МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. УЛЬЯНОВА (ЛЕНИНА) Кафедра алгоритмической математики

КУРСОВАЯ РАБОТА по дисциплине «Дифференциальные уравнения» Тема: Соскальзывание цепочки

	Кобенко В.П.
Студенты гр. 8382	 Черницын П.А.
Преподаватель	 Павлов Д.А.

Санкт-Петербург 2021

ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ

Студент Кобенко В.П. Студент Черницын П.А. Группа 8382

Тема работы: Соскальзывание цепочки

Исходные данные:

Соскальзывание цепочки

Содержание пояснительной записки:

«Содержание», «Введение», «2-ой Закон Ньютона», «Прямой метод Ньютона», «Обратный метод Ньютона», «Метод Рунге-Кутты-Фельберга 4-5-го порядка», «Метод Хойна», «Метод Адамса», «Графический интерфейс», «Заключение», «Список использованных источников».

Предполагаемый объем пояснительной записки: Не менее 20 страниц.

Дата выдачи задания: 09.05.2021

Дата сдачи курсовой работы: 14.06.2021

Дата защиты курсовой работы: 14.06.2021

	Кобенко В.П.
Студенты	Черницын П.А.
Преподаватель	Павлов Д.А.

АННОТАЦИЯ

В курсовой работе рассмотрена задача соскальзывание цепочки. Для этого использовался 2-ой Закон Ньютона, его дифференциальная формулировка. Для решения поставленной задачи было использовано несколько методов: «Прямой метод Ньютона», «Обратный метод Ньютона», «Метод Рунге-Кутты-Фельберга 4-5-го порядка», «Метод Хойна», «Метод Адамса». Результаты решения данного уравнения были представлены в виде графиков в графическом интерфейсе.

SUMMARY

In the course work, the problem of chain slip. For this, the 2nd Newton law, its differential formulation, was used. To solve the problem, several methods were used: "Forward Newton's method", "Backward Newton's method", "Runge-Kutta-Felberg method of the 4-5th order", "Heun's method", "Adams method". The results of solving this equation were presented in the form of graphs in the graphical interface.

СОДЕРЖАНИЕ

ЗАДАНИЕ	2
НА КУРСОВУЮ РАБОТУ	2
АННОТАЦИЯ	3
Введение	5
2-ой Закон Ньютона	6
Прямой метод Эйлера	8
Обратный метод Эйлера	10
Метод Рунге-Кутты-Фельберга 4-5 порядка	12
Метод Хойна	13
Метод Адамса-Башфорта	14
GUI	16
Вывод	19
Используемая литература	20
ПРИЛОЖЕНИЕ А. Код программы	21

Введение

Дифференциальное уравнение является одним из фундаментальных понятий математики, широко применяемое в различных областях современных наук. Оно также применимо в физических процессах, один из которых рассматривается в данной курсовой работе. Соскальзывание цепочки является этим процессом. Были использованы методы интегрирования дифференциальных уравнений динамических систем для решения 2-ого закона Ньютона, такие как: «Прямой метод Ньютона», «Обратный метод Ньютона», «Метод Рунге-Кутты-Фельберга 4-5-го порядка», «Метод Хойна», «Метод Адамса».

2-ой Закон Ньютона

2-ой Закон Ньютона устанавливает связь между силой \mathbf{F} , действующей на тело массы \mathbf{m} , и ускорением \mathbf{a} , которое приобретает тело под действием этой силы. Дифференциальная формулировка выглядит так:

$$F = \frac{dp}{dt}$$

 Γ де \mathbf{F} – сила, \mathbf{t} – время, \mathbf{p} – импульс.

В предположении, что движение одномерное, второй закон Ньютона в этом случае записывается в виде дифференциального уравнения второго порядка:

$$F(t) = m \frac{d^2x}{dt^2}$$

Согласно второму закону Ньютона, дифференциальное уравнение движения цепочки имеет вид:

$$m\frac{d^2x}{dt^2} = P - F_{\rm T}p$$

Отсюда:

$$m\frac{d^2x}{dt^2} = mg\frac{x}{L} - \mu mg\frac{L - x}{L}$$

Поделим обе части уравнения на т:

$$\frac{d^2x}{dt^2} = g\frac{x}{L} - \mu g\frac{L - x}{L}$$

Получаем:

$$\frac{d^2x}{dt^2} - x\frac{g(1+\mu)}{L} = -\mu g$$

Проинтегрируем и получим функцию f(x,t), использующуюся в численных методах.

$$\frac{g\mu x^2}{2L} + \frac{gx^2}{2L} - g\mu x$$

Где μ - коэффициент трения, L – длина цепочки, g – ускорение свободного падения.

Для получения аналитической формулы должно быть известно начальное условие:

$$x(t=0) = \frac{\mu L}{1+\mu} + \varepsilon$$
$$v(t=0) = 0$$

Длина свисающей части цепочки при равновесии составляет:

$$x = \frac{\mu L}{1 + \mu}$$

Скольжение цепочки описывается законом:

$$x(t) = \frac{\varepsilon}{2} e^{\operatorname{sqrt}\left(\frac{(1+\mu)g}{L}\right)t} + \frac{\varepsilon}{2} e^{-\operatorname{sqrt}\left(\frac{(1+\mu)g}{L}\right)t} + \frac{\mu L}{1+\mu}$$

Прямой метод Эйлера

В нашем коде этот метод был реализован так:

```
def main_FE(self):
    appr = int((self.time - 0)/self.h)

j = 0

x = 0
y = {}
y[j] = self.coef * self.chain_len / (1 + self.coef) + 2 * self.eps/1000

self.f.write(str(x) + ' ')

for i in range(appr):
    F_x_t = mf.myFunc(x, self.coef, self.chain_len)

j += 1
y[j] = y[j-1] + self.h*F_x_t
print (y[j])

x += self.h
if (y[j] > 1):
y[j] = 1
self.f.write(str(x) + ' ')
self.f.write('\n')
```

 F_x_t- функция f(x, t), self.h – это длина шага по x, my_func.py выглядит так:

```
import numpy as np

def myFunc(x, mu, 1):
    dy = 4.9 * x**2 * (mu + 1) / 1 - 9.8 * mu * x
    # dy = 5.self.time9 * (x)**2 - 0.98 * (x)
    return dy
```

Где mu – это коэффициент трения, а 9.8 – ускорение свободного падения.

Для сравнения с аналитическим решением использовался график, желтая линия – график метода, синяя – аналитическое решение.

Реализация аналитического решения выглядит так (для всех методов она одинаковая):

```
for i in t:
    T = 2 * self.eps/2000 * np.exp(np.sqrt((1 + self.coef) * 9.8 / self.chain_len) * i) + 2 * self.eps/2000 * n
    if (T > 1):
        T = 1
    self.f.write(str(T) + ' ')
self.f.write('\n')
```

Обратный метод Эйлера

В нашем коде этот метод был реализован так:

```
def main_BE(self):
    appr = int((self.time - 0)/self.h)

j = 0

x = 0
y = {}
y[j] = self.coef * self.chain_len / (1 + self.coef) + 2 * self.eps/1000

self.f.write(str(x) + ' ')

for i in range(appr):
    F_x_t = mf.myFunc(x, self.coef, self.chain_len)/(1+self.h)

j += 1
y[j] = y[j-1] + self.h*F_x_t
print(y[j])

x += self.h
if (y[j] > 1):
y[j] = 1
self.f.write(str(x) + ' ')
self.f.write('\n')
```

Где $F_x_t - \phi$ ункция f(x, t), self.h – это длина шага по x.

Для сравнения с аналитическим решением использовался график, желтая линия – график метода, синяя – аналитическое решение.

Метод Рунге-Кутты-Фельберга 4-5 порядка

Этот метод был реализован таким образом:

```
def NR45(self):
    appr = int((self.time - 0)/self.h)

j = 0

x = 0
y = ()
y[j] = self.coef * 1 / (1 + self.coef) + 2 * self.eps/1000

self.f.write(str(x) + ' ')

for i in range(appr):
    y2 = x + mf.myfunc(x, self.coef, self.chain_len)*(self.h/5)
    y3 = x + mf.myfunc(x, self.coef, self.chain_len)*(s*self.h/40) + mf.myfunc(yp2, self.coef, self.chain_len)*(9*self.h/40)
    y4 = x + mf.myfunc(x, self.coef, self.chain_len)*(3*self.h/40) + mf.myfunc(yp2, self.coef, self.chain_len)*(9*self.h/40) + mf.myfunc(yp2, self.coef, self.chain_len)*(9*self.h/10) + mf.myfunc(yp2, self.coef, self.chain_len)*(3*self.h/10) + mf.myfunc(yp2, self.coef, self.chain_len)*(5*self.h/12) + mf.myfunc(yp3, self.coef, self.chain_len)*(15*self.h/512) + mf.myfunc(yp3, self.coef, self.chain_len)*(15
```

Для сравнения с аналитическим решением использовался график, желтая линия – график метода, синяя – аналитическое решение.

Метод Хойна

В работе метод был реализован так:

```
def main_H(self):
    appr = int((self.time - 0)/self.h)

j = 0

x = 0
y = {}
y[j] = self.coef * self.chain_len / (1 + self.coef) + 2 * self.eps/1000

self.f.write(str(x) + ' ')

for i in range(appr):
    j += 1
    y[j] + y[j-1] + (self.h/2)*mf.myFunc(x, self.coef, self.chain_len) + (self.h/2)*mf.myFunc(x + mf.myFunc(x, self.coef, self.chain_len) * self.h, self.coef, self.chain_len) * self.h
    print(y[j])
    if (y[j] > 1):
        y[j] = 1

    x += self.h
    self.f.write(str(x) + ' ')
self.f.write('\n')
```

Для сравнения с аналитическим решением использовался график, желтая линия – график метода, синяя – аналитическое решение.

Метод Адамса-Башфорта

В работе метод был реализован так:

```
for i in range(3, dx):
    y0prime = mf.myFunc(y[i], self.coef, self.chain_len)
    y1prime = mf.myFunc(y[i - 1], self.coef, self.chain_len)
    y2prime = mf.myFunc(y[i - 2], self.coef, self.chain_len)
    y3prime = mf.myFunc(y[i - 3], self.coef, self.chain_len)

    ypredictor = y[i] + (self.h/24)*(55*y0prime - 59*y1prime + 37*y2prime - 9*y3prime)
    ypp = mf.myFunc(ypredictor, self.coef, self.chain_len)

    yn = y[i] + (self.h/24)*(9*ypp + 19*y0prime - 5*y1prime + y2prime)

    if (yn > 1):
        yn = 1
        # print (yn)

        xs = xx[i] + self.h
        xsol = np.append(xsol, xs)

        self.x = xsol

        y_res = np.append(y_res, yn)
    return [xsol, y_res]
```

Для сравнения с аналитическим решением использовался график, желтая линия – график метода, синяя – аналитическое решение.

Был реализован графический интерфейс на языке Python с помощью библиотеки PySimpleGUI. Код программы представлен в приложении A.

Интерфейс программы включает в себя 6 кнопок, 3 слайдера, окно для графиков и лэйбл с выводом информации об успешном/неуспешном запуске программы:

Первые пять кнопок в интерфейсе вызывают численные методы:

Forward Euler:

Backward Euler:

Runge Kutt:

Heun:

Adams-Bashfourth:

С помощью слайдеров можно менять условия поставленной задачи.

Chain length отвечает за длину цепочки, Epsilon за смещение цепочки относительно точки равновесия, Time – за время, кнопка Discard params – сбрасывает значения на исходные.

Также под графиком выводится глобальная ошибка для конкретного метода с шагом $\mathbf{h} = 0.001$

Вывод

В курсовой работе был рассмотрен процесс соскальзывания цепочки. Для решения задачи были использованы такие методы, как: «Прямой метод Ньютона», «Обратный метод Ньютона», «Метод Рунге-Кутты-Фельберга 4-5-го порядка», «Метод Хойна», «Метод Адамса». Было написано приложение на языке Python, решающее поставленную задачу данными методами и сравнивающее решение с аналитическим. Графический интерфейс позволяет увидеть отличия между методами на графиках.

Используемая литература

https://old.math.tsu.ru/EEResources/pdf/diff_equation.pdf

http://math.smith.edu/~callahan/cic/ch4.pdf

https://en.wikipedia.org/wiki/Newton%27s law_of_cooling

https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D0%9

<u>0%D0%B4%D0%B0%D0%BC%D1%81%D0%B0</u>

http://w.ict.nsc.ru/books/textbooks/akhmerov/nm-ode_unicode/1-3.html

https://tftwiki.ru/wiki/Heun%27s_method

https://pysimplegui.readthedocs.io/en/latest/

https://www.python.org/

ПРИЛОЖЕНИЕ А. Код программы

Файл main.py:

```
import tkinter as tk
import gui
root = tk.Tk()
gui.MainApplication(root)
root.mainloop()
Файл gui.py:
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from matplotlib.figure import Figure
from tkinter import ttk
import tkinter as tk
import numpy as np
import backward_euler
import forward_euler
import runge_kutta
import heun
import adams_bashforth_moulton
import os
class Plotter(FigureCanvasTkAgg):
    def __init__(self, master):
        self.figure = Figure(dpi=100)
        super().__init__(self.figure, master=master)
        self.axes = self.figure.add_subplot(111)
        self.get_tk_widget().grid(column=0, row=0, sticky='nsew')
    def draw_lists(self, flag):
```

```
self.axes.clear()
       x = [[],[],[],[]]
        i = 0
       f = open('tmp.txt', 'r')
       for line in f:
            if (line == '\n'):
                    continue
            for elem in line.split(' '):
                if (elem == '\n'):
                    continue
                x[i].append(float(elem))
            i+=1
       f.close()
        self.axes.plot(x[0], x[1], color='y')
        self.axes.plot(x[2], x[3], color='b')
        self.axes.set_xlabel('T, sec')
        self.axes.set_ylabel('L, mm')
        self.draw_idle()
class MainApplication(ttk.Frame):
   def __init__(self, master, *args, **kwargs):
        super().__init__(master)
        self.grid(column=0, row=0, sticky='nsew')
       frame = ttk.Frame(self, borderwidth=8)
        frame.grid(column=0, row=0, sticky='nsew')
        frame.rowconfigure(0, weight=1)
        notes = ttk.Notebook(frame)
```

```
notes.grid(column=0, row=0, sticky='nsew')
        notes.rowconfigure(0, weight=1)
        page = ttk.Frame(notes)
        notes.add(page, text='Picture')
        self.plot = Plotter(page)
        input_frame = ttk.Frame(self)
        input_frame.grid(column=1, row=0, sticky='nsew')
        label_chain_lenght = ttk.Label(input_frame)
        self.slider_chain_lenght = ttk.Scale(input_frame, from_ = 0, to_ = 5,
                            command=lambda x:
                            label_chain_lenght.config(text = "Chain lenght = " +
                            str("{0:.1f}".format(self.slider chain lenght.get()))
+ "m"))
        self.slider_chain_lenght.set(1)
        label_chain_lenght.config(text = "Chain lenght = " +
str("{0:.1f}".format(self.slider_chain_lenght.get())) + "m")
        label_epsilon = ttk.Label(input_frame)
        self.slider_epsilon = ttk.Scale(input_frame, from_ = 1, to_ = 500,
                            command=lambda x:
                            label epsilon.config(text = "Epsilon = " +
str(int(self.slider_epsilon.get())) + "mm"))
        self.slider_epsilon.set(25)
        label_epsilon.config(text = "Epsilon = " +
str(int(self.slider_epsilon.get())) + "mm")
        label_coef = ttk.Label(input_frame)
        self.slider_coef = ttk.Scale(input_frame, from_ = 0, to_ = 2,
                            command=lambda x:
                            label coef.config(text = "Coefficient of friction = "
+
```

```
str("{0:.1f}".format(self.slider coef.get()))))
        self.slider coef.set(0.1)
        label coef.config(text = "Coefficient of friction = " +
str("{0:.1f}".format(self.slider_coef.get())))
        label time = ttk.Label(input frame)
