

② BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

② Offenlegungsschrift
① DE 3233665 A1

⑤ Int. Cl. 3:
A61K7/06

A 61 K 7/08
C 11 D 3/382
C 11 D 3/384
C 11 D 3/37
A 61 K 7/09
A 61 K 7/11
A 61 K 7/13
A 61 K 7/136

P 32 33 665.8
10. 9. 82
24. 3. 83

② Aktenzeichen:
② Anmeldetag:
③ Offenlegungstag:

DE 3233665 A1

④ Unionspriorität: ② ③ ④
14.09.81 JP P144932-81

⑦ Erfinder:
Abe, Yoshiaki, Tokyo, JP

⑥ Anmelder:
Kao Corp., Tokyo, JP

⑧ Vertreter:
Wächtershäuser, G., Dipl.-Chem. Dr.rer.nat., Pat.-Anw.,
8000 München

Behördeneigentum

⑩ Mittel zur Haarbehandlung

Es wird ein Mittel zur Haarbehandlung beschrieben, welches die folgenden zwei Bestandteile A) und B) umfaßt: A) eine Polyphenolverbindung mit 0,001-5,0 Gew.-% und B) ein Chelatisierungsmittel mit 0,01-5,0 Gew.-%. Darüber hinaus wird ein Mittel zur Haarbehandlung beschrieben, welches zusätzlich zu den Bestandteilen A) und B) einen dritten Bestandteil C) umfaßt. Bei dem Bestandteil C) handelt es sich um wenigstens ein Zersetzungserivat von Keratinmaterial, ausgewählt unter 1) Hydrolysaten von Keratinmaterial, 2) Alkalisalzen von Zersetzungserprodukten, welche durch Oxydation von Keratinmaterial erhalten wurden und 3) Alkalisalzen von Derivaten der Thiolgruppen von Zersetzungserprodukten, welche durch Reduktion von Keratinmaterial erhalten wurden, in einer Menge von 0,05-10 Gew.-%. Das erfindungsgemäße Mittel zur Haarbehandlung vermag die Eludierung von Proteinen aus dem Haar zu verhindern und die Spannkraft und Flexibilität des Hairs, die bei Behandlungen im Zuge der Schönheitspflege verlorengegangen sind, in einem zweckentsprechenden Ausmaß wieder herzustellen. (32 33 665)

Oxidation von
Keratin S. 18

Zitat S. 8

DE 3233665 A1

10.09.82

3233665

- 26 --

Patentansprüche

1. Mittel zur Haarbehandlung, dadurch gekennzeichnet,
daß es die folgenden zwei Bestandteile A und B umfaßt:
(A) eine Polyphenolverbindung mit 0,001 - 5,0 Gew.-% und
(B) ein Chelatisierungsmittel mit 0,01 - 5,0 Gew.-%,
jeweils bezogen auf die Gesamtzusammensetzung des Mittels.
2. Mittel zur Haarbehandlung, dadurch gekennzeichnet,
daß es die folgenden drei Bestandteile (A), (B) und
(C) umfaßt:
(A) eine Polyphenolverbindung mit 0,001 - 5,0 Gew.-%,
(B) ein Chelatisierungsmittel mit 0,01 - 5,0 Gew.-% und
(C) wenigstens ein Zersetzungserivat von Keratinmaterial,
ausgewählt unter (1) Hydrolysaten des Keratinmaterials,
(2) Alkalosalzen von Zersetzungprodukten, welche durch
Oxidation von Keratinmaterial erhalten wurden und (3)
Alkalosalzen von Derivaten der Thiolgruppen von Zer-
setzungprodukten, welche durch Reduktion von Keratin-
material erhalten wurden, mit 0,05 - 10,0 Gew.-%, jeweils
bezogen auf die Gesamtzusammensetzung des Mittels.

10-09-82

3233665

2

1A-4032

KAO CORPORATION
Tokyo, Japan

Mittel zur Haarbehandlung

Die vorliegende Erfindung betrifft Mittel zur Haarbehandlung und insbesondere Haarbehandlungsmittel, welche Polyphenolverbindungen und Chelatisierungsmittel sowie gegebenenfalls Keratinderivate eines speziellen Typs umfassen.

Bei der Schönheitspflege wird das Haar gewöhnlich verschiedenen Behandlungen unterzogen, welche eine Schädigung des Haares verursachen. Beispielsweise verursachen Behandlungen zum Zwecke der Schönheitspflege, wie beispielsweise das Waschen mit Shampoo, das Trocknen mit einem Trockner, Kaltwellenbehandlungen, Haarfärbemittel, Haarbleichmittel, und dergleichen, chemische und physikalische Schäden beim

10.09.82

3233665

3

- 2 -

Haar, die dadurch verursacht werden, daß Proteine aus dem Haar eluiert werden. Die Folge ist eine Verringerung der Festigkeit des Haares und ein Verlust der Flexibilität, wodurch gespaltene Spitzen oder gebrochene Haare verursacht werden.

Um das Haar vor derartigen Schädigungen zu schützen, werden gebräuchlicherweise Haarspülmittel und Haarbehandlungsmittel verwendet, welche quarternäre Ammoniumsalze enthalten. Diese Maßnahmen sind zwar sicher wirksam im Hinblick darauf, das Haar weichzumachen und eine statische Aufladung des Haares zu verhindern, Proteine, die einmal dem Haar verloren gegangen sind, werden jedoch auf diese Weise nicht wieder aufgebaut und es kann folglich nur ein vorübergehender Effekt erwartet werden.

Von den Erfindern wurden intensive Untersuchungen mit dem Ziel angestellt, Haarbehandlungsmittel zu entwickeln, welche einen ausgezeichneten Haarschutzeffekt aufweisen sowie einen hervorragenden Effekt im Hinblick auf das Legen und den Halt der Frisur. Dabei hat sich gezeigt, daß Haarbehandlungsmittel, bei denen Polyphenolverbindungen und Chelatisierungsmittel in Kombination verwendet werden, eine Eluierung von Proteinen aus dem Haar verhindern können. Auf diese Weise ist es möglich, das Haar zu schützen und dem Haar einen zweckentsprechenden Grad an Spannkraft und Flexibilität zurückzugeben, der durch Behandlungen im Zuge der Schönheitspflege verlorengegangen ist. Gleichzeitig kann eine hervorragende Frisierbarkeit und Fähigkeit zum Halt der Frisur gewährleistet werden.

Darüber hinaus wurde festgestellt, daß die oben genannten Effekte weiter verbessert werden können, falls dem Haarbehandlungsmittel zusätzlich ein Keratinderivat eines

10.09.60

3233665

H

- 2 -

speziellen Typs zugesetzt ist.

Gemäß einer ersten Ausführungsform der Erfindung wird somit ein Haarbehandlungsmittel geschaffen, welches die beiden folgenden Bestandteile (A) und (B) umfaßt:

(A) Polyphenolverbindung	0,001 - 5,0 Gew.-%
(B) Chelatisierungsmittel	0,01 - 5,0 Gew.-%

Gemäß einer weiteren Ausführungsform der Erfindung wird ein Haarbehandlungsmittel geschaffen, welches zusätzlich zu den Bestandteilen (A) und (B) den dritten Bestandteil (C) umfaßt:

(C) Wenigstens ein Zersetzungserivat eines Keratinmaterials, ausgewählt unter	
1. Hydrolysaten von Keratinmaterial ,	
2. Alkalosalzen von Zersetzungprodukten, welche durch Oxidation von Keratinmaterial erhalten wurden und	
3. Alkalosalzen von Derivaten der Thiolgruppen von Zersetzungprodukten, welche durch Reduktion von Keratinmaterial erhalten wurden	0,05 - 10,0 Gew.-%

Die Polyphenolverbindungen, die als der Bestandteil (A) der vorliegenden Erfindung vorliegen, umfassen beispielsweise Fluoroglucinol und dessen Derivate wie Aspidin, Aspidinol und dergleichen, Tannindrogen, welche erhalten wurden von Mimosa, Quebracho, Katechu, Gambir Katechu, japanischen Gallen, Nüggallen, Arnika, Huflattich, Kamille, gemeine Limone, Hammamelis, Röbkastanie, Malve, Rhabarber, Salbei, Johanniskreuz (Carob), Marshmallow (*Althaea officinalis*) Birke, Pfirsich, Eiche und dergleichen; Tannin und dessen

10.09.80

3233665

5

- # -

Derivate, wie Pyrogallotannin, Catecholtannin und dergleichen. Unter diesen sind die Tannine bevorzugt.

Dieser Bestandteil (A) ist dem Haarbehandlungsmittel in einer Menge von 0,001 bis 5,0 Gew.-% (im folgenden einfach als % bezeichnet), vorzugsweise in einer Menge von 0,005 bis 0,1 % zugemischt.

Bei den Chelatisierungsmitteln, die als Bestandteil (B) gemäß der vorliegenden Erfindung eingesetzt sind, handelt es sich beispielsweise um folgende:

1. Phosphate, wie Pyrophosphate, Tripolyphosphate, Metaphosphate, Hexametaphosphate, Phytate und dergleichen.
2. Salze von Aminosäuren, wie beispielsweise Asparaginsäure, Glutaminsäure, Glycin und dergleichen.
3. Aminopolyacetate, wie Nitrilotriacetate, Iminodiacetate, Äthylendiamintetraacetate, Diäthylentriamin-pentaacetate, Glycolätherdiamintetraacetate, Hydroxyäthyliminodiacetate, Triäthylentetraaminhexaacetate, Djenkolate und dergleichen.
4. Wasserlösliche Polymerverbindungen, wie Polyacrylate.
5. Salze von Hydroxycarbonsäuren wie Glycolsäure, Hydroxybernsteinsäure, Hydroxypivalinsäure, Weinsäure, Zitronensäure, Milchsäure, Gluconsäure, Mucinsäure, Glucoronsäure, Dialdehydstärkeoxid, und dergleichen, sowie Salze der Itaconsäure, Methylbernsteinsäure, 3-Methylglutarsäure, 2,2-Dimethylmalonsäure, Maleinsäure, Fumarsäure, Glutaminsäure, 1,2,3,-Propantricarbonsäure, Aconitsäure, 3-Buten-1,2,3,-tricarbonsäure, Butan-1,2,3,4,-tetracarbon-

10-09-03

3233665

6

- 8 -

säure, Äthantetracarbonsäure, Äthentetracarbonsäure, n-Alkenylaconitsäure 1,2,3,4-Cyclopentantetracarbon-säure, Phthalsäure, Trimellithsäure, Hemimellithsäure, Pyromellithsäure, Benzolhexacarbonsäure, Tetrahydrofuran-1,2,3,4-tetracarbonsäure, Tetrahydrofuran-2,2,5,5-tetra-carbonsäure und dergleichen.

Der Bestandteil (B) kann entweder in Form eines Salzes oder einer Säure vorliegen. Falls Salze verwendet werden, sind die Alkalimetallsalze besonders bevorzugt.

Unter den oben erwähnten Verbindungen umfassen bevorzugte Verbindungen für den Bestandteil (B) Aminopolyessigsäure und deren Salze, von denen wiederum Äthylendiamintetra-essigsäure und dessen Alkalimetallsalze speziell bevor-zugt sind.

Der Bestandteil (B) wird in einer Menge von 0,01 bis 5 %, vorzugsweise 0,05 bis 0,5 % bezogen auf das Haarbehandlungs-mittel verwendet.

Das gemäß der zweiten Ausführungsform der Erfindung als Bestandteil (C) eingesetzte Keratinzersetzungsderivat kann nach einem der folgenden Verfahren hergestellt werden: Ein Verfahren zur Hydrolyseierung von Keratinmaterialien; ein Verfahren der Zersetzung von Keratinmaterialien durch Oxidation und Umwandlung der Zersetzungprodukte in Alkali-salze; sowie ein Verfahren der Zersetzung von Keratin-materialien durch Reduktion, chemische Modifizierung der Thiolgruppen zur Erzeugung von Derivaten und Umwandlung dieser Derivate in Alkalosalze.

Die Ausgangskeratinmaterialien (im folgenden als Keratin bezeichnet) umfassen beispielsweise Tierhaare, Menschen-haare, Federn, Fuß- und Fingernägel, Hörner, Hufe, Schuppen

10-08-82

3233665

- 8 -

und dergleichen, wobei Wolle, Menschenhaar und Federn bevorzugt sind. Diese Materialien können der Oxidations- oder Reduktionsreaktion wie sie sind unterworfen werden, falls erforderlich, können sie jedoch auch zerschnitten oder in Stücke geeigneter Größe zerkleinert werden oder Vorbehandlungen, wie beispielsweise Waschen und Entfetten, unterworfen werden.

Die Zersetzung der Keratinmaterialien kann nach jedem der im folgenden beschriebenen Verfahren durchgeführt werden.

1. Hydrolysereaktion

(1) Hydrolyse mit Säure

Als Säuren seien beispielsweise anorganische Säuren wie Chlorwasserstoffsäure, Schwefelsäure, Phosphorsäure, Salpetersäure, Bromwasserstoffsäure und dergleichen und organische Säuren wie Essigsäure, Ameisensäure, Oxalsäure und dergleichen erwähnt.

Die durch die Hydrolyse mit Säure erhaltenen Produkte werden nur an den Polypeptidketten des Keratins hydrolysiert, ohne daß irgendwelche anderen Änderungen eintreten. Man erhält daher bessere Ergebnisse als bei Produkten, welche durch Hydrolyse mit Basen erhalten wurden.

(2) Hydrolyse mit Base

Als Basen werden anorganische Basen, wie beispielsweise Natriumhydroxid, Kaliumhydroxid, Lithiumhydroxid, Bariumhydroxid, Natriumcarbonat, Kaliumcarbonat, Lithiumcarbonat, Natriumsilicat, Borax und dergleichen verwendet.

10-08-02

3233665

8

- 4 -

(3) Hydrolyse mit Enzym

Beispiele für Enzyme umfassen saure Proteinasen wie Pepsin, Protease A, Protease B und dergleichen, sowie neutrale Proteinasen wie Papain, Promelin, Thermolycin, Trypsin, Pronase, Chymotrypsin und dergleichen.

Die mit Enzymen erhaltenen Hydrolysate weisen eine schmalere Molekulargewichtsverteilung als Hydrolysate auf, welche unter Verwendung von Säuren oder Basen erhalten wurden und enthalten geringere Mengen freier Aminosäuren. Sie sind somit für die Verwendung als kosmetische Mittel bevorzugt.

Die durch diese Hydrolysereaktionen erhaltenen Hydrolysate sollten vorzugsweise ein durchschnittliches Molekulargewicht von 200 - 5000 aufweisen. Der Grund dafür ist, daß die Absorptionsfähigkeit der Keratinzersetzungsprodukte am Haar vom Molekulargewicht der Produkte abhängt. Ein Produkt mit einem Molekulargewicht von etwa 1000 wird äußerst leicht am Haar absorbiert, wohingegen solche mit durchschnittlichen Molekulargewichten von über 5000 kaum am Haar absorbiert werden.

Die Disulfidbindungen in den Keratinzersetzungsderivaten sollten vorzugsweise in einer möglichst großen Menge vorhanden bleiben. Zu diesem Zweck wird es empfohlen, ein Keratinmaterial hoher Reinheit zu verwenden und die Hydrolysereaktion unter milden Bedingungen durchzuführen.

2. Oxidations- und Zersetzungreaktion

Die Oxidation von Keratin wird gemäß verschiedenen, an sich bekannten Verfahren durchgeführt (N.H. Leon; Textile Progress, Vol. 7, page 1 (1975)). Bevorzugte Oxidationsmittel sind solche organische oder anorganische

10.09.82

3233665

9

- 8 -

Oxidationsmittel, welche die Disulfidbindungen (S-S-Bindungen) in der Keratinstruktur elektrophil angreifen. Beispiele der Oxidationsmittel umfassen organische Persäuren, anorganische Peroxosäuren und deren Salze, Permangansäure oder deren Salze, Chromsäure oder verwandte Verbindungen, Halogene, Peroxide, Oxsäuren und deren Salze und dergleichen. Unter diesen sind die organischen Persäuren, wie Peressigsäure, Perameisen- säure und Perbenzoësäure speziell bevorzugt.

Die Disulfidbindungen des Keratins werden auf diese Weise zu Sulfonsäure-Gruppen ($-\text{SO}_3\text{H}$) gespalten.

3. Reduktive Zersetzung und Reaktion zur chemischen Modifikation

Die zur Reduktion von Keratin eingesetzten Reduktionsmittel sind vorzugsweise organische oder anorganische Reduktionsmittel des Typs, welche die Disulfidbindungen in der Keratinstruktur in Thiolgruppen (-SH) spalten können und im allgemeinen die Disulfidbindungen nukleophil angreifen. Beispiele für die Reduktionsmittel umfassen organische Reduktionsmittel wie Mercaptoäthanol, Thioglycolsäure, Benzylmercaptan, 1,4-Dithiothreitol, Tributylphosphin und dergleichen sowie anorganische Reduktionsmittel wie Sulfide einschließlich Natriumhydrogensulfit und Natriumhydrosulfid; metallische Hydride, einschließlich Lithiumaluminumhydrid.

Die mittels der Reduktion des Keratins erhaltenen resultierenden Zersetzungprodukte werden anschließend chemisch an den Thiolgruppen modifiziert, um ein Derivat derselben zu erhalten (im folgenden als Keratinreduktionsderivat bezeichnet). Die Derivate der Thiolgruppen umfassen:

10.09.82

3233665

10

- 8 -

Die chemische Modifikation der Thiolgruppen kann nach Verfahren durchgeführt werden, die beispielsweise aus N.H. Leon, Textile Progress, Vol. 7 (1975), "Yuki Ioo Kagobutsu (Organic Sulfur Compounds)" von Shigerum Daikyo, herausgegeben von Kagaku Dojin (1968) sowie aus "Kobunshi Jikkengaku Koza (Course of Experiments of Polymers)" von Masami Oku, Vol. 12, Kyoritsu Shuppan (1957) bekannt sind.

Die Alkalosalze der durch Oxidation von Keratin und als Reduktionsderivate des Keratins erhaltenen Zersetzungsprodukte umfassen anorganische Alkalimetallsalze wie Natrium-, Kaliumsalze und dergleichen, Ammoniumsalze, und Salze mit organischen Basen wie Aminolamin, Diäthanolamin, Triäthanolamin, 2-Amino-2-methylpropanol, Aminomercaptopropandiol, Triisopropanolamin, Glycin, Histidin, Alginin und dergleichen. Diese Salze können in einem gesonderten System hergestellt werden und mit einem Haarbehandlungsmittel vermischt werden. Alternativ kann auch das Oxydationszersetzungspunkt oder das Keratinreduktionsderivat und ein alkalisches Material mit einem Haarbehandlungs-

10.09.82

3233665

M

- 16 -

mittel zusammengemischt werden, wobei eine Umwandlung in ein korrespondierendes Salz stattfindet. Beispiele für die alkalischen Materialien umfassen anorganische alkalische Materialien wie Natriumhydroxid, Kaliumhydroxid, Natriumcarbonat, Ammonium und dergleichen, sowie organische alkalische Materialien wie Äthanolamin, Diäthanolamin, Triäthanolamin, 2-Amino-2-methyl-1-propanol, 2-Amino-2-methyl-1,3-propandiol,^{*}/2-Amino-1-Butanol, Triisopropanolamin, Diisopropanolamin, Monoisopropanolamin, Lysin, Alginin, Histidin, Hydroxylysin und dergleichen. Diese alkalischen Materialien werden vorzugsweise in einer Menge von 0,1 - 8 Äquivalente bezogen auf die Carboxylgruppen oder Sulfonylgruppen im Keratinoxidationszersetzungsprakt oder im Keratinreduktionsderivat verwendet. Die auf diese Weise erhaltenen Bestandteile (C) können einzeln oder in Kombination verwendet werden. Es wird eine Menge von 0,05 - 10,0%, vorzugsweise 0,1 - 1,0 %, bezogen auf die Gesamtzusammensetzung des oben beschriebenen Haarbehandlungsmittels eingesetzt.

Die erfindungsgemäßen Haarbehandlungsmittel können auf herkömmliche Weise hergestellt werden. D. h., die Haarbehandlungsmittel gemäß der ersten und der zweiten Ausführungsform der Erfindung werden hergestellt, indem man die Bestandteile (A) und (B) bzw. die Bestandteile (A), (B) und (C) in zweckentsprechenden Lösungsmitteln auflöst oder indem man sie unter Verwendung von oberflächenaktiven Mitteln zu einer Emulsion, Suspension oder zu einem Gel verarbeitet.

Beispiele für die Lösungsmittel umfassen Wasser, niedrige Alkohole mit 1 - 3 Kohlenstoffatomen, Propylenglycol, Glycerin und dergleichen.

* / 2-Amino-2-äthyl-1-propanol, 2-Amino-2-äthyl-1,3-propandiol,

10.09.02

3233665

12

- 14 -

Das erfindungsgemäße Haarbehandlungsmittel kann außerdem abhängig von dem Endverwendungszweck mit beliebigen weiteren Bestandteilen vermischt sein. Beispielsweise können innerhalb bestimmter Bereiche, in denen der Effekt des Haarbehandlungsmittels nicht beeinträchtigt wird, oberflächenaktive Mittel, wie beispielsweise anionisch aktive Mittel, kationisch aktive Mittel, nichtionisch aktive Mittel und amphoter Mittel, Öle und Fette, wie aliphatische höhere Alkohole, Lanolinöl, Ester und flüssiges Paraffin und dergleichen, Verdickungsmittel, wie beispielsweise Hydroxyäthylcellulose, Methylcellulose, Hydroxypropylmethylcellulose und dergleichen, Konservierungsstoffe, Parfum und dergleichen verwendet werden.

Das auf diese Weise erhaltene Haarbehandlungsmittel kann in Form einer wässrigen Lösung, einer äthanolischen Lösung, einer Emulsion, einer Suspension oder eines Gels verwendet werden und in Form bekannter Mittel, wie beispielsweise als Shampoo, Haarspülmittel, Haarkonditioniermittel, Praeshampoo, Haarspray, Fönlotion, Haarfestigerlotion, Haarwasser, Haartoni-kum oder dergleichen appliziert werden.

Im folgenden wird die Erfindung anhand von Beispielen und Synthesebeispielen näher erläutert.

Beispiel 1

Es werden Haarbehandlungsmittel A, B und C der folgenden Zusammensetzungen hergestellt, um den Effekt beim Kräuseln und Aufrechterhaltung der Kräuselung zu bestimmen. Die Ergebnisse sind in der Tabelle 1 zusammengestellt.

Testverfahren: Eine Strähne japanisches Frauenhaar mit einem Gewicht von 5 g und einer Länge von 20 cm wird in jedes der Haarbehandlungsmittel 10 min eingetaucht, auf ein Glasrohr

10.09.62

3233665

13

- 12 -

mit einem Durchmesser von 1 cm aufgewickelt und mit einem Trockner 5 min getrocknet. Nach dem Trocknen wird die Strähne entfernt. Der Grad der Kräuselung sowie der Grade des Aufrechterhaltens der Kräuselung beim Aufbewahren der gekräuselten Strähne in einem Zimmer werden bestimmt.

Der Kräuselungsgrad wird nach der folgenden Formel berechnet.

Grad der Kräuselung (%) =

$$100 - \frac{[Länge der gekräuselten Strähne unmittelbar nach ihrer Entfernung] - [Länge der gekräuselten Strähne nach t Stunden]}{[Länge der gekräuselten Strähne unmittelbar nach ihrer Entfernung]} \times 100$$

Zusammensetzung:

	A	B	C
Tannin (pharmacopoeia)	0,01(%)	0,01(%)	-(%)
Dinatriumäthylendiamintetraacetat	0,1	-	0,1
Wasser	Rest	Rest	Rest

Ergebnisse:

Tabelle 1

Haarbehandlungs-mittel		Grad der Kräuselung nach 30 min nach 8 h	
Erfindungsgemäßes Produkt	Zusammen-setzung A	89	85
Vergleichs-produkte	Zusammen-setzung B	70	52
	Zusammen-setzung C	62	43
Kontrolle (nur Wasser)		61	43

10.09.82

3233665

14

- 18 -

Beispiel 2

Shampoo-Zusammensetzung:

(A) Triäthanolaminlaurylsulfat	20,0%
(B) Laurinsäurediäthanolamid	5,0
(C) Propylenglycol	5,0
(D) Äthanol	2,0
(E) Dinatriumäthylendiamintetraacetat	0,2
(F) Tanninsäure (Pharmacopeia)	0,02
(G) Wasser	Rest

Herstellungsverfahren: (E) wird (G) zugesetzt. Dazu wird (F) gegeben, gefolgt von vollständiger Auflösung. Anschließend wird die Lösung auf 60° C erhitzt. Eine gemischte Lösung von (A) bis (D) wird der Lösung zugesetzt, gefolgt von Abkühlen unter Rühren. Man erhält eine Shampoo-Zusammensetzung.

Beispiel 3

Haarkonditionier-Zusammensetzung:

(A) Tanninsäure (Pharmacopeia)	0,005%
(B) Dinatriumäthylendiamintetraacetat	0,1
(C) Äthanol	5,5
(D) Hydroxyäthylcellulose	1,0
(E) Wasser	Rest

(A) bis (E) werden einheitlich zur Auflösung bei Zimmertemperatur vermischt, wobei man das Mittel erhält.

Beispiel 4

Haarfestigerlotion:

(A) Tanninsäure (Pharmacopeia)	1,0%
(B) Dinatriumäthylendiamintetraacetat	0,5
(C) Zersetzungserivat erhalten durch Oxidation von Keratin (erhalten im Synthesbeispiel 1)	1,0
(D) Äthanol	30,0
(E) Wasser	Rest

10.09.82

3233665

15

- 14 -

(A) bis (E) werden vermischt und einheitlich aufgelöst.
Die Lösung wird unter Verwendung von Natriumhydroxyd
auf einen pH von 7 eingestellt, wobei man das Mittel erhält.

Beispiel 5

Haarspül-Zusammensetzung:

(A) Stearyltrimethylammoniumchlorid	1,0%
(B) Tanninsäure (Pharmacopeia)	0,01
(C) Dinatriumäthylendiamintetraacetat	0,2
(D) Propylenglycol	5,0
(E) Keratinreduktionsderivat [Synthesebeispiel 2(a)]	1,0
(F) Wasser	Rest

Zu (F) werden (C), (B) und (E) gegeben. Dazu wird weiterhin (A) gegeben, welches in (D) aufgelöst ist. Anschließend wird gerührt, wobei man das Mittel erhält.

Beispiel 6

Haarwasser-Zusammensetzung:

(A) Polyoxypropylenmethyläther	10,0%
(B) Äthanol	40,0
(C) Tanninsäure (Pharmacopeia)	0,05
(D) Dinatriumäthylendiamintetraacetat	0,1
(E) Keratinreduktionsderivat [Synthesebeispiel 2(b)]	2,0
(F) Wasser	Rest

(A) bis (E) werden zusammengemischt und bei Zimmertemperatur einheitlich aufgelöst, wobei man das Mittel erhält.

10-09-00

3233665

16

- 16 -

Beispiel 7

Haartonikum-Zusammensetzung:

(A) Aethanol	50,0
(B) 1-Menthol	1,0
(C) Tanninsäure	0,1
(D) Dinatriumäthylendiamintetraacetat	0,1
(E) Derivat des Keratinhydrolysats [Synthesebeispiel 3(a)]	2,0
(F) Wasser	Rest

(A) bis (F) werden zusammengemischt und bei Zimmertemperatur einheitlich aufgelöst, wobei man das Mittel erhält.

Beispiel 8

Shampoo-Zusammensetzung:

	A	B
(A) Natriumpolyoxyäthylen(2)laurylsulfat	15,0%	15,0%
(B) Kokosnussölkettsäurediäthanolamid	3,5	3,5
(C) Natriumbenzoat	0,5	0,5
(D) Dinatriumäthylendiamintetraacetat	0,2	0,2
(E) Birkenextrakt*	0,1	-
(F) Parfum	0,3	0,3
(G) Wasser	Rest	Rest

Herstellungsverfahren: (A), (B), (C), (D) und (G) werden zusammengemischt und auf etwa 60° C unter Röhren erhitzt. Nach dem Abkühlen werden (F) und (E) der Mischung bei etwa 40° C zugesetzt und es wird gerührt, um eine Shampoo-Zusammensetzung A zu erhalten

* Birkenextrakt: Dieser Extrakt wird erhalten durch Zugabe von 1 Teil einer 40% Propylenglycol wässrigen Lösung zu 2 Teilen des Gesamtpflanzenkörpers einer Birke (Folia Betulae). Die Birkenkomponente wird 10 Tage bei 20-25° C eingetaucht und anschließend wird die Mischung zentrifugiert und filtriert.

10-09-82

3233665

17

- 16 -

Die resultierende Shampoo-Zusammensetzung A gemäß der Erfindung und die Kontrollzusammensetzung B werden hinsichtlich ihres Effekts zur Verhinderung von Haarschäden bewertet.

Bewertungsverfahren

Zwei Strähnen, jede mit einem Gewicht von 20 g werden zur Verfügung gestellt und mit A bzw. mit B gewaschen. Anschließend werden sie mit einem Haartrockner getrocknet und mit einer Nylon-Haarbürste 100 mal gebürstet. Das obige Verfahren wird 20 mal wiederholt und die Anzahl der gebrochenen Haare bei jedem Bürstvorgang wird festgestellt. Die Gesamtzahl der gebrochenen Haare in beiden Fällen wird miteinander verglichen.

Ergebnisse

Die Anzahl der gebrochenen Haare in jedem Fall der obigen Tests ist wie folgt:

Shampoo-Zusammensetzung A (erfindungsgemäßes Produkt)	16
Shampoo-Zusammensetzung B (Kontrollprodukt)	127

Aus den obigen Ergebnissen geht klar hervor, daß die Shampoo-Zusammensetzung A einen besseren Schutzeffekt gegen Haarschäden aufweist, als die Shampoo-Zusammensetzung B

Beispiel 9

Shampoo-Zusammensetzung

(A) Ammoniumlaurylsulfat	14,0%
(B) Diäthanolaminlaurat	4,0
(C) Natriumbenzoat	0,5
(D) Ammoniumchlorid	0,2
(E) Zitronensäure	0,3
(F) Carobextrakt*	0,2

10.000.000

3233665

18

- 17 -

(G) Parfum
(H) Wasser

0,3%
Rest

Herstellungsverfahren: (A), (C), (E) und (H) werden zusammen-
gemischt und auf etwa 60°C unter Rühren erhitzt. Dazu wird
(B) bei der gleichen Temperatur gegeben. Nach dem Abkühlen
werden (F) und (G) bei etwa 40°C zugesetzt und schließlich
wird (D) zugegeben. Anschließend wird gerührt, wobei man
eine Shampoo-Zusammensetzung erhält.

* Carobextrakt: Dieser Extrakt wurde erhalten durch Rösten
der Außenschalen von Johannisbrot (Carobbohnen) und eine
Lösungsmittelextraktion mit 50%igem Alkohol.
Anschließend wird der Extrakt zentrifugiert und filtriert
und nachfolgend im Vakuum konzentriert, und zwar zu
einem Ausmaß, daß ein getrockneter Rückstand (Feststoffe)
mit etwa 85% enthalten ist.

