Pytania kierunkowe

1. Widmo sygnału analogowego (podstawowo-pasmowego i pasmowego) a twierdzenie o próbkowaniu.

Widmo sygnału jest to reprezentacja sygnału w dziedzinie częstotliwości, wyznaczana najczęściej z transformacji Fouriera. Aby sygnał był użyteczny w technice cyfrowj musi zostać zdyskretyzowany, a więc konieczne jest jego spróbkowanie oraz kwantyzacja, a widmo wyznacza się wtedy z DFT (w praktyce FFT).

Próbkowanie jest procesem konwersji sygnału analogowego (o czasie ciągłym) do postaci próbek pobieranych w rónomiernych odstępach czasu (zwanych okresem próbkowania T).

Twierdzenie Nyquista o próbkowaniu sygnału mówi nam, że jeżeli sygnał analogowy $x_a(t)$ jest ograniczony pasmowo (ma ograniczoną pasmowo transformatę Fouriera) to sygnał może być bezbłędnie i jednoznacznie zrekonstruowany na podstawie ciągu równomiernie rozłożonych próbek:

$$x[n]=x_a(*n*T_S), *n*\in I$$

 $je\dot{z}eli:$
 $F_S=1/T_S\geq 2F_{max}$

F_S - częstotliwość próbkowania,

F_{max} - częstotliwość górna sygnału,

Częstotliwość Nyguista - połowa Fs

Z właściwości transformaty Fouriera wiadomo, że widmo sygnału dyskretnego jest okresowe (co f_s się powtarza). A więc jeżeli się próbkuje sygnał z częstotliwocią niższą od częstotliwości Nyquista zajdzie zjawisko aliasingu i wynikowo widma zaczną na siebie zachodzić.

Sygnał analogowy podstawowo-pasmowy jest sygnałem ograniczonym pasmowo o widmie ulokowanym wokół częstotliwości zerowej. Widmo w funkcji częstotliwości:

A więc żeby spróbkować sygnał podstawowo-pasmowy wystarczy zastosować twierdzenie Nyquista o próbkowaniu sygnałów.

Sygnał pasmowy jest to sygnał o ograniczonym widmie ulokowanym wokół częstotliwości +f. Widmo w funkcji częstotliwości:

Zastosowania twierdzenia Nyquista o próbkowaniu sygnałów dla tego sygnału jest nieefektywne. W przypadku takich sygnałów możliwe jest takie dobranie szybkości próbkowania mniejszej od szybkości Nyquista, które zapewnia zachowanie nie zniekształconego widma sygnału przesuniętego jedynie w dziedzinie częstotliwości i w niektórych przypadkach widmie odwróconym w częstotliwości. Wynika to z faktu, że podczas podpróbkowania zachodzi zjawisko aliasingu, czyli sygnały "podszywają się" pod sygnały o innych częstotliwościach. Takie próbkowanie sygnału nazywa się podpróbkowaniem.

Różnica względem twierdzenia o próbkowaniu Nyquista jest taka, że:

 $F_S > 2B$

B - pasmo sygnału

Dodatkowo F_S nie może być dowolne, występują dopuszczalne pasma próbkowania. W wyniku podpróbkowania w dopuszczalnych pasmach próbkowania uzyskuje się widmo odwrócone w częstotliwości bądź widmo bez odwrócenia. Jeśli do podpróbkowania zostanie wybrana częstotliwość spoza dopuszczalnego pasma to zajdzie zachodzeni się na siebie widm sygnału.

Jak dobrać F_S nie znając wzorów, które wyznaczają dopuszczalne pasma próbkowania: Jeżeli pasmo B mieści się całkowitą ilość razy w częstotliwości f_H (iloraz f_H/B jest liczbą naturalną), to minimalną szybkością próbkowania przy której nie zajdą zniekształcenia jest f_S =2B

Jeżeli jednak pasmo B nie mieści się całkowitą liczbę razy w f_H (iloraz f_H/B nie jest liczbą naturalną), to wartość B należy zwiększyć do takiej najbliższej wartości B', która mieści się całkowitą ilość razy w f_H . Wtedy minimalną szybkością próbkowania, przy której nie zajdą zniekształcenia aliasowe to $f_S=2B'$. W ten sposób "ogony" replik nie tylko nie nachodzą na siebie, ale istnieje również zapas równy 2(B'-B).

2. Widmo sygnału dyskretnego i transformacje (DTFT, DFT, FFT) służące do obliczania tego widma oraz powiązania tych transformat.

Sygnał dyskretny - sygnał, który powstał w wyniku dyskretyzacji (próbkowania) sygnału ciągłego (analogowego) DTFT (Discrete Time Fourier Transform) - dyskretno-czasowe przekształcenie Fouriera DFT (Discrete Fourier Transform) - dyskretne przekształcenie Fouriera FFT (Fast Fourier Transform) - szybkie przekształcenie Fouriera

DTFT:

→ operujemy dyskretnym czasem i ciągłą częstotliwością,

→ sygnał o nieskończonej liczbie próbek

$$X(e^{j\omega T_s}) = \sum_{n=-\infty}^{\infty} x(nT_s)e^{-jn\omega T_s}$$
,

 $\rightarrow \omega$ – pulsacja $(2\pi F_p/F)$,

→ n – indeks (numer) próbki,

→ widmo amplitudowe - |X(e^{jω})|,

→ widmo fazowe – argX(e^{jω}).

DFT:

→ operujemy dyskretnym czasem i dyskretną częstotliwością,

→ sygnał o skończonej liczbie próbek N

$$X(e^{j\omega}) = \sum_{n=0}^{N-1} x(n)e^{-jn\omega} ,$$

 $\rightarrow \omega$ – pulsacja (2 π k/N),

→ n – indeks (numer) próbki,

FFT:

→ transformacja dająca wynik identyczny jak DFT,

- → opracowana ze względu na złożoność obliczeniową DFT,
- → dokonuje się zmiany kolejności próbek, dzieląc je rekurencyjnie na próbki o indeksach parzystych i nieparzystych, aż do uzyskania zbiorów dwuelementowych,
- → wykonuje się serie N/2 dwupunktowych DFT,
- → składa się widma dwuprążkowe w widma czteroprążkowe, czteroprążkowe w ośmioprążkowe itd., aż do momentu odtworzenia widma N-prążkowego, czyli widma całego sygnału.

→ dla N=1024

DFT: N2=1048676 mnożeń

FFT: 2(N/2)²=N²/2=524288 mnożeń

Powiązania transformat DFT i DTFT:

$$X[k] = X(e^{j\omega}) \mid_{\omega = \omega_k = \frac{2\pi}{N}k}, \quad k = 0, 1, \dots, N-1$$

3. Twierdzenia Schannona i ich interpretacje.

4. Usługi w sieci telekomunikacyjnej - klasyfikacja, charakterystyki, jakość usług.

Usługa telekomunikacyjna - przesyłanie na odległość informacji (w postaci mowy, muzyki, znaków, pisma, rysunków, fotografii, obrazów, danych, itp.) za pomocą sygnałów elektrycznych, optycznych lub radiowych. Świadczona każdorazowo przez operatora (dzięki jego urządzeniom i organizacji) na rzecz użytkowników i na ich żądanie. Usługi telekomunikacyjne można podzielić na usługi podstawowe (ang. basic services), usługi dodatkowe (ang. supplementary services) i usługi dodane. Usługi podstawowe i dodatkowe są opisane w specyfikacji standardu, na którym oparta jest sieć.

