Project Report

1. INTRODUCTION

1.1 Project Overview

This Project "EXPLORATORY ANALYSIS ON RAINFALL DATA IN INDIA FOR **AGRICULTURE**" relys on helping our farmers and agriculturalist in India to predict the rainfall rate for a month in their respective state. Rainfall has been a major concern these days. Weather conditions have been changing for time being. Rainfall forecasting is important otherwise, it may lead to many disasters. Irregular heavy rainfall may lead to the destruction of crops, heavy floods that can cause harm to human life. It is important to exactly determine the rainfall for effective use of water resources, crop productivity, and pre-planning of water structures. This comparative study is conducted concentrating on the following aspects: modeling inputs, Visualizing the data, modeling methods, and pre-processing techniques. The results provide a comparison of various evaluation metrics of these machine learning techniques and their reliability to predict rainfall by analyzing the weather data. We'll be using various regression techniques to predict the rainfall in India for a month in particular state with the usage of rainfall dataset and crop recommendation dataset from kaggle website. The farmers or the end users can easily access our site by providing the inputs as details of month number and the state name of India.

1.2 Purpose

Rainfall prediction is playing an increasingly instrumental role in the evolving field of precision agriculture, a farming practice that emphasizes accuracy and control when it comes to the growing of crops. An essential aspect of this approach is the use of information technology, which includes weather prediction and other items. The ultimate purpose of precision agriculture is to maximize growth efficiency at the individual seed and plant level.

This prediction mainly helps farmers and also water resources can be utilized efficiently. Rainfall prediction is a challenging task and the results should be accurate. And so we used Random forest regressor for predicting the rainfall rate and given as inout to GaussianNB claasification method for predicting the best crop to grow in the considered month.

2. LITERATURE SURVEY

2.1 Existing problem

In today's time the problems faced by the farmers is that the selection of appropriate crop for agriculture. There are several factors that affect crop yields, including rain, temperature, and soil. Crop forecasting helps farmers choose the right crops to plant to maximize yields. With the help of data mining techniques, it was even possible to make accurate predictions of the yield by taking environmental parameters into account. During this work, the classifiers used support vector engines and region-wise processing. Crop forecasts are completed taking into account parameters such as rainfall, minimum and maximum temperatures, soil type, moisture and soil, pH and layer price. The knowledge is collected from the agricultural website of geographical area, the knowledge is split into 9 agricultural zones. The employee interface is designed to allow farmers to enter given information to predict their harvest. Soil classification is necessary for farmers to recognize soil types and to cultivate crops according to soil type.

2.2 References

Project Title	Author	Objective/Outcome		
		*) This research proposes a study a	ınd	
A Novel Study of Rainfall	inNikhil	Tiwari,analysis of rainfall in the Indian sta	tes	
the Indian States ar	dAnmolSingh	using ML algorithms.The mo	del	
Predictive Analysis usir	ıg	proposed is Neural Networks.		
Machine Learnir	g	*) The attempt was made to impro	ve	
Algorithms		the previous results by ensemble	the previous results by ensembleML	
		algorithms.		

			*) Rainfall prediction plays an
Rainfall Prediction	Dr. Maulika	S. Patel,	important role in agricultural In this
usingNeural Network	VidhiRajvir,	Devanshi	work,multilayered neural network with
	Shukla		Back- propagation learning algorithm
			is used.
			*) It have configured Feed forward and
			cascade network with 1000 epoch-and
			achieved 82% and 81% accuracy
			respectively.
Heuristic prediction o	C handrasegar		*) This paper discusses the rate of
rainfall using machine	Thirumalai,M	Lakshmi	rainfall in previous years according to
learning techniques	Deepak.		various crops seasons and predicts
			the rainfall in future seasons.
			*) The paper also uses linear
			regression method in
			metrics.

2.3 Problem Statement Definition

To forecast the rainfall in India for agriculturist as the weather conditions have been changing for time being. Rainfall forecasting is important otherwise, it may lead to many disasters. Irregular heavy rainfall may lead to the destruction of crops, heavy floods that can cause harm to human life and so it is important to exactly determine the rainfall for effective use of water resources, crop productivity, and pre-planning of water structures.

