SVM Soft Margin Classification

Nipun Batra June 25, 2020

IIT Gandhinagar

"SLIGHTLY" NON - SEPARABLE DATE

• Can we learn SVM for "slightly" non-separable data without projecting to a higher space?

- Can we learn SVM for "slightly" non-separable data without projecting to a higher space?
- Introduce some "slack" (ξ_i) or loss or penalty for samples allow some samples to be misclassified

" CLICHTIX" NON- SCPARABLE DATE

$$\frac{Z \circ NE 2}{Y_i^* \left(\overrightarrow{\omega}, \overrightarrow{z_i} + b \right) = 1}$$

$$Loss_i = 0$$

$$(Ay_i = 0)$$

y; (w. xi+b) <1 LOSS; ≠0 (0<4;<1) POINT CORRECTLY (BUT WRONG SIDE OF MARGIN

ZONE 4 y: (w. xi+b) <1 INCORRECTLY CLASSI FIED Loss; × 0

ZONE 4 y: (w. xi+b) <1 INCORRECTLY CLASSI FIED み でったわニトル Loss; × 0

Change Objective

$$\min \frac{1}{2} ||\bar{w}||^2 + C \sum_{i=1}^n \xi_i$$

s.t. $y_i(\bar{w}\bar{x}_i + b) \ge 1 - \xi_i$

Change Objective

$$\min \frac{1}{2} ||\bar{w}||^2 + C \sum_{i=1}^n \xi_i$$

s.t. $y_i(\bar{w}\bar{x}_i + b) \ge 1 - \xi_i$

In Dual:

Minimize
$$\sum_{i=1}^{n} \alpha_i - \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \bar{x}_i \bar{x}_j$$

s.t.

$$0 \le \alpha_i \le C \quad \& \quad \sum_{i=1}^n \alpha_i y_i = 0$$

BIAS - VARIANCE TRADE-OFT

BIAS - VARIANCE TRADE - OFF

LOW PENALTY FOR NIGLATION
HIGH TRAIN ERROR
HIGH GIAS

BIAS- VARIANCE TRADE-OFF

LOW PENALTY FOR VICENTE
HIGH TRAIN ERROR
HIGH BIAS
BIA MARGIN

HIGH PENALTY HIGH VARIANCE SMALL MARGI

Bias Variance Trade-off for Soft-Margin SVM

Low $C \implies$ Higher train error (higher bias)

High $C \implies Very$ sensitive to datasete (high variance)

```
If C 
ightarrow 0
Objective 
ightarrow \min \frac{1}{2} ||\bar{w}||^2

ightharpoonup Choose large margin (without worrying for \xi_is)
```

Recall: Margin =
$$\frac{2}{||\bar{w}||}$$

If $C \to \infty$ (or very large) Objective $\to \min C \sum \xi_i$ or choose W, b, s.t. ξ_i is small!

Q) What is the equivalent of hard margin?

$$a\ C\to 0$$

b
$$C \to \infty$$

Q) What is the equivalent of hard margin?

a
$$C \rightarrow 0$$

b
$$C \to \infty$$
 \Longrightarrow No violations!!

Types of support vectors:

- Zone 2: $y_i(\bar{w}\bar{x}_i + b) = 1$
- Zone 3: $0 < \xi_i < 1$ (correctly classified)
- Zone 4: $\xi_i > 1$ (Misclassified)

∴ As C increases, # support vectors decreases

Notebook: SVM-soft-margin

SVM Formulation in the Loss + Penalty Form

Objective:

$$\min \frac{1}{2} ||\bar{w}||^2 + C \sum_{i=1}^{N} \xi_i$$

Now:

$$y_i(\bar{w}\bar{x}_i + b) \ge 1 - \xi_i$$

$$\xi_i \ge 1 - y_i(\bar{w}\bar{x}_i + b)$$

But $\xi_i \geq 0$

$$\therefore \xi_i = \max \left[0, 1 - y_i(\bar{w}\bar{x}_i + b)\right]$$

SVM Formulation in the Loss + Penalty Form

.: Objective is:

$$\min C \sum_{i=1}^{N} \xi_i + \frac{1}{2} ||\bar{w}||^2$$

$$\implies \min C \sum_{i=1}^{N} \max \left[0, 1 - y_i (\bar{w}\bar{x}_i + b) \right] + \frac{1}{2} ||\bar{w}||^2$$

$$\implies \min \sum_{i=1}^{N} \max \left[0, 1 - y_i (\bar{w}\bar{x}_i + b) \right] + \underbrace{\frac{1}{2C} ||\bar{w}||^2}_{\text{Regularisation}}$$

HINGE LOSS

Loss Function for Sum (Hinge Loss)

Loss function is
$$\sum_{i=1}^{N} \max [0, 1 - y_i(\bar{w}\bar{x}_i + b)]$$

• Case I $y_i(\bar{w}\bar{x}_i + b) = 1$ Lies on Margin: Loss_i = 0

Loss Function for Sum (Hinge Loss)

Loss function is
$$\sum_{i=1}^{N} \max [0, 1 - y_i(\bar{w}\bar{x}_i + b)]$$

- Case I $y_i(\bar{w}\bar{x}_i + b) = 1$ Lies on Margin: Loss_i = 0
- Case II $y_i(\bar{w}\bar{x}_i + b) > 1$ $Loss_i = 0$

Loss Function for Sum (Hinge Loss)

Loss function is
$$\sum_{i=1}^{N} \max [0, 1 - y_i(\bar{w}\bar{x}_i + b)]$$

- Case I $y_i(\bar{w}\bar{x}_i + b) = 1$ Lies on Margin: Loss_i = 0
- Case II $y_i(\bar{w}\bar{x}_i + b) > 1$ $Loss_i = 0$
- Case III $y_i(\bar{w}\bar{x}_i + b) < 1$ $Loss_i \neq 0$

Hinge Loss Continued

Q) Is hinge loss convex and differentiable?

Convex: ✓

Differentiable: X

Subgradient: ✓

SVM Loss is Convex

Hinge Loss
$$\sum (\max[0, (1-y_i(\bar{w}x_i+b))]$$
 is convex

Penalty $\frac{1}{2}||\bar{w}||^2$ is convex

∴ SVM loss is convex