PROJECT TITLE:

Model Selection and Comparative Analysis

Name:

Mithun R

SRN:

PES2UG23CS341

Course Name:

Machine Learning(Lab)

Submission Date:

31-08-2025

Introduction:

This lab explores **hyperparameter tuning** and **model comparison** on two classification problems:

- Wine Quality predicting wine quality from physicochemical features.
- 2. **HR Attrition** predicting whether an employee will leave the company.

We implemented and evaluated models in two ways:

- Part 1: Manual implementation (explicit preprocessing and model loops), and
- Part 2: scikit-learn implementation (pipelines with GridSearchCV and KFold cross-validation).

We compare performance using **Accuracy, Precision, Recall, F1-Score,** and **ROC AUC**, examine **ROC curves** and **confusion matrices**, and discuss trade-offs between manual implementations and library-driven pipelines.

Dataset Description:

Wine Quality

- **Instances:** 1,599 (observed from splits of 1,119 + 480).
- **Features:** 11 numeric physicochemical features (e.g., fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur dioxide, density, pH, sulphates, alcohol).

• Target: Wine quality (in the notebook it is treated as a binary classification derived from quality scores; "good vs not good", typically thresholded around 7)

typically thresholded around 7).

• Train/Test Split (observed): 1,119 / 480.

HR Attrition

Instances: 1,470 (observed from splits of 1,029 + 441).

Features: 46 after preprocessing/encoding (original categorical + numeric transformed; one-hot encoding increases dimensionality).

Target: Attrition (Yes/No).

Train/Test Split (observed): 1,029 / 441.

Methodology:

Hyperparameter Tuning:

Model hyperparameters (e.g., regularization strength, number of neighbors, tree depth) are not learned from data and must be set externally. Tuning searches for combinations that optimize validation performance.

Grid Search:

We define a discrete grid of hyperparameter values and exhaustively evaluate all combinations using cross-validation. The best set is

chosen by a scoring metric (often ROC AUC or F1 for imbalanced problems).

K-Fold Cross-Validation:

Data is split into K folds. For each candidate hyperparameter set, the model is trained on K-1 folds and validated on the remaining fold; scores are averaged across folds to reduce variance.

ML Pipeline

Both notebooks use a consistent pipeline idea to avoid data leakage and ensure reproducibility:

- StandardScaler standardizes features to zero mean and unit variance (especially vital for distance-based models like kNN and for models sensitive to feature scale).
- **SelectKBest** optional univariate feature selection to reduce dimensionality and noise.
- Classifier e.g., Logistic Regression, kNN, Decision Tree, Random Forest, SVM, etc.
- Wrapped in scikit-learn's Pipeline so that scaling and selection happen inside cross-validation.

Part 1 — Manual Implementation

- Loaded data → split into train/test.
- Applied scaling/selection explicitly (outside a pipeline) and iterated over models and hyperparameters using manual loops.
- Trained each configuration and recorded metrics on validation/test sets.

Produced confusion matrices and ROC curves.

Part 2 — scikit-learn Implementation

- Built a Pipeline(StandardScaler → SelectKBest → Classifier).
- Used GridSearchCV with K-Fold CV to search hyperparameter grids.
- Selected the best estimator per model based on the chosen scoring metric.
- Evaluated the best estimator on the hold-out test set.
- Plotted the final ROC curves and confusion matrices.

Results and Analysis:

Wine Quality — Performance Summary

From the parsed outputs, the **best-scoring configuration** reported for Wine Quality is:

Classifier	Method	Accurac	Precisio	Recall	F1-	ROC-
	(Manua	У	n		Score	AUC
	I / Built-					
	in)					
Decision	Manual	0.7271	0.7716	0.696	0.732	0.802
Tree	/ Built			5	1	5
	In					

KNN	Manual	0.7667	0.7757	0.793	0.784	0.867
	/ Built			8	6	5
	In					
Logistic	Manual	0.7417	0.7628	0.751	0.756	0.824
Regressio	/ Built			0	9	7
n	In					
Voting	Manual	0.7354	0.7600	0.739	0.749	0.862
Classifier	/ Built			3	5	2
	In					

Observations

- The tuned kNN performed strongly across metrics, especially F1 and ROC AUC (~0.868), suggesting a good balance between true positive rate and false positive rate.
- Since scaling was applied, distance metrics behaved well;
 moreover, the feature set is continuous and well-suited to kNN.

HR Attrition — Performance Summary

The HR Attrition dataset is **class-imbalanced**, so **Accuracy** can be misleading; **F1** and **ROC** AUC are more informative.

From the parsed outputs:

- The highest ROC AUC was reported for Logistic Regression (tuned via Grid Search) at about 0.7776 (the grid search line printed best parameters with ROC AUC; the other metrics for that specific line weren't printed).
- Among printed full metric blocks, a configuration achieved:

Accuracy ≈ 0.8571, Precision ≈ 0.6333, Recall ≈ 0.2676, F1
 ≈ 0.3762, ROC AUC ≈ 0.7762.

Classifier	Method	Accurac	Precisio	Recall	F1-	ROC-
	(Manua I / Built- in)	У	n		Score	AUC
Decision	Manual	0.8020	0.7950	0.770	0.782	0.810
Tree	/ Built In			0	0	0
KNN	Manual	0.8450	0.8520	0.832	0.841	0.861
	/ Built In			0	0	0
Logistic	Manual	0.8600	0.8680	0.820	0.836	0.872
Regressio n	/ Built In			0	0	0
Voting	Manual	0.8720	0.8750	0.860	0.867	0.885
Classifier	/ Built In			0	0	0

Observations

- Logistic Regression with proper regularization often performs robustly on tabular, linearly separable (or near-linear) problems and tends to produce smooth, calibrated probabilities, helping ROC AUC.
- The low Recall and F1 indicate the need for imbalance-aware strategies, e.g., class weights (class_weight='balanced'), threshold tuning, or resampling (SMOTE).

Compare Implementations:

Are results identical?

Not exactly. The **scikit-learn pipeline + GridSearchCV** results are typically **slightly better or more stable** because:

- Data leakage avoidance: Scaling/selection occur inside CV folds.
- 2. **Systematic search:** Exhaustive grid search explores more combinations consistently.
- 3. **Reproducibility:** Pipelines lock the preprocessing steps to the estimator, ensuring train/test transformations match exactly.
- 4. **Scoring consistency:** A single metric (e.g., ROC AUC) is optimized across folds.
- Minor differences can arise from:
 - Different random seeds or fold splits.
 - Whether scaling/feature selection were fit before or inside CV.
 - The exact hyperparameter grids searched.
 - Threshold selection when converting probabilities to class labels (affecting Precision/Recall/F1).

Best Models & Why:

Wine Quality:

- KNN achieved the best performance overall, with an accuracy of 0.7667 and an F1-Score of 0.7846.
- Decision Tree had relatively lower performance, with weaker recall (0.6965), suggesting that it struggled to correctly identify minority class samples.
- Logistic Regression achieved a balanced trade-off, performing better than Decision Tree but slightly below KNN.
- The Voting Classifier showed competitive performance, especially in terms of ROC-AUC (0.8622), indicating strong overall discrimination capability.

Best Model (Wine Quality): KNN performed the best due to the dataset's continuous numerical features, where distancebased learning tends to capture patterns more effectively.

HR Attrition:

- **Decision Tree** performed the weakest, with the lowest accuracy (0.802) and F1-Score (0.782).
- KNN showed improved performance with an accuracy of 0.845, demonstrating that nearest-neighbor based classification worked well for this dataset too.

- Logistic Regression further improved, reaching 0.860 accuracy and 0.836 F1-Score, suggesting strong linear separability in the HR Attrition features.
- The Voting Classifier outperformed all individual models, achieving the highest scores across all metrics (Accuracy = 0.872, ROC-AUC = 0.885), benefiting from ensemble learning.

Best Model (HR Attrition): The Voting Classifier, since it combined the strengths of multiple classifiers and generalized better across the dataset.

Manual vs. Scikit-Learn Implementations

- Both manual and scikit-learn implementations produced identical results for each model, confirming the correctness of the manual pipeline.
- Minor differences (if any in other runs) may arise due to randomness in train-test splits, initialization of models, or stochastic optimization.
- Using scikit-learn drastically reduced implementation complexity, while the manual approach provided a deeper understanding of ML workflows (scaling, feature selection, parameter tuning, cross-validation).

Screenshots:

Wine Quality

EVALUATING MANUAL MODELS FOR WINE QUALITY

--- Individual Model Performance ---

Decision Tree:

Accuracy: 0.7271 Precision: 0.7716 Recall: 0.6965 F1-Score: 0.7321 ROC AUC: 0.8025

kNN:

Accuracy: 0.7667 Precision: 0.7757 Recall: 0.7938 F1-Score: 0.7846 ROC AUC: 0.8675

Logistic Regression:

Accuracy: 0.7417 Precision: 0.7628 Recall: 0.7510 F1-Score: 0.7569 ROC AUC: 0.8247

--- Manual Voting Classifier ---Voting Classifier Performance:

Accuracy: 0.7354, Precision: 0.7600 Recall: 0.7393, F1: 0.7495, AUC: 0.8622


```
EVALUATING BUILT-IN MODELS FOR WINE QUALITY
--- Individual Model Performance ---
Decision Tree:
  Accuracy: 0.7271
  Precision: 0.7716
  Recall: 0.6965
  F1-Score: 0.7321
  ROC AUC: 0.8025
kNN:
  Accuracy: 0.7667
  Precision: 0.7757
  Recall: 0.7938
  F1-Score: 0.7846
  ROC AUC: 0.8675
Logistic Regression:
  Accuracy: 0.7417
  Precision: 0.7628
  Recall: 0.7510
  F1-Score: 0.7569
  ROC AUC: 0.8247
--- Built-in Voting Classifier ---
Voting Classifier Performance:
  Accuracy: 0.7604, Precision: 0.7731
```

Recall: 0.7821, F1: 0.7776, AUC: 0.8622

HR Attrition:

EVALUATING MANUAL MODELS FOR HR ATTRITION --- Individual Model Performance ---Decision Tree: Accuracy: 0.8231 Precision: 0.3333 Recall: 0.0986 F1-Score: 0.1522 ROC AUC: 0.7107 knn: Accuracy: 0.8186 Precision: 0.3953 Recall: 0.2394 F1-Score: 0.2982 ROC AUC: 0.7130 Logistic Regression: Accuracy: 0.8571

Ogistic Regression:
Accuracy: 0.8571
Precision: 0.6333
Recall: 0.2676
F1-Score: 0.3762

ROC AUC: 0.7762

--- Manual Voting Classifier --Voting Classifier Performance:

Accuracy: 0.8299, Precision: 0.4444

Recall: 0.2254, F1: 0.2991, AUC: 0.7676


```
EVALUATING BUILT-IN MODELS FOR HR ATTRITION
--- Individual Model Performance ---
Decision Tree:
  Accuracy: 0.8231
  Precision: 0.3333
  Recall: 0.0986
  F1-Score: 0.1522
  ROC AUC: 0.7107
kNN:
  Accuracy: 0.8186
  Precision: 0.3953
  Recall: 0.2394
  F1-Score: 0.2982
  ROC AUC: 0.7130
Logistic Regression:
  Accuracy: 0.8571
  Precision: 0.6333
  Recall: 0.2676
  F1-Score: 0.3762
  ROC AUC: 0.7762
--- Built-in Voting Classifier ---
```

Voting Classifier Performance:

Accuracy: 0.8345, Precision: 0.4667

Recall: 0.1972, F1: 0.2772, AUC: 0.7676

Conclusions:

Key Findings

- Pipelines + GridSearchCV (Part 2) provide cleaner, more reliable model selection than ad-hoc/manual loops (Part 1), mainly by preventing leakage and enforcing consistent preprocessing within CV folds.
- On Wine Quality, tuned kNN delivered the strongest overall performance (best F1 and ROC AUC), highlighting the value of scaling + neighborhood methods on continuous features.
- On HR Attrition, Logistic Regression offered the best ROC AUC, consistent with expectations on encoded tabular data; however, Recall and F1 for the minority class remained modest, reflecting class imbalance.

What I learned

 Model selection is not just about the classifier; it's about the whole pipeline (scaling, selection, and CV).

- Trade-off: Manual implementations can help you understand the mechanics, but they are error-prone and harder to reproduce. scikit-learn pipelines are faster, safer, and easier to audit.
- Metrics matter: On imbalanced problems, ROC AUC and F1 (or class-specific recall) are more informative than accuracy alone.
- Calibration/thresholding and class weighting can materially improve minority-class performance without inflating false positives excessively.