EE 238

Power Engineering - II

Power Electronics

Lecture 6

Instructor: Prof. Anshuman Shukla

Email: ashukla@ee.iitb.ac.in

Thought process in analyzing basic DC/DC converters

- **Basic operation principle (qualitative analysis)**
 - How does current flow during different switching states
 - How is energy transferred during different switching states
- Verification of small ripple approximation
- **Derivation of inductor voltage waveform during different switching states**
- **Quantitative analysis according to inductor volt-second balance or capacitor charge balance**

Steady-state Analysis

DC steady state in power converters

- DC steady state analysis is useful for
 - Thorough understanding of the operation, including various sub-intervals and modes of operation
 - Deriving input-output voltage and current relationships of various converter topologies
 - Design of various components such as inductors, capacitors, transformers
 - Selection of voltage and current ratings of semiconductor devices
 - Loss analysis

DC Steady state in non-switching circuits

· Since,

$$v_L = L \frac{di_L}{dt}$$
 and i_L is constant, $v_L = 0$
and inductor is considered as a
short circuit in dc steady state
for non-switching circuits

• Since, $i_C = C \frac{dv_C}{dt}$ and v_C is constant, $i_C = 0$ and capacitor is considered as a open circuit in dc steady state

DC Steady state in non-switching circuits

DC steady state in switching converters

- In a switching converter, most of the voltages and currents are always switching or time varying
- · Need for a different definition of DC steady state

Concept of DC steady state in switching converters

A switching converter is in DC steady state, if

• ALL waveforms repeat exactly every switching period Example: $i_A(t) = i_A(t-T_S)$

Simulation examples

Pulse Senerator V: 200 Pulse Senerator V: 200 C: 100e-6

Periodic Average

Periodic Average 2

Concept of DC steady state in switching converters

A switching converter is in DC steady state, if

CCA values of ALL variables remain constant

During the interval when the switch is on, the diode becomes reverse biased and the input provides energy to the load as well as to the inductor.

During the interval when the switch is off, the inductor current flows through the diode, transferring some of its stored energy to the load.

Inductor voltage and current **Subinterval 1: switch in position 1**

Inductor voltage

$$v_L = V_g - v(t)$$

Small ripple approximation:
$$V_L \approx V_g - V_{\text{res}} = V_g - V_g - V_{\text{res}} = V_g - V_g -$$

Knowing the inductor voltage, we can now find the inductor current via

$$v_L(t) = L \frac{di_L(t)}{dt}$$

Solve for the slope:

$$\frac{di_L(t)}{dt} = \frac{v_L(t)}{L} \approx \frac{V_g - V}{L}$$

The inductor current changes with an / essentially constant slope

Inductor voltage and current Subinterval 2: switch in position 2

Inductor voltage

$$v_L(t) = -v(t)$$

Small ripple approximation.

$$v_L(t) \approx -V$$

Knowing the inductor voltage, we can again find the inductor current via

$$v_L(t) = L \frac{di_L(t)}{dt}$$

Solve for the slope:

$$\frac{di_L(t)}{dt} \approx -\frac{V}{L}$$

The inductor current changes with an essentially constant slope

Small Ripple Approximation

$$v_o(t) = V_o + v_{o,ripple}(t)$$
 Peak-peak $v_{o,ripple}$ designed to be less than 1% of V_o

For resistive loads as considered here initially,

$$i_o(t) \approx I_o$$

i.e., the high frequency component of inductor current flows only in the output capacitor, and negligible amount through the load

Characteristics of practical loads such as processors can be quite different

Inductor voltage and current waveforms

$$v_L(t) = L \frac{di_L(t)}{dt}$$

When the converter operates in equilibrium: $i_L((n+1)T_s) = i_L(nT_s)$

Buck converter Analysis

When the switch is closed (on):

$$egin{aligned} v_L &= V_g - V = L rac{di_L}{dt} \ & rac{di_L}{dt} = rac{V_g - V}{L} \end{aligned}$$

Derivative of i_L is a positive constant. Therefore i_L must increase linearly.

