

Supply-chain system optimization leveraging demand forecasting

B. Pardo Álvarez | K. van Cauwenberge | D. Dias da Costa | M. Ehmann | C. Kröger | F. Krüger | J. Oldorf | C. Utendorf Tuesday, June 4th 2019 Today, we will demonstrate how AFR can leverage on demand forecasting to improve its operational efficiency and boost the company's profitability

AFR active in kids fashion market with production facilities in CN, TR & PT – increasing competition leading to significant price pressure

Background

AFR Client snapshot

- Portfolio of >1000 different products per season – wide selection of products to specifically meet demands of each addressed age group
- **100 stores** in Spain (ca. 70% of sales), multibrand stores and online (ca. 30%)¹⁾
- Historically high-margin business currently bruised – sales stable

- Increasing competition imitating AFR's strategy and product – mostly at lower prices
- With sales down, AFR was forced to reduce prices, resulting in significantly lower margins

 sales stabilized

AFR's operational inefficiencies and margin pressure require quick and decisive counteraction with regard to improved demand forecasting

Project scope

EXTERNAL

Increasing competitive environment

SCOPE

Fast changing trends in fashion industry

INTERNAL

Mismatch of supply and demand

Margin pressure due to high operational cost

KEY CHALLENGES

PROJECT SCOPE

WHAT

Supply-chain and production optimization through improved demand forecasting

HOW

Enhanced prediction methodology leveraging AFR's data and production systems

To assess relevant levers for AFR's operational efficiency, a clear understanding of the company's supply and value chain is essential

Supply chain, exemplary seasonal planning

Illustrative

Through long lead times combined with short product life cycles there is a constant mismatch of product supply and demand

Supply and demand mismatch

Illustrative

Pain Points

- A Forecast errors leading to supply mismatches
- B Stock-outs happen and cannibalize potential sales
- C Unsold stock deteriorates company profitability

Affected KPIs

- Forecast error
- Stock to sales
- Perfect order performance
- Contribution margin

Forecast accuracy directly and indirectly impacts several KPIs – improving it could lead to significant positive business development for AFR

KPI landscape

Forecast accuracy

- Measures deviation of actual to planned sales by SKU, tracked daily/ weekly
- Key indicator of inventory management effectiveness
- Basis of demand prediction KPI landscape

Stock to sales

- Measures the ratio of inventory available versus quantity actually sold
- Indicates stocking effectiveness and should be kept as low as possible

Perfect order performance

- POP = % delivered on time *
 % complete *
 % damage free *
 % accurate doc.
- Key indicator measuring delivery effectiveness

Direct impact

Avg. contribution margin

- Measuring profitability per product group
- Indicating production / assortment cost management effectiveness

Indirect impact

Net promoter score

 Measures customer satisfaction / referral likelihood

Others

- Customer retention
- Service level

Due to varying data availability and differing production cycles, three different forecasting models are suggested to optimize supply chain management

Methodology overview

Pre season – no season sales have occurred yet =

In season – season sale has stared

Time

Pre-season basics forecasting model will leverage historic sales data and provide demand prediction on SKU level

1

Pre-season, basics demand forecasting methodology

Illustrative Output:

SKU1 (Girls, Casual, Jeans, id1, Red, M): 5.000 units

Due to lack of historic sales data, forecasts can be only on family level but combined with business expert evaluation for final order

Family 1 (Girls, Casual, Jeans): 20.000

units

2 Pre-season, fashion demand forecasting methodology

Consecutive steps Article level fashion expert Evaluation & 3rd party orders Size demographic distribution SKU level Order based on forecast and eval. PUSH Production order for China

Replenishment based on in-season forecast leveraging sales information on single-store basis

3

In-season forecast methodology – Store specific models

Input Model Pre sales In season store sales Weather forecast Upcoming marketing activities Calendar data Avg last year family sales Influencer coverage Model Daily and weekly quantity per SKU per SKU per store

Our proposed forecasting methodology will result in strong, positive changes for all focus KPIs

Incremental benefits on focus KPIs

⟨¬¬¬ KPI	Change	Description	Example			
Forecast accuracy	1	 Leveraging internal and external data using adv. analytics techniques with direct impact on forecast accuracy 	 Overall deviation between actual and planned demand will decrease both pre- and in-season 			
Stock to sales		 Optimizing inventory levels will ensure minimizing days of under- and overstocking in stores 	 Especially in more 'difficult' planning periods for non-basic products, stocking based on sophisticated planning and not on sporadic purchases is crucial for AFR 			
Perfect order performance		 Improved on-time delivery both in warehouse and in stores will boost perfect order performance 	 Knowing precisely when and where which items are needed, accurate on-time deliveries to warehouse and stores increase 			
Contribution margin		 Optimizing balanced supply from CN, TR and PT lowers assortment costs In-store storing costs lower due to increasing just-in-time delivery 	 Produced and stored at lower cost, each item contributes now more positively to AFRs business result 			
Net promoter score		 Increased customer satisfaction ensured due to better product availability, i.e. less stockouts 	 Customers are more likely to give positive feedback or referrals about AFR having experienced a positive (e.g. non-stockout) AFR-experience 			

In the long run AFR will unlock further potential by implementing a more efficient supply chain through data driven automation and decision making

Supply chain optimization

Decision making based on advanced analytics creates value across the supply chain but is only successful if operations adopts accordingly

Example: Leveraging pre-sales data

Pre season sales in selected stores

Stores are clustered and for each cluster a store is selected

Warehouse optimizes distribution for season start

Pre season sales help to estimate regional specific sales

Cluster specific stock for season start

Warehouse can send out initial stock based on pre sales experience

Due to the high complexity of a fashion retailer supply chain the adoption of the new forecasting models should be based on experiences from pilot runs

Action Plan

High

SCM based on advanced analytics does not only provide incremental benefits but also helps to cope the high demand uncertainty within the fashion industry

Conclusion

Status Quo

 Insufficient SCM resulting in constant mismatch of supply and demand, leading to an increasing supply chain cost and margin pressure

Proposed Methodology

 Reducing forecast error and thus optimizing replenishment management, reducing operational cost through a more efficient supply chain

Expected results

 Proposed forecasting methodology will result in strong, positive changes for all focus KPIs – additional SCM innovations will further boost AFR's long-term business performance

Thank you for your attention.

B. Pardo Álvarez | K. van Cauwenberge | D. Dias da Costa | M. Ehmann | C. Kröger | F. Krüger | J. Oldorf | C. Utendorf *Tuesday, June 4th* 2019

Fashion cycle duration varies across industry due to different company profiles and production line set-ups

Overview pre season planning (in weeks)

AFR three different production sites in China, Turkey and Portugal differ in production cost and delivery times

Production site overview

AFR builds on a sophisticated operational data management system but is not yet leveraging on its full potential

Data management

Description

- A Historical sales and stock data, promotional data
- E.g. weather, holiday, competitor data, social media data
- Data aggregation and flow between central and decentral stakeholders
- Replenishment planning based on steps A-C

Pain Points

- Sole data source for replenishment planning
- External data not at all leveraged
- Infrequent communicationbetween warehouse & stores
- No algorithmic
- replenishment planning in place

Among fashion item groups differing seasonal variation levels due to group specific sensitivities and sales patterns

Aggregation levels of fashion products

Fashion demand is influenced by several different factors – some of them can be influenced by the retailer while others cannot and are also difficult to predict

Demand influence factors

Machine learning model with lagged time variables takes advantage of historic sales data as well as demographic trends among Spain

Linear model with lagged time variables – Pre season Basics

Illustrative

	Historical Data		Demographics				Target	
	Total qty sold Y-1	Total qty sold Y-2	# of children 0-3 mnths Y-1	#of children 0-3 mnths Y-2		# of children 11-12 yrs Y-1	# of children 11-12 yrs Y-2	Total quantity
SKU 1-2011	23 500	26 000	#	#		#	#	25 000
SKU 1-2012	25 000	23 500	#	#		#	#	23 500
SKU 1-2013	23 500	25 000	#	#		#	#	24 500
SKU 1-2014	24 500	23 500	#	#		#	#	25 500
SKU 1-2015	25 500	24 500	#	#		#	#	24 000
SKU 1-2018	25 200	24 700	#	#		#	#	26 000
SKU 1-2019	26 000	25 300	#	#		#	#	?

Clarifications:

- Values displayed in this tables need to be processed before inputting them in the model
- Depicted values represent aggregated data from previous seasons, not full years' data
- Demographics features presented above are for a generic case. For a specific SKU ONLY certain age ranges will apply, since a specific SKU by definition will suit to certain ages

We will implement our solution in less then 8 mo. with skill sets comprising Data Engineering & Science and Business Translator capabilities for less than 600k

Commercial proposal

		Resource requirements		Commerci				
		Data engineer	Data scientist	Business Translator	Data engineer	Data scientist	Business Translator	TOTAL
1	Status quo & 4 weeks stakeholder analysis				12	8	30	50
2	Data collection & consolidation				20	8	6	34
3	Model design & 3 weeks setup				3	30	4.5	37.5
4	Pilot run				24	80	60	164
5	Evaluation & adjustments				15	30	22.5	67.5
6	Roll out				30	100	75	205

Academic resources as well as operational experts are constantly discussing how to optimize supply chains in the fashion industry

Sources (1/2)

- Berg, A.; Heyn, M.; Rölkens, F.; Simon, P. (2019, May 23). Faster fashion: How to shorten the apparel calendar. Retrieved from https://www.mckinsey.com/industries/retail/our-insights/faster-fashion-how-to-shorten-the-apparel-calendar
- **Choi, T. M.**; **Hui, C. L.**; **Yong, Y.** (2014). *Intelligent fashion forecasting systems : models and applications*. Heidelberg New York: Springer.
- **Digital Supply Networks** (2019, May23). *D!gitalist Magazine*. Retrieved from https://www.digitalistmag.com/digital-supply-networks/2016/03/30/zaras-agile-supply-chain-is-source-of-competitive-advantage-04083335
- **DSV** (2019, May 17). *Global Transport and Logistics*. Retrieved from http://www.es.dsv.com/transporte-mercancias-ferrocarril/importacion-exportacion-china/tiempos-transito
- **Freightos.com** (2019, May 15). *Freight Shipping and Transit Calculator*. Retrieved from https://www.freightos.com/freight-resources/transit-time-calculator-for-international-freight-free/
- **Gorrepati, K**. (2019, May 23). *D!gitalist Magazine*. Retrieved from https://www.digitalistmag.com/digital-supply-networks/2016/03/30/zaras-agile-supply-chain-is-source-of-competitive-advantage-04083335

Academic resources as well as operational experts are constantly discussing how to optimize supply chains in the fashion industry

Sources (2/2)

- **Made-in-China.com** (2019, May 10). Connecting Buyers with Chinese Suppliers. Retrieved from https://www.made-in-china.com/productdirectory.do?word=clothes&subaction=hunt&style=b&mode=and&code=0&com Province=nolimit&order=0&isOpenCorrection=1
- **Me360.com** (2019, May 15). *土耳其纺织行业概况*. Retrieved from http://www.me360.com/article/330433
- **Peneházi, G**. (2019). Recurrent Neural Network for Time Series Forecasting. University of Debrecen, Doctoral School of Mathematical and Computational Sciences
- **tradegecko.com** (2019, May 18). *Zara supply chain analysis*. Retrieved from https://www.tradegecko.com/blog/zara-supply-chain-its-secret-to-retail-success
- **TrendReports** (2019, May 25). *Kids Fashion Trend Report*. Retrieved from https://www.trendreports.com/research/kids-fashion-trend-report

