ДЗ 10 (криптография и теория чисел)

Владимир Латыпов

donrumata03@gmail.com

Содержание

4 Двумерные пластины	3
5 Расстояние Хэмминга	3
6 Периоды	. 3
7 Троицный DFFT	L

4 Двумерные пластины

Сделаем теперь двумерное преобразование Фурье: заведём виртуальные переменные, а не реальные:

- $oldsymbol{\cdot}$ сопоставим точке i,j на пластине степень x^{i+2nj} многочлена.
- произведём одномерное преобразование Фурье над полученным многочленом.
- · восстановим «двумерные» коэфициенты:

$$\big[x^{i+2nj}\big]C = \sum_{i+2nj=k_1+k_2+2n(l_1+l_2)} a_{k_1,l_1}b_{k_2,l_2} = \sum_{k_1=0}^i \sum_{l_1=0}^j a_{k_1,l_1}b_{i-k_1,j-l_1}$$

o Научились перемножать двумерные многочлены за $O(n^2 \log n)$ (так как преобразованике Фурье над $2n^2$ членами).

Теперь

- развернём вторую пластину по обеим осям,
- два раза (или один) посчитаем скалярное произведение
- найдём те позиции, где оказался ноль

5 Расстояние Хэмминга

6 Периоды

Лемма 6.1: Характеристическое свойство периода p строки s: s[p...) = s[...n-p), то есть проверяем одним махом, что $\forall i: s[i] = s[i+p]$.

Тогда проверим это для всех p, посчитав такие скалярные произведения для всех сдвигов:

- Количество позиций, где s>s', где в $s: , ?" \to , 0"$, а в в $s': , ?" \to , 1"$
- \cdot Количество позиций, где s < s', аналогично.

Те сдвиги, где оба условия выполнены, являются периодами.

7 Троичный DFFT

 $p=3^kq+1$, подразумевается, что подобрано простое число такого вида для $n=3^k-$ многочлены такой длины хотим преобразовывать.

Возьмём $\omega=g^{\frac{p-1}{n}}=q$, тогда будет

$$\underbrace{\frac{\omega^0}{=1}}_{n-1}\underbrace{\frac{\omega^1 \dots}{\neq 1}}_{\text{штук}}$$

Заметим, что

$$A(x) = \underbrace{A_{\equiv_3 0}(x^3)}_{\approx \frac{n}{3}} + x \underbrace{A_{\equiv_3 1}(x^3)}_{\approx \frac{n}{3}} + x^2 \underbrace{A_{\equiv_3 2}(x^3)}_{\approx \frac{n}{3}}$$

Тогда посчитаем 3 преобразования с ω^3 и $\frac{n}{3}$ и

```
for i in 0..n / 3 - 1 f_i = f'_i + omega^i f''i + omega^(2i) f''' \\ f_(i + n/3) = f'_i + omega^(i + n/3) f''i + (omega^(i + n/3))^2 f''' \\ f_(i + 2 n/3) = f'_i + omega^(i + 2 n/3) f''i + (omega^(i + 2 n/3))^2 f'''
```