Глубокое обучение в компьютерном зрении

Занятие 4 CNNs

Дмитрий Яшунин, к.ф.-м.н IntelliVision

e-mail: yashuninda@yandex.ru

На прошлом занятии: Классификация изображений

Ключевая задача компьютерного зрения

К какому классу принадлежит изображение? классы: человек, животное, автомобиль ...

KOT

На прошлом занятии: Линейный классификатор

Image

s – scores
W – weights or
parameters
x – image pixels
b – bias

Array of **32x32x3** numbers (3072 numbers total)

CIFAR-1050,000 training images10,000 testing images10 classes

На прошлом занятии: Neural Networks

Linear score function: f = Wx

2-layer Neural Network: $f = W_2 \max(0, W_1 x)$

Сверточные сети

Классификация изображений

Поиск похожих изображений

Детектирование объектов

Сегментация (Instance segmentation)

Распознавание лиц

Распознавание людей

Определение позы

Перемещение стиля изображений (Style Transfer)

Преобразование изображений (Image-to-Image Translation)

Demo: https://www.youtube.com/watch?v=9reHvktowLY https://www.youtube.com/watch?v=Fea4kZq0oFQ

Генерация изображений с помощью генеративно-состязательных сетей (Generative Adversarial Network, GAN)

Demo: https://www.youtube.com/watch?v=XOxxPcy5Gr4

Han Zhang, et al, Self-Attention Generative Adversarial Networks, 2018

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

1 number:

the result of taking a dot product between a row of W and the input (a 3072-dimensional dot product)

32x32x3 image -> preserve spatial structure

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

32x32x3 image

32

Filters always extend the full depth of the input volume

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

example: image 5x5, filter 3x3

consider a second, green filter

example: image 5x5, filter 3x3

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

ConvNet is a sequence of Convolution Layers, interspersed with activation functions

ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Визуализация признаков нейронной сети

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Сверточная нейронная сеть

7

7x7 input (spatially) assume 3x3 filter

/

7

7x7 input (spatially) assume 3x3 filter

=> 5x5 output

7

7x7 input (spatially) assume 3x3 filter applied with stride 2

7

7x7 input (spatially) assume 3x3 filter applied with stride 2

7

7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

7

7x7 input (spatially) assume 3x3 filter applied with stride 3?

7

7x7 input (spatially) assume 3x3 filter applied with stride 3?

doesn't fit! cannot apply 3x3 filter on 7x7 input with stride 3.

	F		
F			

Output size:

(N - F) / stride + 1

e.g. N = 7, F = 3:

stride $1 \Rightarrow (7 - 3)/1 + 1 = 5$

stride $2 \Rightarrow (7 - 3)/2 + 1 = 3$

stride $3 \Rightarrow (7 - 3)/3 + 1 = 2.33 : \$

Remember back to...

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.

In practice: Common to zero pad the border

0	0	0	0	0	0		
0							
0							
0							
0							

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

```
(recall:)
(N - F) / stride + 1
```

In practice: Common to zero pad the border

0	0	0	0	0	0		
0							
0							
0							
0							

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

In practice: Common to zero pad the border

0	0	0	0	0	0		
0							
0							
0							
0							

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

e.g. $F = 3 \Rightarrow zero pad with 1$

F = 5 => zero pad with 2

 $F = 7 \Rightarrow zero pad with 3$

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Output volume size: ?

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Output volume size:

$$(32+2*2-5)/1+1 = 32$$
 spatially, so

32x32x10

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Number of parameters in this layer? each filter has 5*5*3 + 1 = 76 params (+1 for bias)

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires four hyperparameters:
 - Number of filters K,
 - their spatial extent F,
 - the stride S,
 - the amount of zero padding P.
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - $D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 \times H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires four hyperparameters:
 - Number of filters K,
 - \circ their spatial extent F,
 - the stride S,
 - the amount of zero padding P.

Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)

$$-F = 3, S = 1, P = 1$$

$$-F = 5, S = 1, P = 2$$

$$-F = 5$$
, $S = 2$, $P = ?$ (whatever fits)

$$-F = 1, S = 1, P = 0$$

- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - $D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 imes H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

1x1 convolution layers make perfect sense

Example: CONV layer in Caffe

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires four hyperparameters:
 - Number of filters K,
 - \circ their spatial extent F,
 - the stride S,
 - the amount of zero padding P.

```
layer {
 name: "convl"
 type: "Convolution"
 bottom: "data"
 top: "convl"
 # learning rate and decay multipliers for the filters
 param { lr mult: 1 decay mult: 1 }
 # learning rate and decay multipliers for the biases
 param { lr mult: 2 decay mult: 0 }
 convolution param {
   num output: 96
                    # learn 96 filters
   kernel size: 11 # each filter is 11x11
                      # step 4 pixels between each filter application
   stride: 4
   weight filler {
     type: "gaussian" # initialize the filters from a Gaussian
                      # distribution with stdev 0.01 (default mean: 0)
     std: 0.01
   bias filler {
      type: "constant" # initialize the biases to zero (0)
     value: 0
```

