

AtividadeP03 (Projeto Final): Dinâmica de sistemas de primeira ordem

Edição: 1º Quadrimestre 2020 (ECE)

AN EXPERIMENT IS A QUESTION WHICH SCIENCE POSES TO NATURE, AND A MEASUREMENT IS THE RECORDING OF NATURE'S ANSWER. (MAX PLANCK)

Objetivos:

- Estudo da dinâmica de sistemas de primeira ordem através de modelos de crescimento populacional aplicados a dados epidemiológicos
- Ajuste de curvas exponenciais e extração da Taxa de crescimento do número de infectados e de óbitos de um modelo de crescimento populacional aplicado a dados epidemiológicos
- Avaliação das incertezas nas grandezas obtidas

1. Fundamentação Teórica

Vários sistemas na Natureza e na Engenharia apresentam comportamento que pode ser descrito matematicamente através de uma equação diferencial de primeira ordem, sendo conhecidos como sistemas de primeira ordem [1]. As respostas de interesse de tais sistemas tem formato exponencial, e são caracterizadas pelo parâmetro denominado *constante de tempo*, que traduz a velocidade de reação lenta ou rápida do sistema, de acordo com seu valor alto ou baixo, respectivamente. Alguns exemplos de sistemas de primeira ordem são: decaimento radioativo; transferência de calor; vazão de fluidos; modelos de crescimento populacional; modelos epidemiológicos; sistemas mecânicos e pneumáticos.

Na Engenharia, um exemplo prático e bastante conhecido desse tipo de sistema são os chamados circuitos RC, formado pela associação de resistores e capacitores. Tais circuitos formam a base de muitos circuitos temporizadores e geradores de pulsos e são encontrados em vários circuitos eletrônicos de aplicação prática (mais detalhes sobre a dinâmica dos circuitos RC podem ser vistos nos slides da AtividadeT04).

Nesta atividade iremos estudar a dinâmica de dois modelos de crescimento populacional que serão aplicados a dados epidemiológicos: o modelo de Malthus e o modelo de Verhulst [1].

1.1 - O modelo de Malthus

O modelo de Malthus é descrito pela seguinte equação diferencial ordinária (EDO) de primeira ordem:

$$\frac{dx(t)}{dx} = ax(t),\tag{01}$$

onde x(t) é a variável que representa o tamanho da população (em valores absolutos) e a é uma constante que pode ser vista como a taxa de variação populacional (diferença entre a taxa de natalidade e a taxa de mortalidade).

Integrando a Eq. (1) em ambos os lados e considerando condições iniciais iguais a $x(0) = x_0$ temos

$$\int_{x_0}^{x(t)} \frac{dx(t)}{x(t)} = \int_0^t a dt,$$
 (02)

$$x(t) = x_0 e^{at} \tag{03}$$

Observe que a Eq. (3) é a mesma (a menos de um sinal) que a equação que descreve a dinâmica do circuito RC ilustrado nos slides da Atividade T04. Considerando uma condição inicial, $x_0 \neq 0$, se a taxa de natalidade for menor do que a taxa de mortalidade, então a taxa de variação populacional será negativa, a < 0, e a função x(t) tende à zero à medida que t tende ao infinito. Quanto menor for o valor de a (negativo), mais rápido será este decaimento¹. No entanto, se a taxa de natalidade for maior do que a taxa de mortalidade, então a taxa de variação populacional será positiva, a > 0, e a função x(t) tende a infinito à medida que t tende ao infinito. Quanto maior for o valor de a (positivo), mais rápido será este crescimento.

Desta forma, é possível observar que o modelo de Malthus não é um modelo adequado a longo prazo pois, geralmente, o crescimento populacional é limitado por algum fator. Os gráficos da Figura 1 apresentam a dinâmica do modelo de Malthus para diferentes valores da constante *a*.

