On Polynomial-Time Solvability of Combinatorial Markov Random Fields

Shaoning Han

Daniel J. Epstein Department of Industrial & Systems Engineering
University of Southern California

shaoning@usc.edu

October, 2022

Collaborators

Andres Gomez University of Southern California

Jong-Shi Pang University of Southern California

Markov random field An MRF model is defined on an undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where

- random variable $X_i = x_i + \epsilon_i$ with $\epsilon_i \sim \mathcal{N}(0, \sigma_i^2)$ for $i \in \mathcal{V}$
- \bullet X_i is only dependent on its neighbors and independent of others

Markov random field An MRF model is defined on an undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where

- random variable $X_i = x_i + \epsilon_i$ with $\epsilon_i \sim \mathcal{N}(0, \sigma_i^2)$ for $i \in \mathcal{V}$
- \bullet X_i is only dependent on its neighbors and independent of others

Markov random field An MRF model is defined on an undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where

- random variable $X_i = x_i + \epsilon_i$ with $\epsilon_i \sim \mathcal{N}(0, \sigma_i^2)$ for $i \in \mathcal{V}$
- \bullet X_i is only dependent on its neighbors and independent of others

Markov random field An MRF model is defined on an undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where

- random variable $X_i = x_i + \epsilon_i$ with $\epsilon_i \sim \mathcal{N}(0, \sigma_i^2)$ for $i \in \mathcal{V}$
- \bullet X_i is only dependent on its neighbors and independent of others

Markov random field An MRF model is defined on an undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where

- random variable $X_i = x_i + \epsilon_i$ with $\epsilon_i \sim \mathcal{N}(0, \sigma_i^2)$ for $i \in \mathcal{V}$
- \bullet X_i is only dependent on its neighbors and independent of others

- signal processing (Hochbaum and Lu 2017)
- image denoising (Boykov and Funka-Lea 2006)
- epidemiology (Knorr-Held and Besag 1998)
- criminology (Law et al. 2014)
- bioinformatics (Eilers and De Menezes 2005)
- ...

Given observations $\{a_i\}_{i\in\mathcal{V}}$, the MRF inference problem can be stated as

subject to $\ell \le x \le u$

- a_i: observations
- x_i: true values
- h_i, g_{ij} : convex, nonnegative with $h_i(0) = g_{ij}(0) = 0 \ \forall i, j$
- $\ell_i \in \mathbb{R} \cup \{-\infty\}, u_i \in \mathbb{R} \cup \{+\infty\}$

Example - image denoising

Image denoising

Observation a

Estimator x

- x_i : value of pixels
- smoothness: adjacent pixels have similar values

Sparse MRF inference

Assumption the underlying statistical process is sparse

minimize
$$\sum_{i \in \mathcal{V}} \underbrace{h_i(x_i - a_i)}_{\text{fitness}} + \sum_{\substack{(i,j) \in \mathcal{E} \\ \text{smoothness}}} \underbrace{g_{ij}(x_i - x_j)}_{\text{smoothness}} + \underbrace{\lambda \|\mathbf{x}\|_0}_{\text{sparsity}}$$

subject to $\ell \le x \le u$

• $||x||_0$: the number of nonzero entries of x

Sparse MRF inference

Assumption the underlying statistical process is sparse

$$\begin{array}{ll}
\mathbf{minimize} & \sum_{i \in \mathcal{V}} \underbrace{h_i(x_i - a_i)}_{\text{fitness}} + \sum_{(i,j) \in \mathcal{E}} \underbrace{g_{ij}(x_i - x_j)}_{\text{smoothness}} + \lambda \sum_{i \in \mathcal{V}} \underbrace{z_i}_{\text{sparsity}}
\end{array}$$

subject to
$$\ell \circ z \le x \le u \circ z$$

 $z \in \{0,1\}^n$

- $\boldsymbol{u} \circ \boldsymbol{v} = (u_1 v_1, \dots, u_n v_n)$ Hadamard product
- define $0 \cdot (\pm \infty) = 0$
- $[z_i = 0 \Rightarrow x_i = 0] \& [z_i = 1 \Rightarrow x_i \in [\ell_i, u_i]]$
- If $\ell_i = -\infty$ and $u_i = +\infty$, then $\ell_i z_i \le x_i \le u_i z_i \Leftrightarrow x_i (1 z_i) = 0$

Assumption a few observations a_i are corrupted by gross outliers

ullet \mathcal{U} : the set of outliers

Introducing binary variables $[z_i = 1 \Leftrightarrow i \in \mathcal{U}] \Rightarrow a MIP$ formulation

Assumption a few observations a_i are corrupted by gross outliers

$$\begin{array}{ll}
\mathbf{minimize} & \sum_{i \in \mathcal{V}} h_i(x_i - a_i) (1 - z_i) + \sum_{(i,j) \in \mathcal{E}} g_{ij}(x_i - x_j) + \lambda \sum_{i \in \mathcal{V}} z_i \\
& \text{fitness}
\end{array}$$

subject to
$$\ell \le x \le u$$

 $z \in \{0,1\}^n$

• $z_i = 1 \Leftrightarrow a_i$ is an outlier

Assumption a few observations a_i are corrupted by gross outliers

$$\begin{array}{ll}
\mathbf{minimize} & \sum_{i \in \mathcal{V}} h_i (x_i - a_i - \mathbf{w}_i) + \sum_{(i,j) \in \mathcal{E}} g_{ij} (x_i - x_j) + \lambda \sum_{i \in \mathcal{V}} z_i \\
& \text{smoothness}
\end{array}$$

subject to $\ell \le x \le u$

$$w_i(1-z_i)=0 \ \forall i \in \mathcal{V} \ , \ \boldsymbol{z} \in \{0,1\}^n$$

Equivalence

- $z_i = 0$: $w_i = 0 \Rightarrow a_i$ is not an outlier
- $z_i = 1$: min $h_i(\bullet) = h_i(0) = 0 \Rightarrow w_i = a_i x_i$ at the optimal solution $\Rightarrow a_i$ is an outlier

Assumption a few observations a_i are corrupted by gross outliers

$$\begin{array}{ll}
\mathbf{minimize} & \sum_{i \in \mathcal{V}} h_i (x_i - a_i - \mathbf{w}_i) + \sum_{(i,j) \in \mathcal{E}} g_{ij} (x_i - x_j) + \lambda \sum_{i \in \mathcal{V}} z_i \\
& \text{smoothness}
\end{array}$$

subject to $\ell \le x \le u$

$$\tilde{\ell} \circ \mathbf{z} \leq \mathbf{w} \leq \tilde{\mathbf{u}} \circ \mathbf{z}, \ \mathbf{z} \in \{0,1\}^n$$

Equivalence

- $z_i = 0$: $w_i = 0 \Rightarrow a_i$ is not an outlier
- $z_i = 1$: min $h_i(\bullet) = h_i(0) = 0 \Rightarrow w_i = a_i x_i$ at the optimal solution $\Rightarrow a_i$ is an outlier
- $\tilde{\ell}_i = -\infty$ and $\tilde{u}_i = +\infty \ \forall i \in \mathcal{V}$

Main result

Consider a general combinatorial statistical inference problem

$$\underset{\mathbf{x} \in \mathbb{R}^{n}, \mathbf{z} \in \{0,1\}^{n}}{\mathbf{minimize}} \left\{ f(\mathbf{x}) + \mathbf{c}^{\mathsf{T}} \mathbf{z} : \ell \circ \mathbf{z} \leq \mathbf{x} \leq \mathbf{u} \circ \mathbf{z} \right\},$$

where $f(\bullet)$ is a convex function and $c \ge 0$

• In general, the problem is \mathcal{NP} -hard, e.g., if $f(\bullet)$ = the obj of OLS

Main result

Consider a general combinatorial statistical inference problem

$$\underset{\mathbf{x} \in \mathbb{R}^{n}, \mathbf{z} \in \{0,1\}^{n}}{\mathbf{minimize}} \left\{ f(\mathbf{x}) + \mathbf{c}^{\mathsf{T}} \mathbf{z} : \ell \circ \mathbf{z} \leq \mathbf{x} \leq \mathbf{u} \circ \mathbf{z} \right\},$$

where $f(\bullet)$ is a convex function and $c \ge 0$

• In general, the problem is \mathcal{NP} -hard, e.g., if $f(\bullet)$ = the obj of OLS

However, in the context of MRF

Theorem (Han et al. (2022))

The problem of sparse/robust MRF inference can be solved as a binary submodular minimization problem and thus is (strongly) polynomially solvable.

Preliminaries - lattices

Meet and join Given $x, y \in \mathbb{R}^n$, define

$$\operatorname{meet} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \wedge \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} \min\{x_1, y_1\} \\ \min\{x_2, y_2\} \\ \vdots \\ \min\{x_n, y_n\} \end{pmatrix}, \quad \operatorname{join} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \vee \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} \max\{x_1, y_1\} \\ \max\{x_2, y_2\} \\ \vdots \\ \max\{x_n, y_n\} \end{pmatrix}$$

Lattice A set $\mathcal{L} \subset \mathbb{R}^n$ is a lattice if $[x, y \in \mathcal{L} \Rightarrow x \lor y, x \land y \in \mathcal{L}]$

Preliminaries - lattices

Meet and join Given $x, y \in \mathbb{R}^n$, define

$$\text{meet} \ \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \land \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} \min\{x_1, y_1\} \\ \min\{x_2, y_2\} \\ \vdots \\ \min\{x_n, y_n\} \end{pmatrix}, \quad \text{join} \ \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \lor \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} \max\{x_1, y_1\} \\ \max\{x_2, y_2\} \\ \vdots \\ \max\{x_n, y_n\} \end{pmatrix}$$

Lattice A set $\mathcal{L} \subset \mathbb{R}^n$ is a lattice if $[x, y \in \mathcal{L} \Rightarrow x \lor y, x \land y \in \mathcal{L}]$

Preliminaries - submodularity

Submodularity Given a lattice $\mathcal{L} \subseteq \mathbb{R}^n$, a function $f : \mathcal{L} \to \mathbb{R}$ is submodular if

$$f(x) + f(y) \ge f(x \wedge y) + f(x \vee y) \ \forall x, y \in \mathcal{L}$$

Remarks

- If $\mathcal{L} \subseteq \{0,1\}^n$, then f is a binary/set submodular function
- If $f \in C^2(\mathbb{R}^n)$, submodularity over $\mathbb{R}^n \Leftrightarrow \frac{\partial^2 f}{\partial y_i \partial y_j}(\mathbf{y}) \leq 0 \ \forall i \neq j$

Preliminaries - submodularity

Submodularity Given a lattice $\mathcal{L} \subseteq \mathbb{R}^n$, a function $f : \mathcal{L} \to \mathbb{R}$ is submodular if

$$f(x) + f(y) \ge f(x \wedge y) + f(x \vee y) \ \forall x, y \in \mathcal{L}$$

Remarks

- If $\mathcal{L} \subseteq \{0,1\}^n$, then f is a binary/set submodular function
- If $f \in \mathcal{C}^2(\mathbb{R}^n)$, submodularity over $\mathbb{R}^n \Leftrightarrow \frac{\partial^2 f}{\partial y_i \partial y_j}(\mathbf{y}) \leq 0 \ \forall i \neq j$

Examples

- $n = 1 \Rightarrow f(x)$ is submodular
- $f(x) = c^T x$ is submodular
- $f(x) = x^{\mathsf{T}} \begin{bmatrix} 5 & -1 & -3 \\ -1 & 3 & -2 \\ -3 & -2 & 7 \end{bmatrix} x$ is submodular

