

Proves d'accés a la universitat

Matemàtiques

Sèrie 2

Qualificació		TR	
Qüestions	1		
	2		
	3		
	4		
	5		
	6		
Suma de notes parcials			
Qualificació final			

Etiqueta de l'alumne/a	unalnal
Etiqueta de qualificació	Etiqueta del corrector/a

Responeu a QUATRE de les sis questions seguents. En les respostes, expliqueu sempre què voleu fer i per què.

Cada qüestió val 2,5 punts.

Podeu utilitzar calculadora, però no es permet l'ús de calculadores o altres aparells que poden emmagatzemar dades o que poden transmetre o rebre informació.

Podeu utilitzar les pàgines en blanc (pàgines 14 i 15) per a fer esquemes, esborranys, etc., o per a acabar de respondre a alguna qüestió si necessiteu més espai. En aquest últim cas, cal que ho indiqueu clarament al final de la pàgina de la qüestió corresponent.

- 1. Sigui $f'(x) = 3x^2 12x$ la derivada d'una funció f(x).
 - *a*) Si sabem que f(x) talla l'eix de les abscisses en x = 1, calculeu l'expressió de la funció f(x).

[0,75 punts]

b) Calculeu l'abscissa del punt d'inflexió de f(x) i estudieu la concavitat de la funció. [0,75 punts]

c) Sabem que l'àrea del recinte limitat per la corba y = f''(x), l'eix de les abscisses i les rectes x = 0 i x = a, amb a > 2, és $15u^2$. Calculeu el valor de a. [1 punt]

Espai per al corrector/a		
	а	
Qüestió 1	b	
	С	
	Total	

2. Considereu el sistema d'equacions lineals següent, que depèn del paràmetre real *a*:

$$\begin{cases} ax + 2y + 3z = 2\\ 2x + ay + z = a\\ x + y + 4z = 1 \end{cases}$$

a) Discutiu el sistema per als diferents valors del paràmetre a.[1,5 punts]

b) Resoleu, si és possible, el sistema per al cas a = 2. [1 punt]

Espai per al corrector/a			
	а		
Qüestió 2	b		
	Total		

3. Sigui la recta *r* definida per l'expressió següent:

$$r: \begin{cases} x = 2 + \lambda \\ y = -1 + 3\lambda \\ z = 3 + \lambda \end{cases}$$

a) Determineu la posició relativa de la recta r respecte al pla π : x-2y+4z-4=0. Si és paral·lela, calculeu la distància de r a π , i si és secant, calculeu el punt de tall. [1,25 punts]

b) Calculeu l'equació de la recta s perpendicular al pla π i que talla la recta r en un punt P, la primera coordenada del qual és 5 vegades més gran que la segona. [1,25 punts]

Espai per al corrector/a		
	а	
Qüestió 3	b	
	Total	

b) Comproveu que la funció $f(x) = -x^3 + 6x^2 - 16$ té una arrel a x = 2 i que és estrictament creixent a l'interval (0, 4). Utilitzeu aquesta informació per a calcular l'àrea determinada per la funció f(x), l'eix de les abscisses i les rectes x = 0 i x = 4. [1,5 punts]

Espai per al corrector/a		
	а	
Qüestió 4	b	
	Total	

- 5. Sigui la matriu $X = \begin{pmatrix} a & 1 & 0 \\ 0 & b & 1 \\ 0 & 0 & c \end{pmatrix}$, que depèn dels paràmetres a, b i c.

 a) Calculeu les matrius X tals que $X^2 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

 [1,5 punts]

b) Determineu els valors de a, b i c perquè la matriu inversa de X sigui $X^{-1} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$.

Espai per al corrector/a		
	а	
Qüestió 5	b	
	Total	

6. Al pati d'una escola es vol crear una àrea de joc de 30 m² per als més petits en forma de trapezi rectangular, de manera que la base més gran mesuri el doble que la base més petita, tal com mostra la figura, i que el costat oblic respecte a les bases (*D*) sigui tan curt com sigui possible.

a) Justifiqueu que se satisfan les relacions següents: $h = \frac{20}{x}$ i $D(x) = \sqrt{\frac{400}{x^2} + x^2}$.

b)	Trobeu les dimensions del trapezi per a les quals la longit [1,5 punts]	ud del costat <i>I</i>	es mí	nima.
		Espai per al	corrector/	'a
		Qüestió 6	b	

Total

[Pàgina per a fer esquemes, esborranys, etc., o per a acabar de respondre a alguna qüestió.]

[Pàgina per a fer esquemes, esborranys, etc., o per a acabar de respondre a alguna qüestió.]

Etiqueta de l'alumne/a	

Proves d'accés a la universitat

Matemàtiques

Sèrie 5

Qualificació		TR	
Qüestions	1		
	2		
	3		
	4		
	5		
	6		
Suma de notes parcials			
Qualificació final			

Etiqueta de l'alumne/a	nal nal
Etiqueta de qualificació	Etiqueta del corrector/a

Responeu a QUATRE de les sis questions seguents. En les respostes, expliqueu sempre què voleu fer i per què.

Cada qüestió val 2,5 punts.

Podeu utilitzar calculadora, però no es permet l'ús de calculadores o altres aparells que poden emmagatzemar dades o que poden transmetre o rebre informació.

Podeu utilitzar les pàgines en blanc (pàgines 14 i 15) per a fer esquemes, esborranys, etc., o per a acabar de respondre a alguna qüestió si necessiteu més espai. En aquest últim cas, cal que ho indiqueu clarament al final de la pàgina de la qüestió corresponent.

- 1. Siguin les matrius $C = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}$ i $A = \begin{pmatrix} 2 & 0 \\ 3 & -1 \end{pmatrix}$.
 - a) Comproveu que $C^3 = I_2$, en què I_2 és la matriu identitat d'ordre 2, i deduïu que la matriu C és invertible i que $C^{-1} = C^2$. Calculeu C^{2022} . [1,5 punts]

b) Resoleu l'equació matricial $C \cdot X = A - 2I_2$. [1 punt]

Espai per al corrector/a		
Qüestió 1	а	
	b	
	Total	

- 2. Considereu la funció $f(x) = x^3$ i sigui a un nombre real estrictament positiu. a) Calculeu l'equació de la recta t tangent a la gràfica de la funció f en el punt d'abscissa x = a. Trobeu el punt de tall de la recta t amb l'eix de les abscisses (en funció de a). [1,25 punts]

b)	Feu un esbós de la gràfica de la funció f i la recta t . Calculeu el valor de a perquè l'àrea
	en el primer quadrant limitada per la funció f , la recta t i l'eix de les abscisses sigui
	$108 u^2$.

Espai per al corrector/a		
	а	
Qüestió 2	b	
	Total	

3. Considereu el sistema d'equacions lineals

$$2x - y + 3z = 0 my + (3 - m)z = -6 2x - y + mz = 6$$

en què m és un paràmetre real.

a) Discutiu el sistema per als diferents valors del paràmetre m.
 [1,25 punts]

b) Resoleu el sistema, si és possible, quan m=0 i quan m=3. En cada cas, doneu la posició relativa dels tres plans a \mathbb{R}^3 . [1,25 punts]

Espai per al corrector/a		
	а	
Qüestió 3	b	
	Total	

- **4.** A \mathbb{R}^2 , considereu els triangles rectangles que tenen els vèrtexs en els punts O = (0, 0), A = (x, 0) i B = (0, y), amb x > 0 i y > 0, i en què la suma dels catets és 10.
 - *a*) Expresseu l'àrea del triangle *AOB* en funció de *x*. Per a quin valor de *x* l'àrea del triangle *AOB* és la més gran possible? Quin valor té aquesta àrea màxima? [1,25 punts]

b) Expresseu la hipotenusa del triangle AOB en funció de x. Per a quin valor de x la hipotenusa del triangle AOB és la més petita possible? Quin és aquest valor mínim? [1,25 punts]

