EINFÜHRUNG IN DIE FUNKTIONALANALYSIS

Inhaltsverzeichnis

Organisatorisches	1
1. Normierte Räume	1
1.1. Eigenschaften normierter Räume	8
1.2. Quotientenräume und die Räume L^p	14
2. Übungsblätter	24
2.1. Übungsblatt 1	24
2.2. Übungsblatt 2	25
2.3 Übungshlatt 3	27

Organisatorisches

Vorlesung: Di 12.15 - 13.45 HS4; Mi 14.15 - 15.45 HS4 15.10.13

Übung: Do 16.00 - 17.30 HS4

Dozent: Christian Lageman christian.lageman@mathematik.uni-wuerzburg.de Sprechstunde: Mi 10.00 - 11.30 Übungsblätter: Abgabe Vorlesung Dienstag

Wuecampus:

Klausur: 5.4.2014, 14:00 HS4

Literatur: D. Werner, Funktionalanalysis, Springer-Verlag 2011 F. Hirzebruch, W. Scharlau, Einführung in die Funktionalanalysis, Sprektrum Akademischer Verlage, 1991 E. Kreyzig, Introduction Functional Analysis with Applications, John Wiley & Songs, 1989 R. Meise, D. Vogt, Einführung in die Funktionalanalysis, Vieweg + Teubner Verlag, 2011

Voraussetzungen: Lineare Algebra I und II; Analysis I und II; Veriefung Analysis; insbesondere metrische Räume, Folgen in metrischen Räumen, offene und abgeschlossene Mengen, Integration im \mathbb{R}^n

1. Normierte Räume

Sprechen wir von einem \mathbb{K} -Vektorraum, so meinen wir einen \mathbb{R} - oder \mathbb{C} -Vektorraum, d.h. die entsprechenden Definitionen und Sätze gelten sowohl für reelle als auch für komplexe Vektorräume. Wir verwenden \mathbb{K} als Platzhalter für \mathbb{R} bzw. \mathbb{C} in den Sätzen und Definitionen.

Definition 1. Sei X ein \mathbb{K} -Vektorraum. Wir nennen eine Funktion $\|\cdot\|: X \to [0,\infty)$ eine $Halbnorm\ auf\ X$, falls gilt:

- $(1) \ \forall_{v \in X, \lambda \in \mathbb{K}} : ||\lambda v|| = |\lambda| \cdot ||v||$
- (2) $\forall_{v,w\in X}: ||v+w|| \leq ||v|| + ||w||$ (Dreiecksungleichung)

Gilt zusätzlich noch $\forall v \in X : ||v|| = 0 \implies v = 0$, so nennen wir $||\cdot||$ eine Norm auf X. Ist $||\cdot||$ eine Norm auf X, so bezeichnen wir $(X, ||\cdot||)$ als normierten Raum.

Eine Norm $\|\cdot\|$ auf einem \mathbb{K} -Vektorraum X induziert durch $d(v,w) = \|v-w\|$ eine Metrik $d: X \times X \to [0,\infty)$ auf X, die wir als kanonische Metrik auf $(X,\|\cdot\|)$ bezeichnen.

Ein normierter Raum ist damit auch ein metrischer Raum. Die Begriffe von offenen und abgeschlossenen Mengen, Konvergenz von Folgen, Cauchy-Folgen, Vollständigkeit, Stetigkeit von Abbildungen ergeben sich für normierte Räume aus den entsprechenden Begriffen für metrische Räume.

Beispiel 1. Sei $(X, \|\cdot\|)$ ein normierter Raum. Eine Folge (v_n) in X heißt konvergent gegen $v^* \in X$ falls gilt:

$$\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}: \|v_n - v^*\| < \varepsilon$$

wobei $||v_n - v^*|| = d(v_n, v^*)$ mit der kanonischen Metrik d ist.

Für einen normierten Raum $(X, \|\cdot\|)$ notieren wir:

- (1) den Abschluss einer Menge $M \subset X$ mit \overline{M} ,
- (2) den Rand einer Menge $M \subset X$ mit ∂M ,
- (3) das Innere einer Menge $M \subset X$ mit int M,

Aus der entsprechenden Definitionen für metrische Räume ergibt sich: eine Folge (v_n) in einem normierten Raum $(X, \|\cdot\|)$ heißt Cauchy-Folge, falls gilt

$$\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}\forall_{n,m>N}: ||v_n-v_m||<\varepsilon.$$

Ein metrischer Raum und entsprechend auch ein normierter Raum, in dem jede Cauchy-Folge konvergiert, nennt man $vollst \ddot{a}n dig$.

(1) die offene Kugel um $v \in X$ mit Radius r mit $U_r(v) = \{w \in X : ||v-w|| < r\}$.

Definition 2. Einen vollständigen normierten Raum bezeichnet man als *Banachraum*.

Beispiel 2. zur Verdeutlichung.

- (1) Versehen wir \mathbb{R}^n bzw \mathbb{C}^n mit einer Norm $\|\cdot\|$, so ist der normierte Raum $(\mathbb{R}^n, \|\cdot\|)$ bzw. $(\mathbb{C}^n, \|\cdot\|)$ ein Banachraum. Es sei daran erinnert, dass auf einem endlich-dimensionalen Vektorraum alle Normen äquivalent sind, d.h. sind $\|\cdot\|_*$, $\|\cdot\|_+$ Normen auf einem endlichen-dimensionalen \mathbb{K} -Vektorraum X, so gibt es Konstanten m, M > 0 mit $\forall_{v \in X} : m\|v\|_* \leq \|v\|_+ \leq M\|v\|_*$. Die Vollständigkeit im \mathbb{R}^n bzw. \mathbb{C}^n ist damit nur für eine Norm nachzuweisen und aus der Analysis bekannt.
- (2) Sei M eine nicht-leere Menge. Wir bezeichnen mit $l^{\infty}(M)$ den \mathbb{K} -Vektorraum der beschränkten Funktionen $M \to \mathbb{K}$. Wir definieren auf $l^{\infty}(M)$ die Norm $\|\cdot\|_{\infty}$ durch $\|f\|_{\infty} = \sup_{x \in M} |f(x)|$ für $f \in l^{\infty}(M)$. Die Norm ist wohldefiniert, da f beschränkt ist. Man bezeichnet $\|\cdot\|_{\infty}$ auch als die sogenannte Supremumsnorm. $\|\cdot\|_{\infty}$ ist eine Norm, denn:

- (a) für $f \in l^{\infty}(M)$, $\lambda \in \mathbb{K}$ gilt: $\|\lambda f\|_{\infty} = \sup_{x \in M} |\lambda f(x)| = \sup_{x \in M} |\lambda| \|f(x)\| = \|\lambda\| \|f\|_{\infty}$.
- (b) für $f, g \in l^{\infty}(M)$ gilt: $||f+g||_{\infty} = \sup_{x \in M} |(f+g)(x)| = \sup_{x \in M} |f(x)+g(x)| \le \sup_{x \in M} |f(x)| + |g(x)| \le \sup_{x \in M} |f(x)| + \sup_{x \in M} |g(x)| = ||f||_{\infty} + ||g||_{\infty}.$
- (c) für $f \in l^{\infty}(M)$ gilt: $||f||_{\infty} = 0 \implies \sup_{x \in M} |f(x)| = 0 \implies \forall_{x \in M} : |f(x)| = 0 \implies f \equiv 0.$

 $(l^{\infty}(M), \|\cdot\|_{\infty})$ ist also ein normierter Raum. Wir zeigen nun, dass der Raum vollständig ist. Sei dazu (f_n) eine Cauchy-Folge in $l^{\infty}(M)$. Es gilt also $\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}\forall_{n,m>N}:\|f_n-f_m\|<\varepsilon$. Es gilt außerdem $\|f_n-f_m\|=\sup_{x\in M}|f_n(x)-f_m(x)|$. Dies impliziert, dass $\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}\forall_{n,m>N}\forall_{x\in M}:|f_n(x)-f_m(x)|<\varepsilon$. Insbesondere gilt für alle $x\in M$ daher $\forall_{\varepsilon>0}\exists_{N\in\mathbb{M}}\forall_{n,m>N}:|f_n(x)-f_m(x)|<\varepsilon$, und also ist $(f_n(x))$ eine Cauchy-Folge für jedes $x\in M$. Da \mathbb{R} und \mathbb{C} vollständig sind, ist für jedes $x\in M$ die Folge $(f_n(x))$ konvergent. Wir erhalten die Funktion $f^*:M\to\mathbb{K}$ durch $\forall_{x\in M}:f^*(x)=\lim_{n\to\infty}f_n(x)$. Wir erhalten eine Funktion $f^*:M\to\mathbb{K}$ mit $\forall_{x\in M}:f^*(x)=\lim_{n\to\infty}f_n(x)$. Wir hatten uns überlegt, dass

$$\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}\forall_{n,m>N}\forall_{x\in M}:|f_n(x)-f_m(x)|<\varepsilon.$$

Damit gibt es ein $N \in \mathbb{N}$ mit $\forall_{n,m>N} \forall_{x \in M} : |f_n(x) - f_m(x)| < 1$. (Dies ist äquivalent zu $f_m(x) \in U_1(f_n(x))$.) Also $\forall_{m>N} \forall_{x \in M} : f_m(x) \in U_1(f_{N+1}(x))$. Somit $\forall_{x \in M} : f^*(x) \in U_1(f_{N+1}(x))$. Damit $\forall_{x \in M} : |f_{N+1}(x) - f^*(x)| \leq 1$. Da $f_{N+1} \in l^{\infty}(M)$, also beschränkt ist, muss auch f^* beschränkt sein. Wir erhalten $f^* \in l^{\infty}(M)$. Wir zeigen nun die Konvergenz von (f_n) gegen f^* . Sei $\varepsilon > 0$ gegeben. Dann gibt es sein $N \in \mathbb{N}$, so dass $\forall_{n,m>N} \forall_{x \in M} : |f_n(x) - f_m(x)| < \frac{\varepsilon}{3}$. Also $\forall_{x \in M} \forall_{n>N} \forall_{m>N} : |f_n(x) - f_m(x)| < \frac{\varepsilon}{3}$. Da es zu jedem $x \in M$ und n > N ein $m(x,n) \in \mathbb{N}, m(x,n) > N$ gibt mit

$$|f_{m(x,n)}(x) - f^*(x)| < \underbrace{\frac{\varepsilon}{2} - |f_n(x) - f_{m(x,n)}(x)|}_{> \frac{\varepsilon}{n} - \frac{\varepsilon}{n} = \frac{1}{n}\varepsilon}.$$

folgt

$$\forall_{x \in M} \forall_{n > N} : \underbrace{|f_n(x) - f_{m(x,n)}(x)| + |f_{m(x,n)}(x) - f^*(x)|}_{|f_n(x) - f^*(x)| \le} < \frac{\varepsilon}{2} - |f_n(x) - f_{m(x,n)}(x)| + |f_n(x) - f_{m(x,n)}(x)| < \frac{\varepsilon}{2}.$$

Also $\forall_{n>N}\forall_{x\in M}: |f_n(x)-f^*(x)|<\frac{\varepsilon}{2}.$ Damit $\forall_{n>N}: \|f_n-f^*\|_{\infty}\leq \frac{\varepsilon}{2}\leq \varepsilon.$ Damit konvergiert (f_n) gegen $f^*.$ Somit ist $(l^{\infty}(M),\|\cdot\|_{\infty})$ ein Banachraum.

Theorem 1. Sei $(X, \|\cdot\|)$ ein normierter Raum und $U \subset X$ ein Unterraum von X.

Ist $(X, \|\cdot\|)$ ein Banachraum und U eine abgeschlossene Teilmenge von X, so ist $(U, \|\cdot\|)$ ein Banachraum.

Ist U vollständig, so ist U eine abgeschlossene Teilmenge von X.

Beweis. Der Beweis gliedert sich in zwei Teile.

(1) Sei (u_n) eine Cauchy-Folge in $(U, \|\cdot\|)$. Dann ist (u_n) eine Cauchy-Folge in $(X, \|\cdot\|)$. Also konvergiert (u_n) gegen ein $u^* \in X$. Damit ist $u^* \in \overline{U}$, also $u^* \in U$. Somit ist U vollständig.

(2) Sei U vollständig. Ist $u^* \in \overline{U} \setminus U$, so gibt es Folge (u_n) in U die gegen u^* konvergiert. Diese Folge ist eine Cauchy-Folge in U und konvergiert somit gegen einen Grenzwert $u^{**} \in U$. Wegen der Eindeutigkeit von Grenzwerten folgt $u^* = u^{**} \in U$. Also $\overline{U} \setminus U = \emptyset$ und U abgeschlossen.

Beispiel 3. Wir verwenden die Notation $l^{\infty} = l^{\infty}(\mathbb{N})$. Da eine Folge in \mathbb{K} eine Funktion $\mathbb{N} \to \mathbb{K}$ ist, ist l^{∞} also der Raum aller beschränkten Folgen in \mathbb{K} . Wir definieren die folgenden Unterräume von l^{∞} : $c = \{(x_n)|x_n \in \mathbb{K}, (x_n) \text{ konvergent }\}$, $c_0 = \{(x_n)|x_n \in \mathbb{K}, \lim_{n \to \infty} x_n = 0\}$, $d = \{(x_n)|x_n \in \mathbb{K}, x_n \text{bis auf endlich viele Folgenglieder gleich }0\}$. Da die konvergente Folge in \mathbb{K} in \mathbb{R} bzw. \mathbb{C} beschränkt ist, folgt $d \subset c_0 \subset c \subset l^{\infty}$. Sei $\|\cdot\|_{\infty}$ die Supremumsnorm auf l^{∞} . Es sind $(d, \|\cdot\|_{\infty})$, $(c_0, \|\cdot\|_{\infty})$, $(c, \|\cdot\|_{\infty})$ normierte Räume. Welche dieser Räume sind Banachräume? Mit Satz 1 reicht es zu zeigen, dass der entsprechende Raum abgeschlossen in l^{∞} ist.

Sei (f_n) eine Folge in c, die konvergent gegen ein $f^* \in l^{\infty}$ ist. Um Doppelindizes zu vermeiden, verwenden wir die Darstellung von Folgen als Funktionen $\mathbb{N} \to \mathbb{K}$. Da (f_n) eine Folge in c ist, können wir durch $x_n = \lim_{m \to \infty} f_n(m)$ eine Folge (x_n) in \mathbb{K} definieren. Es gilt $|x_n - x_l| \leq \sup_{m \in \mathbb{N}} |f_n(m) - f_l(m)| = ||f_n - f_l||_{\infty}$. Da (f_n) eine Cauchy-Folge ist, ist durch diese Abschätzung die Folge (x_n) eine Cauchy-Folge in \mathbb{K} . Also konvergiert (x_n) gegen ein $x^* \in \mathbb{K}$. Wir wollen nun zeigen, dass f^* gegen x^* konvergiert. Sei $\varepsilon > 0$. Wähle $N \in \mathbb{N}$, so dass $||f^* - f_N|| < \frac{\varepsilon}{3}$ und $|x_N - x^*| < \frac{\varepsilon}{3}$. Wähle $M \in \mathbb{N}$, so dass für alle m > M gilt $|f_N(m) - x_N| < \frac{\varepsilon}{3}$. Dann gilt für alle m > M

$$|f^*(m)-x^*| \leq \underbrace{|f^*(m)-f_N(m)|}_{\leq ||f^*-f_N||_{\infty}} + |\underbrace{f_N(m)-x_N}_{<\frac{\varepsilon}{3}}| + |\underbrace{x_N-x^*}_{<\frac{\varepsilon}{3}}| < \underbrace{||f^*-f_N||_{\infty}}_{<\frac{\varepsilon}{3}} + \frac{2}{3}\varepsilon < \varepsilon.$$

Also ist f^* konvergente Folge und $f^* \in c$. Damit ist c abgeschlossen und nach Satz 1 ein Banachraum.

Sei (f_n) eine Folge in c_0 die konvergent gegen ein $f^* \in l^{\infty}$ ist. Wiederholen wir das obige Argument, so erhalten wir zusätzlich dass (x_n) kontant 0 ist. Damit ist $x^* = 0$ und $f^* \in c_0$. Somit ist c_0 abgeschlossen und nach Satz 1 ein Banachraum. Der Raum $(d, \|\cdot\|_{\infty})$ ist kein Banachraum.

Wir definieren nun weitere Folgenräume.

