## Wireless Communication IC

## Homework #1

(Due on 03/14)

Total points: 120 points

- 1. Please randomly generate 8 binary bits (ref. Matlab commands: **rand**) by using your last two digits as the seed, and write down your own bits  $(b_i, i = 0, 1, ... 7)$ .
- 2. Use the binary bits generated in Question 1. For the following questions, the symbol period (T) is set to 400ns. The carrier frequency (f<sub>c</sub>) is selected to be 10 MHz. The initial phase, if required, is zero. Note that to make the waveform smooth, at least 16 points are sampled for one sin/cos cycle. (ref. Matlab commands: plot, cos, sin, linspace, ifft)
  - (a) Plot FSK waveform after modulation with carrier  $f_c$ , if bit 1 is sent, carrier frequency is increase to 15MHz. Otherwise, carrier frequency is decreased to 5 MHz. So, the length of the whole waveform is 3200ns. Please pay attention to the unit of your x-axis and correctly label the x axis and y axis. (10%)
  - (b) Use the black constellation mapping as in Fig. 1. Plot QPSK waveform after modulation with carrier  $f_c$ . So, the length of the whole waveform is 1.6 $\mu$ s. (10%)
  - (c) Use the black constellation mapping for the first symbol of even-numbered student and the white constellation mapping for the first symbol of odd-numbered students. Plot  $\pi/4$ -QPSK waveform after modulation with carrier  $f_c$ . So, the length of the whole waveform is 1.6 $\mu$ s. (10%)
  - (d) Plot O-QPSK and  $\pi/4$ -DQPSK baseband waveform (containing real-part and imaginary-part) according to the black points of the constellation given in Fig. 1 (10%) and two waveforms **after modulation** with carrier  $f_c$  (20%). Assume that the symbol before time 0 is  $(1 + j)/\sqrt{2}$  for both cases. So, the length of the whole waveform to be checked is 1.6µs.

The phase shift of  $\pi/4$ -DQPSK is defined as

Dibits=00 ->  $\pi/4$ , Dibits=11 ->  $3\pi/4$ ,

Dibits=01 ->  $-\pi/4$ , Dibits=10 ->  $-3\pi/4$ )



- 3. Use the data from Q1. Plot OFDM **baseband** signals with 8 subcarriers by the following step:
  - (a) With the symbol period of 800ns, calculate the subcarrier spacing  $f_{sub}$  and sampling interval  $T_s$  (10%) So, in the following, the length of the whole waveform is 0.8µs. Please pay attention to the unit of your x-axis and y-axis.
  - (b) Use BPSK constellation mapping for each subcarrier. For data bit 1, signal +1 is used. For data bit 0, signal -1 is used. Write down your  $X_k$ . Draw the real part of the signals at eight subcarriers.  $X_k e^{j2\pi f_k t}$  for k = 0,1,...,6,7. Note that  $f_k = k f_{sub}$ . Also, in order to make the waveform smooth, at least 16 points are sampled for one sin/cos cycle. (20%)
  - (c) Sum your waveform of 8 subcarriers and draw the real part and imaginary part of the output.  $y(t) = \sum_{k=0}^{7} X_k e^{j2\pi f_k t}$  (10%)
  - (d) Calculate the time-domain waveform including real part and imaginary part by applying 8-point IFFT to the frequency-domain signals  $X_k$  for k = 0,1,2,...7. Draw the discrete real part and imaginary part outputs with proper sampling interval  $T_s$  from (a). (10%).
  - (e) First, scale the curve in (c) by 1/8. Then, on the same figure, use "stem" to draw the waveform of (d) with proper sampling interval  $T_s$  according to (a). Compare them and write your comments. (10%)