Introduction

- of increasing importance in cryptography
 - AES, Elliptic Curve, IDEA, Public Key
- concern operations on "numbers"
 - where what constitutes a "number" and the type of operations varies considerably
- start with concepts of groups, rings, fields from abstract algebra

A Group G

- A set of elements and some generic operation/s, with some certain relations:
- Axioms:
 - A1 (Closure) If $\{a,b\} \in G$, operated $(a,b) \in G$
 - A2 (Associative) law: $(a^b) ^c = a^(b^c)$

 - A4 (has inverses) a': a a' = e
- A G is a finite group if has a finite number of elements
- A G is abelian if it is commutative,
 - A5 (has commutative) a b = b a, for example;
 - The set of positive, negative, 0, integers under addition, identity is
 0, inverse element is '-', inverse a = -a, a-b= a+(-b)
 - The set of nonzero real numbers under multiplication, identity is I, inverse element is division

- Suppose S_n is to be the set of permutations of n distinct symbols: {1,2,...,n}. S_n is a group!!:
- Suppose π , $\rho \in S_n$; permutation operation π , and a group of S_n is ρ ; π , $\rho \in S_n$
 - **A1** $\pi_1 \cdot \rho = \pi_1 \cdot \{1,3,2\} = \{3,2,1\} \cdot \{1,3,2\} = \{2,3,1\} \in S_n$
 - Change operator to arithmetic operators...
 - **A2** $\pi_2 \cdot (\pi_1 \cdot \rho) = \{3,1,2\} \cdot \{2,3,1\} = \{3,1,2\}$ $\therefore = (\pi_2 \cdot \pi_1) \cdot \rho = \{3,1,2\} \cdot \{3,2,1\} \cdot \{1,3,2\} = \{3,1,2\}$
 - **A3** identity $\{1, 2, 3, ..., n\}$ ∈S_n
 - **A4** inverse that undoes π_1 is {3,2,1}, recovering earlier positions.

$$\{1,2,3\}\cdot\{2,3,1\}=\{2,3,1\},\ \pi_1\cdot\pi_1=\{3,2,1\}\cdot\{3,2,1\}=\{1,2,3\}$$

– **A5** commutative!!.. $\{3,2,1\}\cdot\{2,3,1\}\neq\{2,3,1\}\cdot\{3,2,1\}$, so S_n is a group but not abelian

Cyclic Group

 A G is cyclic if every element b ∈ G is a power of some fixed element a

```
-ie b = a^{k}
```

- a is said to be a generator of the group G
 - example: $a^3=a.a.a$ and identity be: $e=a^0=1$, and $a^{-n}=(a')^n \rightarrow a^n a^{-n}=1$;
- The additive group of integers is an infinite cyclic group generated by the element 1. In this case, powers are interpreted additively, so that n is the nth power of 1.

- A Ring R is an abelian group with two operations (addition and multiplication), satisfies A1 to A5
 - A1-A5: for additiveness, identity is 0 and inverse is −a
 - M1: Closure under multiplication: if a, b∈R, then ab∈R.
 - M2: Associativity of multiplication: $a(bc) = (ab)c \in R$ for all $a, b, c \in R$.
 - M3: Distributive: a (b+c) = ab+ac, (a+b) c=ac+bc
 - WITHOUT LEAVING THE SET
- M4: commutative ring if ba=ab for all a, b, ab∈R,
- M5: Multiplicative identity: 1a=a1=a for all a, 1, ab∈R
- M6: No zero divisors: If a and $b \in \mathbb{R}$ and ab = 0, then either a = 0 or b = 0.

An integral domain is the one satisfies all the A1-5 and M1-6, which is then a commutative ring???, and abelian gr, and obeying M5-6. Cyclic??!!!

Field

- a set of numbers with two operations:
 - abelian group for addition: commutative for addition
 - abelian group for multiplication (ignoring 0):
 commutative for multiplication
 - It is a ring
- (A1-5, M1-6), F is an integral domain.
- M7: Multiplicative inverse. For each a ∈F, except 0, there is an element a⁻¹∈F such that aa⁻¹ = (a⁻¹)a = 1

If a and b belong to S, then a + b is also in S a + (b + c) = (a + b) + c for all a, b, c in SThere is an element 0 in R such that a + 0 = 0 + a = a for all a in S For each a in S there is an element -a in S such that a + (-a) = (-a) + a = 0a + b = b + a for all a, b in S If a and b belong to S, then ab is also in S a(bc) = (ab)c for all a, b, c in Sa(b+c) = ab + ac for all a, b, c in S(a + b)c = ac + bc for all a, b, c in Sab = ba for all a, b in SThere is an element 1 in S such that a1 = 1a = a for all a in S If a, b in S and ab = 0, then either a = 0 or b = 0If a belongs to S and a 0, there is an element a^{-1} in S such that $aa^{-1} = a^{-1}a = 1$

Modular Operations

- Clock, uses a finite number of values, and loops back from either end
- Associative, Distributive, Commutative,
- Identities: (0 + w)%n = w%n, (1·w)%n = w%n
- additive inv (-w)
- If a=mb (a,b,m all integers), b|a, b is divisor (*)
- Any group of integers: $Z_n = \{0, 1, ..., n-1\}$
- Form a commutative ring for addition
- with a multiplicative identity
- note some peculiarities
 - if $(a+b) \equiv (a+c) % (n)$ then $b \equiv c% (n)$
 - but (ab) \equiv (ac) % (n) for all a,b,c \in Z_n then b \equiv c% (n) only if a is relatively prime to n

%8 Example

+	О	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

(a) Addition modulo 8

Multiplication and inverses

×	0	1	2	3	4	5	6	7	W	-w	w^{-1}
0	0	0	0	0	0	0	0	0	0	0	_
1	0	1	2	3	4	5	6	7	1	7	1
2	0	2	4	6	0	2	4	6	2	6	_
3	0	3	6	1	4	7	2	5	3	5	3
1	0	4	0	4	0	4	0	4	4	4	(<u>0_3</u> 0_1
5	0	5	2	7	4	1	6	3	5	3	5
5	0	6	4	2	0	6	4	2	6	2	-
7	0	7	6	5	4	3	2	1	7	1	7

(b) Multiplication modulo 8

Additive and multiplicative inverses modulo 8

a%(7), residue classes

[0]	[1]	[2]	[3]	[4]	[5]	[6]
-21	-20	- 19	-18	-17	-16	- 15
-14	-13	-12	-11	-10	- 9	-8
-7	-6	- 5	-4	-3	- 2	-1
0	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	31	32	33	34

. . .

Table 4.2. Properties of Modular Arithmetic for Integers in Z_n

- Commutative laws $(w + x) \mod n = (x + w) \mod n$ • $(w \times x) \mod n = (x \times w) \mod n$
- Associative laws

$$[(w + x) + y] \mod n = [w + (x + y)] \mod n$$

 $[(w x x) x y] \mod n = [w x (x x y)] \mod n$

Distributive laws

$$[w + (x + y)] \mod n = [(w x x) + (w x y)] \mod n$$

 $[w + (x x y)] \mod n = [(w + x) x (w + y)] \mod n$

Identities

```
(0 + w) \mod n = w \mod n

(1 + w) \mod n = w \mod n
```

Additive inverse (-w)

For each $w \in Z_n$, there exists a z such that $w + z \equiv 0 \mod n$

Relatively prime, Euclid's GCD Algorithm

- Numbers with gcd(a,b)=1 are relatively prime
 - eg GCD(8,15) = 1
- an efficient way to find the GCD(a,b), uses theorem that:

```
gcd(a,b) = gcd(b, a % b), (*)
```

Euclid's Algorithm to compute GCD(a,b):

```
gcd(A, B)
1. While(B>0) {
    1. r ← A % B;
    2. A ← B;
    3. B ← r;}
2. return A
```

Question is it possible to execute these in one line?

```
floor(r_{i-2}/r_{i-1}) = r_i
```

Multiplicative inverse (w⁻¹)

- For a given prime, p, the finite field of order p, GF(p) is defined as the set Z_p of integers {0, 1,..., p - 1}, together with the arithmetic operations modulo p.
- For each $w \in Z_p$, $w \ne 0$, there exists a $w \in Z_p$, such that $w \times z \equiv 1 \pmod{p}$.
- Because w is relatively prime to p, if we multiply all the elements of Z_p by w, the resulting residues are all of the elements of Z_p permuted. Thus, exactly one of the residues has the value 1.

Galois Fields

- Galois fields are for polynomial eqns (group thry, number theory, Euclidian geometry): Algebraic solution to a polynomial eqn is related to the structure of a group of permutations associated with the roots of the polynomial, and an equation could be solvable in radicals if one can find a series of normal subgroups of its Galois group which are abelian, or its Galois group is solvable. (wikipedia)
- Maths et histoire, evariste-galois.asp.htm
- The finite field of order p^n is written $GF(p^n)$.

