

TMSCA HIGH SCHOOL MATHEMATICS TEST #11 ©

FEBRUARY 9, 2019

GENERAL DIRECTIONS

- 1. About this test:
- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- 2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA TMSCA

- 1. Evaluate $\frac{19(7!) \div 8}{7 + 2^3}$.
 - (A) 1718
- **(B)** 214
- (C) 798
- (D) 6384
- **(E)** 13,680
- 2. Caroline had a rope that was 18 feet long. She cut off three pieces such that the ratio of lengths of the pieces were 2:3:9 with 20 inches of string left over. How long was the longest piece?
 - (A) 9'8"
- (B) 9'11"
- (C) 3' 6"
- (D) 10' 6"
- **(E)** 10'
- 3. What is the x intercept of the perpendicular bisector of the line segment shown?

- (A) $\left(0,\frac{1}{2}\right)$ (B) $\left(0,3\right)$ (C) $\left(1,0\right)$ (D) $\left(-\frac{3}{2},0\right)$ (E) $\left(3,0\right)$
- 4. Libby made a cake that called for 2 cups of flour, 1.5 cups of sugar, 1 cup of butter, 1 tablespoon of baking powder, 1 cup of milk and 1 teaspoon of vanilla. Calculate the price of the cake if flour costs \$2.89 for 20 cups; sugar costs \$1.79 for 12 cups; butter costs \$3.99 for 2 cups; baking powder costs \$1.42 for 30 tablespoons; milk costs \$2.69 per gallon and vanilla costs \$13.99 for 1.5 cups. All of the
 - (A) \$2.38
- **(B)** \$3.27

ingredients in Libby's cake are tax exempt groceries.

- (C) \$4.32
- (D) \$3.14
- **(E)** \$2.92
- 5. Which of the following is a symbolic representation for the Venn diagram shown?

(E) $B \cup A$

- (A) 0.15
- (B) 0.20
- (C) 0.48
- (D) 0.16
- $(E) \quad 0.12$

- 7. If A is $66\frac{2}{3}\%$ of B, and C is 120% of B, then A = ____% of C?

 - (A) $71\frac{3}{7}$ (B) $28\frac{4}{7}$ (C) $77\frac{7}{9}$ (D) $55\frac{5}{9}$
- (E) $57\frac{1}{7}$
- 8. The graph of $25x^2 + 9y^2 150x 18y = -9$ is an ellipse. Find the area of the ellipse.
 - (A) 9π
- (B) 25π
- (C) 15π
- **(D)** 8π
- **(E)** 30π
- 9. Approximately one million black wildebeest migrate every year between the Serengeti in Tanzania and Maasai Mara in Kenya. The average wildebeest is 6 feet long. If all of the wildebeest lined up end-to-end, the line would be kilometers long. (nearest kilometer)
 - (A) 1288
- **(B)** 305
- (C) 1890
- (D) 1829
- (E) 1578

- 10. Simplify: $\sqrt[3]{a} \left(\sqrt[3]{2a^2} + \sqrt[3]{16a^2} \right)$

 - (A) $3a\sqrt[3]{2}$ (B) $3a\sqrt[3]{2a}$
- (C) $2a\sqrt[3]{2}$ (D) $2a\sqrt[3]{2a}$
- (E) $4a\sqrt[3]{2}$
- 11. $\angle A$ and $\angle B$ are supplementary. If $m \angle A = (4x)^{\circ}$ and $m \angle B = (5x+18)^{\circ}$, find $m \angle B$.
 - (A) 90°
- (B) 108°
- (C) 36°
- (D) 72 $^{\circ}$
- (E) 18°
- 12. The total surface area of a right cone with a radius at the base of 19 ft and a vertex angle of 22° is _ft². (nearest square foot)
 - (A) 36,952
- (B) 7,078
- (C) 4,162
- (D) 6,969
- (E) 37,644
- 13. The three shapes below are made up of regular hexagons with side lengths of 1 unit. If the pattern continues, the perimeter of the shape with 56 hexagons will is units.

