- 05	
6			42	781.6		65	
6			43	785.3	981.5	65	
6			44	669.3	969.5	65	
6	61	208	45	808.4	971	65	

What we want:

List of screen coordinates for each fixation (i.e., point where eye looked at)

Also:

Duration—how long did they look?

Participant_ID ,	Trial Number	Fixation_Duration		ation_Index	E Fixation_X	F Eivotion V	G Fixation_Total	Н
Farticipant_ID 6			г	ation_index		552.4	65	
6			Н	2	829.3	628.8	65	
6			Н	3	769.8	999	65	
6			Н	4	887.9	978.1	65	
6			Н	5	905.5	631.6	65	
6			Н	6	950.6	639.4	65	
6	d		Н	7	914.9	401.7	65	
6	e i			8	916.9	350.1	65	
6	(1		П	9	802.2	802.7	65	
6	(1			10	805.1	679.4	65	
6	61	85		11	795.6	620.6	65	
6	(1 (1	230		12	775.1	641.4	65	
6	61	108		13	889.3	959.4	65	
6				14	829.1	988.2	65	
6	(1		Ш	15	718.7	986.8	65	
6	(1		Ш	16	1072.5	1010.9	65	
6	(1		Ш	17	920.4	630.7	65	
6	(1		Ш	18	814.7	620.4	65	
6	61		Н	19	910.4	356.3	65	
6	61		Н	20	970.8	595.8	65	
6	(1		Н	21	899.3	624.4	65	
6	61	106	Н	22 23	835.8 854.4	625.4	65 65	
6	6		Н	24	941.9	645.7 639.8	65	
6			Н	25	964	643.1	65	
6			Н	26	803.1	650.4	65	
6			Н	27	889.9	660.7	65	
6	di			28	948.6	662.1	65	
6	(1	202		29	985.7	662.2	65	
6			П	30	945.3	396.2	65	
6	61			31	922.2	448.9	65	
6	(1			32	911.8	350	65	
6	(1			33	901	590.4	65	
6	(1			34	891	596.1	65	
6	(1		Ш	35	1099.7	1003.6	65	
6	(1		Ш	36	1113.9	1050	65	
6	91		Н	37	1086.3	1039.5	65	
6	1	213	Н	38	1094.1	981.6	65	
6	(1 (1	133	Н	39		980.6	65	
6			ш	40	880.4	991.6	65	
6	61 61			41 42	894.1	613.5	65 65	
6				42	781.6 785.3	1016.8 981.5	65	
6				43	669.3	969.5	65	
6				45		971	65	
. 0	0.1	208		43	000.4	9/1	03	

What we want:

List of screen coordinates for each fixation (i.e., point where eye looked at)

Also:

Duration—how long did they look?

Index—what order did they look?

						_		
Participant_ID	B Trial Number	C C	Fixation_Index	-	E V	F V	G Finalism Tabel	Н
		Fixation_Duration		_	ation_X		Fixation_Total	
6		26 4 18 7			885.3	552.4	65	
6	61	150		Н	829.3	628.8 999	65 65	
6	61 61	144		Н	769.8		65	
6	61	189		Н	887.9	978.1	65	
6	61	135		Н	905.5 950.6	631.6 639.4	65	
6	61	116		Н	914.9	401.7	65	
6	61	172		Н	916.9	350.1	65	
6	61	(1		Н	802.2	802.7	65	
6	61		10	Н	805.1	679.4	65	
6	61			Н	795.6	620.6	65	
6	61		12	\vdash	775.1	641.4	65	
6	61			\vdash	889.3	959.4	65	
6	61		14	Н	829.1	988.2	65	
6	61	175		\vdash	718.7	986.8	65	
6	61		16	Н	1072.5	1010.9	65	
6	61	140		Н	920.4	630.7	65	
6	61	175		Н	814.7	620.4	65	
6	61	220		Н	910.4	356.3	65	
6	61	112	20	Н	970.8	595.8	65	
6	61			П	899.3	624.4	65	
6	61	13 1 10 6	22	П	835.8	625.4	65	
6	61	3 3	23		854.4	645.7	65	
6	61	25 5	24		941.9	639.8	65	
6	61	39 2		П	964	643.1	65	
6	61	303			803.1	650.4	65	
6	61	23 0			889.9	660.7	65	
6	61	210	28		948.6	662.1	65	
6	61	202	29		985.7	662.2	65	
6	61	202 82	30		945.3	396.2	65	
6	61	188	31		922.2	448.9	65	
6	61				911.8	350	65	
6	61				901	590.4	65	
6	61	18 9			891	596.1	65	
6	61	32 1	35		1099.7	1003.6	65	
6	61	179		Ш	1113.9	1050	65	
6	61			Ш	1086.3	1039.5	65	
6		213	38		1094.1	981.6	65	
6			39	_	1134.2	980.6	65	
6	61	20 6	40	_	880.4	991.6	65	
6		157	41		894.1	613.5	65	
6					781.6	1016.8	65	
6					785.3	981.5	65	
6					669.3	969.5	65	
6	61	208	45		808.4	971	65	

