Guida pratica per gli esercizi - Approccio Bresolin

© CLASSI ESSENZIALI

II DEFINIZIONI RAPIDE

COME RICONOSCERE LA CLASSE

- P: Hai algoritmo polinomiale deterministico
- NP: Hai verificatore polinomiale (certificato facile da controllare)
- **NP-Hard**: Serve riduzione da problema NP-Hard noto

📭 PROBLEMI FONDAMENTALI DEL CORSO

PROBLEMI SU GRAFI

IndependentSet (NP-completo)

```
DEFINIZIONE: {⟨G,k⟩ | G ha insieme indipendente di k vertici}
INSIEME INDIPENDENTE: Vertici non adiacenti tra loro

VERIFICATORE: Dato insieme S, controlla |S| = k e nessun arco interno
RIDUZIONE STANDARD: 3SAT → IndependentSet (triangoli + consistenza)
```

VertexCover (NP-completo)

```
DEFINIZIONE: \{\langle G,k\rangle \mid G \text{ ha vertex cover di } k \text{ vertici}\} VERTEX COVER: Ogni arco ha almeno un estremo nel set
```

VERIFICATORE: Dato insieme C, controlla |C| = k e ogni arco è coperto

RIDUZIONE FACILE: IndependentSet → VertexCover (complemento)

FATTO: I indipendente ⇔ V\I è vertex cover

Clique (NP-completo)

DEFINIZIONE: {(G,k) | G ha clique di k vertici}

CLIQUE: Sottografo completo (tutti collegati tra loro)

VERIFICATORE: Dato insieme K, controlla |K| = k e tutti gli archi presenti

RIDUZIONE FACILE: IndependentSet → Clique (grafo complemento)

3-Coloring (NP-completo)

DEFINIZIONE: {(G) | G è 3-colorabile}

3-COLORABILE: Vertici colorabili con 3 colori, adiacenti ≠ colore

VERIFICATORE: Data colorazione, controlla validità

RIDUZIONE COMPLESSA: 3SAT → 3-Color (gadget variabili + clausole)

NOTA: 2-Color è in P (test bipartiteness)

HamiltonianPath (NP-completo)

DEFINIZIONE: $\{(G,s,t) \mid G \text{ ha cammino hamiltoniano da } s \text{ a } t\}$

HAMILTONIANO: Cammino che visita ogni vertice esattamente una volta

VERIFICATORE: Dato cammino, controlla che sia valido e hamiltoniano

USO: Per problemi che richiedono "ordinamento" di oggetti

PROBLEMI SAT

3SAT (NP-completo BASE)

```
DEFINIZIONE: \{\langle \phi \rangle \mid \phi \text{ è formula 3CNF soddisfacibile}\}
```

3CNF: $\phi = (l_1 \vee l_2 \vee l_3) \wedge (l_4 \vee l_5 \vee l_6) \wedge \dots$ (3 letterali per clausola)

VERIFICATORE: Dato assegnamento, controlla se soddisfa $\boldsymbol{\varphi}$

IMPORTANZA: Problema più usato come sorgente per riduzioni

Cook-LEVIN: Primo problema dimostrato NP-completo

2SAT (in P)

```
DEFINIZIONE: \{\langle \varphi \rangle \mid \varphi \text{ è formula 2CNF soddisfacibile}\} ALGORITMO P: Grafo delle implicazioni + SCC DISTINGUE: 2SAT facile, 3SAT difficile
```

PROBLEMI NUMERICI

SubsetSum (NP-completo)

```
DEFINIZIONE: {(S,t) | ∃S' ⊆ S tale che sum(S') = t}
INPUT: Insieme numeri S, target t

VERIFICATORE: Dato sottoinsieme S', controlla se somma a t
RIDUZIONE DA: 3SAT (codifica clausole come equazioni numeriche)
ALGORITMO DP: O(nt) - pseudo-polinomiale
```

SetPartitioning (NP-completo)

```
DEFINIZIONE: {\(S\) | S partizionabile in due parti di uguale somma}

VERIFICATORE: Data partizione, controlla uguaglianza somme

RELAZIONE: Caso speciale di SubsetSum con t = sum(S)/2

RIDUZIONI: SubsetSum \(\phi\) SetPartitioning (bidirezionali)
```

*** RIDUZIONI STANDARD PER ESAMI**

DA 3SAT (le più comuni)

$3SAT \rightarrow IndependentSet$

```
COSTRUZIONE:
• Per ogni clausola (a v b v c): crea triangolo con vertici a,b,c
• Per ogni coppia xi, ¬xi: collega con arco (consistenza)
• k = numero clausole

IDEA: Insieme indipendente sceglie 1 letterale vero per clausola
```

3SAT → 3-Color

COSTRUZIONE COMPLESSA:

- Triangolo base con colori TRUE, FALSE, BASE
- Gadget per variabile: forza xi = TRUE o FALSE
- Gadget per clausola: forza ≥1 letterale TRUE

NOTA: Costruzione molto tecnica, studia bene gli esempi

3SAT → SubsetSum

COSTRUZIONE:

- Per ogni variabile: due numeri (TRUE/FALSE)
- Per ogni clausola: numeri "slack" per bilanciare
- Codifica in base k+1 dove k = max(clausole, variabili)

IDEA: Soluzione codifica assegnamento soddisfacente

RIDUZIONI FACILI

IndependentSet ↔ VertexCover

RIDUZIONE: $(G,k) \rightarrow (G, |V|-k)$

FATTO MATEMATICO: I indipendente ⇔ V\I vertex cover

IndependentSet ↔ Clique

```
RIDUZIONE: \langle G, k \rangle \rightarrow \langle \bar{G}, k \rangle (grafo complemento)
FATTO: I indipendente in G \Leftrightarrow I clique in \bar{G}
```

SubsetSum ↔ SetPartitioning

```
SubsetSum \rightarrow Partition: (S,t) \rightarrow (S \cup \{sum(S)-t, t\})
```

Partition \rightarrow SubsetSum: $\langle S \rangle \rightarrow \langle S, sum(S)/2 \rangle$

6 STRATEGIA PER ESERCIZI

NOTE: ► PER DIMOSTRARE NP

SCHEMA FISSO:

- 1. Definisci certificato (es: sottoinsieme, assegnamento, cammino)
- 2. Scrivi verificatore polinomiale

- 3. Analizza complessità (deve essere polinomiale)
- 4. Dimostra completezza + soundness

🦴 PER DIMOSTRARE NP-HARD

SCELTA PROBLEMA SORGENTE:

- Problema generale → 3SAT
- Problema su grafi (selezione) → IndependentSet
- Problema su grafi (copertura) → VertexCover
- Problema numerico → SubsetSum o SetPartitioning
- Problema con ordinamento → HamiltonianPath

SCHEMA FISSO:

- 1. Scegli sorgente appropriato
- 2. Costruisci riduzione f
- 3. Dimostra f polinomiale
- 4. Dimostra correttezza (⇒) e (∈)

RICONOSCIMENTO PATTERN COMUNI

Quando usare 3SAT come sorgente:

- Problema ha natura "soddisfacimento vincoli"
- Servono scelte binarie per oggetti
- Problema generale senza struttura particolare

Quando usare IndependentSet:

- Problema chiede "sottoinsieme che evita conflitti"
- Oggetti non possono essere scelti insieme
- Vincoli di incompatibilità

Quando usare VertexCover:

- Problema chiede "piccolo insieme che copre tutto"
- Vincoli devono essere "controllati" o "coperti"
- Ottimizzazione di risorse limitate

Quando usare HamiltonianPath:

- Problema richiede ordinamento/sequenza di oggetti
- Ogni oggetto usato esattamente una volta
- Problemi di scheduling o percorsi

TEMPLATE VELOCI PER ESAMI

Template NP

TEOREMA: [Problema] ∈ NP **DIMOSTRAZIONE:** Certificato: [descrizione] Verificatore V: "Su input (istanza, certificato): 1. [controlli formato] 2. [controlli proprietà] 3. Se tutto ok, ACCETTA" Complessità: 0([analisi]) Correttezza: [argomento breve]

Template NP-Hard

TEOREMA: [Problema] è NP-hard DIMOSTRAZIONE: [Sorgente] ≤p [Problema] Riduzione f: "Su input [istanza_sorgente]: 1. [costruzione istanza target] Restituisci [istanza_target]" Correttezza: • (⇒): [se sorgente SI, allora target SI] • (←): [se target SI, allora sorgente SI] Polinomialità: [analisi tempo costruzione]

CHECKLIST ESSENZIALE

Problemi che DEVI saper dimostrare NP:

IndependentSet (certificato = sottoinsieme)
VertexCover (certificato = sottoinsieme)
3SAT (certificato = assegnamento)

SubsetSum (certificato = sottoinsieme)HamiltonianPath (certificato = sequenza vertici)
Riduzioni che DEVI saper fare:
 3SAT → IndependentSet (triangoli + consistenza) IndependentSet → VertexCover (complemento) IndependentSet → Clique (grafo complemento) SubsetSum ↔ SetPartitioning (bidirezionale)
Fatti che devi ricordare:
 2SAT ∈ P, 3SAT NP-completo I indipendente ⇔ V\I vertex cover I indipendente in G ⇔ I clique in Ğ 3SAT è il problema "universale" per riduzioni
Strategie da ricordare:
 Certificato deve essere verificabile in tempo polinomiale Riduzione deve preservare soluzioni in entrambe le direzioni Scegli problema sorgente in base alla struttura del target Sempre dimostrare (⇒) E (⇐) per correttezza riduzione