MCA 18 302 PRINCIPLES OF COMPILERS

MODULE 2 SYNTAX ANALYSIS

- 1. Role Of Parser
- 2. Error Handling And Recovery
- 3. Context Free Grammars
 - a) Derivations
 - b) Parse Tree
 - c) Ambiguity
 - d) Associativity And Precedence Of Operators
- 4. Definitions Of Parsing
 - a) Top -Down Parsing And
 - Recursive Descent Parsing
 - non-recursive Predictive Parsing-
 - LL (1) Grammars
 - b) Bottom-up Parsing-
 - Reductions, handle Pruning
 - shift Reduce Parsing
 - operator Precedence Parsing,
 - Simple LR Parsing.

Handle pruning

> Handles:

- ❖ It is a substring that matches the right-side of a production, and whose reduction to the nonterminal on the left side of the production represents one step along the reverse of a rightmost derivation.
- ❖ Formally, a handle of a right sentential form γ is a production A→ β and a position on γ where the string β may be found and replaced by A to produce the previous right-sentential form in a rightmost derivation of γ .
- ❖ That is, if S→ αAw → α βw ,then A→ β in the position following α is a handle of α βw.
- ❖ The string w to the right of the handle contains only terminal symbols.

eg: Consider the grammas: S-)anbe A-) Abell

the sentence, w = abbide:

- . Here abbide is a right sentential form whose handle is A > b at position a.
- · a Abade is a sight sentential form whose handle is A Aba at position a.
- handle is Bod at position 3.
 - · a ABe is a sight sentential form whose handle is 5-) a ABE at position !

These reductions trace out the following right most derivation is reverse.

S = anse = ande = anbade = abbide

> Handle Pruning:

- The process of discovering a handle and reducing it to the appropriate left hand side is called <u>handle pruning</u>.
- A rightmost derivation in reverse can be obtained by handle pruning.
- **❖** To construct a RMD:

$$S \rightarrow \gamma 0 \rightarrow \gamma 1 \rightarrow \gamma 2 \rightarrow \cdots \rightarrow \gamma n-1 \rightarrow \gamma n=w$$

*Apply the following simple algorithm:

for $\underline{i}\leftarrow n$ to 1 by -1

Find the handle $A_i \rightarrow \beta_i$ in γ_i .

Replace β_i with A_i to generate γ_{i-1} .

eg: Consider the following grammas:

E TETE | E * E | (f) lid

and the right most desivation:

E = E + E

THE E + E

THE

Apply algorithm:

Right Sentential	Handle	Reducing Production
id+id * id	id	E-sid
E + id + id	id	E → id
	Aid .	E → I'd
E+ E * E	5 × E	E -> E * E
Est Es	Et	F -> E+E
3+ = 3 1= 10		