

Enhancing Clinical Outcomes in mCRC Targeted Therapy Is Making Impact

Marc Peeters MD, PhD

Head Oncology Department, Antwerp University Hospital Antwerp, Belgium

Declaration of Conflicts of Interest

- Clinical Research: Amgen, Boehringer Ingelheim, Ipsen, Merck Serono, Novartis, Roche, Sanofi, Sirtex
- Scientific Presentations: Amgen, Bayer, Ipsen, Merck Serono, Novartis, Roche, Sanofi, Sirtex
- Consulting Activities: Amgen, Bayer, Ipsen, Merck Serono,
 Novartis, Roche, Sanofi, Sirtex

Introduction — Rationale of Targeted Therapy

Introduction – Rationale of Targeted Therapy

- More efficacy by tumorigenesis-driven therapy
- Less toxicity by tumor cell-directed therapy
- Personalized by 'biomarker'-based therapy

Introduction – GIST As an Example

<i>KIT</i> mutation	PDGFRA D842V	Wildtype
76.1 %	10.0 %	13.9 %
- Exon 11 (65 %): 400 mg/d - Exon 9 (9.4 %): 800 mg/d	No	?

Systemic Treatment in ColoRectal Cancer

	'Cell cycle'	'Growth'	'Angiogenesis'
■ Chemotherapy	5-FluorouracilCapecitabineIrinotecanOxaliplatinMitomycin		
■ Small molecules (-nibs)		/	- Regorafenib
Antibodies (-mabs)		- Cetuximab - Panitumumab	- Bevacizumab - Aflibercept

Systemic Treatment in ColoRectal Cancer

	Therapy	Outcome		
Nonmetastatic				
- early CRC	local resection	recurrence, OS		
- CRC	resection (neo) adjuvant	OS, DFS, recurrence		
Metastatic				
- diffuse	Palliative	QOL, PFS, OS		
- limited	Induction Neoadjuvant	Response, OS		

Chemotherapy in mCRC

	1 st -line Tx	RR, %	PFS, Months	2 nd -line Tx	RR, %	PFS, months	OS, months	2 nd PFS, months
Arm A	FOLFIRI n = 109	56	8.5	FOLFOX n = 81	15	4.2	21.5	14.2
Arm B	FOLFOX n = 111	54	8.0	FOLFIRI n = 69	4	2.5	20.6	10.9
		P = NS	P = .26		P = .05	P = .003	P=.99	P = .64

RR, response rate; PFS, progression-free survival; OS, overall survival

VEGF is a Key Mediator of Angiogenesis and Tumor Development in mCRC

Angiogenesis is mediated via the interaction of VEGF and VEGF

receptors¹⁻⁵

Facilitates survival of existing endothelial cells^{1,2,6–8}

Stimulates new vessel growth^{1,2,6-9}

Increases vessel permeability^{10,11}

Adapted from Hicklin DJ, et al. *J Clin Oncol.* 2005;23(5):1011-1027.

^{1.} Ferrara N. *Endocr Rev.* 2004;25(4):581-611. 2. Hicklin DJ, et al. *J Clin Oncol.* 2005;23(5):1011-1027. 3. Baka S, et al. *Expert Opin Ther Targets.* 2006;10(6):867-876. 4. Morabito A, et al. *Oncologist.* 2006;11(7):753-764. 5. de Vries C, et al. *Science.* 1992;255(5047):989-991. 6. Bergers G. et al. *Nat Rev Cancer.* 2003;3(6):401-410. 7. Jain RK. *Science.* 2005;307(5706):58-62. 8. Gerber HP, et al. *Cancer Res.* 2005;65(3):671-680. 9. Inoue M, et al. *Cancer Cell.* 2002;1(2):193-202. 10. Margolin K. *Curr Oncol Rep.* 2002;4(1):20-28. 11. Hu L, et al. *Am J Pathol.* 2002;161(5):1917-1924.

Epidermal Growth Factor Axis

Targeted Therapy in mCRC – Efficacy

Endpoint	IFL plus Placebo	IFL plus Bevacizumab	P value
Median survival, mos	15.6	20.3	<.001
Hazard ratio for death		0.66	
One-year survival rate, %	63.4	74.3	<.001
Progression-free survival, mos	6.2	10.6	<.001
Hazard ratio for progression		0.54	
Overall response rate, %	34.8	44.8	.004
Complete response	2.2	3.7	
Partial response	32.6	41.0	
Median duration of response, mos	7.1	10.4	.001
Hazard ratio for relapse		0.62	

IFL, irinotecan, fluorouracil, and leucovorin

Hurwitz H, et al. N Engl J Med. 2004;350(23):2335-2342.

