Анализ таблиц сопряженности

Малов Сергей Васильевич

Санкт-Петербургский государственный электротехнический университет

12/19 декабря 2020 г.

План

- 1 Категориальные данные
- 2 Модели накопления статистической информации
- З Анализ сопряженности двух признаков
- 4 Анализ сопряженности трех признаков

Вероятностная модель эксперимента

Наблюдение - дискретный случайный вектор $T = (T_1, \ldots, T_r)$ с конечным числом возможных значений для каждой компоненты (признака)

- ullet Возможные значения T_j уровни j-го признака
- Величины T_1, \ldots, T_r могут быть качественными или ординальными
- Не умаляя общности считаем $T_j \in \{1,\ldots,d_j\},\ j=1,\ldots,r$
 - для ординальных признаков порядок уровней сохраняется
- совместное распределение задается вероятностями $p_{i_1...i_r} = \Pr(T_1 = i_1, ..., T_r = i_r)$
 - $p_{i_1...i_r} \ge 0, \forall i_1, \ldots, i_r$
 - $\bullet \quad \sum_{i_1...i_r} p_{i_1...i_r} = 1$
- Модель статистического эксперимента параметрическая
 - параметр распределения: $p_{i_1,...,i_r} \in \Theta$ $\Theta = \{p_{i_1,...,i_r}: p_{i_1,...,i_r} \ge 0, \sum_{i_1,...i_r} p_{i_1,...i_r} = 1\}$
 - размерность параметра: $i_1 \cdot \ldots \cdot i_r 1$

Получение и редукция данных

Исходные данные - выборка (T_1, \ldots, T_n) из распределения $T: T_s = (T_{s1}, \ldots, T_{sr}), s = 1, \ldots, n$

- Функция правдоподобия $L(T;p) = \prod_{i_1...i_r} p_{i_1...i_r}^{n_{i_1...i_r}}$
 - $n_{i_1...i_r} = \sum_{s=1}^n \mathbf{1}_{\{T_{s1}=i_1,...,T_{sr}=i_r\}}$ число элементов выборки имеющих соответствующие значения компонент
 - $\sum_{i_1,...,i_r} n_{i_1...i_r} = n$ размер выборки
 - ullet совокупность всех $n_{i_1...i_r}$ достаточная статистика
- Значения $n_{i_1...i_r}$ образуют таблицу сопряженности признаков массив $d_1 \times ... \times d_r$
- При фиксированном размере выборки $n_{i_1...i_r}$ имеют совместное мультиномиальное распределение с парметрами $p_{i_1...i_r}$ и n

План

- Категориальные данные
- 2 Модели накопления статистической информации
- З Анализ сопряженности двух признаков
- 4 Анализ сопряженности трех признаков

Пуассоновский поток событий

Пусть A_1, A_2, \ldots — последователность однородных событий, происходящих в случайные моменты времени T_1, T_2, \ldots

Определение: Поток событий называется простейшим (пуассоновским), если выполнены условия:

- стационарный: вероятность появления k событий в интервале [s,s+t) не зависит от $s\geq 0$
- ординарный: вероятность появления двух и более событий в малом интервале времени есть величина бесконечно малая по отношению к вероятности появления одного события в этом интервале
- без последействия: числа событий, появляющихся в непересекающиеся интервалы времени, являются независимыми случайными величинами

Процесс Пуассона: точечный процесс начинающийся из нуля со скачками единичной величины в моменты появления событий простейшего потока

• интенсивность — среднее число событий, появляющихся в единицу времени

Пуассоновский поток событий

Основные свойства:

- Число событий $\nu(s,t)$ простейшего потока с интенсивностью λ , появляющихся в инетрвале времени [s,s+t) имеет распределение Пуассона: $\nu(s,t) \sim \text{Pois}(\lambda t)$
- Время ожидания $\tau(s)$ ближайшего события простейшего потока с интенсивностью λ , начиная с момента времени s, имеет показательное распределение: $\tau(s) \sim \text{Exp}(\lambda)$
- Поток событий, получающийся слиянием двух (или более) независимых простейших потоков событий, будет простейшим с интенсивностью равной сумме интенсивностей исходных потоков событий

