SYDNEY TECHNICAL HIGH SCHOOL

MATHEMATICS 2 UNIT

YEAR 11 PRELIMINARY COURSE

MAY 2014

NAME	TEACHER	
Time allowe	d 75 minutes	
Instructions	* Begin each question on a <u>new page</u> .	
	* Marks shown are a guide and may be varied.	
	* Show <u>necessary</u> working.	
	* Full marks may <u>not</u> be awarded if your working is <u>poorly set out or illegible</u> .	
	* Leave all answers in simplest form.	

* Use a <u>ruler</u> for all straight lines.

.)

Question 1 (7 marks)

a) Evaluate
$$\sqrt{\frac{\pi}{1\cdot 6^2}}$$
 correct to two significant figures.

b) Simplify i)
$$\sqrt{8} + \sqrt{18}$$

ii)
$$(3\sqrt{2}-4)^2$$

d) Find the values of
$$p$$
 and q such that $\frac{\sqrt{5}}{\sqrt{5}-2}=p+q\sqrt{5}$

e) Simplify
$$2^x \div 2^{x-3}$$

Question 2 (7 marks) Start a new page.

a) Subtract
$$2x^2 - 3x - 1$$
 from $2x^2 - x + 5$

b) Simplify
$$\frac{(3m^2x^3)^2\times 2mx^2}{4m^8x}$$
 2

c) Rewrite
$$m(m+2)^{-1}$$
 without a negative index.

d) Fully factorise: i)
$$2x^2 - 18$$

ii)
$$3x^2 + 11x - 4$$

iii)
$$a^2 - ab - a + b$$

Question 3 (7 marks) Start a new page.

a) Simplify
$$\frac{a}{a+\frac{1}{a}}$$

b) Solve: i)
$$7(m-4) = 2(m+11)$$

ii)
$$\frac{6-4y}{2} < \frac{y}{3} + 2$$

c) Solve each quadratic equation, leaving answers in simplest exact form:

i)
$$3x - 4x^2 = 0$$

ii)
$$4x^2 - 6x - 1 = 0$$

Question 4 (7 marks) Start a new page.

a) Solve
$$|2x + 1| = 7$$

b) Given
$$H(x) = x^2 - 3x$$
, find and simplify: i) $H(-1)$

ii)
$$H(m+4)$$

Question 5 (7 marks) Start a new page.

- a) Neatly sketch the parabola $y = x^2 x 6$. Clearly show intercepts on both axes 2 and the coordinates of the vertex.
- b) Sketch each curve below on separate number planes. Use a ruler and clearly label asymptotes or other key features. i) $x^2 + (y-2)^2 = 4$

ii)
$$y = \frac{1}{x+2} + 1$$

c) Given
$$\frac{1}{x\sqrt{x}} = x^a$$
, find the value of a .

Question 6 (7 marks) Start a new page.

a) Neatly copy the curve below into your answer booklet. Add a new section of the curve

so that the total curve clearly represents an odd function. Label key points.

b) Given the curve y = f(x) below:

i) Evaluate f(2)

1

. ii) Sketch the graph of
$$y = f(x) - 1$$

1

c) i) Sketch the graph of
$$y = |4 - x|$$

1

ii) Hence, or otherwise, solve
$$|4-x| < 3$$

1

d) Simplify
$$\frac{x^3-1}{x^2-1}$$

2

Question 7 (7 marks) Start a new page.

The diagram, not to scale, shows the line 2x - y + 8 = 0 and an exponential function of the form $y = a^{-x}$.

a) i) Write the equation of the exponential function shown.

1

ii) The shaded area represents the intersection of three (3) regions. Write the inequalities for these regions.

3

b) Solve simultaneously to find the points of intersection of the graphs of

$$xy = 4$$
 and $2x - y - 2 = 0$

3

Question 8 (7 marks) Start a new page.

a) Find the domain and range of the function $f(x) = 10 + \frac{1}{\sqrt{x-4}}$

2

2

b)

A photograph measures 20 cm by 10 cm. It is surrounded by the shaded border of uniform width x cm. The total area of photo + border is 416 cm^2 .

