Teoria da Computação Engenharia Informática

Rodrigo Santos

II Semestre - 2023/2024

Contents

1	Demonstrações		2
	1.1	$(A_i)_{i\in\mathbb{N}}=A_1,A_2,\ldots$ uma sequencia de conjuntos contáveis.	
		Então $\bigcup A_i$ também é contável	2
		$iar{\in}\mathbb{N}$	
	1.2	Se $L1$ e $L2$ são regulares, então $L1 \cap L2$ também é regular	2
2	Exercícios		4
	2.1	Problem set 1	4
		2.1.1 Exercício 1	4

1 Demonstrações

1.1 $(A_i)_{i \in \mathbb{N}} = A_1, A_2, \dots$ uma sequencia de conjuntos contáveis. Então $\bigcup_{i \in \mathbb{N}} A_i$ também é contável.

Se cada conjunto A_i é contável, Então existe um função injetiva $g_i:A_i\to\mathbb{N}$ para cada $i\in\mathbb{N}$. Definimos a função $f:\bigcup_{i\in\mathbb{N}}A_i\to\mathbb{N}$ tal que $f(x)=g_i(x)$ se $x\in A_i$. f é injetiva pois g_i é injetiva para todo $i\in\mathbb{N}$. Logo, $\bigcup_{i\in\mathbb{N}}A_i$ é contável.

1.2 Se L1 e L2 são regulares, então $L1 \cap L2$ também é regular.

Como L_1 e L_2 são regulares, então existem autómatos finitos deterministas $(AFD's)~M_1=(S_1,\Sigma,\delta_1,s_1,F_1)$ e $M_2=(S_2,\Sigma,\delta_2,s_2,F_2)$ completos, que aceitam L_1 e L_2 respetivamente. Vamos construir um AFD $M = (S, \Sigma, \delta, s, F)$ que aceita $L_1 \cap L_2$. Vamos seguir a estratégia em que dado um input w, simulamos as computações de M_1 e M_2 em w, lado-a-lado, e aceitamos w se ambas as simulações aceitarem w. Para isso, precisamos de saber os estados atuais de M_1 e M_2 a cada momento da computação de w. Definimos então $S = S_1 \times S_2$ em que cada par representa um estado atual possível de M. Se M_1 está em q_1 e M_2 está em q_2 , então o estado atual de M é o tuplo $(q_1,q_2) \in S$ com $q_1 \in S_1$ e $q_2 \in S_2$. Se M está em $(q_1,q_2) \in S$ e lê o simbolo $a \in \Sigma$ então temos que atualizar o estado q_1 para $\delta_1(q_1, a)$ e o estado q_2 para $\delta_2(q_2, a)$. Assim, definimos a função de transição δ como $\delta((q_1,q_2),a) = (\delta_1(q_1,a),\delta_2(q_2,a)).$ Para o estado inicial de M queremos escolher o par (s_1, s_2) (estados iniciais de M_1 e M_2 respetivamente), ou seja $s=(s_1,s_2)$. Falta agora definir F. Queremos aceitar w qualquer, se ambas as computações em simultâneo aceitarem w (Ou seja terminem num estado

final de M_1 e num estado final de M_2). Assim vamos escolher o conjunto dos pares (q_1,q_2) em que $q_1 \in F_1$ e $q_2 \in F_2$, ou seja $F = F_1 \times F_2$. Assim, o AFD $M = (S, \Sigma, \delta, s, F)$ aceita $L_1 \cap L_2$, mas precisamos de demonstrar que $L(M) = L_1 \cap L_2$. Seja $w \in \Sigma^*$ qualquer. A sequência de estados gerada por w em M_1 e M_2 pode ser descrita como $r_0^i, r_1^i, \ldots, r_n^i$ para $i \in 1, 2$. Se $w \in L_1 \cap L_2$ então por definição temos $r_n^1 \wedge r_n^2$ pertencentes a F_1 e F_2 respetivamente. Concluimos então que $\delta(w) = (r_n^1, r_n^2) \in F$. Como w é arbitrário, então $L_1 \cap L_2 \subseteq L(M)$. Vamos ao complementar, se $w \notin L(M)$, então temos $r_n^1 \notin F_1 \wedge r_n^2 \notin F_2$. O que se traduz para $(r_n^1, r_n^2) \notin F$, e portanto $w \notin L(M)$ que leva a $L(M) \subseteq L_1 \cap L_2$. Concluimos então que $L(M) = L_1 \cap L_2$ e portanto $L_1 \cap L_2$ é regular.

2 Exercícios

2.1 Problem set 1

2.1.1 Exercício 1

(a)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Para demonstrar a igualdade temos que provar que $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$ e $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$. Vamos começar por provar que $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$. Seja $x \in A \cup (B \cap C)$. Então $x \in A$ ou $x \in B \cap C$. Se $x \in A$ então $x \in A \cup B$ e $x \in A \cup C$. Se $x \in B \cap C$ então $x \in B$ e $x \in C$. Assim, $x \in A \cup B$ e $x \in A \cup C$. Portanto, $x \in (A \cup B) \cap (A \cup C)$. Vamos agora provar que $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$. Seja $x \in (A \cup B) \cap (A \cup C)$. Então $x \in A \cup B$ e $x \in A \cup C$. Assim, $x \in A$ ou $x \in B$ e $x \in A$ ou $x \in C$. Se $x \in A$ então $x \in A \cup (B \cap C)$. Se $x \in B$ e $x \in C$ então $x \in A \cup (B \cap C)$. Concluímos então que $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

(b)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$