FORMULARIO COMPLETO DI PROBABILITÀ E STATISTICA

Indice

1	$\operatorname{\mathbf{Sch}}$	emi per la Risoluzione degli Esercizi	
	1.1	Esercizio Tipo 1: Calcolo di Media e Varianza	
	1.2	Esercizio Tipo 2: Analisi di Variabili Aleatorie Correlate	
	1.3	Esercizio Tipo 3: Approssimazioni di Somme di Bernoulli	
	1.4	Esercizio Tipo 4: Problemi Vari di Probabilità Applicata	
2	Let	tura delle Tavole Statistiche	
	2.1	Tavola della Distribuzione Normale Standard	
	2.2	Tavola della Distribuzione di Poisson	
3	Distribuzioni Notevoli		
	3.1	Distribuzione di Bernoulli	
	3.2	Distribuzione di Rademacher	
	3.3	Distribuzione Binomiale	
	3.4	Distribuzione di Poisson	
	3.5	Distribuzione Uniforme Discreta	
	3.6	Distribuzione Uniforme Continua	
	3.7	Distribuzione Esponenziale	
	3.8	Distribuzione Normale	
4	Teo	oremi e Formule Fondamentali	
	4.1	Valore Atteso e Varianza	
	4.2	Covarianza e Correlazione	
	4.3	Disuguaglianze	
	4.4	Teoremi Limite	
	4.5	Trasformazioni di Variabili Aleatorie	
	4.6	Probabilità Condizionata e Indipendenza	
5	Appendice: Formule di Regressione e Ottimizzazione		
	5.1		
	5.2	Intervalli di Confidenza	

1 Schemi per la Risoluzione degli Esercizi

1.1 Esercizio Tipo 1: Calcolo di Media e Varianza

Schema di Risoluzione - Esercizio 1

Questo esercizio richiede il calcolo di media e varianza di diverse variabili aleatorie. La metodologia varia in base al tipo di distribuzione.

Caso 1: Variabile aleatoria discreta con distribuzione esplicitata

•
$$E[X] = \sum_{i} x_i P(X = x_i)$$

•
$$Var[X] = E[X^2] - E[X]^2 = \sum_i x_i^2 P(X = x_i) - E[X]^2$$

Caso 2: Variabile aleatoria uniforme continua su [a,b]

•
$$E[X] = \frac{a+b}{2}$$

•
$$Var[X] = \frac{(b-a)^2}{12}$$

Caso 3: Variabile aleatoria con funzione di ripartizione data

 \bullet Derivare per ottenere la densità: $f_X(x) = F_X'(x)$

• Calcolare: $E[X] = \int_{-\infty}^{+\infty} x f_X(x) dx$

• Calcolare: $Var[X] = \int_{-\infty}^{+\infty} x^2 f_X(x) dx - E[X]^2$

Caso 4: Variabile aleatoria trasformata X = g(Y)

• Se Y è discreta: $E[X] = E[g(Y)] = \sum_i g(y_i) P(Y = y_i)$

• Se Y è continua: $E[X] = E[g(Y)] = \int_{-\infty}^{+\infty} g(y) f_Y(y) dy$

• Calcolare $E[X^2]$ sostituendo g(y) con $g(y)^2$ nelle formule precedenti

• $Var[X] = E[X^2] - E[X]^2$

Esempio - Esercizio 1

Problema: Sia $X = e^Z$ dove $Z \sim Exp(2)$. Calcolare E[X] e Var[X].

Soluzione: Per $Z \sim Exp(2)$, abbiamo $f_Z(z) = 2e^{-2z}$ per z > 0

$$E[X] = E[e^Z] = \int_0^\infty e^z \cdot 2e^{-2z} dz = \int_0^\infty 2e^{-z} dz = 2 \cdot \int_0^\infty e^{-z} dz = 2$$

$$E[X^2] = E[e^{2Z}] = \int_0^\infty e^{2z} \cdot 2e^{-2z} dz = \int_0^\infty 2dz$$

L'integrale diverge, quindi $Var[X] = \infty$

1.2 Esercizio Tipo 2: Analisi di Variabili Aleatorie Correlate

Schema di Risoluzione - Esercizio 2

Questo esercizio analizza due variabili aleatorie correlate, spesso definite a partire da v.a. Rademacher o Bernoulli.

Passo 1: Calcolare E[X] e E[Y]

- Per v.a. composte, usare linearità: E[aU+bV]=aE[U]+bE[V]
- Per prodotti di v.a. indipendenti: E[UV] = E[U]E[V]

Passo 2: Calcolare Var[X] e Var[Y]

- $Var[X] = E[X^2] E[X]^2$
- \bullet Calcolare $E[X^2]$ usando la definizione di X

Passo 3: Calcolare Cov[X, Y]

- Cov[X, Y] = E[XY] E[X]E[Y]
- \bullet Calcolare E[XY]sostituendo le definizioni di Xe Y

Passo 4: Analizzare l'indipendenza

- Se $Cov[X,Y] \neq 0$, allora X e Y non sono indipendenti
- \bullet Se Cov[X,Y]=0, verificare la distribuzione congiunta per confermare l'indipendenza

Passo 5: Determinare la legge congiunta

- Per ogni coppia di valori (x,y) che X e Y possono assumere, calcolare P(X=x,Y=y)
- Costruire una tabella con tutti i valori possibili

Casi frequenti:

- Se $\xi_i \sim Rad(1/2)$ allora $P(\xi_i = 1) = P(\xi_i = -1) = 1/2$, $E[\xi_i] = 0$, $Var[\xi_i] = 1$
- Se $\xi_i \sim Ber(1/2)$ allora $P(\xi_i = 1) = P(\xi_i = 0) = 1/2$, $E[\xi_i] = 1/2$, $Var[\xi_i] = 1/4$

Esempio - Esercizio 2

Problema: Siano ξ_1, ξ_2, ξ_3 v.a. indipendenti con distribuzione di Rademacher di parametro 1/2. Definiamo $X = \xi_1 \cdot (\xi_1 - \xi_2)$ e $Y = \xi_3 \cdot (\xi_1 + \xi_2)$. Determinare media, varianza, covarianza e stabilire se sono indipendenti. **Soluzione:**

$$E[X] = E[\xi_1 \cdot (\xi_1 - \xi_2)] = E[\xi_1^2 - \xi_1 \xi_2] = E[\xi_1^2] - E[\xi_1] E[\xi_2] = 1 - 0 = 1$$

$$E[Y] = E[\xi_3 \cdot (\xi_1 + \xi_2)] = E[\xi_3] E[\xi_1 + \xi_2] = 0 \cdot (0 + 0) = 0$$

$$E[X^2] = E[(\xi_1(\xi_1 - \xi_2))^2] = E[\xi_1^2(\xi_1 - \xi_2)^2] = E[\xi_1^2] E[(\xi_1 - \xi_2)^2]$$

$$= 1 \cdot (E[\xi_1^2] + E[\xi_2^2] - 2E[\xi_1 \xi_2]) = 1 \cdot (1 + 1 - 0) = 2$$

Quindi
$$Var[X] = E[X^2] - E[X]^2 = 2 - 1 = 1$$

Analogamente, si può calcolare $Var[Y] = 2$

Per la covarianza:

$$Cov[X,Y] = E[XY] - E[X]E[Y] = E[\xi_1(\xi_1 - \xi_2)\xi_3(\xi_1 + \xi_2)] - 1 \cdot 0$$

$$= E[\xi_1\xi_3(\xi_1 - \xi_2)(\xi_1 + \xi_2)] = E[\xi_1\xi_3(\xi_1^2 - \xi_2^2)]$$

$$= E[\xi_1\xi_3]E[\xi_1^2 - \xi_2^2] = 0 \cdot 0 = 0$$

Anche se Cov[X,Y] = 0, per verificare l'indipendenza dobbiamo analizzare la distribuzione congiunta.

1.3 Esercizio Tipo 3: Approssimazioni di Somme di Bernoulli

Schema di Risoluzione - Esercizio 3

Questo esercizio riguarda somme di variabili aleatorie di Bernoulli e richiede l'uso di diverse approssimazioni per stimare una probabilità.

Passo 1: Identificare i parametri

- X_1, X_2, \dots, X_n sono v.a. Bernoulli i.i.d. con $P(X_i = 1) = p$
- $S = \sum_{i=1}^{n} X_i$ è la somma
- E[S] = np e Var[S] = np(1-p)
- Si vuole stimare $N = \min\{n \in \mathbb{N} : P(S \le n) \ge \alpha\}$ per un dato α (tipicamente 0.95, 0.98 o 0.99)

Passo 2: Applicare la disuguaglianza di Chebyshev

- $P(|S E[S]| \ge t) \le \frac{Var[S]}{t^2}$
- Per ottenere $P(S \leq N) \geq \alpha$, dobbiamo avere $P(S > N) \leq 1 \alpha$
- Se N E[S] = t, allora $P(S E[S] > t) \le \frac{Var[S]}{t^2} \le 1 \alpha$
- Risolvere per t: $t \ge \sqrt{\frac{Var[S]}{1-\alpha}}$
- Quindi $N \ge E[S] + \sqrt{\frac{Var[S]}{1-\alpha}}$

Passo 3: Applicare l'approssimazione normale

- $S \approx N(E[S], Var[S])$
- Con correzione di continuità: $P(S \le N) \approx P(S < N + 0.5) = \Phi\left(\frac{N + 0.5 E[S]}{\sqrt{Var[S]}}\right)$
- Dobbiamo avere $\Phi\left(\frac{N+0.5-E[S]}{\sqrt{Var[S]}}\right) \ge \alpha$
- Dalla tabella della normale standard, troviamo z_{α} tale che $\Phi(z_{\alpha})=\alpha$
- Quindi $\frac{N+0.5-E[S]}{\sqrt{Var[S]}} \ge z_{\alpha}$
- Risolvendo per $N: N \ge E[S] 0.5 + z_{\alpha} \sqrt{Var[S]}$

Passo 4: Applicare l'approssimazione di Poisson

- Se n è grande e p è piccolo (tipicamente $n \ge 20$ e $np \le 10$)
- $S \approx Poi(\lambda) \text{ con } \lambda = np$
- Calcolare $P(S \le N) = \sum_{k=0}^{N} \frac{e^{-\lambda} \lambda^k}{k!}$
- Trovare il minimo N tale che $P(S \leq N) \geq \alpha$ usando le tavole di Poisson

Esempio - Esercizio 3

Problema: Siano $X_1, X_2, \ldots, X_{900}$ v.a. indipendenti e identicamente distribuite con comune distribuzione di Bernoulli di parametro 1/300. Poniamo $S = \sum_{i=1}^{900} X_i$ e $N = \min\{n \in \mathbb{N} : P(S \le n) \ge 0.98\}$. Stimare N. **Soluzione:** $E[S] = 900 \cdot \frac{1}{300} = 3$ e $Var[S] = 900 \cdot \frac{1}{300} \cdot (1 - \frac{1}{300}) \approx 3$

a) Disuguaglianza di Chebyshev:

$$\begin{split} P(|S-3| \geq t) \leq \frac{3}{t^2} \\ \frac{3}{t^2} \leq 0.02 \Rightarrow t^2 \geq \frac{3}{0.02} = 150 \Rightarrow t \geq 12.25 \\ N \geq 3 + 12.25 \approx 16 \end{split}$$

b) Approssimazione di Poisson:

$$S \approx Poi(3)$$

$$P(S \le N) = \sum_{k=0}^{N} \frac{e^{-3}3^{k}}{k!} \ge 0.98$$

Dalla tabella di Poisson con $\lambda=3$, troviamo che N=7 dà $P(S\leq7)\approx0.9888\geq0.98$

c) Approssimazione normale:

$$\begin{split} P(S \leq N) &\approx \Phi\left(\frac{N+0.5-3}{\sqrt{3}}\right) \geq 0.98 \\ &\Phi\left(\frac{N-2.5}{\sqrt{3}}\right) \geq 0.98 \end{split}$$

Dalla tabella della normale standard, $\Phi(2.05) \approx 0.98$

$$\frac{N - 2.5}{\sqrt{3}} \ge 2.05 \Rightarrow N \ge 2.5 + 2.05\sqrt{3} \approx 6.05$$

Arrotondando, $N \geq 7$

Quindi la stima più accurata è N=7 (usando Poisson o normale).

1.4 Esercizio Tipo 4: Problemi Vari di Probabilità Applicata

Schema di Risoluzione - Esercizio 4

Il quarto esercizio varia maggiormente ma segue alcuni pattern ricorrenti:

Categoria 1: Problemi su grafi direzionati

- Identificare i nodi e le probabilità di transizione
- Per ogni nodo i, definire p_i = probabilità di raggiungere il nodo obiettivo
- Scrivere equazioni ricorsive: $p_i = \sum_j p_{ij} \cdot p_j$ dove p_{ij} è la probabilità di andare da i a j
- Risolvere il sistema di equazioni lineari

Categoria 2: Trasformazioni di variabili aleatorie

- Trovare $\phi:[0,1]\to\mathbb{R}$ tale che $Y=\phi(\xi)$ abbia una distribuzione specificata
- Se Y è discreta con $P(Y = y_i) = p_i$:
 - (a) Dividere [0,1] in intervalli di lunghezza p_i
 - (b) Definire $\phi(x) = y_i$ quando x è nell'intervallo corrispondente
- Se Y è continua con funzione di ripartizione F_Y , usare $\phi = F_Y^{-1}$

Categoria 3: Problemi di intervalli di confidenza

- Per stimare δ tale che $P(|\bar{S} \mu| < \delta) \ge 1 \alpha$:
 - (a) Usare l'approssimazione normale: $\bar{S} \approx N(\mu, \sigma^2/n)$

(b)
$$P(|\bar{S} - \mu| < \delta) = P\left(|\frac{\bar{S} - \mu}{\sigma/\sqrt{n}}| < \frac{\delta}{\sigma/\sqrt{n}}\right) = 2\Phi\left(\frac{\delta}{\sigma/\sqrt{n}}\right) - 1$$

- (c) Trovare $z_{\alpha/2}$ tale che $\Phi(z_{\alpha/2}) = 1 \alpha/2$
- (d) Quindi $\delta = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$

Categoria 4: Problemi di tempo di attesa (catene di Markov)

- Definire μ_i = tempo medio per raggiungere lo stato obiettivo da i
- Scrivere equazioni ricorsive: $\mu_i = 1 + \sum_j p_{ij} \mu_j$
- Risolvere il sistema di equazioni lineari

Esempio - Esercizio 4 (Grafi direzionati)

Problema: Un pacchetto di dati deve essere trasmesso da un terminale O ad un terminale A. Ad ogni nodo, il pacchetto viene ritrasmesso scegliendo una connessione casuale tra quelle uscenti. Calcolare la probabilità che il pacchetto arrivi in A.

Soluzione: Definiamo p_X = probabilità di raggiungere A partendo dal nodo X.

Sappiamo che $p_A = 1$ e $p_B = 0$ (se B è un terminale diverso da A).

Se O ha connessioni a K e L con probabilità 1/2 ciascuna:

$$p_O = \frac{1}{2}p_K + \frac{1}{2}p_L$$

Se K ha connessioni verso A, B e L con probabilità 1/3 ciascuna:

$$p_K = \frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot p_L = \frac{1}{3} + \frac{1}{3} p_L$$

Se L ha connessioni verso K e B con probabilità 1/2 ciascuna:

$$p_L = \frac{1}{2}p_K + \frac{1}{2} \cdot 0 = \frac{1}{2}p_K$$

Risolvendo il sistema:

$$p_{L} = \frac{1}{2}p_{K}$$

$$p_{K} = \frac{1}{3} + \frac{1}{3}p_{L} = \frac{1}{3} + \frac{1}{3} \cdot \frac{1}{2}p_{K} = \frac{1}{3} + \frac{1}{6}p_{K}$$

$$\frac{5}{6}p_{K} = \frac{1}{3} \Rightarrow p_{K} = \frac{2}{5}$$

$$p_{L} = \frac{1}{2} \cdot \frac{2}{5} = \frac{1}{5}$$

$$p_{O} = \frac{1}{2} \cdot \frac{2}{5} + \frac{1}{2} \cdot \frac{1}{5} = \frac{1}{5} + \frac{1}{10} = \frac{3}{10}$$

La probabilità che il pacchetto arrivi in A è $\frac{3}{10}$.

Esempio - Esercizio 4 (Trasformazione di variabili aleatorie)

Problema: Sia ξ una v.a. con distribuzione uniforme continua su (0,1). Trovare una funzione $\phi:(0,1)\to\mathbb{N}$ tale che $Y=\phi(\xi)$ abbia la distribuzione $P(Y=1)=1/12,\ P(Y=2)=1/6,\ P(Y=3)=1/4,\ P(Y=4)=1/12,\ P(Y=5)=1/4,\ P(Y=6)=1/6.$

Soluzione: Dividiamo (0,1) in intervalli di lunghezza corrispondente alle probabilità desiderate:

$$\phi(x) = \begin{cases} 1 & \text{se } 0 < x \le \frac{1}{12} \\ 2 & \text{se } \frac{1}{12} < x \le \frac{1}{12} + \frac{1}{6} = \frac{3}{12} \\ 3 & \text{se } \frac{3}{12} < x \le \frac{3}{12} + \frac{1}{4} = \frac{6}{12} \\ 4 & \text{se } \frac{6}{12} < x \le \frac{6}{12} + \frac{1}{12} = \frac{7}{12} \\ 5 & \text{se } \frac{7}{12} < x \le \frac{7}{12} + \frac{1}{4} = \frac{10}{12} \\ 6 & \text{se } \frac{10}{12} < x < 1 \end{cases}$$

2 Lettura delle Tavole Statistiche

2.1 Tavola della Distribuzione Normale Standard

Lettura della Tavola della Normale Standard

La tavola della normale standard riporta i valori $\Phi(z) = P(Z \le z)$ dove $Z \sim N(0,1)$.

Procedura per leggere la tavola:

- 1. Individuare il valore z desiderato combinando la riga (primo decimale) e la colonna (secondo decimale)
- 2. Il valore nella cella corrispondente è $\Phi(z)$

Per trovare un valore z dato $\Phi(z) = \alpha$:

- 1. Cercare nella tavola il valore più vicino a α
- 2. Leggere il corrispondente valore z combinando riga e colonna

Proprietà utili:

- $\Phi(-z) = 1 \Phi(z)$
- $P(a < Z < b) = \Phi(b) \Phi(a)$
- $P(|Z| < a) = 2\Phi(a) 1$
- $P(|Z| > a) = 2(1 \Phi(a))$

Esempio - Uso della Tavola Normale

Problema: Trovare z tale che $\Phi(z) = 0.98$.

Soluzione: Cerchiamo nella tavola il valore 0.98 o il più vicino. Troviamo 0.9798 nella riga 2.0 e colonna 0.06,

quindi $z\approx 2.06.$

Problema: Calcolare P(-1.5 < Z < 2.3).

Soluzione: $P(-1.5 < Z < 2.3) = \Phi(2.3) - \Phi(-1.5) = \Phi(2.3) - (1 - \Phi(1.5))$

Dalla tavola: $\Phi(2.3) \approx 0.9893$ e $\Phi(1.5) \approx 0.9332$

Quindi P(-1.5 < Z < 2.3) = 0.9893 - (1 - 0.9332) = 0.9893 - 0.0668 = 0.9225

Importante

Per calcolare $P(S \leq n)$ utilizzando l'approssimazione normale:

 \bullet Se S è una somma di variabili discrete, applicare la correzione di continuità:

$$P(S \le n) \approx P(S < n + 0.5) = \Phi\left(\frac{n + 0.5 - E[S]}{\sqrt{Var[S]}}\right)$$

• Cercare nella tavola il valore di $\Phi(z)$ dove $z=\frac{n+0.5-E[S]}{\sqrt{Var[S]}}$

Probabilità e Statistica Formulario Completo

2.2 Tavola della Distribuzione di Poisson

Lettura della Tavola di Poisson

La tavola della distribuzione di Poisson riporta i valori della funzione di ripartizione $F_{Poi(\lambda)}(x) = P(X \leq x)$ dove $X \sim Poi(\lambda)$.

Procedura per leggere la tavola:

- 1. Individuare il parametro λ nella prima colonna
- 2. Leggere sulla riga corrispondente fino alla colonna x desiderata
- 3. Il valore nella cella è $P(X \leq x)$

Per trovare un valore x dato $P(X \le x) = \alpha$ per un λ fisso:

- 1. Individuare la riga corrispondente al parametro λ
- 2. Cercare il primo valore $\geq \alpha$ muovendosi da sinistra a destra
- 3. Il numero della colonna corrispondente è il valore \boldsymbol{x} cercato

Esempio - Uso della Tavola di Poisson

Problema: Per $X \sim Poi(2)$, trovare il minimo k tale che $P(X \leq k) \geq 0.98$.

Soluzione: Nella riga corrispondente a $\lambda = 2$, cerchiamo il primo valore ≥ 0.98 . Troviamo 0.983 nella colonna 5, quindi k = 5.

Problema: Per $X \sim Poi(3.5)$, calcolare P(X=3).

Soluzione: $P(X=3) = P(X \le 3) - P(X \le 2)$ Dalla tavola: $P(X \le 3) \approx 0.6472$ e $P(X \le 2) \approx 0.3212$ Quindi

P(X = 3) = 0.6472 - 0.3212 = 0.326

Importante

Per approssimare una distribuzione binomiale con Poisson:

- $Bin(n,p) \approx Poi(np)$ quando n è grande, p è piccolo e np è moderato (tipicamente $n \geq 20$ e $np \leq 10$)
- La condizione è che $\lim_{n\to\infty} np_n = \lambda$ (costante finita)

3 Distribuzioni Notevoli

3.1 Distribuzione di Bernoulli

Distribuzione di Bernoulli - Ber(p)

Una v.a. X ha distribuzione di Bernoulli di parametro $p \in [0,1]$ se:

$$P(X = 1) = p, \quad P(X = 0) = 1 - p$$

Proprietà:

- E[X] = p
- Var[X] = p(1-p)
- Funzione generatrice dei momenti: $M_X(t) = (1-p) + pe^t$

3.2 Distribuzione di Rademacher

Distribuzione di Rademacher - Rad(p)

Una v.a. X ha distribuzione di Rademacher di parametro $p \in [0,1]$ se:

$$P(X = 1) = p, \quad P(X = -1) = 1 - p$$

Proprietà:

- E[X] = 2p 1
- Var[X] = 4p(1-p)
- Per p = 1/2: E[X] = 0, Var[X] = 1, $E[X^2] = 1$

3.3 Distribuzione Binomiale

Distribuzione Binomiale - Bin(n, p)

Una v.a. X ha distribuzione binomiale di parametri $n \in \mathbb{N}$ e $p \in [0,1]$ se:

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k \in \{0, 1, \dots, n\}$$

Proprietà:

- E[X] = np
- Var[X] = np(1-p)
- Relazione ricorsiva: $P(X=k+1) = \frac{p}{1-p} \cdot \frac{n-k}{k+1} \cdot P(X=k)$
- Simmetria: $P_{Bin(n,p)}(k) = P_{Bin(n,1-p)}(n-k)$
- Somma di binomiali con stesso p: $Bin(n_1, p) + Bin(n_2, p) = Bin(n_1 + n_2, p)$

3.4 Distribuzione di Poisson

Distribuzione di Poisson - $Poi(\lambda)$

Una v.a. X ha distribuzione di Poisson di parametro $\lambda > 0$ se:

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}, \quad k \in \{0, 1, 2, \ldots\}$$

Proprietà:

- $E[X] = \lambda$
- $Var[X] = \lambda$
- Funzione di ripartizione: $F_X(x) = P(X \le x) = \sum_{k=0}^{\lfloor x \rfloor} \frac{e^{-\lambda} \lambda^k}{k!}$
- Somma di Poisson indipendenti: $Poi(\lambda_1) + Poi(\lambda_2) = Poi(\lambda_1 + \lambda_2)$
- Approssimazione della binomiale: $Bin(n,p) \approx Poi(np)$ per n grande e p piccolo

3.5 Distribuzione Uniforme Discreta

Distribuzione Uniforme Discreta - Unif $\{a, a+1, \dots, b\}$

Una v.a. X ha distribuzione uniforme discreta su $\{a, a+1, \ldots, b\}$ se:

$$P(X = k) = \frac{1}{b-a+1}, \quad k \in \{a, a+1, \dots, b\}$$

Proprietà:

- $E[X] = \frac{a+b}{2}$
- $Var[X] = \frac{(b-a+1)^2-1}{12}$

3.6 Distribuzione Uniforme Continua

Distribuzione Uniforme Continua - Unif[a, b]

Una v.a. X ha distribuzione uniforme continua su [a,b] se ha densità:

$$f_X(x) = \frac{1}{b-a} 1_{[a,b]}(x)$$

Proprietà:

- $\bullet \ E[X] = \frac{a+b}{2}$
- $Var[X] = \frac{(b-a)^2}{12}$
- Funzione di ripartizione: $F_X(x) = \begin{cases} 0 & \text{se } x < a \\ \frac{x-a}{b-a} & \text{se } a \le x < b \\ 1 & \text{se } x \ge b \end{cases}$
- $P(X \in [c,d]) = \frac{d-c}{b-a} \text{ per } [c,d] \subset [a,b]$

3.7 Distribuzione Esponenziale

Distribuzione Esponenziale - $Exp(\lambda)$

Una v.a. X ha distribuzione esponenziale di parametro $\lambda>0$ se ha densità:

$$f_X(x) = \lambda e^{-\lambda x} 1_{[0,\infty)}(x)$$

Proprietà:

- $E[X] = \frac{1}{\lambda}$
- $Var[X] = \frac{1}{\lambda^2}$
- Funzione di ripartizione: $F_X(x) = \begin{cases} 0 & \text{se } x < 0 \\ 1 e^{-\lambda x} & \text{se } x \ge 0 \end{cases}$
- Proprietà di assenza di memoria: P(X > s + t | X > s) = P(X > t)
- $P(X > t) = e^{-\lambda t}$ per $t \ge 0$
- Se X_1, X_2, \ldots, X_n sono v.a. esponenziali indipendenti di parametri $\lambda_1, \lambda_2, \ldots, \lambda_n$, allora $\min\{X_1, X_2, \ldots, X_n\} \sim Exp(\lambda_1 + \lambda_2 + \ldots + \lambda_n)$

3.8 Distribuzione Normale

Distribuzione Normale - $N(\mu, \sigma^2)$

Una v.a. X ha distribuzione normale di parametri $\mu \in \mathbb{R}$ e $\sigma^2 > 0$ se ha densità:

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Proprietà:

- $E[X] = \mu$
- $Var[X] = \sigma^2$
- Se $X \sim N(\mu, \sigma^2)$, allora $Z = \frac{X \mu}{\sigma} \sim N(0, 1)$
- Se $X \sim N(0,1)$, allora $\Phi(x) = P(X \le x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$
- Simmetria: $\Phi(-x) = 1 \Phi(x)$
- Combinazione lineare: Se $X \sim N(\mu_X, \sigma_X^2)$ e $Y \sim N(\mu_Y, \sigma_Y^2)$ sono indipendenti, allora $aX + bY \sim N(a\mu_X + b\mu_Y, a^2\sigma_X^2 + b^2\sigma_Y^2)$
- Somma: Se X_1, X_2, \ldots, X_n sono v.a. normali indipendenti con $X_i \sim N(\mu_i, \sigma_i^2)$, allora $\sum_{i=1}^n X_i \sim N(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$

4 Teoremi e Formule Fondamentali

4.1 Valore Atteso e Varianza

Proprietà del Valore Atteso

- Linearità: E[aX + bY] = aE[X] + bE[Y]
- Costanti: E[c] = c
- Indipendenza: Se X e Y sono indipendenti, allora E[XY] = E[X]E[Y]
- Funzioni: $E[g(X)] = \sum_x g(x) P(X=x)$ (caso discreto) o $E[g(X)] = \int g(x) f_X(x) dx$ (caso continuo)

Proprietà della Varianza

- Definizione: $Var[X] = E[(X E[X])^2] = E[X^2] E[X]^2$
- Costanti: Var[c] = 0, $Var[aX + b] = a^2Var[X]$
- Somma: Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]
- Indipendenza: Se X e Y sono indipendenti, allora Var[X+Y] = Var[X] + Var[Y]

4.2 Covarianza e Correlazione

Covarianza e Correlazione

- Covarianza: Cov[X, Y] = E[(X E[X])(Y E[Y])] = E[XY] E[X]E[Y]
- Proprietà della covarianza:
 - Cov[X, X] = Var[X]
 - $Cov[aX + b, cY + d] = ac \cdot Cov[X, Y]$
 - Cov[X + Y, Z] = Cov[X, Z] + Cov[Y, Z]
- $-1 \le \rho(X, Y) \le 1$
- $\rho(X,Y)=\pm 1$ se e solo se esiste una relazione lineare Y=aX+b con $a\neq 0$

4.3 Disuguaglianze

Disuguaglianze Probabilistiche

- Disuguaglianza di Markov: Se $X \geq 0,$ allora $P(X \geq a) \leq \frac{E[X]}{a}$ per ognia > 0
- $\bullet\,$ Disuguaglianza di Chebyshev: $P(|X-E[X]| \geq a) \leq \frac{Var[X]}{a^2}$ per ognia>0
- Versione con deviazione standard: $P(|X E[X]| \ge k\sigma) \le \frac{1}{k^2}$ dove $\sigma^2 = Var[X]$
- Disuguaglianza di Chernoff (per $X \sim Bin(n, p)$): Per t > 0

$$P(X \ge (1+\delta)np) \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{np}$$
$$P(X \le (1-\delta)np) \le e^{-\delta^2 np/2} \quad \text{per } 0 < \delta < 1$$

4.4 Teoremi Limite

Legge dei Grandi Numeri e Teorema del Limite Centrale

• Legge dei grandi numeri (debole): Se X_1, X_2, \ldots sono v.a. i.i.d. con $E[X_i] = \mu$, allora per ogni $\varepsilon > 0$

$$\lim_{n \to \infty} P\left(\left|\frac{1}{n}\sum_{i=1}^{n} X_i - \mu\right| < \varepsilon\right) = 1$$

• Teorema del limite centrale: Se X_1, X_2, \ldots sono v.a. i.i.d. con $E[X_i] = \mu$ e $Var[X_i] = \sigma^2 < \infty$, allora

$$\frac{\sum_{i=1}^{n} X_i - n\mu}{\sigma\sqrt{n}} \xrightarrow{d} N(0,1)$$

o in forma equivalente, per ogni a < b

$$\lim_{n \to \infty} P\left(a < \frac{\sum_{i=1}^{n} X_i - n\mu}{\sigma\sqrt{n}} < b\right) = \Phi(b) - \Phi(a)$$

