www.cnblogs.com

python进行机器学习 (一) 之数据预处理 - 光彩照人 - 博客园

光彩照人 关注 - 7 粉丝 - 117 +加关注

4-5 minutes

一、加载数据

houseprice=pd.read_csv('../input/train.csv') #加载后放入dataframe里 all_data=pd.read_csv('a.csv', header=0,parse_dates=['time'],usecols=
['time','LotArea','price']) #可以选择加载哪几列houseprice.head() #显示前5行数据 houseprice.info() #查看各字段的信息

houseprice.shape #查看数据集行列分布,几行几列

houseprice.describe() #查看数据的大体情况

df.describe()

	ld	MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	YearBuilt
count	1460.000000	1460.000000	1201.000000	1460.000000	1460.000000	1460.000000	1460.000000
mean	730.500000	56.897260	70.049958	10516.828082	6.099315	5.575342	1971.267808
std	421.610009	42.300571	24.284752	9981.264932	1.382997	1.112799	30.202904
min	1.000000	20.000000	21.000000	1300.000000	1.000000	1.000000	1872.000000
25%	365.750000	20.000000	59.000000	7553.500000	5.000000	5.000000	1954.000000
50%	730.500000	50.000000	69.000000	9478.500000	6.000000	5.000000	1973.000000
75%	1095.250000	70.000000	80.000000	11601.500000	7.000000	6.000000	2000.000000
max	1460.000000	190.000000	313.000000	215245.000000	10.000000	9.000000	2010.000000

8 rows × 38 columns

二、分析缺失数据

houseprice.isnull()

#元素级别

的判断,把对应的所有元素的位置都列出来,元素为空或者NA就显示True,否则就是False

			MSZoning	LotFrontage	LotArea	Street	Alley
0	False	False	False	False	False	False	True
1	False	False	False	False	False	False	True
2	False	False	False	False	False	False	True
3	False	False	False	False	False	False	True
4	False	False	False	False	False	False	True
5	False	False	False	False	False	False	True
6	False	False	False	False	False	False	True
7	False	True	False	True	False	False	True
8	False	False	False	False	False	False	True
9	False	False	False	False	False	False	True

```
houseprice.isnull().any()
```

#列级别的判断,只要该列有为空或

者NA的元素,就为True,否则False

```
Id False
MSSubClass True
MSZoning False
LotFrontage True
LotArea False
Street False
Alley True
dtype: bool
```

missing=houseprice.columns[houseprice.isnull().any()].tolist()

#将为空

或者NA的列找出来

```
>>>
['MSSubClass', 'LotFrontage', 'Alley']
>>> |
```

houseprice[missing].isnull().sum()

#将列中为空或者NA

的个数统计出来

```
MSSubClass 1
LotFrontage 1
Alley 10
dtype: int64
```

将某一列中缺失元素的值,用value值进行填充。处理缺失数据时,比如该列都是字符串,不是数值,可以将出现次数最多的字符串填充缺失值。

```
def cat_imputation(column, value):
```

```
houseprice.loc[houseprice[column].isnull(),column] = value
```

houseprice[['LotFrontage','Alley']][houseprice['Alley'].isnull()==True] #从
LotFrontage 和Alley 列中进行选择行,选择Alley中数据为空的行。主要用来看两个列的关联程度,
是不是大多同时为空。

houseprice['Fireplaces'][houseprice['FireplaceQu'].isnull()==True].describe() #对筛选出来的数据做一个描述,比如一共多少行,均值、方差、最小值、最大值等等。

三、统计分析

```
houseprice['MSSubClass'].value_counts() #统计某一列中各个元素值出现的次数
```

print("Skewness: %f" % houseprice['MSSubClass'].skew()) #列出数据的偏斜度

```
print("Kurtosis: %f" % houseprice['MSSubClass'].kurt())
```

#列出数据的峰度

```
houseprice['LotFrontage'].corr(houseprice['LotArea'])     #计算两个列的相关度
```

houseprice['SqrtLotArea']=np.sqrt(houseprice['LotArea']) #将列的数值求根,并

赋予一个新列

```
houseprice[['MSSubClass', 'LotFrontage']].groupby(['MSSubClass'],
```

as_index=False).mean() #跟MSSubClass进行分组,并求分组后的平均值

	MSSubClass	LotFrontage
0	20	77.500000
1	50	68.000000
2	60	72.333333
3	70	60.000000