- A field Z_n = {0,1,...,n-1} is a commutative ring in which every nonzero element is assumed to have a multiplicative inverse. 'a' is multiplicative inverse to n, iff integer is relatively prime to n.
- Definition: If n is a prime p, then GF(p) is defined as the set of integers Z_p={0, 1,..., p-1}, + operations in mod(p), then we can say the set Z_n of integers {0,1,...,n-1}, + operations in mod(n), is a commutative ring. "Well-behaving": the results of operations obtained are confined in the field of GF(p)
- We are interested in two finite fields of pⁿ, where p is prime,
 - GF(p)
 - $GF(2^n)$

+	0	1	\times	0	1	w	-w	w^{-1}
0	0	1	0	0	0	0	0	
1	1	0	1	0	1	1	1	1

The simplest finite field is GF(2).

×	O	1	2	3	4	5	6
o	0	0	0	О	0	0	О
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

GF(7)

(b) Multiplication modulo 7

```
EXTENDED EUCLID (m, b)
    [A1,A2,A3; B1,B2,B3] \leftarrow [1,0,m;0,1,b];
2. if B3==0;
                                                                  Finding the
                                //no inverse
         return (A3=gcd(m,b));
                                                               Multiplicative
3. if B3==1;
         return (B3=gcd(m,b));
                                                           Inverse in GF(p)
         B2=b^{-1}%m:
4. Q = |A3/B3|;
5. [r1,r2,r3] \leftarrow [A1-QB1, A2-QB2, A3-QB3];
                                                      If (m, b) are relatively prime,
6. [A1,A2,A3] \leftarrow [B1,B2,B3];
                                                  then gcd(m, b) = 1, then b has a
7. [B1,B2,B3] \leftarrow [r1,r2,r3];
                                                  multiplicative inverse modulo m.
8. goto 2
```

Inverse of 550 in GF(1759)

Q	A1	A2	A3	B1	B2	В3
-	1	0	1759	0	1	550
3	0	1	550	1	-3	109
5	1	-3	109	-5	16	5
21	-5	16	5	106	-339	4
1	106	-339	4	-111	355	1

Following the algorithm. Starting with step 0. Denote the **quotient** at step i by q_i . Carry out each step of the Euclidean algorithm.

After the 2nd step, calculate $p_i = p_{i-2} - p_{i-1} q_{i-2} \%(n)$; $p_0 = 0$, $p_1 = 1$,

Continue to calculate for p_i one step more beyond the last step of the Euclidean algorithm.

If the last nonzero remainder occurs at step k, then if this remainder is 1, x has an inverse and it is p_{k+2} .

(If the remainder is not 1, then x does not have an inverse.)..

Inverse of 550 in GF(1759)

```
p_i = p_{i-2} - p_{i-1} q_{i-2} \%(m);

1759 = 3(550) + 109; q_0 = 3; p_0 = 0;

550 = 5(109) + 5; q_1 = 5; p_1 = 1;

109 = 21(5) + 4; q_2 = 21; p_2 = 0 - 1 (3) \%(550) = -3.

5 = 1(4) + 1; q_3 = 1; p_3 = 1 - (-3) (5) \%(550) = 16

4 = 4(1) + 0; q_4 = 4; p_4 = -3 - 16(21) \%(550) = -339

p_5 = 16 - -339 (1)\%(550) = 355
```

Ordinary Polynomial

Polynomial Arithmetic in Z_p

- Polynomial in which the coefficients are elements of some field F, is referred as a polynomial over the field F.
- Such polynomials set is referred to as a polynomial ring.
- Division is possible if the polynomial operations are performed on polynomials over a field, but exact division might not be possible. Tricky?..!!
- Within a field, two elements a and b, the quotient a/b is also an element of the field. However, given a ring R that is not a field, division will result in a quotient and a remainder; this is not exact division.
- 5, 3 within a set S. If S is the set of rational numbers, which is a field, then the result is simply expressed as 5/3 and is an element of S???. Suppose that S is the field **Z**₇. **p=7**. In this case, 5/3 = (5 x 3⁻¹) mod 7 = (5 x 5) mod 7 = 4 which is an **exact solution**. Suppose that S is the set of integers, which is a ring but not a field. Then 5/3 produces a quotient and a remainder: 5/3 = 1 + 2/3; 5 = 1 x 3 + 2, division is not exact over the set of integers.
- Division is not always defined, if it is over a coefficient set that is not a field.

$$\frac{f(x)}{g(x)} = q(x) + \frac{r(x)}{g(x)}$$
 Polynomial Arithmetic in Z_p if $r(x) = q(x)g(x) + r(x)$ Polynomial Arithmetic in Z_p if $r(x) = 0$, $g(x)|f(x)$, $g(x)$ is divisor.

