Assignment #8

Student name: Md Afzal Ansari MIT2019072

Course: Soft Computing – Professor: Prof. G C Nandi Due date: April 26th, 2020

Question 1

Consider three strings A_1 =11101111, A_2 = 00010100, A_3 = 01000011 and six schemata H_1 =1******, H_2 =0******, H_3 = *****11, H_4 = ***0*01*, H_5 = 1*****1*, and H_6 =1*****1*. Which schemata is matched by which string? What are the order and defining length of each of the schemata? Estimate the probability of survival of each schema under mutation when the probability of a single mutation is p_m =0.001. Estimate the probability of survival of each schema under crossover when the probability of crossover p_c =0.85.

Answer. In this case,

String A_1 is matched with schemata H_1 , H_3 , H_5 , H_6 .

String A_2 is matched with schemata H_2 .

String A_3 is matched with schemata H_2 , H_3 , H_4 .

The defining length and order can be given as:

For
$$H_1$$
, $\delta(H_1) = 1 - 1 = 0$, Order of H_1 o $(H_1) = 1$
For H_2 , $\delta(H_2) = 1 - 1 = 0$, Order of H_2 o $(H_2) = 1$
For H_3 , $\delta(H_3) = 8 - 7 = 1$, Order of H_3 o $(H_3) = 2$
For H_4 , $\delta(H_4) = 7 - 4 = 3$, Order of H_4 o $(H_4) = 3$
For H_5 , $\delta(H_5) = 7 - 1 = 6$, Order of H_5 o $(H_5) = 2$
For H_6 , $\delta(H_6) = 7 - 1 = 6$, Order of H_6 o $(H_6) = 2$

The probability of a single mutation is $p_m = 0.001$

The probability of survival of each schema under mutation is given by:

$$S_m = (1 - P_m)^{o(H)}$$
 (1)
For H_1 , $S_m(H_1) = (1 - 0.001)^1 = 0.999$
For H_2 , $S_m(H_2) = (1 - 0.001)^1 = 0.999$

For
$$H_3$$
, $S_m(H_3) = (1 - 0.001)^2 = 0.998$

For
$$H_4$$
, $S_m(H_4) = (1 - 0.001)^3 = 0.997$

For
$$H_5$$
, $S_m(H_5) = (1 - 0.001)^2 = 0.998$

For
$$H_6$$
, $S_m(H_6) = (1 - 0.001)^2 = 0.998$

The probability of crossover is $p_c = 0.85$

The probability of survival of each schema under crossover is given by:

$$S_c(H) = 1 - P_c \frac{\delta(H)}{l-1}$$
 (2)

For
$$H_1$$
, $S_c(H_1) = 1 - 0.85^*\frac{0}{7} = 1$

For
$$H_2$$
, $S_c(H_2) = 1 - 0.85^*\frac{0}{7} = 1$

For
$$H_3$$
, $S_c(H_3) = 1 - 0.85^* \frac{1}{7} = 0.87$

For
$$H_4$$
, $S_c(H_4) = 1 - 0.85^{*\frac{3}{7}} = 0.635$

For
$$H_5$$
, $S_c(H_5) = 1 - 0.85^{*6}_{7} = 0.271$

For
$$H_6$$
, $S_c(H_6) = 1 - 0.85 * \frac{6}{7} = 0.271$

Question 2

A population contains the following strings and fitness values at generation 0 as given in question pdf. The probability of mutation is $p_m = 0.01$ and the probability of crossover is $p_c = 0.7$. Calculate the expected number of schemata of the form 1**** in generation 1. Estimate the expected number of schemata of the form0**1* in generation 1.

Answer. For the H_1 schemata.

Number of copies of schema H_1 in generation t, $m(H_1, t) = 2$

The average fitness is given as $f(H_1) = (20 + 10)/2 = 15$.

The average fitness of all the strings is given as $a_t = (20 + 10 + 5 + 15)/4 = 12.5$

The order of H_1 , $o(H_1) = 1$ and the defining length $\delta(H_1) = 0$.

Then the probability of crossover or mutation will destroy the schema is given as:

$$p = \frac{\delta(H_1)}{l-1} * P_c + o(H_1) P_m \tag{3}$$

$$p = \frac{0}{4} * 0.7 + 1 * 0.01 = 0.01 \tag{4}$$

According to Holland's Schema theorem, the expected number of schemata of H_1 in generation 1 is given as:

$$E(m(H_1, t+1)) = \frac{m(H_1, t)f(H_1)}{a_t}(1-p)$$
 (5)

$$E(m(H_1, t+1)) = \frac{2*15}{12.5}(1-0.01) = 2.376$$
 (6)

For the H_2 schemata.

Number of copies of schema H_2 in generation t, $m(H_1, t) = 2$

The average fitness is given as $f(H_2) = (5 + 15)/2 = 10$.

The average fitness of all the strings is given as $a_t = (20 + 10 + 5 + 15)/4 = 12.5$

The order of H_2 , $o(H_2) = 2$ and the defining length $\delta(H_2) = 4-1 = 3$.

Then the probability of crossover or mutation will destroy the schema is given as:

$$p = \frac{\delta(H_2)}{l-1} * P_c + o(H_2) P_m \tag{7}$$

$$p = \frac{3}{4} * 0.7 + 2 * 0.01 = 0.545 \tag{8}$$

According to Holland's Schema theorem, the expected number of schemata of H_2 in generation 1 is given as:

$$E(m(H_2, t+1)) = \frac{m(H_2, t)f(H_2)}{a_t}(1-p)$$
 (9)

$$E(m(H_2, t+1)) = \frac{2*10}{12.5}(1-0.545) = 0.728$$
 (10)