PACE 1877 ° RCVD AT 21412004 4:42:41 PM [Eastern Standard Time] ° SVR:USPTO-EFXRF-1125 ° DNIS:2731998 ° CSID:212 319 5101 ° DURATION (mm-ss):17-56

⑤

②

@

2

(4)

Int. CL:

H 01 f, 7/02

BUNDESREPUBLIK DEUTSCHLAND

HOI f, 21/08 F02p, 3/02

Deutsche Kl.:

21 g, 31/01

21 g, 1/02

46 k, 29

(II) 2 226 289 Offenlegungsschrift

Aktenzeichen:

P 22 26 289.1

Anmeldetag:

30. Mai 1972

Offenlegungstag: 4. Januar 1973

Ausstellungspriorität:

Unionspriorität

② Datum: 31. Mài 1971

12. Juni 1971

(3) Land: Japan

37591-71

50024-71

❷ Bezeichnung: Vormagnetisierter Magnetkern

働

a

Zusatz zu:

Aktenzeichen:

® **(77)**

Anmelder:

TDK Electronics Co. Ltd., Tokio

Vertreter gem. § 16 PatG:

Ausscheidung aus:

Reinländer, C., Dr.-Ing.; Bernhardt, H. K., Dipl.-Ing.:

Patentanwälte, 8000 München

@

Als Erlinder benannt.

Ojima, Teruhiko; Fujiwara. Takashi; Tokio

PACE 19173 * RCVD AT 21412004 4:42:41 PM [Eastern Standard Time] * SVR:USPTO-EFXRF-1125 * DNIS:2731998 * CSID:212 319 5101 * DURATION (mm-ss):17-55

PATENTANWALTE
DR. CLAUS REINLANDER
DIPL.-ING. KLAUS DERNHARDT
D - 8 MONCHEN 40
THEODOR-STORM-STRASSE 188

254/2

2226289

TDE Electronics Company, Ltd. No.14-6, Uchikanda 2-chome Chiyoda-ku, Tokyo, Japan

Vorwagnetisierter Magnetkern

Prioritäten: 31. Mai 1971 Japan 37591/1971 12. Juni 1971 Japan 50024/1971

Kurziassung der Beschreibung

Beschrieben wird ein vorwagnetisierter Magnetkern für ein Induktivitätselement, das einen Perwanentmagneten enthält. der in der Nähe eines Luftspalts des Magnetkerns angeordnet ist. Ein Magnetfluß mit einem Wert, der das Produkt der Differenz zwischen der Restflusdichte des Permanentmagneten und dessen Magnetflusdichte an dem magnetischen Knickpunkt und der Kontaktfläche des Permanentmagneten mit dem Magnetkern ist, wird in dem Magnetkern erzeugt, um einen ausgewählten Wert zu haben, der größer als ein maximaler Magnetfluß ist, um in eine Richtung zu wirken, die der des Permanentmagneten entgegengesetzt ist, wodurch das Induktivitätselement nicht entwagnetisierbar gewacht wird. Durch Vergrößern der Querschnittsfläche des Permanentmagneten und dessen Kontaktfläche mit dem Magnetkern kann der entmagnetisierbare Magnetkern in einen nichtentmagnetisierbaren Kern umgewandelt werden.

- 2 -

2226289

Anwendungsgebiet der Erfindung

Die Erfindung betrifft einen vormagnetisierten Magnetkern, wobei ein Permanentmagnet in der Nähe des Luftspaltteils des Magnetkerns vorgesehen ist, um dem Magnetkern eine Vormagnetisierung zuzuführen.

Stand der Technik

Wenn Gleich- und Wechseletröms in Induktivitätselementen, wie einem Transformator, einer Drosselspule od.dgl., einander überlagert werden, ist es beim Stand der Technik notwendig, einen Luftspalt in dem Magnetkern vorzusehen, um eine magnetische Sättigung aufgrund des magnetischen Gleichfeldes zu verhindern. Die Schaffung des Luftspaltes in dem Magnetkern verursacht jedoch einen Abfall des Induktivitätswertes des Elementes, und um dies zu kompensieren, wird das Induktivitätselement unverweidlich umfangreich, was zu einer Vergrößerung der darin verwendeten Kupfermenge führt. Um dieses Problem zu lösen, ist ein Verfahren vorgeschlagen und ausgeführt worden, bei dem ein vormagnetisierter Permanentmagnet in den Luftspalt eines weichmagnetischen Kerns eingemetzt wird, um dadurch das magnetische Gleichfeld zu entfernen. Bei diesem Verfahren ist es jedoch notwendig, die Stärke des Permanentmagneten zu erhöhen, um ein ausreichendes Magnetfeld zu erzeugen. Die Vergrößerung der Stärke des Permanentmagneten bewirkt eine Erhöhung der Reluktanz des magnetischen Kraises, was zu demselben Probler wie in dem Falle der Erzeugung eines großen Luftspalts in dem Magnetkern führt. Eine Verringerung

2226289

- 3 -

der Dicke des Permanentmagneten kann jedoch nicht ein ausreichendes Magnetfeld wegen der Selbstentmagnetisierung des Permanentmagneten ergeben.

Um die Dicke des Permanentmagneten in einem solchen Umfange zu verringern, daß eine Entmagnetisierung des Permanentmagneten nicht erwöglicht wird, ist ein Verfahren vorgeschlagen worden, bei dem die Koerzitiv-kraft BHC des Permanentmagneten über 750.0e gehalten wird, der Permanentmagnet mit einem Verhältnis der Restflußdichte Br zur Koerzitivkraft BHC kleiner als 4:1 gebildet ist und des weiteren der Permanentmagnet in einem bestimmten Winkel zum Querschnitt des Magnet-kerns angeordnet ist, um den Vormagnetisierungsbetrag zu erhöhen.

Im Zusammenhang mit dem Einsetz eines dünnen Permanentmagneten beschreibt die japanische Patentanmeldung 24355/1971 die Verwendung eines Verfahrens zum Magnetisieren von Magnetkernen durch Einsetzen eines Permanentmagnetmaterials in den Luftspalt. Als Ergebris ist es möglich, den Permanentmagneten sehr dünn zu tachen und den Einfluß der Selbstentmagnetisierung des Permanentmagneten auszuschalten. Demgewäß werden die Kerneigenschaften verbessert und ein hoher Induktivitätsvert reletiv zu einem großen Gleichstromwert kann im Vergleich zu dem Pall erhalten werden, bei dem der megnetisierte Permanentmagnet in den Luftspalt des Magnotkerns eingesetzt wird. Beim Erzeugen einge Stromes mit (leich- und Wechselstromanteilen in der Wicklung eines solchen Induktivitätselementes wird das nagnetische Gleichfeld, das in einer Richtung umgekehrt su der Richtung der Magnetisierung des Permanentmagneten

- 4 -

2226289

aufgebaut worden ist, durch das von dem Permanentmagneten erzeugte Magnetfeld unwirksem gemacht.

Jedoch besteht die Möglichkeit der Entmagnetisierung
des Permanentmagneten aufgrund eines Bruches von
Teilen oder einer Erzeugung eines abnormen Gleichstromes beim Ieden und Entladen. In diesem Falle
verschiebt sich die Induktivitätseigenschaft in
einer Richtung auf einen kleineren Gleichstromwert.

Fig. 4 zeigt bei (a) z.B. die Kennlinie der Anfangsinduktivität im Verhältnis zum Gleichstrom. Diese
Kennlinie ändert sich des weiteren mit der Entmagnetisierung des Permanentmagneten, wie bei (b) und (c)
gezeigt ist. Als Ergebnis können manchmal vorbestimmte
Kennlinien nicht erhalten wersen.

Unter der Annahme der Verwendung eines Magnetkerns, der aus einem Magnetmateriel mit geringer Sättigungsflusdichte Bs gebildet worden ist, wird gezeigt, daß die Bedingung für die Entwegnetisierung des vorwagnetisierten Magnetkerns darart ist, daß das Verhältnis der Eigen-Koerzitivkraft IHC zur Koerzitivkraft BHC größer als 1,2 innerhalb des Bereiches von Bs (Br ist, wobei Br die Restflußdichte des Permenentmagneten ist. Disser Bereich erklärt, daß der wagnetische Knickpunkt der Entwagnetisierungskurve in dem dritten Quadranten innerhalb eines bestimmten Bereiches vorhanden ist. Dieses Verfahren ist dadurch gekennzeichnet, daß die Magnetflußdichte des Magnetkerns und des Permanentmagneten als ein Blement verwendet wird, um die Bedingung zur Verhinderung einer Entwagnetisierung dos vormagnetisierten Magnetkerns zu bestimmer, und daß das Verhältnis der Eigen-Koerzitivkraft IHC zur Koerzitivkraft BHC zur Definition des aben angebenen Bereichen

2226289

- 5 -

eingeführt wird. Bei der vorliegenden Erfindung wird jedoch ausgebend von einer neuen Erkenntnis ein magnetischer Fluß einschließlich der Fläche anstelle der vorher erwähnten Flußdichte berücksichtigt und ein magnetischer Knickpunkt der Entmagnetisierungskurve, die für das Material des Permanentmagneten eigen ist, auf der Grundlage einer neuen Definition als Grenzpunkt des Bereiches berücksichtigt, wodurch der Aufbau eines breiteren und rationaleren Bereiches als der beim Stand der Technik möglich wird.

Zusammenfassung der Erfindung

Der Erfindung liegt die Aufgabe zugrunde, einen verbesserten vormagnetisierten Magnetkern zu schaffen, der leicht entwagnetisiert wird.

Bei der Erfindung werden die Sättigungsflußdichte des Magnetkernes aus weichmagnetischem Naterial, die Restflusdichte des Permanentmagneten und die magnetische Flußdichte des Luftspallteiles des magnetischen Hauptweges jeweils wit Bms, Br und Bg bezeichnet und der Schnittpunkt der Entmagnetisierungskurve BH (v, p, q, h) des Permanentwagneten mit einer geraden Linie B = ur H + & Br (q, v') in dem zweiten oder dritten Quadranten wird als magnetischer Knickpunkt q definiert, wie dies in Fig. 1 gezeigt ist. Die magnetische Flußdichte an diesem Punkt wird mit Bd bezeichnet, während ur die reversible Permeabilitat des Permanentmagneten und dein Koeffizient sind, der sich auch mit der Größe des magnetischen Gegenflusses ändert, der an dem Permanentmagnéten angelegt werden soll. Der vormagnetisierte Magnetkern nach der Erfindung ist derart aufgebaut, daß die Querschnittsfläche Am des Permanentwagneten - 6 -

2226289

die Querschnittsfläche As des Magnetkerne, der den magnetischen Hauptweg bildet, die Kontaktfläche Ag' des Magnetpols des Permanentmagneten mit dem Magnet-kern und die Fläche Ag des in dem magnetischen Haupt-weg gebildeten Luftspalts der folgenden Gleichung genügen:

BusAs -
$$KBgAg < Ag'(Br - Bd)$$
 (1),

worin K ein Magnetflußstreufaktor ist, der durch die Form, die Abmessungen und die magnetische Kennlinie des Magnetkerns bestimmt wird und einen Wert größer als 1 hat. Es wird angenommen, daß die Magnetflußdichte des Magnetkerns und des Permanentmagneten einen Wert bei der niedrigsten Betriebstemperatur hat.

Die Erfindung bezieht sich hauptsächlich auf die Tatsache, daß die Induktivitätskennlinie direkt von dem Magnetfluß des magnetischen Kreises und nicht von der Magnetflußdichte (Bms, Br) des Magnetkerns und des Permanentmagneten abhängt. Die Querschnittsfläche des wagnetischen Kreises wird eingeführt und der Magnetfluß, d.h. das Produkt der Magnetflußdichte und der Querschnittsfläche des magnetischen Kreises, wird berücksichtigt. Als zweites wird der voranstehend definierte magnetische Knickpunkt als Grenzpunkt der Entwagnetisierung des Permaneutmagneten berücksichtigt. Der linke Ausdruck der Gleichung (1) stellt einen sich ändernden Magnetfluß bis zu einem maximalen Sättigungsmagnetfluß in dem Magnetkern dar. In diesem Falle ist der Magnetkern bereits gesattigt, so daß jedoch der in der Wicklung fließende Gleichstrom wehr ansteigt und der Magnetfluß des Magnetkernes im wesentlichen im Prinzip konstant ist. Der rechte Ausdruck der Gleichung (1) stellt den Restmagnetfluß des Permanentmagneten dar, der nach unten su

dem wagnetischen Knickpunkt aufgrund der entgegengesetzten magnetomotorischen Kraft der Wicklung wechselt.
Die Gleichung (1) beinhaltet, daß der sich ändernde
Magnetfluß des Permanentmagneten größer als der des
Magnetkerns ist. Durch Einführen der Querschnittsfläche
des magnetischen Kreises kann nämlich die Erfindung
auch in dem Falle von Bme Br und nicht Bms C Br ausgeführt werden und es ist zu ersehen, daß die übliche
Bedingung, die nur die Magnetflußdichte ausnutzt,
nicht geeignet ist.

Kurze Beschreibung der Zeichnung

Einzelheiten von bevorzugten Ausführungsformen der Erfindung ergeben sich aus der Beschreibung im Zusammenhang wit der Zeichnung, in der sind

- Fig. 1 ein Diagramm zum Erläutern des magnetischen Knickpunkts nach der Erfindung.
- Fig. 2A bis E Ansichten zur Erlauterung der Prinzipien der Erfindung, die Verschiedene Arten zeigen, bei denen ein Permamentmagnet in der Nähe eines Luftspaltteils eines Hauptmagnetweges vorgesehen ist,
- Fig. 3A bis D Ansichten von Beispielen eines entmagnetisierbaren, vormagnetisierten Magnetkerns und eines aus diesem umgewandelten nichtentmagnetisierbaren Magnetkerns zum Erläutern von praktischen Anwendungen der Prinzipien der Erfindung.
- Pig. 4 eine graphische Darstellung, welche die Kennlinien der Induktivität der vormagnetisierten Magnetkerne der Fig. 3 und deren Vergleich zeigt,

- Fig. 5 eine schematische Darstellung eines Beispieles der Erfindung, bei dem ein Vormagnetisierungsmagnet an einer Seite des Luftspaltes eines rechteckigen Magnetkerns vorgesehen ist,
- Fig. 6A bis C perspektivische Ansichten von drei Abänderungsformen des Magnetkerns der Fig. 5,
- Fig. 7 die Kennlinien der Induktivität der vormagnetisierten Megnetkerne der Fig. 6A bis C.
- Fig. 8A bis C und 9A und B die Kennlinien der Induktivität des vormagnetisierten Megnetkerns der
 Fig. 6C, die erhalten werden, wenn der Abstand
 zwischen der neutralen magnetischen Linie der
 kombinierten Magnete, der Luftspalt und der
 Abstand zwischen dem Magnetkern und dem
 Permanentmagneten jeweils geändert werden,
- Fig. 10A und B Vorder- und Seitenansichten einer abgeanderten Form des vormagnetisierten Magnetkerns der Fig. 5.
- Fig. 11A und B Ansichten eines weiteren Ausführungsbeispiels der Erfindung, bei dem ein Vormagnetisierungsmagnet an einer Seite des Luftspalts des Magnetkerns mit kreisförmigem Querschnitt angeordnet ist,
- Fig. 12A und B und 13A und B Ansichten von abgeänderten Formen des Beispiels der Fig. 11,
- Fig. 14A bis I Ansichten von verschiedenen Abänderungen des nach Fig. 11 verwendeten Permanentmagneten,
- Fig. 15 bis 17 Ansichten von Ausführungsbeispielen der Erfindung, bei denen zwei U-förmige Magnetkerne mit geneigten Endflächen mit vormagnetisierten Permanentmagneten an der Seite eines Luftsralts kombiniert sind,

- Fig. 18 und 19 Ansichten von weiteren Ausführungsbeispielen der vormagnetisierten Magnetkerne der in den Fig. 15 bis 17 erläuterten Art,
- Fig. 20 bis 25 graphische Berstellungen der Kennlinien der Induktivität, wenn der Luftspalt des Magnetkerns nach Fig. 19 geändert wird,
- Fig. 26 eine Ansicht eines Ausführungsbeispieles der Kombination von Induktivitäten, bei denen die Erfindung angewendet ist,
- Fig. 27A bis C Diagramme zum Erläutern der Anwendung des bei dem Beispiel der Fig. 26 verwendeten Prinzips.
- Fig. 28 eine graphische Darstellung der Kennlinie der Induktivität des Beispiels in Fig. 26,
- Fig. 29A und B Darstellungen zur Erläuterung einer abgewendelten Ausführungsform des Beispiele der Fig. 26.
- Fig. 30A und B graphische Darstellungen der Kennlinien der Induktivität des Beispiels der Fig. 29.
- Pig. 31 bis 33 Darstellungen zur Erläuterung eines Ausführungsbeispiels des Induktivitätselementes der Fig. 26, das bei einem Ablenkjoch einer Braunschen Röhre oder einer Kathodenstrahl-röhre angewendet ist,
- Fig. 34 ein Schaltbild einer Abänderung des Induktivitätselementes der Fig. 26,
- Fig. 35 ein Schaltbild zum Erläutern des Kreises einer Zündspule und

- 10 -

2226289

Fig. 36A und B Ansichten eines Ausführungsbeispieles eines Transformators nach der Erfindung in der Anwendung bei einer Zündspule.

