MTH5105 Differential and Integral Analysis 2009-2010

Exercises 9

These exercises do *not* constitute coursework, but their content is definitely examinable. Model solutions will be made available on the course webpage by the last day of term.

Exercises

- 1) (a) Show that for all $x \in \mathbb{R}$, the sum $\sum_{k=1}^{\infty} \frac{1}{k} \sin\left(\frac{x}{k}\right)$ converges. [You may use that $|\sin(t)| \le |t|$ for all $t \in \mathbb{R}$.]
 - (b) Show that the sum $\sum_{k=1}^{\infty} \frac{1}{k^2} \cos\left(\frac{x}{k}\right)$ converges uniformly for all $x \in \mathbb{R}$.
 - (c) Deduce that $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \sum_{k=1}^{\infty} \frac{1}{k} \sin\left(\frac{x}{k}\right)$$

is differentiable.

2) Is the function $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \sum_{k=1}^{\infty} \sin^2(x/k)$$

differentiable?

- 3) Let $f_n:[0,1]\mapsto\mathbb{R}$ be a sequence of differentiable functions, and let $f:[0,1]\mapsto\mathbb{R}$. Consider the statements
 - (a) $f_n \to f$ pointwise,
 - (b) $f_n \to f$ uniformly,

(c) f'_n converges pointwise,

(d) $f'_n \to f'$ pointwise,

- (e) f continuous,
- (f) f differentiable,
- (g) $\lim_{n\to\infty} \int_0^1 f_n(x) dx = \int_0^1 f(x) dx$,

and cleary indicate in the enclosed figure all implications by the appropriate arrows (" \Longrightarrow ").