Health Effects of Pesticide Exposure in Latin American and the Caribbean Populations: A Scoping Review

Liliana A. Zúñiga-Venegas, 1*† Carly Hyland, 2,3*† María Teresa Muñoz-Quezada, 4† Lesliam Quirós-Alcalá, 5,6† Mariana Butinof, 7† Rafael Buralli, 8† Andres Cardenas, 2 Ricardo A. Fernandez, 9 Claudia Foerster, 10 Nelson Gouveia, 11 Juan P. Gutiérrez Jara, 10 Boris A. Lucero, 4 María Pía Muñoz, 12 Muriel Ramírez-Santana, 13 Anna R. Smith, 20 Noemi Tirado, 14 Berna van Wendel de Joode, 15 Gloria M. Calaf, 16,17† Alexis J. Handal, 18† Agnes Soares da Silva, 19† Sandra Cortés, 20† and Ana M. Mora 2,15† D

BACKGROUND: Multiple epidemiological studies have shown that exposure to pesticides is associated with adverse health outcomes. However, the literature on pesticide-related health effects in the Latin American and the Caribbean (LAC) region, an area of intensive agricultural and residential pesticide use, is sparse. We conducted a scoping review to describe the current state of research on the health effects of pesticide exposure in LAC populations with the goal of identifying knowledge gaps and research capacity building needs.

METHODS: We searched PubMed and SciELO for epidemiological studies on pesticide exposure and human health in LAC populations published between January 2007 and December 2021. We identified 233 publications from 16 countries that met our inclusion criteria and grouped them by health outcome (genotoxicity, neurobehavioral outcomes, placental outcomes and teratogenicity, cancer, thyroid function, reproductive outcomes, birth outcomes and child growth, and others).

RESULTS: Most published studies were conducted in Brazil (37%, n = 88) and Mexico (20%, n = 46), were cross-sectional in design (72%, n = 167), and focused on farmworkers (45%, n = 105) or children (21%, n = 48). The most frequently studied health effects included genotoxicity (24%, n = 62) and neurobehavioral outcomes (21%, n = 54), and organophosphate (OP) pesticides were the most frequently examined (26%, n = 81). Forty-seven percent (n = 112) of the studies relied only on indirect pesticide exposure assessment methods. Exposure to OP pesticides, carbamates, or to multiple pesticide classes was consistently associated with markers of genotoxicity and adverse neurobehavioral outcomes, particularly among children and farmworkers.

Discussion: Our scoping review provides some evidence that exposure to pesticides may adversely impact the health of LAC populations, but methodological limitations and inconsistencies undermine the strength of the conclusions. It is critical to increase capacity building, integrate research initiatives, and conduct more rigorous epidemiological studies in the region to address these limitations, better inform public health surveillance systems, and maximize the impact of research on public policies. https://doi.org/10.1289/EHP9934

Introduction

The Latin America and the Caribbean (LAC) region accounts for 14% of global agricultural production and 23% of the world's exports of agricultural and fisheries commodities. The rapid increase of farming in the region in the last decades has been coupled with an extensive use of pesticides (defined as chemical compounds that may either kill, obstruct, or manage the growth

of any organism that damages a crop)^{2,3} and a lack of pesticide use regulations or implementation thereof.^{4–6} It is estimated that pesticide use in LAC countries accounts for 20% of worldwide consumption³ and that more pesticides are used in Central and South America on a per capita basis (1.84 and 1.78 kg of pesticide per person per year, respectively^{3,7}) than in other regions in the world.

Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to 508 standards due to the complexity of the information being presented. If you need assistance accessing journal content, please contact ehpsubmissions@niehs.nih.gov. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

¹Centro de Investigaciones de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile

²Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley, Berkeley, California, USA

³School of Public Health and Population Science, Boise State University, Boise, Idaho, USA

⁴Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile

⁵Department of Environmental Health and Engineering, Bloomberg School of Public Health, John Hopkins University, Baltimore, Maryland, USA

⁶Maryland Institute of Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA

⁷Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina

⁸Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brasil

⁹Facultad de Ciencias de la Salud, Universidad Católica de Córdoba, Córdoba, Argentina

¹⁰ Instituto de Ciencias de la Agroalimentarias, Animales y Ambientales, Universidad de O'Higgins, San Fernando, Chile

¹¹Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil

¹²Escuela de Salud Pública, Facultad de Medicina, Universidad de Chile, Santiago, Chile

¹³Departamento de Salud Pública, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile

¹⁴Instituto de Genética, Facultad de Medicina, Universidad Mayor de San Andrés, La Paz, Bolivia

¹⁵Infants' Environmental Health Study, Central American Institute for Studies on Toxic Substances, Universidad Nacional, Heredia, Costa Rica

¹⁶Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile

¹⁷Columbia University Medical Center, New York, New York, USA

¹⁸Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA

¹⁹Pan American Health Organization, Washington, District of Columbia, USA

²⁰Centro Avanzado de Enfermedades Crónicas (ACCDiS), Centro de Desarrollo Urbano Sustentable, Departamento de Salud Pública, Pontificia Universidad Católica de Chile, Santiago, Chile

^{*}These authors contributed equally to this work.

[†]These authors are members of the core writing group.

Address correspondence to Ana M. Mora, 1995 University Ave., Suite 265, Berkeley, CA 94720 USA. Telephone: (510) 295-9575. Email: animora@berkelev.edu

Supplemental Material is available online (https://doi.org/10.1289/EHP9934). The authors declare they have no actual or potential competing financial interests.

Received 3 July 2021; Revised 8 August 2022; Accepted 12 August 2022; Published 29 September 2022; Corrected 17 August 2023.

Intensive use of pesticides in the LAC region for agricultural and public health vector control purposes⁸ has resulted in wide-spread chronic human exposure, particularly among those living in agricultural communities. Pathways of chronic exposure include pesticide drift from treated fields to nearby homes or schools, ^{9–12} take-home exposure, ¹³ and consumption of contaminated food and water. ^{14–17} Elevated occupational exposures in this region are also a concern as workers who apply pesticides or work in treated agricultural fields are exposed to mixtures of pesticides, such as insecticides [e.g., organophosphate (OP) and organochlorine (OC) pesticides], ^{18,19} herbicides (e.g., glyphosate, the most widely used pesticide in the world), ²⁰ and fungicides (e.g., chlorothalonil, bisdithiocarbamates, and benzimidazoles). ²¹

Although multiple studies around the world, including those conducted in LAC countries, have shown that pesticides have a negative impact on human health, ^{22,23} public health surveillance and monitoring systems on pesticide use and associated illness are nonexistent or extremely limited in the LAC region. ^{5,24–28} In addition, several pesticides banned in the United States, Europe, and Canada because they were deemed as a potential threat to human health have been or continue to be used in some LAC countries. ^{28–30} Climate change could also exacerbate the health risks of pesticide exposures among LAC populations owing to enhanced chemical toxicity, increased rates of chemical degradation, enhanced volatilization of pesticides to the atmosphere or surface deposition of airborne pesticides, or changes in the frequency and amount of pesticides used. ^{31,32}

Promotion of high-quality epidemiological studies with standardized direct exposure assessment methods, the establishment of biomonitoring and environmental surveillance programs, and the development of evidence-based prevention policies and interventions have been suggested as means to protect the health of populations exposed to pesticides.^{33–35} Still, there is little information on the current state of research on the health effects of pesticides in the LAC region. Previous systematic literature reviews and meta-analyses of studies conducted in LAC populations have focused on one specific class of pesticides or specific active ingredient (e.g., OP pesticides, ^{36,37} pyrethroids, ³⁸ glyphosate ³⁹), one specific age group (e.g., children ^{37,40–42}), or one health outcome (e.g., genotoxicity, 43 neurobehavior, 36,37,40 or respiratory health⁴¹). To address existing gaps of knowledge and identify research capacity building needs in the region, we conducted a scoping review to describe the current state of research on the health effects of pesticide exposure in LAC populations.

Methods

Search Strategy

We undertook a scoping review of the literature to identify all primary published data encompassing health effects of occupational or environmental exposure to pesticides in LAC populations. Our methods were guided by the Preferred Reporting Items for Systematic reviews and Meta-Analyses-Extension for Scoping Reviews (PRISMA-ScR) statement.44 We searched PubMed and the Scientific Electronic Library Online (SciELO) for all studies published between January 2007 and December 2021. For PubMed, we used the following search string: (pesticides [All Fields] AND "Latin America" [All Fields]) OR (pesticides [All Fields] AND Aruba [All Fields]) OR (pesticides [All Fields] AND Bahamas [All Fields]) OR (pesticides [All Fields] AND Barbados [All Fields]) OR (pesticides [All Fields] AND "Cayman Islands" [All Fields]) OR (pesticides [All Fields] AND Cuba [All Fields]) OR (pesticides [All Fields] AND Curacao [All Fields]) OR (pesticides [All Fields] AND Dominica [All Fields]) OR (pesticides [All Fields] AND "Dominican Republic" [All Fields]) OR (pesticides [All Fields] AND Grenada [All Fields]) OR (pesticides [All Fields] AND Guadeloupe [All Fields]) OR (pesticides [All Fields] AND Haiti [All Fields]) OR (pesticides [All Fields] AND Jamaica [All Fields]) OR (pesticides [All Fields] AND Martinique [All Fields]) OR (pesticides [All Fields] AND "Puerto Rico" [All Fields]) OR (pesticides [All Fields] AND "Saint Barthélemy" [All Fields]) OR (pesticides [All Fields] AND "Saint Kitts and Nevis" [All Fields]) OR (pesticides [All Fields] AND "Saint Lucia" [All Fields]) OR (pesticides [All Fields] AND "Saint Maarten" [All Fields]) OR (pesticides [All Fields] AND "Saint Vincent and the Grenadines" [All Fields]) OR (pesticides [All Fields] AND "Trinidad and Tobago" [All Fields]) OR (pesticides [All Fields] AND "Turks and Caicos Islands" [All Fields]) OR (pesticides [All Fields] AND "Virgin Islands" [All Fields]) OR (pesticides [All Fields] AND Belize [All Fields]) OR (pesticides [All Fields] AND "Costa Rica" [All Fields]) OR (pesticides [All Fields] AND "El Salvador" [All Fields]) OR (pesticides [All Fields] AND Guatemala [All Fields]) OR (pesticides [All Fields] AND Honduras [All Fields]) OR (pesticides [All Fields] AND Mexico [All Fields]) OR (pesticides [All Fields] AND Nicaragua [All Fields]) OR (pesticides [All Fields] AND Panama [All Fields]) OR (pesticides [All Fields] AND Argentina [All Fields]) OR (pesticides [All Fields] AND Bolivia [All Fields]) OR (pesticides [All Fields] AND Brazil [All Fields]) OR (pesticides [All Fields] AND Chile [All Fields]) OR (pesticides [All Fields] AND Colombia [All Fields]) OR (pesticides [All Fields] AND Ecuador [All Fields]) OR (pesticides [All Fields] AND "French Guiana" [All Fields]) OR (pesticides [All Fields] AND Guyana [All Fields]) OR (pesticides [All Fields] AND Paraguay [All Fields]) OR (pesticides [All Fields] AND Peru [All Fields]) OR (pesticides [All Fields] AND Suriname [All Fields]) OR (pesticides [All Fields] AND Uruguay [All Fields]) OR (pesticides [All Fields] AND Venezuela [All Fields]) AND (""2007/01/0" [Date-- Publication]: ""2021/12/ 3""[Date-- Publication])) (i.e., names of the 43 LAC countries and territories, as defined by the International Society of Environmental Epidemiology (ISEE) LAC Chapter). 45 For SciELO, we used the following search string: ((pesticides AND Latin America)) OR ((pesticides AND Aruba)) OR ((pesticides AND Bahamas)) OR ((pesticides AND Barbados)) OR ((pesticides AND Cayman islands)) OR ((pesticides AND Cuba)) OR ((pesticides AND Curacao)) OR ((pesticides AND Dominica)) OR ((pesticides AND Dominican Republic)) OR ((pesticides AND Grenada)) OR ((pesticides AND Guadeloupe)) OR ((pesticides AND Haiti)) OR ((pesticides AND Jamaica)) OR ((pesticides AND Martinique)) OR ((pesticides AND Puerto Rico)) OR ((pesticides AND Saint Barthelemy)) OR ((pesticides AND saint Kitts and Nevis)) OR ((pesticides AND Saint Lucia)) OR ((pesticides AND Saint Maarten)) OR ((pesticides AND Saint Vincent and the Grenadines)) OR ((pesticides AND Trinidad and Tobago)) OR ((pesticides AND Turks and Caicos islands)) OR ((pesticides AND Virgin Islands)) OR ((pesticides AND Belize)) OR ((pesticides AND Costa Rica)) OR ((pesticides AND El Salvador)) OR ((pesticides AND Guatemala)) OR ((pesticides AND Honduras)) OR ((pesticides AND Mexico)) OR ((pesticides AND Nicaragua)) OR ((pesticides AND Panama)) OR ((pesticides AND Argentina)) OR ((pesticides AND Bolivia)) OR ((pesticides AND Brazil)) OR ((pesticides AND Chile)) OR ((pesticides AND Colombia)) OR ((pesticides AND Ecuador)) OR ((pesticides AND French Guiana)) OR ((pesticides AND Guyana)) OR ((pesticides AND Paraguay)) OR ((pesticides AND Peru)) OR ((pesticides AND Suriname)) OR ((pesticides AND Uruguay)) OR ((pesticides AND Venezuela)) and filtered the results by date of publication. The initial search was conducted on 30 May 2017, with subsequent updates on 1 May

Figure 1. PRISMA-ScR flow diagram of study selection. Note: PRISMA-ScR, Preferred Reporting Items for Systematic reviews and Meta-Analyses—Extension for Scoping Reviews; SciELO, Scientific Electronic Library Online.

2019, 4 February 2021, and 27 April 2022 (for papers published until 31 December 2021). We also identified potentially relevant citations not retrieved by the initial literature searches by scanning the references of relevant studies throughout the course of title and abstract screening and data abstraction (Figure 1; see Supplemental Material for the list of studies retrieved from PubMed and SciELO).

Study Selection

After removing duplicate records, titles and abstracts of literature search results were scanned for eligibility by two reviewers, with discrepancies resolved by a third reviewer. Studies were selected for full-text review when they met all of our inclusion criteria: a) original full paper that presented unique data from an analytical observational epidemiological study (i.e., cohort, cross-sectional, or case-control study); b) environmental or occupational exposure to pesticides; c) conducted in one of the 43 LAC countries and territories, as defined by the ISEE LAC Chapter⁴⁵; and d) published in English, Spanish, or Portuguese. We excluded studies if they met one of the following criteria: a) did not report original results (i.e., reviews, meta-analysis, comments, letters, editorials, and case reports); b) were experimental, toxicological, or ecological studies; c) were based on animal or human tissues; or d) reported preliminary results (e.g., conference abstracts or papers that were later updated or revised in a peer-reviewed journal article). Full texts were assessed by two reviewers for final inclusion, with a third reviewer again resolving any discrepancies.

Data Abstraction

We abstracted the following characteristics from the selected publications: bibliographic citation information (i.e., authors, year of publication, and country), characteristics of the study population

(i.e., sample size, study area), study design, type of pesticides assessed (e.g., pesticide class or pesticide active ingredient), exposure and health outcome assessment methods, and main study findings. We grouped the studies into eight categories based on the main health outcome assessed: a) genotoxicity, b) neurobehavioral outcomes, c) placental outcomes and teratogenicity, d) cancer, e) thyroid function, f) reproductive outcomes, g) birth outcomes and child growth, and h) other health outcomes.

Because of the expected methodological heterogeneity among the selected studies (e.g., variability in study design; exposure and outcome assessment methods), results were not intended to be combined through meta-analysis. Instead, we conducted a narrative synthesis to highlight the strengths and limitations of the current evidence base and to ultimately draw conclusions about the state of research on the health effects of pesticide exposure in LAC populations, including key challenges moving forward.

Results

The PubMed and SciELO search retrieved 9,934 and 481 citations, respectively, and the review of references from relevant publications yielded 10 additional citations (Figure 1). After removing 78 duplicates, 10,023 publications that did not meet inclusion criteria based on titles/abstracts, and 91 that did not meet inclusion criteria based on full-text reviews, 233 publications were included in this review. Although publications reported on studies from 16 (37%) of the 43 LAC countries and territories, most studies were conducted in Brazil (37%, n = 88) and Mexico (20%, n = 46) (Table 1). Studies were primarily cross-sectional in design (72%, n = 167), and the most frequently studied populations were farmworkers (45%, n = 105) or children (21%, n = 48). Between 2007 and 2021, the average number \pm standard deviation (SD) of publications was $\sim 15.6 \pm 7.0/y$, range: 5 in 2008 to 27 in 2020) (Figure S1). Nearly half

Table 1. Characteristics of Latin American and the Caribbean studies on pesticide exposure and health outcomes published between 2007 and 2021 (n = 233)

(h = 253). Characteristic	n (%)
Study country ^a	<i>n</i> (70)
Argentina	21 (8.9)
Bolivia	6 (2.6)
Brazil Chile	88 (37.4)
Colombia	7 (3.0) 9 (3.8)
Costa Rica	14 (6.0)
Dominican Republic	1 (0.4)
Ecuador	17 (7.2)
El Salvador Guadeloupe	1 (0.4) 14 (6.0)
Jamaica	1 (0.4)
Mexico	46 (19.6)
Nicaragua	4 (1.7)
Paraguay Peru	1 (0.4)
Venezuela	2 (0.8) 3 (1.3)
Study design	5 (1.5)
Cohort	41 (17.5)
Cross sectional	167 (71.7)
Case–control Study population	25 (10.7)
Farmworkers	105 (45.1)
Other workers (e.g., vector control program workers)	9 (3.9)
General population	38 (16.3)
Mother-child pairs	27 (11.6)
Pregnant women only Children only	6 (2.6) 48 (20.6)
Pesticide exposure assessment method b,c	46 (20.0)
Indirect	
Questionnaire only	103 (43.1)
Other (e.g., job status ascertained via death certificate or	9 (3.8)
surveillance system, residential proximity) Direct	
Cholinesterase activity ^d	57 (23.8)
Pesticides or pesticide metabolites measured in biological	70 (29.3)
matrix	
Biological matrix used for pesticide exposure assessment ^e Blood	99 (73.9)
Breast milk	2 (1.5)
Hair	4 (3.0)
Urine	28 (20.9)
Toenail	1 (0.7)
Pesticides assessed ^f Insecticides in general (no class specified)	5 (1.6)
Organophosphates	81 (26.2)
Organophosphates and carbamates ^g	20 (6.5)
Organochlorines	46 (14.9)
Pyrethroids Nanicatinaids	20 (6.5)
Neonicotinoids Herbicides	2 (0.6) 21 (6.8)
Fungicides	11 (3.6)
Larvicides	1 (0.3)
Rodenticides	1 (0.3)
Natural pesticides Multiple pesticide classes (unspecified)	1 (0.3) 100 (32.3)
Main health outcomes ^h	100 (32.3)
Genotoxicity	62 (24.0)
Neurobehavioral outcomes	54 (20.9)
Placental outcomes and teratogenicity	13 (5.1)
Cancer Thyroid function	14 (5.4) 16 (6.2)
Reproductive outcomes	16 (6.2)
Birth outcomes and child growth	13 (5.1)
Other effects	70 (27.1)
Kidney function ⁱ	9 (3.5)
Respiratory and allergic outcomes ^t Liver injury ^t	7 (2.7) 8 (3.1)
Hematological parameters and lipid profile ⁱ	17 (6.6)
Terration great parameters and upid prome	17 (0.0)

Table 1. (Continued.)

Characteristic	n (%)
Acoustic damage ⁱ	8 (3.1)
Others ⁱ	26 (10.1)

^an > 233 because one published study (Maluf et al.²⁴⁵) was conducted in three countries (Argentina, Brazil, and Mexico).

^bA total of 125 published studies employed direct exposure assessment methods, with some measuring both cholinesterase activity and pesticide metabolites concentrations. Of these, 81 (65.3%) used data from the direct exposure assessment in exposure-outcome analyses (e.g., some studies measured urinary biomarkers of exposure and ascertained occupational status via questionnaire but only reported exposure-outcome associations using occupational status).

^cn > 233 because some published studies employed more than one exposure assessment method (e.g., measurement of cholinesterase activity in blood and urinary pesticide metabolites).

^dA total of 57 published studies measured cholinesterase activity only; 4 studies measured cholinesterase activity in addition to other pesticide metabolites.

"Only for published studies with direct pesticide exposure assessment, but nine studies measured pesticides in more than one biological matrix.

 $f_n > 233$ because some published studies assessed multiple pesticide groups.

gExposure assessed via acetylcholinesterase activity monitoring and authors did not differentiate if they were primarily examining organophosphates or carbamates.

 hn > 233 because some published studies assessed outcomes from more than one group. i Proportion of published studies that assessed this outcome out of all the studies included in the review (n = 233); total studies that assessed other health effects >70 because some assessed multiple outcomes in this category (e.g., several published studies examined liver injury and hematological parameters).

(47%, n=112) of the published studies relied solely on indirect pesticide exposure assessment methods (e.g., questionnaire, job status ascertainment via death certificate or surveillance system) (Table 1 and Table S1). Blood was the biological matrix most frequently used to assess pesticide exposure (74%, n=99 of the 124 studies that used direct exposure assessment methods). Most published studies focused on OP pesticides (26%, n=81) or multiple classes of pesticides (32%, n=100). The most studied health effects included genotoxicity (24%, n=62) and neurobehavioral outcomes (21%, n=54) (Table 1 and Table S1).

Genotoxicity

Sixty-two publications examined associations of pesticide exposure with cytogenetic or DNA damage (Table 2). Most publications were derived from cross-sectional studies that evaluated DNA damage from accessible tissues, such as blood or buccal cells, via comet assays, telomere attrition, or DNA methylation of candidate genes. Eleven of the 62 publications focused on children. Three of these 11 publications assessed exposure to OC pesticides by measurement of blood or hair OC pesticide concentrations, 46–48 whereas the remaining 8 examined exposure to a mixture of pesticides including OP pesticides, pyrethroids, herbicides, or "multiple pesticide classes" via questionnaire. 30,49-55 Of the 3 publications that measured blood or hair OC pesticide concentrations, 46-48 2 were from cross-sectional studies of schoolage Mexican children and reported associations with genotoxic damage—as indicated by DNA damage assessed via comet assay47 or higher frequency of micronuclei and other nuclear abnormalities in buccal cells. 48 A third publication from a crosssectional investigation of mother-child pairs in Mexico reported null associations with DNA and cytogenetic damage measured in maternal blood at delivery and cord blood.⁴⁶ Five publications examining exposures to more than one pesticide class in children from Mexico, ^{49,51} Argentina, ^{50,54} and Paraguay ⁵³ reported associations of higher residential or parental occupational pesticide exposure with cytogenetic damage—assessed via buccal micronuclei and other nuclear abnormalities. Similarly, in a prospective study of school-age children living near a tobacco-producing region in Brazil, researchers found that malondialdehyde, protein carbonyl, and vitamin C levels were higher at the beginning of the pesticide application period than at the leaf harvest period.⁵²

Table 2. Characteristics of Latin American and the Caribbean studies on pesticide exposure and genotoxicity published between 2007 and 2021 (n = 62).

Results	Null associations of OC pesticides with markers of cytogenetic or DNA damage.	Children with high total DDT concentrations (defined as higher than the national geometric mean) had a higher DNA damage compared with those with low total DDT concentrations ($\rho < 0.05$). Children exposed to PAHs (from biomass combustion) and DDT had the highest DNA damage compared with children in the other three exposure scenarios (high PAHs, high arsemic, and low lead exposure ($\rho < 0.05$).	Higher frequency of PK, BN, KL, LN, and AT abnormalities among exposed of thicher compared with unexposed $(\rho < 0.05$ for each). Among all participants, those in the highest tentile of total OC concentrations had higher numbers of TAC compared with those in the lowest tertile $(\rho < 0.05)$.	Exposed individuals had higher DNA damnage than controls ($p=0.003$). Higher DNA damnage in $GSTMJ$ -positive individuals ($p=0.05$). States genes with differential gene expression between expression between expression and controls, $LRPJ$ and $IGTRR$ genes were underexpressed and gene IGL family and $IGTR$ genes were underexpressed and gene IGL family and $IGTR$ were overexpressed in the exposed group.	Increase in TBARS (18.3%, $p=0.01$) in rural SLE cases compared with urban SLE cases.	Farmworkers exposed to pesticides including OPs had higher NBUDs, CC, and RL than those exposed to pesticides but not OPs $(\rho < 0.05)$. Both exposed groups had higher MN, BN, CC, KR, PN, and KL than controls $(\rho < 0.05)$.
Health effect and assessment method/instrument	DNA damage: conet assay Cytogenetic damage: MN, CHBs, NPBs	DNA damage: comet assay	Cytogenetic damage: MN. CC Cytotoxicity: KR, PK, BN, KL, LN, AN, TAC	DNA damage: come tassay Transcriptome: LRP1, IGF2R, IGL fam- ily, IGJ, CXCL5, CCL3, NSH, LGAKSJ4, NBFF	Oxidative stress: CAT, SOD, GSH/GSSG ratio, TBARS	Cytogenetic damage: MN, damage: MN, RW, DS, Votooxicity: CC, KR, PN, KL
Pesticide or metabolite concentrations	Median (P25-P75) (ng/g lipid); Maternal: 2-HCH = 367 (243-617); β-HCH = 1320 (1.009-2094); γ-HCH = 3120 (1.009-2094); γ-HCH = 3120 (1.009-2094); quadrin = 412 (208-228); heptenblor eproxid = 3,762 (2,241-5,167); oxychlordane 1,672 (977-2,232); t-chlordane = 1 (0.4-9); c-chlordane = 8 (1-16); ninex = 18 (8-24), endosulfan 1 = 153 (97-221); endosulfan 2 = 90 (62-118); DDE = 472 (153-1,041); DDT = 204 (11-341) Cord blood; α-HCH = 1,23 (1/55-2,532); β-HCH = 2,815 (2,017-4,337); γ-HCH = 95 (65-1,193); HCB = 137 (107-175); aldrin = 906 (608-1,197); rechlordane = 21 (0.2-35); cis-nonachlor = 1 (12-49); mirex = 27 (5,5-50); endosulfan 1 = 401 (53-537); endosulfan 2 = 65 (163-368); DDE = 192 (12-256); DDT = 421 (10-707)	Mean ± SD (ng/g lipid): Mean ± SD (ng/g lipid): Consentrations in 11 communities: from 12.5 ± 5 to 21,500 ± 6,800	Total (mean) OCS (tug/g): Exposed: 28.2 (0.95) unexposed: 4.4 (0.18)	Not applicable	Not applicable	Mean±SD (ug/L): Occupationally exposed to complex mixtures with OPs: DETP = 0.27 ± 0.25; DEDTP = 0.06 ± 0.04 Occupationally exposed to complex mixtures without OPs: DETP = 0.09 ± 0.005; DEDTP = 0.08 ± 0.02 Control group: DETP < 0.09 ± 0.005; DEDTP < 0.09
Exposure assessment method	Maternal (collected at delivery) and cord blood HCH, HCB, aldrin, hepatchlor epoxide, oxychlordane, chlordane, DDF, nonachlor, mirex, and endosulfan	Questionnaire (drinking water, occupational and pa- rental exposure history) Serum DDT	Questionnaire (parental occupational exposure history) Hair HCH, aldrin, dieldrin, endiri, chlordane, heyachlor, epoxybepane, endostilfan, DDD, DDE, DDT	Questionnaire (occupational exposure history)	Questionnaire (residential exposure history) Blood AChE, BChE ^a	Questionnaire (occupational exposure history) Urinary DAPs" Blood AChE, BChE"
Pesticides assessed	ő	0Cs	000	OPS	OPs and CBs	OP,
Study design	Cross-sectional	Cross-sectional	Cross-sectional	Cross-sectional	Cross-sectional	Cross-sectional
Population and sample size	50 mother-child (newboms) pairs living in a rural agricultural area	276 children (6–12 years of age) living in communities with industrial activities (e.g., agriculture)	63 children (6–13 years of age) exposed to pesticides near school/ 24 controls (6–13 years of age)	161 community health agents/88 controls	27 urban patients with SLE/17 rural patients with SLE/30 urban healthy controls/28 rural healthy controls	94 farmworkers exposed to pesticides including Ops/94 farmworkers exposed to pesticides not including OPs/50 controls.
Year of publication/country	2013/Mexico	2015/Mexico	2020/Mexico	2016/Brazil	2016/Argentina	2017/Brazil ^o
Study	Studies on OCs Studies in children 1. Alvarado-Hernández et al. ⁴⁶	2. Jasso-Pineda et al. ⁴⁷	3. Anguiano-Vega et al. 48	Studies on OPs or CBs Studies in adults 4. Franco et al. 36	5. Martinez et al. ⁶⁷	6. Silvērio et al. ⁵⁷

7	
400	
Ì	
c	1
7	Ľ
3	

Study	Year of publication/country	Population and sample size	Study design	Pesticides assessed	Exposure assessment method	Pesticide or metabolite concentrations	Health effect and assessment method/instrument	Results
7. Simoniello et al. ⁶⁶	2017/Argentina	50 urban patients with SLE/39 rural patients with SLE/54 urban healthy controls/53 ru- ral healthy controls	Cross-sectional	OPs	Questionnaire (residential exposure history) Blood AChE, BChE ^a	Not applicable	DNA damage: comet assay Endo sites Oxidative stress: CAT, SOD, TBARS, GSH, GSSG	Endo sites and SOD $(p < 0.05, p < 0.03, p = 0.01$, respectively) were higher in rural patients with SLE than urban ones. Rural patients with SLE had increased risk of having oxidative DNA damage than urban patients with SLE $(OR = 3.5; 95\% CI: 1.4, 8.8)$.
8. Zepeda-Arce et al. ⁵⁸	2017/Mexico	60 sprayers with motor pump (high-exposure group)/126 solid pesticides sprayers (moderate-exposure orom/22 controls	Gross-sectional	OPs, pyrethroids, CBs	Questionnaire (occupational exposure history) Blood AChE, BChE ^a	Not applicable	DNA damage: comet assay Oxidative stress: MDA, SOD, CAT, GPx, GR	No differences in CAT, SOD, GPx, GR activities, DNA damage, and MDA levels between groups.
9. Benitez-Trinidad et al. ⁵⁹	2018/Mexico	127 urban pesticide sprayers/63 controls	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history) Blood BChE ^a	Not applicable	DNA methylation: LINE-1	Decreased percentage of methylated cytosines in both moderate- and high-exposure groups compared with controls ($p < 0.05$). Those comparionally exposed had decreased %5mC LINE-1 methylation (OR = 0.4; 55% CI: 0.2, 0.8).
10. Xotlanihua-Gervacio et al. ⁶⁰	2018/Mexico	58 spraying brigade workers (high-exposure group)/120 nonsprayer workers (moderate-exposure groun)/23 controls	Cross-sectional	OFs, pyrethroids	Questionnaire (occupational exposure history) Urinary DAPs"	Mean (range) of total DAPs (rg/mL): Ref = 3.5.5 (2-6-41.3); moderate- exposure group = 58.5 (24.5-35.3); Righ-exposure group = 122.5 (25.5-488.4)	Cytogenetic damage: MN, NBUDs, NPBs Oxidative stress: GPx, GR, SOD, CAT	No differences in MN frequency between exposed workers and controls. A marginal decrease in SOD and CAT activities was observed in the high-exposure group compared with the reference group.
II. Herrera-Moreno et al.º ¹⁰	2019/Mexico	60 spraying brigade workers (high-exposure group)/126 pesticide distributors or occasional farmworkers (moderate-exposure group)/102 controls	Cross-sectional	OPs	Questionnaire (occupational exposure history) Urinary DAP8"	Mean (range) of total DAPs (ng/mL): Ref = 3.3.5 (24.6-41.3); moderate-exposure group = 58.5 (24.5-353.3); high-exposure group = 122.5 (25.6-488.4)	DNA methylation: CDKN2B, CDKN2A	Lower DNA methylation of CDKV2B gene in both pesticide- exposed groups compared with controls ($\rho < 0.001$); higher methylation of the CDKV2A promoter in the moderate-expo- sure group compared with controls ($\rho < 0.001$). Association between pesticide exposure and methylation pattern in CDKN2B ($\beta = 0.03$; $\rho < 0.01$ and $\beta = 0.04$; $\rho < 0.01$ for moderate and high-exposure groups; expectively) and DKN2A ($\beta = 15$; $\rho < 0.01$ for moderate-exposure group).
12. Paredes-Céspedes et al. 68	2019/Mexico	164 urban mestizo spnayers/189 indigenous persons without occupational pesticide exposure/91 mestizo individuals without occupational pesticide exposure (reference group)	Cross-sectional	OPs	Questionnaire (past and present pesticide exposure) sure) Urinaay DAPs	Mean (range) of total DAPs (ng/µ1.): Ref = 34.10 (24.58-41.32); mestizo sprayers = 107 64 (24.45-488.40); indigenous group = 44.60 (15.68-147.70)	DNA methylation: %5mC of WRAP33x gene	Increased %5mC in CpG sites I and 2 in mestizo sprayers compared with reference and indigenous groups (p < 0.05). Lover %5mC among indigenous groups (p < 0.05). Lover %5mC among indigenous group for CpG site 3 compared with reference and mestizo sprayer groups (p < 0.05). No correlations between total urinary DAP concentrations and %5mC in any group, Annong the two mestizo groups, self-reported of deltamethrin was associated with decreased odds of having %5mC levels above the CM (OR = 0.2, 95% CI: 0.5, 0.9), and self-reported use of temephos was associated with increased odds of having %5mC levels above the CM (OR = 2.8, 95% CI: 1.3, 5.7).
13. Butinof et al 62	2019/Argentina ^b	47 pesticide applicators/ 52 unexposed controls	Cross-sectional	OPs, CBs	Questionnaire (occupational exposure history) Blood BChE ^a	Not applicable	DNA damage: comet assay Cytogenetic damage: CAs,	Higher CA and MN frequencies and DNA damage in posticide applicators compared with unexposed (ρ < 0.01 for each).
14. Bernieri et al. ⁶³	2020/Brazil	12 male soybean growers/12 unexposed control males	Cross-sectional	o _S	Questionnaire (occupational history) Blood BChE (measured in samples collected during periods of high and low exposure in the same year) ^o	Not applicable	DNA damage (measured in samples collected during periods of high and low ex- posure in the same year);	DNA damage index higher in soybean growers during high exposure period compared with the low exposure period and with controls ($\rho < 0.01$ for each). No correlation between exposure time and DNA damage.
15. Aiassa et al. ⁶⁶	2019/Argentina	30 pesticide applicatory 22 unexposed controls	Cross-sectional	OPs, carbamates	Questionnaire (occupational and environmental exposure history) Blood BChE ^a	Not applicable	DNA damage: comet assay Cytogenetic damage: CA, MN	Higher mean CA, MN, and DNA fragmentation values ($p < 0.05$) in pesticide applicators than in unexposed controls.

\leq	
101	
111	
Donning	
۶	
٤	
•	1
٥	
٩	
Ľ	

E	Year of	Population and sample			Exposi		Health effect and assessment method/	2
16. Valencia-Quintana	publication/county 2021/Mexico	size 54 farmworkers/26	Cross-sectional	OPs, carbamates	Õ	resuctue of metabonite concentrations Not applicable	DNA damage:	Famworkers had higher frequency of MN, KR, KL, CC, PN, and
et al. ⁶⁴		unexposed controls			(occupational exposure history) Blood AChE, BChE ^a		comet assay Cytogenetic damage: MN Cytotoxicity: KR, KL, CC, PN	all other measured parameters than controls (ρ < 0.01 for each).
Studies on other pesticides or multiple pesticide classes Studies in children	nultiple pesticide classes	s						
17. Gómez-Arroyo et al. ⁴⁹	2013/Mexico	125 children (1–13 years of age) living around areas of intensive agriculture/125 controls	Cross-sectional	Multiple pesticide classes	Questionnaire (residential exposure history)	Not applicable	Cytogenetic damage: MN, BN, NBUDs Cytotoxicity: KL, KR	Exposed children had higher frequency of MN (OR = 3.1; 95% CI: 2.7, 3.5). BN (OR = 4.3; 95% CI: 3.9, 4.6), KI. (OR = 2.6; 95% CI: 2.6, 2.7), KR (OR = 1.78; 95% CI: 14.8, 20.8), and NBUDs (OR = 1.5; 95% CI: 1.5, 1.8) than controls.
18. Bernardi et al. ⁵⁰	2015/Argentina	50 children (4–14 years of age) living near pesticide application areas/ 25 controls	Cross-sectional	OPs, pyrethroids, glyphosate	Questionnaire (residential exposure history)	Not applicable	Cytogenetic damage: MN	Children Iiving ≤ 500 m from pulverized areas had higher frequency of MN (ρ < 0.05) than children living >500 m and controls (>3.000 m).
19. Barrón Cuenca et al.55	2015/Bolivia	41 children with chronic malnourishment/114	Cross-sectional	Multiple pesticide classes	Questionnaire (maternal occupational exposure history)	Not applicable	Cytogenetic damage: MN	Null associations between pesticide exposure and markers of cytogenetic damage.
20. Castañeda-Yslas et al _. 51	2016/Mexico	34 children of farmworkers (4–11 years of age)/38 child controls (7–14 years of age)/37 female farmworkers/35 controls	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational and parental exposure history)	Not applicable	Cytogenetic damage: MN, BN, NBUDs, NA, LN Cytotoxicity: KR, KL, CC, PN	Frequencies of MN ($\varphi \sim 0.001$), LN ($\rho \sim 0.001$), and CC ($\rho \sim 0.001$) were higher, and PN ($\rho = 0.004$) lower in children of framworkers than in children of controls. Higher MN ($\rho \sim 0.001$) and CC ($\phi = 0.04$), and otwer PN ($\rho < 0.001$) frequencies in female farmworkers than controls.
21. Nascimento et al. 52	$2017/\mathrm{Brazil}^b$	40 children (6–12 years of age) living near a tobacco-producing resion	Prospective cohort	Multiple pesticide classes	Questionnaire (parental and seasonal exposure history) Blood AChE, BChE ^a	Not applicable	Oxidative damage: MDA, PCO, vitamin C	MDA, PCO, and vitamin C (ρ < 0.05) were higher at the beginning of application period than at leaf harvest period.
22. Ruiz-Guzmân et al. ³⁰	2017/Colombia	50 children (5–15 years of age) from agricul- tural villages/13 controls from nearby city	Cross-sectional	OPs, pyrethroids, atrazine, bipyridyl	Questionnaire (parental and residential exposure his- tory) Urinary ATZ and its metabolites ADI and ADII	Mean ± SD (tig/g creatinine): Edynor ATE = 18.6 ± 4.5; ADI = 3.5 ± 4.6; ADDI = 16.8 ± 10.0; Aguas Negras: ADDI = 154.6 ± 32.5	Cytogenetic damage: MN, NBUDs, apopto- tic cells	Null associations of urinary ATZ and its metabolites with MN, NBUDs, or apoptotic cells.
23. Quintana et al. ⁵⁴	2017/Argentina ^{b.c.d}	151 mother-newborn pairs living in a rural area/38 mother-newborn pairs from an urban area (controls)	Cross-sectional	OPs	Questionnaire (residential and seasonal exposure history) Cord blood AChE, BChE ^a	Not applicable	DNA damage: comet assay Oxidative stress: SOD, CAT	DNA dannage index was higher in RG-SS than controls $(p < 0.01)$, but not significantly different between RG-SS and RG-NSS. SOD activity was lower in RG-SS compared with RG-NSS and controls $(p = 0.01)$.
24. Leite et al. ⁵³	2019/Paraguay	43 children (5-10 years of age) living in agri-culturat community surrounded by transgenic so/bean crops/41 children living in agricultural community using biological control of pests	Cross-sectional	Multiple pesticide classes	Questionnaire Blood AChE"	Not applicable	DNA damage: comet assay Cytogenetic damages: MN, BN, BE Cytotoxicity: KR, KL, CC, PN	Higher MN, BN, BE, KR, KL, PN, and CC in exposed group compared with control group ($\rho < 0.01$ for each). Higher mean values of tail length and tail movement among exposed vs. unexposed group ($\rho < 0.01$ for each).
Studies in adults 25. Jørs et al. ⁶⁹	2007/Bolivia	48 farmworkers/33 controls	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history)	Not applicable	DNA damage: comet assay Cytogenetic	Higher DNA damage and frequencies of CAs in farmworkers than in controls (p < 0.001). Number of CAs increased with the intensity of pesticide exposure.
26. Kehdy et al. ⁷⁰	2007/Brazil	29 sanitation workers/30 controls	Cross-sectional	OPs, pyrethroids, rodenticides	Questionnaire (occupational exposure history)	Not applicable	Cytogenetic damages: MN, NPBs, APOP, NFCR, NDI	Higher frequencies of MN, NB, and NECR in sanitation workers than in controls (p < 0.01). No difference in APOP frequency between groups, NDI was lower in the sanitation workers than controls (n < 0.01).
27. da Silva et al. ⁸⁶	2008/Brazil	108 vineyard farmworkers/65 controls	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history)	Not applicable	DNA damage: comet assay Cytogenetic damage: MN, BNMN	Higher BNMY frequency, DI, and DF in farmworkers compared with controls $(p \le 0.001$. Higher MN frequency in $PONI$ $Gh\nu$ GIn individuals in the exposed group, compared with $PONI$ Arg — in the exposed group $(p \le 0.05)$.

		i
,		
	9	

Study	Year of publication/country	Population and sample size	Study design	Pesticides assessed	Exposure assessment method	Pesticide or metabolite concentrations	Health effect and assessment method/instrument	Results
28. Simoniello et al. ⁹¹	2008/Argentina	27 pesticide applicator farmworkers/27 non- pesticide applicator farmworkers/30	Cross-sectional	Multiple pesticide classes	Occupation (pesticide applicator farmworker, non-pesticide applicator farmworker, non-farmworker)	Not applicable	DNA damage: comet assay, damage index repair assay	Pesticide applicators and non-applicator farmworkers had higher DNA damage than unexposed controls ($p < 0.01$).
29. Bortoli et al. ⁹²	2009/Brazil	29 farmworkers/37 controls	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure	Not applicable	Cytogenetic damage: MN	Significantly higher mean MN frequency in farmworkers than in controls ($p < 0.01$).
30. Martínez-Valenzuela et al. ⁹³	2009/Mexico	70 farmworkers/70 controls	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history)	Not applicable	Cytogenetic damage: SCE, MN NA CPK	Significantly higher mean SCE and MN frequencies in farmworkers than in controls ($p < 0.01$ for each).
31. Remor et al. ⁹⁴	$2009/\mathrm{Brazil}^b$	37 farmworkers/20 controls	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history)	Not applicable	DNA damage: comet assay Cytogenetic damage: MN	Higher DI ($\rho \le 0.001$) and DF ($\rho \le 0.005$) in farmworkers than in controls. MN frequencies were not different between groups.
32. Simoniello et al. ⁹⁵	2010/Argentina	45 farmworkers applica- tor/50 farmworkers non-applicator/50 controls	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history) Blood AChE, BChE ^a	Not applicable	DNA damage: Comet assay Oxidative damage: CAT activity, TBARS	Increased TBARS levels among farmworkers directly exposed $(\rho < 0.001)$ but not among those indirectly exposed. CAT reduction in both exposed groups respect to controls $(\rho = 0.005)$ and $\rho < 0.001$, respectively), IDEC and IDER increased in both exposed grouns $(\rho < 0.001)$.
33. Paz-y-Miño et al. 105	2011/Ecuador	92 exposed from communities with aerial spraying/90 controls	Cross-sectional	GLY	Questionnaire (residence exposure history)	Not applicable	Cytogenetic damage: CAs, karvotype	Levels of cytogenetic damage and DNA alterations were similar between groups.
34. Payán-Rentería et al.96	2012/Mexico ^b	25 farmworkers and applicators/21 controls	Cross-sectional	OCs, OPs, herbicides	Medical examination Questionnaire (occupational exposure history)	Not applicable	DNA damage	Higher circulating DNA fragments (ρ < 0.001) in farmworkers than in controls.
35. Benedetti et al. ⁹⁷	2013/Brazil	81 farmworkers/46 controls	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history) Blood BChE"	Not applicable	DNA damage: comet assay Cytogenetic damage: MN, BN, NBUDs Cytotoxicity: CC, KR, KL	Farmworkers had higher DNA damage ($p < 0.01$), frequency of MN ($p < 0.001$), NBUDs ($p < 0.010$), BN ($p < 0.01$), and cell death (CC, $p < 0.05$; KR, $p < 0.01$, and KL, $p < 0.05$) compared with controls.
36. Khayat et al. ⁷¹	2013/Brazil	41 farmworkers/32 controls	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history)	Not applicable	DNA damage: comet assay Cytogenetic damage: MN	Higher MN (φ < 0.0001) and BN frequencies (φ < 0.0001), %DNA in the tail (φ < 0.05), TM (φ < 0.05), OTM (φ < 0.05) in farmworkers than controls, but not in TL (φ < 0.05).
37. Varona-Uribe et al. 166	2014/Colombia	223 farmworkers	Cross-sectional	OCs. OPs. CBs. fungicides	Blood OPs: bromophose-ethyl, bromophose-ethyl, bromophos-methyl, chlorypiphos, dimethoate, malathion, methamidophos, methyl parathion, primiphos, primiphos-methyl, profenofos Blood CBs; aminocarb, bendiocarb, metolearb, primicarb, propoxur primicarb, propoxur Blood CCs; BHC, HCB, hepuschlor, hepateshlor, perpachlor, chordane, endosulfan, DDT DDE, carbofuran, mirex Urinary	Median (P2S-P75) (ng/mL): bromophos-wethyl = 1 (1-62), choraptirphos < L(D.). dimethorate = 0 (10-14.3), malathion = 1 (1-60), methyl parathion = 1 (1-64), primiphos-methyl = (1-64), primiphos-methyl = (1-64), primiphos-methyl = (1-64), primiphos-methyl = (1-64), profenofos = 1 (1-9), aminocarb = 0, reduoration = 8 o (0-1.3), reduoration = 8 o (0-1.3), reduoration = 8 o (1-6.4), o-curdosulfina = 50 (5-6.6), p-endosulfina = 10, (14, 2-27.5), 4,4DDT = 17.1 (14, 5-27.5), 4,4DDT = 17.1 (14, 5-27.5), 4,4DDT = 17.1 (14, 5-27.5), mirex = 0 (0-107)	DNA damage: comet assay	Higher concentrations of α -BHC, β -BHC, and HCB (as a mixture) (β =1.21; 95% CI: 0.33, 2.10) and of primiphos-methyl, malathoromphos-enthyl (as a mixture) thin, bromophos-enthyl (as a mixture) (β =11.97; 95% CI: 2.34, 21.60) were associated with higher DNA damage and comet tail length, respectively.

_
nued
ntin
\sim
\mathcal{L}
2
2. (C
e 2. (C
le 2. (C
ble 2. (C
ble
ble
ole.

Study	Year of publication/country	Population and sample size	Study design	Pesticides assessed	Exposure assessment method	Pesticide or metabolite concentrations	Health effect and assessment method/instrument	Results
38. Adad et al. ⁹⁸	2015/Brazil ^b	80 men farmworkers from state association/ 20 men farmworker from a private com- pany/100 controls	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history) Blood BChE ^a	Not applicable	Cytogenetic damage: MN, BN Cytotoxicity: KR, KL	Higher frequencies of MN ($p < 0.001$), KR (state group $p < 0.001$; private group $p < 0.001$; private group $p < 0.01$), KL (both exposed groups $p < 0.001$), and BN cells (both exposed groups $p < 0.01$) in both exposed groups than in controls.
39. Wilhelm et al. ⁷²	2015/Brazil	37 floriculturists/37 controls	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history)	Not applicable	DNA damage: comet assay Cytogenetic damage: MN, NBUDs, BN Cytotoxicity: KR	MN, NBUDs, BN, and KR frequencies were similar between exposed and controls. Higher DNA damage in the exposed compared with controls (p < 0.001 for DI and DF).
40. Alves et al. ⁷³	2016/Brazil ⁶	77 tobacco farmworkers/ 60 controls	Gross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history)	Not applicable	DNA damage: comet assay Cytogenetic damage: MN Oxidative stress: SOD	MN frequency, DF, and DI were higher in farmworkers than controls $(p < 0.01)$. Higher SOD activity in exposed relative to unexposed group $(p = 0.001)$. Higher MN frequency in $POMI$ GIn/GIn individuals in the exposed group, compared with $PONI$ $Arg/-$ individuals in the exposed group $(p < 0.01)$.
41. Kahl et al. ⁷⁴	2015/Brazil	62 tobacco farmworkers/ 62 controls	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history)	Not applicable	aTL Oxidative stress: TBARS, TEAC	Farmworkers had higher TEAC ($p < 0.001$) and TBARS ($p < 0.05$), but lower aTL ($\beta = -14.4$, SE= 3.2) than controls.
42. Bianco et al. 99	2017/Argentina	76 farmworkers/53 controls	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history) Blood AChE ^a	Not applicable	Cytogenetic damage: CAs	Farmworkers had higher CAs frequency (ρ <0.001) than controls.
43. Chaves et al. ⁷⁵	2017/Brazil	97 farmworkers/55 controls	Cross-sectional	CBs, OPs, pyrethroids	Questionnaire (occupational and lifestyle exposures history)	Not applicable	Cytogenetic damage: Cas, MN	Increased frequency of CAs (ρ < 0.05) and MN (ρ < 0.05) in farmworkers than in controls.
44. Hilgert Jacobsen-Pereira 2018/Brazil et al. ¹¹⁰	2018/Brazi 1	50 farmworkers/46 controls from the same agricultural area/ 29 controls from urban area	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history) Blood AChE, BChE ^a	Not applicable	DNA damage: comet assay. Cytogenetic damage: MN, NBUDs, NPBs Oxidative stress: TBARS, CAT activity	Higher DI (ρ <0.001), MN (ρ <0.005), NBUD (ϕ <0.005), and NPB (ρ <0.001) frequencies in farmworkers than controls. TBARS level was higher in exposed and in rural controls than urban controls. CAT activity was similar among groups.
45. Tomiazzi et al. 76	2017/Brazil	30 nonfarmer smokers/30 Cross-sectional nonsmoker farmworkers/30 smokers and farmworkers/30 controls controls	Cross-sectional	OPs, pyrethroids, glyphosate	Questionnaire (occupational exposure history)	Not applicable	Cytogenetic damage: MN, BNMN Cytotoxicity: KL, KR, CC	MN frequency and the total cytogenetic abnormalities were higher in all exposed groups than in controls ($p < 0.05$).
46. Vazquez-Boucard et al. ⁷⁷	2017/Mexico	107 consumers of well or tap water/40 consumers of bottled water (controls)	Case-control	OCs, OPs, neonics	Questionnaire (occupational exposure history) Regional water sampling	Not applicable	DNA damage: comet assay	Higher DNA damage in those who consumed well or tap water than in control group (p < 0.001), Individuals who consumed well or tap water and worked in agriculture had higher DNA damage than controls (p < 0.001).
47. Marcelino et al.90	2017/Brazil	18 farmworkers/18 unexposed controls	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history)	Not applicable	DNA damage: comet assay Cytogenetic damage: MN	Significantly higher DNA and cytogenetic damage in exposed group compared with unexposed group ($p < 0.01$ for each).
48. Hutter et al. 78	2018/Dominican Republic	38 exposed farmworkers/ Cross-sectional 33 control farmworkers	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history)	Not applicable	Cytogenetic damage: MN, BUD, BN Cytotoxicity: CC, KR, KL, PN	All cytogenetic damage and cytotoxicity biomarkers were more frequent among farmwockers. MN (OR =4.0; 95% CI: 1.3, 7.4, total MN (OR = 2.5; 95% CI: 1.2, 5.2), BUD (OR =1.9; 95% CI: 1.5, 2.5), BN (OR = 1.4; 95% CI: 1.2, 1.7), CC (OR = 1.3; 95% CI: 1.1, 1.6), KR (OR = 1.2; 95% CI: 1.0, 1.4), KL (OR = 1.3; 95% CI: 1.1, 1.5), PN (OR =4.5; 95% CI: 2.5, 8.2)
49. Kahl et al. ⁸⁰	2018/Brazi 1	56 tobacco farmworkers/74 controls	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history)	Not applicable	DNA damage: comet assay Telomere length Oxidative stress: TEAC, TBARS DNA methylation:	Farmworkers had higher DNA damage ($p < 0.001$), lower percentage global DNA methylation, shorter telomeres ($p < 0.001$), and p16 hypermethylation ($p = 0.003$) compared with controls.

Study	Year of publication/country	Population and sample size	Study design	Pesticides assessed	Exposure assessment method	Pesticide or metabolite concentrations	Health effect and assessment method/ instrument	Results
50. Cattelan et al. ⁸⁸	2018/Brazil ^b	84 farmworkers who used pesticides/68 farmworkers who did not use pesticides	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history)	Not applicable	Cytogenetic damage: MN Oxidative stress: CAT, GPX, GSH, SOD, TBARS, carbonylated pro-	Lower mean TBARS (p =0.02), GPx (p <0.01), GSH (p <0.01), and SOD (p <0.01) values in farmworkers who did not use pesticides than in those who did use pesticides. No differences in MN frequency between groups.
51. Kahi et al. ⁸⁹	2018/Brazil	40 tobacco farmworkers/ 40 unexposed controls	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history)	Not applicable	Cytogenetic damage: MN, MPB, NBUDs, Telomere length DNA methylation: global MTHFR and TERT genovnes	Higher frequencies of MN, NPB, NBUD, and binucleated cells in farmworkers than controls (ρ <0.001 for each). Shorter telomere length (ρ = 0.02) and lower DNA global methyliation levels (ρ <0.01) in exposed group. Allele and genotype frequencies of MTHFR gene were different between exposed and unexposed groups (ρ <0.01). No differences between groups for TERT polymorphism frequencies.
52. Claudio et al. 79	2019/Brazil	21 male banana farmworkers/20 controls	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history)	Not applicable	Cytogenetic damage: MN Cytotoxicity: PN, KR, KL	Higher MN and KR frequencies in farmworkers than controls $(p=0.05$ for both), but KL and PN were similar between groups.
53. de Oliveira et al. ¹⁰¹	2019/Brazil	76 soybean farmworkers/ 72 controls	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history). Blood BChE ^a	Not applicable	Cytogenetic damage: MN, BN, NBUDs Cytotoxicity: PN, KR, KL, CC Telomere length XCCR Tript— and PONI Arrge— oenes	Increased cytogenetic damage (MN and NBUDs $p < 0.001$; BN $p < 0.05$) and cell death (CC and RR $p < 0.00$) in the exposed group compared with controls. Telomere length was similar in both groups. Higher frequencies of BN cells in farmworkers ($p = 0.03$), and NBUDs in controls ($p = 0.04$) belonging to those carrying XCCR1 $Trip/$ and $POMI Arg/$ genes.
54. Arévalo-Jaramillo et al. ⁸¹	2019/Ecuador ^b	62 women living in 2 ag- ricultural com- munities/53 unexposed women fron control community	Cross-sectional	Multiple pesticide classes	Questionnaire	Not applicable	Cytogenetic damage: MN, NBUDs, notched cells, BN Cytotoxicity; PK, KL, KR, CC	Lower BN $(p < 0.01)$ and higher KL $(p = 0.05)$ and KR $(p = 0.05)$ among those in the first agricultural community compared with controls. Higher NBUS $(p = 0.05)$ and notebre cells $(p < 0.01)$ among those in the second agricultural community compared with the controls. Mean MN not statistically different between controls and exposed groups. Increased frequency of KL, KR, and CC cells among individuals with genetic polymorphisms in POM, and GSTPP genes.
55. Barrón Cuenca et al. 82.	2019/Bolivia	297 men and women (17–70 years of age) from three agricultural communities	Cross-sectional	Fun gicides, OPs, pyrethroids, herbicides	Questionnaire (occupational history) Urinary metabolites of tehenorazole, chlorpyri- fos, permethrin, cyfuthrin, phenoxy herbicides, bifenthrin, thiabendazole, pyrimethanil	Mean (IQR) of pesticide metabolites (ng/mL) in creal population TEB-OH = 3.18 (n.2-1.4); TCPy = 17 6 (3.1-1.2.2); 3.BPA = 3.2 (1.0-3.4); DCCA = 50 (1.1-4.8); 2.4-D = 15.8 (0.2-0.8); MCPA = 0.05 (<1.0D); TCFA = 0.4 (<1.0D); 5.0H:TBZ = 0.08 (<1.0D); OH:PYR = 2.5 (<1.0D);	DNA damage Cytogenetic damage: MN	Increased MN frequency among those with ≥8 y active farming compared with those with <8 y active farming. Days of active spraying per month was not associated with genotoxic damage. Increased odds of DNA strand breaks among those with high exposure to 2,4-D (OR = 2.0); 95% CI: 1.1, 3.6 for tail movement and OR = 1.8; 95% CI: 0.3, 1.0 for SNAA in tail. Decreased odds of DNA strand breaks among those with high exposure to pyrethroids (OR = 0.5; 95% CI: 0.3, 0.9 for %DNA in tail and OR = 0.5; 95% CI: 0.3, 1.0 for tail movement). High exposure to certain mixtures of pesticides (containing mainly 2,4-D or cyfluthrin) was associated with increased DNA strand breaks, but not increased chromosomal aberrations (p < 0.05). Higher levels of DNA strand breaks among participants with certain GSTM! genotynes.
56. Cepeda et al. ⁸³	2020/Colombia	5 farmers/5 unexposed controls	Cross-sectional	Multiple pesticide classes	Questionnaire (pesticide exposure history)	Not applicable	Cytogenetic damage: CA, chromosomal instability	Increased total clonal and non-clonal CAs were observed in pesticide-exposed individuals compared with unexposed individuals (p < 0.01). Higher frequency of fragilities and chromosomic breakage in exposed group compared with unexposed group (p < 0.01 for each).
57. Hutter et al. 84	2021/Ecuador	34 male farmworkers engaged in conventional faming/37 male unexposed controls engaged in ecological faming ecological faming	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history)	Not applicable	Cytogenetic damage: MN, BUD, BN Cytotoxicity: CC, KR, KL, PK,	Compared with controls working on ecological farms, those working on conventional farms had higher frequency of MN, BUD, BN, KR, CC, and KL (p < 0.01 for each).

Table 2. (Continued.)

							Health effect and	
Study	Year of publication/country	Population and sample size	Study design	Pesticides assessed	Exposure assessment method	Pesticide or metabolite concentrations	assessment method/ instrument	Results
58. Salazar-Flores et al. ⁸⁵	2020/Mexico	113 farmworkers/93 unexposed controls	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history)	Not applicable	Oxidative stress: GSH, GSSG, GSH/GSSG ratio, Carbonyl groups in proteins, intrates-nitrites, inpoperoxides, membrane fluidity	Lower levels of GSH, GSSG, carbonyl groups in proteins, nitrates-nitrites, lipoperoxides, and membrane fluidity among farmworkers compared with unexposed controls (p <0.01 for each). No differences in most markers of oxidative stress between farmworkers and controls when farmworkers were grouped in four exposure categories.
59. Lovison Sasso et al. 102	202 I/Brazil ^b	50 male farmworkers/50 male controls	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history) Blood BChE ^a	Not applicable	Oxidative stress: GSH, CAT, GR, GPx, SOD, TBARS, car- bonylated protein levels	Lower SOD, CAT, GSH, GR, and GPx activity, but higher TBARS and carbonylated protein levels, among exposed group compared with controls (p < 0.05 for each).
60. de Souza Espindola Santos et al. ⁸⁷	2021/Brazil	52 farmworkers/ 68 non- farmworkers	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history)	Not applicable	Oxidative stress: CAT, SOD, thiols, GST, GPx, GR, 8-ISO	No differences in biomarkers of oxidative stress between farmworkers and non-farmworkers.
61. Fillippi et al. ¹⁰³	202 I/Argentina ^b	47 pesticide applicators/53 unexposed controls	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history) Blood HCB, HCH, endosulfan, DDE, DDT, ACHE, BChE ^a	Not applicable	DNA damage: comet assay Cytogenetic damage: SCE, CA, MN	Pesticide applicators had more DNA damage, as well as higher SCE, CA, MN frequencies, compared with controls $(p < 0.01)$ for each).
62. Mañas et al. ¹⁰⁴	202 I/Argentina	41 adults living in area of Cross-sectional intensive agricultural production (<1,000 m from sprayed fields)/ 24 unexposed adults (>1,000 m from sprayed fields)	Cross-sectional	Multiple pesticide classes	Residential proximity to agricultural fields	Not applicable	Cytogenetic damage: CAs, BNMN	Higher frequencies of CAs and BNMN in exposed group compared with unexposed group $(\gamma + 0.05)$ for each. Among exposed group, higher CAs among those living \leq 500 m from fields compared with those living $>$ 500 m $(p < 0.05)$.

Note: %5mC, percentage 5mC; %DNA, percentage DNA; 2.4-D; 2.4-dichlorophenoxy acetic acid; 8-ISO, 8-isoprostane; 3-BPA, 3-phenoxybenzoic acid; 4-F3BPA, 4-fluoro-3-phenoxybenzoic acid; 5-OH-TBZ, 5-hydroxytiabendacle; BN, binucleated cells, BNMN, binucleated cells, BNNN, develventers, CCC, Sconfeared buds and broken eggs; CAs, chromosomal aberrations; CCN, confeared buds, and broken eggs; CAS, chromosomal buds, chromosomal instability, CPK, cell proliferation kinetics; CXCL3, CXC subfamily of chemokine gene; DND, dicholorochlane; DDB, dichorochlane; DBC, sinchorochlane; DRS, dichorochlane; DRS, contents, BNN, deoxyribonucleic acid; ETU, chhylenethioure; and sinchorocyclohexane; DRS, dichorochlane; DRS, deformatics, D

Investigators did not use exposure biomarker concentrations in multivariate analyses.

bAlso included in Table 9 (other health effects)

^cAlso included in Table 4 (placental outcomes and teratogenicity).

Also included in Table 8 (birth outcomes and child growth)

In contrast, 2 publications from small cross-sectional studies of children from Colombia³⁰ and Bolivia⁵⁵ reported null associations of maternal occupational pesticide exposure—assessed via questionnaire—and urinary atrazine concentrations with cytogenetic damage.

Thirteen publications from cross-sectional studies examined associations of exposure to OP or carbamate pesticides with cytogenetic or DNA damage in adults, primarily among those occupationally exposed (Table 2). One cross-sectional study assessed OP pesticide exposure via questionnaire only and reported higher DNA damage—quantified via comet assay—among workers compared with controls.⁵⁶ The other 12 studies assessed exposure to OP or carbamate pesticides using urinary dialkyl phosphate (DAP) metabolite concentrations or blood cholinesterase (ChE) measurements, but 11 of them evaluated exposure-outcome associations using predetermined categorical exposure variables based on occupation (e.g., high, moderate, and no exposure)^{57–65} or residence (e.g., rural or urban). 66 Nine of these 11 publications reported associations with genotoxic outcomes, such as changes in DNA methylation patterns of candidate tumor suppressor genes, among moderate- or high-exposure groups. 57,59,61-67 Two publications reported no differences in markers of cytogenetic or DNA damage between exposed workers and controls. 58,60 The only cross-sectional study that used urinary DAP concentrations in its exposure-outcome analyses reported null associations with DNA methylation but observed group differences when OP pesticide exposure was assessed as a categorical variable.⁶⁸

Thirty-eight publications examined associations of exposure to pesticides other than OCs, OPs, or carbamates or exposure to multiple pesticide classes with genotoxicity among adults (Table 2). Twenty-five publications estimated occupational pesticide exposure using questionnaire data only and all reported associations of exposure to pesticides with increased cytogenetic damage, including higher frequencies of chromosomal aberrations and micronuclei, DNA damage, oxidative stress, or telomere shortening.^{69–93} In addition, 10 publications from cross-sectional studies of farmworkers/pesticide applicators and controls assessed pesticide exposure using blood ChE measurements but only evaluated exposure-outcome associations using categorical exposure variables. 94-103 All 10 publications reported that occupational pesticide exposure was associated with higher levels of DNA or cytogenetic damage, such as higher frequencies of chromosomal aberrations, nuclear buds, or cell death. Similarly, a publication from a crosssectional study in Argentina reported increased cytogenetic damage among those living near agricultural fields (<500 m), ¹⁰⁴ whereas a publication from a cross-sectional study in Ecuador reported null associations of residential use of the herbicide glyphosate with chromosomal aberrations frequency and karyogram alterations. 105 Last, a publication from a cross-sectional study of rice field workers in Colombia reported associations of two pesticide mixtures (one mixture of OC pesticides and one of carbamates)—assessed via measurement of pesticide metabolites in blood and urine—with DNA damage. 106

Overall, studies published to date provide consistent evidence of an association between exposure to different pesticide classes such as OP pesticides and carbamates and genotoxic damage in children and adults living in LAC countries. Notably, most of the studies that have been published were cross-sectional in design, assessed pesticide exposure via questionnaire, and had small sample sizes.

Neurobehavioral Outcomes

Fifty-four publications, primarily derived from cross-sectional studies, examined the potential neurobehavioral effects of pesticide exposure in children, adolescents, and adults (Table 3). Twelve

of these 53 publications reported on the association between exposure to OC pesticides and child neurodevelopment¹⁰⁷⁻¹¹⁵; 6 publications focused on the same Mexican cohort, 107-109112-114 5 focused on the same Guadeloupean cohort, $^{110,111,115-117}$ and 1 was a cross-sectional study from Brazil. Three publications from the prospective cohort study in Mexico reported that higher prenatal dichlorodiphenyltrichloroethane (DDT) exposure—as indicated by measurement of its primary breakdown product dichlorodiphenyldichloroethylene (DDE) in serum—was associated with lower psychomotor development during the first year of life, ¹⁰⁷ poorer verbal and memory skills and a poorer general cognitive index at 3.5-5 years of age, 112 and poorer spatial orientation at 5 years of age. 113 A fourth publication from the same cohort study reported that maternal intake of omega-3 and -6 fatty acids during pregnancy modified the association of prenatal DDT exposure with poorer motor and memory skills at 3.5–5 years of age, 114 whereas 2 other publications from this cohort reported null associations of prenatal DDT exposure with child neurodevelopment at 1 month 109 and at 12–30 months of age. 108 Four publications from the prospective Guadeloupean cohort study reported that higher cord blood concentrations of chlordecone—an OC pesticide that was extensively used in banana plantations in the French West Indies—were associated with impaired cognitive and motor function at 7 months of age, ¹¹⁰ lower fine motor scores at 18 months of age (among boys only), ^{111,117} and poorer visual contrast sensitivity at 7–8 years of age. 115 A fifth publication from the Guadeloupean cohort study reported null associations of prenatal and childhood chlordecone exposure with sex-typed play behavior at 7 years of age. 116 The one Brazilian cross-sectional study reported that higher concentrations of several OC pesticide metabolites were associated with poorer performance intelligence quotient, resistance to distraction, or processing speed at 6–16 years of age. ¹¹⁸ The only publication that examined the association of OC pesticide exposure as indicated by measurement of β-hexachlorocyclohexane (β-HCH), DDT, DDE, and dieldrin in serum—with neurodegenerative disorders among adults was from a cross-sectional study conducted in Costa Rica and reported null associations. 119

Eleven publications examined the association of OP or carbamate pesticides with neurobehavioral outcomes in children or adolescents (Table 3). Six publications from cross-sectional studies in Ecuador reported that children and adolescents who lived in floricultural communities—in which OP pesticides and carbamates are intensively used—or whose mothers worked as floriculturists during pregnancy had adverse neurobehavioral outcomes, including poorer motor or socioindividual skills at 3–61 months of age^{120,121}; attention, executive function, and memory deficits at 4-9 years of age (in boys only)¹²²; impaired motor coordination, visual performance, and visual memory at 6-8 years of age¹²³; and more depression symptoms at 11-17 years of age (particularly among girls). 124,125 In line with these findings, a seventh publication reported that Ecuadorian children 4-9 years of age who were examined sooner after the end of an increased pesticide use period had lower attention/inhibitory control, visuospatial processing, and sensorimotor scores than children examined later. 126 A publication from a cross-sectional study of Chilean school-age children who lived in agricultural communities reported associations of OP pesticide exposure—as indicated by measurement of urinary DAP metabolites-with poorer processing speed.¹²⁷ A publication from a prospective cohort study in Mexico reported that prenatal exposure to the OP pesticide chlorpyrifos—assessed by measurement of 3,5,6trichloro-2-pyridinol (TCPy) in maternal urine samples collected during the third trimester of pregnancy-was associated with increased attention problems in school-age boys and girls. 128 Conversely, two cross-sectional studies found null or protective

<u>'</u>	,
= u	
_	
2	
20	
-	
\simeq	
a	
2007	
Ŏ	
7	
E	
è	
چ	
þ	
-0	
9	
S	
7	
Ξ	
7	
ĕ	
Ξ	
၁	
Ħ	
0	
5	
oľ	
.2	
'n	
્	
ಕ	
Ħ	
ē	
100	
a	
i.e	
ns	
õ	
×	
9	
સ	
.2	
Ĭ.	
ě	
Ξ	
ō	
S	
:=	
ĭ	
st	
Ξ	
હ	
99	
Ħ	
S	
6	
ţ	
ij	
n and	
an and	
rican and	
nerican and	
American and	
American and	
in American and	
atin American and	
Latin American and	
of Latin American and	
Ŧ	
Ŧ	
Ŧ	
Ŧ	
Ŧ	
Ŧ	
naracteristics of	
acteristics of	
naracteristics of	
e 3. Characteristics of	
ble 3. Characteristics of	
able 3. Characteristics of	
ble 3. Characteristics of	

Study	Year of publication/country	Population and sample size	Study design	Pesticides assessed	Exposure assessment method	Pesticide or metabolite concentrations	Health effect and assessment method/instrument	Results
Studies on OCs Studies in children 1. Torres-Sánchez et al. ¹⁰⁷	2007/Mexico	244 mother-child (0-12 months of age) pairs from malaria-endemic zone	Prospective cohort	OC.	Maternal serum DDE before and during each trinester of pregnancy	Geometric mean \pm geometric SD (GSD) (η g/mL): $p_i p'$ -DDB: first timester = 6.4 \pm 2.8; second trimester = 6.8 \pm 2.9; third timester = 7.8 \pm 2.8	Neurodevelopment: mental and psychomotor develop- ment (BSID-II)	Higher DDE during first trimester of pregnancy was associated with lower PDI scores in first year of life (β per 2-fold increase in DDE = -0.5 ; 95% CI: -1.0 , -0.1). Null associations between DDE and MDI scores.
2. Torres-Sánchez et al. ¹⁰⁸	2009/Mexico	270 mother-child (12–30 months of age) pairs	Prospective cohort	OC _s	Maternal serum DDE during each trimester of pregnancy	Mean \pm SD (ng/mL): p_1p' -DDE: first trimester = 6.3 \pm 3.1; second trimester = 6.5 \pm 3.6; third trimester = 7.9 \pm 2.8; p_1p' -DDT: first trimester = 0.008 \pm 2.7; second trimester = 0.006 \pm 2.0; third trimester = 0.006 \pm 2.3	Neurodevelopment: mental and psychomotor develop- ment (BSID-II)	Null associations of prenatal DDE with PDI and MDI scores.
3. Bahena-Medina et al. 109	2011/Mexico	265 month of age) pairs (1 month of age) pairs	Prospective cohort	88	Maternal serum DDE during each trimester of pregnancy	Geometric mean \pm geometric SD (GSD) DDE ($\log/m L$): First timesets roman lettecs = 6.2 ± 3.1 ; one abnormal reflexe = 7.1 ± 2.6 ; 2.2 ; abnormal reflexes = 5.4 ± 3.2 ; non-neurological soft signs = 6.0 ± 3.0 ; one meurological soft signs = 6.0 ± 3.0 ; one determinester, normal reflexes = 7.5 ± 2.2 . Second timester, normal reflexes = 7.5 ± 2.2 . Second timester, normal reflexes = 7.5 ± 2.2 ; non-neurological soft signs = 6.4 ± 3.1 ; one meurological soft signs = 6.4 ± 3.1 ; one meurological soft signs = 6.4 ± 3.1 ; one meurological soft signs = 7.8 ± 2.0 ; convolutional reflexes = 7.5 ± 2.7 ; one abnormal reflexes = 7.5 ± 2.7 ; one abnormal reflexes = 7.5 ± 2.7 ; one abnormal reflexes = 7.5 ± 2.7 ; one mon-neurological soft signs = 7.7 ± 2.8 ; one hon-neurological soft signs = 7.7 ± 2.8 ; one meurological soft signs = 7.7 ± 2.8 ; one meurological soft signs = 7.0 ± 3.2 .	Neurodevelopment: neonatal reflexes (NBAS), neurologi- cal soft signs (Graham- Rosenbith scale), neutal and psychomotor develop- ment (BSID)	Null associations between prenatal DDE exposure and neonatal neurodevelopment.
4. Dallaire et al. ¹¹⁰	2012/Guadeloupe	153 mother-chiid (7 months of age) pairs living near bu- nana plantations	Prospective cohort	OCs (chlordecone)	Questionnaire (infant die- tary intake history) Cord blood chlordecone Breast milk chlordecone at 3 months	Mean=SD chlordecone (ug/L): Cord blood = 0.53 ± 1.97 ; breast milk = 1.09 ± 1.15	Neurodevelopment: visual recognition, memory, and processing speed (FTII, TAC, Brunet-Lezine scale)	Those in the highest tertile of coard blood chlordecone concentrations (classified as concentrations > median) scored lower on the movelty preference test ($\beta = -0.2$, 95% CI: -0.4 , 0) than those in the second tertile of cord chlordecone concentrations (classified as concentrations >LOD and \leq median) ($\beta = 0.1$, 95% CI: -0.3 , 0.1). Detectable concentrations of chlordecone in oxyl hard were associated with increased odds of low fine motor scores (OR = 1.8; 95% CI: 1.1, 1.5).
5. Boucher et al. ¹¹¹	2013/Guadeloupe	141 mother-child (18 months of age) pairs living near banana plantations	Prospective cohort	OCs (chlordecone)	Questionnaire (infant die- tary intake history) Cord blood chlordecone Breast milk chlordecone at 3 months	Mean \pm SD chlordscone (µg/L): Cord blood = 0.41 \pm 0.6; breast milk = 0.93 \pm 0.90	Neurodevelopment: personal- social, communication, problem-solving, fine motor, and gross motor (ASO-19)	Higher chlordecone concentrations in cord blood were associated with lower fine motor scores among boys $(\beta=-0.32;p=0.03)$.
6. Torres-Sánchez et al. 112	2013/Mexico	203 mother-child (42–60 months of age) pairs	Prospective cohort	OCs.	Maternal serum DDE during each trimester of pregnancy	Median (P10–P90) (ng/g lipid): DDE: first trimester = 1,25.40 (252.64-964.21); second trimester = 1,138 1(615.439-2.857.14); third trimester = 812.75 (153.23-2.919.00); DDT: first trimester = 0.0123 (0.012-3.148); second trimester = 0.0123 (0.123-2.54); third trimester = 0.0123 (0.123-2.54); third trimester = 0.0123 (0.123-2.54); third	Neurodevelopment: verbal, perceptual performance, quantitative, memory, motor skilis, and general cognitive index (MSCA)	Higher DDE during third trimester of pregnancy was associated with porer verbel (j per 2-fold increase in DDE = -1.1 ; 95% CI: -2.2 , -0.1), quantitative ($\beta = -2.1$; 95% CI: -2.2 , -0.1), quantitative ($\beta = -1.3$; 95% CI: -2.2 , -1.0), and memory ($\beta = -1.3$; 95% CI: -2.2 , -0.3) skills and a poorer general cognitive index ($\beta = -2.0$) 95% CI: -3.6 , -0.4) at 42–60 months of age.
7. Osorio-Valencia et al. 113	2015/Mexico	167 mother-child (60 months of age) pairs	Prospective cohort	ocs	Maternal serum DDE during each trimester of pregnancy	Mean ± SD p.p./-IDDE (ng/g lipid): First timester: fremle = 1,624 ± 1,376; male = 1,997 ± 2,266; second timester: female = 1,297 ± 1,194; male = 1,424 ± 1,494; third trimester: female = 1,434 ± 1,457;	Neurodevelopment: lateralization and spatial orientation (MSCA)	Higher DDE during second trimester of pregnancy was associated with poorer spatial orientation (β per 2-fold increase in DDE = -0.2 ; 95% CI: -0.4 , 0.04).

Study	Year of publication/country	Population and sample size	Study design	Pesticides assessed	Exposure assessment method	Pesticide or metabolite concentrations	Health effect and assessment method/instrument	Results
8. Campos et al. 118	2015/Brazil	46 children (6–16 years of age)	Cross-sectional	SOO	Child senum HCH, HCB, DDE, DDT, endosulfan, aldrin, en- drin, dieddrin, methoxychlor, and mirex	Median (range) (rag/mL); 2.4HCH = 2.03 (< L.DD35.88.0); 2.4HCH = 2.03 (< L.DD31.08.2); 2.4HCH = 2.03 (< L.DD51.60.3); 2.4-DDT = 3.98 (< L.DD5.160.3); 2.4-DDT = 3.98 (< L.DD5.30.6); 2.4-DDT = 0.50 (< L.DD2.145.73); 2.4-DDT = 0.50 (< L.DD2.145.73); 2.4-DDT = 0.63 (< L.DD3.50.53); 2.4-DD = 1.06 (< L.DD3.09.23); 2.4-DD = 1.06 (< L.DD4.07.47); 3.4-DD = 1.06 (< L.DD4.07.47); 3.4-DD = 0.80 (< L.DD4.16.32); 3.4-DD = 0.29 (< L.DD3.49); 3.4-DD = 0.29 (< L.DD3.49); 3.4-DD = 0.29 (< L.DD3.39); 3.4-DD = 0.29 (< L.DD3.79); 3.4-DD = 0.29 (< L.DD3.	Neurodevelopment. cognitive function (WISC-III)	Higher o-HCH was associated with poorer performance IQ (β per 1 ng/mL increase = -0.5; 95% CI: -0.9, 0), resistance to distraction (β = -0.5; 95% CI: -0.6, 0), and processing speed (β = -0.5; 95% CI: = -0.9, -0.1). Higher γ-HCH was associated with poorer resistance to distraction (β = -1.7; 95% CI: = -3.1, -0.4) and processing speed (β = -1.8; 95% CI: = -3.6, 0). Higher pp' -DDT was associated with poorer processing speed (β = -0.8; 95% CI: = -1.4, -0.3).
9. Cordier et al. ¹¹⁷	2015/Guadeloupe"	75 mother-child (18 months of age) pairs	Prospective cohort	oC _s	Cord blood and breast milk chlordecone, cord blood DDE	methoxychlor <lod-1.43) (111="" (<1.0d-1.16.)<="" (<lod-0.31);="" (p25-p75)="" (tig="" (tol-0.40);="" -dde="0.30" blood="" breast="" chlordecone="0.40" cord="" entire="" in="" l)="" median="" milk="" mother-child="" pairs):="" population="" pt="" study="" td=""><td>Neurodevelopment: personal- social, communication, problem-solving, fine motor, and gross motor</td><td>Association between cord chlordecone and fine motor scores among boys (reported by Boucher et al. 11.) was not mediated by TSH.</td></lod-1.43)>	Neurodevelopment: personal- social, communication, problem-solving, fine motor, and gross motor	Association between cord chlordecone and fine motor scores among boys (reported by Boucher et al. 11.) was not mediated by TSH.
10. Ogaz-Gonzales et al. ¹¹⁴	2018/Mexico	142 mother-child (42-60 months of age) pairs	Prospective cohort	ocs	Questionnaire (pesticide use history) Maternal serum DDE during first and third trimester of pregnancy	Near (P10-P90) DDE (ing/mL). First trimester = 7.6 (< 1.8–33.1) Second trimester = 8.1 (1.3–23.5) Third trimester = 9.0 (1.7–29.2)	Neurodevelopment: verbal, perceptual performance, quantitative, memory, motor skills, and general cognitive index (MSCA)	Higher third-trinester maternal DDE was associated with lower motor development in children whose mothers had lower intake of DHA (an omega-3 farty acid) (β per 2-fold increase in DDE = 1.13; 95% CI: -2.5, 0.1), but not in children whose mothers had a higher DHA intake. Higher mentral DDE was associated with pooter memory skills in children whose mothers had lower ARA (an omega-6 fatty acid) intake (β per 2-fold increase in DDE = 1.15, 95% (CI: -2.2, -0.3) but not in children whose mothers had a higher better than the properties of the per 2-fold increase in DDE = 1.2, 2.5% (CI: -2.2, -0.3) but not in children whose mothers had a higher AD is inclease.
11. Saint-Amour et al. 115	2020/Guadeloupe	285 mother-child (7–8 years of age) pairs	Prospective cohort	OCs (chlordecone)	Cord blood and child (7 years of age) blood chlordecone	Median (range) chlordecone (ug/L): Cord blood = 0.80 (0.06–29.78); child blood = 0.17 (0.02–7.01)	Neurodevelopment: visual contrast sensitivity (FrACT)	Higher code plasma chlordecone (continuous) was associated with lower scores ($\beta = -0.1$; 95% CI: -0.1 , 0). Child chlordecone (continuous) was associated with lower scores among boys ($\beta = -0.1$; 95% CI: -0.1 , 0). On the child chlordecone of continuous continuous) was associated with lower scores among boys ($\beta = -0.1$; 95% CI: -0.2 , 0).
12. Cordier et al. 116 Crodiac in adulte	2020/Guadeloupe	116 mother-child (7 years of age) pairs	Prospective cohort	OCs (chlordecone)	Cord blood and child (7 years of age) blood chlordecone	Median (range) chlordecone (ug/L): Cord blood = 0.17 (<lod-7.4); child<br="">blood = 0.04 (<lod-1.0)< td=""><td>Neurodevelopment: sex-typed play behavior (feminine, masculine, or neutral play reported as a proportion of the complete playing time)</td><td>Null associations of eard blood and child chlordecone with sex-typed play behavior.</td></lod-1.0)<></lod-7.4);>	Neurodevelopment: sex-typed play behavior (feminine, masculine, or neutral play reported as a proportion of the complete playing time)	Null associations of eard blood and child chlordecone with sex-typed play behavior.
13. Steenland et al. 19	2014/Costa Rica	89 adults from historically (and now partially) agricultural area	Cross-sectional	Š	Questionnaire (occupational exposure history) Serum HCH, DDE, DDT, and dieldrin	Mean \pm SD (tug/mL): Past occupational pesticides exposure: p,p'-DDF = 0.14 ± 0.85; p,p' -DDT = 0.14 ± 0.08; dieldrin = 7.88 ± 19.63; p -HCH = 0.78 ± 0.30 No past occupational pesticides exposure: p,p'-DDE = 1.20 ± 1.46; p,p' -DDT = 0.12 ± 0.12; dieldrin = 3.40 ± 6.48; p -HCH = 0.73 ± 0.19	Neurodegeneration: spatial and temporal orientation, short- tern memory, attention, calculation, language, praxis (MMS); temor-at-rest (UPDRS)	Null associations of serum OC (parent compounds or metabolites) with MMSE and tremor-at-rest.
Studies in Children 14. Handal et al, ¹³⁰	2007/Ecuador	142 children (24-61 months of age) from 2 communities with industrial flower farms and from a community with local agriculture and crops for food	Cross-sectional	GBs, OPs	Questionnaire (parental occupational and residential exposure history, child outdoor activities)	Not applicable	Neurodevelopment: communication, fine motor, gross motor, problem-sol- ving, personal-social (ASQ), vialen-motor skills (Beey-Buktenica VMI de- velopmental test)	Maternal employment in the flower industry at time of child assessment was associated with improved communication (Vechange = 6.9, 95% CI: -0.3, 8.5) and problem-solving (Vechange = 8.4; 95% CI: 0.7, 9.4) skills. Pseticide to so of othersite crosps was also associated with better gross motor (Vechange = 8.1; 95% CI: 0.6, 9.2) and personal-social (Vechange = 7.0; 95% CI: -0.7, 90), scores, whereas pesticide use within the home was associated with lower communication scores (%change = -7.5; 95% CI: -8.8, -0.3). Children who played with irrigation water had lower fine motor (%change = -8.2; 95% CI: -9.3, -0.5) and problem-solving

Study 15. Handal et al. 121 16. Handal et al. 121 17. Harari et al. 120 18. Muñoz-Quesada et al. 127 19. Martos-Mula et al. 129 20. Suarez-Lopez et al. 129 10. Handal et al. 129 20. Suarez-Lopez et al. 129 10. Handal et al. 129 20. Suarez-Lopez et al. 129 110. Harari communities 1110. Harari communities 1121. Harari et al. 129 20. Suarez-Lopez et al. 129 20. Suarez-Lopez et al. 122 20. Suarez-Lopez et al. 122 20. Suarez-Lopez et al. 123 20. Suarez-Lopez et al. 124 20. Suarez-Lopez et al. 125 20. Suarez-Lopez et al. 126 20. Suarez-Lopez et al. 127 20. Suarez-Lopez et al. 127 20. Suarez-Lopez et al. 128 20. Suarez-Lopez et al. 128 20. Suarez-Lopez et al. 129 20. Suarez-Lopez et al. 121 20. Suarez-Lopez et al. 122 20. Suarez-Lopez et al. 122 20. Suarez-Lopez et al. 122 20. Suarez-Lopez et al. 124 20. Suarez-Lopez et al. 125 20. Suarez-Lopez et al. 127 20. Suarez-Lopez et al. 128 20. Suarez-Lopez et a							
2007/Ecuador 2010/Ecuador 2010/Ecuador a et al. ¹²⁷ 2011/Chile t al. ¹²⁹ 2013/Argentina 5t al. ¹²² 2013/Argentina		Study design I	Pesticides assessed	Exposure assessment method	Pesticide or metabolite concentrations	Health effect and assessment method/instrument	Results
2008/Ecuador 2010/Ecuador 2011/Chile 2013/Argentina 2013/Fcuador 2013/Fcuador		Cross-sectional C	CBs, OPs	Questionnaire (parental occupational and residential exposure history)	Not applicable	Neurodevelopment: communication, fine motor, gross motor, problem sol- ving, personal-social (ASQ)	Children 3–23 months of age from industrial flower farms communities had lower gross motor ($\beta = -8.8$, $p = 0.002$), fine motor ($\beta = -5.0$, $p = 0.005$), and sociontividual ($\beta = -5.0$, $p = 0.02$) scores compared with children from a local agriculture community. Children 24–61 months of age from industrial flower farms communities had flower gross motor scores compared with children of similar ages from a local arcitulure community ($\beta = -3.8$, $\beta = 0.005$)
2010/Ecuador 1,127 2011/Chile 9 2013/Argentina 22 2013/Ecuador		Cross-sectional (CBs, OPs	Questionnaire (maternal occupational exposure history during pregnancy)	Not applicable	Neurodevelopment: communication, fine motor, gross motor, problem solving, personal-social (ASO), pre- hension and visual acuity (targeted development tests)	Children whose mothers worked as floriculturists during pregnave yhad lower communication (fl = 4 fc; 95% CI: –9.6, 0.3) and fine motor fl = –8.6, 0.59% CI: –130, –3.1) scores and had an increased risk of prorvisual acuity (OR = 4.7; 95% CI: 1.1, 20) than children whose mothers did not.
1,127 2011/Chile 25 2 2013/Argentina 42 2 2013/Ecuador 30		Cross-sectional C	OPs.	Questionnaire (parental occupational and residential exposure history) Urinary DAPs ^b Blood AChE ^b	Not applicable	Neurodevelopment: simple motor speed (finger tapping usk), motor cordination (Santa Ana Form Board), attention (CPT), short-term auditory memory (WISC and Stanford-Binet), visual performance (Raven's test and Stanford-Binet copying test), visual memory (Sanford-Binet copying test), visual memory (Sanford-Binet copying test), visual memory (Sanford-Binet copying test).	Children whose mothers were exposed to pesticides during pregnary showed poter motor speed during pregnancy showed poter motor speed ($\beta = -7.1; 95\%$ CI: $-1.2.5, -1.6$), motor coordination (OR = $5.3; 95\%$ CI: $0.3, 2.95\%$ CI: $0.3, 2.95$), wistal performance (Raver's test: $\beta = 0.5; 95\%$ CI: $0.0, 3.959\%$ CI: $0.0.3, 2.959\%$ compared memory (OR = $6.6; 95\%$ CI: $0.0.3, 2.959\%$ compared with children of unexposed mothers. Children whose fathers were exposed to pesticides during pregnancy showed poorer visual memory (OR = $13.4; 95\%$ CI: $1.8, 101.9$) than children of unexposed fathers. Children with enterit exposure (i.e., at least one detectable urinary DAP metabolite) had longer reaction intes compared with children with no exposure ($\beta = 64.7; 95\%$ CI: $-12.4, 141.7$).
2013/Argentina 42 2 2013/Ecuador 30		Cross-sectional (OPs C	Child urinary DAPs	Geometric mean (range) (µg/L): DMP = 7.3 (2.5-63.6); DMTP = 7.0 (2.5-51.4); DEP = 17.3 (2.5-49.9)	Neurodevelopment: cognitive function (WISC-III)	Negative association between urinary DMTP and processing speed $(r = -0.44, p = 0.01)$. Null associations of other DAP metabolites and WISC-III outcomes.
2013/Ecuador 3(do 1	Cross-sectional (OPs, CBs B	Questionnaire Blood AChE, BChE	Not applicable	Neurodevelopment: associative memory (Digit and Symbol subtest), short-term memory (Digit Memory test), maze test (motor, visuospatial processing), cognitive function (WISC-III), gross motor and balance tests	Children living in an agricultural area had poorer motor function and visuospatial processing than children living in a nonagricultural area (p < 0.01). Null associations between enzyme activities and neurodevelopmental outcomes.
2014/Mexico		Cross-sectional (OPs C	Questionnaire (parental occupational and resi- dential exposure his- tory) Blood AChE	Not applicable	Neurodevelopment: attention and inhibitory control, lan- guage, memory and learning, sensorimotor, vis- uospatial processing (NEPSY-II)	Boys, but not girls, in the highest tertile of AChE activity had increased odds of toon reunodevelopment (< 9th percentile) than boys in the lowest tertile (total neurodevelopment OR = 5.1; 95% CI: 0.8, 31.5; attentior/occeative hincining OR = 4.6, 6.95% CI: 1.2, 17.4; neurodylearning OR = 6.0, 95% CI: 1.2, 31.1).
		Prospective cohort	OPs (chlorpyrifos) N	Maternal urinary TCPy during third trimester of pregnancy	Geometric mean (P10–P90) TCPy (ng/mL): 1.76 (0.45–6.40)	Neurodevelopment: attention and hyperactivity (CRS-R, CPT, BASC-2)	Increased ADHD index for the highest TCPy tertile compared with the lowest tertile for boys $(\beta = 5.6; 95\% \text{ CI:} -0.2, 11.3)$, three used attention problems for the middle TCPy tertile compared with the lowest tertile for grifs $(\theta = 5.8, 95\% \text{ CI:} -0.8, 12.4)$.
22. Suarez-Lopez et al. ¹²⁶ 2017/Ecuador 308 children (4–9 years of age) living in flori-cultural communities		Cross-sectional	OPs.	Questionnaire (parental occupational and residential exposure history) Blood AChE	Not applicable	Neurodevelopment: attention and inhibitory control, lan- garge, memory and learning, senostintor, vis- uospatial processing (NEPSY-II)	Children examined sooner after Mother's Day had lower attention/finhibitory control (score difference per 10.8 d = 0.4; 95% CI. 0.10, 0.7), visuospatial processing (0.6; 95% CI. 0.10, 0.9), and sensorimote (0.4; 95% CI. 0.1, 0.8) scores than children examined later. Further adjustment for AChE activity had overall a small effect on most associations but strengthened associations in the attention and inhibitory control domain by about 16%.
23. Suarez-Lopez et al. ¹²⁴ 2019/Ecuador 529 adolescents (11-17 years of age) living in floricultural communities	_	Cross-sectional (OPs B	Blood AChE	Not applicable	Mental health disorders: anxiety (MASC-2) and depression symptoms (CDL2)	Lower AChE activity was associated with more depression symptoms (per SD decrease in AChE activity = 11, 95% CI; 0, 2.2), Associations were stronger among girls (β = 1.6; 95% CI; 0.1, 3.1) than boys (β = 0.7; 95% CI; -0.9, 2.3) and among younger (β = 1.6; 95% CI; -0.2, 3.4) than older children (β = 0.6; 95% CI; -0.2, 3.4) than older children observed with anxiety scores.

Table 3. (Continued.)

Study	Year of publication/country	Population and sample size	Study design	Pesticides assessed	Exposure assessment method	Pesticide or metabolite concentrations	Health effect and assessment method/instrument	Results
24. Suarez-Lopez et al. 125	2021/Ecuador	300 adolescents (11–17 years of ago) living in floricultural communities	Cross-sectional	90°	Blood AChE	Not applicable	Mental health disorders: anxiety (MASC-2) and depression symptoms (CDI-2)	Lower AChE activity was associated with more depression symptoms (§ per 10% decrease in AChE activity = 1.0, 95% CI: 0, 1.9) and increased odds of an elevated depression score (OR = 1.7; 95% CI: 1.0, 2.7). These associations were stronger among girls than boys. Adjustment for cortisol, testosterone and dehydroopiandrosterone reduced gender differences by 18%–6.2%.
Studies in adults 25. Wesseling et al. 136	2010/Costa Rica	78 male banana farmworkers with polisoning! 730 non-polisoned workers from company payrolls	Cross-sectional	OPs, CBs	Questionnaire (occupational expo- sure history, history of OP pesticide poisoning) Blood AChE®	Not applicable	Mental health disorders; psychological distress and suicidal ideation (BSI)	Farmworkers with history of OP pesticide poisonings had increased odds of somatization (OR = 3.1; 95% CE1.16, 60.1), obsessive-compulsiveness (OR = 3.2; 95% CE1.16, 6.2), interpersonal sensitivity (OR = 2.2; 95% CE1.15, 8.8), depression (OR = 2.4; 95% CE1.11, 4.4), anxiety (OR = 2.3; 95% CE1.11, 4.4), phobia (OR = 1.9; 95% CE1.10, 3.6), and psychoticism (OR = 2.2; 95% CE1.11, 4.3). Individuals with history of OP pesticide poisonings had increased odds of having suicidal thoughts in the previous month (OR = 3.6; 95% CE1.15, 8.8), with increasing risk for those with more poisonings (PR = 5.0; 95% CE1.17, 14.5). Farmworkers with history of CB pesticide poisonings (PR = 5.0; 95% CE1.17, 14.5). Formworkers with history of CB pesticide poisonings (PR = 5.0; 95% CE1.17, 14.5).
26. Muñoz-Quezada et al. ¹³²	2016/Chile	93 farmworkers/84 controls	Cross-sectional	OPs.	Questionnaire (occupational exposure history)	Not applicable	Neurobehavioral performance: cognitive function (WAIS-IV), visuospatial memory and visuospatial memory and visuo-construction skills (BVRT), neurological alterations with frontal involvement (MMSE), and motor performance	Farmworkers had lower WAIS-IV verbal comprehension $(\beta=-3.2, 9\% \mathrm{Cl}:-6.1, -0.2)$, processing speed $(\beta=-4.4, 9\% \mathrm{Cl}:-6.6, -0.3)$, and total $(\beta=-4.0, 9\% \mathrm{Cl}:-6.8, -0.7)$ scores than controls. Farmworkers also had lower MMSE scores ($\beta=-1.0, 95\% \mathrm{Cl}:-1.7, -0.1)$ and poorer discrimination sensitivity $(\beta=1.0; 95\% \mathrm{Cl}:0.2, 1.2)$ and deep reflexes $(\beta=1.1; 95\% \mathrm{Cl}:0.0, 2.2)$ than controls.
27. Сотаl et al. ¹³¹	2017/Chile	32 farmworkers/32 individuals living in agricultural com- munities/38 controls	Cross-sectional	OPs.	Questionnaire (occupational exposure history)	Not applicable	Neurobehavioral performances spatial and temporal orientation, short-term memory, attention, calculation, ulgaques, praxis (MMSE), memory and attention (WAIS-R DST), visuoconstruction skills and visual memory (ROCF), divided attention and resistance to interference (Stroop), attention (GA), exceutive function (FAB), and verbal fluency (Barcelona for Animals and Letter Po	Both farmworkers and people living in agricultural communities that increased dads of power (6 a, below conf) Yallone) executive function (OR = 44 9; 95% CI: 5.6, 359.7 and OR = 7.3; 95% CI: 1.7, 32.4, respectively), memory and attention (OST forward: OR = 4.9; 95% CI: 16, 14.9, and DST backward: OR = 4.5; 95% CI: 16, 14.9, and DST backward: OR = 4.5; 95% CI: 10, 14, 138, and DST backward: OR = 2.9; 95% CI: 10, 3.3, respectively), and verbal fluene. 99; 95% CI: 10, 13, 25% CI: 1.3, 25.6, and Letter P: OR = 16, 7; 95% CI: 1.3, 25.6, and Letter P: OR = 16, 7; 95% CI: 1.3, 25.6, and Letter P: OR = 10, 7; 95% CI: 1.3, 25.6, and Letter P: OR = 10, 19, 4, and Letter P: OR = 18, 195% CI: 2.1, 31.3, respectively) than the unexposed group.
28. Grillo Ріzапо et al. ¹³⁵	2018/Chile	55 farmworkers/58 unexposed controls	Cross-sectional	OPs	Questionnaire (occupational and residential exposure history)	Not applicable	Peripheric polyneuropathy	Farmworkers exposed to OP pesticides had increased odds of peripheric polyneuropathy compared with controls (OR = 3.6, 95% CI: 12, 10.5)
29. Serrano-Medina et al. 137	2019/Mexico	140 farmworkers/100 controls	Cross-sectional	OPs	Questionnaire (occupational expo- sure history) Blood AChE	Not applicable	Mental health disorders: neuropsychiatric disorders (MINI based on DSM-IV)	Farm work was associated with increased odds of suicide (OR = 5.3; 95% CT: 2.4, 11.9), whereas higher AChE activity levels were associated with decreased odds of suicide (OR = 0.5, p < 0.01).
30. Buralli et al. ¹³⁸	2020/Brazil°	42 pesticide applicators/ 36 farmworkers who did not apply pesticides	Cross-sectional	OPs	Questionnaire (occupational expo- sure history) Blood AChE, BChE ^b	Not applicable	CMD (SRQ-20)	Farnworkers who did not spray pesticides had a higher probability of feeling easily tired (PR = 3.2; 95% CI: 1.3, 7.7) and worthless (PR = 7.2; 95% CI: 1.7, 3.1.0) command with restrictle analizators

Year of publication/country	Population and sample size	Study design	Pesticides assessed	Exposure assessment method	Pesticide or metabolite concentrations	Health effect and assessment method/instrument	Results
31. Ramírez-Santana et al. ¹³⁴ 2020/Chile	87 adulis occupationally exposed (OE)81 environmentally exposed depth of the proposed controls (RG)	Cross-sectional	OPs, CBs	Questionnaire (occupational and residential exposure history) Blood AChE, BChE, APEH	Not applicable	Neurobehavioral performance at one (RG) or two (OE and EE) time points: general mental status (MMSE), mennet status (MMSE), mennety (WMS III, Digit span forward, ROCF memory, 1036 A-B and A-B recall), language (WAIS subtest vocabulary), constructive praxis (ROCF copy, WAIS subest block design), executive function (Tower of London movements and time resolution tests, WCST perseverative errors, WCST perseverative errors, Barcelona test categorical evocation animals and words), attention (WAIS digit span backward, d2 test, Stroop word-color and inhibitory control tests, Trail Making Test A, WAIS symbols), Psychomoricity (Purdue pegboard test, MOART meaction time, MOART finger tapping test). Mood (BDI-II depression inventory, Hamilton anxiety	Both exposure groups (OE and EE) had poorer executive function (Tower of London time, WGST perseverative errors), psychomorizity MOART reaction time (right and left hand), and mood (BD41 depression inventory, Hamilton anxiety scale) than the RG. Seasonal exposure impaired performance in both exposure groups on all tests except those related to attention and mood. During the spray season, BChE activity was associated with devensed scores on tests of logical, auditory, and visual memory; inhibitory control of cognitive interference; constructional and planning abilities; executive function; and motor speed and coordination and puses in the EE group. Weaker associations were observed for AChE levels and tests of logical memory, constructional abilities, and fine motor coordination in the EE group. In the OE group, levels of the three biomarkers were associated with worse performance on tests of inhibitory control of cognitive interference (2 tests with AChE, 2 tests with BChE, and 1 test for APEH); results were only significant for AChE.
32. Ramírez-Santana et al. ¹³³ 2020/Chile	78 adults occupationally exposed (OE)78 environmentally exposed (EE)	Cross-sectional	OPs, CBs	Questionnaire (occupational and residential exposure history) Blood AChE, BChE	Not applicable	Changes in neurobehavioral performance from prespray to spraying season in OE and BE. General mental state (MMSE), memory (WMS III, Digit span forward, ROCF memory. (1076 SRT A-B and A-B recall), language (WMS Saubest brock design), executive function or structive praxis (ROCF copy, WAIS subest block design), executive function (Tower of London movements and time resolution tests, WCST perseverative errors, Barcelona test categorical evocation movements and time resolution tests, WCST perseverative errors, Barcelona test categorical evocation animals and words), attention (WAIS digit span backward, d.2 test, Stroop word-color and inhibitory control tests, Trail Making Test A, WAIS symbols), Psychomoricity (Purdue pegboard test, MOART reaction time, MOART finger upping test), Mood (BDI-II depression inventory, Hamilton anxiety scale)	AChE inhibition was associated with worse performance on tests of attention (Stroop word-color and inhibitory control test, Trail Making A test) in the EE group and worse performance on tests of memory (WMS) and attention (Trail Making A test) in the OE group. BChE inhibition was associated with worse performance on tests of general memal status (MMSE), memory (WMS III-I, WMS III-I, Digit span forward, 10/36 SRT-A. Testall, 10/36 SRT-A necall, 10/36 SRT-B reall), language (WAE), attention (Stroop word-color and inhibitory control tests), executive function (Tower of London movements, WCST perseverative errors, Barcelona tests animals) in the EE group and worse performance on a test of attention (Stroop word-color test) in the OE group.

7)
nne
'onti
$\tilde{\sigma}$
le 3
Tab

Study	Year of publication/country	Population and sample size	Study design	Pesticides assessed	Exposure assessment method	Pesticide or metabolite concentrations	Health effect and assessment method/instrument	Results
on other pesticides or n.	Studies on other pesticides or multiple pesticide classes							
Studes in children 33. Eckerman et al. ¹⁴³	2007/Brazil	38 adolescents (10–18 years of age) from ru- ral areas/28 adolescents from urban areas	Cross-sectional	Multiple pesticide classes	Questionnaire (exposure index based on 86 occupational history questions plus number of hours worked per day applying chemical plus number of years worked)	Not applicable	Neurobehavioral: BARS (CPT, MTS, DST, PRT, RTT, SAT, SDL, SDT, TAP)	Compared with adolescents from rural areas, adolescents from urban areas performed better on tests of response speed and coordination (TAP_JNP), attention and working memory (DS-P, and complex function (SD_LAT), but worse on a cognition test (SDL) (\phi \times
34. Lu et al. ¹³⁹	2009/Costa Rica	18 children (4–10 years of age) of conventional coffee farmworkers/17 children of organic coffee farmworkers	Cross-sectional	OPs, herbicides, pyrethroids	Child urinany 2,4-D, TCPy, 3-PBA, and IMPY	$\begin{aligned} \text{Mean} \pm \text{SD} \left(\text{lig}/L \right); \\ \text{La Amissac} 2, 4 \text{LD} = 0.21 \pm 0.22; 3 \text{-PBA} = 0.75 \pm 1.61; \\ \text{CIT} = 0.27 \pm 0.41; \text{MPY} = 0.92 \pm 2.15; \\ \text{TCP} \neq 0.31 \pm 0.91 \\ \text{Las Mellizus}; 2.4 \text{D} = 0.41 \pm 0.99; 3 \text{-PBA} = 0.4 \pm 0.22; \\ \text{CIT} = 0.14 \pm 0.26; \text{MPY} = 0.52 \pm 1.05; \\ \text{TCP} = 1.45 \pm 2.29 \end{aligned}$	Neurodevelopment: cognition (BARS, figure-drawing task, long-term memory test)	Null associations between unitary pesticide metabolites and neurodevelopmental outcomes.
35. van Wendel et al. ¹⁴⁰	2016/Costa Rica	140 rural children (6–9 years of age) living rear bonanna and plantain plantations	Cross-sectional	Mn-containing fungrides, OPs, pyrethroids	Questionnaire (parental occupational exposure history) history, ETU, and 3-PBA	Median (P25-P75) (µg/L): TCPy = 1.4 (0.7–3.0); 3.PBA = 0.8 (0.5–1.5)	Neurodevelopment: organitive intention (WISC-IV), behavioral problems (CPRS-R), visual sensory function (LDD-15), visuospatial construction and visual memory (ROCF), verbal memory and tearning abilities (CAVLT-2), visual—motor coordination (DTVP-2), fine motor function (WRAVMA), and attention (WRAVMA), and attention (RTT)	Higher TCPy was associated with poorer working memory in boys (β per IC-loid increase in TCPy = -7.5 ; 95% CI: -144 , -0 , 7 and poorer visual-motor coordination (β = -1.4 ; 95% CI: -2.7 , -0.1); oppositional disorders (OR= 6.8 ; 95% CI: 1.8 , 28.6) and decreased ability to discriminate colors (OR= 6.6 ; 95% CI: 1.6 , 30.3) in boys and girls combined Higher was associated with poorer verbal learning outcomes (β = -7.0 ; 95% CI: -12.7 , -1.3). Higher 3-PBA was associated with poorer processing speed scores, particularly in girls (β = -8.8 ; 95% CI: -16.1 , -1.4).
36. Watkins et al. 142	2016/Mexico	187 mother-child (2–3 years of age) pairs	Prospective cohort	Pyrethroids	Maternal urinary 3-PBA during third trimester of pregnancy	Geometric mean ± GSD 3-PBA (ng/mL): 0.26 ± 1.80	Neurodevelopment: cognitive, language, personal-social, fine and gross motor devel- opment (BSID-II)	Children whose mothers had medium and high 3-PBA during pregnancy had lover MDI scores at 24 months that of illdren whose mothers had low 3-PBA ($\beta = -3.5$; 95% CI: -7.9 , 0.8 and $\beta = -3.8$; 95% CI: -3.9 , 0.8 and $\beta = -3.8$; 95% CI: -3.4 , 0.8, respectively.) Vinll associations of prenatal 3-PBA with PDI scores at 24 or 56 months.
37. Mora et al. ¹⁴¹	2018/Costa Rica	355 mother-child (1 year of age) pairs living mear bonan a paramona agrayed sprayed	Prospective cohort	Mn-containing fungicides	Maternal urinary ETU, blood Mn, and hair Mn during pregnancy	Mean ± SD (µg/L): ETU = 44 ± 7.1 ; hair Mn(µg/g) = $3.7(5.4)$; blood Mn = 24.4 ± 6.2	Neurodevelopment: cognition, motor function, language, and social-emotional devel- opment (BSID-III)	Girls whose mothers had higher urinary ETU during pregnarcy had lower scotle—motional scores (β per 10-fold increase = -7.4 points; 95% CI: -15.2, 0.4), whereas those whose mothers had higher hair Mn during pregnancy had lower cognitive scores (βper 10-fold increase = -5.40 points; 95% CI: -6.1, 0.1). Among boys, higher hair Mn during pregnancy was associated with lower social—emotional scores (βper 10-fold increase = -4.6 points; 95% CI: -8.5, -0.8). Null sungues, and motor outcomes
38. Christian et al. 145	2018/Jamaica	298 children (2–8 years of age) with ASD/298 controls without ASD	Case—control	Multiple pesticide classes	Questionnaire (matemal exposure history)	Not applicable	ASD (ADOS, ADI-R)	Maternal exposure to pesticides from 3 months before pregnancy to end of breastfeeding was associated with increased risk of ASD (OR = 1.7; 95% Cl; 1.1, 2.6), with some evidence of effect modification by exposure to oil-based paints and paint solvents.
39. Friedman et al. ¹⁴⁴	2020/Ecuador	307 children (4-9 years of ago living in flori-cultural communities	Cross-sectional	Multiple pesticide classes	Proximity to floricultural crops	Not applicable	Neurodevelopment: attention and inhibitory control, lan- guage, memory and learning, sensorimotor, vis- tuospatial processing (NEPSY-II)	For every 100 m closer in proximity to treated floriculular crops, turnl crops, participants had increased odds of low memory/learning (OR = 1.2; 95% CI: 1.1, 1.5) and langage (OR = 1.1; 95% CI: 0, 1.2) scores. Compared with those living >500 m from crops, those living with those living lower language ($\beta = 1.1$; 95% CI: -2.5 , -0.1), attention/linkingtory control ($\beta = -1.2$, 95% CI: -2.5 , -0.0), and memory/learning ($\beta = -0.9$, 95% CI: -2.5 , -0.0), and memory/learning ($\beta = -0.9$, 95% CI: -2.0 , 0.2) scores.

Study	Year of publication/country	Population and sample size	Study design	Pesticides assessed	Exposure assessment method	Pesticide or metabolite concentrations	Health effect and assessment method/instrument	Results
Studies in adults 40. Aradjo et al. 199	2007/Brazil°	102 farmworkers	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational expo- sure history)	Not applicable	Neurological symptoms (neurological examination and perception of neurological examination and perception of neurological examinations).	Null association between inhibition of AChE activity and intoxication symptoms.
41. Steenland et al. 146	2013/Costa Rica	400 adults > 60 years of age from historically (and now partially) agricultural area	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational expo- sure history)	Not applicable	Neurodegeneration: spatial and temporal orientation, short- tern memory, attention, calculation, language, praxis (MMSE); PD risk (UPDRS)	Exposed subjects performed worse on the MMSE than the nonexposed ($g=0.01$), had increased odds of abnormal scores on two UPDRS increased odds of OR = 2.9, 95% CT (1.1.3-5.2 and finger tapping OR = 2.9, 95% CT (1.1.3.8.4), and had an increased of the control of the performance o
42, Faria et al. ¹⁵²	2014/Brazil	2,400 tobacco farmworkers	Cross-sectional	Fungicides, herbicides, neonicotinoids, oPs, pyrethroids	Questionnaire (occupational exposure history)	Not applicable	Mental health disorders: MPD (SRQ-20)	Ink of IV (Me = 2.0.7.8 × (1.0.9.2.) increased risk of MPD among those who entered the treated area following application (PR = 1.7.95% CI: 1.3.2.5 and those who had contact through clothes wer from pesticiates (PR = 1.4.95% CI: 1.1.1.7.). Workers from farms in which OPs were used had an increased risk of MPD compared with those who were not exposed (PR = 1.5.95% CI: 1.2.1.9.) Number of poisonings was positively associated with risk of MDP (PR for 1 epistode = 1.6.95% CI: 1.1.2.2.; PR for 2 anicolos = 3.5.05% CI: 1.3.2.2. PR for 2
43. Portilla-Portilla et al. ¹⁵⁵	2014/Colombia	49 adults from a rural area	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational and environmental history of exposure to neurotoxic pesticides)	Not applicable	Neurological symptoms (self- reported)	epastoca = 2.2.; 5.0.e.; 1.0.; 2.3.; Participants with pesticide exposure had increased odds of irritability (PR = 1.8; 95% CI: 1.1, 2.8), dizziness (PR = 2.3; 95% CI: 1.1, 4.9), phosphenes (PR = 2.6; 95% CI: 1.0, 6.6), epistaxis (PR = 2.9; 95% CI: 1.0, 8.3) and fescivaliations (PR = 2.7; 95% CI: 1.1, 6.9)
44. Campos et al. 149	2016/Brazil	869 adults from a rural population	Cross-sectional	Herbicides, natural pesticides, OPs, OCs, pyrethroids	Questionnaire (occupational exposure) sure history)	Not applicable	Mental health disorders: MPD (SRQ-20) and depression (self-reported)	Ever feeling ill after a pesticide application was associated with common mental disorders (OR = 2.6; 95% CE: 1.6, 4.3) and self-reported depression (OR = 2.6; 95% CE: 1.6, 4.2). Age at onset of pesticide exposure £15 y (OR = 1.7; 95% CE: 1.7, 2.8), exposure £15 y (OR = 1.7; 95% CE: 1.0, 3.2) and aliphatic aclohol (OR = 2.0; 95% CE: 1.0, 3.2) and aliphatic aclohol (OR = 2.0; 95% CE: 1.0, 3.3), and greater period of exposure to dinitroantime (OR = 2.2; 95% CE: 1.0, 4.7) and sulfonyl urea (OR = 5.0; 95% CE: 1.0, 4.7) and sulfonyl urea (OR = 5.0; 95% CE: 1.1, 2.3.0) were associated with self-reponted
45. Azevedo and Meyer ¹⁸⁸	2017/Brazil	51 endemic disease control agents with essential tremor/204 endemic disease control agents with no tremor (controls)	Case-control	Larvicides, OCs, OPs, pyrethroids	Questionnaire (occupational expo- sure history)	Not applicable	Neurodegeneration: essential tremor	acherszain of cumulative pesticide exposure load (calculated by multiplying years of application, frequency of application, and hours worked per day) with essential tremor. Workers who had applied pesticides for 16–16.9 y had increased odds of essential tremor compared with workers who had applied pesticides for 12–13. ODE A to GREE CTI. 13 to 00.
46. Hansen et al. ¹⁴⁷	2017/Bolivia	120 male endemic dis- ease control agents	Cross-sectional	Pyrethroids	Questionnaire (occupational exposure history)	Not applicable	Neurobehavioral performance: hand tremor, postural balance, rocebhlary (BNT), audiovisual reaction (RTT), cognition (BARS), visual attention (CPT), complex cognitive function (SDT), attention and memory (DST, SDL), and visual memory (MTS)	Higher pesticide spraying intensity was associated with increased odds of poor postural balance among those exposed to pyrethroids (OR per 1-quintile increase in intensity = 3.83; 95% CI: 1.1, 13.6). Higher spraying intensity was also associated with worse neurocognitive performance (B per 1-quintile increase for all workers = 0.4; 95% CI: -0.7, -0.2 and β for workers exposed to pyrethroids only = -1.3; 95% CI: -2.2, -0.5). Cumulative pesticide exposure was associated with worse neurocognitive performance (B per 1-quintile increase for all workers = -0.4; 95% CI: -0.6, -0.1 and β for workers exposed to CI: -0.6, -0.1 and β for wor
47. Conti et al. 148	2018/Brazil	220 male farmworkers	Cross-sectional	Glyphosate, fungicides, neonicotinoids	Questionnaire (occupational expo- sure history)	Not applicable	Mental health disorders: depression (BDI-II)	Pytennous only -1.7 , 5.0% C.L. -2.5 , -0.4). Perticular exposure was associated with increased odds of more severe depressive symptoms (OR = 5.5; 95% CI: 1.2, 25.9).
48. Palzes et al. 160	2019/Costa Rica	48 farmworkers	Cross-sectional	Mn-containing fungicides	Hair and toenail Mn	Mean \pm SD (µg/g) Mn: Hair = 0.40 + 3.53 trangl = 0.24 + 3.54	Cortical brain activity (fNIRS)	Null association of hair and toenail Mn concentrations

ued.
Conti
ж Э
le
Tab

Table 3: (Continued:)	,							
	Year of	Population and sample			Exposure assessment		Health effect and assessment	
Study	publication/country	size	Study design	Pesticides assessed	method	Pesticide or metabolite concentrations	method/instrument	Results
49. Conti et al. 150	2020/Brazil	288 adults from a rural area	Cross-sectional	Multiple pesticide classes	Questionnaire (pesticide exposure in general, did not distinguish between residential and occupational)	Not applicable	Mental health disorders: depression (BDI-II)	Pesticide use was associated with increased odds of depression (OR = 4.2, $p < 0.001$).
50. Vasconcellos et al. 156	2020/Brazil	32 participants with PD	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational expo- sure history)	Not applicable	PD	78% of patients with PD had worked in agriculture and 75% had contact with pesticides.
51. Silvestre et al. ¹⁵⁷	2020/Brazil	88 PD cases/264 controls Case-control	Case-control	Multiple pesticide classes	Questionnaire (occupational and environmental exposure history)	Not applicable	PD	Pesticide use at work was associated with increased odds of PD (OR = 3.4; 95% CI: 1.6, 7.6).
52. Cruzeiro Szortyka et al. 153	2021/Brazil	2,469 tobacco growers	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational expo- sure history, history of APP, pesticide-related work tasks)	Not applicable	Mental health disorders: suicidal ideation (SRQ), suicide attempts (self-reported)	Performing between 6 and 9 pesticide-related tasks (PR=1.8; 95% CT: 1.0, 3.3) and history of APP (PR=2.4; 95% CT: 1.2, 4.7) were associated with increased prevalence of suicidal ideation.
53. Gonzaga et al. ¹⁵⁴	2021/Brazil	547 farmworkers (311 occupationally exposed/236 following agroecological practices)	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational expo- sure history, history of APP)	Not applicable	Mental health disorders: suicidal ideation (SRQ-20)	Occupational pesticide exposure (OR = 2.3; 95% CF. 1.2, 4.6) and history of APP (OR = 8.6; 95% CF. 3.0, 24.7) were associated with increased odds of suicidal ideation.
54. Famham et al. ¹⁵¹	2021/Costa Rica	300 farmworkers	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational expo- sure history, history of APP)	Not applicable	Neurological symptoms Mental health disorders: psy- chological distress and sui- cidal ideation (BSI)	Self-reported APP was associated with fainting (OR =7.5; 95% CI: 18, 207.), saltaing hands (OR =3.5; 95% CI: 16, 7.6), unmbreas/tingling in hands or feed (OR = 3.2; 95% CI: 1.7, 6.3), insomnia

Note: %change, percentige change; 2.4-D. 2.4-dichlorophenoxyaectate; 3-PBA, 3-phenoxybenzoic acid; AChE, acetylcholinestense; BARS, BCHE, butyycholinestense; Behavioral Assessment System; BASC, 2-Behaviora Assessment System; BASC, 2-Behaviora Assessment System; BASC, 2-Behaviora Assessment System; BASC, 2-Behaviora Assessment in System; BASC, 2-Behaviora Assessment System; BASC, 3-Benavioral Assessment in System; BASC, 3-Benavioral Assessment System; BASC, 3-Benavioral Assessment in System; BASC, 3-Benavioral Assessment in System; BASC, 3-Benavioral Assessment in System; BASC, 3-Benavioral Assessment System; BASC, 3-Benavioral Assessment, 3

prior to the interview. Farmworkers who reported an APP in the 10 y prior to the interview experienced increased odds of hostility (OR = 4.5; 95% CI: 1.2, 17.7) and paranoid ideation (OR = 3.8; 95% CI: 1.0,

(OR = 2.4; 95% CI: 1.2, 4.6), low energy (OR = 2.3; 95% CI: 1.2, 4.5), and difficulty concentrating (OR = 2.0; 95% CI: 1.1, 3.9) during the 12 months

(OR = 2.4; 95% CI: 1.0, 5.5), dizziness (OR = 2.4; 95% CI: 1.2, 4.7), increased irritability/anger

^bInvestigators did not use exposure biomarker concentrations in multivariate analyses.

Investigators did not use exposure bromarker concentrations in multive Also included in Table 9 (other health outcomes).

associations of OP pesticide exposure with neurodevelopmental outcomes among children. ^{121,129} In a publication from Ecuador, investigators reported that maternal employment in the flower industry or pesticide use on domestic crops at the time of child assessment was associated with improved communication, gross motor, and problem-solving skills at 24–61 months of age. ¹³⁰ A publication from Argentina reported null associations of OP exposure—assessed via blood ChE levels—with motor function and visuospatial processing at 7–10 years of age, but it also reported worse neurodevelopmental outcomes among children living in an agricultural community compared with those living in a nonagricultural community. ¹²⁹

Eight publications examined the association of OP or carbamate pesticides with neurobehavioral outcomes and neurodegenerative disorders among adults (Table 3). Seven of the studies described in these publications were cross-sectional and found that workers exposed to pesticides (i.e., farmworkers and endemic disease control agents) and adults who lived in agricultural communities had impaired cognitive, executive function, memory and attention, and verbal fluency skills 131-134; poorer discrimination sensitivity and deep reflexes 132; increased odds of polyneuropathy¹³⁵; or increased odds of psychological distress and suicidal ideation. 136,137 Conversely, a publication from a cross-sectional study in Brazil reported that farmworkers who did not handle/apply pesticides—but who used less personal protective equipment (PPE) and had less training on safe pesticide use practices—had more adverse health outcomes (e.g., feeling easily tired, feeling worthless) than pesticide applicators. 138

Seven publications from two prospective cohort studies, four cross-sectional studies, and one case-control study examined the associations of exposure to multiple pesticide classes with child neurodevelopment (Table 3). Of these seven publications, four assessed exposure using direct assessment methods 139-142; two examined exposure using predetermined categorical exposure variables based on residence 143 or proximity to treated agricultural fields¹⁴⁴; and one examined maternal pesticide exposure history via questionnaire. 145 A publication from a prospective cohort study in Costa Rica found an association of prenatal exposure to manganese (Mn)-containing fungicides—assessed by measurement of urinary ethylenethiourea (ETU) as well as blood and hair Mn in maternal samples collected during pregnancy with lower social-emotional and cognitive scores in children at 1 year of age.¹⁴¹ A publication from a prospective cohort study in Mexico reported that prenatal exposure to pyrethroids—as indicated by measurement of 3-phenoxybenzoic acid (3-PBA) in maternal urine samples collected during the third trimester of pregnancy-was associated with lower mental development scores at 24 months of age, but not at 36 months of age. 142 Notably, a publication from a cross-sectional study of school-age children in Costa Rica reported that higher urinary 3-PBA concentrations were associated with poorer processing speed scores (particularly in girls), but also that urinary TCPy concentrations were associated with poorer working memory (among boys only), visual-motor coordination, and decreased ability to discriminate colors. 140 In contrast, a publication from a small crosssectional study also conducted in Costa Rica¹³⁹ reported null associations of exposure to OP pesticides, pyrethroids, and herbicides—assessed via pesticide-specific metabolites (e.g., urinary 3-PBA and TCPy concentrations)—and neurodevelopmental outcomes among children 4-10 years of age. A publication from a study conducted in Jamaica reported that maternal exposure to pesticides from 3 months before pregnancy to the end of breastfeeding was associated with an increased risk of autism spectrum disorder. 145 Last, two publications from cross-sectional studies in Ecuador¹⁴⁴ and Brazil¹⁴³ reported that children and adolescents who lived near agricultural fields in which OP pesticides and other pesticide classes were extensively used had poorer neurodevelopmental outcomes compared with those who lived farther from the fields (or in nonagricultural communities), including poorer cognitive skills, motor function, memory/learning, visuospatial processing, or attention/inhibitory control.

Fifteen publications evaluated the neurobehavioral effects of exposure to multiple pesticide classes, predominantly assessed via occupational exposure history, among adults (Table 3). Nine of these publications reported that workers exposed to pesticides (i.e., farmworkers and endemic disease control agents), farmworkers who had experienced an acute pesticide poisoning (APP), and adults who lived in agricultural or rural communities had cognitive impairment^{146,147}; increased odds of minor psychiatric disorders such as depression, anxiety, and somatic disorders 148-152; suicidal ideation 153,154; or an array of neurological symptoms. 151,155 Three publications from cross-sectional and case-control studies conducted in Costa Rica¹¹⁹ and Brazil^{156,157} reported associations between exposure to multiple classes of pesticides—assessed via questionnaire—and increased odds of Parkinson's disease. Notably, publications from two studies of Brazilian workers reported null associations of pesticide exposure with essential tremor¹⁵⁸ and acute intoxication symptoms.¹⁵⁹ A publication from a small cross-sectional study of farmworkers in Costa Rica reported a null association between exposure to Mncontaining fungicides—assessed by measurement of toenail and hair Mn concentrations—and cortical brain activity during a working memory task. 160

Overall, studies published to date provide consistent evidence of associations between prenatal and childhood exposure to pesticides such as OP pesticides and carbamates and impaired neuro-development in LAC children and adolescents. Some of the adverse neurodevelopmental outcomes that have been reported include poorer cognition, memory, and attention, as well as anxiety and depression. Publications from studies of farmworkers in LAC countries also provide consistent evidence of associations between exposure to multiple classes of pesticides—assessed mainly via questionnaire—and impaired neurobehavioral performance, psychological distress, suicidal ideation, and neurodegenerative disorders.

Placental Outcomes and Teratogenicity

Thirteen publications from seven cross-sectional studies, five case-control studies, and one prospective cohort study reported on the potential placental and teratogenic effects of pesticide exposure (Table 4). Seven of these 13 publications reported on the association of exposure to OC pesticides or multiple pesticide classes with congenital malformations. A case-control study conducted in Mexico reported that children whose mothers had higher serum hexachlorobenzene (HCB), β -HCH, DDT, or DDE concentrations at delivery had increased odds of cryptorchidism. 161 Similarly, publications from studies conducted in Brazil^{162–164} and Mexico¹⁶⁵ reported associations of parental occupational pesticide use or environmental pesticide exposure (e.g., being born in a floricultural community) before or during pregnancy—ascertained via questionnaire—with increased odds of congenital malformations, including male external genital malformations. In contrast, publications from case-control studies in Brazil¹⁶⁶ and Guadeloupe¹⁶⁷ found null associations between pesticide exposure and malformations in general.

Six publications, all from cross-sectional studies conducted either in Mexico or Argentina, reported on the associations between exposure to OP or carbamate pesticides and placental outcomes (Table 4). Each of these studies measured blood ChE or placental carboxylesterase activity levels but used predetermined exposure

 Table 4. Characteristics of Latin American and the Caribbean studies on pesticide exposure and placental outcomes and teratogenicity published between 2007 and 2021 (n = 13).

Study	publication/country	size	Study design	Pesticides assessed	method	Pesticide or metabolite concentrations	ment method/instrument	Results
Studies on OCs Studies in children 1. Bustamante Montes et al. ¹⁶¹	2010Mexico	641 cases with cryptorchidism/41 controls	Case-control	OCs.	Maternal serum HCB, HCH, DDT, DDE af- ter delivery	Median (range) (mg/kg): β -HCH = 0.26 (0.09-0.33); β -HCH = 0.26 (0.09-0.89); pp-DDT = 0.21 (0.89-46 f); ap-DDT = 0.27 (1.25-5.39); \sum DDT = 1.22 (2.55) Cryptorolidisn cases:HCB = 0.17 (0.03-0.64); β -HCH = 0.19 (0.03-0.54); ap-DDT = 0.01 (0.02-0.32); ap-DDT = 0.01 (0.02-0.32); ap-DDT = 0.01 (0.02-0.32);	Cryptorchidism	Children whose mothers had higher OC pesticide concentrations at delivery had increased odds of cryptorchidism (HCB OR = 1.2, 95% CE: 1.1, 1.3; p.p. 'DDE OR = 1.1, 95% CE: 1.1, 1.2; o.p. 'DDT OR = 1.1, 95% CE: 1.1, 1.4; p.p. 'DDT OR = 1.1, 95% CE: 1.1, 1.2; p.p. 'DDE OR = 1.4; 95% CE: 1.1, 1.8; p.p. 'DDE OR = 1.4; 95% CE: 1.1, 1.8).
2. Rouget et al. 167	2020/ Guadeloupe	36 cases with congenital malformations/ 1,052 controls	Case-control	OCs	Maternal plasma (at delivery) and cord plasma chlordecone	Median (range) chlordecone (µg/L): Maternal plasma: 0.39 (<lod-19.7); (<lod-29.8)<="" 0.20="" cord="" plasma:="" td=""><td>Congenital malformations</td><td>Null associations of maternal and cord plasma chlordecone concentrations with risk of overall malformations or undescended testes.</td></lod-19.7);>	Congenital malformations	Null associations of maternal and cord plasma chlordecone concentrations with risk of overall malformations or undescended testes.
Studies on OPs or carbamates Studies in pregnant women	20000Movies	O management 100 company	Oroce particular	g	Onactionnoise (racidan	Not continuella	Discontal materials	Danisisha awacanwa uma macacintad tuith DMI of cauteal
5. Acosta-Maldonado et al. ¹⁷¹	ZOOS/IMEXICO	y pregnant women exposed to pesticides/ 76 nonexposed pregnant women	Cross-sectional	820	Questionnaire (residen- tial and partner expo- sure history Blood AChE"	Not applicable	Piacental maturity	restricte exposure was associated with PVII or central area of placenta ($\beta = 7.4$, $p = 0.01$).
4. Vera et al. 168	2012/Argentina	40 pregnant women living on agricultural farms	Cross-sectional	OPs	Questionnaire (occupational and seasonal exposure histories) Blood AChE and BChE, placental CE ^a	Not applicable	Nuclear and mitochondrial lipid composition of placenta	Total cholesterol and SM content of nucleus were higher in PP than RP (ρ <0.05). PE content of light mito- chondria was lower in PP, whereas CL content was higher (ρ <0.05). The CL increased and the PE con- tent decreased in the light mitochondrial fraction, whereas total cholesterol and SM increased in the nu- clear fraction (ρ <0.05) in PP.
 Bulgaroni et al, 170 	2013/Argentina	46 pregnant women from a rural araw36 pregnant women from urban area (controls)	Cross-sectional	SO S	Questionnaire (residential and easonal exposure history) Blood AChE and BChE, placental CE ^a	Not applicable		IL-13 increased during SS in the rural group ($\rho < 0.001$), whereas the expression frequency of TNF- α ($\rho < 0.001$) and TGF- β ($\rho < 0.01$) increased in the rural group in SS and NSS. The arginase activity ($\rho < 0.001$), agi-nase II protein content ($\rho < 0.01$) and ODC expression ($\rho < 0.001$), increased in placentas collected during SS compared with those collected during SSS. No differences in placenta weight or pw/nw ratio among groups.
6. Chiapella et al. ¹⁷²	2014/Argentina ^b	46 mother-newborn pairs from a rural area/24 mother-newborn pairs from an urban area (controls)	Cross-sectional	OP _s	Questionnaire (residen- tial and seasonal expo- sure history)	Not applicable	Placental weight, pw/nw ra- tio for placental oxidative status (CAT, GPx, GSH, pro- tein carbonyl, lipid peroxidation, anti-Nfr2 levels)	No differences in placental antioxidant/oxidant status, placental weight, or placental index between groups.
7. Rivero Osimani et al. ¹⁶⁹	2016/Argentina"	43 mother-newborn pairs from a rural area/20 mother-newborn pairs from an urban area (controls)	Cross-sectional	ão	Onestionnaire (residential and easonal exposure history) Placental CE ^a	Not applicable	Placental weight Placental Cra mi- tochondria function (mi- tochondria tespiratory complex aevivity, CAT, Mn-SOD, GST, proges- terone) and eNOS expression	No differences in placental parameters between newborns from RG-SS and controls SS ($p = 0.02$). RG-SS had higher complex IV activity than RG-NSS ($p < 0.001$) and CG ($p < 0.05$). HNE levels in SCT mitochondria were bowerin RG-SS than in CG ($p < 0.002$). The anti- oxidant defense erryome activity in CT and SCT mito- chondria was similar among groups and sensions. Progserence level was lower in RG-SS ($p < 0.05$) than CG, and eNOS expression was lower in RG-NSS ($p = 0.001$) and RG-SS ($p = 0.006$) than CG.
8. Quintana et al. ⁵⁴	2017/Argentina ^{b.c.d}	151 mother—newborn pairs living in a rural area/38 mother—newborn pairs from an urban area (controls)	Cross-sectional	OPs	Questionnaire (residen- tial and seasonal expo- sure history) Cord blood AChE, BChE ^a	Not applicable	Placental weight	Higher placental weight and pw/mv for vaginal RG-SS and RG-NSS than in CG (ρ = 0.01).

(pa
Continued
$\tilde{\mathcal{C}}$
4,
Table

Studies on other pesticides or multiple pesticide classes Studies in children 9. Silva et al. 166 2011/Brazil 42 cases wi malform controls 10. Gaspari et al. 164 2012/Brazil 2,710 male from an i	th congenital ations/84						
2011/Brazil .te4 2012/Brazil							
2012/Brazil 2,7		Case-control	Multiple pesticide classes Questionnaire (parental, occupational and residential exposure dential exposure history)		Not applicable	Congenital malformations	Null association of parental occupational exposure to pesticides and residential proximity to agricultural fields with congenital malformations.
	2.710 male newboms from an intensive-use pesticide area	Cross-sectional	Herbicides, insecticides	Questionnaire (parental exposure history)	Not applicable	Cryptorchidism, hypospadias, and micropenis	Among the 56 cases of malformations detected (2.1%), 7% of the purents reported living in areas of high pesticide use for vector control; 80% of the mothers and 59% of the fathers were occupationally exposed to pesticides or other EDC before and during pregnancy, and 95% and 89% of the mothers reported residential exposure to pesticides or other EDCs before and during pregnancy, respectively.
11. Oliveira et al. ¹⁶² 2014/Brazil 219 cases v malform miltor inte bird	219 cases with congenital Case-control malformations/862 live births controls		Multiple pesticide classes	Questionnaire (residen- tial exposure history at the periconceptional period) Exposure index from records (pesticides in- formation systems and pesticide invoices)	Not applicable	Congenital malformations	Increased odds of congenital malformations in those chil- deen in the highest quartie of pesicides exposure in the 6 months prior to conception (OR = 2.0; 95% CI: 1.2, 3.6) and in the third and fourth quartiles of pesicide exposure after conception (OR = 1.7; 95% CI: 1.0, 2.8; OR = 1.9; 95% CI: 1.1, 3.2, respectively) compared with children in the lowest quartile.
12. Ueker et al. 163 2016/Brazil 137 cases w malform produce of great produce emotions controls	137 cases with congenital Case-control malformations (<5 years of age at controlls controls		Multiple pesticide classes	Questionnaire (parental exposure history)	Nor applicable	Congenital malformations	Children whose fathers applied pesticides during the 12 months before conception and whose mothers had a low educational level had increased odds of congenital malformations (OR = 8.4, 95% CI: 22, 22.5). Null association between and congenital malformations paternal pesticide use and congenital malformations among children whose mothers had a high educational level.
13. Castillo-Cadena et al. 165 2017/Mexico 1.149 newl ricultura et al. 165 2017/Mexico 1.149 newl ricultura et al. 165 200 newl al. 165 2009 newl urban at urban at	1,149 newborns from flo- ricultural community/ 5,069 newborns from urban area (controls)	Prospective cohort	Multiple pesticide classes	Questionnaire (residential exposure history)	Not applicable	Congenital malformations	Congenital malformations were more prevalent among children born in a floricultural community (20%) than among those born in an urban area (6%) $(p \le 0.001)$.

Note: ACIE, acetylcholinesterase; EAF, carboxylestenases; CG, control group; CI, confidence interval; CL, cardiolipin; CT, cytotrophoblast; DDE, dichorodiphenyldichlorocethylene; DDT, dichlorodiphenylurichlorocethylene; DDT, dichlorodiphenylurichlorocethylene; DDT, dichlorodiphenylurichlorocethylene; DDT, such ethanical; evOS, endotheilal nitric oxide synthase; GPs, glutathione; EAF, glutathione; ST, glutathione; ST, glutathione; ST, glutathione; ST, glutathione; ST, glutathione; AIF, hexa-chlorobenzene; HCB, hexa-chlorocyclohexane; LDI, limit of detection; NSS, non-spraying season; OC, organochlorine; ODC, orinithine decarboxylase; OR, organophosphate; OR, orda ratio; PE, phosphatidylethanolamine; PMI, placental maturity index; PP, pulverization period; pw/mw, placental weight ratio; RG, rural group; RP, recess period; SCT, syncytiotrophoblast; SM sphingomyelin; SOD, superoxide dismutase; SS, spraying season; TGF-ß, transforming growth factor beta; TNF-2, tumor necrosis factor-alpha.

*Also included in Table 8 (birth outcomes and child growth).

*Also included in Table 9 (other health effects).

categories (e.g., rural vs. urban) in exposure–outcome analyses. Among the most prevalent outcomes associated with pesticide exposure were alterations in lipid composition and oxidative status of placental mitochondria, ^{168,169} as well as changes in the expression of placental cytokines and levels of placental enzymes (e.g., arginase, ornithine decarboxylase). ¹⁷⁰ Publications from two cross-sectional studies conducted in Mexico and in Argentina reported that pesticide exposure was associated with a higher placental maturity index ¹⁷¹ and higher placental weight. ⁵⁴ Conversely, three publications from Argentina reported largely null associations with placental morphological parameters (e.g., weight, placental weight to neonate weight ratio). ^{169,170,172}

To date, a small number of publications have reported on the association of pesticide exposure with placental or teratogenic outcomes in LAC populations and their findings are inconsistent. Some published studies found associations of exposure to OCs, OPs/carbamates, and multiple pesticide classes (retrospectively assessed via questionnaire in case—control studies) with outcomes such as alterations in lipid composition and oxidative stress of placental mitochondria and increased odds of congenital malformations. Other studies observed null associations with outcomes such as placental morphological parameters and risk of malformations.

Cancer

Fourteen publications examined the association of pesticide exposure with cancer or cancer-related mortality in children or adults (Table 5). Thirteen publications reported findings from case—control studies; 12 of these studies used indirect exposure assessment methods (i.e., questionnaires or death certificates indicating occupation at the time of death) and 11 examined multiple pesticide classes. Two studies, 1 case—control and 1 prospective cohort, examined associations of serum OC pesticide concentrations with the risk of prostate cancer or prostate cancer recurrence. ^{173,174}

Five publications reported that children whose mothers were occupationally or environmentally exposed to pesticides before, during, or after pregnancy had increased odds of leukemia. 175-179 For instance, in a Brazilian case-control study, children whose mothers were exposed to pyrethroid insecticides during pregnancy had increased odds of acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) at 0-23 months of age. 178 Similarly, in a Costa Rican case-control study, boys, but not girls, whose mothers reported using insecticides inside their homes in the year before pregnancy, during pregnancy, and while breastfeeding had increased odds of childhood ALL. 175 Maternal report of pesticides sprayed on farms or companies near the home during pregnancy and while breastfeeding was also associated with childhood ALL in the Costa Rican study. 175 Another publication from this Costa Rican case-control study reported that children whose fathers were occupationally exposed to any pesticide during pregnancy, but particularly the second trimester, had increased odds of leukemia. 176

Five publications examined the association of pesticide exposure with breast cancer, ^{180,181} cutaneous melanoma, ¹⁸² prostate cancer, ¹⁷⁴ and prostate cancer recurrence¹⁷³ in adults. Two publications reported that women who reported using insecticides in their homes during adulthood (>18 years of age)¹⁸⁰ or who lived near agricultural fields¹⁸¹ had increased odds of breast cancer. Another publication found that study participants who were ever exposed to pesticides had increased odds of cutaneous melanoma, with stronger associations among those with indoor residential pesticide exposure, particularly for those with a high frequency of use (≥4 times per year) or long duration of exposure (>10 y). ¹⁸² In addition, two studies from Guadeloupe reported associations of serum concentrations of two OC pesticides,

DDE and chlordecone, with increased risk of prostate cancer¹⁷⁴ or its biochemical recurrence.¹⁷³

Four publications assessed the association of occupational pesticide exposure with mortality by non-Hodgkin lymphoma¹⁸³ or esophageal, ¹⁸⁴ brain, ¹⁸⁵ or stomach¹⁸⁶ cancer in adults using death certificate data to ascertain occupation at the time of death. More specifically, a publication from a study conducted in Brazil reported mostly null associations between agricultural work and the risk of death by non-Hodgkin lymphoma.¹⁸³ Conversely, three publications reported that farmworkers had increased odds of dying from esophageal, brain, and stomach cancers than non-farmworkers; two of these publications also reported increased odds of dying from brain¹⁸⁵ and stomach¹⁸⁶ cancer among farmworkers who lived in the areas of greatest pesticide use.

The small number of studies published to date and included in this scoping review provide somewhat consistent evidence of associations between maternal pesticide exposure before or during pregnancy and increased risk of leukemia among LAC children. In addition, eight of nine publications of studies conducted in adults reported evidence of residential or occupational pesticide exposure with an increased risk of various types of cancer or death by cancer. Nevertheless, these findings must be interpreted with caution given that all studies assessed exposure to multiple pesticide classes via questionnaire and examined different types of cancer.

Thyroid Function

Sixteen publications from 10 cross-sectional studies and 6 prospective cohort studies reported on the associations of pesticide exposure with thyroid function (Table 6). Four of these 16 publications examined the potential thyroid effects of OC pesticide exposure—assessed via measurement of OC pesticide metabolites in blood or breast milk—among children. 117,187-189 Briefly, a publication from a cross-sectional study of mother-newborn pairs in Bolivia reported null associations of cord blood DDT and DDE concentrations with neonatal thyroid-stimulating hormone (TSH) levels. 188 However, a publication from a cross-sectional study of Brazilian children (0-14 years of age) found that higher concentrations of 17 (of 19) OC pesticides, including DDE and DDT but not chlordecone, were associated with increased levels of total triiodothyronine (T3) or free thyroxine (T4), but not with TSH.¹⁸⁷ Two publications from a prospective cohort study in Guadeloupe reported associations of early-life chlordecone exposure—as indicated by measurement of chlordecone in cord blood and breast milk samples—with elevated TSH or decreased T3 and T4 at 3 months and at 7 years of age, with some evidence of effect modification by sex. 117,189

Five publications reported on the association between exposure to OC pesticides and thyroid function in adults (Table 6). A publication from a cross-sectional study of individuals living near an abandoned pesticide factory in Brazil reported various associations of OC pesticide concentrations with thyroid hormone levels, which differed between men and women. 190 For example, among men, higher endosulfan 2 concentrations were associated with decreased T3 levels, whereas higher β-HCH and DDT concentrations were associated with decreased free T4 levels. Among women, higher α-chlordane, DDT, endosulfan 2, and methoxychlor concentrations were associated with increased T3 levels, whereas higher HCB, heptachlor, and DDT concentrations were associated with increased T4 levels. 190 A publication from a cross-sectional study of farmworker families in Brazil also reported associations of several OC pesticide concentrations with increased TSH (i.e., γ -chlordane), total T3 (i.e., γ -chlordane, β-HCH, heptachlor epoxide B, trans-nonachlor, DDE, and endosulfan 2), or free T4 (i.e., dieldrin). 191 Two publications from

Table 5. Characteristics of Latin American and the Caribbean studies on pesticide exposure and cancer published between 2007 and 2021 (n = 14).

	Year of				Exposure assessment		Health effect and assess-	
Study	publication/country	Population and sample size	Study design	Pesticides assessed	method	Pesticide or metabolite concentrations	ment method/instrument	Results
Studies in children I. Monge et al. ¹⁷⁶	2007/Costa Rica	344 chil dhood leukemia cases (<15 years of age)/ 579 controls	Case-control	Herbicides, fungicides, insecticides	Questionnaire (parential occupational exposure during the year before conception, pregnancy, and first year of life of the child)	Not applicable	Childhood leukemia (ALL, AML, other leukemias)	Children whose mothers were occupationally exposed to any pesticide during the year before conception (OR = 2.4; 95% CI: 10, 5.9), finst trimester (OR = 22; 95% CI: 4.4, 17) of pregnancy, or at any time (OR = 2.5; 95% CI: 10, 4.8) had increased odds of leukerinia. Children whose fathers were excupationally exposed to any pesticide during the second trimester of pregnancy had increased odds of leukerinia. Children whose fathers were excupationally exposed to any pesticide during the second trimester of pregnancy had increased odds of leukernia (OR = 1.5; 95% CI: 1.0, 2.3).
2. Hemåndez-Morales et al. ⁷⁷⁷	2009/Mexico	47 childhood leukemia cases (<14 years of age)/ 47 controls	Case-control	Multiple pesticide classes	Questionnaire (parental occupational exposure and residential exposure during the 3 months before programory, are lirth, and at the time of diagnosis; residential proximity to agricultural fields)	Not applicable	Childhood leukemia (ALL, AML)	Children whose parents used pesticides inside their homes during the 3 months before pregnancy (ORE = 1.5, 95% C1: 1.0, 2.3) had increased odds of leukemia. Children whose parents used pesticides in their gardens during the 3 months before pregnancy (ORE = 1.8, 95% C1: 1.2, 2.6) or during pregnancy (ORE = 1.6, 95% C1: 1.2, 2.6) or during pregnancy (ORE = 1.6, 95% C1: 1.0, 2.6) also had increased odds of leukemia.
3. Ferreira et al. 179	2012/Brazil	292 childhood leukemia cases (<13 years of age)/ 541 controls	Case-control	Herbicides, insecticides	Questionnair (paenal occupational and environmental exposure during the 3 months before pregancy, pregnancy, and while breasteeding)	Not applicable	Childhood leukemia (ALL, AML)	Children whose mothers were occupationally or environmentally exposed to chemicals (including pesticides) during pregnancy had increased odds of leukemia (OR = 1.4; 95% CI: 1.2, 1.6).
4. Ferreira et al. 178	2013/Brazil	252 chil dhood leukemia cases (<24 months of age)/423 controls	Case-control	Multiple pesticide classes	Questionnaire (parental occupational and environmental exposure during the 3 months before pregnancy, pregnancy, and while breastfeeding)	Not applicable	Childhood leukemia (ALL, AML)	Children whose mothers were occupationally or environmentally exposed to pericides during the 3 months before pregnancy had increased odds of ALL (OR = 2.4; 95% CCI: 12, 4.8) and AML (OR = 3.8; 95% CCI: 13, 10.8) at 0–11 months of age and increased odds of AML (OR = 2.5; 95% CCI: 2.4) and 12–23 months of age. Children whose mothers were occupationally or environmentally exposed to pesticides during pregnancy and while breast feeding had increased odds of AML (e.g., 0.18, 0.4) at 0–11 months of age. Children whose mothers were occupationally or environmentally exposed to age. Children whose mothers were occupationally or environmentally exposed to any pyrethroid pesticide during pregnancy had increased odds of ALL (OR = 1.8; 95% CI: 11, 2.9) and AML (OR = 3.4; 95% CI: 17, 16.8) at 0–23 months of age. Increased odds of ALL or AML were also observed among children whose mothers were exposed to individual nevertexed to individual never exposed to
5. Hyland et al. ¹⁷⁵	2018/Costa Rica	251 chil dhood leukemia cases (< 15 years of age)/ 577 controls	Gase-control	Multiple pesticide classes	Questionnaire (residential use and nearby pesificide applications in the year prior to pregnancy, during pregnancy, while breastfeeding, and during childhood)	Not applicable	Childhood leukemia (ALL.)	Boars whose mothers reported using insecticides inside the home in the year before pregnancy (OR = 1.6; 95% CI: 11, 2.5, during pregnancy (OR = 1.8; 95% CI: 11, 2.7), and while breastleeding (OR = 1.8; 95% CI: 1.1, 2.7) had increased olds of ALL. Children whose mothers reported a lineased olds of ALL. Children whose mothers reported a lineased olds of ALL. Children whose mothers reported a lingh average frequency of insecticide use inside their homes, 1.56 times/y) in the year before pregnancy, during pregnancy, and while breastleeding had increased olds of ALL compared with children whose mothers reported a low frequency of insecticide use (<2.5 times/y) during these exposured with children whose mothers reported a low frequency of insecticide use (<2.5 times/y) during these exposure periods (e.g., OR for exposure during pregnancy = 1.6; 95% CI: 1.1, 2.3). Maternal report of pesticides sprayed on farms or at companies near the home during pregnancy, while breastleeding, and during any time period was also associated with childhood ALL (e.g., OR for exposure during pregnancy = 1.4; 95% CI: 1.1, 2.1).
Studies in adults 6. Ortega Jacome et al. ¹⁸⁰	2010/Brazil	110 breast cancer cases/101 controls	Case-control	Insecticides	Questionnaire (lifetime residential use of insecticides)	Not applicable	Breast cancer	Women who used insecticides in their homes during adulthood (>18 years of age) had increased odds of breast cancer (OR = 4.9, 9.5% CI: 1.8.1.29).
7. Meyer et al. ¹⁸⁴	2011/Brazil	5,782 deaths by esophagus cancer/5,782 deaths by causes other than neoplasms and diseases of the digestive system	Case-control	Multiple pesticide classes	Death certificates (occu- pation at the time of death)	Not applicable	Exophageal cancer mortality	Agricultural workers had increased odds of dying from esophageal cancer compared with nonagricultural workers (OR = 1.4; 95% CI: 1.2, 1.6).

_
G,
(Continued)
4,
<u>e</u>
0
ਫ
Ξ

Study	Year of publication/country	Population and sample size	Study design	Pesticides assessed	Exposure assessment method	Pesticide or metabolite concentrations	Health effect and assessment method/instrument	Results
8. Miranda-Filho et al. ¹⁸⁵	2012/Brazil	2,040 deaths in males by brain cancer/4,140 deaths in males by causes other than neoplasms and discesses of the central nervous system	Case-control	Multiple pesticide classes	Death certificates (occupation at the time of death) and pesticide sales per region of residence	Not applicable	Brain cancer mortality	Agricultural workers had increased odds of dying from brain cancer compared with nonagricultural workers (OR = 1.8; 95% CI: 1.2, 2.7). Slightly increased brain cancer mortality odds were also observed in agricultural workers who resided in municipalities in Rio de Janeiro state in the third (OR = 1.2, 95% CI: 10, 1.1) and found (OR = 1.2, 95% CI: 0.9, 1.5) nuntiles of per canita use of resticides.
9. Boccolini et al. 186	2014/Brazil	1,1766 stomach cancer deaths cases/11,557 controls who died by causes other than neoplasms and diseases of the dieestive sweem	Case-control	Multiple pesticide classes	Death certificates (occu- pation at the time of death and pesticide ex- penditure per agricultural worker)	Not applicable	Stomach cancer mortality	Agricultural workers had increased odds of dying from stomach cancer compared with nonagricultural workers (OR = 1.4; 95% C1: 1.3, 1.8). Among agricultural workers, those who resided in the areas with the dighest levels of pesticide use had slightly increased odds of stomach cancer (e.g., OR for the hickest quantit = 14, 95% C1: 0.9, 2.1).
10. Segatto et al. ¹⁸²	2015/Brazil	95 cutaneous melanona cases/96 controls	Case-control	Multiple pesticide classes	Questionnaire (lifetime occupational and residential exposure)	Not applicable	Cutaneous melanoma	Those who were ever exposed to pesticides had increased odds of cutaneous natebanna contained with those who were never exposed (OR = 20;95% CI: 10, 69). Indoor residential pesticide use was associated with increased odds of cutaneous nations as sociated with increased odds to compared with exposure for > 10 y was associated with increased odds compared with exposure for \(\text{CI:} \) 10, \(\text{SI:} \) 95% CI: 16, 5.3) and high frequency of indoor pesticide use (24 times/y) associated with increased odds compared with how frequency of twas (24 times/y) QR = 1.4; 95% CI: 11, 3.5). Null associations between residential outdoor pesticide exposure and cutaneous melanoma succiated with increased odds occupational exposure to pesticides was also associated with increased odds of cutaneous melanoma (OR = 2, 29% CI: 10, 6.3).
11. Emeville et al. ¹⁷⁴	2015/Guadeloupe	576 prostate cancer cases/655 controls	Case-control	ocs.	Serum DDT, DDE, chlordecone	Median (P25–P75) ($\mu g/L$): $p p'$ -DDT \leq LOD ($<$ LOD- 0.07) for controls and $<$ LOD ($<$ LOD- 0.06) for cases; $p p'$ -DDD \leq LOD ($<$ LOD- 0.04) for controls and $<$ LOD ($<$ LOD- 0.03) for cases; $p p'$ -DDE $= 2.06$ ($0.98-4.37$) for cases; $p p'$ -DDE $= 2.06$ ($0.98-4.37$) for Controls and 2.55 ($1.11-5.74$ for cases); Chlordecone $= 0.42$ ($0.11-0.83$) for controls and 0.43 ($0.18-0.94$) for cases	Prostate cancer	DDE concentrations in the highest vs. lowest quintile of exposure were associated with increased odds of prostate cancer [OR = 1.5 (95% CI: 1.0, 2.3), $p_{Tread} = 0.01$]. Results not shown for other OCs.
12. Boccolini et al. ¹⁸³	2016/Brazil	1,317 non-Hodgkin lymphoma death cases/ 2,634 controls who died by causes other than neoplasm or	Case-control	Multiple pesticide classes	Death certificates (occu- pation at the time of death and pesticide ex- penditure per agricultural worker)	Not applicable	Non-Hodgkin lymphoma	Null association between agricultural work and risk of death by onen-Hodgivi hymphoma in the entire study oppulation (OR = 1.1: 95% CI: 08. 1.3), but increased odds of death by non-Hodgixin lymphoma among agricultural workers 20-39 years of age (OR = 2.1: 95% CI: 0.2., 3.1) compared with nonarcialtural workers in the same age range.
13. Silva et al. ¹⁸¹	2019/Brazil	85 breast cancer cases/266 controls	Case-control	Multiple pesticide classes	Questionnaire (environmental and occupational exposure history)	Not applicable	Breast cancer	Living near cropland with pesticides was associated with increased odds of breast cancer (OR=2.4;95% CI: 1.8, 3.2). Residential pesticide use and history of working with pesticides were not associated with breast cancer risk.
14. Brureau et al. ¹⁷³	2020/Guadeloupe	340 incident prostate cancer patients who underwent radical prostatectomy	Prospective cohort	oc.s	Serum chlordecone, DDE	Median (P25-P75) (ug/L): Chlordecone = 0.38 (0.16-0.69); pp'-IDDE = 2.33 (0.93-4.68)	Biochemical recurrence of prostate cancer (defined as two con- secutive PSA meas- urements	Highest quartile of chlordecone concentrations was associated with increased ask of biochemical recurrence of prostate cancer compared with those in the lowest quartie (HR = 2.5, 95% CI: 1.4.4.6). DDE concentrations were not associated with risk of biochemical recurrence of prostate cancer.

Table 6. Characteristics of Latin American and the Caribbean studies on pesticide exposure and thyroid function published between 2007 and 2021 (n = 16).

	Year of	Population and sample					Health effect and assess-	
Studies on OCS Studies in children 1. Freire et al. 187	2012/Brazil	193 children (0–14 years of age) from an old factory	Study design Cross-sectional	OCs	Cybestionnaire (occupational and residential history of parents) Serum HCH, HCB, chlordane, Trura-romachlor, heptachlor, DDT, DDE, endosulfan, aldrin, endrin, dieldrin, methoxychlor, mirex	Presticute of metaboline concentrations Median (P20-P80) (ag/mL): α-HCH = 7.8 (1.1–18.0); B+HCH = 10.2 (2.0–2.7); HCB = 0.8 (0.2–2.0); α-chlordane = 0.6 (<lod-1.6); (0.3–2.6);="" (0.7–19.3);="" (1.1–17.7);="" (2.0–3.5.7);="" (<lod-0.2);="" (<lod-0.5);="" (<lod-0.9);="" (<lod-1.0);="" (<lod-1.7);="" (<lod-1.7);<="" aldrin="3.4" endosulfant="0.7" methoxychlor="0.7" mirex="1.0" td="" γ-chlordane="0.5" ρφ-ddd="1.2" ρφ-dde="10.2" σφ-ddt="6.9"><td>Serum TSH, total T3, fT4</td><td>Higher concentrations of 17 of 19 CC pesticides were associated with increased to and T3 levels [β (95% CD) for highest quintile of exposure compared with lowest quintile of exposure: ε-HCH= 14.9(-2.6.27.2); γ-HCH= 13.8(1.5.26.2); γ-HCH= 13.8(1.5.26.2); γ-HCH= 13.8(1.5.26.2); γ-HCH= 13.8(1.5.26.2); γ-HCH= 11.8(1.5.26.2); γ-HCH= 11.8(1.5.26.2); γ-hODT= 8.8(1.5.26.2); γ-hODT= 1.0(6.1.4.21.6); ρρ-DDT= 1.06(1.4.21.6); ρρ-DDT= 1.16(6.1.4.22.6); ρρ-DDT= 1.16(6.1.4.22.5); and condustrial = 17.3(6.4.28.2); endowalfrial = 17.3(6.4.28.2); endowalfrial = 13.3(6.2.25.4); diedleria = 20.3(8.1.3.2.6); For mirex, exposure was categorized in quartile of exposure was associated with hiereased total T3 levels compared with the lowest quartile (β = 10.3.95% CI: -0.1.20.7). Highest quartile (β = 10.3.95% CI: -0.1.20.7). Highest quartile (β = 0.1.95% CI: -0.1.20.7). Highest quartile (β = 0.1.95% CI: 0.0.1), and dietlerin (β = 0.95% CI: -0.1.20.7). Highest quartile (β = 0.1.95% CI: 0.0.1) were associated with increased total T3 levels compared with increased and latelerial (β = 0.95% CI: 0.0.1). ware associated with increased T3 levels Mostly mult associations between OC pesticides and</td></lod-1.6);>	Serum TSH, total T3, fT4	Higher concentrations of 17 of 19 CC pesticides were associated with increased to and T3 levels [β (95% CD) for highest quintile of exposure compared with lowest quintile of exposure: ε-HCH= 14.9(-2.6.27.2); γ-HCH= 13.8(1.5.26.2); γ-HCH= 13.8(1.5.26.2); γ-HCH= 13.8(1.5.26.2); γ-HCH= 13.8(1.5.26.2); γ-HCH= 11.8(1.5.26.2); γ-HCH= 11.8(1.5.26.2); γ-hODT= 8.8(1.5.26.2); γ-hODT= 1.0(6.1.4.21.6); ρρ-DDT= 1.06(1.4.21.6); ρρ-DDT= 1.16(6.1.4.22.6); ρρ-DDT= 1.16(6.1.4.22.5); and condustrial = 17.3(6.4.28.2); endowalfrial = 17.3(6.4.28.2); endowalfrial = 13.3(6.2.25.4); diedleria = 20.3(8.1.3.2.6); For mirex, exposure was categorized in quartile of exposure was associated with hiereased total T3 levels compared with the lowest quartile (β = 10.3.95% CI: -0.1.20.7). Highest quartile (β = 10.3.95% CI: -0.1.20.7). Highest quartile (β = 0.1.95% CI: -0.1.20.7). Highest quartile (β = 0.1.95% CI: 0.0.1), and dietlerin (β = 0.95% CI: -0.1.20.7). Highest quartile (β = 0.1.95% CI: 0.0.1) were associated with increased total T3 levels compared with increased and latelerial (β = 0.95% CI: 0.0.1). ware associated with increased T3 levels Mostly mult associations between OC pesticides and
2. Arrebola et al. ¹⁸⁸	2016/Bolivia ^a	200 mother-newborn pairs from agricultural	Cross-sectional	ocs .	Questionnaire (residential exposure history)	Median (P25-P75) (ng/g lipid): p.p'-DDE = 196.8 (52.8-475.0); orf-DDT = 39 \$\xi\$ (19.3-75.1)	Serum TSH	1SH levels. Null associations of cord blood DDT and DDE with neonatal TSH levels.
3. Cordier et al. 17	2015/Guadeloupe ^b	111 mother-child (18 months of age) pairs	Prospective cohort	0Cs	Cord blood and breast milk chlordecone, cord blood DDE	Median (PS2-P75) (tgt.L): Cord blood chlordecone = 0.13 (<lod-0.31); (0.09-1.05);="" (<lod-1.16)<="" blood="" breast="" chlordecone="0.60" cord="" milk="" p.p'-dde="0.30" td=""><td>Serum TSH, fT3, fT4</td><td>Cord chlordecone was associated with increased TSH, particularly among boys (p < 0.01). Pestnatal chlordecone was associated with decreased IT3 among boys and decreased IT4 among civel (r) < 0.05).</td></lod-0.31);>	Serum TSH, fT3, fT4	Cord chlordecone was associated with increased TSH, particularly among boys (p < 0.01). Pestnatal chlordecone was associated with decreased IT3 among boys and decreased IT4 among civel (r) < 0.05).
4. Ayhan et al. ¹⁸⁹	2021/Guadeloupe ^{e,cd}	285 mother-child (7 years of age) pairs	Prospective cohort	OCs.	Cord and child blood chlordecone, cord blood DDE	Median (P25-P75) (µg/L): Cord blood chlordecone: boys = 0.25 (0.08-0.41), gris = 0.21 (0.07-0.37); child chlordecone: boys = 0.06 (< L.OD-0.11), gris = 0.05 (< L.OD-0.11); cord blood DDE: boys = 0.22 (0.09-0.64), gris = 0.31 (0.10-0.74)	Serum TSH, fT3, fT4	That the state of cord blood chordecone associated with elevated TSH levels in girls associated with elevated TSH levels in girls $(\beta=0.2; 95\% {\rm CH}; 0.104)$, realizate to first quartile. Null associations of each blood chordecone with IT3 and IT4. No report on associations of child chordecone and cord blood DDE with thyroid bornness.
Studies in adults 5. Freire et al. ¹⁹⁰	2013/Brazil	608 adolescents and adults (>14 years of age) living near an abandoned pesticide factory	Cross-sectional	S S O O S	Questionnaire (residential exposure history) Serum HCH, HCB, chlordane, Trans-nonablor, leptachlor, DDT, DDE, endosulfan, aldrin, endrin, dieldrin, methoxychlor, mirex	Median (P25-P75) (ag/mL); Women: σ-HCH = 2.6 (1.0-6.0); β-HCH = 7.0 (2.8-17.6); γ-HCH = 1.0 (0.4-2.2); HCB = 0.4 (0.2-0.7); σ-chlordame = 0.3 (<lod-0.6); (0.1-0.6);<="" (0.2-1.4);="" (0.4-2.2);="" (1.0-0.7);="" (1.0-7.6);="" (2.1-15.4);="" (<lod-0.1);="" (<lod-0.3)="" (<lod-0.4);="" (<lod-0.8);="" (<lod-1.10);="" 1="0.2" 2="0.2" costlfan="" end="" hcb="0.3" men:="" methoxychlor="0.4" mirex="" p-μ-ddd="0.7" p-μ-ddt="3.2" rears-conachlor="0.4" td="" x="" ±hch="2.5" β+hch="6.0" γ-chlordame="0.2" γ-hch="1.0" ≤lod=""><td>Serum TSH, total T3, fT4 TPOAb, TGAb</td><td>Among men, higher endosulfan 2 was associated with decreased to all 73 levels ($\beta=-2.3$; 95% CI: -4.6, -0.01); higher β-HCH was associated with decreased T14 levels ($\beta=-0.003$; 95% CI: -0.006, -0.001) and slightly increased TSH levels ($\beta=0.003$; 95% CI: 0.001, 0.007); higher p_4-DDT was associated with decreased T74 ($\beta=-0.003$; 95% CI: -0.006, -0.001). Men with detected methoxyhlor had an increased risk for presence of TPOAb (OR = 2.2; 95% CI: -1.3, 38). Among women, higher σ-chlordane ($\beta=5.7$; 95% CI: 1.1, 10.2), p_4-DDT ($\beta=0.4$, 95% CI: 0.1, 0.7), endosulfind 2 ($\beta=5.5$; 95% CI: 1.7, 15.4) was associated with increased total T3 levels; higher HCB ($\beta=0.02$; 95% CI: 0.001, 0.04), hepatachlor ($\beta=0.02$; 95% CI: 0.001, 0.04).</td></lod-0.6);>	Serum TSH, total T3, fT4 TPOAb, TGAb	Among men, higher endosulfan 2 was associated with decreased to all 73 levels ($\beta=-2.3$; 95% CI: -4.6 , -0.01); higher β -HCH was associated with decreased T14 levels ($\beta=-0.003$; 95% CI: -0.006 , -0.001) and slightly increased TSH levels ($\beta=0.003$; 95% CI: 0.001 , 0.007); higher p_4 -DDT was associated with decreased T74 ($\beta=-0.003$; 95% CI: -0.006 , -0.001). Men with detected methoxyhlor had an increased risk for presence of TPOAb (OR = 2.2; 95% CI: -1.3 , 38). Among women, higher σ -chlordane ($\beta=5.7$; 95% CI: 1.1 , 10.2), p_4 -DDT ($\beta=0.4$, 95% CI: 0.1 , 0.7), endosulfind 2 ($\beta=5.5$; 95% CI: 1.7 , 15.4) was associated with increased total T3 levels; higher HCB ($\beta=0.02$; 95% CI: 0.001 , 0.04), hepatachlor ($\beta=0.02$; 95% CI: 0.001 , 0.04).

Study	Year of publication/country	Population and sample size	Study design	Pesticides assessed	Exposure assessment method	Pesticide or metabolite concentrations	Health effect and assessment ment method/instrument	Results
6. Blance-Muinz	2016/Mexico	136 male floriculture	Prosnective cohort	ğ	Onestionnaire (occumational	a-chlordane = 0.2 (< LOD- 0.6); γ -chlordane = 0.2 (< LOD- 0.6); γ -chlordane = 0.3 (< LOD- 0.4); hepachlor = 0.3 (< LOD- 0.9); $p\mu$ -DDE = 8.3 ($2.9-21.9$); $a\mu$ -DDE = 8.3 ($2.9-21.9$); $a\mu$ -DDE = 8.3 ($1.9-21.9$); $a\mu$ -DDE = 3.3 ($1.9-21.9$); $a\mu$ -DDE = 3.3 ($1.0-7.0$); $p\mu$ -DDD = 0.6 ($0.2-1.3$); endosulfan 1 = 0.2 (< LOD- 0.3); aldrin = 1.9 ($0.7-11.0$); endrin = 0.6 ($0.2-1.5$); detelmin = 0.6 ($0.7-11.0$); endrin = 0.6 ($0.2-1.5$); detelmin = 0.6 ($0.3-1.3$); methoxychlor = 0.5 (< LOD- 1.0); Metinn ($0.5-7.7$); (0.7) (0.7).	Serum TSH. total 173. total	a.β-DDT (β = 0.02; 95% CE 0.01, 0.04), and p.β-DDT (β = 0.03; 95% CE 0.01, 0.01) were associated with interested FI among women. Aldrin was associated with the presence of TPOAb (OR = 1.01; 95% CE 1.1.0, 1.02).
o. Dianco-Munoz et al. 192	ZO LOVINIENICO	Norkers	rrospective conort	ŝ	Questionnaire (occupational and residential exposure history) Serum p,p'-DDE, p,p'-DDT	Median (4.2–1.9) (tg)/m) Rainy season p.p. DDE = 4.9 (2.9–11.1); dry season p.pDDE = 4.7 (2.2–11.1)	Serum 15tt, total 15, total T4	Figure 79 + 2DD was sevation until increased total T3 ($\beta = 0.01$; 95% CI: -0.0 , 0.03) and total T4 ($\beta = 0.0$ 1; 95% CI: 0.0 , 0.1) levels. Null association of $p_s p'$ -DDE with TSH levels.
7. Ficoli et al. ¹⁹¹	2016/Brazil	275 men and women from farmworker families	Cross-sectional	ocs. ops	Ouestionnaire (residential and occupational exposure history) Serum HCH, HCB, chlordane, helpstahlor, helpstahlor, helpstahlor, helpstahlor, DDT, DDE, DDD, DDD, DDD, DDD, DDD, dieldrin, endrin, dieldrin, neutzin, dieldrin, neutzin, pernachloroanisole Blood ACHE, BCHE	Median (P5-P95) (ng; g); 2+HCH < LOD (< LOD-21.3); 3+HCH < LOD (< LOD-77.9); 3+HCH < LOD (< LOD-77.9); 4-HCH < LOD (< LOD-24.4); 4-HCH < LOD (< LOD-21.4); 4-HCH < LOD (< LOD-19.1); 4-HCH < LOD (< LOD-19.1); 4-HCH < LOD (< LOD-19.1); 4-HCH < LOD (< LOD-11.4); 4-HCH < LOD (< LOD-11.4); 4-HCH < LOD (< LOD-11.4); 4-HCH < LOD (< LOD-11.2); 4-HCH < LOD (< LOD-31.2); 4-HCH < LOD (< LOD-46.3); 4-HCH < LOD (< LOD-40.3); 4-HCH < LOD (< LOD-40.	Serum TSH, total T3, FT4	Farmworkers had higher total T3 (β = 1.1; 95% CI: 1.01.1.1) than non-farmworkers. Higher 1.01.1.1) than non-farmworkers. Higher γ-chlordane was associated with increased TH levels (β = 1.3; 95% CI: 1.01.1.5), whereas higher dieldrin was associated with increased TT4 (β = 0.9; 95% CI: 0.01.10), Higher γ-chlordane (β = 1.1; 95% CI: 1.01.11), heptachlor epoxide B (β = 1.1; 95% CI: 1.01.11), heptachlor epoxide B (β = 1.1; 95% CI: 1.01.12), μy-DDE (β = 1.03; 95% CI: 1.01.12), μy-DDE (β = 1.03; 95% CI: 1.01.12), μy-DDE (β = 1.03; 95% CI: 1.01.12), where associated with increased total T3. ACHE and BChE inhibitions were not associated with thyroid hormones.
8. Hernández-Mariano et al. ¹⁹³	2017/Mexico	430 pregnant women living in a floriculture area	Prospective cohort	ocs.	Serum DDE during pregnancy	Mean ±SD (ng/g lipid) p.p'-DDE=111.75 ± 140.20	Serum TSH, total T3, fT3, total T4, fT4	Women with >LOQ DDE concentrations had higher total T3 levels ($\beta = 0.2; 95\%$ CI: 0.06, 0.3) than those with <loq, and="" associations="" dde="" free="" howsty="" levels<="" mild="" of="" serum="" t4="" t8h="" td="" total="" with=""></loq,>
9. Londoño et al. 194 Studies en ODe en CB.	2018/Colombia	819 farmworkers and their partners from plantain and coffee farms	Cross-sectional	OCs. OPs	Serum chlorpyrifos, DDT, DDE, endosulfan, HCB, aldrin, endrin, heptachlor, methoxychlor, chlordane	Median (range) (ng/mL): Hepachlor = 1.31 (0.11–9, 48); pp' -DDE = 8.3(NA)	Serum TSH, fT4 TPOAb	Higher p,p' -DDE (OR = 3.8; 95% CI: 1.6, 9.2), hepatchor (OR = 1.7; 95% CI: 1.0, 3.2), endoatlfan I (OR = 6.2; 95% CI: 1.6, 24.8), and \geq 3 OCs in blood (OR = 1.8; 95% CI: 1.1, 3.3) were associated with increased odds of subclinical hypothyroidism. Null associations of chlorpyrifos concentrations and hypothyroidism.
Sudes in children 10. Phillips et al. ¹⁹⁵	2021/Ecuador	80 adolescents (12–17 years of ago living in agricultural areas	Cross-sectional	op _s	Questionnaire Blood AChE	Not applicable	Serum TSH, f74	Lower AChE activity was marginally associated with increased IT4 levels (β per 2D decrease in AChE activity = 0.03, 90% CI: 0.00, 0.06), but not with TSH (β = -0.01, 90% CI: -0.38, 0.36). In girls, lower AChE activity was associated with increased TF4 levels (β = 0.05, 90% CI: 0.01, 0.10) and decreased TSH levels (β = -0.51, 90% CI: -1.00, -0.02). Null associations were observed in boys.
Sudaes na dants 11. Lacasaña et al. ¹⁹⁶	2010/Mexico	136 male floriculture workers	Prospective cohort	OPs	Questionnaire (occupational and residential exposure his- tory) Urinary DAPs	$\begin{aligned} \text{Mean} \pm \text{SD} & (\mu g/g \text{ creatinino}); \\ \text{Rainy season: } \text{DMP} = 1.5 \pm 29.0; \text{DDEP} = 0.3 \pm 0.9; \\ \text{ZDAP} = 2.0 \pm 29.1; \text{DDE} = 6.2 \pm 18.2\text{ng/mL} \\ \text{Dy season: } \text{ZDMP} = 0.3 \pm 0.9; \text{ZDEP} = 0.1 \pm 0.4; \\ \text{ZDAP} = 0.5 \pm 1.0; \text{DDE} = 4.7 \pm 20.4\text{ng/mL} \end{aligned}$	Serum TSH, total T3, total T4	Higher ZDMP (β = 0.2; 95% CI: 0.1, 0.3), ZDEP (β = 0.3; 95% CI: 0.1, 0.4), and ZDAP (β = 0.3; 95% CI: 0.1, 0.4) were associated with increased TSH levels. Higher ZDMP (β = 0.2; 95% CI: 0.1, 0.3) and ZDAP (β = 0.2; 95% CI: 0.1, 0.3) and ZDAP (β = 0.2; 95% CI: 0.1, 0.3) were associated with increased total T4 levels. Null associations were observed for total T3.

Study	Year of publication/country	Population and sample size	Study design	Pesticides assessed	Exposure assessment method	Pesticide or metabolite concentrations	Health effect and assessment ment method/instrument	Results
12. Lacasaña et al. ¹⁹⁷	2010/Mexico	136 male floriculture workers	Prospective cohort	OPs	Questionnaire (occupational and residential exposure his- tory)	Mean \pm SD ($\mu g/g$ creatinine): Early exesson: EDMP = 1.5 ± 2.0 ; EDEP = 0.3 ± 0.9 ; EDAP = 2.0 ± 2.0 ; EDE = 6.2 ± 11.8 . $2 \mu g/mL$ Dry season: EDMP = 0.3 ± 0.9 ; EDEP = 0.1 ± 0.4 ; EDAP = 0.5 ± 1.0 ; EDEP = 4.7 ± 20.4 ng/mL	Serum TSH, total T3, total T4	Interaction between PONI _{1/02} RR and ΣDAP on TSH (Fe -0.1; 95% CI: 6.05.0, 6.0) and total T3 (β = 0.1; 95% CI: 6.00, 0.2) levels, and between PONI _{1/02} RR and ΣDMP on TSH (β = 0.3; 95% CI: 0.02, 0.5). No interaction between PONI ₅ 5 polymorphism and DAP metabolite concentrations on hormone levels.
13. Miranda-Contreras et al. 200	2013/Venezuela°	64 male farmworkers/35 controls	Cross-sectional	OPs, CBs	Questionnaire (occupational ex- posure history) Blood AChE, BChE	Not applicable	Serum TSH, fT4	Null associations of serum hormones with cholinesterase levels.
14. Torres-Sanchez et al. ¹⁹⁹	2019/Mexico	381 pregnant women living in a floricultural area	Cross-sectional	OPs	Questionnaire (para- occupational exposure his- tory) Urinary DAPs in a subsample	Median total DAPs (µmol/g creatinine): Para-occupationally exposed = 1.16; non-para- occupationally exposed = 0.83 (data not shown in tables)	Serum TSH, fT4	Null associations of para-occupational exposure to OP pesticides and urinary DAPs with hypothyroxinemia. No interaction was observed between pesticides para-occupational exposure and PONI polymorphisms.
15. Bernieri et al. ¹⁹⁸	2019/Brazil	46 rural farmworkers/27 controls	Cross-sectional	OPs, CBs	Questionnaire (occupational exposure history) Blood BChE ^e	Not applicable	Serum fT4, total T3, TSH	Farmworkers had lower TSH (ρ <0.10) but higher total T3 and fT4 (ρ <0.01 for each) than controls.
Studies on other pesticides or multiple pesticide classes Studies in adults	or multiple pesticide cla	sass1						
16. Santos et al. ²⁰¹	2019/Bræil ^c	122 individuals living in small farms	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational, residential, and seasonal exposure history)	Not applicable	Serum TSH, total T3, fT3, total T4, fT4	Use of dithiocarbamate fungicides in the past week (~34%; 95% CI: ~34, ~6) and no use of full PPE during the last pesticide application (~34%; 95% CI: ~55, ~2) was associated with decreased TPH levels. Use of spinaloithm in the past week was associated with decreased IT4 (~11%; 95% CI: ~10, ~1) and total T4 (~7%; 95% CI: ~10, ~1) and total T4 (~7%; 95% CI: ~10, ~1), Lifetime use (>20, 9) of OP pesticides was associated with decreased IT3 (~9%; 95% CI: ~10, ~3). Lifetime use (>20, 9) of OP pesticides was associated with decreased IT4 (~11%; 95% CI: ~10, ~3). Lifetime use (>20, 9) of OP pesticides was associated with decreased IT4 (~11%; 95% CI: ~10, ~3). Lifetime total T4 (~11%; 95% CI: ~10, ~3). Lifetime (173 (~7%; 95% CI: ~10, ~1) and (173 (~7%; 95% CI: ~10, ~1) and (173 (~7%; 95% CI: ~10, ~1) and

Note: ACHE, acetylcholinesterase; BChE, butyrylcholinesterase; CBs, carbamate pesticides; CI, confidence interval; CPO, chlorpyrifox; DAP, diatkylphosphate; DDD, dichlorodiphenyldichloroethylene; DDT, direnthylenylphosphate; DBT, direnthylphosphate; DBT, direnthylenylphosphate; DBT, direnthylphosphate; DBT, dire

different prospective cohort studies in Mexico reported associations of serum DDE concentrations with increased total T3 or T4 levels among male floriculture workers¹⁹² and pregnant women living in a floriculture area.¹⁹³ In addition, a cross-sectional study of Colombian farmworkers and their partners found associations of serum DDE, heptachlor, endosulfan 1, and three or more OC pesticides with increased odds of subclinical hypothyroidism.¹⁹⁴

Six publications examined associations of OP or carbamate pesticide exposure—assessed by measurement of urinary DAP metabolite concentrations or blood ChE activity-with thyroid function (Table 6), but only one focused on children. 195 The latter publication from a cross-sectional study of Ecuadorian adolescents living in agricultural areas reported that lower acetylcholinesterase (AChE) activity was associated with increased free T4 and decreased TSH levels among girls, but not boys. 195 Two publications from a prospective cohort study of adult floriculture workers in Mexico reported that higher DAP metabolite concentrations were associated with increased TSH and total T4 levels 196 and that these associations were modified by paraoxonase 1 (PON1₁₉₂RR).¹⁹⁷ Similarly, a publication from a crosssectional study in Brazil reported increased TSH, but also decreased T3 and T4 levels, among farmworkers compared with unexposed controls.¹⁹⁸ In contrast, two publications from crosssectional studies in Mexico¹⁹⁹ and Venezuela²⁰⁰ reported null associations of occupational or para-occupational exposure to OP pesticides with thyroid hormone levels. Last, a publication from a cross-sectional study in Brazil examined associations between exposure to multiple pesticide classes—ascertained via questionnaire—and thyroid function among adults and reported associations of recent use of dithiocarbamate fungicides with decreased TSH levels, recent use of λ -cyhalothrin (pyrethroid insecticide) with decreased free and total T4 levels, and recent use of paraquat (herbicide) with decreased free T3 levels.²⁰¹ Overall, published studies on the associations of pesticide exposure and thyroid function among LAC populations have reported mixed findings with notorious differences between pesticide active ingredients, age groups, and sexes.

Reproductive Outcomes

Sixteen publications reported on the association of pesticide exposure with reproductive outcomes such as reproductive hormone profiles among adults (Table 7). Four of these 16 publications focused on OC pesticide exposure and used direct pesticide exposure assessment methods. 189,202-204 A publication from a prospective cohort study in Guadeloupe reported that higher cord blood chlordecone concentrations were associated with elevated androsterone and testosterone in 7-y-old boys and girls. 189 Notably, a publication from a prospective cohort study of male floriculture workers in Mexico reported that higher serum DDE concentrations were associated with decreased prolactin and testosterone, but also with increased inhibin B.202 A publication from a cross-sectional study of individuals living near an abandoned pesticide factory in Brazil (mentioned above) reported that higher serum heptachlor and DDT concentrations were associated with decreased testosterone levels among men and that higher serum aldrin, HCB, DDT, endosulfan 2, and mirex concentrations were associated with increased estradiol levels, decreased luteinizing hormone (LH) levels, or decreased follicle-stimulating hormone (FSH) levels among peri-/postmenopausal women.²⁰³ Furthermore, a publication from a case-control study in Brazil reported that infertile women had higher detectable serum DDE concentrations than fertile women.²⁰⁴

Seven publications examined associations of OP or carbamate pesticide exposure with reproductive outcomes, six ascertained exposure via urinary DAP metabolites or blood ChE levels, ^{200,205–209}

and one assigned exposure based on the season of sample collection (spray vs. nonspray)²¹⁰ (Table 7). A publication from a prospective cohort study in Mexico reported lower sperm volume and count among farmworkers who sprayed OP pesticides compared with non-farmworkers, but mostly null associations between urinary DAP metabolite concentrations and seminal parameters.²⁰⁹ Three publications from cross-sectional studies conducted in Peru,²⁰⁸ Mexico,²⁰⁷ and Venezuela²⁰⁰ reported increased seminal pH, lower percentage of live sperm, and lower seminal fructose levels among farmworkers compared with nonfarmworkers. The study conducted in Venezuela also reported that lower butyrylcholinesterase (BChE) activity was associated with an increased damage to sperm chromatin among farmworkers.²⁰⁰ A publication from a cross-sectional study of male floriculture workers in Mexico reported that higher urinary DAP metabolite concentrations were associated with decreased inhibin B, FSH, or LH levels, but also with increased testosterone levels.²⁰⁷ Another publication based on the same study population reported that higher urinary DAP metabolite concentrations were associated with increased FSH and prolactin levels, but decreased testosterone and inhibin B levels. 205 Last, although one publication from a prospective cohort study of pregnant women in Argentina reported a weak association between higher AChE activity and increased progesterone levels,²⁰⁶ a crosssectional study of women in Argentina reported no difference in progesterone and estradiol levels measured in the spray and nonspray seasons.²¹⁰

Five publications from four cross-sectional studies and one retrospective cohort study reported on the associations of exposure to pesticides other than OCs, OPs, or carbamates or exposure to multiple pesticide classes with reproductive outcomes (Table 7). All studies relied on questionnaires to assess environmental or occupational pesticide exposure, ^{201,211–213} but one of them also measured blood ChE activity. ²¹⁴ Two publications from studies conducted in Brazil²¹⁴ and Venezuela²¹³ reported associations of pesticide exposure with reduced sperm quality—as indicated by parameters such as decreased sperm concentration and higher sperm DNA fragmentation index—among farmworkers/rural men compared with controls/urban men. The publication from the cross-sectional study conducted in Brazil also reported that men living in rural areas and who mixed or applied pesticides had increased testis volume, decreased LH levels, or increased testosterone:LH ratios compared with men living in rural areas and who did not mix or apply pesticides, but the publication reported null associations of blood ChE activity with reproductive hormones and semen quality.²¹⁴ A publication from another cross-sectional study in Brazil reported that recent use of fungicides in general, λ -cyhalothrin (pyrethroid insecticide), and phthalimide (fungicide) was associated with increased LH levels in men living in agricultural communities.²⁰¹ A cross-sectional study of reproductive-age women in Venezuela found that women who were occupationally exposed to pesticides had longer menstrual cycles than those who were not exposed.²¹² Last, a publication from a retrospective cohort of fertile women aerially exposed to glyphosate in Colombia reported null associations with fecundability.211

Overall, publications from studies conducted to date provide some evidence of associations between exposure to pesticides, particularly OC pesticides, OP pesticides, and carbamates, with reproductive outcomes such as infertility, changes in sex hormone levels (e.g., testosterone and estradiol), and alterations in semen quality among adults in LAC countries. Although 10 of 16 studies employed direct exposure assessment methods, most were cross-sectional in design and had small sample sizes, limiting causal inference.

6
$\overline{}$
=u
5
)21
20
p
an
7
8
2
eer
×
et
7
ĕ
is
P
bn
es
Ĕ
ဒ
outc
0
ctive
ct
ą
CO
rep
d r
ŭ
ė
Ξ
od
×.
e
Ď.
Ę.
esi
5
on
es
die
ij
2
ea
bЬ
Ξ.
ű
he
d th
pu
٦a
car
·Ĕ
me
A
Ξ.
atin
ίL
б
cs
sti
eri
act
Ħ
Ch
e 7.
able
Ta]

Study	Year of publication/country	Population and sample size	Study design	Pesticides assessed	Exposure assessment method	Pesticide or metabolite concentrations	Health effect and assessment method/instrument	Results
Studies on OCs 1. Bastros et al, ²⁰⁴	2013/Brazil	15 women seeking help for infertility treatment/21 women spontaneously	Case-control	5 00	Questionnaire (occupational and reproductive history). Serum HCB, DDT, DDE,	Mean ± SD (ug/ml.): Fertile women: HCB = 0.1 ± 0.10; $p.p'$ -DDE = 0.9 ± 0.8; $p.p'$ -DDT = 0.7 ± 0.1 Infertile women: HCB = 0.2 ± 0.4; $p.p'$ -DDE = 3.1 ± 3.6; $p.p'$ -DDT = 9.1 ± 11.9	Fertility	Infertile women had higher detectable serum DDE concentrations than fertile women $(p=0.001)$.
2. Blanco-Muñoz et al. ²⁰²	2012Mexico	pregnant 84 male floriculture workers	Prospective cohort	೨೦	Questionaire (occupational history) Serum DDE	Median (range) (ug/g); Rainy season: $p p'$ -DDE = 677.2 (9.4–12.696.5) Dry season: $p p'$ -DDE = 626.7 (9.4–13.688.1)	Serum FSH, LH, prolacin, testosterone, estradiol, inhibin B	$p\mu'$ -DDE concentrations were negatively associated with probactin ($\beta = -0.04$; 95% CI: -0.07 , -0.01) and testosterone ($\beta = -0.04$; 95% CI: -0.08 , 0.01), but positively associated with inhibit B ($\beta = 0.11$; 95% CI: 0.02, 0.21). Null associations of $p\mu'$ -DDE with ERI 11 the correlation
3. Freire et al. ²⁰⁰	2014/Brazil	604 men and women living near an abandoned pesticide factory	Cross-sectional	00	Questionnaire (residential exposure history) Serum HCH, HCB, cholodane, trams- nonachlor, beptachlor, DDT, DDE, DDD, endosulfan, aldrin, en- drin, dieldrin, methoxychlor, mirex	Median (P25-P75) (ag/mL): Prenearopausal women; α -HCH = 2.8 (1.0-6.1); β -HCH = 6.3 (2.5-14.4); γ -HCH = 6.9 (0.4-2.3); HCB = 0.4 (0.1-0.6); α -chlordane = 0.3 (<10.D-0.6); γ -chlordane = 0.3 (<10.D-0.4); γ -chlordane = 0.3 (<10.D-0.4); γ -chlordane = 0.3 (<10.D-0.4); γ -chlordane = 0.3 (1.0-7.3); ρ - γ -DDT = 0.4 (1.0-0.1.1); ρ - γ -DDT = 0.4 (0.2-0.8); ρ - γ -DDT = 0.6 (0.2-1.0); ρ - γ -DDT = 0.6 (0.2-1.0); ρ - γ -DDT = 0.6 (0.2-1.0); ρ - γ -DDC = 0.0 (0.2-1.3); ρ - γ -DDC = 0.0 (0.2-1.0); deldin = 0.6 (0.2-1.3); ρ - γ -DDC = 0.0 (0.2-1.6); ρ - γ -HCH = 1.1 (0.2-0.9); HCH = 1.7 (4.8-36.3); ρ - γ -HCH = 1.1 (0.2-0.9); FHCH = 0.0 (0.2-1.6); ρ - γ -DDC = 0.0 (0.2-1.0); ρ - γ -DDC = 0.0 (0.2-1.3); ρ - γ -DDC = 0.0 (0.2-1.0); ρ - γ -DDC = 0.0 (0.2-1.3); ρ - γ -DDC = 0.0 (0.2-1.0);	Serum testosterone, estra- diol, progesterone, prodactin, LH, FSH	Higher heptachor and $\alpha_0 J$ -DDY were associated with decreased testosterone levels among men ($\beta = -0.03$; 95% CI: -0.04 , -0.01 , and $\beta = -0.02$; 95% CI: -0.04 , -0.01 , and $\beta = -0.02$; 95% CI: -0.04 , -0.01 , and $\beta = -0.02$; 95% CI: -0.04 , -0.01 , and $\beta = -0.02$; 95% CI: -0.00 , low leverased estradio levels ($\beta = 0.006$; 95% CI: -0.001 , but decreased LH ($\beta = -0.01$; 95% CI: -0.01 , -0.003) and SHI ($\beta = -0.007$; 95% CI: -0.01 , -0.003) and SHI ($\beta = -0.007$; 95% CI: -0.01 , -0.003) and SHI ($\beta = -0.02$; 95% CI: -0.04 , -0.003) and SHI ($\beta = -0.02$; 95% CI: -0.17 , -0.02 , and $\beta = -0.24$; 95% CI: -0.17 , -0.02 , and $\beta = -0.23$; 95% CI: -0.14 , -0.05 ; respectively) levels. Higher HCB ($\beta = -0.01$; 95% CI: -0.12 , -0.03), and such that $(\beta = -0.01$; 95% CI: -0.02 , -0.003), and such a sociated with decreased LH levels among this group of women.
4. Ayhan et al. ¹⁸⁹	2021/Guadeloupe ^{a,b}	285 mother-child (7 years of ago) pairs	Prospective cohort	Š	Cord and child blood chlordecone, card blood DDE	mixe < LOD (2.0D-0.3) Median (PS-P75) (μ g/L). (2.0D-0.3) Median (PS-P75) (μ g/L). (2.0D-0.11), girls = 0.21 (0.07-0.37); child chlord cente: boys = 0.05 (< LOD – 0.11), girls = 0.05 (< LOD – 0.11); cord blood DDE: boys = 0.22 (0.09-0.64), girls = 0.31 (0.10-0.74)	Serum DHEA, TT, DHT, estradiol	Third quartile of cord blood chlordecone was associated with elevated DHEA (β for boys = 0.5, 95% CE: 0.1, 1.0 β for gains -0.4, 95% CE: 0.5, 0.7, TT (OR for boys = 3.2, 95% CE: 1.1, 96. (OR for gains = 3.3, 95% CE: 1.3, 82.), and DHT (OR for boys = 3.7, 95% CE: 1.3, 10.6, OR for gains = 3.2, 95% CE: 1.3, 10.6, OR for gains = 3.2, 95% CE: 1.0, 10.2) levels in boys and gains, relative to first quartile of cord bood diordecone.
Studies on OPs or CBs 5. Recio-Vega et al. 200	2008Mexico	19 sprayer farmworkers/ 16 non-sprayer farmworkers/17 non- farmworkers	Prospective cohort	⁶ do	Questionnaire (occupational, residen- iral, and seasonal expo- sure histories). Urinary DAPs	Mean ± SD total DAPs (ppb): Non-occupationally exposed = 1,004.8 ± 2,380.49 Farmworkers but not OP sprayers = 1,054.6 ± 1,916.2 Sprayers exposed to OP = 1,283.7 ± 2,304.9	Semen quality	Spriyer farmworkers had lower sperm volume $(\beta = -0.7, p = 0.002)$ and lower sperm count $(\beta = -0.2, p = 0.003)$ than non-farmworkers. During low exposure period, non-sprayer farmworkers had lower rapid progressive modity $(\beta = -17.2, p = 0.04)$. During medium exposure period sprayer farmworkers had lower sperm volume $(\beta = -0.3, p = 0.02)$. During high exposure period, seminal parameters were similar among all groups. Sperm vitality was lower at higher levels of DMDTP $(\beta = -146.5, p = 0.006)$. No other seminal parameters were associated with DAP levels.

