DAILY ASSESSMENT FORMAT

Date:	17 th July 2020	Name:	Rajeshwari Gadagi
Course:	coursera	USN:	4AL17EC076
Topic:	Mathematics for machine learning:Linear Algebra	Semester & Section:	6 th sem 'B' sec
Github Repository:	Rajeshwari-gadagi		

FC	DRENOON SESSION DETAILS

Image of session


```
Horresontal of three viadors will not be pointing in the same direction after a vertical scaling in the same direction after a vertical scaling.

There are I eigenvectors does the transferration have.

We can possibly draw I vectors which are not eigenvectors.

Calculating eigen vectors:

Calculating eigen vectors:

Ax = lx

(A-11) = 0.

A= (a b)

cd (a b) - (b) = 0.
```

$$det \begin{pmatrix} a & b \\ c & d \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = 0$$

$$\lambda^{2} - (0+d)\lambda + ad - bc = 0.$$

$$H = \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix} \qquad det \begin{pmatrix} 1-\lambda & 0 \\ 0 & 2-\lambda \end{pmatrix}$$

$$(A - \lambda \pm)\tau = 0. \qquad = \begin{pmatrix} 1-\lambda & 0 \\ 0 & 2-\lambda \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \tau_{1} \\ \tau_{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2-\lambda \end{pmatrix} \begin{pmatrix} \tau_{1} \\ 0 & 2-\lambda \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 2-\lambda \end{pmatrix} \begin{pmatrix} \tau_{1} \\ \tau_{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 2-\lambda \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2-\lambda \end{pmatrix} \begin{pmatrix} \tau_{1} \\ 0 & 2-\lambda \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 2-\lambda \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2-\lambda \end{pmatrix} = \lambda^{2} + 1 = 0.$$

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2-\lambda \end{pmatrix} = \lambda^{2} + 1 = 0.$$