- If the coefficient set is the integers, then $(5x^2)/(3x)$ does not have a solution, since not in the coefficient set.
- Suppose it is performed over Z_7 . Then $(5x^2)/(3x) = 4x$ which is a valid polynomial over Z_7 .
- Suppose, degree of f(x) is n, and of g(x) is m, n ≥ m, then degree of the quotient q(x), is (m-n) and of remainder is at most (m-1). Polynomial division is possible if the coefficient set is a field.

$$- r(x) = f(x) \mod g(x)$$

- $f(x) = x^3 + x^2 + 2$ and $g(x) = x^2 x + 1$
- $q(x)g(x) + r(x) = (x + 2)(x^2 x + 1) + x = (x^3 + x^2 x + 2) + x = x^3 + x^2 + 2 = f(x)$
- Not convenient for logical operations such as XOR.

The simplest finite field is GF(2).

×	O	1	2	3	4	5	6
O	0	0	0	О	0	0	О
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

GF(7)

(b) Multiplication modulo 7

	000	001	010	011	100	101	110	111				
+	0	1	2	3	4	5	6	7				_
0 0	0	1	2	3	4	5	-6	7				6
1 1	1	0	3	2	5	4	7	6				8
0 2	2	3	0	1	6	7	4	5				
1 3	3	2	1	0	7	6	5	4				7
0 4	4	5	6	7	0	1_	2	3				
1 5	5	4	7	6	1	0	3	2				
0 6	6	7	4	5	2	3	0	1				
1 7	7	6	5	4	3	2	1	0				
				(a) A	ddition							
				377	MATERIA DE LA CALIA							
	000	001	010	011	100	101	110	111			92	
×		001	010 2	500000			110 6	111 7	w	-w	w^{-1}	
	0			011	100	101			w 0	-w	w ⁻¹	
0 0	0	1	2	011 3	100 4	101 5	6	7				
0 0 1 1	0	0	2	011 3	100 4 0	101 5	6	7	0	0	_	
0 0 1 1	0	1 0 1	0 2	011 3 0 3	100 4 0 4	101 5 0 5	6 0 6	7 0 7	0	0	_ 1	
0 0 1 1 0 2	0 0 0	1 0 1 2	2 0 2 4	011 3 0 3 6	100 4 0 4 3	101 5 0 5	6 0 6 7	7 0 7 5	0 1 2	0 1 2	1 5	
0 0 1 1 0 2 1 3	0 0 0 0	1 0 1 2 3	2 0 2 4 6	011 3 0 3 6 5	100 4 0 4 3 7	101 5 0 5 1	6 0 6 7	7 0 7 5 2	0 1 2 3	0 1 2 3	- 1 5 6	
0 0 1 1 0 2 1 3 0 4	0 0 0 0 0	1 0 1 2 3 4	2 0 2 4 6 3	011 3 0 3 6 5	100 4 0 4 3 7 6	101 5 0 5 1 4 2	6 0 6 7 1 5	7 0 7 5 2	0 1 2 3 4	0 1 2 3 4	- 1 5 6 7	

(b) Multiplication

(c) Additive and multiplicative inverses

$$x^{7} + x^{5} + x^{4} + x^{3} + x + 1 \\ + (x^{3} + x + 1)$$

$$x^{7} + x^{5} + x^{4}$$
(a) Addition
addition and
multiplication
are equivalent
to the XOR,
and the logical
AND,
respectively.
Addition and
subtraction are
equivalent.
Therefore x^{10} x^{10} x^{10} x^{2} x^{3} x^{4} x^{5} x^{4} x^{5} x^{4} x^{5} x^{4} x^{5} x^{7} x^{8} x^{10} x^{10} x^{10} x^{10} x^{10} x^{10} x^{11} x^{11}

$$f(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \cdots + a_1x + a_0 = \sum_{i=0}^{n-1} a_ix^i$$

- Consider the set S of all polynomials of degree n-1 or less over the field Z_p . Thus, each polynomial has the form
- where each a_i takes on a value in the set {0, 1,..., p -1}. There are a total of pⁿ different polynomials in S.
- For p = 3 and n = 2, the $3^2 = 9$ polynomials in the set are
- 0 x 2x
- 1 x + 1 2x + 1
- 2 x + 2 2x + 2
- For p = 2 and n = 3, the $2^3 = 8$ the polynomials in the set are
- 0 $x + 1 x^2 + x$
- 1 x^2 $x^2 + x + 1$
- $X x^2 + 1$

- mod 2:
- 1 + 1 = 1 1 = 0;
- 1 + 0 = 1 0 = 1;
- 0 + 1 = 0 1 = 1.
- if f(x) has no divisors other than itself & 1 it is said irreducible (or prime) polynomial, an irreducible polynomial forms a field.
- $f(x) = x^4 + 1$ over GF(2) is reducible,
 - because $x^4 + 1 = (x + 1)(x^3 + x^2 + x + 1)$
- $f(x) = x^3 + x + 1$ is irreducible residual 1. $x^2 + x$ $x + 1/x^3 + x + 1$

$$x + 1/x^{3} + x + 1$$

$$\frac{x^{3} + x^{2}}{x^{2} + x}$$

- eg. let $f(x) = x^3 + x^2$ and $g(x) = x^2 + x + 1$ $f(x) + g(x) = x^3 + x + 1$
- $f(x) \times g(x) = x^5 + x^2$

Finite Fields Of the Form GF(2ⁿ)

- Polynomials over pⁿ, with n > 1, operations modulo pⁿ do not produce a field. There are structures satisfies the axioms for a field in a set with pⁿ elements, and concentrate on GF(2ⁿ).
- Motivation Virtually all encryption algorithms, both symmetric and public key, involve arithmetic operations on integers with divisions.
- For efficiency: integers that fit exactly into a given number of bits, with no wasted bit patterns, integers in the range 0 through 2^(n)-1, fitting into an n-bit word. Z₂₅₆ versus Z₂₅₁

Polynomial GCD

- gcd[a(x), b(x)] is the polynomial of maximum degree that divides both a(x) and b(x).
- gcd[a(x), b(x)] = gcd[b(x), a(x)mod(b(x))]
- Euclid[a(x), b(x)]
 - 1. $A(x) \leftarrow a(x)$; $B(x) \leftarrow b(x)$
 - **2.** if B(x) = 0 return A(x) = gcd[a(x), b(x)]
 - 3. $R(x) = A(x) \mod B(x)$
 - 4. $A(x) \leftarrow B(x)$
 - 5. $B(x) \leftarrow R(x)$
 - 6. goto 2

Example of GCD in Z_2 or in GF(2),

Step1, gcd(A(x), B(x))

$$A(x) = x^6 + x^5 + x^4 + x^3 + x^2 + 1$$

$$B(x) = x^4 + x^2 + x + 1$$
; $D(x) = x^2 + x$;

$$R(x) = x^3 + x^2 + 1$$

Step 2,

$$A(x) = B(x) = x^4 + x^2 + x + 1$$
;

$$B(x) = R(x) = x^3 + x^2 + 1$$
,

$$D(x) = x + 1$$
; $R(x) = 0$;

Step 3,

$$A(x) = B(x) = x^3 + x^2 + 1$$
;

$$B(x) = R(x) = 0;$$

$$gcd(A(x), B(x)) = x^3 + x^2 + 1$$

$$x^{2} + x;$$

$$x^{4} + x^{2} + x + 1\sqrt{x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1}$$

$$x^{6} + x^{4} + x^{3} + x^{2}$$

$$x^{5} + x + 1$$

$$x^{5} + x^{3} + x^{2} + x$$

$$x^{3} + x^{2} + x$$

		000	001	010	011	100	101	110	111
	+	0	1	2	3	4	5	6	7
000	0	0	1	2	3	4	5	6	7
001	1	1	0	3	2	5	4	7	6
010	2	2	3	0	1	6	7	4	5
011	3	3	2	1	0	7	6	5	4
100	4	4	5	6	7	0	1	2	3
101	5	5	4	7	6	1	0	3	2
110	6	6	7	4	5	2	3	0	1
111	7	7	6	5	4	3	2	1	0

GF(2³)

(a) Addition

		000	001	010	011	100	101	110	111
	×	0	1	2	3	4	5	6	7
000	0	0	0	0	0	0	0	0	0
001	1	0	1	2	3	4	5	6	7
010	2	0	2	4	6	3	1	7	5
011	3	0	3	6	5	7	4	1	2
100	4	0	4	3	7	6	2	5	1
101	5	0	5	1	4	2	7	3	6
110	6	0	6	7	1	5	3	2	4
111	7	0	7	5	2	1	6	4	3

w	-w	w^{-1}
0	0	-
1	1	1
2	2	5
3	3	6
4	4	7
5	5	2
6	6	3
7	7	4

(b) Multiplication

(c) Additive and multiplicative inverses

Modular Polynomial Arithmetic

- can compute in field GF(2ⁿ)
 - polynomials with coefficients modulo 2
 - whose degree is less than n
 - hence must reduce modulo an irreducible poly of degree n (for multiplication only)
- form a finite field
- can always find an inverse
 - can extend Euclid's Inverse algorithm to find

Table 4.6 Polynomial Arithmetic Modulo $(x^3 + x + 1)$

	+	000	001 1	010 X	011 $x + 1$	$\frac{100}{x^2}$	$\frac{101}{x^2 + 1}$	$\frac{110}{x^2 + x}$	111 $x^2 + x + 1$
000	0	0	1	X	x+1	x ²	$x^2 + 1$	$x^{2} + x$	$x^2 + x + 1$
001	1	1	0	x + 1	Х	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$
010	x	X	x + 1	0	1	$x^2 + x$	$x^2 + x + 1$	χ^2	$x^2 + 1$
011	x + 1	x + 1	х	1	0	$x^2 + x + 1$	$x^2 + x$	$x^{2} + 1$	x^2
100	χ^2	x ²	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	Х	x + 1
101	$x^2 + 1$	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^{2} + x$	1	0	x + 1	Х
110	$x^2 + x$	$x^2 + x$	$x^2 + x + 1$	χ^2	$x^2 + 1$	X	x + 1	0	1
111	$x^2 + x + 1$	$x^2 + x + 1$	$x^{2} + x$	$x^2 + 1$	χ^2	x+1	х	1	0

(a) Addition

	×	000	001 1	010 x	$011 \\ x + 1$	$\frac{100}{x^2}$	$x^2 + 1$	$\frac{110}{x^2 + x}$	111 $x^2 + x + 1$
000	0	0	0	0	0	0	0	0	0
001	1	0	1	X	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
010	Х	0	Х	x ²	$x^{2} + x$	x + 1	1	$x^2 + x + 1$	$x^2 + 1$
011	x + 1	0	x + 1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	x^2	1	X
100	χ^2	0	x^2	x + 1	$x^2 + x + 1$	$x^2 + x$	х	$x^2 + 1$	1
101	$x^2 + 1$	0	$x^2 + 1$	1	x ²	X	$x^2 + x + 1$	x + 1	$x^2 + x$
110	$x^{2} + x$	0	$x^2 + x$	$x^2 + x + 1$	1	$x^2 + 1$	x + 1	Х	x^2
111	$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + 1$	Х	1	$x^{2} + x$	x^2	x + 1

(b) Multiplication

Computational Considerations

- since coefficients are 0 or 1, can represent any such polynomial as a bit string
- addition becomes XOR of these bit strings
- multiplication is shift & XOR
 - cf long-hand multiplication
- modulo reduction done by repeatedly substituting highest power with remainder of irreducible poly (also shift & XOR)

Example

- why $mod(x^3+x+1)!!!$ for $gf(2^3)$
- in GF(2³) have (x²+1) is 101₂ & (x²+x+1) is 111₂
- so addition is
 - $-(x^2+1) + (x^2+x+1) = x$
 - $-101 \text{ XOR } 111 = 010_2$
- and multiplication is
 - $(x+1).(x^2+1) = x.(x^2+1) + 1.(x^2+1)$ $= x^3+x+x^2+1 = x^3+x^2+x+1$
 - 011.101 = (101)<<1 XOR (101)<<0 = 1010 XOR 101 = 1111₂
- polynomial modulo reduction (get q(x) & r(x)) is
 - $-(x^3+x^2+x+1) \mod (x^3+x+1) = 1.(x^3+x+1) + (x^2) = x^2$
 - 1111 mod 1011 = 1111 XOR 1011 = 0100₂

Summary

- have considered:
 - concept of groups, rings, fields
 - modular arithmetic with integers
 - Euclid's algorithm for GCD
 - finite fields GF(p)
 - polynomial arithmetic in general and in GF(2ⁿ)