

Computer Architecture Practical Exercise

0 Cluster Introduction

Kenan Gündogan¹ Philipp Gündisch¹

¹Friedrich-Alexander Universität Erlangen-Nürnberg, Chair of Computer Science 3 (Computer Architecture)

October 29, 2024

Cluster Resources

- The compute nodes of the NHR (Erlangen National High Performance Computing Center) are used in this exercise
- The fritz cluster consists of over 1000 compute nodes
 - 100 GBit/s HDR100 Infiniband interconnect
 - Dual-socket system with 16 x 16 GB of DDR4-3200 RAM
 - ► Ice Lake (Intel Xeon Platinum 8360Y)
 - ▶ 36 cores per chip
 - ► 2.4 GHz clock frequency
 - More information: see fritz

fritz Node

- Dual-socket Ice Lake node
 - 2x Xeon Platinum 8360Y Chips (CPUs, Packages) with 16 x 16 GB of RAM
 - 36 physical cores and 72 logical cores (SMT-Threads) per processor
 - CPU clock frequency of 2.4 GHz (nominal) and 3.5 GHz peak (turbo) frequency

Cluster Access

- For each student an HPC account (hpcvXXXv) was created
- You should have a mail invitation received
- There is no password authentication possible
- For authentication to the server an ssh key needs to be generated and uploaded
- For configuration visit the HPC Portal

Note: The synchronization of the ssh public key to the servers can take up to two hours!

Log in to Cluster

 Access from outside of the university network is possible via dialog-server: ssh hpcvXXXh@fritz.nhr.fau.de

- There is no password authentication possible
- From the dialog server / university network the cluster head node is reachable via ssh
- To run a program on the cluster slurm tools need to be used

Slurm

salloc

- Slurm is a cluster management and job scheduling system
- Cluster access needs to be requested via Slurm
- A cluster node can be allocated for 1 hour with:

Slurm

sbatch

The sbatch command is able to allocate cluster resources and run a shell script. The resource allocation information is parsed by sbatch from the provided shell script (one argument per line).

An exemplary myjob.sh file header might look like this:

```
#/bin/bash -l

#SBATCH --partition=singlenode
#SBATCH --time=00:10:00
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=1
#SBATCH --export=NONE
...
srun ./program
```

The shell script can be invoked with:

sbatch myjob.sh

You can find more information on the NHR website about slurm.

Responsible Usage of Resources

- Use the cluster responsibly!
- Allocate only one node at a time
- Calculate / predict the job runtime and specify --time
- Test your implementation and script before submitting a long running job

bash

Shell Functions

You can write functions and invoke them in bash scripts very similar to other programming languages. The following example illustrates how it works.

```
#!/bin/bash -l

function multiply() {
    echo $(($1*$2))
}
echo $(multiply 2 10)
```

When invoked the example produces the following output.

```
$ ./example.sh
20
```

bash

For-Loops

You can also write for-loops in bash scripts. The following example illustrates how for-loops work.

```
#!/bin/bash -l

for name in "Alf" "Joe"

do
        echo $name

done

for (( i = 0; i < 2; i += 1))

do
        echo $i

done</pre>
```

When invoked the example produces the following output.

```
$ ./example.sh
Alf
Joe
0
```

Exercise 0.1: Log in to cluster

- Configure the ssh access as described in the NHR website on SSH
- Use public key authentication
- Log in to the cluster with ssh fritz

Exercise 0.2: Running provided code on cluster

- To list available modules on a compute node run:
 - o module avail
- To make icx available on a compute node run:
 - module load intel
- To compile the code run icx -i src/hello.c -o bin/hello
- Inspect current cluster load
 - HPC status page
 - To retrieve necessary login data please run docpw command on current cluster node
- Update the provided shell script to make use of functions and loops (e.g. run bin/hello 5 times)
- Use sbatch to run the shell script on the cluster
- Select walltime less than 1h: Devel queue (usually shorter waiting times)
- Analyze the produced sbatch output

Tasks

- E 0.1: Set Up
 - Configure ssh access
 - Log in to cluster
- E 0.2: Run code on cluster
 - Copy files via scp
 - Start an interactive session via ssh (terminate with exit or ctrl+D)
 - Implement on head node
 - Work on compute node only for benchmarking and testing
 - Compile src/hello.c with icx
 - Run sbatch scripts/cluster.sh on cluster