

เซต(Set)

1. เซต (Set)

ในทางคณิตศาสตร์ เราถือว่าเซตเป็นอนิยาม ซึ่งเราจะใช้เซตบ่งบอกถึงกลุ่มของสิ่งต่างๆ โดยจะต้อง ทราบว่า สิ่งใดอยู่ในกลุ่ม สิ่งใดไม่อยู่ในกลุ่ม และสิ่งที่อยู่ในกลุ่มนั้นเราจะเรียกว่าเป็นสมาชิกของเซต โดยนิยม ใช้อักษรภาษาอังกฤษตัวใหญ่ A, B, C, ... แทนเซต และอักษรภาษาอังกฤษตัวเล็ก a, b, c,... แทนสมาชิก ของเซต

กองเลน
2. เซตว่าง (Empty set หรือ Null set)
<u>บทนิยาม</u> เซตว่าง คือ เซตที่ไม่มีสมาชิกเลย เขียนแทนด้วย Ø (อ่านว่า phi) หรือ { }
ตัวอย่างที่ 1 จงพิจารณาว่า จากการสนใจสิ่งต่อไปนี้ข้อใดเกิดเซตและข้อใดไม่เกิดเซต
1) วันใน 1 สัปดาห์2) สระในภาษาอังกฤษ
3) จำนวนนับที่น้อยกว่า 04) ชื่อ-นามสกุลของคนในกรุงเทพมหานคร
3. วิธีเขียนเซต
การเขียนเซตอาจเขียนได้ 2 แบบ คือ
 แบบแจกแจงสมาชิก วิธีนี้จะเขียนแจงสมาชิกทุกตัวลงในวงเล็บปึกกา { } โดยคั่นระหว่างสมาชิก ด้วยเครื่องหมายจุลภาค (,)
* ถ้าสมาชิกของเซตมีหลายตัวแต่มีแบบแผนที่ชัดเจน อาจใช้การเขียนสมาชิกของเซตเพียง 3-4 ตัว แล้ว ตามด้วย , เพื่อเป็นการย่อไว้ในฐานที่เข้าใจกันว่าตัวต่อๆไปกืออะไร
 แบบบอกเงื่อนไข วิธีนี้จะเขียนในรูปของเงื่อนไขของสิ่งที่จะเป็นสมาชิกของเซตได้
โดยเขียนในรูป [*] { ตัวแปร / คุณสมบัติของตัวแปรที่เป็นสมาชิกของเซต }
ตัวอย่างที่ 2 จงเขียนเซตต่อไปนี้แบบแจกแจงสมาชิก
1) เซตของชื่อจังหวัดในประเทศไทยที่ขึ้นต้นด้วยพยัญขนะ "จ"
ตอบ
2) เซตของสระในภาษาอังกฤษ
ตอบ
3) เซตของจำนวนเต็มบวกที่มีสองหลัก
ตอบ
4) เซตของจำนวนคู่บวกที่น้อยกว่า 10
ตอบ
5) เซตของจำนวนเต็มที่มากกว่า 100
ตอบ
6) { x / x เป็นจำนวนเต็มที่มากกว่า 3 และน้อยกว่า 10 }
ตอบ
ตอบ

ด 31101

ดณิตศาสตร์

8) เซตของจำนวนเต็มลบที่มากกว่า 5

<u>ตอบ</u>.....

ตัวอย่างที่ 3 จงเขียนเซตต่อไปนี้แบบบอกเงื่อนใขสมาชิกของเซต

1) $N = \{1, 3, 5\}$

ตอบ

2) $P = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$

<u>ตอบ</u>.....

3) $R = \{1, 4, 9, 16, 25, 36, \dots\}$

<u>ตอบ</u>.....

4) $T = \{10, 20, 30, \dots\}$

<u>ฅ๏บ</u>.....

4. เอกกพสัมพัทธ์ (Relative Universe)

เอกภพสัมพัทธ์ คือ เซตที่กำหนดขอบเขตที่จะพิจารณา นิยมเขียนแทนด้วย ${\mathscr U}$ ตัวอย่างเอกภพสัมพัทธ์ที่ควรทราบ

- R ใช้แทน เซตของจำนวนจริง
- R⁺ ใช้แทน เซตของจำนวนจริงบวก
- R ใช้แทน เซตของจำนวนจริงลบ
- I ใช้แทน เซตของจำนวนเต็ม = $\{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
- I^{+} ใช้แทน เซตของจำนวนเต็มบวก = $\{1, 2, 3, ...\}$
- I^{-} ใช้แทน เซตของจำนวนเต็มลบ = $\{-1, -2, -3, ...\}$
- N ใช้แทน เซตของจำนวนนับ = $\{1, 2, 3, ...\}$
- P ใช้แทน เซตของจำนวนเฉพาะบวก = $\{2, 3, 5, 7, 11, 13, ...\}$

**การกำหนดเอกภพสัมพัทธ์เป็นการกำหนดขอบเขตของเรื่องราวที่สนใจ บางครั้งเงื่อนไขของสมาชิกของเซต เหมือนกัน แต่เอกภพสัมพัทธ์ต่างกัน ทำให้เซตที่ได้เป็นเซตที่มีสมาชิกแตกต่างกัน เช่น

- 1) ถ้ากำหนดเอกภพสัมพัทธ์เป็นเซตของจำนวนเต็ม และ $A = \{x \mid x^2 2x 3 = 0\}$ จะได้ $A = \{3, -1\}$
- 2) ถ้ากำหนดเอกภพสัมพัทธ์เป็นเซตของจำนวนเต็มบวก และ $A = \{x \mid x^2 2x 3 = 0\}$ จะได้ $A = \{3\}$

5. เซตจำกัด และเซตอนันต์

เซตจำกัด (Finite set) คือ เซตที่มีจำนวนสมาชิกเท่ากับจำนวนเต็มบวกใดๆ หรือศูนย์ เซตอนันต์ (Infinite set) คือ เซตที่ไม่ใช่เซตจำกัด

<u>ข้อตกลง</u>

- 1. ใช้สัญลักษณ์ n(A) แทน "จำนวนสมาชิกของเซต A"
- 2. ใช้สัญลักษณ์ "

 " แทน " เป็นสมาชิกของเซต "

และ " ∉ " แทน " ไม่เป็นสมาชิกของเซต "

<u>ข้อสังเกต</u> เซตว่างเป็นเซต.....

ดณิตศาสตร์

อนันต์

ตัวอย่างที่ 4 จงพิจารณาว่า เซตต่อไปนี้เป็นเซต จำกัด หรืออนันต์

4.1) A = {หมาก, ณเดชน์, แต้ว}

กำกัด

4.2) B = {จำนวนเต็มบวก}

4.3) $C = \{x/x เป็นจำนวนเต็มคู่บวก\}$

4.4) $D = \{1, 3, 5, ..., 1000001\}$

4.5) $E = \{x \in R / 1 \le x \le 20\}$

4.6) $G = \{x \in R / x^2 = -1 \}$

4.7) $H = \{\emptyset\}$

ตัวอย่างที่ 5 จงบอกจำนวนสมาชิกของเซตต่อไปนี้

1) $B = \{1234\}$

n(B) =

2) $C = \{a, b, c, de, f, gh, ijk\}$

n(C) =

3) $G = \{ x / x$ เป็นจำนวนเต็มบวก และน้อยกว่า $0 \}$

n(G) =

4) $H = \{ \phi, \{0,1\}, 2, \{2\} \}$

n(H) =

6. การเท่ากันของเซต

<u>บทนิยาม</u> เซต A เท่ากับเซต B ก็ต่อเมื่อ ทุกสมาชิกของเซต A เป็นสมาชิกของเซต B และ ทุกสมาชิกของ เซต B เป็นสมาชิกของเซต A

เซต A เท่ากับเซต B เขียนแทนด้วย A = B

ตัวอย่างที่ 6 1) กำหนดให้ $A = \{1, 2, 3, 4\}$ และ $B = \{3, 1, 4, 2\}$ จะได้ว่า.....

2) กำหนดให้ C = { 1,2,3 } และ D = { 1,2,2,3,3,3 } จะได้ว่า

สรุป

- 1)
- 2)

ตัวอย่างที่ 7 จงพิจารณาว่าเซตคู่ใดที่กำหนดให้เป็นเซตที่เท่ากัน

1) $C = \{ x / x$ เป็นจำนวนจริง และ $x^2 = 36 \}$, $D = \{ 6 \}$

.....

2) $E = \{ x / x = 7n \text{ } | \vec{b} \text{ } | \text{ } n \text{ } | \vec{b} \text{ } | \text{ } u \text{ } | \text{ } | \text{ } u \text{ }$

.....

3) $A = \{x \mid x = 1 - \frac{1}{n} \text{ idon iduanul} \}$, $B = \{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots\}$

.....

ดณิตศาสตร์

7. การเทียบเท่ากันของเซต

เซตที่เทียบเท่ากัน ลือ เซตที่มี<u>จำนวนสมาชิกเท่ากัน</u> (สำหรับเซตจำกัด) ้คือ เซตซึ่งสามารถ<u>จับค่สมาชิกกันแบบหนึ่งต่อหนึ่งได้</u> (สำหรับเซตอนันต์)

ตัวอย่างที่ 9 พิจารณาข้อความต่อไปนี้ว่าถูก หรือ ผิด

9.1) a $\in \{a,b\}$

9.2) a $\in \{\{a\}, \{a,b\}\}$

 $\in \{a, \{a, b\}\}$ 9.3) {a}

9.4 $\{b, c\}$ $\in \{a, \{c, b\}\}$

9.5) a, b $\in \{a, \{a, b\}, b\}$

 $\in \{a, \{a, b\}, \{b\}\}$ 9.6) a, b

 $\in \emptyset$ 9.7) Ø

9.8) Ø $\in \{\emptyset\}$

9.9) $\{\emptyset\}$ ∈ {{ }}

 $9.10) \{\emptyset\} \in \{\{\emptyset\}, \{\}\}\}$

HOMEWORK: แบบฝึกหัด 1.1 ข้อ 4-6 หน้า 7-8

8. สับเซต (Subset)

<u>บทนิยาม</u> เซต A เป็นสับเซตของเซต B ก็ต่อเมื่อ สมาชิกทุกตัวของเซต A เป็นสมาชิกของเซต B เขียนแทนด้วยสัญลักษณ์ A < B

ถ้า A เป็นสับเซตของ B เขียนแทนด้วย $A \subset B$

ถ้า A ไม่เป็นสับเซตของ B

เขียนแทนด้วย A ⊄ B

<u>บทนิยาม</u> เซท A เป็นสับเซทแท้ (proper subset) ของเซท B ก็ต่อเมื่อ $A \subset B$ และ $A \neq B$ ตัวอย่างที่ 10 1) กำหนด A = { 1,3,5 } และ B = { 1,2,3,4,5,6 } จะได้ว่า

2) กำหนด A = { 1,3,5 } และ B = { 1,2,4,5,6,7 } จะได้ว่า

ข้อสังเกต

- 1) A ไม่เป็นสับเซตของ B ก็ต่อเมื่อ
- $\{x\}\subset A$ ก็ต่อเมื่อ
- $oldsymbol{\phi}$ เป็นสับเซตของทุกเซต กล่าวคือ $oldsymbol{\phi} \subset {}_{A}$ เมื่อ A เป็นเซตใดๆ
- เซตใดๆย่อมเป็นสับเซตของตัวเอง กล่าวคือ $_A \subset _A$ เมื่อ $_A$ เป็นเซตใดๆ
- $\{x\} \subset A$ ก็ต่อเมื่อ $x \in A$

ตัวอย่างที่ 11 กำหนดให้ $A = \{a, b, c, \{a, b\}, \{c\}\}$ ข้อความใดต่อไปนี้ผิด

1. $\{a, b\} \in A$ 2. $\{a, b\} \subset A$ 3. $\{a\} \subset A$ 4. $\{a\} \in A$

ตัวอย่างที่ 12 จงพิจารณาข้อความต่อไปนี้ว่าถูกหรือผิด

- $_{---}$ 12.1) a $\subset \{a, \{a, c\}\}$
- 12.2) {a} \subset {a, {a, c}}
- 12.3) $\{a,b\} \subset \{a,b,\{a,b\}\}$
- $\underline{}$ 12.4) $\{a,c\} \subset \{a,\{a,c\}\}$
- $\underline{} 12.5) \{a, \{b\}\} \subset \{a, \{b\}, \{a, c\}\}$
- 12.6) $\{a,b,c\} \subset \{a,b,\{c\},c\}$
- _____12.7) Ø C Ø
- $12.8) \quad \varnothing \quad \subset \{\varnothing\}$
- $12.10) \{\emptyset\} \subseteq \{\{\emptyset\}\}$
- 12.11) $\{\emptyset\} \subset \{\{\emptyset\}, \{\}\}\}$

ตัวอย่างที่ 13 กำหนดให้ $A = \{\phi, 1, \{1\}\}$ ข้อใดต่อไปนี้ผิด

- 1. $\phi \subset A$ 2. $\{\phi\} \not\subset A$ 3. $\{1, \{1\}\} \subset A$ 4. $\{\{1\}, \{1, \{1\}\}\} \not\subset A$

ตัวอย่างที่ 14 จงหาสับเซตของเซต A ทั้งหมด พร้อมทั้งจำนวนสับเซตแท้ของเซต A เมื่อ

1) $A = \phi$

สัมเซตของ A คือ......

จำนวนสับเซตทั้งหมด เท่ากับ......จำนวนสับเซตแท้ เท่ากับ......

 $A = \{1\}$

สับเซตของ A คือ......

จำนวนสับเซตทั้งหมด เท่ากับ......จำนวนสับเซตแท้ เท่ากับ......

 $A = \{1, 2\}$

สับเซตของ A คือ......

จำนวนสับเซตทั้งหมด เท่ากับ......จำนวนสับเซตแท้ เท่ากับ......

 $A = \{1, 2, 3\}$

สับเซตของ A คือ......

จำนวนสับเซตทั้งหมด เท่ากับ......จำนวนสับเซตแท้ เท่ากับ......

คณสมบัติเพิ่มเติมของสับเซต

- 1. จำนวนสับเซตทั้งหมด = 2^n เมื่อ n เป็นจำนวนสมาชิก
- 2. จำนวนสับเซตแท้ทั้งหมด $= 2^n 1$ เมื่อ n เป็นจำนวนสมาชิก
- 3.A = B ก็ต่อเมื่อ $A \subset B$ และ $B \subset A$
- 4.ถ้า $A \subset B$ และ $B \subset C$ แล้ว $A \subset C$ (สมบัติถ่ายทอดของการเป็นสับเซต)

ด 31101

ดณิตศาสตร์

ตัวอย่างที่ 15 ให้ A เป็นเซตจำกัด และ B เป็นเซตอนันต์ ข้อความใดต่อไปนี้เป็น<u>เท็จ</u>

- 1. มีเซตจำกัดที่เป็นสับเซตของ A
- 2. มีเซตจำกัดที่เป็นสับเซตของ B
- 3. มีเซตอนันต์ที่เป็นสับเซตของ A
- 4. มีเซตอนันต์ที่เป็นสับเซตของ B

9. เพาเวอร์เซต (Power set)

บทนิยาม เพาเวอร์เซตของเซต A คือเซตของสับเซตทั้งหมดของเซต A เขียนแทนด้วยสัญลักษณ์ P(A) หรือ 2^A จากนิยาม $X \in P(A)$ ก็ต่อเมื่อ $X \subset A$

