Лабораторная работа 3.3.4 Эффект Холла в полупроводниках

Симанкович Александр Б01-104

07.09.2022

Аннотация

В работе нашла экспериментальное подтверждение гипотеза о возникновении поперечной ЭДС в проводнике с током, помещенном в магнитное поле (эффект Холла). Измерен коэффициент пропорциональности между ЭДС Холла и магнитной индукцией, определены подвижность и концентрация основных носителей заряда в кристаллическом Ge.

Теоретическое введение

В электрическом поле \vec{E} на заряды действует сила $q\vec{E}$. Во внешнем магнитном поле \vec{B} на движущиеся заряды также действует сила Лоренца. Результирующая сила:

$$\vec{F} = q\vec{E} + q\vec{u} \times \vec{B}.$$

Эта сила вызывает движение носителей, направление которого в общем случае не совпадает с \vec{E} . Действительно, траектории частиц будут либо искривляться, либо, если геометрия проводника этого не позволяет, возникнет дополнительное электрическое поле, компенсирующее магнитную составляющую силы Лоренца. Возникновение поперечного току электрического поля в образце, помещённом во внешнее магнитное поле, называют эффектом Холла.

Рис. 1: Схема мостика Холла

В работе для проверки эффекта Холла используется мостик Холла (см. рис. 1).

В мостике Холла реализовывается простой случай, когда направление тока $(\vec{j} \parallel \vec{x})$ перпендикулярно направлению внешнего магнитного поля $(\vec{B} \parallel \vec{z})$. На один носитель тока со стороны магнитного поля действует сила $F_y = -qu_xB_z$. После установления стационарного режима носители перераспределены так, что создают поле $E_y = -\frac{F_y}{q} = u_xB_z = \frac{j_x}{ng}B_z$. Напряжение,

появившееся вследствие перераспределения зарядов, называется холловским:

$$U_{\perp} = E_y a = \frac{j_x B_z}{nq} a.$$

Учитывая, что $j_x = \frac{I}{ah}$, получаем:

$$U_{\perp} = \frac{B_z}{nqh} \cdot I = R_H \cdot \frac{B_z}{h} \cdot I, \tag{1}$$

где $R_H = \frac{1}{nq}$ — постоянная Холла.

Для продольной составляющей напряжения выполняется закон Ома. Из него получаем:

$$U_{\parallel} = E_x l = \frac{j_x}{\sigma_0} l = IR_0,$$

где $R_0 = \frac{l}{\sigma_0 ah}$.

$$\sigma_0 = \frac{I \cdot l}{U_{35} \cdot h \cdot a}.\tag{2}$$

Методика эксперимента

Оборудование и приборы

- электромагнит с регулируемым источником питания GPR-11H30D (A_1) ;
- вольтметр B7-78/1;
- миллиамперметр M2020 (A_2);
- милливеберметр М119 и миллитесламетр АКТАКОМ АТЕ-8702;
- источник питания (1,5 В);
- образцы легированного германия;

Рис. 2: Схема установки для исследования эффекта Холла в полупроводниках

В зазоре электромагнита (см. рис. 2) создаётся постоянное магнитное поле, величину которого можно менять с помощью регулятора источника питания электромагнита. Ток питания электромагнита измеряется амперметром A_1 .

Градуировка электромагнита проводится при помощи милливеберметра и миллитесламетра.

Прямоугольный образец из легированного германия, смонтированный в специальном держателе (см. рис. 2), подключается к источнику питания (≈ 1.5 В). При замыкании ключа K_2 вдоль длинной стороны образца (контакты 3, 5) течёт ток, величина которого регулируется реостатом R_2 и измеряется миллиамперметром A_2 .

В образце с током, помещенном в зазор электромагнита, между контактами 3 и 4 возникает разность потенциалов U_{34} , которая измеряется с помощью цифрового вольтметра.

Контакты 3 и 4 вследствие неточности подпайки могут не лежать на эквипотенциали, для устранения этого эффекта будем измерять начальное значение напряжения U_0 (при выключенном магните) в каждой серии измерений.

Результаты

Градуировка электромагнита

Проведем градуировку электромагнита. Для этого измерим зависимость B(I), где B – модуль вектора индукции магнитного поле в зазоре, I_M – ток, протекающий через обмотки магнита. Измерения проведем милливеберметром М119 и миллитесламетром АКТАКОМ АТЕ-8702. Погрешности данных приборов:

$$\varsigma_{\text{Вб}} = 0.15 \text{ мВб} \quad \varepsilon_{\text{Тл}} = 0.06$$

Точность измерения I_M определяется точностью амперметра A_1 , встроенного в лабораторный блок питания GPR-11H30D:

$$\varsigma_{A_1} = 0.005 \text{ A}$$

Построим графики B(I) по результатам измерения магнитного поля милливеберметром и миллитесламетром.

Рис. 3: $B(I_M)$

Как видно из графика, данные веберметра и тесламетра расходятся. Тесламетр является более современным и тщательно откалиброванным прибором, тогда как данные веберметра

могут зависеть от сопротивления соединительных проводов и наводок в них. По этой причине для последующих измерений выбираем калибровку тесламетром.

ЭДС Холла

Проведем измерения $U_{34}(I_M)$ для различных I. Рассчитаем значения B и занесем в таблицу. Измерения I делаются миллиамперметром A_2 , модель M2020: $\varsigma_{A_2}=5$ мкА. Измерения U проводятся вольтметром V_1 , модель B7-78/1: $\varsigma_{V_1}=3.5$ мкВ. В измерениях учитывается U_0 – сдвиг напряжения при нулевом магнитном поле, возникающий из-за неточности подпайки.

Рис. 4: Зависимость холловского напряжения от индукции магнитного поля

По методу наименьших квадратов рассчитаем параметры графиков, считая зависимость линейной. В результате получим значение углового коэффициента $K=\frac{\Delta \mathcal{E}_H}{\Delta B}$ для каждого графика. Построим график K(I) и рассчитаем его параметры.

Рис. 5: Зависимость углового коэффициента от тока через образец

I, мА	$ K , \frac{MKB}{MTJ}$	ΔI , мА	$\Delta K , \frac{\text{MKB}}{\text{MTJ}}$
0.140	0.091	0.005	0.003
0.300	0.199	0.005	0.007
0.450	0.298	0.005	0.011
0.600	0.402	0.005	0.015
0.750	0.502	0.005	0.018
0.900	0.604	0.005	0.023
1.000	0.667	0.005	0.024

Таблица 1: K(I)

\overline{x}	σ_x^2	\overline{y}	σ_y^2	r_{xy}	a	Δa	b	Δb
5.914e-01	8.516e-02	0.395	3.851e-02	5.726e-02	0.672	0.002	-0.003	0.002

Таблица 2: Параметры графика K(I)

Выясним знак носителей заряда в легированном германии. Мы знаем, что электрическое поле направлено от 4 к 3,5 из знака напряжения на вольтметре V1. Воспользовавшись правилом буравчика и правилом левой руки получим, что сила Лоренца направлена от 4 к 3,5 для обоих знаков зарядов. Следовательно, носители заряда в легированном германии имеют положительный заряд (дырочная проводимость).

Рис. 6: Пробная катушка и ее положение относительно магнита

Определим коэффициент Холла R_H по формуле (1):

$$R_H = h \frac{U_{\perp}}{BI} = h \cdot a_K = 1.0 \text{ mm} \cdot 0.672 \frac{\text{B}}{\text{T}_{\Pi} \cdot \text{A}} = (6.7 \pm 0.4) \cdot 10^{-4} \frac{\text{m}^3}{\text{K}_{\Pi}}$$

Определим концентрацию n:

$$n = \frac{1}{R_H e} = (9.3 \pm 0.4) \cdot 10^{21} \frac{1}{\text{M}^3}$$

Альтернативный метод обработки

Также для определения искомого параметра можно воспользоваться тем, что:

$$\mathcal{E}_H = \frac{R_H}{h} \cdot BI$$

Построим график $\mathcal{E}_H(BI)$ и определим его параметры.

Рис. 7: Зависимость холловского напряжения от произведения индукции поля и тока в образце

\overline{x}	σ_x^2	\overline{y}	σ_y^2	r_{xy}	a	Δa	b	Δb
$4.261\mathrm{e}{+02}$	$9.836\mathrm{e}{+04}$	301.357	4.697e + 04	$6.775\mathrm{e}{+04}$	0.689	0.007	7.898	3.623

Таблица 3: Параметры графика $\mathcal{E}_H(IB)$

Определим коэффициент Холла R_H по формуле (1):

$$R_H = h \frac{U_{\perp}}{BI} = h \cdot a_{IB} = 1.0 \text{ mm} \cdot 0.689 \frac{\text{B}}{\text{Tm} \cdot \text{A}} = (6.9 \pm 0.4) \cdot 10^{-4} \frac{\text{m}^3}{\text{Km}}$$

Определим концентрацию n:

$$n = \frac{1}{R_H e} = (9.1 \pm 0.5) \cdot 10^{21} \frac{1}{\text{M}^3}$$

Удельная проводимость

Измерим $U_{35}(I)$ в образце. Построим график $U_{35}(I)$ и рассчитаем его параметры.

Рис. 8: Зависимость напряжения U_{35} от основного тока в образце

\overline{x}	σ_x^2	\overline{y}	σ_y^2	r_{xy}	a	Δa	b	Δb
5.91e-01	8.52e-02	2.37	1.39e + 00	3.44e-01	4.04	0.01	-0.02	0.01

Таблица 4: Параметры графика $U_{35}(I)$

Рассчитаем удельную проводимость σ_0 :

$$\sigma_0 = \frac{I \cdot l}{U_{35} \cdot h \cdot a} = \frac{5.0 \text{ mm}}{4.04 \text{ Om} \cdot 1.0 \text{ mm} \cdot 4.0 \text{ mm}} = (309 \pm 27) \frac{1}{\text{Om} \cdot \text{m}}$$

Рассчитаем подвижность зарядов b:

$$b = \frac{\sigma_0}{en} = (2230 \pm 220) \frac{\text{cm}^2}{\text{B} \cdot \text{c}}$$

Заключение и выводы

Данная работа подтверждает существование эффекта Холла в полупроводниках.

Получено значение коэффициента Холла $R_H=(6.9\pm0.4)\cdot10^{-4}\,\frac{\rm M^3}{\rm K_I}$. Также в работе оценено значение концентрации носителей тока в образце $n=(8.7\pm0.4)\cdot10^{21}\,\frac{1}{\rm M^3}$, удельная проводимость $\sigma_0=(309\pm27)\,\frac{1}{\rm OM\cdot M}$, подвижность носителей $b=\frac{\sigma_0}{en}=(2230\pm220)\,\frac{\rm CM^2}{\rm B\cdot C}$.

Справочные данные для данного образца германия отсутствуют, большинство параметров зависят от степени легирования. Значения подвижности носителей зависит от легирующего элемента и лежат в пределах¹ $(2000 \div 3000) \frac{\text{см}^2}{\text{B.c.}}$.

¹Эффект Холла в германии, легированном разными примесями, Г. П. Гайдар, Е. Ю. Гайворонская, 2017