Probabilidade e Estatística

Matheus Pimenta

Universidade Tecnológica Federal do Paraná Câmpus Cornélio Procópio

ADNP 2020

Estimação

Definição: As conjunto de técnicas e procedimentos que permitem dar ao pesquisador um grau de confiabilidade, de confiança, nas afirmações que faz para a população baseadas nos resultados das amostras.

Estimação

Definição: As conjunto de técnicas e procedimentos que permitem dar ao pesquisador um grau de confiabilidade, de confiança, nas afirmações que faz para a população baseadas nos resultados das amostras.

O problema fundamental da inferência estatística, portanto, é medir o grau de incerteza ou risco dessas generalizações.

Estimação de Parâmetros

É um dos objetivos básicos da experimentação. São dois tipos de estimação: por pontos e por intervalos.

Estimação de Parâmetros

É um dos objetivos básicos da experimentação. São dois tipos de estimação: por pontos e por intervalos.

Estimação por Pontos: a partir das observações, calcula-se uma estimativa, usando o estimador ou "estatística".

Quanto maior o grau de concentração da distribuição amostral do estimador em torno do verdadeiro valor do parâmetro populacional, tanto melhor será o estimador.

Quanto maior o grau de concentração da distribuição amostral do estimador em torno do verdadeiro valor do parâmetro populacional, tanto melhor será o estimador.

Quanto maior o grau de concentração da distribuição amostral do estimador em torno do verdadeiro valor do parâmetro populacional, tanto melhor será o estimador.

As principais qualidades de um estimador são:

a) consistência;

Quanto maior o grau de concentração da distribuição amostral do estimador em torno do verdadeiro valor do parâmetro populacional, tanto melhor será o estimador.

- a) consistência;
- b) ausência de vício;

Quanto maior o grau de concentração da distribuição amostral do estimador em torno do verdadeiro valor do parâmetro populacional, tanto melhor será o estimador.

- a) consistência;
- b) ausência de vício;
- c) eficiência;

Quanto maior o grau de concentração da distribuição amostral do estimador em torno do verdadeiro valor do parâmetro populacional, tanto melhor será o estimador.

- a) consistência;
- b) ausência de vício;
- c) eficiência;
- d) suficiência.

Quanto maior o grau de concentração da distribuição amostral do estimador em torno do verdadeiro valor do parâmetro populacional, tanto melhor será o estimador.

As principais qualidades de um estimador são:

- a) consistência;
- b) ausência de vício;
- c) eficiência;
- d) suficiência.

As definições formais requerem conhecimentos de cálculo.

Definição:

A estimação por pontos de um parâmetro não possui uma medida do possível erro cometido na estimação. Para solucionar isto, uma alternativa é estabelecer *limites*, que com certa probabilidade incluam o verdadeiro valor do parâmetro da população.

Definição:

A estimação por pontos de um parâmetro não possui uma medida do possível erro cometido na estimação. Para solucionar isto, uma alternativa é estabelecer *limites*, que com certa probabilidade incluam o verdadeiro valor do parâmetro da população.

Estes limites, são definidos como *limites de confiança* e determinam um intervalo de confiança, no qual deverá estar o verdadeiro valor do parâmetro.

Definição:

A estimação por pontos de um parâmetro não possui uma medida do possível erro cometido na estimação. Para solucionar isto, uma alternativa é estabelecer *limites*, que com certa probabilidade incluam o verdadeiro valor do parâmetro da população.

Estes limites, são definidos como *limites de confiança* e determinam um intervalo de confiança, no qual deverá estar o verdadeiro valor do parâmetro.

Assim, a estimação por intervalos consiste na fixação de dois valores, tais que $(1-\alpha)$ seja a probabilidade de que o intervalo, por eles determinado, contenha o verdadeiro valor do parâmetro.

 α : é o nível de incerteza ou grau de desconfiança;

 α : é o nível de incerteza ou grau de desconfiança; $1-\alpha$: é o nível de confiabilidade.

 α : é o nível de incerteza ou grau de desconfiança;

 $1-\alpha$: é o nível de confiabilidade.

Logo, α nos da o nível de incerteza desta inferência, chamamos de grau de significância.

Considerando uma população normal com média desconhecida que desejamos estimar e com σ^2 conhecida, $X:N(?,\sigma^2)$.

Considerando uma população normal com média desconhecida que desejamos estimar e com σ^2 conhecida, $X:N(?,\sigma^2)$. O passo a passo para obter intervalos de confiança são:

Considerando uma população normal com média desconhecida que desejamos estimar e com σ^2 conhecida, $X: N(?, \sigma^2)$.

O passo a passo para obter intervalos de confiança são:

- Retiramos uma amostra casual simples com n elementos;
- 2 Calculamos a média da amostra \bar{x} ;
- **3** Calculamos o desvio padrão da média amostral: $\sigma_{\bar{x}} = \sqrt{\frac{\sigma^2}{n}} = \frac{\sigma}{\sqrt{n}}$;
- Fixamos um nível de significância α , e com ele determinamos z_{α} , tal que $P(|z| > z_{\alpha}) = \alpha$, ou seja: $P(z > z_{\alpha}) = \frac{\alpha}{2}$ e $P(z < -z_{\alpha}) = \frac{\alpha}{2}$. Logo devemos ter: $P(|z| < z_{\alpha}) = 1 - \alpha$.

