<u>2004 102636</u>

1. A method of treating a disease, other than cancer, mediated by p-38, comprising administering a compound of formula I

or a pharmaceutically acceptable salt of a compound of formula I wherein

A is

and

B is a substituted or unsubstituted, up to bicyclic aryl or heteroaryl moiety of up to 12 carbon atoms with at least one aromatic structure containing 0-4 members of the group consisting of nitrogen, oxygen and sulfur, wherein if B is substituted, it is substituted by one or more substituents selected from the group consisting of halogen, up to per-halo, and W_n , wherein n is 0-3 and each W is independently selected from the group consisting of -CN, -CO₂R⁷, -C(O)NR⁷R⁷, -C(O)-R⁷, -NO₂, -OR⁷, -SR⁷, -NR⁷R⁷,

 $-NR^7C(O)OR^{7'}, -NR^7C(O)R^{7'}, C_1-C_{10} \ alkyl, C_{2\text{-}10}-alkenyl, C_{1\text{-}10}-alkoxy, C_{1\text{-}10} \ alkenoyl, C_{3\text{-}10} \ cycloalkyl,$

 C_6 - C_{12} aryl, optionally substituted by halogen, C_1 - C_{10} alkyl or C_{1-10} -alkoxy,

 C_7 - C_{24} alkaryl, C_3 - C_{13} heteroaryl, optionally substituted by halogen, C_1 - C_{10} alkyl or C_{1-10} -alkoxy,

substituted C_1 - C_{10} alkyl, substituted C_{2-10} -alkenyl, substituted C_{1-10} -alkoxy, substituted C_{1-10} alkenoyl, substituted C_3 - C_{10} cycloalkyl, substituted C_4 - C_{23} alkheteroaryl optionally substituted by halogen, C_1 - C_{10} alkyl or C_{1-10} alkoxy and M-L¹;

wherein if W is a substituted group which does not contain aryl or hetaryl, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R⁷, -C(O)R⁷, -C(O)NR⁷R^{7'}, -NO₂, -NR⁷C(O)OR^{7'}, -OR⁷, -SR⁷, -NR⁷R^{7'}, -NR⁷C(O)R⁷, and halogen up to per-halo;

wherein if B contains a phenyl group, W is additionally selected from the group consisting of hydroxy, $OR^{1a}CONHR^7$, $N(SO_2R^7)_2$, SO_2F , SOR^7 , SO_2R^7 , $SO_2CH_px^a_{3-p}$, wherein p is 0-3, C_{1-10} alkoxy substituted C_6 - C_{12} aryl, C_1 - C_{10} alkyl substituted C_6 - C_{12} aryl, halogen substituted C_6 - C_{12} aryl, C_1 - C_{10} alkyl substituted C_3 - C_{13} heteroaryl, C_1 - C_{10} alkoxy substituted C_3 - C_{13} hetaryl and halogen substituted C_3 - C_{13} hetaryl;

wherein each R^7 and $R^{7'}$ is independently selected from H, C_1 - C_{10} alkyl, C_{2-10} alkenyl, C_3 - C_{10} cycloalkyl, C_6 - C_{14} aryl, C_3 - C_{13} hetaryl, C_7 - C_{24} alkaryl, C_4 - C_{23} alkheteroaryl, up to per-halosubstituted C_1 - C_{10} alkyl, up to per-halosubstituted C_2 - C_{10} -alkenyl, up to per-halosubstituted C_3 - C_{10} cycloalkyl, up to per-halosubstituted C_6 - C_{14} aryl and up to per-halosubstituted C_3 - C_{13} hetaryl;

 R^{1a} is C_1 - C_{10} alkyl;

M is -O-, -S-, -N(R⁷)-, -(CH₂)-_m, -C(O)-, -CH(OH)-, -(CH₂)_mO-, -NR⁷C(O)NR⁷R⁷-, -NR⁷C(O)-, -C(O)NR⁷-, -(CH₂)_mS-, -(CH₂)_mN(R⁷)-, -O(CH₂)_m-, -CHX^a, -CX^a₂-, -S-(CH₂)_m- or -N(R⁷)(CH₂)_m-;

m = 1-3, and X^a is halogen; and

 L^1 is a 5-10 member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur, wherein the aromatic structure is unsubstituted or substituted by halogen up to per-halo and optionally substituted by Z_{n1} ,

wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of -CN, -NO₂, -OR⁷, - SR⁷, -NR⁷C(O)OR⁷, -NR⁷C(O)OR⁷, -NR⁷C(O)R⁷, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ hetaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₃-C₁₀ cycloalkyl, substituted C₇-C₂₄ alkaryl and substituted C₄-C₂₃ alkheteroaryl; wherein one or more substituents of Z is selected from the group consisting of -CN, -NO₂, -OR⁷, -SR⁷, -NR⁷R⁷, -NR⁷C(O)R⁷, and -NR⁷C(O)OR⁷;

wherein $R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$ are each independently H, halogen, C_{1-10} alkyl optionally substituted by halogen up to perhalo, C_{1-10} -alkoxy optionally substituted by at least one hydroxy group, C_{1-10} alkoxy substituted by halogen up to perhaloalkoxy, C_{6-12} aryl optionally substituted by C_{1-10} alkoxy or halogen, C_{5-12} hetaryl optionally substituted by C_{1-10} alkyl, C_{1-10} alkoxy, halogen, NO_{2} ,

 SO_2F , $-SO_2CH_px^a_{3-p}$, $-COOR^1$, $-OR^{1a}CONHR^1$, $-NHCOR^1$, $-NR^{1a}COR^1$, $-SR^1$, NH_2 , or $-N(SO_2R^1)_2$, and

wherein 2 adjacent $R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$ can together with the phenyl form naphthyl, optionally substituted by C_{1-10} alkyl, C_{1-10} alkoxy, C_{3-10} -cycloalkyl, C_{2-10} -alkenyl, C_{1-10} -alkanoyl, and halogen up to perhalo;

wherein each R^1 is independently H or C_{1-10} alkyl optionally substituted by halogen up to perhalo, R^{1a} is a C_1 - C_{10} alkyl, and R^2 is C_{1-10} -alkyl optionally substituted by halogen up to perhalo; where L^1 is phenyl, it is also optionally substituted, by

$$-N$$

2. A method of treating a disease, other than cancer, mediated by p-38, comprising administering a compound of formula Ia

or a pharmaceutically acceptable salt thereof;

wherein R^3 , R^4 , R^5 , and R^6 are each independently H, hydroxy, halogen, C_{1-10} - alkyl optionally substituted by halogen up to perhalo, C_{1-10} -alkoxy optionally substituted by at least one hydroxy group, C_1 - C_{10} alkoxy substituted by halogen up to perhalo; C_{6-12} aryl optionally substituted by C_{1-10} alkoxy or halogen; C_{5-12} hetaryl optionally substituted by C_{1-10} alkyl, C_{1-10} alkoxy or halogen; NO_2 , SO_2F , $-SO_2CH_pX^a_{3-p}$, $-COOR^1$, $-OR^{1a}CONHR^1$, $-NHCOR^1$, $-SR^1$, NH_2 , $-N(SO_2R^1)_2$, furyloxy,

