Part 1 Special Relativity 1. The Geometry of Special Relativity

Max Miyazaki

各種 SNS

X ($\mbox{|} \mbox{H}$ Twitter): $\mbox{@miya_max_study}$

Instagram : @daily_life_of_miya YouTube : @miya-max-active

概要

これは SIDNEY COLEMAN'S LECTURES ON RELATIVITY を各章でまとめたものです. メモ書き程度に色々追記がありますが、計算等に

目次

1	特殊相対性理論の幾何学	3
1.1	古典的物理系	9

1 特殊相対性理論の幾何学

1.1 古典的物理系

古典的な物理系は3つの部分で構成されている.

1. 四次元時空間: 古典物理学の舞台. 時空間の点(事象)を座標で表す:

$$x^{\mu} = (x^{0}, x^{i}) = (ct, \mathbf{x}), \tag{1.1}$$

ここで x^0 は時間を表し(c=1 となる単位系を使う), $\mathbf x$ は位置を表す. ギリシャ文字のインデックス (λ,μ,ν,\ldots) は 0 から 3 までの値を, ローマ字のインデックス (i,j,k,\ldots) は 1 から 3 までの値をとる.

- 2. 粒子と場: 古典物理学の実体.
 - (a) **粒子**: 粒子は構造を持たない点状物体である.時間の関数としての粒子の位置 $\mathbf{x}(t)$ は,粒子について言及できることすべてを教えてくれます(質量や電荷などの固定された特性を除いて).4 元ベクトル表記では,粒子の軌跡(**世界線**)を $x^{\mu}(s)$ で表します.ここで s は曲線に沿った点を表すために使われるパラメータ(任意の単調関数 f に対して f(s) でも同様に機能する):
 - (b) 場: