MEDIDAS REPETIDAS NO TEMPO ANÁLISE USANDO O PROC MIXED

Euclides Braga MALHEIROS*

O PROC MIXED é um procedimento utilizado para modelos mistos que é uma generalização do modelo linear geral, separando no modelo os efeitos fixos dos aleatórios e é escrito como: $y=X\beta+Z\nu+\varepsilon$ onde β é o vetor dos parâmetros associados aos efeitos fixos, ν aos efeitos aleatórios, e ε vetor de erros aleatórios, sendo ν e ε não correlacionados, com esperanças nulas e matrizes de covariâncias G e R, respectivamente.

O PROC MIXED permite informar a estrutura da matriz (G), através do comando RANDOM, e a dos erros (R)), através do comando REPEATED.

Para este tipo de análise os dados devem estar na forma univariada.

A sintaxe do PROC MIXED é:

```
PROC MIXED <opções1>;
CLASS <var. de classif.>;
MODEL <var. dep.>=<efeitos fixos> / <opções2>;
RANDOM <efeitos aleatórios em G> / <opções3>;
REPEATED <efeito repetido> / <opções4>;
MAKE "<Tabela>" OUT=<SDS>;
RUN;
```

Algumas das *<opções 1>* são:

- **DATA=<SDS>** especifica o SAS-DATA-SET a ser usado.
- METHOD=<ML|REML|MIVQUE0> especifica o método a ser usado para estimar os componentes da variância.

Algumas das < opções 2> são:

• HTYPE =<n> - especifica o tipo da soma de quadrados.

O comando RANDOM especifica os efeitos aleatórios do modelo Uma das possíveis *<opções3* > é:

• TYPE =<CS|AR(1)|SIMPLE|UN|....> - especifica a estrutura da matriz G (dos efeitos aleatórios), dentro de uma lista de opções.

O comando REPEATED especifica a estrutura de erros. Não tem nada a ver com o REPEATED do PROC GLM.

Uma das possíveis $\langle opç\tilde{o}es4 \rangle$ é:

■ **TYPE =<CS|AR(1)|SIMPLE|UN|....>** - especifica a estrutura da matriz E (dos erros), dentro de uma lista de opções.

^{*} Departamento de Ciências Exatas – FCAV/UNESP, Campus de Jaboticabal. 14870-000 Jaboticabal SP

- SUB=<efeito> especifica o efeito que identifica a unidade experimental. É assumida completa independência entre tais unidades, de tal forma que este comando produz uma estrutura bloco-diagonal em R com blocos idênticos.
- **R** solicita a impressão da primeira matriz bloco-diagonal de R.
- **RCORR** solicita a impressão da matriz R.

O comando MAKE é usado para criar arquivos a partir de Tabelas do OUTPUT. Algumas das *Tabelas* do comando MAKE são:

- FITTINGS Tabela das estatísticas usadas na seleção do modelo.
- MLIREMLIMIVQUE0 Tabela das estimativas dos componentes da variância.
- TESTS Testes de hipóteses associados aos efeitos fixos.
- Etc.

Os comandos **CONTRAST**, **ESTIMATE** e **LSMEANS** podem ser usadas da mesma forma do PROC GLM.

Como se viu até aqui a análise de medidas repetidas no tempo requer especial atenção na estrutura da matriz de variâncias e covariâncias.

A análise de dados com medidas repetidas pelo PROC MIXED é feita em dois passos, ou sejam:

- 1) Avaliar a estrutura da matriz de covariâncias.
- 2) Analisar a tendência dos tratamentos ao longo dos tempos.

Passo 1: Avaliação da estrutura da matriz de covariâncias para os dados do Exemplo 2.

Várias estruturas disponíveis no SAS podem ser avaliadas. Como a apresentação aqui tem um objetivo didático, apenas 3 estruturas serão estudadas, ou sejam: Composta simétrica – CS; Auto regressiva de 1ª ordem – AR(1), Desestruturada – UN.

Ou sejam:

Composta Simétrica - CS			CS	Auto-Regr. 1a ordem –AR(1) Desestruturada – UN
$\int \sigma^2 + \sigma_1$	$\sigma_{_{\! 1}}$	$\sigma_{_{\! 1}}$	$\sigma_{_{\! 1}}$	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \sigma_{_{\! 1}}$	$\sigma^2 + \sigma_1$	$\sigma_{_{\! 1}}$	$\sigma_{_{\! 1}}$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
$\sigma_{_{\! 1}}$	$\sigma_{_{\! 1}}$	$\sigma^2 + \sigma_1$	$\sigma_{_{\! 1}}$	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\bigcup \sigma_{_{\! 1}}$	$\sigma_{_{ m l}}$	$\sigma_{_{\! 1}}$	$\sigma^2 + \sigma_1$	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$

É interessante observar que o número de parâmetros a serem estimados depende da estrutura.

Para t tempos, na CS o número de parâmetros é 2, na AR(1) é 2 e na UN é t(t+1)/2.

Exercício 7. Verificar, usando o PROC MIXED, quais dessas três estruturas melhor se ajusta aos dados do Exemplo 2.

Programa para: Ler os dados na forma multivariada, criar um univariado, representar graficamente e testar a esfericidade da matriz Sigma (Matriz de variâncias e covariâncias entre os tempos).

```
/* ANÁLISE DOS DADOS DA TABELA 4*/
OPTIONS LS=78 PS=64;
/* CRIACAO DOS SDS MULTI E UNIVARIADOS */
DATA MULTI;
INFILE "A:\MRT2M.TXT";
INPUT GN BL T1-T7;
PROC PRINT;
RUN:
DATA UNI (KEEP=GN BL TP Y);
SET MULTI;
TP=88;
         Y=T1; OUTPUT UNI;
        Y=T2; OUTPUT UNI;
TP=104;
TP=120;
         Y=T3; OUTPUT UNI;
TP=137.5; Y=T4; OUTPUT UNI;
TP=153.5; Y=T5; OUTPUT UNI;
TP=181.5; Y=T6; OUTPUT UNI;
TP=209.5; Y=T7; OUTPUT UNI;
RUN;
PROC PRINT DATA=MULTI;
PROC PRINT DATA=UNI;
RUN;
/* CRIANDO UM SDS UNI E MULTI - PERMANENTES NO DRIVE A*/
LIBNAME PASTA "A:\";
DATA PASTA.UNI; SET UNI;
DATA PASTA.MULTI; SET MULTI;
RUN;
/* REPRESENTAÇÃO GRÁFICA */
PROC SORT DATA=UNI; BY GN TP;
PROC MEANS NOPRINT;
OUTPUT OUT=AG MEAN=YG;
VAR Y;
BY GN TP;
RUN;
PROC GPLOT DATA=AG;
PLOT YG*TP=GN/GRID;
SYMBOL1 COLOR=RED INTERPOL=JOIN VALUE=DOT HEIGHT=0.5;
SYMBOL2 COLOR=BLUE INTERPOL=JOIN VALUE=DOT HEIGHT=0.5;
SYMBOL3 COLOR=GREEN INTERPOL=JOIN VALUE=DOT HEIGHT=0.5;
SYMBOL4 COLOR=BLACK INTERPOL=JOIN VALUE=DOT HEIGHT=0.5;
SYMBOL5 COLOR=ORANGE INTERPOL=JOIN VALUE=DOT HEIGHT=0.5;
TITLE HEIGHT=1.4 C=BLUE "PERFIL DOS GENOTIPOS AO LONGO DO TEMPO";
RUN:
/* Análise usando o comando REPEATED do PROC GLM */
PROC GLM DATA=MULTI;
CLASS BL GN;
MODEL T1-T7=BL GN/NOUNI;
REPEATED TP 6 POLYNOMIAL/PRINTE SUMMARY;
RUN:
/* Análise usando o PROC MIXED */
PROC MIXED DATA=UNI;
CLASS GN BL TP;
MODEL Y=BL GN TP GN*TP;
REPEATED TP/TYPE=AR(1) SUB=GN*BL R RCORR;
RUN;
```

Programa usando o PROC MIXED:

```
/* Análise usando o PROC MIXED */
PROC MIXED DATA=UNI;
CLASS GN BL TP;
MODEL Y=BL GN TP GN*TP;
REPEATED TP/TYPE=UN SUB=GN*BL R RCORR;
RUN;
```

Dentre as diversas informações do output, a de interesse para a seleção da estrutura é a tabela dos critérios:

a) Para CS

```
Fit Statistics
-2 Res Log Likelihood 322.6
AIC (smaller is better) 326.6
AICC (smaller is better) 326.7
BIC (smaller is better) 328.6

Null Model Likelihood Ratio Test
DF Chi-Square Pr > ChiSq
1 0.43 0.5132
```

b) Para AR(1)

```
-2 Res Log Likelihood 315.1

AIC (smaller is better) 319.1

AICC (smaller is better) 319.3

BIC (smaller is better) 321.1

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

1 7.87 0.0050
```

c) Para UN

```
-2 Res Log Likelihood 208.2
AIC (smaller is better) 264.2
AICC (smaller is better) 286.5
BIC (smaller is better) 292.1

Null Model Likelihood Ratio Test
DF Chi-Square Pr > ChiSq
27 114.80 <.0001
```

Nessa parte do output são observadas várias estatísticas usadas para a seleção da melhor estrutura da matriz de covariâncias, ou sejam:

RLL - Res Log Likelihood - RLL,

AIC - Akaike's Information Criterion e

BIC - Schwarz's Bayesian Criterion.

Os critérios AIC e BIC são ajustes do RLL e são os mais usados na literatura.

Quanto menor o valor dessas estatísticas, melhor a estrutura.

Apresenta também: Null Model Likelihood Ratio Test que é uma estatística Qui-quadado com respectivo graus de liberdade e probabilidade, para testar se a estrutura $\mathbf{I}\sigma^2$ (Usada no PROC GLM) é melhor que a especificada no PROC MIXED.

Nos exemplos, esses resultados podem ser vistos na seguinte Tabela:

Tabela – 5 Estatísticas utilizadas para a escolha da melhor estrutura para a matriz de variâncias e covariâncias dos tempos.

Estrutura	χ^2	GL	p-value	RLL	AIC	BIC
CS	0,43	1	0,5132	322,6	326,7	328,6
AR(1)	7,87	1	0,005	315.1	319.1	321.1
UN	114,80	27	<0,0001	208.2	264.2	292.1

A partir desta Tabela podemos concluir que:

Ao nível de 5% de probabilidade, a estrutura $\mathbf{I}\sigma^2$, usada no PROC GLM, é mais apropriada que a CS, o que não acontece com as estruturas AR(1) e UN.

Dentre as três estruturas avaliadas, a desestruturada (UN) é a mais apropriada, independente do critério utilizado.

A tabela dos critérios é especificada pelo comando MAKE como FITTING.

Como o programa precisa ser rodado com várias estruturas, e o que interessa são apenas as estatísticas utilizadas na seleção da estrutura, o programa deve salvar essas tabelas separadamente (comando MAKE):

Programa:

```
/* Análise usando o PROC MIXED */
LIBNAME PASTA "A:\";
PROC MIXED DATA=PASTA.UNI;
CLASS GN BL TP;
MODEL Y=BL GN TP GN*TP;
REPEATED TP/TYPE=CS SUB=GN*BL R RCORR;
MAKE "FITTING" OUT=SDS_CS;
RUN;
PROC PRINT DATA=SDS_CS;
RUN;
```

Arquivo SDS_CS:

Ob:	s Descr	Value
1	-2 Res Log Likelihood	322.6
2	AIC (smaller is better)	326.6
3	AICC (smaller is better)	326.7
4	BIC (smaller is better)	328.6

Observe que o nome da coluna Value deve ser renomeado, para que seja criada uma única tabela com esses valores. Para isso, trocar a linha MAKE por:

```
MAKE "FITTING" OUT=SDS CS(RENAME=(VALUE=VAL CS));
```

Uma sugestão de programa completo usando Macro Subprograma seria:

```
/* Análise para escolha da estrutura - usando o PROC MIXED */
%MACRO E_SIGMA(SDSE, EST, SDSS, VAL);
PROC MIXED DATA=&SDSE;
CLASS GN BL TP;
MODEL Y=BL GN TP GN*TP;
REPEATED TP/TYPE=&EST SUB=GN*BL R RCORR;
MAKE "FITTING" OUT=&SDSS(RENAME=(VALUE=&VAL));
%MEND E_SIGMA;
LIBNAME SANTOS "A:\";
DATA A; SET SANTOS.UNI;
PROC PRINT DATA=A; RUN;
% E_SIGMA (A, CS, SDS_CS, V_CS);
% E_SIGMA (A, AR (1), SDS_AR, V_AR);
% E_SIGMA (A, UN, SDS_UN, V_UN);
RUN;
PROC PRINT DATA=SDS_CS;
PROC PRINT DATA=SDS_AR;
PROC PRINT DATA=SDS_UN;
RUN;
DATA RESULT; MERGE SDS_CS SDS_AR SDS_UN;
PROC PRINT DATA=RESULT;
RUN;
```

Resultados:

	Descr	v_cs	V_AR	V_UN
1	-2 Res Log Likelihood	322.6	315.1	208.2
2	AIC (smaller is better)	326.6	319.1	264.2
3	AICC (smaller is better)	326.7	319.3	286.5
4	BIC (smaller is better)	328.6	321.1	292.1

Analisando os resultados conclui-se que a estrutura mais adequada, entre as estudadas, é a desestruturada (UN).

Esse programa pode ser usado testando todas as estruturas disponíveis no SAS. Algumas das opções são:

uas opções sao.						
Estrutura	Descrição	Parâmetros				
ANTE(1)	Ante-Dependence	2t-1				
AR (1)	Autoregressive	2				
ARH(1)	Heterogeneous Autoregressive	t+1				
ARMA(1,1)	ARMA(1,1)	3				
CS	Compound Symmetric	2				
CSH	Heterogeneous Compound Symmetric	t+1				
FA(q)	Factor Analytic	q/2(2t-q+1)+t				
FA0(q)	No Factor Analytic	q/2(2t-q+1)				
HF	Huynh-Feldt	t+1				
LIN(q)	General Linear	q				
TOEP	Toeplitz	t				
TOEP(q)	Banded Toeplitz	q				
ТОЕРН	Heterogeneous Toeplitz	2t-1				
TOEPH(q)	Banded Heterogeneous Toeplitz	t+q-1				
UN	Unstructured	t(t+1)/2				
UNAR(q)	Banded	q/2(2t-q+1)				
UNR	Unstructured Corrs	t(t+1)/2				
VC	Variance Components	q				

