

A course on Image Processing and Machine Learning (Lecture 10)

Shashikant Dugad, IISER Mohali

Reading Material

Suggested Books:

- 1. Neural Networks and Deep Learning by Michael Nielsen
- 2. Fundamentals of Deep Learning by Nikhil Buduma

Source for this presentation:

Neural Networks and Deep Learning by Michael Nielsen

https://www.scaler.com/topics/deep-learning/introduction-to-feed-forward-neural-network/

https://www.turing.com/kb/mathematical-formulation-of-feed-forward-neural-network

http://machine-learning-for-physicists.org. by Florian Marquardt

3Blue1Brown (Youtube Videos)

https://www.datacamp.com/tutorial/introduction-to-activation-functions-in-neural-networks

https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/

Training Feed-Forward Neural (FFN) Networks

- Let us try to understand the concepts of training using a simple neural network with linear activation function (output yⁱ== input) i.e., $y^i = w_1 x_1^i + w_2 x_2^i + w_3 x_3^i$
- Known parameters during training: # of Idli, Parantha, Lassi (x_1^i, x_2^i, x_3^i) purchased and total cost (t^i) associated with the ith purchase
- Let us assume purchases of these items were done large # of times (i >> 1)
- Task: Determine the true cost of each item $(w_1, w_2 \text{ and } w_3)$

Idli Parantha Lassi

Training Feed-Forward Neural (FFN) Networks

- If t_i is the true total cost (known parameter) and y_i is the total cost predicted by the network for i^{th} purchase for a given value of weights in that iteration; then, we want to tune each of these weights in such a way that difference between predicted and true cost ($|t_i y_i|$) is as small as possible!
- We shall choose those weights as our final weights, when the overall difference between the predicted and true cost is smallest across all the purchases. The Loss Function is defined as:

$$E = \frac{1}{2} \sum_{i=1}^{n} (t^{i} - y^{i})^{2}$$

- As a result, our goal will be to select our parameter vector θ (the values for all the weights in our model) such that, the loss function E is as close to 0 as possible. Note: E is always >0
- This problem can be easily solved in exact manner with three purchases of different types
- However, situation changes completely with non-linear activation function

Gradient Descent

- To understand the importance of gradient, let us simplify the previous problem by assigning only two (instead of three) inputs to our linear neuron with weights w_1 and w_2 .
- Imagine a 3-dimensional space where the horizontal dimensions correspond to the weights w_1 and w_2 and the vertical dimension corresponds to the error (loss) function $E(w_1, w_2)$.
- Shape of the error function for all possible weights would be more like a quadratic bowl
- We can visualize this surface as a set of elliptical contours with minimum error at the center of the ellipses.
- Closer the contours to each other, the steeper will be the slope. Direction of the steepest descent is always perpendicular to the contours.
- This direction is expressed as a vector known as the *Gradient*.

Training: Delta Rule and Learning Rates (LR)

- Parameters to be determined (w_1 and w_2) by way of training are referred as hyperparameters.
- The training algorithm needs additional hyperparameters such as learning rate.
- Magnitude of a step of a walk along direction of gradient of steepest descent is determined by the learning rate (LR)
- The step size (learning rate) will be driven by the steepness of the surface.
- Closer we are to the minimum (flat gradient), the shorter we want to step forward
- Mellow (flatter) shape of the error surface may take large training time
- The step size is determined by multiplying the gradient with the learning rate $(\Delta \omega_k = \varepsilon G_k)$
- Small LR may result in better accuracy with large training time.

 Higher LR may have difficulty in converging to minima
- Training algorithms can be built with an *adaptive LR* to automate the process of dynamically selecting the *LR*

Training: Delta Rule and Learning Rate

• Change in weight $(\Delta \omega_k)$ while taking next step, is evaluated using the LR (ε) and the gradient (G_k) . The gradient is a partial derivative of the error function $(E(\omega_k))$ with respect to each of the weight

$$G_k = \frac{\partial E}{\partial \omega_k} = \frac{\partial}{\partial \omega_k} \left(\frac{1}{2n} \sum_{i=1}^n (t^i - y^i)^2 \right)$$

$$\therefore G_k = -\left(\frac{1}{n}\sum_{i=1}^n (t_i - y_i) \frac{\partial y^i}{\partial \omega_k}\right) = -\frac{1}{n}\sum_{i=1}^n x_k^i (t^i - y^i)$$

$$\therefore \quad \Delta \omega_k = -\epsilon G_k = \epsilon \frac{1}{n} \sum_{i=1}^n x_k^i (t^i - y^i)$$

• Please note the index i denotes number of purchases made. t^i is the actual (true) bill and y^i is the estimated bill.

Training with nonlinear activation function

• Let us now consider a neuron with the sigmoidal activation function. It's a non-linear activation function. The output of this neuron will be:

$$y = \sigma(z) = \frac{1}{1 - e^{-z}}$$
 where, $z = \sum_{k=1}^{m} \omega_k x_k + b = \sum_{k=0}^{m} \omega_k x_k$

- Note, m is number of neurons, w_0 =b and x_0 =1
- The neuron computes the weighted sum of its inputs (the logit z) and then feeds its logit into the input function to compute it final output y
- Sigmoid has very nice derivatives, which makes learning easy! Let us get the gradient now

$$\frac{\partial z}{\partial \omega_k} = x_k, \quad \frac{\partial z}{\partial x_k} = \omega_k \quad \frac{\partial y}{\partial z} = y(1-y)$$

$$\frac{\partial y}{\partial \omega_k} = \frac{\partial y}{\partial z} \frac{\partial z}{\partial \omega_k} = x_k y (1 - y)$$

Training with nonlinear activation function

Compute the derivative of the error function with respect to each weight:

$$G_k = \frac{\partial E}{\partial \omega_k} = \frac{\partial \sum_{i=1}^n \left[\frac{1}{2} (t^i - y^i)^2 \right]}{\partial \omega_k} = \sum_{i=1}^n \frac{\partial \frac{1}{2} (t^i - y^i)^2}{\partial y^i} \frac{\partial y^i}{\partial \omega_k} = -\sum_{i=1}^n (t^i - y^i) x_k^i y^i (1 - y^i)$$

$$\Delta \omega_k = -\epsilon G_k = \sum_{i=1}^n \epsilon x_k^i y^i (1 - y^i) (t^i - y^i)$$

- Note: the index i denotes number of events (purchase), n denotes total no. of purchases, k denotes the neuron number at input layer. ti is the actual, i.e., true output (bill) and yi is the estimated (predicted) output (bill)
- This completes the formalism for evaluating weights for m inputs connected to the ONE neuron in the output layer with NO hidden layers in-between

Backpropagation Algorithm (Training Multi Layer Network)

- Now, we consider the case of multi-neuron output layer with a multi-neuron hidden layer between the input and the output layer
- Backpropagation algorithm for muti-layer FFN was developed by David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams in 1986
 - Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. "Learning representations by backpropagating errors." Cognitive Modeling 5.3 (1988)
- Backpropagation has to deal with extremely high dimensional space.
- j and i refers to the neuron number of current and the preceding layer #, y to the activation output and z_j to the logit of the neuron j
- Assuming we know the error derivatives of layer j, we can use it compute the same for the previous layer i
- The error function derivatives at the output layer:

$$E = \frac{1}{2} \sum_{j \in output} (t_j - y_j)^2 \implies \frac{\partial E}{\partial y_j} = -(t_j - y_j)$$

Shashikant R Dugad, IISER Mohali

Backpropagation Algorithm (Training Multi Layer Network)

 We can now determine how the error changes w. r. t. the weights. This gives us how to modify the weights after each training example:

$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial z_j}{\partial w_{ij}} \frac{\partial y_j}{\partial z_j} \frac{\partial E}{\partial y_j} \qquad \qquad \frac{\partial y_j}{\partial z_j} = y_j (1 - y_j) \qquad \qquad \frac{\partial z_j}{\partial w_{ij}} = y_i$$

Therefore,

$$\therefore \frac{\partial E}{\partial w_{ij}} = y_i y_j (1 - y_j) \frac{\partial E}{\partial y_j}$$

• Finally, to complete the algorithm, just as before, we merely sum up the partial derivatives over all the training examples in our designated training dataset. This gives us the following modification formula:

$$\Delta w_{ij} = -\sum_{k \in Dataset} \epsilon y_i^k y_j^k (1 - y_j^k) \frac{\partial E^k}{\partial y_j^k}$$

Backpropagation Algorithm (Training Multi Layer Network)

• Note:
$$z_j = w_{ij}y_i + b_j \Rightarrow \frac{\partial z_j}{\partial y_i} = w_{ij}$$

- Note: Change in a single neuron output (y_i) in the middle layer impacts logits of every neuron in the outermost layer.
- Impact of change in y_i on E can be obtained, using the fact that the partial derivative of the logit w.r.t. the output data (y_i) from the layer i, is merely the weight of the connection W_{ij} :

$$\frac{\partial E}{\partial y_i} = \sum_{j \in output} \frac{\partial E(y_j)}{\partial y_i} = \sum_{j \in output} \frac{\partial E}{\partial y_j} \frac{\partial y_j}{\partial z_j} \frac{\partial z_j}{\partial y_i} = \sum_{j \in output} w_{ij} y_j (1 - y_j) \frac{\partial E}{\partial y_j}$$

Note: Layer h precedes Layer i and Layer i is precedes Layer j

$$\Delta w_{hi} = -\sum_{k \in Dataset} \epsilon y_h^k y_i^k (1 - y_i^k) \frac{\partial E^k}{\partial y_i^k} = -\sum_{k \in Dataset} \epsilon y_h^k y_i^k (1 - y_i^k) \sum_{j \in output} w_{ij} y_j (1 - y_j) \frac{\partial E}{\partial y_j}$$