

TRABALHO PRÁTICO - Grupo 13

Laboratório de Sistemas Dinâmicos Professor: Bruno Barbosa

Kethellen Camilo Martins- 201720616 - Turma C Michelli de Oliveira Bento - 201710884 - Turma A Rafael Barbosa Souza - 201820522 - Turma A Vinícius Faria Silveira - 201720627 - Turma C

> Lavras-MG Abril de 2021

Sumário

1	Intr	odução	2
2	Ger	ração de dados	2
3	Mo	delos de Primeira Ordem	3
	3.1	Método da Integrais	3
	3.2	Método de uma constante de tempo (63,2 %)	5
	3.3	Método de quatro constantes de tempo (98 %)	6
	3.4	Método de Ziegler-Nichols	8
	3.5	Método de Smith	9
	3.6	Método de Haglund	11
	3.7	Método de Sundaresan e Krishnaswami	13
	3.8	Método da Inclinação inicial	14
	3.9	Comparação entre os Métodos	17
4	Mo	delos de Segunda Ordem	18
	4.1	Método de Sundaresan	18
	4.2	Método de Mollenkamp	19
	4.3	Comparação entre os Métodos	22
5	Ens	aio de entrada PRBS	22
	5.1	Primeira Ordem	25
	5.2	Segunda Ordem	25
6	Con	nsiderações finais	26

1 Introdução

Sabe-se que na maioria dos problemas reais, o modelo do sistema não é conhecido. O que se tem, entretanto, são apenas os sinais de entrada e saída. Assim sendo, métodos determinísticos para a modelagem caixa preta, podem ser empregados a fim de obtermos a resposta ao impulso do sistema. Esta prática foi desenvolvida para aplicações dos métodos caixa preta sendo utilizado o software MATLAB.

2 Geração de dados

Para realização do ensaio foi utilizado as seguintes variáveis:

- Número do grupo: 13;
- Período de Amostragem para entrada degrau : 0.1s.
- Período de Amostragem para entrada PRBS: 0.18s.

A partir desses valores foi obtido a seguinte figura pelo LabView:

Figura 1: Resposta do sistema para uma entrada degrau unitário.

De acordo com a figura acima temos em vermelho a entrada do degrau unitário e em azul a saída medida de um processo real. A partir desses dados foi gerado um arquivo .txt que será utilizado no software MATLAB para análise dos métodos.

3 Modelos de Primeira Ordem

A partir da equação 1 aplicável à sistemas de primeira ordem com atraso puro de tempo mostrada abaixo, podemos desenvolver os seguintes métodos:

- Método da integrais;
- Método de uma constante de tempo (63,2%);
- Método de quatro constantes de tempo (98%);
- Método de Ziegler- Nichols;
- Método de Smith;
- Método de Haglund;
- Método de Sundaresan e Krishnaswami;
- Método da inclinação inicial.

$$H(s) = \frac{Ke^{-\theta s}}{\tau s + 1} \tag{1}$$

Temos que:

- K: Ganho do sistema;
- τ : Constante de tempo;
- θ : Tempo morto.

3.1 Método da Integrais

Para aplicar o método da integrais foi utilizado o seguinte código no MATLAB:

```
14
15
  %% Normalizando o vetor
16
          y/K;
17
18
  %%
19
  teta_tal = trapz(t, u-yN);
20
  indice=find(t <=teta_tal);
21
  i = 585;
22
  tal = \exp(1) * trapz(t(1:i), yN(1:i));
23
  teta = teta_tal - tal;
24
25
  5% Funcao de transferencia
26
  s = tf('s');
27
  G1 = (K*exp(-teta*s))/(tal*s +1)
28
  step (G1, '-r')
30 hold on
31
  plot(t,y)
```

Primeiramente, é feita a leitura dos dados, depois foi implementado as equações do métodos das integrais. A partir disso foi obtido os seguintes resultados:

Figura 2: Resposta para o método das Integrais.

