Eine Woche, ein Beispiel

4.10 non-Archimedean local field F

wiki: local field

See https://mathoverflow.net/questions/17061/locally-profinite-fields for different definition of local fields. We follow wiki instead.

Classification,

- finite extension of Qp - IFq ((T)) (9=p*)

Process:

- 1. Basic structures and results.
- 2. Topological results.
- 3. representation of (F, +) and F^{\times} (next week)

1. Basic structures and results

1.1. None of them is ala closed.

1.2. The natural valuation $v : F \longrightarrow \mathbb{Z}$ is defined. Then $O, \beta, k = 0/p$ $p = \text{char} k, q = |k| = p^*$ $U^{(n)} = 0^* = 0 - p = \{x \in F | v(x) = 0\}$ $U^{(n)} = 1 + p^n$ $v = 1 + p^$

Moreover,
$$\mathcal{O}$$
 is DVR, k is finite, $\mathcal{U}^{(n)}/\mathcal{U}^{(n)} \stackrel{\text{polit-iso}}{=} k^{\times}$ $\mathcal{U}^{(n)}/\mathcal{U}^{(n+1)} \stackrel{\text{hon-canonical}}{=} k$

$$0 \longrightarrow \mathcal{U}^{(1)} \longrightarrow \mathcal{O}^{\times} \longrightarrow \mathbb{R}^{\times} \longrightarrow 0$$

$$\downarrow^{\alpha} : \text{the Teichmüller lift}$$

$$\Rightarrow \mathcal{O}^{\times} \cong \mathcal{U}^{(1)} \times \mu_{q-1}.$$

1.3.
$$F^{\times} \cong \langle \pi \rangle \times \mathcal{O}^{\times} \cong \langle \pi \rangle \times \mu_{q-1} \times \mathcal{U}^{(1)}$$

e.g. when $F=Q_p$, $Q_p^{\times} \cong \int \mathbb{Z} \oplus \mathbb{Z}/(q-1)\mathbb{Z} \oplus \mathbb{Z}_p$ $p \neq 2$
 $\mathbb{Z} \oplus 0 \oplus (\mathbb{Z}/(2\mathbb{Z} \oplus \mathbb{Z}_2)) p=2$
Thus When $p \geqslant 3$, $(p\mathbb{Z}_p, +) \stackrel{\exp}{\leqslant -1} (1+p\mathbb{Z}_p, \cdot)$ is an iso as topological gps.

2. Topological results.

O is opt and profinite group, while F is loc. opt and loc. profinite group

Cpt open subgps of (F,+) are $f|_{J^k}$.

Cpt open subgps of F^x are not restricted in $\{U^{(k)}\}_{j=1}^{k}$, but $\{U^{(k)}\}_{a\in F^x}$ is a nbhd system of F^x , i.e., $\{aU^{(k)}\}_{a\in F^x}$ is a topological basis of F^x .

E.g. Q_{pr} : = the splitting field of X^9-X over Q_p = $q=p^r$ = the unique unramified extension of Q_p of degree r

Gal (Opr/Op) = Gal (IFpr/IFp) = Z//rZ