Plan du cours

I.	Gér	néralités sur les équations	1
П.	Rés	Résolution d'équation	2
	1.	Méthode de résolution des équations du type $a + x = b$	2
	2.	Méthode de résolution des équations du type ax = b	3
	3.	Méthode de résolution des équations avec des inconnues dans les 2 membres .	5
III.	Mis	se en équation	7
	1.	Énigme 1	7
	2.	Énigme 2	8
	3.	Énigme 3	9
	4.	Énigme 4	10

CHAPITRE: Résolution d'équation du premier degré

INTRODUCTION

Je vous propose pour introduire ce chapitre de regarder cette vidéo interactive. Cette vidéo vous rappellera vos cours de 4^{me} sur les équations.

https://www.lumni.fr/video/le-calcul-litteral#containerType=serie&containerSlug=la-maison-lumni-college (and the containerSlug=la-maison-lumni-college (and the college (and the colle

I. Généralités sur les équations

Définition

Une équation est **une égalité** dans laquelle figure **un nombre inconnu**, désigné en général par une lettre qui est appelée l'inconnue.

Exemple:

2x - 11 = 7 - x est une équation dans laquelle l'inconnue est désignée par x.

$$\underbrace{2x - 11}_{\text{Premier membre}} = \underbrace{7 - x}_{\text{Second membre}}$$

1. Le nombre 3 est-il solution de l'équation 2x - 11 = 7 - x?

D'une part, $2 \times 3 - 11 = -5$

D'autre part, 7 - 3 = 4

L'égalité n'est donc pas vérifiée pour x = 3.

<u>Conclusion</u>: Le nombre 3 n'est pas solution de l'équation.

2. Le nombre 6 est-il solution de l'équation 2x - 11 = 7 - x ?

D'une part, $2 \times 6 - 11 = 1$

D'autre part, 7 - 6 = 1

L'égalité est donc vérifiée pour x = 6

<u>Conclusion</u>: Le nombre 6 est une solution de l'équation.

Exercice d'application 1 -

(a) -2 est-il solution de l'équation 54 - 11x = 25x + 126 ?

D'une part, $54 - 11 \times (-2) = 54 + 22 = \underline{76}$

D'autre part, $25 \times (-2) + 126 = -50 + 126 = \frac{76}{2}$

L'égalité est donc vérifiée pour x = -2

<u>Conclusion</u>: Le nombre -2 est une solution de l'équation.

(b) 5 est-il solution de l'équation 7x - 3 = 6(x - 1)?

D'une part, $7 \times 5 - 3 = 35 - 3 = 32$

D'autre part, $6 \times (5 - 1) = 6 \times 4 = 24$

L'égalité n'est donc pas vérifiée pour x = 5.

<u>Conclusion</u>: Le nombre 5 n'est pas solution de l'équation.

II. Résolution d'équation

On rappelle tout d'abord ce que l'on nomme une résolution d'équation.

Définition

Résoudre une équation, c'est trouver toutes les solutions qui vérifient cette équation.

1. Méthode de résolution des équations du type a + x = b

Propriété

Une égalité reste vraie si l'on additionne (ou l'on soustrait) le même nombre à chacun de ses membres.

→ **Résoudre l'équation** 3 + x = 7.

Deux rédactions possible d'une résolution d'équation (celle la plus à droite est la plus rigoureuse) :

$$-3 \left(\begin{array}{c} 3+x=7 \\ x=4 \end{array}\right) -3$$

$$3 + x = 7$$

$$3 + x - 3 = 7 - 3$$

$$x = 7 - 3$$

x = 4

La solution de l'équation 3 + x = 7 est le nombre 4.

On notera alors $\mathcal{S} = \{4\}$.

Propriété

L'équation a + x = b admet pour unique solution : x = b - a.

Exercice d'application 2

Résoudre les équations suivantes :

$$-2 + x = 11$$

$$\cancel{-2} + \cancel{x} + \cancel{2} = 11 + 2$$

$$x = 11 + 2$$

$$x = 13$$

$$9 + x = 44$$

$$9 + x - 9 = 44 - 9$$

$$x = 44 - 9$$

$$x = 35$$

2. Méthode de résolution des équations du type ax = b

Propriété

Une égalité reste vraie si l'on **multiplie** (ou l'on **divise**) le même nombre non nul (c'est-à-dire différent de 0) à **chacun de ses membres**.

 \rightarrow **Résoudre l'équation** -5x = 125.

Deux rédactions possible d'une résolution d'équation (celle la plus à droite est la plus rigoureuse) :

$$(-5) \begin{cases} -5x = 125 \\ x = -25 \end{cases} (-5)$$

$$-5x = 125$$

$$\frac{-5x}{-5} = \frac{125}{-5}$$

$$x = -\frac{125}{5}$$

La solution de l'équation -5x = 125 est le nombre - 25. On notera alors $\mathscr{S} = \{-25\}$.

Propriété

Si $a \neq 0$, l'équation ax = b admet pour unique solution : $x = \frac{b}{a}$.

Exercice d'application 3

Résoudre les équations suivantes :

$$\rightarrow -6x = -42$$

$$\frac{\cancel{-6x}}{\cancel{-6}} = \frac{-42}{-6}$$

$$x = \frac{-42}{-6}$$

$$\rightarrow -5x = 24$$

$$\frac{\cancel{-5}x}{\cancel{-5}} = \frac{24}{-5}$$

$$x = -\frac{24}{5}$$

$$\rightarrow$$
 3 $x = 27$

$$\frac{3x}{3} = \frac{27}{3}$$

$$x = \frac{27}{3}$$

$$\rightarrow \frac{3}{4}x = 5$$

$$\frac{\frac{3}{4}}{\frac{3}{4}}x = \frac{5}{\frac{3}{4}}$$

$$x = \frac{5}{\frac{3}{4}}$$

$$x = 5 \times \frac{4}{3}$$

$$x = \frac{20}{3}$$

3. Méthode de résolution des équations avec des inconnues dans les 2 membres

 \rightarrow **Résoudre l'équation** 7x - 2 = 6 + 5x.

$$7x - 2 = 6 + 5x$$

$$7x - 2 - 5x = 6 + 5x - 5x$$

$$2x - 2 = 6$$

$$2x - 2 + 2 = 6 + 2$$

$$2x = 8$$

$$\frac{2x}{3} = \frac{8}{2}$$

x=4

La solution de l'équation 7x - 2 = 6 + 5x est le nombre 4. $\mathscr{S} = \{4\}$.

Méthode de résolution

- → On commence par isoler l'inconnue dans un des deux membres.
- \rightarrow On regroupe ensuite les nombres sans x dans l'autre membre.
- \rightarrow On utilise alors les méthodes de résolution vues juste avant.
- \rightarrow On n'oublie pas de donner la ou les solution(s).

Exercice d'application 4 -

$$4x - 3 = 11$$

$$7 - 8x = 56$$

$$4x = 11 + 3$$

$$-8x = 56 - 7$$

$$4x = 14$$

$$-8x = 49$$

$$x = \frac{14}{4}$$

$$x = \frac{49}{-8}$$

$$x = \frac{1}{4}$$

$$x = -\frac{49}{3}$$

$$x = 3, 5$$

$$9 - 2x = 11 + 4x$$

$$4x + 3x = 63$$

$$9 - 2x - 4x = 11$$

$$7x = 63$$

$$9 - 6x = 11$$

$$-6x = 11 - 9$$

$$x = \frac{63}{7}$$

$$-6x = 2$$

$$x = 9$$

$$x = \frac{2}{-6}$$

$$6x - 4 = 3x + 14$$

$$x = -\frac{1}{3}$$

$$6x - 3x - 4 = 14$$

$$2(x-7) = 3(-x+1)$$

$$3x - 4 = 14$$

$$2x - 14 = -3x + 3$$

$$3x = 14 + 4$$

$$2x - 14 + 3x = 3$$

$$3x = 18$$

$$5x - 14 = 3$$

$$5x = 3 + 14$$

$$x = \frac{18}{3}$$

$$5x = 17$$

$$x = 6$$

$$x = \frac{17}{5}$$

III. Mise en équation

1. Énigme 1

<u>Énoncé</u>: Mathieu a 2 billes de plus que Pierre mais 3 fois moins de billes que Bryan. Ils ont à eux trois 53 billes.

Combien ont-ils de billes chacun?

Résolution :

- **1. Choisir une inconnue et la décrire** : On choisi *x* le nombre de billes de Mathieu.
- 2. Traduire le problème par une équation.

Pour cela, choisir une grandeur qui peut être exprimée de deux façons différentes.

lci, il s'agit du nombre de billes qu'ils ont à eux 3.

Mais cela peut aussi s'écrire : Mathieu + Pierre + Bryan

On sait que :

- Mathieu = x
- Pierre a 2 billes de moins que Mathieu, à savoir Pierre = x 2
- Bryan a 3 fois plus de billes que Mathieu, à savoir Bryan = 3x

 \rightarrow L'équation à résoudre est donc : Mathieu + Pierre + Bryan = 53 $\times + (\times - 2) + 3\times = 53$

3. Résoudre l'équation :

$$x + (x - 2) + 3x = 53$$

$$x + x - 2 + 3x = 53$$

$$5x - 2 = 53$$

$$5x - 2 + 2 = 53 + 2$$

$$5x = 55$$

$$\frac{5x}{5} = \frac{55}{5}$$

$$x = 11$$

4. **Vérifier** que la solution de l'équation a du sens avec le problème concret.

lci, x étant un nombre de billes, la solution du problème doit être un nombre strictement positif.

5. Conclure.

On en conclut que :

- x = 11 Donc Mathieu possède 11 billes.
- x 2 = 11 2 = 9 Donc Pierre possède 9 billes.
- $3x = 3 \times 11 = 33$ Donc Bryan possède 33 billes.

Vérification: 11 + 9 + 33 = 20 + 33 = 53.

2. Énigme 2

Énoncé : Dans le rectangle suivant l'unité utilisée est le mètre.

Quelles sont les dimensions de ce rectangle quand son périmètre est égal à 31 m?

Résolution :

- 1. Choisir une inconnue et la décrire : On appelle x la largeur du rectangle ci-dessus.
- 2. Traduire le problème par une équation.

Pour cela on va exprimer le périmètre du rectangle en fonction de x.

$$\begin{array}{l} P_{rectangle} = (I+L)\times 2 \\ P_{rectangle} = (x+(2x+5))\times 2 \\ P_{rectangle} = (x+2x+5)\times 2 \\ P_{rectangle} = (3x+5)\times 2 \end{array}$$
 On réduit ce qu'il y a dans les parenthèses

On cherche la valeur de x pour un périmètre qui vaut 31.

L'équation est donc : $(3x + 5) \times 2 = 31$

3. Résoudre l'équation :

$$(3x+5)\times 2=31$$

On commence par développer.

$$6x + 10 = 31$$

$$6x = 31 - 10$$

$$6x = 21$$

$$x = \frac{21}{6}$$

$$x = \frac{7}{2}$$

$$x = 3,5$$

- **4. Vérifier** que la solution de l'équation a du sens avec le problème concret. lci, x étant une longueur, la solution du problème doit être un nombre strictement positif.
 - 5. Conclure.

La largeur du rectangle vaut : x = 3.5 cm.

Donc la longueur vaut : $2x + 5 = 2 \times 3, 5 + 5 = 12$ cm.

3. Énigme 3

Énoncé: Une brique pèse 1 kg plus la moitié de son poids. Combien pèse-t-elle?

Résolution :

1. Choisir une inconnue et la décrire : On appelle x le poids de la brique.

2. Traduire le problème par une équation.

 $Pbrique = 1 + \frac{Pbrique}{2}$ on remplace avec x l'inconnue.

L'équation est donc : $x = 1 + \frac{x}{2}$

3. Résoudre l'équation :

$$x = 1 + \frac{x}{2}$$

$$x - \frac{x}{2} = 1$$

On met x au même dénominateur

$$\frac{2x}{2} - \frac{x}{2} = 1$$

$$\frac{\cancel{2} \times x}{\cancel{2}} = 1 \times 2$$

$$x = 1 \times 2$$

- **4. Vérifier** que la solution de l'équation a du sens avec le problème concret. lci, x étant le poids de la brique, la solution du problème doit être un nombre strictement positif.
 - 5. Conclure.

On peut donc en déduire que la brique pèse 2 kg.

4. Énigme 4

Énoncé : Justine a 8 ans et sa grand-mère a 50 ans.

Dans combien d'années, l'âge de sa grand-mère sera le triple de celui de Justine?

Résolution :

- **1. Choisir une inconnue et la décrire** : On appelle *x* le nombre d'année qu'il faudra pour que l'âge de sa grand-mère soit le triple de celui de Justine.
 - 2. Traduire le problème par une équation.

On sait qu'aujourd'hui:

- Justine = 8 ans
- Grand-mère = 50

 $3 \times (Age de Justine dans x année) = Age de la grand-mère dans x année. (On remplace par les données que l'on a)$

L'équation est donc : 3(8 + x) = 50 + x

3. Résoudre l'équation :

$$3(8+x) = 50 + x$$

On commence par développer.

$$24 + 3x = 50 + x$$

$$24 + 3x - x = 50$$

$$24 + 2x = 50$$

$$2x = 50 - 24$$

$$2x = 26$$

$$x = \frac{26}{2}$$

4. Vérifier que la solution de l'équation a du sens avec le problème concret.

lci, x étant un nombre d'année, la solution du problème doit être un nombre strictement positif.

5. Conclure.

On peut donc conclure que dans 13 ans l'âge de la grand-mère de Justine sera le triple de son âge.

Vérification, dans 13 ans :

- Justine aura 8 + 13 = 21
- Sa grand-mère aura 50 + 13 = 63 et $3 \times 21 = 63$