PATENT ABSTRACTS OF JAPAN

(11)Publication number :

09-136954

(43) Date of publication of application: 27.05.1997

(51)Int.Cl.

CO8G 65/40 D01F 6/66 H01G 4/18 // CO8J 5/18

(21)Application number : 08-144571

(71)Applicant: HITACHI CHEM CO LTD

(22)Date of filing:

06.06.1996

(72)Inventor: MATSUSHIYUU ERU MAROTSUKO

ZA SAADO

YUINGU WANGU

(30)Priority

Priority number: 95 469993 Priority date: 06.06.1995

Priority country: US

(54) PRODUCTION OF POLYQUINOLINE

(57)Abstract:

PROBLEM TO BE SOLVED: To economically and efficiently produce a polyquinoline having a low dielectric constant and excellent heat resistance without using any expensive phosphate catalyst or a difficultly handleable cresol solvent by reacting a difluoromonomer with a diol monomer in the presence of a base in a polar solvent. SOLUTION: The difluoromonomer has two fluoro groups each of which is activated by a quinoline nucleus and is exemplified by a compound represented by formula I. The diol monomer is not particularly limited so far as it is a diol stable under the basic reaction conditions. It is exemplified by a compound represented by formula II. In the production, equimolar amounts of the difluoromonomer and the diol monomer are used. The base (e.g. potassium carbonate) is usually used in a slightly excess molar amount. When the polar solvent is an N-methylpyrrolidone/toluene solvent system, the reflux temperature is about 135° C, and the water is recovered over a period of 6-18hr. Next, the solvent is removed, and the mixture is refluxed for 12-24hr.

1

Π

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-136954

(43)公開日 平成9年(1997)5月27日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ			技術表示箇所
C08G (65/40	NQW		C 0 8 G	65/40	NQW	
D01F	6/66	•		D01F	6/66		
H 0 1 G	4/18	3 2 7		H01G	4/18	3 2 7 Z	
// C081	5/18	CEZ		C 0 8 J	5/18	CEZ	

審査請求 未請求 請求項の数41 OL (全 20 頁)

(21)出願番号	特願平8-144571	(71)出顧人	000004455
			日立化成工業株式会社
(22)出顧日	平成8年(1996)6月6日		東京都新宿区西新宿2丁目1番1号
		(72)発明者	マッシュー・エル・マロッコ・ザ・サード
(31)優先権主張番号	P 08/469993		アメリカ合衆国、カリフォルニア州
(32)優先日	1995年6月6日		92703、 サンタ アナ、フレンチ スト
(33)優先権主張国	米国 (US)		リート 2418
•		(72)発明者	ユイング・ワング
			アメリカ合衆国、カリフォルニア州
	.:		91765、 ダイヤモンド バー、カントリ
-	And the second		ー ヴュー ドライブ 23637
, 4	· · · · · · · · · · · · · · · · · · ·	(74)代理人	•
. 1		(, 2) (0.2)	THE PORT OF
	1	1	

(54) 【発明の名称】 ポリキノリン類の製造方法

(57)【要約】

(修正有)

【課題】 低誘電率で高耐熱性のポリキノリン重合体の 製造方法。

【解決手段】 少なくとも1個のキノリン核及び少なくとも1個のエーテル結合を有し、末端基としてフルオロ基、ヒドロキシ基、又はフルオロ基及びヒドロキシ基を有する繰り返し単位からなる重合体。この重合体を、フルオロ基2個をそれぞれがキノリン核によって活性化された状態で有する単量体を供給する工程、ジオール単量体を、そのビスーオキシド塩の形態で、又は、このジオールを脱プロトン化しうる塩基の存在下に供給する工程、及びこれらのフルオロ単量体とジオール単量体とを双極溶媒中で反応させてポリキノリン重合体を製造する工程からなる製造方法、或は、活性化フルオロ基1個及びヒドロキシ基1個を有するキノリン核を有するフルオロヒドロキシ単量体を、塩基の存在下、双極溶媒中で重合させてポリキノリン重合体を製造する。

20

【特許請求の範囲】

【請求項1】 a) フルオロ基2個を、該2個のフルオロ基のそれぞれがキノリン核によって活性化された状態で有する単量体を供給する工程;

b) ジオール単量体を、そのビスーオキシド塩の形態 で、又は、該ジオールを脱プロトン化しうる塩基の存在 下に供給する工程;及び

c) 該ジフルオロ単量体と該ジオール単量体とを極性溶媒中で反応させてポリキノリン重合体を製造する工程からなることを特徴とするポリキノリン重合体の製造方法。

【請求項2】 該ジフルオロ単量体が下記構造を有する 請求項1記載の方法。

【化1】

【請求項3】 該ジオール単量体が下記構造を有する請求項1記載の方法。

【化2】

【請求項4】 該ジフルオロ単量体が下記構造を有し、 【化3】

該ジオール単量体が下記構造を有する請求項1記載の方法。

【化4】

【請求項5】 該ジフルオロ単量体が下記構造を有し、 【化5】

該ジオール単量体が下記構造を有する請求項1記載の方法。

【化6】

【請求項6】 少なくとも2種の該ジフルオロ単量体を用い、得られる該ポリキノリン重合体が共重合体である請求項1記載の方法。

【請求項7】 該ジオール単量体が下記構造を有する請求項6記載の方法。

【化7】

【請求項8】 活性化フルオロ基1個及びヒドロキシ基1個を有するキノリン核を有するフルオロヒドロキシ単量体を、塩基の存在下、極性溶媒中で重合させてポリキノリン重合体を製造することを特徴とするポリキノリン重合体の製造方法。

【請求項9】 少なくとも2種の該フルオロヒドロキシ 単量体を用い、得られる該ポリキノリン重合体が共重合 体である請求項8記載の方法。

【請求項10】 キノリン核によって活性化されたフルオロ基2個を有する少なくとも1種の他の単量体を供給する工程を更に含み、該他の単量体を該フルオロヒドロキシ単量体と共に重合させ、得られる該ポリキノリン重合体が共重合体である請求項8記載の方法。

【請求項11】 少なくとも1種の他のジオール単量体であって、そのビスーオキシド塩の状態、又は、該ジオ30 一ル単量体を脱プロトン化しうる塩基の存在下にあるジオール単量体を供給する工程を更に含み、該他のジオール単量体を該フルオロヒドロキシ単量体と共に重合させ、得られる該ポリキノリン重合体が共重合体である請求項8記載の方法。

【請求項12】 a) 活性化フルオロ基1個及びヒドロキシ基1個を有するキノリン核を有する単量体を供給する工程;

b) 該単量体を塩基で処理してそのオキシド塩を合成する工程;及び

40 c) 該単量体の該オキシド塩を極性溶媒中で反応させて ポリキノリン重合体を製造する工程からなることを特徴 とするポリキノリン重合体の製造方法。

【請求項13】 少なくとも1個のキノリン核及び少なくとも1個のエーテル結合を有し、末端基としてフルオロ基、ヒドロキシ基、又はフルオロ基及びヒドロキシ基を有する繰り返し単位からなることを特徴とする重合体

【請求項14】 各繰り返し単位が下記構造を有する請求項13記載の重合体。

50 【化8】

$$E = Z - Q - Z - Y - \frac{1}{x} E$$

「式中、Rは重合反応を妨害しない基であり、nは0~ 5の整数であり、Zは単結合、オルトーアリーレン及び パラーアリーレンからなる群から選ばれ、xは繰り返し 単位の数であって、2~1,000,000であり、E は各々独立に水素原子、フルオロ基及びヒドロキシ基か ら選ばれる末端基であり、Yは一〇一及び一〇一W一〇 - (式中、Wは-Ra-、-Ar'-、-Ra-Ar' -, -R a' -O-R a' -, -R a' -C (O) O-Ra' - Ra' - NHCO - Ra' - Ra - C(0) - Ra - Ar' - C(0) - Ar' - - Het' - Ar' - S - Ar' - Ar' - S $(0) - A r' - A r' - S (0_2) - A r' - C$ 及び一Ar′一〇一Ar′一からなる群から選ばれる2 価の基であり、W上の水素原子は部分的に又は完全にフ ッ素置換されていてもよく、Raはアルキレンであり、 Ar'アリーレンであり、Ra'は各々独立にアルキレ ン、アリーレン及びアルキレン/アリーレン混合基から なる群から選ばれる基であり、Het′はヘテロアリー レンであり、Qは4級炭素を含有する下記の2価の基で あり、

【化9】
$$U = -CH_3$$
、 $-CF_3$ 、 $Ar又は結合しており、$

(式中、Arはアリールであり、U及びU'が結合して いる場合、結合によって形成される基は一Ra一、一A r' -, -Ra-Ar' -, -Ra' -O-Ra' -, -Ra'-C (O) O-Ra'-, -Ra'-NHCO-R a′ -、-R a-C(O)-R a-、及び-A r′ -C(O)-A r ′ーから選ばれる 2 価の基であり、こ の結合基上の水素原子は部分的又は完全にフッ素で置換 されていてもよい。) からなる群から選ばれる。} から なる群から選ばれる。〕

【請求項15】 Rが、各々独立に、アルキル、アリー ル、アリールオキシ、アルコキシ、ケトン (- CO R''')、ホルミル(-COH)、エステル(-CO ² R'又は一〇COR')、アミド(一NR'COR" 又は一CONR'R")、ヘテロアリール、シアノから なる群から選ばれるものであり、隣り合う2つのR基が 互いに結合して結合基を形成していてもよく、R'及び R"がアルキル及びアリールからなる群から選ばれるも のであり、R''' がアルキル、アリール及びヘテロア リールからなる群から選ばれるものである請求項14記 載の重合体。

【請求項16】 各繰り返し単位が下記構造を有する請 求項13記載の重合体。

【化10】

$$\begin{array}{c} (R)_n \\ E - E - Z \end{array} \qquad \begin{array}{c} (R)_n \\ Z - Y - \frac{1}{x} - E \end{array}$$

[式中、Rは重合反応を妨害しない基であり、nは0~ 5の整数であり、Zは単結合、オルトーアリーレン及び パラーアリーレンからなる群から選ばれ、x は繰り返し 単位の数であって、2~1,000,000であり、E は各々独立に水素原子、フルオロ基及びヒドロキシ基か ら選ばれる末端基であり、Xは単結合又は重合反応を妨 害しない2価の基であり、Yは一〇一及び一〇一W一〇 ー {式中、Wは−Ra−、−Ar′−、−Ra−Ar′ -, -R a' -O-R a' -, -R a' -C (O) O-Ra' - Ra' - NHCO - Ra' - Ra - C(O) - Ra - Ar' - C(O) - Ar' - - He t' - A r' - S - A r' - A r' - S(0) - A r' - A r' - S (0₂) - A r' -及び一Ar'-Q-Ar'-からなる群から選ばれる2 価の基であり、W上の水素原子は部分的に又は完全にフ ッ素置換されていてもよく、Raはアルキレンであり、 Ar' はアリーレンであり、Ra' は各々独立にアルキ レン、アリーレン及びアルキレン/アリーレン混合基か らなる群から選ばれる基であり、Het′ はヘテロアリ ーレンであり、Qは4級炭素を含有する下記の2価の基 であり、

(式中、Arはアリールであり、U及びU'が結合して いる場合、結合によって形成される基は一Ra一、一A r' - Ra - Ar' - Ra' - O - Ra' --Ra'-C(O)O-Ra'-,-Ra'-NHCO-Ra′-、-Ra-C (O) -Ra-、及び-Ar′ -C(O)-Ar'-から選ばれる2価の基であり、こ の結合基上の水素原子は部分的又は完全にフッ素で置換 されていてもよい。) からなる群から選ばれる。} から なる群から選ばれる。]

【請求項17】 Rが、各々独立に、アルキル、アリー ル、アリールオキシ、アルコキシ、ケトン(- C O R''')、ホルミル(-COH)、エステル(-CO ² R′又は一OCOR′)、アミド(-NR′COR″ 又は $-\mathsf{CONR}' \; \mathsf{R}''$)、ヘテロアリール、シアノから なる群から選ばれるものであり、隣り合う2つのR基が 互いに結合して結合基を形成していてもよく、R'及び R″がアルキル及びアリールからなる群から選ばれるも のであり、R''' がアルキル、アリール及びヘテロア リールからなる群から選ばれるものであり、Xが単結 合、-O-、-S-、-C(O)-、-S(O)-、- $S(O_2) - - -W - - (-O - W -) - O - (m / t)$ 1~3の整数)、及び-Q-からなる群から選ばれる2

