1 Coomologia continua

1.1 Definizioni

Riportiamo la definizione di topologia compatta-aperta e ne ricordiamo alcune utili proprietà.

Definizione 1.1. Siano X, Y spazi topologici, F(X,Y) l'insieme delle funzioni continue da X in Y. La topologia compatta-aperta su F(X,Y) è la topologia generata dai sottoinsiemi

$$V(K,U) = \{ f \in F(X,Y) : f(K) \subseteq U \}$$

al variare di $K \subseteq X$ compatto e di $U \subseteq Y$ aperto.

Lemma 1.1. (i) Siano X, Y, Z spazi topologici, $f: Y \to Z, g: X \to Y$ funzioni continue. Allora le applicazioni

$$f \circ -: F(X,Y) \longrightarrow F(X,Z), \qquad -\circ g \colon F(Y,Z) \longrightarrow F(X,Z)$$

sono continue.

(ii) Siano X, Y spazi topologici con X localmente compatto e Hausdorff. Allora l'applicazione di valutazione

$$F(X,Y) \times X \longrightarrow Y$$

 $(f,x) \longmapsto f(x)$

è continua.

In questa sezione, tutti moduli di (co) catene e di (co) omologia saranno da intendersi a coefficienti in \mathbb{R} .

Sia M una n-varietà. Consideriamo sullo spazio $S_i(M) = F(\Delta^i, M)$ degli i-simplessi singolari la topologia compatta aperta.

Definizione 1.2. Una cocatena $\varphi \in C^i(M)$ si dice *continua* se la sua restrizione a $S_i(M)$ è continua.

Osserviamo che se $\varphi \in C^i(M)$ è continua, allora anche $\varphi \circ d \in C^{i+1}(M)$ lo è (grazie al lemma 1.1). Dunque le cocatene continue formano un sottocomplesso di $C^{\bullet}(M)$, che denotiamo con $C_c^{\bullet}(M)$; indichiamo inoltre con $C_{b,c}^{\bullet}(M) = C_c^{\bullet}(M) \cup C_b^{\bullet}(M)$ il complesso delle cocatene continue limitate. I moduli di coomologia relativi ai complessi $C_c^{\bullet}(M)$ e $C_{b,c}^{\bullet}$ saranno denotati, rispettivamente, con $H_c^{\bullet}(M)$ e $H_{b,c}^{\bullet}(M)$. Le inclusioni di complessi

$$i^{\bullet} : C_c^{\bullet}(M) \longrightarrow C^{\bullet}(M), \qquad \qquad i_b^{\bullet} : C_{b,c}^{\bullet}(M) \longrightarrow C_b^{\bullet}(M)$$

inducono mappe in coomologia

$$H^{\bullet}(i^{\bullet}): H_{c}^{\bullet}(M) \longrightarrow H^{\bullet}(M), \qquad H_{b}^{\bullet}(i_{b}^{\bullet}): H_{b}^{\bullet}(M) \longrightarrow H_{b}^{\bullet}(M).$$

In questa sezione ci domanderemo se queste mappe siano isomorfismi, dando risposta affermativa nel caso in cui M ammetta una metrica Riemanniana a curvatura non positiva.

1.2 Cocatene continue e moduli relativamente iniettivi

Sia M una n-varietà chiusa, $p \colon \widetilde{M} \to M$ il suo rivestimento universale. Fissiamo un'identificazione di $\Gamma = \pi_1(M)$ con il gruppo degli automorfismi di rivestimento di p.

Ricordiamo che i moduli $C^i(\widetilde{M})$ hanno una struttura naturale di $\mathbb{R}[\Gamma]$ -moduli. Osserviamo che per ogni $g \in \Gamma$ l'applicazione $g \cdot -: S_i(\widetilde{M}) \to S_i(\widetilde{M})$ è continua (grazie al lemma 1.1), dunque i moduli $C^i_c(\widetilde{M})$ ereditano per restrizione una struttura di $\mathbb{R}[\Gamma]$ -moduli. Analogamente, i moduli $C^i_{b,c}(\widetilde{M})$ ereditano una struttura di $\mathbb{R}[\Gamma]$ -moduli normati.

