

Internet of Things

Senior Design Project Course

Processing - Part 1

Lecturer: Avesta Sasan

University of California Davis

Focus of Today's Lecture: MCU

Image source: http://www.cchc.cl/informacion-a-la-comunidad/industria-de-la-construccion/personaje/

Lets Get Started:

Microcontroller Basic Design

- All components are connected via an internal bus.
- All components are integrated on one chip.
- Communicate to outside world via IOs.

Processor Core:

- The CPU of the controller.
- Contains the arithmetic logic unit (ALU), the control unit, and the registers (stack pointer, program counter, accumulator register, register file, . . .).

Processor Core:

- The CPU of the controller.
- Contains the arithmetic logic unit (ALU), the control unit, and the registers (stack pointer, program counter, accumulator register, register file, . . .).

Memory:

- May be split into program memory and data memory.
- RAM, ROM, SRAM, FLASH/EEPROM

Processor Core:

- The CPU of the controller.
- Contains the arithmetic logic unit (ALU), the control unit, and the registers (stack pointer, program counter, accumulator register, register file, . . .).

Memory:

- May be split into program memory and data memory.
- RAM, ROM, SRAM, FLASH/EEPROM

Interrupt Controller:

- Interrupting the normal program flow in case of external or internal events.
- When combined with sleep modes, they help to conserve power.

Processor Core:

- The CPU of the controller.
- Contains the arithmetic logic unit (ALU), the control unit, and the registers (stack pointer, program counter, accumulator register, register file, . . .).

Memory:

- May be split into program memory and data memory.
- RAM, ROM, SRAM, FLASH/EEPROM

Interrupt Controller:

- Interrupting the normal program flow in case of external or internal events.
- When combined with sleep modes, they help to conserve power.

Timer/Counter:

- Used to timestamp events, measure intervals, or count events
- 1-3 Timer/Counters per MCU
- Some also contain Pulse Width Modulation (PWM).

Digital I/O:

- Parallel digital I/O ports
 - from 3-4 to over 90

Digital I/O:

- Parallel digital I/O ports
 - from 3-4 to over 90

Analog I/O:

- 2-16 ports
- Digital/Analog converters. (DAC, ADC)

Digital I/O:

- Parallel digital I/O ports
 - from 3-4 to over 90

Analog I/O:

- □ 2-16 ports
- Digital/Analog converters. (DAC, ADC)

Interfaces:

- For communication with the development PC in general
- Most controllers offer several and varied interfaces like SPI and I2C.
- Larger microcontrollers may also contain <u>PCI</u>, USB, or Ethernet interfaces.

Watchdog Timer:

- Used to reset the controller in case of software "crashes".
- □ Timer set to count down, if reaches 0, restart the microcontroller
- To prevent restart, the software has to reset the watchdog.

Debugging Unit:

 Some include additional hardware to allow remote debugging so there is no need to download special debugging software.

What is not Inside a MCU?

- No Cache!
- No MMU (maybe you see this in larger microcontrollers)
- No complicated pipeline (single or simple multicycle pipelines)
- No disk
- No FP ALU

stripped-down

A microcontroller is a (stripped-down) processor which is equipped with memory, timers, (parallel) I/O pins and other on-chip peripherals.

Lets Review Related Terms:

Microprocessor:

- A normal CPU (Central Processing Unit).
- Communicate with external devices by data bus
 - Peripheral devices (memory, floppy controller, USB controller, timer, . . .) are connected to the bus.
- Only contains data, address pins and a couple of control pins.
- Can not operate stand-alone
 - At the very least it requires some memory and an output device

Mixed-Signal Controller:

This is a microcontroller which can process both digital and analog signals.

Real-Time System:

- Reaction to an event has to occur within a specified time.
- MCUs are very often used in Real Time Systems.

Lets Review Related Terms:

Embedded System:

- A microcontroller within a larger mechanical or electrical system
- A complete device often including hardware and mechanical parts.

Embedded Processor vs Embedded Controller

- This term often occurs in association with embedded systems!
- "embedded processor" is used for high-end devices (32 bits).
- "embedded controller" is traditionally used for low-end devices (4, 8, 16 bits).

Digital Signal Processor (DSP):

- To process signals.
- An important area of use is telecommunications.
- Designed for fast addition and multiplication
- Many vendors combine a controller with a DSP on one chip
 - e.g. Motorola's DSP56800.

