

Graph Generative Adversarial Networks for Sparse Data Generation in High Energy Physics

Raghav Kansal¹, Javier Duarte¹, Breno Orzari², Thiago Tomei², Maurizio Pierini³, Mary Touranakou³,⁴, Jean-Roch Vlimant⁵, Dimitrios Gunopoulos⁴¹UC San Diego, ²Universidade Estadual Paulista, ³CERN, ⁴National and Kapodistrian University of Athens, ⁵California Institute of Technology

Particle Collision Simulations

• Simulations of collision events are important for data analysis in high energy physics

- Classical physics simulation programs such as GEANT4 are accurate but can be slow -O(min) per event
- Generative machine learning models are potential alternatives where we approximate simulations at much higher speeds O(ms) per event
- Current work in this direction has produced impressive results:

LAGAN <u>de Oliveira et. al.</u> (2017) results on jets (top), ATLAS FastCaloGAN results <u>ATLAS collaboration</u> (2020) results (bottom)

 But involves linear and convolutional architectures which aren't conducive to the sparsity of the data and the potentially irregular underlying geometry:

Datasets

- Linear/CNNs represent jets and detector data as images
- An alternative approach is to represent this data graphically, which naturally suits the sparsity and adapts to any geometry:
- We test on two MNIST-derived graph datasets

- And a dataset of high transverse momentum (p_T) gluon jets where we take the 30 highest p_T particles and their $[\eta^{rel}, \phi^{rel}, p_T^{rel}]$ features
- All three are represented as graphs:

Evaluation

- We numerically evaluate the MNIST datasets using a graph based Fréchet Inception Distance metric comparing the statistics of the activations of the pre-trained MoNet graph classifier
- Jets are evaluated by comparing the I-Wasserstein (W_1) distance between the particle and jet level feature distributions using bootstrapping for a baseline within pairs of 100 real samples and between real and fake

Graph GAN

 A generative adversarial network trains a discriminator and generator network iteratively and adversarially

 We use a message passing neural network architecture for both networks:

 We were successfully able to reproduce all three datasets with high fidelity, although there is some evidence of mode collapse with the superpixels

Results

- Sparse MNIST (top) and Superpixels (bottom) shown above, we achieved an average GFD of 0.52 and 0.30 respectively
- $\,\,$ Jet feature distributions and the respective W_1 scores shown below