Lemma 1.2. Esiste una funzione continua $h_{\widetilde{M}} \colon \widetilde{M} \to [0,1]$ che soddisfa le seguenti proprietà:

(i) per ogni $x \in \widetilde{M}$ esiste un intorno $W \subseteq \widetilde{M}$ di x tale che l'insieme

$$\{g\in\Gamma:g(W)\cap\operatorname{supp}h_{\widetilde{M}}\neq\emptyset\}$$

 \grave{e} finito;

(ii) per ogni $x \in \widetilde{M}$ vale

$$\sum_{g \in \Gamma} h_{\widetilde{M}}(g \cdot x) = 1.$$

Proposizione 1.3. Per ogni $i \geq 0$, i moduli $C_c^i(\widetilde{M})$ e $C_{b,c}^i(\widetilde{M})$ sono relativamente iniettivi (rispettivamente come $\mathbb{R}[\Gamma]$ -modulo e come $\mathbb{R}[\Gamma]$ -modulo normato).

Dimostrazione. Mostriamo innanzitutto che $C_c^i(\widetilde{M})$ è un $\mathbb{R}[\Gamma]$ -modulo relativamente iniettivo. Siano A, B due $\mathbb{R}[\Gamma]$ -moduli, $\iota \colon A \to B$ una funzione Γ-lineare fortemente iniettiva con inversa sinistra \mathbb{R} -lineare $\sigma \colon B \to A, \alpha \colon A \to C_c^i(\widetilde{M})$ una funzione Γ-lineare.

$$0 \longrightarrow A \xrightarrow{\iota} B$$

$$\downarrow^{\alpha} \downarrow^{\iota}_{\beta}$$

$$C_{c}^{i}(\widetilde{M})$$

Sia $h_{\widetilde{M}}$ una funzione come nel lemma 1.2. Per ogni $b \in B$ definiamo la cocatena $\beta(b) \in C^i_c(\widetilde{M})$ come l'unica applicazione \mathbb{R} -lineare tale che per ogni $s \in S_i(\widetilde{M})$ valga

$$\beta(b)(s) = \sum_{g \in \Gamma} h_{\widetilde{M}}(g^{-1}(s(e_0))) \cdot \alpha(g(\sigma(g^{-1}(b))))(s),$$

dove e_0, \ldots, e_i sono i vertici del simplesso standard Δ^i . Osserviamo che, per le proprietà di $h_{\widetilde{M}}$, la somma su g è in realtà una somma finita, dunque $\beta(b)(s)$ è ben definito.

■ $\beta(b)$ è una cocatena continua. Per definizione di $h_{\widetilde{M}}$, per ogni $s \in S_i(\widetilde{M})$ esiste un intorno $W \subseteq \widetilde{M}$ di $s(e_0)$ tale che

$$\Gamma_s = \{ g \in \Gamma : g^{-1}(W) \cap \operatorname{supp} h_{\widetilde{M}} \neq \emptyset \}$$

è finito. Allora per ogni $s' \in V(\{e_0\}, W)$ (che è un intorno di s in $S_i(\widetilde{M})$) vale

$$\beta(b)(s') = \sum_{g \in \Gamma_s} h_{\widetilde{M}}(g^{-1}(s'(e_0))) \cdot \alpha(g(\sigma(g^{-1} \cdot b)))(s'),$$

che è evidentemente continua in s' (grazie al lemma 1.1).

■ β è Γ -lineare. Sia $g_0 \in \Gamma$. Abbiamo

$$\beta(g_0 \cdot b)(s) = \sum_{g \in \Gamma} h_{\widetilde{M}}(g^{-1}(s(e_0))) \cdot \alpha(g(\sigma(g^{-1}g_0 \cdot b)))(s)$$

$$= \sum_{k \in \Gamma} h_{\widetilde{M}}(k^{-1}g_0^{-1}(s(e_0))) \cdot \alpha(g_0k(\sigma(k^{-1} \cdot b)))(s)$$

