2016 학년.	도 2 학기 기말고사 (1/2)	과	자료구조	학 과	학년	점수
담당교수	심 정 섭	목		학 번		
시험일시	12월 9일 금요일	명	(분반: 00□)	성 명		

1. 아래 의사코드(pseudo code)는 우선순위큐 추상자료 형(priority queue ADT)을 이용하여 데이터를 정렬하는 알고리즘이다. 입력시퀀스 S가 크기 n인 배열로 주어졌을 때, 다음 물음들에 답하시오.

Algorithm **PO-Sort(S, C)**

Input sequence S, comparator C for the elements of S **Output** sequence S sorted in increasing order according to C $P \leftarrow \text{priority queue with comparator } C$

while $\neg S.empty()$

 $e \leftarrow \textit{S.front}(); \textit{S.eraseFront}()$

P.insert (e, \varnothing)

while

(1)

(1) 의사코드에서 첫 번째 while 문을 참고하여, 두 번째 while 문을 완성하시오.

while

- (2) 우선순위큐를 최소힙(min-heap)으로 구현했을 때, 첫 번째 while 문의 기능을 강의시간에 설명 (bottom-up)한 대로 O(n) 시간에 수행하도록 구현하였다. 배열로 주어진 S의 초기 입력이 아래와 같을 때, 최종 (배열)힙의 상태를 나타내시오.
- * 초기 입력

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
-	16	4	11	3	12	9	5	6	14	2	7	10	1	15	13

답: 최종 힙의 내용

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
-															

(3) (2)번의 방법이 O(n) 시간에 수행됨을 보이시오.

- 2. 다음 빈 칸들을 적절히 채우시오.
- (1) A () is a dictionary implemented by means of an unsorted sequence.
- (2) Let α denote the load factor. Assuming that the hash values are like random numbers, it can be shown that the expected number of probes for an insertion with open addressing is ().
- (3) Algorithm upheap restores the () property by swapping the inserted key k along an upward path from the insertion node.
- 3. 아래 이진탐색트리(binary search tree)에서 20에 대한 삭제연산이 수행된 후, 트리의 상태를 그림으로 나타내시오. 단, 외부노드는 그림에서 생략한다.

답:

2016 학년도 2 학기 기말고사 (2/2)

4. 아래 그래프에 대해 다음 물음에 답하시오.

(1) 강의시간에 학습한 인접리스트(adjacency list) 표 현 방법을 이용하여 위 그래프를 구현하려 한다. 구현 된 그래프를 그림으로 나타내시오.

(2) 정점(vertex) 객체에 정의되어 있는 데이터들이 무 엇인지 설명하시오.

(3) 정점 v를 삭제하는 함수의 수행과정을 설명하고, 수행시간을 분석하시오.

5. 다음 중 그래프의 입력크기에 비례하는 시간에 계산 할 수 있는 경우를 모두 고르시오.

- ① 모든 간선의 가중치가 1일 때, 임의의 두 정 점사이의 최단거리
- ② DAG(directed acyclic graph)의 위상순서 (topological order)
- ③ DAG의 한 정점에서 다른 정점까지의 최단거
- ④ 무향그래프(undirected graph) G의 연결성분 (connected component)

6. 아래 의사코드에서 빈 칸을 적절히 채우고, 이를 인 접리스트로 구현된 G=(V,E)에 대해 수행했을 때, 수 행시간을 설명하시오. 단, |V| = n, |E| = m이다.

```
Algorithm AAA(G)
Input graph G
Output labeling of the edges of G
     as discovery edges and back edges
for all u \in G.vertices()
     u.setLabel(UNEXPLORED)
for all e \in G.edges()
     e.setLabel(UNEXPLORED)
for all v \in G. vertices()
   if v.getLabel() = UNEXPLORED
              A\tilde{A}A(G, v)
```

```
Algorithm AAA(G, v)
Input graph G and a start vertex v of G
Output labeling of the edges of G
     in the connected component of v
     as discovery edges and back edges
v.setLabel(VISITED)
for all e \in G.incidentEdges(v)
   if e.getLabel() = UNEXPLORED
      w \leftarrow e.opposite(v)
     if w.getLabel() = UNEXPLORED
         e.setLabel(DISCOVERY)
     else
         e.setLabel(BACK)
```

 \bigcirc :

수행시간:

답: