data

→		Age	Attrition	Department	DistanceFromHome	EducationField	EmployeeCount	EmployeeNumber	EnvironmentSatisfaction	Gender
	0	41	Yes	Sales	1	Life Sciences	1.0	1.0	2.0	Female
	1	49	No	Research & Development	8	Life Sciences	1.0	2.0	3.0	Male
	2	37	Yes	Research & Development	2	Other	1.0	4.0	4.0	Male
	3	33	No	Research & Development	3	Life Sciences	1.0	5.0	4.0	Female
	4	27	No	Research & Development	2	Medical	NaN	7.0	1.0	Male
									•••	
	1465	36	No	Research & Development	23	Medical	1.0	2061.0	3.0	Male
	1466	39	No	Research & Development	6	Medical	1.0	2062.0	4.0	Male
	1467	27	No	Research & Development	4	Life Sciences	1.0	2064.0	2.0	Male
	1468	49	No	Sales	2	Medical	1.0	2065.0	4.0	Male
	1469	34	No	Research & Development	8	Medical	1.0	2068.0	2.0	Male
1	470 rd	ows × :	25 columns							

data.axes

data.shape

→ (1470, 25)

data.columns

data.ndim

→ 2

data.size

→ 36750

₹	Age	int64
	Attrition	object
	Department	object
	DistanceFromHome	int64
	EducationField	object
	EmployeeCount	float64
	EmployeeNumber	float64
	EnvironmentSatisfaction	float64
	Gender	object
	HourlyRate	float64
	JobInvolvement	float64
	JobLevel	float64
	JobSatisfaction	float64
	MaritalStatus	object
	MonthlyIncome	int64
	MonthlyRate	int64
	OverTime	object
	PercentSalaryHike	float64
	PerformanceRating	int64
	RelationshipSatisfaction	int64
	StandardHours	int64
	TotalWorkingYears	int64
	WorkLifeBalance	int64
	YearsAtCompany	int64
	YearsSinceLastPromotion dtype: object	int64

data.isna().sum()

₹	Age	0
	Attrition	0
	Department	2
	DistanceFromHome	0
	EducationField	19
	EmployeeCount	2
	EmployeeNumber	2
	EnvironmentSatisfaction	1
	Gender	12
	HourlyRate	3
	JobInvolvement	21
	JobLevel	14
	JobSatisfaction	11
	MaritalStatus	0
	MonthlyIncome	0
	MonthlyRate	0
	OverTime	0
	PercentSalaryHike	6
	PerformanceRating	0
	RelationshipSatisfaction	0
	StandardHours	0
	TotalWorkingYears	0
	WorkLifeBalance	0
	YearsAtCompany	0
	YearsSinceLastPromotion	0
	dtype: int64	

data.isnull().sum()

→▼	Age	0
	Attrition	0
	Department	2
	DistanceFromHome	0
	EducationField	19
	EmployeeCount	2
	EmployeeNumber	2
	EnvironmentSatisfaction	1
	Gender	12
	HourlyRate	3
	JobInvolvement	21
	JobLevel	14
	JobSatisfaction	11
	MaritalStatus	0
	MonthlyIncome	0
	MonthlyRate	0
	OverTime	0
	PercentSalaryHike	6
	PerformanceRating	0
	RelationshipSatisfaction	0
	StandardHours	0
	TotalWorkingYears	0
	WorkLifeBalance	0
	YearsAtCompany	0
	YearsSinceLastPromotion	0
	dtype: int64	

data.count()

