

Prof: Rodrigo Carrasco Jofré

Lunes 05 de Julio

|--|

ALUMNO:_			RUT:				_ SECCION:		
PROFESOF	R:								
	P1 (30 ptos)	P2 (30 ptos)	P3 (40 ptos)	P4 (40 ptos)	Total Ptos	Nota(1-7)			
	(1 /	(1)	1 /	1 /		/			

RESULTADOS DE APRENDIZAJES

Resuelve problemas asociados a las transformaciones lineales para interpretar sus resultados.

INSTRUCCIONES

- HACER SOLAMENTE LOS EJERCICIOS QUE VIENEN ASIGNADOS, EN CASO CONTRARIO NO SERAN CONSIDERADOS.
- Escribir sus respuestas con letra clara y legible con lapiz pasta.
- Las respuestas deben venir debidamente justificada. Identificando claramente los pasos desarrollados.
- Cada una las hojas de respuestas debe venir con Nombre y rut y número de la pregunta.
- \blacksquare Al enviar la resolución de la evaluación, esta debe venir en un archivo pdf (o comprimido), de la siguiente forma: Nombre Apellido Alumno Carrera.pdf
- Tiene 80 minutos para responder + 20 minutos para el envio de archivo.

RUT	Preg 1	Preg 2	Preg 3	Preg 4
20087673-3	X	X	X	
20275862-2	X	X		X
20836765-K	X	X	X	
20949203-2	X	X		X
19510913-3	X	X	X	
20912987-6	X	X		X
20101700-9	X	X	X	
19799648-K	X	X		X
21005789-7	X	X	X	
19088998-K	X	X		X
20740165-K	X	X	X	
20953595-5	X	X		X
20691801-2	X	X	X	
21002029-2	X	X		X
20943210-2	X	X	X	
20516495-2	X	X		X
20379069-4	X	X	X	
20681033-5	X	X		X
20254941-1	X	X	X	
20780898-9	X	X		X
20914920-6	X	X	X	
20908710-3	X	X		X

	RUT	Preg 1	Preg 2	Preg 3	Preg 4
Ì	20983027-2	X	X		X
ĺ	20256423-2	X	X	X	
ĺ	20942282-4	X	X		X
	20758882-2	X	X	X	
	20831765-2	X	X		X
	20391033-9	X	X	X	
	20257520-K	X	X		X
	20489097-8	X	X	X	
	20894954-3	X	X		X
	20517117-7	X	X	X	
	21014113-8	X	X		X
	20488773-K	X	X	X	
	20940570-9	X	X		X
	20977746-0	X	X	X	
	20915490-0	X	X		X
	20519059-7	X	X	X	
	20848288-2	X	X		X
	20527914-8	X	X	X	
	20915062-K	X	X		X
	19511677-6	X	X	X	
	20955127-6	X	X		X
	20720419-6	X	X	X	

PREGUNTA 1. 30 puntos

a) Sea $T: M_{m \times n}(\mathbb{R}) \longrightarrow M_{n \times m}(\mathbb{R})$ definida como $T(A) = A^t$. Probar que T es una aplicación lineal.

Solución: Probaremos que T es una transformación lineal

i) Sea $A, B \in M_{m \times n}(\mathbb{R})$

$$T(A+B) = (A+B)^t = A^t + B^t = T(A) + T(B)$$

ii) Sea $A \in M_{m \times n}(\mathbb{R})$ y sea $\alpha \in \mathbb{R}$

$$T(\alpha A) = (\alpha A)^t = \alpha A^t = \alpha T(A)$$

por lo tanto, T es una transformación lineal.

15 puntos

b) Dada la transformación lineal $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definida por T(1,1,1) = (2,0,-1), T(0,-1,2) = (-3,2,-1) y T(1,0,1) = (1,1,0). Encontrar la T(2,-1,1).

Solución: Escribiremos el vector (2, -1, 1) como combinación lineal

$$(2,-1,1) = \alpha(1,1,1) + \beta(0,-1,2) + \gamma(1,0,1) \Longrightarrow \alpha = -\frac{3}{2}$$
, $\beta = -\frac{1}{2}$, $\gamma = \frac{7}{2}$.

