Let's explore the 40 variables (column names) of our analyzed data

Our analysis has the dimension

,	
Data	
• Analysis	35 obs. of 40 variables

And these are the column names

```
> colnames(Analysis)
[1] "Out.SubInd"
[7] "RR"
[13] "PC"
[19] "Model"
                            "SubPrName"
                                                  "Observations"
                                                                        "Studies"
                                                                                               "Sites"
                                                                                                                     "RR. Shapiro. Sig"
                                                                                               "RR.Quantiles0.25" "PC.Shapiro.Sig"
                            "RR.median"
                                                  "RR.var"
                                                                        "RR.se"
                                                                                               "PC.Quantiles0.25" "Units"
                                                                         "PC.var"
                            "PC.median"
                                                                                               "MeanC.Obs"
"PC.t value"
                                                  "MeanT"
                            "MeanT.Obs"
                                                                        "MeanT.se"
                                                                                                                     "MeanC"
[25] "MeanC.se"
[31] "PC.Sigma2"
                                                  "RR.Pr(>|t|)"
"RR.pc"
                                                                        "RR.Sigma2"
                            "RR.t value"
                                                                                                                     "PC.Pr(>|t|)"
                            "RR.pc.se.low"
                                                                        "RR.pc.se.high"
                                                                                               "RR.pc.jen.low"
                                                                                                                     "RR.pc.jen"
                                                  "PC.pc"
                          "PC.pc.se.low"
[37] "RR.pc.jen.high"
                                                                       "PC.pc.se.high"
```

Out.SubInd

Since our data is already subset on Land Equivalent Ratio, we do not have many information here. This is our target output.

```
> Analysis$Out.SubInd
[1] "Land Equivalent Ratio" "Lan
```

SubPrName

We then have **35** unique subPractice for our selected outcome subindicator. Here are the first 5

```
> unique(Analysis$SubPrName)
[1] "AgFor Alley (Nfix)-AgFor Prune (Unknown)-AgFor Prune Mulch (Nfix)"
[2] "AgFor Alley (nonNfix)"
[3] "AgFor Alley (Nfix)-Inputs N-Seed Improv"
[4] "AgFor Alley (Nfix)-Inputs K-Inputs N-Inputs P-Irrigation Sprinkers"
[5] "AgFor Alley (Nfix)-Inputs N"
```

So, our overall objective here is to compile the statistics for each combination of these LER and every subPractice variables.

Observations

We can clearly see that we have 35 rows so, and each row has a number of **observations**.

```
> Analysis$Observations
[1] 36  9  8 10  2  6 330  9 82 13 20 31  7 14 40 23  2  2  2  2  4  4  4  4  3  6  6  27 16  4  4
[32] 16  8 15 32
```

Studies

This represents the number of studies or publications used. For most of them, only **one** publication has been used

Sites

This just represents the number of geographic locations

Response Ratio (RR)

A common effect size metric used to quantify the outcome of experiments for ecological meta-analysis is the response ratio (RR): the log proportional change in the means of a treatment and control group.

 $RR = log(\frac{experimental outome}{control outcome})$ If $RR > 0 \Rightarrow$ the experimental treatement is better than the Control treatment

In our study, **RR** could either mean **weighted mean** of Response Ration or **weighted median** of Response Ratio

RR.Shapiro.Sig

After applying a Shapiro test to our RRs, the data for the row **Intercrop (nonNfix)** and **Inputs N-Intercrop (Mixed)** are statistically non-normal (*RR.Shapiro.Sig field is <0.05*)

```
> Analysis[,list(SubPrName, Observations, Studies, Sites, RR.Shapiro.Sig)]
                                                                SubPrName Observations Studies Sites RR.Shapiro.Sig
1: AgFor Alley (Nfix)-AgFor Prune (Unknown)-AgFor Prune Mulch (Nfix)
 2.
                                                  AgFor Alley (nonNfix)
                                                                                    9
                                                                                                             0.00958
                                AgFor Alley (Nfix)-Inputs N-Seed Improv
                                                                                                             0.39344
 4: AgFor Alley (Nfix)-Inputs K-Inputs N-Inputs P-Irrigation Sprinkers
                                                                                                             0.84730
                                                                                   10
                                            AgFor Alley (Nfix)-Inputs N
                                                      AgFor Alley (Nfix)
Intercrop (Mixed)
                                                                                                             0.02266
 7:
                                                                                   330
                                                                                           25
                                                                                                  31
                                                                                                             0.00000
                                                                                          2 9 2 2 3 1 1 2 2 2 4
                                          Inputs Urea-Intercrop (Mixed)
                                                                                                             0.16208
 8:
                                                     Intercrop (nonNfix)
10:
                                                                                   13
                                                                                                             0.67977
                                                                Inputs P
11:
                                                       Inputs N-Inputs P
                                                                                    20
                                                                                                   3
                                                                                                             0.68067
                                                                Inputs N
                                                                                                             0.92929
12:
                                                                                   31
13:
                                             Inputs P-Intercrop (Mixed)
                                                                                                             0.88215
14:
                                    Inputs N-Inputs P-Intercrop (Mixed)
                                                                                                             0.11101
15:
                                                                                   40
23
                                             Inputs N-Intercrop (Mixed)
                                                                                                             0.00004
16:
                                          Intercrop (Mixed)-Seed Improv
                                                                                                    3
                                                                                                             0.23716
                                                                 MinTill
17:
18:
                                                                  NoTill
                                                       Inputs K-Inputs N
                                                                                                                  NΑ
19:
20:
                                                       Inputs K-Inputs P
                                                                                                                  NΑ
```

Proportional change

```
> Analysis[,list(RR.pc.se.low, RR, RR.pc, RR.pc.se.high, RR.pc.jen.low, RR.pc.jen.high, PC)]
    RR.pc.se.low
                     RR
                             RR.pc RR.pc.se.high RR.pc.jen.low RR.pc.jen.high
      14.22614 0.15838 17.16113 20.17154 14.28156 20.22983 1.18444
1:
                                                      3.74025
0.85312
 2:
        2.52946 0.13334 14.26384
                                        27.34121
                                                                     28.84501 1.18889
 3:
        0.38072 0.07232
                          7.49993
                                        15.12404
                                                                      15.66582 1.09250
       76.17542 0.74091 109.78437 149.80489
                                                     81.62883
                                                                    157.53746 2.38200
4:
       56.93889 0.51205 66.87121
                                                           NA
        56.93889 0.51205 66.87121 77.43212 NA
49.63515 1.27909 259.33683 269.30771 249.89748
1.04947 0.07966 8.29188 16.05337 1.43875
5:
                                                                            NA 1.67500
                                                                   269.58479 3.60000
 6:
      249.63515 1.27909 259.33683
                                                                     16.50046 1.18266
7:
 8:
       20.40369 0.25860 29.51157
                                        39.30840
                                                     21.04595
                                                                     40.05150 1.32222
                                                     16.75879
                                        71.39660
-1.15527
9:
       16.49405 0.34574 41.30352
                                                                     71.78612 1.65001
       -9.28069 -0.05451 -5.30510
                                                      -8.96490
                                                                     -0.81119 0.95715
10:
                                                     -0.45546
       -0.61609 0.12252 13.03417
                                       28.55929
                                                                     28.76708 1.15741
11:
                                       15.23001
73.94518
12:
        1.86518 0.08012
                           8.34171
                                                       1.91562
                                                                      15.28706 1.09154
       39.55799 0.44344 55.80577
                                                     41.01626
                                                                     75.76277 1.61667
13:
       47.17321 0.45551 57.69774
                                       68.97490
                                                     47.77638
                                                                     69.66742 1.62500
14:
       53.85340 0.52782 69.52327
22.78197 0.25560 29.12361
                                       86.78910
35.79280
                                                     54.10053
22.93063
15:
                                                                     87.08914 1.73210
16:
                                                                      35.95721 1.30119
                                                      NA
       -1.02312 -0.00602 -0.60061
                                        -0.17629
                                                                            NA 0.99401
17:
                                                           NA
                                       -2.59626
51.28966
       -3.42256 -0.03057
                          -3.01029
                                                                            NA 0.96991
18:
       48.76350 0.40561 50.02126
19:
                                                            NΑ
                                                                            NA 1.50032
       12.99826 0.13758 14.74957
                                       16.52802
                                                                            NA 1.14777
```

Investigate distributions: adding percentage results based on median

```
> Analysis[,list(Observations,RR.pc.jen,RR.pc.median,PC.pc,PC.pc.median)]
  Observations RR.pc.jen RR.pc.median
                                         PC.pc PC.pc.median
                             -82.60467 18.44400
             36 17.21797
                                                    19.000000
                             -84.73618 18.88900
-87.77824 9.25000
 2:
              9
                15.61321
                                                    16.500000
              8 8.00583
                                                    13.000000
3:
             10 116.27812
                             -22.52728 138.20000 117.000000
4:
5:
              2 78.77350
                             -57.47323 67.50000
                                                    53.000000
                              30.83328 260.00000 270.000000
 6:
              6 259,60643
```

