

Cluster analysis: Part - V

Dr. A. Ramesh

DEPARTMENT OF MANAGEMENT STUDIES

Agenda

- Dissimilarity matrix for mixed type variables
- Python demo for computing different types of distances
- Python demo for computing distance matrix for interval scaled data

Example

Consider the data given in the following table and compute a dissimilarity matrix for the objects of the table

Now we will consider all of the variables, which are of different types

object	test-l	test-2	test-3
identifier	(categorical)	(ordinal)	(ratio-scaled)
1	code-A	excellent	445
2	code-B	fair	22
3	code-C	good	164
4	code-A	excellent	1,210

Example

- The procedures we followed for test-1 (which is categorical) and test-2 (which is ordinal) are the same as outlined above for processing variables of mixed types
- For categorical variable $d(i, j) = \frac{p-m}{p}$,
- For ordinal variable $z_{if} = rac{r_{if}-1}{M_f-1}$
- For interval scale variable $d_{ij}^{(f)} = \frac{|x_{if} x_{jf}|}{max_h x_{hf} min_h x_{hf}}$,

Normalizing the interval scale data

- First, however, we need to complete some work for test-3 (which is ratio-scaled)
- We have already applied a logarithmic transformation to its values
- Based on the transformed values of 2.65, 1.34, 2.21, and 3.08 obtained for the objects 1 to 4, respectively, we let $\max_h x_h = 3.08$ and $\min_h x_h = 1.34$
- We then normalize the values in the dissimilarity matrix obtained in Example solve for ratio data by dividing each one by (3.08–1.34) = 1.74

Dissimilarity matrix for test-3

• This results in the following dissimilarity matrix for test-3:

	Object Identifier	Ratio scaled Data (x)	Log (x)		0]
٢	1	445	2.65 —	2.)	0.75	0		
	_ 2	22	1.34 —		0.05	0.50		
	3	164	2.21	,	0.25	0.50	O	
	4	1210	3.08		0.25	1.00	0.50	0

• For 1 and 2 = (2.65-1.34)/(3.08-1.34) = 0.75

dissimilarity matrices for the three variables

- We can now use the dissimilarity matrices for the three variables in our computation of Equation $d_{ij}^{(f)} = \frac{|x_{if} - x_{jf}|}{\max_{h} x_{hf} - \min_{h} x_{hf}}$
- For example, we get d(2,1)=(1(1)+1(1)+1(0.75))/3=0.92

$$\begin{bmatrix} 0 & & & \\ 1 & 0 & & \\ 1 & 1 & 0 & \\ \hline 0 & 1 & 1 & 0 \end{bmatrix}$$

Dissimilarity matrix for categorical

$$\begin{bmatrix} 0 & & & \\ \hline 1 & 0 & & \\ 1 & 1 & 0 & \\ \hline 0 & 1 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & & & \\ \hline 1 & 0 & & \\ 0.5 & 0.5 & 0 & \\ \hline 0 & 1.0 & 0.5 & 0 \end{bmatrix}$$

Dissimilarity matrix for ordinal

normalize the values in the dissimilarity matrix for ratio data

Example

 The resulting dissimilarity matrix obtained for the data described by the three variables of mixed types is:

$$\begin{bmatrix}
0 \\
0.92 & 0 \\
0.58 & 0.67 & 0 \\
0.08 & 1.00 & 0.67 & 0
\end{bmatrix}$$

Interpretation

- If we go back and look at Table of given data, we can intuitively guess that objects 1 and 4 are the most similar, based on their values for test-1 and test-2
- This is confirmed by the dissimilarity matrix, where d(4,1) is the lowest value for any pair of different objects
- Similarly, the matrix indicates that objects 2 and 4 are the least similar

Distance Measurement using python - Euclidean Distance :

$$d(i, j) = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \cdots + (x_{ip} - x_{jp})^2}$$

Python Demo for Euclidean Distance

```
In [1]: import scipy
from scipy.spatial import distance

#Euclidean Distance

In [2]: import numpy as np
    a = [1,2,3]
    b = [4,5,6]
    dst = distance.euclidean(a,b)

In [3]: dst

Out[3]: 5.196152422706632
```


Distance Measurement using python – Minkowski Distance:

$$d(i,j) = (|x_{i1}-x_{j1}|^p + |x_{i2}-x_{j2}|^p + \cdots + |x_{in}-x_{jn}|^p)^{1/p},$$

- P = 1 Manhattan distance
- P = 2 Euclidean distance

Python Demo for Minkowski Distance

#Minkowski Distance

```
In [4]: distance.minkowski([1, 0, 0], [0, 1, 0], 1) #Manhattan distance
Out[4]: 2.0
In [5]: distance.minkowski([1, 0, 0], [0, 1, 0], 2) #Euclidean distance
Out[5]: 1.4142135623730951
In [6]: distance.minkowski([1, 2, 3], [4, 5, 6], 2)
Out[6]: 5.196152422706632
In [7]: distance.minkowski([1, 2, 3], [4, 5, 6], 3)
Out[7]: 4.3267487109222245
```


Dissimilarity matrix

#dissimilarity or distance matrix

```
In [9]: import pandas as pd
         from scipy.spatial import distance matrix
         data = [[1, 4], [2, 5], [3, 6]]
         df = pd.DataFrame(data,columns=['a', 'b'])
Out[9]:
          1 2 5
          2 3 6
In [10]: pd.DataFrame(distance_matrix(df.values, df.values))
Out[10]:
                   0
          0 0.000000 1.414214 2.828427
          1 1.414214 0.000000 1.414214
          2 2.828427 1.414214 0.000000
```


Distance matrix calculation for Interval-Scaled Variables

- For example :
- Take eight people, the weight (in kilograms) and the height (in centimetres
- In this situation, n = 8 and p = 2.

Person	Weight(Kg)	Height(cm)
Α	15	95
В	49	156
С	13	95
D	45	160
E	85	178
F	66	176
G	12	90
Н	10	78

#data matrix

```
In [5]: import pandas as pd
from scipy.spatial import distance_matrix

data = [[15, 95], [49, 156], [13, 95], [45, 160], [85, 178], [66, 176], [12, 90], [10, 78]]
    ctys = ['A', 'B','C','D','E','F','G','H']
    df = pd.DataFrame(data, columns=['Weight', 'Height'], index=ctys)
```

In [6]: df

Out[6]:

	Weight	Height
Α	15	95
В	49	156
С	13	95
D	45	160
E	85	178
F	66	176
G	12	90
н	10	78

In [7]: Distance_matrix = pd.DataFrame(distance_matrix(df.values, df.values), index=df.index, columns=df.index)
Distance_matrix

Out[7]:

	Α	В	С	D	E	F	G	н
Α	0.000000	69.835521	2.000000	71.589105	108.577162	95.718337	5.830952	17.720045
В	69.835521	0.00000	70.830784	5.656854	42.190046	26.248809	75.663730	87.206651
С	2.000000	70.830784	0.000000	72.449983	109.877204	96.798760	5.099020	17.262677
D	71.589105	5.656854	72.449983	0.000000	43.863424	26.400758	77.388630	89.157165
E	108.577162	42.190046	109.877204	43.863424	0.000000	19.104973	114.337221	125.000000
F	95.718337	26.248809	96.798760	26.400758	19.104973	0.000000	101.548018	112.871608
G	5.830952	75.663730	5.099020	77.388630	114.337221	101.548018	0.000000	12.165525
Н	17.720045	87.206651	17.262677	89.157165	125.000000	112.871608	12.165525	0.000000

Distance matrix calculation using Python

Distance_matrix.round(decimals=1, out=None) Out[8]: Н 0.0 69.8 2.0 71.6 108.6 95.7 5.8 17.7 70.8 5.7 26.2 75.7 87.2 2.0 70.8 0.0 72.4 109.9 96.8 17.3 0.0 26.4 89.2 **E** 108.6 42.2 109.9 43.9 0.0 19.1 114.3 125.0 112.9 5.8 75.7 5.1 77.4 114.3 101.5 12.2 17.7 87.2 17.3 89.2 125.0 112.9 0.0

Thank You

