

SEQUENCE LISTING

<110> Arena Pharmaceuticals, Inc.
Semple, Graeme
Skinner, Philip
Cherrier, Martin
Webb, Peter
Tamura, Suki

<120> BENZOTRIAZOLES AND METHODS OF PROPHYLAXIS OR TREATMENT OF
METABOLIC-RELATED DISORDERS THEREOF

<130> 32.w01

<150> 60/423,819
<151> 2002-11-05

<160> 4

<170> PatentIn version 3.2

<210> 1
<211> 1164
<212> DNA
<213> Homo sapien

<400> 1
atgaatccgc accatctgca ggatcacttt ctggaaatag acaagaagaa ctgctgttg 60
ttccgagatg acttcattgc caagggtttg ccgcgggtgt tggggcttggaa gtttatcttt 120
gggcttctgg gcaatggcct tgccctgtgg attttctgtt tccacctcaa gtcctggaaa 180
tccagccgga ttttcctgtt caacctggca gtagctgact ttctactgtat catctgcctg 240
ccggtcgta tggactacta tgtgcggcgt tcagacttggaa actttgggaa catcccttgc 300
cggtcggtgc tcttcatgtt tgccatgaac cgccaggggca gcatcatctt cctcacggtg 360
gtggcggttag acaggtattt ccgggtggtc catccccacc acgccctgaa caagatctcc 420
aattggacag cagccatcat ctcttgcctt ctgtggggca tcactgttgg cctaacagtc 480
cacctcctga agaagaagtt gctgatccag aatggccctg caaatgtgtg catcagcttc 540
agcatctgcc ataccttccg gtggcacgaa gctatgttcc tcctggagtt cctcctgccc 600
ctgggcatca tcctgttctg ctcagccaga attatcttggaa gcctgcggca gagacaaatg 660
gaccggcatg ccaagatcaa gagagccatc accttcatca tggtggtggc catcgcttt 720
gtcatctgct tccttcccag cgtgggtgtg cggatccgca tcttctggct cctgcacact 780
tcgggcacgc agaattgtga agtgtaccgc tcgggtggacc tggcggtctt tatcaacttc 840
agcttcacct acatgaacag catgctggac cccgtgggtgt actacttctc cagcccatcc 900
tttcccaact tcttctccac tttgatcaac cgctgcctcc agaggaagat gacaggtgag 960
ccagataata accgcagcac gagcgtcgag ctcacagggg accccaacaa aaccagaggc 1020
gctccagagg cgttaatggc caactccggt gagccatggaa gccctctta tctggggccca 1080
acctcaaata accattccaa gaaggacat tgtcaccaag aaccagcatc tctggagaaa 1140
cagttgggct gttgcacatcgtt gtaa 1164

