

ECEN 758 Data Mining and Analysis: Lecture 10, Hierarchical Clustering

Joshua Peeples, Ph.D.

Assistant Professor

Department of Electrical and Computer Engineering

Announcements

- Assignment #2 due this Friday (09/27)
 - Please upload submission as single PDF
 - Please share Python code (Jupyter Notebooks, Google Colab, etc.)
 - Not submitting your code will result in losing points!

Last Lecture

Expectation-Maximization Algorithm

Gif from: Expectation-maximization algorithm, Wikipedia

Today

- Hierarchical Clustering
- Reading: ZM Chapter 14
- Supplemental Reading:
 - MMDS Chapter 7
 - Ran, X., Xi, Y., Lu, Y., Wang, X., & Lu, Z. (2023).
 Comprehensive survey on hierarchical clustering algorithms and the recent developments. Artificial Intelligence Review, 56(8), 8219-8264.

Clustering Overview

- We will discuss several variants of clustering
 - Representative-based Clustering
 - Hierarchical Clustering
 - Density-based Clustering

Hierarchical Clustering Overview

Hierarchical Clustering

Hierarchical Clustering

Agglomerative Clustering Overview

Agglomerative Clustering

- "Bottom-up" clustering approach
- Creates sequences of nested partitions that can be viewed with cluster dendrogram
- Each point starts as own cluster and are merged

Image from: Dinesh Piyasamara.

Hierarchical Clustering Dendrogram

 Sequences of nested partitions that can be viewed with cluster dendrogram

Clustering	Clusters
\mathcal{C}_1	${A}, {B}, {C}, {D}, {E}$
\mathcal{C}_2	$\{AB\}, \{C\}, \{D\}, \{E\}$
\mathcal{C}_3	$\{AB\}, \{CD\}, \{E\}$
\mathcal{C}_4	$\{ABCD\}, \{E\}$
\mathcal{C}_{5}	{ABCDE}

Hierarchical Clustering Dendrogram

- Can have several different cluster dendrograms
- Number of different dendrograms computed from the following:

$$\prod_{m=1}^{n-1} (2m-1) = 1 \times 3 \times 5 \times 7 \times \cdots \times (2n-3) = (2n-3)!!$$

Hierarchical Clustering Dendrogram

- Do not need to specify number of clusters beforehand
- Can define distance threshold to set number of clusters

Image from: P. Pai, Hierarchical clustering explained.

- Teacher wants to divide class into groups based on scores
- Need to generate proximity matrix

Student_ID	Marks
1	10
2	7
3	28
4	20
5	35

ID	1	2	3	4	5
1	0	3	18	10	25
2	3	0	21	13	28
3	18	21	0	8	7
4	10	13	8	0	15
5	25	28	7	15	0

- Assign points to individual cluster
- Find smallest distances in proximity matrix to merge points

ID	1	2	3	4	5
1	0	3	18	10	25
2	3	0	21	13	28
3	18	21	0	8	7
4	10	13	8	0	15
5	25	28	7	15	0

- After merge, need to update distance matrix
- Used maximum value to merge clusters but there are other "linkage" options
 - Minimum, average, etc.

Student_ID	Marks
(1,2)	10
3	28
4	20
5	35

ID	(1,2)	3	4	5
(1,2)	0	18	10	25
3	18	0	8	7
4	10	8	0	15
5	25	7	15	0

- Repeat steps until single cluster remains
- Use dendrogram to decide groups

 Dendrogram plots distances between clusters and shows cluster hierarchy

Student_ID	Marks
1	10
2	7
3	28
4	20
5	35

 Number of cluster will be number of vertical lines intersected with threshold

Agglomerative Clustering Algorithm

Agglomerative Hierarchal Clustering Pseudocode

AgglomerativeClustering(D, k):

- 1 $C \leftarrow \{C_i = \{x_i\} \mid x_i \in D\}$ // Each point in separate cluster
- 2 $\Delta \leftarrow \{\delta(\mathbf{x}_i, \mathbf{x}_j) : \mathbf{x}_i, \mathbf{x}_j \in \mathbf{D}\}$ // Compute distance matrix
- 3 repeat
- 4 | Find the closest pair of clusters $C_i, C_i \in \mathcal{C}$
- 5 $C_{ij} \leftarrow C_i \cup C_j$ // Merge the clusters
- 6 $C \leftarrow (C \setminus \{C_i, C_j\}) \cup \{C_{ij}\}$ // Update the clustering
- 7 Update distance matrix Δ to reflect new clustering
- 8 until $|\mathcal{C}| = k$

Agglomerative Hierarchal Clustering Pseudocode

AgglomerativeClustering(D, k):

```
1 C \leftarrow \{C_i = \{x_i\} \mid x_i \in D\} // Each point in separate cluster 2 \Delta \leftarrow \{\delta(x_i, x_i): x_i, x_i \in D\} // Compute distance matrix
```

3 repeat

- 4 Find the closest pair of clusters $C_i, C_j \in \mathcal{C}$
- 5 $C_{ij} \leftarrow C_i \cup C_j$ // Merge the clusters
- 6 $C \leftarrow (C \setminus \{C_i, C_j\}) \cup \{C_{ij}\}$ // Update the clustering
- 7 Update distance matrix Δ to reflect new clustering
- 8 until $|\mathcal{C}| = k$

- Need "linkage" between clusters
- Different distance metrics are used:
 - Euclidean
 - Manhattan

Data:

o ... data point

x ... centroid

- Single link
- Complete link
- Group average
- Mean distance
- Ward's method
 - Minimum variance

Data:

o ... data point

x ... centroid

- Single link
- Complete link
- Group average
- Mean distance
- Ward's method
 - Minimum variance

$$\delta(C_i, C_j) = \min\{\|\boldsymbol{x} - \boldsymbol{y}\| \mid \boldsymbol{x} \in C_i, \boldsymbol{y} \in C_j\}$$

- Single link
- Complete link
- Group average
- Mean distance
- Ward's method
 - Minimum variance

$$\delta(C_i, C_j) = \max\{\|\boldsymbol{x} - \boldsymbol{y}\| \mid \boldsymbol{x} \in C_i, \boldsymbol{y} \in C_j\}$$

- Single link
- Complete link
- Group average
- Mean distance
- Ward's method
 - Minimum variance

$$\delta(C_i, C_j) = \frac{\sum_{\mathbf{x} \in C_i} \sum_{\mathbf{y} \in C_j} \|\mathbf{x} - \mathbf{y}\|}{n_i \cdot n_j}$$

- Single link
- Complete link
- Group average
- Mean distance
- Ward's method
 - Minimum variance

$$\delta(C_i, C_j) = \|\boldsymbol{\mu}_i - \boldsymbol{\mu}_j\|$$

- Single link
- Complete link
- Group average
- Mean distance
- Ward's method
 - Minimum variance

$$\delta(C_i, C_j) = \left(\frac{n_i n_j}{n_i + n_j}\right) \left\| \boldsymbol{\mu}_i - \boldsymbol{\mu}_j \right\|^2$$

Agglomerative Hierarchal Clustering Pseudocode

AgglomerativeClustering(D, k):

```
1 C \leftarrow \{C_i = \{x_i\} \mid x_i \in D\} // Each point in separate cluster
```

2 $\Delta \leftarrow \{\delta(\mathbf{x}_i, \mathbf{x}_j) : \mathbf{x}_i, \mathbf{x}_j \in \mathbf{D}\}$ // Compute distance matrix

3 repeat

```
Find the closest pair of clusters C_i, C_j \in \mathcal{C}
```

$$C_{ij} \leftarrow C_i \cup C_j$$
 // Merge the clusters

$$\mathcal{C} \leftarrow (\mathcal{C} \setminus \{C_i, C_j\}) \cup \{C_{ij}\}$$
 // Update the clustering

Update distance matrix Δ to reflect new clustering

8 until
$$|\mathcal{C}| = k$$

Lance-Williams Formula

- After merging, need to update distance matrix
- Lance-Williams formula provides general equation to recompute distances

$$\delta(C_{ij}, C_r) = \alpha_i \cdot \delta(C_i, C_r) + \alpha_j \cdot \delta(C_j, C_r) + \beta \cdot \delta(C_i, C_j) + \gamma \cdot |\delta(C_i, C_r) - \delta(C_j, C_r)|$$

Lance-Williams Formula

 Equations for each measure are derived in ZM Ch. 14 slides!

$$\delta(C_{ij}, C_r) = \alpha_i \cdot \delta(C_i, C_r) + \alpha_j \cdot \delta(C_j, C_r) + \beta \cdot \delta(C_i, C_j) + \gamma \cdot |\delta(C_i, C_r) - \delta(C_j, C_r)|$$

Measure	$lpha_i$	α_j	β	γ
Single link	$\frac{1}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$
Complete link	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{2}$
Group average	$\frac{n_i}{n_i+n_j}$	$\frac{n_j}{n_i + n_j}$	0	0
Mean distance	$\frac{n_i}{n_i + n_j}$	$\frac{n_j}{n_i+n_j}$	$\frac{-n_i \cdot n_j}{(n_i + n_j)^2}$	0
Ward's measure	$\frac{n_i + n_r}{n_i + n_j + n_r}$	$\frac{n_j + n_r}{n_i + n_j + n_r}$	$\frac{-n_r}{n_i + n_j + n_r}$	0

Agglomerative Hierarchal Clustering Implementation Am Engineering

- Available in <u>Sklearn</u>
- Four linkage strategies:
 - Single
 - Complete
 - Average
 - Ward

Agglomerative Hierarchal Clustering Implementation Implementation Engineering

- Can also use for dimensionality reduction
- Instead of clustering samples, you can cluster features
 - Feature Agglomeration

Divisive Clustering Overview

Hierarchical Clustering

Divisive Clustering

- "Top-down" clustering approach
- Creates sequences of nested partitions that can be viewed with cluster dendrogram
- All points start in single cluster and are split

Divisive Clustering: Bisecting k-Means

Steps:

- Initialization
- Bisection
- Update SSE
- Repeat bisection and SSE updates
- Split until desired number of clusters are reached

Divisive Clustering: Bisecting k-Means

- Advantages over k-Means:
 - More robust to outliers and complex data structures
 - Hierarchal organization
 - Faster convergence

Image from: A. Firdaus, Bisecting k-Means Clustering.

Bisecting k-Means Implementation

- Available in <u>Sklearn</u>
- Two splitting strategies:
 - "Biggest inertia"
 - Split cluster with largest SSE
 - "Largest cluster"
 - Split cluster with largest number of data points

Hierarchical Clustering Summary

Hierarchical Clustering Summary

- Advantages
 - No assumptions of cluster shapes
 - No need to set number of clusters beforehand
 - Interpretable
- Disadvantages
 - Costly for large datasets
 - Difficult to visualize dendrograms for large datasets
 - Results depend on linkage
 - Prediction of new points not straightforward

Unsupervised: No labels, d

- Unsupervised: No labels, d
- Mapper:
 - Hierarchical Clustering
 - Takes input data and groups into k clusters

- Unsupervised: No labels, d
- Mapper:
 - Hierarchical Clustering
 - Takes input data and groups into k clusters
- Cost function:
 - Linkage

$$\delta(\mathbf{x}_i,\mathbf{x}_i)\colon \mathbf{x}_i,\mathbf{x}_i\in \mathbf{D}$$

- Unsupervised: No labels, d
- Mapper:
 - Hierarchical Clustering
 - Takes input data and groups into k clusters
- Cost function:
 - Linkage
- Learning algorithm
 - Lance-Williams algorithm

$$\delta(C_{ij}, C_r) = \alpha_i \cdot \delta(C_i, C_r) + \alpha_j \cdot \delta(C_j, C_r) + \beta \cdot \delta(C_i, C_j) + \gamma \cdot |\delta(C_i, C_r) - \delta(C_j, C_r)|$$

Hierarchical Clustering Application

Bias in Machine Learning

- Lack of diversity and representativeness in data can cause several issues
- Used a divisive clustering approach to improve the diversity in training data without reducing accuracy

Next class

Density estimation and density-based clustering

Supplemental Slides

Useful Links

- StatQuest: Hierarchical Clustering
- Hierarchical Clustering Cluster Distances
- How the Hierarchical Clustering Algorithm Works
- Lance-Williams Algorithm