Synthesebeispiel 1

Herstellung des durch Oxidation von Keratin erhaltenen
Zersetzungserivats:

(a) 10 g Wollfaser werden in 700 g einer wässrigen 8%igen
Peressigsäurelösung bei Zimmertemperatur 1 Tag eingetaucht,
um die Oxidationsreaktion durchzuführen. Die resultierenden
oxidierten Wollfasern werden filtriert, mit Wasser ge-
waschen und in 700 g einer 0,1 N-Ammoniaklösung bei Zim-
mer-temperatur 1 Tag eingetaucht, wobei man etwa 90% der Wolle
in der ammoniakalischen Lösung sich auflösen läßt. Etwa
1 g der unlöslichen Stoffe werden durch Filtration ent-
fernt und die wässrige ammoniakalische Lösung von Keratose,
bei dem es sich um ein Oxidationszersetzungserivat des
Wollkeratins handeln soll, wird mit 2 N-Chlorwasserstoff-

10-09-62

3233665

19
- 16 -

säure vermischt, um den pH auf 4,0 einzustellen. Daraufhin setzt sich α -Keratose als Präzipitat ab. Dieses Präzipitat wird filtriert, mit Aceton gewaschen und getrocknet, wobei man 5,4 g α -Keratose erhält.

Synthesebeispiel 2

Herstellung von Reduktionszersetzungserivaten des Keratins:
(a) 10 g Wollfaser werden in 600 ml einer wässrigen Lösung eingetaucht, welche eine Konzentration von 8 M Harnstoff und 0,01 M Trispuffer aufweist. Dazu gibt man 6 ml 2-Mercapto- β thanol. Anschließend wird der pH mittels einer 5 N wässrigen Kaliumhydroxydlösung auf 10 eingestellt. Die Reduktionsreaktion wird in einem Stickstoffstrom bei Zimmertemperatur durchgeführt. Etwa 3 h nach Einsetzen der Reaktion hat sich die Wolle in der Reaktionslösung zu etwa 85 % aufgelöst. Während man das System mit einer 5N Kaliumhydroxydlösung so einstellt, daß der pH nicht unter 7 absinkt, werden 16,5 g Jodessigsäure allmählich zugesetzt und der pH des Systems wird schließlich auf 8,5 eingestellt. Die Carboxymethylierungsreaktion wird 2 h bei Zimmertemperatur durchgeführt. Die Reaktionslösung wird filtriert, um unlösliche Stoffe zu entfernen. Das resultierende Filtrat wird in ein Celluloserohr gegeben und darin gegen entsalztes Wasser dialysiert, um Verunreinigungen mit niedrigem Molekulargewicht, einschließlich Harnstoff, zu entfernen. Mit der Dialyse des Harnstoffs wird der Inhalt des Celluloserohrs trübe, da HGT (Komponenten mit hohen Gehalten an Glycin und Tyrosin) als wasserunlösliche Stoffe zur Ausfällung gebracht werden. Nach Beendigung der Dialyse wird das HGT zentrifugiert und S-Carboxymethylkeratin (SCMKA) wird aus der neutralen transparenten Lösung von SCMKA mittels eines Verfahrens der isoelektrischen Fällung erhalten. D. h., 1N Chlorwasserstoffsäure wird dem System zugesetzt, um dessen pH auf

10-09-62
3233665

10

- 14 -

4,4 einzustellen. Dadurch wird SCMKA unlöslich und trennt sich als Präzipitat ab. Dieses Präzipitat wird filtriert, mit Äthanol gewaschen und getrocknet, wobei man 4,2 g SCMKA erhält.

(b) Die Verfahrenweise des Synthesebeispiels 2(a) wird wiederholt. Es werden jedoch anstelle der Wollfaser Federn verwendet, die 6 min in einem Autoklaven mittels einem überheizten Dampf von 6 kg/cm^2 und 240°C erhitzt wurden und anschließend abrupt belüftet wurden, um ein poröses aufgeblähtes Produkt zu erhalten. Außerdem werden 1,75 g Maleinsäure anstelle von Jodessigsäure verwendet. Man erhält auf diese Weise 5,3 g S-(1,2-Dicarboxyäthyl)-Keratin.

Synthesebeispiel 3

Herstellung des Hydrolysederivats von Keratin:

(a) 10 g Wollfasern werden in 300 g einer 1%igen wässrigen Natriumhydrogensulfatlösung eingetaucht, deren pH mittels einer 5N wässrigen Ktikalilösung auf 6,7 eingestellt wird. Anschließend werden 0,2 g Papain dem System zugesetzt, um die Hydrolysereaktion bei 60°C während 15 h durchzuführen. Auf diese Weise werden etwa 80% der Wolle aufgelöst. Unlösliche Stoffe werden durch Filtration entfernt und das in dem resultierenden Filtrat enthaltene Sulfit wird mittels einer Ultrafiltrationstechnik entfernt, und zwar unter Verwendung einer Membran mit einem Fraktionsmolekulargewicht von 500. Die wässrige Lösung des Hydrolysats wird konzentriert und gefriergetrocknet. Man erhält 7,7 g des Hydrolysats mit einem Molekulargewicht von 500 bis 2000.

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.