HASH TABLES

Gustavo Carvalho (ghpc@cin.ufpe.br)

Universidade Federal de Pernambuco Centro de Informática, 50740-560, Brazil

Agenda

- 1 Dictionaries
- 2 Hash tables
- 3 Open hashing
- 4 Closed hashing
- 5 Bibliography

Dictionary ADT

A set of elements with the options of searching, insertion and deletion

Elements are indexed by comparable keys

Operations:

- void clear(Dictionary d);
- void insert(Dictionary d, Key k, E e); // reflect on: multiple entries
- E remove(Dictionary d, Key k); // reflect on: multiple entries
- E removeAny(Dictionary d); // alternative: getKeys
- E find(Dictionary d, Key k); // reflect on: multiple entries
- int size(Dictionary d);

Implementations: array, linked list, hash tables, and balanced trees

Agenda

- 1 Dictionaries
- 2 Hash tables
- 3 Open hashing
- 4 Closed hashing
- 5 Bibliography

Hashing

Space and time trade-off

■ Worse space efficiency to get a better time efficiency

Hashing: distributing keys among a one-dimensional array dicionários

- Very efficient way¹ to implement dictionaries
- Hash table: H[0..m-1]
- Hash function: $h: Key \rightarrow 0..m 1$

h needs to satisfy somewhat conflicting requirements

- Adequate relation between *m* and |*Key*|
- Distribute keys as evenly as possible
- Has to be easy to compute

¹ In terms of temporal efficiency

Hashing

Limitations:

- Not ideal in the presence of multiple entries per key
- Not ideal for accessing elements based on some order
- Not ideal for searching based on a range of keys

Hash functions for integers

A trivial attempt²: $h(K) = K \mod m$

- Let m = 100 (hash addresses within 0..99)
- Let K = 4567, then $h(K) = 4567 \mod 100 = 67$

A better approach: the mid-square method

- Compute K^2 , and select the r middle digits, such that $10^r 1 < m$
- Let m = 100 (hash addresses within 0..99), then r = 2
- Let K = 4567, $K^2 = 20857489$, then h(K) = 57

7/45

A first attempt: fold

Algorithm: int h(string K)

```
1 s \leftarrow length(K);

2 sum \leftarrow 0;

3 for i \leftarrow 0 fos - 1 fos

4 log sum \leftarrow sum + K[i];

5 return abs(sum)\%m; // abs = overflow and %
```

Fair/bad distribution depending on *m* and *K*

- Suppose that length(K) = 10 (in average)
- Let K have only capital letters
- Since A = 65 and Z = 90, $sum \in [650..900]$
- If $m \le 100$, it is a fair distribution
- If $m \ge 1000$, it is a bad distribution

A better approach: sfold:

Algorithm: int h(string K)

```
intLength \leftarrow length(K)/4;
     sum \leftarrow 0:
     for i \leftarrow 0 to intLength - 1 do
           sub \leftarrow substring(K, i*4, (i*4) + 4); // initial and final positions
 4
 5
           mult \leftarrow 1;
          for i \leftarrow 0 to 3 do
 6
                 sum \leftarrow sum + sub[i] * mult;
 7
                 mult \leftarrow mult * 256;
 8
     sub \leftarrow substring(K, intLength * 4);
                                                            // initial position to the end
     mult \leftarrow 1:
10
     s \leftarrow length(sub);
11
     for j \leftarrow 0 to s - 1 do
12
           sum \leftarrow sum + sub[i] * mult;
13
                                                                                  Centro de
           mult \leftarrow mult * 256:
14
```


15

return abs(sum)%m; // abs = overflow and %

```
intLength \leftarrow length(K)/4;
     sum \leftarrow 0:
     for i \leftarrow 0 to intLength - 1 do
            sub \leftarrow substring(K, i * 4, (i * 4) + 4);
 4
            mult \leftarrow 1;
            for j \leftarrow 0 to 3 do
                  sum \leftarrow sum + sub[i] * mult;
 7
                  mult \leftarrow mult * 256;
 8
      sub \leftarrow substring(K, intLength * 4);
      mult \leftarrow 1;
     s \leftarrow length(sub);
11
     for i \leftarrow 0 to s - 1 do
12
            sum \leftarrow sum + sub[j] * mult;
13
            mult \leftarrow mult * 256;
14
     return abs(sum)%m;
```

```
Let K = \text{"ALGORITHMS"}
Let m = 1000
fold(K) = 762
```

$$sfold(K) = ?$$


```
intLength \leftarrow length(K)/4;
     sum \leftarrow 0:
     for i \leftarrow 0 to intLength - 1 do
 3
            sub \leftarrow substring(K, i * 4, (i * 4) + 4);
 4
            mult \leftarrow 1;
            for j \leftarrow 0 to 3 do
                  sum \leftarrow sum + sub[i] * mult;
 7
                  mult \leftarrow mult * 256;
 8
      sub \leftarrow substring(K, intLength * 4);
      mult \leftarrow 1;
     s \leftarrow length(sub);
11
     for i \leftarrow 0 to s - 1 do
12
            sum \leftarrow sum + sub[j] * mult;
13
            mult \leftarrow mult * 256;
14
     return abs(sum)%m;
```

```
Let K = \text{"ALGORITHMS"}
Let m = 1000
```

$$fold(K) = 762$$

$$sfold(K) = ?$$

$$intLength = 2$$

 $sum = 0$


```
intLength \leftarrow length(K)/4;
     sum \leftarrow 0:
     for i \leftarrow 0 to intLength - 1 do
            sub \leftarrow substring(K, i * 4, (i * 4) + 4);
            mult \leftarrow 1;
           for j \leftarrow 0 to 3 do
                  sum \leftarrow sum + sub[j] * mult;
                  mult \leftarrow mult * 256;
 8
      sub \leftarrow substring(K, intLength * 4);
      mult \leftarrow 1;
     s \leftarrow length(sub);
11
     for i \leftarrow 0 to s - 1 do
12
            sum \leftarrow sum + sub[j] * mult;
13
            mult \leftarrow mult * 256;
14
     return abs(sum)%m;
```

```
Let K = \text{"ALGORITHMS"}
Let m = 1000
fold(K) = 762
sfold(K) = ?
intLength = 2
i = 0
sub = "ALGO"
sum = 1330072641
mult = 0
```



```
intLength \leftarrow length(K)/4;
     sum \leftarrow 0:
     for i \leftarrow 0 to intLength - 1 do
            sub \leftarrow substring(K, i * 4, (i * 4) + 4);
            mult \leftarrow 1;
           for j \leftarrow 0 to 3 do
                  sum \leftarrow sum + sub[j] * mult;
                  mult \leftarrow mult * 256;
 8
      sub \leftarrow substring(K, intLength * 4);
      mult \leftarrow 1:
     s \leftarrow length(sub);
11
     for i \leftarrow 0 to s - 1 do
12
            sum \leftarrow sum + sub[j] * mult;
13
            mult \leftarrow mult * 256;
14
     return abs(sum)%m;
```

```
Let K = \text{"ALGORITHMS"}
Let m = 1000
fold(K) = 762
sfold(K) = ?
intLength = 2
i = 1
sub = "RITH"
sum = -1751411309
mult = 0
```



```
intLength \leftarrow length(K)/4;
     sum \leftarrow 0:
     for i \leftarrow 0 to intLength - 1 do
            sub \leftarrow substring(K, i * 4, (i * 4) + 4);
 4
            mult \leftarrow 1;
           for j \leftarrow 0 to 3 do
                  sum \leftarrow sum + sub[i] * mult;
 7
                  mult \leftarrow mult * 256;
 8
      sub \leftarrow substring(K, intLength * 4);
      mult \leftarrow 1;
     s \leftarrow length(sub);
11
     for i \leftarrow 0 to s - 1 do
12
            sum \leftarrow sum + sub[j] * mult;
13
            mult \leftarrow mult * 256;
14
     return abs(sum)%m;
```

```
Let K = \text{"ALGORITHMS"}
Let m = 1000
fold(K) = 762
sfold(K) = ?
intLength = 2
i = 2
sub = "RITH"
sum = -1751411309
mult = 0
```



```
intLength \leftarrow length(K)/4;
     sum \leftarrow 0:
     for i \leftarrow 0 to intLength - 1 do
            sub \leftarrow substring(K, i * 4, (i * 4) + 4);
 4
            mult \leftarrow 1;
           for j \leftarrow 0 to 3 do
                  sum \leftarrow sum + sub[i] * mult;
 7
                  mult \leftarrow mult * 256;
 8
      sub \leftarrow substring(K, intLength * 4);
     mult \leftarrow 1;
     s \leftarrow length(sub);
11
     for i \leftarrow 0 to s - 1 do
12
            sum \leftarrow sum + sub[j] * mult;
13
            mult \leftarrow mult * 256;
14
     return abs(sum)%m;
```

```
Let K = \text{"ALGORITHMS"}
Let m = 1000
fold(K) = 762
sfold(K) = ?
intLength = 2
sub = "MS"
s=2
sum = -1751411309
mult = 1
```



```
intLength \leftarrow length(K)/4;
     sum \leftarrow 0:
     for i \leftarrow 0 to intLength - 1 do
            sub \leftarrow substring(K, i * 4, (i * 4) + 4);
 4
            mult \leftarrow 1;
           for j \leftarrow 0 to 3 do
                  sum \leftarrow sum + sub[i] * mult;
 7
                  mult \leftarrow mult * 256;
 8
     sub \leftarrow substring(K, intLength * 4);
      mult \leftarrow 1:
     s \leftarrow length(sub);
11
     for i \leftarrow 0 to s-1 do
12
            sum \leftarrow sum + sub[j] * mult;
13
            mult \leftarrow mult * 256;
14
     return abs(sum)%m;
```

```
Let K = \text{"ALGORITHMS"}
Let m = 1000
fold(K) = 762
sfold(K) = ?
intLength = 2
sub = "MS"
s=2
i = 0
sum = -1751411232
mult = 256
```



```
intLength \leftarrow length(K)/4;
     sum \leftarrow 0:
     for i \leftarrow 0 to intLength - 1 do
            sub \leftarrow substring(K, i * 4, (i * 4) + 4);
 4
            mult \leftarrow 1;
           for j \leftarrow 0 to 3 do
                  sum \leftarrow sum + sub[i] * mult;
 7
                  mult \leftarrow mult * 256;
 8
      sub \leftarrow substring(K, intLength * 4);
      mult \leftarrow 1;
     s \leftarrow length(sub);
11
     for i \leftarrow 0 to s-1 do
12
            sum \leftarrow sum + sub[j] * mult;
13
            mult \leftarrow mult * 256;
14
     return abs(sum)%m;
```

```
Let K = \text{"ALGORITHMS"}
Let m = 1000
fold(K) = 762
sfold(K) = ?
intLength = 2
sub = "MS"
s=2
i=1
sum = -1751389984
mult = 65536
```



```
intLength \leftarrow length(K)/4;
     sum \leftarrow 0:
     for i \leftarrow 0 to intLength - 1 do
            sub \leftarrow substring(K, i * 4, (i * 4) + 4);
 4
            mult \leftarrow 1;
           for j \leftarrow 0 to 3 do
                  sum \leftarrow sum + sub[i] * mult;
 7
                  mult \leftarrow mult * 256;
 8
     sub \leftarrow substring(K, intLength * 4);
      mult \leftarrow 1;
     s \leftarrow length(sub);
11
     for i \leftarrow 0 to s-1 do
12
            sum \leftarrow sum + sub[j] * mult;
13
            mult \leftarrow mult * 256;
14
     return abs(sum)%m;
```

```
Let K = \text{"ALGORITHMS"}
Let m = 1000
fold(K) = 762
sfold(K) = ?
intLength = 2
sub = "MS"
s=2
i=2
sum = -1751389984
mult = 65536
```



```
intLength \leftarrow length(K)/4;
     sum \leftarrow 0:
     for i \leftarrow 0 to intLength - 1 do
            sub \leftarrow substring(K, i * 4, (i * 4) + 4);
 4
            mult \leftarrow 1;
            for j \leftarrow 0 to 3 do
                  sum \leftarrow sum + sub[i] * mult;
 7
                  mult \leftarrow mult * 256;
 8
      sub \leftarrow substring(K, intLength * 4);
      mult \leftarrow 1;
     s \leftarrow length(sub);
11
     for i \leftarrow 0 to s - 1 do
12
            sum \leftarrow sum + sub[j] * mult;
13
            mult \leftarrow mult * 256;
14
     return abs(sum)%m;
```

```
Let K = \text{"ALGORITHMS"}
Let m = 1000
fold(K) = 762
sfold(K) = 984
```


