2. Gradient methods

- classes of convex functions
- classical gradient method
- complexity analysis of gradient method
- Newton and quasi-Newton methods

Convex function

f is convex if $\operatorname{dom} f$ is a convex set and Jensen's inequality holds:

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y), \quad \forall \theta \in [0, 1], \quad \forall x, y \in \operatorname{dom} f(x)$$

first-order condition

for (continuously) differentiable f, Jensen's inequality can be replaced by

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle, \quad \forall x, y \in \mathbf{dom} f$$

second-order condition

for twice differentiable f, Jensen's inequality can be replaced with

$$\nabla^2 f(x) \succeq 0, \quad \forall x \in \mathbf{dom} f$$

Strictly convex function

f is strictly convex if $\operatorname{dom} f$ is convex and for all $x,y\in\operatorname{dom} f$ and $x\neq y$

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y), \quad \forall \theta \in (0, 1)$$

first-order condition (for differentiable f): $\operatorname{dom} f$ is convex and

$$f(y) > f(x) + \langle \nabla f(x), y - x \rangle, \quad \forall x, y \in \mathbf{dom} \ f \ \mathsf{and} \ x \neq y$$

hence minimizer of f is unique (if it exists)

second-order condition

note that $\nabla^2 f(x) > 0$ is not necessary for strict convexity (cf., $f(x) = x^4$)

Strongly convex function

f is strongly convex with parameter $\mu > 0$ if

$$f(x) - \frac{\mu}{2} ||x||_2^2 \quad \text{is convex}$$

Jensen's inequality

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y) - \frac{\mu}{2}\theta(1 - \theta)\|x - y\|_{2}^{2}$$

first-order condition

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||x - y||_2^2 \quad \forall x, y \in \text{dom } f(y)$$

second-order condition

$$\nabla^2 f(x) \succeq \mu I \quad \forall x \in \mathbf{dom} f$$

Quadratic lower bound

(from 1st-order condition) if f is strongly convex with parameter μ , then

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||x - y||_2^2 \quad \forall x, y \in \text{dom } f$$

if $\operatorname{dom} f = \mathbf{R}^n$, then f has a unique minimizer x^* and

$$\frac{\mu}{2} \|x - x^{\star}\|_{2}^{2} \le f(x) - f(x^{\star}) \le \frac{1}{2\mu} \|\nabla f(x)\|_{2}^{2}, \qquad \forall x \in \mathbf{R}^{n}$$

Functions with Lipschitz continuous gradients

gradient of f is Lipschitz continuous with parameter L>0 if

$$\|\nabla f(x) - \nabla f(y)\|_2 \le L\|x - y\|_2, \quad \forall x, y \in \operatorname{dom} f(x)$$

quadratic upper and lower bounds

$$|f(y) - f(x) - \nabla f(x)^T (y - x)| \le \frac{L}{2} ||y - x||_2^2$$

for convex functions, only the upper bound is useful

second-order condition (for twice continuously differentiable function)

$$\nabla^2 f(x) \leq LI, \qquad \forall x \in \mathbf{R}^n$$

Quadratic upper bound

if $\nabla f(x)$ is Lipschitz-continuous with parameter L>0, then

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||x - y||_2^2 \quad \forall x, y \in \text{dom } f$$

if $\operatorname{dom} f = \mathbf{R}^n$ and f has a minimizer x^* , then

$$\frac{1}{2L} \|\nabla f(x)\|_2^2 \le f(x) - f(x^*) \le \frac{L}{2} \|x - x^*\|_2^2$$

Classical gradient method

to minimize a differentiable convex function f: choose $x^{(0)}$ and repeat

$$x^{(k+1)} = x^{(k)} - t_k \nabla f(x^{(k)}), \qquad k = 0, 1, 2, \dots$$

step size rules

- exact line search: $t_k = \operatorname*{argmin}_t f(x^{(k)} t \nabla f(x^{(k)}))$
- fixed: t_k constant
- backtracking line search (most practical)

advantages of gradient method

- every iteration is inexpensive
- does not require second derivatives

Backtracking line search

initialize t_k at some $\hat{t} > 0$ (for example, $\hat{t} = 1$), repeat $t_k := \beta t_k$ until

