

NOCI Trial Wavefunctions for Diffusion Monte Carlo

 \therefore longer acronyms \Rightarrow better methods

Hugh Burton

University of Cambridge

Review of Diffusion Monte Carlo

Time-dependent Schrödinger equation (TDSE) is given by

$$\mathrm{i}\hbar\frac{\partial}{\partial t}\Psi(\mathbf{r},t)=\hat{H}\Psi(\mathbf{r},t).$$
 (1)

We recast TDSE in imaginary time, $\tau=\mathrm{i}t$, and apply an energy offset E_T

$$-\hbar \frac{\partial}{\partial \tau} \Psi(\mathbf{r}, \tau) = (\hat{H} - E_T) \Psi(\mathbf{r}, \tau). \tag{2}$$

In integral form this can be expressed as

$$\Psi(\mathbf{r}, \tau + \delta \tau) = \sum_{k} \Psi_{k}(\mathbf{r}) e^{-\delta \tau (E_{k} - E_{T})} \langle \Psi_{k} | \Psi_{init} \rangle.$$
 (3)

In the long time limit, Equation 3 projects out lowest eigenstate. By adjusting E_T , a stable simulation can be reached where $E_T = E_0$.

W. M. C. Foulkes, L. Mitas, R. J. Needs and G. Rajagopal, Rev. Mod. Phys, 73, 33-83, (2001)

Review of Diffusion Monte Carlo

Wavefunction is represented by a series of walkers that are propagated through imaginary time with importance sampling using a guide wavefunction $\Psi_T(\mathbf{r})$.

1. Diffusion:

► Each electron is propagated to a new position $\mathbf{r} = \mathbf{r}' + \chi + \tau \mathbf{v}_D(\mathbf{r}')$ where $\mathbf{v}_D(\mathbf{r}')$ is the drift velocity

$$\mathbf{v}_D(\mathbf{r}') = \Psi_T(\mathbf{r}')^{-1} \nabla \Psi_T(\mathbf{r}'). \tag{4}$$

 Step is accepted using fixed node approximation and with probability

$$\exp\left[\frac{-\left|\mathbf{r}'-\mathbf{r}-\delta\tau\mathbf{v}_{D}(\mathbf{r})\right|^{2}}{2\delta\tau}\right]\left|\frac{\Psi_{T}(\mathbf{r})}{\Psi_{T}(\mathbf{r}')}\right|^{2}.$$
 (5)

Review of Diffusion Monte Carlo

2. Reweighting:

► For each diffusion step, walker weight is multiplied by

$$\exp\left[-\delta\tau\left(\frac{E_{loc}(\mathbf{r})+E_{loc}(\mathbf{r}')}{2}-E_{T}\right)\right],\tag{6}$$

where E_{loc} is the local energy given by $E_{loc}(\mathbf{r}) = \Psi_T(\mathbf{r})^{-1} \hat{H} \Psi_T(\mathbf{r})$.

3. Branching:

 Walkers with low weights below a certain threshold are killed, whilst those above a certain threshold are copied.

4. Sampling:

 Energy is sampled from weighted sum of individual walker local energies

$$E_D \approx \frac{1}{M} \sum_M E_L(\mathbf{r}_M).$$
 (7)

So what's the problem?

- Quality of trial wavefunction controls statistical efficiency and limits final accuracy of simulation.
- Fixed node approximation yields lowest energy for a given nodal surface.
- ▶ Only when the nodal surface is exactly correct can this give the exact answer.

Could NOCI provide improved trial wavefunctions?

Could NOCI provide improved trial wavefunctions?

NOCI states are constructed from a linear combination of determinants containing holomorphic HF solutions.

- Wavefunction is constructed from multiple determinants, each based on a different set of molecular orbitals.
- ► Wavefunction is complex valued in general.

Exploiting NOCI trial wavefunctions requires a multi-determinantal method and the fixed phase approximation.

Using a multi-determinantal trial wavefunction

Trial wavefunction is given by

$$\Psi_{\mathcal{T}} = \sum_{k}^{n_{dets}} a_k \det M^{\uparrow k} \det M^{\downarrow k}. \tag{8}$$

For most of the DMC algorithm we just loop over each reference determinant, but we must be careful when computing $\nabla \Psi_T$ and $\nabla^2 \Psi_T$...

$$\frac{\nabla_{\mathbf{r}_i} \Psi_T}{\Psi_T} = \frac{\sum_{k}^{n_{dets}} a_k \left[\nabla_{\mathbf{r}_i} \det M^{\uparrow k} \right] \det M^{\downarrow k}}{\sum_{k}^{n_{dets}} a_k \det M^{\uparrow k} \det M^{\downarrow k}}$$
(9)