∑ ₹	Age	1470
	Attrition	1470
	Department	1468
	DistanceFromHome	1470
	EducationField	1451
	EmployeeCount	1468
	EmployeeNumber	1468
	EnvironmentSatisfaction	1469
	Gender	1458
	HourlyRate	1467
	JobInvolvement	1449
	JobLevel	1456
	JobSatisfaction	1459
	MaritalStatus	1470
	MonthlyIncome	1470
	MonthlyRate	1470
	OverTime	1470
	PercentSalaryHike	1464
	PerformanceRating	1470
	RelationshipSatisfaction	1470
	StandardHours	1470
	TotalWorkingYears	1470
	WorkLifeBalance	1470
	YearsAtCompany	1470
	YearsSinceLastPromotion	1470
	dtype: int64	

data.values

```
array([[41, 'Yes', 'Sales', ..., 1, 6, 0],

[49, 'No', 'Research & Development', ..., 3, 10, 1],

[37, 'Yes', 'Research & Development', ..., 3, 0, 0],

...,

[27, 'No', 'Research & Development', ..., 3, 6, 0],

[49, 'No', 'Sales', ..., 2, 9, 0],

[34, 'No', 'Research & Development', ..., 4, 4, 1]], dtype=object)
```

data.head(7)

→ ▼		Age	Attrition	Department	DistanceFromHome	EducationField	EmployeeCount	Emp1
	0	41	Yes	Sales	1	Life Sciences	1.0	
	1	49	No	Research & Development	8	Life Sciences	1.0	
	2	37	Yes	Research & Development	2	Other	1.0	
	3	33	No	Research & Development	3	Life Sciences	1.0	
	4	27	No	Research & Development	2	Medical	NaN	
	5	32	No	Research & Development	2	Life Sciences	1.0	
	6	59	No	Research & Development	3	Medical	1.0	

7 rows × 25 columns

data.tail(5)

	Age	Attrition	Department	DistanceFromHome	EducationField	EmployeeCount
1465	36	No	Research & Development	23	Medical	1.0
1466	39	No	Research & Development	6	Medical	1.0
1467	27	No	Research & Development	4	Life Sciences	1.0
1468	49	No	Sales	2	Medical	1.0
1469	34	No	Research & Development	8	Medical	1.0
5 rows	× 25 c	olumns				

```
data['EmployeeCount'].mean()
→ 1.0
data['EmployeeCount'].fillna(1.0,inplace=True)
data['EmployeeNumber'].mean()
→ 1026.0517711171663
data['EmployeeNumber'].fillna(1.1735,inplace=True)
data['EnvironmentSatisfaction'].mean()
2.7229407760381212
data['EnvironmentSatisfaction'].fillna(1.1735,inplace=True)
data['HourlyRate'].mean()

→ 65.88207225630539

data['HourlyRate'].fillna(1.1735,inplace=True)
data['JobInvolvement'].mean()
2.732919254658385
data['JobInvolvement'].fillna(1.1735,inplace=True)
data['JobSatisfaction'].mean()

→ 2.726525017135024

data['JobSatisfaction'].fillna(1.1735,inplace=True)
data['JobLevel'].mean()
2.0611263736263736
data['JobLevel'].fillna(1.1735,inplace=True)
data['PercentSalaryHike'].mean()
→ 15.220628415300547
```

```
data.isna().sum()
```

→ Age Attrition Department 2 DistanceFromHome 0 EducationField 19 ${\tt EmployeeCount}$ 0 EmployeeNumber 0 ${\tt EnvironmentSatisfaction}$ 0 Gender 12 HourlyRate JobInvolvement JobLevel JobSatisfaction 0 MaritalStatus ${\tt MonthlyIncome}$ MonthlyRate a OverTime 0 ${\tt PercentSalaryHike}$ 0 ${\tt Performance} {\tt Rating}$ RelationshipSatisfaction StandardHours TotalWorkingYears WorkLifeBalance 0 YearsAtCompany 0 YearsSinceLastPromotion 0 dtype: int64 data['Gender'].mode()

→ 0 Male

Name: Gender, dtype: object

data['Gender'].fillna("Male",inplace=True)

data['EducationField'].mode()

→ 0 Life Sciences

Name: EducationField, dtype: object

data['EducationField'].fillna("Life Sciences",inplace=True)

data['Department'].mode()

