Transformers

Natural Language Processing

University of Maryland

Induction Head Example

Adapted from Michael Hahn

Vocabulary and Embeddings

Vocabulary

!, a, b, c, d, e

Vocabulary and Embeddings

Vocabulary

```
!, a, b, c, d, e
```

One-hot Embeddings

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Vocabulary and Embeddings

Vocabulary

!, a, b, c, d, e

Sequence + Positional Embeddings

- ! [1 0 0 0 0 0 1 0 0 0 0 0]
- **a**[0 1 0 0 0 0 0 1 0 0 0]
- **b** [0 0 1 0 0 0 0 0 1 0 0 0]
- **a** [0 1 0 0 0 0 0 0 0 1 0 0]
- **c** [0 0 0 1 0 0 0 0 0 0 1 0]
- **b** [0 0 1 0 0 0 0 0 0 0 0 1]

Simplified Model

- One hot encoding of tokens
- Using previous layer input as values for key-value lookup
- One hot positional encoding (not sinusoidal)
- No feed forward after key-value

Attention and Layer Equations

Encoding of token i at layer I

$$Y_{i}^{(l)} = \sum_{j=1}^{i} \hat{a}_{i,j} \underbrace{\mathbf{V}_{l}}_{d \times d} Y_{j}^{(l-1)} + \underbrace{\mathbf{W}_{l}}_{d \times d} Y_{i}^{(l-1)}$$
(1)

Attention Logits (scalar)

$$a_{i,j}^{(l)} = \underbrace{Y_i^{(l-1)}}_{1 \times d} \underbrace{A_l}_{d \times d} \underbrace{Y_j^{(l-1)}}_{d \times 1} \quad (2)$$

Masked Attention (if $i \ge j$, 0 otherwise)

$$\hat{a}_{i,j}^{(I)} = \frac{\exp\left(a_{i,j}^{(I)}\right)}{\sum_{s} \exp\left(a_{i,s}^{(I)}\right)} \tag{3}$$

Layer 1: Attend to Previous Position

Attention Matrix A_1 :

$$A_{1} = \begin{pmatrix} \mathbf{0} & \mathbf{0} & & \\ & -100 & -100 & -100 & \cdots & -100 \\ & 100 & -100 & -100 & \cdots & -100 \\ \mathbf{0} & -100 & 100 & -100 & \cdots & -100 \\ & \vdots & \vdots & \vdots & \ddots & \vdots \\ & -100 & -100 & \cdots & 100 & -100 \end{pmatrix}$$

Value Matrix V_1 :

$$V_{1} = \begin{pmatrix} 0_{d/2 \times d/2} & 0_{d/2 \times d/2} \\ I_{d/2} & 0_{d/2 \times d/2} \end{pmatrix}$$

Passthrough Matrix W_1 :

$$W_1 = \begin{pmatrix} I_{d/2} & 0_{d/2 \times d/2} \\ 0_{d/2 \times d/2} & 0_{d/2 \times d/2} \end{pmatrix}$$

Layer 2: Induction Head

Attention Matrix A_2 :

$$A_{2} = \begin{pmatrix} 0_{d/2 \times d/2} & 100 \cdot I_{d/2} \\ 0_{d/2 \times d/2} & 0_{d/2 \times d/2} \end{pmatrix}$$

Value Matrix V_2 :

$$V_2 = \begin{pmatrix} 100 \cdot I_{d/2} & 0_{d/2 \times d/2} \\ 0_{d/2 \times d/2} & 0_{d/2 \times d/2} \end{pmatrix}$$

Passthrough Matrix W_2 :

$$W_2 = 0_{d \times d}$$

Let's do a walkthrough...

- Matrices are getting big enough that I won't force you to do the math yourself
- I'll show you the outputs, you need to tell the story of conceptually of what they're doing

Layer 1: Attention Logits

$$a_{i,j}^{(1)} = \left(\underbrace{Y_i^{(1-1)}}_{1 \times d}\right)^{\top} \underbrace{A_1}_{d \times d} \underbrace{Y_j^{(1-1)}}_{d \times 1}$$
(4)

Layer 1: Attention Logits

$$a_{i,j}^{(1)} = \left(\underbrace{Y_i^{(1-1)}}_{1 \times d}\right)^{\top} \underbrace{A_1}_{d \times d} \underbrace{Y_j^{(1-1)}}_{d \times 1} \tag{4}$$

	!	а	b	а	С	b
!	-100.0	-100.0	-100.0	-100.0	-100.0	-100.0
а	100.0	-100.0	-100.0	-100.0	-100.0	-100.0
b	-100.0	100.0	-100.0	-100.0	-100.0	-100.0
а	-100.0	-100.0	100.0	-100.0	-100.0	-100.0
С	-100.0	-100.0	-100.0	100.0	-100.0	-100.0
b	-100.0	-100.0	-100.0	-100.0	100.0	-100.0

Layer 1: Masked Attention

Masked Attention (if $i \ge j$, 0 otherwise)

$$\hat{a}_{i,j}^{(1)} = \frac{\exp(a_{i,j}^{(1)})}{\sum_{s} \exp(a_{i,s}^{(1)})}$$
 (5)

