MATHEMATICS HIGHER LEVEL

Block Week December 2018

DIOCK Week December 201

(98°/2) Exercisent!!

Name in block letters

JERRY JIANG

2 hours

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Calculators are not permitted in this examination.
- There are 20 questions followed by an optional bonus question marked by a star.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working or explanations. Where an answer is incorrect, some marks may be given for a correct method provided this is shown by written working. You are therefore advised to show all working. Working may be continued below the lines, if necessary.

1. In an arithmetic sequence the first term is 33 and the second term is 26.
(a) Write down the common difference.
(b) Find the tenth term.
(c) Find the sum of the first ten terms of the sequence.
(a) $d=33-2b=7$ -7 $d=26-33=-7$
(b) $U_n = 33 - 7 \cdot (n-1) = 33 - 7n + 7 = 40 - 7n$
= U10 = 40 - 70 = -30
(1) $C_{10} = \frac{(33-30)\times10}{(33-30)\times10} = C\times3 = 10$
$(c) S_{10} = \frac{33 - 30) \times 10}{2} = 5 \times 3 = 15$
010000000000000000000000000000000000000

/

2. Consider the expansion of the expression $(2-x)^{11}$.
 (a) Write down the number of terms in the expansion. (b) Calculate the value of the binomial coefficient (¹¹₉). (c) The coefficient of the x⁹ term is an integer. Find its value.
V
(a) 12
(b) $\binom{1}{4} = \binom{1}{2} = \frac{1}{2 \times 1} = 55$
(c) $2^{2} \cdot (-x)^{9} \cdot (\frac{11}{9}) = 4 \cdot (-x^{9}) \cdot 55 = -220 x^{9}$
: the wofficient is -220

3. The points A and B have coordinates $(-2,3)$ and $(4,1)$ respectively.
(a) Write down the midpoint of line segment $[AB]$.
(b) Write down the gradient of line (AB) .
(c) Determine the y -intercept of the perpendicular bisector of $[AB]$.
(a) $\left(\frac{-2+4}{2}, \frac{3+1}{2}\right) \Rightarrow \left(1, 2\right)$ (b) gradient (AB) = $\frac{3-1}{-2-4} = \frac{2}{-6} = -\frac{1}{3}$
(c) pass through (1,2) with gradient == 3
- 1: y= 華+b
章 3+b=2
<i>p</i> = −1
y= 3x-1
$\frac{1}{1-x} = \frac{1}{3} \times -1$
······
······
//

A CVV number is a three digit security code found on the back of a credit card.
 (a) How many possible CVV numbers are there? (b) How many CVV numbers begin and end with an odd digit? (c) How many CVV numbers begin with a zero and have the second digit less than the third?
(a) 10×10×10=1000
(b) 5×10 ×5 = 250
(c) 0 - : 9 (1, 2,, 9)
0 • (_: 8 (], 3, ,9)
02_:7 (3,4,,9)
03_:6 [4.5,,9)
٥٤_:5 (٥, ١٥, ٩)
05_:4 [6,7, 8.9)
06_13 (7.8,9)
07_ :2 (8,9)
08_ : ((9)
$(1+9) \times 9 = 45$
· · · · · · · · · · · · · · · · · · ·
/
5

5. The rectangle ABCD is inscribed in the semicircle with centre O and radius r.

Let $\angle AOB = \theta$.

- (a) Show that the area of rectangle ABCD is $2r^2 \sin \theta \cos \theta$.
- (b) Hence find the largest possible area for a rectangle inscribed in a semicircle of radius 10.

(a) AB=r. sinf
0A = r. cosp, AD=20A=2rcosp
:. Area = r.sint - 2r cost = 2r2sint cost
(b) Area = r2. 25in 8 cost = r2. sin 28
Sin 28 max =1
:. Areamax = \$ 102-1=100
/ {
)

It is given that $(a+bi)^2 = -15 + 8i$ for $a, b \in \mathbb{R}$.
(a) Obtain a pair of simultaneous equations involving a and b .
(b) Hence find the two square roots of $-15 + 8i$.
$(a) a^2 - b^2 + 2ab i = -15 + 6i$
$\langle a^2 - b^2 = -12$
$\begin{cases} a^2 - b^2 = -15 \\ 2ab = 8 \end{cases}$
$(b) \qquad b = \frac{4}{a}$
$a^2 - \frac{16}{a^2} + 115 = 0$
= a4+15a2-16=0
IV S
THE REAL PROPERTY AND ADDRESS OF THE PARTY AND THE PARTY A
i. a=1
, a= ±1
$\frac{1}{100} = \frac{1}{100} \pm \frac{1}{100}$ The square roots are $\pm (1 + 4i)$
the square roots are I (1191)
. 155 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7. Let $p(x) = x^{20} - x^{15} + x^{10} - x^{10}$		Let	p	(x)	=	x^{20}		x^{15}	+	x^{10}	_	x^5	+	5	
---	--	-----	---	-----	---	----------	--	----------	---	----------	---	-------	---	---	--

- (a) Find the remainder when p(x) is divided by x-1.
- (b) Find the remainder when p(x) is divided by x + 1.
- (c) Find the remainder when p(x) is divided by $x^2 1$.

(a)
$$P(1) = 1 - 1 + 1 - 1 + 5 = 5$$

(b) $P(-1) = 1 - (-1) + 1 - (-1) + 5 = 9$
(c) let the remainder be $ax + b$

$$P(x) = (x^{2} - 1) \cdot q(x) + ax + b$$

$$P(x) = a + b = 5$$

$$p(-1) = -a+b=9$$

$$\therefore \begin{cases} a+b=5 \\ -a+b=9 \end{cases}$$

2.
$$2b=14$$

2. $b=7$, $a=-2$
2. the remainder is $-2x+7$

......

8. In the diagram the points A and B lie on the semicircle with centre O.

- (a) Find the coordinates of point A.
- (b) Find the radian measure of $\angle AOB$.
- (c) Find the area of the shaded segment.

(c) Find the area of the bhaded sag-
(a) $0A = 0B = (-6\overline{13})^2 + 6^2 = 12 = r$
¿. A (12,0)
(b) $\angle Boc = arctan(\frac{b}{b\overline{13}}) = 30^{\circ}$
$\angle CAOB = 180^{\circ} - 30^{\circ} = 150^{\circ} \angle AOB = \frac{5}{6}\pi$
(c) Area = 1. (AOB · r2 - 1. sin LAOB · AO.OB
= = r2 (< AOB - sin < AOB)
= - 144 (= T - sin = T)
$=\frac{1}{2}\cdot (44)\left(\frac{5}{6}\pi-\frac{1}{2}\right)$
= 60 π - 36

Consider the parabola $y = 4x - x^2$ and the line $y = x + c$.
(a) Find the coordinates of the vertex for the parabola.
(b) Find the value of c for the line to be tangent to the parabola.
(a) y= -x'+4x
$(9) y = -x^{2} + 4x$ $= -(x^{2} - 4x + 4) + 4$
$= -(x-1)^2+4$
$= -(x-1)^2 + 4$ $\text{ver tex } (2,4)$
(b) 276= {y=4x-x2
(b) $y = x + c$
,
A = 9 - 4 (20)
$A = \begin{bmatrix} -4(20) \\ -4(20) \end{bmatrix}$
$C = \frac{9}{4}$
61610

The numbers a and b are such that $\log_9 a = 11$ and $\log_9 b = 6$.
(a) Find the value of $\log_9 a^2 b$.
(b) Find the value of $\log_9 3\sqrt{a}$.
(c) Find the value of $\log_b 27$.
(a) $\log q a^2 b = 2 \log q a + \log b = 22 + 6 = 28$ (b) $\log q a^2 b = \frac{1}{2} \log q q + \frac{1}{2} \log q a = \frac{1}{2} + \frac{1}{2} = 0$
(b) $ 0 ^{2} 0 ^{2} = \frac{1}{2} 0 ^{2} 0 ^{2} + \frac{1}{2} 0 ^{2} 0 ^{2} = \frac{1}{2} + \frac{1}{2} \cdot 1 = 0$
(c) of c
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
<u> </u>