Auto-Regr. 1ª ordem –AR(1)	Auto-Regr. HarmARH(1)
$\begin{bmatrix} 1 & \rho & \rho^2 & \rho^3 \end{bmatrix}$	$\left[egin{array}{cccc} \sigma_{_{\! 1}}^2 & \sigma_{_{\! 1}}\sigma_{_{\! 2}} ho & \sigma_{_{\! 1}}\sigma_{_{\! 3}} ho^2 & \sigma_{_{\! 1}}\sigma_{_{\! 4}} ho^3 \end{array} ight]$
$\sigma^2egin{bmatrix} ho & 1 & ho & ho^2 \ ho^2 & ho & 1 & ho \ ho^3 & ho^2 & ho & 1 \end{bmatrix}$	$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$
ρ^2 ρ 1 ρ	$\left[egin{array}{cccc} \sigma_3\sigma_1 ho^2 & \sigma_3\sigma_2 ho & \sigma_3^2 & \sigma_3\sigma_4 ho \end{array} ight]$
$\left[\rho^3 \rho^2 \rho 1\right]$	$\left[egin{array}{cccc} \sigma_4 \sigma_1 ho^3 & \sigma_4 \sigma_2 ho^2 & \sigma_4 \sigma_3 ho & \sigma_4^2 \end{array} ight]$
Composta Simétrica - CS	Composta Sim. Harm – CSH
$\left[\sigma^2 + \sigma_1 \sigma_1 \sigma_1 \sigma_1 \right]$	$\left[egin{array}{cccc} \sigma_{_{\! 1}}^2 & \sigma_{_{\! 1}}\sigma_{_{\! 2}} ho & \sigma_{_{\! 1}}\sigma_{_{\! 3}} ho^2 & \sigma_{_{\! 1}}\sigma_{_{\! 4}} ho^3 \end{array} ight]$
$\sigma_{l} = \sigma^{2} + \sigma_{l} = \sigma_{l} = \sigma_{l}$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
$\sigma_{\rm l}$ $\sigma_{\rm l}$ $\sigma_{\rm l}$ $\sigma_{\rm l}$	$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{bmatrix} \sigma_{\rm l} & \sigma_{\rm l} & \sigma_{\rm l} & \sigma^2 + \sigma_{\rm l} \end{bmatrix}$	$\left[egin{array}{cccc} \sigma_4 \sigma_1 ho^3 & \sigma_4 \sigma_2 ho^2 & \sigma_4 \sigma_3 ho & \sigma_4^2 \end{array} ight]$
TOEP	ТОЕРН
$\begin{bmatrix} \sigma^2 & \sigma_1 & \sigma_2 & \sigma_3 \end{bmatrix}$	$\left[egin{array}{cccc} \sigma_{1}^{2} & \sigma_{1}\sigma_{2} ho_{1} & \sigma_{1}\sigma_{3} ho_{2} & \sigma_{1}\sigma_{4} ho_{3} \end{array} ight]$
$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left \begin{array}{cccc} \sigma_2 \sigma_1 ho_1 & \sigma_2^2 & \sigma_2 \sigma_3 ho_1 & \sigma_2 \sigma_4 ho_3 \end{array} \right $
$\left \begin{array}{cccc} \sigma_{\!\scriptscriptstyle 2} & \sigma_{\!\scriptscriptstyle 1} & \sigma^2 & \sigma_{\!\scriptscriptstyle 1} \end{array} \right $	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{bmatrix} \sigma_3 & \sigma_2 & \sigma_1 & \sigma^2 \end{bmatrix}$	$\begin{bmatrix} \sigma_4 \sigma_1 ho_3 & \sigma_4 \sigma_2 ho_2 & \sigma_4 \sigma_3 ho_1 & \sigma_4^2 \end{bmatrix}$
Desestruturada – UN	Desestruturada – UN(1)
$egin{bmatrix} oldsymbol{\sigma}_{1}^2 & oldsymbol{\sigma}_{12} & oldsymbol{\sigma}_{13} & oldsymbol{\sigma}_{14} \end{bmatrix}$	$\begin{bmatrix} \sigma_1^2 & 0 & 0 & 0 \end{bmatrix}$
$oxed{\sigma_{21} \sigma_{2}^2 \sigma_{23} \sigma_{24}}$	$\begin{bmatrix} 0 & \sigma_2^2 & 0 & 0 \end{bmatrix}$
$oxed{\sigma_{31} \sigma_{32} \sigma_{3}^2 \sigma_{34}}$	$\begin{bmatrix} 0 & 0 & \sigma_3^2 & 0 \end{bmatrix}$
$oxed{\sigma_{41} \sigma_{42} \sigma_{43} \sigma_4^2}$	$\begin{bmatrix} 0 & 0 & 0 & \sigma_4^2 \end{bmatrix}$

Programa:

```
/* Análise para escolha da estrutura - usando o PROC MIXED */
%MACRO E SIGMA (SDSE, EST, SDSS, VAL);
PROC MIXED DATA=&SDSE;
CLASS GN BL TP;
MODEL Y=BL GN TP GN*TP;
REPEATED TP/TYPE=&EST SUB=GN*BL R RCORR;
MAKE "FITTING" OUT=&SDSS(RENAME=(VALUE=&VAL));
RUN;
%MEND E_SIGMA;
LIBNAME SANTOS "A:\";
DATA A; SET SANTOS.UNI;
PROC PRINT DATA=A; RUN;
% E_SIGMA (A, ANTE (1), SDS_ANTE, V_ANTE);
%E SIGMA(A, AR(1), SDS AR, V AR);
% E_SIGMA (A, ARH (1), SDS_ARH, V_ARH);
% E_SIGMA (A, ARMA (1, 1), SDS_ARMA, V_ARMA);
% E_SIGMA (A, CS, SDS_CS, V_CS);
%E_SIGMA(A,CSH,SDS_CSH,V_CSH);
%E_SIGMA(A, FA0(1), SDS_FA0, V_FA0);
% E_SIGMA(A, FA(1), SDS_FA1, V_FA1);
% E_SIGMA (A, HF, SDS_HF, V_HF);
%E_SIGMA(A, SIMPLE, SDS_SIMPLE, V_SIMPLE);
% E_SIGMA (A, TOEP, SDS_TOEP, V_TOEP);
E\_SIGMA (A, TOEPH, SDS_TOEPH, V_TOEPH);
% E_SIGMA (A, UN, SDS_UN, V_UN);
% E_SIGMA (A, UNAR, SDS_UNAR, V_UNAR);
% E_SIGMA(A, UNCS, SDS_UNCS, V_UNCS);
% E_SIGMA (A, UNR, SDS_UNR, V_UNR);
% E_SIGMA(A, VC, SDS_VC, V_VC);
RUN:
DATA RESULT;
MERGE SDS_ANTE SDS_AR SDS_ARH SDS_ARMA SDS_CS SDS_CSH SDS_FA0
      SDS_FA1 SDS_HF SDS_SIMPLE SDS_TOEP SDS_TOEPH
      SDS_UN SDS_UNAR SDS_UNCS SDS_UNR SDS_VC;
RUN;
PROC PRINT DATA=RESULT;
RUN;
```

Escolhida a estrutura incluir os comandos de interesse para as comparações múltiplas, contrastes, desdobramentos, etc.

```
/* ANÁLISE COM A ESTRUTURA ESCOLHIDA */
LIBNAME SANTOS "A:\";
DATA A; SET SANTOS.UNI;
PROC PRINT DATA=A;
RUN;
PROC MIXED DATA=A;
CLASS GN BL TP;
MODEL Y=BL GN TP GN*TP;
REPEATED TP/TYPE=UN SUB=GN*BL R RCORR;
```

```
*LSMEANS GN/PDIFF ADJUST=TUKEY;
*TESTAR HO:M TR=M CONT (CONT=TR1);
*LSMEANS GN/PDIFF=CONTROL ADJUST=DUNNETT;
*TESTAR H0:M_TR<M_CONT (CONT=TR1);
*LSMEANS GN/PDIFF=CONTROLL ADJUST=DUNNETT;
*TESTAR H0:M_TR>M_CONT (CONT=TR1);
*LSMEANS GN/PDIFF=CONTROLU ADJUST=DUNNETT;
*TESTAR H0:M_TR=M_CONT (CONT=TR2);
*LSMEANS GN/PDIFF=CONTROL('2') ADJUST=DUNNETT;
*DESDOBRAMENTO DA INTERAÇÃO;
*LSMEANS GN*TP/SLICE=TP;
*LSMEANS GN*TP/SLICE=GN;
* DESDOBRAMENTO DOS GL DE GN, POR CONTRASTES;
CONTRAST "(G1+G2)vs(G3+G4+G5)" GN 3 3 -2 -2 -2;
CONTRAST "G1 vs G2" GN 1 -1 0 0 0;
CONTRAST "D.(G1 G2 G3)" GN 0 0 2 -1 -1,
                       GN 0 0 0 1 -1;
* DESDOBRAMENTO DOS GL DE TP, POR CONTRASTES DE HELMERT;
CONTRAST "1 VS POST." TP 6 -1 -1 -1 -1 -1;
CONTRAST "2 VS POST." TP 0 5 -1 -1 -1 -1;
CONTRAST "3 VS POST." TP 0 0 4 -1 -1 -1;
CONTRAST "4 VS POST." TP 0 0 0 3 -1 -1 -1;
CONTRAST "5 VS POST." TP 0 0 0 0 2 -1 -1;
CONTRAST "6 VS POST." TP 0 0 0 0 1 -1;
RUN;
```

