

А. П. Черняев

НЕЯВНЫЕ ФУНКЦИИ. НЕПРЕРЫВНО ДИФФЕРЕНЦИРУЕМЫЕ ОТОБРАЖЕНИЯ. ЭКСТРЕМУМЫ ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ

Учебно-методическое пособие

МОСКВА МФТИ 2020 Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)»

Кафедра высшей математики

А. П. Черняев

НЕЯВНЫЕ ФУНКЦИИ. НЕПРЕРЫВНО ДИФФЕРЕНЦИРУЕМЫЕ ОТОБРАЖЕНИЯ. ЭКСТРЕМУМЫ ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ

Учебно-методическое пособие

МОСКВА МФТИ 2020 УДК 517(075) ББК 22.1я73 ч49

Рецензент

Доктор физико-математических наук, профессор Я. М. Дымарский

Черняев, Александр Петрович

Ч49 Неявные функции. Непрерывно дифференцируемые отображения. Экстремумы функции многих переменных : учебнометодическое пособие / А. П. Черняев. – Москва : МФТИ, 2020. – 40 с.

Пособие представляет собой расширенное изложение тем математического анализа. Темы излагаются не в чистом виде, а с математическими доработками автора. Материал вызывает большие сложности у студентов как во время текущей работы в семестре, так и при подготовке к экзамену.

Данная часть курса математического анализа очень важна при изучении теоретической механики и физики. Особое внимание уделено четкости изложения и последовательности подачи материала.

Предназначено для студентов второго и последующих курсов МФТИ, а также для преподавателей.

УДК 517(075) ББК 22.1я73

[©] Черняев А. П., 2020

[©] Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)», 2020

Оглавление

Введение	4
§ 1. Неявные функции	5
Неявные функции, определяемые одним уравнением с двумя переменными	5
Неявные функции, определяемые одним уравнением со многими переменными	9
Неявные функции, определяемые системой уравнений	12
§ 2. Дифференцируемые отображения	15
Свойства якобианов отображений	15
Основные свойства непрерывно дифференцируемых отображений.	16
Замена переменных	18
§ 3. Экстремумы функций многих переменных	23
Необходимые условия экстремума	23
Достаточные условия экстремума	24
Исследования на экстремум в случае двух переменных	28
§ 4. Условный экстремум	31
Определение условного экстремума	31
Метод исключения переменных	31
Необходимые условия условного экстремума	33
Достаточные условия условного экстремума	35
Заключение	38
Литература	39

Ввеление

Пособие представляет собой расширенное изложение неявных функций, дифференцируемых отображений и экстремумов функций многих переменных, с которых начинается третий семестр математического анализа. Теорема о неявной функции в традиционном изложении имеет достаточно громоздкое доказательство, даже в простейшем случае. Для более простого восприятия формулировки и доказательства этой теоремы естественно разбить ее на более короткие утверждения. Это позволит проще усваивать ее идейное содержание.

Еще одна цель пособия – продемонстрировать, что неявные функции для одного уравнения со многими переменными имеют активное применение в теории дифференциальных уравнений. В традиционных способах изложений неявных функций этот раздел, как правило, не излагается.

В разделе дифференцируемых отображений считаем необходимым уделить некоторое внимание теме замены переменных. Обычно замена переменных обходится молчанием в теоретических курсах математического анализа. Это затрудняет приобретение студентами соответствующих практических навыков. (Это не позволяет студентам должным образом приобрести соответствующие практические навыки.)

В разделе условный экстремум поставлена цель уделить некоторое внимание значению метода множителей Лагранжа в математической экономике.

Надеемся, что пособие будет полезно не только студентам второго курса МФТИ, для которых оно имеет прямое назначение.

Тематика настоящего учебно-методического пособия и традиционные способы изложения этого материала вызывает большие сложности у студентов как во время текущей работы в семестре, так и при подготовке экзамена. Сложности эти обусловлены главным образом идейным содержанием.

Расширенность изложения тематики настоящего пособия понимается в том смысле, что уделено особое внимание связям тем с дифференциальными уравнениями и математической экономикой, что наиболее интересно читателю. Темы пособия излагаются не в чистом виде, а с математическими доработками автора.

Эта часть курса математического анализа ещё очень важна: ибо, изучая теоретическую механику и физику, к основным понятиям и теоремам именно этих тем математического анализа приходится обращаться наиболее часто. Особое внимание здесь должно быть уделено четкости изложения и последовательности подачи материала. Это объясняется тем, что при ответе на экзамене нужна особенная четкость.

§ 1. Неявные функции

Неявные функции, определяемые одним уравнением с двумя переменными

Рассмотрим уравнение с двумя переменными x и y , где $x \in X \subset \mathbb{R}$, $y \in Y \subset \mathbb{R}$,

$$F(x, y) = 0, \qquad (1.1)$$

здесь $x \in X \subset \mathbb{R}$ — множество действительных чисел.

Определение 1. Если существует функция y = f(x) такая, что $F(x, f(x)) \equiv 0$ для любого x, где f(x) определена, то мы говорим, что функция y = f(x) неявно задана уравнением (1.1). Такая функция называется *неявной*.

Пример 1. Рассмотрим уравнение $x^2-y^2=0$. Это уравнение кривой второго порядка, а именно: уравнение пары пересекающихся прямых y=x и y=-x. Оно неявно определяет как минимум две непрерывные функции y=x, y=-x. Кроме них существует бесконечное множество других неявных функций, определяемых этим уравнением, т. к. для любого множества $X \subset \mathbb{R}$ функция

$$y = \begin{cases} x, & x \in X; \\ -x, & x \notin X \end{cases}$$

является неявно заданной данным уравнением.

Приведем достаточные условия на левую часть уравнения (1.1) для существования и единственности f(x), когда F(x,y) задана на прямоугольнике \overline{K} , где

$$K = \{(x, y) : a < x < b; c < y < d\} = (a; b) \times (c; d),$$

здесь черта сверху означает замыкание.

Теорема 1. Пусть F(x, y) задана и непрерывна в \overline{K} и при $x \in [a;b]$:

$$F(x,c)F(x,d) \le 0. \tag{1.2}$$

Тогда существует по крайней мере одна функция y = f(x), неявно заданная уравнением (1.2) на отрезке [a;b].

Доказательство. Так как F(x,y) непрерывна в \overline{K} , то $F(x_0,y)$ непрерывна при $c \le y \le d$, где x_0 – любое число из [a;b].

Непрерывная функция $h(y) = F(x_0, y)$ принимает на [c;d] любое промежуточное значение между $h(c) = F(x_0,c)$ и $h(d) = F(x_0,d)$.

Если $F(x_0,c)F(x_0,d)=0$, то либо $F(x_0,c)=0$, либо $F(x_0,d)=0$. В этом случае полагаем соответственно либо $y=f(x_0)=c$, либо $y=f(x_0)=d$. Если же $F(x_0,c)F(x_0,d)<0$, то в силу непрерывности $h(y)=F(x_0,y)$ на [c;d] существует $\eta\in (c;d)$ такое, что $F(x_0,\eta)=0$. В этом случае полагаем $y=f(x_0)=\eta$ (если таких $\eta\in (c;d)$ несколько, то выбираем любое из них).

Поскольку для любого $x_0 \in [a;b]$ поставлено в соответствие число $f(x_0)$, такое, что $F(x_0,f(x_0))=0$, то определение 1 выполнено и теорема доказана.

Замечание. Теорема верна, если потребовать непрерывность F(x, y) лишь по переменной y при каждом x вместо непрерывности по совокупности переменных x, y.

Теорема 2. Пусть F(x, y) задана в \overline{K} и для любого $x_0 \in [a;b]$ функция $h(y) = F(x_0, y)$ строго монотонна на [c;d].

Тогда уравнение (1.1) определяет на [a;b] не более чем одну неявную функцию y = f(x).

Доказательство. Предположим противное. Пусть при некотором $x_0 \in [a;b]$ уравнение (1.1) определяет два значения $y:y_1=f_1(x_0), y_2=f_2(x_0)\neq y_1$ таких, что $F(x_0,y_1)=F(x_0,y_2)=0$.

Но это невозможно, т. к. функция $h(y) = F(x_0, y)$ строго монотонна по переменной y при каждом x и, следовательно, $F(x_0, y_1) \neq F(x_0, y_2)$ при $y_1 \neq y_2$. Следовательно, при каждом $x_0 \in [a;b]$ определено не более одного значения y = f(x) неявной функции, заданной уравнением (1.1).

Сформулируем и докажем теперь локальную теорему о неявной функции.

Теорема 3. Пусть F(x,y) в некоторой окрестности точки (x_0,y_0) непрерывна и имеет частную производную $F_y'(x,y)$, непрерывную в точке (x_0,y_0) . Тогда если $F(x_0,y_0)=0$ и $F_y'(x_0,y_0)\neq 0$, то у точек x_0 и y_0

существуют интервалы $(a;b) \ni x_0$ и $(c;d) \ni y_0$ такие, что на множестве $(a;b) \times (c;d)$ уравнение (1.1) определяет единственную неявную функцию y = f(x), $x \in (a;b)$, и эта функция y = f(x) непрерывна на (a;b).

Доказательство. Пусть для определенности $F_y'(x_0,y_0)>0$. Тогда из непрерывности $F_y'(x,y)$ в точке (x_0,y_0) следует, что $F_y'(x,y)>0$ в некоторой δ -окрестности этой точки, которую мы обозначим $U_\delta(x_0,y_0)$. Возьмем теперь прямоугольник K так, чтобы $(x_0,y_0)\in K$ и $\overline{K}\in U_\delta(x_0,y_0)$. В силу условия $F_y'(x_0,y_0)>0$ в \overline{K} имеем строгое возрастание $h(y)=F(x_0,y)$ на [c;d], т. е. справедливость неравенства

$$F(x_0,c) < 0 < F(x_0,d)$$
.

Функции F(x,c) и F(x,d) непрерывны при $x=x_0$, поэтому существуют окрестности Δ' и Δ'' такие, что

$$F(x,c) < 0 \ \forall x \in \Delta'; \quad F(x,d) > 0 \ \forall x \in \Delta''$$
.

Отсюда следует, что

$$F(x,c) < 0 < F(x,d) \ \forall x \in (a;b) = \Delta = \Delta' \cap \Delta''. \tag{1.3}$$

Таким образом, мы построили прямоугольник K такой, что в \overline{K} выполнены условия теоремы 1, т. к. справедливость (1.2) следует из (1.3), и теоремы 2, т. к. строгое возрастание F(x,y) по y на [c;d] при любом x из [a;b] следует из того, что $F_y'(x,y)>0$ в K.

Следовательно, на прямоугольнике K уравнение (1.1) определяет единственную неявную функцию y = f(x).

Для доказательства искомой непрерывности сначала докажем непрерывность f(x) в x_0 . Выберем некоторую окрестность $\left(c_0;d_0\right)$ точки y_0 . Не ограничивая общности, будем считать, что $\left(c_0;d_0\right)\subset (c,d)$.