Two key lemmas

Lemma (Topkis (1978))

Given a lattice $\mathcal{L} \in \mathbb{R}^m \times \mathbb{R}^n$ and a submodular function $f : \mathcal{L} \to \mathbb{R}$, the marginal function

$$v(z) \stackrel{\text{def}}{=} \underset{\mathbf{x} \in \mathbb{R}^m}{\text{minimum}} \{ f(\mathbf{x}, \mathbf{z}) : (\mathbf{x}, \mathbf{z}) \in \mathcal{L} \}$$

is submodular on the lattice $\operatorname{proj}_{\mathbf{z}} \stackrel{\text{def}}{=} \{ \mathbf{z} : \exists \mathbf{x} \text{ s.t. } (\mathbf{x}, \mathbf{z}) \in \mathcal{L} \}.$

Two key lemmas

Lemma (Topkis (1978))

Given a lattice $\mathcal{L} \in \mathbb{R}^m \times \mathbb{R}^n$ and a submodular function $f : \mathcal{L} \to \mathbb{R}$, the marginal function

$$v(z) \stackrel{\text{def}}{=} \underset{\mathbf{x} \in \mathbb{R}^m}{\text{minimum}} \{ f(\mathbf{x}, \mathbf{z}) : (\mathbf{x}, \mathbf{z}) \in \mathcal{L} \}$$

is submodular on the lattice $\operatorname{proj}_{\mathbf{z}} \stackrel{\text{def}}{=} \{ \mathbf{z} : \exists \mathbf{x} \text{ s.t. } (\mathbf{x}, \mathbf{z}) \in \mathcal{L} \}.$

Lemma

If $g : \mathbb{R} \to \mathbb{R}$ is a convex function, then $\bar{g}(x,y) \stackrel{\text{def}}{=} g(x-y)$ is a submodular function over \mathbb{R}^2 .

Assume $\ell \geq 0$ and get back to

$$\underset{\mathbf{x} \in \mathbb{R}^{n}, \mathbf{z} \in \{0,1\}^{n}}{\mathsf{minimize}} \left\{ f(\mathbf{x}) + \mathbf{c}^{\mathsf{T}} \mathbf{z} : \ell \circ \mathbf{z} \leq \mathbf{x} \leq \mathbf{u} \circ \mathbf{z} \right\} \tag{*}$$

Objective

$$f(\mathbf{x}) + \mathbf{c}^{\mathsf{T}}\mathbf{z} = \sum_{i \in \mathcal{V}} \underbrace{h_i(x_i - a_i)}_{\mathsf{univariate}} + \sum_{(i,j) \in \mathcal{E}} \underbrace{g_{ij}(x_i - x_j)}_{\mathsf{Lemma}} + \underbrace{\mathbf{c}^{\mathsf{T}}\mathbf{z}}_{\mathsf{linear}}$$

Feasible region
$$\prod_{i \in \mathcal{V}} \{(x_i, z_i) \in \mathbb{R} \times \{0, 1\} : \ell_i z_i \le x_i \le z_i u_i\}$$

Assume $\ell \geq 0$ and get back to

$$\underset{\mathbf{x} \in \mathbb{R}^{n}, \mathbf{z} \in \{0,1\}^{n}}{\mathsf{minimize}} \left\{ f(\mathbf{x}) + \mathbf{c}^{\mathsf{T}} \mathbf{z} : \ell \circ \mathbf{z} \leq \mathbf{x} \leq \mathbf{u} \circ \mathbf{z} \right\} \tag{*}$$

Objective is submodular

$$f(\mathbf{x}) + \mathbf{c}^{\mathsf{T}}\mathbf{z} = \sum_{i \in \mathcal{V}} \underbrace{h_i(x_i - a_i)}_{\mathsf{univariate}} + \sum_{(i,j) \in \mathcal{E}} \underbrace{g_{ij}(x_i - x_j)}_{\mathsf{Lemma}} + \underbrace{\mathbf{c}^{\mathsf{T}}\mathbf{z}}_{\mathsf{linear}}$$

Feasible region
$$\prod_{i \in \mathcal{V}} \{(x_i, z_i) \in \mathbb{R} \times \{0, 1\} : \ell_i z_i \le x_i \le z_i u_i\}$$

Assume $\ell \geq 0$ and get back to

$$\underset{\boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{z} \in \{0,1\}^{n}}{\mathbf{minimize}} \left\{ f(\boldsymbol{x}) + \boldsymbol{c}^{\mathsf{T}} \boldsymbol{z} : \ell \circ \boldsymbol{z} \leq \boldsymbol{x} \leq \boldsymbol{u} \circ \boldsymbol{z} \right\} \tag{*}$$

Objective is submodular

$$f(\mathbf{x}) + \mathbf{c}^{\mathsf{T}} \mathbf{z} = \sum_{i \in \mathcal{V}} \underbrace{h_i(x_i - a_i)}_{\mathsf{univariate}} + \underbrace{\sum_{(i,j) \in \mathcal{E}} g_{ij}(x_i - x_j)}_{\mathsf{Lemma}} + \underbrace{\mathbf{c}^{\mathsf{T}} \mathbf{z}}_{\mathsf{linear}}$$

Feasible region $\prod_{i \in \mathcal{V}} \{(x_i, z_i) \in \mathbb{R} \times \{0, 1\} : \ell_i z_i \le x_i \le z_i u_i\}$

Assume $\ell \geq 0$ and get back to

$$\underset{\boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{z} \in \{0,1\}^{n}}{\mathbf{minimize}} \left\{ f(\boldsymbol{x}) + \boldsymbol{c}^{\mathsf{T}} \boldsymbol{z} : \ell \circ \boldsymbol{z} \leq \boldsymbol{x} \leq \boldsymbol{u} \circ \boldsymbol{z} \right\} \tag{*}$$

Objective is submodular

$$f(\mathbf{x}) + \mathbf{c}^{\mathsf{T}} \mathbf{z} = \sum_{i \in \mathcal{V}} \underbrace{h_i(x_i - a_i)}_{\text{univariate}} + \underbrace{\sum_{(i,j) \in \mathcal{E}} g_{ij}(x_i - x_j)}_{\text{Lemma}} + \underbrace{\mathbf{c}^{\mathsf{T}} \mathbf{z}}_{\text{linear}}$$

Feasible region is a lattice

Assume $\ell \geq 0$ and get back to

$$\underset{\boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{z} \in \{0,1\}^{n}}{\text{minimize}} \left\{ f(\boldsymbol{x}) + \boldsymbol{c}^{\mathsf{T}} \boldsymbol{z} : \ell \circ \boldsymbol{z} \leq \boldsymbol{x} \leq \boldsymbol{u} \circ \boldsymbol{z} \right\} \tag{*}$$

Objective is submodular

$$f(\mathbf{x}) + \mathbf{c}^{\mathsf{T}} \mathbf{z} = \sum_{i \in \mathcal{V}} \underbrace{h_i(x_i - a_i)}_{\mathsf{univariate}} + \underbrace{\sum_{(i,j) \in \mathcal{E}} \underbrace{g_{ij}(x_i - x_j)}_{\mathsf{Lemma}}} + \underbrace{\mathbf{c}^{\mathsf{T}} \mathbf{z}}_{\mathsf{linear}}$$

Feasible region is a lattice

Thus,

$$(\star) \Leftrightarrow \underset{\mathbf{z} \in \{0,1\}^n}{\mathsf{minimize}} \, v(\mathbf{z}) + \mathbf{c}^{\mathsf{T}} \mathbf{z}$$

where $v(z) = \underset{\mathbf{x} \in \mathbb{R}^n}{\text{minimum}} \{ f(\mathbf{x}) : \ell \circ \mathbf{z} \le \mathbf{x} \le \mathbf{u} \circ \mathbf{z} \}$ is a binary submodular function and can be evaluated by solving a convex program