$$f(x - t_k \nabla f(x)) < f(x) - \alpha t_k ||\nabla f(x)||_2^2$$

two parameters: $0 < \beta < 1$ and $0 < \alpha \leq 0.5$

Analysis of gradient method

$$x^{(k+1)} = x^{(k)} - t_k \nabla f(x^{(k)}), \qquad k = 0, 1, 2, \dots$$

with fixed step size or backtracking line search

assumptions

- 1. f is convex and differentiable with $\operatorname{dom} f = \mathbf{R}^n$
- 2. $\nabla f(x)$ is Lipschitz continuous with parameter L>0
- 3. optimal value $f^* = \inf_x f(x)$ is finite and attained at x^*

Analysis for constant step size

recall quadratic upper bound: $f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} \|y - x\|_2^2$, plug in $y = x - t \nabla f(x)$ to obtain

$$f(x - t\nabla f(x)) \le f(x) - t\left(1 - \frac{Lt}{2}\right) \|\nabla f(x)\|_{2}^{2}$$

let $x^+ = x - t\nabla f(x)$ and assume $0 < t \le 1/L$,

$$f(x^{+}) \leq f(x) - \frac{t}{2} \|\nabla f(x)\|_{2}^{2}$$

$$\leq f^{*} + \langle \nabla f(x), x - x^{*} \rangle - \frac{t}{2} \|\nabla f(x)\|_{2}^{2}$$

$$= f^{*} + \frac{1}{2t} (\|x - x^{*}\|_{2}^{2} - \|x - x^{*} - t\nabla f(x)\|_{2}^{2})$$

$$= f^{*} + \frac{1}{2t} (\|x - x^{*}\|_{2}^{2} - \|x^{+} - x^{*}\|_{2}^{2})$$

take $x=x^{(i-1)}$, $x^+=x^{(i)}$, $t_i=t$, and the bounds for $i=1,\ldots,k$:

$$\sum_{i=1}^{k} \left(f(x^{(i)}) - f^* \right) \leq \frac{1}{2t} \sum_{i=1}^{k} \left(\|x^{(i-1)} - x^*\|_2^2 - \|x^{(i)} - x^*\|_2^2 \right)$$

$$= \frac{1}{2t} \left(\|x^{(0)} - x^*\|_2^2 - \|x^{(k)} - x^*\|_2^2 \right)$$

$$\leq \frac{1}{2t} \|x^{(0)} - x^*\|_2^2$$

since $f(x^{(i)})$ is non-increasing,

$$f(x^{(k)}) - f^* \le \frac{1}{k} \sum_{i=1}^k \left(f(x^{(i)}) - f^* \right) \le \frac{1}{2kt} \|x^{(0)} - x^*\|_2^2$$

conclusion: number of iterations to reach $f(x^{(k)}) - f^* \le \epsilon$ is $O(1/\epsilon)$

Analysis for backtracking line search

line search with $\alpha = 1/2$ and $0 < \beta < 1$

selected step size satisfies $t_k \ge t_{\min} = \min\{\hat{t}, \beta/L\}$

convergence analysis

• from page 2–11:

$$f(x^{(i)}) \leq f^* + \frac{1}{2t_i} \left(\|x^{(i-1)} - x^*\|_2^2 - \|x^{(i)} - x^*\|_2^2 \right)$$

$$\leq f^* + \frac{1}{2t_{\min}} \left(\|x^{(i-1)} - x^*\|_2^2 - \|x^{(i)} - x^*\|_2^2 \right)$$

add the upper bounds to obtain

$$f(x^{(k)}) - f^* \le \frac{1}{k} \sum_{i=1}^k \left(f(x^{(i)}) - f^* \right) \le \frac{1}{2kt_{\min}} \|x^{(0)} - x^*\|_2^2$$

conclusion: same 1/k bound as with constant step size

Analysis for strongly convex functions

faster convergence rate with additional assumption of strong convexity

analysis for exact line search: recall from quadratic upper bound

$$f(x - t\nabla f(x)) \le f(x) - t\left(1 - \frac{Lt}{2}\right) \|\nabla f(x)\|_{2}^{2}$$

