Functions with Bounded Differences

Since there are some problems about mathjax, I also upload the pdf version \(\sum_{Large} \) Sample \(\sum_{3} \) Functions with Bounded Differences.

Basic Definition

- X_1, \dots, X_n are independent;
- $\mathbb{E}_i = \mathbb{E}(|X_1, \cdots, X_i);$
- $Z = f(X_1, \ldots, X_n);$
- $ullet \ \Delta_i = \mathbb{E}_i Z \mathbb{E}_{i-1} Z;$
- $Z \mathbb{E}Z = \sum_{i=1}^n \Delta_i$;
- $ullet \ \mathbb{E}^{(i)} = \mathbb{E}(|X_1,\cdots,X_{i-1},X_{i+1},\cdots,X_n)$
- Bounded difference with parameter $\{c_i\}$'s

$$\sup_{x_1,\ldots,x_n,x_i'\in\mathcal{X}}\left|f\left(x_1,\ldots,x_n
ight)-f\left(x_1,\ldots,x_{i-1},x_i',x_{i+1},\ldots,x_n
ight)
ight|\leq c_i,1\leq i\leq n$$

- Martingale difference(MGD) sequence $\{(X_i, \mathcal{F}_i)\}$
 - $\{\mathcal{F}_i\}$ is a filtration.
 - b. X_i is integrable.

c.
$$\mathbb{E}\left(X_i \mid \mathcal{F}_{i-1}
ight) = 0 orall i \in \mathbb{N}$$

• MGD σ_i^2 -sub-Gaussian

$$\mathbb{E}\left\{\exp(\lambda X_i)\mid \mathcal{F}_{i-1}
ight\} \leq \expig(\lambda^2\sigma_i^2/2ig)orall i\in \mathbb{N}$$

Efron-Stein Inequality

Lemma

$$\operatorname{Var}(Z) = \mathbb{E}\left\{\left(\sum_{i=1}^n \Delta_i
ight)^2
ight\} = \sum_{i=1}^n \mathbb{E}\left(\Delta_i^2
ight)$$

Note: Independence is not necessary here.

Efron-Stein Inequality

Use the notation above

$$\operatorname{Var}(Z) \leq \sum_{i=1}^n \mathbb{E}\left\{\left(Z - \mathbb{E}^{(i)}Z
ight)^2
ight\} \ \stackrel{ ext{def}}{=} \ v$$

If X_1',\cdots,X_n' are independent copies and denote $Z_i'=f\left(X_1,\ldots,X_{i-1},X_i',X_{i+1},\ldots,X_n\right)$, then

$$egin{aligned} v &= rac{1}{2} \sum_{i=1}^n \mathbb{E} \left\{ \left(Z - Z_i'
ight)^2
ight\} = \sum_{i=1}^n \mathbb{E} \left\{ \left(Z - Z_i'
ight)^2_+
ight\} \ &= \sum_{i=1}^n \mathbb{E} \left\{ \left(Z - Z_i'
ight)^2_-
ight\} = \inf_{Z_i} \sum_{i=1}^n \mathbb{E} \left\{ \left(Z - Z_i
ight)^2_-
ight\} \end{aligned}$$

Martingale Difference Sequence

If $\{X_i\}$ is σ_i^2 -sub-Gaussian MGD, then for any $t\geq 0$,

$$\mathbb{P}\left\{\sum_{i=1}^n\left(X_i-\mathbb{E}X_i
ight)\geq t
ight\}ee\mathbb{P}\left\{\sum_{i=1}^n\left(X_i-\mathbb{E}X_i
ight)\leq -t
ight\}\leq \exp\!\left(-rac{t^2}{2\sum_{i=1}^n\sigma_i^2}
ight)$$

If $f:\mathcal{X}^n o\mathbb{R}$ satisfies c_i -bounded difference, then for any $t\geq 0$

$$\mathbb{P}\left\{f\left(X_{1:n}\right) - \mathbb{E}f\left(X_{1:n}\right) \geq t\right\} \leq \exp\!\left(-\frac{2t^2}{\sum_{i=1}^n c_i^2}\right)$$

Reference

• Functions with Bounded Differences