CPSC 661: Sampling Algorithms in ML

Andre Wibisono

April 12, 2021

Yale University

Last time

- Wasserstein W_2 metric
- Otto calculus
- Langevin dynamics as gradient flow of relative entropy

Today:

- Convexity of relative entropy
- Convergence rate of Langevin dynamics

References

- Villani, Topics in Optimal Transportation, Springer, 2003, §9
- Vempala & Wibisono, Rapid Convergence of the Unadjusted Langevin Algorithm: Isoperimetry Suffices, NeurIPS 2019

Recap 1: Optimization on Manifold

Strong convexity and gradient domination

Recall we say a function $f:\mathcal{X}\to\mathbb{R}$ on a manifold \mathcal{X} is

1. geodesically α -strongly convex if

$$\rightarrow$$
 Hess $f(x) \succeq \alpha I$

2. α -gradient dominated if

$$\|\operatorname{grad} f(x)\|_{x}^{2} \ge 2\alpha \left(f(x) - \min f\right)$$

3. has α -quadratic growth if

$$f(x) - \min f \ge \frac{\alpha}{2} d(x, x^*)^2$$

where
$$x^* = \arg\min_{x \in \mathcal{X}} f(x)$$

Lemma: $(1) \Rightarrow (2) \Rightarrow (3)$

Convergence rate of gradient flow

Gradient flow:

$$\dot{X}_t = -\mathrm{grad}\,f(X_t)$$

1. If f is α -strongly convex, then for coevolving solutions X_t, Y_t :

$$d(X_t, Y_t)^2 \le e^{-2\alpha t} d(X_0, Y_0)^2$$

2. If f is α -gradient dominated, then

$$f(X_t) - \min f \le e^{-2\alpha t} (f(X_0) - \min f)$$

Recap 2: Sampling as Optimization

Relative entropy

Space of probability distributions:

$$\mathcal{P}(\mathbb{R}^n) = \left\{ \rho \colon \mathbb{R}^n \to \mathbb{R} \; \middle| \; \int_{\mathbb{R}^n} \rho(x) \, dx = 1, \int_{\mathbb{R}^n} \|x\|^2 \rho(x) dx < \infty \right\}$$

Wasserstein metric:

$$W_2(\rho, \nu) = \inf_{\pi \in \Pi(\rho, \nu)} \mathbb{E}_{\pi}[\|X - Y\|^2]$$

Objective function is **relative entropy**:

$$H_{\nu}(\rho) = \mathbb{E}_{\rho}\left[\log\frac{\rho}{\nu}\right] = \int_{\mathbb{R}^n} \rho(x)\log\frac{\rho(x)}{\nu(x)}\,dx$$

Minimizer is the target distribution:

$$u = \arg\min_{
ho \in \mathcal{P}(\mathbb{R}^n)} H_{
u}(
ho)$$

Langevin dynamics

Gradient:

$$\operatorname{grad} H_{\nu}(\rho) = -\nabla \cdot \left(\rho_t \nabla \log \frac{\rho_t}{\nu}\right)$$

Gradient flow is the Fokker-Planck equation:

$$\frac{\partial \rho_t}{\partial t} = \nabla \cdot \left(\rho_t \nabla \log \frac{\rho_t}{\nu} \right)$$

Implemented by the Langevin dynamics:

$$dX_t = -\nabla f(X_t) dt + \sqrt{2} dW_t$$

where $\nu \propto e^{-f}$

• Will see: 1. Convergence proof via *coupling* technique

Relative Fisher information

Squared norm of gradient is relative Fisher information:

$$\|\operatorname{grad} H_{\nu}(\rho)\|_{\rho}^{2} = \mathbb{E}_{\rho} \left[\left\| \nabla \log \frac{\rho}{\nu} \right\|^{2} \right] = J_{\nu}(\rho)$$

Rate of decrease is given by de Bruijn's identity:

$$\frac{d}{dt}H_{\nu}(\rho_t) = -J_{\nu}(\rho_t)$$

• Will see: 2. Convergence proof via Log-Sobolev Inequality

What we will see

Properties of ν

We say a probability distribution $\nu \propto e^{-f}$ on \mathbb{R}^n satisfies:

1. α -strongly log-concave if $f = -\log \nu$ is α -strongly convex

$$\nabla^2 f(x) \succeq \alpha I$$
 \tag{\text{\$\times xeR^\chappa}}

2. α -log-Sobolev inequality if

$$J_{\nu}(\rho) \geq 2\alpha H_{\nu}(\rho)$$
 $\forall s \in \mathcal{P}(\mathbb{R}^n)$

3. α -Talagrand inequality if

$$H_{\nu}(\rho) \geq \frac{\alpha}{2} W_2(\rho, \nu)^2 \quad \forall \ \ \mathcal{S} \in \mathcal{P}(\mathbb{R}^n)$$

4. α -Poincaré inequality if

$$\mathbb{E}_{\nu}[\|\nabla h\|^2] \geq \alpha \operatorname{Var}_{\nu}(h)$$
 $\forall h : \mathbb{R}^n \rightarrow \mathbb{R}$

Properties of ν

Theorem: α -SLC $\Rightarrow \alpha$ -LSI $\Rightarrow \alpha$ -TI $\Rightarrow \alpha$ -PI

- ullet Characterizes nice properties of u
- Implies isoperimetric inequalities
- Implies concentration of measure
- Implies fast convergence of Langevin dynamics
- Has geometric / optimization interpretation

[Otto & Villani, Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality, Journal of Functional Analysis, 2000]

Properties of H_{ν} in terms of ν

Relative entropy on $\mathcal{P}(\mathbb{R}^n)$

$$H_
u(
ho) = \mathbb{E}_
ho\left[\lograc{
ho}{
u}
ight]$$

Strong convexity:

Hess
$$H_{\nu}(\rho) \succeq \alpha I$$

Gradient dominated:

$$\|\operatorname{grad} H_{\nu}(\rho)\|_{\rho}^{2} \geq 2\alpha H_{\nu}(\rho)$$

Quadratic growth:

$$H_{\nu}(\rho) \geq \frac{\alpha}{2}d(\rho,\nu)^2$$

Target distribution on \mathbb{R}^n

$$\nu \propto e^{-f}$$

$$\nabla^2 f(x) \succeq \alpha I$$

$$J_{\nu}(\rho) \geq 2\alpha H_{\nu}(\rho)$$

$$H_{\nu}(\rho) \geq \frac{\alpha}{2} W_2(\rho, \nu)^2$$

Convergence rate of Langevin dynamics

Along the Langevin dynamics for $\nu \propto e^{-f}$:

1. If ν is α -SLC, then

$$W_2(\rho_t, \nu)^2 \le e^{-2\alpha t} W_2(\rho_0, \nu)^2$$

2. If ν satisfies α -LSI, then

$$H_{\nu}(\rho_t) \leq e^{-2\alpha t} H_{\nu}(\rho_0)$$

3. If ν satisfies α -PI, then

$$\chi_{\nu}^2(\rho_t) \le e^{-2\alpha t} \chi_{\nu}^2(\rho_0)$$

Langevin dynamics under isoperimetry

 α -LSI/ α -PI implies exponential convergence of Langevin dynamics

- Equivalent to isoperimetric inequalities
- Implied by α -SLC, but more general
- Stable under bounded perturbation, Lipschitz map

Lemma: (Holley-Stroock perturbation lemma)

Suppose ν satisfies α -LSI (resp. α -PI). Let $\tilde{\nu} = \nu \cdot e^{-g}$ with

$$\operatorname{osc}(g) := \sup_{x} g(x) - \inf_{x} g(x) < \infty.$$

Then $\tilde{\nu}$ satisfies $\tilde{\alpha}$ -LSI (resp. $\tilde{\alpha}$ -PI) with

$$\tilde{\alpha} = \alpha \cdot e^{-2\operatorname{osc}(g)}$$

Strong log-concavity

Hessian of relative entropy

Relative entropy:

$$H_
u(
ho) = \mathbb{E}_
ho \left[\log rac{
ho}{
u}
ight]$$

Lemma: Hessian of relative entropy is a quadratic form

Hess
$$H_{\nu}(\rho)$$
: $\mathsf{T}_{\rho}\mathcal{P}\times\mathsf{T}_{\rho}\mathcal{P}\to\mathbb{R}$

that sends $\phi = -\nabla \cdot (\rho \nabla u) \in \mathsf{T}_{\rho} \mathcal{P}$ to

$$\operatorname{Hess} H_{\nu}(\rho)(\phi,\phi) = \mathbb{E}_{\rho} \left[\|\nabla^{2} u\|_{\mathsf{HS}}^{2} + \langle \nabla u, (\nabla^{2} f) \nabla u \rangle \right]$$

• Decomposition of relative entropy $H_{\nu}(\rho) = -H(\rho) + \mathbb{E}_{\rho}[f]$

[Villani, Optimal Transport: Old and New, 2008, Formula 15.7]

Convexity of relative entropy

Relative entropy:

$$H_
u(
ho) = \mathbb{E}_
ho \left[\log rac{
ho}{
u}
ight]$$

Theorem:

- 1. If ν is log-concave, then H_{ν} is convex
- 2. If ν is α -strongly log-concave, then H_{ν} is α -strongly convex

• In $\mathcal{P}(\mathbb{R}^n)$ with W_2 metric, H_{ν} inherits convexity of $f=-\log \nu$ in \mathbb{R}^n

<u>Proof:</u> Assume $\nu \propto e^{-f}$ is α -strongly log-concave, so $\nabla^2 f(x) \succeq \alpha I$

Then for any $\phi = -\nabla \cdot (\rho \nabla u) \in \mathsf{T}_{\rho} \mathcal{P}$

$$\operatorname{Hess} H_{\nu}(\rho)(\phi,\phi) = \mathbb{E}_{\rho} \Big[\underbrace{\|\nabla^{2}u\|_{\mathsf{HS}}^{2}}_{\geq 0} + \underbrace{\langle \nabla u, (\nabla^{2}f)\nabla u \rangle}_{\geq \alpha \|\nabla u\|^{2}} \Big]$$
$$\geq \alpha \mathbb{E}_{\rho} \Big[\|\nabla u\|^{2} \Big]$$
$$= \alpha \|\phi\|_{\rho}^{2}$$

Therefore,

Hess
$$H_{\nu}(\rho) \succeq \alpha I$$

which means H_{ν} is α -strongly convex.

Convergence of Langevin dynamics under SLC

Theorem: Assume $\nu \propto e^{-f}$ is α -strongly log-concave. Then the Fokker-Planck equation:

$$\frac{\partial \rho_t}{\partial t} = \nabla \cdot \left(\rho_t \nabla \log \frac{\rho_t}{\nu} \right)$$

converges exponentially fast:

$$W_2(\rho_t, \nu)^2 \le e^{-2\alpha t} W_2(\rho_0, \nu)^2$$

• In fact, a contraction: For coevolving $\rho_t, \tilde{\rho}_t$ along the FP equation

$$W_2(\rho_t, \tilde{
ho}_t)^2 \leq e^{-2\alpha t} W_2(\rho_0, \tilde{
ho}_b)^2$$

• Proof 1: This follows from $\nu \alpha$ -SLC $\Rightarrow H_{\nu} \alpha$ -strongly convex.

Proof 2: (Direct proof via coupling)

Let $(X_0, Y_0) \sim \pi_0$ be the optimal coupling of $X_0 \sim \rho_0$ and $Y_0 \sim \tilde{\rho}_0$, so

$$W_2(\rho_0, \tilde{\rho}_0)^2 = \mathbb{E}[\|X_0 - Y_0\|^2]$$

Run two Langevin dynamics with the same Brownian motion dW_t (this is *synchronous coupling*):

Then $X_t \sim \rho_t$, $Y_t \sim \tilde{\rho}_t$, and by definition, $W_2(\rho_t, \tilde{\rho}_t)^2 \leq \mathbb{E}[\|X_t - Y_t\|^2]$

The difference $X_t - Y_t$ follows

$$\dot{X}_t - \dot{Y}_t = \frac{d}{dt}(X_t - Y_t) = -(\nabla f(X_t) - \nabla f(Y_t))$$

Since f is α -strongly convex, ∇f is *strongly monotone*:

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \alpha ||x - y||^2$$

Then

$$\frac{d}{dt}\mathbb{E}[\|X_t - Y_t\|^2] = 2\mathbb{E}\left[\langle X_t - Y_t, \dot{X}_t - \dot{Y}_t \rangle\right]
= -2\mathbb{E}\left[\langle X_t - Y_t, \nabla f(X_t) - \nabla f(Y_t) \rangle\right]
\leq -2\alpha \mathbb{E}[\|X_t - Y_t\|^2]$$

Integrating:

$$\mathbb{E}[\|X_t - Y_t\|^2] \le e^{-2\alpha t} \mathbb{E}[\|X_0 - Y_0\|^2] = e^{-2\alpha t} W_2(\rho_0, \tilde{\rho}_0)^2$$

Therefore,

$$W_2(\rho_t, \tilde{\rho}_t)^2 \leq \mathbb{E}[\|X_t - Y_t\|^2] \leq e^{-2\alpha t} W_2(\rho_0, \tilde{\rho}_0)^2$$

In particular, if $\tilde{\rho}_0 = \nu$, then $\tilde{\rho}_t = \nu$ for all t > 0.

Strongly log-concave distributions

 $\nu \alpha$ -SLC:

$$\nu \propto e^{-f}, \quad \nabla^2 f(x) \succeq \alpha I$$

- Nice properties: Unimodal, concentration, Gaussian tail
- Can be sampled efficiently: Langevin dynamics converges fast

$$dX_t = -\nabla f(X_t) dt + \sqrt{2} dW_t$$

- \Rightarrow Coupling technique works since ∇f is strongly monotone
- Analogous to the class of strongly convex functions * f strongly convex $\Leftrightarrow \nu$ SLC $\Rightarrow H_{\nu}$ strongly convex
- Log-concave sampling (of ν) \equiv convex optimization (of H_{ν})

Log-Sobolev inequality

Log-Sobolev inequality

Definition: A probability distribution ν on \mathbb{R}^n satisfies α -log-Sobolev inequality (α -LSI) if for all $\rho \in \mathcal{P}(\mathbb{R}^n)$:

$$J_{\nu}(\rho) \geq 2\alpha H_{\nu}(\rho)$$

where

- $H_{\nu}(\rho) = \mathbb{E}_{\nu}[\log \frac{\rho}{\nu}]$ is relative entropy
- $J_{\nu}(\rho) = \mathbb{E}_{\nu}[\|\nabla \log \frac{\rho}{\nu}]\|^2$ is relative Fisher information
- This is the gradient domination condition of relative entropy:

$$J_{\nu}(g) = \|\operatorname{grad} H_{\nu}(\rho)\|_{\rho}^{2} \geq 2\alpha H_{\nu}(\rho)$$

Implies exponential convergence rate of Langevin dynamics

Convergence of Langevin dynamics under LSI

Theorem: Assume $\nu \propto e^{-f}$ satisfies α -log-Sobolev inequality.

Then the Fokker-Planck equation:

$$\frac{\partial \rho_t}{\partial t} = \nabla \cdot \left(\rho_t \nabla \log \frac{\rho_t}{\nu} \right)$$

converges exponentially fast:

$$H_{\nu}(\rho_t) \leq e^{-2\alpha t} H_{\nu}(\rho_0)$$

• Proof:
$$\frac{d}{dt}H_{\nu}(\rho_t) = -J_{\nu}(\rho_t) \le -2\alpha H_{\nu}(\rho_t)$$
.

Convergence of Langevin dynamics under LSI

Theorem: Assume $\nu \propto e^{-f}$ satisfies α -log-Sobolev inequality.

Then the Fokker-Planck equation:

$$\frac{\partial \rho_t}{\partial t} = \nabla \cdot \left(\rho_t \nabla \log \frac{\rho_t}{\nu} \right)$$

converges exponentially fast:

$$H_{\nu}(\rho_t) \leq e^{-2\alpha t} H_{\nu}(\rho_0)$$

- Proof: $\frac{d}{dt}H_{\nu}(\rho_t) = -J_{\nu}(\rho_t) \leq -2\alpha H_{\nu}(\rho_t)$.
- Since α -LSI $\Rightarrow \alpha$ -TI, also implies

$$W_2(\rho_t,\nu)^2 \leq \frac{2}{\alpha}e^{-2\alpha t}H_\nu(\rho_0)$$

$$\left(\begin{array}{ccc} \text{but:} & \text{W2}(\boldsymbol{\mathcal{S}_{\text{e}}},\boldsymbol{\mathcal{T}_{\text{e}}})^2 \not\preceq e^{-2\alpha t} & \text{W2}(\boldsymbol{\mathcal{S}_{\text{e}}},\boldsymbol{\mathcal{T}_{\text{e}}})^2 \end{array}\right)$$

SLC implies LSI

Lemma: If ν is α -SLC, then ν satisfies α -LSI

$$J_{\nu}(\rho) \geq 2\alpha H_{\nu}(\rho)$$

• Proof: ν SLC \Rightarrow H_{ν} strongly convex \Rightarrow gradient dominated = LSI.

22

SLC implies LSI

Lemma: If ν is α -SLC, then ν satisfies α -LSI

$$J_{\nu}(\rho) \geq 2\alpha H_{\nu}(\rho)$$

• Proof: ν SLC \Rightarrow H_{ν} strongly convex \Rightarrow gradient dominated = LSI.

• <u>Proof 2:</u> (Bakry-Emery) Consider Langevin dynamics from $\rho_0 = \rho$, so $\frac{d}{dt}H_{\nu}(\rho_t) = -J_{\nu}(\rho_t)$. Show that $\frac{d}{dt}J_{\nu}(\rho_t) \leq -2\alpha J_{\nu}(\rho_t)$, so $J_{\nu}(\rho_t) \leq e^{-2\alpha t}J_{\nu}(\rho)$. Integrate from t=0 to ∞ to get $H_{\nu}(\rho) \leq (\int_0^{\infty} e^{-2\alpha t}dt)J_{\nu}(\rho)$.

Log-Sobolev inequality

 α -LSI: For all $\rho \in \mathcal{P}(\mathbb{R}^n)$

$$H_{\nu}(\rho) \leq \frac{1}{2\alpha} J_{\nu}(\rho)$$

• Equivalent to: For all $h: \mathbb{R}^n \to \mathbb{R}$ with $\mathbb{E}_{\nu}[h^2] < \infty$,

LSI:
$$\operatorname{Ent}_{
u}(h^2) \leq \frac{2}{\alpha} \mathbb{E}_{
u}[\|\nabla h\|^2]$$

where

$$\operatorname{Ent}_{\nu}(h^{2}) = \mathbb{E}_{\nu}[h^{2}\log h^{2}] - \mathbb{E}_{\nu}[h^{2}]\log \mathbb{E}_{\nu}[h^{2}]$$
Plus in $h^{2} = \frac{s}{\nu}$, $\mathbb{E}_{\nu}[h^{2}] = \int \nu \cdot \frac{s}{\nu} = \int s = 1$
Hen get $H_{\nu}(s) \leq \frac{1}{2s} J_{\nu}(s)$

Log-Sobolev inequality

 α -LSI: For all $\rho \in \mathcal{P}(\mathbb{R}^n)$

$$H_{\nu}(\rho) \leq \frac{1}{2\alpha} J_{\nu}(\rho)$$

• Equivalent to: For all $h: \mathbb{R}^n \to \mathbb{R}$ with $\mathbb{E}_{\nu}[h^2] < \infty$,

$$\operatorname{Ent}_
u(h^2) \leq rac{2}{lpha} \mathbb{E}_
u[\|
abla h\|^2]$$

where

$$\operatorname{Ent}_{\nu}(h^2) = \mathbb{E}_{\nu}[h^2 \log h^2] - \mathbb{E}_{\nu}[h^2] \log \mathbb{E}_{\nu}[h^2]$$

• Gross (1975) proved in Gaussian case $\nu = \mathcal{N}(0, I)$ Stam (1959) proved in equivalent formulation

$$\mathcal{P}(\rho) \cdot J(\rho) \geq n$$

where $\mathcal{P}(\rho) = \frac{1}{2\pi e} \exp(\frac{2}{n}H(\rho))$ is the *entropy power*

Log-Sobolev inequality on \mathbb{R}^1

Necessary and sufficient conditions for $\nu \colon \mathbb{R} \to \mathbb{R}$ to satisfy LSI:

$$\sup_{x \ge m} \nu([x, \infty)) \left(\int_{m}^{x} \frac{dt}{\nu(t)} \right) \log \frac{1}{\nu([x, \infty))} < +\infty$$

$$\sup_{x \le m} \nu((-\infty, x]) \left(\int_{x}^{m} \frac{dt}{\nu(t)} \right) \log \frac{1}{\nu((-\infty, x])} < +\infty$$

where $m \in \mathbb{R}$ is a median of ν , i.e. $\nu((-\infty, \mathbb{N})) = \nu([\mathbb{N}, \infty)) = \frac{1}{2}$

• If $f(x) \sim |x|^p$ as $|x| \to \infty$, then $\nu \propto e^{-f}$ satisfies LSI $\Leftrightarrow p \ge 2$.

[Bobkov & Götze, Exponential integrability and transportation cost related to logarithmic Sobolev inequalities, Journal of Functional Analysis, 1999]

Necessary or sufficient conditions for LSI

Theorem:

1. If ν_1 and ν_2 satisfy α -LSI on \mathbb{R}^{n_1} and \mathbb{R}^{n_2} , then $\nu_1 \otimes \nu_2$ satisfies α -LSI on $\mathbb{R}^{n_1+n_2}$

Necessary or sufficient conditions for LSI

Theorem:

- 1. If ν_1 and ν_2 satisfy α -LSI on \mathbb{R}^{n_1} and \mathbb{R}^{n_2} , then $\nu_1 \otimes \nu_2$ satisfies α -LSI on $\mathbb{R}^{n_1+n_2}$
- 2. If $\nu \propto e^{-f}$ where $\nabla^2 f(x) \succeq \alpha I$, then ν satisfies α -LSI

Necessary or sufficient conditions for LSI

Theorem:

- 1. If ν_1 and ν_2 satisfy α -LSI on \mathbb{R}^{n_1} and \mathbb{R}^{n_2} , then $\nu_1 \otimes \nu_2$ satisfies α -LSI on $\mathbb{R}^{n_1+n_2}$
- 2. If $\nu \propto e^{-f}$ where $\nabla^2 f(x) \succeq \alpha I$, then ν satisfies α -LSI
- 3. Let $\tilde{\nu} = \nu e^{-g}$ where ν satisfies α -LSI and g is bounded. Then $\tilde{\nu}$ satisfies $\tilde{\alpha}$ -LSI where $\tilde{\alpha} = \alpha e^{-2\operatorname{osc}(g)}$, $\operatorname{osc}(g) = \sup g \inf g$

Theorem:

- 1. If ν_1 and ν_2 satisfy α -LSI on \mathbb{R}^{n_1} and \mathbb{R}^{n_2} , then $\nu_1 \otimes \nu_2$ satisfies α -LSI on $\mathbb{R}^{n_1+n_2}$
- 2. If $\nu \propto e^{-f}$ where $\nabla^2 f(x) \succeq \alpha I$, then ν satisfies α -LSI
- 3. Let $\tilde{\nu} = \nu e^{-g}$ where ν satisfies α -LSI and g is bounded. Then $\tilde{\nu}$ satisfies $\tilde{\alpha}$ -LSI where $\tilde{\alpha} = \alpha e^{-2\operatorname{osc}(g)}$, $\operatorname{osc}(g) = \sup g \inf g$
- 4. If ν satisfies LSI, then $\int_{\mathbb{R}^n} e^{c||x||^2} \nu(x) dx < +\infty$ for some c > 0

[Villani, Topics in Optimal Transportation, AMS, 2003, Theorem 9.9]

Gaussian isoperimetry

We say ν satisfies **Gaussian isoperimetry** if for all $S \subset \mathbb{R}^n$

$$u(\partial S) \ge \psi \cdot \mathcal{G}(
u(S))$$

where $\mathcal{G} = \gamma_1 \circ \Gamma^{-1}$ is the Gaussian isoperimetry function

- $\gamma_1(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$ is Gaussian density $\mathcal{N}(0,1)$ on \mathbb{R}
- $\Gamma(x) = \int_{-\infty}^{x} \gamma_1(x) dx$ is Gaussian CDF
- $\mathcal{G}(x) \sim x\sqrt{2\log(1/x)}$ as $x \to 0$

Log-isoperimetry

Gaussian isoperimetry: For all $S \subset \mathbb{R}^n$

$$\nu(\partial S) \ge \psi \cdot \mathcal{G}(\nu(S))$$

 \Leftrightarrow **Log-isoperimetry**: For $\nu(S) \leq \frac{1}{2}$

$$\nu(\partial S) \ge \psi \cdot \nu(S) \sqrt{\log \frac{1}{\nu(S)}} \quad \psi = \inf_{S \subset \mathbb{R}^n} \frac{\nu(\partial S)}{\nu(S) \cdot \sqrt{\log S}}$$

$$\psi = \inf_{S \subset \mathbb{R}^n} \frac{\nu(S) \cdot \sqrt{\log \frac{1}{\nu(S)}}}{\nu(S) \cdot \sqrt{\log \frac{1}{\nu(S)}}}$$

 \Leftrightarrow For all partition $\mathbb{R}^n = S_1 \cup S_2 \cup S_3$

$$u(S_3) \ge \psi \cdot d(S_1, S_2) \cdot \min\{\nu(S_1), \nu(S_2)\} \cdot \sqrt{\log \frac{1}{\min\{\nu(S_1), \nu(S_2)\}}}$$

where $d(S_1, S_2) = \min\{||x - y||_2 : x \in S_1, y \in S_2\}$

$LSI \Rightarrow log-isoperimetry$

Theorem: If ν satisfies α -LSI:

$$J_{\nu}(\rho) \geq 2\alpha H_{\nu}(\rho)$$

then it satisfies log-isoperimetry:

$$\nu(\partial S) \geq C\sqrt{\alpha} \cdot \mathcal{G}(\nu(S))$$

for some universal constant C

[Ledoux, A simple analytic proof of an inequality by P. Buser, AMS, 1994]

Properties of H_{ν} in terms of ν

Relative entropy on $\mathcal{P}(\mathbb{R}^n)$

$$H_
u(
ho) = \mathbb{E}_
ho \left[\log rac{
ho}{
u}
ight]$$

Strong convexity:

Hess
$$H_{\nu}(\rho) \succeq \alpha I$$

Gradient dominated:

$$\|\operatorname{grad} H_{\nu}(\rho)\|_{\rho}^{2} \geq 2\alpha H_{\nu}(\rho)$$

Quadratic growth:

$$H_{\nu}(\rho) \geq \frac{\alpha}{2}d(\rho,\nu)^2$$

Target distribution on \mathbb{R}^n

$$\nu \propto e^{-f}$$

Strong log-concavity:

$$\nabla^2 f(x) \succeq \alpha I$$

Log-Sobolev inequality:

$$J_{\nu}(\rho) \geq 2\alpha H_{\nu}(\rho)$$

Talagrand inequality:

$$H_{\nu}(\rho) \geq \frac{\alpha}{2} W_2(\rho, \nu)^2$$

Talagrand inequality

Talagrand inequality

Definition: ν satisfies α -Talagrand inequality (α -Tl) if for all $\rho \in \mathcal{P}(\mathbb{R}^n)$:

$$H_{\nu}(\rho) \geq \frac{\alpha}{2} W_2(\rho, \nu)^2$$

- Also known as Transport Inequality
- This is the quadratic growth condition of relative entropy:

$$H_{\nu}(\rho) \geq \frac{\alpha}{2} d(\rho, \nu)^2$$

ullet First shown by Talagrand (1996) for Gaussian $u = \mathcal{N}(0, I)$

[Talagrand, Transportation cost for Gaussian and other product measures, Geom. Funct. Anal. 6, 1996]

LSI implies TI

Lemma: If ν satisfies α -LSI:

$$J_{\nu}(\rho) \geq 2\alpha H_{\nu}(\rho)$$

then it also satisfies α -TI:

$$H_{\nu}(\rho) \geq \frac{\alpha}{2} W_2(\rho, \nu)^2$$

- Proof: H_{ν} gradient dominated = LSI \Rightarrow quadratic growth = TI. \Box
- If ν is log-concave, then the converse also holds (for some α')

[Otto & Villani, Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality, Journal of Functional Analysis, 2000]

TI implies concentration

Lemma: Suppose ν satisfies α -TI. Then for any $S \subset \mathbb{R}^n$, the neighborhood $S_t = S + tB_2^n = \{x \in \mathbb{R}^n \mid d(x, S) \leq t\}$ has

$$\nu(S_t) \ge 1 - \exp\left(-\frac{\alpha}{2}\left(t - \sqrt{\frac{2}{\alpha}\log\frac{1}{\nu(S)}}\right)^2\right) \sim 1 - e^{-\frac{\kappa}{2}t^2}$$

TI implies concentration

Lemma: Suppose ν satisfies α -TI. Then for any $S \subset \mathbb{R}^n$, the neighborhood $S_t = S + tB_2^n = \{x \in \mathbb{R}^n \mid d(x, S) \leq t\}$ has

$$u(S_t) \ge 1 - \exp\left(-\frac{\alpha}{2}\left(t - \sqrt{\frac{2}{\alpha}\log\frac{1}{\nu(S)}}\right)^2\right)$$

Proof:

$$t \leq W_2(\nu|_S, \nu|_{S_t^c}) \leq W_2(\nu|_S, \nu) + W_2(\nu|_{S_t^c}, \nu)$$

$$\leq \sqrt{\frac{2}{\alpha}} H_{\nu}(\nu|_S) + \sqrt{\frac{2}{\alpha}} H_{\nu}(\nu|_{S_t^c})$$

$$= \sqrt{\frac{2}{\alpha}} \log \frac{1}{\nu(S)} + \sqrt{\frac{2}{\alpha}} \log \frac{1}{\nu(S_t^c)}$$

[Villani, Topics in Optimal Transportation, AMS, 2003, §9.3.2]

Properties of ν

1. **Strongly log-concave:** $\Rightarrow H_{\nu}$ strongly convex

$$-\nabla^2 \log \nu(x) \succeq \alpha I$$

2. Log-Sobolev inequality: $\Leftrightarrow H_{\nu}$ gradient dominated

$$J_{\nu}(\rho) \geq 2\alpha H_{\nu}(\rho)$$

3. **Talagrand inequality:** $\Leftrightarrow H_{\nu}$ quadratic growth

$$H_{\nu}(\rho) \geq \frac{\alpha}{2} W_2(\rho, \nu)^2$$

4. Poincaré inequality:

$$\mathbb{E}_{\nu}[\|\nabla h\|^2] \geq \frac{\alpha}{\alpha} \operatorname{Var}_{\nu}(h)$$

Poincaré inequality

Poincaré inequality

Definition: ν satisfies α -Poincaré inequality (α -PI) if for all smooth $\phi \colon \mathbb{R}^n \to \mathbb{R}$

$$\operatorname{Var}_{\nu}(\phi) \leq \frac{1}{\alpha} \operatorname{\mathbb{E}}_{\nu}[\|\nabla \phi\|^2]$$

where $\text{Var}_{\nu}(\phi) = \mathbb{E}_{\nu}[\phi^2] - \mathbb{E}_{\nu}[\phi]^2$ is the variance of ϕ

Poincaré inequality

Definition: ν satisfies α -Poincaré inequality (α -PI) if for all smooth $\phi \colon \mathbb{R}^n \to \mathbb{R}$

$$\operatorname{\mathsf{Var}}_{
u}(\phi) \leq \frac{1}{\alpha} \operatorname{\mathbb{E}}_{
u}[\|\nabla \phi\|^2]$$

where $\text{Var}_{\nu}(\phi) = \mathbb{E}_{\nu}[\phi^2] - \mathbb{E}_{\nu}[\phi]^2$ is the variance of ϕ

• If
$$\phi(x) = \langle x, u \rangle$$
, then $u^{\top} \operatorname{Cov}_{\nu}(X) u \leq \frac{1}{\alpha} \|u\|^2$, so $\operatorname{Cov}_{\nu}(X) = u$

PI ⇒ Isoperimetry

 α -PI:

$$\operatorname{Var}_{\nu}(\phi) \leq \frac{1}{\alpha} \mathbb{E}_{\nu}[\|\nabla \phi\|^2]$$

Theorem: If ν satisfies α -PI, then it satisfies isoperimetry: For all $S \subset \mathbb{R}^n$

$$\nu(\partial S) \ge 2\sqrt{\alpha} \cdot \min \{\nu(S), 1 - \nu(S)\}$$

[Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, 1970]

[Ledoux, A simple analytic proof of an inequality by P. Buser, AMS, 1994]

LSI ⇒ Poincaré inequality

Theorem: If ν satisfies α -LSI:

$$J_{\nu}(\rho) \geq 2\alpha H_{\nu}(\rho)$$

then it also satisfies α -PI:

$$\mathsf{Var}_{
u}(\phi) \leq rac{1}{lpha} \, \mathbb{E}_{
u}[\|
abla \phi\|^2]$$

- Can obtain via linearization: $\rho = (1 + \eta \phi) \nu$ as $\eta \to 0$
- Also α -TI $\Rightarrow \alpha$ -PI via linearization

[Rothaus, Analytic inequalities, isoperimetric inequalities and logarithmic Sobolev inequalities, J. Funct. Anal., 1985]

Theorem:

1. If ν_1 and ν_2 satisfy α -PI on \mathbb{R}^{n_1} and \mathbb{R}^{n_2} , then $\nu_1 \otimes \nu_2$ also satisfies α -PI on $\mathbb{R}^{n_1+n_2}$

Theorem:

- 1. If ν_1 and ν_2 satisfy α -PI on \mathbb{R}^{n_1} and \mathbb{R}^{n_2} , then $\nu_1 \otimes \nu_2$ also satisfies α -PI on $\mathbb{R}^{n_1+n_2}$
- 2. If $\nu \propto e^{-f}$ where $\nabla^2 f(x) \succeq \alpha I$, then ν satisfies α -PI

Theorem:

- 1. If ν_1 and ν_2 satisfy α -PI on \mathbb{R}^{n_1} and \mathbb{R}^{n_2} , then $\nu_1 \otimes \nu_2$ also satisfies α -PI on $\mathbb{R}^{n_1+n_2}$
- 2. If $\nu \propto e^{-f}$ where $\nabla^2 f(x) \succeq \alpha I$, then ν satisfies α -PI
- 3. Let $\tilde{\nu} = \nu e^{-g}$ where ν satisfies α -PI and g is bounded. Then $\tilde{\nu}$ satisfies $\tilde{\alpha}$ -PI where $\tilde{\alpha} = \alpha e^{-2 \text{osc}(g)}$, $\text{osc}(g) = \sup g \inf g$

Theorem:

- 1. If ν_1 and ν_2 satisfy α -PI on \mathbb{R}^{n_1} and \mathbb{R}^{n_2} , then $\nu_1 \otimes \nu_2$ also satisfies α -PI on $\mathbb{R}^{n_1+n_2}$
- 2. If $\nu \propto e^{-f}$ where $\nabla^2 f(x) \succeq \alpha I$, then ν satisfies α -PI
- 3. Let $\tilde{\nu} = \nu e^{-g}$ where ν satisfies α -PI and g is bounded. Then $\tilde{\nu}$ satisfies $\tilde{\alpha}$ -PI where $\tilde{\alpha} = \alpha e^{-2 \text{osc}(g)}$, $\text{osc}(g) = \sup g \inf g$
- 4. If ν satisfies PI, then $\int_{\mathbb{R}^n} e^{c||x||} \nu(x) dx < +\infty$ for some c > 0
 - ullet E.g., exponential distribution $u(x) \propto e^{-c\|x\|}$ satisfies PI but not LSI

Poincaré inequality as spectral gap

L^2 space

Let
$$L^2(\nu) = \{\phi \colon \mathbb{R}^n \to \mathbb{R} \mid \int_{\mathbb{R}^n} \phi(x)^2 d\nu(x) < \infty\}$$

Define inner product and norm

$$\langle g, h \rangle_{\nu} := \mathbb{E}_{\nu}[gh] = \int_{\mathbb{R}^n} g(x)h(x)d\nu(x)$$

 $\|h\|_{\nu}^2 := \mathbb{E}_{\nu}[h^2] = \int_{\mathbb{R}^n} h(x)^2 d\nu(x)$

• χ^2 -divergence of ρ with respect to ν with density $h = \frac{\rho}{\nu}$ is

$$\chi^2_{\nu}(\rho) = \int_{\mathbb{R}^n} \nu(x) \left(\frac{\rho(x)}{\nu(x)} - 1 \right)^2 dx = \|h - 1\|_{\nu}^2$$

Laplacian

Let $u \propto e^{-f}$ be a probability distribution on \mathbb{R}^n

Define **Laplacian** operator $L: L^2(\nu) \to L^2(\nu)$ by

• Characterizes integration by parts in $L^2(\nu)$:

$$\langle L_g, h \rangle_{\boldsymbol{y}} = \int_{\mathbb{R}^n} (L_g) h \, d\nu = \int_{\mathbb{R}^n} \langle \nabla g, \nabla h \rangle \, d\nu = \int_{\mathbb{R}^n} g(Lh) \, d\nu = \langle g, Lh \rangle_{\boldsymbol{y}}$$

• *L* ≥ 0:

$$\langle Lh, h \rangle_{\nu} = \|\nabla h\|_{\nu}^{2} \ge 0$$

Poincaré inequality as spectral gap of Laplacian

Laplacian:

$$L = -\Delta + \nabla f \cdot \nabla \geqslant \mathbf{0}$$

Smallest eigenvalue is 0:

$$L\mathbf{1} = -\underbrace{\Delta 1}_{\mathbf{50}} + \nabla f \cdot \underbrace{\nabla 1}_{\mathbf{50}} = 0$$

Spectral gap:

$$\lambda(L) = \inf_{h: \langle h, 1 \rangle_{\nu} = 0} \frac{\langle h, Lh \rangle_{\nu}}{\|h\|_{\nu}^{2}} = \inf_{h: \langle h, 1 \rangle_{\nu} = 0} \frac{\|\nabla h\|_{\nu}^{2}}{\mathsf{Var}_{\nu}(h)}$$

• Therefore, ν satisfies α -Poincaré inequality $\Leftrightarrow \lambda(L) \geq \alpha$

$$\forall h: Var_{\nu}(h) \leq \frac{1}{\alpha} \mathbb{E}_{\nu}[\|\nabla h\|^2]$$

Laplacian controls evolution of relative density

Lemma: Suppose X_t follows the Langevin dynamics:

$$dX_t = -\nabla f(X_t) dt + \sqrt{2} dW_t$$

so its density $X_t \sim \rho_t$ follows the Fokker-Planck equation:

$$\frac{\partial \rho_t}{\partial t} = \nabla \cdot (\rho_t \nabla f) + \Delta \rho_t$$

Then the density $h_t = \frac{\rho_t}{\nu}$ with respect to $\nu \propto e^{-f}$ follows:

$$\frac{\partial h_t}{\partial t} = -\langle \nabla f, \nabla h_t \rangle + \Delta h_t = -Lh_t$$

• This is the backward Kolmogorov equation

Convergence rate in χ^2 -divergence

Theorem: Assume $\nu \propto e^{-f}$ satisfies α -Poincaré inequality. Then the Langevin dynamics

$$dX_t = -\nabla f(X_t) dt + \sqrt{2} dW_t$$

converges exponentially fast in χ^2 -divergence:

$$\chi_{\nu}^2(\rho_t) \le e^{-2\alpha t} \chi_{\nu}^2(\rho_0)$$

Proof: Let
$$h_t = \frac{\rho_t}{\nu}$$
, so $\dot{h}_t = \frac{\partial h_t}{\partial t} \stackrel{*}{=} -Lh_t$. Then
$$\frac{d}{dt} \chi^2_{\nu}(\rho_t) = \frac{d}{dt} \mathbb{E}_{\nu}[\|h_t - 1\|^2]$$

$$= 2\mathbb{E}_{\nu} \left[\langle h_t - 1, \dot{h}_t \rangle \right]$$

$$\stackrel{*}{=} -2\mathbb{E}_{\nu} \left[\langle h_t - 1, Lh_t \rangle \right]$$

$$= -2\mathbb{E}_{\nu} \left[\langle h_t, Lh_t \rangle \right]$$

$$= -2\mathbb{E}_{\nu} \left[\|\nabla h_t\|^2 \right]$$

$$\leq -2\alpha \operatorname{Var}_{\nu}(h_t)$$
by Poince inequality
$$= -2\alpha \chi^2_{\nu}(\rho_t)$$

Integrating gives the result.

PI ⇒ Transportation inequality

Analogous to LSI \Rightarrow TI

Theorem: If ν satisfies α -Poincaré inequality, then it also satisfies the χ^2 -transportation inequality:

$$\chi_{\nu}^2(\rho) \geq \frac{\alpha}{2} W_2(\rho, \nu)^2$$

- [Ding, A note on quadratic transportation and divergence inequality, Statist. Probab. Lett., 2015]
- [Liu, The Poincaré inequality and quadratic transportation-variance inequalities, Electron. J. Probab., 2020]

Properties of ν

1. Strongly log-concave:

$$-\nabla^2 \log \nu(x) \succeq \alpha I$$

2. Log-Sobolev inequality:

$$J_{\nu}(\rho) \geq 2\alpha H_{\nu}(\rho)$$

3. Talagrand inequality:

4. Poincaré inequality:

$$\mathbb{E}_{\nu}[\|\nabla h\|^2] \geq \frac{\alpha}{\alpha} \operatorname{Var}_{\nu}(h)$$

5. χ^2 -Transportation inequality:

$$\chi_{\nu}^2(\rho) \geq \frac{\alpha}{2} W_2(\rho, \nu)^2$$