数字电子技术

实验报告

【实验 04-闰年计算器】

上海财经大学 信息管理与工程学院

学生姓名: 吉宁岳

学号: 2022111899

日期: 2022年10月18日

一、实验内容

- 1) 采用行为级设计一个闰年计算器,输入信号: 16 个 SW 拨码开关。输出信号: 16 个 LED 灯与 SW 相对应; 4 个七段数码管显示 SW 的年份数据; 如果为闰年, 七段数码管的小数点亮; 否则, 小数点不亮。
- 2) 采用课件 ppt 上的例题公式, 重新做上面的题目。

二、实验方案

实验 1:

输入	logic	int	logic		输出
					-LED[15:0]
SW[15:0]-	-x[15:0]-	- у -			- AN[3:0]
				- X71	a2g[6:0]
			!(y%4==0&&y%100!=0 y%400==0) —		- DP

实验 2:

输入	log	jic	logic	logic		输出
						- LED[15:0]
SW[15:0] =	x[15	5:0]				AN[3:0]
			D4	((!SW[4])&&(!SW[1])&&(!SW[0])) ((SW[4])&&(SW[1])&&(!SW[0]))	X72	a 2g[6:0]
			D100	(ISW[7])&&(ISW[6])&&(ISW[5])&&(ISW[4])&&(ISW[3])&&(ISW[2])&&(ISW[1])&&(ISW[0])		
			D400	D100&&(((!SW[12])&&(!SW[9])&&(!SW[8])) ((SW[12])&&(SW[9])&&(!SW[8])))	_!(D4&&!D100 D400) =	— DP

【备注】

SW-拨码开关

LED-LED 显示灯

AN-七段数码管阳极; a2g-七段数码管阴极

DP-小数点阴极

三、实验分析(assistDesign.sv/Dec7Seg.sv/Basys3_Master.xdc 与实验 2 一致,故略)

1. 实验一(mainDesign1.sv)

【分析】

- 1.16 位二进制 x (SW 输入信号) →整型数 y (实际对应年份)
- 2.DP=!置闰(小数点高电平熄灭低电平点亮)
- 3.置闰=(四年一闰&&百年不闰||四百年又闰)&&(1582年之后置闰)

2.实验二 (mainDesign2.sv)

```
module mainDesign2(
input logic CLK100PHZ,
input logic [15:0] SW,
output logic [6:0] a2g,
output logic [3:0] AN,
output logic [15:0] LED,
output logic [5:0] EED,
output logic DP

16
);

17
18 logic [15:0] x;
logic D160;
logic D400;

20 assign D4=((ISW[4])&&(ISW[1])&&(ISW[0]))||((SW[4])&&(SW[1])&&(ISW[0]));
assign D100=(ISW[7])&&(ISW[6])&&(ISW[6])&&(ISW[6]));
assign D400=D100&&(((ISW[12])&&(ISW[9])&&(ISW[8]))||((SW[12])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(ISW[9])&&(I
```

【分析】

左图:开关-引脚对应关系

右图:参考公式分析

SW0	SW1	SW2	SW3	SW4	SW5	SW6	SW7
YO1	YO2	YO4	YO8	YT1	YT2	YT4	YT8
SW8	SW9	SW10	SW11	SW12	SW13	SW14	SW15
YH1	YH2	YH4	YH8	YM1	YM2	YM4	YM8

四、实验现象

1.初始状态 (0000 符合置闰条件但<1582, 小数点不亮)

2.非闰年: 2022 (小数点不亮)

3.四年一闰: 2024 (小数点亮)

4.百年不闰: 2100 (小数点不亮)

5.四百年又闰: 2400 (小数点亮)

五、总结与思考

- 1.在行为级设计此项目时需要注意拨码开关所表示的为十六进制数,需要添加一 个整型变量以将其转换为十进制数
- 2.组合逻辑分析能够化简电路从而提高工作效率, 但是需要注意在化简时的准确 性
- 3.收获: 学习了行为级设计方法, 理解了自己进行组合逻辑设计与 Verilog 中设 计之间的区别。