Ecuaciones Diferenciales

Jhon Alfredo Huarachi Gálvez

21/09/2016

Una introducción a las ecuaciones diferenciales 1

Definiciones básicas y terminología

Ejemplo 1.1. 4.

$$x^2 dy + (y - xy - xe^x) dx = 0$$

$$x^2 \frac{dy}{dx} + (1-x)y - xe^x = 0$$

Ecuación diferencial lineal, de orden: 1.

Ejemplo 1.2. 18.

$$2xydx + (x^2 + 2y) dy = 0;$$
 $x^2y + y^2 = c_1.$

$$\begin{aligned} & \left[2xy + x^2y' \right] + 2yy' = 0 \\ & 2xy + \left[x^2 + 2y \right] y' = 0 \\ & 2xydx + \left[x^2 + 2y \right] dy = 0. \end{aligned}$$

Ejemplo 1.3. 22.

$$y' = 2\sqrt{|y|}; \qquad y = x|x|$$

$$|y|=|x|x||=|x||x|=|x|^2\Rightarrow \sqrt{|y|}=|x|$$

$$y' = x\left(\frac{x}{|x|}\right) + |x|$$

$$y' = \frac{x^2}{|x|} + |x| = \frac{|x|^2}{|x|} + |x| = |x| + |x| = 2|x|$$

$$y' = 2|x| = 2\sqrt{|y|}.$$

$$y' = 2|x| = 2\sqrt{|y|}$$

Ejemplo 1.4. 36.

$$x^2y'' - xy' + 2y = 0;$$
 $y = x\cos(\ln x), \quad x > 0$

$$y' = x \left[-sen(lnx) \right] \frac{1}{x} + cos(lnx)$$

$$\begin{array}{l} y'=x\left[-sen(lnx)\right]\frac{1}{x}+cos(lnx)\\ y''=-\left[cos(lnx)\frac{1}{x}+sen(lnx)\frac{1}{x}\right]\\ xy''=-2cos(lnx)-sen(lnx)+cos(lnx) \end{array}$$

$$xy'' = -2\cos(\ln x) - \sin(\ln x) + \cos(\ln x)$$

$$xy'' = y' - 2\cos(\ln x)$$

$$x^{2}y'' = xy' - 2 [xcos(lnx)]$$

 $x^{2}y'' - xy' + 2y = 0.$

$$x^2y'' - xy' + 2y = 0.$$

Ejemplo 1.5. 31.

$$y'' = y$$
 , $y = \cosh x + \sinh x$

$$\begin{split} y &= \frac{e^x + e^{-x}}{2} + \frac{e^x - e^{-x}}{2} \\ y' &= \frac{e^x - e^{-x}}{2} + \frac{e^x + e^{-x}}{2} \\ y'' &= \frac{e^x + e^{-x}}{2} + \frac{e^x - e^{-x}}{2} = \cosh x + \operatorname{senhx} \\ y'' &= y. \end{split}$$

Ejemplo 1.6. 50.

 $y = \sqrt{4 - x^2}$ y $y = -\sqrt{4 - x^2}$ son soluciones de $\frac{dy}{dx} = \frac{-x}{y}$ en el intervalo -2 < x < 2.

Explique por qué
$$y = \begin{bmatrix} \sqrt{4 - x^2} & -2 < x < 0 \\ -\sqrt{4 - x^2} & 0 \le x < 2 \end{bmatrix}$$
 no es una solución de la ecuación diferencial en el intervalo

no es una solución de $\frac{dy}{dx} = \frac{-x}{y}$, pues no existe $\lim_{x\to 0} y(x)$. No es diferenciable en el punto cero del

1.2 Examen

Ejemplo 1.7. 2.

Compruebe que la función indicada es una solución de la ecuación diferencial dada.

(a)
$$y' + 2xy = 2 + x^2 + y^2$$
; $y = x + tanx$

$$y' = 1 + sec^{2}(x) = 2 + tan^{2}(x)$$

$$y' = 2 + [-x + (x + tanx)]^{2}$$

$$y' = 2 + x^{2} + y^{2} - 2xy$$

$$y' + 2xy = 2 + x^{2} + y^{2}.$$

$$y' = 2 + x^2 + y^2 - 2xy$$

$$y' + 2xy = 2 + x^2 + y^2$$
.

Ejemplo 1.8. 4.

Explique por qué la ecuación diferencial

$$\left(\frac{dy}{dx}\right)^2 = \frac{4-y^2}{4-x^2}$$

no tiene soluciones reales para |x| < 2, |y| > 2.

¿Hay otras regiones del plano xy en las cuales la ecuación no tiene soluciones?

$$(y')^2 = \frac{4-y^2}{4-x^2}, \qquad 4-x^2 \neq 0, \quad 4-y^2 > 0$$

Pues cuando |y| > 2, la ecuación no tendría raices reales.

Además bajo las condiciones |x| > 2, |y| < 2, la ecuación no tendría soluciones reales.

Sí, hay otras regiones del plano XY sin soluciones reales.

Ejemplo 1.9. 6.

1. Demuestre que la ecuación diferencial de la familia de circunferencias

$$(x-c)^2 + y^2 = 25$$

2

$$\begin{array}{l} es\ (y')^2=\frac{25-y^2}{y^2}\\ Así,\ trabajamos\ en\ la\ ecuación.\ (x-c)^2+y^2=25\\ 2(x-c)+2yy'=0\\ Así\ que,\ reemplazando\\ (-yy')^2+y^2=25\\ y^2(y')^2=35-y^2\\ (y')^2=\frac{25-y^2}{y^2}. \end{array}$$

2. Encuentre dos soluciones singulares de la ecuación diferencial anterior

$$y = -\sqrt{25 - x^2}$$

$$y' = -\frac{1}{2} \frac{1}{\sqrt{25 - x^2}} (-2x) = -\frac{1}{2} \frac{1}{y} 2x$$

$$y' = \frac{x}{y}$$

$$(y')^2 = \frac{(-x)^2}{y^2} = \frac{25 - y^2}{y^2}.$$

$$y = \sqrt{25 - x^2}$$

$$y' = \frac{1}{2} \frac{1}{y} 2x = \frac{x}{y}$$

$$(y')^2 = \frac{x^2}{y^2} = \frac{25 - y^2}{y^2}.$$

Ejemplo 1.10. 8.

Obtenga la ecuación diferencial que representa a la familia de circunferencias que pasan por el origen y cuyos centros están sobre la recta y = x.

$$(x-c)^2 + (y-c)^2 = 2c^2$$

$$2(x-c) + 2(y-c)y' = 0$$

$$x - c + (y - c)y' = 0$$

$$1 + [(y - c)y'' + y'] = 0$$

$$(y - c)y'' = -1 - y'$$

$$y - c = -\frac{1 - y'}{y''}$$

$$x - c + \left[-\frac{1 + y'}{y''}\right]y' = 0$$

$$\left[\frac{y'(1-y')}{y''}\right]^2 + \left[-\frac{1-y'}{y''}\right]^2 = 2\left(y + \frac{1+y'}{y''}\right)^2$$

$$(y'^2 + 1) (1 + y')^2 = 2 (y''y + y' + 1)^2.$$

Ejemplo 1.11. 10.

