(1. Let (X, Σ, μ) be a measure space. For $A \in P(X)$ define $\mu^*(A) = \inf\{\mu(E) \mid E \supseteq \{\mu(E) \mid E \supseteq \{\mu(E$ -, $A\&E\in\Sigma$ }, and $\mu_*(A)=\sup\{\mu(E)\mid E\subseteq A\&E\in\Sigma\}$. Assignment 2: Assigned Wed 09/12. Due Wed 09/19 There is a firm 'no late homework' policy.

Due Wed 09/12

e the Lebesgue measure.

 $\sqrt{\frac{1}{2}}$ (a) Show that μ^* is an outer measure.

 $\wedge^* \mathcal{L}_{\mathcal{A}}^{\mathscr{L}}(c)$ Show that for all $A \subseteq X$, $\mu^*(A) + \mu_*(A^c) = \mu(X)$. te the Lebesgue outer measure.

a(V) < d, then show that $\lambda(V) = 0$. $f(\mathcal{L}) = f(\mathcal{L}) = f(\mathcal{L$

that $F \subseteq A \subseteq G$ and $\lambda(G - F) = 0$. Conclude $\mathcal{B}_{\lambda} = \mathcal{L}$. $\lambda(A)$. [Hint: Express T in terms of elementary ς/ς al linear transformation, and $A \in \mathcal{L}$. Show

Solution is Lebesgue measurable $\Leftrightarrow \lambda(A) = 0$. Solution if $A \in \mathcal{L}(\mathbb{R}^d)$, Prove every subset of A is Lebesgue measurable $\Leftrightarrow \lambda(A) = 0$. Solve $B(\mathbb{R}^{m+n}) = \sigma(\{A \times B \mid A \in B(\mathbb{R}^m) \& B \in \mathcal{B}(\mathbb{R}^n)\})$.

(b) Prove $\mathcal{L}(\mathbb{R}^{m+n}) \supseteq \sigma(\{A \times B \mid A \in \mathcal{L}(\mathbb{R}^m) \& B \in \mathcal{L}(\mathbb{R}^n)\})$. (c., [6] **2** (c) Show $\mathcal{L}(\mathbb{R}^2) \supseteq \mathcal{B}(\mathbb{R}^2)$. e. $\begin{cases} \boldsymbol{v} \\ 0 \end{cases} > 0 \text{ and define } \mathcal{E}_{\delta} = \{B(x,r) \mid x \in X, r \in \mathbb{R} \}$

 $\mathcal{E}_i) \mid E_i \in \mathcal{E}, \text{ and } A \subseteq \bigcup E_j$.

We say $\mathcal{A} \subseteq \mathcal{P}(\mathbb{R})$ so that for all a < b, we have $0 < \lambda(E \cap (a,b)) < b - a$. $\sum_{j} \mathcal{A}_{j} = 0$. We say $\mathcal{A} \subseteq \mathcal{P}(X)$ is an algebra if $\emptyset \in \mathcal{A}_{j}$ and A is closed under complements and finite unions. We say $\mu_{0}: \mathcal{A} \to [0,\infty]$ is a (positive) pre-measure on A if $\mu_0(\emptyset) = 0$, and for any countable disjoint sequence of sets sequence $A_i \in \mathcal{A}$ such that $\bigcup_{1}^{\infty} A_{i} \in \mathcal{A}, \text{ we have } \mu_{0}(\bigcup_{1}^{\infty} A_{i}) = \sum_{1}^{\infty} \mu_{0}(A_{i}).$ $H_{\alpha,\delta}^*$ be the outer measure obtained with $(c,r) = c_{\alpha}r^{\alpha}$, where $c_{\alpha} = \pi^{\alpha/2}/\Gamma(1+\alpha/2)$

l restricts to a measure H_{α} on a σ -algebra Mamely, a pre-measure is a finitely additive measure on an algebra \mathcal{A} , which is also countably additive for disjoint unions that belong to the algebra. on of sets \mathcal{E}_{δ} . Define $H_{\alpha}^* = \lim_{\delta \to 0} H_{\alpha,\delta}^*$. measure H_{α} is called the Hausdorff mea-

(5. (Caratheodory extension) If A is an algebra, and μ_0 is a pre-measure on A, show that there exists a measure μ defined on $\sigma(A)$ that extends μ_0 .

 H_d is the Lebesgue measure.

e Caratheodory.

Optional problems, and details in class I left for you to check. e exists (a unique) $d \in [0, \infty]$ such that and $H_{\alpha}(S) = 0$ for all $\alpha \in (d, \infty)$. This

of $\mathcal{L}(\mathbb{R})$ is the same as that of $\mathcal{P}(\mathbb{R})$. Conclude $\mathcal{B}(\mathbb{R}) \subsetneq \mathcal{L}(\mathbb{R})$. [There are of course Show that the cardinality $\mathcal{B}(\mathbb{R})$ is the same as that of \mathbb{R} , however, the cardinality * Prove any open subset of \mathbb{R}^d is a countable union of cells. Conclude $\mathcal{L}\supseteq\mathcal{B}$.

* If $A_i \in \Sigma$ are such that $A_i \supseteq A_{i+1}$, show that $\mu(\bigcap_{i=1}^{\infty} A_i) = \lim_{i \to \infty} \mu(A_i)$, provided $\mu(A_1) < \infty$. Given an example to show this is not true if $\mu(A_1) = \infty$.

いないろういろう

* We saw in class $\lambda(A) = \sup\{\lambda(K) \mid K \subseteq A \& K \text{ is compact}\}$ for all bounded sets $A \in \mathcal{L}$. Prove it for arbitrary $A \in \mathcal{L}$.

of σ -algebras on X is also a σ -algebra.

lls. Show it for arbitrary cells.

 $|a \in \mathbb{R}^d, E \subseteq \mathbb{R}^d$.

Do it, but don't turn it in.)

imension of the set S.

on of the Cantor set.

d delta measures are measures.

* Show that there exists $A \subseteq \mathbb{R}$ such that if $B \subseteq A$ and $B \in \mathcal{L}$ then $\lambda(B) = 0$, and finished if $D \cap Ac$ and $D \cap C$ than C(D) = Ced in class Σ is a σ -algebra, and that $\mu^*|_{\Sigma}$

Math 720: Homework.