Assume $\ell \not\geq 0$,

$$\underset{\mathbf{x} \in \mathbb{R}^{n}, \mathbf{z} \in \{0,1\}^{n}}{\mathsf{minimize}} \left\{ f(\mathbf{x}) + \mathbf{c}^{\mathsf{T}} \mathbf{z} : \ell \circ \mathbf{z} \leq \mathbf{x} \leq \mathbf{u} \circ \mathbf{z} \right\} \tag{*}$$

Figure: Region of $\{(x_i, z_i) \in \mathbb{R} \times \{0, 1\} : \ell_i z_i \le x_i \le z_i u_i\}$

Assume $\ell \not\geq 0$,

$$\underset{\mathbf{x} \in \mathbb{R}^{n}, \mathbf{z} \in \{0,1\}^{n}}{\mathsf{minimize}} \left\{ f(\mathbf{x}) + \mathbf{c}^{\mathsf{T}} \mathbf{z} : \ell \circ \mathbf{z} \leq \mathbf{x} \leq \mathbf{u} \circ \mathbf{z} \right\} \tag{*}$$

Issue the feasible region is not a lattice if $\ell_i < 0$

Idea If
$$\ell_{i} < 0$$
 and $u_{i} > 0$, then
$$\ell_{i}z_{i} \leq x_{i} \leq u_{i}z_{i}, \ z_{i} \in \{0,1\} \Leftrightarrow \begin{cases} z_{i} = z_{i}^{+} + (1 - z_{i}^{-}) \\ z_{i}^{+} \in \{0,1\}, \ z_{i}^{-} \in \{0,1\} \\ \ell_{i}(1 - z_{i}^{-}) \leq z_{i} \leq u_{i}z_{i}^{+} \end{cases}$$

• Split z_i into two parts z_i^+ and $(1 - z_i^-)$

Assume $\ell \not\geq 0$,

$$\underset{\mathbf{x} \in \mathbb{R}^{n}, \mathbf{z} \in \{0,1\}^{n}}{\mathsf{minimize}} \left\{ f(\mathbf{x}) + \mathbf{c}^{\mathsf{T}} \mathbf{z} : \ell \circ \mathbf{z} \leq \mathbf{x} \leq \mathbf{u} \circ \mathbf{z} \right\} \tag{*}$$

Idea If
$$\ell_{i} < 0$$
 and $u_{i} > 0$, then
$$\ell_{i}z_{i} \leq x_{i} \leq u_{i}z_{i}, \ z_{i} \in \{0,1\} \Leftrightarrow \begin{cases} z_{i} = z_{i}^{+} + (1 - z_{i}^{-}) \\ z_{i}^{+} \in \{0,1\}, \ z_{i}^{-} \in \{0,1\} \\ \ell_{i}(1 - z_{i}^{-}) \leq z_{i} \leq u_{i}z_{i}^{+} \\ z_{i}^{-} \geq z_{i}^{+} \end{cases}$$

- Split z_i into two parts z_i^+ and $(1-z_i^-)$
- $z_i^+ = 0 \Rightarrow [x_i]_+ \stackrel{\text{def}}{=} \max\{x_i, 0\} = 0 \Leftrightarrow x_i \le 0$

Assume $\ell \not\geq 0$,

$$\underset{\mathbf{x} \in \mathbb{R}^{n}, \mathbf{z} \in \{0,1\}^{n}}{\mathbf{minimize}} \left\{ f(\mathbf{x}) + \mathbf{c}^{\mathsf{T}} \mathbf{z} : \ell \circ \mathbf{z} \leq \mathbf{x} \leq \mathbf{u} \circ \mathbf{z} \right\} \tag{*}$$