$$-N \longrightarrow OR^{1a}CO-N \longrightarrow O$$

$$-N \longrightarrow OR \longrightarrow NH$$

wherein X^a is halogen, each R^1 is independently H or C_1 - C_{10} alkyl optionally substituted by halogen up to per halo; R^{1a} is C_1 - C_{10} alkyl and p is 0-3; and

wherein 2 adjacent R^3 , R^4 , R^5 and R^6 can together form an aryl or hetaryl ring with 5-12 atoms, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, C_{3-10} -cycloalkyl, C_{2-10} -alkenyl, C_{1-10} -alkanoyl, C_{6-12} -aryl, C_{5-12} -hetaryl, C_{6-12} -aralkyl, C_{6-12} -alkaryl, halogen; $-NR^1R^1$; $-NO_2$; $-CF_3$; $-COOR^1$, $-NHCOR^1$, -CN, $-CONR^1R^1$, $-SO_2R^2$, $-SOR^2$ and $-SR^2$ with $-SO_2$ optionally incorporated in the aryl or hetaryl ring;

wherein each R^1 is independently H or C_{1-10} -alkyl optionally substituted by halogen up to per halo and R^2 is C_{1-10} -alkyl optionally substituted by halogen up to perhalo;

and wherein one of R^3 , R^4 , R^5 or R^6 can be -ML¹, where M and L¹ are as defined below with the proviso that if R^3 and R^6 are both H, then one of R^4 or R^5 is not H, and

M is -O-, -S-, -N(R⁷)-, -(CH₂)-_m, -C(O)-, -CH(OH)-, -(CH₂)_mO-, -NR⁷C(O)NR⁷R⁷'-, -NR⁷C(O)-, -C(O)NR⁷-, -(CH₂)_mS-, -(CH₂)_mN(R⁷)-, -O(CH₂)_m-, -CHX^a, -CX^a₂-, -S-(CH₂)_m- and -N(R⁷)(CH₂)_m;

m = 1-3, and X^a is halogen; and

 L^1 is a 5-10 member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur, wherein the aromatic structure is unsubstituted or substituted by halogen up to per-halo and optionally substituted by Z_{n1} ,

wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of -CN, -NO₂, -OR⁷, -SR⁷, -NR⁷R⁷, -NR⁷C(O)OR⁷, -NR⁷C(O)R⁷, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₆-C₁₂ aryl, C₃-C₁₃ hetaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₃-C₁₀ cycloalkyl, substituted C₇-C₂₄ alkaryl and substituted C₄-C₂₃ alkheteroaryl;

wherein the one or more substituents of Z is selected from the group consisting of -CN, -NO₂, -OR⁷, -SR⁷, -NR⁷R^{7'}, -NR⁷C(O)R^{7'} and -NR⁷C(O)OR^{7'};

wherein $R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$ are each independently H, halogen, C_{1-10} alkyl optionally substituted by halogen up to perhalo, C_{1-10} -alkoxy optionally substituted by at least one hydroxy group, C_{1-10} alkoxy substituted by halogen up to perhaloalkoxy, C_{6-12} aryl optionally substituted by C_{1-10} alkoxy or halogen, C_{5-12} hetaryl optionally substituted by C_{1-10} alkyl, C_{1-10} alkoxy or halogen, NO_2 , SO_2F , - $SO_2CH_pX^a_{3-p}$, - $COOR^1$, - $OR^{1a}CONHR^1$, - $NHCOR^1$, - $NR^{1a}COR^1$, - SR^1 , NH_2 , or - $N(SO_2R^1)_2$,

wherein each R^1 is independently H or C_{1-10} alkyl optionally substituted by halogen up to perhalo, R^{1a} is C_1 - C_{10} alkyl, X^a is halogen, and p is 0 or 1, and

wherein 2 adjacent $R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$ can together with the phenyl form naphthyl, optionally substituted by C_{1-10} alkyl, C_{1-10} alkoxy, C_{3-10} -cycloalkyl, C_{2-10} -alkenyl, C_{1-10} -alkanoyl, and halogen up to perhalo.

3. A method according to claim 2, wherein

- R^{3'} is H, halogen, C₁₋₁₀-alkyl optionally substituted by halogen, up to perhalo, NO₂, -SO₂F or -SO₂CF₃;
- $R^{4^{"}}$ is H, halogen, C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen or NO_2 ;
- $R^{5'}$ is H or C_{1-10} -alkyl optionally substituted by halogen, up to perhalo;
- $R^{6'}$ is H, C_{1-10} -alkoxy optionally substituted by at least one hydroxy group; -COOR¹; -OR^{1a}CONHR¹; -NHCOR¹; -SR¹; phenyl optionally substituted by halo or C_{1-10} -alkoxy; NH₂; or -N(SO₂R¹)₂.

4. A method according to claim 2, wherein

R³ is Cl, F, C₄₋₅-branched alkyl optionally substituted by halogen up to perhalo, -SO₂F or -SO₂CF₃; and

 R^6 is C_{1-10} -alkoxy optionally substituted by at least one hydroxy group, -COOR¹, -OR^{1a}CONHR¹, -NHCOR¹, -SR¹, phenyl optionally substituted by halo or C_{1-10} -alkoxy, NH₂, -N(SO₂R¹)₂, furyloxy,

