

Lecture 4. Neural Network Basics

Review

1. Optimization

- SGD vs. Random Search
- Analytic Gradient vs. Numeric Gradient

2. Backpropagation

- Chain Rule
- Computational Graph
 - scalar
 - vector
 - matrix
- Implementation

Review

When = Mold - In.
$$\frac{3\pi}{9\Gamma}$$
 | $m = mold$ | $m = poig - In. $\frac{3\Gamma}{9\Gamma}$ | $p = poig$$

$$f(\omega,x) = \frac{1}{1+e^{-(\omega_{o}x_{o}+\omega_{i}x_{i}+\omega_{x})}}$$

Review

Optimization: Calculating Gradient

IDEA 2. Analytic

지금은 simple linear classifier만 다루고 있지만,

then, how should we derive the gradient?

Multilayer Perceptron

Linear Classifier 단독으로는

풀 수 없는 문제들 존재...

여러 개를 중첩시켜 보자!

Today's Contents

- 1. Limitation of Linear Classifier
- 2. Perceptron
- 3. MLP(Multilayer Perceptron)
- 4. Limitations of MLP

Limitation of Linear Classifier

What's wrong with our "Linear" Classifier?

What about Nonlinear Classification Problems?

Limitation of Linear Classifier

Binary Classification: AND / OR / XOR Gate with Linear Classifier

Define h(x) = 1 if x > 0, 0 otherwise

Linear Classification: AND Gate

х0	x1	ANS
1	1	Т
1	0	F
0	1	F
0	0	F

Linear Classification : AND Gate

Linear Classification: AND Gate

Linear Classification : OR Gate

х0	x1	ANS
1	1	Т
1	0	Т
0	1	Т
0	0	F

Linear Classification : OR Gate

Linear Classification : OR Gate

Linear Classification: XOR Gate

х0	x1	ANS
1	1	F
1	0	Т
0	1	Т
0	0	F

Linear Classifier 단독으로는 풀지 못하는 classification 문제 존재...!

then, how should we classify them?

IDEA. Mapping the Data into Other Dimension

Map the Feature into other dimension, so that it becomes Linearly Separable

IDEA. Mapping the Data into Other Dimension

IDEA. Mapping the Data into Other Dimension

18

IDEA. Mapping the Data into Other Dimension

Linear Classifier로 다른 차원에 Map된 Input을,

또다른 Linear Classifier로 Classify!

This model is called the Multilayer Perceptron, or Artificial Neural Network.

What is a "Perceptron"...?

What does "Neural" mean...?

Perceptron : A Linear Classifier

Perceptron : A Linear Classifier

AND Gate

XOR Gate

Perceptron : A Linear Classifier

Each represents a Decision Hyperplane, where

- 1. Input들에 가중치를 곱한 값들을 받아서,
- 2. 그들의 Linear Combination을 취한 뒤,
- 3. 특정 함수를 통과시켜 다음 Node의 Input으로 보냄

Perceptron: A Linear Classifier

We will call this a **Perceptron**

Perceptron: Analogy to Neurons

Perceptron Model은 신경계의 Neuron을 모방한 것

- 1. Dendrite로 신호 수신
- 2. Cell Body에서 신호 합침
- 3. 신호의 강도 조절하여, Axon을 통해 신호 출력

Perceptron: Analogy to Neurons

Perceptron Model은 신경계의 Neuron을 모방한 것

- 1. Input들에 가중치 곱한 값들 받아
- 2. 그들의 Linear Combination 취한 뒤,
- 3. 특정 함수를 통과시켜 출력

Perceptron = Linear Classifier + Activation Function

Activation Function을 통해, 출력 신호의 강도 조절

1. RELU

2. Sigmoid

3. Tanh

They are also ... **Hyperparameters**!!!

But, what if there is no Activation Function...?

Activation Function gives the capacity for Linear Classifiers to,

handle Nonlinear Classification Problems

MLP: Idea

Human Neural Network

MLP: Idea

Neuron and Perceptron

MLP: Idea

Multilayer Perceptron / Artificial Neural Network

MLP: Intro to DL

복잡한 Dataset 처리 via ANNs

MLP: Hidden Layer

Multilayer Perceptron / Artificial Neural Network

MLP: Hidden Layer

What does a Hidden Layer do?

Map the Input Feature into other dimension, so that it becomes Linearly Separable

MLP: Idea

However, can we guarantee that

the MLP will eventually give the correct classification?

MLP: The Universal Approximation Theorem

1개의 hidden layer를 가진 MLP를 이용해 어떠한 함수도 근사할 수 있다.

** when Activation Function is nonlinear

** when Hyperparameters are appropriately chosen

MLP: The Universal Approximation Theorem

Idea of Proof (Optional)

MNE 听魁此龄 训练头

For more detail, https://hackernoon.com/illustrative-proof-of-universal-approximation-theorem-5845c02822f6

MLP를 통해, 복잡한 Classification Function을 근사하고 있다.

Thus, we should utilize **Backpropagation** to compute the gradient

지난 Lecture까지는,

but now,

Deep neural network

MNIST Dataset

Limitations of MLP

MLP + Backpropagation 이론이 나온 것은, 1980s

However, 2010s부터 본격적으로 쓰이기 시작

Why so?

Limitations of MLP

- 1. Needs a lot of Labeled Data
- 2. Vanishing Gradient
- 3. Overfitting
- 4. Gets stuck in the Local Minima / Saddle Point

Review

1. Limitation of Linear Classifier

XOR Gate

2. Perceptron

- Perceptron = Linear Classifier
- Analogy to Neurons
- Building Block of the Neural Network

3. MLP

- MLP and the Neural Network
- The Universal Approximation Theorem
- Where Backpropagation becomes Important

4. Limitations of MLP

Preview on Next Lecture(s)

Limitations of MLP

- 1. Needs a lot of Labeled Data
- 2. Vanishing Gradient
- Overfitting
- 4. Gets stuck in the Local Minima

How to overcome these limitations

: Dropout, Adam, Ensemble, Batch Normalization...

From 2010s, NNs became widely used

: CNN for Image Classification

46