Tutorial - 1

MA2.101: Linear Algebra (Spring 2022)

March 31, 2022

1 Fields and sub-fields

1.1

Let F be a set which contains exactly two elements, 0 and 1. We define addition and multiplication operations $(+,\cdot)$ by the tables:

+	0	1		0	1
0	0	1	0	0	0
1	1	0	1	0	1

Verify that $(F, +, \cdot)$ is a field.

1.2

Which of the following sets of real numbers are subfields of the field \mathbb{R} ?

- $\bullet \ \mathbb{Q},$ the set of rational numbers.
- \mathbb{Z} , the set of integers.
- $\{\cdots, \frac{1}{4}, \frac{1}{2}, 1, 2, 4, \cdots\}$, the set of integer powers of 2.
- \bullet \mathbb{R} , the set of all real numbers.
- $\{0\}$, the singleton set consisting of the number zero.
- {0, 1}

2 Systems of Equations

Let F be the field of complex numbers. In each of the following examples, are the two systems of linear equations equivalent? If so, express each equation in each system as a linear combination of the equations in the other system.

2.1 Example 1

$$x_1 - x_2 = 0$$
 $3x_1 + x_2 = 0$ $2x_1 + x_2 = 0$ $x_1 + x_2 = 0$

2.2 Example 2

$$-x_1 + x_2 + 4x_3 = 0$$

$$x_1 + 3x_2 + 8x_3 = 0$$

$$x_1 + 3x_2 + 5x_3 = 0$$

$$x_2 + 3x_3 = 0$$

$$\frac{1}{2}x_1 + x_2 + \frac{5}{2}x_3 = 0$$