

(A) Examen de laboratorio

Apellidos: Nombre: DNI:

Instrucciones: Contesta en este mismo documento y realiza los circuitos solicitados con Logisim. La entrega del ejercicio consistirá en las respuestas en papel en esta hoja de enunciados y **un único fichero CIRC** con los circuitos Logisim solicitados que se subirá a Moodle. No es preciso dibujar los circuitos en papel si se entrega el circuito Logisim correspondiente en Moodle, pero se debe explicar concisamente cómo se ha llegado al resultado.

Sistema Combinacional

Dada la función lógica de 4 variables f(A,B,C,D) = A'B'D+B'C+A'BC'. Se pide:

- 1. [0,5 ptos.] Tabla de verdad de la función f(A,B,C,D).
- 2. [0,5 ptos.] Formas canónicas de f(A,B,C,D).
 - 1a forma canónica de minitérminos (SOP): $f = \sum m(1, 2, 3, 4, 5, 10, 11)$
 - 2^a forma canónica de maxitérminos (POS): $f = \prod M(0,6,7,8,9,12,13,14,15)$
- 3. [1 ptos.] Forma POS (producto de sumas) simplificada de f(A,B,C,D) mediante mapas de Karnaugh: f = (B + C + D)(B' + C')(A' + C)

A	В	C	D	f
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

		C, D				
		00	01	11	10	
A, B	00	0	1	1	1	
	01	1	1	0	0	
	11	0	0	0	0	
	10	0	0	1	1	

4. [1 ptos.] Subcircuito-1 (Logisim) correspondiente a implementación de f(A,B,C,D), empleando solo puertas NOR. Empleando la forma POS simplificada, se aplica doble negación y leyes de De Morgan para expresar la forma POS con puertas NOR: f = ((B + C + D)' + (B' + C')' + (A' + C)')'

5. **[2 ptos.]** Subcircuito-2 (<u>Logisim</u>) correspondiente a implementación de *f*(*A*,*B*,*C*,*D*) empleando un MUX 4x1 y las puertas lógicas necesarias.

Sistema Secuencial

Dado el DTE de la figura adjunta, se pide responder a los apartados siguientes:

1. **[2 ptos.]** Elabora la tabla de transición de estado y tabla de salida correspondientes, considera una implementación solo con biestables T:

- 2. [1 pto.] Calcula las funciones de excitación de los biestables y función de salida tanto en sus formas canónicas como simplificadas:
 - Formas canónicas (T₁): $T_1 = \sum m(3,6) = \prod M(0,1,2,4,5,7)$
 - Formas simplificadas (T₁): $T_1 = q_1'q_0X + q_1q_0X' = q_0(q_1 \oplus X) = (q_1 + X)q_0(q_1' + X')$
 - Formas canónicas (T₀): $T_0 = \sum m(1, 3, 5, 6) = \prod M(0, 2, 4, 7)$
 - Formas simplificadas (T₀): $T_0 = q_1'X + q_0'X + q_1q_0X' = (q_1 + X)(q_0 + X)(q_1' + q_0' + X')$
 - Formas canónicas (y): $y = \sum_{i=0}^{\infty} m(0,2) = \prod_{i=0}^{\infty} M(1,3)$
 - Formas simplificadas (y): $y = q_0'$
- 3.- [2 ptos.] Implementa el circuito resultante con Logisim, emplea al menos un DEC 3x8 para alguna de las funciones de excitación de biestables.