- 5. A method according to claim 2, wherein $R^{4'}$ is C_{1-10} -alkyl or halogen; $R^{5'}$ is H, C_{1-10} -alkyl, halogen, CF₃, NO₂ or NH₂; and $R^{6'}$ is H, C_{1-10} -alkyl, or halogen.
- 6. A method according to claim 2, wherein $R^{5'}$ is C_{1-10} -alkyl, halogen, CF_3 , halogen, NO_2 or NH_2 .
- 7. A method according to claim 2, wherein $R^{6'}$ is C_{1-10} -alkyl, halogen, -NHCOCH₃ or -N(CH₃)COCH₃.
 - 8. A method according to claim 4, wherein $R^{3'}$ is t-butyl or CF_3 and $R^{6'}$ is OCH_3 .
- 9. A method according to claim 2, wherein the disease is mediated by a cytokine or protease regulated by p38.
- 10. A method according to claim 2, wherein the disease is mediated by TNFα, MMP-1, MMP-3, IL-1, IL-6 or IL-8.
- 11. A method according to claim 2, wherein the disease is an inflammatory or immunomodulatory disease.
- 12. A method according to claim 2, wherein the disease is osteoarthritis, rheumatoid arthritis, osteoporosis, asthma, septic shock, or inflammatory bowel disease.

```
N-(5-tert-Butyl-2-methoxyphenyl)-N<sup>1</sup>-(4-phenyloxphenyl)urea;
N-(5-tert-Butyl-2-methoxyphenyl)-N'(4-(4-methoxyphenyloxy)phenyl)urea;
N-(5-tert-Butyl-2-methoxyphenyl)-N'-(4-(4-pyridinyloxy)phenyl)urea;
N-(5-tert-Butyl-2-methoxyphenyl)-N'-(4-(4-pyridinylmethyl)phenyl)urea;
N-(5-tert-Butyl-2-methoxyphenyl)-N'-(4-(4-pyridinylthio)phenyl)urea;
N-(5-tert-Butyl-2-methoxyphenyl)-N'-(4-(4-(4,7-methano-1H-isoindole-1,3(2H)-
   dionyl)methyl)phenyl)urea;
N-(5-tert-Butyl-2-phenylphenyl)-N'-(2,3-dichlorophenyl)urea;
N-(5-tert-Butyl-2-(3-thienyl)phenyl)-N'-(2,3-dichlorophenyl)urea;
N-(5-tert-Butyl-2-(N-methylaminocarbonyl)methoxyphenyl)-N'-(2,3-
   dichlorophenyl)urea;
N-(5-tert-Butyl-2-(N-methylaminocarbonyl)methoxyphenyl)-N'-(1-naphthyl)urea;
N-(5-tert-Butyl-2-(N-morpholinocarbonyl)methoxyphenyl)-N'-(2,3-dichlorophenyl)urea;
N-(5-tert-Butyl-2-(N-morpholinocarbonyl)methoxyphenyl)-N'-(1-naphthyl)urea;
N-(5-tert-Butyl-2-methoxyphenyl)-N'-(4-(3-pyridinyl)methylphenyl)urea;
N-(5-tert-Butyl-2-(3-tetrahydrofuranyloxy)phenyl)-N'-(2,3-dichlorophenyl)urea;
N-(5-Trifluoromethyl-2-methoxyphenyl)-N'-(4-methylphenyl)urea;
N-(5-Trifluoromethyl-2-methoxyphenyl)-N'-(4-methyl-2-fluorophenyl)urea;
N-(5-Trifluoromethyl-2-methoxyphenyl)-N'-(4-fluoro-3-chlorophenyl)urea;
N-(5-Trifluoromethyl-2-methoxyphenyl)-N'-(4-methyl-3-chlorophenyl)urea;
N-(5-Trifluoromethyl-2-methoxyphenyl)-N'-(4-methyl-3-fluorophenyl)urea;
N-(5-Trifluoromethyl-2-methoxyphenyl)-N'-(2,4-difluorophenyl)urea;
N-(5-Trifluoromethyl-2-methoxyphenyl)-N'-(4-phenyloxy-3,5-dichlorophenyl)urea;
N-(5-Trifluoromethyl-2-methoxyphenyl)-N'-(4-(4-pyridinylmethyl)phenyl)urea;
N-(5-Trifluoromethyl-2-methoxyphenyl)-N'-(4-(4-pyridinylthio)phenyl)urea;
N-(5-Trifluoromethyl-2-methoxyphenyl)-N'-(4-(4-pyridinyloxy)phenyl)urea;
N-(5-Trifluoromethyl-2-methoxyphenyl)-N'-(3-(4-pyridinylthio)phenyl)urea;
N-(5-Trifluoromethyl-2-methoxyphenyl)-N'-(4-(3-(N-methylaminocarbonyl)-
```

A method according to claim 39, wherein the compound of formula I is

13.

phenyloxy)phenyl)-urea;

N-(5-Fluorosulfonyl)-2-methoxyphenyl)-N'-(4-methylphenyl)urea;

N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-methylphenyl)urea;

N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-fluorophenyl)urea;

N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-methyl-2-fluorophenyl)urea;

N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-methyl-3-fluorophenyl)urea;

N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-methyl-3-chlorophenyl)urea;

N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-fluoro-3-chlorophenyl)urea;

N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-fluoro-3-methylphenyl)urea;

N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(2,3-dimethylphenyl)urea;

N-(5-(Trifluoromethanesulfonyl)-2-methoxphenyl)-N'-(4-methylphenyl)urea;

N-(3-methoxy-2-naphthyl)-N'-(2-fluorophenyl)urea);

N-(3-Methoxy-2-naphthyl)-N'-(4-methylphenyl)urea;

N-(3-Methoxy-2-naphthyl)-N'-(3-fluorophenyl)urea;

N-(3-Methoxy-2-naphthyl)-N'-(4-methyl-3-fluorophenyl)urea;

N-(3-Methoxy-2-naphthyl)-N'-(2,3-dimethylphenyl)urea;

N-(3-Methoxy-2-naphthyl)-N'-(1-naphthyl)urea;

N-(3-Methoxy-2-naphthyl)-N'-(4-(4-pyridinylmethyl)phenyl)urea;

N-(3-Methoxy-2-naphthyl)-N'-(4-(4-pyridinylthio)phenyl)urea;

N-(3-Methoxy-2-naphthyl)-N'-(4-(4-methoxyphenyloxy)phenyl)urea; and

N-(3-Methoxy-2-naphthyl)-N'-(4-(4-(4,7-methano-1H-isoindole-1,3(2H)-dionyl)methyl)phenyl)urea.

N-(2-Hydroxy-4-nitro-5-chlorophenyl)-N'-(phenyl)urea; or

N-(2-Hydroxy-4-nitro-5-chlorophenyl)-N'-(4-(4-pyridinylmethly)phenyl)urea.

14. A compound of formula II

$$R^4$$
 R^5
 R^6
 R^6
 $R^{6'}$
 $R^{6'}$
 $R^{6'}$

wherein

 R^3 , R^4 , R^5 , and R^6 are each independently H; halogen; C_{1-10} -alkyl optionally substituted by halogen up to perhalo; C_{1-10} -alkoxy optionally substituted by at least one hydroxy group; NO_2 ; SO_2F ; $-SO_2CH_nX_{3-n}$; $-COOR^1$; $-OR^1CONHR^1$; $-NHCOR^1$; $-SR^1$; phenyl optionally substituted by halogen or C_{1-10} -alkoxy; NH_2 ; $-N(SO_2R^1)_2$; furyloxy;

2 adjacent R^3 - R^6 can together form an aryl or hetaryl ring with 5-12 atoms, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, C_{3-10} -cycloalkyl, C_{2-10} -alkenyl, C_{1-10} -alkanoyl, C_{6-12} -aryl, C_{5-12} -hetaryl, C_{6-12} -aralkyl, C_{6-12} -alkaryl, halogen; -NR¹; -NO₂; -CF₃; -COOR¹; -NHCOR¹; -CN; -CONR¹R¹; -SO₂R²; -SOR²; -SR²; in which R¹ is H or C_{1-10} -alkyl and R² is C_{1-10} -alkyl;

R^{3'}, R^{4'} and R^{5'} are each independently H, C₁₋₁₀-alkyl, optionally substituted by halogen, up to perhalo; halogen; NO₂ or NH₂;

R^{6'} is H, C₁₋₁₀-alkyl, halogen, -NHCOR¹; -NR¹COR¹; NO₂; or 2 adjacent R^{4'}-R^{6'} can together be an aryl or hetaryl ring with 5-12 atoms;

 R^1 is C_{1-10} -alkyl;

n is 0 or 1;

X is $-CH_2$ -, -S- or -O-; and

Y is phenyl, pyridyl, naphthyl or benzothiazole, each optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen or NO₂ or, where Y is phenyl, by

or a pharmaceutically acceptable salt thereof, with the provisos that

- (a) if R^3 and R^6 are both H, one of R^4 or R^5 is not H,
- (b) R⁶ is phenyl substituted by alkoxy or halogen, alkoxy substituted by hydroxy, -SO₂CF₂H, -OR¹CONHR¹, furyloxy, N(SO₂R¹)₂,

or R³ is SO₂CF₂H, and

(c) the compounds have a pKa greater than 10.