Example: CONV layer in TensorFlow

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires four hyperparameters:
 - Number of filters K,
 - \circ their spatial extent F,
 - \circ the stride S,
 - the amount of zero padding P.

```
conv2d(
    inputs,
    filters,
    kernel_size,
    strides=(1, 1),
    padding='valid',
    data_format='channels_last',
    dilation_rate=(1, 1),
    activation=None.
    use_bias=True.
    kernel_initializer=None,
    bias_initializer=tf.zeros_initializer(),
    kernel_regularizer=None,
    bias_regularizer=None,
    activity_regularizer=None,
    trainable=True.
    name=None.
    reuse=None
```

```
# Input Layer
input_layer = tf.reshape(features, [-1, 28, 28, 1])

# Convolutional Layer #1
conv1 = tf.layers.conv2d(
    inputs=input_layer,
    filters=32,
    kernel_size=[5, 5],
    padding="same",
    activation=tf.nn.relu)
```


number:

the result of taking a dot product between the filter and this part of the image (i.e. 5*5*3 = 75-dimensional dot product)

It's just a neuron with local connectivity...

1 number:

the result of taking a dot product between the filter and this part of the image (i.e. 5*5*3 = 75-dimensional dot product)

An activation map is a 28x28 sheet of neuron outputs:

- 1. Each is connected to a small region in the input
- 2. All of them share parameters

"5x5 filter" -> "5x5 receptive field for each neuron"

E.g. with 5 filters, CONV layer consists of neurons arranged in a 3D grid (28x28x5)

There will be 5 different neurons all looking at the same 5 region in the input volume

Reminder: Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

Each neuron looks at the full input volume

1 number:

the result of taking a dot product between a row of W and the input (a 3072-dimensional dot product)

Сверточная нейронная сеть: Pooling

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

MAX POOLING

Single depth slice

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

X

max pool with 2x2 filters and stride 2

6	8
3	4

Pooling

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires three hyperparameters:
 - their spatial extent F,
 - the stride S,
- ullet Produces a volume of size $W_2 imes H_2 imes D_2$ where:

$$W_2 = (W_1 - F)/S + 1$$

$$H_2 = (H_1 - F)/S + 1$$

- $\circ D_2 = D_1$
- Introduces zero parameters since it computes a fixed function of the input
- Note that it is not common to use zero-padding for Pooling layers

Pooling

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires three hyperparameters:
 - their spatial extent F,
 - the stride S,
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:

$$W_2 = (W_1 - F)/S + 1$$

$$H_2 = (H_1 - F)/S + 1$$

$$O_2 = D_1$$

- Introduces zero parameters since it computes a fixed function of the input
- · Note that it is not common to use zero-padding for Pooling layers

Common settings:

$$F = 2, S = 2$$

$$F = 3, S = 2$$

Сверточная нейронная сеть: Fully Connected Layer (FC layer)

Contains neurons that connect to the entire input volume, as in ordinary Neural Networks

[ConvNetJS demo: training on CIFAR-10]

ConvNetJS CIFAR-10 demo

Description

This demo trains a Convolutional Neural Network on the <u>CIFAR-10 dataset</u> in your browser, with nothing but Javascript. The state of the art on this dataset is about 90% accuracy and human performance is at about 94% (not perfect as the dataset can be a bit ambiguous). I used <u>this python script</u> to parse the <u>original files</u> (python version) into batches of images that can be easily loaded into page DOM with img tags.

This dataset is more difficult and it takes longer to train a network. Data augmentation includes random flipping and random image shifts by up to 2px horizontally and verically.

By default, in this demo we're using Adadelta which is one of per-parameter adaptive step size methods, so we don't have to worry about changing learning rates or momentum over time. However, I still included the text fields for changing these if you'd like to play around with SGD+Momentum trainer.

Report questions/bugs/suggestions to @karpathy.

Резюме

- Сверточная нейронная сеть: CONV + POOL + FC слои
- Типичная архитектура классической сверточной сети [(CONV-RELU)*N-POOL]*M-(FC-RELU)*K,SOFTMAX где N до ≈5, M большое до ≈15, 0 <= K <= 2.

современные нейронные сети ResNet, DenseNet имеют более сложные архитектуры

В следующий раз

- Активационные функции
- Предобработка изображений
- Инициализация весов
- Подбор гиперпараметров