Содержание

1
екторов 1
вис 2
равно числу неиз-
год Гаусса 4
4
4
гора 5
6
6
6
6
векторы ϵ
6

1 Линейная Алгебра

1.1 Линейное (векторное) пространство

Линейное пространство — это набор элементов (векторов), для которых определена операция сложения и умножения на число. Эти операции должны подчиняться определенному набору аксиом.

Детальная статья в Википедии (в которой в том числе перечислены все аксиомы): Векторное пространство.

Примеры линейных (векторных) пространств:

- Множество векторов на плоскости.
- Множество всех матриц размерности $m \times n$.
- Множество всех многочленов степени не выше n: $f(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \dots + a_n \cdot x^n$

1.2 Линейная зависимость и независимость векторов

Рассмотрим набор векторов v_1, v_2, \ldots, v_n . Данный набор векторов является **линейно зависимым**, если существуют такие числа a_1, a_2, \ldots, a_n , что хотя бы одно из этих чисел не равно нулю, и при этом выполнено равенство

$$a_1 \cdot v_1 + a_2 \cdot v_2 + \dots + a_n \cdot v_n = 0$$

Если же равенство выше равно нулю только в том случае, если все числа a_1, a_2, \ldots, a_n равны нулю, то данный набор векторов называется **линейно** независимым.

1.3 Размерность линейного пространства. Базис.

Рассмотрим линейное пространство L. Рассмотрим набор из n векторов

$$v_1, v_2, \ldots, v_n$$

принадлежащих этому пространству. Предположим, что этот набор векторов является линейно независимым и при этом любой набор из n+1 векторов из этого же пространства является линейно зависимым. В таком случае L называется n-мерным векторным пространством, и размерность этого пространства dim(L)=n.

Вектора v_1, v_2, \ldots, v_n образуют **базис** этого линейного пространства. Любой вектор $u \in L$ можно единственным образом представить в виде линейной комбинации векторов базиса.

1.4 Подпространство

Множество векторов

$$u_1, u_2, \cdots, u_m$$

принадлежащих L, образует **подпространство** M, если для этих векторов заданы те же операции сложения и умножения на число, что и в исходном пространстве, и при этом любой вектор u, который является результатом выполнения этих операций, также принадлежит M.

1.5 Системы линейных уравнений

Урок на Stepik: Существование систем линейных уравнений.

1.5.1 Частный случай. Число уравнений равно числу неизвестных.

Рассмотрим следующую систему линейных уравнений:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$$

В такой системе количество уравнений совпадает с количеством неизвестных. Запишем систему в следующем виде:

$$x_1 \cdot \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix} + x_2 \cdot \begin{pmatrix} a_{12} \\ a_{22} \\ a_{32} \end{pmatrix} + x_3 \cdot \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

В таком виде задачу о нахождении решения данной системы можно рассматривать как задачу о представлении вектора \mathbf{b} в виде линейной комбинации векторов $\mathbf{a_1}$, $\mathbf{a_2}$ и $\mathbf{a_3}$.

Если вектора ${\bf a_1}, {\bf a_2}$ и ${\bf a_3}$ образуют базис, то решение у такой системы существует при любом векторе ${\bf b}$, причем такое решение будет единственным. Если же эти вектора базис не образуют, то решение у системы будет существовать только в том случае, если вектор ${\bf b}$ будет принадлежать подпространству, пораждаемому векторами ${\bf a_1}, {\bf a_2}$ и ${\bf a_3}$, причем решений в таком случае будет бесконечно много.

Аналогичные утверждения верны и для системы линейных уравнений с n уравнениями и n неизвестными.

1.5.2 Общий случай

Рассмотрим теперь более общий случай. А именно, рассмотрим систему, состояющую из n линейных уравнений с m неизвестными:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2m}x_m = b_2$$

$$\dots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nm}x_m = b_n$$

Перепишем систему в следующем виде:

$$x_1 \cdot \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix} + x_2 \cdot \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{pmatrix} + \dots + x_m \cdot \begin{pmatrix} a_{1m} \\ a_{2m} \\ \vdots \\ a_{nm} \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

В таком виде задачу о нахождении решения для данной системы уравнений можно рассматривать как задачу о представлении вектора \mathbf{b} в виде линейной комбинации векторов $\mathbf{a_1}, \mathbf{a_2}, \cdots, \mathbf{a_m}$, каждый из которых является элементом n-мерного линейного пространства.

Рассмотрим линейное подпространство минимальной размерности, которое содержит все эти m векторов. Такое подпространство также называется линейной оболочкой, образуемой данными векторами. Размерность такого

подпространства (линейной оболочки) называется **рангом** системы линейных уравнений.

Касательно существования решения для системы таких уравнений. Возможны два случая:

- Если вектор b не принадлежит данной линейной оболочке, то решений у системы нет.
- Если вектор b принадлежит данной линейной оболочке то, решение существует. При этом если n=m, то решение будет единственным, так как набор векторов $\mathbf{a_1}, \mathbf{a_2}, \cdots, \mathbf{a_m}$ будет образовывать базис. Если же число векторов больше, чем размерность линейной оболочки, то система будет иметь бесконечно много решений.

1.6 Решение систем линейных уравнений. Метод Гаусса.

Урок на Stepik: Решение систем линейных алгебраических уравнений. Метод Гаусса.

Основная идея метода Гаусса заключается в том, чтобы с помощью операций сложения и умножения на число последовательно исключать переменные, приводя матрицу коэффициентов к треугольному (диагональному виду). Имея матрицу в таком виде, можно затем последовательно найти значения всех неизвестных.

1.7 Евклидово пространство

1.7.1 Скалярное произведение

Для двух векторов u, v, принадлежащих некоторому линейному пространству L, скалярным произведением называется операция, которая этим двум векторам сопоставляет некоторое вещественное число:

$$(u,v)=c: c \in \mathbb{R}.$$

При этом такая операция должна удовлетворять 4-м аксиомам:

- 1. (x, y) = (y, x)
- 2. $(\lambda x, y) = \lambda \cdot (x, y) \ \forall \lambda \in \mathbb{R}$
- 3. $(x_1 + x_2, y) = (x_1, y) + (x_2, y)$
- 4. $(x, x) \ge 0$

Линейное (векторное) пространство с введенной на нем вышеописанной операцией скалярного произведения, называется **Евклидовым пространством**.

Для векторов $x=(x_1,x_2,\ldots,x_n),y=(y_1,y_2,\ldots,y_n)\in\mathbb{R}^n$ примером скалярного произведения может выступать сумма произведений их координат:

$$(u, v) = x_1 \cdot y_1 + x_2 \cdot y_2 + \dots + x_n \cdot y_n$$

1.7.2 Угол между векторами, длина вектора

Для векторов на плоскости скалярное произведение можно ввести следующим образом:

$$(x,y) = |x| \cdot |y| \cdot \cos(x,y)$$

Выразим отсюда косинус угла между векторами:

$$\cos(x,y) = \frac{(x,y)}{|x| \cdot |y|} = \cos(\alpha)$$

Из этого выражения получим, что **угол между векторами** можно найти следующим образом:

$$\alpha = \arccos\left(\frac{(x,y)}{|x|\cdot|y|}\right)$$

Рассмотрим теперь выражение для скалярного произведения, в котором y=x.

$$(x,x) = |x| \cdot |x| \cdot \cos(x,x) = |x|^2$$

Отсюда получим, что **длина вектора** x есть

$$|x| = \sqrt{(x,x)}$$

То есть, если мы знаем, чему равно скалярное произведение, то мы можем найти угол между векторами, а также длину вектора.

Данные понятия можно обобщить на случай произвольного векторного пространства. А именно, длину произвольного вектора x можно определить как квадратный корень из скалярного произведения этого вектора на самого себя:

$$|x| = \sqrt{(x,x)}$$

Угол ϕ между произвольными векторами x, y есть

$$\phi = \arccos\left(\frac{(x,y)}{|x| \cdot |y|}\right)$$

Для векторов на плоскости скалярное произведение будет равно нулю, если векторы ортогональны, то есть $\phi = \frac{\pi}{2}$. Два произвольных вектора будем называть **ортогональными**, если их скалярное произведение равно нулю.

1.8 Операторы и базис

Урок на Stepik: Ортогональный базис.

1.8.1 Ортонормированный базис

Рассмотрим набор векторов $\{e_1, e_2, \dots e_n\}$ таких, что

- 1. $(e_i, e_j) = 0 \ \forall i, j : i \neq j$.
- 2. $(e_i, e_j) = 1 \ \forall i, j : i = j$.

Такой набор векторов называется ортонормированным набором векторов в линейном пространстве со скалярным произведением.

Уроки на Stepik:

- Как произвольный базис преобразовать в ортонормированный
- Метод наименьших квадратов

1.9 Линейные операторы

Оператор $A: A \cdot x = y$ называется линейным оператором, если выполнены следующие аксиомы:

- 1. $A \cdot (x_1 + x_2) = A \cdot x_1 + A \cdot x_2$
- 2. $A(\lambda x) = \lambda \cdot Ax$
- 1.9.1 Ядро и образ оператора

...

1.9.2 Собственные числа и собственные векторы

. . .

1.10 Определитель матрицы

Урок на Stepik: Определитель матрицы.