Un peso de 96lb se desliza por una pendiente que forma un ángulo de 30° con la horizontal. Si el coeficiente de rozamiento (o fricción) deslizante e μ , determine la ecuación diferencial de la velocidad v(t) del peso en un instante cualquiera.

Se sabe que la fuerza de fricción que se opone al movimiento es μN , en donde N es la componente normal del peso.

 $\theta = constante, \mu, g, son también constantes.$

$$ma(t) = wsen(\theta) - \mu N$$

$$ma(t) = wsen(\theta) - \mu wcos(\theta)$$

$$v'(t) = a(t) = q[sen(\theta) - \mu cos(\theta)]$$

$$\frac{dv}{dt} = g[sen(\theta) - \mu cos(\theta)].$$

Ecuaciones diferenciales de primer orden $\mathbf{2}$

2.1Teoría preliminar

Ejemplo 2.1. 8.

$$(y-x)y' = y + x$$

$$y' = \frac{y+x}{y-x}$$

$$f(x,y) = \frac{y+x}{y-x}, \qquad \frac{\partial f}{\partial y} = \left[\frac{(y-x)-(y+x)}{(y-x)^2}\right]$$

$$\frac{\partial f}{\partial y} = \frac{-2x}{(y-x)^2}$$

 $f(x,y) = \frac{y+x}{y-x}, \qquad \frac{\partial f}{\partial y} = \left[\frac{(y-x)-(y+x)}{(y-x)^2}\right]$ $\frac{\partial f}{\partial y} = \frac{-2x}{(y-x)^2}$ son continuas en $\mathbb{R}^2 - S$, $S := \{(x,y) \in \mathbb{R}^2 | x = y\}$ la ecuación diferencial posee solución única, por cada punto (x_0, y_0) de

Ejemplo 2.2. 14.

Utilizando la observación obtenga una solución del problema de valor inicial.

$$y' = |y - 1|, \qquad y(0) = 1$$

Diga por qué las condiciones del Teorema 2.1. no se cumplen para esta ecuacion diferencial. Aun que no se demostrará, (la solución de este problema de valor inicial es única y=1).

$$f(x,y) = |y-1|,$$
 $\frac{\partial f}{\partial y} = \frac{y-1}{|y-1|}$

y=1, es un punto (valor que hace), no continua $\frac{\partial f}{\partial y}$.

Ambas, son continuas en $\mathbb{R}^2 - S$, $S := \{(x, y) \in \mathbb{R}^2 | y = 1\}$.

Ejemplo 2.3. 16.

1. Considere la ecuación diferencial

$$\frac{dy}{dx} = 1 + y^2$$

Determine una región del plano XY en la cual la ecuación tenga una única solución en el punto (x_0, y_0) de la región.

$$f(x,y) = 1 + y^2, \qquad \frac{\partial f}{\partial y} = 2y$$

En la región \mathbb{R}^2 la ecuación diferencial posee solución única en cada punto (x_0, y_0) de dicha región.

2. Demuestre formalmente que y = tanx satisface la ecuación diferencial y la condición y(0) = 0.

4

$$y' = sec^{2}(x) = 1 + tan^{2}(x) = 1 + y^{2}$$

 $\frac{1}{u^2+1}dy = dx$

arctan(y) = x + c, $c \in \mathbb{R}$

y = tan(x+c)

Reemplazando

0 = tan(0+c) o arctan(0) = 0+c $\Rightarrow c = 0$

Resultando que, y = tanx es la única solución del sistema $\begin{bmatrix} y' = 1 + y^2 \\ y(0) = 0 \end{bmatrix}$.

3. Explique por qué y = tanx no es una solución del problema de calor inicial

$$\frac{dy}{dx} = 1 + y^2, \qquad y(0) = 0$$

Nota: Consideremos arctan(y) = xen el intervalo -2 < x < 2 la función, $y : \langle -2, 2 \rangle \to \mathbb{R}$, con y = tan(x) no está, bien definida la ecuación arctan(y) = x en el intervalo $\langle -2, 2 \rangle$

4. Explique por qué y = tanx es una solución del problema de calor inicial de la parte anterior, en el intervalo -1 < x < 1.

Consideremos la ecuación como solución implicita del sistema

$$arctan(y) = x$$

Analizando dicha ecuación, notamos que

(*) arctan(y) = x esta bien definido en el intervalo $\langle -1, 1 \rangle$, además es continua y diferenciable en dicho intervalo.

2.2Variables separables

Ejemplo 2.4. Resolver

$$xsenxe^y dx - ydy = 0$$

 $xsenxdx = ye^ydy$

Ejemplo 2.5.

$$\int xe^{kx}dx, \qquad k \in \mathbb{R} - \{0\}$$

$$xe^{kx} = \frac{1}{k}x(ke^{kx}) = \frac{1}{k}\left[x(e^{kx})' + e^{kx}\right] - \frac{1}{k}e^{kx} = \frac{1}{k}\left[xe^{kx}\right]' - \frac{1}{k^2}(e^{kx})' = \left[\frac{1}{k}xe^{kx} - \frac{1}{k^2}e^{kx}\right]'$$

$$\Rightarrow \int xe^{kx}dx = \frac{1}{k}xe^{kx} - \frac{1}{k^2}e^{kx} + c, \qquad k, c \in \mathbb{R} \quad k \neq 0$$

Reflexionemos sobre $\frac{dy}{dx} = y^2 - 4$, sujeta a y(0) = -2, y sobre $\frac{dy}{dx} = xy^{1/2}$, y(0) = 0 con visualización geométrica.

Ejemplo 2.6. 14.

$$e^x y \frac{dy}{dx} = e^{-y} + e^{-2x - y}$$

$$\begin{split} e^x y \frac{dy}{dx} &= e^{-y} \left(1 + e^{-2x} \right) \\ y e^y dy &= e^{-x} \left(1 + e^{-2x} \right) dx \\ y e^y dy &= \left[e^{-x} + e^{-3x} \right] dx \\ y e^y - e^y &= -\left[e^{-x} + \frac{1}{3} e^{-3x} \right] + c \\ (y-1) e^y &= -e^{-x} - \frac{1}{3} e^{-3x} + c \end{split}$$

Ejemplo 2.7. 16.

$$(1 + x^2 + y^2 + x^2y^2) dy = y^2 dx$$

5

$$(1+x^2)(1+y^2)dy = y^2dx$$
$$\left[\frac{1}{y^2} + 1\right]dy = \frac{1}{x^2+1}dx$$
$$y - \frac{1}{y} = \arctan(x) + c$$

Ejemplo 2.8. 24.

$$\frac{dN}{dt} = N\left(te^{t+2} - 1\right)$$

$$\frac{dN}{N} = \left(te^{t+2} - 1\right)dt \\ ln|N| = \left(t - 1\right)e^{t+2} - t + c$$

