RISC-V ISA 分為,

_	Basic				
Name	Description				
RV32I	Base Integer Instruction Set, 32-bit				
RV32E	Base Integer Instruction Set (embedded), 32-bit, 16 registers				
RV64I	Base Integer Instruction Set, 64-bit				
RV128I	Base Integer Instruction Set, 128-bit				

ISA 需包含:

O. Instruction set

(a) Hardware information: I. Register

II. Memory

III. addressing mode

IV. instruction format

Instruction Set: 指台分為: @ Arithmetic

Dota transfer

D. Logical

D. Shift

D. Conditional Branch

O. Uncanditional Branch

O. Arithmetic:	Instruction	Example	Meaning	Comments
1 i prime ci o	Add	add x5, x6, x7	x5 = x6 + x7	3 register operands; add
	Subtract	sub x5, x6, x7	x5 = x6 - x7	3 register operands; subtract
	Add immediate	addi x5, x6, 20	x5 = x6 + 20	Used to add constants
	Add upper immediate to PC	auipc x5, 20	x5 = PC + (20 << 12)	used to build pc-relative addresses

3 .	Data	transfer	:
	rala	Trulyter	•

Instruction	Example	Meaning	Comments
Load doubleword	ld x5, 40(x6)	x5 = Mem [x6 + 40]	Doubleword from Mem. to Reg.
Store doubleword	sd x5, 40(x6)	Mem $[x6 + 40] = x5$	Doubleword from Reg. to Mem.
Load word	lw x5, 40(x6)	x5 = Mem [x6 + 40]	Word from Mem. to Reg.
Load word unsigned	lwu x5, 40(x6)	x5 = Mem [x6 + 40]	Unsigned word from Mem. to Reg.
Store word	sw x5, 40(x6)	Mem $[x6 + 40] = x5$	Word from Reg. to Mem.
Load halfword	lh x5, 40(x6)	x5 = Mem [x6 + 40]	Halfword from Mem. to Reg.
Instruction	Example	Meaning	Comments
Instruction Load halfword unsigned	Example Ihu x5, 40(x6)	Meaning x5 = Mem [x6 + 40]	Comments Unsigned halfword from Mem. to Reg.
		3	
Load halfword unsigned	lhu x5, 40(x6)	x5 = Mem [x6 + 40]	Unsigned halfword from Mem. to Reg.
Load halfword unsigned Store halfword	lhu x5, 40(x6) sh x5, 40(x6)	x5 = Mem [x6 + 40] Mem [x6 + 40] = x5	Unsigned halfword from Mem. to Reg. Halfword from Reg. to Mem.
Load halfword unsigned Store halfword Load byte	lhu x5, 40(x6) sh x5, 40(x6) lb x5, 40(x6)	x5 = Mem [x6 + 40] Mem [x6 + 40] = x5 x5 = Mem [x6 + 40]	Unsigned halfword from Mem. to Reg. Halfword from Reg. to Mem. Byte from Mem. to Reg.

D. Logical;

Instruction	Example	Meaning	Comments
And	and x5, x6, x7	x5 = x6 & x7	3 reg. operands; bit-by-bit AND
Inclusive or	or x5, x6, x7	x5 = x6 x7	3 reg. operands; bit-by-bit OR
Exclusive or	xor x5, x6, x7	x5 = x6 ^ x7	3 reg. operands; bit-by-bit XOR
And immediate	andi x5, x6, 20	x5 = x6 & 20	Bit-by-bit AND reg. with constant
Inclusive or immediate	ori x5, x6, 20	x5 = x6 20	Bit-by-bit OR reg. with constant
Exclusive or immediate	xori x5, x6, 20	x5 = x6 ^ 20	Bit-by-bit XOR reg. with constant

a shift:

Instruction	Example	Meaning	Comments
Shift left logic	sll x5, x6, x7	x5 = x6 << x7	Shift left by register
Shift right logic	srl x5, x6, x7	x5 = x6 >> x7	Shift right by register
Shift right arithmetic	sra x5, x6, x7	x5 = x6 >> x7	Arithmetic shift right by register
Shift left logic immediate	sll x5, x6, 3	x5 = x6 << 3	Shift left by immediate
Shift right logic immediate	srl x5, x6, 3	x5 = x6 >> 3	Shift right by immediate
Shift right arithmetic immediate	sra x5, x6, 3	x5 = x6 >> 3	Arithmetic shift right by immediate

0.	Cond	tional	E	ranci	h

Instruction	Example	Meaning	Comments
Branch if equal	beq x5, x6, 100	If $(x5 = x6)$ go to PC + 100	PC-relative branch if equal
Branch if not equal	bne x5, x6, 100	If (x5 != x6) go to PC + 100	PC-relative branch if not equal
Branch if less than	blt x5, x6, 100	If (x5 < x6) go to PC + 100	PC-relative branch if less
Branch if greater & eq.	bge x5, x6, 100	If (x5 ≥ x6) go to PC + 100	PC-relative branch if greater or equal
Branch if less, unsigned	bltu x5, x6, 100	If (x5 < x6) go to PC + 100	PC-relative branch if less, unsigned
Branch if ≥, unsigned	bgeu x5, x6, 100	If $(x5 \ge x6)$ go to PC + 100	PC-relative branch if ≥, unsigned

