ECNG 1014

DIGITAL ELECTRONICS I Lecture 3 – Binary Arithmetic

Some Binary Arithmetic

- Addition
- Subtraction
 - Signed magnitude numbers
 - 2's complement numbers
- Multiplication
- Division

©2013 Dr. F. Muddeen

Addition

$$0 + 0 = 0$$

$$0+1=1$$

$$1 + 0 = 1$$

$$1+1=10$$

- Which is really '0' carry '1'
- Like 8 + 2 = 10, which is '0' carry '1'

©2013 Dr. F. Muddeen

Example

Decimal

177

Try this out using the previous rules:

Binary

©2013 Dr. F. Muddeen

Subtraction

$$0 - 0 = 0$$

$$1 - 0 = 1$$

$$1 - 1 = 0$$

 $\rightarrow 0 - 1 = 1$ **borrow** '1' which is 10 - 1 = 1

©2013 Dr. F. Muddeen

Example 2

difference

Must borrow 1, yielding the new subtraction 10 - 1 = 1

After the first borrow, the new subtraction for this column is 0 - 1, so we must borrow again.

The borrow ripples through three columns to reach a borrowable 1, i.e., 100 = 011 (the modified bits) + 1 (the borrow)

229 X minuend subtrahend Y

183

©2013 Dr. F. Muddeen

Comments

- Addition used to facilitate multiplication of numbers
 - We will see later in this lecture
- Relatively easy to create adder circuits in digital electronics

©2013 Dr. F. Muddeen

©2013 Dr. F. Muddeen

Comments

- Subtraction used to compare numbers.
 - Example if we have a set point in some engineering system
 - · Say 30 Volts
 - How do we know if we have achieved this?
 - Need to compare actual value with set value by subtraction.

©2013 Dr. F. Muddeen

11

Subtraction

- More difficult process than addition
 - Circuitry more complex
- Leads to the representation of negative numbers
 - Can then use addition to perform subtraction
- Two ways of representing negative numbers
 - Signed magnitude
 - Complement

©2013 Dr. F. Muddeen

Signed Magnitude

- Use the MSB of the binary bit string to indicate the sign of the number
 - '0' is positive;
 - '1' is negative
- Easier to understand by human user

©2013 Dr. F. Muddeen

13

Signed Magnitude

Has 2 representations for zero

▶ For a given number of bits, *n*, lets you cover:

$$-(2^{n-1}-1)$$
to $+(2^{n-1}-1)$

©2013 Dr. F. Muddeen

Machine arithmetic with signedmagnitude representation

- Takes several steps to add a pair of numbers
 - Examine signs of the addends
 - If same, add magnitudes and give the result the same sign as the operands
 - If different, must...
 - Compare magnitude of the two operands
 - · Subtract smaller number from larger
 - Give the result the sign of the larger operand
- For this reason the signed-magnitude representation is not as popular as one might think because of its "naturalness"

©2013 Dr. F. Muddeen

15

Complement number systems

- Negates a number by taking its complement instead of negating the sign
- Exact meaning of *taking its complement* is defined in various ways
- Not natural for humans, but better for machine arithmetic
- We will examine the 'Radix-complement' system

©2013 Dr. F. Muddeen

Radix-complement number representation

- Must first decide how many bits to represent the number – say n.
- Complement of a number = r^n number
- Example: 4-bit decimal:
 - Original number = 3524
 - -10's complement = 10000-3524 = 6476

©2013 Dr. F. Muddeen

17

Two's-complement representation

- Just radix-complement when radix = 2
- Used a lot in computers and other digital arithmetic circuits
- 0 and positive numbers: leftmost bit = 0
- Negative numbers: leftmost bit = 1
- To find a number's complement just flip all the bits and add 1
- Very easy to do in digital electronics

©2013 Dr. F. Muddeen

Subtracting using 2's complement

Try the following example

229 -46 183

▶ Discard the MSB leaving 10110111 which is 183₁₀

©2013 Dr. F. Muddeen

19

Binary Multiplication

©2013 Dr. F. Muddeen

B	in	a	ry	/	M۱	ul	ti	р	lic	ca	ti	0	n		
1	1	1	0	0	1	0 ×		0	1	0	1	1	1	0	
0	0	0	0	0	0	0	0								Exactly like
	0	0	0	0	0	0	0	0							decimal math
		1	1	1	0	0	1	0	1						Notice how it
			0	0	0	0	0	0	0	0					is simply a
				1	1	1	0	0	1	0	1				set of shifting
					1	1	1	0	0	1	0	1			and adding
						1	1	1	0	0	1	0	1		operations
							0	0	0	0	0	0	0	0	
		1	1	0	0	1	0	0	1	0	0	1	1	0	
												©20	13 Dr	. F. Mւ	ddeen :

Binary Div	ision		
19	10011	quotient	
11)217	1011)11011001	dividend	
11	1011	shifted divisor	
107	0101	reduced dividend	
99	0000	shifted divisor	
8	1010	reduced dividend	
	0000	shifted divisor	
→ Subtraction	10100	reduced dividend	
done using 2's	1011	shifted divisor	
complement	10011	reduced dividend	
and addition	1011	shifted divisor	
	1000	remainder	
	©2	2013 Dr. F. Muddeen	22