Part I - (Prosper Loan Analysis)

by (Olajide Oluwatosin)

Introduction

This data set contains 113,937 loans with 81 variables on each loan, including loan amount, borrower rate (or interest rate), current loan status, borrower income, and many others. See this data dictionary to understand the dataset's variables.

Preliminary Wrangling

RangeIndex: 113937 entries, 0 to 113936

Data columns (total 81 columns):

Column

```
In [1]:
         #import necessary libraries
         import warnings
         warnings.filterwarnings("ignore")
         import numpy as np
         import pandas as pd
         import missingno as mno
         import matplotlib.pyplot as plt
         import seaborn as sns
         pd.set option("display.max columns",100)
         pd.set option("display.max rows",100)
         # sns.set theme(style="white",palette=sns.color palette("dark:grey"))
In [2]:
         #import data
         data = pd.read csv("data/prosperLoanData.csv")
In [3]:
         data.head()
Out[3]:
                           ListingKey
                                     ListingNumber ListingCreationDate CreditGrade Term LoanStatus Close
                                                           2007-08-26
                                                                                                    2009-
             1021339766868145413AB3B
                                            193129
                                                                                     36
                                                                                          Completed
                                                    19:09:29.263000000
                                                                                                       00:
                                                            2014-02-27
            10273602499503308B223C1
                                           1209647
                                                                              NaN
                                                                                     36
                                                                                             Current
                                                    08:28:07.900000000
                                                           2007-01-05
                                                                                                     2009
            0EE9337825851032864889A
                                                                               HR
                                                                                     36
                                                                                          Completed
                                             81716
                                                    15:00:47.090000000
                                                            2012-10-22
            0EF5356002482715299901A
                                            658116
                                                                              NaN
                                                                                     36
                                                                                             Current
                                                     11:02:35.010000000
                                                            2013-09-14
         4 0F023589499656230C5E3E2
                                            909464
                                                                                     36
                                                                                             Current
                                                                              NaN
                                                    18:38:39.097000000
In [4]:
         data.info()
         <class 'pandas.core.frame.DataFrame'>
```

