Korrekturrand

3. Aufgabe (25 Punkte)

a) Ihre Aufgabe besteht darin, für ein Notebook einen Netzwerkzugriff ins Firmen-WLAN einzurichten. Hierbei handelt es sich um ein WLAN mit WPA-PSK oder auch WPA Personal.

Nennen Sie zwei wesentliche Informationen, die Sie vom Administrator erfragen müssen, um das Notebook im WLAN anmelden zu können.

n	1	0	0	\ A /	O	rt
u	ď	0	o	٧v	U	ıι

username

b) Zur Authentifizierung von Nutzern im WLAN gibt es neben dem WPA-PSK-Verfahren auch das EAP-Verfahren, welches auch als WPA-Enterprise-RADIUS bezeichnet wird.

Nennen Sie je einen Vor- bzw. Nachteil und geben Sie eine Empfehlung, in welcher Unternehmensgröße es vorwiegend eingesetzt werden sollte.

3 Punkte

Verfahren	Vorteil	Nachteil	Unternehmensgröße	
WPA-PSK	Einfach umzusetzen	Unsicher, da PW mit steigender Anzahl von Nutzern schnell bekannt werden kann	Kleine Unternehmen mit weni- gen Mitarbeitern	
EAP/WPA- Enterprise-RADIUS	hohe sicherheit	kostspielig hoher Anmeldungsaufwand hoher Adminstrationsaufwand	mittel bis groß	

c) Sie versuchen, die Verbindung über das WLAN herzustellen, was leider zunächst nicht gelingt. Ihre Idee ist nun, eine Fehleranalyse basierend auf den verschiedenen Schichten des OSI-Modells durchzuführen.

Ergänzen Sie zur Vorbereitung die leeren Felder in der folgenden Tabelle.

Hinweis: Geben Sie pro Feld jeweils nur ein passendes Beispiel an.

6 Punkte

OSI-Schicht Nr.	OSI-Schicht Name	Verwendete Protokolle	Verwendete Adressen	Möglicher Fehler
7	Application-Layer	HTTPS	-	
4	Transportschicht	TCP/UDP	Ports	Verlust eines Segments
3	Network-Layer	IP	IP-Adresse	Keine verbindung zum Internet/Lan
2 Data-Link-Layer		HDLC	Mac-Adresse	invalide Mac adresse
1 Physical-Layer				Medium getrennt

d) Sie überprüfen nun den Zustand der Netzwerkverbindung. Folgendes wird angezeigt: ■ Status von WLAN Allgemein Verbindung IPv4-Konnektivität: Kein Netzwerkzugriff IPv6-Konnektivität: Kein Netzwerkzugriff Aktiviert Medienstatus: Kennung (SSID): Vodafone-5D2D 4 Tage 22:09:30 144,0 MBit/s Übertragungsrate: 200 Signalqualität: Details... Drahtloseigenschafter Aktivität Empfangen Bytes: 14.782.812.478 Deaktivieren Elgenschaften Diagnose Schließen Entsprechend Ihres Plans starten Sie Ihre Fehlersuche im OSI-Modell von unten nach oben (Bottom-up), beginnend mit Schicht 1. Im obenstehenden Bild suchen Sie dazu Informationen über den Zustand der Verbindung. Benennen Sie einen Wert, welcher der OSI-Schicht 1 zuzuordnen ist und interpretieren Sie diesen bezüglich seiner Funktionali-4 Punkte tät. e) Sie starten nun das Konsolenfenster zur Analyse der OSI-Schichten 2 und 3 und erhalten nach der Eingabe eines Befehls zur Anzeige der Netzwerkkonfiguration die folgende Ausgabe:

```
Drahtlos-LAN-Adapter WLAN:

Verbindungsspezifisches DNS-Suffix:

Beschreibung. . . . . . . . . . . Marvell AVASTAR Wireless-AC Network Controller

Physische Adresse . . . . . . . . 50-1A-C5-F2-38-B7

DHCP aktiviert. . . . . . . . . . Ja

Autokonfiguration aktiviert . . . : Ja

Verbindungslokale IPv6-Adresse . : fe80::85e1:1ec1:c9e2:3cbb%5(Bevorzugt)
```

Trotz des fehlenden Netzwerkzugriffs werden zwei Adressen angezeigt.

ea) Beschreiben Sie die Herkunft der Adresse 50-1A-C5-F2-38-B7.

2 Punkte

Korrekturrand

eb) Beschreiben Sie die Herkunft der Adresse fe80::85e1:1ec1:c9e2:3cbb.

2 Punkte

Fortsetzung 3. Aufgabe

Korrekturrand

f) Bei Ihrer Fehleranalyse legen Sie nun Ihren Fokus auf die Analyse der höheren OSI-Schichten.

Nach Eingabe des Befehls zur Erneuerung der IP-Adresse wird nun die folgende Information angezeigt:

```
Drahtlos-LAN-Adapter WLAN:

Verbindungsspezifisches DNS-Suffix:

Verbindungslokale IPv6-Adresse . : fe80::85e1:1ec1:c9e2:3cbb%5

IPv4-Adresse . . . . . . . : 192.168.0.52

Subnetzmaske . . . . . . . . : 255.255.255.0

Standardgateway . . . . . . . : 192.168.0.1
```

fa) Sie setzen Ihre Fehleranalyse nun fort.

Nennen Sie die Bezeichnung des Servers, der hier durch den Befehl zur Erneuerung der IP-Adresse kontaktiert wurde.

1 Punkt

fb) Geben Sie die nachfolgenden Adressen des hier angegebenen Hosts an.

3 Punkte

Netzadresse:

Hostadresse:

Broadcastadresse:

fc) Um die nun veränderte Situation zu prüfen, geben Sie den Befehl "ping 192.168.0.1" ein und erhalten die folgende Ausgabe:

```
C:\Users\User>ping 192.168.0.1
Ping wird ausgeführt für 192.168.0.1 mit 32 Bytes Daten:
Antwort von 192.168.0.1: Bytes=32 Zeit=9ms TTL=64
Antwort von 192.168.0.1: Bytes=32 Zeit=8ms TTL=64
Antwort von 192.168.0.1: Bytes=32 Zeit=9ms TTL=64
Antwort von 192.168.0.1: Bytes=32 Zeit=6ms TTL=64

Ping-Statistik für 192.168.0.1:
    Pakete: Gesendet = 4, Empfangen = 4, Verloren = 0
    (0% Verlust),
Ca. Zeitangaben in Millisek.:
    Minimum = 6ms, Maximum = 9ms, Mittelwert = 8ms
```

Sie analysieren die Ergebnisse Ihrer gesamten Fehlersuche.

Benennen Sie den von Ihnen ermittelten Fehler.

2 Punkte