Look-ahead carry generator

74F182

FEATURES

- Provides carry look-ahead across a group of four ALUs
- Multi-level look-ahead for high speed arithmetic operation over long word lengths

DESCRIPTION

The 74F182 is a high speed carry look-ahead generator. It accepts up to four pairs of active-Low Carry Propagate ($\overline{P}0$, $\overline{P}1$, $\overline{P}2$, $\overline{P}3$) and Carry Generate ($\overline{G}0$, $\overline{G}1$, $\overline{G}2$, $\overline{G}3$) signals and an active-High Carry input (Cn) and provides anticipated active-High carries (Cn+x, Cn+y, Cn+z) across four groups of binary adders. The 74F182 also has active-Low Carry Propagate (\overline{P}) Carry Generate (\overline{G}) outputs which may be used for further levels of look-ahead.

The logic equations provided at the outputs are:

Cn+x = G0+P0Cn

Cn+y = G1+P1G0+P1P0Cn

Cn+z = G2+P2G1+P2P1G0+P2P1P0Cn

 $\overline{G} = \overline{G}3 + \overline{P}3\overline{G}2 + \overline{P}3\overline{P}2\overline{G}1 + \overline{P}3\overline{P}2\overline{P}1\overline{G}0$

 $\overline{P} = \overline{P}3\overline{P}2\overline{P}1\overline{P}0$

The 74F182 can also be used with binary ALUs in an active-Low or active-High input operand mode. The connections to and from the ALU to the carry look-ahead generator are identical in both cases.

PIN CONFIGURATION

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74F182	5.0ns	21mA

ORDERING INFORMATION

	ORDER CODE				
DESCRIPTION	COMMERCIAL RANGE V_{CC} = 5V $\pm 10\%$, T_{amb} = 0°C to +70°C				
16-pin plastic DIP	N74F182N				
16-pin plastic SO	N74F182D				

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74FAST (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
Cn	Carry input	2.5/2.0	50μA/1.2mA
<u>G</u> 0, <u>G</u> 2	Carry generate inputs (active-Low)	2.5/14.0	50μA/8.4mA
G1	Carry generate input (active-Low)	2.5/16.0	50μA/9.6mA
G 3	Carry generate input (active-Low)	2.5/8.0	50μA/4.8mA
<u>P</u> 0, <u>P</u> 1	Carry propagate inputs (active-Low)	2.5/8.0	50μA/4.8mA
P2	Carry propagate input (active-Low)	2.5/6.0	50μA/3.6mA
P3	Carry propagate input (active-Low)	2.5/4.0	50μA/2.4mA
Cn+x-Cn+z	Carry outputs	50/33	1.0mA/20mA
G	Carry generate output (active-Low)	50/33	1.0mA/20mA
P	Carry propagate output (active-Low)	50/33	1.0mA/20mA

NOTE:

One (1.0) FAST unit load is defined as: 20µA in the High state and 0.6mA in the Low state.

Look-ahead carry generator

74F182

LOGIC SYMBOL

IEC/IEEE SYMBOL

LOGIC DIAGRAM

1991 Apr 15

Look-ahead carry generator

74F182

FUNCTION TABLE

				INPUTS	3						OUTPUTS	;	
Cn	G0	P0	G1	P1	G2	P2	G3	P3	Cn+x	Cn+y	Cn+z	G	P
Х	Н	Н							L				
L	Н	X							L				
X	L	X							Н				
Н	Х	L							Н				
Х	Х	Х	Н	Н						L			
Х	Н	Н	Н	X						L			
L	Н	X	Н	X						L			
Х	Х	Χ	L	X						Н			
Х	L	Χ	Χ	L						Н			
Н	Х	L	X	L						Н			
Х	Х	Х	Х	Х	Н	Н					L		
Х	Х	Χ	Н	Н	Н	Χ					L		
Х	Н	Н	Н	X	Н	Χ					L		
L	Н	Χ	Н	Х	Н	Х					L		
Х	Х	Х	Х	Х	L	Х					Н		
X	Х	Χ	L	X	X	L					Н		
X	L	Χ	Χ	L	X	L					Н		
Н	Х	L	Х	L	Х	L					Н		
	Х		Х	Х	Х	Х	Н	Н				Н	
	Х		Χ	X	Н	Н	Н	Χ				Н	
	Х		Н	Н	Н	Χ	Н	Χ				Н	
	Н		Н	Х	Н	Х	Н	Х				Н	
	Х		Χ	Х	Х	Χ	L	Х				L	
	Х		Χ	X	L	Х	Х	L				L	
	Х		L	X	Χ	L	Х	L				L	
	L		Х	L	Х	L	Х	L				L	
		Н		Х		Х		Х					Н
		X		Н		Х		Χ					Н
		X		X		Н		X					Н
		X		X		Х		Н					Н
NOTES		L	-	L		L		L					L

NOTES:
H = High voltage level
L = Low voltage level
X = Don't care

1991 Apr 15

Look-ahead carry generator

74F182

APPLICATION

Figure 1. 32-Bit ALU with Ripple Carry Between 16-Bit Look-Ahead ALUs (*ALUs may be either 74F181 or 74F381)

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limit set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	-0.5 to +7.0	V
V _{IN}	Input voltage	-0.5 to +7.0	V
I _{IN}	Input current	-30 to +5	mA
V _{OUT}	Voltage applied to output in High output state	–0.5 to V _{CC}	V
I _{OUT}	Current applied to output in Low output state	40	mA
T _{amb}	Operating free-air temperature range	0 to +70	°C
T _{stg}	Storage temperature range	-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS

OVMDOL	DADAMETED					
SYMBOL	PARAMETER	MIN	NOM	MAX	UNIT	
V _{CC}	Supply voltage	4.5	5.0	5.5	V	
V _{IH}	High-level input voltage	2.0			V	
V _{IL}	Low-level input voltage			0.8	V	
I _{IK}	Input clamp current			-18	mA	
I _{OH}	High-level output current			-1	mA	
I _{OL}	Low-level output current			20	mA	
T _{amb}	Operating free-air temperature range	0		70	°C	

1991 Apr 15 5

Look-ahead carry generator

74F182

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

OVMDOL	DADAMETED		TEST CONDITIONS				LIMITS		
SYMBOL	PARAMETER		TEST CONDITIONS ¹			MIN	TYP ²	MAX	UNIT
M	High level autout valtage		$V_{CC} = MIN, V_{IL} = MAX, \pm 10^{\circ}$		±10%V _{CC}	2.5			V
V _{OH}	High-level output voltage		V _{IH} = MIN	I _{OH} = MAX	±5%V _{CC}	2.7	3.4		V
	Law L		$V_{CC} = MIN, V_{II} = MAX,$	I MANY	±10%V _{CC}		0.30	0.50	V
V _{OL}	Low-level output voltage		$V_{CC} = MIN, V_{IL} = MAX,$ $V_{IH} = MIN$	I _{OL} = MAX	±5%V _{CC}		0.30	0.50	V
V _{IK}	Input clamp voltage	clamp voltage $V_{CC} = MIN, I_I = I_{IK}$				-0.73	-1.2	V	
I _I	Input current at maximum i	nput voltage	V _{CC} = MAX, V _I = 7.0V					250	μΑ
I _{IH}	High-level input current		$V_{CC} = MAX, V_I = 2.7V$					250	μΑ
		Cn						-1.2	mA
		G0, G2	1					-8.4	mA
		G1	1, , , , , , , , , , , , , , , , , , ,					-9.6	mA
I _{IL}	Low-level input current	G 3, P 0, P 1	$V_{CC} = MAX, V_I = 0.5V$					-4.8	mA
		P2						-3.6	mA
		P 3	1					-2.4	mA
los	Short-circuit output current	3	V _{CC} = MAX			-60		-150	mA
	Supply current (total)	I _{CCH}	Ly MAY				18	28	mA
Icc	Supply current (total)	I _{CCL}	V _{CC} = MAX				24	36	mA

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	T _{ar}	_{nb} = +5.0 _{nb} = +25 _L = 50p _L = 500	5°C F	V _{CC} = +5. T _{amb} = 0°0 C _L = R _L =	UNIT	
			MIN	TYP	MAX	MIN	MAX	
t _{PLH} t _{PHL}	Propagation delay Cn to Cn+x, Cn+y, Cn+z	Waveform 2	2.5 2.5	5.0 5.0	8.0 7.5	2.5 2.5	8.5 8.5	ns
t _{PLH} t _{PHL}	Propagation delay P0, P1, or P2 to Cn+x, Cn+y, Cn+z	Waveform 1	2.0 1.5	5.0 3.5	7.0 5.0	1.5 1.5	8.0 6.0	ns
t _{PLH} t _{PHL}	Propagation delay G0, G1, or G2 to Cn+x, Cn+y, Cn+z	Waveform 1	1.5 1.5	4.0 3.0	7.5 5.0	1.5 1.5	8.5 5.5	ns
t _{PLH} t _{PHL}	Propagation delay P1, P2, or P3 to G	Waveform 2	2.0 3.0	7.0 5.0	10.0 7.0	1.5 2.5	11.0 8.0	ns
t _{PLH} t _{PHL}	Propagation delay Gn to G	Waveform 2	1.5 3.0	5.0 5.0	7.0 7.0	1.5 2.5	7.5 8.0	ns
t _{PLH} t _{PHL}	Propagation delay Pn to P	Waveform 2	1.5 2.5	3.5 4.0	6.0 6.0	1.5 2.5	7.5 6.5	ns

1991 Apr 15 6

All typical values are at V_{CC} = 5V, T_{amb} = 25°C.
 Not more than one output should be shorted at a time. For testing I_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, IOS tests should be performed last.

Look-ahead carry generator

74F182

AC WAVEFORMS

For all waveforms, $V_M = 1.5V$

Waveform 1. Propagation Delay for Inverting Outputs

Waveform 2. Propagation Delay for Non-Inverting Outputs

TEST CIRCUIT AND WAVEFORMS

DEFINITIONS:

R_L = Load resistor;

see AC ELECTRICAL CHARACTERISTICS for value.

C_L = Load capacitance includes jig and probe capacitance; see AC ELECTRICAL CHARACTERISTICS for value.

 $R_T = Termination resistance should be equal to <math>Z_{OUT}$ of pulse generators.

Input Pulse Definition

family	INPUT PULSE REQUIREMENTS									
iaiiiiy	amplitude	V_{M}	rep. rate	t _w	t _{TLH}	t _{THL}				
74F	3.0V	1.5V	1MHz	500ns	2.5ns	2.5ns				

SF00006

1991 Apr 15 7