Data-driven Modeling: Machine Learning
Course outline
(1) Lecture plan
(2) Laboratory exercises plan
4.
1
1_
L

Course Outline Of Data-Driven Modeling

Introduction

The figure outlines the course structure that will be covered during Data-Driven Modelling.

Machine Learning deals with three basic steps

- a) Data Preprocessing/Feature engineering
- b) Machine Learning Modeling and Prediction
- c) Model Performance Accuracy Analysis

Г	Lecture plan
-17	Lecture #1 Data - Preprocessing/Feature Engineering
-	Lab #1 Python based pre-processing
	Lecture#2: Mathematics and Statistics for Machine
1	Learning
1	- Modeling
17	- Model performance analysis
1	Labtez. Python based Modeling landyns
1.	- From the Scratch
	- Using Sklearn python library
П	
Г	Lecture #3 Python library based Modeling/Analysis
1	(39) Multivariable regression
	Theory + hab#3
	(35) polynomial regression
	Theory + Lab-#4
	(3c) Non-Linear regression
1	Theory + hab as
	Lecture #4: ANN modeling
	- Concepts how it work
L-	Co De-reation
1	o Activation function & t Lab #6
-	· Multilayer percaptron
_	· Forward feed
L	· Bachward Propagation
L	ogradient descent
	· optimizers
L L L	- habtis ANN modeling / Analysi
1.2	
L	Project: Using the lectures (Labs, do your
L	project works. Your work should
L	reflect the above hab-works
L	

П	
T	Outline of the Laboratory works
П	HA DA DA CONCORDIOS
	#1 Data pre processing.
Г	Here, we will work on (a) Synthetic data: - generaled from
Г	Physics Physics
L	
Π	(b) Field data that Contains noises.
П	112 C 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
_ []	#2. Simple Linear Regression modelling
_[]	(a) impliment parameter determination
	from SCRATCH
-12-	- Method 1: Matrix Inversion - Method 2: Implimenting
-0	the derived functions
13	(b) Sklear - Python Library.
	-> Compare results of (a) and (b)
	#3 Multivariable Regression
L	(G) Matrix inversion Method
	(b) Sklearn Python library
1	-> Compare the results.
1	#4 Polynonial Regression
ī	(a) Matrix inversion
	(b) Skleam Python library
L	- Compare the results.
L	**
1.1	# 5 Non-linear Regression
	(4) Scipy / optimize library
L	#6 ANN - Keras library based modelling
1	(1) Syntholic clata
-L	(4) Syntholic clata (6) Freed data