

UNIVERSITI TEKNOLOGI MALAYSIA FINAL EXAMINATION SEMESTER II 2022/2023

SUBJECT CODE : SCSI/SECI 1143/2143

SUBJECT NAME : PROBABILITY & STATISTICAL DATA ANALYSIS

YEAR/COURSE :

TIME :

DATE :

VENUE :

INSTRUCTIONS TO THE STUDENTS:

Answer all questions in the answer booklet.

Do all calculations in 3 decimal points.

NAME	
MATRIC NO.	
SECTION	
LECTURER	

(This question paper consist of 13 pages including this pages)

QUESTION 1 [10 MARKS]

a) A recent study investigated the usage of ChatGPT towards the students. ChatGPT is a tool that provide language learning, translation and many more. Researcher observed that a representative sample of students from Faculty of Computing found that 158 out of 367 students are active using the ChatGPT.

i) Compute a point estimate of the true proportion of all students who active using the ChatGPT.

(1 mark)

ii) Construct and interpret a 95% confidence interval for the true proportion of all students who actively using ChatGPT services.

(2 marks)

- b) In a study of coffee lover among staff in UTM, 30 randomly selected staffs were asked how much time they drink coffee in a day. The time is assumed normally distributed and the sample standard deviation was 6 hours. At $\alpha = 0.01$, is there enough evidence to reject the claim that the population variance is at 35 hours.
 - i) State the null and alternative hypothesis.

(1 mark)

ii) Calculate the test statistic value.

(2 marks)

iii) Find the critical value.

(1 mark)

iv) Draw and shade the critical region (rejection area) and what can you conclude from the test. (2 marks)

QUESTION 2 [20 MARKS]

a) A research study was conducted to examine the differences between older and younger adults on perceived life satisfaction. A pilot study was conducted to examine this hypothesis. 13 older adults (over the age of 70) and 16 younger adults (between 20 and 30) were give a life satisfaction test. The summary of the score results for the test is given in Table 1.

Table 1: Data on perceived life satisfaction

Older adults	Younger adults
s ₁ =1.21	s ₂ =0.63

Test at the $\alpha = 0.05$ level of significance whether there is a different in the variability between the two groups?

(10 marks)

b) The iron contents of fruits before and after applying farm yard manure were observed as in Table 2.

Table 2: The iron contents of fruits before and after applying farm yard manure

Fruit No	1	2	3	4	5	6	7	8	9
Before Applying	11.6	18.7	15.9	20.6	10.1	17.4	7.2	12.2	11.7
After Applying	10.0	21.6	13.9	22.8	11.5	16.2	8.1	10.8	9.6

Is there any significant difference between the mean iron contents in the fruits before and after the farm yarn manure at $\alpha = 0.05$ level of significance?

(10 marks)

QUESTION 3 [20 MARKS]

a) A staff member of an emergency medical service wishes to determine whether the number of accidents is equally distributed during a week. A week was selected at random, and the following data (Table 3) were obtained. Is there evidence to reject the hypothesis that the number of accident is equally distributed throughout the week, at 95% confidence level.

Table 3: Distribution number of accident during a week

Day	Mon.	Tues.	Wed.	Thurs.	Fri.	Sat.	Sun.
No. of accident	28	21	15	14	32	23	19

(8 marks)

b) A study is being conducted to determine whether there is relationship between jogging and blood pressure. A random sample of 210 subjects is selected, and the raw data is shown in Table 4.

Table 4: Data from 210 respondents

Jogging Status	Blood pressure level	Count
Joggers	Low	34
Non joggers	Low	15
Joggers	Moderate	57
Non joggers	Moderate	63
Joggers	High	21
Non joggers	High	20

Based on the data,

i) Construct the two ways contingency table based on data in Table 4.

(2 marks)

ii) At $\alpha = 0.05$ level of significance, test the claim that jogging and blood pressure are not related.

(10 marks)

QUESTION 4 [15 MARKS]

A study of the amount of rainfall and the quantity of air pollution removed produced the following data (Table 5). Assume that x and y are random variables with a bivariate normal distribution.

Table 5: Rainfall and air pollution data

Daily rainfall, x (0.01 cm)	Particulate removed, $y(\frac{\mu g}{m^3})$
4.3	126
4.5	121
5.9	116
5.6	118
6.1	114
5.2	118
3.8	132
2.1	141
7.5	108

a) Draw (sketch) the scatter plot.

(2 marks)

b) Given that $\sum x^2 = 244.26$, $\sum y^2 = 133786$, calculate *r*.

(10 marks)

- c) Does the value of r value found in 4(b) consistent with the pattern of the scatter plot in 4(a)? (1 mark)
- d) Is the *r* value found in 4(b) suggest a strong linear relationship? If yes, do the changes in *x* and *y* will go in the same direction?

(2 marks)

QUESTION 5 [15 MARKS]

Accu-Copiers, Inc., sells and services the Accu-500 copying machine. As part of its standard service contract, the company agrees to perform routine service on this copier. To obtain information about the time it takes to perform routine service, Accu-Copiers has collected data for 11 service calls. The data are given in Table 6. Whilst, the R output from fitting a least squares regression line to the data is shown in Figure 1.

Service Call	Number of copiers serviced, <i>x</i>	Number of minutes required, y
1	4	109
2	2	58
3	5	138
4	7	189
5	1	37
6	3	82
7	4	103
8	5	134
9	2	68
10	4	112
11	6	154

Table 6: The service time data

```
Console Terminal × Background Jobs ×
R 4.1.2 · ~/ ~
> summary (model)
Call:
lm(formula = y \sim x)
Residuals:
   Min
            1Q Median
                            3Q
-6.8729 -2.9696 -0.4751 2.8260 7.3315
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.4641 3.4390 3.334 0.00875 **
                        0.8045 30.580 2.09e-10 ***
            24.6022
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.615 on 9 degrees of freedom
Multiple R-squared: 0.9905,
                               Adjusted R-squared: 0.9894
F-statistic: 935.1 on 1 and 9 DF, p-value: 2.094e-10
```

Figure 1: R Output

a)	Find the least squares point estimates b_0 and b_1 on the R output (Figure 1) and walue.	rite their
	varue.	(2 marks)
b)	Interpret b_0 and b_1 . Does the interpretation of b_0 make practical sense?	(3 marks)
c)	Write the equation of the least squares line.	(2 marks)
d)	Use the least square line to compute a point estimate of the mean time to ser copiers.	vice four (2 marks)
e)	How many percent of the variation in the number of minutes required to service is oby the variation in the number of copiers serviced?	explained (1 mark)
f)	Conduct the t -test to check whether there is a linear relationship between x and y . 0.05	Use $\alpha =$ (5 marks)

QUESTION 6 [20 MARKS]

A scientist wanted to see if mice is sensitive to colour. He set up an experiment using mice and different door colours to see if there is any colour that the mice would be attracted to. Three sets of five mice were randomly selected to be placed in a standard maze but with different colour doors: red, green, and black. The objective of the experiment is to identify the time for each mouse to run in the maze and reach the door. He recorded the response time (in minutes), to which the time required for each mouse to complete the maze (Table 7).

Table 7: Response time recorded for each mouse to complete the maze.

Door Colour	R	espons	e time (minutes	s)
Door Colour	M1	M2	M3	M4	M5
Red	9	11	10	9	15
Green	20	21	23	17	30
Black	6	5	8	14	7

a) Find the mean, \bar{x} , and standard deviation, s, for each door colour.

(6 marks)

b) Calculate the test statistics, F.

(10 marks)

c) At the 0.01 level of significance, test if the data provide sufficient evidence to conclude that mice are sensitive to different colour.

(4 marks)

List of Formula:

(a) Point Estimate and CI

$$\hat{p} \pm (z \ critical \ value) \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

(b) Hypothesis Testing for one sample

$$Test \, Statistic, z_0 = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$$

$$Test \, Statistic, t_0 = \frac{\bar{x} - \mu}{S / \sqrt{n}}$$

$$Test \, Statistic, \chi^2 = \frac{(n-1)s^2}{\sigma^2}$$

(c) Hypothesis Testing for two samples

$$Test \, Statistic, z_0 = \frac{\bar{x}_1 - \bar{x}_2 - \Delta_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

$$Test \, Statistic, t_0 = \frac{\bar{x}_1 - \bar{x}_2 - \Delta_0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}; s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

$$Test \, Statistic, T_0 = \frac{\bar{x}_1 - \bar{x}_2 - \Delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}; v = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{\left(s_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(s_2^2/n_2\right)^2}{n_2 - 1}}$$

