(J)

3 ROUT 20

- FSM

tresen	t States	Juput (I)	Next &	state (NI)	Outp	w (y)	State Tabl
0	•	0	0	0 1	0 .	0	~
0	0	1 96.	. 0	1 /	0	0	
0	1	0	1	0	0	1	
0	1	1	ю	0	0	1	
1	D	0	Ø	Ĩ	10	0	
1	0	1	1	o	13	0	
1	1	O	*	*	×	X	
1	- 1	1	X	*	x	X	

The state encoding donotes the remainder calculated after reading the last bit, starting from the MSB.

The Last output is the Remainder.

$$N_{0} = (P_{0})(I) + (P_{1})(I)'$$

$$N_{1} = (P_{0})(I)' + (P_{0})'(P_{1})(I)$$

QUESTION 2

We design a moore machine for this question. Two states, one for each floor are selected. As it can be seen that the outputs, i.e., the state of the lights, depends on the floor only. The input can also be encoded as a binary, up and down (1 and 0). The transitions are shown in the fsm below.

Encodings

STATE	ENCODING
Ground	0
First	1

INPUT	ENCODING
Down	0
Up	1

OUTPUT	ENCODING
Light off	0
Light on	1

FSM

Elevator FSM

Pressing up on the ground floor leads to a transition to the first floor. Pressing down on the first floor leads to a transition to the ground floor. Pressing down on the ground floor and up on the first floor has no effect and the lift stays on the same floor. Red light is on and green light is off when the elevator is on the ground floor. Red light is off and green light is on when the elevator is on the first floor.

NEXT STATE AND OUTPUT TABLE

De	INIDIT	NO	OUTPUT		
PS	INPUT (I)	NS	R	G	
0	0	0	1	0	
0	1	1	1	0	
1	0	0	0	1	
1	1	1	0	1	

NEXT STATE AND OUTPUT FUNCTIONS

It can be observed from the table that

- 1. NS = I
- 2. R = not PS
- 3. G = PS

QUESTION 3

We design a moore machine for this question. 6 states, 1 initial and 5 states for determining what length of the string entered so far is correct are maintained. The output (unlock) depends only on the state and will be 0 for all states except for the state where the length of the matched string becomes 5 where it will be 1. The input can be one of 0,1 or reset. The 6 states can be encoded using 3 bits and the 3 inputs using 2 bits. The output will be binary, 0 or 1.

Encodings

STATE (MATCHED STRING)	LENGTH OF MATCHED STRING	ENCODING
Empty string (Initial)	0	000
"0"	1	001
"01"	2	010
"010"	3	011
"0101"	4	100
"01011"	5	101

INPUT	ENCODING
0	00
1	01
reset	10

ОИТРИТ	ENCODING
Locked	0
Unlocked	1

NEXT STATE AND OUTPUT TABLE

	PS		INPUT		NS			
р0	p1	p2	i0	i1	n0	n1	n2	OUTPUT
0	0	0	0	0	0	0	1	0
0	0	0	0	1	0	0	0	0
0	0	0	1	0	0	0	0	0
0	0	0	1	1	-	•	-	0
0	0	1	0	0	0	0	1	0
0	0	1	0	1	0	1	0	0
0	0	1	1	0	0	0	0	0
0	0	1	1	1	-	-	-	0
0	1	0	0	0	0	1	1	0
0	1	0	0	1	0	0	0	0
0	1	0	1	0	0	0	0	0
0	1	0	1	1	-	-	-	0
0	1	1	0	0	0	0	1	0
0	1	1	0	1	1	0	0	0
0	1	1	1	0	0	0	0	0
0	1	1	1	1	-	-	-	0
1	0	0	0	0	0	1	1	0
1	0	0	0	1	1	0	1	0
1	0	0	1	0	0	0	0	0
1	0	0	1	1	-	-	-	0
1	0	1	0	0	0	0	1	1
1	0	1	0	1	0	0	0	1
1	0	1	1	0	0	0	0	1