$$= \sum_{k \in \Gamma} h_{\widetilde{M}}(k^{-1}(g_0^{-1} \circ s)(e_0))) \cdot \alpha(k(\sigma(k^{-1} \cdot b)))(g_0^{-1} \circ s)$$

$$= \beta(b)(g_0^{-1} \circ s) = (g_0 \cdot \beta(b))(s).$$

■ Vale $\beta \circ \iota = \alpha$.. Sia $a \in A$. Abbiamo

$$\begin{split} \beta(\iota(a))(s) &= \sum_{g \in \Gamma} h_{\widetilde{M}}(g^{-1}(s(e_0))) \cdot \alpha(g(\sigma(g^{-1} \cdot \iota(a))))(s) \\ &= \sum_{g \in \Gamma} h_{\widetilde{M}}(g^{-1}(s(e_0))) \cdot \alpha(g(\sigma(\iota(g^{-1} \cdot a))))(s) \\ &= \sum_{g \in \Gamma} h_{\widetilde{M}}(g^{-1}(s(e_0))) \cdot \alpha(a)(s) = \alpha(a)(s). \end{split}$$

Abbiamo dunque mostrato che $C^i_c(\widetilde{M})$ è un $\mathbb{R}[\Gamma]$ -modulo relativamente iniettivo. La stessa costruzione funziona anche per $C^i_{b,c}(\widetilde{M})$ nel contesto di $\mathbb{R}[\Gamma]$ -moduli normati: infatti, poiché $\|\sigma\| \leq 1$, si vede che $\|\beta\| \leq \|\alpha\|$. Dunque $C^i_{b,c}(\widetilde{M})$ è un $\mathbb{R}[\Gamma]$ -modulo normato relativamente iniettivo.

1.3 Varietà con curvatura non positiva

Nonostante si possa proseguire anche con ipotesi meno restrittive, per semplicità ci limiteremo a considerare, da qui alla fine della sezione, varietà chiuse M che ammettano una metrica Riemanniana con curvatura non positiva.

In questo contesto, il teorema di Cartan-Hadamard garantisce che ogni coppia di punti $x,y\in \widetilde{M}$ siano collegati da un'unica geodetica; inoltre le parametrizzazioni a velocità costante delle geodetiche dipendono in modo continuo dagli estremi. Questo fatto permette di realizzare una procedura di raddrizzamento dei simplessi singolari.

Definizione 1.3. Siano x_0, \ldots, x_k punti di \widetilde{M} . Il *simplesso dritto* di vertici x_0, \ldots, x_k è un simplesso singolare $[x_0, \ldots, x_k] \in S_k(\widetilde{M})$ definito induttivamente come segue.

- Se k = 0, allora $[x_0]$ è lo 0-simplesso avente immagine x_0 .
- Se k > 0, allora $[x_0, \ldots, x_k]$ è univocamente determinato dalla seguente condizione: per ogni $z \in \Delta^{k-1} \subseteq \Delta^k$, la restrizione di $[x_0, \ldots, x_k]$ al segmento di estremi z e e_k è la parametrizzazione a velocità costante della geodetica che collega $[x_0, \ldots, x_{k-1}](z)$ a x_k .

È facile vedere, grazie a Cartan-Hadamard, che la definizione è ben posta (ossia $[x_0, \ldots, x_k]$ è una funzione continua). Notiamo inoltre che, essendo gli elementi di Γ isometrie di \widetilde{M} , vale l'identità

$$g \circ [x_0, \dots, x_k] = [g(x_0), \dots, g(x_k)]$$

per ogni $g \in \Gamma$.

È infine utile osservare che, essendo M e \widetilde{M} spazi metrici, la topologia compatta-aperta su $S_i(M)$ e $S_i(\widetilde{M})$ coincide con quella della convergenza uniforme.

1.4 Cocatene continue e risoluzioni forti di \mathbb{R}

Proposizione 1.4. I complessi $C_c^{\bullet}(\widetilde{M})$ e $C_{b,c}^{\bullet}(\widetilde{M})$ sono risoluzioni <u>forti di R</u> (rispettivamente come $\mathbb{R}[\Gamma]$ -modulo e come $\mathbb{R}[\Gamma]$ -modulo normato).

