Source of Variation	df	SS	MS	F_{obs}	T=total	M=Model	E=Error
Intercept	1	SSI	SSI	SSI/MSE	Source	Formula	Alternate
Model(uncorrected)	q	USS(model)	USSM/q	(USSM/q)/MSE	CSS(M)	$\sum \hat{y}_{i}^{2} - N\bar{y}^{2} = \sum (\hat{y}_{i} - \bar{y}^{2})$	USS(M) - SSI
Model(corrected)	g-1	CSS(model)	CSSM/q-1	(CSSM/q-1)/MSE	CSS(T)	$\sum y_i^2 - N\bar{y}^2 = \sum (y_i - \bar{y}^2)$	USS(T) - SSI & CSS(M) + SSE
Error(residual)	Ñ-q	SSE	SSE/(N-q)=MSE	-	CSS(E)/USS(E)/SSE SSE	$\frac{\text{CSS(T) - CSS(M)}}{\sum (\hat{y} - y_i)^2}$	$\frac{USS(T) - USS(M) = USS(E)}{\sum \hat{\epsilon}^2}$
Total(uncorrected)	N	USS(total)	-	-	USS(M)	$\sum \hat{y}_i^j$	USS(T) - SSE
Total(corrected)	N-1	CSS(total)	-	-	USS(T)	$\sum y_i^2$	USS(M) + SSE

Source	\mathbf{DF}	Type I SS	MS	F-value
x_i	1	Type I SS	T1SS/df = T1SS	MS/MSE(model)
		$\Sigma_{-}^{q-1}T1SS_{-} = CSS(M)$		

(8 points) Calculate the corrected R^2_c , interpret its value, and test the hypothesis that its corresponding population value is zero, that is, $H_0: \rho_c^2 = 0$.

Solution: Since $\bar{y} = 3.4$, we have $CSS(regression) = \sum_i \hat{y}_i^2 - 5\bar{y}^2 = 11.2$ $CSS(total) = \sum_{i} y_i^2 - 5\bar{y}^2 = 17.2$ and corrected $R_c^2 = 11.2/17.2 = 0.65$.

 $H_0:\rho_c^2=0$ is equivalent to $H_0:\beta_1=\beta_2=0.$ Thus we have $F-test=\frac{11.2/2}{\delta^2}=2.25\sim F_{2,2}.$

Compare full model $post = \beta_0 + \beta_1 pre + \beta_2 age + \beta_3 gender + error$ with post = $\beta_0 + \beta_2 age + \beta_3 gender + error$ or testing $H_0: \beta_1 = 0$.

t-test = $\frac{\hat{\beta}_1}{se(\hat{\beta}_1)}$ = $1.15/\sqrt{\hat{\sigma}^2*0.011}$ = $13.1\sim t(96)\approx N(0,1)$ thus significant at $\alpha=0.05$. Thus F-test = $(t-test)^2=13.1^2=171.6\sim F_{1.96}$.

Two-way ANOVA coding schemes

Reference Cell: The total number of columns of X: 1 col of 1's for reference cell mean, (a-1) for factor A, (b-1) for factor B and (a-1)(b-1) for interaction.

a 95% prediction interval is $3.27 \pm 4.3\sqrt{3.9} = (-5.3, 11.7)$.

(8 points) Compute the 95% prediction interval for a subject with $x_1 = 1$ and

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
Cell Means:

Classic ANOVA: The total number of columns of X is 1 + a + b + a*b

Effect: same as reference cell but you replace the zeros for the reference row and range with -1s

Cell Means Per Coding 2 drugs A and B (a) and $\overline{3}$ dosages 1, 2, and $\overline{3}$ (β). The model is $y_{ijk} =$ $\mu + \alpha_1 I(drugA) + \beta_1 I(dose1) + \beta_2 I(dose2) + e_{ijk}$ Reference Cell Drug B and Dose 3 are reference

recrei cire	ce een	Drug D and Dose	o are reference
Drug	Dose	Mean	With interactions
A	1	$\mu + \alpha_1 + \beta_1$	$+ \gamma_{A1}$
A	2	$\mu + \alpha_1 + \beta_2$	$+ \gamma_{A2}$
A	3	$\mu + \alpha_1$	$+ \gamma_{A3}$
В	1	$\mu + \beta_1$	
В	2	$\mu + \beta_2$	
В	3	μ	