Definition 3. Für $p \in \mathbb{R}$ mit $1 \le p < \infty$ setzen wir $l^p = \{(x_n) | x_n \in \mathbb{K}, \sum_{n=1}^{\infty} |x_n|^p < \infty \}$ und $\|(x_n)\|_p = (\sum_{n=1}^{\infty} |x_n|^p)^{\frac{1}{p}}$ für $(x_n) \in l^p$. Wir wollen im Folgenden zeigen, dass $(l^p, \|\cdot\|_p)$ Banachräume sind.

22.10.13

Theorem 2. Für $1 \le p < \infty$ ist l^p versehen mit der Addition und Skalarmultiplikation von Folgen ein \mathbb{K} -Vektorraum.

Beweis. Offensichtlich ist die konstante Folge (a_n) für alle $n \in \mathbb{N}$ $a_n = 0$ in l^p enthalten. Desweiteren ist für $\lambda \in \mathbb{K}$ und $(x_n) \in l^p$ auch $(\lambda x_n) \in l^p$, da $\sum_{n=1}^{\infty} |\lambda x_n|^p = |\lambda|^p \sum_{n=1}^{\infty} |x_n|^p$ konvergiert. Schließlich, sind $(x_n), (y_n) \in l^p$, so gilt $\sum_{n=1}^{\infty} |x_n + y_n|^p \le \sum_{n=1}^{\infty} (|x_n| + |y_n|)^p \le \sum_{n=1}^{\infty} (2 \max\{|x_n|, |y_n|\})^p = 2^p \sum_{n=1}^{\infty} (\max\{|x_n|, |y_n|\})^p \le 2^p \sum_{n=1}^{\infty} |x_n|^p + |y_n|^p = 2^p (\sum_{n=1}^{\infty} |x_n|^p + \sum_{n=1}^{\infty} |y_n|^p) < \infty$. Also $(x_n + y_n) \in l^p$. \square

Theorem 3. Holdesche Ungleichung

Sind
$$(x_n) \in l^1$$
 und $(y_n) \in l^\infty$, so ist $(x_n y_n) \in l^1$ und $\|(x_n y_n)\|_1 \leq \|(x_n)\|_1 \|(y_n)\|_\infty$.
Sei $1 und $q = \frac{p}{p-1}$. Sind $(x_n) \in l^p$ und $(y_n) \in l^q$, so ist $(x_n y_n) \in l^1$ und $\|(x_n y_n)\|_1 \leq \|(x_n)\|_p \|(y_n)\|_q$$

.

Beweis. Der Beweis besteht aus zwei Teilen.

(1) Es gilt
$$\sum_{n=1}^{\infty} |x_n y_n| \le \sum_{n=1}^{\infty} |x_n| \|(y_n)\|_{\infty} = \|(y_n)\|_{\infty} \sum_{n=1}^{\infty} |x_n| = \|(y_n)\|_{\infty} \|(x_n)\|_{1} < \infty$$
.

(2) Wir haben $\frac{1}{p} + \frac{1}{q} = 1$. Sei a, b > 0 und $A = p \log a$ sowie $B = q \log b$. Die Funktion $t \mapsto \exp(t)$ ist konvenx, also $\exp(\frac{1}{p}A + \frac{1}{q}B) \le \frac{1}{p}\exp(A) + \frac{1}{q}\exp(B)$. Somit

$$ab = \exp(\underbrace{\log a}_{=\frac{1}{a}A} + \underbrace{\log b}_{=\frac{1}{a}B}) \le \frac{1}{p} \exp(\underbrace{p \log a}_{A}) + \frac{1}{q} \exp(\underbrace{q \log b}_{B}) = \frac{1}{p}a^{p} + \frac{1}{q}b^{q}.$$

Wir haben für $(x_n) \in l^p, (y_n) \in l^q$ mit $||(x_n)||_p = 1 = ||(y_n)||_q$. Es gilt

$$(1.1) \sum_{n=1}^{\infty} |x_n| |y_n| \le \sum_{n=1}^{\infty} (\frac{1}{p} |x_n|^p + \frac{1}{q} |y_n|^q) = \frac{1}{p} \sum_{n=1}^{\infty} |x_n|^p + \frac{1}{q} \sum_{n=1}^{\infty} |y_n|^q = \frac{1}{p} + \frac{1}{q} = 1.$$

Sind $(x_n) \in l^p$, $(y_n) \in l^q$ mit $||(x_n)||_p \neq 0$ und $||(y_n)||_q \neq 0$, so ist mit (1.1)

$$\sum_{n=1}^{\infty} |x_n y_n| = \|(x_n)\|_p \|(y_n)\|_q \sum_{m=1}^{\infty} \frac{|x_m|}{\|(x_n)\|_p} \cdot \frac{|y_m|}{\|(y_n)\|_q} \le \|(x_n)\|_p \|(y_n)\|_q \cdot 1.$$

Sind $(x_n) \in l^p$ und $(y_n) \in l^q$ mit $\|(x_n)\|_p = 0$ oder $\|(y_n)\|_q = 0$, so ist $(x_n y_n) \in l^1$ und $\|(x_n y_n)\|_1 = 0$.

Theorem 4. Minkowskische Ungleichung. Sei $1 \le p < \infty$. Für $(x_n), (y_n) \in l^p$ gilt $\|(x_n + y_n)\|_p \le \|(x_n)\|_p + \|(y_n)\|_p$.

Beweis. Für p=1 erhalten wir die Ungleichung direkt. Sei p>1 und $q=\frac{p}{p-1}$. Weiterhin seien $(x_n), (y_n) \in l^p$. Nach Satz 2 ist $(x_n+y_n) \in l^p$ und $\sum_{n=1}^{\infty} |x_n+y_n|^p = \sum_{n=1}^{\infty} (|x_n+y_n|^{p-1})^q$ konvergent¹. Somit ist $(|x_n+y_n|^{p-1}) \in l^q$. Nach Satz 3 ist

¹Nebenrechnung: (p-1)q = p.

damit $(|x_n||x_n+y_n|^{p-1}) \in l^1$ und $(|y_n||x_n+y_n|^{p-1}) \in l^1$ und wir erhalten

$$\begin{split} \sum_{n=1}^{\infty} |x_n| |x_n + y_n|^{p-1} &= \|(|x_n| |x_n + y_n|^{p-1})\|_1 \\ &\leq \|(x_n)\|_p \|(|x_n + y_n|^{p-1})\|_q \\ &= \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}} \left(\sum_{n=1}^{\infty} (|x_n + y_n|^{p-1})^q\right)^{\frac{1}{q}} \\ &= \|(x_n)\|_p \left(\|(x_n + y_n)\|_p\right)^{p-1}. \end{split}$$

Also $\sum_{n=1}^{\infty} |y_n| |x_n + y_n|^{p-1} \le ||(x_y)||_p (||(x_n + y_n)||_p)^{p-1}$. Somit

$$||(x_{n} + y_{n})||_{p}^{p} = \sum_{n=1}^{\infty} \underbrace{|x_{n} + y_{n}|^{p}}_{=|x_{n} + y_{n}| \cdot |x_{n} + y_{n}|^{p-1}}$$

$$\leq \sum_{n=1}^{\infty} (|x_{n}| + |y_{n}|) \cdot |x_{n} + y_{n}|^{p-1}$$

$$\leq \sum_{n=1}^{\infty} |x_{n}| |x_{n} + y_{n}|^{p-1} + \sum_{n=1}^{\infty} |y_{n}| |x_{n} + y_{n}|^{p-1}$$

$$\leq ||(x_{n})||_{p} (||(x_{n} + y_{n})||_{p})^{p-1} + ||(y_{n})||_{p} (||(x_{n} + y_{n})||_{p})^{p-1}$$

$$= (||(x_{n})||_{p} + ||(y_{n})||_{p}) ||(x_{n} + y_{n})||_{p}^{p-1}.$$

Für $||(x_n+y_n)||_p \neq 0$ liefert Division die Minkowski-Ungleichung. Für $||(x_n+y_n)||_p = 0$ ist die Minkowski-Ungleichung trivial.

Theorem 5. Für $1 \le p < \infty$ ist $(l^p, \|\cdot\|_p)$ ein Banachraum. Ebenso ist $(l^\infty, \|\cdot\|_\infty)$ ein Banachraum.

Beweis. Die Behauptung für l^{∞} wurde bereits in Beispiel 1 gezeigt. Sei $1 \leq p < \infty$. Nach Satz 2 ist l^p ein \mathbb{K} -Vektorraum. Für all $(x_n) \in l^p$, $\lambda \in \mathbb{K}$ ist $\|(\lambda x_n)\|_p = (\sum_{n=1}^{\infty} |\lambda x_n|^p)^{\frac{1}{p}} = |\lambda| (\sum_{n=1}^{\infty} |x_n|^p)^{\frac{1}{p}} = |\lambda| \|(x_n)\|_p$. Die Dreiecksungleichung gilt für $\|\cdot\|_p$ nach Satz 4. Ist für $(x_n) \in l^p$, $\|(x_n)\|_p = 0$, so ist $\sum_{n=1}^{\infty} |x_n|^p = 0$, also $x_n = 0$ für alle $n \in \mathbb{N}$. Insgesamt ist $\|\cdot\|_p$ also eine Norm auf l^p .

Sei (f_n) eine Cauchy-Folge in l^p . Wir verwenden für den Rest des Beweises die Schreibweise von Elementen aus l^p als Funktionen $\mathbb{N} \to \mathbb{K}$. Für $m, n, k \in \mathbb{N}$ gilt

$$|f_n(m) - f_k(m)| = (|f_n(m) - f_k(m)|^p)^{\frac{1}{p}} \le \left(\sum_{l=1}^{\infty} |f_n(l) - f_k(l)|^p\right)^{\frac{1}{p}} = ||f_n - f_k||_p.$$

Wie schon für l^{∞} folgt, dass für jedes $m \in \mathbb{N}$ die Folge $(f_n(m))_n$ eine Cauchy-Folge in \mathbb{K} ist. Somit konvergiert für jedes $m \in \mathbb{N}$ die Folge $(f_n(m))_n$ und wir erhalten eine Funktion $f^* : \mathbb{N} \to \mathbb{K}$ mit $f^*(m) = \lim_{n \to \infty} f_n(m)$. Sei $\varepsilon > 0$ gegeben. Wähle $N \in \mathbb{N}$ so dass $\forall_{n,k>N} : ||f_n - f_k|| < \frac{\varepsilon}{2}$. Somit gilt $\forall_{n,k>N}$ und alle $M \in \mathbb{N}$

$$\left(\sum_{m=1}^{M} |f_n(m) - f_k(m)|^p\right)^{\frac{1}{p}} \le ||f_n - f_k||_p < \frac{\varepsilon}{2}.$$

Für $k \to \infty$ erhalten wir $\forall_{n>N}, \forall_{M \in \mathbb{N}}$

$$\left(\sum_{m=1}^{M} |f_n(m) - f^*(m)|^p\right)^{\frac{1}{p}} \le \frac{\varepsilon}{2}.$$

Also $\forall_{n>N}$

$$\left(\sum_{m=1}^{\infty} |f_n(m) - f^*(m)|^p\right)^{\frac{1}{p}} \le \frac{\varepsilon}{2}.$$

Somit $f_n - f^* \in l^p$ für n > N, also wegen $f^* = f_n - (f_n - f^*)$ auch $f^* \in l^p$. Desweiteren $\forall_{n > N} : ||f_n - f^*||_p < \varepsilon$. Also konvergiert (f_n) gegen f^* . Damit ist $(l^p, ||\cdot||_p)$ ein Banachraum.

Beispiel 4. zur Verdeutlichung.

(1) Sei X ein metrischer Raum mit Metrik $d: X \times X \to [0, \infty)$. Wir bezeichnen $C^b(X)$ den Vektorraum der stetigen, beschränkten Funktionen $X \to \mathbb{K}$. $C^b(X)$ ist ein Unterraum von $l^\infty(X)$, also ist $C^b(X)$ versehen mit der Supremumsnorm $\|\cdot\|_{\infty}$ ein normierter Raum.

Die Konvergenz in $C^b(X)$ bezüglich $\|\cdot\|_{\infty}$ entspricht der gleichmäßigen Konvergenz wie wir sie aus der Analysis kennen.

Sei (f_n) eine Folge in $C^b(X)$, die gegen ein $f^* \in l^{\infty}(X)$ konvergiert. Aus der Analysis wissen wir, dass dann f^* stetig, also $f^* \in C^b(X)$ ist. Also ist $C^b(X)$ abgeschlossener Unterraum von $l^{\infty}(X)$ und $(C^b(X), \|\cdot\|_{\infty})$ ist ein Banachraum.

Ist der Raum X kompakt, z.B. eine kompakte Teilmenge des \mathbb{R}^n mit der euklidschen Metrik, so sind alle stetigen Funktionen $X \to \mathbb{K}$ beschränkt, also $C^b(X) = C(X) = \{f: X \to \mathbb{K} | f \text{ stetig} \}.$

- (2) Sei $a, b \in \mathbb{R}$, a < b. Wir bezeichnen mit $C^1([a, b])$ den Vektorraum der stetig differenzierbaren Funktionen $[a, b] \to \mathbb{K}$. Es ist $C^1([a, b]) \subset l^{\infty}([a, b])$. Der Raum $(C^1([a, b]), \|\cdot\|_{\infty})$ ist kein Banachraum (siehe 3. Übungsblatt). Wir können auf $C^1([a, b])$ jedoch eine andere Norm definieren und zwar $\|f\| := \|f\|_{\infty} + \|f'\|_{\infty}$. Mit dieser Norm versehen ist $C^1([a, b])$ ein Banachraum. Dies folgt aus dem nächsten Beispiel.
- (3) Sei $\Omega \subset \mathbb{R}^n$ eine offene Menge. Ist $f: \Omega \to \mathbb{K}$ eine r-mal stetig differenzierbare Funktion so verwenden wir die Multiindexschreibweise $D^{\alpha}f$ mit $\alpha \in \mathbb{N}_0^n$ für die partielle Ableitung

$$\frac{\partial^{\alpha_1}\partial^{\alpha_2}\cdots\partial^{\alpha_n}}{\partial x_1^{\alpha_1}\partial x_2^{\alpha_2}\cdots\partial x_n^{\alpha_n}}f(x_1,...,x_n)$$

der Ordnung $|\alpha| = \alpha_1 + ... + \alpha_n \le r$, $\alpha = (\alpha_1, ..., \alpha_n)$. Ist $\Omega \subset \mathbb{R}^n$ offen und beschränkt, so können wir durch

 $C^r(\overline{\Omega}) = \{f : \Omega \to \mathbb{K} : f \text{ ist } r\text{-mal stetig differenzierbar, für alle Multiindizes } \alpha \in \mathbb{N}_0^n \text{mit } 0 \le |\alpha| \le r \text{ist } D^{\alpha}f \text{auf interval}$ einen Unterraum von $l^{\infty}(\Omega)$ definieren. Durch

$$\|f\|:=\sum_{\alpha\in\mathbb{N}_0^n,0\leq |\alpha|\leq r}\|D^\alpha f\|_\infty$$

für $f \in C^r(\overline{\Omega})$ definieren wir eine Norm auf $C^r(\overline{\Omega})$ (siehe 2. Übungsblatt). Der normierte Raum $(C^r(\overline{\Omega}), \|\cdot\|)$ ist ein Banachraum.

1.1. Eigenschaften normierter Räume.

Lemma 1. Sei $(X, \|\cdot\|)$ ein normierter Raum. Es gilt

- (1) $\forall_{v,w \in X} : |||v|| ||w||| \le ||v w||.$
- (2) Die Abbildung $\|\cdot\|: x \mapsto [0, \infty)$ ist stetig.
- (3) Eine Folge (x_n) in X konvergiert genau dann gegen $x \in X$ wenn $\lim_{n\to\infty} ||x_n x|| = 0$.

Beweis. Für 1 und 2 siehe erstes Übungsblatt. 3 folgt direkt aus der entsprechenden Eigenschaft für metrische Räume. $\hfill\Box$

Theorem 6. Sei $(X, \|\cdot\|)$ ein metrischer Raum.

- (1) Konvergiert die Folge (x_n) in X gegen $x \in X$ und die Folge (y_n) in X gegen $y \in X$, so konvergiert für alle $\lambda, \mu \in \mathbb{K}$ die Folge $(\lambda x_n + \mu y_n)$ gegen $\lambda x + \mu y$.
- (2) Ist U ein Unterraum von X, so ist auch \overline{U} ein Unterraum von X.

