Overview

 Last lecture: basics of control theory, stability, proportional control and transfer function.

- Today:
 - Proportional + Derivative + Integral Control
 - Matlab and Simulink

 A basic tutorial on control theory is available on the web: see https://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlPID on PID controllers.

Integral Control

- A system often has friction or changing workloads that we may not be able to model in advance:
 - In auto-cruise control, we cannot know how many passengers will be in the car
 - Frictions may change due to machine conditions
- Unmodeled heavy load often results in steady-state error, the system will settle near rather than at the set-point.

What Does Integral Control Do?

- Integral control adds up (integrates) the past errors and then gives a force that is proportional to the cumulative errors.
 - So if the marble gets stuck near a set-point due to some friction, the position error adds-up over time, eventually generate a force large enough to help get the marble going toward the set-point.
 - So if the car has a heavier load and the velocity settles on a speed lower than the set-point for a while, the error adds up and the integral control leads to increased throttle.

The Dark Side of Integral Control

- Integral control acts on cumulative errors. It takes a while to reach a large sum and it will take time to reduce the sum. Consider the following case:
 - the marble is stuck on the left side of the set-point
 - After 10 sec, the integral control is large enough to help get the marble moving toward the set-point
 - The integral will keep increasing until the marble crosses the origin
 - It will take a while to "wash out" the cumulative error.
- Overdose of integral control is a common source of overshoot, oscillations and even instability.

Using Integral Control

- As a rule of thumb, start from zero integral control and use it lightly!
- Check the eigenvalues of the system to make sure that all of them are sufficiently negative.
- X'' = F/m, where $F = -K_p x K_d x' K_i \int^* x dt$
- s² + (K_d / m) s + K_p /m + (K_i /m) 1/s = 0 , \rightarrow Laplace transform of an integral is 1/s
- $s^3 + (K_d/m) s^2 + (K_p/m) s + K_i/m = 0$
- As we can see, the effect of integral is to add an order to the system. Large value of K_i could lead to positive eigenvalue.
- We can solve the equation to see if the real part of the eigenvalues are still negative.
 This is best done by using tools such as Matlab. A subject that we will overview in next lecture.

How to Tune a Simple PID Controller

Experimental tuning procedure	
_	first set derivative gain and integral gain to zero.
_	Slowly increase the proportional gain until the device oscillates around the set point with a speed that is satisfactory. At this point,
	 the real part of the eigenvalue is
	 the imaginary part of the eigenvalue determines the of oscillation
_	Slowly increase the derivative gain until the device settles down at the setpoint. At this point, the real part of the eigenvalue is
_	If there is steady-state error, slightly increase the integral gain until the steady state error is corrected and yet not causing serious oscillations. This means that
	the real part of the eigenvalues is still
Fine tuning	
_	If the motion movement towards setpoint is too slow, we can the proportional gain or derivative gain, don't play with integral gain!
_	If there is steady-state error, we can add a little of gain
_	If the motion overshoots the setpoint and oscillates, we can the
	derivative gain or reduce gain and gain

Transfer function of PID controller

Quiz: what is the transfer function of PID controller?

$$u(t) = K_p e(t) + K_d \frac{d}{dt} e(t) + K_i \int_0^t e(\tau) d\tau$$

Basic input signals

Class exercise

- Consider a physical system which has mass, spring, and damper
- We want to apply a position control; that is, r(t) will describe the trajectory to be followed by the mass.
- What is the transfer function of the closed-loop system?

Example of mass, spring and damper problem

Suppose to have a simple mass, spring, and damper problem.

- M = 1kg
- b = 10 N.s/m
- k = 20 N/m

$$M\ddot{x} + b\dot{x} + kx = F$$

$$Ms^2X(s) + bsX(s) + kX(s) = F(s)$$

$$\frac{X(s)}{F(s)} = \frac{1}{Ms^2 + bs + k}$$

Transfer Function

$$\frac{X(s)}{F(s)} = \frac{1}{s^2 + 10s + 20}$$

•More details are available at

Tool: Matlab and Simulink

 A basic tutorial on simulink is available as additional material: see simulink_quickstart.pdf

Simulate A Simple System with Proportional Control

- Consider a marble on a flat and perfectly leveled table again.
 - Any point can be an equilibrium point (just pick one)
 - Its motion can be described by Newton's law F = ma, or x'' = F/m
 - suppose that we want to keep the marble at x = 0, by applying proportional control: $F = -k_p x$.
 - The feedback is negative since if the marble <u>position error</u> is negative, it pushes with a positive force and vice versa.
 - K_p is a positive integer known as proportional control constant.

Basic Simulation Diagram Concepts: Marble Under Proportional Control

MARBLE

The double integrator with weight 1/m transforms force to acceleration, acceleration to velocity, and then velocity to position

1/s denotes integration (see Laplace transform of integral!)

Block diagram of Marble Control

Block diagram of Marble control: you can plot it with simulink and run simulations of the system!

•Quiz: What type of controller is this?

Simulink Simulation Diagram

•Quiz: What are Gain1 Gain2 and Gain3 called?

Matlab Simulink

>>simulink

Blocksets & Toolboxes

Simulink Block Library 2.2 Copyright (c) 1990-1998 by The MathWorks, Inc.

- Scope is in sink box
- saturation is in non-linear box etc
- double click to open a box and to set parameters
- See Simulink Quick Start guide (simulink_quickstart.pdf)

Modeling the amazing ball system (simplified)

How can we model the amazing ball system?

- Neglect friction and rolling effects → model amazing ball as inclined plane

Modeling the amazing ball system (simplified)

It is easy to model the amazing ball system as inclined plane by using Newton's second law F=m*a

- > control variable = angle of servo
- ➤ change of servo's angle → affects the (parallel) component of weight force applied to ball
- \rightarrow M*g*sin(θ) \rightarrow parallel component of weight force applied to the ball \rightarrow acceleration x''
- ➤ Integration of acceleration → velocity x'
- ➤ Integration of velocity → position x

1-Dimensional Free Body Diagram

Matlab Simulink Model: amazing ball system

Class exercise: Where should we add the PID controller in this diagram?

