Content of this lecture

- 1. Surface plasmon polaritons (SPPs)
 - Dispersion relation of SPPs
 - Plasmon dispersion in full spectrum
 - Plasmon dispersion of real metals
 - SPP: transverse or longitudinal wave?
 - Wavelength of SPPs
 - Propagation length and loss of SPPs
- 2. SPPs in multilayer system
 - Dispersion relation of coupled SPP modes
 - IMI & MIM heterostructures

1. Surface plasmon polaritons (SPPs)

- What we have learnt so far:
 - Compare: electron "gas" in a metal vs. real gas composed of molecules
 - Metals allow for electron density waves plasmons
 - At ω_p , longitudinal oscillations inside metal volume plasmons
- The second type of plasmons in metal:
 - Surface plasmons plasmons at metal-dielectric interface
 - When surface plasmon couple with a photon surface plasmon polariton
 - SPP is a surface wave propagate along the interface (wavevector k_{spp})
 evanescently confined in the normal direction

Dispersion relation of SPP

Let's solve Maxwell's equations with boundary conditions.

We are looking for solutions described below:

EM wave propagating in *x* direction and decaying in *z* direction should have the form:

$$\mathbf{E}(x, y, z) = \mathbf{A} \exp(\pm k_z z) \exp(i\beta x)$$
• "+" in Medium 2
• "-" in Medium 1

- β : the x component of the wave vector \mathbf{k} (also called propagation constant, $\beta' \rightarrow$ phase velocity, $\beta'' \rightarrow$ loss)
- ik_z : the z component of the wave vector **k**, k_z is positive real

Medium 1

Medium 2

We start from Maxwell's equations:

$$\nabla \times \mathbf{E} = -\mu_0 \frac{\partial \mathbf{H}}{\partial t}, \ \nabla \times \mathbf{H} = \varepsilon_0 \varepsilon \frac{\partial \mathbf{E}}{\partial t}$$

$$\partial_t \to -i\omega$$

$$\partial_x \to i\beta, \partial_y = 0, \partial_z \to \pm k_z$$

SPP wave:

$$\mathbf{E}(x, y, z) = \mathbf{A} \exp(\pm k_z z) \exp(i\beta x)$$

$$\pm k_z E_y = -i\omega \mu_0 H_x$$

$$\pm k_z E_x - i\beta E_z = i\omega \mu_0 H_y$$

$$i\beta E_y = i\omega \mu_0 H_z$$

$$\pm k_z H_y = i\omega \varepsilon_0 \varepsilon E_x$$

 $\pm k_{z}H_{z} - i\beta H_{z} = -i\omega\varepsilon_{0}\varepsilon E_{v}$

 $i\beta H_{v} = -i\omega\varepsilon_{0}\varepsilon E_{z}$

Two sets of independent solutions:

TE solution, with E_y , H_x , H_z

TM solution, with H_y , E_x , E_z

For TM solution:

$$\pm \Box_{z} E_{x} - \beta E_{z} = \varpi \mu_{0} H_{y}$$

$$\pm \Box_{z} H_{y} = \varpi \varepsilon_{0} \varepsilon E_{x}$$

$$- \Box_{z} H_{y1} = \varpi \varepsilon_{0} \varepsilon_{1} E_{x1}$$

$$\Box_{z} H_{y2} = \varpi \varepsilon_{0} \varepsilon_{2} E_{x2}$$

$$-\Box_{1}H_{y1} = \varpi\varepsilon_{0}\varepsilon_{1}E_{x1} \quad (i$$

 $\Box_{2}H_{v2} = \omega \varepsilon_{0} \varepsilon_{2}E_{x2}$ (in Medium 2)

Boundary conditions:

$$H_{y1} = H_{y2}, \quad E_{x1} = E_{x2} \longrightarrow \frac{\square_{z1}}{\square_{z2}} \cdot \frac{H_{y1}}{H_{y2}} = -\frac{\varepsilon_1}{\varepsilon_2} \cdot \frac{E_{x1}}{E_{x2}} \longrightarrow \frac{\square_{z1}}{\square_{z2}} = -\frac{\varepsilon_1}{\varepsilon_2} \quad (*)$$

• ε_1 and ε_2 must have opposite signs – a metal and a dielectric

According to the wave equation: $(\partial_x \to \mathcal{P}, \partial_v = 0, \partial_z \to \pm \mathbb{Q})$

$$\nabla^2 \mathbf{E} + k_0^2 \varepsilon \mathbf{E} = 0 \longrightarrow (k_z^2 - \beta^2 + k_0^2 \varepsilon) \mathbf{E} = 0 \longrightarrow k_z^2 = \beta^2 - k_0^2 \varepsilon$$

Substitute it into (*) and we arrive at:
$$\beta = k_0 \sqrt{\frac{\varepsilon_1 \varepsilon_2}{\varepsilon_1 + \varepsilon_2}} = \frac{\omega}{c} \sqrt{\frac{\varepsilon_m \varepsilon_d}{\varepsilon_m + \varepsilon_d}} \quad \leftarrow \text{ dispersion relation of SPP!}$$

▶ For TE solution:

 It can be proven that no such confined surface mode is supported.

Homework

SPPs can only be excited by TM-polarized field!!!

Plot the dispersion curve of SPP

$\beta = \frac{\omega}{c} \sqrt{\frac{\varepsilon_{\square} \varepsilon_{\square}}{\varepsilon_{\square} + \varepsilon_{\square}}}$

Two reasonable premises:

- 1. Neglect the dispersion of the dielectric: ε_d = constant
- 2. Drude metal without damping: $\varepsilon_m(\omega) = 1 \frac{\omega_p^2}{\omega^2}$

 $\begin{array}{c|c} \mathcal{E}_r \\ \mathcal{E}_d \\ \hline -\mathcal{E}_d \\ \hline -\mathcal{E}_d \\ \hline \omega_{sp} \end{array}$

• At very low
$$\omega$$
: $\varepsilon_m \rightarrow -\infty$

$$\beta = \frac{\omega}{c} \lim_{\varepsilon_m \to -\infty} \sqrt{\frac{\varepsilon_m \varepsilon_d}{\varepsilon_m + \varepsilon_d}} \approx \frac{\omega}{c} \sqrt{\varepsilon_d} \quad \text{(tends to light line in the dielectric)}$$

• At an ω where $\varepsilon_m = -\varepsilon_d$: $\beta \rightarrow \infty$ (short-wavelength limit)

This frequency is called the characteristic surface plasmon frequency ω_{sp} :

(Derive it by yourself)

Plasmon dispersion in full spectrum

Radiative modes $(\varepsilon'_m > 0)$

real β real ik,

 $(-\varepsilon_d < \varepsilon_m' < 0)$

imaginary β real ik,

Bound modes (SPPs)

$$(\varepsilon'_{m} < -\varepsilon_{d})$$

real β imaginary ik,

 $Re(\beta)$

Plasmon dispersion of real metals

damping neglected: $\gamma = 0$

non-negligible damping! $\gamma \neq 0$

- eta approaches a finite limit at $\omega_{
 m sp}$
- Quasibound modes between $\omega_{\rm sp}$ and $\omega_{\rm p}$ is allowed

SPP: transverse or longitudinal wave?

Understand why must TM excitation:

- Discontinuous E_z on interface \rightarrow accumulation of surface charges
- E_x component \rightarrow "push" the electrons to oscillate
- TE excitation → continuous **E** → no surface charge → no SPP

So, is the SPP wave transverse or longitudinal?

Both!!!

But, let's consider the special case of short-wavelength limit:

- The field is confined in a very small region near the metal surface
- In this small region, the effective permittvity $\varepsilon = \varepsilon_m + \varepsilon_d = 0$

→ Longitudinal wave!

• $v_g \sim 0 \rightarrow$ non-propagating, quasi-static surface modes

Name: surface plasmon polariton

Wavelength of SPP

$$\lambda_{\rm spp} = \frac{2\pi}{k_{\rm spp}} = \frac{2\pi}{\beta}$$

- SPP wavelength can reach nanoscale at optical frequencies!
- Light cannot excite SPPs on planar metal surface directly.

larger **k**

smaller λ

Propagation length & loss of SPPs

Three characteristic length scales (important!):

 $\delta_{\rm m}$: decay length in metal

 δ_d : decay length in dielectric ($\sim \lambda/2$) field confinement

 $\delta_{\rm sp}$: propagation length of SPPs \longrightarrow |088

- We expect long propagation length and tight field confinement.
- Therefore, $\delta_{\rm sp}/\delta_{\rm d}$ is a key measure for plasmonic devices, which is expected to be as large as possible!

Numerical verification:

Understand the dependence of δ_m , δ_d , and δ_{sp} on wavelength $\lambda!$

$\delta_{\rm d}$ and $\delta_{\rm sp}$ of SPPs on gold surface:

The trade-off between **confinement** and **loss** is typical for plasmonics!

- The propagation length of SPP is on the order of µm at visible frequency.
- How to increase δ_{SP} while maintaining the confinement?
- This is crucial for many applications such as sensing and SPP waveguiding in plasmonic circuitry (cm scale δ_{SP} expected).
- Let's see SPPs in multilayer system...