Do, but don't turn in optional problems. There is a firm 'no late homework' policy.

Assignment 1: Assigned Wed 09/05. Due Wed 09/12

Following the notation of Cohn, I use λ to denote the Lebesgue measure.

For each of the following sets, compute the Lebesgue outer measure.

(c) $\{x \in [0,1] \mid x \notin \mathbb{Q}\}$ (b) The Cantor set. (a) Any countable set.

(a) If $V \subseteq \mathbb{R}^d$ is a subspace with $\dim(V) < d$, then show that $\lambda(V) = 0$. (b) If $P \subseteq \mathbb{R}^2$ is a polygon show that $area(P) = \lambda(P)$

Say μ is a translation invariant measure on $(\mathbb{R}^d,\mathcal{L})$ (i.e. $\mu(x+A)=\mu(A)$

for all $A \in \mathcal{L}$, $x \in \mathbb{R}^d$) which is finite on bounded sets. Show that $\exists c \geqslant 0$, (a)

that $T(A) \in \mathcal{L}$ and $\lambda(T(A)) = \lambda(A)$. [Hint: Express T in terms of elementary a/5Let $T: \mathbb{R}^d \to \mathbb{R}^d$ be an orthogonal linear transformation, and $A \in \mathcal{L}$. Show transformations. 9

Let $\mathcal{E} \subseteq \mathcal{P}(X)$, and $\rho: \mathcal{E} \to [0, \infty]$ be such that $\emptyset \in \mathcal{E}$, $X \in \mathcal{E}$ and $\rho(\emptyset) = 0$. (a) ず

b. Let $A_1, A_2, \ldots \in P(X)$ be disjoint. Then we claim:

 $\mu^*(A)=\inf\Bigl\{\sum_{i}
ho(E_i)\,\Bigl|\,E_i\in\mathcal{E},\; ext{and}\;A\subseteq\Bigl($

Show that μ^* is an outer measure.

Show H_{α}^{*} is an outer measure and restricts to a measure H_{α} on a σ -algebra that contains all Borel sets. The measure H_{α} is called the Hausdorff meathis choice of ρ and the collection of sets \mathcal{E}_{δ} . Define $H_{\alpha}^* = \lim_{\delta \to 0} H_{\alpha,\delta}^*$. is a normalization constant. Let $H^*_{\alpha,\delta}$ be the outer measure obtained with $(0,\delta)$. Given $\alpha > 0$ define $\rho(B(x,r)) = c_{\alpha}r^{\alpha}$, where $c_{\alpha} = \pi^{\alpha/2}/\Gamma(1+\alpha/2)$ Let (X,d) be any metric space, $\delta > 0$ and define $\mathcal{E}_{\delta} = \{B(x,r) \mid x \in X, r\}$ sure of dimension α . [Don't reprove Caratheodory.] **(**P)

If $X = \mathbb{R}^d$, and $\alpha = d$ show that H_d is the Lebesgue measure.

 $[0,\infty]$ such that $H_{\alpha}(S) = \infty$ for all $\alpha \in (0,d)$, and $H_{\alpha}(S) = 0$ for all $\alpha \in (d,\infty)$. (d) Let $S \in \mathcal{B}(X)$. Show that there exists (a unique) $d \in [$ number is called the Hausdorff dimension of the set

Compute the Hausdorff dimension of the Cantor set.

When proving Caratheodory, we proved in class Σ is a σ -algebra, and that μ^*

is finitely additive. Show that $\mu^*|_{\Sigma}$ is countably additive.

Verify that the counting measures and delta measures are measures.

Show that the arbitrary intersection of σ -algebras on X is also a σ -algebra

* We saw in class $\ell(I) = I$ for closed cells. Show it for arbitrary cells

Show that $m^*(a+E)=m^*(E)$ for all $a\in\mathbb{R}^d,\,E\subseteq\mathbb{R}^d$

Details in class I left for you to check. (Do it, but don't turn it in.,

 $\mu_*(\bigcup_{i=1}^{\infty} A_i) \ge \sum_{i=1}^{\infty} \mu^*(A_i)$ First, let $U = \bigcup_{i=1}^{\infty} A_i$ for ease of reference. Then suppose $S_i \in \Sigma$, $S_i \subseteq A_i \ \forall i \in \mathbb{N}$. First note that the S_i 's must be disjoint - if $x \in S_i \cup S_j$, then $x \in A_i \cup A_j$. Then if $S = \bigcup_{i=1}^{\infty} S_i$, certainly $S \subseteq U$. Therefore $\mu_*(U) \ge \mu(S)$ by definition, but for μ we know $\mu(S) = \sum_{i=1}^{\infty} \mu(S_i)$, so that $\mu_*(U) \ge \sum_{i=1}^{\infty} \mu(S_i)$. But again, the S_i 's were arbitrary, so taking the supremum, we have $\mu_*(U) \geq \sum_{i=1}^{\infty} \mu_*(A_i)$.

c. Let $A \in P(X)$. Then we claim $\mu(X) = \mu^*(A) + \mu_*(A^C)$. First take $E \in \Sigma$, $A \subseteq E$. Then by definition, $E^C \in \Sigma$, and we also have $E^C \subseteq A^C$ by DeMorgan's laws. Therefore, we see that the condition $A \subseteq E$ is identical to $E^C \subseteq A^C$. Therefore write:

$$\mu^*(A) + \mu_*(A^C) = \inf\{\mu(E) | A \subseteq E, E \in \Sigma\} + \sup\{\mu(E) | A^C \supseteq E, E \in \Sigma\}$$
$$= \inf\{\mu(E) | A \subseteq E, E \in \Sigma\} + \sup\{\mu(E^C) | A \subseteq E, E \in \Sigma\}$$

