

Cálculos:

Cálculo II Teste I (versão para praticar) – abril 2024

	(1 1 /
1.	Calcule o volume do paralelepípedo gerado pelos vetores
	$\vec{u} = (2, 1, -1), \vec{v} = (0, 1, 2), \vec{w} = (3, -2, 5).$
	Resposta:
	Cálculos:
2.	O triângulo com vértices nos pontos
	P = (2, -1, 1), Q = (2, 1, 0), R = (1, -1, -1)
	é um triângulo retângulo? Qual é a sua área?
	Resposta:
	Cálculos:
3.	Encontre a equação cartesiana do plano que contém o ponto $(1,2,-2)$ e é perpendicular ao veto $(1,-1,2)$.
	Resposta:

4. Faça a correspondência entre a equação e o seu gráfico.

(a)
$$2x^2 + y^2 - z^2 = 0$$

(b)
$$2x^2 + y^2 + z^2 = 1$$

(c)
$$2x^2 + y^2 - z = 0$$

5. A parábola $y=x^2+1$ é rodada 60^{0} em torno da origem, no sentido negativo. Qual é a equação da parábola resultante?

Respost	a:	

Cálculos:

6. A transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por T(x, y, z) = (2x + 3y, z, x + y) preserva volumes? E a orientação? Justifique.

Resposta:	

1.	Encountre a equação da parabola com foco no pointo $(1,-1)$ e feta difetitz $y=2x$, na forma $Ax^2+By^2+Cxy+Dx+Ey+F=0$.
	Resposta:
	Cálculos:
Q	Encontre as coordenadas cilíndricas r, θ, z e as coordenadas esféricas ρ, θ, φ do ponto $(1, -\sqrt{3}, 2\sqrt{3})$.
0.	
	Resposta:
	Cálculos:
9.	Determine a equação do plano tangente ao gráfico da função $f(x,y)=1+\sin\left(xy^2\right)$ no ponto $P=(\pi,1).$
	Resposta:
	Cálculos:

$$d(p,\ell) = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}.$$

Recorde que a distância de um ponto $P=(x_0,y_0)$ a uma reta ℓ definida pela equação ax+by+c=0 é dada por

10. Faça a correspondência entre a função e a representação das suas curvas de nível. Justifique a sua escolha

(a)
$$\sqrt{x^2 + 2y^2}$$

(b)
$$\cos(xy+1)$$

(c)
$$\sin(2x + y + 5)$$

Justificação:

11. As dimensões x,y,z de uma caixa variam com o tempo. Num certo instante, x=1 m, y=2 m e z=3 m; além disso, x e y crescem à taxa de 2 m/s, enquanto z diminui à taxa de 3 m/s. Nesse instante, determine a taxa de variação do comprimento da diagonal da caixa.

Resposta:	
-----------	--

12. A figura exibe o gráfico de uma certa função f(x,y), juntamente com uma representação das suas curvas de nível.

- (a) Esboce o vetor $\nabla f(P)$.
- (b) Indique um ponto Q do domínio tal que $\nabla f(Q) = 0$.
- (c) Indique um ponto R do domínio tal que $f_x(R) < 0$ e $f_{xx}(R) > 0$.
- (d) Esboce um vetor unitário \vec{u} tal que $Df_{\vec{u}}(P)<0.$

Justificação:

13.	Calcule a derivada direcional d	$e f(x,y) = x^3 -$	$-3x^2y + 1$ no p	ponto $P = (-1)^{n}$	-1, 2), na	direção do	versor
	de $\vec{u} = (3, -1)$.						

Resposta:	
Tresposia.	

14.	Encontre os pontos críticos da função $f(x,y) = -3x^2 - 4xy - y^2 - 12y + 16x$ e classifique-os.
	Resposta:
	Cálculos:
15.	Encontre os valores extremos absolutos da função $f(x,y)=x-3y$ sobre a elipse $x^2+2y^2=3$.
	Resposta: