ПРИЛОЖЕНИЕ 6.1 К КУРСУ О.Ю.ШВЕДОВА «ИСЧИСЛЕНИЕ БЕСКОНЕЧНО МАЛЫХ В ФИЗИКЕ»

задания для разбора с преподавателем

8. Скорость и ускорение

И8а.1 (Гольдфарб, 1.42) Свободно падающее тело за последние τ секунд падения прошло 1/3 свого пути. Найдите время падения и высоту, с которой упало тело.

И8а.2 (Гольдфарб, 1.49) Аэростат поднимается с земли вертикально вверх с ускорением a=2 м/с 2 . Через $\tau=5$ с от начала его движения из него выпал предмет. Через какой промежуток времени t этот предмет упадет на землю?

И8а.3 (Гольдфарб, 1.48) Два тела брошены вертикально вверх из одной и той же точки с одинаковой начальной скоростью $v_0=19,6\,$ м/с с промежутком времени $\tau=0,5\,$ с. Через какое время t после бросания второго тела и на какой высоте h встретятся тела?

И8а.4 (Гольдфарб, 1.30) На рисунке представлены графики скоростей для двух тел, движущихся по одной прямой из одной и той же точки. Известны моменты времени t_1 и t_2 . В какой момент времени t_3 тела встретятся?

 ${\sf W8a.5}$ (химфак, 2002) Материальная точка, движущаяся прямолинейно равнопеременно, не изменяя направления движения, проходит два последовательных отрезка пути длиной l_1 и l_2 за времена t_1 и t_2 соответственно. Найти ускорение точки.

И8а.6 (Гольдфарб, 1.54) Двое играют мяч, бросая его друг другу. Какой наибольшей высоты достигнет мяч во время игры, если он от одного игрока к другому летит 2 с?

V0 Тело брошено с начальной скоростью V0 под углом V0 к горизонту. Сколько времени длится полет? На каком расстоянии от места бросания упадет тело? При каком значении угла V0 дальность полета будет максимальной?

И8а.8 (Гольдфарб, 1.61) Тело брошено под углом α к горизонту со скоростью v_0 . Определите скорость v этого тела на высоте h над горизонтом.

И8а.9 (НГУ, 1.3.11) Из отверстия шланга, прикрытого пальцем, бьют две струи под углом α и β к горизонту с одинаковой начальной скоростью v. На каком расстоянии от отверстия по горизонтали струи пересекутся?

И8а.10 (ВМК, 2003) Скорость снаряда при вылете из ствола пушки $V_0=500\,$ м/с. На какой максимальной высоте h снаряд может поразить цель, если расстояние от пушки до цели по горизонтали составляет $l=1\,$ км? Величину ускорения свободного падения считать равной $g=10\,$ м/с², сопротивление воздуха не учитывать.

- И8а.11 () Координата тела x зависит от времени t по закону $x(t)=bt^3$ (b постоянная величина). Найдите скорость и ускорение тела в зависимости от времени.
- И8а.12 () Координата тела x зависит от времени t (t>0) по закону $x(t)=bt-ct^3$ (b и c положительные постоянные величины). Найдите скорость тела v_x в зависимости от времени t и опредлите, в какой момент t координата x максимальна. Чему равно максимальное значение координаты?
- И8а.13 () Скорость тела зависит от времени по закону $v_x(t)=ct^2$ (c- постоянная величина). На какое расстояние переместится тело за промежуток времени от t_1 до t_2 ?
- И8а.14 () Тело движется по прямой таким образом, что его скорость обратно пропорциональна координате: $v_x = A/x$ (A постоянная величина). За какое время T тело пройдет расстояние от точки $x = x_1$ до точки $x = x_2$?
- И8а.15 () Тело движется по прямой по закону $x(t) = \sqrt{L^2 u^2 t^2}$ (L и u постоянные величины). Определите зависимости скорости тела от времени и координаты.

9. Движение по окружности. Кинематические связи

И9а.1 (МГУ-1, 88, переработка) Грузы 1 и 2 перемещают вниз на расстояния x_1 и x_2 . На какое расстояние x_A переместится вниз блок A? Выразите скорость v_A и ускорение a_A блока через скорости v_1 , v_2 и ускорения a_1 , a_2 грузов.

И9а.2 (НГУ, 1.5.4) На клине с углом α лежит монета. С каким наименьшим ускорением должен двигаться клин по горизонтальной плоскости, чтобы монета свободно падала вниз?

И9а.3 () Согласно третьему закону Кеплера, период обращения планеты вокруг Солнца T пропорционален радиусу орбиты R планеты в степени 3/2: $T = AR^{3/2}$ (A — постоянная величина). Как зависит от расстояния R ускорение планеты a?

- И9а.4 (НГУ, 1.3.21) С какой скоростью должен двигаться вокруг Земли вблизи ее поверхности искусственный спутник, чтобы его ускорение совпадало с ускорением свободного падения $g=10~{\rm m/c^2}$? Радиус Земли $R=6400~{\rm km}$.
- И9а.5 () Определите, во сколько раз ускорение Луны при ее движении вокруг Земли меньше ускорения свободного падения $g=10~{\rm m/c^2}.$ Расстояние от Земли до Луны $r=384000~{\rm km},$ период обращения Луны вокруг Земли $T=27,3~{\rm cyt.}$
- И9а.6 (НГУ, 2.1.63, переработка) Горизонтальный диск начинают раскручивать вокруг его оси с линейно возрастающей во времени угловой скоростью $\omega=\varepsilon t$. Тело закреплено на расстоянии r от оси диска. Найдите зависимость модуля ускорения тела от времени.
- И9а.7 (Гольдфарьб, 9.2-2) За какую часть периода T тело, совершающее гармонические колебания, проходит вторую половину пути от положения равновесия до крайнего положения?
- И9а.8 () Напряжение на конденсаторе в электрической цепи колеблется по закону $U_1(t) = A_1 \sin \omega t$, на резисторе по закону $U_2(t) = A_2 \cos \omega t$. Покажите, что суммарное напряжение на конденсаторе и резисторе также изменяется по гармоническому закону $U_1(t) + U_2(t) = A_3 \sin(\omega t + \alpha)$. Найдите амплитуду A_3 и начальную фазу колебаний α .
- И9а.9 () Тело движется по окружности с центром в начале координат с угловой скоростью ω . Начальная x-координата тела равна x_0 , начальная x-компонента скорости равна x_0 . По окружности какого радиуса x_0 движется тело? Как зависит его координата x от времени x_0 ?
- И9а.10 () Скорость тела зависит от времени по закону $v_x(t) = v_0 \sin \omega t$. На какое расстояние вдоль оси x перемещается тело за промежуток времени от t=0 до $t=\pi/\omega$?
- И9а.11 (Гольдфарб, 1.17) Стержень длиной l=1 м шарнирно соединен с муфтами A и B, которые перемещаются по двум взаимно перпендикулярным рейкам. Муфта A движется с постоянной скоростью $v_A=30$ см/с. Найдите скорость v_B муфты B в момент, когда $\angle OAB=60^\circ$.

И9а.12 (МГУ-1, 21) Человек, стоящий на крутом берегу озера, тянет за веревку находящуюся на воде лодку. Скорость, с которой человек выбирает веревку, постоянна и равна v_0 . Какую скорость будет иметь лодка в момент, когда угол между веревкой и поверхностью воды равен α ?

И9а.13 (НГУ, 1.5.2) Угловая скорость катушки равна ω , радиусы внутреннего и внешнего цилиндра r и R. Каковы скорости оси катушки и груза относительно земли?

