Day 12 Assignment - Hitik Panchal

In [23]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
from scipy.stats import mannwhitneyu
from scipy.stats import ttest_ind
```

Reading the Data

In [7]:

```
gen_data=pd.read_csv('general_data.csv')
gen_data.head()
```

Out[7]:

	Age	Attrition	BusinessTravel	Department	DistanceFromHome	Education	EducationFi€
0	51	No	Travel_Rarely	Sales	6	2	Life Scienc
1	31	Yes	Travel_Frequently	Research & Development	10	1	Life Scienc
2	32	No	Travel_Frequently	Research & Development	17	4	Oth
3	38	No	Non-Travel	Research & Development	2	5	Life Scienc
4	32	No	Travel_Rarely	Research & Development	10	1	Medic

5 rows × 24 columns

In [8]:

```
gen_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4410 entries, 0 to 4409
```

Data	columns (total 24 columns	s):					
#	Column	Non-Null Count	Dtype				
0	Age	4410 non-null	int64				
1	Attrition	4410 non-null	object				
2	BusinessTravel	4410 non-null	object				
3	Department	4410 non-null	object				
4	DistanceFromHome	4410 non-null	int64				
5	Education	4410 non-null	int64				
6	EducationField	4410 non-null	object				
7	EmployeeCount	4410 non-null	int64				
8	EmployeeID	4410 non-null	int64				
9	Gender	4410 non-null	object				
10	JobLevel	4410 non-null	int64				
11	JobRole	4410 non-null	object				
12	MaritalStatus	4410 non-null	object				
13	MonthlyIncome	4410 non-null	int64				
14	NumCompaniesWorked	4391 non-null	float64				
15	Over18	4410 non-null	object				
16	PercentSalaryHike	4410 non-null	int64				
17	StandardHours	4410 non-null	int64				
18	StockOptionLevel	4410 non-null	int64				
19	TotalWorkingYears	4401 non-null	float64				
20	TrainingTimesLastYear	4410 non-null	int64				
21	YearsAtCompany	4410 non-null	int64				
22	YearsSinceLastPromotion	4410 non-null	int64				
23	YearsWithCurrManager	4410 non-null	int64				
dtype	es: float64(2), int64(14)	, object(8)					
memory usage: 827 0+ KB							

memory usage: 827.0+ KB

Cleaning the Data

In [9]:

```
gen_data.isnull().any()
```

Out[9]:

False Age Attrition False BusinessTravel False False Department DistanceFromHome False Education False EducationField False EmployeeCount False **EmployeeID** False Gender False JobLevel False JobRole False MaritalStatus False MonthlyIncome False NumCompaniesWorked True Over18 False PercentSalaryHike False StandardHours False StockOptionLevel False TotalWorkingYears True TrainingTimesLastYear False YearsAtCompany False YearsSinceLastPromotion False YearsWithCurrManager False dtype: bool

In [10]:

gen_data.fillna(0 , inplace=True)

In [11]:

```
gen_data.isnull().any()
```

Out[11]:

False Age Attrition False BusinessTravel False False Department DistanceFromHome False Education False EducationField False EmployeeCount False **EmployeeID** False Gender False JobLevel False JobRole False MaritalStatus False MonthlyIncome False NumCompaniesWorked False Over18 False PercentSalaryHike False StandardHours False StockOptionLevel False TotalWorkingYears False TrainingTimesLastYear False YearsAtCompany False YearsSinceLastPromotion False YearsWithCurrManager False dtype: bool

In [12]:

gen_data.duplicated()

Out[12]:

0 False False 1 2 False 3 False 4 False 4405 False 4406 False 4407 False 4408 False 4409 False

Length: 4410, dtype: bool

In [13]:

gen_data.drop_duplicates()

Out[13]:

	Age	Attrition	BusinessTravel	Department	DistanceFromHome	Education	Education
0	51	No	Travel_Rarely	Sales	6	2	Life Sci
1	31	Yes	Travel_Frequently	Research & Development	10	1	Life Sci
2	32	No	Travel_Frequently	Research & Development	17	4	
3	38	No	Non-Travel	Research & Development	2	5	Life Sci
4	32	No	Travel_Rarely	Research & Development	10	1	N
4405	42	No	Travel_Rarely	Research & Development	5	4	N
4406	29	No	Travel_Rarely	Research & Development	2	4	N
4407	25	No	Travel_Rarely	Research & Development	25	2	Life Sci
4408	42	No	Travel_Rarely	Sales	18	2	N
4409	40	No	Travel_Rarely	Research & Development	28	3	N

4410 rows × 24 columns

In [20]:

```
yes_data = pd.DataFrame(gen_data[gen_data['Attrition']=='Yes'])
yes_data
```

Out[20]:

	Age	Attrition	BusinessTravel	Department	DistanceFromHome	Education	Educatio
1	31	Yes	Travel_Frequently	Research & Development	10	1	Life Sci
6	28	Yes	Travel_Rarely	Research & Development	11	2	N
13	47	Yes	Non-Travel	Research & Development	1	1	N
28	44	Yes	Travel_Frequently	Research & Development	1	2	N
30	26	Yes	Travel_Rarely	Research & Development	4	3	N
		•••		•••			
4381	29	Yes	Travel_Rarely	Research & Development	7	1	Life Sci
4386	33	Yes	Travel_Rarely	Sales	11	4	Mar
4388	33	Yes	Travel_Rarely	Sales	1	3	Life Sci
4391	32	Yes	Travel_Rarely	Sales	23	1	Life Sci
4402	37	Yes	Travel_Frequently	Sales	2	3	Mar

711 rows × 24 columns

In [22]:

```
no_data = pd.DataFrame(gen_data[gen_data['Attrition']=='No'])
no_data
```

Out[22]:

	Age	Attrition	BusinessTravel	Department	DistanceFromHome	Education	Educatio
0	51	No	Travel_Rarely	Sales	6	2	Life Sc
2	32	No	Travel_Frequently	Research & Development	17	4	
3	38	No	Non-Travel	Research & Development	2	5	Life Sci
4	32	No	Travel_Rarely	Research & Development	10	1	N
5	46	No	Travel_Rarely	Research & Development	8	3	Life Sci
	•••						
4405	42	No	Travel_Rarely	Research & Development	5	4	N
4406	29	No	Travel_Rarely	Research & Development	2	4	N
4407	25	No	Travel_Rarely	Research & Development	25	2	Life Sci
4408	42	No	Travel_Rarely	Sales	18	2	N
4409	40	No	Travel_Rarely	Research & Development	28	3	N

3699 rows × 24 columns

Seperate T-Test

Test 1 : Attrition vs Distance From Home

In [33]:

```
a1 = yes_data['DistanceFromHome']
a2 = no_data['DistanceFromHome']

tval, p = ttest_ind(a2,a1)

print("The T value is : %.3f" % tval)
print("The p value is : %.3f" % p)
```

The T value is : 0.646 The p value is : 0.518

As the P value is 0.518, which is > than 0.05, the Ha is rejected and H0 is accepted

H0: There is no significant differences in the Distance From Home between Attrition (Y) and Attirition (N)

Ha: There is significant differences in the Distance From Home between Attrition (Y) and Attirition (N)

Test 2: Attrition vs Monthly Income

In [34]:

```
a1 = yes_data['MonthlyIncome']
a2 = no_data['MonthlyIncome']

tval, p = ttest_ind(a2,a1)

print("The T value is : %.3f" % tval)
print("The p value is : %.3f" % p)
```

The T value is : 2.071 The p value is : 0.038

As the P value is 0.038, which is < than 0.05, the Ha is accepted and H0 is rejected

H0: There is no significant differences in the Monthly Income between Attrition (Y) and Attirition (N)

Ha: There is significant differences in the Monthly Income between Attrition (Y) and Attirition (N)

Test 3: Attrition vs Years at Company

In [35]:

```
a1 = yes_data['YearsAtCompany']
a2 = no_data['YearsAtCompany']

tval, p = ttest_ind(a2,a1)

print("The T value is : %.3f" % tval)
print("The p value is : %.3f" % p)
```

The T value is : 9.004
The p value is : 0.000

As the P value is 0.0, which is < than 0.05, the Ha is accepted and H0 is rejected

H0: There is no significant differences in the Years at Company between Attrition (Y) and Attirition (N)

Ha: There is significant differences in the Years at Company between Attrition (Y) and Attirition (N)

Test 4: Attrition vs Years with Current Manager

In [32]:

```
a1 = yes_data['YearsWithCurrManager']
a2 = no_data['YearsWithCurrManager']

tval, p = ttest_ind(a2,a1)

print("The T value is : %.3f" % tval)
print("The p value is : %.3f" % p)
```

The T value is : 10.499
The p value is : 0.000

As the P value is 0.0, which is < than 0.05, the Ha is accepted and H0 is rejected

H0: There is no significant differences in the Years with Current Manager between Attrition (Y) and Attirition (N)

Ha: There is significant differences in the Years with Current Manager between Attrition (Y) and Attirition (N)

Mann-Whitney Test

Test 1: Attrition vs Distance From Home

In [37]:

```
a1 = yes_data['DistanceFromHome']
a2 = no_data['DistanceFromHome']
uval , p = mannwhitneyu(a1,a2)
print("The U value is : %.3f" % uval)
print("The p value is : %.3f" % p)
```

The U value is : 1312110.000 The p value is : 0.463

As the P value is 0.463, which is > than 0.05, the Ha is rejected and H0 is accepted

H0: There is no significant differences in the Distance From Home between Attrition (Y) and Attirition (N)

Ha: There is significant differences in the Distance From Home between Attrition (Y) and Attirition (N)

Test 2: Attrition vs Monthly Income

In [38]:

```
a1 = yes_data['MonthlyIncome']
a2 = no_data['MonthlyIncome']

uval , p = mannwhitneyu(a1,a2)

print("The U value is : %.3f" % uval)
print("The p value is : %.3f" % p)
```

The U value is : 1264900.500 The p value is : 0.054

As the P value is 0.054, which is > than 0.05, the Ha is rejected and H0 is accepted

H0: There is no significant differences in the Monthly Income between Attrition (Y) and Attirition (N)

Ha: There is significant differences in the Monthly Income between Attrition (Y) and Attirition (N)

Test 3: Attrition vs Years at Company

In [39]:

```
a1 = yes_data['YearsAtCompany']
a2 = no_data['YearsAtCompany']

uval , p = mannwhitneyu(a1,a2)

print("The U value is : %.3f" % uval)
print("The p value is : %.3f" % p)
```

The U value is : 923238.000 The p value is : 0.000

As the P value is 0.0, which is < than 0.05, the Ha is accepted and H0 is rejected

H0: There is no significant differences in the Years at Company between Attrition (Y) and Attrition (N)

Ha: There is significant differences in the Years at Company between Attrition (Y) and Attirition (N)

Test 4: Attrition vs Years with Current Manager

In [40]:

```
a1 = yes_data['YearsWithCurrManager']
a2 = no_data['YearsWithCurrManager']
uval , p = mannwhitneyu(a1,a2)
print("The U value is : %.3f" % uval)
print("The p value is : %.3f" % p)
```

The U value is : 957253.500 The p value is : 0.000

As the P value is 0.0, which is < than 0.05, the Ha is accepted and H0 is rejected

H0: There is no significant differences in the Years with Current Manager between Attrition (Y) and Attirition (N)

Ha: There is significant differences in the Years with Current Manager between Attrition (Y) and Attirition (N)

In []:			