Test of normality of the data

After applying the Shapiro test, we realize that we have many issues with data as (RR.Shapiro.Sig or PC.Shapiro.Sig < 0.05)

```
> Analysis[,list(Out.SubInd,SubPrName, RR.Shapiro.Sig, PC.Shapiro.Sig)]
Out.SubInd

1: Land Equivalent Ratio AgFor Alley (Nfix)-AgFor Prune (Unknown)-AgFor Prune Mulch (Nfix) 0.09467 0.41575

2: Land Equivalent Ratio AgFor Alley (Nfix)-AgFor Prune (Unknown)-AgFor Prune Mulch (Nfix) 0.00958 0.14736

3: Land Equivalent Ratio AgFor Alley (Nfix)-Inputs N-Seed Improv 0.39344 0.45550

4: Land Equivalent Ratio AgFor Alley (Nfix)-Inputs P-Irrigation Sprinkers 0.84730 0.78108

5: Land Equivalent Ratio AgFor Alley (Nfix)-Inputs N-Seed Improv 0.84730 0.78108

6: Land Equivalent Ratio AgFor Alley (Nfix)-Inputs N-Seed Improv 0.84730 0.78108

Out. SubPrName RR. Shapiro. Sign PC. Shapiro. S
```

Data distribution (with Yields)

If we take the combination of **Land Equivalent Ratio** and **intercrop (Mixed)** plotting the outcome response ratio and ratio vs a normal curve it shows:

- 1) The skew in the ratio data is not corrected by the natural log transformation;
- 2) The response ratio distribution is not normal, it might not probably be good for our study.

Other combination

The combination of Land Equivalent Ratio and Intercrop (nonNfix)

The combination of Land Equivalent Ratio and AgFor Alley (Mixed)

The combination of LER and AgFor Alley (Nfix)-AgFor Prune (Unknown)-AgFor Prune Mulch (Nfix)

We noticed that **intercrop (Mixed)** has more observations that the others that's why its response ration distribution curve tend to Normality

Data distribution (with MeanT/MeanC)

The proportion distribution is not quite normal, but it looks corrected

Issue when ordering numerator and denominator

Let's see how results change when numerator and denominator are swapped

Experimental/control outcome is numerator

Mean

Change estimated from mean of ratios

Change estimated from mean of response ratios

Intercropping VS intercropping rotation

After subsetting our Data_LER on practice names "Intercropping", after on "Crop Rotation-Intercropping", we have the following dimension

<pre>Data_LER_inter</pre>	413 obs. of 141 variables
<pre>Data_LER_Rot_inter</pre>	27 obs. of 141 variables

And the **ERAAnalyse** function gives us the following information

MeanT VS no value in MeanT

We don't have any NA value in the MeanT column

```
> Mean_T <- Data_LER$MeanT
> Mean_C <- Data_LER$MeanC
> Mean_T/Mean_C
[1] 1.0600000 0.8200000 1.0600000 1.0000000 1.1000000 1.2200000 1.2000000 1.0800000 1.2300000 1.4900000
[11] 1.4400000 1.3500000 1.0300000 1.2700000 1.2600000 1.0200000 1.2700000 1.3000000 0.8900000 1.0400000
[21] 1.0000000 1.32000000 1.1900000 1.3800000 0.8100000 1.0900000 1.2900000 1.3300000 1.3700000 1.3800000
[31] 1.0900000 1.1900000 1.1800000 1.1200000 1.3600000 1.4100000 1.5000000 1.3200000 1.4200000 0.5200000
[41] 1.4900000 1.0400000 1.5000000 1.1800000 1.0800000 0.8200000 0.8200000 0.9000000 1.0600000
[51] 1.1300000 1.1400000 1.1800000 1.3200000 1.3700000 1.3800000 1.5300000 1.8200000 1.8200000 2.1700000
```

Comparing intercropping vs monoculture

Since we are able to get the **ratios, response ratios** and finally **yields**, this is a way to compare the two practices

Comparing the LER from two different diversification system

Looking at the diversity from the LER outcome, we have

> table(Data_LER\$Diversity)

	Acacia-Roselle
20	2
Acacia-Sesame	Acacia-Sorghum
2	2
Barley-Fava Bean	Black Pepper-Cardamom-Gliricidia sepium
2	3
Black Pepper-Cardamom-Grevillea robusta	Black Pepper-Gliricidia sepium
3	2
Black Pepper-Grevillea robusta	Butter Bean-Maize
2	4
Calabash-Sorghum	Cassava-Cowpea
8	8
Cassava-Maize	Cassava-Maize-African Yam Bean
36	6
Cassava-Maize-Cowpea	Cassava-Maize-Groundnut
4	4