Introduction to **Data Science**

Fırat Öncü

Sr. MLOps Engineer

Contact: +90 537 619 36 49 f.firatoncu@gmail.com

Data Science Nedir?

TURNING DATA INTO INFORMATION

ANALYZING DATA TO GET INSIGHTS

IDENTIFYING TRENDS,
PATTERNS, AND
CORRELATIONS

CONTEXTUALIZING, APPLYING AND UNDERSTANDING THEM **Data Science Lifecycle BUSINESS UNDERSTANDING** 02 **DATA MINING DATA SCIENCE LIFECYCLE** 03 sudeep.co **DATA CLEANING** PREDICTIVE MODELING Fix the inconsistencies within the data and handle the missing values. **FEATURE ENGINEERING DATA EXPLORATION** Select important features and Form hypotheses about your construct more meaningful defined problem by visually ones using the raw data that analyzing the data. you have.

Data Drifts

Data Drift

Concept Drift

Data Scientists' Skill Set

Programlama Dilleri

- Python
 - Temel Fonksiyonlar
 - Kütüphaneler
 - Kodlama Standartları
 - Test ve Validasyon Akışları
- SQL
 - o MySQL, MSSQL, BQL, HQL..
 - Join Yapıları
- Unix
 - Ubuntu, Debian, CentOS

Analitik Bilimler

- Matematik
- Olasılık
- İstatistik

Altyapı

- Veritabanları (Hadoop, MongoDB, ELK)
- Cloud (GCP, S3, Azure)
- Yardımcı Araçlar
 - MIFlow
 - Airflow

Raporlama

- Veri Görselleştirme
- Çıktıların Yorumlanması

Diğer Beceriler

- Analitik Düşünce
- İletişim
- Hikaye Anlatıcılığı
- Sürekli Öğrenme
- Takım Uyumu

Machine Learning Nedir?

Supervised Learning

Classification

p(**Dear** | **Normal**) =
$$\frac{8}{17}$$
 = 0.47

$$p(N) \times p(Dear | N) \times p(Friend | N)$$

$$0.67 \times 0.47 \times 0.29 = 0.09$$

$$p(S) \times p(Dear | S) \times p(Friend | S)$$

$$0.33 \times 0.29 \times 0.14 = 0.01$$

Lunch Money Money Money Money

$$p(N) \times p(Lunch | N) \times p(Money | N)^4 = 0.000002$$

$$p(S) \times p(Lunch | S) \times p(Money | S)^4 = 0$$

Lunch Money Money Money Money

$$p(N) \times p(Lunch | N) \times p(Money | N)^4 = 0.00001$$

$$p(S) \times p(Lunch | S) \times p(Money | S)^4 = 0.00122$$

Confusion Matrix

Precision: Spam olarak işaretlenen verilerin ne kadarı gerçekten spam

Normal - N Spam - P

Predicted

		0	1
Actual	0	TN	FP
	1	FN	TP

Recall: Gerçekte spam olan verilerin ne kadarı tespit edildi

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

Sağlık Sektörü - Maximum Precision

		0	1
Actual	0	999.998	0
	1	1	1

Gerçek Veri:

Akciğer Kanseri Sayısı: 2 Sağlıklı İnsan Sayısı: 999.999

Precision =
$$1 / 1 + 0 = 1$$

Recall =
$$1/1 + 1 = 0.5$$

Tahmin:

Akciğer Kanseri Sayısı: 1

Sağlıklı İnsan Sayısı: 1.000.000

Sağlık Sektörü - Maximum Recall

		0	1
Actual	0	999.998	2
	1	0	2

Gerçek Veri:

Akciğer Kanseri Sayısı: 2 Sağlıklı İnsan Sayısı: 999.999

Precision =
$$2 / 2 + 2 = 0.5$$

Recall =
$$2/2 + 0 = 1$$

Tahmin:

Akciğer Kanseri Sayısı: 4

Sağlıklı İnsan Sayısı: 1.000.000

Spam Mail: Maximum Precision

		0	1
Actual	0	200	0
	1	10	10

Gerçek Veri:

Spam Mail Sayısı: 20 Normal Mail Sayısı: 200

Precision =
$$10 / 10 + 0 = 1$$

Recall =
$$10 / 10 + 10 = 0.5$$

Tahmin:

Spam Mail Sayısı: 10 Normal Mail Sayısı: 210

Spam Mail: Maximum Recall

		0	1
Actual	0	160	20
	1	0	20

Gerçek Veri:

Spam Mail Sayısı: 20 Normal Mail Sayısı: 200

Precision =
$$20 / 20 + 20 = 0.5$$

Recall =
$$20 / 20 + 0 = 1$$

Tahmin:

Spam Mail Sayısı: 40 Normal Mail Sayısı: 160

Supervised Learning

Regression

Linear Regression

Linear Regression

Unsupervised Learning

Clustering

1st attempt

1st attempt

1st attempt

1st attempt

Total variation within the clusters

2nd attempt

2nd attempt

3rd attempt

Deciding on K

Deciding on K

Deciding on K

Unsupervised Learning

Dimension Reduction

Semi-Supervised Learning

SEMI-SUPERVISED SELF-TRAINING METHOD

Reinforcement Learning

MACHINE LEARNING

Three classes of learning problems

Supervised Learning

Data: (x, y)

x is an input data, y is a label (e.g. photo with label "cat")

Goal: Learn to map input to output

i.e. $x \rightarrow y$

An example: to classify

This is a cat

Unsupervised Learning

Data: x

x is data, there's no labels!

Goal: Learn an underlying structure of the data.

An example: Comparison

The two things are alike

Reinforcement Learning

Data: No data, Only state-action pairs (s, a).

Goal: Maximize future reward over many time steps.

An example: reward = joy

Interaction with the cat gives joy

Deep Learning

