

## Polynomial Functors in Lean4

Sina Hazratpour

April 8, 2025

### Chapter 1

# Locally Cartesian Closed Categories

**Definition 1.0.1** (exponentiable morphism). CategoryTheory.ExponentiableMorphism Suppose  $\mathbb{C}$  is a category with pullbacks. A morphism  $f \colon A \to B$  in  $\mathbb{C}$  is **exponentiable** if the pullback functor  $f^* \colon \mathbb{C}/B \to \mathbb{C}/A$  has a right adjoint  $f_*$ . Since  $f^*$  always has a left adjoint  $f_!$ , given by post-composition with f, an exponentiable morphism f gives rise to an adjoint triple

$$\begin{array}{c|c}
\mathbb{C}/B \\
f_! & \uparrow \\
 & \uparrow \\
 & \downarrow \\
 & \downarrow \\
 & \mathbb{C}/A
\end{array}$$

**Definition 1.0.2** (pushforward functor). CategoryTheory.ExponentiableMorphism.pushforward Let  $f: A \to B$  be an exponentiable morphism in a category  $\mathbb{C}$  with pullbacks. We call the right adjoint  $f_*$  of the pullback functor  $f^*$  the **pushforward** functor along f.

**Theorem 1.0.3** (exponentiable morphisms are exponentiable objects of the slices). Category Theory. Exponentiable Morphism. Over MkHom defn: exponentiable morphism A morphism  $f: A \to B$  in a category  $\mathbb{C}$  with pullbacks is exponentiable if and only if it is an exponentiable object, regarded as an object of the slice  $\mathbb{C}/B$ .

**Definition 1.0.4** (Locally cartesian closed categories). Category Theory. Locally Cartesian Closed A category with pullbacks is **locally cartesian closed** if is a category  $\mathbb C$  with a terminal object 1 and with all slices  $\mathbb C/A$  cartesian closed.

### Chapter 2

# Univaiate Polynomial Functors

In this section we develop some of the definitions and lemmas related to polynomial endofunctors that we will use in the rest of the notes.

**Definition 2.0.1** (Polynomial endofunctor). Category Theory.UvPoly Let  $\mathbb C$  be a locally Cartesian closed category (in our case, presheaves on the category of contexts). This means for each morphism  $t:B\to A$  we have an adjoint triple

$$\begin{array}{c|c}
\mathbb{C}/B \\
t_! \left( \begin{array}{c} \uparrow \\ + t^* \end{array} \right) \\
\mathbb{C}/A
\end{array}$$

where  $t^*$  is pullback, and  $t_!$  is composition with t.

Let  $t:B\to A$  be a morphism in  $\mathbb C.$  Then define  $P_t:\mathbb C\to\mathbb C$  be the composition

$$P_t := A_! \circ t_* \circ B^*$$

$$\mathbb{C} \xrightarrow{B^*} \mathbb{C}/B \xrightarrow{t_*} \mathbb{C}/A \xrightarrow{A_!} \mathbb{C}$$

### Chapter 3

## Multivariate Polynomial Functors

Let  $\mathbb{C}$  be category with pullbacks and terminal object.

**Definition 3.0.1** (multivariable polynomial functor). CategoryTheory.MvPoly A **polynomial** in  $\mathbb{C}$  from I to O is a triple (i, p, o) where i, p and o are morphisms in  $\mathbb{C}$  forming the diagram

$$I \stackrel{i}{\leftarrow} E \stackrel{p}{\rightarrow} B \stackrel{o}{\rightarrow} J.$$

The object I is the object of input variables and the object O is the object of output variables. The morphism p encodes the arities/exponents.

**Definition 3.0.2** (extension of polynomial functors). CategoryTheory.MvPoly.functor The **extension** of a polynomial  $I \stackrel{i}{\leftarrow} B \stackrel{p}{\rightarrow} A \stackrel{o}{\rightarrow} J$  is the functor  $P = o_! f_* i^* : \mathbb{C}/I \rightarrow \mathbb{C}/O$ . Internally, we can define P by

$$P(X_i \mid i \in I) = \left(\sum_{b \in B_j} \prod_{e \in E_b} X_{s(b)} \mid j \in J\right)$$

A **polynomial functor** is a functor that is naturally isomorphic to the extension of a polynomial.