Лабораторная работа №4

по курсу «Информатика (организация и поиск данных)» (3 семестр)

Варианты заданий

Постановка задачи

Написать программу на С++, реализующую алгоритмы (поиска) на графах. Написать краткое техническое задание (Т3). Выполнить реализацию. Написать для нее тесты.

Минимальные требования к программе. В программе должен быть реализован, по меньшей мере, один алгоритм, реализующей решение заданной задачи с помощью графовых структур данных. В таблице ниже перечислен перечень задач, структур данных для их решения, а также дополнительных задач. При этом не структуры данных и доп. задачи применимы для каждой из основных задач. Рейтинг является оценкой сложности и трудоемкости.

При реализации необходимо придерживаться принципа общности: алгоритмы и структуры данных должны быть достаточно общими для решения задач данного класса (в разумных пределах). Например, в некоторых задачах в роли весов дуг могут выступать как целые числа, так и вещественные и дата/время.

При реализации алгоритмов и структур данных следует пользоваться структурами данных (и алгоритмами), реализованным в рамках предыдущих лабораторных работ.

Основные реализованные алгоритмы необходимо покрыть тестами. Программа должна позволять выбрать любой из реализованных алгоритмов поиска и запустить его на (достаточно произвольных) исходных данных. При этом должна быть возможность как автоматической, так и ручной проверки корректности работы алгоритмов (в т.ч. должна быть возможность просмотра как исходных данных, так и результата). Программа должна обладать пользовательским интерфейсом (консольным или графическим). Пользовательский интерфейс, в особенности, графический, тестировать не требуется. Программа должна предоставлять функцию измерения времени выполнения алгоритма. Должна быть функция сравнения алгоритмов — по времени выполнения на одних и тех же входных данных (программу желательно писать, исходя из предположения, что таких алгоритмов может быть создано несколько). Программа должна предоставлять функционал по построению графиков зависимостей, либо по выгрузке необходимых данных в открытых форматах (например, сsv).

Методы поиска и их модификации

 Задача/модификация
 Рейтинг

 M-1.
 Структуры данных
 5

 M-1.1.
 Ориентированный граф
 5

 M-1.2.
 Неориентированный граф
 6

¹ Следует рассматривать три основных случая: последовательность уже отсортирована в нужном направлении; последовательность отсортирована в обратном направлении; последовательность не отсортирована. В случае деревьев имеется ввиду сравнение времени построения дерева, а не время поиска в уже построенном дереве.

M-2.	Ангоритми	
M-2.1.	Алгоритмы Раскраска	7
M-2.2.	Поиск кратчайших путей	/
M-2.2.1.	На ориентированном/неориентированном графе	5
M-2.2.2.	На большом графе с учетом географического расположения	8
M-2.2.3.	Многокритериальный поиск (н-р., транспортная сеть с несколькими	
14.0.0.4	видами транспорта и штрафом за пересадку)	
M-2.2.4.	С расстоянием, зависящим от времени ²	8
M-2.3.	Задача коммивояжёра	
M-2.3.1.	Базовая	9
M-2.3.2.	Многокритериальный поиск	12
M-2.4.	Реализация АТД Решетка	
M-2.4.1.	Диаграмма Хассе задана явно	9
M-2.4.2.	Диаграмма Хассе задана неявно	12
M-2.5.	Поиск остова графа	6
M-2.6.	Поиск компонент связности не-ор-графа	4
M-2.7.	Поиск компонент сильной связности ор-графа	5,5
M-2.8.	Топологическое упорядочение	6
M-2.9.	Поиск пути с наибольшей пропускной способностью	
M-2.9.1.	Поиск одного наилучшего пути	7
M-2.9.2.	Поиск нескольких путей для достижения заданной суммарной	9
	пропускной способности	
M-2.10.	Оптимизация плана задач	10
M-2.11.	Задача о рюкзаке	10
M-2.12.	Задача об оптимальном поселении в гостинице	9
M-2.13.	Построение частичного порядка, определение экстремальных	7
	характеристик	
M-2.14.	«Оптимальный конфигуратор»	7
M-2.15.	«Крестики-нолики»	12
M-2.15.1.	На бесконечном поле	3
M-2.16.	Разработка менеджера пакетов	•
M-2.17.	* * *	
M-2.17.1.		
M-3.	Дополнительные задачи	
M-3.1.	Генерация графов заданной топологии и размера	10
M-3.2.	Материализация графа «по требованию»	3
M-3.3.	Реализация алгоритма динамического программирования	10
M-3.4.	Реализация очереди с приоритетами в форме наследника	7
	Sequence <t>3</t>	•

