

NATURAL LANGUAGE PROCESSING (NLP)

PMDS606L

MODULE 1 LECTURE 4

Dr. Kamanasish Bhattacharjee

Assistant Professor

Dept. of Analytics, SCOPE, VIT

REAL LIFE APPLICATIONS OF NLP

- Spell Checking
- Grammar Checking
- Information Extraction
- Information Retrieval
- Question Answering
- Machine Translation

Types of Errors

Non-word errors

Word does not exist in the dictionary

Example: "recieve" → "receive"

Real-word errors

Word is valid but incorrect in the context

Example: "Their going to the store" →

"They're going to the store"

Components of Spell Checking

- Error Detection
- Candidate Generation

Edit Distance Methods

Phonetic Algorithms

Keyboard Distance

Candidate Ranking and Selection

- Input Text → Tokenization → For each token:
 - → Error Detection (dictionary lookup)
 - → If misspelled:
- → Generate Candidates (edit distance, phonetics)
 - → Rank Candidates (frequency, context)
 - → Replace with Best Candidate

Applications of Spell Checking in NLP

- Text Editors (MS Word, Google Docs)
- Search Engines ("Did you mean?" suggestions)
- Autocorrect in Smartphones
- Voice Assistants (after speech-to-text conversion)
- Chatbots and Email Filters
- Assistive Tools for Language Learners

GRAMMAR CHECKING

- Modern grammar checkers go beyond rulebased correction and use deep learning, contextual understanding, and large corpora to detect even subtle issues.
- Grammar checkers aim to ensure syntactic and semantic correctness by analyzing sentence structure, agreement rules, and contextual usage.

Error Type	Example	Correction
Subject-verb agreement	He go to school	He goes to school
Tense errors	She eat yesterday	She ate yesterday
Article misuse	She has a idea	She has an idea
Preposition errors	He arrived to the airport	He arrived at the airport
Word order	Beautifully she sings	She sings beautifully
Pronoun errors	Me went there	I went there
Run-on sentences	I went home I slept	I went home, and I slept
Fragment sentences	Because he was late.	He was late, so

APPROCHES IN GRAMMAR CHECKING

- Rule-Based Grammar Checking
- Statistical Grammar Checking
- Machine Learning-Based Grammar Checking
- Deep Learning-Based Grammar Correction

RULE-BASED GRAMMAR CHECKING

- Uses hand-crafted grammar rules and regular expressions.
- Simple but rigid and language-specific.
- Examples

Grammarly (initial versions)

LanguageTool

Ginger (initially rule-based)

STATISTICAL GRAMMAR CHECKING

- Use of n-gram language models (e.g., trigram models)
- Detect errors by measuring how likely a sentence is based on training data
- "He go to school" has a lower probability than "He goes to school"
- Examples

Grammarly (older hybrid systems)

Microsoft Word's statistical checker (predeep learning)

ML-BASED GRAMMAR CHECKING

- Supervised classification (Is this word/phrase grammatically correct?)
- Features: POS tags, dependency trees, context windows
- Examples

Google's early grammar checker
CoNLL Shared Tasks on Grammatical
Error Correction (GEC)

DL-BASED GRAMMAR CHECKING

- Treat grammar correction as a sequence-tosequence (seq2seq) task
- LSTM Encoder-Decoder, Transformer Encoder-Decoder, BERT-based models (e.g., RoBERTa, T5, BART, GECToR)
- Examples
- **GECToR** (Efficient Transformer-based model for grammar correction)
 - Gingerlt
 - **Grammarly (Advanced)**
 - **DeepL Write**
 - ChatGPT, Google's grammar checker

GRAMMAR CHECKING

Applications of Grammar Checkers

- Word processors (Google Docs, MS Word)
- Writing assistants (Grammarly, Quillbot, DeepL Write)
- Language learning apps (Duolingo, HelloTalk)
- Chatbots (to ensure correct replies)
- Speech-to-text systems (after ASR)

GRAMMAR CHECKING

Input: "She not goes to college."

Steps:

- Tokenization: [She, not, goes, to, college, .]
- POS Tagging: PRON, ADV, VERB, PREP, NOUN, PUNCT
- Parse Tree: Detected mismatch in negation and verb form
- Error Detection: "not goes" is ungrammatical
- Candidate Generation: "does not go", "doesn't go", "is not going"
- Ranking: Based on language model → "does not go"
- Correction: "She does not go to college."

INFORMATION EXTRACTION (IE)

Task	Example

Template Filling

Named Entity Recognition (NER)

"Barack Obama was born in Hawaii." → Entities: Barack
Obama (Person), Hawaii (Location)

Relation Extraction "Google acquired YouTube in 2006." → (Google, acquired, YouTube, 2006)

Event Extraction

"An earthquake struck Japan on Monday." → Event:
earthquake, Location: Japan, Date: Monday

Coreference Resolution "Mary said she would help." → Mary = she

"John works at Microsoft." → Fill: {Person: John, Organization: Microsoft, Job: employee}

IE TECHNIQUES AND MODELS

Technique	Description	Example Tools	
Rule-Based	Manually defined grammar and pattern-matching rules	GATE, spaCy Matcher	
Statistical Models	CRF, HMM, MaxEnt	Stanford NER	
Neural Models	BiLSTM-CRF, CNN, RNN	Flair, AllenNLP	
Transformer-based	Pretrained language models with fine-tuning	BERT, RoBERTa, spaCy 3+, T5, GPT, REBEL	

OTHER IE APPROACHES

- Distant Supervision
- Open Information Extraction (OpenIE)
 OpenIE5
 Stanford OpenIE
 MinIE
- Zero-Shot IE
- Few-Shot IE

APPLICATIONS OF IE

Domain Use Case

Search Engines Enhancing result snippets with extracted facts

Chatbots / QA Systems Answering fact-based queries

Healthcare Extracting patient data from clinical notes

Finance Extracting company earnings, merger news

Legal Contract clause identification

Social Media Analysis Entity and trend detection from tweets/posts

INFORMATION RETRIEVAL (IR)

- Information Retrieval (IR) is the process of obtaining information system resources (e.g., documents, paragraphs, sentences) that are relevant to an information need (query) from a large corpus.
- It is the foundation of search engines, question answering systems, and document recommendation tools.

INFORMATION RETRIEVAL (IR)

Task Example

Document Retrieval "Jurafsky" → Return documents written by Jurafsky

Passage Retrieval "Where was Gandhi born?" → Return relevant sentence

Ad-hoc Retrieval User poses novel, unstructured queries

Question Answering Extract answer phrases from retrieved docs

Semantic Search Match queries based on meaning, not just keywords

APPLICATIONS OF IR

Domain Use Case

Search Engines Google, Bing, DuckDuckGo

E-commerce Product search and ranking

Chatbots Retrieve relevant FAQs

Legal/Medical NLP Find related case laws or symptoms

Document RecommendationSuggest papers, news, or books

Question Answering (QA) Retrieve evidence for answering queries

IR MODELS

Model	Description
BERT (re-ranker)	Contextual ranking of documents after initial retrieval (not suitable for large-scale retrieval)
Siamese BERT / Sentence-BERT (SBERT)	Converts queries and documents into fixed-length semantic vectors for fast search
Dense Passage Retrieval (DPR)	Dual BERT encoders for questions and passages; used in QA
ColBERT (Contextual Late Interaction)	Efficient dense retrieval using token-level interactions
TAS-B (Token-Aware SBERT)	Hybrid model combining BERT and interaction layers for better performance
ANCE (Approximate Nearest Neighbor Negative Contrastive Estimation)	Learns better dense representations for fast retrieval
RAG (Retrieval-Augmented Generation)	Combines dense retrieval and text generation (e.g., BART + FAISS)

QUESTION ANSWERING (QA)

Туре	Description	Example
Closed-domain QA	Focused on a specific subject area (e.g., medicine, law)	"What is the normal blood pressure?"
Open-domain QA	Answers any general question from a large corpus like Wikipedia	"Who discovered penicillin?"
Factoid QA	Provides a factual answer (name, date, location)	"When did World War II end?" → "1945"
Yes/No QA	Returns binary responses	"Is Mount Everest the tallest mountain?"
List QA	Returns a list of answers	"Name the continents"
Generative QA	Produces natural language answers (beyond span extraction)	"Why is the sky blue?" → "Because molecules in the air scatter blue light more."

QUESTION ANSWERING (QA) PIPELINE

```
User Question
[1] Information Retrieval (IR)
Top-k Relevant Passages or
Documents
[2] Machine Reading Comprehension
(MRC)
Extracted or Generated Answer
```

QUESTION ANSWERING (QA) MODELS

Model	Use Case	Туре
BERT	Extractive QA from short passages	Span-based
RoBERTa / XLNet	Improved versions of BERT	Span-based
T5 (Text-to-Text Transfer Transformer)	Generative QA	Seq2Seq
RAG (Retrieval-Augmented Generation)	Combines retrieval + generation	Hybrid
GPT-3 / GPT-4 / Claude / LLaMA	Zero-shot QA, open-domain	Generative

DPR (Dense Passage Retrieval)

Open-domain retrieval

Dual Encoder

QA SYSTEMS

System Platform

Google Search Snippets Open-domain QA

Alexa / Siri / Google Assistant Voice-based QA

IBM Watson Domain-specific QA

ChatGPT / Claude / Bard Large Language Model-based QA

Haystack QA Pipelines End-to-end Python QA systems

MACHINE TRANSLATION (MT) PIPELINE

Source Language Text

- 1. Text Preprocessing
- 2. Tokenization & Subword Segmentation
- 3. Embedding Layer (Encoder Input)
- 4. Encoder (e.g., Transformer)
- 5. Attention Mechanism
- 6. Decoder (Auto-regressive)
- 7. Target Language Generation
- 8. Postprocessing (Detokenization, Grammar Fixes)

Target Language Text

DL-BASED MT

Feature Description

Uses Neural networks (especially Transformers)

Models Encoder–Decoder architecture

Handles Context, long dependencies, fluency

Examples Google Translate (Transformer), DeepL (custom NMT), OpenNMT

Frameworks OpenNMT, Fairseq, MarianNMT, HuggingFace Transformers

APPLICATIONS OF MACHINE TRANSLATION

Domain Use

Web Translation Google Translate, DeepL

E-commerce Translate reviews, product listings

Healthcare Cross-lingual patient communication

Legal / Policy Document translation between jurisdictions

News & Media Multilingual publishing

Government Translation of official documents

Social Media Facebook auto-translation of posts

TOOLS AND LIBRARIES FOR MT

Tool Description

OpenNMT Open-source NMT toolkit (PyTorch, TensorFlow)

MarianNMT Fast NMT framework used by Microsoft

Fairseq Facebook's NLP toolkit for sequence modeling

Transformers (HuggingFace) Pretrained MT models like T5, mBART, MarianMT

Google Translate API Commercial translation service

DeepL API High-quality translations in European languages

Bergamot / Firefox Translator Offline NMT in browser (privacy-preserving)