Chapter 11: Computations in a functor context III Monad transformers

Sergei Winitzki

Academy by the Bay

2019-01-05

Computations within a functor context: Combining monads

Programs often need to combine monadic effects (see code)

- "Effect" \equiv what else happens in $A \Rightarrow M^B$ besides computing B from A
- Examples of effects for some standard monads:
 - Option computation will have no result or a single result
 - ▶ List computation will have zero, one, or multiple results
 - ► Either computation may fail to obtain its result, reports error
 - ▶ Reader computation needs to read an external context value
 - ▶ Writer some value will be appended to a (monoidal) accumulator
 - ► Future computation will be scheduled to run later
- How to combine several effects in the same functor block (for/yield)?

- The code will work if we "unify" all effects in a new, larger monad
- Need to compute the type of new monad that contains all given effects

Combining monadic effects I. Trial and error

There are several ways of combining two monads into a new monad:

- If M_1^A and M_2^A are monads then $M_1^A \times M_2^A$ is also a monad
 - lacksquare But $M_1^A imes M_2^A$ describes two separate values with two separate effects
- ullet If M_1^A and M_2^A are monads then $M_1^A+M_2^A$ is usually not a monad
 - lacksquare If it worked, it would be a choice between two different values / effects
- ullet If M_1^A and M_2^A are monads then one of $M_1^{M_2^A}$ or $M_2^{M_1^A}$ is often a monad
- Examples and counterexamples for functor composition:
 - ▶ Combine $Z \Rightarrow A$ and List^A as $Z \Rightarrow List^A$
 - ► Combine Future [A] and Option [A] as Future [Option [A]]
 - ▶ But Either[Z, Future[A]] and Option[Z \Rightarrow A] are not monads
 - ► Neither Future[State[A]] nor State[Future[A]] are monads
- The order of effects matters when composition works both ways:
 - ▶ Combine Either $(M_1^A = Z + A)$ and Writer $(M_2^A = W \times A)$
 - * as $Z + W \times A$ either compute result and write a message, or all fails
 - * as $(Z + A) \times W$ message is always written, but computation may fail
- Find a general way of defining a new monad with combined effects
- Derive properties required for the new monad

Combining monadic effects II. Lifting into a larger monad

If a "big monad" BigM[A] somehow combines all the needed effects:

```
// This could be valid Scala...

val result: BigM[Int] = for {
    i \leftarrow lift<sub>1</sub>(1 to n)
    j \leftarrow lift<sub>2</sub>(Future{ q(i) })
    k \leftarrow lift<sub>3</sub>(maybeError(j))
} vield f(k)

// If we define the various

// required "lifting" functions:

def lift<sub>1</sub>[A]: Seq[A] \Rightarrow BigM[A] = ???

def lift<sub>2</sub>[A]: Future[A] \Rightarrow BigM[A] = ???

def lift<sub>3</sub>[A]: Try[A] \Rightarrow BigM[A] = ???
```

• Example 1: combining as BigM[A] = Future[Option[A]] with liftings:

```
\begin{array}{lll} \text{def lift}_1[A]\colon \text{Option}[A] \ \Rightarrow \ \text{Future}[\text{Option}[A]] \ = \ \text{Future}.\text{successful}(\_) \\ \text{def lift}_2[A]\colon \text{Future}[A] \ \Rightarrow \ \text{Future}[\text{Option}[A]] \ = \ \_.\text{map}(x \ \Rightarrow \ \text{Some}(x)) \end{array}
```

• Example 2: combining as BigM[A] = List[Try[A]] with liftings:

```
\begin{array}{l} \text{def lift}_1[A]\colon \text{Try}[A] \ \Rightarrow \ \text{List}[\text{Try}[A]] \ = \ x \ \Rightarrow \ \text{List}(x) \\ \text{def lift}_2[A]\colon \text{List}[A] \ \Rightarrow \ \text{List}[\text{Try}[A]] \ = \ \_.\text{map}(x \ \Rightarrow \ \text{Success}(x)) \end{array}
```

Remains to be understood:

- Finding suitable laws for the liftings; checking that the laws hold
- Building a "big monad" out of "smaller" ones, with lawful liftings
 - ▶ Is this always possible? Unique? Are there alternative solutions?
- Ways of reducing the complexity of code; make liftings automatic

Laws for monad liftings I. Identity laws

Whatever identities we expect to hold for monadic programs must continue to hold after lifting M_1 or M_2 values into the "big monad" BigM

- We assume that M_1 , M_2 , and BigM already satisfy all the monad laws Consider the various functor block constructions containing the liftings:
- Left identity law after lift₁

 // Anywhere inside a for/yield: // Must be equivalent to...