ตัวอย่างที่ 16 จงหา P(A) และ n(P(A)) เมื่อ

16.1)
$$A = \{a, b\}$$

16.2)
$$A = \{1, 2, 3\}$$

$$16.3) \quad A = \emptyset$$

คุณสมบัติของเพาเวอร์เซต กำหนด A และ B เป็นเซตใดๆ

1. $X \in P(A)$ ก็ต่อเมื่อ $X \subset A$

 $2. \varnothing \in P(A)$

3. A \in P(A)

4. $P(A) \neq \emptyset$, $n(P(A)) \neq 0$

5. $n(P(A)) = 2^{n(A)}$

6. **P(A)** ⊂ P(B) กี้ต่อเมื่อ A ⊂ B

พิสูจน์ 1) ถ้า $P(A) \subset P(B)$ เนื่องจาก $A \in P(A)$

คังนั้น $A \in P(B)$

จะได้ $A \subset B$

คังนั้น $P(A) \subset P(B)$

จาก 1) และ 2) สรุปได้ว่า $P(A) \subset P(B) \leftrightarrow A \subset B$

จากข้อ 2. นิยามสับเซต นิยามเพาเวอร์เซต

สมบัติถ่ายทอดการเป็นสับเซต นิยามเพาเวอร์เซต นิยามสับเซต

*7.
$$\{x\} \in P(A)$$
 กี้ต่อเมื่อ $x \in A$

*8.
$$\{x\} \subset P(A)$$
 ก็ต่อเมื่อ $x \subset A$

ตัวอย่างที่ 17 กำหนด $A = \{1, 2, \{1\}\}$ แล้วต่อไปนี้ข้อใดถูก-ข้อใคผิด

17.1) {1} ∈ A

17.2) $\{1, \{1\}\} \subset A$

____17.3) {2}

17.4) $\{\{1\}\}\ \in P(A)$

17.5) $\{\{2\}\}\ \in P(A)$

17.6) $\{2, \{1\}\} \in P(A)$

17.7) $\{\{1\}\}\ \subset\ P(A)$ 17.8) $\{\emptyset\}$ $\in P(A)$

 $17.9) \quad \{\emptyset\} \quad \subset \quad P(A)$

 $17.10) \{\emptyset\} \in P(P(A))$

ตัวอย่างที่ 18 กำหนดให้ $A = \{1, \{1\}, \{2\}, 2\}$ จงพิจารณาว่า ข้อใดต่อไปนี้ไม่ถูกต้อง

1. $\{1\} \in P(A)$

2. $\mathbf{\phi} \in P(A)$

3. $\{1, 2\} \in P(A)$

4. $\{ \boldsymbol{\phi}, \{1\} \} \in P(A)$

ตัวอย่างที่ 19 กำหนดให้ $A = \{1, \{1\}, \phi, \{\phi\}\}$ และ P(A) เป็นเพาเวอร์เซตของ A จะได้ว่า

- ก) {**ф**}⊂A และ {**ф**}⊂P(A)
- ປ) $\phi \in A$ ແລະ $\phi \in P(A)$
- ค) A และ P(A) มีสมาชิกซ้ำกัน 3 ตัว

ข้อใคสรปถกต้อง

- 1. ถูกเฉพาะข้อ ก และ ข้อ ข
- 2. ถูกเฉพาะข้อ ข และ ข้อ ค
- 3. ถูกเฉพาะข้อ ก และ ข้อ ค
- 4. ถกหมดทั้งสามข้อ

ตัวอย่างที่ 20 กำหนด $A = \{\varnothing\}$ แล้วพิจารณา ข้อต่อไปนี้

- 1) $\{\{\{\emptyset\}\}\}\} \subset P(P(A))$
- 2) $\{\{\{\emptyset\}\}\}\} \subset P(P(P(A)))$

ข้อใคสรุปถูกต้อง

- 1. ถูกทั้ง 2 ข้อ
- 2. 1) ถูก 2) ผิด 3. 1) ผิด 2) ถูก 4. ผิดทั้ง 2 ข้อ

HOMEWORK : แบบฝึกหัด 1.3 หน้า 12 ข้อ 1-4

10. แผนภาพเวนน์-ออยเลอร์ (Venn-Euler Diagrams)

เราอาจแทนเซตได้ด้วยแผนภาพที่เรียกว่า "แผนภาพของเวนน์-ออยเลอร์ ซึ่งตั้งขึ้นตามชื่อของนัก คณิตศาสตร์ ชาวอังกฤษ John Venn (1834-1923) และชาวสวิส Leonhard Euler (1707-1783) โดยการเขียน แผนภาพนิยม แทนเอกภพสัมพัทธ์ (\mathcal{U}) ด้วยสี่เหลี่ยมมุมฉาก และแทนเซตต่างๆ ที่เป็นสับเซตของ \mathcal{U} ด้วย วงกลม วงรี หรือรูปที่มีพื้นที่จำกัดใดๆ ก็ได้

การแสดงความสัมพันธ์ระหว่างเซต A กับ B ในกรณีต่างๆ ด้วยแผนภาพ กรณีที่ 1 เซต A และ B ไม่มีสมาชิกซ้ำกันเลย กรณีที่ 2 เซต A เท่ากับเซต B

กรณีที่ 3 เซต A เป็นสับเซตของเซต B

กรณีที่ 4 เซต B เป็นสับเซตของเซต A

กรณีที่ 5 เซต A และเซต B มีสมาชิกซ้ำกันบ้าง

11. การกระทำระหว่างเซต (Operation between Sets)