Basic CPU architecture

- A very basic CPU architecture:
- PC: Program Counter: keep track of executed program.
- Instruction Register: keeps the incoming instruction for execution.
- SP: Stack Pointer
- Control Unit: decode the instruction and generate the control signals.
- ALU: Arithmetic Logic Unit: execute arithmetic operation on data
- RF: Register File: hold the data input to or output from ALU.
- Status Reg: Keep the status of the current instruction executed by ALU
 - □ **Z**: Zero
 - N: Negative
 - □ **O**: Overflow
 - C: Carry

Processor Complexity Varies Widely!

- Processor in MCU and in General Purpose Computers are very different in terms of capabilities.
 - □ MCU processor → Simple → light workload → low power
 - □ GP processor → Complex → Can handle anything → high power

Plast Program Program Astatus and Control Unit Unit Ceneral Purpose Registres Program Purpose Re

IBM Power5 Microprocessor

Arduino Microprocessor

Example: Arduino Processor:

- Uses the Harvard architecture
 - The program code and program data have separate memories
- Single level pipeline to execute the instructions in order
- 32 x 8 bit general purpose registers
- Single clock cycle access time
- Single cycle ALU operation

Simple

Example: IBM Power5

- 2 cores, out-of-order execution
- 100-entry instruction window in each core
- 8-wide instruction fetch, issue, execute
- Large, local+global hybrid branch predictor
- 1.5MB, 8-way L2 cache
- Aggressive stream based prefetching

Complex

Figure 4. Power5 instruction data flow (BXU = branch execution unit and CRL = condition register logical execution unit).

Microcontroller Classification

Microcontroller Data Width

- Data width is the size of internal bus and size of ALU inputs.
- The larger the data width
 - Greater the precision
 - Higher the performance
 - Higher the complexity
- Note that workload should match processor complexity.
 - Using over or under capable MCU result in larger energy consumption for execution of task.
- Examples of MCU with different data widths:
 - □ **8 bit microprocessors:** Intel 8031/8051, PIC1x and Motorola MC68HC11 families
 - □ **16 bit microprocessors:** extended 8051XA, PIC2x, Intel 8096 and Motorola MC68HC12 families
 - □ **32 bit microprocessors:** Intel/Atmel 251 family, PIC3x

Processor Architecture (RISC vs CISC)

RISC: Reduced Instruction Set Architecture

- Has simple, hard-wired instructions
- Instructions take one or a few clock cycles to execute.
- Few instructions
- Few addressing modes.
- The instruction set is rather simple.
- Execution of instructions is very fast, but instructions are simple

CISC: Complex Instruction Set Architecture

- Has complex micro-coded instructions
- Instructions can take many clock cycles to execute.
- Powerful instructions and addressing modes.
- In comparison to RISC, CISC takes longer to execute its instructions, but the instruction set is more powerful.

Von Neumann vs Harvard Architecture

If memory and data are in the same memory or not?

Von Neumann Architecture:

- program and data are stored together and are accessed through the same bus.
- program and data accesses may conflict

Harvard Architecture:

- program and data are in separate memories which are accessed via separate buses.
- code accesses do not conflict with data accesses
 - improves system performance.

Tradeoff!

- Harvard Architecture: requires more hardware,
 - two busses and either two memory chips or a dual-ported memory (a memory chip which allows two independent accesses at the same time).

Von Neumann Architecture:

- conflict in simultaneous need to access instruction and data causes bottleneck, leading to unwelcome delays.
- A.K.A Princeton Architecture

Memory

- Semiconductor memories could be categorized into:
 - Volatile: looses value if supply is disconnected
 - Nonvolatile: keeps the value if supply is disconnected

Microcontroller vs. Microprocessor

Microprocessor

- CPU is stand-alone, RAM, ROM, I/O, timer are separate
- designer can decide on the amount of ROM, RAM and I/O ports.
- Expensive
- Versatility
- General-purpose
- High processing power
- High power consumption
- Instruction sets focus on processingintensive operations
- Typically 32/64 bit
- Typically deeply pipelined (5-20 stages)

Microcontroller

- o CPU, RAM, ROM, I/O and timer are all on a single chip
- fixed amount of on-chip ROM, RAM,I/O ports
- For applications in which cost, power and space are critical
- Single (or limited) purpose (controloriented)
- Low processing power
- Low power consumption
- o Bit-level operations
- Instruction sets focus on control and bitlevel operations
- o Typically 8-16 bit
- Typically single-cycle/two-stage pipeline