 i \leftarrow lift₁(M₁.pure(x)) i = x

 j \leftarrow bigM(i) // Any BigM value. j \leftarrow bigM(x)

 lift₁(M₁.pure(x)).flatMap(b) = b(x) in terms of Kleisli composition (\diamondsuit):

 (pure_{M₁} \lozenge lift₁): $^{X \Rightarrow BigM^X} \diamondsuit b^{:X \Rightarrow BigM^Y} = b$ with $f^{:X \Rightarrow M^Y} \diamondsuit g^{:Y \Rightarrow M^Z} \equiv x \Rightarrow f(x)$.flatMap(g)
 - Right identity law after lift1

 $b.flatMap(M_1.pure andThen lift_1) = b - in terms of Kleisli composition:$

$$b^{:X\Rightarrow \mathsf{BigM}^Y} \diamond \left(\mathsf{pure}_{M_1} \circ \mathsf{lift}_1\right)^{:Y\Rightarrow \mathsf{BigM}^Y} = b$$

The same identity laws must hold for M2 and lift2 as well

Laws for monad liftings II. Simplifying the laws

 $(\mathsf{pure}_{M_1}^{}, \mathsf{lift}_1)$ is a unit for the Kleisli composition \diamond in the monad \mathtt{BigM}

- \bullet But the monad ${\tt BigM}$ already has a unit element, namely ${\tt pure}_{{\tt BigM}}$
- \bullet The two-sided unit element is always unique: $u=u \diamond u'=u'$
- So the two identity laws for $(pure_{M_1}, lift_1)$ can be reduced to one law: $pure_{M_1}, lift_1 = pure_{BigM}$

Refactoring a portion of a monadic program under $\mathtt{lift_1}$ gives another law:

```
\label{eq:lift1}  \mbox{lift}_1(p). \mbox{flatMap}(q \mbox{ andThen lift}_1) \mbox{ = lift}_1(p \mbox{ flatMap } q)
```

- Rewritten equivalently through $\operatorname{ftn}_M: M^{M^A} \Rightarrow M^A$, the law is $\operatorname{lift_1}^{\circ}\operatorname{fmap}_{\operatorname{BigM}}\operatorname{lift_1}^{\circ}\operatorname{ftn}_{\operatorname{BigM}} = \operatorname{ftn}_{M_1}^{\circ}\operatorname{lift_1} \operatorname{both}$ sides are functions $M_1^{M_1^A} \Rightarrow \operatorname{BigM}^A$
- In terms of Kleisli composition \diamond_M it becomes the **composition law**: $(b^{:X\Rightarrow M_1^Y}\circ lift_1) \diamond_{\mathsf{BigM}} (c^{:Y\Rightarrow M_1^Z}\circ lift_1) = (b\diamond_{M_1} c)\circ lift_1$
- Liftings lift
 ind lift
 must obey an identity law and a composition law
 - ▶ The laws say that the liftings **commute with** the monads' operations

Laws for monad liftings III. The naturality law

Show that $lift_1 : M_1^A \Rightarrow BigM^A$ is a natural transformation

- It maps $pure_{M_1}$ to $pure_{BigM}$ and flm_{M_1} to flm_{BigM}
 - ▶ lift₁ is a **monadic morphism** between monads M_1^{\bullet} and BigM[•]
- ightharpoonup example: monad "interpreters" $M^A \Rightarrow N^A$ are monadic morphisms

The (functor) naturality law: for any $f: X \Rightarrow Y$,

$$\begin{split} \mathsf{lift}_1 \circ \mathsf{fmap}_{\mathsf{BigM}} f &= \mathsf{fmap}_{M_1} f \circ \mathsf{lift}_1 \\ M_1^X \xrightarrow{\quad \mathsf{lift}_1 \quad} &\to \mathsf{BigM}^X \\ \mathsf{fmap}_{M_1} f^{:X \Rightarrow Y} \bigvee_{\mathsf{f} \quad \mathsf{lift}_1 \quad} &\hspace{1em} \mathsf{fmap}_{\mathsf{BigM}} f^{:X \Rightarrow Y} \\ M_1^Y \xrightarrow{\quad \mathsf{lift}_1 \quad} &\hspace{1em} \mathsf{BigM}^Y \end{split}$$

Derivation of the functor naturality law for lift₁:

- Express fmap as fmap_M $f \equiv f^{\uparrow M} = \text{flm}_M(f_{?} \text{pure}_M)$ for both monads
- Given $f: X \Rightarrow Y$, use the law $\operatorname{flm}_{M_1} q$; $\operatorname{lift}_1 = \operatorname{lift}_1$; $\operatorname{flm}_{\operatorname{BigM}} (q$; $\operatorname{lift}_1)$ to compute $\operatorname{flm}_{M_1} (f$; $\operatorname{pure}_{M_1})$; $\operatorname{lift}_1 = \operatorname{lift}_1$; $\operatorname{flm}_{\operatorname{BigM}} (f$; $\operatorname{pure}_{M_1}$; $\operatorname{lift}_1) = \operatorname{lift}_1$; $\operatorname{flm}_{\operatorname{BigM}} (f$; $\operatorname{pure}_{\operatorname{BigM}}) = \operatorname{lift}_1$; $\operatorname{fmap}_{\operatorname{BigM}} f$

A monadic morphism is always also a natural transformation of the functors

Monad transformers I: Motivation

- Combine $Z \Rightarrow A$ and 1 + A: only $Z \Rightarrow 1 + A$ works, not $1 + (Z \Rightarrow A)$
 - ▶ It is not possible to combine monads via a natural bifunctor B^{M_1,M_2}
 - ▶ It is not possible to combine arbitrary monads as $M_1^{M_2^{\bullet}}$ or $M_2^{M_1^{\bullet}}$ or $M_2^{M_1^{\bullet}}$ the Example: state monad $\operatorname{St}_S^A \equiv S \Rightarrow A \times S$ does not compose
- The trick: for a fixed base monad L^{\bullet} , let M^{\bullet} (foreign monad) vary
- Call the desired result $T_L^{M,\bullet}$ the monad transformer for L
 - ▶ In Scala: LT[M[_]: Monad, A] e.g. ReaderT, StateT, etc.
- $T_L^{M,\bullet}$ is generic in M but not in L
 - ▶ No general formula for monad transformers seems to exist
 - ► For each base monad *L*, a different construction is needed
 - ***** Some transformers are compositions $L^{M^{\bullet}}$ or $M^{L^{\bullet}}$, others are not
 - ▶ Some monads *L* do not seem to have a transformer (?)
- To combine 3 or more monads, compose the transformers: $T_{L_1}^{T_{L_2}^{M,\bullet}}$
 - ► Example in Scala: StateT[S, ListT[Reader[R, ?], ?], A]
- This is called a **monad stack** but may not be *functor composition*
 - ▶ because e.g. State[S, List[Reader[R, A]]] is not a monad

Monad transformers II: The requirements

A monad transformer for a base monad L^{\bullet} is a type constructor $T_{\iota}^{M,\bullet}$ parameterized by a monad M^{\bullet} , such that for all monads M^{\bullet} :

- $T_L^{M,\bullet}$ is a monad (the monad M transformed with T_L)
- "Lifting" a monadic morphism lift $I^M: M^A \leadsto T_I^{M,A}$
- "Base lifting" a monadic morphism blift : $L^A \sim T_L^{M,A}$
 - ▶ The "base lifting" could not possibly be natural in L^{\bullet}
- ullet Transformed identity monad (Id) must become L, i.e. $T_{\iota}^{\mathsf{Id},ullet}\cong L^{ullet}$
- $T_{i}^{M,\bullet}$ is monadically natural in M^{\bullet} (but not in L^{\bullet})
 - $T_{L}^{M,\bullet}$ is natural w.r.t. a monadic functor M^{\bullet} as a type parameter
 - ▶ For any monad N^{\bullet} and a monadic morphism $f: M^{\bullet} \sim N^{\bullet}$ we need to have a monadic morphism $T_I^{M,\bullet} \leadsto T_I^{N,\bullet}$ for the transformed monads: $\operatorname{mrun}_{L}^{M}: (M^{\bullet} \rightsquigarrow N^{\bullet}) \Rightarrow T_{L}^{M,\bullet} \rightsquigarrow T_{L}^{N,\bullet}$ commuting with lift / blift
 - * If we implement $T_I^{M,\bullet}$ only via M's monad methods, naturality will hold
 - ▶ Cf. traverse: $L^A \Rightarrow (A \Rightarrow F^B) \Rightarrow F^{L^B}$ natural w.r.t. applicative F^{\bullet}
 - ▶ This can be used for lifting a "runner" $M^A \rightsquigarrow A$ to $T_L^{M,\bullet} \rightsquigarrow T_L^{\mathsf{ld},\bullet} = L^{\bullet}$
- "Base runner": lifts $L^A \sim A$ into a monadic morphism $T_I^{M,\bullet} \sim M^{\bullet}$; so $\operatorname{brun}_{I}^{M}:(L^{\bullet} \leadsto \bullet) \Rightarrow T_{I}^{M,\bullet} \leadsto M^{\bullet}, \text{ must commute with lift and blift}$

Monad transformers III: First examples

Recall these monad constructions:

- If M^A is a monad then $R \Rightarrow M^A$ is also a monad (for a fixed type R)
- If M^A is a monad then $M^{Z+A\times W}$ is also a monad (for fixed W, Z)

