We define the following raw variables over each region of land $\lambda_i \in \lambda$ in some region of land in Minnesota where λ is a land partition of Minnesota according to some rule (street, neighborhood,..., city, county, district,...) and $i \in [1, |\lambda|] \cap \mathbb{N}$. ex.) $\lambda = \{\text{Ramsey, Anoka, St. Louis,...}\}$ is a partition of Minnesota into counties.

 $E_i := average energy cost$

 $T_i := \text{road density (number of roads per acre)}$

 $Y_i :=$ average yield of corn ,sugarbeets ,soy, other grains (bushels/acre)

$$N_i := \frac{\text{Nitrogen needed}}{\text{Crop Production Index}} (\text{N/cpi})$$

Normalized Variables:

We translate the Minnesota district map; Minnesota partitioned by districts, to the graph $G = (\lambda, E)$ below, where the vertices $\lambda_i \in \lambda$ are districts and the edges represent a shared border or corner between vertices:

 $\lambda = \{\lambda_i \in \lambda \mid i \in [1, |\lambda|] \cap \mathbb{N}\} = \{SW, SC, SE, CW, CC, CE, NW, NC, NE\}.$

Now, let
$$f: \lambda \to \mathbb{R}^4$$
 be defined by $f(\lambda_i) = \begin{pmatrix} \hat{E}_i \\ \hat{T}_i \\ \hat{Y}_i \\ \hat{N}_i \end{pmatrix}$. f produces a tuple containing the normalized variables

for each of our districts $\lambda_i \in \lambda$. We know define our weight row vector as follows w = (16, 20, 24, 40) which scales $\hat{E}_i, \hat{T}_i, \hat{Y}_i, \hat{N}_i$, respectively, which are ranked in order from most to least important out of 100%. These weights are order according to most significant with respect to economic feasibility. Finally, we multiply $f(\lambda_i)$ by w from the left in order to produce a linear combination for each district, once again centered around economic feasibility, which we call it's rank R:

$$R(\lambda_i) = w f(\lambda_i) w$$

Finally, we select