If one of the measures is infinite, then we are safe, because in this case $\mu(X) = \infty$, and if they are both finite then $\mu(X) < \infty$ and we may safely (in a well definied way) write $\mu(E^C) = \mu(X) - \mu(E)$, in which case the last line becomes:

$$\inf\{\mu(E)|A\subseteq E,\ E\in\Sigma\} + \sup\{\mu(X) - \mu(E)|A\subseteq E,\ E\in\Sigma\} \quad \text{with}$$

$$= \inf\{\mu(E)|A\subseteq E,\ E\in\Sigma\} + \mu(X) - \inf\{\mu(E)|A\subseteq E,\ E\in\Sigma\}$$

$$= \mu(X)$$

d. Suppose $A \in P(X)$, and $\mu^*(A) < \infty$. Then we claim $A \in \Sigma_{\mu}$ if and only if $\mu^*(A) = \mu_*(A)$. First, suppose $A \in \Sigma_{\mu}$. Then, $A \subseteq A$, so by monotonicity, $\mu^*(A) = \mu(A)$. We may write the exact same line, with a different emphasis, and conclude $\mu_*(A) = \mu(A)$, so that $\mu^*(A) = \mu_*(A)$. Now suppose $A \notin \Sigma_{\mu}$. Then suppose $\mu_*(A) = \mu^*(A)$. Then there must be $B, C \in \Sigma_{\mu}$ such that $B \subseteq A \subseteq C$, and $\mu(C - B) = 0$. But Σ_{μ} is complete, so every subset of C - B is measurable, yet the set $A - B \subseteq C - B$, and $A - B \cup B = A$, so that we conclude that A is measurable, but this contradicts our assumption that $A \notin \Sigma_{\mu}$, so that we must have $\mu_*(A) \neq \mu^*(A)$. Then by the contrapositive, we see that if $\mu_*(A) = \mu^*(A)$, $A \in \Sigma_{\mu}$.

- 2. We will show that $\mathcal{L} = \mathcal{B}_{\lambda}$ by proving a stronger statement.
 - (a) Suppose $A \in \mathcal{L}(\mathbb{R}^d)$. We will show that for any $\varepsilon > 0$ there exists two sets C, U such that $C \subseteq A \subseteq U$, C is closed, U is open, and $\lambda(U-C) < \varepsilon$.

Suppose $\lambda(A) < \infty$. Fix $\varepsilon > 0$. By regularity of λ we choose U open such that $\lambda(U) \le \lambda(A) + \varepsilon/4 < \infty$, and we choose C closed such that $\lambda(C) \geq \lambda(A) - \varepsilon/4$. Then $C \subseteq A \subseteq U$ and since $\lambda(U) < \infty$ we have

$$\lambda(U-C)=\lambda(U)-\lambda(C)\leq \varepsilon/2<\varepsilon.$$

 $\lambda(U-C) = \lambda(U) - \lambda(C) \le \varepsilon/2 < \varepsilon.$ Now suppose $\lambda(A) = \infty$. Fix $\varepsilon > 0$. We write $A = \bigcup_{i=1}^{\infty} A_k$ for disjoint bounded A_k 's. This can be done since \mathbb{R}^d is the countable union of half-open cells of measure 1. For each k choose $U_k\supseteq A_k$ open with $\lambda(U_k - A_k) < \varepsilon/2^k$. Then $U := \bigcup_{k=1}^{\infty} U_k$ is open and $U \supseteq A$. Then

$$\lambda(U-A) = \lambda\left(\bigcup_{k=1}^{\infty} (U_k - A)\right) \le \lambda\left(\bigcup_{k=1}^{\infty} (U_k - A_k)\right) \le \sum_{k=1}^{\infty} \lambda(U_k - A_k) \le \varepsilon.$$

By what we just showed we choose V open coverering A^c with $\lambda(V-A^c) \leq \varepsilon$. Then we note that

$$\lambda(V-A^c)=\lambda(V\cap A)=\lambda(A\cap V)=\lambda(A-V^c).$$

Since V is open, choosing $C = V^c$ suffices so that $C \leq A$ and $\lambda(A - C) \leq \varepsilon$. Claim: we have $U - C \subseteq$ $(U-A)\cup (A-C)$. Proof: If $U-C=\emptyset$ we have nothing to show, otherwise let $x\in U-C$; if $x\in A$ then $x \in A - C$, if $x \notin A$ then $x \in U - A$. Hence by monotonicity we have

$$\lambda(U-C) \le \lambda((U-A) \cup (A-C)) \le \lambda(U-A) + \lambda(A-C) \le 2\varepsilon.$$

Since $\varepsilon > 0$ was arbitrary the conclusion follows.

(b) Suppose $A \in \mathcal{L}(\mathbb{R}^d)$. We will show that there exists an F_{σ} , F, and a G_{δ} , G, such that $F \subseteq A \subseteq G$ and $\lambda(G-F)=0.$

By part (a) we choose $(U_k)_k$ open and $(C_k)_k$ closed such that $C_k \subseteq A \subseteq U_k$ and $\lambda(U_k - C_k) < \frac{1}{k}$ for all k. Define

$$G := \bigcap_{k=1}^{\infty} \left(\bigcap_{i=1}^{k} U_i \right), \quad F := \bigcup_{k=1}^{\infty} \left(\bigcup_{i=1}^{k} C_i \right).$$

The finite intersection of open sets is open, and the finite union of closed sets is closed, so G is a G_{δ} and F is an F_{σ} . Furthermore, all the U_i contain A, so all the $\bigcap_{i=1}^k$ contain A, so G contains A. All the C_i are contained in A, so all the $\bigcup_{i=1}^k$ are contained in A, so F is contained in A. That is, $F \subseteq A \subseteq G$. Then we have

$$\lambda(G - F) = \lambda \left(\left(\bigcap_{k=1}^{\infty} \left(\cap_{i=1}^{k} U_{i} \right) \right) - \left(\bigcup_{k=1}^{\infty} \left(\cup_{i=1}^{k} C_{i} \right) \right) \right)$$

$$= \lambda \left(\left(\bigcap_{k=1}^{\infty} \left(\cap_{i=1}^{k} U_{i} \right) \right) \cap \left(\bigcap_{k=1}^{\infty} \left(\cap_{i=1}^{k} C_{i}^{c} \right) \right) \right)$$

$$= \lambda \left(\left(\bigcap_{k=1}^{\infty} \left(\cap_{i=1}^{k} (U_{i} \cap C_{i}^{c}) \right) \right) \right)$$

$$= \lambda \left(\left(\bigcap_{k=1}^{\infty} \left(\cap_{i=1}^{k} (U_{i} - C_{i}) \right) \right) \right).$$

