```
In [2]:
```

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
df=pd.read_csv(r"C:\Users\P. VIJAY KUMAR\Downloads\fiat500_VehicleSelection
print(df)
```

	ID	model	engine_power	age_in_days	km	previous_owners	
0	1	lounge	51	882	25000	1	\
1	2	рор	51	1186	32500	1	
2	3	sport	74	4658	142228	1	
3	4	lounge	51	2739	160000	1	
4	5	pop	73	3074	106880	1	
			• • •			• • •	
1533	1534	sport	51	3712	115280	1	
1534	1535	lounge	74	3835	112000	1	
1535	1536	pop	51	2223	60457	1	
1 536	1537	lounge	51	2557	80750	1	
1537	1538	рор	51	1766	54276	1	
		1	len muico				

	lat	lon	price
0	44.907242	8.611560	8900
1	45.666359	12.241890	8800
2	45.503300	11.417840	4200
3	40.633171	17.634609	6000
4	41.903221	12.495650	5700
1533	45.069679	7.704920	5200
1534	45.845692	8.666870	4600
1 535	45.481541	9.413480	7500
1536	45.000702	7.682270	5990
1537	40.323410	17.568270	7900

[1538 rows x 9 columns]

```
In [3]:
           1
              #display top 10 rows
              print(df.head(10))
           2
            ID
                  model
                                                            km
                         engine_power
                                         age_in_days
                                                                previous_owners
                                                                                         lat
             1
                                                                                   44.907242
         0
                 lounge
                                    51
                                                  882
                                                        25000
                                                                               1
         \
         1
             2
                                                        32500
                    pop
                                    51
                                                 1186
                                                                               1
                                                                                  45.666359
         2
             3
                  sport
                                    74
                                                 4658
                                                       142228
                                                                               1
                                                                                  45.503300
         3
             4
                 lounge
                                    51
                                                 2739
                                                       160000
                                                                               1
                                                                                   40.633171
         4
             5
                                    73
                                                                                  41.903221
                                                 3074
                                                       106880
                                                                               1
                    pop
         5
             6
                                    74
                                                 3623
                                                        70225
                                                                               1
                                                                                   45.000702
                    pop
         6
             7
                 lounge
                                    51
                                                  731
                                                        11600
                                                                               1
                                                                                   44.907242
         7
             8
                 lounge
                                    51
                                                 1521
                                                        49076
                                                                               1
                                                                                  41.903221
         8
             9
                  sport
                                    73
                                                 4049
                                                        76000
                                                                                   45.548000
         9
            10
                  sport
                                                        89000
                                                                               1
                                                                                  45.438301
                                    51
                                                 3653
                   lon
                        price
         0
             8.611560
                         8900
            12.241890
         1
                         8800
         2
            11.417840
                         4200
         3
            17.634609
                         6000
         4
            12.495650
                         5700
         5
             7.682270
                         7900
         6
             8.611560
                        10750
         7
            12.495650
                         9190
            11.549470
                         5600
         8
            10.991700
                         6000
```

In [4]:

df.describe()

Out[4]:

	ID	engine_power	age_in_days	km	previous_owners	lat
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612
4						>

```
In [5]:
            #check for Null Values
            print(df.isna().any())
        ID
                            False
        model
                            False
        engine_power
                            False
        age_in_days
                            False
        km
                            False
        previous_owners
                            False
        lat
                            False
        lon
                            False
        price
                            False
        dtype: bool
In [6]:
             df.columns
Out[6]: Index(['ID', 'model', 'engine_power', 'age_in_days', 'km', 'previous_owners',
                'lat', 'lon', 'price'],
              dtype='object')
```

In [7]: 1 sns.pairplot(df)

Out[7]: <seaborn.axisgrid.PairGrid at 0x16567fb6e90>

In [8]: 1 sns.displot(["Price"])

Out[8]: <seaborn.axisgrid.FacetGrid at 0x1650eb099c0>

In [10]: 1 sns.displot(df["price"])

Out[10]: <seaborn.axisgrid.FacetGrid at 0x16512244970>

In [12]: 1 sns.displot(df["engine_power"])

Out[12]: <seaborn.axisgrid.FacetGrid at 0x1650e96e3b0>

Out[14]: <Axes: >


```
Out[15]: <Axes: >
```



```
X=fiatdf[['ID', 'engine_power', 'age_in_days', 'km', 'previous_owners',
In [16]:
           1
               'lat', 'lon']]
           2
             y=df['price']
In [17]:
             from sklearn.model_selection import train_test_split
             X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_s
           2
           3 from sklearn.linear model import LinearRegression
             regr=LinearRegression()
             regr.fit(X_train,y_train)
           5
           6
             print(regr.intercept_)
           7
```

8971.195683500027

Out[18]:

	coefficient
ID	-0.046704
engine_power	11.646408
age_in_days	-0.898018
km	-0.017232
previous_owners	26.400886
lat	32.189709
lon	0.161073

Out[19]: <matplotlib.collections.PathCollection at 0x1651268b3a0>

In [20]: 1 sns.displot((y_test,predictions),bins=50)#without semicolon

Out[20]: <seaborn.axisgrid.FacetGrid at 0x165126a0e80>


```
In [21]: 1 sns.displot((y_test,predictions),bins=50);#with semicolon
```


MAE: 593.0876179519989 MSE: 551442.6799691883 MAE: 742.5918663500081

0.8597136704308846

```
In [24]: 1 df.fillna(method='ffill',inplace=True)
```

```
Linear_Regression_Vehicle_Selection_dataset - Jupyter Notebook
In [25]:
              x=np.array(df['age_in_days']).reshape(-1,1)
              y=np.array(df['km']).reshape(-1,1)
              df.dropna(inplace=True)
In [26]:
              X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
              regr.fit(X_train,y_train)
              regr.fit(X_train,y_train)
Out[26]:
          ▼ LinearRegression
          LinearRegression()
In [27]:
              y_pred=regr.predict(X_test)
           2 plt.scatter(X_test,y_test,color='y')
           3 plt.plot(X_test,y_pred,color='b')
              plt.show()
           200000
           150000
           100000
            50000
```

```
In [ ]: 1
```

2000

3000

4000

1000