리튬 이온 배터리의 수명 주기 및 공백 기술 파

[IMEN256] 인공지능과 지식재산 임상욱, 엄기영, 윤승주, 최규빈, 최세인

CONTENTS

01. 연구 배경

- (1) 리튬 이온 배터리
- (2) 기술예측 & 특허정보

02. Data 분석

- (1) Data 설명
- (2) 기술 동향(Trend) 분석
- (3) 공백기술 분석

03. 나아갈 길

- (1) 문제 현황
- (2) 방향성 제시

01. 연구 배경

- (1) 리튬 이온 배터리
- (2)기술예측 & 특허정 보

01. 연구배경: 리튬 이온 배터리

개념 설명

* 자료출처: https://newsroom.posco.com/kr

	1차 전지	2차 전지
특징	일회성, 재활용 불가	충전, 반복, 장기간 사용 가능
종류	건전지 알칼리전지	리튬이온 배터리 니켈계 배터리

시장 전망

- 자료출처: https://newsroom.posco.com/kr
- 자료출처: IEA, SNE 리서치

리튬이온 배터리의 수요 증가 → 리튬이온 배터리의 특허 증가

01. 연구배경: 기술예측 & 특허정보

고전적인 기술예측 방법론

- 규범적 방법: 가능성 / 미래의 모습들에 대한 사전 전망으로 시작
- 탐구적 방법: 현재의 추세를 기반으로 평가
- 정성적 방법: 전문가의 견해를 기반으로 평가

고전적인 기술예 특 생전인 기법으로 평가 법론

- Time Series Forecasts
- Trend Impact Analysis
- Technological Sequence Analysis
- Relevance Tree
- Delphi
- Decision Analysis
- Gaming and Simulation

특허정보를 활용한 기술예측

기술예측은 전문가의 직관에 의존, 객관성이 부족 함

→ 특허정보를 활용하면 객관적이고 신뢰성있는

특허이용 기술예측 방 석 가능

법론

* 자료출처: https://koreascience.kr/article/JAKO201524848982405.pdf

분류	특허 가치 평가	데이터 마이닝	인용관계
기법	전문가 평가, PCI,	Aureka, Patent	SNA, NGP,
	위험도 분석	Atlas, XLUS	Co-citation

고전적인 기술예측 방법론 + 특허

정보

02. Data 분석

- (1) Data 설명
- (2) 기술 동향(Trend) 분 석
- (3) 공백기술 분석

02. Data 분석: Data 설명

WIPSON 검색식

Data 시각화

<발명의 명칭 항목 단어별 빈도>

02. Data 분석: 기술 동향(Trend) 분석

02. Data 분석: 기술 동향(Trend) 분석

Exponential Smoothing

• 사용이유: 일반적이고, 단순한 model로써 비교를 위해 사용

- 실제 값인 붉은 선보다 확실히 더 많은 특허 출 원을 예측
- 기술이 성장하는 Trend를 보임

* 선행연구: 전성찬, "GTM 기반 특허맵을 활용한 화물트럭 수송용 피기백 화차의 유망기술 도출", 2021

ARIMA

사용이유: 선행연구에서 가장 적절한 model로 활용되었기에 사용

Exponential Smoothing보다 더욱 성장하는
Trend를 보임

02. Data 분석: 기술 동향(Trend) 분석

TFT (Temporal Fusion Transformer)

• 사용이유: 딥러닝에서 가장 유망한 Transformer기반의 시계열 예측 model 높은 정확도 및 변수 활용 면에서 우수함

- Exponential Smoothing, ARIMA보다 MAPE가 높음
- 이전의 방법과 마찬가지로 성장 Trend를 보임

기술 동향(Trend) 결론

Model 예측 결론

• 리튬 이온 전지는 성장곡선상, 성장 ~ 성숙기에 위치함

(Cold) Steadily declining technical feilds

• 특허를 통해 공백기술을 연구할 가치가 있음

02. Data 분석: 국가별 기술 동향(Trend) 분석

국가별 특허 출원 건수 *단위: 월

- 전체 국가 출원 건수에서 중국이 차지하는 비중이 압도적으로 높음
- 중국의 경우 출원인, 출원 건수에서 성장 / 성숙기에 위치

국가별 특허 출원 건수(중국 제외) *단위: 월

- 미국 / 일본은 성장곡선상 쇠퇴기에 위치
- 대한민국은 성장곡선상 성장 / 성숙기에 위치
- 특허 출원 Trend는 대한민국 > 미국, 일본임을 확인가능

02. Data 분석: 국가별 기술 동향(Trend) 분석

GTM (Generative Topographic Mapping)

Why GTM?

- GTM 기법은 rbf함수를 기반으로 각 단어의 군집을 유기적으로 벡터화 → 2차원에 투영
- 특허들의 IPC Code를 GTM기법을 통해 2차원 공간에 타점
 - → 특허들 간의 관계 파악, 개발되지 않은 공백기술 타 국가대비 부족한 기술 파악 가능

국내 기술개발 방향성을 제시가능

IPC 코드 분석

• Data 개수: 19,379건

• IPC 코드: 360개

• Sub-Class: 102개 *30번 이상의 특허에서 보이는 IPC코드

• Map size: 6 x 6

Rbf function: 3개

• Data 밀집 지역에 해당하는 IPC 코드: 54개

- 리튬 이온 배터리 기술 특허는 1~2개의 특정기술(X)
- <mark>다수의 원천기술이 복합적으로 결</mark>합(O)
- 5곳의 공백기술이 존재함을 확인 가능

세계 / 국내 관련 특허 기술

- 세계의 공백기술은 5곳
- 국내의 공백기술은 13곳
- → 세계의 공백기술 5곳 + 국내만 공백기술인 8곳 = 13곳

세계 공백기술 inverse mapping

עם ה	ULL 속!		
공백 기술	세부항 목	기술 설명	
12	7		
1번	B05D	유동성 물질을 표면에 작용시키기 위한 공정일반	
	C09D	피복 조성물, 예. 페인트, 바니시 또는 락카; 충전용 반죽; 페인트 또는 잉크 제거제; 잉 크; 수정액; 목재 물감(WOODSTAINS); 그 물질의 사용	
	H01B	케이블; 도체; 절연체; 도전성, 절연성 또는 유전성 특성에 대한 재료의 선택	
2번	F04D	비용적형 펌프	
3번	A47B	테이블; 책상; 사무용 가구; 캐비넷; 장농; 가구의 일반적 세부	
4번	A61N	전기치료; 자기치료; 방사선치료; 초음파치료	
	B23K	납땜(Soldering) 또는 비납땜(Unsoldering); 용접; 납땜 또는 용접에 의하여 클래딩 (clading) 또는 피복; 국부 가열에 의한 절단, 예. 화염 절단; 레이저 빔에 의한 가공	
	F24H	유체 히터, 예. 열 발생 수단이 있는 물 또는 공기 히터, 예: 열 펌프, 일반	
5번	A61F	혈관에 이식할 수 있는 필터; 보철; 인체의 관상 구조를 개존 시키는 또는 붕괴를 방지하는 장치, 예. 스텐트; 정형외과 , 간호 또는 피임 용구; 찜질; 눈 또는 귀의 치료 또는 보호; 붕대; 피복 용품 또는 흡수성 패드; 구급 상자	
	A46B	브러시(brush)	
	F24C	가정용 스토브 또는 레인지; 일반적으로 적용되는 가정용 스토브 또는 레인지의 세부	

국내 공백기술 inverse mapping

공 백 기 술	세부항 목	기술 설명
	G04G	전자시계
6 번	G04B	기계적 구동의 시계 또는 휴대시계; 시계 또는 휴대시계의 기계적 부분일반; 태양, 달 또는 별의 위치를 이용한 시계
 7번	G06F	전기에 의한 디지털 데이터처리
8번	F02N	연소 엔진의 시동; 그러한 엔진에 대한 시동 보조제, 달리 제공되지 않는 것
E02F 굴착(掘鑿); 토사(土砂)의 이송		굴착(掘鑿); 토사(土砂)의 이송
9번	B04B	경항공기
	F41G	무기용 조준기; 조준
	H04K	비밀 통신
E02D 기초(基礎); 굴착(掘鑿); 축제(築堤); 지하 또는 수중 구조물		기초(基礎); 굴착(掘鑿); 축제(築堤); 지하 또는 수중 구조물
10번	G01T	원자핵 방사선 또는 X선의 측정
	E04C	구조요소; 건축 재료
G06V 이미지 또는 비디오 인식 또는		이미지 또는 비디오 인식 또는 이해
11번	G06K	그래픽 데이터의 판독; 데이터의 표현; 기록 매체; 기록 매체 처리
	G16Y	사물 인터넷 [loT]에 특히 적합한 정보 및 통신 기술
12번	G06M	계수메커니즘; 다른 방식으로는 분류되지 않는 계수
	G02B	광학 요소, 시스템 또는 장치
404	В07В	망, 체, 스크린에 의하거나 기체류를 사용하는 고체상호의 분리; 입상물(bulk material)에 적용 하는 건식에 의한 분리, 예. 입상물과 동일하게 취급할 수 있는 유리물(loose articles)
13번		프리스티의 서취 또는 저희 소서 사데에 이는 무지의 서취으로 나 다고 버르디지 아는 것 서