Exemplo 4:

Considere os dados de um experimento de degradação ruminal instalado num delineamento em quadrado latino 6x6 - 6 períodos, 6 animais e 6 tratamentos, avaliado em 10 tempos (3, 6, 12, 24, 48, 60, 72, 84, 96 e 120h). Foram avaliadas três variáveis dependentes (Y1=DEG, Y2=FDN e Y3=FDA).

Os dados encontram-se no arquivo DQL.XLX.

Exercício 8. Fazer um programa SAS para:

- a) Criar os SDS necessários.
- b) Representar graficamente o perfil dos tratamentos ao longo do tempo.
- c) Testar a esfericidade da matriz de covariâncias, considerando animal e período como efeitos aleatórios.
- d) Analisar os dados usando modelos mistos, se for o caso.

Programa:

```
/* ANÁLISE PARA ESCOLHA DA ESTRUTURA - USANDO O PROC MIXED */
OPTIONS LS=78 PS=64 PAGENO=1;
* IMPORTANDO O ARQUIVO UNI (AU) - ARQUIVO ASC;
DATA AU;
INFILE "A:\DQL.TXT" FIRSTOBS=2;
INPUT TP PR AN TR Y1-Y3;
LABEL Y1="DEG" Y2="FDN" Y3="FDA";
PROC PRINT;
RUN;
%LET Y=Y1;
DATA AU; SET AU;
KEEP TP PR AN TR &Y;
PROC PRINT;
RUN;
* CRIANDO O SDS MULTI (AM);
PROC SORT DATA=AU; BY PR AN TR;
PROC TRANSPOSE OUT=AM (RENAME= (_3=T1 _6=T2 _12=T3 _24=T4 _48=T5
     _60=T6 _72=T7 _84=T8 _96=T9 _120=T10));
BY PR AN TR;
ID TP;
RUN;
PROC PRINT DATA=AM;
RUN;
*REPRESENTAÇÃO GRÁFICA;
PROC SORT DATA=AU; BY TR TP;
PROC MEANS NOPRINT;
OUTPUT OUT=AG MEAN=YG;
VAR &Y;
BY TR TP;
RUN;
PROC GPLOT DATA=AG;
PLOT YG*TP=TR/GRID;
SYMBOL1 COLOR=RED INTERPOL=JOIN VALUE=DOT HEIGHT=0.5;
SYMBOL2 COLOR=BLUE INTERPOL=JOIN VALUE=DOT HEIGHT=0.5;
SYMBOL3 COLOR=GREEN INTERPOL=JOIN VALUE=DOT HEIGHT=0.5;
SYMBOL4 COLOR=BLACK INTERPOL=JOIN VALUE=DOT HEIGHT=0.5;
SYMBOL5 COLOR=ORANGE INTERPOL=JOIN VALUE=DOT HEIGHT=0.5;
SYMBOL6 COLOR=CYAN INTERPOL=JOIN VALUE=DOT HEIGHT=0.5;
TITLE HEIGHT=1.4 C=BLUE "PERFIL DOS TRATAMENTOS AO LONGO DO TEMPO";
* TESTE DE ESFERICIDADE DA MATRIZ SIGMA;
PROC GLM DATA=AM;
CLASS PR AN TR ;
MODEL T1-T10=PR AN TR/NOUNI;
REPEATED TP 6 (3 6 12 24 48 60 72 84 96 120) POLYNOMIAL/PRINTE SUMMARY;
RUN;
* ESCOLHA DA ESTRUTURA DE SIGMA;
%MACRO E SIGMA (SDSE, EST, SDSS, VAL);
PROC MIXED DATA=&SDSE;
CLASS PR AN TR TP;
```

```
MODEL &Y=PR AN TR TP TR*TP/HTYPE=3;
RANDOM AN PR;
REPEATED TP/TYPE=&EST SUB=TR(PR AN) R RCORR;
MAKE "FitStatistics" OUT=&SDSS(RENAME=(VALUE=&VAL));
%MEND E_SIGMA;
DATA A; SET AU;
PROC PRINT DATA=A; RUN;
*%E_SIGMA(A, ANTE(1), SDS_ANTE, V_ANTE);
E\_SIGMA(A,AR(1),SDS\_AR,V\_AR);
*%E_SIGMA(A, ARH(1), SDS_ARH, V_ARH);
\verb|*%E_SIGMA|(A,ARMA|(1,1),SDS_ARMA,V_ARMA)|;
*%E_SIGMA(A,CS,SDS_CS,V_CS);
*%E_SIGMA(A,CSH,SDS_CSH,V_CSH);
*%E_SIGMA(A,FA0(1),SDS_FA0,V_FA0);
*%E_SIGMA(A,FA(1),SDS_FA1,V_FA1);
*%E_SIGMA(A,HF,SDS_HF,V_HF);
*%E_SIGMA(A, SIMPLE, SDS_SIMPLE, V_SIMPLE);
% E_SIGMA (A, TOEP, SDS_TOEP, V_TOEP);
*%E_SIGMA(A, TOEPH, SDS_TOEPH, V_TOEPH);
%E_SIGMA(A,UN,SDS_UN,V_UN);
*%E_SIGMA(A, UNAR, SDS_UNAR, V_UNAR);
*%E_SIGMA(A,UNCS,SDS_UNCS,V_UNCS);
*%E_SIGMA(A, UNR, SDS_UNR, V_UNR);
*%E_SIGMA(A, VC, SDS_VC, V_VC);
RUN;
DATA RESULT;
*MERGE SDS_ANTE SDS_AR SDS_ARH SDS_ARMA SDS_CS SDS_CSH SDS_FA0
      SDS FA1 SDS HF SDS SIMPLE SDS TOEP SDS TOEPH
      SDS_UN SDS_UNAR SDS_UNCS SDS_UNR SDS_VC;
MERGE SDS_AR SDS_TOEP SDS_UN;
PROC PRINT DATA=RESULT;
RUN;
```

