§2 边缘分布

- 边缘分布函数
- 边缘分布律
- 边缘概率密度

如果(X, Y)是一个二维随机变量,则它的分量 X (或者 Y)是一维随机变量,因此,分量 X (或者 Y) 也有分布.我们称 X (或者 Y)的分布为 二维随机变量(X, Y)关于X (或者 Y)的边缘分布.

边缘分布也称为边沿分布或边际分布.

一、已知联合分布函数求边缘分布函数 设二维随机变量(X, Y)的分布函数为F(x, y),则分量 X的分布函数为

$$F_X(x) = P\{X \le x\} = P\{X \le x, -\infty < Y < +\infty\}$$

$$= \lim_{y \to +\infty} F(x, y) = F(x, +\infty) \quad \text{is in } \text{is } \text{in } \text{in } \text{in } \text{is } \text{in } \text{i$$

同理,分量Y的分布函数为

$$F_{Y}(y) = P\{Y \le y\} = P\{-\infty < X < +\infty, Y \le y\}$$
$$= \lim_{x \to +\infty} F(x, y) = F(+\infty, y)$$

例 1

设二维随机变量(X, Y)的联合分布函数为

$$F(x, y) = A\left(B + \arctan \frac{x}{2}\right)\left(C + \arctan \frac{y}{3}\right)$$

$$(-\infty < x < +\infty, -\infty < y < +\infty)$$
试求: (1). 常数 A 、 B 、 C ;

(2) X 及 Y 的边缘分布函数 .

解 (1). 由分布函数的性质,得

$$1 = F(+\infty, +\infty) = A\left(B + \frac{\pi}{2}\right)\left(C + \frac{\pi}{2}\right)$$

$$0 = F(x, -\infty) = A\left(B + \arctan\frac{x}{2}\right)\left(C - \frac{\pi}{2}\right)$$

$$0 = F(-\infty, y) = A\left(B - \frac{\pi}{2}\right)\left(C + \arctan\frac{y}{3}\right)$$

由以上三式可得, $A = \frac{1}{\pi^2}$, $B = \frac{\pi}{2}$, $C = \frac{\pi}{2}$.

(2) . X的边缘分布函数为

$$F_{X}(x) = \lim_{y \to +\infty} F(x, y)$$

$$= \lim_{y \to +\infty} \frac{1}{\pi^{2}} \left(\frac{\pi}{2} + \arctan \frac{x}{2} \right) \left(\frac{\pi}{2} + \arctan \frac{y}{3} \right)$$

$$= \frac{1}{\pi} \left(\frac{\pi}{2} + \arctan \frac{x}{2} \right) \qquad (x \in (-\infty, +\infty))$$

例 1 (续)

同理,Y的边缘分布函数为

$$F_{Y}(y) = \lim_{x \to +\infty} F(x, y)$$

$$= \lim_{x \to +\infty} \frac{1}{\pi^{2}} \left(\frac{\pi}{2} + \arctan \frac{x}{2} \right) \left(\frac{\pi}{2} + \arctan \frac{y}{3} \right)$$

$$= \frac{1}{\pi} \left(\frac{\pi}{2} + \arctan \frac{y}{2} \right)$$

$$(y \in (-\infty, +\infty))$$

二、已知联合分布律求边缘分布律

对于二维离散型随机变量(X, Y),已知其联合分布律为

$$p_{ij} = P\{X = x_i, Y = y_j\} (i, j = 1, 2, \cdots)$$

现求随机变量X的边缘分布律:

$$p_{i.} = P\{X = x_i\} = P\{X = x_i, \bigcup (Y = y_j)\}$$

$$= \sum_{j} P\{X = x_i, Y = y_j\} = \sum_{j} p_{ij} \quad (i = 1, 2, ...)$$

同理,随机变量的边缘分布律为:

$$p_{.j} = P\{Y = y_j\} = \sum P\{X = x_i, Y = y_j\} = \sum_i p_{ij}$$

已知联合分布律求边缘分布律

X以及Y的边缘分布律也可以由下表表示

Y	\mathcal{Y}_{1}	\mathcal{Y}_2	\mathcal{Y}_j	 P _i .
$x_{\rm l}$	P_1	P_{12}	P_{i}	 P _i
\mathcal{X}_{2}	P_{21}	P_{22}	P_{2j}	 P_2
:	:	•	•	:
x_{i}	P_{i1}	P_{i2}	P_{ij}	 P _i
:	•	•	•	:
$p_{\cdot j}$	p_1	p_2	$\dots p_{j}$	<u>回主目录</u>

将两个球等可能地放入编号为1,2,3的三个盒子中.

令:X: 放入1号盒中的球数;

Y: 放入2号盒中的球数.

求X以及Y的边缘分布律。

第三章 随机变量及其分布

例 2

Y	O	1	2	P_{t}
О	<u>1</u> 9	<u>2</u> 9	<u>1</u> 9	$\frac{4}{9} = p_{0.}$
1	<u>2</u> 9	<u>2</u> 9	Ο	$\frac{4}{9} = p_{1.}$
2	<u>1</u> 9	О	О	$\frac{1}{9} = p_2.$
P_{ij}	$\frac{4}{9} = p_{.0}$	$\frac{4}{9} = p_{.1}$	$\frac{1}{9} = p_{.2}$	

§1 二维随机变量

例 3

设随机变量 X 在 1,2,3,4 四个数中等可能地取值,另一个随机变量 Y 在 $1\sim X$ 中等可能地取一整数值。

求X以及Y的边缘分布律。

例 3

(续)

可得(X, Y)与X及Y的边缘分布律为

X	1	2	3	4	Pi-
1	<u>1</u> 4	O	O	O	$\frac{1}{4}p_1$
2	<u>1</u> 8	<u>1</u> 8	O	O	$\frac{1}{4}p_2$
3	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	O	$\frac{1}{4}p_3$
4	<u>1</u> 1€	<u>1</u> 1€	$\frac{1}{1\epsilon}$	<u>1</u> 1€	$\frac{1}{4}$ p_4 .
P_{ij}	$\frac{25}{48}p_{\bullet 1}$	$\frac{13}{48}p_{-2}$	$\frac{7}{48}$ p	$\frac{3}{48}$	• <u>4</u> <u> 返回主目录</u>

三、已知联合密度函数求边缘密度函数

对于二维连续型随机变量(X, Y),已知其联合密度函数为 f(x, y)

现求随机变量
$$X$$
的边缘密度函数: $f_X(x)$

由
$$F_X(x) = P\{X \le x\} = F(x, +\infty)$$

$$= \int_{-\infty}^{x} \left[\int_{-\infty}^{+\infty} f(u, y) dy \right] du = \int_{-\infty}^{x} f_X(u) du$$

得
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

己知联合密度函数求边缘密度函数

同理,得

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx$$

总之: ${\rm H}(X, Y)$ 的联合密度函数为 f(x,y),

则 随机变量X的边缘密度函数为:

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

随机变量Y的边缘密度函数为:

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx$$

⑤ 返回主目录

设平面区域 D是由抛物线 $y = x^2$ 及直线 y = x 所围,随机变量 (X, Y) 服从区域 D上的均匀分布. 试求随机变量 (X, Y) 的联合密度函数 X、Y 各自的边缘密度函数 .

例 4 (续)

解: (1). 区域D的面积为

$$A = \int_{0}^{1} \int_{x^{2}}^{x} dy dx = \left(\frac{1}{2}x^{2} - \frac{1}{3}x^{3}\right)_{0}^{1} = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$$

所以,二维随机变量(X, Y)的联合密度函数为

$$f(x, y) = \begin{cases} 6 & (x, y) \in D \\ 0 & (x, y) \notin D \end{cases}$$

例 4 (续)

(2) . 随机变量X的边缘密度函数为

$$f(x, y) = \begin{cases} 6 & (x, y) \in D \\ 0 & (x, y) \notin D \end{cases}$$

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \int_{-\infty}^{x^2} + \int_{x^2}^{x} + \int_{x}^{+\infty}$$

$$= \int_{x^2}^{x} 6dy = 6(x - x^2)$$

所以,

$$f_X(x) = \begin{cases} 6(x - x^2) & 0 < x < 1 \\ 0 & \text{ 其它} \end{cases}$$

(续)

同理,随机变量Y的边缘密度函数为

$$f(x, y) = \begin{cases} 6 & (x, y) \in D \\ 0 & (x, y) \notin D \end{cases}$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \int_{-\infty}^{y} + \int_{y}^{\sqrt{y}} + \int_{\sqrt{y}}^{+\infty}$$

$$= \int_{y}^{\sqrt{y}} 6dx = 6(\sqrt{y} - y)$$

$$f_{Y}(y) = \begin{cases} 6(\sqrt{y} - y) & 0 < y < 1 \\ 0 & \text{ 其它} \end{cases}$$

设二维连续型随机变量(X, Y)的联合密度函数为

$$f(x, y) = \begin{cases} cxe^{-y} & 0 < x < y < +\infty \\ 0 & 其它 \end{cases}$$

试求:(1).常数c; (2) X 及Y的边缘密度函数.

