Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)

Метод сжатия статических изображений без потерь на основе алгоритма Хаффмана

Студент: Ковалец Кирилл Эдуардович ИУ7-42М

Научный руководитель: Новик Наталья Владимировна

Актуальность

Недостаток метода Хаффмана:

• не учитывает повторяющиеся последовательности одинаковых пикселей как единое целое.

Устранение этого недостатка позволит увеличить степень сжатия файлов для случаев, когда изображение содержит:

- большие одноцветные области (фон, заливка);
- длинные последовательности идентичных пикселей.

Цель и задачи

Цель работы: разработать метод сжатия статических изображений без потерь на основе алгоритма Хаффмана.

Задачи:

- провести аналитический обзор известных методов сжатия статических изображений;
- разработать метод сжатия статических изображений без потерь на основе алгоритма Хаффмана;
- разработать программное обеспечение для демонстрации работы созданного метода;
- провести сравнение разработанного метода с аналогами по степени сжатия изображений.

Сравнение методов сжатия без потерь

- К1 возможность кодирования данных за один проход;
- К2 необходимость в таблице частот пикселей сжимаемого изображения;
- К3 наличие в зашифрованном сообщении информации для распаковщика;
- К4 наличие у каждого сжатого пикселя своего кода.

Метод сжатия	К1	К2	К3	К4
RLE	+	_	_	_
LZW (словарный алгоритм)	+	_	+	_
Унарное кодирование	+	+	+	+
Метод Хаффмана	_	+	+	+
Арифметическое кодирование	+	+	+	_

Выбор цветовой модели

- К1 класс метода по принципу действия;
- К2 количество байт для кодирования одного пикселя;
- К3 наличие поддержки альфа-канала;
- К4 наличие отдельного канала для яркости.

Метод сжатия	К1	К2	К3	К4
RGB	аддитивный	3	_	_
RGBA	аддитивный	4	+	_
CMYK	субтрактивный	4	_	_
LAB	перцепционный	3	_	+
HSB	перцепционный	3	_	+

Метод сжатия изображений на основе алгоритма Хаффмана (часть 1)

Метод сжатия изображений на основе алгоритма Хаффмана (часть 2)

Гибридный метод сжатия изображений

Сжатие методом LZW

Построение дерева Хаффмана

Сжатие методом Хаффмана

Результаты сжатия изображения

Сжимаемое изображение

Сравнение сжатого изображения с исходным

Пример работы программы

Сравнение методов сжатия изображений

• График показывает, на сколько процентов от изначального размера файла удалось сжать изображение.

Заключение

В ходе выполнения работы цель была достигнута, а все поставленные задачи выполнены:

- проведен аналитический обзор известных методов сжатия статических изображений;
- разработан метод сжатия статических изображений без потерь на основе алгоритма Хаффмана;
- разработано программное обеспечение для демонстрации работы созданного метода;
- проведено сравнение разработанного метода с аналогами по степени сжатия изображений.

Направление дальнейшего развития

- Добавить поддержку сжатия файлов, отличных от изображений.
- Уменьшить размер сжатого файла путем оптимизации данных, требуемых для распаковки изображения.
- Разработать алгоритмы управления сжатием файлов в зависимости от особенностей исходных изображений.