Занятие 7. Статистика в GNU Octave

- 1. Среднее значение и доверительный интервал выборки
- 2. Распределения
- 3. Гистограммы и генерация случайных величин
- 4. Циклы for и while, конструкция if...then...else
- 5. Создание т-скриптов и т-функций

Среднее и доверительный интервал

Функция	Вызов	Описание
mean	<pre>mean(x) mean(x,1) mean(x,2)</pre>	Среднее значение вектора х Средние значения столбцов матрицы х Средние значения строк матрицы х
std	<pre>std(x) std(x,f) std(x,f,1) std(x,f,2)</pre>	Стандартное отклонение вектора х $f = 0$ — несмещ.дисп., $f = 1$ — смещ.дисп. Стандартное отклонение столбцов матрицы х Стандартное отклонение строк матрицы х
tinv	tinv(p,f)	Левосторонний квантиль t-распределения
median	См. mean	Расчёт медианы
numel	numel(x)	Число элементов вектора или матрицы х
sum	См. mean	Расчёт суммы
<pre>>> x = [66.30 66.30 66.26 66.37 66.30]; >> mean(x) ans = 66.306 >> std(x) ans = 0.039749 >> std(x)*tinv(0.975,numel(x)-1)/sqrt(numel(x)) ans = 0.049355</pre>		

Функции распределения и квантили

Распределение	p(x)	F(x)	Левосторонний квантиль
Нормальное	<pre>normpdf(x,mu,s)</pre>	normcdf(x,mu,s)	norminv(p,mu,s)
Стьюдента (t)	tpdf(x,f)	tcdf(x,f)	tinv(p,f)
Пирсона (χ^2)	chi2pdf(x,f)	chi2cdf(x,f)	chi2inv(p,f)
Фишера (F)	fpdf(x,f1,f2)	fcdf(x,f1,f2)	finv(p,f1,f2)

Pdf – probability density function (функция плотности вероятности)

Cdf – cumulative distribution function (интегральная функция распределения)

Inv – inverse function (обратная функция)

```
>> x = 0:0.1:10;
>> y1 = fpdf(x,6,5);
>> y2 = fcdf(x,6,5);
>> plot(x,y1,'k-',LineWidth',5);
>> hold on;
>> plot(x,y1,'k-',LineWidth',5);
>> hold off;
>> legend('p(x)','F(x)');
>> set(gca,'FontSize',20);
```


Случайные числа и гистограммы

Функция	Вызов	Описание
rand	rand(m,n)	Матрица mxn из равномерно распределенных случайных чисел из интервала [0;1]
randn	randn(m,n)	Матрица mxn нормально распределенных случайных чисел ($\mu=0$; $\sigma=1$)
hist	hist(x,n) [nn,xx]=hist(x,n)	График с гистограммой Гистограмма в числах (х — данные, n — число карманов, nn — частоты, хх — центры карманов)

```
>> x = randn(1,1000);
>> hist(x,8, 'FaceColor',
'yellow', EdgeColor, 'red',
'LineWidth', 5);
>> [nn,xx] = hist(x,8);
>> hold on;
>> plot(0,xx,'bo');
>> hold off;
```


Скрипты и функции

Интерактивный режим – не единственный возможный GNU Octave – полноценный язык программирования, дающий возможность хранить исходные тексты программ в файлах 2 видов

Все файлы с исходными текстами – текстовые и с расширением .m

т-скрипт

```
He имеет входных или выходных аргументов. Создаёт переменные в глобальном рабочем пространстве scriptex.m:
% Comment with help x = magic(3); disp('Hello');

>> scriptex
Hello
>> disp(x)
```

8 1

4

6

т-фунцкия

```
Есть входные и выходные аргументы.
Создаёт переменные в локальном
рабочем пространстве
funcex.m
% Comment with help
function [s,p] = sumprod(a,b)
s = a+b;
p = a*b;
end
\gg [s,p]=sumprod(2,3)
p = 6
```

Функции sprintf и fprintf

Функция sprintf: форматный вывод в строку

str = sprintf(fmt, arg1, arg2,);

Функция fprintf: форматный вывод на экран или в файл

fprintf(fmt, arg1, arg2, ...); % На экран fprintf(fd, fmt, arg1, arg2,...); % В файл

fd – дескриптор файла

fmt – строка с описанием формата вывода. Последовательности, начинающиеся на %, заменяются входными аргументами

Формат	Значение	Формат	Значение
%d	Целое	% f	Десятичная дробь
%.10d	Целое, дополненное до 10 знаков нулями слева	%.3f	Десятичная дробь с 3 знаками после запятой
%10d	Целое, дополненное до 10 знаков пробелами слева	%10.3f	То же, но дополненная до 10 знаков пробелами слева
% s	Строка	% e	Экспоненциальная запись
\n	Перевод строки	%15.3e	То же, но с 3 знаками после запятой и дополненная до 15 знаков пробелами слева

См. документацию по функциям sprintf, fprintf и printf в языке С

Функции sprintf и fprintf

Использование со скалярами и строками

```
>> fprintf('%d\n\n', 10);
10
>> fprintf('%10.3f, %5.1f\n',
  2.1, 3.5);
     2.100, 3.5
>> fprintf('%15.3e\n', 123456);
      1.235e+05
>> fprintf('%s %e %f %d\n',
  'ab', 1, 2, 3, 4);
ab 1.000000e+00 2.000000 3
>> sprintf('%.3e', 1.3)
ans = 1.300e+00
>> fprintf('%X %o', 255, 63)
FF 77
```