Dimostrazione. Fissiamo un $x_0 \in \widetilde{M}$. Definiamo per ogni $i \geq 0$ un operatore \mathbb{R} -lineare $T_k \colon C_k(\widetilde{M}) \to C_{k+1}(\widetilde{M})$. Consideriamo l'applicazione

$$r:$$
 $\Delta^k \longrightarrow \Delta^{k+1}$ $t_0 e_0 + \ldots + t_k e_k \longmapsto t_0 e_1 + \ldots + t_k e_{k+1}$

che identifica Δ^k con la faccia di Δ^{k+1} opposta a e_0 . Dato un simplesso singolare $s \in S_k(\widetilde{M})$, definiamo $T_k(s) \in S_{k+1}(\widetilde{M})$ come l'unico simplesso singolare che soddisfa la seguente condizione: per ogni $q \in \Delta^k$, la restrizione di $T_k(s)$ al segmento di estremi e_0 e r(q) è la parametrizzazione a velocità costante della geodetica di \widetilde{M} di estremi x_0 e s(q). Grazie al teorema di Cartan-Hadamard, è facile verificare che $T_k(s)$ è ben definito e continuo, e che l'applicazione $T_k \colon S_k(\widetilde{M}) \to S_{k+1}(\widetilde{M})$ è continua. Estendendo T_k per \mathbb{R} -linearità, si ottiene una mappa $T_k \colon C_k(\widetilde{M}) \to C_{k+1}(\widetilde{M})$. Definiamo infine $T_{-1} \colon \mathbb{R} \to C_0(\widetilde{M})$ come $T_{-1}(t) = tx_0$. Si verifica facilmente che $d_0 \circ T_{-1} = \mathrm{id}_{\mathbb{R}}$ e che $T_{k-1} \circ d_k + d_{k+1} \circ T_k = \mathrm{id}_{C_k(\widetilde{M})}$ per ogni $k \geq 0$.

Definiamo ora per ogni $k \ge 0$ l'applicazione

$$h^k: C_c^k(\widetilde{M}) \longrightarrow C_c^{k-1}(\widetilde{M})$$

 $\varphi \longmapsto \varphi \circ T_{k-1}.$

Il fatto che i complessi siano esatti segue dal fatto che l'identità è omotopa a 0, giusto? Osserviamo che $h^k(\varphi)$ è effettivamente una cocatena continua, poiché la restrizione di T_{k-1} a $S_{k-1}(\widetilde{M})$ è continua. Dunque la famiglia $\{h^k\}_{k\geq 0}$ fornisce un'omotopia fra l'identità del complesso $C_c^{\bullet}(\widetilde{M})$ e l'applicazione nulla, da cui si ottiene che $C_c^{\bullet}(\widetilde{M})$ è una risoluzione forte di \mathbb{R} come $\mathbb{R}[\Gamma]$ -modulo.

Infine, è evidente che per ogni $\varphi \in C_b^k(\widetilde{M})$ vale $\|h^k(\varphi)\| \leq \|\varphi\|$. Dunque le restrizioni $h^k \colon C_{b,c}^k(\widetilde{M}) \to C_{b,c}^{k-1}(\widetilde{M})$ forniscono un'omotopia fra l'identità del complesso $C_{b,c}^{\bullet}(\widetilde{M})$ e l'applicazione nulla, da cui si ottiene che $C_{b,c}^{\bullet}(\widetilde{M})$ è una risoluzione forte di \mathbb{R} come $\mathbb{R}[\Gamma]$ -modulo normato.

