

Optimizing Refugee Integration via Learned Assignment Max Darling & Jason Ginsberg

Overview

- » Our project improves the process by which refugees are assigned to resettlement locations within the United States.
- » Current policy randomly assigns refugees based on capacity constraints and proximity.
- » Our model, in contrast, learns to place refugees in regions of optimal employment opportunity.
- » The results of our supervised learning approach demonstrates that two refugees of similar backgrounds face different outcomes based solely on where they are placed.

Parameter Search and Feature Selection

- » 80-20 train-test split, 5-fold cross-validation
- » 40 uniform random search over 5 parameters
- » Select features by pruning lowest magnitude weights

Refugee Assignment

- » Allocate refugees to 1 of 4 US regions such that employment probability is maximized and regional constraints are obeyed
- » Factor graph: N-ary regional population constraint, unary employment probability factors.
- » Optimize variable assignments (refugee allocations)

Dataset

The Annual Survey of Refugees

- » 4,683 refugees who entered the US from 2011 to 2015
- » 100 Questions
- » 4 regions: Northeast, South, Midwest, and West
- » Reduce to 32 features, separate by region, label by employment status, one-hot encode (categorical)

Table 1: ASR2016 Feature Categories

Marital Status	Ethnicity	Country of Origin	Country of Birth
Age	Gender	Household Relation	Arrival Date
Education	Profession	English Skills	Health Status

Results

Precision-Recall

Extreme Gradient Boosted Trees

- » Goal: predict a refugee's employability given a region
- » Decision tree: classify by splitting the input space of a node Gradient Boosting: ensemble of multiple decision trees, correct residual error via iterative augmentation of tree.
- » XGBoost: 2nd order derivative of loss with L1 and L2 norm Our implementation
- » Train 1 employability classifier per each region via XGBoost over 200 iterations
- » Logistic loss for classification at each split
- » Output logits at inference (via Softmax function)

Cross-Validation

	roid i	roid 2	roid 3	Folu 4	roid 5
Accuracy	0.882	0.907	0.924	0.915	0.924
Region 1: lear	ning rate=0.033,	max_depth=2, a	vg accuracy=0.9	900	
	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Accuracy	0.897	0.901	0.906	0.919	0.879
Region 2: lear	ning rate=0.040,	max_depth=2, a	vg accuracy=0.9	28	
	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Accuracy	0.936	0.932	0.932	0.923	0.918
Region 3: lear	ning rate=0.064,	max_depth=3, av	g accuracy=0.92	3	
	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Accuracy	0.935	0.935	0.918	0.902	0.923

Percent of refugees whose

our re-assignment

» 71.948%

employability improved after

Weighted F1 Scores

- » Northeast: 91.316%
- » South: 93.604%
- » Midwest: 92.843%
- » West: 93.548%

» 66% improvement over baseline accuracy

» Model generalizes well based on cross-validation » Model simplifies to 20 features » Re-assignments greatly improve likelihood of employment » Complex regional factors greatly affect employment

Analysis

- » Professional information, language skills, age, and education matter most
- » Gender, ethnicity, origin, and year of arrival matter least
- » Issues: accuracy of data, 2nd order assignment effects, small size of dataset, employment-only, family separation
- » Greater number of false positives (worse misprediction-type)

Future Work

- » Evaluation of feature pruning on accuracy across models
- » More complex constraint-based model accounting for families, regional laws, and policies
- » Application of model on synthesized inputs in order to make policy recommendations about future refugee influxes
- » Larger dataset with state-level rather than regional data
 - » Inter-dependent factors even more complex
 - » Less bias in outcomes based on region of origin
 - » Greater confidence in generalizability