Case No.: 21388YP

Page No.: 3

age INU..

IN THE CLAIMS

A list of the currently pending claims as amended in the PCT Article 19 [35 USC 371(c)(3)] Amendment on November 10, 2004:

1. (original) A process for the preparation of compounds of structural formula (I):

wherein

R1 is selected from the group consisting of

- (1) hydrogen,
- (2) amidino,
- (3) C₁₋₄ alkyliminoyl,
- (4) C_{1-10} alkyl,
- (5) $-(CH_2)_n$ -C3-7 cycloalkyl,
- (6) $-(CH_2)_n$ -phenyl,
- (7) $-(CH_2)_n$ -naphthyl, and
- (8) $-(CH_2)_n$ -heteroaryl,

in which phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R^3 ; and alkyl, cycloalkyl, and $(CH_2)_n$ are unsubstituted or substituted with one to three groups independently selected from R^3 and oxo;

R² is selected from the group consisting of

- (1) C_{1-4} alkyl,
- (2) $-(CH_2)_n$ -cycloalkyl,
- (3) $-(CH_2)_n$ -heterocycloalkyl,
- (4) $-(CH_2)_n$ -phenyl,
- (5) –(CH₂)n-naphthyl, and
- (6) –(CH2)n-heteroaryl wherein heteroaryl is selected from the group consisting of
 - (1) pyridinyl,
 - (2) furyl,
 - (3) thienyl,

Case No.: 21388YP

Page No.: 4

- (4) pyrrolyl,
- (5) oxazolyl,
- (6) thiazolyl,
- (7) imidazolyl,
- (8) pyrazolyl,
- (9) isoxazolyl,
- (10) isothiazolyl,
- (11) pyrimidinyl,
- (12) pyrazinyl,
- (13) pyridazinyl,
- (14) quinolyl,
- (15) isoquinolyl,
- (16) benzimidazolyl,
- (17) benzofuryl,
- (18) benzothienyl,
- (19) indolyl,
- (20) benzthiazolyl, and
- (21) benzoxazolyl;

in which alkyl, phenyl, naphthyl, heteroaryl, and $(CH_2)_n$ are unsubstituted or substituted with one to three groups independently selected from R^3 ;

each R³ is independently selected from the group consisting of

- (1) C_{1-6} alkyl,
- (2) $-(CH_2)_n$ -phenyl,
- (3) $-(CH_2)_n$ -naphthyl,
- (4) $-(CH_2)_n$ -heteroaryl,
- (5) -(CH₂)_n-heterocycloalkyl,
- (6) $-(CH_2)_nC_3-7$ cycloalkyl,
- (7) halogen,
- (8) OR⁴,
- (9) $-(CH_2)_nN(R^4)_2$,
- (10) NO₂,
- (11) $-(CH_2)_nNR^4SO_2R^4$,
- (12) $-(CH_2)_nSO_2N(R^4)_2$,
- (13) $-(CH_2)_nS(O)_pR^4$,
- (14) CF₃,

Case No.: 21388YP

Page No.: 5

(15) CH₂CF₃,

- (16) OCF3, and
- (17) OCH₂CF₃;

in which heteroaryl is as defined above; alkyl, phenyl, naphthyl, heteroaryl, cycloalkyl, and heterocycloalkyl are unsubstituted or substituted with one to three substituents independently selected from halogen, hydroxy, oxo, C_{1-4} alkyl, trifluoromethyl, and C_{1-4} alkoxy; and wherein any methylene (CH₂) carbon atom in R³ is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C_{1-4} alkyl; or two substituents when on the same methylene (CH₂) group are taken together with the carbon atom to which they are attached to form a cyclopropyl group;

each R4 is independently selected from the group consisting of

- (1) hydrogen,
- (2) C₁₋₆ alkyl,
- (3) $-(CH_2)_n$ -phenyl,
- (4) $-(CH_2)_n$ -heteroaryl,
- (5) $-(CH_2)_n$ -naphthyl,
- (6) -(CH₂)_n-heterocycloalkyl,
- (7) $-(CH_2)_nC_3-7$ cycloalkyl, and
- (8) -(CH₂)_nC₃-7 bicycloalkyl;

wherein alkyl, phenyl, heteroaryl, heterocycloalkyl, and cycloalkyl are unsubstituted or substituted with one to three groups independently selected from halogen, C₁₋₄ alkyl, hydroxy, and C₁₋₄ alkoxy; or two R⁴ groups together with the atom to which they are attached form a 4- to 8-membered monor bicyclic ring system optionally containing an additional heteroatom selected from O, S, and NC₁₋₄ alkyl; and

n is 0, 1, 2, 3 or 4;

comprising the steps of:

(a) preparing an alcohol of structural formula (V)

$$\mathbb{R}^2$$
 X

wherein

X is bromide or chloride, and R² is as defined above, by treating a ketone of structural formula (IV),

Case No.: 21388YP

Page No.: 6

$$R^2$$
 X

wherein X is bromide or chloride, and R^2 is as defined above, with a reducing agent, and isolating the resulting product;

(b) forming an amino alcohol of structural formula (VII)

$$R^{2} \xrightarrow{QH} H \\ R^{1}$$
(VII)

wherein R^1 and R^2 are as defined above, by treating the alcohol of structural formula (V) with an amine of general formula R^1NH_2 , wherein R^1 is as defined above, and a base in a solvent, and isolating the resulting product;

(c) forming a compound of structural formula (VIII)

$$R^2$$
 N
 R^1
(VIII)

wherein Y is -CN or -CO₂R⁵ and R⁵ is C₁₋₄ alkyl, and wherein R¹ and R² are as defined above, by treating the amino alcohol of structural formula (VII) with a compound of general formula (XI)

wherein Y is -CN or $-\text{CO}_2\text{R}^5$, and R^5 is $\text{C}_{1\text{--}4}$ alkyl, and isolating the resulting product;

(d) forming a pyrrolidine compound of structural formula (X)

$$R^2$$
 $N R^1$

Case No.: 21388YP

Page No.: 7

wherein Y, R¹ and R² are as defined above,

by treating the compound of structural formula (VIII) with an alcohol activating reagent, followed by a base;

(e) forming a trans-pyrrolidine acid of structural formula (I)

$$R^2$$
 $N - R^1$

wherein R¹ and R² are as defined above.

by hydrolyzing the pyrrolidine compound of structural formula (X) with an aqueous base in a solvent; and

- (f) isolating the resulting product.
- 2. (original) The process of Claim 1 wherein the reducing agent used to treat compound of formula (IV) of step (a) is (+)-DIP chloride.
- 3. (original) The process of Claim 1 wherein the compound of formula (IV) of step (a) is treated with a reducing agent selected from the group consisting of borane-N,N-diethyl aniline, borane-THF, and borane-dimethylsulfide, in the presence of a catalyst.
- 4. (original) The process of Claim 3 wherein the reducing agent is borane-N,N-diethyl aniline.
- 5. (original) The process of Claim 4 wherein the catalyst selected from the group consisting of (S)-CBS and (S)-2-methyl CBS oxazaborolidine.
- 6. (original) The process of Claim 5 wherein the catalyst is (S)-2-methyl CBS oxazaborolidine.
- 7. (original) The process of Claim 1 wherein the alcohol of formula (V) is treated with an amine of general formula R^1NH_2 , wherein R^1 is selected from the group consisting of hydrogen, -(CH₂)_nphenyl, and C₁₋₆alkyl.

Case No.: 21388YP

Page No.: 8

ige No..

- 8. (original) The process of Claim 7 wherein R¹ is *tert*-butyl.
- 9. (original) The process of Claim 1 wherein the alcohol of formula (V) is treated with a base selected from the group consisting of NaOH, LiOH, and KOH.
 - 10. (original) The process of Claim 9 wherein the base is NaOH.
- 11. (original) The process of Claim 1 wherein, the compound of formula (XI) is the compound wherein Y is -CN.
- 12. (original) The process of Claim 11 wherein the compound of formula (VIII) is formed by adding a 1:1 mixture of ethanol:formamide.
- 13. (original) The process of Claim 1 wherein the amino alcohol of formula (VIII) is treated with an alcohol activating reagent selected from the group consisting of ClPO(OR⁶)₂, ClPO(N(R⁶)₂)₂, MsCl, Ms₂O, TsCl, and Ts₂O, wherein R⁶ is C₁-4 alkyl or phenyl.
- 14. (original) The process of Claim 13 wherein the alcohol activating reagent is chlorodiethyl phosphate.
- 15. (original) The process of Claim 1 wherein amino alcohol of formula (VIII) is treated with a base selected from the group consisting of lithium hexamethyl disilazide, sodium hexamethyl disilazide, and potassium hexamethyldisilazide.
- 16. (original) The process of Claim 15 wherein the base is lithium hexamethyl disilazide.
- 17. (original) The process of Claim 1 wherein the pyrrolidine compound of formula (X) is hydrolyzed with a base selected from the group consisting of NaOH, LiOH and KOH.
 - 18. (original) The process of Claim 17 wherein the base is NaOH.
- 19. (original) The process of Claim 1 wherein R^2 is phenyl or thienyl optionally substituted with one to three groups independently selected from R^3 .

Case No.: 21388YP

Page No.: 9

20. (original) The process of Claim 19 wherein R^2 is phenyl optionally substituted with one to three groups independently selected from R^3 .

- 21. (original) The process of Claim 20 wherein R³ is selected from the group consisting of halogen, -CF₃, and OR⁴, wherein R⁴ is as defined in Claim 1.
- 22. (original) The process of Claim 21 wherein R² is selected from the group of phenyl; *ortho, para-*difluorophenyl; and *para-*methoxyphenyl.
 - 23. (original) The process of Claim 22 wherein R² is *ortho*, *para*-difluorophenyl.
- 24. (original) The process of Claim 1 wherein the compound of structural formula (I) is isolated by forming a zwitterion of the trans pyrrolidine acid of structural formula (I)

$$R^2$$
 $N-R^1$

wherein R¹ and R² are as defined above; recrystallizing the zwitterion from a solvent; and isolating the resulting product.

- 25. (original) The process of Claim 24 wherein the zwitterion of the pyrrolidine acid of formula (I) is formed at the isoelectric pH using an acid.
- 26. (original) The process of Claim 25 wherein the acid is selected from sulfuric acid or hydrochloric acid.
 - 27. (original) The process of Claim 26 wherein the acid is sulfuric acid.
- 28. (original) The process of Claim 24 wherein the zwitterion of the pyrrolidine acid of formula (I) is recrystallized from a solvent.
- 29. (original) The process of Claim 28 wherein the solvent is selected from the group consisting of ethanol, isopropyl alcohol, methyl *tert*-butyl ether or a mixture thereof.

Case No.: 21388YP

Page No.: 10

30. (original) The process of Claim 29 wherein the solvent is a mixture of 1:3 isopropyl alcohol:methyl tert-butyl ether.

- 31. (canceled in PCT Article 19 Amendment)
- 32. (original) The compound 2

or a zwitterion or salt thereof.

33. (original) The compound 3

or a zwitterion or a salt thereof.

34. (original) A process for the preparation of compounds of structural formula (I):

wherein

R¹ is selected from the group consisting of

- **(1)** hydrogen,
- (2) amidino,
- (3) C₁₋₄ alkyliminoyl,
- (4) C₁₋₁₀ alkyl,
- -(CH₂)_n-C₃₋₇ cycloalkyl, (5)
- - $(CH_2)_n$ -phenyl, (6)
- **(7)** -(CH₂)_n-naphthyl, and

Case No.: 21388YP

Page No.: 11

(8) $-(CH_2)_n$ -heteroaryl,

in which phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R^3 ; and alkyl, cycloalkyl, and $(CH_2)_n$ are unsubstituted or substituted with one to three groups independently selected from R^3 and oxo;

R² is selected from the group consisting of

- (1) C₁₋₄ alkyl,
- (2) $-(CH_2)_n$ -cycloalkyl,
- (3) –(CH₂)_n-heterocycloalkyl,
- (4) $-(CH_2)_n$ -phenyl,
- (5) –(CH₂)n-naphthyl, and
- (6) –(CH₂)n-heteroaryl wherein heteroaryl is selected from the group consisting of
 - (1) pyridinyl,
 - (2) furyl,
 - (3) thienyl,
 - (4) pyrrolyl,
 - (5) oxazolyl,
 - (6) thiazolyl,
 - (7) imidazolyl,
 - (8) pyrazolyl,
 - (9) isoxazolyl,
 - (10) isothiazolyl,
 - (11) pyrimidinyl,
 - (12) pyrazinyl,
 - (13) pyridazinyl,
 - (14) quinolyl,
 - (15) isoquinolyl,
 - (16) benzimidazolyl,
 - (17) benzofuryl,
 - (18) benzothienyl,
 - (19) indolyl,
 - (20) benzthiazolyl, and
 - (21) benzoxazolyl;

in which alkyl, phenyl, naphthyl, heteroaryl, and $(CH_2)_n$ are unsubstituted or substituted with one to three groups independently selected from \mathbb{R}^3 ;

each R³ is independently selected from the group consisting of

Case No.: 21388YP

Page No.: 12

- (1) C₁₋₆ alkyl,
- (2) $-(CH_2)_n$ -phenyl,
- (3) $-(CH_2)_n$ -naphthyl,
- (4) $-(CH_2)_n$ -heteroaryl,
- (5) -(CH₂)_n-heterocycloalkyl,
- (6) $-(CH_2)_nC_3-7$ cycloalkyl,
- (7) halogen,
- (8) OR⁴,
- (9) $-(CH_2)_nN(R^4)_2$,
- (10) NO_2 ,
- (11) $-(CH_2)_nNR^4SO_2R^4$,
- (12) $-(CH_2)_nSO_2N(R^4)_2$,
- (13) $-(CH_2)_nS(O)_pR^4$,
- (14) CF₃,
- (15) CH₂CF₃,
- (16) OCF3, and
- (17) OCH₂CF₃;

in which heteroaryl is as defined above; alkyl, phenyl, naphthyl, heteroaryl, cycloalkyl, and heterocycloalkyl are unsubstituted or substituted with one to three substituents independently selected from halogen, hydroxy, oxo, C₁₋₄ alkyl, trifluoromethyl, and C₁₋₄ alkoxy; and wherein any methylene (CH₂) carbon atom in R³ is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl; or two substituents when on the same methylene (CH₂) group are taken together with the carbon atom to which they are attached to form a cyclopropyl group;

each R4 is independently selected from the group consisting of

- (1) hydrogen,
- (2) C₁₋₆ alkyl,
- (3) $-(CH_2)_n$ -phenyl,
- (4) $-(CH_2)_n$ -heteroaryl,
- (5) $-(CH_2)_n$ -naphthyl,
- (6) -(CH₂)_n-heterocycloalkyl,
- (7) $-(CH_2)_nC_3-7$ cycloalkyl, and
- (8) -(CH₂)_nC₃-7 bicycloalkyl;

wherein alkyl, phenyl, heteroaryl, heterocycloalkyl, and cycloalkyl are unsubstituted or substituted with one to three groups independently selected from halogen, C₁₋₄ alkyl, hydroxy, and C₁₋₄ alkoxy;

Case No.: 21388YP

Page No.:

13

or two R4 groups together with the atom to which they are attached form a 4- to 8-membered monoor bicyclic ring system optionally containing an additional heteroatom selected from O, S, and NC1-4 alkyl; and

n is 0, 1, 2, 3 or 4;

comprising the steps of:

hydrolyzing a pyrrolidine compound of structural formula (X), wherein Y is -CN or -CO₂R⁵ and R⁵ is C₁₋₄ alkyl, and wherein R¹ and R² are as defined above,

$$R^2$$
 $N \sim R^1$
 (X)

with an aqueous base in a solvent; and

- (b) isolating the resulting product.
- 35. (original) The process of Claim 34 wherein the pyrrolidine compound of formula (X) is hydrolyzed with a base selected from the group consisting of NaOH, LiOH and KOH.
 - 36. (original) The process of Claim 35 wherein the base is aqueous NaOH.
- 37. (original) The process of Claim 36 wherein R² is selected from the group of phenyl; ortho, para-difluorophenyl; and para-methoxyphenyl.
 - 38. (original) The process of Claim 37 wherein R² is *ortho*, *para*-difluorophenyl.
 - 39. (original) The process of Claim 34 wherein R¹ is *tert*-butyl.