Theorems from Brezis' Functional Analysis, Sobolev Spaces and Partial Differential Equations (first edition)

Gustaf Bjurstam bjurstam@kth.se

1 The Hahn-Banach Theorems. Introduction to Conjugate Convex Functions

Theorem 1.1 (Hahn-Banach, analytic). Let E be a vector space over \mathbb{R} , and let $p: E \to \mathbb{R}$ be a Minkowski functional. Let G be a linear subspace of E and let $g: G \to \mathbb{R}$ be a linear functional such that $g(x) \leq p(x)$ for all $x \in G$. There exists a linear functional $f: E \to \mathbb{R}$ such that

$$f(x) = g(x), \forall x \in G,$$

and

$$f(x) \le p(x), \, \forall x \in E.$$

Lemma 1.1 (Zorn). Every nonempty ordered set that is inductive has a maximal element.

Corollary 1.2. Let G be a linear subspace of the real vector space E. If $g \in G^*$, then there exists $f \in E^*$ that extends g and such that $||f||_{E^*} = ||g||_{G^*}$.

Corollary 1.3. Let E be a normed real vector space. For every $x \in E$ there is $f \in E^*$ such that ||f|| = ||x|| and $\langle f, x \rangle = ||x||^2$.

Corollary 1.4. For every x in the real normed vector space E we have

$$||x|| = \sup_{\substack{f \in E^* \\ ||f|| \le 1}} |\langle f, x \rangle| = \max_{\substack{f \in E^* \\ ||f|| \le 1}} |\langle f, x \rangle|.$$

Proposition 1.5. Let E be a real normed vector space, and let $H = [f = \alpha] \subset E$ be an affine hyperplane. Then H is closed if and only f is continuous.

Theorem 1.6 (Hahn-Banach, 1st geometric). Let E be a normed vector space, and let $A, B \subset E$ be two nonempty convex subsets such that $A \cap B = \emptyset$. Assume A is open, then there exists a closed hyperplane H that separates A and B.

Lemma 1.2. Let E be a normed vector space, and let $C \subset E$ be an open convex set with $0 \in C$. For every $x \in E$ set $p(x) = \inf \{\alpha : \alpha^{-1}x \in C\}$. Then p is a Minkowski functional. Furthermore, there is a constant M such that $0 \le p(x) \le M \|x\|$, and $C = \{x \in E : p(x) < 1\}$.

Lemma 1.3. Let E be a normed vector space, and let $C \subset E$ be an open convex set. Assume $x_0 \in E \setminus C$. Then there exists $f \in E^*$ such that $f(x) < f(x_0)$ for all $x \in C$. In particular, $[f = f(x_0)]$ separates C and $\{x_0\}$.

Theorem 1.7 (Hahn-Banach, 2nd geometric). Let E be a normed vector space, and let $A, B \subset E$ be two nonempty convex subsets such that $A \cap B = \emptyset$. Assume A is closed and B is compact, then there exists a closed hyperplane that strictly separates A and B.

Corollary 1.8. Let E be a normed vector space, and let $F \subset E$ be a linear subspace such that $\overline{F} \neq E$. Then there is some $f \in E^* \setminus \{0\}$ such that $\langle f, x \rangle = 0$ for all $x \in F$.

Proposition 1.9. Let E be a normed vector space, and suppose M is a linear subspace of E. Then $(M^{\perp})^{\perp} = \overline{M}$. Furthermore, let N be a linear subset of E^{\star} , then $(N^{\perp})^{\perp} \supset \overline{N}$.