Дискретная оптимизация

МФТИ, осень 2015

Александр Дайняк

www.dainiak.com

Неполиномиальность симплекс-метода

Теорема (V. Klee & G.J. Minty, 1972).

Для каждого d>1 существует задача ЛП с 2d уравнениями, 3d переменными и целочисленными коэффициентами, такая, что симплекс-метод может проделать 2^d-1 шагов до получения ответа.

Возмущённый куб (perturbation of a cube)

Доказательство теоремы Кли-Минти

Рассмотрим для $\varepsilon < \frac{1}{2}$ задачу:

$$\begin{cases} x_d \to \min \\ x_1 - r_1 = \varepsilon \\ x_1 + s_1 = 1 \\ x_j - \varepsilon x_{j-1} - r_j = 0 \quad (j = 2, ..., d) \\ x_j + \varepsilon x_{j-1} + s_j = 1 \quad (j = 2, ..., d) \\ x_j, r_j, s_j \ge 0 \quad (j = 1, ..., d) \end{cases}$$

Утверждение. Бдр этой задачи — всевозможные множества вида $\{x_1, ..., x_d\} \cup R \cup S$, такие, что $(r_i \in R \Leftrightarrow s_i \notin S)$.

$$\begin{cases} x_d \to \min \\ x_1 - r_1 = \varepsilon \\ x_1 + s_1 = 1 \\ x_j - \varepsilon x_{j-1} - r_j = 0 \quad (j = 2, ..., d) \\ x_j + \varepsilon x_{j-1} + s_j = 1 \quad (j = 2, ..., d) \\ x_j, r_j, s_j \ge 0 \quad (j = 1, ..., d) \end{cases}$$

Пусть \mathcal{B} — произвольное бдр.

Т.к. $x_1 \geq \varepsilon$ и $x_j \geq \varepsilon x_{j-1}$, то $x_j \geq \varepsilon^j > 0$ для каждого $j=1,\dots,d$. Поэтому все столбцы, соответствующие x_1,\dots,x_d , входят в \mathcal{B} . Допустим, что $r_j = s_j = 0$ для некоторого j. Не может быть j=1, т.к. тогда было бы $x_1 = \varepsilon = 1$. Если же j>1, то $\varepsilon x_{j-1} = 1 - \varepsilon x_{j-1}$. Но тогда $\varepsilon x_{j-1} = \frac{1}{2}$, что противоречит неравенствам $\varepsilon < \frac{1}{2}$ и $x_{j-1} \leq 1$.

$$\begin{cases} x_d \to \min \\ x_1 - r_1 = \varepsilon \\ x_1 + s_1 = 1 \\ x_j - \varepsilon x_{j-1} - r_j = 0 \quad (j = 2, ..., d) \\ x_j + \varepsilon x_{j-1} + s_j = 1 \quad (j = 2, ..., d) \\ x_j, r_j, s_j \ge 0 \quad (j = 1, ..., d) \end{cases}$$

Бдр, в котором $r_{i_1}, ..., r_{i_m} \neq 0$, будем обозначать $\boldsymbol{x}^{\{r_{i_1}, ..., r_{i_m}\}}$.

Утверждение. Пусть все бдр занумерованы x^{R_1} , ..., $x^{R_{2}d}$ так, что

$$x_d^{R_1} \le x_d^{R_2} \le \dots \le x_d^{R_2 d}$$
.

Тогда все неравенства строгие и последовательные бдр в этой цепочке смежны.

 \mathcal{A} оказательство. Индукция по d.

База: d = 1.

Тогда есть два бдр: $(x_1, r_1, s_1) = (\varepsilon, 0, 1 - \varepsilon)$ и $(x_1, r_1, s_1) = (1, 1 - \varepsilon, 0)$.

$$\begin{cases} x_d \to \min \\ x_1 - r_1 = \varepsilon \\ x_1 + s_1 = 1 \\ x_j - \varepsilon x_{j-1} - r_j = 0 \quad (j = 2, ..., d) \\ x_j + \varepsilon x_{j-1} + s_j = 1 \quad (j = 2, ..., d) \\ x_j, r_j, s_j \ge 0 \quad (j = 1, ..., d) \end{cases}$$

Пусть теперь d>1. Пусть

$$x^{R_1'}, \dots, x^{R_2'} d^{-1}$$

— нумерация бдр для (d-1)-мерного куба.

Т.к. $R_i'\subseteq\{1,2,\ldots,d\}$, то можно рассмотреть соответствующие бдр в d-мерном кубе. Для них будет $x_d^{R_i'}=\varepsilon x_{d-1}^{R_i'}$ и $x_d^{R_i'\cup\{d\}}=1-x_d^{R_i'}$, отсюда

$$x_d^{R_1'} \le x_d^{R_2'} \le \dots \le x_d^{R_2'd-1} \le x_d^{R_2'd-1} \cup \{d\} \le x_d^{R_2'd-1-1} \cup \{d\} \le \dots \le x_d^{R_1'} \cup \{d\}$$

Теоремы a la Klee—Minty

Teopeмa (R.G. Jeroslow, 1973).

Существует конкретная последовательность задач ЛП (и начальные решения в этих задачах), на которой экспоненциальное число шагов будет делать симплекс-алгоритм, выбирающий из всех соседних бдр то, на котором значение функционала ближе всего к оптимальному.

Диаметр графа многогранника

 $\mathrm{H}(n,d)$ — максимальный диаметр графа d-мерного n-гранника.

H(n,d) — нижняя оценка на число шагов симплекс-алгоритма в худшем случае при неудачном выборе стартовой вершины.

Гипотеза Хирша

 $\mathrm{H}(n,d)$ — максимальный диаметр графа d-мерного n-гранника.

Гипотеза (Warren M. Hirsch, 1957).

$$H(n,d) \leq n-d$$
.

Гипотеза Хирша верна в следующих случаях:

- для (0,1)-многогранников,
- при $n d \le 6$,
- при $(n,d) \in \{(11,4),(12,4)\}$ (причём H(12,4)=7).

Teopema (Francisco Santos, 2010).

Гипотеза хирша неверна при (n, d) = (86,43).

Известные оценки на $\mathrm{H}(n,d)$

Teopeмa (D. Barnette, 1974).

$$H(n,d) \le 2^d \cdot n.$$

Теорема (G. Kalai & D.J. Kleitman, 1992).

$$H(n,d) \le n^{\log_2 d + 2}.$$

Теорема (М. J. Todd, 2014).

$$H(n,d) \le (n-d)^{\log_2 d + 2}.$$

- H(n,d) максимальный диаметр графа d-мерного n-гранника.
- $H(n,d) \leq n^{\log_2 d + 2}$

Индукция по (n, d).

База:

- d=2 тогда $H(n,d) \le n$
- n = d + 1 тогда H(n, d) = 1 (симплекс)

Пусть u, v — пара вершин.

Введём:

 k_u — такое максимальное число, что объединение всех цепей длины k_u с началом в u затрагивает не более n/2 граней. k_v — аналогичное число для v.

 k_u — такое максимальное число, что объединение всех цепей длины k_u с началом в u затрагивает не более $\lfloor n/2 \rfloor$ граней.

Лемма. $k_u \leq \mathrm{H}(\lfloor n/2 \rfloor, d)$.

Обоснование.

Пусть P — исходный многогранник.

Пусть w — вершина в P на расстоянии k_u от u.

Пусть Q — многогранник, получаемый из P удалением всех граней, до которых нельзя добраться из u по цепям длины k_u .

Покажем, что расстояние в Q от u до w не меньше k_u .

 k_u — такое максимальное число, что объединение всех цепей длины k_u с началом в u затрагивает не более $\lfloor n/2 \rfloor$ граней.

Лемма. $k_u \leq \mathrm{H}(\lfloor n/2 \rfloor, d)$.

Обоснование.

Q получен из P удалением «далёких» граней.

w — вершина в P на расстоянии k_u от u.

Допустим, расстояние в Q от u до w меньше k_u .

Пусть e — первое ребро на пути в Q из u в w e, не входящее в P.

Должна найтись грань в P, которой нет в Q, и которая пересекает e.

Получается, что до этой грани можно было дойти в P за k_u шагов!

- H(n,d) максимальный диаметр графа d-мерного n-гранника.
- $H(n,d) \leq n^{\log_2 d + 2}$ хотим доказать

 k_u — такое максимальное число, что объединение всех цепей длины k_u с началом в u затрагивает не более $\lfloor n/2 \rfloor$ граней.

