Lecture 11

Ashis Kumar Chanda

chanda@rowan.edu

Our Status in AI Course

- Part I: Search and Planning
- Part II: Probabilistic Reasoning
- We are now on Part III: Machine Learning
 - o Classification
 - o Natural language processing (NLP)
 - Computer vision
 - o ... lots more!

Background

- What is Machine learning (ML)?
 - o The study of computer algorithms that can improve automatically through **experience** and using **data**.
- Why and when do we need to apply machine learning?
 - o Ex: Automatic coffee cup Filling Machines
 - The size of coffee cup is fixed.
 - o Ex: Automatic car driving system
 - Making brake system to stop car after observing 'yellow' sign.

ML Examples

Image recognition

- Label an x-ray as cancerous or not
- Assign a name to a photographed face
- Recognize handwriting

Predictive analytics

- Weather: sunny or rainy day
- Stock market price
- Predicting whether a transaction is fraudulent or not

Sentiment analysis

- Understanding rating of movie review
- Identifying disaster type tweets
- Identifying patient's severity

Extraction

- Parts of speech extraction from text
- Generate a model to predict vocal cord disorders
- Develop methods to prevent, diagnose, and treat the disorders

ML Examples

Let's see some real examples https://imagerecognize.com/

ML Examples: Finding entity

HISTORY: Patient is a 21-year-old white woman who presented with a chief complaint of chest pain SYMPTON (2).
She had been previously diagnosed with hyperthyroidism DISEASE (X).
Upon admission, she had complaints of constant left sided chest pain SYMPTOM (S) that radiated to her left arm.
She had been experiencing palpitations SYMPTOM (8) and tachycardia SYMPTOM (8).
She had no diaphoresis symptom 🔞 , no nausea symptom 🔞 , vomiting symptom 🔞 , or dyspnea symptom 🔞 .
She had a significant TSH of 0.004 and a free T4 of 19.3.
Normal ranges for TSH and free T4 are 0.5-4.7 µIU/mL and 0.8-1.8 ng/dL, respectively.
Her symptoms started four months into her pregnancy as tremors SYMPTOM 🔞 , hot flashes SYMPTOM 🔞 , agitation SYMPTOM 🔞 , and emotional
inconsistency SYMPTOM (2).
She gained 16 pounds during her pregnancy and has lost 80 pounds afterwards.
She complained of sweating SYMPTOM (S), but has experienced no diarrhea SYMPTOM (S) and no change in appetite.
She was given isosorbide mononitrate CHEMICAL (S) and IV steroids in the ER.
FAMILY HISTORY: Diabetes, Hypertension, Father had a Coronary Artery Bypass Graph (CABG) at age 34.
MEDICATIONS: Citalogram CHEMICAL (3) 10mg DOSAGE (3) once daily for depression DISEASE (3); low dose tramadol PRN pain.
PHYSICAL EXAMINATION: Temperature 98.4; Pulse 123; Respiratory Rate 16; Blood Pressure 143/74.HEENT: She has exophthalmos and could not close her lids
completely.Cardiovascular: tachycardia.Neurologic: She had mild hyperreflexiveness.
LAB: All labs within normal limits with the exception of Sodium 133, Creatinine 0.2, TSH 0.004, Free T4 19.3 EKG showed sinus tachycardia with a rate of 122.
Urine pregnancy test was negative.
HOSPITAL COURSE: After admission, she was given propranolol CHEMICAL (8) at 40mg DOSAGE (8) daily and continued on telemetry.
On the 2nd day of treatment, the patient still complained of chest pain SYMPTOM (8).
EKG again showed tachycardia SYMPTOM (S).
Propranolol CHEMICAL (2) was increased from 40mg DOSAGE (3) daily to 60mg DOSAGE (3) twice daily.
A I-123 thursid untake scan demonstrated an increased thursid untake of 90% at 4 hours and 94% at 24 hours

AK Chanda

Data

o There are two types of data − 1. Structured, and 2. Un-structured data.

Admission Date: [**2187-12-26**] Discharge Date: [**2187-12-31**] Date of Birth: [**2125-11-20**] Sex: M Service: CARDIOTHORACIC Allergies: No Known Allergies / Adverse Drug Reactions Attending:[**First Name3 (LF) 1505**] Chief Complaint: Chest pain Major Surgical or Invasive Procedure: [**2187-12-27**] Three Vessel Coronary Artery Bypass Grafting utilizing the left internal mammary artery to left anterior descending, with vein grafts to the obtuse marginal and PDA. History of Present Illness: This is a 62 yo male with PMH signififcant for hypertension and hypercholesterolemia. Patient admits to experiencing chest tightness with left hand numbness and diaphoresis for the first time 4 days prior to admission while carrying a load up a flight of stairs. The chest pain was relieved with ASA after 20

Unstructured data

Income	Age	Student	Loan
Low	Young	No	N
Low	Young	Yes	N
High	Senior	No	Υ
High	Senior	Yes	Υ
High	Young	Yes	Υ
Low	Young	No	Υ
Low	Senior	No	N

Picture data is stored in RGB format

Data Examples

Let's see some real life datasets

https://archive.ics.uci.edu/ml/datasets.php
https://www.kaggle.com/datasets?fileType=csv

Learning methods

○ There are two types of learning methods – 1. Supervised, and 2. Unsupervised.

```
Admission Date: [**2187-12-26**] Discharge Date: [**2187-12-31**]
Date of Birth: [**2125-11-20**]
                                  Sex: M
Service: CARDIOTHORACIC
Allergies:
No Known Allergies / Adverse Drug Reactions
Attending:[**First Name3 (LF) 1505**]
Chief Complaint:
Chest pain
Major Surgical or Invasive Procedure:
[**2187-12-27**] Three Vessel Coronary Artery Bypass Grafting
utilizing the left internal mammary artery to left anterior
descending, with vein grafts to the obtuse marginal and PDA.
History of Present Illness:
This is a 62 yo male with PMH signififcant for hypertension and
hypercholesterolemia. Patient admits to experiencing chest
tightness with left hand numbness and diaphoresis for the first
time 4 days prior to admission while carrying a load up a flight
of stairs. The chest pain was relieved with ASA after 20
```

