Cours 5 : Bascules, Registres, Compteurs, Mémoires

q Bascules

- Bascule RS asynchrone Reset Set
- Bascule Synchrone R S T
- Bascule JK, Toggle, bascule D

q Registres

- Registre parallèle
- Registre sérialisé
- Registre à décalage
- Codeur : Opération inverse d'un décodeur

q Compteur

- Compteur
- Décompteur
- Timer
- g Mémoire
 - Circuit mémoire
 - Banc mémoire

- •Circuit asynchrone : les sorties réagissent immédiatement aux variations des entrées
- •Circuits synchrones : les sorties se positionnent sur un signal d'horloge

Bascule Asynchrone : la bascule R S Reset (mise à 0) Set (mise à 1)

- A Une circuit asynchrone, est une bascule dont la sortie évolue dès lors qu'un changement a lieu sur l'une des entrées
- Ø Exemple de circuit

b ______

Ø Une seule bascule asynchrone, la bascule RS

Asynchrone, active bas

Asynchrone, active haut

Table de vérité

	R	S	Q _t	Q_{t+}	Fonction
•	1	1	Qo	Qo	Mémoire
	1	0	Qo	1	Mise à 1
•	0	1	Qo	0	Mise à 0
	0	0			Interdit

	R	S	Q_{t}	Q_{t+}	Fonction
•	0	0	Qo	Qo	Mémoire
•	0	1	Qo	1	Mise à 1
•	1	0	Qo	0	Mise à 0
•	1	1			Interdit

Bascule synchrone: exemple du latch R S T sur niveau 1

La sortie évolue quand le signal d'horloge est actif soit sur niveau, soit sur front

4 Latch déclenché sur niveau haut

4 Latch déclenché sur niveau bas

Registre sur front montant

Fonctionnement:

- Signal d'horloge actif
- à bascule RS
- Absence de signal actif d'horloge à mémoire

Bascule Synchrone J K

<u>J</u>	K	Qo	Qo	S	<u>R</u>	fonction	Q	Q	fonction
0	0	X	X	0	0	Mémo	X	X	Mémoire
0	1	1	0	0	1	Reset	0	1	Reset
		0	1	0	0	Mémo	0	1	
1	0	1	0	0	0	Mémo	1	0	
		0	1	1	0	Set	1	0	Set
1	1	1	0	0	1	Reset	0	1	Inversion
		0	1	1	0	Set	1	0	

PDF Creator - PDF4Free v2.0

Bascule T: Toggle

Fonctionnement: La sortie change d'état à chaque apparition d'un front actif d'horloge

Exemple :Décompteur 4 bits

http://www.pdf4free.com

Bascule D : Latch état Haut

T	D	J	K	Qn+1	fonction	
0	X	X	X	Qn	Mémo	
1	1	1	0	1	Set	
1	0	0	1	0	Reset	

	T	D	Qn+1
	0	X	Maintenir Qn
— /	1	D	Écrire D

Fonctionnement:

Quand signal actif, la sortie recopie l'entrée D Signal inactif Fonction Ecriture Fonction Mémoire

Circuit

4 Entrées asynchrones Set ou Reset

Set -> Mise à 1 asynchrone de la sortie Reset ou Clear -> Mise à 0 asynchrone de la sortie

Entrées pouvant être actives sur le niveau bas

4 2 bascules par boîtier 14 pattes

Bascule D : Latch état bas

Bascule D synchrone sur front

<u>H</u>	D	\mathbf{D}_1	Q
0	0	0	0
1	0	0	0
1	1	0	0
0	1	1	0
1	1	1	1
1	0	1 1	1

Fonctionnement:

4 Tant que H = 0

La première bascule recopie l'entrée D sur D1 La deuxième bascule mémorise l'état précédent

4 Quand H passe à 1

La première bascule maintient D1 La deuxième bascule le recopie sur Q

4 à écriture sur front montant

Contraintes Temporelles

Propagation Time

4 Respect du temps de conditionnement <u>Setup Time</u>

Le temps séparant l'arrivée du front actif d'horloge, du dernier changement de l'entrée D, doit être supérieur au temps de préconditionnement de la bascule (t_{setup})

4 Respect du temps de maintien *Hold Time*

Après l'apparition d'un front actif d'horloge, les entrées doivent rester stables un temps au moins égal au temps de maintien (t_{hold}) de la bascule

4 Temps de propagation <u>Propagation Time</u>

A partir de l'apparition d'un front actif d'horloge, un temps au moins égal au temps de propagation pour la transition attendue, sera nécessaire avant de pouvoir observer le changement des sorties

Registres à sorties parallèles, chargement parallèle ou série

4 Registre 4 bits, actif sur niveau, à chargement parallèle

4 Registre 4 bits, actif sur front, avec clear asynchrone niveau bas à chargement parallèle

4 Registre 4 bits, actif sur front, avec clear asynchrone niveau bas à chargement série

4 Registre universel

S ₀	\mathbf{S}_1	Fonctions
0	0	Mémoire
0	1	Décalage Droit
1	0	Décalage Gauche
1	1	Chargement parallèle

http://www.pdf4free.com

Compteurs

4 Compteur 4 bits, actif sur front, avec RAZ synchrone, Enable et Fin de comptage

Raz Q_3 $En Q_2$ $H Q_0$

4 Compteur modulo 16 ⁿ

- 4 Compteur modulo 10 actif sur front,
 - Comparer à 9
 - RAZ synchrone sur horloge
- 4 Compteur à préchargement

Compteurs - décompteur

4 Compteur diviseur de fréquence

4 Décompteur diviseur de fréquence

Compteurs d'évènement – compteur de temps

- 4 Compteur d'évènement
 - Mesure de fréquence

- 4 Compteur de temps
 - Mesure de temps

Automate à états et logique séquentielle

- 4 Compteur par 1, 2, 3 ou 4 à chaque coup d'horloge
 - 4 états possibles C0, C1, C2, C3
 - Etat = Où en est le comptage
- 4 Variable de contrôle du comptage

Contrôle du comptage	V2	V1
Compter par 1	0	0
Compter par 2	0	1
Compter par 3	1	0
Compter par 4	1	1

4 Transition d'état sur variable de contrôle

état présent	V2	V1	État futur
C0	0	0	C0
C0	Sinon		C1
C1	1	X	C2
C1	0	X	C0
C2	1	1	C3
C2	Sinon		C0
C3	X	X	C0

Mémoire

- 4 Circuit mémoire 1 Koctet
- 4 Circuit Mémoire 1 Mo

- 4 1 Méga mots de 32 bits
 - Même @ ; même CS ; Même R/W
 - Data sur 4 octets différents

Mémoire

4 Banc mémoire

