Program:

df.head()

```
#Importing the required libraries
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

#importing the dataset
df = pd.read_csv("uber.csv")
```

	Unnamed: 0	key	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count
0	24238194	2015-05-07 19:52:06.0000003	7.5	2015-05-07 19:52:06 UTC	-73.999817	40.738354	-73.999512	40.723217	1
1	27835199	2009-07-17 20:04:56.0000002	7.7	2009-07-17 20:04:56 UTC	-73.994355	40.728225	-73.994710	40.750325	1
2	44984355	2009-08-24 21:45:00.00000061	12.9	2009-08-24 21:45:00 UTC	-74.005043	40.740770	-73.962565	40.772647	1
3	25894730	2009-06-26 08:22:21.0000001	5.3	2009-06-26 08:22:21 UTC	-73.976124	40.790844	-73.965316	40.803349	3
4	17610152	2014-08-28 17:47:00.000000188	16.0	2014-08-28 17:47:00 UTC	-73.925023	40.744085	-73.973082	40.761247	5

df.info() #To get the required information of the dataset

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200000 entries, 0 to 199999
Data columns (total 9 columns):

Daca	COTAMINE (COCAT 2 C	O = amin .	
#	Column	Non-Null Count	Dtype
0	Unnamed: 0	200000 non-null	int64
1	key	200000 non-null	object
2	fare_amount	200000 non-null	float64
3	pickup datetime	200000 non-null	object
4	pickup_longitude	200000 non-null	float64
5	pickup_latitude	200000 non-null	float64
6	dropoff_longitude	199999 non-null	float64
7	dropoff_latitude	199999 non-null	float64
8	passenger count	200000 non-null	int64

dtypes: float6 $\overline{4}$ (5), int64(2), object(2)

memory usage: 13.7+ MB

 ${\tt df.columns}$ #TO get number of columns in the dataset

```
Index(['Unnamed: 0', 'key', 'fare_amount', 'pickup_datetime',
'pickup_longitude', 'pickup_latitude', 'dropoff_longitude',
'dropoff_latitude', 'passenger_count'], dtype='object')
```

df = df.drop(['Unnamed: 0', 'key'], axis= 1) #To drop unnamed column as it
 isn't required

df.head()

0	7.5 7.7	2015-05-07 19:52:06 UTC 2009-07-17 20:04:56 UTC	-73.999817 -73.994355	40.738354	-73.999512	40.723217	1
1	7.7	2009-07-17 20:04:56 UTC	-73 994355	10 700005			
			-70.001000	40.728225	-73.994710	40.750325	1
2	12.9	2009-08-24 21:45:00 UTC	-74.005043	40.740770	-73.962565	40.772647	1
3	5.3	2009-06-26 08:22:21 UTC	-73.976124	40.790844	-73.965316	40.803349	3
4	16.0	2014-08-28 17:47:00 UTC	-73.925023	40.744085	-73.973082	40.761247	5

```
df.shape #To get the total (Rows, Columns)
(200000, 7)
```

df.dtypes #To get the type of each column
fare_amount float64

pickup datetime object

pickup longitude float64

pickup latitude float64

dropoff_longitude float64

dropoff latitude float64

passenger count int64

dtype: object

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200000 entries, 0 to 199999
Data columns (total 7 columns):

Daca	COTAMINE (COCAT / C	0 ± amin 0 / •	
#	Column	Non-Null Count	Dtype
0	fare_amount	200000 non-null	float64
1	<pre>pickup_datetime</pre>	200000 non-null	object
2	pickup_longitude	200000 non-null	float64
3	pickup_latitude	200000 non-null	float64
4	dropoff longitude	199999 non-null	float64

```
5 dropoff_latitude 199999 non-null float64
6 passenger_count 200000 non-null int64
```

dtypes: $float6\overline{4}(5)$, int64(1), object(1)

memory usage: 10.7+ MB

df.describe() #To get statistics of each columns

	fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count
count	200000.000000	200000.000000	200000.000000	199999.000000	199999.000000	200000.000000
mean	11.359955	-72.527638	39.935885	-72.525292	39.923890	1.684535
std	9.901776	11.437787	7.720539	13.117408	6.794829	1.385997
min	-52.000000	-1340.648410	-74.015515	-3356.666300	-881.985513	0.000000
25%	6.000000	-73.992065	40.734796	-73.991407	40.733823	1.000000
50%	8.500000	-73.981823	40.752592	-73.980093	40.753042	1.000000
75%	12.500000	-73.967154	40.767158	-73.963658	40.768001	2.000000
max	499.000000	57.418457	1644.421482	1153.572603	872.697628	208.000000

```
df.isnull().sum()
fare amount 0
pickup_datetime 0
pickup longitude 0
pickup latitude 0
dropoff_longitude 1
dropoff latitude 1
passenger count 0
dtype: int64
df['dropoff latitude'].fillna(value=df['dropoff latitude'].mean(),inplace
df['dropoff_longitude'].fillna(value=df['dropoff_longitude'].median(),inpl
ace = True)
df.isnull().sum()
fare amount 0
pickup datetime 0
pickup longitude 0
pickup latitude 0
```

```
dropoff longitude 0
dropoff latitude 0
passenger count 0
dtype: int64
df.dtypes
fare amount float64
pickup datetime object
pickup longitude float64
pickup latitude float64
dropoff longitude float64
dropoff latitude float64
passenger count int64
dtype: object
df.plot(kind = "box", subplots = True, layout = (7,2), figsize=(15,20)) #Boxp
lot to check the outliers
fare amount AxesSubplot (0.125,0.787927;0.352273x0.0920732)
pickup longitude AxesSubplot(0.547727,0.787927;0.352273x0.0920732)
pickup latitude AxesSubplot(0.125,0.677439;0.352273x0.0920732)
dropoff longitude AxesSubplot(0.547727,0.677439;0.352273x0.0920732)
dropoff latitude AxesSubplot(0.125,0.566951;0.352273x0.0920732)
passenger count AxesSubplot(0.547727,0.566951;0.352273x0.0920732)
hour AxesSubplot(0.125,0.456463;0.352273x0.0920732)
day AxesSubplot (0.547727, 0.456463; 0.352273x 0.0920732)
month AxesSubplot (0.125, 0.345976; 0.352273x0.0920732)
year AxesSubplot(0.547727,0.345976;0.352273x0.0920732)
dayofweek AxesSubplot (0.125, 0.235488; 0.352273x0.0920732)
dtype: object
```