Beschreibung der bevorzugten Ausführungsformen Zuerst wird das Prinzip der Erfindung und dann die Anwendung der Erfindung bei ihren Ausführungsformen beschrieben.

Fig. 2 zeigt Ansichten zur Erläuterung der Prinzipien der Erfindung in Verbindung mit verschiedenen Ausführungsbeispielen, bei denen ein Permanentmagnet in der Nähe des Luftspaltteils des Hauptwagnetweges des Magnetkernes vorgesehen ist. Fig. 24 ist eine vergrößerte Ansicht des Luftspaltteils eines vormagnetisierten Magnetkerns in dem Falle, bei dem ein Permanentmagnet 3 in den Luftspaltteil g eines Magnetkerns 2 eingesetzt ist. Dieser vormagnetisierte Magnetkern ist so aufgebaut, das er die Beziehungen As < Ag + Ag' und Ag' = Am erfüllt, wobei Ag' die Kontaktfläche der Magnetpolfläche des Perwanentmagneten mit dem Magnetkern, Am die Querschnittsfläche des Permanentmagneten, Ag die Pläche des Luftspaltteils und As die Querschnittsfläche des Magnetkerns in seinem Hauptmagnetweg sind. Wenn ein Strom einer Wicklung 1, die auf den vormagnetisierten Magnetkern aufgewickelt ist, zugeführt wird, ist der maximale Magnetfluß, der dadurch in dem Hauptmagnetweg erzeugt wird, Busas. In diesem Falle ist die Summe der Magnetflüsse, die durch den Luftspaltteil Ag und die Kontaktfläche Ag' des Permanentmagneten wit dem Magnetkern fließen, in der Praxis im wesentlichen gleich

- 11 -

2226289

BusAs trots eines geringen Streuflusses. Wenn der Magnetfluß BusAs, der in dem Hauptmagnetweg erzeugt wird, mit Bg beseichnet wird, ist ein auf den Permanentmagneten wirkender Magnetfluß BusAs - KBgAg, worin K>1 und ein Magnetflußstreufaktor ist, der durch die Form und die Beschaffenheit des Materials des Magnetkerns bestimmt ist.

Um eine Entmagnetisierung des Permanentmagneten 3 zu verhindern, ist der vormagnetisierte Magnetkern so aufgebaut, daß das Prodükt (Br - Bd)Ag' der Differenz zwischen der Restmagnetflußdichte Br und der Magnetflußdichte Bd des magnetischen Knickpunktes des Permanentmagneten 3 in dem Falle, daß der Permanentmagnet in den Luftspalt des Hauptmagnetweges eingesetzt ist, und der Kontaktfläche Ag' des Permanentmagneten mit dem Magnetkern größer als Bmsås -KBgåg sein kann. Demgemäß werden die Bedingungen der Gleichung (1) durch diesen Aufbau erfüllt.

Gemäß Fig. 2B ist nur ein Teil der Magnetpolfläche Am des Permanentmagneten in Berührung mit dem Magnetkern. Gemäß dieser Figur wird der Magnetfluß, der von dem Teil Am - Ag' ausgeht, der aus dem Luftspalt vorragt, in dem Magnetweg des Magnetkerns über die Luft eingeführt. Da Luft eine geringe magnetische Permeabilität aufweist und einen Magnetweg mit hoher Reluktanz bildet, wird der in den Magnetweg eingebrachte Magnetfluß hauptsächlich aus dem Fluß, der von der Magnetpolfläche des Permanentmagneten 3 ausgeht, die in Berührung mit dem Magnetkern gehalten wird, gebildet und die wirksame Fläche des Magnets ist in der Praxis im wesentlichen gleich Ag". Demgemäß wird bei

- 12 -

2226289

dem vorliegenden Beispiel der vormagnetisierte Magnetkern so aufgebaut, daß die oben erwähnte Gleichung (1) mit Ag' erfüllt wird.

Die vormagnetisierten Magnetkerne, die in den Fig. 2A und 2B erläutert sind, basieren auf der Beziehung As < Ag + Ag', können aber gleichermaßen nach der Beziehung As \(\frac{1}{2} \) Ag + Ag' aufgebaut sein, so lange wie die Gleichung (1) gilt.

Fig. 20 zeigt eine andere abgeänderte Ausführungsform der Erfindung, bei der ein Permanentwagnet 3 mit einem durchschnittlichen Abstand zwischen seinen Magnetpolen größer als die Länge g des in dem Magnetweg gebildeten Luftspaltes eine Seite des Magnetluftspaltes des Magnetkerns 2 überbrückt und bei welcher der Permanentmagnet 3 mit seinem neutralen Punkt so angeordnet ist, daß er in der Mitte zwischen dem Luftspalt liegt. In diesem Falle ist die Fläche Ag des Luftspaltteils gleich As und der Kontaktfläche Ag' des Perwanentmagneten mit dem Magnetkern entsprechend den Kontaktflächen der beiden Schenkel mit der Seite des Magnetkerns an beiden Seiten des Lultspaltes, wie in der Figur gezeigt ist, so daß es möglich ist, den vormagnetisierten Magnetkern in einer Weise aufzubauen, welche die Gleichung (1) erfüllt, indem diese Werto ansgewählt werden.

Fig. 2D zeigt eine Abänderung des vormagnetisierten Magnetkerns der Fig. 2C, bei welcher der Magnet in Fig. 2C in einer Richtung eines Pfeils 4 verschoben ist, um die effektive Fläche Ag' des Permanentmagneten 3 mit dem Magnetkern 2 zu verringern und in den Hauptmagnetweg einzubringen, wodurch ein verringerter Betrag der Vormagnetisierungskraft vorgesehen wird.

- 13 -

2226289

Fig. 2E zeigt eine weitere Ablinderung des vormagnetisierten Magnetkerns der Fig. 20, bei welcher der Permanentmagnet in Fig. 2C im Abstand von dem Magnetkern in einer Richtung eines Pfeiles 5 angeordnet 1st, um dazwischen einen Luftspalt mit hoher Reluktanz zu bilden, über den der von dem Permanentmagneten 3 ausgehende Magnetfluß in den Magnetkern, der den Hauptmagnetweg bildet, eingeleitet wird. Mit der Schaffung des Luftspalts zwischen dem Permanentmagneten 3 und dem Magnetkern 2 wird die Magnetflußdichte an dem Betriebspunkt des Permanentmagneten derart, das der Punkt v, d.h. die Restmagnetflußdichte Br, wenn der Permanentmagnet in enger Berührung mit dem Magnetkern steht, auf einen Punkt p, d.h. Br', wie in Fig. 1 gezeigt, heruntergeht. Es ist jedoch möglich, den vormagnetiaierten Magnetkern nach der Erfindung auszuführen, solange die Gleichung (1) durch Ersetzen von Br' anatelle von Br erfüllt ist.

Die Brindung wird nachfolgend im Zusammenhang mit ihren Ausführungsformen beschrieben.

Wie in den Fig. 3A und B gezeigt ist, werden E-förmiga Magnetkerne 12 und 12' aus einem H₃S-Material (Marken-vame für ein M_n-Z_n-Reihermaterial, das von der Firma TDK Electronics Company Dimited hergestellt wird) zusammengebaut und anisotrope Ferritusgnete 15 und 16 mit einer Dicke von 1 mm werden jeweils zwischen den Seitenschenkeln 17 und 17' der Magnetkerne 12 und 12' und zwischen 18 und 18' gehalten. Eine Magnetpolstückplatte 13 des H₃S-Materials mit derselben Dicke wie die Magneten 15 und 16 wird zwischen den inneren Schenkeln 19 und 19' der Kerne 12 und 12' gehalten und sin Kupferdraht 11 mit 0,7 Ø wird 200 mal um die inneren Schenkel

- 14 -

2226289

19 und 19', welche die Magnetpolstückplatte 13 einschließen, gewickelt, um somit eine Drosselspule zu bilden.

Unter normalen Bedingungen fließt in diesem Kreis ein Gleichstrom von 0,5 bis 1,2 Å, und wenn ein oder mehrere Teile außerhalb der Reihenfolge sind oder wenn ein Lade- oder Entladestrom fließt, fließt ein anormaler Strom von 5,4 bis 7,1 Å. Dieser Kreis ist erforder ich, um eine Induktivität von mehr als 15 mH in dem Bereich von 0,5 bis 1,2 Å zu erhalten.

Die Kennlinie der Induktivität der Drosselspule, die erhalten wird, wenn ein Gleichstrom bis zu 1,5 A darin fliest, ist durch die Kurve (a) in Pig. 4 gezeigt, die flacher als ein geschätzter Wert ist, wie sich aus der Figur ergibt. In Fig. 4 bezeichnen (b) und (c) Kennlinien der Induktivität in Abhängigkeit von dem Gleichstrom der Drosselspule jeweils nach einem momentanen Fluß von Gleichströmen mit 5 und 7 A. In dissen Fällen wird der Permanentmegnet offensichtlich entmegnetisiert und die Kennlinie verschiebt sich zu einem kleineren Wert des Gleichstroms. In dem Falle der Karve (b) genügt die Kennlinie dem geschätzten Wort in gewissen Umfange und hat des Bestreben, sich nach einem geringeren Stromwert zu neigen, während in dem Falle der Kurve (c) die Kennlinie offensichtlich außerhalb des geschätzten Wertes liegt.

Fig. 30 und D erläutern ein weiteres Beispiel der Erfindung, das dieselben E-Magnetkerne 12 und 12' wis die in Fig. 34 und B verwendet und bei dem Anordnangen

- 15 -

2226289

von anisotropen Perritmagneten 15 und 16 mit einer Dicke von 1,7 mm und einer Fläche von 15 x 15 mm2 mit zwei Magnetpolstückplatten 14 aus H3S-Material mit derselben Fläche und Dicke wie die Magnete 15 und 16 und der Befestigung en dessen beiden Magnetpolflächen jeweils zwischen den Seitenschenkeln 17 und 17' der Magnetkerne 12 und 12' und swischen 18 und 18' gehalten werden und ein Kupferdraht 11 mit 0.7 Ø 200 mal um die Innenschenkel 19 und 19 der Magnetkerne gewickelt ist, die eine Magnetpolstückplatte 13 aus H3S-Material mit derselben Dicke wie die vorher erwähnten Magnetanordnungen einschließen, wedurch eine Drosselspule erhalten wird. Die Magnetpolstückplatten 14 müssen nicht nur getrennt von den Magnetkernen vorgesehen werden, in welchemFalle die Seitenschenkel 17, 17 und 18, 18' mit diesen einstückig geformt sein können. Die Drosselspule dieses Beispiels ist in der Abmessung und im Aufbau identisch mit der Spule der Fig. 3A und B und hat denselben maximalen Induktivitätswort wie diese. Die Kennlinie der Induktivität in Abhängigkeit vom dleichstrom dieser Spule biz 1,8 A ist durch (d) in Fig. 4 gezeigt. Die Kennlinie der Induktivität in Abhängigkeit vom Gleichstrom dieses Kreises nach einem kurzzeitigen Fließen eines Gleichstroms von 10 A 1st im wesentlichen die gleiche, wie diese durch die Kurve (d) in Fig. 4 gezeigt ist, und verschiebt sich nicht. Daraus ergibt sich, daß die Drosselspule bei dem vorliegenden Beispiel nicht entmagnetisiert wird.

Die Kennlinien der Magnetmaterialien der entsprechenden Teile der in den Fig. 3A bis D gezeigten Drosselspulen, welche die Erfindung betreffen, sind wie folgt. Die

- 16 -

2226289

E-Magnetkerne 12 und 12'und die Magnetpolstückplatten 13 und werden aus demselben Weichmagnetmaterial gebildet und haben eine Sättigungsflußdichte Ems von etwa 4480 G. Die Magnete 15 und 16 werden aus demselben Material gebildet und haben einen magnetischen Knickpunkt in dem dritten Quadranten und eine Restflußdichte Br von etwa 3400 G und eine Flußdichte Bd von -120 G an dem magnetischen Knickpunkt.

Wenn die Querschnittsfläche jedes Magnetkerne, die Fläche jeder Magnetpolstückplatte, die in enger Berührung mit dem Magnetkern gehalten ist, jeweils mit As, Ag' und Am bezeichnet werden, ist As 1,125 cm² und in dem Falle der Drosselspule der Fig. 3A Am = Ag' = 1,125 cm² und in dem Falle der Drosselspule der Fig. 3B Am = Ag' = 2,25 cm² und Ag = 0.

Beim Berechnen der folgenden Ausdrücke durch Einsetzen der obigen numerischen Werte in die Gleichung (1) im Zusammenhang mit den Drosselspulen der Fig. 3A bis D sind die Ergebnisse wie folgt:

Ausdruck	Prosselspule	Irosselspule		
	der Fig. 3a und B	der Fig. 30 und D		
BmsAs	5040	5040		
(Br - Bd) Ag'	3960	7920		

Wie oben beschrieben worden ist, ergibt sich, daß beim Fließen von höheren Strömen als ein bestimmter Wert, z.B. 5 und 7 A in der Drosselspule der Fig. DA und B, deren Kennlinie in der Richtung des geringeren Gleichstromwertes verschoben wird, wie durch die Kurren (b) und (c) in Fig. 4 angegeben ist, und daß die Magnete *) und die Fläche des Magnetkerns

- 17 **-**

2226289

zum Anlegen der Vormagnetisierung en die Drosselspule dadurch entmägnetisiert werden. Falls die Megnete entmagnetisiert bleiben, kann eine vorbestimmte Kennlinie nicht erhalten werden. In diesem Falle nämlich BmsAs > (Br - Bå)Ag', wird, wie sich aus der obigen Tabelle ergibt, die Gleichung (1) nicht erfüllt.

Obwohl die Drosselspulen der Fig. 3C und D dieselben Magnetkerne und Wicklungen wie die der Fig. 3A und B verwenden, verhindert eine geringe änderung der Magneteinsetzteile eine Entmagnetisierung der Magnete und hält eine vorbestimmte Kennlinie aufrecht, wie dies aus der Kurve (d) in Fig. 4 ersichtlich ist, auch wenn ein Gleichstrom von 10 A der Drosselspule zugeführt wird. In diesem Falle zeigen die Werte, die in der obigen Tabelle angegeben sind, daß die Bedingungen der Gleichung (1) erfüllt sind.

Wie voranstehend beschrieben worden ist, werden beim Stand der Technik die Flußdichte des Magnetkerns und des Permanentmagneten, der in dem magnetischen Kreis enthalten ist, als Elemente zum Verhindern der Entmagnetisierung des vormagnetisierten Magnetkerns des Enduktivitätselementes betrachtet, während bei der Erfindung der Magnetfluß des magnetischen Kreises, d.h. das Irodukt der Flußdichte und der Querschnitts-Kläche des Magnetkerns, berücksichtigt werden. Bei der Erfindung kann der entmagnetisierbare, vormagnetisierte Magnetkern von der Entmagnetisierung befreit werden, Indem die Kontaktfläche Ag' des Magnetkerns mit dem Magnet vergrößert wird. Des weiteren kann beim Stand der Technik der Magnet nicht aus irgendeinem anderen

- 18 -

2226289

Material als des bergestellt werden, das der Bedingung genügt, daß das Verhältnis (IHC/BHC) der Eigen-Koerzitivkraft IHC zu der Koerzitivkraft BHC in der Entmagnetisierungskurve des Magnets größer oder gleich 1,2 ist, während bei der Erfindung der Begriff der Querschnittsfläche des Magnets eingeführt wird, wodurch es möglich wird, einen stabilen Bereich in der Entmagnetisierungskurve zu erhalten, innerhalb dessen keine Entmagnetisierung mit der Ausnahme des Teiles auftritt, in dem sich die Entmagnetisierungskurve unter den magnetischen Knickpunkt schnell erniedrigt, auch wenn der Magnet aus irgendelnem magnetischen Material gebildet ist. Der magnetische Knickpunkt kann im zweiten oder dritten Quadranten entsprechend der Form der Entmagnetisierungskurve, die dem Material des Magnets eigen ist, vorhanden sein. Beim Stand der Technik kann das Vorhandensein des magnetischen Knickpunktes in dem zweiten Quadranten nicht bestätigt werden, jedoch schafft die Erfindung einen ausreichend vormagnetisierten Magnetkern, auch wenn der magnetische Knickpunkt im zweiten Quadranten vorbanden ist. Auch wenn der magnetische Knickpunkt im dritten Quadranten vorhanden ist, führt des weiteren der vormagnetisierte Magnetkern nach der Erfindung einen stabilen Betrieb nicht nur in dem Bereich aus, in dem das Verhältnis der Eigen-Koerzitivkraft IHC sur Koerzitivkraft BHC größer als 1,2 ist, sondern auch in dem Bereich des Verbältnisses, das kleiner als 1,2 ist, so lange die Gleichung (1) erfüllt ist. Dies ist auf die Tatsache zurückzuführen, daß der vormagnetisierte Magnetkern in den stabilen Arbeitsbereich durch Einführung der Fläche gebracht werden kann.

- 19 -

2226289

Es wird nachfolgend der konkrete Aufbau des vormagnetisierten Magnetkerns beschrieben, bei dem ein Permanentmagnet die Seite eines Luftspalts überbrückt, der in dem Hauptmagnetweg des in Pig. 20 gezeigten Magnetkerns in einer Weise gebildet ist, welche die Gleichung (1) erfüllt.

Nach Fig. 5 wird ein Duftspalt g in einem Magnetkern 22 gebildet, auf den eine Wicklung 21 gewickelt ist, und ein Permanentmagnet 23 für die Anlegung eines Vormagnetisierungsfeldes ist en der Fläche des Magnetkerns 22 angebracht, um den Luftspalt g zu überbrücken. Da der Luftspalt g des Magnetkerns 22 nahe dem Perwanentwagneten 23 angeordnet ist, fließt der magnetische Fluß des Permanentmagneten 23 in den Magnetkern 22, wie durch eine gestrichelte Linie angegeben. Der durch die Wicklung 21 erzeugte Magnetfluß wird zu dem Luftspalt nebengeschlossen, wie durch die ausgezogene Linie gezeigt, so das der Einflus des Magnetflusses der Wicklung 21 auf den Permanentmagneten 23 verringert wird und die Länge lm des Permanentmagneten 23 auch nicht einen direkten Einfluß auf die Reluktanz des magnetischen Kreises ansübt. In diesem Falle wird berücksichtigt, das eine Magnetflußstreuung in der Praxis suftritt, so daß es genauer ist, Ag und Ag'in der Gleichung (1) mit ihren äquivalenten Werten einzusetzen.

Fig. 6A bie C zeigen verschiedene Abänderungen des Induktivitätselementes der Fig. 5, bei denen wegen der besseren Darstellung die Wicklungen weggelassen sind. Fig. 6A zeigt ein Beispiel, bei dem ein

Permanentmagnet 23 aus einem Magnetpaar 23a und 23b gebildet und in enger Berührung mit einer Fläche eines Magnetkerns 22 angeordnet ist, um einen Luftspalt g zu überbrücken. Fig. 6B zeigt ein weiteres Beispiel, bei dem Permanentmagnete 25 und 23', von denen jeder gleichermaßen Magnete a und b enthält, in enger Berührung jeweils mit zwei Flächen des Magnetkerns 22 angeordnet sind. Fig. 60 zeigt ein weiteres Beispiel, bei dem gleichartige Permanentmagnete 23, 23' und 23''. in enger Berührung jeweils mit drei Flächen des Magnetkerns 22 angeordnet sind. Die Verwendung eines Gummipermanentmagneten als Farmanentmagnet ergibt eine weiter verbesserte enge Kontaktwirkung. Fig. 7 zeigt die Kennlinie der Induktivität in Abhängigkeit vom Gleichstrom der Beispiele der Fig. 6, wobei die Abszisse einen in der Wicklung 21 (Fig. 5) fließenden Strom und die Ordinate einen Induktivitätswert angeben und bei der die Kurven a, b und c jeweils den Ausführungsformen der Fig. 6A, 6B und 6C entsprechen.

Fig. 8A zeigt in gleicher Weise die Kennlinie der Induktivität in Abhängigkeit von Gleichstrom der Beispiele der Fig. 6C, 8B und 8C, wobei der Abstand d
der Mittellinie des Luftspaltes g zu der magnetisch
neutralen Linie zwischen den Magneten a und b, die
jeweils die Permanentmagnete 23, 23' und 23'' bilden,
geändert wird. In Fig. 8A stellt d = 0 dar, daß der
Abstand d Null ist, und d1, d2 und d3 stellen vorbestimmte Abstände dar und erfüllen die Beziehung
d1 < d2 < d3.

Fig. 9A zeigt gleichermaßen die Kennlinie der Induktivität in Abhängigkeit vom Gleichstrom der Beispiele der Fig. 6C und 9B, wobei der Abatand e zwischen dem

- 91 -

2226289

Magnetkern 22 und jedem Permanentuagneten 23, 23' und 23'' geändert ist. In Fig. 9A stellt e = 0 dar, daß der Abstand e Hull ist, und e1, e2 und e3 erfüllen die Beziehung e1 < e2 < e3.

Aus den Induktivitäts-Gleichstrom-Kennlinien der Fig. 7 bis 9 ist ersichtlich, daß durch Einstellen der Zahl der Permanentmagnete, die den Luftspaltteil des Magnetkerns umgeben, durch Bilden des Permanentmagneten mit einem Magnetpaar und Einstellen des Abstandes der Mittellinie des Luftspalts zu der magnetisch neutralen Linie zwischen den Magneten und durch Einstellen des Abstandes zwischen dem Magnetkern und dem Permanentmagneten der vormagnetisierte Magnetkern für ein Induktivitätselement gemäß der Erfindung leicht derart geschaffen werden kann, daß das Vormagnetisierungsfeld eine vorbestimmte Kennlinie haben kann und daß der vormagnetisierte Magnetkern bis su einem vorbestimmten Stromwert nicht entmagnetisiert wird.

Fig. 10A und B zeigen eine abgewandelte Ausführungsform des vormagnetisierten Magnetkerns der Fig. 5, bei der ein scheibenförmiger Permanentuagnet 23 an dem von einer Wicklung 21 umgebenen Magnetkern 22 angeordnet ist, um dessen Luftspalt g zu überbrücken. Bei dem vorliegenden Beispiel wird das von dem Permanentmagneten 23 dem Magnetkern 22 zugeführte Vormagnetisierungsfeld eingestellt, indem der Permanentmagnet 23 gedreht wird, wie dies durch einen Pfeil angezeigt ist.

2226289

Vie oben beschrieben worden ist, können die vormagnetisierten Magnetkerne der Fig. 5, 6 und 10 leicht hergestellt werden, indem nur ein Permanentmagnet oder Permanentmagnete der entsprechenden Länge in der Nähe des Luftspaltteils des Magnetkerns angeordnet werden, und die vormagnetisierten Magnetkerne verweiden die Möglichkeit, daß die Reluktanz des magnetischen Kreises durch den Permanentmagneten oder die Permanentmagnete geändert wird und daß der Permanentmagnet oder die Permanentmagnete entmagnetisiert werden.

Bei den vorangehenden Beispielen ist der Magnetkern des Transformators oder der Drosselspule mit einem rechteckigen Querschnitt beschrieben worden, jedoch kann auch ein Magnetkern mit ringförmigem Querschnitt unter dem Gesichtspunkt einer hohen Wirksamkeit bei dem Wickelvorgang und der Notwendigkeit der Verringerung der Größe der Wicklung verwendet werden. Für die Verwendung mit dem Magnetkern mit einem solchen ringförmigen Querschnitt ist ein zylindrischer Permanentmagnet zum Vormagnetisieren in den Fig. 11A und B gezeigt. In Fig. 11A und B bezeichnen 32 einen Magnetkern, 31 eine Wicklung und 33 einen Permanentmagneten zum Vormagnetisieren und mit g ist ein in dem Magnetkern 32 gebildeter Luftspalt bezeichnet. Der zylindrische Permanentwagnet 53 hat jedoch die folgenden Nachteile:

1. Die Fläche der Öffnung des Magnetkerns 32 ist mit einem Teil 34 des Permanentmagneten 33 verringert.

2. In dem Falle der Herstellung des zylindrischen Permanentmagneten aus einem anisotropen magnetischen Material ist es schwierig, diesen in der Richtung seines Durchmassers anisotrop zu machen, und damit ist es schwierig, eine sehr gute magnetische Kennlinie zu erhalten.

Gemäß der Lehre der Erfindung wird die Form des Permanentmagneten zum Vormagnetisieren geändert, um diese Nachteile zu vermeiden, was nachfolgend beschrieben wird.

Fig. 12A und B zeigen ein Beispiel eines solchen Permanentmagneten. In dem vorliegenden Beispiel wird ein Permanentmagnet 35 so geformt, das er teilweise abgeschnitten ist, so daß die Fläche der Öffnung des Magnetkerns 32 nicht verringert wird, wenn der Permanentmagnet 35 an dem Magnetkern 52 befestigt wird.

Fig. 13A und B zeigen eine abgeänderte Ausführungsform, bei der ein Permanentwagnet 36 einen U-förmigen
Querschnitt hat. Verschiedene Abänderungen des
Permanentmagneten dieser Art können berücksichtigt
werden, wie in den Fig. 14A bis I gezeigt ist, und
die Form des Permanentwagneten der Fig. 13A und B
entspricht dem der Fig. 14A. Ein hier beschriebener
Permanentwagnet bewirkt eine Verringerung der
Fläche der Öffnung des Magnetkerns 32, wie dies aus
dessen Ausbildungen ersichtlich ist. Unter Verwendung
solcher Permanentmagneten ist es möglichh, einen
vormagnetisierten Magnetkern mit sehr guter magnetischer Kennlinie zu erhalten, ohne die Fläche der
Öffnung des Kerns zu verringern.

Die vorangehenden Beispiele sind in Verbindung mit dem Falle beschrieben worden, bei dem ein bestimmter Luftspalt in dem Magnetkern gebildet ist, der den Hauptmagnetweg bildet, und bei dem ein Permanentmagnet in den Luftspalt eingesetzt oder an der Seite des Luftspaltes angeordnet ist, um diesen zu überbrücken. Ein solcher Magnetkern mit einem Luftspalt ergibt jedoch ein Problem bei seiner Herstellung. Ein Magnetkern identisch zu dem in Fig. 5 verwendeten Kern wird namlich üblicherweise mit einer Anordnung von zwei Ferritkernen 41 gebildet, wie in Fig. 15 gezeigt ist, wobei jeder Kern Schenkel 42 und 43 verschiedener Länge aufweist und wobei die Endflächen A und B der Schenkel 42 und 43 nicht ebenengleich, aber parallol zueinander sind. Ein solcher Aufbau des Ferritkerns, bei dem die Längen der Schenkel verschieden und ihre Endflächen nicht ebenengleich zueinander sind, ist jedoch für eine Massenproduktion nicht geeignet. Dies ergibt nämlich ain Problem bei der Fabrikation eines solchen Ferritkernes, wie die Ausführung von zwei Schleifvorgängen für den einen Schenkel und dann den anderen Schenkel.

Nachfolgend werden Beispiele eines Magnetkerns für ein Induktivitätselement nach der Erfindung beschrieben, der den vorstehend beschriebenen Nachteil nicht aufwerst.

Fig. 16 zeigt ein Beispiel eines Magnetkerns 46, bei dem die Längen der Schenkel 44 und 45 voneinander verschieden sind und die Endflächen 47 und 48 fluchtgerecht susin- ander sind, wie durch x angegeben ist. Ein weiterer gleichartiger Magnetkern 46° mit Schenkeln 44° und 45° verschiedener Längen mit ihren Endflächen 47° und 48°,

- 25 -

2226289

die fluchtgerecht zueinander eind, ist mit dem vorstehend erwähnten Magnetkern 46 zusammengebaut, wobei
deren Endflächen 48 und 48' teilweise, wie in Fig. 17
gezeigt, aneinander angeordnet eind, um einen Luftspalt g zwischen den Endflächen 47 und 47' zu bilden.
Dann werden die Permanentmagneten 49 und 49' an den
Außenseitenflächen der Schenkel 44 und 44' angeordnet.

Fig. 18 zeigt ein Beispiel eines Magnetkerns 46, bei dem die Schenkel 44 und 45 dieselbe Länge aufweisen. Ein Magnetkernpaer 46 und 46° mit genau demselben Aufbau ist zusammengebaut, wobei die Schenkel 45 und 45° teilweise in Berührung miteinander sind, um einen Luftspalt g zwischen den Schenkeln 44 und 44' bilden, und die Permanentmagnete 49 und 49' sind an den äußeren Seitenflächen der Schenkel 44 und 44' angeordnet, un den Luftspalt g zu übrbrücken, wie in Fig. 18 gezeigt. Da der Luftspalt g nur als magnetischer Luftspalt ausreichend ist, kann erforderlichenfalls ein nichtmagnetisches Material, wie Mylar od. dgl., in den Luftspalt eingesetzt werden. Bei dem vorliegenden Beispiel werden dieselben Magnetkerns mit Schenkeln derselben Länge verwendet, so daß die Mingender Schenkel nicht unterschieden werden müssen und der Herstellungsvorgang weiter vereinfacht werden mant.

Ronkrete Beispiele der vorsagnetisierten Magnete nater Verwendung solcher Magnetkerne werden nun weschrieben.

Wie in Fig. 19 erläutert ist, werden swei U-Magnetkerne 46 und 46' aus M.-Z.-Reihen-Ferrit, von denen jeder einen Durchmesser von 11,2 cm aufweist und die anderen Abmessungen aus der Zeichnung ersichtlich sind, susammengesetst und eine Wicklung ist darauf mit 120 Windungen gewickelt und swei halbsylindrische Permanentmagnete 49' mit einer Länge von 17 mm, einem Außendurchmesser von 13,6 mm und einem Innendurchmesser von 11.5 mm sind verwendet. Die Induktivittts-Strom-Kennlinien der so aufgebauten vormagnetisierten Magnetkerne, die erhalten werden, wenn die Abmessung, die durch * beseichnet ist, verschieden gelindert wird, sind in den Fig. 20 bis 25 geseigt. Die Kurven A und B seigen die Kennlinien des vormagnetisierten Magnetkerns, die erhalten werden, wenn die Permanentmagnete an den Kernen angebracht und nicht angebracht sind.

Abmessung von * (sm)	Pigurennumme		
0,050	Pig. 20		
0,075	Fig. 21		
0.100	Pig. 22		
0,125	Fig. 23		
0,150	Fig. 24		
0,175	Fig. 25		

Auf diese Weise kann der voragnetisierte Magnetkern für ein I_n duktivitätselement nach der Erfindung, dem ein Vormagnetisierungsfeld augeführt wird, sehr leicht hergestellt werden.

Durch Auswahl der Materialien und der Abmessungen des Magnetkerns für das Induktivitätselement und des Permanentwagneten auf der Basis des erfindungsgemäßen - 27 -

2226289

Prinzips kann die Induktivitätskennlinie des vormagnetisierten Magnetkerns in eine gewünschte Stellung
relativ zu einem Gleichstromwert verschoben werden,
wie dies vorstehend beschrieben worden ist. Nachfolgend
wird ein konkretes Beispiel der Erfindung beschrieben,
bei dem eine Mehrzahl von Induktivitätslementen verschiedener Kennlinien in Keihe zueinander geschaltet
ist.

Wach Fig. 26 sind zwei Spulen 50 und 50' mit unterschiedlichen Induktivitätskermlinien in Reihe zueinander geschaltet. Permanentmagnete 53 und 53' sind an den Magnetkernen 51 und 51' angebracht, die 80 ausgebildet sind, daß sie die erfindungsgemäße Bedingung erfüllen, und Wicklungen 54 und 54° sind javeils um diese gewickelt und in Reibe zueinander geachaltet. Die Permanentmagnete 53 und 53° haben unterschiedliche Magnetfeldstärken, um unterschiedliche Beträge der Vormagnetisierung zu erzeugen. Die Magnetkerne können nach einem der vorangehenden Beigriele aufgebaut sein. Fig. 27A und B sind graphische Imratellungen der Induktivitätakenmlinien der Spulen 50 und 50' der Fig. 26, wobel die Ordinate die Induktivität L und die Abszisse den überlagerten Gleichstrom Is, nachfolgend mit Vormagnetisierungsstrom bezeichnet, angeben und die entsprechenden Strouwerte die Beziehung Ia < Ib < Ic < Id haben. In dem Fall der in Fig. 27 gezeigten Kennlinie sind die Spulen 50 und 50' der Fig. 26 im Betrag der Vormagnetisierung unterschiedlich. Fig. 270 ist eine graphische Darstellung der Induktivitätskennlinie, wenn die Spulen 50 und 50' zueinander in Reihe geschaltet sind.

Pig. 28 ist eine graphische Darstellung der Kennlinie eines Beispieles der Reihenschaltung der beiden Spulen, wobei die Ordinate L die Induktivität (mH) und die Abszisse Is den Vormagnetisierungsstrom (A) angeben. Die bei diesem Beispiel verwendeten Magnetkerne sind trommelförmige Magnetkerne 61 und 61' des M_-Z_-Reihen-Perrits und ihre Abmessangen sind so gewählt, wie dies in Fig. 29A angegeben ist. Wie sich aus Pig. 29B ergibt, ist ein Kupferdraht von 0,4 Ø 200 mal auf die Magnetkerne gewickelt, um die Wicklungen 64 und 64' herzustellen. Wenn die in Rig. 29A gezeigten Induktivitätselemente miteinander verbunden werden, wie dies in Fig. 29B gezeigt ist, ergibt sich eine zusammengesetzte Kennlinie, wie dies in Fig. 28 angegeben ist. Nach Fig. 29B sind die Permanentmagnete 63 scheibenförmig.

Um die in Fig. 28 dargestellte Kennlinie mit einem Spulenelement zu erhalten, ist es notwendig, einen großen Magnetkern zu-verwenden. Mit der Erfindung kann jedoch ein Kreis, dessen Induktivität weit über dem zweifach größeren Bereich des Gleichstroms Is liegt, in einfacher Weise erhalten werden. Nach Fig. 26 eind zwei Elemente miteinander verbunden, jedoch kann, wenn mehr Spulen mit verschiedenen Stromkennlinien in Reihe geschaltet werden, eine hohe Induktivität über einen breiteren Bereich erhalten werden, als dieser in Fig. 28 gezeigt ist.

Die vorangehende Beschreibung bezog sich auf den Fall, bei dem eine hohe Induktivität kontinuierlich über einen bestimmten Vormagnetisierungsstrombereich

- 29 -

2226289

erhalten wird. In dem Falle, bei dem die verwendeten Permanentmagnete in ihrer Feldstärke wesentlich unterschiedlich sind, wird aber eine zusammengesetzte Induktivitätskennlinie erhalten, wie sie in Fig. 30A gezeigt ist.

Fig. 30B zeigt die Induktivitätskennlinie zwischen Ib und Ic des in Fig. 30A dergestellten Vormagnetisierungsstroms. Der Differentialkoeffizient JL/JIs ist wie folgt:

Is < Io	:	δ	L/d	rs <	0
Is = Io		d	I/ &	Is =	0
Is > Io	• .	Å	L/ &	Is >	O

und die Induktivitätskennlinie ist in diesem Falle sehr unterschiedlich von der Kennlinie, die in Fig. 27 gezeigt ist.

Eine Schaltung mit einer solchen Kennlinie, wie sie in Fig. 30 gezeigt ist, kann nicht mit bekannten Induktivitätselementen erhalten werden. Nachfolgend wird der Fall beschrieben, bei dem eine Induktivitätsschaltungmit einer in Fig. 30 dargestellten Kennlinie in einer Ablenkschaltung zur Verwendung in Fernsehkathodenstrahlröhren od.dgl. eingesetzt ist.

Fig. 31 ist eine schematische Darstellung einer Braunschen Röhre oder einer Kathodenstrahlröhre zum Erläutern der Ablenkung eines Elektronenstrahls 72 mit einem Ablenkjoch 71. Fig. 32A ist eine graphische Darstellung eines Sägevahn-Abtaststroms Id, der auf eine Spule des Ablenkjochs gegeben wird, wobei die Abszisse die Zeit I darstellt. Im Falle der Verwendung einer solchen

Ablenkjochspule wird der Ablenkwinkel 01 des in Fig. 31 gezeigten Elektronenstrahls mit dem Abtaststrom z.B.

Id1 in Fig.32A erhalten und der Ablenkwinkel 02 wird mit dem Abtaststrom Id2 erhalten. In diesem Fall ist 201 = 02. Die Abtastlinien auf der Braunschen Röhre werden jedoch nicht derart, daß 211 = 12 im Verhältnis zu dem in Fig. 32A gezeigten Abtaststrom ist.

Demgemäß wird das Bild auf der Braunschen Röhre verzert, wie in Fig. 33A dargestellt ist.

Um dies zu vormeiden, wird eine Schaltung mit einer in Fig. 30B gezeigten Kennlinie an die Ablenkjochspule angeschaltet. Da die Induktivität L zwei Spitzen bei höheren und niedrigeren Verten des Vormagnetisierungsstroms hat, wird in diesem Palle die in Fig. 32A dargestellte Sägezahnwelle so, wie dies in Fig. 32B gezeigt ist.

In diesem Falle werden die Vorwagnstisierungsströme Ib und Ie, die in Fig. 30 dargestellt sind, so ausgewählt, daß sie maximale und minimale Werte Id2 und -Id1 haben, wie in Fig. 32A gezeigt ist. Dies ergibt 211 ÷ 12. Als Ergebnis wird die in Fig. 33A gezeigte Verzerrung ausgeschaltet, wodurch sich ein normales Bild ergibt, wie in Pig. 33B dargestellt ist.

Fig. 34 ist ein Schaltbild eines weiteren Beispiels, bei dem Sekundärwicklungen in einer Induktivitätsschaltung vorgesehen sind, die eine Kennlinie aufweist, wie sie in Fig. 30A gezeigt ist, wodurch sich Transformatoren 84 und 84' ergeben.

In Fig. 34 bezeichnet 85 eine Energiequelle mit einem Wechselstrom, der einem Gleichstrom überlagert ist, wobei It den überlagerten Gleichstrom bezeichnet.

Während sich die Induktivität des Transformators 84 mit einem allmählichen Anstieg des Stromes It von Null erhöht, steigt auch ein sich mit dem Wechselstrom ändernder Magnetfluß mit der Erhöhung der Induktivität an und wird als Spannung in den Sekundärwicklungen induziert. Wenn der Gleichstrom It erhöht wird, fällt des weiteren die Induktivität des Transformators 84 ab und dann steigt die Induktivität des Transformators 64' an, wodurch eine Spannung dessen Sekundärwicklung erzeugt wird, wis dies bei einem Transformator der Fall ist. Mit einer solchen kontinuierlichen Änderung des Gleichstroms It wird eine Spannung an den Klemmen der Sekundärwicklung des Transformators erzeugt, so daß ein Digital-Analog-Umsetzer durch Bestimmen der Spannung erhalten werden kann.

Nachfolgend wird ein Beispiel einer Zündspule beschrieben, die einen Hochspannungstransformator nach der Erfindung verwendet. Eine Zündvorrichtung für einen Verbrennungsmotor ist in Fig. 35 gezeigt. Ein Gleichstrom von einer Energiequelle 95 wird intermittierend über einen Schalter 97 einer Primärwicklung 94a mit einer Wicklungszahl Ni einer Zündspule zugeführt und eine Funkenentladung wird in dem Spalt einer Zündkerze 98 durch eine Hochspannung erzeugt, die in einer Sekundarwicklung 94b mit einer Wicklungszahl N2 der Sündspule induziert wird, wodurch die Zündung bewirkt wird. Um eine starke Funkenentladung zu erzeugen, ist es notwendig, die sekundërinduzierte Spannung zu erhöhen und dies kann durch Vergrößern der Wicklungszahl N2 der Sekundärwicklung 94b oder durch Vergrößern des durch den Magnetkern fließenden Magnetflusses erreicht werden. Dies führt zu einer Vergrößerung der vorwendeten

- 32 -

2226289

Kupfermenge oder der Querschnittsfläche des Eisenkerns, d.h. zu einer Vergrößerung der Menge des verwendeten Risens. Gemäß Fig. 36 wird der vormagnetisierte Magnetkern nach der Erfindung als Magnetkern der Zündspule verwendet, um eine hohe sekunderinduzierte Spannung zu erzeugen, ohne die Menge des verwendeten Kupfers oder die Querschnittsfläche des Eisenkerns zu vergrößern. Wie in Pig. 36A dargestellt ist, sind nämlich Primärund Sekundärwicklungen 104s (N1) und 104b (N2) auf den Innenschenkel eines Magnetkerns 101 mit drei Schenkeln gewickelt und Permanentmagnete 103 sind jeweils in Luftspalte der beiden Seitenschenkel eingesetzt. Des weiteren ist es möglich, die Primär- und Sekundärwicklungen 104'a (N1) und 104'b (N2) an beiden Seitenschenkeln getrennt vorzuschen und den Permanentmagneten 103' in den Hauptmagnetweg einzusetzen, wie dies in Fig. 36B dargestellt ist. Die Magnetisierungsrichtung des Perwanentmagneten ist entgegengesetzt der Richtung, in welcher der Magnetkern 101 magnetisiert wird, wenn der Schalter 97 nach Fig. 35 eingeschaltet wird. Solang den vorstehend erwähnten Bedingungen der Erfindung genügt wird, ist somit der vormagnetisierte Magnetkern nicht entwagnetisiert und erzeugt Änderungen des Magnetflusses über einen weiten Bereich, so daß es möglich ist, die indusierte Spannung um etwa das Doppelte su erhöhen, ohne die Querschnittsfläche des Magnetkerns zu vergrößern. Wie oben beschrieben worden ist, kann eine Zündspule, die eine hohe induzierte Spannung erzeugt, mit einem sehr kleinen und einfachen Aufbau erhalten werden.

- 33 -

2226289

Patentansprüche

- Magnetanordnung für ein Induktivitätselement, gekennzeichnet durch einen Magnetkern, der einen darin vorgesehenen Luftspalt begrenst, durch einen Perwanentmagneten, der relativ zu dem Luftspalt angeordnet ist, um eine Vormagnetisierung in dem Magnetkern in einer ersten Richtung zu erzeugen und eine Kontaktfläche (Ag2) mit dem Magnetkern zu bilden, wobei der Permanentmagnet eine Restflußdichte (Br) und eine Flußdichte (Bd) an seinem magnetischen Enickpunkt aufweist, und durch Einrichtungen zum Erzeugen eines Magnetflusses in dem Magnetkern bis zu einem marigalen Wert in einer zweiten Richtung, die der ersten Richtung entgegengesetzt ist, wobei der Magnetkern derartige Proportionen aufweist, daß das Produkt aus der Differenz der genannten Flusdichten und der Kontaktfläche - (Br-Bd)Ag' nicht kleiner als der waximale Wert des Magnetflusses in dem Magnetkern ist.
- 2. Magnetanordnung nach Anspruch 1, dadurch gekennzeichnet, daß der Permanentmagnet eine Kontaktfläche im wesentlichen gleich der Querschnittsfläche des Magnetkerns aufweist und in dem Luftspalt angeordnet ist.
- 3. Magnetanordnung nach Anspruch 1, dadurch gekennzeichnet, daß der Permanentwagnet eine Querschnitts-fläche größer als die Querschnittsfläche des Magnet-kerns aufweist und daß des weiteren Magnetpolstückplatten mit einer größeren Querschnittsfläche als die Querschnittsfläche des Magnetkerns vorgesehen sind, wobei die Magnetpolstücke an gegenüberliegenden Seiten des Permanentwagneten und mit diesem in dem Luftspalt angeordnet sind.

- 4. Magnetanordnung nach Anspruch 1, gekennzeichnet durch wenigstens einen Permanentmagneten, der an der Seite des Luftspaltes angeordnet ist, um einen geschlossenen Magnetweg über den Luftspalt zu bilden.
- 5. Magnetanordnung nach Anspruch 4, dadurch gekennzeichnet, daß der Magnetkern einen ringförmigen Querschnitt hat und daß der Permanentmagnet eine Aussparung aufweist und an der Außenumfangsfläche des
 Magnetkerns an der Seite des Luftspalts angeordnet
 ist, um wenigstens einen Teil davon zu bedecken.
- 6. Magnetanordnung nach Anspruch 4, dadurch gekennzeichnet, daß ein erster und ein zweiter U-Magnetkern vorgesehen sind, von denen jeder einen ersten Schenkel und einen zweiten Schenkel, der kürzer als der erste Schenkel ist, aufweist, daß jeder der ersten und zweiten Schenkel Endflächen aufweist, daß die ersten und zweiten U-Magnetkerne derart zweinander angeordnet sind, daß deren Endflächen nahe beisinanderliegen, daß die Endflächen der ersten und zweiten Schenkel wenigstens teilweise in Berührung miteinander angeordnet sind, daß ein magnetischer Luftspalt zwischen den Endflächen des anderen Schenkels gebildet ist und daß erste und zweite Permanentmagnete en der Seite des Luftspaltes angeordnet sind, um darüber einen magnetischen Kreis zu bilden.
- 7. Magnetanordnung nach Anspruch 6, dadurch gekennzeichnet, daß die ersten und zweiten U-Magnetkerne im Querschnitt ringförmig sind und daß die Permanentmagnete jeweils eine Auspparung aufweisen und an der äußeren Unfangsfläche der Magnetkerne angeordnet sind, um wenigstens einen Teil des Luftspalts zu bedecken.

~ 55 ~

2226289

. 35-

8. Magnetanordnung nach Anspruch 1,

Ladurch gekennzeichnet, daß erste und sweite Induktivitätselemente in Reihe zueinander geschaltet sind, wobei diese ersten und zweiten Induktivitätselements jeweils enthalten: einen Magnetkern, der einen darin vorgesehenen Luftspalt begrenzt, einen Permanentmagneten, der relativ zu dem Luftspalt angeordnet ist, um eine Vormagnetisierung in dem Magnetkern in einer ersten Richtung zu erzeugen und eine Kontaktfläche (Ag') mit dem Magnetkern zu bilden, wobei der Permanentmagnet eine Restflußdichte (Br) und eine Flußdichte (Bd) an seinem magnetischen Knickpunkt aufweist und Einrichtungen sum Erzeugen eines Magnetflusses in dem Magnetkern bis zu einem maximalen Wert in einer sweiten Richtung entgegengesetst zu der ersten Richtung, wobei der vormagnetisierte Magnetkern derartige Proportionen hat, daß das Produkt aus der Differenz der genannten Flußdichten und der Kontaktfläche - (Br-Bd)Ag' - nicht kleiner als der maximale Wert des Magnetflusses in dem vormagnetisierten Magnetkern ist, und daß die vormagnetisierten Magnetkerns des ersten und des zweiten Induktivitätselementes einen gegenüber dem anderen Magnetkern verschiedenen Betrag der Vormagnetisierung erseugen.

5. Magnetanordnung nach Amspruch 8, dadurch gekennzeichnet, daß das erste und das zweite Indukti-vitätselement jeweils einen Transformator bilden.

10. Magnetanordnung nach Amspruch 1,

gekennzeichnet durch einen Magnetkern, der einen darin vorgesehenen Luftspalt begrenzt, durch einen Permanentmagneten, der relativ zu dem Luftspalt angeordnet ist, um eine Vormagnetisierung in dem Magnetkern in einer ersten Richtung zu erzeugen und eine - 36 -

2226289

Kontaktfläche (Ag') wit dem Magnetkern zu bilden. wobei der Permanentmagnet eine Restflußdichte (Br) und eine Flußdichte (Bd) an seinem magnetischen Knickpunkt aufweist, durch Einrichtungen zum Erzeugen eines Magnetflusses in dem Magnetkern bis zu einem maximalen Wert in einer zweiten Richtung entgegengesetzt zu der ersten Richtung, wobei diese Einrichtungen eine Primärwicklung enthalten, die um den Magnetkern gewickelt ist, durch eine zweite Wicklung, die um den vormagnetisierten Magnetkern gewickelt ist, und durch Einrichtungen zum Festlegen einer Funkenstrecke, die mit der Sakundärwicklung zusammengeschaltet ist, um ein Signal für die Funkenstrecke zuzuführen, wobei der vormagnetisierte Magnetkern derartige Proportionen hat, das das Produkt aus der Differenz der genannten Flusdichten und der Kontaktfläche - (Br-Bd)Ag' - nicht kleiner als der maximale Wert des Magnetflusses in des vormagnetisierten Magnetkern ist.

- 31-

2226289

209881/0609

- 39 -

209881/0609

- 40 -

209881/0609

209881/0609

209881/0609

- 44-

- 45 -

FIG.I4 I

- 46 -

209881/0609

47.

48

209881/0609

- 52-

209881/0609

209881/0609

54-

2226289

21 g 31-01 AT: 30.05.1972 OT: 04.01.1973

55 -