Usługi podstawowe:

• teleusługi (ang. teleservices) - usługi umożliwiające zestawienie pewnych, zdefiniowanych dla danego standardu sieci, połączeń (np. zwykłe połączenie telefoniczne, połączenie alarmowe, wysyłanie wiadomości SMS) i zapewniają w tym celu współpracę różnych elementów sieciowych i terminali końcowych.

• usługi przenoszenia (bearer services) - zapewniające transport informacji pomiędzy punktami dostępowymi sieci

Usługi dodatkowe - rozszerzają możliwości usług podstawowych. Przykładem może być możliwość ustawienia przekierowania na inny numer gdy abonent nie odpowiada, zestawienia telekonferencji lub ustawienie identyfikacji numeru dzwoniącego.

Usługi dodana - usługi nie objęte specyfikacją dla standardu, na którym oparta jest sieć. Mogą one kontrolować usługi objęte specyfikacją, bądź wykorzystywać je dla dostarczenia abonentowi dodatkowych treści i możliwości co poszerzy ofertę operatora na tle rybku. Usługi kontrolujące usługi podstawowe, oparte są zwykle o platformę sieci inteligentnych np. serwis prepaid, który kontroluje ilość środków na koncie abonenta i może w każdej chwili zakończyć połączenie lub transmisję danych. Przykładem usług, które wykorzystują usługi podstawowe dla zaoferowania informacji lub możliwości nie objętych specyfikacją sieci mogą być: umożliwienie abonentom wysyłania MMS, głosowania za pomocą SMS, nagrywania i odsłuchiwania poczty głosowej lub tzw. VoD (ang.Video on Demand).

Inne sposoby specyfikacji:

- ze względu na wymagane łącza:
 - usługi połączeniowe wymagające stworzenia kanału logicznego dla stałego połączenia na czas realizacji usługi
 - o usługi bezpołączeniowe (nie wymagające stworzenia kanału)
- z punktu widzenia abonenta:
 - usługi interaktywne: konwersacyjne (dwukierunkowa wymiana informacji w czasie rzeczywistym: telefonia, wideotelefonia), przekazywanie wiadomości (dwukierunkowa wymiana informacji), wyszukiwanie/dostęp do informacji (przesyłanie do użytkownika, na jego żądanie, informacji wcześniej zgromadzonych)
 - usługi dystrybucyjne (rozsiewcze): jedokierunkowe rozprowadzanie informacji do wielu użytkowników (użytkownik nie ma wpływu na szybkość i czas przesyłania danych ani treści), usług z/bez możliwości indywidualnego sterowania prezentacją (telegazeta, telewizja programowa)

Jakość usług:

- GoS (Grade of Service) poziom świadczonych usług określa pewne parametry (związane z inżynierią ruchu), których wartości umożliwiają odpowiedź na pytanie o wystarczalności posiadanych zasobów (przy ustalonych założeniach, co do panujących warunków). Parametrami GoS przykładowo są: prawdopodobieństwo nieuzyskania usługi, prawdopodobieństwo strat zgłoszenia, czy prawdopodobieństwo zajętości wszystkich zasobów, które wynikają z faktu, że zdolność obsługi sieci/elementów sieci jest ograniczona i nie zawsze może sprostać istniejącemu zapotrzebowaniu ruchowemu.
- QoS (Quality of Service) zbiór mechanizmów, które mają zapewnić dostarczenie przewidywalnego
 poziomu jakości usług sieciowych, poprzez zapewnienie określonych parametrów transmisji danych, w
 celu osiągnięcia satysfakcji użytkownika. Gwarantowana jakość usłgu jest to zestaw technologii
 zapewniających odpowiedni (przewidywalny) poziom usług w kontekście przepustowości, opóźnienia i
 zmienności opóźnienia (ang. jitter).

