SSE5107 Optimization Theory and Algorithms Homework 1

Due: Oct. 12th, 2021, in class

Problem 1

Explain whether the following sets are convex.

- 1. A slab, i.e., a set of the form $\{x \in \mathbb{R}^n \mid \alpha < a^T x < \beta\}$.
- 2. A rectangle, i.e., a set of the form $\{x \in \mathbb{R}^n \mid \alpha_i \leq x_i \leq \beta_i, i = 1, ..., n\}$.
- 3. A wedge, i.e., $\{x \in \mathbb{R}^n \mid a_1^T x \le b_1, a_2^T x \le b_2\}.$
- 4. The set of points closer to a given point than a given set, i.e.,

$$\{x \mid ||x - x_0||_2 \le ||x - y||_2 \text{ for all } y \in S\},\$$

where $S \subseteq \mathbb{R}^n$.

5. The set of points closer to one set than another, i.e.,

$$\{x \mid \operatorname{dist}(x, S) \leq \operatorname{dist}(x, T)\},\$$

where $S, T \subseteq \mathbb{R}^n$, and

$$dist(x, S) = \inf \{ ||x - z||_2 \mid z \in S \}.$$

- 6. The set $\{x \mid x + S_2 \subseteq S_1\}$, where $S_1, S_2 \subseteq \mathbb{R}^n$ with S_1 convex.
- 7. The set of points whose distance to a does not exceed a fixed fraction θ of the distance to b, i.e., the set $\{x \mid \|x-a\|_2 \leq \theta \|x-b\|_2\}$, where $a \neq b$ and $0 \leq \theta \leq 1$.

Problem 2

Let $P = \{x \in \mathbb{R}^n \mid a_i^T x \leq b_i \text{ for } i = 1, \dots, m\}$, where $a_1, \dots, a_m \in \mathbb{R}^n$ and $b_1, \dots, b_m \in \mathbb{R}$ are given. Recall that a ball with center $\bar{x} \in \mathbb{R}^n$ and radius r > 0 is defined as the set $B(\bar{x}, r) = \{x \in \mathbb{R}^n \mid ||x - \bar{x}||_2 \leq r\} = \{\bar{x} + x \in \mathbb{R}^n \mid ||x||_2 \leq r\}$. We are interested in finding a ball with the largest possible radius, subject to the condition that it is entirely contained within the set P (also known as the largest inscribed ball in P). Give a linear programming formulation of this problem.

Problem 3

Let $S = \{x \in \mathbb{R}^n \mid x^T A x + b^T x + c \leq 0\}$, where $A \in \mathcal{S}^n, b \in \mathbb{R}^n$, and $c \in \mathbb{R}$ are given.

- 1. Show that S is convex if $A \succeq \mathbf{0}$. Is the converse true? Explain.
- 2. Let $H = \{x \in \mathbb{R}^n \mid g^T x + h = 0\}$, where $g \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ and $h \in \mathbb{R}$. Show that $S \cap H$ is convex if $A + \lambda g g^T \succeq \mathbf{0}$ for some $\lambda \in \mathbb{R}$.