

INTRODUCTION TO AI AND MACHINE LEARNING

SESSION #2

COURSE AGENDA

Session #1: Introduction to machine learning, concepts, basics, capabilities.

Classification basics.

Session #2: Feature engineering, data wrangling. Regression basics.

Session #3: Working with textual data, text classification, NLP basics

Session #4: Introduction to neural networks, deep learning, image recognition

SESSION #2 AGENDA

SECTION 1

- Overview on classification algorithms
- Four level of data
- Feature engineering

SECTION 2

 Case Study: Predicting house prices on the King County House Sales dataset

SCIKIT LEARN CLASSIFIER OVERVIEW

Scikit Learn provides numerous classifiers to work with:

Simple algorithms:

- LogisticRegression
- DecisionTreeClassifier
- Support vector machines
- Naive-Bayes classifiers
- Nearest Neighbours classifier

Ensemble methods:

- ▶ RandomForestClassifier
- BaggingClassifier
- GradientBoostingClassifiers
- VotingClassifier
- AdaBoostClassifier

LOGISTIC REGRESSION CLASSIFIER OVERVIEW

Table:

Hours	Pass
0.50	0
0.75	0
1.00	0
1.25	0
1.50	0
1.75	0
1.75	1
2.00	0
2.25	1
2.50	0
2.75	1
3.00	0
3.25	1
3.50	0
4.00	1
4.25	1
4.50	1
4.75	1
5.00	1
5.50	1

Source: https://en.wikipedia.org/wiki/Logistic_regression

DECISION TREE CLASSIFIER OVERVIEW

Source: https://mc.ai/mathematics-behind-decision-tree/

DECISION TREE FOR TITANIC

RANDOM FOREST CLASSIFIER OVERVIEW

Final decision is the predicted value voted by the most of the trees.

Source: https://www.dataversity.net/from-a-single-decision-tree-to-a-random-forest/#

DATA TYPES

DATA TYPES: UNSTRUCTURED DATA

- text
- images
- > sound, e.g.: phone recordings, music
- sensor data

Note: semi-structured data: e.g. email, XML, JSON

no mathematical operations

DATA TYPES: QUALITATIVE DATA

Nominal discrete values natural order exists may be categorical 'Good', 'Average', 'Poor' often useless for ML Likert scale

Qualitative data has to be converted numeric to be used for machine learning problems!

numeric comparison possible

DATA TYPES: QUANTITATIVE DATA

Interval

- meaningful difference between values
- adding and subtraction possible
- no multiplication or division
- e.g temperature, degree

Ratio

- continuous
- introduces true zero (real absence)
- all mathematical operations possible
- e.g. money, weight

FEATURE ENGINEERING

Goals:

Preparing the proper input dataset for a given machine learning algorithm

Improving the performance of a machine learning algorithm

Attribute: is or derived from an observable property

Feature: an attribute or an internal representation of data

Dimension: every feature creates a dimension in the feature space

FEATURE ENGINEERING

FEATURE UNDERSTANDING

Goals:

Understand the dataset

- structured vs. unstructured data, identifying data levels
- identifying missing values
- exploratory data analysis
- descriptive statistics
- data visualisations

FEATURE IMPROVEMENTS

Goals:

Clean the dataset and prepare for machine learning

- ⁻ structuring unstructured data
- ⁻ imputing missing data
- ⁻ removing outliers
- ⁻ data normalisation

FEATURE CONSTRUCTION

Goals:

Creating new features based on existing ones or other datasets

- encoding categorical variables
- deriving features from existing ones (e.g. date of birth -> age)
- ⁻ creating features from feature interaction (e.g. weight / height -> BMI)
- bringing in features from additional data sources (e.g. GPS coordinates -> country)

FEATURE SELECTION

Goals:

Improve model performance (predictive power, speed)

- selecting features based on statistical methods (e.g. correlation matrix)
- selecting features based on hypothesis testing (p-value)
- selecting features with model based or machine learning based methods
- ⁻ manual feature selection based on domain knowledge

FEATURE ENGINEERING: EXERCISE

```
192.168.1.4 - - [26/Apr/2018:17:18:54 +0200] "GET /2017/05/30/how-to-retrieve-ii s-http-logs-remotely/ HTTP/1.1" 301 671 "-" "Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.0) like Gecko"
192.168.1.4 - - [26/Apr/2018:17:18:54 +0200] "GET /2017/05/30/how-to-retrieve-ii s-http-logs-remotely/ HTTP/1.1" 200 21466 "-" "Mozilla/5.0 (Windows NT 6.1; WOW6 4; Trident/7.0; rv:11.0) like Gecko"
192.168.1.4 - - [26/Apr/2018:17:19:00 +0200] "GET /2017/05/ HTTP/1.1" 200 19215 "https://www.wptest.com/2017/05/30/how-to-retrieve-iis-http-logs-remotely/" "Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.0) like Gecko"
192.168.1.4 - - [26/Apr/2018:17:19:03 +0200] "GET /2017/05/30/hello-world/ HTTP/1.1" 200 19742 "https://www.wptest.com/2017/05/" "Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.0) like Gecko" webmaster@USERVER:~$
```

RECAP: SUPERVISED LEARNING

Source: https://www.codeingschool.com/2019/06/regression-classification-supervised-machine-learning.html

LINEAR REGRESSION

DEMO

RECAP

Today we learnt:

- how some basic classification algorithms work on a high level
- what are the four levels of data
- the essentials of feature engineering
- we built a regression model to predict house prices

HOMEWORK

AMES HOUSE PRICING DATASET

Can you build a machine learning model to accurately predict house prices?

Data and description is also available at: https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data