I am	Agriculturists or farmers in India
I'm trying to	Cultivate different crops with their respective seasons and weather conditions.

But	Bad weather may lead to many disasters like irregular heavy rainfall or no rainfall may lead to the destruction of crops, heavy floods that can cause harm to human life.
Because	The weather or rainfall is not forecasted.
Which makes	Crops destruction, Rising demands for food, Biodiversity loss, reduce farm productivity, floods or drought occurrence and many.

Example:

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation & Brainstorming

Step-1: Team Gathering, Collaboration and Select the Problem Statement

Step-2: Brainstorm, Idea Listing and Grouping

Step-3: Idea Prioritization

Priorities

Your team-chould all be on the came page about what's important moving forward. Place your ideas on this grid to determine which ideas are important and which are feedble.

Contractor (Contractor)

Feasibility

Reportion of that importance, which make any tree based for others (force time, which, completely, also)

3.3 Proposed Solution

S.No.	Parameter	Description
1	Problem Statement (Problem	To exactly determine the rainfall in
	to be solved)	India for effective use of water
		resources, crop productivity, and pre-
		planning of water structures.
2	Idea / Solution description	The idea is to predict the rainfall in a
		region by analyzing the weather data
		in India from 1998-2015.
3	Novelty / Uniqueness	Here with the given region we
		suggest the agriculturalist for the best
		yielding crops to grow.
4	Social Impact / Customer	Rainfall has been a major concern
	Satisfaction	these days. Weather conditions have
		been changing for time being. Rainfall
		forecasting is important otherwise, it
		may lead to many disasters. Irregular heavy rainfall may lead to the
		destruction of crops, heavy floods
		that can cause harm to human life.
5	Business Model (Revenue	The target of this project is to forecast
	Model)	the rainfall in India and the target user is the farmers. It provides a better
		service in predicting the rainfall and
		the crops to grow for better yield.
6	Scalability of the Solution	It aims to acquire a better scalability
		with highest accuracy achieved in
		prediction, user friendly interface, good number of web app users,
		without investing lot of resources and
		•

	money, ease of use and works with better functionality.	

3.4 Problem Solution fit

Zm⊗Z⊣Q⊃o⊄o√→±⊐eQ−

4. EMOTIONS: BEFORE / AFTER EM	suggestion from their near ones.
 Dejected, insecure > confident, in control, satisfactory. 	

4. REQUIREMENT ANALYSIS

4.1 Functional requirement

Following are the functional requirements of the proposed solution.

FR No.	Functional	Requirement	Sub Requirement (Story / Sub-Task)		
	(Epic)				
FR-1	Check weather		Customer can check the rainfall by giving		
			region and month as inputs.		
FR-2	Suggest crop		With the predicted rainfall, the crops would be		
			suggested to the farmers for higher productivity		

4.2 Non-Functional requirements

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description		
NFR-1	Usability	The farmers and other people can easily use		
		the application and it is user friendly no prior		
		knowledge is required for using it.		
NFR-2	Security	All data will be protected against malware		
		attacks.		
NFR-3	Reliability	The system will provide the prediction without		
		any errors.		
NFR-4	Performance	The expected output will be produces		
		immediately to the user without much delay.		
NFR-5	Availability	The system would be available 24/7		
NFR-6	Scalability	The system would be available on web		
		application and any user can login and use it		
		without any disruptions.		

5. PROJECT DESIGN

5.1 Data Flow Diagrams

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored. User enters the region into the web application to predict the rainfall rateThe input data is sent to the cloud The Machine learning model deployed in the cloud predicts the rainfall And finally the predicted rainfall rate in mm and crops are suggested as output. Solution & Technical Architecture

5.2 Solution and technical Architecture Solution Architecture

Table-1: Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	The user interacts with th application through a webUI and chatbot	eHTML, CSS, apython,flask
2.	Application Logic-1	Logic for a Registration	Python
3.	Application Logic-2	Logic for a loginthe application	Python
4.	Application Logic-3	Integrating machine learning mode and the webpage	eFlask
5.	Database	Numeric data	MySQL

6.	File Storage	To storefiles such as predictionLocal Filesystem report
7.	External API-1	Allows developers access to critical IBM WeatherAPI, forecasts, etc. alerts, and observations, along with other weather data.
8.	Machine Learning Model	Predictive modeling is a statistical Predictive Model, etc. technique using machine learning and datamining to predictand forecast likely future outcomes with the aid of historical and existing data
9.	Infrastructure (Server)	Application Deployment on LocalFlask web server System Local Server Configuration: built-in flask web server

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	Flask	Micro webframework
			written in Python
2.	Security Implementations	Basic HTTP authentication	, Flask security
		Session based authentication, Use	
		Registration, Login Tracking	
3.	Scalable Architecture	Size is everything, and Flask's	
0.		statusas a microframework	
		meansthat you can use it to grow a	
		tech project such as a web app	

	incredibly quickly	

		Its simplicity of use and few dependenciesenable it to run smoothlyeven as it scales up and up.
4.	Availability	Higher compatibility with latest Flask technologies and allows customization
5.	Performance	Integrated supportfor unit testing. Flask RESTful requestdispatching. Uses Jinja templating. Support for secure cookies(client side sessions) 100% WSGI 1.0 compliant.

User Stories

User Type	Functional Requireme nt (Epic)	User Story Numb er	User Story / Task	Acceptan ce criteria	Priority	Release
Custom er (web user)	Check Weather	USN-1	As a customer, I can check the rainfall by giving the region as input.	I can view the predicted rainfall status by entering information	High	Sprint-2
	Suggested		As a customer,	I can view the		

Crop		With the	suggested		
	USN-2	predicted rainfall	crops with the	High	Sprint-2
		I can view the	predicted		
		suggested crops	rainfall		
		for higher			
		productivity			

PROJECT PLANNING & SCHEDULING

Sprint Planning & Estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Rainfall Prediction ML Model (Dataset)	USN-1	Weather Dataset Collection,	5	High	R.Niveditha, V.Shanu
Sprint-1		USN-2	Datapreprocessing, Data Visualization.	5	High	V.Revathi, N.Sabari Sree
Sprint-1		USN-3	Train Model using Different machine learningAlgorithms	10	High	R.Niveditha, V.Revathi
Sprint-1		USN-4	Test the model and give best	5	Medium	N.Sabari Sree, V.Shanu
Sprint-2	Rainfall prediction	USN-5	User enter the location, temperature, humidity	10	High	V.Revathi, V.Shanu
Sprint-2		USN-6	Predict the rainfall and display the result	10	Medium	R.Niveditha, V.Revathi
Sprint-3	Crop prediction	USN-7	Predict the rainfall	10	High	N.Sabari Sree, V.Revathi
Sprint-3		USN-8	Suggest the crop for high productivity	10	High	V.Shanu, R.Niveditha
Sprint-4	Testing	USN-9	Test the application	10	High	V.Revathi, N.Sabari Sree
Sprint-4	Deploy model	USN-10	Deploy the model in IBM cloud to make userfriendly application	10	High	R.Niveditha, V.Shanu

Sprint Delivery Schedule

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	-	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	-	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	-	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	-	19 Nov 2022

Reports from JIRA

CODING & SOLUTIONING (Explain the features added in the project along with code)

Feature 1

```
For predicting the rainfall rate for 5 different states.
import numpy as np
import pandas as pd
import pickle
from sklearn import metrics
data = pd.read csv(r"C:/Users/NIVEDITHA/Downloads/rainfall.csv")
# data.head()
data = data.fillna(data.mean())
group
data.groupby('SUBDIVISION')['YEAR','JAN','FEB','MAR','APR','MAY','JUN','JUL','AUG','
SEP','OCT','NOV','DEC']
dt=group.get group(('TAMIL NADU'))
# data.head()
df=dt.melt(['YEAR']).reset index()
# df.head()
df= df[['YEAR','variable','value']].reset index().sort values(by=['YEAR','index'])
# df.head()
df.columns=['Index','Year','Month','Avg Rainfall']
Month map={'JAN':1,'FEB':2,'MAR':3,'APR':4,'MAY':5,'JUN':6,'JUL':7,'AUG':8,'SEP':9,
 'OCT':10,'NOV':11,'DEC':12}
df['Month']=df['Month'].map(Month map)
# df.head(12)
df.drop(columns="Index",inplace=True)
X=np.asanyarray(df[['Month']]).astype('int')
y=np.asanyarray(df['Avg Rainfall']).astype('int')
```

```
from sklearn.model selection import train test split
X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=10)
from sklearn.ensemble import RandomForestRegressor
random forest model
                                         RandomForestRegressor(max depth=100,
max features='sqrt', min samples leaf=4,
            min samples split=10, n estimators=800)
random forest model.fit(X train, y train)
#-----#
dt1=group.get group(('WEST BENGAL'))
# data.head()
df1=dt1.melt(['YEAR']).reset index()
# df.head()
df1= df1[['YEAR','variable','value']].reset index().sort values(by=['YEAR','index'])
# df.head()
df1.columns=['Index','Year','Month','Avg Rainfall']
Month map={'JAN':1,'FEB':2,'MAR':3,'APR':4,'MAY':5,'JUN':6,'JUL':7,'AUG':8,'SEP':9,
 'OCT':10,'NOV':11,'DEC':12}
df1['Month']=df1['Month'].map(Month map)
# df.head(12)
df1.drop(columns="Index",inplace=True)
X1=np.asanyarray(df1[['Month']]).astype('int')
y1=np.asanyarray(df1['Avg Rainfall']).astype('int')
from sklearn.model selection import train test split
                             y test =
                                          train test split(X1, y1,
                                                                    test size=0.3,
X train,
          X test,
                   y train,
random state=10)
                                         RandomForestRegressor(max depth=100,
random forest model1
```

```
max features='sqrt', min samples leaf=4,
             min samples split=10, n estimators=800)
random forest model1.fit(X train, y train)
#y predict = random forest model.predict(X test)
#print('MAE:', metrics.mean absolute error(y test,y predict))
# print('MSE:', metrics.mean_squared_error(y_test, y_predict))
#print('RMSE:', np.sqrt(metrics.mean squared error(y test, y predict)))
#-----ORISSA-----
dt2=group.get group(('ORISSA'))
# data.head()
df2=dt2.melt(['YEAR']).reset index()
# df.head()
df2= df2[['YEAR','variable','value']].reset index().sort values(by=['YEAR','index'])
# df.head()
df2.columns=['Index','Year','Month','Avg Rainfall']
Month map={'JAN':1,'FEB':2,'MAR':3,'APR':4,'MAY':5,'JUN':6,'JUL':7,'AUG':8,'SEP':9,
 'OCT':10,'NOV':11,'DEC':12}
df2['Month']=df2['Month'].map(Month map)
# df.head(12)
df2.drop(columns="Index",inplace=True)
X2=np.asanyarray(df2[['Month']]).astype('int')
y2=np.asanyarray(df2['Avg Rainfall']).astype('int')
                                           train test split(X2, y2, test size=0.3,
X train,
          X test,
                   y train, y test
random state=10)
random forest model2
                                          RandomForestRegressor(max depth=100,
max features='sqrt', min samples leaf=4,
```

```
min samples split=10, n_estimators=800)
random forest model2.fit(X train, y train)
#-----PUNJAB------
#group3=
data.groupby('SUBDIVISION')['YEAR','JAN','FEB','MAR','APR','MAY','JUN','JUL','AUG','
SEP','OCT','NOV','DEC']
dt3=group.get group(("PUNJAB"))
# data.head()
df3=dt3.melt(['YEAR']).reset index()
# df.head()
df3= df3[['YEAR','variable','value']].reset index().sort values(by=['YEAR','index'])
# df.head()
df3.columns=['Index','Year','Month','Avg Rainfall']
Month map={'JAN':1,'FEB':2,'MAR':3,'APR':4,'MAY':5,'JUN':6,'JUL':7,'AUG':8,'SEP':9,
 'OCT':10,'NOV':11,'DEC':12}
df3['Month']=df3['Month'].map(Month map)
# df.head(12)
df3.drop(columns="Index",inplace=True)
X3=np.asanyarray(df3[['Month']]).astype('int')
y3=np.asanyarray(df3['Avg Rainfall']).astype('int')
X train,
         X test,
                  y train, y test =
                                        train test split(X3, y3, test size=0.3,
random state=10)
                                        RandomForestRegressor(max depth=100,
random forest model3
max features='sqrt', min samples leaf=4,
            min samples split=10, n estimators=800)
random forest model3.fit(X train, y train)
#------UTTARAKHAND------
```

```
dt4=group.get group(('UTTARAKHAND'))
# data.head()
df4=dt4.melt(['YEAR']).reset index()
# df.head()
df4= df4[['YEAR','variable','value']].reset index().sort values(by=['YEAR','index'])
# df.head()
df4.columns=['Index','Year','Month','Avg Rainfall']
Month map={'JAN':1,'FEB':2,'MAR':3,'APR':4,'MAY':5,'JUN':6,'JUL':7,'AUG':8,'SEP':9,
 'OCT':10,'NOV':11,'DEC':12}
df4['Month']=df4['Month'].map(Month map)
# df.head(12)
df4.drop(columns="Index",inplace=True)
X4=np.asanyarray(df4[['Month']]).astype('int')
y4=np.asanyarray(df4['Avg Rainfall']).astype('int')
X train, X test, y train, y test = train test split(X4,y4, test size=0.3, random state=10)
random forest model4
                                          RandomForestRegressor(max depth=100,
max features='sqrt', min samples leaf=4,
             min samples split=10, n_estimators=800)
random forest model4.fit(X train, y train)
#-----JAMMU & KASHMIR------
dt5=group.get group(('JAMMU & KASHMIR'))
# data.head()
df5=dt5.melt(['YEAR']).reset index()
# df.head()
df5= df5[['YEAR','variable','value']].reset index().sort values(by=['YEAR','index'])
# df.head()
```

```
df5.columns=['Index','Year','Month','Avg Rainfall']
Month map={'JAN':1,'FEB':2,'MAR':3,'APR':4,'MAY':5,'JUN':6,'JUL':7,'AUG':8,'SEP':9,
 'OCT':10,'NOV':11,'DEC':12}
df5['Month']=df5['Month'].map(Month map)
# df.head(12)
df5.drop(columns="Index",inplace=True)
X5=np.asanyarray(df5[['Month']]).astype('int')
y5=np.asanyarray(df5['Avg Rainfall']).astype('int')
X train,
                                            train test split(X5, y5,
          X test,
                    y train,
                               y test
                                                                        test size=0.3,
random state=10)
random_forest_model5
                                            RandomForestRegressor(max_depth=100,
max features='sqrt', min samples leaf=4,
             min samples split=10, n estimators=800)
random forest model5.fit(X train, y train)
file = open("model.pkl","wb")
file1=open("model1.pkl","wb")
pickle.dump(random forest model,file)
pickle.dump(random forest model1,file1)
file.close()
file1.close()
file2 = open("model2.pkl","wb")
file3=open("model3.pkl","wb")
pickle.dump(random forest model2,file2)
pickle.dump(random forest model3,file3)
file2.close()
file3.close()
file4 = open("model4.pkl","wb")
file5=open("model5.pkl","wb")
pickle.dump(random forest model4,file4)
pickle.dump(random forest model5,file5)
```

```
file4.close()
file5.close()
# print(y predict)
```

Feature 2

For suggesting the better yielding crop with the rainfall predicted for a particular state.

```
from flask import render_template,Flask,request import pickle
```

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB
dt = pd.read_csv(r"C:/Users/NIVEDITHA/Downloads/Crop_recommendation.csv")
```

```
knn = GaussianNB()
```

```
knn.fit(X_train.reshape(-1,1), y_train)
pred=knn.predict(X_test.reshape(-1,1))
print(accuracy score(y test,pred))
```

```
appl=Flask( name )
file=open("model.pkl","rb")
file1=open("model1.pkl","rb")
file2=open("model2.pkl","rb")
file3=open("model3.pkl","rb")
file4=open("model4.pkl","rb")
file5=open("model5.pkl","rb")
random Forest=pickle.load(file)
file.close()
random_Forest1=pickle.load(file1)
file1.close()
random Forest2=pickle.load(file2)
file2.close()
random Forest3=pickle.load(file3)
file3.close()
random Forest4=pickle.load(file4)
file4.close()
random Forest5=pickle.load(file5)
file5.close()
#random Forest=pickle.load(file)
#file.close()
@appl.route("/", methods=["GET","POST"])
def home():
  if request.method=="POST":
     myDict = request.form
     Month = int(myDict["Month"])
     state= (myDict["state"])
     pred = [Month]
     #stateCall(state)
     #res=random Forest.predict([pred])[0]
     if(state=="TAMILNADU"):
```

```
res=random_Forest.predict([pred])[0]
    elif state=="WEST BENGAL":
       res=random_Forest1.predict([pred])[0]
    elif(state=="ORISSA"):
       res=random_Forest2.predict([pred])[0]
    elif(state=="PUNJAB"):
       res=random Forest3.predict([pred])[0]
    elif(state=="UTTARAKHAND"):
       res=random_Forest4.predict([pred])[0]
    else:
       res=random_Forest5.predict([pred])[0]
    res=round(res,2)
    ans=knn.predict([[res]])[0]
    return render template('result.html',Month=Month,state=state,res=res,ans=ans)
  return render template('index.html')
if __name__ == "__main__":
  appl.run(debug=True)
```

8. TESTING

8.1 Test Cases

INPUT	PREDICTED OUTPUT
MONTH :12	The Rainfall rate is 6.42 mm
STATE:WEST	
BENGAL	Can plant papaya for good yield
MONTH:9	The Rainfall rate is 85.23 mm
STATE:JAMMU &	
KASHMIR	Can plant chickpea for good yield
MONTH:2	The Rainfall rate is 11.17 mm
STATE:TAMILNA	
DU	Can plant papaya for good yield

MONTH:1	The Rainfall rate is 100.92 mm
STATE:ASSAM	
	Can plant banana for good yield

8.2 User Acceptance Testing Defect Analysis

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	10	4	2	3	20
Duplicate	1	0	3	0	4
External	2	3	0	1	6
Fixed	11	2	4	20	37
Not Reproduced	0	0	1	0	1
Skipped	0	0	1	1	2
Won't Fix	0	5	2	1	8
Totals	24	14	13	26	77

TestCase analysis

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	7	0	0	7
Client Application	30	0	0	30
Security	2	0	0	2

Outsource Shipping	3	0	0	3
Exception Reporting	9	0	0	9
Final Report Output	4	0	0	4
Version Control	2	0	0	2

9.RESULTS

9.1.Performance Metrics

y_test_predict=rfmodel.predict(X_test)
print("-----Test Data-----")
print('MAE:', metrics.mean_absolute_error(y_test, y_test_predict))
print('MSE:', metrics.mean_squared_error(y_test, y_test_predict))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, y_test_predict)))
------TestData------

MAE:82.07252495976634 MSE:20286.85437242721 RMSE: 142.4319289079075

10.ADVANTAGES

- 1. Predicting the rainfall for a month can help them plan for the many day-to-day decisions. These decisions include crop irrigation, time to fertilize, and what days are suitable for working in the field. The decisions that farmers make will result in a profitable crop or failure.
- 2. Crop suggested can help farmers to acheive a better yield and high business-profit.
- 3. Weather forecast helps in controlling the pests and other crop diseases to spread over the field. Weather factors can influence crop-destroying pests.

DISADVANTAGES

- 1. Only predicted for certain states and not for all ,due to unavailability of data's.
- 2. Provides information only for a month and not for individual days .

3. Provides only what crop to plant for the particular month in a state.

11.CONCLUSION

Sometimes farmers in India occur loss due to false predictions of weather. Now that the technology is developed and special weather forecasting mechanisms are available, the farmers can get all the updates are on a smartphone. Education towards that is, of course, an important thing but most of the farmer population at this stage knows the basics which make it easy for them to use the features. Most field crops are dependent solely upon weather to provide life-sustaining water and energy. Livestock are also dependent upon weather for their comfort and food supplies. Our machine learning model can thus, help all the farmers and agriculturalists to predict or forecast the rainfall for a particular month with the Rainfall datset and further gets to know about the crop to grow for getting high yield and good profit with the crop recommendation dataset.

12.FUTURE SCOPE

In future ,the forecasting of weather and precise details about the crops can be recommended. Unlike our weather prediction model, forecast systems that use machine learning are not constrained by the physical laws that govern the atmosphere. So it's possible that they could produce unrealistic results – for example, forecasting temperature extremes beyond the bounds of nature. And it is unclear how they will perform during highly unusual or unprecedented weather phenomena. So techinques can be used to improve the accuracy by using large amount of weather data.


```
ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T"
crossorigin="anonymous">
  <title>Rainfall-Prediction</title>
</head>
<style>
body{
background-image: url('https://i.gifer.com/A4XX.gif');
background-repeat: no-repeat;
 background-attachment: fixed;
 background-size: cover;
 }
 </style>
 <body>
 <br><br><br><br><br><
<div class="container">
  <h1 class="text-center m-3 badge-dark text-wrap">
    Rainfall Prediction for India
   </h1>
    <div class="card container" style="width: 65%; ">
       <div class="card-body">
         <form action="/" method="post">
            <div class="form-group">
             <label for="formGroupExampleInput1">MONTH</label>
             <input
              type="text"
              class="form-control"
              id="formGroupExampleInput1"
              name="Month"
              required
             />
            </div>
            <div class="form-group">
             <label for="formGroupExampleInput2">STATE</label>
             <input
              type="text"
```

```
class="form-control"
             id="formGroupExampleInput2"
             name="state"
             required
            />
           </div>
                                   <center><button type="submit" class="btn btn-</pre>
dark">CHECK</button></center>
          </form>
       </div>
    </div>
  </div>
</body>
</html>
result.html //The output is displayed in this page
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
                                                  k
                                                                   rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css"
integrity="sha384-
ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T"
crossorigin="anonymous">
  <title>Rainfall-Prediction</title>
</head>
<style>
body{
background-image: url('https://i.gifer.com/A4XX.gif');
background-repeat: no-repeat;
 background-attachment: fixed;
 background-size: cover;
 </style>
<body >
```

```
<div class="container" >
  <h1 class="text-center m-3 badge-dark text-wrap">Rainfall Prediction</h1>
    <div class="card container" style="width: 50%;">
       <div class="card-body" >
            <form action="/" method="post">
              <div class="form-group">
                <label for="formGroupExampleInput1">Month</label>
                <input
                 type="text"
                 class="form-control"
                 id="formGroupExampleInput1"
                 name="Month"
                 placeholder="{{Month}}"
                 required
               />
              </div>
              <div class="form-group">
                <label for="formGroupExampleInput2">state</label>
                <input
                 type="text"
                 class="form-control"
                 id="formGroupExampleInput2"
                 name="Year"
                 placeholder="{{state}}"
                 required
               />
              </div>
              <h2 class="text-center text-wrap" >The Rainfall rate is {{res}} mm </h2>
              <h2 class="text-center text-wrap">Can plant {{ans}} for good yield</h2>
             </form>
            </div>
                           <center><a href="/"><button type="submit" class="btn btn-</pre>
dark">Back</button></a></center>
            </div>
```


GitHub link:

https://github.com/IBM-EPBL/IBM-Project-2784-1658482679.git

Project Demo Link:

 $\frac{https://drive.google.com/file/d/1eEb7PMwl7nGDLYJSqb4r18khoa11uti7/view?usp=shar}{e_link}$