Process flow title:	Minimal MOS Capacitor Process	Revision:	Rev 0.5
Contact email:	jephin@dtu.dk	Contact name:	Jeppe Hinrichs
Contact phone:	Not applicable		
LabMan-ager group:	Not applicable	Batch name:	TBD
Date of creation:	2025-08-15	Date of revision:	2025-08-28

Process Overview

A process flow for fabricating MOS capacitors with a polysilicon gate and Ti/Al electrode.

Key Specifications

• Gate oxide: $35 \,\mathrm{nm}$ thermal SiO_2

- Gate electrode: $400\,\mathrm{nm}$ n+ polysilicon

• Backside contact: 400 nm aluminum

Critical Safety

• HF handling: Apron+gloves, face shield, no lone working, no glass beakers!

• Furnace: Thermal gloves for >800 °C operations

• Metal anneal: confirm Al spiking risk mitigated by Ti barrier, avoid ≥ 450 °C for Al

1 Starting Material

Substrate	Specification	Thickness	Box Name	Qty
Silicon	p-type <100>, 6", 1-10 Ω ·cm	$500\mu\mathrm{m}\pm20\mu\mathrm{m}$	SP632	5

2 Critical Layers

Layer	Material	Thickness
Gate oxide	Thermal SiO_2	$35\mathrm{nm}$
Gate electrode	n+ Poly-Si	$400\mathrm{nm}$
Back barrier/adhesion	Ti	$100\mathrm{nm}$
Back contact	Al	$400\mathrm{nm}$

3 Core Process Flow

Table 1: MOS Capacitor Process Flow

	Table 1. MOD Capacitor 1 focess 1 fow			
Step	Process	Equipment	Parameters	Comment
1]	Dry-Ox	
1.1	Inspection	4-point probe + Thickness tool	Measure resistivity and thickness on one wafer	Verify starting material specifications.
1.2	Pre-oxidation clean	RCA bench	Standard RCA clean	Can be skipped for fresh, out-of-the-box wafers.
1.3	Gate SiO_2 growth	Furnace: Oxidation (8") E1	Recipe: DRY1000 Oxidation time: 40 min Anneal time: 20 min	Target thickness: 35 nm.
1.4	Inspection	Ellipsometer		Verify oxide thickness.
2			Poly-Si	
2.1	Pre-deposition clean	RCA bench	Standard RCA clean	Required if wafers were stored after Step 1.
2.2	Poly-Si deposition	Furnace: LPCVD Poly-Si (6") E2	Recipe: POLYBOR Deposition time: 2 h Target thickness: 400 nm.	ATT: Requires extensive equipment prep.
2.3	Inspection	Filmtek / Ellipsometer		Verify poly-Si thickness.
3		Ann	eal Poly-Si	
3.1	Pre-anneal clean	RCA bench	Standard RCA clean	Required if wafers were stored after Step 2.
3.2	Poly-Si anneal	Furnace: Oxidation (8") E1	Recipe ANN1000: 20 min at $1000^{\circ}\mathrm{C}$	Activates dopants and improves film quality.
4		Backsid	le Poly-Si etch	
4.1	DRIE tool preparation	DRIE – Pegasus 3	Recipe: TDESC, 5 min	Chamber conditioning step.
4.2	Backside poly-Si etch	DRIE – Pegasus 3	Recipe: SF6_02_250W_0.7_0.3	Removes blanket poly- Si from backside.
4.3	DRIE tool clean	DRIE – Pegasus 3	Recipe: 20 min stabilization $+$ 10 min clean	Post-process chamber cleaning.
5	Backside oxide etch			
5.1	Backside oxide etch	Wet bench 04: BHF 2	$40\mathrm{s}$ (etch rate $75\mathrm{nm/min}$ to $80\mathrm{nm/min}$)	Removes backside oxide (35 nm) prior to metal deposition.
6		Etch	gate Poly-Si	

Continued on next page

Table 1: MOS Capacitor Process Flow (Continued)

