PDA Design

a) $\sum = \{x, y\}, L = \{x^ny^n \mid n \ge 1\}$ Hints: Push x's, Then pop x's for y's in input string

b) $\sum = \{x, y\}$, L = $\{x^ny^{2n} \mid n \ge 1\}$ Hints: for each x in input, push two 2 x's for having same no of x's & y's. Then pop x's for y's in input string

c) $\sum = \{x, y\}, L = \{x^{2n}y^n \mid n \ge 1\}$ Hints: for every 2 x's, push only 1 x

d) $\sum = \{x, y\}, L = \{x^n y^{n+1} \mid n \ge 1\}$ Hints: $x^n y^n y$

e) $\sum = \{x, y\}$, L = $\{x^my^n \mid n > m \ge 0\}$ Hints: m>=0, n>m, n>=m+1. So, $x^my^n = x^my^{m+1}y$ (at least one extra y at end of input string)

f) $\Sigma = \{a, b, c, d\}$, L= $\{a^m b^n c^n d^m \mid m, n >= 1\}$ Hints: a,d pair, b,c pair Push a's. Push b's. Pop b's for c's in input string. Pop a's for d'd in input string

g) $\Sigma = \{a, b\}$, L= $\{a^n b a^m b a^{m+n} | m, n >= 1\}$ Hints: $a^n b a^m b a^m a^n$. Push all a's, ignore b. Push all a's, ignore b. pop a's for a's in input

h) $\sum = \{x, y\}$, L = $\{x^ny^mx^n \mid m,n \ge 1\}$ Hints: push all x's. Then transition for y. Ignore y's. pop x's for x's in input string

i) $\sum = \{x, y, z\}$, L= $\{x^n y^m z^{(n+m)} \mid n, m \ge 1\}$ Hints: push all x's & y's. Then pop x's & y's for z's OR it can be solved with this logic $x^n x^m Z^m z^n$

j) $\sum = \{x, y, z\}$, L= $\{x^{(n+m)}y^mz^n \mid n,m≥1\}$ Hints: push all x's. Pop x's for y's & pop x's for z's sequentially.

OR it can be solved with this logic $x^n x^m y^m z^n$

You can also follow the method of (i) for this.

k) $\sum = \{x, y, z\}$, L= $\{x^n y^{(n+m)} z^m \mid n, m \ge 1\}$ Hints: $x^n y^n y^m z^m$ push all x's, then pop x's for y's. when stack empty, push all y's, then pop y's for z's.

I) $\sum = \{x, y\}$, L = {no of x's are greater than the no of y's} Hints: push all x's and y's. Pop x's for y's (at least one x extra at end)

m) $\sum = \{x, y\}, L = \{x^ny^m \mid m,n \ge 1 \& m > n+2\}$

Hints: minimum value of n is 1. So, m > n+2, m>1+2, m>3. minimum no of x is 1 & minimum no of y is 4.

Again, m>n+2, m>=n+3

Push all x's in stack, then pop x's for y's. Then you should have at least 3 extra y's in the input String.

n) Design a PDA to match parenthesis. Hints: Push all ('s. Pop '(' for ')' in the string.

Conceptual Question:

- 1. The Pushdown automation is essentially an $\boldsymbol{\xi}$ -NFA with the addition of a stack.
- 2. A PDA chooses its next move based on its current state, the next input symbol, and the symbol at the top of its stack. It may also choose to make a move independent of the input symbol and without consuming that symbol from the input. Being nondeterministic, the PDA may have some finite number of choices of move; each is a new state and a string of stack symbols with which to replace the symbol currently on top of the stack.
- 3. There are two ways in which we may allow the PDA to signal acceptance. One is by entering an accepting state; the other by emptying its stack. These methods are equivalent in the sense that any language accepted by one method is accepted by the other method.
- 4. The transition function of PDA takes three arguments.
 - a) A state, in Q.
 - b) An input, which is either a symbol in \sum or \mathcal{E} .
 - c) A stack symbol in Γ .
- 5. Here P_N = empty stack PDA and P_F = Final state PDA
 - Whenever P_N 's stack becomes empty, make P_F go to a final state without consuming any addition symbol
 - To detect empty stack in P_N : P_F pushes a new stack symbol X_0 (not in Γ of P_N) initially before simulating P_N

- 6. Here P_N = empty stack PDA and P_F = Final state PDA
 - \blacksquare Whenever P_F reaches a final state, just make an ε -transition into a new end state, clear out the stack and accept
 - Danger: What if P_F design is such that it clears the stack midway *without* entering a final state?

to address this, add a new start symbol X_0 (not in Γ of $P_{\scriptscriptstyle F})$

4 -