Idea If
$$\ell_{i} < 0$$
 and $u_{i} > 0$, then
$$\ell_{i}z_{i} \leq x_{i} \leq u_{i}z_{i}, \ z_{i} \in \{0,1\} \Leftrightarrow \begin{cases} z_{i} = z_{i}^{+} + (1 - z_{i}^{-}) \\ z_{i}^{+} \in \{0,1\}, \ z_{i}^{-} \in \{0,1\} \\ \ell_{i}(1 - z_{i}^{-}) \leq z_{i} \leq u_{i}z_{i}^{+} \\ z_{i}^{-} \geq z_{i}^{+} \end{cases}$$

- Split z_i into two parts z_i^+ and $(1 z_i^-)$
- $z_i^+ = 0 \Rightarrow [x_i]_+ \stackrel{\text{def}}{=} \max\{x_i, 0\} = 0 \Leftrightarrow x_i \le 0$
- $1 z_i^- = 0 \Rightarrow [x_i]_- \stackrel{\text{def}}{=} \max\{-x_i, 0\} = 0 \Leftrightarrow x_i \ge 0$

Assume $\ell \not\geq 0$,

$$\underset{\mathbf{x} \in \mathbb{R}^{n}, \mathbf{z} \in \{0,1\}^{n}}{\mathsf{minimize}} \left\{ f(\mathbf{x}) + \mathbf{c}^{\mathsf{T}} \mathbf{z} : \ell \circ \mathbf{z} \leq \mathbf{x} \leq \mathbf{u} \circ \mathbf{z} \right\} \tag{*}$$

Idea If
$$\ell_{i} < 0$$
 and $u_{i} > 0$, then
$$\ell_{i}z_{i} \leq x_{i} \leq u_{i}z_{i}, \ z_{i} \in \{0,1\} \Leftrightarrow \begin{cases} z_{i} = z_{i}^{+} + (1 - z_{i}^{-}) \\ z_{i}^{+} \in \{0,1\}, \ z_{i}^{-} \in \{0,1\} \\ \ell_{i}(1 - z_{i}^{-}) \leq z_{i} \leq u_{i}z_{i}^{+} \\ z_{i}^{-} \geq z_{i}^{+} \end{cases}$$

- Split z_i into two parts z_i^+ and $(1 z_i^-)$
- $z_i^+ = 0 \Rightarrow [x_i]_+ \stackrel{\text{def}}{=} \max\{x_i, 0\} = 0 \Leftrightarrow x_i \leq 0$
- $1 z_i^- = 0 \Rightarrow [x_i]_- \stackrel{\text{def}}{=} \max\{-x_i, 0\} = 0 \Leftrightarrow x_i \ge 0$
- $[x_i]_+$ and $[x_i]_-$ can not be both nonzero $\Rightarrow z_i^+ + (1 z_i^-) \le 1$

Assume $\ell \not\geq 0$,

$$\underset{\mathbf{x} \in \mathbb{R}^{n}, \mathbf{z} \in \{0,1\}^{n}}{\mathsf{minimize}} \left\{ f(\mathbf{x}) + \mathbf{c}^{\mathsf{T}} \mathbf{z} : \ell \circ \mathbf{z} \le \mathbf{x} \le \mathbf{u} \circ \mathbf{z} \right\} \tag{*}$$

Idea If
$$\ell_i < 0$$
 and $u_i > 0$, then
$$\ell_i z_i \le x_i \le u_i z_i, \ z_i \in \{0,1\} \Leftrightarrow \begin{cases} z_i = z_i^+ + (1 - z_i^-) \\ z_i^+ \in \{0,1\}, \ z_i^- \in \{0,1\} \\ \ell_i (1 - z_i^-) \le z_i \le u_i z_i^+ \\ z_i^- \ge z_i^+ \end{cases} \Rightarrow \text{lattice}$$

