Opgave 10.1

Find koefficinterne for et FIR-filter med båndpaskarakteristik, så $f_{a_1} = 1,5$ kHz og $f_{a_2} = 2,5$ kHz. Filtret skal have en samplefrekvens på 8 kHz og en M-værdi på 22 (udregn de første 3 filterkoefficienter i hånden, og regn de resterende ved brug af lommeregner/MATLAB). Analyser filteret via

- Tegn Bode plot for filteret.
- Simuler filteret i Simulink ved at påtrykke forskellige indgangssignaler med frekvenser på 500 Hz, 1 kHz, 3,5 kHz. Stemmer responset overens med Bode plot? (Benyt 1sim i MATLAB til simulering)

_	· · · · · · · · · · · · · · · · · · ·				
	Filtertype	c_0	$c_m = c_{-m}$	a_i	
	Lavpas	$2Tf_a$	$\frac{1}{m\pi}\sin(2\pi mTf_a)$	c_{M-i}	
	Højpas	$1-2Tf_a$	$\frac{1}{m\pi}(\sin(m\pi) - \sin(2\pi mT f_a))$	c_{M-i}	
	Båndpas	$2T(f_{a_2} - f_{a_1})$	$\frac{1}{m\pi}(\sin(2\pi mTf_{a_2}) - \sin(2\pi mTf_{a_1}))$	c_{M-i}	
	Båndstop	$1 - 2T(f_{a_2} - f_{a_1})$	$\frac{1}{m\pi}(\sin(m\pi) + \sin(2\pi mTf_{a_1}) - \sin(2\pi mTf_{a_2}))$	c_{M-i}	

$$M=ZZ$$
 $f_{az}=8000 Hz$ $f_{az}=2,5 \mu Hz$, $f_{ai}=1,5 \mu Hz$

$$a_{22} = c_0 = 2 \frac{1}{8000} (2500 - 1500) = 0.25$$

$$a_2 = c_{20} = c_{-20} = \frac{1}{22\pi} \left(\sin(2\pi \cdot 20 \cdot \frac{1}{6000} \cdot 2500) - 3'_{10}(2\pi \cdot 20 \cdot \frac{1}{8000} \cdot 1600) \right) = 0.05183$$

a _{li} ?	$C_0 = O_1 25$	
a _l =	0	
G ₂₀ =	-0.2251	
a ₁₉₌	0.0000	
a ₁₈ =	0.1592	
a ₁₇ 2	-0.0000	
a _{lb} =	-0.0750	
9 15 =	-0.0000	
Q14 =	-0.0000	
a ₁₃ =	-0.0000	
GIZ =	0.0450	
Q11=	0.0000	
a ₁₀ =	-0.0531	
$a_q =$	0.0000	
$\alpha_{\mathcal{C}}=$	0.0322	
A7 =	0.0000	
$a_b =$	0.0000	
$a_{s} =$	0.0000	
ay =	-0.0250	
$a_z =$	-0.0000	
$q_{\lambda} =$	0.0318	
$a_l =$	-0.0000	
Q _Q =	-0.0205	