df.plot(kind = "box", subplots = True, layout = (7,2), figsize=(15,20)) #Boxp
lot shows that dataset is free from outliers

fare_amount AxesSubplot(0.125,0.787927;0.352273x0.0920732)
pickup_longitude AxesSubplot(0.547727,0.787927;0.352273x0.0920732)
pickup_latitude AxesSubplot(0.125,0.677439;0.352273x0.0920732)
dropoff_longitude AxesSubplot(0.547727,0.677439;0.352273x0.0920732)
dropoff_latitude AxesSubplot(0.125,0.566951;0.352273x0.0920732)
passenger_count AxesSubplot(0.547727,0.566951;0.352273x0.0920732)

hour AxesSubplot(0.125,0.456463;0.352273x0.0920732)

day AxesSubplot(0.547727,0.456463;0.352273x0.0920732)

month AxesSubplot(0.125,0.345976;0.352273x0.0920732)

year AxesSubplot(0.547727,0.345976;0.352273x0.0920732)

dayofweek AxesSubplot (0.125, 0.235488; 0.352273x0.0920732)

dtype: object

#pip install haversine

import haversine as hs #Calculate the distance using Haversine to calcula te the distance between to points. Can't use Eucladian as it is for flat s urface.

```
print(travel_dist)
df['dist_travel_km'] = travel_dist
df.head()

IOPub data rate exceeded.
The notebook server will temporarily stop sending output
to the client in order to avoid crashing it.
To change this limit, set the config variable
`--NotebookApp.iopub_data_rate_limit`.

Current values:
NotebookApp.iopub_data_rate_limit=1000000.0 (bytes/sec)
NotebookApp.rate_limit_window=3.0 (secs)
```

fare_amount pickup_longitude pickup_latitude dropoff_longitude dropoff_latitude passenger_count hour day month year dayofweek dist_travel_km

0	7.5	-73.999817	40.738354	-73.999512	40.723217	1.0	19	7	5 2015	3	1.683325
1	7.7	-73.994355	40.728225	-73.994710	40.750325	1.0	20	17	7 2009	4	2.457593
2	12.9	-74.005043	40.740770	-73.962565	40.772647	1.0	21	24	8 2009	0	5.036384
3	5.3	-73.976124	40.790844	-73.965316	40.803349	3.0	8	26	6 2009	4	1.661686
4	16.0	-73.929786	40.744085	-73.973082	40.761247	3.5	17	28	8 2014	3	4.116088

```
#Uber doesn't travel over 130 kms so minimize the distance
df= df.loc[(df.dist travel km \ge 1) | (df.dist travel km \le 130)]
print("Remaining observastions in the dataset:", df.shape)
Remaining observastions in the dataset: (200000, 12)
#Finding inccorect latitude (Less than or greater than 90) and longitude (
greater than or less than 180)
incorrect coordinates = df.loc[(df.pickup latitude > 90) | (df.pickup latit
ude < -90)
                                    (df.dropoff latitude > 90) | (df.dropoff
latitude < -90) |
                                    (df.pickup longitude > 180) | (df.pickup
longitude < -180) |
                                    (df.dropoff longitude > 90) | (df.dropof
f longitude < -90)
df.drop(incorrect coordinates, inplace = True, errors = 'ignore')
df.head()
```

fare_amount pickup_longitude pickup_latitude dropoff_longitude dropoff_latitude passenger_count hour day month year dayofweek dist_travel_km 40.738354 7.5 40.723217 5 2015 -73.999817 -73.999512 1.683325 7.7 -73.994355 40.728225 -73.994710 40.750325 20 17 7 2009 2.457593 1 1.0 4 2 12.9 -74.005043 40.740770 -73.962565 40.772647 21 24 8 2009 0 5.036384 1.0 3 5.3 -73.976124 40.790844 -73.965316 40.803349 3.0 8 26 6 2009 4 1.661686 17 28 3 16.0 -73.929786 40.744085 -73.973082 40.761247 3.5 8 2014 4.116088

```
df.isnull().sum()
fare_amount 0

pickup_longitude 0

pickup_latitude 0

dropoff_longitude 0

dropoff_latitude 0

passenger_count 0

hour 0

day 0

month 0

year 0

dayofweek 0

dist_travel_km 0

dtype: int64
```

sns.heatmap(df.isnull()) #Free for null values

corr = df.corr() #Function to find the correlation

corr

	fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count	hour	day	month	year	dayofweek	dist_travel_k
fare_amount	1.000000	0.154069	-0.110842	0.218675	-0.125898	0.015778	-0.023623	0.004534	0.030817	0.141277	0.013652	0.7863
pickup_longitude	0.154069	1.000000	0.259497	0.425619	0.073290	-0.013213	0.011579	-0.003204	0.001169	0.010198	-0.024652	0.0484
pickup_latitude	-0.110842	0.259497	1.000000	0.048889	0.515714	-0.012889	0.029681	-0.001553	0.001562	-0.014243	-0.042310	-0.0733
dropoff_longitude	0.218675	0.425619	0.048889	1.000000	0.245667	-0.009303	-0.046558	-0.004007	0.002391	0.011346	-0.003336	0.155
dropoff_latitude	-0.125898	0.073290	0.515714	0.245667	1.000000	-0.006308	0.019783	-0.003479	-0.001193	-0.009603	-0.031919	-0.052
passenger_count	0.015778	-0.013213	-0.012889	-0.009303	-0.006308	1.000000	0.020274	0.002712	0.010351	-0.009749	0.048550	0.009
hour	-0.023623	0.011579	0.029681	-0.046558	0.019783	0.020274	1.000000	0.004677	-0.003926	0.002156	-0.086947	-0.035
day	0.004534	-0.003204	-0.001553	-0.004007	-0.003479	0.002712	0.004677	1.000000	-0.017360	-0.012170	0.005617	0.001
month	0.030817	0.001169	0.001562	0.002391	-0.001193	0.010351	-0.003926	-0.017360	1.000000	-0.115859	-0.008786	0.010
year	0.141277	0.010198	-0.014243	0.011346	-0.009603	-0.009749	0.002156	-0.012170	-0.115859	1.000000	0.006113	0.022
dayofweek	0.013652	-0.024652	-0.042310	-0.003336	-0.031919	0.048550	-0.086947	0.005617	-0.008786	0.006113	1.000000	0.030
dist_travel_km	0.786385	0.048446	-0.073362	0.155191	-0.052701	0.009884	-0.035708	0.001709	0.010050	0.022294	0.030382	1.000