И9а.14 (Гольдфарб, 6.5, переработка) По горизонтальной плоскости катится без скольжения с постоянной скоростью v_C обруч радиуса R. Найдите угловую скорость вращения обруча. Выразите модуль скорости точки обруча как функцию угла α между вертикалью и прямой, проведенной через точку соприкосновения обруча с плоскостью и данную точку обруча.

И9а.15 (физфак, 1999) Вырезанный из однородного листа металла равносторонний треугольник положили на гладкую горизонтальную плоскость и толкнули его. В некоторый момент скорость v_A вершины A этого треугольника оказалась перпендикулярной биссектрисе угла A, а скорость вершины C — направленной вдоль стороны AC. Найдите величину скорости v_0 , с которой движется центр треугольника.

10. Статика

фициентами упругости k_1 и k_2 соединены один раз последовательно, другой раз — параллельно. Какой должна быть жесткость пружины, которой можно была бы заменить эту систему из двух пружин? И10а.2 (Гольдфарб, 8.20) Однородная балка массой M и длиной l подвешена за концы на двух пружинах. Обе пружины в нерастянутом состоянии имеют одинаковую длину, но жесткость левой пружины в n раз больше жесткости правой (при действии одинаковой нагрузки удлинение у правой пружины в n раз больше, чем у левой). На какой расстоянии x от левого конца балки надо подвесить груз массой m,

чтобы она приняла горизонтальное положение?

И10а.1 (Гольдфарб, 8.14) Две пружины с коэф-

И10а.3 (Гольдфарб, 10.7) Льдина площадью поперечного сечения S=1 м 2 и высотой H=0,4 м плавает в воде. Какую работу надо совершить, чтобы погрузить льдину в воду? Плотность льда ρ составляет 0,9 от плотности воды ρ_0 .

И10а.4 (Гольдфарб, 8.21) Шар массой m=4,9 кг опирается на две гладкие плоскости. Левая плоскость образует с горизонтом угол $\alpha=35^\circ$, а правая — $\beta=20^\circ$. Определите силы F_1 и F_2 , с которыми шар давит на плоскости.

И10a.5 (Гольдфарб, 8.22) Колесо радиусом R и массой m стоит перед ступенькой высоты h. Какую наименьшую силу F надо приложить в горизонтальном направлении к оси O колеса, чтобы оно могло подняться на ступеньку? Трением пренебречь.

И10а.6 (НГУ, 2.8.9) Цепочка массы m подвешена за концы так, что вблизи точек подвеса она образует с горизонталью угол α . Определите силу натяжения цепочки в нижней точке и в точке подвеса.

И10а.7 (ВМК, 2004) Однородный стержень может вращаться без трения вокруг горизонтальной оси, проходящей через его конец. К другому концу стержня приложена сила, направленная горизонтально и перпендикулярно оси вращения стержня так, как показано на рисунке. Под действием этой силы стержень отклонен от вертикали на угол $\beta=45^\circ$. Какой угол γ составляет с вертикалью сила, действующая на стержень со стороны оси?

И10а.8 (Гольдфарб, 8.39) Два одинаковых шара радиусом r и массой m каждый помещены в вертикальный, открытый с обеих сторон полый цилиндр радиусом R (r>R/2). Вся система находится на горизонтальной плоскости. Какой должна быть минимальная масса полого цилиндра массой M, чтобы шары не могли его опрокинуть?

И10а.9 (физфак, 2004) На внутреннюю поверхность полусферы радиусом R, закрепленной так, что ее ось симметрии вертикальна, концом A опирается тонкая гладкая однородная палочка так, как показано на рисунке. При этом палочка касается края полусферы в некоторой точке B и образует с горизонтом угол $\alpha=30^\circ$. Найти длину L палочки.

И10а.10 (химфак, 2002, переработка) На дне сосуда на одной из своих боковых граней лежит треугольная призма плотности ρ с основанием в виде прямоугольного треугольника с острым углом α . В сосуд наливают жидкость плотности ρ_0 вровень с верхним ребром призмы таким образом, что она под призму не подтекает. Во сколько раз увеличится сила давления призмы на дно сосуда? Атмосферное давление не учитывать.

