Pseudo Code for Repair Algorithm

Arthur Feng

March 25, 2019

1 Introduction

Definition 1.1. (Mixed Integer Programming)

In this report, we denote the MixedInteger programming (MIP) problem in the follow form

(MIP)
$$\min\{c^T x : Ax \leq b, x \in \mathbb{Z}^l \times \mathbb{R}^k\}$$

where $m, n \in \mathbb{N}$, and n = l + k, A is a matrix for $A \in \mathbb{R}^{m \times n}$, and the vector $b \in \mathbb{R}^m$, the vector $c \in \mathbb{R}^n$.

S is a set of feasible solution if S satisfy all the constraints in the problem. If $s \in S$, s is called a feasible solution to the problem \mathcal{Z}_{MIP} . The MIP is called infeasible when S is empty, other wise, the MIP is called feasible. The feasible solution s^* is called optimal when $s^* \in S$ and $c^T x_{s^*} \leq c^T x_s$ for $\forall s \in S$.

Definition 1.2. (Linear Programming and LP-relaxation)

With the definition of MIP in 1.1, there is a special case of MIP when all variables are continuous, which is called *LinearProgramming* (LP) problem

$$\mathcal{Z}_{LP} = \min\{ c^T x : Ax \le b, x \in \mathbb{R}^k \}$$

A LP can also be obtained by removing all integrity constraints: $x_i \in x$ where $i \in n \setminus l$, this is called LP-relaxation. LP-relaxation is the foundation of LP-based branch-and-bound technology. As the searching space is increase by removing integrity restrictions, the optimal solution in MIP could not better than LP-relaxation, which is $s_{MIP}^* \geq s_{LP}^*$. This means the optimal solution found in LP could provide a lower or prime bound for MIP.

Definition 1.3. (Binary Programs)

In the definition 1.1, When all variables are integer

$$\mathcal{Z}_{IP} = \min\{ c^T x : Ax \le b, x \in \mathbb{Z}^l \}$$

The problem is call pure Integer Programming (IP) problem. And if we denote \mathbb{B} be a set of binary values where $\mathbb{B} = \{0,1\}$ for $\forall x \in \mathbb{B}^l$, then we call this problem a Binary Programming problem. This report we focus on Binary Programs.

Question: the two terminologies Binary programming problem and pseudo-Boolean problem is same? or not?

2 Input

- A problem $\mathcal{P}^0 = min\{c^Tx \mid Ax \geq b, x_i \in \mathbb{B}^n, \mathbb{B} = \{0,1\}\}$ with n binary variables x, objective function $O^0 = c^Tx$ (min), constraint set C^0 with an optimal solution s^0 .
- A problem \mathcal{P}^1 with n binary variables x, objective function $O^1 = O^0 = c^T x$ (min), constraint set C^1 , such that $C^0 \subsetneq C^1$.

3 Output

• An optimal solution s^1 to \mathcal{P}^1 .

end

RemoveFromMin(x)

49

50

Algorithm 1: Solving Problem with Reoptimization **Data:** r, \mathcal{P}^0, s^0 and \mathcal{P}^1 where $C^0 \subsetneq C^1$, $O^0 = O^1$ **Result:** optimal solution s^1 to \mathcal{P}^1 1 begin if s^0 is feasible to \mathcal{P}^1 then 2 return s^0 3 else 4 $C^+ \longleftarrow C^1 - C^0$ 5 for $c \in C^+$ do 6 add v_i to the set V where it's coefficient $c_i \neq 0$ 7 end 8 $y^0 = c^T x$ for $x \in s^0$ 9 $y^p = c^T x \text{ for } x \in s^0 \cap V^+$ 10 $\Delta y = |Y^0 - Y^p|$ 11 if $\Delta y/y^0 \geq r$ solve \mathcal{P}^1 from scratch then 13 solve it with reoptimization 14 $p \longleftarrow (|y^0| + |y^p|)$ 15 $O^p \leftarrow p * \sum x \text{ for } x \in V^+$ $\mathcal{P}^* \leftarrow O^p + C1$ 16 **17** $V^+ \longleftarrow forvinC^+wherec$ 18 19 else end 20 $V \longleftarrow U$ 21 $S \longleftarrow \emptyset$ for $x \in X$ do $\mathbf{23}$ $NbSuccInS(x) \longleftarrow 0$ 24 $NbPredInMin(x) \longleftarrow 0$ 25 $NbPredNotInMin(x) \leftarrow |ImPred(x)|$ 26 end 27 for $x \in X$ do 28 if NbPredInMin(x) = 0 and NbPredNotInMin(x) = 0 then **29** AppendToMin(x)30 end 31 end **32** while $S \neq \emptyset$ do 33 remove x from the list of T of maximal index 34 while $|S \cap ImSucc(x)| \neq |S|$ do 35 for $y \in S - ImSucc(x)$ do 36 { remove from V all the arcs zy : } **37** for $z \in ImPred(y) \cap Min$ do 38 remove the arc zy from V39 $NbSuccInS(z) \leftarrow NbSuccInS(z) - 1$ 40 move z in T to the list preceding its present list 41 {i.e. If $z \in T[k]$, move z^3 from T[k] to T[k-1]} 42 end 43 $NbPredInMin(y) \longleftarrow 0$ 44 $NbPredNotInMin(y) \longleftarrow 0$ **45** $S \longleftarrow S - \{y\}$ **46** AppendToMin(y)**47** 48 end

