Calcolo Numerico ed Elementi di	Prof. L. Dedè	Firma leggibile dello studente	
Analisi	Prof. A. Manzoni		
CdL Ingegneria Aerospaziale	Prof. S. Micheletti		
Appello			
24 gennaio 2019			
Cognome:	Nome:	Matricola:	

ISTRUZIONI

- Riportare le risposte nello spazio indicato.
- Alcuni esercizi richiedono di utilizzare MATLAB; per tali esercizi riportare sul foglio esclusivamente gli output richiesti.
- Utilizzare esclusivamente una penna nera o blu.
- Tempo a disposizione: 3h.

SPAZIO RISERVATO AL DOCENTE

	PART	ΈΙ	
Pre Test			
Esercizio 1			
Esercizio 2			
Totale			
	PART	E II	
Pre Test			
Esercizio 1			
Esercizio 2			
Totale			
	FINA	LE	

Parte I - Pre Test

1. $(1 \ punto)$ Sia $A = \begin{bmatrix} 6 & \beta & 0 \\ 1 & 3 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ una matrice dipendente da un parametro $\beta \in \mathbb{R}$. Per quali valori di $\beta \in \mathbb{R}$ la matrice A ammette un'unica fattorizzazione LU (senza pivoting)?

$$\beta \neq 18$$

- 2. (2 punti) Si consideri la matrice $A = \begin{bmatrix} 1 & 4 & 6 \\ 1 & 7 & 9 \\ 2 & 4 & 5 \end{bmatrix}$ e si determini la sua fattorizzazione LU senza pivoting. Si riporti il valore dell'elemento $u_{33} = (U)_{33}$ della matrice triangolare superiore U. $u_{33} = -3 = -3$
- 3. (2 punti) Sia $A = \begin{bmatrix} 5 \alpha & -\alpha \\ -\alpha & \alpha \end{bmatrix}$ una matrice dipendente da un parametro $\alpha > 0$. Si riporti il valore del numero di condizionamento spettrale di A in termini di α , ovvero K(A) $(K_{sp}(A))$.

$$K(A) = 6,854\,102 \quad \forall \alpha > 0$$

4. (2 punti) Si consideri la matrice $A = \begin{bmatrix} 5 & -4 \\ 2 & 3 \end{bmatrix}$ e il metodo delle potenze (dirette). Assegnato il vettore iniziale $\mathbf{x}^{(0)} = (1\ 0)^T$, si riportino i valori approssimati $\lambda^{(0)}$ e $\lambda^{(1)}$ dell'autovalore ottenuti rispettivamente all'iterata iniziale e dopo l'applicazione di un'iterazione del metodo.

$$\lambda^{(0)} = 5$$
 $\lambda^{(1)} = \frac{117}{29} = 4,034483$

5. (1 punto) Quale tra gli autolavori della matrice $A = \begin{bmatrix} -5 & 0 & 0 \\ 11 & -35 & 0 \\ 42 & 1 & 15 \end{bmatrix}$ può essere determinato applicando il metodo delle potenze inverse? Se ne riporti il valore.

$$\lambda_3(A) = -5$$

6. (1 punto) Si consideri la funzione $f(x) = x + 1 - \frac{1}{x+1}$. Si riporti il valore della prima iterata del metodo di Newton $x^{(1)}$ ottenuta per il valore dell'iterata iniziale $x^{(0)} = \frac{1}{5}$.

$$x^{(1)} = -\frac{1}{61} = -0.016393$$

	ente" vicina a	a a.				
		p =	: 1			
						_
		Parte I	- Esercizi			
ESERCIZIO 1. S ≥ 1. Inoltre, si cons a) (1 punto) Si ripor con matrice di ite	sideri la soluzi ti la condizion	ione di tale sist ne necessaria e s	tema lineare me sufficiente per l	ediante un meto a convergenza d	i un metodo iterativ	
o) (2 punti) Si consid	deri il metodo	o di $Jacobi$ per	la soluzione de	l sistema linear	$A \mathbf{x} = \mathbf{b}$: si presen	ti
l'algoritmo in forr						

(b) (2 punti) Sia $\phi(x) = \frac{24 x - x^4}{16}$. Assumendo il valore dell'iterata iniziale $x^{(0)} = 1$, si applichino N=10 iterazioni di punto fisso. Si riportino i valori delle iterate $x^{(1)},\ x^{(2)}$ e $x^{(N)}$ (utilizzando almeno 4 cifre decimali per indicare il risultato).

