Exercise sheet

Lecturer: Georgios P. Karagiannis

georgios.karagiannis@durham.ac.uk

Part 1. Stochastic learning

Exercise 1. (\star) Let $f: \mathbb{R}^d \to \mathbb{R}$ such that $f(w) = g(\langle w, x \rangle + y)$ or some $x \in \mathbb{R}^d$, $y \in \mathbb{R}$. If g is convex function then f is convex function.

Solution. Let $u, v \in \mathbb{R}^d$ and $a \in [0, 1]$. It is

$$\begin{split} f\left(\alpha u + (1 - \alpha)v\right) &= g\left(<\alpha u + (1 - \alpha)v, x > + y\right) \\ &= g\left(<\alpha u, x > + < (1 - \alpha)v, x > + y\right) \\ &= g\left(\alpha\left(< u, x > + y\right) + (1 - \alpha)\left(< v, x > + y\right)\right) \qquad y = \alpha y + (1 - \alpha)y \\ &\leq \alpha g\left(< u, x > + y\right) + (1 - \alpha)g\left(< v, x > + y\right) \\ &= \alpha f\left(u\right) + (1 - \alpha)f\left(v\right) \end{split} \tag{g is convex}$$

Exercise 2. (*)Let functions g_1 be ρ_1 -Lipschitz and g_2 be ρ_2 -Lipschitz. Then f with $f(x) = g_1(g_2(x))$ is $\rho_1\rho_2$ -Lipschitz.

Solution.

$$|f(w_1) - f(w_2)| = |g_1(g_2(w_1)) - g_1(g_2(w_2))|$$

$$\leq \rho_1 |g_2(w_1) - g_2(w_2)|$$

$$\leq \rho_1 \rho_2 |w_1 - w_2|$$

Exercise 3. (\star) Let $f: \mathbb{R}^d \to \mathbb{R}$ with $f(w) = g(\langle w, x \rangle + y)$ $x \in \mathbb{R}^d$ and $y \in \mathbb{R}$. Let $g: \mathbb{R} \to \mathbb{R}$ be a β -smooth function. Then f is a $(\beta ||x||^2)$ -smooth.

Hint:: You may use Cauchy-Schwarz inequality $\langle y, x \rangle \leq \|y\| \, \|x\|$

$$\begin{split} f\left(v\right) &= g\left(\langle w, x \rangle + y\right) \\ &\leq g\left(\langle w, x \rangle + y\right) + g'\left(\langle w, x \rangle + y\right) \langle v - w, x \rangle + \frac{\beta}{2} \left(\langle v - w, x \rangle\right)^2 & \left(g \text{ is smooth}\right) \\ &\leq g\left(\langle w, x \rangle + y\right) + g'\left(\langle w, x \rangle + y\right) \langle v - w, x \rangle + \frac{\beta}{2} \left(\|v - w\| \|x\|\right)^2 & \left(\text{Cauchy-Schwatz inequality}\right) \\ &= f\left(w\right) + \langle \nabla f\left(w\right), v - w \rangle + \frac{\beta \|x\|^2}{2} \|v - w\|^2 \end{split}$$

Exercise 4. $(\star)f: S \to \mathbb{R}$ is ρ -Lipschitz over an open convex set S if and only if for all $w \in S$ and $v \in \partial f(w)$ it is $||v|| \le \rho$.

Hint:: You may use Cauchy-Schwarz inequality $\langle y, x \rangle \leq ||y|| \, ||x||$

Solution. \Longrightarrow Let $f: S \to \mathbb{R}$ be ρ -Lipschitz over convex set $S, w \in S$ and $v \in \partial f(w)$.

- Since S is open we get that there exist $\epsilon > 0$ such as $u := w + \epsilon \frac{v}{\|v\|}$ where $u \in S$. So $\langle u w, v \rangle = \epsilon \|v\|$ and $\|u w\| = \epsilon$.
- From the subgradient definition we get

$$f(u) - f(w) \ge \langle u - w, v \rangle = \epsilon ||v||$$

• From the Lipschitzness of $f(\cdot)$ we get

$$f(u) - f(w) > \rho ||u - w|| = \rho \epsilon$$

Therefore $||v|| \leq \rho$.