By construction $\left(\bigcap_{i=1}^k (U_i - C_i)\right)_k$ is a decreasing sequence of sets, the first of which has finite measure $\lambda(U_1 - C_1) < \frac{1}{1}$. Hence,

$$= \lambda \left(\left(\bigcap_{k=1}^{\infty} \left(\bigcap_{i=1}^{k} (U_i - C_i) \right) \right) \right) = \lim_{k \to \infty} \lambda \left(\bigcap_{i=1}^{k} (U_i - C_i) \right)$$

$$\leq \lim_{k \to \infty} \sup_{k \to \infty} \lambda \left(\bigcap_{i=1}^{k} (U_i - C_i) \right)$$

$$\leq \lim_{k \to \infty} \sup_{k \to \infty} \lambda \left(U_k - C_k \right)$$

$$\leq \lim_{k \to \infty} \sup_{k \to \infty} \frac{1}{k}$$

$$= 0.$$

Hence we have shown

$$\lambda(G-F)=0$$

as desired.

Finally we will conclude that $\mathcal{B}_{\lambda} = \mathcal{L}$. Since F_{σ} and G_{δ} sets are Borel, the previous step shows that $\mathcal{L}(\mathbb{R}^d) \subseteq \mathcal{B}_{\lambda}(\mathbb{R}^d)$. For the other inclusion, suppose we have $B \in \mathcal{B}_{\lambda}(\mathbb{R}^d)$. That is, $A \in \mathcal{P}(\mathbb{R}^d)$ and we choose $E, F \in \mathcal{B}$ such that $E \subseteq A \subseteq F$ and $\lambda(F - E) = 0$. We claim that $A \in \mathcal{L}(\mathbb{R}^d)$. Indeed, since $E \subseteq A \subseteq F$ we have

$$A = E \cup (A - E)$$
.

We know E is measurable since it is Borel, and $A - E \subseteq F - E$ so that

$$\lambda^*(A - E) \le \lambda^*(F - E) = 0$$

3/3

and we conclude that A - E is measurable since it has outer measure zero. Hence A is the union of two measurable sets and therefore is measurable. It follows that $A \in \mathcal{L}$, and that $\mathcal{B}_{\lambda} = \mathcal{L}$.

3. Let $A \in \mathcal{L}(\mathbb{R}^d)$. We will show that every subset of A is Lebesgue measurable if and only if $\lambda(A) = 0$.

(\Leftarrow) Suppose that $\lambda(A) = 0$. Let $S \subseteq A$ be given. By monotonicity we have $\lambda^*(S) \leq \lambda^*(A) = 0$ so $\lambda^*(S) = 0$ and so S is measurable.

 (\Longrightarrow) We proceed by contrapositive, supposing $\lambda(A)>0$, we will show there is a nonmeasurable subset of A. First we construct a nonmeasurable set in \mathbb{R}^d , closely following the construction in class, then we prove the proposition. We have that $(\mathbb{R}^d,+)$ is a group, and $(\mathbb{Q}^d,+) \triangleleft (\mathbb{R}^d,+)$ so we may consider the quotient group $\mathbb{R}^d/\mathbb{Q}^d$. By the Axiom of Choice we may choose $W\subseteq\mathbb{R}^d$ which contains exactly one representative from each coset. We claim that W is nonmeasurable. Suppose for the sake of contradiction that W is measurable. Since \mathbb{Q}^d is countable we may write $\mathbb{Q}^d=(q_i)_i$, so that

$$\mathbb{R}^d = \bigcup_{i=1}^{\infty} (q_i + W).$$

We know that $q_i + W$ is measurable for all i also. By translation invariance and countable subadditivity we have

$$\infty = \lambda(\mathbb{R}^d) = \lambda\left(\bigcup_{i=1}^{\infty} (q_i + W).\right) \le \lambda\left(\bigcup_{i=1}^{\infty} (q_i + W).\right) \le \sum_{i=1}^{\infty} \lambda(q_i + W) = \sum_{i=1}^{\infty} \lambda(W)$$

Let $p \in \mathbb{Q}$ and $K \subset (p+E) \cap A$ compact be given. Take

$$B = \bigcup_{q \in \mathbb{Q} \cap [0,1]} (q+K)$$

By assumption, $K \subset A$ is measurable. Then $\lambda(B) = \sum_{1}^{\infty} \lambda(K)$. Since B is bounded, $\lambda(B)$ must be finite. This can only be true if $\lambda(K) = 0$, so this must be the case.

By regularity of \mathbb{R} , there is for every $\epsilon > 0$ a compact set $K \subset (p+E) \cap A$ such that $\lambda((p+E)\cap A)<\lambda(K)+\epsilon$. But every compact subset of $(p+E)\cap A$ has λ -measure zero, so $(p+E)\cap A$ must have measure zero. Now, we have that

$$A = A \cap \mathbb{R} = A \cap \bigcup_{p \in \mathbb{Q}} (p + E) = \bigcup_{p \in \mathbb{Q}} ((p + E) \cap A)$$

Hence $\lambda(A) = \sum_{p \in \mathbb{Q}} \lambda((p+E) \cap A) = \sum_{p \in \mathbb{Q}} 0 = 0$.

For the reverse direction, assume that $\lambda(A) = 0$. Since the Lebesgue measure is complete, every subset of A is measurable.

(a) First, we show that

$$\Sigma := \sigma(\{A \times B : A \in \mathcal{B}(\mathbb{R}^m) \& B \in \mathcal{B}(\mathbb{R}^n)\})$$

= $\sigma(\{A \times B : A \in \mathbb{R}^m \text{ open } \& B \in \mathbb{R}^n \text{ open}\}) =: \Sigma'$

That the $\Sigma \supseteq \Sigma'$ is trivial. We show the opposite inclusion.

