Final Review STAB27 2024 Winter

Yushu Zou

March 2024

1 Hypothesis Testing

1.1 General Steps to Perform the Hypothesis Testing

• State Null Hypothesis and Alternative Hypothesis

$$H_0: \mu = k \qquad \qquad H_0: \mu \le k \qquad \qquad H_0: \mu \ge k$$

$$H_{\Lambda}: \mu \ne k \qquad \qquad H_{\Lambda}: \mu > k \qquad \qquad H_{\Lambda}: \mu < k$$

Figure 1: Two-sided test vs. One-sided Test

• Calculate the statics of suitable tests and compare with critical value Will be discussed later for the suitable test;

Conclusion:

- Since test statistics is greater than the **critical value**, we can conclude that there exists a statistically significant difference ...; therefore, we **reject** H_0 (you need to state what is your H_0)
- Since test statistics are smaller than the **critical value**, we can not conclude that there exists a statistically significant difference ...; therefore, we **fail to reject** H_0 (you need to state what is your H_0)
- Draw Confidence Interval and make Conclusions

Figure 2: Two sided 95% Confidence Interval

Conclusion:

- Since ... is within the interval, we are $(1-\alpha)\%$ confident that the difference ... (population parameter) is between ... (Lower bound) and ... (Upper bound)
- There's a xxx% chance that this xxx% confidence interval construction procedure captured the true parameter value
- A larger confidence level (e.g., instead of 95%, use 98%) would ensure that we capture the population parameter in more samples. This would give a wider confidence interval.

2 One sample T-test

Statistics:

$$t = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}}$$

 \overline{x} - sample mean; μ_0 - stated by null hypothesis; s - sample standard deviation; n - sample size;

2.1 Assumptions

Random & Independent sample of size < 10% of population size, coming from approx. unimodal & symmetric (bell-shaped) population distribution.

3 Paired Sample vs. Not Paired Sample

Dependent samples are **paired measurements** for one set of items. Independent samples are measurements made on two **different sets of items**.

4 Two sample T-test

4.1 Assumptions

- The two samples are **independent**.
- The two samples are randomly selected form normally distributed populations.

4.2 Case 1: Large sample sizes $(n_1 \ge 30 \text{ and } n_2 \ge 30)$

1. Statistics:

$$z = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

- 2. Test: Z-table (Normal Distribution)
- 3. Confidence Interval:

$$(\overline{x}_1 - \overline{x}_2) \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

4.3 Case 2: Small sample sizes from *normal* populations $(\sigma_1^2 = \sigma_2^2)$

Pooled T-test

1. Statistics:

$$t = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}}$$

Where,

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 - 1) + (n_2 - 1)} = MSE$$

- 2. Test: T-table with $df = n_1 + n_2 2$
- 3. Confidence Interval:

$$(\overline{x}_1 - \overline{x}_2) \pm t_{\frac{\alpha}{2},df} \sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}$$

4.3.1 Adds-on Assumption

- At least one of the two sample sizes is small: n < 30
- $\sigma_1^2 = \sigma_2^2$

4.4 Case 3: Small sample sizes from *normal* populations $(\sigma_1^2 \neq \sigma_2^2)$

Welch's Approximation

1. Statistics:

$$t = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

2. Test: T-table with

$$df = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{\left(\frac{s_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{s_2^2}{n_2}\right)^2}{n_2 - 1}}$$

3. Confidence Interval:

$$(\overline{x}_1 - \overline{x}_2) \pm t_{\frac{\alpha}{2}, df} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

5 Paired T test

Let $d_i = x_i - y_i$, calculate

- 1. the mean value \overline{d} ;
- 2. standard deviation of the d for the paired sample data s_d ;
- 3. number of pairs of data in the sample n
- 1. Statistics:

$$t = \frac{\overline{d} - \mu_d}{\sqrt{\frac{s_d^2}{n}}}$$

- 2. Test: T-table with df = n 1
- 3. Confidence Interval:

$$(\overline{x}_1 - \overline{x}_2) \pm t_{\frac{\alpha}{2}, df} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

6 ANOVA Test: for more than 3 groups comparison

The more variation there is between the groups, the more likely we are to conclude that there is a significant difference between the means of at least two of these groups.

