# Luz, Cor, Sistema Visual Humano e Dispositivos de Saída

Março/2011



#### Introdução

- Computação Gráfica sintetiza IMAGENS para serem vistas por um observador humano
- O que é uma IMAGEM?



### Imagem (definição 1)



# Imagem (definição 2)

Uma matriz de valores dentro do computador



One Picture Element - Pixel



#### **Problemas Associados**

- Como representar a informação luminosa dentro do computador?
  - Processo de percepção humana de cor e luz
  - Tradução da representação interna num padrão de emissão de luz

5



#### **Problemas Associados**

Quero uma camiseta AZUL!







### O que é Cor?

- Sensação visual produzida pelos diferentes comprimentos de onda atingindo o olho humano
- Uma cor "pura" pode ser definida pelo seu comprimento de onda, ex:
  - Vermelho:700nm
  - Violeta: 400nm





#### Fontes de Luz

- Luz é uma forma de energia
- Energia é emitida quando os elétrons trocam de um nível de energia para outro com menos energia
- Movimento dos elétrons para níveis + altos provocado por:
  - Calor (lâmpadas incandescentes)
  - Descargas Elétricas

leva os elétrons a voltarem aos níveis mais baixos, liberando energia.

9



#### Caracterização de Fontes de Luz

Distribuição Espectral
 Quais os comprimentos
 de onda emitidos pela
 fonte de luz









Fluorescente GE (SPX50)





Luz incandescente

11



### Tipos de Fontes de Luz

 Pontuais – emitem luz igualmente em todas as direções (idealização)



 Direcionais – raios emitidos todos na mesma direção (ponto no infinito) Ex: Sol





#### Tipos de Fontes de Luz

- Spot emitem luz em direções diferentes Spot Fall-Off Spot Direction
- Área Emissão ocupa uma superfície 2D







13

### Caracterização dos Objetos

Reflexão dos Objetos









# Flores



15



# Pérolas





#### Interação entre Fonte e Objetos

http://www.gelighting.com/na/business lighting/education resources/learn about light/color lamp.htm





 $\frac{http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/exploratories/applets/spectrum/reflection\_java\_browser.html}{}$ 

17



#### Fluorescência e Fosforescência

- Tempo que leva para os elétrons fazerem a transição
- Fluorescentes: 10<sup>-6</sup> segunds
- Fosforescentes: 10<sup>-3</sup> seg até horas e dias
- Qual material deveria ser utilizado em monitores de vídeo e televisores?



#### Fósforos

- Fósforos são materiais utilizados em TVs e Monitores
- Exemplo
  - Fósforo X
  - Comprimento de onda: 627nm
  - Cor: vermelha
  - Persistência: 900 x 10<sup>-6</sup> segundos
  - Uso: TVs a cores

http://www.lgchem.com/lgcci.homepi.prod.RetrieveElectronicDetail.laf?classId=100003&prodId=01140200001&disMenu=2

19



#### Decaimento em Energia



Fósforo DP 104



# Exemplos de Fósforos

Standard phosphor types

odit

#### Standard phosphor types<sup>[20]</sup>

| Standard phosphor types |                                                                   |                              |              |                       |             |                 |                                                                                                                            |
|-------------------------|-------------------------------------------------------------------|------------------------------|--------------|-----------------------|-------------|-----------------|----------------------------------------------------------------------------------------------------------------------------|
| Phosphor                | Composition M                                                     | Color M                      | Wavelength ⋈ | Peak<br>width ⋈       | Persistence | Usage M         | Notes <b>M</b>                                                                                                             |
| P1, GJ                  | Zn <sub>2</sub> SiO <sub>4</sub> :Mn (Willemite)                  | Green                        | 528 nm       | 40 nm <sup>[21]</sup> | 1-100ms     | CRT, Lamp       | Oscilloscopes                                                                                                              |
| P4                      | ZnS:Ag+(Zn,Cd)S:Ag                                                | White                        | -            | -                     | Short       | CRT             | Black and white TV CRTs and display tubes.                                                                                 |
| P4<br>(Cd-free)         | ZnS:Ag+ZnS:Cu+Y <sub>2</sub> O <sub>2</sub> S:Eu                  | White                        | -            | -                     | Short       | CRT             | Black and white TV CRTs and display tubes, Cd free.                                                                        |
| P4, GE                  | ZnO:Zn                                                            | Green                        | 505 nm       | -                     | 1-10µs      | VFD             | VFDs                                                                                                                       |
| P7                      | ?                                                                 | Blue with Yellow persistance |              | -                     | Long        | CRT             | Radar PPI, old EKG monitors                                                                                                |
| P10                     | ксі                                                               | green-absorbing scotophor    | -            | -                     | Long        | Dark-trace CRTs | Radar screens; turns from translucent<br>white to dark magenta, stays changed until<br>erased by heating or infrared light |
| P11, BE                 | ZnS:Ag,Cl or ZnS:Zn                                               | Blue                         | 460 nm       | -                     | 0.01-1 ms   | CRT, VFD        | Display tubes and VFDs                                                                                                     |
| P19, LF                 | (KF,MgF <sub>2</sub> ):Mn                                         | Orange-Yellow                | 590 nm       | -                     | Long        | CRT             | Radar screens                                                                                                              |
| P20, KA                 | (Zn,Cd)S:Ag or (Zn,Cd)S:Cu                                        | Yellow-green                 | -            | -                     | 1-100 ms    | CRT             | Display tubes                                                                                                              |
| P22R                    | Y <sub>2</sub> O <sub>2</sub> S:Eu+Fe <sub>2</sub> O <sub>3</sub> | Red                          | -            | -                     | Short       | CRT             | Red phosphor for TV screens                                                                                                |
| P22G                    | ZnS:Cu,Al                                                         | Green                        | -            | -                     | Short       | CRT             | Green phosphor for TV screens                                                                                              |
| P22B                    | ZnS:Ag+Co-on-Al <sub>2</sub> O <sub>3</sub>                       | Blue                         | -            | -                     | Short       | CRT             | Blue phosphor for TV screens                                                                                               |
| P26, LC                 | (KF,MgF_):Mn                                                      | Orange                       | 595 nm       | -                     | Long        | CRT             | Radar screens                                                                                                              |

21



### Visão Humana









- Retina: parte sensível à luz (200° de cobertura)
- Íris: regula a quantidade de luz que entra no olho
- Lente permite foco
- Fovea: melhor acuidade na retina



- Luz penetra no olho e atinge a retina
- Retina contém células fotosensíveis
  - Enviam sinais elétricos para o cérebro
- 2 tipos de células
  - Rods (Bastões)
  - Cones



#### Células na Retina

- RODS
  - 120 milhões
  - Não detectam cor (intensidade de luz)
  - Muito sensíveis
  - Maior concentração na periferia da retina

#### CONES

- Responsáveis pela visão colorida
- 6 a 7 milhões
- 3 tipos com receptores químicos
- Comprimentos de onda grandes (vermelho), médios (verde) e curtos (azul)
- Cones curtos MENOS receptivos do que os outros dois

UFRG9

25

#### Absorption Spectra of Human Visual Pigments





#### Distribuição de Bastões e Cones





27



#### Teoria de Cor Tricromática

- 3 receptores de cores primárias no olho
- Quantas cores vemos?
- Condução de experimentos para determinar quantas cores nós vemos
- Expressão de todas as cores como combinações de cores primárias



#### **Experimentos CIE 1931**

- CIE Commision Internationale de L'Eclairage
- 3 primárias

Blue: 435.8 nmGreen: 546.1nm

- Red: 700nm

Espectro

360 – 830nm acada 5nm

C = R + G + B





29

#### Experimento





# Experimento





R? G? B?

31



# Experimento

Cor 2



e assim por diante...



#### Funções de Reconstrução de Cor RGB



# Funções de Reconstrução de Cor XYZ



Transformação das funções RGB para eliminar o R negativo e fazer Y igual a distribuição de intensidade luminosa (Rhodospin – slide 25)



# CIE Diagrama de Cromaticidades

$$x = \frac{X}{X+Y+Z}$$
$$y = \frac{Y}{X+Y+Z}$$





#### Que cor é esta camiseta?





#### Propriedades do Diagrama de Cromaticidade

- Cores puras (monocromáticas)
- Cores padrão (exemplo x=0.31 y = 0.316)
- Comprimento de onda dominante
- Cor complementar



<u>⊌</u> UFRGS

37

#### Gamuts de Cor





Espaço de cores "exibíveis" por um dispositivo



# Comparação entre Gamuts

• Qual é melhor? Porque?

Monitor Dell HDTV R: (0.625 0.34) R: (0.64 0.33)

G: (0.31 0.595) G: (0.3 0.6) B: (0.155 0.07) B: (0.15 0.06)



39



#### Modelos de Cor

- RGB
- CMY
- HSV/HLS



#### Modelo de Cor RGB - Aditivo

#### "Adicionar" Luz





41



#### Modelo de Cor CMY- Subtrativo



"Remover" Luz Utilizado em impressoras



Original painting



**CMYK Components** 

#### Dificuldade com modelo RGB

Qual a especificação RGB deste cor?



R=136 G=71 B=79

Não é intuitivo ou fácil de especificar!



43

44

#### Modelo de Cor





### Tecnologia de output





- (Anos 60) Vector systems
  - Processador de display (I/O) conectado na CPU
  - Especificação em alto-nível (início linha, final linha)

<u>()</u> UFRGS

45

### Tecnologia de output

- (Anos 70) Raster systems
  - Tecnologia baseada em TV (tecnologia raster onde linhas são traçadas horizontalmente)





### Componentes

- Frame-Buffer
- Conversor DAC
- Monitor de Vídeo
  - CRT
  - Controlador de Vídeo

47

#### Tubo de Raios Catódicos

(CRT - Cathode Ray Tube)





# **Shadow Mask**



49



# Pitch/Triad





#### **Monitores CRT**





51



#### Conversão FB/Monitor

- Diretamente
  - Cada informação de cor do pixel é utilizada diretamente para ativar os fósforos no monitor
  - Por exemplo: r=0.5, g=0.9, b=0.05
  - Canhão Red com 50% da capacidade
  - Green com 90%
  - Blue com 5%



#### Conversão FB/Monitor

Indiretamente: Look-Up Table (LUT)







#### Cor em OpenGL

- glColor3
- glColor4
- Exemplos

```
- glColor3f(0.5, 0.76, 0.55);
- glColor4ub( 0, 255, 0, 255);
```

55



#### Fontes de Luz em OpenGL

```
glEnable(GL_LIGHTING);//habilita o uso de iluminação

void glLightfv(GLenum light, GLenum pname, const
GLfloat * params);

Light — no mínimo 8 fontes de luz com nomes GL_LIGHTO,
GL_LIGHT1, ...

Pname — Parâmetro a ser controlado

GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR,
GL_POSITION,
GL_SPOT_CUTOFF, GL_SPOT_DIRECTION, GL_SPOT_EXPONENT,
GL_CONSTANT_ATTENUATION,
GL_LINEAR_ATTENUATION
GL_QUADRATIC_ATTENUATION
```



#### Tarefa 1

- Pesquisar técnicas de computação gráfica do interesse de cada um
  - Busca por área de aplicação
  - Exemplo: computer graphics + visual effects, computer graphics + physical simulation
  - Upload pelo moodle até 2a. feira próxima