Тогда точно так же, как и для интервала (c,d), строится интервал (a;b), содержащий точку x_0 ; для интервала $(c_0;d_0)$ строится $(a_0;b_0)$, содержащий точку x_0 такую, что $\forall x \in (a_0;b_0) \ f(x) \in (c_0;d_0)$. А это и означает, что функция f(x) непрерывна в x_0 .

Непрерывность функции y=f(x) в любой точке $x_1 \in (a;b)$ следует из того, что в точке с координатами x_1 и $y_1=f(x_1)$ выполнены все условия теоремы, поэтому, согласно доказанному, у точки (x_1,y_1) существует

прямоугольная окрестность, в которой уравнение (1.1) определяет единственную функцию $y=f_1(x), x\in (a_1,b_1)$, которая непрерывна в точке x_1 . Очевидно, что $f_1(x)=f(x) \ \forall x\in (a;b)\cap \left(a_1;b_1\right)$, и поэтому f(x) непрерывна в $x_1\in \left(a_1;b_1\right)$.

Случай $F'_{v}(x, y) < 0$ рассматривается аналогично. Теорема 3 доказана.

Пример 2. Функция $F(x,y)=x^2-y^2$ непрерывно дифференцируема на всей плоскости, причем $F_y'=-2y\neq 0$, если $y\neq 0$. Следовательно, для любой точки (x_0,y_0) такой, что $x_0^2=y_0^2$ и $y_0>0$ ($y_0<0$), в верхней (соответственно нижней) полуплоскости выполнены все условия теоремы 3. Уравнение $x^2-y^2=0$ в каждой из этих полуплоскостей определяет по одной неявной непрерывной функции: y=|x|, y=-|x|.

Теорема 4. Если к условиям теоремы 3 добавить существование в некоторой окрестности точки (x_0, y_0) производной $F_x'(x, y)$, непрерывной в этой точке, то неявная функция y = f(x) в точке x_0 имеет производную

$$\frac{dy}{dx} = -\frac{F_x'(x_0, y_0)}{F_y'(x_0, y_0)}. (1.4)$$

Доказательство. Так как имеют место утверждения теоремы 3, а функция F(x,y), в силу непрерывности F'_x и F'_y в точке (x_0,y_0) , дифференцируема в этой точке, то, если $x \in (a;b)$, $x_0 \in (a;b)$, y = f(x) и $y_0 = f(x_0)$, будет справедливо равенство

$$\frac{\Delta y}{\Delta x} = -\frac{F_x'(x_0, y_0) + \alpha}{F_y'(x_0, y_0) + \beta},$$
(1.5)

где α и β бесконечно малые функции при $(x,y) \rightarrow (x_0,y_0)$.

Действительно, в силу дифференцируемости F(x, y) в точке (x_0, y_0) :

$$F(x, y) - F(x_0, y_0) = F'_{x}(x_0, y_0) \Delta x + F'_{y}(x_0, y_0) \Delta y + \alpha \Delta x + \beta \Delta y$$

где $\Delta x=x-x_0$, $\Delta y=y-y_0$, а α и β бесконечно малые функции при $(x,y) \to (x_0,y_0)$. Положим теперь y=f(x) и $y_0=f(x_0)$, тогда F(x,y)=0 и $F(x_0,y_0)=0$ и, следовательно,

$$F'_{x}(x_0, y_0)\Delta x + F'_{y}(x_0, y_0)\Delta y + \alpha \Delta x + \beta \Delta y = 0$$

откуда и следует (1.5).

Отсюда из (1.5) в пределе при $x \to x_0$ получаем, что функция y = f(x) в точке x_0 имеет производную и справедлива формула (1.4). Теорема 4 доказана.

Следствие 1. Если выполнены все условия теоремы 4, и, кроме того, производные F'_x и F'_y непрерывны в окрестности точки (x_0, y_0) , то неявная функция y = f(x) при $x \in (a;b)$ имеет непрерывную производную.

Доказательство. В теореме 3 доказано, что y = f(x) при $x \in (a;b)$ непрерывна, а из теоремы 4 и формулы (1.4) следует, что у f(x) существует производная, выражающаяся формулой

$$f'(x) = -\frac{F_x'(x, f(x))}{F_y'(x, f(x))}, x \in (a;b),$$
(1.6)

а в силу теоремы о непрерывности композиции непрерывных функций f'(x) непрерывна на (a;b), и следствие 1 доказано.

Рассуждая по индукции из формулы (1.6), получаем справедливость следующего утверждения.

Следствие 2. Если выполнены все условия следствия 1, u, кроме того, F(x,y) k раз непрерывно дифференцируема в окрестности (x_0,y_0) , то неявная функция y=f(x) на (a;b) имеет непрерывные производные до k-го порядка включительно.

Неявные функции, определяемые одним уравнением со многими переменными

Сформулированные и доказанные выше утверждения легко обобщаются на неявные функции многих переменных y = f(x), где $x = (x_1, x_2, ..., x_n)$, которые определяются уравнением

$$F(x, y) = 0, x \in \mathbb{R}^n, y \in \mathbb{R}. \tag{1.7}$$

Сначала предположим, что F(x,y) задана на \overline{K} , где

$$K = \{(x, y) : x \in G, c < y < d\} = G \times (c; d),$$

где G – область в \mathbb{R}^n .

Теорема 1. Пусть F(x, y) задана и непрерывна в \overline{K} и при $x \in \overline{G}$:

$$F(x,c)F(x,d) \le 0.$$

Тогда существует по крайней мере одна функция y=f(x), неявно заданная уравнением (1.7) на \overline{G} .

Доказательство этой теоремы аналогично доказательству теоремы 1 предыдущего пункта. Остается справедливым и замечание.

Теорема 2. Пусть F(x,y) задана в \overline{K} и для любого $x^{(0)} = \left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) \in \overline{G}$ функция $h(y) = F(x^{(0)}, y)$ строго монотонна на [c;d].

Тогда уравнение (1.7) определяет на \bar{G} не более чем одну неявную функцию y=f(x).

Доказательство этой теоремы также аналогично доказательству теоремы 2 предыдущего пункта.

Теорема 3. Пусть F(x,y) в некоторой окрестности точки $(x^{(0)},y_0)$ непрерывна и имеет частную производную $F_y'(x,y)$, непрерывную в точке $(x^{(0)},y_0)$. Тогда, если $F(x^{(0)},y_0)=0$ и $F_y'(x^{(0)},y_0)\neq 0$, то у точек $x^{(0)}$ и y_0 существуют окрестности $\Delta\ni x^{(0)}$ и $(c;d)\ni y_0$ такие, что на множестве $\Delta\times(c;d)$ уравнение (1.7) определяет единственную неявную функцию $y=f(x), x\in\Delta$, и эта функция непрерывна на Δ .

И у этой теоремы доказательство аналогично доказательству теоремы 3 предыдущего пункта.

В теореме 4 и следствии 1 нужно производную по x заменить на частную производную по x_i , i = 1, 2, ..., n.

Теорема 4. Если к условиям теоремы 3 добавить существование в некоторой окрестности точки $(x^{(0)}, y_0)$ частной производной F'_{x_i} , непрерывной в этой точке, то неявная функция y = f(x) в точке $x^{(0)}$ имеет частную производную

$$\frac{\partial y}{\partial x_i} = -\frac{F'_{x_i}(x^{(0)}, y_0)}{F'_{y}(x^{(0)}, y_0)}.$$

Если, помимо этого, функция F(x,y) непрерывно дифференцируема в окрестности точки $(x^{(0)},y_0)$, то неявная функция y=f(x) также непрерывно дифференцируема и

$$\frac{\partial y}{\partial x_i} = -\frac{F'_{x_i}(x, y_0)}{F'_{y}(x, y_0)}, i = 1, 2, ..., n.$$
(1.8)

Из формулы (1.8) следует, что если функция F(x,y) k раз непрерывно дифференцируема, то функция y = f(x) тоже k раз непрерывно дифференцируема.

Теоремы этого пункта удобны для изучения обыкновенных дифференциальных уравнений, не разрешенных относительно старшей производной. Так, положив в (1.7) n=2, получаем уравнение [1]:

$$F(x_1, x_2, y) = 0, x \in \mathbb{R}^2, y \in \mathbb{R}$$
.

Обозначив для удобства $x_1 = \xi$, $x_2 = \eta$, $y = \eta'$, получаем обыкновенное дифференциальное уравнение

$$F(\xi, \eta, \eta') = 0, \tag{1.9}$$

не разрешенное относительно производной η' [2, 3]. Левая часть (1.9) задана на \overline{K} , где

$$K = \{ (\xi, \eta, \eta') : (\xi, \eta) \in G, c < \eta' < d \} = G \times (c; d).$$

Тогда из теоремы 1 следует, что если справедливо неравенство

$$F(\xi,\eta,c)F(\xi,\eta,d) \leq 0$$
,

то существует по крайней мере одна функция

$$\eta' = f(\xi, \eta), \tag{1.10}$$

обращающая уравнение (1.9) в тождество.

Из теоремы 2 следует, что если для любой точки $(\xi_0,\eta_0)\in \bar{G}$ функция $h(p)=F(\xi_0,\eta_0,p)$ строго монотонна на [c;d], то уравнение (1.9) определяет на \bar{G} не более чем одно уравнение (1.10).

Из теоремы 3 следует, что если левая часть (1.9) (т. е. $F(\xi,\eta,p)$ в некоторой окрестности точки (ξ_0,η_0,p_0) непрерывна и имеет частную производную $F_p'(\xi,\eta,p)$, непрерывную в этой точке) $F(\xi_0,\eta_0,p_0)=0$ и $F_p'(\xi_0,\eta_0,p_0)\neq 0$, то у точек $\left(\xi_0,\eta_0\right)$ и p_0 существуют окрестности $\Delta\ni\left(\xi_0,\eta_0\right)$ и $(c;d)\ni p_0$ такие, что на множестве $\Delta\times(c;d)$ уравнение (1.9) эквивалентно единственному уравнению (1.10), $(\xi,\eta)\in\Delta$ и правая часть (1.10) непрерывна на Δ .

Однако для существования и единственности решения уравнения (1.10) нужно чтобы правая часть (1.10) удовлетворяла, например, условию Липшица по η [3, 4]. Это достигается наложением дополнительных условий дифференцируемости по p функции $F(\xi, \eta, p)$ [1].

Можно рассматривать уравнение (1.7), положив $x_1=\xi, \quad x_2=\eta,$ $x_3=\eta',...,x_n=\eta^{(n-2)},\ y=\eta^{(n-1)}$. Уравнение (1.7) при этом принимает вид

$$F(\xi,\eta,\eta',...,\eta^{(n-2)},\eta^{(n-1)})=0$$
.

Аналогично предыдущим рассуждениям, применяя изложенные выше теоремы к этому уравнению, получаем некоторые условия разрешимости этого уравнения. При этом получаем уравнение, разрешенное относительно старшей производной:

$$\eta^{(n-1)} = f(\xi, \eta, \eta', ..., \eta^{(n-2)})$$

Неявные функции, определяемые системой уравнений

Сначала, в этом пункте рассмотрим неявные функции y = f(x) и z = g(x), определяемые системой уравнений

$$F(x, y, z) = 0, \Phi(x, y, z) = 0, x \in \mathbb{R}, y \in \mathbb{R}, z \in \mathbb{R}$$
 (1.11)

Теорема 1. Пусть левые части уравнений (1.11) в некоторой окрестности точки (x_0, y_0, z_0) непрерывны и имеют непрерывные частные производные по у и z. Тогда, если точка (x_0, y_0, z_0) удовлетворяет системе (1.11) и в этой точке определитель матрицы

отличен от нуля, то у точек x_0 и (y_0, z_0) существуют окрестности (a;b) и $(c_1;d_1)\times(c_2;d_2)$ такие, что для любой точки $x\in(a;b)$ система уравнений (1.1) относительно у и z имеет единственное решение: $y=f(x)\subset(c_1;d_1)$ и $z=g(x)\subset(c_2;d_2)$, причем функции f(x) и g(x) непрерывны на (a;b).

Доказательство. Через

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \tag{1.13}$$

обозначим матрицу, обратную матрице (1.12) в точке (x_0, y_0, z_0) , и вместо системы (1.11) рассмотрим равносильную ей систему уравнений

$$\begin{cases} \varphi(x, y, z) = a_{11}F(x, y, z) + a_{12}\Phi(x, y, z) = 0, \\ \psi(x, y, z) = a_{21}F(x, y, z) + a_{22}\Phi(x, y, z) = 0. \end{cases}$$
(1.14)

Для того чтобы ко второму уравнению (1.14) применить теорему 3 предыдущего пункта, рассмотрим выражение

$$\psi'_z(x, y, z) = a_{21}F'_z(x, y, z) + a_{22}\Phi'_z(x, y, z),$$

которое в силу (1.12) и (1.13) в точке (x_0,y_0,z_0) равно единице. Тогда, в силу этой теоремы, существуют окрестности $\Delta=(a_1;b_1)\times(a_2;b_2)$ и (c;d) такие, что на множестве $\Delta\times(c;d)$ второе уравнение (1.14) определяет единственную неявную функцию z=q(x,y), $(x,y)\in\Delta$, и эта функция непрерывна на Δ .

Далее, из первого уравнения (1.14), имеем

$$\varphi(x, y, q(x, y)) = a_{11}F(x, y, q(x, y)) + a_{12}\Phi(x, y, q(x, y)) = 0.$$
 (1.15)

Для того чтобы к уравнению (1.15) применить теорему 3 п. 1, рассмотрим выражение

$$\begin{split} &\frac{d}{dy}\varphi(x,y,q(x,y)) = a_{11}F_y'(x,y,q(x,y)) + a_{12}\Phi_y'(x,y,q(x,y)) + \\ &+ \big[a_{11}F_z'(x,y,q(x,y)) + a_{12}\Phi_z'(x,y,q(x,y))\big]q_y'(x,y), \end{split}$$

которое в силу (1.12) и (1.13) в точке (x_0,y_0) равно единице. Тогда, в силу этой теоремы, у точек x_0 и y_0 существуют окрестности (a;b) и $(c_1;d_1)$ такие, что на множестве $(a;b)\times(c_1;d_1)$ уравнение (1.15) определяет единственную неявную функцию $y=f(x), x\in(a;b)$, и эта функция y=f(x) непрерывна на (a;b).

Для завершения доказательства нужно в качестве g взять функцию g = q(x, f(x)) при $x \in (a; b)$ и из ее множества значений найти c_2 и d_2 .

Теорема 2. Пусть левые части системы (1.11) в некоторой окрестности точки (x_0, y_0, z_0) непрерывно дифференцируемы. Тогда, если точка (x_0, y_0, z_0) удовлетворяет системе (1.11) и определитель матрицы (1.12) в этой точке отличен от нуля, имеют место утверждения теоремы 1 и, кроме того, функции y = f(x), z = g(x) непрерывно дифференцируемы на (a;b).

Доказательство. Снова рассмотрим систему (1.14), равносильную (1.11). К ее второму уравнению можно применить рассуждения предыдущего пункта и получить существование и непрерывность частных производных функции z=q(x,y) на Δ . Далее, к уравнению (1.15) можно применить следствие 1 п. 1 и получить существование и непрерывность производной функции y=f(x) на (a;b). Отсюда следует, что функция z=g(x)=q(x,f(x)) также непрерывно дифференцируема на (a;b), и теорема доказана.

Сформулированные и доказанные в этом пункте утверждения легко обобщаются на случай многих переменных, если считать $x=\left(x_1,x_2,...,x_n\right),\;\;x^{(0)}=\left(x_1^{(0)},x_2^{(0)},...,x_n^{(0)}\right),\;$ а (y,z) и (y_0,z_0) заменить на $\left(y_1,y_2,...,y_m\right)$ и $\left(y_1^{(0)},y_2^{(0)},...,y_m^{(0)}\right).$ То есть мы рассмотрим неявные функции $y_i=f_i(x),\;j=1,2,...,m$, определяемые системой уравнений

$$F_i(x, y_1, ..., y_m) = 0, i = 1, ..., m; x \in \mathbb{R}^n.$$
 (1.16)

Теорема 3. Пусть функции $F_i(x,y)=0,\ i=1,2,...,m,$ $x=(x_1,x_2,...,x_n)\in\mathbb{R}^n,\ y=(y_1,y_2,...,y_m)\in\mathbb{R}^m,\ в$ некоторой окрестности точки $(x^{(0)},y^{(0)}),\ x^{(0)}=\left(x_1^{(0)},x_2^{(0)},...,x_n^{(0)}\right),\ y^{(0)}=\left(y_1^{(0)},y_2^{(0)},...,y_m^{(0)}\right)$ непрерывны и имеют непрерывные частные производные по $y_j,\ j=1,2,...,m$. Тогда если точка $(x^{(0)},y^{(0)})$ удовлетворяет системе (1.16) и в этой точке определитель матрицы $\left\|\frac{dF_i}{dv_i}\right\|$ отличен от нуля, то у точек $x^{(0)}$ и $y^{(0)}$

существуют окрестности Δ и Δ_m такие, что для любой точки $x \in \Delta$ система (1.16) относительно y имеет единственное решение $y = f(x) \in \Delta_m$, причем функции $y_i = f_i(x), j = 1, 2, ..., m$, непрерывны на Δ .

Теорема 4. Пусть функции $F_i(x, y)$ в некоторой окрестности точки $(x^{(0)}, y^{(0)})$ непрерывно дифференцируемы. Тогда если $F(x^{(0)}, y^{(0)}) = 0$ и $\det \left\| \frac{dF_i}{dy_i} \left(x^{(0)}, y^{(0)} \right) \right\| \neq 0$, то имеют место утверждения теоремы 3 и, кро-

ме того, функции $y_j=f_j(x), j=1,2,...,m$, непрерывно дифференцируемы на Δ .

Доказательства теорем 3 и 4 аналогичны доказательствам теорем 1 и 2 соответственно.

§ 2. Дифференцируемые отображения

Свойства якобианов отображений

Как известно [1, с. 315, 2, с. 15], задание отображения y = f(x) множества $X \subset \mathbb{R}^n$ в пространство \mathbb{R}^m равносильно заданию m числовых функций от n переменных:

$$y_i = f_i(x), x \in X, j = 1, 2, ..., m,$$
 (2.1)

где $x = (x_1, x_2, ..., x_n)$.

Если X — открытое множество, то отображение (2.1), называется непрерывно дифференцируемым на X , если f_j , j = 1, 2, ..., m , непрерывно дифференцируемы на X .

Пусть y=f(x) — непрерывно дифференцируемое отображение открытого множества $X \subset \mathbb{R}^n$ в открытое множество $Y \subset \mathbb{R}^m$, а z=g(y) — непрерывно дифференцируемое отображение открытого множества Y в пространство \mathbb{R}^l , $x=\left(x_1,x_2,...,x_n\right)$, $y=\left(y_1,y_2,...,y_m\right)$, $z=\left(z_1,z_2,...,z_l\right)$. Тогда имеет смысл композиция отображений f и g, и она также непрерывно дифференцируема.

По правилу дифференцирования сложных функций

$$\frac{\partial z_k}{\partial x_i} = \sum_{j=1}^m \frac{\partial z_k}{\partial y_j} \frac{\partial y_j}{\partial x_i}, k = 1, 2, ..., l, i = 1, 2, ..., n.$$
(2.2)

Назовем матрицу $\left\| \frac{\partial y_j}{\partial x_i} \right\|, i=1,2,...,n, \ j=1,2,...,m$, матрицей Якоби

отпображения (2.1), тогда из (2.2), в силу правила умножения матриц [7], следует, что при композиции отображений их матрицы Якоби перемножаются:

$$\left\| \frac{\partial z_k}{\partial x_i} \right\| = \left\| \frac{\partial z_k}{\partial y_j} \right\| \cdot \left\| \frac{\partial y_j}{\partial x_i} \right\|, i = 1, 2, ..., n, j = 1, 2, ..., m, k = 1, 2, ..., l.$$
 (2.3)

В случае, когда у матрицы Якоби отображения (2.1) m=n, ее определитель называется *якобианом* и обозначается $\frac{\partial(y_1,...,y_n)}{\partial(x_1,...,x_n)}$. Если

m=n=l, то, поскольку при умножении матриц их определители перемножаются, из (2.3) следует

$$\frac{\partial(z_1, \dots, z_n)}{\partial(x_1, \dots, x_n)} = \frac{\partial(z_1, \dots, z_n)}{\partial(y_1, \dots, y_n)} \cdot \frac{\partial(y_1, \dots, y_n)}{\partial(x_1, \dots, x_n)}.$$
(2.4)

Если отображение z = g(y) является обратным к отображению y = f(x), то композиция отображений $g(f(x)) = f^{-1}(f(x)) = x$ будет тождественным отображением: $z_1 = x_1$, $z_2 = x_2$,..., $z_n = x_n$, и, очевидно, ее якобиан равен 1. Поэтому равенство (2.4) в этом случае будет иметь вид

$$1 = \frac{\partial(x_1, \dots, x_n)}{\partial(y_1, \dots, y_n)} \cdot \frac{\partial(y_1, \dots, y_n)}{\partial(x_1, \dots, x_n)}.$$

Следовательно, если отображение y = f(x) непрерывно дифференцируемо, взаимно однозначно и имеет якобиан, отличный от нуля, то обратное отображение $x = f^{-1}(y)$ имеет также отличный от нуля якобиан и

$$\frac{\partial(x_1,...,x_n)}{\partial(y_1,...,y_n)} = 1 / \frac{\partial(y_1,...,y_n)}{\partial(x_1,...,x_n)}.$$

Последние равенства иллюстрируют аналогию якобианов отображений и производных функций одного переменного.

Основные свойства непрерывно дифференцируемых отображений

Приводимые ниже свойства описывают условия локальной обратимости отображения.

Теорема 1. Если непрерывно дифференцируемое отображение (2.1) при m = n открытого множества $X \subset \mathbb{R}^n$ в пространство \mathbb{R}^n имеет не равный нулю в X якобиан, то образ f(X) множества X при отображении f является открытым в \mathbb{R}^n множеством.

Доказательство. Пусть $y^{(0)} \in f(X)$. Докажем, что $y^{(0)}$ — внутренняя точка f(X).

Так как $y^{(0)} \in f(X)$, то существует $x^{(0)} \in X$ такая, что $y^{(0)} = f(x^{(0)})$, где $x^{(0)} = \left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right)$ и $y^{(0)} = \left(y_1^{(0)}, y_2^{(0)}, ..., y_n^{(0)}\right)$. Введем обозначение $F_i(x,y) = f_i(x) - y_i, \quad j = 1, ..., n, x \in X, \quad y \in \mathbb{R}^n.$

Рассмотрим систему уравнений

$$F_{i}(x, y) = 0, j = 1,...,n$$
 (2.5)

Ясно, что (2.1) при m=n и (2.5) равносильны. Но f_j , j=1,2,...,n, непрерывно дифференцируемы на X, следовательно, F_j , j=1,...,n, непрерывно дифференцируемы на множестве $X \times \mathbb{R}^n$, внутренней точкой которого является $\left(x^{(0)},y^{(0)}\right)$. Кроме того,

$$\begin{split} F_{j}(x^{(0)}, y^{(0)}) &= f_{j}(x^{(0)}) - y_{j}^{(0)} \stackrel{(2.1)}{=} 0, \\ \frac{\partial (F_{1}, ..., F_{n})}{\partial (x_{1}, ..., x_{n})} \bigg|_{(x^{(0)}, y^{(0)})} &= \frac{\partial (f_{1}, ..., f_{n})}{\partial (x_{1}, ..., x_{n})} \bigg|_{x^{(0)}} \neq 0. \end{split}$$

Поэтому, согласно теореме 3 предыдущего параграфа, систему уравнений (2.5) в некоторой окрестности точки $(x^{(0)}, y^{(0)})$ можно разрешить относительно $x = (x_1, x_2, ..., x_n)$.

Это значит, что в пространстве \mathbb{R}^n существуют окрестности точек $x^{(0)}$ и $y^{(0)}$, которые мы обозначим $U=U\left(x^{(0)}\right)$ и $V=V\left(x^{(0)}\right)$, и отображение x=x(y), отображающее окрестность V в окрестность U и удовлетворяющее уравнению y=f(x): $y\equiv f(x(y)), y\in V$.

Таким образом, отображение x = x(y) является обратным к отображению y = f(x) и определено в окрестности V. Значит в каждую точку этой окрестности при отображении f отображается какая-то точка $U \subset X$, и, следовательно, $f(X) \supset V$.

Итак, вместе с каждой точкой $y^{(0)} \in f(X)$ существует такая ее окрестность V, что $V \subset f(X)$, т. е. f(X) является открытым множеством.

Теорема 2. Пусть непрерывно дифференцируемое в окрестности точки $x^{(0)}$ отображение y=f(x) множества $X\subset \mathbb{R}^n$ в пространство \mathbb{R}^n имеет в точке $x^{(0)}$ не равный нулю якобиан. Тогда существуют такие окрестности U и V соответственно точек $x^{(0)}$ и $y^{(0)}=f\left(x^{(0)}\right)$, что отображение f непрерывно дифференцируемо и взаимно однозначно отображает окрестность U на окрестность V и обратное отображение f^{-1} непрерывно дифференцируемо на V.

Доказательство. Обозначим за G окрестность точки $x^{(0)}$, на которой отображение f непрерывно дифференцируемо. Повторяя рассуждения, аналогичные началу доказательства предыдущей теоремы 1, в силу теорем о неявных функциях найдем в пространстве \mathbb{R}^n такие окрестности U и V соответственно точек $x^{(0)}$ и $y^{(0)} = f\left(x^{(0)}\right)$, что в каждую точку V при отображении f отображается единственная точка из окрестности U.

Это значит, что на V определено однозначное отображение f^{-1} , обратное к отображению f, причем отображение f^{-1} , так же как и отображение f, непрерывно дифференцируемо. Произведение якобианов отображений f и f^{-1} соответственно в точках $x=f^{-1}(y)$ и $y\in V$ равно единице. Следовательно, эти якобианы не равны нулю. Тогда из теоремы 1, примененной к отображению f^{-1} множества V, следует, что это отображение переводит открытое множество V в также открытое множество $U_0=f^{-1}(V)\subset U$. Очевидно, $f\left(U_0\right)=V$ и U_0 отображается отображением f на V взаимно однозначно, т. к. отображение f^{-1} однозначно отображает V на U_0 .

Замена переменных

Замена переменных бывает в выражениях, содержащих как обыкновенные, так и частные производные. Если дифференциальное выражение содержит частные производные, то может быть замена только независимых переменных, но может быть замена как независимых переменных, так и функций.

1. Замена переменных в выражениях, содержащих обыкновенные производные. Если дано дифференциальное выражение

$$A = \Phi(x, y, y'_{x}, y''_{xx}, ...)$$

и нужно перейти к новым переменным, а именно: t — независимой переменной и u — функции от нее зависящей, и эти новые переменные связаны с прежними переменными x и y равенствами

$$x = f(t,u), y = g(t,u),$$
 (2.6)

то дифференцируя (2.6), мы будем иметь

$$y'_{x} = \frac{g'_{t} + g'_{u}u'_{t}}{f'_{t} + f'_{u}u'_{t}}.$$

Совершенно аналогично выражаются высшие производные y''_{xx} ,... В итоге получаем

$$A = \tilde{\Phi}(t, u, u'_t, u''_{tt}, \dots) .$$

2. Замена независимых переменных в выражениях, содержащих частные производные. Пусть в дифференциальном выражении

$$B = F(x, y, z, z'_{x}, z'_{y}, z''_{xx}, z''_{xy}, z''_{yy}, ...),$$

$$x = f(u, v), \quad y = g(u, v), \quad (2.7)$$

где u и v — новые независимые переменные, тогда последовательные частные производные z_x', z_y', \dots находятся из следующих уравнений:

$$z'_{u} = z'_{x} f'_{u} + z'_{y} g'_{u},$$

$$z'_{y} = z'_{y} f'_{y} + z'_{y} g'_{y},$$

ит. д.

3. Замена независимых переменных и функций в выражениях, содержащих частные производные. Рассмотрим более общий случай, когда для дифференциального выражения B мы имеем равенства

$$x = f(u, v, w), y = g(u, v, w), z = h(u, v, w),$$
 (2.8)

где u и v – новые независимые переменные, а w=w(u,v) – новая функция от этих переменных. Тогда для частных производных z_x', z_y', \dots мы получим уравнения

$$z'_{x}(f'_{u} + f'_{w}w'_{u}) + z'_{y}(g'_{u} + g'_{w}w'_{u}) = h'_{u} + h'_{w}w'_{u},$$

$$z'_{x}(f'_{v} + f'_{w}w'_{v}) + z'_{y}(g'_{v} + g'_{w}w'_{v}) = h'_{v} + h'_{w}w'_{v},$$

ит. д.

В некоторых случаях замены переменных удобно пользоваться полными дифференциалами. При этом дифференциалы выписываются в старых и новых переменных и приравниваются.

Пример. Отображение $\mathbb{R}^2 \to \mathbb{R}^2$ задано координатными функциями $x = r\cos\varphi$, $y = r\sin\varphi$. Выразить частные производные r и φ по переменным x и y, как функции r и φ .

Выпишем выражения для дифференциалов x и y:

$$dx = \cos\varphi dr - r\sin\varphi d\varphi, dy = \sin\varphi dr + r\cos\varphi d\varphi. \tag{2.9}$$

Умножим первое равенство (2.9) на $\cos \varphi$, второе на $\sin \varphi$ и сложим. Тогда

$$dr = \cos\varphi dx + \sin\varphi dy. \tag{2.10}$$

Ho поскольку $dr = \frac{\partial r}{\partial x} dx + \frac{\partial r}{\partial y} dy$, то $\frac{\partial r}{\partial x} = \cos \varphi$, а $\frac{\partial r}{\partial y} = \sin \varphi$. Умножим

первое равенство (2.9) на $\sin \varphi$, второе на $\cos \varphi$ и из второго вычтем первое. Тогда

$$d\varphi = \frac{\cos\varphi}{r}dy - \frac{\sin\varphi}{r}dx. \tag{2.11}$$

Ho поскольку $d\varphi = \frac{\partial \varphi}{\partial x} dx + \frac{\partial \varphi}{\partial y} dy$, то $\frac{\partial \varphi}{\partial x} = -\frac{\sin \varphi}{r}$, а $\frac{\partial \varphi}{\partial y} = \frac{\cos \varphi}{r}$. Итак,

$$\frac{\partial r}{\partial x} = \cos \varphi$$
, $\frac{\partial r}{\partial y} = \sin \varphi$, $\frac{\partial \varphi}{\partial x} = -\frac{\sin \varphi}{r}$ и $\frac{\partial \varphi}{\partial y} = \frac{\cos \varphi}{r}$.

Используя полученное, удобно выражать производные любой дифференцируемой функции u в разных координатах. Пользуясь тем, что

$$du = \frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy = \frac{\partial u}{\partial r}dr + \frac{\partial u}{\partial \varphi}d\varphi, \qquad (2.12)$$

используем (2.11) и (2.12):

$$\frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy = \frac{\partial u}{\partial r}\left(\cos\varphi dx + \sin\varphi dy\right) + \frac{\partial u}{\partial\varphi}\left(\frac{\cos\varphi}{r}dy - \frac{\sin\varphi}{r}dx\right).$$

Полагая в последнем равенстве dx = 1, dy = 0 и dx = 0, dy = 1, получим

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial r} \cos \varphi - \frac{\partial u}{\partial \varphi} \frac{\sin \varphi}{r} , \quad \frac{\partial u}{\partial y} = \frac{\partial u}{\partial r} \sin \varphi + \frac{\partial u}{\partial \varphi} \frac{\cos \varphi}{r} .$$

Используя последние формулы, удобно находить аналогичные выражения для вторых производных [8]. Однако эти выражения удобно получать, продолжая приведенные рассуждения. Приравнивая выражения для второго дифференциала в декартовых и полярных координатах и считая декартовы переменные независимыми, будем иметь

$$d^{2}u = \frac{\partial^{2}u}{\partial x^{2}}dx^{2} + 2\frac{\partial^{2}u}{\partial x\partial y}dxdy + \frac{\partial^{2}u}{\partial y^{2}}dy^{2} = \frac{\partial^{2}u}{\partial r^{2}}dr^{2} +$$

$$+2\frac{\partial^{2}u}{\partial r\partial \varphi}drd\varphi + \frac{\partial^{2}u}{\partial \varphi^{2}}d\varphi^{2} + \frac{\partial u}{\partial r}d^{2}r + \frac{\partial u}{\partial \varphi}d^{2}\varphi.$$
(2.13)

Используем теперь (2.10) и (2.11):

$$d^{2}r = d(\cos\varphi dx + \sin\varphi dy) = -\sin\varphi d\varphi dx + \cos\varphi d\varphi dy =$$

$$= d\varphi(\cos\varphi dy - \sin\varphi dx) = \left(\frac{\cos\varphi}{r} dy - \frac{\sin\varphi}{r} dx\right) (\cos\varphi dy - \sin\varphi dx) =$$

$$= \frac{\cos^{2}\varphi}{r} dy^{2} - 2\frac{\sin\varphi\cos\varphi}{r} dx dy + \frac{\sin^{2}\varphi}{r} dx^{2}, \qquad (2.14)$$

$$d^{2}\varphi = d\left(\frac{\cos\varphi}{r} dy - \frac{\sin\varphi}{r} dx\right) = \left[-\frac{\sin\varphi}{r} d\varphi - \frac{\cos\varphi}{r^{2}} dr\right] dy -$$

$$-\left[\frac{\cos\varphi}{r} d\varphi - \frac{\sin\varphi}{r^{2}} dr\right] dx = -\frac{\sin\varphi}{r} \left(\frac{\cos\varphi}{r} dy - \frac{\sin\varphi}{r} dx\right) dy -$$

$$-\frac{\cos\varphi}{r^{2}} (\cos\varphi dx + \sin\varphi dy) dy - \frac{\cos\varphi}{r} \left(\frac{\cos\varphi}{r} dy - \frac{\sin\varphi}{r} dx\right) dx +$$

$$+\frac{\sin\varphi}{r^{2}} (\cos\varphi dx + \sin\varphi dy) dx = -2\frac{\sin\varphi\cos\varphi}{r^{2}} dy^{2} +$$

$$+2\frac{\sin^{2}\varphi}{r^{2}} dx dy + 2\frac{\sin\varphi\cos\varphi}{r^{2}} dx^{2} - 2\frac{\cos^{2}\varphi}{r^{2}} dx dy. \qquad (2.15)$$

Подставим теперь (2.14) и (2.15) в (2.13):

$$\frac{\partial^{2} u}{\partial x^{2}} dx^{2} + 2 \frac{\partial^{2} u}{\partial x \partial y} dx dy + \frac{\partial^{2} u}{\partial y^{2}} dy^{2} = \frac{\partial^{2} u}{\partial r^{2}} (\cos \varphi dx + \sin \varphi dy)^{2} +
+ 2 \frac{\partial^{2} u}{\partial r \partial \varphi} (\cos \varphi dx + \sin \varphi dy) \left(\frac{\cos \varphi}{r} dy - \frac{\sin \varphi}{r} dx \right) +
+ \frac{\partial^{2} u}{\partial \varphi^{2}} \left(\frac{\cos \varphi}{r} dy - \frac{\sin \varphi}{r} dx \right)^{2} +
+ \frac{\partial u}{\partial r} \left(\frac{\cos^{2} \varphi}{r} dy^{2} - 2 \frac{\sin \varphi \cos \varphi}{r} dx dy + \frac{\sin^{2} \varphi}{r} dx^{2} \right) +
+ 2 \frac{\partial u}{\partial \varphi} \left(-\frac{\sin \varphi \cos \varphi}{r^{2}} dy^{2} + \frac{\sin^{2} \varphi}{r} dx dy +
+ \frac{\sin \varphi \cos \varphi}{r^{2}} dx^{2} - \frac{\cos^{2} \varphi}{r} dx dy \right).$$
(2.16)

Полагая в равенстве (2.16) dx = 1, dy = 0, получаем

$$\frac{\partial^{2} u^{2}}{\partial x^{2}} = \frac{\partial^{2} u}{\partial r^{2}} \cos^{2} \varphi - 2 \frac{\partial^{2} u}{\partial r \partial \varphi} \frac{\sin \varphi \cos \varphi}{r} + \frac{\partial^{2} u}{\partial \varphi^{2}} \frac{\sin^{2} \varphi}{r^{2}} + \frac{\partial u}{\partial r} \frac{\sin^{2} \varphi}{r} + 2 \frac{\partial u}{\partial \varphi} \frac{\sin \varphi \cos \varphi}{r^{2}}.$$

Если же мы положим в (2.16) dx = 0, dy = 1, то получим

$$\frac{\partial^2 u^2}{\partial y^2} = \frac{\partial^2 u}{\partial r^2} \sin^2 \varphi + 2 \frac{\partial^2 u}{\partial r \partial \varphi} \frac{\sin \varphi \cos \varphi}{r} + \frac{\partial^2 u}{\partial \varphi^2} \frac{\cos^2 \varphi}{r^2} + \frac{\partial u}{\partial r} \frac{\cos^2 \varphi}{r} - 2 \frac{\partial u}{\partial \varphi} \frac{\sin \varphi \cos \varphi}{r^2}.$$

Сложив два последние равенства, получаем известное выражение для оператора Лапласа в двумерном случае:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \varphi^2} + \frac{1}{r} \frac{\partial u}{\partial r}.$$

§ 3. Экстремумы функций многих переменных

Необходимые условия экстремума

Пусть функция f(x) определена на множестве $X \subset \mathbb{R}^n$.

Определение 1. Точка $x^{(0)} \in X$ называется точкой локального максимума (минимума) функции f, если существует такая окрестность $U\left(x^{(0)}\right)$ точки $x^{(0)}$, что для всех $x \in X \cap U\left(x^{(0)}\right)$ выполняется неравенство $f(x) \leq f(x^{(0)})$ ($f(x) \geq f(x^{(0)})$).

Если, кроме того, при $x \neq x^{(0)}$ имеет место неравенство $f(x) \neq f(x^{(0)})$, то $x^{(0)}$ называется точкой строгого локального максимума (минимума).

Точки строгого или обычного локального максимума или минимума называются точками строгого или обычного локального экстремума.

Теорема 1. Если f определена в окрестности точки экстремума

$$x^{(0)}$$
 и существует $\frac{\partial f}{\partial x_i}(x^{(0)})$, то

$$\frac{\partial f}{\partial x_i}(x^{(0)}) = 0.$$

Доказательство. Точка $x^{(0)} = \left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right)$ является точкой экстремума функции $f\left(x_1^{(0)}, x_2^{(0)}, ..., x_{i-1}^{(0)}, x_i, x_{i+1}^{(0)}, ..., x_n^{(0)}\right)$ одного переменного x_i , а $x_i^{(0)}$ будет внутренней точкой множества, на котором эта функция определена. Согласно теореме Ферма [1, 5]:

$$\frac{\partial f}{\partial x_i}(x_1^{(0)},...,x_i^{(0)},...,x_n^{(0)}) = \frac{df}{dx_i}(x_1^{(0)},...,x_i^{(0)},...,x_n^{(0)})\Big|_{x_i=x_i^{(0)}} = 0.$$

Определение 2. Точка $x^{(0)}$, в которой все частные производные функции f существуют и равны нулю, называется *стационарной точкой* f.

Из теоремы 1 следует, что если функция f в точке $x^{(0)}$, которая является внутренней для множества X, имеет экстремум и все частные производные, то $x^{(0)}$ стационарная.

Уже в теории экстремумов функций одного переменного мы видели, что не всякая стационарная точка является точкой экстремума.

Достаточные условия экстремума

Квадратичная форма

$$A(x) = \sum_{i,j=1}^{n} a_{ij} x_i x_j a_{ij} = a_{ji}, i, j = 1, 2, ..., n,$$

называется *положительно* (*отрицательно*) *определенной*, если для любого $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$, $x \neq 0$, выполняется неравенство A(x) > 0 (соответственно A(x) < 0).

Положительно и отрицательно определенные квадратичные формы называются *знакоопределенными*.

Отметим, что для любой A(x) и любого числа t имеет место равенство

$$A(tx) = t^2 A(x). (3.1)$$

Отсюда следует, что на каждой прямой $x = tx^{(0)}$, $x \neq 0$, $t \in (-\infty, +\infty)$, квадратичная форма A(x) сохраняет один и тот же знак при $t \neq 0$, ибо

$$A(x) = A(tx^{(0)}) = t^2 A(x^{(0)}),$$

и потому знак A(x) в любой указанной точке x такой же, как и в точке $x^{(0)}$.

Лемма 1. Если квадратичная форма A(x) знакоопределена, то

$$\inf_{S^{n-1}} \left| A(x) \right| > 0 \,, \tag{3.2}$$

где $S^{n-1} = \left\{ x : \left| x \right|^2 = x_1^2 + ... + x_n^2 \right\} -$ единичная сфера.

Доказательство. Так как S^{n-1} — компакт, а A(x) — многочлен, то |A(x)| — функция непрерывная на компакте. Согласно теореме Вейерштрасса |A(x)| достигает своего наименьшего значения на S^{n-1} в некоторой точке $x^{(0)} \in S^{n-1}$:

$$|A(x^{(0)})| = \inf_{S^{n-1}} |A(x)|.$$

Итак $|x^{(0)}|=1$, а, следовательно, $x^{(0)} \neq 0$, и A(x) — знакоопределенная квадратичная форма. Следовательно |A(x)|>0, т. е. неравенство (3.2) доказано.

Лемма 2. Если A(x) — квадратичная форма и $x^{(0)} \neq 0$, то для всякой точки x прямой $x = tx^{(0)}$, $t \in (-\infty, +\infty)$, при $t \neq 0$ справедливо равенство

$$A\left(\frac{x}{|x|}\right) = A\left(\frac{x^{(0)}}{|x^{(0)}|}\right). \tag{3.3}$$

Таким образом, значение A(x/|x|) не зависит от выбора точки на рассматриваемой прямой.

Доказательство. Действительно,

$$\frac{x}{|x|} = \frac{tx^{(0)}}{|tx^{(0)}|} = \frac{t}{|t|} \frac{x^{(0)}}{|x^{(0)}|} = \pm \frac{x^{(0)}}{|x^{(0)}|},$$

поэтому

$$A\left(\frac{x}{|x|}\right) = A\left(\pm \frac{x^{(0)}}{|x^{(0)}|}\right)^{(3.1)} = A\left(\frac{x^{(0)}}{|x^{(0)}|}\right).$$

Лемма доказана.

Теорема 2 (достаточные условия экстремума). Пусть f(x), $x \in \mathbb{R}^n$, дважды непрерывно дифференцируема в окрестности своей стационарной точки $x^{(0)}$. Тогда если

$$d^{2}f(x^{(0)}) = \sum_{i,j=1}^{n} \frac{\partial^{2}f(x^{(0)})}{\partial x_{i}\partial x_{j}} dx_{i}dx_{j}$$

является положительно (отрицательно) определенной квадратичной формой, то $x^{(0)}$ есть точка строгого минимума (максимума). Если $d^2f(x^{(0)})$ принимает как положительные, так и отрицательные значения, то в $x^{(0)}$ экстремума нет.

Доказательство. Согласно формуле Тейлора для приращения функции

$$\Delta f = f(x^{(0)} + \Delta x) - f(x^{(0)}), \Delta x = (\Delta x_1, ..., \Delta x_n)$$

и определению 2 будем иметь

$$\Delta f = \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^{2} f(x^{(0)})}{\partial x_{i} \partial x_{j}} \Delta x_{i} \Delta x_{j} + \varepsilon(\Delta x) |\Delta x|^{2}, \qquad (3.4)$$

где $\left|\Delta x\right| = \sqrt{\Delta x_1^2 + ... + \Delta x_n^2}$ и

$$\lim_{|\Delta x| \to 0} \mathcal{E}(\Delta x) = 0. \tag{3.5}$$

Положим

$$A(\Delta x) = \sum_{i,j=1}^{n} \frac{\partial^{2} f(x^{(0)})}{\partial x_{i} \partial x_{j}} \Delta x_{i} \Delta x_{j}.$$

Очевидно $A(\Delta x)$ — квадратичная форма переменных $\Delta x_1, \, \Delta x_2, ..., \, \Delta x_n$. Из (3.4) при $\Delta x \neq 0$ имеем

$$\Delta f = \frac{\left|\Delta x\right|^2}{2} \left(\sum_{i,j=1}^n \frac{\partial^2 f(x^{(0)})}{\partial x_i \partial x_j} \frac{\Delta x_i}{\left|\Delta x\right|} \frac{\Delta x_j}{\left|\Delta x\right|} + 2\varepsilon(\Delta x) \right) =$$

$$= \frac{\left|\Delta x\right|^2}{2} \left(A \left(\frac{\Delta x}{\left|\Delta x\right|} \right) + 2\varepsilon(\Delta x) \right). \tag{3.6}$$

Здесь $\left| \frac{\Delta x}{|\Delta x|} \right| = 1$ и, следовательно, точка $\frac{\Delta x}{|\Delta x|}$ лежит на единичной сфере S^{n-1} .

Рассмотрим два случая.

1. $A(\Delta x)$ – знакоопределенная квадратичная форма, то по лемме 1:

$$\mu = \inf_{S^{n-1}} |A(x)| > 0.$$
 (3.7)

Поскольку $\frac{\Delta x}{|\Delta x|} \in S^{n-1}$, то из (3.7) для всех $\Delta x \neq 0$ выполняется неравенство

$$\left| A \left(\frac{\Delta x}{|\Delta x|} \right) \right| \ge \mu \,, \tag{3.8}$$

а в силу (3.5) и (3.7) существует $\delta > 0$ такая, что для всех Δx , таких что $|\Delta x| < \delta$, имеет место неравенство

$$\left|2\varepsilon(\Delta x)\right| < \mu \ . \tag{3.9}$$

Из (3.6), (3.8) и (3.9) следует, что для всех Δx , $|\Delta x| < \delta$, $\Delta x \neq 0$, знак приращения Δf совпадает со знаком квадратичной формы $A(\Delta x/|\Delta x|)$.

Следовательно, если $A(\Delta x)$ — положительно определена, то $\Delta f > 0$, т. е. $x^{(0)}$ — точка строгого минимума. Если же $A(\Delta x)$ — отрицательно определена, то $\Delta f < 0$, т. е. $x^{(0)}$ — точка строгого максимума.

2. Если $A(\Delta x)$ принимает как положительные, так и отрицательные значения, то существуют $\Delta x'$ и $\Delta x''$ такие, что $A(\Delta x') > 0$ и $A(\Delta x'') < 0$ (отсюда следует, что $\Delta x' \neq 0$ и $\Delta x'' \neq 0$, ибо A(0) = 0). Тогда для любого $t \neq 0$ согласно (3.1) будем иметь $A(t\Delta x') > 0$ и $A(t\Delta x'') < 0$, в частности $A(\Delta x'/|\Delta x'|) > 0$ и $A(\Delta x''/|\Delta x''|) < 0$.

В силу (3.5) существует $\delta > 0$ такое, что для всех Δx , таких что $|\Delta x| < \delta$, справедливы неравенства

$$|2\varepsilon(\Delta x)| < A(\Delta x'/|\Delta x'|), |2\varepsilon(\Delta x)| < A(\Delta x''/|\Delta x''|).$$
 (3.10)

Поэтому, для любой точки Δx вида $\Delta x = t \Delta x'$, $\left| \Delta x \right| < \delta$, получим неравенство

$$\Delta f \stackrel{(3.6)}{=} \frac{\left|\Delta x\right|^2}{2} \left(A \left(\frac{\Delta x}{\left|\Delta x\right|} \right) + 2\varepsilon(\Delta x) \right) \stackrel{(3.3)}{=}$$

$$\stackrel{(3.3)}{=} \frac{\left|\Delta x\right|^2}{2} \left(A \left(\frac{\Delta x'}{\left|\Delta x'\right|} \right) + 2\varepsilon(\Delta x) \right) \stackrel{(3.10)}{>} 0,$$

а для точки Δx вида $\Delta x = t\Delta x''$, $|\Delta x| < \delta$, неравенство

$$\Delta f \stackrel{(3.5)}{=} \frac{\left|\Delta x\right|^2}{2} \left(A \left(\frac{\Delta x}{\left|\Delta x\right|} \right) + 2\varepsilon(\Delta x) \right) \stackrel{(3.3)}{=}$$

$$\stackrel{(3.3)}{=} \frac{\left|\Delta x\right|^2}{2} \left(A \left(\frac{\Delta x''}{\left|\Delta x''\right|} \right) + 2\varepsilon(\Delta x) \right) \stackrel{(3.10)}{<} 0.$$

Поскольку среди указанных Δx имеются сколь угодно малые по длине $|\Delta x|$, то существуют сколь угодно близкие к $x^{(0)}$ точки $x=x^{(0)}+\Delta x$, для которых как $\Delta f>0$, так и $\Delta f<0$. Это и означает, что точка $x^{(0)}$ не является точкой экстремума.

Замечание. Существует критерий Сильвестра: для того чтобы квадратичная форма

$$A(x) = \sum_{i, i=1}^{n} a_{ij} x_i x_j, a_{ij} = a_{ji}, i, j = 1, 2, ..., n$$

была положительно определенной, необходимо и достаточно, чтобы

$$a_{11} > 0, \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0, \dots, \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{21} & \dots & a_{nn} \end{vmatrix} > 0.$$

Для того чтобы A(x) была отрицательно определена, необходимо и достаточно, чтобы форма

$$-A(x) = \sum_{i,j=1}^{n} (-a_{ij}) x_i x_j, a_{ij} = a_{ji}, i, j = 1, 2, ..., n$$

была положительно определенной.

Исследования на экстремум в случае двух переменных

Пусть функция f(x, y) дважды непрерывно дифференцируема в окрестности точки (x_0, y_0) и эта точка является стационарной:

$$\frac{\partial f}{\partial x}(x_0, y_0) = \frac{\partial f}{\partial y}(x_0, y_0) = 0.$$

Обозначим через f''_{xx} , f''_{xy} и f''_{yy} соответствующие вторые частные производные функции f в точке (x_0,y_0) . Если

$$\begin{vmatrix} f_{xx}'' & f_{xy}'' \\ f_{xy}'' & f_{yy}'' \end{vmatrix} > 0, f_{xx}'' \neq 0,$$
 (3.11)

то согласно критерию Сильвестра при $f_{xx}''>0$ квадратичная форма

$$A(dx, dy) = f_{xx}'' dx^2 + 2f_{xy}'' dx dy + f_{yy}'' dy^2$$
(3.12)

положительно, а при $f_{xx}'' < 0$ отрицательно, определенная. Поэтому, в силу достаточного условия экстремума, если

$$f''_{xx} > 0, \begin{vmatrix} f''_{xx} & f''_{xy} \\ f''_{xy} & f''_{yy} \end{vmatrix} > 0,$$
 (3.13)

то точка (x_0, y_0) является точкой строгого локального минимума, а если

$$f_{xx}^{0} < 0, \begin{vmatrix} f_{xx}^{0} & f_{xy}^{0} \\ f_{xy}^{0} & f_{yy}^{0} \end{vmatrix} > 0,$$
 (3.14)

то (x_0, y_0) является точкой строгого локального максимума. Если же

$$\begin{vmatrix} f_{xx}'' & f_{xy}'' \\ f_{xy}'' & f_{yy}'' \end{vmatrix} < 0, \tag{3.15}$$

то квадратичная форма не является знакоопределенной. Покажем, что в этом случае она принимает значения разных знаков в любой окрестности стационарной точки.

Действительно, если $f''_{rr} \neq 0$, то

$$A(dx, dy) \stackrel{(3.12)}{=} \frac{1}{f_{xx}''} \Big[(f_{xx}'')^2 dx^2 + 2f_{xx}'' f_{xy}'' dx dy + (f_{xy}'')^2 dy^2 + f_{xx}'' f_{yy}'' dy^2 - (f_{xy}'')^2 dy^2 \Big] = \frac{1}{f_{xx}''} \Big[(f_{xx}'' dx + f_{xy}'' dy)^2 + (f_{xx}'' f_{yy}'' - (f_{xy}'')^2) dy^2 \Big].$$
(3.16)

Из (3.16) следует, что если $dx^2 + dy^2 > 0$, то при выполнении условий (3.11) имеем

$$\operatorname{sgn} A(dx, dy) = \operatorname{sgn} f_{xx}''$$

т. е. квадратичная форма (3.12) положительно определена из (3.13) при $f_{xx}''>0$ и отрицательно определена из (3.14) при $f_{xx}''<0$. Здесь

$$\operatorname{sgn} x = \begin{cases} 1, \ \operatorname{если} x > 0; \\ 0, \ \operatorname{если} x = 0; \\ -1, \ \operatorname{если} x < 0. \end{cases}$$

Если же выполняется условие (3.15), то при $dx \neq 0$, dy = 0 имеем

$$\operatorname{sgn} A(dx,0) = \operatorname{sgn} f_{xx}''$$

а при $dx = f_{xy}''$, $dy = -f_{xx}''$ получим

$$\operatorname{sgn} A(f_{xy}^{0}, -f_{xx}^{0}) = -\operatorname{sgn} f_{xx}^{0}$$
.

Это означает, что квадратичная форма (3.12) принимает значения разных знаков, и поэтому точка (x_0, y_0) экстремумом не является.

Аналогично проводится исследование знакоопределенности квадратичной формы (3.12) в случае, когда $f_{xx}''=0$, но $f_{yy}''\neq 0$ при условии, что

$$\begin{vmatrix} f_{xx}'' & f_{xy}'' \\ f_{xy}'' & f_{yy}'' \end{vmatrix} \neq 0.$$
 (3.17)

Если же условие (3.17) выполнено, а

$$f_{xx}'' = f_{yy}'' = 0, (3.18)$$

то квадратичная форма (3.12) имеет вид

$$A(dx, dy) = 2f_{xy}'' dxdy,$$

причем в силу условий (3.17) и (3.18) здесь $f''_{xy} \neq 0$. Поэтому

$$A(-dx, dy) = -A(dx, dy) ,$$

откуда сразу видно, что квадратичная форма в этом случае принимает значения разных знаков.

