Ribbed Smoked Sheet Forecasting

Suwicha saeling

Table of Contents

01

PROBLEM STATEMENT

02

03

04

CONCLUSION and RECOMMENDATION

Who Am I

Junior Data Scientist at Rubber cooperative

Part 1: Problem Statement

Why I chose Rubber

Why I chose Rubber

The Rubber price fluctuated due to various world events such as:

- 1. Downward trending demand for medical gloves decreased during the pandemic.
- Semiconductor chips in short supply which dramatically curtailed production in the auto industry. (<u>source</u>)

Rubber Cooperative Cycle

The problem in Rubber cooperative is using **Instinct-Decision** based from the experience.

Member of Rubber cooperative

Rubber Plantation
Owner

Lower price

Sold to cooperative

Problem Statement

"Rubber cooperative wants a model that forecasts **Ribbed smoked sheet** prices to estimate trend 1 month
out to increase chance of success speculating in
the Ribbed smoked sheet market"

Rubber Cooperative Cycle

If we can change to **Data-Driven-Decision**.

Direct Variables

Indirect Variables

Currency **Appreciation** & **Depreciation** also impact the Rubber price because they are related to **imports** and **exports**

Data Gathering

Year ranges — 2017-2022 in data — 2010-2022

Data Cleaning - Missing Values

Part 2: Exploratory Data Analysis

RSS and Other Rubber Type Prices

Ribbed Smoked Sheet and other rubber prices 2017 - 2022 with moving average 1 month

RSS and Futures Prices

Ribbed Smoked Sheet and Tocom Prices 2017 - 2022 with moving average 1 month

Feature Selection

My criteria is features have correlation more than or equal to **moderate** correlation.

Delete usd variable because correlation does not meet my threshold of moderate correlation.

Part 3: 🚉 Modeling & Evaluation

Goal for Developing Model

"Build model to **forecast Ribbed smoked sheet** prices 1 month out to estimate trend of RSS prices for Rubber cooperative. Model performance will evaluated by MAPE. Model will be considered for production if MAPE score is **better** than baseline by 5% or more."

It is a convention that we use MAPE for measure of prediction accuracy of a forecasting method

Baseline Model

Model with all features

This model is fed **all features**, and predicted values have **downward trend** that fails to capture the pattern of the data.

RSS price prediction with all features using AutoARIMA $_{\rm MAPE~is~9.43\%}$

RMSE is 5.38

Feature Engineer - Date

Modeling

The model perform better in capture trends but still make a lot of mistake and if looking carefully in **October** that model went too much **wrong**.

^{**}Move up to more complexity model

Features engineer - Adding Indicators

^{**}Gave all data to predict october

Final model

Model perform a lot better in catching trend, but still have too many **errors** and the **score doesn't meet** criteria.

Part 4: Part 4

Conclusion

"Build model to forecast Ribbed smoked sheet prices next 1 month to estimate trend of RSS prices for Rubber cooperative. Model performance will evaluate by MAPE, Will working in production part if score better than baseline 5%"

To conclude, this project **fails** because the data has complex trend and confounding variables. Final model captures wrong trend though it improved with more feature engineering. This project can be improved further if I can find **additional features and add more Indicators**.

Recommendation

 RAOT has high quantities of rubber stock in warehouses which if brought to market could decrease RSS price in Thailand and globally. Thus, what needs to be included is RAOT rubber stock quantity as it might help model perform more accurately. (<u>source</u>)

2. Find the **appropriate Indicators** to help forecast rubber prices, as in the final model, the indicators helped to model data trends.

— My <u>Father</u> and <u>Mother</u> who always give me the important information.

<u>James</u>, <u>Nozomi</u>, and <u>Mood</u>, my instructional team.
 They gave me guidance in this capstone project.

— My <u>classmates</u> for giving great ideas.

<u>Everyone</u> in this room for paying attention to my presentation.

THANK YOU

Does anyone have any questions?

Additional

RSS and Currencies Prices

Ribbed Smoked Sheet and all currencies Prices 2017 - 2022 with moving average 1 month

RSS and Crude oil Prices

Ribbed Smoked Sheet and Crude oil Prices 2017 - 2022 with moving average 1 month

Seasonal Decompose

There is no **sign** of seasonality of RSS price.

Ribbed Smoked Sheet Autocorrelation (ACF)

Stationary Test

Used **Augmented Dickey–Fuller** test for check **stationary** if P-value < 0.05 that dataset are stationary.

RSS prices after differencing one time

P-value

0.00...

Baseline model only october

N-BEATS - Architecture