Algorithm 2: How to write algorithms

```
Result: Write here the result
1 initialization;
2 while While condition do
      instructions;
 3
      if condition then
 4
          instructions1;
 5
          instructions2;
 6
      else
 7
          instructions3;
 8
      end
 9
10 end
```

5 MIP

5.1 Mixed Integer Programming

Definition 5.1. (Mixed Integer Programming)

Let $m, n \in \mathbb{N}$, The given matrix $A \in \mathbb{R}^{m \times n}$, vectors $b \in \mathbb{R}^m$, and the vector $c \in \mathbb{R}^n$, and a set $\mathcal{I} \subseteq N = \{1, \ldots, n\}$. the problem

(MIP)
$$c^* = \min c^T x$$
$$s.t. \quad Ax \ge b$$
$$x_i \in \mathbb{Z}_{\ge 0} \quad \forall_i \in \mathcal{I}$$
$$x_j \in \mathbb{R}_{>0} \quad \forall_i \in \mathcal{N} \setminus \mathcal{I}$$

is called *mixedintegerprogram* with the objective function $c^T x$ and constraints $A_i x \geq b_i$ for all i = 1, ..., m.

A vector $x \in X_{MIP} = \{x \in \mathbb{R}_{\geq 0}^n \mid A_x \geq b, x_i \in \mathbb{Z}_{\geq 0} \ \forall i \in \mathcal{I} \}$ is called *feasiable solution* and X_{MIP} the set of feasible solutions. A feasible x^* is called optimal, if x^* satisfies $c^* = c^T x^*$.

Common special cases of MIPs are linear programs (LPs) for $\mathcal{I} = \emptyset$ and integer program (IPs) for $\mathcal{I} = N$. Additional, an integer variable bounded by 0 and 1 is called binary variable. let $\mathcal{B} \subset \mathcal{I}$ denote the set of binary variables. An integer program with $\mathcal{B} = N$ is called binary program (BP) or mixed binary program (MBP), if $\mathcal{B} = \mathcal{I} \subsetneq N$.

A lower or dual bound on a MIP can be computed by neglecting the intergrality constraints. the so-obtained problem is called the *LP-relaxation* of the MIP.

Definition 5.2. (LP-relaxation)

Given a MIP as introduced in Definition ??. The LP-relaxation is defined as

(MIP)
$$c^* = \min c^T x$$

 $s.t. \quad Ax \ge b$
 $x \in \mathbb{R}^n_{>0}$

Analogous to X_{MIP} we can define X_{LP} as the set of feasible solutions of the LP-relaxation. A feasible solution $x_{LP}^* \in X_{LP}$ is called LP-optimal if $c_{LP}^* = c^T x_{LP}^*$. In general solving MIPs is NP-hard. One common method for solving MIPs is LP-basedbranch – and – bound. This method splits the problem into smaller subproblems, and procedure is repeated on these subproblems. At any point a global upper or primal bound is given by the best known solution, if existent, and a local lower bound or dual bound is given by the respective LP-relaxation.

5.2 Pseudo-Boolean optimization

In the section 2.4 we will present a special kind of a binary problem, a so-called *pseudo-Booleanproblem*. For this purpose we introduce the basic definition of a *pseudo-Booleanproblem* in this section. For more detail we refer to Hammer and Rubin and Boros and Hammer and the references therein.

Let us denote by $\mathbb{B} = \{0,1\}$ the set of binary values and let $N = \{1,\ldots,n\}$ be an index set, Reflecting to Boros and Hammer we consider functions in n binary variables x_1, x_2, \ldots, x_n and denote the binary vector by $(x_1, x_2, \ldots, x_n in \mathbb{B}^n)$. A function $f : \mathbb{B}^n \to \mathbb{R}$ of the form

$$f(x_1, x_2, \dots, x_n) = \sum_{S \subseteq N} C_S \prod_{i \in S} x_i$$

where $C_s \in \mathbb{R}$ for each $S \subseteq N$, is called pseudo - Boolean function. see e.g., Hannmer et al. The degree of the function deg(f) is given by the seize of the largest set $S \subseteq N$ which $C_S \neq 0$. A pseudo-Boolean function f is called linear, quadratic, cubic etc. if $deg(f) \leq 1, 2, 3$ etc. repectively. Liu and Truszczynski defined a pseudo - Boolean constraint as an integer inequality of the form

$$\sum_{i=1}^{n} a_i x_i \ge b$$

with $a_i, bin\mathbb{Z}$ and $xi \in \mathbb{B}$ for all iin[n]. A binary problem defined by a pseudo-Boolean objective function and a set of pseudo-Boolean constraints is called $pseudo-Boolean \ optimization \ problem$.