- Let $A \in \mathcal{P}(\mathbb{R}^m)$ be the set of $A \in \mathbb{R}^m$ such that $\{A \times B : B \in \mathbb{R}^n \text{ open}\} \subseteq \Sigma'$. Then

 (i) Let $A_1, A_2, \ldots \in A$ be given. Let $B \in \mathbb{R}^n$ open be given. For all $n \geq 1$, we have $A_n \times B \subseteq \Sigma'$. Since Σ' is closed under countable unions and intersections, $(\bigcup_{1}^{\infty} A_n) \times B = \bigcup_{1}^{\infty} (A_n \times B) \in \Sigma'$ and $(\bigcap_{1}^{\infty} A_n) \times B = \bigcap_{1}^{\infty} (A_n \times B) \in \Sigma'$. Since B open was arbitrary, we conclude that $\bigcup_{1}^{\infty} A_n \in \mathcal{A}$ and $\bigcap_{1}^{\infty} A_n \in \mathcal{A}$. Thus \mathcal{A} is closed under countable unions and intersections.
 - (ii) A trivially contains all open sets. Let a closed set C be given. Define the open sets $A_n = \left\{ x \in \mathbb{R}^m : \operatorname{dist}(x,C) < \frac{1}{n} \right\}; \text{ then } C = \bigcap_{1}^{\infty} A_n. \text{ Since each } A_n \text{ is in } A \text{ and } A$ is closed under countable intersections, we have $C \in \mathcal{A}$. Thus \mathcal{A} contains all closed sets.

By Lemma 1, it follows that $\mathcal{A} \supseteq \mathcal{B}(\mathbb{R}^m)$. Thus

$$\Sigma'' := \sigma(\{A \times B : A \in \mathcal{B}(\mathbb{R}^m) \& B \in \mathbb{R}^n \text{ open}\})$$

$$\subseteq \sigma(\{A \times B : A \in \mathcal{A} \& B \in \mathbb{R}^n \text{ open}\})$$

$$\subseteq \Sigma'$$

since $\sigma(\{A \times B : A \in \mathcal{A} \& B \in \mathbb{R}^n \text{ open}\})$ is the smallest σ -algebra containing $\{A \times B : A \in \mathcal{A} \& B \in \mathbb{R}^n \text{ open}\}\ \text{and}\ \{A \times B : A \in \mathcal{A} \& B \in \mathbb{R}^n \text{ open}\} \subseteq \Sigma'.$ Obviously $\Sigma'' \supseteq \Sigma'$, so $\Sigma'' = \Sigma'$.

Now, let $\mathcal{D} \in \mathcal{P}(\mathbb{R}^n)$ be the set of $B \in \mathbb{R}^n$ such that $\{A \times B : A \in \mathcal{B}(\mathbb{R}^m)\} \subseteq \Sigma'$. Then, analogously to the proof with A,

- (i) Let $B_1, B_2, \ldots \in \mathcal{D}$ be given. Let $A \in \mathcal{B}(\mathbb{R}^m)$ be given. For all $n \geq 1$, we have $A \times B_n \subseteq \Sigma''$. Since Σ'' is closed under countable unions and intersections, $A \times (\bigcup_{1}^{\infty} B_n) = \bigcup_{1}^{\infty} (A \times B_n) \in \Sigma'$ and $A \times (\bigcap_{1}^{\infty} B_n) = \bigcap_{1}^{\infty} (A \times B_n) \in \Sigma'$. Since $A \in \mathcal{B}(\mathbb{R}^m)$ was arbitrary, we conclude that $\bigcup_{1}^{\infty} B_n \in \mathcal{D}$ and $\bigcap_{1}^{\infty} B_n \in \mathcal{D}$. Thus \mathcal{D} is closed under countable unions and intersections.
- (ii) \mathcal{D} trivially contains all open sets. Let a closed set C be given. Define the open sets $B_n = \left\{x \in \mathbb{R}^n : \operatorname{dist}(x,C) < \frac{1}{n}\right\}$; then $C = \bigcap_{1}^{\infty} B_n$. Since each B_n is in \mathcal{D} and \mathcal{D} is closed under countable intersections, we have $C \in \mathcal{D}$. Thus \mathcal{D} contains all closed sets.

Then $\mathcal{D} \supseteq \mathcal{B}(\mathbb{R}^n)$ by Lemma 1, so

$$\Sigma := \sigma(\{A \times B : A \in \mathcal{B}(\mathbb{R}^m) \& B \in \mathcal{B}(\mathbb{R}^n)\})$$

$$\subseteq \sigma(\{A \times B : A \in \mathcal{B}(\mathbb{R}^m) \& B \in \mathcal{D}\})$$

$$\subseteq \Sigma''$$

It then follows that $\Sigma = \Sigma''$, so $\Sigma = \Sigma'$. Now, we show that $\Sigma = \mathcal{B}(\mathbb{R}^{m+n})$. Since every element of $\{A \times B : A \in \mathbb{R}^m \text{ open & } B \in \mathbb{R}^n \text{ open } \}$ is open in \mathbb{R}^{m+n} , we have $\Sigma = \Sigma' \subseteq \mathcal{B}(\mathbb{R}^{m+n})$.

We now show that the countable set $E:=\{(a,b)^{m+n}:a,b\in\mathbb{Q}\}$ is a basis for the standard topology on \mathbb{R}^{m+n} . Let $U\subseteq\mathbb{R}^{m+n}$ and $x\in U$ be given. Then there exists a ball $B(x,r)\subseteq U$. By density of \mathbb{Q} in \mathbb{R} , there exists $q\in\mathbb{Q}$ with $0< q<\frac{r}{\sqrt{2}}$. Then $x\in(x-q,x+q)^{m+n}\subseteq B(x,r)\subseteq U$. Thus E is a basis. Since E is countable, this implies that every open set in \mathbb{R}^{m+n} can be written as the countable union of elements of E. Now, since $E\subseteq\{A\times B:A\in\mathbb{R}^m \text{ open }\& B\in\mathbb{R}^n \text{ open }\}$, it follows that $\Sigma=\Sigma'=\sigma(\{A\times B:A\in\mathbb{R}^m \text{ open }\& B\in\mathbb{R}^n \text{ open }\})$, a σ -algebra containing E, contains all open sets in \mathbb{R}^{m+n} . From this we deduce that $B(\mathbb{R}^{m+n})\subseteq\Sigma$.

Hence $\mathcal{B}(\mathbb{R}^{m+n}) = \Sigma = \sigma(\{A \times B : A \in \mathcal{B}(\mathbb{R}^m) \& B \in \mathcal{B}(\mathbb{R}^n)\}).$

(b) First, we show that $\sigma(\{A \times B : A \in \mathcal{L}(\mathbb{R}^m) \& B \in \mathcal{L}(\mathbb{R}^n)\}) \subseteq \mathcal{L}(\mathbb{R}^{m+n})$. Let $A, B \in \mathcal{L}(\mathbb{R}^n)$ be given. By 2(b), there exist F_{σ} 's F_A, F_B and G_{δ} 's G_A, G_B such that $F_A \subseteq A \subseteq G_A$, $F_B \subseteq B \subseteq G_B$, and $\lambda(G_A - F_A) = \lambda(G_B - F_B) = 0$. Then $G_A \times G_B \subseteq (F_A \times F_B) \cup (G_A \times (G_B - F_B)) \cup ((G_A - F_A) \times G_B)$, so

$$\lambda(G_A \times G_B) \le \lambda(F_A \times F_B) + \lambda(G_A \times (G_B - F_B)) + \lambda((G_A - F_A) \times G_B)$$

By Lemma 2, $\lambda(G_A \times (G_B - F_B)) \leq \lambda(G_A)\lambda(G_B - F_B) = \lambda(G_A)(0) = 0$ and $\lambda((G_A - F_A)\times G_B) \leq \lambda(G_A - F_A)\lambda(G_B) = (0)\lambda(G_B) = 0$. Hence $\lambda(G_A \times G_B) \leq \lambda(F_A \times F_B)$. Since $F_A \times F_B \subseteq A \times B \subseteq G_A \times G_B$, $(A \times B) - (F_A \times F_B)$ is a null set. Since $F_A \times F_B$ is measurable and the Lebesgue measure is complete, this implies that $A \times B = (F_A \times F_B) \cup ((A \times B) - (F_A \times F_B))$ is measurable. Thus $\{A \times B : A \in \mathcal{L}(\mathbb{R}^m) \& B \in \mathcal{L}(\mathbb{R}^n)\} \subseteq \mathcal{L}(\mathbb{R}^{m+n})$, so $\sigma(\{A \times B : A \in \mathcal{L}(\mathbb{R}^m) \& B \in \mathcal{L}(\mathbb{R}^n)\}) \subseteq \mathcal{L}(\mathbb{R}^{m+n})$.

Define $\pi: \mathcal{L}(\mathbb{R}^m \times \mathbb{R}^n)$ by $\pi(A) = \{(a,b) \in A : b = 0\}$. We show that $\pi(A)$ is λ -measurable for all $A \in \sigma(\{A \times B : A \in \mathcal{L}(\mathbb{R}^m) \& B \in \mathcal{L}(\mathbb{R}^n)\})$.

(i) Clearly $\pi(A)$ is λ -measurable for every $A \in \{A \times B : A \in \mathcal{L}(\mathbb{R}^m) \& B \in \mathcal{L}(\mathbb{R}^n)\}.$

- (ii) If $\pi(A)$ is λ -measurable, then $\pi(A^c) = \pi(A)^c$ is λ -measurable.
- (iii) If A_1, A_2, \ldots are such that $\pi(A_n)$ is λ -measurable for every $n \geq 1$, then $\pi(\bigcup_{1}^{\infty} A_n) = \bigcup_{1}^{\infty} \pi(A_n)$ is λ -measurable.

Then the set of $A \subseteq \mathbb{R}^{m+n}$ such that $\pi(A)$ is λ -measurable is a σ -algebra that contains $\{A \times B : A \in \mathcal{L}(\mathbb{R}^m) \& B \in \mathcal{L}(\mathbb{R}^n)\}$, so it contains $\sigma(\{A \times B : A \in \mathcal{L}(\mathbb{R}^m) \& B \in \mathcal{L}(\mathbb{R}^n)\})$.

By 3, there is a non-measurable set $N\subseteq [0,1]^m$. Define $M:=N\times\{0^n\}$. We have $M\subseteq [0,1]^m\times\{0^n\}$, which is closed and therefore λ -measurable. By Lemma 2, $\lambda(M)\le 1^m0^n=0$. Hence M is a null set, and since the Lebesgue measure is complete it follows that $M\in\mathcal{L}(\mathbb{R}^{m+n})$. On the other hand, $\pi(M)=N$ is not λ -measurable, so $M\not\in\sigma(\{A\times B:A\in\mathcal{L}(\mathbb{R}^m)\ \&\ B\in\mathcal{L}(\mathbb{R}^n)\})$. Hence

 $\mathcal{L}(\mathbb{R}^{m+n})\supseteq\sigma(\{A imes B:A\in\mathcal{L}(\mathbb{R}^m)\ \&\ B\in\mathcal{L}(\mathbb{R}^n)\})$

(c) Since $\mathcal{B}(\mathbb{R}) \subseteq \mathcal{L}(\mathcal{R})$, we have

 $\sigma(\{A\times B:A\in\mathcal{B}(\mathbb{R})\ \&\ B\in\mathcal{B}(\mathbb{R})\})\subseteq\sigma(\{A\times B:A\in\mathcal{L}(\mathbb{R})\ \&\ B\in\mathcal{L}(\mathbb{R})\})$

Then by (a) and (b),

 $\mathcal{B}(\mathbb{R}^2) = \sigma(\{A \times B : A \in \mathcal{B}(\mathbb{R}) \& B \in \mathcal{B}(\mathbb{R})\})$ $\subseteq \sigma(\{A \times B : A \in \mathcal{L}(\mathbb{R}) \& B \in \mathcal{L}(\mathbb{R})\}) \subseteq \mathcal{L}(\mathbb{R}^2)$ by the result of part (a), $A \times B \in \mathcal{B}(\mathbb{R}^{m+n}) \subseteq \mathcal{L}(\mathbb{R}^{m+n})$. Otherwise, either $A \in \mathcal{N}_m$ or $B \in \mathcal{N}_n$; without loss of generality, suppose $A \in \mathcal{N}_m$ (the case $B \in \mathcal{N}_n$ is identical). Then, there is some $E \in \mathcal{B}(\mathbb{R}^m)$ such that $A \subseteq E$ and $\lambda_m(E) = 0$. But then, $\lambda_{m+n}(E \times B) = 0$, so that, since $A \times B \subseteq E \times B$, by the result of problem 3, $A \times B \in \mathcal{L}(\mathbb{R}^{m+n})$.

We now show that $\mathcal{L}(\mathbb{R}^{m+n}) \neq \sigma(\{A \times B | A \in \mathcal{L}(\mathbb{R}^m), B \in \mathcal{L}(\mathbb{R}^n)\})$. We showed in class the existence of a non-measurable set $E_1 \in \mathcal{P}(\mathbb{R}^m)$. Let $E_2 = E_1 \times \{(0,0,\ldots,0)\} \in \mathcal{P}(\mathbb{R}^{m+n})$. By the result of problem 3, $E_2 \in \mathcal{L}(\mathbb{R}^{m+n})$, since $\lambda_{m+n}(E_2) = 0$. (This follows from the result of part (a) of problem 2 on Assignment 1, since $E_2 \subseteq V$, for some subspace V of \mathbb{R}^{m+n} with $\dim(V) \leq m < m+n$). However, $E_1 \notin \mathcal{L}(\mathbb{R}^m)$.

 $\dim(V) \leq m < m+n$). However, $E_1 \notin \mathcal{L}(\mathbb{R}^m)$.

(c) Since, $\mathcal{L}(\mathbb{R}) = \mathcal{B}_{\lambda}(\mathbb{R}) \supseteq \mathcal{B}(\mathbb{R})$, it follows from the results of parts (a) and (b) that

 $\mathcal{L}(\mathbb{R}^2) \supseteq \sigma\left(\{A \times B | A, B \in \mathcal{L}(\mathbb{R})\right) \supseteq \sigma\left(\{A \times B | A, B \in \mathcal{B}(\mathbb{R})\right) = \mathcal{B}(\mathbb{R}^2)$

Problem 5

This solution was inspired by Example 8 in Chapter 2 of Rudin's Real and Complex Analysis. Since \mathbb{Q} is countable, there is a bijection $f: \mathbb{N} \to \mathbb{Q}$. $\forall n \in \mathbb{N}$, let $R_i := (f(i) - \frac{1}{3^{i+1}}, f(i) + \frac{1}{3^{i+1}})$,

$$S_i := R_i \setminus \left(\bigcup_{k=i+1}^{\infty} R_k\right).$$

Then, $\forall i \in \mathbb{N}$, let $T_i = (f(i) - \frac{1}{2 \cdot 3^{i+1}}, f(i) + \frac{1}{2 \cdot 3^{i+1}})$ (noting that $\lambda(T_i) = \lambda(R_i)/2$), and let

$$V = \bigcup_{i=1}^{\infty} S_i \cap T_i.$$

We claim that, for all a < b, $0 < \lambda(V \cap (a,b)) < b-a$. Note that, since any interval (a,b) has some $R_n \subseteq (a,b)$ such that since each $R_i \in \mathcal{B}(\mathbb{R}) \subseteq \mathcal{L}(R)$, $b-a = \lambda(R_i) + \lambda(R_i^c \cap (a,b))$, it is sufficient to show that $0 < \lambda(R_i \cap V) < \lambda(R_i)$.

We first show that $0 < \lambda(R_i \cap V)$. Since, for any $i \in \mathbb{N}$, there must be some k > i such that $f(k) \notin R_i$, $\bigcup_{k=i+1} R_k$ contains some interval with no points in S_i , and thus, by countable additivity of λ ,

$$\lambda(R_i) - \sum_{k=i+1}^{\infty} \lambda(R_k) < \lambda(S_i).$$

Therefore, since each R_i is an interval, so that $\lambda(R_i) = 3^i$,

$$\frac{\lambda(R_i)}{2} = \lambda(R_i) \left(1 - \sum_{k=1}^{\infty} \frac{1}{3^i} \right) = \lambda(R_i) - \sum_{k=i+1}^{\infty} \frac{1}{3^k} \lambda(R_i) < \lambda(S_i). \tag{1}$$

Therefore, since $S_i, T_i \in \mathcal{B}(\mathbb{R})$,

$$\lambda(S_i \cup T_i) \leq \lambda(R_i) = \frac{1}{2}\lambda(R_i) + \frac{1}{2}\lambda(R_i)$$
 (by monotonicity $(S_i \cup T_i \subseteq R_i)$)
$$< \lambda(S_i) + \lambda(T_i) + \lambda(T_i) + \lambda(S_i \cap T_i)$$

$$= \lambda(S_i \cup T_i) + \lambda(S_i \cap T_i).$$

Subtracting $\lambda(S_i \cup T_i)$ then gives, by monotonicity, $0 < \lambda(S_i \cap T_i) \le \lambda(R_i \cap V)$, as desired. We now show that $\lambda(R_i \cap V) < \lambda(R_i)$. By countable additivity of λ and the definition of V,

$$\lambda(R_{i} \cap V) = \lambda \left(\bigcup_{k=i}^{\infty} R_{i} \cap S_{k} \cap T_{k} \right)$$

$$\leq \sum_{k=i}^{\infty} \lambda(R_{i} \cap S_{k} \cap T_{k}) \leq \sum_{k=i}^{\infty} \lambda(R_{i} \cap T_{k})$$
countable additivity, monotonicity of λ

$$< \sum_{k=i}^{\infty} \lambda(T_{k})$$
monotonicity, $\exists T_{k}$ with $T_{k} \cap V_{k} = \emptyset$, $\lambda(T_{k}) > 0$

$$= \sum_{k=i}^{\infty} \frac{\lambda(R_{k})}{2} = \sum_{k=i}^{\infty} \frac{\lambda(R_{i})}{2^{k+1}} = \lambda(R_{i}).$$

Problem 6

Let $\Sigma = \sigma(A)$, and define $\mu : \Sigma \to [0, \infty]$ by

$$\mu(A) = \inf \left\{ \sum_{i=1}^{\infty} \mu_0(E_i) \mid E_i \in \mathcal{A}, A \subseteq \bigcup_{i=1}^{\infty} E_i \right\}.$$

By the result of part (a) of Problem 4 on Assignment 1, μ is an outer measure on X.