Non-Null Count

Dtype

0	ListingKey	113937 non-null	object
1	ListingNumber	113937 non-null	int.64
2	ListingCreationDate	113937 non-null	object
3	CreditGrade	28953 non-null	object
4	Term	113937 non-null	int64
5	LoanStatus	113937 non-null	object
6	ClosedDate	55089 non-null	object
7	BorrowerAPR	113912 non-null	float64
8	BorrowerRate	113937 non-null	float64
9	LenderYield	113937 non-null	float64
10	EstimatedEffectiveYield	84853 non-null	float64
11	EstimatedLoss	84853 non-null	float64
12	EstimatedReturn	84853 non-null	float64
13	ProsperRating (numeric)	84853 non-null	float64
14	ProsperRating (Alpha)	84853 non-null	object
15	ProsperScore	84853 non-null	float64
16	ListingCategory (numeric)	113937 non-null	int64
17	BorrowerState	108422 non-null	object
18	Occupation	110349 non-null	object
19	EmploymentStatus	111682 non-null	object
20	EmploymentStatusDuration	106312 non-null	float64
21	IsBorrowerHomeowner	113937 non-null	bool
22	CurrentlyInGroup	113937 non-null	bool
23	GroupKey	13341 non-null	object
24	DateCreditPulled	113937 non-null	object
25	CreditScoreRangeLower	113346 non-null	float64
26	CreditScoreRangeUpper	113346 non-null	float64
27	FirstRecordedCreditLine	113240 non-null	object
28	CurrentCreditLines	106333 non-null	float64
29	OpenCreditLines	106333 non-null	float64
30	TotalCreditLinespast7years	113240 non-null	float64
31	OpenRevolvingAccounts	113937 non-null	int64
32	OpenRevolvingMonthlyPayment	113937 non-null	float64
33	InquiriesLast6Months	113240 non-null	float64
34	TotalInquiries	112778 non-null	float64
35	CurrentDelinquencies	113240 non-null	float64
36	AmountDelinquent	106315 non-null	float64
37	DelinquenciesLast7Years	112947 non-null	float64
38	PublicRecordsLast10Years	113240 non-null	float64
39	PublicRecordsLast12Months	106333 non-null	float64
40	RevolvingCreditBalance	106333 non-null	float64
41	BankcardUtilization	106333 non-null	float64
42	AvailableBankcardCredit	106393 non-null	float64
43	TotalTrades	106393 non-null	float64
44	TradesNeverDelinquent (percentage)	106393 non-null	float64
45	TradesOpenedLast6Months	106393 non-null	float64
46	DebtToIncomeRatio	105383 non-null	float64
47	IncomeRange	113937 non-null	object
48	IncomeVerifiable	113937 non-null	bool
49	StatedMonthlyIncome	113937 non-null	float64
50	LoanKey	113937 non-null	object
51	TotalProsperLoans	22085 non-null	float64
52	TotalProsperPaymentsBilled	22085 non-null	float64
53	OnTimeProsperPayments	22085 non-null	float64
54	ProsperPaymentsLessThanOneMonthLate	22085 non-null	float64
55	ProsperPaymentsOneMonthPlusLate	22085 non-null	float64
56	ProsperPrincipalBorrowed	22085 non-null	float64
57	ProsperPrincipalOutstanding	22085 non-null	float64
58	ScorexChangeAtTimeOfListing	18928 non-null	float64
59	LoanCurrentDaysDelinquent	113937 non-null	int64
60	LoanFirstDefaultedCycleNumber	16952 non-null	float64
61	LoanNumber	113937 non-null	int64
62 63	LoanOriginalAmount	113937 non-null	int64
63	LoanOriginalAmount	113937 non-null	int64
64	LoanOriginationDate	113937 non-null	object

```
65 LoanOriginationQuarter
                                                           113937 non-null object
 66 MemberKey
                                                         113937 non-null object
 67 MonthlyLoanPayment 113937 non-null float64
68 LP_CustomerPayments 113937 non-null float64
69 LP_CustomerPrincipalPayments 113937 non-null float64
70 LP_InterestandFees 113937 non-null float64
                                                       113937 non-null float64
113937 non-null float64
113937 non-null float64
 71 LP ServiceFees
 72 LP CollectionFees
 73 LP_GrossPrincipalLoss
74 LP NetPrincipalLoss
 74 LP_NetPrincipalLoss 113937 non-null float64
75 LP_NonPrincipalRecoverypayments 113937 non-null float64
76 PercentFunded 113937 non-null float64
 77 Recommendations
                                                         113937 non-null int64
 78 InvestmentFromFriendsCount
                                                        113937 non-null int64
                                                      113937 non-null float64
 79 InvestmentFromFriendsAmount
 80 Investors
                                                          113937 non-null int64
dtypes: bool(3), float64(50), int64(11), object(17)
memory usage: 68.1+ MB
```

Date columns not in the right format

```
In [5]: # change the datatype of date columns to datatime
   date_columns = [i for i in data.columns if i[-4:] == "Date" or i[:4] == "Date"]
   date_columns.append("FirstRecordedCreditLine")

for column in date_columns:
   data[column] = pd.to_datetime(data[column])

data.head()
```

Out[5]:

	ListingKey	ListingNumber	ListingCreationDate	CreditGrade	Term	LoanStatus	Closed
0	1021339766868145413AB3B	193129	2007-08-26 19:09:29.263	С	36	Completed	2009-
1	10273602499503308B223C1	1209647	2014-02-27 08:28:07.900	NaN	36	Current	
2	0EE9337825851032864889A	81716	2007-01-05 15:00:47.090	HR	36	Completed	2009-
3	0EF5356002482715299901A	658116	2012-10-22 11:02:35.010	NaN	36	Current	
4	0F023589499656230C5E3E2	909464	2013-09-14 18:38:39.097	NaN	36	Current	

Link

```
In [6]: # visualize missing columns
mno.matrix(data);
```


From the diagram we can see different set of columns that missing values from the same row.

