Survival of Star-Forming Giant Clumps in High-Redshift Galaxies

Mark R. Krumholz¹[⋆] and Avishai Dekel²[⋆]

¹Department of Astronomy & Astrophysics, University of California, Santa Cruz, CA 95060, USA

Accepted 12 March 2010

ABSTRACT

We investigate the effects of radiation pressure from stars on the survival of the star-forming giant clumps in high-redshift massive disc galaxies, during the most active phase of galaxy formation. The clumps, typically of mass $\sim 10^8-10^9 M_{\odot}$ and radius $\sim 0.5-1\,\rm kpc$, are formed in the turbulent gas-rich discs by violent gravitational instability and then migrate into a central bulge in ~ 10 dynamical times. We show that the survival or disruption of these clumps under the influence of stellar feedback depends critically on the rate at which they form stars. If they convert a few percent of their gas mass to stars per free-fall time, as observed for all local star-forming systems and implied by the Kennicutt-Schmidt law, they cannot be disrupted. Only if clumps convert most of their mass to stars in a few free-fall times can feedback produce significant gas expulsion. We consider whether such rapid star formation is likely in high-redshift giant clumps.

Key words: galaxies: formation — galaxies: ISM — galaxies: star clusters: general — galaxies: star formation — ISM: clouds — stars: formation

1 INTRODUCTION

A significant fraction of the massive galaxies, \sim $10^{11} M_{\odot}$ in baryons, during the period from z =1.5-3 when star formation is at its peak and most stellar mass is assembled (Hopkins & Beacom 2006; Magnelli et al. 2009), form stars at high star formation rates (SFR) of $\sim 100 \, M_{\odot} \, \mathrm{yr}^{-1}$. Many of these are turbulent, gas-rich, extended rotating discs in which much of the star formation takes place in a few giant clumps (Cowie et al. 1995; van den Bergh et al. 1996; Elmegreen et al. 2004a, 2005, 2007). Based on this morphology, they were first termed "chain" or "clumpcluster" galaxies. In a typical galaxy of this type, 10 - 40% of the UV rest-frame light is emitted from a few clumps of characteristic size $\sim 1\,\mathrm{kpc}$ that form stars at tens of M_{\odot} yr⁻¹ each (Elmegreen et al. 2004b, 2005; Förster Schreiber et al. 2006; Genzel et al. 2008). These clumps are much more massive than the star-forming complexes in local galaxies. The star formation in these clumps, and their survival subject to stellar feedback, are central to our understanding of galaxy formation.

Kinematically, most of the galaxies that host the clumps are thick rotating discs, with high velocity dispersions of $\sigma = 20 - 80 \,\mathrm{km \, s^{-1}}$ (one dimensional), compared to $\sigma \simeq 10 \, \mathrm{km \, s^{-1}}$ is present-day discs; they have rotation to dispersion ratios of $V/\sigma \sim 1-7$ (Cresci et al. 2009). Estimates of the total gas fraction in star-forming galaxies, based on CO measurements, range from 0.2 to 0.8, with an average of $\sim 0.4-0.6$ (Tacconi et al. 2008; Daddi et al. 2008, 2009), systematically higher than the typical gas fraction in today's discs. These properties are generally incompatible with these systems being ongoing major mergers or remnants of such mergers (Shapiro et al. 2008; Bournaud et al. 2008; Dekel et al. 2009a; Bournaud & Elmegreen 2009; Dekel et al. 2009b), though there may be counter examples (Robertson & Bullock 2008).

Instead, giant clumps form through a scenario, summarized by Dekel et al. (2009b), in which massive galaxies at $z\sim 2-3$ are fed by a few narrow and partly clumpy streams of cold gas ($\sim 10^4 {\rm K}$) that flow along the dark matter filaments of the cos-

²Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

^{*} Email: krumholz@ucolick.org (MRK); dekel@phys.huji.ac.il (AD)

mic web (e.g. Hahn et al. 2007) and penetrate deep into the centres of the massive dark matter haloes of $\sim 10^{12} M_{\odot}$ (Birnboim & Dekel 2003; Kereš et al. 2005; Dekel & Birnboim 2006; Ocvirk et al. 2008; Dekel et al. 2009a). Indeed, the existence of these streams is an inevitable prediction of the standard Λ CDM cosmology. They may produce the structures we observe as Lymanalpha blobs (Furlanetto et al. 2005; Goerdt et al. 2009; Dijkstra & Loeb 2009). The angular momentum they carry leads the accreted material to form a disc of radius $R_{\rm d} \sim 10\,{\rm kpc}$. The continuous intense input of gas at the level of $\sim 100\,M_{\odot}\,\mathrm{yr}^{-1}$ maintains a high gas surface density Σ , which drives a violent gravitational instability with a Toomre Q parameter below unity, $Q \simeq$ $\sigma\Omega/(\pi G\Sigma)$ < 1, where σ is the one-dimensional velocity dispersion and Ω is the angular velocity associated with the potential well (Toomre 1964). The disc instability is self-regulated at $Q \lesssim 1$ by the gravitational interactions in the perturbed disc, which keep the disc thick and with a high velocity dispersion. The disc forms strong, transient spiral features that fragment to produce 5-10 bound clumps, that together comprise $\sim 20\%$ of the disc mass. The largest clumps have characteristic radii $R \simeq 7G\Sigma/\Omega^2 \sim 1$ kpc, and characteristic masses of a few percent of the disc mass, $M \sim 10^9 M_{\odot}$. A spectrum of smaller clumps with somewhat lower masses forms as well. The clumps' large masses cause them to migrate to the centre of the disc on a short time scale of ~ 10 disc crossing times, where they merge into a central bulge (Noguchi 1999; Immeli et al. 2004a,b; Bournaud et al. 2007; Ceverino et al. 2009; Agertz et al. 2009). This violent instability phase can last for more than a gigayear, during which the mass flow from the disc to the bulge is replenished by fresh accretion, keeping the mass within the disc radius divided quite evenly between disc, bulge and dark matter components.

While this scenario of clump formation and migration to build up bulges is appealing, it relies on the ability of clumps to survive for ~ 10 disc dynamical times, i.e. a few hundred million years, while the gas in them turns into stars on a comparable timescale (Genzel et al. 2008; Dekel et al. 2009b; Ceverino et al. 2009). However, at the SFR of a few tens of solar masses per year in the clumps, it is possible that they might be disrupted by stellar feedback on considerably shorter timescales. Murray et al. (2009) argue for exactly this scenario. In their models, clumps disrupt after ~ 1 dynamical time, during which they turn only $\sim 30\%$ of their mass into stars. In this picture clumps would not survive long enough to migrate, and bulges would instead need to be built up by mergers. While this scenario seems difficult to reconcile with the estimated ages of a few hundred Myr for the oldest stellar populations in some clumps (Elmegreen et al. 2009a; Förster Schreiber et al. 2009), there is sufficient uncertainty in both the observational estimates of clump ages and the theoretical modeling of clump evolution and disruption to merit a re-investigation of the problem, which we provide in this paper.

The outline of the paper is as follows. In $\S 2$ we derive the expected gas ejection fraction as a function of SFR efficiency. In $\S 3$ we address the observational estimates of the SFR efficiency. In $\S 4$ we discuss some of the issues raised by our results and compare to previous work. We summarize our conclusions in $\S 5$.

2 RADIATIVE FEEDBACK AND CLUMP SURVIVAL

Consider a uniform-density giant gas clump of mass M, radius R, and surface density $\Sigma = M/(\pi R^2)$. It forms stars at a rate \dot{M}_* , and the stars formed within it have a combined luminosity L. (We defer discussing the effect of sub-clumping within giant clumps to § 3.3, since it does not change the qualitative result.) Characteristic numbers to keep in mind for the largest, best-observed clumps, found in galaxies with baryonic masses $\sim 10^{11}$ M_{\odot} , are $M \simeq 10^9~M_{\odot}$, $R \simeq 1~{\rm kpc}$, and $\Sigma \simeq 0.1~{\rm g~cm^{-1}}$. Clumps in the $\sim 10^{10}~M_{\odot}$ galaxies, which are more common, have masses $\sim 10^8~M_{\odot}$ and sizes that are at or below the resolution limit of present observations. We will assume that they have surface densities comparable to those their larger cousins; they cannot be much smaller, since the mean column densities of the galactic disks as a whole is $\Sigma \sim 0.05 \text{ g cm}^{-2}$. We wish to evaluate the fraction e of clump mass that will be ejected by stellar feedback and the fraction $\mathcal{E} = 1 - e$ that is transformed into stars, because this is the critical parameter that determines whether the clump will form a bound stellar system. Both N-body simulations and analytic models (e.g. Hills 1980; Kroupa 2001; Kroupa & Boily 2002; Baumgardt & Kroupa 2007) indicate that if $\mathcal{E} \gtrsim 0.5$, then most of the stellar mass will remain bound, while if $\mathcal{E} \lesssim 0.3$ then no bound stellar system will be left. Small portions of the clump where \mathcal{E} was locally higher may form bound clusters, but these will be orders of magnitude smaller than the initial clump.

Several common feedback mechanisms are not important for giant clumps in the relevant mass range. First, supernova feedback is unlikely to be effective in ejecting mass from these giant clumps, due to cooling and leakage of hot gas (Dekel et al. 2009b; Krumholz & Matzner 2009; Murray et al. 2009). Second, the pressure of warm ($\sim 10^4$ K) ionized gas is ineffective because the escape velocity from the clump is larger than the gas sound speed of $\sim 10 \text{ km s}^{-1}$. Third, protostellar outflows are unable to eject mass because they do not provide enough momentum (Fall et al. 2010). Instead, the dominant feedback mechanism is likely to be radiation pressure from newly-formed stars, which creates a radiation-dominated H II region. The expansion of such a region follows a similarity solution (Krumholz & Matzner 2009), and Fall et al. (2010) use this solution to show that all the remaining gas will be ejected once the fraction of gas mass transformed into stars reaches a value

$$\mathcal{E} = \frac{M_*}{M} = \frac{\Sigma}{\Sigma + \Sigma_{crit}},\tag{1}$$

where

$$\Sigma_{\rm crit} = \frac{5\eta f_{\rm trap} \langle L/M_* \rangle}{\pi \alpha_{\rm crit} Gc},\tag{2}$$

 η is a constant of order unity that depends on the density distribution within the clump, $\langle L/M_* \rangle$ is the light to mass ratio of the stellar population, $f_{\rm trap}$ represents the factor by which the radiation force is enhanced by trapping of re-radiated infrared light within the expanding shell, and $\alpha_{\rm crit}$ is a parameter of order unity that describes the critical velocity required to eject mass from the cloud. Fall et al. (2010) assume fiducial values of $\eta=2/3$ and $f_{\rm trap}=\alpha_{\rm crit}=2$ for the local star-forming regions, and we adopt the same values here since there is no obvious reason for them to be systematically different in the case of giant clumps at redshift 2. We refer to $\mathcal E$ as the final star fraction.

To determine the light to mass ratio, we must deal with the complication that the characteristic crossing time of a giant clump is rather long, $t_{\rm cr} = R/\sqrt{GM/R} = 15M_9^{-1/2}R_1^{3/2}$ Myr, where $M_9 = 15M_9^{-1/2}R_1^{3/2}$ $M/(10^9 M_{\odot})$ and $R_1 = R/(1 \text{ kpc})$. Depending on the exact values of M and R, this can be either greater than or less than the main-sequence lifetime of massive stars. Thus we can neither assume a single burst, so that all stars are coeval, nor continuous star formation, so that the population is in equilibrium between new stars forming and old ones evolving off the main sequence. However, we can treat these scenarios as two limiting cases, which must bracket any real stellar population. Krumholz & Tan (2007) point out that in stellar populations younger than 3 Myr, where no stars have left the main sequence yet, the light-to-mass ratio has a constant value, Ψ , for which we adopt $\Psi \approx 2200$ erg s^{-1} g^{-1} (Fall et al. 2010). Once a stellar population is old enough to reach statistical equilibrium between star formation and star death, it instead has a nearly constant luminosity-to-star-formation rate ratio, Φ , which we take to be $\Phi \approx 6.1 \times 10^{17} \ \mathrm{erg \ g^{-1}}$ (Krumholz & Tan 2007). For any realistic stellar population whose light is dominated by young, massive stars as opposed to old ones, the luminosity is roughly equal to the smaller of these two limits, and for simplicity we simply take the light-to-mass ratio to be

$$\left\langle \frac{L}{M_*} \right\rangle = \min\left(\Psi, \Phi \frac{\dot{M}_*}{M_*}\right).$$
 (3)

We refer to the first case as the "young stars" limit and the second as the "old stars" limit, since they represent the opposite extremes of stellar populations that have undergone no evolution and populations that are old enough to have reached equilibrium between star formation and stellar evolution.

Substituting these two light-to-mass estimates into equation (1) gives

$$\mathcal{E} = \max \left[\left(1 + \frac{\Sigma_{\text{crit,y}}}{\Sigma} \right)^{-1}, 1 - \frac{\Sigma_{\text{crit,y}}}{\Sigma} \left(\frac{\Phi}{\Psi t_{\text{dep}}} \right) \right], (4)$$

where

$$\Sigma_{\rm crit,y} = \frac{5\eta f_{\rm trap} \Psi}{\pi \alpha_{\rm crit} Gc} \approx 1.2 \text{ g cm}^{-2}$$
 (5)

is the critical density evaluated in the young-stars limit and $t_{\rm dep}=M/\dot{M}_*$ is the depletion time, i.e. the time that would be required to convert all of the gas into stars. The numerical evaluation in equation (5) is for the fiducial parameters of Fall et al. (2010). Note that this expression is a maximum rather than a minimum because \mathcal{E} is a decreasing function of $\langle L/M_* \rangle$.

Following Krumholz & McKee (2005), we define the dimensionless star-formation rate efficiency as the ratio between the free-fall time and the depletion time², namely

$$\epsilon_{\rm ff} = \frac{\dot{M}_*}{M/t_{\rm ff}}.\tag{6}$$

Krumholz & Tan (2007) show that $\epsilon_{\rm ff} \simeq 0.01$ across a very broad range of densities, size scales, and environments. Here we define the free-fall time as $t_{\rm ff} = \sqrt{3\pi/(32G\rho)}$, where ρ is the gas density. We discuss in § 3 below whether this value of $\epsilon_{\rm ff}$ applies in highz giant clumps. If we adopt it for now and make this substitution in equation (4), we find that

$$\mathcal{E} = \max \left[\left(1 + \frac{\Sigma_{\text{crit,y}}}{\Sigma} \right)^{-1}, 1 - \frac{\epsilon_{\text{ff}} \sqrt{8G} \Sigma_{\text{crit,y}} \Phi}{(\pi \Sigma M)^{1/4} \Psi} \right] (7)$$

$$\simeq \max \left[\left(1 + \frac{12}{\Sigma_{-1}} \right)^{-1}, 1 - \frac{0.086}{(\Sigma_{-1} M_9)^{1/4}} \epsilon_{\text{ff,-2}} \right] (8)$$

where $\Sigma_{-1} = \Sigma/(0.1 \text{ g cm}^{-2})$, $\epsilon_{\rm ff,-2} = \epsilon_{\rm ff}/100$, and the numerical evaluation uses the fiducial parameters from Fall et al. (2010). We use Equation (8) to plot \mathcal{E} as a function of $\epsilon_{\rm ff}$ in Figure 1.

What does this result imply for the survival of highz giant clumps? We note that the second term in brackets in equation (8), corresponding to the case of a stellar population older than ~ 3 Myr, is generally the one that applies for giant clumps. This reflects the fact that the crossing time for our fiducial values of the parameters is 15 Myr, which is significantly larger than 3 Myr. The young stellar population limit applies only if the

¹ Note that this is sometimes referred to as star formation efficiency as well, but we avoid the term efficiency because it does not have a standard meaning, and different authors use it for different concepts.

² Note that the rate efficiency $\epsilon_{\rm ff}$ that we have defined here is distinct both from the star formation rate, which has units of M_{\odot} yr⁻¹ and is not normalized by the ratio of mass over free-fall time, and the final stellar mass fraction \mathcal{E} , which is dimensionless but does not carry any information about the star formation rate.

Figure 1. Final stellar fraction \mathcal{E} as a function of star formation rate efficiency $\epsilon_{\rm ff}$, computed from Equation (7). We show results for giant clump surface densities $\Sigma_{-1}=0.2$, 1.0, and 5.0 (green, red, and blue lines, as indicated), and for giant clump masses $M_9=0.03$, 0.3, and 3.0 (dotted, solid, and dashed lines, as indicated). The arrows schematically indicate the region around $\epsilon_{\rm ff}=0.1$ where we change from the old stars limit (low $\epsilon_{\rm ff}$) to the young stars limit (high $\epsilon_{\rm ff}$). The gray region from $\mathcal{E}=0.3-0.5$ indicates the rough boundary between stellar fractions $\mathcal{E}\lesssim 0.3$, for which no bound stellar system will remain, and $\mathcal{E}\gtrsim 0.5$, for which a majority of the stellar mass will remain bound.

star formation rate efficiency is much higher than is observed in any star-forming systems anywhere in the local universe, $\epsilon_{\rm ff,-2}\gtrsim 10$, or if the star-forming systems are significantly less massive or much more dense. This makes high-z giant clumps very different from Galactic star clusters or even super-star clusters, such as those found in local starburst galaxies, e.g. the Antennae or M82. These have lower masses and higher surface densities, with crossing times ~ 0.1 Myr (e.g. McCrady & Graham 2007), placing them firmly in the young-star limit. Indeed, the first term in the brackets is identical to that derived by Fall et al. (2010) for local star-forming clumps.³

We conclude that unless $\epsilon_{\rm ff,-2}\gg 1$ for giant clumps, as opposed to ~ 1 for the local star-forming systems, star-forming clumps with masses $\sim 10^8-10^9~M_{\odot}$ and surface densities $\sim 0.1~{\rm g~cm^{-2}}$ cannot be disrupted by radiation pressure — so they end up converting most of their mass to stars. Thus, the *expulsion fraction* relevant for high-z giant clumps, as derived in the old-star limit, is

$$e = 1 - \mathcal{E} = 0.086 \Sigma_{-1}^{-1/4} M_9^{-1/4} \epsilon_{\text{ff},-2} \,.$$
 (9)

Since $\mathcal{E} \gtrsim 0.5$, we expect the resulting stellar sys-

tems to remain gravitationally bound. Clumps with $\Sigma_{-1}=1$ have $\mathcal{E}<0.5$ and suffer significant disruption only if their masses are below $\sim 10^6~M_{\odot}$, and they reach $\mathcal{E}<0.3$ and undergo complete disruption only at masses $\lesssim 2\times 10^5~M_{\odot}$. Thus the observed $\sim 10^8-10^9~M_{\odot}$ giant clumps in high-z galaxies should survive disruption unless $\epsilon_{\rm ff,-2}\gg 1$. Even if we are maximally conservative and assume that the smaller clumps have $\Sigma_{-1}=0.5$, i.e. that their surface densities do not exceed the mean surface densities of their host galaxies, our estimated maximum mass for disruption only increases by a factor of 2.

3 THE STAR FORMATION RATE EFFICIENCY IN HIGH-Z CLUMPS

Equation (9) shows that the most important parameter in determining the survival of giant clumps is how quickly, normalized to their free-fall times, they turn themselves into stars. Only if they do so with a very high rate efficiency, $\epsilon_{\rm ff,-2} \gtrsim 10$, do we expect significant gas expulsion. In the local universe, one measures $\epsilon_{\rm ff}$ by determining the star formation rate of an object or a population of objects, and comparing this to the objects' gas mass divided by the free-fall time computed for their density. This procedure was first applied by Zuckerman & Evans (1974) to the population of giant molecular clouds in the Milky Way, and has subsequently been extended to other objects by Krumholz & Tan (2007) and Evans et al. (2009). These measurements give $\epsilon_{\rm ff,-2} \sim 1$ over a very wide range of star-forming environments, from small star clusters in the Milky Way to entire starburst galaxies. The results are subject to considerable uncertainty, but values $\epsilon_{\rm ff,-2} \gtrsim 10$ are strongly excluded by the data. However, we lack comparable data for star formation at high redshifts. In this section, we therefore turn to the question of the likely value of $\epsilon_{\rm ff}$ in high-z giant clumps.

3.1 Estimates of $\epsilon_{\rm ff}$ from Observations of Giant Clumps

Unfortunately, we cannot easily apply the direct measurement procedure used to determine $\epsilon_{\rm ff}$ in the local universe to the high-z clumps, because, while we can evaluate star-formation rates using H α luminosities, we are limited in our ability to measure the corresponding gas properties.

For example, Elmegreen et al. (2009b) use stellar population synthesis to estimate masses and ages for the stellar populations seen in giant clumps in high-z galaxies, and they then compare the ages τ to the clump dynamical times, defined as $t_{\rm dyn} \equiv (G\rho)^{-1/2} \approx 0.5 t_{\rm ff}$, where ρ is taken to be the stellar mass density. They find typical values $\tau/t_{\rm dyn} \sim 1-10$, corresponding to $\tau/t_{\rm ff} \sim 2-20$, with a factor of ~ 10 scatter. It is tempting to identify τ with $t_{\rm dep}$ and simply estimate

³ To get numerical agreement in the coefficient of Σ_{-1} , we must adjust k by a factor of $\sqrt{0.4}$ to account for measuring the escape velocity at the surface instead of at the half-mass radius.

 $\epsilon_{\rm ff} \sim t_{\rm ff}/\tau \sim 0.05-0.5$, but this is likely to be a significant overestimate. Based on dynamical mass estimates, Genzel et al. (2008) estimate that gas comprises 10-30% of the total mass within the disc radius. Estimates based on direct CO measurements indicate gas fractions of 45 - 60% at $z \sim 2$ (Daddi et al. 2009; Tacconi et al. 2010). It is likely to be an even larger fraction of the mass within the dense, rapidly starforming giant clumps, which are self-gravitating and lack a dark matter component. If the stars measured by Elmegreen et al. comprise only a small fraction f_* of the total mass in clump, then $\epsilon_{\rm ff}$ will be reduced by a factor of roughly $f_*^{1.5}$ relative to the previous estimate – one power of f_* to account for the gas that has not yet formed stars, and another factor of $f_*^{0.5}$ because the freefall time will be shorter than the value Elmegreen et al. estimate based on the stars alone. To give a sense of the possible magnitude of the error, note that Murray et al. (2009) estimate $f_* = 0.2$ for a giant clump in BX 482 (and we argue in Section 4.2 that f_* is probably even smaller), and this value of f_* would be sufficient to lower the estimate of $\epsilon_{\rm ff}$ by a factor of 10, to $5 \times 10^{-3} - 5 \times 10^{-2}$. A secondary worry is that, as Elmegreen et al. point out, since the clumps are selected using rest-frame blue light there is a strong bias against selecting older, redder clumps, causing an underestimate of τ . In general, τ is expected to be an underestimate of $t_{\rm dep}$ because the former refers only to the stars that have already formed.

Given this problem, many observers have attempted to estimate gas masses via the "inverse" Kennicutt (1998) law, namely by measuring the SFR surface density and then assuming that the gas surface density has the value required for the object to obey the Kennicutt law (e.g. Genzel et al. 2006, 2008). Unfortunately this procedure does not yield an independent estimate of $\epsilon_{\rm ff}$. The Kennicutt relation is

$$\dot{\Sigma}_* = A \Sigma_{-1}^{1.4},\tag{10}$$

with $A \simeq 1.4~M_{\odot}~{\rm yr}^{-1}~{\rm kpc}^{-2}$. Thus if the scale height of the galaxy is h, then the midplane gas density is $\rho = \Sigma/h$, the free-fall time is $t_{\rm ff} = \sqrt{3\pi h/(32G\Sigma)}$, and we have

$$\epsilon_{\rm ff,-2} = 100 \frac{\dot{\Sigma}_*}{\Sigma/t_{\rm ff}} = 3.4 \, A_{1.4} \, h_0^{0.5} \Sigma_{-1}^{-0.1},$$
(11)

where $h_0 = h/\text{kpc}$ and $A_{1.4} = A/(1.4~M_{\odot}~\text{yr}^{-1}~\text{kpc}^{-2})$. The true value of $\epsilon_{\rm ff}$ is almost certainly a bit smaller than this, since star-forming clouds have densities higher than the mean midplane density, and thus smaller free-fall times. Nonetheless, this calculation illustrates a crucial point: to the extent that galactic scale heights do not have a very large range of variation (and the dependence is only to the 0.5 power), the statement that $\epsilon_{\rm ff,-2} \sim 1$ is roughly equivalent to the Kennicutt law. (See Krumholz & McKee 2005 and Schaye & Dalla Vecchia 2008 for a more detailed discussion of the relationship between volumetric and areal star formation laws.) Thus, no measurement of the gas surface density that assumes the Kennicutt law a priori

can produce a value of $\epsilon_{\rm ff,-2}$ significantly different from this. Any measurement of $\epsilon_{\rm ff,-2}$ that did yield a significantly larger value would necessarily place the galaxy well off the Kennicutt relation.

3.2 Estimates of $\epsilon_{\rm ff}$ from Observations of Clump Host Galaxies

Given the difficulties of estimating $\epsilon_{\rm ff}$ in giant clumps directly, we instead turn to indirect inferences, based on the more robust measurements of the overall disc properties. We first note that the observed correlation between total gas mass and total star-formation rate in high-z galaxies (e.g. Carilli et al. 2005; Greve et al. 2005; Gao et al. 2007) is consistent with these galaxies having the same value of $\epsilon_{\rm ff}$ as local star-forming systems (Krumholz & Thompson 2007; Narayanan et al. 2008a,b). Bothwell et al. (2009) have claimed to detect a deviation from a universal star formation law in spatially resolved observations of three $z \sim 2$ systems. However, Bothwell et al. obtain this result only because they choose a non-standard conversion factor between CO luminosity and mass, which leads them to conclude that the gas fraction in these systems is only $\sim 5-10\%$, much lower than in typical star forming galaxies at $z \sim 2$, and on the low side even for local star-forming galaxies. Tacconi et al. (2010), using a standard conversion factor, conclude instead that these galaxies have molecular gas fractions of 35-45%. This is consistent with the star formation law and the value of $\epsilon_{\rm ff}$ at $z\sim 2$ being the same as in the local universe.

We can also approach the problem more theoretically. The high-z clumps discs with which we are concerned have SFR $\dot{M}_* \sim 100\,M_\odot\,\mathrm{yr}^{-1}$, baryonic mass $M_\mathrm{d} \sim 10^{11}M_\odot$, and disc radius $R_\mathrm{d} \sim 10\,\mathrm{kpc}$. We first express the relevant quantities in Equation (9) as a function of the clump mass M, surface density Σ , and SFR \dot{M}_* . The free-fall time (which is $\sqrt{5}/2$ times the crossing time R/V), expressed in 10^6 yr, is

$$t_{\rm ff,6} \equiv \sqrt{\frac{3\pi}{32G\rho}} = 16.7 M_9^{-1/2} R_1^{3/2} = 12.3 M_9^{1/4} \Sigma_{-1}^{-3/4} .(12)$$

Then

$$\epsilon_{\text{ff},-2} \equiv \frac{\dot{M}_*}{M/t_{\text{ff}}} = 12.3 \dot{M}_{*10} \Sigma_{-1}^{-3/4} M_9^{-3/4},$$
(13)

where \dot{M}_{*10} is the SFR in a clump in $10 M_{\odot} \, \mathrm{yr}^{-1}$.

Now let us express the clump quantities in terms of the disc mass, surface density, and total SFR. The disc surface density is

$$\Sigma_{d,-1} = 0.663 M_{d,11} R_{d,10}^{-2} \,, \tag{14}$$

where $R_{d,10}$ is the disc radius measured in units of 10 kpc. The virialized clumps can be assumed to have collapsed by at least a factor 2 in radius, so the clump surface density is $s \equiv 4s_4$ times larger than the disc's, or

$$\Sigma_{-1} = 2.65 s_4 M_{d,11} R_{d,10}^{-2} \,, \tag{15}$$

with $s_4 \geqslant 1$.

Assume that a fraction α (\simeq 0.2) of the disc mass is in N (\sim 10) identical clumps and a fraction β (\simeq 0.5) of the SFR is in the clumps (Dekel et al. 2009b; Ceverino et al. 2009). Then

$$\dot{M}_{*,10} = 0.5 \beta_{0.5} N_{10}^{-1} \dot{M}_{d*,100} , \qquad (16)$$

and

$$M_9 = 2\alpha_{0.2}N_{10}^{-1}M_{d,11}. (17)$$

Substituting the last three expressions in eq. (13) we obtain in terms of the disc quantities

$$\epsilon_{\rm ff,-2} = 1.75 s_4^{-3/4} \beta_{0.5} \alpha_{0.2}^{-3/4} N_{10}^{-1/4} \dot{M}_{d*,100} M_{d,11}^{-3/2} R_{d,10}^{3/2} . (18)$$

Note the very weak dependence on N. We see that the most straightforward observational estimates for the massive clumpy discs at $z\sim 2$ (e.g. the BzK galaxies, Genzel et al. 2008) yield $\epsilon_{\rm ff,-2}\simeq 1.75$ and $e\sim 0.1$, i.e. no significant expulsion.

This estimate is based on the observed properties of galaxies over a relatively narrow range of galaxy masses and redshifts, but using simple theoretical arguments we can deduce how the results are likely to scale to other galaxies for which we currently lack direct observations. For a self-gravitating disc, the circular velocity is roughly $V_{d,200}^2 \simeq M_{d,11}/R_{d,10}$, so $\epsilon_{\rm ff,-2} \propto \dot{M}_{d*} V_d^{-3}$, namely

$$\epsilon_{\rm ff,-2} \propto \frac{\dot{M}_{d*}}{M_{\rm vir}}$$
 (19)

A constant $\epsilon_{\rm ff,-2}$ (~ 1) is consistent with the SFR being a constant fraction of the baryon accretion rate, because the latter is roughly proportional to halo mass (Neistein et al. 2006; Birnboim et al. 2007):

$$\dot{M}_{d*} \sim \dot{M} \propto M_{\rm vir}.$$
 (20)

The fact that the SFR follows the accretion rate is a natural result of the fact that the SFR is proportional to the mass of the available gas (Bouche et al. 2009; Dutton et al. 2009), and is consistent with the finding from simulations when compared to observed SFR (Dekel et al. 2009a). We learn that e is only weakly dependent on M.

