2/4/2025 Tuesday

Announcement

- Patch-level processing (filtering)
 - Same filter applied to sub-regions/patches
- HW01 out
 - Due 2/18 Tue, 5 PM CST
 - 100 pts = 90 pts for coding + 10 pts for written question
 - Zip and rename your solutions
- Final project

Fundamentals of Spatial Filtering

- *g*(*p*)
 - Linear function
 - Correlation
 - Convolution
 - Non-linear function
 - Order statistics (e.g., median)

Order-statistic filter

- Take the pixel values in a neighbourhood
- Sort (order) the values
 - Output one of the ranks
 - Max
 - Min
 - Median
 - Delete the two extremes and average the rest
 - Alpha-trimmed-mean filter

Case 1: image segmentation

• Before: pixel-level thresholding

Image

Image>127

Image>60

Case 1: image segmentation

Patch-level: estimate the brightness for each pixel

For every pixel

Surrounding patch

Estimated brightness (Mean or Gaussian filter result)

Case 1: image segmentation

Adaptive thresholding filter = (Impulse - Blur_big) > k

Image

Estimated brightness (Gaussian filter result)

Image-brightness > -5

• Goal: find in an image

 What's a good similarity/distance measure between two patches?

Method 1: Filter the image with

• $g(x,y) = \sum_{s,t} w(s,t) f(x+s,y+t)$

Input image

What went wrong?

Method 1: Filter the image with

• $g(x,y) = \sum_{s,t} w(s,t) f(x+s,y+t)$

Input image

Filtered image

What went wrong?

- Method 2: Filter the image with zero-mean eye
- $g(x,y) = \sum_{s,t} (w(s,t) \overline{w}) f(x+s,y+t)$

Input image

- Method 2: Filter the image with zero-mean eye
- $g(x,y) = \sum_{s,t} (w(s,t) \overline{w}) f(x+s,y+t)$

Input image

Filtered image (scaled)

Threshold image

- Method 3: Normalized cross-correlation
- Divide by standard deviation of both patches, so they are unit vectors

Mean template $g(x,y) = \frac{\sum_{s,t} (w(s,t) - \overline{w}) \left(f(x+s,y+t) - \overline{f}_{x,y} \right)}{\sqrt{\sum_{s,t} (w(s,t) - \overline{w})^2 \sum_{s,t} \left(f(x+s,y+t) - \overline{f}_{x,y} \right)^2}}$

Input image

Normalized X-correlation

Threshold image

Recognizing objects: is it really so hard?

Find the chair in this image

Not so great!

• Different σ values result in different degrees of smoothing

• Different σ values result in different degrees of smoothing

Image filters aren't "aware" of edges

Why is this happening?

Gaussian filter can be written:

Median filtering window sizes

$$MB[\mathbf{p}] = \underset{\mathbf{q} \in \mathcal{N}}{\operatorname{median}} I[\mathbf{q}]$$

• Bilateral filtering: What if we weight by appearance?

Bilateral filtering: What if we weight by appearance?

Gaussian filter:

$$GB[\mathbf{p}] = \sum_{\mathbf{q} \in \mathcal{N}} G_{\sigma}(||\mathbf{p} - \mathbf{q}||)I[\mathbf{q}]$$

Bilateral filter:

Normalization constant (to make weights sum to 1)

Bilateral filter

Bilateral filter

Summary

- Linear filtering
 - Correlation
 - Convolution
 - Example:
 - Box, Gaussian, edge detection
- Non-linear filtering
 - Order statistics (e.g., median)
 - Example:
 - Max, Min, Median, Alpha-trimmed-mean filter
 - Match filter, bilateral edge detection

What does filtering do in frequency domain?

- Low pass
 - Average
 - Basic overall shape of the function
- High pass
 - Differences
 - Details of the function

 $\sigma = 8$

 $\sigma = 4$ Gaussian filtering

$$\sigma = 32$$

Fourier series & transforms

 Fourier series: any periodic function can be represented by a discrete weighted sum of sines and cosines

Fourier series & transforms

 Fourier series: any periodic function can be represented by a discrete weighted sum of sines and cosines

 Fourier transform: an arbitrary function with finite duration (non-periodic function) can be expressed by a weighted integrals of sines and cosines

Fourier series & transforms

• f(t) is a continuous function with period T, we have:

$$f(t) = \sum_{n=-\infty}^{+\infty} c_n e^{\frac{j2\pi nt}{T}}$$
Coefficient Discrete frequency
$$c_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{-\frac{j2\pi nt}{T}} dt,$$

$$n = 0, \pm 1, \pm 2, \dots$$

• *f*(*t*) is an arbitrary non-periodic function, we have:

$$F(u) = \int_{-\infty}^{\infty} f(t)e^{-j2\pi\mu t}dt$$

FT of simple functions

Rectangle function

$$f(t) = \begin{cases} A & -\frac{w}{2} \le t \le \frac{w}{2} \\ 0 & otherwise \end{cases}$$

$$F(\mu) = \frac{A}{\pi \mu} \sin \pi w \mu = Aw \frac{\sin \pi w \mu}{\pi w \mu} = Aw \operatorname{sinc}(\pi w \mu)$$

FT of simple functions

Rectangle function

Lowpass & highpass filter

Correspondence to the spatial domain filter

The FT of a Gaussian function is still a Gaussian function

1D Gaussian highpass filter (frequency domain)

1D Gaussian highpass filter (spatial domain)

A 2D example

Image (668 × 668)

H(u, v)

Fourier spectrum

 D_0

ILPF, cutoff 30, Energy

93.1%

Original

a a a a a a a a

cutoff 160,

ILPF, cutoff 10, Energy 87%

ILPF, cutoff 60, Energy 95.7%

ILPF, cutoff 460, Energy 99.2%

Intensity	# of pixels
100	5
110	10
120	20
130	35
140	50
150	70
160	90
170	110
180	120
190	100
200	80
210	60
220	40

Intensity	# of pixels
10	10
30	20
50	50
70	90
90	100
110	60
130	30
150	40
170	50
190	90
210	120
230	110
250	30