A lot of missing values come from columns that have consistent missing values in other columns.

ata.isna().sum()/len(data)	
istingKey	0.00000
istingNumber	0.00000
istingCreationDate	0.00000
reditGrade	0.745886
'erm	0.00000
oanStatus	0.00000
losedDate	0.516496
orrowerAPR	0.000219
orrowerRate	0.00000
enderYield	0.00000
stimatedEffectiveYield	0.255264
stimatedLoss	0.255264
StimatedReturn	0.255264
rosperRating (numeric)	0.255264
rosperRating (Alpha)	0.255264
rosperScore	0.255264
istingCategory (numeric)	0.00000
SorrowerState	0.048404
occupation	0.031491
mploymentStatus	0.019792
ImploymentStatusDuration	0.066923
sBorrowerHomeowner	0.00000
urrentlyInGroup	0.00000
roupKey	0.882909
DateCreditPulled	0.00000
reditScoreRangeLower	0.005187
reditScoreRangeUpper	0.005187
irstRecordedCreditLine	0.006117
CurrentCreditLines	0.066739
penCreditLines	0.066739
otalCreditLinespast7years	0.006117
penRevolvingAccounts	0.00000
penRevolvingMonthlyPayment	0.00000
inquiriesLast6Months	0.006117
otalInquiries	0.010172
CurrentDelinquencies	0.006117
mountDelinquent	0.066897
elinquenciesLast7Years	0.008689
PublicRecordsLast10Years	0.006117
bublicRecordsLast12Months	0.066739
evolvingCreditBalance	0.066739

BankcardUtilization	0.066739
AvailableBankcardCredit	0.066212
TotalTrades	0.066212
TradesNeverDelinquent (percentage)	0.066212
TradesOpenedLast6Months	0.066212
DebtToIncomeRatio	0.075077
IncomeRange	0.000000
IncomeVerifiable	0.000000
StatedMonthlyIncome	0.000000
LoanKey	0.00000
TotalProsperLoans	0.806165
TotalProsperPaymentsBilled	0.806165
OnTimeProsperPayments	0.806165
ProsperPaymentsLessThanOneMonthLate	0.806165
ProsperPaymentsOneMonthPlusLate	0.806165
ProsperPrincipalBorrowed	0.806165
ProsperPrincipalOutstanding	0.806165
ScorexChangeAtTimeOfListing	0.833873
LoanCurrentDaysDelinquent	0.00000
LoanFirstDefaultedCycleNumber	0.851216
LoanMonthsSinceOrigination	0.000000
LoanNumber	0.00000
LoanOriginalAmount	0.000000
LoanOriginationDate	0.000000
LoanOriginationQuarter	0.000000
MemberKey	0.000000
MonthlyLoanPayment	0.000000
LP_CustomerPayments	0.000000
LP_CustomerPrincipalPayments	0.000000
LP_InterestandFees	0.000000
LP_ServiceFees	0.000000
LP_CollectionFees	0.000000
LP_GrossPrincipalLoss	0.000000
LP_NetPrincipalLoss	0.000000
LP_NonPrincipalRecoverypayments	0.000000
PercentFunded	0.000000
Recommendations	0.000000
InvestmentFromFriendsCount	0.000000
InvestmentFromFriendsAmount	0.000000
Investors	0.000000
dtype: float64	

In [8]: data.head()

Out[8]:

	ListingKey	ListingNumber	ListingCreationDate	CreditGrade	Term	LoanStatus	Closed
0	1021339766868145413AB3B	193129	2007-08-26 19:09:29.263	С	36	Completed	2009-
1	10273602499503308B223C1	1209647	2014-02-27 08:28:07.900	NaN	36	Current	
2	0EE9337825851032864889A	81716	2007-01-05 15:00:47.090	HR	36	Completed	2009-
3	0EF5356002482715299901A	658116	2012-10-22 11:02:35.010	NaN	36	Current	
4	0F023589499656230C5E3E2	909464	2013-09-14 18:38:39.097	NaN	36	Current	