Использование с матрицами

```
>> fprintf('%d\n\n', 10);
10

>> sprintf('<%.3f>', rand(1,4));
ans=<0.416><0.568><0.225><0.467>

>> sprintf('%d',[1 2 3;4 5 6]);
ans = 1 4 2 5 3 6

>> fprintf('%d %d %d\n',
      [1 2 3;4 5 6]')
1 2 3
4 5 6
```

Порядок хранения элементов матрицы – «Фортрановский» (по столбцам)

Циклы for и while

Цикл for Код: for i=1:10fprintf('%d', i); end Результат: 1 2 3 4 5 6 7 8 9 10 Код: for i=[1 3 10 15] fprintf('%d', i); end Результат: 1 3 5 10 Код:

for i=[1 2 3; 4 5 6]

end

Результат:

1 4 2 5 3 6

fprintf('%d ',i)

Цикл while

```
Код:

x = 1;

while x < 32

fprintf('%d', x);

x = x * 2;

end

fprintf('\n');

Результат:

1 2 4 8 16
```

Заменяйте циклы на матричные операции при первой возможности «Think vectorized»

Конструкция if...then...elseif...else

Конструкция

```
if условие_1
..операторы..
elseif условие_2
..операторы..
else условие_п
..операторы..
end
```

Ветви с else и elseif не являются обязательными

Пример

```
if x^2+y^2<1
  disp('Внутри круга');
elseif x^2+y^2==1
  disp('На окружности');
else
  disp('Вне круга');
end</pre>
```

```
Оператор
              Значение
              «HE»
              Равно
>
              Больше
<
              Меньше
>=
              Больше или равно
<=
              Меньше или равно
              Не равно
~=
22
              Скалярное «И»
Скалярное «ИЛИ»
```

```
He путайте == и =
>> a = 0;
>> if a = 1;disp('KU-KU');end;
KU-KU
```

Логические матрицы

Работа с подматрицами

>> a = magic(3) 8 3 5 4 >> ii = a < 6 ii = 0 1 1 >> a(ii) = NaN8 NaN 6 NaN NaN 9 NaN NaN

Выборка значений из матрицы

```
>> xv = -1:0.05:1;
>> [X,Y] = meshgrid(xv,xv);
>> ii = X.^2 + Y.^2 <= 1;
>> plot(X(ii),Y(ii),'bo');
>> set(gca,'FontSize',24);
>> print(gcf,'a','-dpng','-r75');
```


Логические матрицы: векторные логические операции

Оператор	Значение
~	«HE»
&	Матричное «И»
1	Матричное «ИЛИ»

Операции сравнения – те же, что и для скаляров

Функция	Значение
any(x,1)	Векторное «ИЛИ» по столбцам матрицы
any(x,2)	Векторное «ИЛИ» по строкам матрицы
all(x,1)	Векторное «И» по столбцам матрицы
all(x,2)	Векторное «И» по строкам матрицы

```
>> a = [1 1 1; 1 1 0; 0 0 0];
>> a
            0
            0
\gg any (a,1)
\Rightarrow any (a,2)
              0.5
>> all(a,1)
\gg all (a,2)
                                 0.5
                     -0.5
>> xv = -1.5:0.05:1.5;
>> [X,Y] = meshgrid(xv,xv);
>> r2 = X.^2 + Y.^2;
>> ii = 0.5 <= r2 & r2 <= 1;
>> plot(X(ii),Y(ii),'bo');
```

Метод наименьших квадратов: одномерный случай

$$\begin{cases} ax_1 + b = y_1 \\ \dots \\ ax_n + b = y_n \end{cases} \Leftrightarrow \begin{pmatrix} x_1 & 1 \\ \dots & \dots \\ x_3 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} \Leftrightarrow X\beta = y$$

Т.к. матрица X — не квадратная, то записать $\beta = X^{-1}y$ нельзя Но Octave/MATLAB решит эту систему уравнений, если написать $b=X \setminus y$

```
>> x = (0:0.1:5)';
>> y = 2*x + 5 + randn(size(x));
>> X = [x ones(size(x))];
>> beta = X \setminus y
beta =
   2.0653
   4.7701
>> close all;
>> plot(x,y,'bo','LineWidth',2);
>> hold on:
\Rightarrow yfunc = @(x)beta(1)*x+beta(2);
>> plot(x,yfunc(x),'k-','LineWidth',2);
>> hold off;
>> print(gcf,'graph','-dpnq','-r75');
```


Полезные команды

Команда	Значение
cd имя_каталога	Сменить текущий каталог
clc	Очистить консоль
clear all	Уничтожить все переменные (и ряд других структур вроде пользовательских типов данных, загруженных МЕХ-файлов и т.п.)
close all	Закрыть все окна с графиками
dir (или ls)	Вывести содержимое текущего каталога
edit filename.m	Отредактировать файл filename.m или создать его (если он отсутствует)
figure	Создать новое окно для вывода графиков
help functame	Выдать справку по функции funcname
hold on hold off	Выводить новый график в существующее окно Выводить новый график в новое окно (старое закроется)
pause	Ждать нажатия ENTER пользователем
pwd	Узнать текущий каталог
whos	Вывести существующие переменные