

Rietveld Method for Quantitative Phase Analysis

Milestones

1966 7th Congress of the IUCr in Moscow

1969 publication in J.Appl.Crystallogr.

1977 acceptance for X-ray diffraction

1983 Quantitative Phase Analysis

Dr. Hugo M. Rietveld

pictures by courtesy of Hugo Rietveld (http://home.wxs.nl/~rietv025/)

Rietveld Method

- Full profile fitting
- Using crystallographic constraints
 - Lattice parameters and space group to constrain peak positions
 - Crystal structure to constrain peak intensities

Profile Fitting

- An accurate description of the line profile shapes in a powder pattern is critical to the success of any profile fitting application!
- Today's profile fitting techniques:
 - Analytical profile fitting
 - Direct convolution approach

Profile Fitting Methods Analytical Profile Fitting

- Characterized by peak shape functions (PSFs) with an explicit and relatively simple mathematical form which can be differentiated analytically with respect to each of the refined parameters
- Most common are the Gaussian, Lorentzian, sums of Gaussians or Lorentzians, Voigt, pseudo-Voigt and PearsonVII functions
- Convenient to use
- No physical meaning
- Large number of parameters required to fit profiles well over the whole 2θ range pattern frequently leading to:
 - Correlation problems
 - Loss of uniqueness
 - Instability of the refinement procedure

Profile Fitting Methods Direct Convolution Approach

• PSFs are generated by convoluting functions together to form the observed profile shape $Y(2\theta) = F_1(2\theta) \times F_2(2\theta) \times ... \times F_i(2\theta) \times ... \times F_n(2\theta)$

$$W \times F_1(2\theta) \times F_2(2\theta) \times ... \times F_i(2\theta) \times ... \times F_n(2\theta) = Y(2\theta)$$

Profile Fitting Methods Direct Convolution - FPA

• In powder diffractometry the functions $F_i(2\theta)$ can be interpreted as the aberration functions of the diffractometer:

Fundamental Parameters Approach (FPA)

Profile Fitting Methods Direct Convolution - FPA

Benefits:

- The ideal approach for all profile fit applications not only if micro-structure information is of interest
- The Bragg Brentano geometry is the most convenient
- Micro-structure information can be derived
- Allows to deal with higher degrees of peak overlap (with significant impact on e.g. quantitative Rietveld analysis)
- Uses a minimal number of profile parameters
 (specimen contributions such as size/strain/...) stabile refinement
- Refined profile parameters have a physical meaning (size/strain/...)
- ...

Profile Fitting Methods FPA vs. Analytical Profile Fitting

Fitting

- Single peak fitting
- Full pattern fitting
 - Le Bail / Pawley methods
 - Rietveld method

Single Peak Fit

- Results:
 - Positions
 - Intensity (amplitude, integral)
 - Width, shape
- Calculate:

$$\sum (y_i^o - y_i^c)^2 o ext{Min.}$$

 y_i^o observed step intensity y_c^o calculated step intensity

Needs profile function

Single Peak Fit - Parameters

- Profile functions P_i
- Gaussian $G(2\theta_i, I_i, w_i)$
- Lorentzian L(2θ_i,I_i,w_i)
- Pseudo-Voigt xG_i+(1-x)L_i
- Asymmety function (one or two parameters) split-functions: two independent functions P_i^{l} for $2\theta < 2\theta_i$ P_i^{r} for $2\theta > 2\theta_i$
- About 6 parameters per peak

Single Peak Fit

range: single reflections, reflection groups independent parameters: peak area, position and shape

prior knowledge: none

applications: indexing, cell parameters, |F|-

determination, line shape analysis

Full Pattern Fitting

- WPPF
- Whole Powder Pattern Fit
 - Pawley
 - LeBail
 - Pattern matching
- Use lattice parameters and spacegroup info to constrain peak positions
- calculate

$$\sum (y_i^o - y_i^c)^2 o ext{Min.}$$

Peak Shape Functions

models for the peak shape:

- fundamental parameters approach
- analytical functions (Gauss, Lorentz, pseudo-Voigt, Pearson VII, TCH, split-type, ...)

$$- G(\Delta 2\theta_{ik})^{G} = \frac{4 \ln 2}{\sqrt{\pi} H_{k}} \exp \left[-4 \ln 2 \frac{(2\theta_{i} - 2\theta_{k})^{2}}{H_{k}^{2}} \right]$$

$$G(\Delta 2\theta_{ik})^{L} = \frac{2}{\pi H_{k}} / \left[1 + \frac{4(2\theta_{i} - 2\theta_{k})^{2}}{H_{k}^{2}} \right]$$

$$G(\Delta 2\theta_{ik})^{PV} = \eta G(\Delta 2\theta_{ik})^{L} + (1 - \eta)G(\Delta 2\theta_{ik})^{G}$$

- asymmetry correction
- peak half width $H_k = \left[u \tan^2(\theta) + v \tan(\theta) + w\right]^{1/2}$

WPPF


```
range: total diffraction pattern,
```

independent parameters: peak area

dependent parameters:

$$\begin{aligned} 2\theta(\mathsf{hkl}) &= f(a,b,c,\alpha,\beta,\gamma),\\ \lambda &= 2d\sin(\theta),\, d = 1/|\vec{H}|,\\ \vec{H} &= h\vec{a}_1^* + k\vec{a}_2^* + l\vec{a}_3^* \end{aligned}$$

 $\text{profile parameters} = f(2\theta)$

prior knowledge: approximate unit cell

applications: |F|, cell parameters

WPPF vs. Rietveld

 \mathbf{Aim} : find best aggreement between measured y_i^o and calculated y_i^c diffraction pattern

$$\sum (y_i^o - y_i^c)^2 o ext{Min.}$$

non-linear optimization problem

Method: simultaneous refinement of models for

- diffraction optics, instrumental parameters (resolution function, instrument offsets, ...)
- Background
- phase specific parameters (cell parameters, crystal structure (x,y,z,B,n)
- sample specific parameters (crystallite size, stress, preferred orientation)

intensity y_i^c at the *i*th step consists of:

$$y_i^c = y_{bi}^c + \underbrace{S\sum_{k=1}^n m_k L_k |F_k|^2 G(\Delta 2\theta_{ik}) P_k}_{n \text{ overlapping reflections}}$$

```
y_{bi}^c ...background
```

$$S$$
 ...scale factor

$$n$$
 ...number of overlapping reflections (hkl)

$$m_k$$
 ...multiplicity of reflection k

$$L_k$$
 ...Lorentz-, polarisation correction

$$F_k$$
 ...structure factor

$$G(\Delta 2\theta_{ik})$$
 ...peak shape function

$$P_k$$
 ...preferred orientation correction

Rietveld Refinement -Lorentz-polarisation correction

Lorentz

reciprocal lattice nodes needs different times to pass the Ewald sphere

Polarization

depends on polarization state of the incident beam and scattering angle of the diffracted beam

⇒ synchrotron radiation: LP = 90 (totally polarized) filters, energy dispersive detector: LP = 0 (not polarized) monochromator cystals: LP = Bragg angle

Rietveld Refinement - Structure factor

$$F(hkl) = \sum_{j}^{N} f_{j} \exp \left[2\pi i \left(hx_{j} + ky_{j} + lz_{j}\right)\right]$$

$$f = 4\pi \int \rho(r) \left(\frac{\sin Kr}{r} \right) dr$$

$$f_j = {}^{0}f_j \exp\left(\frac{-B\sin^2\theta}{\lambda^2}\right)$$

Structure Model

- Cell parameters (edge lengths, angles) a,b,c, alpha, beta, gamma
- Symmetry group, space group
- Asymmetric unit i.e. atom coordinates, TDPs, occupancy:

TABLE 1. ATOMIC POSITIONS

	x	у	z	B equiv
T(1)	0.3968(2)	-0.0001(1)	0.1906(1)	0.648
T(2)	0.8970(2)	0.1667(1)	0.1908(1)	0.686
M(1)	0.0	0.0	0.0	0.536
M(2)	-0.0009(2)	0.3334(1)	0.00006(9)	0.555
M(3)	0.0012(2)	0.1666(1)	0.50314(9)	0.430
M(4)	0.5	0.0	0.5	0.949

TABLE 2. ANISOTROPIC THERMAL PARAMETERS*

	β11	β 22	β33	β1 2	β13	β23
T(1)	54(3)	14(1)	10.5(5)	1(1)	3(1)	0.8(5)
T(2)	58(3)	15(1)	10.9(5)	-1(1)	3(1)	0.5(5)
M(1)	39(3)	11(2)	9.7(8)	-0(2)	3(2)	0.4(9)
M(2)	41(4)	12(1)	9.7(5)	1(2)	2(1)	0.4(6)
M(3)	36(4)	6(1)	8.3(5)	0(1)	2(1)	0.4(6)
M(4)	88(3)	23(1)	13.1(5)	0(1)	4(1)	0.7(5)

NOTE! Rietveld is structure refinement, not structure determination

Structure Model Where to get it from?

- Literature, journals (e.g. Acta Cryst., Z. Krist., ...)
- CSD (Cambridge Structural Database)
- ICSD (Inorganic Crystal Structure Database)
- PDF-4
- COD
- PDB (Protein Data Bank)
- From structure solution

Close starting model necessary!

Rietveld Refinement Preferred Orientation

March Dollase function

$$P_k = \left[G^2 \cos^2 \alpha_k + \left(\frac{1}{G}\right) \sin^2 \alpha_k\right]^{-3/2}$$

 α_{k} = angle between (hkl) and preferred orientation vector

Spherical harmonics

only even orders (Friedel's Law) start always with lowest order increase order until no improvement of R_{wp} is obtained !!! Check plot of phase intensity for negative values !!!

Rietveld Refinement Principal and Visual Quality Check

	Criteria of fit	Definition			
	"R-pattern", R _p	$R_p = \sqrt{\frac{\sum \left Y_{o,m} - Y_{c,m} \right }{\sum Y_{o,m}}}$	$R_n' = \left[\frac{\sum Y_{o,m} - Y_{c,m} }{\sum Y_{o,m} - Y_{c,m} }\right]$		
	"R-pattern", R _p ' (background corrected)	$Y = \sum Y_{o,m}$	$\bigvee \sum Y_{o,m} - Bkg_m $		
	"R-weighted pattern", R _{wp}	$R_{wp} = \sqrt{\frac{\sum w_{m} (Y_{o,m} - Y_{o,m})^{2}}{\sum w_{m} Y_{o,m}^{2}}}$	$R_{wp}' = \sqrt{\frac{\sum w_m (Y_{o,m} - Y_{c,m})^2}{\sum w_m (Y_{o,m} - Rk\sigma_0)^2}}$		
	"R-weighted pattern", R _{wp} '(background corrected)		$(2, m)^{2}$		
	"R-expected", R _{exp}	$\sum M - P$	$\sum M - P$		
	"R-expected", R _{exp} '	$R_{\rm exp} = \sqrt{\frac{\sum M - P}{\sum w_m Y_{o,m}^2}}$	$R_{\text{exp}}' = \sqrt{\frac{\sum M - P}{\sum w_m (Y_{o,m} - Bkg_m)^2}}$		
	(background corrected)				
	"Goodness of fit", GOF	$GOF = chi^2 = \frac{R_{wp}}{R_{evm}} = \sqrt{\frac{\sum w_m (Y_{o,m} - Y_{c,m})^2}{M - P}}$			
		$R_{ ext{exp}}$ V $M-P$			
	"R-Bragg", R _B	$\sum I_{n-1}-I $.			
		$R_{B} = \frac{\sum \left I_{"o",k} - I_{c,k} \right }{\sum I_{"o",k}}$			
	14-15/12/2011	Advanced XRD W	orkshon		

