NAME: _____

CSE585/EE555: Digital Image Processing II Spring 2020 Exam #2

given: 1:30PM — 3:15PM, Thursday, 30 April 2020. On-line: CANVAS/Zoom.

Two $8\frac{1}{2}$ "×11" pages of notes, both sides, allowed.

1.	22 pts
2.	18 pts
 3.	25 pts
4.	17 pts
 5.	18 pts
TOTAL	100 pts

- 1. (22 pts) Answer each of the following T (true) or F (False). (2 pts each.)
 - ___ **a.** Suppose $p(i, j, \theta)$ is the $N_g \times m$ run length matrix $(\theta = 0^o)$ for a digital image having N_g distinct gray levels and run lengths up to length m. Then

$$\sum_{i} \sum_{j} p(i, j, \theta) = 1$$

- ___ b. The opening filter is a very good filter to apply for reducing pepper noise.
- **____ c.** The median filter has the property of edge preservation.
- ___ d. Suppose we use the following conduction coefficient

$$c(x,y) = \begin{cases} 1, & \text{if } ||\nabla I(x,y)|| < 20 \\ 0, & \text{if } ||\nabla I(x,y)|| \ge 20 \end{cases}$$

in anisotropic diffusion to filter an 8-bit gray-scale image where $\nabla I(x,y)$ signifies the gradient of the image at (x,y). Then, this could be an effective c(x,y) to use for noise reduction and edge preservation.

Consider two random fractals defined by functions, $I_1(x,y)$ and $I_2(x,y)$. We known that their respective Hurst parameters are $H_1 = 0.01$ and $H_2 = 0.99$.

- --- e. The fractal dimension of $I_1(x,y) = 1.99$.
- ___ f. Fractal I_1 is rougher than fractal I_2 .
- **____ g.** Fractal I_1 has a higher persistence than I_2 .
- ___ h. The function

$$g(x) = 2I_1(x) - 3 + \frac{1}{2}I_1\left(x - \frac{1}{2}\right)$$

is also fractal Brownian and characterized by the Hurst parameter H=0.01.

Gray-scale image I below has two regions, R_1 and R_2 , separated by an edge, as discussed in L12-9. Assume dark region R_1 and bright region R_2 have $\sigma_1 = \sigma_2$. Also, at pixel location x_k , a 7×7 filter is applied as indicated by the filter mask; assume when the filter is applied, it is used to filter the whole image. Answer the questions below.

- **....** i. After a sigma filter $(\sigma = \sigma_1)$ is applied I, σ_1 for R_1 is likely to get smaller.
- --- **j.** After applying a median filter to original image I, the bright region becomes brighter.
- ___ **k.** After an alpha-trimmed mean filter($\alpha = 0.49$) is applied to original image I, the edge is likely to become blurred.

2. (18 pts) Consider the two 5×5 textures, I_1 and I_2 , below. The pixels in these two textures can take on gray-level values 0, 1, 2, or 3.

0	1	2	3	3
0	1	2	3	3
0	1	2	3	3
0	1	2	3	3
0	1	2	3	3
		$\overline{I_1}$		

1	1	1	0	0
1	1	1	0	0
1	1	1	0	0
1	1	1	0	0
1	1	1	0	0
I_2				

Consider the gray-level difference method (GLDM), where

 $p'_j(i, \vec{d}) = \text{probability of gray-level difference } i \text{ between pixels } (x, y) \text{ and } (x, y) + \vec{d}$ for image I_j , where $\vec{d} = (\Delta x, \Delta y)$ (x is horizontal and y is vertical).

(a) (12 pts) For $\vec{d} = (2,0)$, compute $p'_1(i,\vec{d})$ and $p'_2(i,\vec{d})$, for I_1 and I_2 , respectively. Give your answers in the table below. Note: you only have 15 pairs of pixels to consider for each texture.

i	0	1	2	3
$I_1: p_1'(i, \vec{d})$				
$I_2: p_2'(i, \vec{d})$				

(b) (6 pts) Compute the Contrast (CON) for I_1 and I_2 . Based on your results, which texture has larger overall gray-level changes? Note: the CON of texture I_j is given by

$$CON(I_j) = \sum_i \left[i^2 p_j'(i, \vec{d}) \right]$$

- 3. (25 pts) Consider the family of four GEFs plotted in the figure below (L17-18 of class notes, Bovik's paper). These GEFs share the following parameters (**changed** slightly from L17!):
 - $\lambda = 1/3$, F = 16 cycles/image, $\sigma_x = 30$
 - The Gaussian part of the GEF is not rotated.

From L17, a GEF is given by the following functions in the space- and frequency-domains: space: $h(x,y) = g(x',y') \exp \left[j2\pi(Ux + Vy)\right]$, where

$$g(x,y) = \frac{1}{2\pi\sigma_x\sigma_y} \exp\left\{-\frac{1}{2}\left[\left(\frac{x}{\sigma_x}\right)^2 + \left(\frac{y}{\sigma_y}\right)^2\right]\right\}$$

$$(x', y') = (x\cos\phi + y\sin\phi, -x\sin\phi + y\cos\phi)$$

$$U = F\cos\theta^o, \quad V = F\sin\theta^o$$

frequency: $H(u,v) = \exp\left\{-2\pi^2\left[\left(\sigma_x[u-U]'\right)^2 + \left(\sigma_y[v-V]'\right)^2\right]\right\}$,

$$([u-U]', [v-V]') = \begin{bmatrix} \cos\phi & \sin\phi \\ -\sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} u-U \\ v-V \end{bmatrix}$$

Consider the GEF for $\theta = 90^{\circ}$. Assume that the GEF is applied to a 512×512 image i(x, y).

(a) (8 pts) Give the parameters σ_y , U, V, and ϕ defining h(x,y) and H(u,v).

(b) (3 pts) What is F if the units are changed to cycles/pixel?

Problem 3 continued.

(c) (8 pts) Consider the following bipartite-textured image:

$$i(x,y) = \begin{cases} \text{texture } t_1 : & \exp\{j2\pi(15x + y)\}, \quad x < 0 \text{ and } y \text{ any} \\ \text{texture } t_2 : & \exp\{j2\pi(x + 15y)\}, \text{ otherwise} \end{cases}$$

Using the GEF above, which texture will the Gabor filter below pass and why?

$$m(x,y) = |i(x,y) * h(x,y)|$$

(d) (6 pts) The GEF h(x, y) is separable in x and y; i.e., it can be written as $h(x, y) = h_1(x) \cdot h_2(y)$.

Thus, from L18, the discrete implementation of the Gabor filter can be computed efficiently with successive 1-D operations. In particular, we can perform the initial calculation for each y [rows] using

$$i_1(x,y) = \sum_{x'=-2\sigma_x}^{+2\sigma_x} i(x-x',y)\hat{h}_1(x')$$
 (1)

where $\hat{h}_1(x)$ is a truncated version of $h_1(x)$ consisting of $4\sigma_x + 1$ values. Following our procedures of Project #4 and assuming that the indices of the 512×512 image i(x,y) range as $0 \le x \le 511$ and $0 \le y \le 511$, what are the minimum and maximum values of x for which we can compute valid values of $i_1(x,y)$?

4. (17 pts) Consider a 1-D image x_k whose pixels vary via the following pdf f(x) and cdf F(x):

$$f(x) \ = \ \left\{ \begin{array}{l} 2x, \ \ \text{if} \ \ 0 \leq x \leq 1 \\ 0, \ \ \text{otherwise} \end{array} \right. \quad , \qquad F(x) \ = \ \left\{ \begin{array}{l} 0, \ \ \text{if} \ \ x < 0 \\ x^2, \ \ \text{if} \ \ 0 \leq x \leq 1 \\ 1, \ \ \text{if} \ \ x > 1 \end{array} \right.$$

Assume all image pixels are iid random variables. We are going to apply a 3-point minimum filter to this image to give filtered image y_k :

$$y_k = X_{(1)} = \min(x_{k-1}, x_k, x_{k+1})$$

For this situation, we know that the cdf of this 3-point minimum filter is given by (L13-2):

$$F_{(1)}(x) = 1 - [1 - F(x)]^3$$

(a) (8 pts) What is $Prob\{x > 1/2\}$ and $Prob\{X_{(1)} > 1/2\}$? (Hint: This is NOT hard!)

(b) (3 pts) We are told that $x_0 > 1/2$. What does this tell us about the probability that $x_1 > 1/2$?

(c) (6 pts) Give an expression for the pdf $f_{(1)}(x)$ in terms of f(x) and F(x).

5. (18 pts) A deterministic fractal f(x) has fractal dimension

$$D = \frac{\log 6}{\log 5} .$$

- (a) (6 pts) Consider a replacement rule for constructing f(x) with this value of D.
 - (i) How many segments are needed for the replacement rule?
 - (ii) What is the length of each segment relative to the current scale?
 - (iii) Is this replacement rule unique for this particular D?

Now, consider the affine linear mapping

$$w \left[\begin{array}{c} x \\ y \end{array} \right] = \left[\begin{array}{cc} \frac{1}{2} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{2} \end{array} \right] \left[\begin{array}{c} x \\ y \end{array} \right]$$

defined on complete metric space (\mathcal{R}^2, d) , where $d(p_1, p_2) = |x_1 - x_2| + |y_1 - y_2|$

and $p_1 = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$ and $p_2 = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$ are two points in \mathbb{R}^2 . (The metric d is commonly referred

to as the "city block" distance or l_1 norm.) We now apply mapping $w \begin{bmatrix} x \\ y \end{bmatrix}$ to the

 $\underline{\text{line segment}} \text{ delineated by the points} \quad p_1 = \left[\begin{array}{c} x_1 \\ y_1 \end{array} \right] = \left[\begin{array}{c} 16 \\ 16 \end{array} \right] \text{ and } p_2 = \left[\begin{array}{c} x_2 \\ y_2 \end{array} \right] = \left[\begin{array}{c} 32 \\ 32 \end{array} \right] \ .$

- (b) (8 pts) Apply mapping $w \begin{bmatrix} x \\ y \end{bmatrix}$ two successive times to these two points; i.e., compute $w \circ 1 \begin{bmatrix} x \\ y \end{bmatrix}$ and $w \circ 2 \begin{bmatrix} x \\ y \end{bmatrix}$ for p_1 and p_2 .
- (c) (4 pts) From your results of (b), does $w \begin{bmatrix} x \\ y \end{bmatrix}$ appear to be a contractive transformation? If so, give a plausible contractivity factor c.