Niveaux: SM PC SVT | Matière: chimie

PROF:Zakaryae Chriki

Résumé N:7

Réactions spontanées dans les piles et production d'énergie



1. Réaction spontanée: toute réaction chimique qui peut se dérouler sans apport d'énergie du milieu extérieur est appelée réaction spontanée.

#### 2. Une pile électrochimique :

Une pile électrochimique est un générateur qui transforme de l'énergie chimique en énergie électrique. Une pile est constituée par deux demi-piles reliées par un pont salin.

- Une demi-pile est l'ensemble constitué d'un métal plongeant dans une solution contenant son cation conjugué. Les deux métaux sont appelés électrodes et constituent les pôles de la pile. Elles font donc référence chacune à un couple oxydoréducteur Mn+ (aq)/M(s).
- Un pont salin : il permet d'assurer la fermeture du circuit électrique, le déplacement de porteurs de charges et la neutralité de chaque électrolyte. Il n'intervient en rien dans l'équation de la réaction qui fournit l'énergie.

### 2. Exemple "pile Daniell ":

- La pile est constituée de deux compartiments dont l'un contient une solution de sulfate de zinc (Zn²++SO₄²-) dans laquelle est immergée une plaque de zinc métallique (Anode). L'autre compartiment de la pile contient une solution de sulfate de cuivre (Cu<sup>2+</sup>++SO<sub>4</sub><sup>2-</sup>) dans laquelle baigne une plaque métallique de cuivre (Cathode).
- Les deux solutions sont reliées par un pont salin (solution de chlorure de potassium KCl ou de nitrate de potassium KNO3 qui sert à équilibrer les charges.
- La pile Daniell est constitué de deux demi piles constitué par les deux couples  $Cu^{2+}_{(aq)}/Cu_{(s)}$  et  $Zn^{2+}_{(aq)}/Zn_{(s)}$
- L'aiguille de l'ampèremètre (ou du voltmètre) dévie : le courant électrique passe alors de la plaque de cuivre Cu vers la plaque de zinc Zn

#### Représentation de la pile et information sur le circuit



- Le sens du courant électrique est de l'électrode Cuivre vers l'électrode zinc
- Les électrons circulent, dans le circuit électrique extérieur, de l'électrode zinc vers l'électrode Cuivre
- Les ions, dans les électrolytes, assurent le transport du courant
- La solution de sulfate de zinc s'enrichit en ions zinc Zn<sup>2+</sup>, alors pour compenser cet excès de charge positive, des ions négatifs du pont salin passent dans cette solution.
- La solution de sulfate de cuivre II s'appauvrit en ions cuivre Cu<sup>2+</sup>, pour compenser ce défaut de charge positive, des ions positifs du pont salin passent dans cette solution.

Cette double migration des ions du pont salin assure le passage du courant entre les deux demi-piles.

- Des électrons sont cédés par l'électrode de Zinc :  $Zn(s) \rightleftharpoons Zn^{-2} tag (2e^{-1})$
- Des électrons sont captés par la solution ionique d'ions cuivre II :  $Cu^{2+}(aq) + 2e^- \rightleftharpoons Cu(s)$
- L'équation bilan est alors :  $Cu^{2+}(aq) + Zn(s) \rightleftharpoons Cu(s) + Zn^{2+}(aq)$

#### Représentation conventionnelle de la pile (-) Zn/Zn<sup>2+</sup> || Cu<sup>2+</sup>/Cu (+)

#### NB:

Au cours de fonctionnement d'une pile, il se produit une réaction chimique d'oxydoréduction d'équation chimique :

$$n_2M_1(s) + n_1M_2^{n_2+}(aq) \rightleftharpoons n_1M_2(s) + n_2M_1^{n_1+}$$

On schématise une pile conventionnellement par :  $\ominus M_1/M_1^{n_1+}//M_2^{n_2+}/M_2 \oplus$  On l'appelle le schéma conventionnel

#### 3. Quantité d'électricité fournie :

Au cours d'une durée de fonctionnement d'une pile  $\Delta t$ , Le circuit extérieur du pile est traversé par un courant électrique continue I. On appelle Q, la quantité d'électricité qui traverse le circuit pendant cette durée , est donnée par la relation suivante :  $Q = N \times |e|$ Avec N est le nombre des électrons qui traverse le circuit pendant cette durée et e la charge élémentaire  $|e| = 1,6 \times 10^{-19} C$ 

 $1F = 1N_A.e = 96500C.mo\ell^{-1} = 9.65 \cdot 10^4 C.mo\ell^{-1}$ ; Quantité de matière d'une mole d'électron

$$\mathbf{n}(\mathbf{e}) = \frac{N}{N_A} = \frac{Q}{N_A \cdot \mathbf{e}} = \frac{Q}{F} = \frac{1\Delta t}{F}$$
: la quantité de matière des électrons échangés

n(e) : la quantité de matière d'électrons échangés en moles (mol) avec:  $\mathbf{Q} = \mathbf{I.\Delta t} = \mathbf{N.e} = \mathbf{n(e).F}$ : la quantité d'électricité en Coulomb (C) I : l'intensité du courant en ampère (A)  $\Delta t$ : le temps de transfert des électrons en seconde (s) N : Le nombre d'électrons traversant une portion de circuit pendant  $\Delta t$ 

#### <u>NB:</u>

Lorsque la pile :

- Débite, le système chimique est hors équilibre Qr≠K,
- Est usée correspond à l'état d'équilibre Qr=K, il ne se produit plus de réaction aux électrodes. L'intensité du courant est alors nulle.

## Comment déterminer la polarité d'une pile

Anode: est l'électrode qui est le siège de l'oxydation et constitue le pôle négatif (-) de la pile.



- Disparition

- Dégradation

# **060**

Apparition

 Augmentation Dégagement

Evolution dans le sens indirect