

Database Marketing Project Team 5

Ahmed Sodeinde (A20187045) Ahmadreza Homayouni (A20160011) Subhash Daggubati (A20090700) Suhao Chen (A20164586)

1/10/2020

Introduction of Google Play Dataset

Google Play is a digital distribution service operated and developed by Google Inc. It serves as the official app store for the Android operating system, allowing users to browse and download applications developed with the Android software development kit (SDK) and published through Google. Google Play also serves as a digital media store, offering music, books, movies, and television programs. (*Wikipedia*)

The store has over 2.6 million apps with a wide array of different applications ranging from kid's games to language translation apps. These apps are placed in different categories based on minimum age required, intended usage (health and fitness, educational, shopping etc.), cost (free or paid) etc.

Data analysis for these applications will attempt to answer four pertinent questions from the sample dataset with 10,839 Google play apps. The dataset obtained from <u>Kaggle</u> contains the app names, categories, rating scores, reviews, number of installations, genres, size, type, etc.

Overview of our research

Target audience: Android application developers

Research objectives: Explore the relationship of application rating scores with numbers of reviews, numbers of installation, type(free/paid) etc.

Research approach: Use descriptive, inferential statistics & analytical techniques including distributions, frequencies, visualizations, hypothesis tests, etc.

Data dictionary

Name	Label	Туре	Values	
Арр	App name	Character	application names	
Category	App category	Character	Art and design, education, sports etc.	
Rating	App rating score	Numeric	1.0-5.0	
Reviews	Number of app reviews	Numeric	Numbers	
Size	Size of an app	Character	Number of m-bytes or varies with device	
Installs	Installation category of an app	Character	0+, 100+, 100M+, etc.	
Туре	Type of an app	Character	free/paid	
Price	Price of an app	Numeric	\$0.00 etc.	
Content Rating	Content rating of app	Character	Everyone/teen/mature 17+ etc.	
Genres	Genres of the app	Character	Art design, auto vehicles, etc.	
Last Updated	Date the app last updated	Numeric	20JUL2018 etc.	
Current Version	Current version of the app	Character	2.2.6.2 etc.	
Android Version	Android version need to run the app	Character	4.1 and up etc.	
Installs_Numeric	Numeric of Installs	Numeric	1000, 500,000 etc.	
Installs_Categories_N	Re-categorized Installs	Character	Below 1k, 1k-10k, etc.	

Data cleaning

Challenges:

- There is one row with completely irrelevant data.
- There is one row with Type = NaN
- There are more than thousand records in the dataset with Ratings having no value (missing value).

Steps:

- Step 1: Deleted the row with irrelevant data.
- Step 2: Deleted the row with Type = NaN as deleting single record will not impact us much.
- Step 3: As we have more than thousand records with no value for Rating, these rows are imputed with the mean rating of the corresponding app category rather than deleting the rows.

Question 1: Do paid apps have higher rating scores compared to free ones?

In the free apps scatter plot, there appears to be a cluster along the 3.8 to 4.5 rating score indicating a higher rating for \$0.00 apps (free apps), which is also evident in the paid apps scatter plot.

Hypothesis Test:

 H_0 : Average rating of the paid applications is equal to the average rating of free applications. H_a : Average rating of paid applications and free applications are not equal.

P-value for the ANOVA test is 0.0003 which is less than the α value 0.05. Hence, we reject Null Hypothesis (H0) This indicates there is a significant difference between average rating for paid apps and average rating for free apps.

Note: We don't have equal number of data rows for free apps and paid apps so the results of this ANOVA might not be effective.

Conclusion:

The paid apps don't have higher rating scores compared to free ones as we can see from the fit plot slope of the line is negative between the rating and price.

Question 2: Do more than 500K installed applications have higher rating scores compared to less than 500K installed ones?

Installs_Categories			Cumulative	Cumulative
_N	Frequency	Percent	Frequency	Percent
Below 1K	1803	16.63	1803	16.63
1K-10K	1384	12.77	3187	29.4
10K-50K	1054	9.72	4241	39.12
50K-100K	479	4.42	4720	43.54
100K-500K	1169	10.79	5889	54.33
500K-1M	539	4.97	6428	59.3
1M-5M	1637	15.1	8065	74.4
5M-10M	752	6.94	8817	81.34
10M-50M	1661	15.32	10478	96.66
Above 50M	361	3.33	10839	99.99

Original question: Do more than 1M installed applications have higher rating scores compared to less than 1M installed ones?

By examining the frequencies, we find that 500K is a good checkpoint to divide the dataset into two categories with near equal number of records.

Hypothesis Test:

 $(H_0: Average\ rating\ of\ applications\ installed\ more\ than\ 500K\ is\ equal\ to\ the\ average\ rating\ of\ those\ installed\ less\ than\ 500K.$

P-value for the ANOVA test is less than the α value 0.05.

This indicates there is a significant difference between average rating for apps installed more than 500K and those installed less than 500k.

Rating Tukey Grouping for Means of Installs_Binary_N (Alpha = 0.05) Means covered by the same bar are not significantly different. Installs_Binary_N Estimate >500K 4.2676 <500K 4.1246

Conclusion: From the two above plots, we can see that applications installed more than 500K have a higher average rating score.

Question 3: In each genre, which three applications are the most popular ones?

There are 50 individual genres. Each application has been assigned with one or more genres.

Here we are considering each combination of the genres as one category and top three popular applications are being filtered.

Popularity: We are defining popular app as the app with higher installations. In case of equal number of installations, we are considering the app with highest rating as the more popular application.

Steps:

Step 1: Run Rank task to rank Installs_Numeric Column by Genres column.

Ranking Method:

- Rank largest to lowest
- If set of Ranking column values are equal then assign the smallest rank.
- **Step 2:** Run Rank task to rank Ratings column by Genres and rank_Installs_Numeric columns.

Ranking Method:

- Same as in step 1.
- **Step 3:** Apply Filter Task to filter the apps with both rank_Installs_Numeric and rank_Ratings columns in (1, 2, 3)
- **Step 4:** Order the list by Genres, Rank_Installations_Numeric and Rank Ratings.
- **Step 5:** Use PROC SQL statement to pick top 3 rows of each genre and find union of them.

Genres App GAME 4.7 Above 50M Action Bowmasters CATS: Crash A... GAME Action 4.7 Above 50M Action War Robots GAME 4.6 Above 50M BEYBLADE BU... GAME Action: Action &... 4.5 10M-50M Action; Action &... Strawberry Sho... FAMILY 4.3 10M-50M Action; Action &... Strawberry Sho... GAME 4.3 10M-50M â-º MultiCraft â... GAME Adventure 4.3 Above 50M Eyes - The Sca... GAME 4.4 10M-50M Adventure Adventure Harry Potter: H... GAME 4.4 10M-50M Jungle Monkey... GAME 4.4 10M-50M Adventure Adventure: Acti... ROBLOX **FAMILY** 4.5 10M-50M Adventure; Acti... ROBLOX GAME 4.5 10M-50M Adventure: Brai... The Hunt for th... FAMILY 4.6 100K-500K Adventure; Edu... Masha and the... 4.1 10M-50M FAMILY Arcade Geometry Das... GAME 4.6 Above 50M GAME 4.5 Above 50M Arcade Granny Arcade Red Ball 4 GAME 4.4 Above 50M Arcade; Action ... Disney Crossy... FAMILY 4.5 10M-50M Arcade: Action ... Minecraft FAMILY 4.5 10M-50M

Adjacent figure shows some of the results.

Among the popular applications of each genres combination we can see that 298 are Free applications and 15 are Paid applications.

Conclusion:

Free applications are more in number among the popular application of each of the genres.

Question 4: Is there any relation between the number of installations and reviews?

Hypothesis Test:

 H_0 : Mean of number of reviews of apps installed more than 500K is equal to mean of number of reviews of apps installed less than 500K. H_a : Otherwise

P-value for the ANOVA test is less than the α value 0.05.

This indicates there is a significant difference between mean of number of reviews of apps installed more than 500K and mean of number of reviews of apps installed less than 500K.

Conclusion: More installed applications have much more average reviews.