Proof. \Leftarrow It is for all $w \in S$ and $v \in \partial f(w)$ it is $||v|| \le \rho$.

• For any $u \in S$, it is

$$f\left(w\right)-f\left(u\right)\leq\left\langle v,w-u\right\rangle \qquad \qquad \text{(because }v\in\partial f\left(w\right)\text{)}$$
 (1)
$$\leq\left\|v\right\|\left\|w-u\right\| \qquad \text{by Cauchy-Schwarz inequality}$$

$$\leq\rho\left\|w-u\right\| \qquad \text{because }\left\|v\right\|\leq\rho$$

• Similarly it results $u, w \in S$

$$f(w) - f(u) \le \langle v, u - w \rangle \|v\| \le \|v\| \|u - w\| \le \rho \|u - w\|$$

from (1) because w, u can be swaped in (1) as they both are any values in S.

Exercise 5. (*)Let $g_1(w), ..., g_r(w)$ be r convex functions, and let $g(\cdot) = \max_{\forall j} (g_j(\cdot))$. Show that for some w it is $\nabla g_k(w) \in \partial g(w)$ where $k = \arg \max_j (g_j(w))$ is the index of function $g_j(\cdot)$ presenting the greatest value at w.

Since g_j is convex, for all u

$$g_j(u) \ge g_j(w) + \langle u - w, \nabla g_j(w) \rangle$$

However $g\left(u\right)=\max_{\forall j}\left(g_{j}\left(u\right)\right)\geq g_{j}\left(u\right)$ for any j, and $g\left(w\right)=g_{j}\left(w\right)$ at w. Then

$$g(u) \ge g(w) + \langle u - w, \nabla g_i(w) \rangle$$

Then by the definition of the sub-gradient $\nabla g_{i}(w) \in \partial g(w)$

The following is given as a homework (Formative assessment 1)

Exercise 6. (*)Consider the binary classification problem with inputs $x \in \mathcal{X}$ where $\mathcal{X} := \{x \in \mathbb{R}^d : ||x||_2 \leq L\}$ for some given value L > 0, target $y \in \mathcal{Y}$ where $\mathcal{Y} := \{-1, +1\}$, and prediction rule $h_w : \mathbb{R}^d \to \{-1, +1\}$ with

$$h_w(x) = \operatorname{sign}\left(w^{\top}x\right)$$

$$= \operatorname{sign}\left(\sum_{j=1}^{d} w_j x_j\right)$$

Let the hypothesis class of prediction rules be

$$\mathcal{H} = \left\{ x \to w^\top x : \forall w \in \mathbb{R}^d \right\}$$

In other words, the hypothesis $h_w \in \mathcal{H}$ is parametrized by $w \in \mathbb{R}^d$ it receives an input vector $x \in \mathcal{X} := \mathbb{R}^d$ and it returns the label $y = \text{sign}(w^\top x) \in \mathcal{Y} := \{\pm 1\}$.

Consider a loss function $\ell: \mathbb{R}^d \to \mathbb{R}_+$ with

(4)
$$\ell(w, z = (x, y)) = \max(0, 1 - yw^{T}x) + \lambda ||x||_{2}^{2}$$

for some given value $\lambda > 0$.

Assume there is available a dataset of examples $S_n = \{z_i = (x_i, y_i); i = 1, ..., n\}$ of size n. Do the following tasks.

Hint-1:: We denote

$$\operatorname{sign}(\xi) = \begin{cases} -1, & \text{if } \xi \le 0\\ +1, & \text{if } \xi > 0 \end{cases}$$

Hint-2:: The notation ± 1 means either -1 or +1.

HInt-3:: We define $\mathbb{R}_+ := (0, +\infty)$

Hint-4:: We denote $||x||_2 := \sqrt{\sum_{\forall j} (x_j)^2}$ the Euclidean distance.

(1) Show that the function $f: \mathbb{R} \to \mathbb{R}_+$ with $f(x) = \max(0, 1 - x)$ is convex in \mathbb{R} ; and show that the loss (??) is convex.

Hint: You may use Example 13 from Handout 1.

(2) Show that the loss ℓ (??) is L-Lipschitz when $x \in \mathcal{X}$ where $\mathcal{X} := \{x \in \mathbb{R}^d : ||x||_2 \le L\}$

- **Hint::** You may use the definition of Lipschitz function. Without loss of generality, you can consider any $w_1 \in \mathbb{R}^d$ and $w_2 \in \mathbb{R}^d$ such that $1 yw_2^\top x \le 1 yw_1^\top x$, and then take cases $1 yw_2^\top x > \text{or} < 0$ and $1 yw_1^\top x > \text{or} < 0$ to deal with the max.
- (3) Construct the set of sub-gradients $\partial f(x)$ for $x \in \mathbb{R}$ of the function $f: \mathbb{R} \to \mathbb{R}_+$ with $f(x) = \max(0, 1 x)$. Show that the vector v with

$$v = \begin{cases} 2\lambda x, & yw^{\top}x < 1\\ 2\lambda x, & yw^{\top}x = 1\\ -yx + 2\lambda x, & yw^{\top}x > 1 \end{cases}$$

is $v \in \partial_w \ell(w, z = (x, y))$, aka a sub-gradient of $\ell(w, z = (x, y))$ at w, for any $w \in \mathbb{R}^d$.

(4) Write down the algorithm of online AdaGrad (Adaptive Stochastic Gradient Descent) with learning rate $\eta_t > 0$, batch size m, and termination criterion $t > T_{\text{max}}$ for some $T_{\text{max}} > 0$ in order to discover w^* such as

(5)
$$w^* = \arg\min_{\forall w: h_m \in \mathcal{H}} \left(\mathbb{E}_{z \sim g} \left(\ell \left(w, z = (x, y) \right) \right) \right)$$

The formulas in your algorithm have to be tailored to ??.

- (5) Use the R code given below in order to generate the dataset of observed examples $S_n = \{z_i = (x_i, y_i)\}_{i=1}^n$ that contains $n = 10^6$ examples with inputs x of dimension d = 2. Consider $\lambda = 0$. Use a seed $w^{(0)} = (0, 0)^{\top}$.
 - (a) By using suitable values for m, η_t and T_{max} , code the algorithm you designed in part ??, and run it.
 - (b) Plot the trace plots for each of the dimensions of the generated chain $\{w^{(t)}\}$ against the iteration t.
 - (c) Report the value of the output w_{adaGrad}^* (any type) of the algorithm as the solution to (??).
 - (d) To which cluster y (i.e., -1 or 1) $x_{\text{new}} = (1,0)^{\top}$ belongs?

```
# R code. Run it before you run anything else
data_generating_model <- function(n,w) {</pre>
z <- rep( NaN, times=n*3 )
z <- matrix(z, nrow = n, ncol = 3)</pre>
z[,1] \leftarrow rep(1,times=n)
z[,2] \leftarrow runif(n, min = -10, max = 10)
p \leftarrow w[1]*z[,1] + w[2]*z[,2] p \leftarrow exp(p) / (1+exp(p))
z[,3] \leftarrow rbinom(n, size = 1, prob = p)
ind <-(z[,3]==0)
z[ind,3] < -1
x <- z[,1:2]
y <- z[,3]
return(list(z=z, x=x, y=y))
n_obs <- 1000000
w_{true} <- c(-3,4)
set.seed(2023)
out <- data_generating_model(n = n_obs, w = w_true)</pre>
set.seed(0)
z_{obs} \leftarrow out$z #z=(x,y)
x \leftarrow out$x
y <- out$y
#z_obs2=z_obs
#z_obs2[z_obs[,3]==-1,3]=0
\#w\_true \leftarrow as.numeric(glm(z\_obs2[,3]^ 1+ z\_obs2[,2],family = "binomial")
)$coefficients)
```