Lucrarea 2

Dioda

1. Scopul lucrarii

Principalul obiectiv al lucrarii este familiarizarea studentului cu notiunile de baza ale diodei cat si familiarizarea cu limbajul python.

2. Ghid instalare python

1.1 Instalare linux

Primul pas este verificarea interpretorului, exista posibilitatea ca acesta sa fie instalat pe distributia de linux. Verificarea se face cu ajutorul comenzii **which**. Deschideti un terminal si tastati:

which python

In cazul in care comanda which nu returneaza nimic interpretorul va trebui instalat manual. Pe distributiile cunoscute cum ar fi ubuntu sau debian se foloseste utilitarul apt-get:

sudo apt-get install python

Unul din cele mai cunsocute ide-uri de python este spyder. Acesta este valabil si pe sistemele unix cat si pentru cele de windows. Pe distributiile cunoscute se gaseste in repo-urile oficiale.

sudo apt-get install spyder3

1.2 Instalare windows

Interpretorul de python nu se afla nativ pe sistemele windows. Acesta trebuie instalat separat: https://www.python.org/downloads/. Odata ce a fost instalat, acesta poate fi folosit in linie de comanda.

Ca si IDE se poate folosi **notepad++** si chemat interpretorul in linie de comanda. Un IDE cunoscut pentru windows este **PyCharm** <u>download page</u>

1.3 Instalarea bibliotecilor de python

Utilitarul pentru instalarea pachetelor de python se numeste **pip**. Acesta se apeleaza din linie de comanda. Exemplu:

pip install numpy

3. Desfasurarea lucrarii

Ca orice componenta electronica, dioda se poate aproxima printr-un model matematic ce ofera rezultate simulate apropiate cu functionarea reala.

$$I(V_d) = I_0(e^{(\frac{qV_d}{nkT})} - 1)$$

Shockley diode equation

- i. $I(V_d)$ curentul prin dioda
- ii. 10 curentul de saturatie al diodei
- iii. q sarcina elementara a electronului
- iv. V_d caderea de tensiune pe dioda
- v. k constanta lui Boltzmann
- vi. n constanta de material(Siliciu, Germaniu etc.)
- vii. T temperatura in Kelvin

3.1 Caracteristica Diodei

Ex. 1 Trasati caracteristica diodei folosind urmatoarele valori ale parametrilor, variind tensiunea pe dioda:

- $I_0 = 10^{-9} A$
- ii. $q=1.602176 \cdot 10^{-19} C$
- iii. k= 1.380649€10⁻²³ J/ K
- iv. n=2
- $_{\rm V}$ T = 300 K
- V_d vector deintrare cu valori cuprinse intre 0 V si 0.9 V cu pasul de 0.01 V

 $I\left(V_{d}\right)$ - $vector\ cecontine\ valorile\ curentului\ prindioda\ in\ functiede\ valoarea\ caderii\ detensiune\ pedioda$

Pentru declararea vectorilor se va folosi biblioteca numpy:

import numpy as np

u = np.arange(start = 0, stop = 10, step = 1)

Pentru plot se va folosi biblioteca pyplot:

import matplotlib.pyplot as plt

• • • •

```
plt.plot(u, current, 'r')
plt.xlabel("voltave V")
plt.ylabel("current A")
plt.title("diode characteristics")
```

Caracteristica diodei ar trebuie sa arate ca in urmatoarea imagine:

Figure 1: Caracteristica diodei

Se poate observa influenta temperaturii intre cele doua caracteristici.

3.2 Puntea redresoare bialternanta

Ex 2. Generati un semnal sinusoidal de intrare cu amplitudinea de 12V si frecventa de 50Hz.

Generati semnalul de iesire al redresorului avand cuplata la iesire a doar o rezistenta.

Observatie: Pentru generarea graficelor se va folosi aceeasi biblioteca <u>matplotlib</u>, pentru generarea semnalelor sinusoidale folositiva de bibliotecile <u>numpy</u> si <u>math</u>.