Problems 8.1 Constant-Current Sources

- 1. Find the voltage V_S for the circuit shown in Figure 8–64.
- 2. Find the voltage V_S for the circuit shown in Figure 8–65.

FIGURE 8-64

FIGURE 8-65

FIGURE 8-66

- 3. Refer to the circuit of Figure 8–66:
 - a. Find the current I_3 .
 - b. Determine the voltages V_S and V_1 .
- 4. Consider the circuit of Figure 8–67:
 - a. Calculate the voltages V_2 and V_S .
 - b. Find the currents I and I_3 .

FIGURE 8–67

- 5. For the circuit of Figure 8–68, find the currents I_1 and I_2 .
- 6. Refer to the circuit of Figure 8-69:
 - a. Find the voltages V_S and V_2 .
 - b. Determine the current I_4 .

FIGURE 8-68

FIGURE 8-69

- 7. Verify that the power supplied by the sources is equal to the summation of the powers dissipated by the resistors in the circuit of Figure 8–68.
- 8. Verify that the power supplied by the source in the circuit of Figure 8–69 is equal to the summation of the powers dissipated by the resistors.

8.2 Source Conversions

- 9. Convert each of the voltage sources of Figure 8–70 into its equivalent current source.
- 10. Convert each of the current sources of Figure 8–71 into its equivalent voltage source.

FIGURE 8-70

FIGURE 8-71

- 11. Refer to the circuit of Figure 8–72:
 - a. Solve for the current through the load resistor using the current divider rule
 - b. Convert the current source into its equivalent voltage source and again determine the current through the load.
- 12. Find V_{ab} and I_2 for the network of Figure 8–73.

FIGURE 8-72

FIGURE 8-73

- 13. Refer to the circuit of Figure 8–74:
 - a. Convert the current source and the 330- Ω resistor into an equivalent voltage source.
 - b. Solve for the current I through R_L .
 - c. Determine the voltage V_{ab} .

FIGURE 8-74

- 14. Refer to the circuit of Figure 8–75:
 - a. Convert the voltage source and the 36- Ω resistor into an equivalent current source.
 - b. Solve for the current I through R_L .
 - c. Determine the voltage V_{ab} .

FIGURE 8–75

8.3 Current Sources in Parallel and Series

15. Find the voltage V_2 and the current I_1 for the circuit of Figure 8–76.

FIGURE 8-76

- 16. Convert the voltage sources of Figure 8–77 into current sources and solve for the current I_1 and the voltage V_{ab} .
- 17. For the circuit of Figure 8–78, convert the current source and the 2.4-k Ω resistor into a voltage source and find the voltage V_{ab} and the current I_3 .
- 18. For the circuit of Figure 8–78, convert the voltage source and the series resistors into an equivalent current source.
 - a. Determine the current I_2 .
 - b. Solve for the voltage V_{ab} .

FIGURE 8–77 FIGURE 8–78

8.4 Branch-Current Analysis

- 19. Write the branch-current equations for the circuit shown in Figure 8–79 and solve for the branch currents using determinants.
- 20. Refer to the circuit of Figure 8-80:
 - a. Solve for the current I_1 using branch-current analysis.
 - b. Determine the voltage V_{ab} .

FIGURE 8-79

FIGURE 8-80

21. Write the branch-current equations for the circuit shown in Figure 8–81 and solve for the current I_2 .

FIGURE 8-81

- 22. Refer to the circuit shown in Figure 8–82:
 - a. Write the branch-current equations.
 - b. Solve for the currents I_1 and I_2 .
 - c. Determine the voltage V_{ab} .
- 23. Refer to the circuit shown in Figure 8–83:
 - a. Write the branch-current equations.
 - b. Solve for the current I_2 .
 - c. Determine the voltage V_{ab} .

FIGURE 8-82

FIGURE 8-83

FIGURE 8-84

- 24. Refer to the circuit shown in Figure 8–84:
 - a. Write the branch-current equations.
 - b. Solve for the current *I*.
 - c. Determine the voltage V_{ab} .

8.5 Mesh (Loop) Analysis

- 26. Use mesh analysis for the circuit of Figure 8–80 to solve for the current I_1 .
- 27. Use mesh analysis to solve for the current I_2 in the circuit of Figure 8–81.
- 28. Use mesh analysis to solve for the loop currents in the circuit of Figure 8–83. Use your results to determine I_2 and V_{ab} .
- 29. Use mesh analysis to solve for the loop currents in the circuit of Figure 8–84. Use your results to determine I and V_{ab} .
- 30. Using mesh analysis, determine the current through the 6- Ω resistor in the circuit of Figure 8–85.
- 31. Write the mesh equations for the network in Figure 8–86. Solve for the loop currents using determinants.
- 32. Repeat Problem 31 for the network in Figure 8–87.

FIGURE 8–85

FIGURE 8-86

FIGURE 8-87

8.6 Nodal Analysis

- 33. Write the nodal equations for the circuit of Figure 8–88 and solve for the nodal voltages.
- 34. Write the nodal equations for the circuit of Figure 8–89 and determine the voltage V_{ab} .
- 35. Repeat Problem 33 for the circuit of Figure 8-90.

FIGURE 8-89

FIGURE 8-90

- 36. Repeat Problem 34 for the circuit of Figure 8–91.
- 37. Write the nodal equations for the circuit of Figure 8–86 and solve for $V_{6\,\Omega}$.
- 38. Write the nodal equations for the circuit of Figure 8–85 and solve for $V_{6\,\Omega}$.

8.7 Delta-Wye (Pi-Tee) Conversion

- 39. Convert each of the Δ networks of Figure 8–92 into its equivalent Y configuration.
- 40. Convert each of the Δ networks of Figure 8–93 into its equivalent Y configuration.

FIGURE 8-92

FIGURE 8-93

41. Convert each of the Y networks of Figure 8–94 into its equivalent Δ configuration.

FIGURE 8-88

FIGURE 8-91

FIGURE 8-94

42. Convert each of the Y networks of Figure 8–95 into its equivalent Δ configuration.

FIGURE 8-95

- 43. Using Δ -Y or Y- Δ conversion, find the current *I* for the circuit of Figure 8–96.
- 44. Using Δ -Y or Y- Δ conversion, find the current I and the voltage V_{ab} for the circuit of Figure 8–97.

 R_{1} R_{4} R_{4} R_{5} R_{6} R_{7} R_{7} R_{7} R_{7} R_{7} R_{8} R_{7} R_{8} R_{8} R_{8} R_{8} R_{8} R_{8} R_{9} R_{9

 R_3

FIGURE 8-96

- 45. Repeat Problem 43 for the circuit of Figure 8–98.
- 46. Repeat Problem 44 for the circuit of Figure 8–99.

FIGURE 8-100

FIGURE 8-99

8.8 Bridge Networks

- 47. Refer to the bridge circuit of Figure 8–100:
 - a. Is the bridge balanced? Explain.
 - b. Write the mesh equations.
 - c. Calculate the current through R_5 .
 - d. Determine the voltage across R_5 .

- 48. Consider the bridge circuit of Figure 8–101:
 - a. Is the bridge balanced? Explain.
 - b. Write the mesh equations.
 - c. Determine the current through R_5 .
 - d. Calculate the voltage across R_5 .
- 49. Given the bridge circuit of Figure 8–102, find the current through each resistor.
- 50. Refer to the bridge circuit of Figure 8–103:
 - a. Determine the value of resistance R_x such that the bridge is balanced.
 - b. Calculate the current through R_5 when $R_x = 0 \Omega$ and when $R_x = 10 \text{ k}\Omega$.

FIGURE 8-101

FIGURE 8–102

FIGURE 8-103

8.9 Circuit Analysis Using Computers

- 51. Use Multisim to solve for the currents through all resistors of the circuit shown in Figure 8–86.
- 52. Use Multisim to solve for the voltage across the 5-k Ω resistor in the circuit of Figure 8–87.
- 53. Use PSpice to solve for the currents through all resistors in the circuit of Figure 8–96.
- 54. Use PSpice to solve for the currents through all resistors in the circuit of Figure 8–97.
- Multisim
- Multisim
- PSPICE
- PSPICE

ANSWERS TO IN-PROCESS LEARNING CHECKS

IN-PROCESS LEARNING CHECK 1

- 1. A voltage source E in series with a resistor R is equivalent to a current source having an ideal current source I = E/R in parallel with the same resistance, R.
- 2. Current sources are never connected in series.

IN-PROCESS LEARNING CHECK 2

- 1. Voltage is zero.
- 2. Current is zero.
- 3. R_5 can be replaced with either a short circuit or an open circuit.