Ejemplo 2.9. 32.

$$2\frac{dy}{dx} = \frac{1}{y} + \frac{2x}{y} = \frac{1}{y}(1+2x)$$

$$\begin{aligned} 2y dy &= (1+2x) dx \\ y^2 &= x + x^2 + c \\ y^2 + \left(x + \frac{1}{2}\right)^2 &= k^2 \end{aligned}$$

Ejemplo 2.10. 36.

$$secy \frac{dy}{dx} + sen(x - y) = sen(x + y)$$

$$\begin{split} &secy\frac{dy}{dx} = sen(x+y) - sen(x-y) \\ &secy\frac{dy}{dx} = [senxcosy - cosxseny] - [senxcosy + cosxseny] \\ &secy\frac{dy}{dx} = -2cosxseny \\ &\frac{1}{cosy}\frac{1}{seny}dy = -2cosxdx \\ &\frac{1}{tany}sec^2(y)dy = -2cosxdx \\ &ln|tany| + 2senx = c \end{split}$$

Ejemplo 2.11. 40.

$$(x + \sqrt{x}) \frac{dy}{dx} = y + \sqrt{y}$$

$$\begin{split} &\frac{1}{y+\sqrt{y}}dy = \frac{1}{x+\sqrt{x}}dx\\ &\frac{1}{\sqrt{y}(\sqrt{y}+1)}dy = \frac{1}{\sqrt{x}(\sqrt{x}+1)}dx\\ &2\left[\frac{1}{\sqrt{y}+1}\left(\frac{1}{2}\right)\frac{1}{\sqrt{y}}\right]dy = 2\left[\frac{1}{\sqrt{x}+1}\left(\frac{1}{2}\right)\frac{1}{\sqrt{x}}\right]dx\\ &\left[\frac{1}{\sqrt{y}+1}\left(\frac{1}{2}\right)\frac{1}{\sqrt{y}}\right]dy = \left[\frac{1}{\sqrt{x}+1}\left(\frac{1}{2}\right)\frac{1}{\sqrt{x}}\right]dx\\ &\ln|\sqrt{y}+1| = \ln|\sqrt{x}+1| + \ln(c)\\ &\sqrt{y}+1 = c\left(\sqrt{x}+1\right) \end{split}$$

Ejemplo 2.12. 48.

$$y' + 2y = 1,$$
 $y(0) = \frac{5}{2}$

$$\frac{1}{1-2y}dy = dx$$
$$\frac{1}{2y-1}dy = -dx$$

$$\begin{array}{l} \frac{1}{2}ln|2y-1| = -x + c_1 \\ ln|2y-1| + 2x = c \\ c = ln(4) \Rightarrow ln|2y-1| + 2x = ln(4) \\ 2y-1 = 4e^{-2x}, \quad y > \frac{1}{2} \end{array}$$

Ejemplo 2.13. 50.

$$x\frac{dy}{dx} = y^2 - y$$

$$\frac{1}{y(y-1)}dy = \frac{dx}{x}$$

$$\left[-\frac{1}{y} + \frac{1}{y-1} \right] dy = \frac{dx}{x}$$

$$-ln|y| + ln|y - 1| = ln|x| + ln(c_1)$$

$$ln\left| \frac{y-1}{y} \right| = ln|x| + c$$

$$(a) (0,1) \Rightarrow c = ?$$

$$(a) (0,0) \Rightarrow c = ?$$

$$(a) \left(\frac{1}{2}, \frac{1}{2} \right) \Rightarrow c = \frac{1}{2}$$

2.3 Ecuaciones homogéneas

Ejemplo 2.14. 8.

$$\frac{\ln(x^3)}{\ln(y^3)}$$
, $f(x,y) = \frac{\ln(x^3)}{\ln(y^3)} = \frac{3\ln(x)}{3\ln(y)}$

$$f(tx,ty) = \frac{3ln(tx)}{3ln(ty)} = \frac{ln(x) + ln(t)}{ln(y) + ln(t)}$$

if (x,y) , no es una función homogenea?

Ejemplo 2.15. 20.

$$x\frac{dy}{dx} - y = \sqrt{x^2 + y^2}$$

$$\begin{array}{l} homogeneas \ de \ grado \ 1. \\ xdy-(y+\sqrt{x^2+y^2})dx=0 \\ xdy-(ux+\sqrt{x^2+u^2x^2})dx=0, \qquad y=ux \\ x[udx+xdu]-x(u+\sqrt{1+u^2})dx=0 \\ x^2du+x[u-u-\sqrt{1+u^2}]dx=0 \\ \frac{1}{\sqrt{1+u^2}}du+\frac{dx}{x}=0 \\ arcsenh|u|+ln|x|=c \Rightarrow arcsenh\left(\frac{y}{x}\right)+ln|x|=c \end{array}$$

Ejemplo 2.16. 26.

$$\left(x^2e^{-\frac{y}{x}} + y^2\right)dx = xydy$$

$$\left(x^2e^{-u} + u^2x^2\right)dx = ux^2[udx + xdu], \qquad y = ux$$

$$x^2\left[e^{-u} + u^2 - u^2\right]dx = x^3udu$$

$$\frac{dx}{x} = ue^udu$$

$$\ln|x| = (u-1)e^u + c \Rightarrow \ln|x| = \left(\frac{y}{x} - 1\right)e^{\frac{y}{x}} + c$$

$$x\ln|x| = (y-x)e^{\frac{y}{x}} + cx$$

Ejemplo 2.17. 30.

$$\left(x^2 + xy + 3y^2 \right) dx - \left(x^2 + 2xy \right) dy = 0$$

$$\left(x^2 + x^2u + 3x^2u^2 \right) dx - \left(x^2 + 2x^2u \right) dy = 0, \qquad y = ux$$

$$x^2 \left(1 + u + 3u^2 \right) dx - x^2 \left(1 + 2u \right) dy = 0$$

$$x^2 \left(1 + u + 3u^2 \right) dx - x^2 \left(1 + 2u \right) \left[udx + xdu \right] = 0$$

$$x^2 \left(1 + u + 3u^2 - u - 2u^2 \right) dx + x^3 \left(1 + 2u \right) du = 0$$

$$x^2 \left(1 + u^2 \right) dx + x^3 \left(1 + 2u \right) du = 0$$

$$x^2 \left(1 + u^2 \right) dx + x^3 \left(1 + 2u \right) du = 0$$

$$dx + \left[\frac{1}{u^2 + 1} + \frac{2u}{u^2 + 1} \right] du = 0$$

$$ln|x| + \arctan\left(\frac{y}{x} \right) + ln \left| \left(\frac{y}{x} \right)^2 + 1 \right| = c$$

$$arctan\left(\frac{y}{x} \right) + ln \left| y^2 + x^2 \right| - ln|x| = c$$

Ejemplo 2.18. 36.

