APPENDIX B

June 10, 2019

Marian Rambelle CDW Consultants, Inc. 6 Huron Drive Natick, MA 01760

Project Location: Beaver St., Waltham, MA

Client Job Number: Project Number: [none]

Laboratory Work Order Number: 19E1819

Michelle Koch

Enclosed are results of analyses for samples received by the laboratory on May 31, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Michelle M. Koch Project Manager

Table of Contents

Sample Summary	4
Case Narrative	7
Sample Results	13
19E1819-01	13
19E1819-02	19
19E1819-03	25
19E1819-04	31
19E1819-05	37
19E1819-06	43
19E1819-07	49
19E1819-08	55
19E1819-09	61
19E1819-10	67
19E1819-11	73
19E1819-12	79
19E1819-13	85
19E1819-14	89
19E1819-15	93
Sample Preparation Information	97
QC Data	100
Volatile Organic Compounds by GC/MS	100
B232325	100
B232391	104
Organochloride Pesticides by GC/ECD	109
B232333	109

Table of Contents (continued)

Herbicides by GC/ECD	112
B232364	112
Polychlorinated Biphenyls with 3540 Soxhlet Extraction	115
B232317	115
Petroleum Hydrocarbons Analyses - EPH	116
B232351	116
Petroleum Hydrocarbons Analyses - VPH	120
B232287	120
B232289	121
Metals Analyses (Total)	123
B232592	123
B232653	124
Pesticides Degradation Report	126
Dual Column RPD Report	130
Flag/Qualifier Summary	143
Certifications	144
Chain of Custody/Sample Receipt	150

CDW Consultants, Inc. 6 Huron Drive Natick, MA 01760 ATTN: Marian Rambelle

REPORT DATE: 6/10/2019

PURCHASE ORDER NUMBER:

PROJECT NUMBER:

[none]

ANALYTICAL SUMMARY

WORK ORDER NUMBER:

19E1819

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION:

Beaver St., Waltham, MA

FIELD SAMPLE#	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
GP1-1 (11-13)	19E1819-01	Soil		MADEP-EPH-04- MADEP-VPH-Feb 2018 Rev 2.1 SM 2540G	
				SW-846 6010D	
				SW-846 7471B	
GB1 2 (11 12)	1051810.00	e-::		SW-846 8260C	
GP1-2 (11-13)	19E1819-02	Soil		MADEP-EPH-04- MADEP-VPH-Fel	
1				2018 Rev 2.1 SM 2540G	,
				SW-846 6010D	
				SW-846 7471B	
				SW-846 8260C	
GP1-3 (11-13)	19E1819-03	Soil		MADEP-EPH-04-	-1.1
				MADEP-VPH-Fci 2018 Rev 2.1 SM 2540G	b
				SW-846 6010D	
				SW-846 7471B	
				SW-846 8260C	
GP1-4 (11-13)	19E1819-04	Soil		MADEP-EPH-04-	-1.1
				MADEP-VPH-Fel 2018 Rev 2.1 SM 2540G	ь
				SW-846 6010D	
				SW-846 7471B	
			,	SW-846 8260C	
GP1-5 (11-13)	19E1819-05	Soil		MADEP-EPH-04-	-1.1
				MADEP-VPH-Fe 2018 Rev 2.1 SM 2540G	b
				SW-846 6010D	
				SW-846 7471B	
				SW-846 8260C	
GP1-6 (11-13)	19E1819-06	Soil		MADEP-EPH-04	-1.1
				MADEP-VPH-Fe 2018 Rev 2.1 SM 2540G	eb
				SW-846 6010D	
				SW-846 7471B	
				SW-846 8260C	

CDW Consultants, Inc. 6 Huron Drive Natick, MA 01760 ATTN: Marian Rambelle

REPORT DATE: 6/10/2019

PURCHASE ORDER NUMBER:

PROJECT NUMBER: [none]

ANALYTICAL SUMMARY

WORK ORDER NUMBER:

19E1819

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION:

Beaver St., Waltham, MA

FIELD SAMPLE#	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
GP1-7 (10-12)	19E1819-07	Soil		MADEP-EPH-04-1 MADEP-VPH-Feb 2018 Rev 2.1 SM 2540G	
				SW-846 6010D	
				SW-846 7471B	
				SW-846 8260C	•
GP1-8 (10-12)	19E1819-08	Soil		MADEP-EPH-04-	1.1
				MADEP-VPH-Feb 2018 Rev 2.1 SM 2540G	•
1.				SW-846 6010D	
				SW-846 7471B	
				SW-846 8260C	
GP1-9 (11-13)	19E1819-09	Soil		MADEP-EPH-04-	1.1
				MADEP-VPH-Feb 2018 Rev 2.1 SM 2540G	
				SW-846 6010D	
				SW-846 7471B	
				SW-846 8260C	
GP2-1 (6-8)	19E1819-10	Soil		MADEP-EPH-04-	4.1
				MADEP-VPH-Fei 2018 Rev 2.1 SM 2540G	b
				SW-846 6010D	
				SW-846 7471B	
				SW-846 8260C	
GP2-2 (7-9)	19E1819-11	Soil		MADEP-EPH-04	-1,1
				MADEP-VPH-Fe 2018 Rev 2.1 SM 2540G	ь
				SW-846 6010D	
	•			SW-846 7471B	
				SW-846 8260C	
GP2-3 (7-9)	19E1819-12	Soil		MADEP-EPH-04	
				MADEP-VPH-Fe	eb
				2018 Rev 2.1 SM 2540G	
				SW-846 6010D	
7				SW-846 7471B	
				SW-846 8260C	

CDW Consultants, Inc. 6 Huron Drive Natick, MA 01760 ATTN: Marian Rambelle

REPORT DATE: 6/10/2019

PURCHASE ORDER NUMBER:

PROJECT NUMBER: [none]

ANALYTICAL SUMMARY

WORK ORDER NUMBER:

19E1819

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION:

Beaver St., Waltham, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
GP1-2 (0-2)	19E1819-13	Soil		SM 2540G	
				SW-846 8081B	
				SW-846 8082A	
				SW-846 8151A	
GP1-6 (3-5)	19E1819-14	Soil		SM 2540G	
				SW-846 8081B	•
				SW-846 8082A	
				SW-846 8151A	
GP1-7 (3-5)	19E1819-15	Soil		SM 2540G	
				SW-846 8081B	
				SW-846 8082A	
				SW-846 8151A	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report. For method 8151 samples were derivatized on 06/06/19.

For method 8151 sample analysis bracketed by LCS to monitor esterification. All recoveries in the bracketing LCS met method criteria.

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 MADEP-EPH-04-1.1

Qualifications:

L-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.

Analyte & Samples(s) Qualified:

n-Nonane

B232351-BSD1, B232351-MS1

RL-08

Elevated reporting limit due to sample matrix interference. MA CAM reporting limit not met.

Analyte & Samples(s) Qualified:

2-Methylnaphthalene

19E1819-08[GP1-8 (10-12)]

Acenaphthene

19E1819-08[GP1-8 (10-12)]

Acenaphthylene

19E1819-08[GP1-8 (10-12)]

Anthracene

19E1819-08[GP1-8 (10-12)]

Benzo(a)anthracene

19E1819-08[GP1-8 (10-12)]

Benzo(a)pyrene

19E1819-08[GP1-8 (10-12)]

Benzo(b)fluoranthene

19E1819-08[GP1-8 (10-12)]

Benzo(g,b,i)perylene

19E1819-08[GP1-8 (10-12)]

ızo(k)fluoranthene .yE1819-08[GPI-8 (10-12)]

C9-C18 Aliphatics

19E1819-08[GP1-8 (10-12)]

19E1819-08[GP1-8 (10-12)]

Dibenz(a,h)anthracene

19E1819-08[GP1-8 (10-12)]

19E1819-08[GP1-8 (10-12)]

19E1819-08[GP1-8 (10-12)]

Indeno(1,2,3-cd)pyrene

19E1819-08[GP1-8 (10-12)]

19E1819-08[GP1-8 (10-12)]

Phenanthrene

19E1819-08[GP1-8 (10-12)]

Pyrene

19E1819-08[GP1-8 (10-12)]

MADEP-VPH-Feb 2018 Rev 2.1

Qualifications:

0-01

Soil/methanol ratio does not meet method specifications. Excess amount of soil. Sample was completely covered with methanol, but with less than the method-specified amount. Analyte & Samples(s) Qualified:

19E1819-01[GP1-1 (11-13)], 19E1819-02[GP1-2 (11-13)], 19E1819-03[GP1-3 (11-13)], 19E1819-04[GP1-4 (11-13)], 19E1819-05[GP1-5 (11-13)], 19E1819-06[GP1-6 -13)], 19E1819-09[GP1-9 (11-13)], 19E1819-10[GP2-1 (6-8)], 19E1819-12[GP2-3 (7-9)]

SW-846 6010D

Qualifications:

MS-07

Matrix spike recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possibility of sample matrix effects that lead to low bias for reported result or non-homogeneous sample aliquot cannot be eliminated.

Analyte & Samples(s) Qualified:

Antimony

19E1819-02[GP1-2 (11-13)], B232592-MS1

R-04

Duplicate relative percent difference (RPD) is a less useful indicator of sample precision for sample results that are <5 times the reporting

limit (RL). Analyte & Samples(s) Qualified:

Arsenic

19E1819-02[GP1-2 (11-13)], B232592-DUP1

Cadmium

19E1819-02[GP1-2 (11-13)], B232592-DUP1

SW-846 8081B

Qualifications:

DL-03

Elevated reporting limit due to matrix interference.

Analyte & Samples(s) Qualified:

19E1819-13[GP1-2 (0-2)]

P-02

Sample RPD between primary and confirmatory analysis exceeded 40%. Per EPA method 8000, the lower value was reported due to obvious chromatographic interference on the column with the higher result.

Analyte & Samples(s) Qualified:

Fudrin Ketone

1819-15[GP1-7 (3-5)]

septachlor Epoxide [2C]

19E1819-15[GP1-7 (3-5)]

SW-846 8082A

Qualifications:

O-32

A dilution was performed as part of the standard analytical procedure.

Analyte & Samples(s) Qualified:

19E1819-13[GP1-2 (0-2)], 19E1819-14[GP1-6 (3-5)], 19E1819-15[GP1-7 (3-5)]

SW-846 8151A

Qualifications:

DI_-03

Elevated reporting limit due to matrix interference.

Analyte & Samples(s) Qualified:

19E1819-15[GP1-7 (3-5)]

2,4,5-T

19E1819-13[GP1-2 (0-2)]

2,4,5-T [2C]

19E1819-13[GP1-2 (0-2)]

2,4,5-TP (Silvex)

19E1819-13[GP1-2 (0-2)]

2,4,5-TP (Silvex) [2C]

19E1819-13[GP1-2 (0-2)]

2,4-D

19E1819-13[GP1-2 (0-2)]

2,4-D [2C]

19E1819-13[GP1-2 (0-2)]

2,4-DB

19E1819-13[GP1-2 (0-2)]

2,4-DB [2C]

19E1819-13[GP1-2 (0-2)]

2,4-Dichlorophenylacetic acid

19E1819-13[GP1-2 (0-2)]

2,4-Dichlorophenylacetic acid [2C]

19E1819-13[GP1-2 (0-2)]

Dalapon

19E1819-13[GP1-2 (0-2)]

"vlapon [2C]

11819-13[GP1-2 (0-2)]

Dicamba

19E1819-13[GP1-2 (0-2)]

Dicamba [2C]

19E1819-13[GP1-2 (0-2)]

Dichloroprop

19E1819-13[GP1-2 (0-2)]

Dichloroprop [2C]

19E1819-13[GP1-2 (0-2)]

Dinoseb

19E1819-13[GP1-2 (0-2)]

Dinoseb [2C]

19E1819-13[GP1-2 (0-2)]

MCPA

19E1819-13[GP1-2 (0-2)]

MCPA [2C]

19E1819-13[GP1-2 (0-2)]

MCPP

19E1819-13[GP1-2 (0-2)]

MCPP [2C]

19E1819-13[GP1-2 (0-2)]

L-11

Laboratory fortified blank/laboratory control sample was outside of control limits on the confirmation column, but within control limits on the primary column. All sample results are reported from the column within control criteria.

Analyte & Samples(s) Qualified:

2,4,5-T [2C]

B232364-BS1, B232364-BSD1

MS-12

Matrix spike recovery and matrix spike duplicate recovery outside of control limits. Possibility of sample matrix effects that lead to a high bias for reported result or non-homogeneous sample aliquots cannot be eliminated.

Analyte & Samples(s) Qualified:

2,4,5-T [2C]

B232364-MS1, B232364-MSD1

SW-846 8260C

Qualifications:

L-02

Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side.

Analyte & Samples(s) Qualified:

Carbon Disulfide

B232391-BS1, B232391-BSD1

1-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.

Analyte & Samples(s) Qualified:

Chlorodibromomethane

B232391-BSI

Methyl tert-Butyl Ether (MTBE)

B232391-BSD1

Trichlorofluoromethane (Freon 11)

B232391-BSD1

L-07A

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD outside of control limits. Reduced precision anticipated for any reported result for this compound.

Analyte & Samples(s) Qualified:

Acetone

B232391-BS1

R-05

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.

compound. Analyte & Samples(s) Qualified:

utanone (MEK)

 $19E1819-05[GP1-5\ (11-13)],\ 19E1819-06[GP1-6\ (11-13)],\ 19E1819-07[GP1-7\ (10-12)],\ 19E1819-08[GP1-8\ (10-12)],\ 19E1819-09[GP1-9\ (11-13)],\ 19E1819-10[GP2-1\ (6-8)],\ 19E1819-11[GP2-2\ (7-9)],\ 19E1819-12[GP2-3\ (7-9)],\ B232391-BLK1,\ B232391-BSD1$

Aceton

19E1819-05[GP1-5 (11-13)], 19E1819-06[GP1-6 (11-13)], 19E1819-07[GP1-7 (10-12)], 19E1819-08[GP1-8 (10-12)], 19E1819-09[GP1-9 (11-13)], 19E1819-10[GP2-1 (6-8)], 19E1819-11[GP2-2 (7-9)], 19E1819-12[GP2-3 (7-9)], 19E1819-12[

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

1,2,4-Trichlorobenzene

 $19E1819-01[GP1-1\ (11-13)],\ 19E1819-02[GP1-2\ (11-13)],\ 19E1819-03[GP1-3\ (11-13)],\ 19E1819-04[GP1-4\ (11-13)],\ B232325-BLK1,\ B232325-BSD1,\ S036631-CCV1$

Naphthalene

19E1819-01[GP1-1 (11-13)], 19E1819-02[GP1-2 (11-13)], 19E1819-03[GP1-3 (11-13)], 19E1819-04[GP1-4 (11-13)], 19E1819-05[GP1-5 (11-13)], 19E1819-05[GP1-5 (11-13)], 19E1819-07[GP1-7 (10-12)], 19E1819-08[GP1-8 (10-12)], 19E1819-09[GP1-9 (11-13)], 19E1819-10[GP2-1 (6-8)], 19E1819-11[GP2-2 (7-9)], 19E1819-12[GP2-3 (7-9)], 19E

V-16

Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported result

result.
Analyte & Samples(s) Qualified:

1.4-Dioxano

19E1819-01[GPI-1 (11-13)], 19E1819-02[GPI-2 (11-13)], 19E1819-03[GPI-3 (11-13)], 19E1819-04[GPI-4 (11-13)], 19E1819-05[GPI-5 (11-13)], 19E1819-05[GPI-6 (11-13)], 19E1819-07[GPI-7 (10-12)], 19E1819-08[GPI-8 (10-12)], 19E1819-09[GPI-9 (11-13)], 19E1819-10[GPI-1 (6-8)], 19E1819-11[GPI-2 (7-9)], 19E1819-12[GPI-3 (7-9)], 19E

/-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

1,1,1-Trichloroethane

B232325-BS1, B232325-BSD1, B232391-BS1, B232391-BSD1, S036631-CCV1, S036687-CCV1

1,1-Dichloroethylene

B232391-BS1, B232391-BSD1, S036687-CCV1

1,2-Dichloroethane

B232391-BS1, B232391-BSD1, S036687-CCV1

Carbon Disulfide

B232391-BS1, B232391-BSD1, S036687-CCV1

Carbon Tetrachloride

B232325-BS1, B232325-BSD1, B232391-BS1, B232391-BSD1, S036631-CCV1, S036687-CCV1

Trichlorofluoromethane (Freon 11)

B232325-BS1, B232325-BSD1, B232391-BS1, B232391-BSD1, S036631-CCV1, S036687-CCV1

Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.

Analyte & Samples(s) Qualified:

Bromomethane

 $19E1819-01[GP1-1\ (11-13)],\ 19E1819-02[GP1-2\ (11-13)],\ 19E1819-03[GP1-3\ (11-13)],\ 19E1819-04[GP1-4\ (11-13)],\ 19E1819-05[GP1-5\ (11-13)],\ 19E1819-05[GP1$ (11-13)], 19E1819-07[GP1-7 (10-12)], 19E1819-08[GP1-8 (10-12)], 19E1819-09[GP1-9 (11-13)], 19E1819-10[GP2-1 (6-8)], 19E1819-11[GP2-2 (7-9)], 19E1819-12[GP2-3 (7-9)], B232325-BLK1, B232325-BS1, B232325-BSD1, B232391-BLK1, B232391-BS1, B232391-BSD1, S036631-CCV1, S036687-CCV1

MADEP-EPH-04-1.1

SPE cartridge contamination with non-petroleum compounds, if present, is verified by GC/MS in each method blank per extraction batch and excluded from C 11-C22 aromatic e fraction in all samples in the batch. No significant modifications were made to the method.

MADEP-VPH-Feb 2018 Rev 2.1

No significant modifications were made to the method. All VPH samples were received preserved properly in methanol with a soit/methanol ratio of 1:1 +/- 25% completely covered by methanol in the proper containers specified on the chain-of-custody form unless specified in this narrative.

Analytical column used for VPH analysis is Restek, Rtx-502.2, 105meter, 0.53mmlD, 3um df. Trap used for VPH analysis is Carbopack B/CarboSieveS-III.

SW-846 8260C

Laboratory control sample recoveries for required MCP Data Enhancement 8260 compounds were all within limits specified by the method except for "difficult analytes" where recovery control limits of 40-160% are used and/or unless otherwise listed in this narrative. Difficult analytes: MIBK, MEK, acetone, 1,4-dioxane, chloromethane, dichlorodifluoromethane, 2-hexanone, and bromomethane.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington Technical Representative

na Wattheasta

roject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019 Field Sample #: GP1-1 (11-13)

Sampled: 5/28/2019 09:00

Sample ID: 19E1819-01
Sample Matrix: Soil

Volatile	Organic	Compoun	ds by	GC/MS
----------	---------	---------	-------	-------

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	0.077	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.00077	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
Benzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
Bromobenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
Bromochloromethane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
Bromodichloromethane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
Bromoform	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
Bromomethane	ND	0.0077	mg/Kg dry	1	V-34	SW-846 8260C	6/3/19	6/3/19 15:30	MFF
2-Butanone (MEK)	ND	0.031	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
n-Butylbenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
sec-Butylbenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
tert-Butylbenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.00077	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
Carbon Disulfide	ND	0.0046	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
Carbon Tetrachloride	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
Chlorobenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
nlorodibromomethane	ND	0.00077	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
Chloroethane	ND	0.0077	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
Chloroform	ND	0.0031	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
Chloromethane	ND	0.0077	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
-Chlorotoluene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
-Chlorotoluene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
,2-Dibromo-3-chloropropane (DBCP)	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
,2-Dibromoethane (EDB)	ND	0.00077	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
Dibromomethane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
,2-Dichlorobenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
,3-Dichlorobenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
,4-Dichlorobenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.0077	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
,1-Dichloroethane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
,2-Dichloroethane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
.1-Dichloroethylene	ND	0.0031	mg/Kg dry	1	•	SW-846 8260C	6/3/19	6/3/19 15:30	MFF
is-1,2-Dichloroethylene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
rans-1,2-Dichloroethylene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19		
,2-Dichloropropane	ND	0.0015	mg/Kg dry	1		SW-846 3260C	6/3/19	6/3/19 15:30 6/3/19 15:30	MFF
,3-Dichloropropane	ND	0.00077	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
,2-Dichloropropane	ND	0.0015		1		SW-846 8260C	6/3/19		MFF
,1-Dichloropropene			mg/Kg dry					6/3/19 15:30	MFF
is-1,3-Dichloropropene	ND	0.0015	mg/Kg dry	l I		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
ans-1,3-Dichloropropene	ND	0.00077	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
ins-1,3-Dientoropropene Diethyl Ether	ND	0.00077	mg/Kg dry	•		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
· · · · · · · · · · · · · · · · · · ·	ND	0.0077	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
Disopropyl Ether (DIPE)	- ND	0.00077	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
,4-Dioxane	ND	0.077	mg/Kg dry	1	V-16	SW-846 8260C	6/3/19	6/3/19 15:30	MFF
thylbenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30 Page 13	MFF

Page 13 of 153

roject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GPI-1 (11-13)

Sampled: 5/28/2019 09:00

Volatile	Organic	Compounds	by	GC/MS
----------	---------	-----------	----	-------

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
2-Hexanone (MBK)	ND	0.015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
Isopropylbenzene (Cumene)	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0031	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
Methylene Chloride	ND	0.0077	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
Naphthalene	ND	0.0031	mg/Kg dry	1	V-05	SW-846 8260C	6/3/19	6/3/19 15:30	MFF
n-Propylbenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
Styrene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
1,1,1,2-Tetrachloroethane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
1,1,2,2-Tetrachloroethane	ND	0.00077	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
Tetrachloroethylene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
Tetrahydrofuran	ND	0.0077	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
Toluene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
1,2,3-Trichlorobenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
2,4-Trichlorobenzene	ND	0.0015	mg/Kg dry	1	V-05	SW-846 8260C	6/3/19	6/3/19 15:30	MFF
1,1,1-Trichloroethane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
1,1,2-Trichloroethane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
Trichloroethylene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
Trichlorofluoromethane (Freon 11)	ND	0.0077	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
1,2,3-Trichloropropane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
1,2,4-Trimethylbenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
1,3,5-Trimethylbenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
Vinyl Chloride	ND	0.0077	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
m+p Xylene	ND	0.0031	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
o-Xylene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:30	MFF
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		114	70-130		 			6/3/19 15:30	
Toluene-d8		95.8	70-130					6/3/19 15:30	
4-Bromofluorobenzene		102	70-130					6/3/19 15:30	

roject Location: Beaver St., Waltham, MA

Sample Description:

104

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP1-1 (11-13)

Sampled: 5/28/2019 09:00

Sample ID: 19E1819-01

2-Fluorobiphenyl

Sample Matrix: Soil									
		Pet	roleum Hydrocarbo	ns Analyses	- EPH				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
C9-C18 Aliphatics	ND	10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 18:29	RMW
C19-C36 Aliphatics	ND	10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 18:29	RMW
Unadjusted C11-C22 Aromatics	ND	10	mg/Kg đry	I		MADEP-EPH-04-1.1	6/3/19	6/5/19 18:29	RMW
C11-C22 Aromatics	ND	10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 18:29	RMW
Acenaphthene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 18:29	RMW
Accnaphthylene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 18:29	RMW
Anthracene	ND	0.10	mg/Kg dry	1		MADEP-EPII-04-1.1	6/3/19	6/5/19 18:29	RMW
Benzo(a)anthracene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 18:29	RMW
Benzo(a)pyrene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 18:29	RMW
Benzo(b)fluoranthene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 18:29	RMW
Benzo(g,h,i)perylene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 18:29	RMW
Benzo(k)fluoranthene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 18:29	RMW
Chrysene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 18:29	RMW
Dibenz(a,h)anthracene	ND	0.10	mg/Kg dry	1	•	MADEP-EPH-04-1.1	6/3/19	6/5/19 18:29	RMW
Fluoranthene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 18:29	RMW
Fluorene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 18:29	RMW
deno(1,2,3-cd)pyrene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 18:29	RMW
2-Methylnaphthalene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 18:29	RMW
Naphthalene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 18:29	RMW
Phenanthrene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 18:29	RMW
Pyrene	ND	0.10	mg/Kg dry	i.		MADEP-EPH-04-1.1	6/3/19	6/5/19 18:29	RMW
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
Chlorooctadecane (COD)		73.7	40-140					6/5/19 18:29	
o-Terphenyl (OTP)		79.8	40-140					6/5/19 18:29	
2-Bromonaphthalene		96.4	40-140					6/5/19 18:29	

40-140

6/5/19 18:29

oject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GPI-1 (II-13)

Sampled: 5/28/2019 09:00

Sample Flags: O-01		Pet	roleum Hydrocarbo	ns Analyses	- VPH	•			
Soil/Methanol Preservation Ratio: 1.39	20.10	D.F	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Analyte	Results	RL	Units	Ditution	Flag Quai				
Unadjusted C5-C8 Aliphatics	ND	7.8	mg/Kg dry	ı		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/4/19 1:22	KMB
C5-C8 Aliphatics	ND	7.8	mg/Kg dry	l		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 1:22	KMB
Unadjusted C9-C12 Aliphatics	ND	7.8	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 1:22	KMB
C9-C12 Aliphatics	ND	7.8	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 1:22	KMB
C9-C10 Aromatics	ND	7.8	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 1:22	KMB
Benzene	ND	0.039	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 1:22	KMB
Ethylbenzene	ND	0.039	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 1:22	KMB
Methyl tert-Butyl Ether (MTBE)	ND	0.039	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 1:22	KMB
Naphthalene	ND	0.20	mg/Kg dry	l		MADEP-VPII-Fcb 2018 Rev 2.1	6/3/19	6/4/19 1:22	КМВ
Toluenc	ND	0.039	mg/Kg dry	t		MADEP-VPII-Fcb 2018 Rev 2,1	6/3/19	6/4/19 1:22	КМВ
m+p Xylene	ND	0.078	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 1:22	KMB
o-Xylene	ND	0.039	mg/Kg dry	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/4/19 1:22	KMB
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
5-Dibromotoluene (FID)		99.5	70-130					6/4/19 1:22	
2,5-Dibromotoluene (PID)		97.4	70-130					6/4/19 1:22	

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019 Field Sample #: GPI-1 (11-13)

Sampled: 5/28/2019 09:00

		Metals Analyses (Total)							
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony	ND	1.7	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:16	EJB
Arsenic	ND	1.7	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:16	EJB
Barium	43	1.7	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:16	EJB
Beryllium .	0.26	0.17	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:16	EJB
Cadmium	ND	0.17	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:16	EJB
Chromium	9.0	0.35	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:16	EJB
Lead	5.0	0.52	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:16	EJB
Mercury	ND	0.026	mg/Kg dry	1		SW-846 7471B	6/6/19	6/7/19 10:34	AJL
Nickel	8.0	0.35	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:16	EJB
Sclenium	ND .	3.5	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:16	EJB
Silver	ND	0.35	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:16	EJB
Thallium	ND	1.7	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:16	EJB
Vanadium	28	0.70	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:16	EJB
Zinc	41	0.70	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:16	EJB

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019

Field Sample #: GP1-1 (11-13)

Sampled: 5/28/2019 09:00

Sample ID: 19E1819-01
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

						Date	Date/Time	
Analyte	Results RL	Units Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids	96.4	% Wt	i		SM 2540G	6/5/19	6/5/19 15:52	JDN

Page 19 of 153

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

oject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP1-2 (11-13)

Sampled: 5/28/2019 10:00

Sample ID: 19E1819-02

		v	olatile Organic Con	apounds by G	C/MS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone	ND	0.081	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.00081	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
Benzene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
Bromobenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
Bromochloromethane	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
Bromodichloromethane	ND	0.0016	mg/Kg dry	t		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
Bromoform	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
Bromomethane	ND	0.0081	mg/Kg dry	I	V-34	SW-846 8260C	6/3/19	6/3/19 15:55	MFF
2-Butanone (MEK)	ND	0.032	mg/Kg dry	ŀ		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
n-Butylbenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
sec-Butylbenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
tert-Butylbenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.00081	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
Carbon Disulfide	ND	0.0049	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
Carbon Tetrachloride	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
Chlorobenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
hiorodibromomethane	ND	0.00081	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
Chloroethane	ND	0.0081	mg/Kg dry	ı		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
Chloroform	ND	0.0032	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
Chloromethane	ND	0.0081	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
2-Chlorotoluene	ND	0.0016	mg/Kg dry	ī		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
4-Chlorotolucne	ND	0.0016	mg/Kg dry	3		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
1,2-Dibromoethane (EDB)	ND	18000.0	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
Dibromomethane	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
1,2-Dichlorobenzene	ND	0.0016	mg/Kg dry	ı		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
1,3-Dichlorobenzene	ND	0.0016	mg/Kg dry	ı		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
1,4-Dichlorobenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.0081	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
1,1-Dichloroethane	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
1,2-Dichloroethane	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
1,1-Dichloroethylene	ND	0.0032	mg/Kg dry	t		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
cis-1,2-Dichloroethylene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
trans-1,2-Dichloroethylene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
1,2-Dichloropropane	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
1,3-Dichloropropane	ND	0.00081	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
2,2-Dichloropropane	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
1,1-Dichloropropene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
cis-1,3-Dichloropropene	ND	0.00081	mg/Kg dry			SW-846 8260C	6/3/19	6/3/19 15:55	MFF
trans-1,3-Dichloropropene	ND	0.00081	mg/Kg dry			SW-846 8260C	6/3/19	6/3/19 15:55	MF
Diethyl Ether	ND	0.0081	mg/Kg dry			SW-846 8260C	6/3/19	6/3/19 15:55	
Diisopropyl Ether (DIPE)	ND	0.00081	mg/Kg dry			SW-846 8260C	6/3/19	6/3/19 15:55	
	ND	0.081	mg/Kg dry		V-16	SW-846 8260C	6/3/19	6/3/19 15:55	
1,4-Dioxane Ethylbenzene	ND	0.0016	mg/Kg dry			SW-846 8260C	6/3/19	6/3/19 15:55	

roject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP1-2 (11-13)
Sample ID: 19E1819-02

Sampled: 5/28/2019 10:00

Sample Matrix: Soil

		Vo	latile Organic Com	•					
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.0016	mg/Kg dry	ı		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
2-Hexanone (MBK)	ND	0.016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
Isopropylbenzene (Cumene)	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0032	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
Methylene Chloride	ND	0.0081	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
Naphthalene	ND	0.0032	mg/Kg dry	1	V-05	SW-846 8260C	6/3/19	6/3/19 15:55	MFF
n-Propylbenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
Styrene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
1,1,i,2-Tetrachloroethane	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
1,1,2,2-Tetrachloroethane	ND	0.00081	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
Tetrachloroethylene	ND ·	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
Tetrahydrofuran	ND	0.0081	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
Toluene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
1,2,3-Trichlorobenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
2,4-Trichlorobenzene	ND	0.0016	mg/Kg dry	1	V-05	SW-846 8260C	6/3/19	6/3/19 15:55	MFF
1,1,1-Trichloroethane	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
1,1,2-Trichloroethane	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
Trichloroethylene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
Trichlorofluoromethane (Freon 11)	ND	0.0081	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
1,2,3-Trichloropropane	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
1,2,4-Trimethylbenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
1,3,5-Trimethylbenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
Vinyi Chloride	ND	1800.0	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
m+p Xylene	ND	0.0032	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
o-Xylene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 15:55	MFF
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		108	70-130					6/3/19 15:55	
Toluene-d8		99.8	70-130					6/3/19 15:55	
4-Bromofluorobenzene		110	70-130					6/3/19 15:55	

roject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019 Field Sample #: GP1-2 (11-13)

Sampled: 5/28/2019 10:00

		Petr	oleum Hydrocarbo	ns Analyses -	- EPH				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
C9-C18 Aliphatics	ND	11	mg/Kg dry	ı		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:26	RMW
C19-C36 Aliphatics	ND	11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:26	RMW
Unadjusted C11-C22 Aromatics	ND	11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:26	RMW
C11-C22 Aromatics	ND	11	mg/Kg dry	I		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:26	RMW
Acenaphthene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:26	RMW
Acenaphthylene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:26	RMW
Anthracene	ND	0.11	mg/Kg dry	1		MADEP-EPII-04-1.1	6/3/19	6/5/19 19:26	RMW
Benzo(a)anthracene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:26	RMW
Benzo(a)pyrene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:26	RMW
Benzo(b)fluoranthene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:26	RMW
Benzo(g,h,i)perylene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:26	RMW
Benzo(k)fluoranthene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:26	RMW
Chrysene	. ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:26	RMW
Dibenz(a,h)anthracene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:26	RMW
Fluoranthene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:26	RMW
Fluorenc	ND	0.11	mg/Kg dry	i		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:26	RMW
ndeno(1,2,3-cd)pyrene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:26	RMW
2-Methylnaphthalene	ND	0.11	mg/Kg dry	t		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:26	RMW
Naphthalene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:26	RMW
Phenanthrene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:26	RMW
Pyrene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:26	RMW
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
Chlorooctadecane (COD)		73.2	40-140					6/5/19 19:26	
e-Terphenyl (OTP)		87.1	40-140					6/5/19 19:26	
2-Bromonaphthalene		107	40-140					6/5/19 19:26	
2-Fluorobiphenyl		113	40-140					6/5/19 19:26	

.oject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019

Field Sample #: GP1-2 (11-13)

Sampled: 5/28/2019 10:00

Sample Flags: O-01		Peti	roleum Hydrocarbo	ns Analyses	- VPH				
Soil/Methanol Preservation Ratio: 1.30							Date	Date/Time	
Analyte	Results	RL.	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Unadjusted C5-C8 Aliphatics	ND	9.2	mg/Kg dry	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/4/19 1:51	КМВ
C5-C8 Aliphatics	ND	9.2	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 1:51	KMB
Unadjusted C9-C12 Aliphatics	ND	9.2	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 1:51	КМВ
C9-C12 Aliphatics	ND	9.2	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 1:51	KMB
C9-C10 Aromatics	ND	9.2	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 1:51	KMB
Benzene	ND	0.046	mg/Kg dry	I		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 1:51	KMB
Ethylbenzene	ND	0.046	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 1:51	KMB
Methyl tert-Butyl Ether (MTBE)	ND	0.046	mg/Kg dry	î		MADEP-VPH-Fcb 2018 Rcv 2.1	6/3/19	6/4/19 1:51	KMB
Naphthalene	ND	0.23	mg/Kg dry	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/4/19 1:51	KMB
Toluene	ND	0.046	mg/Kg dry	1		MADEP-VPII-Fcb 2018 Rev 2.1	6/3/19	6/4/19 1:51	КМВ
m+p Xylene	ND	0.092	mg/Kg dry	i		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/4/19 1:51	КМВ
o-Xylene	ND	0.046	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 1:51	КМВ
Surrogates		% Recovery	Recovery Limits	5	Fing/Qual				
2,5-Dibromotoluene (FID)		97.3	70-130					6/4/19 1:51	
2,5-Dibromotoluene (PID)		94.4	70-130					6/4/19 1:51	

roject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP1-2 (11-13)

Sampled: 5/28/2019 10:00

		Metals Analy	ses (Total)					
Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
ND	1.8	mg/Kg dry	1	MS-07	SW-846 6010D	6/5/19	6/6/19 21:12	EJB
4.2	1.8	mg/Kg dry	1	R-04	SW-846 6010D	6/5/19	6/6/19 21:12	EJB
18	1.8	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:12	EJB
0.19	0.18	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:12	EJB
0.27	0.18	mg/Kg dry	1	R-04	SW-846 6010D	6/5/19	6/6/19 21:12	EJB
6.6	0.36	mg/Kg dry	í		SW-846 6010D	6/5/19	6/6/19 21:12	EJB
9.2	0.54	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:12	EJB
ND	0.026	mg/Kg dry	1		SW-846 7471B	6/6/19	6/7/19 10:29	AJL
5.6	0.36	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:12	EJB
ND	3.6	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:12	EJB
ND	0.36	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:12	EJB
ND	1.8	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:12	EJB
14	0.72	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:12	EJB
21	0.72	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:12	EJB
	ND 4.2 18 0.19 0.27 6.6 9.2 ND 5.6 ND ND ND ND	ND 1.8 4.2 1.8 18 1.8 0.19 0.18 0.27 0.18 6.6 0.36 9.2 0.54 ND 0.026 5.6 0.36 ND 3.6 ND 3.6 ND 0.36 ND 1.8 14 0.72	Results RL Units ND 1.8 mg/Kg dry 4.2 1.8 mg/Kg dry 18 1.8 mg/Kg dry 0.19 0.18 mg/Kg dry 0.27 0.18 mg/Kg dry 6.6 0.36 mg/Kg dry 9.2 0.54 mg/Kg dry ND 0.026 mg/Kg dry ND 3.6 mg/Kg dry ND 0.36 mg/Kg dry ND 0.36 mg/Kg dry ND 1.8 mg/Kg dry 14 0.72 mg/Kg dry	ND 1.8 mg/Kg dry I 4.2 1.8 mg/Kg dry I 18 1.8 mg/Kg dry I 0.19 0.18 mg/Kg dry I 0.27 0.18 mg/Kg dry I 6.6 0.36 mg/Kg dry I 9.2 0.54 mg/Kg dry I ND 0.026 mg/Kg dry I 5.6 0.36 mg/Kg dry I ND 3.6 mg/Kg dry I ND 3.6 mg/Kg dry I ND 0.36 mg/Kg dry I	Results RL Units Dilution Flag/Qual ND 1.8 mg/Kg dry 1 MS-07 4.2 1.8 mg/Kg dry 1 R-04 18 1.8 mg/Kg dry 1 R-04 0.19 0.18 mg/Kg dry 1 R-04 0.27 0.18 mg/Kg dry 1 R-04 6.6 0.36 mg/Kg dry 1 N-04 9.2 0.54 mg/Kg dry 1 mg/Kg dry 1 ND 0.026 mg/Kg dry 1 mg/Kg dry 1 ND 3.6 mg/Kg dry 1 mg/Kg dry 1 ND 0.36 mg/Kg dry 1 mg/Kg dry 1 ND 1.8 mg/Kg dry 1 mg/Kg dry 1 14 0.72 mg/Kg dry 1 1	Results RL Units Dilution Flag/Qual Method ND 1.8 mg/Kg dry 1 MS-07 SW-846 6010D 4.2 1.8 mg/Kg dry 1 R-04 SW-846 6010D 18 1.8 mg/Kg dry 1 SW-846 6010D 0.19 0.18 mg/Kg dry 1 R-04 SW-846 6010D 0.27 0.18 mg/Kg dry 1 R-04 SW-846 6010D 6.6 0.36 mg/Kg dry 1 SW-846 6010D 9.2 0.54 mg/Kg dry 1 SW-846 6010D ND 0.026 mg/Kg dry 1 SW-846 6010D ND 3.6 mg/Kg dry 1 SW-846 6010D ND 0.36 mg/Kg dry 1 SW-846 6010D ND 1.8 mg/Kg dry 1 SW-846 6010D ND 1.8 mg/Kg dry 1 SW-846 6010D ND 1.8 mg/Kg dry 1 SW-846 6010D	Results RL Units Dilution Flag/Qual Method Prepared ND 1.8 mg/Kg dry 1 MS-07 SW-846 6010D 6/5/19 4.2 1.8 mg/Kg dry 1 R-04 SW-846 6010D 6/5/19 18 1.8 mg/Kg dry 1 SW-846 6010D 6/5/19 0.19 0.18 mg/Kg dry 1 SW-846 6010D 6/5/19 0.27 0.18 mg/Kg dry 1 R-04 SW-846 6010D 6/5/19 6.6 0.36 mg/Kg dry 1 SW-846 6010D 6/5/19 9.2 0.54 mg/Kg dry 1 SW-846 6010D 6/5/19 ND 0.026 mg/Kg dry 1 SW-846 6010D 6/5/19 ND 3.6 mg/Kg dry 1 SW-846 6010D 6/5/19 ND 0.36 mg/Kg dry 1 SW-846 6010D 6/5/19 ND 0.36 mg/Kg dry 1 SW-846 6010D 6/5/19	Results RL Units Dilution Flag/Qual Method Prepared Analyzed Analyz

. toject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019 Field Sample #: GP1-2 (11-13)

Sampled: 5/28/2019 10:00

Conventional Chemistry	Parameters by	EPA/APHA/SW-8	16 Methods	(Total)	Ì
------------------------	---------------	---------------	------------	---------	---

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids	92.2	***************************************	% Wı	1		SM 2540G	6/5/19	6/5/19 15:46	JDN

roject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GPI-3 (11-13)

Sampled: 5/28/2019 10:50

Sample ID: 19E1819-03
Sample Matrix: Soil

Valatila	Overania	Compounds	THE COME

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acelone	ND	0.064	mg/Kg dry	1	***************************************	SW-846 8260C	6/3/19	6/3/19 16:19	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.00064	mg/Kg dry	I		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
Benzene	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
Bromobenzene	ND	0.0013	mg/Kg dry	I		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
Bromochloromethane	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
Bromodichloromethane	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
Bromoform	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
Bromomethane	ND	0.0064	mg/Kg dry	1	V-34	SW-846 8260C	6/3/19	6/3/19 16:19	MFF
2-Bulanone (MEK)	ND	0.026	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
n-Butylbenzene	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
sec-Butylbenzene	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
tert-Butylbenzene	ND	0.0013	mg/Kg dry	I		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
lert-Butyl Ethyl Ether (TBEE)	ND	0.00064	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
Carbon Disulfide	ND	0.0038	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
Carbon Tetrachloride	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
Chlorobenzene	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
hlorodibromomethane	ND	0.00064	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
Chloroethane	ND	0.0064	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
Chloroform	ND	0.0026	mg/Kg dry	ı		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
Chloromethane	ND	0.0064	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
2-Chlorotoluene	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
4-Chlorotolucne	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
1,2-Dibromoethane (EDB)	ND	0.00064	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
Dibromomethane	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
1,2-Dichlorobenzene	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
1,3-Dichlorobenzene	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
1,4-Dichlorobenzene	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.0064	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
1,1-Dichloroethane	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
1,2-Dichloroethane	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
1,1-Dichloroethylene	ND	0.0026	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
cis-1,2-Dichloroethylene	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
rans-1,2-Dichloroethylene	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
,2-Dichloropropane	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
,3-Dichloropropane	ND	0.00064	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
2,2-Dichloropropane	ND	0.0013	mg/Kg dry	ı		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
,1-Dichloropropene	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
ris-1,3-Dichloropropene	ND	0.00064	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
rans-1,3-Dichloropropene	ND	0.00064	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
Diethyl Ether	ND	0.0064	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
Diisopropyl Ether (DIPE)	ND	0.00064	mg/Kg dry	1		SW-846 \$260C	6/3/19	6/3/19 16:19	MFF
1,4-Dioxane	ND	0.064	mg/Kg dry	1	V-16	SW-846 8260C	6/3/19	6/3/19 16:19	MFF
Ethylbenzene	ND	0.0013	mg/Kg dry	1	. 10	SW-846 8260C	6/3/19	6/3/19 16:19	MFF
,	110	4.0013	whire ary	•		3.1 3.10 0000	313117	Page 25	

Page 25 of 153

'roject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019 Field Sample #: GP1-3 (11-13)

