Лабораторная работа 2.3.1. Получение и измерение вакуума.

Радькин Кирилл, Б01-005

24 апреля 2021 г.

Цель работы: 1) измерение объёмов форвакуумной и высоковакуумной частей установки; 2) определение скорости откачки системы в стационарном режиме, а также по ухудшению и по улучшению вакуума.

В работе используются: вакуумный пост

Теоретическая справка:

В физике вакуумом называют состояние газа, при котором характерная длина свободного пробега молекул в газе λ сравнима по порядку величины с характерным линейным размером сосуда d, в котором газ находится. Для воздуха при нормальных условиях $\lambda \sim 10^{-5} {\rm cm}$, откуда видно, что воздух в жилых помещениях не находится в состоянии вакуума.

В технике вакуумом называют состояние газа при котором его давление меньше атмосферного (р < $p_{\text{атм}}$). Различают следующие типы вакуума: низкий ($\lambda < d$), средний ($\lambda \sim d$), высокий (или глубокий) ($\lambda >> d$).

Некоторые понятия для работы с вакуумной техникой:

Предельное остаточное давление (предельный вакуум) — наименьшее давление газа, которое формируется в процессе откачки в рассматриваемом сечении вакуумпровода (рассматриваемой точке вакуумной системы).

Наибольшее выпускное давление — максимально допустимое давление газа на входе насоса.

Быстрота откачивающего действия (скорость откачки) вакуумной системы (S) — объем газа, проходящий через рассматриваемое сечение вакуумпровода в единицу времени при текущем давлении в данном сечении:

$$S = \frac{dV}{dt}$$

Падение давления вдоль вакуумпровода $\Delta P = P_1 - P_2$ определяется его пропускной способностью (проводимостью) U:

$$U = \frac{Q}{P_1 - P_2},$$

где Q — поток газа через вакуумпровод с соответствующими давлениями на концах.

В общем случае указанные величины S, U, Q как и сами давления P_1 и P_2 зависят от времени. Но в конце процесса откачки устанавливается квазистационарный режим, при котором поток газа становится практически постоянным и равным количеству поступающего в систему газа в единицу времени вследствие наличия течей, т.е. нарушения герметичности (в основном в местах механического соединения отдельных узлов вакуумной системы).

Количественной характеристикой течи, является натекание $Q_{\scriptscriptstyle \rm H}$, измеряемое при отключенных средствах откачки:

$$Q_{\scriptscriptstyle H} = V \frac{P_{\scriptscriptstyle K} - P_{\scriptscriptstyle H}}{\Delta t}$$

На пропускную способность вакуумпровода существенно влияет режим течения газа, который характеризуется числом Кнудсена:

$$Kn = \frac{\lambda}{d}$$

Данная величина характеризует степень разреженности газового потока:

- -В гидродинамическом (вязкостном) режиме течения (Kn << 1) различают ламинарные и турбулентные потоки.
- —В молекулярном (кнудсеновском) режиме (Kn >> 1) течение газа сводится к независимому движению отдельных молекул по прямым линиям в периоды между соударениями главным образом со стенками вакуумпровода.
- -В переходном режиме (Kn \sim 1) в системе могут существовать все описанные выше виды течения.

В кнудсеновском режиме выражение для проводимости отверстия радиусом R выглядит так:

$$U_{\rm otb} = \frac{1}{4} S_{\rm otb} \langle \nu \rangle = \frac{1}{4} R^2 \sqrt{\frac{8\pi k T}{m}} \sim R^2 \sqrt{\frac{T}{m}}$$

Для трубы длиной L(L >> R) это выражение примет вид:

$$U_{\text{\tiny OTB}} = \frac{Q}{P_2 - P_1} = \frac{4R^3}{3L} \sqrt{\frac{2\pi kT}{m}} \sim \frac{R^3}{L} \sqrt{\frac{T}{m}}$$

