☐ Silvie2000 / Digital-electronics-1

1. GitHub link

https://github.com/Silvie2000/Digital-electronics-1

2. De Morgan's laws simulation

architecture dataflow of gates is

VHDL code

```
begin

f_o <= ((not b_i) and a_i) or ((not c_i) and (not b_i));

fnand_o <= not(not((not b_i) and a_i) and (not((not c_i) and (not b_i))));

fnor_o <= not(b_i or (not a_i)) or (not(c_i or b_i));

end architecture dataflow;</pre>
```

Screenshot

EDA playground link

https://www.edaplayground.com/x/THp8

Table

С	b	a	f(c,b,a)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

3. Distributive laws

VHDL code

```
architecture dataflow of gates is

begin

f1_o <= (x_i and y_i) or (x_i and z_i);

f2_o <= (x_i and (y_i or z_i));

f3_o <= (x_i or y_i) and (x_i or z_i);

f4_o <= x_i or (y_i and z_i);

end architecture dataflow;</pre>
```

Screenshot