15.-16. (Canceled)

- 17. A compound according to claim 40, wherein $R^{4'}$ is C_{1-10} -alkyl or halogen; $R^{5'}$ is H, C_{1-10} -alkyl, halogen, CF₃, halogen, NO₂ or NH₂; and $R^{6'}$ is H, C_{1-10} -alkyl, halogen, -NHCOCH₃, -N(CH₃)COCH₃, or NO₂.
 - 18. A compound according to claim 40, wherein R^{3'} is t-butyl or CF₃ and R^{6'} is -OCH₃.
 - 19. A compound which is

- N-(5-tert-Butyl-2-(N-methylaminocarbonyl)methoxyphenyl)-N'-(2,3-dichlorophenyl)urea;
- N-(5-tert-Butyl-2-(N-methylaminocarbonyl)methoxyphenyl)-N'-(1-naphthyl)urea;
- N-(5-tert-Butyl-2-(N-morpholinocarbonyl)methoxyphenyl)-N'-
- (2,3-dichlorophenyl)urea;
- N-(5-tert-Butyl-2-(N-morpholinocarbonyl)methoxyphenyl)-N'-(1-naphthyl)urea;
- N-(5-tert-Butyl-2-(3-tetrahydrofuranyloxy)phenyl)-N'-(2,3-dichlorophenyl)urea;
- N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-methylphenyl)urea;
- N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-fluorophenyl)urea;
- N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-methyl-2-fluorophenyl)urea;
- N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-methyl-3-fluorophenyl)urea;
- N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-methyl-3-chlorophenyl)urea;
- N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-fluoro-3-chlorophenyl)urea;
- N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-fluoro-3-methylphenyl)urea;
- N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(2,3-dimethylphenyl)urea; or
- N-(5-(Trifluoromethanesulfonyl)-2-methoxphenyl)-N'-(4-methylphenyl)urea.

20. (Canceled)

- 21. A pharmaceutical composition comprising a compound of claim 40, and a physiologically acceptable carrier.
- 22. A pharmaceutical composition comprising a compound of claim 43, and a physiologically acceptable carrier.
- 23. A method according to claim 2, wherein the disease is the result of host-versus-graft reactions.

24.-25. (Canceled)

- 26. A compound as in claim 44 wherein $R^{3'}$ is hydrogen, halogen, C_1 - C_{10} alkyl substituted by halogen up to perhalo, C_1 - C_{10} alkoxy substituted by halogen up to perhalo, -NHCOR¹, -NR^{1a}COR¹, SO₂F, -NR^{1a}CONR¹, or -SO₂CH_pX^a_{3-p}.
- 27. A compound as in claim 44 wherein $R^{3'}$ is hydrogen, Cl, F, C_{4-5} branched alkyl, $-SO_2F$, $-SO_2CF_3$ or $-CF_3$,
 - 28. (Canceled)
- 29. A compound as in claim 44 wherein $R^{3'}$ is t-butyl, -CF₃, hydrogen, -SO₂CHF₂ or SO₂F.
 - 30. (Canceled)
- 31. A compound as in claim 45 wherein $R^{6'}$ is independently H; halogen; C_{1-10} alkyl optionally substituted by halogen up to perhalo; C_{1-10} -alkoxy optionally substituted by at least one hydroxy group; NO_2 ; $-SO_2CF_2H$; $-COOR^1$; $-OR^{1a}CONHR^1$; $-SR^1$; $-NH_2$, $-N(SO_2R^1)_2$, $-NR^1COR^1$, furyloxy, morpholinocarbonyl, 2,5-dioxo-1-pyrolindiyl, thiophene or phenyl substituted by halogen or alkoxy.
- 32. A compound as in claim 45 wherein $R^{6'}$ is phenyl substituted by halo or C_{1-10} alkoxy, NH₂, -N(SO₂R¹)₂, furyloxy, thiophene, morpholinocarbonyl, 2,5-dioxo-1-pyrolidinyl, thiophene, -SR¹, COOR¹ or -OR^{1a}CONHR¹.
 - 33. (Canceled)
 - 34. A compound which is

N-(5-tert-Butyl-2-(N-methylaminocarbonyl)methoxyphenyl)-N'-(2,3-dichlorophenyl)urea;

N-(5-tert-Butyl-2-(N-methylaminocarbonyl)methoxyphenyl)-N'-(1-naphthyl)urea; N-(5-tert-Butyl-2-(N-morpholinocarbonyl)methoxyphenyl)-N'-(2,3-dichlorophenyl)urea;

N-(5-tert-Butyl-2-(N-morpholinocarbonyl)methoxyphenyl)-N'-(1-naphthyl)urea;
N-(5-tert-Butyl-2-(3-tetrahydrofuranyloxy)phenyl)-N'-(2,3-dichlorophenyl)urea;
N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-methylphenyl)urea;
N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-fluorophenyl)urea;
N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-methyl-2-fluorophenyl)urea;
N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-methyl-3-fluorophenyl)urea;
N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-methyl-3-chlorophenyl)urea;
N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-fluoro-3-methylphenyl)urea;
N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-fluoro-3-methylphenyl)urea;
N-(5-(Trifluoromethanesulfonyl)-2-methoxyphenyl)-N'-(4-methylphenyl)urea;
or
N-(5-(Trifluoromethanesulfonyl)-2-methoxphenyl)-N'-(4-methylphenyl)urea.

- 35. A pharmaceutical composition comprising a compound of claim 44, and a physiologically acceptable carrier.
- **36.** A pharmaceutical composition comprising a compound of claim 45, and a physiologically acceptable carrier.
 - 37. A compound of formula II

$$R^4$$
 R^5
 R^6
 $R^{6'}$
 $R^{6'}$
 $R^{6'}$

wherein

 R^3 , R^4 , R^5 , and R^6 are each independently H; halogen; $C_{1\text{-}10}$ - alkyl optionally substituted by halogen up to perhalo; $C_{1\text{-}10}$ -alkoxy optionally substituted by at least one hydroxy group; NO_2 ; SO_2F ; $-SO_2CH_nX_{3\text{-}n}$; $-COOR^1$; $-OR^1CONHR^1$; $-NHCOR^1$; $-SR^1$; $C_{6\text{-}12}$ aryl, optionally substituted by $C_{1\text{-}10}$ -alkyl, $C_{1\text{-}10}$ alkoxy or halogen; $C_{5\text{-}12}$ hetaryl, optionally substituted by $C_{1\text{-}10}$ alkoxy or halogen; NH_2 ; $-N(SO_2R^1)_2$; furyloxy;

2 adjacent R^3 , R^4 , R^5 , or R^6 can together with the phenyl form naphthyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, C_{3-10} -cycloalkyl, C_{2-10} -alkenyl, C_{1-10} -alkanoyl, C_{6-12} -aryl, C_{5-12} -hetaryl, C_{6-12} -aralkyl, C_{6-12} -alkaryl, halogen; NR^1R^1 , NO_2 ; $-CF_3$; $-COOR^1$; $-NHCOR^1$; -CN; $-CONR^1R^1$; $-SO_2R^2$; $-SOR^2$; $-SR^2$; in which R^{1a} is C_{1-10} alkyl R^1 is H or C_{1-10} -alkyl and R^2 is C_{1-10} -alkyl;

and wherein one of R^3 , R^4 , R^5 , or R^6 can be -ML¹, wherein L¹ and M are as defined below, $R^{3'}$, $R^{4'}$ and $R^{5'}$ are each independently H, C_{1-10} -alkyl, optionally substituted by halogen, up to perhalo; halogen; NO₂ or NH₂;

