

AD724152

COPY NO. 40

TECHNICAL MEMORANDUM 1982

A METHOD OF CHOOSING PROJECTILE
MANUFACTURING TOLERANCES SO AS TO
MINIMIZE COSTS OF PRODUCTION WHILE
SATISFYING FUNCTIONAL REQUIREMENTS

EUGENE FRIEDMAN
EDWARD LACHER
CHIU NG

DECEMBER 1970

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC
RELEASE AND SALE; ITS DISTRIBUTION IS UNLIMITED.

D D C
RECORDED
MAY 25 1971
REFUGEE C

PICATINNY ARSENAL
DOVER, NEW JERSEY

REFERENCE ID:	
REF ID:	WHITE SECTION <input checked="" type="checkbox"/>
200	BEIGE SECTION <input type="checkbox"/>
REINFORCED <input type="checkbox"/>	
NOTIFICATION	
CY	
DISTRIBUTION/AVAILABILITY CODES	
BEST.	AVAIL. USE OR SPECIAL
A	

The findings in this report are not to be construed as an official Department of the Army position.

DISPOSITION

Destroy this report when no longer needed. Do not return to the originator.

Technical Memorandum 1982

A METHOD OF CHOOSING PROJECTILE MANUFACTURING TOLERANCES
SO AS TO MINIMIZE COSTS OF PRODUCTION WHILE SATISFYING
FUNCTIONAL REQUIREMENTS

by

Eugene Friedman
Edward Lacher
Chiu Ng

December 1970

This document has been approved for public release and
sale; its distribution is unlimited.

AMCMS Code 4810.16.2911.6

Engineering Sciences Laboratory
Feltman Research Laboratories
Picatinny Arsenal
Dover, New Jersey

UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA - R & D

(Security classification of title, body of abstract and indexing correlation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author)	2a. REPORT SECURITY CLASSIFICATION
Picatinny Arsenal, Dover, New Jersey	Unclassified
	2b. GROUP

3. REPORT TITLE

A METHOD OF CHOOSING PROJECTILE MANUFACTURING TOLERANCES SO AS TO MINIMIZE COSTS OF PRODUCTION WHILE SATISFYING FUNCTIONAL REQUIREMENTS

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

5. AUTHOR(S) (First name, middle initial, last name)

Eugene Friedman Chiu Ng
Edward Lacher

6. REPORT DATE

7a. TOTAL NO. OF PAGES

7b. NO. OF REPS

12

8a. CONTRACT OR GRANT NO.

8b. ORIGINATOR'S REPORT NUMBER(S)

9a. PROJECT NO.

Technical Memorandum 1982

9c. AMCMS Code 4810.16.2911.6

9d. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is unlimited.

11. SUPPLEMENTARY NOTES

12. SPONSORING MILITARY ACTIVITY

13. ABSTRACT

A method has been devised which allows one to compute the tolerances of dimensions of a projectile or other manufactured item in such a manner as to minimize the costs of production. The method further allows the imposition of any number of inequality constraints (tolerances) on properties of the dimensions (weight, volume, center of mass position, etc.), which will be satisfied to a linear approximation.

A particular form (hyperbolic) for the cost function has been chosen as the example here computed, but the method is not limited to this form. A computer program to facilitate numerical application of this technique has been written, and another program to compute the required sensitivity coefficients for three dimensional mass asymmetry limits is presently in development.

DD FORM 1 NOV 68 1473 REPLACES DD FORM 1473, 1 JAN 64, WHICH IS
OBSOLETE FOR ARMY USE.

UNCLASSIFIED

Security Classification

~~UNCLASSIFIED~~

Security Classification

14. KEY WORDS	LINK A		LINK B		LINK C	
	ROLE	WT	ROLE	WT	ROLE	WT
Tolerance, dimensional Costs of production Weight Volume Center of mass Computation Computer program re tolerancing to minimize costs Sensitivity coefficients Three dimensional mass asymmetry limits						

~~UNCLASSIFIED~~

Security Classification

TABLE OF CONTENTS

	Page
Summary	1
Introduction	1
Discussion	2
Conclusions	6
Distribution List	8

SUMMARY

A method has been devised which allows one to compute the tolerances of dimensions of a projectile or other manufactured item in such a manner as to minimize the costs of production. The method further allows the imposition of any number of inequality constraints (tolerances) on properties of the dimensions (weight, volume, center of mass position, etc.), which will be satisfied to a linear approximation.

A particular form (hyperbolic) for the cost function has been chosen as the example here computed, but the method is not limited to this form. A computer program to facilitate numerical application of this technique has been written, and another program to compute the required sensitivity coefficients for three dimensional mass asymmetry limits is presently in development.

INTRODUCTION

Certain problems of dimensional irregularity encountered during the production of the 175mm, M437 Projectile were brought to the attention of this laboratory. The effects of these irregularities on the static and dynamic unbalances and the effect of these unbalances on the flight of these projectiles were not sufficiently well understood to justify acceptance or rejection of the projectiles in question. During the course of the investigation of the flight dynamic effects of these irregularities (which did not fall within manufacturing tolerances) it became clear that an opportunity existed for the introduction of more sophisticated engineering methods into the decision making process. These methods ought to be useful for evaluation of requests for waiver of tolerance.

The following analysis is an early result of a search for superior techniques for choosing projectile tolerances.

DISCUSSION

If the properties of an item one wishes to control in manufacture are called z^i and these z^i are functions of the dimensions of the item, x^i , and the minimum and maximum acceptable values of z^i are C_1^i , and C_2^i , one may say

$$C_1^i \leq z^i[x^k, k=1, n] \leq C_2^i \quad (1)$$

If we assume that any variation in any actual dimension of an item is small compared to the nominal dimension itself, then

$$\Delta z^i \approx \sum_{k=1}^n \frac{\partial z^i}{\partial x^k} \Delta x^k \quad (2)$$

where the $\frac{\partial z^i}{\partial x^k}$ are evaluated at the nominal dimensions of the item, and are called sensitivity coefficients.

Combining Equations 1 and 2 we obtain, approximately

$$\delta C_1^i \leq \sum_{k=1}^n \frac{\partial z^i}{\partial x^k} \Delta x^k \leq \delta C_2^i \quad (3)$$

where $\delta C_1^i = C_1^i - z^i_{\text{nominal}} \leq 0$, $\delta C_2^i = C_2^i - z^i_{\text{nominal}} \geq 0$

and $\Delta z^i = z^i - z^i_{\text{nominal}}$, $\Delta x^k = x^k - x^k_{\text{nominal}}$

In order to assure that

$$\sum_{k=1}^n \frac{\partial z^i}{\partial x^k} \Delta x^k \leq \delta C_2^i$$

One may require that

$$\frac{\partial z^i}{\partial x^k} \Delta x^k \leq f_k \delta c_2^i \quad (4)$$

where the f_k are not a priori known but obey

$$0 \leq f_k \leq 1 \quad (5)$$

$$\sum_{k=1}^n f_k = 1 \quad (6)$$

and, similarly, to assure that

$$\sum_{k=1}^n \frac{\partial z^i}{\partial x^k} \Delta x^k \geq \delta c_1^i$$

we require that

$$\frac{\partial z^i}{\partial x^k} \Delta x^k \geq f_k \delta c_1^i$$

with the f_k obeying Equations 5 and 6.

Assuming that the f_k be somehow determined for each control property, z^i , the minimum and maximum excursion of the Δx^k can be written

$$\begin{aligned} \Delta x_{i_{\min}}^k &= \frac{\delta c_1^i f_k}{\frac{\partial z^i}{\partial x^k}} & \frac{\partial z^i}{\partial x^k} &> 0. \\ &\equiv \frac{\delta c_2^i f_k}{\frac{\partial z^i}{\partial x^k}} & \frac{\partial z^i}{\partial x^k} &< 0. \end{aligned} \quad (8)$$

and

$$\Delta x_{i_{\max}}^k = \frac{\delta c_2^i f_k}{\frac{\partial z^i}{\partial x^k}} \quad \frac{\partial z^i}{\partial x^k} > 0. \quad (9)$$

$$= \frac{\delta C_1^i f_k}{\frac{\partial z^i}{\partial x^k}} < 0.$$

from Equations 4 and 7.

If these be interpreted as limits on the range of x^k due to the limits imposed on z^i , the intersection over all i of the regions

$$\Delta x_{i\min}^k \leq \Delta x^k \leq \Delta x_{i\max}^k$$

will have bounds δx_{\min}^k and δx_{\max}^k and still obey all requirements within the approximation (Eq 2). These are the intersections of all the sets of restrictions:

$$\delta x_{\min}^k = \max_i (\Delta x_{i\min}^k) \quad (10)$$

$$\delta x_{\max}^k = \min_i (\Delta x_{i\max}^k) \quad (11)$$

The absolute minimum and maximum may be chosen at this point although the f_k are not known. Since for a given k all the $\Delta x_{i\max}^k$ contributing to δx_{\max}^k have the same f_k (and different C 's and $\frac{\partial z^i}{\partial x^k}$'s), the minimum $\Delta x_{i\max}^k$ is the one with minimum $\frac{\delta C}{\partial z^i}$. The same argument holds for δx_{\min}^k .

So for a given projectile and specifications [z , x , C], δx_{\min}^k and δx_{\max}^k are constants times f_k .

It is now necessary to introduce the notion of a cost function, which reflects the unit cost of production with a given process or sequence of processes, and depends on the tolerances required. Given the equipment and size of the lot, the fixed costs are determined. Call this ξ_0 .

It is apparent that there exists some tolerance which is not quite possible to obtain using the l th process; call it η_l . The production cost grows very large as the tolerance.

on this process, $\delta x_{\max}^l - \delta x_{\min}^l$, approaches this η_l and the cost function must reflect this tendency. Further, each process is different and each has its own constant, ξ_l , multiplying its contribution to the total cost. Therefore we define a cost function \$.

$$\$ = \xi_0 + \sum \frac{\xi_l}{\delta x_{\max}^l - \delta x_{\min}^l - \eta_l} \quad (12)$$

where the ξ_l are provided; they reflect the cost of reducing the tolerance on a given process; they need not be given in absolute terms, but relative to each other: i.e., $\xi_j = 2.3 \xi_{j-1}$; and the η_l are the lowest practical value of the tolerance of the l th operation. So the problem proposed is to minimize \$ by a suitable choice of the f_k subject to the conditions $\sum f_j = 1$, $f_j \geq 0$. Note that the δx_j are linear in f_j and are functions only of f_j and the constants of the minimization problem. C_1^i , C_2^i , $\frac{\partial z_i}{\partial x_j}$ are all fixed for a given projectile. Therefore we propose to minimize

$$\$ = \xi_0 + \sum_{l=1}^n \frac{\xi_l}{k_l f_l - \eta_l} \quad (13)$$

where η_l is the tightest tolerance possible by the l th manufacturing operation, and ξ_l is the rate of change of cost with respect to tolerance level for the l th operation, subject to the condition

$$\sum_{l=1}^n f_l = 1 \Leftrightarrow \sum_{l=1}^n (f_l - \frac{1}{n}) = 0 \quad (6a)$$

Equations 5, 6a, and 13 can be combined into

$$\$ = \xi_0 + \sum \left[\frac{\xi_l}{k_l f_l - \eta_l} + \Pi \left(f_l - \frac{1}{n} \right) \right] \quad (14)$$

where Π is a Lagrange multiplier ($\neq 0$) and the usual condition for an extremum with respect to f_j is applied:

$$\frac{\partial S}{\partial f_j} = \frac{-\xi_j k_j}{[k_j f_j - \eta_j]^2} + \Pi = 0,$$

which is n equations in the n f 's and one Π and

$$\sum_{l=1}^n f_l = 1 \quad \text{is the } n+1^{\text{th}} \text{ equation.}$$

Solving for f_j and Π yields:

$$f_j = \sqrt{\frac{\xi_j k_j}{\Pi} + \eta_j} = \sqrt{\frac{\xi_j}{k_j \Pi} + \frac{\eta_j}{k_j}} \quad (15)$$

and

$$\Pi = \left\{ \sqrt{\sum_{j=1}^n \xi_j / k_j} \right\}^2 \quad (16)$$

$$1 - \sum_{j=1}^n \eta_j / k_j$$

Therefore, the actual tolerances can be calculated from these closed form solutions by substituting actual values into Equations 8, 9, 15, and 16, and the results into Equations 10 and 11.

CONCLUSIONS

It has been demonstrated that it is possible to optimize the cost of production of a projectile in a manner which guarantees approximate satisfaction of any number of inequality constraints on any property of the dimensions (the functional requirements).

This is, of course, in some sense a "worst case" solution since an item with maximum error in all its dimensions still satisfies all the inequality constraints. This may lead to impractically tight tolerances. It is then clear that some small but finite failure rate (fail-

ure to meet the functional requirements) is acceptable in a lot, if all of the items in it satisfy the tolerances imposed on the dimensions.

We believe that the above computed distribution of tolerance (that is, the relative sizes of the tolerance) is still useful. Further, it is felt that a suitable constant for each tolerance can be developed which will involve the probability of each half-distribution of dimension exceeding tolerance, normalized in such a way that each half distribution will contribute an equal amount toward the probability of not satisfying the functional requirements.

Further effort in this direction is necessary for a more complete understanding of the probabilistic effects and this effort will be pursued.