Sampled: 5/28/2019 10:50

Sample ID: 19E1819-03 Sample Matrix: Soil

Volatile Organic Compounds by GC/MS

								_	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
2-Hexanone (MBK)	ND	0.013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
Isopropyibenzene (Cumene)	ND	0.0013	mg/Kg dry	I		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0026	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
Methylene Chloride	ND	0.0064	mg/Kg dry	ı		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
Naphthalene	ND	0.0026	mg/Kg dry	1	V-05	SW-846 8260C	6/3/19	6/3/19 16:19	MFF
n-Propylbenzene	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
Styrene	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
1,1,1,2-Tetrachloroethane	ND	0.0013	mg/Kg dry	ı		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
1,1,2,2-Tetrachlorocthane	ND	0.00064	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
Tetrachloroethylene	ND	0.0013	mg/Kg dry	ī		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
Tetrahydrofuran	ND	0.0064	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
Toluene	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
1,2,3-Trichlorobenzene	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
,2,4-Trichlorobenzene	ND	0.0013	mg/Kg dry	ı	V-05	SW-846 8260C	6/3/19	6/3/19 16:19	MFF
1,1,1-Trichloroethane	ND	0.0013	mg/Kg dry	ı		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
1,1,2-Trichloroethane	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
Trichloroethylene	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
Trichlorofluoromethane (Freon 11)	ND	0.0064	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
1,2,3-Trichloropropane	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
1,2,4-Trimethylbenzene	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
1,3,5-Trimethylbenzene	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
Vinyl Chloride	ND	0.0064	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
m+p Xylene	ND	0.0026	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
o-Xylene	ND	0.0013	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:19	MFF
Surrogates		% Recovery	Recovery Limits		Flag/Qual				4744 4
1,2-Dichloroethane-d4		107	70-130			W		6/3/19 16:19	
Toluene-d8		97.8	70-130					6/3/19 16:19	
4-Bromofluorobenzene		111	70-130					6/2/10 16:10	

1 roject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019 Field Sample #: GP1-3 (11-13)

Sampled: 5/28/2019 10:50

		1	Petroleum Hydrocarbo	ns Analyses -	- EPH		•		
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
C9-C18 Aliphatics	ND	10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:45	RMW
C19-C36 Aliphatics	ND	10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:45	RMW
Unadjusted C11-C22 Aromatics	ND	10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:45	RMW
C11-C22 Aromatics	ND	10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:45	RMW
Acenaphthene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:45	RMW
Accnaphthylene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:45	RMW
Anthracene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:45	RMW
Benzo(a)anthracene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:45	RMW
Benzo(a)pyrene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:45	RMW
Benzo(b)fluoranthene	ND	0.10	mg/Kg dry	1		MADEP-EPII-04-1.1	6/3/19	6/5/19 19:45	RMW
Benzo(g,h,i)perylene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:45	RMW
Benzo(k)fluoranthene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:45	RMW
Chrysene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:45	RMW
Dibenz(a,h)anthracene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:45	RMW
Fluoranthene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	-6/5/19 19:45	RMW
luorene	ND	0.10	mg/Kg dry	I		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:45	RMW
.ndeno(1,2,3-cd)pyrene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:45	RMW
2-Methylnaphthalene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:45	RMW
Naphthalene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:45	RMW
Phenanthrene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:45	RMW
Pyrene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/5/19 19:45	RMW
Surrogates		% Recover	ry Recovery Limit	s	Flag/Qual				
Chlorooctadecane (COD)		73.1	40-140					6/5/19 19:45	
o-Terphenyl (OTP)		79.7	40-140					6/5/19 19:45	
2-Bromonaphthalene		101	40-140					6/5/19 19:45	
2-Fluorobiphenyl		109	40-140					6/5/19 19:45	

roject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019

Field Sample #: GP1-3 (11-13)

Sampled: 5/28/2019 10:50

Sample Flags: O-01		Pet	roleum Hydrocarbo	ns Analyses	- VPH				
Soil/Methanol Preservation Ratio: 1,48 Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Unadjusted C5-C8 Aliphatics	ND	7.5	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 2:21	КМВ
C5-C8 Aliphatics	ND	7.5	mg/Kg dry	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/4/19 2:21	KMB
Unadjusted C9-C12 Aliphatics	ND	7.5	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 2:21	КМВ
C9-C12 Aliphatics	ND	7.5	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 2:21	KMB
C9-C10 Aromatics	ND	7.5	mg/Kg dry	l		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 2:21	KMB
Benzene	ND	0.038	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 2:21	KMB
Ethylbenzene	ND	0.038	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 2:21	КМВ
Methyl tert-Butyl Ether (MTBE)	ND	0.038	mg/Kg dry	1		MADEP-VPII-Fcb 2018 Rev 2.1	6/3/19	6/4/19 2:21	KMB
Naphthalene	ND	0.19	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 2:21	KMB
Toluene	ND	0.038	mg/Kg dry	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/4/19 2:21	KMB
m+p Xylene	ND	0.075	mg/Kg dry	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/4/19 2:21	KMB
o-Xylene	ND	0.038	mg/Kg dry	ì		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 2:21	КМВ
Surrogates	,	% Recovery	Recovery Limits	i	Flag/Qual				
5-Dibromotoluene (FID)		103	70-130	•				6/4/19 2:21	
2,5-Dibromotoluene (PID)		98.6	70-130					6/4/19 2:21	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

roject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019 Field Sample #: GP1-3 (11-13)

Sampled: 5/28/2019 10:50

Metals Analyses (Total)									
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method ·	Date Prepared	Date/Time Analyzed	Analyst
	ND	1.7	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:23	EJB
	ND	1.7	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:23	EJB
	19	1.7	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:23	EJB
	0.18	0.17	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:23	EJB
	ND	0.17	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:23	EJB .
	5.2	0.34	mg/Kg dry	i		SW-846 6010D	6/5/19	6/6/19 21:23	EJB
	2.5	0.51	mg/Kg dry	i		SW-846 6010D	6/5/19	6/6/19 21:23	EJB
	ND	0.025	mg/Kg dry	1		SW-846 7471B	6/6/19	6/7/19 10:35	AJL
	4.5	0.34	mg/Kg dry	ι		SW-846 6010D	6/5/19	6/6/19 21:23	EJB
	ND	3.4	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:23	EJB
	ND	0.34	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:23	EJB
	ND	1.7	mg/Kg dry	ŧ		SW-846 6010D	6/5/19	6/6/19 21:23	EJB
	· 14	0.68	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:23	EJB
	21	0.68	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:23	EJB
	Analyte	ND ND 19 0.18 ND 5.2 2.5 ND 4.5 ND ND ND ND	ND 1.7 ND 1.7 19 1.7 0.18 0.17 ND 0.17 5.2 0.34 2.5 0.51 ND 0.025 4.5 0.34 ND 3.4 ND 3.4 ND 0.34 ND 1.7 14 0.68	Analyte Results RL Units ND 1.7 mg/Kg dry ND 1.7 mg/Kg dry 19 1.7 mg/Kg dry ND 0.17 mg/Kg dry ND 0.17 mg/Kg dry 2.5 0.51 mg/Kg dry ND 0.025 mg/Kg dry ND 3.4 mg/Kg dry ND 0.34 mg/Kg dry ND 0.34 mg/Kg dry ND 0.34 mg/Kg dry ND 1.7 mg/Kg dry ND 1.7 mg/Kg dry 14 0.68 mg/Kg dry	Analyte Results RL Units Dilution ND 1.7 mg/Kg dry 1 ND 1.7 mg/Kg dry 1 19 1.7 mg/Kg dry 1 ND 0.17 mg/Kg dry 1 ND 0.17 mg/Kg dry 1 2.5 0.34 mg/Kg dry 1 ND 0.025 mg/Kg dry 1 ND 3.4 mg/Kg dry 1 ND 0.34 mg/Kg dry 1 ND 0.34 mg/Kg dry 1 ND 1.7 mg/Kg dry 1 ND 1.7 mg/Kg dry 1 14 0.68 mg/Kg dry 1	ND 1.7 mg/Kg dry 1 ND 0.17 mg/Kg dry 1 ND 0.17 mg/Kg dry 1 ND 0.17 mg/Kg dry 1 ND 0.25 mg/Kg dry 1 ND 0.025 mg/Kg dry 1 ND 0.45 0.34 mg/Kg dry 1 ND 3.4 mg/Kg dry 1 ND 3.4 mg/Kg dry 1 ND 0.34 mg/Kg dry 1 ND 0.368 mg/Kg dry 1 ND 0.688 Mg/Kg dry 1 ND 0	ND 1.7 mg/Kg dry 1 SW-846 6010D	Analyte Results RL Units Dilution Flag/Qual Method Prepared ND 1.7 mg/Kg dry 1 SW-846 6010D 6/5/19 ND 1.7 mg/Kg dry 1 SW-846 6010D 6/5/19 19 1.7 mg/Kg dry 1 SW-846 6010D 6/5/19 0.18 0.17 mg/Kg dry 1 SW-846 6010D 6/5/19 ND 0.17 mg/Kg dry 1 SW-846 6010D 6/5/19 5.2 0.34 mg/Kg dry 1 SW-846 6010D 6/5/19 ND 0.025 mg/Kg dry 1 SW-846 6010D 6/5/19 ND 3.4 mg/Kg dry 1 SW-846 6010D 6/5/19 ND 3.4 mg/Kg dry 1 SW-846 6010D 6/5/19 ND 0.34 mg/Kg dry 1 SW-846 6010D 6/5/19 ND 1.7 mg/Kg dry 1 SW-846 6010D 6/5/19 ND 1.7 <t< td=""><td>Analyte Results RL Units Dilution Flag/Qual Method Prepared Prepared Analyzed Analyzed Analyzed Analyzed Analyzed Analyzed Analyzed Prepared Analyzed Prepared Analyzed Prepared ND 1.7 mg/Kg dry 1 SW-846 6010D 6/5/19 6/6/19 21:23 6/6/19 21:23 ND 1.7 mg/Kg dry 1 SW-846 6010D 6/5/19 6/6/19 21:23 6/6/19 21:23 0.18 0.17 mg/Kg dry 1 SW-846 6010D 6/5/19 6/6/19 21:23 6/6/19 21:23 ND 0.17 mg/Kg dry 1 SW-846 6010D 6/5/19 6/6/19 21:23 6/6/19 21:23 5.2 0.34 mg/Kg dry 1 SW-846 6010D 6/5/19 6/6/19 21:23 6/6/19 21:23 ND 0.025 mg/Kg dry 1 SW-846 6010D 6/5/19 6/6/19 21:23 6/6/19 21:23 ND 3.4 mg/Kg dry 1 SW-846 6010D 6/5/19 6/6/19 21:23 6/6/19 21:23 ND 0.34 mg/Kg dry 1 SW-846 6010D 6/5/19 6/6/19 21:23 6/6/19 21:23 ND 0.34 mg/Kg dry 1 SW-846 6010D 6/5/19 6/6/19 21:23 6/6/19 21:23 ND 1.7 mg</td></t<>	Analyte Results RL Units Dilution Flag/Qual Method Prepared Prepared Analyzed Analyzed Analyzed Analyzed Analyzed Analyzed Analyzed Prepared Analyzed Prepared Analyzed Prepared ND 1.7 mg/Kg dry 1 SW-846 6010D 6/5/19 6/6/19 21:23 6/6/19 21:23 ND 1.7 mg/Kg dry 1 SW-846 6010D 6/5/19 6/6/19 21:23 6/6/19 21:23 0.18 0.17 mg/Kg dry 1 SW-846 6010D 6/5/19 6/6/19 21:23 6/6/19 21:23 ND 0.17 mg/Kg dry 1 SW-846 6010D 6/5/19 6/6/19 21:23 6/6/19 21:23 5.2 0.34 mg/Kg dry 1 SW-846 6010D 6/5/19 6/6/19 21:23 6/6/19 21:23 ND 0.025 mg/Kg dry 1 SW-846 6010D 6/5/19 6/6/19 21:23 6/6/19 21:23 ND 3.4 mg/Kg dry 1 SW-846 6010D 6/5/19 6/6/19 21:23 6/6/19 21:23 ND 0.34 mg/Kg dry 1 SW-846 6010D 6/5/19 6/6/19 21:23 6/6/19 21:23 ND 0.34 mg/Kg dry 1 SW-846 6010D 6/5/19 6/6/19 21:23 6/6/19 21:23 ND 1.7 mg

.oject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP1-3 (11-13)

Sampled: 5/28/2019 10:50

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (T

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids	95.4		% Wt	1		SM 2540G	6/5/19	6/5/19 15:47	JDN

Page 31 of 153

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

, roject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP1-4 (11-13)

Sampled: 5/28/2019 11:40

Sample ID: 19E1819-04

		. 1	olatile Organic Con	pounds by G	C/MS				•
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone	ND	0.062	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
ert-Amyl Methyl Ether (TAME)	ND	0.00062	mg/Kg dry	ī		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
Benzene	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
Bromobenzene	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
Bromochloromethane	ND	0.0012	mg/Kg dry	1		SW-846 8260C	-6/3/19	6/3/19 16:44	MFF
Bromodichloromethane	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
Bromoform	ND	0.0012	mg/Kg dry	I		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
Bromomethane	ND	0.0062	mg/Kg dry	I	V-34	SW-846 8260C	6/3/19	6/3/19 16:44	MFF
2-Butanone (MEK)	ND	0.025	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
n-Butylbenzene	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
sec-Butylbenzene	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
tert-Butylbenzene	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.00062	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
Carbon Disulfide	ND	0.0037	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
Carbon Tetrachloride	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
Chlorobenzene	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
Jhlorodibromomethane	ND	0.00062	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
Chloroethane	ND	0.0062	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
Chloroform	ИD	0.0025	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
Chloromethane	ND	0.0062	mg/Kg dry	i		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
2-Chlorotoluene	ND	0.0012	mg/Kg dry	1		SW-846 8360C	6/3/19	6/3/19 16:44	MFF
4-Chlorotoluene	ND	0.0012	mg/Kg dry	i		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
1,2-Dibromoethane (EDB)	ND	0.00062	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
Dibromomethane	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
1,2-Dichlorobenzene	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
1,3-Dichlorobenzene	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
1,4-Dichlorobenzene	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.0062	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
1,1-Dichloroethane	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
1,2-Dichloroethane	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
1,1-Dichloroethylene	ИD	0.0025	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
cis-1,2-Dichloroethylene	ND	0.0012	mg/Kg dry	ı		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
trans-1,2-Dichloroethylene	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	
1,2-Dichloropropane	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	
1,3-Dichloropropane	ND	0.00062	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	
2,2-Dichloropropane	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	
1,1-Dichloropropene	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	
cis-1,3-Dichtoropropene	ND	0.00062	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	
trans-1,3-Dichloropropene	. ND	0.00062	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	
Diethyl Ether	ND	0.0062	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFI
Diisopropyl Ether (DIPE)	ND	0.00062	mg/Kg dry	1		SW-846 8260C	6/3/19		MF!
1,4-Dioxane	ND	0.062	mg/Kg dry	, 1	V-16	SW-846 8260C	6/3/19	6/3/19 16:44	# MFI
Ethylbenzene	ND	0.0012	mg/Kg dry	, 1		SW-846 8260C	6/3/19	6/3/19 16:44	4 MF

'roject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP1-4 (11-13)

Sampled: 5/28/2019 [1:40

		Vo	latile Organic Com	pounds by G	C/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analys
Hexachlorobutadiene	ND	0.0012	mg/Kg dry	ı		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
2-Hexanone (MBK)	ND	0.012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
Isopropylbenzene (Cumene)	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0025	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
Methylene Chloride	ND	0.0062	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
Naphthalene	ND	0.0025	mg/Kg dry	1	V-05	SW-846 8260C	6/3/19	6/3/19 16:44	MFF
n-Propylbenzenc	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
Styrene	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
1,1,1,2-Tetrachloroethane	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
1,1,2,2-Tetrachloroethane	ND	0.00062	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
Tetrachioroethylene	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
Tetrahydrofuran	ND	0.0062	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
Toluene	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
1,2,3-Trichlorobenzene	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
2,4-Trichlorobenzene	ND	0.0012	mg/Kg dry	ı	V-05	SW-846 8260C	6/3/19	6/3/19 16:44	MFF
1,1,1-Trichloroethane	ND	0.0012	mg/Kg dry	ŧ		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
1,1,2-Trichloroethane	ND	0.0012	mg/Kg dry	t		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
Trichloroethylene	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
Trichlorofluoromethane (Freon 11)	ND	0.0062	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
1,2,3-Trichloropropane	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
1,2,4-Trimethylbenzene	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
1,3,5-Trimethylbenzene	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
Vinyl Chloride	ND	0.0062	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
m+p Xylene	ND	0.0025	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
o-Xylene	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/3/19	6/3/19 16:44	MFF
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
,2-Dichloroethane-d4		109	70-130					6/3/19 16:44	
Foluene-d8		99.0	70-130					6/3/19 16:44	
4-Bromofluorobenzene		113	70-130					6/3/19 16:44	

roject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019 Field Sample #: GP1-4 (11-13)

Sampled: 5/28/2019 11:40

Petroleum	Hydrocarbone	Analyses - EPH
a cu oicum	KLYULOCAL DUIIS	Allanyses - E.P.D.

Analyte	Results	RL .	Units	Dilution	PI(O)	20.0	Date	Date/Time	
C9-C18 Aliphatics	ND	10		l	Flag/Qual	Method MADEP-EPH-04-1.1	Prepared	Analyzed	Analyst
C19-C36 Aliphatics	ND		mg/Kg dry	-			6/3/19	6/7/19 0:36	KLB
•		10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:36	KLB
Unadjusted C11-C22 Aromatics	ND	10	mg/Kg dry	ı		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:36	KLB
C11-C22 Aromatics	ND	10	mg/Kg dry	I		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:36	KLB
Acenaphthene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:36	KLB
Accnaphthylene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1,1	6/3/19	6/7/19 0:36	KLB
Anthracene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:36	KLB
Benzo(a)anthracene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:36	KLB
Benzo(a)pyrene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:36	KLB
Benzo(b)fluoranthene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:36	KLB
Benzo(g,h,i)perylene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1,1	6/3/19	6/7/19 0:36	KLB
Benzo(k)fluoranthene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:36	KLB
Chrysene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:36	KLB
Dibenz(a,h)anthracene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:36	KLB
Fluoranthene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:36	KLB
Fluorene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:36	KLB
deno(1,2,3-cd)pyrene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:36	KLB
2-Methylnaphthalene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:36	KLB
Naphthalene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:36	KLB
Phenanthrene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:36	KLB
Pyrene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:36	KLB
Surrogates		% Recovery	Recovery Limits	i	Flag/Qual				
Chlorooctadecane (COD) ,		69.5	40-140				*	6/7/19 0:36	
o-Terphenyl (OTP)		78.6	40-140					6/7/19 0:36	
2-Bromonaphthalene		103	40-140					6/7/19 0:36	
2-Fluorobiphenyl		116	40-140					6/7/19 0:36	

uject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019 Field Sample #: GP1-4 (11-13)

Sampled: 5/28/2019 11:40

Sample Flags: O-01		Pet	roleum Hydrocarbo	ns Analyses	- VPH		•		
Soil/Methanol Preservation Ratio: 1.40							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Unadjusted C5-C8 Aliphatics	ND	7.7	mg/Kg dry	ı		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/4/19 2:50	КМВ
C5-C8 Aliphatics	ND	7.7	mg/Kg dry	I		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 2:50	КМВ
Unadjusted C9-C12 Aliphatics	ND	7.7	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 2:50	KMB
C9-C12 Aliphatics	ND	7.7	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 2:50	KMB
C9-C10 Aromatics	ND	7.7	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 2:50	KMB
Benzene	ND	0.038	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 2:50	KMB
Ethylbenzene	ND	0.038	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 2:50	KMB
Methyl tert-Butyl Ether (MTBE)	ND	0.038	mg/Kg dry	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/4/19 2:50	KMB
Naphthalene	ND	0.19	mg/Kg dry	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/4/19 2:50	КМВ
Toluene	ND	0.038	mg/Kg dry	1		MADEP-VPII-Feb 2018 Rev 2.1	6/3/19	6/4/19 2:50	KMB
m+p Xylene	ND	0.077	mg/Kg dry	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/4/19 2:50	КМВ
o-Xylene	ND	0.038	mg/Kg dry	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/4/19 2:50	КМВ
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
2,5-Dibromotoluene (FID)		104	70-130					6/4/19 2:50	
2,5-Dibromotoluene (PID)		93.6	70-130					6/4/19 2:50	

oject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP1-4 (11-13)

Sampled: 5/28/2019 11:40

Metals Analyses (Total)										
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony		ND	1.7	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:28	EJB
Arsenic		ND	1.7	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:28	EJB
Barium		39	1.7	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:28	EJB
Beryllium		0.24	0.17	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:28	EJB
Cadmium		ND	0.17	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:28	EJB
Chromium		7.2	0.35	mg/Kg dry	I		SW-846 6010D	6/5/19	6/6/19 21:28	EJB
Lead		5.8	0.52	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:28	EJB
Mercury		ND	0.024	mg/Kg dry	1		SW-846 7471B	6/6/19	6/7/19 10:37	AJL
Nickel		8.5	0.35	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:28	EJB
Selenium		ND	3.5	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:28	EJB
Silver		ND	0.35	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:28	EJB
Thallium		ND	1.7	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:28	EJB
Vanadium		25	0.69	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:28	EJB
Zinc		38	0.69	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:28	EJB

sject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019 Field Sample #: GP1-4 (11-13)

Sampled: 5/28/2019 11:40

Sample ID: 19E1819-04
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		97.1		% Wı	ı		SM 2540G	6/5/19	6/5/19 15:47	JDN

.oject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP1-5 (11-13)

Sampled: 5/28/2019 13:00

Sample ID: 19E1819-05
Sample Matrix: Soil

Volatila	Organic	Compounds	hw	CCIMS
votatile	Organic	Compounus	UV	CIVILIAN

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analys
Aceione	ND	0.069	mg/Kg dry	1	R-05	SW-846 8260C	6/4/19	6/4/19 7:23	MFF
ert-Amyl Methyl Ether (TAME)	ND	0.00069	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
Benzene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
Bromobenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
Promochloromethane	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
Bromodichloromethane	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
Bromoform	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
Bromomethane	ND	0.0069	mg/Kg dry	1	V-34	SW-846 8260C	6/4/19	6/4/19 7:23	MFF
-Butanone (MEK)	ND	0.028	mg/Kg dry	1	R-05	SW-846 8260C	6/4/19	6/4/19 7:23	MFF
ı-Butylbenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
ec-Butylbenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
ert-Butylbenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
ert-Butyl Ethyl Ether (TBEE)	ND	0.00069	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
Carbon Disulfide	ND	0.0042	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
Carbon Tetrachloride	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
Chlorobenzene	ND	0.0014	mg/Kg dry	ι		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
hlorodibromomethane	ND	0.00069	mg/Kg dry	I		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
Chloroethane	ND	0.0069	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MF
Chloroform	ND	0.0028	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFI
Chioromethane	ND	0.0069	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFI
-Chlorotoluene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MF
-Chlorotoluene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MF
,2-Dibromo-3-chloropropane (DBCP)	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MF
,2-Dibromoethane (EDB)	ND	0.00069	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MF
Dibromomethane	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MF
,2-Dichlorobenzene	ND	0.0014	mg/Kg dry	i		SW-846 3260C	6/4/19	6/4/19 7:23	MF
1,3-Dichlorobenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MF
1,4-Dichlorobenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MF
Dichlorodifluoromethane (Freon 12)	ND	0.0069	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MF
I,1-Dichloroethane	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MF
1,2-Dichloroethane	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MF
1,1-Dichloroethylene	ND	0.0028	mg/Kg dry	l		SW-846 8260C	6/4/19	6/4/19 7:23	MF
cis-1,2-Dichloroethylenc	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MF
trans-1,2-Dichloroethylene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MF
1,2-Dichloropropane	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MF
1,3-Dichloropropane	ND	0.00069	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	M
2,2-Dichloropropane	ND	0.0014	mg/Kg dry	I		SW-846 8260C	6/4/19	6/4/19 7:23	MI MI
1,1-Dichloropropene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MI
eis-1,3-Dichloropropene	ND	0.00069	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	3 M
trans-1,3-Dichloropropene	ND	0.00069	mg/Kg dry			SW-846 8260C	6/4/19	6/4/19 7:23	3 M
Diethyl Ether	ND	0.0069	mg/Kg dry			SW-846 8260C	6/4/19	6/4/19 7:2:	3 M
Diisopropyl Ether (DIPE)	ND	0.00069	mg/Kg dry			SW-846 8260C	6/4/19	6/4/19 7:2:	3 M
1,4-Dioxane	ND	0.069	mg/Kg dry		V-16	SW-846 8260C	6/4/19	6/4/19 7:2	3 M
Ethylbenzene	ND	0.0014	mg/Kg dry			SW-846 8260C	6/4/19	6/4/19 7:2	3 M

Page 37 of 153

oject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP1-5 (11-13)

Sampled: 5/28/2019 13:00

Sample ID: 19E1819-05
Sample Matrix: Soil

		· Vo	latile Organic Com	pounds by G	C/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
2-Hexanone (MBK)	ND	0.014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
Isopropylbenzene (Cumene)	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0028	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
Methylene Chloride	ND	0.0069	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
Naphthalene	ND	0.0028	mg/Kg dry	1	V-05	SW-846 8260C	6/4/19	6/4/19 7:23	MFF
n-Propylbenzene	ND	0.0014	mg/Kg dry	ı		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
Styrene	ND	0.0014	mg/Kg dry	I		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
1,1,1,2-Tetrachloroethane	ND	0.0014	mg/Kg dry	ı		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
1,1,2,2-Tetrachloroethane	ND	0.00069	mg/Kg dry	ı		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
Tetrachloroethylene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
Tetrahydrofuran	ND	0.0069	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
Tolucne	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
1,2,3-Trichlorobenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
2,4-Trichlorobenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
.,1,1-Trichloroethane	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
1,1,2-Trichloroethanc	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
Trichloroethylene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
Trichlorofluoromethane (Freon 11)	ND	0.0069	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
1,2,3-Trichloropropane	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
1,2,4-Trimethylbenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
1,3,5-Trimethylbenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
Vinyl Chloride	ND	0.0069	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
m+p Xylene	ND	0.0028	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
o-Xylene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:23	MFF
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		103	70-130					6/4/19 7:23	
Toluene-d8		98.9	70-130					6/4/19 7:23	
4-Bromofluorobenzene		104	70-130					6/4/19 7:23	

roject Location: Beaver St., Waltham, MA

Sample Description:

128

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP1-5 (11-13)

Sampled: 5/28/2019 13:00

Sample ID: 19E1819-05

2-Fluorobiphenyl

		Pe	troleum Hydrocarbo	ns Analyses	- EPH ·				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analys
C9-C18 Aliphatics	ND	11	mg/Kg dry	1	*****	MADEP-EPH-04-1.1	6/3/19	6/7/19 0:55	KLB
C19-C36 Aliphatics	ND	11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:55	KLB
Unadjusted C11-C22 Aromatics	ND	11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:55	KLB
C11-C22 Aromatics	ND	11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:55	KLB
Acenaphthene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:55	KLB
Accnaphthylene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:55	KLB
Anthracene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:55	KLB
Benzo(a)anthracene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:55	KLB
Benzo(a)pyrene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:55	KLB
Benzo(b)fluoranthene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:55	KLB
Benzo(g,h,i)perylene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:55	KLB
Benzo(k)fluoranthene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:55	KLB
Chrysene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:55	KLB
Dibenz(a,h)anthracene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:55	KLB
Fluoranthene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:55	KLB
Fluorene	ND	0.11	mg/Kg dry	ι		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:55	KLB
'ndeno(1,2,3-cd)pyrene	ND	0.11	mg/Kg dry	1		MADEP-EPII-04-1.1	6/3/19	6/7/19 0:55	KLB
2-Methylnaphthalene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:55	KLB
Naphthalene	ND	0.11	mg/Kg dry	t		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:55	KLB
Phenanthrene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:55	KLB
Pyrene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 0:55	KLB
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
Chlorooctadecane (COD)		81.3	40-140		-			6/7/19 0:55	
o-Terphenyl (OTP)		91.5	40-140					6/7/19 0:55	
2-Bromonaphthalene		118	40-140					6/7/19 0:55	
A Strong at the Laurent		100	40 440						

40-140

6/7/19 0:55

.oject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP1-5 (11-13)

Sampled: 5/28/2019 13:00

Sample ID: 19E1819-05
Sample Matrix: Soil

Sample Flags: O-01	•	Pet	roleum Hydrocarbo	ns Analyses	- VPH			•	
Soil/Methanol Preservation Ratio: 1.41							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Unadjusted C5-C8 Aliphatics	ND	8.0	mg/Kg dry	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/4/19 3:20	КМВ
C5-C8 Aliphatics	ND	8.0	mg/Kg dry	1		MADEP-VPH-Fcb 2018 Rcv 2.1	6/3/19	6/4/19 3:20	КМВ
Unadjusted C9-C12 Aliphatics	ND	8.0	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 3:20	KMB
C9-C12 Aliphatics	ND	8.0	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 3:20	КМВ
C9-C10 Aromatics	ND	8.0	mg/Kg dry	ī		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 3:20	КМВ
Benzene	ND	0.040	mg/Kg dry	t		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 3:20	KMB
Ethylbenzene	ND	0.040	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 3:20	KMB
Methyl tert-Butyl Ether (MTBE)	ND	0.040	mg/Kg dry	i		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/4/19 3:20	KMB
Naphthalene	ND	0.20	mg/Kg dry	t		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 3:20	КМВ
Toluene	ND	0.040	mg/Kg dry	1		MADEP-VPII-Fcb 2018 Rev 2.1	6/3/19	6/4/19 3:20	КМВ
m+p Xylene	ND	0.080	mg/Kg dry	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/4/19 3:20	KMB
o-Xylene	ND	0.040	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 3:20	КМВ
Surrogates		% Recovery	Recovery Limits	S	Flag/Qual				
2,5-Dibromotoluene (FID)		103	70-130					6/4/19 3:20	
2.5-Dibromotoluene (PID)		98.5	70-130					6/4/19 3:20	

²roject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP1-5 (11-13)

Sampled: 5/28/2019 13:00

Sample ID: 19E1819-05 Sample Matrix: Soil

		•		Metals Analy	yses (Total)					
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony		ND	1.7	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:45	EJB
Arsenic		ND	1.7	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:45	EJB
Barium		29	1.7	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:45	EJB
Beryllium		0.19	0.17	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:45	EJB
Cadmium		ND	0.17	mg/Kg dry	I		SW-846 6010D	6/5/19	6/6/19 21:45	EJB
Chromium		7.3	0.34	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:45	EJB
Lcad		3.9	0.51	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:45	EJB
Mercury		ND	0.026	mg/Kg dry	t		SW-846 7471B	6/6/19	6/7/19 10:39	AJL
Nickel		6.6	0.34	mg/Kg dry	I		SW-846 6010D	6/5/19	6/6/19 21:45	EJB
Sclenium		ND	3.4	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:45	ЕЈВ
Silver		ND	0.34	mg/Kg dry	ı		SW-846 6010D	6/5/19	6/6/19 21:45	EJB
Thollium		ND	1.7	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:45	EJB
Vanadium		19	0.68	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:45	EJB
Zinc		27	0.68	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:45	EJB

roject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP1-5 (11-13)

Sampled: 5/28/2019 13:00

Sample ID: 19E1819-05 Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time		
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst	
% Solids		94.8		% Wt	1		SM 2540G	6/5/19	6/5/19 15:47	JDN	

ject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP1-6 (11-13)
Sample ID: 19E1819-06

Sampled: 5/28/2019 13:50

Sample Matrix: Soil

•			Volatile Organic Con	spounds by G	C/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
ceione	ND	0.078	mg/Kg dry	1	R-05	SW-846 8260C	6/4/19	6/4/19 7:48	MFF
rt-Amyl Methyl Ether (TAME)	ND	0.00078	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
enzene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
romobenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
romochloromethane	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
romodichloromethane	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
romoform	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
romomethane	ND	0.0078	mg/Kg dry	1	V-34	SW-846 8260C	6/4/19	6/4/19 7:48	MFF
Butanone (MEK)	ND	0.031	mg/Kg dry	1	R-05	SW-846 8260C	6/4/19	6/4/19 7:48	MFF
-Butylbenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
ec-Butylbenzene	ND	0.0016	mg/Kg dry	ı		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
rt-Butylbenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
rt-Butyl Ethyl Ether (TBEE)	ND	0.00078	mg/Kg dry	1		SW-846 8260C	6/4/19 .	6/4/19 7:48	MFF
arbon Disulfide	ND	0.0047	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
arbon Terrachloride	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
hlorobenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
Ylorodibromomethane	ND	0.00078	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
hloroethane	ND	0.0078	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
hioroform	ND	0.0031	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
hloromethane	ND	0.0078	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
-Chlorotoluene	ND	0.0016	mg/Kg dry	ı		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
-Chlorotoluene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
2-Dibromo-3-chloropropane (DBCP)	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
2-Dibromoethane (EDB)	ND	0.00078	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
ibromomethane	ND	0.0016	mg/Kg dry	τ		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
2-Dichlorobenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
.3-Dichlorobenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
4-Dichlorobenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.0078	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
.1-Dichloroethane	ND	0,0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
.2-Dichloroethane	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
,1-Dichloroethylene	ND	0.0031	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
is-1,2-Dichloroethylene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
rans-1,2-Dichloroethylene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
,2-Dichloropropane	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
,3-Dichloropropane	ND	0.00078	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MF
,2-Dichloropropane	ND	0.0016	mg/Kg dry			SW-846 8260C	6/4/19	6/4/19 7:48	
,I-Dichloropropene	ND	0.0016	mg/Kg dry			SW-846 8260C	6/4/19	6/4/19 7:48	MF
is-1,3-Dichloropropene	ND	0.0018	mg/Kg dry			SW-846 8260C	6/4/19	6/4/19 7:41	
rans-1,3-Dichloropropene	ND	0.00078	mg/Kg dry			SW-846 8260C	6/4/19	6/4/19 7:4	
		0.0078	mg/Kg dry	_		SW-846 8260C	6/4/19	6/4/19 7:4	
Diethyl Ether	ND					SW-846 8260C	6/4/19	6/4/19 7:4	
Disopropyl Ether (DIPE)	ND	0.00078	mg/Kg dry		V-16	SW-846 8260C	6/4/19	6/4/19 7:4	
,4-Dioxane	ND	0.078	mg/Kg dry		4+10	SW-846 8260C	6/4/19	6/4/19 7:4	
Ethylbenzene	ND	0.0016	mg/Kg dry	, 1		317-040 02000	VI-1117	Page 4	

Volatile Organic Compounds by GC/MS

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Jate Received: 5/31/2019 Field Sample #: GP1-6 (11-13)

Sample ID: 19E1819-06

Sampled: 5/28/2019 13:50

Sample Matrix:	Soil	

		***	nattic Otganic Com	pounds by G	CIVIS				
Analyte	Results	RL	Units	Durates	F1/01	Before a B	Date	Date/Time	
Hexachlorobutadiene		***************************************		Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
2-Hexanone (MBK)	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
	ND	0.016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
Isopropylbenzene (Cumene)	ND	0.0016	mg/Kg dry	I		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0016	mg/Kg dry	I		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0031	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
Methylene Chloride	ND	0.0078	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
Naphthalene	ND	0.0031	mg/Kg dry	1	V-05	SW-846 8260C	6/4/19	6/4/19 7:48	MFF
n-Propylbenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
Styrene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
1,1,1,2-Tetrachloroethane	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
1,1,2,2-Tetrachloroethane	ND	0.00078	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
Tetrachloroethylene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
Tetrahydrofuran	ND	0.0078	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
Toluene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
1,2,3-Trichlorobenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
1,2,4-Trichlorobenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
,1,1-Trichloroethane	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
1,1,2-Trichloroethane	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
Trichloroethylene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
Trichlorofluoromethane (Freon 11)	ND	0.0078	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
1,2,3-Trichloropropane	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
1,2,4-Trimethylbenzene	ND	0.0016	mg/Kg dry	ı		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
1,3,5-Trimethylbenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
Vinyl Chloride	ND	0.0078	mg/Kg dry			SW-846 8260C	6/4/19	6/4/19 7:48	MFF
m+p Xylene	ND	0.0073		1			6/4/19		
o-Xylene	ND ND	0.0031	mg/Kg dry			SW-846 8260C		6/4/19 7:48	MFF
-	עא		mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 7:48	MFF
Surrogates		% Recovery	Recovery Limits	· · · · · · · · · · · · · · · · · · ·	Flag/Qual				
1,2-Dichloroethane-d4 Toluene-d8		106 101	70-130 70-130					6/4/19 7:48	
4-Bromofluorobenzene		105	70-130					6/4/19 7:48 6/4/19 7:48	
		.00	70-150					UMI 17 1:40	

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP1-6 (11-13)

Sampled: 5/28/2019 13:50

Sample ID: 19E1819-06
Sample Matrix: Soil

Petroleum	Hydrocarbons	Analyses - EPH
-----------	--------------	----------------

			•	•					
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date	Date/Time	
C9-C18 Aliphatics	ND	10	mg/Kg dry	1	riag/Quai	MADEP-EPH-04-1.1	Prepared 6/3/19	Analyzed 6/7/19 1:14	Analyst
C19-C36 Aliphatics	ND	10				MADEP-EPH-04-1.1			KLB
Unadjusted C11-C22 Aromatics			mg/Kg dry	ì			6/3/19	6/7/19 1:14	KLB
•	ND	10	mg/Kg dry	ī		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:14	KLB
C11-C22 Aromatics	ND	10 -	mg/Kg dry	ı		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:14	KLB
Acenaphthene	ND	0.10	mg/Kg dry	I		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:14	KLB
Acenaphthylene	ND	0.10	mg/Kg dry	I.		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:14	KLB
Anthracene	ND	0.10	mg/Kg dry	1		MADEP-EP11-04-1.1	6/3/19	6/7/19 1:14	KLB
Benzo(a)anthracene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:14	KLB
Benzo(a)pyrene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.I	6/3/19	6/7/19 1:14	KLB
Benzo(b)fluoranthene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:14	KLB
Benzo(g,h,i)perylene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:14	KLB
Benzo(k)fluoranthene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:14	KLB
Chrysene	. ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:14	KLB
Dibenz(a,h)anthracene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:14	KLB
Fluoranthene	ND	0.10	mg/Kg dry	t		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:14	KLB
Fluorene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:14	KLB
'ndeno(1,2,3-cd)pyrene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:14	KLB
2-Methylnaphthalene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:14	KLB
Naphthalene	ND	0.10	mg/Kg dry	ī		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:14	KLB
Phenanthrene	ND	0.10	mg/Kg dry	i		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:14	KLB
Pyrene	ND	0.10	mg/Kg dry	t		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:14	KLB
Surrogates		% Recovery	Recovery Limits	;	Flag/Qual				
Chlorooctadecane (COD)		71.1	40-140		*			6/7/19 1:14	
o-Terphenyl (OTP)		78.4	40-140					6/7/19 1:14	
2-Bromonaphthalene		117	40-140					6/7/19 1:14	
2-Fluorobiphenyl		125	40-140					6/7/19 1:14	

roject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019 Field Sample #: GP1-6 (11-13)

Sampled: 5/28/2019 13:50

Sample ID: 19E1819-06

Sample Flags: O-01		Petr	oleum Hydrocarbo	ns Analyses	- VPH				
Soil/Methanol Preservation Ratio: 1.51							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Unadjusted C5-C8 Aliphatics	ND	7.6	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 3:49	КМВ
C5-C8 Aliphatics	ND	7.6	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 3:49	KMB
Unadjusted C9-C12 Aliphatics	ND	7.6	mg/Kg dry	l		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 3:49	KMB
C9-C12 Aliphatics	ND	7.6	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 3:49	KMB
C9-C10 Aromatics	ND	7.6	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 3:49	КМВ
Benzene	ND	0.038	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 3:49	KMB
Ethylbenzene	ND	0.038	mg/Kg dry	i		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 3:49	KMB
Methyl tert-Butyl Ether (MTBE)	ND	0.038	mg/Kg dry	1		MADEP-VPII-Fcb 2018 Rev 2.1	6/3/19	6/4/19 3:49	KMB
Naphthalene	ND	0.19	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 3:49	KMB
Toluene	ND	0.038	mg/Kg dry	1		MADEP-VPII-Fcb 2018 Rev 2.1	6/3/19	6/4/19 3:49	КМВ
m+p Xylene	ND	0.076	mg/Kg dry	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/4/19 3:49	KMB
o-Xylene	ND	0.038	mg/Kg dry	ı		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 3:49	КМВ
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
2,5-Dibromatoluene (FID)		97.6	70-130					6/4/19 3:49	
2,5-Dibromotoluene (PID)		96.7	70-130					6/4/19 3:49	

'roject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019 Field Sample #: GP1-6 (11-13)

Sampled: 5/28/2019 13:50

Sample ID: 19E1819-06
Sample Matrix: Soil

			Metals Analy	ses (Total)					
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony	ND	1.7	mg/Kg dry	Į.		SW-846 6010D	6/5/19	6/6/19 21:50	EJB
Arsenic	ND	1.7	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:50	EJB
Barium	24	1.7	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:50	EJB
Beryllium	0.20	0.17	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:50	EJB
Cadmium	ND	0.17	mg/Kg dry	ı		SW-846 6010D	6/5/19	6/6/19 21:50	EJB
Chromium	6.7	0.34	mg/Kg dry	ı		SW-846 6010D	6/5/19	6/6/19 21:50	EJB
Lead	3.7	0.51	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:50	EJB
Mercury	ND	0.025	mg/Kg dry	1		SW-846 7471B	6/6/19	6/7/19 10:40	AJL
Nickel	6.7	0.34	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:50	EJB
Sclenium	ND	3.4	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:50	EJB
Silver	ND	0.34	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:50	EJB
Thallium	ND	1.7	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:50	EJB
Vanadium	21	0.68	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:50	EJB
Zinc	28	0.68	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:50	EJB

oject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019 Field Sample #: GPI-6 (11-13)

Sampled: 5/28/2019 13:50

Sample ID: 19E1819-06 Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		95.0		% Wı	1		SM 2540G	6/5/19	6/5/19 15:47	JDN

'roject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP1-7 (10-12)

Sampled: 5/28/2019 14:55

Sample ID: 19E1819-07 Sample Matrix: Soil

Volatile Organic Compounds by GC/M	Volatile	Organic	Compounds	by GC/MS
------------------------------------	----------	---------	-----------	----------