W10a.11 (Гольдфарб, 8.16) К верхнему ребру однородного куба горизонтально прикладывают силу F. При каком минимальном значении F куб можно опрокинуть через ребро? Каким при этом может быть коэффициент трения материала стенок куба о горизонтальную плоскость? Масса куба M.

И10а.12 (ВМК, 1999) Два тела массами $m_1=0,4$ кг и $m_2=0,1$ кг соединены невесомой и нерастяжимой нитью, перекинутой через невесомый блок. Ось блока укреплена на неподвижной наклонной плоскости, составляющей с горизонтом угол $\alpha=30^\circ$. При каком минимальном значении коэффициента трения μ тела m_1 и m_2 будут находиться в покое? Трением в оси блока пренебречь.

И10а.13 (МФТИ-1, 1.33, переработка) Легкая лестница длиной l=3 м стоит, упираясь верхним закругленным концом в гладкую стену, а нижним — в пол. Угол наклона лестницы к горизонту $\alpha=60^\circ$. На лестнице на расстоянии a=1 м от ее верхнего конца стоит человек массой M=60 кг. Найдите силу нормального давления и силу трения, действующие на нижний конец лестницы. Каким может быть коэффициент трения лестницы о пол?

И10а.14 (МФТИ-1, 1.40) Небольшой кубик массой m=100 г покоится на шерховатой плоскости, наклоненной к горизонту под углом $\alpha=30^\circ$. Коэффициент трения кубика о плоскость $\mu=0,8$. С какой максимальной горизонтальной силой F можно толкать кубик, чтобы он еще оставался в покое? Сила лежит в плоскости склона.

И10а.15 (МГУ-1, 144) Картина подвешена к вертикальной стене с помощью шнура АС длины l, образующего со стеной угол α . Высота картины BC = d = l совпадает с длиной шнура. Нижняя часть картины не закреплена. При каком значении коэффициента в трения между картиной и стеной картина будет находиться в равновесии?

11. Электростатика

И11а.1 (Гольдфарб, 15.15) Заряды +Q, -Q и +q расположены в углах правильного треугольника со стороной a. Каково направление силы, действующей на заряд +q?

И11а.2 (НГУ, 6.1.9) Два одинаково заряженных шарика массы m, подвешенных в одной точке на нитях длины l, разошлись так, что угол между нитями стал прямым. Определите заряд шариков.

И11а.3 (Гольдфарб, 15.11) Два заряженных шарика, подвешенных на нитях одинаковой длины, опускаются в керосин. Какова плотность ρ материала шариков, если угол расхождения нитей в воздухе и в керосине один и тот же? Диэлектрическая проницаемость керосина $\varepsilon=2$, плотность $\rho=0,8$ г/см³.

И11а.4 (Иродов, 3.4) Два положительных заряда q_1 и q_2 находятся на расстоянии L друг от друга. Определите, какой отрицательный заряд $-q_3$ и в какую точку надо поместить, чтобы сила, действующая на каждый из трех зарядов, равнялась нулю.

И11а.5 (Гольдфарб, 16.10) Два точечных заряда $q_1=6,6\cdot 10^{-9}$ Кл и $q_2=1,32\cdot 10^{-8}$ Кл находятся на расстоянии $r_1=40$ см. Какую работу надо совершить, чтобы сблизить их до расстояния $r_2=25$ см?

И11а.6 () Два точечных заряда +q находятся на расстоянии 2l друг от друга. Найдите потенциал и величину напряженности электрического поля в точке, находящейся на одинаковом расстоянии r (r > l) от каждого из двух зарядов.

И11а.7 () Электрический диполь состоит из двух электрических зарядов +q и -q, находящихся на расстоянии l друг от друга. Его поместили в электрическое поле E, направленное под углом α к вектору, соединяющему отрицательный заряд с положительным. Найдите момент сил,

действующих на диполь. С какой энергией взаимодействует диполь с электрическим полем? Выразите ответ через дипольный момент p=ql диполя.

