LISTA DE EXERCÍCIOS - SAA0336

ALESSANDRO MELO DE OLIVEIRA - 10788662

Neste pdf se encontram todos os exercícios pedidos. Os códigos, tabelas e outras figuras utilizadas em cada exercício podem serem encontrados no repositório do GitHub Clique no nome de cada exercício abaixo para poder ir para a página correspondente.

Exercício 1

Exercício 2

Exercício 3

Exercício 4

Exercício 5

Exercício 6

Nome: alemandra Mela Le Oliveria. N° USP: 10788662

Exercis 1 - SMA033G

Colcule de formo aproximo do os tensões principois que otram rum poinel de revertimente de fluxelogan (com esperano de 1 mm) deni do somente à pressuizoccio, considerando que a fluxelogan em voo somi rois i cyrol a 1,7 m, e esta sob umo roisocas de monos moxumo, de 11,3,10° MPa (16,4 psi).

problemo:

(a) (b) (c)

POID To, temo: On. (DLt) = pr. A = pi. 2xL = Dry = pi.R

Paro Da, temos: 2x Rt Da = x Rºpi => Da = pi. R

aplicando es ruolous, temos:

04 = 11,3.10².10⁶.17 => D1 = 192,1 MPa

0°2 = 11,3.10.10.17 ⇒ 0°2 = 96,05 MPa 2.10-3

000000000 Name: alexandra Mela de Oliveira 10° USP: 10788 66 2 Exercis 2 - SMA0336 surreger of megaleup as exocative es atronitares es lanca esas, me de 1 mm) sofre a cros de uma estado de tensos, conforme figure aboixo, cousdo exclusiramente por umo condiçõe razado axendente. Considerando que a fuselagam, em vos com rais de 1,7 m ponui uma moriação de prenas de 113.10 MPa. (164 psi), or pointel certificon a reforido pointel sob tração? Par qué? (Dodo: Ftu = 400 Mea). Ox Cy Toxy 5 = 1280 -100 259 MPa Promissocos Confiame demonstrato no exercico 1, podemos co tensões In (circumferencial) e Tellongitudinal) com as requintes ση = pi.R = 11,3.10.10.1,7 => ση = 192,1 MPa 0 0/1020 Pil = 11, 3.10°.106.17 = 0 00 = 96,09 MBa 600 O2 = 2. 0-3

D

Nome: alexandra Mela de Olivera VOUSPS 10788662 Exercise 3- SMAO336 Construa um diagramas pero x posição do CG considerando so conegomentos do Tosela 1. Este exercício pede a determinação do diogramo, pero x porição CG de uma aeronare. Como a relação entre ao dois e- intercopendente, e possivel anolizor a relocas entre ambos a portir de un apolico ente e mentrolo a rociocas longitudinal do CG total de aviõis em diferentes condições. oro a construção do gráfico, consideramos diferente condiçãos de vos que afetam & pero do asianose. Em qual os peros re etc), e corgo util (ponogenos, bogogens, combestivel, etc Poro o colulo do C.G. em qualque condição, re utiliza, a relocais normal poro e calub de centre de mono: Xcy = Zical Wixi procedimento poro a construcão do diagramo .: 1) Determinar o pero minimo de sperocas levando em conta fotos como o peso rozio, combutul mínimo e o sileto. Colcular o C.G nesso condições.

(D() (M) (M) (J) (V) (S)

Determinor os pericas de CG quindos do adição de nous componentes, somando com o peso mazio do item 1). Noste coso, poro se obter umo continuidade da diagnoma, re começa adicionanto o fotoro começanto com o item mais à frente de aeronore : e em requider adicionande o pero do preximo item mois perto. Semodo todos os componento lelevanto para uma condição, colula-re C.G nono condicad. 3) Poro a porte posteria des diogramos, se adicionos itens mois a re do carandre requindo pelo adição de item mois proximos a Prente, atí que o poso total fique iqual as pero moximo. Somondo-re todos os componente relevanto sono limo contição, colub-re o CG nota condição remelhante as item Seguindo a rateiro com a tabela formaido no Tobela 1), tem-re o requirte dian mo: Disograma: Pero x Penição C.G 4600. 14 4200 4000 3800 3600 +7 1,72 1,73 1,74 1,75 1,76 1,77 1,76 1,79 1,8 1,81 1,82 1,83 X[M] Figure 1: Dischemes perex perições

000000

· Qi	n de se tou ling melhou dimensions mento do posição do
C. 6	e- possivel colubor aindo, suo porcentagem un relocas
a. conto	metio do acionare, comforme motivo lo no celtimo
Coluna	des Tohelos 1, onde foi performado o requistr colculo:
	7. CAM = X-1,502
	7,295
8m ge	Xcom = 1,502 m & CAM = 1,295 m.

Tabela 1: condições de carregamento com respectiva posição do CG

	Nο	Descrição do peso	W (N)	x (m)	W.x (N.m)	Posiçã x (m)	io do CG % CMA
	1	Peso Vazio	2514,100	1,708	4294,083		
	2	Combustível mínimo (25,9 L)	166,900	2,413	402,730		
	3	Óleo (3,8 L)	35,600	0,589	20,968		
	4	Piloto (leve)	445,000	1,683	748,935		
1	5	Peso mínimo de operação	3161,600		5466,716	1,729	17,5
	6	Co-piloto	311,500	1,683	524,255		
П	7	Peso Parcial (5 + 6)	3473,100		5990,970	1,725	17,2
	8	Passageiro	756,500	1,683	1273,190		
٠	9	Peso parcial (7 + 8)	4229,600		7264,160	1,717	16,6
	10	Bagagem	356,000	2,210	786,760		
	11	Peso Parcial (9 + 10)	4585,600		8050,920	1,756	19,6
	12	Combustível (12,3 L)	86,800	2,413	209,448		
.	13	Peso Total	4672,400		8260,368	1,768	20,5
	14	Combustível	313,700	2,413	756,958		
	15	Peso Parcial (5 + 14)	3475,300		6223,674	1,791	22,3
	16	Bagagem	356,000	2,210	786,760		
	17	Peso Parcial (15+16)	3831,300		7010,434	1,830	25,3
	18	Co-Piloto	311,500	1,683	524,255		
	19	Peso Parcial (17 + 18)	4142,800		7534,689	1,819	24,5
	20	Passageiro	529,600	1,683	891,317		
П	21	Peso Total	4672,400		8426,005	1,803	23,3

Nome: alexandra Mela Le Oliveira. N°USP: 10788 662 Exercis 5- SMAO336 Este exercio pede a construção de um diognomo. V-n, tonto poro os condições de monobra, como de rajoda, e o anderson de mansais a comansais a Para a contrução de diogramos de manabras, derema nos atenta a quatra pentes principais: 1 - Ponto le maxima relacidade. Noste con tal sonte conogende a reboi do de marquello do aurenare, indiando a moios relacidade supertada pela estrutura. Trata-re de un valor dados pela FAR e no con deste exercis, a relaidade de mergullo é de 400 milh. 2 - Ponto de volvidade de stall portino. Neste coso, conepande a relacidade moreumos que a auranare pode atingio até estalon Com um angulo de atoque positivo. Seu nola pode ser obtido atravio do Poten de corgo moximo, que a FAR permite. No coso deste exercis, e fotor de corgo moximo e + 6. 3 - analogo as coso do relocidade de stall portuo, porem agoro considerando uma velocido de máximo, até estobo com ângulo de otaque regotio. Sou vola dodo pala FAR 4- as linhas que delimitamo Superiamente a inferiormente 8 diogramos são, definidos comos as regiões de maximo

(D) (L) (M) (M) (L) (V)

e minimo foton de conço entre as velori do des de stoll (pritire e regative) e a velocida de mergulho. Para a obtenção dos relocidados de stall dos items 2 e 3, constaciones o jots de cargo admitido com o somatorio de Jayas nomal a cordo, ou sijo, o coeficiente Cze, cujos robous sois formación no enunciodad do exercico a portir le Locas experimentois. Com uno, a relocas entre a fota de corgo, e a relacidade é dada coma: n = Cza. PSV2 Paro stall positions => ys= 2,07.0,0256.276 (06816) => 7= 0,000 196V . Paro n=6 => Vs+ = 174,64 milh Poro stall regature = 7= -1,2.0,00296.276. (0,0816) => y== -0,000 114 V. Pow y=-3 => Vs = 162,19 milh Como e pormel notor, a carelação entre o Jotos de cargo e a relatione of quadratica, resultando em duas paratolos. Com es rolais des rélacides de stat, merculas, es fotores de cargo minimo e maximo, alem das curros de rebrida de de stall, podemos tracar o diagramo, V-n conderem and

Name: alexandia Mela de Oliveira N°USP: 10786662 Exercis 6- SMAD336 Este exercices pedes a estimatión do forço contente V à do-momento M do aso de um VANT, atilizando dos metados, o metado aproximado e o metado do Stender. Cu avos analisado e- dado pelos figuras 1 e Z. 600 1190,50 1485 1779,50 2020 2200,50 Figure 1 2260,5 mm S= 0,9285 m2 600 MM Figure Z

Cu condição de voo 2 do diagramo V-9	correspondendo a ce	análise e o ponto					
	oter de corepo anoli						
	alula colular as	En cue andresic					
Vi = Vi-1 + 9 (Ci	Cni + Cin. Cnica) ()	i-1- \(\)(\(\))					
Mi = Mi-1 + (Vi +	Vi-1) (Vi-1 - Vi)	(**)					
Onde q e a penois dinômico colubado como q = 533,02 kg m³; Ci e a cardo do recois anolisado; Chi e a carficiente assa dinômica nomal a cardo, e Vi e a parcois do cardo, con some figuras 1 e Z. a directizações do aso e dodo pelo tabelo 1.							
Tabela 1:	Discretização da asa forne	ecida					
	Yi [m] Comprimento da corda	Ci [m]					
Estação nº							
		21400					
		25904					
		30409					
		35925					
		41440 46956					
		52500					
		52500					
9		52500					

Poro	à Cv	i , Dosemes cumo	Charima co	De Can Darme	regardo nos
culas	on de	0.0.01.		1) 1	no.
Courses	,				
	Cl:	= (1/5) = (m	W/S) = 8	1. 3746.2	24,66 = 1,9874
		9	9 0	92 855.9	33,02
	W TO				
(W	alxt v	so voldes veres	Jones, Doi Co	luboto a a	ioitante V e
Desto	isemente	1 11			reacindo as
	homses	(*) e (**)	obtendo a	tobelo 2	. Volida
memas	-	e re assernie (Cni= V = M	= 0 noc 1	conta la ara.
00114	-				
		Tabela 2: Resultado	s obtidos com o	método apro	ximado
	Yi [m]	Comprimento da corda Ci [m]	Coeficiente de Força Cni	Força de Corte Vi [N]	Momento de Flexão [N.m]
Estaç	ão nº				
	0 2.2605	0.21400	0.000000	0.000000	0.000000
	1 2.0200	0.25904	1.987258	32.995622	3.967724

	Yi [m]	Comprimento da corda Ci [m]	Coeficiente de Força Cni	Força de Corte Vi [N]	Momento de Flexão [N.m]
Estação nº					
0	2.2605	0.21400	0.000000	0.000000	0.000000
1	2.0200	0.25904	1.987258	32.995622	3.967724
2	1.7795	0.30409	1.987258	104.725181	20.528650
3	1.4850	0.35925	1.987258	208.190762	66.605523
4	1.1905	0.41440	1.987258	328.862132	145.686561
5	0.8960	0.46956	1.987258	466.739290	262.838871
6	0.6000	0.52500	1.987258	622.657598	424.069610
7	0.1720	0.52500	1.987258	860.674327	741.502642
8	0.0000	0.52500	1.987258	956.325910	897.764663

P

Figura 3: Valores de cortante em cada seção analisada

Figura 4: Valores de momento fletor em cada seção analisada

Metalo de Stentor Poro o metado le Stender, e recesorio sober o equoção que dexerse a cordo do asor analisado. Pelo Jiguo 2, a pomurel contator que or cordo Cg a dada por Cg=[0,525, poro 0 ry = 0,6 (0,6373-0,1872y, poo 0,6<y < 2,2605 Pars 9 cólulo do elipse imagnario C2 do la pela expressão (***), temos que 9 porômetro A i qual a energodera, ou reja, A = 2,2605, enquento que B sale ser dotido pelo ex pressão Lo area, uma rez que a arear la elipse deve per a mesmo. que a area do aso normal. $\frac{\chi^2}{A^2} + \frac{\chi^2}{Q^2} = 1 \quad (***)$ B = 9 = 0.9265 = 0.1307TA 7.2,2605 Définido so possimitos A e D, a expressão do digne Ce i dodo Ce = 4/AZBZ-XZBZ = 0,5230-11-0,1957 xZ Encentrales Cy e Ce, a conda de Stender Cs e dodo como Co=/Ce.Cg

a exposição dos condos Cq, Ce e Ce soão dodos no exiado auxis De pomo do condo Cs, e- parión colabor os sistentações si= Cs dx Asi. n. W a diretização do cordo, utilizado poro colular exicate no Piguo aboixo 0,086, 0,386 1,04325 1 33775 1,63225 1,89975 0,14025 2 2605

Ci tobelo abaixo mestro	80 rosse	Itale o	btid de Dsi	e Li		
para cado umo das un	o commi					
Tabela 3: Resultados do método de Stender						
	Δ Si	Li [N]				
	0.045033	47.702024				
1	0.156692	165.978079				
2	0.185505	196.499040				
3	0.140203	148.512002		333455		
	0.126287	133.771565				
5	0.110744	117.306707				
	0.084474	89.480031				
	0.058840	62.327265				
	0.018934	20.055803				
re possible com exotidos re pos degiu com exotidos jos que nos re nobe integral de DSi.	o de	porcio de la comica del la comica de	amo rez que :	notos de aulo. não e posmiel de aulo, a-b do		
20 125						
25 0 0.0	0.5 Posi	10 ção da Corda	15 2.0 [m]	0		

Figura 5: Comparação dos resultados obtidos com os resultados das notas de aula