

Semester 1 Examinations 2019/2020

Exam Codes 4BMS2, 4BS2, 4FM2, 4BCT1, 4BME1

Exams B.Sc.

B.Sc. Mathematical Science

B.Sc. Financial Mathematics & Economics M.Sc. Mathematics/Mathematical Science

Module Measure Theory

Module Code MA490

External Examiner Prof. T. Brady Internal Examiner(s) Prof. G. Ellis

Dr M. Kerin

<u>Instructions:</u> Answer every question.

Duration 2 Hours

No. of Pages 4 pages, including this one

School Mathematics, Statistics and Applied Mathematics

Requirements: No special requirements

Release to Library: Yes Release in Exam Venue: Yes

- (a) Let X be a set. How many σ -algebras of subsets of X contain exactly five elements?
- (b) Let A_1 and A_2 be σ -algebras of subsets of a set X. Show that $A_1 \cap A_2$ is also a σ -algebra.
- (c) Determine $\liminf A_n$ and $\limsup A_n$ for the sequence $(A_n)_{n\in\mathbb{N}}$ of sets given by

$$A_n = \begin{cases} \left(\frac{1}{n} - 2, 1\right), & n \text{ odd,} \\ \left(0, 3 + \frac{1}{n}\right), & n \text{ even.} \end{cases}$$

- (d) Determine the Lebesgue measure of the subset of [0,1] whose elements have neither first nor second digit in their decimal expansion equal to "0".
- (e) Let $(X, \mathcal{A}, \mathbb{P})$ be a probability space and $(A_n)_{n \in \mathbb{N}}$ a sequence of events in \mathcal{A} such that $\mathbb{P}(A_n) = \frac{1}{7^n}$ for $n \in \mathbb{N}$. Determine the probability of the event $\limsup A_n$.
- (f) Suppose $(X, \mathcal{A}, \mu) = (\Omega, \mathcal{E}, \mathbb{P})$ is the Bernoulli probability space associated to our shareprice model, where $\Omega = \{(\omega_j)_{j \in \mathbb{N}} \mid \omega_j \in \{u, d\} \ \forall \ j \in \mathbb{N}\}$ and \mathcal{E} is the σ -algebra generated by the simple events $E_n = \{(\omega_j)_{j \in \mathbb{N}} \in \Omega \mid \omega_n = u\}, n \in \mathbb{N}$. Determine whether the sequence $(A_n)_{n \in \mathbb{N}}$ of events in \mathcal{E} defined by

$$A_n = E_n^c \cap E_{n+3}, \quad n \in \mathbb{N},$$

is an independent sequence of events.

- (g) Let $(\mathbb{R}, \mathcal{L}, \lambda)$ be the Lebesgue measure space and $f : \mathbb{R} \to \mathbb{R}$ a function with $f(x) = 127 e^x$ for all $x \in \mathbb{Q}^c$. Show that f is measurable with respect to \mathcal{L} .
- (h) Show, with justification, that

$$\sum_{n=1}^{\infty} \int_{2}^{4} \frac{1}{x^{n}} dx = \ln(3).$$

(i) Let $(\mathbb{R}, \mathcal{L}, \lambda)$ be the Lebesgue measure space and $f : \mathbb{R} \to \mathbb{R}$ a non-negative, measurable function. If $f_n = f \cdot \chi_{\left[\frac{1}{n},1\right]} : \mathbb{R} \to \mathbb{R}$, $n \in \mathbb{N}$, where $\chi_A : \mathbb{R} \to \mathbb{R}$ denotes the characteristic function of the subset $A \subset \mathbb{R}$, show that

$$\int_{(0,1]} f \, d\lambda = \lim_{n \to \infty} \int_{\left[\frac{1}{n},1\right]} f \, d\lambda.$$

(j) Which of the following numbers belong to the Cantor set?

(i)
$$\frac{1}{27}$$
, (ii) $\frac{4}{27}$, (iii) $(0.21)_3$, (iv) $\sum_{k=1}^{\infty} \frac{2}{9^k}$.

Continued on the next page.