• Função de Transferência:

$$H1(s) = \frac{73.28 \cdot e^{-14.5s}}{38.97s + 1} \tag{2}$$

3.2 Método de uma constante de tempo (63,2 %)

Para aplicar o método de uma constante de tempo (63,2%) foi utilizado seguinte código no MATLAB:

```
1 % M todo da Constante de tempo (63,8%)
2 %%
3
  dados_degrau = load('saidaLab.txt');
4 \mid t = dados_degrau(:, 1);
5 | u = dados_degrau(:,2);
  y = dados_degrau(:,3);
7 %%
8 Percebemos que a sa da tende ao seu valor permanente partir do tempo
  %220s, cujo
                 ndice
                            1100.
  dy = mean(y(1100:3000)) - mean(y(1:86));
11
12 | du = u(end) - 0;
13|K = dy/du;
14 % M todo de uma constante de tempo
15 % considerando o teta igual
                                   22.4
16
17
  yt1 = mean(y(1:86)) + (dy)*0.632; %ponto que representa 63.2% do valor de Y
18
19 | t1 = 0;
20|i = 1;
21
22 | %loop para encontrar o tempo 1:
23
   while (y(i) < yt1)
24
       t1 = t(i);
25
       i = i+1;
26
  end
27
28 | % Fun
             es de trasfer ncia
29 | s = tf('s');
30 | \text{teta} = 18;
  tal = t1-teta;
31
32
33|G1 = (K*exp(-teta*s))/(tal*s +1)
34 step (G1, 'r')
35 hold on
36
  plot(t,y)
```

Novamente, é feita a leitura dos dados, depois foi implementado as equações do método de uma constante de tempo (63,2%). A partir disso foi obtido os seguintes resultados:

Figura 3: Resposta para o método de uma Constante de tempo (63,2%).

• Função de Transferência:

$$H2(s) = \frac{73.28 \cdot e^{-18s}}{35.4s + 1} \tag{3}$$

3.3 Método de quatro constantes de tempo (98 %)

Para aplicar o método de quatro constante de tempo (98%) foi utilizado o seguinte código no MATLAB:

```
\% M todo Constante de Tempo (98%)
2 %%
3
  dados_degrau = load('saidaLab.txt');
  t = dados_degrau(:, 1);
  u = dados_degrau(:,2);
6
  y = dados_degrau(:,3);
7
  %%
  %Percebemos que a saida tende ao seu valor permanente a partir do tempo
9
  %220s, cujo
                ndice
                           1100.
10
11 \, | \, dy = \text{mean}(y(1100:3000)) - \text{mean}(y(1:86));
12 | du = u(end) - 0;
13 | K = dy/du;
  M todo de 4 constante de tempo
15
16
  yt1 = mean(y(1:86)) + (dy)*0.983; %Ponto que representa 63.2% do valor de Y
17
```

```
t1 = 0;
18
  i = 1;
19
20
21
  %Loop para encontrar o tempo 1:
22
   while (y(i) < yt1)
23
24
       t1 = t(i);
25
       i = i+1;
26
  end
27
  \% Fun
             es de trasferencia
28
29
  s = tf('s');
  teta = 18;
30
  tal = t1/4;
31
  G1 = (K*exp(-teta*s))/(tal*s +1)
32
  step (G1, 'r')
  hold on
34
35
  plot(t,y)
```

Novamente, é feita a leitura dos dados, depois foi implementado as equações do método de quatro constantes de tempo (98 %). A partir disso foi obtido os seguintes resultados:

Figura 4: Resposta para o método de quatro Constante de tempo (98%).

• Função de Transferência:

$$H3(s) = \frac{73.28 \cdot e^{-18s}}{27.15s + 1} \tag{4}$$

3.4 Método de Ziegler-Nichols

Para aplicar o método de Ziegler- Nichols foi utilizado o seguinte código no MATLAB:

```
1 m todo de Ziegler/Nichols%
2 %%
3
  dados_degrau = load('saidaLab.txt');
4 \mid t = dados_degrau(:, 1);
5 | u = dados_degrau(:,2);
  y = dados_degrau(:,3);
6
7 %%
8 percebemos que a saida tende ao seu valor permanente a partir do tempo
  %220s, cujo
                  ndice
                             1100.
11 | dy = mean(y(1100:3000)) - mean(y(1:86));
12 | du = u(end) - 0;
13|K = dy/du;
14 % Encontrando o ponto de inflexao
15|\text{ypp} = \text{diff}(y,2);
16
17 | \text{yppAbs} = \text{abs}(\text{ypp});
18|i = find (yppAbs = min(yppAbs))
19 t_infl = t(i); % tempo do ponto de inflexao;
20 y_infl = y(i); %valor de sa da do ponto de inflex o;
21 % Criando a reta
22 | t1 = 18;
23 | i2 = 91;
                 %posi
                           o do tempo t1
24
25
  % Encontrando a reta
26
27|m = (y_i nfl - y(i2))/(t_i nfl - t(i2));
28
29
  b= y_i nfl - ((y_i nfl - y(i2))/(t_i nfl - t(i2)))*t_i nfl;
30
31
  \max = dy + \max(y(1:86));
32
33
34
  t3 = (max-b)/m;
35 % Fun es de trasferencia
36
37 | s = tf('s');
38 | \text{teta} = \text{t1};
39 \mid tal = t3-t1;
40
  G1 = (K*\exp(-teta*s))/(tal*s +1)
  step (G1)
```

Novamente, é feita a leitura dos dados, depois foi implementado as equações do Método de

Ziegler-Nichols. A partir disso foi obtido os seguintes resultados:

Figura 5: Resposta para o método de Ziegler-Nichols.

• Função de Transferência:

$$H4(s) = \frac{73.28 \cdot e^{-18s}}{72.2s + 1} \tag{5}$$

3.5 Método de Smith

Para aplicar o método de Smith foi utilizado o seguinte código no MATLAB:

```
% m todo de Smith
2 \%
3
  dados_degrau = load('saidaLab.txt');
  t = dados_degrau(:, 1);
  u = dados_degrau(:,2);
6
  y = dados_degrau(:,3);
7
  %%
  %percebemos que a saida tende ao seu valor permanente a partir do tempo
  %220s, cujo indice e 1100.
9
10
  dy = mean(y(1100:3000)) - mean(y(1:86));
12 \, \mathrm{du} = \mathrm{u}(\mathrm{end}) - 0;
13|K = dy/du;
14 %%
15|yt1 = mean(y(1:86)) + (dy)*0.283; %ponto que representa 28.3\% do valor de Y
16
  yt2 = mean(y(1:86)) + (dy) *0.632; %ponto que representa 63.2% do valor de Y
17
```

```
18 | %%
19
  t1 = 0;
20 \mid t2 = 0;
21
  i = 1;
22
23 % loop para encontrar o tempo 1:
24
   while(y(i) < yt1)
25
        t1 = t(i);
26
        i \ = \ i+1;
27
  \quad \text{end} \quad
28
29
  i = 1;
30
31
  |\%loop para encontrar o tempo 2:
   while(y(i) < yt2)
32
33
        t2 = t(i);
34
        i \ = \ i+1;
35
  end
36
37 | %%
38
  tal = 1.5*(t2-t1);
39
  teta = t2 - tal;
40
41 | s = tf('s');
42|G = (K*exp(-teta*s))/(tal*s +1)
43 step (G, 'r')
  hold on
44
  plot(t,y)
45
```

Novamente, é feita a leitura dos dados, depois foi implementado as equações do Método de Smith. A partir disso foi obtido os seguintes resultados:

Figura 6: Resposta para o método de Smith.

• Função de Transferência:

$$H5(s) = \frac{73.28 \cdot e^{-20.1s}}{33.3s + 1} \tag{6}$$

3.6 Método de Haglund

Para aplicar o método de Haglund foi utilizado o seguinte código no MATLAB:

```
1 % m todo de haglund%
2 %%
3
  dados_degrau = load('saidaLab.txt');
  t = dados_degrau(:, 1);
  u = dados_degrau(:,2);
6
  y = dados_degrau(:,3);
7
  %%
  %percebemos que a saida tende ao seu valor permanente a partir do tempo
9
  \%220s, cujo indice e 1100.
10
11 dy = mean(y(1100:3000)) - mean(y(1:86));
12 \, \mathrm{du} = \mathrm{u}(\mathrm{end}) - 0;
13|K = dy/du;
14 % Encontrando o ponto de inflex o
15 | \text{ypp} = \text{diff}(y, 2);
16
17 | \text{yppAbs} = \text{abs}(\text{ypp});
```

```
18|i = find (yppAbs = min(yppAbs))
  t_infl = t(i); % tempo do ponto de inflex o;
20 y_infl = y(i); %valor de sa da do ponto de inflex o;
21 % Criando a reta
22
  teta = 18;
  i_teta = 91;
                  %posi
23
                           o do tempo teta
24|m = (y_infl - y(i_teta))/(t_infl - t(i_teta));
25
  b= y_infl - ((y_infl - y(i_teta))/(t_infl - t(i_teta)))*t_infl;
26
27
28
  \max = dy + \max(y(1:86));
29
30
  t3 = (max-b)/m;
31
  % pegando o valor do tempo t2
32
  t2 = (mean(y(1:86)) + (dy)*0.632 - b)/m;
33
34
35
  % F u n
            es de trasferencia
36
37
  s = tf('s');
38
39
  tal = t2 - teta;
  G1 = (K*exp(-teta*s))/(tal*s +1)
  step (G1, 'r')
41
42 hold on
43
  plot(t,y)
```

Novamente, é feita a leitura dos dados, depois foi implementado as equações do método de Haglund. A partir disso foi obtido os seguintes resultados:

Figura 7: Resposta para o método de Haglund.

• Função de Transferência:

$$H6(s) = \frac{73.28 \cdot e^{-18s}}{41.46s + 1} \tag{7}$$

3.7 Método de Sundaresan e Krishnaswami

Para aplicar o método de Sundaresan e Krishnaswami foi utilizado seguinte código no MA-TLAB:

```
1 % m todo de Sundaresan
2 %%
3 dados_degrau = load('saidaLab.txt');
4 \mid t = dados_degrau(:, 1);
5 | u = dados_degrau(:,2);
6|y = dados_degrau(:,3);
7 %%
8|\%percebemos que a saida tende ao seu valor permanente a partir do tempo
  \%220s, cujo ndice
9
                              1100.
10
11 | dy = mean(y(1100:3000)) - mean(y(1:86));
12 \, \mathrm{du} = \mathrm{u} (\, \mathrm{end} \,) - 0;
13|K = dy/du;
14 | %%
|yt1| = mean(y(1.86)) + (dy)*0.352; %ponto que representa 35.3% do valor de Y
  yt2 = mean(y(1:86)) + (dy)*0.853; %ponto que representa 85.3% do valor de Y
16
17
18
19 | %%
20 | t1 = 0;
  t2 = 0;
21
22|i|=1;
23
24
  %loop para encontrar o tempo 1:
  while(y(i) < yt1)
25
26
       t1 = t(i);
27
       i = i+1;
28
  end
29
30
  i = 1;
31
32 | %loop para encontrar o tempo 2:
  \mathbf{while}\,(\,y\,(\,i\,){<}y\,t\,2\,)
33
34
       t2 = t(i);
35
       i = i+1;
36 end
37 | %%
38 \mid tal = 0.67*(t2-t1);
```

```
39 teta = 1.3*t1 - 0.29*t2;

40 41 s = tf('s');

42 G = (K*exp(-teta*s))/(tal*s +1)

43 step(G, 'r')

44 hold on

plot(t,y)
```

Novamente, é feita a leitura dos dados, depois foi implementado as equações do métodos de Sundaresan. A partir disso foi obtido os seguintes resultados:

Figura 8: Resposta para o método de Sundaresan e Krishnaswami.

• Função de Transferência:

$$H7(s) = \frac{73.28 \cdot e^{-24s}}{25.33s + 1} \tag{8}$$

3.8 Método da Inclinação inicial

Para aplicar o método da inclinação inicial foi utilizado o seguinte código no MATLAB:

```
1 % m todo de Mollencamp
2 %%
3 dados_degrau = load('saidaLab.txt');
4 t = dados_degrau(:, 1);
5 u = dados_degrau(:,2);
6 y = dados_degrau(:,3);
7 %%
```

```
8 \, dy = mean(y(1100:3000)) - mean(y(1:86));
  du = u(end) - 0;
10
11|K = dy/du;
12 | %%
13 | yt1 = y(1) + (dy) *0.15; %ponto que representa 15% do valor de Y
14 yt2 = y(1) + (dy)*0.45; %ponto que representa 45% do valor de Y
  yt3 = y(1) + (dy)*0.75; %ponto que representa 75% do valor de Y
15
16
17
18 | %%
19 | t1 = 0;
20 \mid t2 = 0;
21 \mid t3 = 0;
22|i|=1;
23
24
  %loop para encontrar o tempo 1:
25
   while (y(i) < yt1)
26
       t1 = t(i);
27
       i = i+1;
28
  end
29
30|i=1;
31
32 | %loop para encontrar o tempo 2:
   while (y(i) < yt2)
33
34
       t2 = t(i);
35
        i = i+1;
  end
36
37
38
  i = 1
39
  %loop para encontrar o tempo 2:
41
   while (y(i) < yt3)
42
       t3 = t(i);
43
        i = i+1;
44
  end
45
46 | %%
47|x = (t2-t1)/(t3-t1);
48 \left| \text{lam} \right| = \left( 0.0805 - 5.547 * (0.475 - x)^2 \right) / (x - 0.356);
49 | f1 = 0.708*(2.811^{lam});
50|w = f1/(t3-t1);
51 \mid f2 = 0.922*(1.66^{\circ} lam);
52 | \text{teta} = \text{t2} - (\text{f2/w});
53 \mid tal1 = (lam + sqrt(lam^2-1))/w
  tal2 = (lam - sqrt(lam^2-1))/w
55
56 | s = tf('s');
```

```
57 G = (K*exp(-teta*s))/((tal1*s +1)*(tal2*s+1))
58 step(G, 'r')
59 hold on
60 plot(t,y)
```

Novamente, é feita a leitura dos dados, depois foi implementado as equações do métodos da inclinação inicial. A partir disso foi obtido os seguintes resultados:

Figura 9: Resposta para o método da Inclinação inicial.

• Função de Transferência:

$$H8(s) = \frac{e^{-18s} \cdot 73.28}{18.41s + 1} \tag{9}$$

3.9 Comparação entre os Métodos

Figura 10: Comparação entre os métodos de 1º ordem.

${f M\acute{e}todo}$	Tempo morto [s]	Constante de tempo [s]	Ganho [V/%]	Erro médio quadrático
Integrais	14.5	38.97	73.28	10.7015
Constante de tempo $(63,2\%)$	18.0	35.40	73.28	7.7763
Constante de tempo (98%)	18.0	27.15	73.28	23.8738
Ziegler- Nichols	18.0	72.20	73.28	110.6986
Smith	20.1	33.30	73.28	7.0447
$\operatorname{Haglund}$	18.0	41.46	73.28	8.8087
Sundaresan	24.0	25.73	73.28	14.0229
Inclinação Inicial	18.0	18.41	73.28	71.8362

Analisando as funções de transferência e os erros médios obtidos foi possível observar que os métodos de Ziegler-Nichols e da inclinação inicial foram que mais se distanciaram do esperado. Já os métodos de Smith e de uma constante de tempo foram os mais próximos. Nota-se que com um baixo valor na constante de tempo, mais rápido o modelo chegará em regime permanente, por outro lado, um alto valor demanda mais tempo para chegar em regime permanente.

4 Modelos de Segunda Ordem

A partir da equação 10 aplicável à sistemas de segunda ordem com atraso puro de tempo mostrada abaixo, podemos desenvolver os seguintes métodos:

- Método de Sundaresan;
- Método de Mollenkamp.

$$H(s) = \frac{k \cdot e^{-\Theta s}}{(\tau_1 s + 1)(\tau_2 s + 1)} = \frac{k w_n^2 \cdot e^{-\Theta s}}{s^2 + 2\zeta w_n + w_n^2}$$
(10)

4.1 Método de Sundaresan

Para aplicar o método de Sundaresan de segunda ordem foi utilizado o seguinte código no MATLAB, considerando a resposta à entrada ao degrau:

```
1 % Metodo de Sundaresan de Segunda Ordem
2 %%
3 dados_degrau = load('saidaLab.txt');
  t = dados_degrau(:, 1);
  u = dados_degrau(:,2);
6|y = dados_degrau(:,3);
7
  %%
  %Percebemos que a saida tende ao seu valor permanente a partir do tempo
  %220s, cujo
                ndice
10
  dy = mean(y(1100:3000)) - mean(y(1:86));
12 \, \mathrm{du} = \mathrm{u} (\, \mathrm{end} \,) - 0;
13|K = dy/du;
14
15 \% normalizando o vetor
16 | yN = y/K;
17 \%
  teta_tal = trapz(t, u-yN);
  indice=find(t <=teta_tal);
19
20|i = 585;
21
22
23 tm=75; %tracei a reta tg e peguei o tempo do ponto que chega no maximo
  mi=1/(tm-18);
24
  l=(tm-teta_tal)*mi %usei para achar o n no grafico
25
26
  n = 0.6;
27
28 \mid tal1 = (n^{(n/(1-n))})/mi;
29 tal2 = (n^(1/(1-n)))/mi;
30
  tald = teta_tal - tal1 - tal2;
31
```

Novamente, é feita a leitura dos dados, depois foi implementado as equações do métodos de Sundaresan. A partir disso foi obtido os seguintes resultados:

Figura 11: Resposta para o método de Sundaresan.

• Função de Transferência:

$$H9(s) = \frac{73.28 \cdot e^{-11.1s}}{421.1s^2 + 42.39s + 1} \tag{11}$$

4.2 Método de Mollenkamp

Para aplicar o método de Mollenkamp foi utilizado o seguinte código no MATLAB:

```
1 % metodo de Mollencamp
2 %%
3 dados_degrau = load('saidaLab.txt');
4 t = dados_degrau(:, 1);
```

```
5 | u = dados_degrau(:,2);
  y = dados_degrau(:,3);
 7 %%
 8
  dy = mean(y(1100:3000)) - mean(y(1:86));
   du = u(end) - 0;
10
11 | K = dy/du;
12 | %%
13|yt1 = y(1) + (dy)*0.15; %ponto que representa 15% do valor de Y
14 | yt2 = y(1) + (dy) *0.45;
                                %ponto que representa 45% do valor de Y
|15| yt3 = y(1) + (dy) *0.75; %ponto que representa 75% do valor de Y
16
17
18 | %%
19 | t1 = 0;
20 \mid t2 = 0;
21
  t3 = 0;
22
  i = 1;
23
24
  %loop para encontrar o tempo 1:
25
   while(y(i) < yt1)
26
       t1 = t(i);
27
        i = i + 1;
28
  end
29
30|i=1;
31
32 | %loop para encontrar o tempo 2:
   while(y(i) < yt2)
33
       t2 = t(i);
34
35
        i = i+1;
  \quad \text{end} \quad
36
37
38
  i = 1
39
40
  %loop para encontrar o tempo 2:
41
   while (y(i) < yt3)
42
        t3 = t(i);
43
        i = i+1;
44
   end
45
46 %%
47 | x = (t2-t1)/(t3-t1);
48 | lam = (0.0805 - 5.547 * (0.475 - x)^2) / (x - 0.356);
49 | f1 = 0.708*(2.811^{lam});
50|w = f1/(t3-t1);
51 | f2 = 0.922*(1.66^{\circ} lam);
52 | \text{teta} = \text{t2} - (\text{f2/w});
53 \mid tal1 = (lam + sqrt(lam^2-1))/w
```

Novamente, é feita a leitura dos dados, depois foi implementado as equações do método de Mollenkamp. A partir disso foi obtido os seguintes resultados:

Figura 12: Resposta para o método de Mollencamp.