1.5 Coomologia continua e coomologia singolare

Lemma 1.5. Il morfismo di complessi $p^{\bullet}: C^{\bullet}(M) \to C^{\bullet}(\widetilde{M})$ induce per restrizione isomorfismi isometrici di complessi

 $p^{\bullet}|_{C_c^{\bullet}(M)} \colon C_c^{\bullet}(M) \longrightarrow C_c^{\bullet}(\widetilde{M})^{\Gamma}, \qquad p^{\bullet}|_{C_{b,c}^{\bullet}(M)} \colon C_{b,c}^{\bullet}(M) \longrightarrow C_{b,c}^{\bullet}(\widetilde{M})^{\Gamma},$

Che norma c'è su $C_c^{\bullet}(M)$?

i quali a loro volta inducono isomorfismi isometrici in coomologia

$$H_c^{\bullet}(M) \simeq H^{\bullet}(C_c^{\bullet}(M)^{\Gamma}), \qquad \qquad H_{b,c}^{\bullet}(M) \simeq H_{b,c}^{\bullet}(C_{b,c}^{\bullet}(\widetilde{M})^{\Gamma}).$$

Possiamo infine dimostrare il risultato principale di questa sezione.

Fare la dimostrazione

Proposizione 1.6. Sia M una varietà Riemanniana chiusa con curvatura non positiva. Allora le applicazioni

$$H^{\bullet}(i^{\bullet}): H_{c}^{\bullet}(M) \longrightarrow H^{\bullet}(M), \qquad H_{b}^{\bullet}(i_{b}^{\bullet}): H_{b,c}^{\bullet}(M) \longrightarrow H_{b}^{\bullet}(M)$$

sono isomorfismi isometrici.

Dimostrazione. In questa sezione (proposizione 1.3 e proposizione 1.4) abbiamo mostrato che il complesso $C_c^{\bullet}(\widetilde{M})$ fornisce una risoluzione forte relativamente iniettiva di \mathbb{R} . Sappiamo (?THM? \ref{THM} ??) che lo stesso vale per il complesso $C^{\bullet}(\widetilde{M})$. Poiché l'inclusione $j^{\bullet}: C_c^{\bullet}(\widetilde{M}) \to C^{\bullet}(\widetilde{M})$ è un morfismo di complessi che estende l'identità di \mathbb{R} , dalla ?THM? \ref{THM} ?? otteniamo che

Di nuovo, che norma c'è su $H^{\bullet}(M)$?

$$H^{\bullet}(j^{\bullet}) \colon H^{\bullet}(C_{c}^{\bullet}(\widetilde{M})^{\Gamma}) \longrightarrow H^{\bullet}(C^{\bullet}(\widetilde{M})^{\Gamma})$$

è un isomorfismo lineare.

Analogamente,

$$H_b^{\bullet}(j_b^{\bullet}) \colon H_b^{\bullet}(C_{b,c}^{\bullet}(\widetilde{M})^{\Gamma}) \longrightarrow H_b^{\bullet}(C_b^{\bullet}(\widetilde{M})^{\Gamma})$$

è un isomorfismo lineare. Poiché j^{\bullet} e j_b^{\bullet} sono 1-Lipschitz, lo stesso vale per $H^{\bullet}(j^{\bullet})$ e $H_b^{\bullet}(j_b^{\bullet})$; per mostrare che si tratta di isometrie, è dunque sufficiente (di nuovo grazie alla ?THM? ??) esibire morfismi di complessi $\theta^{\bullet} : C^{\bullet}(\widetilde{M}) \to$

 $C_c^{ullet}(\widetilde{M}), \ \theta_b^{ullet} \colon C_b^{ullet}(\widetilde{M}) o C_{b,c}^{ullet}(\widetilde{M})$ che siano 1-Lipschitz ed estendano l'identità di \mathbb{R} .

Fissiamo un $x_0 \in \widetilde{M}$. Per ogni $\varphi \in C^k(\widetilde{M})$ e per ogni $s \in S_k(\widetilde{M})$ definiamo

$$\theta^{k}(\varphi)(s) = \sum_{(g_0, \dots, g_k) \in \Gamma^{k+1}} h_{\widetilde{M}}(g_0^{-1}(s(e_0))) \cdots h_{\widetilde{M}}(g_k^{-1}(s(e_k))) \cdot \varphi([g_0(x_0), \dots, g_k(x_0)]),$$

dove $h_{\widetilde{M}} \colon \widetilde{M} \to [0,1]$ è data dal lemma 1.2. Grazie alle proprietà di $h_{\widetilde{M}}$ è facile verificare che $\theta(\varphi)$ (una volta estesa per \mathbb{R} -linearità) definisce un elemento di $C_c^k(\widetilde{M})$, e che θ^{\bullet} risulta essere un morfismo 1-Lipschitz di complessi di $\mathbb{R}[\Gamma]$ moduli che estende l'identità di \mathbb{R} .