use $x^+ = \operatorname{argmin}_t f(x - t\nabla f(x))$ to obtain

$$f(x^{+}) \le f\left(x - \frac{1}{L}\nabla f(x)\right) \le f(x) - \frac{1}{2L}\|\nabla f(x)\|_{2}^{2}$$

subtract f^* from both sides

$$f(x^{+}) - f^{\star} \leq f(x) - f^{\star} - \frac{1}{2L} \|\nabla f(x)\|_{2}^{2}$$

now use strong convexity: $f(x) - f^* \leq \frac{1}{2\mu} \|\nabla f(x)\|_2^2$

$$f(x^+) - f^* \le \left(1 - \frac{\mu}{L}\right) (f(x) - f^*)$$

therefore

$$f(x^{(k)}) - f^{\star} \leq \left(1 - \frac{\mu}{L}\right)^k \left(f(x^{(0)}) - f^{\star}\right)$$

conclusion: number of iterations to reach $f(x^{(k)}) - f^* \leq \epsilon$ is

$$\frac{\log\left((f(x^{(0)}) - f^{\star})/\epsilon\right)}{\log(1 - \mu/L)^{-1}} \approx \frac{L}{\mu}\log\left(\frac{f(x^{(0)}) - f^{\star}}{\epsilon}\right)$$

- ullet roughly proportional to condition number L/μ when it is large
- slightly tighter bound exists (smaller constant in iteration bound)
- distance to optimum $||x^{(k)} x^{\star}||_2$ also decreases geometrically

Numerical examples

quadratic example

$$f(x) = \frac{1}{2} \left(x_1^2 + \gamma x_2^2 \right) \qquad (\gamma > 1)$$

with exact line search, starting at $x^{(0)}=(\gamma,1)$

$$f(x^{(k)}) = \left(\frac{\gamma - 1}{\gamma + 1}\right)^{2k} f(x^{(0)})$$

$$\frac{\|x^{(k)} - x^{\star}\|_{2}}{\|x^{(0)} - x^{\star}\|_{2}} = \left(\frac{\gamma - 1}{\gamma + 1}\right)^{k}$$

gradient method is often very slow; very much dependent on scaling

nonquadratic example

$$f(x_1, x_2) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1}$$

$$(\alpha = 0.1, \beta = 0.7)$$

backtracking line search

exact line search

a problem in $\ensuremath{\mathrm{R}^{100}}$

$$f(x) = c^T x - \sum_{i=1}^{500} \log(b_i - a_i^T x)$$

linear convergence, i.e., a straight line on a semilog plot

Newton's method

assume f(x) is twice continuously differentiable and convex

(pure) Newton method

$$x^{(k+1)} = x^{(k)} - \nabla^2 f(x^{(k)})^{-1} \nabla f(x^{(k)})$$

damped Newton method

$$x^{(k+1)} = x^{(k)} - t_k \nabla^2 f(x^{(k)})^{-1} \nabla f(x^{(k)})$$

- advantages: fast convergence, affine invariance
- disadvantages: requires second derivatives, solution of linear equation

can be too expensive for large-scale applications

Classical convergence analysis

assumptions

- f strongly convex with parameter μ
- $\nabla^2 f$ is Lipschitz continuous with parameter M>0:

$$\|\nabla^2 f(x) - \nabla^2 f(y)\|_2 \le M\|x - y\|_2$$

(M measures how well f can be approximated by a quadratic function)

outline: there exist constants $\eta \in (0, \mu^2/M)$, $\gamma > 0$ such that

- if $\|\nabla f(x)\|_2 \ge \eta$, then $f(x^{(k+1)}) f(x^{(k)}) \le -\gamma$
- if $\|\nabla f(x)\|_2 < \eta$, then

$$\frac{M}{2\mu^2} \|\nabla f(x^{(k+1)})\|_2 \le \left(\frac{M}{2\mu^2} \|\nabla f(x^{(k)})\|_2\right)^2$$

damped Newton phase $(\|\nabla f(x)\|_2 \ge \eta)$

- most iterations require backtracking steps
- ullet at each iteration, function value decreases by at least γ

quadratically convergent phase $(\|\nabla f(x)\|_2 < \eta)$

- all iterations use step size t=1
- $\|\nabla f(x)\|_2$ converges to zero quadratically:

$$\frac{M}{2\mu^2} \|\nabla f(x^l)\|_2 \le \left(\frac{M}{2\mu^2} \|\nabla f(x^k)\|_2\right)^{2^{l-k}} \le \left(\frac{1}{2}\right)^{2^{l-k}}, \qquad l \ge k$$