R^{6'} is H, C₁₋₁₀-alkyl, halogen, -NHCOR¹; -NR¹COR¹; NO₂; or 2 adjacent R^{4'}-R^{6'} can together be an aryl or hetaryl ring with 5-12 atoms;

 R^1 is C_{1-10} -alkyl;

n is 0 or 1;

M is -CH₂-, -S-, N(CH₃)-, -NHC(O), CH₂-S-, -S-CH₂-, -C(O)-, or -O-; and

L¹ is phenyl, pyridyl, naphthyl, pyridone, pyrazine, benzodixane, benzopyridine, pyrimidine or benzothiazole, each optionally substituted by

C₁₋₁₀-alkyl, C₁₋₁₀-alkoxy, halogen or NO₂ or, where L¹ is phenyl, by

$$-N$$

or a pharmaceutically acceptable salt thereof.

38. A compound of formula II

wherein R^3 , R^4 , R^5 , and R^6 are each independently H; halogen; C_{1-10} - alkyl optionally substituted by halogen up to perhalo; C_{1-10} -alkoxy optionally substituted by at least one hydroxy group; NO_2 ; SO_2F ; $-SO_2CH_nX_{3-n}$; $-COOR^1$; $-OR^1CONHR^1$; $-NHCOR^1$; $-SR^1$; phenyl optionally substituted by halogen or C_{1-10} -alkoxy; NH_2 ; $-N(SO_2R^1)_2$; furyloxy;

2 adjacent R^3 , R^4 , R^5 , and R^6 can together with phenyl form naphthyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, C_{3-10} -cycloalkyl, C_{2-10} -alkenyl, C_{1-10} -alkanoyl, C_{6-12} -aryl, C_{5-12} -hetaryl, C_{6-12} -aralkyl, C_{6-12} -alkaryl, halogen; -NR¹; -NO₂; -CF₃;

-COOR¹; -NHCOR¹; -CN; -CONR¹R¹; -SO₂R²; -SOR²; -SR²; in which R¹ is H or C_{1-10} -alkyl R² is C_{1-10} -alkyl; and R^{1a} is C_{1-10} alkyl.

a wherein one of R³, R⁴, R⁵, and R⁶ can be ML¹ where M and L¹ are as defined below,

R^{3'}, R^{4'} and R^{5'} are each independently H, C₁₋₁₀-alkyl, optionally substituted by halogen, up to perhalo; halogen; NO₂ or NH₂;

R^{6'} is H, C₁₋₁₀-alkyl, halogen, -NHCOR¹; -NR¹COR¹; NO₂;

 R^1 is C_{1-10} -alkyl;

n is 0 or 1;

M is $-CH_2$ -, -S- or -O-; and

 L^1 is phenyl, pyridyl, naphthyl or benzothiazole, each optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen or NO_2 or, where L^1 is phenyl, by

or a pharmaceutically acceptable salt thereof.

39. A method of treating a disease, other than cancer, mediated by p-38, comprising administering a compound of formula I

or a pharmaceutically acceptable salt of a compound of formula I wherein

A is

and

B is a substituted or unsubstituted, up to bicyclic aryl or heteroaryl moiety of up to 12 carbon atoms with at least one aromatic structure containing 0-4 members of the group consisting of nitrogen, oxygen and sulfur, wherein if B is substituted, it is substituted by one or more substituents selected from the group consisting of halogen, up to per-halo, and W_n , wherein n is 0-3 and each W is independently selected from the group consisting of -CN, -CO₂R⁷, -C(O)NR⁷R⁷, -C(O)-R⁷, -NO₂, -OR⁷, -SR⁷, -NR⁷R⁷,

-NR 7 C(O)OR $^{7'}$, -NR 7 C(O)R $^{7'}$, C $_1$ -C $_{10}$ alkyl, C $_{2-10}$ -alkenyl, C $_{1-10}$ -alkoxy, C $_{1-10}$ alkenoyl, C $_3$ -C $_{10}$ cycloalkyl, C $_6$ -C $_{12}$ aryl, optionally substituted by halogen, C $_1$ -C $_{10}$ alkyl or C $_{1-10}$ -alkoxy, C $_7$ -C $_{24}$ alkaryl, C $_3$ -C $_{13}$ heteroaryl, optionally substituted by halogen, C $_1$ -C $_{10}$ alkyl or C $_{1-10}$ -alkoxy; substituted

 C_1 - C_{10} alkyl, substituted C_{2-10} -alkenyl, substituted C_{1-10} -alkoxy; substituted C_{1-10} alkenoyl, halogen, substituted C_3 - C_{10} cycloalkyl, C_4 - C_{23} alkheteroaryl optionally substituted by halogen, C_1 - C_{10} alkyl or C_{1-10} alkoxy; and -M- L^1 ;

wherein if W is a substituted group which does not contain aryl or hetaryl, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R⁷, -C(O)R⁷, -C(O)NR⁷R^{7'}, -NO₂, -NR⁷C(O)OR^{7'}, -OR⁷, -SR⁷, -NR⁷R^{7'}, -NR⁷C(O)R^{7'}, and halogen up to per-halo;

wherein if B contains a phenyl group, W is additionally selected from the group consisting of hydroxy, $OR^{1a}CONHR^7$, $N(SO_2R^7)_2$, SO_2F , SO_2F , SO_2R^7 , $SO_2CH_pX^a_{3-p}$, wherein p is 0-3, C_{1-10} alkoxy substituted C_6-C_{12} aryl, C_1-C_{10} alky substituted C_6-C_{12} aryl, halogen substituted C_6-C_{12} aryl, C_1-C_{10} alkyl substituted C_3-C_{13} heteroaryl, C_{1-10} alkoxy substituted C_3-C_{13} hetaryl, halogen substituted C_3-C_{13} hetaryl, furyloxy;

wherein each R^7 and $R^{7'}$ is independently selected from H, C_1 - C_{10} alkyl, C_{2-10} -alkenyl, C_3 - C_{10} cycloalkyl, C_6 - C_{14} aryl, C_3 - C_{13} hetaryl, C_7 - C_{24} alkaryl, C_4 - C_{23} alkheteroaryl, up to per-halosubstituted C_1 - C_{10} alkyl, up to per-halosubstituted C_2 - C_{10} -alkenyl, up to per-halosubstituted C_3 - C_{10} cycloalkyl, up to per-halosubstituted C_6 - C_{14} aryl and up to per-halosubstituted C_3 - C_{13} hetaryl;

 R^{1a} is C_1 - C_{10} alkyl;

M is -O-, -S-, -N(R⁷)-, -(CH₂)-_m, -C(O)-, -CH(OH)-, -(CH₂)_mO-, -NR⁷C(O)NR⁷R^{7'}-, -NR⁷C(O)-, -C(O)NR⁷-, -(CH₂)_mS-, -(CH₂)_mN(R⁷)-, -O(CH₂)_m-, -CHX^a, -CX^a₂-, -S-(CH₂)_m- and -N(R⁷)(CH₂)_m-;

m = 1-3, and X^a is halogen; and

 L^{1} is a 5-10 member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur, wherein the aromatic structure is unsubstituted or substituted by halogen up to per-halo and optionally substituted by Z_{n1} ,

wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of -CN, -NO₂, -OR⁷, - SR⁷, -NR⁷C(O)OR⁷, -NR⁷C(O)OR⁷, -NR⁷C(O)R⁷, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₆-C₁₂ aryl, C₃-C₁₃ hetaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₃-C₁₀ cycloalkyl, substituted C₇-C₂₄ alkaryl and substituted C₄-C₂₃ alkheteroaryl; wherein the one or more substituents of Z is selected from the group consisting of -CN, -NO₂, -OR⁷, -SR⁷, -NR⁷R⁷, -NR⁷C(O)R⁷ and -NR⁷C(O)OR⁷;

wherein $R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$ are each independently H, halogen, C_{1-10} alkyl optionally substituted by halogen up to perhalo, C_{1-10} -alkoxy optionally substituted by at least one hydroxy group, C_{1-10} alkoxy substituted by halogen up to perhaloalkoxy, C_{6-12} aryl optionally substituted by C_{1-10} alkoxy or halogen, C_{5-12} hetaryl optionally substituted by C_{1-10} alkyl, C_{1-10} alkoxy or halogen, NO_2 , SO_2F , - $SO_2CH_pX^a_{3-p}$, - $COOR^1$, - $OR^{1a}CONHR^1$, - $NHCOR^1$, - $NR^{1a}COR^1$, - SR^1 , NH_2 , or - $N(SO_2R^1)_2$,

wherein each R^1 is independently H or C_{1-10} alkyl optionally substituted by halogen up to perhalo, R^{1a} is C_1 - C_{10} alkyl, X^a is halogen, and p is 0 or 1, and

wherein 2 adjacent $R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$ can together with the phenyl form naphthyl, optionally substituted by C_{1-10} alkyl, C_{1-10} alkoxy, C_{3-10} -cycloalkyl, C_{2-10} -alkenyl, C_{1-10} -alkanoyl, and, halogen up to perhalo; and

where L¹ is phenyl, it is also optionally substituted, by

$$-N$$

40. A compound of formula II

wherein R^3 , R^4 , R^5 , and R^6 are each independently H; halogen; C_{1-10} - alkyl optionally substituted by halogen up to perhalo; C_{1-10} -alkoxy optionally substituted by at least one hydroxy group; NO_2 ; SO_2F ; $-SO_2CH_nX^a_{3-n}$; $-COOR^1$; $-OR^{1a}CONHR^1$; $-NHCOR^1$; $-SR^1$; phenyl optionally substituted by halogen or C_{1-10} -alkoxy; NH_2 ; $-N(SO_2R^1)_2$; furyloxy;

wherein each R^1 is independently H or C_{1-10} alkyl optionally substituted by halogen up to perhalo, R^{1a} is C_1 - C_{10} alkylene, X^a is halogen, and n is 0 or 1, and

wherein 2 adjacent R^3 , R^4 , R^5 and R^6 can together with the phenyl form an aryl or hetaryl ring with 5-12 atoms, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, C_{3-10} -cycloalkyl, C_{2-10} -alkenyl, C_{1-10} -alkanoyl, C_{6-12} -aryl, C_{5-12} -hetaryl, C_{6-12} -aralkyl, C_{6-12} -alkaryl, halogen; -NR¹; -NO₂; -CF₃; -COOR¹; -NHCOR¹; -CN; -CONR¹R¹; -SO₂R²; -SOR²; -SR²; wherein each R¹ is independently H or C_{1-10} -alkyl and R^2 is C_{1-10} -alkyl;

and wherein one of R^3 , R^4 , R^5 or R^6 can be -ML¹, where L¹ and M are as defined below with the proviso that if R^3 and R^6 are both H, then one of R^4 or R^5 is not H, and

M is -CH₂-, -S- or -O-; and

 L^1 is phenyl, pyridyl, naphthyl or benzothiazole, each optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen or NO_2 ;

 $R^{3'}$, $R^{4''}$ and $R^{5'}$ are each independently H, C_{1-10} -alkyl, optionally substituted by halogen, up to perhalo; halogen; NO_2 or NH_2 ;

R^{6'} is H, C₁₋₁₀-alkyl, halogen, -NHCOR¹; -NR¹COR¹; NO₂; where R¹ is C₁₋₁₀-alkyl;

or wherein 2 adjacent $R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$ can together with the phenyl form naphthyl, optionally substituted by C_{1-10} alkyl, C_{1-10} alkoxy, C_{3-10} -cycloalkyl, C_{2-10} -alkenyl, C_{1-10} -alkanoyl, and, halogen up to perhalo; or where L^{1} is phenyl, it is also optionally substituted, by

or a pharmaceutically acceptable salt thereof,

with the provisos that

(a) R⁶ is phenyl substituted by alkoxy, phenyl substituted by halogen, alkoxy substituted by hydroxy, -SO₂CF₂H, -OR¹CONHR¹, furyloxy, -N(SO₂R¹)₂;

or R³ is SO₂CF₂H, and

- (b) the compounds have a pKa greater than 10.
- 41. A compound according to claim 40, wherein

 $R^{3'}$ is H, halogen or C_{1-10} -alkyl optionally substituted by halogen, up to perhalo, NO_2 , $-SO_2F$ or $-SO_2CF_3$;

R^{4'} is H, C₁₋₁₀-alkyl, C₁₋₁₀-alkoxy, halogen or NO₂;

 $R^{5'}$ is H or C_{1-10} -alkyl optionally substituted by halogen, up to perhalo;

 $R^{6'}$ is H or C_{1-10} -alkoxy optionally substituted by at least one hydroxy group; -COOR¹; -OR^{1a}CONHR¹; -NHCOR¹; -SR¹; phenyl optionally substituted by halo or C_{1-10} -alkoxy; NH₂; -N(SO₂R¹)₂.

