Computer Architecture

Lecture 10 Embedded Computer Architecture

Prof. Jongmyon Kim

Contents

- Introduction
- Examples of Embedded Computer Architecture

What is an embedded processor architecture?

Embedded processors in an embedded system

■ 3G mobile communication (CDMA2000)

Issues and trend

Issues

- Time-to-market
- Complexity
- Performance
- Low power
- Reliability
- Size/weight
- Cost
- Etc.

Paradigm shift toward software

- Microprocessor performance rapidly increase
- Flexibility, upgradability
- Low cost

Both HW and SW

- The system functionality is partitioned into HW, SW, and the Interface.
- SW part runs on programmable processors (embedded processors).
- HW part runs on IP blocks or custom designed HW blocks.

Embedded processor

- What is an embedded processor?
 - A programmable processor 'embedded' in an embedded system (on a chip)
 - An embedded processor can be a general purpose processor, DSP, microcontroller, or a processor optimized to a specific application.
 - Programming self-contained computers
 - End-user, application developer, system integrator, and component manufacturer are all separated.
 - Programming embedded processors
 - Most software is provided by system integrator.

Taxonomy of embedded processors

- Embedded processors are categorized according to the following aspects
 - Domain of target applications
 - Architecture
 - Configurability

Domain of target applications

- General-purpose processors
 - ARM, MIPS, PowerPC, etc.
- Domain-specific processors
 - DSPs such as TMS320x (TI), ADSP-TSx (Analog Devices), Teak (Ceva), Saturn (Adelante), SH3-DSP (Hitachi), ST100 (STMicro), StarCore ...
 - Microcontrollers such as M68x05 (Motorola), 8051 (Intel), ...
 - Network processors such as IXP (Intel), PayloadPlus (Lucent/Agere), ...
- Application-specific processors
 - Configuration is optimized to a specific application (configurable processor).
 - Some can be reconfigured after fabrication.
 - Xtensa (Tensilica), ARCtangent (ARC), Jazz (Improv), rDSP (Morpho Technologies)...

Tradeoffs due to architectural choice

Architecture

- Single-issue RISC architecture
 - ARM, SH3-DSP, Xtensa, ARCtangent
- Superscalar architecture
 - MIPS, PowerPC
- VLIW architecture
 - TMS320C6x, ADSP-TS0xx, Saturn, Jazz
- ST100 provides instruction sets that support all these architectural features in one processor.
 - ST100: 16, 32, 128-bit instruction formats

Configurability

- Fixed processors
 - 8051, ARM, MIPS, PowerPC, SH3-DSP, TMS320x, Saturn, and ST100
 - Hard cores with fixed layouts or soft cores with synthesizable HDL descriptions
 - Instruction sets are fixed and are not supposed to be configured for application specific optimization.
 - Coprocessors can accompany fixed processor cores to improve the overall system performance. The coprocessors can be synthesized for specific applications as in HP PICO project.

Configurability (cont'd)

- Fixed processor cores with reconfigurable logic
 - Virtex II Pro (Xilinx), Excalibur (Altera), E5 and A7 (Triscend),
 QuickMIPS (Quicklogic), RCP (Chameleon), and FPSLIC (Atmel).
 - RCP has an ARC configurable processor embedded in it, but it is a pre-configured one.
- Fixed processor cores given as soft cores
 - MicroBlaze (Xilinx)
 - Need to be synthesized to be programmed on a reconfigurable logic.
 - Limited configuration can be done on peripherals and bus interfaces but the instruction set is fixed.

Configurability (cont'd)

- Configurable processors
 - Processors that can be configured according to the application
 - Especially processors whose instruction set architectures can be configured according to the application are called ASIPs (Application Specific Instruction set Processors)
 - Xtensa, ARCtangent, and Jazz provide basic cores and instruction sets. They can be configured or extended for the target application.
 - NIOS (Altera) is a configurable processor that can be programmed on a reconfigurable logic. However, only five (256 for NIOS II) opcodes can be used for user customizable instructions.
 - LISATek (merged to CoWare) and Target Compiler Technologies do not provide basic cores but start from scratch. From an architecture description in a specific ADL (Architecture Description Language: LISA, nML), they generate a compiler, a simulator, and a synthesizable HDL.

Configurability (cont'd)

- Reconfigurable array of processing elements
 - Functionalities and interconnections of processing elements can be changed after fabrication.
 - Reconfiguration can be done dynamically.
 - Coarse grained architecture for dynamic reconfigurability
 - rDSP has a fixed processor core integrated with a reconfigurable array block.

Reconfigurable processor

- RP (Reconfigurable Processor) 구조
 - DSP + co-processor 형태의 array 구조가 일반적
- Coarse-Grained RP

CGA

- VLIW(DSP)와 CGA (loop 가속기)의 중첩형태
- 자원공유 (RF, FU)에 의한 data transfer최소화로 성능향상, 저전력, 소형화
- VLIW 모드(control flow가속) + CGA모드(데이터 연산 가속) 역할 분담
- CGA모드에서 SW pipeline 기법을 사용하여 가속능력 극대화
- <u>임의의 HW구조설계 가능 및 compiler 수정 없이 적용가능</u>

VLIW: Very Long Instruction Word CGA: Coarse Grain Array RF: Register File FU: Functional Unit

write-back

Execute

Execute

Execute

Execute

Reconfigurable processor tool suite

DRESC: Dynamically Reconfigurable Embedded System Compiler

Architectural Exploration with an Profiler

Virtual Platform Design for MPSoC

Virtual Platform

- ◆ Verify developed IP's functionality on an existing virtual system
- Meet time-to-market by early verifying the target system on the higher level simulation

Contents

- Introduction
- Examples of Embedded Processors

8051

- Originally designed in the 1980's by Intel
- One of the most popular embedded microcontrollers
- 8-bit CPU, on-chip memory (RAM, ROM), two 16-bit timer/counters, and four 8-bit I/O ports
- There are many variations

ARM

- Load-store RISC architecture
- 32-bit datapath
- 32-bit instructions
- · All instructions are predicated
- 16 registers
 - r0-r14: general purpose
 - r15: PC
- · Thumb extension
 - 16-bit subset

ARM (cont'd)

- ARM7TDMI
 - Von Neumann architecture
 - 3 stage pipeline
 - In 0,13μm
 - Die size: 0,26mm²
 - Frequency: 133MHz (worst case)
 - Power: 0,06mW/MHz (1,2V)
- ARM922T
 - Harvard architecture (8k/8k instruction/data cache)
 - · 5 stage pipeline
 - In 0.13μm
 - Die size: 3,2mm²
 - Frequency: 250MHz (worst case)
 - Power: 0.36mW/MHz (1.2V)

$ARM\{x\}\{y\}\{z\}\{T\}\{D\}\{M\}\{I\}\{E\}\{J\}\{F\}\{-S\}$

- x: family
- y: memory management/protection unit
- z: cache
- T: Thumb 16-bit decoder
- D: JTAG debug
- M: fast multiplier
- I: EmbeddedICE macrocell
- E: enhanced instructions (for DSP, assumes TDMI)
- J: Jazelle
- F: vector floating-point unit
- S: synthesizable version

ARM (cont'd)

- ARM1022E
 - Harvard architecture (16k/16k instruction/data cache)
 - 6 stage pipeline
 - 64-bit bus architecture
 - DSP instruction set extensions
 - In 0,13μm
 - Die size: 6.9mm²
 - Frequency: 325MHz (worst case)
 - Power: 0,6mW/MHz (1,0V)
- ARM11
 - 8 stage pipeline
 - SIMD media processing extensions
 - In 0.13μm
 - Die size: 6,7mm²
 - Frequency: 335-400MHz (worst case)
 - Power: 0.4mW/MHz (1.0V)
- XScale
 - Developed by Intel
 - Dynamic voltage/frequency scaling
 - 7 stage pipeline
 - Frequency up to 733MHz, less than 1.3watts (80200T, 0.13μm)

TMS320C55x

TMS320C55x

- Fixed-point DSP core
- Two multiply-accumulate (MAC) units, each capable of 17-bit x
 17-bit multiplication in a single cycle
- A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 16-bit ALU.

OMAP5910 DSP Platform

- OMAP5912 DSP Platform
 - C55x DSP + ARM9 MPU
 - 0.13µm, 1.6V core power supply
 - 250KB shared internal SRAM
 - External memory interface
 - DMA controller
 - DSP peripherals
 - · timers, serial ports, ...
 - MPU peripherals
 - timers, USB, camera i/f keyboard i/f, LCD controller, ...
 - Shared peripherals
 - · UARTs, mailbox, ...

CEVA-Teak (CEVA)

- Fixed-point DSP core
- Soft core (synthesizable)
- Computation unit
 bit manipulation unit
- Two 16-bit x 16-bit multipliers
- Dual multiply-accumulate (MAC) in a single cycle
- 40-bit arithmetic/logic unit (ALU)

ZSP400 (LSI Logic)

- Dual MAC/Dual ALU DSP core
- 4 issue superscalar 16-bit fixed point RISC architecture
- 5 nsec cycle time at 1.8V for 0.18 micron technology
- Synthesizable
- Two 16-bit ALUs in parallel or single 32-bit ALU

Virtex-II Pro Platform FPGA (Xilinx)

- Up to 4 PowerPC RISC processor cores (300+MHz Harvard architecture, 0.9mW/MHz) integrated with FPGA fabric
- Supports CoreConnect bus architecture
- Up to 125,136 logic cells
- Up to 556 dedicated 18-bitx18-bit multiplier blocks
- Up to 24 high-speed (3.125Gbps) serial tranceivers
- Up to 10Mb dual-port RAM (18kb block x 556)
- 0.13μm, 1.5V core power supply

Excalibur (Altera)

- ARM922T integrated with FPGA fabric
- Up to 200MHz
- Supports AMBA
- Up to 256K SRAM
- Up to 128K dualport SRAM

MicroBlaze (Xilinx)

- · Fixed processor cores given as soft cores
 - 32-bit RISC processor synthesized and programmed on a reconfigurable logic
 - Limited configuration can be done on peripherals and bus interfaces but the instruction set is fixed.

Xtensa (Tensilica)

- · Basic architecture
 - 24-bit instruction encoding
 - 4-bit register fields
 - Supports compound instructions
 - Zero-overhead loop
 - Limited instruction constant width

Xtensa (Tensilica) (cont'd)

- Application-specific configuration using TIE (Tensilica Instruction Extension) language and methodology
- For consumer application, 23x improvement, 3.3x and 50x the performance of TM1300 and MIPS32, respectively

NIOS (Altera)

- Configurable processor that can be programmed on a reconfigurable logic
- Only five (256 for NIOS II) opcodes can be used for user customizable instructions.

LISATek (CoWare)

- Do not provide basic cores but start from scratch
- From an ADL (Architecture Description Language, LISA) description, they generate a compiler, a simulator, and a synthesizable HDL

MorphoSys (Morpho Technologies)

 Fixed 32-bit processor core integrated with a coarse grain reconfigurable block