This gives the monad transformers for base monads Reader, Writer, Either:

```
type ReaderT[R, M[_], A] = R \Rightarrow M[A] type EitherT[Z, M[_], A] = M[Either[Z, A]] type WriterT[W, M[_], A] = M[(W, A)]
```

- ReaderT composes with the foreign monad from the *outside*
- EitherT and WriterT must be composed *inside* the foreign monad Remaining questions:
 - What are transformers for other standard monads (List, State, Cont)?
 - ► These monads do not compose (neither "inside" nor "outside" works)!
 - How to derive a monad transformer for an arbitrary given monad?
 - For monads obtained via known monad constructions?
 - ► For monads constructed via other monad transformers?
 - ▶ Is it always possible? (unknown; may be impossible for some monads)
 - Is a given monad's transformer unique? (No.)
 - How to avoid the boilerplate around lift? (mtl-style transformers)

Monad transformers IV: The zoology of ad hoc methods

Need to choose the correct monad transformer construction, per monad:

- "Composed-inside", base monad is inside foreign monad: $T_L^{M,A} = M^{L^A}$
 - ► Examples: the "linear-value" monads OptionT, WriterT, EitherT
- "Composed-outside" the base monad is outside: $T_L^{M,A} = L^{M^A}$
 - ightharpoonup Examples: ReaderT; SearchT for search monad S[A] = (A \Rightarrow Z) \Rightarrow A
 - ▶ More generally: all "rigid" monads have "outside" transformers
- "Recursive": interleaves the base monad and the foreign monad
 - Examples: ListT, NonEmptyListT, FreeMonadT
- Monad constructions: defining a transformer for new monads
 - ▶ Product monads $L_1^A \times L_2^A$ product transformer $T_{L_1}^{M,A} \times T_{L_2}^{M,A}$
 - "Contrafunctor-choice" $H^A \Rightarrow A$ composed-outside transformer
 - Free pointed monads $A + L^A$ transformer $M^{A+T_L^{M,A}}$
- "Irregular": none of the above constructions work, need something else
 - ► $T_{\mathsf{State}}^{M,A} = S \Rightarrow M^{S \times A}$; $T_{\mathsf{Cont}}^{M,A} = (A \Rightarrow M^R) \Rightarrow M^R$; "selector" $F^{A \Rightarrow P^Q} \Rightarrow P^A$ - transformer $F^{A \Rightarrow T_P^{M,Q}} \Rightarrow T_P^{M,A}$; codensity $\forall R. (A \Rightarrow M^R) \Rightarrow M^R$
- ullet Examples of monads K^A for which no transformers exist? (not known)
 - $ightharpoonup T_{Cod}$, T_{Sel} , and T_{Cont} transformers have no blift, brun, or mrun

Composed-inside transformers I

Base monad L^{\bullet} , foreign monad M^{\bullet} , transformer $T_L^{M, \bullet} \equiv T^{\bullet} \equiv M^{L^{\bullet}}$

- Monad instance: use the natural transformation $seq^A: L^{M^A} \Rightarrow M^{L^A}$
 - ▶ pure_T : $A \Rightarrow M^{L^A}$ is defined as pure_T = pure_M; pure_L ↑ M
 - $\operatorname{ftn}_T: T^{T^A} \Rightarrow T^A$ is defined as $\operatorname{ftn}_T = \operatorname{seq}^{\uparrow M}_{\iota} \operatorname{ftn}_L^{\uparrow M \uparrow M}_{\iota} \operatorname{ftn}_M$

$$T^{T^A} \equiv M^{L^{M^L^A}} \xrightarrow[\mathsf{fmap}_M(\mathsf{seq}^{L^A})]{} \rightarrow M^{M^{L^A}} \xrightarrow[\mathsf{fmap}_M(\mathsf{fmap}_M\mathsf{ftn}_L)]{} M^{M^L^A} \xrightarrow[\mathsf{ftn}_M]{} \rightarrow M^{L^A} \equiv T^A$$

- Monad laws must hold for T^A (must check this separately)
 - ► This depends on special properties of seq, e.g. $pure_L^{\circ}$, $seq = pure_L^{\uparrow M}$ (*L*-identity); $pure_M^{\uparrow L}{\circ} seq = pure_M$ (*M*-identity)
 - **★** See example code that verifies these properties for $L^A \equiv E + W \times A$
 - ★ It is not enough to have any traversable functor L[•] here!
- Monad transformer methods for $T_L^{M,\bullet} \equiv M^{L^{\bullet}}$:
 - ▶ Lifting, lift : $M^A \Rightarrow M^{L^A}$ is defined as lift = pure_L^{↑M}
 - ▶ Base lifting, blift : $L^A \Rightarrow M^{L^A}$ is equal to pure_M
 - ▶ Runner, mrun : $(∀B.M^B \Rightarrow N^B) \Rightarrow M^{L^A} \Rightarrow N^{L^A}$ is equal to id
 - ▶ Base runner, brun : $(\forall B.L^B \Rightarrow B) \Rightarrow M^{L^A} \Rightarrow M^A$ is equal to fmap_M

