AMENDMENTS TO THE CLAIMS

1. (Previously Presented) In a program development environment, a computer implemented method comprising:

providing, via a programming language, a language processor with built-in support for a parse tree data structure written in a base language, said parse tree data structure represented as a class, said class being a basis for a plurality of parse tree objects, said parse tree objects including methods that retrieve values for base language objects;

defining an assignment function, said assignment function taking a plurality of parse tree structures as arguments;

defining said assignment function in more than one class;

overloading said assignment function based on a context of said base language objects; and

calling said assignment function from said language processor to determine a value of at least one assignment within at least one of said base language and a base language extension to said base language.

- 2. (Canceled)
- 3. (Previously Presented) The method of claim 1 wherein said assignment function overloads a mathematical operator.
- 4. (Canceled)
- 5 (Previously Presented). The method of claim 1, further comprising:

evaluating said class at compile-time, and

adjusting said resulting class definitions from said evaluation to increase efficiency of run-time performance.

6. (Previously Presented) The method of claim 1, further comprising:

overloading a mathematical operator with said assignment function to alter a sequence of evaluation of operands usually followed in said programming language, said overloading designating an order of operand evaluation.

7. (Previously Presented) The method of claim 1, further comprising:

tree.

- calling a method in said parse tree object to determine a type of operator at a root of said parse tree data structure.
- 8. (Previously Presented) The method of claim 1, further comprising:

 calling a method in said parse tree object to retrieve one of an associated left and right
- 9. (Previously Presented) The method of claim 1 wherein a root of said parse tree data structure is one of a constant, variable, a mathematical symbol and a mathematical expression.
- 10. (Original) The method of claim 1 wherein said assignment function is not explicitly defined.
- 11. (Original) The method of claim 1 wherein said assignment function is used to identify inplace operations.
- 12. (Original) The method of claim 1 wherein said assignment function is used to identify and perform multiply and accumulate ("MAC") operations.
- 13. (Original) The method of claim 1 wherein said base language is one of C++, Java, System-C, VHDL, Verilog, C#, IDL, MATLAB and a language based on the .Net framework.
- 14. (Currently Amended) In a program development environment, a computer implemented method comprising:

providing, via a programming language, a language processor with built-in support for a parse tree data structure written in a base language, said parse tree data structure represented as a

class, said class being a basis for a plurality of parse tree objects, said parse tree objects including parse tree object methods that retrieve values for base language objects;

defining an assignment function, said assignment function taking a plurality of parse tree structures as arguments;

defining said assignment function in more than one class;

overloading said assignment function based on a context of said base language objects. said context determined from one of said parse tree object methods;

calling said assignment function from said language processor to determine a value of at least one assignment within at least one of the said base language and a base language extension for said base language; and

generating code for an embedded processor using said parse tree data structure.

15. (Previously Presented) In a program development environment, a computer implemented method comprising:

providing, via a programming language, a language processor with built-in support for a parse tree data structure written in a base language, said parse tree data structure represented as a class, said class being a basis for a plurality of parse tree objects, said parse tree objects including methods that retrieve values for base language objects;

defining an assignment function, said assignment function taking a plurality of parse tree structures as arguments;

defining said assignment function in more than one class;

overloading said assignment function based on a context of said base language objects;

calling said assignment function from said language processor to determine a value of at least one assignment within at least one of the base language and a base language extension for said base language; and

using said parse tree data structure in software emulation.

16. (Previously Presented) A computer-readable storage medium for storing computer executable instructions for use in a program development environment, said instructions comprising:

one or more instructions for providing a programming language;

one or more instructions for providing a language processor via the said programming language, said language processor having built-in support for a parse tree data structure written in a base language, said parse tree data structure represented as a class, said class being a basis for a plurality of parse tree objects, said parse tree objects including parse tree object methods that retrieve values for base language objects;

one or more instructions for defining an assignment function, said assignment function taking a plurality of parse tree structures as arguments;

one or more instructions for defining said assignment function in more than one class; one or more instructions for overloading said assignment function based on a context of said base language objects, said context determined from one of said parse tree object methods; and

one or more instructions for calling said assignment function from said language processor to determine a value of at least one assignment within at least one of said base language and a base language extension to said base language.