4.5 Trasformazioni di Variabili Aleatorie

Trasformazione di Variabili Aleatorie

• Se Y = g(X) con g strettamente monotona e X continua con densità f_X :

$$f_Y(y) = f_X(g^{-1}(y)) \cdot \left| \frac{d}{dy} g^{-1}(y) \right|$$

• Funzione di ripartizione: $F_Y(y) = P(Y \le y) = P(g(X) \le y)$

$$F_Y(y) = \begin{cases} F_X(g^{-1}(y)) & \text{se } g \text{ è crescente} \\ 1 - F_X(g^{-1}(y)) & \text{se } g \text{ è decrescente} \end{cases}$$

ullet Metodo della funzione di ripartizione: Per trovare $f_Y(y)$, calcolare $F_Y(y)$ e poi derivare

Massimo e Minimo di Variabili Aleatorie

Se X_1, X_2, \ldots, X_n sono v.a. indipendenti con funzioni di ripartizione $F_{X_1}, F_{X_2}, \ldots, F_{X_n}$, allora:

- $F_{\min\{X_1, X_2, \dots, X_n\}}(x) = 1 \prod_{i=1}^n (1 F_{X_i}(x))$
- $F_{\max\{X_1, X_2, \dots, X_n\}}(x) = \prod_{i=1}^n F_{X_i}(x)$

Se le X_i sono i.i.d. con funzione di ripartizione F:

- $F_{\min\{X_1, X_2, \dots, X_n\}}(x) = 1 (1 F(x))^n$
- $F_{\max\{X_1, X_2, \dots, X_n\}}(x) = F(x)^n$

4.6 Probabilità Condizionata e Indipendenza

Probabilità Condizionata

- Definizione: $P(A|B) = \frac{P(A \cap B)}{P(B)}$ per P(B) > 0
- Formula di Bayes: $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$
- Probabilità totali: $P(B) = \sum_i P(B|A_i) P(A_i)$ dove $\{A_i\}$ è una partizione di Ω

Probabilità e Statistica Formulario Completo

Indipendenza

- Eventi A e B sono indipendenti se $P(A \cap B) = P(A)P(B)$
- $\bullet\,$ Variabili aleatorie Xe Y sono indipendenti se:
 - Per v.a. discrete: P(X=x,Y=y)=P(X=x)P(Y=y) per ognix,y
 - Per v.a. continue: $f_{X,Y}(x,y) = f_X(x) f_Y(y)$ per ognix,y
 - In generale: $F_{X,Y}(x,y) = F_X(x)F_Y(y)$ per ogni x,y
- $\bullet\,$ Se Xe Ysono indipendenti, allora E[XY]=E[X]E[Y]e Cov[X,Y]=0
- \bullet Attenzione: Cov[X,Y]=0 non implica indipendenza (solo il viceversa)

Probabilità e Statistica Formulario Completo

5 Appendice: Formule di Regressione e Ottimizzazione

5.1 Minimizzazione dell'Errore Quadratico Medio

Regressione Lineare

Per trovare a, b che minimizzano $E[(Y - (aX + b))^2]$:

$$a^* = \frac{Cov[X, Y]}{Var[X]}$$

$$b^* = E[Y] - a^*E[X] = E[Y] - \frac{Cov[X, Y]}{Var[X]}E[X]$$

Il valore minimo dell'errore quadratico medio è:

$$\min_{a,b} E[(Y - (aX + b))^2] = Var[Y] \cdot (1 - \rho^2(X, Y))$$

dove $\rho(X,Y)$ è il coefficiente di correlazione.

5.2 Intervalli di Confidenza

Intervallo di Confidenza per la Media

Per stimare μ con un intervallo di confidenza di livello $1-\alpha$ a partire da un campione X_1, X_2, \dots, X_n i.i.d.:

$$\left(\bar{X} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right)$$

dove $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ è la media campionaria, σ è la deviazione standard (nota) e $z_{\alpha/2}$ è tale che $\Phi(z_{\alpha/2}) = 1 - \alpha/2$.

Se σ è incognita, si usa la deviazione standard campionaria s e la distribuzione t di Student:

$$\left(\bar{X} - t_{n-1,\alpha/2} \cdot \frac{s}{\sqrt{n}}, \bar{X} + t_{n-1,\alpha/2} \cdot \frac{s}{\sqrt{n}}\right)$$

dove $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ e $t_{n-1,\alpha/2}$ è il quantile della distribuzione t di Student con n-1 gradi di libertà.