In the standard case $(n_{dets} = 1)$ this reduces to

$$\frac{\nabla_{\mathbf{r}_{i}}\Psi_{T}}{\Psi_{T}} = \frac{\nabla_{\mathbf{r}_{i}}\mathrm{det}M^{\uparrow}}{\mathrm{det}M^{\uparrow}} = \sum_{\mu} \left[\nabla_{\mathbf{r}_{i}}M_{i\mu}^{\uparrow}(\mathbf{r})\right]M^{\uparrow}(\mathbf{r})_{\mu i}^{-1}.$$
 (10)

Introducing the fixed-phase approximation

► Take wavefunction as a combination of amplitude and phase

$$\Psi(\mathbf{r},\tau) = \rho(\mathbf{r},\tau) \exp\left[i\Phi(\mathbf{r},\tau)\right]. \tag{11}$$

► Substituting into imaginary time Schrödinger equation gives two coupled differential equations

$$-\frac{\partial \rho\left(\mathbf{r},\tau\right)}{\partial \tau} = \left[-\frac{1}{2}\nabla^{2} + V(\mathbf{r}) + \frac{1}{2}|\nabla\Phi\left(\mathbf{r},\tau\right)|^{2}\right]\rho\left(\mathbf{r},\tau\right)$$
(12)

$$-\frac{\partial \Phi\left(\mathbf{r},\tau\right)}{\partial \tau} = \left[-\frac{1}{2}\nabla^{2} + V(\mathbf{r}) + \frac{\nabla \rho\left(\mathbf{r},\tau\right) \cdot \nabla}{\rho\left(\mathbf{r},\tau\right)}\right] \Phi\left(\mathbf{r},\tau\right). \tag{13}$$

► Fixed phase approximation sets $\frac{\partial \Phi(\mathbf{r}, \tau)}{\partial \tau} = 0$, giving $\Phi(\mathbf{r}, \tau) = \Phi_T(\mathbf{r})$.

G. Oritz, D. M Ceperley and R. M. Martin, *Phys. Rev. Lett.*, **71**, 2777, (1993)
C. A. Melton, M. C. Bennett and L. Mitas, *J. Chem. Phys.*, **144**, 244113, (2016)

Implementing FPDMC

FPDMC proceeds in same manner as FNDMC with a few modifications:

▶ Drift velocity calculated from trial amplitude $\rho_T(\mathbf{r})$

$$\mathbf{v}_D(\mathbf{r}) = \rho_T^{-1} \nabla \rho_T(\mathbf{r}). \tag{14}$$

► Local energy includes phase dependent repulsive term

$$E_L(\mathbf{r}) = \rho_T^{-1}(\mathbf{r}) \left[-\frac{1}{2} \nabla^2 + V(\mathbf{r}) + \frac{1}{2} |\nabla \Phi_T(\mathbf{r})|^2 \right] \rho_T(\mathbf{r}).$$
 (15)

Straightforward expressions for Equations 14 and 15 can be derived from $\nabla\Psi_{\mathcal{T}}$ and $\nabla^2\Psi_{\mathcal{T}}$

$$\rho_T^{-1}(\mathbf{r})\nabla\rho_T(\mathbf{r}) = \Re\left(\Psi_T^*\nabla\Psi_T\right)/\rho_T^2,\tag{16}$$

$$E_L(\mathbf{r}) = -\frac{1}{2} \Re \left(\Psi_T^* \nabla^2 \Psi_T \right) / \rho_T^2 + V(\mathbf{r}). \tag{17}$$

Fixed-node as a special case of fixed-phase

Construct a complex trial function from real and imaginary part

$$\Psi_T = \Psi_R + i\epsilon \Psi_B \tag{18}$$

Potential generate by phase of $\Phi_T(\mathbf{r})$ is

$$V_{ph} = \frac{1}{2} \left| \frac{\epsilon \left(\Psi_R \nabla \Psi_B - \Psi_B \nabla \Psi_R \right)}{\Psi_R^2 + \epsilon^2 \Psi_B^2} \right|^2. \tag{19}$$

- Away from nodal surface ($\Psi_R \neq 0$), limit $\epsilon \to 0$ yields $V_{ph} = 0$.
- ▶ At the nodal surface ($\Psi_R = 0$), generally $|\nabla \Psi_R|^2 \ge 0$ so limit $\epsilon \to 0$ yields $V_{ph} = \infty$.

Putting it all together

Combining multi-determinantal DMC and FPDMC should require minimal alterations to the DMC algorithm.

- ► Implement multi-determinantal algorithm and test for real wavefunctions.
- ▶ Back compatibility achieved by setting $n_{det} = 1$.
- ► Independent of Jastrow factor implementation.
- ► Code up the FPDMC and test using NOCI states constructed from holomorphic solutions.

Method is being written into the group simpleDMC code.

Questions to investigate

Beyond implementation, the interesting technical questions include

- ▶ Do NOCI trial functions give more efficient convergence?
- ► If an excited NOCI state is used, do we converge onto the related FCI state?
- ► What result would we obtain for 'dormant' holomorphic solutions that are complex everywhere?

Using the new framework we will hopefully be able to use NOCI trial wavefunctions for wider applications!

