

Fakultät Agrarwissenschaften und Landschaftsarchitektur

		Bachelorprüfung	
		Masterprüfung	
Klausur im Modul: Prüfer*in: Name, Vorname:			
Matrikelnr.:		Fachsemester.:	
Tisch Nr.:		Zugol Hilfomittol	
der umseitigen Kla Die für den Prüfun genommen.	ausurbelehrung.	ngsfähig bin. Weiter bestätig Itenden Hygienebestimmung	
Bewertung - von	den Prüfenden aus	zufüllen -	
1. Prüfer*in:	Unterschrift	2. Prüfer*in:	Unterschrift
Punkte:	von	Punkte:	von
Note:		Note:	_

Klausurbelehrung

Lesen Sie die nachstehende Belehrung bitte sorgfältig durch. Durch Ihre Unterschrift auf dem Klausurendeckblatt bestätigen Sie, die Bestimmungen des Allgemeinen Teils der Prüfungsordnung der Hochschule Osnabrück (ATPO) in der aktuell gültigen Fassung über Rücktritt, Täuschung und Ordnungsverstöße zur Kenntnis genommen zu haben.

Die nachstehenden Hinweise dienen lediglich der Information und verschaffen einen Überblick. Die für Ihre Prüfungen maßgeblichen Regelungen ergeben sich aus den einschlägigen Ordnungen.

Prüfungsfähigkeit aufgrund einer eigenen Krankheit (vgl. § 15 Abs. 2 ATPO)

 Prüflinge, die eine Klausur empfangen, nehmen an der Klausur teil und erklären sich mit Unterschrift auf dem Deckblatt für prüfungsfähig. Prüflinge, die sich gesundheitlich nicht in der Lage fühlen, die Klausur zu bewältigen, müssen vor Beginn der Klausur den Prüfungsraum verlassen. Ein Prüfungsrücktritt nach Beginn der Klausur ist in der Regel ausgeschlossen.

Täuschung und Ordnungsverstöße (vgl. § 15 Abs. 3, 4 ATPO)

- Das Mitsichführen von Unterlagen mit fachlichem Bezug ist untersagt, außer sie sind ausdrücklich zugelassen worden.
- Informations- und kommunikationsfähige Geräte sind abzuschalten, es sei denn, ein Gebrauch ist ausdrücklich zugelassen worden.
- Der Prüfling trägt die Verantwortung dafür, dass sowohl er als Person als auch sein Prüfungsplatz von zur Täuschung geeigneten Materialien frei ist.
- Es gilt ein Sprechverbot für alle Prüflinge untereinander.
- Das Verlassen des Klausurraums ist nur zu dringenden WC-Gängen erlaubt. Es darf jeweils nur ein Prüfling zur gleichen Zeit den Klausurraum verlassen. Das Sprechen mit anderen Studierenden oder dritten Personen im Rahmen eines WC-Gangs ist untersagt.
- Es dürfen nur die Schreibblätter verwendet werden, die von den Prüfungsaufsichten ausgegeben werden, es sei denn, andere Schreibblätter wurden ausdrücklich zugelassen.
- Das Weiterschreiben nach Bekanntgabe des Bearbeitungszeitendes ist untersagt.
- Der Prüfling trägt die Verantwortung für die Abgabe seiner vollständigen Klausur.
- Verstöße gegen diese Verbote können als Täuschungsversuche gewertet werden. Die Prüfungsleistung wird mit "nicht bestanden" bzw. "nicht ausreichend" bewertet.
- Auch hier nicht genannte, weitere Formen von Täuschungshandlungen können vergleichbare Konsequenzen nach sich ziehen.
- Prüflinge, die den ordnungsgemäßen Ablauf der Prüfungen stören, können von der aufsichtführenden Person von der Klausur ausgeschlossen werden. Bei festgestellten Ordnungsverstößen wird die Prüfungsleistung mit "nicht bestanden" bzw. "nicht ausreichend" bewertet.

Mitwirkungspflichten (allgemeiner Grundsatz)

• Für die aufsichtführende Person nicht ohne Weiteres erkennbare Störungen (störende Geräusche, wackeliger Stuhl/Tisch etc.) sind durch den Prüfling anzuzeigen.

Sonstiges

Name:	Nicht bestanden: □
Vorname:	
Matrikelnummer:	Endnote:

B.Sc. Landwirtschaft, B.Eng. Wirtschaftsingenieurwesen im Agri- und Hortibusiness, B.Sc. Angewandte Pflanzenbiologie - Gartenbau, Pflanzentechnologie

Klausur Angewandte Statistik und Versuchswesen

Hochschule Osnabrück

Prüfer: Prof. Dr. Jochen Kruppa Fakultät für Agrarwissenschaften und Landschaftsarchitektur j.kruppa@hs-osnabrueck.de

28. Juni 2023

Erlaubte Hilfsmittel für die Klausur

- Normaler Taschenrechner ohne Möglichkeit der Kommunikation mit anderen Geräten also ausdrücklich kein Handy!
- Eine DIN A4-Seite als beidseitig, selbstgeschriebene, handschriftliche Formelsammlung keine digitalen Ausdrucke.
- You can answer the questions in English without any consequences.

Ergebnis der Klausur

_____ von 20 Punkten sind aus dem Multiple Choice Teil erreicht.

von 68 Punkten sind aus dem Rechen- und Textteil erreicht.

_____ von 88 Punkten in Summe.

Es wird folgender Notenschlüssel angewendet.

Punkte	Note
84.0 - 88.0	1,0
79.5 - 83.5	1,3
75.5 - 79.0	1,7
71.0 - 75.0	2,0
66.5 - 70.5	2,3
62.0 - 66.0	2,7
57.5 - 61.5	3,0
53.5 - 57.0	3,3
49.0 - 53.0	3,7
44.0 - 48.5	4,0

Es ergibt sich eine Endnote von _____.

Multiple Choice Aufgaben

- Pro Multipe Choice Frage ist *genau* eine Antwort richtig.
- Übertragen Sie Ihre Kreuze in die Tabelle auf dieser Seite.
- Es werden nur Antworten berücksichtigt, die in dieser Tabelle angekreuzt sind!

	A	В	С	D	Е	✓
1 Aufgabe						
2 Aufgabe						
3 Aufgabe						
4 Aufgabe						
5 Aufgabe						
6 Aufgabe						
7 Aufgabe						
8 Aufgabe						
9 Aufgabe						
10 Aufgabe						

• Es sind ____ von 20 Punkten erreicht worden.

Rechen- und Textaufgaben

• Die Tabelle wird vom Dozenten ausgefüllt.

Aufgabe	11	12	13	14	15	16	17
Punkte	9	9	10	12	10	10	8

• Es sind ____ von 68 Punkten erreicht worden.

1 Aufgabe (2 Punkte)

Beim statistischen Testen wird signal mit noise zur Teststatistik T verrechnet. Welche der Formel berechnet korrekt die Teststatistik T?

- **A** \square Es gilt $T = signal \cdot noise$
- **B** \square Es gilt $T = (signal \cdot noise)^2$

C
$$\square$$
 Es gilt $T = \frac{signal}{noise}$

D
$$\square$$
 Es gilt $T = \frac{signal}{noise^2}$

E
$$\square$$
 Es gilt $T = \frac{noise}{signal}$

2 Aufgabe (2 Punkte)

Welche Aussage über den t-Test ist richtig?

- **A** □ Der t-Test ist ein Vortest der ANOVA und basiert daher auf dem Vergleich von Streuungsparametern
- **B** Der t-Test vergleicht die Mittelwerte von zwei Gruppen unter der strikten Annahme von Varianzhomogenität. Sollte keine Varianzhomogenität vorliegen, so gibt es keine Möglichkeit den t-Test in einer Variante anzuwenden.
- **C** □ Der t-Test vergleicht die Varianzen von mindestens zwei oder mehr Gruppen
- **D** ☐ Der t-Test vergleicht die Mittelwerte von zwei Gruppen.
- **E** \square Der t-Test testet generell zu einem erhöhten α -Niveau von 20%.

3 Aufgabe (2 Punkte)

Eine einfaktorielle ANOVA berechnet eine Teststatistik um zu die Nullhypothese abzulehnen. Welche Aussage über die Teststatistik der ANOVA ist richtig?

- **A** □ Die ANOVA berechnet die F-Statistik indem die MS des Fehlers durch die MS der Behandlung geteilt werden. Wenn die F-Statistik sich der 1 annähert kann die Nullhypothese nicht abgelehnt werden.
- **B** Die ANOVA berechnet die F-Statistik indem die MS der Behandlung durch die MS des Fehlers geteilt werden. Wenn die F-Statistik sich der 0 annähert kann die Nullhypothese nicht abgelehnt werden.
- C ☐ Die ANOVA berechnet die T-Statistik aus der Multiplikation der MS Behandlung mit der MS der Fehler. Wenn die F-Statistik genau 0 ist, kann die Nullhypothese abgelehnt werden.
- D ☐ Die ANOVA berechnet die T-Statistik indem den Mittelwertsunterschied der Gruppen simultan durch die Standardabweichung der Gruppen teilt. Wenn die T-Statistik höher als 1.96 ist, kann die Nullhypothese abgelehnt werden.
- **E** □ Die ANOVA berechnt die F-Statistik aus den SS Behandlung geteilt durch die SS Fehler.

4 Aufgabe (2 Punkte) Berechnen Sie den Mittelwert und Standardabweichung von y mit 7, 7, 12, 8 und 10. **A** □ Es ergibt sich 8.8 +/- 1.085 **B** ☐ Es ergibt sich 8.8 +/- 4.7 **C** □ Es ergibt sich 7.8 +/- 2.35 **D** ☐ Es ergibt sich 8.8 +/- 2.17 **E** □ Es ergibt sich 9.8 +/- 1.085 5 Aufgabe (2 Punkte) Bei der explorativen Datenanalyse (EDA) in 😱 gibt es eine richtige Abfolge von Prozessschritten, auch Circle of life genannt. Wie lautet die richtige Reihenfolge für die Erstellung einer EDA? **A** □ Wir transformieren die Spalten über mutate() in ein tibble und können dann über ggplot() uns die Abbildungen erstellen lassen. Dabei beachten wir das wir keine Faktoren in den Daten haben. **B** Wir lesen die Daten über eine generische Funktion read() ein und müssen dann die Funktion ggplot() nur noch installieren. Dann haben wir die Abbildungen als *.png vorliegen. C ☐ Wir lesen als erstes die Daten über read_excel() ein, transformieren die Spalten über mutate() in die richtige Form und können dann über ggplot() uns die Abbildungen erstellen lassen. **D** Wir lesen die Daten ein und mutieren die Daten. Dabei ist wichtig, dass wir nicht das Paket tidyverse nutzen, da dieses Paket veraltet ist. Über die Funktion library(tidyverse) entfernen wir das Paket von der Analyse. **E** ☐ Wir lesen als erstes die Daten über read_excel() ein, transformieren die Spalten über mutate() in die richtige Form und können dann über ggplot() uns die Abbildungen erstellen lassen. Wichtig ist, dass wir keine Faktoren sondern nur numerische Variablen vorliegen haben. 6 Aufgabe (2 Punkte) Die Randomisierung von Beobachtungen bzw. Samples zu den Versuchseinheiten ist bedeutend in der Versuchsplanung. Welche der folgenden Aussagen ist richtig? A 🔲 Randomisierung erlaubt erst die Varianzen zu schätzen. Ohne eine Randomisierung ist die

- Berechnung von Mittelwerten und Varianzen nicht möglich.
- **B** Randomisierung sorgt für Strukturgleichheit und erlaubt erst von der Stichprobe auf die Grundgesamtheit zurückzuschliessen.
- C Randomisierung bringt starke Unstrukturiertheit in das Experiment und erlaubt erst von der Stichprobe auf die Grundgesamtheit zurückzuschliessen.
- **D** Randomisierung erlaubt erst die Mittelwerte zu schätzen. Ohne Randomisierung keine Mittelwerte.
- **E** ☐ Randomisierung war bis 1952 bedeutend, wurde dann aber in Folge besserer Rechnerleistung nicht mehr verwendet. Aktuelle Statistik nutzt keine Randomisierung mehr.

7 Aufgabe (2 Punkte)

	ner linearen Regression werden die ϵ oder Residuen geschätzt. Welcher Verteilung folgen die duen bei einer optimalen Modellierung?
A 🗆	Die Residuen sind normalverteilt mit $\mathcal{N}(0,1)$.
В□	Die Residuen sind normalverteilt mit $\mathcal{N}(0, s^2)$.
c □	Die Residuen folgen einer Poissonverteilung mit Pois(0).
D 🗆	Die Residuen sind normalverteilt mit $\mathcal{N}(\bar{y}, s^2)$.
E□	Die Residuen sind binomialverteilt.
8 <i>A</i>	Aufgabe (2 Punkte)
	the statistische Masszahl erlaubt es <i>Relevanz</i> mit <i>Signifikanz</i> zuverbinden? Welche Aussage chtig?
A 🗆	Das OR. Als Chancenverhältnis gibt es das Verhältnis von Relevanz und Signifikanz wieder.
В□	Das Δ . Durch die Effektstärke haben wir einen Wert für die Relevanz, die vom Anwender bewertet werden muss. Da Δ antiproportional zum p-Wert ist, bedeutet auch ein hohes Δ ein sehr kleinen p-Wert.
	Der p-Wert. Durch den Vergleich mit α lässt sich über die Signifikanz entscheiden und der β -Fehler erlaubt über die Power eine Einschätzung der Relevanz.
D 🗆	Das Konfidenzintervall. Durch die Visualizierung des Konfidenzintervals kann eine Relevanzschwelle vom Anwender definiert werden. Zusätzlich erlaubt das Konfidenzinterval auch eine Entscheidung über die Signifikanz.
E	Die Teststatistik. Durch den Vergleich von T_c zu T_k ist es möglich die H_0 abzulehnen. Die Relevanz ergibt sich aus der Fläche rechts vom dem T_c -Wert.
9 <i>A</i>	Aufgabe (2 Punkte)
Welc	the Aussage zum mathematische Ausdruck $Pr(D H_0)$ ist richtig?
A 🗆	Die Inverse der Wahrscheinlichkeit unter der die Nullhypothese nicht mehr die Alternativehypothese überdeckt.
В□	$Pr(D H_0)$ ist die Wahrscheinlichkeit der Alternativehypothese und somit $1-Pr(H_A)$
c □	Die Wahrscheinlichkeit für die Nullhypothese, wenn die Daten wahr sind.
D 🗆	$Pr(D H_0)$ ist die Wahrscheinlichkeit die Daten D zu beobachten wenn die Nullhypothese wahr ist.
E	Die Wahrscheinlichkeit der Daten unter der Nullhypothese in der Grundgesamtheit.

10 Aufgabe (2 Punkte)

Der Datensatz PlantGrowth enthält das Gewicht von Pflanzen, die unter einer Kontrolle und zwei

verschiedenen Behandlungsbedingungen erzielt wurden. Nach der Berechnung einer einfaktoriellen ANOVA ergibt sich ein η² = 0.25. Welche Aussage ist richtig?
A □ Das η² beschreibt den Anteil der Varianz, der von den Behandlungsbedingungen erklärt wird. Das η² ist damit mit dem R² aus der linearen Regression zu vergleichen.
B □ Die Berechnung von η² ist ein Wert für die Interaktion.
C □ Das η² ist die Korrelation der ANOVA. Mit der Ausnahme, dass 0 der beste Wert ist.
D □ Das η² ist ein Wert für die Güte der ANOVA. Je kleiner desto besser. Ein η² von 0 bedeutet ein perfektes Modell mit keiner Abweichung. Die Varianz ist null.
E □ Das η² beschreibt den Anteil der Varianz, der von den Behandlungsbedingungen nicht er-

klärt wird. Somit der Rest an nicht erklärbarer Varianz.

11 Aufgabe (10 Punkte)

Sie rechnen eine lineare Regression um nach einem Feldexperiment den Zusammenhang zwischen Trockengewicht kg/m² (*drymatter*) und Wassergabe I/m² (*water*) bei Spargel zu bestimmen. Sie erhalten folgende Datentabelle.

.id	drymatter	water	.fitted	.resid
1	29.9	14.2	31.0	
2	25.6	8.6	24.1	
3	22.5	7.9	23.2	
4	25.6	10.7	26.7	
5	23.1	7.2	22.3	
6	25.4	10.1	25.9	
7	24.6	9.3	25.0	
8	34.1	15.6	32.7	
9	21.5	6.6	21.6	

- 1. Ergänzen Sie die Werte in der Spalte . resid in der obigen Tabelle. Geben Sie den Rechenweg und Formel mit an! (4 Punkte)
- 2. Zeichnen Sie den sich aus der obigen Tabelle ergebenden Residualplot. Beschriften Sie die Abbildung! (4 Punkte)
- 3. Gibt es auffällige Werte anhand des Residualplots? Begründen Sie Ihre Antwort! (2 Punkte)

12 Aufgabe (12 Punkte)

Der Datensatz tooth_tbl enthält Daten aus einer Studie zur Bewertung der Wirkung von Vitamin C auf das Zahnwachstum bei Meerschweinchen. Der Versuch wurde an verschiedenen Schweinen durchgeführt, wobei jedes Tier eine von 4 Vitamin-C-Dosen dose über eine von 3 Verabreichungsmethoden supp erhielt. Die Zahnlänge wurde als normalverteiltes Outcome gemessen.

- 1. Füllen Sie die unterstehende zweifaktorielle ANOVA Ergebnistabelle aus mit den gegebenen Informationen von Df und Sum Sq! (4 Punkte)
- 2. Schätzen Sie den p-Wert der Tabelle mit der Information von den $F_{\alpha=5\%}$ -Werten mit $F_{supp}=4.03$ und $F_{dose}=2.78$ sowie $F_{supp:dose}=2.78$ ab. Begründen Sie Ihre Antwort! **(4 Punkte)**

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
supp	1	63.25			
dose	3	343.35			
supp:dose	3	360.57			
Residuals	52	668.36			

- 3. Was bedeutet ein signifikantes Ergebnis in einer zweifaktoriellen ANOVA im Bezug auf die möglichen Unterschiede zwischen den Gruppen? Beziehen Sie sich dabei einmal auf den Faktor *supp* und einmal auf den Faktor *dose*! (2 Punkte)
- 4. Was sagt der Term *supp:dose* aus? Interpretieren Sie das Ergebnis des abgeschätzten p-Wertes! **(2 Punkte)**

13 Aufgabe (10 Punkte)

Sie rechnen einen t-Test für Gruppenvergleiche. Sie schätzen den Unterschied zwischen dem mittleren Befall mit Parasiten zu einer unbehandelten Kontrolle.

- 1. Beschriften Sie die untenstehende Abbildung mit der Signifikanzschwelle! Begründen Sie Ihre Antwort! (2 Punkte)
- 2. Ergänzen Sie eine *in den Kontext passende* Relevanzschwelle! Begründen Sie Ihre Antwort! **(2 Punkte)**
- 3. Skizieren Sie in die untenstehende Abbildung sechs einzelne Konfidenzintervalle (a-f) mit den jeweiligen Eigenschaften! (6 Punkte)
 - (a) Ein signifikantes, relevantes 90%-Konfidenzintervall.
 - (b) Ein 95%-Konfidenzintervall mit höherer Fallzahl n in der Stichprobe als der Rest der 95%-Konfidenzintervalle
 - (c) Ein signifikantes, nicht relevantes 95%-Konfidenzintervall
 - (d) Ein signifikantes, relevantes 95%-Konfidenzintervall
 - (e) Ein nicht signifikantes, nicht relevantes 95%-Konfidenzintervall
 - (f) Ein 95%-Konfidenzintervall mit niedriger Fallzahl n in der Stichprobe als der Rest 95%-der Konfidenzintervalle

14 Aufgabe (10 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

In einem Stallexperiment mit n=60 Ferkeln wurde der Gewichtszuwachs in kg unter ansteigender Lichteinstrahlung in nm gemessen. Sie erhalten den \bigcirc Output der Funktion tidy() einer simplen Gaussian linearen Regression sieben Wochen nach der ersten Messung.

term	estimate	std.error	t statistic	p-value
(Intercept)	25.71	1.45		
light	0.07	0.14		

- 1. Berechnen Sie die t Statistik für (Intercept) und light! (2 Punkte)
- 2. Schätzen Sie den p-Wert für (*Intercept*) und *light* mit $T_{\alpha=5\%}=1.96$ ab. Was sagt Ihnen der p-Wert aus? Begründen Sie Ihre Antwort! (**3 Punkte**)
- 3. Zeichnen Sie die Gerade aus der obigen Tabelle in ein Koordinatenkreuz! (1 Punkt)
- 4. Beschriften Sie die Abbildung und die Gerade mit den statistischen Kenngrößen! (2 Punkte)
- 5. Formulieren Sie die Regressionsgleichung! (2 Punkte)

15 Aufgabe (8 Punkte)

In einem Experiment für den Proteingehalt von Wasserlinsen in g/l mit fünf Dosisstufen (A, B, C, D und E) erhalten Sie folgendes *Compact letter display (CLD)* als \bigcirc Ausgabe aus den rohen, unadjustierten p-Werten.

- 1. Erstellen Sie eine Matrix mit den paarweisen *p*-Werten, die sich näherungsweise aus dem *Compact letter display (CLD)* ergeben würde! Begründen Sie Ihre Antwort! **(3 Punkte)**
- 2. Zeichnen Sie eine Abbildung, der sich ergebenden Barplots! (2 Punkte)
- 3. Ergänzen Sie das Compact letter display (CLD) zu der Abbildung! (1 Punkt)
- 4. Erklären Sie einen Vorteil und einen Nachteil des Compact letter display (CLD)! (2 Punkte)

16 Aufgabe (9 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

- 1. Zeichnen Sie über die untenstehenden Boxplots die entsprechende zugehörige Verteilung! (2 Punkte)
- 2. Zeichnen Sie unter die untenstehenden Boxplots die entsprechende zugehörige Beobachtungen! (2 Punkte)
- 3. Wieviel Prozent der Beobachtungen fallen in das IQR? Ergänzen Sie die Abbildung entsprechend um den Bereich! (1 Punkt)
- 4. Wieviel Prozent der Beobachtungen fallen in $\pm 2s$ unter der Annahme einer Normalverteilung? Wenn möglich, ergänzen Sie die Abbildung entsprechend um den Bereich! (2 Punkte)
- 5. Ergänzen Sie die statistischen Maßzahlen zu einer Verteilung und einem Boxplot! (2 Punkte)

17 Aufgabe (9 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

- 1. Skizieren Sie 4 Normalverteilungen in einer Abbildung mit $\bar{y}_1 \neq \bar{y}_2 \neq \bar{y}_3 \neq \bar{y}_4$ und $s_1 \neq s_2 \neq s_3 \neq s_4$! (3 Punkte)
- 2. Beschriften Sie die Normalverteilungen mit den entsprechenden Parametern! (2 Punkte)
- 3. Ergänzen Sie die Bereiche in der 68% und 95% der Beobachtungen fallen! Beschriften Sie die Grenzen der Bereiche mit der statistischen Maßzahl! (2 Punkte)
- 4. Liegt Varianzhomogenität oder Varianzheterogenität vor? Begründen Sie Ihre Antwort! (2 Punkte)