

The moiety Ar is a 5-10 member, preferably a 5-or 6- member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur which is unsubstituted or substituted by halogen up to per-halosubstitution and optionally substituted by Z_{n1} , wherein n1 is 0 to 3.

IN THE CLAIMS:

DY DY 1. (Amended) A compound of formula I or a pharmaceutically acceptable salt thereof

A-NH-C-NH-B

·NH-C-NH-B/

wherein A is a heteroaryl selected from the group consisting of

wherein R^1 is selected from the group consisting of C_3 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, up to per-halosubstituted C_1 - C_{10} alkyl and up to per-halosubstituted C_3 - C_{10} cycloalkyl;

B is an up to tricyclic, aryl or heteroaryl moiety of up to 30 carbon atoms with at least one 5- or 6-member aromatic structure containing 0-4 members of the group consisting of nitrogen, oxygen and sulfur, substituted by -Y-Ar and optionally substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, and X_n ,

wherein n is 0-2 and each X is independently selected from the group consisting of –CN, -CO₂R⁵, -C(O)NR⁵R^{5'}, -C(O)R⁵, -NO₂, -OR⁵, -SR⁵, -NR⁵R^{5'},

-NR 5 C(O)OR 5 ', -NR 5 C(O)R 5 ', C $_1$ -C $_{10}$ alkyl, C $_2$ -C $_{10}$ alkenyl, C $_1$ -C $_{10}$ alkoxy, C $_3$ -C $_{10}$ cycloalkyl, C $_6$ -C $_{14}$ aryl, C $_7$ -C $_{24}$ alkaryl, C $_3$ -C $_{13}$ heteroaryl, C $_4$ -C $_{23}$ alkheteroaryl, substituted C $_1$ -C $_{10}$ alkyl, substituted C $_2$ -C $_{10}$ alkenyl, substituted C $_3$ -C $_{10}$ cycloalkyl, and substituted C $_4$ -C $_{23}$ alkheteroaryl -Ar;

cont

where X is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, $-CO_2R^5$, $-C(O)R^5$,

-C(O)NR⁵R⁵, OR⁵, -SR⁵, -NR⁵R⁵, -NO₂, -NR⁵C(O)R⁵, -NR⁵C(O)OR⁵ and halogen up to perhalosubstitution;

wherein R^5 and R^5 are independently selected from H, C_1 - C_{10} alkyl, C_2 - C_{10} -alkenyl, C_3 - C_{10} cycloalkyl, C_6 - C_{14} aryl, C_3 - C_{13} heteroaryl, C_7 - C_{24} alkaryl, C_4 - C_{23} alkheteroaryl, up to perhalosubstituted C_1 - C_{10} alkyl, up to perhalosubstituted C_2 - C_{10} -alkenyl, up to perhalosubstituted C_3 - C_{10} cycloalkyl, up to perhalosubstituted C_6 - C_{14} aryl and up to per-halosubstituted C_3 - C_{13} heteroaryl,

 $\label{eq:wherein Y is -O-, -S-, -N(R^5)-, -(CH_2)-m, -C(O)-, -CH(OH)-, -(CH_2)_mO-, -NR^5C(O)NR^5R^{5'}-, -NR^5C(O)-, -C(Q)NR^5_-O(CH_2)_m-, -(CH_2)_mS-, -(CH_2)_mN(R^5)-, -O(CH_2)_m-, -CHX^a-, -CX^a_2-, -S-(CH_2)_m \ and -N(R^5)(CH_2)_m-, -CX^a_2-, -S-(CH_2)_m \ and -N(R^5)(CH_2)_m-, -CX^a_2-, -S-(CH_2)_m \ and -N(R^5)(CH_2)_m-, -CX^a_2-, -$

m = 1-3, and X^a is halogen; and

Ar is a 5-10 member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur which is unsubstituted or substituted by halogen up to perhalosubstitution and optionally substituted by Z_{n1} , wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of -CN,

