Project Summary: Transfer Learning for Flower Classification using TensorFlow

Customizations Introduced

1. Custom Optimizer – MySGDOptimizer

- A user-defined variant of Stochastic Gradient Descent (SGD).
- Simplified structure: manually updates weights using var.assign sub(lr * grad).
- Offers fine control over training and integrates seamlessly into Keras API via @register keras serializable.

2.Custom Loss Function - Focal Loss

- Tackles **class imbalance** by dynamically scaling loss for difficult examples.
- Controlled by:
 - \circ γ (gamma) focuses learning on hard examples.
 - \circ α (alpha) balances classes.
- Especially useful in cases where **some flower categories dominate**.

3. Advanced Activation - Swish

- Defined as swish(x) = x * sigmoid(x).
- Non-monotonic, smooth, and retains small negative values (unlike ReLU).
- Used in deeper layers to enhance learning of complex floral patterns.
- **ReLU** used later to add **sparsity and performance** in final stages.

Model Architecture

Based on MobileNetV2 (pre-trained on ImageNet) with frozen base layers for feature extraction.

Custom classification head:

- GlobalAveragePooling2D
- Dense layers: $[256 \rightarrow 128 \rightarrow 64]$
- Activations: Swish, Swish, ReLU
- BatchNormalization and Dropout after each dense layer.
- Final layer uses Softmax for multi-class classification (num classes = 5).

Training Procedure

Phase 1 – Feature Extraction

- Base model is frozen.
- Only custom head is trained.
- Optimizer: MySGDOptimizer with LR = 0.01
- Loss: Focal Loss
- Trained for 5 epochs.

Phase 2 – Fine-tuning

- Unfreezes the last 30 layers of the base model.
- Fine-tunes with a smaller LR = 1e-5 to **retain general features** while learning flower-specific patterns.
- Same optimizer and loss used.
- Trained for 5 additional epochs.

Inference System

- Allows image upload by file path for prediction.
- Displays:
 - Predicted flower class
 - o Confidence score
 - Original image
 - o Bar chart of class-wise probabilities
- Confidence threshold (70%) is used to filter out uncertain predictions.

Evaluation

Model evaluated on validation set (20% of dataset).

Metrics:

- Batch-wise accuracy plot
- Per-class accuracy bar chart
- Overall accuracy and class-wise report printed.

Output

Please enter the image path: dandelion.jpg
1/1 0s 1

Predicted Flower: dandelion (96.47%) Prediction: dandelion (96.47%)

Class Probabilities: dandelion: 96.47 daisy: 0.10 tulips: 0.70 sunflowers: 0.53 roses: 2.19

Overall Accuracy: 96.47%

Visualizations

Evaluating model on dataset	
1/1 1s	940ms/step
1/1 1s	1s/step
1/1 1s	985ms/step
1/1 1s	1s/step
1/1 1s	896ms/step
1/1 1s	
1/1 1s	822ms/step
1/1 1s	
1/1 2s	
1/1 2s	
1/1 2s	
1/1 1s	1s/step