50 価の結合基 [式中、Wは-Ra-、-Ar'-、-Ra

-Ar' - - Ra' - O Ra' - - Ra' - C(O) O-Ra'-, -Ra'-NHCO-Ra'-,-Ra-C(0)-Ra-,-Ar'-C(0)-Ar' -, -Het' -, -Ar' -S-Ar' -, -A r' - S (O) - A r' - A r' - S (O₂) - Ar'ー、及びーAr'ーOーAr'ーからなる群から選 ばれる2価の基であり、Raはアルキレンであり、A r'はアリーレンであり、Ra'は各々独立にアルキレ ン、アリーレン及びアルキレン/アリーレン混合基から なる群から選ばれる基であり、Het'はヘテロアリー 10 レンであり、W上の水素原子は部分的に又は完全にフッ 素置換されていてもよく、Qは4級炭素を含有する下記 の2価の基である。

【化 1 2】
$$Q = \frac{U'}{U \cdot U'}$$
 U、 $U' = -CH_3$ 、 $-CF_3$ 、Ar又は結合しており、

(式中、Arはアリールであり、U及びU'が結合して いる場合、結合によって形成される基は一Ra一、一A r' - Ra - Ar' - Ra' - O - Ra' --Ra'-C(0)O-Ra'-Ra'-NHCO-Ra'-、-Ra-C(O)-Ra-、及び-Ar' -C(O) - Ar' - から選ばれる2価の基であり、この結合基上の水素原子は部分的又は完全にフッ素で置換 されていてもよい。)]である請求項16記載の重合

【請求項18】 WがーAr'ー、一Het'ー、一A r' - O - A r' - - A r' - C (O) - A r' - --A r' - S - A r' - A r' - S (0) - A r'-、-Ar'-S (O) 2-Ar'-及び-Ar'-Q ーAr'ーからなる群から選ばれる2価の基である請求 30 項17記載の重合体。

【請求項19】 各繰り返し単位が下記構造を有する請 求項13記載の重合体。

【化13】

[式中、Rは重合反応を妨害しない基であり、nは0~ 5の整数であり、 Z は単結合、オルトーアリーレン及び パラーアリーレンからなる群から選ばれ、x は繰り返し 単位の数であって、2~1,000,000であり、E は各々独立に水素原子、フルオロ基及びヒドロキシ基か ら選ばれる末端基であり、Xは単結合又は重合反応を妨 害しない2価の基であり、Yは一〇一及び一〇一W一〇 ー (式中、Wは−Ra−、−Ar′−、−Ra−Ar′ -, -Ra' - O - Ra' -, -Ra' - C(O) O -Ra' - Ra' - NHCO - Ra' - Ra - C(0) -Ra - -Ar' - C(0) - Ar' - -He t' - A r' - S - A r' - A r' - S 50

 $(0) - A r' - A r' - S (0_2) - A r' - C$ 及び一A r'一〇一A r'一からなる群から選ばれる 2 価の基であり、W上の水素原子は部分的に又は完全にフ ッ素置換されていてもよく、Raはアルキレンであり、 Ar' はアリーレンであり、Ra' は各々独立にアルキ レン、アリーレン及びアルキレン/アリーレン混合基か らなる群から選ばれる基であり、Het'はヘテロアリ ーレンであり、Qは4級炭素を含有する下記の2価の基 であり、

【化14】 U、U' = -CH₃、-CF₃、Ar又は結合しており、

(式中、Arはアリールであり、U及びU'が結合して いる場合、結合によって形成される基は一Ra一、一A r' - Ra - Ra - Ar' - Ra' - O - Ra' - Ra'-Ra'-C (O) O-Ra'-, -Ra'-NHCO-R a′ー、-R a-C(O)-R a-、及び-A r′ **- C (O) - A r'-から選ばれる2価の基であり、こ** の結合基上の水素原子は部分的又は完全にフッ素で置換 されていてもよい。)からなる群から選ばれる。}から なる群から選ばれる。

【請求項20】 Rが、各々独立に、アルキル、アリー ル、アリールオキシ、アルコキシ、ケトン(一CO R''')、ホルミル(-COH)、エステル(-CO 2 R'又は一O.COR')、アミド(一NR'COR" 又は一CONR′R″)、ヘテロアリール、シアノから なる群から選ばれるものであり、隣り合う2つのR基が 互いに結合して結合基を形成していてもよく、R'及び R"がアルキル及びアリールからなる群から選ばれるも のであり、R''' がアルキル、アリール及びヘテロア リールからなる群から選ばれるものであり、Xが単結 合、。-O-、-S-、-C(O)-、-S(O)-、- $S(O_2) - -W - - (-O-W-) - O - (mkt)$ 1~3の整数)、及び一〇一からなる群から選ばれる2 価の結合基「式中、Wは-Ra-、-Ar'-、-Ra -A r' - R a' - O - R a' - R a' - C(O) O-Ra'-C-Ra'-NHCO-Ra'-C-Ra-C(0)-Ra-,-Ar'-C(0)-Ar' -, -Het' -, -Ar' -S-Ar' -, -A r' - S (O) - A r' - A r' - S (O₂) - Ar'-、及び-Ar'-Q-Ar'-からなる群から選 ばれる2価の基であり、Raはアルキレンであり、A r'はアリーレンであり、Ra'は各々独立にアルキレ ン、アリーレン及びアルキレン/アリーレン混合基から なる群から選ばれる基であり、Het′ はヘテロアリー レンであり、W上の水素原子は部分的に又は完全にフッ 素置換されていてもよく、Qは4級炭素を含有する下記 の2価の基である。

【化1.5】

U、U' = -CH3、-CF3、Ar又は結合しており、

(式中、Arはアリールであり、U及びU'が結合して いる場合、結合によって形成される基は一Ra一、一A r' - - Ra - Ar' - - Ra' - O - Ra' --Ra'-C (O) O-Ra'-, -Ra'-NHCO-Ra'-、-Ra-C(O)-Ra-、及び-Ar' -C(O)-Ar'-から選ばれる2価の基であり、こ の結合基上の水素原子は部分的又は完全にフッ素で置換 されていてもよい。)]である請求項19記載の重合

【請求項21】 WがーAr'ー、ーHet'ー、ーA r' - O - A r' - A r' - C (O) - A r' - C-A r' - S - A r' - A r' - S (0) - A r'-、-Ar'-S(O) $_2$ -Ar'-及び-Ar'-O -Ar'-からなる群から選ばれる2価の基である請求 項20記載の重合体。

【請求項22】 各繰り返し単位が下記構造を有する請 求項13記載の重合体。

【化16】

$$E - E - Z - N N N - Z - Y - \frac{1}{x} E$$

[式中、Rは重合反応を妨害しない基であり、nは0~ 5、 Zは単結合、オルトーアリーレン及びパラーアリー レンからなる群から選ばれ、xは繰り返し単位の数であ って、2~1,000,000であり、Eは各々独立に 水素原子、フルオロ基及びヒドロキシ基から選ばれる末 端基であり、Xは単結合又は重合反応を妨害しない2価 の基であり、Yは一〇一及び一〇一W一〇一 {式中、W は一Ra一、一Ar'ー、一Ra一Ar'ー、一Ra' -O-Ra'-, -Ra'-C(O)O-Ra'-, -Ra' - NHCO - Ra' - - - Ra - C(O) - Ra-, -Ar'-C (O) -Ar'-, -Het'-, -Ar' - S - Ar' - Ar' - S(0) - Ar'ー、 - A r′ - S (O₂) - A r′ - 、及び- A r′ -Q-Ar'-からなる群から選ばれる2価の基であり、 W上の水素原子は部分的に又は完全にフッ素置換されて いてもよく、Raはアルキレンであり、Ar' はアリー レンであり、Ra'は各々独立にアルキレン、アリーレ ン及びアルキレン/アリーレン混合基からなる群から選 ばれる基であり、Het'はヘテロアリーレンであり、 Qは4級炭素を含有する下記の2価の基であり、

【化17】

U、D' = -CH3、-CF3、Ar又は結合しており、

(式中、Arはアリールであり、U及びU'が結合して いる場合、結合によって形成される基は-Ra-、-A 50

r' - - Ra - Ar' - - Ra' - O - Ra' - --Ra'-C (O) O-Ra'-,-Ra'-NHCO-Ra'-、-Ra-C(O)-Ra-、及び-Ar' -C(O)-Ar'-から選ばれる2価の基であり、こ の結合基上の水素原子は部分的又は完全にフッ素で置換 されていてもよい。) からなる群から選ばれる。} から なる群から選ばれる。]

【請求項23】 Rが、各々独立に、アルキル、アリー ル、アリールオキシ、アルコキシ、ケトン(-CO R''')、ホルミル(-COH)、エステル(-CO 2 R'又は一〇COR')、アミド (-NR' COR" 又は一CONR′ R″)、ヘテロアリール、シアノから なる群から選ばれるものであり、隣り合う2つのR基が 互いに結合して結合基を形成していてもよく、R′及び R"がアルキル及びアリールからなる群から選ばれるも のであり、R''' がアルキル、アリール及びヘテロア リールからなる群から選ばれるものであり、Xが単結 合、-O-、-S-、-C (O) -、-S (O) -、-20 1~3の整数)、及び-Q-からなる群から選ばれる2 価の結合基 [式中、Wは-Ra-、-Ar'-、-Ra -A r' - - R a' - O - R a' - - R a' - C(O) O-Ra'-, -Ra'-NHCO-Ra'-,-Ra-C(0)-Ra-,-Ar'-C(0)-Ar' - - Het' - - Ar' - S - Ar' - - A $r' - S(0) - Ar' - Ar' - S(0_2) - A$ r'ー、及びーAr'ーQーAr'ーからなる群から選 ばれる2価の基であり、Raはアルキレンであり、A r' はアリーレンであり、R a' は各々独立にアルキレ ン、アリーレン及びアルキレン/アリーレン混合基から なる群から選ばれる基であり、Het′はヘテロアリー レンであり、W上の水素原子は部分的に又は完全にフッ 素置換されていてもよく、Qは4級炭素を含有する下記 の2価の基である。

【化18】

U、U' = -CH3、-CF3、Ar又は結合しており、

(式中、Arはアリールであり、U及びU′が結合して いる場合、結合によって形成される基は一Ra一、一A r' - Ra - Ar' - Ra' - O - Ra' --Ra'-C(0)O-Ra'-,-Ra'-NHCO-Ra'-、-Ra-C(O)-Ra-、及び-Ar' -C(O)-Ar'-から選ばれる2価の基であり、こ の結合基上の水素原子は部分的又は完全にフッ素で置換 されていてもよい。)]である請求項22記載の重合 体。

【請求項24】 Wが-Ar'-、-Het'-、-A r' - O - A r' - A r' - C (O) - A r' - C-A r' - S - A r' - A r' - S (O) - A r'ー、−A r′ −S (O) ₂−A r′ −及び−A r′ −O

•

-Ar' -からなる群から選ばれる 2 価の基である請求 項 2 3 記載の重合体。

【請求項2.5】 該重合体の構造式が

であり、Eが各々独立に水素原子、フルオロ基及びヒドロキシ基からなる群から選ばれるものであり、xが繰り返し単位の数であって、 $2\sim1$, 000, 000である請求項13記載の重合体。

【請求項26】 該重合体の構造式が

【化20】

であり、Eが各々独立に水素原子、フルオロ基及びヒドロキシ基からなる群から選ばれるものであり、xが繰り返し単位の数であって、 $2\sim1$, 000, 000である請求項13記載の重合体。

【請求項27】 該重合体の構造式が

【化21】

$$E + O \xrightarrow{V} \xrightarrow{\downarrow_{\mathbf{X}}} E' \xrightarrow{(R)_0} V \xrightarrow{0 \to \mathbf{X}} E$$

(式中、Zは単結合、オルトーアリーレン及びパラーアリーレンからなる群から選ばれ、-V-O-結合はキノリン核のいずれの環のどの位置に結合していてもよく、基Vは単結合又は重合反応を妨害しない2価の基であり、Rは各々独立に重合反応を妨害しない基であり、nは0~5の整数であり、E及びE'は各々独立に水素原子、フルオロ基及びヒドロキシ基から選ばれるものであり、xは繰り返し単位の数であって2~1,000,00である。)からなる群から選ばれるものである請求項13記載の重合体。

【請求項28】 Vが単結合、アルキレン、アリーレン、アルキレン/アリーレン混合基、アルキレンオキシ、アリーレンオキシ、アルキレンカルボニル、アリーレンカルボニル、アルキレンスルホニル、アリーレンス 50

ルホニル、アルキレンチオ、アリーレンチオ及びへテロアリーレンからなる群から選ばれるも'のであり、Rが、各々独立に、アルキル、アリール、アリールオキシ、アルコキシ、ケトン(一COR'')、ホルミル(一COH)、エステル(一COR'又は一CONR'R")、ヘテロアリール、シアノからなる群から選ばれるものであり、隣り合う2つのR基が互いに結合して結合基を形成していてもよく、R'及びR"がアルキル及びアリールからなる群から選ばれるものであり、R''がアルキル、アリール及びヘテロアリールからなる群から選ばれるものである請求項27記載の重合

