Neural Network and Deep Learning

Radial Basis Function (RBF)

Outline

- RBF Neural Network
- RBF Neural Network Learning

Radial Basis Function (RBF)

Neural Network

RBF Neural Networks

- RBF network is the <u>single hidden layer feedforward neural network</u> which consists of an input layer, a single hidden layer, and an output layer.
- There are <u>no input weights</u> on the lines from the input nodes to the hidden nodes.
- The **Radial-Basis Function** is used as the activation function in hidden layer.
- Each hidden node stores a "prototype" vector which also often called "center" vector because it is the value at the center of the bell shaped radial basis function.
- The leaning method for tuning the **output weights** can be:
 - LMS, Gradient descent
 - Generalized pseudo inverse

Single hidden layer feedforward neural network

RBF neural network

RBF neural network

RBF Activation Function

RBF Activation Function

• The Radial-Basis Function is used as the activation function

Gaussian Function

• The **Gaussian Functions** are generally used for Radial Basis Function.

Given:
$$r = \|\mathbf{x} - \mathbf{c}\|_2$$

$$\varphi(r) = exp(-\frac{r^2}{2\sigma^2})$$

Gaussian RBF

Gaussian functions:

$$\varphi(r) = exp(-\frac{r^2}{2\sigma^2})$$
 where $r = \|\mathbf{x} - \mathbf{c}\|_2$

Gaussian RBF:

$$\varphi(\|\mathbf{x} - \mathbf{c}\|_2) = exp(-\frac{\|\mathbf{x} - \mathbf{c}\|_2^2}{\sigma^2})$$

RBF Neural Network *Learning*

RBF neural network

RBF Neural Network Learning

1. Hidden layer learning

- Learn to find the center vectors of hidden nodes
- Compute the output of hidden layer

2. Output weights learning

- o Any learning algorithms can be used such as
 - LMS,
 - Generalized pseudo inverse,
 - etc.

Hidden layer learning

Selecting the centers vectors

- The <u>number of center</u> vectors relate to the number of hidden nodes.
- There are many possible learning strategies that can be used to select the center vectors of RBFN
 - **a.** The center vectors are randomly selected from training set
 - **b.** Using the "K-means" clustering algorithm to set center vectors

Output weights learning

Compute the weight between hidden layer and output layer

- To adjust the output weights of RBF network, any algorithm can be used such as
 - a. The gradient descent (similar to MLP neural network learning algorithm)

$$\beta_{l,m} \leftarrow \beta_{l,m} - \eta \frac{\partial J_i}{\partial \beta_{l,m}} \qquad \beta = \begin{bmatrix} \beta_{1,1} & \dots & \beta_{1,M} \\ \vdots & \ddots & \vdots \\ \beta_{L,1} & \dots & \beta_{L,M} \end{bmatrix}$$

$$\leftarrow \beta_{l,m} + \eta \left(y_{i,m} - \hat{y}_{i,m} \right) h_{i,l}$$

b. The generalized pseudo inverse

$$\boldsymbol{\beta} = (\mathbf{H}^{\mathsf{T}}\mathbf{H})^{-1}\mathbf{H}^{\mathsf{T}}\mathbf{Y}$$

RBF Training Example

X_2	у
0.9	-1
0.8	-1
0.7	-1
0.1	1
-0.1	1
	0.9 0.8 0.7 0.1

x ₁	X ₂	у
0.1	0.9	-1
0.2	0.8	-1
0.3	0.7	-1
0.9	0.1	1
0.9	-0.1	1

> Fixed centers:

$$\mathbf{c}_1 = [0.9, 0.0]$$

$$\mathbf{c}_2 = [0.2, 0.8]$$

Fixed the spread (sigma) of RBF to 1

Compute the hidden layer ou	tput
-----------------------------	------

x ₁	\mathbf{x}_2	у
0.1	0.9	-1
0.2	0.8	-1
0.3	0.7	-1
0.9	0.1	1
0.9	-0.1	1

$$\mathbf{H} = \varphi(\|\mathbf{x} - \mathbf{c}\|_{2}) = exp(-\frac{\|\mathbf{x} - \mathbf{c}\|_{2}^{2}}{\sigma^{2}})$$

$$h_{1} = exp(-\frac{\|\mathbf{x}_{1} - \mathbf{c}_{1}\|^{2}}{2(1)^{2}})$$

$$= exp(-\frac{\|\mathbf{x}_{1} - \mathbf{c}_{1}\|^{2}}{2(1)^{2}})$$

$$= exp(-\frac{(\sqrt{(0.1 - 0.9)^{2} + (0.9 - 0)^{2}})^{2}}{2(1)^{2}})$$

$$= exp(-\frac{1.2041595^{2}}{2(1)^{2}})$$

$$= 0.485649$$

$$0.56836015$$

$$0.99004983$$

 $0.65376979 \quad 0.99004983$

x ₁	X_2	у
0.1	0.9	-1
0.2	0.8	-1
0.3	0.7	-1
0.9	0.1	1
0.9	-0.1	1

Output weights learning: pseudo inverse

$$\boldsymbol{\beta} = (\mathbf{H}^{\top}\mathbf{H})^{-1}\mathbf{H}^{\top}\mathbf{Y}$$

$$\beta = \begin{bmatrix} 2.28967078 \\ -2.30355664 \end{bmatrix}$$

x ₁	X ₂	у
0.1	0.9	-1
0.2	0.8	-1
0.3	0.7	-1
0.9	0.1	1
0.9	-0.1	1

> Prediction

$$\mathbf{H}\beta = \begin{bmatrix} -1.17169205 \\ -1.00219902 \\ -0.78371829 \\ 0.8670314 \\ 1.07568899 \end{bmatrix}$$

Workshop