Beweis. In zwei Teilen.

- (1) Für alle $\lambda, \mu \in \mathbb{R}$ gilt $\|\lambda x_n + \mu y_n (\lambda x + \mu y)\| \le \|\lambda x_n \lambda x + \mu y_n \mu y\| \le \|\lambda\| \|x_n x\| + \|\mu\| \|y_n y\|$. Mit Lemma 1 (3) folgt dann die Behauptung.
- (2) Sei $x, y \in \overline{U}$. Dann gibt es Folgen $(x_n), (y_n)$ in U mit $\lim_{n\to\infty} x_n = x, \lim_{n\to\infty} y_n = y$. Sei $\lambda, \mu \in \mathbb{K}$. Da U linearer Unterraum von X ist, ist $(\lambda x_n + \mu y_n)$ Folge in U. Nach 1 ist $(\lambda x_n + \mu y_n)$ konvergent mit $\lim_{n\to\infty} \lambda x_n + \mu y_n = \lambda x + \mu y$. Also $\lambda x + \mu y \in \overline{U}$. Da $U \neq \emptyset$ und $\underline{U} \subset \overline{U}$ ist $\overline{U} \neq \emptyset$. Damit ist \overline{U} Unterraum von X.

Definition 4. Sei X ein \mathbb{K} -Vektorraum. Zwei Normen $\|\cdot\|_a$, $\|\cdot\|_b$ auf X heißen äquivalent, falls es m, M > 0 gibt, so dass $\forall_{v \in X} m \|v\|_a \leq \|v\|_b \leq M \|v\|_a$.

Lemma 2. Die Äquivalenz von Normen auf einem \mathbb{K} -Vektorraum X definiert eine Äquivalenzrelation auf der Menge der Normen auf X.

Beweis. Siehe 2. Übungsblatt.

Theorem 7. Sei X ein \mathbb{K} -Vektorraum und $\|\cdot\|_a$, $\|\cdot\|_b$ Normen auf X. Die folgenden Aussagen sind äquivalent:

- (1) Die Normen $\|\cdot\|_a$ und $\|\cdot\|_b$ sind äquivalent.
- (2) Eine Folge (x_n) in X konvergiert genau dann gegen $x \in X$ bzgl. $\|\cdot\|_a$, wenn sie gegen x bzgl. $\|\cdot\|_b$ konvergiert.
- (3) Eine Folge (x_n) in X konvergiert genau dann gegen 0 bzgl. $\|\cdot\|_a$, wenn sie gegen 0 bzgl. $\|\cdot\|_b$ konvergiert.

Beweis. $1 \implies 2$: Sei $m, M, \widetilde{m}, \widetilde{M} > 0$ mit $\forall_{v \in X} : m \|v\|_a \le \|v\|_b \le M \|v\|_a$ und $\forall_{v \in X} : \widetilde{m} \|v\|_b \le \|v\|_a \le \widetilde{M} \|v\|_b$ (siehe Lemma 2). Dann gilt für Folge (x_n) in X und $x \in X$ stets $\|x_n - x\|_a \le \widetilde{M} \|x_n - x\|_b$ und $\|x_n - x\|_b \le M \|x_n - x\|_a$.

 $2 \implies 3$: 3 ist Sonderfall von 2.

 $3 \implies 1$: Angenommen $\|\cdot\|_a$ und $\|\cdot\|_b$ sind nicht äquivalent. Dann gibt es kein 29.10.13

M>0oder kein $\widetilde{M}>0$ so dass für alle $v\in X$: $\|v\|_b\leq M\|v\|_a$ und $\|v\|_a\leq \widetilde{M}\|v\|_b$. Damit gibt es eine Folge (v_n) in Xso dass für alle $n\in\mathbb{N}$ gilt $v_n\neq 0$ und $\left(\frac{\|v_n\|_b}{\|v_n\|_a}\right)_{n\in\mathbb{N}}$ ist unbeschränkt. Damit gibt es eine Teilfolge $(v_{n_m})_{m\in\mathbb{N}}$ von (v_n) , so dass $\left(\frac{\|v_{n_m}\|_a}{\|v_{n_m}\|_b}\right)_{m\in\mathbb{N}}$ gegen 0 konvergiert. Also konvergiert $\left(\|\frac{1}{\|v_{n_m}\|_b}v_{n_m}\|_a\right)_{m\in\mathbb{N}}$ gegen 0. Damit ist $\left(\frac{1}{\|v_{n_m}\|_b}v_{n_m}\right)_{m\in\mathbb{N}}$ konvergent gegen $0\in X$ bezüglich $\|\cdot\|_a$. Da für alle $m\in\mathbb{N}$ jedoch gilt

$$\|\frac{v_{n_m}}{\|v_{n_m}\|_b}\|_b = \frac{\|v_{n_m}\|_b}{\|v_{n_m}\|_b} = 1,$$

ist
$$\left(\frac{1}{\|v_{n_m}\|_b}v_{n_m}\right)_{m\in\mathbb{N}}$$
 nicht konvergent gegen $0\in X$ bezüglich $\|\cdot\|_b$.

Theorem 8. Ist X ein endlich-dimensionaler \mathbb{K} -Vektorraum, so sind auf X alle Normen äquivalent.

Beweis. O.B.d.A. ist $X=\mathbb{K}^n$. Sei $\|\cdot\|$ eine Norm auf dem \mathbb{K}^n . Bekanntlich ist $\|(x_1,...,x_n)\|_2=\left(\sum_{j=1}^n|x_j|^2\right)^{\frac{1}{2}}$ auch eine Norm auf dem \mathbb{K}^n . Sei $\{e_1,...,e_n\}$ die Standardbasis des \mathbb{K}^n . Für $x=(x_1,...,x_n)$ gilt (mit der Hölderschen Ungleichung)

$$||x|| = ||\sum_{j=1}^{n} x_j e_j|| \le \sum_{j=1}^{n} |x_j| \cdot ||e_j|| \le \left(\sum_{j=1}^{n} |x_j|^2\right)^{\frac{1}{2}} \underbrace{\left(\sum_{j=1}^{n} ||e_j||^2\right)^{\frac{1}{2}}}_{M} = M \cdot ||x||_2.$$

Insbesondere gilt für alle $x,y\in\mathbb{K}^n$ dass $|\|x\|-\|y\||\leq \|x-y\|\leq M\|x-y\|_2$. Damit ist $\|\cdot\|$ stetig bezüglich $\|\cdot\|_2$. Die Menge $S=\{x\in\mathbb{K}^n:\|x\|_2=1\}$ ist abgeschlossen und beschränkt, also nach Heine-Borel kompakt. $\|\cdot\|$ nimmt also auf S ihr Minimum an. Da $0\notin S$, gilt $m=\min_{x\in S}\|x\|>0$. Da für alle $x\in\mathbb{K}^n\setminus\{0\}$ gilt $\frac{x}{\|x\|_2}\in S$ haben wir

$$||x||_2 m \le ||x||_2 \underbrace{||\frac{x}{||x||_2}||}_{\ge \min_{y \in S} ||y||} = ||x||$$

für alle $x \in \mathbb{K}^n \setminus \{0\}.$

Im unendlich-dimensionalen gilt eine solche allgemeine Äquivalent nicht, wie das folgende Beispiel zeigt.

Beispiel 5. Wir betrachten C([0,1]). Auf diesen Raum können wir durch $||f||_1 = \int_0^1 |f(s)| ds$ eine Norm auf C([0,1]) definieren. Diese Norm ist nicht äquivalent zur Supremumsnorm $||\cdot||_{\infty}$, denn sei für $n \in \mathbb{N}$ $f_n : [0,1] \to \mathbb{K}$

$$f_n(s) = \begin{cases} 1 - ns & s \in [0, \frac{1}{n}], \\ 0 & s \in (\frac{1}{n}, 1]. \end{cases}$$

Offensichtlich ist $f_n \in C([0,1])$ für alle $n \in \mathbb{N}$. Weiterhin ist für alle $n \in \mathbb{N}$ die Supremumsnorm $\|f_n\|_{\infty} = 1$. Also konvergiert (f_n) nicht gegen $0 \in C([0,1])$ bezüglich $\|\cdot\|_{\infty}$. Es ist aber für alle $n \in \mathbb{N}$ stets $\|f_n\|_1 = \int_0^1 |f_n(s)| ds = \int_0^{\frac{1}{n}} |f_n(s)| ds =$

 $\int_0^{\frac{1}{n}} (1-ns) ds = [s-\frac{1}{n}s^2]_0^{\frac{1}{n}} = \frac{1}{2n} \to_{n \to \infty} 0. \text{ Also konvergiert } (f_n) \text{ gegen } 0 \in C([0,1])$ bezüglich $\|\cdot\|_1$. Nach Satz 7 sind $\|\cdot\|_1$ und $\|\cdot\|_\infty$ nicht äquivalent auf C([0,1]).

Korollar 1. Sei $(X, \|\cdot\|)$ ein endlich-dimensionaler, normierter Raum. Dann sind beschränkte, abgeschlossene Mengen kompakt.

Beweis. O.B.d.A. $X = \mathbb{K}^n$. Für die Norm $\|(x_1, ..., x_n)\|_2 = \left(\sum_{j=1}^n |x_j|^2\right)^{\frac{1}{2}}$ liefert der Satz von Heine-Borel die Behauptung. Da $\|\cdot\|$ zu $\|\cdot\|_2$ äquivalent ist, stimmen sowohl abgeschlossene beschränkte und kompakte Mengen bezüglich der beiden Normen überein.

Wir werden zeigen, dass die Aussage von Korollar 1 nur im endlich-dimensionalen gilt.

Lemma 3. Sei $(X, \|\cdot\|)$ ein normierter Raum und $U \subset X$ ein abgeschlossener Unterraum von X mit $U \neq X$. Für jedes $\delta \in (0,1)$ existiert ein $x_{\delta} \in X$ mit $\|x_{\delta}\| = 1$ und $\|x_{\delta} - u\| \ge 1 - \delta$ für alle $u \in U$.

Beweis. Wähle $x \in X \setminus U$. Setze $d := \inf\{\|x - u\| : u \in U\}$. Ist d = 0, so gibt es eine Folge (u_n) in U mit $\|x - u_n\| \to 0$ für $n \to \infty$, also $\lim_{n \to \infty} u_n = x$ und $x \in \overline{U} = U$. Widerspruch. Damit ist d > 0. Insbesondere ist $\frac{d}{1 - \delta} > d$. Damit gibt es ein $u_{\delta} \in U$ mit $d \le \|x - u_{\delta}\| < \frac{d}{1 - \delta}$. Sei

$$x_{\delta} = \frac{x - u_{\delta}}{\|x - u_{\delta}\|}.$$

Klar ist $||x_{\delta}|| = 1$. Für $u \in U$ gilt nun

$$||x_{\delta} - u|| = ||\frac{x - u_{\delta}}{||x - u_{\delta}||} - u|| = \frac{1}{||x - u_{\delta}||} \cdot \underbrace{||x - u_{\delta}|| \cdot (||x - u_{\delta}||u))}_{\geq d} || \geq \frac{1}{||x - u_{\delta}||} d \geq \frac{1 - \delta}{d} d = 1 - \delta.$$

Theorem 9. Sei $(X, \|\cdot\|)$ ein normierter Raum. Die folgenden Aussagen sind äquivalent:

- (1) X ist endlich-dimensional
- (2) $\{x \in X : ||x|| < 1\}$ ist kompakt
- (3) Jede beschränkte Folge besitzt eine konvergente Teilfolge

Beweis. Gliederung in folgende Teile:

- $1 \implies 2$: Korollar 1.
- $2 \implies 3$: Sei (x_n) beschränkte Folge in X und r > 0 mit $\forall_{n \in \mathbb{N}} : ||x_n|| < r$. Dann ist $\left(\frac{1}{r}x_n\right)_{n \in \mathbb{N}}$ Folge in $B = \{x \in X : ||x|| \le 1\}$. Da B kompakt ist besitzt $\left(\frac{1}{r}x_n\right)$ eine konvergente Teilfolge. Mit Satz 6 besitzt dann auch $(x_n)_{n \in \mathbb{N}} = \left(r \cdot \frac{1}{r}x_n\right)_{n \in \mathbb{N}}$ eine konvergente Teilfolge.

3 ⇒ 1: Beweis per Kontroposition. Sei X unendlich-dimensional. Wir konstruieren eine beschränkte Folge (x_n) in X wie folgt: Wähle $x_1 \in X$ mit $\|x_1\| = 1$. Wähle $\delta \in (0,1)$ fest. Haben wir $x_1, ..., x_n$ mit $\|x_1\| = ... = \|x_n\| = 1$ gewählt, so sei $U_n := \operatorname{span}\{x_1, ..., x_n\}$. Da dim $U_n \leq n$ ist $(U_n, \|\cdot\|)$ vollständig (Satz 8) und nach Satz 1 ist U_n abgeschlossen in X. Weiterhin $X \neq U_n$. Nach Lemma 3 gibt es x_{n+1} in X mit $\|x_{n+1}\| = 1$ und $\forall_{u \in U_n} : \|x_{n+1} - u\| \geq 1 - \delta$. Wir erhalten Folge (x_n) in X mit $\|x_n\| = 1$ für alle $n \in \mathbb{N}$. Per Konstruktion gilt für $n, m \in \mathbb{N}$, n > m stets $\|x_n - x_m\| \geq 1 - \delta$. Damit kann es keine Teilfolge von (x_n) geben, die eine Cauchy-Folge ist. Insbesondere hat (x_n) keine konvergente Teilfolge (konvergente Folgen sind nämlich Cauchy-Folgen).

Definition 5. Sei $(X, \|\cdot\|)$ ein normierter Raum. Wir nennen X separabel, falls es eine abzählbare Menge $M \subset X$ gibt mit $\overline{M} = X$, d.h. M ist dicht in X.

Theorem 10. Sei $(X, \|\cdot\|)$ ein normierter Raum. Es sind äquivalent:

- (1) X ist separabel
- (2) Es gibt abzählbare Teilmenge M von X mit $X = \overline{\text{span}M}$.

Beweis. In zwei Teilen. \Box

- 1 \Longrightarrow 2: Sei $M \subset X$ abzählbar mit $\overline{M} = X$. Dann ist $X = \overline{M} \subset \overline{\operatorname{span} M} \subset X$ also $\overline{\operatorname{span} M} = X$.
- 2 \Longrightarrow 1: Wir betrachten zunächst den Fall $\mathbb{K} = \mathbb{R}$. Für $B = \{\sum_{j=1}^n q_j v_j | n \in \mathbb{N}, q_j \in \mathbb{Q}, v_j \in M\}$ gilt span $B \subset \overline{B}$ da \mathbb{Q} dicht in \mathbb{R} ist. Somit ist $X = \overline{\text{span}M} \subset \overline{B} \subset X$, also $X = \overline{B}$. Da B abzählbar ist, ist X separabel. $\mathbb{K} = \mathbb{C}$ ist analog mit $B = \{\sum_{j=1}^n (q_j + ip_j) | n \in \mathbb{N}, p_j, q_j \in \mathbb{Q}, v_j \in M\}$.

Beispiel 6. Zur Verdeutlichung.

- (1) \mathbb{R}^n und \mathbb{C}^n sind separabel bezüglich jeder Norm, denn \mathbb{Q}^n und $\mathbb{Q}^n + i\mathbb{Q}^n$ sind dicht in \mathbb{R}^n bzw. \mathbb{C}^n .
- (2) $(l^p, \|\cdot\|_p)$ für $1 \leq p < \infty$ ist separabel: Für $e_j : \mathbb{N} \to \mathbb{K}$,

$$e_j(m) := \begin{cases} 1 & j = m, \\ 0 & \text{sonst.} \end{cases}$$

ist $d = \text{span}\{e_j : j \in \mathbb{N}\}$. Ist nun $f \in l^p$ so können wir die Folge (f_n) in d definieren mit

$$f_n(m) = \begin{cases} f(m) & m \le n, \\ 0 & \text{sonst.} \end{cases}$$

für $n \in \mathbb{N}$. Dann ist f Grenzwert von (f_n) in $(l^p, \|\cdot\|_p)$, denn

$$||f - f_n||_p = \left(\sum_{j=n+1}^{\infty} |f(j)|^p\right)^{\frac{1}{p}} \to 0$$

für $n \to \infty$. Somit $l^p = \overline{d}$. Nach Satz 10 ist l^p separabel.