И11а.8 (МГУ-1, 420) Найдите напряженность поля электрического диполя, обладающего моментом p=ql в точке, отстоящей от оси диполя на расстоянии r>>l, в случаях: (а) точка лежит на прямой, проходящей через ось диполя; (б) точка лежит на прямой, перпендикулярной оси диполя.

И11а.9 (Гольдфарб, 16.16) Пылинка находится в равновесии в плоском конденсаторе. Ее масса $m=10^{-11}$ г, расстояние между пластинами конденсатора d=0,5 см. При освещении пылинки ультрафиолетовым светом она теряет часть заряда, и равновесие нарушается. Какой заряд потеряла пылинка, если первоначально разность потенциалов на конденсаторе составляла $U=154~{\rm B}$, а затем, чтобы пылинка снова вернулась в состояние равновесия, пришлось увеличить разность потенциалов на $\Delta U=8~{\rm B}$?

И11а.10 (ВМК, 2001) Два маленьких тела с равными зарядами q расположены на внутренней поверхности гладкой непроводящей сферы радиусом R. Первое тело закреплено в нижней точке сферы, а второе может свободно скользить по ее поверхности. Найти массу второго тела, если известно, что в состоянии равновесия оно находится на высоте h от нижней точки сферы.

12. Элементы термодинамики

И12а.1 (МФТИ-1, 2.49, переработка) В вертикально расположенном цилиндре находится газ в количестве ν . Газ отделен от атмосферы поршнем, соединенным с дном цилиндра пружиной жесткостью k. При температуре T_1 поршень расположен на расстоянии h от дна цилиндра. До какой температуры T_2 надо нагреть газ, чтобы поршень поднялся до высоты H?

И12а.2 (Гольдфарб, 13.17, переработка) В нижней части цилиндрического сосуда под поршнем находится воздух в количестве $\nu=1$ моль. Воздух под поршнем нагревается на $\Delta t=1^{\circ}\mathrm{C}$, при этом поршень поднимается. Определите работу, которую совершает воздух при расширении, перемещая поршень.

И12а.3 (МФТИ-1, 2.195, переработка) Идеальный газ в количестве ν требуется перевести из начального состояния с объемом V_1 и давлением $6p_1$ в состояние с объемом $2V_1$ и давлением p_1 . Давление при этом в течение всего процесса не должно превышать $6p_1$, а объем должен все время увеличиваться. Какую максимальную работу может совершить газ в этом процессе? Чему равна эта работа?

И12а.4 (МФТИ-1, 2.172) В герметичном сосуде вместимостью V=5,6 л содержится воздух при давлении $p=10^5$ Па. Какое давление установится в сосуде, если воздуху сообщить количество теплоты Q=1430 Дж? Молярная изохорная теплоемкость воздуха $C_V=21$ Дж/(моль · K).

И12а.5 (химфак, 2005, переработка) Над идеальным одноатомным газом в количестве $\nu=1$ моль производят процесс, график которого в pV-координатах изображен на рисунке. При этом $p_2=2p_1$ и $V_2=3V_1$. Какую работу совершил газ в данном процессе? На сколько изменилась внутренняя энергия газа? Какое количество теплоты получил газ? Начальная температура газа была равна $T_1=180$ К. Универсальная газовая постоянная R=8,3Дж/(моль · K).

И12а.6 (физфак, 1999, переработка) Идеальный газ в количестве ν переводят из состояния 1 в состояние 3 так, как показано на pV-диаграмме. В начальном и конечном состояниях температуры газа одинаковы и равны T. Зная, что $\sqrt{V_2/V_1}=(V_3/V_2)^2=\alpha$, найдите работу, совершенную газом в данном процессе.