Przykładowe mechanizmy zapewniające jakość usług polegają na:

- kształtowaniu i ograniczaniu przepustowości
- zapewnianiu sprawiedliwego dostępu do zasobów
- nadawaniu odpowiednich priorytetów poszczególnym pakietom
- zarządzaniu opóźnieniami w przesyłaniu danych
- unikaniu przeciążeń

5. Narysuj schemat blokowy i omów działanie łącza radiowego.

Łącze radiowe - zestaw urządzeń służący do przesyłania i odbierania sygnału radiowego oraz środowisko propagacji, służy do nadawania i odbierania informacji za pośrednictwem fal radiowych, na wyjściu części odbiorczej nigdy nie pojawi się w 100% ta sama informacja, która została wprowadzona na wejście części nadawczej, działa poprawnie, gdy informacja jest odtwarzana z dostatecznie wymaganą dokładnością, określoną w systemach analogowych jako stosunek natężenia sygnału do natężenia szumu (S/N) na wyjściu odbiornika, a wsystemach cyfrowych poprzez Pb.

Nadajnik: Informacja I (np. ludzki głos) jest wprowadzana do przetwornika nadawczego P_N i przetwarzana na sygnał elektryczny s(t) o małej częstotliwości i bardzo niskiej mocy. Wzmacniaczem małej częstotliwości nadaje sygnałowi s(t) poziom energetyczny pozwalający na przeniesienie go w pasmo wysokich częstotliwości i następnie po przejściu przez filtr dolnoprzepustowy wprowadza do przetwornika małuch częstotliwości na wysokie częstotliwości, gdzie powstaje sygnał radiowy r(t) o wysokiej częstotliwości. Następnie sygnał przechodzi przez filtr pasmowoprzepustowy. Jego poziom energetyczny jest zbyt niski by mógł być bezpośrednio wypromieniowany do środowiska propagacji, więc wzmacniacz wysokiej częstotliwości nadaje mu odpowiednią moc P_N i poprzez antenę nadawczą A_N sygnał jest wysyłany w świat.

Odbiornik: Sygnał w postaci fali elektromagnetycznej jest odbierany ze środowiska propagacji przez antenę odbiorczą A_o, w wyniku czego powstaje sygnał radiowy r'(t) o wysokiej częstotliwości (nieco zmieniony w stosunku do oryginalnego sygnału r(t) przez zjawiska występujące w środowisku propagacji). Ze względu na odległość pomiędzy częścią odbiorczą a nadawczą łącza, sygnał r'(t) ma niską moc, tymczasem dla poprawnego działania modułu przenoszącego sygnał w pasmo małych częstotliwości moc ta musi być odpowiednio wysoka. Zapewnia to wzmacniacz wysokiej częstotliwości. Sygnał przechodzi przez filtr pasmowoprzepustowy następnie przechodzi przez przetwornik częstotliwości. Sygnał podstawowy s'(t) o małej częstotliwości i mocy, który następnie przechodzi przez filtr dolnoprzepustowy. Poziom energetyczny potrzebny do poprawnej pracy przetwornika odbiorczego P_o uzyskuje się we wzmacniaczu małej częstotliwości. Na wyjściu ostatniego modułu pojawia się informacja l'.

Środowisko propagacji: Ogólny przypadek: powietrze, nie zawsze przewidywalne warunki, zjawiska zachodzące w środowisku: rozproszenie sygnału radiowego (malejąca wartość powierzchniowej gęstości mocy

fali wraz z kwadratem odległości), tłumienie sygnału radiowego (rośnie między innymi wraz z częstotliwością i wilgotnością), zakłócenie sygnału (inne sygnały radiowe), wielodrogowośc (zaniki sygnału w punkcie odbioru).

6. Omów podstawowe parametry elektryczne anteny.

Antena - urządzenie elektryczne, które transformuje falę doprowadzoną w falę przestrzenną, zazwyczaj jest używana jako nadajnik lub odbiornik w komunikacji radiowej. Antena izotropowa to hipotetyczna antena, której promieniowanie (gęstość powierzchniowa mocy) nie zależy od kierunku.

Parametry elektryczne - możemy je podzielić na obwodowe (opisujące współpracę anteny z częścią przewodową) i polowe (opisujące współpracę anteny z częścią bezprzewodową - środowiskiem propagacji). Do parametrów elektrycznych anteny możemy zaliczyć: charakterystykę promieniowania, zysk anteny, impedancję anteny, sprawność anteny, polaryzację oraz pasmo.

Charakterystyka promieniowania - obrazuje w jaki sposób antena promieniuje energię w zależności o kierunku, przedstawia unormowany rozkład pola elektrycznego lub też względny rozkład gęstości powierzchniowej mocy. Jest wyznaczana w dwóch płaszczyznach: pionowej i poziomej (mogą być też przedstawione w postaci trójwyimarowej), jest normalizowana i podawana w mierze decybelowej, na jej podstawie można określić kierunek i poziom wiązki głównej, wiązek bocznych i wstecznych.

Zysk anteny - pozwala określić zdolność do kierunkowego wypromieniowania energii przez daną antenę w porównaniu do anteny wzorcowej. Informuje nas ile razy moc promieniowana przez antenę w kierunku maksymalnego promieniowania jest większa od mocy anteny wzorcowej. Jeśli nie jest zaznaczone względem czego jest liczony zysk anteny, to jest on liczony w odniesieniu do anteny izotropowej. Zależy od kierunkowości oraz od strat magnetycznych anteny wynikających z materiału zastosowanego do budowy.

Impedancja anteny - obciążenie jakie przedstawia antena dla generatora sygnału. Zależy od geometrii anteny oraz od częstotliwości. Wpływa na nią obecność innych anten oraz obiektów znajdujących się w pobliżu. Z punktu widzenia sprawności układu wymagane jest, aby wszystkie elementy toru transmisyjnego miały tą samą impedancję. Tylko wtedy nastąpi przekazanie prawie całej energii z urządzenia do anteny i jej wypromieniowanie (należy pamiętać o tym, że kable i złącza też mają pewne tłumienie). W skrajnych przypadkach duże niedopasowanie może skutkować uszkodzeniem urządzęń nadawczych. W radiokomunikacji standardowo stosuje się urządzenia o impedancji 50 Ohm.

Sprawność anteny - stosunek mocy wypromieniowanej do mocy doprowadzonej do generatora. Stosunek maksymalnego zysku energetycznego do kierunkowości. Idealna antena wypromieniowuje całą moc, ale w antenie rzeczywistej część mocy jest tracona. Straty te są skutkiem niedopasowania anteny do linii zasilającej oraz strat cieplnych w rezystancji rzeczywistej elementów anenty.

Polaryzacja - drgania fal elektromagnetycznych odbywają się w ściśle okreslonych płaszczyznach. Fale elektromagnetyczne mogą drgać zarówno w płaszczyźnie pionowej jak i poziomej. Gdy drgają tylko w jednej płaszczyźnie mówimy o polaryzacji liniowej (pionowej lub poziomej). Gdy drgają w obu płaszczyznach mówimy o polaryzacji kołowej lub eliptycznej (prawo- lub lewoskrętnej).

Pasmo - zakres częstotliwości w którym antena zachowuje nominalne parametry. Przy wyznaczaniu pasma pracy najważniejsze jest dopasowanie i w nieco mniejszym stopniu zysk oraz charakterystyka. Dość często dopasowanie i inne parametry anteny są zachowane w szerszym zakresie niż jest to podawane.

7. Budowa i właściwości wzmacniaczy tranzystorowych.

Wzmacniacz tranzystorowy - podstawowy element (układ) wzmacniający, stosowany obecnie w układach elektronicznych. Działa na zasadzie sterowania przepływem ładunku. Dzieląsię na tranzystory bipolarne i unipolarne (polowe). Tranzystory bipolarne sterowane są prądowo, a polowe - napięciowo. Tranzystor bipolarny pracuje w zakresie aktywnym (złącze emiterowe jest w stanie przewodzenia, a kolektorowe w stanie zaporowym). Tranzystor polowy pracuje w zakresie nasycenia. Powszechnie stosowane są wzmacniacze tranzystorowe pod postacią wmacniaczy operacyjnych, selektywnych, szerokopasmowych czy też wzmacniaczy mocy.

Tranzystor bipolarny:

- wspólny emiter (CE)
- wspólna baza (CB)
- wspólny kolektor (CC)

Tranzystor polowy:

- wspólne źródło (CS)
- wspólna bramka (CG)
- wspólny dren (CD)

Wymienione wyżej konfiguracje tworzą tzw. jednotranzystorowe wzmacniacze. Łącząc zalety poszczególnych konfiguracji można uzyskać następujące połączenia (wzmacniacze szerokopasmowe):

- połączenie CC-CB tworzy tzw. wzmacniacz różnicowy
- połączenie CE-CB tworzy tzw. kaskodę

Wspólny emiter (CE):

- najczęściej stosowana z konfiguracji
- wzmacniane napięcie sygnału wejściowego podawane jest pomiędzy bazę a emiter
- sygnał po wzmocnieniu odbierany jest pomiędzy kolektorem a emiterem
- emiter jest "wspólny" dla sygnału wejściowego i wyjściowego
- duże wzmocnienie prądowe
- duże wzmocnienie mocy
- napięcie wyjściowe odwrócone jest w fazie o 180 stopni w stosunku do napięcia wejściowego
- rezystancja wejściowa jest rzędu kilkuset Ohm
- duża rezystancja wyjściowa

• małe pasmo przenoszenia częstotliwości

- nadaje się najlepiej do pracy na wysokich częstotliwościach
- wzmacniane napięcie sygnału wejściowego podawane jest pomiędzy emiter a bazę
- sygnał po wzmocnieniu jest odbierany pomiędzy kolektorem a bazą
- baza jest "wspólna" dla sygnału wejściowego i wyjściowego
- bardzo małe wzmocnienie prądowe (bliskie jedności)
- duże wzmocnienie napięciowe
- brak odwrócenia fazy
- mała rezystancja wejściowa
- bardzo duża rezystancja wyjściowa
- duże pasmo przenoszenia

sygnały wyjściowe są zgodne w fazie z wejściowymi

Wspólny kolektor:

- stosowany jest jako stopień wyjściowy we wzmacniaczach wielostopniowych
- nadają się jako układy dopasowujące dwa czwórniki (bufor)
- wzmacniane napięcie sygnału wejściowego podawane jest pomiędzy bazę a kolektor
- sygnał po wzmocnieniu odbierany jest pomiędzy emiterem a kolektorem
- kolektor jest "wspólny" dla sygnału wejściowego i wyjściowego
- duże wzmocnienie prądowe
- wzmocnienie napięciowe mniejsze od jedności
- brak odwrócenia fazy
- duża rezystancja wejściowa
- mała rezystancja wyjściowa

• średnie pasmo przenoszenia

Wspólne źródło:

- stosowane w zakresie małych częstotliwości
- napięcie sygnału wejściowego podawane jest pomiędzy bramkę a źródło

- sygnał po wzmocnieniu odbierany jest pomiędzy drenem a źródłem
- źródło jest "wspólne" dla sygnału wejściowego i wyjściowego
- duże wzmocnienie napięciowe
- odwrócenie fazy o 180 stopni
- bardzo duża impedancja wejściowa
- duża impedancja wyjściowa (niepożądana dla wzmacniaczy napięciowych)

Wspólna bramka:

- nadaje się do pracy z wysokimi częstotliwościami
- wzmacniane napięcie sygnału wejściowego podawane jest pomiędzy źródło a bramkę
- sygnał po wzmocnieniu odbierany jest pomiędzy drenem a bramką
- bramka jest "wspólna" dla sygnału wejściowego i wyjściowego
- duże wzmocnienie napięciowe
- brak odwrócenia fazy
- mała impedancja wejściowa (setki Ohm)

duża impedancja wyjściowa (pojedyncze kOhm)

Wspólny dren:

- stosowany gdy pożądana jest mała pojemność wejściowa oraz konieczność transformacji impedancji
- wzmacniane napięcie sygnału wejściowego podawane jest pomiędzy bramkę a dren
- sygnał po wzmocnieniu odbierany jest pomiędzy źródłem a drenem
- dren jest "wspólny" dla sygnału wejściowego i wyjściowego
- bardzo małe wzmocnienie napięciowe (mniejsze od jedności)
- brak odwrócenia fazy
- bardzo duża impedancja wejściowa (pojedyncze MOhm)

- mała impedancja wyjściowa (setki Ohm)
- 8. Porównanie budowy, właściwości i zastosowań układów FPGA, CPLD.
- 9. Omów relacyjny model danych.
- 10. Wymień interfejsy przewodowe stosowane w systemach czujnikowych i omów jeden szczegółowo.
- 11. Zasada działania, właściwości i zastosowania wybranych elementów systemu optoelektronicznego (źródła, modulatory, detektory).
- 12. Architektury procesorów rdzeniowych mikrokontrolerów.
- 13. W jaki sposób można zrealizować w zakresie b. w. cz. czystą reaktancję?
- 14. Do czego służy strojnik pojedynczy i jaka jest jego zasada działania?
- 15. Omów ramy stosowania rachunku wskazów w analizie obwodów i niekonkurencyjności rachunku Laplace'a w tych ramach.
- 16. Sformułuj i zapisz w postaci ogólnej prawa Kirchoffa oraz podaj własne przykłady ilustrujące treść tych praw.

Pytania dla Telekomunikacji

- 1. Omów problem analizy i syntezy zasobów w sieci telekomunikacyjnej.
- 2. Scharakteryzuj architektury wspierające realizację sieci IP QoS.
- 3. Przedstaw bilands energetyczny i scharakteryzuj jego znaczenie przy projektowaniu łącza radiowego.
- 4. System komórkowy GSM, architektura, podstawowe parametry i rodzaje usług.
- 5. Filtry cyfrowe o skończonej i o nieskończonej odpowiedzi impulsowej.
- 6. Zasada działania i rodzaje sztucznych sieci neuronowych.

7. Przedstaw zasadę pracy systemów echolokacyjnych i zdefiniuj ich podstawowe parametry eksploatacyjne.

8. Omów budowę, właściwości i zastosowania wielowiązkowych systemów echolokacyjnych.

Pytania dla Systemów Wbudowanych Czasu Rzeczywistego

- 1. Wymień 3 główne typy silników krokowych i scharakteryzuj jeden z nich.
- 2. Wymień i scharakteryzuj elementy urządzenia wykonawczego.
- 3. Opisz cechy szczególne wyróżniające procesory sygnałowe.
- 4. Opisz typy systemów czasu rzeczywistego.
- 5. Wyjaśnij pojęcie systemu wbudowanego (ang. embedded system).
- 6. Narażenia zagrażające aparaturze z komputerami wbudowanymi rodzaje, główne źródła, sposoby przeciwdziałania.
- 7. Zasady rozprowadzania zasilania obwodów w aparaturze z komputerami wbudowanymi odsprzęganie, filtracja zakłóceń.
- 8. Automatyczne regulacje w układach z otoczenia komputerów wbudowanych rodzaje, cele stosowania, sposoby realizacji.
- 9. Funkcje elementów systemu operacyjnego Linux dla systemu wbudowanego: toolchain, bootloader, jądro, system plików.
- 10. Opisz metory pomiarowe stosowane w radarze meteorologicznym.