Lambda calculus

Functional models of computation

Ivan Trepakov

NSU Sys.Pro

Lambda calculus

History

- 1928 Hilbert's Entscheidungsproblem ¹
 - Is there an *algorithm* for deciding whether a proposition in first-order logic is true or false?
- Replacement for set theory as foundation of mathematics
 - 1930 Combinatory logic (Curry, Schönfinkel)
 - 1932 λ -calculus (*Church*)
 - 1935 Kleene-Rosser paradox
- Effective computability
 - 1935 Untyped λ -calculus (*Church, Kleene, Rosser*)
 - 1936 Turing machine
 - 1936 Church-Turing thesis
- 1936 Undecidability of first-order logic
 - Halting problem of Turing machine
 - Equivalence of λ -terms

¹German for "decision problem"

Lambda calculus

History

- 1928 Hilbert's Entscheidungsproblem ¹
 - Is there an algorithm for deciding whether a proposition in first-order logic is true or false?
- Replacement for set theory as foundation of mathematics
 - 1930 Combinatory logic (Curry, Schönfinkel)
 - 1932 λ -calculus (*Church*)
 - 1935 Kleene-Rosser paradox
- Effective computability
 - 1935 Untyped λ -calculus (*Church, Kleene, Rosser*)
 - 1936 Turing machine
 - 1936 Church-Turing thesis
- 1936 Undecidability of first-order logic
 - Halting problem of Turing machine
 - Equivalence of λ -terms

- Haskell Curry
- Wilhelm Ackermann
- John von Neumann
- Ernst Zermelo
- ..

Alonzo Church

- Stephen Cole Kleene
- J. Barkley Rosser
- Alan Turing
- Dana Scott
- Michael O. Rabin
- ...

David Hilbert

¹German for "decision problem"

Syntax

Grammar

$$term ::= \underbrace{var}_{\text{Variable}} | \underbrace{(term \ term)}_{\text{Application}} | \underbrace{(\lambda var. \ term)}_{\text{Abstraction}}$$

Examples

$$\lambda x. x \qquad (\lambda x. xx)(\lambda y. yy) \qquad \lambda f. \lambda x. f(fx)$$

Conventions

- Application is left associative
 abc = (ab)c
- Abstraction is right associative λx . λy . $x = \lambda x$. $(\lambda y, x)$
- Consecutive abstractions can be combined λx . λy . $x = \lambda x y$. x

Syntax

Grammar

$$term ::= \underbrace{var}_{\text{Variable}} | \underbrace{(term \ term)}_{\text{Application}} | \underbrace{(\lambda var. \ term)}_{\text{Abstraction}}$$

Examples

$$\lambda x. x \qquad (\lambda x. xx)(\lambda y. yy) \qquad \lambda f. \lambda x. f(fx)$$

Conventions

- Application is left associative *abc* = (*ab*)*c*
- Abstraction is right associative λx . λy . $x = \lambda x$. $(\lambda y, x)$
- Consecutive abstractions can be combined λx . λy . $x = \lambda x y$. x

Tree representation

α -conversion

Free and bound variables

Substitution

lpha-equivalence

β -conversion

 β -reduction

eta-abstraction

η -conversion

Convertibility

Normal order reduction

First Church-Rosser theorem

Second Church-Rosser theorem

Normal order reduction

Recursion

Fixed-point combinator

Curry's Y-combinator

$$Y = \lambda f.(\lambda x. f(xx)) (\lambda x. f(xx))$$

Turing's Θ -combinator

$$\Theta = (\lambda xy.\, x(xxy))\, (\lambda xy.\, x(xxy))$$

Church-Turing thesis

Undecidability

Programming foundation

Church numerals

Relation to folds

Algebraic data types

Predecessor

Q&A