Para a variável Y1 obteve-se:

a) Gráfico:

a) Estatísticas para escolha da estrutura:

Ob	s Descr	V_ANTE	V_AR	V_ARH	V_ARMA	V_CS	V_CSH
1	-2 Res Log Likelihood	1360.8	1616.1	1417.4	1615.0	1617.8	1442.0
2	AIC (smaller is better)	1400.8	1620.1	1439.4	1621.0	1621.8	1464.0
3	AICC (smaller is better)	1403.9	1620.1	1440.3	1621.1	1621.9	1464.9
4	BIC (smaller is better)	1396.6	1619.7	1437.1	1620.4	1621.4	1461.7
	V_FA1	V_SIMPLE	V_TOEP	V_TOEPH	V_UN	V_UNR	v_vc
	1362.4	1624.4	1600.6	1400.9	1307.0	1307.0	1624.4
	1400.4	1626.4	1620.6	1438.9	1417.0	1417.0	1626.4
	1403.2	1626.4	1621.4	1441.8	1443.5	1443.5	1626.4
	1396.4	1626.2	1618.6	1435.0	1405.5	1405.5	1626.2

b) Observe que a melhor estrutura é a UN (desestruturada) e que as estruturas HF e UNCS apresentaram problemas na convergência do método iterativo.

Exercício 8: Analisar os dados dos Exemplos 1 (DIC) , 2 (DBC) e 4(DQL), usando o **módulo analyst** do SAS.

Para esse tipo de análise os dados devem estar na forma "Univariada" Os arquivos EXEL correspondentes são: