Modelo Lineal Multivariado: Una Introducción Práctica

Fórmulas de Wilkinson y convalidación cruzada en Python

Laboratorio de Datos - Primer Cuatrimestre 2024 - FCEyN, UBA

Tabla de Contenidos

- 1. Modelo Lineal Multivariado (MLM)
- 2. <u>Descripción de Modelos: Fórmulas de Wilkinson-Rodgers</u>
- 3. Selección de Modelos: Convalidación Cruzada

Modelo Lineal Multivariado (MLM)

Modelar (en CD, no en la pasarela) una variable respuesta («dependiente») $y \in \mathbb{R}$ en función de ciertas variables explicativas («independientes») $(x_1,...,x_d) \in \mathbb{R}^d$, consiste en imponerle restricciones «útiles» a la relación (función) $y = f(x_1,...,x_d)$.

Modelar (en CD, no en la pasarela) una variable respuesta («dependiente») $y \in \mathbb{R}$ en función de ciertas variables explicativas («independientes») $(x_1,...,x_d) \in \mathbb{R}^d$, consiste en imponerle restricciones «útiles» a la relación (función) $y = f(x_1,...,x_d)$.

Hemos visto modelos univariados (d=1)

$$y = f(x) = \beta_0 + \beta_1 x,$$

Modelar (en CD, no en la pasarela) una variable respuesta («dependiente») $y \in \mathbb{R}$ en función de ciertas variables explicativas («independientes») $(x_1,...,x_d) \in \mathbb{R}^d$, consiste en imponerle restricciones «útiles» a la relación (función) $y = f(x_1,...,x_d)$.

Hemos visto modelos univariados (d=1)

$$y = f(x) = \beta_0 + \beta_1 x,$$

y polinomiales en una variable

$$y = Poli_k(x) = \sum_{i=0}^k \beta_i x^i = \beta_0 + \beta_1 x + \beta_2 x^2 + ... + \beta_k x^k$$

Modelar (en CD, no en la pasarela) una variable respuesta («dependiente») $y \in \mathbb{R}$ en función de ciertas variables explicativas («independientes») $(x_1,...,x_d) \in \mathbb{R}^d$, consiste en imponerle restricciones «útiles» a la relación (función) $y = f(x_1,...,x_d)$.

Hemos visto modelos univariados (d=1)

$$y = f(x) = \beta_0 + \beta_1 x,$$

y polinomiales en una variable

$$y = Poli_k(x) = \sum_{i=0}^k \beta_i x^i = \beta_0 + \beta_1 x + \beta_2 x^2 + ... + \beta_k x^k$$

Los dos son lineales en x.

MLM: L de Lineal

Un modelo $y = m(x_1, ..., x_n)$ se dice lineal con coeficientes $\beta \in \mathbb{R}^n$ si puede ser expresado como una combinación linea entre unos coeficientes β y las x

$$y = m(x_1, ..., x_n)$$

$$= \sum_{i=1}^{n} \beta_i \cdot x_i$$

$$= \beta_0 \cdot 1 + \beta_1 \cdot x_1 + ... + \beta_n \cdot x_n$$

MLM: L de Lineal

Un modelo $y = m(x_1, ..., x_n)$ se dice lineal con coeficientes $\beta \in \mathbb{R}^n$ si puede ser expresado como una combinación linea entre unos coeficientes β y las x

$$y = m(x_1, ..., x_n)$$

$$= \sum_{i=1}^{n} \beta_i \cdot x_i$$

$$= \beta_0 \cdot 1 + \beta_1 \cdot x_1 + ... + \beta_n \cdot x_n$$

Esta limitación, aparentemente brutal, es más flexible de lo que parece.

M de Multivariado

En el modelo univariado y = a + bx, d = 1 (por definición), pero aún así, n = 2: $\beta = (a, b)$.

M de Multivariado

En el modelo univariado y = a + bx, d = 1 (por definición), pero aún así, n = 2: $\beta = (a, b)$.

