IETF Hackathon:

YANG Data Model for Network Interconnect Tester

- IETF 104
- 23-24 March, 2019
- Prague

Background

- Problem:
 - MDN enabled tester
 - "Model Defined Networking"
 - Interoperable tester
 - Simulatable MDN network

- New draft:
 - draft-vassilev-bmwg-network-interconnect-tester-00

Details

```
module: ietf-traffic-generator
     augment /if:interfaces/if:interface:
       +--rw traffic-generator {egress-direction}?
         +--rw (type)?
            +--:(single-stream)
               +--rw frame-size
                                       uint32
               +--rw (frame-data-type)?
                +--:(raw-frame-data)
                    +--rw frame-data?
                                       string
               +--rw interframe-gap
                                       uint32
               +--rw interburst-gap?
                                       uint32
               +--rw frames-per-burst?
                                       uint32
               +--rw src-mac-address?
                                       vang:mac-address {ethernet}?
               +--rw dst-mac-address?
                                       yang:mac-address {ethernet}?
               +--rw ether-type?
                                       uint16 {ethernet}?
            +--: (multi-stream)
#Connect to network
net=tntapi.connect("topology.xml")
# Start traffic
net.node("tester0").edit(
  "create /interfaces/interface[name='e0']/traffic-generator -- frame-size=64 interframe-gap=20")
net.commit()
```

Details 2

Automated self-test script for devices implementing the network-interconnect-tester draft:

Usage:

```
./test-network-interconnect-tester.py --config=../topology.xml --interface=analyzer.ge0 --interface=analyzer.xe0 \
--interface=local.ge15 --interface=local.xe2 --interface=local.xe3 --test-internal-loopback=true --test-analyzer=true
```

Output:

+ Port \ Run	1	1	Ι	2	3	I	4	5	6	 	7	 	8	9
NORM	1	98.70	Ī	76.19	50.00	I	50.00	5.00	50.00	 	5.00	l	10.00	76.19
analyzer.ge0	1	101.40	l	76.45	50.18	I	51.34	5.02	50.94		5.02		10.02	76.62
local.ge15	1	101.37	l	76.41	50.16	I	51.33	5.01	50.98		5.02	l	10.05	76.66
local.xe3	1	97.85	l	55.10	76.91	I	56.40	12.65	72.83		12.52		13.32	55.27
local.xe2	1	97.91		55.12	76.96	I	56.43	12.65	72.88	 	12.53		13.33	55.30
analyzer.xe0	1	101.37		76.41	50.16	1	51.32	5.01	50.92		5.02		10.02	76.59

- Another implementation of the drafts
 - Using open source simulation tool
- With a small translator script
- Input in XML format, conforming to YANG models:
 - ietf-network, ietf-network-topology
 - ietf-interfaces, ietf-interfaces-ethernet-like
 - letf-network-bridge-flows*, ietf-network-bridge-scheduler*
 - letf-traffic-generator*, ietf-traffic-analyzer*, ietf-loopback*
 - *: DRAFT
- Output is a NED file, with the same config
 - The own DSL of the simulation tool

topology-with-config.xml:

```
<networks xmlns="urn:ietf:params:xml:ns:yang:ietf-network">
    <node>
      <node-id>host0
      <termination-point
        xmlns="urn:ietf:params:xml:ns:yang:ietf-network-topology">
       <tp-id>p0</tp-id>
      </termination-point>
      <config xmlns="urn:tntapi:netconf-node">
       <interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces">
            <traffic-generator
                xmlns="urn:ietf:params:xml:ns:yang:ietf-traffic-generator">
             <frame-size>64</frame-size>
             <interframe-gap>20</interframe-gap>
             <dst-mac-address>00:00:00:00:03</dst-mac-address>
```

topology-with-config.ned:

```
module Host0 {
    parameters:
        eth p0.address = "00:00:00:00:00:01";
    gates:
        inout p0;
    submodules:
        eth_p0: VLANEthernetInterfaceHost;
        analyzer_p0: TrafficAnalyzer;
        gen_p0: TrafficGenerator {
            frameSize = 64B;
            interFrameGap = 20B;
            destAddress = "00:00:00:00:00:03";
    connections:
        encap_p0.upperLayerOut --> analyzer_p0.in;
        queue_p0.in++ <-- gen_p0.out;
        encap_p0.upperLayerIn <-- queue_p0.out;</pre>
        eth_p0.upperLayerOut --> encap_p0.lowerLayerIn;
        eth_p0.upperLayerIn <-- encap_p0.lowerLayerOut;
        P0 <--> eth p0.phys;
```


- Advantages:
 - No special or expensive equipment needed
 - Deterministic and reproducible
 - Easier to modify, experiment with, and optimize
- New YANG model:
 - To model propagation delay in the medium

Wrap Up

Team members:

Vladimir Vassilev

Transpacket AS

Attila Török

OpenSim Kft.

First timers @ IETF/Hackathon:

Attila Török

References

- https://www.ietf.org/id/draft-vassilev-bmwg-network-interconnect-tester-00.txt
- https://www.ietf.org/id/draft-vassilev-netmod-network-bridge-01.txt
- https://github.com/torokati44/ietf-hackathon104
- https://github.com/vlvassilev/litenc/tree/master/tntapi/example/ietf-network-interconnect-tester