Test Statistic,
$$F_0 = \frac{s_1^2}{s_2^2}$$

(d) Chi-Square Test

$$Test \, Statistic, \chi^2 = \sum_{i}^{n} \frac{(o_i - e_i)^2}{e_i}$$

Degree of Freedom for two – way contigency table = (r-1)(c-1)

(e) Correlation

$$Pearson Correlation Coefficient, r = \frac{\sum xy - \frac{(\sum x \sum y)}{n}}{\sqrt{\left(\sum x^2 - \frac{(\sum x)^2}{n}\right)\left(\sum y^2 - \frac{(\sum y)^2}{n}\right)}}$$

Spearman Correlation Coefficient, $r_s = 1 - \frac{6\sum d_i^2}{n(n^2-1)}$ where $d_i = y_i - x_i$

$$Test \, Statistic, t = \frac{r}{\sqrt{\frac{1 - r^2}{n - 2}}}$$

(f) Regression

$$b_1 = \frac{\sum xy - \frac{(\sum x \sum y)}{n}}{\sum x^2 - \frac{(\sum x)^2}{n}}$$

$$b_0 = \bar{y} - b_1 \bar{x}$$

(g) Analysis of variance (ANOVA)

$$Test \, Statistic, F = \frac{ns^{\frac{2}{x}}}{s_p^2}$$

					0.4	0.5				
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359
0.1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.075
0.2	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	.114
0.3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.151
0.4	.1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	.1844	.187
0.5	.1915	.1950	.1985	.2019	.2054	.2088	.2123	.2157	.2190	.222
0.6	.2257	.2291	.2324	.2357	.2389	.2422	.2454	.2486	.2517	.254
0.7	.2580	.2611	.2642	.2673	.2704	.2734	.2764	.2794	.2823	.285
0.8	.2881	.2910	.2939	.2967	.2995	.3023	.3051	.3078	.3106	.313
0.9	.3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	.3365	.338
1.0	.3413	.3438	.3461	.3485	.3508	.3531	.3554	.3577	.3599	.362
1.1	.3643	.3665	.3686	.3708	.3729	.3749	.3770	.3790	.3810	.383
1.2	.3849	.3869	.3888	.3907	.3925	.3944	.3962	.3980	.3997	.401
1.3	.4032	.4049	.4066	.4082	.4099	.4115	.4131	.4147	.4162	.417
1.4	.4192	.4207	.4222	.4236	.4251	.4265	.4279	.4292	.4306	.431
1.5	.4332	.4345	.4357	.4370	.4382	.4394	.4406	.4418	.4429	.444
1.6	.4452	.4463	.4474	.4484		* .4505	.4515	.4525	.4535	.454
1.7	.4554	.4564	.4573	.4582	.4591	.4599	.4608	.4616	.4625	.463
1.8	.4641	.4649	.4656	.4664	.4671	.4678	.4686	.4693	.4699	.470
1.9	.4713	.4719	.4726	.4732	.4738	.4744	.4750	.4756	.4761	.476
2.0	.4772	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	.481
2.1	.4821	.4826	.4830	.4834	.4838	.4842	.4846	.4850	.4854	.485
2.2	.4861	.4864	.4868	.4871	.4875	.4878	.4881	.4884	.4887	.489
2.3	.4893	.4896	.4898	.4901	.4904	.4906	.4909	.4911	.4913	.491
2.4	.4918	.4920	.4922	.4925	.4927	.4929	.4931	.4932	.4934	.493
2.5	.4938	.4940	.4941	.4943	.4945	.4946	.4948	17777	* .4951	.495
2.6	.4953	.4955	.4956	.4957	.4959	.4960	.4961	.4962	.4963	.496
2.7	.4965	.4966	.4967	.4968	.4969	.4970	.4971	.4972	.4973	.497
2.8	.4974	.4975	.4976	.4977	.4977	.4978	.4979	.4979	.4980	.498
2.9	.4981	.4982	.4982	.4983	.4984	.4984	.4985	.4985	.4986	.498
3.0	.4987	.4987	.4987	.4988	.4988	.4989	.4989	.4989	.4990	.499
3.10										
and	.4999									

NOTE: For values of z above 3.09, use 0.4999 for the area.

z score Area
1.645 0.4500
2.575 0.4950

From Frederick C. Mosteller and Robert E. K. Rourke, Sturdy Statistics, 1973, Addison-Wesley Publishing Co., Reading, MA. Reprinted with permission of Frederick Mosteller.

