IP Lecture 2: Invariants

Joe Pitt-Francis

—with thanks to Mike Spivey & Gavin Lowe—

Reminder: Compile and run the Factorial object

- > scalac Factorial.scala
 # or better...
 > fsc Factorial.scala
- > scala Factorial
 - Interpreted languages (Basic and Matlab) take and evaluate one line of human-readable code at a time. (User-friendly?)
 - Compiled languages (C++ and FORTRAN) convert the human-readable program text into an executable binary file to be run on a *specific* machine. (Run faster?)
 - Intermediate languages (Java and Scala) compile into machine-neutral bytecode (.class files) which are then executed by the Java Virtual Machine using a just-in-time compiler. (Best of both worlds?)

A reminder of the Factorial code with recursion

```
object Factorial{
 /** Calculate factorial of n
    * Pre: n >= 0
   * Post: returns n! */
 def fact(n: Int) : BigInt = {
   require(n>=0)
    if (n==0) 1 else fact (n-1)*n
  // Main method
 def main(args: Array[String]) = {
   print("Please input a number: ")
   val n = scala.io.StdIn.readInt
   // if (n>=0) {...}
   val f = fact(n)
   println("The factorial of "+n+" is "+f)
```

Calculating factorials using a while loop

```
/** Calculate factorial of n
        * Pre: n >= 0
2
        * Post: returns n! */
3
     def fact(n: Int) : BigInt = {
4
        require(n>=0)
                                       // assume n \ge 0
5
       var f: BigInt = 1; var i = 0  // f = i! and i<=n</pre>
6
        while(i<n){
                                      // f = i! and i<n
7
                                       // f = (i-1)! and i <= n
          i = i+1
                                        // f = i! and i<=n
          f = f*i
9
10
       // f = i! and i = n, so f = n!
11
12
     }
13
```

(The rest of the program is unchanged.)

Syntactic notes

- Two commands can be written on one line by separating them with a semicolon (";"), as on line 6.
- The code while(test) body does the following
 - 1. evaluates test;
 - 2. if test = true, executes body, and returns to step 1;
 - 3. if test = false, finishes.
- Here the body of the while loop contains more than one command, so has to be enclosed in curly brackets (if the body were a single command, the brackets would be unnecessary).

Invariants

The previous code illustrated an important pattern for proving properties of while loops, namely the idea of an invariant.

An invariant is a property that is true at the start and end of each iteration of the loop.

In the previous code, the property f = i! and i <= n was an invariant. (As noted on lines 6, 9, etc.)

Aside: calculating factorials using a for loop

Here's another implementation of fact. It also uses f, that starts at 1, and is multiplied by each number i from 1 to n (inclusive).

```
// Calculate factorial of n, using a for loop
1
     // Precondition: n >= 0
2
     def fact(n:Int) : BigInt = {
3
       require(n>=0)
4
       var f : BigInt = 1 // f = 0!
5
       for(i <- 1 to n){ // f = (i-1)!
6
         f = f*i // f = i!
7
       // f = n!
10
     }
11
```

We cannot say // f = i! on line 5. Invariants are easier to reason about using while loops than for loops, so we will tend to favour while loops from now on (except for trivial loops).

Invariants

The normal pattern for a program with an invariant I is as follows:

```
// pre
Init
// I
while(test){
    // I and test
    Body
    // I
}
// I and not test
// post
```

We need to check:

- Init establishes I, assuming pre;
- Body maintains I;
- the loop terminates (see later);
- I and not test implies post.

The milk bill example

Imagine we're trying to add up a milk bill. We've got a sequence containing the number of bottles of milk delivered each day, and we want to calculate the total.

Of course, this is an instance of a general problem: adding up a sequence of numbers.

We will develop correct code, using an invariant to guide us.

Arrays

Scala has lots of sequence-like (or list-like) datatypes. Perhaps the most common type is arrays.

If T is a type then Array[T] represents the type of arrays that hold data of type T. (In Scala, square brackets are always used for parametric polymorphism.)

Each array has a fixed size. The ith entry of array a can be obtained using a(i). (Note the round parentheses!) The indexing is zero-based, i.e., if a is of size n, then the elements are a(0),...,a(n-1). This indexing operation takes constant time (unlike the corresponding operation on Haskell lists).

Arrays are mutable. The individual entries can be updated, e.g.

$$a(i) = a(i) + 1$$

The postcondition

We want to develop a function

```
def findSum(a : Array[Int]) : Int = ...
```

which returns the sum of the entries in a. If a has n entries, then the requirement is to calculate total such that

```
total = \sum a[0..n)
```

(In comments in the actual code, we'll write "sum" for " \sum ".)

We have postcondition:

```
post: returns total s.t. total = \sum a[0..n)
```

or more simply

```
post: returns \sum a[0..n)
```

The precondition is simply true, so we omit it.

The invariant

Our program will add up the elements of **a** in order. Let's use a variable **i** to record how far we've got. Then at each point we will have

$$\mathtt{total} = \sum \mathtt{a}[0..\mathtt{i}) \land 0 \leq \mathtt{i} \leq \mathtt{n}$$

Let's call this invariant "I".

The size of a

We can set **n** to be the size of **a** by

```
val n = a.size
```

Aside: Arrays are objects. When an object obj provides an operation op, then it is invoked by

```
obj.op
```

If the operation takes argument x, then it is invoked by

```
obj.op(x)
```

Initialization

Recall the invariant

$$\mathtt{total} = \sum \mathtt{a}[0..\mathtt{i}) \land 0 \leq \mathtt{i} \leq \mathtt{n}$$

Our initialization needs to establish I. The following code does this.

```
val n = a.size
var total = 0; var i = 0
```

The main loop

When i gets to n, we'll have finished. So we are after a loop of the following form.

```
while(i < n){
    // I && i < n
    ...
    // I
}</pre>
```

which we can do as follows

```
// I && i<n
total = total + a(i)
// total = \sum_a[0..i+1) && i<n
i = i + 1
// I</pre>
```

Aside: some useful notation

It's quite common to have assignments of the form

$$v = v + exp$$

for variable v and expression exp. This can be abbreviated to

$$v += exp$$

Similar shorthands hold for other binary operators

The body of the loop can be abbreviated to

```
total += a(i)
i += 1
```

The complete function

```
/** Calculate sum of a
  * Post: returns sum(a) */
def findSum(a : Array[Int]) : Int = {
  val n = a.size
  var total = 0; var i = 0
  // Invariant I: total = sum(a[0..i)) && 0<=i<=n
  while(i < n){</pre>
   // I && i<n
    total += a(i)
   // total = sum(a[0..i+1)) && i<n
    i += 1
    // I
  // I && i=n
 // total = sum(a[0..n))
  total
```

Correctness

Remember the rules for proving correctness using an invariant I.

```
// pre
Init
// I
while(test){
    // I && test
    Body
    // I
}
// I && not test
// post
```

We need to check:

- Init establishes I, assuming pre;
- Body maintains I;
- I && not test implies post;
- the loop terminates.

We've already checked all of these except for termination.

Termination

For termination, the normal approach is to identify an expression \mathbf{v} of the program variables, known as a variant, and to check

- v is integer valued, assuming the invariant;
- v is at least 0, assuming the invariant;
- v is decreased at each iteration (maybe by more than one).

If these are true, the loop can do only a finite number of iterations before terminating.

Normally, the variant is a measure of how much more work needs to be done.

Here we take the variant to be n - i.

Hoare triples

The (mathematical) notation

$$\{P\}\mathrm{Prog}\{Q\}$$

is used to mean that if program Prog is executed from a state that satisfies P, it is guaranteed to terminated in a state that satisfies Q.

P is called the precondition, and Q is called the postcondition.

Correctness, again

We can describe our correctness theorem as follows.

If

- $\{pre\}Init\{I\};$
- $\{I \wedge test\}Body\{I\};$
- $I \land \neg test \Rightarrow post;$
- $I \Rightarrow v \in \mathbb{N}$;
- $\{I \land test \land v = V\} Body \{v < V\}$ (where V is a logical constant);

then

```
\{pre\}\ Init; while(test)Body\ \{post\}
```

Formal methods

- Invariants are useful for us to have more certainty in the correctness of our programs.
- Invariants and Hoare triples can be used to prove a program correct.
- They can also be used to systematically derive programs—by refining from a mathematical specification to a working program.
- Systematic refinements and proofs can be done by machine (Z and the B-method).

Iteration, invariants, recursion and induction

There is a sense in which recursion and iteration are related, because they perform similar tasks.

- Recursion: solve a large problem by breaking it up into smaller ones.
- Iteration: Start small and keep repeating until task is done.
- Prove recursion is correct with proof by induction.
- Prove iteration is correct with invariants.
- Need to show that finite recursion terminates and that loops terminate.

Summary

- Invariants;
- Using invariants for deriving programs;
- Proving termination;
- Hoare triples; preconditions and postconditions;
- Arrays;
- Next time: Making milk function into a program. More examples of invariants.