

DATA STRUCTURE FOR EFFICIENT INDEXING OF FILES AND DIRECTORIES

Juan S. Cárdenas R. David Plazas E.

> Universidad EAFIT Medellín 2017

OUTLINE

- 1. Designed Data Structure
- 2. Data Structure Operations
 - 2.1 Insertion
 - 2.2 Deletion
 - 2.3 Search
- 3. Design Criteria of the Data Structure
- 4. Time and Memory Consumption
- 5. Implementation

1. Designed Data Structure: NashTable

Figure 1. Example of a NashTable. Each Nash has a hash table of Branch objects. Each Branch object has another Nash and a LinkedList of dictionaries. Files are indexed according to each character of their names

2. Data Structure Operations

2.1 Insertion O(n)

Figure 2. Insertion in NashTables.

2. Data Structure Operations

2.2 Deletion O(n)

Figure 3. Deletion in NashTables.

2. Data Structure Operation

2.3 Search O(n+k)

Figure 4. Search in NashTables.

Design Criteria of the Data Structure

3. Design Criteria of the Data Structure

- The NashTable is based on hash tables and doubly linked lists; searching files is the priority.
- Although this first approach to solve the problem is not optimized for low memory consumption, it has been developed for optimize searching with different options.
- ► Hash tables were used since they are able to search for files in constant time.
- Double linked lists because insertion in the last position is achieved in constant time and also because they do not have a fixed size (unlike arrays), allowing the NashTable to add objects depending on the files indexed.
- Searching for files is independent from the amount of files indexed inside the structure. It just depends on the number of characters on the name.

4. Time and Memory Consumption

Table 1. Execution time for each operation

Operation	Average Time			
Operation	DataSet 1	DataSet 2	DataSet 3	
Create	213.355 <i>ms</i>	5453.520 <i>ms</i>	29177.054 <i>ms</i>	
Insert	0.623 <i>ms</i>	0.046 <i>ms</i>	0.050 <i>ms</i>	
Search	0.026 <i>ms</i>	0.022 <i>ms</i>	0.023 <i>ms</i>	
Remove	0.018 <i>ms</i>	0.020 <i>ms</i>	0.020 <i>ms</i>	

Table 2. Memory consumption.

Memory Consumption	DataSet1	DataSet2	DataSet3
Memory	96.72MB	475.136MB	1638.4MB


```
oot@ubuntu:~/Desktop/JuanSePlazas/Proyecto/Nash Ta
 ble# python3.5 Handlers.py
 Welcome!
What operation do you need?
O. Quit

    Search

 2. Remove
 Type the number of the operation you want:
```

Figure 5. Example of GUI.


```
root@ubuntu:~/Desktop/JuanSePlazas/Provecto/Nash Table# pvthon3.5 Handlers.pv
 What operation do you need?
  Quit
1. Search
 Remove
Type the number of the operation you want: 1
 Write the name or the initials of the file you want to search: if you need it
  to be case sensitive write (c) at the start and then write the name of the file you need
  to search.
  tex
  1.[root 360 ] TeX
 2. root 380 TeX
  3.[root 380 ] TeX
 4.[root 320 ] TeX
  5. root 320 TeX
  Found 5 files!
  Did you find the file you wanted?[Y/N] y
 Do you want to know the address of a file? [Y/N] v
  Type the index of the file that you want to know the address(Enter 0 to cancel) 2
 Address: /home/ubuntu/Desktop/JuanSePlazas/Laboratorios/Lab2
  Type the index of the file that you want to know the address(Enter 0 to cancel)
```

Figure 6. Example when searching for "tex".


```
Address: /home/ubuntu/Desktop/JuanSePlazas/Laboratorios/Lab2
Type the index of the file that you want to know the address(Enter 0 to cancel) 0
Do you want to know the content of a folder? [Y/N] y
Type the index of the file that you want to know it's subdirectories (Type 0 to cancel) 1
1. [root 20K ] ArrayMax.pdf
2.[root 19K ] ArraySum.pdf
3. root 6.0K ] .DS Store
4. root 16K | Fibonacci.pdf
5. root 3.2K lab.aux
6. [root 686 ] Lab.bbl
7. root 740 lab.bib
8. root 867 | Lab.blg
9.[root 12K ] Lab.fdb latexmk
10. [root 12K ] Lab.fls
11. [root 37K ] Lab.log
12.[root 1.1K ] Lab.out
13. root 233K Lab.pdf
14. [root 72K ] Lab.synctex.gz
15. root 21K lab.tex
16. [root 6.8K ] logo.pdf
Found 16 files!
Did you find the file you wanted?[Y/N]
```

Figure 7. Example when searching inside the first folder.


```
to be case sensitive write (c) at the start and then write the name of the file you need
  to remove.
  (c)Entrega1LaTeX
  1. root 520 | EntregalLaTeX
  Found 1 files!
  Do you want to know more information about the files found?[Y/N] v
Do you want to know the address of a file? [Y/N] y
  What address do you want to know? (Enter 0 to cancel) 1
  Address: /home/ubuntu/Desktop/JuanSePlazas/Proyecto
  What address do you want to know? (Enter 0 to cancel) 0
 Type the index of the file you want to remove: (type 0 to cancel) 1
  [ root 520 ] EntregalLaTeX at /home/ubuntu/Desktop/JuanSePlazas/Proyecto?
It will not be send to the trash and it's an action you can't undo [Y/N] y
  Removing Entrega1LaTeX...
  Removed succesfully Entrega1LaTeX!
```

Figure 8. Example of removal.