【請求項29】 ポリキノリン重合体の合成に用いられる単量体であって、下記構造を有する単量体。

【化22】

20

【請求項30】 ジオール単量体と反応させてポリキノリン重合体を合成するために用いられる単量体であって、下記一般式を有する単量体。

【化23】

$$(R)_n \longrightarrow (R_2 \cap R_3 \cap R_4 \cap R_2 \cap R_3 \cap R_4 \cap R_4 \cap R_2 \cap R_3 \cap R_4 \cap R_4 \cap R_4 \cap R_4 \cap R_5 \cap R_5 \cap R_4 \cap R_5 \cap R$$

(式中、 R_2 、 R_4 、 R_5 及び R_7 のうちの2つがF又はZ Fであり、その他の2つはH又はRであり、Zは単結合、オルトーアリーレン及びパラーアリーレンからなる群から選ばれ、Rは各々独立に重合反応を妨害しない基であり、キノリン核上のZ F 又はF で置換されていない位置のどの位置に結合していてもよく、R は O ~ S の整数である。)

【請求項31】 Rが、各々独立に、アルキル、アリール、アリールオキシ、アルコキシ、ケトン(-CO R'')、ホルミル(-COH)、エステル(-CO 40 R' 又は-OCOR')、アミド(-NR'COR" 又は-CONR'R")、ヘテロアリール、シアノからなる群から選ばれるものであり、隣り合う2つのR基が互いに結合して結合基を形成していてもよく、R'及びR"がアルキル及びアリールからなる群から選ばれるものであり、R''がアルキル、アリール及びヘテロアリールからなる群から選ばれるものである請求項30記載の単量体。

【請求項32】 ジオール単量体と反応させてポリキノリン重合体を合成するために用いられる単量体であって、下記一般式を有する単量体。

【化24】

$$(R)_{n} \longrightarrow (R)_{R'^{2}} \times (R)_{n} \times$$

11

(式中、 R^2 、 R^4 、 R^5 及び R^7 のうちの1つがF又はZ -Fであり、その他の2つはH又はRであり、 $R^{\prime 2}$ 、 $R^{\prime 4}$ 、 $R^{\prime 5}$ 及び $R^{\prime 7}$ のうちの1つがF又はZ-Fであり、その他の2つはH又はRであり、Zは単結合、オルトーアリーレン及びパラーアリーレンから選ばれ、Xは単結合又は重合反応を妨害しないZ 価の基であり、Rは、各々独立に、重合反応を妨害しない基であり、Z リン核上のZ 大ので置換されていないどの位置に結合していてもよく、Z は各々独立にZ の整数である。)

【請求項33】 Rが、各々独立に、アルキル、アリー ル、アリールオキシ、アルコキシ、ケトン(-CO R''')、ホルミル (-COH)、エステル (-CO2 R'又は-OCOR')、アミド(-NR'COR" 又は一CONR′ R″)、ヘテロアリール、シアノから なる群から選ばれるものであり、隣り合う2つのR基が 互いに結合して結合基を形成していてもよく、R'及び R"がアルキル及びアリールからなる群から選ばれるも のであり、R''' がアルキル、アリール及びヘテロア リールからなる群から選ばれるものであり、Xが単結 合、-O-、-S-、-C (O) -、-S (O) -、- $S(O_2) - W - (-O-W-) - O - (m/d)$ 1~3の整数)、及び一〇一からなる群から選ばれる2 価の結合基 [式中、Wは-Ra-、-Ar'-、-Ra -A r' - - R a' - O - R a' - - R a' - C(0) O-Ra' - , -Ra' - NHCO-Ra' - ,-Ra-C(O)-Ra-,-Ar'-C(O)-Ar' -, -H e t' -, -A r' -S-A r' -, -A r' - S(0) - Ar' - Ar' - S(0) - Ar'ー、及びーAr'ーQーAr'ーからなる群から選 ばれる2価の基であり、Raはアルキレンであり、A r'はアリーレンであり、Ra'は各々独立にアルキレ ン、アリーレン及びアルキレン/アリーレン混合基から なる群から選ばれる基であり、Het'はヘテロアリー レンであり、W上の水素原子は部分的に又は完全にフッ 素置換されていてもよく、〇は4級炭素を含有する下記 の2価の基である。

【化25】
$$Q = \frac{U'}{U \cdot U'} \quad U \cdot U' = -CH_3 \cdot -CF_3 \cdot Ar又は結合しており、$$

(式中、Arはアリールであり、U及びU'が結合している場合、結合によって形成される基は-Ra-、-Ar'-、-Ra'-O-Ra'-、-Ra'-NHCO-Ra'-、-Ra'-、-Ra'-NHCO-Ra'-、-Ra'-、-Ra-C(O)-Ra-、及び-Ar'-C(O)-Ar'-から選ばれる2価の基であり、こ

の結合基上の水素原子は部分的又は完全にフッ素で置換されていてもよい。)]である請求項32記載の単量体。

【請求項34】 Wが-Ar'-、-Het'-、-Ar'-O-Ar'-、-Ar'-C(O)-Ar'-、-Ar'-S-Ar'-、-Ar'-S(O)-Ar'-、-Ar'-S(O)2-Ar'-及び-Ar'-Q-Ar'-からなる群から選ばれる2価の基である請求項33記載の単量体。

【請求項35】 ポリキノリン重合体の合成に用いられるAB型単量体であって、下記の構造からなる群から選ばれる構造を有する単量体。

【化26】

(式中、Zは単結合、オルトーアリーレン及びパラーアリーレンからなる群から選ばれ、V-OH基はキノリン核のいずれの環のどの位置に結合していてもよく、基Vは単結合又は重合反応を妨害しない2価の基であり、Rは各々独立に重合反応を妨害しない基であり、nは0~5の整数である。)

【請求項36】 Vが単結合、アルキレン、アリーレ ン、アルキレン/アリーレン混合基、アルキレンオキ 30 シ、アリーレンオキシ、アルキレンカルボニル、アリー レンカルボニル、アルキレンスルホニル、アリーレンス ルホニル、アルキレンチオ、アリーレンチオ及びヘテロ アリーレンからなる群から選ばれるものであり、Rが、 各々独立に、アルキル、アリール、アリールオキシ、ア ルコキシ、ケトン (-COR'''D)、ホルミル (-COH)、エステル (-CO₂ R' 又は-OCO R')、アミド(-NR'COR"又は-CONR' R")、ヘテロアリール、シアノからなる群から選ばれ るものであり、隣り合う2つのR基が互いに結合して結 合基を形成していてもよく、R'及びR"がアルキル及 びアリールからなる群から選ばれるものであり、 R''' がアルキル、アリール及びヘテロアリールから なる群から選ばれるものである請求項35記載の単量

【請求項37】 少なくとも1層の誘電体の層及び少なくとも1層の金属線路層からなり、該誘電体が請求項13記載の重合体であることを特徴とするマルチーチップモジュール。

【請求項38】 請求項13記載の重合体からなる誘電50 体フィルムを有することを特徴とするコンデンサー。

【請求項39】 請求項13記載の重合体からなること を特徴とする繊維。

【請求項40】 請求項13記載の重合体からなる絶縁 誘電体層を有することを特徴とする集積回路。

【請求項41】 請求項13記載の重合体からなること を特徴とするフィルム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ポリキノリン重合 体の新規な製造方法、この重合体の製造に用いられる新 10 基の存在下、極性溶媒中で重合させることによりポリキ 規な単量体及びこの重合体に関する。

[0002]

【従来の技術】ポリキノリン重合体は、エレクトロニク ス及びマイクロエレクトロニクス分野で、例えば集積回 路のプレーナー化用誘電体層やパシベーション層、保護 コーティング及びポッティング・コンパウンド、接着 剤、印刷配線板製造用樹脂、誘電体材料などとして、ま た、液晶ディスプレイ、フラット・パネルテレビ、ソー ラー・ウィンドウ等のコーティング材として、更には繊 維、高強度安定フィルムなどとして広く用いられてい る。

【0003】フリードレンダー縮合反応によるポリキノ リン類の製造方法が、1976年12月28日発行の J. スティレ(J. Stille)の米国特許第4,0 00.187号明細書に記載されている。フリードレン ダー反応では、いわゆる A A型化合物、即ち、芳香核に 結合したオルトーアミノカルボニル官能基を2組有する 芳香族アミノカルボニル化合物と、いわゆる B B型化合 物、即ち、ビスーメチレンケトン化合物との反応によっ てポリキノリン重合体を合成する。また、AB型化合 物、即ち、オルトーアミノカルボニル官能基及びメチレ ンケトン官能基の両方を芳香核上に有する化合物からポ リキノリン重合体を合成することもできる。

【0004】フリードレンダー反応を行う場合、これら AA及びBB又はAB型化合物を、通常、燐酸塩触媒の 存在下、m-クレゾール溶媒中で反応させる。この燐酸 塩/クレゾール触媒系は高価であり、クレゾールは取り 扱いが困難である。

【0005】このような事情から、より経済的に、しか も溶媒としてクレゾールを用いずにポリキノリン類を製 造する方法の開発が望まれている。

[0006]

【発明が解決しようとする課題】本発明の目的は、ポリ キノリン重合体の新規かつ経済的な製造方法、この重合 体の製造に用いられる新規な単量体及びこの重合体自体 を提供することにある。

[0007]

【課題を解決するための手段】本発明のポリキノリン重 合体の製造方法では、その好ましい一態様において、ま ず、フルオロ基2個を、この2個のフルオロ基のそれぞ 50 れがキノリン核によって活性化された状態で有する単量 体を用意する。また、ジオール単量体を、そのビスーオ キシド塩の形態で、又は、このジオールを脱プロトン化 しうる塩基の存在下に用意する。このジフルオロ単量体 とジオール単量体とを極性溶媒中で反応させることによ り、ポリキノリン重合体を製造する。

【0008】本発明の製造方法の他の一態様において は、活性化フルオロ基1個及びヒドロキシ基1個を有す るキノリン核を有するフルオロヒドロキシ単量体を、塩 ノリン重合体を製造する。

【0009】本発明の製造方法の更に他の一態様におい ては、まず、活性化フルオロ基1個及びヒドロキシ基1 個を有するキノリン核を有する単量体を用意する。この 単量体を塩基で処理してそのオキシド塩を形成し、得ら れる単量体塩を極性溶媒中で反応させることによりポリ キノリン重合体を製造する。

【0010】本発明は更に、少なくとも1個のキノリン 核及び少なくとも1個のエーテル結合を有し、末端基と してフルオロ基、ヒドロキシ基、又はフルオロ基及びヒ ドロキシ基を有する繰り返し単位からなるポリキノリン 重合体を提供する。

【0011】本発明は更に、本発明のポリキノリン重合 体の製造に用いられる単量体を提供する。

【0012】本発明は更に、本発明によって得られる重 合体を用いて製造されるマルチチップモジュール、コン デンサー、集積回路、フィルム及び繊維を提供する。

【0013】上記及びその他の本発明の特徴、観点及び 利点は、以下の詳細な説明、請求の範囲及び図面から、 より詳細に理解されるはずである。

[0014]

【発明の実施の形態】本発明は、新しい種類のポリキノ リン重合体、その製造に用いられる単量体及びこの重合 体を用いて製造される種々の製品を得るためになされた ものである。

【0015】本発明によって得られる重合体は、単独で 2種類の官能基を有する1種類の単量体、いわゆるAB 単量体から製造することもできるし、或は、各々が同一 の官能基2個を有する2種類の単量体、いわゆるAA型 単量体及びBB型単量体から製造することもできる。" AA型単量体"、"BB型単量体"及び"AB型単量 体"は、重縮合反応方式に用いられる単量体の説明に通 常用いられる用語である。このような反応方式の例とし ては米国特許第4,000,187号明細書に記載され た方法があり、この方法では、2組のオルトーアミノア ルデヒド又はオルトーアミノケトン官能基を有する芳香 族アミノカルボニル化合物(即ちAA単量体)と、各々 にメチレン基が隣接しているケトン官能基2個を有する 単量体(即ちBB単量体)とをフリードレンダー反応に よって反応させることにより、ポリキノリンを製造して

いる。この引用により、米国特許第4,000,187 号明細書をここに含めることとする。

【0016】本発明のポリキノリン単独重合体は、2種類の単量体、即ちAA型単量体及びBB型単量体から、或は、1種類のAB型単量体から製造される。ポリキノリン共重合体は、2種類以上のAA型単量体と1種類以上のBB型単量体との混合物から;又は1種類以上のAB型単量体と1種類以上のAA型単量体若しくは1種類以上のBB型単量体との混合物から;又は2種類以上のAB型単量体から製造される。