Мультиномиальный и пуассоновский подходы

Категориальный эксперимент

- результат эксперимента дискретная величина с конечным числом урговней $X \in \{1, \ldots, d\}$
- параметризация: $p_i = \mathbb{P}(X=i), i=1,\ldots,d;$ $(p_1,\ldots,p_d) \in \{(p_1,\ldots,p_d): p_i \geq 0, i=1,\ldots,d,\sum_i p_i=1\}$
- X_1, \ldots, X_n выборка из распределения $X, n \in \mathbb{N}$
- достаточная статистика: $(n_1, ..., n_d)$
 - $n_s = \sum_{i=1}^n \mathbf{1}_{\{X=s\}}$ число наблюдений, имеющих значение s, $s=1,\dots,d.$

Классический подход

- число экспериментов $n \in \mathbb{N}$ фиксированное значение
- $(n_1, \ldots, n_d) \in \text{Mult}(p_1, \ldots, p_d; n)$

Мультиномиальный и пуассоновский подходы

Пуассоновский подход

- наблюдения появляются как события пуассоновского потока A_1, A_2, \dots
- число наблюдений к моменту времени T случайная величина $n \sim \operatorname{Pois}(\lambda)$
- p_i вероятность того, что каждое наблдюдение в случае появления примет значение i
- достаточная статистика (n_1, \ldots, n_d)
 - $(n_1, ..., n_d)$ независимые величины
 - $n_i \sim \text{Pois}(\lambda p_i), i = 1, \ldots, d$

Связь пуассоновского и мультиномиального подходов

• условное распределение (n_1, \dots, n_d) при условии $\sum_{i=1}^d n_i = n$ — мультиномиальное $\operatorname{Mult}(p_1, \dots, p_d; n)$

Многомерный эксперимент, структуризация

Рассмотрим результат статистического эксперимента, включающего r признаков:

$$X = (X_1, \ldots, X_r) : X_i \in \{1, \ldots, d_i\}, i = 1, \ldots, r$$

• с точки зрения общей модели эксперимента

$$X \leftrightarrow Y \in \{1, \ldots, d_1 \cdot \ldots \cdot d_r\}$$

- для задания распределения можно использовать мультиномиальный или пуассоновский подходы
- достаточная статистика $\{n_{j_1...j_r}\}_{j_1...j_r}$
- для постановки задач используется многомерная структура параметра
 - большинство задач касается форм зависимости компонент совместного распределения ${m X}$
 - достаточную статистику удобно структурировать в массив сопряженности $\|n_{j_1...j_r}\|_{j_1...j_r}$
 - аналогично структурируется параметр распределения
 - в мультиномиальной модели $\|p_{j_1...j_r}\|_{j_1...j_r}$
 - ullet в пуассоновской модели $\|\lambda_{j_1...j_r}\|_{j_1...j_r}$: $\lambda_{j_1...j_r} = \lambda p_{j_1...j_r}$
 - многие задачи допускают формулировку в терминах условных распределений
 - переход от совместных к условным распределениям востребован при наличии контроля некоторых признаков

План

- Категориальные данные
- Модели накопления статистической информации
- 3 Анализ сопряженности двух признаков
- 4 Анализ сопряженности трех признаков

Двумерные таблицы сопряженности

(А) Таблица сопряженности (Б) Совместное распределение (В) Условное распределение

м) таолица сопряженності					
		X			
Y	1		d_2	Всего	
1	n_{11}		n_{1d_2}	n_{1+}	
i	n_{i1}		n_{id_2}	n_{i+}	
d_1	$ n_{d_{1}1} $		$n_{d_1 d_2}$	$ n_{d_{1}+} $	
Всего	n_{+1}		n_{+d_2}	n	

	X			Распр.	
Y	1		d_2	Y	
1	p_{11}		p_{1d_2}	p_{1+}	
i	p_{i1}		p_{id_2}	p_{i+}	
12.					
d_1	$ p_{d_{1}1} $		$p_{d_1 d_2}$	$p_{d_{1}^{+}}$	
Распр. •	p_{+1}		p_{+d_2}	1	
Λ					

/		-	r	
	X			
Y	1		d_2	
1	$p_{1 1}$		$p_{1 d_2}$	
i	$p_{i 1}$		$p_{i d_2}$	
d_1	$p_{d_1 1}$		$p_{d_1 d_2}$	
Сумма	1	1	1	

- Таблица сопряженности (A) матрица $d_1 \times d_2$
- Модель совместного распределения (Y, X)
 - элементы таблицы сопряженности имеют совместное мультиномиальное распределение с параметрами из таблицы (Б)
- \bullet Модель условного распределения Y при условии X (B)
 - считаем, что $p_{+j} > 0$, $j = 1, \ldots, d_2$ и $p_{i+} > 0$, $i = 1, \ldots, d_1$
 - $p_{i|j} = p_{ij}/p_{+j}$, $i = 1, \ldots, d_1, j = 1, \ldots, d_2$
 - $(n_{1j},\ldots,n_{d_1j}) \in \mathrm{Mult}(p_{1|j},\ldots,p_{d_1|j};n_{+j})$ при всех $j=1,\ldots,d_2$
- Гипотеза независимости признаков $H_0: p_{ij} = p_{i+}p_{+j} \ \forall (i,j)$ в модели совместного распределения соответствует гипотезе однородности $H_0^*: p_{i|j} = p_{i|1} \ \forall (i,j)$ в модели условного распределения

Классические методы анализа

Проверка гипотезы независимости признаков:

- ullet критерий χ^2
 - статистика критерия: $X^2 = \sum_{i=1}^2 \sum_{j=1}^2 \frac{(n_{ij} n_{i+} n_{+j}/n)^2}{n_{i+} n_{+j}/n}$
 - асимптотическое распределение: $\chi^2_{(d_1-1)(d_2-1)}$
 - доверительная область: $X^2 \le x_{\alpha}, \ x_{\alpha} : K_{(d_1-1)(d_2-1)}(x_{\alpha}) = 1 \alpha$
 - P-значение: $pv = 1 K_{(d_1-1)(d_2-1)}(X^2)$
- критерий отношения правдоподобия
 - статистика критерия: $G^2 = 2\sum_{i=1}^2 \sum_{j=1}^2 n_{ij} \log(n_{ij}n/(n_{i+}n_{+j}))$
 - асимптотическое распределение: $\chi^2_{(d_1-1)(d_2-1)}$
 - доверительная область: $X^2 \le x_\alpha, \ x_\alpha : K_{(d_1-1)(d_2-1)}(x_\alpha) = 1 \alpha$
 - P-значение: $pv = 1 K_{(d_1-1)(d_2-1)}(G^2)$
- критерий на линейность зависимости (Trend test)
 - статистика критерия: $M^2 = (n-1)r^2 (r^2 коэффициент корреляции Пирсона)$
 - ullet асимптотическое распределение: χ_1^2
 - доверительная область: $M^2 \le x_{\alpha}, x_{\alpha} : K_1(x_{\alpha}) = 1 \alpha$
 - P-значение: $pv = 1 K_1(G^2)$

Модель логистической регрессии

- применима для анализа таблиц сопряженности признаков (Y,X) размера $2 \times d$
- ullet для удобства используем уровни признака $Y \in \{0,1\}$
- ullet введем условные вероятности $\pi_i = p_{1|j}, \ j = 1, \dots, d$
- ullet допускается контроль признака X (независимая переменная)
- условные распределения Бернулли
- обобщенная линейная модель

$$logit(\pi_i) = \alpha + \beta_i, i = 1, \dots, d$$

- правая часть однофакторный дисперсионный анализ
- α взвешенное среднее
- β_i главные эффекты: $\beta_* = 0$
- ullet гипотеза независимости $H_0:eta_1=\ldots=eta_d=0$
- $\beta_i \beta_j$ логарифм частного отношения шансов

Проверка гипотезы независимости $H_0: \beta_1 = \ldots = \beta_d = 0$

- Критерий типа Вальда
 - ullet $H_0: m{\psi} = 0, \ m{\psi} = (\psi_1, \dots, \psi_{d-1})'$ линейно независимые сравнения
 - например, $\psi_i = \beta_i$, если веса $v_i < 1, i = 1, ..., d-1$
 - статистика критерия: $W = \hat{m{\psi}}' \hat{\Gamma}_{\psi}^{-1} \hat{m{\psi}}$
 - ullet $\hat{\Gamma}_{ub}^{-1}$ оценка матрицы ковариации сравнений $oldsymbol{\psi}$
 - ullet значение W не зависит от выбора сравнений
 - ullet предельное распределение: χ^2_{d-1}
 - P-значение: $pv=1-K_{d-1}(W)$
- Критерий отношения правдоподобия
 - статистика критерия: $G = 2(LL_S LL_A)$ (deviance)
 - ullet LL_S максимум логарифма правдоподобия в общей модели
 - LL_A максимум логарифма правдоподобия в аддитивной модели
 - ullet предельное распределение: χ^2_{d-1}
 - P-значение: $pv=1-K_{d-1}(G)$
- ullet в отличие от классической модели W
 otin G в общем случае

Лог-линейная модель

- Применима для анализа таблиц сопряженности признаков (Y,X) размера $d_1 \times d_2$ (общего вида)
- Параметры распределения $\lambda_{ij} = \lambda p_{ij}, i = 1, ..., d_1, j = 1, ..., d_2$
- Пуассоновская схема
 - n_{ij} независимы
 - n_{ij} имеют пуассоновское распределение $\mathrm{Pois}(\lambda_{ij})$
- Обобщенная линейная модель

$$\log(\lambda_{ij}) = \alpha + \beta_i^Y + \beta_j^X + \beta_{ij}^{YX},$$

- правая часть двуфакторный дисперсионный анализ
- α взвешенное среднее
- $\beta_i^Y,\,\beta_j^X$ главные эффекты: β_*^Y = 0, β_*^X = 0
- β^{YX} взаимодействия: $\beta^{YX}_{i*} = 0$, $\beta^{YX}_{*i} = 0$
- ullet Гипотеза независимости $H_0:eta_{ij}^{YX}=0, i=1,\ldots,d_1, j=1,\ldots,d_2$
 - отсутствие взаимодействий
 - не зависит от выбора весов
 - соответствующая обобщенная линейная модель

$$\log(\lambda_{ij}) = \alpha + \beta_i^Y + \beta_j^X,$$

• β_{ij}^{YX} – логарифмы частных отношений шансов

Проверка гипотезы независимости

$$H_0: \beta_{ij}^{YX} = 0, i = 1, \dots, d_1, j = 1, \dots, d_2$$

- Критерий типа Вальда
 - H_0 может быть записана с помощью $(d_1-1)(d_2-1)$ линейно-независимых сравнений $\psi=(\psi_1,\ldots,\psi_{(d_1-1)(d_2-1)})'$
 - статистика критерия: $W = \hat{m{\psi}}' \hat{\Gamma}_{\psi}^{-1} \hat{m{\psi}}$
 - ullet значение W не зависит от выбора сравнений
 - предельное распределение: $\chi^2_{(d_1-1)(d_2-1)}$
 - P-значение: $pv=1-K_{(d_1-1)(d_2-1)}(W)$
- Критерий отношения правдоподобия
 - статистика критерия: $G = 2(LL_S LL_A)$ (deviance)
 - LL_S максимум логарифма правдоподобия в общей модели
 - LL_A максимум логарифма правдоподобия в аддитивной модели
 - предельное распределение: $\chi^2_{(d_1-1)(d_2-1)}$
 - P-значение: $pv=1-K_{(d_1-1)(d_2-1)}(\widehat{G})$
- ullet в отличие от классической модели $W \neq G$ в общем случае