©. Un conditional Branch

1 1	Instruction	Example	Meaning	Comments
	Jump & link	jal x1, 100	x1 = PC+4; go to PC + 100	PC-relative procedure call
	Jump & link reg.	jalr x1, 100(x5)	x1 = PC+4; go to x5 + 100	Procedure return; indirect call

Instruction Set # 1879;

1. Nop #\$ \$ 为 add: x0, x0, 0 | MIPS 為 sll \$50, \$50, 0)

- The combination of an AUIPC and the 12-bit immediate in a JALR can transfer control to any 32-bit PC-relative address, while an AUIPC plus the 12-bit immediate offset in regular load or store instructions can access any 32-bit PC-relative data address.
- 3. The current PC can be obtained by setting the U-immediate to $\boldsymbol{0}$

L1: add x5, x6, x7

Decimal	Bin	ary
2000000	00000000000111101000	010010000000
488	00000000000111101000	
1152		010010000000
Instruction	auipc x5, 488	jalr x1, 1152(x5)

 $X5 \leftarrow PC: auipc x5, 0$

I. Register: RISC-V 共有32764 bit by register file (x0~x31)
32-bit data 為 word
64-bit data 為 double word

Register	Symbol name	Description	Saver
х0	zero	Hard-wired zero	
x1	ra	Return address	Caller
x2	sp	Stack pointer	Callee
х3	gp	Global pointer	
х4	tp	Thread pointer	
x5 - x7	t0 - t2	Temporaries	Caller
x8	s0 / fp	Saved register/frame pointer	Callee
х9	s1	Saved register	Callee
x10-x11	a0 - a1 / v0 - v1	Function arguments/return values	Caller
x12 - x17	α2 - α7	Function arguments	Caller
x18 - x27	s2 - s11	Saved registers	Callee
x28 - x31	t3 - t6	Temporaries	Caller

II. Memory: 1 data structure 無法 Sit in register = 女須達退	main memory # access	
arrays, structures, dynamic data	,	_
a. byte-addressing = Ti memory address \$ 64-6it	000 0	+
3. mem physical space size. 2 ⁶⁴ bytes	:	
4 1 doubleword access to access 11 1 address		
5. little edian 56	1	
00 12 27 16 00 12 37 16 00		
i	ı	
6. TH want a known and	111111	-

II. Instruction Format:

" R-type format

RISC-V instruction 為 32 个 bits 長

· 為little edian

NIOC-V instruction / う 3d 7 bits to										5 I TIK Edian
共有: " R-type format	Instruction Formats	31	30 29 28 27 26 25	24 23 22 21	20	19 18 17 16 15	14 13 12	11 10 9 8	7	6 5 4 3 2 1 0
a. I-type format	Register (R)		funct7	rs2		rs1	funct3	rd		opcode
3. U-type format	Immediate (I)		imm[11:	0]		rs1	funct3	rd		opcode
4. S-type format	Upper Imm. (U)			imm[31:12]			rd		opcode	
	Store (S)		imm[11:5]	rs2		rs2 rs1		imm[4:0]		opcode
s. B-type format	Branch (B)	12	imm[10:5]	rs2		rsl	funct3	imm[4:1]	11	opcode
6. To two forms of	Jump (J)	20 imm[10:		1]	11	imm[19:1	2]	rd		opcode

- 1. opcode (7 bit): partially specifies which of the 6 types of instruction formats
- 2. funct7 + funct3 (10 bit): combined with opcode, these two fields describe what operation to perform
- 3. rs1 (5 bit): specifies register containing first operand
- 4. rs2 (5 bit): specifies second register operand

func7

5. rd (5 bit): destination register specifies register which will receive result of computation

func3

OPcode

: register 编号为32 lits = Instruction format + register encoding 為5 lit

7/		7-bit	5-bit	5-bit	3-bit	5-bit	7-bit	
	Example	ADD x9, x20,	x21					
	Encoding	0000000 7-bit	10101 5-bit	10100 5-bit	000 3-bit	01001 5-bit	0110011 7-bit	
	v	Arithmetic: {ADI		d} × {Set i	f Less Tho	an}		
	Variations	Logical: {AND, G		Right-Arithr	netic}			