Abbiamo dunque mostrato che le mappe $H^{\bullet}(j^{\bullet})$ e $H_b^{\bullet}(j_b^{\bullet})$ sono isomorfismi isometrici. Dai seguenti diagrammi commutativi di complessi

$$\begin{array}{cccc} C_c^{\bullet}(M) & \xrightarrow{p^{\bullet}} & C_c^{\bullet}(\widetilde{M})^{\Gamma} & & & & & & & & & \\ \downarrow_{i^{\bullet}} & & \downarrow_{j^{\bullet}} & & & & \downarrow_{i_b^{\bullet}} & & \downarrow_{j_b^{\bullet}} \\ C^{\bullet}(M) & \xrightarrow{\cong} & C^{\bullet}(\widetilde{M})^{\Gamma} & & & & & & \downarrow_{i_b^{\bullet}} & & \downarrow_{j_b^{\bullet}} \\ & & & & & & & & & & \\ C^{\bullet}(M) & \xrightarrow{\cong} & C_b^{\bullet}(\widetilde{M})^{\Gamma} & & & & & & & \\ \end{array}$$

(in cui le frecce orizzontali sono isomorfismi isometrici per il lemma 1.5) segue che anche $H^{\bullet}(i^{\bullet})$ e $H^{\bullet}_b(i^{\bullet}_b)$ sono isomorfismi isometrici.

2 Principio di proporzionalità di Gromov

2.1 Mappa di restrizione

Utilizziamo le notazioni della sezione precedente, continuando a supporre che M sia una varietà Riemanniana chiusa con curvatura non positiva. Sia G il gruppo delle isometrie di \widetilde{M} che preservano l'orientazione. È ben noto che G ammette una struttura di gruppo di Lie che induce la topologia compatta-aperta. Di conseguenza esiste una misura di Borel regolare invariante a sinistra su G (misura di Haar), unica a meno di riscalamento.

Poiché Γ è un sottogruppo discreto di G e $M\simeq \overline{M}/\Gamma$ è compatta, esiste un insieme misurabile $F\subseteq G$ relativamente compatto tale che $\{\gamma\cdot F\}_{\gamma\in\Gamma}$ definisca una partizione localmente finita di G. In particolare, Γ è cocompatto in G, pertanto la misura di Haar è anche invariante a destra. D'ora in poi supporremo che tale misura sia riscalata in modo che F abbia misura 1.

Definizione 2.1. Indichiamo con $C_c^{\bullet}(\widetilde{M})^G$ il complesso delle cocatene continue G-invarianti. L'inclusione di complessi $C_c^{\bullet}(\widetilde{M})^G \to C_c^{\bullet}(\widetilde{M})^{\Gamma}$ induce una mappa in coomologia

 $\operatorname{res}^{\bullet} \colon H^{\bullet}(C_{c}^{\bullet}(\widetilde{M})^{G}) \longrightarrow H^{\bullet}(C_{c}^{\bullet}(\widetilde{M})^{\Gamma})$

detta mappa di restrizione.

Osserviamo che, considerando su $H^{\bullet}(C_c^{\bullet}(\widetilde{M})^G)$ e $H^{\bullet}(C_c^{\bullet}(\widetilde{M})^{\Gamma})$ le seminorme indotte rispettivamente da $C_c^{\bullet}(\widetilde{M})^G$ e $C_c^{\bullet}(\widetilde{M})^{\Gamma}$, la mappa di restrizione risulta 1-Lipschitz.