Пусть $V_{\rm o}$ — объём камеры, а $S_{\scriptscriptstyle \rm H}$ — быстродействие насоса, тогда время откачки можно получить по следующей формуле:

$$dt = -V_{\rm o} \left(\frac{1}{S_{_{\rm H}}} + \frac{1}{U}\right) \frac{dP_1}{P_1}$$

В случае $S_{\rm o}=const$ решение упрощается:

$$P(t) = P_1 \exp \left(-\frac{S_{\rm o}}{V_{\rm o}} t \right)$$

Экспериментальная установка(схема):

Экспериментальная установка:

Ход работы:

- 1. Для начала работы с экспериментальной установкой подготовим всё для снятия измерений. Для этого подготовим все краны, предврательно открыв их, далее включим программу на компьютере, управляющую насосами и вакууметрами.
- 2. Для обработки данных необходимо знать объёмы кранов установки. Для определения объемов частей установки (объем вакуумной камеры V_k , объем форвакуумной магистрали + объем ТМН $V_{\rm H}$ воспользуемся законом Бойля-Мариотта. Для этого необходимо определить давления в различных состояниях установки (исследовать различные части установки). Присоединяя часть известного объёма к установке, можно измерить давление до и после, из закона Бойля-Мариотта получить сам объём кранов установки. Для этого проделаем следующее:
 - (а) Откачаем установку форвакуумным насосом ДН.
 - (b) Присоединим к установке сильфон с воздухом при атмосферном давлении.
 - (с) Выравним давления в сильфоне С и вакуумной камере К экспериментального стенда.
 - (d) Выравним давление вакуумной камеры К и форвакуумной магистрали установки.
 - (е) Выравним давление во всей установке, включая объем турбомолекулярного насоса ТМН.
 - (f) Зафиксируем установившиеся показания вакуумметров.

На каждом этапе выравнивания давления фиксируем его. Для лучшей точности было проведено 3 измерения, результаты которых занесены в таблицу. Значения погрешностей определяются с формул погрешностей прямых измерений.

1			2	3		
р, мбар	$\sigma_{\mathfrak{p}}$, мбар	р, мбар	σ _p , мбар	р, мбар	σ_p , мбар	
3.2	0.08	3.5	0.06	3.2	0.06	
190	3	196	5	194	6	
140	3	144	5	145	6	

Используя закон Бойля-Мариотта получаем(с учетом известного объема сильфона $V_{\text{сильф}} = 265 \text{ мл}$):

Номер измерения	V_k , cm ³	σ_{V_k} , cm ³	$V_{\rm H}$, cm ³	$\sigma_{V_{\rm H}}$, cm ³	
1	1148	39	517	18	
2	1105	55	510	26	
3	1120	60	479	39	

Усредним значения:

$$V_k = 1124 \pm 60 \text{cm}^3, V_H = 502 \pm 39 \text{cm}^3$$

- 3. Измерим скорость откачки ТМН. Для этого проделаем следующие действия:
 - (а) Отсоединим сильфон от установки.
 - (b) Откачаем установку форвакуумным насосом ДН.
 - (с) Откачаем объём турбомолекулярным насосом ТМН.
 - (d) Можем заметить, что терморезисторный вакуумметр 1 достиг своего предела измерений, в то время как комбинированный вакуумметр 2 (точнее его магнетронная часть) продолжает отображать корректное давление в системе. Зафиксируем предельное давление в высоковакуумной части установки и время откачки установки насосом ТМН.

(e) Определим уровень течей и скорость откачки системы. Для этого закроем шибер ШЗ, при этом давление в системе начнёт повышаться за счёт наличия течей. Получим таким образом зависимость показаний вакууметра 2 от времени. Когда давление превысит $3 \cdot 10^{-3}$ мбар, снова откроем шибер. Получим зависимость показаний вакуумметра 2 от времени после открытия шибера. Снова зафиксируем предельное давление. Занесем в таблицу сразу $\ln P$ от t.

t, c	2	4	6	8	10	12	14	16	18
ln P	4.7	4.51	4.25	4.16	4.07	3.98	3.73	3.64	3.52
t, c	20	22	24	26	28	30	32	34	36
ln P	3.47	3.39	3.19	2.97	2.92	2.75	2.70	2.66	2.48
t, c	38	40	42	44	46	48	50	52	54
ln P	2.43	2.27	2.19	2.13	2.07	2.01	1.96	1.94	1.86

С помощью углового коэффициента вычисляем постоянную времени откачки: $\tau = 18.29 \pm 0.48$ с

Отсюда находим эффективную скорость откачки камеры и пропускную способность (быстродействие насоса $S_{\scriptscriptstyle \rm H}=139~{\rm ma/c}$):

$$S_0 = \frac{V_0}{\tau} = 61.43 \pm 3.66$$
 мл/с $\frac{1}{S_0} = \frac{1}{S_H} + \frac{1}{U} \rightarrow U = \frac{S_H \cdot S_0}{S_H - S_0} = 110.09 \pm 6.55$ мл/с

4. Измерим влияние течи на вакуум. Проделывая аналогичные действия откачки с помощью ТМН, получим следующую таблицу(для того, чтобы убедиться в повторяемости результатов, на самом деле было проделано 3 эксперимента, которые имеют одинаковый результат) и из неё строим график:

t, c	2	4	6	8	10	12	14	16	18
ln P	-9.6	-9.62	-9.66	-9.67	-9.69	-9.73	-9.76	-9.77	-9.79
t, c	20	22	24	26	28	30	32	34	36
ln P	-9.84	-9.86	-9.88	-9.89	-9.90	-9.91	-9.97	-9.99	-9.98
t, c	38	40	42	44	46	48	50	52	54
ln P	-10.00	-10.06	-10.08	-10.09	-10.11	-10.12	-10.16	-10.16	-10.18
t, c	56	58	60	62	64	66		68	
ln P	-10.18	-10.18	-10.21	-10.21	-10.21	-10.23		-10.23	

С помощью углового коэффициента вычисляем постоянную времени откачки: $\tau = 99.86 \pm 2.49$ с

Отсюда находим эффективную скорость откачки камеры и пропускную способность (быстродействие насоса $S_{\mbox{\tiny H}}=139$ мл/с):

$$S_0 = \frac{V_0}{\tau} = 11.25 \pm 0.66 \text{ ma/c}$$

$$rac{1}{S_0} = rac{1}{S_{\scriptscriptstyle H}} + rac{1}{U}
ightarrow U = rac{S_{\scriptscriptstyle H} \cdot S_0}{S_{\scriptscriptstyle H} - S_0} = 12.25 \pm 0.72$$
 ма/с

Сравним полученное значение с оценкой, выведенной для проводимости отверстия:

 $U_{\text{отв}} = \frac{A \nu}{4} = \frac{\pi R^2}{4} \sqrt{\frac{8kT}{\pi m}} = 30$ мл/с Порядок величин совпадает, значит полученное значение имеет смысл.

Определим уровень течей по ухудшению вакуума после перекрытия откачки насосом ТМН. Для этого удобно взять часть графика, где соблюдается линейная зависимость.

$$Q_{\scriptscriptstyle
m H} = V rac{{
m dP}}{{
m dt}} = 0.03$$
 мл·мбар / с \ll PS $_{
m O}$

5. Оценим число Кнудсена для предельных давлений после использования ДН и ТМН для создания вакуума, зная, что диаметр молекул воздуха равен 0.365 нм.

$$Kn = \frac{\lambda}{d} \sim \frac{1}{\sqrt{2}\sigma n\sqrt[3]{V}} = \frac{kT}{\sqrt{2}\sigma p\sqrt[3]{V}}$$

$$Kn_{_{\mathrm{JH}}} = 8 \cdot 10^{-4} \ Kn_{\mathrm{TMH}} = 300$$

При первом значении — гидродинамический режим течения, а при втором — молекулярный режим течения.

Вывод: В результате проделанного эксперимента были изучены основные современные способы получения вакуума, изучены численные характеристики используемых насосов, а также определены скорости откачки системы в стационарном режиме и по ухудшению и улучшению вакуума.