令和 x 年度 修士論文

卒業論文または修士論文の タイトル

佐賀大学大学院 理工学研究科理工学専攻 機械システム工学コース

学籍番号 名前 氏名

指導教員 佐藤和也 教授

令和x年2月xx日

目次

第1章	序論	1
1.1	はじめに	1
1.2	本論文の構成	1
第2章	第2章	2
第3章	図表	3
第4章	数式	5
第5章	参考文献	6
第6章	結論	7
参考文献		9

第1章

序論

1.1 はじめに

弊研究室では、論文の執筆に LATEX を利用する. このテンプレートでは、LATEX の使い方を説明する.

1.2 本論文の構成

本論文の構成をつぎに示す。第1章に序論を述べた。第2章では、表紙、フォントといった形式について説明する。第3章では、図表について説明する。第4章では、数式の記述について説明する。第5章では、参考文献について説明する。第6章に結論を述べる。

第2章

第2章

第3章

図表

Tab. 3.1: MID-360 Specifications

Model	MID-360
Laser Wavelength	905 nm
Laser Safety ¹	Class 1 (IEC60825-1:2014) Eye Safety
Detection Range @100 klx	40 m @ 10 % reflectivity
	70 m @ 80 % reflectivity
Close Proximity Blind Zone ²	0.1 m
FOV	Horizontal: 360°, Vertical: -7° to 52°
Range Precision $(1\sigma)^3$	$\leq 2 \text{ cm}^4 (@10 \text{ m})$
	$\leq 3 \text{ cm}^5 (@0.2 \text{ m})$
Angular Precision (1σ)	< 0.15°
Point Rate	200,000 points/s (first return)
Frame Rate	10 Hz (typical)
Data Port	100 BASE-TX Ethernet
Data synchronization	IEEE 1588-2008 (PTPv2), GPS
Anti-Interference Function	Available
False Alarm Rate @100 klx ⁶	< 0.01 %
IMU	Built-in IMU Model: ICM40609
Operating Temperature ⁷	-4°F to 131°F (-20°C to 55°C)
IP Rating	IP67
Power ⁸	6.5 W (average)
Power Supply Voltage Range	9–27 V DC
Dimensions	65×65×60 mm
Weight	265 g

第3章 図表

Fig. 3.1: ROS 2 communication: Topic communication

Fig. 3.1 に ROS 2 のトピック通信の画像を示す.

第4章

数式

逆運動学式では、ロボット車の移動速度から、左右のモータの速度へと変換を行う. それぞれのモータの速度を回転数に変換を行う. この回転数を PWM 信号として、モータへ入力して速度制御を行う.

ロボットの移動速度(並進速度)をV [m/s],角速度を ω [rad/s],左右輪の速度を v_L , v_R [m/s] 車輪直径をd [m] とする.このロボットは,差動駆動型のロボットであるため,運動学式より,(4.1) 式が成り立つ.

$$\begin{bmatrix} V \\ \omega \\ R \end{bmatrix} = \begin{bmatrix} \frac{v_L + v_R}{v_R - v_L} \\ \frac{2d}{2d} \\ \frac{d(v_L + v_R)}{v_R - v_L} \end{bmatrix}$$
(4.1)

基準座標系での速度と角速度は

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} v \cos \theta \\ v \sin \theta \\ \omega \end{bmatrix} \tag{4.2}$$

となる. これより, 左右輪のモータの角速度はつぎとなる.

$$\begin{bmatrix} v_L \\ v_R \end{bmatrix} = \begin{bmatrix} V - d\omega \\ V + d\omega \end{bmatrix} \tag{4.3}$$

モータ速度からモータ回転数 n [rpm] を求める式は、

$$n = \frac{60}{2\pi r} \times v \times D \times \frac{1}{d} \tag{4.4}$$

となる. このとき, D は減速比であり, v [m/s] には, 左右輪の速度 v_L , v_R を代入する.

第5章

参考文献

参考文献について説明する.引用してきた論文などは、上付きの)で示す $^{1)}$.

第6章

結論

謝辞

本論文の作成にあたり、多くの方々にご協力をいただいた. ここに感謝と敬意を示し、皆さまへの深い 謝意を記す.

参考文献

1) Open Robotics. Documentation/ros とは. https://www.ros.org/, 2024.