一、条带呈"微笑"或"倒微笑"状

No	原因分析	解决方法
1	条带呈"微笑U"状,凝胶冷却不均一,电泳槽老化	更换电泳槽
2	条带呈"倒U微笑"状,凝胶左右两头没有凝固好	重新制胶

二、目标条带没有信号

No	原因分析	解决方法
1	样品中可能含有蛋白酶,使蛋白样品分解成 小分子。	添加蛋白酶抑制剂
2	目标蛋白浓度过低(低于检测下限)	加大上样量或提高目标蛋白浓度
3	转腰时间太短导致月标蛋白没有充分转移到 腰上或者 转腰时间过长导致样品转穿	控制转膜时间并选择适合的转印膜
4	一抗的特异性不佳,导致一抗无法识别目标 蛋白	选用高品质抗体
5	抗反复使用后导致效价择低,尽管还能与目 标面白连接,但连接蛋白的数量太少	抗不宜反复使用
6	洗脱过度导致与一抗相结合的目标蛋白被洗 掉	洗脱时间的时间和频率应有 效控制,一般建议3次10分 钟

三. 图片背景过高,难以分辨条带

No	原因分析	解决方法
1	一抗浓度太高,导致抗体非特异性结合。	降低一抗浓度。
2	洗膜的时间和次数不够,导致其他蛋白没 有清洗干净	提高洗脱时间和频率。
3	封闭物用量不足	提高封闭物浓度, 孵育时保证封 闭液完全浸没转印膜
4	封闭物使用不当	检测生物素标记的蛋白时不可用 脱脂奶粉封闭。
5	封闭时间不够	室温37度封闭1小时以上.4度封闭过夜。
6	抗稀释度不适宜	对抗体进行滴度测试,选择最 适宜的抗体稀释度
7	一抗孵育的温度偏高	建议4℃结合过夜

四、膜上出现黑点和黑斑

No	原因分析	解决方法
1	膜上其他部位与一抗或二抗非特异性结合,配置的封闭液可能没有完全溶解,使不容颗粒附着在膜上从而导致发光时候膜上形成黑点	配置封闭液后最好静止一下, 封闭牛奶一定要纯,封闭结束之 前要清洗三遍之后再加一抗
2	抗体与封闭试剂反应	使用前过滤封闭试剂
3	HRP 偶联二抗中有聚集体	过滤二抗试剂,去除聚集体

五、出现非特异性条带

No	原因分析	解决方法
1	一抗非特异性与蛋白结合,此种情况大多数情况是因为 一抗特异性不好	更换一抗
2	目的蛋白有多个修饰位点,有些一抗还能结合其他蛋白的结合位点	更换一抗品种
3	蛋白样品降解,蛋白酶将目标蛋白分解成若干个蛋白而 这些蛋白同样可以被一抗识别	添加蛋白酶 <mark>抑</mark> 制剂

六、条带中出现整条白色空斑

No	原因分析	解决方法
1	过高的蛋白上样量或一抗和二抗浓度过高 都会促使底物过快的消耗,导致我们在做 化学发光检测时,发光底物已经消耗殆尽 而形成空斑	减少蛋白上样量稀释一抗和二抗 的浓度

七、条带中出现白圈

No	原因分析	解决方法
1	转膜时候,膜与 胶之间有气泡	制作"三明治"时,注意赶走气泡。通常将电转液倒入一个盘子里,液体高度与第一层滤纸齐平,然后往滤纸上浇一些转膜液,把电泳胶用清水清洗后平铺在滤纸上,随后在确认滤纸与扳之间无气泡后,再往胶上浇一些电转液,之后用双手的拇指和食描经轻夹住PVDF膜两侧间,使腹成型,再将U型底部接触到胶的中间,慢慢忽两边放下膜,这样可以减少气泡。上层滤纸同样用U里的放置方法,可以用玻璃棒贴实一下,然后盖上海绵垫

八、条带拖尾

No	原因分析	解决方法
1	这种情况很容易出现,因为导致 条带拖尾的原因很多,可能性较 大的是一抗浓度太高,作用时间 太长或蛋白量过大	根据情况调整蛋白量,同时降低一抗的浓度,缩短—抗的时间

九、条带变形

No	原因分析	解决方法
1	胶体中存在气泡,或不溶性杂质,胶不均不平整	配胶时用的小烧杯,水,SDS,tris等等干净无杂质。贴边角加入液体,凝固时避免大幅度动作触碰

十、条带呈哑铃状

No	原因分析	解决方法
1	出现哑铃装条带的问题,最大的可能性就是胶没有配 置好,胶凝固后不均一。另外还有一种可能就是样品 中含有太多杂质,没有离心下来,然后杂质沉淀在孔 的中间,蛋白被挤到两边	把胶配好 ,不合格 的胶坚决 不能用

十一、最边缘条带弯曲

十二、背景非均一性

十三、其他问题

No	原因分析	解决方法
1	蛋白分子量偏高或者偏低。	可能是胶的浓度与目的蛋白的浓度不对应,比如说10 OKD的蛋白你用12%的胶跑,或者说20KD的蛋白你用6%的胶跑
2	蛋白质降解	蛋白质降解后很可能会在比原来位置低的地方出现主带,然后会出现一些其他
3	所有条带连成 一片没有间隔	原因最可能是上样量过多,其次是样品弥散(比如电泳长时间停止样品弥散)