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	0.12	mg/Kg dry	ı	R-05	SW-846 8260C	6/4/19	6/4/19 8:12	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
Benzene	ND	0.0024	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
Bromobenzene	ND	0.0024	mg/Kg dry	ı		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
Bromochloromethane	ND	0.0024	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
Bromodichloromethane	ND	0.0024	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
Bromoform	ND	0.0024	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
Bromomethane	ND	0.012	mg/Kg dry	1	V-34	SW-846 8260C	6/4/19	6/4/19 8:12	MFF
2-Butanone (MEK)	ND	0.049	mg/Kg dry	1	R-05	SW-846 8260C	6/4/19	6/4/19 8:12	MFF
n-Butylbenzene	ND	0.0024	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
sec-Butylbenzene	ND	0.0024	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
tert-Butylbenzene	ND	0,0024	mg/Kg dry	ı		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.0012	mg/Kg dry	ı		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
Carbon Disulfide	ND	0.0073	mg/Kg dry	i		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
Carbon Tetrachloride	ND	0.0024	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
Chlorobenzene	ND	0.0024	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
:hlorodibromomethane	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
Chloroethane	ND	0.012	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
Chloroform	ND	0.0049	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFE
Chloromethane	ND	0.012	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
2-Chlorotoluene	ND	0.0024	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	
4-Chlorotoluene	ND	0.0024	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0024		1		SW-846 8260C	6/4/19		MFF
1,2-Dibromoethane (EDB)	ND	0.0024	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
Dibromomethane	ND ND	0.0012	mg/Kg dry	1		SW-846 8260C		6/4/19 8:12	MFF
1,2-Dichlorobenzene			mg/Kg dry				6/4/19	6/4/19 8:12	MFF
1,3-Dichlorobenzene	ND	0.0024	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
1,4-Dichlorobenzene	ND	0.0024	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.0024	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
, ,	ND	0.012	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
I,I-Dichloroethane	ND	0.0024	mg/Kg dry	t		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
1,2-Dichloroethane	ND	0.0024	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
,1-Dichloroethylene	ND	0.0049	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
ris-1,2-Dichloroethylene	ND	0.0024	mg/Kg dry	I		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
rans-1,2-Dichloroethylene	ND	0.0024	mg/Kg dry	I		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
,2-Dichloropropanc	ND	0.0024	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
,3-Dichloropropane	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
2,2-Dichloropropane	ND	0.0024	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
,1-Dichloropropene	ND	0.0024	mg/Kg dry	ì		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
is-1,3-Dichloropropene	ND	0.0012	mg/Kg dry	ī		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
rans-1,3-Dichloropropene	ND	0.0012	mg/Kg dry	t		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
Diethyl Ether	ND	0.012	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
Diisopropyl Ether (DIPE)	ND	0.0012	mg/Kg dry	ı		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
,4-Dioxane	ND	0.12	mg/Kg dry	i	V-16	SW-846 8260C	6/4/19	6/4/19 8:12	MFF
Ethylbenzene	ND	0.0024	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF

Page 49 of 153

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

ate Received: 5/31/2019 Field Sample #: GP1-7 (10-12)

Sampled: 5/28/2019 14:55

Sample ID: 19E1819-07 Sample Matrix: Soil

•		Ve	olatile Organic Com	pounds by G	C/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analy:
Hexachlorobutadiene	ND	0.0024	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
2-Hexanone (MBK)	ND	0.024	mg/Kg dry	ι		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
Isopropylbenzene (Cumene)	ND	0.0024	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
p-Isopropyitoluene (p-Cymene)	ND	0.0024	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0049	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
Methylene Chloride	ND	0.012	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
4-Mcthyl-2-pentanone (MIBK)	ND	0.024	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
Naphthalene	ND	0.0049	mg/Kg dry	1	V-05	SW-846 8260C	6/4/19	6/4/19 8:12	MFF
n-Propylbenzene	ND	0.0024	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
Styrene	ND	0.0024	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
1,1,1,2-Tetrachloroethane	ND	0.0024	mg/Kg dry	ı		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
1,1,2,2-Tetrachloroethane	ND	0.0012	mg/Kg đry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
Tetrachloroethylene	ND	0.0024	mg/Kg dry	ı		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
Tetrahydrofuran	ND	0.012	mg/Kg dry	t		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
Toluene	ND	0.0024	mg/Kg dry	ı		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
1,2,3-Trichtorobenzene	ND	0.0024	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
1,2,4-Trichlorobenzene	ND	0.0024	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
l, l-Trichloroethane	ND	0.0024	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
1,1,2-Trichlorocthanc	ND	0.0024	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
Trichloroethylene	ND	0.0024	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
Trichlorofluoromethane (Freon 11)	ND	0.012	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
1,2,3-Trichloropropanc	ND	0.0024	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
1,2,4-Trimethylbenzene	ND	0.0024	mg/Kg dry	ī		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
1,3,5-Trimethylbenzene	ND	0.0024	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
Vinyl Chloride	ND	0.012	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
m+p Xylene	ND	0.0049	mg/Kg dry	•		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
o-Xylene	ND	0.0024	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:12	MFF
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		108	70-130					6/4/19 8:12	
Toluene-d8		99.3	70-130					6/4/19 8:12	
-Bromofluorobenzene		105	70-130					6/4/19 8:12	

roject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP1-7 (10-12)

Sampled: 5/28/2019 14:55

Sample ID: 19E1819-07 Sample Matrix: Soil

		Pet	roleum Hydrocarbo	ns Analyses	- EPH				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analy
C9-C18 Aliphatics	31	23	mg/Kg dry	I		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:48	KLB
C19-C36 Aliphatics	250	23	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:48	KLB
Unadjusted C11-C22 Aromatics	190	23	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:48	KLB
C11-C22 Aromatics	190	23	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:48	KLB
Acenaphthene	ND	0.23	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:48	KLB
Accnaphthylene	ND	0.23	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:48	KLB
Anthracene	ND	0.23	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:48	KLB
Benzo(a)anthracene	ND	0.23	mg/Kg dry	i		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:48	KLB
Benzo(a)pyrene	ND	0.23	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:48	KLB
Benzo(b)fluoranthene	ND	0.23	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:48	KLB
Benzo(g,h,i)perylene	ND	0.23	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:48	KLB
Benzo(k)fluoranthene	ND	0.23	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:48	KLB
Chrysene	ND	0.23	mg/Kg dry	ī		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:48	KLB
Dibenz(a,h)anthracene	ND	0.23	mg/Kg dry	i		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:48	KLB
Fluoranthene	2.9	0.23	mg/Kg đry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:48	KLB
Fluorene	ND	0.23	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:48	KLB
.deno(1,2,3-cd)pyrene	ND	0,23	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:48	KLB
2-Methylnaphthalene	ND	0.23	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:48	KLB
Naphthalene	ND	0.23	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:48	KLB
Phenanthrene	ND	0.23	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:48	KLB
Pyrene	ND	0.23	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:48	KLB
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
Chlorooctadecane (COD)		63.8	40-140					6/7/19 2:48	
o-Terphenyl (OTP)		71.7	40-140					6/7/19 2:48	
2-Bromonaphthalene		120	40-140					6/7/19 2:48	
2-Fluorobiphenyi		132	40-140					6/7/19 2:48	

roject Location: Beaver St., Waltham, MA

Sample Description:

101

Work Order: 19E1819

6/4/19 4:18

Jate Received: 5/31/2019

Field Sample #: GP1-7 (10-12)

Sampled: 5/28/2019 14:55

Sample ID: 19E1819-07 Sample Matrix: Soil

2,5-Dibromotoluene (PID)

•		Pet	roleum Hydrocarbo	ns Analyses	- VPH				
Soil/Methanol Preservation Ratio: 1.24							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Unadjusted C5-C8 Aliphatics	ND	32	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 4:18	КМВ
C5-C8 Aliphatics	ND	32	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 4:18	KMB
Unadjusted C9-C12 Aliphatics	ND	32	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 4:18	KMB
C9-C12 Aliphatics	ND	32	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 4:18	KMB
C9-C10 Aromatics	ND	32	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 4:18	KMB
Benzene	ND	0.16	mg/Kg dry	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/4/19 4:18	KMB
Ethylbenzene	ND	0.16	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/4/19 4:18	KMB
Methyl tert-Butyl Ether (MTBE)	ND	0.16	mg/Kg dry	1		MADEP-VPH-Fcb 2018 Rcv 2.1	6/3/19	6/4/19 4:18	KMB
Naphthalene	ND	0.80	mg/Kg dry	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/4/19 4:18	КМВ
Toluene	ND	0.16	mg/Kg dry	Ĭ		MADEP-VPII-Fcb 2018 Rev 2.1	6/3/19	6/4/19 4:18	KMB
m+p Xylene	ND	0.32	mg/Kg dry	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/4/19 4:18	KMB
o-Xylene	ND	0.16	mg/Kg dry	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/4/19 4:18	КМВ
Surrogates		% Recovery	Recovery Limits	1	Flag/Quai				
5-Dibromotoluene (FID)		107	70-130					6/4/19 4:18	

70-130

· Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

te Received: 5/31/2019

Field Sample #: GP1-7 (10-12)

Sampled: 5/28/2019 14:55

Sample ID: 19E1819-07
Sample Matrix: Soil

			Metals Analy	yses (Total)		-			
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
	ND	3.8	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 23:12	EJB
	6.9	3.8	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 23:12	EJB
	480	3.8	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 23:12	EJB
	0.90	0.38	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 23:12	EJB
	1.9	0.38	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 23:12	EJB
	730	0.75	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 23:12	EJB
	220	1.1	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 23:12	EJB
	0.60	0.057	mg/Kg dry	τ		SW-846 7471B	6/6/19	6/7/19 10:42	AJL
	60	0.75	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 23:12	EJB
	ND	7.5	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 23:12	EJB
	0.90	0.75	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 23:12	EJB
	ND	3.8	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 23:12	EJB
	. 56	1.5	mg/Kg dry	1		SW-846 6010D	. 6/5/19	6/6/19 23:12	EJB
	840	3.0	mg/Kg dry	2		SW-846 6010D	6/5/19	6/7/19 14:28	EJB
	Analyte	ND 6.9 480 0.90 1.9 730 220 0.60 60 ND 0.90 ND	ND 3.8 6.9 3.8 480 3.8 0.90 0.38 1.9 0.38 730 0.75 220 1.1 0.60 0.057 60 0.75 ND 7.5 0.90 0.75 ND 3.8 56 1.5	Analyte Results RL Units ND 3.8 mg/Kg dry 6.9 3.8 mg/Kg dry 480 3.8 mg/Kg dry 0.90 0.38 mg/Kg dry 1.9 0.38 mg/Kg dry 730 0.75 mg/Kg dry 220 1.1 mg/Kg dry 60 0.057 mg/Kg dry ND 7.5 mg/Kg dry ND 3.8 mg/Kg dry ND 3.8 mg/Kg dry ND 3.8 mg/Kg dry 56 1.5 mg/Kg dry	ND 3.8 mg/Kg dry 1 6.9 3.8 mg/Kg dry 1 480 3.8 mg/Kg dry 1 0.90 0.38 mg/Kg dry 1 1.9 0.38 mg/Kg dry 1 730 0.75 mg/Kg dry 1 220 1.1 mg/Kg dry 1 0.60 0.057 mg/Kg dry 1 60 0.75 mg/Kg dry 1 ND 7.5 mg/Kg dry 1 0.90 0.75 mg/Kg dry 1 ND 3.8 mg/Kg dry 1 ND 3.8 mg/Kg dry 1	ND 3.8 mg/Kg dry 1	Analyte Results RL Units Dilution Flag/Qual Method ND 3.8 mg/Kg dry ! SW-846 6010D 6.9 3.8 mg/Kg dry ! SW-846 6010D 480 3.8 mg/Kg dry ! SW-846 6010D 0.90 0.38 mg/Kg dry ! SW-846 6010D 1.9 0.38 mg/Kg dry ! SW-846 6010D 730 0.75 mg/Kg dry ! SW-846 6010D 220 1.1 mg/Kg dry ! SW-846 6010D 0.60 0.057 mg/Kg dry ! SW-846 6010D ND 7.5 mg/Kg dry ! SW-846 6010D ND 7.5 mg/Kg dry ! SW-846 6010D ND 3.8 mg/Kg dry ! SW-846 6010D ND 3.8 mg/Kg dry ! SW-846 6010D ND 3.8 mg/Kg dry ! SW-846 6010D	Analyte Results RL Units Dilution Flag/Qual Method Prepared ND 3.8 mg/Kg dry 1 SW-846 6010D 6/5/19 6.9 3.8 mg/Kg dry 1 SW-846 6010D 6/5/19 480 3.8 mg/Kg dry 1 SW-846 6010D 6/5/19 0.90 0.38 mg/Kg dry 1 SW-846 6010D 6/5/19 1.9 0.38 mg/Kg dry 1 SW-846 6010D 6/5/19 730 0.75 mg/Kg dry 1 SW-846 6010D 6/5/19 220 1.1 mg/Kg dry 1 SW-846 6010D 6/5/19 0.60 0.057 mg/Kg dry 1 SW-846 6010D 6/5/19 MD 7.5 mg/Kg dry 1 SW-846 6010D 6/5/19 ND 3.8 mg/Kg dry 1 SW-846 6010D 6/5/19 ND 3.8 mg/Kg dry 1 SW-846 6010D 6/5/19 ND 3.8	Analyte Results RL Units Dilution Flag/Qual Method Prepared Analyzed

, roject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP1-7 (10-12)

Sampled: 5/28/2019 14:55

Sample ID: 19E1819-07
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids	43.0		% Wt	1		SM 2540G	6/5/19	6/5/19 15:47	JDN

roject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP1-8 (10-12)

Sampled: 5/28/2019 15:45

Sample ID: 19E1819-08
Sample Matrix: Soil

Volatile (Organic	Compounds	bv	GC/MS
------------	---------	-----------	----	-------

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acelone	ND	0.12	mg/Kg dry	1	R-05	SW-846 8260C	6/4/19	6/4/19 8:37	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
Benzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
Bromobenzene	, ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
Bromochioromethane	ND	0.0023	mg/Kg dry	ı		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
Bromodichloromethanc	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
Bromoform	ND	0.0023	mg/Kg dry	ı		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
Bromomethane	ND	0.012	mg/Kg dry	1	V-34	SW-846 8260C	6/4/19	6/4/19 8:37	MFF
2-Butanone (MEK)	ND	0.046	mg/Kg dry	ı	R-05	SW-846 8260C	6/4/19	6/4/19 8:37	MFF
n-Butylbenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
sec-Butylbenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
tert-Butylbenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
Carbon Disulfide	ND	0.0070	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
Carbon Terrachloride	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
Chlorobenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
alorodibromomethane	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
Chloroethane	ND	0.012	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
Chloroform	ND	0.0046	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
Chloromethane	ND	0.012	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
2-Chlorotoluene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
4-Chlorotoluene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
1,2-Dibromoethane (EDB)	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/4/19		MFF
Dibromomethane	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
I,2-Dichlorobenzene	ND	0.0023		1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
1,3-Dichlorobenzene	ND	0.0023	mg/Kg dry mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
I,4-Dichlorobenzene	ND	0,0023				SW-846 8260C	6/4/19	6/4/19 8:37	MFF
Dichlorodifluoromethane (Freen 12)	ND	0.0023	mg/Kg dry	l 1			6/4/19	6/4/19 8:37	MFF
1,1-Dichloroethane	ND		mg/Kg dry			SW-846 8260C		6/4/19 8:37	MFF
1,2-Dichloroethane		0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
1.1-Dichloroethylene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
cis-1,2-Dichloroethylene	ND	0.0046	mg/Kg dry	ι.		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
	ND	0.0023	mg/Kg dry	ı		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
mans-1,2-Dichloroethylene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
1,2-Dichloropropane	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
1,3-Dichloropropane	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
2,2-Dichloropropane	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
1,1-Dichloropropene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
eis-1,3-Dichloropropene	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
ans-1,3-Dichloropropene	ND	0.0012	mg/Kg dry	I		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
Jiethyl Ether	ND	0.012	mg/Kg dry	l		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
Diisopropyl Ether (DIPE)	ND	0.0012	mg/Kg dry	i		SW-846 \$260C	6/4/19	6/4/19 8:37	MFF
1,4-Dioxane	ND	0.12	mg/Kg dry	1	V-16	SW-846 8260C	6/4/19	6/4/19 8:37	MFF
Ethylbenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF

Page 55 of 153

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP1-8 (10-12)

Sampled: 5/28/2019 15:45

Sample ID: 19E1819-08
Sample Matrix: Soil

	•	Vo	latile Organic Com	pounds by G	C/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
2-Hexanone (MBK)	ND	0.023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
Isopropylbenzene (Cumene)	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0023	mg/Kg dry	I		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0046	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
Methylene Chloride	ND	0.012	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
Naphthalene	ND	0.0046	mg/Kg dry	1	V-05	SW-846 8260C	6/4/19	6/4/19 8:37	MFF
n-Propylbenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
Styrene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
1,1,1,2-Tetrachloroethane	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
1,1,2,2-Tetrachioroethane	ND	0.0012	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
Tetrachloroethylene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
Tetrahydrofuran	ND	0.012	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
Toluene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
1,2,3-Trichlorobenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
1,2,4-Trichlorobenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
1,1,1-Trichloroethane	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
1,1,2-Trichlorocthane	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
Trichloroethylene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
Trichlorofluoromethane (Freon 11)	ND	0.012	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
1,2,3-Trichloropropane	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
1,2,4-Trimethylbenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
1,3,5-Trimethylbenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
Vinyl Chloride	ND	0.012	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
m+p Xylene	ND	0.0046	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
o-Xylene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 8:37	MFF
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		110	70-130					6/4/19 8:37	
Toluene-d8		96.9	70-130					6/4/19 8:37	
4-Bromofluorobenzene		101	70-130					6/4/19 8:37	

³roject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019

Field Sample #: GP1-8 (10-12)

Sampled: 5/28/2019 15:45

Sample ID: 19E1819-08 Sample Matrix: Soil

	•	Pe	troleum Hydrocarbo	ons Analyses	- EPH				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analys
C9-C18 Aliphatics	ND	71	mg/Kg dry	5	RL-08	MADEP-EPH-04-1.1	6/3/19	6/7/19 3:07	KLB
C19-C36 Aliphatics	870	71	mg/Kg dry	5		MADEP-EPH-04-1.1	6/3/19	6/7/19 3:07	KLB
Unadjusted C11-C22 Aromatics	750	71	mg/Kg dry	5		MADEP-EPH-04-1.1	6/3/19	6/7/19 3:07	KLB
C11-C22 Aromatics	750	71	mg/Kg dry	5		MADEP-EPII-04-1.1	6/3/19	6/7/19 3:07	KLB
Acenaphthene	ND	0.71	mg/Kg dry	5	RL-08	MADEP-EPH-04-1.1	6/3/19	6/7/19 3:07	KLB
Acenaphthylene	ND	0.71	mg/Kg dry	5	RL-08	MADEP-EPH-04-1.1	6/3/19	6/7/19 3:07	KLB
Anthracene	ND	0.71	mg/Kg dry	5	RL-08	MADEP-EPH-04-1.1	6/3/19	6/7/19 3:07	KLB
Benzo(a)anthracene	ND	0.71	mg/Kg dry	5	RL-08	MADEP-EPH-04-1.1	6/3/19	6/7/19 3:07	KLB
Benzo(a)pyrene	ND	0.71	mg/Kg dry	5	RL-08	MADEP-EPH-04-1.1	6/3/19	6/7/19 3:07	KLB
Benzo(b)fluoranthene	ND	0.71	mg/Kg dry	5	RL-08	MADEP-EPH-04-1.1	6/3/19	6/7/19 3:07	KLB
Benzo(g,h,i)perylene	ND	0.71	mg/Kg dry	5	RL-08	MADEP-EPH-04-1.1	6/3/19	6/7/19 3:07	KLB
Benzo(k)fluoranthene	ND	0.71	mg/Kg dry	5	RL-08	MADEP-EPH-04-1.1	6/3/19	6/7/19 3:07	KLB
Chrysene	ND	0.71	mg/Kg dry	5	RL-08	MADEP-EPH-04-1.1	6/3/19	6/7/19 3:07	KLB
Dibenz(a,h)anthracene	ND	0.71	mg/Kg dry	5	RL-08	MADEP-EPH-04-1.1	6/3/19	6/7/19 3:07	KLB
Fluoranthene	ND	0.71	mg/Kg dry	5	RL-08	MADEP-EPH-04-1.1	6/3/19	6/7/19 3:07	KLB
Fluorene	ND	0.71	mg/Kg dry	5	RL-08	MADEP-EPH-04-1.1	6/3/19	6/7/19 3:07	KLB
ndeno(1,2,3-cd)pyrene	ND	0.71	mg/Kg dry	5	RL-08	MADEP-EPH-04-1.1	6/3/19	6/7/19 3:07	KLB
-Methylnaphthalene	ND	0.71	mg/Kg dry	5	RL-08	MADEP-EPH-04-1.1	6/3/19	6/7/19 3:07	KLB
laphthalene	ND	0.71	mg/Kg dry	5	RL-08	MADEP-EPH-04-1.1	6/3/19	6/7/19 3:07	KLB
henanthrene	ND	0.71	mg/Kg dry	5	RL-08	MADEP-EPH-04-1.1	6/3/19	6/7/19 3:07	KLB
Pyrene	ND	0.71	mg/Kg dry	5	RL-08	MADEP-EPH-04-1.1	6/3/19	6/7/19 3:07	KLB
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
Chlorocetadecane (COD)		71.9	40-140					6/7/19 3:07	
-Terphenyl (OTP)		75.0	40-140					6/7/19 3:07	
2-Bromonaphthalene		89.6	40-140					6/7/19 3:07	
2-Fluorobiphenyl		97.7	40-140					6/7/19 3:07	

.oject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP1-8 (10-12)

Sampled: 5/28/2019 15:45

Sample ID: 19E1819-08
Sample Matrix: Soil

Petroleum Hyd	rocarbons A	Analyses – VPH	

Soil/Methanol Preservation Ratio: 1.22							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Unadjusted C5-C8 Aliphatics	ND	16	mg/Kg dry	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/3/19 12:39	KMB
C5-C8 Aliphatics	ND	16	mg/Kg dry	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/3/19 12:39	КМВ
Unadjusted C9-C12 Aliphatics	ND	16	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rcv 2.1	6/3/19	6/3/19 12:39	KMB
C9-C12 Aliphatics	ND	16	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 12:39	KMB
C9-C10 Aromatics	ND	16	mg/Kg dry	1		MADEP-VPH-Feb 2018 Roy 2.1	6/3/19	6/3/19 12:39	KMB
Benzene	ND	0.079	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 12:39	KMB
Ethylbenzene	ND	0.079	mg/Kg dry	ŧ		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 12:39	КМВ
Methyl tert-Butyl Ether (MTBE)	ND	0.079	mg/Kg dry	1		MADEP-VPII-Fcb 2018 Rev 2.1	6/3/19	6/3/19 12:39	KMB
Naphthalene	ND	0.40	mg/Kg dry	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/3/19 12:39	КМВ
Toluene	ND	0.079	mg/Kg dry	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/3/19 12:39	КМВ
m+p Xylene	ND	0.16	mg/Kg dry	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/3/19 12:39	КМВ
o-Xylene	ND	0.079	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 12:39	КМВ
Surrogates		% Recovery	Recovery Limits	5	Flag/Quai				
2,5-Dibromotoluene (FID)		101	70-130					6/3/19 12:39	
2,5-Dibromotoluene (PID)		97.3	70-130					6/3/19 12:39	

'roject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP1-8 (10-12)

Sampled: 5/28/2019 15:45

Sample ID: 19E1819-08
Sample Matrix: Soil

	•			Metals Analy	yses (Total)			•		
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony		ND	2.3	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:55	EJB
Arsenic		13	2.3	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:55	ЕЉ
Barium		90	2.3	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:55	EJB
Beryllium		0.38	0.23	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:55	EJB
Cadmium		0.90	0.23	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:55	EJB
Chromium		81	0.46	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:55	EJB
Lead		91	0.69	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:55	EJB
Mercury		0.11	0.036	mg/Kg dry	1		SW-846 7471B	6/6/19	6/7/19 10:48	AJL
Nickel		32	0.46	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:55	EJB
Sclenium		ND	4.6	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:55	EJB
Silver		ND	0.46	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:55	EJB
Thallium		ND	2.3	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:55	EJB
Vanadium		68	0.92	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:55	EJB
Zinc		390	0.92	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 21:55	EJB

roject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP1-8 (10-12)

Sampled: 5/28/2019 15:45

Sample ID: 19E1819-08
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids	70.3		% Wı	1		SM 2540G	6/5/19	6/5/19 15:47	JDN

oject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Jate Received: 5/31/2019
Field Sample #: GP1-9 (11-13)

Sampled: 5/29/2019 07:00

Sample ID: 19E1819-09
Sample Matrix: Soil

Volatile	Organic	Compounds	hy GC/MS

		.,	orathe Organic Con	ihonua pà O	Civio				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Accione	ND	0.079	mg/Kg dry	1	R-05	SW-846 8260C	6/4/19	6/4/19 9:02	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.00079	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
Benzene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
Bromobenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
Bromochloromethane	ND	0.0016	mg/Kg dry	I		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
Bromodichloromethane	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
Bromoform	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
Bromomethane	ND	0.0079	mg/Kg dry	Ł	V-34	SW-846 8260C	6/4/19	6/4/19 9:02	MFF
2-Butanone (MEK)	ND	0.032	mg/Kg dry	1	R-05	SW-846 8260C	6/4/19	6/4/19 9:02	MFF
n-Butyibenzene	ND	0.0016	mg/Kg dry	ı		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
sec-Butylbenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
tert-Butylbenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.00079	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
Carbon Disulfide	ND	0.0048	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
Carbon Tetrachloride	ND	0.0016	mg/Kg dry	ŧ		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
Chlorobenzene	ND	0.0016	mg/Kg dry	l		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
Thlorodibromomethane	ND	0.00079	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
hloroethane	ND	0.0079	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
Chloroform	ND	0.0032	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
Chloromethane	ND	0.0079	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
2-Chlorotoluene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
1-Chlorotoluene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
1,2-Dibromoethane (EDB)	ND	0.00079	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
Dibromomethane	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
1,2-Dichlorobenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
1,3-Dichlorobenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
I,4-Dichlorobenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.0079	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
1,1-Dichloroethane	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
1,2-Dichloroethane	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
1,1-Dichloroethylene	ND	0.0032	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
cis-1,2-Dichloroethylene	ND	0.0016	mg/Kg dry	ı		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
rans-1,2-Dichloroethylene	ND	0.0016	mg/Kg dry	Ĺ		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
1,2-Dichloropropane	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
1,3-Dichloropropane	ND	0.00079	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
2,2-Dichloropropane	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
1,1-Dichloropropene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
cis-1,3-Dichloropropenc	ND	0.00079	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
trans-1,3-Dichloropropene	ND	0.00079	mg/Kg dry	I		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
Viethyl Ether	ND	0.0079	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
Diisopropyl Ether (DIPE)	ND	0.00079	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF
1,4-Dioxane	ND	0.079	mg/Kg dry	1	V-16	SW-846 8260C	6/4/19	6/4/19 9:02	MFF
Ethylbenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF

Page 61 of 153

Analyst

MFF

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL, 413/525-2332

Volatile Organic Compounds by GC/MS

'roject Location: Beaver St., Waltham, MA

Analyte

Sample Description:

RL

0.0016

Results

ND

ND

ND

0.0032

0.0016

Work Order: 19E1819

Date Received: 5/31/2019 Field Sample #: GP1-9 (11-13)

Sampled: 5/29/2019 07:00

Sample ID: 19E1819-09 Sample Matrix: Soil

Hexachlorobutadiene

m+p Xylene

o-Xylene

	-				
Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed
mg/Kg dry	I		SW-846 8260C	6/4/19	6/4/19 9:02
mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02
mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02
mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02
mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02
mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02
mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02
	_				

SW-846 8260C

SW-846 8260C

6/4/19

6/4/19

6/4/19 9:02

6/4/19 9:02

MFF

MFF

2-Hexanone (MBK)	ND 0.016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF	
Isopropylbenzene (Cumene)	ND 0.001	6 mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF	
p-Isopropyltoluene (p-Cymene)	ND 0.001	5 mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF	
Methyl tert-Butyl Ether (MTBE)	ND 0.003	2 mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF	
Methylene Chloride	ND 0.007	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF	
4-Methyl-2-pentanone (MIBK)	ND 0.016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF	
Naphthalene	ND 0.003	mg/Kg dry	1	V-05	SW-846 8260C	6/4/19	6/4/19 9:02	MFF	
n-Propylbenzene	ND 0.001	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF	
Styrene	ND 0.001	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF	
1,1,1,2-Tetrachloroethane	ND 0.001	i mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF	
1,1,2,2-Tetrachloroethane	ND 0.0007	9 mg/Kg dry	ì		SW-846 8260C	6/4/19	6/4/19 9:02	MFF	
Tetrachloroethylene	ND . 0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF	
Tetrahydrofuran	ND 0.0079	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF	
Toluene	ND 0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF	
1,2,3-Trichlorobenzene	ND 0.001	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF	
,2,4-Trichlorobenzene	ND 0.001	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF	
1,1,1-Trichloroethane	ND 0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF	
1,1,2-Trichloroethane	ND 0.001	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF	
Trichloroethylene	ND 0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF	
Trichlorofluoromethane (Freon 11)	ND 0.0079	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF	
1,2,3-Trichloropropane	ND 0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF	
1,2,4-Trimethylbenzene	ND 0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF	
1,3,5-Trimethylbenzene	ND 0.0016	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF	
Vinyl Chloride	ND 0.0079	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:02	MFF	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	105	70-130		6/4/19 9:02
Toluene-d8	99.4	70-130		6/4/19 9:02
4-Bromofluorobenzene	105	70-130		6/4/19 9:02

mg/Kg dry

mg/Kg dry

oject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP1-9 (11-13)

Sampled: 5/29/2019 07:00

Sample ID: 19E1819-09
Sample Matrix: Soil

	•	Pet	roleum Hydrocarbo	ns Analyses	- EPH				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analys
C9-C18 Aliphatics	ND	11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:33	KLB
C19-C36 Aliphatics	ND	11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:33	KLB
Unadjusted C11-C22 Aromatics	ND	11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:33	KLB
C11-C22 Aromatics	ND	11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:33	KLB
Acenaphthene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:33	KLB
Acenaphthylene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:33	KLB
Anthracene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:33	KLB
Benzo(a)anthracene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:33	KLB
Benzo(a)pyrene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:33	KLB
Benzo(b)fluoranthene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:33	KLB
Benzo(g,h,i)perylene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:33	KLB
Benzo(k)fluoranthene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:33	KLB
Chrysene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:33	KLB
Dibenz(a,h)anthracene	ND	0.11	mg/Kg dry	ı		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:33	KLB
Fluoranthene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:33	KLB
Fluorene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:33	KLB
leno(1,2,3-cd)pyrene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:33	KLB
∠-Methylnaphthalene	ND	0.11	mg/Kg dry	ŧ		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:33	KLB
Naphthalene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:33	KLB
Phenanthrene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:33	KLB
Рутепе	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:33	KLB
Surrogates		% Recovery	Recovery Limits	:	Flag/Qual				
Chlorooctadecane (COD)		72.7	40-140					6/7/19 1:33	
o-Terphenyl (OTP)		79.7	40-140					6/7/19 1:33	
2-Bromonaphthalene		117	40-140					6/7/19 1:33	
2-Fluorobiphenyl		124	40-140					6/7/19 1:33	

^oroject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

6/3/19 13:08

pate Received: 5/31/2019
Field Sample #: GP1-9 (11-13)

Sampled: 5/29/2019 07:00

92.5

Sample ID: 19E1819-09
Sample Matrix: Soil

.,5-Dibromotoluene (PID)

Sample Flags: O-01		Pet	troleum Hydrocarbo	ns Analyses	- VPH				
Soil/Methanol Preservation Ratio: 1.43							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Unadjusted C5-C8 Aliphatics	ND	7.9	mg/Kg dry	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/3/19 13:08	КМВ
C5-C8 Aliphatics	ND	7.9	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 13:08	KMB
Unadjusted C9-C12 Aliphatics	ND	7.9	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 13:08	KMB
C9-C12 Aliphotics	ND	7.9	mg/Kg dry	I		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 13:08	KMB
C9-C10 Aromatics	ND	7.9	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 13:08	KMB
Benzene	ND	0.039	mg/Kg dry	ı		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 13:08	KMB
Ethylbenzene	ИD	0.039	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 13:08	KMB
Methyl tert-Butyl Ether (MTBE)	ND	0.039	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 13:08	KMB
Naphthalene	ND	0.20	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 13:08	KMB
Toluenc	ND	0.039	mg/Kg dry	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/3/19 13:08	KMB
m+p Xylene	ND	0.079	mg/Kg dry	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/3/19 13:08	KMB
o-Xylene	ND	0.039	mg/Kg dry	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/3/19 13:08	KMB
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
5-Dibromotoluene (FID)		96.4	70-130				***	6/3/19 13:08	

70-130

roject Location: Beaver St., Waltham, MA

Sample Description:

25

0.68

Work Order: 19E1819

SW-846 6010D

6/5/19

6/6/19 22:00

EJB

Date Received: 5/31/2019 Field Sample #: GP1-9 (11-13)

Sampled: 5/29/2019 07:00

Sample ID: 19E1819-09
Sample Matrix: Soil

Zinc

				Metals Analy	ses (Total)					
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony		ND	1.7	mg/Kg dry	I		SW-846 6010D	6/5/19	6/6/19 22:00	EJB
Arsenic		ND	1.7	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:00	EJB
Barium		30	1.7	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:00	EJB
Beryllium		0.19	0.17	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:00	EJB
Cadmium		ND	0.17	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:00	EJB
Chromium		5.8	0.34	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:00	EJB
Lead		3.5	0.51	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:00	EJB
Mercury		ND	0.026	mg/Kg dry	1		SW-846 7471B	6/6/19	6/7/19 10:49	AJL
Nickel		5.5	0.34	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:00	EJB
Sclenium		ND	3.4	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:00	EJB
Silver		ND	0.34	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:00	EJB
Thallium		ND	1.7	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:00	EJB
Vanadium		.18	0.68	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:00	EJB

mg/Kg dry

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019

Field Sample #: GP1-9 (11-13)

Sampled: 5/29/2019 07:00

Sample ID: 19E1819-09
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
% Solids	95.0		% Wı	1		SM 2540G	6/5/19	6/5/10 15:47	IDM

roject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP2-1 (6-8)
Sample ID: 19E1819-10

Sampled: 5/29/2019 08:30

Sample Matrix: Soil

Volatile Organic C	ompounds by GC/MS
--------------------	-------------------

Analyte	Results	RL	Units	Ditution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	0.076	mg/Kg dry	1	R-05	SW-846 8260C	6/4/19	6/4/19 9:26	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.00076	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
Benzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
Bromobenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
Bromochloromethane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
Bromodichloromethane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
Bromoform	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
Bromomethane	ND	0.0076	mg/Kg dry	1	V-34	SW-846 8260C	6/4/19	6/4/19 9:26	MFF
2-Butanone (MEK)	ND	0.030	mg/Kg dry	1	R-05	SW-846 8260C	6/4/19	6/4/19 9:26	MFF
n-Butylbenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
sec-Butylbenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
tert-Butylbenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.00076	mg/Kg dry	ı		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
Carbon Disulfide	ND	0.0045	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
Carbon Tetrachloride	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
Chlorobenzene	ND	0.0015	mg/Kg dry	ŧ		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
`hlorodibromomethane	ND	0.00076	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
Chloroethane	ND	0.0076	mg/Kg dry	t		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
Chloroform	ND	0.0030	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
Chloromethane	ND	0.0076	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
2-Chlorotoluene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
4-Chlorotoluene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
1,2-Dibromoethane (EDB)	ND	0.00076	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
Dibromomethane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
1,2-Dichlorobenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
1,3-Dichlorobenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	G/4/19	6/4/19 9:26	MFF
I,4-Dichlorobenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.0076	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
1,1-Dichloroethane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
1,2-Dichloroethane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
1,1-Dichloroethylene	ND	0.0030	mg/Kg dry	i		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
cis-1,2-Dichloroethylene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
rans-1,2-Dichloroethylene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
1,2-Dichloropropanc	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
1,3-Dichloropropane	ND	0.00076	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
2,2-Dichloropropane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
1,1-Dichloropropene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
cis-1,3-Dichloropropene	ND	0.00076	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
trans-1,3-Dichloropropene	ND	0.00076	mg/Kg dry	i		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
riethyl Ether	ND	0.0076	mg/Kg dry	ı		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
Diisopropyl Ether (DIPE)	ND	0.00076	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
1,4-Dioxane	ND	0.076	mg/Kg dry	1	V-16	SW-846 8260C	6/4/19	6/4/19 9:26	MFF
Ethylbenzene	ND	0.0015	mg/Kg dry	ı		SW-846 8260C	6/4/19	6/4/19 9:26	MFF

Page 67 of 153

. roject Location: Beaver St., Waltham, MA

Sample Description:

105

Work Order: 19E1819

Date Received: 5/31/2019 Field Sample #: GP2-1 (6-8)

Sampled: 5/29/2019 08:30

Sample ID: 19E1819-10 Sample Matrix: Soil

4-Bromofluorobenzene

•		Vo	olatile Organic Comp	pounds by G	C/MS	•			
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analys
Hexachlorobutadiene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
2-Hexanone (MBK)	ND	0.015	mg/Kg dry	ı		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
Isopropylbenzene (Cumene)	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0030	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
Methylene Chloride	ND	0.0076	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
Naphthalene	ND	0.0030	mg/Kg dry	1	V-05	SW-846 8260C	6/4/19	6/4/19 9:26	MFF
n-Propylbenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
Styrene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
1,1,1,2-Tetrachloroethane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
1,1,2,2-Tetrachloroethane	ND	0.00076	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
Tetrachloroethylene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
Tetrahydrofuran	ND	0.0076	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
Toluene	ND	0.0015	mg/Kg dry	ŧ		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
1,2,3-Trichlorobenzene	ND	0.0015	mg/Kg đry	I		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
2,4-Trichlorobenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
1,1,1-Trichloroethane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
I,1,2-Trichlorocthane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
Trichloroethylene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
Trichlorofluoromethane (Freon 11)	ND	0.0076	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
1,2,3-Trichloropropane	ND	0.0015	mg/Kg dry	1		SW-846 \$260C	6/4/19	6/4/19 9:26	MFF
1,2,4-Trimethylbenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
1,3,5-Trimethylbenzene	ND	0.0015	mg/Kg dry	i		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
Vinyl Chloride	ND	0.0076	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
m+p Xylene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
o-Xylene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:26	MFF
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		107	70-130					6/4/19 9:26	
Toluene-d8		100	70-130					6/4/19 9:26	

70-130

6/4/19 9:26

oject Location: Beaver St., Waltham, MA

Sample Description:

87.9

118

125

Work Order: 19E1819

Date Received: 5/31/2019 Field Sample #: GP2-1 (6-8)

Sampled: 5/29/2019 08:30

Sample ID: 19E1819-10
Sample Matrix: Soil

o-Terphenyl (OTP)

2-Fluorobiphenyl

2-Bromonaphthalene

		Pet	roleum Hydrocarbo	ns Analyses	- EPH				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
C9-C18 Aliphatics	ND	10	mg/Kg dry	I		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:52	KLB
C19-C36 Aliphatics	ND	10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:52	KLB
Unadjusted C11-C22 Aromatics	ND	10	mg/Kg dry	I		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:52	KLB
C11-C22 Aromatics	ND	10	mg/Kg dry	I		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:52	KLB
Acenaphthene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:52	KLB
Accnaphthylene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:52	KLB
Anthracene	ND	0.10	mg/Kg dry	1		MADEP-EPII-04-1.1	6/3/19	6/7/19 1:52	KLB
Benzo(a)anthracene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:52	KLB
Benzo(a)pyrene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:52	KLB
Benzo(b)fluoranthene	ND	0.10	mg/Kg dry	1		MADEP-EPII-04-1.1	6/3/19	6/7/19 1:52	KLB
Benzo(g,h,i)perylene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:52	KLB
Benzo(k)fluoranthene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:52	KLB
Chrysene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:52	KLB
Dibenz(a,h)anthracene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:52	KLB
Fluoranthene	ND	0.10	mg/Kg dry	ı		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:52	KLB
Fluorene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:52	KLB
deno(1,2,3-cd)pyrene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:52	KLB
2-Methylnaphthalene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:52	KLB
Naphthalene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:52	KLB
Phenanthrene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1,1	6/3/19	6/7/19 1:52	KLB
Pyrene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 1:52	KLB
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
Chlorooctadecane (COD)		74.8	40-140					6/7/19 1:52	

40-140

40-140

40-140

6/7/19 1:52 6/7/19 1:52

6/7/19 1:52

roject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019 Field Sample #: GP2-1 (6-8)

Sampled: 5/29/2019 08:30

Sample ID: 19E1819-10
Sample Matrix: Soil

Sample Flags: O-01		Pet							
Soil/Methanol Preservation Ratio: 1.27 Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date	Date/Time	
				Dilution	riag/Quai		Prepared	Analyzed	Analyst
Unadjusted C5-C8 Aliphatics	ND	8.6	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 13:38	KMB
C5-C8 Aliphatics	ND	8.6	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 13:38	KMB
Unadjusted C9-C12 Aliphatics	ND	8.6	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 13:38	КМВ
C9-C12 Aliphatics	ND	8.6	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 13:38	KMB
C9-C10 Aromatics	ND	8.6	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 13:38	KMB
Benzene	ND	0.043	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 13:38	KMB
Ethylbenzene	ND	0.043	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 13:38	KMB
Methyl tert-Butyl Ether (MTBE)	ND	0.043	mg/Kg dry	1		MADEP-VP11-Fcb 2018 Rev 2.1	6/3/19	6/3/19 13:38	КМВ
Naphthalene	ND	0.21	mg/Kg dry	1		MADEP-VPII-Feb 2018 Rev 2.1	6/3/19	6/3/19 13:38	KMB
Toluene	ND	0.043	mg/Kg dry	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/3/19 13:38	KMB
m+p Xylene	ND	0.086	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 13:38	КМВ
o-Xylene	ND	0.043	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 13:38	КМВ
Surrogates		% Recovery	Recovery Limits	3	Flog/Qual				
.,5-Dibromotoluene (FID)		104	70-130					6/3/19 13:38	
2,5-Dibromotoluene (PID)		99.4	70-130					6/3/19 13:38	

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

ate Received: 5/31/2019
Field Sample #: GP2-1 (6-8)

Sampled: 5/29/2019 08:30

Sample ID: 19E1819-10
Sample Matrix: Soil

			Metals Analy	yses (Total)					
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony	ND	1.7	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:05	EJB
Arsenic	ND	1.7	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:05	EJB
Barium	23	1.7	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:05	EJB
Beryllium	0.29	0.17	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:05	EJB
Cadmium	ND	0.17	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:05	EJB
Chromium	38	0.34	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:05	EJB
Lead	7.6	0.51	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:05	EJB
Mercury	ND	0.026	mg/Kg dry	1		SW-846 7471B	6/6/19	6/7/19 10:51	AJL
Nickel	17	0.34	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:05	EJB
Sclenium	ND	3.4	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:05	EJB
Silver	ND	0.34	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:05	EJB
Thallium	ND	1.7	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:05	EJB
Vanadium	41	0.68	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:05	EJB
Zinc	39	0.68	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:05	EJB

oject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019 Field Sample #: GP2-1 (6-8)

Sampled: 5/29/2019 08:30

Sample ID: 19E1819-10
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

				Date Date	e/Time
Analyte	Results RL	Units Dilution	Flag/Qual Method	Prepared Ans	alyzed Analyst
% Solids	96.3	% Wt 1	SM 25400	6/5/19 6/5/1	9 15:47 JDN

roject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP2-2 (7-9)
Sample ID: 19E1819-11

Sampled: 5/29/2019 09:45

Sample Matrix: Soil

Sample Matrix: Soil			Valatila Ousania Car		CDE				
			Volatile Organic Con	npounas by G	CIMS		·		
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date	Date/Time	
Acelone	ND	0.075	mg/Kg dry	I	R-05	SW-846 8260C	Prepared 6/4/19	Analyzed 6/4/19 9:51	Analyst
tert-Amyl Methyl Ether (TAME)	ND	0.00075	mg/Kg dry	1	10-03	SW-846 8260C	6/4/19	6/4/19 9:51	MFF MFF
Benzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
Bromobenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
Bromochloromethane	ND	0.0015	mg/Kg dry	ı		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
Bromodichloromethane	ND	0.0015	mg/Kg dry	i		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
Bromoform	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
Bromomethane	ND	0.0075	mg/Kg dry	1	V-34	SW-846 8260C	6/4/19	6/4/19 9:51	MFF
2-Butanone (MEK)	ND	0.030	mg/Kg dry	1	R-05	SW-846 8260C	6/4/19	6/4/19 9:51	MFF
n-Butylbenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
sec-Butylbenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
tert-Butylbenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.00075	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
Carbon Disulfide	ND	0.0045	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
Carbon Tetrachloride	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
Chlorobenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
hlorodibromomethane	ND	0.00075	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
Chloroethane	ND	0.0075	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
Chloroform	ND	0.0030	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
Chloromethane	ND	0.0075	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
2-Chlorotoluene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
4-Chlorotoluene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
1,2-Dibromoethane (EDB)	ND	0.00075	mg/Kg dry	ı		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
Dibromomethane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
1,2-Dichlorobenzene	ND	0.0015	mg/Kg dry	1		SW-846 3260C	6/4/19	6/4/19 9:51	MFF
1,3-Dichlorobenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
1,4-Dichlorobenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.0075	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
1,1-Dichloroethane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
1,2-Dichloroethane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
1,1-Dichlorocthylene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
cis-1,2-Dichloroethylene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
trans-1,2-Dichloroethylene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
1,2-Dichloropropane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
1,3-Dichloropropane	ND	0.00075	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
2,2-Dichloropropane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
1,1-Dichloropropene	ND	0.0015	mg/Kg dry	ı		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
cis-1,3-Dichloropropene	ND	0.00075	mg/Kg dry	t		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
trans-1,3-Dichloropropene	ND	0.00075	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
ethyl Ether	ND	0.0075	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
Diisopropyl Ether (DIPE)	ND	0.00075	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
1,4-Dioxane	ND	0.075	mg/Kg dry	t	V-16	SW-846 8260C	6/4/19	6/4/19 9:51	MFF
Ethylbenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF

Page 73 of 153

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

ate Received: 5/31/2019
Field Sample #: GP2-2 (7-9)

Sampled: 5/29/2019 09:45

Sample ID: 19E1819-11
Sample Matrix: Soil

		Vo	latile Organic Com	pounds by G	C/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
2-Hexanone (MBK)	ND	0.015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
Isopropylbenzene (Cumene)	ND	0.0015	mg/Kg dry	1		SW-846 \$260C	6/4/19	6/4/19 9:51	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0030	mg/Kg dry	ı		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
Methylene Chloride	ND	0.0075	mg/Kg dry	1		SW-846 \$260C	6/4/19	6/4/19 9:51	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
Naphthalene	ND	0.0030	mg/Kg dry	ı	V-05	SW-846 8260C	6/4/19	6/4/19 9:51	MFF
n-Propylbenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
Styrene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
1,1,1,2-Tetrachloroethane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
1,1,2,2-Tetrachioroethane	ND	0.00075	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
Tetrachloroethylene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
Tetrahydrofuran	ND	0.0075	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
Toluene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
1,2,3-Trichlorobenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
1,2,4-Trichlorobenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
1,1-Trichloroethane	ND	0.0015	mg/Kg dry	ŧ		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
1,1,2-Trichloroethane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
Trichloroethylene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
Trichlorofluoromethane (Freon 11)	ND	0.0075	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
1,2,3-Trichloropropane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
1,2,4-Trimethylbenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
1,3,5-Trimethylbenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
Vinyl Chloride	ND	0.0075	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
m+p Xylene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 9:51	MFF
o-Xylene	ND	0.0015	mg/Kg dry	1	*	SW-846 8260C	6/4/19	6/4/19 9:51	MFF
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		103	70-130					6/4/19 9:51	
Toluene-d8		98.1	70-130					6/4/19 9:51	
4-Bromofluorobenzene		104	70-130					6/4/19 9:51	

Project Location: Beaver St., Waltham, MA

Sample Description:

125

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP2-2 (7-9)

Sampled: 5/29/2019 09:45

Sample ID: 19E1819-11 Sample Matrix: Soil

2-Fluorobiphenyl

•		Pe	troleum Hydrocarbo	ons Analyses	- EPH	•			
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analysi
C9-C18 Aliphatics	ND	10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:11	KLB
C19-C36 Aliphatics	ND	10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:11	KLB
Unadjusted C11-C22 Aromatics	ND	10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:11	KLB
C11-C22 Aromatics	ND	10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:11	KLB
Acenaphthene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:11	KLB
Accnaphthylene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:11	KLB
Anthracene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:11	KLB
Benzo(a)anthracene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:11	KLB
Benzo(a)pyrene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:11	KLB
Benzo(b)fluoranthene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:11	KLB
Benzo(g,h,i)perylene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:11	KLB
Benzo(k)fluoranthene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:11	KLB
Chrysene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:11	KLB
Dibenz(a,h)anthracene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:11	KLB
Fluoranthene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:11	KLB
Fluorene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:11	KLB
Indeno(1,2,3-cd)pyrene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:11	KLB
Methylnaphthalene	ND	0.10	mg/Kg dry	ı		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:11	KLB
Naphthalene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:11	KLB
Phenanthrene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:11	KLB
Pyrene	ND	0.10	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:11	KLB
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
Chlorooctadecane (COD)		79.1	40-140					6/7/19 2:11	
o-Terphenyl (OTP)		88.0	40-140					6/7/19 2:11	
2-Bronionaphthalene		118	40-140					6/7/19 2:11	

40-140

6/7/19 2:11

roject Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019 Field Sample #: GP2-2 (7-9)

Sampled: 5/29/2019 09:45

Sample ID: 19E1819-11 Sample Matrix: Soil

		. Pet	roleum Hydrocarbo	ons Analyses	~ VPH			-	
Soil/Methanol Preservation Ratio: 1.20 Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Unadjusted C5-C8 Aliphatics	ND	9.1	mg/Kg dry	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/3/19 14:07	КМВ
C5-C8 Aliphatics	ND	9.1	mg/Kg dry	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/3/19 14:07	KMB
Unadjusted C9-C12 Aliphatics	ND	9.1	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 14:07	КМВ
C9-C12 Aliphatics	ND	9.1	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 14:07	KMB
C9-C10 Aromatics	ND	9.1	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 14:07	KMB
Benzene	ND	0.045	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 14:07	KMB
Ethylbenzene	ND	0.045	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 14:07	KMB
Methyl tert-Butyl Ether (MTBE)	ND	0.045	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 14:07	KMB
Naphthalene	ND	0.23	mg/Kg dry	1		MADEP-VPII-Feb 2018 Rev 2.1	6/3/19	6/3/19 14:07	KMB
Toluene	ND	0.045	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 14:07	КМВ
m+p Xylene	ND	0.091	mg/Kg dry	i		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/3/19 14:07	КМВ
o-Xylene	ND	0.045	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 14:07	КМВ
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
,5-Dibromotoluene (FID)		101	70-130					6/3/19 14:07	
2,5-Dibromotoluene (PID)		98.2	70-130					6/3/19 14:07	

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

ate Received: 5/31/2019
Field Sample #: GP2-2 (7-9)

Sampled: 5/29/2019 09:45

Sample ID: 19E1819-11 Sample Matrix: Soil

			Metals Analy	Metals Analyses (Total)						
Analyte	Desulte	TO Z	WY *4	Ph. 11			Date	Date/Time		
	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst	
Antimony	ND	1.7	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:10	EJB	
Arsenic	ND	1.7	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:10	EJB	
Barium	19	1.7	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:10	EJB	
Beryllium	0.19	0.17	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:10	EJB	
Cadmium	ND	0.17	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:10	EJB	
Chromium	6.0	0.34	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:10	EJB	
Lead	4.0	0.51	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:10	EJB	
Mercury	ND	0.027	mg/Kg dry	1		SW-846 7471B	6/6/19	6/7/19 10:52	AJL	
Nickel	5.4	0.34	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:10	EJB	
Sclenium	ND	3.4	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:10	EJB	
Silver	ND	0.34	mg/Kg dry	ī		SW-846 6010D	6/5/19	6/6/19 22:10	EJB	
Thallium	ND	1.7	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:10	EJB	
Vanadium	17	0.68	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:10	EJB	
Zinc	24	0.68	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:10	EJB	

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

ate Received: 5/31/2019 rield Sample #: GP2-2 (7-9)

Sampled: 5/29/2019 09:45

Sample ID: 19E1819-11 Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		96.0		% Wı	1		SM 2540G	6/5/19	6/5/19 15:47	JDN

Page 79 of 153

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

.te Received: 5/31/2019 rield Sample #: GP2-3 (7-9)

Sampled: 5/28/2019 10:50

Sample ID: 19E1819-12 Sample Matrix: Soil

			Volatile Organic Con	npounds by G	C/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	0.072	mg/Kg dry	1	R-05	SW-846 8260C	6/4/19	6/4/19 10:15	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.00072	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
Benzene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
Bromobenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
Bromochloromethane	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
Bromodichloromethane	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
Bromoform	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
Bromomethane	ND	0.0072	mg/Kg dry	1	V-34	SW-846 8260C	6/4/19	6/4/19 10:15	MFF
2-Butanone (MEK)	ND	0.029	mg/Kg dry	1	R-05	SW-846 8260C	6/4/19	6/4/19 10:15	MFF
n-Butylbenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
sec-Butylbenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
tert-Butylbenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.00072	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
Carbon Disulfide	ND	0.0043	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
Carbon Tetrachloride	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
Chlorobenzene	ND	0.0014	mg/Kg dry	-1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
Chlorodibromomethane	ND	0.00072	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
loroethane	ND	0.0072	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
unloroform	ND	0.0029	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
Chloromethane	ND	0.0072	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
2-Chlorotoluene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
4-Chiorotoluene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
1,2-Dibromoethane (EDB)	ND	0.00072	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
Dibromomethane	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
1,2-Dichlorobenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
1,3-Dichlorobenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
1,4-Dichlorobenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.0072	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
1,1-Dichloroethane	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
1,2-Dichloroethane	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
l,1-Dichloroethylene	ND	0.0029	mg/Kg dry	ı		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
cis-1,2-Dichloroethylene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
trans-1,2-Dichloroethylene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
1,2-Dichloropropane	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
1,3-Dichloropropane	ND	0.00072	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
2,2-Dichloropropane	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
i,1-Dichloropropene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
cis-1,3-Dichloropropene	ND	0.00072	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
trans-1,3-Dichloropropene	ND	0.00072	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
Diethyl Ether	ND	0.0072	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
sopropyl Ether (DIPE)	ND	0.00072	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
1,4-Dioxane	ND	0.072	mg/Kg dry	1	V-16	SW-846 8260C	6/4/19	6/4/19 10:15	MFF
Ethylbenzene	ND	0.0014		1	. 10	SW-846 8260C	6/4/19		
	1417	0.0014	mg/Kg dry			3 17-040 02000	0/4/17	6/4/19 10:15	MFF

roject Location: Beaver St., Waltham, MA

Sample Description:

106

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP2-3 (7-9)

Sampled: 5/28/2019 10:50

Sample ID: 19E1819-12
Sample Matrix: Soil

4-Bromofluorobenzene

		V	olatile Organic Com	pounds by G	C/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analys
Hexachlorobutadiene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
2-Hexanone (MBK)	ND	0.014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
Isopropylbenzene (Cumene)	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0029	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
Methylene Chloride	ND	0.0072	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
Naphthalene	ND	0.0029	mg/Kg dry	1	V-05	SW-846 8260C	6/4/19	6/4/19 10:15	MFF
n-Propylbenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
Styrene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
1,1,1,2-Tetrachloroethane	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
1,1,2,2-Tetrachioroethane	ND	0.00072	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
Tetrachloroethylene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
Tetrahydrofuran	ND	0.0072	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
Toluene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
1,2,3-Trichlorobenzene	ND	0.0014	mg/Kg dry	ı		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
2,4-Trichlorobenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
1,1,1-Trichloroethane	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
1,1,2-Trichloroethane	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
Trichloroethylene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
Trichlorofluoromethane (Freon 11)	ND	0.0072	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
1,2,3-Trichloropropane	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
1,2,4-Trimethylbenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
1,3,5-Trimethylbenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	MFF
Vinyl Chloride	ND	0.0072	mg/Kg dry	1		SW-846 8260C	6/4/19	6/4/19 10:15	
m+p Xylene	ND	0.0029	mg/Kg dry	1		SW-846 8260C	6/4/19		MFF
o-Xylene	ND	0.0014	mg/Kg dry	ı		SW-846 8260C	6/4/19	6/4/19 10:15 6/4/19 10:15	MFF MFF
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		112	70-130					6/4/19 10:15	
Toluene-d8		99.1	70-130					6/4/19 10:15	
-Bromofluorobenzene		106	70 120					C1.110 10 10	

70-130

6/4/19 10:15

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019 Field Sample #: GP2-3 (7-9) Sample ID: 19E1819-12

Sampled: 5/28/2019 10:50

Sample Matrix: Soil

Petroleum	Hydrocar	bons Analyses	- EPH
-----------	----------	---------------	-------

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
C9-C18 Aliphatics	ND	11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:30	
C19-C36 Aliphatics	ND	11	mg/Kg dry	ı		MADEP-EPH-04-1.1	6/3/19		KLB
Unadjusted C11-C22 Aromatics	17	11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:30	KLB
C11-C22 Aromatics	13	11	mg/Kg dry	1		MADEP-EPH-04-1.1		6/7/19 2:30	KLB
Acenaphthene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:30	KLB
Accnaphthylene	ND	0.11	mg/Kg dry	1			6/3/19	6/7/19 2:30	KLB
Anthracene	ND	0.11		_		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:30	KLB
Benzo(a)anthracene	0.29	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:30	KLB
Benzo(a)pyrene	0.63		mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:30	KLB
Benzo(b)fluoranthene		0.11	mg/Kg dry	1		MADEP-EPH-04-1,1	6/3/19	6/7/19 2:30	KLB
Benzo(g,h,i)perylene	0.64	0.11	mg/Kg dry	1		MADEP-EPH-0+1.1	6/3/19	6/7/19 2:30	KLB
	0.33	11.0	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:30	KLB
Benzo(k)fluoranthene	0.23	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:30	KLB
Chrysene	0.37	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:30	KLB
Dibenz(a,h)anthracene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:30	KLB
Fluoranthene	0.78	0.11	mg/Kg dry	1		MADEP-EPH-04-1,1	6/3/19	6/7/19 2:30	KLB
Fluorene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:30	
Indeno(1,2,3-cd)pyrene	0.34	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:30	KLB
2-Methylnaphthalene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19		KLB
Naphthalene	ND	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1		6/7/19 2:30	KLB
Phenanthrene	0.26	0.11	mg/Kg dry	i		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:30	KLB
Pyrene	0.56	0.11	mg/Kg dry	1		MADEP-EPH-04-1.1	6/3/19	6/7/19 2:30	KLB
Surrogates		% Recovery				MADET-E['H-04-1.]	6/3/19	6/7/19 2:30	KLB
Chloroociadecane (COD)		73.4	Recovery Limits		Flag/Qual				
o-Terphenyl (OTP)		83.5	40-140					6/7/19 2:30	
2-Bromonaphthalene		118	40-140					6/7/19 2:30	
2-Fluorobiphenyl		129	40-140					6/7/19 2:30 6/7/19 2:30	

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019 Field Sample #: GP2-3 (7-9)

Sampled: 5/28/2019 10:50

Sample ID: 19E1819-12
Sample Matrix: Soil
Sample Flags: O-01

ample Flags: O-01 bil/Methanol Preservation Ratio: 1.42		Po	troleum Hydrocarb	ons Analyses	-VPH	•			
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Unadjusted C5-C8 Aliphatics	ND	8.6	mg/Kg dry	1		MADEP-VPH-Fcb 2018 Rev 2.1	6/3/19	6/3/19 14:36	КМВ
C5-C8 Aliphatics	ND	8.6	mg/Kg dry	I		MADEP-VPH-Fcb 2018 Rcv 2.1	6/3/19	6/3/19 14:36	КМВ
Unadjusted C9-C12 Aliphatics	ND	8.6	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 14:36	КМВ
C9-C12 Aliphatics	ND	8.6	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 14:36	KMB
C9-C10 Aromatics	ND	8.6	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 14:36	КМВ
Benzene	ND	0.043	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 14:36	КМВ
Ethylbenzene	ND	0.043	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 14:36	KMB
Methyl tert-Butyl Ether (MTBE)	ND	0.043	mg/Kg dry	i		MADEP-VPII-Fcb 2018 Rcv 2.1	6/3/19	6/3/19 14:36	КМВ
Naphthalene	ND	0.21	mg/Kg dry	1		MADEP-VPII-Feb 2018 Rev 2.1	6/3/19	6/3/19 14:36	КМВ
Toluene	ND	0.043	mg/Kg dry	1		MADEP-VPII-Fcb 2018 Rev 2.1	6/3/19	6/3/19 14:36	KMB
n+p Xylene	ND	0.086	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 14:36	КМВ
o-Xylene	ND	0.043	mg/Kg dry	1		MADEP-VPH-Feb 2018 Rev 2.1	6/3/19	6/3/19 14:36	КМВ
Surrogates		% Recovery	Recovery Limits		Flag/Qual				-
2,5-Dibromotoluene (FID)		101	70-130					6/3/19 14:36	
2,5-Dibromotoluene (PID)		96.6	70-130					6/3/19 14:36	

Project Location: Beaver St., Waltham, MA

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP2-3 (7-9)
Sample ID: 19E1819-12

Sampled: 5/28/2019 10:50

Sample Matrix: Soil

			Metals Anal	yses (Total)					
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony	ND	1.8	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:15	EJB
Arsenic	4.4	1.8	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:15	EJB
Barium	48	1.8	mg/Kg dry	t		SW-846 6010D	6/5/19	6/6/19 22:15	EJB
Beryllium	0.31	0.18	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:15	EJB
Cadmium	0.38	0.18	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:15	EJB
Chromium	11	0.36	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:15	EJB
Lead	110	0.54	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:15	EJB
Mercury	0.080	0.026	mg/Kg dry	1		SW-846 7471B	6/6/19	6/7/19 10:54	
Nickel	10	0.36	mg/Kg dry	1		SW-846 6010D	6/5/19		AJL
Sclenium	ND	3.6	mg/Kg dry	1		SW-846 6010D	6/5/19	6/6/19 22:15	EJB
Silver	ND	0.36	mg/Kg dry					6/6/19 22:15	EJB
Thallium	ND	1.8	mg/Kg dry	' '		SW-846 6010D	6/5/19	6/6/19 22:15	EJB
Vanadium	33	0.72				SW-846 6010D	6/5/19	6/6/19 22:15	EJB
Zinc	70	0.72	mg/Kg dry	i .		SW-846 6010D	6/5/19	. 6/6/19 22:15	EJB
	70	U.72	mg/Kg dry	I		SW-846 6010D	6/5/19	6/6/19 22:15	EJB

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP2-3 (7-9)

Sampled: 5/28/2019 10:50

Sample ID: 19E1819-12 Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	A malusa
% Solids	91.8		% Wt	ı		SM 2540G	6/5/19	6/5/19 15-48	Analyst

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019 Field Sample #: GP1-2 (0-2)

Sampled: 5/28/2019 10:00

Sample ID: 19E1819-13
Sample Matrix: Soil

Sampl	e Flags	: DL-03

Organochloride	Pesticides by	GC/ECD
----------------	---------------	--------

					202				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aldrin [1]	ND	0.031	mg/Kg dry	5		SW-846 8081B	6/3/19	6/6/19 22:30	TG
alpha-BHC [1]	ND	0.031	mg/Kg dry	5		SW-846 8081B	6/3/19	6/6/19 22:30	TG
beta-BHC [1]	ND	0.031	mg/Kg dry	5		SW-846 8081B	6/3/19	6/6/19 22:30	TG
delta-BHC [1]	ND	0.031	mg/Kg dry	5		SW-846 8081B	6/3/19	6/6/19 22:30	TG
gamma-BHC (Lindane) [1]	ND	0.012	mg/Kg dry	5		SW-846 8081B	6/3/19	6/6/19 22:30	TG
Chlordanc [1]	ND	0.12	mg/Kg dry	5		SW-846 8081B	6/3/19	6/6/19 22:30	TG
4,4'-DDD [1]	ND	0.025	mg/Kg dry	5		SW-846 8081B	6/3/19	6/6/19 22:30	TG
4,4'-DDE [1]	0.57	0.025	mg/Kg dry	5		SW-846 8081B	6/3/19	6/6/19 22:30	TG
4,4'-DDT [1]	0.48	0.025	mg/Kg dry	5		SW-846 8081B	6/3/19	6/6/19 22:30	TG
Dieldrin [1]	ND	0.025	mg/Kg dry	5		SW-846 8081B	6/3/19	6/6/19 22:30	TG
Endosulfan I [1]	ND	0.031	mg/Kg dry	5		SW-846 8081B	6/3/19	6/6/19 22:30	TG
Endosulfan II [1]	ND	0.050	mg/Kg dry	5		SW-846 8081B	6/3/19	6/6/19 22:30	TG
Endosulfan sulfate [1]	· ND	0.050	mg/Kg dry	5		SW-846 8081B	6/3/19	6/6/19 22:30	TG
Endrin [1]	ND	0.050	mg/Kg dry	5		SW-846 8081B	6/3/19	6/6/19 22:30	TG
Endrin ketone [1]	ND	0.050	mg/Kg dry	5		SW-846 8081B	6/3/19	6/6/19 22:30	TG
Heptachlor [1]	ND	0.031	mg/Kg dry	5		SW-846 8081B	6/3/19	6/6/19 22:30	TG
Heptachlor epoxide [1]	ND	0.031	mg/Kg dry	5		SW-846 8081B	6/3/19	6/6/19 22:30	TG
Hexachlorobenzene [1]	ND	0.037	mg/Kg dry	5		SW-846 8081B	6/3/19	6/6/19 22:30	TG
Methoxychlor [1]	ND	0.31	mg/Kg dry	5		SW-846 8081B	6/3/19	6/6/19 22:30	TG
Surrogates		% Recovery	Recovery Limits	1	Flag/Qual			0.0717 ##.30	- 10
Decachlorobiphenyl [1]		78.1	30-150					6/6/19 22:30	
Decachlorobiphenyl [2]		73.6	30-150					6/6/19 22:30	
Tetrachloro-m-xylene [1]		65.9	30-150					6/6/19 22:30	
Tetrachloro-m-xylene [2]		61.4	30-150					6/6/19 22:30	

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP1-2 (0-2)

Sampled: 5/28/2019 10:00

Sample ID: 19E1819-13
Sample Matrix: Soil

	•								
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analys
2,4-D [1]	ND	160	μg/kg dry	5	DL-03	SW-846 8151A	6/4/19	6/10/19 6:15	TG
2,4-DB [1]	ND	160	μg/kg dry	5	DL-03	SW-846 8151A	6/4/19	6/10/19 6:15	TG
2,4,5-TP (Silvex) [1]	ND	16	µg∕kg dry	5	DL-03	SW-846 8151A	6/4/19	6/10/19 6:15	TG
2,4,5-T [1]	ND	16	μg/kg dry	5	DL-03	SW-846 8151A	6/4/19	6/10/19 6:15	TG
Dalaipon [1]	ND	390	μg/kg dry	5	DL-03	SW-846 8151A	6/4/19	6/10/19 6:15	TG
Dicamba [1]	ND	16	μg/kg dry	5	DL-03	SW-846 8151A	6/4/19	6/10/19 6:15	TG
Dichloroprop [1]	ND	160	μg/kg dry	5	DL-03	SW-846 8151A	6/4/19	6/10/19 6:15	TG
Dinoseb [1]	ND	78	μg/kg dry	5	DL-03	SW-846 8151A	6/4/19	6/10/19 6:15	TG
MCPA[1]	ND	16000	μg/kg dry	5	DL-03	SW-846 8151A	6/4/19	6/10/19 6:15	TG
MCPP[1]	ND	16000	μg/kg dry	5	DL-03	SW-846 8151A	6/4/19	6/10/19 6:15	TG
Surrogates		% Recovery	Recovery Limits		Fing/Qual				
2,4-Dichlorophenylacetic acid [1]		74.3	30-150		DL-03			6/10/19 6:15	
2,4-Dichlorophenylacetic acid [2]		82.4	30-150		DL-03			6/10/19 6:15	

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019 Field Sample #: GP1-2 (0-2)

Sampled: 5/28/2019 10:00

Sample ID: 19E1819-13
Sample Matrix: Soil

Sample Flags: O-32

Polychlorinated Biphenyls with 3540 Soxhlet Extraction

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analys
Aroclor-1016 [1]	ND	0.097	mg/Kg dry	4		SW-846 8082A	6/3/19	6/5/19 21:47	AYH
Aroclor-1221 [1]	ND	0.097	mg/Kg dry	4		SW-846 8082A	6/3/19	6/5/19 21:47	AYH
Aroclor-1232 [1]	ND	0.097	mg/Kg dry	4		SW-846 8082A	6/3/19	6/5/19 21:47	
Aroclor-1242 [1]	ND	0.097	mg/Kg dry	4		SW-846 8082A	6/3/19	6/5/19 21:47	AYH AYH
Araclor-1248 [1]	ND	0.097	mg/Kg dry	4		SW-846 8082A	6/3/19	6/5/19 21:47	AYH
Aroclor-1254 [1]	ND	0.097	mg/Kg dry	4		SW-846 8082A	6/3/19	6/5/19 21:47	AYH
Aroclor-1260 [1]	ND	0.097	mg/Kg dry	4		SW-846 8082A	6/3/19	6/5/19 21:47	AYH
Aroclor-1262 [1]	ND	0.097	mg/Kg dry	4		SW-846 8082A	6/3/19	6/5/19 21:47	AYH
Aroclor-1268 [1]	ND	0.097	mg/Kg dry	4		SW-846 8082A	6/3/19	6/5/19 21:47	AYH
Surrogates		% Recovery	Recovery Limits		Flag/Qual				7
Decachlorobiphenyl [1]		89.1	30-150					6/5/19 21:47	
Decachlorobiphenyl [2]		97.4	30-150					6/5/19 21:47	
Tetrachloro-m-xylene [1]		94.0	30-150						
Tetrachloro-m-xylene [2]		94.6	30-150					6/5/19 21:47 6/5/19 21:47	

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP1-2 (0-2)

Sampled: 5/28/2019 10:00

Sample ID: 19E1819-13
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	Conventional	Chemistry	Parameters b	EPA/APHA/SV	V-846 Method	(Total)
--	--------------	-----------	--------------	-------------	--------------	---------

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Amalina
% Solids				-			- repared	Analyzeu	Analyst
70 00Hd3	79.7		% Wt	1		SM 2540G	6/5/19	6/5/19 15:48	IDN

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019 Field Sample #: GP1-6 (3-5)

Sampled: 5/28/2019 13:50

Sample ID: 19E1819-14
Sample Matrix: Soil

•		0	rganochloride Pesti	cides by GC/	ECD				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analys
Aldrin [1]	ND	0.0059	mg/Kg dry	ı		SW-846 8081B	6/3/19	6/6/19 22:57	TG
alpha-BHC [1]	ND	0.0059	mg/Kg dry	1		SW-846 8081B	6/3/19	6/6/19 22:57	TG
beta-BHC [1]	ND	0.0059	mg/Kg dry	1		SW-846 8081B	6/3/19	6/6/19 22:57	TG
delta-BHC [1]	ND	0.0059	mg/Kg dry	1		SW-846 8081B	6/3/19	6/6/19 22:57	TG
gamma-BHC (Lindane) [1]	ND	0.0023	mg/Kg dry	1		SW-846 8081B	6/3/19	6/6/19 22:57	TG
Chlordane [1]	ND	0.023	mg/Kg dry	1		SW-846 8081B	6/3/19	6/6/19 22:57	TG
4,4'-DDD [1]	ND	0.0047	mg/Kg dry	ı		SW-846 8081B	6/3/19	6/6/19 22:57	TG
4,4'-DDE [1]	0.027	0.0047	mg/Kg dry	1		SW-846 8081B	6/3/19	6/6/19 22:57	TG
4,4'-DDT [2]	0.020	0.0047	mg/Kg dry	ı		SW-846 8081B	6/3/19	6/6/19 22:57	TG
Dieldrin [1]	ND	0.0047	mg/Kg dry	1		SW-846 8081B	6/3/19	6/6/19 22:57	TG
Endosulfan I [I]	ND	0.0059	mg/Kg dry	1		SW-846 8081B	6/3/19	6/6/19 22:57	TG
Endosulfan II [1]	ND	0.0094	mg/Kg dry	1		SW-846 8081B	6/3/19	6/6/19 22:57	TG
Endosulfan sulfate [1]	ND	0.0094	mg/Kg dry	1		SW-846 8081B	6/3/19	6/6/19 22:57	TG
Endrin [1]	ND	0.0094	mg/Kg dry	1		SW-846 8081B	6/3/19	6/6/19 22:57	TG
Endrin ketone [1]	ND	0.0094	mg/Kg dry	1		SW-846 8081B	6/3/19	6/6/19 22:57	TG
Heptachlor [1]	ND	0.0059	mg/Kg dry	1		SW-846 8081B	6/3/19	6/6/19 22:57	TG
Heptachlor epoxide [1]	ND	0.0059	mg/Kg dry	ı		SW-846 8081B	6/3/19	6/6/19 22:57	TG
dexachlorobenzene [1]	ND	0.0070	mg/Kg dry	1		SW-846 8081B	6/3/19	6/6/19 22:57	TG
Methoxychlor [1]	ND	0.059	mg/Kg dry	1		SW-846 8081B	6/3/19	6/6/19 22:57	TG
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
Decachlorobiphenyl [1]		84.1	30-150					6/6/19 22:57	
Decachlorobiphenyl [2]		85.7	30-150					6/6/19 22:57	
Tetrachloro-m-xylene [1]		83.5	30-150					6/6/19 22:57	
Tetrachioro-m-xylene [2]		77.1	30-150					6/6/19 22:57	

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019 Field Sample #: GP1-6 (3-5)

Sampled: 5/28/2019 13:50

Sample ID: 19E1819-14
Sample Matrix: Soil

		•	Herbicides by	GC/ECD					
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
2,4-D [1]	ND	29	μg/kg dry	1		SW-846 8151A	6/4/19	6/10/19 6:54	TG
2,4-DB [1]	ND	29	μg/kg dry	1		SW-846 8151A	6/4/19	6/10/19 6:54	TG
2,4,5-TP (Silvex) [1]	ND	2.9	μg/kg dry	1		SW-846 8151A	6/4/19	6/10/19 6:54	TG
2,4,5-T [1]	ND	2.9	μg/kg dry	1		SW-846 8151A	6/4/19	6/10/19 6:54	TG
Dalaipon [1]	ND	73	μg/kg dry	1		SW-846 8151A	6/4/19	6/10/19 6:54	TG
Dicamba [1]	ND	2.9	μg/kg dry	1		SW-846 8151A	6/4/19	6/10/19 6:54	TG
Dichloroprop [1]	ND	29	μg/kg dry	I		SW-846 8151A	6/4/19	6/10/19 6:54	TG
Dinoseb [1]	ND	15	μg/kg dry	1		SW-846 8151A	6/4/19	6/10/19 6:54	TG
MCPA [1]	ND	2900	μg/kg dry	1		SW-846 8151A	6/4/19	6/10/19 6:54	TG
MCPP[I]	ND	2900	µg/kg dry	1		SW-846 8151A	6/4/19	6/10/19 6:54	TG
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
2,4-Dichlorophenylacetic acid [1]		79.9	30-150					6/10/19 6:54	
2,4-Dichlorophenylacetic acid [2]		84.0	30-150				,	6/10/19 6:54	

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019 Field Sample #: GP1-6 (3-5)

Sampled: 5/28/2019 13:50

Sample ID: 19E1819-14
Sample Matrix: Soil

Sample Flags: O-32

Polychlorinated Biphenyls with 3540 Soxhlet Extraction

Analyte	Results	RL	Uniis	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.092	mg/Kg dry	4		SW-846 8082A	6/3/19	6/5/19 22:00	AYH
Aroclor-1221 [1]	ND	0.092	mg/Kg dry	4		SW-846 8082A	6/3/19	6/5/19 22:00	
Aroclor-1232 [1]	ND	0.092	mg/Kg dry	4		SW-846 8082A	6/3/19	6/5/19 22:00	AYH
Aroclor-1242 [1]	ND	0.092	mg/Kg dry	4		SW-846 8082A	6/3/19		AYH
Aroclor-1248 [1]	ND	0.092	mg/Kg dry	4		SW-846 8082A		6/5/19 22:00	AYH
Aracior-1254 [1]	ND	0.092	mg/Kg dry	4			6/3/19	6/5/19 22:00	AYH
Aroclor-1260 [1]	ND	0.092	mg/Kg dry	4		SW-846 8082A	6/3/19	6/5/19 22:00	AYH
Aroclor-1262 [1]	ND	0.092				SW-846 8082A	6/3/19	6/5/19 22:00	AYH
Aroclor-1268 [1]			mg/Kg dry	4		SW-846 8082A	6/3/19	6/5/19 22:00	AYH
	ND	0.092	mg/Kg dry	4		SW-846 8082A	6/3/19	6/5/19 22:00	AYH
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
Decachlorobiphenyl [1]		82.2	30-150					6/5/19 22:00	
Decachlorobiphenyl [2]		92.1	30-150					6/5/19 22:00	
Tetrachloro-m-xylene [1]		82.4	30-150						
Tetrachloro-m-xylene [2]		83.4	30-150					6/5/19 22:00 6/5/19 22:00	

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019 Field Sample #: GP1-6 (3-5)

Sampled: 5/28/2019 13:50

Sample ID: 19E1819-14
Sample Matrix: Soil

Commondia	C11	Th				
Conventional	Chemistry	Parameters by	FPA/ADEFA	ICIN GAC BA.	48 - 8	TTY W.

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
% Solids	85.4		% Wı	1		SM 2540G	6/5/19	6/5/19 15:48	IDN

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP1-7 (3-5)

Sampled: 5/28/2019 14:55

Sample ID: 19E1819-15
Sample Matrix: Soil

		(Organochloride Pest	icides by GC	/ECD				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aldrin [1]	ND	0.0070	mg/Kg dry	1		SW-846 8081B	6/3/19	6/6/19 23:23	TG
alpha-BHC [1]	ND	0.0070	mg/Kg dry	1		SW-846 8081B	6/3/19	6/6/19 23:23	TG
beta-BHC [1]	ND	0.0070	mg/Kg dry	1		SW-846 8081B	6/3/19	6/6/19 23:23	
delta-BHC [1]	ND	0.0070	mg/Kg dry	1		SW-846 8081B	6/3/19	6/6/19 23:23	TG
gamma-BHC (Lindane) [1]	ND	0.0028	mg/Kg dry	1		SW-846 8081B	6/3/19		TG
Chlordane [1]	0.11	0.028	mg/Kg dry	1		SW-846 8081B	6/3/19	6/6/19 23:23	TG
4,4'-DDD [2]	0.44	0.22	mg/Kg dry	40		SW-846 8081B		6/6/19 23:23	TG
4,4'-DDE [1]	5.2	0.22	mg/Kg dry	40			6/3/19	6/7/19 8:33	TG
4,4'-DDT [1]	12	0.44	mg/Kg dry	80		SW-846 8081B	6/3/19	6/7/19 8:33	TG
Dieldrin [1]	0.092	0.0056				SW-846 8081B	6/3/19	6/7/19 11:14	TG
Endosulfan I [1]	ND	0.0070	mg/Kg dry	I		SW-846 8081B	6/3/19	6/6/19 23:23	TG
Endosulfan II [1]	ND		mg/Kg dry	1		SW-846 8081B	6/3/19	6/6/19 23:23	TG
Endosulfan sulfate [1]		0.011	mg/Kg dry	ı		SW-846 8081B	6/3/19	6/6/19 23:23	TG
Endrin [1]	, ND	0.011	mg/Kg dry	1		SW-846 8081B	6/3/19	6/6/19 23:23	TG
Endrin ketone (1)	0.035	0.011	mg/Kg dry	1		SW-846 8081B	6/3/19	6/6/19 23:23	TG
• •	0.013	0.011	mg/Kg dry	I	P-02	SW-846 8081B	6/3/19	6/6/19 23:23	TG
Heptachlor [1]	ND	0.0070	mg/Kg dry	1		SW-846 8081B	6/3/19	6/6/19 23:23	TG
Heptachlor epoxide [2]	0.0083	0.0070	mg/Kg dry	1	P-02	SW-846 8081B	6/3/19	6/6/19 23:23	TG
Texachlorobenzene [1]	ND	0.0083	mg/Kg dry	1		SW-846 8081B	6/3/19	6/6/19 23:23	TG
Methoxychlor [1]	ND	0.070	mg/Kg dry	1		SW-846 8081B	6/3/19	6/6/19 23:23	TG
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
Decachlorobiphenyl [1]		73.1	30-150					6/6/19 23:23	
Decachlorobiphenyl [2]		80.5	30-150					6/6/19 23:23	
Tetrachloro-m-xylene [1] Tetrachloro-m-xylene [2]		66.3	30-150					6/6/19 23:23	
renacmoro-m-xyrene (2)		59.7	30-150					6/6/19 23:23	

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

6/10/19 7:32

Date Received: 5/31/2019 Field Sample #: GP1-7 (3-5)

Sampled: 5/28/2019 14:55

Sample ID: 19E1819-15 Sample Matrix: Soil Sample Flags: DL-03

Sample Flags: DL-03			Herbicides by	GC/ECD					
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analysi
2,4-D [1]	ND	170	μg/kg dry	5		SW-846 8151A	6/4/19	6/10/19 7:32	TG
2,4-DB [1]	ND	170	μg/kg dry	5		SW-846 8151A	6/4/19		
2,4,5-TP (Silvex) [i]	ND	17	μg/kg dry	5		SW-846 8151A	6/4/19	6/10/19 7:32	TG
2,4,5-T [1]	ND	17	μg/kg dry	5		SW-846 8151A	6/4/19	6/10/19 7:32	TG
Dalalpon [1]	ND	430	μg/kg dry	5		SW-846 8151A	6/4/19	6/10/19 7:32	TG
Dicamba [1]	ND	17	μg/kg dry	5		SW-846 8151A	6/4/19	6/10/19 7:32	TG
Dichloroprop [1]	ND	170	μg/kg dry	5		SW-846 8151A	6/4/19	6/10/19 7:32	TG
Dinoseb [1]	ND	86	μg/kg dry	5		SW-846 8151A		6/10/19 7:32	TG
MCPA [1]	ND	17000	μg/kg dry	5			6/4/19	6/10/19 7:32	TG
MCPP [1]	ND	17000	μg/kg dry	5		SW-846 8151A	6/4/19	6/10/19 7:32	TG
Surrogates		% Recovery	Recovery Limits		FloriOvol	SW-846 8151A	6/4/19	6/10/19 7:32	TG
2,4-Dichlorophenylacetic acid [1]		70.3	30-150		Flag/Qual				
2,4-Dichlorophenylacetic acid [2]		81.3	30-150					6/10/19 7:32	

Project Location: Beaver St., Waltham, MA

Sample Description:

Work Order: 19E1819

Date Received: 5/31/2019
Field Sample #: GP1-7 (3-5)

Sampled: 5/28/2019 14:55

Sample ID: 19E1819-15
Sample Matrix: Soil

Sample Flags: O-32

Polychlorinated	Biphenyls with	3540 Soxhlet Extraction
-----------------	----------------	-------------------------

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.11	mg/Kg dry	4		SW-846 8082A	6/3/19	6/5/19 22:13	AYH
Aroclor-1221 [1]	ND	0.11	mg/Kg dry	4		SW-846 8082A	6/3/19	6/5/19 22:13	
Aroclor-1232 [1]	ND	0.11	mg/Kg dry	4		SW-846 8082A	6/3/19		AYH
Arocior-1242 [1]	ND	0.11	mg/Kg dry	4		SW-846 8082A	6/3/19	6/5/19 22:13	AYH
Aroclor-1248 [1]	ND	0.11	mg/Kg dry	4		SW-846 8082A	6/3/19	6/5/19 22:13	AYH
Aroclor-1254 [1]	ND	0.11	mg/Kg dry	4		SW-846 8082A	6/3/19	6/5/19 22:13	AYH
Arocior-1260 [1]	ND	0.11	mg/Kg dry	4		SW-846 8082A		6/5/19 22:13	AYH
Aroclor-1262 [1]	ND	0.11	mg/Kg dry	4			6/3/19	6/5/19 22:13	AYH
Aroclor-1268 [1]	ND	0.11	mg/Kg dry	4		SW-846 8082A	6/3/19	6/5/19 22:13	AYH
Surrogates		% Recovery	Recovery Limits		Flag/Qual	SW-846 8082A	6/3/19	6/5/19 22:13	АУН
Decachlorobiphenyl [1]		81.9	30-150					6/5/19 22:13	
Decachlorobiphenyl [2]		95.1	30-150					6/5/19 22:13	
Tetrachloro-m-xylene [1]		93.2	30-150					-	
Tetrachloro-m-xylene [2]		94.3	30-150					6/5/19 22:13 6/5/19 22:13	

Work Order: 19E1819

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Beaver St., Waltham, MA

Sample Description:

Date Received: 5/31/2019 Field Sample #: GP1-7 (3-5)

Sampled: 5/28/2019 14:55

Sample ID: 19E1819-15 Samole Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

	Analyte	Results	RL		Units	D945	E1 (0 1		Date	Date/Time	
% Solids			100		mits	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
70 Sonds		71.9		%	% Wt	1		SM 2540G	6/5/19	6/5/19 15:48	JDN

Sample Extraction Data

Prep Method: SW-846 3546-MADEP-EPH-04-1.1

Lab Number [Field ID]	Batch	Initial [g]	Final (mL)	Date	
19E1819-01 [GP1-1 (11-13)]	B232351	20.0			
19E1819-02 [GP1-2 (11-13)]	B232351		2.00	06/03/19	
19E1819-03 [GP1-3 (11-13)]	B232351	20.2	2.00	06/03/19	
19E1819-04 [GP1-4 (11-13)]		20.0	2.00	06/03/19	
19E1819-05 [GP1-5 (11-13)]	B232351	20.0	2.00	06/03/19	
	B232351	20.0	2.00	06/03/19	
19E1819-06 [GP1-6 (11-13)]	B232351	20.2	2.00	06/03/19	
19E1819-07 [GP1-7 (10-12)]	B232351	20.2	2.00	06/03/19	
19E1819-08 [GP1-8 (10-12)]	B232351	20.1	2.00	06/03/19	
19E1819-09 [GP1-9 (11-13)]	B232351	20,0	2.00	06/03/19	
19E1819-10 [GP2-1 (6-8)]	B232351	20.0	2.00		
19E1819-11 [GP2-2 (7-9)]	B232351	20.3		06/03/19	
19E1819-12 [GP2-3 (7-9)]	B232351		2.00	06/03/19	
	B232331	20.3	2.00	06/03/19	

Prep Method: MA VPH-MADEP-VPH-Feb 2018 Rev 2.1

19E1819-08 [GP1-8 (10-12)] B232287 6.10 6.80 06/03/19 19E1819-09 [GP1-9 (11-13)] B232287 21.5 16.1 06/03/19 19E1819-10 [GP2-1 (6-8)] B232287 6.30 5.20 06/03/19 19E1819-11 [GP2-2 (7-9)] B232287 18.0 15.7 06/03/19 19E1819-12 [GP2-3 (7-9)] B232287 7.10 5.60 06/03/19	Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date
	19E1819-09 [GP1-9 (11-13)]	B232287	21.5	16.1	06/03/19
	19E1819-10 [GP2-1 (6-8)]	B232287	6.30	5.20	06/03/19
	19E1819-11 [GP2-2 (7-9)]	B232287	18.0	15.7	06/03/19

Prep Method: MA VPH-MADEP-VPH-Feb 2018 Rev 2.1

Lab Number [Field ID]	Batch	Initial [g]	Final (mL)	Date	
19E1819-01 [GP1-1 (11-13)] 19E1819-02 [GP1-2 (11-13)]	B232289 B232289	20.9 19.5	15.8	06/03/19	
19E1819-03 [GP1-3 (11-13)] 19E1819-04 [GP1-4 (11-13)]	B232289	7.40	16.5 5.30	06/03/19 06/03/19	
19E1819-05 [GP1-5 (11-13)]	B232289 B232289	20.9 21.2	15.6 16.1	06/03/19 06/03/19	
19E1819-06 [GP1-6 (11-13)] 19E1819-07 [GP1-7 (10-12)]	B232289 B232289	7.50 18.6	5.40 25.6	06/03/19 06/03/19	

Prep Method: % Solids-SM 2540G

Lab Number [Field ID]	Batch	Date
19E1819-01 [GP1-1 (11-13)]	B232510	
19E1819-02 [GP1-2 (11-13)]	B232510	06/05/19
19E1819-03 [GP1-3 (11-13)]		06/05/19
19E1819-04 [GP1-4 (11-13)]	B232510	06/05/19
19E1819-05 [GP1-5 (11-13)]	B232510	06/05/19
• • • • • • • • • • • • • • • • • • • •	B232510	06/05/19
19E1819-06 [GP1-6 (11-13)]	B232510	06/05/19
19E1819-07 [GP1-7 (10-12)]	B232510	06/05/19
19E1819-08 [GP1-8 (10-12)]	B232510	06/05/19
19E1819-09 [GP1-9 (11-13)]	B232510	06/05/19
19E1819-10 [GP2-1 (6-8)]	B232510	
19E1819-11 [GP2-2 (7-9)]	B232510	06/05/19
1819-12 [GP2-3 (7-9)]	B232510	06/05/19
->E1819-13 [GP1-2 (0-2)]		06/05/19
19E1819-14 [GP1-6 (3-5)]	B232510	06/05/19
, , ,,,,	B232510	06/05/19
19E1819-15 [GP1-7 (3-5)]	B232510	06/05/19

Sample Extraction Data

Prep Method: SW-846 3050B-SW-846 6010D

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date	
19E1819-01 [GP1-1 (11-13)]	B232592	1,48	50.0	06/05/19	
19E1819-02 [GP1-2 (11-13)]	B232592	1.51	50.0	06/05/19	
19E1819-03 [GP1-3 (11-13)]	B232592	1.54	50.0	06/05/19	
9E1819-04 [GP1-4 (11-13)]	B232592	1.49	50.0	06/05/19	
9E1819-05 [GP1-5 (11-13)]	B232592	1.56	50.0	06/05/19	
9E1819-06 [GP1-6 (11-13)]	B232592	1.54	50.0	06/05/19	
9E1819-07 [GP1-7 (10-12)]	B232592	1.55	50.0	06/05/19	
9E1819-08 [GP1-8 (10-12)]	B232592	1.55	50.0	06/05/19	
9E1819-09 [GP1-9 (11-13)]	B232592	1.54	50.0	06/05/19	
9E1819-10 [GP2-1 (6-8)]	B232592	1.53	50.0	06/05/19	
9E1819-11 [GP2-2 (7-9)]	B232592	1.53	50.0	06/05/19	
9E1819-12 [GP2-3 (7-9)]	B232592	1.51	50,0	06/05/19	

Prep Method: SW-846 7471-SW-846 7471B

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date
19E1819-01 [GP1-1 (11-13)]	B232653	0.609	50.0	06/06/19
19E1819-02 [GP1-2 (11-13)]	B232653	0.616	50.0	06/06/19
19E1819-03 [GP1-3 (11-13)]	B232653	0.624	50.0	06/06/19
19E1819-04 [GP1-4 (11-13)]	B232653	0.633	50.0	06/06/19
19E1819-05 [GP1-5 (11-13)]	B232653	0.607	50.0	06/06/19
E1819-06 [GP1-6 (11-13)]	B232653	0.626	50.0	06/06/19
49E1819-07 [GP1-7 (10-12)]	B232653	0.613	50.0	06/06/19
19E1819-08 [GP1-8 (10-12)]	B232653	0.596	50.0	06/06/19
19E1819-09 [GP1-9 (11-13)] 19E1819-10 [GP2-1 (6-8)]	B232653	0.606	50.0	06/06/19
19E1819-11 [GP2-2 (7-9)]	B232653	0.591	50.0	06/06/19
9E1819-12 [GP2-3 (7-9)]	B232653	0.585	50.0	06/06/19
221012-12 (Ot 2-2 (1-2))	B232653	0.619	50.0	06/06/19

Prep Method: SW-846 3546-SW-846 8081B

Lab Number (Field ID)	Batch	Initial [g]	Final [mL]	Date
19E1819-13 [GP1-2 (0-2)]	B232333	10.1	10.0	06/03/19
19E1819-14 [GP1-6 (3-5)]	B232333	10.0	10.0	06/03/19
19E1819-15 [GP1-7 (3-5)]	B232333	10.0	10.0	06/03/19

Prep Method: SW-846 3540C-SW-846 8082A

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date	
19E1819-13 [GP1-2 (0-2)]	B232317	10.3	10.0	06/03/19	
19E1819-14 [GP1-6 (3-5)]	B232317	10.2	10.0	06/03/19	
19E1819-15 [GP1-7 (3-5)]	B232317	10.3	10.0	06/03/19	

Prep Method: SW-846 8151-SW-846 8151A

b Number [Field ID]	Batch	Initial [g]	Final [mL]	Date	
1819-13 [GP1-2 (0-2)]	B232364	20.2	5.00	06/04/19	
19E1819-14 [GP1-6 (3-5)]	B232364	20.0	5.00	06/04/19	
19E1819-15 [GP1-7 (3-5)]	B232364	20.2	5.00	06/04/19	

Sample Extraction Data

Prep Method: SW-846 5035-SW-846 8260C

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date	
19E1819-01 [GP1-1 (11-13)]	B232325	6.73	10.0	06/03/19	
19E1819-02 [GP1-2 (11-13)]	B232325	6.68	10.0	06/03/19	
19E1819-03 [GP1-3 (11-13)]	B232325	8.20	10.0	06/03/19	
19E1819-04 [GP1-4 (11-13)]	B232325	8.32	10.0	06/03/19	

Prep Method: SW-846 5035-SW-846 8260C

Lab Number (Field ID)	Batch	Initial [g]	Final [mL]	Date	
19E1819-05 [GP1-5 (11-13)] 19E1819-06 [GP1-6 (11-13)] 19E1819-07 [GP1-7 (10-12)] 19E1819-08 [GP1-8 (10-12)] 19E1819-09 [GP1-9 (11-13)] 19E1819-10 [GP2-1 (6-8)]	B232391 B232391 B232391 B232391 B232391 B232391	7.62 6.73 9.49 6.13 6.64	10.0 10.0 10.0 10.0 10.0	06/04/19 06/04/19 06/04/19 06/04/19	
19E1819-11 [GP2-2 (7-9)] 19E1819-12 [GP2-3 (7-9)]	B232391 B232391 B232391	6.86 6.94 7.56	10.0 10.0 10.0	06/04/19 06/04/19 06/04/19	

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B232325 - SW-846 5035										
Blank (B232325-BLK1)				Prepared &	Analyzed: 06	/03/19				
Acctone	ND	0.10	mg/Kg wet							
tert-Amyl Methyl Ether (TAME)	ND	0.0010	mg/Kg wet							
Benzene	ND	0.0020	mg/Kg wet							
Bromobenzene	ND	0.0020	mg/Kg wet							
Bromochloromethane	ND	0.0020	mg/Kg wet							
Bromodichloromethane	ND	0.0020	mg/Kg wet							
Bromoform	ND	0.0020	mg/Kg wet							
Bromomethane	NĐ	0.010	mg/Kg wet							V-34
2-Butanone (MEK)	ND	0.040	mg/Kg wet							V-34
n-Butylbenzene	ND	0.0020	mg/Kg wet							
scc-Butylbenzene	ND	0.0020	mg/Kg wet							
tert-Butylbenzene	ND	0.0020	mg/Kg wet							
tert-Butyl Ethyl Ether (TBEE)	ND	0.0010	mg/Kg wet							
Carbon Disulfide	ND	0.0060	mg/Kg wet							
Carbon Tetrachloride	ND	0.0020	mg/Kg wet							
Chlorobenzene	ND	0.0020	mg/Kg wet							
Chlorodibromomethane	ND	0.0010	mg/Kg wet							
Chloroethane	ND	0.010	mg/Kg wet							
Chloroform	ND	0.0040	mg/Kg wet							
loromethane	ND	0.010	mg/Kg wet							
2-Chlorotoluene	ND	0.0020	mg/Kg wet							
4-Chlorotoluene	ND	0.0020	mg/Kg wet							
1,2-Dibromo-3-chloropropane (DBCP)		0.0020								
1,2-Dibromoethane (EDB)	ND	0.0010	mg/Kg wet							
Dibromomethane	ND	0.0010	mg/Kg wet							
1,2-Dichlorobenzene	ND		mg/Kg wet							
1,3-Dichlorobenzene	ND	0.0020	mg/Kg wet							
I,4-Dichlorobenzene	ND	0.0020	mg/Kg wet							
Dichlorodifluoromethane (Freon 12)	ND	0.0020	mg/Kg wet							
,1-Dichloroethane	ND	0.010	mg/Kg wet							
,2-Dichloroethane	ND	0.0020	mg/Kg wet							
,1-Dichloroethylene	ND	0.0020	mg/Kg wet							
is-1,2-Dichloroethylene	ND	0.0040	mg/Kg wct							
· ·	ND	0.0020	mg/Kg wet							
rans-1,2-Dichloroethylene ,2-Dichloropropane	ND	0.0020	mg/Kg wet							
	ND	0.0020	mg/Kg wet							
,3-Dichloropropane	ND	0.0010	mg/Kg wet							
,2-Dichloropropane	ND	0.0020	mg/Kg wet							
,1-Dichloropropene	ND		mg/Kg wct							
is-1,3-Dichloropropene	ND	0.0010	mg/Kg wet							
ans-1,3-Dichloropropene	ND	0.0010	mg/Kg wet							
Diethyl Ether	ND	0.010	mg/Kg wct							
Disopropyl Ether (DIPE)	ND		mg/Kg wet							
4-Dioxane	ND		mg/Kg wet							V-16
thylbenzene	ND	0.0020	mg/Kg wet							·
exachlorobutadiene	ND	0.0020	mg/Kg wet							
-Hexanone (MBK)	ND	0.020	mg/Kg wet							
opropylbenzene (Cumene)	ND	0.0020	mg/Kg wet							
opropyltoluene (p-Cymene)	ND	0.0020	mg/Kg wet							
-thyl tert-Butyl Ether (MTBE)	ND	0.0040	mg/Kg wet							
lethylene Chloride	ND		mg/Kg wet							
-Methyl-2-pentanone (MIBK)	ND		mg/Kg wet							
aphthalene	ND		mg/Kg wet							

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B232325 - SW-846 5035									V	-	
Blank (B232325-BLK1)				Prepared & A	Analyzed: 06/	03/19		···		···	
n-Propylbenzene	ND	0.0020	mg/Kg wet								
Styrene	ND	0.0020	mg/Kg wet								
1,1,1,2-Tetrachloroethane	ND	0.0020	mg/Kg wet								
1,1,2,2-Tetrachloroethane	ND	0.0010	mg/Kg wet								
Tetrachloroethylene	ND	0.0020	mg/Kg wet								
Tetrahydrofuran	ND	0.010	mg/Kg wet								
Toluene	ND	0.0020	mg/Kg wct								
1,2,3-Trichlorobenzene	ND	0.0020	mg/Kg wet								
1,2,4-Trichlessettess	ND	0.0020	mg/Kg wet							V-05	
1,1,1-Trichloroethane	ND	0.0020	mg/Kg wet								
1,1,2-Trichloroethane Trichloroethylene	ND	0.0020	mg/Kg wet								
	ND	0.0020	mg/Kg wet								
Trichlorofluoromethane (Freon 11) 1.2,3-Trichloropropane	ND	0.010	mg/Kg wet								
1,2,4-Trimethylbenzene	ND	0.0020	mg/Kg wet								
1,3,5-Trimethylbenzene	ND	0.0020	mg/Kg wet								
Vinyi Chloride	ND	0.0020	mg/Kg wet								
m+p Xylene	ND	0.010	mg/Kg wet								
o-Xylene	ND	0.0040	mg/Kg wet								
•	ND	0.0020	mg/Kg wet								
итоgate: 1,2-Dichloroethane-d4 Surrogate: Toluene-d8	0.0541		mg/Kg wet	0.0500		108	70-130				
Surrogate: 1010ene-08 Surrogate: 4-Bromofluorobenzene	0.0513		mg/Kg wet	0.0500		103	70-130				
omrogate. 4-Diomonationenzene	0.0512		mg/Kg wet	0.0500		102	70-130				
LCS (B232325-BS1)				Prepared & A	nalyzed: 06/0	3/19					
Acetone	0.246	0.10	mg/Kg wet	0.200		123	40-160				
tert-Amyl Methyl Ether (TAME)	0.0206	0.0010	mg/Kg wet	0.0200		103	70-130				
Benzene	0.0191	0.0020	mg/Kg wet	0.0200		95.6	70-130				
Bromobenzene	0.0210	0.0020	mg/Kg wet	0.0200		105	70-130				
Bromochloromethane	0.0192	0.0020	mg/Kg wet	0.0200		96.0	70-130				
Bromodichloromethane	0.0225	0.0020	mg/Kg wet	0.0200		112	70-130				
Bromoform	0.0241	0.0020	mg/Kg wet	0.0200		120	70-130				
Bromomethane	0.0149	0.010	mg/Kg wet	0.0200		74.5	40-160			V-34	
-Butanone (MEK)	0.192	0.040	mg/Kg wet	0.200		95.8	40-160				
-Butylbenzene	0.0178	0.0020	mg/Kg wet	0.0200		88.9	70-130				
ec-Butylbenzene	0.0182	0.0020	mg/Kg wet	0.0200		90.8	70-130				
ert-Butylbenzene	0.0180	0.0020	mg/Kg wet	0.0200		89.9	70-130				
ert-Butyl Ethyl Ether (TBEE)	0.0194	0.0010	mg/Kg wet	0.0200		97.0	70-130				
'arbon Disulfide	0.0261		mg/Kg wet	0.0200		130	70-130				
Carbon Tetrachloride	0.0237		mg/Kg wet	0.0200		119	70-130			V-20	
hlorobenzene	0.0193		mg/Kg wet	0.0200		96.4	70-130				
hlorodibromomethane	0.0255		mg/Kg wet	0.0200		128	70-130				
Phloroethane Phloroform	0,0235		mg/Kg wet	0.0200		117	70-130				
hloromethane	0.0210		mg/Kg wet	0.0200		105	70-130				
-Chlorotoluene	0.0158		mg/Kg wet	0.0200		78.8	40-160				
-Chlorotoluene	0,0221		mg/Kg wet	0.0200		111	70-130				
2-Dibromo-3-chloropropane (DBCP)	0.0222		mg/Kg wet	0.0200		111	70-130				
`-Dibromoethane (EDB)	0.0173		mg/Kg wet	0.0200		86.3	70-130				
oromomethane	0.0223		mg/Kg wet	0.0200		112	70-130				
2-Dichlorobenzene	0.0207		mg/Kg wet	0.0200		104	70-130				
3-Dichlorobenzene	0.0183	0.0020	mg/Kg wei	0.0200		91.7	70-130				
		0.0000									
4-Dichlorobenzene	0.0185 0.0176		mg/Kg wet mg/Kg wet	0.0200 0.0200		92.5 88.0	70-130 70-130				

Апаlyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B232325 - SW-846 5035											
LCS (B232325-BS1)				Prepared &	Analyzed: 06	/03/10					
Dichlorodifluoromethane (Freon 12)	0.0138	0.010	mg/Kg wct	0.0200			40.170				
1,1-Dichloroethane	0.0193	0.0020	mg/Kg wet	0.0200		69.0	40-160			L-14	
,2-Dichloroethane	0.0228	0.0020	mg/Kg wet	0.0200		96.7	70-130				
,1-Dichloroethylene	0.0242	0.0040	mg/Kg wet	0.0200		114	70-130				
ris-1,2-Dichloroethylene	0.0185	0.0020	mg/Kg wet	0.0200		121	70-130				
rans-1,2-Dichloroethylone	0.0198	0.0020	mg/Kg wet	0.0200		92.6	70-130				
,2-Dichloropropane	0.0195	0.0020	mg/Kg wet	0.0200		98.8	70-130				
,3-Dichloropropane	0.0193	0.0010	mg/Kg wet	0.0200		97.3	70-130				
,2-Dichloropropane	0.0218	0.0020	mg/Kg wet	0.0200		96.6	70-130				
,1-Dichloropropene	0.0196	0.0020	mg/Kg wet			109	70-130				
is-1,3-Dichloropropene	0.0193	0.0010	mg/Kg wet	0.0200		98.0	70-130				
ans-1,3-Dichloropropene	0.0229	0.0010	mg/Kg wet	0.0200		96.4	70-130				
icthyl Ether	0.0215	0.010	mg/Kg wet	0.0200		114	70-130				
iisopropyl Ether (DIPE)	0.0179	0.0010		0.0200		108	70-130				
4-Dioxane			mg/Kg wet	0.0200		89.5	70-130				
liylbenzene	0.201	0.10	mg/Kg wet	0.200		101	40-160			V-16	
exachlorobutadione	0.0198	0.0020	mg/Kg wet	0.0200		99.0	70-130				
Hexanone (MBK)	0.0219	0.0020	mg/Kg wet	0.0200		109	70-130				
opropylbenzene (Cumene)	0.196	0.020	mg/Kg wet	0.200		98.1	40-160				
sopropyltolucne (p-Cymene)	0.0224	0.0020	mg/Kg wet	0.0200		112	70-130				
ethyl tert-Buryl Ether (MTBE)	0.0184	0.0020	mg/Kg wet	0.0200		92.2	70-130				
ethylene Chloride	0.0220	0.0040	mg/Kg wet	0.0200		110	70-130				
Methyl-2-pentanone (MIBK)	0.0225	0.010	mg/Kg wet	0.0200		113	70-130				
phthalene	0.197	0.020	mg/Kg wet	0.200		98.3	40-160				
Propylbenzene	0.0163	0.0040	mg/Kg wet	0.0200		81.5	70-130			V-05	
rene	0.0218	0.0020	mg/Kg wet	0.0200		109	70-130				
,1,2-Tetrachloroethane	0.0209	0.0020	mg/Kg wet	0.0200		104	70-130				
,2,2-Tetrachloroethane	0.0226	0.0020	mg/Kg wet	0.0200		113	70-130				
irachloroethylene	0.0212	0.0010	mg/Kg wet	0.0200		106	70-130				
rahydrofuran	0.0237	0.0020	mg/Kg wet	0.0200		118	70-130				
uene	0.0176	0.010	mg/Kg wet	0.0200		87.8	70-130				
,3-Trichlorobenzene	0.0209	0.0020	mg/Kg wet	0.0200		104	70-130				
,4-Trichlorobenzene	0.0179	0.0020	mg/Kg wet	0.0200		89.6	70-130				
,1-Trichloroethane	0.0187	0.0020	mg/Kg wet	0.0200		93.4	70-130			V-05	
	0.0245	0.0020	mg/Kg wet	0.0200		122	70-130			V-20	
2-Trichloroethane	0.0220	0.0020	mg/Kg wct	0.0200		110	70-130				
chloroethylene	0.0215	0.0020	mg/Kg wet	0.0200		107	70-130				
chlorofluoromethane (Freon 11)	0.0246	0.010	mg/Kg wet	0.0200		123	70-130			V-20	
3-Trichloropropane	0.0199	0.0020	mg/Kg wet	0.0200		99.7	70-130			1 40	
4-Trimethylbenzene	0.0173	0.0020	mg/Kg wei	0.0200		86.5	70-130				
5-Trimethylbenzene	0.0225	0.0020	mg/Kg wet	0.0200		113	70-130				
yl Chloride	0.0169	0.010	mg/Kg wet	0.0200		84.7	70-130				
p Xylene	0.0409	0.0040	mg/Kg wet	0.0400		102	70-130				
ylene	0.0207		mg/Kg wet	0.0200		104	70-130				
rogate: 1,2-Dichloroethane-d4	0.0543		ng/Kg wet	0.0500							
rogate: Toluene-d8	0.0482		ng/Kg wet	0.0500		109	70-130				
rogate: 4-Bromofluorobenzene	0.0570		ng/Kg wet	0.0500		96.5 114	70-130 70-130				

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD	N-4	
Batch B232325 - SW-846 5035				23161	acoun.	70INEC	Lanns	ICPD	Limit	Notes	
LCS Dup (B232325-BSD1)			*	Prepared &	Analyzed: 06/0	3/19					
Acetone	0.243	0.10	mg/Kg wet	0.200	theryzeu. ooro	122	40-160	1.12	20		
tert-Amyl Methyl Ether (TAME)	0.0205	0.0010	mg/Kg wet	0.0200		102	70-130	0.779	20		T
Benzene	0.0186	0.0020	mg/Kg wet	0.0200		93.2	70-130	2.62	20		
Bromobenzene	0.0191	0.0020	mg/Kg wet	0.0200		95.6	70-130	9.32	20 20		
Bromochloromethane	0.0191	0.0020	mg/Kg wet	0.0200		95.4	70-130	0.616	20		
Bromodichloromethane	0.0222	0.0020	mg/Kg wet	0.0200		111	70-130	1.12	20		
Bromoform	0.0211	0.0020	mg/Kg wet	0.0200		106	70-130	13,2	20		
Bromomethane	0.0149	0.010	mg/Kg wet	0.0200		74.3	40-160	0.282	20	V-34	ŧ
2-Butanone (MEK)	0.182	0.040	mg/Kg wet	0.200		91.0	40-160	5.15	20	4-0-4	†
n-Butylbenzene	0.0175	0.0020	mg/Kg wet	0.0200		87.6	70-130	1.39	20		'
scc-Butylbenzene	0.0181	0.0020	mg/Kg wet	0.0200		90.4	70-130	0.386	20		
tert-Butylbenzene	0.0176	0.0020	mg/Kg wet	0.0200		88.1	70-130	1.98	20		
ten-Butyl Ethyl Ether (TBEE)	0.0188	0.0010	mg/Kg wet	0.0200		94.0	70-130	3.19	20		
Carbon Disulfide	0.0251	0.0060	mg/Kg wet	0.0200		126	70-130	3.72	20		
Carbon Tetrachloride	0.0238	0.0020	mg/Kg wet	0.0200		119	70-130	0.118	20	V-20	
Chlorobenzene	0.0192	0.0020	mg/Kg wet	0.0200		96.2	70-130	0.166	20		
Chlorodibromomethane	0.0246	0.0010	mg/Kg wet	0.0200		123	70-130	3.83	20		
Chloroethane Chloroform	0.0229	0.010	mg/Kg wet	0.0200		114	70-130	2.52	20		
- hloromethane	0.0208	0.0040	mg/Kg wet	0.0200		104	70-130	1.23	20		
Chlorotoluene	0.0151	0.010	mg/Kg wet	0.0200		75.7	40-160	4.12	20		t
4-Chlorotoluene	0.0199	0.0020	mg/Kg wet	0.0200		99.7	70-130	10.4	20		
1,2-Dibromo-3-chloropropane (DBCP)	0.0204	0.0020	mg/Kg wet	0.0200		102	70-130	8.42	20		
1,2-Dibromoethane (EDB)	0.0184	0.0020	mg/Kg wet	0.0200		92.1	70-130	6.47	20		
Dibromomethane	0.0203	0.0010	mg/Kg wet	0.0200		102	70-130	9.43	20		
1,2-Dichlorobenzene	0.0200	0.0020	mg/Kg wet	0.0200		100	70-130	3.42	20		
1,3-Dichlorobenzene	0.0180	0.0020	mg/Kg wet	0.0200		89.8	70-130	2.07	20		
1,4-Dichlorobenzene	0.0183	0.0020	mg/Kg wet	0.0200		91.6	70-130	1.01	20		
Dichlorodifluoromethane (Freon 12)	0.0171	0.0020	mg/Kg wet	0.0200		85.6	70-130	2.78	20		
1,1-Dichloroethane	0.0129	0.010	mg/Kg wet	0.0200		64.3	40-160	7.02	20	L-14	†
1,2-Dichloroethane	0.0186	0.0020 0.0020	mg/Kg wet	0.0200		93.0	70-130	3.92	20		
1,1-Dichloroethylene	0.0233 0.0239	0.0020	mg/Kg wet	0.0200		117	70-130	2.36	20		
cis-1,2-Dichloroethylene		0.0020	mg/Kg wet	0.0200		119	70-130	1.44	20		
trans-1,2-Dichloroethylene	0.0182 0.0199	0.0020	mg/Kg wet	0.0200		91.1	70-130	1.61	20		
1,2-Dichloropropane	0.0199	0.0020	mg/Kg wet mg/Kg wet	0.0200		99.4	70-130	0.606	20		
1,3-Dichloropropane	0.0197	0.0010	mg/Kg wet	0.0200 0.0200		98.4	70-130	1.12	20		
2,2-Dichloropropane	0.0207		mg/Kg wet	0.0200		97.4	70-130	0.783	20		
1,1-Dichloropropene	0.0203		mg/Kg wet	0.0200		103	70-130	5.28	20		
cis-1,3-Dichloropropene	0.0193		mg/Kg wet	0.0200		101	70-130	3.36	20		
mans-1,3-Dichloropropene	0.0205		mg/Kg wet	0.0200		96.6 102	70-130	0.145	20		
Diethyl Ether	0.0209		mg/Kg wet	0.0200		102	70-130 70-130	11.1	20		
Diisopropyl Ether (DIPE)	0.0175		mg/Kg wei	0.0200		87.5	70-130	2.80 2.29	20		
,4-Dioxane	0.181		mg/Kg wet	0.200		90.3	40-160	10.7	20	V 16	_
Ethylbenzene	0.0189		mg/Kg wet	0.0200		94.3	70-130	4.79	20	V-16	t
Hexachlorobutadiene	0.0209		mg/Kg wet	0.0200		105	70-130	4.49	20 20		
?-Hexanone (MBK)	0.198		mg/Kg wet	0.200		99.0	40-160	0.950	20		t
sopropylbenzene (Cumene)	0.0206		mg/Kg wet	0.0200		103	70-130	8.51	20		1
Isopropyltoluene (p-Cymene)	0.0183		mg/Kg wet	0.0200		91.6	70-130	0.620	20		
hyl tert-Butyl Ether (MTBE)	0.0214	0.0040	mg/Kg wet	0.0200		107	70-130	2.73	20		
Acthylene Chloride	0.0209		mg/Kg wet	0.0200		104	70-130	7.52	20		
i-Methyl-2-pentanone (MIBK)	0.194		mg/Kg wet	0.200		96.8	40-160	1.50	20		t
Naphthalene	0.0149		mg/Kg wet	0.0200		74.7	70-130	8.73	20	V-05	ı

Analyte	Result	Limit	Units	Level	Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B232325 - SW-846 5035							i			110103
LCS Dup (B232325-BSD1)				Prepared & /	Analyzed: 06/	03/19				
n-Propylbenzene	0.0197	0.0020	mg/Kg wet	0.0200		98.4	70-130	10.1	20	
Styrene	0.0192	0.0020	mg/Kg wet	0.0200		96.2	70-130	8.23	20	
1,1,1,2-Tetrachioroethane	0.0212	0.0020	mg/Kg wet	0.0200		106	70-130	6.37	20	
1,1,2,2-Tetrachloroethane	0.0189	0.0010	mg/Kg wet	0.0200		94.7	70-130	11.5	20	
Tetrachloroethylene	0.0228	0.0020	mg/Kg wet	0.0200		114	70-130	3.52	20	
Tetrahydrofuran	0.0162	0.010	mg/Kg wet	0.0200		81.1	70-130	7.93	20	
Toluene	0.0201	0.0020	mg/Kg wet	0.0200		101	70-130	3.79	20	
1,2,3-Trichlorobenzene	0.0164	0.0020	mg/Kg wet	0.0200		81.9	70-130	9.03	20	
1,2,4-Trichlorobenzene	0.0168	0.0020	mg/Kg wet	0.0200		83.8	70-130	10.9	20	****
1,1,1-Trichloroethane	0.0241	0.0020	mg/Kg wet	0.0200		120	70-130	1.68		V-05
1,1,2-Trichloroethane	0.0222	0.0020	mg/Kg wet	0.0200		111	70-130		20	V-20
Trichloroethylene	0.0213	0.0020	mg/Kg wet	0.0200		106	70-130	1.10	20	
Trichlorofluoromethane (Freon 11)	0.0242	0.010	mg/Kg wet	0.0200		121		0.870	20	
1.2,3-Trichloropropane	0.0179	0.0020	mg/Kg wet	0.0200		89.4	70-130	1.89	20	V-20
1,2,4-Trimethylbenzene	0.0169	0.0020	mg/Kg wet	0.0200			70-130	10.9	20	
1,3,5-Trimethylbenzene	0,0209	0.0020	mg/Kg wet	0.0200		84.4 104	70-130	2.42	20	
Vinyl Chloride	0.0170	0.010	mg/Kg wet	0.0200			70-130	7.65	20	
m+p Xylene	0.0396	0.0040	mg/Kg wet	0.0200		85.0	70-130	0.365	20	
o-Xylene	0.0190	0.0020	mg/Kg wet	0.0200		98.9	70-130	3.36	20	
rrogate: 1,2-Dichloroethane-d4	0.0523					94.8	70-130	8.91	20	
பாogate: Toluene-d8	0.0323		mg/Kg wet	0.0500		105	70-130			
_	0.0409		mg/Kg wet	0.0500		97.8	70-130			
satch B232391 - SW-846 5035	0.0546		mg/Kg wet	0.0500		109	70-130			
Surrogate: 4-Bromofluorobenzene Batch B232391 - SW-846 5035 Blank (B232391-BLK1)			P	0.0500 repared & A	nalyzed: 06/0		70-130			
Batch B232391 - SW-846 5035 Blank (B232391-BLK1) Acctone	ND	0.10	mg/Kg wet		nalyzed: 06/0		70-130			R-05
Batch B232391 - SW-846 5035 Blank (B232391-BLK1) Acctone ert-Amyl Methyl Ether (TAME)	ND ND	0.0010	mg/Kg wet		nalyzed: 06/0		70-130			R-05
Batch B232391 - SW-846 5035 Blank (B232391-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Jenzene	ND ND ND	0.0010 0.0020	mg/Kg wet mg/Kg wet mg/Kg wet		nalyzed: 06/0		70-130			R-05
Batch B232391 - SW-846 5035 Blank (B232391-BLK1) Acctone ert-Amyl Methyl Ether (TAME) Jenzene stomobenzene	ND ND ND ND	0.0010 0.0020 0.0020	mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet		nalyzed: 06/0		70-130			R-05
Blank (B232391 - SW-846 5035 Blank (B232391-BLK1) Acctone ert-Amyl Methyl Ether (TAME) Benzene fromobenzene fromochloromethane	ND ND ND ND	0.0010 0.0020 0.0020 0.0020	mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet		nałyzed: 06/0		70-130			R-05
Batch B232391 - SW-846 5035 Blank (B232391-BLK1) Acetone ert-Amyl Methyl Ether (TAME) denzene fromobenzene fromochloromethane romodichloromethane	ND ND ND ND	0.0010 0.0020 0.0020 0.0020 0.0020	mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet		nalyzed: 06/0		70-130			R-05
Batch B232391 - SW-846 5035 Blank (B232391-BLK1) Acetone ert-Amyl Methyl Ether (TAME) denzene fromobenzene fromochloromethane fromodichloromethane fromoform	ND ND ND ND ND ND	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020	mg/Kg wet		nalyzed: 06/0		70-130			R-05
Batch B232391 - SW-846 5035 Blank (B232391-BLK1) Acctone crt-Amyl Methyl Ether (TAME) denzene fromobenzene fromochloromethane fromodichloromethane fromoform fromomethane	ND	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010	mg/Kg wet		nalyzed: 06/0		70-130			
Batch B232391 - SW-846 5035 Blank (B232391-BLK1) Acctone ert-Amyl Methyl Ether (TAME) Benzene fromobenzene fromochloromethane fromodichloromethane fromoform fromomethane fromomethane fromomethane fromomethane fromomethane fromomethane fromomethane Butanone (MEK)	ND	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010 0.040	mg/Kg wet		nalyzed: 06/0		70-130			V-34
Batch B232391 - SW-846 5035 Blank (B232391-BLK1) Acetone ert-Amyl Methyl Ether (TAME) denzene fromobenzene fromochloromethane fromodichloromethane fromoform fromomethane fromomethane fromomethane fromomethane fromomethane Butanone (MEK) Butylbenzene	ND	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010	mg/Kg wet		nalyzed: 06/0		70-130			
Batch B232391 - SW-846 5035 Blank (B232391-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene fromobenzene fromochloromethane fromodichloromethane fromoform fromomethane Butanone (MEK) Butylbenzene c-Butylbenzene	ND	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010 0.040	mg/Kg wet		nalyzed: 06/0		70-130			V-34
Batch B232391 - SW-846 5035 Blank (B232391-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene fromobenzene fromochloromethane fromochloromethane fromoform fromomethane fromomethane fromomethane Butanone (MEK) Butylbenzene c-Butylbenzene fromothere	ND N	0.0010 0.0020 0.0020 0.0020 0.0020 0.010 0.040 0.0020 0.0020	mg/Kg wet		nalyzed: 06/0		70-130			V-34
Batch B232391 - SW-846 5035 Blank (B232391-BLK1) Acetone ert-Amyl Methyl Ether (TAME) denzene fromobenzene fromochloromethane fromochloromethane fromoform fromomethane Butanone (MEK) Butylbenzene c-Butylbenzene fri-Butylbenzene fri-Butylbenzene fri-Butyl Ethyl Ether (TBEE)	ND N	0.0010 0.0020 0.0020 0.0020 0.0020 0.010 0.040 0.0020 0.0020	mg/Kg wet		nalyzed: 06/0		70-130			V-34
Batch B232391 - SW-846 5035 Blank (B232391-BLK1) Acetone ert-Amyl Methyl Ether (TAME) denzene fromobenzene fromochloromethane romodichloromethane romoform romomethane Butanone (MEK) Butylbenzene c-Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE)	ND N	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010 0.040 0.0020 0.0020 0.0020	mg/Kg wet		nalyzed: 06/0		70-130			V-34
Batch B232391 - SW-846 5035 Blank (B232391-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene fromobenzene fromochloromethane fromochloromethane fromomethane fromomethane Butanone (MEK) Butylbenzene c-Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE) from Disulfide from Tetrachloride	ND N	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010 0.040 0.0020 0.0020 0.0020 0.0020	mg/Kg wet		nalyzed: 06/0		70-130			V-34
Blank (B232391 - SW-846 5035 Blank (B232391-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene fromobenzene fromochloromethane fromochloromethane fromoform fromomethane Butanone (MEK) Butylbenzene c-Butylbenzene rt-Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE) from Disulfide from Tetrachloride follorobenzene	ND N	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010 0.040 0.0020 0.0020 0.0020 0.0020	mg/Kg wet		nalyzed: 06/0		70-130			V-34
Blank (B232391 - SW-846 5035 Blank (B232391-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene fromobenzene fromochloromethane fromochloromethane fromoform fromomethane Butanone (MEK) Butylbenzene c-Butylbenzene rt-Butylbenzene rt-Butylbenzene fr-Butyl Ethyl Ether (TBEE) from Disulfide from Tetrachloride forordibromomethane	ND N	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010 0.040 0.0020 0.0020 0.0020 0.0010 0.0060 0.0020	mg/Kg wet		nalyzed: 06/0		70-130			V-34
Blank (B232391 - SW-846 5035 Blank (B232391-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene fromobenzene fromochloromethane fromochloromethane fromoform fromomethane Butanone (MEK) Butylbenzene c-Butylbenzene c-Butylbenzene rt-Butyl Ethyl Ether (TBEE) from Disulfide from Tetrachloride fallorobenzene fallorodibromomethane fallorodibromomethane	ND N	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010 0.040 0.0020 0.0020 0.0020 0.0060 0.0020 0.0020	mg/Kg wet		nalyzed: 06/0		70-130			V-34
Blank (B232391 - SW-846 5035 Blank (B232391-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Idenzene fromobenzene fromochloromethane fromodichloromethane fromoform fromomethane Butanone (MEK) Butylbenzene fr-Butylbenzene fr-Butylbenzene fr-Butylbenzene fr-Butyl Ethyl Ether (TBEE) from Disulfide from Totrachloride fromoromethane fromomethane	ND N	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010 0.040 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0010 0.0010	mg/Kg wet		nalyzed: 06/0		70-130			V-34
Blank (B232391 - SW-846 5035 Blank (B232391-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Idenzene fromobenzene fromochloromethane fromodichloromethane fromomethane fromomethane fromomethane Butanone (MEK) Butylbenzene fri-Butylbenzene fri-Butylbenzene fri-Butyl Ethyl Ether (TBEE) fribon Disulfide fribon Tetrachloride friboromethane friboromethane friboroform friboromethane friboromethane friboromethane	ND N	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010 0.040 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0010 0.0040	mg/Kg wet		nalyzed: 06/0		70-130			V-34
Batch B232391 - SW-846 5035 Blank (B232391-BLK1) Acctone art-Amyl Methyl Ether (TAME) Benzene romobenzene romochloromethane romodichloromethane romoform romomethane Butanone (MEK) Butylbenzene c-Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride altorobenzene altorodibromomethane altoroform loromethane chloroform loromethane Chlorotoluene	ND N	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010 0.040 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0010 0.0040 0.010	mg/Kg wet		nalyzed: 06/0		70-130			V-34
Batch B232391 - SW-846 5035 Blank (B232391-BLK1) Acctone art-Amyl Methyl Ether (TAME) Benzene romochloromethane romodichloromethane romoform romomethane Butanone (MEK) Butylbenzene c-Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride altorobenzene altorodibromomethane plorocthane altoroform loromethane Chlorotoluene Chlorotoluene	ND N	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010 0.040 0.0020 0.0020 0.0010 0.0060 0.0020 0.0010 0.010 0.0040 0.010 0.0040 0.010 0.0020	mg/Kg wet		nalyzed: 06/0		70-130			V-34
Batch B232391 - SW-846 5035 Blank (B232391-BLK1) Acetone ert-Amyl Methyl Ether (TAME) denzene romochloromethane romodichloromethane romoform romomethane Butanone (MEK) Butylbenzene c-Butylbenzene rt-Butyl Ethyl Ether (TBEE) urbon Disulfide urbon Tetrachloride altorodiromomethane altorodiromomethane oloroform loromethane chlorotoluene Chlorotoluene Dibromo-3-chloropropane (DBCP)	ND N	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010 0.040 0.0020 0.0020 0.0020 0.0010 0.0060 0.0020 0.0010 0.0040 0.010 0.0040 0.010 0.0020 0.0020	mg/Kg wet		nalyzed: 06/0		70-130			V-34
Blank (B232391 - SW-846 5035 Blank (B232391-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene fromobenzene fromochloromethane fromodichloromethane fromomethane fromomethane Butanone (MEK) Butylbenzene fr-Butylbenzene fr-Butylbenzene fr-Butylbenzene fr-Butyl Ethyl Ether (TBEE) Aurbon Disulfide fromothane foromethane foromethane foromethane foromethane foromethane foromethane foromethane Chlorotoluene Chlorotoluene Dibromo-3-chloropropane (DBCP) -Dibromoethane (EDB)	ND N	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010 0.040 0.0020 0.0020 0.0020 0.0020 0.0010 0.0040 0.0020 0.0010 0.0020 0.0020 0.0020 0.0020	mg/Kg wet		nalyzed: 06/0		70-130			V-34
statch B232391 - SW-846 5035 Stank (B232391-BLK1) cetone ent-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romomethane Butanone (MEK) Butylbenzene e-Butylbenzene et-Butylbenzene et-Butyl Ether (TBEE) arbon Disulfide arbon Tetrachloride alterodibromomethane lorodibromomethane loroform loromethane Chlorotoluene Dibromo-3-chloropropane (DBCP) -Dibromoethane (EDB) promomethane	ND N	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010 0.040 0.0020 0.0020 0.0020 0.0010 0.0040 0.0020 0.0010 0.0020 0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020	mg/Kg wet		nalyzed: 06/0		70-130			V-34
lank (B232391-SW-846 5035 lank (B232391-BLK1) cetone rt-Amyl Methyl Ether (TAME) enzene romochloromethane romodichloromethane romodichloromethane romomethane Butanone (MEK) Butylbenzene e-Butylbenzene t-Butylbenzene t-Butyl Ethyl Ether (TBEE) rbon Disulfide rbon Tetrachloride lorodibromomethane lorodibromomethane lorotomethane chorotoluene chlorotoluene Dibromo-3-chloropropane (DBCP) -Dibromocthane (EDB)	ND N	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010 0.040 0.0020 0.0020 0.0020 0.0010 0.010 0.0040 0.010 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020	mg/Kg wet		nalyzed: 06/0		70-130			V-34

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B232391 - SW-846 5035										
Blank (B232391-BLK1)				Prepared & A	Analyzed: 06	/04/19				
1,4-Dichlorobenzene	ND	0.0020	mg/Kg wet	•						
Dichlorodifluoromethane (Freon 12)	ND	0.010	mg/Kg wet							
1,1-Dichloroethane	ND	0.0020	mg/Kg wet							
1,2-Dichloroethane	ND	0.0020	mg/Kg wet							
1.1-Dichloroethylene	ND	0.0040	mg/Kg wet							
cis-1,2-Dichloroethylene	ND	0.0020	mg/Kg wet							
rans-1,2-Dichloroethylene	ND	0.0020	mg/Kg wet							
,2-Dichloropropane	ND	0.0020	mg/Kg wet							
,3-Dichloropropane	ND	0.0010	mg/Kg wet							
,2-Dichloropropane	ND	0.0020	mg/Kg wet							
,1-Dichloropropene	ND	0.0020	mg/Kg wet							
is-1,3-Dichloropropene	ND	0.0010	mg/Kg wet							
rans-1,3-Dichloropropene	ND	0.0010	mg/Kg wet							
Diethyl Ether	ND	0.010	mg/Kg wet							
lisopropyl Ether (DIPE)	ND	0.0010	mg/Kg wet							
,4-Dioxane	ND	0.10	mg/Kg wet							11.4
thylbenzene	ND	0.0020	mg/Kg wet							V-16
exachlorobutadiene	ND	0.0020	mg/Kg wet							
Hexanone (MBK)	ND	0.020	mg/Kg wet							
opropylbenzene (Cumene)	ND	0.0020	mg/Kg wet							
Isopropyltoluene (p-Cymene)	ND	0.0020	mg/Kg wet							
ethyl tert-Butyl Ether (MTBE)	ND	0.0040	mg/Kg wet							
ethylene Chloride	ND	0.010	mg/Kg wet							
Methyl-2-pentanone (MIBK)	ND	0.020	mg/Kg wet							
aphthalene	ND	0.0040	mg/Kg wet							1/06
Propylbenzene	ND	0.0020	mg/Kg wet							V-05
yrene	ND	0.0020	mg/Kg wei							
1,1,2-Tetrachloroethane	ND	0.0020	mg/Kg wet							
1,2,2-Tetrachloroethane	ND	0.0010	mg/Kg wet							
trachloroethylene	ND	0.0020	mg/Kg wet							
trahydrofuran	ND	0.010	mg/Kg wet							
luene	ND	0.0020	mg/Kg wet							
2,3-Trichlorobenzene	ND	0.0020	mg/Kg wet							
2,4-Trichlorobenzene	ND	0.0020	mg/Kg wet							
,1-Trichloroethane	ND		mg/Kg wet							
,2-Trichloroethane	ND		mg/Kg wet							
chloroethylene	ND		mg/Kg wet							
chlorofluoromethane (Freon 11)	ND		mg/Kg wet							
,3-Trichloropropane	ND	0.0020	mg/Kg wet							
4-Trimethylbenzene	ND		mg/Kg wet							
,5-Trimethylbenzene	ND		mg/Kg wet							
yl Chloride	ND		mg/Kg wet							
p Xylene	ND		mg/Kg wet							
Kylene	ND		mg/Kg wet							
rogate: 1,2-Dichloroethane-d4	0.0538	ı	ng/Kg wet	0.0500		108	70-130	····		
тоgate: Toluene-d8	0.0494		ng/Kg wet	0.0500		98.8	70-130			
rrogate: 4-Bromofluorobenzene	0.0514		ng/Kg wel	0.0500		103	70-130			

Page 106 of 153

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B232391 - SW-846 5035										
LCS (B232391-BS1)				Prepared & A	Analyzed: 06/	04/19			-	
Acetone	0.417	0.10	mg/Kg wet	0.200		208 +	40-160			L-07A, R-05
ert-Amyl Methyl Ether (TAME)	0.0222	0.0010	mg/Kg wet	0.0200		111	70-130			L-07A, K-0.
Benzene	0.0197	0.0020	mg/Kg wet	0.0200		98.7	70-130			
Bromobenzene	0.0205	0.0020	mg/Kg wet	0.0200		103	70-130			
romochloromethane	0.0204	0.0020	mg/Kg wet	0.0200		102	70-130			
romodichloromethane	0.0242	0.0020	mg/Kg wet	0.0200		121	70-130			
romoform	0.0228	0.0020	mg/Kg wet	0.0200		114	70-130			
romomethane	0.0136	0.010	mg/Kg wet	0.0200		67.9	40-160			V-34
Butanone (MEK)	0.277	0.040	mg/Kg wet	0.200		139	40-160			R-05, L-14
Butylbenzene	0.0192	0.0020	mg/Kg wet	0.0200		96.0	70-130			K-03, L-14
c-Butylbenzene	0.0194	0.0020	mg/Kg wet	0.0200		97.0	70-130			
t-Butylbenzene	0.0197	0.0020	mg/Kg wet	0.0200		98.3	70-130			
t-Butyl Ethyl Ether (TBEE)	0.0222	0.0010	mg/Kg wet	0.0200		111	70-130			
arbon Disulfide	0.0266	0.0060	mg/Kg wet	0.0200		133 *	70-130			1.00 1/00
rbon Tetrachloride	0.0260	0.0020	mg/Kg wet	0.0200		130	70-130			L-02, V-20
lorobenzene	0.0204	0.0020	mg/Kg wet	0.0200		102	70-130			V-20
llorodibromomethane	0.0266	0.0010	mg/Kg wet	0.0200		133 *	70-130			
lloroethane	0.0237	0.010	mg/Kg wet	0.0200		118	70-130			L-07
loroform	0.0237	0.0040	mg/Kg wet	0.0200		119	70-130			
loromethane	0.0146	0.010	mg/Kg wet	0.0200		72.9	40-160			
Chlorotoluene	0.0211	0.0020	mg/Kg wei	0.0200		105	70-130			
Chlorotoluene	0.0216	0.0020	mg/Kg wet	0.0200		103	70-130			
-Dibromo-3-chloropropane (DBCP)	0.0184	0.0020	mg/Kg wet	0.0200		92.2	70-130			
P-Dibromoethane (EDB)	0.0214	0.0010	mg/Kg wet	0.0200		107	70-130			
bromomethane	0.0208	0.0020	mg/Kg wet	0.0200		107				
-Dichlorobenzene	0.0198	0.0020	mg/Kg wet	0.0200			70-130			
-Dichlorobenzene	0.0205	0.0020	mg/Kg wet	0.0200		99.0 103	70-130			
-Dichlorobenzene	0.0187	0.0020	mg/Kg wet	0.0200			70-130			
hlorodifluoromethane (Freon 12)	0.0120	0.010	mg/Kg wet	0.0200		93.3	70-130			
-Dichloroethane	0.0226	0.0020	mg/Kg wet	0.0200		60.2	40-160			L-14
-Dichloroethane	0.0245	0.0020	mg/Kg wet			113	70-130			
-Dichloroethylene	0.0254	0.0040	mg/Kg wet	0.0200		123	70-130			V-20
1,2-Dichloroethylene	0.0223	0.0020	mg/Kg wet	0.0200		127	70-130			V-20
ns-1,2-Dichloroethylene	0.0225	0.0020		0.0200		111	70-130			
Dichloropropane	0.0225	0.0020	mg/Kg wet	0.0200		112	70-130			
Dichloropropane			mg/Kg wet	0.0200		97.5	70-130			
Dichloropropane	0.0207		mg/Kg wet	0.0200		104	70-130			
Dichloropropene	0.0245	0.0020	mg/Kg wet	0.0200		123	70-130			
1,3-Dichloropropene	0.0220	0.0020	mg/Kg wet	0.0200		110	70-130			
s-1,3-Dichloropropene	0.0210	0.0010	mg/Kg wet	0.0200		105	70-130			
thyl Ether	0.0225	0.0010	mg/Kg wet	0.0200		113	70-130			
sopropyl Ether (DIPE)	0.0218	0.010	mg/Kg wet	0.0200		109	70-130			
Dioxane	0.0212	0.0010	mg/Kg wet	0.0200		106	70-130			
Vibenzene	0.194		mg/Kg wet	0.200		97.2	40-160			V-16
	0.0199		mg/Kg wet	0.0200		99.4	70-130			
achlorobutadiene	0.0204	0.0020	mg/Kg wet	0.0200		102	70-130			
exanone (MBK)	0.250	0.020	mg/Kg wet	0.200		125	40-160			
ropylbenzene (Cumene)	0.0218		mg/Kg wet	0.0200		109	70-130			
opropyltoluene (p-Cymene)	0.0197	0.0020	mg/Kg wet	0.0200		98.6	70-130			
hyl tert-Butyl Ether (MTBE)	0.0241	0.0040	mg/Kg wet	0.0200		120	70-130			
hylene Chloride	0.0228	0.010	mg/Kg wet	0.0200		114	70-130			
lethyl-2-pentanone (MIBK)	0.219	0.020	mg/Kg wet	0.200		109	40-160			
hthalene	0.0161	0.0040	mg/Kg wet	0.0200		80.5	70-130			V-05

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B232391 - SW-846 5035										
LCS (B232391-BS1)				Prepared &	Analyzed: 06/	04/19			· · · · · · · · · · · · · · · · · · ·	
n-Propylbenzene	0.0209	0.0020	mg/Kg wet	0.0200		104	70-130			
Styrene	0.0204	0.0020	mg/Kg wet	0.0200		102	70-130			
1,1,1,2-Tetrachloroethane	0.0226	0.0020	mg/Kg wet	0.0200		113	70-130			
I,1,2,2-Tetrachloroethane	0.0204	0.0010	mg/Kg wet	0.0200		102	70-130			
Tetrachloroethylene	0.0252	0.0020	mg/Kg wet	0.0200		126	70-130			
Tetrahydrofuran	0.0180	0.010	mg/Kg wet	0.0200		90.1	70-130			
Toluene	0.0217	0.0020	mg/Kg wet	0.0200		108	70-130			
1,2,3-Trichlorobenzene	0.0174	0.0020	mg/Kg wet	0.0200		86.8	70-130			
1,2,4-Trichlorobenzene	0.0174	0.0020	mg/Kg wet	0.0200		87.2	70-130			
1,1,1-Trichloroethane	0.0259	0.0020	mg/Kg wei	0.0200		129	70-130			V-20
1,1,2-Trichloroethane	0.0227	0.0020	mg/Kg wet	0.0200		113	70-130			4-20
Trichloroethylene	0.0222	0.0020	mg/Kg wet	0.0200		111	70-130			
Frichlorofluoromethane (Freon 11)	0.0242	0.010	mg/Kg wet	0.0200		121	70-130			V-20
1.2,3-Trichloropropane	0.0185	0.0020	mg/Kg wet	0.0200		92.7	70-130			1-20
1,2,4-Trimethylbenzene	0.0184	0.0020	mg/Kg wet	0.0200		91.8	70-130			
,3,5-Trimethylbenzene	0.0215	0.0020	mg/Kg wet	0.0200		107	70-130			
Vinyl Chloride	0.0169	0.010	mg/Kg wet	0.0200		84.3	70-130			
n+p Xylene	0.0411	0.0040	mg/Kg wet	0.0400		103	70-130			
-Xylene	0.0204	0.0020	mg/Kg wet	0.0200		102	70-130			
'urrogate: 1,2-Dichloroethane-d4	0.0528		mg/Kg wet	0.0500		106	70-130			
rrogate: Toluene-d8	0.0506		mg/Kg wet	0.0500		101	70-130			
surrogate: 4-Bromofluorobenzene	0.0538		mg/Kg wet	0.0500		108	70-130			
.CS Dup (B232391-BSD1)				Propagod & A	malyzed: 06/		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Acetone	0.315	0.10	mg/Kg wet	0.200	maryzea. vor		40.160			
ert-Amyl Methyl Ether (TAME)	0.0209	0.0010	mg/Kg wet	0.0200		158	40-160	27.8		L-14, R-05
Benzene	0.0188	0.0020	mg/Kg wet	0.0200		104	70-130	6.15	20	
fromobenzene	0.0190	0.0020	mg/Kg wet	0.0200		94.2	70-130	4.71	20	
romochloromethane	0.0206	0.0020	mg/Kg wet	0.0200		95.1	70-130	7.56	20	
romodichloromethane	0.0239	0.0020	mg/Kg wet	0.0200		103	70-130	1.07	20	
romoform	0.0221	0.0020	mg/Kg wet	0.0200		119	70-130	1.31	20	
romomethane	0.0151	0.010	mg/Kg wet	0.0200		110	70-130	2.97	20	
-Butanone (MEK)	0.220	0.040	mg/Kg wet	0.200		75.5	40-160	10.6	20	V-34
Butylbenzene	0.0178	0.0020	mg/Kg wet	0.0200		110	40-160		* 20	R-05
ec-Butylbenzene	0.0184	0.0020	mg/Kg wet	0.0200		89.1	70-130	7.53	20	
rt-Butylbenzene	0.0183	0.0020	mg/Kg wet	0.0200		92.1	70-130	5.15	20	
rt-Butyl Ethyl Ether (TBEE)	0.0211	0.0010	mg/Kg wet	0.0200		91.5	70-130	7.17	20	
arbon Disulfide	0.0273	0.0060	mg/Kg wet	0.0200		105	70-130	5.32	20	
arbon Telrachloride	0.0259	0.0020	mg/Kg wet	0.0200		136 *	70-130	2.57	20	L-02, V-20
hlorobenzene	0.0197	0.0020	mg/Kg wet	0.0200		129	70-130	0.547	20	V-20
hlorodibromomethane	0.0256	0.0010	mg/Kg wet			98.4	70-130	3.52	20	
hloroethane		0.010	mg/Kg wet	0.0200		128	70-130	3.77	20	
hloroform	0.0232 0.0222	0.0040	mg/Kg wet	0.0200		116	70-130	1.89	20	
hloromethane		0.010	mg/Kg wet	0.0200		111	70-130	6.46	20	
Chlorotoluene	0.0157 0.0199	0.0020	mg/Kg wet	0.0200		78.4	40~160	7.36	20	
Chlorotoluene	0.0199	0.0020	mg/Kg wet	0.0200		99.5	70-130	5.86	20	
2-Dibromo-3-chloropropane (DBCP)		0.0020		0.0200		102	70-130	5.59	20	
2-Dibromoethane (EDB)	0.0185	0.0020	mg/Kg wet	0.0200		92.4	70-130	0.163	20	
'romomethane	0.0208	0.0010	mg/Kg wet	0.0200		104	70-130	2.62	20	
-Dichlorobenzene	0.0214		mg/Kg wet	0.0200		107	70-130	2.56	20	
3-Dichlorobenzene	0.0180 0.0189	0.0020 0.0020	mg/Kg wet mg/Kg wet	0.0200 0.0200		90.1	70-130	9.39	20	
						94.6	70-130	8.19	20	

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit		Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B232391 - SW-846 5035								****		
LCS Dup (B232391-BSD1)				Prepared & A	Analyzed: 06	/04/19				
Dichlorodifluoromethane (Freon 12)	0.0136	0.010	mg/Kg wet	0.0200		67.8	40-160	11.8	20	L-14
1.1-Dichloroethane	0.0232	0.0020	mg/Kg wet	0.0200		116	70-130	2.77	20	L-14
1,2-Dichloroethane	0.0239	0.0020	mg/Kg wet	0.0200		119	70-130	2.83	20	1/20
,1-Dichloroethylene	0.0260	0.0040	mg/Kg wet	0.0200		130	70-130	2.41	20	V-20
is-1,2-Dichloroethylene	0.0208	0.0020	mg/Kg wet	0.0200		104	70-130	6.98	20	V-20
rans-1,2-Dichloroethylene	0.0238	0.0020	mg/Kg wet	0.0200		119	70-130	5.69		
,2-Dichloropropane	0.0194	0.0020	mg/Kg wet	0.0200		97.2	70-130	0.298	20	
,3-Dichloropropane	0.0190	0.0010	mg/Kg wet	0.0200		95.1			20	
.2-Dichloropropane	0.0231	0.0020	mg/Kg wet	0.0200		116	70-130	8.54	20	
,1-Dichloropropene	0.0202	0.0020	mg/Kg wet	0.0200			70-130	5.86	20	
is-1,3-Dichloropropene	0.0203	0.0010	mg/Kg wet	0.0200		101	70-130	8.30	20	
rans-1,3-Dichloropropene	0.0220	0.0010	mg/Kg wet	0.0200		101	70-130	3.29	20	
Diethyl Ether	0.0233	0.010	mg/Kg wet			110	70-130	2.41	20	
Disapropyl Ether (DIPE)	0.0213	0.0010	mg/Kg wet	0.0200		117	70-130	6.88	20	
4-Dioxane	0.203	0.10	mg/Kg wet	0.0200		107	70-130	0.433	20	
thylbenzene	0.203	0.0020	mg/Kg wet	0.200		102	40-160	4.31	20	V-16
(exachlorobutadiene		0.0020	mg/Kg wet	0.0200		96.2	70-130	3.22	20	
-Hexanone (MBK)	0.0209	0.020		0.0200		104	70-130	2.58	20	
copropylbenzene (Cumene)	0.206	0.0020	mg/Kg wet mg/Kg wet	0.200		103	40~160	19.2	20	
-Isopropyltoluenc (p-Cymene)	0.0211	0.0020		0.0200		105	70-130	3.46	20	
lethyl tert-Butyl Ether (MTBE)	0.0186	0.0020	mg/Kg wet	0.0200		92.8	70-130	6.02	20	
lethylene Chloride	0.0266		mg/Kg wet	0.0200		133 *	70-130	10.0	20	L-07
-Methyl-2-pentanone (MIBK)	0.0247	0.010	mg/Kg wet	0.0200		124	70-130	8.03	20	
aphthalene	0.200	0.020	mg/Kg wei	0.200		99.9	40-160	8.99	20	
Propylbenzene	0.0158	0.0040	mg/Kg wet	0.0200		79.0	70-130	1.91	20	V-05
lyrene	0.0201	0.0020	mg/Kg wet	0.0200		101	70-130	3.65	20	
1,1,2-Tetrachloroethane	0.0191	0.0020	mg/Kg wet	0.0200		95.4	70-130	6.49	20	
1,2,2-Tetrachlorosihane	0.0211	0.0020	mg/Kg wet	0.0200		105	70-130	6.73	20	
trachloroethylene	0.0183	0.0010	mg/Kg wet	0.0200		91.3	70-130	10.9	20	
strahydrofuran	0.0231	0.0020	mg/Kg wet	0.0200		116	70-130	8.68	20	
oluene	0.0175	0.010	mg/Kg wet	0.0200		87.4	70-130	2.99	20	
2.3-Trichlorobenzene	0.0206	0.0020	mg/Kg wet	0.0200		103	70-130	5.19	20	
2,4-Trichlorobenzene	0.0173	0.0020	mg/Kg wet	0.0200		86.6	70-130	0.277	20	
·	0.0172	0.0020	mg/Kg wet	0.0200		86.2	70-130	1.22	20	
l,1-Trichloroethane	0.0248	0.0020	mg/Kg wet	0.0200		124	70-130	4.31	20	V-20
1,2-Trichlorocthanc	0.0222	0.0020	mg/Kg wet	0.0200		111	70-130	2.23	20	
ichloroethylene	0.0217	0.0020	mg/Kg wet	0.0200		109	70-130	2,20	20	
ichlorofluoromethane (Freen 11)	0.0262	0.010	mg/Kg wet	0.0200		131 *	70-130	7.72	20	L-07, V-20
2,3-Trichloropropane	0.0171	0.0020	mg/Kg wei	0.0200		85.4	70-130	8.13	20	
2,4-Trimethylbenzene	0.0170	0.0020	mg/Kg wet	0.0200		85.2	70-130	7.52	20	
3,5-Trimethylbenzene	0.0206	0.0020	mg/Kg wet	0.0200		103	70-130	4.23	20	
nyl Chloride	0.0178	0.010	mg/Kg wet	0.0200		89.0	70-130	5.33	20	
p Xylene	0.0398	0.0040	mg/Kg wet	0.0400		99.5	70-130	3.12	20	
Xylene	0.0197	0.0020	mg/Kg wet	0.0200		98.4	70-130	3.38	20	
rrogate: 1,2-Dichloroethane-d4	0.0534		mg/Kg wet	0.0500		107	70-130	· · · · · · · · · · · · · · · · · · ·		
rrogate: Toluene-d8	0.0503		mg/Kg wet	0.0500		101	70-130			
rrogate: 4-Bromofluorobenzene	0.0547		mg/Kg wet	0.0500		109	70-130			

Organochloride Pesticides by GC/ECD - Quality Control

Result	Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	····						- Id D	Char	Ivotes
			Prepared: 06	/03/19 Analy	/zed: 06/06/1	9			
ND	0.0050	mg/Kg wei							
ND	0.0050	mg/Kg wet							
ND	0.0050	mg/Kg wet							
ND	0.0050	mg/Kg wet							
ND	0.0050	mg/Kg wet							
ND	0.0050	mg/Kg wet							
ND	0.0050	mg/Kg wct							
ND	0.0050	mg/Kg wet							
ND	0.0020	mg/Kg wet							
ND	0.0020	mg/Kg wet							
ND	0.020	mg/Kg wet							
ND	0.020	mg/Kg wet							
ND	0.0040	mg/Kg wet							
ND	0.0040	mg/Kg wet							
ND	0.0040	mg/Kg wet							
ND	0.0040	mg/Kg wet							
ND	0.0040	mg/Kg wet							
ND	0.0040	mg/Kg wet							
ND	0.0040	mg/Kg wet							
ND	0.0040	mg/Kg wet							
ND	0.0050	mg/Kg wet							
ND	0.0050	mg/Kg wet							
ND	0.0080	mg/Kg wet							
ND	0.0080	mg/Kg wet							
ND	0.0080	mg/Kg wet							
ND	0.0080	mg/Kg wet							
ND	0.0080	mg/Kg wet							
ND	0.0080	mg/Kg wet							
ND	0.0080	mg/Kg wet							
ND	0.0080	mg/Kg wet							
ND	0.0080	mg/Kg wet							
ND	0.0080	mg/Kg wct							
ND	0.0050	mg/Kg wet							
ND	0.0050	mg/Kg wet							
ND	0.0050	mg/Kg wet							
ND	0.0050	mg/Kg wet							
ND	0.0060	mg/Kg wet							
ND	0.0060	mg/Kg wet							
ND	0.050	mg/Kg wet							
ND	0.050	mg/Kg wet							
ND	0.10	mg/Kg wet							
ND	0.10	mg/Kg wet							
0.176	1	mg/Kg wet	0.200		88.0	30-150			
0.174	1	mg/Kg wei	0.200		87.1	30-150			
0.179	,	me/Ke wet	0.200		89.7	30-150			
	ND N	ND 0.0050 ND 0.0020 ND 0.0020 ND 0.0020 ND 0.0040 ND 0.0080 ND 0.0050	ND 0.0050 mg/Kg wet ND 0.0020 mg/Kg wet ND 0.0020 mg/Kg wet ND 0.0020 mg/Kg wet ND 0.0020 mg/Kg wet ND 0.0040 mg/Kg wet ND 0.0050 mg/Kg wet ND 0.0050 mg/Kg wet ND 0.0050 mg/Kg wet ND 0.0080 mg/Kg wet ND 0.0050 mg/Kg wet ND 0.0	Prepared: 06. ND	Prepared: 06/03/19 Analy ND 0.0050 mg/Kg wet ND 0.0020 mg/Kg wet ND 0.0040 mg/Kg wet ND 0.0050 mg/Kg wet ND 0.0080 mg/Kg wet ND 0	Prepared: 06/03/19 Analyzed: 06/06/1 ND	Propared: 06/03/19 Analyzod: 06/06/19 ND	Propared: 06/03/19 Analyzed: 06/06/19 ND	Propared: 06/03/19 Analyzed: 06/06/19

Organochloride Pesticides by GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	200	RPD	
Batch B232333 - SW-846 3546			J 11143	20101	result	/erec	Limits	RPD	Limit	Notes
LCS (B232333-BS1)				Prepared: 06	/03/19 Analy	zed: 06/06/1	9			
Aldrin	0.089	0.0050	mg/Kg wet	0.100		89.1	40-140			
Aldrin [2C]	0.089	0.0050	mg/Kg wet	0.100		89.4	40-140			
alpha-BHC	0.087	0.0050	mg/Kg wet	0.100		87.2	40-140			
alpha-BHC [2C]	0.093	0.0050	mg/Kg wet	0.100		92.6	40-140			
beta-BHC	0.083	0.0050	mg/Kg wet	0.100		82.9	40-140			
beta-BHC [2C]	0.082	0.0050	mg/Kg wet	0.100		82.0	40-140			
delta-BHC	0.076	0.0050	mg/Kg wet	0.100		76.2	40-140			
delta-BHC [2C]	0.083	0.0050	mg/Kg wet	0.100		83.5	40-140			
gamma-BHC (Lindane)	0.088	0.0020	mg/Kg wet	0.100		88.4	40-140			
ganıma-BHC (Lindane) [2C]	0.090	0.0020	mg/Kg wet	0.100		90.5	40-140			
4,4'-DDD	0.089	0.0040	mg/Kg wet	0.100		88.7	40-140			
4,4'-DDD [2C]	0.091	0.0040	mg/Kg wet	0.100		91.1	40-140			
4,4'-DDE	0.090	0.0040	mg/Kg wet	0.100		90.4	40-140			
4.4'-DDE [2C]	0.091	0.0040	mg/Kg wet	0.100		91.2	40-140			
4,4'-DDT	0.088	0.0040	mg/Kg wet	0.100		88.0	40-140			
4,4'-DDT [2C]	0.085	0.0040	mg/Kg wet	0.100		84.7	40-140			
Dieldrin	0.088	0.0040	mg/Kg wet	0.100		88.4	40-140			
Dieldrin [2C]	0.088	0.0040	mg/Kg wet	0.100		88.4	40-140			
andosulfan I	0.086	0.0050	mg/Kg wet	0.100		85.8	40-140			
Josulfan I (2C)	0.087	0.0050	mg/Kg wet	0.100		86.7	40-140			
Éndosulfan II	0.078	0.0080	mg/Kg wet	0.100		78.1	40-140			
Endosulfan II [2C]	0.079	0.0080	mg/Kg wet	0.100		78.6	40-140			
Endosulfan Sulfate	0.088	0.0080	mg/Kg wet	0.100		88.1	40-140			
Endosulfan Sulfate [2C]	0.086	0.0080	mg/Kg wet	0.100		86.0	40-140			
Endrin	0.089	0.0080	mg/Kg wet	0.100		88.6	40-140			
indrin [2C]	0.087	0.0080	mg/Kg wet	0.100		86.8	40-140			
Endrin Ketone	0.085	0.0080	mg/Kg wet	0.100		84.7	40-140			
indrin Kelone [2C]	0.083	0.0080	mg/Kg wet	0.100		82.9	40-140			
leptachlor	0.066	0.0050	mg/Kg wet	0.100		65.8	40-140			
leptachlor (2C)	0.088	0.0050	mg/Kg wet	0.100		88.5	40-140			
leptachlor Epoxide	0.085	0.0050	mg/Kg wet	0.100		85.1	40-140			
[cptachlor Epoxide [2C]	0.085	0.0050	mg/Kg wci	0.100		84.8	40-140			
lexachlorobenzene	0.10	0.0060	mg/Kg wet	0.100		101	40-140			
exachlorobenzene (2C)	0.094	0.0060	mg/Kg wet	0.100		93.5	40-140			
fethoxychlor	0.084	0.050	mg/Kg wet	0.100		84.2	40-140			
fethoxychlor [2C]	0.084	0.050	mg/Kg wet	0.100		83.9	40-140			
urrogate: Decachlorobiphenyl	0.182		mg/Kg wet	0.200		91.1	30-150			
urrogate: Decachlorobiphenyl [2C]	0.180		mg/Kg wet	0.200		89.9	30-150			
urrogate: Tetrachloro-m-xylene	0.184		mg/Kg wet	0.200		92.2	30-150			
urrogate: Tetrachloro-m-xylene [2C]	0.192		mg/Kg wet	0.200		96.1	30-150			
			meric no	0.200		30.1	30-130			
CS Dup (B232333-BSD1)			P	repared: 06/	03/19 Analyz	ed: 06/06/19)			
ldrin	0.092	0.0050	mg/Kg wet	0.100		92.0	40-140	3.19	30	
ldrin [2C]	0.093	0.0050	mg/Kg wet	0.100		92.7	40-140	3.63	30	
pha-BHC	0.089	0.0050	mg/Kg wet	0.100		89.2	40-140	2.37	30	
pha-BHC [2C]	0.096	0.0050	mg/Kg wet	0.100		95.8	40-140	3.39	30	
ela-BHC	0.085	0.0050	mg/Kg wet	0.100		84.8	40-140	2.26	30	
-BHC [2C]	0.084	0.0050	mg/Kg wet	0.100		84.0	40-140	2.40	30	
а-ВНС	0.078	0.0050	mg/Kg wet	0.100		77.9	40-140	2.27	30	
elta-BHC [2C]	0.085	0.0050	mg/Kg wet	0.100		85.4	40-140	2.35	30	
mma-BHC (Lindane)	0.091	0.0020	mg/Kg wet	0.100		90.5	40-140	2.41	30	
mma-BHC (Lindane) [2C]	0.093	0.0020	mg/Kg wet	0.100		92.6	40-140	2.35	30	
							-			

Organochloride Pesticides by GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD	
Batch B232333 - SW-846 3546					ACGUA!	ANDO	Linus	KPD	Limit	Notes
LCS Dup (B232333-BSD1)				Prepared: 06	/03/19 Analy	20d: 06/06/1	0			
4,4'-DDD	0.091	0.0040	mg/Kg wet	0.100	, 03, 13, 11, mary	91.4		2.00		
4,4'-DDD [2C]	0.094	0.0040	mg/Kg wet	0.100		93.9	40-140 40-140	2.99	30	
4,4'-DDE	0.094	0.0040	mg/Kg wet	0.100		93.8	40-140	3.10	30	
4,4'-DDE [2C]	0.094	0.0040	mg/Kg wet	0.100		94.3		3.67	30	
4,4'-DDT	0.090	0.0040	mg/Kg wei	0.100		90.3	40-140	3,33	30	
4,4'-DDT [2C]	0.088	0.0040	mg/Kg wet	0.100		90.3 87.9	40-140	2.66	30	
Dieldrin	0.091	0.0040	mg/Kg wet	0.100		91.0	40-140	3.71	30	
Dieldrin [2C]	0.091	0.0040	mg/Kg wet	0.100		91.0	40-140 40-140	2.96	30	
Endosulfan I	0.088	0.0050	mg/Kg wet	0.100		88.3	40-140	3.14	30	
Endosulfan I (2C)	0.090	0.0050	mg/Kg wet	0.100		90.5		2.86	30	
Endosulfan II	0.080	0.0080	mg/Kg wet	0.100		80.5	40-140	4.22	30	
Indosulfan II [2C]	0.081	0.0080	mg/Kg wet	0.100		81.0	40-140	2.96	30	
indosulfan Sulfate	0.090	0.0080	mg/Kg wei	0.100		89.7	40-140	2.98	30	
Endosulfan Sulfate [2C]	0.088	0.0080	mg/Kg wet	0.100		87.6	40-140	1.86	30	
Endrin	0.091	0.0080	mg/Kg wet	0.100		91.0	40-140	1.86	30	
indrin [2C]	0.090	0.0080	nig/Kg wet	0.100			40-140	2.67	30	
indrin Ketone	0.087	0.0080	mg/Kg wet	0.100		89.6	40-140	3.17	30	
indrin Ketone [2C]	0.085	0.0080	mg/Kg wet	0.100		86.5	40-140	2.20	30	
leptachlor	0.068	0.0050	mg/Kg wet	0.100		84.5	40-140	1.97	30	
Icptachlor [2C]	0.092	0.0050	mg/Kg wet	0.100		68.2	40-140	3.57	30	
eptachlor Epoxide	0.088	0.0050	mg/Kg wet	0.100		92.3 87.8	40-140	4.23	30	
leptachlor Epoxide [2C]	0.087	0.0050	mg/Kg wer	0.100		87.5	40-140	3.07	30	
lexachlorobenzene	0.11	0.0060	mg/Kg wet	0.100		105	40-140	3.04	30	
exachlorobenzene [2C]	0.097	0.0060	mg/Kg wet	0.100		97.2	40-140	3.54	30	
lethoxychlor	0.087	0.050	mg/Kg wet	0.100		86.8	40-140	3.83	30	
[ethoxychlor [2C]	0.088	0.050	mg/Kg wet	0.100		87.8	40-140 40-140	2.98 4.49	30 30	
urrogate: Decachlorobiphenyl	0.189		mg/Kg wet	0,200		94.5	30-150			
urrogate: Decachlorobiphenyl [2C]	0.187		mg/Kg wet	0.200		93.7	30-150 30-150			
urrogate: Tetrachioro-m-xylene	0.192		mg/Kg wet	0.200		96.1	30-150			
rrogate: Tetrachioro-m-xylene [2C]	0.196		mg/Kg wet	0.200		97.8	30-150			

Herbicides by GC/ECD - Quality Control

Analyte	Result	Reporting Limit		Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B232364 - SW-846 8151							10.			140165
Blank (B232364-BLK1)				Prepared: 06	/04/19 Analy	rzed: 06/10/1	G.			
2,4-D	ND	24	μg/kg wet	,		200. 007 107				
2,4-D [2C]	ND	24	μg/kg wet							
2,4-DB	ND	24	μg/kg wet							
2,4-DB [2C]	ND	24	µg/kg wet							
2.4,5-TP (Silvex)	ND	2.4	µg/kg wet							
2,4,5-TP (Silvex) [2C]	ND	2.4	μg/kg wet							
2,4,5-T	ND	2.4	μg/kg wet							
.4,5-T [2C]	ND	2.4	µg/kg wet							
Dalapon	ND	60	μg/kg wet							
Palapon [2C]	ND	60								
Dicamba		2.4	μg/kg wet							
Dicamba [2C]	ND		μg/kg wet							
Pichloroprop	ND	2.4	µg/kg wet							
Pichloroprop [2C]	ND	24	μg/kg wet							
linoseb	ND	24	µg/kg wet							
inoseb [2C]	ND	12	μg/kg wet							
ICPA	ND	12	μg/kg wet							
ICPA [2C]	ND	2400	µg∕kg wet							
ICPP	ND	2400	µg/kg wet							
ICPP [2C]	ND	2400	µg∕kg wet							
	ND	2400	µg/kg wet							
rrogate: 2,4-Dichlorophenylacetic acid	74.6		μg/kg wet	95.2		78.3	30-150			
итоgate: 2,4-Dichlorophenylacetic acid С]	75.2		µg/kg wct	95.2		79.0	30-150			
CS (B232364-BS1)			,	Drawana da 0.6%	04/10 4	1.000.00	_			
4-D	112	25		Prepared: 06/0	04/19 Analyz					
4-D [2C]	117	25	μg/kg wet	125		93.8	40-140			
4-DB	118	25	μg/kg wet	125		94.5	40-140			
4-DB [2C]	121	25	μg/kg wet	125		97.1	40-140			
1,5-TP (Silvex)	120	25	μg/kg wet	125		96.0	40-140			
1,5-TP (Silvex) [2C]	12.4	2.5	μg/kg wet	12.5		99.1	40-140			
I,5-T	12.2	2.5	µg/kg wet	12.5		97.6	40-140			
i,5-T [2C]	12.3	2.5	µg/kg wet	12.5		98.4	40-140			
ispon	26.7	2.5	μg/kg wet	12.5		214 *	40-140			L-11
-	214	62	μg/kg wct	312		68.4	40-140			
lapon [2C]	214	62	μg/kg wet	312		68.6	40-140			
camba	11.3	2.5	μg/kg wet	12.5		90.1	40-140			
camba [2C]	11.4	2.5	μg/kg wet	12.5		90.9	40-140			
chloroprop	122	25	μg/kg wet	125		97.5	40-140			
thloroprop [2C]	125	25	μg/kg weι	125		100	40-140			
noseb	19.0	12	μg/kg wet	62.5		30.4	0-42.4			
noseb [2C]	21.6	12	μg/kg wet	62.5		34.6	0-41.1			
CPA	10800		µg/kg wet	12500		86.4	40-140			
PA [2C]	12100		μg/kg wet	12500		96.5	40-140			
CPP	11600		μg/kg wet	12500		92.5	40-140			
CPP [2C]	11200		μg/kg wet	12500		92.5 89.4	40-140			
rogate: 2,4-Dichlorophenylacetic acid	91.6		μg/kg wet							
rogate: 2,4-Dichlorophenylacetic acid	71.0		uging wei	100		91.6	30-150			

Herbicides by GC/ECD - Quality Control

Analyte	Result	Reporting Limit		Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B232364 - SW-846 8151										
LCS Dup (B232364-BSD1)				Prepared: 06	/04/19 Analy	vzcd: 06/10/	19			-
2,4-D	105	25	μg/kg wet	125		84.3	40-140	10.7	20	
2,4-D [2C]	109	25	µg/kg wet	125		87.2	40-140	10.7	30	
2,4-DB	104	25	μg/kg wet	125		83.0		8.04	30	
2,4-DB [2C]	109	25	μg/kg wet	125		87.1	40-140	15.7	30	
2,4,5-TP (Silvex)	11.0	2.5	μg/kg wet	12.5		87.8	40-140	9.70	30	
2,4,5-TP (Silvex) [2C]	10.8	2.5	μg/kg wet	12.5			40-140	12.2	30	
2,4,5-T	11.1	2.5	μg/kg wet	12.5		86.7	40-140	11.8	30	
2,4,5-T [2C]	24.8	2.5	μg/kg wet	12.5		89.2	40-140	9.86	30	
Dalapon	207	62	µg/kg wet	312		198 *	40-140	7.57	30	L-11
Dalapon [2C]	208	62	μg/kg wet	312		66.2	40-140	3.27	30	
Dicamba	10.4	2.5	μg/kg wet			66.5	40-140	3.13	30	
Dicamba [2C]	10.4	2.5	μg/kg wet	12.5		83.4	40-140	7.77	30	
Dichloroprop	110	25	μg/kg wet	12.5		86.5	40-140	4.95	30	
Dichloroprop [2C]	114	25	μg/kg wet	125		88.2	40-140	10.0	30	
Dinoseb	17.6	. 12		125		91.3	40-140	9.11	30	
Dinoseb [2C]	21.7	12	μg/kg wet	62.5		28.2	0-42.4	7.57	30	
MCPA	9570	2500	µg/kg wet	62.5		34.8	0-41.1	0.444	30	
MCPA [2C]			μg/kg wet	12500		76.5	40-140	12.1	30	
ACPP	11000	2500 2500	μg/kg wet	12500		87.9	40-140	9.33	30	
(CPP [2C]	10300 10100	2500	μg/kg wet μg/kg wet	12500 12500		82.4 80.6	40-140	11.6	30	
urrogate: 2,4-Dichlorophenylacetic acid	82.8		μg/kg wet	100		82.8	40-140	10.4	30	
urrogate: 2,4-Dichlorophenylacetic acid	84.0		µg/kg wet	100		84.0	30-150 30-150			
2C]				100		04.0	30-130			
latrix Spike (B232364-MS1)	Sourc	e: 19E1819-	-14	Prepared: 06/	04/19 Analyz	zed: 06/10/1	9			
4-D	120	29	μg/kg dry	146	ND	81.9	30-150			
4-D [2C]	124	29	μg/kg dry	146	ND	84.7	30-150			
4-DB	130	29	μg/kg dry	146	ND	88.9	30-150			
4-DB [2C]	142	29	μg/kg dry	146	ND	97.1	30-150			
4,5-TP (Silvex)	10.5	2.9	μg/kg dry	14.6	ND	72.1				
4,5-TP (Silvex) [2C]	12.3	2.9	μg/kg dry	14.6		83.9	30-150			
4,5-T	11.7	2,9	μg/kg dry	14.6	ND		30-150			
4,5-T [2C]	33.6	2.9	μg/kg dry	14.6	ND	80.0	30-150			
ilapon	271	73	μg/kg dry	366	ND	229 +	30-150			MS-12
alapon [2C]	270	73	μg/kg dry	366	ND	74.0	30-150			
camba	11.7	2.9	μg/kg dry		ND	73.7	30-150			
camba [2C]	12.2	2.9	μg/kg dry	14.6	ND	80.1	30-150			
chloroprop	12.2	2.9	μg/kg dry	14.6	ND	83.1	30-150			
chloroprop [2C]	127	29	μg/kg dry	146	ND	88.2	30-150			
noseb	25.0	15		146	ND	86.7	30-150			
noseb [2C]	26.8	15	μg/kg dry	73.2	ND	34.1	10-150			
CPA			μg/kg dry	73.2	ND	36.7	10-150			
CPA [2C]	11400	2900	μg/kg dry	14600	ND	77.7	30-150			
CPP	12100	2900	μg/kg dry	14600	ND	82.9	30-150			
CPP [2C]	11900	2900	μg/kg dry	14600	ND	81.2	30-150			
	11700	2900	μg/kg dry	14600	ND	79.9	30-150			
rogota: 1.4 Dieblosophenufauste - 1.4	100									
rrogate: 2,4-Dichlorophenylacetic acid rrogate: 2,4-Dichlorophenylacetic acid	100 103		μg/kg dry	117		85.4	30-150			

Herbicides by GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B232364 - SW-846 8151							-			
Matrix Spike Dup (B232364-MSD1)	Sou	rce: 19E1819	-14	Prepared: 06	04/19 Analy	red: 06/10	/19			
2,4-D	120	29	μg/kg dry	146	ND	81.8		0.0055		
2.4-D [2C]	123	29	μg/kg dry	146	ND	83.9	30-150 30-150	0.0855	30	
2,4-DB	130	29	μg/kg dry	146	ND	88.6		0.932	30	
2,4-DB [2C]	128	29	μg/kg dry	146		87.7	30-150	0.308	30	
4.4,5-TP (Silvex)	10.6	2.9	µg/kg dry	14.6	ND	72,4	30-150	10.1	30	
.4,5-TP (Silvex) [2C]	12.1	2.9	μg/kg dry	14.6	ND ND	72.4 82.7	30-150	0.415	. 30	
,4,5-T	11.8	2.9	μg/kg dry	14.6	DN DN	80.4	30-150	1.42	30	
,4,5-T (2C)	33.0	2.9	μg/kg dry	14.6			30-150	0.479	30	
Palapon	250	73	μg/kg dry	366	ND	226 *	30 130	1.70	30	MS-13
Palapon [2C]	251	73	μg/kg dry	366	ND	68.4	30-150	7.89	30	
Dicamba	12.6	2.9	μg/kg dry	14.6	ND	68.7	30-150	6.94	30	
licamba [2C]	12.0	2.9	μg/kg dry	14.6	ND	86.1	30-150	7.22	30	
ichloroprop	130	29	μg/kg dry	14.6	ND	82.0	30-150	1,29	30	
ichloroprop [2C]	125	29	μg/kg dry	146	ND	88.7	30-150	0.545	30	
inoseb	23.3	15.	μg/kg dry		ND	85.2	30-150	1.81	30	
inoseb [2C]	25.3	15	μg/kg dry	73.2 73.2	ND	31.8	10-150	6.83	30	
ICPA	11600	2900	μg/kg dry		ND	34.6	10-150	5.98	30	
ICPA [2C]	11100	2900	μg/kg dry	14600	ND	79.5	30-150	2.37	30	
ICPP	12100	2900	μg/kg dry	14600	ND	76.1	30-150	8.54	30	
ICPP [2C]	11600	2900	μg/kg dry μg/kg dry	14600 14600	ND ND	82.3 79.5	30-150 30-150	1.36	30	
urrogate: 2,4-Dichlorophenylacetic acid	97.8		μg/kg dry	117	ND			0.429	30	
uπogate: 2,4-Dichlorophenylacetic acid C]	99.1		μg/kg dry μg/kg dry	117		83.5 84.7	30-150 30-150			

Polychlorinated Biphenyls with 3540 Soxhlet Extraction - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B232317 - SW-846 3540C										.140103
Blank (B232317-BLK1)]	Prepared: 06	/03/19 Analy	zed: 06/05/1	19			
Aroclor-1016	ND	0.020	mg/Kg wet							
Aroclor-1016 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1221	ND	0.020	mg/Kg wet							
Arocior-1221 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1232	ND	0.020	mg/Kg wet							
Aroclor-1232 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1242	ND	0.020	mg/Kg wet							
Arocior-1242 [2C]	ND	0.020	mg/Kg wci							
Aroclor-1248	ND	0.020	mg/Kg wet							
Aroclor-1248 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1254	ND	0.020	mg/Kg wet							
Aroclor-1254 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1260	ND	0.020	mg/Kg wet							
Aroclor-1260 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1262	ND	0.020	mg/Kg wet							
roclor-1262 [2C]	ND	0.020	mg/Kg wet							
troclor-1268	ND	0.020	mg/Kg wet							
roclor-1268 [2C]	ND	0.020	mg/Kg wet							
urrogate: Decachlorobiphenyl		0.020								
rrogate: Decachlorobiphenyl [2C]	0.205 0.186		mg/Kg wet	0.200		103	30-150			
urrogate: Tetrachloro-m-xylene	0.182		mg/Kg wet	0.200		93.2	30-150			
urrogate: Tetrachloro-m-xylene [2C]	0.161		mg/Kg wet	0.200		90.8	30-150			
area and an analytic (20)	0.101		mg/Kg wet	0.200		80.3	30-150			
CS (B232317-BS1)			P	repared: 06/0	03/19 Analy	zed: 06/05/1:	9			
roclor-1016	0.17	0.020	mg/Kg wet	0.200		84.5	40-140			
roclor-1016 [2C]	0.17	0.020	mg/Kg wet	0.200		84.3	40-140			
roclor-1260	0.16	0.020	mg/Kg wet	0.200		79.9	40-140			
roclor-1260 [2C]	0.15	0.020	mg/Kg wet	0.200		76.9	40-140			
nrogate: Decachlorobiphenyl	0.195		mg/Kg wet	0.200		97.4	30-150			
rrogate: Decachlorobiphenyl [2C]	0.180		mg/Kg wet	0.200		90.1	30-150			
urrogate: Tetrachloro-m-xylene	0.176		mg/Kg wet	0.200		88.0	30-150			
rrogate: Tetrachloro-m-xylene [2C]	0.156		mg/Kg wet	0.200		78.2	30-150			
CS Dup (B232317-BSD1)			D.	renared: 06/	3/19 Analy:					
oclor-1016	0.17	0.020	mg/Kg wet	0.200	Auaty			0.55		
oclor-1016 [2C]	0.17		mg/Kg wet			82.8	40-140	2.05	30	
oclor-1260			mg/Kg wet	0.200		83.9	40-140	0.446	30	
oclor-1260 [2C]	0.16 0.15		mg/Kg wet	0.200		78.9	40-140	1.22	30	
rrogate: Decachlorobiphenyl				0.200		76.9	40-140	0.0416	30	
rrogate: Decachlorobiphenyl [2C]	0.195		mg/Kg wet	0.200		97.4	30-150			
rrogate: Tetrachloro-m-xylene	0.182		mg/Kg wet	0.200		91.0	30-150			
Hogaio. Tenacinoto-in-Ayiciie	0.173	1	mg/Kg wet	0.200		86.7	30-150			

Analyte	Result	Reporting Limit		Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B232351 - SW-846 3546										140163
Blank (B232351-BLK1)				Prepared: 06	/03/19 Analy	rzed: 06/05/1	9		· · · · · · · · · · · · · · · · · · ·	
C9-C18 Aliphatics	ND	10				1200. 00/00/1				
C19-C36 Aliphatics	ND	10	mg/Kg wet							
Unadjusted C11-C22 Aromatics	ND	10	mg/Kg wet							
C11-C22 Aromatics	ND	10	mg/Kg wet							
Acenaphthene	ND	0.10	mg/Kg wet							
Acenaphthylene	ND	0.10	mg/Kg wet							
Anthracene	ND	0.10	mg/Kg wet							
Benzo(a)anthracene	ND	01.0	mg/Kg wet							
Benzo(a)pyrene	ND	0.10	mg/Kg wet							
Benzo(b)fluoranthene	ND ND	0.10	mg/Kg wet							
Benzo(g,h,i)perylene	ND ND	0.10	mg/Kg wet							
Benzo(k)fluoranthene										
Chrysene	ND	0.10 0.10	mg/Kg wet							
Dibenz(a,h)anthracene	ND		mg/Kg wet							
luoranthene	ND	0.10	mg/Kg wet							
luorene	ND	0.10	mg/Kg wet							
ndeno(1,2,3-cd)pyrene	ND	0.10	nig/Kg wet							
-Methylnaphthalene	ND	0.10	mg/Kg wet							
Iaphthalene	ND	0.10	mg/Kg wet							
henanthrene	ND	0.10	mg/Kg wet							
rene	ND	0.10	mg/Kg wet							
-Decane	ND	0.10	mg/Kg wet							
-Docosane	ND	0.10	mg/Kg wet							
-Dodecane	ND	0.10	mg/Kg wet							
-Eicosane	ND	0.10	mg/Kg wet							
-Hexacosane	ND	0.10	mg/Kg wet							
Hexadecane	ND	0.10	mg/Kg wet							
Hexatriacontane	ND	0.10	mg/Kg wet							
Nonadecane	ND	0.10	mg/Kg wet							
Nonane	ND	0.10	mg/Kg wet							
Octacosane	ND	0.10	mg/Kg wet							
Octadecane	ND	0.10	mg/Kg wet							
Tetracosane	ND	0.10	mg/Kg wet							
Tetradecane	ND	0.10	mg/Kg wet							
Triacontane	ND	0.10	mg/Kg wei							
	ND	0.10	mg/Kg wet							
aphthalene-aliphatic fraction	ND	0.10	mg/Kg wet							
Methylnaphthalene-aliphatic fraction	ND	0.10	mg/Kg wet							
rrogate: Chlorooctadecane (COD)	3.50		mg/Kg wet	5.00		70.0	40-140			
rrogate: o-Terphenyl (OTP)	3.83		mg/Kg wet	5.00		76.6	40-140			
rrogate: 2-Bromonaphthalene	4.68		mg/Kg wet	5.00		93.7	40-140			
rrogate: 2-Fluorobiphenyl	5.12		mg/Kg wet	5.00		102	40-140			
CS (B232351-BS1)			P	repared: 06/0	3/19 Analya	zed: 06/05/19	,			
-C18 Aliphatics	24.8	10	mg/Kg wet	30.0		82.8	40-140			
9-C36 Aliphatics	32.6		mg/Kg wet	40.0		81.4				
adjusted C11-C22 Aromatics	68.4		mg/Kg wet	85.0			40-140			
enaphthene	3.55		mg/Kg wet	5.00		80.4 71.0	40-140			
enaphthylene	3.21		mg/Kg wet	5.00			40-140			
hracene	4.07		mg/Kg wei			64.2	40-140			
nzo(a)anthracene	4.33		mg/Kg wet	5.00		81.4	40-140			
nzo(a)pyrene			mg/Kg wei	5.00		86.7	40-140			
nzo(b)fluoranthene	4.28	0.10	mbwê agi	5.00		85.7	40-140			

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B232351 - SW-846 3546									- mili	INDICS
LCS (B232351-BS1)				Prepared: 06	i/03/19 Analy	zed: 06/05/1	9	*		
Benzo(g,h,i)perylene	3.85	0.10	mg/Kg wet	5.00		77.1	40-140			
Benzo(k)fluoranthene	4.36	0.10	mg/Kg wet	5.00		87.2	40-140			
Chrysene	4.44	0.10	mg/Kg wet	5.00		88.7	40-140			
Dibenz(a,h)anthracene	4.26	0.10	mg/Kg wet	5.00		85.1	40-140			
Fluoranthene	4.27	0.10	mg/Kg wet	5.00		85.4	40-140			
Fluorene .	3.62	0.10	mg/Kg wet	5.00		72.4				
ndeno(1,2,3-cd)pyrene	3.97	0.10	mg/Kg wet	5.00		79.4	40-140 40-140			
?-Methylnaphthalene	2.87	0.10	mg/Kg wet	5.00		57.5				
Naphthalene	2.96	0.10	mg/Kg wet	5.00		59.3	40-140			
Phenanthrene	4.00	0.10	mg/Kg wet	5.00			40-140			
yrene	4.32	0.10	mg/Kg wet	5.00		80.0	40-140			
-Decane	2.33	0.10	mg/Kg wet	5.00		86.4	40-140			
-Docosane	4.42	0.10	mg/Kg wet			46.5	40-140			
-Dodecane	2.93	0.10	mg/Kg wet	5.00		88.3	40-140			
-Eicosane	4.17	0.10	mg/Kg wet	5.00		58.6	40-140			
-Hexacosane	4.17	0.10		5.00		83.4	40-140			
-Hexadecane	4.39	0.10	mg/Kg wet mg/Kg wet	5.00		87.8	40-140			
-Hexatriacontane				5.00		82.3	40-140			
-Nonadecane	4.18	0.10	mg/Kg wet	5.00		83.6	40-140			
Nonane	4.20	0.10	mg/Kg wet	5.00		84.0	40-140			
-Octacosane	1.57	0.10	mg/Kg wet	5.00		31.4	30-140			
-Octadecane	4.25	0.10	mg/Kg wet	5.00		85.1	40-140			
-Tetracosane	4.26	0.10	mg/Kg wet	5.00		85.1	40-140			
-Tetradecane	4.41	0.10	mg/Kg wet	5.00		88.2	40-140			
Triacontane	3.52	0.10	mg/Kg wet	5.00		70.4	40-140			
aphthalene-aliphatic fraction	4.20	0.10	mg/Kg wet	5.00		84.0	40-140			
Methylnaphthalene-aliphatic fraction	ND	0.10	mg/Kg wet	5.00			0-5			
	ND	0.10	mg/Kg wet	5.00			0-5			
штоgate: Chlorooctadceane (COD)	3.73		mg/Kg wet	5.00		74.6	40-140			
arrogate: o-Terphenyl (OTP)	4.01		mg/Kg wet	5.00		80.3	40-140			
arrogate: 2-Bromonaphthalene	4.29		mg/Kg wet	5.00		85.7	40-140			
urogate: 2-Fluorobiphenyl	4.74		mg/Kg wet	5.00		94.7	40-140			
CS Dup (B232351-BSD1)			P	repared: 06/	03/19 Analyz	ed: 06/05/1)			
P-C18 Aliphatics	23.7	10	mg/Kg wet	30.0		79.1	40-140	4.51	25	
9-C36 Aliphatics	31.2	10	mg/Kg wet	40.0		78.0	40-140	4.29	25	
nadjusted C11-C22 Aromatics	68.3	10	mg/Kg wet	85.0		80.3	40-140	0.0906	25	
enaplithene	3.62	0.10	mg/Kg wet	5.00		72.4	40-140	1.94	25	
enaphthylene	3.27	0.10	mg/Kg wct	5.00		65.4	40-140	1.88	25	
nthracene	4.14	0.10	mg/Kg wet	5.00		82.8	40-140	1.76	25	
nzo(a)anthracene	4.32	0.10	mg/Kg wet	5.00		86.4	40-140	0.236	25	
nzo(a)pyrene	4.20		mg/Kg wet	5.00		83.9	40-140	2.07	25	
nzo(b)fluoranthene	4.30		mg/Kg wet	5.00		86.1	40-140	1.40	25 25	
nzo(g,h,i)perylene	3.78		mg/Kg wet	5.00		75.5	40-140	2.06		
nzo(k)fluoranthene	4.29		mg/Kg wet	5.00		85.7	40-140		25	
rysene	4.43		mg/Kg wet	5.00		88.6	40-140	1.76	25	
benz(a,h)anthracene	4.18		mg/Kg wet	5.00				0.0835	25	
oranthene	4.33		mg/Kg wet			83.6	40-140	1.83	25	
	4.33 3.73		mg/Kg wet	5.00		86.6	40-140	1.44	25	
orene		0.10	wence acr	5.00		74.6	40-140	3.01	25	
orene		0.10	malV a see	E 00			** * **	4		
orene .eno(1,2,3-cd)pyrene	3.87		mg/Kg wet	5.00		77.4	40-140	2.48	25	
orene .eno(1,2,3-cd)pyrene Acthylnaphthalene	3.87 2.90	0.10	mg/Kg wet	5.00		58.0	40-140	0.956	25 25	
orene eno(1,2,3-cd)pyrene	3.87	0.10 0.10								

Analyte .	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B232351 - SW-846 3546					**					
LCS Dup (B232351-BSD1)				Prepared: 06	/03/19 Analy	zed: 06/05/1	9			
Pyrene	4.40	0.10	mg/Kg wet	5.00		87.9	40-140	1.67	25	
n-Decane	2.15	0.10	mg/Kg wet	5.00		43.1	40-140	7.71	25	
n-Docosane	4.23	0.10	mg/Kg wet	5.00		84.5	40-140	4.40	25	
n-Dodecane	2.80	0.10	mg/Kg wet	5.00		56.0	40-140	4.37	25	
n-Eicosane	3.99	0.10	mg/Kg wet	5.00		79.8	40-140	4.49	25	
-Hexacosane	4.20	0.10	mg/Kg wet	5.00		84.1	40-140	4.36	25	
-Hexadecane	3.97	0.10	mg/Kg wet	5.00		79.3	40-140	3.69	25	
-Hexatriacontane	4.04	0.10	mg/Kg wet	5.00		80.8	40-140	3.36	25	
-Nonadecane	4.01	0.10	mg/Kg wet	5.00		80.3	40-140	4.58	25	
Nonane	1.39	0.10	mg/Kg wet	5.00		27.8 *	30-140	12.2	25	L-07
-Octacosane	4.09	0.10	mg/Kg wet	5.00		81.8	40-140	3.93	25	
-Octadecane	4.07	0.10	mg/Kg wet	5.00		81.3	40-140	4.56	25	
-Telracosane	4.21	0.10	mg/Kg wet	5.00		84.3	40-140	4.48	25	
-Tetradecane	3.36	0.10	mg/Kg wet	5.00		67.2	40-140	4.59	25	
-Triacontane	4.05	0.10	mg/Kg wet	5.00		81.0	40-140	3.64	25	
aphthalene-aliphatic fraction	ND	0.10	mg/Kg wet	5.00			0-5			
-Methylnaphthalene-aliphatic fraction	ND	0.10	mg/Kg wet	5.00			0-5			
urrogate: Chlorooctadecane (COD)	3.78		mg/Kg wet	5.00		75.6	40-140			
rrogate: o-Terphenyl (OTP)	4.14		mg/Kg wet	5.00		82.7	40-140			
urrogate: 2-Bromonaphthalene	4.75		mg/Kg wet	5.00		94.9	40-140			
urrogate: 2-Fluorobiphenyl	5.21		mg/Kg wet	5.00		104	40-140			
fatrix Spike (B232351-MS1)	Sour	ce: 19E1819	-01	Prepared: 06/	03/19 Analy:	zed: 06/05/1	9			
9-C18 Aliphatics	23.5	10	mg/Kg dry	31.1	2,64	67.1	40-140			
19-C36 Aliphatics	31.6	10	mg/Kg dry	41.5	2,95	69.1	40-140			
nadjusted C11-C22 Aromatics	61.2	10	mg/Kg dry	88.2	3.66	65.3	40-140			
cenaphthene	3.14	0.10	mg/Kg dry	5.19	ND	60.6	40-140			
cenaphthylene	2.81	0.10	mg/Kg dry	5.19	ND	54.3	40-140			
nthracene	3.67	0.10	mg/Kg dry	5.19	ND	70.8	40-140			
enzo(a)anthracene	3.92	0.10	mg/Kg dry	5.19	ND	75.5	40-140			
enzo(a)pyrene	3.81	0.10	mg/Kg dry	5.19	ND	73.5	40-140			
enzo(b)fluoranthene	3.89	0.10	mg/Kg dry	5.19	ND	75.1	40-140			
enzo(g,h,i)perylene	3.45	0.10	mg/Kg dry	5.19	ND	66.5	40-140			
enzo(k)fluoranthene	3.89	0.10	mg/Kg dry	5.19	ND	75.1	40-140			
rysene	4.05	0.10	mg/Kg dry	5.19	ND	78.0	40-140			
benz(a,h)anthracene	3.83	0.10	mg/Kg dry	5.19	מא	73.9	40-140			
uoranthene	3.89	0.10	mg/Kg dry	5.19	ND	75.0	40-140			
torene	3.25	0.10	mg/Kg dry	5.19	ND	62.6	40-140			
deno(1,2,3-cd)pyrene	3.50	0.10	mg/Kg dry	5.19	ND	67.5	40-140			
Methylnaphthalene	2.49	0.10	mg/Kg dry	5.19	ND	48.0	40-140			
phthalene	2.53	0.10	mg/Kg dry	5.19	ND	48.8	40-140			
enanthrene	3.64	0.10	mg/Kg dry	5.19	ND	70.2	40-140			
rene	3.96	0.10	mg/Kg dry	5.19	ND	76.4	40-140			
	1,45	0.10	mg/Kg dry	5.19	ND	28.0 •	30-140			L-07
lonane	1,43									
Nonane rrogate: Chlorooctadecane (COD)	3.72		mg/Kg dry	5.19		71.7	40-140			
rrogate: Chlorooctadecane (COD)			mg/Kg dry mg/Kg dry	5.19 5.19		71.7 71.0	40-140 40-140			
	3.72		mg/Kg dry mg/Kg dry mg/Kg dry	5.19 5.19 5.19		71.7 71.0 85.3	40-140 40-140 40-140			

Analyte	Result	Reporting . Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B232351 - SW-846 3546					*					
Matrix Spike Dup (B232351-MSD1)	Sou	rce: 19E1819	-01	Prepared: 06	/03/19 Analy:	zed- 06/05/	19			
C9-C18 Aliphatics	26.9	10	mg/Kg dry	31.1	2,64	77.9	40-140	12.3		
C19-C36 Aliphatics	33.7	10	mg/Kg dry	41.5	2.04	74.1	40-140	13.3	50	
Unadjusted C11-C22 Aromatics	72.3	10	mg/Kg dry	88.2	3.66	77.9		6.37	50	
Acenaphthene	4.21	0.10	mg/Kg dry	5.19			40-140	16.7	50	
Acenaphthylene	3.87	0.10	mg/Kg dry	5.19	ND	81.1	40-140	29.0	50	
Anthracene	4.21	0.10	mg/Kg dry	5.19	ND	74.6	40-140	31.5	50	
Benzo(a)anthracene	4.30	0.10	mg/Kg dry	5.19	ND	81.2	40-140	13.7	50	
enzo(a)pyrene	4.21	0.10	mg/Kg dry	5.19	ND	83.0	40-140	9.35	50	
enzo(b)fluoranthene	4.30	0.10	mg/Kg dry	5.19	ND	81.2	40-140	10.0	50	
enzo(g,h,i)perylene	3.73	0.10	mg/Kg dry		ND	82.8	40-140	9.87	50	
enzo(k)fluoranthene	4.30	0.10	mg/Kg dry	5.19	ND	72.0	40-140	7.89	50	
hrysene	4.42	0.10	mg/Kg dry	5.19	NĐ	82.8	40-140	9.79	50	
bibenz(a,h)anthracene	4.42	0.10		5.19	ИD	85.2	40-140	8.77	50	
luoranthene		0.10	mg/Kg dry	5.19	ND	80.7	40-140	8.69	50	
luorene	4.34		mg/Kg dry	5.19	ND	83.7	40-140	11.0	50	
ndeno(1,2,3-cd)pyrene	4.07	0.10	mg/Kg dry	5.19	ND	78.6	40-140	22.6	50	
-Methylnaphthalene	3.88	0.10	mg/Kg dry	5.19	ND	74.9	40-140	10.3	50	
aphthalene	3.59	0.10	mg/Kg dry	5.19	ND	69.2	40-140	36.3	50	
henanthrene	3.69	0.10	mg/Kg dry	5.19	ND	71.2	40-140	37.3	50	
yrene	4.21	0.10	mg/Kg dry	5.19	ND	81.2	40-140	14.5	50	
Nonane	4.42	0.10	mg/Kg dry	5.19	ND	85.3	40-140	11.1	50	
	1.93	0.10	mg/Kg dry	5.19	ND	37.3	30-140	28.2	50	
arrogate: Chlorooctadecane (COD)	4.06		mg/Kg dry	5.19		78.4	40-140			
arrogate: o-Terphenyl (OTP)	4.18		mg/Kg dry	5.19		80.6	40-140			
urrogate: 2-Bromonaphthalene	5.29	1	mg/Kg dry	5.19		102	40-140			
rrogate: 2-Fluorobiphenyl	5.96	i	mg/Kg dry	5.19		115	40-140			

Analyte .	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B232287 - MA VPH										
Blank (B232287-BLK1)				Prepared & A	Analyzed: 06	/03/19				
Unadjusted C5-C8 Aliphatics	ND	10	mg/Kg wet		,					
C5-C8 Aliphatics	ND	10	mg/Kg wet							
Jnadjusted C9-C12 Aliphatics	ND	10	mg/Kg wet							
C9-C12 Aliphatics	ND	10	mg/Kg wet							
C9-C10 Aromatics	ND	10	mg/Kg wet							
Benzene	ND	0.050	mg/Kg wet							
Butylcyclohexane	ND	0.050	mg/Kg wet							
Decane	ND	0.050	mg/Kg wet							
Ethylbenzene	ND	0.050	mg/Kg wet							
Methyl tert-Butyl Ether (MTBE)	ND	0.050	mg/Kg wet							
-Methylpentane	ND	0.050	mg/Kg wet							
Naphthalene	ND	0.25	mg/Kg wet							
lonane	ND	0.050	mg/Kg wet							
entane	ND	0.050	mg/Kg wet							
oluene	ND ND	0.050	mg/Kg wet							
,2,4-Trimethylbenzene	ND	0.050	mg/Kg wet							
,2,4-Trimethylpentane	ND	0.050	mg/Kg wet							
1+p Xylene	ND	0.10	mg/Kg wet							
Xylene	ND	0.050	mg/Kg wet							
urrogate: 2,5-Dibromotoluene (FID)	38.4			40.0						
urrogate: 2,5-Dibromotoluene (PID)	37.1		μg/L μg/L	40.0 40.0		96.1 92.8	70-130 70-130			
CS (B232287-BS1)				Prepared & A	maiyzed: 06/					
enzene	0.0506	0.0010	mg/Kg wet	0.0500		101	70 170			
utylcyclohexane	0.0596	0.0010	mg/Kg wet	0.0500			70-130			
ecane	0.0492	0.0010	mg/Kg wet	0.0500		119 98.5	70-130			
thylbenzene	0.0494	0.0010	mg/Kg wet	0.0500		98.9	70-130			
lethyl tert-Butyl Ether (MTBE)	0.0479	0.0010	mg/Kg wet	0.0500		95.7	70-130			
Methylpentane	0.0612	0.0010	mg/Kg wet	0.0500		122	70-130			
aphthalene	0.0485	0.0050	mg/Kg wet	0.0500			70-130			
Onane	0.0589	0.0010	mg/Kg wei	0.0500		97.1	70-130			
entane	0.0606	0.0010	mg/Kg wet	0.0500		118	30-130			
pluene	0.0500	0.0010	mg/Kg wet			121	70-130			
2,4-Trimethylbenzene	0.0493	0.0010	mg/Kg wer	0.0500 0.0500		99.9	70-130			
2,4-Trimethylpentane	0.0542	0.0010	mg/Kg wet	0.0500		98.7	70-130			
†p Xylene		0.0020	mg/Kg wet			108	70-130			
Xylene	0.100 0.04 9 9	0.0020	mg/Kg wet	0.100 0.0500		100 99.8	70-130			
rrogate: 2,5-Dibromotoluene (FID)	41.2		μg/L	40.0		103	70-130 70-130			
rrogate: 2,5-Dibromotoluene (PID)	39.1		μg/L	40.0		97.6	70-130			
CS Dup (B232287-BSD1)			P	repared & A	.nalyzed: 06/	03/19				
nzene	0.0491	0.0010	mg/Kg wet	0.0500		98.1	70-130	3.04	25	
tylcyclohexane	0.0579	0.0010	mg/Kg wet	0.0500		116	70-130	2.83	25	
cane	0.0469	0.0010	mg/Kg wet	0.0500		93.9	70-130	4.75	25	
ylbenzene	0.0485	0.0010	mg/Kg wet	0.0500		97.1	70-130	1.84	25	
thyl tert-Butyl Ether (MTBE)	0.0475	0.0010	mg/Kg wet	0.0500		94.9	70-130	0.814	25	
Methylpentane	0.0586	0.0010	mg/Kg wet	0.0500		117	70-130	4.37	25 25	
hthalene	0.0490	0.0050	mg/Kg wet	0.0500		98.0	70-130	0.966		
nane	0.0569	0.0010	mg/Kg wet	0.0500		114	30-130		25 25	
ntane	0.0601	0.0010	mg/Kg wet	0.0500		120		3.54 0.831	25	
uene	0.0488	0.0010	mg/Kg wet	0.0500			70-130	0.831	25	
,4-Trimethylbenzene	0.0486	0.0010	mg/Kg wet	3.0300		97.6	70-130	2.34	25	

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result .	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B232287 - MA VPH		71								
LCS Dup (B232287-BSD1)				Prepared & A	Analyzed: 06	/03/19				
2,2,4-Trimethylpentane	0.0516	0.0010	mg/Kg wet	0.0500		103	70-130	4.81	25	
m+p Xylene	0.0981	0.0020	mg/Kg wet	0.100		98.1	70-130	2.02	25	
o-Xylcne	0.0490	0.0010	mg/Kg wet	0.0500		97.9	70-130	1.91	25	
Surrogate: 2,5-Dibromotoluene (FID)	41.5		μg/L	40.0		104	70-130			
Surrogate: 2,5-Dibromotoluene (PID)	40.8		μg/L	40.0		102	70-130			
Batch B232289 - MA VPH										
Blank (B232289-BLK1)			1	Prepared & A	Analyzed: 06/	/03/19				
Jnadjusted C5-C8 Aliphatics	ND	10	mg/Kg wet							
C5-C8 Aliphatics	ND	10	mg/Kg wet							
Jnadjusted C9-C12 Aliphatics	ND	10	mg/Kg wet							
C9-C12 Aliphatics	ND	10	mg/Kg wet							
C9-C10 Aromatics	ND	10	mg/Kg wet							
enzene	ND	0.050	mg/Kg wet							
lutylcyclohexane	ND	0.050	mg/Kg wet							
decane	ND	0.050	mg/Kg wet							
thylbenzene	ND	0.050	mg/Kg wet							
lethyl tert-Butyl Ether (MTBE)	ND	0.050	mg/Kg wet							
Methylpentane	ND	0.050	mg/Kg wet							
_phthalene	ND	0.25	mg/Kg wet							
onane	ND	0.050	mg/Kg wet							
entane	ND	0.050	mg/Kg wet							
oluene	ND	0.050	mg/Kg wet							
2,4-Trimethylbenzene	ND	0.050	mg/Kg wet							
2,4-Trimethylpentane	ND	0.050	mg/Kg wet							
r+p Xylene	ND	0.10	mg/Kg wet							
Xylene	ND	0.050	mg/Kg wet							
irrogate: 2,5-Dibromotoluene (FID)	41.9		μg/L	40.0		105	70-130			
arrogate: 2,5-Dibromotoluene (PID)	39.3		μg/L	40.0		98.3	70-130			
CS (B232289-BS1)			1	repared & A	Analyzed: 06/	03/19				
enzene	0.0466	0.0010	mg/Kg wet	0.0500		93.2	70-130			
itylcyclohexane	0.0575	0.0010	mg/Kg wet	0.0500		115	70-130			
cane	0.0464	0.0010	mg/Kg wet	0.0500		92.9	70-130			
hylbenzene	0.0461	0.0010	mg/Kg wet	0.0500		92.2	70-130			
ethyl tert-Buryl Ether (MTBE)	0.0438	0.0010	mg/Kg wet	0.0500		87.6	70-130			
Methylpentane	0.0551	0.0010	mg/Kg wet	0.0500		110	70-130			
phthalene	0.0447	0.0050	mg/Kg wet	0.0500		89.3	70-130			
nane	0.0559	0.0010	mg/Kg wet	0.0500		112	30-130			
ntane	0.0543	0.0010	mg/Kg wet	0.0500		109	70-130			
luene	0.0463	0.0010	mg/Kg wet	0.0500		92.6	70-130			
2,4-Trimethylbenzene	0.0460	0.0010	mg/Kg wet	0.0500		91.9	70-130			
2,4-Trimethylpentane	0.0499	0.0010	mg/Kg wet	0.0500		99.9	70-130			
+p Xylene	0.0931	0.0020	mg/Kg wet	0.100		93.I	70-130			
Xylone	0.0463	0.0010	mg/Kg wet	0.0500		92.6	70-130			
rrogate: 2,5-Dibromotoluene (FID)	43.4		μg/L	40.0		108	70-130		7	
rrogate: 2,5-Dibromotoluene (PID)	41.1		μg/L	40.0		103	70-130			

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B232289 - MA VPH							2/11/13		Lina	ivoles
LCS Dup (B232289-BSD1)				Prepared & A	Analyzed: 06	/03/19				
Benzene	0.0476	0.0010	mg/Kg wet	0,0500		95.1	70-130	1.00		
Butylcyclohexane	0.0570	0.0010	mg/Kg wet	0.0500		114	70-130	1.99	25	
Pecane	0.0459	0.0010	mg/Kg wet	0.0500				0.936	25	
thylbenzene	0.0472	0.0010	mg/Kg wet	0.0500		91.8	70-130	1.16	25	
icthyl tert-Butyl Ether (MTBE)	0.0442	0.0010	mg/Kg wet	0.0500		94.3	70-130	2.31	25	
-Methylpentane	0.0561	0.0010	mg/Kg wet	0.0500		88.5	70-130	0.979	25	
aphthalene	0.0455	0.0050	mg/Kg wet	0.0500		112	70-130	1.85	25	
onane	0.0563	0.0010	mg/Kg wet			90.9	70-130	1.76	25	
entane	0.0536	0.0010	mg/Kg wet	0.0500		113	30-130	0.677	25	
pluene	0.0474	0.0010		0.0500		107	70-130	1.34	25	
2,4-Trimethylbenzene	0.0468	0.0010	mg/Kg wet	0.0500		94.7	70-130	2.27	25	
2,4-Trimethylpentane	0.0408	0.0010	mg/Kg wet	0.0500		93.7	70-130	1.94	25	
+p Xylene		0.0010	mg/Kg wet	0.0500		100	70-130	0.543	25	
-Xylene	0.0953		mg/Kg wet	0.100		95.3	70-130	2.29	25	
	0.0473	0.0010	mg/Kg wet	0.0500		94.6	70-130	2.16	25	
progate: 2,5-Dibromotoluene (FID)	47.7		μg/L	40.0		119	70-130			
arrogate: 2,5-Dibromotoluene (PID)	47.3		μg/L	40.0		118	70-130			

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B232592 - SW-846 3050B										
Blank (B232592-BLK1)				Prepared: 06	/05/19 Analy	rzed: 06/06/	10	······································		
Antimony	ND	1.7	mg/Kg wet			200. 00/00/	.,			
Arsenic	ND	1.7	mg/Kg wet							
Barium	ND	1.7	mg/Kg wet							
3cryllium	ND	0.17	mg/Kg wet							
Cadmium	ND	0.17	mg/Kg wet							
Chromium	ND	0.33	mg/Kg wet							
.cad	ND	0.50	mg/Kg wet							
lickel	ND	0.33	mg/Kg wet							
elenium	ND	3.3	mg/Kg wet							
ilver	ND	0.33	mg/Kg wet							
hallium	ND	1.7	mg/Kg wet							
'anadium	ND	0.67	mg/Kg wet							
line	ND	0.67	mg/Kg wet							
CS (B232592-BS1)			1	repared: 06/	05/19 Analy	zed: 06/06/1	19			
ntimony	58.8	4.9	mg/Kg wet	133		44.2	3-196.8			
rsenic	68.0	4.9	mg/Kg wet	77.2		88.1	82.4-117.4			
arium	372	4.9	mg/Kg wet	391		95.2	82-118			
eryllium	207	0.49	mg/Kg wei	238		87.0	83-116.6			
dmium	158	0.49	mg/Kg wet	182		87.1				
uromium	245	0.99	mg/Kg wet	272		90.0	83.1-117.5 81.5-118.5			
ead	259	1.5	mg/Kg wet	241		108	81.8-118.2			
ickel	114	0.99	mg/Kg wet	125		91.6				
elenium	192		mg/Kg wet	216		89.1	82.4-117.5 79-121.5			
lver	66.3		mg/Kg wet	66.3		100	79.6-120.4			
nallium	140		mg/Kg wct	148		94.3	80.7-119.3			
ınadium	87.4		mg/Kg wet	97.6		89.5				
пс	121		mg/Kg wet	127		95.2	78-121.5 80.8-118.9			
CS Dup (B232592-BSD1)			P	repared: 06/0)5/19 Analy2	zed: 06/06/1	9			
limony	55.9	4.8	mg/Kg wet	133		42.0	3-196.8	5.12	30	
senie	68.4		mg/Kg wet	77.2		88.6	82.4-117.4	0.524	30 30	
rium	366		mg/Kg wet	391		93.7	82-118	1.67	30 30	
ryllium	206		mg/Kg wet	238		86.4	83-116,6	0.766	20	
dmium	153		mg/Kg wet	182		84.3	83.1-117.5		30	
romium	243		mg/Kg wet	272		89.4	81.5-118.5	3.27 0.616	20	
ad	221		mg/Kg wet	241		91.8			30	
:kel	113		mg/Kg wet	125		90.1	81.8-118.2	15.9	30	
enium	192		mg/Kg wei	216		89.0	82.4-117.5	1.66	30	
ver	67.1		mg/Kg wet	66.3			79-121.5	0.0101	30	
allium	139		mg/Kg wet	148		101	79.6-120.4	1.24	30	
nadium	86.4		mg/Kg wei	97.6		94.0	80.7-119.3	0.287	30	
c	122		mg/Kg wet	127		88.5	78-121.5	1.13	30	

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B232592 - SW-846 3050B									·	,
Duplicate (B232592-DUP1)	Sou	rce: 19E1819	-02	Prepared: 06	5/05/19 Analy	zed: 06/06/	19			
Antimony	ND	1.8	mg/Kg dry		ND			NC	35	
Arsenic	ND	1.8	mg/Kg dry		4.17			NC	35	R-04
Barium	17.7	1.8	mg/Kg dry		18.3			2.97	35	10-04
Beryllium	0.191	0.18	mg/Kg dry		0.193			0.896	35	
Cadmium	ND	0.18	mg/Kg dry		0.269			NC	35	R-04
Chromium	6.82	0.35	mg/Kg dry		6.60			3.19	35	10-04
Lead	9.49	0.53	mg/Kg dry		9.20			3.16	35	
Nickel	5.62	0.35	mg/Kg dry		5.60			0.335	35	
Selenium	ND	3.5	mg/Kg dry		ND			NC	35	
Silver	ND	0.35	mg/Kg dry		ND			NC	35	
Thallium	ND	1.8	mg/Kg dry		ND			NC	35	
Vanadium	14.2	0.70	mg/Kg dry		13.9			2.10	35	
Zinc	20.7	0.70	mg/Kg dry		20.7			0.299	35	
ARL Check (B232592-MRL1)				Prepared: 06	/05/19 Analy:	zed: 06/06/	19			
.ead	0.449	0.50	mg/Kg wet	0.497		90.4	80-120			
Natrix Spike (B232592-MS1)	Sour	rce: 19E1819	-02	Prepared: 06/	/05/19 Analy:	zcd: 06/06/	19			
Antimony	9.37	1.8	mg/Kg dry	17.8	1.41	44.7 *	75-125			MS-07
rsenic	17.6	1.8	mg/Kg dry	17.8	4.17	75.3	75-125			
arium	34.8	1.8	mg/Kg dry	17.8	18.3	92.7	75-125			
Beryllium	17.0	0.18	mg/Kg dry	17.8	0.193	94.6	75-125			
Cadmium	17.0	0.18	mg/Kg dry	17.8	0.269	94.1	75-125			
Chromium	23.3	0.36	mg/Kg dry	17.8	6.60	93.8	75-125			
ead	25.4	0.53	mg/Kg dry	17.8	9.20	91.0	75-125			
lickel	22.6	0.36	mg/Kg dry	17.8	5.60	95.3	75-125			
elenium	14.9	3.6	mg/Kg dry	17.8	ND	83.9	75-125			
ilver	18.2	0.36	mg/Kg dry	17.8	ND	102	75-125			
hallium	20.7	1.8	mg/Kg dry	17.8	ND	116	75-125			
anadium and a second a second and a second a second and a second a second and a second a second and a second and a second a second a	30.6	0.71	mg/Kg dry	17.8	13.9	93.6	75-125			
inc	52.4	0.71	mg/Kg dry	35.6	20.7	89.1	75-125			
atch B232653 - SW-846 7471										
lank (B232653-BLK1)				Prepared: 06/	/06/19 Analys	red: 06/07/1	0	************		
fercury	ND	0.025	mg/Kg wet		thiniya		-			
CS (B232653-BS1)				Prepared: 06/	/06/19 Analyz	red: 06/07/1	9			
lercury	22,4	1.9	mg/Kg wet	27.3		82.0	64-136.5			
CS Dup (B232653-BSD1)				Prepared: 06/	/06/19 Analyz	ed: 06/07/1	9			
ercury	21,2	1.9	mg/Kg wet	27.3			-			

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	, RPD	RPD Limit	Notes
Batch B232653 - SW-846 7471										
Duplicate (B232653-DUP1)	Sour	ce: 19E1819-	-02	Prepared: 06	/06/19 Anal	zed: 06/07/	19			
Mercury	ND	0.026	mg/Kg dry		ND			NC	35	
Matrix Spike (B232653-MS1)	Sour	ce: 19E1819-	02	Prepared: 06	/06/19 Analy	zed: 06/07/1	9			
Mercury	0.367	0.027	mg/Kg dry	0.361	ND	102	75-125			

Lab Sample ID:	S036798-PEMI	Analyzed: 06/04/2019
Column Number:	1	
Analyte	% Breakdown	
4,4'-DDT [1]	0.77	
Endrin [1]	2.49	
Column Number:	2	
Analyte	% Breakdown	
4,4'-DDT [2]	0.81	
Endrin [2]	2.48	

BREAKDOWN REPORT

ab Sample ID:	S036798-PEM2	Analyzed:	06/04/2019
Column Number:	1		
Analyte	% Breakdown		
4,4'-DDT [1]	1.07		
Endrin [1]	2.35		
Column Number:	2		
Analyte	% Breakdown		
4,4'-DDT [2]	1.07		
Endrin [2]	2.39		

BREAKDOWN REPORT

S036798-PEM3	Analyzed: 06/05/2019	
1		
% Breakdown		
1.83		
2.04		
	1 % Breakdown 1.83	1 % Breakdown 1.83

Lab Sample ID:	S036798-PEM3	Analyzed:	06/05/2019
Column Number:	2		
Analyte	% Breakdown		
4,4'-DDT [2]	1.84		
Endrin [2]	2.10		

BREAKDOWN REPORT

Lab Sample ID:	S036798-PEM4	Analyzed: 06/05/2019
Column Number:	1	
Analyte	% Breakdown	
4,4'-DDT [1]	2.16	
Endrin [1]	2.03	
Column Number:	2	
Analyte	% Breakdown	
4,4'-DDT [2]	2.17	
Endrin [2]	2.06	

BREAKDOWN REPORT

Lab Sample ID:	S036798-PEM5	Analyzed:	06/06/2019
Column Number:	1		
Analyte	% Breakdown		
4,4'-DDT [1]	2.48		
Endrin [1]	2.26		
Column Number:	2		
Analyte	% Breakdown		
4,4'-DDT [2]	2.50		
Endrin [2]	2.38		

BREAKDOWN REPORT

Lab Sample ID:	S036816-PEM1	Analyzed: 06/06/2019	•
Column Number:	1		
Analyte	% Breakdown		
4,4'-DDT [1]	3.59		
Endrin [1]	2.39		
Column Number:	2		
	2 % Breakdown		
Column Number: Analyte 4,4'-DDT [2]			

BREAKDOWN REPORT

Lab Sample ID:	S036816-PEM2	Analyzed: 06/06/2019
Column Number:	1	
Analyte	% Breakdown	
4,4'-DDT [1]	3.13	
Endrin [1]	2.26	
Column Number:	2	
Analyte	% Breakdown	
4,4'-DDT [2]	3.69	
Endrin [2]	2.85	

BREAKDOWN REPORT

Lab Sample ID:	S036816-PEM3	Analyzed: 06/07/2019	
Column Number:	1		
Analyte	% Breakdown		
4,4'-DDT [1]	2.90		
Endrin [1]	2.14		

Lab Sample ID:	S036816-PEM3	Analyzed: 06/07/2019	•
Column Number:	2		
Analyte	% Breakdown		
4,4'-DDT [2]	3.41		
Endrin [2]	2.66		

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

GP1-2 (0-2)	

Lab Sample ID:	19E1819-13		Date(s) Analyzed:	06/06/2019	06/0	6/2019
Instrument ID (1):	ECD2	NAME OF THE PARTY	Instrument ID (2):	ECD2		
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT WI	NDOW	CONCENTRATION	%RPD
			FROM	TO	CONCENTRATION	%KPD
4,4'-DDE	1	7.256	0.000	0.000	0.57	
	2	7.313	0.000	0.000	0.49	15.1
4,4'-DDT	1	7.937	0.000	0.000	0.48	
	2	8.007	0.000	0.000	0.45	6.5

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

(3P1-6	.(3-5)	

Lab Sample ID:	19E1819-14		Date(s) Analyzed:	06/06/2019	06/06/2019	
Instrument ID (1):	ECD2	-	Instrument ID (2):	ECD2		100-4
GC Column (1):	ID:	(mm)	GC Column (2):		ID: (m	nm'

ANALYTE	COL	RT	RT WI	NDOW	CONCENTRATION	0/ 000
			FROM	ТО	CONCENTRATION	%RPD
4,4'-DDE	11	7.255	0.000	0.000	0.027	
	2	7.313	0.000	0.000	0.026	3.8
4,4'-DDT	1	7.936	0.000	0.000	0.020	
	2	8.006	0.000	0.000	0.020	0.0

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

GP1-7_(3-5)

Lab Sample ID:	19E1819-15		Date(s) Analyzed:	06/06/2019	06/07/2019	
Instrument ID (1):	ECD2A		Instrument ID (2):	ECD2B		
GC Column (1):	ID:	(mm)	GC Column (2):		ID: (mm	١

