2301 COL 202 Tutorial 3.3

Abhinav Rajesh Shripad

TOTAL POINTS

2/2

QUESTION 1

1 Problem for Group 3 2/2

√ - 0 pts Correct

COL 202 Assignment 3

Abhinav Shripad(2022CS11596)

August 2023

1 Problem Statement

Use strong induction to prove that $n \leq 3^{n/3}$ for every integer $n \geq 0$.

2 Solution

Let P(n) denote the predicate to be proven in the problem.

For proving by strong induction we proceed by manually checking for n = 0, 1, 2 and 3 and then use the strong inductive hypothesis.

For n = 0 the inequality becomes $0 \le 1$ which is true.

For n=1 the inequality becomes $1 \le 3^{1/3}$ which is equivalent to $1^3 \le 3$ which is true.

For n=2 the inequality becomes $2 \le 3^{2/3}$ which is equivalent to $2^3 \le 3^2$ which is true.

For n=3 the inequality becomes $3 \le 3^{3/3}$ which is equivalent to $3 \le 3$ which is true.

Base Case:- P(n) is true for n = 0, 1, 2, 3

Inductive Hypothesis:- If P(n) is true for n=0,1....k-1 for $k-1\geq 3$ then P(n) is true for n=k

Inductive Step:- We prove this by doing casework based on parity of k.

Case 1:- k is an even number, say k=2m with $m\in N$ and $m\geq 2$ as $m\leq 1$ is covered in base case

$$3^{2m/3} = (3^{m/3})^2$$

$$\geq m^2$$

$$\geq 2m$$

Where the 1st inequality follows from the strong inductive hypothesis and 2nd inequality from the fact $m \geq 2$.

Case 2:- k is an odd number, say k=2m+1 with $m\in N$ and $m\geq 2$ as $m \leq 1$ is covered in base case

$$3^{2m+1/3} = (3^{m+1/3})(3^{m/3})$$

$$\geq m(m+1)$$

$$= m^2 + m$$

$$\geq 2m + 1$$

Where the 1st inequality follows from the strong inductive hypothesis and last inequality from the fact $m^2 \ge 2m$ and $m \ge 1$. Thus we can conclude that P(n) is a tautology for for $n \in \mathbf{N^0}$

1 Problem for Group 3 2 / 2

√ - 0 pts Correct