		Fi	First line			Second line			Chemoresistant		
		ORR	PFS	os	ORR	PFS	os	ORR	PFS	os	
		%	mos	mos	%	mos	mos	%	mos	mos	
■ 'Growth'											
Van Cutsem E, 2009	C	59.3	9.9	24.9							
Douillard JY, 2010	Р	57.0	10.0	23.9							
Peeters M, 2010	Р				35.0	5.9	14.5				
Van Cutsem E, 2007	P							10.0	2.0	NR	
Jonker DJ, 2007	C							8.0	NR	6.1	
■ 'Angiogenesis'											
Hurwitz H, 2004	В	44.8	10.6	20.3							
Grothey A, 2013	R							1.0	1.9	6.4	
Van Cutsem E, 2012	A				19.8	6.9	13.5				
Bennouna J, 2013	В				6.0	5.7	11.2				

C, cetuximab; P, panitumumab, B, bevacizumab, A, aflibercept, R, regorafenib

		F	First line			Second line			Chemoresistant		
		ORR	PFS	os	ORR	PFS	os	ORR	PFS	os	
		%	mos	mos	%	mos	mos	%	mos	mos	
■ 'Growth'											
Tveit KM, 2012	C	49	8.3	19.7							
Maughan TS, 2011	C	64	8.6	17.0							
• 'Angiogenesis'					Progression-Free Survival, % 00 00 00 00 00 00 00 00 00 00 00 00 0		<u>*</u>	=	Treatment PTK/ZK + FC Placebo + Fc CI, 0.74 to 1.03	FOLFOX4 3; <i>P</i> = .118	
							228 242	18 10	0	0	

100

90

80 -

70 · 60 · 50 · 40 · 30 · 20 · 10 · 60

0

518 514

Number at risk PTK/ZK 585 Placebo 583

Overall Survival, %

Treatment

HR = 1.08; 95% CI, 0.94 to 1.24; P = .26

72 88

12 18 24 30 36 42 Time Since Random Assignments, months

> 221 231

151 184

312 316

417 415 PTK/ZK + FOLFOX4
Placebo + FOLFOX4

48

10 7

More is Not Always Better

Dutch Colorectal Cancer Group	Bev/Chemo n = 368	Cmab/Bev/Chemo n = 368	<i>P</i> value
Median PFS, mos	10.7 (9.7-12.3)	9.4 (8.4-10.5)	HR: 0.82; <i>P</i> = .01
Median OS, mos	20.3 (17.8-24.7)	19.4 (17.5-21.4)	<i>P</i> = .16
Response (CR+PR)	50%	52.7%	<i>P</i> = .49
Disease Control	94%	94.6%	P = .72

Targeted Therapy in mCRC – Efficacy

- 1. Activity targeting 'angiogenesis' & 'growth'
- 2. Benefit in different lines and overall
- 3. Both monotherapy and combination with chemotherapy has antitumor activity

Targeted Therapy Toxicity: Anti-EGFR Therapy

Phases of possible skin reactions

Toxicity: Cetuximab vs Panitumumab

Features	Panitumumab	Cetuximab
Efficacy		
OR, %	10	11
TTP, months	2.5	1.5
OS, months	9.4	6.9
Acneiform rash		
Overall incidence (all grades)	70-100	89
≥Grade 3 rash	3.4	5.2
HAHA/HACA, %	0	3
Allergic reactions, %		
Overall incidence	<1	3
Other toxicities, %		
Interstitial lung disease	0	0.5
PK interactions with other chemotherapies	0	0
Affinity for EGFR, nmol/1	0.05	0.39
Type of antibody	lgG2 100% human protein	lgG1 34% mouse protein
Premedications required	No	Yes

Cohenuram M, et al. *Anticancer Drugs*. 2007;18(1):7-15.

Targeted Therapy Toxicity: Anti-VEGF

Proposed mechanisms

- Decreased VEGF leads to nitric oxide downregulation
- Acute cholesterol emboli syndrome

Mourad JJ, et al. Ann Oncol. 2008;19(5):927-934; Lacouture. Angiogenesis Foundation website. 2009.

Targeted Therapy Toxicity: Bevacizumab

		No. of FAEs/Total No. of Participants		Incidence of C		
	No of Studies	Bevacizumab	Control	Bevacizumab	Control	RR (95% CI)ª
Tumor Type						
Colorectal cancer	5	25/1756	18/1515	1.6 (0.8-3.4)	1.4 (0.8-2.7)	1.21 (0.65-2.24)
NSCLC	4	56/1231	18/841	5.3 (3.2-8.6)	2.5 (0.8-6.6)	2.12 (0.78-5.78)
Breast cancer	3	12/1079	10/806	0.9 (0.3-3.1)	1.3 (0.3-4.3)	0.69 (0.30-1.62)
Renal cell cancer	2	6/703	4/653	0.9 (0.4-1.9)	0.8 (0.1-1.36)	1.11 (0.29-4.20)
Pancreatic cancer	1	26/296	16/287	8.8 (6.0-12.6)	5.6 (3.4-8.9)	1.58 (0.86-2.87)
Prostate cancer	1	23/524	6/526	4.4 (2.9-6.5)	1.1 (0.5-2.5)	3.85 (1.58-9.37)
Dose						
2.5 mg/kg per wk	4	45/1464	33/1482	1.6 (0.8-3.2)	1.2 (1.0-7.4)	1.36 (0.87-2.12)
5.0 mg/kg per wk	8	54/2833	17/2521	2.7 (0.9-8.0)	1.1 (0.9-7.0)	2.55 (1.44-4.53)
Chemotherapeutic agents ^b						
Platinum or taxanes	5	48/1915	11/1639	3.3 (2.5-4.3)	1.0 (0.7-1.4)	3.49 (1.82-6.66)
Nonplatinum or nontaxanes	3	6/918	6/882	0.8 (0.4-1.7)	0.9 0.5-1.9)	0.85 (0.25-2.88)
Overall	16	148/5589	72/4628	2.5 (1.7-3.9)	1.7 (1.0-2.9)	1.46 (1.09-1.94)

CI, confidence interval; FAE, fatal adverse event; NSCLC, non-small cell lung cancer.

Ranpura V, et al. *JAMA*. 2011;305(5):487-494

 $[^]aP$ = .13 for variation in RRs by tumor type; P = .16 for variation in RRs by dose; P = .045 for variation in RRs by chemotherapy type. b Bevacizumab was given at the same dose of 5 mg/kg per week for these trials. The incidences and RRs were calculated from trials included in this meta-analysis as described in the "Methods" section of the text.

Toxicity: Aflibercept

Safety population, % of patients	AFL/FOLFIRI (n = 611)
All grade 3/4 AEs	83.5%
Selected toxicity	G3-G4%
Diarrhea	19.3
Asthenic conditions	16.8
Stomatitis	13.8
Neutropenia	36.7
Hypertension	19.3
Hemorrhage	3.0
Arterial thromboembolic event	1.8
Venous thromboembolic event	7.8
GI perforation	0.5
Proteinuria	7.8

Targeted Therapy Toxicity: Regorafenib

Advorse Event %		Regorafenib N = 500		Placebo N = 253		
Adverse Event, %	All grades	Grade 3	Grade 4	All grades	Grade 3	Grade 4
Hand-foot skin reaction	46.6	16.6	0	7.5	0.4	0
Fatigue	47.4	9.2	0.4	28.1	4.7	0.4
Hypertension	27.8	7.2	0	5.9	0.8	0
Diarrhea	33.8	7.0	0.2	8.3	0.8	0
Rash / desquamation	26.0	5.8	0	4.0	0	0
Anorexia	30.4	3.2	0	15.4	2.8	0
Mucositis, oral	27.2	3.0	0	3.6	0	0
Thrombocytopenia	12.6	2.6	0.2	2.0	0.4	0
Fever	10.4	0.8	0	2.8	0	0
Nausea	14.4	0.4	0	11.1	0	0
Bleeding	11.4	0.4	0	2.8	0	0
Voice changes	29.4	0.2	0	5.5	0	0
Weight loss	13.8	0	0	2.4	0	0

• Quality of life was not adversely affected by regorafenib Grothey A, et al. *Lancet*. 2013;381(9863):303-312.

Targeted Therapy Toxicity: Regorafenib

Advaras Event 9/	Regorafenib N = 500			Placebo N = 253		
Adverse Event, %	All grades	Grade 3	Grade 4	All grades	Grade 3	Grade 4
Hand-foot skin reaction	46.6	16.6	0	7.5	0.4	0
Fatigue	47.4	9.2	0.4	28.1	4.7	0.4
Hypertension	27.8	7.2	0	5.9	0.8	0
Diarrhea	33.8	7.0	0.2	8.3	0.8	0
Rash / desquamation	26.0	5.8	0	4.0	0	0
Anorexia	30.4	3.2	0	15.4	2.8	0
Mucositis, oral	27.2	3.0	0	3.6	0	0
Thrombocytopenia	12.6	2.6	0.2	2.0	0.4	0
Fever	10.4	0.8	0	2.8	0	0
Nausea	14.4	0.4	0	11.1	0	0
Adverse events leading to permanent Tx discontinuation	8.2%		1.2%			

• Quality of life was not adversely affected by regorafenib Grothey A, et al. *Lancet.* 2013;381(9863):303-312.

Targeted Therapy in mCRC – QOL

Targeted Therapy in mCRC – Toxicity

- 1. Generally, side effects are 'class' related
- 2. Mostly side effects are manageable
- 3. Treatment has no impact on quality of life

Glaxo chief: Our drugs do not work on most patients

"The vast majority of drugs - more than 90 per cent - only work in 30 or 50 percent of the people," Dr Roses said. "I wouldn't say that most drugs don't work. I would say that most drugs work in 30 to 50 per cent of people. Drugs out there on the market work, but they don't work in everybody."

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Wild-Type *KRAS* Is Required for Panitumumab Efficacy in Patients With Metastatic Colorectal Cancer

Rafael G. Amado, Michael Wolf, Marc Peeters, Eric Van Cutsem, Salvatore Siena, Daniel J. Freeman, Todd Juan, Robert Sikorski, Sid Suggs, Robert Radinsky, Scott D. Patterson, and David D. Chang

Maximum Percent Decrease in Target Lesions

Association of KRAS p.G13D Mutation With Outcome in Patients With Chemotherapy-Refractory Metastatic Colorectal Cancer Treated With Cetuximab

Wendy De Roock, MD
Derek J. Jonker, MD
Federica Di Nicolantonio, PhD
Andrea Sartore-Bianchi, MD
Dongsheng Tu, PhD
Salvatore Siena, MD
Simona Lamba, MSc
Sabrina Arena, PhD
Milo Frattini, PhD
Hubert Piessevaux, MD, PhD
Eric Van Cutsem, MD, PhD

Chris J. O'Callaghan, DVM, PhD

Shirin Khambata-Ford, PhD

John R. Zalcberg, MBBS, PhD

John Simes, MD

Christos S. Karapetis, MD

Alberto Bardelli, PhD

Sabine Tejpar, MD, PhD

ECENT RETROSPECTIVE CORrelative analyses of metastatic colorectal cancer trials indicate that patients with KRAS-mutated tumors (NCBI Entrez Gene 3845) do not benefit from the anti-epidermal growth factor receptor (EGFR) monoclonal antibodies cetuximab and panitumumab.1 These retrospective analyses were performed independently, and for each analysis, KRAS wild-type vs mutant were studted grouping codons 12 and 13 mutations together, without subgroup analysis. Health authorities in the United States and Europe have indicated that

Context Patients with metastatic colorectal cancer who have KRAS codon 12- or KRAS codon 13-mutated tumors are presently excluded from treatment with the antiepidermal growth factor receptor monoclonal antibody cetuximab.

Objective To test the hypothesis that KRAS codon 13 mutations are associated with a better outcome after treatment with cetusimab than observed with other KRAS mutations.

Design, Setting, and Patients We studied the association between KRAS mutation status (p.G13D vs other KRAS mutations) and response and survival in a pooled data set of 579 patients with chemotherapy-refractory colorectal cancer treated with cetuximab between 2001 and 2008. Patients were included in the CO.17, BOND, MABEL, EMR202600. Patients were included in the CO.17, BOND, MABEL, EMR202600. Patients were included in the Co.17, BOND, MABEL, EMR202600. Pa

Codon13 mutation G13D?

Conclusions In this analysis, use of cetuximab was associated with longer overall and progression-free survival among patients with chemotherapy-refractory colorectal cancer with p.G13D-mutated tumors than with other KRAS-mutated tumors. Evaluation of cetuximab therapy in these tumors in prospective randomized titals may be warranted.

JAMA. 2010;304(16):1812-1820

www.jama.com

patients with KRAS codon 12– or KRAS codon 13–mutated tumors should not receive cetuximab or panitumumab.^{2,4}

However, indications exist that not all KRAS mutations are equal in their biological characteristics. First, the pattern of KRAS mutations is tumor-type speAuthor Affiliations are listed at the end of this article.

a longer

Comsponding Authors: Sabine Tejpar, M.D., Ph.D., Digestive Oncology Unit, University Hospital Gasthuisberg, Horestraat 49, 8-3000, Louven, Belgium (sabine Japar@uzieuven.bo); Alborto Bardoll, Ph.D., Laboratory of Molecular Genetics, Institute for Cancer Research and Treatment, University of Turin Medical School, Strada Provinciale 142, Km 3-95, 10060 Candiolo, Turin, Italy (a. bardoll@unito.ii).