* Composed-inside transformers II. Proofs

Base monad L^{ullet} , foreign monad M^{ullet} , transformer $T_L^{M,ullet} \equiv T^{ullet} \equiv M^{L^{ullet}}$

- Identity laws for the monad T^{\bullet} hold if they hold for L^{\bullet} and M^{\bullet} and if the properties $\operatorname{pure}_{L}^{\circ}$, $\operatorname{seq} = \operatorname{pure}_{M}^{\uparrow M}$ and $\operatorname{pure}_{M}^{\uparrow L}$, $\operatorname{seq} = \operatorname{pure}_{M}$ hold
- pure $_{T}$ \circ ftn $_{T}$ = id. Proof: (pure $_{M}$ \circ pure $_{L}^{\uparrow M}$) \circ (seq $_{L}^{\uparrow M}$ \circ ftn $_{L}^{\uparrow M\uparrow M}$ \circ ftn $_{M}$ = pure $_{M}$ \circ (pure $_{L}$ \circ seq) $_{L}^{\uparrow M}$ \circ ftn $_{L}^{\uparrow M\uparrow M}$ \circ ftn $_{M}$ = pure $_{M}$ \circ pure $_{L}^{\uparrow M\uparrow M}$ \circ ftn $_{L}^{\uparrow M\uparrow M}$ \circ ftn $_{M}$ = id
- pure $_T^{\uparrow T}$ \circ ftn $_T$ = id. Proof: pure $_T$ = pure $_M$ \circ pure $_L^{\uparrow M}$ = pure $_L$ \circ pure $_M$ (naturality); for all f: $f^{\uparrow T} = f^{\uparrow L \uparrow M}$ and f \circ pure $_M$ = pure $_M$ \circ $f^{\uparrow M}$ (naturality); so pure $_T^{\uparrow T}$ \circ ftn $_T$ is (pure $_L$ \circ pure $_M$) \circ $f^{\uparrow L \uparrow M}$ \circ (seq \circ $f^{\uparrow M}$ \circ ftn $_M$) = pure $_L^{\uparrow L \uparrow M}$ \circ pure $_M^{\uparrow M}$ \circ ftn $_L$ \circ pure $_M^{\uparrow M}$ \circ ftn $_L$ \circ pure $_M^{\uparrow M}$ \circ ftn $_L$ \circ pure $_L^{\uparrow L}$ \circ ftn $_L$ \circ pure $_L^{\uparrow L}$ \circ ftn $_L$ \circ pure $_L^{\uparrow L}$ \circ ftn $_L$ \circ pure $_L^{\uparrow L}$
- Identity law for lift: $pure_{M,\overline{T}}$ lift = $pure_T$ (this is the definition of $pure_T$)
- Composition law: lift; lift[†] ; ftn_T = ftn_M; lift. Proof: ftn_M; pure_L^{↑M} = pure_L^{↑M}; ftn_M and pure_L^{↑M}; (pure_L^{↑M}; seq^{↑M}); ftn_L^{↑M}; ftn_M = (pure_L^{↑M}; seq^{↑M}); (pure_L^{↑L}↑M↑M; ftn_L^{↑M↑M}); ftn_M = pure_L^{↑M↑M}; ftn_M
- Identity law for blift: $pure_{L_{\gamma}^{\circ}}$ blift = $pure_{T}$. ($pure_{L_{\gamma}^{\circ}}$ pure_M = $pure_{M_{\gamma}^{\circ}}$ pure_L
- Composition law: blift; blift $^{\uparrow T}$; ftn $_{T} = \text{ftn}_{L}$; blift. Proof: pure $_{M}$; pure $_{M}^{\uparrow L\uparrow M}$; (seq $^{\uparrow M}$; ftn $_{L}^{\uparrow M\uparrow M}$; ftn $_{M}$) = pure $_{M}$; (pure $_{M}^{\uparrow M}$; ftn $_{L}^{\uparrow M\uparrow M}$); ftn $_{M}$ = pure $_{M}$; (ftn $_{L}^{\uparrow M}$; pure $_{M}^{\uparrow M}$); ftn $_{M}$ = ftn $_{L}$; pure $_{M}$; (pure $_{M}^{\uparrow M}$; ftn $_{M}$) = ftn $_{L}$; blift
- Runner laws follow from naturality of id and fmap