Com isso, desenvolvendo a fórmula anterior chegamos a:

$$P(\bar{x} - z_{\alpha} \cdot \sigma_{\bar{x}} < \mu < \bar{x} + z_{\alpha} \cdot \sigma_{\bar{x}})$$

Que é a fórmula do IC para a média de populações normais com

Simplificando a notação temos com os limites anteriores: $\mu_1 = \bar{x} - z_\alpha \cdot \sigma_{\bar{x}}$ e $\mu_2 = \bar{x} + z_\alpha \cdot \sigma_{\bar{x}}$, com isto segue que:

$$IC(\mu, (1-\alpha)\%) = (\mu_1, \mu_2)$$

Simplificando a notação temos com os limites anteriores: $\mu_1 = \bar{x} - z_\alpha \cdot \sigma_{\bar{x}}$ e $\mu_2 = \bar{x} + z_\alpha \cdot \sigma_{\bar{x}}$, com isto segue que:

$$IC(\mu, (1-\alpha)\%) = (\mu_1, \mu_2)$$

Em outras palavras, tomando $\alpha=5\%$, podemos esperar que 95 dos IC contenham o verdadeiro valor de μ e 5 não contenham o valor de μ , em 100 amostras de mesmo tamanho n, onde obteremos 100 estimativas para \bar{x} , com as quais construiremos 100 IC para μ .

Simplificando a notação temos com os limites anteriores: $\mu_1 = \bar{x} - z_\alpha \cdot \sigma_{\bar{x}}$ e $\mu_2 = \bar{x} + z_\alpha \cdot \sigma_{\bar{x}}$, com isto segue que:

$$IC(\mu, (1-\alpha)\%) = (\mu_1, \mu_2)$$

Em outras palavras, tomando $\alpha=5\%$, podemos esperar que 95 dos IC contenham o verdadeiro valor de μ e 5 não contenham o valor de μ , em 100 amostras de mesmo tamanho n, onde obteremos 100 estimativas para \bar{x} , com as quais construiremos 100 IC para μ .

Isto é, em uma amostra qualquer, a probabilidade de que o IC determinado contenha o valor da média é de 95%, ou seja, uma confiança de 95% de que o IC determinado contenha o verdadeiro valor de μ . O risco que corremos de que não contenha o verdadeiro valor é de 5%.

Tabela

Tabela para valores de Z_{α} .

Nível de Confiança	99, 73%	99%	98%	96%	95, 45%	95%	90%	80%	68, 27%	50%
Z_{α}	3,00	2,58	2, 33	2, 05	2,00	1,96	1, 645	1, 28	1,00	0, 6745

Exemplo 01

De uma população normal X, com $\sigma^2=9$, tiramos uma amostra de 25 observações, obtendo $\sum_{i=1}^{25} x_i=152$. Determinar um IC de limites de 90% para μ .

Solução:

$$\alpha = 10\% \text{ e } \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{152}{25} = 6,08$$

Solução:

$$\alpha = 10\% \text{ e } \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{152}{25} = 6,08$$

$$\sigma_{\bar{x}} = \sqrt{\frac{\sigma^2}{25}} = \sqrt{\frac{9}{25}} = \frac{3}{5} \implies \sigma_{\bar{x}} = 0, 6$$

Solução:

$$\alpha = 10\% \text{ e } \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{152}{25} = 6,08$$

$$\sigma_{\bar{x}} = \sqrt{\frac{\sigma^2}{25}} = \sqrt{\frac{9}{25}} = \frac{3}{5} \implies \sigma_{\bar{x}} = 0, 6$$

Utilizando a tabela do inicio das notas de aula, segue que:

Solução:

$$\alpha = 10\% \text{ e } \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{152}{25} = 6,08$$

$$\sigma_{\bar{x}} = \sqrt{\frac{\sigma^2}{25}} = \sqrt{\frac{9}{25}} = \frac{3}{5} \implies \sigma_{\bar{x}} = 0, 6$$

Utilizando a tabela do inicio das notas de aula, segue que:

$$z_{\alpha} = z_{45\%} = z_{0,45} = 1,64$$

Solução:

$$\alpha = 10\% \text{ e } \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{152}{25} = 6,08$$

$$\sigma_{\bar{x}} = \sqrt{\frac{\sigma^2}{25}} = \sqrt{\frac{9}{25}} = \frac{3}{5} \implies \sigma_{\bar{x}} = 0, 6$$

Utilizando a tabela do inicio das notas de aula, segue que:

$$z_{\alpha} = z_{45\%} = z_{0,45} = 1,64$$

Com isto, nosso intervalo de confiança é dado por:

$$P(6,08-1,64\cdot 0,6<\mu<6,08+1,64\cdot 0,6)=0,9$$

$$P(5,096<\mu<7,064)=0,90$$

Solução:

$$\alpha = 10\% \text{ e } \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{152}{25} = 6,08$$

$$\sigma_{\bar{x}} = \sqrt{\frac{\sigma^2}{25}} = \sqrt{\frac{9}{25}} = \frac{3}{5} \implies \sigma_{\bar{x}} = 0, 6$$

Utilizando a tabela do inicio das notas de aula, segue que:

$$z_{\alpha} = z_{45\%} = z_{0,45} = 1,64$$

Com isto, nosso intervalo de confiança é dado por:

$$P(6,08-1,64\cdot0,6<\mu<6,08+1,64\cdot0,6)=0,9$$

 $P(5,096<\mu<7,064)=0,90$

Ou ainda,

$$IC(\mu, 90\%) = (5, 096; 7, 064)$$

Portanto, temos 90% de confiança que o verdadeiro valor μ populacional se encontra entre 5,096 e 7,064, ou então corremos um risco de 10% de que o verdadeiro valor da média μ populacional seja menor que 5,096 ou maior que 7,064.

Quando queremos estimar a média de uma população normal com variância desconhecida, consideramos dois procedimentos:

Quando queremos estimar a média de uma população normal com variância desconhecida, consideramos dois procedimentos:

• se $n \le 30$, então usa-se a distribuição t de Student, que veremos a diante:

Quando queremos estimar a média de uma população normal com variância desconhecida, consideramos dois procedimentos:

- se $n \le 30$, então usa-se a distribuição t de Student, que veremos a diante;
- se n>30, então usa-se a distribuição normal com o estimador s^2 de σ^2 .

Quando queremos estimar a média de uma população normal com variância desconhecida, consideramos dois procedimentos:

- se $n \le 30$, então usa-se a distribuição t de Student, que veremos a diante;
- se n>30, então usa-se a distribuição normal com o estimador s^2 de σ^2 .

Nesta seção nosso interesse é no segundo caso. Vejamos um exemplo.

Exemplo 02

De uma população normal com parâmetros desconhecidos, tiramos uma amostra de tamanho 100, obtendo-se $\bar{x}=112$ e s=11. Fazer um IC para μ ao nível de 10%.

Solução:

Solução:

$$\sigma_{\bar{\mathsf{X}}} pprox rac{\mathsf{s}}{\sqrt{n}} = rac{11}{10} = 1, 1$$

Solução:

$$\sigma_{\bar{x}} \approx \frac{s}{\sqrt{n}} = \frac{11}{10} = 1, 1$$
 $z_{\alpha} = z_{45\%} = z_{0.45} = 1, 64$

Solução:

$$\sigma_{ar{x}}pproxrac{s}{\sqrt{n}}=rac{11}{10}=1,1$$
 $z_{lpha}=z_{45\%}=z_{0,45}=1,64$ Logo,

Solução:

$$\sigma_{\overline{x}} pprox rac{s}{\sqrt{n}} = rac{11}{10} = 1, 1$$
 $z_{lpha} = z_{45\%} = z_{0,45} = 1, 64$
Logo,

$$P(112 - 1, 64 \cdot 1, 1 < \mu < 112 + 1, 64 \cdot 1, 1) = 0,90$$

 $P(110, 20 < \mu < 113, 80) = 0,90$

Solução:

Como a amostra é superior a 30, utilizamos:

$$\sigma_{\overline{\chi}} pprox rac{s}{\sqrt{n}} = rac{11}{10} = 1, 1$$
 $z_{lpha} = z_{45\%} = z_{0,45} = 1, 64$
Logo,

$$P(112 - 1, 64 \cdot 1, 1 < \mu < 112 + 1, 64 \cdot 1, 1) = 0,90$$

 $P(110, 20 < \mu < 113, 80) = 0,90$

Ou

Solução:

Como a amostra é superior a 30, utilizamos:

$$\sigma_{\overline{\chi}} pprox rac{s}{\sqrt{n}} = rac{11}{10} = 1, 1$$
 $z_{lpha} = z_{45\%} = z_{0,45} = 1, 64$
Logo,

$$P(112 - 1, 64 \cdot 1, 1 < \mu < 112 + 1, 64 \cdot 1, 1) = 0,90$$

 $P(110, 20 < \mu < 113, 80) = 0,90$

Ou

$$IC(\mu, 90\%) = (110, 20; 113, 80)$$

Solução:

Como a amostra é superior a 30, utilizamos:

$$\sigma_{ar{x}} pprox rac{s}{\sqrt{n}} = rac{11}{10} = 1, 1$$
 $z_{lpha} = z_{45\%} = z_{0,45} = 1, 64$
Logo,

$$P(112 - 1, 64 \cdot 1, 1 < \mu < 112 + 1, 64 \cdot 1, 1) = 0,90$$

 $P(110, 20 < \mu < 113, 80) = 0,90$

Ou

$$IC(\mu, 90\%) = (110, 20; 113, 80)$$

O que concluímos que apesar de usar o desvio padrão da amostra, temos um grau de certeza de 90% de que o verdadeiro valor da média populacional está entre 110, 20 e 113, 80. ■