#### Exercício de Filtro de Kalman Extendido- PMR3502

#### Thiago Martins

2021

Grupos de 2 alunos. Entrega até 25/06/2021. Forneça além dos resultados o código-fonte do seu programa e instruções para executá-lo.

# Descrição do Sistema

Um robô tricilo como o da Figura 1 se desloca no plano xy. As rodas motoras giram em uma velocidade determinada por um controlador. O ângulo de basculamento da roda dianteira também é controlado.

Mede-se a distância do robô até uma antena, bem como o fluxo magnético terrestre no referencial do robô. A posição da antena é conhecida. O fluxo magnético terrestre no local é presumido constante, uniforme (independente da posição do veículo) e desconhecido.

Adota-se neste problema o vetor de estado do sistema dado por:

$$X_t = \begin{bmatrix} x \\ y \\ \theta \\ f_x \\ f_y \end{bmatrix}$$

onde x,y são as coordenadas da posição do robô,  $\theta$  é o ângulo do eixo longitudinal do mesmo com o eixo x,  $f_x, f_y$  são as componentes do vetor fluxo magnético terrestre no local.

A ação de controle do sistema é representada pelo vetor:

$$u_t = \begin{bmatrix} v \\ \phi \end{bmatrix}$$

onde v é a velocidade longitudinal imposta pelas rodas motoras e  $\phi$  é o ângulo de basculamento da roda dianteira.



Figura 1: Geometria de Robô Tricilo

### Questão 1

Escreva a lei de recorrência de evolução do vetor de estado na seguinte forma:

$$X_t = F\left(X_{t-1}, u_t\right) + \varepsilon_t \tag{1}$$

onde  $\varepsilon_t$  é um vetor de 5 componentes aleatório Gaussiano de média nula e matriz de covariância R.

Escreva a expressão para  $F\left(X_{t-1},u_{t}\right)$  (você pode usar  $x_{t},y_{t},\theta_{t},f_{x_{t}},f_{y_{t}}$  para referenciar as componentes de  $X_{t}$  e  $v_{t},\phi_{t}$  para as componentes de  $u_{t}$ ). Considere que em cada instante a função F representa o deslocamento do robô em um arco de circunferência, determinado por v e  $\phi$ .

Escreva a matriz R que representa a covariância da perturbação aleatória que se soma ao deslocamento determinístico.

Considere para isso que ao final do arco de circunferência percorrido pelo robô soma-se um deslocamento aleatório longitudinal, um deslocamento radial e um deslocamento angular. Estes três deslocamentos são independentes, Gaussianos de média nula e covariâncias  $s_{lt}^2$ ,  $s_{rt}^2$  e  $s_{\theta t}^2$  respectivamente. As covariâncias  $s_{lt}^2$  e  $s_{rt}^2$  são de medidas de perturbação en um referencial ideal que faz um ângulo de  $\hat{\theta}_t$  com o eixo x. Esta orientação seria a do eixo longitudinal do veículo se este descrevesse um arco perfeito de circunferência no instante t de modo que  $\hat{\theta}_t = F\left(X_{t-1}, u_t\right)_3$  (ou seja, a orientação determinada pela função F sem ruído). A matriz R, por outro lado, está escrita no referencial Global. Neste referencial, as perturbações em x e y podem não ser independentes. Escreva a matriz R em função de  $\hat{\theta}_t$ .

### Questão 2

As medições são representadas pelo vetor:

$$z_t = \begin{bmatrix} \rho \\ b_f \\ b_e \end{bmatrix}$$

Onde  $\rho$  é medição da distância do robô até uma antena,  $b_l$  é a medição da projeção do campo magnético terrestre na direção longitudinal do robô (positiva para a dianteira) e  $b_t$  é a medição do campo magnético na direção transversal (positiva para a esquerda). A antena está sobre a origem do sistema de coordenadas x,y e a uma altura h. Estas medições são feitas com ruídos aleatórios Gaussianos independentes de média nula e covariâncias  $s_{\rho_t^2}$ ,  $s_{f_t^2}$  e  $s_{e_t^2}$  respectivamente.

Escreva a lei de medição do sistema na seguinte forma:

$$z_t = G(X_t) + \delta_t \tag{2}$$

onde  $\delta_t$  é um vetor aleatório Gaussiano de média nula e matriz de covariância  $Q_t$  dada por:

$$Q_t = \begin{bmatrix} s_{\rho_t^2} & 0 & 0\\ 0 & s_{f_t^2} & 0\\ 0 & 0 & s_{e_t^2} \end{bmatrix}$$
 (3)

#### Questão 3

No filtro extendido de Kalman, a estimativa de covariância do estado *antes* da incorporação da medição é dada por:

$$\overline{\Sigma}_t = A_t \Sigma A_t^T + R_t$$

onde a matriz  $A_t$  é dada por  $\nabla_X F(X, u)$ .

Escreva a matriz  $A_t$  do sistema em função de  $X_{t-1}$  e  $u_t$ .

### Questão 4

Implemente o passo de previsão do Filtro Extendido utilizando a linguagem de programação que achar mais adequada (Sugestão: Python com o pacote numpy).

Neste passo você deve estimar o estado recursivamente com as equações:

$$\overline{\mu}_t = F(\mu_{t-1}, u_t) \tag{4}$$

$$\overline{\Sigma}_t = A_t \Sigma A_t^T + R_t \tag{5}$$

Note que as matrizes  $A_t$  e  $R_t$  dependem da estimativa de estado  $\mu_{t-1}$  e da entrada  $u_t$ .

Os valores das covariâncias  $s_{lt}^2$ ,  $s_{rt}^2$  e  $s_{\theta t}^2$  dependem do parâmetro  $v_t$  (o primeiro coeficiente de  $u_t$ ) de acordo com as seguintes expressões:

$$s_{l_t}^2 = \left(\frac{\Delta t v_t}{6}\right)^2$$
$$s_{r_t}^2 = \left(\frac{\Delta t v_t}{12}\right)^2$$
$$s_{\theta_t}^2 = \left(\frac{\Delta t v_t}{8l}\right)^2$$

Onde l é a distância entre os eixos do veículo e vale 0, 3.

Como nesta etapa  $n\tilde{a}o$  são consideradas medições, use  $\mu_t=\overline{\mu}_t$  e  $\Sigma_t=\overline{\Sigma}_t.$ 

Para o estado inicial, use:

O seu programa deve processar uma entrada no formato descrito pela seção "Dados". Processe os parâmetros  $u_t$  no arquivo csv anexado neste enunciado. Plote os valores de  $x_t, y_t$  de  $\overline{\mu}_t$  no plano x, y.

Considere a distância entre os eixos do veículo l=0,3m e  $\delta t=0,25$ .

Quais são os valores das covariâncias de x e y para t = 250?

## Questão 5

No filtro extendido de Kalman o ganho de Kalman é dado por:

de Kalman é dado por:  $K_t = \overline{\Sigma}_t C_t^T \left( C_t \overline{\Sigma}_t C_t^T + Q_t \right)^{-1}$   $X_t = \overline{\Sigma}_t C_t^T \left( C_t \overline{\Sigma}_t C_t^T + Q_t \right)^{-1}$   $X_t = \overline{\Sigma}_t C_t^T \left( C_t \overline{\Sigma}_t C_t^T + Q_t \right)^{-1}$   $X_t = \overline{\Sigma}_t C_t^T \left( C_t \overline{\Sigma}_t C_t^T + Q_t \right)^{-1}$   $X_t = \overline{\Sigma}_t C_t^T \left( C_t \overline{\Sigma}_t C_t^T + Q_t \right)^{-1}$   $X_t = \overline{\Sigma}_t C_t^T \left( C_t \overline{\Sigma}_t C_t^T + Q_t \right)^{-1}$ 

Onde a matriz  $C_t$  é definida como  $\nabla_X G(X)$ .

Escreva a matriz  $C_t$  em função de  $X_t$ .

#### Questão 6

Complete a implementação de seu filtro de Kalman.

Agora você deve estimar o estado e sua covarância de acordo com as leis:

 $u_t = \overline{\mu}_t + K_t \underbrace{t + G(\overline{\mu}_t)}_{(7)}$ 

 $(\Sigma_t C_t) \Sigma_t$  (8)

instand humstivami (unesomamento el (+) Note que a matriz  $C_t$  depende da estimativa de estado  $\overline{\mu}_t$ .

Use h = 0, 5

O valor  $s_{\rho_t}^2$  deve ser calculado a partir do estado estimado do sistema  $\overline{\mu}_t$  de acordo com a seguinte expressão:

$$s_{\rho_t^2}^2 = \frac{h^2 + \overline{x}_t^2 + \overline{y}_t^2}{20^2}$$

onde  $\overline{x}_t$  e  $\overline{y}_t$  são respectivamente a primeira e segunda componentes de  $\overline{\mu}_t$ . Considere  $s_f{}_t^2=s_e{}_t^2=1/4$ .