กำหนด A , B แทนเซตใดๆ และ $\mathscr U$ แทนเอกภพสัมพัทธ์ ยูเนียน (Union) ใช้สัญลักษณ์ " \cup " โดย

$$A \cup B = \{x \mid x \in A \text{ nfo} x \in B\}$$

อินเตอร์เซกชัน (Intersection) ใช้สัญลักษณ์ "∩" โดย

$$A \cap B = \{x / x \in A \text{ lint } x \in B\}$$

 \mathcal{U}

ผลต่าง (Difference) ใช้สัญลักษณ์ " – " โดย $A-B = \{x / x \in A \ \text{และ} \ x \notin B\}$

ดณิตศาสตร์

12. การกระทำบนเซต (Operation on set)

คอมพลีเมนต์ (Complement) ใช้สัญลักษณ์ "" โดย

$$A' = \{x \mid x \in \mathcal{U} \text{ และ } x \notin A\}$$
 อาจเขียน A' ด้วยสัญลักษณ์ A^c

ตัวอย่างที่ 21 กำหนด $\mathcal{U} = \{1, 2, 3, \dots, 8\}$

$$A = \{1, 2, 3, 4\}$$

$$B = \{5, 6, 7, 8\}$$

$$C = \{3, 4, 5\}$$

$$D = \{5, 6\}$$

จงหา

5)
$$D'-A$$

6)
$$(A \cup C') \cap B$$

7)
$$(A-B) \cap D$$

8)
$$\mathscr{U} \cup (A \cap D')$$

ตัวอย่างที่ 22 ถ้า $A-B=\{2,4,6\}$, $B-A=\{0,1,3\}$ และ $A\cup B=\{0,1,2,3,4,5,6,7,8\}$ แล้ว $A\cap B$ เป็นสับเซตของเซตในข้อใดต่อไปนี้

$$3. \{0,1,3,5,7,8\}$$

ตัวอย่างที่ 23 ให้ $A = \{1,2,3,...\}$ และ $B = \{\{1,2\},\{3,4,5\},6,7,8,...\}$ ข้อใดเป็นเท็จ

- A B มีสมาชิก 5 ตัว
- 2. จำนวนสมาชิกของเพาเวอร์เซตของ B A เท่ากับ 4
- 3. จำนวนสมาชิกของ $(A-B) \cup (B-A)$ เป็นจำนวนคู่
- 4. $A \cap B$ คือเซตของจำนวนนับที่มากกว่า 5

ตัวอย่างที่ 24 จงเขียนแผนภาพ (Venn-Euler diagram) แสดงเซตต่อไปนี้

1) $A \cap B'$

 $2) (A \cap B) \cup (A \cup B)'$

3) (A - B) - C

4) $A \cap (B-C)$

ตัวอย่างที่ 25 ส่วนที่แรเงาคือเซตในข้อใดต่อไปนี้

- 1. $(B \cup A) \cap C$
- 2. $(B \cap A) \cup C$
- 3. $B \cap (A \cup C)$
- 4. $B \cup (A \cap C)$

ตัวอย่างที่ 26 ส่วนที่แรเงาคือเซตในข้อใดต่อไปนี้

- 1. C − (A∪B)
- 2. $C (B' \cap A)$
- 3. $A' \cap C$
- 4. $B' \cap C$

ตัวอย่างที่ 27 จากแผนภาพที่กำหนดให้ ส่วนที่แรเงาคือเซตข้อใด

- 1. $(A \cup B) \cup C$
- 2. $(A \cup B) \cap C$
- 3. $(A \cap B) \cap C$
- 4. $(A' \cup B') \cap C$

 $\mathcal{U}-A$

13. ดุณสมบัติของ Operation

1. กฎการกระทำตัวเอง (Idempotent Law)

$$A \cup A = A$$

$$A \cap A = A$$

2. กฎของเคอร์มอแกน (De Morgan's Law)

$$(A \cup B)' = A' \cap B'$$

$$(A \cap B)' = A' \cup B'$$

3. กฎการสลับที่ (Commutative Law)

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

4. กฎการเปลี่ยนหมู่ (Associative Law)

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$

5. กฎการแจกแจง (Distributive Law)

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cup C) = (A \cup B) \cup (A \cup C)$$

$$A \cap (B \cap C) = (A \cap B) \cap (A \cap C)$$

6. การเปลี่ยนรูป

(Transformative Law of " - "and " \cap ")

$$A - B = A \cap B'$$

$$= B' - A'$$

$$A \cap B = A - B'$$

7. กฎการยุบ (Absorption Law)

$$A \cup (A \cap B) = A$$

$$A \cap (A \cup B) = A$$

8. กฎการแจกแจงของ " - "

(Distributive Law of " - ")

$$A-(B\cup C) = (A-B)\cap (A-C)$$

$$A - (B \cap C) = (A - B) \cup (A - C)$$

$$(B \cup C) - A = (B - A) \cup (C - A)$$

$$(B \cap C) - A = (B - A) \cap (C - A)$$

9. คอมพลีเมนต์

$$(A')' = A$$

$$\mathcal{U}' = \emptyset$$

$$\varnothing'$$
 = \mathscr{U}

10. กระทำกับ คอมพลีเมนต์

$$A \cup A' = \mathscr{U}$$

$$A \cap A' = \emptyset$$

$$A - A' = A$$

$$A' - A = A'$$

11. กระทำกับ \mathscr{U}

$$A \cup \mathcal{U} = \mathcal{U}$$

$$A \cap \mathcal{U} = A$$

$$A - \mathcal{U} = \emptyset$$

$$\mathcal{U} - A = A'$$

12. กระทำกับ ∅

$$A \cup \emptyset = A$$

$$A \cap \emptyset = \emptyset$$

$$A - \emptyset = A$$

$$\emptyset$$
 - A = \emptyset

13. **กรณี A ⊂ B จะได้ว่า

$$A \cup B = B$$

$$A \cap B = A$$

$$A - B = \emptyset$$

ตัวอย่างที่ 28 จงพิจารณาว่าข้อความต่อไปนี้ถูกหรือผิด

$$_{1)} \quad A \cap (B - C) = (A \cap B) - (A \cap C)$$

2)
$$A \cup (B - C) = (A \cup B) - (A \cup C)$$

ตัวอย่างที่ 29 $[(A \cup B') \cap B]$ คือเซตในข้อใด

- 1. $A \cup B$ 2. $A \cap B$
- 3. A-B
- 4. $A \cup B'$

ตัวอย่างที่ 30 A - (B - C) คือเซตในข้อใด

1.
$$(A - B) - C$$

3.
$$(A-B)-(A-C)$$

2.
$$(A-B) \cup (A \cap C)$$

4.
$$(A-B) \cup (A-C)'$$

ตัวอย่างที่ 31 ให้ A,B,C,D เป็นเซตใด ๆ $(A\cap C)-(B\cup D)$ เท่ากับเซตในขัดใด

1.
$$(A - B) \cap (D - C)$$

2.
$$(A - B) \cap (C - D)$$

3.
$$(A-B) \cup (D-C)$$

4.
$$(A - B) \cup (C - D)$$

ตัวอย่างที่ 32 $(A \cup B) \cap (A \cup B \cup C \cup D)$ เท่ากับเซตในข้อใด

- 1. $A \cap B$

- 2. $A \cup B$ 3. $A (B \cap C)$ 4. $A \cap B \cap C'$

ตัวอย่างที่ 33 $A' \cap (A \cup B \cup C)$ ตรงกับเซตข้อใด

- 1. $A (B \cup C)$ 2. $(B \cup C) A$ 3. $(A \cup C) B$ 4. $(B \cup A) C$

ตัวอย่างที่ 34 กำหนดให้ A , B และ C แทนเซตใดๆ ซึ่ง $A \subset B$ พิจารณาข้อความต่อไปนี้

$$(C-A) \subset (C-B)$$

$$\mathbb{V}) \quad A^{c} \cap C \subset A^{c} \cap B$$

ข้อใดต่อไปนี้ถูกต้อง

- 1. ก. ถูก และ ข. ถูก
- 3. ก.ผิด และ ข. ถูก

- 2. ก. ถูก และ ข. ผิด
- 4. ก. ผิด และ ข. ผิด

ตัวอย่างที่ 35 แผนภาพแรงาในข้อใดแทนเซต $((A-B)\cap (A-C))\cup ((B\cap C)-(A\cap B\cap C))$

3.

4.

HOMEWORK : แบบฝึกหัด 1.4 ข้อ 1-4 หน้า 23 - 24