

19/10/2024

BODIN Noé
COLIN Guillaume
DOUANT Antoine
LE COQ Justine

# **Rapport SIT213**

**Atelier Logiciel** 

Simulation d'un système de transmission

Étape 6



| Introduction    | 2 |
|-----------------|---|
| Améliorations   | 3 |
| Environnement 1 | 4 |
| Environnement 2 |   |
| Conclusion      |   |



# Introduction

Ce rapport vise à répondre aux exigences d'un client qui souhaite déployer un réseau de capteurs câblés dans deux environnements distincts. Le premier environnement concerne un canal de transmission de type bruit blanc additif gaussien (BBAG), alors que le second implique un canal de propagation à trajets multiples. L'objectif est de garantir des performances en termes de taux d'erreur binaire (TEB) tout en minimisant la consommation énergétique, et de garantir un TEB en fonction d'un débit.

Au cours de cette étape, nous avons également apporté des améliorations à notre simulateur, ce qui a permis de rendre les simulations beaucoup plus rapides et plus efficaces.

Ce rapport détaille les simulations effectuées et les résultats obtenus pour chaque environnement, en tenant compte des améliorations apportées au simulateur.



# **Améliorations**

Dans un premier temps, nous avons apporté des améliorations à notre simulateur :

- Optimisation en utilisant les ArrayList à la place des LinkedList (initialement présent dans le code) jusqu'à 50 000 fois plus rapide, une simulation de 7 heures prend maintenant 0,5s. Il aurait fallu utiliser des itérateurs pour être performants avec LinkedList, ce qui aurait provoqué des changements importants.
- Remplacements du type double en Double pour permettre null en valeur de SNR et SNRpb, et vérification du bruit ou non (avant, il était impossible d'avoir 0 dB de bruit)
- Améliorations dans le récepteur, pour NRZ utilisant la méthode que NRZ
- Ajouts de tests du simulateur

Tout cela améliore nos courbes de TEB en fonction de Eb/N0 et les changent légèrement (surtout pour NRZT).



# **Environnement 1**

Sur des messages de 200000 bits, d'amplitude -1 et 1, 30 échantillons par bits, nous avons ces courbes de TEB en fonction de Eb/N0 (de -10 à 20 dB, tous les 0.1 dB) :



| Paramètre                   | Valeur                    |
|-----------------------------|---------------------------|
| Type de bruit               | Blanc additif gaussien    |
| Bruit N0                    | -80 dBm/Hz                |
| Atténuation totale α        | -40 dB                    |
| Seuil TEB                   | 10 <sup>-3</sup>          |
| Consommation                | Minimale                  |
| Capacité de la batterie     | 3 J                       |
| Volume de données<br>utiles | 10 <sup>6</sup> bits/jour |



La courbe de TEB en fonction de Eb/N0 a été refaite après les améliorations citées précédemment, les valeurs changent légèrement, mais les calculs n'ont pas été refaits, il y a donc un léger décalage (moins de 1 dB, NRZ : 6.8 dB au lieu de 7.7 dB).

#### Choix de la forme d'onde :

D'après nos courbes, pour un TEB de 10<sup>-3</sup>, les valeurs de Eb/N0 requises sont :

- NRZ: 7.7 dB

- RZ:10 dB

- NRZT: 8.5 dB

NRZ est la forme d'onde la plus économe en énergie, car elle nécessite le moins de puissance pour atteindre le TEB cible. Nous allons donc utiliser les valeurs du codage NRZ pour la suite.

#### Calcul de la puissance d'émission (Pt) :

Conversion de N0 en Watts/Hz:

$$N0 (dBm/Hz) = -80 dBm/Hz$$

N0 (W/Hz) = 
$$10^{(N0)}(Bm/Hz)/10) * 10^{-3} = 10^{-11} W/Hz$$

Calcul de Eb (énergie par bit) :

$$Eb/N0 (dB) = 7.7 dB (pour NRZ)$$

$$Eb/N0 (linéaire) = 10^{(Eb/N0(dB)/10)} = 5.89$$

Eb = Eb/N0 (linéaire) \* N0 = 
$$5.89 * 10^{-11}$$
 J/bit

Calcul de la puissance reçue (Pr) :

$$Pr = Eb * Rb$$



où Rb est le débit binaire. Pour maximiser la durée de vie de la batterie, nous voulons minimiser la puissance, donc nous allons choisir le débit minimal qui satisfait les contraintes du client.

Le client transmet 10<sup>6</sup> bits/jour, soit environ 11,57 bits/seconde. Nous allons arrondir ce chiffre à 12 bits/seconde pour avoir une marge de sécurité.

$$Pr = 5.89 * 10^{-11} \text{ J/bit } * 12 \text{ bits/s} = 7.07 * 10^{-10} \text{ W}$$

Calcul de la puissance d'émission (Pt) :

Pt dépend de l'atténuation A

Pt = Pr \* 
$$10^{(A/10)}$$
 =  $7.07 * 10^{-10} W * 10^{(40/10)}$  =  $7.07 * 10^{-6} W$  =  $7.07 \mu W$ 

#### Calcul de l'autonomie de la batterie :

Énergie totale de la batterie : 3 J

Consommation quotidienne:

Pt \* 24 heures \* 3600 secondes/heure =  $7.07 * 10^{-6} W * 86400 s = 0.61 J/jour$ 

Autonomie de la batterie :

Énergie totale / Consommation quotidienne = 3 J / 0.61 J/jour = 4.9 jours (cela reviendrais à 6 jours avec les nouvelles simulations)

#### Calcul de la nouvelle puissance d'émission (Pt) avec codeur :

Calcul de Eb (énergie par bit) avec codeur :

Eb/N0 (dB) = 4.5 dB (pour NRZ avec codeur)

 $Eb/N0 (linéaire) = 10^{(Eb/N0(dB)/10)} = 2.82$ 

Eb = Eb/N0 (linéaire) \* N0 = 2.82 \* 10<sup>-11</sup> J/bit

Calcul du débit binaire (Rb) avec codeur :



Le codeur transforme 1 bit en 3 bits, donc le débit binaire est multiplié par 3.

$$Rb = 12 bits/s * 3 = 36 bits/s$$

Calcul de la puissance reçue (Pr) avec codeur :

$$Pr = Eb * Rb = 2.82 * 10^{-11} \text{ J/bit} * 36 \text{ bits/s} = 1.015 * 10^{-9} \text{ W}$$

Calcul de la puissance d'émission (Pt) avec codeur :

Pt = Pr \* 
$$10^{(A/10)}$$
 =  $1.015 * 10^{-9} W *  $10^{(40/10)}$  =  $1.015 * 10^{-5} W$  =  $10.15 \mu W$$ 

Calcul de l'autonomie de la batterie avec codeur :

Consommation quotidienne avec codeur : Pt \* 24 heures \* 3600 secondes/heure =  $10.15 * 10^{-6}$  W \* 86400 s = 0.88 J/jour

Autonomie de la batterie avec codeur : Energie totale / Consommation  $\frac{1}{2}$  quotidienne =  $\frac{3}{2}$  J /  $\frac{1}{2}$  J /  $\frac{1}{$ 

1.

La solution proposée est d'utiliser la forme d'onde NRZ avec un débit binaire de 12 bits/s. La puissance d'émission nécessaire est de 7.07 µW.

2.

Avec cette solution, la batterie tiendra environ 4.9 jours avant d'être déchargée.

3.

Non, la batterie ne tiendra pas plus longtemps pour le même TEB cible avec le code correcteur d'erreurs. La consommation énergétique est plus élevée avec le codeur, ce qui diminue l'autonomie de la batterie.



# **Environnement 2**

De même que pour l'environnement précédent, les améliorations du code ne sont pas prises en compte dans les calculs...

| Paramètre               | Valeur            |
|-------------------------|-------------------|
| Туре                    | Multi Trajet      |
| Seuil TEB               | 10 <sup>-</sup> 2 |
| Nombre de trajet        | 2                 |
| Durée entre les trajets | 10 microseconde   |
| Amplitude trajet 1      | 1                 |
| Amplitude trajet 2      | 0,5               |
| Seuil Eb/N0             | < 15dB            |

On sait que:

D = Fe/N

Fe = 1/Tsymbole

Avec Fe fréquence d'échantillonnage, N le nombre d'échantillons par bits et Tsymbole la durée d'un bit (symbole).

On considère ici Fe = 10 MHz on pourrait choisir n'importe quelle valeur de Fe, celle-ci est la plus adaptée a nos simulations, car elle ne nécessite pas un grand nombre d'échantillons par bits pour simuler les débits.

On fait varier le nombre d'échantillons par bits ce qui fait varier le débit, plus N est faible plus le débit est grand. On prend Eb/N0 = 15 dB.

Nous simulons donc avec les paramètres suivants, ceux non spécifiés prennent les valeurs par défaut.

-mess 2000

-form : NRZ et NRZT (car plus performants)

-snrpb : 15



-nbEch : varie en fonction du débit -> nbEch = Fe/D

-ti : nombre d'échantillons varie en fonction de Fe -> delta\_t \* Fe = 10us \* 10MHZ, ici 100 0.5

En moyenne, nous retrouvons ces valeurs de TEB :