Table 7. (Continued.)	$\overline{}$							
Smdy	Year of publication/country	Population and sample size	Study design	Pesticides assessed	Exposure assessment method	Pesticide or metabolite concentrations	Health effect and assessment ment method/instrument	Results
6. Yucra et al. ²⁰⁸	2008/Peru	31 male farmworkens/31 controls	Cross-sectional	908	Questionnaire (occupational exposure history) Urinary DAPs	Geometric mean \pm GSD ($\mu g/L$): Nonexposed: DBF = 3.0 \pm 2.1; DBITPF = 10.2 \pm 54.5; DETPF = 2.7 \pm 10; DMP = 9.6 \pm 19.5; DMDTPF = 56.4 \pm 6.7; DMTPF = 9.7 \pm 68.7; Exposed: DBFF = 3.8 \pm 6.2; DBDTPF = 25.3 \pm 786; DBTPF = 3.9 \pm 7.2; DMP = 14.2 \pm 42.4; DMDTPF = 5.3 \pm 4.5; DMTP = 22.9 \pm 4.8 6	Semen quality Serum testosterore, estra- diol, FSH, LH	Higher concentrations of ethylated OP metabolites were associated with lower seminal volume (μ =0.02), whereas ligher concentrations of metabolites of problem of the order of metabolites were associated with higher seminal pH (μ =0.02). After controlling for ethylated OP metabolites, exposure to pesticides (eyesho) was associated with increased seminal pH (μ =0.02). After controlling for methylated OP metabolites, exposure to pesticides (eyesho) was associated with increased seminal pH (μ =0.002) and decreased seminal increased seminal pH (μ =0.002) and decreased seminal increase levels (μ =0.002) and decreased seminal increase levels (μ =0.002) and decreased seminal fructoses levels (μ =0.003) and decreased seminal fructoses (μ =0.003) and decreased
7. Blanco-Muñoz et al ²⁰⁷	2010Mexico	Norkers workers	Cross-sectional	&	Questionnaire (occupational exposure history) Urinary DAPs	Median (range) (µg/g creatinine); Low exposure: DMP = 17.4(5.4–196.8); DMTP = 11.0 (4.6–156.8); MOMDP=7.8 (4.64-66.5); DEP = 16.2 (±-29.9); DEFP = 8.3 (4.7–14.4); DEDTP = 8.6 (2.4–31.0); total DAN= 77.8 (3.6–36.3); Medium exposure: DMF = 89.9 (12.3–9.213.9); DMTP = 31.6 (6.0–377.2); MOMDTP = 9.5 (3.0–8.1); total DAN= 2.16.5 (93.3–9.34.3) High exposure: DMF = 66 (6.9–886.5); DMTP = 2.0 (3.3–1.359.0); DMDTP = 9.3 (3.3–4.37.0); DEP = 15.9 (3.1–1.53.9); DETP = 9.6 (2.7–62.5); DEDTP = 6.2 (2.7–34.9); total DANs = 190.7 (34.3–2.270.8)	Serum FSH, LH, prodactin, testosterone, inhibin B, estradiol	Hommone Evels. DEP ($\beta = -0.01; 95\%$ CT: $-0.002, -0.0002$). DEP ($\beta = -0.01; 95\%$ CT: $-0.02, -0.002$). DETP ($\beta = -0.001; 95\%$ CT: $-0.01, -0.002$) and the lead of the l
8. Cecchi et al.26	2012/Argentina"	97 pregnant women living in a rural area with intensive use of	Prospective cohort	OPs	Questionnaire (residential exposure history) Blood ACHE and BChE	Not applicable	Serum progesterone (measured during spray and prespray season)	Higher ACHE activity was associated with increased progesterone levels ($\beta = 57.8, p \le 0.05$).
9. Miranda-Contrens et al. ²⁰⁰	2013/Venezuela ^b	peurines 64 male farmworkers/35 controls	Cross-sectional	OPs, CBs	P-glucutonitasse Questiomarie (occupational exposure history) Blood AChE and BChE	Not applicable	Semen quality Sperm chromatin integrity (DFI) Serum testosterone, FSH, LH, PRL	Farmworkers had higher seminal pH ($p = 0.004$) and lovert percentage of live sperm ($p < 0.001$) than controls. Farmworkers with decreased BChE activity had higher DH ($r = 0.3$, $p = 0.027$). Null associations of serum hormones with cholinesterase bevole
10. Aguilar-Garduño et al. ²⁰⁵	2013/Mexico	136 male floricultural workers	Prospective cohort	OPs	Urinary DAPs	Median (GM) total DAPs (μ mol/g creatinine): Rainy season = 1.62 (2.00); Dry season = 0.48 (0.48)	Serum FSH, LH, prolactin, testosterone, estradiol, inhibin B	Higher total DAP concentrations were associated with increased FSH and prolactin levels $(p < 0.01)$ for each) and decreased ensotserone $(p < 0.01)$ and
11. Silvia et al. ²¹⁰	2020/Argentina ^c	53 pregnant women living in areas with intensive pesticide application	Cross-sectional	OPs, CBs	Questionnaire (residential exposure history) Blood AChE, BChE ^d	Not applicable	Plasma estradiol, progester- one (measured during spray and non-spray season)	minoin 5 leveus $\psi = 0.11J$. Progesterone and estradiol levels did not differ between spray and non-spray seasons.
Studies on other pesticides or multiple pesticide classes 12. Sanin et al. ²¹¹ 2009/Colombia	imple pesticide classes 2009/Colombia	2,592 fertile women from regions with different levels of aer- ial glyphosate spraying	Retrospective cohort	Glyphosate	Questionnaire (residential and occupational exposure history) Ecological exposure index (different levels of exposure index interesting the conting to agri-	Not applicable	TTP	Reduced fecundability was not associated with aerial glyphosate spraying.
13. Rojas and Guevara ²¹²	2014/Venezuela	180 women of reproductive age	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history)	Not applicable	Menstrual cycle and bleeding duration	Women who were occupationally exposed to pesticides had longer mensmal cycles than women who did not have contact with pesticides $(p < 0.01)$. Null association between bleeding duration and pesticide
14. Miranda-Contreras et al. ²¹³	2015N'enezuela	64 male farmworkers/64 controls	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational Not applicable exposure history)	Not applicable	Semen quality Sperm chromatin integrity (DFI)	Further that decreased sperm concentration $(p=0.01)$, vitality $(p<0.01)$, slow progressive motifity $(p=0.01)$, lower sperm membrane integrity $(p=0.001)$, and high DFI $(p<0.001)$ compared with controls.

ued.
ıtin
Co_{ij}
_
Ŀ.
e
3
Ta

Table /. (Continued.)	d.)								
Study	Year of publication/country	Population and sample size	Study design	Pesticides assessed	Exposure assessment method		Pesticide or metabolite concentrations	Health effect and assessment method/instrument	Results
15. Gremonese et al. 214	2017/Brazil	99) ment young ment and young ment and young ment and a second a second and a second a second and a second a second and a second and a second and a	Cross-sectional	Multiple pasticide classes	Questionmire (residential, occupational, and reproductive exposure history) Blood AChE and BChE	Not applicable		Senen quality Gental measurements (AGD_TV) Serum testosterone, LH, FSH, SHBG, prolactin	Rural men had decreased normal sperm morphology (\$=0.7.95\% CT (0.6.40), increased sperm count (\$=16.95\% CT: 10.1.25), increased TV (\$=1.5.95\% CT: 1.1.15), decreased TV H ratio (\$=1.8.95\% CT: 1.1.15), decreased TLH ratio (\$=0.8.95\% CT: 1.1.16), compared with urban men. Farmers who had ≥6 y working had decreased TLH ratio (\$=0.8.95\% CT: 0.7.10) and decreased TLH ratio (\$=0.8.95\% CT: 0.7.10) and decreased TLH ratio (\$=0.8.95\% CT: 0.7.10), increased TV H ratio (\$=0.8.95\% CT: 0.7.10), increased TV H ratio (\$=0.8.95\% CT: 0.7.10), increased TV H ratio (\$=1.2.95\% CT: 0.7.10), increased TV H ratio (\$=1.2.95\% CT: 0.1.14), kwe ratio man morphology (\$=0.8.95\% CT: 0.1.14), kwe reased TV (\$=1.2.95\% CT: 0.1.14), keff ≤1), and who had \$<5.40\$ handling pesticides had increased TV (\$=1.2.95\% CT: 0.1.14) (Ref ≤1), and who had \$<5.40\$ handling pesticides had increased TV (\$=1.2.95\% CT: 0.1.14) and lower normal morphology (\$=0.8.95\% CT: 0.8.10) (Ref <5). Those farmworkers who need pesticides in the high use season had increased prolactin levels (\$=0.9.95\% CT: 0.8.10) Mammal farming during pregnarcy was associated with increased ACD (\$=1.1.19) and TV (\$=0.8.95\% CT: 0.1.1.1) and TV (\$=1.2.95\% CT: 1.01.1.1) and TV (\$=1.2.95\% CT: 0.2.1). And TV (\$=1.2.95\% CT: 0.2.1). Cholinesternes activities were not associated with reproductive hormones or semen quality.
16. Santos et al. ²⁰¹	2019/Brazil ^o	122 famworkers and their families	Cross-sectional	Multiple pesticide classes	Ouestionnaire (occupational, residen- tial, and seasonal expo- sure history)	Not applicable		Seum LH, testosterone, es- rradiol, LH, FSH	Recent use of fungicides in general (7change = 41%; 95% Cl. 11, 80), A-cyhalothri (59%; 95% Cl. 13, 123), and prihalimide (95%; 95% Cl. 37, 176) was associated with increased LH lewest in men. Working in agriculture (1-30 y) was associated with increased in general men (70%; 95% Cl. 2, 40) (ref. sersosetone bevels in men (20%; 95% Cl. 2, 40) (ref.
									Consideration of the constant and the constant

Note: %change, percentage change; AChE, acetylcholinesterase; AGD, anogenital distance; BChE, butyrylcholinesterase; CBs, carboxylesterases; CI, confidence interval; DAP, dialkylphosphate; DDD, dichlorodiphenyltrichlorocethane; DEDTP, Diethyldithiophosphate; DEP, diethylphosphate; DFP, diethylphos

,	_:	
	13)	
	u = 1	
`	٥	
ì	77	
	707	
,	. `	
	and	
,	a '	
-	6	
9	3	
•	u	
	ee	
	ĭ	
	ĕ	
•	2	
•	9	
•	Sh	
÷	=	
•	and	
	۵	
•	ţ	
	growt	
	TC	
	OI.	
	2	
,	S	
,	<u>ر</u>	
	ĭ	
	ea	
,	126	
•	S	
,	t)	
	birt	
;	_	
	ĭ	
	a	
	Ire	
	SL	
	DC	
	exp	
	õ	
	cide	
	2	
	est	
	ă	
	on	
	S	
	ē	
7	덛	
	stı	
	п	
	ea	
,	ğ	
:	Ξ	
7	\bar{S}	
	۰	
,	he	
,	_	
	ĭ	
	n an	
	ಡ	
	15	
	\meric	
	ξ	
•	ч	
	ᆵ	
	ಥ	
,	_	
٠	0	
	S	
	Ĭ	
	LIS	
	Ę	
	$\frac{1}{2}$	
	are	
į	ij	
(ب	
(ó	
,	<u>e</u>	
,	ap	
6		

Study	Year of publication/country	Population and sample size	Study design	Pesticides assessed	Exposure assessment method	Pesticide or metabolite concentrations	Health effect and assessment method/instrument	Results
Studies on OCs 1. Cupul-Uicab et al, 215	2010Mexico	788 mother-children (13-43 months of age, boys only) pairs from an area where DDT was recently used	Prospective cohort	OCs.	Questionnaire (residential and seasonal exposure at prenatal period) Maternal serum DDT and DDE at delivery	Median (10R) (ug/g) p.p'-DDE = 2.7 (4.5) p.p'-DDT = 0.3 (0.6)	Weight, height	Null associations of prenatal DOT exposure with height and BMI in boys up to 43 months of age.
2. Garced et al. ²¹⁶	2012/Mexico	253 mother-child (0-12 months of age) pairs	Prospective cohort	OCs	Maternal serum DDE in each trimester of pregnancy	Geometric mean \pm GSD (\log / g) $p p'$ -DDE: first trimester = 1,105.1 \pm 2.7; second trimester = 84.26 \pm 2.9, third trimester = 710.6 \pm 3.0 $p p'$ -DDT: first trimester = 0.03 \pm 9.5; second trimester = 0.02 \pm 6.5, third trimester = 0.03 \pm 8.5	Weight, length, head circumference during the first year of life	Null associations between prenatal DDE exposure and child growth during the first year of life.
3. Kadhel et al. ²²⁰	2014/Guadeloupe	818 mother-newborn pairs	Prospective cohort	0Cs	Cord blood chlordecone and DDE	Median (P25-P75) (µg/L). Chlordecone = 0.39 (0.18-0.83); $p \mu^{-} \text{DDE} (\text{for subgroup of 358 women}) = 0.59 (0.22-1.26).$	Length of gestation, preterm birth	Higher cord blood chlordecome concentrations were associated with shorter length of gestation (f fper 10- fold increase = -0.3 w;: 95% CI: -0.5. 0) and increased risk of preterm birth (HR = 1.6:, 95% CI: 102.3.) hull associations of cord blood DDE with birth outcomes.
4. Costet et al.?22	2015/Guadeloupe	222 monher-child (3–18 months of age) pairs	Prospective cohort	SOO	Questionnaire (dietary intake of food contaminated with chordecone) Cord plasma and breast milk (3 months of age) chlordecone	Median (IQR) (µg/L): Cord plusma chlordecone = 0.11 (<lod-0.33); (0.40-1.70)<="" breast="" chlordecone="0.76" milk="" td=""><td>Body length, weight, BMI at 3, 8, and 18 months of age</td><td>Highest tertile of cord blood chlordecone was associated with higher BMI in boys at 3 months of age ($\beta = 0.9$; 95% Ct. 0, 1.8) and in girls at 8 ($\beta = 0.7$; 95% Ct. 0, 1.5) and 18 ($\beta = 0.7$; 95% Ct0.1, 1.4) months of age.</td></lod-0.33);>	Body length, weight, BMI at 3, 8, and 18 months of age	Highest tertile of cord blood chlordecone was associated with higher BMI in boys at 3 months of age ($\beta = 0.9$; 95% Ct. 0, 1.8) and in girls at 8 ($\beta = 0.7$; 95% Ct. 0, 1.5) and 18 ($\beta = 0.7$; 95% Ct0.1, 1.4) months of age.
5. Arrebola et al. ¹⁸⁸	2016/Bolivia"	200 mother-newborn pairs from an agricul- tural area	Cross-sectional	oc.	Questionmaire (residential exposure history) Cord blood DDT and DDE	Median (P2S-P75) (ng/g lipid) p.p'-DDE = 1968 (\$2.8-475.0) o.p'-DDT = 39.5 (19.3-5.1)	Birth weight, head circumference, birth length, ponderal index, length of gestation	Higher cord blood α, μ' -DDT was associated with lower birth weight ($\beta = 0.01$; 95% CL $+0.03$, -0.001), whereas higher $p\mu'$ -DDE was associated with higher birth weight ($\beta = 0.02$; 95% CL 0.005 , 0.02), Higher cord blood $p\mu'$ -DDE was also associated with shorter gestation length ($\beta = -0.004$ 195% CI. -0.01 , -0.001). Higher α, μ -DDT was associated with smaller head circumference ($\beta = -0.004$; 95% (CI: -0.01 , 0.0)
6. Motta et al. ²¹⁷	201 6 Brazil	40 mother-newbom pairs living in a rural area	Cross-sectional	ocs	Questionnaire (residential, occupational, and domestic exposure history) Maternal blood (at delivery) and cord blood DDT, DDB, HCH, HCB, chlordane	Dain not shown	Birth weight, head circumference, birth length	Null associations of maternal and newborn contamination indices (calculated using both ment and pesticide concentrations) with birth outcomes $(p>0.05)$.
7. Hervé et al. ²²¹	2016/Guadeloupe	593 mother-newborn pairs	Prospective Cohort	OCS	Cord blood chlordecone and DDE	Median (P2S-P75) (µg/L) Chlordecone = 0.20 (0.08-0.41); p p' -DDE = 0.25 (0.09-0.63)	Birth weight	Among mothers in the highest quantile of GWG, newborns with low and medium cord blood cholockone concentrations had greater mean reduction in brith weight, compared with those with low cord blood chlordcome ($\beta=-188$ g; 95% CI: -348 , -20 , and $\beta=-153$ g; 95% CI: -326 , 20 , respectively).
8. Chiapella et al. ¹⁷²	2014/Argentina ^b	46 mother-newbom pairs from a rural area/24 mother- newborn pairs from an urban area (controls)	Cross-sectional	OPs	Questionnaire (residential and seasonal exposure history) Placental CE°	Not applicable	Birth weight, birth length, head circumference, ponderal index, length of gestation	No differences in fetal growth measurements between exposure groups.
9. Rivero Osimani et al. ^{1,00} 2016/Argentim ^b	2016/Argentina ^b	43 mother-newbom pairs from a rural area (RG)/20 mother- newbom pairs from an urban area (controls)	Cross-sectional	OPs	Questionnaire (residential and seasonal exposure history) Placental CE ^c	Not applicable	Birth weight, birth length, head circumference, length of gestnion	Mean birth weight was lower in RG-SS (difference of 96%; p = 0.03) and RC-NSS (difference of 7.8%; p = 0.06) compared with the control group. No differences in other birth outcomes between exposure groups.

$\widehat{}$
ned
ntin
$\tilde{c}_{\tilde{c}}$
∞
ble
Ta

Study	Year of publication/country	Population and sample size	Study design	Pesticides assessed	Exposure assessment method	Pesticide or metabolite concentrations	Health effect and assessment method/instrument	Results
10. Quintana et al. ⁵⁴	2017/Argentind ^{a.b.e}	151 mother-newborn pairs living in a rural area/38 mother- newborn pairs from an urban area (controls)	Cross-sectional	OPs	Questionnaire (residential and seasonal exposure history) Cord blood AChE, BChE	Not applicable	Birth weight, birth length, head circumference, length of gestation	Mean birth weight was lower in cesarean RG-SS than cesarean control group (difference of 14% ; $p=0.04$). No differences in other birth outcomes between exposure groups. Null associations of cord blood AChE with birth outcomes.
11. Silvia et al. ²¹⁰	2020/Argentina	53 mother-newborn pairs living in areas with intensive pesticide application	Cross-sectional	OPs, CBs	Questionnaire (residential exposure history) Blood AChE, BChE ^c	Not appikable	Birth weight, birth length, head circumference, preterm birth, intrauterine growth retardation	No differences in birth weight, length, head circumference, head circumference/weight ratio, and ponderal index between children bom during SS and those born during NSS.
Studies on other pesticides or multiple pesticide classes 12. Mora et al. ²¹⁸ 2015/Costa Rica	or multiple pesticide classes 2015/Costa Rica	380 mother-newborn pairs living near ba- nana plantations	Prospective cohort	Mn-containing fungicides	Maternal blood and hair Mn in each trimester of pregnancy	Mean ± S.D. Blood Mn (µg/L) = 24.5 ± 6.1; hair Mn (µg/g) = 3.5 ± 5.3	Birth weight, birth length, head circumference, chest circumference, ponderal index, length of gestation	Hair Mn during the second and third trimesters of gestation were associated with chest circumference (f) per 10-fold increase = 0.6 cm; (95% CI: 0.2, 1.1), and f) = 0.6 cm; (95% CI: 0.2, 1.1, srepeively). Multiasociations between blood Mn and tith outcomes.
13. Cecchi et al. ²¹⁹	2021/Argentina	418 rural mother- newborn pairs living in proximity to inten- sive pesticide application/358 urban mother-child pairs	Prospective cohort	Multiple pesticides	Questionnaire (previous history of pesticide exposure and residential pesticide exposure)	Not applicable	Birth weight, birth length, head circumference	No differences in birth weight between groups. Birth length (p < 0.01) and head circumference (p < 0.05) z-scores were lover in exposed group than in unexposed group.

ACIE, acetylcholinesterase; BCME, butyrylcholinesterase; BMI, body mass index; CI, confidence interval; DDE, dichlorodiphenyldichloroethylene; DDT, dichlorodiphenyltrichloroethane; GWG, gestational weight gain; HCB, hexa-chlorobenzene; HCH, hexa-chlorocyclohexane; HR, hazard ratio; NSS, non-spraying season; Mn, manganese; OC, organochlorine; OP, organophosphate; OR, odds ratio; RS, rural group; SS, spraying season.

"Also included in Table 6 (thyroid function).

Also included in Table 4 (placental outcomes and teratogenicity).

Threetigators did not use exposure biomarker concentrations in multivariate analyses. Also included in Table 2 (genotoxicity).

Also included in Table 9 (other health effects).

Birth Outcomes and Child Growth

Thirteen publications reported on the association of pesticide exposure with birth outcomes and infant/child growth (Table 8). Of the 13 publications, 7 focused on OC pesticides, ^{188,215–217} 4 on OP pesticides or carbamates, ^{54,169,172,210} 1 on Mn-containing fungicides, 218 and 1 on multiple pesticide classes. 219 A publication from a small cross-sectional study in Brazil reported null associations of maternal and newborn contamination indices estimated using metal and OC pesticide concentrations measured in maternal blood at delivery and cord blood-with birth outcomes.²¹⁷ In contrast, a publication from a cross-sectional study of mother-newborn pairs from Bolivia reported that higher cord blood DDT concentrations were associated with lower birth weight, whereas higher cord blood DDE concentrations were associated with higher birth weight and shorter gestation length. 188 Publications from two prospective cohort studies in Mexico reported null associations of prenatal DDT or DDE exposure with birth outcomes and child growth during the first year of life²¹⁶ and up to 43 months of age. ²¹⁵ Three publications from a prospective cohort study in Guadeloupe reported that higher cord blood chlordecone concentrations were associated with shorter length of gestation and increased risk of preterm birth, 220 lower birth weight in children whose mothers gained a large amount of weight during pregnancy,²²¹ and higher body mass index (BMI) at 3–18 months of age.²²²

Four publications from cross-sectional studies in Argentina examined the association between prenatal OP pesticide exposure and fetal growth. Two of them reported a lower mean birth weight among mother-newborn pairs from a rural area compared with controls,54,169 whereas the other two found no differences in growth parameters between exposure groups. 172,223 A publication from a prospective cohort study conducted in Argentina reported lower birth length and smaller head circumference in children living in proximity to pesticide applications compared with those living in an urban area.²¹⁹ Finally, a publication from a prospective cohort study of mother-newborn pairs living near banana plantations aerially sprayed with Mn-containing fungicides in Costa Rica found that maternal Mn concentrations in hair, but not blood, were positively associated with infant chest circumference.²¹⁸

Overall, the small number of published studies that have examined the association of pesticide exposure with birth size and child growth in LAC populations have reported mixed findings. More specifically, about half of the studies found some evidence of adverse outcomes and the other half reported null associations.

Other Health Problems

Kidney function. Nine publications reported on the association between pesticide exposure—ascertained only via questionnaire and kidney function (Table 9). Notably, six of these nine publications reported null associations with estimated glomerular filtration rate (eGFR) levels or prevalence of chronic kidney disease (CKD).^{224–229} In contrast, a publication from a cross-sectional study conducted in Nicaragua reported that accidental pesticide inhalation (ever), but not lifetime days of mixing/applying pesticide or lifetime days of working in fields with pesticide use, was associated with reduced eGFR. 230 A publication from a cross-sectional study in Mexico reported a reduction in eGFR levels among migrant and seasonal farmworkers (who did not apply or mix pesticides) from preharvest to late harvest, as well as lower GFR levels among farmworkers who worked in conventional fields compared with those who worked in organic fields.²³¹ Last, a publication from a prospective cohort study of school-age children from a tobacco-producing region in Brazil reported increased levels of

Table 9. Characteristics of Latin American and the Caribbean studies on pesticide exposure and other health effects published between 2007 and 2021 (n = 70).

Study	Year of publication/country	Population and sample size	Study design	Pesticides assessed	Exposure assessment method	Pesticide or metabolite concentrations	Health effect and assessment method/instrument	Results
Kidney function 1. Sanoff et al. 228 2. Raines et al. 230	2010/Nicaragua 2014/Nicaragua	124 renal insufficiency cases/ 873 control 878 crasses of reduced eGFRV 78 cases of reduced eGFRV 205 controls from area with high prevalence of CKD	Case-control Cross-sectional with case-control analysis	Multiple pesticide classes Multiple pesticide classes	Questionnaire (occupational exposure history) duestionnaire (occupational and residential exposure history)	Not applicable Not applicable	Renal insufficiency (defined by eGFR)	Null association between pesticide exposure and odds of real marticleney. Null associations of lifetime days mixing-applying pesticides and lifetime days working in fields with pesticide and lifetime days working in fields with pesticide use with reduced of GR. Accidental pesticide inhalation (ever) was associated with reduced eGFR (OR = 2.6; 95% CT: 10.60 vi).
3. Vela et al. ²²⁵	2014/El Salvador	223 subjects (>15 years of age) from two farming communities	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history)	Not applicable	CKD (defined by eGFR or markers for renal damage: he- maturia, proteinuria with he-	CL. 1.0.4 Uses of CKD between farmworkers and non-farmworkers (descriptive analyses only).
4. Wesseling et al. ²²⁶	2016/Nicaragua	86 male sugarcane cutters/56 male construction workers/52 male small-	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history)	Not applicable	natura, meroanommuna) Kidney disfunction (defined by eGFR)	Null association between self-reported (ever) pesticide use and eGFR levels.
5. Nascimento et al. 92	2017/Brazil"	40 children (6-L2 years of agol iving in a tobacco- producing region	Propertive colort	Multiple pesticide classers	Questionnaire (parental exposure listory) Blood BChE ⁰	Not applicable	Kidney function: inicoalbuminutia, NAG activity ity Serum vitamin C Bernandogical parameters: he- matocrit, Hb, WBC, RBC, platedets (all parameters meas- ured at two different cop periods: in the beginning of periods in the beginning of periods and in the Lact function	Microalbuminaria levels were higher at the begin- mig of the application period han during leaf harvest period (p. <0.05). No difference in NGG activity between both periods. Neutrophils, monocytes (p. C005), and beaplis (p. <0.01) were lower, and HP and lymphocytes were higher during the pesticide application period (p < 0.01).
6. Smpokou et al 227	2019/Nicaragua	S7 adults from rural communities	Nested case—control (rested within a pro-spective colort)	Herbicides, pyrethroids, OPs, fungicides	Questionnaire (occupational exposure listory) Urimay metabolites of fungicides (ETU, OH-PYR, 3-OH-PHZ), OPR (TCPy), pyrethroids (DCCA, 3-PBA); herbicide 2,4-D (measured once or twice)	Median (P2S-P75) (μ mol /mol creatinine): 2,4-Dr men visit 1 = 0.1 (0.3-2.5); men visit 2 = 0.3 (0.1-0.7) women visit 2 = 0.2 (<1.00-6.1); men visit 2 = 0.2 (<1.00-6.8) when visit 2 = 0.0 (0.4-1.5); men visit 2 = 0.7 (0.3-0.8) women visit 1 = 2.0 (0.6-1.7); men visit 2 = 0.7 (0.3-0.8) CCA; men visit 1 = 0.9 (0.4-1.6); men visit 2 = 0.0 (0.6-2.3) CCA; men visit 1 = 0.0 (0.4-1.6); men visit 2 = 0.4 (0.2-0.9); women visit 1 = 0.7 (0.2-1.6); men visit 2 = 0.4 (0.2-0.7); women visit 1 = 0.0 (0.0-1.3); men visit 2 = 0.1 (0.1-0.2); women visit 1 = 0.0 (0.2-1.6); men visit 2 = 0.1 (0.1-0.2); women visit 2 = 0.1 (<1.00-0.2); CCA; men visit 2 = 0.1 (<1.00-0.2); women visit 1 = 0.1 (<1.00-0.3); women visit 2 = 0.1 (<1.00-0.2); women visit 2 = 0.1 (<1.00-0.2); women visit 3 = 0.1 (<1.00-0.2); women visit 3 = 0.0 (<1.00-0.0.2); women visit 4 = 0.00-0.0.3; women visit 5 = 0.0 (<1.00-0.0.2); women visit 3 = 0.00-0.0.3; women visit 4 = 0.00-0.0.3; women visit 5 = 0.00-0.0.3;	Decline in Kidney function (defined by eGFR; pamameters extinated at two time points baseline (before the harvest or visit 1) and 6 months later (at the end of the harvest or visit 2)	No differences in pesticide metabolite con- centrations between those whose kidney function remained stable over the follow-up period and those whose kidney function declined.
7. Ruiz-Alejos et al. 224	2021/Peru	1,1514 adults from urban and Cross-sectional rural areas	Cross-sectional	Multiple pesticide classes	Questionnaire (environmental and occupational exposure history)	Not applicable	Impaired kidney function (defined by eGFR)	Null association between self-reported pesticide exposure and impaired kidney function.
8. López-Gálvez et al. ²³¹	2021/Mexico	101 migrant and seasonal farmworkers (who did not directly apply or mix pesticides)/50 nonagricultural office workers	Cross-sectional	Multiple pesticide classes	Questionmaire (residential and occupational exposure history) during preharvest and late harvest	Not applicable	eGFR	Farmworkers had lower eGFR levels than office workers e-GFR in farmworken ederged from preharvest to late harvest (p < 0.001). Farmworkers who worked in conventional fields farmworkers who worked in conventional fields had lower eGFR levels ham those who worked in oranic fields (p = 0.002).
9. Prudente et al. 229	2021/Brazil	208 farmworkers	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history) Blood BChE	Not applicable	eGFR	Null association between posticide exposure and eGFR reduction.
Respiratory and allerge outcomes	tomes 2009/Costa Rica	69 indigenous women exposed to pesticides while working in plantain fields/58 indigenous women unexposed	Cross-sectional	OPs and paraquat	Questionnaire (occupational and residential exposure history)	Not applicable	Respiratory symptoms (European Community Respiratory Health Survey), spirometry (FVC, FEV ₁)	Exposure to chlorpyrifos and technifos was associated with increased risk of wheeze among nonsmokers (OR= 6.7; 95% CI: 1.6, 2.8.0 and OR=5.9.95% CI: 1.4, 2.5. terperively). Exposure to chlorpyrifos was also associated with shortness of breath among nonsmokers (OR=2.6; 95% CI: 1.0, 7.3). Null associations of pesticide exposure with FVC and FEV,

Study	Year of publication/country	Population and sample size	Study design	Pesticides assessed	Exposure assessment method	Pesticide or metabolite concentrations	Health effect and assessment method/nstrument	Results
11. Cupul-Uicab et al. ²³⁷	2014/Mexico	747 mother-children (12–30 months of age, boys only) pairs from an area where DDT was recently used	Prospective cohort	000	Questionnaire (residential and seasonal exposure at pre- natal period) Maternal serum DDT and DDE at delivery	Median (IQR) ($\mu g/g$) p.p'-DDT = 0.3 (0.7); $p.p'$ -DDE = 2.7 (4.5)	LRTIs (physician-diagnosed between birth and 30 months of age and reported by mothers)	Null associations of prenutal DDT exposure with LRTIs in boys up to 30 months of age.
12. Buralli et al. ²³³	2018/Brazil	48 farmworkers and 34 relatives residing in a rural area	Gross-sectional	Multiple pesticide classes	Questionnaire (residential, occupatomial, and intoxication history) Blood ACHE and BCHE®	Not applicable	Respiratory symptoms (European Community Respiratory Health Survey), spirometry FVC, FBV, FBV, FPV, FPV FBS ₂₅₅₋₂₅₈) (all parameters measured at two different crop season and off-season)	Crop season was associated with increased odds of waking up with a congle (Og 26:1.2, 51.1), but not with other respiratory symptoms. Years of working with pesicides or mail work were associated with decreased PCC (\$ = 0.01; 95% C1: -0.30.1), FEV; (\$ = -0.01; 95% C1: -0.01, -0.002), and FEF _{56-25%} (\$ = -0.05; 95% C1: -0.07, -0.003) during the crop season, but also during the off-season (§ FEV; = -0.02; 95% C1: -0.03, -0.01), FEV; (\$ = -0.03; 95% C1: -0.03, -0.01), FEV; (\$ = -0.03; 95% C1: -0.03), C1: -0.01, -0.01), FEF _{56-25%} (\$ = -0.03; 95% C1: -0.03), C2% C1: -0.03, C3% C1: -0.03), C3% C1: -0.03, C3% C1: -0.03, C3% C1: -0.03), C3% C1: -0.03, C3% C1: -0.03, C3% C1: -0.03), C3% C1: -0.03, C3% C1: -0.03, C3% C1: -0.03), C3% C1: -0.03, C3% C1: -0.03, C3% C1: -0.03, C3% C1: -0.03), C3% C1: -0.03, C3% C1: -0.03, C3% C1: -0.03, C3% C1: -0.03), C3% C1: -0.03, C3% C
13. Diaz-Criollo et al. ²³⁴	2019/Colombia	217 famworkers	Gross-sectional	Multiple pesticide classes	Questionnaire (occupational and domestic exposure his- tory) Job-exposure matrix (proxy of chronic exposure) Urinary paraquat	Mean (range) paraquat (ng/mL); Carmende Vivoral = 9.61 (1–54.4); La Unión = 13.22 (1–57.1); Granada = 10.95 (1–52.2)	Self-reported respiratory symptoms (e.g., cough, wheezing), spirometry (FC, FEV, FEV, /FVC ratio)	Self-reported use of pesticide mixtures containing para- quar, professors and methony was associated with increased prevalence of find (PR = 23; 95% CF.1 K, 33), whereas use of pesticide mixtures containing paraqua, and professors, and methoral doptions was associated with thoracic pain (PR = 41; 15% CF. 11, 70) or paraquat and professors and methoral doptions was a passociated with thoracic pain (PR = 41; 15% CF. 11, 70) or paraquat and professor (PR = 24; 15% CF. 11, 70) or paraquat and professor (PR = 24; 15% CF. 11, 71, 29) was associated with an obstructive pattern in spiron- ery (PR = 44; 95% CF. 11, 17.5). Chrotic paraqua containing paraquat and methoraticophos was associated with an obstructive pattern in spiron- ery (PR = 44; 95% CF. 11, 17.5). Chrotic paraquat on — 1, 1155. Chrotic paraquat
14. Mora et al. ²³⁶	2020/Costa Rica	355 mother-child (1 year of age) pairs living near bunan plamations aerially sprayed	Prospective cohort	Fungicides, OPs, pyrethroids, herbicides	Questionnaire Uninary metabolites of fungicles (, OH-P/R, , S, OH-TBG), OPs ((TCPy), pyrethroids (DCCA, 3- PBA); herbicide 2,4-D during each trimester of nevennecy	Median (range) (ng/mL) (pregnancy average): ETU = 3.4 (0.8-127.4); TCPy = 1.8 (0.4-63.0); 3-PBA = 0.8 (0.1-17.0); 2.4D = 0.3 (0.1-79.8); DCCA = 1.3 (0.2-23.6); OH-PYR = 0.6 (<lod-368.6); (<lod-339.0)<="" 5-oh-tbz="0.1" td=""><td>LRTIs and wheeze (physiciun- or nurse-diagnosed in first year of life and reported by mothers at 11–19 months of age)</td><td>High (2 P7) during the first half of pregnancy was associated with increased odds of LRTIs (OR = 2.5; 95% C1: 10, 63, whereas high (2 P7)s during second half of pregnancy was associated with decreased odds of wheezing (OR = 0.5; 95% C1: 0.10). Null associations of other pesticide metabolites with LRTIs and wheeze.</td></lod-368.6);>	LRTIs and wheeze (physiciun- or nurse-diagnosed in first year of life and reported by mothers at 11–19 months of age)	High (2 P7) during the first half of pregnancy was associated with increased odds of LRTIs (OR = 2.5; 95% C1: 10, 63, whereas high (2 P7)s during second half of pregnancy was associated with decreased odds of wheezing (OR = 0.5; 95% C1: 0.10). Null associations of other pesticide metabolites with LRTIs and wheeze.
15. Albanti et al. ²³⁵	202 I/Costa Rica	266 women living near bu- nam plamations aerially sprayed	Prospective cohort	Fungicides, OPs, pyrethroids, herbicides	Questionnine (residential pesticide use) pesticide use) Unium proabolites of fungicides (FTU, OH-PYR, 5-OH-TBZ), OPs (TCPy), pyrethroids (DCCA, 3-PBA); herbicide 2.4-D	Min-max (µg/L): ETU=0.1-57.7; TPP=0.1-16.4; 2.4-D=0.01-39.4; OH-PYR=0.02-21.0; 5. OH-TBZ=0.01-300.0; 3-PBA=0.1-41.4; DCCA=0.1-30.3	Self-reported respiratory out comes: wheeze, dector-diagnosed ashma, ashma score ashma score Aleage outcomes: rhinis, eczema, itchy rash	Current pesticide use in the home was associated with increased odds of diagnosed asthma (OR = 2.0, 95% CI: 1.1.3.9). Higher 5-OH-TBZ was associated with increased odds of a high asthma score (OR = 18.95% CI: 1.1.3.3). Women who worked in agriculture had decreased odds of hintis (OR = 0.2: 95% CI: 0.0.9) but increased odds for cazant (OR = 2.5: 95% CI: 0.3.9).
16. Rocha et al. ³¹⁷	2021/Brazil	319 cases with uncontrolled asthma619 controls (ages 6-7 and 13-14 years of age)	Case-control	Multiple pesticide classes	Questionnaire (residential pesticide exposure, exposure to pesticides from nearby agricultural spraying)	Not applicable	Uncontrolled asthma (ISAAC)	y-y)ant any task (NR = 3, 2, 8, 4, 1, 1), Living close to agricultural fields (OR = 4,0,95% CE 1.5, 11.8), farmworkers in the household (OR = 5,9,95% CE 2,1,16.5), and aerial spraying close to the home (OR = 4,2,95% CI: 15,11.9) were associated with increased odds of uncontrolled asthma.
Liver injury 17. Cecchi et al. ²⁰⁶	2012/Argentina [©]	97 pregnant women living in a rural area with intensive use of posticides	Prospective cohort	OPs	Questionnaire (residential exposure history) Blood AChE, BChE, β-glucuronidase ^b	Not applicable	Liver enzymes: AST, ALT Other biochemical parameters: al- bumin, glucose (all parameters were measured during spraying and prespraying season)	AST levels, AST/ALT ratio, and albumin levels increased by 17% ($\rho \le 0.05$), 21% ($\rho \le 0.05$), and 8% ($\rho \le 0.01$), respectively, during the spraying period compared with the prespraying period. No differences in ALT or glucose levels between starthy enriches.
18. Bahia et al. ²⁴⁰	2014/Brazil	354 general population living near OC factory (45 high/ 103 moderate/206 low exposure)	Cross-sectional	0Cs	Questionnaire (residential, occupational, and dietary exposure history)	Not applicable	Liver enzymes: AST, ALT, GGT, alkaline phosphatase Other biochemical parameters: albumin	Null associations between pesticide exposure and liver function markers.
19. Lermen et al. ²³⁸	2018/Brazil	73 orange grower farmworkers/30 controls	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history) Blood BChE ^b	Not applicable	Liver enzymes: ALT, AST, GGT Hematological parameters: hemato- crit, Hb, WBC, RBC, platelets Other blochemical parameters: creat- inne, urea Self-more and comprone	ALT (p = 0.02), AST (p = 0.04), and creatinine (p < 0.0001) where higher in farmworkers than in controls, but only among females. No differences in GGT, trues, and hemological parameters between farmworkers and controls.

Target (County	incu.)							
Sudy	Year of publication/country	Population and sample size	Study design	Pesticides assessed	Exposure assessment method	Pesticide or metabolite concentrations	Health effect and assessment method/instrument	Results
20. Ruiz-Arias et al. ²⁴²	2018/Mexico	55 applicators (high exposure)/119 occasional applicators (moderate exposure)/46 controls	Cross-sectional	OPs, carbamates, pyrethroids	Questionnaire (occupational exposure history) Urinary DAPs Blood ACHE, BChE ³ Blood ACHE, BChe ³	Geometrie mean (95%, C1) total DAPs (ng/mL): Ref = 33.4 (26.5.42.2); modente-exposure group = 58.5 (48.2, 71.0); high-exposure group = 12.25 (81.4, 18.4.4) Geometrie mean: β-glucuronidase (U/dL): Ref = 5.80; modernte-exposure group = 9.21; high-exposure group = 6.59	Liver enzymes: AST, ALT, GGT Hematological parameters: he- matocrit, Hb Lipid profile: cholesterol, urglyc- erides, LDL, VLDL, HDL Otter biochemical parameters: elucose albumin	Higher β-ghcunonidase activity was associated with increased AST, Li, and GGT levels (ρ < 0.05). Higher β-ghcunonidase activity was also associated withinsreased ginose, total lipids, riglyscrides, cholesterol, atherogenic index, VLDL, hematocrit, and hemoglohin level (ρ < 0.05) and with lower HIII levels (ρ < 0.05).
21. Cattelan et al. 88	2018/Brazil"	84 farmworkers who used pesticides/68 farmworkers who did not use pesticides	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history)	Not applicable	Liver enzymes: ASTI, ALT, GGT, alkaline phosphatase Lipid porfile; toud te chestered, HDL, LDL, triglycerides Other biochemical parameters: food month recent into the chestered parameters.	Lower allaine phospinates, total cholesterol, albu- min, leucocytes, platelets, and monocytes among farmworkers who had used pesicides compared withthose who had not (p < 0.01 for each).
22. Arévalo-Jaramilo et al. ⁸¹	2019Fcuador"	62 women living in 2 separate agricultural com- munites/53 controls (fiving in a commercial city)	Cross-sectional	Multiple pesticide classes	Questionnaire	Not applicable	Liver anymes. AST, ALT, GGT Hematological parameters: he macorit, Hb, WBC, RBC, plateles Lipid profile: cholesterol, trighye- erdes, HDL, LDL Other biochemical parameters: glucose, urea, creatinine	Higher percentage of ALT ($\rho = 0.03$) and AST values ($\rho < 0.01$) exceeding normal levels in women from the first agricultural community compared with controls. Higher percentage of GGT values exceeding normal levels ($\rho = 0.06$) in women from the second agricultural community compared with controls. Higher bemoephsin and homocrit levels, but lower platelet count and cholstered levels, in exposed women than in
23. Семпито ет ад. ²⁴¹	2020/Brazil	unexposed controls unexposed controls	Cross-sectional	OPs, CBs	Questionnaire (occupational exposure history) Blood AChE, BChE	Not applicable	Liver enzymes: ALT, AST, GGT Hematological parameters: RBC, hambor and percentage of neutrophils, jumphocytes, eo- sinophils, monocytes, basophils, pianeless placose, total blindri, direct blindri, urea, creatime, high sensivity C-reactive protein, total proteins Immunological parameters: complement C3, complement C4, IgA, IgG, Adhesion molecules: percentage of LFA-1, CAM-1, and L- selectiin surface protein	Purmworkers had lower AST and ALIT levels, but higher glucose, urea, usial protein, $1gM$, and C3 levels, than controls ($\rho < 0.01$). Farmworkers had a higher number of neutrophils and a higher number of neutrophils and a higher number of the neutrophils and a higher number of the numbers of by mphocytes, nonocytes, and platelets than commols ($\rho < 0.05$). The numbers of hypothecytes, nonocytes, and platelets than commols ($\rho < 0.05$). The numbers of hypothecytes in monocyte and an increase in lymphocyte expression for both LFA-1 and LCAM-1 compared with comols. Chall activities with carolies are BCHE activities with liver enzymes. LFA-1 and BCHE activities with liver enzymes. LFA-1 and ICAM-1 surface protein expression in purphocytes was positively associated with exposure time to pesticides in years ($r = 0.4$ for both; $\rho < 0.001$), whereas LFA-1 and ICAM-1 and the oposure time to pesticides in years ($r = 0.4$ for both; $\rho < 0.001$), whereas LFA-1 and ICAM-1 and operate time operaticides ($r = 0.4$ and -0.3 , respectively;
24. Bernieri et al. ²³⁹	202 I/Brazil	50 soybean farmworkers/63 controls from 2 different areas	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history) Blood BChE ⁶	Not applicable	Liver enzymes: AST, ALT, GGT Other biochemical parameters: uvea, creatinine Antioxidant capacity (FRAP) (measured during the high and low pesticide exposure perios)	Furnavorkers had higher urea and creatinine levels, but lower ALT levels, than controls ($\rho < 0.05$). Farmoworkers had higher AST, user, and creati- nine levels, as well as higher blood plasma anti- oxidant potential values ($\rho < 0.05$), during the high pesticled exposure period compared with the low exposure period.
Hematological parameters and lipid profiles 25. Remor et al. ⁹⁴ 2009/Brazil ^e	and lipid profiles 2009/Brazil"	37 farmworkers/20 controls	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history) Blood BChE, ALA-D ^b	Not applicable	Hematological parameters: hematocrit, Hb, WBC, RBC, plateles Lipid profile; total cholesterol, 101 inchosendes	No differences in hematological parameters or lipid profiles between groups.
26. Maluf et al. ²⁴⁵	2009/Brazil, Argentina, Mexico	173 adults with aplastic ane- mia/692 healthy controls	Case-control	Multiple pesticide classes	Questionnaire (occupational or domestic exposure history to pesticides and other chemical products)	Not applicable	Aplastic amental characteristics and agranulocytosis by medical diagnosis	Exposure to pesticides was associated with increased odds of AA (OR=22; 95% CI: 1.1, 4.7). High frequency of exposure (>30 lmasy) to OP pesticides (OR=16; 95% CI: 0.9, 10.1) and pyrethroids (OR=1.8; 95% CI: 1.0, 3.1) was also associated with increased odds of AA.

Table 9. (Continued.)

Table 9. (Continued.)								
Study	Year of publication/country	Population and sample size	Study design	Pesticides assessed	Exposure assessment method	Pesticide or metabolite concentrations	Health effect and assessment method/instrument	Results
27. Payán-Rentería et al.ººº	2012/Mexico"	25 farmworkers/21 controls	Cross-sectional	OC.s, OPs, TRZ	Medical examination Questionative (eccupational exposure history) Blood AChE ⁹	Not applicable	Hematological parameters: hematocit, Hb, WBC, RBC, platelers Lipid profile: LDL, HDL, total oclostency intigy/serides orloetsency intigy/serides Other biochemical parameters albumin and globulin relation, total bilirabin, direct bilinabin, and indirect bilinabin, and indirect bilinabin, which total bilirabin, and indirect bilinabin. Neith Actions and convolutions Kirth Actions and convolutions.	Higher hemoglobin (p = 0.02) and hematocrit (p = 0.04) levels than incontrols. No differences in other hematological or biochemistry outcomes between farmworkers and courtols. Farmworkers reported more fertility problems, birth defects, and cancer in themselves or their family members than countrols.
28. Adad et al. 98	2015/Brazil	80 male farmworkers from state association/20 male farmworkers from a private company/100 matched controls	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history) Blood BChE ^b	Not applicable	Henatological parameters: hematological parameters: hematological parameters: hepateles plateles Lipid profile: LDL, HDL, triglycende	No differences in hematological parameters or lipid profiles between groups.
29. Alves et al. ⁷³	2016/Brazil ^a	77 tobacco farmworkers/60 controls	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history)	Not applicable	Hematological parameters: hematocrit, Hb, WBC, RBC, platelets	Lower mean levels of hand neutrophils (ρ < 0.05) and monocytes (ρ < 0.05) in exposed group compared with control group. All other hematological param- eters were similar between groups.
30. Quintana et al. ⁵⁴	$2017/\mathrm{Argentina}^{a,d,e}$	151 mother—newborn pairs living in a rural area/38 mother—newborn pairs from an urban area	Cross-sectional	OPs	Questionnaire (residential and seasonal exposure history) Cord blood AChE, BChE ^b	Not applicable	Hematological parameters: hematocrit, Hb, WBC, RBC, platelets, osmotic fragility	No differences in cord blood lematological parameters between groups.
31. Siller-López et al. ²⁵¹	2017/Colombia	205 coffee harvesters	Cross-sectional	OP ₈	Questionnaire (occupational exposure history) Blood BChE	Not applicable	Lipid profile: cholesterol and tri- glycrifed alpheroscleroic cardiovascular disease (ASCVD) Hypertension	Association between BChE activity and hyperbolescrebenin (load hobesbenol 12-200 mg/dL) (**e-0.53; *e-0.01). Mull associations of BChE activity with ASCVD and hypertension. Higher providence of hyperboles on we associated with Quillee carriers of POVII/ap polymorphism in both dominant model (QR+RR) (QR = 1.9;95% Ct. 11.3;4.). (QR = 2.9;95% Ct. 1,1.74).
32. Cortés-Iza et al. ²⁴⁸	2017/Colombia	92 famworkers	Cross-sectional	OPs, CBs	Questionnaire (occupational exposure history) Blood AChE, BChE ^o	Not applicable	Hematological parameters: hematocrit, Hb, WBC, RBC, platelets, MCY, MCH, MCHC, RDW	Leucocytes and monocytes below the reference angie in famiworker exposed to pesicides for 6-b h and famiworkers who handled pesicides for 1-10 y. MCH above the reference range and RDW below the reference range in farmworkers exposed to pesicides for > 10 y.
33. Piccoli et al. ²⁴⁹	2019/Brazil	275 farmworkers and their families	Cross-sectional	OC _S	Questionnaire (occupational exposure history) Seum HCH, HGB, chlordane, rome-noundhor, hepatholisto, DDT, DDE, endosulfan, aldrin, endrin, dieddrin, neutoxychlor, mirex, and pentachloroanisole	Median (P25-P75) (ng/g lipid): a-HCH < LOD (< LOD-10.1); β-HCH < LOD(< LCLOD-24.5); HCHH = 3.7 (-LOD-12.4); HCB < LOD(< LOD-11.5); leptachlor < LOD; leptachlor epoxide A< LOD(< LOD-11.5); leptachlor epoxide B < LOD; a-p-DDT < LOD, p-p-DDT < LOD; non-nonachlor < LOD; a-p-DDT < LOD, p-p-DDT < LOD; a-p-DDT < LOD; a-p-DDT < LOD; a-p-DD < LOD > (-LOD-33.1); p-p-DD < LOD; corporation < LOD; a-p-DD < LOD; a-p-DD < LOD; a-p-DDD < LOD; a-p-DD < LOD; and in < LOD; a-p-DD < LOD; a-p-DD < LOD; and in < LOD; a-p-DD < LOD; a-p-DD < LOD; and < LOD; a-p-DD < LOD; a-p-DD < LOD; a-p-DD < LOD; and < LOD; a-p-DD < LO	Hematological parameters: hematori, Hb, WBC, RBC, matocrit, Hb, WBC, RBC, MCH, MCHC, RDW MCHC, RDW	Detectable concentrations of γ -HCH (β = 0.9, 95% CI: 0.80, 0.9), $\mu \gamma$ -DDT (β = 0.9, 95% CI: 0.80, 0.9), $\mu \gamma$ -DDT (β = 0.9, 95% CI: 0.81, 0.9, $\mu \gamma$ -DDT (β = 0.9, 95% CI: 0.81, 0.9, $\mu \gamma$ -DDT (β = 0.9, 95% CI: 0.81, 0.9, $\mu \gamma$ -DDE (β = 0.9, 95% CI: 0.81, 0.9) were associated with decreased monocysts. Detectable concentrations of γ -HCH (β = 0.8, 95% CI: 0.0, 0.9), travers atomather (β = 0.5, 95% CI: 0.3, 0.9), $\mu \gamma$ -DDD (β = 0.1, 95% CI: 0.4, 0.9), early and the γ -DD (β = 0.1, 95% CI: 0.4, 0.9), and methy-explain (β = 0.7, 95% CI: 0.6, 0.9), early and β = 0.7, 95% CI: 0.6, 0.9), and methy-explain (β = 0.7, 95% CI: 0.6, 0.9), and methy-explain (β = 0.7, 95% CI: 0.6, 0.9), and methy-explain (β = 0.7, 95% CI: 0.6, 0.9), and methy-explain (β = 0.7, 95% CI: 0.6, 0.9), and methy-explain (β = 0.7, 95% CI: 0.6, 0.9), and methy-explain (β = 0.7, 95% CI: 0.6, 0.9), and methy-explain (β = 0.9, 95% CII: 0.0, 0.9), and methy-explain (β = 0.9, 95% CII: 0.0, 0.9), and methy-explain (β = 0.9, 95% CII: 0.0, 0.9), and methy-explain (β = 0.9, 95% CII: 0.0, 0.9), β = 0.9, 0.9, 0.9), β = 0.9, 95% CII: 0.0, 0.9), β = 0.9, 95% CII: 0.0, 0.9), β = 0.9, 0.9, 0.9), β = 0.9, 95% CII: 0.0, 0.9), β = 0.9, 0.9, 0.9), β = 0.9, 0.9), β = 0.9, 0.9), β = 0.9, 0.9, 0.9), β = 0.9, 0.9, 0.9), β = 0.9, 0.9
34. Dabió et al. ²⁴⁷	2019/Brazil	142 farmworkers	Cross-sectional	Multiple pesticides	Questionnaire (occupational exposure history)	Not applicable	Hematological parameters: RBC, hemoglobin, hematocrit, MCV, MCH, MCHC	Lower leakeogyes and planeles ($\rho < 0.01$ for each), but higher percentage band neurophiles ($\rho < 0.01$) and percentage neurophiles ($\rho < 0.0001$) during the pestided application period compared with the hursest period (period without pesticide exposure).
35. Molina-Pintor et al. ²⁸⁶	2020/Mexico	60 sprayers with motor pump (high exposure)/126 solid pesticides sprayers (moderate exposure)/22 controls	Cross-sectional	O.P.	Questionmire (occupational exposure history) Bood BChE Urinary DAFs ²	Mean (range) total DAPs (ng/ml.): Control group: 33.5 (24.6-41.3); moderate-exposure group: 58.5 (24.5-353.3); high-exposure group: 122.5 (25.6-488.4)	Lipid profile: cholestero), LDI., VLDL, rigiperides, atherogenic index Other blochemical parameters: glucose, abbumin, creatinine	Lower LDL, cholesterol, and albumin levels among lightly exposed group compared with moderately exposed and control groups (p < 0.05). Positive correlations of BChE activity with triglycerides, VLDL, and onlightis among correlatives of the individuals. Positive correlations of BChE activity with glucose, cholesterol, alterogenic index, uti- glycerides, LDL, VLDL, and total lipids among overweight individuals.

Study	Year of publication/country	Population and sample size	Study design	Pesticides assessed	Exposure assessment method	Pesticide or metabolite concentrations	Health effect and assessment method/instrument	Results
36. Jacobsen-Pereira et al. 246	2020/Brazil	43 farmworken/30 unexposed controls	Cross-sectional	Multiple pesticides	Questionnaire (occupational exposure history)	Not applicable	Cellular immune profile; total letkeyytes, neutrophils, monocytes, basophils, eosino-phils, lymphocytes, cytokines	Higher classical monocytes ($\rho < 0.001$), dendritic cells ($\rho = 0.001$), total $T < cells$ ($\rho = 0.02$), central memory CD8 $T < cells$ ($\rho = 0.02$), effector memory CD8 $T < cells$ ($\rho = 0.01$), and proinfammatory LL-6 ($\rho = 0.040$) in farmworkers than in controls. Lower total $B < cells$ ($\rho < 0.001$) and plasmalians ($\rho < cells$ ($\rho < 0.001$) and plasmalians ($\rho < 0.001$) in farmworkers than in controls.
Acoustic damage 37. Guida et al. 252	2010/Brazil	48 male workers exposed to malathion and noise/36 male workers exposed to noise	Cross-sectional	OPs (malathion)	Questionnaire (occupational exposure history)	Not applicable	Hearing loss: DPOAE	Worse performance in workers exposed to noise and malatinon at the frequencies of 3 kHz on the left ear $(p=0.01)$, and 4 kHz on both ears (left ear $p=0.01$); give ear $p=0.02$) than in workers expressed only to noise.
38. Bazilio et al ²⁵³	2012/Brazil	33 farmworkers	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history)	Not applicable	Meatoscopy, audiometry, DPT, GIN (500 Hz and 1 and 2 kHz)	Higher periodic exposure indices were associated with increased risk of worse performance in DPT for right ear (OR = 2.0; 95% CI: 12.3, 13.7) and the tear (OR = 1.0; 95% CI: 12.3, 13.4) and left ear (OR = 1.0; 95% CI: 12.3, 34) and left ear (OR = 1.0; 95% CI: 13.3, 34).
39. Alcarás et al 284	2013/Brazil	25 farmworkers exposed to matathion and noise with normal hearing/30 controls	Cross-sectional	OPs (mulathion)	Questionnaire (occupational exposure history)	Not applicable	Hearing loss: TEOAE, DPOAE	For right can farmworkers had lower level of response for TEOAE at 1 and 1.5 kHz. ($p < 0.001$), and for DPOAE at 6.000 $(p = 0.004)$ and 7.00 Hz $(p < 0.01)$ but higher at 750 $(p < 0.01)$ and 98.4 Hz $(p < 0.05)$. For left ear, farmworkers had lower keed for sepanse for TEOAE at 1 $(p < 0.01)$. 1 kHz, and total $(p < 0.01)$, and for DPOAE at 3.984, 6.000, and $(p < 0.01)$, and for DPOAE at 3.984, 6.000, and $(p < 0.01)$ and
40. de Sena et al, ²⁵⁵	2013/Brazil	235 farmworkers/116 controls	Cross-sectional	Multiple pesticide classes	Questionnaire (current or past occupational exposure history)	Not applicable	Hearing loss: airborne tonal thresholds Quality of life: SF-36 Self-reported health status	Farmworkers had lower scores for physical outcomes and general health status and poorer mental health and emotional regulation than controls (p < 0.01 for each).
41. Garcia et al. ²⁵⁶	2017/Brazil	205 students living in an agricultural area	Cross-sectional	Multiple pesticide classes	Questionnaire (residential and occupational exposure history)	Not applicable	Hearing Joss: TEOAE and DPOAE	Students in the highest quantile of pesticide expo- sure had increased odds of failing TFOAAE test (OR = 37,1956 CI: 14, 9.9) and showing alterations in cochlear function assessed by DFOAE (OR = 25,6.956 CI: 17, 72), computed with students in the lowest quartile.
42. Tomiazzi et al. ²⁵⁷	2019/Brazil	30 smokers/30 subjects exposed to pesticides for at least 1 y/36 farmers exposed to pesticides who were smokers/37 controls not exposed to pesticides and who never smoked and who never smoked	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history)	Not applicable	Meatoscopy, pure-tone audiome- try (250-8,000 kHz), ocail au- diometry (SRT and SRPI), immitance testing	Increased incidence of hearing threshold loss at all pilk frequency and of downward sloping audionetric curve configuration and alteration of suspecial reflex in groups exposed to pesticides compared with centrols ($\rho < 0.05$).
43. Mattiazzi et al. ²⁵⁹	2019/Brazil	71 rural workers exposed to pesticides	Cross-sectional	OPs, CBs	Questionnaire (occupational exposure history) Blood AChE (measured in a subset of 50 workers)	Not applicable	Hearing loss: air conduction auditory thresholds	Null association between AChE activity and hearing loss.
44, de Souza Alearís et al. 28	2021/Brazil	38 male endemic disease control agents/18 male workers without occupational pesticide exposure	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history)	Not applicable	Central auditory function: inspection of external acoustic ments, pure-tone audiometry, acoustic immittance, BAEP, dichotic digits test, TEOAE	Increase in waves III and V absolute latencies, and III and I V interpask latencies in exposed workers compared with controls with auditory thresholds up to 25 dB HL at the frequencies from 2,000 to 4,000 Hz. Mean dichoid digits test performance was worse in exposed workers than in controls. No differences between groups in the TEOAE test.
Other outcomes 45. de Souza et al. ²⁷⁶	2011/Brazil	298 rural agriculture or livestock workers from three rural counties	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational, para-occupational, and residential exposure history)	Not applicable	Chronic diseases: self-reported symptoms and illness	Pesticide exposure was associated with the report of several diseases, with neurological (OR = 2.5; 95% IC, 1.8, 5.4) and oral diseases (OR = 1.5; 95% IC, 1.4, 1.6) beine the most prevalent.
46. Suarez-Lopez et al. 260	2013/Ecuador	138 children (4–9 years of ago) living with flower plantation workers/133 living with no agricultural workers	Cross-sectional	OPs, CBs	Questionnaire (residential and parental exposure history) Blood AChE	Not applicable	Resting heart rate, blood pressure (SBP and DBP)	Decrease in AChE activity was associated with a decrease in SBP ($\beta = 2.9$; 95% CI: -5.2 , -0.5) and in DBP ($\beta = -2.9$; 95% CI: -5.0 , -0.8). Children iving with flower workers had lower SBP ($\beta = -1.7$; 95% CI: -3.5 , 0.1). Null associations were found between exposures and heart rate

(Po
Dominion
9
0 9
Toblo

	(
Study	Year of publication/country	Population and sample size	Study design	Pesticides assessed	Exposure assessment method	Pesticide or metabolite concentrations	Health effect and assessment method/instrument	Results
47. Saunders et al. ³¹⁸	2014/Guadeloupe	779 pregnant women	Prospective cohort	0Cs	Matemal plasma chlordecone at delivery	Data not shown	Gestational diabetes, gestational hypertension, preeclampsia	Higher chlordecone concentrations were associated with decreased risk of gestalmonal hypertension (OR per 10-fold increase in concentrations = 0.4; 95% CL 0.2, 0.6). Null tassociations of the chordecone geometry with risk of preeclampsia or restational diabetes.
48. Butinof et al. 267	2015/Argentina	880 farmworkers handling pesticides	Cross-sectional	Multiple pesticide dasses	Questionnaire (occupational exposure history)	Not applicable	Health stants by perception of symptoms as firtuition (f.e., skin and eye irritation, nausea, vomiting, respiratory somiting, respiratory disorders), failgue/firedness, headder, nevousness or depression, medical consultation, and hospitalizations	Farmworkers who had worked for >10 y or had more depigled. To 10 pesticides had increased odds of irritation (OR = 17, 95% CI: 1.1., 26; OR = 16, 95% CI: 1.04, 2.4, respectively). Adquate use of PPB was associated with decreased odds of irritation (OR = 0.6, 95% CI: 0.4, 0.9). Use of endostilian was associated with remeased odds of irritation (OR = 0.6, 95% CI: 0.4, 0.9). Use of endostilian was associated with critical of other order of the order or
49. Cezar-Vaz et al. 268	2016/Brazil	331 workers from two rural municipalities	Cross-sectional	Multiple pesticide classes	Questionnaire (residential and occupational exposure history)	Not applicable	Health status related to work: mental and nervous system, respiratory, gastric, circula- tory, and dernatological outcomes	Runi workers who used pesticides had a 90% higher prevalence of dermatologic disorders than howe who did not (PR = 1.9; 59% Cf. 1.4, 2.6). No differences in prevalence of mental and nervous system, respiratory, gastric, and circulatory diseases between trural workers who used and did not use periorides.
50. Muñoz-Quezada et al. ²⁷⁷	2017/Chile	114 farmworkers/93 controls Cross-sectional	Cross-sectional	oPs	Questionnaire (occupational and residential exposure history)	Not applicable	Health status; self-reported skin allergies, amerini, asthma, can- cer, liver damage, depression, diabetes mellitus, epilepsy, hypertension, kidney failtne, leart problems, anxiety, symptoms of recent OP pesticide poisoning, and hospialization for pesticide poisoning.	An increasing number of years of OP pesticide use was associated with increased odds of symptoms of recent OP pesticide poisoning (OR = 1.0, 95% CI: 1.0, 1.1, but not with other health problems.
51. Cupal-Uicab et al. ²⁶⁵	2017Mexico	448 urban newbom boys/299 rural newbom boys	Cohort	oc.	Questionnaire (residential exposure history) Maternal serum DDE and DDT at birth	Median (IQR) (µg/g); Urban residents: DDT = 0.2 (0.3); DDE = 2.2 (2.9) Rural residents: DDT = 0.7 (1.5); DDE = 4.3 (7.0)	Gastroinestinal infection: diarrhea	Among boys living in the urbun area, those with the highest DDEC to 9g gs serum lipid) had higher incidence rate of diarrhea than those in the lowest enegoty (5.5 lag; g serum lipid) (IRR = 1.4, 95% CL: 1.1, 1.8). Among boys from a rund area, higher DDE and DDT were not execcined with a higher incidence rate of diarrhea.
52. Silvério et al. ⁵⁷	2017/Brazil"	94 farmworkers exposed to pesticides including OPs/ 94 farmworkers exposed to pesticides not including OPs/50 controls	Cross-sectional	OPs	Questionnaire (occupational exposure history) Uninary DAPs ² Blood AchE, BchE ⁶	Mean ± SD (µg/L): Occapturionally express to complex mixtures with OPs: DETP = 0.3 ± 0.3: DEDTP = 0.1 ± 0.04; occupationally expressed to complex mixtures without OPs: DETP = 0.1 ± 0.005; DEDTP = 0.1 ± 0.02; control group: DETP <-LOQ; DEDTP = 0.10	Clinical changes in systems: cardiovascular, CNS, diges- tive, respiratory, auditory, uni- nary, and skin and mucous membranes.	High prevalence of changes in CNS, respiratory, and auditory systems in both exposed groups compared with controls ($\rho < 0.05$).
53. Suarez-Lopez et al. ²⁶¹	2018/Ecuador	310 children (4–9 years of age) living near flower plantations	Cross-sectional	Multiple pesticide classes	Questionnaire (parental and residential exposure histories) Terriles of residential distance to the nearest plantation Blood AchE ⁰	Not applicable	Blood pressure (SBP and DBP)	For every 1,000 m greater proximity to a plantation, SPB increased by 3 millig (95/KC1: 65, 58), and SPB 2-secre increased by 0.3 SD (95/KC1: 0.1, 0.5), For every 1,000 m² of flower planta- tion areas, SPB increased by 0.4 millig (95/K C1: 0.03, 0.7) mad SPB 2-secore increased by 0.03 (95/KC1: 0.00, 0.06).
54, Mejia-Sanchez et al. ²⁶⁵	2018/Mexico	169 floricalturists/96 controls	Cross-sectional	Multiple pesticide classes	Questiomaire (occupational exposure history)	Not applicable	Blood GST and GSTT1 activities	Higher total GST and GSTT1 enzymatic activity in exposed Incimitaris than controls (p < 0.01). Significant difference in total GST, but not GSTT1 activity, between those who applied pesticides in the part I–10 and those who applied pesticides in the mart II–20 of 6 = 0.05.
55. Machado et al. 266	2018/Brazil	1,421 subjects living in rural Cross-sectional areas	Cross-sectional	Multiple pesticide classes	Questionnaire (residential exposure history)	Not applicable	Sleep problems (MSQ score)	Having had a pesticide intoxication, but not living in a rural area, was associated with more sleep moblems $(R=2.6\cdot95\%,C1:11.4.1)$

Study	Year of publication/country	Population and sample size	Study design	Pesticides assessed	Exposure assessment method	Pesticide or metabolite concentrations	Health effect and assessment method/instrument	Results
56. Barrón Cuenca et al. ²²³	2019/Bolivia	297 men and women living in three agricultural communities	Cross-sectional	Fungicides, OPs, pyrethroids, herbicides	Questionnaire (occupational history) Urinary metabolites of tebuconazole, chlorpyrifos, pyrethoridas, 2,4-D, MCPA, thiabendacole, pyrimethanil [®]	Mean (range) (rg/mL). 3-BB.04 = 3.2 (-LDD-48); TCP = 17.6 (0.8-4.39); 3-BB.04 = 40.3 (0.2-40.3); DCCA = 50 (0.1-1.56); 2-4-D= 15.8 (-LOD-1.705); MCP = 0.1 (-LOD-0.4); CFCA = 0.4 (-LOD-1.1.4); 473PBA = 0.2 (-LOD-3.3); 5-0H-TBZ = 0.1 (-LOD-4.1); OH-PYR = 2.4 (-LOD-3.95)	Self-reported symptoms of pesticide potential departicular pesticide potential defizieres, faitget), respiratory outcomes (dyspnea, cough), muscular outcomes (cramps, fasciculation), digestive outcomes (abdominal pain, mausea, voniting, red skin, ichly skin, eyes burning, red eyes), reproductive outcomes (miscariages, stillbriths, concential mailformations), cential mailformations, cential mailformations.	No differences in self-reported miscarriages, congraint amountaines, and stillbriths between female farmers and nonfarmers. Proport on differences in other symptoms between farmers and nonfarmers.
57. Suarez-Lopez et al ²⁶²	2019/Ecuador	310 children (4-9 years of age) living near flower plantations	Cross-sectional	OPs, CBs	Questiomaire (parental and residential exposure histories) Blood AchE*	Not applicable	Blood pressure (SBP and DBP), resting heart rate	Inverse relationship of time after the spray season with percentiles of SBP (pper 10.9 d after the harvest = -4.3; 95% CL: -6.9, -1.7) and DBP (β = 7.5; 95% CL: -6.9, -1.4), Inversery 10.9 d that a child was examined sooner after the harvest, the OR of elevated BPhypertension doubled (OR = 2.0; 95% CL: 1.3, 3.1).
58. Butinof et al. ⁶²	2019/Argentina"	47 pesticide applicators/52 unexposed controls	Cross-sectional	OPs, CBs	Questionnaire (occupational exposure history) Blood AchE ^b	Not applicable	Health status by perception of general, neurological, car- diorespiratory, dermatological, gastric, coular, and urinary symptoms	Higher presence of general, cardiorespiratory, and dermatological symptoms among pesticide applicators compared with controls $(p < 0.01)$ for each).
59. Buralli et al. ¹³⁸	2020/Brazil ^e	42 pesticide applicators/36 farmworkers who did not apply pesticides	Cross-sectional	OPs	Questiomaire (occupational exposure listory) Blood AChE, BChE ^p	Not applicable	Self-reported symptoms of pesticide poisoning	Furnworkers who did not spray pesticides had a higher prevalence of headdade (PR = 21; 95% CI: 11.4.0), dysprea (PR = 3.8; 95% CI: 15, 9.5), wheezing (PR = 16.7; 95% CI: 24, 1088), cough (PR = 2.6; 95% CI: 11.1, 6.5), and poor digestion (PR = 7.85; 95% CI: 11.7, 5.2.89) command with nesticide anticanse.
60. Okuyama et al. ²⁷⁴	2020/Brazil	3,826 patients with pesticide poisoning	Case-control	Multiple pesticide classes	Pesticide poisoning reported to surveillance system	Not applicable	Death by pesticide poisoning	Furnworkers had increased odds of death from pesticide positioning (QR & 2.2, 95% CT. 12.4.2) compared with those not working in the agricultural sector. Those poisoned by pesticides classified as then 'ge-stream' toxicity had increased odds of death compared with those poisoned by pesticides categorized as having 'hythmoderated with those poisoned by pesticides categorized as having 'hythmoderateflow'' toxicity (QR = 2.8; 95% CT; 18, 4.2).
61. Schneider Medeiros et al. ²⁷³	2020/Brazil	150 patients with idiopathic PD	Prospective cohort	Multiple pesticide classes	Questionnaire (occupational exposure history)	Not applicable	Mortality risk from PD	Exposed patients with PD had increased risk of death compared with unexposed patients with PD (RR = 2.3; 95% CT: 1.1.4.7). Occupational pesticide exposure was associated with elevated mortality are (RR = 2.2. 95% CT: 1.1.4.6). Evidence of dose-dependent relationship between occupational pesticide exposure and mortality are appriations with 2.10 y of occupational pesticide exposure had significantly elevated mortality rate compared with patients with <10 y of exposure (HR = 2.8; 95% CT: 1.2.6.7).
62, de Carvalho et al 269	2020/Brazil	2,649 tobacco farmworkers	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history)	Not applicable	Thoracic spine pain (NQMS)	Lifetime history of pesticide poisoning was associated with increased prevelence of theracic spine pain in the previous year among females (PR = 1.8, 95% Cl: 1.3, 2.5). Effect of pestiding to poisoning on prevalence of thoracic spine pain was not general among a poisoning on general among a poisoning on general among a poisoning on general among a page 100.
63. Fassa et al, ²⁷⁰	2020/Brazil	2,649 tobacco farmworkers	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history)	Not applicable	Neck pain (NQMS)	Pesticide poisoning in the past year was associated with increased prevalence of neck pain among males (PR = 3.9, 95% CI: 1.1, 14.1), but not females.
64. Campos et al. ???	2020/Brazil	354 small tobacco farmers	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history)	Not applicable	Green tobacco sickness (defined as untrany colinine levels >50 ng/mL, contact with tobaccoleaves in up to 48h before sample collection and report of headache, dizziness, nausea, voniting, weakness, or bellyache)	Farmers with current exposure to pesticides had increased odds of green tobacco sickness compared with those without current exposure to pesticides (OR = 3.6; 95% CI: 1.4, 9.3).

$\overline{}$
z
õ
~
1
2
1
2
$\overline{}$
7.3
\mathcal{O}
$\stackrel{\bullet}{\sim}$
\mathcal{L}
6
e 9. (C
le 9. (C
ble 9. (C
) .6 alqı
able 9. (C
) .6 alqı
able 9. (C

	,							
Study	Year of publication/country	Population and sample size	Study design	Pesticides assessed	Exposure assessment method	Pesticide or metabolite concentrations	Health effect and assessment method/instrument	Results
65. Luce et al, ²²⁵	2020/Guadeloupe	11,112 farm owners and farmworkers who worked on beaman plantations between 1973 and 1993	Retrospective cohort	Multiple pesticide classes	Agricultural census	Not applicable	All-canser mortality, all-cancer mortality, cancer-specific mortality	Lower all-cause mortality in male (SMR = 0.9, 95% CT: 09.1.0), thus not female (SMR = 1.0, 95% CT: 09.1.0), fam owners and farmworkers compared with the general population All-camcer mortality dat not differ from that of the general population. Excess of deaths from stomestic MRR = 2.8, 95% CT: 13.4.5) and pancrate (SMR = 2.8, 95% CT: 13.4.5) and pancratic (SMR = 2.8, 95% CT: 11.4.4) cancer in female, but not male (SMR = 1.0, 95% CT: 7.7 respectively farm owners.
66. Lovison Sasso et al. ¹⁰² 2021/Brazil ^a	2021/Brazil"	50 male exposed farmworkers/50 unexposed male controls	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational history) Blood BChE ⁶	Not applicable	Inflammatory response (IL-6, TNF-2), chemoattractant (IL- 8), and anti-inflammatory (IL- 10) interleukins	The exposed group had higher IL-8 and IL-10 con- centrations than the control group.
23.0	- L			0.000			10) IIIGI IGUWIII	
67. Hutter et al. 319	2021/Ecuador	34 male farmworkers engaged in conventional	Cross-sectional	Multiple pesticide classes	Questionnaire (occupational exposure history)	Not applicable	Self-reported conditions: headache, vision problems,	Compared with controls working in ecological farms, participants exposed to pesticides in
		farming/37 male					dizziness, nausea, vomiting,	conventional farms had increased odds of
		unexposed controls					excess salivation, strong fa-	dizziness (OR=4.8; 95% CI: 1.6, 14.9), nausea/
		engaged in ecological					tigue, exhaustion, stomach	vomiting (OR = 7.5; 95% CI: 1.8, 31.8), strong
		farming from 5 different					pain, diarrhea, sleeplessness,	fatigue (OR = 5.0; 95% CI: 1.7, 14.9), diarrhea
		communities					burning eyes, skin irritation,	(OR = 6.4; 95% CI: 1.1, 39.0), sleeplessness
							runny nose, breathing	
							difficulties, irregular heartbeat,	
							watering eyes, skin rash,	(OR = 3.6; 95% CI: 1.1, 11.7), and irregular
							cough, twitches/trembling	heartbeat (OR = 5.8; 95% CI: 1.1, 30.7).
68. Fillippi et al. 103	2021/Argentina"	47 pesticide applicators/53	Cross-sectional	Multiple pesticide	Questionnaire (occupational	Not applicable	Perceived health symptoms	Higher prevalence of perceived general $(p = 0.02)$,
		unexposed controls		classes	exposure history)		(general, dermatological, neu-	dermatological $(p < 0.01)$, neurological
					Blood HCB, HCH,		rological, ocular, car-	(p=0.04), and cardiorespiratory $(p=0.03)$
					endosulfan, DDE, DDT, AChE, BChE ^b		diorespiratory, urinary)	health symptoms among pesticide applicators compared with controls.
69. de Araújo et al. ²⁷¹	2021/Brazil	122 farmworkers and their	Cross-sectional	Multiple pesticide	Questionnaire (occupational	Not applicable	Height, weight, waist	Long-term use of insecticides in general (>20 y)
		family members		classes	exposure history)		circumference	(PR = 1.5; 95% CI: 1.0, 2.1), particularly OP
							Overweight (BMI $\geq 25 \text{ kg/m}^2$)	pesticides (PR = 1.5; 95% CI: 1.0, 2.1), was
							Abdominal obesity (waist	associated with a higher prevalence of
							circumference≥88 cmin	overweight but not of abdominal obesity.
							women and ≥102 cm in men)	
70. Ayhan et al. 189	2021/Guadeloupe ^{c.g}	285 mother-child (7 years of	Prospective cohort	OCs	Cord and child blood	Median (P25-P75) (µg/L):	Serum IGF-1, adiponectin, leptin	Null associations of cord blood chlordecone with
		age) pairs			chlordecone, cord blood	Cord blood chlordecone: boys = $0.25 (0.08-0.41)$,		IGF-1, adiponectin, and leptin. No report on
					DDE	girls = 0.21 (0.07–0.37); child chlordecone:		associations of child chlordecone and cord blood
						boys = 0.06 (<lod-0.11), girls="<math">0.05 (<lod-0.11); blood<="" cord="" td=""><td>cord blood</td><td>DDE with these hormones.</td></lod-0.11);></lod-0.11),>	cord blood	DDE with these hormones.
						DDE: boys = $0.22 (0.09-0.64)$, girls = $0.31 (0.10-0.74)$		

Duration Pattern test; eGFR, estimated glonerular filtration rate; ETI, ethylenethiourea; FEP, 555, 256, forced expiratory flow between 528 and 758; FEV, forced expiratory volume in the first second; FRAP; ferric-reducing ability of plasma; FVC; forced vital capacity; GGT, gamma glutanty transpeptidase; (IXT, gutantiones, Frankferases; GSTTI, gutantiones, Frankferases; GSTI, Note: 2,4-D, 2,4-dichlorophenoxy acetic acid; 3-PBA, 3-phenoxybenzoic acid; 4F3BPA, 4-fluoro-3-phenoxybenzoic acid; 5-OH-TBZ, 5-hydroxythiabendazole; AChE, acetylcholinesterase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BP, blood pressure; CB, carbamate; CFCA, chloro-3,3,3-frifluoro-1-propen-1-yll-2,2-dimethylcyclopropanecarboxylic acid; CI, confidence interval; CKD, chronic kidney disease; CNS, central nervous system; DAP, dialkyl phosphate; DBP, distrolic blood pressure; DCCA, 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylic acid; DDE, dichlorodiphenyldichloroethane; DETP, diethyldriophosphate; DPOAE, Distortion Product Otoacoustic Emissions; DPT,

Investigators did not use exposure biomarker concentrations in multivariate analyses.

Also included in Table 8 (birth outcomes and child growth). Also included in Table 3 (neurobehavioral outcomes). Also included in Table 6 (thyroid function).

microalbuminuria at the beginning of the pesticide application period compared with the leaf harvest period, suggesting that children environmentally exposed to xenobiotics in rural areas may suffer from early kidney dysfunction. 52

Respiratory and allergic outcomes. Seven publications from three cross-sectional studies, two prospective cohort studies, and one case-control study reported on the associations of pesticide exposure with respiratory and allergic outcomes (Table 9). Publications from all three cross-sectional studies focused on occupational exposure to pesticides, 232-234 but only one examined exposure-outcome associations using direct methods of pesticide exposure assessment.²³⁴ One of the publications reported increased odds of wheeze and shortness of breath among Costa Rican female farmworkers exposed to chlorpyrifos and terbufos compared with the control group (organic farmworkers/unexposed women) but found no differences in lung function between groups. 232 In contrast, a cross-sectional study of farmworkers and their relatives living in rural areas in Brazil observed associations between years of working with pesticides and pesticide handling frequency with decreased pulmonary function.²³³ A publication from a study of Colombian farmworkers reported that those exposed to mixtures of pesticides containing paraquat—assessed via urinary biomarkers—and profenofos or glyphosate—assessed via questionnaire—had an increased prevalence of allergic rhinitis.²³⁴ This publication also reported that farmworkers chronically exposed to paraquat had an increased prevalence of self-reported

Four studies examined the potential effects of pesticide exposure on respiratory and allergic outcomes among mothers and their children. For instance, a publication from a prospective cohort study in Costa Rica reported that self-reported current pesticide use near the home (yes/no) and higher urinary concentrations of 5-hydroxytiabendazole (5-OH-TBZ)—a metabolite of the fungicide thiabendazole—were associated with increased odds of asthma among mothers, whereas previous work in agriculture was associated with decreased odds of rhinitis but increased odds of eczema.²³⁵ A publication from this same cohort study in Costa Rica reported an association between high urinary ETU concentrations during the first half of pregnancy and increased odds of lower respiratory tract infections (LRTIs) in the first year of life.²³⁶ This publication also reported that high ETU concentrations during the second half of pregnancy were associated with decreased odds of wheezing in the first year of life. Notably, a publication from a prospective cohort study in Mexico reported null associations of prenatal DDT or DDE exposure with LRTIs months among boys assessed up to 30 months of age.²³⁷ At last, a publication from a case–control study of schoolage children in Brazil reported that factors such as living close to agricultural activity, and aerial pesticide spraying near the home were associated with increased odds of uncontrolled asthma at 6-7 and 13–14 years of age. 235

Liver injury. Eight publications reported on the association of pesticide exposure with markers of liver injury (Table 9). Six of the eight publications were from studies that ascertained pesticide exposure only via questionnaire, ^{81,88,206,238–240} whereas two studies measured blood ChE²⁴¹ or blood β-glucuronidase activity. ²⁴² A publication from a cross-sectional study in Mexico reported that a higher activity of β-glucuronidase—a sensitive biomarker of OP pesticide exposure^{243,244}—was associated with increased aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma-glutamyl transpeptidase (GGT) levels. ²⁴² Notably, a publication from a cross-sectional study conducted in Brazil reported null associations of AChE and BChE activities with markers of liver injury, but it also reported that farmworkers had lower AST and ALT levels than controls. ²⁴¹ In contrast, a

publication from a second study in Brazil reported higher AST levels in farmworkers than in controls during the high pesticide exposure period, but it also reported lower ALT levels in farmworkers during both the high and low pesticide exposure periods.²³⁹ A publication from a prospective cohort study of rural pregnant women environmentally exposed to OP pesticides in Argentina reported higher AST, but not ALT, levels during the spraying period compared with the prespraying period.²⁰⁶ Likewise, a publication from a cross-sectional study conducted in Brazil reported higher AST and ALT levels in Brazilian female, but not male, farmworkers occupationally exposed to multiple classes of pesticides than in controls. 238 A published crosssectional study conducted in Ecuador also found that women living in one agricultural community, but not women living in another agricultural area, had a greater percentage of ALT and AST levels exceeding normal levels compared with controls.⁸¹ A publication from a separate cross-sectional study in Brazil reported lower alkaline phosphatase levels in farmworkers who had worked with pesticides than in those who had not.⁸⁸ Last, a publication from a cross-sectional study of individuals living close to an uncontrolled contaminated site containing the residues and leftovers of a deactivated OC pesticide factory in Brazil reported null associations of pesticide exposure with markers of liver injury.²⁴⁰

Hematological parameters and lipid profiles. Fourteen publications reported on the associations of pesticide exposure with hematological parameters (Table 9). Twelve of the 14 publications relied on questionnaires to assess environmental or occupational pesticide exposure^{52,54,73,81,94,96,98,238,245–248}; only 2 ascertained exposure via direct exposure assessment and used these measurements in their exposure—outcome analyses. ^{242,249} Four publications reported null associations with hematological parameters. 54,94,98,238 Conversely, 2 publications from cross-sectional studies conducted in Mexico⁹⁶ and Ecuador⁸¹ reported higher hemoglobin and hematocrit levels in those occupationally or environmentally exposed to pesticides than in those unexposed. In addition, a publication from a different cross-sectional study in Mexico (mentioned above) found that higher β-glucuronidase activity was associated with higher hemoglobin and hematocrit levels.²⁴² A case-control study conducted in Brazil, Argentina, and Mexico found increased odds of aplastic anemia among adults exposed to pesticides.²⁴⁵

A publication from a cross-sectional study in Brazil reported decreased neutrophils and monocytes among tobacco farmworkers exposed to multiple pesticide classes, but not among controls.⁷³ Notably, a publication from a prospective cohort study of school-age children from a tobacco-producing region in Brazil (mentioned above) also reported lower numbers of neutrophils, monocytes, and basophils, but higher hemoglobin levels and lymphocytes, at the beginning of the pesticide application period compared with the leaf harvest period.⁵² Similarly, a publication from a cross-sectional study of Brazilian farmworkers and their families reported that detectable serum concentrations of various OC pesticides [i.e., hexachlorocyclohexane (HCH), aldrin, heptachlor, trans-nonachlor, endosulfan, endrin, DDT, DDE, and methoxychlor] were associated with lower numbers of white blood cells, particularly monocytes and eosinophils.²⁴⁹ This publication also reported that detectable serum concentrations of γ-chlordane were associated with lower hemoglobin levels. Last, cross-sectional studies conducted in Brazil^{246,247} and Colombia²⁴⁸ reported associations between farm work, length of pesticide exposure (i.e., >10 y), and exposure during the harvest period with alterations in various hematological parameters, including hemoglobin levels and number of leukocytes, platelets, and monocytes.

Eight publications reported on associations between pesticide exposure and lipid profiles in LAC populations (Table 9); three of them reported null associations. ^{94,96,98} Two publications from crosssectional studies conducted in Ecuador⁸¹ and Mexico²⁵⁰ reported lower cholesterol or low-density lipoprotein levels among individuals with high pesticide exposure compared with those with moderate or no exposure. The study in Mexico also found associations of higher blood BChE activity with higher cholesterol, triglyceride, very lowdensity lipoprotein, or total lipid levels, but these associations varied by BMI. 250 A publication from another cross-sectional study in Mexico (mentioned above) found that higher β-glucuronidase activity was associated with higher cholesterol, triglyceride, and total lipid levels, but also with lower high-density lipoprotein levels.²⁴² A publication from a cross-sectional study of coffee harvesters in Colombia exposed to OP pesticides reported that higher blood BChE activity was associated with hypercholesterolemia (defined as total cholesterol ≥200 mg/dL).²⁵¹ Conversely, a cross-sectional study in Brazil reported higher total cholesterol levels among farmworkers who had not worked with pesticides.88

Acoustic damage. Eight publications from cross-sectional studies conducted in Brazil evaluated the association of exposure to either the OP pesticide malathion or several pesticide classes—assessed via questionnaire—with hearing problems (Table 9). Seven of the eight publications reported that elevated pesticide exposure was associated with acoustic damage, as indicated by poorer performance in tests such as the Distortion Product Otoacoustic Emissions (DPOAE) test, the Transient Stimulus Otoacoustic Emissions (TSOAE) test, the Duration Pattern test (DPT), and the Gaps-in-Noise test (GIN). 252–258 In contrast, a publication from a small cross-sectional study of rural workers in Brazil reported null associations between AChE activity and hearing loss. 259

Other outcomes. Single publications reported on the associations of pesticide exposure with various health outcomes (Table 9). Overall, these publications—which were primarily from cross-sectional studies that ascertained exposure solely through question-naires—reported associations of exposure to several classes of pesticides with a variety of outcomes, including changes in blood pressure, ^{251,260–262} diarrhea, ²⁶³ rheumatoid arthritis, ²⁶⁴ high blood glucose levels²⁴² and glutathione S-transferase activity, ²⁶⁵ sleep disorders, ²⁶⁶ skin problems, ^{62,84,103,267,268} thoracic spine and neck pain, ^{269,270} changes in interleukin expression, ¹⁰² overweight/obesity, ²⁷¹ green tobacco sickness, ²⁷² and death ^{273–275}; however, results should be interpreted with caution given the limited weight of evidence. In addition, some publications reported that pesticide exposure was associated with poorer general health status or symptoms of APP (e.g., fatigue/tiredness, nervousness, headache, anxiety, and depression). ^{57,62,84,103,138,159,223,267,268,276,277}

Overall, publications from studies conducted to date provide somewhat consistent evidence of the associations between pesticide exposure with acoustic damage and changes in markers of liver injury (e.g., when comparing exposed with unexposed or when comparing exposed during the spraying and prespraying season). Conversely, published studies that have examined the associations of pesticide exposure with kidney function, respiratory/allergic outcomes, and hematological parameters and lipid profiles in LAC populations have reported mixed findings. All these reported associations need to be interpreted with caution given that most published studies were relatively small, cross-sectional in design, and assessed exposure to multiple classes of pesticides via questionnaire.

Discussion

The results of our scoping review provide some evidence that exposure to pesticides may adversely impact the health of LAC populations. For instance, we observed that occupational and

residential exposure to OP pesticides or several pesticide classes was consistently associated with higher levels of increased chromosomal aberration frequency, nuclear buds, oxidative stress, or cell death. We also observed relatively consistent evidence of the adverse neurobehavioral effects of elevated OP pesticide and carbamate exposure levels, particularly among children and farmworkers. The latter finding is in line with those of previous systematic reviews on the neurobehavioral effects of OP pesticide exposure. ^{23,36,37,40,278,279} Published studies on teratogenicity and placental outcomes, cancer, thyroid function, reproductive outcomes, and birth outcomes and child growth were largely heterogeneous in terms of pesticide exposure and outcome assessment methods and their results were mixed. Findings on other health outcomes, including respiratory and allergic effects, were too sparse to discern the directionality of an effect, if any.

To our knowledge, only one literature review besides ours has focused on the health effects of pesticide exposure in different populations from a specific region of the world. 280 This systematic literature review of all research on environmental and human health issues associated with pesticide exposure in sub-Saharan Africa published between 2006 and 2021 reported some findings consistent with ours. 280 For example, the review of sub-Saharan Africa literature found that OC and OP pesticides were the pesticides classes most frequently studied in the region. In our scoping review, we found that OC and OP pesticides such as DDT, endosulfan, and chlordane—pesticides that have been banned by countries in the European Union and the United States^{281–283} were among the pesticides classes most frequently examined in the LAC region. Both reviews identified that published studies were primarily cross-sectional in design and relied largely on indirect pesticide exposure assessment methods (e.g., questionnaire, job status ascertainment). Notably, the most frequently examined health effects in sub-Saharan Africa studies were signs and symptoms of APP (self-reported and doctor-diagnosed), whereas genotoxicity and neurobehavioral outcomes were the most frequently assessed among LAC populations.

As more research on the health effects of pesticide exposure is conducted in LAC countries, we believe that it is critical to address three fundamental limitations to the current body of literature. First, there must be a more widespread investment in research capacities across the LAC region. In our scoping review, we identified studies from 16 of the 43 LAC countries and territories, and 2 countries— Brazil and Mexico—accounted for nearly 60% of the included studies. Central American countries (except for Costa Rica) and Caribbean territories were among those with the lowest research outputs, and evidence suggests that efforts to increase research capacities often focus on the countries with some existing capacity, ²⁸⁴ perpetuating health inequities in countries with the lowest levels of research and support. Second, future research must address limitations in study design and data collection to increase the rigor and robustness of epidemiological findings. Given the limited funding to develop infrastructure and conduct research in most LAC countries, ²⁸⁵ most studies included in this review were small cross-sectional studies—which are important in terms of hypothesis generation but have limited causal inference. In addition, nearly half of the studies included in this review relied on indirect exposure assessment methods (e.g., questionnaires or exposure classification based on self-report, job title, or area of residence), which may result in exposure misclassification that could bias epidemiological findings toward the null^{286–288} and potentially account for conflicting study findings.²⁸⁹ Self-reported pesticide exposure may be particularly prone to recall bias^{288,289} and may be worsened under certain conditions, including studies of participants with low educational attainment or high residential mobility.²⁹⁰ Furthermore, pesticide use in LAC countries varies by crop and season—which causes

significant exposure variation, both in terms of intensity and chemical composition²⁹¹—and farmworkers or pesticide applicators are often not informed of the specific pesticide active ingredients used in their farms. 233,277,292 In our scoping review, most of the studies that assessed pesticide exposure via biomonitoring relied on analysis of a single sample and may have not accurately captured chronic exposure to pesticides with short biological half-lives and high inter- and intra-individual variability, 293,294 which are frequently used in LAC countries. This potential exposure misclassification due to single time point sampling may have biased study findings toward or away from the null, depending on the time in which the exposure was captured. Last, studies included in our review employed a wide range of health outcome assessment methods, which were often not validated nor considered gold standards, hindering comparisons of study findings across populations within and outside of the LAC region. Third, studies should employ more robust statistical analyses and more systematic reporting of methods and results to facilitate comparisons across study populations. We found that many studies lacked clear presentation of key information, such as the covariates used in multivariable analyses or the specific pesticide(s) being examined (e.g., some publications solely indicated they collected samples to be analyzed for AChE activity, and we inferred they were examining OPs and carbamates). In addition, multiple studies did not report effect estimates and simply reported the prevalence of the outcome among exposed and unexposed groups. Strengthening research capacity in the LAC region is needed to increase the rigor of epidemiological studies and generate robust evidence regarding associations between pesticide exposure and its health effects.

In addition to addressing the limitations raised above, several knowledge gaps remain regarding the health effects of pesticides in LAC populations. As an example, a limited number of studies included in our review have assessed exposure to current-use pesticides that are applied widely in the LAC region and the rest of the world, such as pyrethroids, glyphosate, neonicotinoids, and fungicides. 20,295-297 Similarly, few studies have examined the health effects of early-life exposure to pesticides—a critical period of brain^{298,299} and lung^{300,301} development—or the effects of pesticides on common chronic diseases, such as cardiometabolic disorders and neurodegenerative diseases. 302,303 Although farmworkers and those living in agricultural areas are simultaneously exposed to numerous pesticides,³⁰⁴ only three studies have examined the health effects of exposure to pesticide mixtures using statistical methods that accounted for copollutant confounding. 82,106,234 More studies are needed to understand the true independent and aggregate effect of exposure to mixtures of pesticides, 305,306 which may require more widespread training of researchers in environmental mixtures methods. Finally, it is increasingly understood that the health effects of environmental chemicals may be due in part to interactions with nonchemical exposures, such as poverty, neighborhood violence, and malnutrition. 307-310 Socioeconomically disadvantaged populations in LAC countries, such as immigrants or indigenous people, have less access to legal protections and are frequent victims of unregulated work arrangements, leading to disproportionately high levels of pesticide exposure²⁹² and potentially more adverse health outcomes. Nevertheless, few of the studies included in our scoping review examined the joint effects of pesticides and unique psychosocial stressors experienced by populations in the region.

Recommendations for Future Research

In LAC countries and territories, generating robust evidence on the health effects of pesticide exposure is essential to inform agricultural policies and public health surveillance programs aimed at post-registration control of pesticides and the development and implementation of pesticide safety guidelines. Given the resource limitations and sociocultural context of agricultural populations across the LAC region, potential areas of prioritization for future work include the following:

• Increasing funding for research and capacity building. The Pan American Health Organization (PAHO), a regional office of the World Health Organization (WHO) for the Americas, has called for strengthening research in each member country to promote health equity and socioeconomic development.³¹¹ Given the widespread use of pesticides across the LAC region, it is imperative to strengthen institutional capacities to produce research and generate robust evidence that could be used to inform national and regional health policies. For example, difficulties associated with pesticide biomonitoring may be amplified in studies conducted in LAC countries owing to limited laboratory capacity and availability of analytical techniques to measure biomarkers of exposure. In addition, insufficient funding and infrastructure limit the ability to carry out large-scale epidemiological studies, which may contribute to the widespread reliance on small cross-sectional studies.

To improve the quality and quantity of health research in the LAC region, capacity building must become a key component of global research funding, with a focus on countries where the infrastructure and capacity do not currently exist.²⁸⁵ Although some models have proposed increased "North-South" collaborations, these projects often align with the priorities of the funders, rather than the countries' needs, and few projects have resulted in sustainable longterm partnerships that are equitable to the investigators in the home countries where the research was conducted.312 We recommend that any collaborations with institutions outside of the LAC region explicitly include local researchers in the design and implementation of the study, 313 focus on capacity development in the country, and critically examine power dynamics to ensure more equitable partnerships where the research is tailored to the needs of the local populations.³¹⁴

• Increasing collaboration within the LAC region. Beyond collaborations outside of the LAC region, we recommend increasing research synergies and the development of more interdisciplinary research teams across LAC countries. For example, the creation of networks of researchers within the region could contribute to the homogenization of exposure and health outcomes assessments (e.g., specific test or scale employed, age of assessment) and the systematization of reporting methods and results in publications, improving the ability to compare and synthesize results across studies. Previous literature discussing the need for increased research synergies in the LAC region have specifically focused on supporting early career researchers through initiatives such as in the development of national and regional graduate programs that strengthen regional collaborations, enable sustainable research careers, and decrease the high mobility of doctoral students and early career researchers outside of the region.³¹⁵

Although farming systems and ecological conditions vary across the LAC region, ³¹⁶ increased homogenization of research within the region could potentially contribute to the homogenization of regulatory decisions, such as banning particular hazardous pesticides that are subject of international conventions and agreements, improving management and control of pesticides, restricting dispersive pesticide applications methods (e.g., light aircrafts, spray-booms), implementing pesticide-free buffer zones, and promoting sustainable agriculture and alternatives to pesticide use, which could result in more protective policies at both the national and regional levels.

• Increasing rigor of epidemiological studies. Studies that can incorporate biomonitoring should consider the use of biomarkers that reflect exposure to specific pesticides, including current-use pesticides (e.g., glyphosate, neonicotinoids, pyrethroids), and should assess exposure at multiple time points, if possible. In studies where biomonitoring is cost prohibitive or logistically infeasible, indirect exposure assessment may be improved by incorporating additional methods that are less prone to bias, including purchasing/inventory records, personal exposure monitoring (e.g., breathing zone air sampling, dermal wipes), environmental sampling data (e.g., ambient air monitoring, drinking water), 9,11,12 and development of surrogate exposure estimates based on nearby pesticide use assessed via Geographic Information Systems.³³ In addition, rather than dichotomously classifying participants as farmworkers vs. non-farmworkers, studies could employ more detailed occupational assessments and job-exposure matrices examining factors such as job titles and tasks, specific crops and active ingredients, and more complete occupational history that may decrease error due to exposure misclassification.²⁸⁸ Studies should also use standardized and validated outcome assessment methods across population subgroups from different LAC countries and territories to improve researchers' ability to compare findings across studies inside and outside the region.

In addition to increasing the rigor when designing epidemiological studies, we recommend the inclusion of more robust statistical analyses and a shift away from the presentation of bivariate results alone. We also recommend the systematization of the presentation of key information in the methods and results of publications, including the specific pesticides being assessed, statistical methods used, and study results to facilitate comparisons across studies and better support causal inference.

Strengths and Limitations of This Scoping Review

Given the methodological differences in study design, populations studied, and exposure and health outcome assessments employed across the studies included in this review, we were not able to summarize the evidence on health effects of pesticide exposure in LAC populations using a quantitative synthesis or meta-analysis. In addition, our search strategy was focused on the use of the word "pesticides" plus Latin America or "pesticides" plus each of the names of the 43 LAC countries and territories. This strategy may have led to missed information because some studies could have used more specific keywords such as the pesticide's nature (e.g., herbicides, fungicides, insecticides) or the names of pesticide active ingredients (e.g., mancozeb, chlordecone). Our literature search also focused solely on PubMed and SciELO, and it is possible that other common databases in the LAC region, such as Latindex and Latin American and Caribbean Health Sciences Literature (LILACS), could have yielded additional publications. Despite its limitations, we believe that this scoping review provides a useful overview of the status of the research regarding the health effects of pesticide exposure and gives insight into existing data gaps and research capacity building needs in the region.

Conclusions

Our scoping review provides some evidence that exposure to pesticides may adversely impact the health of LAC populations. Nevertheless, methodological limitations such as reliance on cross-sectional study designs and indirect exposure assessment methods, as well as heterogeneity in the assessment of health

outcomes and presentation of study findings, undermine the strength of the conclusions. We recommend increasing capacity building, integrating research initiatives, and conducting more rigorous epidemiological studies that can address these limitations, better inform public health surveillance systems, and increase the impact of research on public policies.

Acknowledgments

We acknowledge the leadership of the Latin American and the Caribbean (LAC) Chapter of the International Society of Environmental Epidemiology (ISEE) for their support of this article. Agnes Soares da Silva is a staff member of the Pan American Health Organization. The contents are the sole responsibility of the authors and do not necessarily reflect the official views, decisions, or policies of the Pan American Health Organization or ISEE LAC. For more information on ISEE LAC Chapter, please visit https://isee-lac.org/.

L.A.Z.V., M.T.M.Q., M.B., G.C., S.C., and A.M.M. conceived the scoping review. Literature search and screening were carried out by L.A.Z.V., C.H., and M.T.M.Q. Full-text review and information extraction were conducted by L.A.Z.V., C.H., M.T.M.Q., L.Q.A., M.B., R.B., A.C., R.A.F., C.F., N.G., J.P.G.J., B.A.L., M.P.M., M.R.S., A.R.S., N.T., B.vW.dJ., G.M.C., A.J.H., A.S.daS., S.C., and A.M.M. The first draft of the manuscript was written by L.A.Z.V. and M.T.M.Q. and critically reviewed by C.H., L.Q.A., A.J.H., A.S.daS., S.C., and A.M.M. Figures and tables were elaborated by L.A.Z.V., C.H., and A.M.M. All authors read and approved the final manuscript.

References

- OECD/FAO (Organization for Economic Cooperation and Development, Food and Agriculture Organization). 2019. AOCED-FAO Agricultural Outlook 2019– 2028. Special Focus: Latin America. Rome, Italy: Paris/Food and Agriculture Organization of the United Nations. https://reliefweb.int/attachments/22af2430-3306-308b-9f79-174616ac4148/CA4076EN.pdf [accessed 30 June 2022].
- Jepson PC, Murray K, Bach O, Bonilla MA, Neumeister L. 2020. Selection of pesticides to reduce human and environmental health risks: a global guideline and minimum pesticides list. Lancet Planet Health 4(2):e56–e63, PMID: 32112748, https://doi.org/10.1016/S2542-5196(19)30266-9.
- FAO (Food and Agriculture Organization). 2019. FAOSTAT food and agricultural data, pesticide use data 2019. http://www.fao.org/faostat/en/#data/RP [accessed 16 January 2022].
- Winkler MS, Atuhaire A, Fuhrimann S, Mora A, Niqagaba C, Oltramare C, et al. 2019. Environmental exposures, health effects and institutional determinants of pesticide use in two tropical settings. DORA Eawag. https://www.dora. lib4ri.ch/eawag/islandora/object/eawag:19081 [accessed 16 February 2022].
- Wesseling C, Corriols M, Bravo V. 2005. Acute pesticide poisoning and pesticide registration in Central America. Toxicol Appl Pharmacol 207(suppl 2):697– 705, PMID: 16153991, https://doi.org/10.1016/j.taap.2005.03.033.
- Caldas ED. 2016. Pesticide poisoning in Brazil. In: Reference Module in Earth Systems and Environmental Sciences. pp. 419–427. New York, NY: Elsevier.
- World Bank. 2020. Population, total. https://data.worldbank.org/indicator/SP. POP.TOTL?end=2020&start=1960&view=chart [accessed 17 January 2022].
- Bardach AE, García-Perdomo HA, Alcaraz A, Tapia López E, Gándara RAR, Ruvnsky S, et al. 2019. Interventions for the control of *Aedes aegypti* in Latin America and the Caribbean: systematic review and meta-analysis. Trop Med Int Health 24(5):530–552, PMID: 30771267, https://doi.org/10.1111/tmi.13217.
- Córdoba Gamboa L, Solano Diaz K, Ruepert C, van Wendel de Joode B. 2020.
 Passive monitoring techniques to evaluate environmental pesticide exposure:
 results from the Infant's Environmental Health study (ISA). Environ Res
 184:109243, PMID: 32078818, https://doi.org/10.1016/j.envres.2020.109243.
- Dereumeaux C, Fillol C, Quenel P, Denys S. 2020. Pesticide exposures for residents living close to agricultural lands: a review. Environ Int 134:105210, PMID: 31739132, https://doi.org/10.1016/j.envint.2019.105210.
- Pozo K, Llanos Y, Estellano VH, Cortés S, Jorquera H, Gerli L, et al. 2016. Occurrence of chlorpyrifos in the atmosphere of the Araucanía Region in Chile using polyurethane foam-based passive air samplers. Atmos Pollut Res 7(4):706–710, https://doi.org/10.1016/j.apr.2016.03.003.
- Cortes S, Pozo K, Llanos Y, Martinez N, Foerster C, Leiva C, et al. 2020. First measurement of human exposure to current use pesticides (CUPs) in the

- atmosphere of central Chile: the case study of Mauco cohort. Atmos Pollut Res 11(4):776–784, https://doi.org/10.1016/j.apr.2019.12.023.
- López-Gálvez N, Wagoner R, Quirós-Alcalá L, Ornelas Van Horne Y, Furlong M, Avila E, et al. 2019. Systematic literature review of the take-home route of pesticide exposure via biomonitoring and environmental monitoring. Int J Environ Res Public Health 16(12):2177, PMID: 31248217, https://doi.org/10.3390/ijerph16122177.
- Caldas ED, Boon PE, Tressou J. 2006. Probabilistic assessment of the cumulative acute exposure to organophosphorus and carbamate insecticides in the Brazilian diet. Toxicology 222(1–2):132–142, PMID: 16563591, https://doi.org/10.1016/j.tox.2006.02.006.
- Caldas ED, Souza LCKR. 2004. Chronic dietary risk for pesticide residues in food in Brazil: an update. Food Addit Contam 21(11):1057–1064, PMID: 15764334, https://doi.org/10.1080/02652030400009225.
- Benítez-Diaz P, Miranda-Contreras L. 2013. Surface water pollution by residues in Venezuela and other Latin American countries. Rev Int de Contam Ambient 29(1):7–23.
- de Carvalho Dores EFG, De-Lamonica-Freire EM. 2001. Aquatic environment contamination by pesticides. Case study: water used for human consumption in Primavera do Leste, Mato Grosso—preliminary analyses [in Portuguese]. Quim Nova 24:27–36, https://doi.org/10.1590/S0100-40422001000100007.
- González-Andrade F, López-Pulles R, Estévez E. 2010. Acute pesticide poisoning in Ecuador: a short epidemiological report. J Public Health 18(5):437–442, https://doi.org/10.1007/s10389-010-0333-y.
- Corriols M, Marin J, Berroteran J, Lozano LM, Lundberg I. 2009. Incidence of acute pesticide poisonings in Nicaragua: a public health concern. Occup Environ Med 66(3):205–210, PMID: 19028804, https://doi.org/10.1136/oem.2008.040840.
- Benbrook CM. 2016. Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur 28(1):3, PMID: 27752438, https://doi.org/10.1186/ s12302-016-0070-0.
- Gullino ML, Tinivella F, Garibaldi A, Kemmitt GM, Bacci L, Sheppard B. 2010.
 Mancozeb: past, present, and future. Plant Dis 94(9):1076–1087, PMID: 30743728, https://doi.org/10.1094/PDIS-94-9-1076.
- Kim KH, Kabir E, Jahan SA. 2017. Exposure to pesticides and the associated human health effects. Sci Total Environ 575:525–535, PMID: 27614863, https://doi.org/10.1016/i.scitotenv.2016.09.009.
- Sapbamrer R, Hongsibsong S. 2019. Effects of prenatal and postnatal exposure to organophosphate pesticides on child neurodevelopment in different age groups: a systematic review. Environ Sci Pollut Res Int 26(18):18267–18290, PMID: 31041704, https://doi.org/10.1007/s11356-019-05126-w.
- Staudacher P, Fuhrimann S, Farnham A, Mora AM, Atuhaire A, Niwagaba C, et al. 2020. Comparative analysis of pesticide use determinants among smallholder farmers From Costa Rica and Uganda. Environ Health Insights 14:1178630220972417, PMID: 33402828, https://doi.org/10.1177/1178630220972417.
- Thundiyil JG, Stober J, Besbelli N, Pronczuk J. 2008. Acute pesticide poisoning: a proposed classification tool. Bull World Health Organ 86(3):205–209, PMID: 18368207, https://doi.org/10.2471/blt.08.041814.
- Corriols M, Marín J, Berroteran J, Lozano LM, Lundberg I, Thörn Å. 2008. The Nicaraguan Pesticide Poisoning Register: constant underreporting. Int J Health Serv 38(4):773–787, PMID: 19069292, https://doi.org/10.2190/HS.38.4.k.
- 27. Cervantes Morant R. 2010. Plaguicidas en Bolivia: sus implicaciones en la salud, agricultura y medio ambiente. Rev virtual REDESMA 4(1).
- Kesavachandran CN, Fareed M, Pathak MK, Bihari V, Mathur N, Srivastava AK. 2009. Adverse health effects of pesticides in agrarian populations of developing countries. Rev Environ Contam Toxicol 200:33–52, PMID: 19680610, https://doi.org/10.1007/978-1-4419-0028-9_2.
- Bravo V, Rodríguez T, van Wendel de Joode B, Canto N, Calderón GR, et al. 2011. Monitoring pesticide use and associated health hazards in Central America. Int J Occup Environ Health 17(3):258–269, PMID: 21905395, https://doi.org/10.1179/107735211799041896.
- Ruiz-Guzmán JA, Gómez-Corrales P, Cruz-Esquivel Á, Marrugo-Negrete JL. 2017. Cytogenetic damage in peripheral blood lymphocytes of children exposed to pesticides in agricultural areas of the department of Cordoba, Colombia. Mutat Res Genet Toxicol Environ Mutagen 824:25–31, PMID: 29150047, https://doi.org/10.1016/j.mrgentox.2017.10.002.
- Noyes PD, McElwee MK, Miller HD, Clark BW, Van Tiem LA, Walcott KC, et al. 2009. The toxicology of climate change: environmental contaminants in a warming world. Environ Int 35(6):971–986, PMID: 19375165, https://doi.org/10. 1016/j.envint.2009.02.006.
- Weiss FT, Leuzinger M, Zurbrügg C, Eggen HIL. 2016. Chemical Pollution in Low- and Middle-Income Countries. Dübendorf, Switzerland: Swiss Federal Institute of Aquatic Science and Technology (Eawag).
- Goodman JE, Prueitt RL, Boffetta P, Halsall C, Sweetman A. 2020. "Good epidemiology practice" guidelines for pesticide exposure assessment. Int J Environ Res Public Health 17(14):5114, PMID: 32679916, https://doi.org/10.3390/ijerph17145114.

- Ntzani EE, Ntritsos G CM, Evangelou E, Tzoulaki I. 2013. Literature review on epidemiological studies linking exposure to pesticides and health effects. EFSA Support Publ 10(10):497E, https://doi.org/10.2903/sp.efsa.2013.EN-497.
- EFSA PPR (EFSA Panel on Plant Protection Products and their Residues), Ockleford C, Adriaanse P, Berny P, Brock T, Duquesne S, et al. 2017. Scientific Opinion of the PPR Panel on the follow-up of the findings of the External Scientific Report 'Literature review of epidemiological studies linking exposure to pesticides and health effects'. EFSA J 15(10):e05007, PMID: 32625302, https://doi.org/10.2903/j.efsa.2017.5007.
- Muñoz-Quezada MT, Lucero BA, Iglesias VP, Muñoz MP, Cornejo CA, Achu E, et al. 2016. Chronic exposure to organophosphate (OP) pesticides and neuropsychological functioning in farm workers: a review. Int J Occup Environ Health 22(1):68–79, PMID: 27128815, https://doi.org/10.1080/10773525.2015.1123848.
- Muñoz-Quezada MT, Lucero BA, Barr DB, Steenland K, Levy K, Ryan PB, et al. 2013. Neurodevelopmental effects in children associated with exposure to organophosphate pesticides: a systematic review. Neurotoxicology 39:158–168, PMID: 24121005, https://doi.org/10.1016/j.neuro.2013.09.003.
- Lucero B, Muñoz-Quezada MT. 2021. Neurobehavioral, neuromotor, and neurocognitive effects in agricultural workers and their children exposed to pyrethroid pesticides: a review. Front Hum Neurosci 15:648171, PMID: 34335205, https://doi.org/10.3389/fnhum.2021.648171.
- Chang ET, Odo NU, Acquavella JF. 2022. Systematic literature review of the epidemiology of glyphosate and neurological outcomes. Int Arch Occup Environ Health Preprint posted online 23 May 2022, PMID: 35604441, https://doi.org/10.1007/s00420-022-01878-0.
- Dórea JG. 2021. Exposure to environmental neurotoxic substances and neurodevelopment in children from Latin America and the Caribbean. Environ Res 192:110199, PMID: 32941839, https://doi.org/10.1016/j.envres.2020.110199.
- Buralli RJ, Dultra AF, Ribeiro H. 2020. Respiratory and allergic effects in children exposed to pesticides—a systematic review. Int J Environ Res Public Health 17(8):2740, PMID: 32316194, https://doi.org/10.3390/ijerph17082740.
- 42. Rozas ME. 2021. Revisión de Estudios Epídemiológicos sobre Efects de los Plaguicidas en Niñas, Niños e Inantes de América Latina. Buenos Aires, Argentina: Red de Acción en Plaguicidas y sus Alternativas de América Latina (RAP-AL). https://reduas.com.ar/wp-content/uploads/2021/12/Revision-de-Estudios-epidemiologicos_ni%C3%B1os_plaguicidas_Maria-Elena-Rozas-071221.doc-1.pdf [accessed 30 June 2022].
- Sánchez-Alarcón J, Milió M, Kašuba V, Tenorio-Arvide MG, Montiel-González JMR, Bonassi S, et al. 2021. A systematic review of studies on genotoxicity and related biomarkers in populations exposed to pesticides in Mexico. Toxics 9(11):272, PMID: 34822663, https://doi.org/10.3390/toxics9110272.
- Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. 2018. PRISMA Extension for Scoping Reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med 169(7):467–473, PMID: 30178033, https://doi.org/10.7326/M18-0850.
- 45. Latin American and the Caribbean Chapter of the International Society of Environmental Epidemiology. 2018. Bylaws: International Society for Environmental Epidemiology Latin American and the Caribbean (LAC) Chapter. https://iseepi.org/ docs/ISEE_LAC_Chapter_Bylaws_FINAL.pdf [accessed 8 August 2022].
- Alvarado-Hernandez DL, Montero-Montoya R, Serrano-García L, Arellano-Aguilar O, Jasso-Pineda Y, Yáñez-Estrada L. 2013. Assessment of exposure to organochlorine pesticides and levels of DNA damage in mother-infant pairs of an agrarian community. Environ Mol Mutagen 54(2):99–111, PMID: 23355095, https://doi.org/10.1002/em.21753.
- Jasso-Pineda Y, Díaz-Barriga F, Yáñez-Estrada L, Pérez-Vázquez FJ, Pérez-Maldonado IN. 2015. DNA damage in Mexican children living in high-risk contaminated scenarios. Sci Total Environ 518–519:38–48, PMID: 25747362, https://doi.org/10.1016/j.scitotenv.2015.02.073.
- Anguiano-Vega GA, Cazares-Ramirez LH, Rendon-Von Osten J, Santillan-Sidon AP, Vazquez-Boucard CG. 2020. Risk of genotoxic damage in schoolchildren exposed to organochloride pesticides. Sci Rep 10(1):17584, PMID: 33067503, https://doi.org/10.1038/s41598-020-74620-w.
- 49. Gómez-Arroyo S, Martínez-Valenzuela C, Calvo-González S, Villalobos-Pietrini R, Waliszewski SM, Calderón-Segura ME, et al. 2013. Evaluación del riesgo genotóxico de niños mexicanos que viven cerca de zonas agrícolas con aspersión aérea de plaguicidas. Rev Int Contam Ambie 29:217–225.
- Bernardi N, Gentile N, Mañas F, Méndez A, Gorla N, Aiassa D. 2015.
 Assessment of the level of damage to the genetic material of children exposed to pesticides in the province of Córdoba. Arch Argent Pediatr 113(2):126–131, PMID: 25727816, https://doi.org/10.5546/aap.2015.eng.126.
- Castañeda-Yslas IJ, Arellano-García ME, García-Zarate MA, Ruíz-Ruíz B, Zavala-Cerna MG, Torres-Bugarín O. 2016. Biomonitoring with micronuclei test in buccal cells of female farmers and children exposed to pesticides of Maneadero Agricultural Valley, Baja California, Mexico. J Toxicol 2016:7934257, PMID: 26981119, https://doi.org/10.1155/2016/7934257.
- Nascimento SN, Göethel G, Baierle M, Barth A, Brucker N, Charão MF, et al.
 2017. Environmental exposure and effects on health of children from a

- tobacco-producing region. Environ Sci Pollut Res Int 24(3):2851–2865, PMID: 27838906, https://doi.org/10.1007/s11356-016-8071-5.
- Leite SB, Franco de Diana DM, Segovia Abreu JA, Avalos DS, Denis MA, Ovelar CC, et al. 2019. DNA damage induced by exposure to pesticides in children of rural areas in Paraguay. Indian J Med Res 150(3):290–296, PMID: 31719300, https://doi.org/10.4103/ijmr.IJMR_1497_17.
- 54. Quintana MM, Vera B, Magnarelli G, Guiñazú N, Rovedatti MG. 2017. Neonatal, placental, and umbilical cord blood parameters in pregnant women residing in areas with intensive pesticide application. Environ Sci Pollut Res Int 24(25):20736–20746, PMID: 28718019, https://doi.org/10.1007/s11356-017-9642-9.
- Barron Cuenca J, Aguilar Mercado X, Navia Bueno P. 2015. Exposición a plaguicidas, desnutrición crónica y daño genotóxico en menores de tres años. Luribay. Cuad Hosp Clín 56(2):9–17.
- Franco FC, Alves AA, Godoy FR, Avelar JB, Rodrigues DD, Pedroso TMA, et al. 2016. Evaluating genotoxic risks in Brazilian public health agents occupationally exposed to pesticides: a multi-biomarker approach. Environ Sci Pollut Res Int 23(19):19723–19734, PMID: 27406225, https://doi.org/10.1007/s11356-016-7179-y.
- Silvério ACP, Machado SC, Azevedo L, Nogueira DA, de Castro Graciano MM, Simões JS, et al. 2017. Assessment of exposure to pesticides in rural workers in southern of Minas Gerais, Brazil. Environ Toxicol Pharmacol 55:99–106, PMID: 28843102, https://doi.org/10.1016/j.etap.2017.08.013.
- Zepeda-Arce R, Rojas-García AE, Benitez-Trinidad A, Herrera-Moreno JF, Medina-Díaz IM, Barrón-Vivanco BS, et al. 2017. Oxidative stress and genetic damage among workers exposed primarily to organophosphate and pyrethroid pesticides. Environ Toxicol 32(6):1754–1764, PMID: 28233943, https://doi.org/10. 1002/tox.22398.
- Benitez-Trinidad AB, Medina-Díaz IM, Bernal-Hernández YY, Barrón-Vivanco BS, González-Aria CA, Herrera-Moreno JF, et al. 2018. Relationship between LINE-1 methylation pattern and pesticide exposure in urban sprayers. Food Chem Toxicol 113:125–133, PMID: 29374593, https://doi.org/10.1016/j.fct.2018.01.035.
- Xotlanihua-Gervacio MDC, Guerrero-Flores MC, Herrera-Moreno JF, Medina-Díaz IM, Bernal-Hernández YY, Barrón-Vivanco BS, et al. 2018. Micronucleus frequency is correlated with antioxidant enzyme levels in workers occupationally exposed to pesticides. Environ Sci Pollut Res Int 25(31):31558–31568, PMID: 30206828, https://doi.org/10.1007/s11356-018-3130-8.
- Herrera-Moreno JF, Medina-Díaz IM, Bernal-Hernández YY, Ramos KS, Alvarado-Cruz I, Quintanilla-Vega B, et al. 2019. Modified CDKN2B (p15) and CDKN2A (p16) DNA methylation profiles in urban pesticide applicators. Environ Sci Pollut Res Int 26(15):15124–15135, PMID: 30924039, https://doi.org/ 10.1007/s11356-019-04658-5.
- 62. Butinof M, Fernández RA, Lerda D, Lantieri MJ, Filippi I, Díaz MDP. 2019. Biomonitoreo en exposición a plaguicidas y su aporte en vigilancia epidemiológica en agroaplicadores en Córdoba, Argentina. Gac Sanit 33(3):216–221, PMID: 29510874, https://doi.org/10.1016/j.gaceta.2017.12.002.
- Bernieri T, Moraes MF, Ardenghi PG, Basso da Silva L. 2020. Assessment of DNA damage and cholinesterase activity in soybean farmers in southern Brazil: high versus low pesticide exposure. J Environ Sci Health B 55(4):355– 360, PMID: 31868080, https://doi.org/10.1080/03601234.2019.1704608.
- 64. Valencia-Quintana R, López-Durán RM, Milić M, Bonassi S, Ochoa-Ocaña MA, Uriostegui-Acosta MO, et al. 2021. Assessment of cytogenetic damage and cholinesterases' activity in workers occupationally exposed to pesticides in Zamora-Jacona, Michoacan, Mexico. Int J Environ Res Public Health 18(12):6269, PMID: 34200547, https://doi.org/10.3390/ijerph18126269.
- Aiassa DE, Mañas FJ, Gentile NE, Bosch B, Salinero MC, Gorla NBM. 2019.
 Evaluation of genetic damage in pesticides applicators from the province of Córdoba, Argentina. Environ Sci Pollut Res Int 26(20):20981–20988, PMID: 31115805, https://doi.org/10.1007/s11356-019-05344-2.
- Simoniello MF, Contini L, Benavente E, Mastandrea C, Roverano S, Paira S. 2017. Different end-points to assess effects in systemic lupus erythematosus patients exposed to pesticide mixtures. Toxicology 376:23–29, PMID: 27497885, https://doi.org/10.1016/j.tox.2016.08.003.
- 67. Martinez LN, Mastandrea C, Benavente E, Roverano S, Paira S, Poletta GL, et al. 2016. Evaluación de estrés oxidativo en pacientes con Lupus Eritematoso Sistémico y su posible relación con la exposición ambiental a agroquímicos. Acta Toxicol Argent 24(1):10–20.
- 68. Paredes-Céspedes DM, Herrera-Moreno JF, Bernal-Hernández YY, Medina-Díaz IM, Salazar AM, Ostrosky-Wegman P, et al. 2019. Pesticide exposure modifies DNA methylation of coding region of WRAP53α, an antisense sequence of p53, in a Mexican population. Chem Res Toxicol 32(7):1441–1448, PMID: 31243981, https://doi.org/10.1021/acs.chemrestox.9b00153.
- Jørs E, Gonzáles AR, Ascarrunz ME, Tirado N, Takahashi C, Lafuente E, et al. 2007. Genetic alterations in pesticide exposed Bolivian farmers: an evaluation by analysis of chromosomal aberrations and the comet assay. Biomark Insights 2:439–445, PMID: 19662224, https://doi.org/10.1177/117727190700200017.
- Kehdy FSG, Cerqueira EMM, Bonjardim MB, Camelo RM, Castro MCL. 2007.
 Study of the cytogenetic effects of occupational exposure to pesticides on

- sanitation workers in Belo Horizonte, Brazil. Genet Mol Res 6(3):581-593, PMID: 17985311
- Khayat CB, Costa EOA, Gonçalves MW, da Cruz e Cunha DM, da Cruz AS, de Araújo Melo CO, et al. 2013. Assessment of DNA damage in Brazilian workers occupationally exposed to pesticides: a study from Central Brazil. Environ Sci Pollut Res Int 20(10):7334–7340, PMID: 23640389, https://doi.org/10.1007/ s11356-013-1747-1.
- Wilhelm CM, Calsing AK, da Silva LB. 2015. Assessment of DNA damage in floriculturists in southern Brazil. Environ Sci Pollut Res Int 22(11):8182–8189, PMID: 25516252, https://doi.org/10.1007/s11356-014-3959-4.
- Alves JS, da Silva FR, da Silva GF, Salvador M, Kvitko K, Rohr P, et al. 2016. Investigation of potential biomarkers for the early diagnosis of cellular stability after the exposure of agricultural workers to pesticides. An Acad Bras Cienc 88(1):349–360, PMID: 26839999, https://doi.org/10.1590/0001-3765201520150181.
- Kahl VFS, Simon D, Salvador M, Branco CdosS, Dias JF, da Silva FR, et al. 2016. Telomere measurement in individuals occupationally exposed to pesticide mixtures in tobacco fields. Environ Mol Mutagen 57(1):74–84, PMID: 26426910, https://doi.org/10.1002/em.21984.
- Chaves TVS, Islam MT, de Moraes MO, de Alencar MVOB, Gomes DCV, de Carvalho RM, et al. 2017. Occupational and life-style factors-acquired mutagenicity in agric-workers of northeastern Brazil. Environ Sci Pollut Res Int 24(18):15454–15461, PMID: 28510803, https://doi.org/10.1007/s11356-017-9150-y.
- Tomiazzi JS, Judai MA, Nai GA, Pereira DR, Antunes PA, Favareto APA. 2018. Evaluation of genotoxic effects in Brazilian agricultural workers exposed to pesticides and cigarette smoke using machine-learning algorithms. Environ Sci Pollut Res Int 25(2):1259–1269, PMID: 29086360, https://doi.org/10.1007/ s11356-017-0496-v
- Vazquez Boucard C, Lee-Cruz L, Mercier L, Ramírez Orozco M, Serrano Pinto V, Anguiano G, et al. 2017. A study of DNA damage in buccal cells of consumers of well- and/or tap-water using the comet assay: assessment of occupational exposure to genotoxicants. Environ Mol Mutagen 58(8):619–627, PMID: 28714172, https://doi.org/10.1002/em.22111.
- Hutter HP, Khan AW, Lemmerer K, Wallner P, Kundi M, Moshammer H. 2018.
 Cytotoxic and genotoxic effects of pesticide exposure in male coffee farmworkers of the Jarabacoa Region, Dominican Republic. Int J Environ Res Public Health 15(8):1641, PMID: 30081446, https://doi.org/10.3390/ijerph15081641.
- Claudio SR, Simas JMM, Souza ACF, do Carmo Baracho de Alencar M, Yamauchi LY, Ribeiro DA. 2019. Genomic instability and cytotoxicity in buccal mucosal cells of workers in banana farming evaluated by micronucleus test. Anticancer Res 39(3):1283–1286, PMID: 30842159, https://doi.org/10.21873/ anticances 13239
- Kahl VFS, Dhillon VS, Simon D, da Silva FR, Salvador M, Branco CDS, et al. 2018. Chronic occupational exposure endured by tobacco farmers from Brazil and association with DNA damage. Mutagenesis 33(2):119–128, PMID: 29669110, https://doi.org/10.1093/mutage/gex045.
- Arévalo-Jaramillo P, Idrobo A, Salcedo L, Cabrera A, Vintimilla A, Carrión M, et al. 2019. Biochemical and genotoxic effects in women exposed to pesticides in southern Ecuador. Environ Sci Pollut Res Int 26(24):24911–24921, PMID: 31243655, https://doi.org/10.1007/s11356-019-05725-7.
- Barrón Cuenca J, Tirado N, Barral J, Ali I, Levi M, Stenius U, et al. 2019. Increased levels of genotoxic damage in a Bolivian agricultural population exposed to mixtures of pesticides. Sci Total Environ 695:133942, PMID: 31756860, https://doi.org/10.1016/j.scitotenv.2019.133942.
- Cepeda S, Forero-Castro M, Cárdenas-Nieto D, Martínez-Agüero M, Rondón-Lagos M. 2020. Chromosomal instability in farmers exposed to pesticides: high prevalence of clonal and non-clonal chromosomal alterations. Risk Manag Healthc Policy 13:97–110, PMID: 32104116, https://doi.org/10.2147/ RMHP.S230953.
- 84. Hutter HP, Poteser M, Lemmerer K, Wallner P, Sanavi SS, Kundi M, et al. 2020. Indicators of genotoxicity in farmers and laborers of ecological and conventional banana plantations in Ecuador. Int J Environ Res Public Health 17(4):1435, PMID: 32102275, https://doi.org/10.3390/ijerph17041435.
- Salazar-Flores J, Pacheco-Moisés FP, Ortiz GG, Torres-Jasso JH, Romero-Rentería O, Briones-Torres AL, et al. 2020. Occupational exposure to organo-phosphorus and carbamates in farmers in La Cienega, Jalisco, Mexico: oxidative stress and membrane fluidity markers. J Occup Med Toxicol 15(1):32, PMID: 33133223, https://doi.org/10.1186/s12995-020-00283-y.
- da Silva J, Moraes CR, Heuser VD, Andrade VM, Silva FR, Kvitko K, et al. 2008. Evaluation of genetic damage in a Brazilian population occupationally exposed to pesticides and its correlation with polymorphisms in metabolizing genes. Mutagenesis 23(5):415–422, PMID: 18550589, https://doi.org/10.1093/mutage/ gen031.
- de Souza Espindola Santos A, Parks CG, Senna MM, de Carvalho LVB, Meyer A. 2021. Exposure to pesticides and oxidative stress in Brazilian agricultural communities. Biomarkers 26(6):539–547, PMID: 34082618, https://doi.org/10. 1080/1354750X.2021.1933593.

- Cattelan MDP, Maurer F, Garcia F, Berro LF, Machado MM, Manfredini V, et al. 2018. Occupational exposure to pesticides in family agriculture and the oxidative, biochemical and hematological profile in this agricultural model. Life Sci 203:177–183, PMID: 29689275, https://doi.org/10.1016/j.lfs.2018.04.038.
- Kahl VFS, Dhillon V, Fenech M, de Souza MR, da Silva FN, Marroni NAP, et al. 2018. Occupational exposure to pesticides in tobacco fields: the integrated evaluation of nutritional intake and susceptibility on genomic and epigenetic instability. Oxid Med Cell Longev 2018:7017423, PMID: 29967663, https://doi.org/ 10.1155/2018/7017423.
- Marcelino AF, Wachtel CC, Ghisi NdeC. 2019. Are our farm workers in danger? Genetic damage in farmers exposed to pesticides. Int J Environ Res Public Health 16(3):358, PMID: 30691246, https://doi.org/10.3390/ijerph16030358.
- Simoniello MF, Kleinsorge EC, Scagnetti JA, Grigolato RA, Poletta GL, Carballo MA. 2008. DNA damage in workers occupationally exposed to pesticide mixtures. J Appl Toxicol 28(8):957–965, PMID: 18636400, https://doi.org/ 10.1002/iat.1361
- de Bortoli GM, de Azevedo MB, da Silva LB. 2009. Cytogenetic biomonitoring of Brazilian workers exposed to pesticides: micronucleus analysis in buccal epithelial cells of soybean growers. Mutat Res 675(1–2):1–4, PMID: 19386239, https://doi.org/10.1016/j.mrgentox.2009.01.001.
- Martínez-Valenzuela C, Gómez-Arroyo S, Villalobos-Pietrini R, Waliszewski S, Calderón-Segura ME, Félix-Gastélum R, et al. 2009. Genotoxic biomonitoring of agricultural workers exposed to pesticides in the north of Sinaloa State, Mexico. Environ Int 35(8):1155–1159, PMID: 19665797, https://doi.org/10.1016/j. envint.2009.07.010.
- Remor AP, Totti CC, Moreira DA, Dutra GP, Heuser VD, Boeira JM. 2009.
 Occupational exposure of farm workers to pesticides: biochemical parameters and evaluation of genotoxicity. Environ Int 35(2):273–278, PMID: 18678410, https://doi.org/10.1016/j.envint.2008.06.011.
- Simoniello MF, Kleinsorge EC, Carballo MA. 2010. Evaluación bioquímica de trabajadores rurales expuestos a pesticidas. Medicina (B Aires) 70:489–498, PMID: 21163734.
- Payán-Rentería R, Garibay-Chávez G, Rangel-Ascencio R, Preciado-Martínez V, Muñoz-Islas L, Beltrán-Miranda C, et al. 2012. Effect of chronic pesticide exposure in farm workers of a Mexico community. Arch Environ Occup Health 67(1):22–30, PMID: 22315932, https://doi.org/10.1080/19338244.2011.564230.
- Benedetti D, Nunes E, Sarmento M, Porto C, Dos Santos CEI, Dias JF, et al. 2013. Genetic damage in soybean workers exposed to pesticides: evaluation with the comet and buccal micronucleus cytome assays. Mutat Res 752(1– 2):28–33, PMID: 23347873, https://doi.org/10.1016/j.mrgentox.2013.01.001.
- Adad LMDM, de Andrade HH, Kvitko K, Lehmann M, Calcante AADCM, Dihl RR. 2015. Occupational exposure of workers to pesticides: toxicogenetics and susceptibility gene polymorphisms. Genet Mol Biol 38(3):308–315, PMID: 26500434, https://doi.org/10.1590/S1415-475738320140336.
- Bianco GE, Suarez E, Cazon L, de la Puente TB, Ahrendts MRB, De Luca JC.
 Prevalence of chromosomal aberrations in Argentinean agricultural workers. Environ Sci Pollut Res Int 24(26):21146–21152, PMID: 28730367, https://doi.org/10.1007/s11356-017-9664-3.
- Hilgert Jacobsen-Pereira C, Dos Santos CR, Troina Maraslis F, Pimental L, Feigó AJL, Silva CI, et al. 2018. Markers of genotoxicity and oxidative stress in farmers exposed to pesticides. Ecotoxicol Environ Saf 148:177–183, PMID: 29055201, https://doi.org/10.1016/j.ecoenv.2017.10.004.
- 101. de Oliveira AFB, de Souza MR, Benedetti D, Scotti AS, Piazza LS, Garcia ALH, et al. 2019. Investigation of pesticide exposure by genotoxicological, biochemical, genetic polymorphic and in silico analysis. Ecotoxicol Environ Saf 179:135–142, PMID: 31035247, https://doi.org/10.1016/j.ecoenv.2019.04.023.
- 102. Lovison Sasso E, Cattaneo R, Rosso Storck T, Spanamberg Mayer M, Sant'Anna V, Clasen B. 2021. Occupational exposure of rural workers to pesticides in a vegetable-producing region in Brazil. Environ Sci Pollut Res Int 28(20):25758–25769, PMID: 33469792, https://doi.org/10.1007/s11356-021-12444-5.
- 103. Filippi I, Lucero P, Bonansea RI, Lerda D, Butinof M, Fernandez RA, et al. 2021. Validation of exposure indexes to pesticides through the analysis of exposure and effect biomarkers in ground pesticide applicators from Argentina. Heliyon 7(9):e07921, PMID: 34522813, https://doi.org/10.1016/j.heliyon.2021.e07921.
- 104. Mañas F, Agost L, Salinero MC, Méndez Á, Aiassa D. 2021. Cytogenetic markers and their spatial distribution in a population living in proximity to areas sprayed with pesticides. Environ Toxicol Pharmacol 88:103736, PMID: 34478866, https://doi.org/10.1016/j.etap.2021.103736.
- 105. Paz-y-Miño C, Muñoz MJ, Maldonado A, Valladares C, Cumbal N, Herrera C, et al. 2011. Baseline determination in social, health, and genetic areas in communities affected by glyphosate aerial spraying on the northeastern Ecuadorian border. Rev Environ Health 26(1):45–51, PMID: 21714381, https://doi.org/10.1515/reveh.2011.007.
- 106. Varona-Uribe ME, Torres-Rey CH, Díaz-Criollo S, Palma-Parra RM, Narváez DM, Carmona SP, et al. 2016. Exposure to pesticide mixtures and DNA

- damage among rice field workers. Arch Environ Occup Health 71(1):3-9, PMID: 24972111, https://doi.org/10.1080/19338244.2014.910489.
- Torres-Sánchez L, Rothenberg SJ, Schnaas L, Cebrián ME, Osoria E, Del Carmen Hernández M, et al. 2007. *In utero p,p'*-DDE exposure and infant neurodevelopment: a perinatal cohort in Mexico. Environ Health Perspect 115(3):435–439, PMID: 17431495, https://doi.org/10.1289/ehp.9566.
- Torres-Sánchez L, Schnaas L, Cebrián ME, Hernández MdelC, Valencia EO, García Hernández RM, et al. 2009. Prenatal dichlorodiphenyldichloroethylene (DDE) exposure and neurodevelopment: a follow-up from 12 to 30 months of age. Neurotoxicology 30(6):1162–1165, PMID: 19733589, https://doi.org/10.1016/ i.neuro.2009.08.010.
- 109. Bahena-Medina LA, Torres-Sánchez L, Schnaas L, Cebrián ME, Chávez CH, Osorio-Valencia E, et al. 2011. Neonatal neurodevelopment and prenatal exposure to dichlorodiphenyldichloroethylene (DDE): a cohort study in Mexico. J Expo Sci Environ Epidemiol 21(6):609–614, PMID: 21750576, https://doi.org/ 10.1038/jes.2011.25.
- Dallaire R, Muckle G, Rouget F, Kadhel P, Bataille H, Guldner L, et al. 2012. Cognitive, visual, and motor development of 7-month-old Guadeloupean infants exposed to chlordecone. Environ Res 118:79–85, PMID: 22910562, https://doi.org/ 10.1016/j.envres.2012.07.006.
- Boucher O, Simard MN, Muckle G, Rouget F, Kadhel P, Bataille H, et al. 2013. Exposure to an organochlorine pesticide (chlordecone) and development of 18-month-old infants. Neurotoxicology 35:162–168, PMID: 23376090, https://doi.org/10.1016/j.neuro.2013.01.007.
- Torres-Sánchez L, Schnaas L, Rothenberg SJ, Cebrián ME, Osorio-Valencia E, Hernández MdelC, et al. 2013. Prenatal p,p'-DDE exposure and neurodevelopment among children 3.5–5 years of age. Environ Health Perspect 121(2):263– 268, PMID: 23151722, https://doi.org/10.1289/ehp.1205034.
- Osorio-Valencia E, Torres-Sánchez L, López-Carrillo L, Cebrián ME, Rothenberg SJ, Hernández Chávez MdelC, et al. 2015. Prenatal p,p'-DDE exposure and establishment of lateralization and spatial orientation in Mexican preschooler. Neurotoxicology 47:1–7, PMID: 25572880, https://doi.org/10.1016/j.neuro.2014. 12.011.
- 114. Ogaz-González R, Mérida-Ortega Á, Torres-Sánchez L, Schnaas L, Hernández-Alcaraz C, Cebrián ME, et al. 2018. Maternal dietary intake of polyunsaturated fatty acids modifies association between prenatal DDT exposure and child neurodevelopment: a cohort study. Environ Pollut 238:698–705, PMID: 29621729, https://doi.org/10.1016/j.envpol.2018.03.100.
- Saint-Amour D, Muckle G, Gagnon-Chauvin A, Rouget F, Monfort C, Michineau L, et al. 2020. Visual contrast sensitivity in school-age Guadeloupean children exposed to chlordecone. Neurotoxicology 78:195–201, PMID: 32217184, https://doi.org/10.1016/j.neuro.2020.02.012.
- 116. Cordier S, Forget-Dubois N, Desrochers-Couture M, Rouget F, Michineau L, Monfort C, et al. 2020. Prenatal and childhood exposure to chlordecone and sex-typed toy preference of 7-year-old Guadeloupean children. Environ Sci Pollut Res Int 27(33):40971–40979, PMID: 31264154, https://doi.org/10.1007/s11356-019-05686-x.
- 117. Cordier S, Bouquet E, Warembourg C, Massart C, Rouget F, Kadhel P, et al. 2015. Perinatal exposure to chlordecone, thyroid hormone status and neuro-development in infants: the Timoun cohort study in Guadeloupe (French West Indies). Environ Res 138:271–278, PMID: 25747818, https://doi.org/10.1016/j.envres.2015.02.021.
- 118. Campos É, Freire C, Novaes CdeO, Koifman RJ, Koifman S. 2015. Exposure to organochloride pesticides and the cognitive development of children and adolescents living in a contaminated area in Brazil. Rev Bras Saude Matern Infant 15(1):105–120, https://doi.org/10.1590/S1519-38292015000100009.
- Steenland K, Mora AM, Barr DB, Juncos J, Roman N, Wesseling C. 2014.
 Organochlorine chemicals and neurodegeneration among elderly subjects in Costa Rica. Environ Res 134:205–209, PMID: 25173053, https://doi.org/10.1016/j. envres.2014.07.024.
- Handal AJ, Harlow SD, Breilh J, Lozoff B. 2008. Occupational exposure to pesticides during pregnancy and neurobehavioral development of infants and toddlers. Epidemiology 19(6):851–859, PMID: 18813021, https://doi.org/10.1097/EDE.0b013e318187cc5d.
- Handal AJ, Lozoff B, Breilh J, Harlow SD. 2007. Neurobehavioral development in children with potential exposure to pesticides. Epidemiology 18(3):312–320, PMID: 17435439, https://doi.org/10.1097/01.ede.0000259983.55716.bb.
- Suarez-Lopez JR, Himes JH, Jacobs DR Jr, Alexander BH, Gunnar MR. 2013.
 Acetylcholinesterase activity and neurodevelopment in boys and girls.
 Pediatrics 132(6):e1649–e1658, PMID: 24249815, https://doi.org/10.1542/peds. 2013-0108.
- 123. Harari R, Julvez J, Murata K, Barr D, Bellinger DC, Debes F, et al. 2010. Neurobehavioral deficits and increased blood pressure in school-age children prenatally exposed to pesticides. Environ Health Perspect 118(6):890–896, PMID: 20185383, https://doi.org/10.1289/ehp.0901582.

- 124. Suarez-Lopez JR, Hood N, Suárez-Torres J, Gahagan S, Gunnar MR, López-Paredes D. 2019. Associations of acetylcholinesterase activity with depression and anxiety symptoms among adolescents growing up near pesticide spray sites. Int J Hyg Environ Health 222(7):981–990, PMID: 31202795, https://doi.org/10.1016/j.ijheh.2019.06.001.
- 125. Suarez-Lopez JR, Nguyen A, Klas J, Gahagan S, Checkoway H, Lopez-Paredes D, et al. 2021. Associations of acetylcholinesterase inhibition between pesticide spray seasons with depression and anxiety symptoms in adolescents, and the role of sex and adrenal hormones on gender moderation. Expo Health 13(1):51–64, PMID: 33748533, https://doi.org/10.1007/s12403-020-00361-w.
- 126. Suarez-Lopez JR, Checkoway H, Jacobs DR Jr, Al-Delaimy WK, Gahagan S. 2017. Potential short-term neurobehavioral alterations in children associated with a peak pesticide spray season: the Mother's Day flower harvest in Ecuador. Neurotoxicology 60:125–133, PMID: 28188819, https://doi.org/10.1016/j.neuro.2017.02.002.
- Muñoz-Quezada MT, Iglesias V, Lucero-Mondaca B. 2011. Exposición a organofosforados y desempeño cognitivo en escolares rurales chilenos: un estudio exploratorio. Rev Fac Nac Salud Pública 29(3):256–263.
- 128. Fortenberry GZ, Meeker JD, Sánchez BN, Barr DB, Panuwet P, Bellinger D, et al. 2014. Urinary 3,5,6-trichloro-2-pyridinol (TCPY) in pregnant women from Mexico City: distribution, temporal variability, and relationship with child attention and hyperactivity. Int J Hyg Environ Health 217(2–3):405–412, PMID: 24001412, https://doi.org/10.1016/j.ijheh.2013.07.018.
- 129. Martos-Mula AJ, Saavedra ON, Wierna NR, Ruggeri MA, Tschambler JA, Carreras A, et al. 2013. Afectación de las funciones cognitivas y motoras en niños residentes de zonas rurales de Jujuy y su relación con plaguicidas inhibidores de la colinesterasa: un estudio piloto. Acta Toxicol Argent 21(1):15–25.
- Handal AJ, Lozoff B, Breilh J, Harlow SD. 2007. Effect of community of residence on neurobehavioral development in infants and young children in a flower-growing region of Ecuador. Environ Health Perspect 115(1):128–133, PMID: 17366832, https://doi.org/10.1289/ehp.9261.
- 131. Corral SA, de Angel V, Salas N, Zúñiga-Venegas L, Gaspar PA, Pancetti F. 2017. Cognitive impairment in agricultural workers and nearby residents exposed to pesticides in the Coquimbo Region of Chile. Neurotoxicol Teratol 62:13–19, PMID: 28579518, https://doi.org/10.1016/j.ntt.2017.05.003.
- 132. Muñoz-Quezada MT, Lucero B, Iglesias V, Muñoz MP, Achú E, Cornejo C, et al. 2016. Organophosphate pesticides and neuropsychological and motor effects in the Maule Region, Chile [in Spanish]. Gac Sanit 30(3):227–231, PMID: 26907086, https://doi.org/10.1016/j.gaceta.2016.01.006.
- 133. Ramírez-Santana M, Zúñiga-Venegas L, Corral S, Roeleveld N, Groenewoud H, Van der Velden K, et al. 2020. Reduced neurobehavioral functioning in agricultural workers and rural inhabitants exposed to pesticides in northern Chile and its association with blood biomarkers inhibition. Environ Health 19(1):84, PMID: 32698901, https://doi.org/10.1186/s12940-020-00634-6.
- 134. Ramírez-Santana M, Zúñiga-Venegas L, Corral S, Roeleveld N, Groenewoud H, van der Velden K, et al. 2020. Association between cholinesterase's inhibition and cognitive impairment: a basis for prevention policies of environmental pollution by organophosphate and carbamate pesticides in Chile. Environ Res 186:109539, PMID: 32361078, https://doi.org/10.1016/j.envres.2020.109539.
- 135. Grillo Pizarro Á, Achú Peralta E, Muñoz-Quezada MT, Lucero Mondaca B. 2018. Exposure to organophosphate pesticides and peripheral polyneuropathy in workers from Maule Region, Chile [in Spanish]. Rev Esp Salud Publica 92: e201803006, PMID: 29553128.
- 136. Wesseling C, van Wendel de Joode B, Keifer M, London L, Mergler D, Stallones L. 2010. Symptoms of psychological distress and suicidal ideation among banana workers with a history of poisoning by organophosphate or n-methyl carbamate pesticides. Occup Environ Med 67(11):778–784, PMID: 20798019, https://doi.org/10.1136/oem.2009.047266.
- 137. Serrano-Medina A, Ugalde-Lizárraga A, Bojorquez-Cuevas MS, Garnica-Ruiz J, González-Corral MA, García-Ledezma A, et al. 2019. Neuropsychiatric disorders in farmers associated with organophosphorus pesticide exposure in a rural village of northwest México. Int J Environ Res Public Health 16(5):689, PMID: 30813607, https://doi.org/10.3390/ijerph16050689.
- Buralli RJ, Ribeiro H, Iglesias V, Muñoz-Quezada MT, Leão RS, Marques RC, et al. 2020. Occupational exposure to pesticides and health symptoms among family farmers in Brazil. Rev Saude Publica 54:133, PMID: 33331527, https://doi.org/ 10.11606/s1518-8787.2020054002263.
- 139. Lu C, Essig C, Root C, Rohlman DS, McDonald T, Sulzbacher S. 2009. Assessing the association between pesticide exposure and cognitive development in rural Costa Rican children living in organic and conventional coffee farms. Int J Adolesc Med Health 21(4):609–621, PMID: 20306773, https://doi.org/10.1515/ ijamh.2009.21.4.609.
- 140. van Wendel de Joode B, Mora AM, Lindh CH, Hernández-Bonilla D, Córdoba L, Wesseling C, et al. 2016. Pesticide exposure and neurodevelopment in children aged 6–9 years from Talamanca, Costa Rica. Cortex 85:137–150, PMID: 277773359, https://doi.org/10.1016/j.cortex.2016.09.003.

- 141. Mora AM, Córdoba L, Cano JC, Hernandez-Bonilla D, Pardo L, Schnaas L, et al. 2018. Prenatal mancozeb exposure, excess manganese, and neurode-velopment at 1 year of age in the Infants' Environmental Health (ISA) study. Environ Health Perspect 126(5):057007, PMID: 29847083, https://doi.org/10.1289/EHP1955.
- 142. Watkins DJ, Fortenberry GZ, Sánchez BN, Barr DB, Panuwet P, Schnaas L, et al. 2016. Urinary 3-phenoxybenzoic acid (3-PBA) levels among pregnant women in Mexico City: distribution and relationships with child neurodevelopment. Environ Res 147:307–313, PMID: 26922411, https://doi.org/10.1016/j.envres.2016.02.025.
- 143. Eckerman DA, Gimenes LS, de Souza RC, Galvão PR, Sarcinelli PN, Chrisman JR. 2007. Age related effects of pesticide exposure on neurobehavioral performance of adolescent farm workers in Brazil. Neurotoxicol Teratol 29(1):164–175, PMID: 17123781, https://doi.org/10.1016/j.ntt.2006.09.028.
- 144. Friedman E, Hazlehurst MF, Loftus C, Karr C, McDonald KN, Suarez-Lopez JR. 2020. Residential proximity to greenhouse agriculture and neurobehavioral performance in Ecuadorian children. Int J Hyg Environ Health 223(1):220–227, PMID: 31607631, https://doi.org/10.1016/j.ijheh.2019.08.009.
- 145. Christian MA, Samms-Vaughan M, Lee M, Bressler J, Hessabi M, Grove ML, et al. 2018. Maternal exposures associated with autism spectrum disorder in Jamaican children. J Autism Dev Disord 48(8):2766–2778, PMID: 29549549, https://doi.org/10.1007/s10803-018-3537-6.
- 146. Steenland K, Wesseling C, Román N, Quirós I, Juncos JL. 2013. Occupational pesticide exposure and screening tests for neurodegenerative disease among an elderly population in Costa Rica. Environ Res 120:96–101, PMID: 23092715, https://doi.org/10.1016/j.envres.2012.08.014.
- Hansen MRH, Jørs E, Lander F, Condarco G, Debes F, Bustillos NT, et al. 2017. Neurological deficits after long-term pyrethroid exposure. Environ Health Insights 11:1178630217700628, PMID: 28469448, https://doi.org/10. 1177/1178630217700628.
- 148. Conti CL, Barbosa WM, Simão JBP, Álvares-da-Silva AM. 2018. Pesticide exposure, tobacco use, poor self-perceived health and presence of chronic disease are determinants of depressive symptoms among coffee growers from Southeast Brazil. Psychiatry Res 260:187–192, PMID: 29202382, https://doi.org/10.1016/j.psychres.2017.11.063.
- 149. Campos Y, dos Santos Pinto da Silva V, Sarpa Campos de Mello M, Barros Otero U. 2016. Exposure to pesticides and mental disorders in a rural population of southern Brazil. Neurotoxicology 56:7–16, PMID: 27350176, https://doi.org/10.1016/j.neuro.2016.06.002.
- 150. Conti CL, Borçoi AR, Almança CCJ, Barbosa WM, Archanjo AB, de Assis Pinheiro J, et al. 2020. Factors associated with depressive symptoms among rural residents from remote areas. Community Ment Health J 56(7):1292–1297, PMID: 32451795, https://doi.org/10.1007/s10597-020-00637-0.
- 151. Farnham A, Fuhrimann S, Staudacher P, Quirós-Lépiz M, Hyland C, Winkler MS, et al. 2021. Long-term neurological and psychological distress symptoms among smallholder farmers in Costa Rica with a history of acute pesticide poisoning. Int J Environ Res Public Health 18(17):9021, PMID: 34501611, https://doi.org/10.3390/ijerph18179021.
- Faria NM, Fassa AG, Meucci RD, Fiori NS, Miranda VI. 2014. Occupational exposure to pesticides, nicotine and minor psychiatric disorders among tobacco farmers in southern Brazil. Neurotoxicology 45:347–354, PMID: 24875484, https://doi.org/10.1016/j.neuro.2014.05.002.
- 153. Cruzeiro Szortyka ALS, Faria NMX, Carvalho MP, Feijó FR, Meucci RD, Flesch BD, et al. 2021. Suicidality among South Brazilian tobacco growers. Neurotoxicology 86:52–58, PMID: 34214458, https://doi.org/10.1016/j.neuro.2021.06.005.
- 154. Gonzaga CWP, Baldo MP, Caldeira AP. 2021. Exposure to pesticides or agroecological practices: suicidal ideation among peasant farmers in Brazil's semiarid region. Cien Saude Colet 26(9):4243–4252, PMID: 34586275, https://doi.org/ 10.1590/1413-81232021269.09052020.
- 155. Portilla-Portilla Á, Pinilla-Monsalve GD, Caballero-Carvajal AJ, Gómez-Rodrígues E, Márin-Hernández LR, et al. 2014. Prevalencia de signos y síntomas asociados a la exposición directa a plaguicidas neurotóxicos en una población rural colombiana en 2013. Rev Medicas UIS 27(2):41–49.
- 156. Vasconcellos PRO, Rizzotto MLF, Obregón PL, Alonzo HGA. 2020. Exposição a agrotóxicos na agricultura e doença de Parkinson em usuários de um serviço público de saúde do Paraná, Brasil. Cad Saude Colet 28:567–578, https://doi.org/10.1590/1414-462x202028040109.
- Silvestre GCSB, Ferreira MJM, Figueiredo SEFMR, Silva CALD, Siqueira HH, Silva AMCD. 2020. Parkinson disease and occupational and environmental exposure to pesticides in a region of intense agribusiness activity in Brazil: a case—control study. J Occup Environ Med 62(12):e732—e737, PMID: 33031131, https://doi.org/10.1097/JOM.000000000002043.
- 158. de Azevedo MFA, Meyer A. 2017. Essential tremor in endemic disease control agents exposed to pesticides: a case-control study [in Portuguese]. Cad Saude Publica 33(8):e00194915, PMID: 28832787, https://doi.org/10.1590/0102-311X00194915.