Luego,

$$T(2,-1,1) = -\frac{3}{2}T(1,1,1) - \frac{1}{2}T(0,-1,2) + \frac{7}{2}T(1,0,1)$$

$$= -\frac{3}{2}(2,0,-1) - \frac{1}{2}(-3,2,-1) + \frac{7}{2}(1,1,0)$$

$$= \left(-3,0,\frac{3}{2}\right) + \left(\frac{3}{2},-1,\frac{1}{2}\right) + \left(\frac{7}{2},\frac{7}{2},0\right)$$

$$= \left(2,\frac{5}{2},2\right)$$

15 puntos

PREGUNTA 2. 30 puntos

Dada la aplicación $F: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ definida por F(a,b,c) = (2a-b,c+b)

a) Encontrar el kernel, una base y su dimensión.

Solución: Sea $(a, b, c) \in \mathbb{R}^3$

$$(2a - b, c + b) = (0, 0) \Longrightarrow 2a - b = 0$$
, $c + b = 0$.

Así,
$$Ker(F) = \{(a, b, c) \in \mathbb{R}^3 : 2a - b = 0, c + b = 0\}.$$

Para determinar la base, sea $(a, b, c) \in \mathbb{R}^3$

$$(a, b, c) = (a, 2a, -2a) = a(1, 2, -2).$$

Luego,

$$B_K = \{(1, 2, -2)\} \Longrightarrow dim(Ker(F)) = 1.$$

15 puntos

b) Encontrar la imagen, una base y su dimensión.

Solución: Sea $(x,y) \in \mathbb{R}^2$

$$(2a-b,c+b) = (x,y)$$

Analizando el rango del sistema formado por la igualdad anterior, vemos que el sistema no posee restricciones, así

$$Im(F) = \mathbb{R}^2$$

Una base es $B_I = \{(1,0), (0,1)\}$ y dim(Im(F)) = 2.

15 puntos

PREGUNTA 3. 40 puntos

Dada la aplicación lineal $H: \mathcal{M}_{2\times 2}(\mathbb{R}) \longrightarrow \mathbb{R}^4$, $H\begin{pmatrix} a & b \\ c & d \end{pmatrix} = (2a-3d,b,2c-4b,d)$

a) Determine la dimensión del kernel y la dimensión de la imagen.

Solución: Encontraremos el kernel. Sea $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$

$$(2a - 3d, b, 2c - 4b, d) = (0, 0, 0, 0) \Longrightarrow a = b = c = d = 0.$$

Así,

$$Ker(H) = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\} \Longrightarrow \dim(Ker(H)) = 0.$$

Usando el teorema de las dimensiones, tenemos

$$4 = 0 + dim(Im(H)) \Longrightarrow dim(Im(H)) = 4.$$

10 puntos

b) ξH es automorfismo?

Solución: No, pues no es endomorfismo.

10 puntos

c) Determine H^{-1} , si existe.

Solución: Como H es monomorfismo y epimorfismo, entonces H es isomorfismo. Así, H^{-1} existe.

Dada una base de $\mathcal{M}_2(\mathbb{R})$,

$$B = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

Aplicamos la transformación a cada elemento

$$T\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = (2, 0, 0, 0) \Longrightarrow \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = T^{-1}(2, 0, 0, 0),$$

$$T\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = (0, 1, -4, 0) \Longrightarrow \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = T^{-1}(0, 1, -4, 0),$$

$$T\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = (0, 0, 2, 0) \Longrightarrow \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = T^{-1}(0, 0, 2, 0),$$

$$T\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = (-3, 0, 0, 1) \Longrightarrow \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = T^{-1}(-3, 0, 0, 1).$$

Sea $(a, b, c, d) \in \mathbb{R}^4$

$$(a, b, c, d) = \alpha(2, 0, 0, 0) + \beta(0, 1, -4, 0) + \gamma(0, 0, 2, 0) + \delta(-3, 0, 0, 1).$$