En el polinomial, d = 1 y n = k + 1 (una cuadrática tiene 3 coeficientes)

M de Multivariado

En el modelo univariado y = a + bx, d = 1 (por definición), pero aún así, n = 2: $\beta = (a, b)$.

En el polinomial, d = 1 y n = k + 1 (una cuadrática tiene 3 coeficientes)

En el modelo lineal multivariado, tenemos d arbitrariamente grande, y $n \ge d$. Será de sumo interés tener una notación concisa cuando la relación entre d y n sea compleja.

Descripción de Modelos: Fórmulas de Wilkinson-Rodgers

Fórmulas de Wilkinson

Wilkinson y Rogers, dos señores ocupados en hacer cantidades de estudios de análisis de la varianza (ANOVA), deciden sentarse a elegir una descripción simbólica de los modelos:

Wilkinson, G. N., & Rogers, C. E. (1973). Symbolic Description of Factorial Models for Analysis of Variance. Applied Statistics, 22(3), 392 (esto no es un link a scihub)

Fórmulas de Wilkinson

Wilkinson y Rogers, dos señores ocupados en hacer cantidades de estudios de análisis de la varianza (ANOVA), deciden sentarse a elegir una descripción simbólica de los modelos:

Wilkinson, G. N., & Rogers, C. E. (1973). Symbolic Description of Factorial Models for Analysis of Variance. Applied Statistics, 22(3), 392 (esto no es un link a scihub)

Se hicieron populares con S (el antecesor de R) y a hoy, todo software de modelo lineal implementa su propia (ligera e insidiosamente diferente) gramática de fórmulas.

Formulaic: Wilkinson en Python, bien rápido

En R las fórmulas son objetos de primer nivel. En python, la librería patsy las implementa hace tiempo ya, y en statsmodels se usan ampliamente. Hoy, consideraremos una implementación más reciente: formulaic.

<u>Documentación</u>

<u>Gramática</u>

Formulaic en acción

```
import pandas as pd
from formulaic import model matrix
df = pd.DataFrame({
    'y': [0, 1, 2],
    'a': ['A', 'B', 'C'],
    'b': [0.3, 0.1, 0.2],
})
y, X = model_matrix("y \sim a + b + a:b", df)
# Esta es la versión taquigráfica (shorthand) de
# y, X = formulaic.Formula('y ~ a + b + a:b').get model matrix(df)
pd.concat([y, X], axis=1)
```

Formulaic en acción

```
import pandas as pd
                                              Intercept
                                                      a[T.B] a[T.C] b a[T.B]:b
from formulaic import model matrix
                                                  1.0
                                                               0 0.3
                                                  1.0
                                                               0 0.1
df = pd.DataFrame({
                                                  1.0
                                                         0
                                                               1 0.2
    'v': [0, 1, 2],
    'a': ['A', 'B', 'C'],
    'b': [0.3, 0.1, 0.2],
})
y, X = model_matrix("y \sim a + b + a:b", df)
# Esta es la versión taquigráfica (shorthand) de
# y, X = formulaic.Formula('y ~ a + b + a:b').get model matrix(df)
pd.concat([y, X], axis=1)
```

10 LDD 2024 H1 C08

a[T.C]:b

0.0

0.0

0.2

0.0

0.1

0.0

¿Gramática?

Claro! Hete aquí una breve descripción de los operadores más usuales, comunes a (imagino) todas las implementaciones de Wilkinson-Rodgers. Todos están soportados por formulaic:

Operador	Ejemplo	Función
~	y~x	Separa la variable (y) respuesta a la izquierda, de el/los predictor/es a la derecha (x).
+	y~x+z	Adiciona (suma) términos al modelo.
:	y~x:z	Interacción entre términos. y es lineal en x · z.
*	y~x*z	Combina adición e interacción . entre términos. y~x*z es equivalente a y~x+z+x:z

Gramática (cont.)

Existen muchos más operadores, incluyendo «–» para la **negación** de términos (para quitarlos del modelo) y «^» ó «**» para las interacciones de términos de orden *hasta* n.

Gramática (cont.)

Existen muchos más operadores, incluyendo «–» para la **negación** de términos (para quitarlos del modelo) y «^» ó «**» para las interacciones de términos de orden *hasta* n.

formulaic tiene implementadas *transformaciones* que se pueden aplicar a las variables predictoras:

- funciones arbitrarias de Python y~ mi_fun(x)
- todo el módulo numpy disponible como np y~ np.log(x)
- algunas transformaciones propias de formulaic, como center para darle media 0 a una variable.

Gramática (cont.)

Existen muchos más operadores, incluyendo «–» para la **negación** de términos (para quitarlos del modelo) y «^» ó «**» para las interacciones de términos de orden *hasta* n.

formulaic tiene implementadas *transformaciones* que se pueden aplicar a las variables predictoras:

- funciones arbitrarias de Python y~ mi_fun(x)
- todo el módulo numpy disponible como np y~ np.log(x)
- algunas transformaciones propias de **formulaic**, como **center** para darle media 0 a una variable.

Además, se pueden usar paréntesis $y \sim (a + b) : c$ para «agrupar términos». Se aplican las reglas de la propiedad distributiva.

¿Y el intercept?

Aunque no es *obligatorio* incluir un coeficiente constante en el modelo, es habitual hacerlo salvo contadas excepciones. En **formulaic** (y en **patsy**, y en **R**...) el intercept existe por omisión, pero se puede hacer explícito con el operador + 1.

Para quitarlo, naturalmente, se usa «-1»: $y \sim x - 1$ resulta en el modelo $y = \beta \cdot x$.

¿Y el intercept?

Aunque no es *obligatorio* incluir un coeficiente constante en el modelo, es habitual hacerlo salvo contadas excepciones. En **formulaic** (y en **patsy**, y en **R**...) el intercept existe por omisión, pero se puede hacer explícito con el operador + 1.

Para quitarlo, naturalmente, se usa (-1): $y \sim x - 1$ resulta en el modelo $y = \beta \cdot x$.

En código de **R**, pueden ver la expresión «+0» para remover la ordenada. Es un lenguaje curioso.

Un ejemplo con pingüinos

Supongamos que queremos estudiar la relación entre la masa corporal masa de los pingüinos registrados en el dataset penguins, su sexo, la isla de nacimiento y el largo de las aletas (aleta_mm).

Un ejemplo con pingüinos

Supongamos que queremos estudiar la relación entre la masa corporal masa de los pingüinos registrados en el dataset penguins, su sexo, la isla de nacimiento y el largo de las aletas (aleta_mm).

Asumiendo que la masa es proporcional al *volumen* del pingüino, puedo imaginar una relación y ~ poly(aleta_mm, 3).

Un ejemplo con pingüinos

Supongamos que queremos estudiar la relación entre la masa corporal masa de los pingüinos registrados en el dataset penguins, su sexo, la isla de nacimiento y el largo de las aletas (aleta_mm).

Asumiendo que la masa es proporcional al *volumen* del pingüino, puedo imaginar una relación y ~ poly(aleta_mm, 3).

Si creo que además el sexo del pingüino influye en la relación, puedo agregarlo como y ~ poly(aleta_mm, 3) + sexo. ¿Pero cómo cambiaría la masa en relación a una variable categórica?

Todo será un(os) número(s): OHE, o one-hot encoding

Una manera inmediata de transformar una variable categórica con k categorías, es «embeberla», en un espacio de dimensión k, e identificar cada categoría con uno de los vectores canónicos de la base.

E.g.: sexo \in {macho, hembra} se peude codificar en \mathbb{R}^2 como (1, 0) y (0, 1) respectivamente.

Este procedimiento se denomina *one-hot encoding*, ya que el índice de la categoría «activa/caliente» se identifica con un «1» (y los demás con «0»).

Todo será un(os) número(s): OHE, o one-hot encoding

Una manera inmediata de transformar una variable categórica con k categorías, es «embeberla», en un espacio de dimensión k, e identificar cada categoría con uno de los vectores canónicos de la base.

E.g.: sexo \in {macho, hembra} se peude codificar en \mathbb{R}^2 como (1, 0) y (0, 1) respectivamente.

Este procedimiento se denomina *one-hot encoding*, ya que el índice de la categoría «activa/caliente» se identifica con un «1» (y los demás con «0»).

¿Qué riesgos conlleva OHE? ¿Son equivalentes todas las codificaciones posibles?

OHE: ¿Cómo se hace en Python?

```
def ohe pandas(serie):
    return pd.get dummies(serie, prefix=serie.name).astype(int)
def ohe gonza(serie):
    niveles = sorted(set(serie))
    ohe = pd.DataFrame({serie.name + "_" + n: (serie == n) for n in niveles})
    return ohe.astype(int)
assert all(ohe_pandas(df.a) == ohe_gonza(df.a))
ohe gonza(df.a)
```

OHE: ¿Cómo se hace en Python?

```
def ohe pandas(serie):
    return pd.get dummies(serie, prefix=serie.name).astype(int)
def ohe gonza(serie):
    niveles = sorted(set(serie))
    ohe = pd.DataFrame({serie.name + "_" + n: (serie == n) for n in niveles})
    return ohe.astype(int)
assert all(ohe pandas(df.a) == ohe gonza(df.a))
ohe gonza(df.a)
```

Por defecto, formulaic aplica OHE a las variables categóricas. Asumamos que el contraste elegido es con respecto a la categoría «hembra», así que sexo sera o si el pingüino es hembra y 1 si es macho. Usando la notación 1(x) para la función indicadora

$$1(x) = \begin{cases} 1 & \text{si } x \text{ es Verdadero} \\ 0 & \text{si } x \text{ es Falso} \end{cases}$$

¿Qué representa y ~ poly(aleta_mm, 3) + sexo?

Por defecto, **formulaic** aplica OHE a las variables categóricas. Asumamos que el *contraste* elegido es con respecto a la categoría «hembra», así que **sexo** sera **0** si el pingüino es hembra y **1** si es macho. Usando la notación **1**(x) para la *función indicadora*

$$1(x) = \begin{cases} 1 & \text{si } x \text{ es Verdadero} \\ 0 & \text{si } x \text{ es Falso} \end{cases}$$

¿Qué representa y ~ poly(aleta_mm, 3) + sexo?

En ese modelo, la relación entre el largo de las aletas y la masa corporal es la misma para ambos sexos, *pero* con una diferencia constante es entre sexos. ¿Por qué? ¿No sería más interesante *otro* tipo de modelo?

Por defecto, **formulaic** aplica OHE a las variables categóricas. Asumamos que el *contraste* elegido es con respecto a la categoría «hembra», así que **sexo** sera **0** si el pingüino es hembra y **1** si es macho. Usando la notación **1**(x) para la *función indicadora*

$$1(x) = \begin{cases} 1 & \text{si } x \text{ es Verdadero} \\ 0 & \text{si } x \text{ es Falso} \end{cases}$$

¿Qué representa y ~ poly(aleta_mm, 3) + sexo?

En ese modelo, la relación entre el largo de las aletas y la masa corporal es la misma para ambos sexos, *pero* con una diferencia constante es entre sexos. ¿Por qué? ¿No sería más interesante *otro* tipo de modelo?

¿Por qué no usé dos indicadoras, una para macho y otra para hembra?

¿Qué representa y ~ poly(aleta_mm, 3) * sexo?

¿Qué representa y ~ poly(aleta_mm, 3) * sexo?

En este modelo, «se esconden» dos modelos con la misma *forma* funcional (un polinomio de tercer grado), pero coeficientes (potencialmente) distintos término a término.