Студент самостоятельно выбирает состав решаемой им задачи. Выбирать его следует выбирать таким образом, чтобы суммарный рейтинг равнялся, как минимум, 12.

Пояснения.

-

² Т.е. вес дуги меняется по мере перехода от одной вершины до другой по какому-то детерминированному правилу. Подобным образом работает приложения типа Яндекс.Такси: пока машина доедет до определенного участка, пройдет некоторое время, и дорожная ситуация на этом участке может измениться – движение может стать быстрее или наоборот менленнее

стать быстрее или, наоборот, медленнее. ³ Очередь с приоритетами полезна в ряде задач на графы, особенно при поиске кратчайших путей.

- 1. Задача коммивояжёра. В базовом варианте предполагает построение плана посещения заданного набора пунктов, при котором некоторая целевая характеристика окажется оптимальной. Доступные маршруты между пунктами задаются графом, в котором, как правило нет «посторонних» вершин, т.е. путь между двумя пунктами, если он существует, задается единственной дугой (редко - несколькими параллельными дугами разного типа). Однако можно рассматривать расширение этой задачи, когда задан некоторый граф, в котором обязательными для посещения являются лишь подмножество вершин, а остальные просто являются частью транспортной сети. Такая задача не сводится к построению плана посещения с использованием кратчайших путей между вершинами, если дуги характеризуются набором характеристик, которые используются для определения составного критерия оптимизации, так и для задания ограничений. Например, транспортная сеть включает несколько видов транспорта и требуется найти баланс между минимизацией времени в пути, минимизации стоимости (которая, как правило, тем выше, чем быстрее транспортное средство) и числом пересадок (которое желательно минимизировать, но, например, 1-2 являются вполне приемлемыми, а больше уже нежелательно).
- 2. **Топологическое упорядочение**. Пусть имеется направленных ациклический граф \mathcal{G} , вершинами которого являются элементы s_i частично упорядоченного множества. Сам граф \mathcal{G} является диаграммой Хассе. Требуется выстроить такую последовательность элементов s_{i_1}, \dots, s_{i_n} , что $\forall j, k \left(s_j \leq s_k \lor \neg \left(s_j \leq s_k \land s_k \leq s_j \right) \right)$, т.е. каждый последующий элемент либо «больше» каждого предыдущего, либо несравним с ним.
- 3. Оптимизация плана задач.
- 4. Построение частичного порядка и определение экстремальных характеристик. Пусть имеется некоторое (конечное) множество элементов и задано отношение частичного порядка. Требуется построить диаграмму Хассе и с ее помощью найти минимальные и максимальные элементы.
- 5. Задача об оптимальном размещении. В задачах такого вида граф порождается динамически и заранее неизвестен. Каждая дуга обозначает некоторый вариант выбора, а поиск наикратчайшего пути является реализацией направленного перебора.
- 6. «Оптимальный конфигуратор». Является вариацией на тему задачи об оптимальном размещении. Пусть имеется набор компонентов различного типа например, компьютерных. Требуется подобрать такую конфигурацию, наилучшую в некотором смысле, но укладывающую в заданные ограничения. Например: (1) самую дешевую, обеспечивающую, по крайней мере, некоторый заданный уровень производительности; (2) самую производительную при заданном лимите стоимости. Вариацией этой задачи является поиск оптимального сочетания между стоимостью и производительностью; основная сложность состоит в том, чтобы правильно подобрать целевую функцию (т.е. как именно, по какой формуле, определять соотношение между производительностью и стоимостью). Следует учитывать, что некоторые компоненты являются обязательными, даже если не влияют на целевую функцию, например, видеокарта, мышь, монитор, и т.п.
- 7. **Очереди с приоритетами**. Задача состоит в том, чтобы написать наследник класса Sequence PriorityQueue. При этом бОльшую часть методов Sequence в PriorityQueue нужно скрыть:

Название	Сигнатура	Назначение
Методы, унаследованные от Sequence		
Get	<telement> Get(int</telement>	Сделать private
	index)	

GetFirst	<telement> GetFirst()</telement>	Сделать private			
GetLast	<telement> GetLast</telement>	Сделать private			
GetSubsequence	Sequence <telement></telement>				
	GetSubsequence(int				
	startIndex, int endIndex)				
Append	void Append(<telement></telement>	Сделать private			
	item)	Вызвать Enqueue			
Prepend	void Prepend(<telement></telement>	Сделать private			
	item)	Вызвать Enqueue			
InsertAt	void InsertAt(int index,	Сделать private			
	<telement> item)</telement>	throw new exception("invalid			
		operation")			
Remove	void Remove(<telement></telement>	Сделать private			
	item>	throw new exception("invalid			
		operation")			
Методы, которые необходимо реализовать в PriorityQueue					
Peek	T Peek(const int i)	Просто вызов Get			
PeekFirst	T PeekFirst()	Просто вызов GetFirst			
PeekLast	T PeekLast()	Просто вызов GetLast			
Enqueue	void Enqueue(T item, K	Добавить в очередь с учетом			
	priority)	приоритета			
Dequeue	T Dequeue()	Достать первый в очереди			

8. **Разработка менеджера пакетов**. Основное отличие от варианта из ЛР-2: вместо дерева зависимостей строится направленный ациклический граф.

9.

Критерии оценки

1.	Качество программного кода:	 стиль (в т.ч.: имена, отступы и проч.) (0-2) структурированность (напр. декомпозиция сложных функций на более простые) (0-2) качество основных и второстепенных алгоритмов (напр. обработка граничных случаев и некорректных исходных данных и т.п.) (0-3) 	0-6 баллов
2.	Качество тестов	степень покрытиячитаемость	0-5 баллов
		 качество проверки (граничные и некорректные значения, и др.) 	
3.	Качество пользовательского интерфейса:	 предоставляемые им возможности (0-2) 	0-6 баллов

		 наличие ручного/автоматического ввода исходных данных (0-2) настройка параметров для автоматического режима отображение исходных данных и промежуточных и конечных результатов и др. (0-2) 	
4.	Полнота выполнения задания	Оценивается полнота выполнения	0-3
		минимальных требований	баллов
5.	Владение теорией	знание алгоритмов, области их	0-3
		применимости, умение сравнивать с	баллов
		аналогами, оценить сложность,	
		корректность реализации	
6.	Оригинальность реализации	оцениваются отличительные	0-5
		особенности конкретной реализации –	баллов
		например, общность структур данных,	
		наличие продвинутых графических	
		средств, средств ввода-вывода,	
		интеграции с внешними системами и др.	
		Итого	0-30
			баллов
7.	Объем выбранного задания	Оценивается объем работы,	0-10
		выполненный сверх минимально	баллов
		необходимого. Примерно 1 балл за 1-2	
		пункта рейтинга задания сверх 15 (при	
		условии, что работа выполнена в	
		надлежащем качестве).	
		Итого	0-40
			баллов

Для получения зачета за выполнения лабораторной работы необходимо соблюдение всех перечисленных условий:

- оценка за п. 1 должна быть не менее 3 баллов
- оценка за п. 2 должна быть не менее 3 баллов
- оценка за п. 4 должна быть больше 0
- оценка за п. 5 должна быть больше 0
- суммарная оценка за работу без учета п. 7 должна быть не менее 18 баллов