Aplikace lineární algebry v kombinatorice

prof. RNDr. Jan Kratochvíl, CSc.

4. března 2021

Obsah

1	Maticovy popis grafu, det, kostry	2
2	Sudo-lichomesta, 2-vzdálenost množin bodu	3
3	Sudo-sudomesta, Prostor cyklu grafu	6
4	Seiduv switching	8
5	Spekrum grafu, Moorovy grafy	12
6	Silne regulární grafy, propletani vl cisel	13
7	Odhady pomoci spektra	17
8	Shannonova kapacita	22
9	Samoopravné a perfektní kody, Llovdova veta	25

1 Maticovy popis grafu, det, kostry

Věta 1.1 (Pocet sledu). Pro kazdy graf G a každé přirozené číslo k obsahuje k-ta mocnina matice sousednosti A pocty sledu délky k mezi vrcholy grafu G, konkretně $(A^k)_{a,b} = \#$ sledu délky k mezi a - b v G.

Důkaz. Indukci podle k.

- 1. k = 0, sledy délky 0, neboli u-u. Což odpovídá dle definice $A^0=I$.
- 2. k = 1. Sled je pravě hrana.
- 3. indukční krok:

$$(A^{k+1})_{a,b} = (A^k * A)_{a,b} = \sum_{w \in V} (A^k)_{a,w} * A_{w,b} =$$

na pozice (w,b) je 1 pokud existuje taková hrana, jinak 0. Proto

$$= \sum_{w,bw \in E} (A^k)_{a,w} =$$

Dle I.P. se rovna poctu sledu délky k mezi a-w. Pak mezi vrcholy a-w existuje sled délky k. Rozdělíme sledy dle konečného vrcholu, který je soused b. Kazdy z těchto sledu jednoznačně prodloužíme na sled délky (k+1) do vrcholu b. Z toho předchozí součet je pravě # počet sledu délky (k+1) mezi a-b.

Definice 1.2. $L_G^{(n)}$ se dostane tak, ze vyškrtneme n-ty řádek a sloupec z Laplaceove matice.

Lemma 1.3.

$$\forall w \subseteq E, |w| = n-1 : det((D_G^{(u)})_w) = \left\{ \begin{array}{ll} 0 & pro\ (V,w) \neq tree \\ \pm 1 & pro\ (V,w) = tree \end{array} \right.$$

 $D\mathring{u}kaz$. 1) Nechť $w \subseteq E$ je kostra. Pak je stromem \Rightarrow má list v_1 . Přemístíme řádek odpovídající v_1 do prvního řádku. Nechť e_1 je hrana $v_1 - v_t$. Dáme ji do prvního sloupce. Pak na pozice (0,0) je ± 1 . Taky první řádek je $(\pm 1,0,...0)$ protože vrchol je list.

Odstraníme v_1 , nechť v_2 je další list a e_2 jého hrana. Pak druhy řádek je $(??,\pm 1,0,...0)$. Tak pokračujeme dal.

Může se ale stát, ze další vrchol je u který jsme zrovna odstranili. Použijeme tvrzeni, ze strom má aspoň 2 listy. Pak můžeme vzít nějaký další vrchol. Po ukončení přemisťovaní dostaneme ± 1 na diagonále. Nad diagonálou same $0 \Rightarrow det = \pm 1$. Přemístěním jsme měnili znamenko det. Ale $det^2 = 1$.

2) Máme graf $w\subseteq E, |w|=|V|-1$ který není strom \Rightarrow není souvislý \Rightarrow má aspoň 2 komponenty souvislosti. $V=V_1 \cup V_2$. BUNO $u\in V_2$. Pak z V_1 do V_2 nevede žádná hrana, část matice je 0. Pak součet řádku odpovídající $V_1, E(V_2)$ a $V_2, E(V_1)$ je $0\Rightarrow$ řádky jsou LZ a det je 0.

Věta 1.4 (Pocet koster). $det(L_G^{(n)}) = \# koster \ grafu \ G.$

 $D\mathring{u}kaz$. Vezmeme matice incidence I_G (jenom 2 jedničky ve sloupci, v řádku # 1 je deg(v)), v každém její sloupci nahradíme jednu jedničku hodnotou (-1). Výslednou matici označme

 $I_G*I_G^T=$ skal. součin řádku i, j. Na diagonále deg(v),mimo diag. 1 pro hrany, 0 - nehrany. Změníme pravě jednu 1ku ve každém sloupci na -1 (tím dostaneme orient. graf).

$$D_G * D_G^T = L_G$$

Rovnost platí protože skalární součin stejného řádku dá deg(v) jelikož -1*-1=1. Pokud násobíme různé řádky, příslušné vrcholy nejsou spojené hranou - 0. Jinak mají pravě 1 společnou pozici a dostaneme -1*1=-1.

Pak $det(L_G^{(u)})$ spočítáme jako $det(D_G^{(u)}*(D_G^{(u)})^T)$ Použijeme Cauchy-Benet vzoreček (det součiny obdelnikových matic)

$$det(A*B) = \sum_{\substack{w \subseteq 1, 2, \dots, n \\ |w| = k}} detA_w * detB^w$$

Kde A_w jsou n sloupců matice A, B^w - n řádku matice B.

$$detL_G^{(u)} = \sum_{\substack{w \subseteq E \\ |w| = n-1}} det(D_G^{(u)}) * (D_G^{(u)})^T =$$

Pro každou matici $det A = det A^T$, pak

$$= \sum_{\substack{w \subseteq E \\ |w|=n-1}} \det(D_G^{(u)})^2$$

Kostra musí mít (n-1) vrcholu; v det se díváme na všechny podmnožiny hran |w|=n-1. Ptáme se jestli je strom. Proto suma nahoře je pravě

$$\sum_{\substack{w \\ (V,w)je \ kostra}} 1$$

Což je # koster G

2 Sudo-lichomesta, 2-vzdálenost množin bodu

Lemma 2.1. $det(S_1 + b_1, S_2 + b_2, ..., S_k + b_k) = det(S + B), S_i, b_i \in T^k \text{ kde } S_i, b_i \text{ jsou sloupce}$ matic S, B, jde spočítat jako:

$$det(S_1 + b_1, S_2 + b_2, ..., S_k + b_k) = det(S_1, S_2 + b_2, ..., S_K + b_K) + det(b_1, S_2 + b_2, ..., S_K + b_K)$$

Pak linearita v 2. složce atd.

$$det(S+B) = \sum_{w \subseteq [k]} det(S^w T)$$

 $kde\ S^w\ znamená,\ ze\ jsme\ vzali\ sloupce\ odpovídající\ indexům\ v\ w.\ Ostatní\ sloupce\ jsou\ z\ T.$

Věta 2.2 (skoro dizjunktní systémy množin). Nechť $A_1,...,A_k$ jsou různé $\subseteq [n]$, $|A_i \cap A_j| = 1, i \neq j \Rightarrow k \leq n$

 $D\mathring{u}kaz$. Nechť A-matice incidence $\{A_i\}$. Radek odpovídá prvkům, sloupec - množinám. Na pozice $(r,s)=1 \Rightarrow$ prvek r leží v množině A_s .

Vezmeme $A^T * A$ nad \mathbb{R} . Pak ve výsledné matice na pozice (r,s) je $|A_r \cap A_s|$. Jelikož průniky jsou 1-prvkové, máme matici 1-cek. Na diagonále jsou $|A_i|$ velikosti množin.

$$k = rank(A^T A) \le rankA \le n \Rightarrow k \le n$$

Tvrdíme, ze $det(A^TA \neq 0)$. Pak matice je regulární a rank = k. BUNO

$$|A_i| = a_i, a_1 < a_2 < ... < a_k$$

Máme matici, kde na diagonále jsou velikosti množin, jinak 1.

Nahledneme $a_2 \ge 2$. Jinak pokud $a_1 = a_2 \Rightarrow \exists x \in A_1 \cap A_2 \Rightarrow A_1 = A_2 = \{x\}$.

Nechť J je matice jedniček. Matici A můžeme napsat jako $J+I*(a_i-1)$ kde (a_i-1) je na diagonále. Použijeme vlastnost det jako multilineární formy, viz lemma 2.1. Pokud vezmeme 2 sloupce z J, tak det bude 0. Takže zbývají det kde je jeden sloupec z S, zbytek z J.

$$det(S+J) = det(S) + \sum_{i}^{k} det(J^{i}S) =$$

Determinanty matic J^iS kde z J je pouze i-ty sloupec lze spočítat rozvojem dle i-ho řádku kde je pouze 1 jednička.

$$= \prod_{1}^{k} (a_i - 1) + \prod_{2}^{k} (a_i - 1) + \sum_{i=2}^{k} \frac{\prod_{1}^{k} (a_i - 1)}{a_j - 2}$$

Kde 2. produkt máme protože a_1 se může rovnat 1, zbytek jsou větší. První \prod je ≥ 0 , druhy $\prod > 0$ protože od $i=2, a_i \geq 2$. \sum je zlomek kladných clenu, takže $\sum \geq 0$. Dohromady det(J+S)>0

Věta 2.3 (sudo-lichomesta). Nechť $A_1,...,A_k$ jsou různé $\subseteq [n], |A_i| = 1 \mod 2 \ \forall i, |A_i \cap A_j| \equiv 0 \mod 2, i \neq j \Rightarrow k \leq n$

 $D\mathring{u}kaz$. Vezmeme matice incidence jako v předchozí větě. Uvažme matici A^T*A nad \mathbb{Z}_2 . Pak na diagonále jsou mohutnosti množin = 1 mod 2, mimo diagonálu průniky = 0 mod 2. Neboli $A^T*A = I \Rightarrow rank = k$. Pak jako minule:

$$k = rank(A^T A) \le rank A \le n \Rightarrow k \le n$$

Definice 2.4. Množina bodu v \mathbb{R}^n je s-vzdálenostní pokud vzájemně vzdálenostní bodu nabývají celkem nejvýše s hodnot.

Pozorování 2.5. 1-vzdálenostní množiny jsou simplexy. Zobecnění rovnostranného \triangle do vyšších dimenzi. Indukci dokážeme, ze $m_1(n) = n + 1$. Při přechodu do vyšší dimenze existuje pravě jeden bod který můžeme použit. Proces podobny kompaktizace topologického prostoru.

Věta 2.6 (2-vzdálenostní množ). Nechť $m_s(n)$ značí počet bodu s-vzdálenostní množ v \mathbb{R}^n , pak:

$$\binom{n+1}{2} \le m_2(n) \le 1/2 * (n+1)(n+4)$$

Důkaz. 1) Dolní odhad

Vezmeme vektory, které mají pravě 2 jedničky, jinak 0. Takových máme $\binom{n}{2}$.

Pokud 2 vektoru mají 1 společnou pozice, $d(x,y) = \sqrt{2}$. Jinak pokud mají 2 společné pozice, tak d(x,y) = 2. Vzdálenost počítáme jako kanonickou Euklidovou normu.

$$m_2(n) \ge \binom{n}{2}$$

Zesílíme dolní odhad: přemístíme se do \mathbb{R}^{n+1} . Jelikož $\sum_{i=1}^{n+1} x_i = 2$, body jsou v nadrovině dimenzi \mathbb{R}^n kterou lze vnořit do \mathbb{R}^n . Pak:

$$m_2(n) \ge \binom{n+1}{2}$$

2) Horní odhad

Máme body $A_1, A_2, ..., A_t$. $A_i = (a_{i,1}, a_{i,2}, ..., a_{i,n}) \in \mathbb{R}^n$. Označme vzdálenosti $k \neq m \in \mathbb{R}$. Definujme funkce $F : \mathbb{R}^n \times \mathbb{R}^n \to R$, $F(x,y) = (d(x,y)^2 - m^2) * (d(x,y)^2 - k^2)$. Pokud je vzdálenost $m \vee k \Rightarrow F = 0$.

Pak $f_i(x) = F(x, A_i)$. Částečné dosazeni. Tyto funkce jsou v V.P. funkci z \mathbb{R}^n . Tvrdíme ze $\{f_i(x)\}$ jsou LN. Pokud dosadíme 2 různé prvky do f_i tak dostaneme 0 dle definice zobrazeni F. Pro stejný bod $f_i = a^2b^2 \neq 0$.

$$\sum_{i=1}^{t} f_i * x_i = 0, x_i \in R, 0 = nulov \land funkce$$

Podíváme se na tuto funkce (lineární kombinace funkci) v nějakém bode A_i .

$$\forall j (\sum_{1}^{t} x_i * f_i)(A_j) = \sum_{1}^{t} x_i * f_i(A_j) = x_j a^2 b^2 = 0 \Rightarrow x_j = 0$$

Neboli funkce jsou LN. Jejich počet je omezen podprostorem funkci nad \mathbb{R}^n ve kterém žijou.

$$f_i(x) = (d(x, A_i)^2 - m^2) * (d(x, A_i)^2 - k^2) = (\sum_{j=0}^{t} (x_j - a_{i,j})^2 - m^2) * (\sum_{j=0}^{t} (x_j - a_{i,j})^2 - k^2)$$

 f_i jsou polynomu stupně 4. # polynomu dle dimenze:

- 1. k = 0 konstantn i = 1.
- 2. k = 1 je n.
- 3. k = 2 je $\binom{n}{2}$ pro různá x_i, x_j a n pro x_i^2 .
- 4. k = 3 $\binom{n}{3}$ pro různá x_i, x_j, x_k . Pro $x_i^2 x_j = n(n-1)$ a n pro x_i^2 .
- 5. k = 4 podobně

Funkce f_i jsou z podprostoru polynomu deg=4. Zvolme vhodnou bázi.

$$U = \langle 1, x_i, x_i * x_j, x_i^2, (\sum x_j^2) x_i, (\sum x_j^2)^2 \rangle \forall i, j$$

Dostaneme $dim(U) = 1 + n(lin) + n(kv) + n(kv*lin) + \binom{n}{2}(lin2) + 1 = 2 + 3n + 1/2n(n-1) = 1/2(4+5+n^2)$. Generátor $\sum x_j^2$ nepotřebujeme protože je lin kombinaci x_j^2 .

3 Sudo-sudomesta, Prostor cyklu grafu

Věta 3.1 (Sudo-sudomesta). Nechť $A_1,...,A_k$ jsou různé $\subseteq [n], |A_i| = 0 \mod 2 \ \forall i, |A_i \cap A_j| \equiv 0 \mod 2, i \neq j \Rightarrow k \leq 2^{\lfloor \frac{n}{2} \rfloor}$

Důkaz. Uděláme bijekci množina \rightarrow charakteristicky vektor. Pak lin kombinace je taky sudo-sudomesto. Dal

$$\langle A_i, A_j \rangle = \sum_{x \in X} (A_i)_x (A_j)_x = \sum_{x \in A_i \cap A_j} 1 = |A_i \cap A_j| \mod 2$$

$$\langle A_i, A_i \rangle = |A_i|$$

Pak $\langle A_i, A_j \rangle = 0 \mod 2$. Vezmeme $m = \sum b_i A_i$, tak

$$\langle A_i, m \rangle = \langle A_i, \sum b_i A_i \rangle = \sum b_i \langle A_i, A_j \rangle = 0$$

$$\langle m, m \rangle = \langle \sum b_i A_i, m \rangle = \sum b_i \langle A_i, m \rangle = 0$$

Z toho maximální (vzhledem k inkluzi) systém tvořící sudo-sudomesto je nutně podprostor.

$$\forall x \in M \forall y \in M \langle x, y \rangle = 0 \Rightarrow \forall x \in M : x \in M^{\perp} \Rightarrow M \subseteq M^{\perp}$$

$$\langle M \rangle \subseteq M^{\perp} \Rightarrow dim M \leq dim M^{\perp} = n - dim M \Rightarrow dim \langle M \rangle \leq \lfloor n/2 \rfloor \Rightarrow dim M \leq \lfloor n/2 \rfloor$$

Odhad je těsný: spojíme body do 2-jic tvořící rozklad X. Pak množiny budou všechny možné podmnožiny obsahující 2ce. Je jich $2^{\lfloor n/2 \rfloor}$

Definice 3.2. Uvažme bijekci mezi napnutým podgrafem H a jého charakteristickým vektorem. Množina všech napnutých podgrafu ν_G tvoří V.P. nad \mathbb{Z}_2 , sčítaní vektoru odpovídá symetrické diferenci množiny hran.

Definice 3.3. Množina napnutých podgrafu je Eulerovská pokud $\forall u \in V, deg(u) = 0$ mod 2. Značíme ξ_G . Pak β_G je množina elementárních řezu, t.j. $B_A = (V, \{xy : x \in A, y \in V \setminus A, xy \in E\}), A \subseteq V$.

Věta 3.4 (Eulerovske grafy). ξ_G, β_G jsou V.P. podprostory ν_G . Platí $\xi_G^{\perp} = \beta_G \wedge \beta_G^{\perp} = \xi_G$. Pokud navíc je graf souvislý, $dim(\beta_G) = |V| - 1 \wedge dim(\xi_G) = |E| - |V| + 1$.

 $D\mathring{u}kaz$. 1) Násobení skalárem je automaticky splněno, protože těleso je \mathbb{Z}_2 .

- 2) $H_1 + H_2 = (V_1, E(H_1) \div E(H_2))$. Taky patří do V.P.
- 3) Ukážeme $\forall H_1, H_2 \in \xi_G : H_1 + H_2 \in \xi_G$. Zvolme vrchol u, nechť $deg_{H_1}u = 2k, deg_{H_2}u = 2l$, taky h je počet společných hran obou podgrafu.

$$deg_{H_1+H_2}u = 2k - h + 2l - h = 2k + 2l - 2h \equiv 0 \mod 2$$

Součet 2 Eulerovských grafu je Eulerovsky graf.

4) Ukážeme $\forall A, Z \subseteq V(G) : B_A + B_Z \in \beta_G$.

Z obrázku přežijou pouze hrany vědoucí z A-Z do $V-(Z\cup A)$, hrany z A-Z do $Z\cap A$, hrany $(Z\cap A)$ do Z-A a hrany ze Z-A do $V-(Z\cup A)$. Ostatní byly ve 2 řezích. Zůstane rez $B_{A\div Z}, A\div Z=(A-Z)\cup (Z-A)$.

$$B_A + B_Z = B_{A - Z}$$

Tvrdíme ze $B_G = \langle B_{\{u\}}, u \in V \rangle$. Prostor elementárních řezu je generovaný hvězdami. Protože

$$B_A = \sum_{u \in A} B_{\{u\}}$$

Hrany uvnitř A se smažou symetrickou diferenci, hrany vědoucí ven z A, které nejsou společné zůstanou.

5) G souvislý $\Rightarrow dim B_G = |V| - 1$. Náhledneme ze sečtení všech hvězd dává \emptyset graf. Neboli každá hrana patří ke 2 hvězdám.

Zafixujeme vrchol u, sečteme hvězdy kromě u. $\sum_{a\neq u} B_{\{a\}} = \emptyset - B_{\{u\}} = \emptyset$ Pokud vezmeme všechny kromě 1 hvězdy, tak jsou LN a generuji všechny řezy. Z toho $\Rightarrow dim B_G = |V| - 1$.

