Topics

- Probability
- Conditional Probability
- Bayes Rule
- HMM tagging
- Markov Chains
- ☐ Hidden Markov Models

Introduction to Probability

- Experiment (trial)
- Repeatable procedure with well-defined possible outcomes
- Sample Space (S)
- the set of all possible outcomes
- finite or infinite
- Example
- coin toss experiment
- □ possible outcomes: S = {heads, tails}
- Example
- die toss experiment
- □ possible outcomes: $S = \{1,2,3,4,5,6\}$

Introduction to Probability

- Definition of sample space depends on what we are asking
- Sample Space (S): the set of all possible outcomes
- Example
- die toss experiment for whether the number is even or odd
- □ possible outcomes: {even,odd}
- □ *not* {1,2,3,4,5,6}

More definitions

- Events
- an **event** is any subset of outcomes from the **sample space**
- Example
- die toss experiment
- let A represent the event such that the outcome of the die toss experiment is divisible by 3
- $A = \{3,6\}$
- A is a subset of the sample space $S = \{1,2,3,4,5,6\}$

Definition of Probability

- The probability law assigns to an event a nonnegative number
- Called P(A)
- Also called the probability A
- That encodes our knowledge or belief about the collective likelihood of all the elements of A
- Probability law must satisfy certain properties

Probability Axioms

- Nonnegativity
- P(A) >= 0, for every event A
- Additivity
- If A and B are two disjoint events, then the probability of their union satisfies:
- \blacksquare P(A U B) = P(A) + P(B)
- Normalization
- The probability of the entire sample space S is equal to 1, i.e. P(S) = 1.

An example

An experiment involving a single coin toss

There are two possible outcomes, H and T

Sample space S is {H,T}

If coin is fair, should assign equal probabilities to {H,T} outcomes

Since they have to sum to 1

$$P(\{H\}) = 0.5$$
 and $P(\{T\}) = 0.5$

$$P({H,T}) = P({H}) + P({T}) = 1.0$$

Another example

- Experiment involving 3 coin tosses
- Outcome is a 3-long string of H or T
- □ S ={HHH,HHT,HTT,THH,TTTH,TTTT}
- Assume each outcome is equiprobable
- "Uniform distribution"
- What is probability of the event that exactly 2 heads occur?

$$A = \{HHT, HTH, THH\}$$

 $P(A) = P(\{HHT\}) + P(\{HTH\}) + P(\{THH\})$ union of the prob of individual events

$$= 1/8 + 1/8 + 1/8$$

Probability definitions

□ In summary:

Probability of drawing a spade from 52 well-shuffled playing cards:

$$\frac{13}{52} = \frac{1}{4} = 0.25$$

Probability and part of speech tags

■ What's the probability of a random word (from a random dictionary page) being a verb?

$$P(drawing averb) = \frac{of ways to get averb}{all words}$$

How to compute each of these?

All words = just count all the words in the dictionary

of ways to get a verb: # of words which are verbs!

If a dictionary has 50,000 entries, and 10,000 are verbs....

P(V) is 10000/50000 = 1/5 = .20

Conditional Probability

- A way to reason about the outcome of an experiment based on partial information
- In a word guessing game the first letter for the word is a "t". What is the likelihood that the second letter is an "h"?
- How likely is it that a person has a disease given that a medical test was negative?
- A spot shows up on a radar screen. How likely is it that it corresponds to an aircraft?

An intuition

- Let's say A is "it's raining".
- Let's say P(A) in dry Florida is .01
- Let's say B is "it was sunny ten minutes ago"
- P(A|B) means "what is the probability of it raining now if it was sunny 10 minutes ago"
- P(A|B) is probably way less than P(A)
- Perhaps P(A|B) is .0001
- Intuition: The knowledge about B should change our estimate of the probability of A.

More precisely

- ☐ Given an experiment, a corresponding sample space S, and a probability law
- Suppose we know that the outcome is some event B
- We want to quantify the likelihood that the outcome also belongs to some other event A
- We need a new probability law that gives us the conditional probability of A given B
- P(A|B)

Conditional Probability

- □ let A and B be events in the sample space
- □ P(A|B) = the conditional probability of event A occurring given some fixed event B occurring
- **a** definition: $P(A|B) = P(A \cap B) / P(B)$

Conditional probability

□
$$P(A|B) = P(A \cap B)/P(B)$$

O O

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

Note: $P(A,B)=P(A|B) \cdot P(B)$

Also: P(A,B) = P(B,A)

Independence

■ What is P(A,B) if A and B are independent?

□ P(A,B)=P(A) · P(B) iff A,B independent.

 $P(heads, tails) = P(heads) \cdot P(tails) = 0.5 \cdot 0.5 = 0.25$

Note: P(A|B)=P(A) iff A,B independent

Also: P(B|A)=P(B) iff A,B independent

Bayes Theorem

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

• Idea: The probability of an A conditional on another event B is generally different from the probability of B conditional on A. There is a definite relationship between the two.

The probability of event A given event B is

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

The probability of event B given event A is

$$P(B|A) = \frac{P(A,B)}{P(A)}$$

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

$$P(B|A) = \frac{P(A,B)}{P(A)}$$

$$P(A|B)P(B) = P(A,B)$$

$$P(B|A)P(A) = P(A,B)$$

$$P(A|B) = \frac{P(A,B)}{P(B)} \qquad P(B|A) = \frac{P(A,B)}{P(A)}$$

$$P(A|B)P(B) = P(A,B) \qquad P(B|A)P(A) = P(A,B)$$

$$P(A|B)P(B) = P(B|A)P(A)$$

$$P(A|B) = P(B|A)P(A)$$

$$P(A|B) = P(B|A)P(A)$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

the theorem may be paraphrased as:

Conditional/Posterior probability =

(LIKELIHOOD multiplied by PRIOR) divided by NORMALIZING

CONSTANT

Hidden Markov Model (HMM) Tagging

- Using an HMM to do POS tagging
- HMM is a special case of Bayesian inference
- □ It is also related to the "noisy channel" model in ASR (Automatic

Speech Recognition)

POS tagging as a sequence classification task

- ☐ Given a sentence (an "observation" or "sequence of observations")
- Secretariat is expected to race tomorrow
- sequence of n words w1...wn.
- What is the best sequence of tags which corresponds to this sequence of observations?
- Probabilistic/Bayesian view:
- Consider all possible sequences of tags
- Out of this universe of sequences, choose the tag sequence which is most probable given the observation sequence of n words w1...wn.

Getting to HMM

- $\quad \square \quad Let \ T = t_1, t_2, \ldots, t_n$
- \square Let $W = W_1, W_2, ..., W_n$
- □ Goal: Out of all sequences of tags t₁...tn, get the the most probable sequence of POS tags T underlying the observed sequence of

words
$$w_{\scriptscriptstyle 1}$$
, $w_{\scriptscriptstyle 2}$,..., $w_{\scriptscriptstyle n}$ $\widehat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(t_1^n | w_1^n)$

- Hat $^{\wedge}$ means "our estimate of the best = the most probable tag sequence"
- \Box Argmax, f(x) means "the x such that f(x) is maximized"

it maximizes our estimate of the best tag sequence

Getting to HMM

This equation is guaranteed to give us the best tag sequence

$$\hat{t}_1^n = \underset{t_n^n}{\operatorname{argmax}} P(t_1^n | w_1^n)$$

- But how do we make it operational? How do we compute this value?
- Intuition of Bayesian classification:
- Use Bayes rule to transform it into a set of other probabilities that are easier to compute
- Thomas Bayes: British mathematician (1702-1761)

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$

Breaks down any conditional probability P(x|y) into three other probabilities

P(x|y): The conditional probability of an event x assuming that y has occurred

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} \frac{P(w_1^n|t_1^n)P(t_1^n)}{P(w_1^n)}$$

sequence; we are looking for the best tag sequence for the same We can drop the denominator: it does not change for each tag observation, for the same fixed set of words

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} \frac{P(w_1^n | t_1^n) P(t_1^n)}{P(w_1^n)}$$

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(w_1^n | t_1^n) P(t_1^n)$$

Likelihood and prior

likelihood prior
$$\widehat{t_1^n} = \underset{t_1^n}{\operatorname{argmax}} \ \widehat{P(w_1^n|t_1^n)} \ \ \widehat{P(t_1^n)}$$

Likelihood and prior Further Simplifications

 the probability of a word appearing depends only on its own POS tag, i.e, independent of other words around it

$$P(w_1^n|t_1^n) \approx \prod_{i=1}^n P(w_i|t_i)$$

2. BIGRAM assumption: the probability of a tag appearing depends only on the previous tag

$$P(t_1^n) \approx \prod_{i=1}^n P(t_i|t_{i-1})$$

3. The most probable tag sequence estimated by the bigram

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n) \approx \underset{t_1^n}{\operatorname{argmax}} \prod_{i=1} P(w_i | t_i) P(t_i | t_{i-1})$$

Likelihood ratio Further Simplifications

1. the probability of a word appearing depends only on its own POS tag, i.e, independent of other words around it

$$P(w_1^n|t_1^n) pprox \prod_{i=1}^n P(w_i|t_i)$$

Prior probability Further Simplifications

2. BIGRAM assumption: the probability of a tag appearing depends only on the previous tag

$$P(t_1^n) \approx \prod_{i=1}^n P(t_i|t_{i-1})$$

Bigrams are groups of two written letters, two syllables, or two words; they are a special case of N-gram.

assumption is related to the first-order Markov Bigrams are used as the basis for simple statistical analysis of text The bigram assumption

Likelihood and prior Further Simplifications

3. The most probable tag sequence estimated by the bigram tagger

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n) \approx \underset{t_1^n}{\operatorname{argmax}} \prod_{i=1}^n P(w_i | t_i) P(t_i | t_{i-1})$$

bigram assumption

Two kinds of probabilities (1)

- Tag transition probabilities p(t|t₁)
- Determiners likely to precede adjs and nouns
- □ That/DT flight/NN
- □ The/DT yellow/JJ hat/NN
- So we expect P(NN|DT) and P(JJ|DT) to be high
- But P(DT|JJ) to be:?

Two kinds of probabilities (1)

- Tag transition probabilities p(t|t₁)
- Compute P(NN|DT) by counting in a labeled corpus:

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1}, t_i)}{C(t_{i-1})}$$

of times DT is followed by NN

$$P(NN|DT) = \frac{C(DT,NN)}{C(DT)} = \frac{56,509}{116,454} = .49$$

Two kinds of probabilities (2)

- Word likelihood probabilities p(w|t)
- P(is|VBZ) = probability of VBZ (3sg pres verb) being "is"

If we were expecting a third person singular verb, how likely is it that this verb would be is?

Compute P(is|VBZ) by counting in a labeled corpus:

$$P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$$

$$P(is|VBZ) = \frac{C(VBZ, is)}{C(VBZ)} = \frac{10,073}{21,627} = .47$$

An Example: the verb "race"

Secretariat/NNP is/VBZ expected/VBN to/TO race/VB

tomorrow/NR

People/NNS continue/VB to/TO inquire/VB the/DT reason/NN

for/IN the/DT race/NN for/IN outer/JJ space/NN

How do we pick the right tag?

Disambiguating "race"

Disambiguating "race"

□ P(NN|TO) = .00047

P(VB|TO) = .83

The tag transition probabilities P(NN|TO) and P(VB|TO):

'How likely are we to expect verb/noun given the previous tag TO?'

□ P(race|NN) = .00057

P(race|VB) = .00012

Lexical likelihoods from the Brown corpus for 'race' given a POS tag

NN or VB.

Disambiguating "race"

□ P(NR|VB) = .0027

P(NR|NN) = .0012

tag sequence probability of an adverb occurring given the previous

tag verb / noun

 $P(VB|TO)P(NR|VB)P(race|VB) = .83 \times .0027 \times .00012 = .00000027$

P(NN|TO)P(NR|NN)P(race|NN)=.

00047x,0012x,00057=,0000000032

Multiply the lexical likelihoods with the tag sequence probabilities:

Hence the race is tagged as verb!

Hidden Markov Models

- What we've described with these two kinds of probabilities is a
- Hidden Markov Model (HMM)
- Let's just spend a bit of time tying this into the model
- □ In order to define HMM, we will first introduce the Markov Chain, or
- observable Markov Model.

Definitions

- ☐ A weighted finite-state automaton adds probabilities to the arcs
- The sum of the probabilities leaving any arc must sum to one
- sequence uniquely determines which states the automaton will go A Markov chain is a special case of a WFST in which the input through
- Markov chains can't represent inherently ambiguous problems
- Useful for assigning probabilities to unambiguous sequences

Markov chain = "First-order observable Markov Model"

Table 1: Probabilities $p(q_{n+1}|q_n)$ of tomorrow's weather based on today's weather

	Tomo	Tomorrow's weather	eather
Today's weather	*	⊕	¢
*	0.8	0.05	0.15
(#	0.2	9.0	0.2
ē	0.2	0.3	0.5

Hidden Markov Model

- For Markov chains, the output symbols are the same as the states.
- See rainy weather: we're in state rainy
- But in part-of-speech tagging (and other things)
- The output symbols are words
- But the hidden states are part-of-speech tags
- So we need an extension!
- allows both observed events (like words as input) and hidden events A Hidden Markov Model is an extension of a Markov chain that

(like pos tags)

Hidden Markov Model

- □ States $Q = q_1, q_2...q_N$
- Observations $O = o_1, o_2...o_N$
- Each observation is a symbol from a vocabulary $V = \{v_1, v_2, \dots v_v\}$
- Transition probabilities (prior)
- Transition probability matrix $A = \{a_{ij}\}$. Probability of moving from state *i* to state *j*
- Observation likelihoods (likelihood)
- probability matrix B={b_i(o_t)}
- probability of an observation $\mathbf{O}_{\!\scriptscriptstyle \parallel}$ being generated from a state *i*. a sequence of observation likelihoods, each expressing the
- A special start and end state

HMM Taggers

- An HMM has two kinds of probabilities
- A transition probabilities (PRIOR) (slide 35)
- B observation likelihoods (LIKELIHOOD) (slide 35)
- HMM Taggers choose the tag sequence which maximizes the product of word likelihood and tag sequence probability

$$\widehat{t_1^n} = \underset{t_1^n}{\operatorname{argmax}} \ \widehat{P(w_1^n|t_1^n)} \ \ \widehat{P(t_1^n)}$$

Markov chain corresponding to hidden states of HMM, showing A probs

Transition probabilities are used to compute prior probability

B observation likelihoods for HMM

Next Time

■ Transformation-Based Tagging