★1. What is MAC? What are the requirements of MAC?

- 1. A message authentication code (MAC) is an algorithm that requires the use of a secret key.
- 2. A MAC takes a variable-length message and a secret key as input and produces an authentication code

Variable length code + secret	MAC>	authentication
key>>	>	code

- 3. A recipient in possession of the secret key can generate an authentication code to verify the integrity of the message
- 4. How to create a MAC
 - a. Combine a cryptographic hash function in some fashion with a secret key
 - use a symmetric block cipher in such a way that it produces a fixed length output for a variable length input
- Requirements of MAC
- Considering the types of attacks, MAC needs to satisfy the following
- 1. knowing a message and MAC, is infeasible to find another message with same MAC

MAC(K, M') = MAC(K, M)

2. MACs should be uniformly distributed in the sense that for randomly chosen Messages M and M'

MAC MAC(K, M') = MAC(K, M) is 2^{-n} where n is the number of bits in the tag

3. Let be equal to some known transformation on. That is M' = f(M). For example, f may involve inverting one or more specific bits. In

that case, $Pr[MAC(K, M) = MAC(K, M')] = 2^{-n}$ MAC should depend equally on all bits of the message

★2. What is digital signature and its types

1. Digital Signature

- a. A digital signature is an authentication mechanism that enables the creator of a message to attach a code that acts as a signature.
- Typically the signature is formed by taking the hash of the message and encrypting the message with the creator's private key.
- c. The signature guarantees the source and integrity of the message.
- d. The digital signature standard (DSS) is an NIST standard that uses the secure hash algorithm (SHA)
- e. Digital signatures provide the ability to:
 - i. verify author, date & time of signature
 - ii. authenticate message contents
 - iii. be verified by third parties to resolve disputes
- f. hence include authentication function with additional capabilities
- g. In situations where no complete trust between sender and receiver, more than authentication is needed. The solution is Digital Signatures

2. Digital Signature Properties

- a. It must verify the author and the date and time of the signature.
- b. It must authenticate the contents at the time of the signature.
- c. It must be verifiable by third parties, to resolve disputes
- d. Digital signature function includes the authentication function

3. Direct Digital Signatures

- a. It involves only sender and receiver
- b. It is assumed receiver has sender's public-key
- c. The digital signature iS made by sender signing entire message or hash with private key
- d. It can also encrypt using receivers public-key

	 e. It is important that sign first then encrypt message & signature
	f. The security depends on sender's private-key
₹3.	Explain general structure of secure hash function.