

An example of the Drexel beamer template

Exploring color schemes and graphics

Joshua Lequieu

September 12, 2019

Variational Enhanced Sampling

A free energy surface, F(s), associated with set of collective variables, s, is defined as

$$F(\mathbf{s}) = -(1/\beta) \log \int d\mathbf{R} \delta(\mathbf{s} - \mathbf{s}(\mathbf{R}) e^{-\beta U(\mathbf{R})}$$
 (1)

Valsson and Parrinello introduce a functional of bias potential V(s),

$$\Omega[V] = \frac{1}{\beta} \log \frac{\int d\mathbf{s} e^{-\beta [F(\mathbf{s}) + V(\mathbf{s})]}}{\int d\mathbf{s} e^{-\beta F(\mathbf{s})}} + \int d\mathbf{s} \rho(\mathbf{s}) V(\mathbf{s})$$
(2)

where $p(\mathbf{s})$ is an arbitrary probability distribution (normalized).

- $\Rightarrow \Omega[V]$ is convex!
- The potential which renders $\Omega[V]$ stationary is (to within a constant):

$$V(\mathbf{s}) = -F(\mathbf{s}) - (1/\beta)\log p(\mathbf{s}) \tag{3}$$

Variational Enhanced Sampling

- Write bias potential $V(\mathbf{s}; \alpha)$ as function of variational parameters $\alpha = (\alpha_1, \alpha_2, ..., \alpha_K)$
- 2 Minimize $\Omega[V(\alpha)]$ with respect to α using the gradient $\Omega'(\alpha)$ and Hessian $\Omega''(\alpha)$,

$$\frac{\partial \Omega}{\partial \alpha_i} = -\left\langle \frac{\partial V(\mathbf{s}; \boldsymbol{\alpha})}{\partial \alpha_i} \right\rangle_{V(\boldsymbol{\alpha})} + \left\langle \frac{\partial V(\mathbf{s}; \boldsymbol{\alpha})}{\partial \alpha_i} \right\rangle_p \tag{4}$$

$$\frac{\partial^{2}\Omega(\boldsymbol{\alpha})}{\partial\alpha_{j}\partial\alpha_{i}} = \beta \operatorname{Cov}\left[\frac{\partial V(\mathbf{s};\boldsymbol{\alpha})}{\partial\alpha_{j}}; \frac{\partial V(\mathbf{s};\boldsymbol{\alpha})}{\partial\alpha_{i}}\right]_{V(\boldsymbol{\alpha})} - \left\langle\frac{\partial^{2}V(\mathbf{s};\boldsymbol{\alpha})}{\partial\alpha_{j}\partial\alpha_{i}}\right\rangle_{V(\boldsymbol{\alpha})} + \left\langle\frac{\partial^{2}V(\mathbf{s};\boldsymbol{\alpha})}{\partial\alpha_{j}\partial\alpha_{i}}\right\rangle_{p}$$
(5)

where $\langle ... \rangle_{V(\alpha)}$ and $\langle ... \rangle_{p(\mathbf{s})}$ are the expectation value obtained in a biased simulation with potential $V(\mathbf{s}; \alpha)$ and distribution $p(\mathbf{s})$, respectively

 $\hbox{\bf 3} \hbox{ Use stochastic gradient descent-based algoritm to iterate } \alpha \\ \Rightarrow \hbox{In practice, only the diagonal of the Hessian is used during optimization}$

Block copolymers are awesome

They can assemble into so many different morphologies

Block title

Block content in here

This title is approximately 46 characters. ABC UNIVERSITY

This title is approximately 47 characters. ABCD

Note no logo!

7