Pozorovaní:

$$\forall H \subseteq V : H \in \xi_G \iff \langle H, B_A \rangle = 0 \ \forall B_A \in B_G \iff \langle H, B_{\{u\}} \rangle = 0 \ \forall u \in V$$

Uvažme hvězdu $B_{\{u\}}$ a $deg_H u = 0 \mod 2$. Pak symetrická diference smaže přávě sudy počet hran z hvězdy a nově počet hran je taky sudy.

$$\forall u \in V : \langle H, B_{\{u\}} \rangle = 0 \iff deg_H u \equiv 0 \mod 2$$

$$\operatorname{Pak} \, \forall H \subseteq V : H \in \xi_G \iff H \in \beta_G^\perp \Rightarrow \xi_G^\perp = (\beta_G^\perp)^\perp = \beta_G \Rightarrow \dim(\xi_G) = |E| - |V| + 1$$

Lemma 3.5. $M \subseteq \mathbb{Z}_2^n : \bar{1} \in \langle M \rangle + M^{\perp}$.

 $D\mathring{u}kaz. \ \forall x \in M \cup M^{\perp} : \langle x, x \rangle = 0. \ \text{Nad} \ \mathbb{Z}_2 \ \text{ale} \ \langle x, x \rangle = \langle x, \overline{1} \rangle. \ \text{Pak}$

$$x \perp \bar{1} \Rightarrow \bar{1} \in (M \cap M^{\perp})^{\perp} = M^{\perp} + (M^{\perp})^{\perp} = M^{\perp} + M$$

Věta 3.6 (Rozklad na 2 Eulerovske podgrafy). $\forall G \exists V_1 \dot{\cup} V_2 = V(G), G[V_i] \text{ je Eulerovsky.}$

 $D\mathring{u}kaz$. Uvažme $M=\xi_G$ v tvrzeni z lemmatu. $\bar{1}=G$, má všechny hrany $\Rightarrow \bar{1}\in \xi_G+\xi_G^{\perp}=\xi_G+\beta_G$.

$$\forall G: \exists A \subseteq V(G), \exists H \in \xi_G: G = H + B_A$$

Tento rozklad je dizjunktní, takže máme 2 Eulerovské podgrafy a mezi nimi elementární rez. Pokud rez smažeme, graf je sjednoceni dvou Eulerovských podgrafu.

4 Seiduv switching

Definice 4.1. Nechť V je V.P nad T. Lineární forma je lineární zobrazeni $f: V \to T$. Pak lineární formy tvoří V.P. nad T. Značíme V^* a je tzv. duální prostor k V.

Definice 4.2. Nechť $B = \{b_1, b_2, ..., b_n\}$ je báze V, pak $B^* = \{f_1, f_2, ..., f_n\}$ je duální báze, pokud formy jsou dáne předpisem:

$$f_i(b_j) = \begin{cases} 1 & \text{pro } i = j \\ 0 & \text{pro } jinak \end{cases}$$

Definice 4.3. Nechť A,B jsou V.P nad T, dimA = n, dimB = k. Nechť $\varphi : A \to B$ homomorf. Pak duální homomorf k φ je zobrazeni $\varphi^* : B^* \to A^*$ dáne předpisem:

$$\forall f \in B^* \ \forall u \in A : (\varphi^*(f))(u) = f(\varphi(u))$$

Věta 4.4 (Matice duálního homomorf(BD)). Matice duálního homomorf vzhledem k duálním bázím je transponovanou matici k matici primárního homomorf.

$$_{C^*}[\varphi^*]_{B^*} = (_B[\varphi]_C)^T$$

 $D\mathring{u}kaz$. Matice zobrazeni lineární formy z prostoru $f:V\to T$ je

$$_{B}[f]_{k} = (f(b_{1}), f(b_{2}), ..., f(b_{n}))$$

Máme homomorf $\phi: V \to W$, pak lineární formy $h: W \to T$.

Duální homomorf $\phi^*: W^* \to V^*$ je definován:

$$\phi^*(f)(u) = f(\phi(u))$$

Jelikož lineární formy jsou n-tice, tak $dim(V) = dim(V^*)$. Matice ϕ je $_B[\phi]_C \in T^{k \times n}$. Matice ϕ^* je $_{C^*}[\phi^*]_{B^*} \in T^{n \times k}$. Veta říká, ze

$$_{C^*}[\varphi^*]_{B^*} = (_B[\varphi]_C)^T$$

Definice 4.5. Faktorprostor: faktorizace dle podprostoru W prostoru V (podgrupa). V/W jsou množiny $\forall u \in Vu + W$. Pak i faktorprostor je V.P vůči operacím:

$$(u+W)+(a+W)=(u+a)W, \lambda\cdot(u+W)=(\lambda\cdot u)+W$$

Platí: dim(V/W) = dimV - dimW.

Věta 4.6 (Izomorfismus faktorprostoru). Nechť $V = T^n$ a nechť W je podprostor. Pak

$$V/W^{\perp} \sim W^*$$

 $D\mathring{u}kaz$.

Pak izomorfizm ϕ je definován:

$$\phi(v + W^{\perp}) = \langle v, \cdot \rangle$$

Udělali jsme lineární formu z bilineární??

Pokud dosadíme proměnnou:

$$\forall x \in W : \phi(v + W^{\perp})(x) = \langle v, x \rangle$$

Chceme aby ϕ bylo korektně definované a splňovalo vlastnosti izomorfuzmu:

- 1) korektnost definice
- 2) lineární zobrazeni
- 3) proste
- 4) na

Důkaz:

1) $a \in v + W^{\perp} \iff a = v + b, b \in W^{\perp}$. Pak

$$\langle a, x \rangle = \langle v + b, x \rangle = \langle v, x \rangle + \langle b, x \rangle$$

Protože $x \in W \Rightarrow \langle b, x \rangle = 0 \Rightarrow \langle v, x \rangle = \langle a, x \rangle$.

- 2) Skalární součin je bilineární forma, z toho ϕ je lineární zobrazeni.
- 3) Necht $\phi(v+W^{\perp})=0 \Rightarrow \forall x \in W: \langle v,x \rangle=0 \Rightarrow v \in W^{\perp} \Rightarrow v+W^{\perp}=\bar{0}+W^{\perp}$. Takže v kernelu je pouze W^{\perp} .

4) Nahledneme z dimenzi.

$$Im(\phi) \le W^* \wedge dim(Im(\phi)) = dim(V/W^{\perp})$$

Rovnost dimenzi platí protože zobrazeni je prosté.

$$dim(Im(\phi)) = dim(V) - dim(W^{\perp}) = dim(V) - (dim(V) - dim(W)) = dim(W) = dim(W^*)$$

Z LA $Im(\phi)$ je vnořený podprostor stejné dimenzi jako nadprostor \Rightarrow jsou stejné.

Věta 4.7 (Burnsidovo lemma(BD)).

Lemma 4.8. Nechť grupa G provádí akci na množině M, grupa H na N. Nechť $\varphi: M \to N$ bijekce.

$$ifg \in G, h \in H, \forall m \in M : h\varphi(m) = \varphi(gm) \Rightarrow |G_g| = |H_h|$$

 $D\mathring{u}kaz$. Prvky v M_g jsou gm=m. Prvky v N_h jsou hn=n. Kvůli bijekci n lze jednoznačně vyjádřit jako:

$$n = \varphi(m) = \varphi(\varphi^{-1}(n))$$

Pak

$$h\varphi(m) = \varphi(m)$$

Diagram komutuje

$$\varphi(gm) = \varphi(m)$$

 φ je bijekce, takže prosté $\Rightarrow gm = m$. Dohromady # hn = n je totéž jako # gm = m. \square

Definice 4.9. Seiduv switching vymění všechny hrany a nehrany výcházející z $u \in V$. Ostatní vrcholy a hrany beze změn. Grafy $G \sim G' \iff G'$ lze získat z G postupným přepinaním vrcholu.

Poznámka 4.10.

$$G \sim G' \iff \exists A \subseteq V(G) : G' = S(G, A)$$

kde S(G,A) je switch cele podmnožiny. Hrany mezi A a zbytkem se prohodí.

Poznámka 4.11. Dva grafy na stejné množině vrcholu jsou Seidelovsky ekvivalentní \iff jsou ve stejné třídě faktorizace V_{K_V}/β_{K_V} . Proto je tříd ekvivalence tolik, kolik je Eulerovských grafu na dáne množině vrcholu.

Věta 4.12 (Pocet neiz trid Seide switching). Počet neizomorfních tříd ekvivalence při Seidelově switchingu na n vrcholech je roven počtu Eulerovských grafů na n vrcholech.

Důkaz. Pro lichá n, označme

$${A = \{u | deg_G(u) \equiv 1 \mod 2\}, |A| \equiv 0 \mod 2}$$

Uděláme switch množiny A: (G, A). Vezmeme vrchol $u \in V \setminus A$ Pak $deg_G(u) = a + b$, kde a je počet hran mimo A, b je počet hran vedoucích do A. Po switchu:

$$deg_{S(G,A)}(u) = a + |A| - b = deg_G(u) - 2b - |A| \equiv 0 \mod 2$$

Vezmeme vrchol $u \in A, deg_G(u) = c + d$, kde c jsou hrany v A, d hrany mimo A. Po switchu:

$$deg_{S(G,A)}(u) = c + |V \setminus A| - d = c + d - 2d + |V| - |A|$$

Kde (c+d) je liché, |V| je liché, |A| je sude. Dohromady sude.

Takže kazdy graf lze přeswitchovat na Eulerovský graf. Přeswitcheni Eulerovského grafu se změní na neeulerovský. V každém switching třídě je 1 Eulerovský graf.