Les simulations sont faites à partir de la classe SimulateurNbEch. Voici les résultats intéressants de 5 à 380 tous les 15 échantillons :

| NbEch | Débit bit/s | TEB NRZT | TEB NRZ |
|-------|-------------|----------|---------|
| 5     | 2000000     | 0.1255   | 0.129   |
| 20    | 500000      | 0.1245   | 0.1285  |
| 35    | 285714,2857 | 0.121    | 0.0975  |
| 50    | 200000      | 0.132    | 0.1255  |
| 65    | 153846,1538 | 0.09     | 0.07    |
| 80    | 125000      | 0.1115   | 0.0865  |
| 95    | 105263,1579 | 0.1215   | 0.105   |
| 110   | 90909,09091 | 0.12     | 0.078   |
| 125   | 80000       | 0.1015   | 0.0495  |
| 140   | 71428,57143 | 0.0845   | 0.0315  |
| 155   | 64516,12903 | 0.0685   | 0.0185  |
| 170   | 58823,52941 | 0.0445   | 0.0125  |
| 185   | 54054,05405 | 0.033    | 0.008   |
| 200   | 50000       | 0.034    | 0.007   |
| 215   | 46511,62791 | 0.0315   | 0.002   |
| 230   | 43478,26087 | 0.0205   | 0.0035  |
| 245   | 40816,32653 | 0.0175   | 0.0025  |
| 260   | 38461,53846 | 0.02     | 5.0E-4  |
| 275   | 36363,63636 | 0.0165   | 0.0025  |
| 290   | 34482,75862 | 0.013    | 0.002   |
| 305   | 32786,88525 | 0.014    | 0.0     |
| 320   | 31250       | 0.011    | 5.0E-4  |
| 335   | 29850,74627 | 0.012    | 5.0E-4  |
| 350   | 28571,42857 | 0.01     | 0.001   |
| 365   | 27397,26027 | 0.0065   | 0.001   |
| 380   | 26315,78947 | 0.0075   | 5.0E-4  |



Nous devons obtenir un TEB < 10^-2

On utilise donc un nbEch autour de 185 en NRZ

Soit un débit de 54kbit/s

Pour un TEB < 10^-3 avec le même débit, on utilise un codeur pour améliorer les performances, toujours en NRZ.

Cette fois, le débit utilisé : D = Fe/N/3. Car 3 bits réels pour représenter un bit utile.

Donc N = Fe/3\*D ->  $10000000/3*54000 \approx 62$ 

On lance donc une simulation avec un nbEch de 62 et le paramètre codeur d'activé. Avec 1000 bits

On obtient un TEB = variant entre 1.0E-4 et 5.0E-4, donc bien inférieur à 10^-3

Sur 10000 bits, 0.0022 en NRZT et 0.0 en NRZ:

```
_/sit213 main !1 ?2 ) ./simulateur -mess 10000 -form NRZ -snrpb 15 -ti 100 0.5 -codeur -nbEch 62
java Simulateur -mess 10000 -form NRZ -snrpb 15 -ti 100 0.5 -codeur -nbEch 62 => TEB: 0.0

-/sit213 main !1 ?2 ) ./simulateur -mess 10000 -form NRZT -snrpb 15 -ti 100 0.5 -codeur -nbEch 62
java Simulateur -mess 10000 -form NRZT -snrpb 15 -ti 100 0.5 -codeur -nbEch 62 => TEB: 0.0022
```

4.

Nous disposons des résultats de simulations qui montrent les TEB en fonction du nombre d'échantillons par bit (NbEch) pour des formes d'onde NRZ et NRZT.

Selon ces résultats, pour un TEB < 10^-2, en NRZ, il faut utiliser environ 185 échantillons par bit, ce qui correspond à un débit de 54 kbit/s, pour Fe = 10MHz.



5.

Pour un TEB < 10^-3 avec un débit identique, l'utilisation d'un codeur est nécessaire.

D'après les résultats, on voit que pour atteindre un TEB < 10^-3, un codeur doit être utilisé en NRZ. Le débit effectif est réduit par un facteur de 3 car le codeur représente 1 bit utile par 3 bits transmis.

Avec un débit de 54 kbit/s et un codeur activé, le nombre d'échantillons par bit est ajusté à 62, et le TEB obtenu varie entre 0.0 et 5.0E-4, ce qui est bien inférieur au seuil de 10^-3.

# Conclusion

En conclusion, les simulations effectuées ont permis de répondre aux exigences du client dans les deux environnements.

Dans l'environnement 1, où la minimisation de la consommation d'énergie était importante, la forme d'onde NRZ a été identifiée comme la solution la plus économe, permettant d'atteindre un TEB inférieur à 10<sup>-3</sup> avec une puissance d'émission de 7,07 µW et une autonomie de la batterie de 4,9 jours. L'utilisation d'un codeur correcteur d'erreurs a amélioré le TEB, mais cela conduit à une consommation d'énergie plus élevée, réduisant ainsi l'autonomie à 3,4 jours.

Dans l'environnement 2, pour un canal à trajets multiples, nous avons montré qu'un débit maximal de 54 kbit/s peut être atteint en utilisant la modulation NRZ avec un TEB inférieur à 10<sup>-2</sup>. L'ajout d'un codeur permet d'atteindre un TEB inférieur à 10<sup>-3</sup> avec un même débit, répondant ainsi aux exigences de fiabilité du client.