The Comparison Test Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms.

- (i) If $\sum b_n$ is convergent and $a_n \leq b_n$ for all n, then $\sum a_n$ is also convergent.
- (ii) If $\sum b_n$ is divergent and $a_n \ge b_n$ for all n, then $\sum a_n$ is also divergent.

Example 1

Determine whether the series $\sum_{n=1}^{\infty} \frac{5}{2n^2 + 4n + 3}$ converges or diverges.

Consider the series

$$\sum_{n=1}^{\infty} \frac{1}{2^n - 1}$$

The inequality

$$\frac{1}{2^n-1}>\frac{1}{2^n}$$

The Limit Comparison Test Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms. If

$$\lim_{n\to\infty}\frac{a_n}{b_n}=c$$

where c is a finite number and c > 0, then either both series converge or both diverge.

Example 3

Test the series $\sum_{n=1}^{\infty} \frac{1}{2^n - 1}$ for convergence or divergence.

Alternating Series

Alternating Series Test If the alternating series

$$\sum_{n=1}^{\infty} (-1)^{n-1}b_n = b_1 - b_2 + b_3 - b_4 + b_5 - b_6 + \cdots \qquad b_n > 0$$

satisfies

(i)
$$b_{n+1} \leq b_n$$
 for all n

(ii)
$$\lim_{n\to\infty}b_n=0$$

then the series is convergent.

Alternating Series

Alternating Series Estimation Theorem If $s = \sum (-1)^{n-1}b_n$, where $b_n > 0$, is the sum of an alternating series that satisfies

(i)
$$b_{n+1} \leq b_n$$

(i)
$$b_{n+1} \leq b_n$$
 and (ii) $\lim_{n \to \infty} b_n = 0$

then

$$|R_n| = |s - s_n| \le b_{n+1}$$