03. 나아갈 길

- (1) 문제 현황
- (2) 방향성 제시

02. 나아갈 길: 문제 현황

IPC 코드

<IPC 코드 개요 &

섹션	국문 설명	영문 설명
A	생활필수품	HUMAN NECESSITIES
В	처리조작; 운수	PERFORMING OPERATIONS; TRANSPORTING
С	화학; 야금	CHEMISTRY; METALLURGY
D	섬유, 지류	TEXTILES; PAPER
Е	고정구조물	FIXED CONSTRUCTIONS
F	기계공학; 조명; 가열; 무기; 폭파	MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
G	물리학	PHYSICS
Н	전기	ELECTRICITY

<IPC 코드

IPC 코드 섹션별 부족기술 비교

섹션	부족기술 개수(세계)	부족기술 개수(국내)
A	4	4
В	2	5
С	1	1
D	0	0
Е	0	3
F	3	5
G	0	9
Н	1	2
합계	11	29

- 전 세계적으로 A 섹션(생활필수품) 에 해당되는 기술이 가장 부족
- 국내에서는 G 섹션(<mark>물리학)에 해당되는</mark> 기술이 가장 부 족
- → 물리학 분야에 대한 국가적인 검토가 요구됨

02. 나아갈 길: 방향성 제시

나아갈 길

* 자료출처: https://m.dongascience.com/news.php?idx=53613

급변하는 국제 질서에서 한국이 기술주권을 유지하려면 연구개발(R&D)에 더 많은 예산을 쏟기보다는 변화에 맞춰 계획을 유연하게 수정할 수 있는 환경과 전략이 필요하다는 과학기술 정책 전문가들의 지적이 나왔다. 한국은 매우 경직된 R&D 체계를 유지하고 있는데 여기에서 벗어나 다양한 방향성을 갖도록 유연한 체계가 요구되고 있다는 것이다.

안준모 고려대 행정학과 교수는 12일 '퍼스트 무버로 가는 길'을 주제로 한국과학기술단체총연합회 주최로 열린 포럼에서 "한국의 R&D 체계는 아직까지도 기초연구, 응용연구, 개발, 상용화 순의 단계별 성장 모형을 채택하고 있지만 실제로는 이런 단계가 앞뒤로 왔다갔다하고 굉장히 복잡해 더는 순서대로 일어나지 않는다"며 "한국의 시스템은 20년 전에서 멈춰있다"고 지적했다.

- 대한민국의 연구개발(R&D) 투자비용은 6위(영국보다 높음), 하지만 영향력은 15위에 위치
- → 즉 똑같은 수준의 논문을 내기 위해서 영국보다 4배 많은 돈을 투자해야함
- 다양한 방향성을 갖출 수 있는 유연한 연구개발(R&D) 체계가 필요

Reference

인터넷 기사

"[궁금한 THE 이야기] ① 2차전지의 필수품 '리튬', 왜 중요할까?", <POSCO NEWSROOM>, 2022.08.04., https://newsroom.posco.com/kr/2%EC%B0%A8%EC%A0%84%EC%A7%80%EC%9D%98-%ED%95%84%EC%88%98%ED%92%88-%EB%A6%AC%ED%8A%AC-%EC%99%9C-%EC%A4%91%EC%9A%94%ED%95%A0%EA%B9%8C/, (접속일: 2022.11.27)

"예산은 6위인데 영향력은 15위 한국 과학기술...'20년전 R&D 제도로 더는 안된다'", <동아사이언스>, 2022.04.13., https://m.dongascience.com/news.php?idx=53613, (접속일: 2022.11.27)

논문

전성찬, "GTM 기반 특허맵을 활용한 화물트럭 수송용 피기백 화차의 유망기술 도출", 고려대학교 대학원, 2021, 19~28쪽

기타자료

Héléna Alexandra Gaspar, 「ugtm: A Python Package for Data Modeling and Visualization Using Generative Topographic Mapping」, journal of open research software, p1-5

특허를 활용한 기술예측 방법론(SNA를 중심으로), 고무기술 제16권 제1호, 2015, 23-24쪽

WIPO(World Intellectual Property Organization), 「Guide to the International Patent Classification (2022)」, 4-7쪽

KIPRIS 특허정보검색서비스, IPC 분류표_'22.1월 버전.xlsx

Main IPC와 All IPC의 차이점 및 특징, <윕스 공식기업블로그,

https://blog.naver.com/PostView.naver?blogId=wipsmaster&logNo=50154805052&redirect=Dlog&widgetTypeCall=true&directAccess=false , (접속일: 2022.11.27)

Thank You:)