11. The obtuse angle A is such that $\sec A = -\frac{5}{4}$.
(a) Find the value of $\cos A$.
(b) Find the value of $\sin 2A$.
(c) Find the value of $\tan 2A$.
(a) $Sec A = \frac{1}{\omega(A)} = -\frac{5}{4}$
: OsA = -4
(b) $\sin A = \pm \sqrt{1 - (-\frac{4}{5})^2} = \pm \frac{3}{5}$
sin le it's obtuse, negative is inadmissable
$\sin A = \frac{3}{5}$
$\sin A = \frac{3}{5}$ $\sin 2A = 2 \sin A \cos A = 2 \cdot \frac{3}{5} \cdot (-\frac{4}{5}) = -\frac{24}{25}$
(C) $\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$
$\tan 2A = \frac{\sin 2A}{\sin 2A} = \frac{2\sin 2A}{2\cos^2 A - 1} = \frac{2\cos^2 A - 1}{2\cos^2 A - 1} = \frac{2\cos^2 A}{2\cos^2 A} = \frac{\cos^2 A}{2\cos^2 A}$
/

12. Rows 0, 1, 2 and 3 of Pascal's triangle are given below.

- (a) Write down the numbers in row 6 of Pascal's triangle.
- (b) Find the value of $\sum_{r=0}^{6} {6 \choose r}$.
- (c) Find the sum of all the numbers in Pascal's triangle that lie above row 10.

(a) +5 10 15 20 15 61
$(b) \qquad \sum_{k=0}^{\infty} {b \choose k} = {b \choose 0} + {b \choose 1} + {b \choose 1}$
= 1 + 6 + 15+ 20 + 15 + 6 + 1
$= 7 \times 2 + 15 \times 2 + 20$
= 64
(c) $\sum_{i=0}^{\infty} \binom{n}{i} = 2^n$ if n is the row number.
= Sum = \frac{1}{2} = 1+2+4+8+16+32+64+128+256+512
$= \frac{([-2]^{\circ}]}{(-2)}$
$= \frac{1(1-\lambda)}{(1-\lambda)}$ $= \frac{\lambda^{1p}-1}{\lambda = 1}$
= 1023
<i></i>

10	T			π
13.	Let	α	=	$\overline{6}$

- (a) Write down the value of $\cos \alpha$.
- (b) Find the value of $\cos \alpha + \cos 2\alpha + \cos 3\alpha + \cos 4\alpha + \cos 5\alpha$.
- (c) Find the value of $\sum_{n=0}^{2018} \cos n\alpha.$

(a) wsd= 13

(b) $\cos 2d = 2\cos^2 d - 1 = \frac{3}{2} - 1 = \frac{1}{2}$

COJ YX=1013 17 = - 2

Co 5 5d = ws 5TT = -13

 $2.5 \text{ Nm} = \frac{\sqrt{15}}{2} + \frac{1}{4} + 0 - \frac{1}{2} - \frac{\sqrt{15}}{2} = 0$

		10.18	
(L) [Cos Od=1]		= COS 2016x + WS2017x+	10, 2018d
6514= 15	Sum	= 1 + 2 + 2	
10 2 2 4 = - 43		= 1413 2	/
Cos 6d = -1			
05 8d= - 1			
w, 90 = 0	Sim o		
Co2 11x = 1			
	·)	***************************************	/
,			/

14. Let α and β be the roots of the quadratic equation $2x^2 - 6x + 1 = 0$. Without solving the equation for α and β find the values of
(a) $\alpha + \beta$; (b) $\alpha^2 + \beta^2$; (c) $\frac{1}{\alpha^3} + \frac{1}{\beta^3}$.
$(a) \alpha + \beta = -\frac{-b}{2} = 3 \qquad \alpha \beta = \frac{1}{2}$
$(b) (a^2+\beta) = (a+\beta)^2 - 2\alpha\beta$
= 9-1
= 8
$(c) \frac{1}{2^{3}+\beta^{3}} = (\frac{1}{\alpha^{2}} + \frac{1}{\beta^{2}}) \frac{1}{\alpha^{3}+\beta^{3}}$ $= \frac{(\alpha+\beta)(\alpha^{2}-\alpha\beta+\beta^{2})}{(\frac{1}{\alpha^{2}})^{3}}$ $= \frac{(\alpha+\beta)(\alpha^{2}-\alpha\beta+\beta^{2})}{(\frac{1}{\alpha^{2}})^{3}}$
$\frac{(\alpha+\beta)(\alpha^2-\alpha\beta+\beta^2)}{(\alpha+\beta)(\alpha^2-\alpha\beta+\beta^2)}$
3. (8-12)
= 24 2
= 12:75
$= 24 \cdot \frac{3}{2}$ $= 12 \cdot 6$

.....

15. Let $z = a + bi$ where $a, b \in \mathbb{R}$.
(a) Show that $zz^* = a^2 + b^2$.
(b) Solve the equation $zz^* + 3z = 56 + 12i$.
(a) 2* = a-bi
$z \cdot z^* = (a+bi)(a-bi) = a^2 - b^2(-1) = a^2 + b^2$
(b) $(a^2+b^2+3a)+3bi=5b+12i$
$\int a^2 + b^2 + 3a = 5b$
) b = 4
a2+3a+16-56=0
a2+3a-40=0
(a+8)(a-5)=0
z. a = 8, a = 5
•••••••••••••••••••••••••••••••••••••••
 ≥ = -8+4i or S+4i
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
·······///

A sequence of positive integers is defined recursively by $u_n = u_{n-1} + u_{n-2}$ and $u_1 = a$ , $u_2 = b$ .
(a) Find an expression for $u_7$ in terms of $a$ and $b$ .
(b) If $u_7 = 120$ and $a < b$ , find the values of $a$ and $b$ .
(a) Uz = a+b Uy = a+b+b Uz = 2a+3b Uz = 3a+5b Uz = 5a+8b
(b) 5a+8b=120
$b = \frac{120-5a}{8}$
a=0, $b=15$ (X) (possitive integers)
$\alpha=1$ , $b=\frac{\pi s}{2}$ (x)) $(\alpha=8)$
$\alpha = 1,  b = \frac{110}{3} (x)$ $\Delta = 2,  b = \frac{110}{3} (x)$ $\Delta = 8$ $b = 10$
$\alpha = \beta$ , $\beta = \frac{\beta}{10  \text{L}} (x)$
$a = 4, b = \frac{100}{8} (x)$ $c = 5, b = \frac{95}{8} (x)$ (integers)
$c=5$ $b=\frac{1}{8}(x)$
$a = b$ $b = \frac{90}{8}(x)$
$A=7$ , $b=\frac{8s}{8}(x)$
$c = 8$ , $b = \frac{80}{8} = 10 (0)$
$\alpha = 1b$ , $b = \frac{40}{8} = S(x)$ (acb)
/5

17. The expression $\sin \theta + \sin 5\theta$ can be written as $a \sin b\theta \cos 2\theta$ for $a, b \in \mathbb{Z}^+$ .
(a) Find the values of $a$ and $b$ .
(b) Hence or otherwise solve the equation $\sin \theta + \sin 5\theta = \cos 2\theta$ for $0^{\circ} \le \theta < 180^{\circ}$ .
(a) Sin 9+ 5in 80 = 5in 8 (0558) + (058 5in 50)
$sin \theta = sin (3\theta - 2\theta) = sin 3\theta cos2\theta + - cos3\theta sin20$
sin 50 = sin(30 +20) = sin30 cos20 + cos30 sin20
$(-\sin\theta + \sin \theta) = 2\sin 3\theta \cos 2\theta$
$(-5) \cdot n \theta + 5 \cdot n \cdot s \theta = 25 \cdot n \cdot 3\theta \cdot \log 2\theta$ $(-5) \cdot n \theta + 5 \cdot n \cdot s \theta = 25 \cdot n \cdot 3\theta \cdot \log 2\theta$ $(-5) \cdot n \theta + 5 \cdot n \cdot s \theta = 25 \cdot n \cdot 3\theta \cdot \log 2\theta$
(b) 25;-30 w520=w520
$\mathfrak{D} \cos 2\theta = \mathfrak{D}  \mathfrak{D}  \sin 3\theta = \frac{1}{2}$
20=90°0 + 270° (30 = 30° ± 3600°
20=90°0r270° 0R (30 = 30° ± 3600° \$ =45°0r135°   30 = 150° ± 3600°
N
$0R \begin{cases} \theta = 10^{\circ} \pm 120^{\circ} \\ \theta = 50^{\circ} \pm 120^{\circ} \end{cases}$
= 0°, 45°, 50°, 130°, 170°.
135°
/ 5