Masked + Normalized Attention Weights:

	!	а	b	а	С	b
!	1.0	0.0	0.0	0.0	0.0	0.0
а	1.0	0.0	0.0	0.0	0.0	0.0
b	0.0	1.0	0.0	0.0	0.0	0.0
а	0.0	0.0	1.0	0.0	0.0	0.0
С	0.0	0.0	0.0 0.0 0.0 1.0 0.0	1.0	0.0	0.0
b	0.0	0.0	0.0	0.0	1.0	0.0

Layer 1: Layer Output

$$Y_{i}^{(1)} = \sum_{j=1}^{i} \hat{a}_{i,j} \underbrace{\mathbf{V}_{1}}_{d \times d} Y_{j}^{(1-1)} + \underbrace{\mathbf{W}_{1}}_{d \times d} Y_{i}^{(1-1)}$$
(6)

Updated Representation $Y^{(1)}$:

	E_0	E_1	E_2	E_3	E_4	E_5	P_0	P_1	P_2	P_3	P_4	P_5
!	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0											
b	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
а	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0
С	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
b	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0

What does Layer 1 Actually do?

· Attention looks at

What does Layer 1 Actually do?

Attention looks at previous token

$$\hat{\mathbf{a}}_{i,j}^{(1)} = \begin{cases} \approx 1 & \text{if } i = j + 1 \text{ or } i = j = 0\\ \approx 0 & \text{otherwise} \end{cases}$$
 (7)

Output of layer captures embedding

$$(Y_i^{(1)})^{\top} = \underbrace{\left[\underbrace{E[x_i][0], \dots E[x_i][d/2]}_{\text{current token}}, \underbrace{E[x_i][0] \dots E[x_i][d/2]}_{\text{previous token}}\right]}_{\text{(8)}}$$

Layer 2: Attention Logits

$$a_{i,j}^{(2)} = \left(\underbrace{Y_i^{(2-1)}}_{1 \times d}\right)^{\top} \underbrace{A_2}_{d \times d} \underbrace{Y_j^{(2-1)}}_{d \times 1}$$
(9)

Layer 2: Attention Logits

$$a_{i,j}^{(2)} = \left(\underbrace{Y_i^{(2-1)}}_{1 \times d}\right)^{\top} \underbrace{A_2}_{d \times d} \underbrace{Y_j^{(2-1)}}_{d \times 1}$$
(9)

	!	а	b	а	С	b
!	0.0	100.0	0.0	0.0	0.0	0.0
		0.0				0.0
b	0.0	0.0	0.0	100.0	0.0	0.0
а	0.0	0.0	100.0	0.0	100.0	0.0
С	0.0	0.0	0.0	0.0	0.0	100.0
b	0.0	0.0	0.0	100.0	0.0	0.0

Layer 2: Masked Attention

Masked Attention (if $i \ge j$, 0 otherwise)

$$\hat{a}_{i,j}^{(2)} = \frac{\exp(a_{i,j}^{(2)})}{\sum_{s} \exp(a_{i,s}^{(2)})}$$
(10)

Masked + Normalized Attention Weights:

	!	а	b	а	С	b
!	1.0	0.0	0.0	0.0	0.0	0.0
а	0.0	0.0	0.0	0.0	0.0	0.0
b	0.0	0.0	0.0	0.0	0.0	0.0
а	0.0	0.0	1.0	0.0	0.0	0.0
С	1.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0
b	0.0	0.0	0.0	1.0	0.0	0.0

Layer 2: Layer Output

$$Y_{i}^{(2)} = \sum_{j=1}^{i} \hat{a}_{i,j} \underbrace{\mathbf{V}_{2}}_{d \times d} Y_{j}^{(2-1)} + \underbrace{\mathbf{W}_{2}}_{d \times d} Y_{i}^{(2-1)}$$
(11)

Updated Representation $Y^{(2)}$:

	E_0	E_1	E_2	E_3	E_4	E_5	P_0	P_1	P_2	P_3	P_4	P_5
	0.0											
а	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
b	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
а	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
С	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
b	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

What does Layer 2 Actually do?

• Unmasked attention $a_{i,j}^{(2)}$ checks

What does Layer 2 Actually do?

- Unmasked attention $a_{i,j}^{(2)}$ checks if token i is the same as j-1 token
- Before it gets zeroed out, by V_2 , $\mathbf{Y}_i^{(2)}$

What does Layer 2 Actually do?

- Unmasked attention $a_{i,j}^{(2)}$ checks if token i is the same as j-1 token
- Before it gets zeroed out, by V_2 , $\mathbf{Y}_i^{(2)}$

$$= \begin{cases} \mathbf{V}_2 \left[\underbrace{E[x_{i+1}][0], \dots E[x_{i+1}][d/2]}_{\text{current token}}, \underbrace{E[x_i][0] \dots E[x_i][d/2]}_{\text{previous token}}\right]^\top & x_i \text{ seen} \\ \vec{0} & \text{otherwise} \end{cases}$$

Big picture

- Shows mechanics of how attention can directly copy previous tokens in history
- More interesting: copying for similar words, copying for similar contexts
- Even more interesting: copying with patterns (e.g., skipping n tokens to make ends of poetry rhyme)