We first show that $\mu = \mu_0$ on \mathcal{A} , so that it is in fact an extension μ_0 to Σ . Note that, since \mathcal{A} is closed under complements and finite unions, by De Morgan's laws, \mathcal{A} is also closed under finite intersections. Suppose that $A \in \mathcal{A}$. Clearly, since $A \subseteq A$ and μ is an infimum, $\mu(A) \leq \mu_0(A)$. Suppose $A_1, A_2, \ldots \in \mathcal{A}$ with $A \in \bigcup_{i=1}^{\infty} A_i$. $\forall i \in \mathbb{N}$, let

$$B_i = A \cap A_i \cap \left(\bigcup_{k=1}^i A_k\right)^c,$$

so that the B_i 's are pairwise disjoint, $A = \bigcup_{i=1}^{\infty} B_i$, and $B_i \in \mathcal{A}$. Thus,

$$\mu_0(A) = \mu_0 \left(\bigcup_{i=1}^{\infty} B_i \right) = \sum_{i=1}^{\infty} \mu_0(B_i),$$

6. (Carathéodory extension) If $A \subseteq \mathcal{P}(X)$ is an algebra, and μ_0 is a pre-measure on A, then there exists a measure μ defined on $\sigma(A)$ that extends μ_0 .

Proof: We define $\mu^*: \mathcal{P}(X) \to [0, \infty]$ by

$$\mu^*(S) := \inf \left\{ \sum_{i=1}^{\infty} \mu_0(A_i) : A_i \in \mathcal{A}, S \subseteq \bigcup_{i=1}^{\infty} A_i \right\}.$$

We have \emptyset , $A \in \mathcal{P}(X)$, and $\mu_0(\emptyset) = 0$ by definition, so by problem 4. (a) we know that μ^* is an outer measure. Fix $A \in A$. Since $A \supseteq A$ we have $\mu^*(A) \le \mu_0(A)$. Suppose $(A_i)_i$ in A are such that $A \subseteq \bigcup_{i=1}^{\infty} A_i$. Then for all i define

$$B_i := (A \cap A_i) \setminus \bigcup_{k=1}^{i-1} A_k \in \mathcal{A}.$$

The B_i 's are disjoint by construction, and furthermore

$$\bigcup_{i=1}^{\infty} B_i = A \in \mathcal{A}$$

so we may use the countable additivity of μ_0 to find

$$\mu_0(A) = \sum_{i=1}^{\infty} \mu_0 \left((A \cap A_i) \setminus \bigcup_{k=1}^{i-1} A_k \right).$$

Then we note that if $S \subseteq T$, $S, T \in \mathcal{A}$ we have $\mu_0(T) = \mu_0(S) + \mu_0(T \setminus S) \ge \mu_0(S)$ so we have monotonicity. Then since $(A \cap A_i) \setminus \bigcup_{k=1}^{i-1} A_k \subseteq A_i$ and all sets involved are elements of \mathcal{A} , it follows that

$$\sum_{i=1}^{\infty} \mu_0 \left((A \cap A_i) \setminus \bigcup_{k=1}^{i-1} A_k \right) \le \sum_{i=1}^{\infty} \mu_0 \left(A_i \right)$$

so we have shown

$$\mu_0(A) \le \sum_{i=1}^{\infty} \mu_0(A_i).$$

Taking the infimum over all covers gives $\mu_0(A) \leq \mu^*(A)$. Thus we have shown that $\mu_0(A) = \mu^*(A)$ for all $A \in \mathcal{A}$. That is, μ^* extends μ_0 . We now apply the Carathéodory criterion and define $\mu := \mu^*|_{\Sigma}$ where Σ is the σ -algebra of all μ^* -measurable sets. Then μ is a measure on Σ which extends μ_0 . All that is left to show is that $\Sigma \supseteq \sigma(\mathcal{A})$. It is enough to show that $\Sigma \supseteq \mathcal{A}$, i.e. that all elements of \mathcal{A} are μ^* measurable. Fix $A \in \mathcal{A}$ and $S \subseteq X$. It suffices to show $\mu^*(S) \ge \mu^*(S \cap A) + \mu^*(S \cap A^c)$. By definition of infimum we choose $(A_i)_i$ in \mathcal{A} which cover S such that

$$\sum_{i=1}^{\infty} \mu_0(A_i) \le \mu^*(S) + \varepsilon.$$

Note that $S \cap A \subseteq \bigcup_{i=1}^{\infty} A_i \cap A$ and $S \cap A^c \subseteq \bigcup_{i=1}^{\infty} A_i \cap A^c$. Hence, by monotonicity, we have

$$\mu^*(S \cap A) + \mu^*(S \cap A^c) \le \sum_{i=1}^{\infty} \mu^*(A_i \cap A) + \sum_{i=1}^{\infty} \mu^*(A_i \cap A^c).$$

We have that $A_i \cap A \in \mathcal{A}$ and $A_i \cap A^c \in \mathcal{A}$ for all i, so that $\mu_0 = \mu^*$ on these quantityies. That is,

$$\sum_{i=1}^{\infty} \mu^* (A_i \cap A) + \sum_{i=1}^{\infty} \mu^* (A_i \cap A^c) = \sum_{i=1}^{\infty} \mu_0 (A_i \cap A) + \sum_{i=1}^{\infty} \mu_0 (A_i \cap A^c)$$

$$= \sum_{i=1}^{\infty} (\mu_0 (A_i \cap A) + \mu_0 (A_i \cap A^c))$$

$$= \sum_{i=1}^{\infty} \mu_i (A_i)$$

 $\leq \mu^*(S) + \varepsilon.$

Letting $\varepsilon \to 0$ gives

 $\mu^*(S) \ge \mu^*(S \cap A) + \mu^*(S \cap A^c)$

so that we have shown A is μ^* -measurable. It follows that $\Sigma \supseteq \sigma(A)$ and so μ is a measure that is an extension of μ_0 which is defined on $\sigma(A)$.

9