- 159. de Araújo AJ, de Lima JS, Moreira JC, Jacob SdoC, Soares MdeO, Monteiro MCM, et al. 2007. Exposição múltipla a agrotóxicos e efeitos à saúde: estudo transversal em amostra de 102 trabalhadores rurais, Nova Friburgo, RJ. Cien Saude Colet 12(1):115–130, PMID: 17680063, https://doi.org/10.1590/S1413-81232007000100015.
- 160. Palzes VA, Sagiv SK, Baker JM, Rojas-Valverde D, Gutiérrez-Vargas R, Winkler MS, et al. 2019. Manganese exposure and working memory-related brain activity in smallholder farmworkers in Costa Rica: results from a pilot study. Environ Res 173:539–548, PMID: 30991177, https://doi.org/10.1016/j.envres.2019.04.006.
- Bustamante Montes LP, Waliszewski S, Hernández-Valero M, Sanín-Aguirre L, Infanzón-Ruiz RM, Jañas AG. 2010. Prenatal exposure to organochlorine pesticides and cryptorchidism [in Spanish]. Cien Saude Colet 15(suppl 1):1169–1174, PMID: 20640275, https://doi.org/10.1590/S1413-81232010000700025.
- 162. Oliveira NP, Moi GP, Atanaka-Santos M, Silva AM, Pignati WA. 2014. Congenital defects in the cities with high use of pesticides in the state of Mato Grosso, Brazil [in Portuguese]. Cien Saude Colet 19(10):4123–4130, PMID: 25272121, https://doi.org/10.1590/1413-812320141910.08512014.
- 163. Ueker ME, Silva VM, Moi GP, Pignati WA, Mattos IE, Silva AMC. 2016. Parenteral exposure to pesticides and occurence of congenital malformations: hospital-based case—control study. BMC Pediatr 16(1):125, PMID: 27520287, https://doi.org/10.1186/s12887-016-0667-x.
- 164. Gaspari L, Sampaio DR, Paris F, Audran F, Orsini M, Neto JB, et al. 2012. High prevalence of micropenis in 2710 male newborns from an intensive-use pesticide area of Northeastern Brazil. Int J Androl 35(3):253–264, PMID: 22372605, https://doi.org/10.1111/j.1365-2605.2011.01241.x.
- 165. Castillo-Cadena J, Mejia-Sanchez F, López-Arriaga JA. 2017. Congenital malformations according to etiology in newborns from the floricultural zone of Mexico state. Environ Sci Pollut Res Int 24(8):7662–7667, PMID: 28124266, https://doi.org/10.1007/s11356-017-8429-3.
- 166. Silva SR, Martins JL, Seixas S, Silva DC, Lemos SP, Lemos PV. 2011. Congenital defects and exposure to pesticides in São Francisco Valley [in Portuguese]. Rev Bras Ginecol Obstet 33(1):20–26, PMID: 21625789.
- 167. Rouget F, Kadhel P, Monfort C, Viel JF, Thome JP, Cordier S, et al. 2020. Chlordecone exposure and risk of congenital anomalies: the Timoun Mother–Child Cohort Study in Guadeloupe (French West Indies). Environ Sci Pollut Res Int 27(33):40992–40998, PMID: 31376129, https://doi.org/10.1007/s11356-019-06031-y.
- 168. Vera B, Santa Cruz S, Magnarelli G. 2012. Plasma cholinesterase and carboxy-lesterase activities and nuclear and mitochondrial lipid composition of human placenta associated with maternal exposure to pesticides. Reprod Toxicol 34(3):402–407, PMID: 22580221, https://doi.org/10.1016/j.reprotox.2012.04.007.
- 169. Rivero Osimani VL, Valdez SR, Guiñazú N, Magnarelli G. 2016. Alteration of syncytiotrophoblast mitochondria function and endothelial nitric oxide synthase expression in the placenta of rural residents. Reprod Toxicol 61:47–57, PMID: 26939719, https://doi.org/10.1016/j.reprotox.2016.02.018.
- 170. Bulgaroni V, Lombardo P, Rivero-Osimani V, Vera B, Dulgerian L, Cerbán F, et al. 2013. Environmental pesticide exposure modulates cytokines, arginase and ornithine decarboxylase expression in human placenta. Reprod Toxicol 39:23–32, PMID: 23557688, https://doi.org/10.1016/j.reprotox.2013.03.010.
- 171. Acosta-Maldonado B, Sánchez-Ramírez B, Reza-López S, Levario-Carrillo M. 2009. Effects of exposure to pesticides during pregnancy on placental maturity and weight of newborns: a cross-sectional pilot study in women from the Chihuahua State, Mexico. Hum Exp Toxicol 28(8):451–459, PMID: 19744971, https://doi.org/10.1177/0960327109107045.
- 172. Chiapella G, Genti-Raimondi S, Magnarelli G. 2014. Placental oxidative status in rural residents environmentally exposed to organophosphates. Environ Toxicol Pharmacol 38(1):220–229, PMID: 24959959, https://doi.org/10.1016/j.etap.2014. 06.001.
- 173. Brureau L, Emeville E, Helissey C, Thome JP, Multigner L, Blanchet P. 2020. Endocrine disrupting-chemicals and biochemical recurrence of prostate cancer after prostatectomy: a cohort study in Guadeloupe (French West Indies). Int J Cancer 146(3):657–663, PMID: 30892691, https://doi.org/10.1002/ijc.32287.
- 174. Emeville E, Giusti A, Coumoul X, Thomé JP, Blanchet P, Multigner L. 2015. Associations of plasma concentrations of dichlorodiphenyldichloroethylene and polychlorinated biphenyls with prostate cancer: a case-control study in Guadeloupe (French West Indies). Environ Health Perspect 123(4):317–323, PMID: 25493337, https://doi.org/10.1289/ehp.1408407.
- Hyland C, Gunier RB, Metayer C, Bates MN, Wesseling C, Mora AM. 2018.
 Maternal residential pesticide use and risk of childhood leukemia in Costa Rica.
 Int J Cancer 143(6):1295–1304, PMID: 29658108, https://doi.org/10.1002/ijc.31522.
- Monge P, Wesseling C, Guardado J, Lundberg I, Ahlbom A, Cantor KP, et al. 2007. Parental occupational exposure to pesticides and the risk of childhood leukemia in Costa Rica. Scand J Work Environ Health 33(4):293–303, PMID: 17717622, https://doi.org/10.5271/sjweb.1146.
- Hernández-Morales AL, Zonana-Nacach A, Zaragoza-Sandoval VM. 2009.
 Associated risk factors in acute leukemia in children. A cases and controls

- study [in Spanish]. Rev Med Inst Mex Seguro Soc 47(5):497-503, PMID: 20550859.
- 178. Ferreira JD, Couto AC, Pombo-de-Oliveira MS, Koifman S, Brazilian Collaborative Study Group of Infant Acute Leukemia. 2013. *In utero* pesticide exposure and leukemia in Brazilian children < 2 years of age. Environ Health Perspect 121(2):269–275, PMID: 23092909, https://doi.org/10.1289/ehp.1103942.</p>
- 179. Ferreira JD, Couto AC, Alves LC, Pombo de Oliveira MdoS, Koifman S. 2012. Exposições ambientais e leucemias na infância no Brasil: uma análise exploratória de Sua associação. Rev Bras Estud Popul 29:477–492, https://doi.org/ 10.1590/S0102-30982012000200014.
- Ortega Jacome GP, Koifman RJ, Rego Monteiro GT, Koifman S. 2010.
 Environmental exposure and breast cancer among young women in Rio de Janeiro, Brazil. J Toxicol Environ Health A 73(13–14):858–865, PMID: 20563919, https://doi.org/10.1080/15287391003744773.
- 181. Silva AMC, Campos PHN, Mattos IE, Hajat S, Lacerda EM, Ferreira MJM. 2019. Environmental exposure to pesticides and breast cancer in a region of intensive agribusiness activity in Brazil: a case-control study. Int J Environ Res Public Health 16(20):3951, PMID: 31627286, https://doi.org/10. 3390/ijerph16203951.
- 182. Segatto MM, Bonamigo RR, Hohmann CB, Müller KR, Bakos L, Mastroeni S, et al. 2015. Residential and occupational exposure to pesticides may increase risk for cutaneous melanoma: a case—control study conducted in the south of Brazil. Int J Dermatol 54(12):e527—e538, PMID: 26266338, https://doi.org/10.1111/jid.12826.
- Boccolini PM, Boccolini CS, Chrisman JR, Koifman RJ, Meyer A. 2017. Non-Hodgkin lymphoma among Brazilian agricultural workers: a death certificate case-control study. Arch Environ Occup Health 72(3):139–144, PMID: 27097109, https://doi.org/10.1080/19338244.2016.1179167.
- 184. Meyer A, Alexandre PC, Chrisman JdeR, Markowitz SB, Koifman RJ, Koifman S. 2011. Esophageal cancer among Brazilian agricultural workers: case—control study based on death certificates. Int J Hyg Environ Health 214(2):151–155, PMID: 21159552, https://doi.org/10.1016/j.ijheh.2010.11.002.
- 185. Miranda-Filho AL, Monteiro GT, Meyer A. 2012. Brain cancer mortality among farm workers of the State of Rio de Janeiro, Brazil: a population-based case control study, 1996–2005. Int J Hyg Environ Health 215(5):496–501, PMID: 22118878, https://doi.org/10.1016/j.ijheh.2011.10.007.
- 186. Boccolini PdeMM, Asmus CIRF, Chrisman JdeR, Câmara VdeM, Markowitz SB, Meyer A. 2014. Stomach cancer mortality among agricultural workers: results from a death certificate-based case—control study. Cad Saude Colet 22:86–92, https://doi.org/10.1590/1414-462X201400010013.
- 187. Freire C, Koifman RJ, Sarcinelli P, Rosa AC, Clapauch R, Koifman S. 2012. Long term exposure to organochlorine pesticides and thyroid function in children from Cidade dos Meninos, Rio de Janeiro, Brazil. Environ Res 117:68–74, PMID: 22776325, https://doi.org/10.1016/j.envres.2012.06.009.
- 188. Arrebola JP, Cuellar M, Bonde JP, González-Alzaga B, Mercado LA. 2016. Associations of maternal o,p'-DDT and p,p'-DDE levels with birth outcomes in a Bolivian cohort. Environ Res 151:469–477, PMID: 27567351, https://doi.org/10. 1016/i.envres.2016.08.008.
- 189. Ayhan G, Rouget F, Giton F, Costet N, Michineau L, Monfort C, et al. 2021. In utero chlordecone exposure and thyroid, metabolic, and sex-steroid hormones at the age of seven years: a study from the TIMOUN Mother–Child Cohort in Guadeloupe. Front Endocrinol 12:771641, PMID: 34880833, https://doi.org/10.3389/fendo.2021.771641.
- Freire C, Koifman RJ, Sarcinelli PN, Simões Rosa AC, Clapauch R, Koifman S.
 2013. Long-term exposure to organochlorine pesticides and thyroid status in adults in a heavily contaminated area in Brazil. Environ Res 127:7–15, PMID: 24183346, https://doi.org/10.1016/j.envres.2013.09.001.
- Piccoli C, Cremonese C, Koifman RJ, Koifman S, Freire C. 2016. Pesticide exposure and thyroid function in an agricultural population in Brazil. Environ Res 151:389–398, PMID: 27540871, https://doi.org/10.1016/j.envres.2016.08.011.
- Blanco-Muñoz J, Lacasaña M, López-Flores I, Rodríguez-Barranco M, González-Alzaga B, Bassol S, et al. 2016. Association between organochlorine pesticide exposure and thyroid hormones in floriculture workers. Environ Res 150:357–363, PMID: 27344267, https://doi.org/10.1016/j.envres.2016.05.054.
- 193. Hernández-Mariano JÁ, Torres-Sánchez L, Bassol-Mayagoitia S, Escamilla-Nuñez MC, Cebrian ME, Villeda-Gutiérrez ÉA, et al. 2017. Effect of exposure to p,p'-DDE during the first half of pregnancy in the maternal thyroid profile of female residents in a Mexican floriculture area. Environ Res 156:597–604, PMID: 28448812, https://doi.org/10.1016/j.envres.2017.04.013.
- 194. Londoño ÁL, Restrepo B, Sánchez JF, García-Ríos A, Bayona A, Landázuri P. 2018. Pesticides and hypothyroidism in farmers of plantain and coffee growing areas in Quindio, Colombia [in Spanish]. Rev Salud Publ (Bogota) 20(2):215–220, PMID: 30570004, https://doi.org/10.15446/rsap.v20n2.57694.
- 195. Phillips S, Suarez-Torres J, Checkoway H, Lopez-Paredes D, Gahagan S, Suarez-Lopez JR. 2021. Acetylcholinesterase activity and thyroid hormone levels in Ecuadorian adolescents living in agricultural settings where

- organophosphate pesticides are used. Int J Hyg Environ Health 233:113691, PMID: 33581413, https://doi.org/10.1016/j.ijheh.2021.113691.
- 196. Lacasaña M, López-Flores I, Rodríguez-Barranco M, Aguilar-Garduño C, Blanco-Muñoz J, Pérez-Méndez O, et al. 2010. Association between organo-phosphate pesticides exposure and thyroid hormones in floriculture workers. Toxicol Appl Pharmacol 243(1):19–26, PMID: 19914268, https://doi.org/10.1016/j.taap.2009.11.008.
- 197. Lacasaña M, López-Flores I, Rodríguez-Barranco M, Aguilar-Garduño C, Blanco-Muñoz J, Pérez-Méndez O, et al. 2010. Interaction between organo-phosphate pesticide exposure and PON1 activity on thyroid function. Toxicol Appl Pharmacol 249(1):16–24, PMID: 20691716, https://doi.org/10.1016/j.taap. 2010.07.024.
- Bernieri T, Rodrigues D, Barbosa IR, Ardenghi PG, Basso da Silva L. 2019.
 Occupational exposure to pesticides and thyroid function in Brazilian soybean farmers. Chemosphere 218:425–429, PMID: 30476775, https://doi.org/10.1016/j. chemosphere.2018.11.124.
- 199. Torres-Sánchez L, Gamboa R, Bassol-Mayagoitia S, Huesca-Gómez C, Nava MP, Vázquez-Potisek JI, et al. 2019. Para-occupational exposure to pesticides, PON1 polymorphisms and hypothyroxinemia during the first half of pregnancy in women living in a Mexican floricultural area. Environ Health 18(1):33, PMID: 30975138, https://doi.org/10.1186/s12940-019-0470-x.
- 200. Miranda-Contreras L, Gómez-Pérez R, Rojas G, Cruz I, Berrueta L, Salmen S, et al. 2013. Occupational exposure to organophosphate and carbamate pesticides affects sperm chromatin integrity and reproductive hormone levels among Venezuelan farm workers. J Occup Health 55(3):195–203, PMID: 23445617, https://doi.org/10.1539/joh.12-0144-fs.
- Santos R, Piccoli C, Cremonese C, Freire C. 2019. Thyroid and reproductive hormones in relation to pesticide use in an agricultural population in Southern Brazil. Environ Res 173:221–231, PMID: 30928852, https://doi.org/10. 1016/j.envres.2019.03.050.
- Blanco-Muñoz J, Lacasaña M, Aguilar-Garduño C, Rodríguez-Barranco M, Bassol S, Cebrián ME, et al. 2012. Effect of exposure to p,p'-DDE on male hormone profile in Mexican flower growers. Occup Environ Med 69(1):5–11, PMID: 21558473, https://doi.org/10.1136/oem.2010.059667.
- Freire C, Koifman RJ, Sarcinelli PN, Rosa AC, Clapauch R, Koifman S. 2014.
 Association between serum levels of organochlorine pesticides and sex hormones in adults living in a heavily contaminated area in Brazil. Int J Hyg Environ Health 217(2–3):370–378, PMID: 23972672, https://doi.org/10.1016/j.ijheh.2013.07.012.
- 204. Bastos AM, Souza MdoC, Almeida Filho GL, Krauss TM, Pavesi T, Silva LE. 2013. Organochlorine compound levels in fertile and infertile women from Rio de Janeiro, Brazil. Arq Bras Endocrinol Metabol 57(5):346–353, PMID: 23896800, https://doi.org/10.1590/s0004-27302013000500003.
- Aguilar-Garduño C, Lacasaña M, Blanco-Muñoz J, Rodríguez-Barranco M, Hernández AF, Bassol S, et al. 2013. Changes in male hormone profile after occupational organophosphate exposure. A longitudinal study. Toxicology 307:55–65, PMID: 23153546, https://doi.org/10.1016/j.tox.2012.11.001.
- Cecchi A, Rovedatti MG, Sabino G, Magnarelli GG. 2012. Environmental exposure to organophosphate pesticides: assessment of endocrine disruption and hepatotoxicity in pregnant women. Ecotoxicol Environ Saf 80:280–287, PMID: 22494479. https://doi.org/10.1016/j.ecoenv.2012.03.008.
- Blanco-Muñoz J, Morales MM, Lacasaña M, Aguilar-Garduño C, Bassol S, Cebrián ME. 2010. Exposure to organophosphate pesticides and male hormone profile in floriculturist of the state of Morelos, Mexico. Hum Reprod 25(7):1787–1795, PMID: 20435691, https://doi.org/10.1093/humrep/deg082.
- Yucra S, Gasco M, Rubio J, Gonzales GF. 2008. Semen quality in Peruvian pesticide applicators: association between urinary organophosphate metabolites and semen parameters. Environ Health 7:59, PMID: 19014632, https://doi.org/10.1186/1476-069X-7-59.
- 209. Recio-Vega R, Ocampo-Gómez G, Borja-Aburto VH, Moran-Martínez J, Cebrian-Garcia ME. 2008. Organophosphorus pesticide exposure decreases sperm quality: association between sperm parameters and urinary pesticide levels. J Appl Toxicol 28(5):674–680, PMID: 18046699, https://doi.org/10.1002/jat.1321.
- Silvia SC, Magnarelli G, Rovedatti MG. 2020. Evaluation of endocrine disruption and gestational disorders in women residing in areas with intensive pesticide application: an exploratory study. Environ Toxicol Pharmacol 73:103280, PMID: 31683255, https://doi.org/10.1016/j.etap.2019.103280.
- Sanin LH, Carrasquilla G, Solomon KR, Cole DC, Marshall EJ. 2009. Regional differences in time to pregnancy among fertile women from five Colombian regions with different use of glyphosate. J Toxicol Environ Health A 72(15– 16):949–960, PMID: 19672763, https://doi.org/10.1080/15287390902929691.
- 212. Rojas M, Guevara H. 2014. Estudio preliminar sobre ocupación y estilos de vida como factores condicionantes del ciclo menstrual en mujeres de una región de Venezuela. Rev Cienc Salud 12(3):385–400, https://doi.org/10.12804/ revsalud12.03.2014.07.
- 213. Miranda-Contreras L, Cruz I, Osuna J, Gómez-Pérez R, Berrueta L, Salmen S, et al. 2015. Efectos de la exposición ocupacional a plaguicidas sobre la

- calidad del semen en trabajadores de una comunidad agrícola del estado Mérida, Venezuela. Invest Clín 56(2):123–136, PMID: 26299054.
- Cremonese C, Piccoli C, Pasqualotto F, Clapauch R, Koifman RJ, Koifman S, et al. 2017. Occupational exposure to pesticides, reproductive hormone levels and sperm quality in young Brazilian men. Reprod Toxicol 67:174–185, PMID: 28077271, https://doi.org/10.1016/j.reprotox.2017.01.001.
- 215. Cupul-Uicab LA, Hernández-Avila M, Terrazas-Medina EA, Pennell ML, Longnecker MP. 2010. Prenatal exposure to the major DDT metabolite 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) and growth in boys from Mexico. Environ Res 110(6):595–603, PMID: 20566194, https://doi.org/10.1016/j.envres.2010.06.001
- 216. Garced S, Torres-Sánchez L, Cebrián ME, Claudio L, López-Carrillo L. 2012. Prenatal dichlorodiphenyldichloroethylene (DDE) exposure and child growth during the first year of life. Environ Res 113:58–62, PMID: 22244494, https://doi.org/10.1016/j.envres.2011.12.002.
- Motta IS, Volpato GT, Damasceno DC, Sinzato YK, Vesentini G, Rudge CV, et al.
 2016. Contamination index. A novel parameter for metal and pesticide analyses in maternal blood and umbilical cord. Acta Cir Bras 31(7):490–497, PMID: 27487285, https://doi.org/10.1590/S0102-865020160070000010.
- 218. Mora AM, van Wendel de Joode B, Mergler D, Córdoba L, Cano C, Quesada R, et al. 2015. Maternal blood and hair manganese concentrations, fetal growth, and length of gestation in the ISA cohort in Costa Rica. Environ Res 136:47–56, PMID: 25460620, https://doi.org/10.1016/j.envres.2014.10.011.
- 219. Cecchi A, Alvarez G, Quidel N, Bertone MC, Anderle S, Sabino G, et al. 2021. Residential proximity to pesticide applications in Argentine Patagonia: impact on pregnancy and newborn parameters. Environ Sci Pollut Res Int 28(40):56565– 56579, PMID: 34060016, https://doi.org/10.1007/s11356-021-14574-2.
- Kadhel P, Monfort C, Costet N, Rouget F, Thomé JP, Multigner L, et al. 2014.
 Chlordecone exposure, length of gestation, and risk of preterm birth. Am J Epidemiol 179(5):536–544, PMID: 24401561, https://doi.org/10.1093/aje/kwt313.
- 221. Hervé D, Costet N, Kadhel P, Rouget F, Monfort C, Thomé JP, et al. 2016. Prenatal exposure to chlordecone, gestational weight gain, and birth weight in a Guadeloupean birth cohort. Environ Res 151:436–444, PMID: 27560981, https://doi.org/10.1016/j.envres.2016.08.004.
- 222. Costet N, Pelé F, Comets E, Rouget F, Monfort C, Bodeau-Livinec F, et al. 2015. Perinatal exposure to chlordecone and infant growth. Environ Res 142:123–134, PMID: 26133809, https://doi.org/10.1016/j.envres.2015.06.023.
- 223. Barrón Cuenca J, Tirado N, Vikström M, Lindh CH, Stenius U, Leander K, et al. 2020. Pesticide exposure among Bolivian farmers: associations between worker protection and exposure biomarkers. J Expo Sci Environ Epidemiol 30(4):730–742, PMID: 30787424, https://doi.org/10.1038/s41370-019-0128-3.
- Ruiz-Alejos A, Caplin B, Miranda JJ, Pearce N, Bernabé-Ortiz A. 2021. CKD and CKDu in northern Peru: a cross-sectional analysis under the DEGREE protocol. BMC Nephrol 22(1):37, PMID: 33478431, https://doi.org/10.1186/s12882-021-02239-8.
- 225. Vela XF, Henríquez DO, Zelaya SM, Granados DV, Hernández MX, Orantes CM. 2014. Chronic kidney disease and associated risk factors in two Salvadoran farming communities, 2012. MEDICC Rev 16(2):55–60, PMID: 24878650, https://doi.org/10.37757/MR2014.V16.N2.9.
- 226. Wesseling C, Aragón A, González M, Weiss I, Glaser J, Rivard CJ, et al. 2016. Heat stress, hydration and uric acid: a cross-sectional study in workers of three occupations in a hotspot of Mesoamerican nephropathy in Nicaragua. BMJ Open 6(12): e011034, PMID: 27932336, https://doi.org/10.1136/bmjopen-2016-011034.
- 227. Smpokou ET, González-Quiroz M, Martins C, Alvito P, Le Blond J, Glaser J, et al. 2019. Environmental exposures in young adults with declining kidney function in a population at risk of Mesoamerican nephropathy. Occup Environ Med 76(12):920–926, PMID: 31562235, https://doi.org/10.1136/oemed-2019-105772.
- 228. Sanoff SL, Callejas L, Alonso CD, Hu Y, Colindres RE, Chin H, et al. 2010. Positive association of renal insufficiency with agriculture employment and unregulated alcohol consumption in Nicaragua. Ren Fail 32(7):766–777, PMID: 20662688, https://doi.org/10.3109/0886022X.2010.494333.
- 229. Prudente IRG, Souza BRS, Nascimento LC, Gonçalves VSDS, Silva DSD, Rabelo TK, et al. 2021. Nephrotoxic effects caused by occupational exposure to agrochemicals in a region of northeastern Brazil: a cross-sectional study. Environ Toxicol Chem 40(4):1132–1138, PMID: 33315273, https://doi.org/10.1002/etc.4962.
- Raines N, González M, Wyatt C, Kurzrok M, Pool C, Lemma T, et al. 2014. Risk factors for reduced glomerular filtration rate in a Nicaraguan community affected by Mesoamerican nephropathy. MEDICC Rev 16(2):16–22, PMID: 24878645, https://doi.org/10.37757/MR2014.V16.N2.4.
- López-Gálvez N, Wagoner R, Canales RA, Ernst K, Burgess JL, de Zapien J, et al. 2021. Longitudinal assessment of kidney function in migrant farm workers. Environ Res 202:111686, PMID: 34273367, https://doi.org/10.1016/j.envres. 2021 111686
- Fieten KB, Kromhout H, Heederik D, van Wendel de Joode B. 2009. Pesticide exposure and respiratory health of indigenous women in Costa Rica. Am J Epidemiol 169(12):1500–1506, PMID: 19372212, https://doi.org/10.1093/aje/kwp060.

- 233. Buralli RJ, Ribeiro H, Mauad T, Amato-Lourenço LF, Salge JM, Diaz-Quijano FA, et al. 2018. Respiratory condition of family farmers exposed to pesticides in the state of Rio de Janeiro, Brazil. Int J Environ Res Public Health 15(6):1203, PMID: 29890615, https://doi.org/10.3390/ijerph15061203.
- 234. Díaz-Criollo S, Palma M, Monroy-García AA, Idrovo AJ, Combariza D, Varona-Uribe ME. 2020. Chronic pesticide mixture exposure including paraquat and respiratory outcomes among Colombian farmers. Ind Health 58(1):15–21, PMID: 30996154, https://doi.org/10.2486/indhealth.2018-0111.
- 235. Alhanti B, van Wendel de Joode B, Soto Martinez M, Mora AM, Córdoba Gamboa L, Reich B, et al. 2022. Environmental exposures contribute to respiratory and allergic symptoms among women living in the banana growing regions of Costa Rica. Occup Environ Med 79(7):469–476, PMID: 34969778, https://doi.org/10.1136/oemed-2021-107611.
- 236. Mora AM, Hoppin JA, Córdoba L, Cano JC, Soto-Martínez M, Eskenazi B, et al. 2020. Prenatal pesticide exposure and respiratory health outcomes in the first year of life: results from the Infants' Environmental Health (ISA) study. Int J Hyg Environ Health 225:113474, PMID: 32066110, https://doi.org/10.1016/j.ijheh. 2020.113474.
- 237. Cupul-Uicab LA, Terrazas-Medina EA, Hernández-Ávila M, Longnecker MP. 2014. Prenatal exposure to p,p'-DDE and p,p'-DDT in relation to lower respiratory tract infections in boys from a highly exposed area of Mexico. Environ Res 132:19–23, PMID: 24742723, https://doi.org/10.1016/j.envres.2014.03.017.
- Lermen J, Bernieri T, Rodrigues IS, Suyenaga ES, Ardenghi PG. 2018.
 Pesticide exposure and health conditions among orange growers in Southern Brazil. J Environ Sci Health B 53(4):215–221, PMID: 29336665, https://doi.org/ 10.1080/03601234.2017.1421823.
- 239. Bernieri T, Rodrigues D, Randon Barbosa I, Perassolo MS, Grolli Ardenghi P, Basso da Silva L. 2021. Effect of pesticide exposure on total antioxidant capacity and biochemical parameters in Brazilian soybean farmers. Drug Chem Toxicol 44(2):170–176, PMID: 30950301, https://doi.org/10.1080/01480545.2019.1566353.
- 240. Bahia CA, Guimarães RM, Asmus CIRF. 2014. Alterações nos marcadores hepáticos decorrentes da exposição ambiental a organoclorados no Brasil. Cad Saude Colet 22(2):133–141, https://doi.org/10.1590/1414-462X201400020005.
- Cestonaro LV, Garcia SC, Nascimento S, Gauer B, Sauer E, Göethel G, et al. 2020. Biochemical, hematological and immunological parameters and relationship with occupational exposure to pesticides and metals. Environ Sci Pollut Res Int 27(23):29291–29302, PMID: 32436094, https://doi.org/10.1007/s11356-020-09203-3.
- 242. Ruíz-Arias MA, Herrera-Moreno JF, Medina-Díaz IM, Bernal-Hernández YY, González-Arias CA, Rojas-García AE. 2018. β-Glucuronidase and its relationship with clinical parameters and biomarkers of pesticide exposure. J Occup Environ Med 60(11):e602–e609, PMID: 30256302, https://doi.org/10.1097/JOM. 0000000000001460.
- 243. Hernández A, Gómez MA, Pena G, Gil F, Rodrigo L, Villanueva E, et al. 2004. Effect of long-term exposure to pesticides on plasma esterases from plastic greenhouse workers. J Toxicol Environ Health A 67(14):1095–1108, PMID: 15205026, https://doi.org/10.1080/15287390490452371.
- 244. Ueyama J, Satoh T, Kondo T, Takagi K, Shibata E, Goto M, et al. 2010. β-Glucuronidase activity is a sensitive biomarker to assess low-level organo-phosphorus insecticide exposure. Toxicol Lett 193(1):115–119, PMID: 20026393, https://doi.org/10.1016/j.toxlet.2009.12.009.
- 245. Maluf E, Hamerschlak N, Cavalcanti AB, Júnior AA, Eluf-Neto J, Falcão RP, et al. 2009. Incidence and risk factors of aplastic anemia in Latin American countries: the LATIN case—control study. Haematologica 94(9):1220–1226, PMID: 19734415, https://doi.org/10.3324/haematol.2008.002642.
- Jacobsen-Pereira CH, Cardoso CC, Gehlen TC, Regina Dos Santos C, Santos-Silva MC. 2020. Immune response of Brazilian farmers exposed to multiple pesticides. Ecotoxicol Environ Saf 202:110912, PMID: 32800247, https://doi.org/ 10.1016/j.ecoenv.2020.110912.
- Dalbó J, Filgueiras LA, Mendes AN. 2019. Effects of pesticides on rural workers: haematological parameters and symptomalogical reports. Cien Saude Colet 24(7):2569–2582, PMID: 31340274, https://doi.org/10.1590/1413-81232018247. 19282017.
- 248. Cortés-Iza SC, Rodríguez AI, Prieto-Suarez E. 2017. Assessment of hematological parameters in workers exposed to organophosphorus pesticides, carbamates and pyrethroids in Cundinamarca 2016–2017. Rev Salud Publica (Bogota) 19(4):468–474, PMID: 30183850, https://doi.org/10.15446/rsap.v19n4.68092.
- 249. Piccoli C, Cremonese C, Koifman R, Koifman S, Freire C. 2019. Occupational exposure to pesticides and hematological alterations: a survey of farm residents in the South of Brazil. Cien Saude Colet 24:2325–2340, PMID: 31269189, https://doi.org/10.1590/1413-81232018246.13142017.
- 250. Molina-Pintor IB, Rojas-García AE, Bernal-Hernández YY, Medina-Díaz IM, González-Arias CA, Barrón-Vivanco BS. 2020. Relationship between butyryl-cholinesterase activity and lipid parameters in workers occupationally exposed to pesticides. Environ Sci Pollut Res Int 27(31):39365–39374, PMID: 32648216, https://doi.org/10.1007/s11356-020-08197-2.

- Siller-López F, Garzón-Castaño S, Ramos-Márquez ME, Hernández-Cañaveral I. 2017. Association of paraoxonase-1 Q192R (rs662) single nucleotide variation with cardiovascular risk in coffee harvesters of central Colombia. J Toxicol 2017:6913106, PMID: 29430251, https://doi.org/10.1155/2017/6913106.
- Guida HL, Morini RG, Cardoso ACV. 2010. Avaliação audiológica em trabalhadores expostos a ruído e praguicida. Braz J Otorhinolaryngol 76(4):423–427, PMID: 20835526, https://doi.org/10.1590/S1808-86942010000400003.
- Bazilio MM, Frota S, Chrisman JR, Meyer A, Asmus CI, Camara VdeM. 2012.
 Temporal auditory processing in rural workers exposed to pesticide. J Soc Bras Fonoaudiol 24(2):174–180, PMID: 22832687, https://doi.org/10.1590/s2179-64912012000200015.
- 254. Alcarás PAdeS, Larcerda ABM, Marques JM. 2013. Study of evoked otoa-coustic emissions and suppression effect on workers exposed to pesticides and noise. Codas 25(6):527–533, PMID: 24626978, https://pdfs.semanticscholar.org/a0b6/451a8a094fc9bc9b654131be07073d347c66.pdf [accessed 30 June 2022].
- 255. de Sena TR, Vargas MM, Oliveira CC. 2013. Hearing care and quality of life among workers exposed to pesticides [in Portuguese]. Cien Saude Colet 18(6):1753–1761, PMID: 23752541.
- 256. Garcia TR, de Andrade MIKP, Frota SM, Miranda MF, Guimarães RM, Meyer A. 2017. Função coclear em escolares expostos aos agrotóxicos. Codas 29(3): e20160078, PMID: 28538825, https://doi.org/10.1590/2317-1782/20172016078.
- 257. Tomiazzi JS, Pereira DR, Judai MA, Antunes PA, Favareto APA. 2019. Performance of machine-learning algorithms to pattern recognition and classification of hearing impairment in Brazilian farmers exposed to pesticide and/or cigarette smoke. Environ Sci Pollut Res Int 26(7):6481–6491, PMID: 30623325, https://doi.org/10.1007/s11356-018-04106-w.
- de Souza Alcarás PA, Zeigelboim BS, Corazza MCA, Lüders D, Marques JM, de Lacerda ABM. 2021. Findings on the central auditory functions of endemic disease control agents. Int J Environ Res Public Health 18(13):7051, PMID: 34280998, https://doi.org/10.3390/ijerph18137051.
- 259. Mattiazzi ÂL, Caye JL, Frank JG, Endruweit Battisti ID. 2020. Hearing screening and cholinesterase activity among rural workers exposed to pesticides. Rev Bras Med Trab 17(2):239–246, PMID: 32270126, https://doi.org/10.5327/Z1679443520190374.
- 260. Suarez-Lopez JR, Jacobs DR Jr, Himes JH, Alexander BH. 2013. Acetylcholinesterase activity, cohabitation with floricultural workers, and blood pressure in Ecuadorian children. Environ Health Perspect 121(5):619–624, PMID: 23359481, https://doi.org/10.1289/ehp.1205431.
- Suarez-Lopez JR, Hong V, McDonald KN, Suarez-Torres J, López D, De La Cruz F. 2018. Home proximity to flower plantations and higher systolic blood pressure among children. Int J Hyg Environ Health 221(8):1077–1084, PMID: 30131222, https://doi.org/10.1016/j.ijheh.2018.08.006.
- Suarez-Lopez JR, Amchich F, Murillo J, Denenberg J. 2019. Blood pressure after a heightened pesticide spray period among children living in agricultural communities in Ecuador. Environ Res 175:335–342, PMID: 31150932, https://doi.org/10.1016/j.envres.2019.05.030.
- Cupul-Uicab LA, Terrazas-Medina EA, Hernández-Ávila M, Longnecker MP.
 2017. In utero exposure to DDT and incidence of diarrhea among boys from tropical Mexico. Environ Res 159:331–337, PMID: 28841520, https://doi.org/10.1016/j.envres.2017.08.027.
- 264. Meyer A, Sandler DP, Beane Freeman LE, Hofmann JN, Parks CG. 2017. Pesticide exposure and risk of rheumatoid arthritis among licensed male pesticide applicators in the Agricultural Health Study. Environ Health Perspect 125(7):077010, PMID: 28718769, https://doi.org/10.1289/EHP1013.
- 265. Mejia-Sanchez F, Montenegro-Morales LP, Castillo-Cadena J. 2018. Enzymatic activity induction of GST-family isoenzymes from pesticide mixture used in floriculture. Environ Sci Pollut Res Int 25(1):601–606, PMID: 29052146, https://doi.org/10.1007/s11356-017-0410-7.
- 266. Machado AKF, Wendt A, Wehrmeister FC. 2018. Sleep problems and associated factors in a rural population of a southern Brazilian city. Rev Saude Publica 52(1):5s, https://doi.org/10.11606/S1518-8787.2018052000260.
- Butinof M, Fernandez RA, Stimolo MI, Lantieri MJ, Blanco M, Machado AL, et al. 2015. Pesticide exposure and health conditions of terrestrial pesticide applicators in Córdoba Province, Argentina. Cad Saude Publica 31(3):633–646, PMID: 25859729, https://doi.org/10.1590/0102-311x00218313.
- 268. Cezar-Vaz MR, Bonow CA, de Mello MCVA, da Silva MRS. 2016. Socio-environmental approach in nursing: focusing on rural labor and the use of pesticides. Rev Bras Enferm 69(6):1179–1187, PMID: 27925096, https://doi.org/10.1590/0034-7167-2016-0364.
- 269. de Carvalho MP, Fiori NS, Meucci RD, Faria NMX, Fassa AG. 2020. Thoracic spine pain and associated factors among tobacco farmers. Rev Bras Saude Ocup 45:e33, https://doi.org/10.1590/2317-6369000002019.
- Fassa AG, Spada Fiori N, Dalke Meucci R, Müller Xavier Faria N, Peres de Carvalho M. 2020. Neck pain among tobacco farm workers in southern Brazil [in Spanish]. Salud Colect 16:e2307, PMID: 33147389, https://doi.org/10.18294/sc.2020.2307.

- 271. Araújo RAL, Cremonese C, Santos R, Piccoli C, Carvalho G, Freire C, et al. 2021. Association of occupational exposure to pesticides with overweight and abdominal obesity in family farmers in southern Brazil. Int J Environ Health Res 2021:1–12, PMID: 34844470, https://doi.org/10.1080/09603123.2021.1991284.
- 272. Campos É, Costa VIDB, Alves SR, Rosa ACS, Geraldino BR, Meira BDC, et al. 2020. Occurrence of green tobacco sickness and associated factors in farmers residing in Dom Feliciano Municipality, Rio Grande do Sul State, Southern Region of Brazil. Cad Saude Publica 36(8):e00122719, PMID: 32813792, https://doi.org/10.1590/0102-311x00122719.
- 273. Schneider Medeiros M, Reddy SP, Socal MP, Schumacher-Schuh AF, Mello Rieder CR. 2020. Occupational pesticide exposure and the risk of death in patients with Parkinson's disease: an observational study in southern Brazil. Environ Health 19(1):68, PMID: 32552814, https://doi.org/10.1186/s12940-020-00624-8.
- 274. Okuyama JHH, Galvão TF, Silva MT, Grupo Datatox. 2020. Poisoning and associated factors to death from pesticides: case—control study, Brazil, 2017. Rev Bras Epidemiol 23:e200024, PMID: 32401920, https://doi.org/10.1590/1980-549720200024
- Luce D, Dugas J, Vaidie A, Michineau L, El-Yamani M, Multigner L. 2020. A cohort study of banana plantation workers in the French West Indies: first mortality analysis (2000–2015). Environ Sci Pollut Res Int 27(33):41014–41022, PMID: 31621027, https://doi.org/10.1007/s11356-019-06481-4.
- 276. de Souza A, Medeiros Ados R, de Souza AC, Wink M, Siqueira IR, Ferreira MB, et al. 2011. Evaluation of the impact of exposure to pesticides on the health of the rural population: Vale do Taquari, State of Rio Grande do Sul (Brazil) [in Portugeuse]. Cien Saude Colet 16(8):3519–3528, PMID: 21860952, https://doi.org/10.1590/s1413-81232011000900020.
- Muñoz-Quezada MT, Lucero B, Iglesias V, Levy K, Muñoz MP, Achú E, et al. 2017. Exposure to organophosphate (OP) pesticides and health conditions in agricultural and non-agricultural workers from Maule, Chile. Int J Environ Health Res 27(1):82–93, PMID: 28002976, https://doi.org/10.1080/09603123.2016. 1268679
- González-Alzaga B, Lacasaña M, Aguilar-Garduño C, Rodríguez-Barranco M, Ballester F, Rebagliato M, et al. 2014. A systematic review of neurodevelopmental effects of prenatal and postnatal organophosphate pesticide exposure. Toxicol Lett 230(2):104–121, PMID: 24291036, https://doi.org/10.1016/j. toxlet.2013.11.019.
- 279. Takahashi N, Hashizume M. 2014. A systematic review of the influence of occupational organophosphate pesticides exposure on neurological impairment. BMJ Open 4(6):e004798, PMID: 24961715, https://doi.org/10.1136/bmjopen-2014-004798.
- Fuhrimann S, Wan C, Blouzard E, Veludo A, Holtman Z, Chetty-Mhlanga S, et al.
 2022. Pesticide research on environmental and human exposure and risks in sub-Saharan Africa: a systematic literature review. Int J Environ Res Public Health 19(1):259, PMID: 35010520, https://doi.org/10.3390/ijerph19010259.
- 281. Muñoz-Piña C, Avila Forcada S. 2004. Effects of an environmental tax on pesticides in Mexico. Ind Environ 27(2):33–36.
- 282. Sharma A, Kumar V, Shahzad B, Tanveer M, Sidhu GPS, Handa N, et al. 2019. Worldwide pesticide usage and its impacts on ecosystem. SN Appl Sci 1(11):1446, https://doi.org/10.1007/s42452-019-1485-1.
- Directorate General for External Policies of the Union. 2021. The Use of Pesticides in Developing Countries and Their Impact on Health and the Right to Food. PE 653.622.
 Brussels, Belgium: European Commission, European Parliament Policy Department. https://www.europarl.europa.eu/RegData/etudes/STUD/2021/653622/EXPO_ STU(2021)653622 EN.pdf [accessed 30 June 2022].
- 284. McKee M, Stuckler D, Basu S. 2012. Where there is no health research: what can be done to fill the global gaps in health research? PLoS Med 9(4): e1001209, PMID: 22545025, https://doi.org/10.1371/journal.pmed.1001209.
- Tulloch-Reid MK, Saravia NG, Dennis RJ, Jaramillo A, Cuervo LG, Walker SP, et al. 2018. Strengthening institutional capacity for equitable health research: lessons from Latin America and the Caribbean. BMJ 362:k2456, PMID: 30012634, https://doi.org/10.1136/bmj.k2456.
- 286. Blair A, Thomas K, Coble J, Sandler DP, Hines CJ, Lynch CF, et al. 2011. Impact of pesticide exposure misclassification on estimates of relative risks in the Agricultural Health Study. Occup Environ Med 68(7):537–541, PMID: 21257983, https://doi.org/10.1136/oem.2010.059469.
- 287. Bradman A, Kogut K, Eisen EA, Jewell NP, Quirós-Alcalá L, Castorina R, et al. 2013. Variability of organophosphorous pesticide metabolite levels in spot and 24-hr urine samples collected from young children during 1 week. Environ Health Perspect 121(1):118–124, PMID: 23052012, https://doi.org/10.1289/ehp.1104808.
- Carles C, Bouvier G, Lebailly P, Baldi I. 2017. Use of job-exposure matrices to estimate occupational exposure to pesticides: a review. J Expo Sci Environ Epidemiol 27(2):125–140, PMID: 27189257, https://doi.org/10.1038/jes.2016.25.
- Ohlander J, Fuhrimann S, Basinas I, Cherrie JW, Galea KS, Povey AC, et al.
 2020. Systematic review of methods used to assess exposure to pesticides in occupational epidemiology studies, 1993–2017. Occup Environ Med 77(6):357–367, PMID: 32098789, https://doi.org/10.1136/oemed-2019-105880.

- 290. Mueller W, Atuhaire A, Mubeezi R, van den Brenk I, Kromhout H, Basinas I, et al. 2022. Evaluation of two-year recall of self-reported pesticide exposure among Ugandan smallholder farmers. Int J Hyg Environ Health 240:113911, PMID: 35030437, https://doi.org/10.1016/j.ijheh.2021.113911.
- Tielemans E, Bretveld R, Schinkel J, van Wendel de Joode B, Kromhout H, Gerritsen-Ebben R, et al. 2007. Exposure profiles of pesticides among greenhouse workers: implications for epidemiological studies. J Expo Sci Environ Epidemiol 17(6):501–509, PMID: 17299530, https://doi.org/10.1038/si.jes.7500544.
- López-Gálvez N, Wagoner R, Beamer P, de Zapien J, Rosales C. 2018. Migrant farmworkers' exposure to pesticides in Sonora, Mexico. Int J Environ Res Public Health 15(12):2651, PMID: 30486281, https://doi.org/10.3390/ijerph15122651.
- 293. Barr DB, Bravo R, Weerasekera G, Caltabiano LM, Whitehead RD Jr, Olsson AO, et al. 2004. Concentrations of dialkyl phosphate metabolites of organophosphorus pesticides in the U.S. population. Environ Health Perspect 112(2):186–200, PMID: 14754573, https://doi.org/10.1289/ehp.6503.
- 294. Bradman A, Castorina R, Barr DB, Chevrier J, Harnly ME, Eisen EA, et al. 2011. Determinants of organophosphorus pesticide urinary metabolite levels in young children living in an agricultural community. Int J Environ Res Public Health 8(4):1061–1083, PMID: 21695029, https://doi.org/10.3390/ijerph8041061.
- Buszewski B, Bukowska M, Ligor M, Staneczko-Baranowska I. 2019. A holistic study of neonicotinoids neuroactive insecticides—properties, applications, occurrence, and analysis. Environ Sci Pollut Res Int 26(34):34723–34740, PMID: 31520389, https://doi.org/10.1007/s11356-019-06114-w.
- 296. Jeschke P, Nauen R, Schindler M, Elbert A. 2011. Overview of the status and global strategy for neonicotinoids. J Agric Food Chem 59(7):2897–2908, PMID: 20565065, https://doi.org/10.1021/jf101303g.
- Li HZ, Cheng F, Wei Y, Lydy MJ, You J. 2017. Global occurrence of pyrethroid insecticides in sediment and the associated toxicological effects on benthic invertebrates: an overview. J Hazard Mater 324(pt B):258–271, PMID: 27825741, https://doi.org/10.1016/j.jhazmat.2016.10.056.
- 298. Rauh VA, Margolis AE. 2016. Research review: environmental exposures, neurodevelopment, and child mental health—new paradigms for the study of brain and behavioral effects. J Child Psychol Psychiatry 57(7):775–793, PMID: 26987761, https://doi.org/10.1111/jcpp.12537.
- Hensch TK. 2004. Critical period regulation. Ann Rev Neurosci 27(1):549–579,
 PMID: 15217343, https://doi.org/10.1146/annurev.neuro.27.070203.144327.
- De Luca G, Olivieri F, Melotti G, Aiello G, Lubrano L, Boner AL. 2010. Fetal and early postnatal life roots of asthma. J Matern Fetal Neonatal Med 23(suppl 3):80–83, PMID: 20925457, https://doi.org/10.3109/14767058.2010.509931.
- Raanan R, Harley KG, Balmes JR, Bradman A, Lipsett M, Eskenazi B. 2015.
 Early-life exposure to organophosphate pesticides and pediatric respiratory symptoms in the CHAMACOS cohort. Environ Health Perspect 123(2):179–185, PMID: 25369257, https://doi.org/10.1289/ehp.1408235.
- 302. Baygi F, Herttua K, Jensen OC, Djalalinia S, Mahdavi Ghorabi A, Asayesh H, et al. 2020. Global prevalence of cardiometabolic risk factors in the military population: a systematic review and meta-analysis. BMC Endocr Disord 20(1):8, PMID: 31931788, https://doi.org/10.1186/s12902-020-0489-6.
- Gitler AD, Dhillon P, Shorter J. 2017. Neurodegenerative disease: models, mechanisms, and a new hope. Dis Models Mech 10(5):499–502, PMID: 28468935, https://doi.org/10.1242/dmm.030205.
- Damalas CA, Koutroubas SD. 2016. Farmers' exposure to pesticides: toxicity types and ways of prevention. Toxics 4(1):1, PMID: 29051407, https://doi.org/ 10.3390/toxics4010001.
- 305. Hamra GB, Buckley JP. 2018. Environmental exposure mixtures: questions and methods to address them. Curr Epidemiol Rep 5(2):160–165, PMID: 30643709, https://doi.org/10.1007/s40471-018-0145-0.
- 306. Gibson EA, Nunez Y, Abuawad A, Zota AR, Renzetti S, Devick KL, et al. 2019. An overview of methods to address distinct research questions on environmental mixtures: an application to persistent organic pollutants and leukocyte telomere length. Environ Health 18(1):76, PMID: 31462251, https://doi.org/10.1186/s12940-019-0515-1.
- Appleton AA, Holdsworth EA, Kubzansky LD. 2016. A systematic review of the interplay between social determinants and environmental exposures for early-life outcomes. Curr Environ Health Rep 3(3):287–301, PMID: 27344145, https://doi.org/10.1007/s40572-016-0099-7.
- Cory-Slechta DA. 2005. Studying toxicants as single chemicals: does this strategy adequately identify neurotoxic risk? Neurotoxicology 26(4):491–510, PMID: 16112317, https://doi.org/10.1016/j.neuro.2004.12.007.
- 309. Clougherty JE, Shmool JLC, Kubzansky LD. 2014. The role of non-chemical stressors in mediating socioeconomic susceptibility to environmental chemicals. Curr Environ Health Rep 1(4):302–313, https://doi.org/10.1007/ s40572-014-0031-y.
- Kordas K, Lönnerdal B, Stoltzfus RJ. 2007. Interactions between nutrition and environmental exposures: effects on health outcomes in women and children. J Nutr 137(12):2794–2797, PMID: 18029501, https://doi.org/10.1093/ jn/137.12.2794.

- 311. Pan American Health Organization/World Health Organization. 2009. Policy on Research for Health. Document CD49/10 of the 49th Directing Council, 61st Session of the Regional Committee. Washington, DC: Pan American Health Organization/World Health Organization. https://www.paho.org/hq/dmdocuments/ 2009/CD49-10-e.pdf [accessed 15 June 2022].
- 312. Franzen SRP, Chandler C, Lang T. 2017. Health research capacity development in low and middle income countries: reality or rhetoric? A systematic meta-narrative review of the qualitative literature. BMJ Open 7(1):e012332, PMID: 28131997, https://doi.org/10.1136/bmjopen-2016-012332.
- Ali R, Finlayson A, Indox Cancer Research Network. 2012. Building capacity for clinical research in developing countries: the INDOX Cancer Research Network experience. Glob Health Action 5(1):17288, PMID: 22566788, https://doi.org/10. 3402/gha.v5i0.17288.
- Barreto ML. 2009. Health research in developing countries. BMJ 339:b4846, PMID: 19933304, https://doi.org/10.1136/bmj.b4846.
- 315. Lopez-Verges S, Valiente-Echeverría F, Godoy-Faúndez A, Fernandez Rivas D, Urbani B, Berger JJ, et al. 2021. Call to action: supporting Latin American early career researchers on the quest for sustainable development in the

- region. Front Res Metr Anal 6:657120, PMID: 34056515, https://doi.org/10.3389/frma.2021.657120.
- Vryzas Z, Ramwell C, Sans C. 2020. Pesticide prioritization approaches and limitations in environmental monitoring studies: from Europe to Latin America and the Caribbean. Environ Int 143:105917, PMID: 32619916, https://doi.org/10. 1016/j.envint.2020.105917.
- 317. Rocha CBD, Nascimento APC, da Silva AMC, Botelho C. 2021. Uncontrolled asthma in children and adolescents exposed to pesticides in an area of intense agribusiness activity [in Portuguese]. Cad Saude Publica 37(5): e00072220, PMID: 34133636, https://doi.org/10.1590/0102-311x00072220.
- 318. Saunders L, Kadhel P, Costet N, Rouget F, Monfort C, Thomé JP, et al. 2014. Hypertensive disorders of pregnancy and gestational diabetes mellitus among French Caribbean women chronically exposed to chlordecone. Environ Int 68:171–176, PMID: 24727072, https://doi.org/10.1016/j.envint.2014.03.024.
- 319. Hutter HP, Poteser M, Lemmerer K, Wallner P, Kundi M, Moshammer H, et al. 2021. Health symptoms related to pesticide use in farmers and laborers of ecological and conventional banana plantations in Ecuador. Int J Environ Res Public Health 18(3):1126, PMID: 33514015, https://doi.org/10.3390/ijerph18031126.