1	0	1	1	1	-	-	-	1
1	1	0	0	0	•	•	-	1
1	1	0	0	1	-	-	-	-
1	1	0	1	0	-	-	-	-
1	1	0	1	1	-	-	-	-
1	1	1	0	0	-	-	-	-
1	1	1	0	1	-	-	-	-
1	1	1	1	0	-	-	-	-
1	1	1	1	1	-	-	-	-

NEXT STATE AND OUTPUT FUNCTIONS

$$n0 = (i1 \cdot p1 \cdot p2) + (i1 \cdot p0 \cdot \overline{p2})$$

$$n1 = (\overline{i0} \cdot \overline{i1} \cdot p1 \cdot \overline{p2}) + (\overline{i0} \cdot \overline{i1} \cdot p0 \cdot \overline{p2}) + (i1 \cdot \overline{p0} \cdot \overline{p1} \cdot p2)$$

$$n2 = (\overline{i0} \cdot \overline{i1}) + (\overline{i0} \cdot p0 \cdot \overline{p2})$$

$$output = (p0 \cdot p2)$$

n1	1 p0,p1,p2									
000 001 011 <u>010 110</u> 111 101 <u>100</u>										
i0,i1	00	0	0	0	1	-	-	0	1	
	01	0	1	0	0	-		0	0	
	11	-	-	-						
	10	0	0	0	0			0	0	

	-	-PRIEN	205
Page N	7.		
Date			

- 1								/		
4	>Input	lorma	t = 60 t	,	62					
717	Tripu	90 (11100						_		
	b0 =	To doma	le if 5 mu	bbad c	ain is i	nsertec	}	_		
		(l i l	eles else	0)				_		
	61 =	To dem	ate if 10	ryspec	nio a	is inper	ited	_		
		(1 1)	102 else	0)				_		
	62 =	To der	eyes else of if 10 tes else of if 20	rup	els wir	ising a	orted	_		
		(lij.	yes else	0)				_		
		V	<u> </u>					_		
	> O whout	Jorna	at = b0	<u></u>	62	-				
		V				. 1	,			
	= 06	To den	note if con	₩ -	to be d	ispens	ed			
	60 = To demote if con the to be dispensed (1 if yes else 0)									
	b1 = To denote if 5 rupeers coin is to be dispensed									
		as per	nied of	24 0)						
		J	yes els)		
	62 =	- To de	mole i	10	nelbeen	cán i	1 to	TX.		
	1	be d	ispensed		7			1		
		(li	yes el	ne 0)			-			
			0							
	Price	of ea	ch coin a	m = k	(s.30.		-			
	Current		H=001	Input	= 010	Input	=100	_		
	State	NS	Out but	NS	output	NS	output	_		
	0	20	000	10	000	5	000	_		
	5	25	000	15	0 00	10	000	_		
	10	0	100	20	000	1 5	000	_		
-	15	0	110	25	000	20	000	_		
*	20	0	101	0	100	25	000	_		
	25	0		0	110	Ô	100			

Page	A	ſo.	—FRJ	ENDS-
Date				

Dezoription of machine:
=> machine how six states which signify
=> Machine hos six states which signify the money present inside machine during the
Process.
Since, only amount ≥30, and lend of dispensing
of cein and corresponding change so, states
nulliples of 5.
multiples of 5.
> There are 3 possible inputs i.e. 100, 010, 101
There are 5 possible reports i.e. 100)
Dovign of machine :-
001/000
010/000
3/ 70
0 0 0 00
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25) 01000
15)
010/000

FSM

In the State Encoding, 00 represents the Ground Floor 01 represents the First Floor 10 represents the Second Floor

For Ground Floor (00), the output is (R=1, G=0, B=0) For First Floor (01), the output is (R=0, G=1, B=0) For Second Floor (10), the output is (R=0, G=0, B=1)

State Transition Table

Present States Input				Next	State	Output			
P_{0}	P_{1}	F	S	Т	N_{0}	<i>N</i> ₁	R	G	В
0	0	0	0	0	0	0	1	0	0
0	0	0	0	1	1	0	1	0	0
0	0	0	1	0	0	1	1	0	0
0	0	0	1	1	0	1	1	0	0
0	0	1	0	0	0	0	1	0	0
0	0	1	0	1	1	0	1	0	0

0 0 1 1 1 0 1 1 0 0 1 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 1 0 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0	0 0 0 0
0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0	0 0 0 0
0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0	0 0 0
0 1 0 1 1 1 0 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0	0
0 1 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0	0
0 1 1 0 0 0 1 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0	
0 1 1 1 0 0 0 0 1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0	
0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0	0
1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0	0
1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0	0
1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 0 0	1
1 0 0 1 1 0 0	1
	1
	1
	1
1 0 1 0 1 0 0 0	1
1 0 1 1 0 0 1 0 0	1
1 0 1 1 0 1 0 0	1
1 1 0 0 0 x x x x	Х
1 1 0 0 1 x x x x	Х
1 1 0 1 0 x x x x	X
1 1 0 1 1 x x x x	Х
1 1 1 0 0 x x x x	Х
1 1 1 0 1 x x x x	Х
1 1 1 0 x x x	
1 1 1 1 x x x x	X

 $N_{0} = (P_{_{0}})^{\shortmid} \cdot (P_{_{1}})^{\shortmid} \cdot \mathsf{S}^{\prime} \cdot \mathsf{T} + (P_{_{1}}) \cdot \mathsf{F}^{\prime} \cdot \mathsf{T} + (P_{_{0}}) \cdot \mathsf{F}^{\prime} \cdot \mathsf{S}^{\prime}$

NO	F,S,	Т							
	000	001	011	010	110	111	101	100	
(P0),(P1) 00	0	1	0	0	0	0	1	0	
01	0	1	1	0	0	0	0	0	
11	-	-	-	-	-	-	-	-	
10	1	1	0	0	0	0	0	0	

 $N_1 = (P_1)'$. S + (P_1) . F' . T'

$$R = (P_0)' \cdot (P_1)'$$

G = P1

B = P0

State Encoding: 21 - 01

The state encoding denotes the pars horizontal traffic and pars vertical traffic condition on the current states

Present	States	Input	ye V	Next	State	autput	
(Po)	(Pi)	(H)	(v) +	(ho)	(6.)	(PH)	(PY)
0	0	0 7	0	×	1 x 0	×	X
0	0	0 . 32	M PART	Many X	4 1	×	*
0	0	1	0	volume.	1 1× 1/2	trake	cal x
0	0	1	•	×	×	*	×
0		0	0	0	VIVE	0	1) 1 31
. 0	1	0	Se al San	9	1 1 1 01	0 1	16 1 11
0	1	4. 4	, 0	"	0	0	13
0	1	1	goden, W	1	0	0	~ 1
1	0	0	0	1.	10	1	0
- (0	0	(0	1	1	70 8
1	0	1	0	1	o	1	0
1	0	1	10. 30	0	1	- (0
1	1 1 1	D	0	. *	× 10	· // x	2,10 % (20)
1-	1	0	1	-	X 4	x	×
1	1	1	0	×	-	×	X
1	1	1	1	*	*	*	×

$$N_0 = (P_0)'(H) + (P_1)'(V)'$$
 $N_1 = (P_0)'(H)' + (P_1)'(V)$

(N, can also be implemented as No')

 $PH = P_0$ $PV = P_1$

Assumption

The output ST determines input T, for example if the timeout duration is 5 seconds then this is a possible stream

Time (s)	0	1	2	3	4	5	6	7
Т	0	0	1	1	1	1	1	0
ST	0	1	0	0	0	0	0	0

Setting ST = 1 at t=1 means that T is 1 from t=2 to t=6

FSM Details

Start state = s3 -> we are assuming we start at PH=1, PV=0, ST=0

State encoding

State name	encoding
s1	00
s2	01
s3	10
s4	11

State Table

Present	Input			Next	Output		
State	Н	V	Т	State	PH	PV	ST
	-	-	1	10	1	0	0
	0	0	0	10	1	0	0
00	-	1	0	01	0	1	1
	1	0	0	00	1	0	1
	-	-	1	11	0	1	0
	0	0	0	11	0	1	0
01	1	-	0	00	1	0	1
	0	1	0	01	0	1	1
10	-	-	1	10	1	0	0
	0	0	0	10	1	0	0
	1	0	0	00	1	0	1
	-	1	0	01	0	1	1
11	-	-	1	11	0	1	0
	0	0	0	11	0	1	0
	1	-	0	00	1	0	1
	0	1	0	01	0	1	1