解:

(1) . 由密度函数的性质,得

$$1 = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = \int_{0}^{+\infty} \int_{0}^{y} cx e^{-y} dx$$

例 5 (续)

$$= \frac{c}{2} \int_{0}^{+\infty} y^{2} e^{-y} dy = \frac{c}{2} \times 2 = c$$
所以, $c = 1$

$$f(x, y) = \begin{cases} xe^{-y} & 0 < x < y < +\infty \\ 0 & 其它 \end{cases}$$

(2) . 当x > 0时,

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \int_{x}^{+\infty} xe^{-y} dy = xe^{-x}$$

所以,X的边缘密度函数为

$$f_X(x) = \begin{cases} xe^{-x} & x > 0 \\ 0 & x \le 0 \end{cases}$$

(续)

(3) . 当y > 0时,

$$f(x, y) = \begin{cases} xe^{-y} & 0 < x < y < +\infty \\ 0 & \text{ 其它} \end{cases}$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \int_{0}^{y} x e^{-y} dx = \frac{1}{2} y^{2} e^{-y}$$

$$f_{Y}(y) = \begin{cases} \frac{1}{2}y^{2}e^{-y} & y > 0 \\ 0 & y \leq 0 \end{cases}$$

设二维随机变量 $(X, Y) \sim N(\mu, \mu, \sigma^2, \sigma^2, \rho)$ 试求X及Y的边缘密度函数.

解:

(X, Y)的联合密度函数为

$$f(x, y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$

$$\cdot \exp \left\{ -\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right] \right\}$$

例 6 (续)

$$f_X(x) = \int_0^{+\infty} f(x, y) dy$$

在
$$-\frac{1}{2(1-\rho^2)}\left[\frac{(x-\mu_1)^2}{\sigma_1^2} - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2}\right]$$
中,

对y进行配方,得

$$-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right]$$

$$= -\frac{1}{2(1-\rho^2)} \left[\frac{y-\mu_2}{\sigma_2} - \rho \frac{x-\mu_1}{\sigma_1} \right]^2 - \frac{(x-\mu_1)^2}{2\sigma_1^2}$$

例 6 (续)

所以,
$$f_X(x) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}}$$

$$\cdot \int_{-\infty}^{+\infty} \exp \left\{ -\frac{1}{2(1-\rho^2)} \left[\frac{y-\mu_2}{\sigma_2} - \rho \frac{x-\mu_1}{\sigma_1} \right]^2 \right\} dy$$

作变换,令:
$$u = \frac{1}{\sqrt{1-\rho^2}} \left(\frac{y-\mu_2}{\sigma_2} - \rho \frac{x-\mu_1}{\sigma_1} \right)$$

则 ,
$$du = \frac{dy}{\sigma_2 \sqrt{1 - \rho^2}}$$

例 6 (续)

$$f_X(x) = \frac{1}{2\pi\sigma_1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} \int_{-\infty}^{+\infty} e^{-\frac{u^2}{2}} du$$

$$= \frac{1}{2\pi\sigma_1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} \cdot \sqrt{2\pi} = \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}}$$

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma_1}} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} \qquad (-\infty < x < +\infty)$$

这表明, $X \sim N(\mu_1, \sigma_1^2)$

例 6 (续)

由(X, Y)的密度函数可知,X与Y的地位是对称的, 因此有

$$f_{Y}(y) = \frac{1}{\sqrt{2\pi\sigma_{2}}} e^{-\frac{(y-\mu_{2})^{2}}{2\sigma_{2}^{2}}} \qquad (-\infty < y < +\infty)$$

这表明, $Y \sim N(\mu_2, \sigma_2^2)$

通过本题,我们有以下几条结论:

结论(一)

二维正态分布的边缘分布是一维正态分布。

即若
$$(X, Y) \sim N(\mu, \mu, \sigma^2, \sigma^2, \rho)$$
则有, $X \sim N(\mu_1, \sigma_1^2)$ $Y \sim N(\mu_2, \sigma_2^2)$

结论(二)

上述的两个边缘分布中 的参数与二维正态分 π 中的常数 ρ 无关.

结论(三)

结论 (二)表明:如果
$$(X_1, Y_1) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho_1)$$
 $(X_2, Y_2) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho_2)$ (其中 $\rho_1 \neq \rho_2$)

则, (X_1, Y_1) 与 (X_2, Y_2) 的分布不相同,

但是 X_1 与 X_2 的分布相同, Y_1 与 Y_2 的分布相同.

这表明,一般来讲,我们不能由边缘分布求出联合分布.

作业: p_{85} 5,6,9

⑤ 返回主目录