Hashing: collisions

Collisions

- If m < |Key|, they will occur
- If $m \ge |Key|$, they still might occur

Collision resolution mechanisms

- Open hashing (separate chaining)
- Closed hashing (open addressing)

Perfect hashing

- No collisions at all
- Key is known and available beforehand
- Example: data access on a read-only CD

Agenda

- 1 Dictionaries
- 2 Hash tables
- 3 Open hashing
- 4 Closed hashing
- 5 Bibliography

Open hashing³

Each hash address is associated with a linked list

Example (considering A = 1 and fold):

keys	Α	F00L	AND	HIS	MONEY	ARE	SOON	PARTED
hash addresses	1	9	6	10	7	11	11	12

Open hashing

Insertion:

- Insert in the j-th linked list
 - Sorted list: better search, worse insertion
 - Unsorted: worse search, better insertion

Search:

- **1** Compute h(K) = j
- If the j-th linked list is empty, element not found
- Otherwise, search the linked list

Deletion:

- Compute h(K) = j
- Remove from the j-th linked list

Dictionary ADT implemented using open hashing

Composite type (Dictionary):

Algorithm: Dictionary create_dict(int size, $h : Key \rightarrow 0..m-1$)

```
1 d.m \leftarrow size; d.cnt \leftarrow 0;

2 d.H \leftarrow new\ List[size];

3 for i \leftarrow 0 to size - 1 do

// a list of Entry, which combines Key and E

4 d.H[i] \leftarrow create\_list();
```

- 5 $d.h \leftarrow h$;
- 6 return d;

Dictionary ADT implemented using open hashing

Some assumptions

- The lists are not sorted (always inserting in the end)
- If there is an entry in d with key k, nothing is done

Algorithm: void insert(Dictionary d, Key k, E e)

```
if find(d, k) = NULL then
      pos \leftarrow d.h(k);
                                  // h is the hash function
2
      I \leftarrow d.H[pos];
                                      // H is the hash table
3
       entry \leftarrow create_entry(k, e);
       append(I, entry);
5
```


Open hashing: temporal efficiency

Insertion (unsorted): $\Theta(1)$

Search: depends on the load factor $\alpha = \frac{n}{m}$

- \blacksquare $S \approx 1 + \frac{\alpha}{2}$ and $U = \alpha$, where S = succesful, U = unsuccessful,n = number of elements in the hash table
- When $\alpha \approx 1$, then in $\Theta(1)$ (in average)

Deletion: similar to the temporal efficiency of searching

Agenda

- Open hashing
- Closed hashing
- Bibliography

Closed hashing

All elements are stored in the hash table itself (requirement: $m \ge n$)

Strategies for defining an **offset** in the presence of collisions:

- Linear probing
- Pseudo-random probing
- Quadratic probing
- Double hashing

The strategy should ensure that every hash address can be reached when solving a collision

Closed hashing: linear probing4

Insertion: check the cell following the one where the collision occurs

- Probe function (offset): p(K, i) = i
- Hash table is seen as a circular array
- **Example** (considering A = 1 and fold):

keys	Α	F00L	AND	HIS	MONEY	ARE	SOON	PARTED
hash addresses	1	9	6	10	7	11	11	12

0	1	2	3	4	5	6	7	8	9	10	11	12
	Α											
	Α								F00L			
	Α					AND			F00L			
	Α					AND			F00L	HIS		
	Α					AND	MONEY		F00L	HIS		
	Α					AND	MONEY		F00L	HIS	ARE	
	Α					AND	MONEY		F00L	HIS	ARE	SOON
PARTED	Α					AND	MONEY		F00L	HIS	ARE	SOON

⁴Source: A. Levitin. Introduction to the Design and Analysis of Algorithms. 2011.