- (A) 224
- **(B)** 230
- (C) 242
- **(D)** 220
- 226 **(E)**
- 14. The measure of an interior angle of a regular nonagon is _____. (nearest degree)
 - (A) 144°
- (B) 135°
- (C) 120°
- (D) 140°
- **(E)** 132°

- 15. $(8+\sqrt{-25})(6+\sqrt{-36})=$
 - 78 18i(A)
- (B) 78+18i
- (C) 18 + 78i
- (D) 18-78i
- (E) undefined
- 16. The circumcenter of a circle can be found by constructing the ______ of the triangle and finding the point of concurrency.
 - (A) medians

- **(B)** altitudes
- (C) perpendicular bisectors of the sides

- (D) angle bisectors
- sides **(E)**
- 17. On the illustration, AB is tangent to circle D, AB = 12 and BC = 8. Find the area of circle D.

- (A) 25π
- **(B)** 24π
- (C) 10π
- **(D)** 16π
- **(E)**
- 18. If $(2x-1)^2 + 8 = ax^2 + bx + c$ then $a+b+c = ____.$
 - (A) 14
- (B) 5
- (C) 8
- (\mathbf{D}) 9
- (\mathbf{E}) 4
- 19. How many distinct 4-letter arrangements can be made from the letters in the word "SKEWED"?
 - (A) 360
- **(B)** 264
- (C) 120
- (D) 192
- (E) 72

- 20. A small motor boat traveling from point A to point B along the river can make the 14-mile trip in 6 hours. The return trip takes 8 hours and 24 minutes. If the speed of the boat and current remain constant throughout both trips, what is the speed of the current?
 - (A) 8.800 ft/hr
- (B) 10,560 ft/hr (C) 12,320 ft/hr (D) 4,928 ft/hr
- (E) 1.760 ft/hr

- 21. Find the value of a on the picture shown.

- (A) $\frac{9\sqrt{2}}{2}$ (B) $3\sqrt{6}$ (C) $6\sqrt{3}$ (D) $\frac{27\sqrt{2}}{2}$ (E) $6\sqrt{6}$

- 22. $\int \ln(x)dx = \underline{\hspace{1cm}} + C$, where C is some arbitrary constant.

 - (A) $-x + x \ln x$ (B) $-x \ln x + x$ (C) $-x \ln x$
- **(D)** $x \ln x$
- **(E)** $x \ln x + x$
- 23. Two numbers are in a ratio of 5:13. If the first is decreased by 5 and the second is increased by 5, the resulting numbers will be in a ratio of 2:7. Find the sum of the two numbers.
 - (A) 63
- **(B)** 87
- (C) 112
- (D) 74
- **(E)** 90
- 24. A fair tetrahedral die with sides labeled 4, 6, 6, 12 is thrown. What is the expected value of a single roll?
 - (A) 5
- (B) $\frac{11}{3}$ (C) 6
- (D) $\frac{16}{3}$
- (E) 7
- 25. Sammy bought seven boxes of chocolate bars from a school fundraiser. He gave half of his order to his niece, then two-thirds of the remaining bars to his nephew. He ate six bars, then put the remaining box away to use for gifts. How may bars came in each box?
 - (A) 48
- **(B)** 72
- (C) 36
- **(D)** 12
- (E) 24

- 26. What is the equation of a line tangent to $y^2 x = 191$ at (5,14).
 - (A) x 28y = 397
- (B) 28x + y = 126
- (C) 28x + y = 397

- **(D)** x 28y = -387
- (E) 28x + y = 154
- 27. The area of a sector of a circle with a central angle $\frac{5\pi}{8}$ in a circle with a diameter of 44 cm is _cm². (nearest square centimeter)
 - (A) 1425
- **(B)** 356
- (C) 2851
- (D) 713
- (E) 475
- 28. The third term of an arithmetic sequence is -2, and the sum of the first fourteen terms is 98. Find the first term.
 - (A) -4
- **(B)** -6
- (C) 2
- (D) -2
- (\mathbf{E}) 4

