## Social Media & Text Analysis

lecture 8 - Automatic Summarization for Twitter



CSE 5539-0010 Ohio State University

**Instructor: Wei Xu** 

Website: socialmedia-class.org

### Homework #3

- Implementing a simplified word2vec algorithm, including:
  - softmax function
  - neural network basics
  - and word2vec
- Group of 2
- Estimated to release in the 1st week of Nov
- Due in 3~4 weeks

## Summarization





#### **SUMMARY:**

I'm watching true life "I'm addicted to Internet" ... while I'm on mine lol

Okay these girls on **True Life I'm Too Beautiful** are not that pretty

## Summarization

 Given a (or a set) of documents, generate a short summary



Given a (large) set of topically and temporally clustered tweets, select a few representative tweets as the summary.

## Previous Work

| Selected Work          | Size of Input             | Length of Summary     |
|------------------------|---------------------------|-----------------------|
| Wei et al. (2012)      | average 10k tweets        | 10 tweets             |
| Inouye & Kalita (2011) | approximately 1500 tweets | 4 tweets ❖            |
| Rosa et al. (2011)     | average 410 tweets        | 1, 5, 10 tweets       |
| Liu et al. (2011)      | average 1.7k tweets       | about 2 or 3 tweets ★ |
| Takamura et al. (2011) | 2.8k - 5.2k tweets        | 26 - 41 tweets ★      |

Human annotators strongly prefer different numbers of tweets in a summary for different topics.

<sup>★</sup> Used the length of human reference summaries to decide the length of system outputs, which information is not available in practice.

## Research Questions

- What is the perfect length of multi-tweet summary?
- Will IE help summarization on Twitter?
  - noisy text: performance of IE?
  - short context: still need in-depth event analysis?
  - redundant: is word enough?

"A Preliminary Study of Tweet Summarization using Information Extraction" in LASM (2014)

### SumBasic

#### Intuition:

words occurring frequently in the documents occur with higher probability in the human summaries than words occurring less frequently

### SumBasic

 a very simple but strong summarization algorithm [Nenkova and Vanderwende, 2005]

#### Intuition:

words occurring frequently in the documents occur with higher probability in the human summaries than words occurring less frequently

### SumBasic

Step 1: computes the probability of each word w:

$$P(w) = \frac{n(w)}{\sum_{i} w_{i}}$$

• Step 2: computes the salience score of each sentence S:

$$Score(S) = \sum_{w \in S} \frac{P(w)}{|\{w \mid w \in S\}|}$$

- Step 3: pick the highest scored sentence into summary
- Step 4: for each word in sentences chosen at step 3, update their probability:

$$P_{new}(w) = P_{old}(w) \cdot P_{old}(w)$$

Step 5: repeat Step 2~4 until reach desired length of summary

# Varied-length Summary

- For a set of topically clustered tweets, amount of information varies greatly:
  - from very repetitive to very discrete
  - e.g.

album release of a less notable singer vs.

album release of a famous/controversy singer

## Information Extraction (IE)

- Named Entity [Ritter et al. 2011]
- Event Phrases [Ritter et al. 2012]



## Information Extraction (IE)

- Named Entity [Ritter et al. 2011]
- Event Phrases [Ritter et al. 2012]



# System Overflow



Wei Xu, Alan Ritter, Ralph Grishman.

"A Preliminary Study of Tweet Summarization using Information Extraction" in LASM (2014)

# Event Graph





# Event Graph



Wei Xu, Alan Ritter, Ralph Grishman.

"A Preliminary Study of Tweet Summarization using Information Extraction" in LASM (2014)

## Event Graph



# PageRank

- a graph-based ranking algorithm
- a trademark of Google
- Idea: web surfing / random walk
  - The importance of a webpage is defined recursively and depends on the number and importance of all webpages that link to it.
- also used for local graph partitioning

# PageRank

Salience score of nodes:

$$Score(u) = (1-d) + d \times \sum_{v \in Adj(u)} \frac{Score(v)}{|Adj(v)|}$$

adjacent nodes

- directed graph
- iterate towards converge
- initial rank of node does not matter
- only edges matter
- total weight of the graph stays the same

## PageRank → Event Rank

Salience score of nodes:

$$Score(u) = (1 - d) + d \times \sum_{v \in Adj(u)} \frac{e_{uv} \times Score(v)}{\sum_{w \in Adj(v)} e_{vw}}$$
- undirected graph

adjacent nodes

- iterate towards converge
- initial rank of node does not matter
- only edges and their weights matter
- total weight of the graph stays the same

# Graph Ranking



# Graph Ranking



# Graph Partitioning

 local graph partitioning by PageRank [Andersen et al., 2006]: a good partition of the graph can be obtained by separating high ranked vertices from



# Graph Partitioning



# Graph Partitioning



# Example Event Graph



Wei Xu, Alan Ritter, Ralph Grishman.

"A Preliminary Study of Tweet Summarization using Information Extraction" in LASM (2014)

# Example Summary

|           | EventRank  | - So Instagram can sell your pictures to advertisers without u knowing      |
|-----------|------------|-----------------------------------------------------------------------------|
|           | (Flexible) | starting January 16th I'm bout to delete my instagram!                      |
|           |            | - Instagram debuts new privacy policy, set to share user data with Face-    |
|           |            | book beginning January 16                                                   |
| Instagram |            | - Instagram will have the rights to sell your photos to Advertisers as of   |
| 1/16/2013 |            | jan 16                                                                      |
|           | SumBasic   | - Over for Instagram on January 16th                                        |
|           |            | - Instagram says it now has the right to sell your photos unless you delete |
|           |            | your account by January 16th http://t.co/tsjic6yA                           |
|           |            |                                                                             |

# Example Event Graph



Figure 2: Event graph of 'Google - 1/16/2013', an example of event cluster with multiple focuses

# Example Summary

|           |            | - Google 's home page is a Zamboni game in celebration of Frank Zam-    |
|-----------|------------|-------------------------------------------------------------------------|
|           |            | boni 's birthday January 16 #GameOn                                     |
|           | EventRank  | - Today social, Tomorrow Google! Facebook Has Publicly Redefined        |
|           | (Flexible) | Itself As A Search Company http://t.co/dAevB2V0 via @sai                |
| Google    |            | - Orange says has it has forced Google to pay for traffic . The Head of |
| 1/16/2013 |            | the Orange said on Wednesday it had http://t.co/dOqAHhWi                |
|           |            | - Tomorrow's Google doodle is going to be a Zamboni! I may have to      |
|           |            | take a vacation day.                                                    |
|           | SumBasic   | - the game on google today reminds me of hockey #tooexcited #saturday   |
|           |            | - The fact that I was soooo involved in that google doodle game says    |
|           |            | something about this Wednesday #TGIW You should try it!                 |
|           |            |                                                                         |

## Research Questions

- What is the perfect length of multi-tweet summary?
   variable length
- Will IE help summarization on Twitter?
  - noisy text: performance of IE?
     summary is more readable and newsworthy
  - short context: still need in-depth event analysis?
     self-contained (no coref.) → better event graph
  - redundant: is word enough?
     unbalanced event graph → easier partitioning



Instructor: Wei Xu

www.cis.upenn.edu/~xwe/

Course Website: socialmedia-class.org