Recurrent Neural Networks: Stability analysis and LSTMs

M. Soleymani
Sharif University of Technology
Spring 2025

Most slides have been adopted from Bhiksha Raj, 11-785, CMU 2019 and some from Fei Fei Li and colleagues lectures, cs231n, Stanford 2022

Story so far

- Recurrent structures are good for analyzing time series data with long-term dependence on the past
 - These are *recurrent* neural networks

Recurrent structures can do what static structures cannot

- The addition problem: Add two N-bit numbers to produce a N+1-bit number
 - Input is binary
 - Will require large number of training instances
 - Output must be specified for every pair of inputs
 - Weights that generalize will make errors
 - Network trained for N-bit numbers will not work for N+1 bit numbers

MLPs vs RNNs

- The addition problem: Add two N-bit numbers to produce a N+1-bit number
- RNN solution: Very simple, can add two numbers of any size

MLP: The parity problem

- Is the number of "ones" even or odd
- Network must be complex to capture all patterns
 - XOR network, quite complex
 - Fixed input size

RNN: The parity problem

- Trivial solution
- Generalizes to input of any size

RNNs..

- Excellent models for time-series analysis tasks
 - Time-series prediction
 - Time-series classification
 - Sequence prediction..
 - They can even simplify problems that are difficult for MLPs
- But the memory isn't all that great...
 - Also...

The vanishing gradient problem

- A particular problem with training deep networks...
 - Any deep network, not just recurrent nets
 - The gradient of the error with respect to weights is unstable..

Reminder: Gradient problems in deep networks

- The gradients in the lower/earlier layers can explode or vanish
 - Resulting in insignificant or unstable gradient descent updates
 - Problem gets worse as network depth increases

Reminder: Training deep networks

- As we go back in layers, the Jacobians of the activations constantly shrink the derivative
 - After a few layers the derivative of the loss at any time is totally "forgotten"

The long-term dependency problem

- Must know to "remember" for extended periods of time and "recall" when necessary
 - Can be performed with a multi-tap recursion, but how many taps?
 - Need an alternate way to "remember" stuff

Standard RNN

- Recurrent neurons receive past recurrent outputs and current input as inputs
- Processed through a tanh() activation function
 - As mentioned earlier, tanh() is the generally used activation for the hidden layer
- Current recurrent output passed to next higher layer and next time instant

Vanilla RNN Gradient Flow

$$h_{t} = \tanh(W_{hh}h_{t-1} + W_{xh}x_{t})$$

$$= \tanh\left(\left(W_{hh} \quad W_{hx}\right) \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

$$= \tanh\left(W \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994 Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

Vanilla RNN Gradient Flow

Backpropagation from h_t to h_{t-1} multiplies by W (actually W_{hh}^{T})

$$h_{t} = \tanh(W_{hh}h_{t-1} + W_{xh}x_{t})$$

$$= \tanh\left(\left(W_{hh} \quad W_{hx}\right) \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

$$= \tanh\left(W \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

Enter the LSTM

- Long Short-Term Memory
- Explicitly latch information to prevent decay / blowup

- Following notes borrow liberally from
- http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Better units for recurrent models

More complex hidden unit computation in recurrence!

$$-h_t = LSTM(x_t, h_{t-1})$$

$$-h_t = GRU(x_t, h_{t-1})$$

Main ideas:

- keep around memories to capture long distance dependencies
- allow error messages to flow at different strengths depending on the inputs

Vanilla RNN

$$h_t = \tanh\left(W\begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}\right)$$

[Hochreiter et al., 1997]

4h x 2h

vector from below (x)

4h

f: Forget gate, Whether to erase cell

4*h

- o: Output gate, How much to reveal cell
- g: Gate gate (?), How much to write to cell

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

[Hochreiter et al., 1997]

Backpropagation from c_t to c_{t-1} only elementwise multiplication by f, no matrix multiply by W

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

Some visualization

Long Short-Term Memory

- The $\sigma()$ are multiplicative gates that decide if something is important or not
- Remember, every line actually represents a vector

LSTM: Constant Error Carousel

• Key component: a remembered cell state

LSTM: CEC

- C_t is the linear history
- Carries information through, only affected by a gate
 - And addition of history, which too is gated...

LSTM: Gates

- Gates are simple sigmoidal units with outputs in the range (0,1)
- Controls how much of the information is to be let through

LSTM: Forget gate

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

- The first gate determines whether to carry over the history or to forget it
 - More precisely, how much of the history to carry over
 - Also called the "forget" gate
 - Note, we're actually distinguishing between the cell memory ${\cal C}$ and the state h that is coming over time! They're related though

LSTM: Input gate

$$i_t = \sigma(W_i[h_{t-1}, x_t] + b_i)$$

$$g_t = \tanh(W_g[h_{t-1}, x_t] + b_g)$$

- The second input has two parts
 - A perceptron layer that determines if there's something new and interesting in the input
 - A gate that decides if it's worth remembering