Espai per al corrector/a			
	а		
Qüestió 4	b		
	Total		

- 5. Siguin els punts A = (0, 0, 1), B = (1, 1, 1), C = (-1, -1, 1) i D = (1, 0, 1).
 - *a*) Comproveu que tres d'aquests punts estan alineats. Determineu quins són els tres punts i calculeu l'equació contínua i l'equació paramètrica de la recta que defineixen. [1,25 punts]

b)	Calculeu l'equació general o cartesiana del pla que detern [1,25 punts]	ninen els quatro	e punts.	
		Espai per al d	corrector/a	l
			d	

Qüestió 5

b Total **6.** La columna de l'esquerra de la taula següent mostra l'esquema d'un programa informàtic que s'ha elaborat per a trobar solucions aproximades d'una equació f(x) = 0 en un interval (a, b), sabent que $f(a) \cdot f(b) < 0$. La columna de la dreta recull un exemple de funcionament del programa en què es pot veure com actuaria per trobar una solució de l'equació $x + \ln(x) = 0$ entre els valors a = 0,5 i b = 2.

г 11.			
Esquema del programa	Exemple		
1. Escriure «Introduïu un valor <i>a</i> »	L'usuari introdueix $a = 0.5$		
2. Escriure «Introduïu un valor <i>b</i> »	L'usuari introdueix $b = 2$		
3. Escriure «Introduïu una funció $f(x)$ »	L'usuari introdueix $f(x) = x + \ln(x)$		
4. Calcular $c = (a + b)/2$	El programa calcula la mitjana entre a i b i li assigna el nom $c = (0.5 + 2)/2 = 1.25$		
5. Si $f(a) * f(c) < 0$, aleshores reassignar $b = c$; en cas contrari, reassignar $a = c$	El programa comprova que $f(0,5) * f(1,25) = (0,5 + \ln(0,5)) * (1,25 + \ln(1,25)) < 0$; per tant, reassigna $b = 1,25$		
6. Repetir els passos 4 i 5 tants cops com faci falta fins que $f(a) - f(b) < 0.00000001$	El programa va repetint la comprovació anterior, canviant cada vegada els valors de <i>a</i> o de <i>b</i> :		
	a b inici 0,5 2 iteració 1 0,5 1,25 iteració 2 0,5 0,875 iteració 3 0,5 0,6875 iteració 4 0,5 0,59375 iteració 5 0,546875 0,59375 iteració 6 0,546875 0,5703125 iteració 7 0,55859375 0,5703125 []		
7. Quan $f(a) - f(b) < 0,00000001$, escriure: «La solució de l'equació és c » i aturar el programa	Després d'unes 30 iteracions, el programa escriu: «La solució de l'equació és 0,56714329»		

a) Expliqueu per què aquest programa és capaç de trobar una solució aproximada de l'equació $x + \ln(x) = 0$ entre els valors a = 0,5 i b = 2. [1,25 punts]

b) Volem aplicar aquest programa per a trobar les tres arrels de $f(x) = x^3 - 3x^2 + 1$ amb valors de a i b diferents. Trobeu justificadament entre quins valors a i b, per a cada arrel, hem d'aplicar el programa per a trobar aproximacions de cadascuna de les tres arrels de la funció.

[1,25 punts]

Espai per al corrector/a		
	а	
Qüestió 6	b	
	Total	

[Pàgina per a fer esquemes, esborranys, etc., o per a acabar de respondre a alguna qüestió.]

[Pàgina per a fer esquemes, esborranys, etc., o per a acabar de respondre a alguna qüestió.]

Etiqueta de l'alumne/a	

