Rozpoznawanie w oparciu o algorytmy CNN. Steganografia

WYKŁAD 8 Dla studiów niestacjonarnych 2021/2022

Dr hab, Anna Korzyńska, prof. IBIB PAN

Komputerowa analiza i rozpoznawanie obrazów

Jest to "sztuka" udzielania, automatycznej i mającej matematyczne podstawy odpowiedzi na pytanie:

Co ten obraz przedstawia (i o czym mówi)?

Podejścia:

- Klasyczna oparta o cechy dobranych przez deweloperów systemu na podstawie rad ekspertów i ich doświadczenia
 Analiza obrazu zajmuje się ekstrakcją cech obiektów wysegmentowanych z obrazów na potrzeby rozpoznawania obrazów
- Właściwe rozpoznawanie obrazu zajmuje się tworzeniem i weryfikacja regut, na podstawie których udziela się odpowiedzi na powyższe pytanie oraz stosowaniem tych regut w konkretnych zagadnieniach praktycznych
- Oparta na sztucznej inteligencji bazuje na cechach wyznaczonych automatycznie w procesie uczenia

Podsumowanie metod klasycznych

Klasyczne algorytmy rozpoznawania obrazów zawsze zależa od skomplikowanego przetwarzania obrazu w celu poprawy początkowej jakości obrazu i umożliwienia segmentacii / separacii obiektów.

Jednak najważniejszy jest proces inżynierii cech, który jest kluczowy w klasycznej technice rozpoznawania. Tradycyjne "ręcznie" dobierane cechy i funkcje w dużej mierze opierają się na wiedzy specjalistycznej w dziedzinie. Najczęściej są zaproponowane deweloperom systemu przez specialistów, którzy przygotowuj adnotacje do zestawu szkoleniowego.

Rozpoznawanie obrazów metodami opartymi na głębokich konwolucyjnych sieciach neuronowych

Wymagają nauczenia sieci neuronowej rozwiązywania pewnego zadania stosując algorytmy głębokiego uczenia (ang. deep learning) należące do dziedziny zwanej sztuczną inteligencją

Sztuczna inteligencja

Sformułowanie "sztuczna inteligencja" (ang. Artificial Intelligence; AI) jest używana do nazwania takich komputerów/maszyn, które naśladują "funkcje poznawcze", które ludzie kojarzą z ludzkim umysłem, takie jak "uczenie się" i "rozwiązywanie problemów"

Powstała jako dyscyplina akademicka w 1955. Termin zaproponował McCarthy (z Uniwersytetu Stanford) na konferencji w Dartmouth

- inteligencja realizowana w procesie technicznym, a nie naturalnym, biologicznym; 2. dziedzina badań naukowych informatyki i kognitywistyki czerpiąca także z
- osiągnięć psychologii, neurologii, matematyki i filozofii

Definicja z 2019 r: ".. zdolność systemu (maszyny, komputera dopisek) do prawidłowego interpretowania danych pochodzących z zewnętrznych źródeł, nauki na ich podstawie oraz wykorzystywania tej wiedzy, aby wykonywać określone zadania i osiągać cele poprzez <u>elastyczne</u> dostosowanie.

Cytat z: Andreas Kaplan; Michael Haenlein (2019) Siri, Siri in my Hand, who's the Fairest in the Land? On the Interpretations, Illustrations and Implications of Artificial Intelligence, Business Horizons, 62(1), 15-25

Algorytmy sztucznej inteligencji (AI)

Sztuczna inteligencja jako technologia aktualnie dostępna

potrafi:

 Używać naturalnego werbalnego języka, tłumaczyć z języka na język, ale nie potrafi prowadzić komunikacji pozawerbalnej; wyczuć intencji i nastroju . mówiącego

- Uczyć się na podstawie danych, na próbach i błędach przez powtarzanie procesy uczenia, ale tylko w stosunku do konkretnego ściśle wyznaczonego zadania
- Otrzymuje bardzo dokładne rezultaty w specyficznych trudnych dla człowieka zadaniach obliczeniowych, w grach o ściśle określonych regułach, poszukiwaniu podobieństwa w danych and nie potrafi żadnej z tych czynności adoptować do nawet lekko zmienionych warunków zadania
- nie ma celu, woli, emocji, poczucia humoru, zawziętości czy wyro innych cech charakteru (indywidualności)

Zastosowanie AI w: wizji komputerowej, w rozpoznawaniu mowy, maszynowym tłumaczeniu, w filtrowaniu poczty, graniu w gry nawet trudne jak szachy czy Go Ostania również odnosi wielkie sukcesy we wspomaganiu diagnostyki w medycynie.

- (np. od ekspertów)
- Uczenie bez nauczyciela, nienadzorowane (unsupervised learning) ukryte zależności i organizacja danych, ich podobieństwa i zaburzenia, czy odchylenia od normy są identyfikowane przez system bez pomocy ekspertów w dziedzinie lub dewelopera systemu
- Nie ma treningu tylko następuje uczenie się dzięki próbom i błędom (reinforcement learning) i naturalnej pochodzącej ze środowiska karze, która pozwala podnieść efektywność uczenia się np.: uczenie chodu i gry np.: szachy
- Uczenie cześciowo nadzorowane (weeklly supervised), w którym na wstępie zastosowane jest uczenie z nauczycielem na tzn. danych etykietowanych, a następnie zasadnicza część uczenia to uczenie bez nauczyciela

Przykłady możliwości systemów opartych na uczeniu maszynowym

- Prowadzenie samochodów i pilotowanie samolotów oraz robotów
- Rozpoznawanie mowy (2012);
- Ekstrahuje i aplikuje cechy stylu (Deep Convolution Generative Adversarial Networks DCGAN)

Jak są zbudowane sztuczne sieci neuronowe?

Elementem funkcjonalnym sieci neuronowej jest Sieci neurunowe perceptron / neuron matematyczna symulacja funkcji komórek nerwowych (odbiór i odesłanie przetworzonego sygnału). Sieć jest złożona z warstw neuronów połączonych w taki sposób, że wyjście warstwy wcześniejszej jest İ1 W weiściem warstwy następującej po niej. Połączenia poszczególnych neuronów regulują W₂ Funkcja İ2 przekazywany sygnał według aktywacji np. ReLU S dobieranych w procesie uczenia współczynników W Wn İn McCulloch and Walter Pitts w 1943 roku

Głębokie sieci neuronowe Głębokie sieci neuronowe (NN) to sieci o więcej niż trzech

- warstwach.
- Sieci neuronowe uczą się z danych źródłowych i mapują "informacje/wiedze wciągniętą ze zbioru uczącego" do współczynników sieci.
- W zadaniach rozpoznawania sieci neuronowe potrafią w procesie optymalizacji automatycznie dobrać cechy konjeczne do rozpoznawania pewnych klas obiektów w procesie treningu.
- Typowe sieci neuronowe w eksploatacji zachowują się jak "czarna skrzynka".
- Sieci, w których mamy dostęp do informacji o "przyczynach" decyzji o rozpoznawaniu i klasyfikacji nazywają się po angielski **eXplanable** NN; (XNN)
- Okazuje się, że kombinacja cech pochodzących od ekspertów (używanych w klasycznych metodach rozpoznawania) z cechami zidentyfikowanymi na etapie uczenia się maszyny daje szansę $\underline{\mathsf{nie}}$ tyle bardzo dobre wyniki, ale zrozumiałe dla użytkownika wyniki.

Warstwy

Podstawowe rodzaje warstw i procesów z nimi związanych:

- Klasyczna Fully Connected (FC) dense
- Konwolucyjna W odróżnieniu od warstwy typu fully-connected, rozmiar wyniku działania warstwy konwolucyjnej zależy od rozmiaru danych wejściowych, rozmiaru filtrów i funkcji zmieniającej rozmiar, oraz wartości kroku. Sieci tego typu dobrze działają tam gdzie jest duże redundancja informacji np.: przy analizie obrazów, dźwięków lub zbioru cech.
- Pooling. Pooling to proces zmniejszeniu przestrzeni cech/rozmiaru sieci wewnątrz konwolucyjnej sieci neuronowej przez uśrednianie (average pooling) lub przyjmowanie wartości maksymalnej (max pooling) z określonego otoczenia.
- Padding, czyli uzupełnianie odpowiednimi wartościami, do określonego rozmiaru. Od liczby dodanych zer (stosowany zero padding) zależy, czy mapa wyjściowa będzie miała rozmiar większy, mniejszy czy taki sam, w porównaniu do rozmiaru mapy wejściowej na danym poziomie-warstwie.

Źródło: By Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=45673581

Jakie matematyczne operacje umożliwiają uczenie się sieci

17

Funkcje aktywacji f(x) = xf'(x) = 1 $f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$ $f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$ f'(x) = f(x)(1 - f(x)) $f(x) = \frac{1}{1 + e^{-x}}$ $f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$ $f'(x) = 1 - f(x)^2$ $f'(x) = \frac{1}{x^2 + 1}$ $f(x) = \tan^{-1}(x)$ $f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$ $f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$ $f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$ $f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$ $f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$ $f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$ $f(x) = \log_e(1 + e^x)$ $f'(x) = \frac{1}{1 + e^{-x}}$

Pojęcia związane z uczeniem sieci neuronowych

- Przeuczenia (ang. Overfiting): zbyt mała ilość danych w porównaniu do liczby parametrów (zanikanie), zwiększenie zbioru uczącego, zmniejszenie liczby parametrów, losowe wykluczanie neuronów
- Zanikanie gradientu (ang. Gradients disappears) zamieniając funkcję aktywacji lub wzmacniając gradient przez regularyzację
- Zbieżność/konwergencja procesu uczenia (ang. Convergence of learning) zbieżność procesu optymalizacji zmiana funkcji błedu
- Ocena poprawności uczenia (ang. Correctness assessment): dokładność i precyzja, Classical MSE / mutual entropy (CE -cross entropy; Averaged CE (ACE-averaged CE); F1
- Generalizacja (ang. Generalization) cel uczenia

21

Augmentacja (ang. augmentation)

To proces powielenia danych uczących przez:

- Transformacje obrazów (ang. adversarial transformation); translacje, obroty, przekształcenia afiniczne?
- Dołożenia pewnych zakłóceń rozjaśnienie, przyciemnienia, dodanie szumu zmiana tonacji, itp

Podsumowanie o sieciach CNN

23

Sztuczna sieć neuronowa

- Poprawa efektywności rozpoznawania, klasyfikacji i segmentacji obrazów przez żmudny proces optymalizacji sieci – uczenia się, który przypomina proces Darwinowskiego doboru naturalnego
- Na etapie korzystanie z nauczonej sieci mamy na wejściu dane, a na wyjściu prawdopodobieństwo że obiekt należy do którejś ze znanych kategorii i tylko tyle!
- Nie ma "rozumienia", bo nie ma kontekstu; nie można wyobrazić sobie konsekwencji, itp.

K

CNN wady i zalety

Możliwości CNN:

- Nadzorowane podejście do uczenia maszynowego polega na szkoleniu modelu statystycznego przy użyciu zestawu obrazów ze zbioru uczącego, dla których istnieją etykiety i oznaczenia przygotowane przez ekspertów w dziedzinie. Wyuczony model odwzorowuje automatycznie wybrane obiekty na klasy/kategorie, czyli uczy się z doświadczeń.
- Połączenie różnych informacji w modelu np.: danych klinicznych i obrazów diagnostycznych daje lepsze wyniki predykcji klasyfikacji.

25

CNN wady i zalety

CNN mają pewne ograniczenia, które są do pokonania:

- Uczenie się sieci wymaga ogromnej ilości danych treningowych
- Uczenie się sieci wymaga dużej mocy obliczeniowej
- Oczelne się siect wyniaga dużej moży obuczeniowej po-Proces uczenia się wymagaja odpowiedniej architektury wydajnego systemu komputerowego mogą być złożone i często muszą być ściśle dostosowane do konkretnej aplikacji (programowalne tablice bramek (FPGA), procesory graficzne (GPU) i specyficzne dla aplikacji układy scalone (ASICI) są badane w celu wykorzystania równoległości struktury obliczeniowej sieci neuronowych, bardziej niż równoległe procesory)
- Powstałe modele mogą nie być łatwo interpretowalne
- Długi czas uczenia się (metoda prób i błędów),
- Występowanie nadmiernego dopasowania w przypadku niewystarczającej ilości/liczby danych.
- Trudności w zapewnieniu konwergencji procesu uczenia się.
- Wymagają od użytkownika zrozumienia, jak należy interpretować wyniki oddawane przez wyuczony model zjawiska/wyuczoną sieć aby wysunąć sprawdzalne hipotezy dotyczące badań