^{*}Use these common values that result from interpolation:

Val		5.	5	5	9	9		7	1	6	00	00	900	00	Q.	0,	0,	Q.	9.	9	9	9.	9,	9,	0	9	0,	0.	0.	0.	9	0.	9	9	9	9.	o,	o,	o,	o,	0
STANDARD NORMAL DISTRIBUTION: Table Val	.03	.51197	.55172	59095	.62930	.66640	70194	73565	.76730	.79673	.82381	84849	97078.	389068	90824	92364	63986	.94845	95818	36638	.97320	28876	.98341	.98713	99010	.99245	99430	.99573	58966	1966	99831	82866	.99913	98666	75666.	02666	62666	98666	06666	p6666	90000
RIBUTIC	.02	50798	.54776	58706	.62552	9.2599	.69847	73237	.76424	79389	.82121	.84614	86864	7.1888.	.90658	.92220	.93574	.94738	.95728	.96562	97257	.97831	.98300	98679	.98983	99224	.99413	99560	99674	99760	99825	99874	99910	98666	399955	69666	87666.	58666	06666	.99993	90000
AL DIST	10.	.50399	54380	58317	.62172	.65910	69497	72907	76115	.79103	.81859	.84375	.86650	98988	.90490	.92073	.93448	.94630	.95637	.96485	.97193	87778	.98257	.98645	98686	.99202	96266	99547	99664	.99752	99819	69866	90666	.99934	.99953	89666	81666	58666	06666	.99993	90000
D NORM	00.	.50000	53983	57926	16719.	.65542	69146	.72575	.75804	78814	.81594	.84134	.86433	.88493	.90320	91924	93319	.94520	.95543	96407	97128	.97725	98214	98610	98928	99180	99379	99534	.99653	99744	.99813	99865	.99903	.99931	29666	99666	71666	99984	68666	66666	90000
TANDAR	Z	0.0	0.1	0.2	0.3	9.4	0.5	9.0	0.7	8.0	6.0	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	5.6	2.7	5.8	2.9	3.0	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	30
S																																									
	١	180	90	80	11	17	24	35	20	71	8	39	93	64	57	8	39	42	01	26	31	30	38	73	51	26	11	26	53	02	98	60	73	26	10	9	07	27	91	92	14
core.	90.	000	.00005	00000	.00011	.00017	.00024	.00035	.000050	.00071	.00100	.00139	.00193	.00264	.00357	.00480	66900	.00842	.01101	.01426	.01831	.02330	.02938	.03673	.04551	.05592	.06811	.08226	.09853	.11702	.13786	.16109	.18673	.21476	.24510	.27760	.31207	34827	38591	.42465	46414
of the Z s	80.	.00003	00000	80000	.00012	.00017	.00025	.00036	.00052	.00074	.00104	.00144	.00199	.00272	.00368	.00494	.00657	99800	.01130	.01463	01876	.02385	.03005	.03754	.04648	.05705	.06944	.08379	.10027	.11900	.14007	.16354	.18943	.21770	.24825	28096	.31561	35197	38974	.42858	46812
e LEFT	70.	400000	.00000	00000	.00012	.00018	.00026	.00038	.00054	92000.	.00107	.00149	.00200	.00280	.00379	.00508	92900	68800	.01160	.01500	.01923	.02442	.03074	.03836	.04746	.05821	87070.	.08534	.10204	.12100	.14231	.16602	.19215	.22065	.25143	.28434	.31918	35569	39358	.43251	47210
REA to th	90:	.00004	90000	800000	.00013	000019	72000.	.00039	95000	62000	.00111	.00154	.00212	.00289	.00391	.00523	96900	.00914	.01191	.01539	01970	.02500	.03144	.03920	.04846	.05938	.07215	.08691	.10383	.12302	.14457	.16853	.19489	.22363	.25463	28774	32276	.35942	.39743	43644	47608
present A	50:	.00004	90000	60000	.00013	.00019	.00028	.00040	85000	.00082	.00114	.00159	.00219	.00298	.00402	.00539	.00714	62600	.01222	.01578	.02018	.02559	.03216	.04006	.04947	.06057	.07353	.08851	.10565	.12507	.14686	.17106	.19766	.22663	.25785	.29116	.32636	.36317	.40129	.44038	48006
Values Re	9.	.00004	90000	60000	.00014	.00020	67000	.00042	09000	.00084	.00118	.00164	.00226	.00307	.00415	.00554	.00734	.00964	.01255	.01618	.02068	02619	.03288	.04093	05050	.06178	.07493	.09012	10749	12714	.14917	.17361	.20045	.22965	26109	29460	32997	36693	.40517	44433	48405
N: Table	.03	.00004	900000	.00010	.00014	.00021	.000030	.00043	.00062	78000.	.00122	.00169	.00233	.00317	.00427	00570	.00755	06600	.01287	.01659	.02118	.02680	.03362	.04182	.05155	.06301	.07636	92176	.10935	.12924	15151	.17619	.20327	.23270	.26435	29806	33360	37070	.40905	.44828	48803
IBUTIO	.02	.00004	70000.	01000	51000	.00022	.00031	.00045	.00064	060000	.00126	.00175	.00240	.00326	.00440	.00587	97700.	71010.	.01321	.01700	.02169	.02743	.03438	.04272	.05262	.06426	.07780	.09342	.11123	.13136	.15386	17879	.20611	.23576	.26763	.30153	33724	37448	41294	.45224	49207
AL DISTE	10.	50000	70000	01000	.00015	.00022	.00032	.00047	99000	.00094	.00131	.00181	.00248	.00336	.00453	.00604	86200	.01044	.01355	.01743	.02222	.02807	.03515	.04363	.05370	.06552	72670.	.09510	.11314	.13350	.15625	.18141	.20897	.23885	.27093	.30503	.34090	.37828	.41683	.45620	49601
AD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.	00.	500000	70000.	.00011	91000	.00023	.00034	.00048	69000	76000.	.00135	.00187	.00256	.00347	.00466	.00621	00820	.01072	.01390	.01786	.02275	.02872	.03593	.04457	.05480	.06681	92080	08960	.11507	.13567	.15866	.18406	.21186	24196	.27425	.30854	34458	38209	42074	46017	50000

TABLE A-3	t Distribution					
			α			
	.005	.01	.025	.05	.10	.25
Degrees	(one tail)	(one tail)	(one tail)	(one tail)	(one tail)	(one tail)
of	.01	.02	.05	.10	.20	.50
Freedom	(two tails)	(two tails)	(two tails)	(two tails)	(two tails)	(two tails)
1	63.657	31.821	12.706	6.314	3.078	1.000
2	9.925	6.965	4.303	2.920	1.886	.816
3	5.841	4.541	3.182	2.353	1.638	.765
4	4.604	3.747	2.776	2.132	1.533	.741
5	4.032	3.365	2.571	2.015	1.476	.727
6	3.707	3.143	2.447	1.943	1.440	.718
7	3.500	2.998	2.365	1.895	1.415	.711
8	3.355	2.896	2.306	1.860	1.397	.706
9	3.250	2.821	2.262	1.833	1.383	.703
10	3.169	2.764	2.228	1.812	1.372	.700
11	3.106	2.718	2.201	1.796	1.363	.697
12	3.054	2.681	2.179	1.782	1.356	.696
13	3.012	2.650	2.160	1.771	1.350	.694
14	2.977	2.625	2.145	1.761	1.345	.692
15	2.947	2.602	2.132	1.753	1.341	.691
16	2.921	2.584	2.120	1.746	1.337	.690
17	2.898	2.567	2.110	1.740	1.333	.689
18	2.878	2.552	2.101	1.734	1.330	.688
19	2.861	2.540	2.093	1.729	1.328	.688
20	2.845	2.528	2.086	1.725	1.325	.687
21	2.831	2.518	2.080	1.721	1.323	.686
22	2.819	2.508	2.074	1.717	1.321	.686
23	2.807	2.500	2.069	1.714	1.320	.685
24	2.797	2.492	2.064	1.711	1.318	.685
25	2.787	2.485	2.060	1.708	1.316	.684
26	2.779	2.479	2.056	1.706	1.315	.684
27	2.771	2.473	2.052	1.703	1.314	.684
28	2.763	2.467	2.048	1.701	1.313	.683
29	2.756	2.462	2.045	1.699	1.311	.683
Large (z)	2.575	2.326	1.960	1.645	1.282	.675

Area to the Right of the Critical Value											
Degrees of Freedom	0.995	0.99	0.975	0.95	0.90	0.10	0.05	0.025	0.01	0.005	
1			0.001	0.004	0.016	2.706	2 041	5.024	6 625	7.07	
1 2	0.010	0.020	0.001 0.051	0.004	0.016 0.211	2.706	3.841	5.024 7.378	6.635	7.87	
3					0.584	4.605	5.991 7.815	9.348	9.210	10.59 12.83	
4	0.072	0.115	0.216	0.352		6.251 7.779			11.345		
	0.207	0.297	0.484	0.711	1.064		9.488	11.143	13.277	14.86	
5	0.412	0.554	0.831	1.145	1.610	9.236	11.071	12.833	15.086	16.75	
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.54	
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.27	
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.95	
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.58	
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.18	
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.75	
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.29	
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.81	
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.31	
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.80	
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.26	
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.71	
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.15	
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.58	
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.99	
21	8.034	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932	41.40	
22	8.643	9.542	10.982	12.338	14.042	30.813	33.924	36.781	40.289	42.79	
23	9.260	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	44.18	
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.55	
25	10.520	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314	46.92	
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.29	
27	11.808	12.879	14.573	16.151	18.114	36.741	40.113	43.194	46.963	49.64	
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.99	
29	13.121	14.257	16.047	17.708	19.768	39.087	42.557	45.722	49.588	52.33	
30	13.787	14.954	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.67	
40	20.707	22.164	24.433	26.509	29.051	51.805	55.758	59.342	63.691	66.76	
50	27.991	29.707	32.357	34.764	37.689	63.167	67.505	71.420	76.154	79.49	
60	35.534	37.485	40.482	43.188	46.459	74.397	79.082	83.298	88.379	91.95	
70	43.275	45.442	48.758	51.739	55.329	85.527	90.531	95.023	100.425	104.21	
80	51.172	53.540	57.153	60.391	64.278	96.578	101.879	106.629	112.329	116.32	
90	59.196	61.754	65.647	69.126	73.291	107.565	113.145	118.136	124.116	128.29	
100	67.328	70.065	74.222	77.929	82.358	118.498	124.342	129.561	135.807	140.16	

