

UNIVERSIDAD POLITÉCNICA DE MADRID

Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio

Máster Universitario en Sistemas Espaciales

Ampliación de Matemáticas 1

Hito 2

Javier Pueyo Serrano

Curso 2023-2024

1. Introducción

El objetivo del **Hito 2** es mejorar el proceso de integración del problema de Cauchy iniciado en el **Hito 1**. Para ello, se va a resolver nuevamente el problema de Kepler haciendo uso de los esquemas temporales Euler explícito, Euler inverso, Crank-Nicolson y Runge-Kutta de 4 etapas. La expresión que definen cada uno de esos esquemas temporales pueden consultarse en el informe del **Hito 1**.

2. Código

El código está estructurado en dos partes diferenciadas:

• Script principal.

Es el script que se ejecuta. Permite elegir el tiempo final, t_f , el número de subintervalos en los que se va a dividir el intervalo de tiempo de estudio (en este caso se va a utilizar una partición equiespaciada), N, las condiciones iniciales, $\mathbf{r}(t_0)$ y $\dot{\mathbf{r}}(t_0)$, y el esquema temporal de integración numérica.

• *Scripts* auxiliares.

- Orbits.py. Incluye una función en la que se define la ecuación del problema de Kepler, que utiliza como argumentos de entrada U y t (estrictamente hablando, en el problema de Kepler no sería necesario incluir t como input.
- $Temporal_Schemes.py$. Contiene los cuatro esquemas temporales de integración numérica utilizados, que tienen como argumentos de entrada U, t, Δt y la función de la ecuación diferencial ordinaria, F.
- Cauchy_Problem.py. Es el script al que se llamará desde el script principal. Contiene una función denominada igual que el script que utiliza como argumentos de entrada F, t, la condición inicial y el esquema numérico de integración, que se han introducido por teclado mediante el script principal.

3. Resultados

El caso principal con el que se ha realizado el estudio es utilizando $t_f = 10$ y las siguientes condiciones iniciales:

$$\mathbf{r}(t_0) = (1,0)$$
 $\dot{\mathbf{r}}(t_0) = (0,1)$ (1)

El problema de Kepler tiene solución analítica, y para las condiciones iniciales elegidas la órbita resultante es una cónica de excentricidad nula, esto es, una circunferencia. El radio de la circunferencia es la unidad y el centro de la circunferencia está situado en el origen de coordenadas. La solución analítica no se ha representado debido a que se solapa con las soluciones de los esquemas Crank-Nicolson y Runge-Kutta 4.

A continuación se muestran los resultados obtenidos cambiando N, de forma que se cambia el paso de tiempo Δt , habiendo un orden de magnitud de diferencia consecutivamente en Δt en la Figura 1, Figura 2 y Figura 3.

Figura 1: Solución numérica. $t_f=10,\,N=10^3,\,\Delta t=10^{-2}.$

Figura 2: Solución numérica. $t_f=10,\,N=10^4,\,\Delta t=10^{-3}.$

Figura 3: Solución numérica. $t_f=10,\,N=10^5,\,\Delta t=10^{-4}.$

Como comentario general, se puede decir que ambos esquemas Euler, tanto explícito como inverso, requieren una partición del intervalo de tiempo muy refinada, es decir, Δt muy bajos, para obtener una solución que se aproxime a la analítica. Aun así, no se consiguirá obtener una órbita completamente cerrada, aunque sí una aproximación aceptable en este caso de estudio sencillo.

Por otro lado, los esquemas Crank-Nicolson (multipaso implícito) y Runge-Kutta de 4 etapas (unipaso explícito), presentan un mejor comportamiento que los esquemas Euler para valores de Δt grandes (dentro de los considerados).

Además, se muestra en la Figura 4 una solución numérica para unas condiciones iniciales distintas:

$$\mathbf{r}(t_0) = (1,0)$$
 $\dot{\mathbf{r}}(t_0) = (-0.5,1)$ (2)

Figura 4: Solución numérica. $t_f=10,\;N=10^3,\;\Delta t=10^{-2}.$