Homework #5

June 6, 2011

- 1. A 3×3 matrix B is known to have eigenvalues 0, 1, 2.
 - (a) Find rank(B)
 - (b) Find det (B^TB)
- 2. Let

$$A = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 2 \end{bmatrix}$$

- (a) Without using Gaussian elimination, find rank(A). Hint: For any \boldsymbol{x} , how does $A\boldsymbol{x}$ look like?
- (b) Without using Gaussian elimination, find the eigenvalues and eigenspaces. Hint:
 - Try to find x such that

$$\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 2 \end{bmatrix} \boldsymbol{x} = \lambda \boldsymbol{x}.$$

- What is $\operatorname{nullity}(A)$? How can we find the vectors in $\operatorname{null}(A)$ easily?
- 3. Let a + b = c + d.

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

- (a) Show that (1,1) is an eigenvector of A.
- (b) Find both eigenvalues of A.
- 4. Suppose A has eigenvalues 0, 3, 5 with linearly independent eigenvectors $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$.
 - (a) Give a basis for $\operatorname{null}(A)$ and a basis for $\operatorname{col}(A)$. Hint:
 - $\operatorname{null}(A) = E_0$.
 - Consider the linear combination $c_1 \mathbf{v} + c_2 \mathbf{w}$.
 - (b) Show that Ax = u has no solution.

Hint: If it did, then () would be in col(A) and this contradicts the assumption.

5. If A has an eigenvalue $\lambda_1 = 2$ with its eigenvector $\boldsymbol{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\lambda_2 = 5$ with $\boldsymbol{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, what is A?

6. Let the $n \times n$ matrix A have the eigenvalues $\lambda_1, \ldots, \lambda_n$ and be diagonalizable. Find the eigenvalues of the $2n \times 2n$ block matrix

$$B = \begin{bmatrix} A & O \\ O & 2A \end{bmatrix}.$$

- 7. For an $n \times n$ matrix A, suppose $A^2 = A$.
 - (a) Show that 0 is an eigenvalue of A and $E_0 = \text{null}(A)$.
 - (b) Show that 1 is an eigenvalue of A and $E_1 = col(A)$.
 - (c) Show that A is diagonalizable. Hint: A is diagonalizable if the sum of all the dimensions of eigenspaces (geometric multiplicities) is n.
- 8. Suppose that both A and B are diagonalizable by the same P:

$$A = PD_1P^{-1}$$
 and $B = PD_2P^{-1}$.

Show that AB = BA.

9. Let

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

and AB = BA.

- (a) Show that B is diagonal.
- (b) Show that A and B have the same eigenvectors.