17. (Canceled)

- 18. (Previously Presented) The medium of claim 16 wherein said assignment function overloads a mathematical operator.
- 19. (Previously Presented) The medium of claim 16 wherein said overloading of said assignment function is based on a context of said base language objects.
- 20. (Previously Presented) The medium of claim 16, wherein said instructions further comprise:

one or more instructions for evaluating said class at compile-time, and one or more instructions for adjusting said resulting class definitions from said evaluation to increase efficiency of run-time performance.

21. (Previously Presented) The medium of claim 16, wherein said instructions further comprise:

one or more instructions for overloading a mathematical operator with said assignment function to alter a sequence of evaluation of operands usually followed in said programming language, said overloading designating an order of operand evaluation.

- 22. (Previously Presented) The medium of claim 16, wherein said instructions further comprise: one or more instructions for calling a method in said parse tree object to determine a type of operator at a root of said parse tree data structure.
- 23. (Previously Presented) The medium of claim 16, wherein said instructions further comprise one or more instructions for calling a method in said parse tree object to retrieve one of an associated left and right tree.
- 24. (Original) The medium of claim 16 wherein a root of said parse tree data structure is one of a constant, variable, a mathematical symbol and a mathematical expression.
- 25. (Original) The medium of claim 16 wherein said assignment function is not explicitly defined.
- 26. (Original) The medium of claim 16 wherein said assignment function is used to identify inplace operations.
- 27. (Original) The medium of claim16 wherein said assignment function is used to identify and perform multiply and accumulate ("MAC") operations.
- 28. (Original) The medium of claim 16 wherein said base language is one of C++, Java, System-C, VHDL, Verilog, C#, IDL, MATLAB and a language based on the .Net framework.
- 29. (Original) The medium of claim 16 wherein said parse tree data structure is used to generate code for an embedded processor.
- 30. (Original) The medium of claim 16 wherein said parse tree data structure is used in processor emulation.

31-36. (Canceled)

37. (Previously Presented) A computer-readable storage medium for storing computer executable instructions for use in a program development environment, said instructions comprising:

one or more instructions for providing a programming language;

one or more instructions for providing a language processor via said programming language, said language processor having built-in support for a parse tree data structure written in a base language, said parse tree data structure represented as a class, said class being a basis for a plurality of parse tree objects, said parse tree objects including methods that retrieve values for base language objects;

one or more instructions for defining an assignment function, said assignment function taking a plurality of parse tree structures as arguments;

one or more instructions for defining said assignment function in more than one class; one or more instructions for overloading said assignment function based on a context of said base language objects;

one or more instructions for calling said assignment function from said language processor to determine a value of at least one assignment within at least one of said base language and a base language extension to said base language; and

one or more instructions for generating code for an embedded processor using said parse tree data structure.

38. (Previously Presented) A computer-readable storage medium for storing computer executable instructions for use in a program development environment, said instructions comprising:

one or more instructions for providing a programming language;

one or more instructions for providing a language processor via said programming language, said language processor having built-in support for a parse tree data structure written in a base language, said parse tree data structure represented as a class, said class being a basis for a plurality of parse tree objects, said parse tree objects including methods that retrieve values for base language objects;

one or more instructions for defining an assignment function, said assignment function taking a plurality of parse tree structures as arguments;

one or more instructions for defining said assignment function in more than one class; one or more instructions for overloading said assignment function based on a context of said base language objects;

one or more instructions for calling said assignment function from said language processor to determine a value of at least one assignment within at least one of said base language and a base language extension to said base language; and

one or more instructions for using said parse tree data structure in software emulation.

39. (Previously Presented) In an object-oriented program development environment having a base language, a computer implemented method comprising:

providing a programming language;

providing a language processor via said programming language, said language processor having built-in support for a parse tree data structure in said object-oriented program development environment, said parse tree data structure used as a basis for at least one parse tree object, said parse tree objects including methods that retrieve values for base language objects;

defining an assignment function taking a plurality of parse tree structures as arguments in more than one class;

calling said assignment function from said language processor to determine a value of at least one assignment within at least one of a base language and a base language extension; and overloading a mathematical operator with said assignment function based on a context of

a plurality of said base language objects.

40. (Previously Presented) A computer implemented method for providing a language processor in a program development environment, said method comprising:

building a parse tree data structure based on source code with the language processor; instantiating a first parse tree object and a second parse tree object;

evaluating said second parse tree object to obtain a value, said evaluating done based on a context provided by said first parse tree object; and

assigning said value to said first parse tree object.