• Função de Transferência:

$$H10(s) = \frac{73.28 \cdot e^{-7.3s}}{687.2s^2 + 41.79s + 1} \tag{12}$$

4.3 Comparação entre os Métodos

Figura 13: Comparação entre os Métodos de 2º ordem.

Método	Tempo morto [s]	Constante de tempo 1 [s]	$egin{array}{c} ext{Constante de} \ ext{tempo 2} \ ext{[s]} \end{array}$		Erro médio quadrático
Sundaresan	11.1	20.8943 + 15.8319 i	20.8943 - 15.8319 i	73.28	5.4174
Mollenkamp	07.3	26.4912	15.8947	73.28	5.6679

Analisando as funções de transferência e os erros médios obtidos foi possível observar que ambos métodos foram precisos e possuem uma ligeira diferença em seus valores.

5 Ensaio de entrada PRBS

A partir dos resultados obtidos no Labview para o ensaio de entrada PRBS, foi possível fazer a comparação entre os métodos anteriores utilizando o MATLAB, com o código a seguir:

```
1 % Ensaio com entrada PRBS
2 %%
3 s = tf('s')
4 G1 = exp(-14.5*s)*(73.28/(38.97*s + 1)); % Metodos das integrais
5 %%
6 G2 = exp(-18*s)*(73.28/(35.4*s + 1)); % Metodo de uma constante de tempo
7 %%
```

```
8|G3 = \exp(-18*s)*(73.28/(27.15*s + 1));
                                               % Metodo de quatro constante de tempo
9 %%
10|G4 = \exp(-18*s)*(73.28/(72.2*s + 1));
                                               % Metodo de Ziegler-Nichols
11 | %%
12|G5 = \exp(-20.1*s)*(73.28/(33.3*s + 1)); % Metodo de Smith
13 | %%
14 | G6 = \exp(-18*s) * (73.28/(41.46*s + 1));
                                               % Metodo de Haglund
15 | %%
16|G7 = \exp(-24*s)*(73.28/(25.33*s + 1)); % Metodo de Sundaresan e Krishnaswami;
17
18|G8 = \exp(-18*s)*(73.28/(18.46*s + 1)); % Metodo da inclina
19 | %%
20|G9 = \exp(-11.1*s)*(73.28/(421.1*s^2 + 42.39*s + 1)); % Metodo de Sundaresen 2
       grau
  %%
21
22
  G10 = \exp(-8.44*s)*(73.28/(507.4*s^2 + 46.55*s + 1)); % Metodo de Mollencamp
23 | %%
24 figure (1)
25 | \text{step} (G1, G2, G3, G4, G5, G6, G7, G8)
26
27 legend ('M todos das integrais', 'M todo de uma constante de tempo', 'M todo de
       quatro constante de tempo', 'M todo de Ziegler-Nichols', 'M todo de Smith', '
      M todo de Haglund', 'M todo de Sundaresan e Krishnaswami', 'M todo da
      inclina
                 o inicial')
28 figure (2)
  step (G9, G10)
29
30
31 legend ('M todo de Sundaresen 2 grau ', 'M todo de Mollencamp')
32
33
34 % Upload dos dados PRBS:
35 prbs = load('prbslab.txt');
36 | t = prbs(:,1);
37 | u = prbs(:,2);
38 | y = prbs(:,3);
39
40 | y1 = 1 sim (G1, u, t);
                          % Metodos das integrais
41 | y2 = 1 sim (G2, u, t);
                          % Metodo de uma constante de tempo
42 | y3 = 1 sim (G3, u, t);
                          % Metodo de quatro constante de tempo
43 | y4 = 1 sim (G4, u, t);
                          % Metodo de Ziegler-Nichols
44 | y5 = 1 sim (G5, u, t);
                          % Metodo de Smith
45 | y6 = 1 sim (G6, u, t);
                          % Metodo de Haglund
46 | y7 = 1 sim (G7, u, t);
                          % Metodo de Sundaresan e Krishnaswami;
  y8 = lsim(G8, u, t);
                          % Metodo da inclinação inicial
47
48 | y9 = 1 sim (G9, u, t);
                          % Metodo de Sundaresen 2 grau
49 \mid y10 = lsim(G10, u, t); % Metodo de Mollencamp
50
51 % Plotando as respostas:
52 figure (3)
```

```
53 plot(t, y, 'b');
54 hold on
55 plot (t, y1, 'g');
56 plot (t, y2, 'm');
57 plot (t, y3, 'm');
58 plot (t, y4, 'r');
59 plot (t, y5, 'g');
60 plot (t, y6, 'y');
61 | plot (t, y7, 'r');
62 plot (t, y8, 'g');
63 plot (t, y9, 'b');
64 plot (t, y10, 'r');
65 title ('Ensaio com a resposta PRBS')
66 xlabel ('Tempo(s)')
67 ylabel ('Tens o (V)')
68 legend ('Processo Real', 'M todos das integrais', 'M todo de uma constante de
      tempo', 'M todo de quatro constante de tempo', 'M todo de Ziegler-Nichols', '
      M todo de Smith', 'M todo de Haglund', 'M todo de Sundaresan e Krishnaswami'
      ,'M todo da inclina o inicial','M todo de Sundaresen 2 grau ','M todo
      de Mollencamp')
  grid on
69
70
71
  % Erro quadratico medio:
72
73 \mid E1 = mean((y-y1).^2);
                           % Metodos das integrais
74 \mid E2 = mean((y-y2).^2);
                           % Metodo de uma constante de tempo
75
  E3 = mean((y-y3).^2);
                           % Metodo de quatro constante de tempo
76 \mid E4 = \text{mean}((y-y4).^2);
                           % Metodo de Ziegler-Nichols
  E5 = \mathbf{mean}((y-y5).^2);
                           % Metodo de Smith
77
  E6 = mean((y-y6).^2);
                           % Metodo de Haglund
79 \mid E7 = \text{mean}((y-y7).^2);
                           % Metodo de Sundaresan e Krishnaswami;
80 \mid E8 = \text{mean}((y-y8).^2);
                           % Metodo da inclinacao inicial
  E9 = mean((y-y9).^2); % Metodo de Sundaresen 2 grau
82
  |E10 = mean((y-y10).^2); \% Metodo de Mollencamp
83
84
  Erro = [E1 E2 E3 E4 E5 E6 E7 E8 E9 E10]
```