Consider all data points after July 2009 since a quite a number of features were collected after July 2009. We will dispose all the known values for the CreditRating because only loans before 2009 had this feature. However, we can use ProperRating as a substitute to this column

```
In [9]: data = data.query("ListingCreationDate >= '2009-08-1'")
In [10]: (data.isna().sum()/len(data)).tail(40)
Out[10]: BankcardUtilization
                                                           0.000000
           AvailableBankcardCredit
                                                           0.000000
           TotalTrades
                                                          0.000000
           TradesNeverDelinquent (percentage) 0.000000
                                                         0.000000
           TradesOpenedLast6Months
           DebtToIncomeRatio
                                                          0.085991
           IncomeRange
                                                         0.000000
           IncomeVerifiable
                                                         0.000000
                                                         0.000000
           StatedMonthlyIncome
           LoanKey 0.000000

TotalProsperLoans 0.767550

TotalProsperPaymentsBilled 0.767550

OnTimeProsperPayments

ProsperPaymentsLessThanOneMonthLate 0.767550

ProsperPaymentsOneMonthPlusLate 0.767550

ProsperPrincipalBorrowed 0.767550
           ProsperPrincipalOutstanding 0.767550
ScorexChangeAtTimeOfListing 0.804812
LoanCurrentDaysDelinquent 0.000000
LoanFirstDefaultedCycleNumber 0.926469
LoanMonthsSinceOrigination 0.000000
           LoanNumber
                                                         0.000000
                                                          0.000000
           LoanOriginalAmount
           LoanOriginationDate
                                                          0.000000
           LoanOriginationQuarter
                                                         0.000000
           MemberKey
                                                         0.000000
                                                         0.000000
           MonthlyLoanPayment
           LP_CustomerPayments
                                                     0.000000
           LP CustomerPrincipalPayments
                                                         0.000000
           LP InterestandFees
                                                         0.000000
           LP ServiceFees
                                                        0.000000
           LP CollectionFees
           LP GrossPrincipalLoss
           LP_NetPrincipalLoss
                                                         0.000000
           LP_NonPrincipalRecoverypayments 0.000000
           PercentFunded
                                                         0.000000
                                                         0.000000
           Recommendations
           InvestmentFromFriendsCount
                                                          0.000000
           InvestmentFromFriendsAmount
                                                          0.000000
                                                           0.000000
           Investors
           dtype: float64
```

We could leave the ClosingDate column (it can be useful when analysing loans that have been closed), we will fill null values in the Occupation column with null, we will drop all the missing data points in EmploymentStatusDuration and DebtToIncomeRatio and fill TotalProsperLoans with O.

```
In [11]: data.Occupation.fillna("Unknown",inplace=True)
    data.dropna(inplace=True, subset=["DebtToIncomeRatio","EmploymentStatusDuration"])
    data.TotalProsperLoans.fillna(0,inplace=True)
    data.reset_index(inplace=True,drop=True)
```

Drop columns that are duplicated or unnecessary to the analysis.

```
In [12]: cols_to_drop = ["Term","CreditGrade","ListingKey", "ListingNumber", "ProsperRating (nume
```

```
data.drop(cols to drop, 1, inplace=True)
In [13]: data.isna().sum()
Out[13]: LoanStatus ClosedDate
                                        0
                                    54514
        BorrowerAPR
                                        0
        EstimatedLoss
        ProsperRating (Alpha)
                                       0
        ProsperScore
                                        0
                                      0
        ListingCategory (numeric)
        CurrentlyInGroup
                                       0
                                       0
        CreditScoreRangeLower
        CreditScoreRangeUpper
                                       0
        OpenCreditLines
                                       0
        RevolvingCreditBalance
                                       0
        BankcardUtilization
                                       0
                                       0
        AvailableBankcardCredit
        DebtToIncomeRatio
                                       0
        IncomeRange
        StatedMonthlyIncome
                                       0
        TotalProsperLoans
        LoanCurrentDaysDelinquent
         LoanOriginalAmount
                                       0
        MonthlyLoanPayment
        dtype: int64
[n [14]: data.LoanStatus = data.LoanStatus.apply(lambda x: "Past Due" if x[:8] == "Past Due" else
In [15]: # drop the unemployed person since he is a single person
         data.drop(data[data.IncomeRange=="Not employed"].index,inplace=True)
         data.reset index(drop=True,inplace=True)
```

What is the structure of your dataset?

Our data consists of 77376 thousand data points which include columns like 'LoanStatus', 'ClosedDate', 'BorrowerAPR', 'EstimatedLoss', 'ProsperRating (Alpha)', 'ProsperScore', 'ListingCategory (numeric)','CreditScoreRangeLower' 'OpenCreditLines''AvailableBankcardCredit', 'DebtToIncomeRatio', 'IncomeRange', 'StatedMonthlyIncome', 'TotalProsperLoans', etc

What is/are the main feature(s) of interest in your dataset?

I want to explore loans may differ for people in different income levels.

What features in the dataset do you think will help support your investigation into your feature(s) of interest?

The IncomeRange, StatedMonthlyIncome, LoanStatus, BorrowerAPR, OpenCreditLines, DebttoIncomeRatio, TotalProsperLoans

```
In [16]: data.to_csv("processed.csv",index=False)
```

Univariate Exploration

Let's start with the the checking the distribution of the peoples monthly income

Question: What's the distribution of Income like?

```
In [17]: # create bin size
binsize = 2000
bins = np.arange(0, data['StatedMonthlyIncome'].max()+binsize, binsize)

#plot continuous distribution of income
plt.figure(figsize=[8, 5])
plt.hist(data = data, x = 'StatedMonthlyIncome', bins = bins);
```



```
In [18]: # Visualize in income in categories
    ax = sns.countplot(y="IncomeRange", data=data, order = data.IncomeRange.value_counts().i
    ax.spines["top"].set_visible(False)
    ax.spines["right"].set_visible(False);
```


Observation

As expected, it was skewed to the left which means there are a lot more poor people. Most people fall into 25000 to 49999 or 50000 to 74999 range. A very small percentage had 1 to 24999 dollars per year.

Question: How many loans distributed on across the various loan status?

```
ax = sns.countplot(y="LoanStatus", data=data, order = data.LoanStatus.value_counts().ind
ax.spines["top"].set_visible(False)
ax.spines["right"].set_visible(False);
```

Name:	LoanStatus,	dtype:	int64
Final	189		
Defau:	lted		877
Past 1	Due		1857
Charge	edoff		4434
Comple	17551		
Curre	nt		52468

12797

From the above we could see that a bunch of the loans are still being paid and definitely a large amount of loans are usually paid off and only about a quarter is written off a bad debt. We could look look at the distribution of people over their income ranges next.

```
In [20]:
            data.head()
Out[20]:
                                                                         ProsperRating
                                                                                                        ListingCategory
               LoanStatus ClosedDate BorrowerAPR EstimatedLoss
                                                                                         ProsperScore
                                                                               (Alpha)
                                                                                                              (numeric)
            0
                                                                                                                      2
                   Current
                                    NaT
                                               0.12016
                                                                0.0249
                                                                                                   7.0
                                                                                     Α
            1
                                                                                                   9.0
                   Current
                                    NaT
                                               0.12528
                                                                0.0249
                                                                                     Α
                                                                                                                      16
            2
                   Current
                                               0.24614
                                                                0.0925
                                                                                     D
                                                                                                   4.0
                                                                                                                      2
                                    NaT
                   Current
                                               0.15425
                                                                0.0449
                                                                                                  10.0
                                    NaT
            4
                                               0.31032
                                                                0.1275
                                                                                      Ε
                                                                                                   2.0
                   Current
                                    NaT
```

```
In [21]: print(data["ProsperRating (Alpha)"].value_counts())
    ax = sns.countplot(x = "ProsperRating (Alpha)", data=data, order = data["ProsperRating (ax.spines["top"].set_visible(False)
    ax.spines["right"].set_visible(False);

C    16850
    B    14614
    A    13663
```

HR 5727 5118 Name: ProsperRating (Alpha), dtype: int64 16000 14000 12000 10000 8000 6000 4000 2000 0 Ď HR ΑÀ ProsperRating (Alpha)

Observation

Ε

8607

This shows that most loans are in the C category. link explains each of the categories well. Although I couldn't get a valid explanation for the HR rating. The data dictionary suggest it's the lowest ranking category.

Question: What's the distribution of the the cost of a loan?

```
In [22]: # create bins
binsize = 0.025
bins = np.arange(0, data['BorrowerAPR'].max()+binsize, binsize)

# visualize data
plt.figure(figsize=[8, 5])
plt.hist(data = data, x = 'BorrowerAPR', bins = bins);
```


Observation

Looking at the distribution of the BorrowersAPR, we can see that it is normally distributed around 0.2.

Question: What's the distribution of the Credit Scores?

```
In [23]: # create bins
binsize = 5
bins = np.arange(550, data['CreditScoreRangeLower'].max()+binsize, binsize)

# visualize bins
plt.figure(figsize=[8, 5])
plt.hist(data = data, x = 'CreditScoreRangeLower', bins = bins);
```


Observation

Looking at the distribution of the Credit Scores, looks categorical but that because we are using the lower limit of the credit score range to represent the credit score.