The redshift dependence at a given halo mass, using $V^3 \propto M_{\rm v} (1+z)^{3/2}$ and $\dot{M} \propto (1+z)^2$, is

$$\epsilon_{\text{ff},-2} \propto s^{-3/4} (1+z)^{1/2}$$
. (21)

The system can adjust the SFR to match the rate of gas supply by accretion with $\epsilon_{\rm ff,-2} \sim 1$ at all times by slight variations in the contraction factor s. At higher redshift, the clumps should contract a bit further and form stars at a somewhat higher surface density.

3.3 Sub-Resolution Clumping

Our discussion of clump survival in the preceding sections is based on the assumption that giant clumps represent single star-forming molecular clouds, although we

of course expect them to possess significant substructure, as do local molecular clouds. These substructures are unresolved by current observations and by simulations. Here we discuss how their presence affects our conclusions.

First note that, for this purpose, we do not care whether any sub-clumps within the giant clumps themselves survive star formation feedback and form bound stellar clusters. To see why, consider an extreme case in which all the sub-clumps within the giant clump expel most of their gas, and thus do not leave behind bound remnants. This is what we might expect to happen if all the sub-clumps had surface densities similar to that of their parent giant clump, but had masses well below the $\sim 10^5 - 10^6~M_{\odot}$ minimum survival mass that we computed in \S 2. In this case the sub-clumps would all form stars, expel their gas, and disperse, but both the stars and the expelled gas would still remain trapped within the much larger gravitational potential well of the giant clump. They could escape from this potential well only if the giant clump as a whole were disrupted by gas expulsion, which we have already shown in § 2 will happen only if $\epsilon_{\rm ff}$ is much larger than the expected value. Thus the end result of this scenario would be a bound giant star cluster without any bound sub-clusters inside it.

At the opposite extreme, suppose that all the subclumps were to remain bound and undergo negligible gas expulsion. We might expect this scenario if the sub-clumps all had surface densities much higher than that of their parent giant clump. In this case the subclumps would convert most of their mass to stars, forming bound clusters. All the bound clusters would irradiate the remaining mass in the giant clump, imparting momentum to it. If the stars imparted enough momentum, this gas would be expelled. Assuming most of the mass were in the inter-clump medium, as is the case for local molecular clouds, this expulsion would unbind the giant clump, producing many small individually bound clusters that are not bound to one another. Conversely, if the imparted momentum were not sufficient to unbind the giant clump, as we expect, the result would be a giant star cluster consisting of many smaller bound clusters, all gravitationally bound to one another.

In either extreme scenario, whether or not subclumps survive does not make any difference to whether a giant clump as a whole survives. This is dictated solely by the expulsion fraction from the giant clump. However, sub-clumping still could make a difference for giant clump survival by raising the value of $\epsilon_{\rm ff}$. In this case the sub-clumps would still have $\epsilon_{\rm ff,-2} \sim 1$, but the giant clump would have $\epsilon_{\rm ff,-2} \gg 1$ because it would have the same star formation rate but a much lower mean density, and thus a longer free-fall time.

To see whether this is likely to happen, we note that the turbulent motions within a giant clump are likely to break it up into smaller sub-clumps, much a local molecular clouds are broken up into clump, filamentary structures by turbulence. In such a configuration,

a majority of the mass is at a density higher than the volumetric mean density $\bar{\rho}$ that we have computed, and would therefore have a shorter free-fall time and a higher star formation rate. Quantitatively, we have computed the star formation rate as $\dot{M}_* = \epsilon_{\rm ff} M / t_{\rm ff}(\bar{\rho})$, where M is the total mass of the giant clump, $\bar{\rho}$ is its volumeaveraged density, and $t_{\rm ff}$ is the free-fall time computed at that density. However, if most of the mass is at a density $\rho > \overline{\rho}$, the appropriate mass might be the mass $M(> \rho)$ above that higher density, and the appropriate timescale might be $t_{\rm ff}(\rho)$ computed for that density. While one might worry that this could be a significant effect, Krumholz & Thompson (2007) point out that it is in reality quite small. Turbulent systems generally have lognormal density distributions. For such a distribution, the fraction of the cloud mass with density greater than ρ is given by

$$\frac{M(>\rho)}{M} = \frac{1}{2} \left[1 + \text{erf}\left(\frac{-2\ln x + \sigma_{\rho}^2}{2^{3/2}\sigma_{\rho}}\right) \right],$$
 (22)

where $x=\rho/\bar{\rho}$, $\bar{\rho}$ is the volumetric mean density, and σ_{ρ} is the dispersion of the density distribution. This is related to the Mach number \mathcal{M} of the turbulence by $\sigma_{\rho}^2 \approx \ln(1+\gamma\mathcal{M}^2)$, where γ is a constant of order unity (Padoan & Nordlund 2002; Federrath et al. 2008). For $\sigma_{\rho}=2.5-3$, the range of values expected for the Mach numbers found in giant clumps, the quantity $M(>\rho)/t_{\rm ff}(\rho)$ varies by only a factor of a few over a range of densities $\rho/\bar{\rho}\approx 10^{-1}-10^5$. Thus even if most of the mass is at a density vastly larger than the mean density we have used, as long as the mass distribution follows the lognormal form expected for supersonic turbulence, the star formation rate will not be modified significantly from our estimate using the volume-averaged density.

4 DISCUSSION

4.1 Turbulence and Energy Balance in Giant Clumps

Our finding that the fraction of gas ejected from giant clumps depends critically on their dimensionless starformation rate efficiency $\epsilon_{\rm ff}$ naturally leads to the question of how this quantity is set, and whether the physical processes responsible for setting $\epsilon_{\rm ff,-2} \sim 1$ in the local universe might determine a different value in highredshift clumps. Krumholz & McKee (2005) show that, as long as the gas in a molecular cloud is supersonically turbulent with a velocity dispersion comparable to the cloud's virial velocity, as is observed to be the case in all molecular clouds in the local universe, $\epsilon_{\rm ff,-2} \sim 1$ is the inevitable consequence. In contrast, in the absence of supersonic turbulence, simulations find that clouds undergo a rapid global collapse in which they convert all their mass into stars in roughly a dynamical time, i.e. $\epsilon_{\rm ff,-2} \sim 100$ (e.g. Nakamura & Li 2007; Wang et al. 2009).⁴ Thus, a value of $\epsilon_{\rm ff,-2} \sim 1$ may be expected in high-z giant clumps only if they maintain the level of turbulence required to avoid rapid, global collapse.

Whether the turbulence can actually be maintained is somewhat less clear. Simulations show that supersonic turbulence decays in roughly one cloud-crossing time (e.g. Stone et al. 1998; Mac Low et al. 1998; Mac Low 1999), so global collapse can be avoided only if this energy is replaced on a comparable timescale. In local, low-mass star-forming clouds ($\lesssim 10^4 M_{\odot}$), observations (Quillen et al. 2005), simulations (Nakamura & Li 2007; Wang et al. 2009), and analytic theory (Matzner 2007) all suggest that protostellar outflows can supply the necessary energy. In local giant molecular clouds with masses of $\sim 10^4 - 10^6 M_{\odot}$, H II regions driven by the pressure of photoionized gas are likely to be able to supply the necessary energy (Matzner 2002; Krumholz et al. 2006). However, neither of these mechanisms are effective for clumps with $M_9 \sim 1$ and $\Sigma_{-1} \sim 1$, because they do not provide enough momentum input and because they are overwhelmed by radiation pressure (see Figure 2 of Fall et al. 2010).

