Class Work 9 Abstract Algebra Math 320 Stephen Giang, William Diebolt Sobhan Ahmadi Pishkouhi

Problem 1: For parts (a) and (b), determine if the given ring is a field. If it is, explain why. If not, explain why and provide one zero divisor.

(a)
$$\mathbb{Q}[x]/(x^6 - 144)$$

Notice that $x^3 - 12$ and $x^3 + 12$ are both in $\mathbb{Q}/(x^6 - 144)$ as they both have degree less than 6. When multiplied, they equal $(x^6 - 144)$. So the following is a zero divisor:

$$[x^3 - 12][x^3 + 12] = [x^6 - 144] = [0]$$

(b)
$$\mathbb{Z}_3[x]/(2x^3+x+1)$$

Notice that all constants of \mathbb{Z}_3 are 0, 1, 2. Notice that all zero divisors will be factors of the given polynomial. Also notice because of the congruence class, the only factors will be of degree 2 and degree 1 at the same time. Because degree one, then its factor is a root. Notice:

$$f(x) = 2x^{3} + x + 1$$

$$f(0) = 1 \neq 0$$

$$f(1) = 1 \neq 0$$

$$f(2) = 1 \neq 0$$

Problem 2: Find the multiplicative inverse of [x-1] in $\mathbb{Q}[x]/(x^2-3)$ using the following method:

Let $(x-1, x^2-3) = 1$, such that the following is true:

$$(x-1)u(x) + (x^2 - 3)v(x) = 1$$

We assume that u(x) and v(x) are both degree 1. So we can write the following:

$$u(x) = ax + b v(x) = cx + d$$

We now have

$$(x-1)(ax+b) + (x^2-3)(cx+d) = 1$$
$$ax^2 + (b-a)x - b + cx^3 + dx^2 - 3cx - 3d = 1$$
$$cx^3 + (a+d)x^2 + (b-a-3c)x + (-b-3d) = 1$$

So we get the systems of equation:

$$c = 0$$

$$a + d = 0$$

$$b - a - 3c = 0$$

$$-b - 3d = 1$$

So after reducing the system, we get $a = \frac{1}{2}, b = \frac{1}{2}, c = 0, d = \frac{-1}{2}$. So now we get the following:

$$\frac{1}{2}(x-1)(x+1) - \frac{-1}{2}(x^2 - 3) = 1$$
$$\frac{1}{2}(x-1)(x+1) = 1$$

Thus $\frac{1}{2}(x+1) = [x-1]^{-1}$

Problem 3:

(a) Prove that the set $\{(2a,0): a \in \mathbb{Z}\}$ is an ideal of $\mathbb{Z} \times \mathbb{Z}$

Notice the following:

Let $(2a,0) \in \mathbb{Z} \times \mathbb{Z}$. If we let a=0, then $(0,0)=\mathbb{Z} \times \mathbb{Z}$. Thus $\mathbb{Z} \times \mathbb{Z}$ contains the zero element.

Let x = (2a, 0) and y = (2b, 0).

$$x - y = (2a, 0) - (2b, 0) = (2(a - b), 0) \in \mathbb{Z} \times \mathbb{Z}$$

Thus closed under subtraction.

Let x = (2a, 0) and y = (b, c)

$$xy = (2a, 0)(b, c) = (2ab, 0) = (2ba, 0) = (b, c)(2a, 0) = yx$$

Thus absorption property proven.

(b) Let F be a field, $c \in F$, and consider the set K_c consisting of polynomials that have c as a root:

Notice the following:

Let f(x) = 0. Notice that $f(c) = 0_F \in K_c$.

Let $f(x), g(x) \in K_c$.

$$f(x) - g(x) = (f - g)(x),$$
 $f(c) - g(c) = (f - g)(c) = 0_F \in K_c$

Let $f(x) \in K_c$ and $g(x) \in F[x]$.

$$f(c)g(c) = 0_F = g(c)f(c)$$

Thus the absorption property is proven