13 / 21

Rigid monads I: Definitions

- A **rigid monad** R^{\bullet} has a composed-outside transformer, $T_R^{M,A} \equiv R^{M^A}$
 - Examples: $R^A \equiv A \times A$ and $R^A \equiv Z \Rightarrow A$ are rigid; $R^A \equiv 1 + A$ is not
 - ▶ For any monad M, we then have seq : $M^{R^A} \Rightarrow R^{M^A}$ defined by

$$\mathsf{seq} = \mathsf{pure}_{M}^{\uparrow R \uparrow M}; \mathsf{pure}_{R}; \mathsf{ftn}_{T}$$

$$M_{\mathsf{fmap}_{M}(\mathsf{fmap}_{R}(\mathsf{pure}_{M}))}^{R^{A}} \xrightarrow{\mathsf{pure}_{R}} R^{M^{A}} = T^{T^{A}} \xrightarrow{\mathsf{ftn}_{T}} T^{A} \equiv R^{M^{A}}$$

Open question: is ftn_T definable via seq with some additional laws?

Examples and constructions of rigid monads:

- Rigid: Id, Reader, and $R^A \equiv H^A \Rightarrow A$ (where H is a contrafunctor)
 - ▶ The construction $R^A \equiv H^A \Rightarrow A$ covers $R^A \equiv 1$, $R^A \equiv A$, $R^A \equiv Z \Rightarrow A$
- The selector monad $S^A \equiv F^{A \Rightarrow R^Q} \Rightarrow R^A$ is rigid if R^{\bullet} is rigid
 - ▶ Simple example: search with failure, $S^A \equiv (A \Rightarrow \mathsf{Bool}) \Rightarrow 1 + A$
- ullet The composition of rigid monads, $R_1^{R_2^A}$, is a rigid monad
- The product of rigid monads, $R_1^A \times R_2^A$, is a rigid monad

Rigid functors, their laws and structure I

- A rigid functor R^{\bullet} has the method fuseIn: $(A \Rightarrow R^B) \Rightarrow R^{A \Rightarrow B}$
 - ▶ Rigid monads are rigid functors since fi = seq with $M^A \equiv Z \Rightarrow A$
 - ► Compare with fuseOut: $R^{A\Rightarrow B} \Rightarrow A \Rightarrow R^B$, which exists for any functor
 - ***** Implementation: **fo** $h^{:R^{A\Rightarrow B}} = x^{:A} \Rightarrow (f^{:A\Rightarrow B} \Rightarrow fx)^{\uparrow R} h$
- Nondegeneracy law: fuseOut(fuseIn(x)) == x or fi; fo = id
- fi must be natural in both type parameters
 - Naturality: fi $(f, g^{\uparrow R}) = (q^{:A\Rightarrow B} \Rightarrow q, g)^{\uparrow R}$ (fi f) for $\forall f^{:A\Rightarrow R^B}$, $g^{:B\Rightarrow C}$ and fi $(f, g) = (q^{:B\Rightarrow C} \Rightarrow f, g)^{\uparrow R}$ (fi g) for $\forall f^{:A\Rightarrow B}$, $g^{:B\Rightarrow R^C}$
- Connection between monadic flatMap and applicative ap for monadic R:
 - flm : $(A \Rightarrow R^B) \Rightarrow R^A \Rightarrow R^B$
 - ightharpoonup ap: $\hat{R}^{A\Rightarrow B} \Rightarrow R^A \Rightarrow R^B$
 - ▶ The connection is flm = fi; ap and ap = fo; flm
 - \star However, here we need to flip the order of R-effects in ap
 - ▶ Connection between ap and fo is fo x a = ap x (pure a)
- If flm = fig ap then fig fo = id. Proof: set $x^{:R^{A\Rightarrow B}} = \text{fi } h^{:A\Rightarrow R^B}$ and get fo x a = ap (fi h) (pure a) = flm h (pure a) = h a, so fo (fi h) = h
- Conversely: If fighter for fighter fighte

Rigid functors, their laws and structure II

Examples and constructions of rigid functors (see code):

- $R^A \equiv H^A \Rightarrow Q^A$ is a rigid functor (not monad) if Q^A is a rigid functor
- Not rigid: $R^A \equiv W \times A$, $R^A \equiv E + A$, List^A, Cont^A, State^A

Use cases for rigid functors:

- A rigid functor is pointed: a natural transformation $A \Rightarrow R^A$ exists
- A rigid functor has a single constructor because $R^1 \cong 1$
- Handle multiple M^{\bullet} effects at once: For a rigid functor R^{\bullet} and any monad M^{\bullet} , have "R-valued M-flatMap": $M^{A} \times (A \Rightarrow R^{M^{B}}) \Rightarrow R^{M^{B}}$
- Uptake monadic API: For a rigid functor R^{\bullet} , can implement a general refactoring function, refactor: $((A \Rightarrow B) \Rightarrow C) \Rightarrow (A \Rightarrow R^B) \Rightarrow R^C$, to transform a program $p(f^{A\Rightarrow B}) : C$ into $\tilde{p}(\tilde{f}^{:A\Rightarrow R^B}) : R^C$

