Department of Chemical and Biological Engineering University of Wisconsin-Madison CBE 426 – Mass Transfer Operations Fall 2019

Homework 10 Due 11/15/2019

1. The equilibrium data for Water (A)-TCE (B)-Acetone(C) at 25°C, from Table 23.6 MSH, are transcribed below. Plot the data (including solubility curve and tie lines on a) an equilateral triangle diagram, b) a right-triangle diagram, and c) an x-y diagram for acetone. An equilateral grid is attached for convenience. Make copies as needed to answer questions 2-4

Water Layer			Trichloroethane layer		
(wt%)			(wt%)		
TCE	Water	Acetone	TCE	Water	Acetone
0.4	99.6	0	99.9	0.1	0
0.52	93.52	5.96	90.93	0.32	8.75
0.73	82.23	17.04	73.76	1.10	25.14
1.02	72.06	26.92	59.21	2.27	38.52
1.17	67.95	30.88	53.92	3.11	42.97
1.60	62.67	35.73	47.53	4.26	48.21
2.10	57.00	40.90	40.00	6.05	53.95
3.75	50.20	46.05	33.70	8.90	57.40
6.52	41.70	51.78	26.26	13.40	60.34

- 2. A stream consisting of 100 kg/h of a 35:65 acetone-water solution is extracted in a single stage using with pure 1,1,2-trichloroethane at 25°C to reduce the acetone content in the raffinate to 2%. How much TCE is needed?
- 3. The extraction is made in cross-current, adding pure solvent to each stage as follows: 0.5F kg of solvent to the first stage, $0.5R_1$ kg to the second stage and so on. The solvent rate to the last stage may be adjusted up or down by no more than 10% in order to get the 2% final raffinate. a) How many stages are required? b) How much total solvent is needed?
- 4. The same mixture described in Problem 2 is extracted in a continuous countercurrent cascade of mixer-settlers equilibrium stages.
 - (a) calculate the minimum solvent rate.
 - (b) For a solvent rate of 1.2 times the minimum find the flow rate and composition of the resulting raffinate and extract.
 - (c) Find the required number of equilibrium stages for the conditions of part (b). Plot the operating line on the x-y diagram to determine the number of stages.

