Introduction to containerization with Red Hat OpenShift

IBM TechXchange (Milan - December 16, 2024)

Alfonso Cancellara

Technical Account Manager, OpenShift @ Red Hat

Containers are the new normal

\$3.0B

2024 Container Software Market

36.2%

CAGR 2021-2026

Why Red Hat?

- Leader in the 2024 Gartner® Magic Quadrant™ for Container Management
- Part of IBM since 2019

Why me?

- Working on OpenShift as Red Hat associate since 2021
- Technical Account Manager for OpenShift on selected customers

What we'll discuss

What we'll discuss

What are containers?

It depends who you ask

APPLICATIONS INFRASTRUCTURE

The problem

Applications have different requirements: languages, libraries, and tools

The solution

Package applications as units of software that hold together all the needed components

Create a container image

The problem

VMs are "heavy" and usually **not** portable across hypervisors

The solution Isolated processes on a shared kernel (using Linux technologies)

Run a container instance

and verify its isolation

What we'll discuss

How to manage containers at scale?

How to manage containers at scale?

Automated rollouts and rollbacks

Self-healing

Secret and configuration management

How to manage containers at scale?

Use a containers orchestrator

Kubernetes objects

Entities representing the state of the orchestrator

- Pod: unit of computing (group of one or more containers)
- Deployment: set of identical Pods (replicas of the same app)
- Service: way to expose Pods over the network
- PersistentVolume: unit of storage ("disk" that is usable by a Pod)
- ConfigMap: way to set configurations in Pods
- Secret: way to store confidential data (ex. connection strings)

Anatomy of a Kubernetes object

Represented as a YAML file

```
apiVersion: \lor 1
kind: Pod
metadata:
  name: demo-pod
  labels:
    app: demo-pod
spec:
  containers:
    - name: demo-container
      image: quay.io/.../demo-container:latest
       ports:
        - containerPort: 8000
```


Reconciliation / Control loop

A core Kubernetes concept

Kubernetes is based on the concept of a declarative specification of the desired state

and the use of reconciliation loops
to drive the actual state toward the
desired state

Kubernetes architecture

Simplified view

Run a Pod on Kubernetes

What we'll discuss

OpenShift Container Platform

Trusted, comprehensive, and consistent platform to develop, modernize, and deploy applications at scale

Red Hat is a leading Kubernetes contributor since day 1, and a major contributor to most CNCF projects

Red Hat Enterprise Linux CoreOS

The default operating system for the OCP cluster nodes

Based on **RHEL**

Controlled immutability

Container-centric

OpenShift on IBM Power

Securely build new OpenShift apps adjacent to data on AIX, IBM i

- Incremental modernization: value delivered as you go
- Performance and scalability: leveraging the POWER processors
- **Enhanced security**: hardware-based encryption, secure boot, and memory isolation capabilities
- Reliability and availability: redundant components, error correction and dynamic resource allocation
- Al capabilities: integrated accelerators

OpenShift console overview

What are Red Hat TAMs

Red Hat Technical Account

Managers are technical advisors for customers and partners that need help planning and deploying their Red Hat solution successfully.

TAMs serve as a consistent single point of contact for customers as their technology needs evolve.

An overview of the tasks a TAM does

Plan

- Best practices
- Supportability assessments
- Product enhancements
- Early beta access
- Life-cycle planning

Assist

- Strategic cases
- Critical situation management
- Customized notifications
- Supportability checks
- Multi-vendor collaboration

Connect

- Regular sync up calls
- Customer Portal private community
- On-site visits and Service Reviews
- Proactive case analysis
- Webinars, Events and Workshops

Thank you

Red Hat is the world's leading provider of enterprise open source software solutions. Award-winning support, training, and consulting services make Red Hat a trusted adviser to the Fortune 500.

- in linkedin.com/company/red-hat
- youtube.com/user/RedHatVideos
- facebook.com/redhatinc
- X twitter.com/RedHat