____ 0 Research & Development Name: Department, dtype: object

data['Department'].fillna("Research & Development",inplace=True)

data.isna().sum()

→ Age Attrition Department DistanceFromHome 0 EducationField EmployeeCount 0 EmployeeNumber ${\tt EnvironmentSatisfaction}$ 0 Gender HourlyRate JobInvolvement JobLevel 0 JobSatisfaction MaritalStatus 0 MonthlyIncome 0 MonthlyRate 0 OverTime 0 ${\tt PercentSalaryHike}$ 0 PerformanceRating 0 RelationshipSatisfaction StandardHours 0 TotalWorkingYears WorkLifeBalance 0 YearsAtCompany YearsSinceLastPromotion 0 dtype: int64

•	_	_
		\mathbf{A}

	Age	Attrition	Department	${\tt DistanceFromHome}$	EducationField	EmployeeCount
0	41	Yes	Sales	1	Life Sciences	1.0
1	49	No	Research & Development	8	Life Sciences	1.0
2	37	Yes	Research & Development	2	Other	1.0
3	33	No	Research & Development	3	Life Sciences	1.0
4	27	No	Research & Development	2	Medical	1.0
						•••
1465	36	No	Research & Development	23	Medical	1.0
1466	39	No	Research & Development	6	Medical	1.0
1467	27	No	Research & Development	4	Life Sciences	1.0
1468	49	No	Sales	2	Medical	1.0
1469	34	No	Research & Development	8	Medical	1.0
1470 rc	ws ×	25 columns				

```
\label{from:sklearn} \mbox{from sklearn import preprocessing}
le=preprocessing.LabelEncoder()
data['Gender'].value_counts()
→ Gender
    Male
               886
     Female
               584
     Name: count, dtype: int64
data["Gender"] = data["Gender"].astype(str)
data["Gender"] = le.fit_transform(data["Gender"])
data['Gender'].value_counts()
→ Gender
          886
     1 886
0 584
     Name: count, dtype: int64
data['EducationField'].value_counts()
\rightarrow EducationField
                          619
     Life Sciences
     Medical
                          454
     Marketing
                          159
     Technical Degree
                          131
     Human Resources
                           26
     Name: count, dtype: int64
data["EducationField"] = data["EducationField"].astype(str)
data["EducationField"]=le.fit_transform(data["EducationField"])
data['EducationField'].value_counts()

→ EducationField
```

```
4
          81
     0
          26
    Name: count, dtype: int64
data['Department'].value_counts()
→ Department
     Research & Development
                              444
     Sales
     Human Resources
                               63
     Name: count, dtype: int64
data["Department"] = data["Department"].astype(str)
data["Department"]=le.fit_transform(data["Department"])
data['Department'].value_counts()
→ Department
         444
         63
    Name: count, dtype: int64
data["Attrition"] = data["Attrition"].astype(str)
data["Attrition"]=le.fit_transform(data["Attrition"])
data["MaritalStatus"] = data["MaritalStatus"].astype(str)
data["MaritalStatus"]=le.fit_transform(data["MaritalStatus"])
data["OverTime"] = data["OverTime"].astype(str)
data["OverTime"]=le.fit_transform(data["OverTime"])
data.head()
₹
        Age Attrition Department DistanceFromHome EducationField EmployeeCount Emplo
     0 41
                                                                  1
                                                                               1.0
     1 49
                     0
                                                  8
                                                                               1.0
                                                  2
     2
                                 1
                                                                  4
                                                                               1.0
         37
     3
                                                  3
                                                                               1.0
     4 27
                     0
                                 1
                                                  2
                                                                  3
                                                                               1.0
     5 rows × 25 columns
import seaborn
import matplotlib.pyplot as pt
```

```
import seaborn
import matplotlib.pyplot as pt
pt.figure(figsize=(9,9))
correlation = data.corr ()
heatmap = seaborn.heatmap(correlation, annot = True)
pt.show()
```