$\mathbf{Q2}\ [\mathbf{20\%}]$

- (a) Give the definitions of the following terms:
 - (i) an algebra; (ii) an additive set function; (iii) a σ -algebra; (iv) a measure. [8%]
- (b) Let (X, A) be a measurable space and let $Y \subset X$ be a proper, non-trivial subset of X. Show that

$$\mathcal{A}_Y = \{ A \cap Y \mid A \in \mathcal{A} \}$$

is a σ -algebra of subsets of Y.

[6%]

(c) Let (X, \mathcal{A}, μ) be a measure space and let $(A_n)_{n \in \mathbb{N}}$ be a sequence of sets in \mathcal{A} . Show that

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) \le \sum_{n=1}^{\infty} \mu(A_n).$$
 [6%]

Q3 [20%] Let X be a set and \mathcal{A} a σ -algebra of subsets of X.

- (a) Define what it means for a function $f: X \to \mathbb{R}$ to be measurable with respect to \mathcal{A} . [2%]
- (b) Suppose $g: X \to \mathbb{R}$ is measurable with respect to \mathcal{A} and that $g(x) \neq 0$ for all $x \in X$. Show that the function $\frac{1}{g}: X \to \mathbb{R}$ is also measurable. [6%]
- (c) Suppose $A \subset X$ is not an element of the σ -algebra \mathcal{A} . Let $(f_n)_{n \in \mathbb{N}}$ be the sequence of functions given by

$$f_n: X \to \mathbb{R}; x \mapsto 1 - \frac{1}{n} \chi_A(x), \quad n \in \mathbb{N},$$

where $\chi_A:X\to\mathbb{R}$ denotes the characteristic function of A.

- (i) Show that, for all $n \in \mathbb{N}$, the function f_n is not measurable with respect to \mathcal{A} . [6%]
- (ii) Show that the sequence $(f_n)_{n\in\mathbb{N}}$ converges uniformly to a function $f:X\to\mathbb{R}$ which is measurable with respect to \mathcal{A} .

Q4 [20%] Let (X, \mathcal{A}, μ) be a complete measure space.

- (a) Define the μ -integral of a measurable, simple function, and use this to define μ -integrability for measurable, simple functions and for non-negative, measurable functions. [6%]
- (b) If $f: X \to \mathbb{R}$ is a μ -integrable, measurable function, show that $|f|: X \to \mathbb{R}$ is μ -integrable. [4%]
- (c) Suppose that $(X, \mathcal{A}, \mu) = (\mathbb{R}, \mathcal{L}, \lambda)$ is the Lebesgue measure space and that $A \subset [-1, 2]$ is not an element of the Lebesgue σ -algebra \mathcal{L} . Consider the function

$$f: \mathbb{R} \to \mathbb{R} \; ; \; x \mapsto \begin{cases} 3, & x \in A, \\ -3, & x \in [-1, 2] \backslash A, \\ 0, & x \notin [-1, 2]. \end{cases}$$

- (i) Show that f is not Lebesgue integrable. [2%]
- (ii) Show that |f| is Lebesgue integrable and compute $\int_{\mathbb{R}} |f| d\lambda$. [4%]
- (d) Suppose $(X, \mathcal{A}, \mu) = (\Omega, \mathcal{E}, \mathbb{P})$ is the Bernoulli probability space associated to our shareprice model, where $\Omega = \{(\omega_j)_{j \in \mathbb{N}} \mid \omega_j \in \{u, d\} \ \forall \ j \in \mathbb{N}\}$ and \mathcal{E} is the (completion of the) σ -algebra generated by the simple events $E_n = \{(\omega_j)_{j \in \mathbb{N}} \in \Omega \mid \omega_n = u\}, \ n \in \mathbb{N}$. Compute the expected value $\mathbb{E}(Y)$ of the random variable $Y : \Omega \to \mathbb{R}$ defined by

$$Y = 3 \chi_{E_1 \cap E_2} - 10 \chi_{E_1^c \cap E_3^c \cap E_4^c} + 12 \chi_{E_5},$$

where $\chi_A: \Omega \to \mathbb{R}$ denotes the characteristic function of a subset $A \subset \Omega$. [4%]