Closed hashing: linear probing

Search:

- Compute h(K) = i
- 2 If H[j] is empty, element not found
- If H[j] = K, element found
- 4 Otherwise, check the following position (go back to step 2)
 - Attention to a hash table where m = n

Example (considering A = 1 and fold):

- h("LIT") = 2, as H[2] is empty, "LIT" is not in the table
- h("KID") = 11, search finishes just after comparing K with "ARE". "SOON". "PARTED". and "A"

Closed hashing: linear probing

Deletion: need to use a special symbol

Update insertion and search to consider this symbol

Analysis of temporal efficiency is more complicated:

- $S \approx \frac{1}{2}(1 + \frac{1}{1 + \alpha})$
- $U \approx \frac{1}{2}(1 + \frac{1}{(1-\alpha)^2})$

Closed hashing: linear probing⁵

Evolution of S and U based on α

α	$\frac{1}{2}(1+\frac{1}{1-\alpha})$	$\frac{1}{2}(1+\frac{1}{(1-\alpha)^2})$
50%	1.5	2.5
75%	2.5	8.5
90%	5.5	50.5

When $\alpha \approx 1$, linear probing deteriorates (primary clustering)

- Higher probability of adding an element to a cluster
- Higher probability of coalescing two clusters

Pseudo-random probing:

$$p(K, i) = Perm[i - 1],$$

where $Perm$ is a
permutation of $1..m - 1$

Example (m = 8)

$$h(k) = k - (8 * \lfloor k/8 \rfloor)$$

$$Perm = \{2, 6, 7, 3, 1, 4, 5\}$$

■ Values: 2, 4, 8, 16, 32, -12

0	1	2	3	4	5	6	7
		2					
		2		4			
8		2		4			
8		2		4		16	

$$h(2) = 2$$

$$h(4) = 4$$

$$h(8) = 0$$

$$h(16) = 0$$

$$p(k,1) = Perm[0] = 2$$

 $(h(16) + p(k,1)) \mod 8 = 2$

$$p(k,2) = Perm[1] = 6$$

 $(h(16) + p(k,2)) \mod 8 = 6$

Pseudo-random probing:

$$p(K, i) = Perm[i - 1],$$

where $Perm$ is a
permutation of $1..m - 1$

Example (m = 8)

$$h(k) = k - (8 * \lfloor k/8 \rfloor)$$

$$Perm = \{2, 6, 7, 3, 1, 4, 5\}$$

■ Values: 2, 4, 8, 16, 32, -12

0	1	2	3	4	5	6	7
8		2		4		16	32

$$h(32) = 0$$

$$p(k,1) = Perm[0] = 2$$

 $(h(32) + p(k,1)) \mod 8 = 2$

$$p(k,2) = Perm[1] = 6$$

 $(h(32) + p(k,2)) \mod 8 = 6$

$$p(k,3) = Perm[2] = 7$$

 $(h(32) + p(k,3)) \mod 8 = 7$

Pseudo-random probing:

$$p(K, i) = Perm[i - 1],$$

where $Perm$ is a
permutation of $1..m - 1$

Example (m = 8)

$$h(k) = k - (8 * \lfloor k/8 \rfloor)$$

$$Perm = \{2, 6, 7, 3, 1, 4, 5\}$$

Values: 2, 4, 8, 16, 32, -12

0	1	2	3	4	5	6	7
8		2	-12	4		16	32

$$h(-12) = 4$$

$$p(k,1) = Perm[0] = 2$$

 $(h(-12) + p(k,1)) \mod 8 = 6$

$$p(k,2) = Perm[1] = 6$$

 $(h(-12) + p(k,2)) \mod 8 = 2$

$$p(k,3) = Perm[2] = 7$$

$$(h(-12) + p(k,3)) \mod 8 = 3$$

Pseudo-random probing:

$$p(K, i) = Perm[i - 1],$$

where $Perm$ is a
permutation of $1..m - 1$

Example (m = 8)

$$h(k) = k - (8 * \lfloor k/8 \rfloor)$$

$$\blacksquare \textit{ Perm} = \{2, 6, 7, 3, 1, 4, 5\}$$

Values: 2, 4, 8, 16

0	1	2	3	4	5	6	7
8		2		4		16	

$$h(2) = 2$$

$$h(4) = 4$$

$$h(8)=0$$

$$h(16) = 0$$

$$p(k,1) = Perm[0] = 2$$

 $(h(16) + p(k,1)) \mod 8 = 2$

$$p(k,2) = Perm[1] = 6$$

 $(h(16) + p(k,2)) \mod 8 = 6$

Dictionary ADT implemented using closed hashing

Composite type (Dictionary):

Algorithm: Dictionary create_dict(int size, $h : Key \rightarrow 0..size-1)$

```
1 d.m \leftarrow size; d.cnt \leftarrow 0;
```

- 2 $d.H \leftarrow new Entry[size];$
- $a.Perm \leftarrow create_permutation(1..size-1);$
- 4 $d.h \leftarrow h$;
- 5 return d:

Dictionary ADT implemented using closed hashing

Some assumptions

- d is implemented as a hash table with m positions
- If there is an entry in d with key k, nothing is done

Algorithm: void insert(Dictionary d, Key k, E e)

```
if size(d) < d.m \land find(d, k) = NULL then
          pos \leftarrow d.h(k);
                                                               //h is the hash function
          if d.H[pos] \neq NULL \land d.H[pos] \neq deleted then
 3
               i \leftarrow 0:
               repeat
                    i \leftarrow i + 1:
 6
                    offset \leftarrow d.Perm[i-1];
 7
                    newPos \leftarrow (pos + offset)\%d.m;
 8
               until d.H[newPos] = NULL \lor d.H[newPos] = deleted;
               pos ← newPos:
10
          entry \leftarrow create\_entry(k, e);
11
                                                                            Centro de
          d.H[pos] \leftarrow entry;
12
                                                                            Informática
          d.cnt = d.cnt + 1:
13
```


Closed hashing: quadratic probing

Quadratic probing:

$$p(K, i) = c_1 i^2 + c_2 i + c_3$$

$$h(2) = 2$$

$$h(4) = 4$$

$$h(8) = 0$$

Example (m = 8):

$$h(k) = k - (8 * |k/8|)$$

$$p(k, i) = \frac{i^2 + i}{2}$$
:

Gustavo Carvalho

Values: 2, 4, 8, 16, 32, -12

0	1	2	3	4	5	6	7
		2					
		2		4			
8		2		4			

Closed hashing: quadratic probing

Quadratic probing:

$$p(K,i) = c_1 i^2 + c_2 i + c_3$$

Example (m = 8):

$$p(k, i) = \frac{i^2 + i}{2}$$
:

■ Values: 2, 4, 8, 16, 32, e -12

0	1	2	3	4	5	6	7
8	16	2		4			
8	16	2	32	4			
8	16	2	32	4	-12		

$$h(16) = 0$$

$$p(k, 1) = \frac{1^2+1}{2} = 1$$

 $(h(16) + p(k, 1)) \mod 8 = 1$

$$h(32) = 0$$

$$p(k, 1) = \frac{1^2+1}{2} = 1$$

 $(h(32) + p(k, 1)) \mod 8 = 1$

■
$$p(k,2) = \frac{2^2+2}{2} = 3$$

 $(h(32) + p(k,2)) \mod 8 = 3$

$$h(-12) = 4$$

$$p(k,1) = \frac{1^2+1}{2} = 1$$

$$(h(-12) + p(k,1)) \mod 8 = 5$$

Closed hashing: pseudo-random | quadratic probing

We might still have secondary clustering

- If $h(k_1) = h(k_2)$, then k_1 and k_2 share the same probe sequence
- Rationale: *p* ignores the value of *K*

Alternative: double hashing

Closed hashing: double hashing

A new hash function s(K) is used to determine the probe sequence

p(K, i) = i * s(K)

Temporal efficiency

- Also deteriorates when $\alpha \approx 1$
- Alternative: resize the hash table and perform rehashing

Agenda

- Open hashing
- Closed hashing
- **Bibliography**

Bibliography

Chapter 1 (pp. 35-37) Chapter 7 (pp. 253-254, 269-274) Anany Levitin. Introduction to the Design and Analysis of Algorithms. 3rd edition, Pearson, 2011.

Chapter 4 (pp. 131–138) Chapter 9 (pp. 314–336) Clifford Shaffer.

Data Structures and Alg. Analysis. Dover, 2013.

HASH TABLES

Gustavo Carvalho (ghpc@cin.ufpe.br)

Universidade Federal de Pernambuco Centro de Informática, 50740-560, Brazil