Un ejemplo con pingüinos (cont.)

```
¿Qué representa y ~ poly(aleta_mm, 3) * sexo?
```

En este modelo, «se esconden» dos modelos con la misma *forma* funcional (un polinomio de tercer grado), pero coeficientes (potencialmente) distintos término a término.

```
¿Y si escribiese y ~ poly(aleta mm, 3) * sexo * isla? ¿Cuántos términos tendría?
```

Un ejemplo con pingüinos (cont.)

```
¿Qué representa y ~ poly(aleta_mm, 3) * sexo?

En este modelo, «se esconden» dos modelos con la misma forma funcional (un polinomio de tercer grado), pero coeficientes (potencialmente) distintos término a término.

¿Y si escribiese y ~ poly(aleta_mm, 3) * sexo * isla? ¿Cuántos términos tendría?

¿Y cómo elijo entre todos estos modelos?
```

Selección de Modelos: Convalidación Cruzada

En las slides anteriores, mencionamos al menos los siguientes modelos:

• y ~ poly(aleta_mm, 3)

En las slides anteriores, mencionamos al menos los siguientes modelos:

```
• y ~ poly(aleta_mm, 3)
```

• y ~ poly(aleta_mm, 3) + sexo

En las slides anteriores, mencionamos al menos los siguientes modelos:

```
• y ~ poly(aleta_mm, 3)
```

- y ~ poly(aleta_mm, 3) + sexo
- y ~ poly(aleta_mm, 3) * sexo

En las slides anteriores, mencionamos al menos los siguientes modelos:

```
• y ~ poly(aleta_mm, 3)
```

- y ~ poly(aleta_mm, 3) + sexo
- y ~ poly(aleta_mm, 3) * sexo
- y ~ poly(aleta_mm, 3) * sexo * isla

En las slides anteriores, mencionamos al menos los siguientes modelos:

```
• y ~ poly(aleta_mm, 3)
```

- y ~ poly(aleta mm, 3) + sexo
- y ~ poly(aleta_mm, 3) * sexo
- y ~ poly(aleta_mm, 3) * sexo * isla

¿Considerarían algún otro? ¿Más sencillo o más complejo? Y sobre todo,

En las slides anteriores, mencionamos al menos los siguientes modelos:

```
y ~ poly(aleta_mm, 3)
y ~ poly(aleta_mm, 3) + sexo
y ~ poly(aleta_mm, 3) * sexo
y ~ poly(aleta_mm, 3) * sexo * isla
```

¿Considerarían algún otro? ¿Más sencillo o más complejo? Y sobre todo,

¿Cómo elegir entre ellos?

Toda tarea de «aprendizaje automático», «machine learning» o «inteligencia artificial», consiste en:

1. Tomar un problema relevante del mundo material

Toda tarea de «aprendizaje automático», «machine learning» o «inteligencia artificial», consiste en:

- 1. Tomar un problema relevante del mundo material
- 2. Elegir un modelo matemático que lo represente

Toda tarea de «aprendizaje automático», «machine learning» o «inteligencia artificial», consiste en:

- 1. Tomar un problema relevante del mundo material
- 2. Elegir un modelo matemático que lo represente
- 3. Definir una función de pérdida $L(\beta \mid X)$ que mida de alguna manera cuán bueno es el modelo (a través de β) en relación a la realidad (vía los datos X).

· En regresión, la pérdida más común es el error cuadrático medio (MSE)

Toda tarea de «aprendizaje automático», «machine learning» o «inteligencia artificial», consiste en:

- 1. Tomar un problema relevante del mundo material
- 2. Elegir un modelo matemático que lo represente
- 3. Definir una función de pérdida $L(\beta \mid X)$ que mida de alguna manera cuán bueno es el modelo (a través de β) en relación a la realidad (vía los datos X).
 - · En regresión, la pérdida más común es el error cuadrático medio (MSE)
- 4. «Aprender» los coeficientes β , es decir, encontrar β^* que minimiza L.

Toda tarea de «aprendizaje automático», «machine learning» o «inteligencia artificial», consiste en:

- 1. Tomar un problema relevante del mundo material
- 2. Elegir un modelo matemático que lo represente
- 3. Definir una función de pérdida $L(\beta \mid X)$ que mida de alguna manera cuán bueno es el modelo (a través de β) en relación a la realidad (vía los datos X).
 - · En regresión, la pérdida más común es el error cuadrático medio (MSE)
- 4. «Aprender» los coeficientes β , es decir, encontrar β^* que minimiza L.

$$\beta^* = \operatorname{argmin}_{\beta} L(\beta \mid X)$$

Nivel 0: Entrenar y evaluar sobre todo el conjunto de datos

Hasta ahora, hemos entrenado nuestros modelos con un conjunto de datos X, y evaluado la performance sobre los mismos datos de entrenamiento. En este contexto, si un modelo M_1 con coeficientes β_1 es tan o más complejo[0] que otro M_0 (notemos $M_0 \subseteq M_1$) entonces necesariamente $L(\beta_1|X) \le L(\beta_0|X)$. ¿Por qué?

Nivel 0: Entrenar y evaluar sobre todo el conjunto de datos

Hasta ahora, hemos entrenado nuestros modelos con un conjunto de datos X, y evaluado la performance sobre los mismos datos de entrenamiento. En este contexto, si un modelo M_1 con coeficientes β_1 es tan o más complejo[0] que otro M_0 (notemos $M_0 \subseteq M_1$) entonces necesariamente $L(\beta_1|X) \le L(\beta_0|X)$. ¿Por qué?

[0]: Hay muchas maneras de definir «complejidad»: por ahora, la identificaremos con el número de coeficientes del modelo (la *dimensión* de su vector β).

Nivel 1: Separar en conjuntos de entrenamiento («train») y prueba («test»)

Que un modelo alcance un error muy pequeño durante el entrenamiento, puede ser tanto por mérito propio del modelo, o síntoma de una excesiva parametrización, que le permite «interpolar» o «memorizar» los datos (e.g.: si tenemos $\mathbf n$ observaciones $\left(y_i,x_i\right)_{i=1}^n$, existe un polinomio $\mathbf P$ de grado $\mathbf n$, tal que $\mathbf L(\mathbf P|\mathbf X)=\mathbf ECM(\mathbf P(\mathbf X),\mathbf X)=0$.

Nivel 1: Separar en conjuntos de entrenamiento («train») y prueba («test»)

Que un modelo alcance un error muy pequeño durante el entrenamiento, puede ser tanto por mérito propio del modelo, o síntoma de una excesiva parametrización, que le permite «interpolar» o «memorizar» los datos (e.g.: si tenemos n observaciones $\left(y_i, x_i\right)_{i=1}^n$, existe un polinomio P de grado n, tal que L(P|X) = ECM(P(X), X) = 0.

Para evitar el *sobreajuste* (overfitting) de los modelos, es habitual dividir el conjunto de datos en dos partes mutuamente excluyentes (y conjuntamente exhaustivas, ¡nada se tira!). Entrenaremos cada modelo con los mismos datos de *train* para obtener los β óptimos, pero seleccionaremos como «mejor» a aquél modelo que minimice L sobre el conjunto de *test*.

Nivel 1: Separar en conjuntos de entrenamiento («train») y prueba («test»)

Que un modelo alcance un error muy pequeño durante el entrenamiento, puede ser tanto por mérito propio del modelo, o síntoma de una excesiva parametrización, que le permite «interpolar» o «memorizar» los datos (e.g.: si tenemos n observaciones $\left(y_i, x_i\right)_{i=1}^n$, existe un polinomio P de grado n, tal que L(P|X) = ECM(P(X), X) = 0.

Para evitar el *sobreajuste* (overfitting) de los modelos, es habitual dividir el conjunto de datos en dos partes mutuamente excluyentes (y conjuntamente exhaustivas, ¡nada se tira!). Entrenaremos cada modelo con los mismos datos de *train* para obtener los β óptimos, pero seleccionaremos como «mejor» a aquél modelo que minimice L sobre el conjunto de *test*.

La partición habitual (el «train-test split») suele ser de 80% train, 20% test (o 70/30), pero todo dependerá del contexto y el cantidad de observaciones n disponible.

Relación entre error de entrenamiento y prueba

¿Cómo esperan que se relacione el error de entrenamiento con el de prueba?

Relación entre error de entrenamiento y prueba

¿Cómo esperan que se relacione el error de entrenamiento con el de prueba?

