Sampling (Contd.) and Gradient-based Monte Carlo

Piyush Rai

Topics in Probabilistic Modeling and Inference (CS698X)

April 3, 2018

Sampling Methods: Label Switching Issue

- A subtle but important issue
- Suppose we are given samples $\mathbf{Z}^{(1)}, \dots, \mathbf{Z}^{(S)}$ from the posterior $p(\mathbf{Z}|\mathbf{X})$
- ullet We can't always simply "average" them to get the "posterior mean" $ar{f Z}$
- Reason: Non-identifiability of latent variables in models that have multiple posterior modes
- Example: In a clustering model (e.g., GMM), the likelihood is invariant to how we label clusters
- Therefore averaging latent variables across samples can be meaningless
- Quantities not affected by permutations of latent variables can be safely averaged
 - E.g., probability that two points belong to the same cluster (e.g., in GMM)

MCMC and Random Walk

MCMC methods use a proposal distribution to draw the next sample given the previous sample

$$\theta^{(t)} \sim \mathcal{N}(\theta^{(t-1)}, \sigma^2)$$

- .. and then we accept/reject (if doing MH) or always accept (if doing Gibbs sampling)
- Such proposal distributions typically lead to a random-walk behavior (e.g., a zig-zag trajectory in Gibbs sampling) and may lead to very slow convergence (pic below: $\theta = [z_1, z_2]$)

ullet Can be especially critical when the components of heta are highly correlated

Using Gradient Information in Sampling

- Two prominent methods
 - Langevin Dynamics based Monte Carlo
 - Hamiltonian Monte Carlo or "Hybrid" Monte Carlo (HMC)
- Both methods incorporate the posterior's gradient in their proposal distribution

Using Gradient Info via Langevin Dynamics

- Constructs proposal distribution using gradient of the log-posterior
- Gradient of the log-posterior: $\nabla_{\theta} \log \frac{p(\theta, \mathcal{D})}{p(\mathcal{D})} = \nabla_{\theta} \log \frac{p(\mathcal{D}|\theta)p(\theta)}{p(\mathcal{D})} = \nabla_{\theta} [\log p(\mathcal{D}|\theta) + \log p(\theta)]$
- Now let's construct a proposal and generate a random sample as follows

$$\begin{array}{lcl} \theta^* & = & \theta^{(t-1)} + \frac{\eta}{2} \nabla_{\theta} [\log p(\mathcal{D}|\theta) + \log p(\theta)] \big|_{\theta^{(t-1)}} \\ \\ \theta^{(t)} & \sim & \mathcal{N}(\theta^*, \eta) & \text{(and then accept/reject using an MH step)} \end{array}$$

This method is called Langevin dynamics (Neal, 2010). Has its origins in statistical Physics.

Langevin Dynamics (Contd)

ullet Note that the updates of heta can also be written in the form

$$heta^{(t)} = heta^{(t-1)} + rac{\eta}{2}
abla_{ heta} [\log p(\mathcal{D}| heta) + \log p(heta)]ig|_{ heta^{(t-1)}} + \epsilon_t \quad ext{where} \quad \epsilon_t \sim \mathcal{N}(0,\eta)$$

- After this update, we accept/reject $\theta^{(t)}$
- Equivalent to gradient-based MAP estimation with added noise (plus the accept/reject step)
- The random noise ensures that we aren't stuck just on the MAP estimate but explore the posterior
- A few technical conditions (Welling and Teh, 2011)
 - The noise variance needs to be controlled (here, we are setting it to twice the learning rate)
 - ullet As $\eta o 0$, the acceptance probability approaches 1 and we can always accept
- Note that the procedure is almost as fast as MAP estimation!

Stochastic Gradient (Online) Langevin Dynamics

- Allows scaling up MCMC algorithms by processing data in small minibatches
- Stocahstic Gradient Langevin Dynamics (SGLD) is one such example
- Basically an online extension of the Langevin Dynamics method we saw earlier
- Given minibatch $\mathcal{D}_t = \{x_{t1}, \dots, x_{tN_t}\}$. Then the (stochastic) Langevin dynamics update is

$$egin{array}{lll} heta^* & = & heta^{(t-1)} + \eta_t
abla_{ heta} \left[rac{ extstyle N}{|\mathcal{D}_t|} \sum_{n=1}^{N_t} \log p(x_{tn}| heta) + \log p(heta)
ight], \ heta^{(t)} & \sim & \mathcal{N}(heta^*, \sigma^2) \quad ext{then accept/reject} \end{array}$$

- ullet Basically, instead of doing gradient descent, SGLD does stochastic gradient descent + MH
 - Valid under some technical conditions on learning rate, variance of proposal distribution, etc.
- Recent flurry of work on this topic (see "Bayesian Learning via Stochastic Gradient Langevin Dynamics" by Welling and Teh (2011) and follow-up works)

SGLD: Some Comments

- Very easy to implement (only need to compute gradients of log-lik and log-prior)
- If not doing accept/reject, we just need to do the following for each minibatch of data

$$\theta^{(t)} = \theta^{(t-1)} + \eta_t \nabla_{\theta} \left[\frac{N}{|\mathcal{D}_t|} \sum_{n=1}^{N_t} \log p(\mathbf{x}_{tn}|\theta) + \log p(\theta) \right] + \epsilon_t$$

- ullet It's just like SGD updates (+added Gaussian noise). Highly scalable even when N is very large
 - Almost as efficient as doing MAP estimation using stochastic gradient methods
- Applies to non-conjugate models easily (so long as we can take derivatives)
- Several improvements on SGLD in the past couple of years
 - Better choice of learning rate and pre-conditioners for improving convergence
 - ullet Extending to the case when heta has some constraints (e.g., a point on simplex)
 - Theoretical analysis and justification for the "correctness" of the procedure
- Many recent applications to models such as logistic regression, matrix factorization, etc.

Using Gradient Info via Hamiltonian/Hybrid Monte Carlo (HMC)

- Uses the idea of simulating a Hamiltonian Dynamics of a physical system
- Consider the target posterior $p(\theta|\mathcal{D}) \propto \exp(-U(\theta))$
- Think of θ as the position and $U(\theta) = -\log[p(\mathcal{D}|\theta)p(\theta)]$ is like "potential energy"
- Assume the momentum of the system to be *r*
- Can now define a joint distribution over the position and momentum as

$$p(heta, oldsymbol{r}) \propto \exp\left(-U(heta) - rac{1}{2}oldsymbol{r}^ op M^{-1}oldsymbol{r}
ight)$$

- Here $H(\theta, \mathbf{r}) = U(\theta) + \frac{1}{2}\mathbf{r}^{\top}M^{-1}\mathbf{r} = U(\theta) + K(\mathbf{r})$ is the total energy (potential + kinetic) of the system, also known as the Hamiltonian
- Given samples (θ, r) from the joint, we can ignore r and θ will be a sample from $p(\theta|\mathcal{D})$
- Why is this a good idea?

Using Gradient Info via Hamiltonian/Hybrid Monte Carlo (HMC)

- Fact: The total energy $H(\theta, \mathbf{r}) = U(\theta) + K(\mathbf{r})$ is always constant
- Given an initial (θ, \mathbf{r}) , Hamiltonian Dynamics defines how (θ, \mathbf{r}) changes w.r.t. continuous time t

$$\frac{\partial \theta}{\partial t} = \frac{\partial H}{\partial \mathbf{r}} = \frac{\partial K}{\partial \mathbf{r}}$$
$$\frac{\partial \mathbf{r}}{\partial t} = -\frac{\partial H}{\partial \theta} = -\frac{\partial U}{\partial \theta}$$

- We can use these equations to update $(\theta, \mathbf{r}) \rightarrow (\theta^*, \mathbf{r}^*)$
- The step of generating (θ^*, r^*) usually requires <u>discretization</u> of the continuous time
 - Many ways, such as "leapfrog" method (won't discuss the details here, will provide reference)
- HMC typically has very low rejection rate (that too, primarily due to discretization error)
- A lot of renewed interest in HMC (you may check out NUTS No U-turn Sampler)
 - Probabilistic Programming packages such as Stan/Edward contain implementations of HMC
- Can also do online HMC (Stochastic Gradient HMC).

Illustration: HMC vs vanilla MH to Sample from 2D Gaussian

Some Comments

- Sampling is a very general technique for generating samples from a distribution
- Looked at some MCMC algorithms, such as MH and Gibbs sampling
 - MH is very general. Gibbs is very easy to derive is local conditionals can be found easily
- MCMC is random-walk based method, so convergence can be slow
- Using gradient information can make convergence faster (e.g., Langevin methods, HMC)
- MCMC can be scaled up to large datasets (online and distributed MCMC methods)
- Some other issues of MCMC
 - Assessing convergence can be hard (there exist methods but beyond the scope of this class)
 - Representation of the distribution requires storing all the samples (also, making predictions can be slow since it requires empirically averaging the predictions computed using each MCMC sample)