$$ydx + \left(y\cos\left(\frac{x}{y}\right) - x\right)dy = 0, \qquad y(0) = 2$$

$$\begin{aligned} ydx + y & (\cos v - v) \, dy = 0 \\ y & [ydv + vdy] + y & (\cos v - v) \, dy = 0 \\ y^2 dv + y & (v + \cos v - v) \, dy = 0 \\ \frac{dv}{\cos v} + \frac{dy}{y} & = 0 \\ \left[\frac{\cos(v)}{\cos^2(v)}\right] dv + \frac{dy}{y} & = 0 \\ -\frac{\cos(v)}{\sin^2(v) - 1} dv + \frac{dy}{y} & = 0 \\ -\frac{1}{2} \left[\frac{\cos v}{\sin v - 1} - \frac{\cos v}{\sin v + 1}\right] dv + \frac{dy}{y} & = 0 \\ ln|y| - \frac{1}{2} ln \left|\frac{\sin v - 1}{\sin v + 1}\right| & = k \\ ln|y| - ln \left|\frac{\sin v - 1}{\cos v}\right| & = k \\ ln|y| - ln \left|tan\left(\frac{x}{y}\right) - \sec\left(\frac{x}{y}\right)\right| & = k, \quad k = ln(2) \end{aligned}$$

Ejemplo 2.19. 44.

$$\frac{dy}{dx} - \frac{y}{x} = \cosh\left(\frac{y}{x}\right), \qquad y(1) = 0$$

$$\begin{array}{l} x\frac{du}{dx} = \frac{e^u + e^{-u}}{2}\\ \frac{2e^u}{(e^u)^2 + 1} = \frac{dx}{x}\\ 2arctan\left(e^u\right) = ln|x| + c, \qquad z = e^u, dz = e^u du\\ 2arctan\left(e^{\frac{y}{x}}\right) = ln|x| + c \Rightarrow 2arctan\left(e^{\frac{y}{x}}\right) = ln|x| + \frac{\pi}{2} \end{array}$$

Ejemplo 2.20.
$$\frac{\partial f}{\partial y} = \frac{\partial (\int 2xydx)}{\partial y} = x^2 + h'(y)$$

 $h'(y) = -1 \Rightarrow h(y) = -y$
 $x^2y - y = (x^2 - 1) y = c$

2.4 Ecuaciones exactas

Ejemplo 2.21. 8.

$$\left(1 + \ln x + \frac{y}{x}\right)dx = (1 - \ln x)dy$$

$$\left(1 + \ln x + \frac{y}{x}\right)dx + (\ln x - 1)dy = 0$$

$$\frac{\partial M}{\partial u} = \frac{\partial N}{\partial x}$$

$$\begin{array}{l} \frac{\partial f}{\partial x} = \frac{\partial (\int N dy)}{\partial x} = \frac{\partial (y(lnx-1) + h(x))}{\partial x} \\ y\frac{1}{x} + h'(x) = 1 + lnx + \frac{y}{x} \\ h'(x) = 1 + lnx \quad \Rightarrow h(x) = x + xlnx - 1 = x\left(1 + lnx\right) - 1 \\ y\left(lnx-1\right) + x\left(1 + lnx\right) - 1 = c_1 \\ y\left(lnx-1\right) + x\left(1 + lnx\right) = c \end{array}$$

Ejemplo 2.22. 16.

$$(e^y + 2xy + \cosh x) y' + xy^2 \operatorname{senh} x + y^2 \operatorname{cosh} x = 0$$

$$(e^y + 2xy + \cosh x) dy + y^2 (\operatorname{ssenh} x + \cosh x) dx = 0$$

$$f(x,y) = e^y + xy^2 \operatorname{cosh} x = c$$

$$\frac{\partial f}{\partial x} = y^2 (\operatorname{ssenh} x + (1) \operatorname{cosh} x)$$

$$\frac{\partial f}{\partial y} = e^y + 2xy \operatorname{cosh} x$$

Ejemplo 2.23. 22.

$$\left(2ysenxcosx - y + 2y^2e^{xy^2}\right)dx = \left(x - sen^2x - 4xye^{xy^2}\right)dy$$

$$\left(2ysenxcosx - y + 2y^2e^{xy^2}\right)dx + \left(4xye^{xy^2} + sen^2x - x\right)dy = 0$$

$$xy + 2e^{xy^2} = a$$

$$\begin{split} f(x,y) &= ysen^2x - xy + 2e^{xy^2} = c\\ \frac{\partial f}{\partial x} &= y(2senxcosx) - y + 2y^2e^{xy^2}\\ \frac{\partial f}{\partial y} &= sen^2x - x + 4xye^{xy^2} \end{split}$$

Ejemplo 2.24. 28.

$$\left(\frac{3y^2 - x^2}{y^5}\right)\frac{dy}{dx} + \frac{x}{2y^4} = 0, \qquad y(1) = 1$$

$$\left(3y^2 - x^2\right)dy + \frac{xy}{2}dx = 0$$

$$\frac{\partial N}{\partial x} = -2x \neq \frac{x}{2} = \frac{\partial M}{\partial y}$$

$$(3y^{2} - x^{2}) dy = -\frac{xy}{2} dx$$

$$(3y^{2} - v^{2}y^{2}) dy = -\frac{vy^{2}}{2} (vdy + ydv), \qquad x = vy$$

$$(3y^{2} - v^{2}y^{2} + \frac{v^{2}y^{2}}{2}) dy + \frac{vy^{3}}{2} dv = 0$$

$$\frac{dy}{y} + \frac{1}{2} \frac{-2v}{v^{2} - 6} dv = 0 \quad \Rightarrow \ln|y| - \frac{1}{2} \ln|v^{2} - 6| = c_{1}$$

$$y^{2} = c (v^{2} - 6)$$

$$y^{4} = c (x^{2} - 6y^{2})$$

Ejemplo 2.25. 34.

$$\left(6xy^3+cosy\right)dx+\left(kx^2y^-xseny\right)dy=0$$

$$\frac{\partial M}{\partial y}=18xy^-seny=2kxy^2-seny=\frac{\partial N}{\partial x},\quad k=9.$$

Ejemplo 2.26. 40.

$$y\left(x+y+1\right)dx+\left(x+2y\right)dy=0, \quad \mu(x,y)=e^{x}$$

$$yxe^{x}+y^{2}e^{x}=c$$

$$\frac{\partial \left(\int Ndy\right)}{\partial x}=\frac{\partial}{\partial x}\left(yxe^{x}+y^{2}e^{x}+h(x)\right)=y(x+1)e^{x}+y^{2}e^{x}+h'(x)$$

$$h'(x)=0\Rightarrow h(x)=c_{1}$$

Ejemplo 2.27. 43.

Demuestre que cualquier ecuación diferencial separable de primer orden también es exacta. $\frac{dy}{dx} = \frac{g(x)}{h(y)}$ h(y)dy = g(x)dx h(y)dy + (-g(x))dx = 0 $M(x,0)dx + N(0,y)dy = 0, \qquad M(x,0) = -g(x), \quad N(0,y) = h(y)$ $\frac{\partial M}{\partial y} = \frac{\partial -g(x)}{\partial y} = 0 = \frac{\partial h(y)}{\partial x} = \frac{\partial N}{\partial x}$

2.5 Ecuaciones lineales

Ejemplo 2.28. 6.

$$\frac{dy}{dx} = y + e^x$$

$$e^{-x}y = x + c$$
$$y = e^{x}(x + c)$$

Ejemplo 2.29. 14.

$$\left(1+x^2\right)dy + \left(xy+x^3+x\right)dx = 0$$

$$\frac{dy}{dx} + \frac{x}{1+x^2}y + \frac{x^3+x}{1+x^2} = 0$$

$$\frac{dy}{dx} + \frac{x}{1+x^2}y = -x$$

$$\mu(x) = e^{\frac{1}{2}\int \frac{2x}{1+x^2}dx} = e^{\frac{1}{2}ln|1+x^2| = \sqrt{1+x^2}}$$

$$d\left(\sqrt{1+x^2}y\right) = -x\sqrt{1+x^2}dx$$

$$\sqrt{1+x^2}y = -\int x\sqrt{1+x^2}dx = -\frac{1}{3}\int \frac{3}{2}2x\left(1+x^2\right)^{\frac{3}{2}-1}dx$$

$$\sqrt{1+x^2}y = -\frac{1}{3}\left(1+x^2\right)^{\frac{3}{2}} + c$$

$$y = -\frac{1}{3}\left(1+x^2\right) + c\left(1+x^2\right)^{-\frac{1}{2}}$$

Ejemplo 2.30. 20.

$$(1+x)\,y'-xy=x+x^2$$

$$y'-\frac{x}{1+x}y=x, \quad x\neq -1$$

$$\mu(x)=e^{-\int\frac{x}{1+x}dx}=e^{\ln|1+x|-x}=|1+x|e^{-x}$$

$$d\left(|1+x|e^{-x}y\right)=x|1+x|e^{-x}dx$$

$$|1+x|e^{-x}y=\int|1+x|xe^{-x}dx$$

$$(1+x)\,e^{-x}y=\int\left(xe^{-x}+x^2e^{-x}\right)dx, \quad x>-1$$

$$\left(1+x\right)e^{-x}y=\int\left[-\left(xe^{-x}\right)'+e^{-x}+\left(-\left(x^2e^{-x}\right)'\right)+\left[-2\left(xe^{-x}\right)'+2e^{-x}\right]\right]dx$$

$$\left(1+x\right)e^{-x}y=\int\left[3e^{-x}-3\left(xe^{-x}\right)'-\left(x^2e^{-x}\right)'\right]dx$$

$$\left(1+x\right)e^{-x}y=-3e^{-x}-3xe^{-x}-x^2e^{-x}+c$$

$$y = -3 - \frac{x^2}{1+x} + c \frac{e^x}{1+x}$$

Ejemplo 2.31. 36.

$$\frac{dP}{dt} + 2tP = P + 4t - 2$$

$$P' + (2t - 1) P = 4t - 2$$

$$\mu(t) = e^{\int (2t - 1)dt} = e^{t^2 - t}$$

$$d\left(e^{t^2 - t}y\right) = e^{t^2 - t}(4t - 2)dt$$

$$e^{t^2 - t}y = 2 \int e^{t^2 - t}(2t - 1)dt$$

$$e^{t^2 - t}y = 2e^{t^2 - t} + c$$

$$y = 2 + ce^{-t^2 + t}$$

Ejemplo 2.32. 46.

$$xdy + (xy + 2y - 2e^{-x}) dx = 0$$

$$\begin{aligned} &\frac{dy}{dx} + \frac{x+2}{x}y = \frac{2}{x}e^{-x} \\ &\mu(x) = e^{\int \left(1 + \frac{2}{x}\right)dx} = x^2e^x \\ &d\left(x^2e^xy\right) = 2xdx \\ &x^2e^xy = x^2 + c \\ &y = e^{-x} + c\frac{e^{-x}}{x^2} \end{aligned}$$

Ejemplo 2.33. 52.

$$\cos^2(x)\frac{dy}{dx} + y = 1, \qquad y(0) = -3$$

$$\begin{array}{l} \mu(x) = e^{\int sec^2(x)dx} = sec^2(x)e^{tan(x)} \\ d\left(e^{tan(x)}y\right) = sec^2(x)e^{tan(x)}dx \\ e^{tan(x)}y = \int sec^2(x)e^{tan(x)}dx \\ y = 1 + ce^{-tanx} \\ y = 1 - 4e^{-tanx}, \qquad c = -4 \end{array}$$

2.6 Ecuaciones de Bernoulli, Ricatti y Clairaut

$$\begin{split} y' + P(x)y &= f(x)y^n \\ w &= y^{1-n} &\Rightarrow w' = (1-n)y^{-n}y' \\ \text{PROCEDEMOS:} \\ y' + P(x)y &= f(x)y^n \\ y'y^{-n} + P(x)yy^{-n} &= f(x) \\ y^{-n}y' + P(x)yy^{-n} &= f(x) \\ y^{-n}y' + P(x)y^{1-n} &= f(x) \\ (1-n)y^{-n}y' + (1-n)P(x)y^{1-n} &= (1-n)f(x) \\ w' + (1-n)P(x)w &= (1-n)f(x) \\ \text{; solo un cambio de variable?} \end{split}$$

Ejemplo 2.34. Resuelva la ecuación de Bernoulli dada.

$$3\left(1+x^2\right)\frac{dy}{dx} = 2xy\left(y^3 - 1\right)$$

$$\begin{split} y' + \frac{1}{3} \frac{2x}{1+x^2} y &= \frac{1}{3} \frac{2x}{1+x^2} y^4 \\ w &= y^{-3} \\ y' + \frac{1}{3} \frac{2x}{1+x^2} y &= \frac{1}{3} \frac{2x}{1+x^2} y^4 \\ w' - 3\frac{1}{3} \frac{2x}{1+x^2} w &= -3\frac{1}{3} \frac{2x}{1+x^2} \\ w' - \frac{2x}{1+x^2} w &= -\frac{2x}{1+x^2} \\ \mu(x) &= e^{-\int \frac{2x}{1+x^2} dx} &= e^{-\ln|1+x^2|} &= \frac{1}{1+x^2} \\ d\left(\frac{1}{1+x^2} w\right) &= -\int 2x dx \\ \frac{1}{1+x^2} w &= -x^2 + c \\ w &= -x^2 \left(1+x^2\right) + c \left(1+x^2\right) \\ y^{-3} &= -x^2 \left(1+x^2\right) + c \left(1+x^2\right) \end{split}$$

Ejemplo 2.35. Resuelva la ecuación diferencial dada, sujeta a la condición inicial que se indica. 8.

$$y^{\frac{1}{2}}\frac{dy}{dx} + y^{\frac{3}{2}} = 1, \qquad y(0) = 4$$

$$\begin{split} y' + y &= y^{-\frac{1}{2}} \\ w &= y^{\frac{3}{2}} \\ w' + \frac{3}{2}w &= \frac{3}{2} \ \mu(x) = e^{\int \frac{3}{2}dx} = e^{\frac{3}{2}x} \\ d\left(e^{\frac{3}{2}x}w\right) &= \frac{3}{2}e^{\frac{3}{2}x}dx \\ e^{\frac{3}{2}x}w &= e^{\frac{3}{2}x} + c \\ w &= 1 + ce^{-\frac{3}{2}x} \\ y^{\frac{3}{2}} &= 1 + ce^{-\frac{3}{2}x} \\ y^{\frac{3}{2}} &= 1 + 7e^{-\frac{3}{2}x}, \qquad c = 7 \end{split}$$

Ejemplo 2.36. Resuelva la ecuación de Ricatti dada. 16.

$$\frac{dy}{dx} = 2x^2 + \frac{1}{x}y - 2y^2, \qquad y_1 = x$$

Ejemplo 2.37. 20.

