# Experimento N° 856

J. Andres Castillo

## 1 Analisis de tinción ORO en células HEPG2 con espectrofotómetro

### 1.1 Library

```
library(tidyverse)
library(ggplot2)
library(emmeans)
library("dplyr")
```

#### 1.2 Data

```
# Create a table
datos <- data.frame(</pre>
  condicion = rep(c("OmM", "0.5mM", "1mM", "Blanco"), each = 6),
 muestra = rep(c("Muestra_1", "Muestra_2", "Muestra_3", "Muestra_4", "Muestra_5", "Muestra_6")
  replica = rep(1:3, times = 8),
  absorbancia = c(0.183, 0.18, 0.178,
                  0.177,0.171,0.172,
                  0.311, 0.322, 0.314,
                  0.344, 0.327, 0.325,
                  0.363, 0.385, 0.372,
                  0.364, 0.406, 0.393,
                  0.045,0.049,0.048,
                  0.047,0.046, 0.044)
# Imprimir resultados
knitr::kable(datos,
             col.names = c("Condicion", "Muestra", "Replica", "Absorbancia"),
             align = c("c", "c", "c", "c"),
             escape = FALSE)
```

| Condicion | Muestra   | Replica | Absorbancia |  |
|-----------|-----------|---------|-------------|--|
| 0mM       | Muestra_1 | 1       | 0.183       |  |
| 0m $M$    | Muestra_1 | 2       | 0.180       |  |
| 0m $M$    | Muestra_1 | 3       | 0.178       |  |
| 0m $M$    | Muestra_2 | 1       | 0.177       |  |
| 0m $M$    | Muestra_2 | 2       | 0.171       |  |
| 0m $M$    | Muestra_2 | 3       | 0.172       |  |
| 0.5mM     | Muestra_3 | 1       | 0.311       |  |

| Condicion | Muestra   | Replica | Absorbancia |
|-----------|-----------|---------|-------------|
| 0.5mM     | Muestra_3 | 2       | 0.322       |
| 0.5mM     | Muestra_3 | 3       | 0.314       |
| 0.5mM     | Muestra_4 | 1       | 0.344       |
| 0.5mM     | Muestra_4 | 2       | 0.327       |
| 0.5mM     | Muestra_4 | 3       | 0.325       |
| 1mM       | Muestra_5 | 1       | 0.363       |
| 1mM       | Muestra_5 | 2       | 0.385       |
| 1mM       | Muestra_5 | 3       | 0.372       |
| 1mM       | Muestra_6 | 1       | 0.364       |
| 1mM       | Muestra_6 | 2       | 0.406       |
| 1mM       | Muestra_6 | 3       | 0.393       |
| Blanco    | BLANCO    | 1       | 0.045       |
| Blanco    | BLANCO    | 2       | 0.049       |
| Blanco    | BLANCO    | 3       | 0.048       |
| Blanco    | BLANCO    | 1       | 0.047       |
| Blanco    | BLANCO    | 2       | 0.046       |
| Blanco    | BLANCO    | 3       | 0.044       |

```
# Guardar resultados
# write.csv(datos,"/home/joshoacr13/Documentos/TFM/mirna_analysis/input/datos_ORO.csv")
```

#### 1.3 Análisis Estadistico

### 1.3.1 Calcular la media y desviación estándar por condición

```
        Condicion
        Media Absorbancia
        Desviación Estandar

        0.5mM
        0.3238333
        0.0116862

        0mM
        0.1768333
        0.0046224

        1mM
        0.3805000
        0.0171901

        Blanco
        0.0465000
        0.0018708
```

```
ggplot(datos, aes(x = condicion, y = absorbancia, color = muestra)) +
  geom_point(position = position_jitter(width = 0.2, height = 0), size = 3, alpha = 0.6) +
  stat_summary(fun = mean, geom = "line", aes(group = muestra), size = 1) +
  stat_summary(fun.data = mean_cl_normal, geom = "errorbar", width = 0.2) +
```

```
theme_minimal() +
labs(
  title = "Absorbancia por condición y muestra",
  x = "Condición",
  y = "Absorbancia"
)
```

## Absorbancia por condición y muestra



#### Absorbancia por concentración:

- 0 mM (sin solución experimental): Tiene una absorbancia mayor que el blanco (0.177 vs. 0.047), lo que sugiere que hay un efecto residual en la medición. Esto podría ser causado por ruido instrumental o contaminación leve en la muestra. Esta condición actúa como un punto de referencia para las otras concentraciones.
- 0.5 mM y 1 mM: Se observa un incremento en la absorbancia con el aumento de concentración (de 0.324 a 0.381), lo que sugiere una correlación positiva entre la concentración y la absorbancia en este rango.
- Blanco: Como antes, la absorbancia del blanco es muy baja.

