215.13

THOMAS BREYDO

Problem. Give an example of an operator $T \in \mathcal{L}(\mathbf{C}^4)$ such that T is normal but not self-adjoint.

Define T by Tv = iv for all $v \in \mathbb{C}^4$.

Claim. $T^*v = -iv$.

Proof. Fix $u \in \mathbb{C}^4$. Then, for all $v \in \mathbb{C}^4$,

$$\langle u, T^*v \rangle = \langle Tu, v \rangle \qquad (definition of T^*)$$

$$= \langle iu, v \rangle$$

$$= i\langle u, v \rangle$$

$$= \langle u, -iv \rangle$$

Thus, $T^*v = -iv$ as desired.

Claim. T is normal.

Proof. For all $v \in \mathbb{C}^4$,

$$TT^*v = (i)(-i)v$$
$$= (-i)(i)v$$
$$= T^*Tv.$$

Thus, $TT^* = T^*T$, which means that T is normal.

Claim. T is not self-adjoint.

Proof. Let v = (1, 1, 1, 1). Notice that

$$Tv = (i, i, i, i),$$

while

$$T^*v = (-i, -i, -i, -i),$$

so $T \neq T^*$.

Note. You can view the source code for this solution here.