- 1. Gegeben Seien Punkt B(0,4) und Parabel $p(x) := (x-5)^2 + s$.
 - a) Berechnen Sie in Abhängigkeit von s die Geradengleichungen der Tangenten $q_{1/2}(x)$ an G_p durch B.

Zwischenergebnise: $q_1(x) = 2 * (\sqrt{s+21} - 5) * x + 4$ $q_2(x) = -2 * (\sqrt{s+21} + 5) * x + 4$

- b) Für welche Belegung von s gilt: $B \in G_p$?
- c) Im Folgenden Sei s := -2.
- d) Zeichen Sie p(x).
- e) Berechnen Sie den Berührpunkte $P_{1/2}$ von $q_{1/2}$ und p
- f) Bestimmen Sie in Abhängigkeit von t ("y-Achsenabschnitt") die Gerade h die senkrecht auf $q_1(x)$ ODER $q_2(x)$ Steht.
- g) N := (0,t) Bestimmen Sie t so, dass gilt: $N \in G_p$