Numerical Analysis I: machine numbers

Victor Eijkhout

Outline

Numbers in scientific computing

- Integers: ..., -2, -1, 0, 1, 2, ...
- Rational numbers: 1/3,22/7: not often encountered
- Real numbers $0, 1, -1.5, 2/3, \sqrt{2}, \log 10, \dots$
- Complex numbers $1 + 2i, \sqrt{3} \sqrt{5}i, \dots$

Computers use a finite number of bits to represent numbers, so only a finite number of numbers can be represented, and no irrational numbers (even some rational numbers).

Integers

Integers

Scientific computation mostly uses real numbers. Integers are mostly used for array indexing.

16/32/64 bit: short,int,long,long long in C, size not standardized, use sizeof(long) et cetera. (Also unsigned int et cetera)

INTEGER*2/4/8 Fortran

Negative integers

Use of sign bit: typically first bit

$$s \mid i_1 \dots i_n$$

Simplest solution: n > 0, $fl(n) = +1, i_1, \dots i_{31}$, then

$$fl(-n)=-1,i_1,\ldots i_{31}$$

Problem: +0 and -0; also impractical in other ways.

Sign bit

bitstring	00 · · · 0	 $01 \cdots 1$	10 · · · 0	 11 · · · 1
as unsigned int	0	 $2^{31}-1$	2^{31}	 $2^{32}-1$
as naive signed	0	 $2^{31}-1$	-0	 $-2^{31}+1$

Shifting

Interpret unsigned number n as n - B

bitstring	00 · · · 0	 01 · · · 1	10 · · · 0	 11 · · · 1
as unsigned int	0	 $2^{31}-1$	2^{31}	 $2^{32}-1$
as shifted int	-2^{31}	 -1	0	 $-2^{31}+1$

2's complement

Better solution: if $0 \le n \le 2^{31} - 1$, then $fl(n) = 0, i_1, \dots, i_{31}$; $1 \le n \le 2^{31}$ then $fl(-n) = fl(2^{32} - n)$.

bitstring	00 · · · 0		01 · · · 1	10 · · · 0		11 · · · 1
as unsigned int	0		$2^{31}-1$	2^{31}		$2^{32}-1$
as 2's comp. integer	0	• • •	$2^{31}-1$	-2^{31}	• • •	-1

Subtraction in 2's complement

Subtraction m - n is easy.

- Case: m < n. Observe that -n has the bit pattern of $2^{32} n$. Also, $m + (2^{32} n) = 2^{32} (n m)$ where $0 < n m < 2^{31} 1$, so $2^{32} (n m)$ is the 2's complement bit pattern of m n.
- Case: m > n. The bit pattern for -n is $2^{32} n$, so m + (-n) as unsigned is $m + 2^{32} n = 2^{32} + (m n)$. Here m n > 0. The 2^{32} is an overflow bit; ignore.

Floating point numbers

Floating point numbers

Analogous to scientific notation $x = 6.022 \cdot 10^{23}$:

$$x = \pm \sum_{i=0}^{t-1} d_i \beta^{-i} \beta^e$$

- sign bit
- β is the base of the number system
- $0 \le d_i \le \beta 1$ the digits of the *mantissa*: with the *radix* point mantissa $< \beta$
- $e \in [L, U]$ exponent, stored with bias: unsigned int where f(L) = 0

Some examples

	β	t	L	U
IEEE single (32 bit)	2	24	-126	127
IEEE double (64 bit)	2	53	-1022	1023
Old Cray 64bit	2	48	-16383	16384
IBM mainframe 32 bit	16	6	-64	63
packed decimal	10	50	-999	999

BCD is tricky: 3 decimal digits in 10 bits

(we will often use $\beta=10$ in the examples, because it's easier to read for humans, but all practical computers use $\beta=2$)

Limitations

Overflow: more than $\beta(1-\beta^{-t+1})\beta^U$ or less than $\beta(1-\beta^{-t+1})\beta^L$

Underflow: numbers less than $\beta^{-t+1} \cdot \beta^L$

Normalized numbers

Require first digit in the mantissa to be nonzero.

Equivalent: mantissa part $1 \le x_m < \beta$

Unique representation for each number, (do you see a problem?)

also: in binary this makes the first digit 1, so we don't need to store that.

With normalized numbers, underflow threshold is $1 \cdot \beta^L$; 'gradual underflow' possible, but usually not efficient.

