Average temperature distribution

Variable: avg_temp

Moments					
N	35	Sum Weights	35		
Mean	61.1428571	Sum Observations	2140		
Std Deviation	15.1621488	Variance	229.890756		
Skewness	-0.1713577	Kurtosis	-1.1530121		
Uncorrected SS	138662	Corrected SS	7816.28571		
Coeff Variation	24.7979069	Std Error Mean	2.56287091		

	Basic Statistical Measures				
Loc	Location Variability				
Mean	61.14286	Std Deviation	15.16215		
Median	61.50000	Variance	229.89076		
Mode	75.00000	Range	55.50000		
		Interquartile Range	26.50000		

Tests for Location: Mu0=0					
Test	Statistic p Value				
Student's t	t 23.85717		Pr > t	<.0001	
Sign	М	17.5	Pr >= M	<.0001	
Signed Rank	s	315	Pr >= S	<.0001	

Tests for Normality						
Test	Statistic p Value					
Shapiro-Wilk	w	0.931819	Pr < W	0.0317		
Kolmogorov-Smirnov	D	0.16248	Pr > D	0.0198		
Cramer-von Mises	W-Sq	0.149879	Pr > W-Sq	0.0230		
Anderson-Darling	A-Sq	0.920755	Pr > A-Sq	0.0186		

Quantiles (Definition 5)			
Level	Quantile		
100% Max	83.5		
99%	83.5		
95%	83.0		
90%	79.0		
75% Q3	75.0		
50% Median	61.5		
25% Q1	48.5		
10%	42.5		
5%	41.0		
1%	28.0		
0% Min	28.0		

Extreme Observations				
Lowest Highest				
Value	Obs	Value Ob		
28.0	35	77.0	26	
41.0	10	79.0	20	

Extreme Observations				
Low	est	High	est	
Value	Obs	Value Obs		
42.5	7	82.5	28	
42.5	4	83.0	23	
43.0	9	83.5	22	

Natural gas leaks by County, City, and Zipcode

Number of Variable Levels					
Variable	riable Label Levels				
county	County:	16			
city	City	20			
zip	Zipcode	29			

county	city	zip	Frequency	Percent
26	Fayetteville	28311	3	8.57
26	Fayetteville	28303	1	2.86
26	Fayetteville	28304	1	2.86
26	Fayetteville	28305	1	2.86
26	Fayetteville	28306	1	2.86
92	Raleigh	27604	1	2.86
92	Raleigh	27607	1	2.86
92	Raleigh	27612	1	2.86
92	Wake Forest	27587	2	5.71
92	Knightdale	27545	1	2.86
11	Asheville	28806	2	5.71
11	Asheville	28801	1	2.86
11	Black Mountain	28711	1	2.86
11	Leicester	28748	1	2.86
60	Charlotte	28205	2	5.71
60	Charlotte	28223	1	2.86
36	Belmont	28012	2	5.71
80	Salisbury	28146	1	2.86
80	Salisbury	28147	1	2.86
10	Leland	28451	1	2.86
13	Concord	28027	1	2.86
25	New Bern	28560	1	2.86
33	Tarboro	27886	1	2.86
34	Winston-Salem	27101	1	2.86
44	Waynesville	28786	1	2.86
68	Hillsborough	27278	1	2.86
74	Greensville	27834	1	2.86
76	Asheboro	27205	1	2.86
91	Henderson	27536	1	2.86

Exact Kruskal-Wallis Test with Monte Carlo estimation

Analysis of Variance for Variable avg_temp Classified by Variable county				
county	N	Mean		
26	7	65.357143		
11	5	54.600000		
92	6	60.333333		
60	3	56.000000		
34	1	43.000000		
68	1	41.000000		
10	1	53.000000		
74	1	48.500000		
91	1	58.500000		
33	1	76.500000		
76	1	83.000000		
44	1	75.000000		
36	2	77.000000		

Analysis of Variance for Variable avg_temp Classified by Variable county				
county	N	Mean		
80	2	72.000000		
25	1	75.000000		
13	1	28.000000		

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Among	15	4324.395238	288.293016	1.5687	0.1757	
Within	19	3491.890476	183.783709			
Average scores were used for ties.						

Exact Kruskal-Wallis Test with Monte Carlo estimation

		Classifi	ed by Variab	le county	
county	N	Sum of Scores	Expected Under H0	Std Dev Under H0	Mean Score
26	7	144.00	126.0	24.219827	20.571429
11	5	63.50	90.0	21.187935	12.700000
92	6	104.50	108.0	22.820104	17.416667
60	3	44.00	54.0	16.950348	14.666667
34	1	5.00	18.0	10.087475	5.000000
68	1	2.00	18.0	10.087475	2.000000

Wilco	Wilcoxon Scores (Rank Sums) for Variable avg_temp Classified by Variable county							
county	N	Sum of Scores	Expected Under H0	Std Dev Under H0	Mean Score			
10	1	14.00	18.0	10.087475	14.000000			
74	1	9.00	18.0	10.087475	9.000000			
91	1	16.50	18.0	10.087475	16.500000			
33	1	29.00	18.0	10.087475	29.000000			
76	1	34.00	18.0	10.087475	34.000000			
44	1	25.50	18.0	10.087475	25.500000			
36	2	61.00	36.0	14.054486	30.500000			
80	2	51.50	36.0	14.054486	25.750000			
25	1	25.50	18.0	10.087475	25.500000			
13	1	1.00	18.0	10.087475	1.000000			
	-	Average so	cores were u	sed for ties.				

Kruskal-Wallis Test						
Chi-Square	DF	Pr > ChiSq				
18.6872	15	0.2283				

Monte Carlo Estimates for the Exact Test						
Probability	Estimate	99% Confidence Limits		Samples	Seed	
Pr >= ChiSq	0.1394	0.1305	0.1483	10000	43	

Exact Kruskal-Wallis Test with Monte Carlo estimation

Median Scores (Number of Points Above Median) for Variable avg_temp Classified by Variable county							
county	N	Sum of Scores	Expected Under H0	Std Dev Under H0	Mean Score		
26	7	4.00	3.400000	1.165181	0.571429		
11	5	2.00	2.428571	1.019321	0.400000		
92	6	2.50	2.914286	1.097842	0.416667		
60	3	1.00	1.457143	0.815457	0.333333		
34	1	0.00	0.485714	0.485294	0.000000		
68	1	0.00	0.485714	0.485294	0.000000		
10	1	0.00	0.485714	0.485294	0.000000		
74	1	0.00	0.485714	0.485294	0.000000		
91	1	0.00	0.485714	0.485294	0.000000		
33	1	1.00	0.485714	0.485294	1.000000		
76	1	1.00	0.485714	0.485294	1.000000		
44	1	1.00	0.485714	0.485294	1.000000		
36	2	2.00	0.971429	0.676141	1.000000		
80	2	1.50	0.971429	0.676141	0.750000		
25	1	1.00	0.485714	0.485294	1.000000		
13	1	0.00	0.485714	0.485294	0.000000		
Average scores were used for ties.							

Median One-Way Analysis					
Chi-Square	DF	Pr > ChiSq			
13.7296	15	0.5461			

Monte Carlo Estimates for the Exact Test							
Probability	Estimate	99% Confid	ence Limits	Samples	Seed		
Pr >= ChiSq	0.6648	0.6526	0.6770	10000	468284561		

Exact Kruskal-Wallis Test with Monte Carlo estimation

Van der Waerden Scores (Normal) for Variable avg_temp Classified by Variable county							
county	N	Sum of Scores	Expected Under H0	Std Dev Under H0	Mear Score		
26	7	1.895505	0.0	2.188096	0.270786		
11	5	-2.245881	0.0	1.914186	-0.449176		
92	6	-0.293400	0.0	2.061641	-0.048900		
60	3	-0.728787	0.0	1.531349	-0.242929		
34	1	-1.085325	0.0	0.911335	-1.085325		
68	1	-1.593219	0.0	0.911335	-1.593219		
10	1	-0.282216	0.0	0.911335	-0.282216		
74	1	-0.674490	0.0	0.911335	-0.674490		
91	1	-0.104698	0.0	0.911335	-0.104698		
33	1	0.861634	0.0	0.911335	0.861634		
76	1	1.593219	0.0	0.911335	1.593219		
44	1	0.550790	0.0	0.911335	0.550790		
36	2	2.052746	0.0	1.269727	1.026373		
80	2	1.417837	0.0	1.269727	0.708918		
25	1	0.550790	0.0	0.911335	0.550790		
13	1	-1.914506	0.0	0.911335	-1.914506		
		Average sco	res were us	ed for ties.			

Van der Waerden One-Way Analysis					
Chi-Square	DF	Pr > ChiSq			
19.4631	15	0.1935			

Monte Carlo Estimates for the Exact Test							
Probability	Estimate	99% Confid	ence Limits	Samples	Seed		
Pr >= ChiSq	0.1179	0.1096	0.1262	10000	1398794103		

Exact Kruskal-Wallis Test with Monte Carlo estimation

county	N	Sum of Scores	Expected Under H0	Std Dev Under H0	Mean
26	7	2.294386	0.0	2.251384	0.327769
11	5	-2.494136	0.0	1.969551	-0.498827
92	6	-0.835881	0.0	2.121271	-0.139313
60	3	-1.321468	0.0	1.575641	-0.440489
34	1	-0.848206	0.0	0.937694	-0.848206
68	1	-0.942017	0.0	0.937694	-0.942017
10	1	-0.498577	0.0	0.937694	-0.498577
74	1	-0.707638	0.0	0.937694	-0.707638
91	1	-0.374642	0.0	0.937694	-0.374642
33	1	0.696781	0.0	0.937694	0.696781

Sav	age	Scores (Expe Classified	d by Variable		_temp
county	N	Sum of Scores	Expected Under H0	Std Dev Under H0	Mear Score
76	1	2.146781	0.0	0.937694	2.14678
44	1	0.272864	0.0	0.937694	0.272864
36	2	1.926896	0.0	1.306452	0.963448
80	2	1.383422	0.0	1.306452	0.69171
25	1	0.272864	0.0	0.937694	0.272864
13	1	-0.971429	0.0	0.937694	-0.971429

Savage One-Way Analysis				
Chi-Square	DF	Pr > ChiSq		
15.6788	15	0.4037		

	Monte C	arlo Estimate	stimates for the Exact Test		
Probability	Estimate	99% Confidence Limits		Samples	Seed
Pr >= ChiSq	0.4223	0.4096	0.4350	10000	446622230

Exact Kruskal-Wallis Test with Monte Carlo estimation

	Clas	Kolmogorov-Smirnov Test for Variable avg_temp Classified by Variable county				
county	N	EDF at Maximum	Deviation from Mean at Maximum			
26	7	0.428571	-0.604743			
11	5	1.000000	0.766652			
92	6	0.833333	0.431577			
60	3	1.000000	0.593846			
34	1	1.000000	0.342857			
68	1	1.000000	0.342857			
10	1	1.000000	0.342857			
74	1	1.000000	0.342857			
91	1	1.000000	0.342857			
33	1	0.000000	-0.657143			
76	1	0.000000	-0.657143			
44	1	0.000000	-0.657143			
36	2	0.000000	-0.929340			
80	2	0.500000	-0.222234			
25	1	0.000000	-0.657143			
13	1	1.000000	0.342857			
Total 35 0.657143		0.657143				
Maximum Deviation Occurred at Observation 13						

Kolmogorov-Smirnov Statistics (Asymptotic)					
KS	0.371795	KSa	2.199567		

		s Test for Variable avg_temp d by Variable county
county	N	Summed Deviation from Mean
26	7	0.067102
11	5	0.161516
92	6	0.043425
60	3	0.134842
34	1	0.214017
68	1	0.283405
10	1	0.092385
74	1	0.143813
91	1	0.082589
33	1	0.192793
76	1	0.304630
44	1	0.113609
36	2	0.423137
80	2	0.145994
25	1	0.113609
13	1	0.310344

Cramer-von Mises Statistics (Asymptotic)					
CM	0.080777	CMa	2.827211		