ANOVA Table

Source of Sum of Degrees of Mean Variation Squares Freedom Squares k - 1MSTR/MSE Treatment SSTR **MSTR** n – k SSE **MSE** Error SST Total SST's degrees of freedom SST is partitioned (d.f.) are partitioned into SSTR and SSE. SSTR's d.f. and SSE's d.f.

Figure 3: ANOVA Table Coefficients Part I

y = observed data value

 \bar{v} = mean of all sample scores combined (overall mean)

k = number of population means being compared

 n_i = number of values in the ith sample

 \overline{y}_i = mean of values in the ith sample

 S_i^2 = variance of values in the ith sample

Index i goes from 1 to k: i = 1...k

Figure 4: ANOVA Table Coefficients Part II

Recall: Sample Variance: $s^2 = \frac{\sum (y - \overline{y})^2}{n-1}$

- Total Variation = Total Sum of Squares (SS_{total}) = $\sum (y \overline{y})^2$
- $\sum_{i} n_{i} (\overline{y}_{i} \overline{y})^{2}$ $\sum_{i} (n_{i} 1)s_{i}^{2}$ ➤Sum of Squares of Between Groups (SSB) = Sum of Square of Treatments (SSTr) =
- ➤Sum of Squares of Within Groups (SSB) = Sum of Square of Error (SSE) =

Figure 5: ANOVA Table Coefficients Part III

- 1. Hypotheses: $H_0: \mu_1 = \mu_2 = \cdots = \mu_n$ vs. H_a : Not all population means are equal. At least two population means are different
- 2. Statistics:

$$F = \frac{MSTR}{MSE} = \frac{MS(\text{between})}{MS(\text{within})} = \frac{SSTR/(k-1)}{SSE/(n-k)} = t^2$$

3. Test: F distribution with k-1 numerator d.f. and n-k denominator d.f.

6.1 Assumptions

- The populations have approximately **normal** distributions.
- The populations have the same variance σ^2 .
- The samples are **random** and **independent** of each other.
- The different samples are from populations that are categorized in only **one way**.

7 Multiple Comparisons of Means

7.1 Turkey's Test

1. Confidence Interval:

$$|\overline{x}_1 - \overline{x}_2| \pm \frac{q_{\alpha}(k, v)}{\sqrt{2}} \sqrt{\frac{MSE}{n_i} + \frac{MSE}{n_j}}$$

Note: in q-table, p = k and v = n - k If 0 falls outside the confidence interval, then we can conclude that and are significantly different between two population means.

7.2 Bonferroni's Test

- 1. Number of pair-wise comparisons- $C = \frac{k(k-1)}{2}$, where k is the number of groups
- 2. Set $\alpha = \frac{\alpha_E}{C}$, where α_E is the true probability of making at least one Type I error (called **experiment** wise Type I error).
- 3. Statistics:

$$\frac{|\overline{x}_1 - \overline{x}_2|}{\sqrt{MSE(\frac{1}{n_1} + \frac{1}{n_2})}}$$

- 4. Test: T-distribution, df = n k, with $\frac{\alpha}{2} = \frac{\alpha_E}{2C}$
- 5. Conclusion: if

$$|\overline{x}_1 - \overline{x}_2| > t_{\frac{\alpha_E}{2C}} \sqrt{MSE(\frac{1}{n_1} + \frac{1}{n_2})}$$

then there is a significant difference between two population means.

8 Simple Linear Regression: Available data on two or more variables

- Y Dependent Variable/Response Variable;
- $(x_1, x_2, \cdots x_k)$ Independent Variables/ Explanatory Variable
- Estimated Regression Line: $E(y) = \beta_0 + \beta_1 * x$; β_0 intercept: predicted y value when x = 0; β_1 slope: increase in predicted y for every unit increase in x.

8.1 Simple Linear Regression Model

- First order model: $y_i = \beta_0 + \beta_1 * x_i + \epsilon_i$ to describe each data point
- Simple Linear Equation: $E(y) = \beta_0 + \beta_1 * x$
- Positive Linear Relationship: $\beta_1 > 0$; Negative Linear Relationship: $\beta_1 < 0$; No Relationship: $\beta_1 = 0$

Notation for Regression Equation

	Population Parameter	Sample Statistic
<i>y</i> -intercept of regression equation	$oldsymbol{eta}_0$	b_0
Slope of regression equation	$oldsymbol{eta_{ m l}}$	b_1
Equation of the regression line	$E(y) = \beta_0 + \beta_1 x$	$\hat{y} = b_0 + b_1 x$

Figure 6: Linear Regression Notation

8.2 Assumption

- 1. The error term $\epsilon \sim N(0, \sigma^2)$
- 2. $Var(Y) = Var(\epsilon) = \sigma^2$
- 3. ϵ are iid distributed

8.3 Application

8.3.1 How to calculate the coefficients of the linear model?

Slope for the Estimated Regression Equation

$$\hat{\beta}_{1} = b_{1} = \frac{SS_{xy}}{SS_{xx}} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

$$SS_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = \sum_{i=1}^{n} x_i y_i - n\overline{x}\overline{y}$$

$$SS_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} x_i^2 - n(\overline{x})^2$$

Figure 7: Steps to calculate the slope

y-Intercept for the Estimated Regression Equation

$$b_0 = \overline{y} - b_1 \overline{x}$$

where:

 x_i = value of independent variable for *i*th observation

 y_i = value of dependent variable for *i*th observation

 \overline{x} = mean value for independent variable

 \overline{y} = mean value for dependent variable

n = total number of observations

Figure 8: Steps to calculate the intercept

8.3.2 Coefficient of Determination

 $R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$ - about $R^2\%$ of variation in Y is explained by this regression model with X

• Note: $F = \frac{R^2}{1 - R^2} (n - 2)$

8.3.3 Hypothesis Test on b_1

• Null Hypothesis: $b_1=0$ vs Alternative Hypothesis: $b_1\neq 0$

1. F-test: $F = \frac{MSR}{MSE} \sim F_{1,n-2}$

2. T-test: $t = \frac{b_1}{s_{b_1}} = \frac{b_1}{\sqrt{\frac{MSE}{SS_{cr}}}} \sim t_{n-2}$

3. Confidence Interval: $b_1 \pm t_{n-2}(\alpha/2)s_{b_1}$; Reject H_0 if 0 is not included in the confidence interval for b_1

8.3.4 Residual Analysis

Based on the assumption of linear regression.

- Plot scatter plot of residual, see if they are randomly distributed around 0
- Run Normal test on residual (shapiro.test) to see if it is normal distributed: pj0.05, not normal

7

Correlation Coefficient

Measures only the **linear** relationship between two quantitative variables
$$r = \frac{SS_{xy}}{\sqrt{SS_x}\sqrt{SS_y}} = \frac{\sum (x-\overline{x})(y-\overline{y})}{\sqrt{(\sum (x-\overline{x})^2}\sqrt{(\sum (y-\overline{y})^2})} = \frac{Cov(X,Y)}{S_xS_y} \in [-1,1]$$

Figure 9: Correlation Coefficient

Correlation Coefficient (absolute value)	Interpretation
up to 0.2	very low correlation
up to 0.5	low correlation
up to 0.7	moderate correlation
up to 0.9	high correlation
above 0.9	very high correlation

Figure 10: Inference on correlation coefficient

8.4.1 Lurking variable

hidden variable that may misdirect the association between variables.

