Online learning using limited feedback

Yoav Freund

February 26, 2025

Outline

The multiple-arm bandits problem

The classical analysis - Gittins Index

The adversarial setup

The basic algorithm

Lower bound

Tuning γ online

the non stationary scenario

Combining strategies

Summary

The multiple-arm bandits problem

The one armed bandit

The multiple-arm bandits problem

The multiple arm bandit problem

Given

these machines

Limited Feedback: Only the reward/loss from chosen arm is observed. Goal: Maximize expected wealth. Mathematical formulation for common Exploration vs. Exploitation dilemma. single-iteration reward is in the range [0, 1]

Applications of MAB

- Choosing lunch.
- Routing packets through the internet.
- Reinforcement learning.

Classical analysis

- Rewards generated independently at random
- Each machine has a different distribution of rewards.
- Update upper and lower bounds of the expected reward for each arm.
- Choose the arm with the highest upper bound.
- Good outcome: Upper bound remains highest stick with action.
- dissapointing outcome: Upper bound is no longer highest switch to a different action.
- Optimistic algorithm always chooses action that might be best.

Playing in a Rigged casino

- The casino operator watches you and changes rewards of the machines to confuse you!
- Can you still find the best machine?
- What does "best machine" mean?

action8

1/8

Example adversarial MAB game

P_1	1 X (1) p ₂	j ₂	x (2	2) $p^3 i_3$	x (3	3) total
1/8			_	.1`	0.11	0 `	[′] .2
1/8	.8	.12		.5	0.11 ⇒	.2	1.5
1/8	.3	.12		.2	0.11	.2	.7
1/8 =	⇒ .5	.16		.7	0.15	.8	2.0
1/8	.9	.12		1	0.11	.8	2.7
1/8	0	.12		.1	0.11	.2	.3
1/8	1	.12	\Rightarrow	.7	0.19	.4	2.1
	1/8 1/8 1/8 1/8 1/8 1/8	$ \begin{array}{cccc} 1/8 & .1 \\ 1/8 & .8 \\ 1/8 & .3 \\ 1/8 & \Rightarrow .5 \\ 1/8 & .9 \\ 1/8 & 0 \end{array} $	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	1/8 .1 .12 .1 $1/8$.8 .12 .5 $1/8$.3 .12 .2 $1/8$.5 .16 .7 $1/8$.9 .12 1 $1/8$ 0 .12 .1	$1/8$.1 .12 .1 0.11 $1/8$.8 .12 .5 0.11 \Rightarrow $1/8$.3 .12 .2 0.11 $1/8$ \Rightarrow .5 .16 .7 0.15 $1/8$.9 .12 1 0.11 $1/8$ 0 .12 .1 0.11	$1/8$.1 .12 .1 0.11 0 $1/8$.8 .12 .5 0.11 \Rightarrow .2 $1/8$.3 .12 .2 0.11 .2 $1/8$.5 .16 .7 0.15 .8 $1/8$.9 .12 1 0.11 .8 $1/8$ 0 .12 .1 0.11 .2

.8 .12

0.11

.6

1.6

The goal

- Total reward be close to total reward of best action.
- Weak: in expectation, Strong: With high probability.
- Why reward instead of loss?
- Because regret bounds that depend on the loss of the best action (rather than 7) are impossible.

The basic algorithm

EXP3 = Exponential weights for Exploration and Exploitation

For each
$$t = 1, 2, ...$$

1. Set

$$p_i(t) = (1 - \gamma) \frac{w_i^t}{\sum_{j=1}^K w_j^t} + \frac{\gamma}{K}$$
 $i = 1, ..., K$.

- 2. Draw i_t randomly accordingly to $p_1(t), \ldots, p_K(t)$
- 3. Receive reward $x_{i_t}(t) \in [0, 1]$
- 4. For j = 1, ..., K set

$$\hat{x}_j(t) = \begin{cases} x_j(t)/p_j(t) & \text{if } j = i_t \\ 0 & \text{otherwise,} \end{cases}$$

$$w_j^{t+1} = w_t^j \exp\left(\gamma \hat{x}_j(t)/K\right) .$$

Basic bound

► Let *T* be the number of iterations and that algorithm Exp3 is run with

$$\gamma = \min \left\{ 1, \sqrt{\frac{K \ln K}{(e-1)T}} \right\}.$$

- G_{max} = Total gain of best Arm.
 G_{Exp3} = total gain of Algorith (RV)
- ► Then

$$G_{\text{max}} - \mathbf{E}[G_{\text{Exp3}}] \le 2\sqrt{e-1}\sqrt{TK\ln K} \le 2.63\sqrt{TK\ln K}$$

Ideas of proof

Setting

$$\hat{x}_j(t) = \begin{cases} x_j(t)/p_j(t) & \text{if } j = i_t \\ 0 & \text{otherwise,} \end{cases}$$

guarantees that $\mathbf{E}\left(\sum_{t=1}^{t} \hat{x}_{j}(t)\right) = \sum_{t=1}^{T} x_{j}(t)$ i.e. estimate of total gain is Unbiased.

- 2. Setting $\gamma = O(\sqrt{\frac{K \log K}{T}})$ guarantees variance of estimator is not too large.
- 3. Exp3 mimicks Hedge sufficiently well.

Lower bound

- Choose all gains independently at random to be 0 or 1.
- \triangleright K 1 actions use probs (1/2, 1/2).
- ▶ One action (chosen at random) uses probs $1/2 + \epsilon$, $1/2 \epsilon$.
- The Bayes optimal algorithm has expected regret at least

$$\frac{1}{20} \min \left(\sqrt{KT}, T \right)$$

Tuning γ online

Algorithm Exp3.1

Initialization: Let t = 1, and $\hat{G}_i(1) = 0$ for i = 1, ..., K

Repeat for r = 0, 1, 2, ...

- 1. Let $g_r = (K \ln K)/(e-1) 4^r$.
- 2. Restart Exp3 choosing $\gamma_r = \min \left\{ 1, \sqrt{\frac{K \ln K}{(e-1)g_r}} \right\}$.
- 3. While $\max_i \hat{G}_i(t) \leq g_r K/\gamma_r$ do:
 - (a) Let i_t be the random action chosen by Exp3 and $x_{i_t}(t)$ the corresponding reward.
 - (b) $\hat{G}_i(t+1) = \hat{G}_i(t) + \hat{x}_i(t)$ for i = 1, ..., K.
 - (c) t := t + 1

Bound for Exp3.1

$$G_{\text{max}} - \mathbf{E}[G_{\text{Exp3.1}}] \le 8\sqrt{e-1}\sqrt{G_{\text{max}}K\ln K} + 8(e-1)K + 2K\ln K$$

= $O(\sqrt{G_{\text{max}}K\ln K})$

Allowing switching actions

Algorithm Exp3.S

Parameters: Reals $\gamma \in (0, 1]$ and $\alpha > 0$. Initialization: $w_i(1) = 1$ for i = 1, ..., K.

For each t = 1, 2, ...

1. Set

$$p_i(t) = (1 - \gamma) \frac{w_i(t)}{\sum_{i=1}^{K} w_i(t)} + \frac{\gamma}{K}$$
 $i = 1, ..., K$.

- 2. Draw i_t according to the probabilities $p_1(t), \ldots, p_K(t)$.
- 3. Receive reward $x_{i_t}(t) \in [0, 1]$.
- 4. For j = 1, ..., K set

$$\begin{array}{rcl} \hat{x}_j(t) &=& \left\{ \begin{array}{cc} x_j(t)/p_j(t) & \text{if } j=i_t \\ 0 & \text{otherwise,} \end{array} \right. \\ w_j(t+1) &=& w_j(t) \, \exp\left(\gamma \hat{x}_j(t)/K\right) + \frac{e\alpha}{K} \sum_{i=1}^K w_i(t) \; . \end{array}$$

Bound for Exp3.S

Hardness of sequence = number of switches offline is allowed:

$$S \ge H(j_1, \dots, j_T) \stackrel{\text{def}}{=} 1 + |\{1 \le \ell < T : j_\ell \ne j_{\ell+1}\}|$$
.

- ► Assume $\alpha = 1/T$ and $\gamma = \min \left\{ 1, \sqrt{\frac{K(S \ln(KT) + e)}{(e-1)T}} \right\}$.
- Then

$$G_{\mathcal{S}} - \mathbf{E} \left[G_{\mathsf{Exp3.S}} \right] \leq 2\sqrt{e-1} \sqrt{KT \left(S \ln(KT) + e \right)}$$

= $O(\sqrt{KTS \ln(KT)})$

Combining strategies

- K possible actions and N prediction strategies or experts.
- $ightharpoonup N \gg K$
- Expert *i* predicts with a distribution over actions $\xi^{i}(t) \in [0, 1]^{K}$
- ▶ Reward of expert *i* is $\xi^{i}(t) \cdot \mathbf{x}(t)$
- Considering experts as actions, we get a bound $O(\sqrt{G_{\text{max}}N \log N})$ on the regret.
- ▶ By acting smarter, we can get a bound $O(\sqrt{G_{\text{max}}K \log N})$

Exponential Exploration and Explotation using Experts

For each t = 1, 2, ...

- 1. Get advice vectors $\boldsymbol{\xi}^1(t), \dots, \boldsymbol{\xi}^N(t)$.
- 2. Set $W_t = \sum_{i=1}^N w_i(t)$ and for $j = 1, \dots, K$ set

$$p_j(t) = (1 - \gamma) \sum_{i=1}^{N} \frac{w_i(t)\xi_j^i(t)}{W_t} + \frac{\gamma}{K}.$$

- 3. Draw action i_t randomly according to the probabilities $p_1(t), \ldots, p_K(t)$.
- Receive reward x_{it}(t) ∈ [0, 1].
- 5. For j = 1, ..., K set

$$\hat{x}_j(t) = \begin{cases} x_j(t)/p_j(t) & \text{if } j = i_t \\ 0 & \text{otherwise,} \end{cases}$$

6. For i = 1, ..., N set

$$\begin{array}{rcl} \hat{y}_i(t) & = & \boldsymbol{\xi}^i(t) \cdot \hat{\boldsymbol{x}}(t) \\ w_i(t+1) & = & w_i(t) \exp\left(\gamma \hat{y}_i(t)/K\right) \; . \end{array}$$

Summary

- We can achieve diminishing regret even when only gain of chosen action is observable.
- ► The increase in the regret is a result of the limited information. $O(\sqrt{TK \log K})$ instead of $O(\sqrt{T \log K})$.
- We can handle sequences with *S* switches: $O(\sqrt{KTS \ln(KT)})$
- If we have many strategies N but only few actions K we can achieve bounds of the form $O(\sqrt{TK \log N})$.