IEEE 754

sign	exponent	mantissa
S	$e_1 \cdot \cdot \cdot e_8$	$s_1 \dots s_{23}$
31	30 · · · 23	22 · · · 0

$(e_1 \cdots e_8)$	numerical value
$(0\cdots 0)=0$	$\pm 0.s_1 \cdots s_{23} \times 2^{-126}$
$(0\cdots 01)=1$	$\pm 1.s_1 \cdots s_{23} \times 2^{-126}$
$(0\cdots 010)=2$	$\pm 1.s_1 \cdots s_{23} \times 2^{-125}$
(011111111) = 127	$\pm 1.s_1\cdots s_{23} imes 2^0$
(10000000) = 128	$\pm 1.s_1\cdots s_{23} imes 2^1$
• • • •	
(111111110) = 254	$\pm 1.s_1 \cdots s_{23} \times 2^{127}$
(111111111) = 255	$\pm\infty$ if $s_1\cdots s_{23}=$ 0, otherwise NaN

Floating point math

Representation error

Error between number x and representation \tilde{x} :

absolute
$$x-\tilde{x}$$
 or $|x-\tilde{x}|$ relative $\frac{x-\tilde{x}}{x}$ or $\left|\frac{x-\tilde{x}}{x}\right|$

Equivalent:
$$\tilde{x} = x \pm \epsilon \Leftrightarrow |x - \tilde{x}| \le \epsilon \Leftrightarrow \tilde{x} \in [x - \epsilon, x + \epsilon].$$

Also:
$$\tilde{x} = x(1+\epsilon)$$
 often shorthand for $\left|\frac{\tilde{x}-x}{x}\right| \le \epsilon$

Example

Decimal, t=3 digit mantissa: let x=1.256, $\tilde{x}_{\rm round}=1.26$, $\tilde{x}_{\rm truncate}=1.25$

Error in the 4th digit: $|\epsilon|<\beta^{t-1}$ (this example had no exponent, how about if it does?)

Machine precision

Any real number can be represented to a certain precision:

$$\tilde{x} = x(1+\epsilon)$$
 where truncation: $\epsilon = \beta^{-t+1}$ rounding: $\epsilon = \frac{1}{2}\beta^{-t+1}$

This is called *machine precision*: maximum relative error.

32-bit single precision: $mp \approx 10^{-7}$ 64-bit double precision: $mp \approx 10^{-16}$

Maximum attainable accuracy.

Another definition of machine precision: smallest number ϵ such that $1+\epsilon>1$.

Addition

- 1. align exponents
- 2. add mantissas
- 3. adjust exponent to normalize

Example: $1.00 + 2.00 \times 10^{-2} = 1.00 + .02 = 1.02$. This is exact, but what happens with $1.00 + 2.55 \times 10^{-2}$?

Example:
$$5.00 \times 10^1 + 5.04 = (5.00 + 0.504) \times 10^1 \rightarrow 5.50 \times 10^1$$

Any error comes from truncating the mantissa: if x is the true sum and \tilde{x} the computed sum, then $\tilde{x}=x(1+\epsilon)$ with $|\epsilon|<10^{-2}$

The 'correctly rounded arithmetic' model

Assumption (enforced by IEEE 754):

The numerical result of an operation is the rounding of the exactly computed result.

$$fl(x_1 \odot x_2) = (x_1 \odot x_2)(1+\epsilon)$$

where $\odot = +, -, *, /$

Note: this holds only for a single operation!

Guard digits

Correctly rounding is not trivial, especially for subtraction.

Example:
$$t = 2, \beta = 10$$
: $1.0 - 9.5 \times 10^{-1}$, exact result $0.05 = 5.0 \times 10^{-2}$.

Simple approach:

$$1.0 - 9.5 \times 10^{-1} = 1.0 - 0.9 = 0.1 = 1.0 \times 10^{-1}$$

• Using 'guard digit':

$$1.0 - 9.5 \times 10^{-1} = 1.0 - 0.95 = 0.05 = 5.0 \times 10^{-2}$$
, exact.

In general 3 extra bits needed.

Error propagation under addition

Let
$$s = x_1 + x_2$$
, and $x = \tilde{s} = \tilde{x}_1 + \tilde{x}_2$ with $\tilde{x}_i = x_i(1 + \epsilon_i)$

$$\tilde{x} = \tilde{s}(1 + \epsilon_3)$$

$$= x_1(1 + \epsilon_1)(1 + \epsilon_3) + x_2(1 + \epsilon_2)(1 + \epsilon_3)$$

$$= x_1 + x_2 + x_1(\epsilon_1 + \epsilon_3) + x_2(\epsilon_2 + \epsilon_3)$$

$$\Rightarrow \tilde{x} = s(1 + 2\epsilon)$$

 \Rightarrow errors are added

Assumptions: all ϵ_i approximately equal size and small; $x_i > 0$

Multiplication

- 1. add exponents
- 2. multiply mantissas
- 3. adjust exponent

Example:

$$.123\,\times\,.567\times10^{1} = .069741\times10^{1} \rightarrow .69741\times10^{0} \rightarrow .697\times10^{0}.$$

What happens with relative errors?

Examples

Subtraction

Correct rounding only applies to a single operation.

Example: $1.24-1.23=.001 \rightarrow 1. \times 10^{-2}$: result is exact, but only one significant digit.

What if 1.24 = fl(1.244) and 1.23 = fl(1.225)? Correct result 1.9×10^{-2} ; almost 100% error.

- Cancellation leads to loss of precision
- subsequent operations with this result are inaccurate
- this can not be fixed with guard digits and such
- ⇒ avoid subtracting numbers that are likely close.

Example: $ax^2 + bx + c = 0 \rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ suppose b > 0 and $b^2 \gg 4ac$ then the '+' solution will be inaccurate Better: compute $x_- = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$ and use $x_+ \cdot x_- = -c/a$.

Serious example

Evaluate $\sum_{n=1}^{10000} \frac{1}{n^2} = 1.644834$

in 6 digits: machine precision is 10^{-6} in single precision

First term is 1, so partial sums are \geq 1, so $1/n^2 < 10^{-6}$ gets ignored, \Rightarrow last 7000 terms (or more) are ignored, \Rightarrow sum is 1.644725: 4 correct digits

Solution: sum in reverse order; exact result in single precision Why? Consider ratio of two terms:

$$\frac{n^2}{(n-1)^2} = \frac{n^2}{n^2 - 2n + 1} = \frac{1}{1 - 2/n + 1/n^2} \approx 1 + \frac{2}{n}$$

with aligned exponents:

$$n-1$$
: $.00 \cdots 0$ $10 \cdots 00$
 n : $.00 \cdots 0$ $10 \cdots 01$ $0 \cdots 0$
 $k = \log(n/2)$ positions

The last digit in the smaller number is not lost if $n < 2/\epsilon$

Another serious example

Previous example was due to finite representation; this example is more due to algorithm itself.

Consider
$$y_n = \int_0^1 \frac{x^n}{x-5} dx = \frac{1}{n} - 5y_{n-1}$$
 (monotonically decreasing) $y_0 = \ln 6 - \ln 5$.

In 3 decimal digits:

computation		correct result
$y_0 = \ln 6 - \ln 5 = .182 322 \times 10^1 \dots$		1.82
$y_1 = .900 \times 10^{-1}$.884
$y_2 = .500 \times 10^{-1}$.0580
$y_3 = .830 \times 10^{-1}$	going up?	.0431
$y_4 =165$	negative?	.0343

Reason? Define error as $\tilde{y}_n = y_n + \epsilon_n$, then

$$\tilde{y}_n = 1/n - 5\tilde{y}_{n-1} = 1/n + 5n_{n-1} + 5\epsilon_{n-1} = y_n + 5\epsilon_{n-1}$$

so $\epsilon_n \geq 5\epsilon_{n-1}$: exponential growth.

Stability of linear system solving

Problem: solve Ax = b, where b inexact.

$$A(x + \Delta x) = b + \Delta b.$$

Since Ax = b, we get $A\Delta x = \Delta b$. From this,

$$\left\{ \begin{array}{ll} \Delta x &= A^{-1} \Delta b \\ Ax &= b \end{array} \right\} \Rightarrow \left\{ \begin{array}{ll} \|A\| \|x\| &\geq \|b\| \\ \|\Delta x\| &\leq \|A^{-1}\| \|\Delta b\| \end{array} \right.$$

$$\Rightarrow \frac{\|\Delta x\|}{\|x\|} \leq \|A\| \|A^{-1}\| \frac{\|\Delta b\|}{\|b\|}$$

'Condition number'. Attainable accuracy depends on matrix properties

Consequences of roundoff

Multiplication and addition are not associative: problems for parallel computations.

Operations with "same" outcomes are not equally stable: matrix inversion is unstable, elimination is stable

More

Complex numbers

Two real numbers: real and imaginary part.

Storage:

- Store real/imaginary adjacent: easy to pass address of one number
- Store array of real, then array of imaginary. Better for stride 1 access if only real parts are needed. Other considerations.

Other arithmetic systems

Some compilers support higher precisions.

Arbitrary precision: GMPlib

Interval arithmetic

