Teoria dei grafi

Andrea Cosentino

30 aprile 2024

Indice

1	Lezione I	2
	Lezione II 2.1 Connettività di un grafo	7 9
3	Terza lezione	11
	3.1 Cammino euleriano	11
	3.2 Ciclo hamiltoniano	12
	3.3 Grafo bipartito	13

Capitolo 1

Lezione I

Un grafo G = (V, E) è una struttura algebrica dove V è l'insieme finito di vertici e E è l'insieme finito di archi. Inoltre, vale che $E = [V]^2$. Dato un insieme S e un qualunque intero $k \in \{2, \ldots, |S|\}$, diciamo che $[S]^k$ è la collezione di tutti i sottoinsieme di S formati da k elementi. Per esempio, dato l'insieme $S = \{1, 2, 3\}$ l'insieme $[S]^2$ contiene $\{\{1, 2\}, \{1, 3\}, \{2, 3\}\}$.

Esempio 1. Un esempio di grafo G = (V, E) è $V = \{1, 2, 3\}$ e $E = \{\{1, 2\}, \{1, 3\}\}.$

Notare che ci concentriamo su grafi con archi non orientati.

La nomenclatura che utilizzeremo per indicare dei vertici generici è i, j, u, v, mentre per indicare degli archi generici è (i, j). Dire (i, j) implicherebbe un ordine, per evitare di scrivere $\{i, j\}$ useremo (i, j) senza implicare che l'arco sia orientato.

Il numero di nodi del grafo è detto **ordine**, e corrisponde a |V|. Un grafo di ordine 0 è detto grafo **vuoto**, mentre un grafo di ordine ≤ 1 è detto grafo **banale**. Esistono solamente due grafi di ordine 2:

Dato un arco $e = (i, j) \in E$ diciamo che i, j sono vertici incidenti all'arco e. Due vertici i, j con $i \neq j$ tali che $(i, j) \in E$ sono detti vertici **adiacenti** in G(V, E). Se $E \equiv [V]^2$ diciamo che il grafo è **completo** oppure che è una **clique** (o cricca in italiano). Un grafo completo su n verti-

ci è chiamato K_n . Alcuni esempi di grafi completi sono

Un grafo completo su n vertici ha un numero di archi pari a

$$\binom{n}{2} = \frac{(n)(n-1)}{2}$$

I grafi che consideriamo sono non orientati e **semplici**. Un grafo è semplice se non ha loops (o cappi)

e non ha archi multipli, ovvero tra due nodi o c'è un arco non ce n'è neanche io. Quindi la situazione in figura non è ammessa.

Il sotto-grafo di un grafo G = (V, E) è G' = (V', E') tale che $V' \subseteq V$ e $E' \subseteq E[V']^2$. Nella seconda condizione imponiamo che se vogliamo avere l'arco (i, j) nel grafo, allora $i, j \in V'$. Senza questa condizione non otterremmo un grafo.

Esempio 2. Dato il grafo

Se la seconda condizione fosse solamente $E' \subseteq E$ potremmo scegliere $V' = \{1, 2\}$ ed $E' = \{(1, 2), (2, 3)\}$, ma siccome 3 non è un nodo, il risultato non è un grafo. Un esempio di sotto-grafo è $V' = \{1, 2, 3, 4\}$, $E' = \{(3, 4)\}$

Dato $V' \subseteq V$ il sotto-grafo G' indotto da V' è G'(V', E') con $E' = E[V']^2$. Ovvero, se seleziono i vertici seleziono anche gli archi su cui sono incidenti. Dato l'insieme di vertici V' c'è solo un sotto-grafo indotto.

Dato il grafo G(V,E) il vicinato di N(v) di $v \in v$ in G è

$$N(v) = \{ j \in V : (v, j) \in E \}$$

Cioè tutti i nodi connessi a v con un arco.

Esempio 3. Dato il grafo

Il vicinato di v è $N(v) = V \setminus \{v\}$ mentre il vicinato di v' è $N(v') = \{u, v, \omega\}$.

Il grado di v in G è d(v) = |N(v)|. Se v ha d(v) = 0 in G allora si dice **isolato**.

Definiamo il grado minimo come

$$\delta(G) = \min d(v) : v \in V$$

e il grado massimo

$$\Delta(G) = \max\{d(v) : v \in V\}$$

Se $\Delta(G) = \delta(G) = k$ allora G è k-regolare.

Esempio 4. Il seguente grafo è 2-regolare

Il grado medio è

$$D(G) = \frac{1}{|V|} \sum_{v \in V} d(v)$$

Vale che $\delta(G) \leq D(G) \leq \Delta(G)$. La **densità** è invece definita come

$$\varepsilon(G) = \frac{|E|}{|V|}$$

La densità ci dice quanti archi ha ,in media, ciascun vertice. Assomiglia al grado medio ma in quest'ultimo contiamo due volte ogni arco. Infatti vale che

$$|E| = \frac{1}{2} \sum_{v \in V} d(v)$$
$$= \frac{1}{2} D(G)|V|$$

e quindi

$$\varepsilon(G) = \frac{|E|}{|V|} = \frac{1}{2}D(G)$$

Fatto 1. In ogni grafo il numero di vertici di grado dispari è pari.

Dimostrazione 1. Cominciamo con l'osservare che |E| è un numero intero, e siccome vale che $|E| = \frac{1}{2} \sum_{v \in V} d(v)$ allora anche $\frac{1}{2} \sum_{v \in V} d(v)$ è intero. Il valore $\sum_{v \in V} d(v)$ deve essere per forza pari, dato che la sua metà è intera. Dividiamo la sommatoria in due sommatorie:

$$\sum_{v \in V: d(v) \text{ è pari}} d(v) + \sum_{v \in V: d(v) \text{ è dispari}} d(v)$$

La sommatoria pari ha come risultato sicuramente un numero pari. Questo vuol dire che, se come risultato finale vogliamo un numero pari, anche la sommatoria dispari deve risultare pari. Ciò è possibile se e solo se il numero di elementi è pari. Infatti, sommando un numero pari di numero dispari otteniamo un numero pari. Quindi il numero di vertici di grado dispari è pari.

Ci poniamo adesso la domanda se la densità può scendere sotto il grado minimo. Vediamolo prima con un esempio

Esempio 5. Il seguente grafo

Ha
$$\delta(G)=1$$
 e $\varepsilon(G)=\frac{1}{2},$ quindi $\delta(G)>\varepsilon(G)$

Fatto 2. $\forall G$ con almeno un arco, ha un sotto-grafo indotto H tale che

$$\delta(H) > \varepsilon(H) \ge \varepsilon(G)$$

Dimostrazione 2. Consideriamo una sequenza di grafi

$$G = G_0, G_1, G_2, \dots$$

Dove $G_i = (V_i, E_i)$ e $V_0 \supseteq V_1 \supseteq V_2$, con G_i grafo indotto da V_i . Se $V_0 (= V)$ ha v_0 tale che $d(v_0) \le \varepsilon(G_0)$ creiamo $V_1 = V_0 \setminus \{v_0\}$. Notiamo che se non esiste v_0 che rispetta la condizione, allora

$$\forall v \in Vd(v) > \varepsilon(G_0)$$

e quindi $d(G_0) > \varepsilon(G_0)$. In questo caso avremmo già dimostrato il teorema con H = G.

Consideriamo adesso G_1 indotto da V_1 (ricordiamo che $V_1 = V_0 \backslash v$). Iteriamo svolgendo la stessa operazione di prima fino a quando V_i è tale che $\forall v \in V_i d(v) > \varepsilon(G_i)$. Notiamo che ci fermeremo prima di svuotare il grafo, infatti arriveremo al caso base

dove sappiamo che vale $\delta(G) > \varepsilon(G)$. Se G_{i+1} viene creato, allora

$$\varepsilon(G_{i+1}) = \frac{|E_{i+1}|}{|V_{i+1}|}$$
$$= \frac{|E_i - d(v_i)|}{|V_i - 1|} \ge \frac{|E_i - \varepsilon(G_i)|}{|V_i - 1|}$$

Dove la disuguaglianza vale per la condizione con cui costruiamo il sottografo.

$$= \frac{|E_i| - \frac{|E_i|}{|V_i|}}{|V_i - 1|} = \frac{|E_i||V_i| - |E_i|}{|V_i|(|V_i - 1|)}$$

dove abbiamo portato a fattore comune il numeratore.

$$= \frac{|E_i|(|V_i| - 1)}{|V_i|(|V_i - 1|)} = \varepsilon(G_i)$$

Quindi quando ci fermiamo avremo ${\cal G}_k$ tale che

$$\delta(G_k) > \varepsilon(G_k) \ge \varepsilon(G_0)$$

Capitolo 2

Lezione II

Un **cammino** di lunghezza $k \geq 0$ in G = (V, E) è un sotto-grafo P_k con k archi e k+1 vertici distinti tale che $e_i = (v_{i-1}, v_i)$. Indichiamo gli archi con $e_1 \dots e_k$ e i nodi con v_0, \dots, v_k .

