NOI 2016 模拟训练

命题人:清华大学

竞赛时间: 待定

题目名称	皇后游戏	旅行计划	维修机器人
输入文件名	game.in	plan.in	repair.in
输出文件名	game.out	plan.out	repair.out
每个测试点时限	1秒	2 秒	1秒
内存限制	512MB	512MB	512MB
测试点数目	20	10	20
每个测试点分值	5	10	5
是否有部分分	否	否	否
题目类型	传统	传统	传统

提交源程序须加后缀

对于 Pascal 语言	game.pas	plan.pas	repair.pas
对于 C 语言	game.c	plan.c	repair.c
对于 C++ 语言	game.cpp	plan.cpp	repair.cpp

注意: 最终测试时, 所有编译命令均不打开任何优化开关。

NOI 2016 模拟训练 皇后游戏

皇后游戏

【引子】

还记得 NOIP 2012 提高组 Day1 的国王游戏吗? 时光飞逝, 光阴荏苒, 两年过去了。早已过时的国王游戏如今已被皇后游戏取代, 请你来解决类似于国王游戏的另一个问题。

【问题描述】

皇后有n位大臣,每位大臣的左右手上面分别写上了一个<u>正整数</u>。恰逢劳动节来临,皇后决定为n位大臣颁发奖金,其中第i位大臣所获得的奖金数目为第i01位大臣所获得奖金数目与前i位大臣左手上的数的和的较大值再加上第i位大臣右手上的数。

形式化地讲: 我们设第 i 位大臣左手上的正整数为 a_i ,右手上的正整数为 b_i ,则第 i 位大臣获得的奖金数目为 c_i 可以表达为:

$$c_{i} = \begin{cases} a_{1} + b_{1} & i = 1\\ \max\{c_{i-1}, \sum_{j=1}^{i} a_{j}\} + b_{i} & 2 \le i \le n \end{cases}$$

当然,吝啬的皇后并不希望太多的奖金被发给大臣,所以她想请你来重新安排一下队伍的顺序,使得获得奖金最多的大臣,所获奖金数目尽可能的少。

<u>注意: 重新安排队伍并不意味着一定要打乱顺序,我们允许不改变任何一</u>位大臣的位置。

【输入格式】

第一行包含一个正整数 T,表示测试数据的组数。

接下来 T 个部分,每个部分的第一行包含一个正整数 n,表示大臣的数目。每个部分接下来 n 行中,每行两个正整数,分别为 a_i 和 b_i ,含义如上文所述。

【输出格式】

共 T 行,每行包含一个整数,表示获得奖金最多的大臣所获得的奖金数目。

【样例输入1】

1

3

4 1

2 2

1 2

NOI 2016 模拟训练 皇后游戏

【样例输出1】

8

【样例说明1】

按照 1、2、3 这样排列队伍,获得最多奖金的大臣获得奖金的数目为 10;按照 1、3、2 这样排列队伍,获得最多奖金的大臣获得奖金的数目为 9;按照 2、1、3 这样排列队伍,获得最多奖金的大臣获得奖金的数目为 9;按照 2、3、1 这样排列队伍,获得最多奖金的大臣获得奖金的数目为 8;按照 3、1、2 这样排列队伍,获得最多奖金的大臣获得奖金的数目为 9;按照 3、2、1 这样排列队伍,获得最多奖金的大臣获得奖金的数目为 8。当按照 3、2、1 这样排列队伍时,三位大臣左右手的数分别为:

$$(1,2)$$
, $(2,2)$, $(4,1)$

第1位大臣获得的奖金为1+2=3;

第 2 位大臣获得的奖金为 max {3,3} + 2 = 5;

第 3 为大臣获得的奖金为 $\max\{5,7\}+1=8$ 。

【样例输入2】

2

5

11 89

28 32

4 78

31 93

39 33

12

9 75

52 28

1 73

100 46

4 4

55 53

94 89

53 44

3 2

39 35

26 51

5 29

【样例输出2】

360

535

NOI 2016 模拟训练 皇后游戏

【数据规模与约定】

所有测试点的数据规模如下:

测试点编号	n 的规模	T的规模	约定
1	n = 1	T=1	
2	n=2		
3	<i>n</i> = 5	T=5	
4	<i>n</i> = 9		/
5	<i>n</i> = 15		/
6	<i>n</i> = 15		
7	n = 16		
8	n = 16		
9	n = 3,000	$a_i = b_i$ $b_i = a_i + 1$	a = b
10	n = 3,000		$a_i - b_i$
11	n = 5,000		$b = a \pm 1$
12	n = 5,000		$D_i - a_i + 1$
13	n = 10,000		
14	n = 10,000		
15	n = 20,000		
16	n = 20,000		/
17	n = 30,000		/
18	n = 30,000		
19	n = 50,000		
20	n = 50,000		

对于全部测试数据满足: $1 \le a_i, b_i \le 10^9$ 。

NOI 2016 模拟训练 旅行计划

旅行计划

【问题描述】

就要放暑假了。忙碌了一个学期的 Sharon 准备前往 W 国进行为期长达一个月的旅行。然而旅行往往是疲惫的,因此她需要来规划一下自己的旅行路线。

W 国由 n 个城市组成,我们不妨将每个城市看成是一个二维平面上的点。对于第 i 个城市,我们设它所处的位置为 (x_i, y_i) 。W 国的人做事一向循规蹈矩,因此在从城市 i 向城市 j 移动的过程中,只能沿水平或竖直方向移动。换句话说,城市 i 和城市 j 的最短距离为 $d_{i,j} = |x_i - x_j| + |y_i - y_j|$ 。

当 Sharon 为自己设计一条旅行路线时,她会选好起点城市 S 和终点城市 T。 然后考虑从城市 S 通过一些**中转城市**最终到达城市 T。

我们不妨设城市 S 到城市 T 的中转城市 K 次为 $a_1, a_2, ..., a_k$ 。则 Sharon 首先从城市 S 出发到达城市 a_1 ,对于任意的 $1 \le i < k$, 她将从城市 a_i 出发到达城市 a_{i+1} 。最后从城市 a_k 出发到达城市 a_k 出发到达城市 a_k 出发到达城市 a_k 是然对于中途的 a_k 个中转城市,她将行走 a_k 升段路。我们定义 a_k ,对于任意的 a_k , a_k , a_k ,对于任意的 a_k , a_k , a_k , a_k ,

既然已经放假了,Sharon 当然不希望这次旅行过于疲惫,因此我们定义一条旅行路线的<u>疲劳值</u>为 $R = \max_{1 \le i \le k+1} \{D_i\}$ 。现在 Sharon 找到善于编程的你,她将告诉你 W 国城市的个数,每个城市的坐标,以及她选定的起点城市 S 和终点城市 T。她想由你来帮她安排旅行的中转城市,使得 R 的值最小。

特别注意的是,我们允许从城市 S 不经过任何<u>中转城市</u>到达城市 T,也就是说可以从城市 S 直接前往城市 T,此时的<u>疲劳值</u>为 $R=|x_T-x_S|+|y_T-y_S|$ 。当 S=T时,我们规定 R=0。

【输入格式】

第一行包含一个正整数 n 表示 W 国城市的个数。

接下来n行每行包含两个正整数, x_i 和 y_i ,表示第i个城市的坐标。

接下来一行包含一个正整数 m,表示 Sharon 旅行的次数。

接下来m行每行包含两个正整数,S和T,表示起点城市和终点城市。

【输出格式】

输出共包含m行,其中第i行包含一个正整数 R_i ,表示第i次旅行的最小 \underline{m} **劳**值。

NOI 2016 模拟训练 旅行计划

【样例输入】

3

1 1

2 1

4 1

2

1 2

1 3

【样例输出】

1

2

【样例说明】

第一次旅行时直接从城市1前往城市2,疲劳值为1。

第二次旅行时从城市1经过<u>中转城市</u>2再到达城市3,<u>疲劳值</u>为2。

【数据规模与约定】

所有测试数据的范围和特点如下表所示

测试点编号	n 的规模	m 的规模	约定
1	n = 10	m = 10	
2	n-10	m = 10	,
3	n = 1 000	m = 1	/
4	n = 1,000	m = 1,000	
5	n = 50,000	m = 50,000	$x_i = 1$
6	n = 100,000	m = 100,000	$x_i - 1$
7	n = 30,000	m = 30,000	 x _i , y _i 为随机生成
8	n = 40,000	m = 40,000	Xi, yi 八阳如儿土八人
9	n = 50,000	m = 50,000	,
10	n = 100,000	m = 100,000	1

对于全部测试数据 $1 \le x_i, y_i \le 10^8$,不存在 $1 \le i < j \le n$ 满足 $x_i = x_j \perp y_i = y_j$ 。

NOI 2016 模拟训练 维修机器人

维修机器人

【问题描述】

公元 2016 年的某天, 贾老师收到了一个来自未来的机器人战队。

这批战队由n个机器人组成,其中第i个机器人的身高为 a_i 。

为了使这批机器人能在战斗中发挥出最佳的水平, 贾老师决定对每个机器人的身高进行修改。在修改时, 贾老师每次可以对一个机器人进行修改, 且**每个机器人只能被修改一次**。

每次修改时,贾老师若把第i个机器人的身高增加x,则需要花费的代价为 x^2 。设贾老师对机器人修改花费的总代价为X。

我们定义最终调整花费为 $Y = X + c \sum_{i=1}^{n-1} |a_i - a_{i+1}|$,这里的 a_i 为调整后的机器人

身高,c为已知的正整数。贾老师希望知道Y的最小值是多少,你能帮帮他吗?

【输入格式】

第一行包含两个正整数 n 和 c。 接下来一行包含 n 个正整数,表示 a_i 。

【输出格式】

输出只有一行,包含一个整数,表示 Y的最小值。

【样例输入1】

5 3

4 5 1 2 3

【样例输出1】

12

【样例说明1】

调整后的机器人身高为: 5,5,3,3,3。

第1个机器人的身高由4增加到5,调整代价为1。

第3个机器人的身高由1增加到3,调整代价为4。

第4个机器人的身高由2增加到3,调整代价为1。

于是
$$X=1+4+1=6$$
, $Y=X+\sum_{i=1}^{n-1}\left|a_i-a_{i+1}\right|=6+3\times(0+2+0+0)=12$ 。

NOI 2016 模拟训练 维修机器人

【样例输入2】

20 100

21 24 27 17 29 24 14 21 10 4 27 14 11 14 24 19 1 7 13 18

【样例输出2】

3110

【数据规模与约定】

所有测试点的数据规模如下:

测试点编号	n 的规模
1 2 3 4	n = 100
5 6 7 8	n = 1,000
9 10 11 12 13 14 15 16 17 18 19 20	n = 100,000

对于全部测试数据满足: $1 \le a_i, c \le 100,000$ 。