# Regresyon Bölüm I

Serhan Daniş











# Yapay Öğrenme







#### Bölüm I



# Doğrusal Regresyon

🗂 jupyter logosu yansının jupyter-notebook karşılığı olduğunu göstermektedir.







### Örnek Senaryo: CO2 Salınımı

#### Zamana bağlı veriler:



#### • Tahminleme:

 2022'de Almanya'ın karbondioksit salınımı ne olacak?

#### • İleri analiz:

 Türkiye ile Almanya'nın karbondioksit salınımları ne zaman eşitlenir?







# Örnek Senaryo: Ekonomi ve Asayiş

Zamandan bağımsız veriler:



- Modelleme: Cinayet oranlarıyla fakirlik veya işsizlik oranı arasında bir ilişki kurulabilir mi?
- Tahmin: Bir yerdeki halkın %20'si 5000 dolar altında kazanıyorsa, buradaki cinayet oranı nasıl tahminlenir?
- Modelleme: Fakirlikle işsizlik arasında bir bağlantı kurulabilir mi?







## Doğrusal Regresyon (Linear regression)

- Regresyon bir denetimli öğrenme (supervised learning) yöntemidir.
- Regresyonda amaç iki farklı veri arasındaki ilişkiyi (model) tanımlayabilmektir.
- Doğrusal regresyonda ise iki (veya daha çok) veri arasındaki ilişkinin bir doğru (veya düzlem) ile ifade edilebileceği farzedilir.
- Sonucunda,
  - Verilerin ilişkisi hakkında **yorum** yapabilir.
  - Hem de doğru bir model kurulabilirse, **görülmeyen veriler** hakkında yorum ve tahmin yapabiliriz.







#### Doğru nedir?

- Çözülmesi gereken problem ise bu doğrunun denklemini bulmak:
- Doğru denklemi:

$$y=b_1x+b_0$$

- x: Girdi verileri (bağımsız)
- y:Çıktı verileri (bağımlı)
- b<sub>1</sub>: Doğru eğimi
  b<sub>0</sub>: Kesim noktası





#### Modelleme:

## Doğrusal Regresyon Modeli

• Alternatif gösterim: Her bir veri noktası bir indeks ile gösterilir.

$$y_i = b_1 x_i + b_0 + \epsilon_i$$

- Elimizde verilerin olduğunu farzediyoruz ve **genel bir doğru denklemini arıyoruz**. Daha doğrusu  $b_1$  ve  $b_0$  katsayılarını arıyoruz.  $\epsilon_i$ , her veri noktası üzerindeki olası **hata**yı ifade eder.
- Elimizde bu katsayılar varsa, bu durumda da **gelecek veya bilinmeyen** çıktı değerlerini **tahmin**leyebiliriz. Bu tahminler genellikle şapka (^) ile gösterilir.  $\hat{y}_i = b_1 x_i + b_0$





## Modeli ölçme

 Tahmin edilen bir veri ile gerçek veri arasındaki hatayı temel alırız:

$$\epsilon_i = \hat{y}_i - y_i$$

- Bu hatayı bütün verileri kullanarak ölçeriz. Sonuç olarak kurduğumuz modelin bütün verilere uygun olup olmadığını ölçmemiz gerekiyor.
- Temelde iki tane hata ölçüm yöntemi vardır:
  - Ortalama kare hata kökü (Root Mean Squared Error):
  - Ortalama mutlak hata (Mean Absolute Error):



$$RMSE = \sqrt{\frac{1}{N} \sum_{i=0}^{N} (\hat{y}_i - y_i)^2}$$

$$MAE = \frac{1}{N} \sum_{i=0}^{N} |\hat{y}_i - y_i|$$





#### Hata inceleme

- RMSE hata fonksiyonunu detaylıca inceyelim. Bunun için b<sub>1</sub> ve b<sub>0</sub> katsayılarının farklı değerleri için birer doğru denklemi oluşturuyoruz.
- Bilinen  $x_i$  değerlerine göre  $\hat{y}_i$  tahminlerini yapıp, bunların da bilinen  $y_i$  değerleri ile arasındaki hatayı RMSE ile ölçelim.





### En iyileme (Optimization)

Doğru katsayıları nasıl bulacağız veya NASIL EĞİTECEĞİZ?

#### Bayır İnişi (Gradient descent)

- Yinelemeli (iterative)
- Bir katsayı değerinden başlayıp, hatayı azaltacak yönde ilerleriz.
- Hata değişmemeye başladığı noktadaki katsayılar hatayı en aza indirecek katsayılar olacaktır.

#### En Küçük Kareler Yöntemi (Least Squares Method)

- Doğrudan yöntem
- Hata fonksiyonunun yapısı gereği tek bir çukur nokta vardır. Hata fonksiyonunun türevi alınıp sıfıra eşitlendiğinde elde edilen parametreler en iyi parametrelerdir



Bu çalışmada yöntem olarak En Küçük Kareler Yöntemini kullanacağız.







# En Küçük Kareler Yöntemi ve **polyfit()**

- Temelde hata fonksiyonunun her katsayıya göre parçalı **türevinin alınıp sıfıra eşitlenmesi** ile katsayıların en uygun değerleri bulunuyor.  $b = (X^T X)^{-1} X^T y$
- Yukarıdaki karmaşık problemin çözümü yandaki matris operasyonlarına indirgeniyor.
- Xmatrisi ve yvektörü düzgün olarak kurulduğunda ve gerekli matematiksel operasyonlar uygulandığında vektörü elde edilecektir.
- Ama bunu da kullanmayacağız, bunun yerine polyfit () fonksiyonunu kullanacağız.
- b vektörünün elemanları,  $x_i$  ve  $y_i$  verilerinin bir doğru oluşturduğunu farzettiğimizde çizelecek **doğrunun katsayılarını** oluşturur.







### Residual (hata) incelemesi

- Elde ettiğimiz doğru modelinin ne kadar gerçekçi olduğunu görmek için **veri noktalarının tahminleriyle gerçekleri** arasındaki "residual"lara bakabiliriz.
- Regresyon ile hatayı minimize etmemize rağmen **seçilen regresyon modelinin uygunluğu**na ayrıca karar vermek için başka incelemelerde bulunmalıyız.
- Residualları çizdirdiğimiz zaman x ekseninin etrafında ve her yerde eşit (**homojen**) olarak dağılmış **bir tünel**i andırması öncelikli istenen bir görseldir.













#### Residual Analizi: R-Kare

 Modelimizin genel isabet oranını ölçmek için R-Kare (R-Squared) yöntemi kullanılır. Aşağıdaki formülle hesaplanır:

$$R^2 = \frac{TSS - RSS}{TSS}$$

$$TSS = \sum_{i=1}^{N} (y_i - \bar{y})^2$$
  $RSS = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$ 

- RSS, residual kareleri toplamı; TSS, toplam kareler toplamı olmak üzere, R-kare 0 ile 1 arasında bir değer alır. Bu değer ne kadar **1'e yakınsa** regresyon modelimiz o kadar **isabetli**dir.
- Bu değere ayrıca "tanımlanan çeşitliliğin oranı" (fraction of the explained variance) da denir.
- Regresyonu değerlendirebilmek için hem R-kare istatistiğine hem de residual grafiklerine bakmak gerekir.







## Örnekler ve Çalışma