В случае, когда

$$\begin{vmatrix} f_{xx}'' & f_{xy}'' \\ f_{xy}'' & f_{yy}'' \end{vmatrix} = 0,$$
 (3.19)

точка (x_0,y_0) может как быть, так и не быть точкой экстремума. Например, для функций $f_1(x,y)=x^3+y^3$ и $f_2(x,y)=x^4+y^4$ точка (0,0) является стационарной точкой, в которой выполняется условие (3.19), причем $f_1(0,0)=f_2(0,0)=0$. Функция f_1 имеет значения разных знаков в любой окрестности точки (0,0), и потому эта точка не является точкой экстремума функции f_1 , а f_2 всюду, кроме точки (0,0), положительна, и, следовательно, точка (0,0) является для нее точкой строгого минимума.

§ 4. Условный экстремум

Определение условного экстремума

Пусть на открытом множестве $G \subset \mathbb{R}^n$, где n натуральное, заданы функции $f, \varphi_1, \varphi_2, ..., \varphi_m, 1 \le m < n$. Здесь m также натуральное. Положим

$$E = \{x : x \in G, \varphi_j(x) = 0, \}, 1 \le j \le m.$$

Уравнения

$$\varphi_{j}(x) = 0, x = (x_{1}, x_{2}, ..., x_{n}), 1 \le j \le m$$
 (4.1)

называются уравнениями связи, или связями.

Точка $x^{(0)} = \left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) \in E \cap G$, то есть $\varphi_j(x^{(0)}) = 0$, $1 \leq j \leq m$, называется *точкой условного максимума* функции f(x) при наличии связей (4.1), если существует $U\left(x^{(0)}\right)$ - некоторая окрестность точки $x^{(0)}$, в которой

$$\forall x \in E \cap G \cap U\left(x^{(0)}\right) f(x) \le f\left(x^{(0)}\right). \tag{4.2}$$

Точно так же, если $x^{(0)}\in E\cap G$ — точка условного минимума f(x) , то в $U\left(x^{(0)}\right)$ — некоторой окрестности точки $x^{(0)}$, выполняется условие

$$\forall x \in E \cap G \cap U\left(x^{(0)}\right) f(x) \ge f(x^{(0)}). \tag{4.3}$$

Еще раз отметим, что (4.2) и (4.3) выполнены для точек, удовлетворяющих (4.1).

Метод исключения переменных

Рассматривается случай m < n, в предположении, что функции $f, \varphi_1, \varphi_2, ..., \varphi_m$ дважды дифференцируемы в точке $x^{(0)}$.

Предположим, что из системы (4.1) удается выразить какие-либо m переменных из $x_1, x_2, ..., x_n$, как определенные функции остальных n-m переменных. Не ограничивая общности, считаем, что из уравнений связи (4.1) определяются последние m переменных: $x_{n-m+1}, x_{n-m+2}, ..., x_n$, как функции первых n-m переменных $x_1, x_2, ..., x_{n-m}$.

На этом основании считаем, что уравнения (4.1) в окрестности точки $x^{(0)}$ записываются в виде

$$x_{n-m+1} = \psi_1(x_1, x_2, ..., x_{n-m}), x_{n-m+2} = \psi_2(x_1, x_2, ..., x_{n-m}), ...,$$

$$x_n = \psi_m(x_1, x_2, ..., x_{n-m}),$$
(4.4)

и при этом

$$x_{n-m+1}^{(0)} = \psi_1 \left(x_1^{(0)}, x_2^{(0)}, \dots, x_{n-m}^{(0)} \right), x_{n-m+2}^{(0)} = \psi_2 \left(x_1^{(0)}, x_2^{(0)}, \dots, x_{n-m}^{(0)} \right), \dots,$$

$$x_n^{(0)} = \psi_m \left(x_1^{(0)}, x_2^{(0)}, \dots, x_{n-m}^{(0)} \right). \tag{4.5}$$

Подставляя вместо аргументов $x_{n-m+1}, x_{n-m+2}, ..., x_n$ выражения (4.4) в f(x), получим

$$f(x) = f(x_1, x_2, ..., x_{n-m}, \psi_1(x_1, x_2, ..., x_{n-m}), \psi_2(x_1, x_2, ..., x_{n-m}), ...,$$

$$\psi_m(x_1, x_2, ..., x_{n-m})) = g(x_1, x_2, ..., x_{n-m}).$$
(4.6)

При этом в некоторой окрестности точки $\left(x_1^{(0)}, x_2^{(0)}, ..., x_{n-m}^{(0)}\right)$ переменные $x_1, x_2, ..., x_{n-m}$ могут принимать произвольные значения.

Исследовав функцию $g(x_1,x_2,...,x_{n-m})$ на экстремум в точке $\left(x_1^{(0)},x_2^{(0)},...,x_{n-m}^{(0)}\right)$ изложенными ранее методами, можно установить наличие или отсутствие условного экстремума f(x) в точке $x^{(0)}$. Для отыскания точек возможного экстремума нужно решить систему уравнений

$$\frac{\partial g}{\partial x_1} = 0, \frac{\partial g}{\partial x_2} = 0, \dots \frac{\partial g}{\partial x_{n-m}} = 0.$$
 (4.7)

Левые части (4.7) содержат производные от функций $\psi_1, \psi_2, ..., \psi_m$. Однако они могут быть вычислены через производные от функций $\varphi_1, \varphi_2, ..., \varphi_m$. Для этого нужно обратиться к теореме о производных от неявных функций для системы уравнений. Эти производные могут быть вычислены через производные определяющих их функций.

Таким образом, этот метод позволяет проверить в точке $x^{(0)}$ необходимые условия экстремума функции f(x) при наличии связей (4.1), зная лишь первые производные функции f(x) и функций $\varphi_1(x), \varphi_2(x), ..., \varphi_m(x)$ в точке $x^{(0)}$.

Аналогично и вторые производные функции $g(x_1, x_2, ..., x_{n-m})$ вычисляются через первые и вторые производные функций f(x), $\varphi_1(x), \varphi_2(x), ..., \varphi_m(x)$.

Отсюда и достаточные условия экстремума функции f(x) при наличии связей (4.1) проверяются в точке $x^{(0)}$, если известны первые и вторые производные функций f(x), $\varphi_1(x)$, $\varphi_2(x)$,..., $\varphi_m(x)$ в этой точке.

Необходимые условия условного экстремума

Предположим, что дважды непрерывно дифференцируемая кривая $x = \psi(t) \in C_2$ проходит при t = 0 через точку $x^{(0)}$ и точки этой кривой удовлетворяют уравнениям связи (4.1). Значит точки этой кривой принадлежат множеству E, на котором рассматривается функция f(x) в задаче об условном экстремуме.

Тогда

$$\varphi_1(\psi(t)) = 0, \varphi_2((\psi(t)) = 0, ..., \varphi_m((\psi(t))) = 0.$$
 (4.8)

Дифференцируя (4.8) по t при t=0 и учитывая, что $\psi(0)=x^{(0)}$, имеем

$$\nabla \varphi_{1}(x^{(0)}) \cdot \psi'(0) = 0, \ \nabla \varphi_{2}(x^{(0)}) \cdot \psi'(0) = 0, ...,$$

$$\nabla \varphi_{m}(x^{(0)}) \cdot \psi'(0) = 0. \tag{4.9}$$

Из (4.9) следует, что касательный вектор $\psi'(0)$ к любой кривой $x = \psi(t)$, лежащей в E, ортогонален градиенту каждой из функций $\varphi_1(x), \varphi_2(x), ..., \varphi_m(x)$.

С другой стороны, рассмотрим функцию f(x) в точках кривой $x = \psi(t)$. Мы будем иметь функцию $g(t) = f(\psi(t))$. Если в точке $x^{(0)}$ функция f(x) имеет условный экстремум, то функция $g(t) = f(\psi(t))$ также имеет в точке t = 0 экстремум. Поэтому, необходимым условием экстремума функции f(x) в точке $x^{(0)}$ при наличии связей (4.1) является требование

$$g'(0) = \nabla f(x^{(0)}) \cdot \psi'(0) = 0.$$
 (4.10)

Требование (4.10) должно быть выполнено для всех кривых $x = \psi(t) \in C_2$, проходящих через точку $x^{(0)}$ и лежащих в E. Таким образом, условие (4.10) должно быть выполнено для любого вектора $\tau = \psi'(0)$, удовлетворяющего системе условий (4.9).

Значит градиент $\nabla f\left(x^{(0)}\right)$ функции f(x) в экстремальной точке $x^{(0)}$ должен быть ортогонален касательному вектору $\tau=\psi'(0)$ любой кривой, проходящей через $x^{(0)}$ и лежащей в E. Это наиболее общая формулировка необходимых условий условного экстремума. Здесь предполагается лишь дифференцируемость функций f(x) и $\varphi_1(x), \varphi_2(x), ..., \varphi_m(x)$ в точке $x^{(0)}$. В частности, здесь не предполагается, что

$$rang \begin{pmatrix} \frac{\partial \varphi_{1}}{\partial x_{1}} \left(x^{(0)} \right) & \frac{\partial \varphi_{1}}{\partial x_{2}} \left(x^{(0)} \right) & \dots & \frac{\partial \varphi_{1}}{\partial x_{n}} \left(x^{(0)} \right) \\ \frac{\partial \varphi_{2}}{\partial x_{1}} \left(x^{(0)} \right) & \frac{\partial \varphi_{2}}{\partial x_{2}} \left(x^{(0)} \right) & \dots & \frac{\partial \varphi_{2}}{\partial x_{n}} \left(x^{(0)} \right) \\ \dots & \dots & \dots & \dots \\ \frac{\partial \varphi_{m}}{\partial x_{1}} \left(x^{(0)} \right) & \frac{\partial \varphi_{m}}{\partial x_{2}} \left(x^{(0)} \right) & \dots & \frac{\partial \varphi_{m}}{\partial x_{n}} \left(x^{(0)} \right) \end{pmatrix} = m, \tag{4.11}$$

так что связи (4.1) могут быть даже зависимы в точке $x^{(0)}$.

Умножим (4.9) и (4.10) на dt и учтем, что $dx = \psi'(t)dt$ и $df = \nabla f dx$.

Дифференциал функции f(x) в точке $x^{(0)}$:

$$df\left(x^{(0)}\right) = \nabla f\left(x^{(0)}\right) dx \tag{4.12}$$

равен нулю при любых таких дифференциалах dx, при которых

$$\nabla \varphi_i(x^{(0)}) dx = 0 \iff d\varphi_i(x^{(0)}) = 0, \ i = 1, 2, ..., m.$$
 (4.13)

Легко видеть, что если

$$\nabla f\left(x^{(0)}\right) = -\lambda_1 \nabla \varphi_1\left(x^{(0)}\right) - \lambda_2 \nabla \varphi_2\left(x^{(0)}\right) - \dots - \lambda_m \nabla \varphi_m\left(x^{(0)}\right),$$

или, что то же самое,

$$\nabla \left(f + \lambda_1 \varphi_1 + \lambda_2 \varphi_2 + \dots + \lambda_m \varphi_m \right) \Big|_{r=r^{(0)}} = 0 ,$$

где $\lambda_1, \lambda_2, ..., \lambda_m$ – некоторые числа, то условие (4.10) является алгебраическим следствием m условий (4.9) и, поэтому выполнено для всех $\psi'(0)$, удовлетворяющих условиям (4.9).