- 18. In this question, we signify that a number is written in base n by using the subscript n at the right end of the number. For example,  $243_6$  is a number written in base 6.
  - (a) Write the number 2436 in base 7.
  - (b) If  $23_n \times 14_n = 344_n$  find the value of n.
  - (c) Show that there are no possible values of n satisfying  $34_n \times 135_n = 5152_n$ .

(a) 
$$2 \cdot 6^{2} + 4 \cdot 6 + 3 = 72 + 24 + 3 = 99$$
 $99 - 49 \times 2 = 1$ 
 $\therefore 243_{6} = 20|_{7}$ 

(b)  $(2n+3)(n+4) = (3n^{2} + 4n+4)$ 
 $= 2n^{2} + 8n + 3n + 12$ 
 $= 2n^{2} + 11n + 12$ 
 $\therefore n^{2} - 7n - 8 = 9$ 
 $(n-8)(n+1) \ge 0$ 
 $\therefore n = 4 \text{ or } 8 \quad (n=-1 \text{ inadmissible})$ 

(b)  $(3n+4)(n^{2} + 3n + 5)$ 
 $= 3n^{3} + 9n^{2} + 15n + 4n^{2} + 12n + 20$ 
 $\Rightarrow if it equals to 5152_{n} = 5n^{2} + n^{2} + 5n + 12$ 

then  $2n^{3} - 12n^{2} - 22n - 18 = 0$ 
 $n^{3} - 6n^{2} - 11n - 9 = 0$ 
 $n^{3} - 6n^{2} - 11n - 9 = 0$ 
 $n^{3} - 6n^{2} - 11n - 9 = 0$ 
 $n^{3} + 13n^{2} + 23n^{2} + 13n^{2} +$ 

none of them satisfy the equation.

so there are no possible values of n satisfying 34n x 135n = S152n





20. The first term and common ratio of the geometric sequence $u_1, u_2, u_3, \ldots$ are positive integration.	ers.
If $\log_8 u_1 + \log_8 u_2 + \cdots + \log_8 u_{12} = 2018$ find the minimum possible value of $u_1$ .	
$u_1 = a$ $u_2 = ar$ $u_3 = ar^2$ $u_{12} = ar''$	
logg Uit + logg Uiz = 2018	
= 1098 a+ 1098 ar+ + log8 ar" = 2013	
12 logs a + (1+2++11) logs r= 2018	
= 12 logs a + 66 logs r = 2018	
logg a ¹² r66 = 2018	
= 2°54	
U, = Q => U, min = Q min => T max	
6.54=66=9148	
$= r_{\text{max}} = 2^{91}$	
$a = 2^{\frac{48}{12}} = 2^4 = 16$	
- V, min = 16	
	*** *:*
/ 5	

*21. Consider the expression $\cos 70^{\circ} (2\cos 40^{\circ} + 1)$ .
(a) Show that this expression equals $\cos 30^{\circ}$ .
(b) Hence show that $x = \cos 70^{\circ}$ is a solution of the equation $6x - 8x^3 = \sqrt{3}$ .
(a) cos30 = cos(70-40) = cos70 cos40 + (in70 sin40
Correction
(a) cos70cos40+ cos70cos40 + 5:-70 5:-40 + 5:-70 sin40+ cos70
= cos(70+40)+ cos(70-40)+cos70
= cos 110 + cos 30 - cos 110
= 6530
(b) 6 0570 - 8 05370 = 200570 (200540+1)
3 - 4 cos270= 4054044 200540+1
3-2(2005270-1)-2= 20540+1
1-265140 = 260540+1
1+ 2 6, 40 = 2003 40+1
<i>y</i>