Novamente, seu programa deve processar os dados anexados a este enunciado.

Plote os valores de  $x_t, y_t$  de  $\mu_t$  no plano x, y.

#### **Dados**

Este exercício usa dados simulados do robô, especificamente as entradas  $u_t$  e as medições  $z_t$ . Estes dados são fornecidos no arquivo valores.csv aqui anexado.

Este arquivo está no formato CSV (comma-separated values). Cada linha do arquivo corresponde a um instante do sistema e possui 5 componentes separadas por vírgula. As duas primeiras componentes são as duas componentes de  $u_t$ , respectivamente a velocidade das rodas motores e o ângulo (em graus) da roda dianteira (positivos para guinadas à esquerda). As três seguintes são as três componentes de  $z_t$ , respectivamente a distância do robô até a antena, a componente medida do campo magnético no sentido longitudinal e a componente medida do campo magnético no sentido transversal.

Por exemplo, a linha:

1,0.15292019386577996,30.952114723924993,-1.7020162314364906,1.3283578315232143

indica que em um determinado instante, as rodas motoras se deslocaram com velocidade 1, a roda dianteira estava basculada de 0,153 graus radianos para a esquerda, mediu-se uma distância de 30,95 até a antena, um campo magnético de 1,70 para a traseira do veículo e de 1,33 para a esquerda.

#### Formulário

Um sistema Dinâmico não-linear gaussiano de tempo discreto é descrito pelas equações:

$$X_t = F(X_{t-1}, u_t) + \epsilon_t \tag{9}$$

$$z_t = G(X_t) + \delta_t \tag{10}$$

Os símbolos são:

t: Variável tempo, que assume valores discretos.

 $x_t$ : Vetor de estado do sistema no instante t.

 $u_t$ : Vetor de entrada do sistema.

 $\epsilon_t$ : Ruído de processo do sistema, variável aleatória gaussiana com média *nula* e matriz de covariância  $\mathbf{R}_t$ .

F(X, u): A função que descreve a componente determinística do estado do sistema.

 $z_t$ : O vetor de medidas (ou saídas) do sistema.

G(X): A função da componente determinística da medição do sistema.

 $\delta_t$ : Ruído de observação do sistema, variável aleatória gaussiana de média nula e matriz de covariância  $\mathbf{Q}_t$ .

O conhecimento estimado pelo filtro de Kalman Extendido sobre o estado do sistema no instante t é descrito por uma distribuição gaussiana de média  $\mu_t$  e covariância  $\Sigma_t$ . Para tanto, além das matrizes das equações (1.1) e (1.2), são necessárias as matrizes  $\mathbf{Q}_t$  e  $\mathbf{R}_t$ , e o conhecimento sobre o estado inicial do sistema  $x_0$ , representado por uma distribuição gaussiana de média  $\mu_0$  e covariância  $\Sigma_0$ .

O estado é estimado pelo sistema de equações recorrentes:

$$\overline{\mu}_t = F(\mu_{t-1}, u_t) \tag{11}$$

$$\overline{\Sigma}_t = \mathbf{A}_t \Sigma_{t-1} \mathbf{A}_t^T + \mathbf{R}_t \tag{12}$$

$$\mathbf{K}_{t} = \overline{\Sigma}_{t} C_{t}^{T} \left( C_{t} \overline{\Sigma}_{t} C_{t}^{T} + Q \right)^{-1}$$
(13)

$$\mu_t = \overline{\mu}_t + \mathbf{K}_t \left( z_t - G(\overline{\mu}_t) \right) \tag{14}$$

$$\Sigma_t = (\mathbf{I} - \mathbf{K}_t \mathbf{C}_t) \, \overline{\Sigma}_t \tag{15}$$

As matrizes  $A_t$  e  $C_t$  são resultados das linearizações das funções F e G.

A matriz  $A_t$  é a matriz das derivadas de F nas variáveis do estado, calculada em  $\mu_{t-1}$ .

A matriz  $C_t$  é a matriz das derivadas de G calculada em  $\overline{\mu}_t$ .

A distribuição  $\mathcal{N}\left(\overline{\mu}_t, \overline{\Sigma}_t\right)$  expressa o conhecimento sober o estado *previsto* no instante t antes de incorporar a medida  $z_t$ . A matriz  $\mathbf{K}_t$  é chamada de *ganho de Kalman*.

procisa emocrigor prom og som

VOY: pus ivia fise (OV(S(XXX)) ge vis

Aupendes da gente søder cov//n

var (X) = or (X)

Var (X) = or (X)