Przykłady sieci

27

Year	CNN	Developed by	Place	Top-5 error rate		No. of parameters	
1998	LeNet(8)	Yann LeCun et al					60 thousand
2012	AlexNet(7)	Alex Krizhevsky, Geoffrey Hinton, Ilya Sutskever	1st				60 million
2013	ZFNet()	Matthew Zeiler and Rob Fergus	1st		_		
2014	GoogLeNet(1 9)	Google	1st				4 million
2014	VGG Net(16)	Simonyan, Zisserman	2nd				138 million
2015	ResNet(152)	Kaiming He	1st				

Rozpoznawanie cyfr zapisanych ręcznie np.: na czekach - Case study Jak z obrazu uzyskać informację o cyfrze? p(obiekt~0) p(obiekt~1) p(obiekt~2) p(obiekt~3) p(obiekt~4) p(obiekt~5) p(obiekt~5) p(obiekt~7) p(obiekt~7) p(obiekt~8) p(obiekt~9)

Historia i aktualne problemy NN

Ograniczenia DNN Można wytrenować sieć, która pasuje do kompletnie przypadkowych podziałów na klasy (na danych treningowych) da 100% dokładności Możemy wnioskowa o funkcji aproksymującej jedynie w zakresie danych zbioru uczącego. Neural networks are excellent function approximators Neural networks are excellent function approximators - Możemy wnioskowa o funkcji aproksymującej jedynie w zakresie danych zbioru uczącego.

Uwaga! na proces augmentacji bo czasem produkujemy "podobne przeciwieństwa" (ang. adversarial examples)

Despois. "Adversarial examples and their implications" (2017).

Temple (97%)

Ograniczenia DNN

Ograniczenia DNN Dużo danych bo dużo współczynników do optymalizacji Obliczeniowo i wdrożeniowo (GPU) kosztowny Mogą być oszukiwane przez "podobne przeciwieństwa" Słabo można zbadać model, jego odporność i niepewność i inne parametry Model i oprogramowanie jest czarną skrzynką której trudno ufać – szczególnie ekspertom/lekarzom Nie każde podejście zawsze daje wynik w postaci dobrze optymalizowanej – potrzeba prób i błędów Potrzebna wiedza eksperta (wąskie gardło) Praca dewelopera oprogramowania w dobie przysztych mocno zaawansowanych sieci

Obawy społeczne związane z sztuczna inteligencją

- Przypominają obawy z XIX w sprawie **mechanizacji pracy** lub obawy o Puszkę Pandory
- Czy technologia może coś chcieć, być bezwzględnym megalomanem? Nie ma woli i celuto ludzie mają chęć dominacji i gromadzenia zasobów i dokonują projekcji na AI
- Powody nieufności do technologii to głównie: nieprzejrzystość i brak dostępu do procesu ich uczenia się sieci (same wyszukują cechy ich zakresy i same się optymalizują wagi, a jak coś idzie nie tak to nadzorujący uczenie się maszyny właściwie nie wiedzą dlaczego, czy to można naprawić. Nadzorujący ponawia proces oparty na przypadkowym podawaniu przykładów ze zbioru uczącego).
- Zbiory uczące przygotowuje człowiek i to jego wiedza jest w nich zawarta i przez niego wyselacjonowana (postulat: akredytacje dla deweloperów).
- Technologia sztucznej inteligencji rozwijana się stopniowo, jest poprawiana pod względem bezpieczeństwa i skuteczności, projektowana, tak aby spełniać różne praktyczne kryteria
- Aktualne sukcesy Al wynikają z ich ogromnej siły obliczeniowej pozwalającej na przeanalizowanie ogromnej ilości danych uczących, czyli przypominanie sawantka czyli genialnego idioty – film "Rainmen" z Dustinem Hofmanem.
- Słowa Alisona Gopinka (University of Clifornia w Berkeley): "Jak na razie znacznie w