Resuelva.

$$\frac{dy}{dx} = 9 + 6y + y^2$$

Ejemplo 2.38. La ecuación diferencial

$$y = xy' + f(y')$$

se llama ecuación de Clairaut en honor del matemático francés Alexis Claude Clairaut (1713-1765).
21.

Muestre que una solución de la ecuación anterior, es la familia de rectas y = cx + f(c), en donde c es una constante arbitraria.

$$y' = c$$

$$xy' = xc = cx \Rightarrow cx + f(c) = xy' + f(c) \Rightarrow y = xy' + f(y')$$

2.7 Sustituciones

Resuelva la ecuación diferencial dada usando una sustitución apropiada.

Ejemplo 2.39. 2.

$$y' + ylny = ye^{x}$$

$$w = ln|y|, y > 0 \Rightarrow w' = \frac{1}{y}y'$$

$$\frac{y'}{y} + ln|y| = e^{x}$$

$$w' + w = e^{x}$$

$$\mu(x) = e^{x}$$

$$d(e^{x}w) = e^{2x}dx$$

$$e^{x}w = \frac{1}{2}e^{2x} + c$$

$$w = \frac{1}{2}e^{x} + ce^{-x}$$

$$ln|y| = \frac{1}{2}e^{x} + ce^{-x}$$

Ejemplo 2.40. θ .

$$\frac{dy}{dx} + x + y + 1 = (x+y)^2 e^{3x}$$

Ejemplo 2.41. 22.

$$y'' = 1 + \left(y'\right)^2$$

2.8 Método de Picard

Determine el límite de la sucesión $\{y_n(x)\}$ cuando $n \to \infty$.

$$y_n(x) = y_0 + \int_{x_0}^x f(t, f_{n-1}(t))dt, \qquad n = 1, 2, \dots$$

Considerando $y_0(x) = y_0$

Ejemplo 2.42. 6.

$$y' = 2e^{x} - y, y(0) = 1$$

$$y_{1}(x) = 1 + \int_{0}^{x} 2e^{t} - 1dt = 2e^{x} - x - 1$$

$$y_{2}(x) = 1 + \int_{0}^{x} 2e^{t} - t - 1dt = 2e^{x} - \frac{x^{2}}{2} - x - 1$$

$$y_{3}(x) = 1 + \int_{0}^{x} 2e^{t} - \frac{t^{2}}{2} - t - 1dt = 2e^{x} - \frac{x^{3}}{6} - \frac{x^{2}}{2} - x - 1$$

$$\vdots$$

$$y_{n}(x) = 2e^{x} - \sum_{i=1}^{n} \frac{x^{i}}{i!} - 1$$

2.9 Examen

Ejemplo 2.43. 2.

El problema de valor inicial $xy' = 3y, y(0) = \hat{a}$ tiene las soluciones $y = x^3y$.

Ejemplo 2.44. 4.

Existe un intervalo de centro 2 en el que la única solución del problema de valor inicial $y' = (y-1)^3$, y(2) = 1 es y = 1.

Ejemplo 2.45. θ .

Resuelva.

$$(y^2 + 1) dx = ysec^2(x)dy$$

Ejemplo 2.46. 8.

Resuelva.

$$y (lnx - lny) dx = (xlnx - xlny - y) dy$$

Ejemplo 2.47. 10.

Resuelva.

$$(6x+1)y^2\frac{dy}{dx} + 3x^2 + 2y^3 = 0$$

Ejemplo 2.48. 12.

Resuelva.

$$xdy + (xy + y - x^2 - 2x) dx = 0$$

Ejemplo 2.49. 14.

Resuelva.

$$(2x+y)y'=1$$

Ejemplo 2.50. 16.

Resuelva $-xy' + y = (y' + 1)^2$ sujeta a y(0) = 0.

Ejemplo 2.51. 18.

Resuelva la ecuación diferencial dada mediante una sustitución.

$$y'' = x - y'$$

Ejemplo 2.52. 20.

Resuelva y' + 2y = 4, y(0) = 3 mediante uno de los métodos usuales. Solucione el mismo problema por el método de Picard y compare los resultados.

3 Ecuaciones diferenciales lineales de orden superior

3.1 Teoría preliminar

Ejemplo 3.1. 4.

Ejemplo 3.2. 8.

Ejemplo 3.3. 14.

Obtenga los valores del parámetro para los cuales el problema de valor en la frontera $y'' + {}^2 y = 0$, y(0) = 0, y(5) = 0 tiene soluciones no triviales. $(y = c_1 cosx + c_2 senx)$

Ejemplo 3.4. 16.

Determine si las funciones dadas son linealmente independientes o linealmente dependientes en $-\infty < x < \infty$.

$$f_1(x) = 0$$
, $f_2(x) = x$, $f_3(x) = e^x$
son linealmente dependientes pues,
 $f_1 = kf_2 = kf_3$, para $k = 0$

Ejemplo 3.5. 30.

Ejemplo 3.6. 32.

Ejemplo 3.7. Formula de Abel 48.

3.2 Elaboración de una segunda solución a partir de una solución conocida

Ejemplo 3.8. 14.

Halle una segunda solución de cada ecuación diferencial. Suponga un intervalo adecuado de validez. $4x^2y'' + y = 0;$ $y_1 = x^{\frac{1}{2}}lnx$

Ejemplo 3.9. 20.

$$(1+x)y'' + xy' - y = 0;$$
 $y_1 = x$

$$x^2y'' + xy' + y = 0;$$
 $y_1 = cos(lnx)$

Ejemplo 3.11. Use el metodo de reducción de orden para obtener una solución de la ecuación no homogénea dada. La función $y_1(x)$ indicada es una solución de la ecuación homogénea asociada. Determine una segunda solución de la ecuación no homogénea. 34.

$$y'' - 4y' + 3y = x;$$
 $y_1 = e^x$

3.3 Ecuaciones lineales homogéneas con coeficientes constantes

Obtenga la solución general de la ecuación diferencial dada.