fig,axis = plt.subplots(figsize = (10,6))
sns.heatmap(df.corr(),annot = True) #Correlation Heatmap (Light values mea
ns highly correlated)

Program -

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt #Importing the libraries

df = pd.read_csv("Churn_Modelling.csv")
df.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	1
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57	1
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	0
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	0

df.shape (10000, 14)

df.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881	0.203700
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818	0.402769
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000	0.000000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000	0.000000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000	0.000000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500	0.000000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.480000	1.000000

df.isnull()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	${\tt EstimatedSalary}$	Exited
0	False	False	False	False	False	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False	False	False	False	False	False
9995	False	False	False	False	False	False	False	False	False	False	False	False	False	False
9996	False	False	False	False	False	False	False	False	False	False	False	False	False	False
9997	False	False	False	False	False	False	False	False	False	False	False	False	False	False
9998	False	False	False	False	False	False	False	False	False	False	False	False	False	False
9999	False	False	False	False	False	False	False	False	False	False	False	False	False	False

10000 rows × 14 columns

df.isnull().sum()

RowNumber 0

CustomerId 0

Surname 0

CreditScore 0

Geography 0

```
Gender 0
Age 0
Tenure 0
Balance 0
NumOfProducts 0
HasCrCard 0
IsActiveMember 0
EstimatedSalary 0
Exited 0
dtype: int64
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):
# Column
                 Non-Null Count Dtype
0 RowNumber
                   10000 non-null int64
1 CustomerId
                  10000 non-null int64
2 Surname
                 10000 non-null object
3 CreditScore
                 10000 non-null int64
4 Geography
                  10000 non-null object
                10000 non-null object
5 Gender
6 Age
               10000 non-null int64
7 Tenure
                10000 non-null int64
```

10000 non-null float64

10000 non-null int64

8 Balance

9 NumOfProducts

10 HasCrCard 10000 non-null int64

11 IsActiveMember 10000 non-null int64

12 EstimatedSalary 10000 non-null float64

13 Exited 10000 non-null int64

dtypes: float64(2), int64(9), object(3)

memory usage: 1.1+ MB

df.dtypes

RowNumber int64

CustomerId int64

Surname object

CreditScore int64

Geography object

Gender object

Age int64

Tenure int64

Balance float64

NumOfProducts int64

HasCrCard int64

IsActiveMember int64

EstimatedSalary float64

Exited int64

dtype: object

df.columns

Index(['RowNumber', 'CustomerId', 'Surname', 'CreditScore', 'Geography', 'Gender', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard', 'IsActiveMember', 'EstimatedSalary', 'Exited'], dtype='object')

df = df.drop(['RowNumber', 'Surname', 'CustomerId'], axis= 1) #Dropping the unnecessary colu mns

df.head()

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	619	France	Female	42	2	0.00	1	1	1	101348.88	1
1	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0
2	502	France	Female	42	8	159660.80	3	1	0	113931.57	1
3	699	France	Female	39	1	0.00	2	0	0	93826.63	0
4	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	0

```
def visualization(x, y, xlabel):
    plt.figure(figsize=(10,5))
    plt.hist([x, y], color=['red', 'green'], label = ['exit', 'not_exit'])
    plt.xlabel(xlabel,fontsize=20)
    plt.ylabel("No. of customers", fontsize=20)
    plt.legend()

df_churn_exited = df[df['Exited']==1]['Tenure']
df_churn_not_exited = df[df['Exited']==0]['Tenure']

visualization(df_churn_exited, df_churn_not_exited, "Tenure")
```


df_churn_exited2 = df[df['Exited']==1]['Age']
df_churn_not_exited2 = df[df['Exited']==0]['Age']

visualization(df_churn_exited2, df_churn_not_exited2, "Age")

Program-

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
% matplotlib inline
import warnings
warnings.filterwarnings('ignore')
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn import metrics
df=pd.read_csv('diabetes.csv')
df.columns
Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'Pedigree', 'Age',
'Outcome'], dtype='object')
//Check for null values. If present remove null values from the dataset
df.isnull().sum()
Pregnancies 0
Glucose 0
BloodPressure 0
SkinThickness 0
Insulin 0
BMI 0
Pedigree 0
Age 0
Outcome 0
dtype: int64
```

Output-

```
//Outcome is the label/target, other columns are features.
X = df.drop('Outcome',axis = 1)
y = df['Outcome']
from sklearn.preprocessing import scale
X = scale(X)
# split into train and test
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 42)
print("Confusion matrix: ")
cs = metrics.confusion_matrix(y_test,y_pred)
print(cs)
Output-
Confusion matrix:
[[123 28]
[ 37 43]]
print("Acccuracy ",metrics.accuracy_score(y_test,y_pred))
Output-
Acccuracy 0.7186147186147186
/*Classification error rate: proportion of instances misclassified over the whole set of instances.
Error rate is calculated as the total number of two incorrect predictions (FN + FP) divided by the
total number of a dataset (examples in the dataset.
Also error_rate = 1- accuracy*/
total_misclassified = cs[0,1] + cs[1,0]
print(total_misclassified)
total_examples = cs[0,0]+cs[0,1]+cs[1,0]+cs[1,1]
```

```
print(total_examples)
print("Error rate",total_misclassified/total_examples)
print("Error rate ",1-metrics.accuracy_score(y_test,y_pred))
print("Precision score",metrics.precision_score(y_test,y_pred))
```

Output-

Precision score 0.6056338028169014

print("Recall score ",metrics.recall_score(y_test,y_pred))

Output-

Recall score 0.537

print("Classification report ",metrics.classification_report(y_test,y_pred))

Output-

Classification report precision recall f1-score support

0 0.77 0.81 0.79 151 1 0.61 0.54 0.57 80

accuracy 0.72 231 macro avg 0.69 0.68 0.68 231 weighted avg 0.71 0.72 0.71 231

Program-

import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt

df = pd.read_csv("sales_data_sample.csv")

df.head()

df.dtypes

ORDERNUMBER int64

QUANTITYORDERED int64

PRICEEACH float64

ORDERLINENUMBER int64

SALES float64

ORDERDATE object

STATUS object

QTR_ID int64

MONTH_ID int64

YEAR_ID int64

PRODUCTLINE object MSRP int64

PRODUCTCODE object

CUSTOMERNAME object

PHONE object

ADDRESSLINE1 object

ADDRESSLINE2 object

CITY object

STATE object

POSTALCODE object

COUNTRY object

TERRITORY object

CONTACTLASTNAME object

CONTACTFIRSTNAME object

DEALSIZE object

dtype: object

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 2823 entries, 0 to 2822 Data columns (total 25 columns):

Column Non-Null Count Dtype

--- -----

- 0 ORDERNUMBER 2823 non-null int64
- 1 QUANTITYORDERED 2823 non-null int64
- 2 PRICEEACH 2823 non-null float64
- 3 ORDERLINENUMBER 2823 non-null int64
- 4 SALES 2823 non-null float64
- 5 ORDERDATE 2823 non-null object
- 6 STATUS 2823 non-null object
- 7 QTR ID 2823 non-null int64
- 8 MONTH_ID 2823 non-null int64
- 9 YEAR_ID 2823 non-null int64
- 10 PRODUCTLINE 2823 non-null object
- 11 MSRP 2823 non-null int64
- 12 PRODUCTCODE 2823 non-null object
- 13 CUSTOMERNAME 2823 non-null object

14 PHONE 2823 non-null object

15 ADDRESSLINE1 2823 non-null object

16 ADDRESSLINE2 302 non-null object

17 CITY 2823 non-null object

18 STATE 1337 non-null object

19 POSTALCODE 2747 non-null object

20 COUNTRY 2823 non-null object

21 TERRITORY 1749 non-null object

22 CONTACTLASTNAME 2823 non-null object

23 CONTACTFIRSTNAME 2823 non-null object

24 DEALSIZE 2823 non-null object

dtypes: float64(2), int64(7), object(16)

memory usage: 551.5+ KB

plt.figure(figsize = (30,26)) sns.heatmap(df.corr(),annot = True)

df_drop = ['ADDRESSLINE1', 'ADDRESSLINE2', 'STATUS', 'POSTALCODE', 'CITY', 'TERR
ITORY', 'PHONE', 'STATE', 'CONTACTFIRSTNAME', 'CONTACTLASTNAME', 'CUSTOM
ERNAME', 'ORDERNUMBER']

df = df.drop(df_drop, axis=1)

df.head()

Q	QUANTITYORDERED	PRICEEACH	ORDERLINENUMBER	SALES	ORDERDATE	QTR_ID	MONTH_ID	YEAR_ID	PRODUCTLINE	MSRP	PRODUCTCODE	COUNTRY	DEALSIZ
0	30	95.70	2	2871.00	2/24/2003 0:00	1	2	2003	Motorcycles	95	S10_1678	USA	Sma
1	34	81.35	5	2765.90	5/7/2003 0:00	2	5	2003	Motorcycles	95	S10_1678	France	Sma
2	41	94.74	2	3884.34	7/1/2003 0:00	3	7	2003	Motorcycles	95	S10_1678	France	Mediu
3	45	83.26	6	3746.70	8/25/2003 0:00	3	8	2003	Motorcycles	95	S10_1678	USA	Mediu
4	49	100.00	14	5205.27	10/10/2003 0:00	4	10	2003	Motorcycles	95	S10_1678	USA	Mediu

df.shape (2823, 13)

df.isnull().sum()
QUANTITYORDERED 0

PRICEEACH 0

ORDERLINENUMBER 0

SALES 0

ORDERDATE 0

QTR_ID 0

```
MONTH_ID 0
YEAR_ID 0
PRODUCTLINE 0
MSRP 0
PRODUCTCODE 0
COUNTRY 0
DEALSIZE 0
dtype: int64
df.dtypes
QUANTITYORDERED int64
PRICEEACH float64
ORDERLINENUMBER int64
SALES float64
ORDERDATE object
QTR_ID int64
MONTH_ID int64
YEAR_ID int64
PRODUCTLINE object
MSRP int64
PRODUCTCODE object
COUNTRY object
DEALSIZE object
dtype: object
country = pd.get_dummies(df['COUNTRY'])
productline = pd.get_dummies(df['PRODUCTLINE'])
Dealsize = pd.get_dummies(df['DEALSIZE'])
df = pd.concat([df,country,productline,Dealsize], axis = 1)
```

df.head()

	QUANTITYORDERED	PRICEEACH	ORDERLINENUMBER	SALES	ORDERDATE	QTR_ID	MONTH_ID	YEAR_ID	PRODUCTLINE	MSRP	 Classic Cars	Motorcycles	Planes	Ships	Trains	Trucks and Buses	Vintage Cars	Large
0	30	95.70	2	2871.00	2/24/2003 0:00	1	2	2003	Motorcycles	95	 0	1	0	0	0	0	0	0
1	34	81.35	5	2765.90	5/7/2003 0:00	2	5	2003	Motorcycles	95	 0	1	0	0	0	0	0	0
2	41	94.74	2	3884.34	7/1/2003 0:00	3	7	2003	Motorcycles	95	 0	1	0	0	0	0	0	0
3	45	83.26	6	3746.70	8/25/2003 0:00	3	8	2003	Motorcycles	95	 0	1	0	0	0	0	0	0
4	49	100.00	14	5205.27	10/10/2003 0:00	4	10	2003	Motorcycles	95	 0	1	0	0	0	0	0	0

df_drop = ['COUNTRY','PRODUCTLINE','DEALSIZE']
df = df.drop(df_drop, axis=1)

df.dtypes

QUANTITYORDERED int64

PRICEEACH float64

ORDERLINENUMBER int64

SALES float64

ORDERDATE object

QTR_ID int64

MONTH_ID int64

YEAR_ID int64

MSRP int64

PRODUCTCODE object

Australia uint8

Austria uint8

Belgium uint8

Canada uint8

Denmark uint8

Finland uint8

France uint8
Germany uint8
Ireland uint8
Italy uint8
Japan uint8
Norway uint8
Philippines uint8
Singapore uint8
Spain uint8
Sweden uint8
Switzerland uint8
UK uint8
USA uint8
Classic Cars uint8
Motorcycles uint8
Planes uint8
Ships uint8
Trains uint8
Trucks and Buses uint8
Vintage Cars uint8
Large uint8 Medium uint8
Small uint8
dtype: object
df['PRODUCTCODE'] = pd.Categorical(df['PRODUCTCODE']).codes
df.dtypes QUANTITYORDERED int64
PRICEEACH float64

ORDERLINENUMBER int64 SALES float64 ORDERDATE object QTR_ID int64 MONTH_ID int64 YEAR_ID int64 MSRP int64 PRODUCTCODE int8 Australia uint8 Austria uint8 Belgium uint8 Canada uint8 Denmark uint8 Finland uint8 France uint8 Germany uint8 Ireland uint8 Italy uint8 Japan uint8 Norway uint8 Philippines uint8 Singapore uint8 Spain uint8 Sweden uint8 Switzerland uint8 UK uint8 USA uint8 Classic Cars uint8

Motorcycles uint8
Planes uint8
Ships uint8
Trains uint8
Trucks and Buses uint8
Vintage Cars uint8
Large uint8
Medium uint8
Small uint8
dtype: object
df.drop('ORDERDATE', axis=1, inplace=True)
df.dtypes QUANTITYORDERED int64
PRICEEACH float64
ORDERLINENUMBER int64
SALES float64
QTR_ID int64
MONTH_ID int64
YEAR_ID int64
MSRP int64
PRODUCTCODE int8
Australia uint8
Austria uint8
Belgium uint8
Canada uint8
Denmark uint8
Finland uint8

Ireland uint8 Italy uint8 Japan uint8 Norway uint8 Philippines uint8 Singapore uint8 Spain uint8 Sweden uint8 Switzerland uint8 UK uint8 USA uint8 Classic Cars uint8 Motorcycles uint8 Planes uint8 Ships uint8 Trains uint8 Trucks and Buses uint8 Vintage Cars uint8 Large uint8 Medium uint8 Small uint8 dtype: object from sklearn.cluster import KMeans

WCSS = [] # Withhin Cluster Sum of Squares from the centroid

France uint8

Germany uint8

```
distortions = []
K = range(1,10)
for k in K:
    kmeanModel = KMeans(n_clusters=k)
    kmeanModel.fit(df)
    distortions.append(kmeanModel.inertia_)

plt.figure(figsize=(16,8))
plt.plot(K, distortions, 'bx-')
plt.xlabel('k')
plt.ylabel('Distortion')
plt.title('The Elbow Method showing the optimal k')
plt.show()
```



```
kmeanModel = KMeans(n_clusters=3)
y_kmeans = kmeanModel.fit_predict

print(y_kmeans)

plt.figure(figsize = (30,26))
sns.heatmap(df.corr(),annot = True)
```

pip install yellowbrick

```
from yellowbrick.cluster import KElbowVisualizer
model = KMeans()
visualizer = KElbowVisualizer(model,k=(1,0),timings = False)
visualizer.fit(df)
visualizer.show()
```

df.head()

	QUANTITYORDERED	PRICEEACH	ORDERLINENUMBER	SALES	QTR_ID	MONTH_ID	YEAR_ID	MSRP	PRODUCTCODE	Australia	 Classic Cars	Motorcycles	Planes	Ships	Trains	Trucks and Buses	Vintage Cars	Large
0	30	95.70	2	2871.00	1	2	2003	95	0	0	 0	1	0	0	0	0	0	0
1	34	81.35	5	2765.90	2	5	2003	95	0	0	 0	1	0	0	0	0	0	0
2	41	94.74	2	3884.34	3	7	2003	95	0	0	 0	1	0	0	0	0	0	0
3	45	83.26	6	3746.70	3	8	2003	95	0	0	 0	1	0	0	0	0	0	0
4	49	100.00	14	5205.27	4	10	2003	95	0	0	 0	1	0	0	0	0	0	0
5 ro	ws × 38 columns																	

from sklearn.preprocessing import Normalizer

df_scaled = Normalizer(df)

 $df_x = pd.DataFrame(df_scaled, columns = df.columns)$

Mini Project-

Build a machine learning model that predicts the type of people who survived the Titanic shipwreck using passenger data (i.e. name, age, gender, socio-economic class, etc.).

Importing the Libraries

linear algebra

import numpy as np

data processing

import pandas as pd

data visualization

import seaborn as sns

% matplotlib inline

from matplotlib import pyplot as plt

from matplotlib import style

Algorithms

from sklearn import linear_model

from sklearn.linear_model import Logistic Regression

from sklearn.ensemble import RandomForestClassifier

from sklearn.linear_model import Perceptron

from sklearn.linear model import SGDClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.neighbors import KNeighbors Classifier

from sklearn.svmimport SVC, LinearSVC

from sklearn.naive_bayes import GaussianNB

Getting the Data

test_df = pd.read_csv("test.csv")

train_df = pd.read_csv("train.csv")

Data Exploration/Analysis train_df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId
               891 non-null int64
Survived
               891 non-null int64
Pclass
               891 non-null int64
Name
               891 non-null object
               891 non-null object
Sex
               714 non-null float64
Age
               891 non-null int64
SibSp
Parch
               891 non-null int64
               891 non-null object
Ticket
               891 non-null float64
Fare
               204 non-null object
Cabin
               889 non-null object
Embarked
dtypes: float64(2), int64(5), object(5)
memory usage: 83.6+ KB
```