NEXT STATE -> OUTPUT MAPPING

NEXT STATE	OUTPUT	OUTPUT						
	РН	PV	ST					
00	1	0	1					
01	0	1	1					
10	1	0	0					
11	0	1	0					

DFF Excitation Table

Prese	ent State	Input			Next	Next State		ıt	
A	В	Н	V	Т	D_A	D_B	PH	PV	ST
0	0	0	0	1	1	0	1	0	0
0	0	0	1	1	1	0	1	0	0
0	0	1	1	1	1	0	1	0	0
0	0	1	0	1	1	0	1	0	0
0	0	0	0	0	1	0	1	0	0
0	0	0	1	0	0	1	0	1	1
0	0	1	1	0	0	1	0	1	1
0	0	1	0	0	0	0	1	0	1
0	1	0	0	1	1	1	0	1	0
0	1	0	1	1	1	1	0	1	0
0	1	1	0	1	1	1	0	1	0
0	1	1	1	1	1	1	0	1	0
0	1	0	0	0	1	1	0	1	0
0	1	1	0	0	0	0	1	0	1
0	1	1	1	0	0	0	1	0	1
0	1	0	1	0	0	1	0	1	1

1	0	0	0	1	1	0	1	0	0
1	0	0	1	1	1	0	1	0	0
1	0	1	0	1	1	0	1	0	0
1	0	1	1	1	1	0	1	0	0
1	0	0	0	0	1	0	1	0	0
1	0	1	0	0	0	0	1	0	1
1	0	0	1	0	0	1	0	1	1
1	0	1	1	0	0	1	0	1	1
1	1	1	0	1	1	1	0	1	0
1	1	1	1	1	1	1	0	1	0
1	1	0	0	1	1	1	0	1	0
1	1	0	1	1	1	1	0	1	0
1	1	0	0	0	1	1	0	1	0
1	1	1	0	0	0	0	1	0	1
1	1	1	1	0	0	0	1	0	1
1	1	0	1	0	0	1	0	1	1

Reasoning for transitions

Description	What the FSM does
Timeout is activated after a pass signal is given.	Whenever the output changes from PH=0, PV=1 to PH=1,PV=0 or vice versa, ST is always set to 1
If there's no traffic after a timeout, then timeout is not active.	000 input loops on s3 and s4 states which don't activate the timer
The pass signal doesn't change when timeout is active.	Input1 never changes the output PH and PV values
If only horizontal or vertical traffic is	Any change in signal leads to outputs with

present when timeout is inactive, that should be passed and timeout activated.	ST=1
If there's no traffic, the current pass signal is to be maintained.	001 and 000 dont change output PH and PV
If both traffic are present when timeout is inactive, the one that was not favoured last time should be favoured this time and timeout should be activated favouring is applicable only when both are present together when there timeout is inactive.	Input 110 leads to 1. PH=1 PV=0 to go to PH=0 PV=1 and ST=1 2. PH=0 PV=1 to go to PH=1 PV=0 and ST=1

K-Map for D_A

K-Map for D_B

Db H,V,T								
000 001 011 010 110 111 101 100								
A,B 00	0	0	0	1	1	0	0	0
01	1	1	1	1	0	1	1	0
11	1	1	1	1	0	1	1	0
10	0	0	0	1	1	0	0	0

Q8)
The FSM is as follows:

The state 00 is the idle state, 01 is used for showing 1-0 transition when data bit 1 is received and 10 is used for showing 0-1 transition when data bit 0 is received.

The state table is as follows:

Curren	nt State	Input	Next	Output	
A	В	I	$D_{\overline{A}}$	D_{B}	Y
0	0	0	1	0	0
0	0	1	0	1	1
0	1	0	X	X	X
0	1	1	0	0	0
1	0	0	0	0	1
1	0	1	X	X	X
1	1	0	X	X	X
1	1	1	X	X	X

1. $D_A = A' \cdot I'$

2. $D_B = B' . I$

3.
$$Y = (A + B' . I) . V$$