TD 7 : Équations différentielles linéaires

 $\mathbf{Exercice}\ \mathbf{1}$ Résoudre, sur un intervalle que l'on précisera, les équations différentielles suivantes :

- 1. y' = y
- 2. y' + 2y = 0
- 3. $y' + \frac{2y}{x} = 0$
- 4. $(1+x^2)y'=y$
- 5. y' = y + 1
- 6. $y' y = xe^x$
- $7. \ y' + y = \cos x + \sin x$
- 8. $xy' + 2y = x^3$
- 9. $(x^2 1)y' + xy = 1$
- 10. $y' + y = 2e^x$

Exercice 2 Trouver la solution de l'équation différentielle $y' \tan x = y$ qui prend la valeur 1 pour $x = \frac{\pi}{6}$.

Exercice 3 Soit g, h les fonctions définies sur \mathbb{R}^* par $g(x) = \ln(\ln(x))$ et $h(x) = \frac{-1}{\ln x}$.

- 1. Calculer la dérivée de g et h
- 2. Résoudre sur $]0, +\infty[$ l'équation différentielle suivante :

$$y'x \ln(x) - (x^2 \ln(x) + 1)y = \exp(x^2/2).$$

Exercice 4 On considère l'équation différentielle $y' = 3y + \cos$.

- 1. Déterminer une solution particulière sous la forme $a\cos + b\sin a$
- $2.\,$ Déterminer toutes les solutions. Donner celle qui vaut 1 en $0.\,$

Exercice 5 Soit E l'ensemble des fonctions de classe C^{∞} dont toutes les dérivées sont bornées. On considère l'application de E dans E donnée par

$$f \mapsto f + f'$$
.

Justifier que cette application est bien définie. Est-elle injective? Surjective?