Seminários II

Metaheurísticas para o Problema da Seleção de Atributos em Bases de Dados, Modelado como Empacotamento de Conjuntos

Aluno: Bruno C. do Nascimento

Orientador: Marcos Henrique Fonseca Ribeiro

Sumário

- O problema
- Por que reduzir a dimensão dos dados?
- A maldição da dimensionalidade
- Diferencial do Trabalho
- O que já foi feito
- Resultados obtidos com a base de vinhos
- O que será feito
- Cronograma
- Dúvidas e sugestões

Problema

 Utilizar busca heurística para a seleção dos melhores atributos de uma base de dados com a finalidade de reduzir a sua dimensão.

Por que reduzir a dimensão dos dados?

A maldição da dimensionalidade

A maldição da dimensionalidade

- Alto custo computacional
- Atributos redundantes (possuem alta correlação)
- Problemas com a eficácia das métricas de distância

Ex: Atrapalha o agrupamento realizado por algoritmos de clusterização

Diferencial do Trabalho

- O problema foi modelado como Empacotamento de Conjuntos.
- Restrições criadas a partir da análise da correlação dos atributos.
- Atributos com correlação alta não devem estar juntos na solução.

Diferencial do Trabalho

 Técnica específica para seleção de atributos para clusterização, onde não se tem uma classe associada a cada entrada da base de dados.

O que já foi feito

- GRASP (Greedy Randomized Adaptive Search Procedure)
- ILS (Iterated Local Search)
- VNS (Variable Neighborhood Search)
- GA (Genetic Algorithm)
- Teste na base de dados de vinhos

Base de vinhos

- Obtida em UCI Machine Learning Repository <u>https://archive.ics.uci.edu/ml/datasets/wine</u>
- 12 Atributos
- 179 instâncias
- 161 instâncias (com remoção de outliers)

Atributos da base de vinhos

\sim					
()	_	N	a	21	cid
\mathbf{C}		IV	ı	a	JIM

1 - Ash

2 - Alcalinity of ash

3 - Magnesium

4 - Total phenols

5 - Flavanoids

6 - Nonflavanoid phenols

7 - Proanthocyanins

8 - Color intensity

9 - Hue

10 - OD280/OD315 of diluted wines

11 - Proline

Resultados com a base de vinhos

Exato	GRASP	ILS	VNS	GA
[4, 7, 11]	[0, 3, 11]	[0, 3, 11]	[0, 3, 11]	[0, 3, 6]
0.687259	0.698179	0.698179	0.698179	0.671707
[0, 3, 11]	[0, 3, 6]	[0, 3, 6]	[0, 3, 10]	[1, 7, 10]
0.662934	0.671707	0.671707	0.631337	0.615981
[1, 9, 10]	[1, 9, 10]	[4, 7, 11]	[0, 3, 9]	[0, 3, 6, 9, 10]
0.663934	0.649208	0.666886	0.618954	0.601749
[6, 7, 9]	[3, 6, 7]	[1, 9, 10]	[0, 3, 9, 10]	[7, 9, 10]
0.652378	0.638472	0.649208	0.604974	0.597212
Tempo médio (s)	61	106	33	12

O que será feito

- Comparação dos resultados em bases maiores
- Implementar outra metaheurística
- Escrever artigo

Cronograma

Mês / Metas	А	В	С	D	E
Agosto	х				
Setembro	х	х	х	х	
Outubro				x	х
Novembro					х

- A GRASP e primeiras comparações
- B Implementação do ILS
- C Implementação do VNS
- D Implementação do GA
- E Comparação dos resultados e escrever artigo

Dúvidas

Contato:

Bruno Conceição do Nascimento

Email: <u>bcnbruno17@gmail.com</u> / <u>b_cnbruno@hotmail.com</u>

Github: github.com/bcnbruno/brunotcc