Database Management Systems

1. The following relations are given (primary keys are underlined):

```
SINGER(SCode, SName, City, DateofBirth)
RECORD_LABEL(RLCode, RLName, Address, City)
DISC(DCode, Title, SCode, RLCode, Type, Price)
SALE(DCode, Date, SoldCopyNumber)
```

Assume the following cardinalities:

```
• card(SINGER) = 10^4 tuples, MIN(DateofBirth) = 1-1-1969, MAX(DateofBirth) = 31-12-1998,
```

- card(RECORD_LABEL)= 10^4 tuples, number of City $\simeq 100$,
- card(DISC)= 10⁶ tuples, MIN(Price) = 10, MAX(Price) = 29,
- card(SALE)= 10^8 tuples for year 2010.

Furthermore, assume the following reduction factor for the group by condition:

• having sum(SoldCopyNumber) \geq 10.000 $\simeq \frac{1}{100}$.

Consider the following SQL query:

For the SQL query:

- (a) Report the corresponding algebraic expression and specify the cardinality of each node (representing an intermediate result or a leaf). If necessary, assume a data distribution. Also analyze the group by anticipation.
- (b) Select one or more secondary physical structures to increase query performance. Justify your choice and report the corresponding execution plan (join orders, access methods, etc.).