Rigid monads II: Composed-outside transformers

Base rigid monad R^{\bullet} , foreign monad M^{\bullet} , transformer $T_R^{M,\bullet} \equiv T^{\bullet} \equiv R^{M^{\bullet}}$

- Monad instance: define the Kleisli category with morphisms $A \Rightarrow R^{M^A}$
- pure $_T: A \Rightarrow R^{M^A}$ is defined by $pure_T \equiv pure_M$; $pure_R = pure_R$; $pure_M^{\uparrow R}$
- $\operatorname{ftn}_T: T^{T^A} \Rightarrow T^A$ must be defined case by case for each construction
 - ▶ If $R^{M^{\bullet}}$ is a monad then we can define seq : $M^{R^{\bullet}} \sim R^{M^{\bullet}}$
 - ▶ Choosing $M^A \equiv Z \Rightarrow A$, we get seq = fi : $(Z \Rightarrow R^A) \Rightarrow R^{Z \Rightarrow A}$
 - ★ Open question: Is a rigid monad always a rigid functor?

Define rigid monads via the existence of composed-outside transformers

- Monad transformer methods for $T_R^{M,\bullet} \equiv R^{M^{\bullet}}$:
 - ▶ Lifting, lift : $M^A \Rightarrow R^{M^A}$ is equal to pure_M
 - ▶ Base lifting, blift : $R^A \Rightarrow R^{M^A}$ is equal to pureM.
 - ▶ Runner, mrun : $(∀B.M^B \Rightarrow N^B) \Rightarrow R^{M^A} \Rightarrow R^{N^A}$ is equal to fmap_R
 - ▶ Base runner, brun : $(\forall B.R^B \Rightarrow B) \Rightarrow R^{M^A} \Rightarrow M^A$ is equal to id
- Checking the monad transformer laws, case by case
 - ▶ The laws hold for $R^A \equiv H^A \Rightarrow A$ and $R^A \equiv F^{A \Rightarrow P^Q} \Rightarrow P^A$
 - ▶ The laws hold for composition and product of rigid monads
 - ★ Any other constructions or examples?

* Rigid monads III: Some tricks for proving the laws

• Several classes of monads involve a higher-order function, e.g.:

$$P^A \equiv H^A \Rightarrow A, \ R^A \equiv \left(A \Rightarrow P^Q\right) \Rightarrow P^A, \ R^A \equiv \forall B. \left(A \Rightarrow F^B\right) \Rightarrow F^B$$

- Proving laws for these monads is easier with these tricks:
 - **1** Instead of defining flm_R or ftn_R directly, use the Kleisli functions and \Diamond_R $f^{:A\Rightarrow R^B} \Diamond_R \ g^{:B\Rightarrow R^C} : A \Rightarrow R^C$
 - ② Flip the arguments of the Kleisli functions: for example, instead of $A \Rightarrow R^B \equiv A \Rightarrow (B \Rightarrow P^Q) \Rightarrow P^B$, work with $(B \Rightarrow P^Q) \Rightarrow A \Rightarrow P^B$
 - 3 Use the Kleisli product for the nested monad: for example, to define

$$f^{:\left(B\Rightarrow P^Q\right)\Rightarrow A\Rightarrow P^B} \diamond_R g^{:\left(C\Rightarrow P^Q\right)\Rightarrow B\Rightarrow P^C}:\left(C\Rightarrow P^Q\right)\Rightarrow A\Rightarrow P^C$$

use the Kleisli product \diamond_P as $m^{:A\Rightarrow P^B}\diamond_P n^{:B\Rightarrow P^C}:A\Rightarrow P^C$ to obtain $B\Rightarrow P^Q$ from $B\Rightarrow P^C$ and $C\Rightarrow P^Q$, and then to get $A\Rightarrow P^C$

• Use "compatibility laws": for any monad M, and denoting $T^{\bullet} \equiv R^{M^{\bullet}}$,

Rigid monads IV: Open questions

- What properties of fi : $(A \Rightarrow R^B) \Rightarrow R^{A \Rightarrow B}$ define rigid monads?
 - ► The law fi; fo = id does not appear to be sufficient
 - Not clear if fig fo = id follows from monadicity of $R^{M^{\bullet}}$
- A (generalized) functor from Kleisli category to "applicative" category?
 - ▶ Identity law: $fi(pure_R) = pure_R(id) this holds$
 - ► Composition law: $fi(f \diamond_R g) = (p \times q \Rightarrow p; q)^{\uparrow R} (fif \bowtie fig)$

★ not clear whether this holds

Define the rigid monad transformer using fi?