step intensity y_i of k overlapping reflections from a multiphase mixture of p phases

$$Y_i = y_b + \sum_p S_p \sum_k m_{kp} L_{kp} |F_{kp}|^2 G_{ikp} P_{kp}$$

the scale factors S_p yield the mass m_p of phase p

$$m_p \propto S_p/(Z_p M_p V_p)$$

 M_p ...mass per formula unit

 Z_p ...number of formula units per unit cell

 V_p ...volume of the unit cell

Rietveld QPA State-of-the-Art

 Accurate, standardless quantitative analysis of a Cu concentrate containing 24 phases:

Sample

- The grains in the powder should be randomly oriented!
- Typical sample-related problems:
 - Not enough scattering particles (spotiness)
 - Sample not representative for the bulk
 - Bad sampling / particle heterogeneity / phase separation
 - Preferred orientation
 - Extinction
 - Microabsortion (multiphase samples)

Sample Not enough scattering particles

Spotiness effect

Sample Preferred Orientation

 Rotation parallel to the scattering vector does not minimize preferred orientation effects!

Sample Preparation Si/Zr mixture 50/50 – coarse grained

Data Collection Strategy

- For structure refinement, go as far as reasonably possible
- For quantitative refinement, somewhat less strict since generally less parameters are refined
- Use appropriate divergence slits (avoid beam overspill at low angles!)
- No variable slits (for structure refinement)
- 5000 to 10000 counts for main peaks (only as rule of thumb!)
- Step size as to collect 5 to 10 points above FWHM
- Variable counting time strategy (enhance statistics of high angle data)

Refinement Strategy (1)

- Raw data NO smoothing or $K_{\alpha 2}$ -stripping
- Start with Le Bail or Pawley fit \Rightarrow gives the best R_{wP} that can be achieved
- Describe background with as less parameters as possible ⇒ correlation
- Do not refine zero-error and sample displacement at the same time, unless lattice parameters are from a certified material

For **qualitative** Rietveld (single phase):

- Heavy atoms first
- As a general rule, use isotropic displacement vectors B_{iso} (in literature sometimes called "thermal parameters")
- Constrain B_{iso} for chemically identical elements e.g. B_C and B_O for two independent oxalate ions $C_2O_4^{2-}$
- Use constraints for refinement of occupancy factors

For **quantitative** Rietveld (mixture):

As a general rule, do not refine positional (x, y, z) and displacement vectors
 (B)

Possible Problems (1)

- Poor background
 - ⇒ increase polynomial coefficients, use peak phase to describe bumps
 (e.g. from capillary), use 1/X at low angle
- Poor peak shape description
 - ⇒ check instrument set-up
 - ⇒ low absorbing material transparancy
 - ⇒ high absorbing material surface roughness
 - ⇒ anisotropic behaviour
- Mismatch calculated vs. observed pattern
 - ⇒ unit cell parameters correct?
 - \Rightarrow 20 correction checked?

Possible Problems (2)

- Relative intensities of few reflection too high, none too low
 - ⇒ poor particle statistics, recollect data after grinding/sieving, sample spinning
- Small unindexed reflections
 - \Rightarrow K β or W-L α (if no monochromator)
 - \Rightarrow impurity?
 - ⇒ unit cell parameters correct? Other space group?
- Refinement does not converge
 - ⇒ check structural model
 - ⇒ check correlation between parameters
 - ⇒ use restraints and/or constraints
 - ⇒ correct space group?

Possible Problems (3)

- Refinement converged, but angle dependent intensity mismatch and/or unreasonable thermal parameters
 - ⇒ check Lorentz-polarisation correction (monochromator?)
 - ⇒ absorption correction?
 - ⇒ surface-roughness correction?
 - ⇒ preferred orientation?
 - ⇒ check atoms

More can be found in:

"Rietveld refinement guidelines" Mc. Cusker et al. *Journal of Applied Crystallography* 32 (1999) 36-50

Innovation with Integrity