A Reference Sample Padding Method for Intra Prediction in JVET

Yong-Uk Yoon, Do-Hyeon Park, Sin-Jae Kim, Jae-Gon Kim

Korea Aerospace University

I. Introduction

- Joint Video Exploration Team (JVET)
 - □ ITU-T VCEG (Q6/16) and ISO/IEC MPEG (JTC 1/SC 29/WG 11)
 - A compression capability that significantly exceeds that of the current HEVC standard
 - The scope of technology
 - Camera-view content, screen content, VR/360 video and high-dynamicrange video
 - Requirements
 - Compression performance: 30% 50% bit-rate reductions
 - Video Formats: VGA (640x480) ~ 8K UHD
 - Timeline
 - Publication of a future video coding specification by approximately 2020
- JVET releases the Joint Exploration Model (JEM) Software codec for technical verification

II. Reference Sample Preparation in JEM

- Reference sample padding
 - ☐ The reference sample padding is performed when no reference samples exist
 - There are no reference samples around
 - The reference samples is partially available
 - ☐ The basic idea of reference sample padding
 - Fill in a sample that does not exist using the closest sample available

■ We propose a reference sample padding method that considers the variation of surrounding samples

III. Proposed Method

- Basic concept
 - The predictive performance can be improved by reflecting the correlation of the surrounding images on non-existing samples
- Assumption for reflecting the correlation
 - ☐ High correlation between non-existing samples and surrounding samples
 - If the intensity of an existing sample changes linearly, samples that do not exist are likely to be affected

- Reference sample padding method based on variation
 - Use three samples of the available samples
 - Calculate the variation of the two samples (s_1, s_2)
 - The variation is reflected according to the position of the padding area

$$P_x = s_2 + \frac{\Delta x \Delta S_x}{width_{CU}}$$
, $P_y = s_3 + \frac{\Delta y \Delta S_y}{height_{CU}}$

- s_{sub} is a middle sample of available samples to determine linearity
- ☐ If the CTU or CU is located at the boundary of a slice or image, there is no sample
 - Blocks already coded are used as reference samples
- Determine linearity

$$Abs(s_1 + s_2 - 2s_{sub}) < (1 \ll (BitDepth_Y - x))$$

- As Increase linearity factor of x, the condition of linearity is more strict
- Padding samples
 - If the above condition is satisfied: linear padding is performed
 - Else: copied from the closest sample

 $lue{}$ The linearity factor x was set to 8 or 9 and implemented for case 1

IV. Experimental Results

- Test conditions
 - ☐ JEM CTC, Anchor: JEM 6.0, All Intra, 100 frames
 - Class A: x = 9, Class B: x = 8

			BD-rate		
Sequence			Y	U	V
Class A	3840x2160	CampfireParty	-0.03%	0.06%	0.18%
		Drums	-0.01%	-0.11%	0.08%
Class B	1920x1080	BasketballDrive	-0.04%	-0.42%	-0.12%
		Cactus	0.03%	0.54%	-0.19%
		ParkScene	-0.01%	0.00%	-0.08%
		BQTerrace	-0.01%	0.15%	0.21%

V. Conclusions

- Utilize the characteristics of the image for reference sample padding
 - Consider the variation of the brightness of neighboring blocks
- Minor BD-rate bit saving
 - Use linearity factor of x = 9 for 4k, and x = 8 for full HD sequences
 - As the resolution increases, the image content belonging to one CU becomes smaller
 - Gain is very small, but the correlation with neighboring blocks may be increased when prediction from a padded region is performed
 - Case 2 and 3 also need to be implemented
 - Study on more effective reference padding is needed