Usiamo la nuvoletta quando non ci interessa la struttura del grafo. Evidenziamo solo una certa parte. Nel caso in cui P_0 non abbiamo archi nel cammino ma un singolo vertice.

Un **ciclo** C_k di lunghezza $k \geq 3$ è formato da un cammino P_{k-1} che può essere esteso in G includendo l'arco (v_{k-1}, v_0) .

In un grafo G, il **calibro** g(G) è la lunghezza del ciclo più breve. La **circonferenza** è la lunghezza del ciclo più lungo.

Fatto 3. $\forall G \text{ con } \delta(G) > 2 \text{ contiene}$ un cammino di lunghezza $\delta(G)$ e un ciclo di lunghezza almeno $\delta(G) + 1$.

Dimostrazione 3. Prendiamo il cammino più lungo del grafo, P_k . Allora tutti i vicini di P_k fanno parte del cammino, altrimenti potrei aggiungerli e allungarlo, P_k non sarebbe il più lungo. Quindi il cammino P_k è almeno lungo $|N(v_k)|$, dove v_k è l'ultimo nodo del cammino. Siccome per ipotesi $|N(v_k)| \geq \delta(G)$ allora esiste un cammino di lunghez-

za $\delta(G)$. Consideriamo ora il primo vertice che è un vicino di v_k .

In rosso è evidenziato il cammino P_k e in blu il primo vertice che è vicino di v_k . Se consideriamo il cammino in rosso da v_i fino a v_K e aggiungiamo (v_k, v_i) troviamo un ciclo, ciò vale sempre per il fatto $\delta(G) \geq 2$. Il ciclo C è lungo almeno $N(v_k) + 1 \geq \delta(G) + 1$.

Dato $G = (V, E) \ \forall i, j \in V \exists d(i, j) \text{ se}$ i, j sono connessi in G da almeno 1 cammino allora d(i, j) è la lunghezza del cammino più breve, altrimenti è ∞ .

Esempio 6. Dato il grafo

La distanza tra i, j è $d(i, j) = \infty$.

Il diametro è definito come

$$diam(G) = \max_{i,j \in V} d(i,j) = \max_{i \in V} \max_{j \in V} d(i,j)$$
e il raggio

$$rad(G) = \min_{i \in V} \max_{j \in V} d(i, j)$$

Il raggio lo possiamo vedere come il punto "più centrale". Sia x questo punto centrale, vale che $\forall v \in Vd(x,v) \leq rad(G)$. Inoltre $rad(G) \leq diam(G)$ e questo è ovvio dato che il diametro è una massimizzazione del massimo, mentre il raggio è una minimizzazione del massimo. Possiamo anche dire che $diam(G) \leq 2rad(g)$, dato che

$$\forall u, v \in Vd(u, v) \le d(u, x) + d(x, v)$$
$$< rad(G) + rad(G) = 2rad(G)$$

Fatto 4. $\forall G$ che ha almeno un ciclo soddisfa

$$q(G) \le 2diam(G) + 1$$

Dimostrazione 4. Consideriamo il grafo

dove il ciclo C è il più corto, con lunghezza g(G). I due vertici x, y sono vertici opposti, cioè tagliano il ciclo in due parti il più possibile uguali. Chiamiamo il percorso in rosso p_1 e il percorso in blu p_2 . Assumiamo per assurdo che $g(G) \geq 2diam(G) + 2$. Allora p_1, p_2 sono lunghi ciascuno almeno diam(G) + 1. Però d(x, y) < $\overline{diam}(G)$ per la definizione stessa di diametro. Non tutti gli archi di P (cioè del percorso più breve) stanno su C, altrimenti il ciclo avrebbe lunghezza 2diam(G) + 1. Quindi, possiamo costruire un ciclo più piccolo, prendendo gli archi che non stanno né su P_1 né su P_2 .

Il ciclo in arancione è più piccolo di C, quindi deve per forza valere che $g(G) \leq 2diam(G) + 1$.

2.1 Connettività di un grafo

Un grafo è **sconnesso** se $\exists i, j \in V$ | $d(i, j) = \infty$. Una **componente** di un grafo è un qualunque insieme massimale di vertici connessi. Se un grafo è connesso il componente è

il grafo stesso. G è k-connesso se |V| > k e $\forall X \subset V$ con |X| < k il sotto-grafo indotto $V \setminus X$ è connesso. Se un grafo è k-connesso non possiamo sconnettere il grafo rimuovendo al più k-1 vertici. Tutti i grafi sono 0-connessi. Se G è connesso è anche 1-connesso, tranne il caso K_1 (cricca di un elemento) perché non rispetta la condizione |V| > 1. Il massimo intero k tale che G è k-connesso è detta **connettività** di K0, che denotiamo con K(G)0. Vale che $K(K_n) = n-1$ 0.

Esempio 7. Nel caso di K_4

il numero di nodi che possiamo rimuovere è 3.

Teorema 1. Se $G \notin \{k_0, k_1\}$ (ovvero G non è un grafo banale), allora $K(G) \leq F \leq \delta(G)$ dove k è qualsiasi insieme minimo di archi la cui rimozione sconnette il grafo.

Dimostrazione 5. La disequazione $F \leq \delta(G)$ è banale. Infatti se sconnetto tutti gli archi attorno a un nodo ho sconnesso il grafo. Concentriamoci su $K(G) \leq F$ e distinguiamo due casi:

 \square G ha un vertice v che non è incidente a F.

dove C è la componente del grafo che ottengo quando rimuovo F e V_c è l'insieme dei nodi connessi agli archi in F. Siccome rimuovendo V_c sconnetto il grafo allora $K(G) \leq |V_c| \leq |F|$

 \square G è tale che tutti i vertici sono incidenti con qualche arco in F.

Il grafo G ha connettività $K(G) \leq d(v)$. Siccome $d(v) = |F| = \delta(G)$ vale che $K(G) \leq |F|$.

Capitolo 3

Terza lezione

3.1 Cammino euleriano

Un cammino **chiuso** (in inglese closed walk) è un ciclo in cui i vertici non sono distinti. Un cammino chiuso si dice **euleriano** se attraversa tutti gli archi del grafo esattaemente una volta. Un grafo è euleriano se ammette un cammino euleriano.

Teorema 2. Teorema di Eulero (1746)

Un grafo connesso è euleriano se e solo se ogni vertice ha grado pari.

Dimostrazione 6. Cominciamo con dimostrare il lato => del teorema. Quindi, dato un grafo connesso euleriano questo ogni vertice ha grado pari. Prendiamo un vertice che si trova sul cammino euleriano.

Se il cammino passa per il vertice, allora deve sia entrare che uscire. Non può esserci un arco che collega un vicino che non sia nel cammino. Quindi o un vertice è isolato oppure il cammino esce ed entra. Allora devono avere grado pari.

L'altro verso necessita un po' più di lavoro per essere dimostrato. Quello che vogliamo dimostrare è che se ogni vertice ha grado pari allora il grafo è euleriano. Facciamo una dimostrazione per induzione su |E|.

Caso base |E| = 0, banale. Implica che |V| = 1 perché parliamo di grafi connessi.

Ipotesi induttiva $|E| \ge 1$. Enunciamo un fatto utile.

Fatto 5. Se G ha tutti i vertici con grado pari con $E \leq 1$, posso trovare in G un cammino chiuso che non contiene un arco **più** di una volta.

Sia ω un tale cammino di lunghezza massima. Ne rappresentiamo uno da esempio in figura.

Definiamo come F l'insieme degli archi di ω . Se $F \equiv E$ allora abbiamo finito, dato che tutti gli archi di G fanno parte del cammino ω . Assumiamo per assurdo che non sia così. Allora deve valere

$$E' \equiv E \backslash F \neq \varnothing$$

Notiamo che $\forall v \in V$ un numero pari di $u \in N(v)$ appartiene a F. Allora il sotto-grafo G' = (V, E') ha tutti i vertici di grado pari (ricordiamo che 0 è pari). E' evidente che ci debba essere almeno n nodo e attaccato al cammino, altrimenti il grafo non sarebbe connesso.

Sia C la componente di G' che contiene e. C ha un numero di archi < |E|, dato che almeno un arco l'abbiamo rimosso. Per ipotesi induttiva C contiene un cammino euleriano. Ma allora possiamo costruire un cammino euleriano per G unendo ω

e il cammino trovato in C. Quindi abbiamo costruito un cammino più lungo di ω , contraddicendo l'ipotesi che sia massimo. Allora $F \equiv E$ e così abbiamo dimostrato il teorema.

Se un grafo è euleriano possiamo trovare un cammino euleriano in tempo O(|E|), i.e. in tempo lineare nella descrizione del grafo (algoritmo di Hierholzer).

3.2 Ciclo hamiltoniano

Un ciclo hamiltoniano è un ciclo che contiene tutti i vertici. Un grafo si dice hamiltoniano se contiene un ciclo hamiltoniano. Non è nota alcuna condizione necessarie e sufficiente affinché un grafo sia hamiltoniano. Sono note solamente condizioni sufficienti.

Teorema 3. Teorema di Dirac (1952). Un grafo G = (V, E) con $|V| \ge 3$ e $\delta(G) \ge \frac{|V|}{2}$ è hamiltoniano.

Dimostrazione 7. Cominciamo con dimostrare che G deve essere connesso. Se per assurdo non lo fosse allora ha almeno due componenti.

Ogni componente è tale che $|C| \leq \frac{|V|}{2}$. Questo è ovvio, perché se una componente ne avesse più di $\frac{|V|}{2}$, un'altra dovrebbe averne di meno, e quindi non varrebbe la condizione $\delta(G) \geq \frac{|V|}{2}$. Notiamo ora che

$$\forall v \in C \ d(v) \le |C| - 1$$

poiché al massimo un nodo può avere un arco con tutti gli altri nodi nella componente. Questa affermazione ci porta a poter dire che

$$d(v) \le |C| - 1 < \frac{|V|}{2}$$

ovvero

$$d(v) < \frac{|V|}{2}$$

che viola le ipotesi. Sappiamo che G è connesso. Sia ora p un cammino di lunghezza massima in G con nodi v_0, v_1, \ldots, v_k , con archi (v_i, v_{i+1}) , dove v_i viene detto **vertice sinistro** e v_{i+1} **vertice destro**.

$$v_0$$
 v_1 v_i v_{1+1} v_{k-1} v_k

Tutti i vicini di v_0 e v_k sono nel cammino, altrimenti posso allungarlo aggiungendoli. Ricordiamo che vale anche $d(v_i) \geq \frac{n}{2}$ dove n = |V|. p non può avere più di n archi, quindi la sua lunghezza k è tale che

$$k \le n - 1$$

dove non può essere $k \geq n$ sennò ripeterei dei nodi (e quindi non sarebbe un cammino). Ora associamo a

ogni vicino di v_0 l'arco a sinistra (per esempio a v_i associamo (v_{i-1}, v_i)) e a ogni vicino di v_k l'arco a destra. Per il principio della piccionaia c'è almeno un arco che è preso sia da un vicino di v_0 che da un vicino i v_k

Possiamo costruire un ciclo che va da v_0 a v_i , poi da v_i raggiunge v_k , da v_k a v_{i+1} e poi v_0 .

Se esistesse un vertice che non facesse parte di questo ciclo, sarebbe sicuramente un vicino, dato che il grafo è connesso. Ma allora potrei usarlo per allungare il percorso p violando l'ipotesi di massimalità. Quindi il ciclo passa per tutti i nodi, i.e. è hamiltoniano.

Il problema di determinare se un grafo G contenga un cammino hamiltoniano è NP-completo, questo spiega il motivo per cui non c siano delle condizioni necessarie e sufficienti.

3.3 Grafo bipartito

Un grafo G = (V, E) è detto **bipartito** se \exists una partizione V_1, V_2 di V tali che $\forall (i,j) \in E \ i \in V_1 \land j \in V_2$ o viceversa. Ricordiamo che V_1 e V_2 in quanto partizione di V sono tali che $V_1 \cap V_2 \equiv V_1 \cup V_2 = \varnothing$.

Esempio 8. I grafi bipartiti sono usati per esempio su Tinder, Amazon e Netflix.

Possono contenere cicli, che sono sempre pari! Vale anche il viceversa, ovvero un grafo che contiene solo cicli di lunghezza pari è bipartito.