The training-set has 891 examples and 11 features + the target variable (survived). 2 of the

features are floats, 5 are integers and 5 are objects. Below I have listed the features with a short

description:

survival: Survival

PassengerId: Unique Id of a passenger.

pclass: Ticket class

sex: Sex

Age: Age in years

sibsp: # of siblings / spouses aboard the Titanic parch: # of parents / children aboard the Titanic

ticket: Ticket number fare: Passenger fare cabin: Cabin number

embarked: Port of Embarkationtrain_df.describe()

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

Above we can see that **38% out of the training-set survived the Titanic**. We can also see that the passenger ages range from 0.4 to 80. On top of that we can already detect some features, that contain missing values, like the 'Age' feature. train_df.head(8)

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	s
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	C
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	s
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	s
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	s
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	s
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	s

From the table above, we can note a few things. First of all, that we **need to convert a lot of features into numeric** ones later on, so that the machine learning algorithms can process them.

Furthermore, we can see that the **features have widely different ranges**, that we will need to convert into roughly the same scale. We can also spot some more features, that contain missing values (NaN = not a number), that wee need to deal with.

Let's take a more detailed look at what data is actually missing:

```
total = train_df.isnull().sum().sort_values(ascending=False)
percent_1 = train_df.isnull().sum()/train_df.isnull().count()*100
percent_2 = (round(percent_1, 1)).sort_values(ascending=False)
missing_data = pd.concat([total, percent_2], axis=1, keys=['Total', '%'])
missing_data.head(5)
```

	Total	%
Cabin	687	77.1
Age	177	19.9
Embarked	2	0.2
Fare	0	0.0
Ticket	0	0.0

The Embarked feature has only 2 missing values, which can easily be filled. It will be much more tricky, to deal with the 'Age' feature, which has 177 missing values. The 'Cabin' feature needs further investigation, but it looks like that we might want to drop it from the dataset, since 77 % of it are missing.

```
train df.columns.values
```

Above you can see the 11 features + the target variable (survived). What features could contribute to a high survival rate?

To me it would make sense if everything except 'PassengerId', 'Ticket' and 'Name' would be correlated with a high survival rate.

1. Age and Sex:

```
survived = 'survived'
not survived='not survived'
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(10, 4))
women = train_df[train_df['Sex']=='female']
men = train_df[train_df['Sex']=='male']
ax = sns.distplot(women[women['Survived']==1].Age.dropna(), bins=18, label = survived, ax =
axes[0], kde = False
ax = sns.distplot(women[women['Survived']==0].Age.dropna(), bins=40, label = not_survived, ax =
axes[0], kde = False
ax.legend()
ax.set_title('Female')
ax = sns.distplot(men[men['Survived']==1].Age.dropna(), bins=18, label = survived, ax = axes[1], kde
= False)
ax = sns.distplot(men[men['Survived']==0].Age.dropna(), bins=40, label = not_survived, ax = axes[1],
kde = False)
ax.legend()
_ = ax.set_title('Male')
```


You can see that men have a high probability of survival when they are between 18 and 30 years old, which is also a little bit true for women but not fully. For women the survival chances are higher between 14 and 40.

For men the probability of survival is very low between the age of 5 and 18, but that isn't true for women. Another thing to note is that infants also have a little bit higher probability of survival.

Since there seem to be **certain ages, which have increased odds of survival** and because I want every feature to be roughly on the same scale, I will create age groups later on.

3. Embarked, Pclass and Sex:

FacetGrid=sns.FacetGrid(train_df, row='Embarked', size=4.5, aspect=1.6)
FacetGrid.map(sns.pointplot, 'Pclass', 'Survived', 'Sex', palette=None, order=None, hue_order=None)
FacetGrid.add_legend()

<seaborn.axisgrid.FacetGrid at 0x10ba485c0>

Embarked seems to be correlated with survival, depending on the gender.

Women on port Q and on port S have a higher chance of survival. The inverse is true, if they are at port C. Men have a high survival probability if they are on port C, but a low probability if they are on port Q or S.

Pclass also seems to be correlated with survival. We will generate another plot of it below.

4. Pclass:

sns.barplot(x='Pclass', y='Survived', data=train_df)

<matplotlib.axes. subplots.AxesSubplot at 0x10d1dc7b8>

Here we see clearly, that Pclass is contributing to a persons chance of survival, especially if this

person is in class 1. We will create another pclass plot below.
grid = sns.FacetGrid(train_df, col='Survived', row='Pclass', size=2.2, aspect=1.6)
grid.map(plt.hist, 'Age', alpha=.5, bins=20)
grid.add_legend();

The plot above confirms our assumption about pclass 1, but we can also spot a high probability that a person in pclass 3 will not survive.

5. SibSp and Parch:

SibSp and Parch would make more sense as a combined feature, that shows the total number of relatives, a person has on the Titanic. I will create it below and also a feature that sows if someone is not alone.

```
data = [train_df, test_df]

for dataset in data:

dataset['relatives'] = dataset['SibSp'] + dataset['Parch']
```

```
dataset.loc[dataset['relatives'] > 0, 'not_alone'] = 0
dataset.loc[dataset['relatives'] == 0, 'not_alone'] = 1
dataset['not_alone'] = dataset['not_alone'].astype(int)train_df['not_alone'].value_counts()
```

537
 354

Name: not_alone, dtype: int64

```
axes = sns.factorplot('relatives','Survived',
data=train_df, aspect = 2.5,)
```


Here we can see that you had a high probabilty of survival with 1 to 3 realities, but a lower one if you had less than 1 or more than 3 (except for some cases with 6 relatives).

Data Preprocessing

First, I will drop 'PassengerId' from the train set, because it does not contribute to a persons survival probability. I will not drop it from the test set, since it is required there for the submission.

train_df = train_df.drop(['PassengerId'], axis=1)

Missing Data:

Cabin:

As a reminder, we have to deal with Cabin (687), Embarked (2) and Age (177). First I thought, we have to delete the 'Cabin' variable but then I found something interesting. A cabin number looks like 'C123' and the **letter refers to the deck**. Therefore we're going to extract these and create a new feature, that contains a persons deck. Afterwords we will convert the feature into a numeric variable. The missing values will be converted to zero. In the picture below you can see the actual decks of the titanic, ranging from A to G.

```
import re
deck = {"A": 1, "B": 2, "C": 3, "D": 4, "E": 5, "F": 6, "G": 7, "U": 8}
data = [train_df, test_df]

for dataset in data:
    dataset['Cabin'] = dataset['Cabin'].fillna("U0")
    dataset['Deck'] = dataset['Cabin'].map(lambda x: re.compile("([a-zA-Z]+)").search(x).group())
    dataset['Deck'] = dataset['Deck'].map(deck)
    dataset['Deck'] = dataset['Deck'].fillna(0)
    dataset['Deck'] = dataset['Deck'].astype(int)# we can now drop the cabin feature
train_df = train_df.drop(['Cabin'], axis=1)
test df = test df.drop(['Cabin'], axis=1)
```

Age:

Now we can tackle the issue with the age features missing values. I will create an array that contains random numbers, which are computed based on the mean age value in regards to the standard deviation and is null.

```
data = [train_df, test_df]

for dataset in data:
    mean = train_df["Age"].mean()
    std = test_df["Age"].std()
    is_null = dataset["Age"].isnull().sum()
    # compute random numbers between the mean, std and is_null
    rand_age = np.random.randint(mean - std, mean + std, size = is_null)
    # fill NaN values in Age column with random values generated
    age_slice = dataset["Age"].copy()
    age_slice[np.isnan(age_slice)] = rand_age
```

```
dataset["Age"] = age_slice
dataset["Age"] = train_df["Age"].astype(int)train_df["Age"].isnull().sum()
```

0

Embarked:

Since the Embarked feature has only 2 missing values, we will just fill these with the most

common one.

train_df['Embarked'].describe()

count 889
unique 3
top S
freq 644

Name: Embarked, dtype: object

```
common_value = 'S' data = [train_df, test_df]
```

for dataset in data:

dataset['Embarked'] = dataset['Embarked'].fillna(common_value)

Converting Features:

train_df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 13 columns):
Survived 891 non-null int64
Pclass
               891 non-null int64
Name
               891 non-null object
            891 non-null object
891 non-null object
Sex
               891 non-null int64
Age
SibSp 891 non-null int64
Parch 891 non-null int64
Ticket 891 non-null object
Fare 891 non-null float64
Embarked 891 non-null object
relatives 891 non-null int64
not_alone 891 non-null int64
Deck
         891 non-null int64
dtypes: float64(1), int64(8), object(4)
memory usage: 90.6+ KB
```

Above you can see that 'Fare' is a float and we have to deal with 4 categorical features: Name,

Sex, Ticket and Embarked. Lets investigate and transfrom one after another.

Fare:

```
Converting "Fare" from float to int64, using the "astype()" function pandas provides:

data = [train_df, test_df]

for dataset in data:

dataset['Fare'] = dataset['Fare'].fillna(0)

dataset['Fare'] = dataset['Fare'].astype(int)
```

Name:

We will use the Name feature to extract the Titles from the Name, so that we can build a new

```
feature out of that.

data = [train_df, test_df]

titles = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Rare": 5}

for dataset in data:

# extract titles

dataset['Title'] = dataset.Name.str.extract('([A-Za-z]+)\.', expand=False)

# replace titles with a more common title or as Rare

dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess', 'Capt', 'Col', 'Don', 'Dr', \
```

```
'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare')

dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss')

dataset['Title'] = dataset['Title'].replace('Ms', 'Miss')

dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs')

# convert titles into numbers

dataset['Title'] = dataset['Title'].map(titles)

# filling NaN with 0, to get safe

dataset['Title'] = dataset['Title'].fillna(0)train_df = train_df.drop(['Name'], axis=1)

test_df = test_df.drop(['Name'], axis=1)
```

Sex:

```
Convert 'Sex' feature into numeric.

genders = {"male": 0, "female": 1}

data = [train_df, test_df]

for dataset in data:
   dataset['Sex'] = dataset['Sex'].map(genders)
```

Ticket:

train_df['Ticket'].describe()

count 891 unique 681 top 1601 freq 7

Name: Ticket, dtype: object

Since the Ticket attribute has 681 unique tickets, it will be a bit tricky to convert them into useful

```
categories. So we will drop it from the dataset.  \\
```

```
train_df = train_df.drop(['Ticket'], axis=1)
test_df = test_df.drop(['Ticket'], axis=1)
```

Embarked:

```
Convert 'Embarked' feature into numeric.
```

```
ports = { "S": 0, "C": 1, "Q": 2}
data = [train_df, test_df]
```

for dataset **in** data:

dataset['Embarked'] = dataset['Embarked'].map(ports)

Creating Categories:

We will now create categories within the following features:

Age:

Now we need to convert the 'age' feature. First we will convert it from float into integer. Then we will create the new 'AgeGroup' variable, by categorizing every age into a group. Note that it is important to place attention on how you form these groups, since you don't want for example that 80% of your data falls into group 1.

```
data = [train df, test df]
for dataset in data:
  dataset['Age'] = dataset['Age'].astype(int)
  dataset.loc[dataset['Age'] \le 11, 'Age'] = 0
  dataset.loc[(dataset['Age'] > 11) & (dataset['Age'] \leq 18), 'Age'] = 1
  dataset.loc[(dataset['Age'] > 18) & (dataset['Age'] \leq 22), 'Age'] = 2
  dataset.loc[(dataset['Age'] > 22) & (dataset['Age'] <= 27), 'Age'] = 3
  dataset.loc[(dataset['Age'] > 27) & (dataset['Age'] < 33), 'Age'] = 4
  dataset.loc[(dataset['Age'] > 33) & (dataset['Age'] < 40), 'Age'] = 5
  dataset.loc[(dataset['Age'] > 40) & (dataset['Age'] < = 66), 'Age'] = 6
  dataset.loc[dataset['Age']>66, 'Age'] = 6
# let's see how it's distributed train_df['Age'].value_counts()
         165
 6
         158
 5
         147
 3
         129
 2
         124
 1
         100
          68
 Name: Age, dtype: int64
```

Fare:

For the 'Fare' feature, we need to do the same as with the 'Age' feature. But it isn't that easy,

because if we cut the range of the fare values into a few equally big categories, 80% of the values would fall into the first category. Fortunately, we can use sklearn "qcut()" function, that we can use to see, how we can form the categories. train_df.head(10)

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	relatives	not_alone	Deck	Title
0	0	3	0	2	1	0	7	0	1	0	8	1
1	1	1	1	5	1	0	71	1	1	0	3	3
2	1	3	1	3	0	0	7	0	0	1	8	2
3	1	1	1	5	1	0	53	0	1	0	3	3
4	0	3	0	5	0	0	8	0	0	1	8	1
5	0	3	0	4	0	0	8	2	0	1	8	1
6	0	1	0	6	0	0	51	0	0	1	5	1
7	0	3	0	0	3	1	21	0	4	0	8	4
8	1	3	1	3	0	2	11	0	2	0	8	3
9	1	2	1	1	1	0	30	1	1	0	8	3

```
data = [train_df, test_df]

for dataset in data:
    dataset.loc[dataset['Fare'] <= 7.91, 'Fare'] = 0
    dataset.loc[(dataset['Fare'] > 7.91) & (dataset['Fare'] <= 14.454), 'Fare'] = 1
    dataset.loc[(dataset['Fare'] > 14.454) & (dataset['Fare'] <= 31), 'Fare'] = 2
    dataset.loc[(dataset['Fare'] > 31) & (dataset['Fare'] <= 99), 'Fare'] = 3
    dataset.loc[(dataset['Fare'] > 99) & (dataset['Fare'] <= 250), 'Fare'] = 4
    dataset.loc[dataset['Fare'] > 250, 'Fare'] = 5
    dataset['Fare'] = dataset['Fare'].astype(int)
```

Creating new Features

I will add two new features to the dataset, that I compute out of other features.

1. Age times Class

```
data = [train_df,test_df]

for dataset in data:
   dataset['Age_Class'] = dataset['Age']* dataset['Pclass']
```

2. Fare per Person

for dataset in data:

dataset['Fare_Per_Person'] = dataset['Fare']/(dataset['relatives']+1) dataset['Fare_Per_Person'] = dataset['Fare_Per_Person'].astype(int)#Let's take a last look at the training set, before we start training the models. train_df.head(10)

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	relatives	not_alone	Deck	Title	Age_Class	Fare_Per_Pers
0	0	3	0	2	1	0	0	0	1	0	8	1	6	0
1	1	1	1	5	1	0	3	1	1	0	3	3	5	1
2	1	3	1	3	0	0	0	0	0	1	8	2	9	0
3	1	1	1	5	1	0	3	0	1	0	3	3	5	1
4	0	3	0	5	0	0	1	0	0	1	8	1	15	1
5	0	3	0	4	0	0	1	2	0	1	8	1	12	1
6	0	1	0	6	0	0	3	0	0	1	5	1	6	3
7	0	3	0	0	3	1	2	0	4	0	8	4	0	0
8	1	3	1	3	0	2	1	0	2	0	8	3	9	0
9	1	2	1	1	1	0	2	1	1	0	8	3	2	1
10	1	3	1	0	1	1	2	0	2	0	7	2	0	0

Building Machine Learning Models

Now we will train several Machine Learning models and compare their results. Note that because the dataset does not provide labels for their testing-set, we need to use the predictions on the

training set to compare the algorithms with each other. Later on, we will use cross validation.

X_train = train_df.drop("Survived", axis=1)

Y train=train df["Survived"]

X_test = test_df.drop("PassengerId", axis=1).copy()

Stochastic Gradient Descent (SGD):

sgd = linear_model.SGDClassifier(max_iter=5, tol=None)
sgd.fit(X_train, Y_train)

```
Y_pred = sgd.predict(X_test)

sgd.score(X_train, Y_train)

acc_sgd = round(sgd.score(X_train, Y_train) * 100, 2)
```

Random Forest:

```
random_forest = RandomForestClassifier(n_estimators=100)
random_forest.fit(X_train, Y_train)

Y_prediction = random_forest.predict(X_test)

random_forest.score(X_train, Y_train)
acc_random_forest = round(random_forest.score(X_train, Y_train) * 100, 2)
```

Logistic Regression:

```
logreg = LogisticRegression()
logreg.fit(X_train, Y_train)

Y_pred = logreg.predict(X_test)

acc_log = round(logreg.score(X_train, Y_train) * 100, 2)
```

K Nearest Neighbor:

```
# KNN knn = KNeighborsClassifier(n_neighbors = 3) knn.fit(X_train, Y_train) Y_pred = knn.predict(X_test) acc_knn = round(knn.score(X_train, Y_train) * 100, 2)
```