Discuss the distribution(s) of your variable(s) of interest. Were there any unusual points? Did you need to perform any transformations?

Most of the distributions were expected or at least not out of ordinary and there were no need for transformations. However, I noticed that there were no values of a credit score lower than 600(very close to 580 which is considered the threshold for low credit score), this means Prosper must have been playing it safe all along by not giving people with a low credit score loans.

Of the features you investigated, were there any unusual distributions? Did you perform any operations on the data to tidy, adjust, or change the form of the data? If so, why did you do this?

None

In [24]:

Bivariate explorations

Question what's the percent of defaulted, charged off and settled loans across income levels?

```
temp_df.BorrowerAPR = temp_df.BorrowerAPR/temp_df.groupby("IncomeRange", as_index=False)[
temp_df.rename(columns={"BorrowerAPR":"percent"},inplace=True)

#Plot data
plt.figure(figsize=(15,7))
ax = sns.barplot(x="IncomeRange",y="percent",data=temp_df,hue="LoanStatus",order=['$1-24
for bar in ax.patches:
    ax.annotate(
        f"{bar.get_height():.2f}",
        (bar.get_x() + bar.get_width() / 2,bar.get_height()),
        ha='center',
        va='center',
        size=15,
        xytext=(0, 8),
        textcoords='offset points'
)
```


From the above graph, we can clearly see that the percent of chargedoff and defaulted loans decreases as we go up in the income brackets

Question: Does the company recognize the risk in giving poor people loans?

```
In [25]:
         # create a dataframe of count of possible combination IncomeRange and Rating categories
         temp df = data.query("~ClosedDate.isna()").groupby(["IncomeRange","ProsperRating (Alpha)
         temp df.BorrowerAPR = temp df.BorrowerAPR/temp df.groupby("IncomeRange",as index=False)[
         temp_df.rename(columns={"BorrowerAPR":"percent"},inplace=True)
         #plot data
         plt.figure(figsize=(25,7))
         ax = sns.barplot(x="IncomeRange",y="percent",data=temp df,hue="ProsperRating (Alpha)",or
         for bar in ax.patches:
             ax.annotate(
                  f"{bar.get height():.2f}",
                  (bar.get x() + bar.get width() / 2,bar.get height()),
                 ha='center',
                 va='center',
                 size=12,
                 xytext=(0, 8),
```


Yes they do, the rich people's loans are usually rated higher while poorer people are usually rated lower.

Question: Does this reflect in the cost of loans for poorer people?

Observation

Yes it does, as a consequence of the of the risk tied to borrowing a poor person money as seen in the visualization before this. The lender increases the cost of borrowing for poorer people to compensate for the risk they are taking.

Question: Are poor people more likely not to get loans because of this cost?

```
In [27]: plt.figure(figsize=(12,6))
    sns.boxplot(x="OpenCreditLines", y="IncomeRange", data=data, order=['$1-24,999', '$25,000-4
```


Sadly yes, the rich seems generally have access to more and cheaper loans than the poor because of they are less risky to loan too. It also follows a point Robert Kiyosaki(Rich Dad, Poor Dad) made is that instead of getting out of debt, people should use debt to their advantage.

Question: Does the loan amount vary among income levels?

Observation

Yes it does, the rich also has access to significantly larger loans.

Talk about some of the relationships you observed in this part of the investigation. How did the feature(s) of interest vary with other features in

the dataset?

Rich people tend to settle their loans, the companies recognize that their loans are less risky therefore offers cheaper loans to the rich which then encourages the rich to take more loans.

Did you observe any interesting relationships between the other features (not the main feature(s) of interest)?

None

Multivariate Exploration

Question: How is the IncomeRange affected by the BorrowerAPR and EstimatedLoss?

Apart from a positive correlation between the estimated loss and the cost of loan. There is no common relationship between both values and the income range

Question: How is the rating affected by the BorrowerAPR and EstimatedLoss?

We noticed that estimated the HR rated loans have the bigges of the estimated loss and also highest cost of loans. Both gets better from E to D to C to B to A to AA.

Conclusions

In summary, loans are very much beneficial to the rich unlike their poorer counterparts.