No label for patient history data

Income	Age	Student	Loan
Low	Young	No	N
Low	Young	Yes	N
High	Senior	No	Υ
High	Senior	Yes	Υ
High	Young	Yes	Υ
Low	Young	No	Υ
Low	Senior	No	N

Let's learn some ML methods

Decision Trees

Choosing an Attribute

 Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

Income	Age	Student	Loan
Low	Young	No	N
Low	Young	Yes	N
High	Senior	No	Y
High	Senior	Yes	Y
High	Young	Yes	Y
Low	Young	No	Υ
Low	Senior	No	N

 So: we need a measure of how "good" a split is, even if the results aren't perfectly separated out

Sample Data

- Try to predict loan for the following dataset.
- o It looks like an "OR" relationship.

High	Senior	Loan
income	age	
No	No	No
Yes	No	Yes
No	Yes	Yes
Yes	Yes	Yes

Sample Data

- Design a decision tree for the following data set to predict loan.
- Note: Marital status has three types of values.

young age	Marital	Loan
	status	
No	Single	No
No	Single	No
No	Married	No
No	Married	No
No	Single	Yes
No	Single	Yes
No	Divorce	Yes
Yes	Divorce	No
Yes	Married	No
Yes	Married	No

Quiz

Design a decision tree for the following data set to predict

loan.

Income	Age	Student	Loan
Low	Young	No	N
Low	Young	Yes	N
High	Senior	No	Υ
High	Senior	Yes	Υ
High	Young	Yes	Υ
Low	Young	No	Υ
Low	Senior	No	N

AK Chanda

15

Entropy

- ID3 (Iterative Dichotomiser 3) is an algorithm invented by Ross Quinlan used to generate a decision tree from a dataset.
- Picking an attribute as a root that has high information gain.
 - o Information is expected:

$$H(\langle p_1,\ldots,p_n\rangle) = \sum_{i=1}^n -p_i \log_2 p_i$$

Also called the entropy of the distribution.

Note on Decision Tree

- o Tree depth is limited by the number of attributes.
- o DTree may result local minimum.
- o DTree is an **offline** method.
 - What is offline and online method?
 - o Offline method: If a trained model starts to train again for a new data.
 - o Online method: When a trained model can decide the label of a new data without retraining the model.
- o DTree is also known as **inductive learning** method, because it checks each attribute one by one to make decision.

Random forest

- o The random forest is a classification algorithm consisting of many trained tree to avoid overfitting.
- o It randomly takes sqrt(A) number of attributes from **A** attributes to build a decision treen.
- o Continues the process **k** times to build **k number of tree**.
- o Finally, it takes **vote** among k trained tree to select the maximum voted class as a label for an example or new data.

AK Chanda

Splitting dataset

- o Randomly split your dataset into three separate files,
 - 1) train, 2) validation, 3) test dataset.
- o The splitting ratio:
 - o 80%, 10%, and 10% for train, validation, and test dataset, respectively.
 - o When you have a good number of data
 - o 98%, 1%, and 1% for train, validation, and test dataset, respectively.
 - o When you have very large data
 - Apply k-fold cross validation for small data

Model accuracy

o We need a metric to say how good is our trained model.

$$Accuracy (Acc) = \frac{TP + TN}{(TP + TN + FP + FN)}$$

Recall (True positive rate) =
$$\frac{TP}{TP + FN}$$

$$Precision (positive \ predictive \ value) = \frac{TP}{TP + FP}$$

$$F1 \ score = \frac{2 * Recall * Precision}{(Recall + Precision)}$$

Confusion Matrix

	Actually Positive (1)	Actually Negative (0)
Predicted Positive (1)	True Positives (TPs)	False Positives (FPs)
Predicted Negative (0)	False Negatives (FNs)	True Negatives (TNs)

Model accuracy

- o We need a metric to say how good is our trained model.
- We also need to figure out that the trained model is useful or not.
 - •Does it work better than any other old or simple methods?
- o Baseline method:
 - Any simple or logical method to determine the class accuracy.
 - o For real research, usually use **previous work** as a (strong) baseline.

AK Chanda

Baselines

- First step: get a baseline
 - o Baselines are very simple "straw man" procedures
 - Help determine how hard the task is
 - Help know what a "good" accuracy is
- Weak baseline: most frequent label classifier
 - o Gives all test instances whatever label was most common in the training set
 - o E.g., for spam filtering, we have only 25% spam email.
 - o So, if we label everything as ham, we will have 75% accuracy.
 - o Now, a trained classifier that gets 70% isn't very good...
- o For real research, usually use previous work as a (strong) baseline.

Overfitting

- Overfitting: Good performance on the training data, poor generalization to other data.
- Techniques to reduce overfitting:
 - o Increase training data.
 - o Reduce model complexity.
- Underfitting is the case where the model has "not learned enough" from the training data, resulting in low generalization and unreliable predictions.
- Techniques to reduce underfitting:
 - o Increase model complexity
 - o Increase the number of features
 - o Remove noise from the data.
- o Increase the number of epochs

Today

- Machine learning
- Decision tree
- Random forest
- Train-test dataset
- K-fold cross validation
- Confusion matrix
- Baselines
- Overfitting

Next class

- Linear regression
- Neural network
- Backpropagation

Thanks!