PAI - Solutions Theoretical Test 1

Search 1.1

For the following question, we will examine the 8-Puzzle. For the given start state we have the following (pruned) search tree in the image below.

For the A* algorithm, we will use the following two heuristics:

- h1(node) = #misplaced blocks
- h2(node) = Sum(Manhattan distances from current position to normal position of each block)

We recall that for A^* , f = g+h and we will use g(node) = #moves.

We will use A* with f2 as a main function and break the ties using f1.

What will be the value of f2 in node C?

- f2 will not be calculated because C will not get expanded
- 0 7
- ⊕ 8
- 0 1
- None of the other answers is correct

Search 1.2

For the following question, we will examine the 8-Puzzle. For the given start state we have the following (pruned) search tree in the image below.

For the A* algorithm, we will use the following two heuristics:

- h1(node) = #misplaced blocks
- h2(node) = Sum(Manhattan distances from current position to normal position of each block)

We recall that for A^* , f = g+h and we will use g(node) = #moves.

We will use A* with f2 as a main function and break the ties using f1.

What will be the value of o (the order in which the node is expanded, NOTE that the o of node A is 0) for node O

- It will be in the fringe but it will never get expanded
- It will never ever be in the fringe
- 0 4
- 0 5
- 0 6
- 0 7
- None of the other answers is correct

Search 1.3

For the following question, we will examine the 8-Puzzle. For the given start state we have the following (pruned) search tree in the image below.

For the A* algorithm, we will use the following two heuristics:

- h1(node) = #misplaced blocks
- h2(node) = Sum(Manhattan distances from current position to normal position of each block)

We recall that for A^* , f = g+h and we will use g(node) = #moves.

We will use A* with f2 as a main function and break the ties using f1.

What will be the value of o (the order in which the node is expanded, NOTE that the o of node A is 0) for node P

- It will be in the fringe but it will never get expanded
- It will never ever be in the fringe
- 0 4
- 0 5
- ⊕ 6
- 0 7

Search 2.1

Assume a directed, connected graph with a source s and a sink t. We try to find a path form s to t with minimal path cost.

Futhermore, for this exercise, assume that:

- We have that the costs for every edge e c(e) are strictly positive, i.e., $c(\varepsilon)>0 \ \ \forall \varepsilon$
- · All discussed heuristics (whether admissible or not) consist only of strictly positive, rational numbers.

Which of the following statements are true?

	Running A^* with a heuristic function which is not admissible may not find a path from s to t, as A^* may run in circles and may not terminate.
₹	Running A* with a heuristic which is not admissible will find a path from s to t, but there might exist another path with lower cost.
	Using an admissible heuristic function allows to already terminate A* when t is first entered into the fringe, while in A* with a non-admissible heuristic function, we would have to wait until t gets extended to make sure we found an optimal solution.
₹	Consider a heuristic function which estimates the costs from any node to t exactly right. By using such a function in A*, every expanded node is also part of an optimal solution.

AS 1.1

Before answering the questions, download the following file which contains the instructions.

When coming back from node C to node B, what will happen to the values of alpha and beta of node B?

- Beta gets updated to 3
 Beta gets updated to 1
 The values will not be changed
- Alpha gets updated to 1
- Alpha gets updated to 3
- None of the other answers is correct

AS 1.2

(i) Before answering the questions, download the following file which contains the instructions.

What are the eval function of the states of the nodes G1 and G2 (use the given formula)

- 0 1 and 8
- 0 8 and 1
- 9 and 5
- 4 and 4
- None of the other answers is correct

CS 1.1

Which one of the following formulations would be a good formulation for the 8 Queens problem?

We have variables for each square of the chessboard, $\mathbf{x_{i,j}}$, with i in $\{1,...8\}$, j in $\{1,...8\}$

The domain for each variable is {0,1}

The constraints are:

Between any two squares $x_{i,j}$ and $x_{k,l}$ with i != k and j != l: $x_{i,j}$ + $x_{k,l}$ <= 1

We have variables for each queen, $\mathbf{q_1}$,..., $\mathbf{q_8}$ and each queen will have her own column, with the index representing the column.

The domain for each variable is $\{1,...,8\}$, representing the row

The constraints are:

Between any queens q_i and q_j with i!=j: ($q_i!=q_j$) && ($i-q_i!=j-q_j$) && ($i+q_i!=j+q_j$)

None of the other answers is correct

CS 1.2

Which of the following statements are true?

- If for a specific instance of the graph coloring problem, there is no feasible solution, Backtracking may not terminate and loop forever.
- If we consider a standard sudoku with 81 fields, the domain of every field which is not prefilled is {1,2,3,4,5,6,7,8,9}.
- "Least constraining variable first" and "Most constraining value first" are two popular techniques to improve the speed of a Backtracking Algorithm.