Character-level Convolutional Networks for Text Classification

Yuhui Lin

Introduction

- Introduce text classification
- The task is to assign a <u>document</u> to one or more predefined <u>classes</u> or <u>categories</u>.
- Topic classification:
 - Arts, business, sports
- Sentiment classification:
 - ► Negative, neutral, positive
- Functional classification:
 - ► Thethis, essay, announcement

Background

- The success of convNet in following field:
 - Computer vision
 - Speech recognition
- convNet with raw signal
 - Image pixels,
 - voice,
 - text character(English letter, punctuation, space)
- convNet with other NLP problems
 - Part-of-speech tagging
 - Information retrieval

Innovation

Model design

The model has 9 layers deep with 6 convolutional layers and 3 fully-connected layers.

Convolutional Layers

layer	#features	# kernel	Max Pooling
1	1024	7	3
2	1024	7	3
3	1024	3	N/A
4	1024	3	N/A
5	1024	3	N/A
6	1024	3	3

The convolutional layers have stride 1 and pooling layers are all non-overlapping ones.

Fully-connected Layers

Fully-connected layer with 2048 output

Dropout layer with probability of 0.5

Fully-connected layer with 2048 output

Dropout layer with probability of 0.5

Fully-connected layer

The number of output depends of the classes of datasets

Gradient descent

Mini batch gradient descent with momentum:

```
loop maxEpochs times
  loop until all data items used
    for-each batch of items
      compute a gradient for each weight and bias
      accumulate gradient
    end-batch
    use accumulated gradients to update each weight and bias
  end-loop all item
end-loop
```

Non-linearity activation function ReLUs

Sigmoid function

Data Augmentation

data augmentation techniques are useful for reducing generalization error

traditional techniques don't apply for text

replace words by using an English thesaurus

Comparison Model

Bag-of-words with softmax

N-grams with softmax

K-means on word2vec with softmax

Word-based ConvNets

Word-based LSTM

Large-scale Datasets

8 large-scale datasets:

Dataset	Classes	Train Samples	Test Samples	Epoch Size
AG's News	4	120,000	7,600	5,000
Sogou News	5	450,000	60,000	5,000
DBPedia	14	560,000	70,000	5,000
Yelp Review Polarity	2	560,000	38,000	5,000
Yelp Review Full	5	650,000	50,000	5,000
Yahoo! Answers	10	1,400,000	60,000	10,000
Amazon Review Full	5	3,000,000	650,000	30,000
Amazon Review Polarity	2	3,600,000	400,000	30,000

Result: error rate

	. ~	~						
Model	AG	Sogou	DBP.	Yelp P.	Yelp F.	Yah. A.	Amz. F.	Amz. P.
\mathbf{BoW}	11.19	7.15	3.39	7.76	42.01	31.11	45.36	9.60
BoW TFIDF	10.36	6.55	2.63	6.34	40.14	28.96	44.74	9.00
ngrams	7.96	2.92	1.37	4.36	43.74	31.53	45.73	7.98
ngrams TFIDF	7.64	2.81	1.31	4.56	45.20	31.49	47.56	8.46
Bag-of-means	16.91	10.79	9.55	12.67	47.46	39.45	<i>55.</i> 87	18.39
LSTM	13.94	4.82	1.45	5.26	41.83	29.16	40.57	6.10
Lg. w2v Conv.	9.92	4.39	1.42	4.60	40.16	31.97	44.40	5.88
Sm. w2v Conv.	11.35	4.54	1.71	5.56	42.13	31.50	42.59	6.00
Lg. w2v Conv. Th.	9.91	-	1.37	4.63	39.58	31.23	43.75	5.80
Sm. w2v Conv. Th.	10.88	-	1.53	5.36	41.09	29.86	42.50	5.63
Lg. Lk. Conv.	8.55	4.95	1.72	4.89	40.52	29.06	45.95	5.84
Sm. Lk. Conv.	10.87	4.93	1.85	5.54	41.41	30.02	43.66	5.85
Lg. Lk. Conv. Th.	8.93	-	1.58	5.03	40.52	28.84	42.39	5.52
Sm. Lk. Conv. Th.	9.12	_	1.77	5.37	41.17	28.92	43.19	5.51
Lg. Full Conv.	9.85	8.80	1.66	5.25	38.40	29.90	40.89	5.78
Sm. Full Conv.	11.59	8.95	1.89	5.67	38.82	30.01	40.88	5.78
Lg. Full Conv. Th.	9.51	_	1.55	4.88	38.04	29.58	40.54	5.51
Sm. Full Conv. Th.	10.89	_	1.69	5.42	37.95	29.90	40.53	5.66
Lg. Conv.	12.82	4.88	1.73	5.89	39.62	29.55	41.31	5.51
Sm. Conv.	15.65	8.65	1.98	6.53	40.84	29.84	40.53	5.50
Lg. Conv. Th.	13.39	_	1.60	5.82	39.30	28.80	40.45	4.93
Sm. Conv. Th.	14.80	_	1.85	6.49	40.16	29.84	40.43	5.67

Character-level ConvNet is an effective 80.00% 40.00% 20.00% 70.00% 20.00% 15.00% 60.00% 0.00% 10.00% 50.00% -20.00% 5.00% 40.00% -40.00% 0.00% 30.00% -60.00% -5.00% 20.00% -10.00% -80.00% 10.00% 0.00% -100.00% -15.00% (a) Bag-of-means (b) n-grams TFIDF (c) LSTM 20.00% 20.00% 20.00% 10.00% 10.00% 10.00% 0.00% 0.00% 0.00% -10.00% -10.00% -10.00% -20.00% -20.00% -30.00% -20.00% -30.00% -40.00% -30.00% -40.00% -50.00% -60.00% -40.00% -50.00% (d) word2vec ConvNet (e) Lookup table ConvNet (f) Full alphabet ConvNet ■ AG News ■ DBPedia ■ Yelp P. ■ Yelp F. ■ Yahoo A. ■ Amazon F. ■ Amazon P.

Dataset size forms a dichotomy between traditional and ConvNets models.

ConvNets may work well for user-generated data. 80.00% 40.00% 20.00% 70.00% 20.00% 15.00% 60.00% 0.00% 10.00% 50.00% -20.00% 5.00% 40.00% -40.00% 0.00% 30.00% -60.00% -5.00% 20.00% -10.00% -80.00% 10.00% 0.00% -100.00% -15.00% (a) Bag-of-means (b) n-grams TFIDF (c) LSTM 20.00% 20.00% 20.00% 10.00% 10.00% 10.00% 0.00% 0.00% 0.00% -10.00% -10.00% -10.00% -20.00% -20.00% -30.00% -20.00% -30.00% -40.00% -30.00% -40.00% -50.00% -60.00% -40.00% -50.00% (d) word2vec ConvNet (e) Lookup table ConvNet (f) Full alphabet ConvNet ■ AG News ■ DBPedia ■ Yelp P. ■ Yelp F. ■ Yahoo A. ■ Amazon F. ■ Amazon P.

uppercase and lowercase letters could make a difference.

Question?

►Thank you