¹ Observe que a constante de tempo de um circuito RC é igual a $\left(-\frac{1}{a}\right)$

Figura 1. Dinâmica do modelo de Malthus para diferentes valores de a e $x_0 = 100$

1.2- O modelo de Verhulst

A grande vantagem do modelo de Verhulst, quando comparado ao modelo de Malthus, é que ele define um valor limite para o tamanho da população quando t tendo ao infinito para o caso de uma taxa de variação populacional positiva. O modelo de Verhulst é descrito pela seguinte equação diferencial ordinária (EDO) de primeira ordem:

$$\frac{dx(t)}{dx} = ax(t)\left(1 - \frac{x(t)}{L}\right),\tag{04}$$

onde x(t) representa o tamanho da população (em valores absolutos), a é a taxa de variação populacional (diferença entre a taxa de natalidade e a taxa de mortalidade), e L é a capacidade de suporte do ambiente, ou seja, o valor de x(t) quando t tende ao infinito para a > 0.

Integrando a Eq. (3) em ambos os lados e considerando condições iniciais iguais a $x(0) = x_0$ temos

$$x(t) = \frac{Lx_0}{(L - x_0)e^{-at} + x_0} \tag{05}$$

Figura 2. Dinâmica do modelo de Verhulst para diferentes valores de a; $x_0 = 100$ e L = 2000

Os gráficos da Figura 2 apresentam a dinâmica do modelo de Verhulst para diferentes valores da constante a. Comparando os gráficos da Figura 1 e 2, é possível observar que para valores negativos de a, a dinâmica é a mesma para os dois modelos. Já para valores positivos de a a dinâmica é a mesma para valores pequenos de t, e vai ficando diferente à medida que t vai aumentando.

2. Problema proposto

No contexto da pandemia ocasionado pelo Sars-Cov-2 (Covid-19) iremos estudar a aplicação dos modelos de Malthus e Verhulst para a modelagem do número de infectados (cumulativo) e do número de óbitos (cumulativo) para dois países A e B.

No caso do número de infectados, a variável x(t) irá corresponder ao número de infectados (cumulativo) e a unidade da variável de tempo t será um dia, sendoque, quando possível, o valor de referência t=0 ocorrerá para o primeiro valor de x(t) igual ou maior que 100, sendo este valor atribuído para x_0 .

Para a uniformização da nomenclatura, deverá ser utilizado o modelo apresentado na Tabela 1.

Tabela 1. Nomenclatura das variáveis utilizadas para modelar o número de pessoas infectadas pelos Sars-Cov-2 do país A.

Variável do	Nomenclatura	Descrição
modelo	a ser utilizada	
	$x_{infecA}(t)$	Número de infectados (cumulativo) do país A no dia t
x(t)	$x_{infecMA}(t)$	Número de infectados (cumulativo) estimado pelo modelo
		de Malthus do país A no dia t
x_0	$x_{0infecA}$	Primeiro valor de $x_{infecA}(t)$ igual ou maior que 100 para
		o número de infectados (cumulativo) do país A (igual para
		os dois modelos).
а	$a_{infecMA}$	Taxa de crescimento do número de pessoas infectadas no
		país A para o modelo de Malthus.
x(t)	$x_{infecVA}(t)$	Número de infectados (cumulativo) estimado pelo modelo
		de Verhulst do país A no dia t
x_0	$x_{0infecA}$	Primeiro valor de $x_{infecA}(t)$ igual ou maior que 100 para
		o número de infectados (cumulativo) do país A (igual para
		os dois modelos).
а	$a_{infecVA}$	Taxa de crescimento do número de pessoas infectadas no
		país A para o modelo de Verhulst.
L	L_A	Capacidade de suporte do país A.

^{*}A mesma nomenclatura deverá ser utilizada para o país B, trocando-se o índice "A" por "B". Para o número de óbitos, trocar o índice "infec" por "obito".

3. Procedimento para obtenção e tratamento dos dados

Primeiramente, deve-se escolher dois países A e B que tenham um número significativo de dados (por exemplo, tenha tido mais de 10.000 infectados pelo Sars-Cov-2). Para estes, devem ser obtidos os dados diários do número de infectados e óbitos (cumulativo) de cada país. Para o número de infectados do país A, montar uma tabela contendo quatro colunas, uma com os valores de t, começando com t=0, a segunda coluna contendo os valores de $x_{infecA}(t)$. O mesmo deve ser feito para o número de óbitos do país A e para o número de infectados e óbitos do país B. Para poder comparar as curvas do país A e do país B é importante que os valores definidos para $x(t=0) = x_0$ sejam os mesmos (ou muito próximos) para os dois países. É importante citar a fonte dos dados.

Exemplo: na Tabela 2 são apresentados os dados² do número de pessoas infectadas no mundo inteiro, contabilizados a partir do dia 22/01/2020.

² Dados obtidos em https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset no dia 08/04.

ESTO017-17 - Métodos Experimentais em Engenharia

Tabela 2. Números de pessoas infectadas, no mundo, pelo Sars-Cov-2 desde o dia 22/01/2020. Azul= 85% dos dados (iniciais); Laranja=15% dos dados (finais).

t	$\frac{di-6576 dos dados (iii)}{x_{infecG}(t)}$	t	$x_{infecG}(t)$
0	555	39	88369
1	654	40	90306
2	941	41	92840
3	1434	42	95120
3 4	2118	43	97886
5	2927	44	101801
5 6	5578	45	105847
7	6166	46	109821
8	8234	47	113590
8	9927	48	118620
10	12038	49	125875
11	16787	50	128352
12	19881	51	145205
13	23892	52	156101
14	27635	53	167454
15	30794	54	181574
16	34391	55	197102
17	37120	56	214821
18	40150	57	242570
19	42762	58	272208
20	44802	59	304507
21	45221	60	336953
22	60368	61	378235
23	66885	62	418045
24	69030	63	467653
25	71224	64	529591
26	73258	65	593291
27	75136	66	660706
28	75639	67	720140
29	76197	68	782395
30	76819	69	857487
31	78572	70	932605
32	78958	71	1013320
33	79561	72	1095917
34	80406	73	1197405
35	81388	74	1272115
36	82746	75	1345101
37	84112	76	1426096
38	86011		

4. Procedimento para obtenção dos parâmetros dos modelos

Para a obtenção dos valores de $x_{infecMA}(t)$ e $x_{infecVA}(t)$ é necessário obter os parâmetros $a_{infecMA}$ e $a_{infecVA}$, com suas respectivas incertezas, que serão obtidos através do ajuste de curvas, utilizando um programa específico para isso como, por exemplo, o LabFit. Para isso, deverá ser utilizado apenas os 85% (iniciais) dos dados, sendo que os demais dados serão utilizados para verificar se os modelos adotados e os parâmetros estimados (com suas respectivas incertezas) são capazes de fornecer uma boa estimativa para os demais 15% (finais) dos dados. Para cada país e tanto para o número de infectados quanto óbitos, deverão ser obtidos os seguintes parâmetros do modelo:

ESTO017-17 – Métodos Experimentais em Engenharia

- 1. Obtenção do parâmetro *a* e sua respectiva incerteza, para o modelo de Malthus, utilizando apenas 85% (iniciais) dos dados;
- 2. Obtenção do parâmetro *a* e sua respectiva incerteza, para o modelo de Verhulst, utilizando apenas 85% (iniciais) dos dados e considerando *L* como sendo o número de habitantes do país, obtido através do último censo oficial. É importante citar a fonte deste dado;
- 3. Obtenção do parâmetro *a* e *L* e suas respectivas incertezas, para o modelo de Verhulst, utilizando apenas 85% (iniciais) dos dados; nesse caso, o parâmetro L pode ser obtido através do processo de ajuste de curvas.

Exemplo: Obtenção do parâmetro *a* para o modelo de Malthus, utilizando apenas 85% dos dados contidos na Tabela 2.

- 1. A Tabela 2 contêm 77 pontos. Destes, 85% serão utilizados para o cálculo dos parâmetros dos modelos. Desta forma, os dados de t=0 até t=65 serão utilizados para obtenção dos parâmetros do modelo (em azul). Já os dados t=66 até t=76 serão utilizados para testar os modelos (em laranja). O valor de x_0 corresponde a 555, número de pessoas infectadas em t=0.
- 2. Utilizando o LabFit, e realizando o ajuste de curvas da função $Y = 555 * \exp(A * X)$, foi possível obter o parâmetro a e sua respectiva incerteza: $(0,1073 \pm 0,0005)$ dias⁻¹.Para que o processo de ajuste atinja a convergência, pode ser necessário definir um valor inicial diferente do indicado na janela "initial conditions". Neste exemplo, foi utilizado o valor de 0,1.

5. Aplicação do modelo e dos parâmetros encontrados para estimação dos dados

Os modelos e parâmetros encontrados anteriormente serão utilizados para realizar a estimação do número de infectados e óbitos e compará-los com os outros 15% dos dados reais. Desta forma, será possível verificar se é possível utilizar este modelo/parâmetros para realizar a predição do número de infectados e óbitos, dentro de um curto horizonte de tempo. Desta forma, utilizando os parâmetros obtidos anteriormente, com suas respectivas incertezas, é possível estimar o número de casos com sua respectiva incerteza, para cada valor de t.

Exemplo: Na Tabela 3 são apresentados os dados obtidos com o modelo de Malthus do nosso exemplo anterior, calculados pela equação (07), obtida a partir da substituição dos valores x_0 e a na expressão (06).

$$x_{infecMG}(t) = x_0 * e^{a*t}$$
 (06)

$$x_{infecMG}(t) = 555 * e^{0,1073*t}$$
 (07)

Derivando a expressão (06) com relação ao parâmetro *a* é possível obter o valor da incerteza do número de pessoas infectadas estimado pelo modelo de Malthus, dado pela expressão (08).

$$u_{x_{infecMG}(t)} = \frac{dx_{infecMG}(t)}{da} * u_a$$

$$u_{x_{infecMG}(t)} = t * x_{infecMG}(t) * 0,0005$$
(08)

Além dos dados estimados foram também calculados o erro de estimação (percentual) e o z'score, dados por:

$$e(t) = 100 * \frac{x_{infecG}(t) - x_{infecMG}(t)}{x_{infecG}(t)}$$
(09)

$$z'score = \frac{\left|x_{infecG}(t) - x_{infecMG}(t)\right|}{u_{x_{infecMG}(t)}}$$
(10)

Para o cálculo do z'score considerou-se nula a incerteza dos dados reais.

ESTO017-17 - Métodos Experimentais em Engenharia

Tabela 3. Estimação do número de pessoas infectadas, no mundo, pelo Sars-Cov-2 desde o dia 22/01/2020, pelo modelo de Malthus. Azul= 85% dos dados (iniciais); Laranja=15% dos dados (finais).

t	v (t)	v (t)	21	erro de	z'-	t	· · · · · ·	v (t)	21	erro de	z'-
·	$x_{infecG}(t)$	$x_{infecMG}(t)$	$u_{x_{infecMG}}$	estimação	score	ι	$x_{infecG}(t)$	$x_{infecMG}(t)$	$u_{x_{infecMG}}$	estimação	score
				(%)	score					(%)	Score
0	555	555	0	0,0	0,0	39	88369	36,45E+3	,71E+3	58,8	73,0
1	654	618	1	5,5	36,0	40	90306	40,58E+3	,81E+3	55,1	61,2
2	941	688	1	26,9	253,0	41	92840	45,17E+3	,93E+3	51,3	51,4
3	1434	766	2	46,6	334,0	42	95120	50,3E+3	1,1E+3	47,1	42,4
4	2118	852	2	59,8	633,0	43	97886	56,0E+3	1,2E+3	42,8	34,8
5	2927	949	3	67,6	659,3	44	101801	62,3E+3	1,4E+3	38,8	28,8
6	5578	1057	4	81,1	1130,2	45	105847	69,4E+3	1,6E+3	34,4	23,3
7	6166	1176	5	80,9	998,0	46	109821	77,2E+3	1,8E+3	29,7	18,3
8	8234	1309	6	84,1	1154,2	47	113590	86,0E+3	2,0E+3	24,3	13,7
9	9927	1458	7	85,3	1209,9	48	118620	95,7E+3	2,3E+3	19,3	10,0
10	12038	1623	9	86,5	1157,2	49	125875	106,6E+3	2,6E+3	15,3	7,4
11	16787	1807	10	89,2	1498,0	50	128352	118,7E+3	3,0E+3	7,6	3,3
12	19881	2011	13	89,9	1374,6	51	145205	132,1E+3	3,4E+3	9,0	3,9
13	23892	2239	15	90,6	1443,5	52	156101	147,1E+3	3,8E+3	5,8	2,4
14	27635	2493	18	91,0	1396,8	53	167454	163,7E+3	4,3E+3	2,2	0,9
15	30794	2775	21	91,0	1334,2	54	181574	182,3E+3	4,9E+3	-0,4	0,1
16	34391	3090	25	91,0	1252,0	55	197102	202,9E+3	5,6E+3	-2,9	1,0
17	37120	3439	30	90,7	1122,7	56	214821	225,9E+3	6,3E+3	-5,1	1,7
18	40150	3829	35	90,5	1037,7	57	242570	251,5E+3	7,2E+3	-3,7	1,2
19	42762	4263	41	90,0	939,0	58	272208	280,0E+3	8,1E+3	-2,8	1,0
20	44802	4746	48	89,4	834,5	59	304507	311,7E+3	9,2E+3	-2,3	0,8
21	45221	5283	56	88,3	713,2	60	336953	34,7E+04	1,0E+4	-3,0	1,0
22	60368	5882	65	90,3	838,2	61	378235	38,6E+04	1,2E+4	-2,1	0,7
23	66885	6548	76	90,2	793,9	62	418045	43,0E+04	1,3E+4	-2,9	0,9
24	69030	7289	88	89,4	701,6	63	467653	47,9E+04	1,5E+4	-2,4	0,7
25	71224	81,2E+2	1,0E+2	88,6	618,7	64	529591	53,3E+04	1,7E+4	-0,6	0,2
26	73258	90,3E+2	1,2E+2	87,7	544,3	65	593291	59,3E+04	1,9E+4	0,0	0,0
27	75136	10,06E+3	,14E+3	86,6	478,5	66	660706	66,1E+04	2,2E+4	0,0	0,0
28	75639	11,20E+3	,16E+3	85,2	410,5	67	720140	73,5E+04	2,5E+4	-2,1	0,6
29	76197	12,47E+3	,18E+3	83,6	352,1	68	782395	81,9E+04	2,8E+4	-4,6	1,3
30	76819	13,88E+3	,21E+3	81,9	301,2	69	857487	91,1E+04	3,1E+4	-6,3	1,7
31	78572	15,45E+3	,24E+3	80,3	263,0	70	932605	101,5E+04	3,6E+4	-8,8	2,3
32	78958	17,20E+3	,28E+3	78,2	223,8	71	1013320	112,9E+04	4,0E+4	-11,5	2,9
33	79561	19,15E+3	,32E+3	75,9	191,2	72	1095917	125,7E+04	4,5E+4	-14,7	3,6
34	80406	21,32E+3	,36E+3	73,5	162,8	73	1197405	140,0E+04	5,1E+4	-16,9	4,0
35	81388	23,73E+3	,42E+3	70,8	138,6	74	1272115	155,8E+04	5,8E+4	-22,5	5,0
36	82746	26,42E+3	,48E+3	68,1	118,3	75	1345101	173,5E+04	6,5E+4	-29,0	6,0
37	84112	29,41E+3	,55E+3	65,0	100,4	76	1426096	193,1E+04	7,3E+4	-35,4	6,9
38	86011	32,74E+3	,62E+3	61,9	85,5						

Figura 3. Número de pessoas infectadas no mundo a partir do dia 22/01/2020. Em azul, são os dados reais que foram utilizados para a extração do modelo de Malthus. Em preto, são os valores estimados pelo modelo de Malthus, com suas respectivas incertezas.

6. Análise dos dados

Análise do exemplo: Observando os dados ilustrados pelo gráfico da Figura 3, é possível observar que o modelo de Malthus não é adequado para representar estes dados. Observando o contexto histórico, podemos dividir os dados em 2 horizontes de tempo. O primeiro horizonte corresponde aos dados referentes ao período de 22/01/2020 a 11/03/2020 (t=0 a 49). Neste horizonte a maioria dos casos se concentravam apenas na China, sendo que no dia 11/03/2020 a Organização Mundial da Saúde (OMS) declarou o estado de pandemia. Nesta data, o número de pessoas infectadas na China já havia chegado perto de uma estabilização devido às restrições de deslocamento impostos no país (medidas de contenção adotadas). Já no segundo horizonte, a partir do dia 12/03/2020, concentram-se os casos no restante do mundo. Na Tabela 4, realizamos a mesma análise feita anteriormente, mas restrita ao segundo horizonte de tempo. O parâmetro *a* para o modelo de Malthus encontrado foi (0, 1073 ± 0,0005) dias⁻¹ e na Figura 4 estão apresentados seus respectivos gráficos.

Para este segundo horizonte, o modelo de Malthus mostra-se mais adequado, mas, ainda assim, apresentando um z'-score elevado para alguns pontos. Será que, o modelo de Verhulst apresentaria melhores resultados?

Analise os resultados obtidos e os dados utilizados no seu projeto, abordando os seguintes tópicos:

- 1. Elabore alguns testes de hipóteses, comparando os diferentes países e os diferentes modelos adotados.
- 2. Os modelos utilizados foram adequados? Qual dos modelos foi o mais apropriado para cada país? Justifique.
- 3. Para o número de infectados, os parâmetros obtidos/estimados, de um mesmo modelo, foram iguais para os dois países? Justifique. Faça o mesmo para o número de óbitos.
- 4. Através da análise dos dados, é possível observar uma diferença nos dados antes e após medidas de contenção terem sido implementadas nos países? Nesse caso, os parâmetros do modelo utilizado deveriam ser reajustados?
- 5. Apresente um outro modelo, comumente adotado pela literatura especializada que poderia também ser utilizado para previsão do número de infectados. Não é necessário aplicar o modelo.

ESTO017-17 - Métodos Experimentais em Engenharia

Tabela 4. Estimação do número de pessoas infectadas, no mundo, pelo Sars-Cov-2 desde o dia 12/03/2020, pelo modelo de Malthus. Azul= 85% dos dados (iniciais); Laranja=15% dos dados (finais).

dos dados (mais).								
t	$x_{infecG}(t)$	$x_{infecMG}(t)$	$u_{x_{infecMG}}$	erro de estimação	z'-score			
				(%)				
0	128352	128352	0	0,0	0,0			
1	145205	141652	57	2,4	62,3			
2	156,1E+3	156,33E+3	,13E+3	-0,1	1,8			
3	167,5E+3	172,53E+3	,21E+3	-3,0	24,4			
4	181,6E+3	190,41E+3	,31E+3	-4,9	29,0			
5	197,1E+3	210,14E+3	,42E+3	-6,6	31,0			
6	214,8E+3	231,92E+3	,56E+3	-8,0	30,7			
7	242,6E+3	255,95E+3	,72E+3	-5,5	18,7			
8	272,2E+3	282,47E+3	,90E+3	-3,8	11,4			
9	304,5E+03	311,7E+03	1,1E+3	-2,4	6,4			
10	337,0E+03	344,0E+03	1,4E+3	-2,1	5,2			
11	378,2E+03	379,7E+03	1,7E+3	-0,4	0,9			
12	418,0E+03	419,0E+03	2,0E+3	-0,2	0,5			
13	467,7E+03	462,5E+03	2,4E+3	1,1	2,2			
14	529,6E+03	510,4E+03	2,9E+3	3,6	6,7			
15	593,3E+03	563,3E+03	3,4E+3	5,1	8,9			
16	660,7E+03	621,7E+03	4,0E+3	5,9	9,8			
17	720,1E+03	686,1E+03	4,7E+3	4,7	7,3			
18	782,4E+03	757,2E+03	5,5E+3	3,2	4,6			
19	857,5E+03	835,6E+03	6,4E+3	2,5	3,4			
20	932,6E+03	922,2E+03	7,4E+3	1,1	1,4			
21	101,33E+04	101,78E+04	,86E+4	-0,4	0,5			
22	109,59E+04	112,32E+04	,99E+4	-2,5	2,8			
23	119,7E+04	124,0E+04	1,1E+4	-3,5	3,7			
24	127,2E+04	136,8E+04	1,3E+4	-7,5	7,3			
25	134,5E+04	151,0E+04	1,5E+4	-12,2	10,9			
26	142,6E+04	166,6E+04	1,7E+4	-16,8	13,9			

Figura 4. Número de pessoas infectadas no mundo a partir do dia 12/03/2020. Em azul, são os dados reais que foram utilizados para o cálculo dos parâmetros do modelo de Malthus. Em preto, são os dados estimados pelo modelo de Malthus, com suas respectivas incertezas.

7. Para entregar

- Report descrevendo como foi realizada a atividade com os demais membros da equipe e
 como foram divididas as tarefas. No caso de chats e conferências virtuais, indicar quem
 estava presente, a data e a duração das reuniões.
- Relatório contendo os resultados da atividade.
- Vídeo contendo uma apresentação da atividade realizada e dos resultados obtidos.

8. Bibliografia

[1] Ulysses Sodré, Equações Diferenciais Ordinárias, Notas de aulas – 21 de maio de 2003, disponível em: http://www.uel.br/projetos/matessencial/superior/pdfs/edo.pdf

9. Links interessantes

A MATEMÁTICA DA EPIDEMIA:

https://blogdoricardomm.blogspot.com/2020/03/a-matematica-da-epidemia.html?spref=fb&fbclid=IwAR3XF89MSw41ylSmQot0j7cbTbQVB7tagT5tD9_JEvFtXr7zvyNWvXgQ_kM&m=1

Videos:

- Minute Physics "Como saber se estamos vencendo a COVID-19": https://covid19br.github.io/
- 3blue1brown "Exponential Growth and Epidemics": https://www.3blue1brown.com/videos-blog/exponential-growth-and-epidemics

Site com dados:

- https://blog.brasil.io/2020/04/10/obitos-por-covid19-no-brasil-sao-maiores-que-os-divulgados-oficialmente-passamos-de-mil-mortes-no-dia-6-de-abril/
- https://ourworldindata.org/coronavirus
- https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/
- https://who.sprinklr.com/

ESTO017-17 - Métodos Experimentais em Engenharia

• https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd4029942346 7b48e9ecf6

10. Autores

Atividade elaborada pelo professor Kenji Nose-Filho e revisada pelos Profs. Ana Paula Romani, André Kazuo Takahata, André Ferlauto, Cláudio Bordin, Denise Consonni, Helói Genari e Julio Carlos Teixeira