Chapter 9: Relational DB Design by ER/EER to Relational Mapping

- Relational Database Design Using ER-to-Relational Mapping
- Mapping EER Model Constructs to Relations

Relational Database Design by ER- and EER-toRelational Mapping

- Design a relational database schema
 - Based on a conceptual schema design
- Seven-step algorithm to convert the basic ER model constructs into relations
- Additional steps for EER model

Relational Database Design Using ER-to-Relational Mapping

ER-to-Relational Mapping Algorithm

- COMPANY database example
 - Assume that the mapping will create tables with simple single-valued attributes
- Step 1: Mapping of Regular Entity Types
 - For each regular entity type, create a relation R
 that includes all the simple attributes of E
 - Called entity relations
 - Each tuple represents an entity instance

- Step 2: Mapping of Weak Entity Types
 - For each weak entity type, create a relation R
 and include all simple attributes of the entity
 type as attributes of R
 - Include primary key attribute of owner as foreign key attributes of R

Figure 9.3

Illustration of some mapping steps.

- a. Entity relations after step 1.
- b. Additional weak entity relation after step 2.
- c. Relationship relation after step 5.
- d. Relation representing multivalued attribute after step 6.

(a) EMPLOYEE

Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary
-------	-------	-------	------------	-------	---------	-----	--------

DEPARTMENT

Dname	Dnumber
-------	---------

PROJECT

Pname Pnumber Ploc

(b) DEPENDENT

Essn	Dependent_name	Sex	Bdate	Relationship
------	----------------	-----	-------	--------------

(c) WORKS_ON

(d) DEPT_LOCATIONS

- Step 3: Mapping of Binary 1:1 Relationship Types
 - For each binary 1:1 relationship type
 - Identify relations that correspond to entity types participating in R
 - Possible approaches:
 - Foreign key approach
 - Merged relationship approach
 - Crossreference or relationship relation approach

- Step 4: Mapping of Binary 1:N Relationship Types
 - For each regular binary 1:N relationship type
 - Identify relation that represents participating entity type at N-side of relationship type
 - Include primary key of other entity type as foreign key in S
 - Include simple attributes of 1:N relationship type as attributes of S

- Alternative approach
 - Use the relationship relation (cross-reference) option as in the third option for binary 1:1 relationships

- Step 5: Mapping of Binary M:N Relationship
 Types
 - For each binary M:N relationship type
 - Create a new relation S
 - Include primary key of participating entity types as foreign key attributes in S
 - Include any simple attributes of M:N relationship type

- Step 6: Mapping of Multivalued Attributes
 - For each multivalued attribute
 - Create a new relation
 - Primary key of R is the combination of A and K
 - If the multivalued attribute is composite, include its simple components

- Step 7: Mapping of N-ary Relationship
 Types
 - For each n-ary relationship type R
 - Create a new relation S to represent R
 - Include primary keys of participating entity types as foreign keys
 - Include any simple attributes as attributes

Discussion and Summary of Mapping for ER Model Constructs

ER MODEL	RELATIONAL MODEL				
Entity type	Entity relation				
1:1 or 1:N relationship type	Foreign key (or <i>relationship</i> relation)				
M:N relationship type	Relationship relation and two foreign keys				
<i>n</i> -ary relationship type	Relationship relation and n foreign keys				
Simple attribute	Attribute				
Composite attribute	Set of simple component attributes				
Multivalued attribute	Relation and foreign key				
Value set	Domain				
Key attribute	Primary (or secondary) key				

Discussion and Summary of Mapping for ER Model Constructs (cont'd.)

- In a relational schema relationship, types are not represented explicitly
 - Represented by having two attributes A and B:
 one a primary key and the other a foreign key

Mapping EER Model Constructs to Relations

 Extending ER-to-relational mapping algorithm

Mapping of Specialization or Generalization

- Step 8: Options for Mapping Specialization or Generalization (see pages 294-295)
 - Option 8A: Multiple relations—superclass and subclasses
 - For any specialization (total or partial, disjoint or overlapping)
 - Option 8B: Multiple relations—subclass relations only
 - Subclasses are total
 - Specialization has disjointedness constraint

Mapping of Specialization or Generalization (cont'd.)

- Option 8C: Single relation with one type attribute
 - Type or discriminating attribute indicates subclass of tuple
 - Subclasses are disjoint
 - Potential for generating many NULL values if many specific attributes exist in the subclasses
- Option 8D: Single relation with multiple type attributes
 - Subclasses are overlapping
 - Will also work for a disjoint specialization

Mapping of Shared Subclasses (Multiple Inheritance)

 Apply any of the options discussed in step 8 to a shared subclass

Mapping of Categories (Union Types)

- Step 9: Mapping of Union Types (Categories)
 - Defining superclasses have different keys
 - Specify a new key attribute
 - Surrogate key

Figure 9.7

Mapping the EER categories (union types) in Figure 8.8 to relations.

Summary

- Map conceptual schema design in the ER model to a relational database schema
 - Algorithm for ER-to-relational mapping
 - Illustrated by examples from the COMPANY database
- Include additional steps in the algorithm for mapping constructs from EER model into relational model

FIGURE 8.7

A specialization lattice with multiple inheritance for a UNIVERSITY database.

FIGURE 9.6

Mapping the EER specialization lattice in Figure 8.7 using multiple options.

PERS	NC									
SSN	Name	BirthDate	Sex	Address						
					_					
EMPLO	OYEE									
SSN	Salary	Employee	Туре	Position	Rank	PercentTime	RAFlag	TAFlag	Project	
ALUMI	NUS	ALUMNUS	_DEG	REES						
SSN	SSN Year Degree									
			'							
STUDENT										
SSN	MajorDe	ept GradFl	ag	UndergradF	lag	DegreeProgram	Class	StudAssist	Flag	

FIGURE 8.8

Two categories (union types): OWNER and REGISTERED_VEHICLE.

FIGURE 9.7

Mapping the EER categories (union types) in Figure 8.8 to relations.

PERSON									
SSN	Dr	iverLicense N	No	Nan	ne	Add	dress		
BANK									
BName BAddress Ownerld									
COMP	ΑN	Y							
CName CAddress Ownerld									
OWNE	R								
Owner	<u>ld</u>								
REGIS	TEF	RED_VEHI	CLE						
<u>VehicleId</u> LicensePlateNumber									
CAR									
Vehicle	eld_	CStyle	CMa	ake	CI	Model			
TRUC	<								
<u>VehicleId</u> TMake		TModel To		To	onnage TYear		Year		
OWNS	}								
Owner	PurchaseDate LienOrRegula					ılar			