Supernova feedback (Dekel & Silk 1986) does not appear to be a likely candidate to drive the turbulence either. Supernovae do not provide enough power to drive the observed level of turbulence (Dekel et al. 2009a), and analytic calculations (Harper-Clark & Murray 2009; Krumholz & Matzner 2009), numerical simulations of isolated disk galaxies (Tasker & Bryan 2008; Joung et al. 2009), and numerical simulations of galaxies in cosmological context (Ceverino & Klypin 2009) all indicate that supernova-heated gas is likely to escape through low-density holes in the molecular gas without driving much turbulence.

Contrary to this conclusion, Lehnert et al. (2009) use the observed correlation between $H\alpha$ surface brightness and linewidth in $z \sim 2$ galaxies to argue that supernova feedback is responsible for driving the turbulence, based in part on simulations by Dib et al. (2006), who obtain a scaling relation between velocity dispersion and supernova rate in numerical simulations. However, the efficiency with which supernova energy is coupled to the ISM is a free parameter in both Lehnert et al.'s analysis and in Dib et al.'s simulations, and their results are consistent with the data only if it is $\sim 25\%$, whereas in the dense environments found in high redshift galaxies it is expected to be far lower (Thompson et al. 2005). This conclusion is confirmed by the more recent simulations, which do not need to assume an efficiency because they have sufficient resolution to resolve the multiphase structure of the ISM. Finally, we note that the correlation between $H\alpha$ surface brightness and linewidth observed by Lehnert et al. has a more prosaic explanation:

⁴ This can be avoided if clouds are magnetically subcritical (e.g. Nakamura & Li 2008), but magnetic fields in the early universe are likely to be weaker than those in the local universe, and even in the local universe clouds do not appear to be subcritical in typical clouds (Crutcher et al. 2009).

in a marginally stable galactic disk of constant circular velocity, the velocity dispersion is proportional to the gas surface density, since $Q = \kappa \sigma/(\pi G \Sigma) = 1$. Thus higher velocity dispersions correspond to higher surface densities, which in turn produce higher star formation rates in accordance with the standard Kennicutt (1998) relation. This naturally explains the observed correlation.

Radiation pressure is another mechanism to consider. If radiation pressure is not able to drive mass out of the clump, as found above for $\epsilon_{\rm ff} \sim 0.01$, this suggests that it might not be able to drive turbulence to the required virial level either, since the virial and escape velocities only differ by a factor of $\sqrt{2}$. However, it is unclear whether this conclusion is warranted. Radiation pressure cannot drive material out of a clump not because stars do not accelerate material enough, but because they evolve off the main sequence before they are actually able to eject matter. As a result, they produce expanding shells whose velocities greatly exceed the escape velocity. They simply fail to drive mass out because the clump because the driving sources turn off before the shells actually escape from the cluster. It is unclear if the expanding shells might provide enough energy to maintain the turbulence; this problem will require further modeling.

We are left with the possibility that the turbulence is driven by gravity. The driving source cannot be the collapse of the clump itself; although such a collapse does produce turbulence, it does so at the price of reducing the crossing time, raising the rate of energy loss. Consequently, the collapse becomes a runaway process, and all the gas quickly converts to stars. However, as shown by Dekel et al. (2009a), the gravitational migration of the clumps through the galactic disc does provide enough power to maintain the turbulence within them. The main uncertainty in this model is how much of that power will go into driving internal motions within the clump, rather than motions in the external galactic disc. This depends on how the clumps are torqued by one another and by the disc. However, there is suggestive evidence from simulations of giant clumps that this mechanism might be viable. The simulations of clumpy galaxies that have been done to date (e.g. Bournaud et al. 2007; Elmegreen et al. 2008; Agertz et al. 2009; Ceverino et al. 2009) either include no feedback or only supernova feedback (which is ineffective). If the giant clumps formed in these simulations did lose their turbulence and undergo global collapse, then, depending on the details of the simulation method, they would either convert all of their mass into stars, or all of the mass within them would collapse to the maximum density allowed by the imposed numerical pressure floor. This collapse would happen on the crossing time scale of a clump, which is much less than the time required for the clumps to migrate to the galactic centre. However, such collapses are not observed in the simulations. This strongly suggests that, even in the absence of feedback, gravitational power is sufficient to maintain the turbulence.

We conclude that the generation of turbulence in the giant clumps is an important open issue, to be addressed by further studies including simulations of higher resolution.

4.2 Comparison to Previous Work

Our conclusion that giant clumps are not likely to be disrupted by feedback is in contrast with the findings of Murray et al. (2009) for the giant clump in the galaxy Q2346-BX 482 (Genzel et al. 2008), and this difference merits discussion. Based on the H α luminosity of the clump, Murray et al. estimate a total bolometric luminosity of $L=4\times 10^{11}~L_{\odot}$, which corresponds to a star-formation rate of 34 $M_{\odot}~{\rm yr}^{-1}$ in the old stars limit, or a stellar mass of $2.6\times 10^8~M_{\odot}$ in the young stars limit, which Murray et al. assume. If these stars are indeed young, then the star-formation rate could be higher than 34 $M_{\odot}~{\rm yr}^{-1}$, but it could not be any lower.

While the estimate of the star-formation rate is relatively straightforward, inferring the gas mass is much less so. Murray et al. (2009) take it to be $10^9 M_{\odot}$ based on an order-of-magnitude estimate for the Toomre mass in the galaxy. This choice is crucial to their result. The clump radius is r = 925 pc, so if we adopt this radius, the mean density-free fall time is 15 Myr, so $\epsilon_{\rm ff,-2} \simeq 50$. Using this value in equation (8), together with the corresponding surface density and mass $\Sigma_{-1} = 0.8$ and $M_9 = 1$, tells us that we are in the young stars limit and that $\mathcal{E} = 0.06$ – fully consistent with Murray et al.'s conclusion that only a relatively small fraction of the gas mass turns into stars, and that this is sufficient to expel the remaining gas. Murray et al. derive a slightly higher value $\mathcal{E} \sim 1/3$ because their criterion for ejection amounts to adopting $\alpha_{\rm crit} \sim 10$.

However, this conclusion depends crucially on having a low estimate of the gas mass, and a correspondingly high estimate for $\epsilon_{\rm ff,-2}$. Indeed, if the value of $\epsilon_{\rm ff,-2} \simeq 50$ were accurate, this clump would have the highest star formation rate efficiency of any known system. It is therefore useful to consider alternative methods for estimating the mass. If we were to adopt the inverse-Kennicutt method, the observed star-formation rate per unit area $\dot{\Sigma}_* \simeq 13~M_{\odot}~{\rm yr}^{-1}~{\rm kpc}^{-1}$, together with equation (10), gives a gas surface density of $\Sigma_{-1} \simeq$ 5 (or 2300 M_{\odot} pc⁻²). The corresponding gas mass is $6 \times 10^9 \ M_{\odot}$, and recomputing $\epsilon_{\rm ff}$ for this mass gives $\epsilon_{\rm ff,-2} \simeq 3$, consistent with the point we made earlier that the Kennicutt Law is in practice equivalent to having $\epsilon_{\rm ff,-2} \sim 1$. With this mass we would predict $\mathcal{E} \simeq 0.9$, i.e. essentially no gas expulsion. One would expect similar results from Murray et al.'s models, because the effect of this mass increase would be to increase the gravitational force by a factor of 40 while leaving the radiative force unchanged. Thus while Murray et al.'s models suggest that the clump in BX 482 has stopped forming stars and all the remaining gas has just been expelled, according to our estimate this clump can be only part of the way through its life and may continue to form stars.

