

EE2029: Introduction to Electrical Energy System 3-Phase Power

Lecturer: Dr. Sangit Sasidhar

Department of Electrical and Computer Engineering

Three-Phase Voltage Sources

$v_{a} = \sqrt{2} |V| \cos(\omega t)$ $v_{a} = \sqrt{2} |V| \cos(\omega t)$ $v_{bn} = 1 \angle -120^{\circ}$ $v_{bn} = 1 \angle +120^{\circ}$ $v_{bn} = 1 \angle +120^{\circ}$ $v_{c} = \sqrt{2} |V| \cos(\omega t - \frac{4\pi}{3})$ Negative Sequence $v_{c} = \sqrt{2} |V| \cos(\omega t - \frac{4\pi}{3})$ Negative sequence, $v_{c} = 1 \angle -120^{\circ}$ $v_{c} = 1 \angle -120^{\circ}$

Positive Sequence

Positive sequence,
$$V_{cn} = 1 \angle + 120^{\circ}$$

$$V_{an} = 1 \angle 0^{\circ}$$

$$V_{bn} = 1 \angle -120^{\circ}$$

Negative sequence,
$$V_{bn} = 1 \angle + 120^{\circ}$$

$$V_{an} = 1 \angle 0^{\circ}$$

$$V_{cn} = 1 \angle -120^{\circ}$$

Three Single Phase vs Three Phase Circuits

Balanced Three-Phase Circuit

• Three-phase circuit is said to be balanced when the impedances in the 3 phases are identical

VC=16+1200

kcl@ node f ia+ib+ic = in

Example:

- What is the phase sequence?
- Are these balanced three-phase voltage sources?

How do we Measure Voltage/Current

Line-To-Line Voltage (Line Voltage)

$$V_{ab} = V_{a} - V_{b} = V_{a} + C - V_{b}$$

$$= V_{a} + V_{a} L_{60}^{\circ}$$

$$= V_{a} L_{0}^{\circ} + V_{a} L_{60}^{\circ}$$

$$= J_{3} V_{a} L_{30}^{\circ}$$

$$Vbc = Vb + C - Vc)$$

$$= J3Vb L30^{\circ}$$

$$Vca = Vc + C - Va)$$

$$= J3Vc L30^{\circ}$$

Line-To-Neutral Voltage (Phase Voltage)

3-Phase Circuit Connection

Wye Connection

Delta Connection

What are these currents?

These two types of connections apply to both three-phase voltage sources and three-phase loads

Delta-Connected Load

$$Ja = Jab + (-Jca)$$
$$= J3 Jab L - 30^{\circ}$$

Example: For a balanced Y-connected three phase voltage source and Y-connected load system with a line voltage of 440 V and three equal resistive loads of 100 Ω per phase, assume positive sequence, what will be the magnitudes of

(a) the line-to-neutral voltage, (b) the phase current, (c) the line current?

Balanced Three-Phase Power

From three phase power,

$$S_{3\Phi} = V_{an}I_a^* + V_{bn}I_b^* + V_{cn}I_c^*$$

 When the system is balanced, (assume positive sequence) we can write,

$$S_{3\Phi} = V_{an}I_a^* + V_{an} \angle -120^{\circ} (I_a \angle -120^{\circ})^* + V_{an} \angle 120^{\circ} (I_a \angle 120^{\circ})^*$$

Positive
$$V_{cn} = 1 \angle + 120^{\circ}$$
 $V_{an} = 1 \angle 0^{\circ}$ $V_{an} = 1 \angle 0^{\circ}$ $V_{an} = 1 \angle -120^{\circ}$ $V_{an} = 1 \angle -120^{\circ}$

Delta/Wye Connected 3-Phase Load

$$|S_{3\Phi}| = \sqrt{3} |V_{\text{Line-To-Line}}| I_{\text{Line}}|$$

BOTH DRY

Delta-Wye Load Transformation

$$I_{a}$$

$$I_{b}$$

$$I_{a}$$

$$I_{b}$$

$$I_{b}$$

$$I_{b}$$

$$I_{b}$$

$$I_{b}$$

$$I_{b}$$

$$I_{b}$$

$$I_{a}$$

$$I_{b}$$

$$I_{b$$

$$Z_{\Delta} = \frac{V_{Ph}}{I_{Ph}} = \frac{V_{AB}}{I_{AB}}$$

$$Z_{\Delta} = \frac{V_{AB}}{I_{A}I_{J3}} = \frac{J_{3}V_{AB}}{I_{A}}$$

$$V_{AB} = Z_{\Delta} = -1$$

$$Z_{\gamma} = \frac{V_{PN}}{I_{PN}} = \frac{V_{AN}}{I_{AN}} \qquad (1) \quad Q \quad (2)$$

$$Z_{\gamma} = \frac{V_{AB}/I_3}{I_A} = \frac{V_{AB}}{I_3} \qquad (3) \quad Z_{\Delta} = J_3Z_{\gamma}$$

$$Z_{\gamma} = \frac{V_{AB}/I_3}{I_A} = \frac{V_{AB}}{I_3} \qquad (3) \quad Z_{\Delta} = J_3Z_{\gamma}$$

$$V_{AB} = J_3Z_{\gamma} - Q$$

$$T_{A} = J_3Z_{\gamma} - Q$$

Per Phase Analysis: Assumption

120°

It must be balanced three-phase circuit

Steps of Per Phase Analysis

- Make sure that the three-phase system is balanced.
 - The three-phase sources need to have the <u>same</u> magnitude with <u>120</u> degree phase difference.
 - The three-phase impedances must be of the same value (both phase and magnitude).
- Convert all Delta-connected sources/loads to Wye-connected sources/loads.
- Per phase analysis reduce three-phase circuit to single-phase circuit. We can apply the same concept used in single-phase.

Single-Line Diagram

- Show the interconnections of a transmission system
 - Generator
 - Load
 - Transmission line
 - Transformer
- This is a representation of a 3Φ circuit. Each line represents three conductors in threephase system.

Example: Given a one-line diagram, If the voltage source is $|V_{line}| = \sqrt{3}$ V. Find, the current magnitude supplied by source, $|I_S|$, and, the current magnitude through a capacitor, $|I_C|$.

Step 1: Make sure that the three-phase system is balanced.

Load 2, Y-Connected

- The three-phase sources need to have the same magnitude with 120 degree phase difference.
- The three-phase impedances must be of the same value (both phase and magnitude).

Step 2: Convert from $\Delta \rightarrow Y$

• Converting the Z_{Δ} to Z_{Y} : Load 1 Z_{Δ} = -j15 Ω \Rightarrow $Z_{Y} = \frac{Z_{\Delta}}{3} = \frac{-j15}{3} = -j5\Omega$

• Converting the Voltage Source from $\Delta \rightarrow Y$

Step 3 : Draw the 1-phase Diagram

Step 4: Find the capacitor Current I_C

Questions!!!

© Copyright National University of Singapore. All Rights Reserved.