42. A compound according to claim 40, wherein R^3 is Cl, F, C_{4-5} -branched alkyl, $-SO_2F$ or $-SO_2CF_3$; and R^6 is hydroxy; C_{1-10} -alkoxy optionally substituted by at least one hydroxy group; $-COOR^1$; $-OR^{1a}CONHR^1$; $-NHCOR^1$; $-SR^1$; phenyl optionally substituted by halo or C_{1-10} -alkoxy; NH_2 ; $-N(SO_2R^1)_2$, furyloxy,

$$-N \longrightarrow OR^{1a}CO-N \longrightarrow O$$

$$-N \longrightarrow OR \longrightarrow NH$$

43. A compound of formula II

$$R^4$$
 R^5
 R^6
 R^6
 $R^{6'}$
 $R^{6'}$

wherein

 R^3 , R^4 , R^5 , and R^6 are each independently H; halogen; $C_{1\text{-}10}$ - alkyl optionally substituted by halogen up to perhalo; $C_{1\text{-}10}$ -alkoxy optionally substituted by at least one hydroxy group; NO_2 ; SO_2F ; $-SO_2CH_nX^a_{3\text{-}n}$; $-COOR^1$; $-OR^1CONHR^1$; $-NHCOR^1$; $-SR^1$; phenyl optionally substituted by halogen or $C_{1\text{-}10}$ -alkoxy; NH_2 ; $-N(SO_2R^1)_2$; furyloxy;

wherein R^{1a} is C_{1-10} alkyl, n is 0 or 1, X^a is halogen, each R^1 is independently H or C_{1-10} or alkyl,

and wherein one of R³, R⁴, R⁵ or R⁶ can be -ML¹, where M and L¹ are as defined below with the proviso that if R³ and R⁶ are both H, then one of R⁴ or R⁵ is not H, and

M is -CH₂-, -S- or -O-; and

 L^1 is phenyl, pyridyl, naphthyl or benzothiazole, each optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen or NO_2 ;

2 adjacent R^3 , R^4 , R^5 and R^6 can together with the phenyl form naphthyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, C_{3-10} -cycloalkyl, C_{2-10} -alkenyl, C_{1-10} -alkanoyl, C_{6-12} -aryl, C_{5-12} -hetaryl, C_{6-12} -aralkyl, C_{6-12} -alkaryl, halogen; -NR¹; -NO₂; -CF₃; -COOR¹; -NHCOR¹; -CN; -CONR¹R¹; -SO₂R²; -SOR²; -SR²; in which R¹ is H or C_{1-10} -alkyl, and R² is C_{1-10} -alkyl;

 $R^{3'}$, $R^{4'}$ and $R^{5'}$ are each independently H, C_{1-10} -alkyl, optionally substituted by halogen, up to perhalo; halogen; NO₂ or NH₂;

R^{6'} is H, C₁₋₁₀-alkyl, halogen, -NHCOR¹; -NR¹COR¹; NO₂;

or 2 adjacent R4'-R6' can together be an aryl or hetaryl ring with 5-12 atoms;

 R^1 is C_{1-10} -alkyl;

n is 0 or 1;

or, where L¹ is phenyl, by

or a pharmaceutically acceptable salt thereof with the proviso that

(a) R^6 is alkoxy substituted by hydroxy, $-SO_2CF_2H$, $-OR^1CONHR^1$, furyloxy or $-N(SO_2R^1)_2$; or

44. A compound of the formula

or a pharmaceutically acceptable salt thereof,

B is a substituted or unsubstituted, up to bicyclic aryl or heteroaryl moiety of up to 12 carbon atoms with at least one aromatic structure containing 0-4 members of the group consisting of nitrogen, oxygen and sulfur, wherein if B is substituted, it is substituted by one or more substituents selected from the group consisting of halogen, up to per-halo, and W_n , wherein n is 0-3 and each W

is independently selected from the group consisting of -CN, -CO₂R⁷, -C(O)NR⁷R^{7'}, -C(O)-R⁷, -NO₂, -OR⁷, -SR⁷, -NR⁷R^{7'},

-NR 7 C(O)OR $^{7'}$, -NR 7 C(O)R $^{7'}$, C₁-C₁₀ alkyl, C₂₋₁₀-alkenyl, C₁₋₁₀-alkoxy, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, optionally substituted by halogen, C₇-C₂₄ alkaryl, C₃-C₁₃ heteroaryl, optionally substituted by halogen, C₁-C₁₀ alkyl or C₁₋₁₀-alkoxy, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₂₋₁₀-alkenyl, substituted C₁₋₁₀-alkoxy, halogen, C₁₋₁₀-alkyl, C₁₋₁₀-alkoxy or halogen, substituted C₃-C₁₀ cycloalkyl, substituted C₄-C₂₃ alkheteroaryl and -ML 1 ;

wherein if W is a substituted group which does not contain aryl or hetaryl, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R⁷, -C(O)R⁷, -C(O)NR⁷R^{7'}, -NO₂, -NR⁷C(O)OR^{7'}, -OR⁷, -SR⁷, -NR⁷R^{7'}, -NR⁷C(O)R^{7'}, and halogen up to per-halo;

wherein if B contains a phenyl group, W is additionally selected from the group consisting of hydroxy, $OR^{1a}CONHR^7$, $N(SO_2R^7)_2$, SO_2F , SO_2F , SO_2R^7 , $SO_2CH_pX^a_{3-p}$, wherein p is 0-3, C_{1-10} alkoxy substituted C_6 - C_{12} aryl, C_1 - C_{10} alky substituted C_6 - C_{12} aryl, halogen substituted C_3 - C_{13} heteroaryl, C_1 - C_{10} alkoxy substituted C_3 - C_{13} hetaryl, halogen substituted C_3 - C_{13} hetaryl, furyloxy;

wherein each R^7 and $R^{7'}$ are independently selected from H, C_1 - C_{10} alkyl, C_{2-10} -alkenyl, C_3 - C_{10} cycloalkyl, C_6 - C_{14} aryl, C_3 - C_{13} hetaryl, C_7 - C_{24} alkaryl, C_4 - C_{23} alkheteroaryl, up to perhalosubstituted C_1 - C_{10} alkyl, up to per-halosubstituted C_2 - C_{10} -alkenyl, up to per-halosubstituted C_3 - C_{10} cycloalkyl, up to per-halosubstituted C_6 - C_{14} aryl and up to per-halosubstituted C_3 - C_{13} hetaryl,

 R^{1a} is C_1 - C_{10} alkyl;

M is -O-, -S-, -N(R⁷)-, -(CH₂)-_m, -C(O)-, -CH(OH)-, -(CH₂)_mO-, -NR⁷C(O)NR⁷R^{7'}-, -NR⁷C(O)-, -C(O)NR⁷-, -(CH₂)_mS-, -(CH₂)_mN(R⁷)-, -O(CH₂)_m-, -CHX^a, -CX^a₂-, -S-(CH₂)_m- and -N(R⁷)(CH₂)_m-;

m = 1-3, and X^a is halogen; and

 L^1 is a 5-10 member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur, wherein the aromatic structure is unsubstituted or substituted by halogen up to per-halo and optionally substituted by Z_{n1} ,

wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of -CN, -NO₂, -OR⁷, - SR⁷, -NR⁷R^{7'}, -NR⁷C(O)OR^{7'}, -NR⁷C(O)R^{7'}, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₆-C₁₂ aryl, C₃-C₁₃ hetaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₃-C₁₀ cycloalkyl, substituted C₇-C₂₄ alkaryl and substituted C₄-C₂₃ alkheteroaryl; wherein the one or more substituents of Z is selected from the group consisting of -CN, -NO₂, -OR⁷, -SR⁷, -NR⁷R^{7'}, -NR⁷C(O)R^{7'}, -NR⁷C(O)OR^{7'};

wherein $R^{3'}$, $R^{4'}$ and $R^{5'}$ are each independently H, hydroxy, halogen, $C_{1\text{-}10}$ - alkyl optionally substituted by halogen up to perhalo, $C_{1\text{-}10}$ -alkoxy optionally substituted by at least one hydroxy group, C_1 - C_{10} alkoxy substituted by or halogen up to perhalo, $C_{6\text{-}12}$ aryl optionally substituted by $C_{1\text{-}10}$ alkoxy or halogen, $C_{5\text{-}12}$ hetaryl optionally substituted by $C_{1\text{-}10}$ alkyl, $C_{1\text{-}10}$ alkoxy or halogen; NO_2 , SO_2F , $-SO_2CH_pX^a_{3\text{-}p}$, $-COOR^1$, $-OR^{1a}CONHR^1$, $-NHCOR^1$ - $NR^{1a}COR^1$, $-SR^1$, NH_2 , $-N(SO_2R^1)_2$, wherein

