

← Notes

Lucas' Theorem. Wilson's Theorem.

7 CodeMonk

Lucas' Theorem

Wilson's Theorem

Binomial-coefficients

Lucas' Theorem

Statement:

$$C(N, K) \% MOD = (C(n_0, k_0) * C(n_1, k_1) * ... * C(n_{m-1}, k_{m-1})) \% MOD$$

 n_0 , n_1 , ... n_{m-1} and k_0 , k_1 , ... k_{m-1} are representations of the numbers N and K in the scale of notation with base MOD. In other words:

$$N = n_0 * MOD^0 + n_1 * MOD^1 + ... + n_{m-1} * MOD^{m-1}$$

$$K = k_0 * MOD^0 + k_1 * MOD^1 + ... + k_{m-1} * MOD^{m-1}$$

C(N, K) is Binomial coefficient (number of ways to choose K elements from a set of N elements).

Conditions: MOD is a prime number (look at the end of the article to know what can we do with not prime MOD), and you should be able to calculate $C(n_i, k_i)$ % MOD, where $(0 \le n_i, k_i < MOD)$.

Advices: this theorem is very useful in case $N \ge MOD$, otherwise it's better to use formula C(N, K) = N! / ((N - K)! * K!) and tricks #2 or #3 from there. If $N \ge MOD$ then N! % MOD = 0, when C(N, K) % MOD is not necessary equals to 0.

Realization: let's see how can we get representation of some number N in the scale of notation with base **MOD**:

```
vector<int> getRepresentation(int N) {
    vector<int> res;
    while (N > 0) {
         res.push back(N % MOD);
         N /= MOD;
    return res:
}
```

Let n will be representation of N and k will be representation of K. They are not necessary have the same length. If K > N we can easily say that C(N, K) = 0. Otherwise k has less or equal length than n. To make them the same length we can add some extra zeroes to k and make them both of length of n, or we can take only some first elements of n and make them both of length of k. The second way has more sense because $C(n_i, 0) = 1$.

So the main part of code looks like:

```
vector<int> n = getRepresentation(N);
vector<int> k = getRepresentation(K);
long long res = 1;
for (int i = 0; i < k.size(); ++i) {
    res = (res * C(n[i], k[i])) % MOD;
}</pre>
```

Let's talk about function C(n[i], k[i]) in more detail. It's easy to see that $(0 \le n[i], k[i] < MOD)$, so we can use formula C(N, K) = N! / ((N - K)! * K!) and trick #3 from there:

```
int C(int N, int K) {
    if (K > N) {
        return 0;
    }
    return (((fact[N] * binpow(fact[N - K], MOD - 2)) % MOD) * bi
}
```

Let's precalc all possible factorials modulo MOD and store them in the array fact:

```
long long fact[MOD];
fact[0] = 1;
for (int i = 1; i < MOD; ++i) {
    fact[i] = (fact[i - 1] * i) % MOD;
}</pre>
```

Function **binpow** is just Fast exponentation, it can calculate A^N % MOD in O(log(N)) time:

```
int binpow(int a, int n) {
   long long res = 1;
   while (n > 0) {
      if (n % 2 != 0) {
```

```
res = (res * a) % MOD;
}
a = ((long long)a * a) % MOD;
n /= 2;
}
return (int)res;
}
```

If n[i] and k[i] are small enough instead of using formulas and tricks we can just precalc Pascal's triangle and then get C(n[i], k[i]) in O(1):

```
int C[MOD][MOD];
for (int i = 0; i < MOD; ++i) {
    for (int j = 0; j <= i; ++j) {
        if (i == 0 || j == 0) {
            C[i][j] = 1;
        } else {
            C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % MOD;
        }
    }
}</pre>
```

Trick with not prime MOD: let's factorize $MOD = mod_1^{q1} * mod_2^{q2} * ... * mod_m^{qm}$ and calculate $C(N, K) \% mod_1$, $C(N, K) \% mod_2$, ... $C(N, K) \% mod_m$ using Lucas' Theorem. Now we can use Chinese remainder theorem to restore C(N, K) % MOD.

Wilson's Theorem

Statement:

Natural number N is a prime number if and only if (N - 1)! + 1 is divisible by N.

Boris Sokolov

C++ Developer at Module...
Simferopol, Crimea, Russian
Federation
2 notes

2 notes

Write Note
My Notes
Drafts

TRENDING NOTES

Strings And String Functions written by Vinay Singh

Segment Tree and Lazy Propagation written by Akash Sharma

Number Theory - II written by Tanmay Chaudhari

Matrix exponentiation written by Mike Koltsov

Graph Theory - Part II written by Pawel Kacprzak

more ...

ABOUT US	HACKEREARTH	DEVELOPERS
Blog	API	AMA
Engineering Blog	Chrome Extension	Code Monk
Updates & Releases	CodeTable	Judge Environment
Team	HackerEarth Academy	Solution Guide
Careers	Developer Profile	Problem Setter Guide
In the Press	Resume	Practice Problems
	Campus Ambassadors	HackerEarth Challenges
	Get Me Hired	College Challenges
	Privacy	
	Terms of Service	

RECRUIT

Developer Sourcing

Lateral Hiring

Campus Hiring

FAQs

Customers

Annual Report

REACH US

IIIrd Floor, Salarpuria Business Center, 4th B Cross Road, 5th A Block, Koramangala Industrial Layout, Bangalore, Karnataka 560095, India.

contact@hackerearth.com

+91-80-4155-4695

+1-650-461-4192

© 2015 HackerEarth