- (3) $(C_0, \|\cdot\|_{\infty})$ ist separabel (Beweis in der Übung).
- (4) $(l^{\infty}, \|\cdot\|_{\infty})$ ist nicht separabel.

Beweis. Für $M \subseteq \mathbb{N}$ definiere $f_M : \mathbb{N} \to \mathbb{K}$ durch

$$f_M(m) = \begin{cases} 1 & m \in M, \\ 0 & m \notin M. \end{cases}$$

Offensichtlich ist $f_M \in l^{\infty}$ für alle $M \in \mathbb{N}$. Dann ist $W := \{f_M | M \subset \mathbb{N}\}$ überabzählbar. Weiterhin ist für alle $M,N\subset\mathbb{N},\ M\neq N$ stets $\|f_M-f\|$ $\|f_N\|_{\infty}=1$. Sei $A\subset l^{\infty}$ abzählbar mit $\overline{A}=l^{\infty}$. Für $a\in A$ kann $U_{\frac{1}{4}}(a)$ nur höchstens ein Element aus W enthalten, denn

$$x, y \in U_{\frac{1}{4}}(a) \cap W \implies ||x - y||_{\infty} \le ||x - a||_{\infty} + ||y - a||_{\infty} < \frac{1}{2} \implies x = y$$

Widerspruch zu A abzählbar und $\overline{A} = l^{\infty}$.

Wir wollen zeigen, dass für jedes kompakte, nicht-leere Intervall [a, b] der Raum $(C([a,b]), \|\cdot\|_{\infty})$ separabel ist.

 \parallel_{∞}).

Beweis. Wir betrachten zunächst den Fall $a=0,\,b=1.$ Für $n\in\mathbb{N}$ definieren wir $c_n := \left(\int (1-s^2)^n ds\right)^{-1}$. Wir zeigen zunächst die Abschätzung $c_n \leq e\sqrt{n}$ für hinreichend große $n \in \mathbb{N}$. Es gilt

$$c_n^{-1} = \int_{-1}^1 (1-s^2)^n ds \geq \int_{-\frac{1}{\sqrt{n}}}^{\frac{1}{\sqrt{n}}} (1-s^2)^n ds = 2 \int_{0}^{\frac{1}{\sqrt{n}}} (1-s^2)^n ds \geq 2 \int_{0}^{\frac{1}{\sqrt{n}}} (1-\frac{1}{n})^n ds = 2 \sqrt{n}^{-1} (1-\frac{1}{n})^n.$$

Da $\lim_{n\to\infty} (1-\frac{1}{n})^n = \frac{1}{e}$ ist für hinreichend große $n\in\mathbb{N}$ stets $(1-\frac{1}{n})^n\geq \frac{1}{2e}$. Also für hinreichend große $n\in\mathbb{N}$ stets $c_n^{-1}\geq \frac{1}{\sqrt{n}e}$. Wir definieren nun für $n\in\mathbb{N}$ Polynome $\varphi_n(x) := C_n(1-x^2)^n$. Es gilt

- $\begin{array}{ll} (1) \ \ \mathrm{F\ddot{u}r} \ \ \mathrm{alle} \ n \in \mathbb{N} \ \mathrm{und} \ x \in [-1,1] \ \mathrm{gilt} \ \varphi_n(x) \geq 0. \\ (2) \ \int_{-1}^1 \varphi_n(x) dx = 1 \ \mathrm{per} \ \mathrm{Definition} \ \mathrm{von} \ c_n. \\ (3) \ \ \mathrm{F\ddot{u}r} \ \ \mathrm{alle} \ \delta \in (0,1] \ \mathrm{ist} \ \lim_{n \to \infty} \sup_{x \in [\delta,1]} \varphi_n(x) = 0, \ \mathrm{da} \ \sup_{x \in [\delta,1]} \varphi_n(x) = 0. \end{array}$ $c_n(1-\delta^2)^n$ und

$$\lim_{n\to\infty} \sqrt{n} (1-\delta^2)^n = \lim_{n\to\infty} e^{\frac{\frac{1}{2}(\log n) + n \underbrace{\log(1-\delta^2)}}{<0}} = 0.$$

Sei $f \in C([0,1])$. Wir betrachten zuerst den Fall f(0) = f(1) = 0. Wir definieren die stetige Funktion $f: \mathbb{R} \to \mathbb{K}$ durch

$$\widetilde{f}(x) = \begin{cases} f(x) & (x \in [0, 1]), \\ 0 & (\text{sonst}). \end{cases}$$

Da f gleichmäßig stetig auf [0,1] ist, ist f gleichmäßig stetig auf \mathbb{R} . Wir definieren nun Funktionen $p_n: \mathbb{R} \to \mathbb{K}, p_n(x) = \int_{-1}^1 \widetilde{f}(x-s)\varphi_n(s)ds$ für $n \in \mathbb{N}$. p_n ist für

jedes $n \in \mathbb{N}$ eine Polynomfunktion, denn mit Substitution s = t + x ergibt sich

$$\int_{-1}^{1} \widetilde{f}(x-s)\varphi_n(s)ds = \underbrace{\int_{-1-x}^{\in [0,1]}}_{\in [-2,-1]} \widetilde{f}(-t)\varphi_n(t-x)dt = \int_{-1}^{0} \widetilde{f}(-t)\varphi_n(t+x)dt,$$

denn $\widetilde{f}|_{\mathbb{R}\backslash [0,1]}\equiv 0.$ Dies ergibt dann weiterhin das Polynom

$$= \int_{-1}^{0} \widetilde{f}(-t)c_n(1 - (t+x)^2)^n dt.$$

Da $\int_{-1}^{1} \varphi_n(s) ds = 1$ ist $p_n(x) - \widetilde{f}(x) = \int_{-1}^{1} \left(\widetilde{f}(x-s) - \widetilde{f}(x) \right) \varphi_n(s) ds$. Also für alle $\delta \in (0,1)$ und $x \in [-1,1]$ gilt $|p_n(x) - \widetilde{f}(x)| \le \int_{-1}^{1} |\widetilde{f}(x-s) - \widetilde{f}(x)| \varphi_n(s) ds = 1$

$$= \int_{-\delta}^{\delta} \underbrace{\left|\widetilde{f}(x-s) - \widetilde{f}(x)\right|}_{\leq \sup_{s \in [-\delta,\delta]} |\widetilde{f}(x-s) - \widetilde{f}(x)|} \varphi_n(s) ds + \int_{-1}^{\delta} \underbrace{\left|\widetilde{f}(x-s) - \widetilde{f}(x)\right|}_{\leq 2\sup_{y \in [0,1]} |f(y)|} \varphi_n(s) ds$$

$$+ \int_{\delta}^{1} \underbrace{\left| \widetilde{f}(x-s) - \widetilde{f}(x) \right|}_{\leq 2 \sup_{y \in [0,1]} |f(y)|} \varphi_{n}(s) ds$$

$$\leq \sup_{s \in [-\delta, \delta]} \left| \widetilde{f}(x - s) - \widetilde{f}(x) \right| \cdot \underbrace{\int_{-\delta}^{\delta} \varphi_n(s) ds}_{\leq \int_{-1}^{1} \varphi_n(s) ds = 1} + 4 \sup_{y \in [0, 1]} |f(y)| \cdot \sup_{s \in [\delta, 1]} \varphi_n(s)$$

$$(1.2) \leq \sup_{s \in [-\delta, \delta]} \left| \widetilde{f}(x - s) - \widetilde{f}(x) \right| + 4 \sup_{y \in [0, 1]} |f(y)| \sup_{s \in [\delta, 1]} \varphi_n(s)$$

Sei $\varepsilon > 0$ gegeben. Wähle $\delta \in (0,1)$ so dass für alle $x \in \mathbb{R}$

$$\sup_{s \in [-\delta, \delta]} \left| \widetilde{f}(x - s) - \widetilde{f}(x) \right| \le \frac{\varepsilon}{2}.$$

Dies ist möglich, da \widetilde{f} gleichmäßig stetig ist. Wähle nun $N\in\mathbb{N}$ so dass für alle n>N

$$\sup_{s \in [\delta,1]} \varphi_n(s) < \frac{1}{4 \max\{1, \sup_{y \in [0,1]} |f(y)|\}} \frac{\varepsilon}{2}.$$

Dies ist möglich, da $\lim_{n\to\infty} \sup_{s\in[\delta,1]} \varphi_n(s) = 0$. Mit (1.2) folgt für alle n>N und $x\in[0,1]$ dass $|p_n(x)-f(x)|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$, also

$$||p_n|_{[0,1]} - f||_{\infty} < \varepsilon.$$

Damit wird f durch p_n auf [0,1] approximiert.

Sei $f \in C([0,1])$ mit $f(0) \neq f(1)$ oder $f(0) \neq 0$. Konstruiere obige Folge $(p_n)_n$ für $\widehat{f}(x) = f(x) - (1-x)f(0) - xf(1)$, dann ist $\widehat{f} \in C([0,1])$ und $\widehat{f}(0) = \widehat{f}(1) = 0$. Dann sind $q_n(x) = p_n(x) + (1-x)f(0) + xf(1)$ für $n \in \mathbb{N}$ Polynomfunktionen und $||f - q_n||_{[0,1]}||_{\infty} = \sup_{x \in [0,1]} |f(x) - p_n(x) - (1-x)f(0) - xf(1)| = ||\widehat{f} - p_n||_{[0,1]}||_{\infty} \to 0$ für $n \to \infty$. Damit wird \widehat{f} durch q_n auf [0,1] approximiert.

Sei $f \in C([a,b])$, $a,b \in \mathbb{R}$, a < b. Dann liefert $\widehat{f}(x) = f(a + (b-a)x)$ ein $\widehat{f} \in C([0,1])$. Konstruiere q_n wie oben. Definiere

$$r_n(x) = q_n\left(\frac{x-a}{b-a}\right).$$

Da

$$\frac{(a+(b-a)x)-a}{b-a} = x$$

ist

$$||f - r_n||_{\infty} = \sup_{x \in [a,b]} |f(x) - r_n(x)| = \sup_{y \in [0,1]} |f(x) - r_n(x)|$$
$$= \sup_{y \in [0,1]} |f(a + (b-a)y) - r_n(a + (b-a)y)| = ||\widehat{f} - q_n|_{[0,1]}||_{\infty} \to 0$$

für $n \to \infty$. Also wird f durch r_n auf [a, b] approximiert.

Korollar 2. Für $a, b \in \mathbb{R}$, a < b ist $(C([a, b]), \|\cdot\|_{\infty})$ separabel.

Beweis. Da P([a,b]) dicht in $(C([a,b]), \|\cdot\|_{\infty})$, ist

$$C([a,b]) = \overline{\operatorname{span}\{t^n : n \in \mathbb{N}\}}$$

Mit Satz 10 folgt die Behauptung.

1.2. Quotientenräume und die Räume L^p . Wir übertragen zunächst die Begriffe der Cauchy-Folge und Vollständigkeit auf \mathbb{K} -Vektorräume mit einer Halbnorm.

Definition 6. Sei X ein \mathbb{K} -Vektorraum mit Halbnorm $\|\cdot\|$. Wir nennen eine Folge (x_n) in X Cauchy-Folge, falls $\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}\forall_{n,m>N}:\|x_n-x_m\|<\varepsilon$. Wir nennen X vollständig, falls zu jeder Cauchy-Folge in X ein $x\in X$ existiert mit $\lim_{n\to\infty}\|x_n-x\|=0$.

Bemerkung 1. Man beachte, dass in einem vollständigen K-Vektorraum X mit Halbnorm $\|\cdot\|$, dass $x^* \in X$ zu einer Cauchy-Folge (x_n) mit $\lim_{n\to\infty} \|x_n - x^*\| = 0$ nicht unbedingt eindeutig ist.

Theorem 12. Sei X ein \mathbb{K} -Vektorraum mit Halbnorm $\|\cdot\|$. Es gilt

- (1) $N = \{x \in X | ||x|| = 0\}$ ist ein Unterraum von X.
- (2) ||x + N|| := ||x|| definiert eine Norm auf X/N.
- (3) Ist X vollständig (in Sinne von Definition 6), so ist X/N mit der Norm ||x + N|| vollständig.

Beweis. In drei Teilen.

- (1) $0 \in N$, da ||0|| = 0. Für $x, y \in \mathbb{N}$, $\lambda, \mu \in \mathbb{K}$ gilt $||\lambda x + \mu y|| \le |\lambda| ||x|| + |\mu| ||y|| \le 0$ und damit $\lambda x + \mu y \in N$.
- (2) $\|\cdot\|$ ist auf X/N wohldefiniert, denn für x+N=y+N gilt (x-y)+N=N, d.h. $x-y\in N$, und daher gilt $|\|x\|-\|y\||\leq \|x-y\|=0$. Es folgt $\|x\|=\|y\|$. Überprüfung der Normaxiome:
 - (a) Für $x \in X$, $\lambda \in \mathbb{K}$ gilt $||\lambda x + N|| = ||\lambda x|| = ||\lambda|||x|| = ||\lambda|||x + N||$.
 - (b) Für $x, y \in X$ gilt $\|(x+N) + (y+N)\| = \|(x+y) + N\| = \|x+y\| \le \|x\| + \|y\| = \|x+N\| + \|y+N\|$.
 - (c) Sei $x \in X$ mit ||x+N|| = 0. Damit ||x|| = 0, also $x \in N$ und x+N = N.

Somit ist $\|\cdot\|$ eine Norm auf X/N.

(3) Sei $(x_k+N)_{k\in\mathbb{N}}$ Cauchy-Folge in X/N. Da $\forall_{k,m\in\mathbb{N}}$: $\|(x_k+N)-(x_m+N)\| = \|x_k-x_m\|$ ist (x_k) Cauchy-Folge in X. Somit gibt es ein $x\in X$ mit $\lim_{k\to\infty} \|x_k-x\| = 0$. Damit ist $\lim_{k\to\infty} \|(x_k+N)-(x+N)\| = \lim_{k\to\infty} \|x_k-x\| = 0$. Also konvergiert (x_k+N) .

Theorem 13. Sei $(X, \|\cdot\|)$ ein normierter Raum und $U \subset X$ ein Unterraum.

- (1) $||x||_d := \inf\{||x u|| | u \in U\}$ für $x \in X$ definiert eine Halbnorm.
- (2) Ist U abgeschlossen, so definiert $||x + U||_q := ||x||_d$ eine Norm auf X/U.
- (3) Ist X vollständig und U abgeschlossen, so ist $(X/U, \|\cdot\|_q)$ ein Banachraum.

Beweis. In drei Teilen.

- (1) Nachweis der Halbnormaxiome:
 - (a) Für $\lambda \in \mathbb{K}$ ist $\|\lambda x\|_d = \inf\{\|\lambda x u\| | u \in U\} = \inf\{\|\lambda x \lambda u\| | u \in U\} = \|\lambda\| \|x\|_d$. Für $\lambda = 0$ ist $\|\lambda x\|_d = \inf\{\|u\| | u \in U\} = 0$.
 - (b) Für $x, y \in X$ ist $||x + y||_d = \inf\{||x + y u|| | u \in U\} = \inf\{||x + y u v|| | u, v \in U\} \le \inf\{||x u|| + ||y v|| | u \in U, v \in U\} \le \inf\{||x u|| | u \in U\} + \inf\{||y v|| | v \in U\} = ||x||_d + ||y||_d.$
- (2) Sei $N = \{x \in X | ||x||_d = 0\}$. Es ist $U \subset N$. Sei $x \in N$, also $||x||_d = 0$. Dann gibt es eine Folge (u_n) in U mit $\lim_{n \to \infty} ||u_n x|| = 0$. Damit $x \in \overline{U} = U$. Also $U \subset N \subset U$ und U = N. Nach Satz 12 ist $||\cdot||_q$ eine Norm auf X/U.
- (3) Sei (x_n) Cauchy-Folge in X bezüglich $\|\cdot\|_d$. Wähle Teilfolge (x_{n_k}) von (x_n) mit $\forall_{k \in \mathbb{N}}$: $\|x_{n_k} x_{n_{k+1}}\|_d < 2^{-k}$. Wir konstruieren Folge (u_k) in U, so dass $\forall_{k \in \mathbb{N}}$: $\|x_{n_k} + u_k (x_{n_{k+1}} + u_{k+1})\| < 2^{-k}$. Wähle $u_1 = 0$. Haben wir $u_1, ..., u_k$ in U für $k \in \mathbb{N}$ gewählt, so ist $2^{-k} > \|x_{n_k} x_{n_{k+1}}\|_d = \|x_{n_k} + u_k x_{n_{k+1}}\|_d = \inf\{\|(x_{n_k} + u_k) (x_{n_{k+1}} + u)\|\|u \in U\}$. Somit haben wir $\widetilde{u} \in U$ mit $2^{-k} > \|(x_{n_k} + u_k) (x_{n_{k+1}} + \widetilde{u})\|$. Setze $u_{k+1} = \widetilde{u}$. Wir erhalten induktiv die gesuchte Folge (u_k) in U. Wir definieren die Folge (z_k) durch $z_k = x_{n_k} + u_k$. Da für $m, k \in \mathbb{N}$, m > k gilt $\|z_m z_k\| \le \sum_{j=k}^{m-1} \|z_j z_{j+1}\| < \sum_{j=k}^{m-1} 2^{-j}$ und die Reihe $\sum_{j=1}^{\infty} 2^{-j}$ konvergiert, ist (z_k) Cauchy-Folge in $(X, \|\cdot\|)$. Da X vollständig ist, konvergiert (z_k) gegen $\widetilde{z} \in X$ bezüglich $\|\cdot\|$. Da für alle $k \in \mathbb{N}$ gilt, dass

$$\|\widetilde{z} - x_{n_k}\|_d \le \underbrace{\|\widetilde{z} - z_k\|_d}_{<\|\widetilde{z} - z_k\|} + \underbrace{\|\underbrace{z_k - x_{n_k}}_{x_{n_k} + u_k - x_{n_k} = u_k}}\|_d$$

folgt $\|\widetilde{z} - x_{n_k}\|_d \to 0$ für $k \to \infty$.

