

OWERWIEW

DATA

Data description:-

This data set includes information about individual rides made in a bike-sharing system covering the greater San Francisco Bay area

Cleaned data columns:-

start_time	 The detailed date of the trip
start_station_name	 Address of trip start location
end_station_name	 Address of trip end location
bike_id	• An unique ID for every bike
user_type	 (Subscriber or Customer – "Subscriber" = Member or "Customer" = Casual)
member_gender	• Male , female or other
age	The member age
distance	 The trip distance in KM
duration_min	 Trip duration in minutes
speed(km/hr) • 7	The member speed in the trip

Insights:-

LOOK at age, Speed, duration and distance distribution and get some results Study number of trips in different times as Different hour of the day...etc **User classification counting "gender and type"** Most common start and end station names Relation between customer type and trip duration and his speed Relation between customer gender and trip duration and his speed find the relation between speed, duration and age relation between gender ad user type

Relation between day and hour

Common start to end combination with more than 200 record relation between distance and other parameter

LOOK at age distribution

Comment :-

age has right skewed distribution with mean of 34 and minimum age of 18 and maximum age of 81

the most common customer age is 31

with the increase of age the number of customer decrease and that makes sense because the health Also the small age has a little number of trips

Speed, duration distance distributions

Study number of trips in different times

Comment:

Thursday has the high number of trip in the week and Saturday has the least number of trips.

In my opinion this related to the weekend

User classification

type

Subscriber type is the most common type more than the customer type

Gender

Men love riding bike more than women so that's normal that the number of men's trips mor than number of women

Most common start and end station names "more than 1500 user "

Relation between customer type and trip duration and his speed

Customer travel in a small average compare to the subscriber and the normal also it has a wide range of speed rather than the customer

Relation between customer gender and trip duration and his speed

Its clear that male has a bigger speed and longer trips than the female

find the relation between speed, duration and age

The duration decrease also with the increase of age as older people can't ride for long times

The speed decrease with the increase of age and that a normal observation because it is a negative relation between the age and riding bike speed

Relation between day and hour

there is some active hour for every day

relation between gender ad user type

- there is a relation between gender and type as all gender has many subscriber more than customer

Common start to end combination with more than 200 record

The most common combination is from 19th Street BART Station to Grand Ave at Perkins St

start_station_name
19th Street BART Station
2nd St at Townsend St

5th St at Virginia St

Bancroft Way at College Ave Berry St at 4th St Bryant St at 2nd St Division St at Potrero Ave Grand Ave at Perkins St Market St at 10th St

San Fernando St at 4th St San Fernando St at 7th St San Francisco Ferry Building (Harry Bridges Plaza) The Embarcadero at Sansome St Townsend St at 7th St

end_station_name			
Grand Ave at Perkins St			
Montgomery St BART Station (Market St at 2nd St)			
San Francisco Ferry Building (Harry Bridges Plaza)			
San Fernando St at 4th St			
San Fernando St at 7th St			
Bancroft Way at Telegraph Ave			
San Francisco Ferry Building (Harry Bridges Plaza)			
Montgomery St BART Station (Market St at 2nd St)			
San Francisco Caltrain Station 2 (Townsend St at 4th St)	218		
19th Street BART Station			
Montgomery St BART Station (Market St at 2nd St)			
Powell St BART Station (Market St at 4th St)			
San Francisco Caltrain Station 2 (Townsend St at 4th St)	232		
5th St at Virginia St	220		
5th St at Virginia St	249		
The Embarcadero at Sansome St			
Steuart St at Market St			
San Francisco Caltrain Station 2 (Townsend St at 4th St)	260		

relation between distance and other parameter

In general the trip distance decrease with the increase of age but it's clear that subscribers has big distance than the customer and also male has a bigger distance than females

2 Convert data type

start_time object bike_id int64 user_type object member_gender object

start_time datetime64[ns]
bike_id object
user_type category
member_gender category

3 invalid birth of year

There is some birth of year smaller than 1934 which mean the customer is older than 85

1 Delete unneeded column

4 make new columns

speed(km/hr)

•Distance / duration

age

•Trip year – birth year

distance

 Calculate by the langitude and longitude

 $d = 2r \arcsin\left(\sqrt{\sin^2\left(\frac{\phi_2 - \phi_1}{2}\right) + \cos(\phi_1)\cos(\phi_2)\sin^2\left(\frac{\lambda_2 - \lambda_1}{2}\right)}\right)$