- Split z_i into two parts z_i^+ and $(1-z_i^-)$
- $z_i^+ = 0 \Rightarrow [x_i]_+ \stackrel{\text{def}}{=} \max\{x_i, 0\} = 0 \Leftrightarrow x_i \le 0$
- $1 z_i^- = 0 \Rightarrow [x_i]_- \stackrel{\text{def}}{=} \max\{-x_i, 0\} = 0 \Leftrightarrow x_i \ge 0$
- $[x_i]_+$ and $[x_i]_-$ can not be both nonzero $\Rightarrow z_i^+ + (1 z_i^-) \le 1$

For simplicity, assume $\ell < 0 < u$. Substituting out z_i ,

minimize
$$f(x) + c^{T}(z^{+} + 1 - z^{-})$$

subject to $\ell \circ (1 - z^{-}) \le x \le u \circ z^{+}$
 $z^{-} \ge z^{+}, z^{+}, z^{-} \in \{0, 1\}^{n}$

$$(*)$$

For simplicity, assume $\ell < 0 < u$. Substituting out z_i ,

minimize
$$f(x) + c^{T}(z^{+} + 1 - z^{-})$$

subject to $\ell \circ (1 - z^{-}) \le x \le u \circ z^{+}$
 $\frac{z^{-} \ge z^{+}}{}, z^{+}, z^{-} \in \{0, 1\}^{n}$

For simplicity, assume $\ell < 0 < u$. Substituting out z_i ,

minimize
$$f(x) + c^{T}(z^{+} + 1 - z^{-})$$

subject to $\ell \circ (1 - z^{-}) \le x \le u \circ z^{+}$
 $z^{-} \ge z^{+}, z^{+}, z^{-} \in \{0, 1\}^{n}$

A mixed-integer submodular minimization problem! ⇒

For simplicity, assume $\ell < 0 < u$. Substituting out z_i ,

minimize
$$f(x) + c^{T}(z^{+} + 1 - z^{-})$$

subject to $\ell \circ (1 - z^{-}) \le x \le u \circ z^{+}$
 $z^{-} \ge z^{+}, z^{+}, z^{-} \in \{0, 1\}^{n}$ (*)

A mixed-integer submodular minimization problem! ⇒

$$(\star) \Leftrightarrow \underset{(z^+,z^-)\in\{0,1\}^{2n}}{\mathsf{minimize}} v(z^+,z^-) + c^{\mathsf{T}}(z^++1-z^-),$$

where $v(z^+, z^-) \stackrel{\text{def}}{=} \underset{\mathbf{x} \in \mathbb{R}^n}{\text{minimum}} \{ f(\mathbf{x}) : \ell \circ (\mathbf{1} - z^-) \le \mathbf{x} \le \mathbf{u} \circ \mathbf{z}^+ \}$ is a binary submodular function and can be evaluated by solving a convex program

Take home message

• Sparse/robust MRF inference problems are polynomially solvable!

Our paper is available at: https://arxiv.org/abs/2209.13161

Thank You!

Reference I

- Boykov, Y. and Funka-Lea, G. (2006). Graph cuts and efficient ND image segmentation. <u>International Journal of Computer Vision</u>, 70(2):109–131.
- Eilers, P. H. and De Menezes, R. X. (2005). Quantile smoothing of array CGH data. Bioinformatics, 21(7):1146–1153.
- Han, S., Pang, J.-S., and Gómez, A. (2022). On polynomial-time solvability of combinatorial markov random fields. https://arxiv.org/abs/2209.13161.
- Hochbaum, D. S. and Lu, C. (2017). A faster algorithm solving a generalization of isotonic median regression and a class of fused lasso problems. SIAM Journal on Optimization, 27(4):2563–2596.
- Knorr-Held, L. and Besag, J. (1998). Modelling risk from a disease in time and space. Statistics in Sedicine, 17(18):2045–2060.
- Law, J., Quick, M., and Chan, P. (2014). Bayesian spatio-temporal modeling for analysing local patterns of crime over time at the small-area level. Journal of Quantitative Criminology, 30(1):57–78.

Reference II

Topkis, D. M. (1978). Minimizing a submodular function on a lattice. Operations research, 26(2):305–321.