DCN+

Caiming Xiong, Victor Zhong, Richard Socher

Baseline DCN

Baseline DCN

$$egin{aligned} L &= D^TQ \in R^{(m+1)*(n+1)} \ A^Q &= softmax(L) \in R^{(m+1)*(n+1)} ext{ and } \ A^D &= softmax(L^T) \in R^{(n+1)*(m+1)} \ C^Q &= DA^Q \in R^{l*(n+1)} \ C^D &= [Q;C^Q]A^D \in R^{2l*(m+1)} \ u_t &= BiLSTM(u_{t-1},u_{t+1},[d_t;c^D_t]) \in R^{2l} \end{aligned}$$

Baseline DCN

Dynamic Decoder

Dynamic Decoder

```
egin{aligned} h_i &= LSTM_{dec}(h_{i-1}, [u_{s_{i-1}}; u_{e_{i-1}}]) \ s_i &= argmax_t(lpha_1, ..., lpha_m) \ e_i &= argmax_t(eta_1, ..., eta_m) \ lpha_t &= HMN_{start}(u_t, h_i, u_{s_{i-1}}, u_{e_{i-1}}) \end{aligned}
```

Dynamic Deocder

$$\begin{aligned} \text{HMN}\left(u_{t}, h_{i}, u_{s_{i-1}}, u_{e_{i-1}}\right) &= \max\left(W^{(3)}\left[m_{t}^{(1)}; m_{t}^{(2)}\right] + b^{(3)}\right) \\ r &= \tanh\left(W^{(D)}\left[h_{i}; u_{s_{i-1}}; u_{e_{i-1}}\right]\right) \\ m_{t}^{(1)} &= \max\left(W^{(1)}\left[u_{t}; r\right] + b^{(1)}\right) \\ m_{t}^{(2)} &= \max\left(W^{(2)}m_{t}^{(1)} + b^{(2)}\right) \end{aligned}$$

DCN+

Figure 1: Deep residual coattention encoder.

First, encoding for D and Q:

$$E_1^D = biLSTM_1(L^D) \in R^{h*(m+1)} \ E_1^Q = tanh(WbiLSTM_1(L^Q) + b) \in R^{h*(n+1)}$$

Secondly, counting the representation $Q2D_1$ and $D2Q_1$:

$$egin{aligned} A &= (E_1^Q)^T E_1^D \in R^{(m+1)*(n+1)} \ S_1^D &= E_1^D softmax(A^T) \in R^{h*(m+1)} \ S_1^Q &= E_1^D softmax(A) \in R^{h*(n+1)} \end{aligned}$$

Thirdly, counting the $(D2Q_1)2D$ representation:

$$C_1^D = S_1^Q softmax(A^T) \in R^{h*m}$$

Fourthly, counting the second LSTM encoding for S_1^D and S_1^Q :

$$E_2^D = biLSTM_2(S_1^D) \in R^{2h*m} \ E_2^Q = biLSTM_2(S_1^Q) \in R^{2h*n}$$

Last, doing the same coattention operation for $E_2^{\it D}$ and $E_2^{\it Q}$.

DCN+

In summary,

$$coattn_1(E_1^D, E_1^Q) -> S_1^D, S_1^Q, C_1^D \ coattn_2(E_2^D, E_2^Q) -> S_2^D, S_2^Q, C_2^D$$

The output of encoder is:

$$U = biLSTM(concat(E_1^D; E_2^D; S_1^D; S_2^D; C_1^D; C_2^D)) \in R^{2h*m}$$

Optimization Objective

$$l_{ce}(\Theta) = -\sum_{t} \left(\log p_t^{\text{start}} \left(s \mid s_{t-1}, e_{t-1}; \Theta \right) + \log p_t^{\text{end}} \left(e \mid s_{t-1}, e_{t-1}; \Theta \right) \right)$$

$$l_{rl}(\Theta) = -\mathbb{E}_{\hat{\tau} \sim p_{\tau}} \left[R\left(s, e, \hat{s}_{T}, \hat{e}_{T}; \Theta \right) \right] \\ \approx -\mathbb{E}_{\hat{\tau} \sim p_{\tau}} \left[F_{1}\left(\operatorname{ans}\left(\hat{s}_{T}, \hat{e}_{T} \right), \operatorname{ans}\left(s, e \right) \right) - F_{1}\left(\operatorname{ans}\left(s_{T}, e_{T} \right), \operatorname{ans}\left(s, e \right) \right) \right]$$

$$\nabla_{\Theta} l_{rl} (\Theta) = -\nabla_{\Theta} (\mathbb{E}_{\hat{\tau} \sim p_{\tau}} [R])$$

$$= -\mathbb{E}_{\hat{\tau} \sim p_{\tau}} [R \nabla_{\Theta} \log p_{\tau} (\tau; \Theta)]$$
(14)

$$= -\mathbb{E}_{\hat{\tau} \sim p_{\tau}} \left[R \nabla_{\Theta} \left(\sum_{t}^{T} \left(\log p_{t}^{\text{start}} \left(\hat{s}_{t} | \hat{s}_{t-1}, \hat{e}_{t-1}; \Theta \right) + \log p_{t}^{\text{end}} \left(\hat{e}_{t} | \hat{s}_{t-1}, \hat{e}_{t-1}; \Theta \right) \right) \right) \right]$$

$$\approx -R\nabla_{\Theta} \left(\sum_{t}^{T} \left(\log p_{t}^{\text{start}} \left(\hat{s}_{t} | \hat{s}_{t-1}, \hat{e}_{t-1}; \Theta \right) + \log p_{t}^{\text{end}} \left(\hat{e}_{t} | \hat{s}_{t-1}, \hat{e}_{t-1}; \Theta \right) \right) \right)$$
(16)

Optimization Objective

Experiment

Model	EM	ΔΕΜ	F1	ΔF1
DCN+ (ours)	74.5%	_	83.1%	_
- Deep residual coattention	73.1%	-1.4%	81.5%	-1.6%
 Mixed objective 	73.8%	-0.7%	82.1%	-1.0%
 Mixture of experts 	74.0%	-0.5%	82.4%	-0.7%
DCN w/ CoVe (baseline)	71.3%	-3.2%	79.9%	-3.2%

ps.CoVe and residual coattention is important. Cross-entropy is important for RL.