STATS 310A: Theory of Probability I

Autumn 2016/17

Lecture 3: October 3

Lecturer: Persi Diaconis Scribes: Kenneth Tay

3.1 Extending a Measure

Start with a set Ω , \mathcal{F}_0 an algebra of subsets, P probability on \mathcal{F}_0 (i.e. countably additive if the countable union happens to be in \mathcal{F}_0 as well).

For all $E \subseteq \Omega$, define

$$P^*(E) := \inf \sum_{i=1}^{\infty} P(A_i)$$

where $A_i \in \mathcal{F}_0$ and $E \subseteq \bigcup A_i$.

We showed that $P^*(\emptyset) = 0$, $P^*(\Omega) = 1$, and for any $E_i \subseteq \Omega$, countable sub-additivity holds:

$$P^* \left(\bigcup_{i=1}^{\infty} E_i \right) \le \sum_{i=1}^{\infty} P^*(E_i).$$

Definition 3.1 Let \mathcal{M} be all $A \subseteq \Omega$ such that for every $E \subseteq \Omega$,

$$P^*(E) = P^*(E \cap A) + P^*(E \cap A^c).$$

We will prove a number of propositions/facts about \mathcal{M} . In proving these facts, we will often use a **key trick**: to show that

$$P^*(E) = P * (E \cap A) + P * (E \cap A^c),$$

we only need to show that

$$P^*(E) \ge P^*(E \cap A) + P * (E \cap A^c).$$

(The other direction is true by countable sub-additivity.)

Proposition 3.2 \mathcal{M} is a field.

Proof: Clearly $\Omega \in \mathcal{M}$. If A in \mathcal{M} , then

$$\begin{split} P^*(E) &= P^*(E \cap A) + P^*(E \cap A^c) \\ &= P^*(E \cap A^c) + P^*(E \cap (A^c)^c) \end{split}$$

for all E. So A^c in \mathcal{M} as well.

Say A and B are in \mathcal{M} . Then for any E,

$$\begin{split} P^*(E) &= P^*(E \cap A) + P^*(E \cap A^c) \\ &= P^*(E \cap A \cap B) + P^*(E \cap A \cap B^c) + P^*(E \cap A^c \cap B) + P^*(E \cap A^c \cap B^c) \\ &\geq P^*(E \cap A \cap B) + P^*((E \cap A \cap B^c) \cup (E \cap A^c \cap B) \cup (E \cap A^c \cap B^c)) \\ &= P * (E \cap (A \cap B)) + P^*(E \cap (A \cap B)^c). \end{split}$$

Thus by the key trick, we have $A \cap B \in \mathcal{M}$. Therefore \mathcal{M} is a field.

3-2 Lecture 3: October 3

Proposition 3.3 If $\{A_i\}_{i\in I}$ (I finite or countable) are disjoint sets in \mathcal{M} , then for any E,

$$P^* \left(E \cap \bigcup_{i \in I} A_i \right) = \sum_{i \in I} P^* (E \cap A_i).$$

Proof: If |I|=1, there is nothing to prove.

If |I| = 2,

$$P^*(E \cap (A_1 \cup A_2)) = P^*(E \cap (A_1 \cup A_2) \cap A_1) + P^*(E \cap (A_1 \cup A_2) \cap A_1^c)$$

= $P^*(E \cap A_1) + P^*(E \cap A_2)$.

Thus the proposition is true for n = 2. Hence, by induction, the proposition is true for any finite number of sets.

If
$$|I| = \infty$$
, let $A = \bigcup_{i=1}^{\infty} A_i$ disjoint, and define $F_n := \bigcup_{i=1}^{n} A_i$. Then

$$P^*(E \cap A) \ge P^*(E \cap F_n)$$
$$= \sum_{i=1}^n P^*(E \cap A_i)$$

for any n. Letting $n \to \infty$, we have

$$P^*(E \cap A) \ge \sum_{i=1}^{\infty} P^*(E \cap A_i).$$

The other direction is immediately obtained from sub-additivity.

Proposition 3.4 \mathcal{M} is a σ -algebra, and P^* is countably additive on \mathcal{M} .

Proof: To show that \mathcal{M} is a σ -algebra, we just need to show closure under countable unions.

Let
$$A_i \in \mathcal{M}, 1 \leq i \leq \infty$$
. Trick: Let $A_1' = A_1, A_2' = A_2 \cap A_1^c$, and

$$A_{n}^{'} = A_{n} \cap \left(\bigcup_{1}^{n-1} A_{i}\right)^{c}.$$

(i.e. create a sequence of disjoint sets from A_i 's).

The A_i 's are disjoint and they are in \mathcal{M} , and $\bigcup A_i' = \bigcup A_i$. Hence, without loss of generality, we can assume that A_i are disjoint!

Set $F_n = \bigcup_{1}^n A_i$. Then for every $E \subseteq \Omega$,

$$P^{*}(E) = P^{*}(E \cap F_{n}) + P^{*}(E \cap F_{n}^{c})$$
$$\geq \sum_{i=1}^{n} P^{*}(E \cap A_{i}) + P^{*}(E \cap A^{c}).$$

Lecture 3: October 3 3-3

Letting n go to infinity and using Prop 3.3,

$$P^*(E) \ge \sum_{i=1}^{\infty} P^*(E \cap A_i) + P^*(E \cap A^c)$$

= $P^*(E \cap A) + P^*(E \cap A^c)$.

Hence $A \in \mathcal{M}$.

To show that P^* is countably additive on \mathcal{M} , use Prop 3.3 with $E = \Omega$.

Proposition 3.5 $\mathcal{F}_0 \subseteq \mathcal{M}$.

Proof: Given E and $\varepsilon > 0$, I can choose A_i , $i = 1, 2, \ldots$, such that $A_i \in \mathcal{F}_0$ for all i and

$$E \subseteq \bigcup A_i, \qquad \sum_{1}^{\infty} P(A_i) \le P^*(E) + \varepsilon.$$

For each n, let $B_n = A \cap A_n$, $C_n = A^c \cap A_n$. Note that B_n and C_n are in \mathcal{F}_0 , and

$$\bigcup B_n \supseteq A \cap E, \qquad \bigcup C_n \supseteq A^c \cap E.$$

Hence,

$$P^*(E \cap A) + P^*(E \cap A^c) \le \sum_{n=1}^{\infty} P(B_n) + \sum_{n=1}^{\infty} P(C_n)$$
$$= \sum_{n=1}^{\infty} P(A_n)$$
$$= P^*(E) + \varepsilon.$$

Let $\varepsilon \to 0$, and we are done.

Proposition 3.6 $P^*(A) = P(A)$ for $A \in \mathcal{F}_0$, i.e. the restriction of P^* on \mathcal{F}_0 is equal to P.

Proposition 3.7 $\mathcal{M} \supseteq \sigma(\mathcal{F}_0)$, so P^* is countably additive on $\sigma(\mathcal{F}_0)$ and extends P. This extension is unique.

The proof for Prop 3.6 is straightforward. To prove Prop 3.7, we need the $\pi - \lambda$ theorem.

3.2 π -Systems and λ -Systems

Definition 3.8 A collection of subsets \mathcal{P} of Ω is a π -system if it is closed under finite intersections. A collection of subsets \mathcal{L} of Ω is a λ -system if

• $\Omega \in \mathcal{L}$,

3-4 Lecture 3: October 3

- $A \in \mathcal{L} \Rightarrow A^c \in \mathcal{L}$,
- ullet $\mathcal L$ closed under countable disjoint unions.

Example: Take $\Omega = \{1, 2, 3, 4\}$, $\mathcal{L} = \{\emptyset, \Omega, 12, 13, 14, 23, 24, 34\}$. \mathcal{L} is a λ -system but not a π -system.

Theorem 3.9 $(\pi - \lambda \text{ Theorem})$ If a π -system \mathcal{P} is contained in a λ -system \mathcal{L} , then $\sigma(\mathcal{P}) \subseteq \mathcal{L}$.

We will postpone the proof till next time. Here are 2 quick applications of the $\pi - \lambda$ Theorem:

Corollary 3.10 P^* is unique on $\sigma(\mathcal{F}_0)$.

Proof: Let Q^* be another extension of P. Consider the collection of sets on which P^* and Q^* agree, i.e.

$$\mathcal{G} := \{ A \in \sigma(\mathcal{F}_0) : P^*(A) = Q^*(A) \}.$$

 \mathcal{G} is a λ -system (just check the definition), and clearly $\mathcal{G} \supseteq \mathcal{F}$. Also, $P^*(A) = Q^*(A)$ on $A \in \mathcal{F}_0$, which is a π -system. Hence, they must agree on $\sigma(\mathcal{F}_0)$.

Corollary 3.11 The Lebesgue measure on the Borel sets of (0,1] is the only probability extending length on intervals.

3.3 Independence

Let (Ω, \mathcal{F}, P) be a probability space. Two sets $A_1, A_2 \in \mathcal{F}$ are **independent** if

$$P(A_1 \cap A_2) = P(A_1)P(A_2).$$

A family of σ -algebras $\{\mathcal{F}_i\}_{i\in I}$ are **independent** if for every k, i_1, i_2, \ldots, i_k , and $A_{i_k} \in \mathcal{F}_{i_k}$,

$$P\left(\bigcap_{j=1}^{k} A_{i_j}\right) = \prod_{j=1}^{k} P(A_{i_j})$$

Example: $\Omega = (0, 1]$, P is length on Borel sets, and $\omega = \sum_{i=1}^{\infty} \frac{d_i(\omega)}{2^i}$. Let $A_i := \{d_i = 1\}$, $\mathcal{F}_i := \sigma(A_i)$. Then the \mathcal{F}_i 's are independent.