Tables

Tables T-15

		oo.	ø	10	200e1111	n an the denom	<u>~</u>	4 T	15	16	17
	e,	01: 02: 03: 01: 00: 00: 00: 00:	900000000000000000000000000000000000000	01:00 02:00 01:00 01:00 01:00	95250	010 025 010 010	0010	01.050 0250 010 010	001000000000000000000000000000000000000	001000000000000000000000000000000000000	950000
		3.46 5.32 7.57 11.26 25.41	3.36 5.12 7.21 10.56 22.86	3.29 4.96 6.94 10.04 21.04	3.23 4.84 6.72 9.65 19.69	3.18 4.75 6.55 9.33 18.64	3.14 4.67 6.41 9.07 17.82	3.10 4.60 6.30 8.86 17.14	3.07 4.54 6.20 8.68 16.59	3.05 4.49 6.12 8.53 16.12	3.03 4.45 6.04 8.40 15.72
	2	3.11 4.46 6.06 8.65 18.49	3.01 4.26 5.71 8.02 16.39	2.92 4.10 5.46 7.56 14.91	2.86 3.98 5.26 7.21 13.81	2.81 3.89 5.10 6.93 12.97	2.76 3.81 4.97 6.70 12.31	2.73 3.74 4.86 6.51 11.78	2.70 3.68 4.77 6.36 11.34	2.67 3.63 4.69 6.23 10.97	2.64 3.59 4.62 6.11 10.66
	3	2.92 4.07 5.42 7.59 15.83	2.81 3.86 5.08 6.99 13.90	2.73 3.71 4.83 6.55 12.55	2.66 3.59 4.63 6.22 11.56	2.61 3.49 4.47 5.95 10.80	2.56 3.41 4.35 5.74 10.21	2.52 3.34 4.24 5.56 9.73	2.49 3.29 4.15 5.42 9.34	2.46 3.24 4.08 5.29 9.01	2.44 3.20 4.01 5.19 8.73
egrees of fr	4	2.81 3.84 5.05 7.01 14.39	2.69 3.63 4.72 6.42 12.56	2.61 3.48 4.47 5.99 11.28	2.54 3.36 4.28 5.67 10.35	2.48 3.26 4.12 5.41 9.63	2.43 3.18 4.00 5.21 9.07	2.39 3.11 5.04 8.62	2.36 3.06 3.80 8.25	2.33 3.01 3.73 4.77 7.94	2.31 2.96 3.66 4.67 7.68
Degrees of freedom in the	10	2.73 3.69 4.82 6.63 13.48	2.61 3.48 4.48 6.06 11.71	252 3.33 4.24 5.64 10.48	2,45 3,20 4,04 9,58	2.33 3.89 8.89 8.89 8.89 8.89	235 3.03 3.77 8.86 8.35	231 3.66 7.92 7.92	2.27 2.90 3.58 4.56 7.57	222 285 3.50 4.44 7.27	222 281 3.44 4.34 7.02
e numerator	9	2.67 3.58 4.65 6.37 12.86	2.55 3.37 4.32 5.80 11.13	2.46 3.22 4.07 5.39 9.93	2.39 3.09 3.88 5.07	2.33 3.00 3.73 4.82 8.38	2.28 2.92 3.60 4.62 7.86	2.24 3.50 3.50 7.44	2.21 2.79 3.41 4.32 7.09	2.18 2.74 3.34 4.20 6.80	2.15 2.70 3.28 4.10 6.56
	7	2.62 3.50 4.53 6.18 12.40	2.51 3.29 4.20 5.61 10.70	2.41 3.14 5.20 9.52	2.34 3.01 3.76 8.489 8.66	2.28 3.61 8.64 8.00	223 3.48 7.49 7.49	2.19 2.76 3.38 4.28 7.08	2.16 2.71 3.29 4.14 6.74	22.64 3.22 4.03 4.03 4.03	220 220 3.38 6.23
	60	2.59 3.44 6.03 12.05	2.47 3.23 4.10 5.47 10.37	238 3.85 9.20 9.20	2,30 2,95 3,66 8,74 8,35	2.24 3.51 4.50 7.71	2.20 2.77 3.39 4.30 7.21	2.15 2.70 3.29 4.14 6.80	2.12 2.64 3.20 4.00 6.47	2,09 2,59 3,12 3,89 6,19	22.25 2.25 2.35 3.35 3.35 3.35 3.35 3.35
	σ	2.56 3.39 4.36 5.91 11.77	2.44 3.18 4.03 5.35 10.11	2.35 3.02 3.78 8.94 8.96	2.27 2.90 3.59 4.63 8.12	2.21 2.80 3.44 4.39 4.39 4.39	2.16 2.71 3.31 4.19 6.98	2.12 2.65 3.21 4.03 6.58	2.09 2.59 3.12 3.89 6.26	2.54 3.05 3.78 5.98	2,22 2,24 3,58 5,78 5,78