 X^{a} is halogen, each R^{1} is independently H or C_{1} - C_{10} alkyl optionally substituted by halogen up to per halo;

 R^{1a} is C_1 - C_{10} alkyl, and p is 0 or 1 and wherein

2 adjacent $R^{3'}$, $R^{4'}$ and $R^{5'}$ can together with the phenyl group form naphthyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, C_{3-10} -cycloalkyl, C_{2-10} -alkenyl, C_{1-10} -alkanoyl, and halogen up to per halo, and

where L1 is phenyl, optionally by

$$-\mathbf{N}$$

wherein R⁶ is -SO₂CF₂H, -COOR¹, -OR^{1a}CONHR¹, -SR¹, -NH₂, -N(SO₂R¹)₂, -NR¹COR¹, furyloxy, morpholinocarbonyl, 2,5-dioxo-1-pyrolidinyl, thiophene, and phenyl substituted by halogen or alkoxy.

45. A compound of Formula II

or a pharmaceutically acceptable salt thereof

B is a substituted or unsubstituted, up to bicyclic aryl or heteroaryl moiety of up to 12 carbon atoms with at least one aromatic structure containing 0-4 members of the group consisting of nitrogen, oxygen and sulfur, wherein if B is substituted, it is substituted by one or more substituents selected from the group consisting of halogen, up to per-halo, and W_n , wherein n is 0-3 and each W is independently selected from the group consisting of -CN, -CO₂R⁷, -C(O)NR⁷R⁷, -C(O)-R⁷, -NO₂, -OR⁷, -SR⁷, -NR⁷R⁷,

-NR 7 C(O)OR 7 , -NR 7 C(O)R 7 , C₁-C₁₀ alkyl, C₂₋₁₀-alkenyl, C₁₋₁₀-alkoxy, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, optionally substituted by halogen, C₇-C₂₄ alkaryl, C₃-C₁₃ heteroaryl, optionally substituted by halogen, C₁-C₁₀ alkyl or C₁₋₁₀-alkoxy, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₂₋₁₀-alkenyl, substituted C₁₋₁₀-alkoxy, halogen, C₁₋₁₀-alkyl, C₁₋₁₀-alkoxy or halogen, substituted C₃-C₁₀ cycloalkyl, substituted C₄-C₂₃ alkheteroaryl and -ML 1 ;

wherein if W is a substituted group which does not contain aryl or hetaryl, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R⁷, -C(O)R⁷, -C(O)NR⁷R^{7'}, -NO₂, -NR⁷C(O)OR^{7'}, -OR⁷, -SR⁷, -NR⁷R^{7'}, -NR⁷C(O)R^{7'}, and halogen up to per-halo;

wherein if B contains a phenyl group, W is additionally selected from the group consisting of hydroxy, $OR^{1a}CONHR^7$, $N(SO_2R^7)_2$, SO_2F , SO_2F , SO_2R^7 , $SO_2CH_pX^a_{3-p}$, wherein p is 0-3, C_{1-10} alkoxy substituted C_6 - C_{12} aryl, C_1 - C_{10} alky substituted C_6 - C_{12} aryl, halogen substituted C_3 - C_{13} heteroaryl, C_{1-10} alkoxy substituted C_3 - C_{13} hetaryl, halogen substituted C_3 - C_{13} hetaryl, furyloxy;

wherein each R^7 and $R^{7'}$ are independently selected from H, C_1 - C_{10} alkyl, C_{2-10} -alkenyl, C_3 - C_{10} cycloalkyl, C_6 - C_{14} aryl, C_3 - C_{13} hetaryl, C_7 - C_{24} alkaryl, C_4 - C_{23} alkheteroaryl, up to perhalosubstituted C_1 - C_{10} alkyl, up to per-halosubstituted C_2 - C_{10} -alkenyl, up to per-halosubstituted C_3 - C_{10} cycloalkyl, up to per-halosubstituted C_6 - C_{14} aryl and up to per-halosubstituted C_3 - C_{13} hetaryl,

 R^{1a} is C_1 - C_{10} alkyl;

M is -O-, -S-, -N(R⁷)-, -(CH₂)-_m, -C(O)-, -CH(OH)-, -(CH₂)_mO-, -NR⁷C(O)NR⁷R^{7'}-, -NR⁷C(O)-, -C(O)NR⁷-, -(CH₂)_mS-, -(CH₂)_mN(R⁷)-, -O(CH₂)_m-, -CHX^a, -CX^a₂-, -S-(CH₂)_m- and -N(R⁷)(CH₂)_m-;

m = 1-3, and X^a is halogen; and

 L^1 is a 5-10 member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur, wherein the aromatic structure is unsubstituted or substituted by halogen up to per-halo and optionally substituted by Z_{n1} ,

wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of -CN, -NO₂, -OR⁷, - SR⁷, -NR⁷R⁷, -NR⁷C(O)OR⁷, -NR⁷C(O)R⁷, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₆-C₁₂ aryl, C₃-C₁₃ hetaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₃-C₁₀ cycloalkyl, substituted C₇-C₂₄ alkaryl and substituted C₄-C₂₃ alkheteroaryl; wherein the one or more substituents of Z is selected from the group consisting of -CN, -NO₂, -OR⁷, -SR⁷, -NR⁷C(O)R⁷, -NR⁷C(O)OR⁷;

wherein $R^{4'}$, $R^{5'}$ and $R^{6'}$ are each independently H, hydroxy, halogen, C_{1-10} - alkyl optionally substituted by halogen up to perhalo, C_{1-10} -alkoxy optionally substituted by at least one hydroxy group, C_1 - C_{10} alkoxy substituted by or halogen up to perhalo, C_{6-12} aryl optionally substituted by C_{1-10}

 $_{10}$ alkoxy or halogen, C_{5-12} hetaryl optionally substituted by C_{1-10} alkyl, C_{1-10} alkoxy or halogen, NO_2 , SO_2F , $-SO_2CH_pX^a_{3-p}$, $-COOR^1$, $-OR^{1a}CONHR^1$, $-NHCOR^1$, $-NR^1COR^1$, $-SR^1$, NH_2 , $-N(SO_2R^1)_2$,

wherein X^a is halogen, each R^1 is independently H or C_1 - C_{10} alkyl optionally substituted by halogen up to per halo; R^{1a} is C_1 - C_{10} alkyl and p is 0 or 1

and wherein

2 adjacent $R^{4'}$, $R^{5'}$ and $R^{6'}$ can together with the phenyl form naphthyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, C_{3-10} -cycloalkyl, C_{2-10} -alkenyl, C_{1-10} -alkanoyl, and halogen up to perhalo; and

wherein R^{3'} is SO₂F or SO₂CH₂X^a_{3-n}., where n is 0 or 1.