8.4.2 Hypothesis Testing on Correlation

• Null Hypothesis: $\rho = 0$ vs Alternative Hypothesis: $\rho \neq 0$

1. Test Statistic:
$$t = \frac{r}{\sqrt{\frac{1-r^2}{n-2}}} = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}} \sim t_{n-2}(\frac{\alpha}{2})$$

8.5 Prediction Interval and Confident Interval

8.5.1 Confidence Interval for E(y)

1.
$$S_e = \sqrt{\frac{\sum (y-\hat{y})^2}{n-2}}$$

2. Marginal Error =
$$\sqrt{\frac{1}{n} + \frac{(x_0 + \overline{x})^2}{SS_{xx}}}$$

- 3. Confidence Interval for E(y) for $x=x_0$: $Y\pm t_{n-2}(\alpha/2)S_e\times \text{Marginal Error}$
- 4. Conclusion: We are $(1-\alpha)\%$ confident that the mean Y at X is x_0 will be between (xxx) and (xxx)

8.5.2 Prediction Interval for \hat{y}

1.
$$S_e = \sqrt{\frac{\sum (y-\hat{y})^2}{n-2}}$$

2. Marginal Error =
$$\sqrt{1 + \frac{1}{n} + \frac{(x_0 + \overline{x})^2}{SS_{xx}}}$$

- 3. Prediction Interval for \hat{y} for $x = x_0$: $\hat{y} \pm t_{n-2}(\alpha/2)S_e \times \text{Marginal Error}$
- 4. Conclusion: We are $(1-\alpha)\%$ confident that a single y when X is x_0 will be between (xxx) and (xxx)

9 Multiple Linear Regression

Expresses a linear relationship between a dependent variable y and two or more independent variables (x_1, \dots, x_n) Similar to simple linear regression, but for the inference on the coefficients:

- $E(y) = \beta_0 + \beta_1 * x_1 + \dots + \beta_k * x_k$
- b_i represents an estimate of the change in y corresponding to a 1-unit increase in x_i when all other independent variables are held constant

9.1 Multiple Coefficient of Determination

Refer to Figure 3, the relationship between coefficients in ANOVA table, $R^2 = SSR/SST$

• Adjusted Coefficient of Determination = $1 - \frac{n-1}{n-k-1}(1-R^2)$

9.2 F test & t test

9.2.1 F test (test for overall significance)

Determine whether a significant relationship exists between the dependent variable and the set of **all** the independent variables

- Null Hypothesis: $b_1 = \cdots = b_k = 0$ vs Alternative Hypothesis: one of $b_i \neq 0$
- 1. F-test: $F = \frac{MSR}{MSE} \sim F_{k,n-k-1}$

9.2.2 t test(test for individual significance

Determine whether each of the individual independent variables is significant.

- Null Hypothesis: $b_i = 0$ vs Alternative Hypothesis: $b_i \neq 0$
- 1. T-test: $t = \frac{b_1}{s_{b_1}} = \frac{b_1}{\sqrt{\frac{MSE}{SS_{xx}}}} \sim t_{n-k-1}$

9.3 Interaction Model

$$E(y) = \beta_0 + \beta_1 * x_1 + \beta_2 * x_2 + \beta_3 * x_1 x_2$$

Since X_1 and X_2 are interactive. Slope for x_1 : $\beta_1 + \beta_3 x_2$. The change in E(y) for every 1-unit change increase in x_1 , holding x_2 fixed

9

9.4 Quadratic Model

$$E(y) = \beta_0 + \beta_1 * x_1 + \beta_2 * x_1^2 + \beta_3 * x_1^3$$

9.5 Models with Qualitative Independent Variables

some of independent variable are discrete variables.

•
$$E(y) = \beta_0 + \beta_1 * x_1 + \dots + \beta_k * x_k$$

9.5.1 Dummy variables

9.6 Nested F test (Comparing Models)

Assume we have two models, they have many shared variables, but just minor different:

- Complete case model (with β_1, \dots, β_k)
- Reduced model (with $\beta_1, \dots, \beta_j, j < k$)
- Null Hypothesis: $\beta_j = \cdots \beta_k = 0$ vs Alternative Hypothesis: $\beta_i \neq 0$
- 1. F-test: $F = \frac{(SSE_R SSE_c)/(k-j)}{MSE_C} \sim F_{k-j,n-k}$

10 Multicollinearity

• VIF = $\frac{1}{1-R^2}$; if VIF > 10 then model suffers from multicollinearity.