Cell Means For 2-way ANOVA can only have max a*b terms, which are the interaction terms. Drug Dose Mean

			1 A 1						
A		2	γ_{A2}	2					
A		3	γ_{A2}	2					
В		1	γ_{B1}						
В		2	γ_{B2}	2					
В		3	γ_{B3}						
(X'X)	-1 <u>=</u>	: .:	308 – .06 – .017 –	0:	06 – . 25 – . 04 .0	01′ 00₄ 006	$\begin{bmatrix} 7\\4 \end{bmatrix} X$	y =	$\left \begin{array}{c} 405 \\ 1402 \\ 2350 \end{array} \right $
Source	DF	SS	MS]	Fval	P	> F		
Model	2	79	239.5	:	349.6	<	.001		
Error	97	11	.113						
Ctotal	99	90							
param	est	se	tval		p >	t			
x0	.67	.187	3.58		.009				
x1	1.35	.053	25.47	7	< .00)1]		
x2	1.61	.026	61.83	L	< .00)1			

2) c) Test $H_0: \beta_1 = 1$

t-test=
$$\frac{\hat{\beta}_1 - 1}{se(\hat{\beta}_1)} = 6.6 \sim t_{97} \ 6.6 > 1.96 \text{ reject } H_0$$

d) Test
$$H_0$$
: $\beta_1 = \beta_2 = 1$

$$\begin{array}{ll} B_1 = 1 & B_2 = 1 \\ C = \left| \begin{smallmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{smallmatrix} \right| \left| \theta_0 = \left| \begin{smallmatrix} 1 \\ 1 \end{smallmatrix} \right| H_0 : C\theta = \theta_0 \ \hat{\theta} = \left| \begin{smallmatrix} 1.35 \\ 1.61 \end{smallmatrix} \right| \\ \text{calc M} \quad \text{calc } M^{-1} \\ \text{F-test} = \frac{43.83}{113} = 387.8 \sim F_{2,97} \\ \text{e) } 95\% \text{ CI of } \beta_1 + \beta_2 \ (\theta) \end{array}$$

F-test=
$$\frac{43.83}{113}$$
 = 387.8 $\sim F_{2,97}$

Solution:
$$\hat{y} = (1,1,2)\hat{\beta} = 3.27$$
 and $var(\hat{y}) = (1,1,2)\hat{\sigma}^2(X'X)^{-1}(1,1,2)' + \hat{\sigma}^2 = 3.9$ $H_0: \rho_c^2 = 0$ is equivalent to $H_0: \beta_1 = \beta_2 = 0$. Thu a 95% prediction interval is $3.27 \pm 4.3\sqrt{3.9} = (-5.3,11.7)$. $2.25 \sim F_{22}$. The analysis of X: $2.25 \sim F_{22}$. The analysis of X: $2.25 \sim F_{22}$. The total number of columns of X: $2.25 \sim F_{22}$. The form of a color of Y: for reference cell man, (a-1) for factor A, (b-1) for factor B and (a-1)(b-1) for interaction. $2.26 \times 1.96 \times 1.0026 = [2.86, 3.06]$ for $2.96 \pm 1.96 \times 1.0026 = [2.86, 3.06]$ for Transform $2.25 \times 1.0026 = [2.86, 3.06]$ for 2.25×1.0026

, _ · · · · · · · · · · · · · · · · · ·
$se = \sqrt{Var(\hat{\beta}^*)} = \sqrt{\hat{\sigma}^2 M} = .1946$
Test $\dot{H}_0: \beta_1 = 3\beta_2$
$\theta = \beta_1 - 3\beta_2 \ H_0 : \theta = 0 \ C = [0 \ 1 \ -3] \ t =$
$.327/.1868 = 1.75 \sim t_{97} \approx Z = 1.96 \text{ FTR } H_0$
Center x_1 x_2 at means $1,5$ $z_1 = x_1 - 1$
$z_2 = x_2 - 5 \ y^* = \beta_0^* + \beta_1^* z_1 + \beta_2^* z_2$
$\beta_0^* + \beta_1^*(x_1 - 1) + \beta_2^*(x_2 - 5)$
$y^* = (\beta_0^* - \beta_1^* - 5\beta_2^*) + \beta_1^* x_1 + B_2^* x_2$
$\beta_0^* = \beta_0 + \beta_1 + 5\beta_2 =9116 \ \beta_1^* = \beta_1 \ \beta_2^* = \beta_2$
$C = [1 \ 1 \ 5] \ se(\beta_0^*) = \sqrt{M * \hat{\sigma^2}} = .254$

 $\hat{\beta}^* \pm 1.96 * se(\hat{\beta}^*)$ $\hat{\beta}^* = \hat{\beta}_0 + 2\hat{\beta}_1 + 6\hat{\beta}_2 = 23.3$

 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$

 $se\beta_1 = .032$ $se\beta_2 = .05605$

95% CI $x_1 = 2 \ x_2 = 6 \quad C = [1 \ 2 \ 6]$

2) 4 dose levels (1,2,3,4) 2 methods (oj, aa) $n=800 \text{ ref cell} \Rightarrow \text{ref group: aa dose } 1$ $y_i = \mu + \alpha_1 x_{1i} + \alpha_2 x_{2i} + \alpha_3 x_{3i} + \beta x_{4i} + \epsilon_i$

dummy variables:

$$x_{1i} = \begin{cases} 1 \text{ if dose=2} \\ 0 \text{ otherwise} \end{cases}$$
 all xs defined similarly
$$x_{4i} = I(method = oj)$$

	-41 - (000,000	\circ_{J}
C	cell mean	of eac	h group
	Method	Dose	Mean
	oj	1	$\mu + \beta$
	oj	2	$\mu + \alpha_1 + \beta$
	oj	3	$\mu + \alpha_2 + \beta$
	oj	4	$\mu + \alpha_3 + \beta$
	aa	1	μ
	aa	2	$\mu + \alpha_1$
	aa	3	$\mu + \alpha_2$
	aa	4	$\mu + \alpha_3$

add interaction by method, dose $\Rightarrow \theta : 8 \times 1$ let μ_a and μ_a be overall means for the two methods

write them for models w/ and w/o interaction Derive 2 C matrices for testing $H_0: \mu_0 = 2\mu_a$ under the 2 models

w/o:
$$\mu_o = \mu + \frac{\alpha_1 + \alpha_2 + \alpha_3}{4} + \beta$$

 $\mu_a = \mu + \frac{\alpha_1 + \alpha_2 + \alpha_3}{4}$

$$H_0: \mu_o = 2\mu_a \Leftrightarrow \mu + \frac{\alpha_1 + \alpha_2 + \alpha_3}{4} - \beta = 0$$

$$C = (1 \ 1/4 \ 1/4 \ 1/41) \text{ for } \theta = (\mu, \alpha_1, \alpha_2, \alpha_3, \beta)$$

$$w/: H_0: \mu_o = 2\mu_a \Leftrightarrow$$

$$\mu + \frac{\alpha_1 + \alpha_2 + \alpha_3}{4} - \frac{\gamma_[11] + \gamma_{12} + \gamma_{13}}{4} - \beta = 0$$

$$C = (1 \ 1/4 \ 1/4 \ 1/4 \ 1/4 \ 1/4 - 1/4 - 1/4) \text{ for }$$

$$\theta = (\mu, \alpha_1, \alpha_2, \alpha_3, \beta, ga_{11}, \gamma_{12}, \gamma_{13})$$
treat dose as a continuous variable and fit

model with additive effects of method and dose level with no interaction

nested w/in

 $y_i = \mu + \alpha_1 x_{1i} + \alpha_2 x_{2i} + \alpha_3 x_{3i} + \beta x_{4i} + \epsilon_i$? yes write down H_0 for comparing the 2 models and derive C matrix. df of F test under H_0 ? Let $\alpha_2 = 2\alpha_1, \, \alpha_3 = 3\alpha_1$ (treating dose as continuous)