- □ The 'shortcut': DataViewer—generate fixation report
 - But software is not free
- Typically we will need to convert to .asc files
 - .DOS prompt (in Windows)
 - https://rdrr.io/github/davebraze/FDBeye/man/edf2asc.html
- Fortunately, very smart and very generous people post free workgrounds on the Internet!
 - https://rdrr.io/cran/eyelinker/man/read.asc.html

- On the computers: ECEM_ET_Workshop.Rproj
- Run the code
 - (The key function is read.asc)
 - You get a load of data—but we want fixations now

Once we have our fixation dataset, we can rename the variables to give them sensible names

ixationPlots.R × PreadASC.R × fixations × eye_data ×								
	stime	etime ‡	dur	axp ‡	ayp ‡	aps [‡]	eye [‡]	block
1	1102516	1102879	364	959.2	552.1	4156	R	1
2	1102908	1103132	225	944.7	658.4	4298	R	1
3	1103173	1103315	143	944.1	406.2	4514	R	1
4	1103374	1103553	180	870.3	1017.9	4694	R	1
5	1103597	1103726	130	1096.2	1014.8	4824	R	1
6	1103778	1103920	143	757.9	1034.9	4932	R	1
7	1103955	1104199	245	684.0	1005.7	5017	R	1
8	1104253	1104622	370	1149.3	1022.2	5127	R	1
9	1104816	1105097	282	1066.3	1027.3	5098	R	1
10	1105146	1105194	49	996.1	638.4	5125	R	1
11	1105224	1105485	262	955.8	486.4	4848	R	1
12	1105517	1105916	400	935.1	653.5	4559	R	1

This makes sense to the person who wrote this code, but I like more indicative names!

Once we have our fixation dataset, we can rename the variables to give them sensible names

^	stime [‡]	etime 🤇	Fixation_Duration	Fixation_X *	Fixation_Y +	aps ‡	eye	† Trial_No	Trial_Time
1	1102516	1102879	364	959.2	332.1	4130	K	1	363
2	1102908	1103132	225	944.7	658.4	4298	R	1	224
3	1103173	1103315	143	944.1	406.2	4514	R	1	142
4	1103374	1103553	180	870.3	1017.9	4694	R	1	179
5	1103597	1103726	130	1096.2	1014.8	4824	R	1	129
6	1103778	1103920	143	757.9	1034.9	4932	R	1	142
7	1103955	1104199	245	684.0	1005.7	5017	R	1	244
8	1104253	1104622	370	1149.3	1022.2	5127	R	1	369
9	1104816	1105097	282	1066.3	1027.3	5098	R	1	281
0	1105146	1105194	49	996.1	638.4	5125	R	1	48
1	1105224	1105485	262	955.8	486.4	4848	R	1	261
2	1105517	1105916	400	column 0:	rownames	4559	R	1	399
3	1105972	1106012	41	1084.8	1071.1	4611	R	1	40
4	1106047	1106621	575	1064.5	1039.5	4676	R	1	574

So I changed them to stuff that makes sense to me (and hopefully you!)

So we have our data. Now what?

Figure 8: In a typical scanpath visualization, each fixation is indicated by a circle, where the radius corresponds to the fixation duration. Saccades between fixations are represented by connecting lines between these circles.

a) Traditional Attention Map

b) Motion-Compensated Attention Map

Figure 6: A conventional attention map for a video scene is displayed in (a), where most of the attention seems to be on two people in the background. The motion-compensated attention map in (b) shows that most attention actually was on the moving car. The motion-compensated attention map uses optical flow information to adjust fixations before the attention map is calculated. Figure reprinted with kind permission from Kurzhals and Weiskopf [KW13] and IEEE.

Common data visualisations

Blascheck, T., Kurzhals, K., Raschke, M., Burch, M., Weiskopf, D., & Ertl, T. (2014, June). State-of-the-art of visualization for eye tracking data. In *Proceedings of Eurographics Conference on Visualization* (Vol. 2014).

So we could plot a graph ...

D	F	F	G	
Index	Fixation_X	Fixation_Y	Fixation_Total	
1	885.3	552.4	6	
2	829.3	628.8	6	
3	769.8	999	6	
2 3 4 5 6	887.9	978.1	6	
5	905.5	631.6	6	
6	950.6	639.4	6	
	914.9	401.7	6	
8 9	916.9	350.1	6	
	802.2	802.7	6	
10	805.1	679.4	6	
11	795.6	620.6	6	
12	775.1	641.4	6	
13	889.3	959.4	6	
14	829.1	988.2	666666666666666666666666666666666666666	
15	718.7	986.8	6	
16	1072.5	1010.9	6	
17	920.4	630.7	6	
18	814.7	620.4	6	
19	910.4	356.3	6	
20	970.8	595.8	6	
21	899.3	624.4	6	
22	835.8	625.4	6	
23	854.4	645.7	6	
24	941.9	639.8	6	
25	964	643.1	6	
26	803.1	650.4	6	
27	889.9	660.7	6	
28	948.6	662.1	6	
29	985.7	662.2	6	
30	945.3	396.2	6	
31	922.2	448.9	6	
32	911.8	350	6	
33	901	590.4	6	
34	891	596.1	6	
35	1099.7	1003.6	6	
36	1113.9	1050	6	
37	1086.3	1039.5	6	
38	1094.1	981.6	6	
39	1134.2	980.6	6	
40	880.4	991.6	6	
41	894.1	613.5	6	
42	781.6	1016.8	6	
43	785.3	981.5	6	

So we could plot a graph ...

D	-	-	G
Index	Fixation_X	Fixation_Y	Fixation_Total
	885.3	552.4	6
2 2 2 5	829.3	628.8	6
	769.8	999	6
	887.9	978.1	6
	905.5	631.6	6
(950.6	639.4	6
		401.7	6
8	916.9	350.1	6
g	802.2	802.7	ε
10		679.4	6
11		620.6	6
17		641.4	6
13		959.4	6
14		988.2	6
15		986.8	6
16		1010.9	6
17		630.7	6
18		620.4	6
19		356.3	6
20		595.8	6
2:		624.4	6
27		625.4	6
23		645.7	6
24		639.8	6
25		643.1	6
26		650.4	6
27		660.7	6
28		662.1	6
29		662.2	6
30		396.2	6
31		448.9	6
37		350	6
33		590.4	6
34		596.1	6
35		1003.6	6
36		1050	6
37		1039.5	6
38		981.6	6
39		980.6	6
40		991.6	6
41		613.5	6
42		1016.8	6
43	785.3	981.5	6

Exercises: Try it in Excel!

https://github.com/dliuxi/ECEM

FOLDER: WeatherFixations, file: single_participant.xlsx

Advanced practice: using R

ECEM_ET_Workshop.Rproj