Data Visualization in Python

Why Data Visualization?

Data visualization is a quick, easy way to convey concepts in a universal manner.

31612	Rate 2004	Verbal	Math	Rate 2003	Verbal	Mai
New York	87%	497	510	82%	496	510
Connecticut	85%	515	515	8496	512	51-
Massachusetts	85%	518	523	82%	516	523
New Jersey	83%	501	514	85%	501	515
New Hampshire	80%	522	521	75%	522	52
D.C.	77%	489	476	77%	484	47
Maine	76%	505	501	70%	503	50
Pennsylvania	74%	501	502	73%	500	502
Delaware	73%	500	499	73%	501	50
Georgia	73%	494	493	66%	493	49
Rhode Island	72%	503	502	74%	502	50
Virginia	71%	515	509	71%	514	510
North Carolina	70%	499	507	68%	495	500
Maryland	68%	511	515	68%	509	515
Florida	67%	499	499	61%	498	498
Vermont	66%	516	512	70%	515	512
Indiana	64%	501	506	63%	500	504
South Carolina	62%	491	495	59%	493	496
Hawaii	60%	487	514	54%	486	516
Oregon	56%	527	528	57%	526	52
Alaska	53%	518	514	55%	518	518
lexas	52%	493	499	5/%	493	501
Washington	52%	528	531	56%	530	532
California	49%	501	519	54%	499	511
Nevada	40%	507	514	36%	510	51
Arizona	32%	523	524	38%	524	52
Montana	29%	537	539	26%	538	543

Why Data Visualization?

- Data visualization is the graphical representation of information and data.
- visual elements like charts, graphs, and maps, data visualization tools provide an accessible way to see and understand trends, outliers, and patterns in data.

Types of Data Visualization in Python

Plotting Libraries:

- Matplotlib: low level, provides lots of freedom
- Pandas Visualization: easy to use interface, built on Matplotlib
- Seaborn: high-level interface, great default styles
- Plotly: can create interactive plots

What is Matplotlib?

- Matplotlib is a plotting library for the Python programming language and its numerical mathematics extension NumPy.
- Matplotlib is a python library used for Data Visualization.
- Matplotlib is 2D and 3D plotting python library.
- It was introduced by john hunter in the year 2002.

Matplotlib Graphs

- Linear Plot
- Scatter Plot
- Bar Plot
- Stem Plot
- Step Plot
- > Hist Plot
- Box Plot
- Pie Plot
- > Fill Between Plot

Linear Plot

Stem Plot

Scatter Plot

Step Plot

Hist Plot

Pie Plot

Box Plot

Fill_Between Plot

Installation of matplotlib

pip install matplotlib

Importing Matplotlib

import matplotlib.pyplot as plt or from matplotlib import pyplot as plt

Matplotlib Bar Plot

import matplotlib.pyplot as plt

```
x = []
```

$$y = []$$

plt.bar(x, y)

plt.show()

iPhone Sales Data Analysis Project

- 1) What are the top 10 highest-rated iPhones on Flipkart in India?
- 2) How many ratings do the highest-rated iPhones on Flipkart have?
- 3) Which iPhone has the highest number of reviews on Flipkart?
- 4) What is the relationship between the sale price of iPhones and the number of ratings on Flipkart?
- 5) What is the relationship between the discount percentage and the number of ratings of iPhones on Flipkart?

Python SEABORN

Seaborn Graphs

- > Scatter Plot Heatmap
- Customizing with Matplotlib Histogram
- Box Plot
 Bar Plot
- Violin Plot
 Factor Plot
- Swarm Plot
 Density Plot
- Overlaying plots
 Joint Distribution Plot

Differences between **Seaborn** and **Matplotlib**

Feature	Matplotlib	Seaborn	ð
Level	Low-level, gives full control over plots.	High-level, built on top of Matplotlib.	
Ease of Use	Requires more code for styling/complex plots.	Fewer lines of code for clean, statistical plots	S.
Default Style	Basic (plain plots).	Prettier by default (color palettes, themes).	
Focus	General-purpose plotting (line, bar, scatter, etc.).	Statistical visualization (distribution, regressicategorical data).	ion,
Customization	Extremely customizable, but verbose.	Easier for statistical plots, but internally still Matplotlib.	uses

When to Use Which?

- Vse Matplotlib when:
 - You need full control over figure design (research publications, dashboards).
 - You want to customize every aspect (fonts, ticks, axes, annotations).
 - You're creating non-standard plots (e.g., radar charts, custom animations).
- Vse Seaborn when:
 - You want beautiful plots quickly with less code.
 - You're doing Exploratory Data Analysis (EDA) or reports.
 - You're working with **statistical data** (distributions, categorical comparisons, correlations).

Dependency of Seaborn

Installation Seaborn

pip install seaborn

Conda install seaborn

pip install matplotlib

Importing Matplotlib

import matplotlib.pyplot as plt
or
from matplotlib import pyplot as plt
and
Import seaborn as sns

Seaborn line plot

import seaborn as sns import matplotlib.pyplot as plt

```
data = sns.load_dataset(" ")
sns.lineplot(x=" ", y=" ", data = data)
plt.show()
```


Seaborn Heatmap Plot

```
import seaborn as sns import matplotlib.pyplot as plt
```

```
df = sns.load_dataset(' ')
sns.heatmap(data = data)
plt.show()
```


Count Plot in Seaborn

import seaborn as sns
import matplotlib.pyplot as plt
df = sns.load_dataset(")
sns.countplot(x =", data = df)
plt.show()

Count Plot in Seaborn

What's the difference between countplot and barplot?

- Countplot plots the count of the number of records by category.
- Barplot plots a value or metric for each category (by default, barplot plots the mean of a variable, by category).

Pair Plot in Seaborn

import seaborn import matplotlib.pyplot as plt

df = seaborn.load_dataset(' ')
seaborn.pairplot(df)
plt.show()

Cat Plot in Seaborn

```
import seaborn as sns
exercise = sns.load_dataset("")
g = sns.catplot( x="", y="", data=exercise, kind = "" )
```

Cat Plot in Seaborn

Categorical scatterplots with catplot

- stripplot() with kind="strip"
- swarmplot() with kind="swarm"

Categorical estimate plots with catplot

- pointplot() with kind="point"
- barplot() with kind="bar"
- countplot() with kind="count"

Categorical distribution plots with catplot

- boxplot() with kind="box"
- violinplot() with kind="violin"
- boxenplot() with kind="boxen"

Styling Plots in Seaborn

- Seaborn Figure Styles
- Removing Axes Spines
- Scale and Context

Multiple Plots (Facet - Grid) in Seaborn

```
import seaborn
import matplotlib.pyplot as plt
df = seaborn.load_dataset(")
graph = seaborn.FacetGrid(df, col ="", hue ="")
graph.map(plt.scatter).add_legend()
plt.show()
```