План

- Категориальные данные
- Модели накопления статистической информации
- З Анализ сопряженности двух признаков
- 4 Анализ сопряженности трех признаков

Появление дополнительного признака

Парадокс Симпсона

• Статистика осложнений после операции

S							
	Общая		Начальная		Запущенная		
Больница	A	B	A	B	A	B	
С осложнениями	66	17	7	8	59	9	
Без осложнений	2034	783	593	592	1441	191	
Всего	2100	800	600	600	1500	200	
Осложнений (%)	3.14%	2.13%	1.17%	1.33%	3.93%	4.50%	

- Вероятности осложнений:
 - общая статистика $p_A = 0.031 > p_B = 0.021$ (приоритет B)
 - начальная стадия $p_A = 0.012 < p_B = 0.013$ (приоритет A)
 - запущенная болезнь $p_A = 0.039 < p_B = 0.045$ (приоритет A)
- ullet Согласно общей статистике лучше лечиться в больнице A
- Углубленный анализ показывает, что в больнице B статистика осложнений благоприятнее, как случае начальной стадии болзни, так и в случае запущенной болезни

Обозначим признаки X, Y, Z:

• $Y \in \{1, \ldots, d_1\}, X \in \{1, \ldots, d_2\}, Z \in \{1, \ldots, d_3\}$

Модели сопряженности трех признаков

- Все признаки равнозначны:
 - совместное распределение (Y, X, Z)
- Два наблюдаемых и один контролирующий признак:
 - ullet Z независимая переменная; Y и X зависимые переменные
 - ullet условное распределение вектора (Y,X) при условии Z
- Один наблюдаемый и два контролирующих признака:
 - X,Z независимые переменные; Y зависимая переменная
 - ullet условное распределение вектора Y при условии X,Z

Таблица сопряженности c c 11 d-1

(B)	Совместное распредел
	$s = 1, \ldots, d_3$

(В) Условное распределение $s \in \{1, \dots, d_3\}$

$s \in \{1, \dots, u_3\}$						
	X					
Y	1		d_2	Всего		
1	n_{11s}		n_{1d_2s}	n_{1+s}		
i	n_{i1s}		n_{id_2s}	n_{i+s}		
d_1	$n_{d_{1}1s}$		$n_{d_1 d_2 s}$	n_{d_1+s}		
Всего	n_{+1}		n_{+d_2}	n_{++s}		

- Распр. (Y, Z)Y $|\dots| p_{1d_2s}$ p_{1+s} p_{id_2s} p_{i+s} d_1 $|p_{d_1 1s}| \dots |p_{d_1 d_2 s}|$ p_{d_1+s} Распр. $p_{+1s} | \dots | p_{+d_2s}$ p_{++s} (X,Z)
- Распр. Y|ZY $\overline{p_{11|s}} \dots \overline{p_1}_{d_2|s}$ $p_{1+|s|}$ $p_{id_2|s}$ $p_{i+|s|}$ d_1 $p_{d_1+|s|}$ $|p_{d_1 1|s}| \dots |p_{d_1 d_2|s}|$ Распр. 1 $p_{+1|s} | \dots | p_{+d_2|s}$ X|Z
- Массив сопряженности имеет размерность $d_1 \times d_2 \times d_3$
 - сечение массива сопряженности (А) таблица сопряженности
- Модель совместного распределения (Y, X)
 - элементы массива сопряженности имеют совместное мультиномиальное распределение с параметрами из (Б)
- Модель условного распределения У при условии Х (В)
 - считаем, что $p_{i++} > 0$, $i = 1, \ldots, d_1, p_{+j+} > 0$, $j = 1, \ldots, d_2$ и $p_{++s} > 0, \ s = 1, \dots, d_3$
 - $p_{ij|s} = p_{ijs}/p_{++s}$, $i = 1, ..., d_1$, $j = 1, ..., d_2$, $s = 1, ..., d_3$