Nivel 3: Split entrenamiento - validación - prueba

Como antes argumentamos que el modelo que minimiza el error de entrenamiento puede estar sobreajustándose a los datos, es igualmente posible que aquél que minimiza el error de prueba esté sobreajustándose a los datos de test: al fin y al cabo, así fue como definimos nuestra regla de selección (minimizar el error de prueba).

Nivel 3: Split entrenamiento - validación - prueba

Como antes argumentamos que el modelo que minimiza el error de entrenamiento puede estar sobreajustándose a los datos, es igualmente posible que aquél que minimiza el error de prueba esté sobreajustándose a los datos de test: al fin y al cabo, así fue como definimos nuestra regla de selección (minimizar el error de prueba).

Para evitar este problema, se suele dividir el conjunto de datos en tres partes: *entre-namiento*, *validación* y *test*:

Nivel 3: Split entrenamiento - validación - prueba

Como antes argumentamos que el modelo que minimiza el error de entrenamiento puede estar sobreajustándose a los datos, es igualmente posible que aquél que minimiza el error de prueba esté sobreajustándose a los datos de test: al fin y al cabo, así fue como definimos nuestra regla de selección (minimizar el error de prueba).

Para evitar este problema, se suele dividir el conjunto de datos en tres partes: entrenamiento, validación y test:

- Entrenamos los modelos minimizando L en X_{train} (los datos de entrenamiento)
- \cdot seleccionamos el mejor minimizando L en X_{val} y
- evaluamos su performance «en el mundo real» con $L(\beta \mid X_{test})$.

¿Qué ventajas y desventajas empíricas tiene este enfoque?

Nivel GOD 4: Validación Cruzada en k Pliegos («K-fold CV»)

En un esquema tripartito «train-val-test», el error de test sólo sirve para reporte, y achica el tamaño efectivo de la muestra. Más aún, como hay un único conjunto de test, y todo el proceso está atravesado por ruido estocástico, la selección de modelos sigue teniendo un fuerte componente de azar.

Nivel GOD 4: Validación Cruzada en k Pliegos («K-fold CV»)

En un esquema tripartito «train-val-test», el error de test sólo sirve para reporte, y achica el tamaño efectivo de la muestra. Más aún, como hay un único conjunto de test, y todo el proceso está atravesado por ruido estocástico, la selección de modelos sigue teniendo un fuerte componente de azar.

Si queremos estimar la distribución del error de prueba L_{test} de un modelo, necesitaremos de varias repeticiones del experimento. ¿Pero de dónde sacamos los datos para ello?

Nivel GOD 4: Validación Cruzada en k Pliegos («K-fold CV»)

En un esquema tripartito «train-val-test», el error de test sólo sirve para reporte, y achica el tamaño efectivo de la muestra. Más aún, como hay un único conjunto de test, y todo el proceso está atravesado por ruido estocástico, la selección de modelos sigue teniendo un fuerte componente de azar.

Si queremos estimar la distribución del error de prueba L_{test} de un modelo, necesitaremos de varias repeticiones del experimento. ¿Pero de dónde sacamos los datos para ello?

¡Pues los reutilizamos!

K-fold CV, una representación gráfica

En validación cruzada de k pliegos («k-fold cross-validation»), dividimos primero el conjunto de datos sólo en train y test. Luego, partimos train en en k partes iguales, que se rotarán el papel de validacion: entrenamos y evaluamos el modelo k veces, cada vez dejando uno distinto de los k pliegos como val y el resto para train.

Mas allá: Otros tipos de CV, y aplicación en Python

• K-fold CV no es la única manera de hacer CV. Existen variantes como *leave-one-out* (LOO), *stratified* y métodos «progresivos» para series de tiempo, entre otros.

Mas allá: Otros tipos de CV, y aplicación en Python

- K-fold CV no es la única manera de hacer CV. Existen variantes como *leave-one-out* (LOO), *stratified* y métodos «progresivos» para series de tiempo, entre otros.
- Como cuando aprendimos a multiplicar, mejor empezar haciéndolo «a mano», sin pasar por implementaciones preexistentes. Luego, <u>scikit-learn</u> tiene implementaciones de CV para todos los gustos.

¡Gracias!