【0017】本発明のAA型単量体は、フルオロ基2個を有し、このフルオロ基は各々キノリン核によって活性化されている。本発明のBB型単量体はジオールであり、このジオールは塩基性の反応条件下で安定であれば特に限定されない。上記のジフルオロ(AA型)単量体とこのジオール(BB型)単量体とを塩基の存在下で極性溶媒中で反応させることにより、ポリキノリン重合体を製造する。本発明のAB型単量体は活性化フルオロ基1個及びヒドロキシ基1個を有するキノリン核を有するフルオロヒドロキシ単量体である。このAB型単量体を20塩基の存在下で極性溶媒中で反応させる。

【0018】理論に拘泥するつもりはないが、キノリン核は中間体であるマイゼンハイマー(Meisenheimer)錯体に有利な共鳴形態を形成することにより、フルオロ脱離性基を求核置換に対して活性化する。キノリン核の窒素原子は、求核剤の負の電荷を受容することができる。キノリン核上で最も活性化される位置は2、4、5及び7ー位である。フェニレン基を介しての共鳴も可能であり、キノリン核の2、4、5及び7ー位、特に2及び4ー位に結合したフェニル基が、そのフェニル基の2及び4ー位で活性化される。

【0019】本発明に用いられるジフルオロ(AA型) 単量体としては2種類のタイプのものがあり、即ち、キ ノリン核を1個有するものと、結合基によって互いに連 結された2個のキノリン核を有するものである。本発明 で用いられるジフルオロ(AA型)単量体でキノリン核 1個を有するものの一般構造を、下記構造式で示す:

[0020]

【化27】

(式中、 R^2 、 R^4 、 R^5 及び R^7 のうちの2つがF又はZFであり、その他の2つはH又はRであり、Zは単結合、オルトーアリーレン及びパラーアリーレンからなる群から選ばれ、Rは各々独立に重合反応を妨害しない基であり、キノリン核上のZF又はFで置換されていない位置のどの位置に結合していてもよく、nは $0\sim5$ の整数である。)

Rとしては、例えば、アルキル、アリール、アリールオ 50 ある。)

16

【0021】オルトーアリーレンの例としては、例えば、1, 2-7ェニレン、1, 2-+7 チレンジイル、2, 3-+7 チレンジイル、1, 2-(4-7) エニレン)、1, 2-(4-7) 等が挙げられる。パラーアリーレンの例としては、例えば、1, 4-7 エルフェニレン)、1, 4-+7 チレンジイル、1, 4-(2-7) エルフェニレン)、1, 4-(2-7) 等が挙げられる。

【0022】なお、本発明において、一般式中の基の例のアルキルとしては、通常、 $C_1 \sim C_2$ アルキルが、アリールとしては $C_6 \sim C_2$ アリールが、ヘテロアリールとしては $C_4 \sim C_2$ ヘテロアリールが、アルキレンとしては $C_1 \sim C_2$ アルキレンが、アリーレンとしては $C_6 \sim C_2$ アリーレンが、ヘテロアリーレンとしては $C_6 \sim C_2$ ヘテロアリーレンが好ましい。

【0023】本発明で用いられるジフルオロ (AA型) 単量体でキノリン核2個を有するものの一般構造を、下 記構造式で示す:

[0024]

【化28】

40

 R^{5} 、 R^{7} 、 R^{7} も 及び R^{7} のうちのいずれかが F 又は Z - Fである場合には、通常、Fであることが好ましい。 【0025】2つのキノリン核を結合している結合基X 基は、重合反応を妨害しない限り(例えば、Xは、オキ シアニオンのような強求核剤や、活性化ハロゲン基のよ うな脱離しやすい基を有していてはならない。)、どの ような2価の基であってもよい。結合基Xの例として は、例えば、単結合、一O一、一S一、一C(O)一、 -S(0) - -S(0) - -W - -(-0)W一) -O-(mは1~3の整数)、及び-O-からな る群から選ばれる2価の結合基 [式中、Wは-Ra-、 -Ar'-、-Ra-Ar'-∵-Ra'-O-Ra' -, -Ra' -C (O) O-Ra' -, -Ra' -NHCO-Ra' -, -Ra-C (O) -Ra -, -Ar'-C(0) - Ar' - - - Het' - - - Ar' - S -A r' - A r' - S (0) - A r' - A r' - $S(O_2) - Ar' -$ 、及び-Ar' - Q - Ar' -か らなる群から選ばれる2価の基であり、Raはアルキレ ンであり、Ar'はアリーレンであり、Ra'は各々独 立にアルキレン、アリーレン及びアルキレン/アリーレ ン混合基からなる群から選ばれる基であり、Het′は ヘテロアリーレンであり、W上の水素原子は部分的に又 は完全にフッ素置換されていてもよく、Qは4級炭素を 含有する下記の2価の基である。

【0026】 【化29】

U、U' = -CH₃、-CF₃、Ar又は結合しており、

(式中、Arはアリールであり、U及びU'が結合している場合、結合によって形成される基は-Ra--Ar'--NRa'-O-Ra'-NHCO-RA'-NHCO-RA'-N

【0027】上記の各種のWのうち、好ましいものとしては、-Ar'-、-Het'-、-Ar'-O-Ar'-、-Ar'-C (O) -Ar'-、-Ar'-S (O) -Ar'-、-Ar'-S (O) -Ar'-、-Ar'-S (O) -Ar'- (D) -Ar'- (D

[0028]

【化30】

等が挙げられる。

【0029】アリーレンの例としては、例えば、1, 2ーフェニレン、1, 3ーフェニレン、1, 4ーフェニレン、1, 4ーナフチレンジイル、1, 4ー(2ーフェニルフェニレン)、1, 4ー(2ーメトキシフェニレン)、1, 4ー(2, 5ージメチルフェニレン)等が挙げられる。ヘテロアリーレンの例としては、例えば、2, 4ーピリジンジイル、2, 6ーピリジンジイル、2, 6ーキノリンジイル等が挙げられる。

18

【0030】Rの例としては、上記のとおり、アルキ 10 ル、アリール、アリールオキシ、アルコキシ、ケトン (-COR'')、ホルミル(-COH)、エステル (-CO₂ R' 又は-OCOR')、アミド(-NR' COR"又は-CONR'R")、ヘテロアリール、シ アノからなる群から選ばれるものなどが挙げられ、Rが 2つ以上結合している場合、それらは互いに同一であっ ても異なっていてもよく、隣り合う2つのR基が互いに 結合して結合基を形成していてもよい。R'及びR"は 上記と同様にアルキル及びアリールからなる群から選ば れるものである。R'''は上記と同様にアルキル、ア リール及びヘテロアリールからなる群から選ばれるもの であり、アルキルはハロゲン、アリール、アルコキシ等 の置換基をもっていてもよく、アリールはアルキル、ア ルコキシ等の置換基をもっていてもよい。Rの具体例も 上記のとおりである。

【OO31】R基の具体例としては、例えば、下記のも のなどが挙げられる:アルキル基としては、メチル、エ チル、プロピル、イソプロピル、tertーブチル、シ クロヘキシル、ステアリル及びドコシル(- C H₂(C H₂) 2n C H₃); アリール基としては、フェニル、ビフ ェニル、ナフチル、アントラセニル及びジフェニルフェ ニル; C結合しているアミドとしては、N, Nージメチ ルアミノカルボニル(-CON(CH₃)₂)、N, N-ジフェニルアミノカルボニル、ピペリジンカルボニル (一CONCH₂CH₂CH₂CH₂CH₂)、モルホリン カルボニル (-CONCH2CH2OCH2CH2) 及びN ーメチルーN-フェニルアミノカルボニル;ヘテロアリ ール基としては、ピリジル、キノリル及びピラジル:N 結合しているアミドとしては、ベンゾイルアミノ、Nー メチルアセチルアミノ;O結合しているエステルとして は、アセチルオキシ(一〇СОСН3)及びベンゾイル オキシ (一〇СОС。 Н。) ; C 結合しているエステルと しては、メトキシカルボニル(一CO₂ СН₃)及びフェ ノキシカルボニル (- C O₂ C₆ H₅); アリールオキシ 基としては、フェノキシ、ナフトキシ及びビフェニルオ キシ;アルコキシ基としては、エトキシ及びブトキシ; 及びケトン(一COR''')としてはフェニルケトン (ベンゾイルとも呼ばれる)、ナフチルケトン(ナフト イル)、メチルケトン(アセチル)、エチルケトン(プ ロピオニル)、tertーブチルケトン(ピバロイ

50 ル)、イソブチルケトン、トリフルオロメチルケトン

(トリフルオロアセチル)、メトキシエチルケトン、ベンジルケトン、フェネチルケトン、2, 4,6ートリメチルフェニルケトン、ピリジニルケトン(ニコチノイル)、2ーキノリルケトン及び2ーチエニルケトン。【0032】本発明に使用し得るジフルオロ(AA)キノリン単量体の例としては、例えば、2ー(2ーフルオロフェニル)ー5ーフルオロー4ーフェニルキノリン、2ー(4ーフルオロフェニル)ー5ーフルオロフェニル)ー5ーフルオロー2ーフェニルキノリン、2ー(4ーフルオロ 10フェニル)ー7ーフルオロー4ーフェニルキノリン、2、4ージフルオロキノリン、2,7ージフルオロキノリン、2,5ージフルオロキノリン、2,7ージフルオローノリン、2,5ージフルオロキノリン、2,7ージフルオロー6ーフェニルキノリン、4ー(4ーフルオロフェニ

ル) - 7 - フルオロキノリン等が挙げられる。

【0033】本発明に使用し得るジフルオロ(AA)ビ スーキノリン単量体の例としては、例えば、6、6′ー ビス [2-(4-フルオロフェニル) -4-フェニルキ ノリン]、6,6'ービス[2-(2-フルオロフェニ ル) -4-フェニルキノリン]、6,6'-ビス[2-(4-フルオロフェニル) - 4-tert-ブチルキノ リン]、6, 6' -ビス [4-(4-7)ルオロフェニ ル) -2-フェニルキノリン]、6,6'ービス-4-フルオロキノリン、6、6′ービス[4-(4-フルオ ロフェニル) -2-(2-ピリジル) キノリン、6. 6′ービスー2ーフルオロキノリン、6.6′ービス [4-(4-フルオロフェニル)-2-(メチル)キノ リン]、6,6'ービス[2ーフルオロー4ーフェニル キノリン]、オキシービスー6, 6'、- [2-(4-フ ルオロフェニル) - 4 - フェニルキノリン]、1,4-ベンゼンービスー2, 2'-[4-(4-フルオロフェ ニル) キノリン]、1,4-ベンゼンービス-2,2' - [4-フルオロキノリン]、1.4-ベンゼン-ビス -4, 4' - [2 - (4 - 7) + 7]ン]、1,1,1,3,3,3-ヘキサフルオロイソプ ロピリデンービスー (4-フェノキシー4-フェニルー 2-(4-フルオロキノリン)等が挙げられる。

【0034】本発明の(AA) 単量体は、例えば後述する実施例5及び9に示すように、予め製造したクロロフルオロキノリンをカップリングすることにより製造する 40 ことができる。或は、フリードレンダー反応やその他公知のキノリン形成縮合反応により、ビスーアミノベンゼン誘導体をビスーキノリンと縮合させて製造することもできる。例えば、後述する実施例1では、4,4'ージアミノー3,3'ージベンゾイルビフェニルと4ーフルオロアセトフェノンとの縮合反応により、(AA) 単量体を製造している。2ーフルオロアセトフェノンを用いれば、対応する6,6'ービスー[2ー(2ーフルオロフェニル)ー4ーフェニルキノリン]が得られる。同様に、2ーアミノー4'ーフルオロベンゾフェノンと例え 50

ば4,4'ージアセチルビフェニル、1,4ージアセチルベンゼン、4,4'ージアセチルフェニルエーテル等のビスーケトメチレンとの縮合反応により、対応する(AA)単量体が得られる。本発明の(AA)単量体を製造するための縮合反応に好適なその他のビス[オルトーアミノベンゾイルベンゼン]の例としては、米国特許第4,000,187号明細書に記載されているものが挙げられる。(AA)型単量体を合成するための他の方法も、当業者であれば容易に想当しうるはずである。