 $x^{(2)} = \underline{\qquad 1,889373 \qquad \qquad } x^{(N)} = \underline{\qquad 2}$

(c) (4 punti) Dopo aver risolto il punto (b) e sapendo che $\alpha = 2$, si calcolino e si riportino i valori dei rapporti:

$$\frac{x^{(N)} - \alpha}{x^{(N-1)} - \alpha} = \frac{-\frac{1}{2}}{2}$$

 $\frac{x^{(N-1)} - \alpha}{x^{(N-2)} - \alpha} = \frac{-\frac{1}{2}}{2}$

		$p = \underline{\hspace{1cm}}$	1	_		
2 punti) Si consider	i ora la funzion	e di iterazio	one $\phi(x) = \frac{1}{2}$	$\frac{(3-\theta)x^3+}{3x^2}$	$\frac{8\theta}{}$ dipende	ente dal par
ro $\theta \in \mathbb{R}$. Per quale niziale $x^{(0)}$ "sufficient	e valore di θ il n	netodo delle no al punto	e iterazioni fisso $\alpha = 2$	di punto fiss	so converge	per ogni it
ro $\theta \in \mathbb{R}$. Per qualentiziale $x^{(0)}$ "sufficient	e valore di θ il n	netodo delle	e iterazioni fisso $\alpha = 2$	di punto fiss	so converge	per ogni it
ro $\theta \in \mathbb{R}$. Per qualentiziale $x^{(0)}$ "sufficient	e valore di θ il n	netodo delle no al punto	e iterazioni fisso $\alpha = 2$	di punto fiss	so converge	per ogni it
ro $\theta \in \mathbb{R}$. Per qualentiziale $x^{(0)}$ "sufficient	e valore di θ il n	netodo delle no al punto	e iterazioni fisso $\alpha = 2$	di punto fiss	so converge	per ogni it
ro $\theta \in \mathbb{R}$. Per quale niziale $x^{(0)}$ "sufficient	e valore di θ il n	netodo delle no al punto	e iterazioni fisso $\alpha = 2$	di punto fiss	so converge	per ogni it
aro $\theta \in \mathbb{R}$. Per quale niziale $x^{(0)}$ "sufficies	e valore di θ il n	netodo delle no al punto	e iterazioni fisso $\alpha = 2$	di punto fiss	so converge	per ogni it
aro $\theta \in \mathbb{R}$. Per quale niziale $x^{(0)}$ "sufficies	e valore di θ il n	netodo delle no al punto	e iterazioni fisso $\alpha = 2$	di punto fiss	so converge	per ogni it
aro $\theta \in \mathbb{R}$. Per quale niziale $x^{(0)}$ "sufficies	e valore di θ il n	netodo delle no al punto	e iterazioni fisso $\alpha = 2$	di punto fiss	so converge	per ogni it
$(2 \ punti)$ Si consider $x \in \mathbb{R}$. Per quale niziale $x^{(0)}$ "sufficientata.	e valore di θ il n	netodo delle no al punto	e iterazioni fisso $\alpha = 2$	di punto fiss	so converge	per ogni it
aro $\theta \in \mathbb{R}$. Per quale niziale $x^{(0)}$ "sufficies	e valore di θ il n	netodo delle no al punto	e iterazioni fisso $\alpha = 2$	di punto fiss	so converge	per ogni it

Si utilizzino tali rapporti per determinare l'ordine di convergenza p del metodo delle iterazioni di punto fisso applicato al punto (b) per la ricerca di α . Infine, si giustifichi il valore di p determinato

Parte II - Pre Test

1. (2 punti) Assegnati i nodi equispaziati $x_0, x_1, \dots x_4$ nell'intervallo [0,8] e la funzione $f(x) = 4(1-\sqrt{x})$, si consideri l'interpolante composito lineare $\Pi_1^H(x)$ interpolante f(x) ai precedenti nodi. Si riporti il valore di $\Pi_1^H(7)$.

$$\Pi_1^H(7) = -6.555834$$

2. (2 punti) Siano assegnati i nodi equispaziati x_0, x_1, \ldots, x_5 nell'intervallo [0,5] e i corrispondenti valori $y_0 = 1, y_1 = 3, y_2 = 3, y_3 = 1, y_4 = 0$ e $y_5 = 0$. Si consideri il polinomio di Lagrange $\Pi_5(x)$ interpolante tali dati ai precedenti nodi e si riporti il valore di $\Pi_5(2.5)$.

$$\Pi_5(2.5) = 2,0625$$

3. (1 punto) Assegnati i nodi $x_0 = 0$, $x_1 = 1$ $x_2 = 2$, $x_3 = 3$ e $x_4 = 4$ e i dati corrispondenti $y_0 = 3$, $y_1 = 0$, $y_2 = 3$, $y_3 = 3$ e $y_4 = 9$, si determini l'espressione della retta di regressione r(x) approssimante tali dati nel senso dei minimi quadrati.

$$r(x) = 0.6 + 1.5 x$$

4. (1 punto) Si consideri la funzione $f(x) = 3^{4x} - 1$. Si riporti il valore approssimato di $f'(\overline{x})$ in $\overline{x} = 0$ ottenuto mediate le differenze finite in avanti, ovvero $\delta_+ f(\overline{x})$, usando il passo $h = \frac{1}{4}$.

$$\delta_c f(\overline{x}) = 8$$

5. (1 punto) Si consideri il seguente problema di Cauchy:

$$\begin{cases} y'(t) = -4y(t) + 50t & t \in (0, +\infty), \\ y(0) = 5. \end{cases}$$

Utilizzando il metodo di Eulero in avanti (Eulero Esplicito) con passo h = 1/8 e $u_0 = y_0 = 5$, si riporti il valore calcolato di u_1 , ovvero l'approssimazione di $y(t_1)$.

$$u_1 = \frac{5}{2} = 2.5$$

6. (2 punti) Si consideri il seguente problema di Cauchy:

$$\begin{cases} y'(t) = 2y(t) + 10t & t \in (0,10], \\ y(0) = 1. \end{cases}$$

Utilizzando il metodo di Crank-Nicolson con passo h = 1/10 e $u_0 = y_0 = 1$, si riporti il valore calcolato di u_1 , ovvero l'approssimazione di $y(t_1)$.

$$u_1 = \frac{23}{18} = 1,277\,778$$

7.	(1 punto) Si consideri l'approssimazione mediante il metodo di Eulero in avanti (Eulero esplicito) del problema di Cauchy:	
	$\begin{cases} y'(t) = -8y(t) & t \in (0, +\infty), \\ y(0) = 7. \end{cases}$	
	Qual è la condizione sul passo di discretizzazione h che garantisce assoluta stabilità?	
	$0 < h < \frac{1}{4}$	
	Parte II - Esercizi	
Es	ercizio 1.	
	(2 punti) Si descriva la formula di quadratura del punto medio composita per l'approssimazione dell'integrale $I(f) = \int_a^b f(x) dx$; si definisca tutta la notazione utilizzata e si fornisca l'interpretazione grafica della formula.	12 punti
	$(3\ punti)$ Si definiscano l'ordine di accuratezza p e il grado di esattezza r di una generica formula di quadratura (composita).	

		la di quadratura de sisione le risposte d		composita, si	riportino i valori	$\operatorname{di} p \in r; s$
e) (2 punt	i) Si ricavi l'e	spressione dell'erro	ore della formul	a di quadratu	ıra del <i>punto medi</i>	o semplice
					- 	
l) <i>(3 punt</i>	i) Si utilizzino	o opportuni coman	di Matlab [®] per	approssimar	e il seguente integr	rale:
		I(f) :	$= \int_0^1 4(1+x^2)$	$-x^4$) dx		
		di quadratura del alcolino e si riporti				
		a semplice) e $M =$			j) dell'illografe d	omzzando

 $\widetilde{E}_{10}(f) \leq \underline{\frac{1}{60} = 0.016\,667}$ Versione n. 1 – Soluzioni – Pag. 9

Per il caso M=10 si riporti il valore dell'errore stimato, ovvero $\widetilde{E}_{10}(f)$.

(e)	(2 punti) Si consideri ora la formula di quadratura di Gauss-Legendre (semplice) con $n+1$ nodi per approssimare l'integrale $I(f)$ di cui al punto (d); si indichi con $I_n^G(f)$ il valore approssimato dell'integrale corrispondente. Si usi tale formula nel caso $n=1$ sapendo che nell'intervallo di riferimento $\widehat{I}=[-1,1]$ i nodi di quadratura sono $\widehat{y}_0=-\frac{1}{\sqrt{3}}$ e $\widehat{y}_1=+\frac{1}{\sqrt{3}}$, mentre i pesi di quadratura sono $\widehat{\alpha}_0=\widehat{\alpha}_1=1$. Si riporti il valore dell'integrale così approssimato, ovvero $I_1^G(f)$.
	$I_1^G(f) = \underline{\qquad \qquad 4,555556}$
	Qual è il grado di esattezza r di tale formula?
	ERCIZIO 2. consideri il seguente problema a valori ai limiti (di diffusione–trasporto):
	$\int -u''(x) + V u'(x) = f(x)$ in (a,b) ,
	$\begin{cases} -u''(x) + V u'(x) = f(x) & \text{in } (a,b), \\ u(a) = \alpha, \\ u(b) = \beta, \end{cases} $ (1)
	e $a, b, \alpha, \beta \in V \in \mathbb{R}$, con $V > 0$. (3 punti) Si approssimi il problema ai limiti (1) con uno schema alle differenze finite centrate (del second'ordine) su una griglia di $N + 2$ nodi equispaziati $\{x_i\}_{i=0}^{N+1}$, con $x_0 = a, x_i = x_0 + i h$ per $i = 0, \ldots, N+1$ e passo $h = (b-a)/(N+1)$. Si riportino le equazioni del sistema risultante in forma esplicita definendo tutta la notazione utilizzata.

10 punti

(1 punto) Si ri	porti la controp	arte algebrica o	dell'approssima	zione di cui al p	unto (a), ovve
sistema lineare		endo l'espression	ne dei coefficier	nti della matrice	
$(1 \ punto)$ Si cone $\beta = 7$. Si veri si riporti la pro	nsiderino ora i se fichi che la soluz cedura seguita.	guenti dati per ione esatta del	il problema (1): problema è data	V = 10, f = 0, a da $u(x) = 7 (e^{1})$	$a = 0, b = 1, c$ $0x - 1$ / $(e^{10}$

(d)	(4 punti) Si risolva il problema ai limiti (1) con i dati di cui al punto (c) tramite il metodo descritto
	al punto (a), ovvero risolvendo il sistema lineare definito al punto (b), per il valore $N=9$ (per
	risolvere il sistema lineare si utilizzi il comando "back-slash" di Matlab® \). Si riporti il valore
	della soluzione approssimata nel nodo x_8 , ovvero u_8 .

$$u_8 = \underline{0,7776724}$$

Si risolva ora il problema per N=9, 19, 39 e 79 e, usando la soluzione esatta u(x) data al punto (c), si calcolino e si riportino per ogni N gli errori corrispondenti $E_N=\max_{i=0,\dots,N+1}|u_i-u(x_i)|$ (si usino almeno 4 cifre decimali in formato esponenziale).

(e) (1 punto) Dopo aver risposto al punto (d), si stimi algebricamente l'ordine di convergenza p del metodo rispetto ad h (ovvero (b-a)/(N+1)) riportando sinteticamente la procedura seguita.

$$p = \underline{2,0074}$$