Ci proponiamo ora di costruire un'inversa sinistra 1-Lipschitz di res•. Indichiamo con μ_G la misura di Haar su G. Per ogni $\varphi \in C^i_c(\widetilde{M})$ e per ogni $s \in S_i(\widetilde{M})$ definiamo

$$\operatorname{trans}^{i}(\varphi)(s) = \int_{F} \varphi(g \cdot s) d\mu_{G}(g).$$

Si tratta di una buona definizione, poiché $\varphi(-\cdot s)$ è una funzione continua da G in \mathbb{R} e F è relativamente compatto. Estendendo transⁱ(φ) per linearità, otteniamo un elemento di $C^i(\widetilde{M})$.

Proposizione 2.1. Per ogni $\varphi \in C^i_c(\widetilde{M})$ valgono le seguenti proprietà.

- (i) La cocatena $trans^i(\varphi)$ è continua.
- (ii) Vale $\operatorname{trans}^{i+1}(\varphi \circ d^{i+1}) = \operatorname{trans}^{i}(\varphi) \circ d^{i+1}$.
- (iii) Se φ è Γ -invariante, allora $\operatorname{trans}^i(\varphi)$ è G-invariante.
- (iv) Se φ è G-invariante, allora transⁱ(φ) = φ .

Dimostrazione.

Reference please.

(i) Osserviamo innanzitutto che la topologia compatta-aperta su $S_i(\widetilde{M})$ è indotta dalla distanza

$$\operatorname{dist}(s, s') = \sup \{ \operatorname{dist}_{\widetilde{M}}(s(x), s'(x)) : x \in \Delta^i \}.$$

Sia $s_0 \in S_i(\widetilde{M})$, e sia $\epsilon > 0$. Poiché \overline{F} è compatto in G, dal lemma 1.1 si ottiene immediatamente che $\overline{F} \cdot s_0$ è compatto in $S_i(\widetilde{M})$. Dalla continuità di φ segue facilmente l'esistenza di un $\eta > 0$ tale che per ogni $s \in \overline{F} \cdot s_0$ e per ogni $s' \in S_i(\widetilde{M})$ con $\operatorname{dist}(s,s') < \eta$ valga $|\varphi(s) - \varphi(s')| \le \epsilon$. Sia dunque $s \in S_i(\widetilde{M})$ tale che $\operatorname{dist}(s_0,s) < \eta$. Poiché G agisce su $S_i(\widetilde{M})$ in modo isometrico, allora anche $\operatorname{dist}(g \cdot s_0,g \cdot s) < \eta$ per ogni $g \in G$. Ma allora

$$|\operatorname{trans}^{i}(\varphi)(s) - \operatorname{trans}^{i}(\varphi)(s_{0})| \leq \int_{F} |\varphi(g \cdot s) - \varphi(g \cdot s')| d\mu_{G}(g) \leq \epsilon \mu_{G}(F) = \epsilon$$

dunque $trans^i(\varphi)$ è continua.

(ii) Sia $s \in S_{i+1}(\widetilde{M})$, e siano $a_0, \ldots, a_{i+1} \in \mathbb{R}, s_0, \ldots, s_{i+1} \in S_i(\widetilde{M})$ tali che

$$d^{i+1}(s) = \sum_{j=0}^{i+1} a_j s_j.$$

Osserviamo che

$$d^{i+1}(g \cdot s) = \sum_{j=0}^{r} a_j (g \cdot s_j),$$

per ogni $g \in G$, da cui

$$\operatorname{trans}^{i+1}(\varphi \circ d^{i+1})(s) = \int_{F} \varphi(d^{i+1}(g \cdot s)) d\mu_{G}(g)$$

$$= \sum_{j=0}^{i+1} a_{j} \int_{F} \varphi(g \cdot s_{j}) d\mu_{G}(g)$$

$$= \sum_{j=0}^{i+1} a_{j} \operatorname{trans}^{i}(\varphi)(s_{j})$$

$$= \operatorname{trans}^{i}(\varphi) \left(\sum_{j=0}^{i+1} a_{j} s_{j}\right) = \operatorname{trans}^{i}(\varphi)(d^{i+1}s).$$

(iii) Fissiamo $\varphi \in C_c^i(\widetilde{M})$, $s \in S_i(\widetilde{M})$, $g_0 \in G$. Poiché F è relativamente compatto, lo sono anche $F \cdot g_0$ e $F \cdot g_0^{-1}$, dunque esistono un numero finito di elementi $\gamma_1, \ldots, \gamma_r \in \Gamma$ tali che

$$F \cdot g_0 \subseteq \bigsqcup_{j=1}^r \gamma_j \cdot F$$
 e $F \cdot g_0^{-1} \subseteq \bigsqcup_{j=1}^r \gamma_j^{-1} \cdot F$.