#### Variabilidad:

- Las desviaciones estándar siguen siendo bajas, lo que confirma que las mediciones son consistentes.
- El valor más variable ocurre en 1 mM (0.01719), posiblemente por un mayor efecto experimental o instrumental en esta condición.

#### 1.3.2 Comparaciones estadísticas: ANOVA

```
anova <- aov(absorbancia ~ condicion * muestra, data = datos)
summary(anova)</pre>
```

```
Residuals 17 0.0015 0.00009
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Los resultados no indican:

*Condición:* - Valor de Pr(>F): <2e-16, lo cual es extremadamente significativo (\*\*\*). Esto indica que el factor condición tiene un efecto muy fuerte sobre la variable dependiente. Hay diferencias significativas entre los niveles de la condición.

*Muestra:* - Valor de Pr(>F): 0.0624, que está cerca del umbral de significancia (0.05). Esto sugiere que el efecto de la muestra podría ser marginalmente significativo, pero no lo suficiente como para ser concluyente bajo un nivel de significancia del 5%.

Residuals: - Representan la variación no explicada por los factores. La varianza residual es muy pequeña, lo que respalda que la mayor parte de la variación en los datos es explicada por los factores considerados, especialmente por condición.

## 1.4 La Ley de Lambert-Beer

 $A = \varepsilon \cdot c \cdot l$ 

#### Donde:

- (A): Absorbancia medida (sin unidad).
- ( $\varepsilon$ ): Coeficiente de absorción molar ( $Lmol(^{-1})cm(^{-1})$ ), una constante que depende de la sustancia y la longitud de onda.
- (c): Concentración de la sustancia en la muestra  $(mol L^{-1})$ .
- (l): Longitud del trayecto óptico o de la celda (cm), típicamente es 1 cm.

Se desea determinar la a concentración de oro en en las células después de la tinción, usando la absorbancia a 450 nm y, usando el coeficiente ( $\varepsilon$ ), determinar cuánto oro está presente. Ademas, esta esot nos permitira medir la absorbancia para indicarnos qué tan eficiente fue la tinción.

#### 1.4.0.1 Fórmula para concentración:

```
[c = \frac{A}{\varepsilon J}]
```

```
# Parámetros experimentales
epsilon <- 18000 # Coeficiente de absorción molar en L·mol^-1⋅cm^-1 (ajusta según tu compu
                 # Longitud del trayecto óptico en cm (usualmente 1 cm)
M < -408.5 \# g/mol
# Calcular concentraciones usando la Ley de Lambert-Beer
datos <- datos %>%
 mutate(concentracion_mol_L = absorbancia / (epsilon * 1)) %>%
 mutate(concentracion_ug_mL = concentracion_mol_L * M * (10**6))
# Resumir las concentraciones promedio por condición y muestra
resumen concentraciones <- datos %>%
  group_by(condicion, muestra) %>%
  summarise(
    concentracion_media = mean(concentracion_ug_mL),
    concentracion sd = sd(concentracion ug mL),
    n = n()
    .groups = 'drop'
```

| condicion | muestra   | concentracion_media | concentracion_sd | n |
|-----------|-----------|---------------------|------------------|---|
| 0.5mM     | Muestra_3 | 7163.880            | 129.04607        | 3 |
| 0.5mM     | Muestra_4 | 7534.556            | 236.93696        | 3 |
| 0m $M$    | Muestra_1 | 4092.565            | 57.11310         | 3 |
| 0m $M$    | Muestra_2 | 3933.704            | 72.95243         | 3 |
| 1mM       | Muestra_5 | 8472.593            | 251.01054        | 3 |
| 1mM       | Muestra_6 | 8797.880            | 487.97454        | 3 |
| Blanco    | BLANCO    | 1055.292            | 42.45742         | 6 |
|           |           |                     |                  |   |

- 1. Condiciones y concentraciones medias: Las concentraciones medias aumentan conforme incrementa la concentración nominal:
- Blanco tiene la concentración más baja (1055.292).
- 0 mM tiene valores cercanos a ~4000.
- 0.5 mM tiene valores en el rango de ~7000.
- 1 mM tiene los valores más altos (~8500 a ~8800).
- 2. Desviaciones estándar: Las desviaciones estándar son pequeñas en relación con los valores medios, lo que sugiere mediciones consistentes. Sin embargo, las muestras asociadas a 1 mM muestran mayor dispersión, especialmente Muestra\_6 con una desviación de 488.
- 3. Réplicas (n): Todas las condiciones tienen 3 réplicas excepto el Blanco, que tiene 6, lo que proporciona más confianza en su estimación.

```
# Gráfico de concentración
ggplot(datos, aes(x = condicion, y = concentracion_ug_mL, color = muestra)) +
   geom_point() +
   labs(title = "Concentración por condición (Ley de Lambert-Beer)", x = "Condición", y = "Condició
```

# Concentración por condición (Ley de Lambert-Beer)

