IntroDuction Machine-Learning

Day-1 elgenda

- 1) Intro (ONI VS MLVS D2VS DS)
- 2) Superviscol & Unsuperviscol
- 3) Lineau Regression
- 4) R2 & Obliguesteed R2

1. AIVS MLVS DLVS DS

Visuuize, pred, forcausting

DATA MLPL

Mimic Heman Braien, Multi dayered Newal Vellot application of AT:-

i) able to do owntask without any fluman interention

Eg:-i) Netflix :,-movie recondination

- ii) Prime: buy a product after show otherstuff related product
- iii) self Driving Goors

M-L & D.L

2 upervised ML

Regression

classification

Unsuprivered ML Cleustering DImensionality Redutor

Supervised M.L

	AGE	WEIGHT				
	18	75		inpendent	festies:-	21GE
	20	76			ent :- Wei	
	22	78		•		
	246	88	A	int.	Hypelhous	weigh
						(0/p)
5- Ruga	ession.	Continous Colp)	Varia	ble		
0		COIP				
B. Mr	uis catuon	:-fixed nu	mL	WEIGHT		
		Couteop	4	Worth		
		COP				Jy mx
Norof	Hrs	No-of play	No.of	Shep PIF		ACTE
				P		
				+		
				7		
		1 1				
	pervis eal	Oronous	alogor	ithm		
10)	lurusterir	3. Scomen	alien			
		(O/p			rich	Co
L.)L	mension	slity redu	ttion			Poor
	1000	Lawershin	rension		Min	
		> (100)				
	PCA	LDP)				

SUPERVISED

UNSUPERUITO

- l'Linear Regression
- 2- Ridge L Lasso
- 3. logistic Riogression
- 4. Decision Tree
- 5. Ada Boost
- 6. Random torest
- 7. Gradent Boosting
- 8. XgBoost
- 9. Maire Baye's
- SVM
 - M. KNN

1. KHeory

2. DR Scan

3. Hicarchal churchy

4. KNN

5. PCA

6 LDA

Best fit.

Sum of distance

Predicted on Scanned with OKEN Scanned

Lineau Rugression: Train Dataset Weight Hypothers WEZGHI y is a dineosfunction Y=mx+c, -Equation: y=Bo+BIX ho(x) = 00+0, 2 etc John 20 it is intercept Equation of a Straight Line = maimx+c The Unit movement in y es slope Cost function if his onl= Oo + Oix Equals at which Y=0 es C J(00,00,) = In 2 (how)-y) Dist Unit movement in Yanis is slope(m) Egusi Error function (To find the bestfit line)

Scanned with OKEN Sc

what we need to solve minimize $\frac{1}{2m} \sum_{i=1}^{\infty} (h_0(x^{(i)}) - y^{(i)})$ minine T (00,01) 00,00, tho(x)=OotOix it no (x)=00/2 ho(x)=0,x F) 0 = 1 Cost-finition Cafty Solve) Q=1 Doctapoint (al= vario, on, 2,--) graclew)= 1 2 (ho(x) (y))? = \frac{1}{2m} \frac{1}{(1-1)^2 + (2-2)^2 + (3-3)^2}

$$J(\alpha_1) = \frac{1}{2\kappa_3} \left[(0-1)^2 + (0-2)^2 + (0-3)^2 \right]$$

$$= \frac{1}{2} \left[(1+4+9)^2 + (0-3)^2 + (0-3)^2 \right]$$

Converge algorithm.

Gradient Descient Algorithm

Hypothesis metaics R2- Used cheet how good es the model es