What is claimed is:

- 1. A lead-free and cadmium-free dielectric paste comprising a solids portion wherein the solids portion comprises, prior to firing:
 - a. about 41.5 wt% to about 48.5 wt% SrO,
 - b. about 47 wt% to about 55 wt% ZrO₂,
 - c. about 0.5 wt% to about 2.5 wt% TiO₂,
 - d. about 0.05 wt% to about 1.5 wt% MgO, and
 - e. about 0.05 wt% to about 3 wt% B₂O₃.
- 2. A method of forming an electronic component comprising:
 - a. applying the dielectric paste of claim 1 to a substrate and
 - b. firing the substrate at a temperature sufficient to sinter the dielectric material.
- 3. The method of claim 2 wherein the firing is conducted at a temperature of 1200°C-1350°C.
- 4. The method of claim 2 wherein the firing is conducted in an atmosphere having a partial oxygen pressure of about 10^{-12} atm to about 10^{-8} atm.
- 5. A multilayer ceramic chip capacitor comprising a fired collection of:
 - a. alternately stacked layers of the dielectric material of claim 1 and
 - b. layers of an internal electrode material comprising a transition metal other than Ag, Au, Pd, or Pt.
- 6. The multilayer ceramic chip capacitor of claim 5 wherein the internal electrode material comprises nickel.
- 7. A method of forming an electronic component comprising:
 - a. alternately applying layers of
 - i. an oxide-containing dielectric material comprising the paste of claim 1 and
 - ii. a metal-containing electrode paste onto
 - iii. a substrate to form a laminar stack,
 - b. firing the substrate at a temperature sufficient to sinter the dielectric material,
 - c. cutting the laminar stack to a predetermined shape,
 - d. separating the cut stack from the substrate, and
 - e. firing the stack to sinter the metal in the electrode and fuse the oxides in the dielectric material, wherein the internal electrode and the dielectric material each have a layer thickness.
- 8. The method of claim 7 wherein the layers of dielectric material, after firing, have a thickness of about 1 microns to about 50 microns.

- 9. The method of claim 7 wherein the firing is conducted at a temperature of 1200°C to about 1325°C
- 10. The method of claim 7 wherein the firing is conducted in an atmosphere having a partial oxygen pressure of about 10⁻¹² atm to about 10⁻⁸ atm.
- 11. The method of claim 7 wherein the metal-containing electrode paste comprises nickel.
- 12. A lead-free and cadmium-free dielectric paste comprising a solids portion wherein the solids portion comprises, prior to firing:
 - a. about 44.2 wt% to about 45.6 wt% SrO,
 - b. about 50.2 wt% to about 51.8 wt% ZrO₂,
 - c. about 0.1 wt% to about 0.4 wt% MgO,
 - d. about 1.5 wt% to about 1.6 wt% TiO₂,
 - e. about 0.3 to about 1.2 wt% Al₂O₃,
 - f. about 0.5 to about 2.2 wt% SiO2, and
 - g. up to about 0.3 wt% CaO.
- 13. A method of forming an electronic component comprising:
 - a. applying the dielectric paste of claim 12 to a substrate and
 - b. firing the substrate at a temperature sufficient to sinter the dielectric material.
- 14. The method of claim 12 wherein the firing is conducted at a temperature of 1200°C-1350°C, and in an atmosphere having a partial oxygen pressure of about 10⁻¹² atm to about 10⁻⁸ atm.
- 15. A method of forming an electronic component comprising:
 - a. applying particles of a calcined dielectric material to a substrate and
 - b. firing the substrate at a temperature sufficient to sinter the dielectric material.
 - c. wherein the dielectric material comprises, prior to firing, a composition selected from the group consisting of composition 1, composition 2, composition 3, composition 4, wherein prior to calcining,
 - i. composition 1 comprises
 - 1. about 1 wt% to about 7 wt% SrTiO₃,
 - 2. about 89 wt% to about 99 wt% SrZrO₃,
 - 3. about 0.05 wt% to about 3 wt% B_2O_3 , and
 - 4. about 0.05 wt% to about 1.5 wt% MgO,
 - ii. composition 2 comprises
 - 1. about 52 wt% to about 56 wt% SrCO₃,
 - 2. about 41 wt% to about 45 wt% ZrO₂,
 - 3. about 1 wt% to about 2 wt% TiO₂,
 - 4. about 0.05 wt% to about 3 wt% B_2O_3 , and
 - 5. about 0.05 wt% to about 1.5 wt% MgO,
 - iii. composition 3 comprises

- 1. about 50 wt% to about 58 wt% SrCO₃,
- 2. about 40 wt% to about 46 wt% ZrO₂,
- 3. about 0.5 wt% to about 3 wt% TiO₂,
- 4. about 0.05 to about 1 wt% MgO,
- 5. about 0.05 wt% to about 2 wt% Al₂O₃,
- 6. about 0.05 wt% to about 3 wt% SiO₂,
- 7. CaO, provided the amount does not exceed about 1 wt%, and
- 8. SrO, provided the amount does not exceed about 0.5 wt%, and
- iv. composition 4 comprises
 - 1. about 2 wt% to about 5 wt% SrTiO₃,
 - 2. about 90 wt% to about 98 wt% SrZrO₃,
 - 3. about 0.05 to about 2 wt% MgO,
 - 4. about 0.05 wt% to about 2.5 wt% Al₂O₃,
 - 5. about 0.05 wt% to about 3.5 wt% SiO_2 ,
 - 6. SrO, provided the amount does not exceed about 1 wt%, and
 - 7. CaO, provided the amount does not exceed about 1 wt%.
- 16. The method of claim 15 wherein the firing is conducted at a temperature of 1200°C-1350°C.
- 17. The method of claim 15 wherein the firing is conducted in an atmosphere having a partial oxygen pressure of about 10^{-12} atm to about 10^{-8} atm.
- 18. The method of claim 15 wherein the firing is conducted at a temperature of 1200°C to about 1325°C.
- 19. The method of claim 15 wherein the dielectric material comprises, prior to firing, composition 1.
- 20. The method of claim 15 wherein the dielectric material comprises, prior to firing, composition 3.