From Figure

$$\frac{di_{L}}{dt} = \frac{\Delta i_{L}}{\Delta t} = \frac{\Delta i_{L}}{DT} = \frac{V_{q} - V}{L}$$

$$(\Delta i_{L})_{closed} = \left(\frac{V_{q} - V}{L}\right) \cdot DT$$

For switch opened,

$$v_{L} = -V = L \frac{di_{L}}{dt}$$

$$\frac{di_{L}}{dt} = \frac{-V}{L}$$

$$\frac{di_{L}}{dt} = \frac{\Delta i_{L}}{\Delta t} = \frac{\Delta i_{L}}{(1-D)T} = \frac{-V}{L}$$

$$(\Delta i_{L})_{\text{opened}} = \left(\frac{-V}{L}\right). (1-D)T$$

Determination of inductor current ripple magnitude

Steady- state operation requires that i_L at the end of switching cycle is the same at the beginning of the next cycle. That is the change of i_L over one period is zero i.e :

$$(\Delta i_L)_{\text{closed}} + (\Delta i_L)_{\text{opened}} = 0$$

$$(\frac{Vg - V}{L}) \cdot DT_S - (\frac{-V}{L}) \cdot (1 - D)T_S = 0$$

 $V = DV_o$

Neglecting power losses, the input power equals the output power.

$$P_d = P_o \Rightarrow V_d I_d = V_o I_o \Rightarrow \frac{I_o}{I_d} = \frac{V_d}{V_o} = \frac{1}{D}$$

Input-output relationship for Buck converter

Characteristics of inductors and capacitors

$$v_L(t) = L \frac{di_L(t)}{dt}$$

$$i_{C}(t) = C \frac{dv_{C}(t)}{dt}$$

Capacitor

Volt-sec balance in inductors

The average (CCA)
 voltage across an inductor
 in DC steady-state
 is zero

Volt-sec balance in Inductors

Instantaneous v-i relationship for inductor

$$v_L(t) = L \frac{di_L(t)}{dt}; \quad i_L(t) = i_L(t_0) + \frac{1}{L} \int_{t_0}^t v_L(\tau) d\tau \dots (1)$$

Substituting $t = t_0 + T_s$ in (1)

$$i_L(t_0 + T_s) = i_L(t_0) + \frac{1}{L} \int_{t_0}^{t_0 + T_s} v_L(\tau) d\tau \dots (2)$$

In steady state

$$i_L(t_0 + T_s) = i_L(t_0) \dots (3)$$

from (2) and (3)

$$\frac{1}{L} \int_{t_0}^{t_0 + T_s} v_L(t) dt = \frac{T_s}{L} \overline{v}_L = 0$$

$$\overline{v}_L = 0$$

$$\overline{v}_L = L \frac{d\overline{i}_L}{dt} = 0 \qquad \frac{i_L}{v_L}$$

(since, $\overline{i_L}$ should be constant in steady state)

Volt-sec balance in Inductors

 $\overline{v}_L = 0$ does not imply that the inductor voltage is zero instantaneously, only the average over a complete period is zero

Example

Given that the circuit is in DC steady state, calculate V_2

Example

Calculate the input-output relationship for a dc-dc converter, i.e, V_o/V_{in} , in terms of the duty ratio, d given the inductor voltage below

Inductor volt-second balance: Buck converter example

Inductor voltage waveform, previously derived:

Integral of voltage waveform is area of rectangles:

$$\lambda = \int_0^{T_s} v_L(t) \ dt = (V_g - V)(DT_s) + (-V)(D'T_s)$$

Average voltage is

$$\langle v_L \rangle = \frac{\lambda}{T_s} = D(V_g - V) + D'(-V)$$

Equate to zero and solve for *V*:

$$0 = DV_g - (D + D')V = DV_g - V \qquad \Rightarrow \qquad V = DV_g$$