• Define \diamond_T by $f \diamond_T g \equiv \text{fo}((p \times q \Rightarrow p \diamond_M q)^{\uparrow R} (\text{fi } f \bowtie_R \text{fi } g))$

$$\begin{array}{ccc} (A \Rightarrow R^{M^B}) & \diamond_T & (B \Rightarrow R^{M^C}) & \xrightarrow{\text{define } \diamond_T \text{ as}} & (A \Rightarrow R^{M^C}) \\ & & & \downarrow^{\text{fi}} & & \downarrow^{\text{fo}} & & \text{fo} \\ R^{A \Rightarrow M^B} & \bowtie_R & R^{B \Rightarrow M^C} & \rightarrow R^{(A \Rightarrow M^B) \times (B \Rightarrow M^C)} & \xrightarrow{\text{fmap}_R(\diamond_M)} & R^{A \Rightarrow M^C} \\ \end{array}$$

- not clear whether this holds
 - ★ not clear whether associativity can be shown to hold in general

Attempts to create a general monad transformer

General recipes for combining two functors L^{\bullet} and M^{\bullet} all fail:

- "Fake" transformers: $T_L^{M,A} \equiv L^A$; or $T_L^{M,A} \equiv M^A$; or just $T_L^{M,A} \equiv 1$
 - ▶ no lift and/or no base runner and/or $T_L^{\text{Id},A} \not\equiv L^A$
- Functor composition, disjunction, or product: $L^{M^{\bullet}}$, $M^{L^{\bullet}}$, $L^{\bullet} + M^{\bullet} -$ not a monad in general; $L^{\bullet} \times M^{\bullet} -$ no lift: $M^{\bullet} \leadsto L^{\bullet} \times M^{\bullet}$
- Making a monad out of functor composition or disjunction:
 - free monad over $L^{M^{\bullet}}$, Free $L^{M^{\bullet}}$ lift violates lifting laws
 - free monad over $L^{\bullet} + M^{\bullet}$, Free $L^{\bullet} + M^{\bullet}$ lift violates lifting laws
 - * Laws will hold after interpreting the free monad into a concrete monad
 - ▶ codensity monad over $L^{M^{\bullet}}$: $F^{A} \equiv \forall B. (A \Rightarrow L^{M^{B}}) \Rightarrow L^{M^{B}}$ no lift
- Codensity-*L* transformer: $Cod_L^{M,A} \equiv \forall B. (A \Rightarrow L^B) \Rightarrow L^{MB} \text{no lift}$
 - ▶ applies the continuation transformer to $M^A \cong \forall B. (A \Rightarrow B) \Rightarrow M^B$
- Codensity composition: $F^A \equiv \forall B. (M^A \Rightarrow L^B) \Rightarrow L^B \text{not a monad}$
 - ▶ Counterexample: $M^A \equiv R \Rightarrow A$ and $L^A \equiv S \Rightarrow A$
- "Monoidal" convolution: $(L \star M)^A \equiv \exists P \exists Q. (P \times Q \Rightarrow A) \times L^P \times M^Q$
 - combines $L^A \cong \exists P.L^P \times (P \Rightarrow A)$ with $M^A \cong \exists Q.M^Q \times (Q \Rightarrow A)$
 - ▶ $L \star M$ is not a monad for e.g. $L^A \equiv 1 + A$ and $M^A \equiv R \Rightarrow A$

Exercises

- Show that the method pure: $A \Rightarrow M^A$ is a monadic morphism between monads $\operatorname{Id}^A \equiv A$ and M^A . Show that $1 \Rightarrow 1 + A$ is not a monadic morphism.
- ② Show that $M_1^A + M_2^A$ is *not* a monad when $M_1^A \equiv 1 + A$ and $M_2^A \equiv Z \Rightarrow A$.
- **3** Derive the composition law for lift written using ftn as $lift_1$; fmap_{BigM} $lift_1$; ftn_{BigM} = ftn_{M_1} ; $lift_1$ from the flm-based law $lift_1$; flm_{BigM} (q; $lift_1)$ = flm_{M1}q; $lift_1$. Draw type diagrams for both laws.
- Show that the continuation monad is not rigid and does not compose with arbitrary other monads. Show that the list and state monads are not rigid.
- **3** Show that fo $(pure_P(f^{:A\Rightarrow B})) = f_{?}pure_P$ for any pointed functor P.
- A rigid monad has a pure method because it is a monad, and also another pure method because it is a rigid functor. Show that these two pure methods must be the same.
- **3** Show that $T_{L_1}^{M,A} \times T_{L_2}^{M,A}$ is the transformer for the monad $L_1 \times L_2$.