 $-CO_2R^5, -C(O)NR^5R^{5'}, -C(O)NR^5, -NO_2, -OR^5, -SR^5, -NR^5R^{5'}, -NR^5C(O)OR^{5'}, \\ -C(O)R^5, NR^5C(O)R^{5'}, C_1-C_{10} \text{ alkyl}, C_3-C_{10} \text{ cycloalkyl}, C_6-C_{14} \text{ aryl}, C_3-C_{13} \text{ heteroaryl}, C_7-C_{24} \\ \text{alkaryl}, C_4-C_{23} \text{ alkheteroaryl}, \text{ substituted } C_1-C_{10} \text{ alkyl}, \text{ substituted } C_3-C_{10} \text{ cycloalkyl}, \text{ substituted}$

 C_7 - C_{24} alkaryl and substituted C_4 - C_{23} alkheteroaryl;

wherein if Z is a substituted group, it is substituted by the one or more substituents independently selected from the group consisting of -CN, $-CO_2R^5$,

 $-C(O)NR^5R^5$, $-OR^5$, $-SR^5$, $-NO_2$, $-NR^5R^5$, $-NR^5C(O)R^5$ and $-NR^5C(O)OR^5$, and

wherein R^2 is C_6 - C_{14} aryl, C_3 - C_{14} heteroaryl, substituted C_6 - C_{14} aryl or substituted C_3 - C_{14} heteroaryl,

wherein if R^2 is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, and V_n , wherein n=0-3 and each V is independently selected from the group consisting of -CN, -

C3 Port CO_2R^5 , $-C(O)NR^5R^{5'}$, $-OR^5$, $-SR^5$, $-NR^5R^{5'}$, $-C(O)R^5$, $-OC(O)NR^5R^{5'}$, $-NR^5C(O)OR^{5'}$, $-SO_2R^5$, $-SO_2R^5$, $-SO_2R^5$, $-SO_2R^5$, $-NR^5C(O)R^{5'}$, $-NO_2$, C_1-C_{10} alkyl, C_3-C_{10} cycloalkyl, C_6-C_{14} aryl, C_3-C_{13} heteroaryl, C_7-C_{24} alkaryl, C_4-C_{24} alkheteroaryl, substituted C_1-C_{10} alkyl, substituted C_3-C_{10} cycloalkyl, substituted C_6-C_{14} aryl, substituted C_3-C_{13} heteroaryl, substituted C_7-C_{24} alkaryl and substituted C_4-C_{24} alkheteroaryl,

where if V is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, -CN, - CO_2R^5 , -C(O) R^5 , -C(O) R^5R^5 , -NR $^5R^5$, -OR 5 , -SR 5 ,

-NR⁵C(O)R^{5'}, -NR⁵C(O)OR^{5'} and -NO₂;

wherein R⁵ and R⁵ are each independently as defined above.

4. (Amended) A compound of claim 1, wherein

Y is selected from the group consisting of -O-, -S-, $-CH_2$ -, $-SCH_2$ -, $-CH_2$ S-, -CH(OH)-, -C(O)-, $-CX^2_2$, $-CX^2H$ -, $-CH_2O$ - and $-OCH_2$ -, and

X^a is halogen.

74

5. (Amended) A compound of claim 4, wherein

Ar is selected from the group consisting of phenyl, pyridinyl, naphthyl, pyrimidinyl, quinoline, isoquinoline, imidazole and benzothiazolyl, unsubstituted or substituted by halogen, up to per-halo substitution, and

Z and X are independently selected from the group consisting of $-R^6$, $-OR^6$ and $-NHR^7$, wherein R^6 is hydrogen, C_1 - C_{10} -alkyl or C_3 - C_{10} -cycloalkyl and R^7 is selected from the group consisting of hydrogen, C_3 - C_{10} -alkyl, C_3 - C_6 -cycloalkyl and C_6 - C_{10} -aryl, wherein R^6 and R^7 can be substituted by halogen or up to per-halosubstitution.

05

1:30

7. (Amended) A compound of claim 4, wherein Ar is phenyl or pyridinyl, Y is -O-, -S- or -CH₂-, and X and Z are independently Cl, F, NO₂ or CF₃.

15. (Amended) A method for the treatment of disease mediated by raf kinase, comprising administering an effective amount of a compound of formula I or a pharmaceutically acceptable salt thereof to a host in need thereof:

Pont

|| A-NH-C-NH-B

•

wherein A is a heteroaryl selected from the group consisting of

k N N

wherein R^1 is selected from the group consisting of C_3 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, up to per-halosubstituted C_1 - C_{10} alkyl and up to per-halosubstituted C_3 - C_{10} cycloalkyl;

B is a substituted or unsubstituted, up to tricyclic, aryl or heteroaryl moiety of up to 30 carbon atoms with at least one 5- or 6-member aromatic structure containing 0-4 members of the group consisting of nitrogen, oxygen and sulfur, wherein if B is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, and $X_{\rm p}$,

wherein n is 0-3 and each X is independently selected from the group consisting of -CN, CO_2R^5 , -C(O) $NR^5R^{5'}$, -C(O) R^5 , -NO₂, -OR⁵, -SR⁵, -NR⁵R^{5'},

-NR 5 C(O)OR 5 ', -NR 5 C(O)R 5 ', C $_1$ -C $_{10}$ alkyl, C $_{2-10}$ -alkenyl, C $_{1-10}$ -alkoxy, C $_3$ -C $_{10}$ cycloalkyl, C $_6$ -C $_{14}$ aryl, C $_7$ -C $_{24}$ alkaryl, C $_3$ -C $_{13}$ heteroaryl, C $_4$ -C $_{23}$ alkheteroaryl, substituted C $_1$ -C $_{10}$ alkyl, substituted C $_2$ -10-alkenyl, substituted C $_3$ -C $_{10}$ cycloalkyl, substituted C $_4$ -C $_{23}$ alkheteroaryl and -Y-Ar;

where X is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, $-CO_2R^5$, $-C(O)R^5$,

-C(O)NR⁵R^{5'}, -OR⁵, -SR⁵, -NR⁵R^{5'}, -NO₂, -NR⁵C(O)R^{5'}, -NR⁵C(O)OR^{5'} and halogen up to perhalosubstitution;

wherein R⁵ and R^{5'} are independently selected from H, C₁-C₁₀ alkyl, C₂₋₁₀-alkenyl, C₃-C₁₀

5

Dy cont

cycloalkyl, C_6 - C_{14} aryl, C_3 - C_{13} heteroaryl, C_7 - C_{24} alkaryl, C_4 - C_{23} alkheteroaryl, up to perhalosubstituted C_1 - C_{10} alkyl, up to per-halosubstituted C_{2-10} -alkenyl, up to per-halosubstituted C_3 - C_{10} cycloalkyl, up to per-halosubstituted C_6 - C_{14} aryl and up to per-halosubstituted C_3 - C_{13} heteroatyl, wherein Y is - O-, -S-, -N(R^5)-,

-(CH₂)-_m, C(O)-, -CH(OH)-, -(CH₂)_mO-, -(CH₂)_mS-, -(CH₂)_mN(R⁵)-, -O(CH₂)_m-, -CHX^a-, -CX^a₂-, -S-(CH₂)_m- and -N(R⁵)(CH₂)_m-,

m = 1-8, and X^a is halogen; and

Ar is a 5- or 6-member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur which is unsubstituted or substituted by halogen up to perhalosubstitution and optionally substituted by Z_{n1} , wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of -CN, $-C(O)R^5$, $-CO_2R^5$, $-C(O)NR^5R^5$, $-C(O)NR^5$, $-NO_2$, $-OR^5$, $-SR^5$, $-NR^5C(O)R^5$, $-NR^5C(O)OR^5$, $-NR^5C(O)CR^5$, $-NR^5C(O)CR^5$, $-NC^5C(O)CR^5$, $-NC^$

