

Description

Features

● 30V, 190A

 $R_{DS(ON)} \!\!< 2.6 m\Omega$ @ $V_{GS} \!=\! 10 V$

 $R_{DS(ON)}$ < 4.2m Ω @ V_{GS} =4.5V

- Advanced Trench Technology
- Excellent R_{DS(ON)} and Low Gate Charge
- Lead free product is acquired

Application

- Load Switch
- PWM Application
- Power management

100% UIS 100% ΔVds

Schematic Diagram

Package Marking and Ordering Information

_	Device Marking	Device	OUTLINE	Device Package	Reel Size	Reel (PCS)	Per Carton (PCS)
	VSM190N03-T2	VSM190N03	TAPING	TO-252	13inch	2500	25000

Absolute Maximum Ratings (T_C=25°C unless otherwise specified)

Symbol	Parameter		Max.	Units
V _{DSS}	Drain-Source Voltage		30	V
V _{GSS}	Gate-Source Voltage		±20	V
1	Continuous Drain Current	T _C = 25 °C	190	Α
I _D		T _C = 100 °C	124	Α
I_{DM}	Pulsed Drain Current note1		760	Α
Eas	Single Pulsed Avalanche Energy note2		361	mJ
P _D	Power Dissipation	T _C = 25°C	178	W
R _{0JC}	Thermal Resistance, Junction to Case		0.84	°C/W
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +175	$^{\circ}$

Electrical Characteristics (Tc=25 °C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units			
Off Characteristic									
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250µA	30	_	-	V			
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =30V, V _{GS} =0V,	-	-	1.0	μA			
I _{GSS}	Gate to Body Leakage Current	V _{DS} =0V, V _{GS} = ±20V	-	-	±100	nA			
On Characteristics									
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.0	1.6	2.5	V			
	Static Drain-Source on-Resistance	V _{GS} =10V, I _D =20A	-	2	2.6	m O			
$R_{DS(on)}$	note3	V _{GS} =4.5V, I _D =10A	-	3	4.2	mΩ			
Dynamic Characteristics									
C_{iss}	Input Capacitance	V _{DS} =15V, V _{GS} =0V,	-	6847	-	pF			
Coss	Output Capacitance		-	940	-	pF			
C _{rss}	Reverse Transfer Capacitance	f=1.0MHz	-	604	-	pF			
Qg	Total Gate Charge	- V _{DS} =15V, I _D =30A, - V _{GS} =10V	-	93	-	nC			
Q_{gs}	Gate-Source Charge		-	14	-	nC			
Q_{gd}	Gate-Drain("Miller") Charge		-	21	-	nC			
Switching	Characteristics								
$t_{d(on)}$	Turn-on Delay Time	V_{DS} =15V, I_{D} =30A, R_{GEN} =3 Ω ,	-	16	-	ns			
t _r	Turn-on Rise Time		-	9	-	ns			
t _{d(off)}	Turn-off Delay Time		-	65	-	ns			
t _f	Turn-off Fall Time	V _{GS} =10V	-	18	-	ns			
Drain-Sou	rce Diode Characteristics and Maxim	um Ratings							
	Maximum Continuous Drain to Source Diode Forward				400	Δ.			
Is	Current	-	-	190	A				
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			-	760	Α			
V_{SD}	Drain to Source Diode Forward	V _{GS} =0V, I _S =30A			1.2	V			
V SD	Voltage		-	-	1.2	V			
trr	Body Diode Reverse Recovery Time		-	29	-	ns			
Qrr	Body Diode Reverse Recovery $I_F=20A,dI/dt=100A/\mu s$			19	ı <u>.</u> T	nC			
QΠ	Charge			19	_	110			

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

- 2. EAS condition: TJ=25 $^{\circ}\text{C}$, VDD=15V, VG=10V, L=0.5mH, RG=25 Ω , IAS=38A
- 3. Pulse Test: Pulse Width≤300µs, Duty Cycle≤0.5%

Typical Performance Characteristics

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Case

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Case Temperature

Test Circuit

Figure1:Gate Charge Test Circuit & Waveform

Figure 2: Resistive Switching Test Circuit & Waveforms

Figure 3:Unclamped Inductive Switching Test Circuit & Waveforms