Pro n sude. Nechť ν . je V.P. všech grafu na dáne množině vrcholu, B je prostor elementárních řezu na uplném grafu, ξ prostor Eulerovských grafu.

$$\beta = \xi^{\perp} \Rightarrow \xi^* \simeq \nu/B$$

Prvky ν/B jsou právě třídy ekvivalence dle Seidelovem switchingu. Chceme zjistit počet orbit akci grupy S(V).

Tvrdíme ze diagram komutuje. Nechť $G \in \nu$

$$\bar{\sigma}_B(G+B) \to \sigma(G) + B, \phi(\sigma(G)+B) \to \langle \bar{\sigma}(G), \cdot \rangle \in \xi^*$$

 $\phi(G+B) \to \langle G, \cdot \rangle \in \xi^*, (\bar{\sigma}^{-1})^*(\langle G, \cdot \rangle)$

Tvrdíme ze poslední prvky ve dvou řádcích jsou stejné.

$$\forall X \in \xi : \langle \bar{\sigma}(G)(X) \rangle = (\bar{\sigma}^{-1})^* (\langle G, \cdot \rangle) = \langle G, (\bar{\sigma}^{-1})(G) \rangle$$

Levá část

$$\langle \bar{\sigma}(G)(X)\rangle = |\{e|e \in E(\bar{\sigma} \cap E(X))\}$$

Pravá část

$$\langle G, (\bar{\sigma}^{-1})(G) \rangle = |\{e|e \in E(G) \cap (\bar{\sigma}^{-1})(X)\}$$

Z toho diagram komutuje.

Pak dle Burnsidova lemmatu: # orbit ν/B při akci $S(\nu) = \frac{1}{n!} \sum |(\nu/B)_{\sigma}|$.

Taky # orbit ξ^* při akci $S(V) = \frac{1}{n!} \sum |(\xi^*)_{\sigma}| = \frac{1}{n!} \sum |(\nu/B)_{\sigma^{-1}}|$. Zbývá dokázat, ze # orbit je stejný i pro ξ místo ξ^* .

5 Spekrum grafu, Moorovy grafy

Definice 5.1. Nechť G je r-regulární graf obvodu většího než 4 (nemá ani \triangle ani kružnice délky 4). Pak $|V(G)| > r^2 + 1$.

Definice 5.2. Moorovy grafy splnuji definice nahoře, ale navíc $|V(G)| = r^2 + 1$.

Věta 5.3 (Moorovy grafy). Moorovy grafy existují pro r = 1, 2, 3, 7, pravděpodobně r = 57. Pro žádné jiné r neexistují.

 $D\mathring{u}kaz$. 1) r = 1, cesta délky 2

- 2) r = 2, kružnice délky 5
- 3) r = 3 Petersenuv graf
- 4) r = 7 Hofman, Singleton graf

Ostatní r, nechť G je Mooruv graf, na $n=r^2+1$ vrcholech. Vezmeme matice sousednosti. A^2 má počet sledu délky 2 mezi vrcholu a-b. Na diagonále máme r, mimo diagonálu je 0 pokud mezi a-b v původním grafu vedla hrana. Naopak A^2 bude mít 1, pokud mezi a-b nevedla hrana v G.

$$A^{2} = rI + (J - I - A) \Rightarrow A^{2} = (r - 1)I + J - A \Rightarrow A^{2} + A - (r - 1)I = J$$

Vezmeme polynom $P(x) = x^2 + x - (r - 1)$. Pokud by $\lambda \in Sp(A) \Rightarrow \lambda^2 + \lambda - (r - 1) \in Sp(A^2) = Sp(J)$.

Jmá (n-1)násobné vlastní číslo $\lambda=0.$ Poslední vlastní číslo je n. Pak

$$\lambda^2 + \lambda - (r - 1) = 0 \lor n$$

r-regulární graf má největší vlastní číslo r. Dosadíme r do rovnice. $r^2 + r - (r-1) = r^2 + 1 = n$. Ostatní jsou nulové.

$$\lambda_{1,2} = 1/2 * (-1 \pm \sqrt{1 + 4(r - 1)}) = 1/2 * (-1 \pm \sqrt{4r - 3})$$

Pak $Sp(A) = \{r, \lambda_1^{m_1}, \lambda_2^{m_2}\}$. Ze spektra J víme $m_1 + m_2 = n - 1 = r^2$. Taky

$$\sum \lambda_i = tr(A) = 0 \Rightarrow r + m_1 \lambda_1 + m_2 \lambda_2 = 0$$

Vyřešíme systém 2 rovnic o 2 neznámých. Nechť

$$s = \sqrt{4r - 3}, s^2 = 4r - 3, r = 1/4 * (s^2 + 3)$$

$$r - 1/2(m_1 + m_2) + s/2(m_1 - m_2) = 0 \land m_1 + m_2 = r^2 \Rightarrow r - 1/2r^2 + s/2(m_1 - m_2) = 0$$

- 1) Nechť $s \notin Q \Rightarrow s/2 \notin Q \land r \in N \Rightarrow m_1 = m_2 \Rightarrow r^2 2r = 0 \Rightarrow r = 2$. Pro 2 máme takový graf.
- 2) Jinak $s \in \mathbb{N} \Rightarrow 1/4(s^2+3) (1/4(s^2+3))^2 * 1/2 + s/2(m_1 m_2) = 0$. Vynásobíme 32.

$$8(s^2+3) - (s^2+3)^2 + 16s(m_1 - m_2) = 0$$

Podíváme se jako na polynom s: $24 - 9 - s^4 + (...)s = 0$.

$$s^4 + s(...) - 15 = 0 \Rightarrow s|15 \Rightarrow s = \{1, 3, 5, 15\} \Rightarrow r = \{1, 3, 7, 57\}$$

6 Silne regulární grafy, propletani vl cisel

Definice 6.1. Silně regulární je graf pokud není uplný (triviální případ) a $\exists d, e, f \in \mathbb{N}$: $\forall v \in V \ deg(v) = d$. Každé 2 sousední vrcholy mají e společných sousedu (2 vrcholy leží v $e\Delta$), každé 2 nesousední vrcholy mají f společných sousedu ($\exists f$ cest délky 2).

Věta 6.2 (Silne regulární grafy (nebude u zkousky)). Je-li G silné regulární s parametry d, e, f, pak nastává jedna z 2 možností:

- f = e+1, d = 2f, |V(G)| = 2d+1 nebo
- $\exists s \in \mathbb{N} : s^2 = (e f)^2 4(f d) \land \frac{d}{2fs}((d 1 + f e)(s + f e) 2f) \in \mathbb{N}.$

 $D\mathring{u}kaz$. Nechť A je matice sousednosti G, n = |V(G)|, uvažme A^2 . Na diagonále jsou stupně d, mimo diagonálu pokud v A byla 1 - změní se na e, 0 se změní na f.

$$\vec{A} = \begin{pmatrix} d & e & f \\ e & d & f \\ f & d & d \end{pmatrix}$$

$$A^{2} = dI + eA + (J - I - A)f \Rightarrow A^{2} + (f - e)A + (f - d)I = fJ$$

Dosadíme vlastní číslo $\lambda \in Sp(A)$.

$$\lambda^2 + (f - e)\lambda + (f - d) \in Sp(fJ) = \{f * n, 0^{(n-1)}\}\$$

dodpovídá vlastnímu vektoru $\bar{1}$ u A, u J vlastnímu vektoru $\bar{1}$ odpovídá n. Dosadíme d:

$$d^{2} + (f - e)d + f - d = fn \Rightarrow d(d - e - 1) = f(n - d - 1)$$

Zafixujme nějaký vrchol $x \in V$. Kolik \exists indukovaných cest délky 2:

$$|\{(x,a)|xa,ab\in E(G)\land xb\notin E(g)\}|$$

Máme d způsobu zvolit souseda x, pak vrchol a má d sousedu, e jsou společné s x, x taky patří mezi sousedy. Dostaneme d(d-e-1). Na druhou stranu z pohledu vrcholu b. X má (n-d-1) nesousedu, pak vrchol a je mezi f sousedu (x,b). Dostaneme f(n-d-1). Pro $\lambda \in Sp(A) \setminus \{d\}$ zbývá 0:

$$\lambda^2 + (f - e)\lambda + f - d = 0 \Rightarrow \lambda_{1,2} = \frac{e - f \pm \sqrt{(e - f)^2 - 4(f - d)}}{2}$$

Označme $D = \sqrt{(e-f)^2 - 4(f-d)}$. Pak $\lambda_1 = 1/2(e-f+s), p$ krát a $\lambda_2 = 1/2(e-f-s), q$ krát.

