

Data Communications and Networking Fourth Edition

Forouzan

Chapter 30 Cryptography

30-1 INTRODUCTION

Let us introduce the issues involved in cryptography. First, we need to define some terms; then we give some taxonomies.

Topics discussed in this section:

Definitions Two Categories

Figure 30.1 Cryptography components

Figure 30.2 Categories of cryptography

Figure 30.3 Symmetric-key cryptography

Note

In symmetric-key cryptography, the same key is used by the sender (for encryption) and the receiver (for decryption). The key is shared.

Figure 30.4 Asymmetric-key cryptography

Figure 30.5 Keys used in cryptography

Symmetric-key cryptography

Asymmetric-key cryptography

Figure 30.6 Comparison between two categories of cryptography

a. Symmetric-key cryptography

b. Asymmetric-key cryptography

30-2 SYMMETRIC-KEY CRYPTOGRAPHY

Symmetric-key cryptography started thousands of years ago when people needed to exchange secrets (for example, in a war). We still mainly use symmetric-key cryptography in our network security.

Topics discussed in this section:

Traditional Ciphers
Simple Modern Ciphers
Modern Round Ciphers
Mode of Operation

Figure 30.7 Traditional ciphers

Note

A substitution cipher replaces one symbol with another.

The following shows a plaintext and its corresponding ciphertext. Is the cipher monoalphabetic?

Plaintext: HELLO

Ciphertext: KHOOR

Solution

The cipher is probably monoalphabetic because both occurrences of L's are encrypted as O's.

The following shows a plaintext and its corresponding ciphertext. Is the cipher monoalphabetic?

Plaintext: HELLO

Ciphertext: ABNZF

Solution

The cipher is not monoalphabetic because each occurrence of L is encrypted by a different character. The first L is encrypted as N; the second as Z.

Note

The shift cipher is sometimes referred to as the Caesar cipher.

Example 30.3

Use the shift cipher with key = 15 to encrypt the message "HELLO."

Solution

We encrypt one character at a time. Each character is shifted 15 characters down. Letter H is encrypted to W. Letter E is encrypted to T. The first L is encrypted to A. The second L is also encrypted to A. And O is encrypted to D. The cipher text is WTAAD.

Example 30.4

Use the shift cipher with key = 15 to decrypt the message "WTAAD."

Solution

We decrypt one character at a time. Each character is shifted 15 characters up. Letter W is decrypted to H. Letter T is decrypted to E. The first A is decrypted to L. The second A is decrypted to L. And, finally, D is decrypted to O. The plaintext is HELLO.

Note

A transposition cipher reorders (permutes) symbols in a block of symbols.

Figure 30.8 Transposition cipher

Example 30.5

Encrypt the message "HELLO MY DEAR," using the key shown in Figure 30.8.

Solution

We first remove the spaces in the message. We then divide the text into blocks of four characters. We add a bogus character Z at the end of the third block. The result is HELL OMYD EARZ. We create a three-block ciphertext ELHLMDOYAZER.

Example 30.6

Using Example 30.5, decrypt the message "ELHLMDOYAZER".

Solution

The result is HELL OMYD EARZ. After removing the bogus character and combining the characters, we get the original message "HELLO MY DEAR."

Figure 30.9 XOR cipher

Figure 30.10 Rotation cipher

Figure 30.11 *S-box*

Figure 30.12 P-boxes: straight, expansion, and compression

a. Straight

b. Expansion

c. Compression

Figure 30.13 DES

Figure 30.14 One round in DES ciphers

a. Encryption round

b. Decryption round

Figure 30.15 DES function

a. Encryption round

b. Decryption round

Figure 30.16 Triple DES

a. Encryption Triple DES

b. Decryption Triple DES

Table 30.1 AES configuration

Size of Data Block	Number of Rounds	Key Size
128 bits	10	128 bits
	12	192 bits
	14	256 bits

Note

AES has three different configurations with respect to the number of rounds and key size.

Figure 30.17 *AES*

Figure 30.18 Structure of each round

Figure 30.19 Modes of operation for block ciphers

Figure 30.20 ECB mode

Figure 30.21 CBC mode

Figure 30.22 CFB mode

Figure 30.23 OFB mode

30-3 ASYMMETRIC-KEY CRYPTOGRAPHY

An asymmetric-key (or public-key) cipher uses two keys: one private and one public. We discuss two algorithms: RSA and Diffie-Hellman.

Topics discussed in this section:

RSA Diffie-Hellman

Figure 30.24 RSA

Note

In RSA, e and n are announced to the public; d and Φ are kept secret.

Bob chooses 7 and 11 as p and q and calculates $n = 7 \cdot 11 = 77$. The value of $\Phi = (7 - 1)(11 - 1)$ or 60. Now he chooses two keys, e and d. If he chooses e to be 13, then d is 37. Now imagine Alice sends the plaintext 5 to Bob. She uses the public key 13 to encrypt 5.

Plaintext: 5

 $C = 5^{13} = 26 \mod 77$

Ciphertext: 26

Example 30.7 (continued)

Bob receives the ciphertext 26 and uses the private key 37 to decipher the ciphertext:

Ciphertext: 26 $P = 26^{37} = 5 \mod 77$ Plaintext: 5

The plaintext 5 sent by Alice is received as plaintext 5 by Bob.

Example 30.8

Jennifer creates a pair of keys for herself. She chooses p = 397 and q = 401. She calculates n = 159,197 and $\Phi = 396 \cdot 400 = 158,400$. She then chooses e = 343 and d = 12,007. Show how Ted can send a message to Jennifer if he knows e and e.

Example 30.8 (continuted)

Solution

Suppose Ted wants to send the message "NO" to Jennifer. He changes each character to a number (from 00 to 25) with each character coded as two digits. He then concatenates the two coded characters and gets a fourdigit number. The plaintext is 1314. Ted then uses e and n to encrypt the message. The ciphertext is $1314^{343} = 33,677$ mod 159,197. Jennifer receives the message 33,677 and uses the decryption key d to decipher it as $33,677^{12,007} =$ 1314 mod 159,197. Jennifer then decodes 1314 as the message "NO". Figure 30.25 shows the process.

Figure 30.25 *Example 30.8*

Example 30.9

Let us give a realistic example. We randomly chose an integer of 512 bits. The integer p is a 159-digit number.

p = 96130345313583504574191581280615427909309845594996215822583150879647940 45505647063849125716018034750312098666606492420191808780667421096063354 219926661209

The integer q is a 160-digit number.

 $\mathbf{q} = 12060191957231446918276794204450896001555925054637033936061798321731482\\ 14848376465921538945320917522527322683010712069560460251388714552496900\\ 0359660045617$

Example 30.9 (continued)

We calculate n. It has 309 digits:

n = 11593504173967614968892509864615887523771457375454144775485526137614788 54083263508172768788159683251684688493006254857641112501624145523391829 27162507656772727460097082714127730434960500556347274566628060099924037 10299142447229221577279853172703383938133469268413732762200096667667183 1831088373420823444370953

We calculate Φ . It has 309 digits:

Example 30.9 (continued)

We choose e = 35,535. We then find d.

e = 35535

d = 58008302860037763936093661289677917594669062089650962180422866111380593852 82235873170628691003002171085904433840217072986908760061153062025249598844 48047568240966247081485817130463240644077704833134010850947385295645071936 77406119732655742423721761767462077637164207600337085333288532144708859551 36670294831

Alice wants to send the message "THIS IS A TEST" which can be changed to a numeric value by using the 00–26 encoding scheme (26 is the space character).

 $\mathbf{P} = 1907081826081826002619041819$

•

Example 30.9 (continued)

The ciphertext calculated by Alice is $C = P^e$, which is.

 $\mathbf{C} = 4753091236462268272063655506105451809423717960704917165232392430544529 \\ 6061319932856661784341835911415119741125200568297979457173603610127821 \\ 8847892741566090480023507190715277185914975188465888632101148354103361 \\ 6578984679683867637337657774656250792805211481418440481418443081277305 \\ 9004692874248559166462108656$

Bob can recover the plaintext from the ciphertext by using $P = C^d$, which is

 $\mathbf{P} = 1907081826081826002619041819$

The recovered plaintext is THIS IS A TEST after decoding.

Note

The symmetric (shared) key in the Diffie-Hellman protocol is $K = g^{xy} \mod p$.

Example 30.10

Let us give a trivial example to make the procedure clear. Our example uses small numbers, but note that in a real situation, the numbers are very large. Assume g = 7 and p = 23. The steps are as follows:

- 1. Alice chooses x = 3 and calculates $R_1 = 7^3 \mod 23 = 21$.
- 2. Bob chooses y = 6 and calculates $R_2 = 7^6 \mod 23 = 4$.
- 3. Alice sends the number 21 to Bob.
- 4. Bob sends the number 4 to Alice.
- 5. Alice calculates the symmetric key $K = 4^3 \mod 23 = 18$.
- 6. Bob calculates the symmetric key $K = 21^6 \mod 23 = 18$. The value of K is the same for both Alice and Bob; $g^{xy} \mod p = 7^{18} \mod 23 = 18$.

Figure 30.27 Diffie-Hellman idea

Figure 30.28 Man-in-the-middle attack

