Вычисление интегралов методом Монте-Карло

Роман Гученко

По материалам А.И.Коробейникова и В.В.Некруткина

26 февраля 2024 г.

Про заряды

- Пусть $(\mathcal{D}, \mathcal{A})$ некоторое измеримое пространство
- $\nu: \mathcal{A} \to [-\infty, +\infty]$ заряд на \mathcal{A}
- Разложение Хана–Жордана: $\nu = \nu^+ \nu^-$, где ν^+ и ν^- некоторые меры на $\mathcal A$
- $|\nu| = \nu^+ + \nu^-$ полная вариация заряда (мера)
- ν конечный заряд, если $|\nu|(\mathcal{D}) < +\infty$
- Любой конечный заряд ν может быть представлен как интеграл от некоторой измеримой функции f по некоторой мере μ : $\nu(A) = \int_{A} f d\mu, \forall A \in \mathcal{A}$

Про производные Радона-Никодима

- Измеримая функция $r: \mathcal{D} \to [-\infty, +\infty]$ производная Радона–Никодима заряда ν относительно меры μ , если $\nu(A) = \int_A r d\mu, \forall A \in \mathcal{A}, \ r := \frac{d\nu}{d\mu}$
- λ некоторая мера, ν конечный заряд, $d\nu = f d\lambda$, μ мера, $d\mu = g d\lambda$. $\exists r = \frac{d\nu}{d\mu} = \begin{cases} \frac{f(x)}{g(x)}, & \text{при } g(x) \neq 0 \\ 0, & \text{при } g(x) = 0 \end{cases} \iff \lambda \{x: f(x) \neq 0 \ \& \ g(x) = 0\} = 0$

Пусть

- $(\mathcal{D}, \mathcal{A})$ измеримое пространство
- *ν* конечный заряд
- $J = \nu(\mathcal{D})$
- $\overline{J} = |\nu|(\mathcal{D}) > 0$
- $\eta:(\Omega,\mathcal{F})\to(\mathcal{D},\mathcal{A})$ случайная величина с распределением \mathcal{P}_{η}
- $\exists m = \frac{d\nu}{d\mathcal{P}_{\eta}}$
- Рассмотрим случайную величину $\xi = m(\eta)$

Тогда

- $\mathbf{E}|m(\eta)| = |\nu|(\mathcal{D}) = J$
- $\mathbf{E}m(\eta) = \nu(\mathcal{D}) = \overline{J}$

- Пусть η_1, \dots, η_n независимые одинаково распределенные случайные величины с распределением \mathcal{P}_n
- Тогда

$$\widehat{J}_n := \frac{m(\eta_1) + \dots + m(\eta_n)}{n} \xrightarrow[n \to \infty]{p} J$$

то есть

$$P(|\widehat{J}_n - J| \le \epsilon) \xrightarrow[n \to \infty]{} 1$$

Если

- $\nu(A) = \int_A f d\lambda$
- $d\mathcal{P} = pd\lambda$
- $\lambda \{x : f(x) \neq 0 \& p(x) = 0\} = 0$

TO

•
$$m = \frac{d\nu}{d\mathcal{P}} = \begin{cases} \frac{f(x)}{p(x)}, & \text{при } p(x) \neq 0\\ 0, & \text{при } p(x) = 0 \end{cases}$$

Если

- Если $f(x) \neq 0$, то $p(x) \neq 0$
- $P(p(\eta) > 0) = 1$

TO

$$\bullet \ \widehat{J}_n = \frac{1}{n} \sum_{i=1}^n \frac{f(\eta_i)}{p(\eta_i)}$$

Доверительные интервалы 1

$$P\left(|\widehat{J}_n - J| \le \epsilon\right) \ge 1 - \gamma$$

Пусть

• $\mathbf{E}m^2(\eta) < \infty$ (тогда и $\sigma^2 = \mathbf{D}m(\eta) < \infty$)

$$\mathcal{L}\left(\sqrt{n}(\widehat{J}_n - J)/\sigma\right) \Rightarrow N(0, 1)$$

$$P\left(|\widehat{J}_n - J| < \sigma x / \sqrt{n}\right) \xrightarrow[n \to \infty]{} \Phi(x) - \Phi(-x), \forall x > 0,$$

где $\Phi(x)$ — функция распределения N(0,1)

Доверительные интервалы 2

$$P\left(|\widehat{J}_n - J| < \sigma x_\gamma / \sqrt{n}\right) \xrightarrow[n \to \infty]{} 1 - \gamma$$

$$P\left(\widehat{J}_n - \sigma x_\gamma / \sqrt{n} < J < \widehat{J}_n + \sigma x_\gamma / \sqrt{n}\right) \approx 1 - \gamma$$

$$\widehat{s}_n = \sqrt{\frac{1}{n} \sum_{i=1}^n m^2(\eta_i) - \widehat{J}_n^2}$$

$$\left(\widehat{J}_n - \widehat{s}_n x_\gamma / \sqrt{n}, \widehat{J}_n + \widehat{s}_n x_\gamma / \sqrt{n}\right)$$

Теорема Донскера

Пусть

- X_1, \ldots, X_n независимые одинаково распределенные
- $\delta_n(t) = \frac{1}{|nt|} \sum_{i=1}^{\lfloor nt \rfloor} X_i, t \in [0,1]$
- $\mathbf{E}X_i = \mu$
- $\mathbf{D}X_i = \sigma^2$

Тогда

- $\mathcal{L}\left(\frac{1}{\sqrt{n}}\sum_{i=1}^{\lfloor nt \rfloor} \left(\frac{x_i \mu}{\sigma}\right)\right) \Rightarrow W(t)$
- $\mathcal{L}\left(\frac{1}{\sqrt{n}}\sum_{i=1}^{\lfloor nt\rfloor}\left(\frac{x_i-\mu}{\widehat{\sigma}_n}\right)\right) \Rightarrow W(t), \widehat{\sigma}_n = \frac{1}{n}\sum_{i=1}^n(x_i-\overline{x})^2$
- $[\mu u^*(t)\sqrt{n\widehat{\sigma}_n^2}/\lfloor nt \rfloor, \mu + u^*(t)\sqrt{n\widehat{\sigma}_n^2}/\lfloor nt \rfloor]$
- $u^*(t) = a + b\sqrt{t}, a = 0.3, b = 2.35$

Доверительный интервал для траекторий

•
$$\widehat{J}_n = \delta_n(1)$$

•

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{\lfloor nt \rfloor} \left(\frac{\eta_i - \delta_n(1)}{\widehat{\sigma}_n} \right) = \frac{1}{\sqrt{n}} \sum_{i=1}^{\lfloor nt \rfloor} \left(\frac{\eta_i - \mu}{\widehat{\sigma}_n} \right) + \frac{1}{\sqrt{n}} \sum_{i=1}^{\lfloor nt \rfloor} \left(\frac{\mu - \delta_n(1)}{\widehat{\sigma}_n} \right)$$

q

$$\rightarrow W(t) + tu, u \sim N(0, 1)$$

•
$$[\delta_n(1) - u^{**}(t)\sqrt{n\widehat{\sigma}_n^2}/\lfloor nt \rfloor, \delta_n(1) + u^{**}(t)\sqrt{n\widehat{\sigma}_n^2}/\lfloor nt \rfloor]$$

•
$$u^*(t) = a + b\sqrt{t}, a = 0.1, b = 3.15$$