# Algorithmische Geometrie, SoSe 2005 Skriptmitschrift vom 04. Mai 2005

David Diestel Alexander Tobis

# Wiederholung Voronoi-Diagramme



Zu einer Voronoi-Region gehört ein 1 Punkt aus einer endlichen Menge S von Punkten, zu einer Voronoi-Kante gehören 2 Punkten aus S und zu einer Voronoi-Ecke gehören 3 oder mehr Punkte aus S.

### **Definition: Planare Graphen**

Ein Graph G = (V, E) heißt planar (plättbar), wenn er eine ebene Einbettung besitzt. Das heißt, die Abbildung  $V \to \mathbb{R}^2$ ,  $E \to \text{einfache Kurven im } \mathbb{R}^2$  ist verträglich mit Endpunkten, so daß sich keine zwei Bilder von Kanten (im Inneren) schneiden.



Abbildung 2: Planare und nicht planare Graphen

Wie man in Abbildung 2 sieht, lassen sich beim  $K_5$  und beim  $K_{3,3}$  jeweils eine Kante nicht überkreuzungsfrei darstellen.

#### Satz:

Jeder planare Graph läßt sich gradlinig überkreuzungsfrei einbetten (das heißt alle Kanten "sind" Strecken). Ein solcher Graph wird "geometrischer Graph" genannt.

### Satz (Kuratowski):

Jeder nicht planare Graph G enthält eine Unterteilung (das heißt man kann Kanten durch Wege ersetzen) des  $K_5$  oder des  $K_{3,3}$  als Teilgraph. Und umgekehrt ist jeder Graph, der eine Unterteilung des  $K_5$  oder des  $K_{3,3}$  als Teilgraph enthält, nicht planar.

# weitere Beispiele



Abbildung 3: Einbettung eines Würfels in die

Ebene



Abbildung 4: Einbettung einer Pyramide in die Ebene



Zu jedem planaren Graphen kann man den dazu gehörenden dualen Graphen definieren.

### **Definition: Facetten**

Facetten sind zusammenhängende Gebiete, in welche die Ebene durch die Einbettung zerlegt wird. Zu den Facetten zählt auch das äußere (unbeschränkte) Gebiet.

**Beispiel**: Ein Würfel zerlegt die Ebene in 5 innere und 1 äußere Facette, also insgesamt in 6 Facetten.



Abbildung 6: Facetten eines Würfels

# Definition: Dualer Graph

Den dualen Graphen eines eingebetteten planaren Graphen G=(V, E) bezeichnen wir mit  $G^*=(V^*, E^*)$ .

V\*=Facetten von G

 $(f_1, f_2) \in E^*$  gdw. die Facetten  $f_1$  und  $f_2$  benachbart sind. Als benachbart gelten zwei Facetten, wenn es eine Kante gibt, die beide Facetten von einander trennt.

Eventuell gibt es Mehrfachkanten, wenn mehrere Kanten in G f<sub>1</sub> und f<sub>2</sub> trennen.

# Beispiele von planeren Graphen mit ihren jeweiligen dualen Graphen



Abbildung 7: der Oktaeder ist dual zum Würfel



Abbildung 8: Der K4 ist dual zu sich selbst



Abbildung 9: K<sub>3</sub> mit dualem Graphen



Abbildung 10: K2 mit dualem Graphen



Abbildung 11:  $K_1$  ist dual zum  $K_1$ 



Abbildung 12: Jeder Kante in G entspricht eine Kante in  $G^*$ 

# Eigenschaften von planaren Graphen

Falls G planar (eingebettet) ist und zusammenhängend mit n Ecken, f Facetten und e Kanten, dann gelten folgende Eigenschaften:

- a) G\* hat auch diese Eigenschaften
- b) n + f = e + 2 "Eulersche Polyederformel"

Beispiel Würfel:

Ecken + Facetten = Kanten + 2  

$$8+6 = 12+2$$

c) 
$$e \le 3n - 6$$

Voraussetzung:

$$d) \quad f \leq 2n-4$$

planar und einfach (keine Mehrfachkanten)

e) 
$$n \leq 2f - 4$$

# Beweis der Eigenschaft c) aus b)

**Zu zeigen**:  $e \le 3n - 6$ 

Es gilt "=" bei triangulierten Graphen (das heißt jede Facette ist ein Dreieck)

Jede Facette ist begrenzt durch 3 Kanten, jede Kante liegt auf dem Rand von 2 Facetten.

$$→ 3f = 2e$$

$$f = e + 2 - n (nach b) )$$

$$3e + 6 - 3n = 2e$$

$$e = 3n - 6$$

Falls der Graph nicht trianguliert ist, triangulieren wir ihn durch das Einfügen neuer Kanten, somit ist die neue Kantenzahl =  $3n - 6 \ge$  alte Kantenzahl.



neue Kantenzahl:  $3n - 6 \ge$ alte Kantenzahl  $3*5 - 6 \ge 5$ 

Abbildung 13: Beispiel Triangulierung eines Graphen

### Anwendung auf Voronoi-Diagramm

Um die Eigenschaften von planaren Graphen auf Voronoi-Diagramme anzuwenden, muß man "unendlich weit entfernt" noch einen künstlichen V-Knoten, bei dem alle unbeschränkten Kanten landen, einfügen.



Abbildung 14: künstlicher Punkt

- n Punkte (= Anzahl der Facetten)
- e Kanten
- v Knoten

Dann ist 
$$e \le 3n - 6$$
 
$$v \le 2n - 5 = O(n)$$

(das eigentliche f ist um 1 kleiner wegen des künstlichen Knotens)

Die "Größe" des Voronoi-Diagramms ist linear in der Anzahl der Punkte (gilt in der Ebene, im Raum gilt dies nicht mehr).

## Dualer Graph zum Voronoi-Diagramm von S (Delaunay-Triangulierung)



Abbildung 15: der duale Graph (Delaunay-Triangulierung) zum Voronoi-Diagramm

"Dualer Graph zum Voronoi-Diagramm von S" heißt der Graph, bei dem jeder Punkt  $p \in S$  mit den anderen Punkten, deren V-Regionen an die von p angrenzen, verbunden ist. Dieser Graph wird auch die Delaunay-Triangulierung genannt.

#### Bemerkung 1:

- a) Bei allgemeiner Lage von S, das heißt keine 4 Punkte auf einen Kreis, sind alle beschränkten Facetten Dreiecke.
- b) p,  $q \in S$ :  $\overline{pq}$  Kante der Delaunay-Triangulierung <=> es gibt einen "leeren" Kreis (keine Punkte  $\in$  S im Inneren) auf dem p und q liegen.
- c) Wenn p, q und  $r \in S$ , dann ist pqr ein Dreieck der Delaunay-Triangulierung  $\ll$  es gibt einen "leeren" Umkreis von pqr.

# Konstruktion des Voronoi-Diagramms

(gleichwertig dazu: Konstruktion der Delaunay-Triangulierung)

**Eingabe**: Menge  $S \subset \mathbb{R}^2$  mit |S| = n

**Ausgabe**: Voronoi-Diagramm VD(S) in folgender Darstellung:

- Facetten (VR)
- Kanten
- Ecken (karthesische Koordinaten)
- Zeiger auf Nachbarkanten, so dass jede Facette als doppelt verkettete Liste dargestellt ist.



Abbildung 16: Facette als doppelt verkettete Liste ihrer angrenzenden Kanten

### **Divide und Conquer Ansatz:**

1) Falls |S| > 1:

sortiere S lexikographisch, teile in linke und rechte Hälfte  $S_L,\,S_R$ 



Abbildung 17: Aufteilung von S

- 2) berechne rekursiv  $VD(S_L)$  und  $VD(S_R)$
- 3) mische beide zu einem zusammen (Laufzeit für Schritt 3): O(n)).

Der Algorithmus benötigt insgesamt O(n log n) Zeit.