Digital Systems Lab Assignment-2(B)

Name: Pranav Sutar

Roll no. - <u>CS20B029</u>

OBJECTIVES:

- 1) To learn to apply 8x1 MUX
- 2) To build a signed adder and subtractor in a single circuit for any n-bits number
- 3) Building an Unsigned Comparator and generalizing it for a pair of N bit numbers
- 4) To build an N-bit unsigned multiplier.
- 5) To build a signed multiplier and unsigned multiplier in a single circuit and extend it to N bits
- 6) To build a circuit that accepts three inputs of N bits and performs addition and multiplication sequentially on them.
- 7) To learn to call one module in another module

Description

Mux is a device That has 2ⁿ input Lines. But Only One has Output Line. Where n= number of input selector line. Mux is A device which is used to Convert Multiple Input line into one Output Line. At a time only one Input Line will Connect to the output line.

An 8X1 mux accepts 8 inputs and using 3 select lines, it selects 1 input and passes it to the output. In our circuit, we are using 8X1 MUX to select the correct operation we need to perform on the Numbers.

Importance of MUX:

1. Mux makes the transmission circuit economical and less complex.

- 2. Analog switching current is low of order 10mA-20mA. Due to such a low magnitude of the current, the heat dissipation is very low.
- 3. The ability of Mux to switch digital signals can be extended to switch to a video signal, audio signals etc.

Applications of MUX:

MUX is implemented in various domains where there is a necessity of transmitting a large amount of data with the use of single line.

- **1. Communication system:** A Mux is implemented in communication system to increase efficiency. Using a single transmission line, various types of data (audio, video, etc.) are transmitted at same instant.
- 2. Computer Memory: In a computer, the huge quantity of memory is implemented by means of the Mux. It also has an Advantage of a reduction in the number of copper lines which are used for the connection of memory toother parts of computer

Procedure

The following modules are used in the main module to implement the circuit.

- o half adder It adds 2 bits and gives output in sum and carry form.
- o full_adder It extends the above operation for three bits.
- O Nbit_add_sub Adds the numbers when k = 0, and subtracts them when k = 0. The numbers are signed binary numbers.
- o comparator It tells whether the bit is greater than or lesser than or equal to another bit
- o Nbit comparator It extends the above concept to N bits
- o signed_multiplier It multiplies two numbers of different size and and gives the corresponding output. It can perform signed as well as unsigned multiplication. Baugh-Wooley method is used to do signed multiplication
- MAC_signed It performs C = A.B+D operation, where all are in bit inputs in signed form.
- ➤ Assignment2b Main module that includes MUX and all other required modules.

• Result:

Final Test Module:

FULL Adder

Unsigned Multiplier Wave - Default = Msgs /Array_MUL_USign_... -No ... 8 /Array_MUL_USign_... -No ... 8 /Array_MUL_USign_... No ... 36 /Array_MUL_USign_... 129 /Array_MUL_USign_... -No ... 4644

Signed Adder-Subtractor

Comparators