        self.slider time = ttk.Scale(input frame, from = 0.1, to = 10,
                            command=lambda x:
                            label time.config(text = "Time = " +
                            str("{0:.1f}".format(self.slider time.get())) +
"sec"))
        self.slider time.set(3)
        label_time.config(text = "Time = " + str(int(self.slider_time.get())) +
"sec")
        self.label_err_msg = ttk.Label(input_frame)
        self.label_err_msg.config(text = "")
        button BE = ttk.Button(input frame, text='Backward Euler', command =
self.button_BE_clicked)
        button_FE = ttk.Button(input_frame, text='Forward Euler', command =
self.button FE clicked)
        button_RK = ttk.Button(input_frame, text='Runge Kutt', command =
self.button RK clicked)
        button H = ttk.Button(input frame, text='Heun', command =
self.button_H_clicked)
        button_ADM = ttk.Button(input_frame, text='Adams-Bashforth-Moulton',
command = self.button_ADM_clicked)
        button discard param = ttk.Button(input frame, text='Discard params',
command = self.button_discard_param_clicked)
        button_BE.grid(column=0, row=0, columnspan=2, sticky='ew')
        button_FE.grid(column=0, row=1, columnspan=2, sticky='ew')
```

```
button RK.grid(column=0, row=2, columnspan=2, sticky='ew')
    button H.grid(column=0, row=3, columnspan=2, sticky='ew')
    button_ADM.grid(column=0, row=4, columnspan=2, sticky='ew')
    label chain lenght.grid(column=0, row=5, columnspan=2, sticky='ew')
    self.slider_chain_lenght.grid(column=0, row=6, columnspan=2, sticky='ew')
    label_epsilon.grid(column=0, row=7, columnspan=2, sticky='ew')
    self.slider_epsilon.grid(column=0, row=8, columnspan=2, sticky='ew')
    label_coef.grid(column=0, row=9, columnspan=2, sticky='ew')
    self.slider coef.grid(column=0, row=10, columnspan=2, sticky='ew')
    label_time.grid(column=0, row=11, columnspan=2, sticky='ew')
    self.slider_time.grid(column=0, row=12, columnspan=2, sticky='ew')
    button discard param.grid(column=0, row=13, columnspan=2, sticky='ew')
    self.label_err_msg.grid(column=0, row=14, columnspan=2, sticky='ew')
def button_BE_clicked(self):
    self.plot.draw_lists(backward_euler.BackwardEuler(
        0.01, self.slider coef.get(), self.slider chain lenght.get(),
        self.slider_epsilon.get(), self.slider_time.get()
        ).execute())
def button FE clicked(self):
    self.plot.draw_lists(forward_euler.ForwardEuler(
        0.01, self.slider_coef.get(), self.slider_chain_lenght.get(),
        self.slider_epsilon.get(), self.slider_time.get()
        ).execute())
def button_RK_clicked(self):
    self.plot.draw_lists(runge_kutta.Runge_Kutt(
        0.01, int(self.slider_coef.get()), self.slider_chain_lenght.get(),
        self.slider_epsilon.get(), self.slider_time.get()
        ).execute())
def button H clicked(self):
    self.plot.draw lists(heun.Heun(
```

```
0.01, int(self.slider_coef.get()), self.slider_chain_lenght.get(),
            self.slider_epsilon.get(), self.slider_time.get()
            ).execute())
   def button_ADM_clicked(self):
        self.plot.draw_lists(adams_bashforth_moulton.ABM(
            0.01, int(self.slider_coef.get()), self.slider_chain_lenght.get(),
            self.slider_epsilon.get(), self.slider_time.get()
            ).execute())
   def button_discard_param_clicked(self):
        self.slider_epsilon.set(2 * self.eps)
        self.slider_chain_lenght.set(100)
        self.slider_coef.set(200)
        self.check_sliders()
   def check sliders(self):
        # print("hi")
        if (self.slider_chain_lenght.get() <= self.slider_epsilon.get()):</pre>
            self.label_err_msg.config(text = "\n\nStatus: ERROR!\nTop Temp <= Env</pre>
Temp")
            return False
        else:
            self.label_err_msg.config(text = "\n\nStatus: DONE!")
            return True
