

planetmath.org

Math for the people, by the people.

proof that the outer (Lebesgue) measure of an interval is its length

 $Canonical\ name \qquad Proof That The Outer Lebesgue Measure Of An Interval Is Its Length$

Date of creation 2013-03-22 14:47:04 Last modified on 2013-03-22 14:47:04

Owner Simone (5904) Last modified by Simone (5904)

Numerical id 6

Author Simone (5904)

Entry type Proof Classification msc 28A12

Related topic LebesgueOuterMeasure

We begin with the case in which we have a bounded interval, say [a, b]. Since the open interval $(a - \varepsilon, b + \varepsilon)$ contains [a, b] for each positive number ε , we have $m^*[a, b] \leq b - a + 2\varepsilon$. But since this is true for each positive ε , we must have $m^*[a, b] \leq b - a$. Thus we only have to show that $m^*[a, b] \geq b - a$; for this it suffices to show that if $\{I_n\}$ is a countable open cover by intervals of [a, b], then

$$\sum l(I_n) \ge b - a.$$

By the Heine-Borel theorem, any collection of open intervals [a,b] contains a finite subcollection that also cover [a,b] and since the sum of the lengths of the finite subcollection is no greater than the sum of the original one, it suffices to prove the inequality for finite collections $\{I_n\}$ that cover [a,b]. Since a is contained in $\bigcup I_n$, there must be one of the I_n 's that contains a. Let this be the interval (a_1,b_1) . We then have $a_1 < a < b_1$. If $b_1 \le b$, then $b_1 \in [a,b]$, and since $b_1 \not\in (a_1,b_1)$, there must be an interval (a_2,b_2) in the collection $\{I_n\}$ such that $b_1 \in (a_2,b_2)$, that is $a_2 < b_1 < b_2$. Continuing in this fashion, we obtain a sequence $(a_1,b_1),\ldots,(a_k,b_k)$ from the collection $\{I_n\}$ such that $a_i < b_{i-1} < b_i$. Since $\{I_n\}$ is a finite collection our process must terminate with some interval (a_k,b_k) . But it terminates only if $b \in (a_k,b_k)$, that is if $a_k < b < b_k$. Thus

$$\sum l(I_n) \ge \sum l(a_i, b_i)$$

$$= (b_k - a_k) + (b_{k-1} - a_{k-1}) + \dots + (b_1 - a_1)$$

$$= b_k - (a_k - b_{k-1}) - (a_{k-1} - b_{k-2}) - \dots - (a_2 - b_1) - a_1$$

$$> b_k - a_1,$$

since $a_i < b_{i-1}$. But $b_k > b$ and $a_1 < a$ and so we have $b_k - a_1 > b - a$, whence $\sum l(I_n) > b - a$. This shows that $m^*[a, b] = b - a$.

If I is any finite interval, then given $\varepsilon > 0$, there is a closed interval $J \subset I$ such that $l(J) > l(I) - \varepsilon$. Hence

$$l(I) - \varepsilon < l(J) = m^*J \le m^*I \le m^*\overline{I} = l(\overline{I}) = l(I),$$

where by \overline{I} we the topological closure of I. Thus for each $\varepsilon > 0$, we have $l(I) - \varepsilon < m^*I \le l(I)$, and so $m^*I = l(I)$.

If now I is an unbounded interval, then given any real number Δ , there is a closed interval $J \subset I$ with $l(J) = \Delta$. Hence $m^*I \geq m^*J = l(J) = \Delta$. Since $m^*I \geq \Delta$ for each Δ , it follows $m^*I = \infty = l(I)$.

References

Royden, H. L. $Real\ analysis.\ Third\ edition.$ Macmillan Publishing Company, New York, 1988.