O resultado obtido está apresentado na figura abaixo:

Figura 14: Resposta para entrada PRBS.

5.1 Primeira Ordem

Método	Tempo morto [s]	Constante de tempo [s]	Ganho [V/%]	Erro médio quadrático
${\bf Integrais}$	14.5	38.97	73.28	03.0706
Constante de tempo $(63,2\%)$	18.0	35.40	73.28	02.4552
Constante de tempo (98%)	18.0	27.15	73.28	06.6253
Ziegler- Nichols	18.0	72.20	73.28	27.9464
Smith	20.1	33.30	73.28	02.4293
Haglund	18.0	41.46	73.28	02.6097
Sundaresan	24.0	25.73	73.28	04.7350
Inclinação Inicial	18.0	18.41	73.28	19.1076

5.2 Segunda Ordem

Método	Tempo morto [s]	Constante de tempo 1 [s]	$egin{array}{c} ext{Constante de} \ ext{tempo 2} \ ext{[s]} \end{array}$		Erro médio quadrático
Sundaresan	11.1	20.8943 + 15.8319 i	20.8943 - 15.8319 i	73.28	1.488
Mollenkamp	07.3	26.4912	15.8947	73.28	1.5962

Pode-se notar que os erros obtidos no ensaio PRBS para os sistemas de segunda ordem foram menores que os de primeira, uma vez que quanto maior a ordem, maior a sua complexidade e

melhor será sua aproximação.

6 Considerações finais

A partir das análises feitas, é possível notar que os erros da entrada degrau foram maiores do que os do ensaio PRBS. Logo, este (PRBS) torna- se mais eficiente para sistemas ruidosos. Concomitantemente, ao observar a coluna dos erros dos métodos para segunda ordem do ensaio PRBS, concluímos que o método que apresentou menor valor foi o de Sundaresan. Podendo assim ser considerado o mais preciso.