МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА №3
отчет защищен с оценкой 75 (семь)
ПРЕПОДАВАТЕЛЬ — усмения, к. ф м. н. должность, уч. степень, звание 27. 09. 22 подпись дата подпись дата инициалы, фамилия
ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ № / 🕖
— Опрецение уденьного запяда — Эмектрона
наименование лабораторной работы
по курсу: ОБЩАЯ ФИЗИКА
СТУДЕНТ ГР. № <u>U134 Костяхов М. А</u> номер группы полумсь мата инициалы, фамилия

Санкт-Петербург 2022

ПРОТОКОЛ ИЗМЕРЕНИЙ Лабораторная работа №10

Определение удельного заряда электрона

Студент группы №

Преподаватель каф. № 3

Параметры приборов

Прибор	Тип	Предел измерений	Цена деления	Класс точности	Систематическая погрешность
Амперметр	M1001M	3 A	0.1 A.	1,5	0,45 = 0,5 1
Вольтметр		Q 15 V	0.5 V	1,5	0,2 V
Миллиамперметр	Прибор комб-ый Щ4313	20 mA	0,01	-	0,1 ma

Результаты измерений

$U_a = 100 \text{ B}$		Ua	= 75	$U_a = 50$		
I _c , A	I _a , мА	I _c , A	I _a , мA	I _c , A	I _a , мA	
0,8 A	5,58 mA	0, 7 A	4,09 mA	0,5 4	2.6 mA	
0,9 A	5,28 mA	0,8 1	3,95 mA	0,6 1	2,6 mA	
L A	4,74 mH	0,9 A	3,54 mA	0.7 4	2,54 mA	
1,03 A	3,89 mH	1 A	2,2 mA	0,8 +	2, 34 mA	
1,1 +	2,54 mA	1,1 A	0,71 mA	0,9 A	1,24 mA	
1,2 t	0,95 mH	1,2 A	0,61 mA	1 4	0,37 mA	
1,3 #	0,88 mA	1,3 #	0,25 MA	1,1 A	0,29 mx	
1,4 #	0,50 mA	1,4 A	0,06 mA	1,2 +	0,04 mA	
1,5 A	0,10 mA	1,5 A	0,05 mA		10.76	
4,6 A	0,07 mf	.,				
1,7 A	0,05 mA					

Параметры установки:

араметры установки:

Анодная цель Лампы:

- Радиус сонода мампы Га,

уследнени. - 6 мм

- Гк - 0,3 мм

Следний диаметр: 62 мм

Дата « » апреля 202**2** г.

1. Цель работы – изучение движения заряженных частиц в скрещенных полях; ознакомление с работой электрическом и магнитном 6Ж32П; измерение удельного заряда электровакуумной лампы электрона методом магнетрона.

2. Описание лабораторной установки

Основным элементом экспериментальной установки, содержащим соленоид и двухэлектродную электровакуумную лампу 6Ж32П, является модуль ФПЭ-03 «Заряд электрона», к которой подключается модуль ИП, включающий в себя источник питания, вольтметр и амперметр, и измерительный прибор Щ4313.

Параметры приборов

Прибор	Тип	Предел измерений	Цена деления	Класс точности	Систематическая погрешность
Амперметр	MIDGINI	3 H	0,1 A	1,5	0,5 A
Вольтметр	-	15 V	0.5 v	1,5	0,2V
Миллиамперметр	144313	10 MA	0,01	-	O, IMA

Параметры установки

Анодная цепь лампы: - радиус анода лампы Го -радиус катода лампы rk 0,030,3 mm Цепь соленоида:

-число витков соленоида -длинна намотки соленоида PG I Iwe -средний диаметр намотки 62 Мис

3. Рабочие формулы:

3.2 Формула для удельного заряда электрона:

 $\left(\frac{\ell}{m}\right) = \frac{8 \text{ Va}}{\left(\text{Bnp. ra}\right)^2}$, 2ge Va-amognoe nanogamente $Bnp-linguage appage}$ $Fa-pagage appage}$

3.3 Формула для определения среднего значения удельного заряда электрона:

 $\left(\frac{l}{m}\right)$ es $\left(\frac{l}{m}\right)$, l $\left(\frac{l}{m}\right)$ es $\left($

4. Результаты измерений и вычислений

Ua, B	Ікр, А	Вкр, Та	e K.4	men Ka	Amike	E Task
30	617	10181	6,2.10			
15	1	0,0197	7,7.10		1.100	1,76,
			8,4.100			*10 XI

5.3
$$\left(\frac{e}{m}\right)_{CP} = \frac{6.8 + 7.7 + 8.4}{3} \cdot 10^{10} = 7.6 \cdot 10^{10} \cdot \frac{K\Lambda}{K\Gamma}$$

6. Boralieureren norperentocter

6.1 Cucterenture expag nor permissoris

$$\Theta_{I} = 0.045 \text{ A}$$
 $\Theta_{V} = 2.25 \text{ B}$

Bulong populyus cuci- horp.

 $B_{KP} = \frac{M_{O}(N)(IM)}{\sqrt{L^{2}+D^{2}}}; B_{KP}(I_{KP}) = B_{KP}$
 $\Theta_{KP} = \frac{M_{O}(N)(IM)}{\sqrt{L^{2}+D^{2}}}; B_{KP}(I_{KP}) = B_{KP}$
 $\Theta_{KP} = \frac{B_{KPCP}}{\sqrt{L^{2}+D^{2}}}; G_{KP} = 0.045.004 = 0.006 \text{ Th}$
 $I_{m}^{2} = \frac{8V_{a}}{(B_{KP} \cdot r_{a})}; (e) = \frac{e}{m} (U, B_{KP})$
 $\Theta_{m}^{2} = \frac{e}{m} (\frac{\Theta_{V}}{V} + \frac{2\Theta_{KP}}{B_{KP}}) = 7.6.10^{10} (\frac{2.25}{7.5} + \frac{2.0.0006}{0.014}) = 0.87.10^{10} \frac{K_{A}}{K_{A}}$

6.2 Cilyacuinag norpeupesers

Cregh. K bago. OT KLEONERULE YGELGHOFO JANAGA FLEKTPONEC.

$$S(\frac{e}{m}) = \sqrt{\sum_{i=1}^{N} {\binom{i}{e}} + \binom{i}{m}}^{2}} = \sqrt{\frac{7.6 \cdot 10^{40} - 6.8 \cdot 10^{10}}{N(N-1)}^{2}} + \sqrt{\frac{7.6 \cdot 10^{40} - 6.8 \cdot 10^{10}}{N(N-1)}^{2}}^{2}}$$

$$= 0.046 \cdot 10^{11} \frac{KJ}{KT} = 0.46 \cdot 10^{10} \frac{KJ}{KT}$$

6.3. Tolhag norpewhocto

в работе проводится измерение невидасийных вешения.

(Sex B(=) ~ 0.46.10'0 < 0,87.10'0

F. Bullegue

В ходе Рабочи 91 определия удельный заряд электрона:

 $\frac{1}{2}\left(\frac{e}{m}\right) = 7.6 \cdot 10^{10} \pm 0.87 \cdot 10^{10} \frac{k a}{k r}$

Tour pour paper uzue pereuti, onregentud I KP

1) IxPcp ≈ 1,02 A

Полученное значение пи совполо с Гаспичнения. Это возментное из-за несовершентва обордовения ими основания ими из-за недостаточней гочного имага при изменения контической точки,