 \bullet quadratic convergence for $f(x^{(k)}) - f^{\star}$ and $\|x^{(k)} - x^{\star}\|_2$

conclusion: number of iterations until $f(x) - f^* \le \epsilon$ is bounded above by

$$\frac{f(x^{(0)}) - f^*}{\gamma} + \log_2 \log_2(\epsilon_0/\epsilon)$$

Convergence rate and complexity bound

	convergence rate	complexity bound	dependence on c
sublinear rate	$r_k \le \frac{c}{k^p}$	$\left(\frac{c}{\epsilon}\right)^{1/p}$	strong
linear rate	$r_k \le c(1-q)^k$	$\frac{1}{q} \left(\log c + \log \frac{1}{\epsilon} \right)$	weak
quadratic rate	$r_{k+1} \le c r_k^2$	$\log\log\frac{1}{\epsilon}$	very weak

 r_k can be $f(x^{(k)}) - f^*$, $||x^{(k)} - x^*||_2$, or $||\nabla f(x^{(k)})||_2$; c is some constant

- complexity bound is inverse function of rate of convergence
- interpretation through amount of work for each correct digit

Examples for Newton's method

example in \mathbb{R}^2 (page 2–18)

- backtracking parameters $\alpha = 0.1$, $\beta = 0.7$
- converges in only 5 steps
- quadratic local convergence

example in R^{100} (page 2–19)

- backtracking parameters $\alpha = 0.01$, $\beta = 0.5$
- backtracking line search almost as fast as exact l.s. (and much simpler)
- clearly shows two phases in algorithm

example in R^{10000} (with sparse a_i)

$$f(x) = -\sum_{i=1}^{10000} \log(1 - x_i^2) - \sum_{i=1}^{100000} \log(b_i - a_i^T x)$$

- backtracking parameters $\alpha = 0.01$, $\beta = 0.5$.
- performance similar as for small examples

Approximation

majority of general nonlinear optimization methods are based on nonincreasing seq.: generate a sequence $\{x^{(k)}\}_{k=0}^{\infty}$ such that

$$f(x^{(k+1)}) \le f(x^{(k)}), \qquad k = 0, 1, 2, \dots$$

- ullet if f(x) is bounded below, then the sequence $\{f(x^{(k)})\}_{k=0}^\infty$ converges
- we always improve the objective function

another view:

approximation: replace original complex objective by a simplified one

- local approximation: first-order and second-order approximations
- global perspectives are necessary for optimal methods (next lecture)

An approximation perspective

$$x^{(k+1)} = \underset{y}{\operatorname{argmin}} \phi_{t_k}(x^{(k)}; y)$$

where $\phi_{t_k}(x^{(k)};y)$ is an approximation of f near $x^{(k)}$, with parameter t_k

gradient method

$$\phi_t^{\text{grad}}(x;y) = f(x) + \nabla f(x)^T (y - x) + \frac{1}{2t} ||y - x||_2^2$$

(damped) Newton's method

$$\phi_t^{\text{Newton}}(x;y) = f(x) + \nabla f(x)^T (y-x) + \frac{1}{2t} (y-x)^T \nabla^2 f(x) (y-x)$$

role of line search: choose appropriate parameter t for approximation

Variable metric method

$$x^{(k+1)} = \underset{y}{\operatorname{argmin}} \phi_{t_k}(x^{(k)}; y)$$

where

$$\phi_{t_k}(x^{(k)}; y) = f(x^{(k)}) + \nabla f(x^{(k)})^T (y - x^{(k)}) + \frac{1}{2t_k} (y - x^{(k)})^T H_k (y - x^{(k)})$$

better approximation than gradient method

$$\{H_k\}: H_k \to \nabla^2 f(x^*)$$

• less expensive than Newton's method

(low-rank) updates of $\{H_k\}$ or $\{H_k^{-1}\}$ only involve gradients

variable metric: steepest descent direction with quadratic norm

$$||z||_{H_k} = \sqrt{z^T H_k z}$$

Variable metric methods

given initial point $x^{(0)}$ and $H_0 \succ 0$

repeat for $k = 0, 1, 2, \ldots$ until a stopping criterion is satisfied

1. compute quasi-Newton direction

$$\Delta x = -H_k^{-1} \nabla f(x^{(k)})$$

- 2. determine step size t_k (e.g., via backtracking line search)
- 3. update $x^{(k+1)} = x^{(k)} + t_k \Delta x$ and call oracle for $\nabla f(x^{(k+1)})$
- 4. compute H_{k+1} based on current information set
- ullet different methods use different rules for updating H_k in step 4
- ullet can directly propagate H_k^{-1} to simplify calculation of Δx

Secant condition (quasi-Newton rule)

$$\nabla f(x^{(k+1)}) - \nabla f(x^{(k)}) = H_{k+1} \left(x^{(k+1)} - x^{(k)} \right)$$

interpretation: for any quadratic function

$$f(x) = \alpha + \langle h, x \rangle + \frac{1}{2} \langle Hx, x \rangle$$

we have $\nabla f(x) = Hx + h$, and therefore for any $x, y \in \mathbf{R}^n$,

$$\nabla f(x) - \nabla f(y) = H(x - y)$$

Broyden-Fletcher-Goldfard-Shanno (BFGS)

BFGS update

$$H_{k+1} = H_k - \frac{H_k s s^T H_k}{s^T H_k s} + \frac{y y^T}{y^T s}$$

where

$$s = x^{(k+1)} - x^{(k)}, \qquad y = \nabla f(x^{(k+1)}) - \nabla f(x^{(k)})$$

inverse update

$$H_{k+1}^{-1} = \left(I - \frac{sy^{T}}{y^{T}s}\right)H_{k}^{-1}\left(I - \frac{ys^{T}}{y^{T}s}\right) + \frac{ss^{T}}{y^{T}s}$$

- satisfies secant condition with unit step size
- \bullet $y^Ts>0$ preserves positive definiteness, thus ensures descent direction
- cost of update or inverse update is $O(n^2)$ arithmetic operations

Convergence result

global convergence

if f is strongly convex, then BFGS with backtracking line search converges to the optimum for any $x^{(0)}$ and $H_0 \succ 0$

local convergence

if f is strongly convex and $\nabla^2 f(x)$ is Lipschitz continuous, then local convergence is *superlinear*: for sufficiently large k,

$$||x^{(k+1)} - x^*||_2 \le c_k ||x^{(k)} - x^*||_2$$

where $c_k \to 0$ (cf., quadratic local convergence of Newton's method)

Low-memory quasi-Newton methods

main disadvantage of quasi-Newton method is need to store H_k or H_k^{-1}

limited-memory BFGS (L-BFGS): do not store H_k^{-1} explicitly

ullet instead store m (say, m=30) most recent values of

$$s_j = x^{(j)} - x^{(j-1)}, y_j = \nabla f(x^{(j)}) - \nabla f(x^{(j-1)})$$

• evaluate $\Delta x = -H_k^{-1} \nabla f(x^{(k)})$ recursively, using

$$H_{j}^{-1} = \left(I - \frac{s_{j}y_{j}^{T}}{y_{j}^{T}s_{j}}\right)H_{j-1}^{-1}\left(I - \frac{y_{j}s_{j}^{T}}{y_{j}^{T}s_{j}}\right) + \frac{s_{j}s_{j}^{T}}{y_{j}^{T}s_{j}}$$

for $j=k,k-1,\ldots,j-m+1$, assuming, for example, $H_{k-m}^{-1}=I$

• cost per iteration is O(mn); storage is O(mn)

References

- S. Boyd and L. Vandenberghe, Convex Optimization (2004), Chapter 9.
- J. Nocedal and S. J. Wright, *Numerical Optimization (2nd Edition)* (2006), Chapters 3 and 6.
- Yu. Nesterov, *Introductory Lectures on Convex Optimization. A Basic Course* (2004), Sections 1.2, 1.3 and 2.1.
- L. Vandenberghe, Lecture notes for EE236C Optimization Methods for Large-Scale Systems, UCLA.