Step	Process	Equipment	Parameters	Comment
6.1	Lithography: Coat	Spin Coater: Gamma UV	Sequence 1611: 1.5 µm HMDS resist. Spin: 30 s @ 4600 rpm. Softbake: 90 s @ 90 °C.	
6.2	Lithography: Expose	Aligner: MLA2	Mask: gate_poly. Laser: 375 nm. Dose: 325 mJ/cm ² . Defocus: 2. Mode: Quality.	Invert polarity.
6.3	Lithography: Develop	Developer: TMAH UV-lithography	Sequence 3001: PEB 60 s @ 100 °C, SP 60 s.	
6.4	Inspection	Optical microscope	Check gate pattern and alignment marks	
6.5	DRIE tool preparation	DRIE – Pegasus 3	Recipe: TDESC for 5 min	Chamber conditioning step.
6.6	Poly-Si etch	DRIE – Pegasus 3	Recipe: SF6_02_250W_0.7_0.3	Etches the 400 nm poly- Si layer.
6.7	DRIE tool clean	DRIE – Pegasus 3	Recipe: 20 min stabilization $+$ 10 min clean	Post-process chamber cleaning.
6.8	Inspection	DekTak	Check step height	Verify poly-Si is etched through.
6.9	Resist strip	Wet bench 06	Strip time: 10 min	
6.10	Final gate inspection	DekTak	Measure heights and widths	Verify critical dimensions (CD).
7	Backside electrode			
7.1	Lithography: Coat	Spin Coater: Gamma UV	Sequence 2411: 1.5 μm nLOF 2020 resist. Spin: 6000 rpm. Softbake: 120 s @ 110 °C.	
7.2	Lithography: Expose	Aligner: MLA2	Mask: gate_electrode. Laser: 375 nm. Dose: 450 mJ/cm ² . Defocus: 0. Mode: Quality.	TEST exposure.
7.3	Lithography: Develop	Developer: TMAH UV-lithography	Sequence 3001: PEB $60 s @ 110 ^{\circ}\text{C}$, SP $60 s$	
7.4	Inspection	Optical microscope	Check backside pattern and alignment marks	
7.5	Metal deposition (Ti)	Temescal	Ti: 100 nm	Serves as adhesion/barrier layer.

Continued on next page

Table 1: MOS Capacitor Process Flow (Continued)

Step	Process	Equipment	Parameters	Comment
7.6	Metal deposition (Al)	Temescal	Al: 400 nm	Main backside contact metal.
7.7	Lift-off	Wet bench 07		
7.8	Inspection: Post-lift-off	Optical microscope		Check pattern and alignment marks.
7.9	Contact anneal	C4 Al-anneal	Standard recipe 20 min	Stabilizes the Ti/Al Si contact. Avoid \geq 450 °C (Al spiking).

4 Critical Checks

Step	QC Verification
1.3	Oxide thickness: $35 \mathrm{nm} \pm 1 \mathrm{nm}$ (ellipsometer, monitor wafer)
2.2	Poly-Si thickness: $400 \mathrm{nm} \pm 20 \mathrm{nm}$ (ellipsometer/Filmtek)
3.2	Poly n+ sheet resistance: $\leq 30 \ \Omega/\Box$ (4-point probe)
6.6	Gate CD: \pm 0.5 µm (optical inspection / DekTak)
5.1	Backside oxide fully removed (contact-angle test drop, ellipsometer, or monitor wafer)
7.5	Backside Ti sheet resistance $\approx 0.3~\Omega/\Box~(100\mathrm{nm}~\mathrm{Ti})$
7.6	Backside Al sheet resistance $\approx 0.07~\Omega/\Box~(400\mathrm{nm}~\mathrm{Al})$
7.9	Contact anneal; contact resistance to Si governed by Ti/Si interface quality (target $< 1~\Omega \cdot \text{contact}$)

5 Process Flow Diagram

Figure 1: Process flow diagram for MOS capacitor fabrication.

6 Required Figures

Table 2: Cross-sectional illustrations of key process steps in the MOS capacitor fabrication flow.

ID	Step	Description
1	1.1	p-type SI substrate
		Starting Si wafer
1	1.3	Gate oxide (35 nm SiO ₂) p-type Si substrate
		Gate oxide growth
		Gave onthe growth
2	2.2	Polysilicon (blanket) Gate oxide (35 nm SiOx) P-type SI substrate Poly-Si deposition (blanket)
3	3.2	Poly-Si anneal (doped)
		r ory-or annear (doped)
4	4.2	n* polysilicon (blanket) Gate oxide (35 nm SiO ₂) p-type Si substrate
		Backside Poly-Si etched
		Continued or and area

Continued on next page

Table 2: Cross-sectional illustrations of key process steps in the MOS capacitor fabrication flow. (Continued)

5	5.1	n° polysilicon (blanket) Gate oxide (35 nm SiO ₂) p-type Si substrate
6	6.6	Backside oxide etched n* polysilicon gate Gate oxide (35 nm 5iO ₂) p-type Si substrate
		Gate Poly-Si patterned
7	7.5	Cate oxide (35 nm SiO ₂) p-type Si substrate Backside Ti (100 nm)
		Backside Ti deposition
8	7.6	n* polysilicon gate Gate oxide (35 nm SiO ₂) p-type Si substrate Backside Ti (100 nm) Backside Al (400 nm)
9	7.9	Backside Al deposition n* polysilicon gate Gate oxide (35 nm 5lOz) P-type 51 substrate Backside II (1800 nm) Backside (4500 nm; annoslid) Backside contact annealed