四、数据处理

1)删除相关

```
del houseprice['SqrtLotArea'] #删除列
```

houseprice['LotFrontage'].dropna() #去掉为空值或者NA的元素

houseprice.drop(['Alley'],axis=1) #去掉Alley列,不管空值与否

df.drop(df.columns[[0,1]],axis=1,inplace=True) #删除第1,2列,inplace=True表示直接就在内存中替换了,不用二次赋值生效。

houseprice.dropna(axis=0) #删除带有空值的行

houseprice.dropna(axis=1) #删除带有空值的列

2) 缺失值填充处理

houseprice['LotFrontage']=houseprice['LotFrontage'].fillna(0) #将该列中的空 值或者NA填充为0

all_data.product_type[all_data.product_type.isnull()]=all_data.product_type.dropna().mode().val #如果该列是字符串的,就将该列中出现次数最多的字符串赋予空值,mode()函数就是取出现次数最多的元素。

houseprice['LotFrontage'].fillna(method='pad')

#使用

前一个数值替代空值或者NA,就是NA前面最近的非空数值替换

houseprice['LotFrontage'].fillna(method='bfill',limit=1) #使用后一个数值替代空值 或者NA, limit=1就是限制如果几个连续的空值,只能最近的一个空值可以被填充。

houseprice['LotFrontage'].fillna(houseprice['LotFrontage'].mean()) #使用平均

值进行填充

houseprice['LotFrontage'].interpolate() # 使用插值来估计NaN 如果
index是数字,可以设置参数method='value' ,如果是时间,可以设置method='time'
houseprice= houseprice.fillna(houseprice.mean()) #将缺失值全部用该列的平均值代替,
这个时候一般已经提前将字符串特征转换成了数值。

注:在kaggle中有人这样处理缺失数据,如果数据的缺失达到15%,且并没有发现该变量有多大作用,就删除该变量!

3) 字符串替换

houseprice['MSZoning']=houseprice['MSZoning'].map({'RL':1,'RM':2,'RR':3,}).astype(int)
#将MSZoning中的字符串变成对应的数字表示

4) 数据连接

merge_data=pd.concat([new_train,df_test]) #讲训练数据与测试数据连接起来,以便一起进行数据清洗

all_data = pd.concat((train.loc[:,'MSSubClass':'SaleCondition'],
test.loc[:,'MSSubClass':'SaleCondition'])) #另一种合并方式,按列名字进行合并。

res = pd.merge(df1, df2,on=['time']) #将df1,df2按照time字段进行合并,两个df中都含有time字段

5) 数据保存

merge_data.to_csv('merge_data.csv', index=False) #index=False, 写入的时候不写入 列的索引序号

6) 数据转换

houseprice["Alley"] = np.log1p(houseprice["Alley"]) #采用log(1+x)方式对原数据进行处理,改变原数据的偏斜度,使数据更加符合正态曲线分布。

numeric_feats =houseprice.dtypes[houseprice.dtypes != "object"].index #把内容为数值的特征列找出来

#下面几行代码将偏斜度大于0.75的数值列做一个log转换,使之尽量符合正态分布,因为很多模型的假设数据是服从正态分布的

skewed_feats = train[numeric_feats].apply(lambda x: skew(x.dropna())) #compute
skewness

```
skewed_feats = skewed_feats[skewed_feats > 0.75]
skewed_feats = skewed_feats.index
all_data[skewed_feats] = np.log1p(all_data[skewed_feats])
```

houseprice= pd.get_dummies(houseprice) #另外一种形式数据转换,将字符串特征列中的内容分别提出来作为新的特征出现,这样就省去了将字符串内容转化为数值特征内容的步骤了。

11	1							
	Id	MSSubClass	LotFrontage	LotArea	Alley	MSZoning RL	MSZoning RM	1
0	1	60	65	8450	1	1	0	
1	2	20	80	9600	2	1	0	
2	3	60	68	11250	3	1	0	
3	4	70	60	9550	4	0	1	
4	5	60	NaN	14260	5	1	0	
5	6	50	NaN	14115	8	0	0	
6	7	20	75	10084	3	1	0	
7	8	NaN	NaN	10382	2	0	0	
8	9	50	51	6120	1	0	1	
8	9				1	0	1	

6) 数据标准化

我们都知道大多数的梯度方法(几乎所有的机器学习算法都基于此)对于数据的缩放很敏感。因此,在运行算法之前,我们应该进行标准化,或所谓的规格化。标准化包括替换所有特征的名义值,让它们每一个的值在0和1之间。而对于规格化,它包括数据的预处理,使得每个特征的值有0和1的离差。Scikit-Learn库已经为其提供了相应的函数。

from sklearn import preprocessing

normalize the data attributes

normalized_X = preprocessing.normalize(X)

standardize the data attributes

standardized_X = preprocessing.scale(X)