Determinando los escalares, tenemos

$$(a,b,c,d) = \left(\frac{a+3d}{2}\right)(2,0,0,0) + b(0,1,-4,0) + \left(\frac{c+4b}{2}\right)(0,0,2,0) + d(-3,0,0,1).$$

Aplicando T^{-1}

$$\begin{split} T^{-1}(a,b,c,d) &= \left(\frac{a+3d}{2}\right)T^{-1}(2,0,0,0) + bT^{-1}(0,1,-4,0) + \left(\frac{c+4b}{2}\right)T^{-1}(0,0,2,0) + dT^{-1}(-3,0,0,1) \\ &= \left(\frac{a+3d}{2}\right)\begin{pmatrix}1 & 0 \\ 0 & 0\end{pmatrix} + b\begin{pmatrix}0 & 1 \\ 0 & 0\end{pmatrix} + \left(\frac{c+4b}{2}\right)\begin{pmatrix}0 & 0 \\ 1 & 0\end{pmatrix} + d\begin{pmatrix}0 & 0 \\ 0 & 1\end{pmatrix} \\ &= \left(\frac{a+3b}{2} & b \\ \frac{c+4d}{2} & d\right) \end{split}$$

PREGUNTA 4. 40 puntos

Dada la aplicación lineal
$$G: \mathcal{M}_{2\times 2}(\mathbb{R}) \longrightarrow \mathbb{R}^4$$
, $G\begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a, 2a+b, c, 3c-d)$

a) Determine la dimensión del kernel y la dimensión de la imagen.

Solución: Encontraremos el kernel. Se
a $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$

$$(a, 2a + b, c, 3c - d) = (0, 0, 0, 0) \Longrightarrow a = b = c = d = 0.$$

Así,

$$Ker(G) = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\} \Longrightarrow \dim(Ker(G)) = 0.$$

Usando el teorema de las dimensiones, tenemos

$$4 = 0 + dim(Im(G)) \Longrightarrow dim(Im(G)) = 4.$$

10 puntos

b) ξG es automorfismo?

Solución: No, pues no es endomorfismo.

10 puntos

c) Determine G^{-1} , si existe.

Solución: Como G es monomorfismo y epimorfismo, entonces G es isomorfismo. Así, G^{-1} existe.

Dada una base de $\mathcal{M}_2(\mathbb{R})$,

$$B = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

Aplicamos la transformación a cada elemento

$$T\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = (1, 2, 0, 0) \Longrightarrow \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = T^{-1}(1, 2, 0, 0),$$

$$T\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = (0, 1, 0, 0) \Longrightarrow \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = T^{-1}(0, 1, 0, 0),$$

$$T\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = (0, 0, 1, 3) \Longrightarrow \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = T^{-1}(0, 0, 1, 3),$$

$$T\begin{pmatrix}0&0\\0&1\end{pmatrix}=(0,0,0,-1)\Longrightarrow\begin{pmatrix}0&0\\0&1\end{pmatrix}=T^{-1}(0,0,0,-1).$$

Sea $(a, b, c, d) \in \mathbb{R}^4$

$$(a, b, c, d) = \alpha(1, 2, 0, 0) + \beta(0, 1, 0, 0) + \gamma(0, 0, 1, 3) + \delta(0, 0, 0, -1).$$

Determinando los escalares, tenemos

$$(a, b, c, d) = a(1, 2, 0, 0) + (b - 2a)(0, 1, 0, 0) + c(0, 0, 1, 3) + (3c - d)(0, 0, 0, -1).$$

Aplicando T^{-1}

$$\begin{split} T^{-1}(a,b,c,d) &= aT^{-1}(1,2,0,0) + (b-2a)T^{-1}(0,1,0,0) + cT^{-1}(0,0,1,3) + (3c-d)T^{-1}(0,0,0,-1) \\ &= a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + (b-2a) \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + (3c-d) \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} a & b-2a \\ c & 3c-d \end{pmatrix} \end{split}$$

20 puntos