2. SPPs in multilayer system (waveguide)

- Consist of alternating metal and insulator layers
- Each single interface can sustain SPPs
- When $2a < \delta_d \ (\delta_m)$, interaction of SPPs \rightarrow coupled SPP modes
- Two typical three-layer heterostructures:
 - Insulator-metal-insulator (IMI)
 - Metal-insulator-metal (MIM)

Dispersion of coupled SPP modes

For TM waves:

- \rightarrow Write the expressions of H_y , E_x , E_z in three spatial regions
- ightarrow Match boundary conditions: continuity of H_y and E_x
- → Satisfy the wave equation in three regions:

$$k_i^2 = \beta^2 - k_0^2 \varepsilon_i \qquad k_i \equiv k_{z,i}$$

 \rightarrow Dispersion relation linking β and ω :

$$e^{-4k_1a} = \frac{k_1/\varepsilon_1 + k_2/\varepsilon_2}{k_1/\varepsilon_1 - k_2/\varepsilon_2} \frac{k_1/\varepsilon_1 + k_3/\varepsilon_3}{k_1/\varepsilon_1 - k_3/\varepsilon_3}$$
 (*) read the textbook and derive it by yourself

Note: for infinite thickness ($a \rightarrow \infty$), equation (*) reduces to $\frac{k_1}{k_{2,3}} = -\frac{\mathcal{E}_1}{\mathcal{E}_{2,3}}$ two uncoupled SPP modes at the respective interfaces

Consider identical materials above and below the middle layer:

$$\varepsilon_2 = \varepsilon_3, \quad k_2 = k_3$$

Equation (*) splits into two equations:

$$\tanh k_1 a = -\frac{k_2 \varepsilon_1}{k_1 \varepsilon_2}$$

Odd modes $(E_x \text{ odd}, H_y \text{ and } E_z \text{ even})$

Even modes $(E_x \text{ even}, H_y \text{ and } E_z \text{ odd})$

Do it by yourself: read through pages 30-34 of the textbook and derive these equations

IMI geometry

$$\varepsilon_{\rm d} > 0, \ \varepsilon_{\rm m} = 1 - \frac{\omega_p^2}{\omega^2} < 0$$

$$\operatorname{Im}(\beta) = 0$$

• When
$$\beta \to \infty$$
: $\omega_+ = \frac{\omega_p}{\sqrt{1+\varepsilon_2}} \sqrt{1+\frac{2\varepsilon_2 e^{-2\beta a}}{1+\varepsilon_2}}$ $\omega_- = \frac{\omega_p}{\sqrt{1+\varepsilon_2}} \sqrt{1-\frac{2\varepsilon_2 e^{-2\beta a}}{1+\varepsilon_2}}$

• When d decreases:

long-range SPP (LRSPP)

- odd modes \rightarrow closer to light line $\rightarrow \delta_{SP} \uparrow$, confinement \downarrow
- even modes \rightarrow farther from light line $\rightarrow \delta_{SP} \downarrow$, confinement \(\uparrow \)

short-range SPP (SRSPP)

For asymmetric IMI structure ($\varepsilon_2 \neq \varepsilon_3$) at $\lambda_0 = 632.8$ nm:

Further reading on LRSPP: Berini, Adv. Opt. Photon. 1, 484 (2009).

MIM geometry

 $\varepsilon_{\rm d} > 0$, real metal $\varepsilon_{\rm m}$ $\operatorname{Im}(\beta) \neq 0$

Dispersion of the odd mode

- Usually only odd mode exists; even mode is not supported.
 For more details, see Prade et al., PRB 44, 13556 (1991).
- $\beta_{\text{odd}} > \beta_{\text{SPP}} \rightarrow \text{large } \beta \text{ can be excited at lower } \omega \rightarrow \text{better confinement}$

IMI vs. MIM

Au–air, $\lambda = 1.55 \, \mu \text{m}$

Propagation length: IMI > MIM

Confinement: IMI < MIM

Zia et al., JOSA A 21, 2442 (2004).

Summary

Surface plasmons polaritons (SPPs):

Confined surface wave; Transverse and longitudinal oscillations;

TM excitation; Dispersion relation;

Short-wavelength limit at ω_{sp} ; Plasmon dispersion in full spectrum;

Dispersion of real metals; SPP wavelength ("x-ray" at optical ω);

Three characteristic lengths; Trade-off between localization and loss.

SPPs in multilayer system:

Dispersion relation of coupled SPP modes;

IMI & MIM heterostructures;

Odd & even modes (LRSPP & SRSPP);

Properties of the coupled modes.