Murray et al. (2009) also suggest another method of estimating the gas mass. Based on the H α luminosity, if one assumes that the clump is filled with uniform-density gas, then ionization balance requires that this gas have a density of hydrogen nuclei

$$n_{\rm H} = \sqrt{\frac{3S}{4\pi r^3 \alpha^{(B)}} \left(\frac{4X}{3X+1}\right)},\tag{23}$$

where X is the hydrogen mass fraction and this expression assumes that He is singly-ionized. If, following Murray et al. (2009), we adopt the young stars limit, then the ionizing luminosity is S = $6.3 \times 10^{46} (M_*/M_{\odot}) = 1.6 \times 10^{55} \text{ photons s}^{-1}$ (Murray & Rahman 2009).⁵ Combining this with the case B recombination coefficient $\alpha^{(B)} = 3.46 \times 10^{-13}$ cm³ s⁻¹ and the Solar hydrogen mass fraction X = 0.71(mean mass per H nucleus of $1.4m_{\rm H}$) gives $n_{\rm H}=21$ cm⁻³, corresponding to a mass of $2.4 \times 10^9 \ M_{\odot}$ and $\epsilon_{\rm ff,-2} = 14$. Plugging this mass, surface density, and value of $\epsilon_{\rm ff,-2}$ into equation (8) gives $\mathcal{E} \simeq 0.2$, i.e. the star fraction is more than three times what we would obtain using Murray et al.'s mass of $M = 1 \times 10^9$ M_{\odot} . Adopting $\alpha_{\rm crit} = 10$ to shift our fiducial parameters closer to those used in Murray et al. would give $\mathcal{E} \simeq 0.8$, no significant gas expulsion. We emphasize that these calculations are lower limits on the gas mass and upper limits on the fraction of mass ejected, because this mass estimate includes only ionized gas. However, models of both classical gas pressure-driven H II regions and ones driven by radiation pressure (Krumholz & Matzner 2009; Murray et al. 2009) suggest that the ionized gas mass in the H II region interior is significantly smaller than the mass of neutral gas swept up in the shell around it. Including this mass would lower $\epsilon_{\rm ff,-2}$ and increase \mathcal{E} even further.

In summary, our conclusions differ from those of Murray et al. (2009) not because of any difference in the physics of radiation feedback, but because they have used an estimated gas mass that produces an extraordinarily high value of $\epsilon_{\rm ff}$.

5 CONCLUSIONS

Our main result in this paper, summarized in Equation (9) and Figure 1, is that the survival or disruption of giant star-forming clumps in high-z galaxies depends critically on the rate at which they turn into stars. We find that as long as the high-redshift clumps convert their gas mass into stars at a rate of one to a few percent of the mass per free-fall time, $\epsilon_{\rm ff} \sim 0.01$, as is observed in low-redshift star-forming systems from small

galactic clusters to ultraluminous infrared galaxies, the clumps retain most of their gas and turn it into stars. As a result, they remain bound as they migrate into the galactic centre on timescales of ~ 2 disc orbital times. A significant fraction of the clump gas could be ejected on a free-fall timescale before turning into stars only if clumps can convert $\gtrsim 10\%$ of their gas mass into stars in a free-fall time, forming stars much faster than any other star-forming system known. We argue the current high-z data is consistent with the standard SFR rate efficiencies at the level of one to a few percent, with no significant evidence for a change in the star formation process in high-z star-forming galaxies. Nevertheless, this is clearly an interesting issue to explore with more direct observational estimates of the gas mass in these galaxies.

It is possible to check our theoretical arguments for clump survival with a number of possible observations. First, clumps can be disrupted by radiation pressure only if a majority of their gas is expelled, and the resulting massive radiation-driven outflows from clumps may be observable as systematic blueshifts at the clump locations. A preliminary search for such a phenomenon have yielded a null result (K. Shapiro, private communication, 2009), but further investigations of the kinematics in and around the clumps are worthwhile. It is possible that sufficient extinction could hide the blueshifted signature, but we note that, if the gas surface densities are relatively low as, e.g., Murray et al. (2009) propose, the extinction is relatively mild.

Second, stellar populations in high-redshift clumps can provide independent observational tests that could help distinguish between the two scenarios of clump survival or disruption. One such test involves the age spread of stars in actively star-forming clumps. If radiative feedback disrupts the clumps after one or a few free-fall times, the spread of stellar ages in each clump should not exceed ~ 50 Myr. If clumps survive, on the other hand, then the age spreads may reach $\gtrsim 100 \text{ Myr}$, with a high and roughly constant SFR during the lifetime of the clump. There is preliminary observational evidence in favor of the latter (Elmegreen et al. 2009b; Förster Schreiber et al. 2009), but this should be explored further. In this case, migration toward the bulge will produce an age gradient, so that clumps closer to the bulge have systematically larger age spreads than those further out in the disc.

A third test is associated with the properties of massive star clusters in the disc that are not actively forming stars. Clusters with masses $\gtrsim 10^7~M_{\odot}$ can only be made in giant clumps, not in the rest of the disc, where molecular clouds are smaller. If clumps undergo rapid disruption by feedback, most of the clusters are likely to dissolve as is the case for local star formation (e.g. Fall et al. 2009), but the few clusters that may survive will remain in the disc near their formation radii. None will migrate into the bulge, since the migration time varies as M^2 (Dekel et al. 2009b), and the masses of the clusters are much smaller than those of their par-

 $^{^5}$ The ionizing luminosity is somewhat lower in the old stars limit: $S=2.5\times 10^{53}(\dot{M}_*/M_{\odot}~{\rm yr}^{-1})=8.5\times 10^{54}~{\rm photons~s}^{-1}$.

ent gas clumps. In contrast, if gas clumps survive feedback and convert most of their mass to stars, the resulting massive objects will rapidly migrate toward the galactic center. They will lose $\sim 50\%$ of their mass due to tidal stripping (Bournaud et al. 2007), possibly including some massive sub-clusters, but they will deliver the rest of their mass to the bulge. Thus, if giant clumps do not survive, we expect to see a few massive clusters in the disk and none in the bulge. If, on the other hand, our model is correct, then there should be comparable masses of disk and bulge clusters. Those bulge clusters that survive today may correspond to the metal-rich globular cluster population seen in present-day galactic bulges (Brodie & Strader 2006; Shapiro et al. 2010; Romanowsky et al., in preparation).

Even though we have concluded that the high-z giant clumps are expected to survive radiative stellar feedback, we do emphasize the important role that this process is likely to play in galaxy formation. For example, it can provide some of the pressure support needed in these giant clumps, it can drive non-negligible winds out of them, and it is likely to disrupt the less massive clumps where stars form at later redshifts. In many circumstances, this mode of feedback is expected to be more important than supernova feedback, as it pushes away the cold dense gas while the latter mostly affects the hot dilute gas. We thus highlight the need for incoroprating radiative stellar feedback in hydrodynamical simulations as well as in semi-analytic models of galaxy evolution.

ACKNOWLEDGMENTS

We acknowledge stimulating discussions with Andi Burkert, Daniel Ceverino, Reinhard Genzel, Norm Murray, and Aaron Romanowsky, and helpful comments on the manuscript from Mark Dijkstra, Bruce Elmegreen, and the referee, Frederic Bournaud. This research has been supported by the Alfred P. Sloan Foundation (MRK); NASA through ATP grants NNX09AK31G (MRK), NAG5-8218 (AD), and as part of the Spitzer Theoretical Research Program, through a contract issued by the JPL (MRK); the National Science Foundation through grant AST-0807739 (MRK); the German-Israeli Foundation (GIF) through grant I-895-207.7/2005 (AD); the German Research Foundation (DFG) via German-Israeli Project Cooperation grant STE1869/1-1.GE625/15-1 (AD); the Israel Science Foundation (AD); and France-Israel Teamwork in Sciences (AD).

REFERENCES

Agertz O., Teyssier R., Moore B., 2009, MNRAS, 397, L64

Baumgardt H., Kroupa P., 2007, MNRAS, 380, 1589 Birnboim Y., Dekel A., 2003, MNRAS, 345, 349 Birnboim Y., Dekel A., Neistein E., 2007, MNRAS, 380, 339

Bothwell M. S., et al., 2009, MNRAS, submitted, arXiv:0912.1598

Bouche N., et al., 2009, ApJ, submitted, arXiv:0912.1858

Bournaud F., et al., 2008, A&A, 486, 741

Bournaud F., Elmegreen B. G., 2009, ApJ, 694, L158
 Bournaud F., Elmegreen B. G., Elmegreen D. M., 2007, ApJ, 670, 237

Brodie J. P., Strader J., 2006, ARA&A, 44, 193

Carilli C. L., et al., 2005, ApJ, 618, 586

Ceverino D., Dekel A., Bournaud F., 2009, MNRAS, submitted, arXiv:0907.3271

Ceverino D., Klypin A., 2009, ApJ, 695, 292

Cowie L. L., Hu E. M., Songaila A., 1995, AJ, 110, 1576

Cresci G., et al., 2009, ApJ, 697, 115

Crutcher R. M., Hakobian N., Troland T. H., 2009, ApJ, 692, 844

Daddi E., et al., 2009, ApJ, submitted, arXiv:0911.2776

Daddi E., Dannerbauer H., Elbaz D., Dickinson M., Morrison G., Stern D., Ravindranath S., 2008, ApJ, 673, L21

Dekel A., Birnboim Y., 2006, MNRAS, 368, 2

Dekel A., et al., 2009a, Nature, 457, 451

Dekel A., Sari R., Ceverino D., 2009b, ApJ, 703, 785

Dekel A., Silk J., 1986, ApJ, 303, 39

Dib S., Bell E., Burkert A., 2006, ApJ, 638, 797

Dijkstra M., Loeb A., 2009, MNRAS, 400, 1109

Dutton A. A., van den Bosch F. C., Dekel A., 2009, ArXiv e-prints

Elmegreen B. G., Bournaud F., Elmegreen D. M., 2008, ApJ, 688, 67

Elmegreen B. G., Elmegreen D. M., Fernandez M. X., Lemonias J. J., 2009a, ApJ, 692, 12

Elmegreen D. M., Elmegreen B. G., Hirst A. C., 2004a, ApJ, 604, L21

Elmegreen D. M., Elmegreen B. G., Marcus M. T., Shahinyan K., Yau A., Petersen M., 2009b, ApJ, 701, 306

Elmegreen D. M., Elmegreen B. G., Ravindranath S., Coe D. A., 2007, ApJ, 658, 763

Elmegreen D. M., Elmegreen B. G., Rubin D. S., Schaffer M. A., 2005, ApJ, 631, 85

Elmegreen D. M., Elmegreen B. G., Sheets C. M., 2004b, ApJ, 603, 74

Evans N. J., et al., 2009, ApJS, 181, 321

Fall S. M., Chandar R., Whitmore B. C., 2009, ApJ, 704, 453

Fall S. M., Krumholz M. R., Matzner C. D., 2010, ApJ, 710, L142

Federrath C., Klessen R. S., Schmidt W., 2008, ApJ, 688, L79

Förster Schreiber N. M., et al., 2009, ApJ, 706, 1364 Förster Schreiber N. M., et al., 2006, ApJ, 645, 1062

Furlanetto S. R., Schaye J., Springel V., Hernquist L., 2005, ApJ, 622, 7 Gao Y., Carilli C. L., Solomon P. M., Vanden Bout P. A., 2007, ApJ, 660, L93

Genzel R., et al., 2008, ApJ, 687, 59

Genzel R., et al., 2006, Nature, 442, 786

Goerdt T., Dekel A., Sternberg A., Ceverino D., Teyssier R., Primack J. R., 2009, MNRAS, submitted, arXiv:0911.5566

Greve T. R., et al., 2005, MNRAS, 359, 1165

Hahn O., Porciani C., Carollo C. M., Dekel A., 2007, MNRAS, 375, 489

Harper-Clark E., Murray N., 2009, ApJ, 693, 1696 Hills J. G., 1980, ApJ, 235, 986

Hopkins A. M., Beacom J. F., 2006, ApJ, 651, 142

Immeli A., Samland M., Gerhard O., Westera P., 2004a, A&A, 413, 547

Immeli A., Samland M., Westera P., Gerhard O., 2004b, ApJ, 611, 20

Joung M. R., Mac Low M., Bryan G. L., 2009, ApJ, 704, 137

Kennicutt Jr. R. C., 1998, ApJ, 498, 541

Kereš D., Katz N., Weinberg D. H., Davé R., 2005, MNRAS, 363, 2

Kroupa P., 2001, MNRAS, 322, 231

Kroupa P., Boily C. M., 2002, MNRAS, 336, 1188

Krumholz M. R., Matzner C. D., 2009, ApJ, 703, 1352

Krumholz M. R., Matzner C. D., McKee C. F., 2006, ApJ, 653, 361

Krumholz M. R., McKee C. F., 2005, ApJ, 630, 250

Krumholz M. R., Tan J. C., 2007, ApJ, 654, 304

Krumholz M. R., Thompson T. A., 2007, ApJ, 669, 289

Lehnert M. D., et al., 2009, ApJ, 699, 1660

Mac Low M., 1999, ApJ, 524, 169

Mac Low M., Klessen R. S., Burkert A., Smith M. D., 1998, Physical Review Letters, 80, 2754

Magnelli B., Elbaz D., Chary R. R., Dickinson M., Le Borgne D., Frayer D. T., Willmer C. N. A., 2009, A&A, 496, 57

Matzner C. D., 2002, ApJ, 566, 302

-, 2007, ApJ, 659, 1394

McCrady N., Graham J. R., 2007, ApJ, 663, 844

Murray N., Quataert E., Thompson T. A., 2009, ApJ, submitted, arXiv:0906.5358

Murray N. W., Rahman M., 2009, ArXiv e-prints

Nakamura F., Li Z.-Y., 2007, ApJ, 662, 395

-, 2008, ApJ, 687, 354

Narayanan D., Cox T. J., Hernquist L., 2008a, ApJ, 681, L77

Narayanan D., Cox T. J., Shirley Y., Davé R., Hernquist L., Walker C. K., 2008b, ApJ, 684, 996

Neistein E., van den Bosch F. C., Dekel A., 2006, MN-RAS, 372, 933

Noguchi M., 1999, ApJ, 514, 77

Ocvirk P., Pichon C., Teyssier R., 2008, MNRAS, 390, 1326

Padoan P., Nordlund Å., 2002, ApJ, 576, 870

Quillen A. C., et al., 2005, ApJ, 632, 941

Robertson B. E., Bullock J. S., 2008, ApJ, 685, L27

Schaye J., Dalla Vecchia C., 2008, MNRAS, 383, 1210

Shapiro K. L., Genzel R., Förster Schreiber N. M., 2010, MNRAS, L9+

Shapiro K. L., et al., 2008, ApJ, 682, 231

Stone J. M., Ostriker E. C., Gammie C. F., 1998, ApJ, 508, L99

Tacconi L. J., et al., 2010, Nature, in press

Tacconi L. J., et al., 2008, ApJ, 680, 246

Tasker E. J., Bryan G. L., 2008, ApJ, 673, 810

Thompson T. A., Quataert E., Murray N., 2005, ApJ, 630, 167

Toomre A., 1964, ApJ, 139, 1217

van den Bergh S., Abraham R. G., Ellis R. S., Tanvir N. R., Santiago B. X., Glazebrook K. G., 1996, AJ, 112, 359

Wang P., Li Z.-Y., Abel T., Nakamura F., 2009, ApJ, submitted, arXiv:0908.4129

Zuckerman B., Evans N. J., 1974, ApJ, 192, L149