Hydrazine Thrusters

RELIABLE CONTROL FOR SMALL AND MIDSIZE SPACECRAFT

Thrusterpropulsion

• The 1N monopropellant hydrazine thruster is a small rocket engine for attitude-, trajectory- and orbitcontrol of small satellites. More than 500 units of this thruster operate successfully in space. Generally, the 1 N thruster is part of the satellite propulsion subsystem. Each thruster is equipped with a flow control valve, consisting of two identical monostable, normal ly-closed valves placed in series within a single housing.

HYDRAZINE/ION THRUSTER CONCEPT

Product Type:

Compact High-Precision Ion/Hydrazine Thruster Unit
Micro- to small-scale spacecraft propulsion for orbital maneuvering, attitude
control, and station keeping.

Characteristics

Thrust Nominal

Thrust Range

Specific Impulse, Nominal

Pulse, Range

Mass Flow, Nominal

Mass Flow, Range

Inlet Pressure Range

Minimum Impulse Bit

Nozzle Expansion Ratio

Mass, Thruster with valves

Propellant

1 N

0.320 ... 1.1 N

220 s

200 ... 223 s

0.44 g/s

0.142 ... 0.447 g/s

5.5 ... 22 bar

0.01 ... 0.043 Ns

80

290 g

Hydrazine (N₂H₄), High-Purity Grade

Qualification

Total Impulse

Cycle Life

135,000 Ns

59,000 cycles

Characteristics

- Total Thruster Height: 101.6 mm (4 inches)
 - Thruster Diameter: 50.8 mm (2 inches)
 - Chamber Height: 25.4 mm (1 inch)
 - Base and Top Chamfers: 4×4.76 mm (3/16 inch)
 - Axle Bore Diameter: 12.7 mm (1/2 inch + tolerance)
 - Lower & Upper Grip Height: 17.46 mm (approx.)
 - Hexagonal Injector Pocket (Big): ~36.5 mm flat-to-flat
 - Hexagonal Injector Pocket (Small): ~25.9 mm flat-to-flat

Product

- Dual compatibility with ionized gas injection or monopropellant (hydrazine) pulse feeds
 - Propellant Compatibility: N₂H₄ (hydrazine), xenon plasma, or similar
 - Injector Array Support: 3-6 modular nozzles in equidistant hex pattern
 - Central axial plasma or fuel conduit
 - Back-vented ionization grid chamber for ion thruster configuration
 - Nozzle cone geometry optimized for low-volume thrust pulses and focused vectoring
 - Expandable with external ionization or RF coil modules
 - Materials compatible with pressurized and corrosive fluid environments (e.g., titanium alloy or Inconel recommended in physical models)

THERMAL AND STRUCTURAL CONSIDERATIONS

- Chamfer design improves thermal dissipation
 - Symmetric cylindrical mass distribution to ensure rotational stability
 - Can be integrated into clustered propulsion systems (e.g., quad-layout or ring assembly)
 - Reinforced base and top ring for increased torque during mounting or orbital ignition cycles

Design

400N MONO-PROPELLANT

KEY TECHNICAL CHARACTERISTICS

Thrust Range 120-420 N Supply Pressure 5.5-25bar Nominal 58-190 g/s Mass Flow Range Nominal Specifit 2080-2155 Ns/kg Impulse Range Minimum Impuise < 9 Ns Bit Range Shortest On-time 16ms Nozzle Area Ratio 30 Propellant PI-design **Qualification** <188kNs Total nuob, of pulses >3900 Total hydrazine >850 s throughput Total operating time >850 s Longest steady statt 450s