ANALYTE	COL	COL RT		NDOW	CONCENTRATION	W 222
		,,,,	FROM	ТО	CONCENTRATION	%RPD
4,4'-DDD	1	7.723	0.000	0.000	0.36	
	2	7.762	0.000	0.000	0.44	20.0
4,4'-DDE	1	7.260	0.000	0.000	5.2	
	2	7.311	0.000	0.000	4.7	10.1
4,4'-DDT	1	7.934	0.000	0.000	12	
	2	8.003	0.000	0.000	12	0.0
Chlordane	1	0.000	0.000	0.000	0.11	
	2	0.000	0.000	0.000	0.092	17.8
Dieldrin	1	7.499	0.000	0.000	0.092	
	2	7.444	0.000	0.000	0.079	15.2
Endrin	1	7.681	0.000	0.000	0.035	
	2	7.682	0.000	0.000	0.025	33.3
Endrin Ketone	1	8.628	0.000	0.000	0.013	
	2	8.628	0.000	0.000	0.049	116.0
Heptachlor Epoxide	_ 1	6.998	0.000	0.000	0.097	
	2	6.937	0.000	0.000	0.0083	168.0

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

	LCS	

SW-846 8082A

Lab Sample ID:	B232317-BS1		Date(s) Analyzed:	06/05/2019	06/05	/2019
Instrument ID (1):			Instrument ID (2):			
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT WI	NDOW	CONCENTRATION	%RPD
			FROM	то	CONCENTRATION	%KPD
Aroclor-1016	1	0.000	-0.030	0.030	0.17	
	2	0.000	-0.030	0.030	0.17	0.0
Aroclor-1260	1	0.000	-0.030	0.030	0.16	
	2	0.000	-0.030	0.030	0.15	6.5

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS Dup

SW-846 8082A

Lab Sample ID:	B232317-BSD1		Date(s) Analyzed:	06/05/2019	06/0	5/2019
Instrument ID (1):			Instrument ID (2):			
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD
			FROM	TO	CONCENTRATION	%KPD
Aroclor-1016	1	0.000	-0.030	0.030	0.17	
	2	0.000	-0.030	0.030	0.17	0.0
Aroclor-1260	1	0.000	-0.030	0.030	0.16	
	2	0.000	-0.030	0.030	0.15	6.5

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS	

Lab Sample ID:	B232333-BS1		Date(s) Analyzed:	06/06/2019	06/06/201	9
Instrument ID (1):	ECD6		Instrument ID (2):	ECD6		
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT W	INDOW	CONCENTRATION	%RPD	
			FROM	TO	CONCENTRATION	%RPD	
4,4'-DDD	1_1_	7.382	0.000	0.000	0.089		
	2	7.393	0.000	0.000	0.091	2.2	
4,4'-DDE	1	6.935	0,000	0.000	0.090		
	2	6.957	0.000	0.000	0.091	1.1	
4,4'-DDT	1	7.597	0.000	0,000	0.088		
	2	7.636	0.000	0.000	0.085	3.5	
Aldrin	11	6.269	0.000	0.000	0.089		
	2	6.190	0.000	0.000	0.089	0.0	
alpha-BHC	1	5.539	0.000	0.000	0.087		
	2	5.468	0.000	0.000	0.093	6.7	
beta-BHC	1	5.799	0.000	0.000	0.083		
	2	5.744	0.000	0.000	0.082	1.2	
delta-BHC	1	5.919	0.000	0.000	0.076		
	2	5.933	0.000	0.000	0.083	8.8	
Dieldrin	1	7.159	0.000	0.000	0.088		
	2	7.071	0.000	0.000	0.088	0.0	
Endosulfan I	1	6.983	0.000	0.000	0.086		
	2	6.869	0.000	0.000	0.087	1.2	
Endosulfan II	1	7.504	0.000	0.000	0.078		
	2	7.461	0.000	0.000	0.079	1.3	
Endosulfan Sulfate	1	8.146	0.000	0.000	0.088		
	2	7.939	0.000	0.000	0.086	2.3	
Endrin	1	7.334	0.000	0.000	0.089		
	2	7.299	0.000	0.000	0.087	2.3	
Endrin Ketone	1	8.331	0.000	0.000	0.085		
	2	8.306	0.000	0.000	0.083	2,4	
gamma-BHC (Lindane)	1	5.744	0.000	0.000	0.088	444.4	
	2	5.689	0.000	0.000	0.090	2.3	
Heptachlor	1	6.062	0.000	0.000	0.066		
	2	5.974	0.000	0.000	0.088	28.6	
Heptachlor Epoxide	1	6.695	0.000	0.000	0.085	20.0	

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

	LCS	

Lab Sample ID:	B232333-BS1		Date(s) Analyzed:	06/06/2019	06/06/20	019
Instrument ID (1):	ECD6		Instrument ID (2):	ECD6		
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	~
			FROM	FROM TO CONCENTRATION	%RPD	
	2	6.588	0.000	0.000	0.085	0.0
Hexachlorobenzene	1	5.430	0.000	0.000	0.10	
	2	5.380	0.000	0.000	0.094	6.2
Methoxychlor	1	7.973	0.000	0.000	0.084	
	2	8.160	0.000	0.000	0.084	0.0

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS Du	5			

Lab Sample ID:	B232333-BSD1		Date(s) Analyzed:	06/06/2019	06/06	5/2019
instrument ID (1):	ECD6		Instrument ID (2):	ECD6		
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT W	INDOW	CONCENTRATION	%RPD
		FROM TO		TO	CONCENTRATION	WILL D
4,4'-DDD	1	7.382	0.000	0.000	0.091	
	2	7.393	0.000	0.000	0.094	3.2
4,4'-DDE	1	6,934	0.000	0.000	0.094	
	2	6.956	0.000	0.000	0.094	0.0
4,4'-DDT	11	7.596	0.000	0.000	0.090	
	2	7.635	0.000	0.000	0.088	2.3
Aldrin	11	6.268	0.000	0.000	0.092	
M-Vi	2	6.189	0.000	0.000	0.093	1.1
alpha-BHC	1	5.539	0.000	0.000	0.089	
	2	5.468	0.000	0.000	0.096	7.6
beta-BHC	11	5.798	0.000	0.000	0.085	
	2	5.744	0.000	0.000	0.084	1.2
delta-BHC	1	5.919	0.000	0.000	0.078	
	2	5.933	0.000	0.000	0.085	8.6
Dieldrin	1	7.159	0.000	0.000	0.091	
	2	7.071	0.000	0.000	0.091	0.0
Endosulfan I	1	6.981	0.000	0.000	0.088	
	2	6.869	0.000	0.000	0.090	2.3
Endosulfan II	1	7.503	0.000	0.000	0.080	
	2	7.461	0.000	0.000	0.081	0.0
Endosulfan Sulfate	1	8.145	0.000	0.000	0.090	
	2	7.939	0.000	0.000	0.088	2.3
Endrin	1	7.333	0.000	0.000	0.091	
	2	7.299	0.000	0.000	0.090	1.1
Endrin Ketone	1	8.329	0.000	0.000	0,087	
	2	8.305	0.000	0.000	0.085	2.3
gamma-BHC (Lindane)	1	5.743	0.000	0.000	0.091	
	2	5.689	0.000	0.000	0.093	2.2
Heptachlor	1	6.061	0.000	0.000	0.068	
	2	5.973	0.000	0.000	0.092	30.0
Heptachlor Epoxide	1	6.694	0.000	0.000	0.088	

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS.Dup

Lab Sample ID:	B232333-BSD1		Date(s) Analyzed:	06/06/2019	06/06/	/2019
Instrument ID (1):	ECD6		Instrument ID (2):	ECD6		
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD
			FROM	то	CONCENTRATION	701 (1 2)
	2	6.587	0.000	0.000	0.087	1.1
Hexachlorobenzene	1	5.430	0.000	0.000	0.11	
	2	5.380	0.000	0.000	0.097	12.6
Methoxychlor	1	7.972	0.000	0.000	0.087	
	2	8.159	0.000	0.000	0.088	1.1

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LC	CS	

Lab Sample ID:	B232364-BS1		Date(s) Analyzed:	06/10/2019	06/10	0/2019
Instrument ID (1):	ECD 8		Instrument ID (2):	ECD 8		
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT W	INDOW	CONCENTRATION	
			FROM	TO	CONCENTRATION	%RPD
2,4,5-T	1	13.826	0.000	0.000	12.3	
	2	13.967	0.000	0.000	26,7	76.0
2,4,5-TP (Silvex)	1	13.250	0.000	0.000	12.4	
	2	13.141	0.000	0.000	12.2	1.7
2,4-D	1	11.574	0.000	0.000	117	
	2	11.543	0.000	0.000	118	1.7
2,4-DB	1	14,960	0.000	0.000	121	
	2	15.004	0.000	0.000	120	0.0
Dalapon	1	3.734	0.000	0.000	214	
	2	3.402	0.000	0.000	214	1.9
Dicamba	1	9.714	0.000	0.000	11.3	
	2	9.588	0.000	0.000	11.4	3,6
Dichloroprop	1	11.122	0.000	0.000	122	
	2	10.937	0.000	0.000	125	4.1
Dinoseb	1	16.834	0.000	0.000	19.0	
	2	15.589	0.000	0.000	21.6	12.8
MCPA	1	10.444	0.000	0.000	10800	
	2	10.336	0.000	0.000	12100	9.5
MCPP	1	10.159	0.000	0.000	11600	
	2	9.905	0.000	0.000	11200	6.9

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS_Dup

Lab Sample ID:	B232364-BSD1		Date(s) Analyzed:	06/10/2019	06/10/2019	
Instrument ID (1):	ECD 8	-	Instrument ID (2):	ECD 8		-
GC Column (1):	ID:	(mm)	GC Column (2):		iD: (m	ım)

ANALYTE	COL	RT	RT W	NDOW	CONCENTRATION	W 555
			FROM	TO	CONCENTRATION	%RPD
2,4,5-T	1	13.823	0.000	0.000	11.1	
	2	13.966	0.000	0.000	24.8	77.1
2,4,5-TP (Silvex)	1	13.248	0.000	0.000	11.0	
	2	13.142	0.000	0.000	10.8	1.8
2,4-D	1	11.572	0.000	0.000	. 105	
	2	11.543	0.000	0.000	109	0,9
2,4-DB	1	14.959	0.000	0.000	104	
	2	15.003	0.000	0.000	109	8.6
Dalapon	1	3,732	0.000	0.000	207	
	2	3.399	0.000	0.000	208	1.0
Dicamba	1	9.713	0.000	0.000	10.4	
	2	9.587	0.000	0.000	10.8	7.7
Dichloroprop	1	11.121	0.000	0.000	110	
	2	10.936	0.000	0.000	114	3.6
Dinoseb	1	16.834	0.000	0.000	17.6	
	2	15.588	0.000	0.000	21.7	18.6
MCPA	1	10.441	0.000	0.000	9570	
	2	10.334	0.000	0.000	11000	13.6
MCPP	1	10.158	0.000	0.000	10300	
	2	9.904	0.000	0.000	10100	1.0

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

Matrix Spike

Lab Sample ID:	B232364-MS1		Date(s) Analyzed:	06/10/2019	06/10/2019
Instrument ID (1):	ECD 8	-	Instrument ID (2):	ECD 8	
GC Column (1):	ID:	(mm)	GC Column (2):		ID: (mm)

ANALYTE	COL	RT	RT W	INDOW	00105115045	
	- 002	I NI	FROM	то	CONCENTRATION	%RPD
2,4,5-T	1	13.822	0.000	0.000	11.7	
	2	13.965	0.000	0.000	33.6	94.7
2,4,5-TP (Silvex)	1	13.247	0.000	0.000	10.5	
	2	13.139	0.000	0.000	12.3	11.2
2,4-D	11	11.571	0.000	0.000	120	
	2	11.543	0.000	0.000	124	3.3
2,4-DB	11	14.957	0.000	0.000	130	
	2	15.001	0.000	0.000	142	8.8
Dalapon	1	3.730	0.000	0.000	271	
	2	3.396	0.000	0.000	270	0.0
Dicamba	1	9.713	0.000	0.000	11.7	
	2	9.588	0.000	0.000	12.2	1.7
Dichloroprop	11	11.121	0.000	0.000	129	
	_ 2	10.936	0.000	0.000	127	2.3
Dinoseb	1	16.831	0.000	0.000	25.0	
	2	15.588	0.000	0.000	26.8	7.0
MCPA	1	10.443	0.000	0,000	11400	
	2	10.334	0.000	0.000	12100	9.5
MCPP	1	10.158	0.000	0.000	11900	
	2	9.905	0.000	0.000	11700	2.5

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

Matrix_Spike_Dup

Lab Sample ID:	B232364-MSD1		Date(s) Analyzed:	06/10/2019	06/10/	/2019
Instrument ID (1):	ECD 8		Instrument ID (2):	ECD 8		
GC Column (1):	ID:	(mm)	GC Column (2):		ID.	(mm)

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD
			FROM	то	CONCENTRATION	%RPU
2,4,5-T	1	13.822	0.000	0.000	11.8	
	2	13.965	0.000	0.000	33.0	93,3
2,4,5-TP (Silvex)	1	13.246	0.000	0.000	10,6	
	2	13.141	0.000	0.000	12.1	9.5
2,4-D	1	11.572	0.000	0.000	120	
	2	11.543	0.000	0.000	123	2.5
2,4-DB	11	14.959	0.000	0.000	130	
	2	15.004	0.000	0.000	128	1.6
Dalapon	11	3.730	0.000	0.000	250	
	2	3.396	0.000	0.000	251	0.4
Dicamba	1	9,713	0.000	0.000	12.6	
	2	9.588	0.000	0.000	12.0	8.0
Dichloroprop	11	11.121	0.000	0.000	130	
	2	10.935	0.000	0.000	125	3.9
Dinoseb	1_1_	16.834	0.000	0.000	23.3	
	2	15.587	0.000	0.000	25.3	9.5
MCPA	1	10.442	0.000	0.000	11600	
	2	10.333	0.000	0.000	11100	7.8
MCPP	111	10.158	0.000	0.000	12100	
	2	9.904	0.000	0.000	11600	3.4

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 FLAG/QUALIFIER SUMMARY

•	QC result is outside of established limits.
t	Wide recovery limits established for difficult compound.
, ‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
DL-03	Elevated reporting limit due to matrix interference.
102	Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side.
L-07	Either laboratory fortified blank/laboratory control sample or duplicate recovery is obtained an control limits. Asset
L-07A	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD outside of control limits. Reduced precision anticipated for any reported result for
L-11	this compound. Laboratory fortified blank/laboratory control sample was outside of control limits on the confirmation column, but within control limits on the primary column. All sample results are reported from the column within control criteria.
L-14	Compound classified by MA CAM as difficult with acceptable recoveries of 40-160%. Recovery does not meet 70-130% criteria but does meet difficult compound criteria.
MS-07	Matrix spike recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possibility of sample matrix effects that lead to low bias for reported result or non-homogeneous sample aliquot cannot be eliminated.
MS-12	Matrix spike recovery and matrix spike duplicate recovery outside of control limits. Possibility of complements
O-01	effects that lead to a high bias for reported result or non-homogeneous sample aliquots cannot be eliminated. Soil/methanol ratio does not meet method specifications. Excess amount of soil. Sample was completely covered with methanol, but with less than the method-specified amount.
O-32	A dilution was performed as part of the standard analytical procedure.
P-02	Sample RPD between primary and confirmatory analysis exceeded 40%. Per EPA method 8000, the lower value
R-04	Duplicate relative percent difference (RPD) is a less useful indicator of sample precision for sample results
R-05	Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any
RL-08	reported value for this compound. Elevated reporting limit due to sample matrix interference. MACAM reporting limit not met.
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
V-16	Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported result.
V-20	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side
V-34	Data validation is not affected since sample result was "not detected" for this compound. Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.

Certified Analyses included in this Report

CERTIFIC	ATIONS	

MAREP EDU OA 1 1 2 C-2		
MADEP-EPH-04-1.I in Soil		
C9-C18 Aliphatics	CT,NC,ME,NH-P	
C19-C36 Aliphatics	CT,NC,ME,NH-P	
Unadjusted C11-C22 Aromatics	CT,NC,ME,NH-P	
C11-C22 Aromatics	CT,NC,ME,NH-P	
Acenaphthene	CT,NC,ME,NH-P	
Accnaphthylene	CT,NC,ME,NH-P	
Anthracene	CT,NC,ME,NH-P	
Benzo(a)anthracene	CT,NC,ME,NH-P	
Benzo(a)pyrene	CT,NC,ME,NH-P	
Benzo(b)fluoranthene	CT,NC,ME,NH-P	
Benzo(g,h,i)perylene	CT.NC,ME,NH-P	
Benzo(k)fluoranthene	CT,NC,ME,NH-P	
Chrysene	CT,NC,ME,NH-P	
Dibenz(a,h)anthracene	CT,NC,ME,NH-P	
Fluoranthene	CT,NC,ME,NH-P	
Fluorene	CT,NC,ME	
Indeno(1,2,3-cd)pyrene	CT.NC,ME,NH-P	
2-Methylnaphthalene	CT,NC	
Naphthalene	CT,NC,ME,NH-P	
Phenanthrene	CT,NC,ME,NH-P	
Pyrene	CT,NC,ME,NH-P	
ADEP-VPH-Feb 2018 Rev 2.1 in Soil	C - 91 · 100 January va 4 · 2	
Unadjusted C5-C8 Aliphatics		
C5-C8 Aliphatics	CT,NC,ME,NH-P	
	CT,NC,ME,NH-P	
Unadjusted C9-C12 Aliphatics	СТ, NC, МЕ, NH-Р	
C9-C12 Aliphatics	CT,NC,ME,NH-P	
C9-C10 Aromatics	CT,NC,ME,NH-P	
Benzene	CT,NC,ME,NH-P	
Ethylbenzene	CT,NC,ME,NH-P	
Methyl tert-Butyl Ether (MTBE)	CT,NC,ME,NH-P	
Naphthalene	CT,NC,ME,NH-P	
Coluene	CT,NC,ME,NH-P	
n+p Xylene	CT,NC,ME,NH-P	
-Xylene	CT,NC,ME,NH-P	
4-846 6010D in Soil		
antimony	CT,NH,NY,ME,VA,NC	
arsenic	CT;NH,NY,ME,VA,NC	
arium	CT,NH,NY,ME,VA,NC	
cryllium	CT,NH,NY,ME,VA,NC	
admium	CT,NH,NY,ME,VA,NC	
hromium		
cad	CT,NH,NY,ME,VA,NC	
ickel	CT,NH,NY,AIHA,ME,VA,NC	
elenium	CT,NH,NY,ME,VA,NC	
ilver	CT,NH,NY,ME,VA,NC	
hallium	CT,NH,NY,ME,VA,NC	

Certified	Analyses	included	in	this	Report
-----------	----------	----------	----	------	--------

Analyte	Certifications
SW-846 6010D in Soil	
Vanadium .	CT,NH,NY,ME,VA,NC
Zinc	CT,NH,NY,ME,VA,NC
SW-846 7471B in Soil	
Mercury	CT,NH,NY,NC,ME,VA
SIV-846 8081B in Soil	
Aldrin	CT,NC,NH,NY,ME,VA
Aldrin [2C]	CT,NC,NH,NY,ME,VA
alpha-BHC	CT,NC,NH,NY,ME,VA
alpha-BHC [2C]	CT,NC,NH,NY,ME,VA
beta-BHC	CT,NC,NH,NY,ME,VA
beta-BHC [2C]	CT,NC,NH,NY,ME,VA
delta-BHC	CT,NC,NH,NY,ME,VA
delta-BHC [2C]	CT,NC,NH,NY,ME,VA
gamma-BHC (Lindane)	CT,NC,NH,NY,ME,VA
gamma-BHC (Lindane) [2C]	CT,NC,NH,NY,ME,VA
Chlordane	CT,NC,NH,NY,ME,VA
Chlordane [2C]	CT,NC,NH,NY,ME,VA
4,4'-DDD	CT,NC,NH,NY,ME,VA
4,4'-DDD [2C]	CT,NC,NH,NY,ME,VA
4,4'-DDE	CT,NC,NH,NY,ME,VA
4,4'-DDE [2C]	CT,NC,NH,NY,ME,VA
4,4'-DDT	CT,NC,NH,NY,ME,VA
4,4'-DDT [2C]	CT,NC,NH,NY,ME,VA
Dieldrin	CT,NC,NH,NY,ME,VA
Dieldrin [2C]	CT,NC,NH,NY,ME,VA
Endosulfan I	CT,NC,NH,NY,ME,VA
Endosulfan I [2C]	CT,NC,NH,NY,ME,VA
Endosulfan II	CT,NC,NH,NY,ME,VA
Endosulfan II [2C]	CT,NC,NH,NY,ME,VA
Endosulfan Sulfate	CT,NC,NH,NY,ME,VA
Endosulfan Sulfate [2C]	CT,NC,NH,NY,ME,VA
Endrin	•
Endrin [2C]	CT,NC,NH,NY,ME,VA
Endrin Ketone	CT,NC,NH,NY,ME,VA NC
Endrin Ketone [2C]	NC NC
Heptachlor	
Heptachlor (2C)	CT,NC,NH,NY,ME,VA
Heptachlor Epoxide	CT,NC,NH,NY,ME,VA
Heptachlor Epoxide [2C]	CT,NC,NH,NY,ME,VA
Hexachlorobenzene	CT,NC,NH,NY,ME,VA
Hexachlorobenzene [2C]	NC
Methoxychlor	NC
	CT,NC,NH,NY,ME,VA
Methoxychlor (2C)	CT,NC,NH,NY,ME,VA
Y-846 8081B in Water	
Aldrin	CT,NC,NH,NY,ME,VA

Certified Analyses	included i	in this	Report
--------------------	------------	---------	--------

CIV. 946 9091 D in 1V	Certifications	
SW-846 8081B in Water		
alpha-BHC	CT,NC,NH,NY,ME,VA	
alpha-BHC [2C]	CT,NC,NH,NY,ME,VA	
beta-BHC	CT,NC,NH,NY,ME,VA	
beta-BHC [2C]	CT,NC,NH,NY,ME,VA	
delta-BHC	CT,NC,NH,NY,ME,VA	
delta-BHC [2C]	CT,NC,NH,NY,ME,VA	
gamma-BHC (Lindanc)	CT,NC,NH,NY,ME,VA	
gamma-BHC (Lindane) [2C]	CT,NC,NH,NY,ME,VA	
Chlordane	CT,NC,NH,NY,ME,VA	
Chlordane [2C]	CT,NC,NH,NY,ME,VA	
4,4'-DDD	CT,NC,NH,NY,ME,VA	
4,4'-DDD [2C]	CT,NC,NH,NY,ME,VA	
4,4'-DDE		
4,4'-DDE [2C]	CT,NC,NH,NY,ME,VA	
4,4'-DDT	CT,NC,NH,NY,ME,VA	
4,4'-DDT [2C]	CT,NC,NH,NY,ME,VA	
Dieldrin	CT,NC,NH,NY,ME,VA	
Dieldrin [2C]	CT,NC,NH,NY,ME,VA	
Endosulfan I	CT,NC,NH,NY,ME,VA	
Endosulfan I [2C]	CT,NC,NH,NY,ME,VA	
Endosulfan II	CT,NC,NH,NY,ME,VA	
Endosulfan II [2C]	CT,NC,NH,NY,ME,VA	
Endosulfan Sulfate	CT,NC,NH,NY,ME,VA	
Endosulfan Sulfate [2C]	CT,NC,NH,NY,ME,VA	
Endrin	CT,NC,NH,NY,ME,VA	
Endrin (2C)	CT,NC,NH,NY,ME,VA	
Endrin Ketone	CT,NC,NH,NY,ME,VA	
Endrin Ketone [2C]	NC	
deptachlor	NC	
reptachlor (2C)	CT,NC,NH,NY,ME,VA	
leptachlor Epoxide	CT,NC,NH,NY,ME,VA	
	CT,NC,NH,NY,ME,VA	
leptachlor Epoxide [2C] lexachlorobenzene	CT,NC,NH,NY,ME,VA	
	NC	
lexachlorobenzene [2C]	NC	
fethoxychlor	CT,NC,NH,NY,ME,VA	
fethoxychlor [2C]	CT,NC,NH,NY,ME,VA	
-846 8082A in Soil		
roclor-1016	CT,NH,NY,ME,NC,VA	
roclor-1016 [2C]	CT,NH,NY,ME,NC,VA	
roclor-1221	CT,NH,NY,ME,NC,VA	
roclor-1221 [2C]	CT,NH,NY,ME,NC,VA	
roclor-1232	CT,NH,NY,ME,NC,VA	
roclor-1232 [2C]	CT,NH,NY,ME,NC,VA	
roclor-1242	CT,NH,NY,ME,NC,VA	
roclor-1242 [2C]	CT,NH,NY,ME,NC,VA	
roclor-1248		

Certified Analyses	include	d in	this Repo	rt
--------------------	---------	------	-----------	----

Analyte	Certifications	
SW-846 8082A in Soil		
Aroclor-1248 [2C]	CTANA TO A CONTRACT OF THE CON	
Aroclor-1254	CT,NH,NY,ME,NC,VA	·
Arocior-1254 [2C]	CT,NH,NY,ME,NC,VA	
Aroclor-1260	CT,NH,NY,ME,NC,VA	
Aroclor-1260 [2C]	CT,NH,NY,ME,NC,VA	
Aroclor-1262	CT,NH,NY,ME,NC,VA	
Aroclor-1262 [2C]	NY,NC,VA	
Aroclor-1268	NY,NC,VA	
Aroclor-1268 [2C]	NY,NC,VA	
SIV-846 8151A in Soil	NY,NC,VA	
2,4-D	NY,ME,NC,NH,VA,CT	
2,4-D [2C]	NY,ME,NC,NH,VA,CT	
2,4-DB	NY,ME,NC,NH,VA,CT	
2,4-DB [2C]	NY,ME,NC,NH,VA,CT	
2,4,5-TP (Silvex)	NY,ME,NC,NH,VA,CT	
2,4,5-TP (Silvex) [2C]	NY,ME,NC,NH,VA,CT	
2,4,5-T	NY,ME,NC,NH,VA,CT	
2,4,5-T [2C]	NY,ME,NC,NH,VA,CT	
Dalapon	NY,ME,NC,NH,VA,CT	
Dalapon (2C)	NY,ME,NC,NH,VA,CT	
Dicamba	NY,ME,NC,NH,VA,CT	
Dicamba (2C)	NY,ME,NC,NH,VA,CT	
Dichloroprop	NY,ME,NC,NH,VA,CT	
Dichloroprop [2C]	NY,ME,NC,NH,VA,CT	
Dinoseb	NY,ME,NC,NH,VA,CT	
Dinoseb [2C]	NY,ME,NC,NH,VA,CT	
MCPA	NY,ME,NC,NH,VA,CT	
MCPA [2C]	NY,ME,NC,NH,VA,CT	
MCPP	NY,ME,NC,NH,VA,CT	
MCPP [2C]	NY,ME,NC,NH,VA,CT	
SW-846 8151A in Water		
2,4-D	ME,NC,NH,CT,NY,VA	
2,4-D [2C]	ME,NC,NH,CT,NY,VA	
2,4-DB	ME,NC,NH,CT,NY,VA	
2,4-DB [2C]	ME,NC,NH,CT,NY,VA	
2,4,5-TP (Silvex)	ME,NC,NH,CT,NY,VA	
2,4,5-TP (Silvex) [2C]	ME,NC,NH,CT,NY,VA	
2,4,5-T	ME,NC,NH,CT,NY,VA	
2,4,5-T [2C]	ME,NC,NH,CT,NY,VA	
Dalapon	ME,NC,NH,CT,NY,VA	
Dalapon [2C]	ME,NC,NH,CT,NY,VA	
Dicamba	ME,NC,NH,CT,NY,VA	
Dicamba [2C]	ME,NC,NH,CT,NY,VA	
Dichloroprop	ME,NC,NH,CT,NY,VA	
Dichloroprop [2C]	ME,NC,NH,CT,NY,VA	
Dinoseb	ME,NC,NH,CT,NY,VA	

Certified Ana	lyses included	in	this F	Report
---------------	----------------	----	--------	--------

Analyte	Certifications			
SW-846 8151A in Water				
Dinoseb [2C]	ME,NC,NH,CT,NY,VA			
МСРА	NC,CT			
MCPA [2C]	NC,CT			
МСРР	NC,CT			
MCPP [2C]	NC,CT			
SIV-846 8260C in Soil	110,01			
Acetone	CT,NH,NY,ME			
Benzene	CT,NH,NY,ME			
Bromobenzene	NH,NY,ME			
Bromochloromethane	NH,NY,ME			
Bromodichloromethane	CT,NH,NY,ME			
Bromoform	CT,NH,NY,ME			
Bromomethane	CT,NH,NY,ME			
2-Butanone (MEK)	CT,NH,NY,ME			
n-Butylbenzene	СТ, NH, NY, МЕ			
sec-Butylbenzene	CT,NH,NY,ME			
tert-Butylbenzene	CT,NH,NY,ME			
Carbon Disulfide	СТ, NH, NY, МЕ			
Carbon Tetrachloride	CT,NH,NY,ME			
Chlorobenzene	CT,NH,NY,ME			
Chlorodibromomethane	CT,NH,NY,ME			
Chloroethane	CT,NH,NY,ME			
Chloroform	CT,NH,NY,ME			
Chloromethane	CT,NH,NY,ME			
2-Chlorotoluene	СТ, NH, NY, МЕ			
4-Chlorotoluene	CT,NH,NY,ME			
1,2-Dibromo-3-chloropropane (DBCP)	NY			
Dibromomethane	NH,NY,ME			
1,2-Diehlorobenzene	СТ, NH, NY, МЕ			
1,3-Dichlorobenzene	CT,NH,NY,ME			
1,4-Dichlorobenzene	CT,NH,NY,ME			
Dichlorodifluoromethane (Freon 12)	NY,ME			
1,1-Dichloroethane	CT,NH,NY,ME			
1,2-Dichloroethane	CT,NH,NY,ME			
1,1-Dichloroethylene	CT,NH,NY,ME			
cis-1,2-Dichloroethylene	CT,NH,NY,ME			
trans-1,2-Dichloroethylene	CT,NH,NY,ME			
1,2-Dichloropropane	CT,NH,NY,ME			
1,3-Dichloropropane	NH,NY,ME			
2,2-Dichloropropane	NH,NY,ME			
1,1-Dichloropropene	NH,NY,ME			
cis-1,3-Dichloropropene	CT,NH,NY,ME			
trans-1,3-Dichloropropene	CT,NH,NY,ME			
,4-Dioxane	NY			
Ethylbenzene	CT,NH,NY,ME			
Hexachlorobutadiene	NH,NY,ME			

Certified Analyses included in this Report

CERTIFICATIONS

Analyte	Certifications	
SIV-846 8260C in Soil		
2-Hexanone (MBK)	СТ, NH, NY, МЕ	
Isopropylbenzene (Cumene)	CT,NH,NY,ME	
p-Isopropyltoluene (p-Cymene)	NH,NY	
Methyl tert-Butyl Ether (MTBE)	ин,иу	
Methylene Chloride	CT,NH,NY,ME	
4-Methyl-2-pentanone (MIBK)	CT,NH,NY	
Naphthalene	NH,NY,ME	
n-Propylbenzene	NH,NY	
Styrene	СТ, NH, NY, МЕ	
1,1,1,2-Tetrachlorocthane	CT,NH,NY,ME	
1,1,2,2-Tetrachloroethane	CT,NH,NY,ME	
Tetrachloroethylene	CT,NH,NY,ME	
Toluene	CT,NH,NY,ME	
1,2,3-Trichlorobenzene	NY	
1.2,4-Trichlorobenzene	NH,NY,ME	
1,1,1-Trichloroethane	CT,NH,NY,ME	
1,1,2-Trichloroethane	CT,NH,NY,ME	
Trichloroethylene	CT,NH,NY,ME	
Trichlorofluoromethane (Freon 11)	СТ,NH,NY,МЕ	
1,2,3-Trichloropropane	NH,NY,ME	
1,2,4-Trimethylbenzene	CT,NH,NY,ME	
1,3,5-Trimethylbenzene	CT,NH,NY,ME	
Vinyl Chloride	CT,NH,NY,ME	
m+p Xylene	CT,NH,NY,ME	
o-Xylene	СТ, NH, NY, МЕ	
The CON-TEST Environmental Laboratory open	tes under the following certifications and accreditation	ne :

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2019
CT	Connecticut Department of Publile Health	PH-0567	
NY	New York State Department of Health	10899 NELAP	09/30/2019
NH-S	New Hampshire Environmental Lab		04/1/2020
RI	Rhode Island Department of Health	2516 NELAP	02/5/2020
NC	North Carolina Div. of Water Quality	LAO00112	12/30/2019
NJ	New Jersey DEP	652	12/31/2019
FL	Florida Department of Health	MA007 NELAP	06/30/2019
VT	Vermont Department of Health Lead Laboratory	E871027 NELAP	06/30/2019
ME	State of Maine	LL015036	07/30/2019
VA.		2011028	06/9/2019
	Commonwealth of Virginia	460217	12/14/2019
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2019
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2020
NC-DW	North Carolina Department of Health	25703	07/31/2019

150 of 153

198139

Table of Contents Preservation Codes: 1 <u>Matrix Codes:</u> GW = Ground Water WW = Waste Water K = Sodium Hydroxide OW = Drinking Water S = Sulfuric Acid B = Sodium Bisulfate SL = Sludge SOL = Solid O = Other (please = Summa Canister Container Codes Thiosulfate O = Other (please T = Tedlar Bag O = Other (please ² Preservation Code O Field Filtered O Field Filtered A = Amber Glass G = Glass Non Soxhlet Lab to Filter PCB ONLY Soxhlet Lab to Filter H = HCL M = Methanol Container Code N = Nitric Acid # of Containers P = Plastic ST = Sterile = Sodium A = Air S = Soil = Vial define) = Ced define) 0 mple concentration 39 Spruce Street East Longmeadow, MA 01028 VELORE INTENDING IN THE REPORT Chromatogram AIHA-LAP, LLC ને - Unknown ANALYSIS REQUESTED Doc # 381 Rev 1_03242017 WRTA 7 x X R D2 6 × × × × × CT RCP Required MA MCP Required MCP Certification Form Required RCP Certification Form Required MA State DW Required MWRA School 0928 MBTA ۷ X د X 0 Email To: しっつりょういんかんちょう http://www.conteacabs.com Grab Matrix CHAIN OF CUSTODY RECORD Per client - run soxhlet 6/3/19 mmk Municipality 10-Day Brownfield 3-Day 4-Day EXCEL EXCEL # QISMd CLP Like Data Pkg Required: PDF ロインで Jue Date: ax To #: Government 30 545 38 ormat: 1120 138 300 105 1455 136 30 Other: -Day -Day Federal City Project Entity 8/22/8 IND LTHAM るてよすでし (UNSULTANTS Email: info@contestlabs.com 5:31-19 12PA 3621 21-01 -13 -12 11-13 ,71 .01 (11-13) 11-13 Phone: 413-525-2332 11-12 00 Fax: 413-525-6405 Date/Time: < //> 1345 Date/Time: Date/Time: 5.31.19 Jate/Time: = Date/Time: なっているか BEAVER 5 しないが 7500000 5-105 1 292-DownHr 601-202l 340 5/31/K dry, 60 HREN 9 のング G S 200 4 Con-Test Quote Name/Number: و <u>۸</u> ived by: (signature) 2.8 7 CON-test MMK Relinquished by (signature) Relinquished by: (signature) inquished by: (signature) 0 Received by: (signature) くと ived by: (signature) Con-Test Work Order Invoice Reciplent: Project Location; Project Manager: Project Number: sampled By: Comments: Address: Page

19 8 1319

			Table of Contents
Page Zof Z	# of Containers 2 Preservation Code 3 Container Code O Field Filtered O Lab to Filter O Field Filtered O Lab to Filter	1 Matrix Codes: GW = Ground Water WW = Waste Water DW = Drinking Water A = Air S = Soil SL = Solid O = Other (please define)	2 Preservation Codes: 1 = Iced H = HCL M = Methanol N = Nitric Acid S = Suffuric Acid S = Class G = Cl
12017 39 Spruce Street East Longmeadow, MA 01028	ANALYSIS REQUESTED STORY AND STORY A		Please use the following codes to indicate possible sample concentration Within the Conc Code column above: H - High; M - Medium; L - Low; C - Clean; U - Unknown additional form Required CT RCP Required CT RCP Required CT RCP Required WAN State DW REQUIRED WAN STATE
Doc # 381 Rev 1_03242017 39 S East	m/ 000 seeds ()	/ × × / / / × × / / / × × / / / × × / / / × × / / / / × × / / / / / × × / / / / × × / / / / / × × / / / / / × × / / / / / × × / / / / / / × × / / / / / / × × / / / / / / / × × / / / / / / / × × /	ollowing codes to indicate possible sam within the Conc Code column above: ### M. Medium; L. Low; C. Clean; U. ###################################
CHAIN OF CUSTODY RECORD CHAIN OF CUSTODY RECORD CONTRACTOR OF THE PROPERTY O	1.00	第 O =	Municipal Wunicipal Stownfiel
12.	1-Day Cher Date: 2-Day Cher: Culture: Cultu	1/19 9 445 105° 135° 135° 1485	
ne: 413-525-2332 413-525-6405 i: info@contestlabs.com	Consultants OR Watick of Notther State ON ST Waltha	1-6 (3-5') 5/25/6 1-6 (3-5') 1, 1-6 (3-5') 1, 1-6 (3-5') 1, 1-6 (3-5') 1,	
CONTRACTOR WALVALLE	136.		Comments: 35 CP M Refinquished by: (signature) Rederved by: (signature) Rederved by: (signature) Rederved by: (signature) Refinquished by: (signature) Operation of the comments of the commen

I Have Not Confirmed Sample Container Numbers With Lab Staff Before Relinquishing Over Samples_____

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False
Statement will be brought to the attention of the Client - State True or False

Client	CDW		agin to the a	rrention of	the Client - State Tru	e or False		
	ived By	U		Date	5-31-19	Time	1845	
	the samples	In Cooler	1	No Cooler	On Ice		No Ice	
160	elved?	Direct from Sam	pling		Ambient		Melted Ice	
Were sar	nples within		By Gun#	1	Actual Ten	n 12	-	
	ture? 2-6°C	7	By Blank #				<u> </u>	-
Wa	s Custody S	eal Intact?	NA	We	Actual Tem re Samples Tampered	1 <u>p -</u>		_
Wa	s COC Relin	quished?	7	Door	S Chain Agree With Sa	mples?	NA	-
Are th	nere broken/l	eaking/loose caps	on any same	oles?	F Chair Agree Will Sa	inpies !		
is COC in	nk/ Legible?		_		nples received within h	oldina time?	丁	
	include all	Client		Analysis		er Name		
	nformation?	Project	一丁	ID's		Dates/Times		•
Are Sampi	e labels tilled ab to Filters?	out and legible?						•
Are there C			<u> </u>		Who was notified?			
	usnes? hort Holds?		F		Who was notified?			•
	ugh Volume	2	F		Who was notified?			•
		re applicable?	T					
Proper Med	ia/Containers	s l leed?			MS/MSD? F		_	
	anks receive		F		s splitting samples req	juired?	<u> </u>	
	les have the		MA	Acid	On COC? F			
/ais		Sontainers.	IVVT	Acid -	Transportation of the same	Base		
Jnp-		1 Liter Amb.	**	1 Liter F	#			#.
ICL-		500 mL Amb.		500 mL		16 oz		
/leoh-	24	250 mL Amb.		250 mL		8oz Am		27
Bisulfate-	24	Flashpoint		Col./Ba		4oz Am		
) -		Other Glass		Other P		2oz Am Enc		
hiosulfate-		SOC Kit		Plastic		Frozen:	ole	
ulfuric-		Perchlorate		Ziplo				
				Unused M	edla			
	# 0	onelines:	# 1					
np-		1 Liter Amb.		1 Liter P	lastic	16 oz	Amb	
CL-		500 mL Amb.		500 mL F	Plastic	8oz Ami		
eoh-		250 mL Amb.		250 mL F	Plastic	4oz Ami		
isulfate-		Col./Bacteria		Flashp	oint	2oz Ami		
niosulfate-		Other Plastic		Other G		Ence		
ulfuric-		SOC Kit Perchlorate		Plastic		Frozen:		
omments:		i eichiolate		Ziploo	k			

		MADE	EP MCP Analytical	Method Report Cer	rtification Form		-2.0 01 00
Laboratory Name: Con-Test Analytical Laboratory Project #: 19					E1819		
Project Location: Beaver St., Waltham, MA RTN:							
This	s Form provide	es certifications for	the following data se	et: [list Laboratory Sa	mple ID Number(s)1		
		u 19E1819-15					
Ma	trices;	Soil					
(CAM Protoco	(check all that	below)				
	0 VOC M II A (X)	7470/7471 Hg CAM IIIB (X)	MassDEP VPH CAM IV A (X)	8082 PCB CAM V A (X)	CAM V A (X) Cyanide/PAC		orate
827	0 SVOC	7010 Metals	MassDEP VPH	8081 Pesticides	CAM VIA ()		IIIB()
CAN	AIIB ()	CAM III C ()	CAM IV C ()	CAM V B (X)	7196 Hex Cr CAM VI B ()	CAM I	EP APH KA()
	0 Metals 4 III A (X)	6020 Metals CAM III D ()	MassDEP EPH CAM IV B (X)	8151 Herbicides CAM V C (X)	8330 Explosives CAM VIII A ()	TO-15 VOC CAM IX B ()	
	A	ffirmative response	to Questions A throu	ghF is required for "F	Presumptive Certainty"	status	
A Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?						☑ Yes	□No¹
B Were the analytical method(s) and all associated QC requirements specificed in the selected CAM protocol(s) followed?						☑ Yes	□No¹
C Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?						☑ Yes	□No¹
Does the laboratory report comply with all the reporting requirements specified in CAM VII A, Quality Assurance and Quality Control Guidlines for the Acquisition and Reporting of Analytical Data?						☑ Yes	□No¹
Ea	VPH, EPH, and modification(s)?	APH Methods only: Ware (Refer to the individual)	as each method conductal method(s) for a list of s	ted without significant significant modifications).		☑ Yes	□No¹
Εb	APH and TO-15	Methods only: Was th	e complete analyte list r	eported for each method	?	□Yes	
F	Were all applica evaluated in a la	able CAM protocol QC aboratory narrative (inc	and performance standa	rd non-conformances ide to Qestions A through E)	entified and	☑ Yes	
	A response	to questions G, H a	nd I below is require	d for "Presumptive Co	ertainty" status	2103	Пио
G	protocol(s)?			pecified in the selected C		□Yes	☑No¹
and i	representativer	ta that achieve "Pre less requirements (sumptive Certainty" : lescribed in 310 CMR	status may not neces ? 40. 1056 (2)(k) and V	sarily meet the data us	sability	
Н						□ _{Yes}	☑ _{No¹}
1	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?				ol(s)?	☑ Yes	□No¹
¹ All I	Vegative respon	ses must be addres	sed in an attached En	vironmental Laborator	y case narrative.		
l, the	e undersigned, e responsible i	attest under the pa	ins and penalties of p formation, the materi	periury that, based ur	oon my personal inquinallytical report is, to the	ry of ne best	
Sign	ature:	hisa Wo	rthungton	Position:	Technical Represent	ative	
Prin	Printed Name: Lisa A. Worthington Date: 06/10/19						