Решения домашних заданий 1 и 2

И. Хованская, Б. Бычков, И. Тельпуховский 28 февраля 2015 г.

Домашнее задание 1.

Здесь и далее разбираем один из трех предлагавшихся вариантов для каждой задачи.

Задача 1.

При каких действительных а множество пар действительных чисел (x;y) является линейным пространством при условии x + y = a - 1?

Множество пар действительных чисел мы рассматриваем с естественными операциями сложения и умножения на число: $(x;y)+(x_1,y_1)=(x+x_1,y+y_1), k(x;y)=(kx;ky)$. Пусть для пар $(x;y),(x_1,y_1)$: $x+y=a-1,x_1+y_1=a-1$. Тогда для пары $(x+x_1,y+y_1)$: $x+x_1+y+y_1=2a-2$. Так как пара $(x+x_1,y+y_1)$ обязана лежать в нашем пространстве, то для нее должно быть выполнено то же самое соотношение, значит, a-1=2a-2, тогда a=1.

Задача 2.

При каких а множество функций f(x), определённых на отрезке [2;4] и таких, что f(3) = a - 4, является линейным пространством?

Рассуждение почти такое же, как и в предыдущей задаче. Если две функции имеют в точке 3 значение a-4, то сумма этих функций имеет в точке 3 значение 2a-8. Так как сумма функций обязана лежать в нашем пространстве, то a-4=2a-8, откуда a=4. Другой способ: так как нулевая функция (та, прибавление которой не изменяет функцию) обязана лежать в нашем пространстве, то значение в точке 3 равно нулю, откуда a=4.

Задача 3.

При каких а множество векторов в трёхмерном пространстве, координаты которых заданы уравнениями x + y + z = 0, 3(x + 4) - a = 0, является линейным подпространством в линейном пространстве всех векторов? Если таких а не существует, введите ответ "нет".

Второе уравнение после раскрытия скобок примет вид 3x = a - 12. Так как пространство содержит нулевой вектор, а именно (0,0,0), то он должен удовлетворять заданным уравнениям. Для второго уравнения: $3 \cdot 0 = a - 12$, откуда a = 12.

Задача 4.

Отметьте все верные утверждения:

Множесство многочленов степени 10 является линейным пространством

Mножество функций, определённых на отрезке [-10;10] и обращающихся в 0 в точке 6, является линейным пространством

Mножество функций, определённых на отрезке [-10;10] и обращающихся в 6 в точке 0, является линейным пространством

Первое утверждение неверно, так как $(-x^{10}+1)+(x^{10}+1)=2$ — не многочлен десятой степени.

Второе утверждение верно, так как сумма функций, обладающих этим свойством, тоже обладает им, и аналогично для умножения функции на число.

Третье утверждение неверно, так как сумма таких функций будет иметь значение 12 в точке 0.

Задача 5.

Рассмотрим подпространство в линейном пространстве многочленов степени не выше 3, состоящее из многочленов, обращающихся в ноль в точке 3. Про элемент этого продпространства известно, что его коэффициент при x^3 равен 1, коэффициент при x^2 равен 2 и коэффициент при x равен 3. Найдите его свободный член.

Многочлен имеет вид: $x^3 + 2x^2 + 3x + a$. Подставим x = 3: $3^3 + 23^2 + 3 \cdot 3 + a = 0$, 54 + a = 0. Значит, a = -54.

Домашнее задание 2.

Задача 1.

При каких действительных а функция из \mathbb{R}^1 в \mathbb{R}^1 , такая что $x \mapsto a \sin x + 2x + 3a$, является линейной?

Функция $x \mapsto 2x$ — линейная, а функция $x \mapsto a(\sin x + 3)$ — линейная только при a = 0. Значит, их сумма будет линейной функцией только при a = 0.

Задача 2.

Пусть F- линейная функция из \mathbb{R}^2 в \mathbb{R}^1 , такое что F((0;1))=7, F((1;0))=3. Найдите F((2;3)).

Пользуемся линейностью: $F((2;3)) = F((2;0)) + F((0;3)) = 2 \cdot F((1;0)) + 3 \cdot F((0;1)) = 2 \cdot 3 + 3 \cdot 7 = 27$

Задача 3.

Пусть F— линейное отображение из \mathbb{R}^2 в \mathbb{R}^3 , такое что F((1;0)) = (1;0;0), F((0;1)) = (0;1;0). Найдите F((2;3)). В ответе нужно записать элемент линейного пространства в тех обозначениях, которые введены в этой задаче. Пример: (1;2;3)

Аналогично,
$$F((2;3)) = 2 \cdot F((1;0)) + 3 \cdot F((0;1)) = (2;0;0) + (0;3;0) = (2;3;0)$$

Задача 4.

Дана линейная функция $f: L \to \mathbb{R}^1$, L — линейное пространство. Известно, что для некоторых $a,b \in L$ выполнено равенство f(a) - f(b) = 3. Найдите f(2b) - f(2a) или введите "нет" (без кавычек), если недостаточно данных, чтобы вычислить значение выражения.

По линейности,
$$f(2b)-f(2a)=-(f(2a)-f(2b))=-(2f(a)-2f(b))=-2(f(a)-f(b))=-6.$$