正睿OI 浙江省选模拟题3 Solution

安徽师范大学附属中学罗哲正

2017年3月4日

题目名称	Alchemy	Algebra	Anarchy
源文件名称	alchemy	algebra	anarchy
输入文件名	alchemy.in	algebra.in	anarchy.in
输出文件名	alchemy.out	algebra.out	anarchy.out
每个测试点时限	1s	4s	7s
测试点数目	10	25	20
每个测试点分值	10	4	5
内存限制	233MB	233MB	233MB
是否有部分分	否	否	否
题目类型	传统型	传统型	传统型
是否有SPJ	无	无	无
编译优化	-O2	-O2	-O2

1 Alchemy

我们直接模拟移动的过程,例如将盘子x从a借用b移到c,那么我们的策略是:

- 1.把x上面的盘子移到b
- 2.把x移到c
- 3.把刚刚移到b的再移到c

我们直接通过x的位置就可以知道当且正在进行哪一步分移动,若在第一部分可以直接考虑x-1的移动,若在第三部分那么直接吧第一部分加第二部分的 2^{x-1} 的步数加到答案,然后直接跳到第三部分开始,再接着考虑x-1的移动,这样考虑到最后一个盘子把加起来的步数输出就可以了。

详见代码。

2 Algebra

先思考一个问题,我们知道n, k, s,求大于等于n的第一个满足f(x, k) = s的整数,这个可以简单的使用 贪心来完成,具体做法如下:

从高位到低位贪心,每一位尽可能的少放,如何尽可能的少放呢?可以从0开始依次尝试,尝试完之后看看用剩余的数字和填剩下的位能不能保证大于等于n,更精细的实现可以看std,省去每一位从零开始依次尝试的常数10。

那么我们实现了next(n,k,s)之后怎么做呢,我们令 g_s 表示大于等于n的满足f(x,a)=f(x,b)=s的整数不小于 g_s (s的取值不会超过400)。

显然初始的时候所有的 g_s 都为n,接着,我们每次找到最小的 $g_s = t$,令w = max(next(t, a, s), next(t, b, s)),若w = t则就找到了答案直接输出即可,否则令 $g_s = w$,开始新的一轮的寻找。

为什么这样做是可以的呢?

我们考虑一个区间里f(x,a)=s和f(x,b)=s的数,考虑他们交替的次数,例如a,b,a,a,a,b,b,a,a等价于a,b,a,b,a交替了5。可以发现求next的次数就是交替次数,而交替次数的级别是不会低于任何一种数的出现次数的,由于进位的存在这两种数的出现较为随机,而根据生日悖论,碰撞出现的位置一般不超过出现次数的平方,所以寻找次数的上界是 $O(\sqrt{n})$ 的,于是复杂度是 $O(400*\sqrt{n})$ 。但是注意到某些比较极端的s会导致交替次数很小,实际上这种算法速度是非常快的。

时间复杂度 $O(400\sqrt{n})$, 实现详见代码。

3 Anarchy

预备知识: 快速傅里叶变换FFT, 快速沃尔什变换FWT。

首先扔掉一堆吓人的公式,我们考虑求每个点的电势,其实就是求这么个东西:

$$\Phi(k) = \frac{1}{2m} \sum_{i \bigoplus j = k} \rho(i) * dist(j)^2$$

其中i, j, k都是用题目描述的方式代表坐标,dist是距离函数可以暴力求, ρ 是输入的, Θ 运算就是满足 $\mathbf{x} + \mathbf{y} = \mathbf{x} \Leftrightarrow x_i + y_i \equiv z_i \pmod{s}_i$ 的运算。

我们知道FWT的异或运算构造是:

$$F(a_0, a_1) = (F(a_0) + F(a_1), F(a_0) - F(a_1))$$

$$F^{-1}(a_0, a_1) = \left(\frac{F^{-1}(a_0) + F^{-1}(a_1)}{2}, \frac{F^{-1}(a_0) - F^{-1}(a_1)}{2}\right)$$

而实际上,异或运算每一位的本质就是 $x + y \equiv z \pmod{2}$,其实就是本题在 $s_i = 2$ 的情况。

那么对于 s_i 不等于2的情况应该怎么处理呢?

我们重新思考一下 $F(a_0, a_1)$ 的构造,会发现我们只要满足当前这一位满足FWT的要求即可,即当 a_0, a_1 是数时成立就可保证当 a_0, a_1 为等长序列时成立。

接着我们可以发现 $F(a_0,a_1)=(F(a_0)+F(a_1),F(a_0)-F(a_1))$ 本质上就是要满足一个长度为2的循环卷积的变换,那么只要使用离散傅里叶变换来构造就好了(接着还会发现异或卷积的变换式就是n=2的DFT的形式),我直接给出构造。

$$F(a_0, a_1, \cdots, a_{n-1}) = DFT(a)$$

$$F^{-1}(a_0, a_1, \cdots, a_{n-1}) = DFT^{-1}(a)$$

于是我们只要直接算DFT就行了,直接暴力DFT复杂度是 $O(n * \sum s_i)$,能通过 s_i 不大的点。

那么如何优化DFT的计算呢?

我们可以使用Bluestein算法,令 $\omega = e^{-\frac{2\pi}{n}}$:

$$A_{m} = \sum_{k=0}^{n-1} \omega^{mk} a_{k}$$

$$= \sum_{k=0}^{n-1} \omega^{\frac{m^{2}+k^{2}-(m-k)^{2}}{2}} a_{k}$$

$$= \omega^{\frac{m^{2}}{2}} \sum_{k=0}^{n-1} \omega^{-\frac{(m-k)^{2}}{2}} * \omega^{\frac{k^{2}}{2}} a_{k}$$
(1)

提供正睿OI多校联盟使用 4 咨询QQ:81569188

令 $C_i = \omega^{\frac{i^2}{2}} a_i$, $B_i = \omega^{-\frac{(i-n)^2}{2}}$,且 C_i 只有在 $0 \le i \le n-1$ 时非零。

$$A_{m} = \omega^{\frac{m^{2}}{2}} \sum_{k=0}^{n-1} \omega^{\frac{(m-k)^{2}}{2}} * \omega^{\frac{k^{2}}{2}} a_{k}$$

$$= \omega^{\frac{m^{2}}{2}} \sum_{k=0}^{n-1} B_{n+m-k} * C_{k}$$
(2)

不妨设:

$$A_m = \omega^{\frac{m^2}{2}} A'_{n+m} \tag{3}$$

 C_i 只有在 $0 \le i \le n-1$ 时非零,则有:

$$A'_{n+m} = \sum_{k=0}^{n+m} B_{n+m-k} * C_k$$
(4)

这就是一个标准的卷积形式了,使用FFT计算即可,于是时间复杂度是 $O(n \log^2 n)$,由于FFT常数较大,可以当DFT的序列大小不超过50时使用暴力,就可以通过全部数据了。

FFT和DFT以及相关技巧更加详细的介绍可参考毛啸IOI2016国家集训队论文《再探快速傅里叶变换》。

扫码关注正睿教育

版权归正睿OI和购买学校所有,不得未经许可外传