

# Πανεπιστήμιο Δυτικής Αττικής Σχολή Μηχανικών

#### Τμήμα Μηχανικών Πληροφορικής και Υπολογιστών

Ασκήσεις εργαστηρίου θεωρίας κυκλωμάτων 1<sup>H</sup> ΕΡΓΑΣΤΗΡΙΑΚΉ ΆΣΚΗΣΗ

Λάζαρος Κηρυκόπουλος, 1° εξάμηνο, 21390087, Τμήμα ΘΚ09 Νικόλαος Θωμάς, 1° εξάμηνο, 21390068, Τμήμα ΘΚ09 Χρήστος Βρέκος, 1° εξάμηνο, 21390027, Τμήμα ΘΚ09



Ημερομηνία Διεξαγωγής : 8/4/2022

Ημερομηνία Παράδοσης : 6/5/2022

#### 1. 1°ς Νόμος του Kirchoff



Εικόνα 1: Υπολογισμοί για τον 1<sup>ο</sup> νόμο, πείραμα χρησιμοποιώντας τον 1<sup>ο</sup> νόμο του Kirchoff.



Εικόνα 2: Υλοποίηση του πειράματος στο ερναστήριο.



Εικόνα 3: Υλοποίηση του πειράματος στο Multisim.

# 2. 2<sup>ος</sup> Νόμος του Kirchoff



Εικόνα 4: Υπολογισμοί για το 2° πείραμα χρησιμοποιώντας τον 2° νόμο του Kirchoff.



Εικόνα 5: Υλοποίηση του πειράματος μέσω του Multisim.

### 3. <u>Νόμος του Ohm</u>

Πίνακας με σταθερή R=1kΩ και μεταβαλλόμενη V.

| Αντίσταση              | R | =     | 1K    |       |       |       |       |       |       |       |       |
|------------------------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Τάση πηγής (V)         | 0 | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    |
| Ένταση (Α)             | 0 | 1.1 m | 2,2 m | 3,3 m | 4,4 m | 5,5 m | 6,6 m | 7,7 m | 8,8 m | 9,9 m | 0,011 |
| Πτώση Τάσης στην R (V) | 0 | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    |

# Παρατηρείται ότι η ένταση αυξάνεται γραμμικά με την τάση του ρεύματος, όπως $\frac{\pi \rho o \beta \lambda \acute{\epsilon} \pi \epsilon ι \ o \ v \acute{o} \mu o \varsigma \ tou \ Ohm}{R} \ (\ I = \frac{V}{R}).$

## Γραφική παράσταση σχέσης τάσης με έντασης:





Εικόνα 6: Νόμος του Ohm, με όργανα του εργαστηρίου.

Πίνακας με σταθερή V=10V και μεταβαλλόμενη R:

| Τάση πηγής             | V       | =    | 10   | V     |       |       |       |       |       |       |       |
|------------------------|---------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|
| Αντίσταση (KOhm)       | 0       | 1    | 2    | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    |
| Ένταση (Α)             | 10.020G | 0.01 | 5.1m | 4.33m | 3.49m | 2.99m | 2.66m | 2.43m | 2.25m | 2.11m | 2.00m |
| Πτώση Τάσης στην R (V) | -0.20   | 10   | 10   | 10    | 10    | 10    | 10    | 10    | 10    | 10    | 10    |

# Παρατηρείται ότι η ένταση μειώνεται με την αύξηση της αντίστασης, όπως προβλέπει ο $\underline{ \text{νόμος του Ohm}} \ (I = \frac{v}{R}).$



#### 4. Σύνδεσης αντίστασης ως ποντεσιόμετρο

Μεταβάλλοντας την αντίσταση, παίρνουμε διαφορετικές ενδείξεις από το βολτόμετρο. Συγκεκριμένα όσο αυξάνεται η αντίσταση παρατηρούμε ότι μειώνεται η τάση.

| Αντίσταση (R) % | 10    | 20    | 30    | 40    | 50    | 60    | 70    | 80    | 90    | 100    |
|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| Τάση (V)        | 8.920 | 7.874 | 6.856 | 5.859 | 4.878 | 3.906 | 2.938 | 1.969 | 0.991 | 0.977u |



Εικόνα 7 : Σύνδεση αντίστασης ως ποντεσιόμετρο, στο Multisim.

#### 5. Σύνδεση αντίστασης ως ροοστάτης

| Αντίσταση (R) % | 10     | 20    | 30    | 40    | 50    | 60    | 70    | 80    | 90    | 100   |
|-----------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Ένταση (Α)      | -10.0m | -5.0m | -3.3m | -2.5m | -2.0m | -1.6m | -1.4m | -1.2m | -1.1m | -1.0m |



Εικόνα 8 : Σύνδεση αντίστασης ως ροοστάτης, στο Multisim.



Εικόνα 9 : Σύνδεση αντίστασης ως ροοστάτης με το αμπερόμετρο αντίστροφα, στο Multisim.

Το " – " στις ενδείξεις τις έντασης έχει φυσική ερμηνεία δηλαδή το ρεύμα έχει ένταση π.χ. ίση με 10mA όταν η αντίσταση έχει το 10% της συνολικής της τιμής, αλλά προς την αντίθετη κατεύθυνση από αυτή που φαίνεται στη εικόνα 8. Επομένως αντιστρέφουμε το αμπερόμετρο.

#### 6. Ερωτήσεις

**1.** Εάν η μεταβλητή αντίσταση πάει στο 0%, τότε η αντίσταση είναι λες και δεν υπάρχει και καταστρέφεται το κύκλωμα :



Για να λυθεί το πρόβλημα αρκεί να συνδέσουμε μια αντίσταση πριν από τον ροοστάτη ώστε ακόμα κ αν ο ροοστάτης βρίσκεται στο 0% να υπάρχει αντίσταση στο κύκλωμα :



2. Δεν είναι ορθότερο, καθώς εμείς θέλουμε να μετρήσουμε την πτώση τάσης μόνο στον αντιστάτη R και με την ύπαρξη του αμπερομέτρου αλλάζει η ολική αντίσταση από R σε (R+Rαμπερομέτρου), άρα δημιουργείται ένα μικρό σφάλμα στις μετρήσεις. Αυτό το σφάλμα είναι πολύ μικρό, γιατί το αμπερόμετρο έχει ελάχιστη αντίσταση, όμως παραμένει σφάλμα, άρα ο ορθότερος τρόπος είναι αυτός που φαίνεται στο σχήμα 3.