-NR⁵C(O)R⁵, C_1 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, C_6 - C_{14} aryl, C_3 - C_{13} heteroaryl, C_7 - C_{24} alkaryl, C_4 - C_{23} alkheteroaryl, substituted C_1 - C_{10} alkyl, substituted C_3 - C_{10} cycloalkyl, substituted C_7 - C_{24} alkaryl and substituted C_4 - C_{23} alkheteroaryl;

wherein if Z is a substituted group, it is substituted by the one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵,

 $-C(O)NR^5R^5$, $-OR^5$, $-SR^5$, $-NO_2$, $-NR^5R^5$, $-NR^5C(O)R^5$ and $-NR^5C(O)OR^5$, and

wherein R^2 is C_6 - C_{14} aryl, C_3 - C_{14} heteroaryl, substituted C_6 - C_{14} aryl or substituted C_3 - C_{14} heteroaryl,

wherein if R^2 is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, and V_n ,

wherein n = 0-3 and each V is independently selected from the group consisting of -CN, - CO_2R^5 , -C(O)NR⁵R^{5'}, -OR⁵, -SR⁵, -NR⁵R^{5'}, -OC(O)NR⁵R^{5'},

-NR 5 C(O)OR 5 ', -NR 5 C(O)OR 5 ', -SO $_2$ R 5 , -SOR 5 , -NR 5 C(Q)R 5 ', -NO $_2$, C $_1$ -C $_{10}$ alkyl, C $_3$ -C $_{10}$ cycloalkyl, C $_6$ -C $_{14}$ aryl, C $_3$ -C $_{13}$ heteroaryl, C $_7$ -C $_{24}$ alkaryl, C $_4$ -C $_{24}$ alkheteroaryl, substituted C $_3$ -C $_{10}$ cycloalkyl, substituted C $_6$ -C $_{14}$ aryl, substituted C $_3$ -C $_{13}$ heteroaryl, substituted C $_7$ -C $_{24}$ alkaryl and substituted C $_4$ -C $_{24}$ alkheteroaryl,

where V is a substituted group, it is substituted by one or more substituents independently

selected from the group consisting of halogen, up to per-halosubstitution, -CN, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R⁵, -NR⁵R⁵, -OR⁵, -SR⁵,

 $-NR^5C(0)R^5$, $-NR^5C(0)OR^5$ and $-NO_2$,

wherein R⁵ and R⁵ are each independently as defined above.

18. (Amended) A method of claim 15, wherein B is

$$\sqrt{-Q^{10-2}(Y-Q^{1-}Z_{n1})_s}$$

wherein

Y is selected from the group consisting of -O-, -S-, -CH₂-, -SCH₂-, -CH₂S-, -CH(OH)-, -C(O)-, -CX^a₂, -CX^aH-, -CH₂O- and -OCH₂-,

X^a is halogen,

Q is a six member aromatic structure containing 0-2 nitrogen, unsubstituted or substituted by halogen, up to per-halosubstitution;

Q¹ is a mono- or bicyclic aromatic structure of 5-10 members with 3 to 10 carbon atoms and 0-2 members of the group consisting of N, O and S, unsubstituted or substituted by halogen up to per-halosubstitution,

X, Z, and n1 are as defined in claim 15, and s = 0 or 1.

19. (Amended) A method as in claim 18, wherein

Q is phenyl or pyridinyl, unsubstituted or substituted by halogen, up to perhalosubstitution,

Q¹ is selected from the group consisting of phenyl, pyridinyl, naphthyl, pyrimidinyl, quinoline, isoquinoline, imidazole and benzothiazolyl, substituted or unsubstituted by halogen, up to per-halo substitution, and

Z and X are independently selected from the group consisting of $-R^6$, $-OR^6$ and $-NHR^7$, wherein R^6 is hydrogen, C_1 - C_{10} -alkyl or C_3 - C_{10} -cycloalkyl and R^7 is selected from the group consisting of hydrogen, C_3 - C_{10} -alkyl, C_3 - C_6 -cycloalkyl and C_6 - C_{10} -aryl, wherein R^6 and R^7 can be

substituted by halogen or up to per-halosubstitution.

23. (Amended) A method as in claim 15, comprising administering an amount of compound of formula I effective to inhibit raf kinase.