Sei $\varepsilon > 0$ gegeben. Wähle $K \in \mathbb{N}$ so, dass $\forall_{k>K} : \|\widetilde{z} - x_{n_k}\|_d < \frac{\varepsilon}{2}$ und

$$\forall_{m,l>\underbrace{\min\{n_k\in\mathbb{N}|k>K\}}_{n_{k+1}}}: ||x_l-x_m||<\frac{\varepsilon}{2}.$$

Dann gilt $\forall_{m \geq \min\{n_k \in \mathbb{N} | k > K\}} : \|\widetilde{z} - x_m\|_d \leq \|\widetilde{z} - x_{n_{k+1}}\|_d + \|x_{n_{k+1}} - x_m\|_d < \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$. Also $\|x_k - \widetilde{z}\|_d \to 0$ für $k \to \infty$. Damit ist X bezüglich $\|\cdot\|_d$ vollständig. Nach Satz 12 ist X/U vollständig.

Wir kommen nun zu den L^p -Räumen. Dazu wiederholen wir zunächst ein paar Fakten aus der Integrationstheorie. Ist $Q = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n] \subset \mathbb{R}^n$ ein nicht-leerer Quader, so definiert man das Volumen $\operatorname{vol}(Q) := \prod_{j=1}^n (b_j - a_j)$. Für $M \subset \mathbb{R}^n$ definiert man das äußere Lebesgue-Maß durch

$$\lambda^{\alpha}(M) = \inf\{\sum_{j=1}^{\infty} \operatorname{vol}(Q_{j}) | Q_{j} \text{ nicht-leere Quader im } \mathbb{R}^{n}, M \subset \bigcup_{j=1}^{\infty} Q_{j}\}.$$

Wir nennen $M \subset \mathbb{R}^n$ Lebesgue-Messbar, falls

$$\forall_{D \subset \mathbb{R}^n} : \lambda^*(D) = \lambda^*(M \cap D) + \lambda^*((\mathbb{R}^n \setminus M))$$

Ist $M \subset \mathbb{R}^n$ Lebesgue-messbar, so definieren wir das Lebesgue-Maß von M als $\lambda(M) := \lambda^A(M)$.

Bemerkung 2. Es gilt:

- (1) Offene und abgeschlossene Mengen sind Lebesgue-messbar.
- (2) Endliche Schnitte, Komplemente und abzählbare Vereinigungen Lebesguemessbarer Mengen sind Lebesguemessbar.

Wir nennen eine Funktion $f: M \to \mathbb{K}$ mit $M \subset \mathbb{R}^n$ Lebesgue-messbar, falls für jede offene Menge $U \subset \mathbb{K}$ gilt, dass $f^{-1}(U)$ Lebesgue-messbar ist. Ist $f: M \to \mathbb{K}$ Lebesgue-messbar, so ist $M = f^{-1}(\mathbb{K})$ Lebesgue-messbar.

Bemerkung 3. Es gilt:

- (1) Stetige Funktionen sind stets Lebesgue-messbar.
- (2) Sei $M \subset \mathbb{R}^n$ messbar. Dann ist $\mathcal{M} := \{f : M \to \mathbb{K} | f \text{ Lebesgue-messbar} \}$ ein Unterraum des Raumes der Funktionen $M \to \mathbb{K}$. Desweiteren sind Produkte Lebesgue-messbarer Funktionen $M \to \mathbb{K}$ wieder Lebesgue-messbar.

Wir nennen eine Lebesgue-messbare Teilmenge $M \subset \mathbb{R}^n$ Lebesgue-Nullmenge falls $\lambda(M) = 0$. Jede Teilmenge einer Lebesgue-Nullmenge ist eine Lebesgue-Nullmenge.

Im Folgenden meinten wir mit "messbar" stets "Lebesgue-messbar" und mit "Nullmenge" stets "Lebesgue-Nullmenge".

Sind $A_1,...,A_m \subset \mathbb{R}^n$ messbare Mengen, $c_1,...,c_m \in \mathbb{K}$ und χ_{A_j} die charakteristische Funktion der Menge A_j , so setzen wir

$$\int_{\mathbb{R}^n} \sum_{j=1}^m c_j \chi_{A_j} d\lambda = \sum_{j=1}^m c_j \lambda(A_j)$$

wobei wir die Rechenregeln $\infty \pm c := \infty$ für $c \in \mathbb{C} \cup \{\infty\}$, $\infty \cdot 0 = 0 \cdot \infty = 0$, $\infty \cdot c = c \cdot \infty = \infty$ für $c \in (\mathbb{C} \setminus \{0\}) \cup \{\infty\}$ und die A_i paarweise disjunkt sind. Wir nennen eine Funktion $f: M \to \mathbb{K}$, $M \subset \mathbb{R}^n$ messbar, Lebesgue-integrierbar, falls es eine Folge von Funktionen $\varphi_k : \mathbb{R}^n \to \mathbb{K}$ gibt mit

- $\varphi_k(x) = \sum_{j=1}^{m_k} c_{j,k} \chi_{A_{j,k}}(x)$ mit $A_{j,k} \subset M$ messbar und $A_{j,k} = \varphi_k^{-1}(c_{j,k})$.
- $\forall_{\varepsilon>0} \exists_{N\in\mathbb{N}} \forall_{k,l>N} : \int_{\mathbb{R}^n} |\varphi_k \varphi_l| d\lambda < \varepsilon$. Der Integrant lässt sich als $\sum_{j=1}^{r_{k,l}} b_{j,kl} \chi_{B_{j,kl}}$ mit $B_{j,kl}$ messbar, $B_{j,kl} = \{x \in \mathbb{R}^n | |\varphi_k(x) \varphi_l(x)| = b_{j,kl}\}, \ b_{j,kl} \neq b_{i,kl}$ für $i \neq j$ schreiben.
- es gibt Nullmenge $N \subset M$ so dass $\forall_{x \in M \setminus N}$: $\lim_{k \to \infty} \varphi_k(x) = f(x)$.

Ist f eine Lebesgue-integrierbar, so ist f messbar und wir setzen

$$\int_M f \, d\lambda := \lim_{k \to \infty} \int_{\mathbb{R}^n} \varphi_k \, d\lambda.$$

Definition 7. Sei $M \subset \mathbb{R}^n$ messbar, $M \neq \emptyset$. Für $1 \leq p < \infty$ sei

$$\begin{split} \mathcal{L}^p(M) &= \{f: M \to \mathbb{K} | f \text{ messbar}, \int_M |f|^p \, d\lambda < \infty \}, \\ \mathcal{L}^\infty(M) &= \{f: M \to \mathbb{K} | f \text{ messbar}, \\ & \text{es gibt Nullmenge } N_f \subset M \text{und } c \in \mathbb{R} \text{mit } \forall_{x \in M \setminus N_f} : |f(x)| < c \} \end{split}$$

Für $1 \leq p < \infty$ und $f \in \mathcal{L}^p(M)$ definieren wir

$$||f||_p = \left(\int_M |f|^p \, d\lambda\right)^{\frac{1}{p}}$$

und für $f \in \mathcal{L}^{\infty}(M)$

$$||f||_{\infty} = \inf_{N \subset M} \sup_{x \in M \setminus N} |f(x)|$$

mit N Nullmenge. Wir zeigen nun, dass $\mathcal{L}^p(M)$ ein vollständiger Vektorraum bezüglich der $\|\cdot\|_p$ Halbnorm ist.

Theorem 14. (Höldische Ungleichung) Sei $M \subset \mathbb{R}^n$ messbar und $M \neq \emptyset$. Sei $1 und <math>q = \frac{p}{p-1}$. Für $f \in \mathcal{L}^p(M)$ und $g \in \mathcal{L}^q(M)$ ist $f \cdot g \in \mathcal{L}^1(M)$ mit

$$||f \cdot g||_1 \le ||f||_p ||g||_q.$$

Für $f \in \mathcal{L}^1(M)$ und $q \in \mathcal{L}^{\infty}(M)$ ist $f \cdot q \in \mathcal{L}^1(M)$ mit

$$||f \cdot g||_1 \le ||f||_1 ||g||_{\infty}.$$

Beweis. Nach Bemerkung zu messbaren Funktionen ist $f \cdot g$ und damit $|f \cdot g|$ messbar. In der Übung wird gezeigt, dass für $f \in \mathcal{L}^p(M), g \in \mathcal{L}^{\frac{p}{p-1}}(M)$ gilt

$$\int_{M} |f \cdot g| \, d\lambda \le ||f||_{p} ||g||_{\frac{p}{p-1}}$$

für $1 . Für <math>f \in \mathcal{L}^1(M)$, $g \in \mathcal{L}^\infty(M)$ wird gezeigt, dass

$$\int_{M} |f \cdot g| \, d\lambda \le ||f||_{1} ||g||_{\infty}.$$

Damit folgt $f \cdot g \in \mathcal{L}^1(M)$ und (1.3) bzw. (1.4).

Theorem 15. (Minkowskische Ungleichung) Sei $M \subset \mathbb{R}^n$ messbar, $M \neq \emptyset$, und $p \in [1, \infty) \cup {\infty}$. Für $f, g \in \mathcal{L}^p(M)$ ist $f + g \in \mathcal{L}^p(M)$ und es gilt

$$(1.5) ||f + g||_p \le ||f||_q + ||g||_p.$$

Beweis. f+g ist messbar. Die Ungleichung (1.5) wird in der Übung gezeigt. Somit ist $f+g \in \mathcal{L}^p(M)$.

Theorem 16. Sei $M \subset \mathbb{R}^n$ messbar, $M \neq \emptyset$ und $p \in [1, \infty) \cup \{\infty\}$. Dann ist $\mathcal{L}^p(M)$ ein \mathbb{K} -Vektorraum mit Halbnorm $\|\cdot\|_p$.

Beweis. Wir zeigen die Halbnorm-Axiome.

(1) Sei $\mu \in \mathbb{K}, f \in \mathcal{L}^p(M)$. Dann ist $\mu \cdot f$ messbar und für $p < \infty$ gilt

$$\left(\int_{M} |\mu \cdot f|^{p} \, d\lambda \right)^{\frac{1}{p}} = \left(|\mu|^{p} \int_{M} |f|^{p} \, d\lambda \right)^{\frac{1}{p}} = |\mu| \left(\int_{M} |f|^{p} \, d\lambda \right)^{\frac{1}{p}} = |\mu| ||f||_{p}.$$

Für $p = \infty$ gilt mit Nullmengen N

$$\inf_{N \subset M} \sup_{x \in M \setminus N} |\mu f(x)| = |\mu| \inf_{N \subset M} \sup_{x \in M \setminus N} |f(x)| = |\mu| ||f||_{\infty}.$$

- Also $\mu \cdot f \in \mathcal{L}^p(M)$ und $\|\mu \cdot f\|_p = |\mu| \|f\|_p$. (2) Sei $f, g \in \mathcal{L}^p(M)$. Nach Satz 15 ist $f + g \in \mathcal{L}^p(M)$ mit $\|f + g\|_p \le \|f\|_p + \|f\|_p$
- (3) $\mathcal{L}^p(M) \neq 0$ da $M \neq \emptyset$ ist $f(x) \equiv 0$ konstant in $\mathcal{L}^p(M)$.

Lemma 4. Sei $M \subset \mathbb{R}^n$, $M \neq \emptyset$, M messbar. Für $f \in \mathcal{L}^{\infty}(M)$ gilt: Es gibt Nullmenge $N_f \subset M$, so dass $||f||_{\infty} = \sup_{x \in M \setminus N_f} |f(x)|$.

Beweis. Definiere $N_f:=\bigcup_{k\in\mathbb{N}}A_k$ mit $A_k=\{x\in M:|f(x)|>\|f\|_\infty+\frac{1}{k}\}$. Zu jedem A_k gibt es eine Nullmenge $N_k \subset M$ mit $A_k \subset N_k$, da sonst $\sup_{x \in M \setminus N} |f(x)| >$ $||f||_{\infty} + \frac{1}{k}$ für alle Nullmengen $N \subset M$. Also sind die A_k alle Nullmengen. Die abzählbare Vereinigung von Nullmengen ist eine Nullmenge, also ist N_f Nullmenge. Per Definition ist

$$\sup_{x \in M \setminus N_f} |f(x)| = ||f||_{\infty}.$$

Bemerkung 4. Sei $f: M \to \mathbb{R}$ messbar, $M \subset \mathbb{R}^n$, $\forall_{x \in M}: f(x) \geq 0$. Dann gibt es monoton wachsende Folge (φ_k) von messbaren, nicht negativen Funktionen φ_k $\sum_{j=1}^{m_k} c_{j,k} \chi_{A_{j,k}}(x), \ A_{i,k} \ \text{ und } A_{j,k} \ \text{ paarweise disjunkt und } \forall_{x \in M} \colon \lim_{k \to \infty} \varphi_k(x) = \sum_{j=1}^{m_k} c_{j,k} \chi_{A_{j,k}}(x)$ f(x) und alle $A_{j,k} \subset M$.

Es gibt nun zwei Möglichkeiten:

- (1) $\left(\int_{\mathbb{R}^n} \varphi_k \, d\lambda\right)$ ist beschränkte Folge in \mathbb{R} . Nach Satz von Beppo Levi ist fLebesgue-integrierbar mit $\int_{\mathbb{R}^n} f \, d\lambda = \lim_{k \to \infty} \int_{\mathbb{R}^n} \varphi_k \, d\lambda$.
- (2) Eins der $\int_{\mathbb{R}^n} \varphi_k \, d\lambda$ ist ∞ oder $\lim_{k \to \infty} \int_{\mathbb{R}^n} \varphi_k \, d\lambda = +\infty$. Dies gilt für alle solchen Folgen (φ_k) . Man kann hier $\int_M f \, d\lambda = \infty$ definieren.

Theorem 17. Sei $M \subset \mathbb{R}^n$ messbar, $M \neq \emptyset$ und $p \in [1,\infty) \cup \{\infty\}$. Dann ist $\mathcal{L}^p(M)$ bezüglich der Halbnorm $\|\cdot\|_p$ vollständig.

Beweis. Wir unterscheiden zwei Fälle.