Z násobnosti vlastních čísel

$$1+p+q=n$$

$$a+p\lambda_1+q\lambda_2=tr(A)=0$$

$$tr(A^2)=\sum \lambda_i^2=nd\Rightarrow d^2+p\lambda_1^2+q\lambda_2^2=nd$$

Vyřešíme soustavu 3 rovnic o 3 neznámých. Dosadíme hodnoty λ_1, λ_2 do 2. rovnice:

$$d+1/2p(e-d+s)+1/2q(e-f-s)=0 \Rightarrow d+1/2(p+q)(e-f)+1/2(p-q)s=0$$

Nastávaji 2 případy:

1) $s \notin \mathbb{Q} \Rightarrow$ poslední sčítanec je iracionální a nutně p=q=1/2(n-1).

$$d+1/2(n-1)(e-f) = 0 \Rightarrow \frac{2d}{n-1} = (f-e)$$

Pak stupeň vrcholu $d \leq (n-1)$

$$\frac{2d}{n-1} = (f-e) \le \frac{2(n-1)}{2} = 2$$

Pokud $(f-e)=2 \Rightarrow d=n-1 \Rightarrow G=K_n$ což jsme vyloučili definici. Jinak

$$(f-e) = 1 \land n = 2d+1$$

Pracujme s 3. rovnici:

$$d^{2} + 1/2(n-1) * 1/4(e-f+s)^{2} + 1/2(n-1) * 1/4(e-f-s)^{2} = nd$$

dosadíme (e-f) = -1.

$$\begin{aligned} d^2 + 1/2(n-1) * 1/4(s-1)^2 + 1/2(n-1) * 1/4(-1-s)^2 &= nd \\ 8d^2 + (n-1)(s^2 - 2s + 1) + (n-1)(s^2 + 2s + 1) &= 8nd \\ 8d^2 + (n-1)(s^2 - 2s + 1 + s^2 + 2s + 1) &= 8nd \\ 8d^2 + (n-1)(2s^2 + 2) &= 8nd \\ 4d^2 + (n-1)(s^2 + 1) &= 4nd \end{aligned}$$

Dosadíme n = 2d - 1

$$4d^{2} + 2d(s^{2} + 1) = 4(2d + 1)d$$
$$2d + (s^{2} + 1) = 2(2d + 1)$$

Pak $s^2 = 1 + 4(d - f)$

$$2d + 2 + 4d - 4f = 4d + 2$$
$$2d = 4f \Rightarrow d = 2f$$

2) Jinak $s \in \mathbb{Z}$ dosadíme do 2. a 3. rovnice n, vyřešíme pro p,q.

$$d+1/2p(e-d+s)+1/2q(e-f-s)=0$$

$$d^2+1/2(n-1)*1/4(e-f+s)^2+1/2(n-1)*1/4(e-f-s)^2=(1+q+p)d$$

Zbavíme se jmenovatele a roznásobíme kvadráty v 3.

$$p(e-d+s) + 1/2q(e-f-s) = 2d$$
$$p((e-f+s)^2 - 4d) + q((e-f-s)^2 - 4d) = 4d(1-d)$$

Spočítáme p,q pomoci determinantu

Dolní determinant

$$(e-f+s)((e-f-s)^2-4d)-(e-f-s)((e-f+s)^2-4d) = (e-f+s)(e-f-s)(e-f-s-e+f-s)+4d(e+f-s+e-f-s) = ((e-f)^2-s^2)(-2s)+4d(-2s) = (-2s)((e-f)^2+4d-s^2)$$

Dosadíme $s^2 = (e - f)^2 + 4(d - f)$.

$$(-2s)((e-f)^2 + 4d - (e-f)^2 + 4(d-f)) = -8fs$$

Horní determinant:

2 hours later...

$$p = \frac{d((d-1+f-e)(s+f-e)-2f)}{2fs} \in \mathbb{Z}$$

Věta 6.3 (Friendship theorem). Nechť v grafu G mají každé 2 různé vrcholy právě 1 společného souseda. Pak G obsahuje vrchol, který sousedi se všemi ostatní vrcholy grafu.

 $D\mathring{u}kaz$. Pokud platí $e = f = 1 \Rightarrow \exists v \in V$ který sousedi se všemi ostatní vrcholy. Nechť $N_G(u)$ je množina sousedu $u \in V$. Vezmeme množinový systém $\{N_G(u)|u \in V\}$. Pak průnik dvou množin je jednoprvkový.

$$\forall a \neq b : |N_G(a) \cap N_G(b)| = 1$$

Taky z obrázku

$$\forall a \neq b \; \exists ! N_G(w) : a, b \in N_G(w)$$

Což je skoro konečná projektivní rovina KPR. Chybí 3. axiom. Rozebereme 2 případy: 1) 3. axiom platí $\Rightarrow \{N_G\}$ je KPR. Pak

$$\forall a |N_G(a)| = m + 1 = deg(a)$$

 $n = |V(G)| = m^2 + m + 1$

Z čehož G je silné regulární s parametry $d=m+1 \wedge e=f=1$. První případ nastat nemůže kvůli podmínce na e=f=1. Neboli 2 případ:

$$p = \frac{d((d-1+f-e)(s+f-e)-2f)}{2fs} \in \mathbb{Z}$$
$$(e-f)^2 - 4(f-d) = s^2 \wedge e = f = 1 \Rightarrow s = 2\sqrt{m} = 2t$$

Dosadíme

$$p = \frac{t^2 + 1}{4t}((t^2 * 2t) - 2) = \frac{(t^2 + 1)(t^3 - 1)}{2t} \notin N : t > 1$$

Případ $t = 1 \Rightarrow m = 1$ není zajímavý protože KPR radu 1 je \triangle .

2) 3. axiom neplatí $\Rightarrow \{N_G\}$ z teorie KPR bud všechno leží na 1 přímce nebo jeden vrchol samostatně a zbytek na přímce. Pak ten samostatný vrchol je hledaný soused všech:

$$\exists a : N_G(a) = V(G) \setminus \{a\}$$

Věta 6.4 (vl čísla Hermitovske matice(BD)). Nechť $A \in \mathbb{C}^{n \times n}$ je Hermitovska, $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n$ její vlastní čísla. Nechť $b_1, b_2, ..., b_n \in \mathbb{C}^n$ je ortonormální báze z vlastních vektoru. Pak pro k = 1, 2, ..., n platí

$$x^*Ax \ge \lambda_k x^* x \forall x \in \langle \{b_1, b_2, ..., b_k\} \rangle$$
$$x^*Ax \le \lambda_k x^* x \forall x \in \langle \{b_k, b_{k+1}, ..., b_n\} \rangle$$

Věta 6.5 (Propletani vl cisel). Nechť $A \in \mathbb{C}^{n \times n}$ je Hermitovska, $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n$ její vlastní čísla. Nechť B je hlavni podmatice radu $k \times k$ (vznikne vynecháním (n-k) řádky), Nechť $b_1, b_2, ..., b_n \in \mathbb{C}^n$ jsou vlastní čísla matice B. Pak platí

$$\lambda_i \ge b_i \ge \lambda_{i+n-k}$$

 $D\mathring{u}kaz$. Nejprve se podíváme na případ vynechaní i-ho řádku. Nechť B má ortonormální báze $y_1, y_2, ..., y_{n-1} \in \mathbb{C}^{n-1}$. Vnoříme tyto vektory do \mathbb{C}^n tak, ze na pozici i-1 vložíme 0. Označíme je z(y). Pak

$$z^*(y)Az(y) = y^*By$$

Uvažme 3 množiny, j je libovolné

$$S_{1} = \langle \{x_{j}, x_{j+1}, ..., x_{n}\} \rangle$$

$$S_{2} = \langle \{y_{1}, y_{2}, ..., y_{j}\} \rangle$$

$$S_{3} = \{z(y) : y \in S_{2}\}$$

$$dimS_{1} = n - j + 1$$

$$dimS_{3} = dimS_{2} = j$$

$$dimS_{1} + dimS_{3} = n + 1 > dim(S_{1} + S_{2})$$

Z toho $dim(S_1 \cap S_2) > 0 \Rightarrow \exists l \neq 0 : l \in S_1 \cap S_2$. Podíváme se na

$$l \in S_1 \Rightarrow l^*Al \ge \lambda_j l^*l$$

$$l \in S_3, y \in S_2, l = z(y) : l^*Al = y^*By \ge b_j yy^* = b_j l^*l \le \lambda_j l^*l$$

$$\lambda_j l^*l \ge b_j l^*l \Rightarrow \lambda_j \ge b_j$$

Teď dokážeme $b_j \ge \lambda_{j+1}$

$$S_{1} = \langle \{x_{1}, x_{2}, ..., x_{j+1}\} \rangle$$

$$S_{2} = \langle \{y_{j}, y_{j+1}, ..., y_{n-1}\} \rangle$$

$$S_{3} = \{z(y) : y \in S_{2}\}$$

$$dimS_{1} = j + 1$$

$$dimS_{3} = dimS_{2} = n - j$$

$$dimS_{1} + dimS_{3} = n + 1 > dim(S_{1} + S_{2})$$

$$l \in S_1 \Rightarrow l^*Al \ge \lambda_{j+1}l^*l$$

$$l \in S_3, y \in S_2, l = z(y) : l^*Al = y^*By \le b_jyy^* = b_jl^*l \ge \lambda_{j+1}l^*l$$

$$\lambda_jl^*l \ge b_jl^*l \Rightarrow \lambda_{j+1} \le b_j$$

Teď pro obecně k.

Z obrázku

$$\lambda_i \ge k_i \ge \lambda_{i+k}, i = 1, 2, ..., n-k$$

Věta 6.6 (Nezav množina a vl čísla). Nechť G je graf o n vrcholech s vlastních čísly $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n$. Pak

$$\alpha(G) \le \min\{|\{i : \lambda_i \le 0\}|, |\{i : \lambda_i \ge 0\}|\}$$

 $D\mathring{u}kaz$. Necht $W \subseteq V(G)$ je nezávislá množina velkosti α . Matice sousednosti teto množiny je nulová $\alpha \times \alpha$. Taky je to hlavní podmatice A_G . Proto její vlastní čísla (nuly) propletaji vlastní čísla G. Z toho

$$\lambda_{\alpha} \ge 0 \ge \lambda_{n-\alpha+1}$$

7 Odhady pomoci spektra

Věta 7.1 (Propletani A). Nechť $A \in \mathbb{C}^{n \times n}$ Hermitovská. $S \in \mathbb{C}^{m \times n}$ taková, ze $S^*S = I$. Potom vlastní čísla S^*AS propletáji vlastní čísla matice A.

 $D\mathring{u}kaz$. Radky matice S jako vektory v \mathbb{C}^n lze rozšířit na ortonormální báze \mathbb{C}^n (Gram-Schmidt z LA). Sestavíme z ni matici T, nechť

$$R = \begin{pmatrix} S \\ T \end{pmatrix}$$

Pak $RR^* = I$ a

$$RAR^* = \begin{pmatrix} SAS^* & SAT^* \\ TAS^* & TAT^* \end{pmatrix}$$

Pak SAS^* je hlavni podmatice RAR^* , a vlastní čísla SAS^* propletaji vlastní čísla RAR^* . Přitom $Sp(RAR^*) = Sp(A)$ z LA, protože matice jsou podobné.

Věta 7.2 (Propletani B). Nechť:

$$\begin{pmatrix} A_{11} & A_{12} & \dots & A_{1m} \\ A_{21} & A_{22} & \dots & A_{2m} \\ \dots & \dots & \dots & \dots \\ A_{m1} & A_{m2} & \dots & A_{mm} \end{pmatrix}.$$

Je Hermitovská matice v blokovém tvaru. $A_{ij} \in \mathbb{C}^{m_i \times n_j}$. $\sum_{i=1}^m n_i = n$.

Pak nechť $B \in \mathbb{C}^{m \times m}$ je matice jejíž prvky $b_{ij} = \frac{\sum_{a \in A_{ij}} a}{n_i}$ jsou průměrné řádkové součty bloky A. Potom vlastní čísla B propletaji vlastní čísla A.

 $D\mathring{u}kaz$. Vezmeme matici $P \in \{0,1\}^{m \times n}$. Bude rozdělená do bloku velikosti $n_i, i = 1, 2, ..., n_m$. V každém řádku 1ky jsou v bloku i, jinak nuly.

Potom PP^T je diagonální matice D protože jedničky jsou na různých pozicích. Skalární součin dvou různých řádku je 0. Na diagonále je norma i-ho řádku $= n_i$.

Použijeme matici P abychom dostali řádkové součty matici A:

V matici PA dostaneme sloupcový součet po blocích. Pak v matici PAP^T dostaneme součty všech prvku v blocích.

Pro rovnost s matici B ještě potřebujeme vydělit n_i . Na což použijeme D^{-1} která má na diagonále $\frac{1}{n_i}$.

$$B = D^{-1}PAP^{T}$$

Nechť $S = D^{-1/2}P$. S je reálná matice, pro niž platí

$$SS^T = D^{-1/2}PP^T(D^{-1/2})^T = D^{-1/2}DD^{-1/2} = E$$

Dle Vety o propletani A 7.1, vlastní čísla SAS^T propletaji vlastní čísla A.

$$SAS^{T} = D^{-1/2}PAP^{T}(D^{-1/2})^{T} = D^{-1/2}DBD^{-1/2} = D^{1/2}BD^{-1/2}$$

Pak SAS^T a Bjsou podobné \Rightarrow mají stejný spektrum.

$$Sp(SAS^T) = Sp(B)$$

Věta 7.3 (Nezav množ v d-regulárním). Nechť G je d-regulární graf o n vrcholech s vlastní čísly $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n$ }. Pak

$$\alpha(G) \le n \frac{-\lambda_n}{d - \lambda_n}$$

 $D\mathring{u}kaz$. Necht A je matice sousednosti grafu G.

$$Sp(A) = \{\lambda_1 = d \ge \lambda_2 \ge \dots \ge \lambda_n\}$$
$$Sp(J) = \{n, 0^{n-1}\}$$

Matice A, J komutuji \Rightarrow mají společnou ortonormální báze.

$$\exists X : X^*X = E, X^*AX = \Lambda_A$$

Kde Λ_A je diagonální matice s vlastní čísly na diagonále, rozmíštěné dle uspořádaní. Podobně pro J:

$$X^*AX = \Lambda_J, (\Lambda_J)_{1,1} = n$$

Z věty o ortonormální bázi vlastní vektor příslušný největšímu vlastnímu číslu je nezáporný. Ostatní mají záporné složky. Pak vektor $\bar{1}$ je příslušný největšímu vlastnímu číslu A - d. Taky odpovídá vlastnímu číslu n matice J.

Uvažme matici:

$$C = A - \frac{1}{n}(d - \lambda_n)J$$

Její vlastní čísla jsou lineární kombinace vlastních čísel A, J.

$$X^*CX = X^*(A - \frac{1}{n}(d - \lambda_n)J)X = X^*AX - \frac{1}{n}(d - \lambda_n)X^*JX = \Lambda_A - \Lambda_K = \Lambda_C$$

Kde $(\Lambda_K)_{1,1} = d - \lambda_n$, jinak 0. Z toho Λ_C má na diagonále $\{\lambda_n, \lambda_2, ..., \lambda_n\}$. Odtud λ_n je největší vlastní číslo matice C.

Nechť $W \subseteq V(G)$ je nezávislá množina G, $|W| = \alpha(G)$. Pak matice A, po seskupeni řádku odpovídajících W, má nulovou hlavni podmatice odpovídající W. Z toho matice C má na těchto pozicích $-\frac{1}{n}(d-\lambda_n)$. Taky je to hlavni podmatice.

Vlastní čísla matice $-\frac{1}{n}(d-\lambda_n)J$ propletaji vlastní čísla matice C.

$$Sp\left(-\frac{1}{n}(d-\lambda_n)J\right) = \{0^{\alpha-1}, \alpha * -\frac{1}{n}(d-\lambda_n)\}$$

Z vety o propletaní:

$$\alpha(G) * -\frac{1}{n}(d - \lambda_n) \ge \lambda_n \Rightarrow \alpha(G) \le n \frac{-\lambda_n}{d - \lambda_n}$$

Důsledek 7.4. Nechť G je d-regulární graf o n vrcholech s vlastní čísly $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n$ }. Pak

 $\chi(G) \ge 1 + \frac{\lambda_1}{|\lambda_n|}$

Plyne z toho, ze $\chi(G) \ge \frac{n}{\alpha(G)}$. Barveni grafu je rozložení ne $\chi(G)$ nezávislých množin. Kazda z nich má velikost $\chi(G)/\alpha(G)$. Kombinaci dvou nerovnosti dostaneme tvrzeni.

Věta 7.5 (Polomer spektra grafu). Nechť G je graf o n vrcholech s vlastní čísly $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n$ }. Pak

$$\Delta(G) \ge \lambda_1 \ge deg_{avg}(G)$$

 $Kde \ \Delta(G) \ je \ max \ deg \ grafu.$

 $D\mathring{u}kaz$. 1) Nerovnost $\Delta(G) \geq \lambda_1$. Doplníme G na Δ -regulární graf H tak, aby G byl jeho indukovaný podgraf. Pak vlastní čísla G propletaji vlastní čísla H. $\lambda_{max}(H) = \Delta \Rightarrow \Delta(G) \geq \lambda_1$.

2) Nerovnost $\lambda_1 \geq deg_{avg}(G)$. Vezmeme matice sousednosti A, představíme ji jako matici s 1 blokem. Pak matice průměrných řádkových součtu je $B = deg_{avg}(G)$ jednoprvková. Dle Vety o propletaní B 7.2, $Sp(B) = \{deg_{avg}(G)\}$ propleta spektrum A $\Rightarrow \lambda_1 \geq deg_{avg}(G)$.

Věta 7.6 (Barevnost libovolného grafu). Nechť G je graf o n vrcholech s vlastní čísly $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n$. Pak

$$\chi(G) \le 1 + \lambda_1$$

 $D\mathring{u}kaz$. Necht H je χ -kriticky indukovaný podgraf grafu G. Minimální stupeň vrcholu v χ -kritickém grafu je aspoň $\chi-1$. Označme jeho největší vlastní číslo jako h_1 . Z vety o propletaní plyne $\lambda_1 \geq h_1$. Z vety poloměru spektra 7.5 dostáváme

$$h_1 \ge deg_{avg}(H) \ge \delta(H) \ge \chi - 1 \Rightarrow \lambda_1 \ge \chi - 1$$

Věta 7.7 (Nezav množ v libovolnem grafu). Nechť G je graf o n vrcholech s vlastní čísly $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n$ }. Pak

$$\alpha(G) \le n \frac{-\lambda_1 \lambda_n}{\sigma^2(G) - \lambda_1 \lambda_n}$$

 $D\mathring{u}kaz.$ Nechť $W\subseteq V(G)$ je nezávislá množina $G,\,|W|=\alpha(G).$ Rozdělíme matice A dle W a $V\setminus W.$

Použijeme Vetu o propletaní B 7.2.

$$B = \begin{pmatrix} 0 & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

Pak $Sp(B) = \{h_1 \ge h_2\}$ propleta Sp(A) = Sp(G).

Dal víme, ze počet hran mezi W a $v \setminus W$ se rovna

$$\alpha b_{12} = (n-\alpha)b_{21} \Rightarrow b_{21} = \frac{\alpha}{n-\alpha}b_{12}$$

Z LA součin vlastních čísel je determinant:

$$h_1h_2 = det(B) = -b_{12} \cdot b_{21} = b_{12}^2 \cdot \frac{\alpha}{n - \alpha}$$

Z propletaní:

$$\lambda_1 \ge h_1 \ge h_2 \ge \lambda_n \Rightarrow -h_2 \le -\lambda_n \Rightarrow -h_1 h_2 \le -\lambda_1 \lambda_n$$

Protože všichni sousede vrcholu z W jsou z $V(G) \setminus W \Rightarrow b_{12} \geq \delta(G)$.

$$-\delta^{2}(G)\frac{\alpha}{n-\alpha} \leq -\lambda_{1}\lambda_{n}$$
$$-\delta^{2}(G)\alpha \leq (n-\alpha) * (-\lambda_{1}\lambda_{n})$$
$$\alpha(\delta^{2}(G) - \lambda_{1}\lambda_{n}) \leq n(-\lambda_{1}\lambda_{n})$$
$$\alpha(G) \leq n\frac{-\lambda_{1}\lambda_{n}}{\sigma^{2}(G) - \lambda_{1}\lambda_{n}}$$

Věta 7.8 (Barevnost souvislého grafu). Nechť G je souvislý graf o n vrcholech s vlastnímu čísly $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n$. Pak

$$\chi(G) \ge 1 + \frac{\lambda_1}{|\lambda_n|}$$

Veta je analogická důsledku vety 1, zesiluje ji pro souvisle grafy.

