## Particle spectrograph

## Wave operator and propagator

|                                    | $\sigma_{1}^{\#1}{}_{\alpha\beta}$             | $\sigma_{1}^{\#2}$                          | $\tau_1^{\#1}{}_{\alpha\beta}$               | $\sigma_{1^-}^{\#1}{}_{\alpha}$             | $\sigma_{1^{-}\alpha}^{\#2}$                    | ${\mathfrak l}_{1}^{\#1}{}_{\alpha}$ | $\tau_{1}^{\#2}{}_{\alpha}$               |
|------------------------------------|------------------------------------------------|---------------------------------------------|----------------------------------------------|---------------------------------------------|-------------------------------------------------|--------------------------------------|-------------------------------------------|
| $\sigma_{1}^{\#1} + ^{lphaeta}$    | 0                                              | $\frac{2\sqrt{2}}{\alpha_0 + \alpha_0 k^2}$ | $\frac{2i\sqrt{2}k}{\alpha_0 + \alpha_0k^2}$ | 0                                           | 0                                               | 0                                    | 0                                         |
| $\sigma_{1}^{#2} + \alpha^{\beta}$ | $\frac{2\sqrt{2}}{\alpha_0 + \alpha_0 k^2}$    | $-\frac{2}{\alpha_0 (1+k^2)^2}$             | $-\frac{2ik}{\alpha_0(1+k^2)^2}$             | 0                                           | 0                                               | 0                                    | 0                                         |
| $t_1^{\#1} + \alpha \beta$         | $-\frac{2i\sqrt{2}k}{\alpha_0 + \alpha_0 k^2}$ | $\frac{2ik}{\alpha_0(1+k^2)^2}$             | $-\frac{2k^2}{\alpha_0(1+k^2)^2}$            | 0                                           | 0                                               | 0                                    | 0                                         |
| $\sigma_{1}^{\#1} +^{\alpha}$      | 0                                              | 0                                           | 0                                            | 0                                           | $-\frac{2\sqrt{2}}{\alpha_0+2\alpha_0 k^2}$     | 0                                    | $-\frac{4ik}{\alpha_0+2\alpha_0k^2}$      |
| $\sigma_{1}^{\#2} +^{lpha}$        | 0                                              | 0                                           | 0                                            | $-\frac{2\sqrt{2}}{\alpha_0+2\alpha_0 k^2}$ | $-\frac{2}{\alpha_0 (1+2 k^2)^2}$               | 0                                    | $-\frac{2i\sqrt{2}k}{\alpha_0(1+2k^2)^2}$ |
| $\tau_{1}^{\#1} +^{\alpha}$        | 0                                              | 0                                           | 0                                            | 0                                           | 0                                               | 0                                    | 0                                         |
| $t_1^{\#2} + \alpha$               | 0                                              | 0                                           | 0                                            | $\frac{4ik}{\alpha_0 + 2\alpha_0k^2}$       | $\frac{2 i \sqrt{2} k}{\alpha_0 (1 + 2 k^2)^2}$ | 0                                    | $-\frac{4k^2}{\alpha_0(1+2k^2)^2}$        |

| Quadratic (free) action                                                                                                                                                                                                                                                                                         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $S_{F} == \iiint (-\frac{1}{2} \alpha_0 \ \omega_{\alpha\zeta\beta} \ \omega^{\alpha\beta\zeta} - \frac{1}{2} \alpha_0 \ \omega^{\alpha\beta}_{\alpha} \ \omega_{\beta\zeta}^{\zeta} + f^{\alpha\beta} \ \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} - \alpha_0 \ f^{\alpha\beta}$ |  |
| $\partial_{\beta}\omega_{\alpha}^{\zeta} + \alpha_{0} \partial_{\beta}\omega_{\alpha}^{\alpha\beta} + \alpha_{0} f^{\alpha\beta} \partial_{\zeta}\omega_{\alpha\beta}^{\zeta} - \alpha_{0} f_{\alpha}^{\alpha} \partial_{\zeta}\omega_{\beta}^{\beta\zeta})[t, x, y, z] dz dy dx dt$                            |  |

|                                |                                           |   |   |                                |                               |   |                        | ı                  |                                |                                      |              |                                    |                                                 |                                   | $\omega_2^{\#1}$ †              | $\alpha eta \chi$ 0   |          |
|--------------------------------|-------------------------------------------|---|---|--------------------------------|-------------------------------|---|------------------------|--------------------|--------------------------------|--------------------------------------|--------------|------------------------------------|-------------------------------------------------|-----------------------------------|---------------------------------|-----------------------|----------|
| $f_{1}^{\#2}$                  | 0                                         | 0 | 0 | $-\frac{1}{2}\bar{l}\alpha_0k$ | 0                             | 0 | 0                      | $\omega_{0}^{\#1}$ | 0                              | 0                                    | 0            | <u>α</u> 0                         |                                                 | $\sigma_{2^{+}lphaeta}^{\sharp1}$ |                                 |                       |          |
| $f_{1^{	ext{-}}lpha}^{\#1}$    | 0                                         | 0 | 0 | 0                              | 0                             | 0 | 0                      | $f_{0}^{#2}$       | 0                              | 0                                    | 0            | 0                                  | $\sigma_{2}^{\#1}\dagger^{lphaeta}$             | 0                                 | $\frac{2i\sqrt{2}}{\alpha_0 k}$ | 0                     |          |
| $\omega_{1}^{\#2}{}_{lpha}$ ,  | 0                                         | 0 | 0 | $\frac{\alpha_0}{2\sqrt{2}}$   | 0                             | 0 | 0                      | $f_0^{\#1}$        | $-\frac{i\alpha_0k}{\sqrt{2}}$ | 0                                    | 0            | 0                                  | $	au_2^{\#1} \dagger^{lphaeta}$                 | α <sub>0</sub> k                  | $\frac{2}{\alpha_0 k^2}$        | 0                     |          |
| $\omega_{1}^{\#1}{}_{lpha}$ (  | 0                                         | 0 | 0 | <u>α</u> 0 4                   | $-\frac{\alpha_0}{2\sqrt{2}}$ | 0 | $\frac{i\alpha_0k}{2}$ | $\omega_{0}^{\#1}$ | $+\frac{\alpha_0}{2}$          | $+\frac{i\alpha_0 k}{\sqrt{2}}$      | 0 +          | 0                                  | $\sigma_2^{\sharp 1} \dagger^{\alpha\beta\chi}$ | 0                                 | 0                               | $-\frac{4}{\alpha_0}$ |          |
| $f_{1}^{\#1}$                  | $i \alpha_0 k$ $2 \sqrt{2}$               | 0 | 0 | 0                              | 0                             | 0 | 0                      |                    | $\omega_{0}^{\#1}$             | $f_{0}^{\#1}$                        | $f_{0}^{#2}$ | $\omega_{0}^{\#1}$                 |                                                 |                                   |                                 | rce cons              |          |
|                                | $\frac{\alpha_0}{\sqrt{2}}$ $\frac{i}{2}$ | _ |   | _                              |                               |   |                        |                    | $\sigma_0^{\#}$                |                                      |              | $\sigma_{0}^{#2} + \sigma_{0}^{*}$ | #1<br>) <sup>-</sup>                            |                                   | $\frac{500}{\tau_{0+}^{\#2}}$ : | 3) irreps<br>== 0     | <u> </u> |
| $\omega_1^{\#_+^2}\alpha\beta$ | $\frac{\alpha_{\rm C}}{2}$                | 0 | 0 | 0                              | 0                             | 0 | 0                      | $\sigma_{0}^{\#1}$ | † 0                            | $-\frac{i\sqrt{\alpha_0}}{\alpha_0}$ | (            | 0                                  | )                                               |                                   | $\tau_{1}^{\#2}$                |                       | 0        |

 $\tau_{0^{+}}^{\#1} \dagger$ 

 $\tau_{0^{+}}^{#2}$  †

 $\sigma_0^{\#1}$  †

 $\frac{1}{\alpha_0 k^2}$ 

0

0

| Source constraints/gauge generators                                            |                |  |  |  |  |  |  |
|--------------------------------------------------------------------------------|----------------|--|--|--|--|--|--|
| SO(3) irreps                                                                   | Multiplicities |  |  |  |  |  |  |
| $\tau_{0^{+}}^{\#2} == 0$                                                      | 1              |  |  |  |  |  |  |
| $\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$                     | 3              |  |  |  |  |  |  |
| $\tau_{1}^{\#1\alpha} == 0$                                                    | 3              |  |  |  |  |  |  |
| $\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$ | 3              |  |  |  |  |  |  |
| Total constraints:                                                             | 10             |  |  |  |  |  |  |

 $\omega_{2^{+}\alpha\beta}^{\#1} \; f_{2^{+}\alpha\beta}^{\#1} \; \omega_{2^{-}\alpha\beta\chi}^{\#1}$ 

 $\frac{i \alpha_0 k}{2 \sqrt{2}}$ 

0

 $-\frac{\alpha_0}{4}$ 

<u>α</u>0

## Massive and massless spectra



(No massive particles)

 $\frac{\alpha_0}{2\sqrt{2}}$ 

β 4

 $\frac{i\,\alpha_0\,k}{2\,\sqrt{2}}$ 

0

 $\omega_1^{\#2} \dagger^{\alpha}$ 

0

 $\omega_{1}^{\#1} \dagger^{\alpha}$ 

0

 $f_{1}^{\#1} +^{\alpha}$ 

0

Unitarity conditions