(1) Im Fall $p = \infty$ sei (f_k) Cauchy-Folge in $\mathcal{L}^{\infty}(M)$ bezgülich $\|\cdot\|_{\infty}$. Nach Lemma 4 gibt es für $k, m \in \mathbb{N}$ eine Nullmenge $N_{k,m} \subset M$ mit

$$||f_k - f_m||_{\infty} = \sup_{x \in M \setminus N_{k,m}} |f_k(x) - f_m(x)|.$$

Setze $N_q = \bigcup_{k,m \in \mathbb{N}} N_{k,m} \subset M$. Da $\mathbb{N} \times \mathbb{N}$ abzählbar ist, ist N_q Nullmenge. Da für alle $k, m \in \mathbb{N}$ gilt $N_{k,m} \subset N_q$ folgt für alle $m, k \in \mathbb{N}$:

$$||f_k - f_m||_{\infty} = \sup_{x \in M \setminus N_{k,m}} |f_k(x) - f_m(x)| \ge \sup_{x \in M \setminus N_q} |f_k(x) - f_m(x)|$$

$$\ge \inf_{N \subset M} \sup_{x \in M \setminus N} \dots$$

.... fehlt was Also $\forall_{m,k\in\mathbb{N}}:\sup_{x\in M\setminus N_q}|f_k(x)-f_m(x)|=\|f_k-f_M\|_\infty$. Analog erhält man Nullmenge $N_u\subset M$ mit $\forall_{k\in\mathbb{N}}:\sup_{x\in M\setminus N_u}|f_k(x)|=\|f_k\|_\infty$. Da $N=N_q\cup N_u\subset M$ Nullmenge ist, gilt mit analogen Argument die Aussagen

(1.6)
$$\forall_{k,m\in\mathbb{N}} : \sup_{x\in M\setminus N} |f_k(x) - f_m(x)| = \|f_k - f_m\|_{\infty},$$

(1.7)
$$\forall_{k \in \mathbb{N}} : \sup_{x \in M \setminus N} |f_k(x)| = ||f_k||_{\infty}.$$

Wegen (1.7) ist $(f_k|_{M\setminus N})$ Folge in $l^{\infty}(M\setminus N)$. Wegen (1.6) ist $(f_k|_{M\setminus N})$ Cauchy-Folge in $l^{\infty}(M\setminus N)$ bezüglich der Supremumsnorm. Damit konvergiert $(f_k|_{M\setminus N})$ gegen $f:M\setminus N\to \mathbb{K}, f\in l^{\infty}(M\setminus N)$ bezüglich der Supremumsnorm. Sei $\tilde{f}:M\to \mathbb{K}$,

$$\widetilde{f}(x) = \begin{cases} f(x) & (x \in M \setminus N) \\ 0 & (x \in N) \end{cases}$$

Da \widetilde{f} beschränkt, ist $\widetilde{f} \in \mathcal{L}^{\infty}(M)$. Weiterhin gilt

$$\lim_{k \to \infty} \|f_k - \widetilde{f}\|_{\infty} \leq \lim_{k \to \infty} \sup_{x \in M \setminus N} |f_k(x) - \widetilde{f}(x)|$$

$$= \lim_{k \to \infty} \underbrace{\|f_k|_{M \setminus N} - f\|_{\infty}}_{\text{Supremumgsnorm auf } l^{\infty}(M \setminus N)} = 0.$$

(2) Im Fall $1 \leq p < \infty$ sei (f_k) eine Cauchy-Folge in $\mathcal{L}^p(M)$. Wähle Teilfolge (f_{k_l}) von (f_k) mit $\forall_{l \in \mathbb{N}} : \|f_{k_{l+1}} - f_{k_l}\|_p < 2^{-l}$. Wir definieren Folgen (g_l) und (h_m) in $\mathcal{L}^p(M)$ durch $g_l := f_{k_{l+1}} - f_{k_l}$ für $l \in \mathbb{N}$ und $h_m = \sum_{l=1}^m |g_l|$ für $m \in \mathbb{N}$. Wegen der Minkowski-Ungleichung (Satz 15) gilt für $m \in \mathbb{N}$ stets

$$\int_{M} (h_m)^p d\lambda = \left(\| \sum_{j=1}^m |g_l| \|_p \right)^p \le \left(\sum_{l=1}^m \|g_l\| \right)^p \le \left(\sum_{l=1}^\infty 2^{-l} \right)^p = 1.$$

Die $(h_m^p)_{m\in\mathbb{N}}$ ist eine Folge in $\mathcal{L}^1(M)$ mit $h_m^p \leq h_{m+1}^p$ und $(\int_M h_m^p d\lambda)$ beschränkt Nach dem Satz von Beppo Levi gibt es eine Funktion $h:M\to [0,\infty), h^p\in\mathcal{L}^1(M)$ und Nullmenge N so dass $\forall_{x\in M\setminus N}$ gilt $\lim_{m\to\infty} h_m^p(x)=h^p(x)$. Insbesondere $h\in\mathcal{L}^p(M)$. Die Reihe $\sum_{l=1}^\infty g_l(x)$ konvergiert für $x\in M\setminus N$ absolut. Also ist die Funktion $g:M\to\mathbb{K}$,

$$g(x) = \begin{cases} \sum_{l=1}^{\infty} g_l(x) & (x \in M \setminus N), \\ 0 & (x \in N) \end{cases}$$

wohldefiniert und messbar. Es ist $(\sum_{l=1}^m g_l)_{m\in\mathbb{N}}$ eine Folge in $\mathcal{L}^p(M)$ mit $|\sum_{l=1}^m g_l(x)|^p \leq (h(x))^p$ für alle $x\in M, m\in\mathbb{N}$. Da $h^p\in\mathcal{L}^1(M)$ folgt nach dem Konvergenzsatz von Lebesgue, dass $g^p\in\mathcal{L}^1(M)$ mit $\lim_{m\to\infty}\int_M (\sum_{l=1}^m g_l)^p d\lambda = \int_M g^p d\lambda$. Also $g\in\mathcal{L}^p(M)$. Also $g\in\mathcal{L}^p(M)$. Es gilt nun²: $\|g+f_{k_1}-f_{k_m}\|_p = \|g-\sum_{l=m+1}^m g_l\|_p \leq \sum_{l=m+1}^\infty g_l\|_p \leq \sum_{l=m+1}^\infty g_l\|_p \leq \sum_{l=m+1}^\infty 2^{-l} = 2^{-m} \to 0$ für $m\to\infty$. Nach analogen Argument zum Beweis von Satz 13 (Teil 3) folgt $\|f_k-(g+f_{k_1})\|_p\to 0$ für $k\to\infty$.

 $^{^2}$ Denn für Lebesgue-Integrale ist egal, wie der Integrand auf Nullmengen definiert ist

Theorem 18. Sei $M \subset \mathbb{R}^n$ messbar, $M \neq \emptyset$, und $p \in [1, \infty) \cup \{\infty\}$. Wir definieren $\mathcal{N}_p(M) := \{f : M \to \mathbb{K} | f \text{ messbar}, \|f\|_p = 0\}.$

Auf dem Quotientenraum

$$L^p(M) := \mathcal{L}^p(M)/\mathcal{N}^p(M)$$

ist durch $||f + \mathcal{N}_p(M)||_p := ||f||_p$ eine Norm definiert. Der Raum $(L^p(M), ||\cdot||_p)$ ist ein Banachraum.

Beweis. Nach Satz 16 ist $\|\cdot\|_p$ Halbnorm auf $\mathcal{L}^p(M)$. Damit folgt mit Satz 12 dass $\|f + \mathcal{N}_p(M)\|_p := \|f\|_p$ ist Norm auf $L^p(M)$. Satz 17 sagt, dass $\mathcal{L}^p(M)$ vollständig bezüglich $\|\cdot\|_p$ ist und damit folgt mit Satz 12 dass $(L^p(M), \|\cdot\|)$ Banachraum. \square

Definition 8. TODO

Theorem 19. Seien $(X, \|\cdot\|_X)$ und $(Y, \|\cdot\|_Y)$ metrische Räume. Sei T eine lineare Abbildung von X nach Y. Dann sind äquivalent:

- (1) T ist stetiq.
- (2) T ist stetig in θ .
- (3) Es existiert ein M > 0, so dass für alle $x \in X$ gilt $||Tx||_Y \le ||x||_X$.
- (4) T ist gleichmäßig stetig.

Beweis. TODO

 $Bemerkung\ 5.$ Man bezeichnet lineare Operatoren/Funktionale auch als beschränkte Operatoren/Funktionale.

Definition 9. Seien $(X, \|\cdot\|_X)$ und $(Y, \|\cdot\|_Y)$ metrische Räume und T ein stetiger linearer Operator von X nach Y. Wir definieren die Operatornorm $\|T\|$ von T als

$$||T|| = \sup\{\frac{||Tx||_Y}{||x||_X} \mid x \in X, x \neq 0\}.$$

Definition 10. Seien $(X, \|\cdot\|_X)$ und $(Y, \|\cdot\|_Y)$ metrische Räume. $L(X, Y) = \{T : X \to Y \mid T \text{ linear und stetig}\}$ ist der Raum der stetigen linearen Operatoren. L(X) := L(X, X). L(X, Y) hängt von den Normen auf X und Y ab.

Theorem 20. Seien $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ und $(Z, \|\cdot\|_Z)$ metrische Räume. Es gilt

(1) $F\ddot{u}r T \in L(X,Y)$ ist

$$\begin{split} \|T\| &= \sup\{\|Tx\|_Y \,|\, x \in X, \|x\|_X = 1\} \\ &= \sup\{\|Tx\|_Y \,|\, x \in X, \|x\|_X \le 1\} \\ &= \inf\{M \ge 0 \,|\, \forall_{x \in X} : \|Tx\|_Y \le M \cdot \|x\|_X\} \end{split}$$

- (2) Für T aus L(X,Y) ist $||Tx||_Y \le ||T|| \cdot ||x||_X$.
- (3) L(X,Y) ist versehen mit $\|\cdot\|$ ein normierter Raum.
- (4) Ist Y vollständig, so ist $(L(X,Y), \|\cdot\|)$ ein Banachraum.
- (5) $F\ddot{u}r T \in L(X,Y), T \in L(Y,Z) \text{ ist } R \circ T \in L(X,Z) \text{ mit } ||R \circ T|| \le ||R|| \cdot ||T||.$

TODO

Definition 11. Sei $(X, \|\cdot\|_X)$ ein normierter Raum. Wir bezeichnen den Dualraum von $(X', \|\cdot\|)$ als den *Bidualraum* kurz X''.

Theorem 21. Sei $(X, \|\cdot\|_X)$ ein normierter Raum. Die kanonische Abbildung $i: X \to X''$ (auch i_X genannt) von X in seinen Bidualraum definiert durch

$$i(x)(y') = y'(x)$$

ist eine lineare Isometrie. Insbesondere ist i stetig und injektiv.

Beweis. Wir zeigen

(1) i ist wohldefiniert. Sei dazu $x \in X$ und $y', z' \in X'$, $\alpha, \beta \in \mathbb{K}$. Dann ist $i(x)(\alpha y' + \beta z') = (\alpha y' + \beta z')(x) = \alpha y'(x) + \beta z'(x) = \alpha i(x)(y') + \beta i(x)(z')$. Also ist $i(x): X' \to \mathbb{K}$ linear. i ist stetig, denn für $y' \in X'$ gilt

$$|i(x)(y')| = |y'(x)| \le ||y'|| \cdot ||x||_X = ||x||_X \cdot ||y'||.$$

Somit $i(x) \in X''$ für alle $x \in X$.

- (2) i ist linear. Seien $\alpha, \beta \in \mathbb{K}$, $x, y \in X$, $z' \in X'$. Dann ist $i(\alpha x + \beta y)(z') = z'(\alpha x + \beta y) = \alpha z'(x) + \beta z'(y) = \alpha i(x)(z') + \beta i(y)(z')$. Also $i(\alpha x + \beta y) = \alpha i(x) + \beta i(y)$.
- (3) i ist Isometrie. Es ist für alle $x \in X$, $y' \in X$ $|i(x)(y')| \le ||x||_X ||y'||$, also $||i(x)|| \le ||x||_X$. Nach Korollar 3 (TODO) gibt es zu $x \in X$ ein $x' \in X'$ mit ||x'|| = 1 und $|x'(x)| = ||x||_X$. Somit $||i(x)|| = ||x||_X$ für alle $x \in X$. Damit ist i eine Isometrie.

Korollar 3. Sei $(X, \|\cdot\|_X)$ ein normierter Raum. Dann ist $(X, \|\cdot\|_X)$ isometrisch isomorph zu einem dichten Unterraum eines Banachraums $(Y, \|\cdot\|_Y)$. Dieser Banachraum ist bis auf Isomorphismen eindeutig.

Beweis. Die Abbildung i aus Satz 21 liefert eine bijektive, lineare Isometrie auf den Unterraum U=i(x) von X''. U ist per Definition dicht in \overline{U} . Da X'' ein Banachraum ist, ist \overline{U} auch ein Banachraum. Sei $(X,\|\cdot\|_X)$ isomorph zu einem Unterraum V eines Banachraums $(Z,\|\cdot\|_Z)$ mit $\overline{V}=Z$. Dann haben wir Isomorphismus $V\to U$. Nach Übungsaufgabe 8.1(b) sind dann $(\overline{U},\|\cdot\|)$ und $(Z,\|\cdot\|_Z)$ isomorph.

Definition 12. Ein normierter Raum $(X, \|\cdot\|_X)$ heißt *reflexiv*, falls die kanonische Abbildung $i: X \to X''$ surjektiv ist.

Beispiel 7. Ein paar Beispiele.

- (1) Jeder endlich-dimensionale normierte Raum ist reflexiv.
- (2) Die Räume $(l^p, \|\cdot\|_p)$ sind für 1 reflexiv.
- (3) Ist $M \subset \mathbb{R}^n$ messbar, $M \neq \emptyset$, so sind die Räume $(L^p(M), \|\cdot\|_p)$ für 1 reflexiv.
- (4) $(l^1, \|\cdot\|_1), (l^\infty, \|\cdot\|_\infty)$ sind nicht reflexiv.
- (5) Sei $M \subset \mathbb{R}^n$ messbar, $M \neq \emptyset$. Dann sind $(L^1(M), \|\cdot\|_1)$ und $(L^{\infty}(M), \|\cdot\|_{\infty})$ nicht reflexiv.

Theorem 22. Sei $(X, \|\cdot\|_X)$ ein normierter Raum.

(1) Sei X reflexiv. Dann ist jeder abgeschlossene Unterraum von X reflexiv.

(2) Ist X ein Banachraum, so ist X genau dann reflexiv, wenn X' reflexiv ist.

Beweis. In zwei Teilen.

(1) Sei U ein abgeschlossener Unterraum von X und X reflexiv. Wähle $u'' \in U''$. Die Abbildung $f: X' \to \mathbb{K}$, $f(x') = u''(x'|_U)$ ist linear und wohldefiniert. f ist stetig, da $|f(x')| = |u''(x'|_U)| \le ||u''|| ||x'|_U|| \le ||u''|| ||x'||$. Also $f \in X''$. Da X reflexiv ist, gibt es $x \in X$ mit i(x) = f, d.h. $\forall_{x' \in X'} f(x') = x'(x)$. Angenommen $x \notin U$. Dann gibt es nach Korollar 5 (TODO) ein $x' \in X'$ mit $x'|_U = 0$ und x'(x) = 0. Also, $0 \neq x'(x) = f(x') = u''(x'|_U) = u''(0) = 0$. Somit $x \in U$.

Sei nun $u' \in U'$ und $x' \in X'$ mit $x'|_U = u'$. x' existiert nach Satz 26 (TODO). Dann gilt $u''(u') = u''(x'|_U) = f(x') = x'(x) = u'(x)$. Also $u'' = i_U(x)$ mit $i_U : U \to U''$ kanonische Abbildung.

(2) Sei X reflexiv und Banachraum. Wähle $x''' \in X'''$. Die Abbildung $x' : X \to \mathbb{K}$, x'(x) := x'''(i(x)) ist wohldefiniert, linear und stetig. Also $x' \in X'$. Sei $y'' \in X''$. Da X reflexiv ist, gibt es $y \in X$ mit i(y) = y''. Es gilt x'''(y'') = x'''(i(y)) = x'(y) = i(y)(x') = y''(x'). Also $x''' = i_{X'}(x')$ mit $i_{X'} : X' \to X'''$ kanonische Abbildung. Somit $i_{X'}$ surjektiv und X' reflexiv. Sei X ein Banachraum und X' reflexiv. Nach obigen Argument ist X'' reflexiv. $i(x) \subset X''$ ist abgeschlossen, da X vollständig ist. Nach (1) ist i(x) dann auch reflexiv und somit X reflexiv.

Korollar 4. Sei $(X, \|\cdot\|_X)$ ein normierter reflexiver Raum. X ist genau dann separabel, wenn X' separabel ist.

