Regularization for Image Classification

Numerical Methods for Deep Learning

Why use regularization?

We are attempting to train weights $\mathbf{W} \in \mathbb{R}^{n_c \times n_f}$ to express the relation between some data $\mathbf{Y} \in \mathbb{R}^{n_f \times n}$ and their labels $\mathbf{C} \in \mathbb{R}^{n_c \times n}$ by solving

$$\min_{\mathbf{W}} E(\mathbf{W}) = E(\mathbf{C}, \mathbf{W}, \mathbf{Y})$$

Recall: $rank(\mathbf{Y}) \leq min\{n_f, n\}$

- ▶ $n < n_f$: No unique solution
- $ightharpoonup n > n_f$: **Y** may still be rank-deficient

Challenges in image classification:

- ▶ data is high dimensional ($n_f \approx$ number of pixels/voxels/frames)
- ▶ higher resolution ~> need more examples?
- ▶ higher resolution ~ larger rank?

Regularization

If Hessian $\nabla^2 E$ highly ill-conditioned, regularization is needed.

- Symptom: weights are large or oscillatory.
- Alternative: Estimate condition number (costly!)

Solution: require solution to be regular

$$\min_{W} \ \phi(\mathbf{W}) = E(\mathbf{W}) + \lambda R(\mathbf{W}),$$

where

- ▶ R is a regularizer, $R(\mathbf{W})$ large when \mathbf{W} is irregular and small otherwise
- \triangleright λ is a regularization parameter (needs to be chosen)
- ▶ Mathematically: R makes sure W* lies in desired function space (and is sufficiently regular).

Excellent references include [1, 2, 3].

What is an Image?

Digital images are arrays $\mathbf{U} = \mathbb{R}^{m_1 \times m_2 \times c}$ ($c = 1 \rightsquigarrow$ grey only).

perhaps most common interpretation in image processing

Continuous point of view: Images are functions supported on a domain $\Omega \in \mathbb{R}^2$ $u: \Omega \to \mathbb{R}^c$.

- choose function space (e.g., continuous, differentiable)
- ▶ discretize on regular grids ~> digital image
- apply operators to images (e.g., gradient in edge detection)

Type of Regularization

Classical Tikhonov (aka weight decay)

$$R(\mathbf{W}) = \frac{1}{2} \|\mathbf{W}\|_F^2$$

requires elements to be small.

When Y are images, also columns in W can be seen as images

$$\mathbf{w}^{\top}\mathbf{y} pprox \int_{\Omega} w(\boldsymbol{\xi}) y(\boldsymbol{\xi}) d\boldsymbol{\xi}.$$

General Tikhonov: Let **L** be a given matrix

$$R(\mathbf{W}) = \frac{1}{2} \|\mathbf{LW}\|_F^2$$

If **L** is discrete derivative operator, entries need to be smooth.

Discretization of ∇^2

Idea: Ensure classifier is smooth by using $\mathbf{L} \approx \nabla^2$.

Finite difference in 1D: Let $\mathbf{u} \in \mathbb{R}^m$ be discretization of $u:[0,1] \to \mathbb{R}$ on regular grid with pixel size h=1/m

$$\nabla^2 u(x_j) \approx \frac{1}{h^2} (-2\mathbf{u}_j + \mathbf{u}_{j-1} + \mathbf{u}_{j+1}).$$

Code in 1D

L1D =
$$@(m,h)$$
 1/h² *...
spdiags(ones(n,1) * [1 -2 1],-1:1,m,m)

Finite difference in 2D: Let $\mathbf{U} \in \mathbb{R}^{m \times m}$ be discretization of $u:[0,1]^2 \to \mathbb{R}$ on regular grid with pixel size h=1/m

$$abla^2 I(x_{ij}) pprox rac{1}{h^2} (-4 \mathbf{I}_{ij} + \mathbf{I}_{i-1j} + \mathbf{I}_{i+1j} + \mathbf{I}_{ij-1} + \mathbf{I}_{ij+1}).$$

Discretization of ∇^2

In 2D
$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

Use Kroneker products

$$\operatorname{vec}(\mathsf{LUI}) = (\mathsf{I}^{\top} \otimes \mathsf{L}) \operatorname{vec}(\mathsf{U}).$$

Code in 2D

$$L = kron(speye(m2), L1D(m1,h1)) + ...$$

 $kron(L1D(m2,h2), speye(m1));$

More about discrete ∇^2

Note that **L** can also be written as a convolution

$$\mathbf{L} = \frac{1}{h^2} \quad \begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix} * \mathbf{U}.$$

In general - any differential operator with constant coefficients can be written as convolution and vice versa.

Continuous interpretation allows re-computing a convolution kernel for different image resolutions.

Recap: Numerical Optimization

Require derivatives of the regularization to efficiently solve

$$\min_{\mathbf{W}} \ \phi(\mathbf{W}) = E(\mathbf{W}) + \lambda R(\mathbf{W})$$

Tip for Newton: Use $\nabla^2 R$ as a preconditioner for the conjugate gradient solver in the Newton iteration.

Exercise: Setup smoothness regularizer and test it on MNIST and CIFAR-10

References

- P. C. Hansen. Rank-deficient and discrete ill-posed problems. SIAM Monographs on Mathematical Modeling and Computation. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998.
- P. C. Hansen. Discrete inverse problems, volume 7 of Fundamentals of Algorithms.
 Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010.
- [3] C. R. Vogel. Computational Methods for Inverse Problems. SIAM, Philadelphia, 2002.