 $D\mathring{u}kaz$. Obarvíme graf pomoci χ barev. Nechť x je reálný vlastní vektor příslušný vlastnímu číslu λ_1 (Existuje dle Frobeniove vety). Ze souvislosti $x_i > 0 \forall i$. Sestavíme matici $P \in \mathbb{R}^{\chi \times n}$.

$$P_{ij} = \begin{cases} x_j & \text{pro } j \in W \\ 0 & \text{pro } j \notin W \end{cases}$$

Pak $PP^T=D$ je diagonální matice, na diagonále $\sum_{u\in W_j} x_u^2>0$. Nechť $S=D^{-1/2}P$. Protože

$$SS^T = D^{-1/2}PP^T(D^{-1/2})^T = D^{-1/2}DD^{-1/2} = I$$

Dle Vety o propletaní A 7.1, vlastní čísla SAS^T propletaji vlastní čísla A. Nechť vlastní čísla SAS^T jsou $\{h_1,h_2,...,h_\chi\}$. Má na diagonále samé nuly, z toho

$$\sum_{0}^{\chi} h_i = 0$$

Dal

$$SAS^{T}D^{1/2} \cdot \bar{1} = SAP^{T}D^{-1/2}D^{1/2} \cdot \bar{1} = SAP^{T}\bar{1}$$

$$P^T \cdot \bar{1} = x \Rightarrow SAP^T \bar{1} = SAx = \lambda_1 Sx = \lambda_1 D^{-1/2} PP^T \bar{1} = \lambda_1 D^{-1/2} D\bar{1} = \lambda_1 D^{1/2} \bar{1}$$

Dostáváme

$$SAS^TD^{1/2} \cdot \bar{1} = \lambda_1 D^{1/2} \bar{1} \Rightarrow \lambda_1 \in Sp(SAS^T)$$

Ale taky odpovídá nenulovému reálnému vlastnímu vektoru, takže $\lambda_1=h_1$. Použijeme propletani

$$h_1 = \lambda_1 \ge h_2 \ge \dots \ge h_\chi \ge \lambda_n \land \sum h_i = 0 \Rightarrow -\lambda_1 = h_1 = -\sum_{i=1}^{\chi} h_i$$

Použijeme horní odhad pro součet přes # sčítanců krát min hodnota (λ_n) .

$$-\lambda_1 = h_1 = -\sum_{i=1}^{\chi} h_i \ge (\chi - 1)(-\lambda_n)$$

Po upravě

$$\chi(G) \ge 1 + \frac{\lambda_1}{|\lambda_n|}$$

8 Shannonova kapacita

Definice 8.1. Nechť A je abeceda, $A = \{a, e, o, h, g\}$. Pak sestavíme graf $G_A = (A, \{xy | x \sim y\})$. Kde ekvivalence znamená, že x je snadno zamění za y.

Pak by šlo vzít nezávislou množinu a používat jen tyto symboly. Zbylo by hodně málo symbolu.

Lepe - dohodneme se na pevné délce. Vezmeme $C \subseteq A^n$. Pak bezpečný kod bude používat pouze slova z C. Dal sestavíme G_{A^n} graf zaměnitelnosti pro A^n .

Pozorování 8.2. 2 slova jsou zaměnitelná \iff mají na i-te pozice stejné písmeno nebo zaměnitelné. Přesné odpovídá uplnému součinu grafu.

Definice 8.3. Pro grafy G, H definujme uplný součin grafu jako graf

$$G\boxtimes H=(V(G)\times V(H),\{(a,b)(x,y):(a=x\vee ax\in E(G))\wedge (b=y\vee by\in E(H))\})$$

Kde vrcholy a, x jsou z grafu G, b, y z grafu H. Taky definujme $G^n = G \boxtimes G \boxtimes ... \boxtimes G$.

Definice 8.4. Shannonova kapacita grafu G:

$$\Theta(G) = \sup_{k} \sqrt[k]{\alpha(G^k)}, \forall k$$

Pozorování 8.5.

$$\forall G\Theta(G) \ge \alpha(G)$$

Pokud v grafu je nezávislá množina $B\subseteq V(G), |B|=\alpha(G).$ Pak B^k je taky nezávislá množina. Z toho

 $\sqrt[k]{\alpha(G^k)} \ge \sqrt[k]{\alpha(B^k)} = \sqrt[k]{\alpha^k(G)} = \alpha(G)$

Pozorování 8.6. Nechť $\sigma(G) = \chi(-G)$. Což je minimální počet uplných podgrafu pokrývajících množ grafu. Pak

$$\Theta(G) \leq \sigma(G)$$

Protože $K_n \boxtimes K_m = K_{mn}$. Součin uplných je uplný graf, jiná možnost není (jsou tam všechny hrany). Takže

$$\sigma(G^k) \leq \sigma^k(G) \Rightarrow \sqrt[k]{\sigma(G^k)} \leq \sigma(G) \Rightarrow \Theta(G) \leq \sigma(G)$$

Pozorování 8.7. G je perfektní graf $\Rightarrow \sigma(G) = \alpha(G)$. Pak

$$\alpha(G) \le \Theta(G) \le \sigma(G) = \alpha(G)$$

Definice 8.8. Lovascova ortonormální reprezentace grafu je zobrazeni $f:V\to\mathbb{R}^d$ splňující:

- $||f(u)|| = \langle f(u), f(u) \rangle = 1 \forall u \in V$ a
- $\langle f(a), f(b) \rangle = 0 \forall a \neq b \land ab \notin E(G).$

Pak velikost reprezentace je:

$$||f|| = \inf_{c:||c||=1} \max_{a \in V} \frac{1}{\langle c, f(a) \rangle^2}$$

Příklad 8.9. Pro graf který nemá žádný vrchol potřebujeme systém vzájemné \bot vektoru velikosti V(G), neboli prostor dimenze V(G).

Pro uplný graf stačí volit vektory stejného směru nebo dokonce stejné.

Definice 8.10. Lovascova dzeta funkce grafu G:

$$\vartheta(G) = \inf_{f} ||f||$$

Chceme pro nějakou reprezentace najít takový jednotkový vektor c, který minimalizuje hodnotu $\langle c, f(u) \rangle^2$.

Příklad 8.11. Pro uplný graf zvolíme reprezentaci která se skládá ze stejných vektoru, c vezmeme ve stejném směru. Pak všechny skalární součiny jsou 1. Z toho

$$\vartheta(K_n) \leq 1$$

Definice 8.12. Rukojeť reprezentace f je vektor c (jednotkový vektor), pro který f nabývá minima. Infimum v def velikosti ortonormální reprezentace se nabývá, protože f = f(c) je spojitá a zdola omezena.

V definici stačí uvazovat omezenou dimenzi, např $d \leq |V(G)|$.

Infimum v def dzeta funkce se taky nabývá, protože ||f|| je spojitá funkce f. Pak

$$\vartheta(G) = \min_{f} \min_{c:||c||=1} \max_{a \in V} \frac{1}{\langle c, f(a) \rangle^2}$$

Úmluva 8.13. Může se stát, ze rukojeť je vektor kolmý na nějaký z vektoru f. Pak $\vartheta(G) = \infty$. Budeme se ale takovým rukojetím vyhýbat. Všechny vektory reprezentace leží v nadrovině, je jich konečně mnoho.

Lemma 8.14. $\forall G : \alpha(G) \leq \vartheta(G)$.

 $D\mathring{u}kaz$. Nechť G je graf, a máme optimální reprezentace f s rukojeti c. $||f|| = \vartheta(G)$. Taky $W \subseteq V(G)$ je nezávislá množina:

$$\alpha(G) = |W|$$

Vektory reprezentující W jsou na sebe kolmé. Můžeme je doplnit na ortonormální báze B prostoru \mathbb{R}^d . Pak rukojeť můžeme napsat jako lineární kombinace pomoci vektoru z B:

$$c = \sum_{b \in B} \langle c, a \rangle \cdot b$$

Dal c je jednotkový vektor:

$$1 = \langle c, c \rangle = \langle \sum_{v} \langle c, v \rangle, \sum_{v} \langle c, v \rangle \rangle = \sum_{u} \sum_{v} \langle c, u \rangle \langle c, v \rangle \langle u, v \rangle$$

vektory u, v jsou z ortonormální báze, takže pro $u \neq v$ je součet nula, jinak místo posledního skalárního součinu tam bude 1. Pak dostaneme součet vlevo, který je větší než suma pro vektory reprezentace nezávislé množiny.

$$\sum_{b \in B} \langle c, b \rangle^2 \ge \sum_{u \in W} \langle c, f(u) \rangle^2$$

Nahledneme že velikost skalárního součinu je omezena maximumem pro všechny vrcholy, což je právě $\vartheta(G)$.

$$\forall a \in V(G) : \frac{1}{\langle c, f(a) \rangle^2} \le \vartheta(G) \Rightarrow \langle c, f(a) \rangle^2 \ge \frac{1}{\vartheta(G)}$$

$$\sum_{u \in W} \langle c, f(u) \rangle^2 \ge \sum_{a \in W} \frac{1}{\vartheta(G)}$$

