PERTEMUAN 9

EKUIVALENSI NON – DETERMINISTIC FINITE AUTOMATA DENGAN – MOVE KE NON DETERMINISTIC FINITE AUTOMATA TANPA - MOVE

A. TUJUAN PEMBELAJARAN

Pada bab ini akan dibahas secara menyeluruh mengenai Non deterministic Finite State Automata (NFA) dengan — Move bagaimana keunikan khas nya, serta seperti apakah untai string mampu diterima oleh NFA — Move. Setelah mengikuti perkuliahan ini mahasiswa diharapkan mampu :

Menganalisa Ekuivalensi Non – Deterministic Finite Automata dengan – Move ke Non Deterministic Finite Automata tanpa - Move

B. URAIAN MATERI

Ekuivalensi Non – Deterministic Finite Automata dengan – Move ke Non Deterministic Finite Automata tanpa - Move

Dari sebuah Non-Deterministic Finite Automata dengan – move dapat kita peroleh Non Deterministic Finite Automata tanpa – move yang ekuivalen. Contoh pertama, bila kita punya NFA – move, seperti pada gambar di bawah ini.

Dari NFA – move di atas, akan dibuat NFA yang ekuivalen

1. Buatlah tabel transisi dari NFA – move di atas.

δ	a	b
\mathbf{q}_0	Ø	Ø
\mathbf{q}_1	$\{q_2\}$	$\{q_3\}$
\mathbf{q}_2	Ø	Ø
\mathbf{q}_3	Ø	Ø

- 2. Tentukan -closure untuk setiap state
 - Closure (q0) = { q0, q1 }
 - Closure (q1) = {q1}
 - Closure (q2) = { q2 }
 - Closure (q3) = { q3 }
- Carilah setiap fungsi transisi hasil dari pengubahan NFA move ke NFA tanpa move. Fungsi transisi itu ditandai dengan simbol '

$$(q0, a) = _{cl}((_{cl}(q0), a))$$

$$= _{cl}(q2)$$

 $= \{ q2 \}$

$$'(q0, b) = _{cl}((_{cl}(q0), b))$$

$$=$$
 _cl (q3)

$$'(q1, a) = _cl((_cl(q1),a))$$

$$=$$
 _cl (q2)

$$= \{ q2 \}$$

$$'(q1,b) = _cl((_cl(q1),b))$$

$$=$$
 _cl (q2)

$$= \{ q \}$$
' (q2, a) = _cl ((_cl(q2),a))
$$= _cl (\emptyset)$$

$$= \emptyset$$
' (q2, b) = _cl ((_cl(q2),b))
$$= _cl (\emptyset)$$

$$= \emptyset$$
' (q3, a) = _cl ((_cl(q3),a))
$$= _cl (\emptyset)$$

$$= \emptyset$$
' (q3, b) = _cl ((_cl(q3),b))
$$= _cl (\emptyset)$$

$$= \emptyset$$

4. Buatlah tabel transisi dari fungsi transisi yang telah dibuat pada langkah sebelumnya.

δ	a	b
q_0	$\{q_2\}$	$\{q_3\}$
\mathbf{q}_1	{q ₂ }	$\{q_3\}$
q_2	Ø	Ø
q_3	Ø	Ø

5. Kemudian, tentukanlah himpunan state akhir untuk NFA tanpa – move ini. Himpunan state akhir semula adalah {q3}. Karena tidak ada state lain yang – closure – nya memuat q3, maka himpunan state akhir sekarang tetap {q3}. Sehingga diperoleh diagram transisi sebagai berikut.

Contoh Kedua:

1. Buatlah tabel transisi dari NFA – move di atas.

δ	a	b
\mathbf{q}_0	{ q ₀ }	Ø
\mathbf{q}_1	Ø	$\{q_2\}$
\mathbf{q}_2	Ø	{q ₂ }

2. Tentukan -closure untuk setiap state

3. Carilah setiap fungsi transisi hasil dari pengubahan NFA — move ke NFA tanpa —move. Fungsi transisi itu ditandai dengan simbol '

4. Buatlah tabel transisi dari fungsi transisi yang telah dibuat pada langkah sebelumnya.

δ	a	b
q_0	$\{q_0, q_1\}$	$\{q_0, q_1, q_2\}$
q ₁	Ø	$\{q_0, q_1, q_2\}$
q_2	$\{ q_0, q_1 \}$	$\{q_0, q_1, q_2\}$

5. Kemudian, tentukanlah himpunan state akhir untuk NFA tanpa — move ini. Himpunan state akhir semula adalah $\{q0\}$. Kita lihat $_cl\ (q2) = \{\ q0,\ q1\ ,q2\}$, maka himpunan state akhir sekarang adalah $\{q0,q2\}$. Sehingga diperoleh diagram transisi sebagai berikut.

Contoh Ketiga,

1. Buatlah tabel transisi dari NFA – move di atas.

δ	0
\mathbf{q}_0	$\{q_0\}$
\mathbf{q}_1	Ø

2. Tentukan -closure untuk setiap state

$$-$$
 Closure (q0) = { q0, q1 }

$$-$$
 Closure (q1) = { q1}

3. Carilah setiap fungsi transisi hasil dari pengubahan NFA – move ke NFA tanpa – move. Fungsi transisi itu ditandai dengan simbol '

$$(q0, 0) = _cl((_cl(q0),0))$$

$$= _cl(q0)$$

$$= {q0, q1}$$

$$(q1, 0) = _{cl}((_{cl}(q1) = _{cl}(\emptyset))$$
 $= _{\emptyset}$

4. Buatlah tabel transisi dari fungsi transisi yang telah dibuat pada langkah sebelumnya.

δ	0
q_0	$\{ q_0, q_1 \}$
\mathbf{q}_1	Ø

5. Kemudian, tentukanlah himpunan state akhir untuk NFA tanpa – move ini. Himpunan state akhir semula adalah {q1}. Kita lihat _cl (q0) = { q0, q1 } , maka himpunan state akhir sekarang adalah {q0, q1}. Sehingga diperoleh diagram transisi sebagai berikut.

Contoh Ke empat

Buatlah NFA tanpa - move yang ekuivalen dengan NFA - Move pada gambar berikut ini. $= \{0, 1, 2\}$

1. Buatlah tabel transisi dari NFA – move di atas.

δ	0	1	2
\mathbf{q}_0	$\{q_0\}$	Ø	Ø
\mathbf{q}_1	Ø	$\{q_1\}$	Ø
\mathbf{q}_2	Ø	Ø	{q ₂ }

Tentukan -closure untuk setiap state

$$-$$
 Closure (q0) = { q0, q1, q2}

$$-$$
 Closure (q1) = { q1, q2}

$$-$$
 Closure (q2) = {q2}

$$(q0, 0) = _cl((_cl(q0),0))$$

$$= _cl(q0)$$

$$= { q0, q1, q2}$$

$$(q0, 1) = _cl((_cl(q0), 1))$$

$$= _cl(q1)$$

$$= \{q1, q2\}$$

$$(q1, 0) = _{cl}((_{cl}(q1), 0))$$

$$= _{cl}(\emptyset)$$

$$= { \emptyset }$$

$$(q1, 1) = _{cl}((_{cl}(q1), 1))$$

$$= _{cl}(q1)$$

$$= \{q1, q2\}$$

$$(q1, 2) = _{cl}((_{cl}(q1), 2))$$

$$= _{cl}(q2)$$

$$= \{q2\}$$

$$(q2,0) = _{cl}((_{cl}(q2),0))$$

$$= _{cl}(\emptyset)$$

$$= \{ \emptyset \}$$

$$'(q2, 1) = _{cl}((_{cl}(q2), 1))$$

$$= _{cl}(\emptyset)$$

$$= \{ \emptyset \}$$

$$'(q2, 2) = _{cl}((_{cl}(q2), 2))$$

$$= _{cl}(q2)$$

$$= \{ q2 \}$$

δ	0	1	2
\mathbf{q}_0	$\{q_0, q_1, q_2\}$	$\{q_1, q_2\}$	{ q ₂ }
q_1	Ø	$\{q_1, q_2\}$	{ q ₂ }
q_2	Ø	Ø	{ q ₂ }

Himpunan state akhir adalah {q0, q1, q2 }

C. SOAL LATIHAN 7 DAN TUGAS

Mengumpulkan hasil latihan ekuivalensi di kelas.

D. DAFTAR PUSTAKA

Hopcroft, John. E., etc. 2001. Second edition. Introduction to Automata Theory, Languages, and Computation. US America: Pearson

Martin, John C. 2010. Fourth Edition. Introduction to Language and The Theory of Computation. United State America: McGraw-Hill

Modul Teori bahasa Automata. (<u>www.ibbi.ac.id/ibbiacid/bahan/teori-bahasa-dan-otomata</u>). Diakses pada tanggal 20 November 2015

Santosa, Kussigit. Modul Teori Bahasa Otomata. Universitas Pamulang Fakultas Teknik Program Studi Teknik Informatika. Pamulang