<210> 2
<211> 387
<212> PRT
<213> Homo sapien

<400> 2

Met Asn Arg His His Leu Gln Asp His Phe Leu Glu Ile Asp Lys Lys
1 5 10 15

Asn Cys Cys Val Phe Arg Asp Asp Phe Ile Ala Lys Val Leu Pro Pro
20 25 30

Val Leu Gly Leu Glu Phe Ile Phe Gly Leu Leu Gly Asn Gly Leu Ala
35 40 45

Leu Trp Ile Phe Cys Phe His Leu Lys Ser Trp Lys Ser Ser Arg Ile
50 55 60

Phe Leu Phe Asn Leu Ala Val Ala Asp Phe Leu Leu Ile Ile Cys Leu
65 70 75 80

Pro Phe Val Met Asp Tyr Tyr Val Arg Arg Ser Asp Trp Asn Phe Gly
85 90 95

Asp Ile Pro Cys Arg Leu Val Leu Phe Met Phe Ala Met Asn Arg Gln
100 105 110

Gly Ser Ile Ile Phe Leu Thr Val Val Ala Val Asp Arg Tyr Phe Arg
115 120 125

Val Val His Pro His His Ala Leu Asn Lys Ile Ser Asn Trp Thr Ala
130 135 140

Ala Ile Ile Ser Cys Leu Leu Trp Gly Ile Thr Val Gly Leu Thr Val
145 150 155 160

His Leu Leu Lys Lys Leu Leu Ile Gln Asn Gly Pro Ala Asn Val
165 170 175

Cys Ile Ser Phe Ser Ile Cys His Thr Phe Arg Trp His Glu Ala Met
180 185 190

Phe Leu Leu Glu Phe Leu Leu Pro Leu Gly Ile Ile Leu Phe Cys Ser
195 200 205

Ala Arg Ile Ile Trp Ser Leu Arg Gln Arg Gln Met Asp Arg His Ala
210 215 220

Lys Ile Lys Arg Ala Ile Thr Phe Ile Met Val Val Ala Ile Val Phe
225 230 235 240

Val Ile Cys Phe Leu Pro Ser Val Val Arg Ile Arg Ile Phe Trp
Page 2

245

250

255

Leu Leu His Thr Ser Gly Thr Gln Asn Cys Glu Val Tyr Arg Ser Val
 260 265 270

Asp Leu Ala Phe Phe Ile Thr Leu Ser Phe Thr Tyr Met Asn Ser Met
 275 280 285

Leu Asp Pro Val Val Tyr Tyr Phe Ser Ser Pro Ser Phe Pro Asn Phe
 290 295 300

Phe Ser Thr Leu Ile Asn Arg Cys Leu Gln Arg Lys Met Thr Gly Glu
 305 310 315 320

Pro Asp Asn Asn Arg Ser Thr Ser Val Glu Leu Thr Gly Asp Pro Asn
 325 330 335

Lys Thr Arg Gly Ala Pro Glu Ala Leu Met Ala Asn Ser Gly Glu Pro
 340 345 350

Trp Ser Pro Ser Tyr Leu Gly Pro Thr Ser Asn Asn His Ser Lys Lys
 355 360 365

Gly His Cys His Gln Glu Pro Ala Ser Leu Glu Lys Gln Leu Gly Cys
 370 375 380

Cys Ile Glu
 385

<210> 3
<211> 1092
<212> DNA
<213> Homo sapien

<400> 3	
atgaatcggc accatctgca ggatcacttt ctggaaatag acaagaagaa ctgctgtgtg	60
ttccgagatg acttcattgt caaggtgttg ccgcggtgt tggttgcgtt gtttatcttc	120
gggctctgg gcaatggcct tgccctgtgg atttctgtt tccacctcaa gtcctggaaa	180
tccagccgga tttccctgtt caacctggca gtggctgact ttctactgtat catctgcctg	240
cccttcctga tggacaacta tgtgaggcgt tggactgga agtttgggaa catcccttgc	300
cggctgatgc tcttcatgtt ggctatgaac cgccaggca gcatcatctt cctcacggtg	360
gtggcggttag acaggtatcc ccgggtggtc catccccacc acgccctgaa caagatctcc	420
aatcggacag cagccatcat ctcttcctt ctgtggggca tcactattgg cctgacagtc	480
cacccctctga agaagaagat gccgatccag aatggcggtg caaatttgcgt cagcagcttc	540
agcatctgcc ataccccca gtggcacgaa gccatgttcc tcctggagtt cttccctgccc	600
ctgggcata tcctgttctg ctcagccaga attatctgga gcctgcggca gagacaaatg	660
gaccggcatg ccaagatcaa gagagccatc accttcata tgggtggcgtt catcgatcttt	720

gtcatctgct tccttcccag cgtggttgtg cgatccgca tcttctggct cctgcacact	780
tcgggcacgc agaattgtga agtgtaccgc tcggtgacc tggcgttctt tatcactctc	840
agttcacct acatgaacag catgctggac cccgtggtgt actacttctc cagcccatcc	900
tttccaact tcttctccac tttgatcaac cgctgcctcc agaggaagat gacaggtag	960
ccagataata accgcagcac gagcgtcgag ctcacagggg accccaacaa aaccagaggc	1020
gctccagagg cgttaatggc caactccgtt gagccatgga gcccctctta tctgggccc	1080
acctctcctt aa	1092

<210> 4
<211> 363
<212> PRT
<213> Homo sapien

<400> 4

Met Asn Arg His His Leu Gln Asp His Phe Leu Glu Ile Asp Lys Lys
1 5 10 15

Asn Cys Cys Val Phe Arg Asp Asp Phe Ile Val Lys Val Leu Pro Pro
20 25 30

Val Leu Gly Leu Glu Phe Ile Phe Gly Leu Leu Gly Asn Gly Leu Ala
35 40 45

Leu Trp Ile Phe Cys Phe His Leu Lys Ser Trp Lys Ser Ser Arg Ile
50 55 60

Phe Leu Phe Asn Leu Ala Val Ala Asp Phe Leu Leu Ile Ile Cys Leu
65 70 75 80

Pro Phe Leu Met Asp Asn Tyr Val Arg Arg Trp Asp Trp Lys Phe Gly
85 90 95

Asp Ile Pro Cys Arg Leu Met Leu Phe Met Leu Ala Met Asn Arg Gln
100 105 110

Gly Ser Ile Ile Phe Leu Thr Val Val Ala Val Asp Arg Tyr Phe Arg
115 120 125

Val Val His Pro His His Ala Leu Asn Lys Ile Ser Asn Arg Thr Ala
130 135 140

Ala Ile Ile Ser Cys Leu Leu Trp Gly Ile Thr Ile Gly Leu Thr Val
145 150 155 160

His Leu Leu Lys Lys Lys Met Pro Ile Gln Asn Gly Ala Asn Leu
165 170 175

Cys Ser Ser Phe Ser Ile Cys His Thr Phe Gln Trp His Glu Ala Met
Page 4

180

185

190

Phe Leu Leu Glu Phe Phe Leu Pro Leu Gly Ile Ile Leu Phe Cys Ser
195 200 205

Ala Arg Ile Ile Trp Ser Leu Arg Gln Arg Gln Met Asp Arg His Ala
210 215 220

Lys Ile Lys Arg Ala Ile Thr Phe Ile Met Val Val Ala Ile Val Phe
225 230 235 240

Val Ile Cys Phe Leu Pro Ser Val Val Val Arg Ile Arg Ile Phe Trp
245 250 255

Leu Leu His Thr Ser Gly Thr Gln Asn Cys Glu Val Tyr Arg Ser Val
260 265 270

Asp Leu Ala Phe Phe Ile Thr Leu Ser Phe Thr Tyr Met Asn Ser Met
275 280 285

Leu Asp Pro Val Val Tyr Tyr Phe Ser Ser Pro Ser Phe Pro Asn Phe
290 295 300

Phe Ser Thr Leu Ile Asn Arg Cys Leu Gln Arg Lys Met Thr Gly Glu
305 310 315 320

Pro Asp Asn Asn Arg Ser Thr Ser Val Glu Leu Thr Gly Asp Pro Asn
325 330 335

Lys Thr Arg Gly Ala Pro Glu Ala Leu Met Ala Asn Ser Gly Glu Pro
340 345 350

Trp Ser Pro Ser Tyr Leu Gly Pro Thr Ser Pro
355 360