LSTM: Memory cell update

$$C_t = f_t \odot C_{t-1} + i_t \odot g_t$$

- The second input has two parts
 - A perceptron layer that determines if there's something interesting in the input
 - A gate that decides if its worth remembering
 - If so its added to the current memory cell

LSTM: Output and Output gate

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

- The *output* of the cell
 - Simply compress it with tanh to make it lie between 1 and -1
 - Note that this compression no longer affects our ability to carry memory forward
 - Controlled by an output gate
 - To decide if the memory contents are worth reporting at this time

LSTM Equations

- i_t : input gate, how much of the new information will be let through the memory cell.
- f_t : forget gate, responsible for information should be thrown away from memory cell.
- o_t : output gate, how much of the information will be passed to expose to the next time step.
- g_t : self-recurrent which is equal to standard RNN
- c_t : internal memory of the memory cell
- h_t : hidden state

Long-short-term-memories (LSTMs)

Gates

- Input gate (current cell matter): $i_t = \sigma\left(W_i\begin{bmatrix}h_{t-1}\\\chi_t\end{bmatrix} + b_i\right)$ Forget (gate 0, forget past): $f_t = \sigma\left(W_f\begin{bmatrix}h_{t-1}\\\chi_t\end{bmatrix} + b_f\right)$ Output (how much cell is exposed): $o_t = \sigma\left(W_o\begin{bmatrix}h_{t-1}\\\chi_t\end{bmatrix} + b_o\right)$

Variables

- New memory cell: $g_t = \tanh \left(W_c \left| \frac{h_{t-1}}{\chi_t} \right| + b_c \right)$
- Final memory cell: $C_t = i_t \circ g_t + f_t \circ C_{t-1}$
- Final hidden state: $h_t = o_t \circ \tanh(C_t)$

[Hochreiter et al., 1997]

Uninterrupted gradient flow!

[Hochreiter et al., 1997]

Uninterrupted gradient flow!

LSTM Achievements

- In 2013–2015, LSTMs started achieving state-of-the-art results
 - LSTMs have essentially replaced n-grams as language models for **speech**.
 - Image captioning and other multi-modal tasks which were very difficult with previous methods became feasible with LSTMs.
 - Neural MT: broken away from plateau of SMT, especially for grammaticality (partly because of characters/subwords), but not yet industry strength.
 - Many traditional NLP tasks work very well with LSTMs, but not necessarily the top performers: e.g., POS tagging and NER: Choi 2016.

GRUs

- Gated Recurrent Units (GRU) introduced by Cho et al. 2014
- Update gate

Reset gate

Memory

Final Memory

$$z_t = \sigma \left(W_z \begin{bmatrix} h_{t-1} \\ \chi_t \end{bmatrix} + b_z \right)$$

$$r_t = \sigma \left(W_r \begin{bmatrix} h_{t-1} \\ \chi_t \end{bmatrix} + b_r \right)$$

$$\hat{h}_t = \tanh\left(W_m \begin{bmatrix} r_t \circ h_{t-1} \\ \chi_t \end{bmatrix} + b_m\right)$$

$$h_t = z_t \circ h_{t-1} + (1 - z_t) \circ \hat{h}_t$$

If reset gate unit is ~0, then this ignores previous memory and only stores the new input

GRU intuition

- Units with long term dependencies have active update gates z
- Illustration:

GRU intuition

- If reset is close to 0, ignore previous hidden state
 - → Allows model to drop information that is irrelevant in the future
- Update gate z controls how much of past state should matter now.
 - If z close to 1, then we can copy information in that unit through many time steps! Less vanishing gradient!

Units with short-term dependencies often have reset gates very active

Multi-layer RNN

$$h_t^l = \tanh W^l \begin{pmatrix} h_t^{l-1} \\ h_{t-1}^l \end{pmatrix}$$

$$h \in \mathbb{R}^n, \qquad W^l \left[n \times 2n \right]$$

Multi-layer LSTM architecture

- Each green box is now an entire LSTM or GRU unit
- Also keep in mind each box is an array of units

Story so far

- Recurrent networks are poor at memorization
 - Memory can explode or vanish depending on the weights and activation
- They also suffer from the vanishing gradient problem during training
 - Error at any time cannot affect parameter updates in the too-distant past
 - E.g. seeing a "close bracket" cannot affect its ability to predict an "open bracket" if it happened too long ago in the input
- LSTMs are an alternative formalism where memory is made more directly dependent on the input, rather than network parameters/structure
 - Through a memory structure with no weights or activations, but instead direct switching and "increment/decrement" from pattern recognizers
 - Do not suffer from a vanishing gradient problem but do suffer from exploding gradient issue

RNN: Summary

- RNNs allow a lot of flexibility in architecture design
- Vanilla RNNs are simple but don't work very well
- Backward flow of gradients in RNN can explode or vanish.
 - Exploding is controlled with gradient clipping.
 - Vanishing is controlled with additive interactions (LSTM)
- Common to use LSTM or GRU: their additive interactions improve gradient flow

Sources:

• Sharif University of Technology, 40719 (DL Course), Spring 2025