   def del (self):
        # os.remove('tmp.txt')
        Pass
Файл adams_bashforth_moulton.py:
import numpy as np
import matplotlib.pyplot as plt
import my_func as mf
```

```
class ABM:
    def __init__(self, _h = 0.01, _coef = 0.1, _chain_len = 1, _eps = 25, time_ =
3):
        self.h = _h
        self.coef = _coef
        self.chain_len = _chain_len
        self.eps = eps
        self.x = np.array([0.0])
        self.time = time_
        self.f = open('tmp.txt', 'w')
    def __del__(self):
        self.f.close()
        pass
    def RungeKutta4thOrder(self, x):
        appr = int((self.time - 0)/self.h)
        x = 0
        y = self.coef * self.chain_len / (1 + self.coef) + 2 * self.eps/1000
        xsol = np.empty((0))
        xsol = np.append(xsol, x)
        y_res = np.empty((0))
        y_res = np.append(y_res, y)
        for i in range(appr):
            yp2 = x + mf.myFunc(x, self.coef, self.chain_len)*(self.h/2)
            yp3 = x + mf.myFunc(yp2, self.coef, self.chain_len)*(self.h/2)
            yp4 = x + mf.myFunc(yp3, self.coef, self.chain_len)*self.h
            y = y + (self.h/6)*(mf.myFunc(x, self.coef, self.chain_len) +
2*mf.myFunc(yp2, self.coef, self.chain_len) + 2*mf.myFunc(yp3, self.coef,
self.chain_len) + mf.myFunc(yp4, self.coef, self.chain_len))
```

```
if (y > 1):
            y = 1
       x = x + self.h
        xsol = np.append(xsol, x)
        y_res = np.append(y_res, y)
    return [xsol, y_res]
def ABM4thOrder(self):
    dx = int((self.time - 0) / self.h)
   xrk = [self.x[0] + k * self.h for k in range(dx + 1)]
    [xx, yy] = self.RungeKutta4thOrder((xrk[0], xrk[3]))
    print (xx)
    print (yy)
    self.x = xx
   xsol = np.empty(0)
   # xsol = np.append(xsol, self.x)
   y = yy
   yn = yy[0]
   y_res = np.empty(0)
   # y_res = np.append(y_res, y)
   for i in range(3, dx):
        y0prime = mf.myFunc(y[i], self.coef, self.chain_len)
        y1prime = mf.myFunc(y[i - 1], self.coef, self.chain_len)
        y2prime = mf.myFunc(y[i - 2], self.coef, self.chain_len)
```

```
y3prime = mf.myFunc(y[i - 3], self.coef, self.chain_len)
            ypredictor = y[i] + (self.h/24)*(55*y0prime - 59*y1prime + 37*y2prime
- 9*y3prime)
            ypp = mf.myFunc(ypredictor, self.coef, self.chain_len)
            yn = y[i] + (self.h/24)*(9*ypp + 19*y0prime - 5*y1prime + y2prime)
            if (yn > 1):
                yn = 1
            # print (yn)
            xs = xx[i] + self.h
            xsol = np.append(xsol, xs)
            self.x = xsol
            y_res = np.append(y_res, yn)
        return [xsol, y_res]
   def execute(self):
        [ts, ys] = self.ABM4thOrder()
        print(len(ts))
       for index in ts:
            self.f.write(str(index) + ' ')
        self.f.write('\n')
       for index in ys:
            self.f.write(str(index) + ' ')
        self.f.write('\n')
       t = np.arange(0, self.time, self.h)
       for index in t:
            self.f.write(str(index) + ' ')
```

```
self.f.write('\n')
        for i in t:
            T = 2 * self.eps/2000 * np.exp(np.sqrt((1 + self.coef) * 9.8 / 
self.chain_len) * i) + 2 * self.eps/2000 * np.exp(-np.sqrt((1 + self.coef) * 9.8))  
/ self.chain_len) * i) + self.coef * self.chain_len / (1 + self.coef)
            if (T > 1):
                T = 1
            self.f.write(str(T) + ' ')
        self.f.write('\n')
        return 0
Файл backward_euler.py:
import matplotlib.pyplot as plt
import numpy as np
import my_func as mf
class BackwardEuler:
    def __init__(self, _h = 0.01, _coef = 0.1, _chain_len = 1, _eps = 25, time_ =
3):
        self.h = _h
        self.coef = _coef
        self.chain_len = _chain_len
        self.eps = _eps
        self.time = time
        self.f = open('tmp.txt', 'w')
    def __del__(self):
        self.f.close()
        pass
    def main_BE(self):