Таким образом, необходимые условия экстремума для функции f(x) при наличии связей (4.1) можно получить, написав необходимые условия безусловного экстремума для функции Лагранжа:

$$L = f(x) + \lambda_1 \varphi_1(x) + \lambda_2 \varphi_2(x) + \dots + \lambda_m \varphi_m(x)$$
(4.14)

с постоянными $\lambda_1, \lambda_2, ..., \lambda_m$:

$$\nabla L = \nabla f(x^{(0)}) + \sum_{i=1}^{m} \lambda_i \nabla \varphi_i(x^{(0)}) = 0, \qquad (4.15)$$

и требуя, чтобы точка $x^{(0)}$ удовлетворяла уравнениям связи (4.1), т. е.

$$\varphi_i(x^{(0)}) = 0, i = 1, 2, ..., m$$
 (4.16)

Практически этот прием означает, что для функции Лагранжа (4.14) с неопределенными коэффициентами $\lambda_1,\lambda_2,...,\lambda_m$ мы записываем n условий безусловного экстремума (4.15), а стационарную точку $x^{(0)} = \left(x_1^{(0)}, x_2^{(0)},...,x_n^{(0)}\right)$ находим путем совместного решения n уравнений (4.15) и m уравнений (4.16) относительно n+m неизвестных: $x_1^{(0)}, x_2^{(0)},...,x_n^{(0)}; \lambda_1,\lambda_2,...,\lambda_m$.

Этот метод получил название метода множителей Лагранжа.

Достаточные условия условного экстремума

Теперь предположим, что (4.11) справедливо. В этом случае градиенты $\nabla \varphi_1, \nabla \varphi_2, ..., \nabla \varphi_m$ в точке $x^{(0)}$ линейно независимы. Пусть $x^{(0)}$ стационарная точка функции Лагранжа (4.14). Если обозначить за g(x) сужение функции f(x) на множестве E, то в силу (4.1) и (4.14):

$$g(x) = f(x) = L(x)$$
. (4.17)

Причем, в силу линейной независимости градиентов $\nabla \varphi_1(x), \nabla \varphi_2(x),..., \nabla \varphi_m(x)$, у точки $x^{(0)}$ существует окрестность, в которой у точки $x=\left(x_1,x_2,...,x_n\right)$ только n-m независимых координат, а остальные суть функции от них. Тогда

$$dg = \sum_{i=1}^{n} \frac{\partial L}{\partial x_i} dx_i, \qquad (4.18)$$

$$d^{2}g = \sum_{i,k=1}^{n} \frac{\partial^{2}L}{\partial x_{i}\partial x_{k}} dx_{i} dx_{k} + \sum_{i=1}^{n} \frac{\partial L}{\partial x_{i}} d^{2}x_{i} , \qquad (4.19)$$

где дифференциалы $dx_1, dx_2, ..., dx_n$ удовлетворяют условиям (4.13). В силу стационарности точки $x^{(0)}$ для функции Лагранжа (4.14) (4.18) равно нулю и из (4.19):

$$d^2g = \sum_{i,k=1}^n \frac{\partial^2 L}{\partial x_i \partial x_k} dx_i dx_k . \tag{4.20}$$

Причем дифференциалы $dx_1, dx_2, ..., dx_n$ удовлетворяют условиям (4.13).

Ранг матрицы системы (4.13) равен m, поэтому из нее можно выразить m дифференциалов зависимых переменных через n-m дифференциалов независимых переменных. Подставив полученные выражения в (4.20), получим выражение для d^2g в виде квадратичной формы от n-m дифференциалов независимых переменных. Если эта квадратичная форма положительно (отрицательно) определенная, то $x^{(0)}$ является точкой экстремума функции f(x) при связях (4.1). Если же эта форма неопределенная, то в точке $x^{(0)}$ у функции нет условного экстремума.

Пример. При каких размерах открытая, т. е. без крышки, прямоугольная ванна данной вместимости V имеет наименьшую площадь поверхности?

Обозначим длину и ширину основания открытой ванны x и y, а высоту z. Тогда вместимость ванны, т. е. объем равен V=xyz, а площадь поверхности ванны без крышки равна S=xy+2yz+2zx. Функция Лагранжа и ее дифференциал тогда будут иметь вид

$$L = S + \lambda(xyz - V) = xy + 2yz + 2zx + \lambda(xyz - V),$$

$$dL = (y + 2z + \lambda yz)dx + (x + 2z + \lambda zx)dy + (2x + 2y + \lambda xy)dz.$$

Необходимое условие экстремума записывается в виде

$$y + 2z + \lambda yz = 0$$
, $x + 2z + \lambda zx = 0$, $2x + 2y + \lambda xy = 0$. (4.21)

Вычтем из второго уравнения (4.21) первое и получим

$$x - y + \lambda z x - \lambda y z = (x - y)(1 + \lambda z) = 0.$$

Пусть $\lambda z=-1$. Подставляя $z=-1/\lambda$, т. к. $\lambda \neq 0$, во второе уравнение (4.21), получим, что z=0, что невозможно. Тогда x=y. Подставляя это в третье уравнение, сокращая полученное на x и выражая последнее из полученного, имеем $x=-4/\lambda$. Подставляя последнее во второе уравнение, получаем $z=-2/\lambda$. Обратившись к уравнению связи V=xyz будем иметь $V=-32/\lambda^3$, откуда $\lambda=-2\sqrt[3]{4/V}$. После этого окончательно находим $x=y=\sqrt[3]{2V}$ и $z=\sqrt[3]{2V}/2$.

Для того чтобы перейти к достаточному условию, найдем второй дифференциал от функции Лагранжа:

$$d^{2}L = 2(1 + \lambda z)dxdy + 2(2 + \lambda x)dydz + 2(2 + \lambda y)dzdx.$$
 (4.22)

Подставляя в (4.22) найденные x, y, z и λ , будем иметь

$$d^{2}L = -2(dxdy + 2dydz + 2dzdx), (4.23)$$

поскольку $1+\lambda z=-1$, $2+\lambda x=2+\lambda y=-2$. Взяв дифференциал от уравнения связи, находим yzdx+zxdy+xydz=0. Разделив последнее на отличное от нуля произведение yz, получим $dx+dy+\frac{x}{z}dz=0$. Обращаясь к найденным размерам ванны, определяем, что x/z=2 и тогда 2dz=-(dx+dy). Подставим последнее в (4.23):

$$d^{2}L = -2(dxdy + 2dz(dy + dx)) = -2(dxdy - (dx + dy)^{2})$$
.

Последнее выражение легко упрощается:

$$d^{2}L = 2(dx^{2} + dxdy + dy^{2}). (4.24)$$

Это двумерная положительно определенная квадратичная форма хотя бы потому, что

$$dx^{2} + dxdy + dy^{2} = (dx + dy/2)^{2} + 3dy^{2}/4$$
.

Последнее окончательно доказывает, что при длине и ширине открытой ванны $x=y=\sqrt[3]{2V}$, высоте $z=\sqrt[3]{2V}/2$ ее площадь поверхности S минимальна.

Заметим, что разобранная в примере задача имеет глубокий экономический смысл. Ответ этой задачи показывает, как оптимальным образом экономить материал для изготовления ванн заданного объема.

Одновременно этот пример демонстрирует насколько удобно применение метода множителей Лагранжа в оптимизационных задачах с экономическим содержанием [9].

Заключение

В настоящем пособии теорема о неявной функции, которая в традиционном изложении имеет достаточно громоздкое доказательство, даже в простейшем случае разбита на четыре достаточно коротких теоремы. Это позволяет проще усваивать ее идейное содержание и значительно облегчает учебный процесс.

Показано, что неявные функции для одного уравнения со многими переменными имеют активное применение в теории дифференциальных уравнений. В традиционных способах изложений неявных функций этот раздел, как правило, не излагается.

В разделе дифференцируемых отображений уделено внимание теме замены переменных. Обычно замена переменных обходится молчанием в теоретических курсах математического анализа. Это приводит к тому, что такая широко применимая в физике и механике тема изучается без какой-либо теоретической платформы. Это, в свою очередь, затрудняет приобретение студентами соответствующих практических навыков.

В разделе условный экстремум уделено некоторое внимание значению метода множителей Лагранжа в математической экономике. Приведенный в конце пособия пример выразительно демонстрирует эффективность и удобство применения метода множителей Лагранжа в оптимизационных задачах с экономическим содержанием.

Надеемся, что пособие будет полезно не только студентам второго курса $M\Phi T II$, для которых оно имеет прямое назначение.

Литература

- 1. *Рождественский Б.Л*. Лекции по математическому анализу. Москва : Наука, 1972. 544 с.
- 2. *Федорюк М.В.* Обыкновенные дифференциальные уравнения. Москва: Наука, 1985. 448 с.
- 3. *Купцов Л.П.*, *Николаев В.С.* Курс лекций по теории обыкновенных дифференциальных уравнений : учеб. пособие. Москва : МФТИ, 2015. 322 с.
- Айнс Э.Л. Обыкновенные дифференциальные уравнения. Харьков: ОНТИ, 1939. – 719.
- Кудрявцев Л.Д. Краткий курс математического анализа: учебник для вузов. Москва: Наука, 1989. – 736 с.
- Яковлев Г.Н. Лекции по математическому анализу: учебное пособие. Ч. 3. Москва: МФТИ, 1997. – 248 с.
- 7. *Беклемишев Д.В.* Курс аналитической геометрии и линейной алгебры. Москва: Наука, 1984. 320 с.
- 8. *Тер-Крикоров А.М., Шабунин М.И.* Курс математического анализа. Москва : Наука, 1988. 816 с.
- 9. *Черняев А.П.* Точные решения обыкновенных дифференциальных уравнений некоторых моделей экономической динамики : учебно-методическое пособие. Москва : МФТИ, 2019. 44 с.

Учебное издание

Черняев Александр Петрович

НЕЯВНЫЕ ФУНКЦИИ. НЕПРЕРЫВНО ДИФФЕРЕНЦИРУЕМЫЕ ОТОБРАЖЕНИЯ. ЭКСТРЕМУМЫ ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ

Учебно-методическое пособие

Редактор *Н. Е. Кобзева*. Корректор *И. А. Волкова* Компьютерная верстка: *Н. Е. Кобзева*

Подписано в печать 18.12.2020. Формат $60 \times 84^{-1}/_{16}$. Усл. печ. л. 2,5. Уч.-изд. л. 1,9. Тираж 150 экз. Заказ № 178.

Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)» 141700, Московская обл., г. Долгопрудный, Институтский пер., 9 Тел. (495) 408-58-22, e-mail: rio@mipt.ru

Отдел оперативной полиграфии «Физтех-полиграф» 141700, Московская обл., г. Долгопрудный, Институтский пер., 9 Тел. (495) 408-84-30, e-mail: polygraph@mipt.ru