1812 JAMA, October 27, 2010-Vol 304, No. 16 (Reprinted with Corrections)

©2010 American Medical Association. All rights reserved.

OUTCOME

Treatment Effect of KRAS Mutation Status by Study

PFS: Treatment Effect

0S: Treatment Effect

Tejpar S, et al. J Clin Oncol. 2012;30(29):3570-3577; Peeters M, et al. J Clin Oncol. 2013;31(6):759-765.

^{* *}Positive interaction test

Regorafenib: KRAS Subgroup Analysis

- Regorafenib shows OS and PFS benefit in both KRASwildtype and KRAS-mutant subgroups
- KRAS mutational status was neither prognostic nor predictive in the study population

		Regorafenib n = 505	Placebo n = 255	HR (95% CI)
KRAS mutation, %	No	40.6	36.9	NA
	Yes	54.1	61.6	NA
Median OS, months	KRAS wildtype	7.3	5.0	0.653 (0.476-0.895)
	KRAS mutant	6.2	5.1	0.867 (0.670-1.123)
Median PFS, months	KRAS wildtype	2.0	1.8	0.475 (0.362-0.623)
	KRAS mutant	1.9	1.7	0.525 (0.425-0.649)

Biologic Subsets of mCRC Respond Differently to EGFR-Targeted Agents

Response Rates of Patients With Wild-Type *KRAS* (condos 12/13/61) Who Were Randomized to Panitumumab Plus BSC^a

			Randomized phase III study panitumunab + BSC, N = 82		Extension study panitumunab + BSC, N = 56		Combined panitumunab + BSC, N = 138	
Genotype		N	Response rate, % (95% CI)	N	Response rate, % (95% CI)	N	Response rate, % (95% CI)	
NRAS	WT	76	13 (6-23)	50	24 (13-38)	126	17 (11-25)	
	MT	4	0 (0-60)	5	0 (0-52)	9	0 (0-34)	
EGFR	WT	82	12 (6-21)	52	23 (13-37)	134	16 (11-24)	
	MT	0	NA	0	NA	0	NA	
BRAF	WT	63	14 (7-25)	44	21 (10-35)	107	17 (10-25)	
	МТ	9	0 (0-34)	4	0 (0-60)	13	0 (0-25)	
PTEN	WT	72	13 (6-22)	50	22 (12-36)	122	16 (10-24)	
	МТ	7	14 (0-58)	2	0 (0-84)	9	11 (0-48)	
PIK3CA	WT	74	12 (6-22)	43	19 (8-33)	117	15 (9-22)	
	МТ	5	20 (1-72)	5	20 (1-72)	10	20 (3-56)	
AKT1	WT	69	15 (7-25)	52	19 (10-33)	121	17 (10-24)	
	МТ	1	0 (0-98)	0	NA	1	0 (0-98)	
TP53	WT	32	16 (5-33)	18	11 (1-35)	50	14 (6-27)	
	МТ	49	10 (3-22)	35	26 (13-43)	84	17 (9-26)	
CTNNB1	WT	72	11 (5-21)	46	22 (11-36)	118	15 (9-23)	
	МТ	2	50 (1-99)	0	NA	2	50 (1-99)	

AKT1, v-akt murine thymoma viral oncogene homolog 1; BRAF, v-raf murine sarcoma viral oncogene homolog B1; CTNNB1, catenin (cadherin-associated protein), β-1, 88kDa; MT, mutant; NA, not available; NRAS, neuroblastoma RAS viral oncogene homolog; PIK3CA, phosphoinositide-3-kinase, catalytic, α-polypeptide; PTEN, phosphatase and tensin homolog; TP53, tumor protein p53; WT, wild-type aPer local review

Peeters M, et al. Clin Cancer Res. 2013;19(7):1902-1912

New Analyses Identify Predictive Biomarkers For Panitumumab In Patients With Metastatic Colorectal Cancer

Biomarker Analysis From Phase 3 PRIME ('203)
Study and Phase 2 PEAK ('509) Study Link
Additional RAS Gene Mutations to Panitumumab
Clinical Response

Targeted Therapy in mCRC – Biomarkers

- 1. KRAS is a negative predictive biomarker
- 2. Multigene testing enters clinical practice
- 3. RAS testing better defines subgroups for anti-EGFR treatment

Conclusion

Targeted therapy is integrated in personalized care for mCRC

EMERGING TREATMENT PARADIGMS IN METASTATIC COLORECTAL CANCER

Sunday, June 2, 2013

6.30 рм — 7.00 рм Registration and Dinner

7.00 PM — 9.00 PM Educational Activity