Ejemplo 3.12. 16.
$$2y'' - 3y' + 4y = 0$$

Ejemplo 3.13.
$$26$$
. $y''' - y'' - 4y = 0$

Ejemplo 3.14. 32.
$$y^{(4)} - 7y'' - 18y = 0$$

Ejemplo 3.15. 36.
$$2y^{(5)} - 7y^{(4)} + 12y''' + 8y'' = 0$$

Resuelva la ecuación diferencial dada sujeta a las condiciones iniciales indicadas.

Ejemplo 3.16. 44.
$$4y'' - 4y' - 3y = 0$$
, $y(0) = 1, y'(0) = 5$

Ejemplo 3.17. 52.
$$y^{(4)} - y = 0$$
, $y(0) = y'(0) = y''(0) = 0$, $y'''(0) = 1$

Ejemplo 3.18. 56.

Las raíces de la ecuación auxiliar son $m_1 = -\frac{1}{2}$, $m_2 = 3 + i$, $m_3 = 3 - i$. Cuál es la ecuación diferencial correspondiente?

16

Encuentre la solución general de la ecuación dada si se sabe que y_1 es una solución.

Ejemplo 3.19.
$$y''' + 6y'' + y' - 34y = 0;$$
 $y_1 = e^{-4x} cosx$

Ejemplo 3.20. 60.

3.4 Coeficientes indeterminados (Operadores diferenciales)

Factorice el operador diferencial cuando sea posible.

Ejemplo 3.21. 10.

$$D^4 - 8D^2 + 16$$

 $(D^2 - 4)^2 = [(D+4)(D-4)]^2$

Encuentre un operador diferencial que anule a la función dada.

Ejemplo 3.22. 20.

$$e^{-x}senx - e^{2x}cosx$$

Resuelva la ecuación diferencial dada por el método de los coeficientes indeterminados.

Ejemplo 3.23. 22.

$$2y'' - 7y' + 5y = -29$$

Ejemplo 3.24. 34.

$$y'' + 4y = 4\cos x + 3\sin x - 8$$

Ejemplo 3.25. 44.

$$y'' + 4y = \cos^2(x)$$

Ejemplo 3.26. 52.

$$y^{(4)} - 5y'' + 4y = 2\cosh x - 6$$

Resuelva la ecuación diferencial dada sujeta a las condiciones iniciales que se indican.

Ejemplo 3.27. 60.

$$y^{(4)} - y''' = x + e^x;$$
 $y(0) = y'(0) = y''(0) = y''(0) = 0$

3.5 Variación de parámetros

Resuelva cada ecuación diferencial mediante variación de parámetros. Dé un intervalo en el cual la solución general esté definida.

Ejemplo 3.28. 14.

$$y'' - 2y' + y = e^x \arctan x$$

Resuelva cada ecuación diferencial mediante variación de parámetros, sujeta a las codiciones iniciales y(0) = 1, y'(0) = 0.

Ejemplo 3.29. 24.

$$2y'' + y' - y = x + 1$$

Ejemplo 3.30. 28.

Dado que $y_1 = x$ y $y_2 = x \ln x$ forman un conjunto fundamental de soluciones de $x^2 y'' - 4xy' + 6y = 0$ en $0 < x < \infty$, determine la solución general de

$$x^2y'' - 4xy' + 6y = \frac{1}{x}.$$

3.6 Examen

Ejemplo 3.31. 2.

Si dos funciones diferenciales $f_1(x)$ $yf_2(x)$ son linealmente independientes en un intervalo, entonces $W(f_1, f_2) \neq 0$ por lo menos en un punto del intervalo. \hat{a}

Ejemplo 3.32. 4.

Las funciones $f_1(x) =$

Ejemplo 3.33.

Ejemplo 3.34.

 ${\bf Ejemplo~3.35.}$

Ejemplo 3.36.

Ejemplo 3.37.

Ejemplo 3.38.

Ejemplo 3.39.

 ${\bf Ejemplo~3.40.}$

Ejemplo 3.41.

Ejemplo 3.42.

Ecuaciones diferenciales con coeficientes variables 4

Ecuación de Cauchy-Euler

Ejemplo 4.1.

Ejemplo 4.2.

Ejemplo 4.3.

Ejemplo 4.4.

Ejemplo 4.5.

Ejemplo 4.6.

Soluciones en series de potencias

Ejemplo 4.7.

Ejemplo 4.8.

Ejemplo 4.9.

Ejemplo 4.10.

Ejemplo 4.11.

Ejemplo 4.12.

4.3 Soluciones en torno a puntos singulares

Ejemplo 4.13.

Ejemplo 4.14.

Ejemplo 4.15.

Ejemplo 4.16.

Ejemplo 4.17.

5 Transformada de Laplace

Practica ejecutada el día viernes 21 - 10 - 2016

• Use la Definición 7.1. para encontrar $\mathcal{L}\{f(t)\}$.

$$f(t) = \begin{pmatrix} 2t+1, & 0 < t < 1 \\ 0, & t \ge 1 \end{pmatrix}$$

$$\mathcal{L}\lbrace f(t)\rbrace = \lim_{b\to 1^-} \int_0^b f(t)e^{-st}dt + \lim_{b\to \infty} \int_1^b f(t)e^{-st}dt$$

$$\mathcal{L}{f(t)} = \lim_{b \to 1^-} \int_0^b (2t+1)e^{-st} dt$$

$$\mathcal{L}\lbrace f(t)\rbrace = \lim_{b \to 1^{-}} \left(\int_{0}^{b} 2t e^{-st} dt + \int_{0}^{b} e^{-st} dt \right)$$

$$\mathcal{L}\{f(t)\} = \lim_{b \to 1^{-}} \left(\int_{0}^{b} \frac{2}{-s} \left(-ste^{-st} \right) dt + \int_{0}^{b} \frac{1}{-s} \left(-se^{-st} \right) dt \right)$$

$$\begin{split} & \mathcal{L}\{f(t)\} = \lim_{b \to 1^{-}} \int_{0}^{b} f(t) e^{-st} dt + \lim_{\mathbf{b} \to \infty} \int_{1}^{\mathbf{b}} f(t) e^{-st} dt \\ & \mathcal{L}\{f(t)\} = \lim_{b \to 1^{-}} \int_{0}^{b} (2t+1) e^{-st} dt \\ & \mathcal{L}\{f(t)\} = \lim_{b \to 1^{-}} \left(\int_{0}^{b} 2t e^{-st} dt + \int_{0}^{b} e^{-st} dt \right) \\ & \mathcal{L}\{f(t)\} = \lim_{b \to 1^{-}} \left(\int_{0}^{b} \frac{2}{-s} \left(-st e^{-st} \right) dt + \int_{0}^{b} \frac{1}{-s} \left(-se^{-st} \right) dt \right) \\ & \mathcal{L}\{f(t)\} = \lim_{b \to 1^{-}} \left(\int_{0}^{b} \frac{2}{-s} \left(-st e^{-st} + e^{-st} - e^{-st} \right) dt + \int_{0}^{b} \frac{1}{-s} \left(-se^{-st} \right) dt \right) \end{split}$$

$$\begin{split} &\mathcal{L}\{f(t)\} = \lim_{b \to 1^{-}} \left(\int_{0}^{b} \frac{2}{-s} \left(\left(-ste^{-st} + e^{-st} \right) - \left(e^{-st} \right) \right) dt + \int_{0}^{b} \frac{1}{-s} \left(-se^{-st} \right) dt \right) \\ &\mathcal{L}\{f(t)\} = \lim_{b \to 1^{-}} \left(\int_{0}^{b} \frac{2}{-s} \left(\left(te^{-st} \right)' - \frac{1}{-s} \left(e^{-st} \right)' \right) dt + \int_{0}^{b} \frac{1}{-s} \left(e^{-st} \right)' dt \right) \\ &\mathcal{L}\{f(t)\} = \lim_{b \to 1^{-}} \left[\frac{2te^{-st}}{-s} - \frac{2e^{-st}}{s^{2}} + \frac{e^{-st}}{-s} \right]_{0}^{b} \\ &\mathcal{L}\{f(t)\} = \lim_{b \to 1^{-}} \left[\left(\frac{2be^{-sb}}{-s} - \frac{2e^{-sb}}{s^{2}} + \frac{e^{-sb}}{-s} \right) - \left(-\frac{2}{s^{2}} + \frac{1}{-s} \right) \right] \\ &\mathcal{L}\{f(t)\} = \left(\frac{2}{s^{2}} - \frac{1}{-s} \right) = \frac{2}{s^{2}} + \frac{1}{s} \end{split}$$

$$f(t) = t\cos(t)$$

$$\begin{split} & \pounds\{f(t)\} = \lim_{b \to \infty} \int_0^b t \cos(t) e^{-st} dt \\ & \pounds\{f(t)\} = \lim_{b \to \infty} \int_0^b Re \left(t e^{it}\right) e^{-st} dt \\ & \pounds\{f(t)\} = \lim_{b \to \infty} \int_0^b Re \left(t e^{(-s+i)t}\right) dt \\ & \pounds\{f(t)\} = \lim_{b \to \infty} Re \left(\int_0^b t e^{(-s+i)t} dt\right) \\ & \pounds\{f(t)\} = \lim_{b \to \infty} Re \left(\int_0^b \frac{\left(t e^{(-s+i)t}\right)'}{-s+i} - \frac{\left(e^{(-s+i)t}\right)'}{\left(-s+i\right)^2} dt\right) \\ & \pounds\{f(t)\} = \lim_{b \to \infty} Re \left(\left[\frac{t e^{(-s+i)t}}{-s+i} - \frac{e^{(-s+i)t}}{\left(-s+i\right)^2}\right]_0^b\right) \\ & \pounds\{f(t)\} = Re \left(\lim_{b \to \infty} \left(\frac{b e^{(-s+i)b}}{-s+i} - \frac{e^{(-s+i)b}}{\left(-s+i\right)^2} + \frac{1}{\left(-s+i\right)^2}\right)\right) \\ & \pounds\{f(t)\} = Re \left(\frac{1}{\left(-s+i\right)^2}\right) \\ & \pounds\{f(t)\} = Re \left(\frac{(-s-i)^2}{\left((-s+i)(-s-i)\right)^2}\right) \\ & \pounds\{f(t)\} = Re \left(\frac{(-1)^2(s+i)^2}{\left(s^2+1\right)^2}\right) \\ & \pounds\{f(t)\} = Re \left(\frac{(s^2-1)+i(s+s)}{\left(s^2+1\right)^2}\right) = Re \left(\frac{s^2-1}{\left(s^2+1\right)^2} + \frac{i(2s)}{\left(s^2+1\right)^2}\right) = \frac{s^2-1}{\left(s^2+1\right)^2} \end{split}$$

• Use el Teorema 7.2. para encontrar $\mathcal{L}\{f(t)\}$. 22.

$$f(t)=t^2-e^{-9t}+5$$

$$\pounds\{f(t)\}=\pounds\{t^2-e^{-9t}+5\}=\pounds\{t^2\}-\pounds\{e^{-9t}\}+5\pounds\{1\}=\frac{2!}{s^3}-\frac{1}{s+9}+\frac{5}{s}$$
 32.

$$f(t) = sen(2t)cos(2t)$$

$$\pounds\{f(t)\} = \pounds\{sen(2t)cos(2t)\} = \pounds\{\frac{2sen(2t)cos(2t)}{2}\} = \pounds\{\frac{sen(4t)}{2}\} = \frac{1}{2}\pounds\{sen(4t)\} = \frac{1}{2}\frac{4}{s^2+16} = \frac{2}{s^2+16}$$

• Utilice el Teorema 7.3. para determinar la transformada inversa dada.

$$\mathcal{L}^{-1}\{F(t)\}$$

43.

$$F(t) = \frac{(s+1)^3}{s^4}$$

$$\begin{split} F(t) &= \frac{(s+1)^3}{s^4} = \frac{s^3 + 3s^2 + 3s + 1}{s^4} = \frac{1}{s} + \frac{3}{s^2} + \frac{3}{s^3} + \frac{1}{s^4} = \frac{1}{s} + 3\frac{1}{s^2} + \frac{3}{2}\frac{2!}{s^3} + \frac{1}{6}\frac{3!}{s^4} \\ &= \pounds\{1\} + 3\pounds\{t\} + \frac{3}{2}\pounds\{t^2\} + \frac{1}{6}\pounds\{t^3\} = \pounds\{\frac{t^3 + 9t^2 + 18t + 6}{6}\} \\ &\Rightarrow \qquad \pounds^{-1}\{F(t)\} = f(t) = \frac{t^3 + 9t^2 + 18t + 6}{6} \\ 49. \end{split}$$

$$F(t) = \frac{4s}{4s^2 + 1}$$

$$F(t) = \frac{4s}{4s^2 + 1} = \frac{s}{s^2 + \frac{1}{4}} = \frac{s}{s^2 + \left(\frac{1}{2}\right)^2}$$

$$\Rightarrow \mathcal{L}^{-1}\{F(t)\} = f(t) = \cos\left(\frac{t}{2}\right)$$
58.

$$F(t) = \frac{1}{s^2 + s - 20}$$

$$F(t) = \frac{1}{s^2 + s - 20} = \frac{1}{(-1)^2 + (0)^2}$$

$$\begin{split} F(t) &= \frac{1}{s^2 + s - 20} = \frac{1}{\left(s + \frac{1}{2}\right)^2 - 81/4} = \frac{1}{\left(s + \frac{1}{2}\right)^2 - \left(\frac{9}{2}\right)^2} \\ &\frac{2}{9} \frac{\frac{9}{2}}{\left(s + \frac{1}{2}\right)^2 - \left(\frac{9}{2}\right)^2} = \frac{2}{9} \mathcal{L}\{senh\left(\frac{9t}{2}\right)\} \\ &\Rightarrow \quad \mathcal{L}^{-1}\{F(t)\} = f(t) = \frac{2}{9} senh\left(\frac{9t}{2}\right) \end{split}$$