# **EMMA OUYANG**

**ELECTRICAL ENGINEERING AT JOHNS HOPKINS UNIVERSITY** 

eouyang3@jh.edu

in linkedin.com/in/emma-ouyang/

516 974 8080

### DATA ACQUISITION PCB FOR A/D SENSORS - BLUE JAY RACING

(Revision 1)

### Signal Architecture



#### **Purpose**

- Design a circuit that reads the strain, speed, pressure, suspension, and distance traveled for an off-road vehicle
- Performed a needs analysis to initiate the design process

#### Key:





#### Revision 1:

• All sensors in black were implemented for the first revision

2 Accessory (DAQ) PCBs on car: 1) Front 2) Rear

|    | <u></u>                          |                                    |     |
|----|----------------------------------|------------------------------------|-----|
|    | <u>Digital</u>                   | Analog                             |     |
| 5V | FL axle Hall                     | FL Linpot                          | 5V  |
|    | FR axle Hall                     | FR Linpot                          |     |
|    | Prop Shaft. Hall<br>(20 kHz)     | F Brake Pressure                   |     |
|    | FL Magnetometer<br>(I2C, ~1 kHz) | FL Tie Rod SG<br>(120 Ω, Q Bridge) | 2V5 |
|    | FR Magnetometer                  | FR Tie Rod SG                      |     |
|    |                                  | Steering Potent.                   | 5V  |
|    |                                  |                                    |     |

Front

|    | Re                                         | <u>ear</u>       |    |
|----|--------------------------------------------|------------------|----|
|    | <u>Digital</u>                             | Analog           |    |
| 5V | CVT Primary Hall<br>(Tach)                 | RL Linpot        | 5V |
|    | (9 mA max)<br>Brake Rotor Hall<br>(WS)     | RR Linpot        |    |
|    | (9 mA max)<br>Rear Axle Hall<br>(position) | R Brake Pressure |    |
|    | RL Magnetometer (I2C)                      |                  |    |
|    |                                            |                  |    |

### 21XT Vehicle

#### **Sensor Placement**



#### **Front Sensors**

- 1) FL Axle Hall Effect
- 2) FR Axle Hall Effect
- 3) Tie Rod Strain Gauges (x2)



#### **Rear Hall Effect Sensors**

- 1) CVT Primary Tachometer
- 2) Brake Rotor Hall FX
- 3) Rear Axle Hall FX



#### Suspension Sensors

- 1) FL Magnetometer (x2 for FR)
- 2) RL Magnetometer (x2 for RR)
- 3) FL Linear Potentiometer (x2 for FR)
- 4) RL Linear Potentiometer (x2 for FR)



# **EMMA OUYANG**

**ELECTRICAL ENGINEERING AT JOHNS HOPKINS UNIVERSITY** 

eouyang3@jh.edu

in linkedin.com/in/emma-ouyang/

516 974 8080

## DATA ACQUISITION PCB FOR A/D SENSORS - BLUE JAY RACING

#### **Power Architecture**



#### Requirements

- Design a system that is able to support 5V analog and digital sensors, and 2.5V differential analog sensors
- Verify the power sourcing and sinking capabilities of all ICs

#### Key:



#### Schematic & PCB Design



96.5 mm x 79 mm

#### Results

- Power ICs and ADC operated within expectations
- Ethernet successfully transmitted at 100 Mbps
- Increased sensor capacity by 33% from 20XT
- Teensy 4.1 was able to be programmed and successfully read

#### **Design Process**

- Used KiCAD to design schematic and PCB
- Implemented Teensy 4.1 Dev. Board for its strong CPU performance & RAM
- Selected DC37 Connector along with testing connectors

#### **Testing Procedure**

- Tested for power and ADC signal connectivity
- Confirm buck converter, reference, and regulator stability
- Measured ADC output SNR
- Analyzed Teensy 4.1 Program Output

