Financial Series Prediction Using Attention LSTM

Minsung Han

DSP Presentation minsung.han@gmail.com

September 20, 2019

Minsung Han DSP September 20, 2019 1 / 15

Introduction

About the paper

- Title: Financial Series Prediction Using Attention LSTM
- Authors: Sangyeon Kim (Graduate student, SNU), Myungjoo Kang (Professor in Applied Math, SNU)

Structure of the paper

- Introduction
- Related Works
- Data Set
- Methodologies: MLP / 1D-CNN / LSTM / Attention Networks / Weighted Attention Networks
- Experimental Results: Best Lookback Days / Results of Various Deep Learning Models / Visualization Attention Vectors
- Conclusion

Introduction

- Predicting the trends of financial markets is one of the most important tasks for investors.
- Stock Market Data are collections of time series.
- Deep learning has been widely used in classification problems when non-linearity exists
- What about applying deep learning technique to stock market data?
- Little bit of background...
 - Technical analysis is a traditional method that uses historical stock prices and trading volumes to determine the trends of future stock movements. (Chart-ist)
 - Fundamental analysis predicts stock prices by using intrinsic values.
 (Warren Buffett)

Related Works

- Kohzadi[1]: used ANN and ARIMA models for forecasting commodity prices and compared the results.
- Kara[2]: applied ANNs and SVMs to predict the Istanbul Stock Exchange (ISE) National 100 Index prices.
- Qian et al. [6]: compared various models, ARIMA, SVMs, DAE (Denoising Autoencoder), and mixture of the above.
- Pyo et al. [7]: predicted the KOSPI 200 index with SVMs and ANNs using Google Trends.
- Bao et al. [13]: proposed a deep learning framework for financial time series using stacked autoencoders and long-short term memory.

4 / 15

Minsung Han DSP September 20, 2019

Data Set

Daily Return at t+1:

$$r[t+1] = \frac{closeprice[t+1] - closeprice[t]}{closeprice[t]} \tag{1}$$

Input: daily return with other index (the currency, commodities, and global indexes) for the look back period p. x[t] = [Rt[0]; ...; Rt[p]].

Trend at t for q:

$$trend[t, q] = \frac{closeprice[t + q] - closeprice[t]}{closeprice[t]}$$
(2)

Target label: if trend[t] < 0

$$y[t] = [1, 0] (3)$$

Otherwise

$$y[t] = [0,1] \tag{4}$$

 Minsung Han
 DSP
 September 20, 2019
 5 / 15

Methodologies

MLP

- Four layers. Each hidden layer contained 64 hidden neurons.
- flattened the input matrix to create an input vector, which was used to feed our model.

1D-CNN

- we recommend using a model with two convolutional layers and three fully connected layers.
- A 1D CNN is expected to capture data locality well when a kernel slides across the input data.

LSTM

• ?

Attention Networks

• ?

Network Sketch for (Weighted) Attention Networks

Weighted Attention Network

Original loss

$$H_{y'}(y) := -\sum_{i} (y'_i \log(y_i) + (1 - y'_i) \log(1 - y_i))$$

New loss; considering magnitudes for the weighted attention

$$H_{y'}^{weighted}(y) := -abs(change_ratio_i) * \sum_i (y_i' \log(y_i) + (1 - y_i') \log(1 - y_i))$$

Performance Measure

$$\begin{aligned} hit \ ratio &= \frac{\sum_{i=1}^{N} prediction_i}{N}, \\ prediction_i &= \begin{cases} 1 & if \ prediction_i \cdot real_i > 0 \\ 0 & otherwise \end{cases} \end{aligned}$$

Minsung Han DSP September 20, 2019 8 / 15

Best lookback days

Hit ratios for various deep learning models for each lookback day

Performance of Deep Learning Models

Fix lookback day=6. Hit ratios for various deep learning models.

The Best Model

- Weighted Attention Network (modified loss function)
- Lookback day=60 (12 weeks)
- 40 predicting days

	Dataset	Attention Networks	Weighted Attention Networks
Positive	0.602	0.709	0.825
Negative	0.398	0.723	0.671
Total	1.0	0.715	0.763
Earn points	1525.20	1090.718	1257.462

Attention Vector of Factors

ullet The dollar currency index / SP 500 global index

 Minsung Han
 DSP
 September 20, 2019
 12 / 15

Attention Vector of Days

• t-1 / t-15

Conclusion

- Tested various deep learning models for predicting the trends of the KOSPI 200 index.
- Found that lookback days with 60 trading days returned higher hit ratios with various models.
- When 60 trading days considered as lookback days, using 40 trading days as prediction days returned the highest hit ratio with the attention networks model.
- The highest earn points were returned when we used weighted attention networks, as loss functions were minimized when improved at higher change ratios.

Thank you