Przykłady sieci

STEGANOGRAFIA

STEGANOGRAFIA

Nauka o komunikacji w taki sposób, by obecność komunikatu nie mogła zostać wykryta, czyli ukrywanie/hermetyzacji informacji (ang. information hiding)

Słowo "steganografia" pochodzi z języka greckiego i oznacza ukryte pismo

Zaleta steganografii w stosunku do szyfrowania informacji jest ukrycie samego faktu porozumiewania się stron.

Ukrywanie informacji obrazowej (lub tekstowej) w obrazie (image watermarking) w różnych celach:

Cele stosowania steganografii

- 1. Ochrona praw autorskich (ukryty obraz (lub tekst) pełni rolę znaku wodnego (watermark)), w tym przypadku konieczną własnością obrazu ukrytego jest (poza odpornością na usunięcie przez czynniki zewnętrzne) jego wystarczająca odporność na działanie standardowych operacji przetwarzania obrazów (filtracja, kompresja, zniekształcenia geometryczne itp.),
- 2. Ochrona autentyczności obrazu (ukryty obraz pełni rolę znaku wodnego (watermark)), w tym przypadku konieczną własnością obrazu ukrytego jest (poza odpornością na usunięcie przez czynniki zewnętrzne) jego wystarczająca podatność na działanie operacji przetwarzania obrazów (filtracja, kompresja, zniekształcenia geometryczne itp.).
- 3. Praktyczne przesyłania informacii

Historia steganografii

- Histiajos w niewoli króla perskiego Dariusza postanowił przesłać informację do swego zięcia Arystagorasa z Miletu stosując następujący forteł: na wygolonej głowie swego orasa niewolnika wytatuował informację , gdy niewolnikowi odrosły włosy posłał go z oficjalnym, mało istotnym listem
- Egipcie i Chinach powszechnie stosowano atrament sympatyczny.
- Egipcie i Chinach powszechnie stosowano atrament sympatyczny.

 Demaratus ostrzegi Grecje o atku, piszą go berpośrednio na drewnianym podłożu woskowej tabletki przed nałożeniem powierzchni wosku psz.czelego.

 Mikrokropki: Pierwsze próby miniaturycowania przesyłanych informacji za pomocą mikrofotografii podjęto w 1871. podczas wojny francusko-pruskiej, kiedy to przesyłanych podpoty do oblężonego przez Niemców Paryża w postaci prostokątów o wymiarach z m.x. 4 cm. Udoskonalenia tej techniki dokonał wywiad niemiecki Abwehra na początku lat 40. XX wieku.
- punkt o średnicy 1 mm wykonany przez specjalne urządzenie będące połączeniem aparatu fotograficznego i mikroskopu, zawierający zminiaturyzowane dane tekstowe lub fotografie i szczegółowe rysunki techniczne. Skala miniaturyzacji wynoś ok. 1300, zonacza to możliwość pomniejszenia kartki formatu A4 zawierającej np. tekst do wielkości pojedynczej kropki znajdującej się w tekście pisanego czcionką normalnej wielkości listu
- Normanny wskoże isaku. Wykonywanych w tysiącach sztuk w technice grawerowania laserowego) jest wykorzystywana także komercyjnie np. do zabezpieczania żetonów w kasynach przed podrabianiem, znakowania samochodów lub cennych przedmiotów.
- Zapisy kodem pod znaczkiem na liście
- Podczas II Wolny Światowej Velvalee Dickinson nazywana **DoII Woman** japoński szpieg w Nowym Yorku z lalkami którymi handlowała przesyłała informacje szpiegowskie.