	0								
			Pcode						
-type format		12-bit 5-bit 3-bit 5-bit	7-bit						
970									
	Example1	ADDI x9, x20, 21							
		000000010101 10100 000 01001 00	10011						
	Encoding1		7-bit						
	Example2	LD x9, 24(x10)							
	Encoding2		00011						
		12-bit 5-bit 3-bit 5-bit	7-bit						
	Example1	JALR x1, 24(x10)							
		000000011000 01010 000 00001 1100	0111						
	Encoding 1		bit						
	Example2	SLLI x11, x19, 4							
		funcó immediate							
	Encoding2	func6 immediate	0011						
	Lincouning		bit						
		Arithmetic: {ADDI}							
		Compare: {signed, unsigned} × {Set if Less Than Imm}							
	Variations	Logical: {ANDI, ORI, XORI}							
		omits by strong the manife the property of the might							
		Shifts by unsigned imm[4:0]: {SLLI, SRLI, SRAI}							
0 .									
U-type format		Imm[31-12] rd OPc							
-1		20-bit 5-bit 7-k)IT						

	20-bit	5-bit	7-bit
Example	LUI x19, 976		
	0000 0000 0011 1101 0000	10011	0110111
Encoding	20-bit	5-bit	7-bit
Example	AUIPC x6, 976		
Encoding	0000 0000 0011 1101 0000	00110	0010111

		- 1	mm[1	1-5]	rs2		rs 1	func	3 Ir	nm[4-0)]	OPcod	de	
			<i>7</i> -bi	it	5-bit		5-bit	3-b	it	5-bit		7-bit	t	
. 1 .1														
pe format	Example	SD	9 24	0(x10)	,									
	Example	JD /	· /, 2-	O(XIO										
	(923) (103)		00001	11	0100		01010	011		10000		01000	11	
	Encoding		<i>7</i> -bi		5-bit		5-bit	3-b		5-bit		7-bit		
	Variations	SW,	SH, S	В										
														0
		11	10	9	8	7	6	5	4	3	2	1	0	
	040	_									_			
	240 →	0	0	0	0	1	1	1	1	0	0	0	0	
format	0	1	nm12	10-5	rs2		rs1	func	3 1	nm4-1	11	OPc	ode	
TOPPHIA			<i>7</i> -b		5-bit		5-bit	3-bi		5-bit		7-l		
			7-6	,11	3-61		J-DII	J-DI	•	3-511		/-1	J11	
		lane and	2		American Company									
	Example	BN	E x10,	x11,	2000									
	Encoding		0 111		0101		01010	001		1000		1100		
			7-b	it	5-bit		5-bit	3-bi	t	5-bit		7-l	oit	
	V	DEC	D D I I	DIT 1	OF 01	T N	CELL.							
	Variations	REC	א, אוויב	, BLI, E	BGE, BL	10, 8	GEU							
											_			0
		12	11	10	9	8	7	6	5	4	3	2	1	0
													١.,	0
	2000 →	0	0	1	1	1	1	1	0	1	0	0	0	
	2000 →	0	0	1	1	1	1	1	0	1	0	0	0	
	2000 →	0	0	1	1		1	1	0	1	0	0	0	
	2000 →	0	0	1	1	1	1	1	0	1	0	0	0	
<i>C.</i>	2000 →	0	0				1		0	1 rd	0	OPco		
Format	2000 →	0	0		n[20, 1		11, 19-1		0				ode	
. Format	2000 →	0	0		n[20, 1	0-1,	11, 19-1		0	rd		OPco	ode	
e Format	Ť			lmn	n[20, 1	0-1,	11, 19-1		0	rd		OPco	ode	
e Format	2000 →		0 AL ×0,	lmn	n[20, 1	0-1,	11, 19-1		0	rd		OPco	ode	
e format	Example			lmn	n[20, 1	<mark>0-1,</mark> 20-bi	11, 19-1	2]	0	rd 5-bi	t	OPcc 7-b	ode bit	
e format	Ť			lmn	n[20, 1	0-1, 20-bi	00000	2]	0	rd 5-bi	t O	OPcc 7-k	ode bit	
ve Format	Example			lmn	n[20, 1	<mark>0-1,</mark> 20-bi	00000	2]	0	rd 5-bi	t O	OPcc 7-b	ode bit	
ve Format	Example			lmn	n[20, 1	0-1, 20-bi	00000	2]	0	rd 5-bi	t O	OPcc 7-k	ode bit	
ve Format	Example			lmn	n[20, 1	0-1, 20-bi	00000	2]	0	rd 5-bi	t O	OPcc 7-k	ode bit	0
ve format	Example Encoding	J	AL ×0,	2000 0 11	n[20, 1	0-1, 20-bi	000000	2]		rd 5-bi	t O	OPcc 7-k	ode bit	
e Formart	Example Encoding		AL x0,	lmn	n[20, 1	0000 0000 0000 0000 0000 0000 0000 0000 0000	000000	2]	9 8	rd 5-bi	0 1	OPcc 7-k	ode bit	2 1

Name	ne Fields								
(Bit position	31:25	24:20	19:15	14:12	11:7	6:0			
(a) R-type	funct7	rs2	rs1	funct3	rd	opcode			
(b) I-type	immediate	e[11:0]	rs1	funct3	rd	opcode			
(c) S-type	immed[11:5]	rs2	rs1	funct3	immed[4:0]	opcode			
						0			
(d) SB-type	immed[12,10:5]	rs2	rs1	funct3	immed[4:1,11]	opcode			