        appr = int((self.time - 0)/self.h)
```

```
j = 0
    x = 0
   y = \{\}
    y[j] = self.coef * self.chain_len / (1 + self.coef) + 2 * self.eps/1000
    self.f.write(str(x) + ' ')
    for i in range(appr):
        F_x_t = mf.myFunc(x, self.coef, self.chain_len)/(1+self.h)
        j += 1
        y[j] = y[j-1] + self.h*F_x_t
        print(y[j])
        x += self.h
        if (y[j] > 1):
            y[j] = 1
        self.f.write(str(x) + ' ')
    self.f.write('\n')
    return y
def execute(self):
    ys = self.main_BE()
    for index in ys:
        self.f.write(str(ys[index]) + ' ')
    self.f.write('\n')
    t = np.arange(0, self.time, self.coef)
    for index in t:
        self.f.write(str(index) + ' ')
```

```
self.f.write('\n')
        for i in t:
            T = 2 * self.eps/2000 * np.exp(np.sqrt((1 + self.coef) * 9.8 / 
self.chain_len) * i) + 2 * self.eps/2000 * np.exp(-np.sqrt((1 + self.coef) * 9.8
/ self.chain_len) * i) + self.coef * self.chain_len / (1 + self.coef)
            if (T > 1):
                T = 1
            self.f.write(str(T) + ' ')
        self.f.write('\n')
        return 0
Файл forward_euler.py:
import matplotlib.pyplot as plt
import numpy as np
import my_func as mf
class ForwardEuler:
    def __init__(self, _h = 0.01, _coef = 0.1, _chain_len = 1, _eps = 25, time_ =
3):
        self.h = _h
        self.coef = _coef
        self.chain_len = _chain_len
        self.eps = _eps
        self.time = time_
        self.f = open('tmp.txt', 'w')
    def __del__(self):
        self.f.close()
        pass
    def main_FE(self):
        appr = int((self.time - 0)/self.h)
```

```
j = 0
    x = 0
   y = \{\}
    y[j] = self.coef * self.chain_len / (1 + self.coef) + 2 * self.eps/1000
    self.f.write(str(x) + ' ')
    for i in range(appr):
        F_x_t = mf.myFunc(x, self.coef, self.chain_len)
        j += 1
        y[j] = y[j-1] + self.h*F_x_t
        print (y[j])
        x += self.h
        if (y[j] > 1):
            y[j] = 1
        self.f.write(str(x) + ' ')
    self.f.write('\n')
    return y
def execute(self):
    ys = self.main_FE()
    for index in ys:
        self.f.write(str(ys[index]) + ' ')
    self.f.write('\n')
    t = np.arange(0, self.time, self.coef)
    for index in t:
        self.f.write(str(index) + ' ')
```

```
self.f.write('\n')
        for i in t:
            T = 2 * self.eps/2000 * np.exp(np.sqrt((1 + self.coef) * 9.8 / 
self.chain_len) * i) + 2 * self.eps/2000 * np.exp(-np.sqrt((1 + self.coef) * 9.8
/ self.chain_len) * i) + self.coef * self.chain_len / (1 + self.coef)
            if (T > 1):
                T = 1
            self.f.write(str(T) + ' ')
        self.f.write('\n')
        return 0
      Файл heun.py:
import matplotlib.pyplot as plt
import numpy as np
import my_func as mf
class Heun:
    def __init__(self, _h = 0.01, _coef = 0.1, _chain_len = 1, _eps = 25, time_ =
3):
        self.h = _h
        self.coef = _coef
        self.chain_len = _chain_len
        self.eps = _eps
        self.time = time_
        self.f = open('tmp.txt', 'w')
    def __del__(self):
        self.f.close()
        pass
    def main_H(self):
        appr = int((self.time - 0)/self.h)
```

```
j = 0
       x = 0
       y = \{\}
       y[j] = self.coef * self.chain_len / (1 + self.coef) + 2 * self.eps/1000
        self.f.write(str(x) + ' ')
       for i in range(appr):
            j += 1
            y[j] = y[j-1] + (self.h/2)*mf.myFunc(x, self.coef, self.chain_len) +
(self.h/2)*mf.myFunc(x + mf.myFunc(x, self.coef, self.chain_len) * self.h,
self.coef, self.chain_len)
            print(y[j])
            if (y[j] > 1):
                y[j] = 1
            x += self.h
            self.f.write(str(x) + ' ')
        self.f.write('\n')
        return y
   def execute(self):
       ys = self.main_H()
       for index in ys:
            self.f.write(str(ys[index]) + ' ')
        self.f.write('\n')
       t = np.arange(0, self.time, self.h)
       for index in t:
            self.f.write(str(index) + ' ')
        self.f.write('\n')
```

```
for i in t:
            T = 2 * self.eps/2000 * np.exp(np.sqrt((1 + self.coef) * 9.8 / 
self.chain_len) * i) + 2 * self.eps/2000 * np.exp(-np.sqrt((1 + self.coef) * 9.8
/ self.chain_len) * i) + self.coef * self.chain_len / (1 + self.coef)
            if (T > 1):
                T = 1
            self.f.write(str(T) + ' ')
        self.f.write('\n')
        return 0
      Файл runge_kutta.py:
      import matplotlib.pyplot as plt
      import numpy as np
      import my_func as mf
      class Runge_Kutt:
          def __init__(self, _h = 0.01, _coef = 0.1, _chain_len = 1, _eps = 25,
time_= 3):
              self.h = _h
              self.coef = _coef
              self.chain_len = _chain_len
              self.eps = _eps
              self.time = time_
              self.f = open('tmp.txt', 'w')
          def __del__(self):
              self.f.close()
              pass
          def RKF45(self):
              appr = int((self.time - 0)/self.h)
              j = 0
```

```
x = 0
              y = \{\}
              y[j] = self.coef * 1 / (1 + self.coef) + 2 * self.eps/1000
              self.f.write(str(x) + ' ')
              for i in range(appr):
                  yp2 = x + mf.myFunc(x, self.coef, self.chain_len)*(self.h/5)
                  yp3 = x + mf.myFunc(x, self.coef,
self.chain len)*(3*self.h/40) + mf.myFunc(yp2, self.coef,
self.chain_len)*(9*self.h/40)
                  yp4 = x + mf.myFunc(x, self.coef,
self.chain_len)*(3*self.h/10) - mf.myFunc(yp2, self.coef,
self.chain_len)*(9*self.h/10) + mf.myFunc(yp3, self.coef,
self.chain_len)*(6*self.h/5)
                  yp5 = x - mf.myFunc(x, self.coef,
self.chain_len)*(11*self.h/54) + mf.myFunc(yp2, self.coef,
self.chain_len)*(5*self.h/2) - mf.myFunc(yp3, self.coef,
self.chain_len)*(70*self.h/27) + mf.myFunc(yp4, self.coef,
self.chain len)*(35*self.h/27)
                  yp6 = x + mf.myFunc(x, self.coef,
self.chain_len)*(1631*self.h/55296) + mf.myFunc(yp2, self.coef,
self.chain len)*(175*self.h/512) + mf.myFunc(yp3, self.coef,
self.chain_len)*(575*self.h/13824) + mf.myFunc(yp4, self.coef,
self.chain_len)*(44275*self.h/110592) + mf.myFunc(yp5, self.coef,
self.chain_len)*(253*self.h/4096)
                  j += 1
                  y[j] = y[j-1] + self.h*(37*mf.myFunc(x, self.coef,
self.chain_len)/378 + 22 * self.eps*mf.myFunc(yp3, self.coef, self.chain_len)/621
+ 125*mf.myFunc(yp4, self.coef, self.chain_len)/594 + 512*mf.myFunc(yp6,
self.coef, self.chain len)/1771)
                  x += self.h
                  if (y[j] > 1):
                      y[j] = 1
                  self.f.write(str(x) + ' ')
              self.f.write('\n')
              return y
```

```
def execute(self):
              ys = self.RKF45()
              for index in ys:
                  self.f.write(str(ys[index]) + ' ')
              self.f.write('\n')
              t = np.arange(0, self.time, self.h)
              for index in t:
                  self.f.write(str(index) + ' ')
              self.f.write('\n')
              for i in t:
                  T = 2 * self.eps/2000 * np.exp(np.sqrt((1 + self.coef) * 9.8 / 
self.chain_len) * i) + 2 * self.eps/2000 * np.exp(-np.sqrt((1 + self.coef) * 9.8))
/ self.chain_len) * i) + self.coef * self.chain_len / (1 + self.coef)
                  if (T > 1):
                      T = 1
                  self.f.write(str(T) + ' ')
              self.f.write('\n')
              return 0
      Файл my_func.py:
      import numpy as np
      def myFunc(x, mu, 1):
          dy = 4.9 * x**2 * (mu + 1) / 1 - 9.8 * mu * x
          # dy = 5.self.time9 * (x)**2 - 0.98 * (x)
          return dy
```