- $k_u \leq H(\lfloor n/2 \rfloor, d)$.
- $k_v \leq \mathrm{H}(\lfloor n/2 \rfloor, d)$.

Найдётся грань, достижимая одновременно из u и v за (k_u+1) и (k_v+1) шагов соответственно. Отсюда $\mathrm{H}(n,d) \leq 2(\mathrm{H}(\lfloor n/2 \rfloor,d)+1)+\mathrm{H}(n-1,d-1)$.

- H(n,d) максимальный диаметр графа d-мерного n-гранника.
- $H(n,d) \le n^{\log_2 d + 2}$ хотим доказать

$$H(n,d) \le 2(H(\lfloor n/2 \rfloor,d) + 1) + H(n-1,d-1).$$

Используя предположение индукции, получаем:

$$H(n,d) \le 2 \cdot \lfloor n/2 \rfloor^{\log_2 d+2} + (n-1)^{\log_2 (d-1)+2} + 2.$$

Осталось доказать неравенство

$$2 \cdot (n/2)^{\log_2 d+2} + (n-1)^{\log_2 (d-1)+2} + 2 \le n^{\log_2 d+2}$$

$$2 \cdot (n/2)^{\log_2 d + 2} + (n-1)^{\log_2 (d-1) + 2} + 2 \stackrel{?}{\leq} n^{\log_2 d + 2}$$

Эквивалентная форма:

$$\frac{1}{2d} + \frac{(n-1)^{\log_2(d-1)+2}}{n^{\log_2 d+2}} + \frac{2}{n^{\log_2 d+2}} \stackrel{?}{\leq} 1.$$

Имеем

$$\frac{1}{2d} + \frac{(n-1)^{\log_2(d-1)+2}}{n^{\log_2 d+2}} + \frac{2}{n^{\log_2 d+2}} \le \frac{1}{2d} + \frac{n^{\log_2(d-1)+2}}{n^{\log_2 d+2}} + \frac{2}{n^{\log_2 d+2}} = \frac{1}{2d} + (1-1/d)^{\log_2 n} + \frac{2}{d^{\log_2 n} \cdot n^2} \le \frac{1}{2d} + 1 - \frac{1}{d} + \frac{1}{2d} \le 1.$$

Понятие о сглаженном анализе алгоритмов (smoothed analysis of algorithms)

Две популярных методики анализа детерминированных алгоритмов:

- Время работы алгоритма в худшем случае
- Время работы алгоритма в среднем на случайном входе

Сглаженный анализ алгоритмов

- Минус анализа худших случаев: чаще всего реальные входы алгоритма устроены вовсе не худшим возможным образом.
- Минус анализа на случайном (равномерно распределённом) входе: реальные данные обычно нельзя считать совершенно случайными.

Сглаженный анализ алгоритмов

Smoothed analysis (Daniel A. Spielman & Shang-Hua Teng, 2001).

Предпосылки: реальные входные данные обычно имеют некоторую неслучайную базовую структуру, но зашумлены небольшими случайными отклонениями.

Идея: рассмотрим поведение алгоритма на точках, случайно выбираемых из малой окрестности фиксированной точки.

Сглаженный анализ алгоритмов

Рассмотрим задачу

$$\begin{cases} \mathbf{z}^{\mathrm{T}} \mathbf{x} \to \max \\ A\mathbf{x} \le \mathbf{b} \end{cases}$$

Существует такой вариант симплекс-метода \mathcal{A} и такой многочлен \mathcal{P} , что для любых $n>d\geq 3$ и любых $A_0=(\pmb{a}_1,\dots,\pmb{a}_n)\in\mathbb{R}^{n\times d}$, $\pmb{b}_0\in\mathbb{R}^n$, $\pmb{z}\in\mathbb{R}^d$ и $\sigma>0$ выполнено неравенство

$$\mathbb{E}_{A,y}($$
#шагов \mathcal{A} на входе $(A,y,z)) \leq \mathcal{P}(d,n,\sigma^{-1}).$

Здесь $\mathbb{E}_{A,y}$ — это матожидание при случайном выборе A и y из гауссовских распределений с центрами A_0 и y_0 и стандартными отклонениями $\sigma\max_i \|(a_i,y_i)\|$.