- Write and solve a quadratic equation in x and find the dimensions of the border.
- c) Find a value x such that $\sqrt{x + \sqrt{x + \sqrt{x + \cdots}}} = \frac{1 + \sqrt{17}}{2}$

(hint: you may want to start by squaring both sides)

END OF TEST

$$(1)$$
 (1) (2) (2) (2) (3) (3) (4) (4) (5) (4) (5) (7)

c)
$$4-i2=-8$$
.

d)
$$\frac{\sqrt{5}}{\sqrt{5}-2} \times \frac{\sqrt{5}+2}{\sqrt{5}+2} = \frac{5+2\sqrt{5}}{5-4}$$

= $5+2\sqrt{5}$
 $\frac{1}{5} = 5$, $q = 2$

$$\frac{9^{4}x^{6}\times 2^{4}x^{2}}{4^{4}x^{8}\times 2^{4}x^{2}}=\frac{9^{2}x^{7}}{2^{4}x^{3}}$$

$$\frac{m}{m+2}$$

$$\frac{d}{(i)} \frac{2(\pi + 3)(\pi - 3)}{(3\pi - 1)(\pi + 4)}$$

iii)
$$a(a-b-) - (a-b-)$$

= $(a-b-)(a-1)$

$$(3)_{a} = \frac{a}{a^{2}+1}$$

$$= \frac{a}{a^{2}+1}$$

$$= \frac{a}{a^{2}+1}$$

b) i)
$$7m-28 = 2m+22$$

 $5m = 50$
 $m = 10$

$$18-12y < 2y+12$$

 $-14y < -6$
 $y > \frac{3}{5}$

c) i)
$$\times (3-4x) = 0$$
 $x = 0, 34$

$$(i) = 6 \pm \sqrt{36 - 4x4x - 1}$$

$$= 6 \pm \sqrt{52}$$

$$= 6 \pm 2\sqrt{3}$$

= $3 \pm \sqrt{3}$

$$(4) = 2x + 1 = 7 = 7 - 2x - 1 = 7$$

$$x = 3$$

$$x = -4$$

$$x = 3, -4$$

(i)
$$H(-1) = (-1)^2 + 3$$

= 4

(i)
$$H(m+4) = (m+4)^2 - 3(m+4)$$

= $m^2 + 6m + 16 - 3m - 12$
= $m^2 + 5m + 4$

$$(5)a)y = (x-3)(x+2)$$

c)
$$\frac{1}{2^{2}} = \frac{-\frac{3}{2}}{x^{2}}$$

$$\therefore a = -\frac{3}{2}$$

$$(6b)$$
 $(2) = 0$

$$(x < 7)$$

$$(x < 7)$$

$$(x < 7)$$

(7) a) i)
$$y = 2^{-x}$$

ii) $x \le 0$
 $y \ge 2^{-x}$
 $2x - y + 8 \ge 0$

From
$$0: y = 2x - 2$$

Sub $(2): x(2x - 2) = 4$
 $2x^2 - 2x - 4 = 0$
 $x^2 - x - 2 = 0$
 $(x - 2)(x + 1) = 0$
 $x = 2, -($

$$\binom{8}{a}$$
 a) $2-4>0$
 $D: 2>4$
 $R: y>10$

1.
$$(20+2x)(0+2x) = 416$$

 $200 + 40x + 20x + 4x^{2} = 416$
 $4x^{2} + 60x - 216 = 0$
 $x^{2} + 15x - 54 = 0$
 $(x-3)(x+16) = 0$

(8) c) (squaring)
$$\times + \sqrt{n+\sqrt{n+\dots}} = (1+\sqrt{17})^2$$

$$\times + 1 + \sqrt{17} = 1+2\sqrt{17}+17$$

$$\frac{1}{2} = 18+2\sqrt{17} - 2+2\sqrt{17}$$

$$= 18+2\sqrt{17} - 2-2\sqrt{17}$$

$$= 18+2\sqrt{17} - 2-2\sqrt{17}$$

= 16

= 4