I			1000	2.30 2.93 3.68 9.87 9.36	2.16 2.71 3.34 4.32 7.84	2.06 3.09 3.92 6.78	2.89 2.89 3.61 6.02	2.30 2.73 3.37 5.44	1.85 2.21 2.60 3.18 4.99	1.80 2.14 3.02 4.62	1.76 2.07 2.88 4.33	1.72 2.02 2.32 2.76 4.08	1.69 2.26 2.66 3.87
ı			120	2.32 2.97 3.73 4.95 9.53	2.18 2.75 3.39 8.00	2.08 2.58 3.14 4.00 6.94	2.00 2.45 2.94 3.69 6.18	1.93 2.34 2.79 3.45 5.59	1.88 2.25 2.66 3.25 5.14	1.83 2.18 2.55 3.09 4.77	2.11 2.46 2.96 4.47	1.75 2.06 2.38 2.84 4.23	1.72 2.01 2.32 2.75 4.02
I			09	2.34 3.01 3.78 5.03 9.73	2.21 2.79 3.45 4.48 8.19	2.11 2.62 3.20 4.08 7.12	2.03 2.49 3.00 3.78 6.35	1.96 2.38 2.85 3.54 5.76	1.90 2.30 2.72 3.34 5.30	1.86 2.22 2.61 3.18 4.94	1.82 2.16 2.52 3.05 4.64	2.11 2.45 2.93 4.39	1.75 2.06 2.38 2.83 4.18
I			20	2.35 3.02 3.81 5.07 9.80	2.22 2.80 3.47 8.25 8.26	2.12 2.64 3.22 4.12 7.19	2.04 3.03 3.81 6.42	2.40 2.87 3.57 5.83	2.31 2.74 3.38 5.37	2.22 2.24 3.22 5.00	1.83 2.18 2.55 3.08 4.70	2.12 2.47 2.97 4.45	2.08 2.41 2.87 4.24
I		umerator	40	2.36 3.04 3.84 5.12 9.92	2.2 2.88 3.51 4.57 8.37	2.13 2.66 3.26 4.17 7.30	2.53 3.06 5.58 6.52	2.43 2.91 3.62 5.93	2.34 2.78 3.43 5.47	2.27 2.67 3.27 5.10	2.20 2.20 2.59 3.13 4.80	2.15 2.51 3.02 4.54	22.22 22.44 23.92 24.33
I		om in the m	3.0	2.38 3.08 3.89 5.20 10.11	2,2,2,4,8 2,8,5,6,8 2,8,5,6,8	2.16 2.70 3.31 7.47	2.08 3.12 3.94 6.68	2.01 2.96 3.70 6.09	2.38 2.38 3.51 5.63	2.31 2.73 3.35 5.25	2.25 2.25 3.21 4.52 8.45	2.19 2.57 3.10 4.70	2.15 2.15 3.00 4.48
		Degrees of freedom in the numerator	22	2.40 3.11 5.26 10.26	2.27 2.89 3.60 8.471 8.69	217 273 3.35 4431 7.60	2.40 2.40 3.16 4.01 6.81	2.03 2.50 3.01 5.22	1.98 2.41 2.88 3.57 5.75	1.93 2.34 2.78 3.41 5.38	1.89 2.28 3.28 5.07	1.86 2.23 2.61 3.16 4.82	1.83 2.55 3.07 4.60
		Deg	20	2.42 3.15 4.00 5.36 10.48	230 294 3.67 4.81 8.90	2.20 2.77 3.42 4.41 7.80	2.12 2.65 3.23 4.10 7.01	2.06 2.54 3.07 3.86 6.40	2.95 2.95 3.66 5.93	1.96 2.39 2.84 3.51 5.56	1.92 2.33 2.76 3.37 5.25	1.89 2.28 3.26 4.99	1.86 2.23 2.62 3.16 4.78
	ontinued)		15	2.46 3.22 4.10 5.52 10.84	2.34 3.01 3.77 4.96 9.24	2.24 2.25 3.52 4.56 8.13	2.17 2.72 3.33 4.25 7.32	2.10 2.62 3.18 4.01 6.71	2.05 2.53 3.05 3.82 6.23	2.01 2.95 3.66 5.85	2.40 2.86 3.52 5.54 5.54	2.35 2.79 3.41 5.27	1.91 2.31 3.31 5.05
	ABLE E critical values (continued)		12	2.50 3.28 4.20 5.67 11.19	2.38 3.07 3.87 5.11	2.28 2.91 3.62 4.71 8.45	2.22 2.73 3.43 7.63	2.15 2.69 3.28 4.16 7.00	2.10 2.60 3.15 3.96 6.52	2.05 2.53 3.05 3.80 6.13	2.02 2.48 2.96 3.67 5.81	2.42 2.89 3.55 5.55	1.96 2.38 2.82 3.46 5.32
144	F critica		10	2.54 3.35 4.30 5.81 11.54	2.42 3.14 3.96 5.26 9.89	23.2 2.98 3.72 8.485 75 75	2.25 2.85 3.53 7.92	2.19 2.75 3.37 4.30 7.29	2.14 2.67 3.25 4.10 6.80	2.10 2.60 3.15 3.94 6.40	2.06 2.54 3.06 3.80 6.08	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	2,245 2,245 5,59 5,59 5,59