Posto $F_j = (\gamma_j^{-1} \cdot F \cdot g_0) \cap F$ si ottiene immediatamente che

$$F = \bigsqcup_{j=1}^{r} F_j \qquad \qquad e \qquad \qquad F \cdot g_0 = \bigsqcup_{j=1}^{r} \gamma_j \cdot F_j.$$

Sfruttando il fatto che μ_G è invariante a destra e a sinistra e che φ è Γ -invariante si ottiene

$$\operatorname{trans}^{i}(\varphi)(g_{0} \cdot s) = \int_{F} \varphi(gg_{0} \cdot s) d\mu_{G}(g)$$

$$= \int_{F \cdot g_{0}} \varphi(g \cdot s) d\mu_{G}(g)$$

$$= \sum_{j=1}^{r} \int_{\gamma_{j} \cdot F_{j}} \varphi(g \cdot s) d\mu_{G}(g)$$

$$= \sum_{j=1}^{r} \int_{F_{j}} \varphi(\gamma_{j}g \cdot s) d\mu_{G}(g)$$

$$= \sum_{j=1}^{r} \int_{F_{j}} \varphi(g \cdot s) d\mu_{G}(g)$$

$$= \int_{F} \varphi(g \cdot s) d\mu_{G}(g) = \operatorname{trans}(\varphi)(s).$$

(iv) Se φ è G-invariante segue immediatamente dalla definizione che trans^i(φ) = φ .

Corollario 2.2. La mappa di restrizione

$$\operatorname{res}^{\bullet} \colon H^{\bullet}(C_{c}^{\bullet}(\widetilde{M})^{G}) \longrightarrow H^{\bullet}(C_{c}^{\bullet}(\widetilde{M})^{\Gamma})$$

è un'immersione isometrica.

Dimostrazione. Dalla proposizione 2.1 segue immediatamente che

$$\operatorname{trans}^{\bullet} \colon C_{c}^{\bullet}(\widetilde{M})^{\Gamma} \longrightarrow C_{c}^{\bullet}(\widetilde{M})^{G}$$

è un morfismo di complessi ben definito la cui restrizione a $C_c^{\bullet}(\widetilde{M})^G$ è l'identità. Poiché trans $^{\bullet}$ è evidentemente 1-Lipschitz, guardando la corrispondente mappa in coomologia si ottiene che

$$H^{\bullet}(\operatorname{trans}^{\bullet}) \colon H^{\bullet}(C_{c}^{\bullet}(\widetilde{M})^{\Gamma}) \longrightarrow H^{\bullet}(C_{c}^{\bullet}(\widetilde{M})^{G})$$

è una mappa 1-Lipschitz tale che $H^{\bullet}(\operatorname{trans}^{\bullet})$ ores $^{\bullet}$ sia l'identità. Questo conclude la dimostrazione. \Box

Possibili errori di battitura nel libro

- \blacksquare p.105, Lemma 8.2. X al posto di M.
- p.106, Proposition 8.5. \mathbb{R} -modulo normato al posto di Γ -modulo normato.
- p.109, Proposition 8.7. La mappa $H^{\bullet}(i^{\bullet})$ è fra moduli di coomologia, non di cocatene (stessa cosa per $H_b^{\bullet}(i_b^{\bullet})$).
- p. 111, Proposition 8.8, proof. Probabilmente sono io che mi perdo in qualche sciocchezza insiemistica, ma non riesco a dedurre

$$F = \bigsqcup_{i=1}^{r} F_i \implies F \cdot g_0 = \bigsqcup_{i=1}^{r} \gamma_i \cdot F_i.$$