Previous lecture

Parsing is about getting the structure

The structure matters

Demo: What is like parsing 0.1 + 0.2 + 0.3?

How to parse: A tale of two analyses

Parsing (1/3): Lexical Analysis

Program as Data, Autumn 2020

Lexical analysis: LexemeBuffer to tokens, or manipulate the tokens

A problem in my research at ITU

- Robot Operating System
- Automated Testing

An idea due to lexical analysis

Demo

- Robot: Turn the wheel with 30 degree and a speed of 10 km/h
- Lexical analysis: Turn the wheel with degree = A, and a speed = B

Menu in the following

- Write a lexer from scratch
- Languages and regular expressions
- Generate a lexer automatically

Write a lexer from scratch

- Problem to be solved: Recognize a valid positive integer
- 42 should be recognized
- 0, or 023 should not be recognized
- ==> The string starts with 1-9, followed by digits of 0-9
- ==> In other words, we can specify a lexer via a regular expression [1-9][0-9]*
- Demo with Linux command "grep"

Languages

- Danish; Python; C#; PHP; domain-specific languages
- An open question: How would you define a language?
- Or formulated in another way: What would we talk about when we talk about a language?

What we talk about when we talk about a language

- Does a word belong to the language => We talk about regular expressions
- Is a sentence grammatically correct => We will talk about context-free grammar next week
- What is the meaning of a sentence => We will talk about semantics later

Regular expressions

r	Meaning	Language $\mathcal{L}(r)$
a	Character a	{"a"}
arepsilon	Empty string	{""}
$r_1 r_2$	r_1 followed by r_2	$\left\{ s_{1}s_{2}\mid s_{1}\in\mathcal{L}\left(r_{1} ight),s_{2}\in\mathcal{L}\left(r_{2} ight) ight\}$
r *	Zero or more r	$\{s_1 \ldots s_n \mid s_i \in \mathcal{L}(r), n \geq 0\}$
$r_1 r_2$	Either r_1 or r_2	$\mathcal{L}\left(r_{1}\right)\cup\mathcal{L}\left(r_{2}\right)$

Examples

```
ab* represents {"a","ab","abb",...}

(ab)* represents {"","ab","abab",...}

(a|b)* represents {"","a","b","aa","ab","ba",...}
```

Exercise

What does (a|b)c* represent?

Common extensions of regular expressions

Abbrev.	Meaning	Expansion
[aeiuo]	Set	a e i o u
[0-9]	Range	0 1 8 9
[0-9a-Z]	Ranges	0 1 8 9 a b y z
<i>r</i> ?	Zero or one r	r arepsilon
<u>r</u> +	One or more <i>r</i>	r'r*

- [hc]?at matches "at", "hat", and "cat".
- [hc]+at matches "hat", "cat", "hhat", "chat", "hcat", "cchchat", and so on, but not "at".

Generate a lexer

- Suppose we have a set of regular expressions
- Each regular expression represents a kind of token
- Each regular expression is associated with an F# expression, called its semantic value
- Then, we should specify a lexer by defining the association that maps regular expressions to semantic values
- FsLex is a tool that, given the association, generates a lexer automatically

Lexer specification (.fsl)

Regular expressions -> Semantic values

Lexer (.fs)

LexemeBuffer-> Semantic values

A minimal lexer specification

- The regular expression specified a single digit
- "LexBuffer.LexemeString lexbuf" is a utility of FsLex that transforms the recognized regular expression to a string
- In this way, Tokenize will be a function that maps a LexBuffer to a string

Behind FsLex, regular expressions are transformed to automata

Finite automata

 A finite automaton, FA, is a graph of states (nodes) and labelled transitions (edges)

- An FA accepts string s if there is a path from start to an accept state such that the labels make up s
- Epsilon (ϵ) does not contribute to the string
- This automaton is nondeterministic (NFA)
- It accepts string b
- Does it accept a or aa or ab or aba?

Finate automata come in two flavors

- (a) Nondeterministic finite automata (NFA) have no restrictions on the labels of their edges. A symbol can label several edges out of the same state, and ϵ , the empty string, is a possible label.
- (b) Deterministic finite automata (DFA) have, for each state, and for each symbol of its input alphabet exactly one edge with that symbol leaving that state.

An NFA consists of:

- 1. A finite set of states S.
- 2. A set of input symbols Σ , the *input alphabet*. We assume that ϵ , which stands for the empty string, is never a member of Σ .
- 3. A transition function that gives, for each state, and for each symbol in $\Sigma \cup \{\epsilon\}$ a set of next states.
- 4. A state s_0 from S that is distinguished as the start state (or initial state).
- 5. A set of states F, a subset of S, that is distinguished as the *accepting* states (or *final states*).

Examples of NFA

NFA accepting (a|b)*abb

NFA accepting aa* bb*

Transition function in NFA

A transition function that gives, for each state, and for each symbol in $\Sigma \cup \{\epsilon\}$ a set of next states.

STATE	a	b	ϵ
0	$\{0, 1\}$	{0}	Ø
1	Ø	$\{2\}$	Ø
2	Ø	$ar{\{2\}} \ \{3\}$	Ø
3	Ø	Ø	Ø

NFA accepting (a|b)*abb

A DFA consists of a special case of an NFA where:

- 1. There are no moves on input ϵ , and
- 2. For each state s and input symbol a, there is exactly one edge out of s labeled a.

An example of DFA

DFA accepting (a|b)*abb

Transition function of a DFA

DFA accepting (a|b)*abb

	a	b
0	1	0
1	1	2
2	1	3
3	1	0

Quiz: NFA or DFA

Both recognize (a|b)*

Quiz: NFA or DFA

Both recognize (ab)*

Kleene's theorem

- Theorem: The set of regular languages, the set of NFA-recognizable languages, and the set of DFA-recognizable languages are all the same.
- Proof: RE -> NFA -> DFA -> RE

Proof objective: Each regular expression can be represented by an NFA

Proof objective: Each regular expression can be represented by an NFA

$$r_1 | r_2$$

Proof objective: Each regular expression can be represented by an NFA

Proof objective: Each regular expression can be represented by an NFA

Quiz

- Make NFA for (ab) *
- Make NFA for (a | b) *

How to prove NFA -> DFA

Proof objective: Each NFA can be represented by an DFA

Proof idea: each state of the constructed DFA corresponds to a set of NFA states. Construct the DFA so that its transition function summarizes that of the NFA.

From https://www.slideshare.net/rsivashankari/nfa-todfa-60168395

Example: RE (a|b)* -> NFA -> DFA

Blackboard demo

- Let Q denote the states of the constructed DFA
- Q is initialized as the starting state of the NFA
- For each state in Q, find the possible set of states for each input symbol on NFA (assuming epsilon-closure). Add the set of states into Q.
- Final states will be all states containing the final states of of NFA (epsilonclosure is assumed)

How FsLex works behind the scene

• For every regular expression r, there exists a deterministic finite automaton that recognizes precisely the strings described by r.

(The converse is also true.)

Construction:

Regular expression

- ⇒ Nondeterministic finite automaton (NFA)
- ⇒ Deterministic finite automaton (DFA)

 Results in an efficient way of determining whether a given string is described by a regular expression

Conclusions

- Parsing is about understanding the structure
- Lexical analysis gets tokens from a buffer
- A lexer can be generated by FsLex, via specifying semantic values of regular expressions
- FsLex usually makes this conversion behind the scene: Regular expressions
 NFA -> DFA
- Kleene's theorem

Thank you!