Aufgabe 1

Wir fixieren das Alphabet $\Sigma = \{a,b\}$ und definieren $L \subseteq \Sigma$ durch $L = \{w \mid \text{in } w \text{ kommt das Teilwort bab vor}\}$ z. B. ist babaabb $\in L$, aber baabaabb $\notin L$. Der folgende nichtdeterministische Automat A erkennt L:

(a) Wenden Sie die Potenzmengenkonstruktion auf den Automaten an und geben Sie den resultierenden deterministischen Automaten an. Nicht erreichbare Zustände sollen nicht dargestellt werden.

Zustandsmenge	Eingabe a	Eingabe b
$\{z_0\}$	$\{z_0\}$	$\{z_0, z_1\}$
$\{z_0, z_1\}$	$\{z_0, z_2\}$	$\{z_0, z_1\}$
$\{z_0, z_2\}$	$\{z_0,\}$	$\{z_0, z_1, z_3\}$
$\{z_0, z_1, z_3\}$	$\{z_0, z_2, z_3\}$	$\{z_0, z_1, z_3\}$
$\{z_0, z_2, z_3\}$	$\left\{z_0,z_3\right\}$	$\{z_0, z_1, z_3\}$
$\{z_0, z_3\}$	$ \{z_0, z_3\}$	$\mid \{z_0, z_1, z_3\}$

(b) Konstruieren Sie aus dem so erhaltenen deterministischen Automaten den Minimalautomaten für L. Beschreiben Sie dabei die Arbeitsschritte des verwendeten Algorithmus in nachvollziehbarer Weise.