Dieses Dokument wurde unter der Creative Commons - Namensnennung-NichtKommerziell-Weitergabe unter gleichen Bedingungen (**CC by-nc-sa**) veröffentlicht. Die Bedingungen finden sich unter diesem Link.

Find any errors? Please send them back, I want to keep them!

Allgemeines

Grammatik

 $G = (V, \Sigma, P, S)$

- V Variblen
- Σ Terminalalphabet
- **P** Regeln/Produktionen
- **S** Startvariable

Chromsky-Hirarchie

- **Typ 0:** (Phrasenstrukturgrammatik) keine Einschränkungen
- Typ 1: (kontextsensitiv) $(w_1 \to w_2) \Rightarrow (|w_1| \le |w_2|)$ (Wort wird nicht kürzer)
- Typ 2: (kontextfrei) $(w_1 \to w_2 \Rightarrow (w_1 \in V))$ w₁ ist einzelne Variable
- Typ 3: $(\text{regul\"{a}r})$ $w_2 \in \Sigma \cup \Sigma V$ "rechte Seiten" von Regeln Terminalsymbol oder Terminalsymbole gefolgt von Variablen

Alle Sprachen der Typen 1,2 und 3 sind entscheidbar.

ε -Sonderregelung (Zulassen des leeren Wortes ε in Typ 1,2 oder 3)

- Regel hinzufügen: $S \to \varepsilon$
- Verhindern von S auf rechter Seite von Regeln: Regel mit " \rightarrow S" ersetzen durch " \rightarrow S'"
- Zulassen von $A \to \varepsilon$ (verändert Sprache nicht) Algorithmus:
 - 1. Zerlege $V \to V_1, V_2, (A \Rightarrow^* \varepsilon) \in V_1 \text{ und } V_1 \cap V_2 = \emptyset.$
 - 2. Entferne alle $A \to \varepsilon$, füge für $(B \to xAy)$ $(B \to xy)$ hinzu.

Wortproblem (Gehört ein Wort zu einer Sprache?)

 $(\exists Algorithmus)[(Algo terminiert in endl. Zeit \land (Algoentscheidet(x \in \mathcal{L}(G)) \lor (x \notin \mathcal{L}(G)))]$ \Rightarrow das Wortproblem ist für Typ 1,2 und 3 entscheidbar (aber NP-hart für Typ 1)

Syntaxbäume

Wurzel: S

Für $i=1,2,\ldots,n$ $A\to z\in P\Rightarrow |z|$ viele Söhne \to "weitere Kette"

Linksableitung: Variable am weitesten links wird abgeleitet.

Rechtsableitung: Variable am weitesten rechts wird abgeleitet.

mehrdeutige Grammatik: für ein x verschiedene Syntaxbäume möglich

- Mehrdeutigkeit kann oft beseitigt werden.
- Ist dies nicht möglich \Rightarrow inhärent mehrdeutig

Backus-Naur-Form Bnf (Typ 2 Grammatiken)

Metaregeln für selbe linke Seite

$$\begin{pmatrix}
A & \to & \beta_1 \\
A & \to & \beta_2 \\
& \vdots \\
A & \to & \beta_3
\end{pmatrix}
A \to \beta_1 |\beta_2| \dots \beta_n$$

erweiterte Backus-Naur-Form Ebnf

$$A \to \alpha[\beta]\gamma \Rightarrow \begin{cases} A \to \alpha\gamma \\ A \to \alpha\beta\gamma \end{cases}$$
$$A \to \alpha\{\beta\}\gamma \Rightarrow \begin{cases} A \to \alpha\gamma \\ A \to \alpha\beta\gamma \\ B \to \alpha\beta\gamma \\ B \to \beta\beta \end{cases}$$

Reguläre Sprachen