WEB3CLUBS FOUNDATION LIMITED

Course Instructor: DR. Cyprian Omukhwaya Sakwa

PHONE: +254723584205 Email: cypriansakwa@gmail.com

Foundational Mathematics for Web3 Builders

Lecture 22
June 10, 2024

RSA Digital Signature Algorithm

The RSA Digital Signature Algorithm is comparable to the RSA algorithm.

Algorithm 1

Assume that you intend to sign and send a message n to your friend. You do the following:

- 1. Select two prime numbers p and q such that $p \neq q$ and calculates $m = p \times q$.
 - Note that m will be made public while p and q will be kept private.
- 2. Calculate $\phi(m) = (p-1)(q-1)$
- 3. Choose an integer e such that, $1 < e < \phi(m)$ and e is coprime to $\phi(m)$.

Note that e will be made public. $\boldsymbol{\mathcal{C}}$

Algorithm (conti...)

- 5. Compute the d such that, $1 < d < \phi(m)$ and that $ed \equiv 1 \pmod{\phi(m)}$. Note that d will be private.
- 6. Publishe the public key (m,e) and keeps p,q,\bar{d} and $\phi(m)$ private.
- 7. Create your signature by raising n to the power d modulo m.
- - 8. Send n and s to your friend. That is, send the signed ducument (n,s).
 - 9. Your friend verifies that it is really you who signed the message by using your public key (m,e) then raises s to the power e modulo m.

$$s^e = (n^l)^e = s^e \equiv (n^d)^e \equiv n^{ed} \equiv n \mod m$$

As a result, nobody should be able to forge your signature. If a document has your signature, you cannot successfully deny signing it.

Example 1

For each of the following, show how Ken would sign a message m using RSA digital signature algorithm with modulus $n=p\times q$ to obtain a signed document (m,s) if he chooses a public exponent e. Then show how Naomi would verify that the message was signed by Ken.

a)
$$p = 5$$
, $q = 13$, $e = 7$, $m = 6$

b)
$$p = 7$$
, $q = 19$, $e = 5$ $m = 7$

$$n = P_{\gamma} = 65$$

 $\phi(n) = (5-1)(13-1) = 48$
 $e = 7 \text{ HW} 7^{1} \text{ mod } 48 = 3$

a) Here, $n = 5 \times 13 = 65$ and $\phi(n) = 4 \times 12 = 48$.

Now find d such that $7d \equiv 1 \mod 48$. By Euclid's algorithm

we have

$$48 = 7(6) + 6$$

$$7 = 6(1) + 1$$

$$6 = 1(6) + 0$$

Now use extended Euclidean algorithm to get

$$1 = 7 - 6(1) = 7 - [48 - 7(6)](1)$$

$$= 7 - 48(1) + 7(6) = 7(7) + 48(-1)$$

Thus d=7. The public key is (65,7) and private key is (65,7)

To sign the private key is used.

Signature: $s = m^d = 6^7 \mod 65 = 46 \mod 65$.

Signed document is (m,s)=(6,46)

To verify we use the public keeps used.

279936 mad 6

 (46^7) mod 65. Let us use the fast powering algorithm.

$$46^1 = 46$$

$$46^2 = 36$$

$$46^4 = 61$$

$$\therefore 46^7 = 46^4 \times 46^2 \times 46^1 \checkmark$$

$$=61 \times 36 \times 46 = 6$$

Hence verified.

b) Here, $n = 7 \times 19 = 133$ and $\phi(n) = 6 \times 18 = 108$.

By Euclid's algorithm we get: (7-1) (17-1)

Now find d such that $5d \equiv 1 \mod 108$

$$108 = 5(21) + 3$$

$$5 = 3(1) + 2$$

$$3 = 2(1) + 1$$

Now use extended Euclidean algorithm

$$1 = 3 - 2(1) = 3 - [5 - 3(1)](1)$$

$$= 3 - 5(1) + 3(1) = 5(-1) + 3(2)$$

$$= 5(-1) + [108 - 5(21)](2) = 108(2) + 5(-43)$$

Thus, $d = -43 \mod 108 \equiv 65$

Signature: $s \neq 7^{65} \mod 133$.

Use fast powering algorithm

$$7^{1} = 7$$
 $7^{4} = 7$
 $7^{8} = 49$
 $7^{16} = 7$
 $7^{16} = 7$
 $7^{16} = 7$
 $7^{16} = 7$
 $7^{16} = 7$
 $7^{16} = 7$
 $7^{16} = 7$
 $7^{16} = 7$
 $7^{16} = 7$
 $7^{16} = 7$
 $7^{16} = 7$

Thus signed document is (7,49)

To verify we compute $49^5 \mod 133 = 7$

Example 2

Lynette uses the RSA signature with public modulus 55 and public encryption exponent 7. She then sends three documents to Alex with her signature attached. Alex creates a fourth document and unsuccessfully tries to forge Alice's signature. Which of the four documents is the forgery?

(55,7)

$$S=23$$

 $S^{3}=23^{7}$ mi) $55=12$
 61905917.2

(3)
$$S=12$$

$$S^{7}=12^{7} \text{mod} S5=23$$

$$651,487.418$$

Example 3

Cyprian chooses primes p=113 and q=167 and public exponent e=71. He wants to sign the document m=11. What is the signed document? Show the calculations that verify that the above signed document is valid.

Solution

 $n = 113 \times 167 = 18871$ and $\phi(n) = 112 \times 166 = 18592$

Now find d if $71d \equiv 1 \mod 18592$

By Euclid's algorithm we have

$$18592 = 71(261) + 61$$
$$71 = 61(1) + 10$$
$$61 = 10(6) + 1$$

By extended Euclidean algorithm we have

$$1 = 61 - 10(6) = 61 - [71 - 61(1)](6)$$

$$= -71(6) + 61(7) = -71(6) + [18592 - 71(261)](7)$$

$$= 18592(7) + 71(-1833)$$

Thus $d = -1833 \mod 18592 = 16759$

The signature $s=11^{16759} \bmod 18871=2321$ by fast powering algorithm

The signed document is (11, 2321)

To verify we compute $2321^{71} \bmod 18871 = 11$ by fast powering algorithm

Exercise (conti...)

- 3. Alex chooses 7 and 11 as p and q and calculates $n=7\times 11=77$. The value of $\phi(n)=(7-1)(11-1)=60$. If he chooses e=23 to be his public key, calculate d, his private key such that $ed\equiv 1 \bmod \phi(n)$. Now imagine that Wanjiru wants to send the plaintext 15 to Alex. Show how Wanjiru would encrypt 15 and how Alex would decrypt the ciphertext.
- 4. Now assume that Ochieng' wants to send a message to Alex. Ochieng' can use the same public key announced by Alex (probably on his website), 23; Ochieng''s plaintext is 67. Show how Ochieng' would encrypt 67 and how Alex would decrypt the ciphertext.

Exercise (Conti...)

5. You have been sent the following message. You may use your computer.

79880, 113612, 97518, 82767, 80745, 102524, 1076, 102745, 91940

It has been encrypted using p=313, q=373, m=pq=116749, and e=161. Decrypt the message.

- 6. Encrypt "YOU SETTLE THE CASE" using p=5, q=17, e=3. How will your friend decrypt the ciphertext?
- 7. Write a program to implement the RSA cryptosystem. Make your program as user friendly as possible. In particular, the person encoding a message should be able to type in their message as words, including spaces and punctuation; similarly, the decoder should see the message appear as words with spaces and punctuation decrypt this?

16/15

Exercise (Conti...)

- 8 Lynette has public RSA modulus $n=119=7\times 17$ and public exponent e=5. She wants to sign the document m=7.
 - a) What is the signed document?
 - b) Show that Alex calculation verifies that the document you produced in part (a) is valid.