Гипотезы:

- ullet $H_{CI(Z)}$ условная независимость (Y,X) при условии Z
 - в модели условного распределения (Y,X) при условии Z $H_{CI(Z)}:p_{ij|s}=p_{i+|s}p_{+j|s},\ i=1,\ldots,d_1,j=1,\ldots,d_2,s=1,\ldots,d_3$
 - в модели условного распределения Y при условии X,Z $H_{CI(Z)}: p_{i|js} = p_{i|j1}, \ i=1,\ldots,d_1, j=1,\ldots,d_2, s=1,\ldots,d_3$ $p_{i|js} = p_{ijs}/p_{+js}, \ i=1,\ldots,d_1, j=1,\ldots,d_2, s=1,\ldots,d_3$
- $H_{I(Z)}$ независимость (Y,X) и Z
 - в модели условного распределения (Y,X) при условии Z $H_{I(Z)}:p_{ij|s}=p_{ij|1},\ i=1,\ldots,d_1,j=1,\ldots,d_2,s=1,\ldots,d_3$
 - в модели совместного распределения (Y,X,Z) $H_{I(Z)}:p_{ijs}=p_{ij+}p_{++s},\ i=1,\ldots,d_1,j=1,\ldots,d_2,s=1,\ldots,d_3$
- H_I независимость (Y, X, Z) в совокупности
 - в модели совместного распределения (Y,X,Z) $H_I:p_{ijs}=p_{i++}p_{+j+}p_{++s},\ i=1,\ldots,d_1,j=1,\ldots,d_2,s=1,\ldots,d_3$
 - $H_I \Leftrightarrow H_{CI(Z)} \cap H_{CI(X)} \cap H_{CI(Y)} \Leftrightarrow H_{I(Z)} \cap H_{I(X)} \cap H_{I(Y)}$

Проверка гипотезы независимости H_I

Критерий χ^2

- статистика критерия: $X^2 = \sum_{i,j,s} \frac{(n_{ijs} \hat{\mu}_{ijs})^2}{\hat{\mu}_{ijs}}$
 - $\hat{\mu}_{ijs} = n\hat{p}_{i++}\hat{p}_{+j+}\hat{p}_{++s} = n_{i++}n_{+j+}n_{++s}/n^2$
- ullet асимптотическое распределение: χ_q^2
 - $q = d_1 d_2 d_3 d_1 d_2 d_3 + 2$
- доверительная область: $X^2 \le x_{\alpha}, \ x_{\alpha} : K_q(x_{\alpha}) = 1 \alpha$
- *P*-значение: $pv = 1 K_q(X^2)$

Критерий отношения правдоподобия

- статистика критерия: $G^2 = 2\sum_{ijs} n_{ijs} \log(n_{ijs}/\hat{\mu}_{ijs})$
- ullet асимптотическое распределение: χ_q^2
- доверительная область: $X^2 \le x_{\alpha}, \ x_{\alpha} : K_q(x_{\alpha}) = 1 \alpha$
- P-значение: $pv = 1 K_q(G^2)$

Модель логистической регрессии

- ullet применима для ограниченного круга задач сопряженности (Y,X,Z)
 - $Y \in \{0,1\}$ бинарный признак
 - ullet используется условная модель распределения Y при условии (X,Z)
 - ullet Y наблюдаемый признак; X,Z контролируемые признаки
- ullet по сути сводится к анализу зависимости Y от X и Z.
- обобщенная линейная модель

$$logit(\pi_{ij}) = \alpha + \beta_i^X + \beta_j^Z + \beta_{ij}^{XZ}, i = 1, ..., d_1, j = 1, ..., d_2$$

- $\pi_{ij} = p_{1|ij} = p_{1ij}/p_{1++}$ условные вероятности
- правая часть двухфакторный дисперсионный анализ
- α взвешенное среднее
- β_i^X ; β_j^Z главные эффекты: β_*^X = 0, β_*^Z = 0
- β_{ij} взаимодействия: β_{i*} = 0, β_{*j} = 0
- ullet гипотеза аддитивности влияния факторов (X,Z) на результат Y

$$H_{A0}: \beta_{ij}^{XZ} = 0 \quad \forall \ i, j$$

ullet гипотеза независимости Y от (X,Z)

$$H_{I0}: \beta_i^X = 0, \beta_j^Y = 0, \beta_{ij}^{XZ} = 0 \quad \forall i, j$$

Лог-линейная модель

- Применима для анализа сопряженнотси признаков (Y, X, Z) общего вида
 - $X \in \{1, \ldots, d_1\}, Y \in \{1, \ldots, d_2\}, Z \in \{1, \ldots, d_3\}$
- Параметры распределения $\lambda_{ijs} = \lambda p_{ijs}, i = 1, \dots, d_1,$ $j = 1, \dots, d_2, s = 1, \dots, d_3$
- Пуассоновская схема (совместное распределение)
 - n_{ijs} независимы
 - n_{ijs} имеют пуассоновское распределение $\operatorname{Pois}(\lambda_{ijs})$
- Обобщенная линейная модель

$$\log(\lambda_{ij}) = \alpha + \beta_i^Y + \beta_j^X + \beta_j^Z + \beta_{ij}^{YX} + \beta_{is}^{YZ} + \beta_{js}^{XZ} + \beta_{ijs}^{YXZ},$$

- правая часть трехфакторный дисперсионный анализ
- α взвешенное среднее
- β_i^Y , β_j^X , β_s^Z главные эффекты: $\beta_*^Y = 0$, $\beta_*^X = 0$, $\beta_*^Z = 0$
- β_{ij}^{YX} , β_{is}^{YZ} , β_{js}^{XZ} взаимодействия: β_{ij*}^{YX} = 0, β_{i*s}^{YZ} = 0, β_{*js}^{XZ} = 0
- β_{ijs}^{YXZ} взаимодействия 3-х факторов: $\beta_{ij*}^{YXZ}=\beta_{i*s}^{YXZ}=\beta_{*js}^{YXZ}=0$

12/19 декабря 2020 г.

Обобщенная линейная модель

$$\log(\lambda_{ij}) = \alpha + \beta_i^Y + \beta_j^X + \beta_s^Z + \beta_{ij}^{YX} + \beta_{is}^{YZ} + \beta_{js}^{XZ} + \beta_{ijs}^{YXZ},$$

Основные гипотезы

• Однородность зависимостей

$$H_{HA}: \beta_{ijs}^{YXZ} = 0, \quad \forall i, j, s$$

- однородность отношений шансов в случае трех бинарных признаков
- однородность зависимостей не зависит от выбора контролируемого фактора
- ullet Условная независимость (Y,X) при условии Z

$$H_{CI}: \beta_{ij}^{YX} = 0, \beta_{ijs}^{YXZ} = 0, \quad \forall i, j, s$$

• Независимость (Y, X, Z)

$$H_I: \beta_{ij}^{YX} = 0, \beta_{is}^{YZ} = 0, \beta_{js}^{XZ} = 0, \beta_{ijs}^{YXZ} = 0, \quad \forall i, j, s$$

• аддитивная модель

Общие предположения

Однородность зависимостей

Условная независимость

Независимость

Ζ