(A) 3 or 1

(B) 4, 2 or 0

(E) 2 or 0

29. Determine the period of $f(x) = \frac{3}{2} \sin\left(\frac{1}{3}x - 7\right) + 8$									
(A	$\frac{7\pi}{3}$	(B)	6π	(C)	$\frac{3\pi}{2}$	(D)	2π	(E)	$\frac{2\pi}{3}$
30. If g	30. If $g(x) = x - 1$ and $g(x) = x^4$, find $f(g(x+1))$								
(A	x^4-2		(B)	x^4			(C) $x^4 +$	$4x^{3} +$	$6x^2 + 4x - 2$
(D	$x^4 + 3x^3 +$	$3x^2 + x$	(E)	$x^{4} +$	$4x^3 + 6x^2 + 4x$	r			
31. When $3x^3 + 2x^2 - 7x + k$ is divided by $(x-2)$ the remainder is m . Find the value of m in terms of k .									
(A) m = k - 30	(B)	m = k + 30	(C)	m = k - 2	(D)	m = k + 46	(E)	m = k + 18
32. Myrtle has bins containing 9 flavors of lollipops. In how many ways can she package 5 to sell if she can repeat flavors?									
(A	2002	(B)	715	(C)	3003	(D)	1287	(E)	1001
33. Two workers can paint a fence in three hours. How long would it take five workers to paint a fence twice as long and twice as high if they each paint at the same rate?									
(A) 4 hr 8 min	(B)	2 hr 24 min	(C)	1 hr 12 min	(D)	6 hr	(E)	4 hr 48 min
34. On triangle ABC, AB = 24 cm, BC = 21 cm, and m∠A = 60°. The smallest possible value of AC iscm.									
(A	9	(B)	3.6	(C)	15	(D)	6.9	(E)	38.1
35. If $f(x) = \sin(2x)$, then $\lim_{h\to 0} \frac{f(\pi+h)-f(\pi)}{h} =$									
(A	0	(B)	1	(C)	-1	(D)	2	(E)	undefined
36. Solve $\log_2(x) + \log_2(x-6) = 4$.									
(A) 4	(B)	-3	(C)	6	(D)	8	(E)	9
37. If $\tan \theta < 0$ and $\csc \theta > 0$, where will θ terminate?									
(A) QI	(B)	QII	(C)	QIII	(D)	QIV	(E)	x-axis
38. $\sum_{k=1}^{7}$	$\left(3k^2+2k-1\right)$	=							
(A	385	(B)	476	(C)	357	(D)	441	(E)	469
39. According to Descartes' Rule of Signs, how many negative real zeros will $f(x) = x^4 + x^3 - 3x^2 - x + 2$									
have?									

(D) 0

(C) 1

- 40. A particular model of car has an advertised gas mileage of 32 mpg for in-town driving. Upon further investigation, a consumer discovers that the gas mileage is normally distributed with a standard deviation of 3 mpg. What is the probability that the driver will get over 33 mpg for in-town driving? (nearest percent)
 - (A) 27%
- (B) 37%
- (C) 84%
- (D) 63%
- **(E)** 16%
- 41. On the diagram, FC is the geometric mean of AB and ED, AB = 29.6, FC = 37 and EC = 42.8. Find FB. (nearest tenth)
 - (A) 31.9
- **(B)** 30.5
- (C) 34.6
- (D) 34.2 (E) 36.4 F

- 42. Evaluate: $\prod_{k=2}^{6} (2k+4)$
 - (A) 21,504
- (B) 215,040
- (C) 15,360
- (D) 26,880
- (E) 276,480
- 43. At which of these x-values is the graph of $f(x) = x^4 12x^3 + 48x^2 64x$ concave down?
 - (A) 5
- (B) 4
- (C) 3
- (\mathbf{D}) 2
- (E) 1
- 44. Find the values of k for which $kx^2 4x + 5 k$ has two distinct real roots.
 - (A) -6 < k < 2 (B) $k < \frac{4}{5}$ (C) k < -6 or k > 2 (D) k < 1 or k > 4 (E) 1 < k < 4

- 45. The operation ξ is defined as $A\xi B = A^3 + 2A + B^3$. Compute $3\xi(1\xi 2)$.
 - (A) 36
- (B) 42,876
- (C) 1.364
- (D) 1.764
- **(E)** 756

- 46. If $f(x) = ax^4 + bx^2 + x$ and f(2) = 30 then f(-2).
- **(B)** 32
- (C) 30
- (D) 28
- 47. If A represents a digit 0-9 in the equation $6A5_8+3A2_6=1000101011_2$, find the value of A.
 - (A) 1
- (B) 2
- (C) 3
- (\mathbf{D}) 4
- 48. If $g(x) \le f(x) \le h(x)$ for all x, k in [a,b], where $x \ne k$, $\lim_{x \to k} g(x) = L$ and $\lim_{x \to k} h(x) = L$ then $\lim_{x \to k} f(x) = L$. This is known as _____.
 - **Rolle's Theorem** (A)
- (B) Sandwich Theorem
- (C) Intermediate Value Theorem

- **(D) Fundamental Theorem of Algebra**
- **Fundamental Theorem of Calculus (E)**
- 49. Given $y = -2\cos x$, find the value of x for which $\frac{dy}{dx} = \frac{dx}{dy}$, where $0 \le x \le \frac{\pi}{2}$
 - (A) π
- (B) $\frac{\pi}{6}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{4}$
- $(\mathbf{E}) \quad \mathbf{0}$

INDCA	10-17 11514171 1	CSt Life ven						1.0	ige o		
50. Given $GCF(36,k) = 12$ and $LCM(36,k) = 252$, find the value of k .											
(A)	84	(B) 63	(C)	42	(D)	48	(E)	126			
51. Find the sum of all 3-digit numbers whose digits have a sum of eight and whose digits can all be used to form a perfect cube.											
(A)	1420	(B) 915	(C)	861	(D)	1925	(E)	1776			
52. P, Q and R are real numbers such that $P+Q+R=8$, $R^2=P^2+Q^2$ and $PQ=8$. Find the value of R.											
(A)	1	(B) 6	(C)	3	(D)	8	(E)	4			
53. If a hiker travels 6 miles on a bearing of 12°, then another 5 miles on a bearing of 334°, what is the shortest distance back to her starting point? (nearest tenth of a mile)											
(A)	2.3 mi	(B) 10.1 mi	(C)	13.1 mi	(D)	10.0 mi	(E)	10.4 mi			
54. If $\frac{x-x}{x+x}$	$\frac{-20}{-20} + \frac{x+20}{x-20} = 2$	$A\frac{B}{C}$ then $B =$									
(A)	2400	(B) 1000	(C)	3200	(D)	1600	(E)	400			
55. Given $y = x - 15$ and $xy = 18$. Calculate $x^3 - y^3$.											
(A)	3915	(B) 3645	(C)	2565	(D)	2835	(E)	4185			
56. Find the sum of the solutions of the equation $ 9x+8 = x-17 $.											
(A)	$-2\frac{9}{40}$	(B) $4\frac{1}{40}$	(C)	$-1\frac{3}{8}$	(D)	$-4\frac{1}{40}$	(E)	$-1\frac{3}{5}$			
57. Find the area of the region defined by the inequalities $x \ge 0$, $y \ge 0$ and $y \le 2\cos\left(\frac{x}{4}\right)$.											
(A)	1	(B) 2	(C)	4	(D)	8	(E)	16			
58. A fair coin is tossed seven times. What is the probability of at least 5 heads in a row?											
(A)	$\frac{1}{32}$	$(B) \frac{5}{128}$	(C)	$\frac{1}{128}$	(D)	1 16	(E)	$\frac{3}{64}$			
59. If $\log 9 = P$ and $\log 5 = Q$ then $\log 0.6 =$											
(A)	$\frac{\sqrt{P}}{Q}$	$(B) \frac{P-2Q}{2}$	(C)	$\log \left(\frac{\sqrt{P}}{Q} \right)$	(D)	2PQ	(E)	$\frac{PQ}{2}$			
60. $\int_{-2}^{4} (kx^2 + 5x + 2) dx = 114$, what is the value of k?											
(A)	1	(B) -3	(C)	3	(D)	2	(E)	-1			

2018-2019 TMSCA Mathematics Test Ten Answers

21. A	41. D
22. A	42. B
23. E	43. C
24. E	44. D
25. C	45. C
26. D	46. A
27. E	47. D
28. B	48. B
29. B	49. B
30. E	50. A
31. E	51. E
32. D	52. C
33. E	53. E
34. A	54. D
35. D	55. E
36. D	56. A
37. B	57. D
38. E	58. D
39. E	59. B
40. B	60. C
	22. A 23. E 24. E 25. C 26. D 27. E 28. B 29. B 30. E 31. E 32. D 33. E 34. A 35. D 36. D 37. B 38. E 39. E

2018-2019 TMSCA Mathematics Test Eleven Solutions

6.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
, so
0.648 = $5A + A - 5A^2$, solve quadratic equation for $P(A) = 0.12$

12.
$$l = \frac{19}{\sin 11}$$
 then $SA = \pi (19)^2 + \pi (19) l \approx 7078$

17. Set up the Pythagorean theorem
$$12^2 + r^2 = (8+r)^2$$
 for $r = 5$ and the area is 25π .

19. If there are no repeating letters, there are
$${}_5P_4 = 120$$
 arrangements. If the E's repeat, then there are ${}_4C_2$ $\left(\frac{4!}{2!}\right) = 72$ arrangements for a total of 192.

24.
$$E(x) = \frac{1}{4}(4+6+6+12) = 7$$

28.
$$-2 = a + 2d$$
 then $98 = \frac{14}{2}(a + a + 13d)$ which simplifies to $14 = 2a + 13d$. Solve the system for $a = -6$.

32.
$$_{9+5-1}C_5 = 1287$$

$$\frac{4}{\frac{1}{1.5} + \frac{1}{1.5} + \frac{1}{1.5} + \frac{1}{1.5} + \frac{1}{1.5}} = 1.2 \text{ hours or 1 hour and 12}$$

minutes. The "4" in the numerator comes from the fact that a fence that is twice as high and twice as long will have 4 times the area.

34. Use law of cosines for
$$21^2 = 24^2 + (AC)^2 - 2(AC)(24)\cos 60^\circ$$
 which gives values of 9 and 15 for AC .

35. This is the definition of derivative of
$$f(x) = \sin(2x)$$
 at π , which is 2. Make sure to set the mode to radian if using the calculator.

38. Use formulas for sum of first n numbers and squares for
$$3\left[\frac{7(7+1)(14+1)}{6}\right] + 2\left[\frac{7(8)}{2}\right] - 1(7) = 469$$

39. Use the cumulative normal distribution function using lower limit 33, upper limit
$$32+5(3)=47$$
 which leaves negligible value at the upper end and the probability is 0.369.

41. The geometric mean of the bases of a trapezoid cuts the trapezoid into two similar pieces, so
$$\frac{29.6}{37} = \frac{x}{42.8}$$
 for $x \approx 34.2$.

42. This is the product of each term, so
$$(8)(10)(12)(14)(16) = 215,040$$

51. The two 3-digit cubes whose digits add up to 8 are 125 and 512, both have the same digits, the sum of all the numbers with those three digits will be
$$125+152+251+215+512+521=1776$$

52.
$$P+Q=8-R$$
 and $P^2+2PQ+Q^2=64-16R+R^2$, then $2PQ=64-16R$ since $P^2+Q^2=R^2$. Finally, solve $2(8)=64-16R$ for $R=3$.

$$8\left(\frac{1}{2}\right)^7 = \frac{1}{16}$$