Lecture 11

Canonical Correlation Analysis

DSA 8070 Multivariate Analysis October 25 - October 29, 2021

> Whitney Huang Clemson University

Agenda

- Canonical Correlations
- 2 Sales Data Example

Notes

Notes

Overview

Canonical correlation analysis (CCA) is a method for exploring the relationships between two sets of multivariate variables $\boldsymbol{X}=(X_1,X_2,\cdots,X_p)^T$ and $\boldsymbol{Y}=(Y_1,Y_2,\cdots,Y_q)^T$

For example, X could be a vector of variables associated with environmental health such as species diversity, total biomass, productivity of the environment, etc while Y could be concentrations of heavy metals, pesticides, dioxin that measure environmental toxins

CCA relates two sets of variables X and Y by finding linear combinations of variables that maximally correlated

 $\begin{tabular}{ll} \textbf{Motivation:} & \textbf{relates} & X & \textbf{and} & Y & \textbf{using a small number of linear combinations for ease of interpretation \\ \end{tabular}$

Notes			

Linear Combinations of Two Sets of Variables

Recall we have $\pmb{X}=(X_1,X_2,\cdots,X_p)^T$ and $\pmb{Y}=(Y_1,Y_2,\cdots,Y_q)^T.$ Without loss of generality, let's assume $p\leq q.$

Similar to PCA, we define a set of linear combinations

$$U_1 = a_{11}X_1 + a_{12}X_2 + \dots + a_{1p}X_p$$

$$U_2 = a_{21}X_1 + a_{22}X_2 + \dots + a_{2p}X_p$$

$$\vdots = \dots$$

$$U_p = a_{p1}X_1 + a_{p2}X_2 + \dots + a_{pp}X_p$$

and

$$\begin{split} V_1 &= b_{11}Y_1 + b_{12}Y_2 + \dots + b_{1q}Y_q \\ V_2 &= b_{21}Y_1 + b_{22}Y_2 + \dots + b_{2q}Y_q \\ \vdots &= \dots \\ V_p &= b_{p1}Y_1 + b_{p2}Y_2 + \dots + b_{pq}Y_q \end{split}$$

We want to find linear combinations that maximize the correlation of $(U_i,V_i), \quad i=1,\cdots,p$

Notes			

Defining Canonical Variates

We call (U_i, V_i) be the i^{th} canonical variate pair. One can compute the variance of U_i with the following expression:

$$\operatorname{Var}(U_i) = \sum_{k=1}^{p} \sum_{\ell=1}^{p} a_{ik} a_{i\ell} \operatorname{Cov}(X_k, X_\ell), \quad i = 1, \dots, p.$$

Similarly, we compute the variance of V_j with the following expression:

$$Var(V_j) = \sum_{k=1}^{q} \sum_{\ell=1}^{q} b_{jk} b_{j\ell} Cov(Y_k, Y_\ell), j = 1, \dots, p.$$

The covariance between U_i and V_j is:

$$Cov(U_i, V_j) = \sum_{k=1}^{p} \sum_{\ell=1}^{q} a_{ik} b_{j\ell} Cov(X_k, Y_\ell).$$

The canonical correlation for the i^{th} canonical variate pair is simply the correlation between U_i and V_i :

$$\rho_i^* = \frac{\text{Cov}(U_i, V_i)}{\sqrt{\text{Var}(U_i)\text{Var}(V_i)}}$$

Notes

Canonical Correlations Sales Data

11.5

$\frac{\operatorname{Cov}(U_i, V_i)}{\sqrt{\operatorname{Var}(U_i)\operatorname{Var}(V_i)}}$

Finding Canonical Variates

Let us look at each of the \boldsymbol{p} canonical variates pair one by one

First canonical variable pair (U_1,V_1) : The coefficients $a_{11},a_{12},\cdots,a_{1p}$ and $b_{11},b_{12},\cdots,b_{1q}$ are chosen to maximize the canonical correlation ρ_1^* . As in PCA, this is subject to the constraint that $\mathrm{Var}(U_1)=\mathrm{Var}(V_1)=1$

Second canonical variable pair (U_2,V_2) : Similarly we want to find $a_{21},a_{22},\cdots,a_{2p}$ and $b_{21},b_{22},\cdots,b_{2q}$ that maximize ρ_2^* under the following constraints:

$$Var(U_2) = Var(V_2) = 1,$$

 $Cov(U_1, U_2) = Cov(V_1, V_2) = 0,$
 $Cov(U_1, V_2) = Cov(U_2, V_1) = 0.$

This procedure is repeated for each pair of canonical variates

Canonical Correlation Analysis CLEMS UNIVERSITY	
Canonical Correlations	

Note	es			

Finding Canonical Variates Cont'd

Let $\mathrm{Var}(X) = \Sigma_X$ and $\mathrm{Var}(Y) = \Sigma_Y$ and let $Z^T = (X^T, Y^T)$. Then the covariance matrix of Z is

$$\begin{bmatrix} \operatorname{Var}(\boldsymbol{X}) & \operatorname{Cov}(\boldsymbol{X}, \boldsymbol{Y}) \\ \operatorname{Cov}(\boldsymbol{Y}, \boldsymbol{X}) & \operatorname{Var}(\boldsymbol{Y}) \end{bmatrix} = \begin{bmatrix} \underbrace{\boldsymbol{\Sigma}_{\boldsymbol{X}}}_{p \times p} & \underbrace{\boldsymbol{\Sigma}_{\boldsymbol{X}\boldsymbol{Y}}}_{p \times q} \\ \underbrace{\boldsymbol{\Sigma}_{\boldsymbol{Y}\boldsymbol{X}}}_{q \times p} & \underbrace{\boldsymbol{\Sigma}_{\boldsymbol{Y}}}_{q \times q} \end{bmatrix}$$

The i^{th} pair of canonical variates is given by

$$U_i = \underbrace{\boldsymbol{u}_i^T \boldsymbol{\Sigma}_X^{-1/2}}_{\boldsymbol{a}_i^T} \boldsymbol{X} \text{ and } V_i = \underbrace{\boldsymbol{v}_i^T \boldsymbol{\Sigma}_Y^{-1/2}}_{\boldsymbol{b}_i^T} \boldsymbol{Y},$$

where

- $ullet u_i$ is the i^{th} eigenvector of $oldsymbol{\Sigma}_{oldsymbol{X}}^{-1/2} oldsymbol{\Sigma}_{oldsymbol{X}} oldsymbol{\Sigma}_{oldsymbol{Y}}^{-1/2} oldsymbol{\Sigma}_{oldsymbol{Y}} oldsymbol{\Sigma}_{oldsymbol{X}}^{-1/2}$
- $m{v}_i$ is the i^{th} eigenvector of $m{\Sigma}_{m{Y}}^{-1/2}m{\Sigma}_{m{Y}m{X}}m{\Sigma}_{m{X}}^{-1}m{\Sigma}_{m{X}}m{\Sigma}_{m{Y}}^{-1/2}$
- The i^{th} canonical correlation is given by, $\operatorname{Cor}(U_i,V_i)=\rho_i^*,$ where ρ_i^{*2} is the i^{th} eigenvalue of $\boldsymbol{\Sigma}_{\boldsymbol{X}}^{-1/2}\boldsymbol{\Sigma}_{\boldsymbol{X}\boldsymbol{Y}}\boldsymbol{\Sigma}_{\boldsymbol{Y}}^{-1}\boldsymbol{\Sigma}_{\boldsymbol{Y}\boldsymbol{X}}\boldsymbol{\Sigma}_{\boldsymbol{X}}^{-1/2}$

Notes

Likelihood Ratio Test: Is CCA Worthwhile?

Note that if $\Sigma_{XY}=0$, then $\mathrm{Cov}(U,V)=a^T\Sigma_{XY}b=0$ for all a and $b\Rightarrow$ all canonical correlations must be zero and there is no point in pursuing CCA.

For large n, we reject $H_0: \Sigma_{XY} = \mathbf{0}$ in favor of $H_1: \Sigma_{XY} \neq \mathbf{0}$ if

$$-2\log(\Lambda) = n\log\left(\frac{|\boldsymbol{S}_{\boldsymbol{X}}||\boldsymbol{S}_{\boldsymbol{Y}}|}{|\boldsymbol{S}|}\right) = -n\sum_{j=1}^{p}\log(1-\hat{\rho}_{j}^{*2})$$

is larger than $\chi^2_{pg}(\alpha)$ For an improvement to the χ^2 approximation, Bartlett suggested using the following test statistic:

$$-2\log(\Lambda) = -[n-1 - \frac{1}{2}(p+q+1)] \sum_{i=1}^{p} \log(1 - \hat{\rho}_{j}^{*2})$$

Canonical Correlations

...

Notes				

Example: Sales Data [Source: PSU STAT 505]

The example data comes from a firm that surveyed a random sample of n=50 of its employees in an attempt to determine which factors influence sales performance. Two collections of variables were measured:

- Sales Performance: Sales Growth, Sales Profitability, New Account Sales
- Test Scores as a Measure of Intelligence: Creativity, Mechanical Reasoning, Abstract Reasoning, Mathematics

We are going to carry out a canonical correlation analysis using $\ensuremath{\mathbb{R}}$

Canonical Correlation Analysis					
CLEMS#N					
Sales Data Example					

Votes			

Likelihood Ratio Test: Is CCA Worthwhile?

Let's first determine if there is any relationship between the two sets of variables at all.

H_0	Approximate F value	p-value
$\rho_1^* = \rho_2^* = \rho_3^* = 0$	87.39	~ 0
$\rho_2^* = \rho_3^* = 0$	18.53	8.25×10^{-14}
$\rho_3^* = 0$	3.88	0.028

All three canonical variate pairs are significantly correlated and dependent on one another. This suggests that we may summarize all three pairs.

Notes			

Estimates of Canonical Correlation

Since we rejected the hypotheses of independence, the next step is to obtain estimates of canonical correlation

i	Canonical Correlation (ρ_i^*)	ρ_i^{*2}
1	0.9945	0.9890
2	0.8781	0.7711
3	0.3836	0.1472

98.9% of the variation in U_1 is explained by the variation in V_1 , 77.11% of the variation in U_2 is explained by V_2 , only 14.72% of the variation in U_3 is explained by V_3

Notes

Obtain the Canonical Coefficients

	U_1	U_2	U_3
Growth	0.0624	-0.1741	-0.3772
Profit	0.0209	0.2422	0.1035
New	0.0783	-0.2383	0.3834

The first canonical variable for sales is

$$U_1 = 0.0624X_{growth} + 0.0209X_{profit} + 0.0783X_{new}$$

	V_1	V_2	V_3
Creativity	0.0697	-0.1924	0.2466
Mechanical	0.0307	0.2016	-0.1419
Abstract	0.08956	-0.4958	-0.2802
Math	0.0628	0.0683	-0.0113

The first canonical variable for test scores is

 $V_1 = 0.0697Y_{create} + 0.0307Y_{mech} + 0.0896Y_{abstract} + 0.0628Y_{math}$

Canonical Correlations

Sales Data

notes			

Correlations Between Each Variable and The Corresponding Canonical Variate

Correlations Between X's and U's

	U_1	U_2	U_3
Growth	0.9799	0.0006	-0.1996
Profit	0.9464	0.3229	0.0075
New	0.9519	-0.1863	0.2434

Correlations Between Y's and V's

	V_1	V_2	V_3
Creativity	0.6383	-0.2157	0.6514
Mechanical	0.7212	0.2376	-0.0677
Abstract	0.6472	-0.5013	-0.5742
Math	0.9441	0.1975	-0.0942

Canonical Correlation Analysis
Canonical Correlations Sales Data Example
11.13

Notes			

Correlations Between Each Set of Variables and The Opposite Group of Canonical Variates

Correlations Between X's and V's

	V_1	V_2	V_3
Growth	0.9745	0.0006	-0.0766
Profit	0.9412	0.2835	0.0029
New	0.9466	-0.1636	0.0934

Correlations Between Y's and U's

	U_1	U_2	U_3
Creativity	0.6348	-0.1894	0.2499
Mechanical	0.7172	0.2086	-0.0260
Abstract	0.6437	-0.4402	-0.2203
Math	0.9389	0.1735	-0.0361

Notes

Notes		