# Introduction to Machine-Independent Optimizations - 4 Data-Flow Analysis

Y.N. Srikant

Department of Computer Science and Automation Indian Institute of Science Bangalore 560 012

NPTEL Course on Principles of Compiler Design



#### Outline of the Lecture

- What is code optimization? (in part 1)
- Illustrations of code optimizations (in part 1)
- Examples of data-flow analysis
- Fundamentals of control-flow analysis
- Algorithms for two machine-independent optimizations
- SSA form and optimizations

## Foundations of Data-flow Analysis

- Basic questions to be answered
  - In which situations is the iterative DFA algorithm correct?
  - 2 How precise is the solution produced by it?
  - Will the algorithm converge?
  - What is the meaning of a "solution"?
- A DFA framework (D, V, ∧, F) consists of
  - D: A direction of the dataflow, either forward or backward
  - V : A domain of values
  - $\land$  : A meet operator;  $(V, \land)$  form a semi-lattice
  - F: A family of transfer functions,  $V \longrightarrow V$ 
    - F includes constant transfer functions for the
    - ENTRY/EXIT nodes as well



## Properties of the Iterative DFA Algorithm

- If the iterative algorithm converges, the result is a solution to the DF equations
- If the framework is monotone, then the solution found is the maximum fixpoint (MFP) of the DF equations
  - An MFP solution is such that in any other solution, values of *IN*[*B*] and *OUT*[*B*] are ≤ the corresponding values of the MFP (i.e., less precise)
- If the semi-lattice of the framework is monotone and is of finite height, then the algorithm is guaranteed to converge
  - Dataflow values decrease with each iteration
     Max no. of iterations = height of the lattice × no. of nodes in the flow graph

## Meaning of the Ideal Data-flow Solution

- Find all possible execution paths from the start node to the beginning of B
- (Assuming forward flow) Compute the data-flow value at the end of each path (using composition of transfer functions)
- No execution of the program can produce a smaller value for that program point than

$$IDEAL[B] = \bigwedge_{P, \text{ a possible execution path from start node to } f_P(v_{init})$$

- Answers greater (in the sense of ≤) than IDEAL are incorrect (one or more execution paths have been ignored)
- Any value smaller than or equal to IDEAL is conservative,
   i.e., safe (one or more infeasible paths have been included)
- Closer the value to IDEAL, more precise it is



## Meaning of the Meet-Over-Paths Data-flow Solution

 Since finding all execution paths is an undecidable problem, we approximate this set to include all paths in the flow graph

$$MOP[B] = \bigwedge_{P, \text{ a path from start node to } B} f_P(v_{init})$$

 MOP[B] ≤ IDEAL[B], since we consider a superset of the set of execution paths

# Meaning of the Maximum Fixpoint Data-flow Solution

- Finding all paths in a flow graph may still be impossible, if it has cycles
- The iterative algorithm does not try this
  - It visits all basic blocks, not necessarily in execution order
  - $\bullet$  It applies the  $\land$  operator at each join point in the flow graph
  - The solution obtained is the Maximum Fixpoint solution (MFP)
- If the framework is distributive, then the MOP and MFP solutions will be identical
- Otherwise, with just monotonicity, MFP ≤ MOP ≤ IDEAL, and the solution provided by the iterative algorithm is safe



#### Product of Two Lattices and Lattice of Constants





#### The Constant Propagation Framework

- The lattice of the DF values in the CP framework is the product of the semi-lattices of the variables (one lattice for each variable)
- In a product lattice,  $(a_1, b_1) \le (a_2, b_2)$  iff  $a_1 \le_A a_2$  and  $b_1 \le_B b_2$  assuming  $a_1, a_2 \in A$  and  $b_1, b_2 \in B$
- Each variable v is associated with a map m, and m(v) is its abstract value (as in the lattice)
- Each element of the product lattice has a similar, but "larger" map m
  - Thus,  $m \le m'$  (in the product lattice), iff for all variables v,  $m(v) \le m'(v)$



#### Transfer Functions for the CP Framework

- Assume one statement per basic block
- Transfer functions for basic blocks containing many statements may be obtained by composition
- m(v) is the abstract value of the variable v in a map m.
- The set F of the framework contains transfer functions which accept maps and produce maps as outputs
- F contains an identity map
- Map for the *Start* block is  $m_0(v) = UNDEF$ , for all variables v
- This is reasonable since all variables are undefined before a program begins



#### Transfer Functions for the CP Framework

- Let f<sub>s</sub> be the transfer function of the statement s
- If  $m' = f_s(m)$ , then  $f_s$  is defined as follows
  - $\bullet$  If s is not an assignment,  $f_s$  is the identity function
  - If s is an assignment to a variable x, then m'(v) = m(v), for all  $v \neq x$ , and,
    - (a) If the RHS of s is a constant c, then m'(x) = c
    - (b) If the RHS is of the form y + z, then

$$m'(x) = m(y) + m(z)$$
, if  $m(y)$  and  $m(z)$  are constants  
= NAC, if either  $m(y)$  or  $m(z)$  is NAC  
= UNDEF, otherwise

(c) If the RHS is any other expression, then m'(x) = NAC



## Monotonicity of the CP Framework

It must be noted that the transfer function  $(m' = f_s(m))$  always produces a "lower" or same level value in the CP lattice, whenever there is a change in inputs

| m(y)           | m(z)                  | m'(x)       |  |
|----------------|-----------------------|-------------|--|
| UNDEF          | UNDEF                 | UNDEF       |  |
|                | <i>c</i> <sub>2</sub> | UNDEF       |  |
|                | NAC                   | NAC         |  |
| c <sub>1</sub> | UNDEF                 | UNDEF       |  |
|                | <i>c</i> <sub>2</sub> | $c_1 + c_2$ |  |
|                | NAC                   | NAC         |  |
| NAC            | UNDEF                 | NAC         |  |
|                | <i>c</i> <sub>2</sub> | NAC         |  |
|                | NAC                   | NAC         |  |



#### Non-distributivity of the CP Framework



## Non-distributivity of the CF Framework - Example

• If  $f_1$ ,  $f_2$ ,  $f_3$  are transfer functions of B1, B2, B3 (resp.), then  $f_3(f_1(m_0) \wedge f_2(m_0)) < f_3(f_1(m_0)) \wedge f_3(f_2(m_0))$  as shown in the table, and therefore the CF framework is non-distributive

| т                                    | m(x)  | m(y)  | m(z)  |
|--------------------------------------|-------|-------|-------|
| $m_0$                                | UNDEF | UNDEF | UNDEF |
| $f_1(m_0)$                           | 2     | 3     | UNDEF |
| $f_2(m_0)$                           | 3     | 2     | UNDEF |
| $f_1(m_0) \wedge f_2(m_0)$           | NAC   | NAC   | UNDEF |
| $f_3(f_1(m_0) \wedge f_2(m_0))$      | NAC   | NAC   | NAC   |
| $f_3(f_1(m_0))$                      | 2     | 3     | 5     |
| $f_3(f_2(m_0))$                      | 3     | 2     | 5     |
| $f_3(f_1(m_0)) \wedge f_3(f_2(m_0))$ | NAC   | NAC   | 5     |

## Introduction to Control-Flow Analysis

Y.N. Srikant

Department of Computer Science and Automation Indian Institute of Science Bangalore 560 012

NPTEL Course on Principles of Compiler Design



#### Outline of the Lecture

- Why control-flow analysis?
- Dominators and natural loops
- Depth of a control-flow graph

#### Why Control-Flow Analysis?

Control-flow analysis (CFA) helps us to understand the structure of control-flow graphs (CFG)

- To determine the loop structure of CFGs
- To compute dominators useful for code motion
- To compute dominance frontiers useful for the construction of the static single assignment form (SSA)
- To compute control dependence needed in parallelization

#### **Dominators**

- We say that a node d in a flow graph dominates node n, written d dom n, if every path from the initial node of the flow graph to n goes through d
- Initial node is the root, and each node dominates only its descendents in the dominator tree (including itself)
- The node x strictly dominates y, if x dominates y and  $x \neq y$
- x is the immediate dominator of y (denoted idom(y)), if x is the closest strict dominator of y
- A dominator tree shows all the immediate dominator relationships
- Principle of the dominator algorithm
  - If  $p_1, p_2, ..., p_k$ , are all the predecessors of n, and  $d \neq n$ , then d dom n, iff  $d \text{ dom } p_i$  for each i



## Dominator Algorithm Principle



## An Algorithm for finding Dominators

- D(n) = OUT[n] for all n in N (the set of nodes in the flow graph), after the following algorithm terminates
- { /\*  $n_0$  = initial node; N = set of all nodes; \*/  $OUT[n_0] = \{n_0\}$ ; for n in  $N \{n_0\}$  do OUT[n] = N; while (changes to any OUT[n] or IN[n] occur) do for n in  $N \{n_0\}$  do

```
IN[n] = \bigcap_{P \text{ a predecessor of } n} OUT[P];

OUT[n] = \{n\} \cup IN[n]
```

#### Dominator Example - 1



## Dominator Example - 2



## Dominator Example - 3



## **Dominators and Natural Loops**

- Edges whose heads dominate their tails are called *back* edges  $(a \rightarrow b: b = head, a = tail)$
- Given a back edge n → d
  - The natural loop of the edge is d plus the set of nodes that can reach n without going through d
  - d is the header of the loop
    - A single entry point to the loop that dominates all nodes in the loop
    - At least one path back to the header exists (so that the loop can be iterated)