И12а.7 (НГУ, 5.6.4) В сосуде вместимости V_1 находится одноатомный газ при давлении P_1 и температуре T_1 , а в сосуде вместимости V_2 — одноатомный газ при давлении P_2 и температуре T_2 . Какое давление и какая температура окажутся в этих сосудах после их соединения? Сосуды теплоизолированы.

И12а.8 (НГУ, 5.6.31) В вакуумном пространстве вертикально стоит цилиндрический сосуд, закрытый сверху подвижным поршнем массы M. Внутри сосуда находится одноатомный газ при давлении P. Внутреннее сечение цилиндра S, а поршень находится на высоте H над его дном. Поршень отпустили. После непродолжительных колебаний он остановился. На каком расстоянии от начального положения остановился пор-

шень? Теплоемкостью поршня и цилиндра можно пренебречь. Вся система теплоизолирована.

И12а.9 (МФТИ-1, 2.224) Одноатомный идеальный газ в количестве $\nu=1$ моль совершает цикл, состоящий из трех процессов: адиабатного расширения, изобарного расширения и изотермического сжатия. На сколько изменилась температура в изобарном процессе, если в процессе адиабатного расширения газ совершил работу $A=2500~\rm Дж$?

И12а.10 (ВМК, 2005) В тепловом двигателе, рабочим телом которого является идеальный одноатомный газ, совершается циклический процесс, изображенный на рисунке. Участок 23 — адиабатическое расширение, 41 — адиабатическое сжатие. Найти коэффициент полезного действия двигателя η , если известно, что температура газа при адиабатическом расширении уменьшается в n раз, а при адиабатическом сжатии увеличивается в n раз, где n=1,5.

И12а.11 (ВМК, 2003) Над идеальным одноатомным газом совершается циклический процесс, изображенный на рисунке. Отношение максимального объема газа к минимальному в этом цикле равно n=3. Найти коэффициент полезного действия цикла η .

И12а.12 (МФТИ-1, 2.228) КПД цикла, состоящего из участка 12, адиабаты 23 и изотермы 31, равен η_1 , а цикла, состоящего из изотермы 13, изобары 34 и адиабаты 41, равен η_2 . Чему равен КПД тепловой машины, работающей по циклу 12341? Все циклы обходятся по часовой стрелке. Рабочим веществом является идеальный газ.

И12а.13 (МФТИ-1, 2.183) Два одинаковых теплоизолированных сосуда соединены друг с другом тонкой короткой теплоизолированной трубкой с краном К, закрытым в начальный момент. В сосуде 1 под поршнем, масса которого равна M, при температуре T_0 находится идеальный одноатомный газ в количестве ν , молярная масса которого равна μ . В сосуде 2 газа нет, и поршень, масса которого равна M/2, лежит на дне сосуда. Объем между поршнем и верхней крышкой в каждом сосуде вакуумирован. Кран открывают, газ из сосуда 1 устремляется под поршень сосуда 2, и тот начинает подниматься. Вычислите температуру газа после установления равновесия в сосудах. При равновесии между поршнем и крышкой в сосуде 2 остается свободное пространство. Произведите расчет для $\mu\nu/M = 0, 1.$

И12а.14 (Иродов, 2.44, переработка) Над идеальным одноатомным газом в количестве ν молей совершают процесс, в котором давление является степенной функцией объема: $pV^n=$ const. Начальная температура газа равна T_1 , конечная — равна T_2 . Какую работу совершил газ в данном процессе? Какое количество теплоты получил газ? Найдите теплоемкость газа в данном процессе.

И12а.15 (физфак, 2001, переработка) Зависимость от температуры молярной теплоемкости c_μ идеального одноатомного газа в цикле тепловой машины, который состоит из трех последовательных процессов 1-2, 2-3, 3-1, изображена на рисунке. Здесь R — универсальная газовая постоянная. Изобразите цикл в pV-координатах. Зная, что $T_2/T_1=n$, рассчитайте КПД цикла.