【0035】本発明に使用し得るフルオロヒドロキシ (AB) 単量体の例としては、例えば、2-(4-フル オロフェニル) -6-ビドロキシ-4-フェニルキノリ ン、2-(2-フルオロフェニル)-6-ヒドロキシー 4-フェニルキノリン、4-(2-フルオロフェニル) -6-ヒドロキシ-2-フェニルキノリン、2.3-ジ フェニルー4ー(2ーフルオロフェニル)ー6ーヒドロ キシキノリン、2、3-ジフェニル-4-(4-フルオ ロフェニル) -6-ヒドロキシキノリン、2、3-ジフ ェニルー6ー(2ーフルオロフェニル)-4-ヒドロキ シキノリン、2、3ージフェニルー6ー(4ーフルオロ フェニル) -4-ヒドロキシキノリン、7-フルオロー 2-ヒドロキシキノリン、7-フルオロ-2-ヒドロキ シー4-フェニルキノリン、7-(4-フルオロフェニ ル) -2-ヒドロキシー4-フェニルキノリン、7-フ ルオロー4ーヒドロキシー2ーフェニルキノリン、7ー (4-フルオロフェニル)-4-ヒドロキシ-2-フェ ニルキノリン、2-(4-フルオロフェニル)-3-ヒ ドロキシキノリン、2-(4-フルオロフェニル)-4 ーヒドロキシー3ーフェニルキノリン、2-(4-フル オロフェニル) -6-ヒドロキシ-3-フェニルキノリ ン、2-(4-フルオロフェニル)-8-ヒドロキシー 3-フェニルキノリン、2-(4-フルオロフェニル) -8-ヒドロキシキノリン、2-(2-フルオロフェニ ル) -4-(4-ヒドロキシフェニル) キノリン等が挙 げられる

本発明の(AB)型単量体は、フリードレンダー合成、スクラウプ合成、デーブナー合成、ニーメントウスキー合成など、当技術分野に公知の種々のキノリン合成法によって製造することができる。これらのキノリン合成反応は、例えば、ザ・メルク・インデックス、第10版、M. ウィンドホルツ、出版、メルク・アンド・カンパニー、ラーウェイ、N. J. 、1983(The Merck Index, Tenth Edition, M. Windholz, Ed., Merck &

Co., Rahway, N. J. 1983) に 掲載されている。この引用により、ザ・メルク・インデックスをここに含める。例えば、ニーメントウスキー合成によれば、市販の2-アミノー4-フルオロ安息香酸を $\alpha-$ メチレンケトン誘導体と反応させることにより、2-位を $\alpha-$ メチレンケトン誘導体に由来する種々の基 で置換された7-フルオロー4-ヒドロキシキノリンを 合成することができる。種々のαーメチレンケトン誘導 体が米国特許第4,000,187号明細書に記載され ている。3-アミノフェノールは、デーブナーーミラー 合成によるアクロレイン誘導体(例えば、4-フルオロ シンナムアルデヒド)との縮合反応により、2及び/又 は4一位置換されたヒドロキシキノリンに転換すること ができる。同様にして、2-アミノフェノール及び4-アミノフェノールからも縮合反応によってフルオロヒド ロキシキノリンを得ることができる。

【0036】本発明に使用し得るジオール(BB)単量 体は、HO-W-OH (Wは先に定義した通りであ る。) の構造を有する。

【0037】本発明の単量体として使用し得るジオール 単量体の例としては、例えば、ビスフェノールAF

[0038] 【化31】

及び9、9-ビス(4-ヒドロキシフェニル) フルオレ

[0039] 【化32】

等が挙げられる。

【0040】ジオール単量体は、ビスーオキシド塩(例 30 えば、ジカリウム=イソプロピリデンービスーフェノラ ート等)の形態で用いるか、或は、本発明のポリキノリ ンを製造するための反応をジオールを脱プロトン化しう る塩基の存在下で行う。このような塩基としては、アル カリ及びアルカリ土類金属炭酸塩及び水酸化物、例え ば、炭酸カリウム、水酸化カリウム、炭酸ナトリウム、 水酸化ナトリウム等が挙げられる。ジオールの酸性度が 低くて水酸化ナトリウムでは十分に脱プロトン化されな い場合には、より強い塩基、例えば、水素化ナトリウム 等の金属水素化物、ブチルリチウム、ナトリウムアミド 等の金属アミドなどを用いてもよい。

【0041】ジオール (BB) 単量体としては、重合条 件下で脱プロトン化されて求核性オキシアニオンを生成 するものであれば、どのようなジオールも使用すること ができる。例えば、フェノール型ジオールは、炭酸カリ ウム、炭酸ナトリウム、水酸化ナトリウム等の塩基で脱 プロトンされて、フェノラート塩を形成する。このオキ シアニオンは別個に形成して単離してもよいが、その場 で形成することが好ましい。この塩基とジオールとの反 応時には、水が生成する。この水は、後述するように、

共沸蒸留により除去することができる。ジオール単量体 の他のタイプの求核重合反応での使用は当技術分野で公 知であり、例えば、ヒドロキノンを 4. 4′ ージフルオ ロベンゾフェノンと重合させることによるポリエーテル エーテルケトン(PEEK)の製造方法が知られてい る。

【0042】本発明に使用しうるジオール単量体のその 他の例としては、例えば、レゾルシン、ヒドロキノン、 4. 4-' -ジヒドロキシビフェニル、1, 3-ジヒド ロキシナフタレン、2,6-ジヒドロキシナフタレン、 2, 7ージヒドロキシナフタレン、3, 4'ージヒドロ キシビフェニル、3、3′ージヒドロキシビフェニル、 2. 4 - ジヒドロキシ安息香酸メチル、イソプロピリデ ンジフェノール(ビスフェノールA)、フェノールフタ レイン、フェノール・レッド、1,2-ジ(4-ヒドロ キシフェニル) エタン、ジ(4-ヒドロキシフェニル) メタン、4,4′′ージヒドロキシベンゾフェノン等が挙 げられる。これらやその他の使用しうるジオールが、市 販品として入手可能である。

【0043】本発明の一態様におけるAB型単量体の一 般構造を以下に示す:

[0044]

40

【化33】

(式中、Zは単結合、オルトーアリーレン及びパラーア リーレンからなる群から選ばれ、V-OH基はキノリン 核のいずれの環のどの位置に結合していてもよく、基V は単結合又は重合反応を妨害しない2価の基であり、R は各々独立に重合反応を妨害しない基であり、nは0~ 5の整数である。)

Rの例としては、上記のとおり、アルキル、アリール、 アリールオキシ、アルコキシ、ケトン(一CO

R' ' ')、ホルミル (-COH)、エステル (-CO zR'又は一〇COR')、アミド(一NR'COR" 又は一CONR′ R″)、ヘテロアリール、シアノから なる群から選ばれるものなどが挙げられ、Rが2つ以上 結合している場合、それらは互いに同一であっても異な っていてもよく、隣り合う2つのR基が互いに結合して 結合基を形成していてもよい。R'及びR"は上記と同 様にアルキル及びアリールからなる群から選ばれるもの である。R'''は上記と同様にアルキル、アリール及 びヘテロアリールからなる群から選ばれるものであり、 アルキルはハロゲン、アリール、アルコキシ等の置換基

をもっていてもよく、アリールはアルキル、アルコキシ 等の置換基をもっていてもよい。Rの具体例も上記のと おりである。

【0045】Vの例としては、例えば、単結合、アルキレン、アリーレン、アルキレン/アリーレン混合基、アルキレンオキシ、アリーレンオキシ、アルキレンカルボニル、アリーレンカルボニル、アルキレンスルホニル、アリーレンスルホニル、アルキレンチオ、アリーレンチオ及びヘテロアリーレンからなる群から選ばれるものなどが挙げられる。

【0046】V基の例としては、例えば下記のものなど が挙げられる:アルキレン基としては、メチレン、エチ レン及びステアリレン;アリーレン基としては、フェニ レン及びナフタレンジイル;アルキレン/アリーレン混 合基としては、ジメチレンフェニレン及びエチレンフェ 基としては、メチレンオキシ及びプロピレンオキシ;ア リーレンオキシ基としては、ナフタレンオキシ及びフェ ニレンオキシ;アルキレンカルボニル基としては、アセ チル及びシクロヘキシルカルボニル; アリーレンカルボ 20 ニル基としては、メチルフェニレンカルボニル及びフェ ニレンカルボニル;アルキレンスルホニル基としては、 メチレンスルホニル及びエチレンスルホニル;アリーレ ンスルホニル基としては、ナフタレンスルホニル及びフ エニレンスルホニル、アルキレンチオ基としては、エチ レンチオ (-CH₂CH₂-S-) 及びプロピレンチオ; アリーレンチオ基としては、ビフェニレンチオ及びフェ ニレンチオ (-C₆ H₄ - S -);並びにヘテロアリーレ ン基としては、ピリジンジイル及びキノリンジイル。

【0047】Rは、キノリン核のZ又はV-OHで置換 30 されていないどの位置に結合していてもよく、キノリン 核のどちらの環に結合していてもよい。

【0048】本発明の重合体は、キノリン核によって活 性化されたフルオロ基のオキシアニオンによる求核置換 によって得られる。この種の置換反応は、無水極性溶媒 中で行うことが最も好ましく、このような溶媒として は、例えば、N, Nージメチルホルムアミド(DM F)、N, N-ジメチルアセトアミド(DMAC)、N ーメチルピロリドン(NMP)、テトラメチル尿素、ジ メチルスルホキシド、スルホラン、ジフェニルスルホン 40 など、又は、これらの溶媒と他の無水溶媒との混合物な どが挙げられる。水を共沸蒸留によって除去するために は、トルエン、ジクロロベンゼンや、水と共沸物を形成 するその他の溶媒を添加することが好ましい。一態様と して、ジオール単量体を炭酸カリウム等の塩基と反応さ せると、カリウム塩と副生物として水が生成する。この 水は共沸蒸留によって容易に除去することができる(実 施例参照)。このジオール単量体の塩を単離する必要は なく、その場で製造し、使用することができる。

【0049】本発明のポリキノリン重合体を製造するた 50

めの操作は、通常、1種又は複数種の単量体と塩基とを無水溶媒中で加熱し、水(塩基とBB又はAB単量体上のヒドロキシ基との反応によって生じる水)を共沸除去することからなる。或は、BB又はAB単量体(1種又は複数種)を別工程で塩基で処理してもよいし、更に、得られるオキシド塩(BB単量体についてはビスーオキシド塩、AB単量体についてはオキシド塩)を必要に応じ単離及び精製してもよい。反応物の添加の順序は重要ではない。本発明の重合体の製造に使用する単量体の量は、当技術分野で公知の標準式、例えば、カロザースの式から決定することができる。

【0050】一般に、通常(AA+BB重合においては)等モル量のAA及びBB単量体を使用するが、必要に応じ、MW(分子量)や末端基の調整のためにモル比を1:1以外としてもよい。塩基は一般に若干過剰モル量を添加する。NMP/トルエン溶媒系の場合、還流温度は約135℃であり、 $6\sim18$ 時間かけて水を回収する。次いでトルエンや他の共溶媒を留去し、混合物を還流温度に加熱し(NMPの場合約202℃)、 $12\sim24$ 時間、又は、重合体が所望のMWに達するまで還流を続ける。圧力に制限はなく、常圧が好ましい。

【0051】必要に応じ、末端停止剤を反応の開始時、 反応中、又は反応の終了間際に添加してもよい。重合体 のMWは、当技術分野で公知のとおり、粘度測定又はゲ ル・パーミエーションクロマトグラフィー(サイズ排除 クロマトグラフィー)によって測定することができる。 次いで、反応混合物を冷却する。ドープからの重合体の 回収は、アルコールや水などの非溶媒からの析出など、 当技術分野で公知の方法によって行うことができる。こ の非溶媒としては、反応の副生物であるフルオリド塩を 除去するために、極性溶媒を用いることが好ましい。ま た、析出の前に重合体ドープを濾過することも好まし い。場合によっては、濾過又は析出前に、ドープを希釈 することが望ましい。

【0052】上記の一般構造を有するAB単量体を重合させることにより、下記の対応する構造を有する重合体を得ることができる:

[0053]

【化34】

(式中、Z、-V-Oー結合、V、R及 \tilde{U} n は先に定義したとおりであり、E及 \tilde{U} E i は各々独立に水素原子、フルオロ基及 \tilde{U} i ドロキシ基から選ばれるものであり、

x は繰り返し単位の数であって2~1,000,000 である。)

繰り返し単位の数xは $2\sim1$, 000, 000、好ましくは $10\sim10$, 000、特に好ましくは $50\sim100$ 0 である。末端停止剤を添加しない場合、EはHであり、E'はFであるが、不純物及び副反応によって偶然に生じた末端停止基が存在していてもよい。EがHである場合、重合体末端の化学的官能基はヒドロキシ基である。Eの末端基の反応性は、ヒドロキシ基の反応性である。EはHとして示されるが、末端基の化学的性質について述べる場合、Eをヒドロキシ又はOHと呼ぶ方が適切と思われる。本発明の場合、偶然に形成されるE'としては、水に由来するOHが形成される可能性が最も高い。末端停止剤を積極的に添加してもよい。例えば、フェノールはフェノキシ末端停止基(E'=OPh)を形成し、2-フルオロキノリンはキノリン末端停止基(E=2-キノリル)を形成する。

