Universidad de Granada. Ecuaciones Diferenciales I 22 de Enero de 2021. Prueba final.

NOMBRE:

- 1. Encuentre la familia de trayectorias ortogonales en el primer cuadrante a la familia de curvas $x^2 + y^2 = Cx$, donde $C \in \mathbb{R}$.
- 2. Determine el conjunto de funciones f(t) para las que la ecuación

$$x^2 \operatorname{sen} t + x f(t) \frac{dx}{dt} = 0$$

es exacta, y encuentre la solución para cada una de ellas.

3. Sea $_0$ un cero doble del polinomio cuadrático $p(\lambda) = \lambda^2 + a_1\lambda + a_0$ (es decir, λ_0 verifica $p(\lambda_0) = p'(\lambda_0) = 0$). Por sustitución directa en la ecuación, demuestre que $te^{\lambda_0 t}$ es solución de la ecuación lineal de segundo orden

$$x'' + a_1 x' + a_0 x = 0.$$

4. Se considera la matriz

$$A = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right).$$

Se pide

- 4..1 probar que A(A 3I) = 0.
- 4.2. Calcule e^{At} (sugerencia: aunque no es obligatorio, el uso del apartado anterior simplifica los cálculos necesarios)