Sčítáme přes velikost nezávislé množiny, dostaneme $\frac{\alpha(G)}{\vartheta(G)}$ Dohromady

$$1 = ||c|| \ge \frac{\alpha(G)}{\vartheta(G)} \Rightarrow \vartheta(G) \ge \alpha(G)$$

Lemma 8.15. $\forall G, \forall H : \vartheta(G \boxtimes H) \leq \vartheta(G) \cdot \vartheta(H)$. Taky

$$\forall G \forall k \in \mathbb{N} : \vartheta(G^k) \le \vartheta^k(G)$$

 $D\mathring{u}kaz$. Nechť f je optimální ortonormální reprezentace G s rukojeti c. Podobně g pro H s rukojeti d. Uvažme tenzorový součin $f \circ g$ jako ortonormální reprezentace součinu grafu.

$$(u,v) \in V(G \boxtimes H), (f \circ g)(u,v) = (f(u) \circ g(v)) = (f(u)_i g(v)_j)_{i,j}, i = 1,2,...,n_1; j = 1,2,...,n_2$$

Vezmeme $(u,v),(u',v'):(uu'\notin E(G)\land u\neq u')\lor(vv'\notin E(H)\land v\neq v')$. Pak

$$\langle f(u) \circ g(v), f(u') \circ g(v') \rangle = \langle f(u), f(u') \rangle \cdot \langle g(v), g(v') \rangle$$

Pak bud jeden skalární součin je 0 nebo druhy z volby vrcholu. Takže

$$\langle f(u), f(u') \rangle \cdot \langle g(v), g(v') \rangle = 0$$

Pak rukojeť pro $G \boxtimes H$ bude $c \circ d$. Pak

$$||f \circ g|| \leq \max_{u,v} \frac{1}{\langle c \circ d, f(u) \circ g(v) \rangle^2} = \max \frac{1}{\langle c, f(u) \rangle^2 \cdot \langle d, g(v) \rangle^2}$$

Max je dvou funkci je menší než součin max dvou funkci:

$$\max \frac{1}{\langle c, f(u) \rangle^2 \cdot \langle d, g(v) \rangle^2} \leq \max_{u} \frac{1}{\langle c, f(u) \rangle^2} \max_{v} \frac{1}{\langle d, g(v) \rangle^2} = \vartheta(G) * \vartheta(H)$$

Lemma 8.16. $\forall G : \Theta(G) \leq \vartheta(G)$.

Důkaz.

$$\Theta(G) = \sup_k \sqrt[k]{\alpha(G^k)} \leq \sup_k \sqrt[k]{\vartheta(G^k)} \leq \sup_k \sqrt[k]{\vartheta^k(G)} = \vartheta(G)$$

Věta 8.17 (Shannonova kapacita C_5). $\Theta(C_5) = \sqrt{5}$.

 $D\mathring{u}kaz.$ Víme $\alpha(C_5^2)=5\Rightarrow \vartheta(C_5)\geq \sqrt{5}.$ Ukážeme $\vartheta(C_5)\leq \sqrt{5}.$ Z toho

$$\sqrt{5} \le \Theta(C_5) \le \vartheta(C_5) \le \sqrt{5}$$

Odkud platí i rovnost.

Pro důkaz stačí uvážit ortonormální reprezentaci C_5 která se jmenuje Lovascovuv deštník.

9 Samoopravné a perfektní kody, Lloydova veta

Definice 9.1. Nechť A je konečná množina (abeceda), q = |A|. Na množině slov $w \in A^n, |w| = n$ definujme Hammingovu metriku jako počet písmen ve kterých se liší

$$d_H(x,y) = |\{i : x_i \neq y_i\}|$$

Libovolnou $C \subseteq A^n$ nazýváme kodem délky n nad abecedou o q symbolech. C opravuje t chyb, pokud

$$d_H(x,y) > 2t + 1$$

Pozorování 9.2. Pokud vezmeme graf všech slov délky n, hrany povedou mezi 2 slova které se liší přesně v 1 souřadnice. Pak grafová vzdálenost je právě Hammingova metrika. Na druhou stranu tento graf je n-ta kartezská mocnina grafu o q vrcholech.

Kod C opravuje t chyb \iff okolí kodových slov o poloměru t jsou po 2 dizjunktní.

Pozorování 9.3. Kartezský hrana \times hrana je \square .

Definice 9.4.

$$\Gamma(n,q) = (A^n, \{xy : d_H(x,y) = 1\}) = K_q^n$$

Poznámka 9.5. Pokud kod C opravuje t chyb, pak

$$|C| \le \frac{q^n}{\sum_0^t \binom{n}{i} (q-1)^i}$$

Vezmeme okolí bodu x poloměru t:

$$|N_{\Gamma}(x)| = 1 + n(q-1) + \dots =$$

Kde 1 je vrchol sam, pak máme n pozic na každé může dojit k(q-1) chybám.

$$= \frac{q^n}{\sum_0^t \binom{n}{i} (q-1)^i}$$

binom odpovídá způsobům zvolit písmeno. $(q-1)^i$ je počet chyb. Pak nerovnice pro velikost C je # všech slov děleno velikosti okolí.

Definice 9.6. Kod je t-perfektní, právě když |C| > 1, C opravuje t chyb a nastává rovnost.

$$|C| = \frac{q^n}{\sum_{0}^{t} \binom{n}{i} (q-1)^i}$$

Cely graf je pokryty okolí o poloměru t. Využívají beze zbytku cely graf (kodova slova).

Poznámka 9.7. Perfektní kody skoro neexistuji.

Pozorování 9.8. pro $q = p^r$, C je t-perfektní kod délky n.

$$|C| = \frac{q^n}{\sum_{0}^{t} \binom{n}{i} (q-1)^i} \in \mathbb{Z}$$

Pak suma v jmenovateli dělí $q^n=p^{rm}$. Takže i suma je mocnina p. Dokážeme ze suma se rovna $q^l, l \in \mathbb{N}$.

Důkaz.

$$\sum_0^t \binom{n}{i} (q-1)^i = q^a p^b = p^{ra+b}, 0 \ge b < r$$

Upravíme sumu

$$\begin{split} 1 + \sum_{1}^{t} \binom{n}{i} (q-1)^{i} &= p^{ra+b} \\ (q-1) \sum_{1}^{t} \binom{n}{i} (q-1)^{i-1} &= p^{ra+b} - 1 \\ \sum_{1}^{t} \binom{n}{i} (q-1)^{i-1} &= \frac{q^{a}p^{b} - 1}{q-1} = \frac{q^{a}p^{b} - p^{b} + p^{b} - 1}{q-1} = p^{b} \frac{q^{a} - 1}{q-1} + \frac{p^{b} - 1}{p^{r} - 1} \end{split}$$

Pak $\frac{q^a-1}{q-1} \in \mathbb{Z}$ jako součet geometrické rady. Druhy zlomek ale $\in (0,1)$. Což dává dohromady cele číslo pouze b=0.

Věta 9.9 (Hammingovy kody). Nechť $q=p^r$. Pak 1-perfektní kod délky n nad abecedou o 1 symbolech existuje $\iff n=\frac{q^k-1}{q-1}, k\in\mathbb{N}$. Což dostaneme dosazením t=1 do rovnice minulého pozorovaní:

$$1 + n(q-1) = q^k \Rightarrow n = \frac{q^k - 1}{q - 1}$$

 $D\mathring{u}kaz.$ Nechť $C\subseteq\mathbb{Z}_q^n.$ Sestavíme matici $H\in\mathbb{Z}_q^{k\times n}$ tak, aby sloupce byly po 2 lineárně

V každé složce můžeme vzít q^k symbolu. Nulový vektor používat nemůžeme. Dohromady (q^k-1) vektoru. Vezmeme nějaký vektor, lineárně závislé s nim jsou jeho násobky skalárem kromě 0 - (q-1). Proto

$$n = \frac{q^k - 1}{q - 1}$$

Podíváme se na $Ker(H) \subseteq \mathbb{Z}_q^n$. Víme

$$\dim(Ker(H)) = n - rank(H) = n - k$$

Tvrdíme, ze v jádru jsou vektory které mají vzdálenost aspoň 3. Pokud by existovali vektory vzdálenosti 2. Jejich rozdíl $\in Ker(H)$. Dostali bychom vektor y který má nejvýše 2 nenulové souřadnice. Po vynásobení Hy dostali bychom lineární kombinace 2 vektoru které jsou dle volby lineárně nezávislé.

$$|C| = q^{n-k} = \frac{q^n}{q^k} = \frac{q^n}{1 + n(q-1)}$$

Věta 9.10 (Prvociselne perf. kody(BD)). Pro $q = p^r$ neexistuji perfektní kody jiných parametru než Hammingovy, Golayovy (a opakovací kod s parametry q = 2, n = 2t + 1, který je považován za triviální).

Věta 9.11 (Prvociselne perf. kody $t \ge 3$ (BD)). Pro $q = p^r$ neexistuji žádné t-perfektní $kody \ opravující \ t \geq 3 \ chyb.$

Věta 9.12 (Lloyd). Pokud existuje t-perfektní kod délky n nad abecedou o q symbolech, pak polynom:

$$L_t(x) = \sum_{j=0}^{t} (-1)^j (q-1)^{t-j} {x-1 \choose j} {n-x \choose t-j}$$

má t různých kladných celočíselných kořenu menších než n. Je to polynom stupně t. Myšlenka důkazu: najdeme 2 kořeny od sebe vzdálené min než 1. Pak nemůžou byt celočíselné.

 $Pro\ t = 1,2$ umíme kořeny najít, takže Lloydova veta je příliš slabá.

 $D\mathring{u}kaz.$ TODO předn9od 34:00