 Jeremiah Dentow Neioktorite imzugał oczaniu w alfabecie Morse'a podczas telewizyjnej konferencji prasowej w 1966 roku, po porwaniu przez porywaczy z Wietnamu Północnego, wypowiadając "T-O-R-T-U-R-E".
- W 1968 r. członkowie załogi statku wywiadowczego USS Pueblo, przetrzymywani przez Koreę Północną jako więźniowie, komunikowali się w języku migowym na zdjęciach.
- az Koranu miał zaszyfrowane informacje o zamachu na World Trade Cente

Ukrywanie obrazu w obrazie - nazwy obrazów

- 1. obraz ukrywający [**p**]
- 2. obraz ukrywany [h]
- 3. obraz ukrywany po przekształceniu [hmod]
- 4. obraz ukrywający wraz z obrazem ukrytym [ph]

Obrazy ukrywające z gradacją poziomów szarości Obraz ukrywający: na 1 piksel obrazu ukrywanego przypada 1 bajt (8 bitów) Obraz ukrywany może i powinien być uproszczony: na 1 piksel obrazu może przypadać 1, 2, 3, 4, 5, 6, 7, 8 bitów, co odpowiada 2,4,8,16,32,64,128,256

poziomom szarości (*M*)

W praktyce, ze względu na potrzebę ograniczenia wpływu obrazu ukrywanego na wygląd obrazu ukrywającego, stosowane są wartości **M**<<256, a obraz ukrywany zapisywany jest na najmniej znaczących bitach obrazu ukrywającego.

Zajęcia badanie czy:

przy wzroście wartości *liczby bitów obrazu ukrywanego* następuje coraz większa zmiana wyglądu obrazu ukrywającego i jednocześnie coraz wyraźniejsze uwidocznienie obrazu ukrywanego w tym obrazie.

Obrazy ukrywające kolorowe np. w formacie RGB

Obraz ukrywający: na 1 piksel obrazu przypada 3 bajty (24 bity) odpowiadające 3 składowym R, G, B

Przykładowy zapis piksla **obrazu ukrywanego**: 2 najmłodsze bity składowej R oraz po jednym najmłodszym bicie składowych G i B (razem 4 bity, co odpowiada obrazowi o *M*=16

Zapis informacji tekstowej obrazie RGB: 1 znak – 8 bitów co oznacza że do zapisu 1 znaku można wykorzystać 2 piksle.

Dodatkowe kodowanie obrazów ukrywanych => lepsze ich ukrycie (np. przemieszanie poszczególnych piksli)

Operacje najczęściej stosowane w procesie ukrywania i odtwarzania obrazu

- Jednopunktowe jednoargume progowania, redukcji poziomów szarości, rozciągania, uniwersalne
- operacje punktowe (UOP) •Jednopunktowe dwuargume
- arvtmetyczne (dodawanie, odeimowanie)
- logiczne (suma (OR), iloczyn (AND))

Koniec wykładu

Terminy egzaminu: 02.07.2021 i 09.07.2021

- Egzamin będzie na każdym etapie egzaminem testowym zdalnym.
- · Będzie wykonywany przy pomocy oprogramowaniu Inspera.
- Kursy dla studentów na temat tego oprogramowania już się odbyły, ale można je jeszcze raz przejść rozwiązując udostępnione testy.

Jak rozwiązywać zadania obliczeniowe?

• Zadania z liczeniem odległości

Metryka Euklidesowa

$$\rho_1(\underline{x}^{\mu},\underline{x}^{\eta}) = \sqrt{\sum_{\nu=1}^{n} (x_{\nu}^{\mu} - x_{\nu}^{\eta})^2}$$

Metryka uliczna (Manhattan, city block distance):

$$\rho_3(\underline{x}^{\mu},\underline{x}^{\eta}) = \sum_{\nu=1}^{n} |x_{\nu}^{\mu} - x_{\nu}^{\eta}|$$

Metryka Czebyszewa (maksymalna)

$$\rho_{5}\left(\underline{x}^{\mu},\underline{x}^{\eta}\right) = \max_{1 \le \nu \le n} \left|x_{\nu}^{\mu} - x_{\nu}^{\eta}\right|$$

Jak rozwiązywać zadania problemowe?

- Czym różni się akwizycja w przypadku tych trzech obrazów dłoni?
- Czym różni się zapis informacji o obrazie dla tych trzech obrazów dłoni?