Beweis. Satz 29 (TODO)
$$\Box$$
 11.12.13

Definition 13. Sei $(X, \|\cdot\|_X)$ ein normierter Raum und (x_n) eine Folge in X. (x_n) heißt schwach konvergent gegen ein $x \in X$, falls gilt:

$$\forall_{y' \in X'} : \lim_{n \to \infty} y'(x_n) = y'(x)$$

Bemerkung 6. In diesem Zusammenhang spricht man von der Konvergenz in X bzgl. $\|\cdot\|_X$ dann oft auch von starker Konvergenz oder Konvergenz in der Norm.

Theorem 23. Sei $(X, \|\cdot\|_X)$ ein normierter Raum und (x_n) eine Folge in X.

- (1) Konvergiert (x_n) schwach gegen $x \in X$ und $y \in X$, so gilt x = y.
- (2) Ist (x_n) konvergent gegen $x \in X$, so konvergiert (x_n) auch schwach gegen
- (3) Ist $\dim X < \infty$ und konvergiert (x_n) schwach gegen x, so konvergiert (x_n) gegen x (bezüglich $\|\cdot\|_X$).
- Beweis. (1) Konvergiere (x_n) schwach gegen $x \in X$ und $y \in X$, $x \neq y$. Nach Korollar 3 (TODO) gibt es $f' \in X'$ mit ||f'|| = 1 und $|f(x y)| = ||x y||_X \neq 0$. Somit ist $0 = \lim_{n \to \infty} (f'(x_n) f'(x_n)) = \lim_{n \to \infty} f'(x_n) \lim_{n \to \infty} f'(x_n) = f'(x) f'(y) = f'(x y) \neq 0$, Widerspruch.
 - (2) Folgt aus der Stetigkeit von $f' \in X'$.

(3) Übungsaufgabe 9.1: Wähle endliche Basis, Folge x_n in Basis darstellen. Koeffizienten konvergieren dann einzlen (Zeigen durch clevere Wahl der Funktionale; Korollare von Hahn-Banach verwenden).

Beispiel 8. Betrachte $(l^p, \|\cdot\|_p)$ für $1 . Sei <math>e_n : \mathbb{N} \to \mathbb{K}$, $e_n(m) = 1$ für n = m, sonst $e_n(m) = 0$. Sei $f' \in (l^p)'$. Wir können f'(g) schreiben als $f'(g) = \sum_{m=1}^{\infty} f(m)g(m)$ mit $f \in l^q$ mit $q = \frac{p}{p-1}$. Es ist $f'(e_n) = f(n)$. Somit $\lim_{n\to\infty} f'(e_n) = \lim_{n\to\infty} f(n) = 0$, da $f \in l^q$ mit $q < \infty$. Also

$$\forall_{f' \in X'} : \lim_{n \to \infty} f'(e_n) = 0 = f'(\underbrace{0}_{\in l^p})$$

und damit ist (e_n) schwach konvergent gegen $0 \in l^p$. Da $\forall_{n \in \mathbb{N}} : ||e_n||_p = 1$ ist (e_n) nicht konvergent gegen 0 bezüglich $||\cdot||_p$.

Theorem 24. Ist $(X, \|\cdot\|_X)$ ein reflexiver, normierter Raum, so besitzt jede beschränkte Folge eine schwach konvergente Teilfolge.

Beweis. Falls X separabel: Nach Korollar ${\bf 4}$ ist X' separabel. Also $X'=\overline{\{f'_m\in X'\mid m\in \mathbb{N}\}}.$ Sei (x_n) beschränkte Folge in X. Es gibt Teilfolge $(x_{n_{1,j}})_{j\in\mathbb{N}}$ von (x_n) so dass $(f'_1(x_{n_{1,j}}))_{j\in\mathbb{N}}$ konvergiert, da $(f'_1(x_n))_{n\in\mathbb{N}}$ beschränkt. Ist $(x_{n_{k,j}})_{j\in\mathbb{N}}$ Teilfolge von (x_n) so dass für l=1,...,k die Folgen $(f'_l(x_{k,j}))_{j\in\mathbb{N}}$ konvergieren, so gibt es Teilfolgen $(x_{n_{k+1,j}})_{j\in\mathbb{N}}$ von $(x_{n_{k,j}})_{j\in\mathbb{N}}$ so dass $(f'_{k+1}(x_{n_{k+1,j}}))_{j\in\mathbb{N}}$ konvergiert. Definiert man die Folge (y_k) in X durch $y_k=x_{n_{k,k}}$, so konvergiert per Definition $(f'_m(y_k))_{k\in\mathbb{N}}$.

Sei $x' \in X'$ und $\varepsilon > 0$ gegeben. Definiere $M = \sup_{n \in \mathbb{N}} \|x_n\|_X$. Fall M = 0 impliziert, dass x_n Nullfolge ist. Sei M > 0. Wähle $k \in \mathbb{N}$ mit $\|f_k' - x'\| < \frac{1}{4M}\varepsilon$ und $N \in \mathbb{N}$ so dass für alle n, m > N gilt $\|f_k'(y_n) - f_k'(y_m)\| < \frac{\varepsilon}{2}$. Dann gilt für alle n, m > N dass $|x'(y_n) - x'(y_m)| \le |x'(y_n) - f_k'(y_n)| + |f_k'(y_n) - f_k'(y_m)| + |x'(y_m) + f_k'(y_n)| \le \|x' - f_k'\| \cdot \|y_n\|_X + |f_k'(y_n) - f_k'(y_m)| + \|x' - f_k'\| \cdot \|y_m\|_X \le \frac{1}{2M}M\varepsilon + \frac{\varepsilon}{2} = \varepsilon$. Also ist $(x'(y_n))_{n \in \mathbb{N}}$ Cauchy-Folge in \mathbb{K} und somit konvergent.

Setze $X' \to \mathbb{K}$, $l(x') = \lim_{n \to \mathbb{N}} x'(y_n)$. l ist wohldefiniert und linear. Es ist $|l(x')| = |\lim_{n \to \infty} x'(y_n)| = \lim_{n \to \infty} |x'(y_n)| \le \lim_{n \to \infty} \|x'\| \|y_n\|_X \le \|x'\| \cdot M$. Also ist l stetig und $l \in X''$. Da X reflexiv ist, gibt es $y \in X$ mit l = i(x), d.h.

$$\forall_{x' \in X'} : x'(y) = i(y)(x') = l(x') = \lim_{n \to \infty} x'(y_n).$$

Falls X nicht separabel: $Y = \overline{\operatorname{span}\{x_n \mid n \in \mathbb{N}\}}$. Dann ist Y ist separabel und reflexiv (Satz 22). Nach obigen Argument gibt es Teilfolge (y_k) von (x_n) und $y \in Y$ mit $\forall_{y' \in Y'}$: $\lim_{k \to \infty} y'(y_k) = y'(y)$. Sei $x' \in X'$. Dann ist $x'|_Y \in Y'$ und somit $\lim_{n \to \infty} x'(y_n) = \lim_{n \to \infty} x'|_Y(y_n) = x'|_Y(y) = x'(y)$. Also konvergiert (y_n) schwach gegen y.

Definition 14. Seien $(X, \|\cdot\|_X), (Y, \|\cdot\|_Y)$ normierte Räume und $T \in L(X, Y)$. Wir nennen den stetigen linearen Operator $T': Y' \to X'$, definiert durch (T'y')(x) = y'(Tx) den adjungierten Operator zu T.

Bemerkung 7. T' ist stetig da für alle $y' \in Y', x \in X$ gilt $|(T'y')(x)| \le ||y'|| ||T|| ||x||_X$. Also gilt für alle $y' \in Y'$ dass $||T'y'|| \le ||y'|| ||T||$.

Theorem 25. Seien $(X, \|\cdot\|_X), (Y, \|\cdot\|_Y), (Z, \|\cdot\|_Z)$ normierte Räume.

- (1) Die Abbildung $\varphi: L(X,Y) \to L(Y',X')$ mit $\varphi(T) = T'$ ist linear und isometrisch.
- (2) $F\ddot{u}r T \in L(X,Y), S \in L(Y,Z)$ ist $(S \circ T)' = T' \circ S'$.

2. Übungsblätter

2.1. Übungsblatt 1.

2.1.1. Aufgabe 1.1. Zunächst zeigen wir: $\forall_{x,y \in X}: |\|x\| - \|y\|| \leq \|x-y\|:$

$$||x|| - ||y|| = ||x - y + y|| - ||y|| \le ||x - y|| + ||y|| - ||y|| = ||x - y||$$

$$||y|| - ||x|| = ||y - x + x|| - ||x|| \le ||y - x|| + ||x|| - ||x|| = ||x - y||$$

Dies impliziert die Ungleichung.

Sei $x \in X$ gegeben und $\varepsilon > 0$. Wähle $\delta = \varepsilon$. Dann gilt für alle $y \in U_{\delta}(x) : ||x|| - ||y|| \le ||x - y|| < \delta = \varepsilon$. Damit ist die Abbildung $x \mapsto ||x||$ stetig.

- 2.1.2. Aufgabe 1.2. Sei $v \in X$ und r > 0. Ist (w_n) Folge in $U_r(v)$, die gegen $w \in X$ konvergiert, so folgt wegen der Stetigkiet von $x \mapsto \|x\|$, dass $\|w-v\| = \lim_{n \to \infty} \|w_n v\| \le r$. Also $\overline{U_r(v)} \subset \{w \in X : \|w-v\| \le r\}$. Sei $w \in X$ mit $\|w-v\| = r$. Definiere Folge (w_n) durch $w_n = v + (1 \frac{1}{n})(w-v)$. Da $\|w-w_n\| = \|w-v-(1-\frac{1}{n})(w-v)\| = \|w-w+\frac{w}{n}-v+v-\frac{v}{n}\| = \|\frac{1}{n}(w-v)\| = \frac{1}{n}\|w-v\| = \frac{1}{n}r \to_{n\to\infty} 0$ konvergiert (w_n) gegen w. Weiterhin ist $\|v-w_n\| = \|v-v-(1-\frac{1}{n})(w-v)\| = (1-\frac{1}{n})\|w-v\| = (1-\frac{1}{n})r < r$ also (w_n) Folge in $U_r(v)$. Damit $\{w \in X | \|w-v\| \le r\} \subset \overline{U_r(v)}$ und es folgt die Gleichheit der Mengen. Gegenbeispiel für metrische Räume: Sei $X = \mathbb{Z}$ und d(v,w) = |v-w|. X ist mit d ein metrischer Raum und es gilt $\{w \in X : d(w,0) < 1\} = \{0\} = \{0\} \neq \{-1,0,1\} = \{w \in X : d(w,0) \le 1\}$.
- 2.1.3. Aufgabe 1.3. Behauptung: Für $1 gilt: <math>l^1 \subset l^p \subset l^q \subset l^\infty$. Beweis: Sei $(x_n) \in l^p$ für $1 \le p < \infty$. Dann ist die Reihe $\sum_{n=1}^{\infty} |x_n|^p$ konvergent. Damit konvergiert $(|x_n|^p)_{n \in \mathbb{N}}$ und somit (x_n) gegen 0. Also ist (x_n) beschränkt und $(x_n) \in l^\infty$.

Sei $q \in \mathbb{R}$ mit p < q. Da (x_n) gegen 0 konvergiert, gibt es $N \in \mathbb{N}$, so dass für alle n > N: $|x_n| < 1$. Damit ist für alle n > N: $|x_n|^q < |x_n|^p$. Da $\sum_{n=1}^{\infty} |x_n|^p$ konvergiert ist nach dem Majorantenkriterium auch $\sum_{n=1}^{\infty} |x_n|^q$ konvergent und $(x_n) \in l^q$.

Beweis, dass die Inklusionen echt sind: Sei $p \in \mathbb{R}$ mit $1 \leq p < \infty$. Die konstante Folge $(a_n), \forall_{n \in \mathbb{N}} a_n = 1$, ist beschränkt, also $(a_n) \in l^\infty$. Da $\sum_{n=1}^\infty |1|^p$ divergent, ist $(a_n) \notin l^p$. Sei $q \in \mathbb{R}$ mit p < q. Wähle $\alpha \in (\frac{1}{q}, \frac{1}{p})$. Dann ist $\alpha p < \frac{1}{p}p = 1$ und $\alpha q > \frac{1}{q}q = 1$. Betrachte die Folge $x = \left(\frac{1}{n^\alpha}\right)_{n \in \mathbb{N}}$. Die Reihe $\sum_{n=1}^\infty \left(\frac{1}{n^\alpha}\right)^p = \sum_{n=1}^\infty \frac{1}{n^{\alpha p}}$ ist divergent. Die Reihe $\sum_{n=1}^\infty \left(\frac{1}{n^\alpha}\right)^p = \sum_{n=1}^\infty \frac{1}{n^{\alpha q}}$ ist konvergent. Damit $x \notin l^p$ und $x \in l^q$.

2.1.4. Aufgabe 1.4. Wir verwenden wieder die Schreibweise von Folgen als Funktionen $\mathbb{N} \to \mathbb{K}$. Wir definieren $f_n : \mathbb{N} \to \mathbb{K}$ für $n \in \mathbb{N}$ durch

$$f_n(m) = \begin{cases} \frac{1}{m} & (m < n) \\ 0 & (m \ge n) \end{cases}$$

(also (0,0,0,...), (1,0,0,0,...), $(1,\frac{1}{2},0,0,0,...)$, ...) und $f: \mathbb{N} \to \mathbb{K}$, $f(m) = \frac{1}{m}$. Es ist (f_n) Folge in d und $f \in c_0 \setminus d$. Da

$$(f_n - f)(m) = \begin{cases} 0 & m < n \\ -\frac{1}{m} & m \ge n \end{cases}$$

folgt $||f_n - f||_{\infty} = \frac{1}{n}$. Also konvergiert (f_n) in $(c_0, ||\cdot||_{\infty})$ gegen f. Damit ist d nicht abgeschlossen in $(c_0, ||\cdot||_{\infty})$. Somit ist $(d, ||\cdot||_{\infty})$ nicht vollständig (nach Satz 1).

2.2. Übungsblatt 2.

2.2.1. Aufgabe 2.1.

- (1) Wir überprüfen die drei Normaxiome.

 - (a) Sei $\lambda \in \mathbb{K}$, $f \in C^r(\overline{\Omega})$. Es gilt $\|\lambda f\| = \sum_{\alpha \in \mathbb{N}_0^n, 0 \le |\alpha| \le r} \|D^{\alpha}(\lambda f)\|_{\infty} = \sum_{\alpha \in \mathbb{N}_0^n, 0 \le |\alpha| \le r} \|\lambda D^{\alpha} f\|_{\infty} = |\lambda| \sum_{\alpha \in \mathbb{N}_0^n, 0 \le |\alpha| \le r} \|D^{\alpha} f\|_{\infty} = |\lambda| \|f\|.$ (b) Seien $f, g \in C^r(\overline{\Omega})$. Es gilt $\|f + g\| = \sum_{\alpha \in \mathbb{N}_0^n, 0 \le |\alpha| \le r} \|D^{\alpha} (f + g)\|_{\infty} = \sum_{\alpha \in \mathbb{N}_0^n, 0 \le |\alpha| \le r} \|(D^{\alpha} f) + (D^{\alpha} g)\|_{\infty} \le \sum_{\alpha \in \mathbb{N}_0^n, 0 \le |\alpha| \le r} \|D^{\alpha} f\|_{\infty} + \|D^{\alpha} g\|_{\infty}) = \sum_{\alpha \in \mathbb{N}_0^n, 0 \le |\alpha| \le r} \|D^{\alpha} f\|_{\infty} + \|D^{\alpha} g\|_{\infty}$
 - (c) Sei $f \in C^r(\overline{\Omega})$. Es sei ||f|| = 0. Also $\sum_{\alpha \in \mathbb{N}_0^n, 0 \le |\alpha| \le r} ||D^{\alpha} f||_{\infty} = 0$. Damit folgt $||D^0 f||_{\infty} = 0$ und somit $||f||_{\infty} = 0$. Da $f \in l^{\infty}(\Omega)$, folgt für alle $x \in \Omega$ dass f(x) = 0.
 - (d) Wir zeigen zuerst, dass f auf Ω stetig fortsetzbar ist. Konvergiere (f_m) auf Ω gleichmäßig gegen f, mit (f_m) Folge wie in Aufgabenstellung und $f:\Omega\to\mathbb{R}$ stetig. Dann ist für alle $x\in\Omega$: $\lim_{n\to\infty}f_n(x)=f(x)$. Die Folge $(f_m|_{\Omega})_{m\in\mathbb{N}}$ ist konvergent in $(l^{\infty}(\Omega), \|\cdot\|_{\infty})$, also Cauchy-Folge in $(l^{\infty}(\Omega), \|\cdot\|_{\infty})$. Da für alle $k, m \in \mathbb{N}$:

$$\underbrace{\sup_{x \in \Omega} |f_k(x) - f_m(x)|}_{\|f_k|_{\Omega} - f_m|_{\Omega}\|_{\infty}} = \underbrace{\sup_{x \in \overline{\Omega}} |f_k(x) - f_m(x)|}_{\|f_k - f_m\|_{\Omega}}$$

ist $(f_m)_{m\in\mathbb{N}}$ Cauchy-Folge in $(l^{\infty}(\overline{\Omega}), \|\cdot\|_{\infty})$. Da dieser Raum ein Banachraum ist, gibt es $\widetilde{f}\in l^{\infty}(\overline{\Omega})$ mit $\lim_{k\to\infty}\|f_k-\widetilde{f}\|_{\infty}=0$. Also konvergiert (f_m) gleichmäßig gegen \tilde{f} und damit ist \tilde{f} stetig. Da für alle $x \in \Omega$ gilt:

$$\widetilde{f}(x) = \lim_{m \to \infty} f_m(x) = f(x).$$

Damit ist f stetig fortsetzbar auf $\overline{\Omega}$. Analog für g_i . Nun zeigen wir die Differenzierbarkeit von f nach x_j : Wir schreiben $f(_, x_j, _)$ für $f(x_1,...,x_j,...,x_n)$ und $f(_,x_j+h,_)$ für $f(x_1,...,x_{j-1},x_j+h,x_{j+1},...,x_n)$. Sei $j \in \{1, ..., n\}, x = (x_1, ..., x_n) \in \Omega$. Wähle r > 0, so dass $U_r(x) \subset \Omega$

mit $U_r(x)$ bezüglich $\|\cdot\|_2$ -Norm auf \mathbb{R}^n . Nach dem Mittelwertsatz gibt es für jedes $h \in (-r,r)$ und $m \in \mathbb{N}$ ein $\zeta_{h,m} \in [-|h|,|h|]$ mit

(2.1)
$$\left| f_m(_, x_j + h, _) - f_m(_, x_j, _) - h \frac{d}{dx_j} f_m(_, x_j + \zeta_{h,m}, _) \right| = 0$$

 $(\zeta_{h,m})_{m\in\mathbb{N}}$ ist Folge in [-|h|,|h|]. Durch Übergang zu einer Teilfolge von (f_m) können wir o.B.d.A. annehmen, dass $(\zeta_{h,m})_{m\in\mathbb{N}}$ gegen ein $\zeta_h^* \in [-|h|,|h|]$ konvergiert. Mit der Abschätzung

$$\left| \frac{d}{dx_{j}} f_{m}(_, x_{j} + \zeta_{h,m}, _) - g_{j}(_, x_{j} + \zeta_{h}^{*}, _) \right|$$

$$\leq \left| \frac{d}{dx_{j}} f_{m}(_, x_{j} + \zeta_{h,m}, _) - g_{j}(_, x_{j} + \zeta_{h,m}, _) \right|$$

$$+ |g_{j}(_, x_{j} + \zeta_{h,m}, _) - g_{j}(_, x_{j} + \zeta_{h}^{*}, _)|$$

$$\leq \underbrace{\left\| \frac{d}{dx_{j}} f_{m} - g_{j} \right\|_{\infty}}_{\to 0} + \underbrace{|g_{j}(_, x_{j} + \zeta_{h,m}, _) - g_{j}(_, x_{j} + \zeta_{h}^{*}, _)|}_{\to 0}.$$

folgt, dass $\left(\frac{d}{dx_j}f_m(_,x_j+\zeta_{h,m},_)\right)_{m\in\mathbb{N}}$ gegen $g_j(_,x_j+\zeta_h^*,_)$ konvergiert. Für $m\to\infty$ folgt aus (2.1), dass

$$|f(_, x_j + h, _) - f_j(_, x_j, _) - hg_j(_, x_j + \zeta_h^*, _)| = 0.$$

Sei $(h_k)_{k\in\mathbb{N}}$ Folge in (-r,r) mit $h_k\to 0$ für $k\to\infty$ mit $h_k\ne 0$ für alle $k\in\mathbb{N}$. Dann folgt mit (2.1)

$$\lim_{k \to \infty} \frac{f(\underline{\ }, x_j + h_k, \underline{\ }) - f(\underline{\ }, x_j, \underline{\ })}{h_k}$$

$$= \lim_{k \to \infty} g_j(\underline{\ }, x_j + \underbrace{\zeta_{h_k}^*}_{\to 0 \ (k \to \infty)}, \underline{\ })$$

$$= g_i(\underline{\ }, x_j, \underline{\ })$$

mit $|\zeta_{h_k}^*| \leq |h_k|$ und g_j stetig. Somit ist f nach x_j partiell differenzierbar und $\frac{d}{dx_i}f(x) = g_j(x)$.

2.2.2. Aufgabe 2.3.

(1) Seien $p,q \in \mathbb{R}$ mit $1 \leq p < q$. Wähle $\alpha \in (\frac{1}{q},\frac{1}{q})$. Dann gilt $\alpha p < 1$ und $\alpha q > 1$. Wir schreiben Elemente aus l^p als Funktionen $\mathbb{N} \to \mathbb{K}$. Wir definieren für $n \in \mathbb{N}$ die Funktionen $f_n : \mathbb{N} \to \mathbb{K}$ durch

$$f_n(m) = \begin{cases} \frac{1}{m^{\alpha}} & m \le n, \\ 0 & m > n. \end{cases}$$

Da $f_n \in d$ für alle $n \in \mathbb{N}$ ist $f_n \in l^p$ für alle $n \in \mathbb{N}$. Es ist die Folge $\left(\|f_n\|_p^p\right)_{n \in \mathbb{N}}$ divergent, da $\|f_n\|_p^p = \sum_{m=1}^n \frac{1}{m^{\alpha p}}$ mit $\alpha p < 1$. Die Folge $\left(\|f_n\|_q^q\right)_{n \in \mathbb{N}}$ ist konvergent, da $\|f_n\|_q^q = \sum_{m=1}^n \frac{1}{m^{\alpha q}}$ mit $\alpha q > 1$. Also ist die Folge $(\|f_n\|_p)_{n \in \mathbb{N}}$ divergent und die Folge $(\|f_n\|_q)_{n \in \mathbb{N}}$ ist konvergent. Damit können $\|\cdot\|_p$ und $\|\cdot\|_q$ nicht äquivalent sein, denn sonst gäbe es $M > 0 \ \forall_{n \in \mathbb{N}}: \|f_n\|_p \leq M\|f_n\|_q$. (Unter Verwendung von Aufgabe 2.2.) Widerspruch.

(2) Sei $p \in \mathbb{R}$, $1 \leq p$. Für $n \in \mathbb{N}$ definieren wir $f_n : \mathbb{N} \to \mathbb{K}$ durch

$$f_n(m) = \begin{cases} 1 & m \le n, \\ 0 & m > n. \end{cases}$$

Wieder ist für alle $n \in \mathbb{N}$: $f_n \in d \subset l^p$, also (f_n) Folge in l^p . Es ist $||f_n||_{\infty} = 1$ für alle $n \in \mathbb{N}$ und

$$||f_n||_p = \left(\sum_{m=1}^n 1^p\right)^{\frac{1}{p}} = n^{\frac{1}{p}}.$$

Damit ist $(\|f_n\|_{\infty})_{n\in\mathbb{N}}$ konvergent und $(\|f_n\|_p)_{n\in\mathbb{N}}$ divergent. Analog zur obigen Aufgabe folgt, dass $\|\cdot\|_{\infty}$ und $\|\cdot\|_p$ nicht äquivalent sind.

2.3. Übungsblatt 3.

2.3.1. Aufgabe 3.1. Wir betrachten zunächst den Fall $a=-1,\,b=1.$ Wir definieren $f:\mathbb{R}\to\mathbb{R}$

$$f(x) = \begin{cases} |x| & |x| > 1, \\ \frac{1}{2}x^2 + \frac{1}{2} & |x| \le 1. \end{cases}$$

Es ist $f \in C^1(\mathbb{R})$. Wir definieren $n \in \mathbb{N}$ die Funktionen $f_n : [-1,1] \to \mathbb{R}, f_n(x) := \frac{1}{n}f(nx)$. Dann ist (f_n) Folge in $C^1([-1,1])$. (f_n) konvergiert in $(C([-1,1]), \|\cdot\|_{\infty})$ gegen g(x) = |x|, denn $\|f_n - g\|_{\infty} = \sup_{x \in [-1,1]} |f_n(x) - g(x)|$

$$= \max \left\{ \sup_{\substack{x \in [-1,1] \setminus [-\frac{1}{n}, \frac{1}{n}] \\ = 0}} |f_n(x) - g(x)|, \sup_{x \in [-\frac{1}{n}, \frac{1}{n}]} |f_n(x) - g(x)| \right\}$$

$$= \sup_{x \in [-\frac{1}{n}, \frac{1}{n}]} \left| \frac{1}{n} \left(\frac{1}{2} (nx)^2 + \frac{1}{2} \right) - |x| \right|$$

$$\leq \frac{1}{n} + \sup_{x \in [-\frac{1}{n}, \frac{1}{n}]} \left| \frac{1}{2} n x^2 + \frac{1}{2n} \right|$$

$$\leq \frac{2}{n} \to 0$$

für $n \to \infty$. Also (f_n) Cauchy-Folge in $(C^1([-1,1]), \|\cdot\|_{\infty})$. Aber (f_n) nicht konvergent in $C^1([-1,1])$, da für einen Grenzwert \widetilde{f} in $C^1([-1,1])$ gilt $\widetilde{f}=g$ gelten müsste. Für $a,b \in \mathbb{R}$ sei $h:[a,b] \to [-1,1]$ durch $h(x)=2\frac{x-a}{b-a}-1$ definiert. Da $\|f_n \circ h\|_{\infty}=\|f_n\|_{\infty}$ ist $(f_n \circ h)_{n \in \mathbb{N}}$ Cauchy-Folge in $(C^1([a,b]), \|\cdot\|_{\infty})$ die nicht konvergiert (da Grenzwert $\widetilde{f} \in C^1([a,b])$ durch $\widetilde{f} \circ h^{-1}$ einen Grenzwert von (f_n) in $C^1([-1,1])$ liefert).

- 2.3.2. Aufgabe 3.2. Sei $a, b \in \mathbb{R}$, a < b.
 - (1) $\|\cdot\|_1$ ist Norm:
 - (a) Sei $f \in C([a,b])$, $\lambda \in \mathbb{K}$. $\|\lambda f\|_1 = \int_a^b |\lambda f(s)| ds = \int_a^b |\lambda| |f(s)| ds = \|\lambda\| \int_a^b |f(s)| ds = |\lambda| \|f\|_1$.
 - (b) Seien $f, g \in C([a, b])$. $||f + g||_1 = \int_a^b |f(s) + g(s)| ds \le \int_a^b |f(s) + g(s)| ds = ||f||_1 + ||g||_1$.
 - (c) Sei $f \in C([a,b])$ mit $||f||_1 = 0$. Also $\int_a^b |f(s)| ds = 0$. Nach Ergebnissen aus der Analysis für stetige Funktionen folgt, dass f konstant 0 auf [a,b] ist.
 - (2) $(C([a,b]), \|\cdot\|_1)$ ist nicht vollständig. Betrachte zunächst a=0, b=2. Definiere für $n \in \mathbb{N}, f_n : [0,2] \to \mathbb{K}$ durch

$$f_n(x) = \begin{cases} x & x \in [0, 1], \\ 1 & x \in [1, 2]. \end{cases}$$

Dann ist (f_n) Cauchy-Folge bezüglich $\|\cdot\|_1$, denn $\|f_n - f_m\|_1 = \int_0^1 |x^n - x^m| dx \leq \left[\frac{1}{n+1}x^{n+1} + \frac{1}{m+1}x^{m+1}\right]_0^1 = \frac{1}{n+1} + \frac{1}{m+1} \to 0$ für $n, m \to \infty$. Angenommen (f_n) hat Grenzwert $g \in C([0,2])$. Dann ist

$$\underbrace{\|f_n - g\|_1}_{\to_{n \to \infty} 0} = \int_0^1 |f_n(x) - g(x)| dx + \int_1^2 |f_n(x) - g(x)| dx$$

$$= \int_0^1 |x^n - g(x)| dx + \int_1^2 |1 - g(x)| dx$$

$$= \underbrace{\int_0^1 |x^n - g(x)| dx}_{\ge 0 \text{ und } \to_{n \to \infty} 0} + \underbrace{\int_1^2 |1 - g(x)| dx}_{\ge 0 \text{ und } \to_{n \to \infty} 0}$$

und also $||1-g(x)|_{[1,2]}||_1=\int_1^2|1-g(x)|dx=0$ und damit $g(x)|_{[1,2]}\equiv 1$. Mit der $||\cdot||_1$ Norm auf C([0,1]) folgt

$$\int_{0}^{1} |x^{n} - g(x)| dx \ge \left| \underbrace{\int_{0}^{1} |x^{n}| dx}_{\to_{n \to \infty} 0} - \int_{0}^{1} |g(x)| dx \right|.$$

Es ergibt sich $||g|_{[0,1]}||_1=0$ und also g(x)=0 für alle $x\in[0,1].$ Widerspruch.

2.3.3. Aufgabe 3.3. Nach Lemma 3 gibt es eine Folge (x_n) in X so dass für alle $n \in \mathbb{N}$ gilt $||x_1|| = 1$ und $\forall_{u \in U} : ||u - x_n|| > 1 - \frac{1}{n}$. Sei $S = \{x \in X | ||x|| = 1\}$. S ist abgeschlossen und beschränkt. Da X endlich dimensional ist, ist S kompakt ist. Somit gibt es eine konvergente Teilfolge (y_k) von (x_n) und Folge $\delta_k \in (0,1)$ mit $\forall_{u \in U} : ||u - y_k|| > 1 - \delta_k$ und $\delta_k \to 0$. Sei $y = \lim_{k \to \infty} y_k$. Ist $u \in U$, so ist $||u - y|| = \lim_{k \to \infty} ||u - y_k|| \ge \lim_{k \to \infty} 1 - \delta_k = 1$. Also $1 \le \inf\{||u - y|||u \in U\}$. Da $||0 - y|| = ||y|| = \lim_{k \to \infty} ||y_k|| = 1$ folgt die Gleichheit und ||y|| = 1.

2.3.4. Aufgabe 3.4. Sei $e_j \in d$, $e_j : \mathbb{N} \to \mathbb{K}$ definiert durch

$$e_j(m) = \begin{cases} 1 & j = m, \\ 0 & j \neq m. \end{cases}$$

Es ist $d=\mathrm{span}\{e_j|j\in\mathbb{N}\}$. Sei $f\in c_0,\ f:\mathbb{N}\to\mathbb{K}$. Definiere für $n\in\mathbb{N}$ die Folge $f_n:\mathbb{N}\to\mathbb{K}$ durch

$$f_n(m) = \begin{cases} f(m) & m \le n, \\ 0 & m > n. \end{cases}$$

Dann ist (f_n) Folge in d. Da $||f-f_n||_{\infty} = \sup_{m \in \mathbb{N}} |f(m)-f_n(m)| = \sup_{m > n} |f(m)| \to 0$ für $n \to \infty$ ist f Grenzwert von (f_n) in $(c_0, ||\cdot||_{\infty})$. Also $c_0 = \overline{d} = \overline{\operatorname{span}}\{e_j|j \in \mathbb{N}\}$. Somit ist c_0 separabel.

2.3.5. Aufgabe 3.5. Sei $f \in C^r(\overline{\Omega})$. Alle Maxima und Summen beziehen sich auf Multiindizies $\alpha \in \mathbb{N}_0^n$ mit $0 \le |\alpha| \le r$. Dann gilt

$$\max \|D^{\alpha} f\|_{\infty} \le \sum \|D^{\alpha} f\|_{\infty}.$$

Umgekehrt gilt

$$\sum \|D^{\alpha} f\|_{\infty} \le (r+1)^n \max \|D^{\alpha} f\|_{\infty}.$$

Also $\forall_{f \in C^r(\overline{\Omega})} : ||f||_a \le ||f|| \le (r+1)^n ||f||_a.$