$$C = \left| \begin{smallmatrix} 0 & -2 & 1 & 0 & 0 \\ 0 & -3 & 0 & 1 & 0 \end{smallmatrix} \right|$$

assuming $\theta = (\mu, \alpha_1, \alpha_2, \alpha_3, \beta)'$ df=2.7955

2010 1) n = 1000 drugs = A,B doses = 1,2,3,4,5ref cell $y = \mu + \alpha_i + \beta_i + \epsilon$ (w/out interaction) Drug B, Dose 5 ref

 α_1 models effect of drug A

 β_i models effect for dose j dims: $y = 1000 \times 1 \ X = 1000 \times 6 \ \beta = 6 \times 1$ $\epsilon = 1000x1 \ \epsilon \sim N(0, \sigma^2 I)$

Cell mean for each combo of drug and dose:

Drug	Dose	Mean
A	1	$\mu + \alpha_1 + \beta_1$
A	2	$\mu + \alpha_1 + \beta_2$
A	3	$\mu + \alpha_1 + \beta_3$
A	4	$\mu + \alpha_1 + \beta_4$
A	5	$\mu + \alpha_1$
В	1	$\mu + \beta_1$
В	2	$\mu + \beta_2$
В	3	$\mu + \beta_3$
В	4	$\mu + \beta_4$
В	5	μ

for ref cell model p=6 df model =6-1=5with interaction $y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon$ $\mu + \alpha_i + \beta_4 + \beta_3 + \beta_2 + \beta_1 + \gamma_{14} + \gamma_{13} + \gamma_{12} + \gamma_{11} + \epsilon$ dim ref model: $\beta = 10 \times 1$ everything else same

Drug	Dose	Mean
A	1	$\mu + \alpha_1 + \beta_1 + \gamma_{11}$
A	2	$\mu + \alpha_1 + \beta_2 + \gamma_{12}$
A	3	$\mu + \alpha_1 + \beta_3 + \gamma 13$
A	4	$\mu + \alpha_1 + \beta_4 + \gamma 14$
A	5	$\mu + \alpha_1$
В	1	$\mu + \beta_1$
В	2	$\mu + \beta_2$
В	3	$\mu + \beta_3$
В	4	$\mu + \beta_4$
В	5	μ

 γ_{11} is the diff btwn the diff of dose1 and dose5 given drug A and b respectively = [E(y|A,1)-E(y|A,5)]-[E(y|B,1)-E(y|B,5)]

Let μ_A and μ_B be the overall mean values of cholesterol level for drug A and B

 $\mu_A = [(\mu + \alpha_1 + \beta_1 + \gamma_{11}) + (\mu + \alpha_1 + \beta_2 + \gamma_{12}) +$ $(\mu + \alpha_1 + \beta_3 + \gamma_{13}) + (\mu + \alpha_1 + \beta_4 + \gamma_{14}) + (\mu + \alpha_1)]/5$ $\mu_B = [(\mu + \beta_1) + (\mu + \beta_2) + (\mu + \beta_3) + (\mu + \beta_4) + \mu]/5$ $H_0: \mu_A = \mu_B \Leftrightarrow H_0 \frac{\alpha_1 + \gamma_{11} + \gamma_{12} + \gamma_{13} + \gamma_{14}}{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4} = 0$

2) full model in each cell, dose is treated as interval variable

 $\hat{y} = 9.82 + 3.55 * I(druq = A) + 2.14 dose + .296 age$ +2.21I(drug = A) * dose + .3I(drug = A) * agefitted model when drug B is used (ref level) $\hat{y} = 98.82 + 2.145 dose + 2.96 age$

Write down fitted model when drug A is used $\hat{y} = 98.82 + 3.55 * 1 + 2.14 dose + .296 age +$

2.21 * 1 * dose + .3 * 1 * age

 $\Rightarrow \hat{y} = 102.37 + 4.35 dose + .596 age$