Anomaly Detection in File Access Patterns

Ricardo Machado

NMEC: 102737

WHY MONITOR FILE ACCESS?

- **Motivation:** Data security is crucial in corporate networks, where unauthorized file access can lead to data breaches, financial losses, and reputational damage, making anomaly detection a crucial security measure
 - <u>Example:</u> In 2022, more than 30% of companies suffered internal attacks that exposed sensitive data

• **Objective:** Implement a system to detect anomalous access patterns effectively, helping to prevent threats

DATA SOURCES

- Acquisition of Google Drive usage data captures from users with two different profiles: student and teacher
- Bot script development to access Google Drive (basic and advanced)
 - Basic: simple simulation with a fixed time interval
 - Advanced: introduces more randomness and unpredictability

WIRESHARK I/O GRAPHS FROM BOTH BOTS

Basic Bot

- Aggressive and irregular spikes
- Easier Detection abnormal spikes

Advanced Bot

- More balanced and controlled
- Harder Detection disguised

METRICS EXTRACTED

FEATURES TO EXTRACT

 Number of packets for upload and download

 Volume of bytes for upload and download

- For each metric defined:
 - Mean, median, standard deviation
 - Percentiles(75%/80%/90%/98%)

TRAINING AND TEST FEATURES

Initial approach

- Train using 70% of each user's features (student & teacher)
- Test on the remaining 30% of user features (same users)
- Test on bot features(Basic and Advanced bots)

Second approach

- Train using 50% of each user's features (student & teacher)
- Test on the remaining 50% of user features (same users)
- Test on bot features(Basic and Advanced bots)

ANOMALY DETECTION TECHNIQUES USED

Statistical Analyses:

- Centroids distances
- Centroids distances with PCA features
- Multivariate with PCA features

Machine Learning:

- One Class Support Vector Machine (Linear, RBF and Poly Kernels)
- One Class Support Vector Machine with PCA features (Linear, RBF and Poly Kernels)

Anomaly Detection:

- Isolation Forest with PCA features
- Isolation Forest without PCA features

BEST RESULTS FROM INITIAL APPROACH

Isolation Forest with PCA

Basic Bot

Value
99.40%
95.08%
100.00%
0.97

Advanced Bot

CONCLUSION FOR INITIAL APPROACH

The Isolation Forest model, when using PCA-transformed features, proves to be the most effective in identifying anomalies across all bot traffic in the dataset

BEST RESULTS FROM SECOND APPROACH

Multivariate with PCA

Metric	Value
Accuracy	93.95%
Precision	62.86%
Recall	100.00%
F1-Score	0.77

CONCLUSION FOR SECOND APPROACH

The most effective models is Multivariate with PCA achieving an F1-score of 77%.

CONCLUSION

• The Isolation Forest model with PCA features proves to be the most effective in detecting anomalies across different bot behaviors

Multivariate analysis perform well when analyzing activity-based features

• The user-based approach yields more consistent results, suggesting that user similarity plays a crucial role in anomaly detection

Thank you!