【0054】末端基の種類により、得られる重合体の化学的性質及び反応性が著しく異なる。例えば、フルオロ末端基は求核的攻撃を受けやすく、他の求核剤によって更に置換することができる。例えば、フルオロ末端基を染料その他の標識した基で置換することができる。フルオロ末端基を有する重合体をジオール(所望に応じ、もとのBB単量体ジオールとは異なるジオール)と反応させることにより、より高いMWを有し、所望に応じてより複雑な構造を有する新規な重合体を製造することもできる。フルオロ末端基を有する重合体を三官能性求核剤、例えばトリオール又はトリアミンと反応させることにより、分岐又は架橋した重合体を製造することもできる。

【0055】フルオロ末端基の場合と同様に、ヒドロキシ末端基も反応性を有する。ヒドロキシ末端基は酸性であり、塩基によって脱プロトン化することにより求核性になる。これらの特性を利用して重合体を更に反応させることにより、例えば、エステル又はエーテルを製造することができる。ヒドロキシ末端重合体は、例えば、二酸クロリドと反応して、ポリエステルを生成する。二酸クロリドの例としては、例えば、アジポイルクロリド、テレフタロイルクロリド、スクシノイルクロリド等が挙げられる。また、ヒドロキシ末端基を用いて架橋させたり、分岐構造を形成することもできる。

【0056】末端基の性質は、重合体の熱挙動にも影響を与える。本発明の重合体の溶解性は、高温に加熱することによって変化する。例えば、実施例2の重合体は、350℃で2時間加熱するとNMPへの溶解性が低下する。これは、末端基が更に反応したことによるものと思われる。

【0057】AB単量体の重合反応によって得られる重合体の例を、以下に示す。

[0058]

[(E35] E+0 OQ Q_{E'}

26.

単核キノリン核ジフルオロ (AA) 単量体を後述するようにジオール (BB) 単量体と反応させることにより、一般構造:

【0059】 【他36】

$$E = Z - Q - Z - Y - \frac{1}{x} E$$

[式中、R、n、Z及びE上記の通りであり、x は繰り返し単位の数であって、 $2\sim1$, 000, 000であり、Eは各々独立に水素原子、フルオロ基及びヒドロキシ基から選ばれる末端基であり、Yは-O-D0 W-O-から選ばれる2 価成分であり、Wは上記のとおりである。)x は好ましくは $10\sim10$, 000、特に好ましくは $50\sim1000$ である。

【0060】 Z基はキノリン核の2、4、5及び7一位から選ばれる位置に結合しており、一Z一Y一基が5又は7一位に結合している場合、通常、Zは単結合であり、即ちYのみが存在する。

【0061】各末端基EはAA及びBB単量体の量比に応じて定まり、また、末端停止剤を添加した場合には、水素原子、フルオロ基、ヒドロキシ基以外の基となる場合もある。

【0062】本発明の一態様によれば、ポリキノリン重合体を製造するための先に概説した一般的反応条件下でのジフルオロ(AA)単核キノリン単量体とジオール単量体との反応は、下記のように表される。

【0063】

$$(R)_{n} - \bigcap_{F} F$$

$$+ H-Y-H + K_{2}CO_{3} + CO_{2} + KF + H_{2}O$$

後述するように、本発明の二核キノリン核ジフルオロ (AA) 単量体を用いることにより、10個の一般構造を有する重合体を製造することができ、そのうちの3個の一般構造を以下に構造(2)、(3)及び(4)として示す。

【0064】

30

$$\begin{array}{c|c}
& 27 \\
(R)_n \\
E + Z
\end{array}$$
(2)

[0066]
[(
$$\pm 40$$
]

(R)_n
 $E - E - Z - N$

(A)

他の7個の一般構造は、各々のキノリン核が重合体鎖に 2及び5'、2及び7'、4及び5'、4及び7'、5及び5'、5及び7'、並びに7及び7'の位置で結合 しているものである。

【0067】一般構造(2)型ポリキノリンのより具体 的な例としては、下記の構造がある。

構造5の重合体中では、Zがいずれもパラーフェニレン であり、R⁴及びR⁴はR基としてのフェニルであり、 その他の各種Rは全てHである。

【0069】構造5の更に具体的な例は、下記の構造: [0070]

であり、この構造6の重合体は、対応するジフルオロA A単量体とビスーフェノールAFと反応させて製造さ れ、従って、Yがビスーフェノキシーへキサフルオロイ ソプロピリデンであり、Xは単結合である。この2種の 単量体を等量で用いた場合には、構造6中の末端基Eは 50

F及びOHである。 x は繰り返し単位の数である。 【0071】これらの一般構造に含まれるその他の特定 の構造は、当業者には明らかであろう。

[0072]

【実施例】以下、本発明の実施例及びその比較例によっ て本発明を更に具体的に説明するが、本発明はこれらの 実施例に限定されるものではない。

【0073】実施例1

下記構造のジフルオロキノリン単量体の製造:

10 [0074] 【化43】

10ml丸底フラスコに1g(2.56ミリモル)の 4, 4' ージアミノー3, 3' ーベンゾイルビフェニ ル、0.4g(2.89ミリモル)の4-フルオロアセ トフェノン及び0.1g(0.52ミリモル)のトルエ ンスルホン酸一水和物を入れた。この開口フラスコを約 200℃に加熱した。反応中に明黄色から橙色への明ら かな変色が観察され、水が蒸発した。200℃で加熱を 続けたところ、生成物が結晶化した。フラスコを冷却 し、粗製固形物を粉砕し、熱エタノールで洗浄した。更 に再結晶を行ったところ、単量体(7)が収率84%で 得られた。

【0075】実施例2 下記構造のポリキノリンの製造 [0076]

【化44】

機械的攪拌機、ディーンースタークトラップ及び窒素導 入口を備えた100ml三つ口丸底フラスコをオーブン で乾燥した後、ジフルオロキノリン単量体(7)(2. 98g、5.0ミリモル)、ビス-フェノールAF (1.68g、5.0ミリモル)、炭酸カリウム(1. 04g、7.5ミリモル)、無水NMP (20ml)及 びトルエン(20ml)を入れた。窒素下で混合物を環 流下に加熱した(約135℃、16時間)。トルエンを 除去し、ディーンースタークトラップを凝縮器に交換 し、混合物を再度還流下に加熱した(24時間)。反応 混合物をNMP(30m1)で希釈し、放置して室温ま

で冷却した。得られた溶液を蒸留水(250m1)中に 徐々に注ぎ、重合体を析出させた。固形物を濾過により 回収し、真空下、130℃で乾燥した(収率>95 %)。M_n=70,000(GPC、ポリスチレン標準 換算)。

29

【0077】このポリキノリン重合体(8)はTgが約 265℃であり、NMP、DMAC等のアミド溶媒、及 び数種のエーテル及びエステル溶媒、例えば、シクロペ ンタノン及びテトラヒドロフランに溶解する。ポリキノ リン(8)はトルエン、ヘキサン、ジエチルエーテル、*10

*水、アセトン及びアルコールには溶解しない。ポリキノ リン(8)を約300℃で約1~10時間加熱すると、 Tgが約280℃に上昇し、溶解性が低下する。

【0078】実施例3

単量体オフセット法 (monomer offset method) による下記構造の分子量調整ポリキノリ ンの製造

[0079] 【化45】

機械的攪拌機、ディーンースタークトラップ及び窒素導 入口を備えた100ml三つ口丸底フラスコをオーブン で乾燥した後、ジフルオロキノリン(7)(2.98 g、5. 0ミリモル)、ビス-フェノールAF(1. 7 2g、5.1ミリモル)、炭酸カリウム(1.04g、 7. 5ミリモル)、無水NMP (20m1) 及びトルエ ン(20m1)を入れた。窒素下で混合物を還流下に加 熱した(約135℃、16時間)。トルエンを除去し、 ディーンースタークトラップを凝縮器に交換し、混合物 を再度還流下に加熱した(4時間)。反応混合物をNM P(30ml)で希釈し、放置して室温まで冷却した。 得られた溶液を蒸留水(25ml)中に徐々に注ぎ、重 合体を析出させた。固形物を濾過により回収し、真空 下、130℃で乾燥した(収率>95%)。M₁=3 6, 000 (GPC、ポリスチレン標準換算)。

【0080】実施例4

下記構造の6-クロロー2-(4-フルオロフェニル) - 4 - フェニルキノリンの製造

[0081] 【化46】

温度計、機械的攪拌機、及び、窒素導入バルブ付き蒸留 ユニットを備えた2リットルの三つ口丸底フラスコに、 2-アミノー5ークロロベンゾフェノン(695.0 g、3.00モル)、4′-フルオロアセトフェノン (456.0g、3.30モル) 及びパラートシックア シッド (47.62g、0.25モル) を入れた。反応 混合物を窒素下、165℃で加熱した(44時間)。加

ェノンを分離し、反応混合物中に戻した。混合物を更に 190℃で加熱した(2時間)。混合物を120℃に冷 却し、機械的撹拌棒装置で激しく撹拌しながら95%エ タノール (10リットル) 中に注いだ。混合物を濾過 し、析出物をエタノール(1リットル)で洗浄した。固 形物を真空オーブン中で80℃で乾燥した(16時 間)。収率:969g、97%;mp141.0-14 2. 1 ℃。

【0082】実施例5

6,6'ービス[2-(4-フルオロフェニル)-4-フェニルキノリン〕の製造

[0083]

【化47】

30

撹拌棒装置及び窒素導入口を備えた250m1三つ口丸 底フラスコに化合物 10(6-クロロー2-(4-フル オロフェニル) -4-フェニルキノリン) (25.0 g、75ミリモル)、ビス(トリフェニルホスフィン) ニッケルジクロリド(0.681g、1.04ミリモ ル)、ヨウ化ナトリウム(1.40g、9.37ミリモ ル)、トリフェニルホスフィン(8.19g、33.3 ミリモル)及び活性化亜鉛末(3.13g、47.9ミ リモル)及びNMP(86m1)を入れた。このフラス コを窒素下に70℃で加熱した(16時間)。混合物を NMP (10ml) で希釈し、170℃に加熱し、熱い 状態でセリットを通して濾過した。母液を−20℃に冷 却し、生成物を濾過により回収した。黄色の固形物を冷 熱中を通して、水と共に留出した黄色の4′ーアセトフ 50 エタノール/塩化メチレン(3/1)で洗浄し、真空オ

ーブン中で100℃で乾燥した。収率:19.07g、 85%、mp280-282℃(補正せず)。

【0084】実施例6

実施例5の単量体(化合物(7))と9,9-ビス(4-ヒドロキシフェニル)フルオレンとの重合による下記構造のポリキノリン重合体の製造:

[0085]

【化48】

機械的攪拌機、凝縮器及び窒素導入バルブ付きディーン ースタークトラップ、及び温度計を備えた2リットル三 つ口丸底フラスコに、実施例5で得られた化合物(7) (114.75g、0.19225モル、1.03当 量)、9、9-ビス(4-ヒドロキシフェニル)フルオ レン (66. 0472g、0. 18848モル、1. 0 20 0 当量)、炭酸カリウム(39.1g、0.28モル、 1. 5 当量)、 NMP (705 m1) 及びトルエン (4 21ml)を入れた。反応混合物を窒素下、還流下に加 熱した(15時間)。トルエンをディーンースタークト ラップを通して除去し、反応混合物を更に200℃で加 熱した(12時間)。反応混合物をNMPで希釈し、室 温に冷却した。得られる重合体溶液をアセトン(約3倍 容量)中に徐々に注ぎ、重合体を凝集させた。固形物を 濾過により回収し、NMPに溶解し、水(約3倍容量) 中で凝集させた。固形物を回収し、真空下で130℃で 30 乾燥した(12時間)。収率:170g、99%; Ma = 46,900 (GPC、ポリスチレン標準換算)。ポ リキノリン11のTgは約306℃である。

【0086】実施例7

実施例5の単量体(化合物(7))と1,4-ヒドロキ ノンとの重合による下記構造のポリキノリン重合体の製 造:

[0087]

【化49】

機械的攪拌機、縮合器及び窒素導入バルブ付きディーン ースタークトラップ、及び温度計を備えた100m1三 つ口丸底フラスコに、実施例5で得られた化合物(7) (2.00g、3.35ミリモル)、1,4-ヒドロキ ノン(0.369g、3.35ミリモル)、炭酸カリウ 50

ム(1.02g、7.38ミリモル)、無水NMP(18g)及びトルエン(15g)を入れた。反応混合物を窒素下、還流下(約160℃)で加熱した(4時間)。トルエンをディーンースタークトラップを通して除去し、反応混合物を更に202℃で加熱した(16時間)。反応混合物を室温に冷却し、NMPで希釈した。得られる重合体溶液をエタノール中に徐々に注ぎ、重合体を凝集させた。固形物を濾過により回収し、熱エタノール中で撹拌した(2時間)。固形物を再度回収し、真でオーブン中で150℃で乾燥した(12時間)。Mn=77,900(GPC、ポリスチレン標準換算)。

32

【0088】実施例8

実施例5の単量体(化合物(7))とビスーフェノールAとの重合による下記構造のポリキノリン重合体の製造:

[0089]

【化50】

機械的攪拌機、縮合器及び窒素導入バルブ付きディーン ースタークトラップ、及び温度計を備えた500m1三 つ口丸底フラスコに、実施例5で得られた化合物(7) (17.9g、30.0ミリモル)、ビスーフェノール A(6.85g、30.0ミリモル)、炭酸カリウム (6. 22g、45. 0ミリモル)、NMP (120m 1) 及びトルエン(120ml)を入れた。反応混合物 を窒素下、還流下に加熱した(12時間)。トルエンを ディーンースタークトラップを通して除去し、反応混合 物を更に202℃で加熱した(10時間)。反応混合物 をNMP(125ml)で希釈し、室温に冷却した。得 られる重合体溶液をメタノール (約1リットル) 中に徐 々に注ぎ、重合体を凝集させた。固形物を濾過により回 収し、NMP (250m1) に溶解し、水 (約1リット ル) 中で凝集させた。固形物を再度濾過により回収し、 メタノール中で沸騰させた(1時間)。重合体を回収 40 し、真空中で100℃で乾燥した(12時間)。収率: 22g, 93%; $M_n = 25$, 500 (GPC, #UZ チレン標準換算)。

【0090】実施例9

化合物 (10) を単離せずに 6, 6' ービス [2-(4-7) ープルオロフェニル) -4 ーフェニルキノリン] (化合物 7) を製造する方法

機械的撹拌装置、短蒸留装置及び窒素導入バルブを備えた250ml三つ口丸底フラスコに、2-アミノ-5-クロロベンゾフェノン(化合物3)(17.4g、75.0ミリモル)、4'-フルオロアセトフェノン(化

33

合物2) (10.0m1、824ミリモル) 及びトシッ クアシッド(0.505g、2.7ミリモル)を入れ た。水を除去するために、反応混合物を窒素下に180 ℃で加熱した(20時間)。反応混合物を160℃に冷 却し、炭酸カリウム(0.367g、2.7ミリモル) を添加した。次いでトルエン(100ml)を反応混合 物に添加し、留去した。このトルエン添加/留去操作 を、2回繰り返した。

【0091】反応混合物を80℃に冷却し、蒸留ユニッ トを取りはずした。フラスコに塩化ニッケル(0.77 8g、6.00ミリモル)、ヨウ化ナトリウム(2.4 3g、16.2ミリモル)、トリス(2ートリル)ホス ファイト (6. 77g、19. 2ミリモル) 及びNMP (63m1)を入れ、得られる溶液を撹拌した(18時 間)。反応温度を60℃に下げ、亜鉛粉(6.59g、 101ミリモル)を添加した。発熱が治まった後(10 分)、反応混合物を80℃で撹拌した(16時間)。

【0092】反応混合物を160℃に加熱して、生成し ていた析出物を溶解した。反応混合物を熱いうちにセリ ットを通して濾過し、放置して室温まで冷却した。粗生 成物を濾過により回収し、エタノールで洗浄した。母液 から第二回収物を回収し、エタノールで洗浄した。黄色 の生成物を真空オーブン中で160℃で乾燥した(18 時間)。回収物1から12.0g、回収物2から6.3 g (収率73.1%)。

【0093】実施例10.

化合物 (10) を単離せずに6, 6'-ビス [2-(4 -フルオロフェニル) - 4 - フェニルキノリン] (化合 物7)を製造するための別法

窒素導入口、撹拌棒装置及び蒸留ユニットを備えた25 0m1三つ口丸底フラスコに、2-アミノ-5-クロロ ベンゾフェノン(17.38g、75.0ミリモル)、 4' -フルオロアセトフェノン(10.0ml、82. 0ミリモル)及びパラートシックアシッド(1.00 g、5.3ミリモル)を入れた。反応混合物を窒素下に 180℃で加熱した(16時間)。生成した水を除去 し、反応混合物にトルエンを50m1づつ2回添加し (2×50ml)、蒸留装置を通して除去した。

【0094】反応混合物を室温に冷却し、ビス(トリフ ェニルホスフィン) ニッケルジクロリド(0.681 g、1.04ミリモル)、ヨウ化ナトリウム(1.40 g、9.37ミリモル)、トリフェニルホスフィン (8. 19g、33. 3ミリモル)及び亜鉛粉 (3. 1 3g、47.9ミリモル)をNMP(86ml)と共に 上記反応フラスコ内に添加した。フラスコを窒素下に7 0℃で加熱した(16時間)。混合物をNMP(10m 1) で希釈し、170℃に加熱し、混合物をセリットを 通して濾過した。母液を一20℃に冷却し、生成物を濾 過により回収した。黄色の固形物を冷エタノール/塩化 メチレン (3/1) で洗浄し、真空オーブン中で100 50

℃で乾燥した。収率:18.3g、80.5%。 【0095】実施例11

活性化亜鉛末の製造

市販の325メッシュ亜鉛末をジエチルエーテル(無 水)中の1M塩化水素で2回洗浄し、次いでジエチルエ ーテル(無水)で2回洗浄した後、真空中、又は不活性 雰囲気下で100~200℃で数時間乾燥することによ り、活性化亜鉛末を得る。乾燥中に塊が生じた場合に は、-150メッシュまで再度ふるい分けする。この材 料は、すぐに使用するか、又は酸素及び湿気を遮断した 不活性な雰囲気下に貯蔵する必要がある。

【0096】本発明の重合体組成物は、誘電率が低く、 低吸水性であり、熱安定性に優れ、かつ良好な溶解性を 有することから、一般に、エレクトニクス及びマイクロ エレクトロニクス分野において好適に用いられる。本発 明の重合体は、集積回路(IC)の誘電体層、例えば、 プラナー化材、絶縁体、パシベーション層、カプセル封 止材、接着剤等として用いることができる。また、種々 の配線板、例えば印刷配線板、フレキシブル配線板、テ ープ自動接着基板、マルチーチップモジュール、誘電 体、その他の高密度系統連係素子などとしても用いられ る。更に、コンデンサー、抵抗器、個別半導体素子、誘 導子、その他の絶縁層を必要とする素子などの電子部品 の製造にも用いられる。

【0097】本発明の重合体は、更に、電気分野におい ても、例えばワイヤ・コーティング及び絶縁、絶縁ラッ カー、モールドコネクター、スウィッチ、密閉部品、絶 縁帯等の作製に使用される。低誘電率及び良好な機械的 特性を必要とするその他の用途としては、コーティング 材、特に、優れた熱安定性及び透明性を必要とするコー ティング材としての用途や、絶縁用のコンフォーマルコ ーティング材、ポッティング用コンパウンド等の用途が ある。本発明の重合体は、更に、必要に応じて充填材を 含有するダイ付き接着剤、ラミネート接着剤などの接着 剤としても使用しうる。更に本発明の重合体は、複合材 料のマトリックス樹脂としても使用し得る。

【0098】また、本発明の重合体は、自立フィルム、 積層フィルム、繊維、コーティングとしても使用するこ とができる。

【0099】以下に本発明の重合体の用途を例示する が、これらの例示は本発明の範囲をなんら限定するもの ではない。

【0100】図1に、本発明のマルチーチップモジュー ル10の概略断面側面図を示す。この種のマルチーチッ プモジュールは、複数の集積回路チップ(IC)(図示 せず)を、個別にチップキャリアー内にパッケージせず にそのまま直接載置するための配線板として用いられ る。このマルチーチップモジュールは、通常(必ずでは ない)、 I Cの作製に用いられると同様の光食刻法によ って作製される。以下にマルチーチップモジュールの作

製法を概説するが、当技術分野で公知の様々な変更が可能である。

【0101】基板12、例えば、表面に複数の導体13 を有する4-又は6-インチーシリコン又はアルミナウ ェハに、本発明によって得られるポリキノリン重合体の 層14をスピンーコーティングする。スピンーコーティ ングに用いた溶媒をオーブン中で除去し、ポリキノリン 層を上記したように適当な温度で適当な時間加熱して硬 化させ、ポリキノリン層の耐溶剤性を向上させる。重合 体層にバイアホール(図示せず)を種々の方法、例えば レーザードリルにより、又はパターニング及びエッチン グによって形成する。その上に銅又はアルミニウムなど の金属層16を積層し、公知の技術によってパターン化 し、金属の一部16 aがバイアホールを通じて導体13 に接触している金属線路を形成する。次いで本発明によ って得られるポリキノリン重合体からなる第二ポリキノ リン層18をスピンーコーティングし、乾燥及び硬化さ せ、金属を完全に覆う。上記のようにしてバイアホール を形成し、第二金属層を形成し、パターン化する。上記 の工程を繰り返し、重合体層20及び金属層22を更に 形成する。場合によっては、重合体のシリコン基板やそ の他の層への接着性を向上させるために接着促進剤を使 用したり、或は重合体の塗布前に金属線路をクロムめっ き又は金めっきすることが望ましい。

【0102】本発明の重合体は、その他の受動又は能動個別電子部品、例えばコンデンサー、抵抗器、誘導子、変圧器、ダイオード、トランジスター等の誘電体材料としても使用しうる。

【0103】図2にコンデンサー30の概略拡大図を示す。本発明によって得られるポリキノリン重合体からなる誘電体フィルム32及び34が、コンデンサーの極板を形成する金属箔36及び38を絶縁している。通常、この多層構造体をロール40状に巻き上げ、電気的接続(図示せず)を行った後、パッケージ封止する。

【0104】本発明の重合体は、液晶ディスプレイ、フラット・パネルTV、光弁、ソーラー・ウィンドウ等の製造におけるコーティング材としても使用しうる。本発明の重合体は、また、光導波管、光繊維、非線形光学素子等の光学及び電子光学用途にも使用することができる。電気分野での用途としては、ワイヤ・コーティング40材、ワイヤ・ラップ・フィルム、保護及び防食コーティング材、コネクタ、ハウジング、スィッチ、プラグ、ソケット、その他のモールド電気部品用樹脂などが挙げられる。

【0105】本発明の重合体は、また、集積回路の層間 誘電体としても有用である。誘電率が低く熱安定性にも 優れることから、層間誘電体として好適に用いられる。 層間誘電体は、集積回路の信号搬送金属層間及び/又は 信号搬送金属層と半導体素子との絶縁のために用いられ る。 【0106】図3に、集積回路42の概略図を示す。この集積回路42は、シリコン・ウェハ45内に集積した半導体素子43、信号搬送金属線路47、及び本発明のポリキノリン重合体からなる絶縁誘電体層44を有する。このポリキノリン層は、当技術分野で公知の方法、例えばスピン・コーティングした後、高温で硬化させる方法などによって形成される。

【0107】本発明のポリキノリン重合体は、また、可 視光に対する高い透過性を必要とするコーティング材と しても有用である。本発明の重合体は、その他の過酷な 環境下に用いられるコーティング材、例えば、工業、石 油化学、化学分野で用いられるコーティング材としても 有用である。

【0108】更に、本発明のポリキノリン重合体を当技術分野で公知の方法、例えば、湿式紡糸、乾式紡糸又は押し出し後、更に熱間又は冷間延伸などの処理をすることにより、繊維を製造することもできる。

【0109】図4に、本発明によって得られるポリキノリン重合体の単繊維52多数本からなるマルチ・フィラメント繊維50の概略図を示す。

【0110】本発明のポリキノリン重合体から、必要に応じて一軸延伸処理をし、高強度熱安定性フィルムを製造することができる。

【0111】図5に、本発明によって製造されたポリキノリン重合体から成形した自立フィルム62のロール60を示す。

【0112】上記の繊維及びフィルムは、織物、コード、ロープ、複合材料用の繊維、バリヤ・フィルム、バギング材、電気及び熱絶縁、離型フィルム等の種々の用途に用いることができる。

【0113】本発明の重合体は、複合材料のマトリックス樹脂としても使用することができる。

【0114】ポリキノリン重合体及びこの重合体の製造に用いられる単量体の上記の好ましい態様は、例示を目的として記載したものである。当業者に明らかなように種々の変更が可能であり、従って、本発明は上記の特定の態様に限定されるものではない。本明細書中に記載されていない物質及び組成物については、それらを用いなくても本発明を好適に実施することができる。

[0115]

【発明の効果】本発明のポリキノリン重合体の製造方法によれば、ポリキノリン重合体を高価な燐酸塩触媒や、取り扱いの困難なクレゾール溶媒を用いずに製造することができ、その結果、低誘電率及び優れた耐熱性を有する種々のポリキノリン重合体を経済的、かつ効率的に製造することが可能となった。

【図面の簡単な説明】

【図1】本発明によって得られるマルチーチップモジュールの概略部分断面側面図。

【図2】本発明によって得られるコンデンサーの概略拡

大斜視図。

【図3】本発明によって得られる集積回路の概略断面側面図。

【図4】本発明によって得られるマルチ・フィラメント 繊維の概略斜視図。

【図5】本発明によって得られるフィルムの自立ロールの概略斜視図。

【符号の説明】

10 マルチーチップモジュール、12 基板、13 *

* 導体、14 ポリキノリン重合体層、16 金属層、16 金属 18 第二ポリキノリン層、20重合体層、22 金属層、30 コンデンサー、32,34 誘電体フィルム、36,38 金属箔

40 ロール、42 集積回路、43 半導体素子、4 4 絶縁誘電体層、45 シリコン・ウェハ、47 信 号搬送金属線路、50 マルチ・フィラメント繊維、5 2 単繊維

60 ロール、62 自立フィルム

【図1】

10 マルチーチップモジュール、12 基板、13 導体、 14 ポリキノリン重合体圏、16 金属圏、16a 金属、 18 第二ポリキノリン圏、20 重合体圏、22 金属圏

【図2】

30 コンデンサー、 32,34 誘電体フィルム、 38,38 金属箱 40 ロール

【図3】

42 集積回路、 43 半導体素子、 44 絶縁膀電体圏 45 シリコン・ウェハ、 47 信号搬送金属線路

【図4】

【図5】

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第3部門第3区分

【発行日】平成15年5月21日(2003.5.21)

【公開番号】特開平9-136954

【公開日】平成9年5月27日(1997.5.27)

【年通号数】公開特許公報9-1370

【出願番号】特願平8-144571

【国際特許分類第7版】

CO8G 65/40 NOW

DO1F 6/66

H01G 4/18 327

// CO8J 5/18 CEZ

[FI]

CO8G 65/40 NOW

DO1F 6/66

HO1G 4/18 327 Z

CO8J 5/18 CEZ

【手続補正書】

【提出日】平成15年2月5日(2003.2.5)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】請求項1

【補正方法】変更

【補正内容】

【請求項1】 a) フルオロ基2個を、該2個のフルオロ基のそれぞれがキノリン核によって活性化された状態で有するジフルオロ単量体を供給する工程;

- b) ジオール単量体を、そのビスーオキシド塩の形態 で、又は、該ジオールを脱プロトン化しうる塩基の存在 下に供給する工程;及び
- c) 該ジフルオロ単量体と該ジオール単量体とを極性溶 媒中で反応させてポリキノリン重合体を製造する工程か らなることを特徴とするポリキノリン重合体の製造方 法。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】請求項10

【補正方法】変更

【補正内容】

【請求項10】 キノリン核によって活性化されたフルオロ基2個を有する少なくとも1種の他のジフルオロ単量体を供給する工程を更に含み、該他のジフルオロ単量体を該フルオロヒドロキシ単量体と共に重合させ、得られる該ポリキノリン重合体が共重合体である請求項8記載の方法。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】請求項14

【補正方法】変更

【補正内容】

【請求項14】 各繰り返し単位が下記構造を有する請求項13記載の重合体。

【化8】

[式中、Rは重合反応を妨害しない基であり、nは $0\sim5$ の整数であり、Zは単結合、オルトーアリーレン及びパラーアリーレンからなる群から選ばれ、xは繰り返し単位の数であって、 $2\sim1$, 000, 000であり、Eは各々独立に水素原子、フルオロ基及びヒドロキシ基から選ばれる末端基であり、Yは-O-及び-O-W-O

(式中、Wは

-Ra-

-Ar'-

-Ra-Ar'-

-Ra'-O-Ra'-

-Ra'-C(0)O-Ra'-

-Ra'-NHCO-Ra'-

-Ra-C(O)-Ra-

-Ar'-C(0)-Ar'-

-Het'-

-Ar'-S-Ar'-

-A r' - S (0) - A r' -

-Ar'-S(O₂)-Ar'-、及び

-Ar'-Q-Ar'-

からなる群から選ばれる2価の基であり、W上の水素原子は部分的に又は完全にフッ素置換されていてもよく、Raはアルキレンであり、Ar' はアリーレンであり、Ra' は各々独立にアルキレン、アリーレン及びアルキレン/アリーレン混合基からなる群から選ばれる基であり、Het' はヘテロアリーレンであり、Qは4級炭素を含有する下記の2価の基であり、

【化9】

$$Q = U$$
 $U \cup U' = -CH_3 \cup -CF_3 \cup Ar又は結合しており、$

(式中、Arはアリールであり、U及びU'が結合している場合、結合によって形成される基は

- -Ra-
- -Ar'-
- -Ra-Ar'-
- -Ra'-O-Ra'-
- -Ra'-C(0)O-Ra'-
- -Ra'-NHCO-Ra'-
- -Ra-C (O) -Ra-、及び
- -A r' C (0) A r' -

から選ばれる2価の基であり、この結合基上の水素原子は部分的又は完全にフッ素で置換されていてもよい。)からなる群から選ばれる。 からなる群から選ばれる。]

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】請求項28

【補正方法】変更

【補正内容】

【請求項28】 Vが単結合、アルキレン、アリーレ ン、アルキレン/アリーレン混合基、アルキレンオキ シ、アリーレンオキシ、アルキレンカルボニル、アリー レンカルボニル、アルキレンスルホニル、アリーレンス ルホニル、アルキレンチオ、アリーレンチオ及びヘテロ アリーレンからなる群から選ばれる<u>もの</u>であり、Rが、 各々独立に、アルキル、アリール、アリールオキシ、ア ルコキシ、ケトン(-COR''')、ホルミル(-C OH)、エステル (-CO₂R'又は-OCOR')、 アミド (-NR' COR" 又は-CONR' R")、へ テロアリール、シアノからなる群から選ばれるものであ り、隣り合う2つのR基が互いに結合して結合基を形成 していてもよく、R′及びR″がアルキル及びアリール からなる群から選ばれるものであり、 R''' がアルキ ル、アリール及びヘテロアリールからなる群から選ばれ るものである請求項27記載の重合体。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】請求項32

【補正方法】変更

【補正内容】

【請求項32】 ジオール単量体と反応させてポリキノリン重合体を合成するために用いられる単量体であって、下記一般式を有する単量体。

【化24】

(式中、 R^2 、 R^4 、 R^5 及び R^7 のうちの1つがF又はZ-Fであり、その他の3つはH又はRであり、 R^{\prime} 、 R^{\prime} 、 R^{\prime} 。 $R^{$

【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】請求項36

【補正方法】変更

【補正内容】

【請求項36】 Vが単結合、アルキレン、アリーレ ン、アルキレン/アリーレン混合基、アルキレンオキ シ、アリーレンオキシ、アルキレンカルボニル、アリー レンカルボニル、アルキレンスルホニル、アリーレンス ルホニル、アルキレンチオ、アリーレンチオ及びヘテロ アリーレンからなる群から選ばれるものであり、Rが、 各々独立に、アルキル、アリール、アリールオキシ、ア ルコキシ、ケトン(一COR' <u>~)</u>、ホルミル(一C OH)、エステル (-CO₂ R' 又は-OCOR')、 アミド (-NR', COR" 又は-CONR' R")、へ テロアリール、シアノからなる群から選ばれるものであ り、隣り合う2つのR基が互いに結合して結合基を形成 していてもよく、R′及びR″がアルキル及びアリール からなる群から選ばれるものであり、 R′′′ がアルキ ル、アリール及びヘテロアリールからなる群から選ばれ るものである請求項35記載の単量体。

【手続補正7】

【補正対象書類名】明細書

【補正対象項目名】0020

【補正方法】変更 -

【補正内容】

[0020]

【化27】

(式中、 R_2 、 R_4 、 R_5 及び R_7 のうちの2つがF又は2 Fであり、その他の2つはH又はRであり、Zは単結合、オルトーアリーレン及びパラーアリーレンからなる群から選ばれ、Rは各々独立に重合反応を妨害しない基であり、キノリン核上のZF又はFで置換されていない位置のどの位置に結合していてもよく、nは $0\sim5$ の整数である。)

Rとしては、例えば、アルキル、アリール、アリールオ キシ、アルコキシ、ケトン(一COR′′′)、ホルミ ν (-COH)、エステル (-CO₂R'又は-OCOR')、アミド (-NR'COR"又は-CONR' R")、ヘテロアリール、シアノ等が挙げられる。な お、R′及びR″は、各々独立にアルキル及びアリール から選ばれる基である。R''' はアルキル、アリール 及びヘテロアリールからなる群から選ばれるものであ り、アルキルはハロゲン、アリール、アルコキシ等の置 換基をもっていてもよく、アリールはアルキル、アルコ キシ等の置換基をもっていてもよい。 R基が2個以上キ ノリン核上に結合している場合は、各々同一であっても 異なっていてもよく、また、隣り合う2つのR基が互い に結合して結合基を形成していてもよい。結合基の例と $LTLL_1 - (CH_2)_4 - (CH_2)_3 - (CH_2)_5 - CH = C$ H-СH=СH-などが挙げられる。

【手続補正8】

【補正対象書類名】明細書

【補正対象項目名】0024

【補正方法】変更

【補正内容】

[0024]

【化28】

(式中、 R^2 、 R^4 、 R^5 及び R^7 のうちの1つがF又はZ-Fであり、その他の3つはH又はRであり、 R^{\prime} 2、 R^{\prime} 4、 R^{\prime} 5及び R^{\prime} 7のうちの1つがF又はZ-Fであり、その他の3つはH又はRであり、Zは単結合、オルトーアリーレン及びパラーアリーレンから選ばれ、Xは単結合又は重合反応を妨害しないZ 価の基であり、Rは、各々独立に、重合反応を妨害しない基であり、Yリン核上のY0、Y1、Y2 を対象されていないどの位置に結合していてもよく、Y3 に対象を変ある。)

 R^5 、 R^7 、 R^7 りな R^7 のうちのいずれかが F 又は Z F である場合には、通常、F であることが好ましい。 【手続補正 9 】

【補正対象書類名】明細書

【補正対象項目名】 0027

【補正方法】変更

【補正内容】

【0027】上記の各種のWのうち、好ましいものとしては、

-Ar' -、

-Het' −,

-Ar'-O-Ar'-

-A r' - C (0) - A r' -

-Ar'-S-Ar'-

-Ar'-S(0)-Ar'-

-Ar'-S(O)2-Ar'-及び

-Ar'-Q-Ar'-

からなる群から選ばれる 2 価の基が挙げられる。上記 $U \cup U'$ 基が互いに結合している基の例としては、例えば、

【手続補正10】

【補正対象書類名】明細書

【補正対象項目名】0042

【補正方法】変更

【補正内容】

【0042】本発明に使用しうるジオール単量体のその他の例としては、例えば、レゾルシン、ヒドロキノン、4,4′ージヒドロキシビフェニル、1,3ージヒドロキシナフタレン、2,6ージヒドロキシナフタレン、3,4′ージヒドロキシビフェニル、3,3′ージヒドロキシビフェニル、2,4ージヒドロキシ安息香酸メチル、イソプロピリデンジフェノール(ビスフェノールA)、フェノールフタレイン、フェノール・レッド、1,2ージ(4ーヒドロキシフェニル)メタン、4,4′ージヒドロキシベンゾフェノン等が挙げられる。これらやその他の使用しうるジオールが、市販品として入手可能である。

【手続補正11】

【補正対象書類名】明細書

【補正対象項目名】0059

【補正方法】変更

【補正内容】

[0059]

【化36】

$$E = Z - Q - Z - Y - \frac{1}{x} - E$$
(1)

<u>(</u>式中、R、n及びZは上記の通りであり、x は繰り返し単位の数であって、 $2\sim1$, 000, 000であり、E は各々独立に水素原子、フルオロ基及びヒドロキシ基

から選ばれる末端基であり、Yは -O-及び -O-W-O-から選ばれる2価成分であり、Wは上記のとおりであ

る。) x は好ましくは $10 \sim 10$, 000、特に好ましくは $50 \sim 1000$ である。