Examination Process Algebra (2IMF10)

28 June 2022, 13:30 - 16:30

The number between parentheses in front of a problem indicates how many points you score with a correct answer to it. A partially correct answer is sometimes awarded with a fraction of those points. The grade for this examination will be determined by dividing the total number of scored points by 2.

- 1. A word $\sigma \in A^*$ is a trace of a state s in a transition-system space over the set of labels A if, and only if, there exists a state s' such that $s \xrightarrow{\sigma}^* s'$. We denote by tr(s) the set of all traces of s. Two states are trace equivalent (notation: $s =_T t$) if they have the same sets of traces, i.e., if tr(s) = tr(t).
- (3) (a) Give an equation that is valid in $\mathbb{P}(MPT(A))/_{=T}$ but not in $\mathbb{P}(MPT(A))/_{\stackrel{\longleftrightarrow}{\to}}$. Support your answer with two proofs: one that the equation is valid in $\mathbb{P}(MPT(A))/_{\stackrel{\longleftrightarrow}{\to}}$ and one that the equation is not valid in $\mathbb{P}(MPT(A))/_{\stackrel{\longleftrightarrow}{\to}}$.
 - (b) Is the process theory MPT(A) a ground-complete axiomatisation of $\mathbb{P}(MPT(A))/_{=_T}$? (Motivate your answer.)
- (1) 2. (a) Prove that $BCP(A, \emptyset) \vdash x \parallel y = y \parallel x$.

Let E be the recursive specification over $BCP(A, \emptyset)$ consisting of the following equation:

$$X = 1 + a.(X \parallel b.1)$$
.

(2)

(3)

(Throughout this exam, feel free to abbreviate $\mu X.E$ by simply writing X.)

(4) (b) Define an infinite guarded recursive specification F over BSP(A) (i.e., not using parallel composition) defining a recursion variable Y_0 such that

$$BCP_{rec}(A, \emptyset) + RSP \vdash \mu X.E = \mu Y_0.F$$

and prove that your answer is correct.

(c) Does there also exist a finite guarded recursive specification G over BSP(A) defining a recursion variable Z such that

$$BCP_{rec}(A, \emptyset) + RSP \vdash \mu X.E = \mu Z.G$$
?

Support your answer with a proof.

3. Let E be the recursive specification over TSP(A) consisting of the following equation:

$$X = X \cdot a.1 + 1$$

(Throughout this exam, feel free to abbreviate $\mu X.E$ by simply writing X.)

- (2) (a) Find two distinct closed $TSP_{rec}(A)$ -terms p and q such that $\mu X.E \xrightarrow{a} p$ and $\mu X.E \xrightarrow{a} q$, and prove the correctness of your answers by giving formal derivations of the transitions in accordance with the term deduction system (i.e., the structural operational semantics) for $TSP_{rec}(A)$.
- (1) (b) Sketch (a representative part of) the transition system associated with $\mu X.E$ by the term deduction system for $TSP_{rec}(A)$.

- (2) (c) Define a closed $\mathrm{TSP}_{rec}(A)$ -term r that denotes a solution for E in $\mathbb{P}(\mathrm{TSP}_{rec}(A))/_{\underline{\leftrightarrow}}$ but is not bisimilar to $\mu X.E$ (i.e., $r \not \leftarrow \mu X.E$).
- (2) (d) Let F be the recursive specification consisting of the following equations:

$$\begin{array}{lcl} Y_0 & = & \tau.Y_1 + 1 \\ Y_{n+1} & = & \tau.Y_{n+2} + \tau.Y_n + a^{n+1}.1 \quad (n \in \mathbb{N}) \end{array}$$

(Here $a^n.1$ is inductively defined by $a^0.1 \equiv 1$ and $a^{n+1}.1 \equiv a.a^n.1$ for all $n \in \mathbb{N}$.) Prove that $\mu Y_0.F \leftrightarrow_b \mu X.E$.

(2) 4. Let A be a set of actions that contains at least three distinct actions a, b and c. Prove that there exists a communication function γ on A and a set $I \subseteq A$ such that

$$TCP_{\tau}(A, \gamma) \not\vdash \tau_I(x \parallel y) = \tau_I(x) \parallel \tau_I(y)$$
.