PROTOCADHERIN MATERIALS AND METHODS

This application is a continuation-in-part of International Patent Application No. PCT/US93/12588 filed December 23, 1993 which is in turn a continuation-in-part of U.S. Patent Application Serial No. 07/998,003 which was filed on December 29, 1992.

FIELD OF THE INVENTION

The present invention relates, in general, to materials and methods relevant to cell-cell adhesion. More particularly, the invention relates to novel adhesion proteins, designated protocadherins, and to polynucleotide sequences encoding the protocadherins. The invention also relates to methods for inhibiting binding of the protocadherins to their natural ligands/antiligands.

BACKGROUND

In vivo, intercellular adhesion plays an important role in a wide range of events including morphogenesis and organ formation, leukocyte extravasion, tumor metastasis and invasion, and the formation of cell junctions. Additionally, cell-cell adhesion is crucial for the maintenance of tissue integrity.

Intercellular adhesion is mediated by specific cell surface adhesion molecules. Cell adhesion molecules have been classified into at least four families including the immunoglobulin superfamily, the integrin superfamily, the selectin family and the cadherin superfamily. All cell types that form solid tissues express some members of the cadherin superfamily suggesting that cadherins are involved in selective adhesion of most cell types.

Cadherins have been generally described as glycosylated integral membrane proteins that have an N-terminal extracellular domain (the N-terminal 113 amino acids of the domain appear to be directly involved in binding) consisting of five subdomains characterized by sequences unique to cadherins, a hydrophobic membrane-spanning domain and a C-terminal cytoplasmic domain that interacts with the cytoskeleton through catenins and other cytoskeleton-

15

5

10

20

associated proteins. Some cadherins lack a cytoplasmic domain, however, and appear to function in cell-cell adhesion by a different mechanism than cadherins having a cytoplasmic domain. The cytoplasmic domain is required for the adhesive function of the extracellular domain in cadherins that do have an cytoplasmic domain. Binding between members of the cadherin family expressed on different cells is homophilic (i.e., a member of the cadherin family binds to cadherins of its own or a closely related subclass) and Ca²⁺-dependent. For recent reviews on cadherins, see Takeichi, Annu. Rev. Biochem., 59: 237-252 (1990) and Takeichi, Science, 251: 1451-1455 (1991).

The first cadherins to be described (E-cadherin in mouse epithelial cells, L-CAM in avian liver, uvomorulin in the mouse blastocyst, and CAM 120/80 in human epithelial cells) were identified by their involvement in Ca²⁺-dependent cell adhesion and their unique immunological characteristics and tissue localization. With the later immunological identification of N-cadherin, which was found to have a different tissue distribution than E-cadherin, it became apparent that a new family of Ca²⁺-dependent cell-cell adhesion molecules had been discovered.

The molecular cloning of the genes encoding E-cadherin [see Nagafuchi et al., Nature, 329: 341-343 (1987)], N-cadherin [Hatta et al., J. Cell. Biol., 106: 873-881 (1988)], and P-cadherin [Nose et al., EMBO J., 6: 3655-3661 (1987)] provided structural evidence that the cadherins comprised a family of cell adhesion molecules. Cloning of L-CAM [Gallin et al., Proc. Natl. Acad., Sci. USA, 84: 2808-2812 (1987)] and uvomorulin [Ringwald et al., EMBO J., 6: 3647-3653 (1986)] revealed that they were identical to E-cadherin. Comparisons of the amino acid sequences of E-, N-, and P-cadherins showed a level of amino acid similarity of about 45%-58% among the three subclasses. Liaw et al., EMBO J., 9: 2701-2708 (1990) describes the use of PCR with degenerate oligonucleotides based on conserved regions of the E-, N- and P-cadherins to amplify N- and P-cadherin from a bovine microvascular endothelial cell cDNA.

20

15

5

10

10.

15

25

20

The isolation by PCR of eight additional cadherins was reported in Suzuki et al., Cell Regulation, 2: 261-270 (1991). Subsequently, several other cadherins were described including R-cadherin [Inuzuka et al., Neuron, 7: 69-79 (1991)], M-cadherin [Donalies, Proc. Natl. Acad. Sci. USA, 88: 8024-8028 (1991)], B-cadherin [Napolitano, J. Cell. Biol., 113: 893-905 (1991)] and T-cadherin [Ranscht, Neuron, 7: 391-402 (1991)].

Additionally, proteins distantly related to cadherins such as desmoglein [Goodwin et al., Biochem. Biophys. Res. Commun., 173: 1224-1230 (1990) and Koch et al., Eur. J. Cell Biol., 53: 1-12 (1990)] and the desmocollins [Holton et al., J. Cell Science, 97: 239-246 (1990)] have been described. The extracellular domains of these molecules are structurally related to the extracellular domains of typical cadherins, but each has a unique cytoplasmic domain. Mahoney et al., Cell, 67: 853-868 (1991) describes a tumor suppressor gene of Drosophila, called fat, that also encodes a cadherin-related protein. The fat tumor suppressor comprises 34 cadherin-like subdomains followed by four EGF-like repeats, a transmembrane domain, and a novel cytoplasmic domain. The identification of these cadherin-related proteins is evidence that a large superfamily characterized by a cadherin extracellular domain motif exists.

Studies of the tissue expression of the various cadherin-related proteins reveal that each subclass of molecule has a unique tissue distribution pattern. For example, E-cadherin is found in epithelial cells while N-cadherin is found in neural and muscle cells. Expression of cadherin-related proteins also appears to be spatially and temporally regulated during development because individual proteins appear to be expressed by specific cells and tissues at specific developmental stages [for review see Takeichi (1991), supra]. Both the ectopic expression of cadherin-related proteins and the inhibition of native expression of cadherin-related proteins hinders the formation of normal tissue structure [Detrick et al., Neuron, 4: 493-506 (1990); Fujimori et al., Development, 110: 97-104 (1990); Kintner, Cell, 69: 225-236 (1992)].

The unique temporal and tissue expression pattern of the different

15

20

25

5

10

cadherins and cadherin-related proteins is particularly significant when the role each subclass of proteins may play in vivo in normal events (e.g., the maintenance of the intestinal epithelial barrier) and in abnormal events (e.g., tumor metastasis or inflammation) is considered. Different subclasses or combinations of subclasses of cadherin-related proteins are likely to be responsible for different cell-cell adhesion events in which therapeutic detection and/or intervention may be desirable. For example, auto-antibodies from patients with pemphigus vulgaris, an autoimmune skin disease characterized by blister formation caused by loss of cell adhesion, react with a cadherin-related protein offering direct support for adhesion function of cadherins in vivo [Amagai et al., Cell, 67: 869-877 (1991)]. Studies have also suggested that cadherins and cadherin-related proteins may have regulatory functions in addition to adhesive activity. Matsunaga et al., Nature, 334: 62-64 (1988) reports that N-cadherin has neurite outgrowth promoting activity. The Drosophila fat tumor supressor gene appears to regulate cell growth and supress tumor invasion as does mammalian E-cadherin [see Mahoney et al., supra; Frixen et al., J. Cell. Biol., 113:173-185 (1991); Chen et al., J. Cell, Biol., 114:319-327 (1991); and Vleminckx et al., Cell, 66:107-119 (1991)]. Thus, therapeutic intervention in the regulatory activities of cadherin-related proteins expressed in specific tissues may be desirable.

There thus continues to exist a need in the art for the identification and characterization of additional cadherin-related proteins which participate in cell-cell adhesion and/or regulatory events. Moreover, to the extent that cadherin-related proteins might form the basis for the development of therapeutic and diagnostic agents, it is essential that the genes encoding the proteins be cloned. Information about the DNA sequences and amino acid sequences encoding the cadherin-related proteins would provide for the large scale production of the proteins by recombinant techniques and for the identification of the tissues/cells naturally producing the proteins. Such sequence information would also permit

the preparation of antibody substances or other novel binding molecules specifically reactive with the cadherin-related proteins that may be useful in modulating the natural ligand/antiligand binding reactions in which the proteins are involved.

SUMMARY OF THE INVENTION

The present invention provides cadherin-related materials and methods that are relevant to cell-cell adhesion. In one of its aspects, the present invention provides purified and isolated polynucleotides (e.g., DNA and RNA, both sense and antisense strands) encoding the novel cell adhesion molecules designated herein as protocadherins, including protocadherin-42, protocadherin-43, protocadherin pc3, protocadherin pc4 and protocadherin pc5. Preferred polynucleotide sequences of the invention include genomic and cDNA sequences as well as wholly or partially synthesized DNA sequences, and biological replicas thereof (i.e., copies of the sequences made in vitro). Biologically active vectors comprising the polynucleotide sequences are also contemplated.

Specifically illustrating protocadherin polynucleotide sequences of the present invention are the inserts in the plasmids pRC/RSV-pc42 and pRC/RSV-pc43 which were deposited with the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, Maryland 20852 on December 16, 1992 and were assigned ATCC Accession Nos. 69162 and 69163, respectively.

The scientific value of the information contributed through the disclosures of the DNA and amino acid sequences of the present invention is manifest. For example, knowledge of the sequence of a partial or complete DNA encoding a protocadherin makes possible the isolation by standard DNA/DNA hybridization or PCR techniques of full length cDNA or genomic DNA sequences that encode the protein (or variants thereof) and, in the case of genomic DNA sequences, that specify protocadherin-specific regulatory sequences such as promoters, enhancers and the like. Alternatively, DNA sequences of the present invention may be chemically synthesized by conventional techniques.

20

15

5

10

Hybridization and PCR techiques also allow the isolation of DNAs encoding heterologous species proteins homologous to the protocadherins specifically illustrated herein.

According to another aspect of the invention, host cells, especially eucaryotic and procaryotic cells, are stably transformed or transfected with the polynucleotide sequences of the invention in a manner allowing the expression of protocadherin polypeptides in the cells. Host cells expressing protocadherin polypeptide products, when grown in a suitable culture medium, are particularly useful for the large scale production of protocadherin polypeptides, fragments and variants thereby enabling the isolation of the desired polypeptide products from the cells or from the medium in which the cells are grown.

The novel protocadherin protein products of the invention may be obtained as isolates from natural tissue sources, but are preferably produced by recombinant procedures involving the host cells of the invention. The products may be obtained in fully or partially glycosylated, partially or wholly deglycosylated, or non-glycosylated forms depending on the host cell selected or recombinant production and/or post-isolation processing.

Protocadherin variants according to the invention may comprise polypeptide analogs wherein one or more of the specified amino acids is deleted or replaced or wherein one or more non-naturally encoded amino acids are added:

(1) without loss, and preferably with enhancement, of one or more of the biological activities or immunological characteristics specific for a protocadherin; or (2) with specific disablement of a particular ligand/antiligand binding function. Also contemplated by the present invention are antibody substances (e.g., monoclonal and polyclonal antibodies, chimeric and humanized antibodies, antibody domains including Fab, Fab', F(ab')₂, Fv or single variable domains, and single chain antibodies) which are specific for the protocadherins of the invention. Antibody substances can be developed using isolated natural, recombinant or synthetic protocadherin polypeptide products or host cells

15

5

10

20

10

15

20

expressing such products on their surfaces. The antibody substances may be utilized for purifying protocadherin polypeptides of the invention, for determining tissue expression of polypeptides and as antagonists of the ligand/antiligand binding activities of the protocadherins. Specifically illustrating monoclonal antibodies of the present invention are the protocadherin-43 specific monoclonal antibodies produced by the hybridoma cell line designated 38I2C which was deposited with the ATCC on December 2, 1992 and was assigned ATCC Accession No. HB 11207.

Numerous other aspects and advantages of the present invention will be apparent upon consideration of the following detailed description, reference being made to the drawing wherein FIGURE 1A-C is an alignment of protocadherin amino acid sequences of the invention with the amino acid sequences of N-cadherin and of the *Drosophila fat* tumor suppressor.

DETAILED DESCRIPTION

The present invention is illustrated by the following examples wherein Examples 1, 2 and 3 describe the isolation by PCR of protocadherin polynucleotide sequences. Example 3 also describes the chromosome localization of several protocadherin genes of the invention. Example 4 describes the isolation by DNA/DNA hybridization of additional protocadherin polynucleotide sequences of the present invention. Example 5 presents the construction of expression plasmids including polynucleotides encoding protocadherin-42 or protocadherin-43 and the transfection of L cells with the plasmids. The generation of antibodies to protocadherin-42 and protocadherin-43 is described in Example 6. Example 7 presents the results of immunoassays of transfected L cells for the expression of protocadherin-42 or protocadherin-43. Example 8 describes the cell aggregation properties of L cells transfected with protocadherin-42, protocadherin-43 or a chimeric protocadherin-43/E-cadherin molecule. The calcium-binding properties of pc43 are described in Example 9. The results of assays of various tissues and cell lines for the expression of protocadherin-42 and protocadherin-43

by Northern blot, Western blot and in situ hybridization are respectively presented in Examples 10, 11 and 12. Example 13 describes immunoprecipitation experiments identifying a 120 kDa protein that coprecipitates with protocadherin-

Example 1

The polymerase chain reaction (PCR) was used to isolate novel rat cDNA fragments encoding cadherin-related polypeptides.

Design of PCR Primers

Two regions of conserved amino acid sequence, one from the middle of the third cadherin extracellular subdomain (EC-3) and the other from the C-terminus of the fourth extracellular subdomain (EC-4), were identified by comparison of the published amino acid sequences for L-CAM (Gallin et al., supra), E-cadherin (Nagafuchi et al., supra), mouse P-cadherin (Nose et al., supra), uvomorulin (Ringwald et al., supra), chicken N-cadherin (Hatta et al., supra), mouse N-cadherin [Miyatani et al., Science, 245:631-635 (1989)] and human P-cadherin [Shimoyama et al., J. Cell. Biol., 109:1787-1794 (1989)], and the corresponding degenerate oligonucleotides respectively set out below in IUPAC-IUB Biochemical nomenclature were designed for use as PCR primers.

Primer 1 (SEO ID NO: 1)

5' AARSSNNTNGAYTRYGA 3'

Primer 2 (SEQ ID NO: 2)

3' TTRCTRTTRCGNGGNNN 5'

The degenerate oligonucleotides were synthesized using an Applied Biosystems model 380B DNA synthesizer (Foster City, California).

25 Cloning of cDNA Sequences by PCR

PCR was carried out in a manner similar to that described in Suzuki et al., Cell Regulation, 2: 261-270 (1991) on a rat brain cDNA preparation. Total RNA was prepared from rat brain by the guanidium

15

10

5

10 -

15

20

25

isothiocyanate/cesium chloride method described in Maniatis et al., pp. 196 in Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York: Cold Spring Harbor Laboratory (1982). Brain poly(A)+ RNAs were then isolated using a FastTrack® kit (Invitrogen, San Diego, California) and cDNA was prepared using a cDNA synthesis kit (Boehringer Mannheim Biochemicals, Indianapolis, Indiana). The PCR reaction was initiated by adding 2.5 units of Taq DNA polymerase (Boehringer Mannheim Biochemicals) to 100 ng template cDNA and 10 ug of each primer, after which 35 reaction cycles of denaturation at 94°C for 1.5 minutes, annealing at 45°C for 2 minutes, and polymerization at 72°C for 3 minutes were carried out. Two major bands of about 450 base pairs (bp) and 130 bp in size were found when the products of the PCR reaction were subjected to agarose gel electrophoresis. The 450 bp band corresponded to the expected length between the two primer sites corresponding to the middle of the third cadherin extracellular subdomain (EC-3) and the carboxyl terminus of the fourth cadherin extracellular subdomain (EC-4), but the 130 bp band could not be predicted from any of the previously identified cadherin sequences. The 450 bp and 130 bp bands were extracted by a freezing and thawing method. The resulting fragments were phosphorylated at the 5' end with T4 polynucleotide kinase and subcloned by a blunt-end ligation into the Sma I site of M13mp18 (Boehringer Mannheim Biochemicals) in a blunt end ligation for sequence analysis. Sequencing of the fragments was carried out by the dideoxynucleotide chain termination method using a Sequenase kit (United States Biochemicals, Cleveland, Ohio). DNA and amino acid sequence were analyzed using the Beckman Microgenie program (Fullerton, California).

Analysis of cDNA Sequences

Nineteen novel partial cDNA clones were isolated. The DNA and deduced amino acid sequences of the clones (including sequences corresponding to the PCR primers) are set out as follows: RAT-123 (SEQ ID NOs: 3 and 4, respectively), RAT-212 (SEO ID NOs: 5 and 6). RAT-214 (SEO ID NOs: 7 and

10

15

20

8), RAT-216 (SEQ ID NOs: 9 and 10), RAT-218 (SEQ ID NOs: 11 and 12), RAT-224 (SEQ ID NOs: 13 and 14), RAT-312 (SEQ ID NOs: 15 and 16), RAT-313 (SEQ ID NOs: 17 and 18), RAT-314 (SEQ ID NOs: 19 and 20), RAT-315 (SEQ ID NOs: 21 and 22), RAT-316 (SEQ ID NOs: 23 and 24), RAT-317 (SEQ ID NOs: 25 and 26), RAT-321 (SEQ ID NOs: 27 and 28), RAT-323 (SEQ ID NOs: 29 and 30), RAT-336 (SEQ ID NOs: 31 and 32), RAT-352 (SEQ ID NOs: 33 and 34), RAT-411 (SEQ ID NOs: 35 and 36), RAT-413 (SEQ ID NOs: 37 and 38), and RAT-551 (SEQ ID NOs: 39 and 40).

The deduced amino acid sequences of the cDNA clones are homologous to, but distinct from the known cadherins. The cadherins described thus far have highly conserved, short amino acid sequences in the third extracellular subdomain (EC-3) including the consensus sequence D-Y-E or D-F-E located at the middle region of the subdomain and the consensus sequence D-X-N-E-X-P-X-F (SEQ ID NO: 41) or D-X-D-E-X-P-X-F (SEQ ID NO: 42) at its end (Hatta et al., supra), while the corresponding sequences of other subdomains, except for the fifth extracellular subdomain (EC-5), are D-R-E and D-X-N-D-N-X-P-X-F (SEQ ID NO: 43), respectively. In contrast, the deduced amino acid sequences of the new clones that correspond to cadherin extracellular subdomains include the sequence D-Y-E or D-F-E at one end, but have the sequence D-X-N-D-N-X-P-X-F instead of D-X-N-E-X-P-X-F D-X-D-E-X-P-X-F, at the other end. The polypeptides encoded by the partial clones are homologous to previously identified cadherins but did not show significant homology to any other sequences in Genbank. Therefore, the partial cDNAs appear to comprise a new subclass of cadherin-related molecules.

25

Example 2

Various cDNA fragments structurally similar to the rat cDNAs described in Example 1 were isolated from human, mouse, and Xenopus brain cDNA preparations and from *Drosophila* and *C. elegans* whole body cDNA

10

15

20

25

preparations by PCR using Primers 1 and 2 as described in Example 1. The DNA and deduced amino acid sequences of the resulting PCR fragments (including sequences corresponding to the PCR primers) are set out as follows: MOUSE-321 (SEQ ID NOs: 44 and 45), MOUSE-322 (SEQ ID NOs: 46 and 47). MOUSE-324 (SEQ ID NOs: 48 and 49), MOUSE-326 (SEQ ID NOs: 50 and 51). HUMAN-11 (SEQ ID NOs: 52 and 53), HUMAN-13 (SEQ ID NOs: 54 and 55), HUMAN-21 (SEQ ID NOs: 56 and 57), HUMAN-24 (SEQ ID NOs: 58 and 59), HUMAN-32 (SEQ ID NOs: 60 and 61), HUMAN-42 (SEQ ID NOs: 62 and 63), HUMAN-43 (SEQ ID NOs: 64 and 65), HUMAN-212 (SEQ ID NOs: 66 and 67), HUMAN-213 (SEQ ID NOs: 68 and 69), HUMAN-215 (SEQ ID NOs: 70 and 71). HUMAN-223 (SEQ ID NOs: 72 and 73), HUMAN-410 (SEQ ID NOs: 74 and 75), HUMAN-443 (SEQ ID NOs: 76 and 77), XENOPUS-21 (SEQ ID NOs: 78 and 79), XENOPUS-23 (SEQ ID NOs: 80 and 81), XENOPUS-25 (SEQ ID NOs: 82 and 83), XENOPUS-31 (SEO ID NOs: 84 and 85), DROSOPHILA-12 (SEO ID NOs: 86 and 87), DROSOPHILA-13 (SEQ ID NOs: 88 and 89), DROSOPHILA-14 (SEQ ID NOs: 90 and 91) and C.ELEGANS-41 (SEQ ID NOs: 92 and 93). Comparison of the deduced amino acid sequences indicates significant similarity between sets of these clones. In particular, there are three sets of clones that appear to be cross-species homologues: RAT-218, MOUSE-322 and HUMAN-43; RAT-314, MOUSE-321 and HUMAN-11; and MOUSE-326 and HUMAN-42.

Example 3

To ascertain the complete structure of the new proteins defined by the PCR products, two full length human cDNAs corresponding to the partial cDNAs HUMAN-42 and HUMAN-43 were isolated.

Isolation of Full-length Human cDNAs

A human fetal brain cDNA library (Stratagene, La Jolla, California) in the λ ZapII vector was screened by the plaque hybridization method

[described in Ausubel et al., Eds., Current Protocols in Molecular Biology, Sections 6.1.1 to 6.1.4 and 6.2.1 to 6.2.3, John Wiley & Sons, New York (1987)] with ³²P-labelled HUMAN-42 and HUMAN-43 DNA fragments. The positive clones were plaque-purified and, using a helper virus, the inserts were cut out by an in vivo excision method in the form of a Bluescript SK(+) plasmid. The insert sequences were then subcloned into the M13 vector (Boehringer Mannheim, Biochemicals) for sequencing. Several overlapping cDNA clones were isolated with each probe including two cDNAs which contained the putative entire coding sequences of two novel proteins designated protocadherin-42 (pc42) and protocadherin-43 (pc43). The DNA and deduced amino acid sequences of pc42 are set out in SEQ ID NOs: 94 and 95, respectively, while the DNA and deduced amino acid sequences of pc43 are set out in SEQ ID NOs: 96 and 97, respectively.

A description of the cloning of protocadherin sequences of the invention was published in Sano et al., The EMBO Journal, 12(6): 2249-2256 (1993) after filing of the priority application hereto. The deduced amino acid sequence of pc43 was previously presented at the December 9, 1991 meeting of the American Society for Cell Biology. An abstract of the presentation is published as Suzuki et al., J. Cell. Biol., 115: 72a (Abstract 416) (December 9, 1991).

Analysis of Full-length Human Clones

Comparison of the full length cDNA sequences of pc42 and pc43 to the sequences of the various DNA fragments originally obtained by PCR reveals that MOUSE-326 and HUMAN-42 correspond to a portion of the fourth extracellular subdomain (EC-4) of pc42, and RAT-314, MOUSE-321, and HUMAN-11 correspond to a portion of the third extracellular subdomain (EC-3) of pc43 and RAT-218, MOUSE-322 and HUMAN-43 correspond to a portion of the fifth extracellular domain (EC-5) of pc43.

20

25

15

5

10

15

20

The overall structures of pc42 and pc43 are similar to that of typical cadherins but the new molecules also have distinct features. Both protocadherin cDNA sequences contain putative translation initiation sites and translated amino acid sequences start with typical signal sequences, but the clones lack the prosequences that are present in all known cadherin precursors. The cDNAs encode proteins having a large N-terminal extracellular domain and a relatively short C-terminal cytoplasmic domain connected by a transmembrane sequence. The extracellular domains of pc42 and pc43 are different in length and pc42 contains seven subdomains that closely resemble the typical cadherin extracellular subdomain while pc43 has six such subdomains. The sizes of the protocadherin cytoplasmic domains are similar to those of typical cadherins, but the sequences do not show any significant homology with those of known cadherins or cadherin-related proteins.

Amino acid identity determinations between extracellular subdomains of human pc42 and pc43, and of mouse N-cadherin (SEQ ID NO: 98) (presented as an example of a "typical" cadherin) and the eighteenth extracellular subdomain of *Drosophila fat* tumor suppressor (EC-18, SEQ ID NO: 99) (the eighteenth extracellular subdomain of *fat* is a prototypical *fat* subdomain) are presented in Table 1 below, wherein, for example, "N-EC-1 x pc42" indicates that the first extracellular subdomain of N-cadherin was compared to the extracellular subdomain of pc42 indicated on the horizonal axis.

10

Table 1

	<u>EC-1</u>	EC-2	EC-3	EC-4	EC-5	EC-6	EC-7
N-EC-1 x pc42	20	27	26	26	31	29	17
N-EC-1 x pc43	31	23	23	26	31	24	
N-EC-2 x pc42	28	30	32	30	37	31	19
N-EC-2 x pc43	30	28	30	36	29	30	
N-EC-3 x pc42	21	26	30	29	31	30	22
N-EC-3 x pc43	25	18	26	28	28	25	
N-EC-4 x pc42	28	28	26	25	29	27	17
N-EC-4 x pc43	21	25	28	28	29	24	
N-EC-5 x pc42	24	21	25	24	24	19	12
N-EC-5 x pc43	15	21	20	20	25	16	
fat EC-18 x pc42	22	35	32	34	42	35	19
fat EC-18 x pc43	32	30	36	36	33	29	

The amino acid identity values between the extracellular subdomains of pc42 and pc43, and N-cadherin EC-1 through EC-5 and *Drosophila fat* EC-18 are mostly less than 40%. These identity values are comparable to the values between the subdomains of other cadherin subclasses. However, higher identity values indicate that pc42 and pc43 are more closely related to *fat* than to N-cadherin.

Amino acid identity determinations between extracellular subdomains of human pc42 and pc43 are presented in Table 2 below.

20

10

15

Table 2

pc43	<u>EC-1</u>	<u>EC-2</u>	<u>EC-3</u>	<u>EC-4</u>	EC-5	EC-6	<u>EC-7</u>
EC-1	33	27	29	26	25	26	25
EC-2	26	38	29	33	34	28	21
EC-3	26	32	41	30	32	31	22
EC-4	25	34	30	41	39	31	18
EC-5	23	32	29	27	36	34	16
EC-6	25	25	26	25	28	23	26

The identity values between respective EC-1, EC-2, EC-3, EC-4, EC-5 subdomains and the last subdomains of pc42 and pc43 are generally higher values than values obtained for comparisons of the protocadherins to N-cadherin. These results suggest that pc42 and pc43 are more closely related to one another than they are to classic cadherins.

FIGURE 1A-C presents an alignment of the deduced amino acid sequences of the extracellular subdomains of pc42 (EC-1 through EC-7), pc43 (EC-1 through EC-6), mouse N-cadherin (EC-1 through EC-5) and Drosophila fat EC-18. A sequence on a line in FIGURE 1A continues on the same line in FIGURES 1B and 1C. Gaps were introduced to maximize homology. The amino acid residues described by capital letters in the "motif" line are present in more than half of the subdomains of N-cadherin, pc42, pc43 and Drosophila fat. The amino acid residues described by small letters in the motif line are less well conserved in human pc42, pc43, and Drosophila fat. FIGURE 1A-C shows that many amino acids characteristic of other cadherin extracellular domain repeats are conserved in the pc42 and pc43 sequences, including the cadherin sequence motifs DXD, DRE and DXNDNXPXF (SEQ ID NO: 43), two glycine residues, and one glutamic acid residue. Additionally, pc42 and pc43 share unique features in comparison to N-cadherin. More amino acids at specific sites are conserved

25

10

15

between pc42 and pc43, such as the DXDXGXN (SEQ ID NO: 100) protocadherin sequence motif near the amino terminus of the pc42 and pc43 subdomains and the AXDXGXP (SEQ ID NO: 101) sequence motif near the carboxyl terminus of the subdomains. Additionally, both protocadherins share regions that do not show significant homology with the typical cadherin motif (of N-cadherin) near the carboxyl terminus of EC-1, in the middle of EC-2 and EC-4, and at the carboxyl terminus of the last repeat. A cysteine residue is located at a similar position in the middle of EC-4 of pc42 and pc43. In general, the extracellular subdomains of pc42 and pc43 are more similar to EC-18 of fat than the extracellular subdomains of N-cadherin.

Possible Alternative Splicing

Sequence analysis of various overlapping protocadherin cDNA clones revealed that some clones contained unique sequences at the 3' end, although the 5' end sequences were identical to other clones. The sequences forming the boundaries of the 3' end regions are consistent with the consensus sequence of mRNA splicing, suggesting that these clones may correspond to alternatively spliced mRNAs. The DNA and deduced amino acid sequences of one possible product of alternative splicing of pc42 mRNA are set out in SEQ ID NOs: 102 and 103. The DNA and deduced amino acid sequences of two possible products of alternative splicing of pc43 mRNA are respectively presented in SEQ ID NO: 104 and 105, and SEQ ID NOs: 106 and 107.

Chromosome Localization

The chromosomal location of the protocadherin 413 gene (SEQ ID NO: 37) and of the pc42 and pc43 genes was determined by conventional methods.

Briefly, C3H/HeJ-gld and Mus spretus (Spain) mice and [(C3H/HeJ-gld x Mus spretus) F₁ x C3H/HeJ-gld] interspecies backcross mice were bred and maintained as previously described in Seldin, et al., J. Exp. Med., 167: 688-693 (1988). Mus spretus was chosen as the second parent in the cross

25

because of the relative ease of detection of informative restriction fragment length variants (RFLVs) in comparison with crosses using conventional inbred laboratory strains. Gene linkage was determined by segregation analysis.

5

10

15

Genomic DNA isolated from mouse organs by standard techniques was digested with restriction endonucleases and 10 µg samples were electrophoresed in 0.9% agarose gels. DNA was transferred to Nytran membranes (Schleicher & Schull, Inc., Keene, NH), hybridized with the appropriate probe at 65°C and washed under stringent conditions, all as previously described in Maniatis et al., supra). To localize the pc42 gene, a mouse sequence probe corresponding to nucleotides 1419 to 1906 of SEQ ID NO: 94 was used and for pc43 a rat sequence probe corresponding to nucleotides 1060 to 1811 of SEQ ID NO: 96 was used. To localize the procadherin 413 gene, a probe including the sequence set out in SEQ ID NO: 37 was used. Other clones used as probes in the current study and RFLVs used to detect anonymous DNA loci were all previously described [Chromosome 7, DNA segment, Washington 12 (D7Was12); the parathyroid hormone (Pth); calcitonin (Calc); hemoglobin, β chain (Hbb); metallothionein-I (Mt-I); adenine phosphoribosyltransferase (Aprt); growth hormone receptor (Ghr); prostaglandin E receptor EP2 subtype (Ptgerep2); dihydrofolate reductase-2 (Dhfr2); fibroblast growth factor a (Fgfa); and glucocorticoid receptor-1 (Grl-1)].

20

25

Comparison of the haplotype distribution of protocadherin genes with those determined for loci throughout the mouse genome allowed each to be mapped to specific regions of mouse chromosomes. The probability for linkage was >99% and indicated assignment of both the pc42 gene and the pc43 gene was chromosome 18. The assignment of the protocadherin 413 gene was chromosome 7. The region of chromosome 18 to which the pc42 and pc43 genes were mapped corresponds to the ataxia (ax) loci [Burt, Anat. Rec., 196: 61-69 (1980) and Lyon, J. Hered., 46: 77-80 (1955)] and twirler (Tw) loci [Lyon, J. Embryol. Exp. Morphol., 6: 105-116 (1958)], while the region of chromosome

10

15

20

7 to which the protocadherin 413 gene was mapped corresponds to the shaker (sh-I) locus [Kikuchi et al., Acta Oto-Laryngol., 60: 287-303 (1965) and Lord et al., Am. Nat., 63: 453-442 (1929)]. These loci have been implicated as involved in hereditary neural disease in the mouse. This result is consistent with in situ hybridization results (see Example 12) showing that pc42 and pc43 are strongly expressed in the brain and particularly in the cerebellum.

Example 4

Two additional novel human protocadherin cDNAs and one additional novel rat protocadherin cDNA were isolated using rat protocadherin fragments described in Example 1 as probes.

Initially, the rat clone RAT-214 (SEQ ID NO: 7) was used as a probe to screen a rat brain cDNA library (Stratagene, La Jolla, CA). The final washing step was performed twice at 50°C in 0.1X SSC with 0.1% SDS for 15 minutes. Various clones were identified which contained partial cDNA inserts encoding related protocadherin amino acid sequences. The nucleotide sequence of one novel rat clone designated #6-2 is set out in SEQ ID NO: 108. The first fifteen nucleotides of SEQ ID NO: 108 are the sequence of a linker and are not part of the rat #6-2 clone.

A human fetal brain cDNA library obtained from Stratagene was screened with the 0.7 kbp PstI fragment of clone #6-2. The fragment appears to encode the EC-2 and EC-3 of the rat protocadherin. After screening about \$2.10\frac{9}{2}\$ phages, eleven positive clones were isolated. Sequencing of the clones identified a novel full length human protocadherin cDNA designated human pc3. The nucleotide and deduced amino acid sequence of human pc3 are set out in SEQ ID NOs: 109 and 110.

The 0.7 kbp PsiI fragment of rat clone #6-2 was also used to rescreen the Stratagene rat brain cDNA library for full length rat cDNA clones. A clone containing an insert encoding a full length novel protocadherin cDNA

was isolated. The DNA and deduced amino acid sequence of the insert are set out in SEQ ID NO: 111 and 112. The full length rat cDNA was named pc5 because it does not appear to be the homolog of the human pc3 clone based upon a comparison of the sequences.

5

10

Concurrently, the 0.8 kbp Eco RI-Pst I fragment of partial rat cDNA designated #43 (SEQ ID NO: 113), which was obtained by screening the Stratagene rat brain cDNA library with a probe corresponding to the human pc43 cytoplasmic domain, was used to probe the Stratagene human cDNA library for full length human protocadherin cDNAs. The fragment appears to encode EC-3 through the beginning of EC-6 of clone #43. One partial clone identified encodes a novel human protocadherin named human pc4. The nucleotide sequence and deduced amino acid sequences of the human pc4 clone are set out in SEQ ID NOs: 114 and 115. The amino acid sequence encoded by the pc4 clone appears to begin in the middle of EC-2 of pc4 and continues through the cytoplasmic tail of the protocadherin.

15

Example 5

The full length human cDNAs encoding pc42 and pc43 were expressed in L cells (ATCC CCL 1) using the pRC/RSV expression vector (Invitrogen, San Diego, California). The cDNAs were isolated from the Bluescript SK(+) clones described in Example 2 by digestion with SspI followed by blunt-ending with DNA polymerase and digestion with XbaI (for pc42), or by double digestion with SpEI and EcoRV (for pc43). The pRC/RSV expression vector was digested with HindIII, followed by blunt-ending and re-digestion with XbaI for insertion of pc42 sequences, or by digested with XbaI followed by blunt-ending and re-digestion with SpEI for insertion of pc43 sequences. The isolated protocadherin DNAs were ligated into the linearized pRC/RSV vector. The resulting pc42 expression plasmid designated pRC/RSV-pc42 (ATCC 69162) and pc43 expression plasmid designated pRC/RSV-pc43 (ATCC 69163) were

25

10

15

20

purified by CsCl gradient centrifugation and transfected into L cells by a Caphosphate method.

The pc42 and pc43 transfectants were morphologically similar to the parental cells. Northern blot analysis of L cells transfected with pc42 or pc43 DNA sequences showed that the transfected cells expressed mRNAs of a size expected to encode the particular protocadherin.

Example 6

Rabbit polyclonal antibodies specific for pc42 and pc43 were generated as well as a mouse monoclonal antibody specific for pc43.

Preparation of Polyclonal Antibodies Specific for pc42 and pc43

DNA sequences encoding portions of the extracellular domain of pc42 and pc43 were each fused to a maltose binding protein-encoding sequence and expressed in bacteria. Specifically, DNAs corresponding to EC-4 through EC-7 of pc42 and EC-3 through EC-5 of pc43 were prepared by PCR and subcloned in the correct reading frame into the multicloning site of the pMAL expression vector (New England Biolabs, Beverly, Massachusetts) which contains sequences encoding maltose binding protein immediately upstream of the multicloning site. The resulting plasmids were then introduced into E. coli NM522 cells (Invitrogen, San Diego, California) by a single step transformation method. Expression of the fusion proteins was induced by the addition of IPTG and the fusion proteins were purified from cell extracts by amylose resin affinity chromatography (New England Biolabs) as described by the manufacturer. The fusion proteins were used for the immunization of rabbits without further purification.

25

Polyclonal antibodies were prepared in rabbits by immunization at four subcutaneous sites with $500\mu g$ of purified fusion protein in Freund's complete adjuvant. Subsequent immunizations with $100\mu g$ of the fusion protein were in Freund's incomplete adjuvant. Immune sera was passed through

10 -

15

sepharose coupled to maltose binding protein (New England Biolabs) and polyclonal antibodies were purified from immune sera using Sepharose affinity columns prepared by reaction of the purified fusion protein with CNBr Sepharose (Pharmacia). Reactivity of the polyclonal sera with purified pc42 fusion protein and pc42 transfected cell extracts (described in Example 5) was confirmed.

Preparation of Monoclonal Antibodies Specific for pc43

The pc43 fusion protein (containing the EC-3 through EC-5 subdomains of pc43) was used to generate monoclonal antibodies in mice according to the method of Kennett, *Methods in Enzymol.*, 58:345-359 (1978). Briefly, mice were immunized with the pc43 fusion protein (100µg) at two subcutaneous sites. The spleen from the highest titer mouse was fused to the NS1 myeloma cell line. The resulting hybridoma supernatants were screened in a ELISA assay for reactivity with the pc43 fusion protein and with maltose binding protein. The fusion wells with the highest reactivity to the pc43 extracellular domains were subcloned. The hybridoma cell line designated 38I2C (ATCC HB 11207) produced a IgG₁ subtype monoclonal antibody specific for pc43. Reactivity of the monoclonal antibody produced by hybridoma cell line 38I2C to pc43 was confirmed by immunoblotting the pc43 L cell transfectants described in Example 5. The 38I2C monoclonal antibody is specific for human pc43.

20

Example 7

L cells transfected with DNA sequences encoding pc42 and pc43 as prepared in Example 5 were assayed for expression of the protocadherins by immunoblot and by immunofluorescence microscopy.

Immunoblot Analysis

25

Cell extracts of pc42 and pc43 transfectants were subjected to SDS-PAGE and then blotted electrophoretically onto a PVDF membrane (Millipore, Bedford, Massachusetts). The membranes were incubated with 5% skim milk in Tris-buffered saline (TBS) for two hours and then respectively with

either pc42 polyclonal sera or pc43 monoclonal antibody for one hour. The membranes were washed three times (for 5 minutes each wash) with TBS containing 0.05% Tween 20 and respectively incubated with alkaline phosphatase-conjugated anti-rabbit IgG antibody or anti-mouse IgG antibody (Promega, Madison, Wisconsin) in the same buffer for one hour. After washing the membranes with TBS containing 0.05% Tween 20, reactive bands were visualized by using Western Blue solution (Promega).

Anti-pc42 polyclonal antibodies stained a band of about 170 kDa molecular weight in pc42 transfected cells, but not parental L cells. The pc43-specific monoclonal antibody (3812C) and polyclonal antibodies stained two adjacent bands of about 150 kDa molecular weight in pc43 transfected cells. The pc43 antibodies did not stain bands in parental L-cells. The molecular weights indicated by the staining of bands by the pc42 and pc43 antibodies are significantly larger than the molecular weights predicted from the deduced amino acid sequences. This discrepancy in molecular weight is common among various cadherin-related proteins and may be attributable to the glycosylation and/or cadherin specific structural properties. The pc42 antibody also stained smaller bands, which may be proteolytic degradation products.

When transfected cells were trypsinized and cell extracts were prepared, run on SDS/PAGE and immunoblotted with the appropriate antibody, the pc42 and pc43 polypeptides expressed by the transfected cells were found to be highly sensitive to proteolysis and were easily digested by 0.01% trypsin treatment. In contrast to the classic cadherins, however, these proteins were not protected from the digestion in the presence of 1-5mM Ca²⁺.

Immunofluorescence Microscopy

Transfected cells were grown on a cover slip precoated with fibronectin and were fixed with 4% paraformaldehyde for 5 minutes at room temperature or with cold methanol on ice for 10 minutes followed by 4% paraformaldehyde fixation. After washing with TBS, the cells were incubated with

15

5

10

25

10

15

20

TBS containing 1% BSA for 30 minutes and then with anti-pc42 polyclonal antibody or anti-pc43 monoclonal antibody in TBS containing 1% BSA for 1 hour at room temperature. Cover slips were then washed with TBS containing 0.01% BSA and respectively incubated with FTTC-conjugated anti-rabbit antibody or anti-mouse antibody (Cappel, Durham, North Carolina) for 60 minutes at room temperature. The cells were washed again with TBS containing 0.01% BSA and subjected to fluorescence microscopy. Both pc42-specific and pc43-specific polyclonal antibodies stained the cell periphery of transfected cells expressing the protocadherin proteins, mainly at the cell-cell contact sites. The antibodies did not stain the parent L cells, nor did rabbit preimmune sera stain the pc42 and pc43 transfectants.

Example 8

The cell aggregation properties of the transfected L cells expressing protocadherin proteins were examined. Transfected L cells were cultured in Dulbecco's Modified Eagles Medium (DMEM) (Gibco, Grand Island, New York) supplemented with 10% fetal bovine serum at 37°C in 5% CO₂. Cells grown near confluence were treated with 0.01% trypsin in the presence of 1 mM EGTA for 25 minutes on a rotary shaker at 37°C and collected by centrifugation. The cells were washed three times with Ca²⁺ free HEPES-buffered saline (HBS) after adding soybean trypsin inhibitor, and were resuspended in HBS containing 1% BSA. The cell aggregation assay [Urushihara et al., Dev. Biol., 70: 206-216 (1979)] was performed by incubating the resuspended cells in a 1:1 mixture of DMEM and HBS containing 1% BSA, 2 mM CaCl₂ and 20 µg/ml of deoxyribonucelease on a rotary shaker at 37°C for 30 minutes to 6 hours.

25

The pc42 and pc43 transfectants did not show any significant cell aggregation activity during periods of incubation less than 1 hour. This is in contrast to the cell aggregation that occurs with classic cadherins in similar experiments (Nagafuchi et al., supra, and Hatta et al., supra). However,

10

15

20

25

30

prolonged incubation of transfected cells (more than 1-2 hours) resulted in gradual re-aggregation of the cells into small aggregates. Similar results were obtained when single cell suspensions of transfected cells were prepared by trypsin treatment in the presence of Ca²⁺. No re-aggregation was observed under the same conditions when untransfected L cells or L cells transfected with pRC/RSV vector alone were tested. When pc43 transfectants labelled with DiO (Molecular Probes, Eugene, OR) were incubated with unlabelled pc42 transfectants in the cell aggregation assay, aggregation of labelled and unlabelled cells was almost mutually exclusive indicating that protocadherin binding is homophilic.

In view of the fact that the protocadherin cytoplasmic domains exhibit no apparent homology to cadherin domains, experiments were performed to determine if the difference in cytoplasmic domains could account for the difference in cell aggregation activity observed in cadherin and protocadherin transfectants. The cytoplasmic domain of pc43 was replaced with the cytoplasmic domain of E-cadherin and aggregation of cells transfected with the chimeric construct was analyzed.

The Bluescript SK(+) clone described in Example 2 which contained the entire coding sequence for pe43 was digested with EcoRV and then partially digested with XbaI to remove the sequence corresponding to the cytoplasmic domain, and the plasmid DNA was purified by agarose gel electrophoresis. The cDNA corresponding to the cytoplasmic domain of mouse E-cadherin was synthesized by PCR using mouse cDNA made from mouse lung mRNA as a template and specific primers corresponding to a region near the N-terminus of the cytoplasmic domain sequence or the region containing the stop codon of mouse E-cadherin (Nagafuchi et al., supra). A XbaI sequence was included to the 5' end of the upstream primer. The E-cadherin cytoplasmic domain cDNA was then subcloned into the linearized pc43 Bluescript clone. The DNA containing the entire resulting chimeric sequence was cut out with SpeI and EcoRV and was subcloned into the SpeI-blunted XbaI site of the expression vector pRc/RSV vector. Finally, L cells were transfected with the resultant construct by

10

15

25

a calcium phosphate method. After screening with G418 for about 10 days, the transfectants were stained with FITC-labeled 38I2C anti-pc43 antibody and subjected to FACS analysis. A portion of highly labeled cells were isolated and cloned. Transfectants showed a morphology similar to that of parental L cells and the expressed protein was localized at the cell periphery using pc43 antibody for immunofluorescence microscopy.

Cell aggregation activity of the chimeric transfectants was analyzed as follows. The chimeric pc43 transfectants were labeled with DiO for 20 minutes at room temperature. The resultant cells were trypsinized in the presence of ImM EGTA and single cell suspension was made. Then, the cells were mixed with unlabeled other type of transfectants and incubated on a rotary shaker for two hours. The results were examined with a fluorescence and a phase contrast microscope apparatus. Antibody inhibition of cell aggregation was examined by incubation of the transfectants in the presence of polyclonal anti-pc43 antibody (100 ng/ml) in the standard assay medium.

In the cell aggregation assay, the chimeric pc43 transfectants showed clear Ca²⁺-dependent cell aggregation within forty minutes of incubation. Cell aggregation was inhibited by the addition of pc43-specific polyclonal antibody.

20 Example 9

The procedures of Maruyama et al., J. Biochem., 95: 511,519 (1984) were used to determine the calcium binding properties of pc43 by Western blot analysis in the presence or absence of calcium-45. The pc43 fusion protein described in Example 6 containing pc43 subdomains EC-3 through EC-5 was compared to the calcium binding protein calmodulin. Samples of purified pc43 fusion protein were run on SDS/PAGE and electrophoretically transferred to PVDF membrane. Binding of the ⁴⁵Ca²⁺ to the pc43 fusion protein was detected by autoradiography and was determined to be nearly as efficient as binding of ⁴⁵Ca²⁺ to calmodulin. In contrast, there was no binding of calcium to purified

maltose binding protein lacking the pc43 extracellular domain. The pc43 subdomains EC-3 through EC-5 contain sequences highly homologous to the putative Ca^{2±} binding motifs found in E-cadherin. [See, Ringwald *et al.*, *EMBO J.*. 6: 3647-3653 (1987).]

Example 10

The expression of mRNA encoding pc42 and pc43 was assayed in various tissues and cell lines by Northern blot.

Total RNAs were prepared by the guanidium isothiocyanate method and poly(A)+ RNAs were isolated using a FastTrack kit (Invitrogen). RNA preparations were electrophoresed in a 0.8% agarose gel under denaturing conditions and transferred onto a nitrocellulose filter using a capillary method. Northern blot analyses were performed according to the method of Thomas, *Proc. Natl. Acad. Sci. USA*, 77: 5201-5205 (1980). The final wash was in 0.2X standard saline citrate containing 0.1% sodium dodecyl sulfate at 65 °C for 10 minutes

Protocadherin mRNA Expression in Adult Rat Tissues

Total mRNA preparations of rat tissues including brain, heart, liver, lung, skin, kidney and muscle were separated electrophoretically under denaturing conditions ($10~\mu g$ mRNA/lane) and transferred onto nitrocellulose filters. The filters were hybridized with 32 P-labelled cDNA fragments MOUSE-326 (which corresponds to EC-4 of human pc42) and RAT-218 (which corresponds to EC-5 of human pc43). The mRNAs of both protocadherins were highly expressed in brain. The pc42 probe detected a major band of 7 kb and a minor band of 4 kb in size, possibly representing the products of alternative splicing. The pc43 probe hybridized to a major band of 5 kb in size and with minor bands of smaller sizes.

Developmental Expression of Protocadherin mRNA in Rat Brain

To examine the developmental regulation of mRNA expression of the protocadherins, brain mRNA from rats at embryonic days 17 and 20, neonatal

5

15

10

20

days 5 and 11 and from adult rats was prepared and subjected to Northern blot analysis as described above for other rat tissues. β -actin was used as an internal standard. mRNA levels for pc42 and pc43 proteins increased during embryonic development of the brain as compared with β -actin expression.

Protocadherin mRNA Expression in Human Cell Lines

Several neuronal and glial cell lines (including human SK-N-SH neuroblastoma, human U251 glioma, and mouse Neuro-2a neuroblastoma cell lines) were assayed by Northern blot using ³²P-labelled for expression of pc42 and pc43 mRNA. Human cell lines were probed with HUMAN-42 (which corresponds to EC-4 of human pc42) and HUMAN-43 (which corresponds to EC-5 of human pc43) cDNA fragments while the mouse cell line was probed with MOUSE-326 (which corresponds to EC-4 of human pc42) and RAT-322 (which corresponds to EC-5 of human pc43) cDNA fragments. SK-N-SH human neuroblastoma cells and U251 human glioma cells were found to express pc43 mRNA and Neuro-2a mouse neuroblastoma cells were found to express pc42 mRNA.

Example 11

Expression of pc43 protein in various tissues, extracts and cells was assayed by Western blot and immunofluorescence microscopy.

Expression in Rat Cardiac Muscle Extracts

A rat heart non-ionic detergent extract was prepared by freezing a heart in liquid nitrogen after removal, powdering in a mortar and pestle, grinding briefly in a polytron in 0.5% Nonidet P40 in [10 mM PIPES (pH 6.8), 50 mM NaCl, 250 mM NH₄SO₄, 300 mM sucrose, 3 mM MgCl₂] and microfuging for 15 minutes. Samples were separated by SDS/PAGE and electrophoretically transferred to nitrocellulose (Towbin et al., PNAS 76:4350-4354, 1979). Two pc43 protein bands with molecular weights of 150 KDa and 140 KDa were

10

5

15

25

10

15

detected with rabbit polyclonal antibodies to pc43 by the immunoblot method described in Example 7.

Expression in Tissue Sections and Cells

To determine the localization of the protocadherins in various tissues, human and rat adult tissues were removed, incubated in 30% sucrose in PBS for 30 minutes at 4°C, embedded in OCT compound (Tissue-Tek, Elkhart, Indiana) in cryomolds and quickly frozen. Six micron sections were cut and placed on glass slides. The slides were washed with PBS and fixed in 3% p-formaldehyde for 5 minutes. To permeablize the tissue sections, the slides were immersed in -20°C acetone for 10 minutes and air dried. The sections were blocked with 2% goat serum and 1% BSA in PBS for 30 minutes and then incubated with the rabbit anti-pc43 polyclonal antisera for 1 hour at room temperature. The sections were rinsed 3 times in PBS containing 0.1% BSA and incubated with a biotinylated anti-rabbit (Vector Laboratories, Burlingame, California) in 1% BSA in PBS for 30 minutes. After rinsing 3 times, strepavidinconjugated with FITC (Vector Laboratories) was added for 30 minutes and again washed 3 times. For co-localization studies, an appropriate primary antibody was used with a TRITC-conjugated secondary antibody.

A. Muscle

20

25

Immunolocalization of pc43 in rat cardiac muscle shows that pc43 is localized in a repeating pattern which is consistent with pc43 being associated with the sarcomeres. Sarcomeres are repetitive contractile units between the fascia adherens in skeletal and cardiac muscle. Co-localization with cytoskeletal proteins shows that pc43 is present at the ends of the sarcomeres in the Z lines which are associated with desmin and the actin-binding protein vinculin, and alpha-actinin. The thin microfilaments of F-actin are associated with the thick myosin filaments between the Z lines. In contrast, N-cadherin is localized at the ends of cardiac myocytes at the fascia adherens junctions at sites of mycocyte:myocyte contact. The localization of pc43 in cardiac muscle suggests

10

15

that pc43 may play a role in muscle contraction in the anchoring of the contractile apparatus to the plasma membrane.

Similar localization for pc43 was observed in rat skeletal muscle. Ultrastructural studies have shown that dystrophin, the gene product lacking in Duchenne muscular dystrophy, is a component of the sarcolemma [Porter et al., J. Cell. Biol., 117:997-1005 (1992)]. The sarcolemma is connected to the contractile apparatus at the M and Z lines where pc43 is localized.

B. Brain

Reactivity of anti-pc43 polyclonal antibody and monoclonal antibody 38I2C on frozen sections of rat and human cerebellum, respectively, shows that the major sites of pc43 expression are located in Purkinje cells and the granule cell layer which contains numerous small neurons.

C. Placenta

Strong reactivity of monoclonal antibody 3812C with human syncytiotrophoblasts was also observed in development of the placenta at an early state (5-7 weeks of gestation). Expression appeared to gradually decrease as the stage progressed indicating that pc43 may be involved in the implantation of fertilized eggs into the placenta.

D. Neuroblastoma and Astrocytoma Cells

Immunocytochemical localization of pc43 in Sk-N-SH neuroblastoma cells and UW28 astrocytoma cells using anti-pc43 antibodies reveals a punctate cell surface distribution of pc43 and in some cells there is a localization at the tips of extensions of neuronal foot processes. At sites of cell-cell contact of UW28 astrocytoma cells, pc43 is organized in a series of parallel lines. The lines start at the contact site and extend approximately 5 micron. F-actin microfilaments were identified with rhodamine-phalloidin (Molecular Probes, Eugene, Oregon, as described by the manufacturer) showing that the microfilaments in the cell appear to end in the pc43 linear structures which extend from the edge of the cell at sites of cell contact.

20

protein with a molecular weight of 140 kDa is recognized in human Sk-N-SH

antibody 38I2C in tow human ostogenic sarcoma cell lines [SaOS (ATCC HTB 85) and MG-63 (ATCC CRL 1427)] and in cultures of normal human trabecular osteoblasts [culture system described in Civitelli et al., J. Clin. Invest., 91: 1888-1896 (1993)] showed that pc43 is expressed in osteoblasts in a pattern similar to

organized in a series of parallel lines that appear to correspond to the actin stress fibers. In addition, in some cells, pc43 appears to localize at the tips of contacting cell processes. Northern blot analysis provides additional evidence that pc43 is expressed in normal human trabecular osteoblasts. A pc43 specific DNA

neuroblastoma cells and in UW28 astrocytoma cells.

E. Osteoblasts

that seen in UW28 astrocytoma cells.

from normal human trabecular osteoblasts.

Immunoblotting studies with pc43 specific antibodies show that a

Immunocytochemical localization of pc43 using monoclonal

At sites of cell-cell contact, pc43 is

10

5

15

Example 12

probe hybridized to a major band of 5 kb in samples of poly-A mRNA isolated

In situ hybridization experiments using protocadherin specific RNA probes were performed on cryosections of rat tissue.

20

Sense and antisense ³⁵S-riboprobes were made using the standard procedure described by Promega (Madison, Wisconsin). An approximately 400 bp EcoRI-Xbal fragment of the MOUSE-326 cDNA clone was used as a pc42 specific probe. This fragment encodes the middle of EC-3 to the end of EC-4 of pc42. An approximately 700 bp Smal fragment of the RAT-218 cDNA clone was used as a pc43 specific probe. The fragment encodes the end of EC-3 to the end of EC-5 of pc43.

25

Rat adult tissues were harvested and immediately embedded with OCT Compound (Tissue-Tek) in cryomolds and quickly frozen in a bath of 95% ethanol/dry ice. The frozen blocks were stored at -80°C until cut. Six micron

10

15

tissue sections were cut using a cryostat (Reichert-Jung, Model #2800 Frigocut N, Leica, Inc., Gilroy, California). Cut tissue sections were stored at -80°C.

The in situ protocol used was a variation of that described by Angerer et al., Methods in Enzymology, 152: 649-660, (1987). All solutions were treated with diethylpyrocarbonate (DEPC, Sigma, St. Louis, Missouri) to remove RNase contamination. The tissue sections were first fixed in 4% paraformaldehyde at 4°C for 20 minutes. To remove excess paraformaldehyde and stop the tissue fixation, the slides were washed in PBS (phosphate buffered saline), denatured in a graded series of alcohols (70, 95, 100%) and then dried. To prevent the tissue from detaching from the glass slide during the in situ procedure, the tissue sections were treated in a poly-L-lysine solution (Sigma) at room temperature for 10 minutes. To denature all RNA in the tissue, the sections were placed in a solution of 70% formamide/2x SSC (0.15 M NaCl/0.3 M Na citrate, pH 7.0) at 70°C for 2 minutes after which they were rinsed in chilled 2x SSC, dehydrated in a graded series of alcohols and then dried. Once dried, the sections were prehybridized in hybridization buffer [50% formamide/50 mM DTT (dithiothrietol)/0.3M NaCl/20 mM Tris, pH 8.0/5 mM EDTA/1X Denhardt's (0.02% Ficoll Type 400/0.02% polyvinylpyrrolidone/0.02% BSA)/10% Dextran Sulfate] at the final hybridization temperature for approximately 4 hours. After prehybridization, approximately 1 X 106 cpm of the appropriate riboprobe was added to each section. The sections were generally hybridized at 45°C overnight (12-16 hours). To insure that the hybridization seen was specific, in some experiments the hybridization stringency was increased by raising the hybridization temperature to 50°C. As both the 45°C and 50°C experiments gave comparable results, the standard hybridization temperature used was 45°C.

To remove excess, nonhybridized probe, the sections were put through a series of washes. The sections were first rinsed in 4X SSC to remove the bulk of the hybridization solution and probe. Next a 15 minute wash in 4X SSC/50 mM DTT was carried out at room temperature. Washes at increased

25

10

20

25

stringencies were also utilized. A 40 minute wash in 50% formamide/2X SSC/50 mM DTT was performed at 60°C. Four final room temperature washes were carried out for 10 minutes each: two in 2X SSC and two in 0.1X SSC. The washed slides were dehydrated in a graded series of alcohols and dried.

To visualize the hybridized probe, the slides were dipped in Kodak NTB2 nuclear emulsion (International Biotechnology, New Haven, Connecticut) which had been diluted 1:1 in dH_2O . Once dry, the slides were stored at 4°C in light-tight boxes for the appropriate exposure time. The *in situ* slides were independently viewed by two persons and scored positive or negative for hybridization signal.

All in situ hybridization studies were performed on rat tissue. Because results from Northern blot experiments (see Example 9) indicated that both pc42 and pc43 are expressed in adult brain, in situ hybridization studies were carried out to localize the expression of these molecules to specific brain cell Hybridization seen in the normal adult rat brian was specific (no background hybridization was seen with the sense probes) and was localized to specific regions in the brain. The overall pattern of expression seen for pc42 and pc43 was very similar, with the major difference being in the level of expression. pc43 appears to be expressed at a lower level than pc42. Both molecules are expressed in the germinal and pyramidal cells of the hippocampus, Purkinje cells of the cerebellum and neurons in grey matter. In addition, pc42 is expressed in glial cells in the white matter but, in contrast to the expression of pc43 in glioma cell lines (as described in Example 9), expression of pc43 in normal glial cells was not observed. In the spinal chord, both protocadherins are expressed in the motor neurons in the gray matter and pc42 is expressed in the glial cells in the white matter.

When expression of both protocadherin molecules was analyzed in brains and spinal chords from rats having EAE (experimental allergic encephalomyelitis) [Vandenbark et al., *Cell. Immunol.*, 12: 85-93 (1974)], the same structures as described above were found to be positive. In addition,

10

15

20

25

expression of pc42 was observed in the leukocytic infiltrates in the EAE tissues. Expression of pc42 in leukocytes was confirmed by *in situ* hybridization analysis of two leukocytic cell lines, RBL-1 and y3.

Expression of both protocadherin-42 and -43 was observed in the developing brain of rat embryos at all embryological days tested (E15-E19). In addition protocadherin-43 was observed in the developing rat heart at all embryological days tested (E13-E19). This finding is consistent with the immunohistochemistry results showing protocadherin-43 expression in adult heart.

To determine possible roles of protocadherins in the development of the nervous system, expression profiles of protocadherin members in developing rat brain and adult rat brain were also examined by in situ hybridization. A series of coronal, sagittal and horizontal sections of rat brains at postnatal days 0, 6, 14, 30 (P0 through P30) and at 3 months (young adult) were hybridized with labelled cRNA probes corresponding to various protocadherins of the invention including pc42, pc43, RAT-212, RAT-411, and RAT-418. In developing brain, RAT-411 was expressed at high levels in neurons of the olfactory bulb, i.e., mitral cells and periglomerular cells. The expression of RAT-411 mRNA was transient; expression appeared at PO, peaked at P6, diminished by P14, and was undetectable at P30 and in adult brain. In the adult, pc43 mRNA was found to be expressed predominantly in Purkinje cells in the cerebellum. The expression of pc43 mRNA in Purkinje cells was observed from the beginning of Purkinje cell differentiation at around P6. Other protocadherin members were expressed at very low levels in various areas of developing and adult brains. These results indicate that protocadherin members are differentially expressed during the development of the central nervous system, and suggest that RAT-411 and pc43 have specific roles during the development of olfactory bulb neurons and Purkinje cells, respectively.

10

15

Example 13

Conventional immunoprecipitations using pc43-specific polyclonal antibodies and monoclonal antibody 38I2C were performed to identify proteins that interacted with pc43 in L cell transfectants.

The pc43 and chimeric pc43 transfectants were metabolically labeled by incubating the cells in Dulbecco's modified Eagle's medium containing [35S] methionine (50 uCi/ml) overnight. After washing, the transfectants were lysed with PBS containing Triton X 100 and incubated with anti-pc43 antibody. The immunocomplexes were then collected using protein A-Sepharose beads. The resulting beads were washed five times with a washing buffer (50mM Tris-HCl, pH 8.0, containing 0.5M NaCl, 0.1% ovalbumin, 0.5% NP-40, 0.5% Triton X 100 and 1mM EDTA) at room temperature. Protein was separated by SDS-PAGE and subjected to autoradiography.

The chimeric pc43 co-precipitated with 105 kDa and a 95 kDa bands that are likely to correspond to α - and β -catenins, respectively, because anti- α -catenin and anti- β -catenin antibodies stained comparable bands. Pc43, on the other hand, co-precipitated with a 120 kDa band.

While the present invention has been described in terms of specific methods and compositions, it is understood that variations and modifications will occur to those skilled in the art. Therefore, only such limitations as appear in the claims should be placed on the invention.

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Suzuki. Shintaro
 - (ii) TITLE OF INVENTION: Protocadherin Materials and Methods
 - (iii) NUMBER OF SEQUENCES: 115
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Marshall, O'Toole, Gerstein, Murray, &

 - (B) STREET: 6300 Sears Tower, 233 S. Wacker Drive (C) CITY: Chicago
 - (D) STATE: Illinois
 - (E) COUNTRY: USA
 - (F) ZIP: 60606
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible

 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: Patentin Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: (B) FILING DATE:
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA
 - (A) APPLICATION NUMBER: PCT/US93/12588
 (B) FILING DATE: 23 DEC 1993
 - (vii) PRIOR APPLICATION DATA
 - (A) APPLICATION NUMBER: US 07/998,003 (B) FILING DATE: 29 DEC 1992
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Noland, Greta E. (B) REGISTRATION NUMBER: 35,302
 - (C) REFERENCE/DOCKET NUMBER: 32149
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 312/474-6300
 - (B) TELEFAX: 312/474-0448
 - (C) TELEX: 25-3856
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

AARSSNNING AYTRYGA

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1/ Dase pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPCLOGY: linear	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
TTRCTRTTRC GNGGNNN	17
(2) INFORMATION FOR SEQ ID NO:3:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 131 base pairs (B) TYPE: nucletc acid (C) STRANDEDHESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
AAGGGAGTGG ACTTTGAGGA GCAGCCTGAG CTTAGTCTCA TCCTCACGGC TTTGGATGGA	60
GGGACTCCAT CCAGGTCTGG GACTGCATTG GTTCAAGTGG AAGTCATAGA TGCCAATGAC	.20
AACGCACCGT A	31
(2) INFORMATION FOR SEQ ID NO:4:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 amino acids (B) TYPE: amino acid (C) STRANDEDMESS: single (D) TOPCLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
Lys Gly Val Asp Phe Glu Glu Gln Pro Glu Leu Ser Leu Ile Leu Thr 1 10 15	
Ala Leu Asp Gly Gly Thr Pro Ser Arg Ser Gly Thr Ala Leu Val Gln 20 25 30	
Val Glu Val Ile Asp Ala Asn Asp Asn Ala Pro 35 40	

(2)	INFORMATION	FOR	SEO	ID	NO:5:

(i)	SEQUENCE	CHARACT	ERIST:	ics:

- (A) LENGTH: 131 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

AAACGCATGG ATTTCGAGGA GTCTTCCTCC TACCAGATCT ATGTGCAAGC TACTGACCGG GGACCAGTAC CCATGCGGG TCATTGCAAG GTGTTGGTGG ACATTATAGA TGTGAACGAC

131

(2) INFORMATION FOR SEQ ID NO:6:

AACGCACCTA A

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 43 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:
- Lys Ala Met Asp Phe Glu Glu Ser Ser Tyr Gln Ile Tyr Val Gln
- Ala Thr Asp Arg Gly Pro Val Pro Met Ala Gly His Cys Lys Val Leu 20 25 30

Val Asp Ile Ile Asp Val Asn Asp Asn Ala Pro

- (2) INFORMATION FOR SEQ ID NO:7:
 - (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 131 base pairs
 - (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

AAGCGACTGG ACTTTGAGAC CCTGCAGACC TTCGAGTTCA GCGTGGGTGC CACAGACCAT

60 120

GGCTCCCCCT CGCTCCGCAG TCAGGCTCTG GTGCGCGTGG TGGTGCTGGA CCACAATGAC

AATGCCCCCA A	131
(2) INFORMATION FOR SEQ ID NO:8:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
Lys Arg Leu Asp Phe Glu Thr Leu Gln Thr Phe Glu Phe Ser Val Glu 1 5 10 15	,
Ala Thr Asp His Gly Ser Pro Ser Leu Arg Ser Gln Ala Leu Val Arg 20 25 30	ı
Val Val Val Leu Asp His Asn Asp Asn Ala Pro 35	
(2) INFORMATION FOR SEQ ID NO:9:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 131 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: CDNA

AAGGGCCTGG ATTACGAGGC ACTGCAGTCC TTCGAGTTCT ACCTGGGCGC TACAGATGGA 60
GGCTCACCCG CGCTCAGCAG CCAGACTCTG GTGCGGATGG TGGTGCTGGA TGACAACGAC 120
AACGCCCCTA A 131

- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 43 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (II) Monacona IIIE. procein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:-
 - Lys Gly Leu Asp Tyr Glu Ala Leu Gln Ser Phe Glu Phe Tyr Val Gly 1 5 10 15

Ala Thr Asp Gly Gly Ser Pro Ala Leu Ser Ser Gln Thr Leu Val Arg $20 \hspace{1cm} 25 \hspace{1cm} 30$

Met Val Val Leu Asp Asp Asn Asp Asn Ala Pro

- (2) INFORMATION FOR SEQ ID NO:11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 131 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

AAGGCCTTTC ATTTTGAGGA TCAGAGAGAG TTCCAGCTAA CCGCTCATAT AAACGACGGA
GGTACCCCGG TTTTGGCCAC CAACATCAGC GTGAACATAT TTGTTACTGA CCGCAATGAC

AACGCCCCGC A

120 131

60

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 43 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
- Lys Ala Phe Asp Phe Glu Asp Gln Arg Glu Phe Gln Leu Thr Ala Hist 1 10 15 $^{\circ}$
- Ile Asn Asp Gly Gly Thr Pro Val Leu Ala Thr Asn Ile Ser Val Asn 20 25 30
- Ile Phe Val Thr Asp Arg Asn Asp Asn Ala Pro 35 40
- (2) INFORMATION FOR SEQ ID NO:13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 131 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

	- 40 -											
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:13:											
AAGGCGGTGG ATTACGAAAT CACCAAGTCC TATGAGATAG ATGTTCAAGC CCAAGATCTG												
GGTCCCAATT CTATTCCTGC TCATTGCAAA ATTATAATTA AGGTCGTGGA TGTCAACGAC												
AACGCTCCCA A												
(2) INFOR	MATION FOR SEQ ID NO:14:											
(i)	(i) SEQUENCE CHARACTERISTICS: (A) LENOTH: 43 amino accids (B) TYPE: amino accid (C) STRANDEDNESS: single (D) TOPOLOGY: linear											
(ii)	MOLECULE TYPE: protein											
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:14:											
Lys i	Ala Val Asp Tyr Glu Ile Thr Lys Ser Tyr Glu Ile Asp Val Gln 5 10 15											
Ala	Gln Asp Leu Gly Pro Asn Ser Ile Pro Ala His Cys Lys Ile Ile 20 25 30											
Ile 1	Lys Val Val Asp Val Asn Asp Asn Ala Pro 35 40											
(2) INFOR	MATION FOR SEQ ID NO:15:											
(i) 8	SEQUENCE CHARACTERISTICS: (A) LENGTH: 135 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear											
(ii) P	MOLECULE TYPE: cDNA											
(xi) S	SEQUENCE DESCRIPTION: SEQ ID NO:15:											
TATGACCATO	G ATTACGAGAC AACCAAAGAA TATACACTGC GGATCCGGGC CCAGGATGGT	60										
GGCCGGACTC	C CACTITCCAA CGTCTCCGGT CTAGTAACCG TGCAGGTCCT AGACATCAAC	120										
GACAATGCCC	CCCCA	135										
(2) INFORM	AATION FOR SEQ ID NO:16:											
(i) S	SEQUENCE CHARACTERISTICS: (A) LENGTH: 44 amino acids (B) TYPE: amino acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear											

(ii) MOLECULE TYPE: protein

	(xi)	SEQ	JENCI	E DE	SCRI	PTIO	N: SI	EQ II	on o	:16:						
	Tyr 1	Asp	His	Asp	Tyr 5	Glu	Thr	Thr	Lys	Glu 10	Tyr	Thr	Leu	Arg	Ile 15	Arg
	Ala	Gln	Asp	Gly 20	Gly	Arg	Thr	Pro	Leu 25	Ser	Asn	Val	Ser	Gly 30	Leu	Val
	Thr	Val	Gln 35	Val	Leu	Asp	Ile	Asn 40	Asp	Asn	Ala	Pro				
(2)	INFO	RMAT:	ON I	FOR S	SEQ :	ID NO	:17	:								
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 129 base pairs (B) TYPE: nucleic acid (C) STRANDENNESS: single (D) TOPOLOGY: linear															

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:
- GGGGGGTCGA TTACGAGGAG AACGGCATGT TAGAGATCGA CGTGCAGGCC AGAGACCTAG 60 GACCTARCCC ARTICCAGCC CATTGCAAGG TCACAGTCAA GCTCATCGAC CGCAATGATA 120 ACGCCCCCA 129
- (2) INFORMATION FOR SEQ ID NO:18:

(ii) MOLECULE TYPE: cDNA

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 43 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:
- Arg Gly Val Asp Tyr Glu Glu Asn Gly Met Leu Glu Ile Asp Val Gln 1 5 10 15
- Ala Arg Asp Leu Gly Pro Asn Pro Ile Pro Ala His Cys Lys Val Thr
- Val Lys Leu Ile Asp Arg Asn Asp Asn Ala Pro 35 40

(2) INFORMATION FOR SEQ ID NO:19:												
(i) SEQUENCE CHARACTERISTICS: (A) LENCTH: 131 base pairs (B) TYPE: nucleic acid (C) STRANDENNESS: single (D) TOPOLOGY: linear												
(ii) MOLECULE TYPE: cDNA												
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:												
ARGGGGTTGG ACTACGAAGA CACCAAACTC CATGAGATTT ACATCCAGGC CAAAGACAAA												
GGTGCCARTC CGGAAGGAGC GCATTGCAAA GTACTGGTAG AGGTTGTGGA CGTTAACGAC	120											
AATGCCCCTC A	131											
(2) INFORMATION FOR SEQ ID NO:20:												
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear												
(ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:												
Lys Gly Leu Asp Tyr Glu Asp Thr Lys Leu His Glu Ile Tyr Ile Gln												
1 5 10 15												
Ala Lys Asp Lys Gly Ala Asn Pro Glu Gly Ala His Cys Lys Val Leu 20 25 30												
Val Glu Val Val Asp Val Asn Asp Asn Ala Pro 35 40												
(2) INFORMATION FOR SEQ ID NO:21:												
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 131 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPCLOGY: linear												

(ii) MOLECULE TYPE: CDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

AAGGGTTTGG ACTTTGAGCA AGTAGATGTC TACAAAATCC GCGTTGACGC GACGGACAAA

GGACACCCTC CGATGGCAGG CCATTGCACT GTTTTAGTGA GGGTATTGGA TGAAAACGAC

60

- 43 -	
AATGCGCCTC T	131
(2) INFORMATION FOR SEQ ID NO:22:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
Lys Gly Leu Asp Phe Glu Gln Val Asp Val Tyr Lys Ile Arg Val Asp 1 $000000000000000000000000000000000000$	
Ala Thr Asp Lys Gly His Pro Pro Met Ala Gly His Cys Thr Val Leu $20 \hspace{1cm} 25 \hspace{1cm} 30$	
Val Arg Val Leu Asp Glu Asn Asp Asn Ala Pro 35 40	
(2) INFORMATION FOR SEQ ID NO:23:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 134 base pairs (B) TYPE: nucleic acid (C) STRANDENDESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID No:23:	
AAGGGTATAG ACTTCGAGCA GATCAAGGAC TTCAGCTTTC AAGTGGAAGC CCGGGACGCC	60
GGCAGTCCCC AGGCGCTGTC CGGCAACTGC ACTGTCAACA TCTTGATAGT GGATCAGAAC	120
GACAACGCCC CTAA	134
(2) INFORMATION FOR SEQ ID NO:24:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 44 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

(ii) MOLECULE TYPE: protein

Lys Gly Ile Asp Phe Glu Gln Ile Lys Asp Phe Ser Phe Gln Val Glu l $10\,$

Ala Arg Asp Ala Gly Ser Pro Gln Ala Leu Ala Gly Asn Thr Thr Val

Asn Ile Leu Ile Val Asp Gln Asn Asp Asn Ala Pro 35 40

- (2) INFORMATION FOR SEQ ID NO:25:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 134 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

AAGCCGTTCG ACTATGAGCA AACCGCCAAC ACGCTGGCAC AGATTGACGC CGTGCTGGAA

60 120

AAACAGGGCA GCAATAAATC GAGCATTCTG GATGCCACCA TTTTCCTGGC CGATAAAAAC GACAATGCGC CAGA

134

- (2) INFORMATION FOR SEQ ID NO:26:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 44 amino acids (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:
 - Lys Pro Phe Asp Tyr Glu Gln Thr Ala Asn Thr Leu Ala Gln Ile Asp

Ala Val Leu Glu Lys Gln Gly Ser Asn Lys Ser Ser Ile Leu Asp Ala

Thr Ile Phe Leu Ala Asp Lys Asn Asp Asn Ala Pro 35 40

- (2) INFORMATION FOR SEQ ID NO:27:
 - (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 131 base pairs
 - (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear

 - (ii) MOLECULE TYPE: cDNA

- 43 -
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:
AAGCGGCTGG ATTTCGAACA GTTCCAGCAG CACAAGCTGC TCGTAAGGGC TGTTGATGGA 6
GGAATGCCGC CACTGAGCAG CGATGTGGTC GTCACTGTGG ATGTCACCGA CCTCAACGAT 120
AACGCGCCCT A 13:
(2) INFORMATION FOR SEQ ID NO:28:
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
(ii) MOLECULE TYPE: protein
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:
Lys Arg Leu Asp Phe Glu Gln Phe Gln Gln His Lys Leu Leu Val Arg 1 10 15
Ala Val Asp Gly Gly Met Pro Pro Leu Ser Ser Asp Val Val Thr 20 25 30
Val Asp Val Thr Asp Leu Asn Asp Asn Ala Pro 35 40
(2) INFORMATION FOR SEQ ID NO:29:
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 131 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
(ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:
AAGGGGATAG ACTTTGAGAG TGAGAATTAC TATGAATTTG ATGTGCGGGC TCGCGATGGG 60
GGTTCTCCAG CCATGGAGCA ACATTGCAGC CTTCGAGTGG ATCTGCTGGA CGTAAATGAC 120
AACGCCCCAC T 131
(2) INFORMATION FOR SEQ ID NO:30:
(i) SEQUENCE CHARACTERISTICS: (A) LENOTH: 43 amino acids (B) TYPE: amino acid (C) STRANDEDMESS: single (D) TOPOLOGY: None

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

	Lys G 1	ly Il	e Asp	Phe 5	Glu	Ser	Glu	Asn	Tyr 10	Tyr	Glu	Phe	Asp	Val 15	Arg	
	Ala A	rg As	p Gly 20	Gly	Ser	Pro	Ala	Met 25	Glu	Gln	His	Сув	Ser 30	Leu	Arg	
	Val A	sp Le 35	u Leu	Asp	Val	Asn	Asp 40	Asn	Ala	Pro						
(2)	INFORM	ATION	FOR	SEQ :	ID N	31:31	:									
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 131 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear																
(ii) MOLECULE TYPE: cDNA																
	(xi) S	EQUEN	CE DE	SCRIE	PTION	i: Si	EQ I	NO:	31:							
AAGO	CATTGG	ACTT!	GAGG	c ccc	GCG	CTG	TAT	reger	GA C	CAGT	CAGG	C C	CGG	ACCG	4	60
GGC	TGCCCT	CGCT	CACCG	GCC	TGCC	GAA	G CG	CTTAT	CC A	GCT	CTAG	A TO	TCA	CGA	2	120
AAC	CACCCA	T														131
(2)	INFORM	MOITA	FOR :	SEQ I	D NC	: 32:										
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear																
(ii) MOLECULE TYPE: protein																
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:																
	Lys Al	a Leu	Asp	Phe 5	Glu	Ala	Arg	Arg	Leu 10	Tyr	Ser	Leu	Thr	Val 15	Gln	
	Ala Th	r Asp	Arg 20	Gly	Val	Pro	Ser	Leu 25	Thr	Gly	Arg	Ala	Glu 30	Ala	Leu	
	Ile Gl	n Leu	Leu	Asp	Val	Asn	Asp	Asn	Ala	Pro						

(2) INFORMATION FOR SEQ ID NO:33:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH 125 base pairs (B) TYPE: nucleic acid (C) STRANDENESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:	
AAGCCAATTG ATTACGAGGC AACTCCATAC TATAACATGG AAATTGTAGC CACAGACAGC	60
GGAGGTCTTT CGGGAAAATG CACTGTGTCT ATACAGGTGG TGGATGTGAA CGACAACGCC	120
CCCAA	125
(2) INFORMATION FOR SEQ ID NO:34:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 41 amino acids (B) TYPE: amino acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:	
Lys Pro Ile Asp Tyr Glu Ala Thr Pro Tyr Tyr Asn Met Glu Ile Val 5 10 15	
Ala Thr Asp Ser Gly Gly Leu Ser Gly Lys Cys Thr Val Ser Ile Gln 20 25 30	
Val Val Asp Val Asn Asp Asn Ala Pro 35 40	
(2) INFORMATION FOR SEQ ID NO:35:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 446 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:	
AAGCGGGTAG ACTTCGAAAT GTGCAAAAGA TTTTACCTTG TGGTGGAAGC TAAAGACGGA	60
GGCACCCCAG CCCTCAGCAC GGCAGCCACT GTCAGCATCG ACCTCACAGA TGTGAATGAT	120

AACCCTCCTC	GGTTCAGCCA	AGATGTCTAC	AGTGCTGTCA	TCAGTGAGGA	TGCCTTAGAG	180
GGGGACTCTG	TCATTCTGCT	GATAGCAGAA	GATGTGGATA	GCAAGCCTAA	TGGACAGATT	240
CGGTTTTCCA	TCGTGGGTGG	AGATAGGGAC	AATGAATTTG	CTGTCGATCC	AATCTTGGGA	300
CTTGTGAAAG	TTAAGAAGAA	ACTGGACCGG	GAGCGGGTGT	CAGGATACTC	CCTGCTCATC	360
CAGGCAGTAG	ATAGTGGCAT	TCCTGCAATG	TCCTCAACGA	CAACTGTCAA	CATTGATATT	420
TCTGATGTGA	ACGACAACGC	CCCCCT				446

- (2) INFORMATION FOR SEQ ID NO:36:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 148 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:
 - Lys Arg Val Asp Phe Glu Met Cys Lys Arg Phe Tyr Leu Val Val Glu
 - Ala Lys Asp Gly Gly Thr Pro Ala Leu Ser Thr Ala Ala Thr Val Ser 20 25 30
 - Ile Asp Leu Thr Asp Val Asn Asp Asn Pro Pro Arg Phe Ser Gln Asp 35 40 45
 - Val Tyr Asp Ala Val Ile Ser Glu Asp Ala Leu Glu Gly Asp Ser Val 50 60
 - Ile Leu Leu Ile Ala Glu Asp Val Asp Ser Lys Pro Asn Gly Gln Ile
 - Arg Phe Ser Ile Val Gly Gly Asp Arg Asp Asn Glu Phe Ala Val Asp
 - Pro Ile Leu Gly Leu Val Lys Val Lys Lys Lys Leu Asp Arg Glu Arg
 - Val Ser Gly Tyr Ser Leu Leu Ile Gln Ala Val Asp Ser Gly Ile Pro 115 120 125
 - Ala Met Ser Ser Thr Thr Thr Val Asn Ile Asp Ile Ser Asp Val Asn 130 135 140
 - Asp Asn Ala Pro 145

- (2) INFORMATION FOR SEQ ID NO:37:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 440 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

AAGGGGGTTG	ATTATGAGAC	AAACCCACGG	CTACGACTGG	TGCTACAGGC	AGAGAGTGGA	60
GGAGCCTTTG	CTTTCTCGGT	GCTGACCCTG	ACCCTTCAAG	ATGCCAATGA	CAATGCTCCC	120
CGTTTCCTGC	AGCCTCACTA	CGTGGCTTTC	CTGCCAGAGT	CCCGACCCTT	GGAAGGGCCC	180
CTGCTGCAGG	TGGAAGCAGA	CGACCTGGAT	CAAGGCTCTG	GAGGACAGAT	CTCCTACAGT	240
CTGGCTGCAT	CCCAGCCAGC	ACGGGGCTTG	TTCCATGTAG	ACCCAGCCAC	AGGCACTATC	300
ACTACCACAG	CCATCCTGGA	CCGGGAAATC	TGGGCTGAAA	CACGGCTGGT	ACTGATGGCC	360
ACAGACAGAG	GAAGCCCAGC	ATTGGTGGGC	TCAGCTACCC	TGACAGTGAT	GGTCATCGAT	420
ACCAACGACA	ATGCTCCCCT					440

- (2) INFORMATION FOR SEQ ID NO:38:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 146 amino acids (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:
 - Lys Gly Val Asp Tyr Glu Thr Asn Pro Arg Leu Arg Leu Val Leu Gln 1 5
 - Ala Glu Ser Gly Gly Ala Phe Ala Phe Ser Val Leu Thr Leu 20 25 30
 - Gln Asp Ala Asn Asp Asn Ala Pro Arg Phe Leu Gln Pro His Tyr Val 35 40 45
 - Ala Phe Leu Pro Glu Ser Arg Pro Leu Glu Gly Pro Leu Leu Gln Val 50
 - Glu Ala Asn Asp Leu Asp Gln Gly Ser Gly Gly Gln Ile Ser Tyr Ser 65 75 75
 - Leu Ala Ala Ser Gln Pro Ala Arg Gly Leu Phe His Val Asp Pro Ala 85 90 95

Thr	Gly	Thr	Ile 100	Thr	Thr	Thr	Ala	Ile 105	Leu	Asp	Arg	Glu	Ile 110	Trp	Ala
Glu	Thr	Arg 115	Leu	Val	Leu	Met	Ala 120	Thr	Asp	Arg	Gly	Ser 125	Pro	Ala	Leu
Val	Gly 130	Ser	Ala	Thr	Leu	Thr 135	Val	Met	Val	Ile	Asp 140	Thr	Asn	Asp	Asn
Ala 145	Pro														

- (2) INFORMATION FOR SEQ ID NO:39:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 124 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

AAGGTCTCGA TTATGAGGCA ACTCCATATT ATAACGTGGA AATTGTAGCC ACAGATGGTG

GGGGCCTTTC AGGAAAATGC ACTGTGGCTA TAGAAGTGGT GGATGTGAAC GACGGCGCTC

CAAT

124

- (2) INFORMATION FOR SEQ ID NO:40:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 41 amino acids
 - (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

Lys Gly Leu Asp Tyr Glu Ala Thr Pro Tyr Tyr Asn Val Glu Ile Val 1 $$

Ala Thr Asp Gly Gly Ala Phe Asp Glu Asn Cys Thr Val Ala Ile Glu 20 25 30

Val Val Asp Val Asn Asp Asn Ala Pro 35 40

- (2) INFORMATION FOR SEQ ID NO:41:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:
 - Asp Xaa Asn Glu Xaa Pro Xaa Phe
- (2) INFORMATION FOR SEQ ID NO:42:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids
 - (B) TYPE: amino acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:
 - Asp Xaa Asp Glu Xaa Pro Xaa Phe 1 5
- (2) INFORMATION FOR SEQ ID NO:43:
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:
 - Asp Xaa Asn Asp Asn Xaa Pro Xaa Phe
- (2) INFORMATION FOR SEQ ID NO:44:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 131 base pairs (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:	
AAGCGGATGG ATTTTGAAGA CACCAAACTC CATGAGATTT ACATCCAGGC CAAAGACAAA	60
GGTGCCAATC CCGAAGGAGC GCATTGCAAA GTACTTGTAG AGGTTGTAGA CGTAAACGAC	120
AACGCCCCAG T	131
(2) INFORMATION FOR SEQ ID NO:45:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 amino acids (B) TYPE: amino acid (C) STRANDEDRESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:	
Leu Arg Met Asp Phe Glu Asp Thr Lys Leu His Glu Ile Tyr Ile Gln $1 \ 5 \ 10$	
Ala Lys Asp Lys Gly Ala Asn Pro Glu Gly Ala His Cys Lys Val Leu 20 25 30	
Val Glu Val Val Asp Val Asn Asp Asn Ala Pro 35 40	
(2) INFORMATION FOR SEQ ID NO:46:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 131 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:	
ARGGETTTGG ATTACGAGGA TCAGAGAGAG TTCCAACTAA CAGCTCATAT ARACGACGGA	60
GTACCCCAG TCTTAGCCAC CAACATCAGC GTGAACGTAT TTGTTACTGA CCGCAATGAT	120
ACCCCCCT A	131
2) INFORMATION FOR SEQ ID NO:47:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: protein

	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:47:							
	Lys 1	Ala	Leu	Asp	Tyr 5	Glu	Asp	Gln	Arg	Glu 10	Phe	Gln	Leu	Thr	Ala 15	His	
	Ile	Asn	Asp	Gly 20	Gly	Thr	Pro	Val	Leu 25	Ala	Thr	Asn	Ile	Ser 30	Val	Asn	
	Val	Phe	Val 35	Thr	Asp	Arg	Asn	Asp 40	Asn	Ala	Pro						
(2)	INFO	RMAT:	ION I	or :	SEQ :	ID N	2:48	:									
	(i)	(B	JENCE LEN TYN STI TON	GTH: PE: 1 RANDI	: 13: nucle EDNE:	l ba: ≥ic a SS: :	se pa acid sing:	airs									
	(ii)	MOLI	CULE	TYI	PE: 0	DNA											
	(xi)																
	CCTT																60
GGAT	ACCC	AC CI	ATGO	TTG	TC	ACTG	CACC	GTA	CTCG	GG C	SAATO	TTGC	A TO	GAAA	ATGA	2	120
AACC	CACC	CA T															131
(2)	INFO	RMATI	ON F	OR S	EQ 1	D NO	:49	:									
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear																
	(ii)	MOLE	CULE	TYP	E: E	rote	ein										
	(xi)	SEQU	ENCE	DES	CRIF	TION	: SE	11 Q	NO:	49:							
	Lys 1	Arg	Leu	Asp	Tyr 5	Glu	Glu	Ser	Asn	Asn 10	Tyr	Glu	Ile	His	Val 15	Asp	
	Ala	Thr	Asp	Lys 20	Gly	Tyr	Pro	Pro	Met 25	Val	Ala	His	Сув	Thr 30	Val	Leu	
	Val	Gly	Ile	Leu	Asp	Glu	Asn	Asp	Asn	Ala	Pro						

(2) INFORMATION FOR SEQ ID NO:50:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 131 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:	
AAACCGGTGG ACTACGAGAA AGTCAAAGAC TATACCATCG AGATCGTGGC TGTGGATTCC	60
GGCAACCCTC CACTCTCTAG CACCAACTCC CTCAAGGTGC AGGTGGTAGA CGTCAACGAT	120
ARCGCCCCTC T	131
(2) INFORMATION FOR SEQ ID NO:51:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 amino acids (B) TYPE: amino acid (C) STRANDENDESS: single (D) TOPCLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:	
Lys Pro Val Asp Tyr Glu Lys Val Lys Asp Tyr Thr Ile Glu Ile Val 1 10 15	
Ala Val Asp Ser Gly Asn Pro Pro Leu Ser Ser Thr Asn Ser Leu Lys 20 25 30	
Val Gln Val Val Asp Val Asn Asp Asn Ala Pro 35 40	
(2) INFORMATION FOR SEQ ID NO:52:	
(i) SEQUENCE CHARACTERISTICS: (A) LEMOTH: 131 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SPOURNCE DESCRIPTION, SPO ID NO.52.	

AAGCCTTTTG ATTTCGAGGA CACCAAACTC CATGAGATTT ACATCCAGGC CAAAGACAAG

GGCGCCAATC CCGAAGGAGC ACATTGCAAA GTGTTGGTGG AGGTTGTGGA TGTGAACGAC

60

AATGCCCCTC A	131
(2) INFORMATION FOR SEQ ID NO:53:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:	
Lys Pro Phe Asp Phe Glu Asp Thr Lys Leu His Glu Ile Tyr Ile Gln 1 5 10 15	
Ala Lys Asp Lys Gly Ala Asn Pro Glu Gly Ala His Cys Lys Val Leu 20 25 30	
Val Glu Val Val Asp Val Asn Asp Asn Ala Pro 35 40	
(2) INFORMATION FOR SEQ ID NO:54:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 122 base pairs (B) TYPE: nucleic acid (C) STRANBEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:	
AAAGGTGTCG ATTACGAGGT GAGTCCACGG CTGCGACTGG TGCTGCAGGC AGAGAGTCGA	60
GGAGCCTTTG CCTTCACTGT GCTGACCCTG ACCCTGCAAG ATGCCAACGA CAACGCCCCG	120
AG	122
(2) INFORMATION FOR SEQ ID NO:55:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 amino acids (B) TYPE: amino acid (C) STRANDENDESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:	
Lys Gly Val Asp Tyr Glu Val Ser Pro Arg Leu Arg Leu Val Leu Gln l 15	

Ala	Glu	Ser	Arg 20	Gly	Ala	Phe	Ala	Phe 25	Thr	Val	Leu	Thr	Leu 30	Thr	Leu
Gln	Asp	Ala 35	Asn	Asp	Asn	Ala	Pro 40								

- (2) INFORMATION FOR SEQ ID NO:56:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 131 base pairs (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

ARAGGATTG ATTACGAGCA GITGAGAGAC CIACAGCTGI GGGIGACAGC CAGCGACAGC 60
GGGGACCCGC CICTIAGCAG CAACGIGICA CIGAGCCTGI TIGIGCIGGA CCAGAACGAC 120
AACGCCCCCC I 131

- (2) INFORMATION FOR SEQ ID NO:57:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 43 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:
 - Lys Gly Ile Asp Tyr Glu Gln Leu Arg Asp Leu Gln Leu Trp Val Thr
 - Ala Ser Asp Ser Gly Asp Pro Pro Leu Ser Ser Asn Val Ser Leu Ser 20 30
 - Leu Phe Val Leu Asp Gln Asn Asp Asn Ala Pro 35 40
- (2) INFORMATION FOR SEQ ID NO:58:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 125 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

- 57 -	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:	
AAGGCGGTCG ATTTTGAGCG CACATCCTCT TATCAACTCA TCATTCAGGC CACCAATATG	60
GCAGGAATGG CTTCCAATGC TACAGTCAAT ATTCAGATTG TTGATGAAAA CGACAACGCC 1	20
CCCCA 1	.25
(2) INFORMATION FOR SEQ ID NO:59:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 41 amino acids (B) TYPE: amino acid (C) STRANNEDMESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:	
Lys Ala Val Asp Phe Glu Arg Thr Ser Ser Tyr Gln Leu Ile Ile Gln $1 \hspace{1cm} 1 \hspace{1cm} 5$	
Ala Thr Asn Met Ala Gly Met Ala Ser Asn Ala Thr Val Asn Ile Gln $20 \hspace{1cm} 25 \hspace{1cm} 30$	
Ile Val Asp Glu Asn Asp Asn Ala Pro 35 40	
(2) INFORMATION FOR SEQ ID NO:60:	
(i) SEQUENCE CHARACTERISTICS: (A) LENCTH: 131 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:	
AAACGGCTAG ACTTTGAAAA GATACAAAAA TATGTTGTAT GGATAGAGGC CAGAGATGGT	60
GGTTTCCCTC CTTTCTCCTC TTACGAGAAA CTTGATATAA CAGTATTAGA TGTCAACGAT 1:	20
AACGCGCCTA A 1:	31
(2) INFORMATION FOR SEQ ID NO:61:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 mmino acids (B) TYPE: mmino acid (C) STRANDENNESS: single (D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: protein

Lys Arg Leu Asp Phe Glu Lys Ile Gln Lys Tyr Val Val Trp Ile Glu 1 5 15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

	Ala	Arg	Asp	G13 20	Gly	Phe	Pro	Pro	Phe 25	Ser	Ser	Tyr	Glu	Lys 30	Leu	Asp	
	Ile	Thr	Val 35	Leu	Asp	Val	Asn	Asp 40	Asn	Ala	Pro						
(2)	INFC	RMAT	ION I	FOR	SEQ	ID N	0:62	:									
	(i)	(B) LEI) TYI) STI	NGTH PE: RAND	ARAC : 13 nucl EDNE GY:	l bas eic a SS: s	se p acid sing	airs									
	(ii)	MOLI	ECULI	TY	PE:	CDNA											
	(xi)	SEQ	JENCE	DE	SCRI	PTION	1: S	EQ I	ОМО	62:							
AAG	GGAT	CG A	TATO	AGA	A GG	TCAA	AGAC	TAC	ACCA:	TG :	AGAT:	rgtgg	C TO	TGG	ACTCI		60
GGC	ACCC	cc cz	CTCI	CCA	G CA	CTAAC	CTCC	CTC	AAGG:	rgc i	AGGT	GTGG	A CC	TCA	ATGAC	;	120
AAC	CACC	GT G															131
(2)	INFO	RMATI	ON F	OR	SEQ :	ID NO	63:										
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear																	
	(ii)	MOLE	CULE	TY	PE: I	rote	in										
	(xi)	SEQU	ENCE	DES	SCRIE	TION	: SE	Q II	NO:	63:							
	Lys 1	Gly	Ile .	Asp	Tyr 5	Glu	Lys	Val	Lys	Asp 10	Tyr	Thr	Ile	Glu	Ile 15	Val	
	Ala	Val	Asp	Ser 20	Gly	Asn	Pro	Pro	Leu 25	Ser	Ser	Thr .		Ser 30	Leu	Lys	
	Val	Gln	Val ' 35	Val	Asp	Val .	Asn	Asp 40	Asn	Ala	Pro						

(2) INFORMATION FOR SEQ ID NO:64:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 131 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:	
AAGGGACTCG ACTACGAGGA TCGGCCGGAA TTTGAATTAA CAGCTCATAT CAGCGATGGG	60
GGCACCCCGG TCCTAGCCAC CAACATCAGC GTGAACATAT TTGTCACTGA TCGCAACGAT	120
AATGCCCCCG T	131
(2) INFORMATION FOR SEQ ID NO:65:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:	
Lys Gly Leu Asp Tyr Glu Asp Arg Arg Glu Phe Glu Leu Thr Ala H 1 10 15	is
Ile Ser Asp Gly Gly Thr Pro Val Leu Ala Thr Asn Ile Ser Val A 20 25 30	sn
Ile Phe Val Thr Asp Arg Asn Asp Asn Ala Pro 35 40	
(2) INFORMATION FOR SEQ ID NO:66:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 470 base pairs (B) TYPE: nucleic acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:	
AAGGGTTTGG ACTACGAGAC CACACAGGCC TACCAGCTCA CGGTCAACGC CACAGATCAA	60

GACAACACCA GGCCTCTGTC CACCCTGGCC AACTTGGCCA TCATCATCAC AGATGTCCAG 120

GACATGGACC	CCATCTTCAT	CAACCTGCCT	TACAGCACCA	ACATCTACGA	GCATTCTCCT	180
CCGGGCACGA	CGGTGCGCAT	CATCACCGCC	ATAGACCAGG	ATCAAGGACG	TCCCCGGGC	240
ATTGGCTACA	CCATCGTTTC	AGGGAATACC	AACAGCATCT	TTGCCCTGGA	CTACATCAGC	300
GGAGTGCTGA	CCTTGAATGG	CCTGCTGGAC	CGGGAGAACC	CCCTGTACAG	CCATGGCTTC	360
ATCCTGACTG	TGAAGGGCAC	GGAGCTGAAC	GATGACCGCA	CCCCATCTGA	CGCTACAGTC	420
ACCACGACCT	TCAATATCCT	GGTTATTGAC	ATCAACGACA	ACGCCCCACT		470

- (2) INFORMATION FOR SEQ ID NO:67:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 156 amino acids (B) TYPE: amino acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:67: Lys Gly Leu Asp Tyr Glu Thr Thr Gln Ala Tyr Gln Leu Thr Val Asn 1 10 15 Ala Thr Asp Gln Asp Asn Thr Arg Pro Leu Ser Thr Leu Ala Asn Leu 20 25 30 Ala Ile Ile Ile Thr Asp Val Gln Asp Met Asp Pro Ile Phe Ile Asn 35 40 45 Leu Pro Tyr Ser Thr Asn Ile Tyr Glu His Ser Pro Pro Gly Thr Thr Val Arg Ile Ile Thr Ala Ile Asp Gln Asp Gln Gly Arg Pro Arg Gly 65 70 75 80 Ile Gly Tyr Thr Ile Val Ser Gly Asn Thr Asn Ser Ile Phe Ala Leu 85 90 95 Asp Tyr Ile Ser Gly Val Leu Thr Leu Asn Gly Leu Leu Asp Arg Glu 100 105 110Asn Pro Leu Tyr Ser Gly Gly Phe Ile Leu Thr Val Lys Gly Thr Glu 115 120 125 Leu Asn Asp Asp Arg Thr Pro Ser Asp Ala Thr Val Thr Thr Thr Phe 130 140 Asn Ile Leu Val Ile Asp Ile Asn Asp Asn Ala Pro 145 150 155

(2) INFORMATION FOR SEQ ID NO:68:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 131 base pairs (B) TTPE: nucleic acid (C) STRANDENNESS: single (D) TOPOLOGY: linear	
(ii) HOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:	
AAGGGGGTCG ATTACGAGGT ACTACAGGCC TTTGAGTTCC ACGTGAGCGC CACAGACCGA	60
GGCTCACCGG GGCTCAGCAG CCAGGCTCTG GTGCGCGTGG TGGTGCTGGA CGACAATGAC	120
AACGCTCCCG T	131
(2) INFORMATION FOR SEQ ID NO:69:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 amino acids (B) TYPE: amino acid (C) STRANDENNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:	
Lys Gly Val Asp Tyr Glu Val Leu Gln Ala Phe Glu Phe His Val Ser 1 15	
Ala Thr Asp Arg Gly Ser Pro Gly Leu Ser Ser Gln Ala Leu Val Arg 20 25 30	
Val Val Leu Asp Asp Asn Asp Asn Ala Pro 35 40	
(2) INFORMATION FOR SEQ ID NO:70:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 131 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:

AAGGGGCTGG ATTATGAGCA GTTCCAGACC CTACAACTGG GAGTGACCGC TAGTGACAGT

GGAAACCCAC CATTAAGAAG CAATATTTCA CTGACCCTTT TCGTGCTGGA CCAGAATGAT

60

131

AACGCCCCAA A

(2) INFORMATION FOR SEQ ID NO:/I:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:	
Lys Gly Leu Asp Tyr Glu Gln Phe Gln Thr Leu Gln Leu Gly Val Thr 1 $$ 5 $$ 10 $$ 15	
Ala Ser Asp Ser Gly Asn Pro Pro Leu Arg Ser Asn Ile Ser Leu Thr $20 \hspace{1cm} 25 \hspace{1cm} 30$	
Leu Phe Val Leu Asp Gln Asn Asp Asn Ala Pro 35 40	
(2) INFORMATION FOR SEQ ID NO:72:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 131 base pairs (S) STYPE to be a caid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:	
AAGCGGGTTG ATTACGAGGA TGTCCAGAAA TACTCGCTGA GCATTAAGGC CCAGGATGGG	60
CGGCCCCCGC TCATCAATTC TTCAGGGGTG GTGTCTGTGC AGGTGCTGGA TGTCAACGAC	120
AATGCCCCGG A	131
(2) INFORMATION FOR SEQ ID NO:73:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: peptide	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:	

Lys Arg Val Asp Tyr Glu Asp Val Gln Lys Tyr Ser Leu Ser Ile Lys 1 $$

Ala	Gln	Asp	Gly 20	Arg	Pro	Pro	Leu	Ile 25	Asn	Ser	Ser	Gly	Val 30	Val	Se
Val	Gln	Val	Leu	Asp	Val	Asn	Asp	Asn	Ala	Pro					

- (2) INFORMATION FOR SEQ ID NO:74:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 125 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:

60 AAACCGGTAG ACTTTGAGCT ACAGCAGTTC TATGAAGTAG CTGTGGTGGC TTGGAACTCT GAGGGATTTC ATGTCAAAAG GGTCATTAAA GTGCAACTTT TAGATGACAA CGACAATGCC 120 125 CCGAT

- (2) INFORMATION FOR SEQ ID NO:75:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 41 amino acids
 - (B) TYPE: amino acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:
 - Lys Pro Val Asp Phe Glu Leu Gln Gln Phe Tyr Glu Val Ala Val Val
 - Ala Trp Asn Ser Glu Gly Phe His Val Lys Arg Val Ile Lys Val Gln

Leu Leu Asp Asp Asn Asp Asn Ala Pro 35

- (2) INFORMATION FOR SEQ ID NO:76:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 125 base pairs (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:	
AAGGGATTAG ATTTTGAAAC TTTGCCCATT TACACATTGA TAATACAAGG AACTAACATG	60
GCTGGTTTGT CCACTAATAC AACGGTTCTA GTTCACTTGC AGGATGAGAA TGATAACGCC	120
CCAAA	125
(2) INFORMATION FOR SEQ ID NO:77:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 41 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPCLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:	
Lys Gly Leu Asp Phe Glu Thr Leu Pro Ile Tyr Thr Leu Ile Ile Gln $1 \hspace{1cm} 1 \hspace{1cm} 5$	
Gly Thr Asn Met Ala Gly Leu Ser Thr Asn Thr Thr Val Leu Val His	
Leu Gln Asp Glu Asn Asp Asn Ala Pro 35 40	
(2) INFORMATION FOR SEQ ID NO:78:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 134 base pairs (B) TYPE: nucleic acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:	
AAGCGGGCGG ATTTCGAGGC GATCCGGGAG TACAGTCTGA GGATCAAAGC GCAGGACGGG	60
GGGCGGCCTC CCCTCAGCAA CACCACGGGC ATGGTCACAG TGCAGGTCGT GGACGTCAAT 1	20
GACAACGCAC CCCT	34
(2) INFORMATION FOR SEQ ID NO:79:	
(i) SEQUENCE CHARACTERISTICS: (A) LENOTH: 44 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: protein

(xi)	SEQU	JENCI	DES	CRI	PTIO	1: SI	EQ II	OM C	79:						
Lys 1	Arg	Ala	Asp	Phe 5	Glu	Ala	Ile	Arg	Glu 10	Tyr	Ser	Leu	Arg	Ile 15	Lys
Ala	Gln	Asp	Gly 20	Gly	Arg	Pro	Pro	Leu 25	Ser	Asn	Thr	Thr	Gly 30	Met	Val
Thr	Val	Gln	Val	Val	Asp	Val	Asn 40	Asp	Asn	Ala	Pro				

- (2) INFORMATION FOR SEQ ID NO:80:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 131 base pairs (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:

 AAGCCGTTGG ATTACGAAAA GCCATCGGAA TATGAAATCT ATGTTCAAGC CGCTGACAAA

 GGCGCTGTCC CTATGGCTGG CCATTGCAAA GTGTTGCTGG AGATCGTGGA TGTCAACGAC

 AACGCCCCCT T 131
- (2) INFORMATION FOR SEQ ID NO:81:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 43 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (b) Toronour Timeur
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:

 Lys Arg Leu Asp Tyr Glu Lys Ala Ser Glu Tyr Glu Ile Tyr Val Gln 15

 Ala Ala Asp Lys Gly Ala Val Pro Met Ala Gly His Cys Lys Val Leu 25

 Leu Glu Ile Val Asp Val Asn Asp Asn Ala Pro 35

 40

(2) INFORMATION FOR SEQ ID NO:82:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 131 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:	
AAGGGGATCG ATTATGAGGA TCAGGTCTCT TACACATTAG CAGTAACAGC ACATGACTAT	60
GGCATCCCTC AAAAATCAGA CACTACCTAT TTGGAAATCT TAGTAATTGA TGTTAACGAC	120
AACGCGCCCC A	131
(2) INFORMATION FOR SEQ ID NO:83:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 amino acids (B) TYPE: amino acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:	
Lys Gly Ile Asp Tyr Glu Asp Gln Val Ser Tyr Thr Leu Ala Val Thr	
1 5 10 15	
Ala His Asp Tyr Gly Ile Pro Gln Lys Ser Asp Thr Thr Tyr Leu Glu 20 25 30	
Ile Leu Val Ile Asp Val Asn Asp Asn Ala Pro 35 40	
(2) INFORMATION FOR SEQ ID NO:84:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 131 base pairs (B) TYPE: nucleic acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:	

AAAGGGTTAG ATTTCGAGGG CACTAAAGAT TCAGCGTTTA AAATAGTGGC AGCTGACACA

GGGAAGCCCA GCCTCAACCA GACAGCCCTG GTGAGAGTAG AGCTGGAGGA TGAGAACGAC

60

131

AACGCCCAA T

(2) INFORMATION FOR SEQ ID NO:85:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:	
Lys Gly Leu Asp Phe Glu Gly Thr Lys Asp Ser Ala Phe Lys Ile Val 1 5 10 15	
Ala Ala Asp Thr Gly Lys Pro Ser Leu Asn Gln Thr Ala Leu Val Arg $20 \hspace{1cm} 25 \hspace{1cm} 30$	
Val Glu Leu Glu Asp Glu Asn Asp Asn Ala Pro 35 40	
(2) INFORMATION FOR SEQ ID NO:86:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 130 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:	
AAGGGTGTGG ATTTTGAAAG TGTGCGTAGC TACAGGCTGG TTATTCGTGC TCAAGATGGA	60
GGCAGCCCCT CCAGAAGTAA CACCACCCAG CTCTTGGTCA ACGTCATCGA TCGAATGACA	120
ATGCGCCGCT	130
(2) INFORMATION FOR SEQ ID NO:87:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:	

Lys Gly Val Asp Phe Glu Ser Val Arg Ser Tyr Arg Leu Val Ile Arg 1 10 15

Ala Gln Asp Gly Gly Ser Pro Ser Arg Ser Asn Thr Thr Gln Leu Leu 20 25 30

Val Asn Val Ile Asp Val Asn Asp Asn Ala Pro 35 40

- (2) INFORMATION FOR SEQ ID NO:88:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 131 base pairs (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:

ANGGGTGTGG ACTTCGAGCT GACACATCTG TATGAGATTT GGATTGAGGC TGCCGATGGA 60
GACACGCCAA GTCTGCGTAG TGTAACTCTT ATAACGCTCA ACGTAACGGA TGCCAATGAC 120
AATGCTCCCA A 131

- (2) INFORMATION FOR SEQ ID NO:89:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 43 amino acids
 - (B) TYPE: amino acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEO ID NO:89:

Lys Gly Val Asp Phe Glu Leu Thr His Leu Tyr Glu Ile Trp Ile Glu 1 5 10 15

Ala Ala Asp Gly Asp Thr Pro Ser Leu Arg Ser Val Thr Leu Ile Thr 20 25 30

Leu Asn Val Thr Asp Ala Asn Asp Asn Ala Pro 35 40

- (2) INFORMATION FOR SEQ ID NO:90:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 441 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - · ·
 - (ii) MOLECULE TYPE: cDNA

(xi)	SEQUENCE	DESCRIPTION:	SEQ	ID	NO:90:
------	----------	--------------	-----	----	--------

С	AAGGCGTTT	GATTTTGAAG	AGACAAGTAG	ATATGTGTTG	AGTGTGGAAG	CTAAGGATGG	60
A	GGAGTACAC	ACAGCTCACT	GTAATGTTCA	AATAGAAATT	GTTGACGAGA	ATGACAATGC	120
С	CCAGAGGTG	ACATTCATGT	CCTTCTCTAA	CCAGATTCCA	GAGGATTCAG	ACCTTGGAAC	180
т	GTAATAGCC	CTCATAAAAG	TGCGAGACAA	GGATTCTGGG	CAAAATGGCA	TGGTGACATG	240
С	TATACTCAG	GAAGAAGTTC	CTTTCAAATT	AGAATCCACC	TCGAAGAATT	ATTACAAGCT	300
G	GTGATTGCT	GGAGCCCTAA	ACCGGGAGCA	GACAGCAGAC	TACAACGTCA	CAATCATAGC	360
С	ACCGACAAG	GGCAAACCAG	CCCTTTCCTC	CAGGACAAGC	ATCACCCTGC	ACATCTCCGA	420
С	ATCAACGAT	AATGCCCCCG	T				441

(2) INFORMATION FOR SEQ ID NO:91:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 146 amino acids (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:

Lys Ala Phe Asp Phe Glu Glu Thr Ser Arg Tyr Val Leu Ser Val Glu 1 $$ 10 $$ 15

Ala Lys Asp Gly Gly Val His Thr Ala His Cys Asn Val Gln Ile Glu 20 25 30

Ile Val Asp Glu Asn Asp Asn Ala Pro Glu Val Thr Phe Met Ser Phe 35

Ser Asn Gln Ile Pro Glu Asp Ser Asp Leu Gly Thr Val Ile Ala Leu 50 60

Ile Lys Val Arg Asp Lys Asp Ser Gly Gln Asn Gly Met Val Thr Cys 65 70 75 80

Tyr Thr Gln Glu Val Pro Phe Lys Leu Glu Ser Thr Ser Lys Asn 85 90 95

Tyr Tyr Lys Leu Val Ile Ala Gly Ala Leu Asn Arg Glu Gln Thr Ala 100 105 110

Asp Tyr Asn Val Thr Ile Ile Ala Thr Asp Lys Gly Lys Pro Ala Leu 115 $$\rm 120\$

Ser Ser Arg Thr Ser Ile Thr Leu His Ile Ser Asp Ile Asn Asp Asn 130 $$ 135 $$ 140

Ala Pro

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 495..3572

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:

(2) INFORMATION FOR SEQ ID NO:92:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 131 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:	
AAGCGAGTGG ATTACGAGGC CACTCGGAAT TATAAGCTGA GAGTTAAGGC TACTGATCTT	60
GGGATTCCAC CGAGATCTTC TAACATGACA CTGTTCATTC ATGTCCTTGA TGTTAACGAC 12	20
AACGCTCCCT T	31
(2) INFORMATION FOR SEQ ID NO:93:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:	
Lys Arg Val Asp Tyr Glu Ala Thr Arg Asn Tyr Lys Leu Arg Val Lys 1 10 15	
Ala Thr Asp Leu Gly Ile Pro Pro Arg Ser Ser Asn Met Thr Leu Phe 20 25 30	
Ile His Val Leu Asp Val Asn Asp Asn Ala Pro 35 40	
(2) INFORMATION FOR SEQ ID NO:94:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4104 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	

CCTCTATTCG ACATTCTCTT TGGATTGTTT TGCTATAACT TGAAATTTGG GATGTCACAA	60
ACGARACTGT CATCTGTTTC CGCCARACTG TGGTTCTGCT AATCTCCCAG GCTGGCAGCA	120
TTGGAGACTT GCTGACTTCT TTCATCCCCC ACTCTTTTCA CCTGAAATTC CTTTCCTTGG	180
TTTTGCTCTA AGTCCTATGC TTCAGTCAGG GGCCAACCAA ATCTCACTGC CTCCTTTTTA	240
TCATGAAGCC TTTGATCACT GATAGTTCTT TTTATATCTT GAAAAATCAC CCTTCCCAGT	300
ACAGTTAATA TTTAGTATCT CTACTCATCT TGGCACTTAC TCACAGCTCC ATAATTCAGT	360
CGTTTTCGTA CCTCTTCATG GTGATGGGGA GCCCTTTGGA GGTGGTGACT GTGCTTTATA	420
CTCCTCATGA TGCTTCACAT GTGGCAGGCG TGGAGTGCCC GGAGGCGGCC CTCCTGATTC	480
TGGGGCCTCC CAGG ATG GAG CCC CTG AGG CAC AGC CCA GGC CCT GGG GGG Met Glu Pro Leu Arg His Ser Pro Gly Pro Gly Gly 1 10	530
caa cgg cta ctg ctg ccc tcc atg ctg cta gca ctg ctg ctc ctg ctg gln arg Leu Leu Pro Ser Met Leu Leu Ala Leu Leu Leu Leu Leu 25 20	578
GCT CCA TCC CCA GGC CAC GCC ACT CGG GTA GTG TAC AAG GTG CCG GAG Ala Pro Ser Pro Gly His Ala Thr Arg Val Val Tyr Lys Val Pro Glu 35	626
GAN CAG CCA CCC AAC ACC CTC ATT GGG AGC CTC GCA GCC GAC TAT GGT Glu Gln Pro Pro Asn Thr Leu Ile Gly Ser Leu Ala Ala Asp Tyr Gly 45 50 60	674
TTT CCA GAT GTG GGG CAC CTG TAC ANG CTA GAG GTG GGT GCC CCG TAC Phe Pro Asp Val Gly His Leu Tyr Lys Leu Glu Val Gly Ala Pro Tyr 65	722
CTT CGC GTG GAT GGC AAG ACA GGT GAC ATT TTC ACC ACC GAG ACC TCC Leu Arg Val Asp Gly Lys Thr Gly Asp Ile Phe Thr Thr Glu Thr Ser 80 90	770
ATC GAC GGT GAG GGG CTC GGT GAA TGC CAG AAC CAG CTC CCT GGT GAT Ile Asp Arg Glu Gly Leu Arg Glu Cys Gln Asn Gln Leu Pro Gly Asp 95 100 105	818
CCC TGC ATC CTG GAG TTT GAG GTA TCT ATC ACA GAC CTC GTG CAG AAT Pro Cys Ile Leu Glu Phe Glu Val Ser Ile Thr Asp Leu Val Gln Asn 110	866
GCG AGC CCC CGG CTG CTA GAG GGC CAG ATA GAA GTA CAA GAC ATC AAT Ala Ser Pro Arg Leu Leu Glu Gly Gln Ile Glu Val Gln Asp Ile Asn 125 136 137	914
GAC AAC ACA CCC AAC TTC GCC TCA CCA GTC ATC ACT CTG GCC ATC CCT Asp Asn Thr Pro Asn Phe Ala Ser Pro Val 11e Thr Leu Ala 11e Pro 145 150 150 150 150 150 150 150 150 150 15	962
GAG AAC ACC AAC ATC GGC TCA CTC TTC CCC ATC CCG CTG GCT TCA GAC Glu Asn Thr Asn Ile Gly Ser Leu Phe Pro Ile Pro Leu Ala Ser Asp 160 160 165	1010

					AAC Asn											1058
					AAG Lys											1106
GAC Asp 205	CGT Arg	GAG Glu	CGC Arg	TGG Trp	GAC Asp 210	TCC Ser	TAT Tyr	GAC Asp	CTC Leu	ACC Thr 215	ATC Ile	AAG Lys	GTG Val	CAG Gln	GAT Asp 220	1154
GGC Gly	GGC Gly	AGC Ser	CCC Pro	CCA Pro 225	CGC Arg	GCC Ala	ACG Thr	AGT Ser	GCC Ala 230	CTG Leu	CTG Leu	CGT Arg	GTC Val	ACC Thr 235	GTG Val	1202
					AAC Asn											1250
GCC Ala	GAA Glu	CTA Leu 255	TCT Ser	GAG Glu	AAT Asn	AGC Ser	CCC Pro 260	ATA Ile	GGC Gly	CAC His	TCG Ser	GTC Val 265	ATC Ile	CAG Gln	GTG Val	1298
AAG Lys	GCC Ala 270	AAT Asn	GAC Asp	TCA Ser	GAC Asp	CAA G1n 275	GGT Gly	GCC Ala	AAT Asn	GCA Ala	GAA Glu 280	ATC Ile	GAA Glu	TAC Tyr	ACA Thr	1346
TTC Phe 285	CAC His	CAG Gln	GCG Ala	CCC Pro	GAA Glu 290	GTT Val	GTG Val	AGG Arg	CGT Arg	CTT Leu 295	CTT Leu	CGA Arg	CTG Leu	GAC Asp	AGG Arg 300	1394
AAC Asn	ACT Thr	GGA Gly	CTT Leu	ATC Ile 305	ACT Thr	GTT Val	CAG Gln	GGC Gly	CCG Pro 310	GTG Val	GAC Asp	CGT Arg	GAG Glu	GAC Asp 315	CTA Leu	1442
AGC Ser	ACC Thr	CTG Leu	CGC Arg 320	TTC Phe	TCA Ser	GTG Val	CTT Leu	GCT Ala 325	AAG Lys	GAC Asp	CGA Arg	GGC Gly	ACC Thr 330	AAC Asn	CCC Pro	1490
AAG Lys	AGT Ser	GCC Ala 335	CGT Arg	GCC Ala	CAG Gln	GTG Val	GTT Val 340	GTG Val	ACC Thr	GTG Val	AAG Lys	GAC Asp 345	ATG Met	AAT Asn	GAC Asp	1538
AAT Asn	GCC Ala 350	CCC Pro	ACC Thr	ATT Ile	GAG Glu	ATC Ile 355	CGG Arg	GGC Gly	ATA Ile	GGG Gly	CTA Leu 360	GTG Val	ACT Thr	CAT His	CAA Gln	1586
GAT Asp 365	GGG Gly	ATG Met	GCT Ala	AAC Asn	ATC Ile 370	TCA Ser	GAG Glu	GAT Asp	GTG Val	GCA Ala 375	GAG Glu	GAG Glu	ACA Thr	GCT Ala	GTG Val 380	1634
GCC Ala	CTG Leu	GTG Val	CAG Gln	GTG Val 385	TCT Ser	GAC Asp	CGA Arg	GAT Asp	GAG Glu 390	GGA Gly	GAG Glu	AAT Asn	GCA Ala	GCT Ala 395	GTC Val	1682
ACC Thr	TGT Cys	GTG Val	GTG Val 400	GCA Ala	GGT Gly	GAT Asp	Val	CCC Pro 405	TTC Phe	CAG Gln	CTG Leu	CGC Arg	CAG Gln 410	GCC Ala	AGT Ser	1730

			Ser			AAG Lys		Lys								1778
CCG Pro	Leu 430	Asp	TAC Tyr	GAG Glu	AAG Lys	GTC Val 435	AAA Lys	GAC Asp	TAC Tyr	ACC Thr	ATT Ile 440	GAG Glu	ATT	GTG Val	GCT Ala	1826
GTG Val 445	Asp	TCT	GGC Gly	AAC Asn	Pro 450	CCA Pro	CTC Leu	TCC Ser	AGC Ser	ACT Thr 455	AAC Asn	TCC	CTC Leu	AAG Lys	GTG Val 460	1874
CAG Gln	GTG Val	GTG Val	GAC Asp	GTC Val 465	AAT Asn	GAC Asp	AAC Asn	GCA Ala	Pro 470	GTC Val	TTC Phe	ACT Thr	CAG Gln	AGT Ser 475	GTC Val	1922
ACT Thr	GAG Glu	GTC Val	GCC Ala 480	TTC	CCG Pro	GAA Glu	AAC Asn	AAC Asn 485	AAG Lys	CCT Pro	GGT Gly	GAA Glu	GTG Val 490	ATT Ile	GCT Ala	1970
GAG Glu	ATC Ile	ACT Thr 495	GCC Ala	AGT Ser	GAT Asp	GCT Ala	GAC Asp 500	TCT Ser	GGC Gly	TCT Ser	AAT Asn	GCT Ala 505	GAG Glu	CTG Leu	GTT Val	2018
TAC Tyr	TCT Ser 510	CTG Leu	GAG Glu	CCT Pro	GAG Glu	CCG Pro 515	GCT Ala	GCT Ala	AAG Lys	GGC Gly	CTC Leu 520	TTC Phe	ACC Thr	ATC Ile	TCA Ser	2066
Pro 525	GAG Glu	ACT Thr	GGA Gly	GAG Glu	ATC Ile 530	CAG Gln	GTG Val	AAG Lys	ACA Thr	TCT Ser 535	CTG Leu	GAT Asp	CGG Arg	GAA Glu	CAG Gln 540	2114
Arg	Glu	Ser	Tyr	Glu 545	Leu	AAG Lys	Val	Val	Ala 550	Ala	Asp	Arg	Gly	Ser 555	Pro	2162
ser	Leu	Gin	560	Thr	Ala	ACT Thr	Val	Leu 565	Val	Asn	Val	Leu	Asp 570	Сув	Asn	2210
Asp	Asn	575	Pro	Lys	Phe	ATG Met	Leu 580	Ser	Gly	Tyr	Asn	Phe 585	Ser	Val	Met	2258
GAG Glu	AAC Asn 590	ATG Met	CCA Pro	GCA Ala	CTG Leu	AGT Ser 595	CCA Pro	GTG Val	GGC Gly	ATG Met	GTG Val 600	ACT Thr	GTC Val	ATT Ile	GAT Asp	2306
GGA Gly 605	GAC Asp	AAG Lys	GGG Gly	GAG Glu	AAT Asn 610	GCC Ala	CAG Gln	GTG Val	CAG Gln	CTC Leu 615	TCA Ser	GTG Val	GAG Glu	CAG Gln	GAC Asp 620	2354
AAC Asn	GGT Gly	GAC Asp	TTT Phe	GTT Val 625	ATC Ile	CAG G1n	AAT Asn	GGC Gly	ACA Thr 630	GGC Gly	ACC Thr	ATC Ile	CTA Leu	TCC Ser 635	AGC Ser	2402
CTG Leu	AGC Ser	TTT Phe	GAT Asp 640	CGA Arg	GAG Glu	CAA Gln	Gln	AGC Ser 645	ACC Thr	TAC Tyr	ACC Thr	TTC Phe	CAG Gln 650	CTG Leu	AAG Lys	2450

									- /4	-							
GC/ Ala	A GTO	GAT L Asp 655	Gly	GGC Gly	GTC Val	CCA Pro	Pro 660	Arg	TCA Ser	GCI	TAC	Val 665	Gly	GTC Val	ACC	249	8
ATC Ile	AAT ABT 670	ı Val	Leu	GAC Asp	GAG Glu	AAT Asn 675	Asp	AAC Asn	GCA Ala	Pro	TAT Tyr 680	Ile	ACT	GCC	Pro	254	16
Ser 685	: Asr	ACC Thr	Ser	CAC His	Lys 690	Leu	CTG Leu	ACC	Pro	CAG Gln 695	Thr	CGT	CTT	GGT	GAG Glu 700	259	14
ACG	GTC Val	AGC Ser	Gln	Val 705	Ala	GCC	GAG Glu	GAC Asp	Phe 710	GAC Asp	TCT	GGT	GTC Val	AAT Asn 715	GCC Ala	264	.2
GAG Glu	CTG Leu	ATC Ile	TAC Tyr 720	Ser	ATT	GCA Ala	GGT Gly	GGC Gly 725	Asn	CCT	TAT	GGA Gly	CTC Leu 730	TTC Phe	CAG Gln	269	0
ATT	GGG	TCA Ser 735	His	TCA Ser	GGT	GCC Ala	ATC Ile 740	ACC Thr	CTG Leu	GAG Glu	AAG Lys	GAG Glu 745	ATT Ile	GAG Glu	CGG Arg	273	8
CGC Arg	CAC His 750	Hls	GGG	CTA Leu	CAC	CGC Arg 755	CTG Leu	GTG Val	GTG Val	AAG Lys	GTC Val 760	AGT Ser	GAC Asp	CGC Arg	GGC Gly	278	6
AAG Lys 765	Pro	CCA Pro	CGC Arg	TAT Tyr	GGC Gly 770	ACA Thr	GCC Ala	TTG Leu	GTC Val	CAT His 775	CTT Leu	TAT Tyr	GTC Val	AAT Asn	GAG Glu 780	283	4
Inr	Leu	Ala	Asn	7 8 5	Thr	Leu	Leu	Glu	ACC Thr 790	Leu	Leu	Gly	His	Ser 795	Leu	288	2
GAC Asp	ACG Thr	CCG Pro	CTG Leu 800	GAT Asp	ATT Ile	GAC Asp	ATT Ile	GCT Ala 805	GGG Gly	GAT Asp	CCA Pro	GAA Glu	TAT Tyr 810	GAG Glu	CGC Arg	2930	D
TCC	AAG Lys	CAG Gln 815	CGT Arg	GGC Gly	AAC Asn	ATT Ile	CTC Leu 820	TTT Phe	GGT Gly	GTG Val	GTG Val	GCT Ala 825	GGT Gly	GTG Val	GTG Val	2978	3
GCC Ala	GTG Val 830	GCC Ala	TTG Leu	CTC Leu	ATC Ile	GCC Ala 835	CTG Leu	GCG Ala	GTT Val	CTT Leu	GTG Val 840	CGC Arg	TAC Tyr	TGC Cys	AGA Arg	3026	5
CAG Gln 845	CGG Arg	GAG Glu	GCC Ala	AAA Lys	AGT Ser 850	GGT Gly	TAC Tyr	CAG G ln	GCT Ala	GGT Gly 855	AAG Lys	AAG Lys	GAG Glu	ACC Thr	AAG Lys 860	3074	1
GAC Asp	CTG Leu	TAT Tyr	GCC Ala	CCC Pro 865	AAG Lys	CCC Pro	AGT Ser	GGC Gly	AAG Lys 870	GCC Ala	TCC Ser	AAG Lys	GGA Gly	AAC Asn 875	AAA Lys	3122	3
AGC Ser	AAA Lys	GIY	AAG Lys 880	AAG Lys	AGC Ser	AAG Lys	Ser	CCA Pro 885	AAG Lys	CCC Pro	GTG Val	AAG Lys	CCA Pro 890	GTG Val	GAG Glu	3170)

GAC Asp	GAG Glu	GAT Asp 895	GAG Glu	GCC Ala	GGG Gly	CTG Leu	CAG Gln 900	AAG Lys	TCC Ser	CTC Leu	AAG Lys	TTC Phe 905	AAC Asn	CTG Leu	ATG Met	3	218
AGC Ser	GAT Asp 910	GCC Ala	CCT Pro	GGG Gly	GAC Asp	AGT Ser 915	CCC Pro	CGC Arg	ATC Ile	CAC His	CTG Leu 920	CCC Pro	CTC Leu	AAC Asn	TAC Tyr	3	266
CCA Pro 925	CCA Pro	GGC Gly	AGC Ser	CCT Pro	GAC Asp 930	CTG Leu	GGC Gly	CGC Arg	CAC His	TAT Tyr 935	CGC Arg	TCT Ser	AAC Asn	TCC Ser	CCA Pro 940	3	314
CTG Leu	CCT Pro	TCC Ser	ATC Ile	CAG Gln 945	CTG Leu	CAG Gln	CCC Pro	CAG Gln	TCA Ser 950	CCC Pro	TCA Ser	GCC Ala	TCC Ser	AAG Lys 955	AAG Lys	3	362
CAC His	CAG Gln	GTG Val	GTA Val 960	CAG Gln	GAC Asp	CTG Leu	CCA Pro	CCT Pro 965	GCA Ala	AAC Asn	ACA Thr	TTC Phe	GTG Val 970	GGC Gly	ACC Thr	3	410
GGG Gly	GAC Asp	ACC Thr 975	ACG Thr	TCC Ser	ACG Thr	GGC Gly	TCT Ser 980	GAG Glu	CAG Gln	TAC Tyr	TCC Ser	GAC Asp 985	TAC Tyr	AGC Ser	TAC Tyr	3	458
CGC Arg	ACC Thr 990	AAC Asn	CCC Pro	CCC Pro	AAA Lys	TAC Tyr 995	CCC Pro	AGC Ser	AAG Lys	CAG Gln	GTA Val 1000	Gly	CAG Gln	CCC Pro	TTT Phe	3	506
CAG (Gln : 1005	Leu	AGC Ser	ACA Thr	CCC Pro	CAG Gln 1010	Pro	CTA Leu	CCC Pro	CAC His	CCC Pro 1015	Tyr	CAC His	GGA Gly	GCC Ala	ATC Ile 1020	3	554
TGG A	ACC	GAG Glu	GTG Val	TGG Trp 1025	Glu	TGAT	GGAG	CA G	GTTI	ACTO	T GC	CTGC	CCG1	?		3	602
GTTG	GGG	CC A	GCCT	GAGC	C AG	CAGI	GGGA	GGI	GGGG	CCT	TAGI	GCCI	CA C	CGGG	CACAC	3	662
GGAT'	TAGG	CT G	AGTG	AAGA	T TA	AGGG	AGGG	TGI	GCTC	TGT	GGTC	TCCI	ec c	TGCC	CTCTC	3	722
CCCA	CTGG	GG A	GAGA	CCTG	T GA	TTTG	CCAA	GTC	CCTG	GAC	CCTG	GACC	AG C	TACI	GGGCC	3	782
TTAT	GGGT	TG G	GGGT	GGTA	G GC	AGGT	GAGC	GTA	AGTG	GGG	AGGG	AAAI	GG G	TAAG	AAGTC	38	842
															AAACA	3	902
GGGAC	BACC	TG G	GGTC	CTGT	G GA	TAAC	TGAG	TGG	GGAG	TCT	GCCA	GGGG	AG G	GCAC	CTTCC	39	962
															GGGGC	40	022
							CAAT	AAA	GTTC	TCT	ATTT	TTGG	AA A	AAAA	AAAAA	40	082
LAAAA	AAA	AA A	AAAA	AAAA	A AA											41	104

(2) INFORMATION FOR SEQ ID NO:95:

- (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1026 amino acids (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:

Met Glu Pro Leu Arg His Ser Pro Gly Pro Gly Gly Gln Arg Leu Leu 1 5 10 15 Leu Pro Ser Met Leu Leu Ala Leu Leu Leu Leu Leu Ala Pro Ser Pro 20 25 30 Gly His Ala Thr Arg Val Val Tyr Lys Val Pro Glu Glu Gln Pro Pro 35 40 45 Asn Thr Leu Ile Gly Ser Leu Ala Ala Asp Tyr Gly Phe Pro Asp Val 50 60Gly His Leu Tyr Lys Leu Glu Val Gly Ala Pro Tyr Leu Arg Val Asp 65 70 75 80 Gly Lys Thr Gly Asp Ile Phe Thr Thr Glu Thr Ser Ile Asp Arg Glu 85 90 95 Gly Leu Arg Glu Cys Gln Asn Gln Leu Pro Gly Asp Pro Cys Ile Leu 100 105 110 Glu Phe Glu Val Ser Ile Thr Asp Leu Val Gln Asn Ala Ser Pro Arg 115 120 125 Leu Leu Glu Gly Gln Ile Glu Val Gln Asp Ile Asn Asp Asn Thr Pro 130 140 Asn Phe Ala Ser Pro Val Ile Thr Leu Ala Ile Pro Glu Asn Thr Asn 145 Ile Gly Ser Leu Phe Pro Ile Pro Leu Ala Ser Asp Arg Asp Ala Gly 165 170 175 Pro Asn Gly Val Ala Ser Tyr Glu Leu Gln Val Ala Glu Asp Gln Glu 180 185 190 Glu Lys Gln Pro Gln Leu Ile Val Met Gly Asn Leu Asp Arg Glu Arg 195 200 205 Trp Asp Ser Tyr Asp Leu Thr Ile Lys Val Gln Asp Gly Gly Ser Pro 210 215 220 Pro Arg Ala Thr Ser Ala Leu Leu Arg Val Thr Val Leu Asp Thr Asn 225 230 235 240 Asp Asn Ala Pro Lys Phe Glu Arg Pro Ser Tyr Glu Ala Glu Leu Ser 245 250 255Glu Asn Ser Pro Ile Gly His Ser Val Ile Gln Val Lys Ala Asn Asp 260 265 270

Ser Asp Gln Gly Ala Asn Ala Glu Ile Glu Tyr Thr Phe His Gln Ala 275 280 285 Pro Glu Val Val Arg Arg Leu Leu Arg Leu Asp Arg Asn Thr Gly Leu 290 300 Ile Thr Val Gln Gly Pro Val Asp Arg Glu Asp Leu Ser Thr Leu Arg Phe Ser Val Leu Ala Lys Asp Arg Gly Thr Asn Pro Lys Ser Ala Arg Ala Gln Val Val Val Thr Val Lys Asp Met Asn Asp Asn Ala Pro Thr 340 345 350 Ile Glu Ile Arg Gly Ile Gly Leu Val Thr His Gln Asp Gly Met Ala 355 360 365 Asn Ile Ser Glu Asp Val Ala Glu Glu Thr Ala Val Ala Leu Val Gln 370 380 Val Ser Asp Arg Asp Glu Gly Glu Asn Ala Ala Val Thr Cys Val Val 385 390 395 400 Ala Gly Asp Val Pro Phe Gln Leu Arg Gln Ala Ser Glu Thr Gly Ser 405 410 415 Asp Ser Lys Lys Lys Tyr Phe Leu Gln Thr Thr Thr Pro Leu Asp Tyr
420 425 430 Glu Lys Val Lys Asp Tyr Thr Ile Glu Ile Val Ala Val Asp Ser Gly
435 440 445 Asn Pro Pro Leu Ser Ser Thr Asn Ser Leu Lys Val Gln Val Val Asp
450 460 Val Asn Asp Asn Ala Pro Val Phe Thr Gln Ser Val Thr Glu Val Ala 465 470 475 480 Phe Pro Glu Asn Asn Lys Pro Gly Glu Val Ile Ala Glu Ile Thr Ala
485 490 495 Ser Asp Ala Asp Ser Gly Ser Asn Ala Glu Leu Val Tyr Ser Leu Glu 500 505 510 Pro Glu Pro Ala Ala Lys Gly Leu Phe Thr Ile Ser Pro Glu Thr Gly 515 520 525 Glu Ile Gln Val Lys Thr Ser Leu Asp Arg Glu Gln Arg Glu Ser Tyr 530 535 540 Glu Leu Lys Val Val Ala Ala Asp Arg Gly Ser Pro Ser Leu Gln Gly 545 550 555 560 Thr Ala Thr Val Leu Val Asn Val Leu Asp Cys Asn Asp Asn Asp Pro 565 570 575 Lys Phe Met Leu Ser Gly Tyr Asn Phe Ser Val Met Glu Asn Met Pro 580 585

Ala Leu Ser Pro Val Gly Met Val Thr Val Ile Asp Gly Asp Lys Gly 595 600 Glu Asn Ala Gln Val Gln Leu Ser Val Glu Gln Asp Asn Gly Asp Phe 610 615 620 Val Ile Gln Asn Gly Thr Gly Thr Ile Leu Ser Ser Leu Ser Phe Asp 625 630 635 Arg Glu Gln Gln Ser Thr Tyr Thr Phe Gln Leu Lys Ala Val Asp Gly
645 650 655 Gly Val Pro Pro Arg Ser Ala Tyr Val Gly Val Thr Ile Asn Val Leu $660 \hspace{1.5cm} 665 \hspace{1.5cm} 665$ Asp Glu Asn Asp Asn Ala Pro Tyr Ile Thr Ala Pro Ser Asn Thr Ser 675 680 685 His Lys Leu Leu Thr Pro Gln Thr Arg Leu Gly Glu Thr Val Ser Gln 690 695 700 Val Ala Ala Glu Asp Phe Asp Ser Gly Val Asn Ala Glu Leu Ile Tyr 705 710 715 720 Ser Ile Ala Gly Gly Asn Pro Tyr Gly Leu Phe Gln Ile Gly Ser His 725 730 Ser Gly Ala Ile Thr Leu Glu Lys Glu Ile Glu Arg Arg His His Gly 740 750 Leu His Arg Leu Val Val Lys Val Ser Asp Arg Gly Lys Pro Pro Arg 755 760 765 Tyr Gly Thr Ala Leu Val His Leu Tyr Val Asn Glu Thr Leu Ala Asn 770 780 Arg Thr Leu Leu Glu Thr Leu Leu Gly His Ser Leu Asp Thr Pro Leu 785 795 800 Asp Ile Asp Ile Ala Gly Asp Pro Glu Tyr Glu Arg Ser Lys Gln Arg 805 810 815 Gly Asn Ile Leu Phe Gly Val Val Ala Gly Val Val Ala Val Ala Leu 820 825 830 Leu Ile Ala Leu Ala Val Leu Val Arg Tyr Cys Arg Gln Arg Glu Ala 835 840 845 Lys Ser Gly Tyr Gln Ala Gly Lys Lys Glu Thr Lys Asp Leu Tyr Ala $850\,$ 850 $860\,$ Pro Lys Pro Ser Gly Lys Ala Ser Lys Gly Asn Lys Ser Lys Gly Lys 865 870 870 Lys Ser Lys Ser Pro Lys Pro Val Lys Pro Val Glu Asp Glu Asp Glu 895 Ala Gly Leu Gln Lys Ser Leu Lys Phe Asn Leu Met Ser Asp Ala Pro 900 905 910

Gly	Asp	Ser 915	Pro	Arg	Ile	His	Leu 920	Pro	Leu	Asn	Tyr	Pro 925	Pro	Gly	Sez
Pro	Asp 930	Leu	Gly	Arg	His	Tyr 935	Arg	Ser	Asn	Ser	Pro 940	Leu	Pro	Ser	Ile
Gln 945	Leu	Gln	Pro	Gln	Ser 950	Pro	Ser	Ala	Ser	Lys 955	Lys	His	Gln	Val	Val 960
Gln	Asp	Leu	Pro	Pro 965	Ala	Asn	Thr	Phe	Val 970	Gly	Thr	Gly	Asp	Thr 975	Thr
Ser	Thr	Gly	ser 980	Glu	Gln	Tyr	Ser	Asp 985	Tyr	Ser	Tyr	Arg	Thr 990	Asn	Pro
Pro	Lys	Tyr 995	Pro	Ser	Lys	Gln	Val 1000	Gly	Gln	Pro	Phe	Gln 100	Leu	Ser	Thr
Pro	Gln 1010	Pro	Leu	Pro	His	Pro 1015	Tyr	His	Gly	Ala	Ile 1020	Trp	Thr	Glu	Val
Trp 1025															

(2) INFORMATION FOR SEQ ID NO:96:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4705 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:

 - (A) NAME/KEY: CDS (B) LOCATION: 115..2827
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:96: CGAAAGCCAT GTCGGACTCG TCGCCCAGCG CCCAAGCGCT AACCCGCTGA AAGTTTCTCA 117 Met GTC CCA GAG GCC TGG AGG AGG GGA CTG GTA AGC ACC GGG AGG GTA GTG Val Pro Glu Ala Trp Arg Ser Gly Leu Val Ser Thr Gly Arg Val Val 165 GGA GTT TTG CTT CTG CTT GGT GCC TTG AAC AAG GCT TCC ACG GTC ATT Gly Val Leu Leu Leu Gly Ala Leu Asn Lys Ala Ser Thr Val Ile 213 CAC TAT GAG ATC CCG GAG GAA AGA GAG AAG GGT TTC GCT GTC GGC AAC His Tyr Glu lle Pro Glu Glu Arg Glu Lys Gly Phe Ala Val Gly Asn 35 261

									-							
GTC Val	. Val	GCG	AAC Asn	Leu	GGT Gly 55	TTG Leu	GAT Asp	CTC	GGT Gly	AGC Ser 60	CTC Leu	TCA Ser	GCC Ala	CGC Arg	AGG Arg 65	309
TTC Phe	CCG Pro	GTG Val	GTG Val	TCT Ser 70	Gly	GCT Ala	AGC Ser	CGA	AGA Arg 75	TTC Phe	TTT Phe	GAG Glu	GTG Val	AAC Asn 80	CGG Arg	357
GAG Glu	ACC	GGA Gly	GAG Glu 85	Met	TTT	GTG Val	AAC Asn	GAC Asp 90	Arg	CTG Leu	GAT Asp	CGA Arg	GAG Glu 95	GAG Glu	CTG Leu	405
TGT	Gly	Thr 100	Leu	CCC Pro	TCT Ser	TGC Cys	ACT Thr 105	GTA Val	ACT Thr	CTG Leu	GAG Glu	TTG Leu 110	GTA Val	GTG Val	GAG Glu	453
AAC	Pro 115	CTG Leu	GAG Glu	CTG Leu	TTC Phe	AGC Ser 120	GTG Val	GAA Glu	GTG Val	GTG Val	ATC Ile 125	CAG Gln	GAC Asp	ATC Ile	AAC Asn	501
130		Asn	Pro	Ala	Phe 135	Pro	Thr	Gln	Glu	Met 140	Lys	Leu	Glu	Ile	Ser 145	549
Glu	GCC Ala	Val	Ala	Pro 150	Gly	Thr	Arg	Phe	Pro 155	Leu	Glu	Ser	Ala	His 160	Asp	597
Pro	GAT Asp	Leu	Gly 165	Ser	Asn	Ser	Leu	Gln 170	Thr	Tyr	Glu	Leu	Ser 175	Arg	Asn	645
Glu	TAC Tyr	Phe 180	Ala	Leu	Arg	Val	Gln 185	Thr	Arg	Glu	Asp	Ser 190	Thr	Lys	Tyr	693
Ala	GAG Glu 195	Leu	Val	Leu	Glu	Arg 200	Ala	Leu	Asp	Arg	Glu 205	Arg	Glu	Pro	Ser	741
210	CAG Gln	Leu	Val	Leu	Thr 215	Ala	Leu	Asp	Gly	Gly 220	Thr	Pro	Ala	Leu	Ser 225	789
Ala	AGC Ser	Leu	Pro	11e 230	His	Ile	Lys	Val	Leu 235	Авр	Ala	Asn	Asp	Asn 240	Ala	837
Pro	GTC Val	TTC Phe	AAC Asn 245	CAG Gln	TCC Ser	TTG Leu	TAC Tyr	CGG Arg 250	GCG Ala	CGC Arg	GTT Val	CCT Pro	GGA Gly 255	GGA Gly	TGC Cys	885
THE	TCC Ser	260	Thr	Arg	Val	Val	G1n 265	Val	Leu	Ala	Thr	Авр 270	Leu	Asp	Glu	933
GGC Gly	Pro 275	AAC Asn	GGT Gly	GAA Glu	Ile	ATT Ile 280	TAC Tyr	TCC Ser	TTC Phe	Gly	AGC Ser 285	CAC His	AAC Asn	CGC Arg	GCC Ala	981

GG	C GTO	CGG	CA	CT	TTC	ecc	TTE	GAC	. Стт	CTA	a.cc				ACA	1029
290	y Va.	L Ar	g Glr	Let	295	Ala	Leu	Asp	Leu	Val 300	Thr	Gly	Met	Leu	Thr 305	1029
ATC Ile	C AAC E Lys	GGT G13	CGG Arg	Leu 310	Asp	TTC Phe	GAG Glu	GAC	ACC Thr 315	Lys	CTC	CAT	GAG Glu	Ile 320	TAC	1077
ATC Ile	CAC Glr	GCC Ala	Lys 325	Asp	AAG Lys	GGC Gly	GCC	AAT Asn 330	Pro	GAA Glu	GGA Gly	GCA Ala	CAT His 335	Cys	AAA Lys	1125
Val	TTG Leu	Val 340	GAG Glu	GTT Val	GTG Val	GAT Asp	GTG Val 345	AAT	GAC Asp	AAC Asn	GCC Ala	Pro 350	Glu	ATC Ile	ACA Thr	1173
Val	355	Ser	GTG Val	Tyr	Ser	360	Val	Pro	Glu	Asp	A1a 365	Ser	Gly	Thr	Val	1221
370	Ala	Leu	CTC Leu	Ser	375	Thr	Asp	Leu	Asp	Ala 380	Gly	Glu	Asn	Gly	Leu 385	1269
GTG Val	ACC	TGC	GAA Glu	GTT Val 390	PFO	CCG Pro	GGT Gly	CTC Leu	CCT Pro 395	TTC Phe	AGC Ser	CTT Leu	ACT Thr	TCT Ser 400	TCC Ser	1317
Leu	Lys	Asn	TAC Tyr 405	Phe	Thr	Leu	Lys	Thr 410	Ser	Ala	Asp	Leu	Asp 415	Arg	Glu	1365
ACT Thr	GTG Val	Pro 420	GAA Glu	TAC Tyr	AAC Asn	CTC Leu	AGC Ser 425	ATC Ile	ACC Thr	GCC Ala	CGA Arg	GAC Asp 430	GCC Ala	GGA Gly	ACC Thr	1413
Pro	TCC Ser 435	CTC Leu	TCA Ser	GCC Ala	CTT Leu	ACA Thr 440	ATA Ile	GTG Val	CGT Arg	GTT Val	CAA Gln 445	GTG Val	TCC Ser	GAC Asp	ATC Ile	1461
AAT Asn 450	GAC Asp	AAC Asn	CCT Pro	CCA Pro	CAA Gln 455	TCT Ser	TCT Ser	CAA Gln	TCT Ser	TCC Ser 460	TAC Tyr	GAC Asp	GTT Val	TAC Tyr	ATT Ile 465	1509
GAA Glu	GAA Glu	AAC Asn	AAC Asn	CTC Leu 470	CCC Pro	GGG Gly	GCT Ala	CCA Pro	ATA Ile 475	CTA Leu	AAC Asn	CTA Leu	AGT Ser	GTC Val 480	TGG Trp	1557
GAC Asp	CCC Pro	GAC Asp	GCC Ala 485	CCG Pro	CAG Gln	AAT Asn	GCT Ala	CGG Arg 490	CTT Leu	TCT Ser	TTC Phe	TTT Phe	CTC Leu 495	TTG Leu	GAG Glu	1605
GIn	GIĀ	500	GAA Glu	Thr	Gly	Leu	Val 505	Gly	Arg	Tyr	Phe	Thr 510	Ile	Asn	Arg	1653
r.up	AAT Asn 515	GGC Gly	ATA Ile	GTG Val	ser	TCC Ser 520	TTA Leu	GTG Val	ccc Pro	Leu	GAC Asp 525	TAT Tyr	GAG Glu	GAT Asp	cgg Arg	1701

Arg 530	, Glu	TTI Phe	GAA Glu	Leu	ACA Thr 535	Ala	CAT	ATC	AGC Ser	GAT Asp 540	Gly	GC	ACC	CCG Pro	GTC Val 545	1749
CTA	GCC	Thr	AAC	Ile 550	Ser	GTG Val	AAC Asn	ATA	TTT Phe 555	Val	ACT	GAT Asp	CGC Arg	AAT Asn 560	GAC Asp	1797
AAT	GCC	Pro	Gln 565	Val	CTA Leu	TAT	Pro	CGG Arg 570	Pro	GGT Gly	GGG	AGC Ser	TCG Ser 575	GTG Val	GAG Glu	1845
ATG Met	CTG Leu	Pro 580	Arg	GGT	ACC Thr	TCA Ser	GCT Ala 585	GGC	CAC His	CTA Leu	GTG Val	TCA Ser 590	CGG Arg	GTG Val	GTA Val	1893
GGC	TGG Trp 595	Asp	GCG Ala	GAT Asp	GCA Ala	GGG Gly 600	CAC His	AAT Asn	GCC Ala	TGG Trp	CTC Leu 605	TCC Ser	TAC Tyr	AGT Ser	CTC Leu	1941
TTT Phe 610	GGA Gly	TCC Ser	CCT Pro	AAC Asn	CAG Gln 615	AGC Ser	CTT	TTT Phe	GCC Ala	ATA Ile 620	GGG Gly	CTG Leu	CAC His	ACT Thr	GGT Gly 625	1989
CAA Gln	ATC Ile	AGT Ser	ACT Thr	GCC Ala 630	CGT Arg	CCA Pro	GTC Val	CAA Gln	GAC Asp 635	ACA Thr	GAT Asp	TCA Ser	CCC Pro	AGG Arg 640	CAG Gln	2037
ACT	CTC Leu	ACT Thr	GTC Val 645	TTG Leu	ATC Ile	AAA Lys	GAC Asp	AAT Asn 650	GGG Gly	GAG Glu	CCT Pro	TCG Ser	CTC Leu 655	TCC Ser	ACC Thr	2085
ACT Thr	GCT Ala	ACC Thr 660	CTC Leu	ACT Thr	GTG Val	TCA Ser	GTA Val 665	ACC Thr	GAG Glu	GAC Asp	TCT Ser	CCT Pro 670	GAA Glu	GCC Ala	CGA Arg	2133
GCC Ala	GAG Glu 675	TTC Phe	CCC Pro	TCT Ser	GGC Gly	TCT Ser 680	GCC Ala	CCC Pro	CGG Arg	GAG Glu	CAG Gln 685	AAA Lys	AAA Lys	AAT Asn	CTC Leu	2181
ACC Thr 690	TTT Phe	TAT Tyr	CTA Leu	CTT Leu	CTT Leu 695	TCT Ser	CTA Leu	ATC Ile	CTG Leu	GTT Val 700	TCT Ser	GTG Val	GGC Gly	TTC Phe	GTG Val 705	2229
GTC Val	ACA Thr	GTG Val	TTC Phe	GGA Gly 710	GTA Val	ATC Ile	ATA Ile	TTC Phe	AAA Lys 715	GTT Val	TAC Tyr	AAG Lys	TGG Trp	AAG Lys 720	CAG G ln	2277
TCT Ser	AGA Arg	GAC Asp	CTA Leu 725	TAC Tyr	CGA Arg	GCC Ala	CCG Pro	GTG Val 730	AGC Ser	TCA Ser	CTG Leu	TAC Tyr	CGA Arg 735	ACA Thr	CCA Pro	2325
GGG Gly	CCC Pro	TCC Ser 740	TTG Leu	CAC His	GCG Ala	GAC Asp	GCC Ala 745	GTG Val	CGG Arg	GGA Gly	GGC Gly	CTG Leu 750	ATG Met	TCG Ser	CCG Pro	2373
CAC His	CTT Leu 755	TAC Tyr	CAT His	CAG Gln	Val	TAT Tyr 760	CTC Leu	ACC Thr	ACG Thr	GAC Asp	TCC Ser 765	CGC Arg	CGC Arg	AGC Ser	GAC Asp	2421

CCG CTG CTG AAG AAA CCT GGT GCA GCC AGT CCA CTG GCC AGC CAG Pro Leu Leu Lys Lys Pro Gly Ala Ala Ser Pro Leu Ala Ser Arg Gln 770 785 786	2469
AAC ACC CTG CGG AGC TGT GAT CCG GTG TTC TAT AGG CAG GTG TTG GGT Asn Thr Leu Arg Ser Cys Asp Pro Val Phe Tyr Arg Gln Val Leu Gly 790 800	2517
GCA GAG AGC GCC CCT CCC GGA CAG CAA GCC CCC AAC ACG GAC TGG Ala Glu Ser Ala Pro Pro Gly Gln Gln Ala Pro Pro Aen Thr Amp Trp 805	2565
CGT TTC TCT CAG GCC CAG AGA CCC GGC ACC AGC GGC TCC CAA AAT GGC Arg Phe Ser Gin Ala Gin Arg Pro Gly Thr Ser Gly Ser Gin Am Gly 820 830 830	2613
GAT GAC ACC GGC ACC TGG CCC AAC AAC CAG TTT GAC ACA GAG ATG CTG Asp Asp Thr Gly Thr Trp Pro Asn Asn Gln Phe Asp Thr Glu Met Leu 835	2661
CAA GCC ATG ATC TTG GCG TCC GCC AGT GAA GCT GCT GAT GGG AGC TCC Gln Ala Met Ile Leu Ala Ser Ala Ser Glu Ala Ala Aep Gly Ser Ser 850 860 865	2709
ACC CTG GGA GGG GGT GCC GGC ACC ATG GGA TTG AGC GCC CGC TAC GGA Thr Leu Gly Gly Ala Gly Thr Met Gly Leu Ser Ala Arg Tyr Gly 875 875	2757
CCC CAG TTC ACC CTG CAG CAC GTG CCC GAC TAC CGC CAG AAT GTC TAC Pro Gln Phe Thr Leu Gln His Val Pro Asp Tyr Arg Gln Asm Val Tyr 885	2805
ATC CCA GGC AGC AAT GCA CAC T GACCAACGCA GCTGGCAAGC GGATGGCAAG Ile Pro Gly Ser Asn Ala His 900	2857
GCCCAGCAGG TGGCAATGGC AACAAGAAGA AGTCGGCAAG AAGGAGAAGA AGTAACATGG	2917
AGGCCAGGCC AAGAGCCACA GGGCAGCCTC TCCCCGAACC AGCCCAGCTT CTCCTTACCT	2977
GCACCCAGGC CTCAGAGTTT CAGGGCTAAC CCCCAGAATA CTGGTAGGGG CCAAGGCATC	3037
TCCCTTGGAA ACAGAAACAA GTGCCATCAC ACCATCCCTT CCCCAGGTGT AATATCCAAA	3097
GCAGTTCCGC TGGGAACCCC ATCCAATCAG TGGCTGTACC CATTTGGGTA GTGGGGTTCA	3157
TGTAGACACC AAGAACCATT TGCCACACCC CGTTTAGTTA CAGCTGAACC CTCCATCTTC	3217
CAAATCAATC AGGCCCATCC ATCCCATGCC TCCCTCCTCC CCACCCCACT CCAACAGTTC	3277
CTCTTTCCCG AGTAAGGTGG TTGGGGTGTT GAAGTACCAA GTAACCTACA AGCCTCCTAG	3337
TTCTGAAAAG TTGGAAGGGC ATCATGACCT CTTGGCCTCT CCTTTGATTC TCAATCTTCC	3397
CCCAAAGCAT GGTTTGGTGC CAGCCCCTTC ACCTCCTTCC AGAGCCCAAG ATCAATGCTC	3457
AAGTTTTGGA GGACATGATC ACCATCCCCA TGGTACTGAT GCTTGCTGGA TTTAGGGAGG	3517
GCATTTTGCT ACCAAGCCTC TTCCCAACGC CCTGGGACCA GTCTTCTGTT TTGTTTTTCA	3577

TTGTTTGAGC TTTCCACTGC ATGCCTTGAC TTCCCCCACC TCCTCCTCAA ACAAGAGACT

3637

CCACTGCATG	TTCCAAGACA	GTATGGGGTG	GTAAGATAAG	GAAGGGAAGT	GTGTGGATGT	369
GGATGGTGGG	GGCATGGACA	AAGCTTGACA	CATCAAGTTA	TCAAGGCCTT	GGAGGAGGCT	375
CTGTATGTCC	TCAGGGGACT	GACAACATCC	TCCAGATTCC	AGCCATAAAC	CAATAACTAG	381
GCTGGACCCT	TCCCACTACA	TAATAGGGCT	CAGCCAGGCA	GCCAGCTTTG	GGCTGAGCTA	387
ACAGGACCAA	TGGATTAACT	GGCATTTCAG	TCCAAGGAAG	CTCGAAGCAG	GTTTAGGACC	3931
AGGTCCCCTT	GAGAGGTCAG	AGGGGCCTCT	GTGGGTGCTG	GGTACTCCAG	AGGTGCCACT	3997
GGTGGAAGGG	TCAGCGGAGC	CCCAGCAGGA	AGGGTGGGCC	AGCCAGGCCA	TTCTTAGTCC	4057
CTGGGTTGGG	GAGGCAGGGA	GCTAGGGCAG	GGACCAAATG	AACAGAAAGT	CTCAGCCCAG	4117
GATGGGGCTT	CTTCAACAGG	CCCCTGCCCT	CCTGAAGCCT	CAGTCCTTCA	CCTTGCCAGG	4177
TGCCGTTTCT	CTTCCGTGAA	GGCCACTGCC	CAGGTCCCCA	GTGCGCCCCC	TAGTGGCCAT	4237
AGCCTGGTTA	AAGTTCCCCA	GTGCCTCCTT	GTGATAGACC	TTCTTCTCCC	ACCCCCTTCT	4297
GCCCCTGGGT	CCCCGGCCAT	CCAGCGGGGC	TGCCAGAGAA	CCCCAGACCT	GCCCTTACAG	4357
TAGTGTAGCG	CCCCTCCCT	CTTTCGGCTG	GTGTAGAATA	GCCAGTAGTG	TAGTGCGGTG	4417
TGCTTTTACG	TGATGGCGGG	TGGGCAGCGG	GCGGCGGCGT	CCGCGCAGCC	GTCTGTCCTT	4477
GATCTGCCCG	CGGCGGCCCG	TGTTGTGTTT	TGTGCTGTGT	CCAGCGCTAA	GGCGACCCC	4537
TCCCCCGTAC	TGACTTCTCC	TATAAGCGCT	TCTCTTCGCA	TAGTCACGTA	GCTCCCACCC	4597
CACCCTCTTC	CTGTGTCTCA	CGCAAGTTTT	ATACTCTAAT	ATTTATATGG	CTTTTTTCT	4657
TCGACAAAA	AATAATAAA	CGTTTCTTCT	GAAAAAAAA			4705

(2) INFORMATION FOR SEQ ID NO:97:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 904 amino acids
 - (B) TYPE: amino acid (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:97:

 Met Val Pro Glu Ala Trp Arg Ser Cly Leu Val Ser Thr Gly Arg Val 1
 1
 0
 1
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 16
 17
 18
 16
 17
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18
 18

Arg Phe Pro Val Val Ser Gly Ala Ser Arg Arg Phe Phe Glu Val Asn 65 70 75 80 Arg Glu Thr Gly Glu Met Phe Val Asn Asp Arg Leu Asp Arg Glu Glu 85 90 95 Leu Cys Gly Thr Leu Pro Ser Cys Thr Val Thr Leu Glu Leu Val Val 100 105 110 Glu Asn Pro Leu Glu Leu Phe Ser Val Glu Val Val Ile Gln Asp Ile 115 120 125 Asn Asp Asn Asn Pro Ala Phe Pro Thr Gln Glu Met Lys Leu Glu Ile 130 135 140 Ser Glu Ala Val Ala Pro Gly Thr Arg Phe Pro Leu Glu Ser Ala His 145 150 155 160 Asp Pro Asp Leu Gly Ser Asn Ser Leu Gln Thr Tyr Glu Leu Ser Arg Asn Glu Tyr Phe Ala Leu Arg Val Gln Thr Arg Glu Asp Ser Thr Lys 180 185 190 Tyr Ala Glu Leu Val Leu Glu Arg Ala Leu Asp Arg Glu Arg Glu Pro $195 \ \ \, 200 \ \ \, 205$ Ser Leu Gln Leu Val Leu Thr Ala Leu Asp Gly Gly Thr Pro Ala Leu 210 225 Ser Ala Ser Leu Pro Ile His Ile Lys Val Leu Asp Ala Asn Asp Asn 225 230 230 235 Ala Pro Val Phe Asn Gln Ser Leu Tyr Arg Ala Arg Val Pro Gly Gly 245 250 255 Cys Thr Ser Gly Thr Arg Val Val Gln Val Leu Ala Thr Asp Leu Asp 260 265 270Glu Gly Pro Asn Gly Glu Ile Ile Tyr Ser Phe Gly Ser His Asn Arg 275 280 285 Ala Gly Val Arg Gln Leu Phe Ala Leu Asp Leu Val Thr Gly Met Leu 290 300 Thr Ile Lys Gly Arg Leu Asp Phe Glu Asp Thr Lys Leu His Glu Ile 305 310 315 320 Tyr Ile Gln Ala Lys Asp Lys Gly Ala Asn Pro Glu Gly Ala His Cys 325 330 335 Lys Val Leu Val Glu Val Val Asp Val Asp Asp Asp Asp Asp Asp 340 345 350 Thr Val Thr Ser Val Tyr Ser Pro Val Pro Glu Asp Ala Ser Gly Thr 355 360 365 Val Ile Ala Leu Leu Ser Val Thr Asp Leu Asp Ala Gly Glu Asn Gly 370 375

Leu Val Thr Cys Glu Val Pro Pro Gly Leu Pro Phe Ser Leu Thr Ser 385 390 395 400 Ser Leu Lys Asn Tyr Phe Thr Leu Lys Thr Ser Ala Asp Leu Asp Arg Glu Thr Val Pro Glu Tyr Asn Leu Ser Ile Thr Ala Arg Asp Ala Gly 420 425 430Thr Pro Ser Leu Ser Ala Leu Thr Ile Val Arg Val Gln Val Ser Asp
435
440
445 Ile Asn Asp Asn Pro Pro Gln Ser Ser Gln Ser Ser Tyr Asp Val Tyr 450 460 Ile Glu Glu Asn Asn Leu Pro Gly Ala Pro Ile Leu Asn Leu Ser Val 465 470 480 Trp Asp Pro Asp Ala Pro Gln Asn Ala Arg Leu Ser Phe Phe Leu Leu 485 490 495 Glu Gln Gly Ala Glu Thr Gly Leu Val Gly Arg Tyr Phe Thr Ile Asn 500 505 510Arg Asp Asp Gly Ile Val Ser Ser Leu Val Pro Leu Asp Tyr Glu Asp 515 520 525Arg Arg Glu Phe Glu Leu Thr Ala His Ile Ser Asp Gly Gly Thr Pro Val Leu Ala Thr Asn Ile Ser Val Asn Ile Phe Val Thr Asp Arg Asn 545 550 555 560 Asp Asn Ala Pro Gln Val Leu Tyr Pro Arg Pro Gly Gly Ser Ser Val 565 570 575Glu Met Leu Pro Arg Gly Thr Ser Ala Gly His Leu Val Ser Arg Val 580 585 590 Val Gly Trp Asp Ala Asp Ala Gly His Asn Ala Trp Leu Ser Tyr Ser 595 600 605 Leu Phe Gly Ser Pro Asn Gln Ser Leu Phe Ala Ile Gly Leu His Thr 610 620 Gly Gln Ile Ser Thr Ala Arg Pro Val Gln Asp Thr Asp Ser Pro Arg 625 630 635 640 Gln Thr Leu Thr Val Leu Ile Lys Asp Asn Gly Glu Pro Ser Leu Ser 645 650 655Thr Thr Ala Thr Leu Thr Val Ser Val Thr Glu Asp Ser Pro Glu Ala 660 665 670 Arg Ala Glu Phe Pro Ser Gly Ser Ala Pro Arg Glu Gln Lys Lys Asn 675 680 685 Leu Thr Phe Tyr Leu Leu Leu Ser Leu Ile Leu Val Ser Val Gly Phe 690 695 700

 Val
 Val
 Phe
 Gly
 Val
 Ile
 Ile
 Lys
 Tys
 Val
 Typ
 Lys
 Typ
 Asp</th

(2) INFORMATION FOR SEQ ID NO:98:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 441 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: CDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:98:

Asp Trp Val Ile Pro Pro Ile Asn Leu Pro Glu Asn Ser Arg Gly Pro l 10 10 15

Phe Pro Glu Glu Leu Val Arg Ile Arg Ser Asp Arg Asp Lys Asn Leu 20 25 Ser Asp Arg Asp Lys Asn Leu

Ser Leu Arg Tyr Thr Val Thr Gly Pro Gly Ala Asp Gln Pro Pro Thr 35 40 45 Gly Ile Phe Ile Ile Asn Pro Ile Ser Gly Gln Leu Ser Val Thr Lys
50 55 60 Pro Leu Asp Arg Glu Gln Ile Ala Arg Phe His Leu Arg Ala His Ala 65 70 75 80 Val Asp Ile Asn Gly Asn Gln Val Glu Asn Pro Ile Asp Ile Val Ile 85 90 95 Asn Val Ile Asp Met Asn Asp Asn Arg Pro Glu Phe Thr Ala Met Thr 100 105 110 Phe Tyr Gly Glu Val Pro Glu Asn Arg Val Asp Ile Ile Val Ala Asn 115 120 125 Leu Thr Val Thr Asp Lys Asp Gln Pro His Thr Pro Ala Trp Asn Ala 130 135 140 Val Thr Arg Ile Ser Gly Gly Asp Pro Thr Gly Arg Phe Ala Ile Gln 145 150 155 160 Thr Asp Pro Asn Ser Asn Asp Gly Leu Val Thr Val Val Lys Pro Ile 165 170 170 Asp Phe Glu Thr Asn Arg Met Phe Val Leu Thr Val Ala Ala Glu Asn 180 185 190 Gln Val Pro Leu Ala Lys Gly Ile Gln His Pro Pro Gln Ser Thr Ala 195 200 205 Thr Val Ser Val Thr Val Ile Asp Val Asn Glu Asn Pro Tyr Phe Ala 210 215 220 Pro Asn Pro Lys Ile Ile Arg Gln Glu Glu Gly Leu His Ala Gly Thr 225 230 235 240 Met Leu Thr Thr Phe Thr Ala Gly Asp Pro Asp Arg Tyr Met Gln Gln 255 255 Asn Ile Arg Tyr Thr Lys Leu Ser Asp Pro Ala Asn Trp Leu Lys Ile 260 265 270 Asp Pro Val Asn Gly Gln Ile Thr Thr Ile Ala Val Leu Asp Arg Glu 275 280 280 Ser Pro Asn Val Lys Asn Asn Ile Tyr Asn Ala Thr Phe Leu Ala Ser 290 295 300 Asp Asn Gly Ile Pro Pro Met Ser Gly Thr Gly Thr Leu Gln Ile Tyr 305 310 315 320Leu Leu Asp Ile Asn Asp Asn Ala Pro Gln Val Leu Pro Gln Glu Ala 325 330 335 Glu Thr Cys Glu Thr Pro Asp Pro Asn Ser Ile Asn Ile Thr Thr Ala 340 345

Leu Asp Tyr Asp Ile Asp Pro Asn Ala Gly Pro Phe Ala Tyr Asp Leu 355 360 365Pro Leu Ser Pro Val Thr Ile Lys Arg Asn Trp Thr Ile Thr Arg Leu 370 375 380 Asn Gly Asp Phe Ala Gln Leu Asn Leu Lys Ile Lys Phe Leu Glu Ala 385 390 395 400 Gly Ile Tyr Glu Val Pro Ile Ile Ile Thr Asp Ser Gly Asn Pro Pro 405 410 415Lys Ser Asn Lys Ser Ile Leu Arg Val Arg Val Cys Gln Cys Asp Phe
420 425 430 Asn Gly Asp Cys Thr Asp Val Asp Arg

- (2) INFORMATION FOR SEQ ID NO:99:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 105 amino acids
 - (B) TYPE: amino acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:

Glu Asp Thr Val Tyr Ser Phe Asp Ile Pro Glu Asn Ala Gln Arg Gly
1 10 15

Tyr Gln Val Gly Gln Ile Val Ala Arg Asp Ala Asp Leu Gly Gln Asn

Ala Gln Leu Ser Tyr Gly Val Val Ser Asp Trp Ala Asn Asp Val Phe

Ser Leu Asn Pro Gln Thr Gly Met Leu Thr Leu Thr Ala Arg Leu Asp 50 55 60

Tyr Glu Glu Val Gln His Tyr Ile Leu Ile Val Gln Ala Gln Asp Asn 65 70 75 80

Gly Gln Pro Ser Leu Ser Thr Thr Ile Thr Val Tyr Cys Asn Val Leu 85 90 95

Asp Leu Asn Asp Asn Ala Pro Ile Phe

- (2) INFORMATION FOR SEQ ID NO:100:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear

(ii)	MOLECULE	TYPE:	protein
---	-----	----------	-------	---------

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:
- Asp Xaa Asp Xaa Gly Xaa Asn
- (2) INFORMATION FOR SEQ ID NO:101:
 - (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:
 - Ala Xaa Asp Xaa Gly Xaa Pro
- (2) INFORMATION FOR SEQ ID NO:102:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4650 base pairs (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 495..4103
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:

CCTCTATTCG ACATTCTCTT TGGATTGTTT TGCTATAACT TGAAATTTGG GATGTCACAA ACGAAACTGT CATCTGTTTC CGCCAAACTG TGGTTCTGCT AATCTCCCAG GCTGGCAGCA TTGGAGACTT GCTGACTTCT TTCATCCCCC ACTCTTTTCA CCTGAAATTC CTTTCCTTGG 180 TTTTGCTCTA AGTCCTATGC TTCAGTCAGG GGCCAACCAA ATCTCACTGC CTCCTTTTTA 240 TCATGAAGCC TTTGATCACT GATAGTTCTT TTTATATCTT GAAAAATCAC CCTTCCCAGT ACAGTTAATA TTTAGTATCT CTACTCATCT TGGCACTTAC TCACAGCTCC ATAATTCAGT CGTTTTCGTA CCTCTTCATG GTGATGGGGA GCCCTTTGGA GGTGGTGACT GTGCTTTATA CTCCTCATGA TGCTTCACAT GTGGCAGGCG TGGAGTGCCC GGAGGCGGCC CTCCTGATTC

60

120

300

360

420

480

		- 71			
TGGGGCCTCC CAG			AGC CCA GGC CCT Ser Pro Gly Pro 10		530
			GCA CTG CTG CTC Ala Leu Leu Leu 25		578
			GTG TAC AAG GTG Val Tyr Lys Val 40		526
			CTC GCA GCC GAC Leu Ala Ala Asp 55		574
			GAG GTG GGT GCC Glu Val Gly Ala		722
	Gly Lys Thr		TTC ACC ACC GAG Phe Thr Thr Glu 90		770
ATC GAC CGT GAG Ile Amp Arg Glu 95	GGG CTC CGT Gly Leu Arg	GAA TGC CAG Glu Cys Gln 100	AAC CAG CTC CCT Asn Gln Leu Pro 105	GGT GAT 8	318
			ACA GAC CTC GTG Thr Asp Leu Val 120		366
			GAA GTA CAA GAC Glu Val Gln Asp 135		14
GAC AAC ACA CCC Asp Asn Thr Pro	AAC TTC GCC Asn Phe Ala 145	TCA CCA GTC Ser Pro Val 150	ATC ACT CTG GCC Ile Thr Leu Ala	ATC CCT 9 Ile Pro 155	62
GAG AAC ACC AAC Glu ABn Thr ABn 160	Ile Gly Ser	CTC TTC CCC Leu Phe Pro 165	ATC CCG CTG GCT Ile Pro Leu Ala 170	TCA GAC 10 Ser Asp	010
CGT GAT GCT GGT Arg Asp Ala Gly 175	CCC AAC GGT Pro Asn Gly	GTG GCA TCC Val Ala Ser 180	TAT GAG CTG CAG Tyr Glu Leu Gln 185	GTG GCA 10 Val Ala	58
GAG GAC CAG GAG Glu Abp Gln Glu 190	GAG AAG CAA Glu Lys Gln 195	CCA CAG CTC Pro Gln Leu	ATT GTG ATG GGC Ile Val Met Gly 200	AAC CTG 11 Asn Leu	.06
GAC CGT GAG CGG Asp Arg Glu Arg 205	TGG GAC TCC Trp Asp Ser 210	TAT GAC CTC Tyr Asp Leu	ACC ATC AAG GTG Thr Ile Lys Val 215	CAG GAT 11 Gln Asp 220	154
GGC GGC AGC CCC Gly Gly Ser Pro	CCA CGC GCC Pro Arg Ala 225	ACG AGT GCC Thr Ser Ala 230	CTG CTG CGT GTC Leu Leu Arg Val	ACC GTG 12 Thr Val 235	202

									- 72	•						
CTT	GAC	ACC Thr	AAT Asn 240	Asp	AAC Asn	GCC Ala	CCC Pro	AAG Lys 245	Phe	GAG Glu	CGG Arg	CCC Pro	TCC Ser 250	Tyr	GAG Glu	1250
GCC Ala	GAA Glu	CTA Leu 255	TCT	GAG Glu	AAT Asn	AGC Ser	CCC Pro 260	ATA Ile	GGC Gly	CAC	TCG Ser	GTC Val 265	ATC	CAG Gln	GTG Val	1298
AAG Lys	GCC Ala 270	AAT Asn	GAC Asp	TCA Ser	GAC Asp	CAA Gln 275	GGT Gly	GCC Ala	AAT Asn	GCA Ala	GAA Glu 280	Ile	GAA Glu	TAC Tyr	ACA Thr	1346
TTC Phe 285	CAC	CAG Gln	GCG Ala	CCC Pro	GAA Glu 290	GTT Val	GTG Val	AGG Arg	CGT Arg	CTT Leu 295	CTT Leu	CGA Arg	CTG Leu	GAC Asp	AGG Arg 300	1394
AAC Asn	ACT Thr	GGA Gly	CTT Leu	ATC Ile 305	ACT Thr	GTT Val	CAG Gln	GGC Gly	Pro 310	GTG Val	GAC Asp	CGT Arg	GAG Glu	GAC Asp 315	CTA Leu	1442
Ser	Thr	CTG Leu	Arg 320	Phe	Ser	Val	Leu	Ala 325	Lys	Asp	Arg	Gly	Thr 330	Asn	Pro	1490
Lys	Ser	GCC Ala 335	Arg	Ala	Gln	Val	Val 340	Val	Thr	Val	Lys	Asp 345	Met	Asn	Asp	1538
AAT Asn	GCC Ala 350	Pro	ACC Thr	ATT Ile	GAG Glu	ATC Ile 355	CGG Arg	GGC	ATA Ile	GGG Gly	CTA Leu 360	GTG Val	ACT Thr	CAT His	CAA Gln	1586
365	Gly	ATG Met	Ala	Asn	11e 370	Ser	Glu	Asp	Val	Ala 375	Glu	Glu	Thr	Ala	Val 380	1634
Ala	Leu	GTG Val	Gln	Val 385	Ser	Asp	Arg	Asp	Glu 390	Gly	Glu	Asn	Ala	Ala 395	Val	1682
ACC Thr	TGT Cys	GTG Val	GTG Val 400	GCA Ala	GGT Gly	GAT Asp	GTG Val	CCC Pro 405	TTC Phe	CAG Gln	CTG Leu	CGC Arg	CAG Gln 410	GCC Ala	AGT Ser	1730
GAG Glu	ACA Thr	GGC Gly 415	AGT Ser	GAC Asp	AGC Ser	Lys	AAG Lys 420	AAG Lys	TAT Tyr	TTC Phe	CTG Leu	CAG Gln 425	ACT Thr	ACC Thr	ACC Thr	1778
CCG Pro	CTA Leu 430	GAC Asp	TAC Tyr	GAG Glu	AAG Lys	GTC Val 435	AAA Lys	GAC Asp	TAC Tyr	ACC Thr	ATT Ile 440	GAG Glu	ATT Ile	GTG Val	GCT Ala	1826
GTG Val 445	Asp	Ser	Gly	Asn	Pro 450	Pro	Leu	Ser	Ser	Thr 455	Asn	Ser	Leu	Lys	Val 460	1874
CAG Gln	GTG Val	GTG Val	Asp	GTC Val 465	AAT A sn	GAC Asp	AAC Asn	Ala	CCT Pro 470	GTC Val	TTC Phe	ACT Thr	CAG Gln	AGT Ser 475	GTC Val	1922

									- 93	•						
ACT Tha	GAC	GTC Val	GCC Ala 480	. Ph∈	Pro	GA#	AAC ABr	AAC Asr 485	Lys	Pro	GGI	GAZ Glu	Val 490	Ile	GCT Ala	1970
GA0	ATC Ile	ACT Thr 495	: Ala	AGT Ser	GAT Asp	GCT	GAC Asp 500	Ser	GGC	Ser	AAT Asr	Ala 505	. Glu	CTC Lev	GTT Val	2018
TAC	Ser 510	Leu	GAG Glu	Pro	GAG Glu	Pro 515	Ala	GCT	AAG Lys	GGC	Leu 520	Phe	ACC	ATC	TCA Ser	2066
Pro 525	GIR	ACT Thr	GGA	GAG Glu	Ile 530	Gln	GTG Val	AAG Lys	ACA Thr	TCT Ser 535	Leu	GAT Asp	CGG Arg	GAA Glu	Gln 540	2114
CGG	GAG Glu	AGC Ser	TAT	GAG Glu 545	TTG	AAG Lys	GTG Val	GTG Val	GCA Ala 550	GCT Ala	GAC	Arg	GGC	AGT Ser 555	Pro	2162
Ser	Leu	Gln	Gly 560	Thr	GCC Ala	Thr	Val	Leu 565	Val	Asn	Val	Leu	Asp 570	Cys	Asn	2210
Asp	Asn	575	Pro	Lys	TTT Phe	Met	Leu 580	Ser	Gly	Tyr	Asn	Phe 585	Ser	Val	Met	2258
GIU	590	Met	Pro	Ala	CTG Leu	Ser 595	Pro	Val	Gly	Met	Val 600	Thr	Val	Ile	Asp	2306
605	Asp	Lys	GIY	Glu	AAT Asn 610	Ala	Gln	Val	Gln	Leu 615	Ser	Val	Glu	Gln	Asp 620	2354
	O.L.y	nop	FIIE	625	ATC Ile	GIN	ABN	GIĀ	630	GIĀ	Thr	Ile	Leu	Ser 635	Ser	2402
CTG Leu	AGC Ser	TTT Phe	GAT Asp 640	CGA Ar g	GAG Glu	CAA Gln	CAA Gln	AGC Ser 645	ACC Thr	TAC Tyr	ACC Thr	TTC Phe	CAG Gln 650	CTG Leu	AAG Lys	2450
GCA Ala	GTG Val	GAT Asp 655	GGT Gly	GGC Gly	GTC Val	CCA Pro	CCT Pro 660	CGC Arg	TCA Ser	GCT Ala	TAC Tyr	GTT Val 665	GGT Gly	GTC Val	ACC Thr	2498
ATC Ile	AAT Asn 670	GTG Val	CTG Leu	GAC Asp	GAG Glu	AAT Asn 675	GAC Asp	AAC Asn	GCA Ala	CCC Pro	TAT Tyr 680	ATC Ile	ACT Thr	GCC Ala	CCT Pro	2546
685	ABI	THE	ser	HIS	AAG Lys 690	Leu	Leu	Thr	Pro	Gln 695	Thr	Arg	Leu	Gly	Glu 700	2594
ACG Thr	GTC Val	AGC Ser	GIII	GTG Val 705	GCA Ala	GCC Ala	GAG Glu	Asp	TTT Phe 710	GAC Asp	TCT Ser	GGT Gly	GTC Val	AAT Asn 715	GCC Ala	2642

GA:	CTC	ATC Ile	TAC TYP 720	: Ser	: ATT	GCA	GGT	GGC Gly 725	Asn	Pro	TAT	GGA Gly	Leu 730	Phe	CAG Gln		2690
ATT	GGG Gly	Ser 735	His	TCA Ser	GGT	Ala	Ile 740	Thr	Leu	GAG Glu	AAG Lys	GAG Glu 745	Ile	GAG Glu	CGG		2738
Arg	75C	His	Gly	Leu	His	Arg 755	Leu	Val	Val	Lys	Val 760)	Asp	Arg	Gly		2786
AAG Lys 765	PEC	Pro	CGC Arg	TAT	GGC Gly 770	Thr	GCC	TTG Leu	GTC Val	CAT His 775	CTT	TAT	GTC Val	AAT Asn	GAG Glu 780		2834
ACT	Leu	GCC Ala	AAC Asn	CGC Arg 785	ACG Thr	CTG Leu	CT G Leu	GAG Glu	ACC Thr 790	CTC Leu	CTG Leu	GGC Gly	CAC	AGC Ser 795	CTG Leu		2882
GAC Asp	ACG Thr	CCG Pro	CTG Leu 800	GAT Asp	ATT Ile	GAC Asp	ATT	GCT Ala 805	GGG Gly	GAT Asp	CCA Pro	GAA Glu	TAT Tyr 810	GAG Glu	CGC Arg		2930
ser	rys	815	Arg	GIĀ	Asn	Ile	Leu 820	Phe	Gly	Val	Val	GCT Ala 825	Gly	Val	Val		2978
GCC Ala	GTG Val 830	GCC Ala	TTG Leu	CTC Leu	ATC Ile	GCC Ala 835	CTG Leu	GCG Ala	GTT Val	CTT Leu	GTG Val 840	CGC Arg	TAC Tyr	TGC Cys	AGA Arg		3026
CAG Gln 845	CGG Arg	GAG Glu	GCC Ala	AAA Lys	AGT Ser 850	GGT Gly	TAC Tyr	CAG Gln	GCT Ala	GGT Gly 855	AAG Lys	AAG Lys	GAG Glu	ACC Thr	AAG Lys 860		3074
GAC Asp	CTG Leu	TAT Tyr	GCC Ala	CCC Pro 865	AAG Lys	CCC Pro	AGT Ser	GGC Gly	AAG Lys 870	GCC Ala	TCC Ser	AAG Lys	GGA Gly	AAC Asn 875	AAA Lys	:	3122
AGC Ser	AAA Lys	GGC Gly	AAG Lys 880	AAG Lys	AGC Ser	AAG Lys	TCC Ser	CCA Pro 885	AAG Lys	CCC Pro	GTG Val	AAG Lys	CCA Pro 890	GTG Val	GAG Glu	:	3170
GAC Asp	GAG Glu	GAT Asp 895	GAG Glu	GCC Ala	GGG Gly	CT G Leu	CAG Gln 900	AAG Lys	TCC Ser	CTC Leu	AAG Lys	TTC Phe 905	AAC Asn	CTG Leu	ATG Met	3	3218
AGC Ser	GAT Asp 910	GCC Ala	CCT Pro	GGG Gly	wab	AGT Ser 915	CCC Pro	CGC Arg	ATC Ile	His	CTG Leu 920	CCC Pro	CTC Leu	AAC Asn	TAC Tyr	3	3266
CCA Pro 925	CCA Pro	GGC Gly	AGC Ser	Pro	GAC Asp 930	CTG Leu	GGC Gly	CGC Arg	His	TAT Tyr 935	CGC Arg	TCT Ser	AAC Asn	Ser	CCA Pro 940	3	314
CTG Leu	CCT Pro	TCC . Ser	TT6	CAG Gln 945	CTG	CAG Gln	ccc Pro	Gln	TCA Ser 950	ccc Pro	TCA Ser	GCC Ala	Ser	AAG Lys 955	AAG Lys	3	362

				Gln								TTC Phe		Gly		3410
GGG Gly	GAC	ACC Thr 975	ACG Thr	TCC Ser	ACG Thr	GGC Gly	TCT Ser 980	GAG Glu	CAG Gln	TAC Tyr	TCC Ser	GAC Asp 985	TAC Tyr	AGC Ser	TAC Tyr	3458
CGC Arg	ACC Thr 990	Asn	CCC Pro	CCC Pro	AAA Lys	TAC Tyr 995	CCC Pro	AGC Ser	AAG Lys	CAG Gln	TTA Leu 100	CCT Pro 0	CAC	CGC Arg	CGC Arg	3506
GTC Val 100	Thr	TTC Phe	TCG Ser	GCC Ala	ACC Thr 101	Ser	CAG Gln	GCC Ala	CAG Gln	GAG Glu 101	Leu	CAG Gln	GAC Asp	CCA Pro	TCC Ser 1020	3554
CAG Gln	CAC His	AGT Ser	TAC Tyr	TAT Tyr 102	Asp	AGT Ser	GGC Gly	CTG Leu	GAG Glu 1030	Glu	TCT Ser	GAG Glu	ACG Thr	CCG Pro 103	Ser	3602
AGC Ser	AAG Lys	TCA Ser	TCC Ser 1040	Ser	GGG Gly	CCT Pro	CGA Arg	CTC Leu 104	Gly	CCC Pro	CTG Leu	GCC Ala	CTG Leu 105	Pro	GAG Glu	3650
GAT Asp	CAC His	TAT Tyr 105	Glu	CGC Arg	ACC Thr	ACC Thr	CCT Pro 1060	Asp	GGC Gly	AGC Ser	ATA Ile	GGA Gly 1065	Glu	ATG Met	GAG Glu	3698
CAC His	CCC Pro 1070	Glu	AAT Asn	GAC Asp	CTT Leu	CGC Arg 1075	Pro	TTG Leu	CCT Pro	GAT Asp	GTC Val 1080	GCC Ala	ATG Met	ACA Thr	GGC Gly	3746
ACA Thr 1089	Сув	ACC Thr	CGG Arg	GAG Glu	TGC Cys 1090	Ser	GAG Glu	TTT Phe	GGC Gly	CAC His 1095	Ser	GAC Asp	ACA Thr	TGC Cys	TGG Trp 1100	3794
ATG Met	CCT Pro	GGC Gly	CAG Gln	TCA Ser 1109	Ser	CCC Pro	AGC Ser	CGC Arg	CGG Arg 1110	Thr	AAG Lys	AGC Ser	AGC Ser	GCC Ala 1115	Leu	3842
AAA Lys	CTC Leu	TCC Ser	ACC Thr 1120	Phe	ATG Met	CCT Pro	TAC Tyr	CAG Gln 1125	Asp	CGA Arg	GGA Gly	GGG Gly	CAG Gln 1130	Glu	CCT Pro	3890
GCG Ala	GGC Gly	GCC Ala 1139	Gly	AGC Ser	CCC Pro	AGC Ser	CCC Pro 1140	Pro	GAA Glu	GAC Asp	CGG Arg	AAC Asn 1145	Thr	AAA Lys	ACG Thr	3938
GCC Ala	CCC Pro 1150	Val	CGC Arg	CTC Leu	CTG Leu	CCC Pro 1155	Ser	TAC Tyr	AGT Ser	GCC Ala	TTC Phe 1160	TCC Ser	CAC His	AGT Ser	AGC Ser	3986
CAT His 1165	Asp	TCC Ser	TGC Cys	AAG Lys	GAC Asp 1170	Ser	GCC Ala	ACC Thr	TTG Leu	GAG Glu 1175	Glu	ATC Ile	CCC Pro	CTG Leu	ACC Thr 1180	4034
CAG Gln	ACC Thr	TCG Ser	GAC Asp	TTC Phe 1185	Pro	CCC Pro	GCA Ala	GCC Ala	ACA Thr 1190	Pro	GCA Ala	TCT Ser	GCC Ala	CAG Gln 1195	Thr	4082

GCC AAG CGC GAG Ala Lys Arg Glu 1200		CCCCT ACTG	eccec cccc	TCCCC	4133
CAGCGCCGGC CAGC	TCCCAA ATGCCCATTC	CAGGGCCTCA	CTCTCCACCC	CTTCAGCGTG	4193
GACTTCCTGC CAGG	GCCCAA GTGGGGGTAT	CACTGACCTC	ATGACCACGC	TGGCCCTTCT	4253
CCCATGCAGG GTCC	AGGTCC TCTCCCCTCA	TTTCCATCTC	CCAGCCCAGG	GGCCCCTTCC	4313
CCTTTATGGG GCTT	CCCCCA GCTGATGCCC	AAGAGGGCTC	CTCTGCAATG	ACTGGGCTCC	4373
TTCCCTTGAC TTCC	AGGGAG CACCCCTCG	ATTTGGGCAG	ATGGTGGAGT	CAAGGGTGGG	4433
CAGCGTACTT CTAA	CTCATT GTTTCCCTCA	TGGCCGACCA	GGGCGGGGAT	AGCATGCCCA	4493
ATTTTAGCCC TGAAC	GCAGGG CTGAACTGGG	GAGCCCCTTT	CCCTGGGAGC	TCCCAGAGGA	4553
AACTCTTGAC CACC	AGTGGC TCCCTGAAGG	GCTTTTGTTA	CCAAAGGTGG	GGTAGGGACG	4613
GGGGTGGGAG TGGAG	GCGGAG GCCTTGTTTT	CCCGTGG			4650

(2) INFORMATION FOR SEQ ID NO:103:

- (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1203 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:

 Met Glu Pro Leu Arg His Ser Pro Gly Pro Gly Gly Gly Gln Arg Leu Leu 1
 Leu Leu Cu Leu Leu Leu Leu Leu Leu Leu Leu Leu Ala Pro Ser Pro 20
 Ser Pro 30
 Ser Pro 40
 Ala Pro Glu Glu Glu Gln Pro Pro Asp Val 50
 Ser Pro 30
 Ser Val 60
 Pro 75
 Pro Asp Val Asp 61
 Asp Val Asp 65
 Ser Pro 32
 Ser Pro 33
 Ser Pro 34
 Asp 61
 Asp 75
 Ser Pro 34
 Asp 80
 Gly Lys Thr Gly Asp 11e Phe Thr Thr Glu Thr Ser Ile Asp Arg Glu 95
 Asp 61
 Asp 75
 Gly Lys Thr Gly Asp Pro Cys Ile Leu 105
 Asp 105
 Asp 105
 Asp 110
 Asp 110
 Asp 110
 Asp 125
 Arg 125

Leu Leu Glu Gly Gln Ile Glu Val Gln Asp Ile Asn Asp Asn Thr Pro 130 135 140 Asn Phe Ala Ser Pro Val Ile Thr Leu Ala Ile Pro Glu Asn Thr Asn 145 150 155 160 Ile Gly Ser Leu Phe Pro Ile Pro Leu Ala Ser Asp Arg Asp Ala Gly 165 170 175Pro Asn Gly Val Ala Ser Tyr Glu Leu Gln Val Ala Glu Asp Gln Glu 180 185 190 Glu Lys Gln Pro Gln Leu Ile Val Met Gly Asn Leu Asp Arg Glu Arg 195 200 205 Trp Asp Ser Tyr Asp Leu Thr Ile Lys Val Gln Asp Gly Gly Ser Pro 210 215 220 Pro Arg Ala Thr Ser Ala Leu Leu Arg Val Thr Val Leu Asp Thr Asn 225 230 235 Asp Asn Ala Pro Lys Phe Glu Arg Pro Ser Tyr Glu Ala Glu Leu Ser 245 250 255 Glu Asn Ser Pro Ile Gly His Ser Val Ile Gln Val Lys Ala Asn Asp 260 265 270 Ser Asp Gln Gly Ala Asn Ala Glu Ile Glu Tyr Thr Phe His Gln Ala $275 \\ 280 \\ 285$ Pro Glu Val Val Arg Arg Leu Leu Arg Leu Asp Arg Asn Thr Gly Leu 290 295 300 Ile Thr Val Gln Gly Pro Val Asp Arg Glu Asp Leu Ser Thr Leu Arg 305 310 315 320 Phe Ser Val Leu Ala Lys Asp Arg Gly Thr Asn Pro Lys Ser Ala Arg 325 330 335 Ala Gln Val Val Thr Val Lys Asp Met Asn Asp Asn Ala Pro Thr 340 345 350Ile Glu Ile Arg Gly Ile Gly Leu Val Thr His Gln Asp Gly Met Ala 355 360 365 Asn Ile Ser Glu Asp Val Ala Glu Glu Thr Ala Val Ala Leu Val Gln 370 385 Val Ser Asp Arg Asp Glu Gly Glu Asn Ala Ala Val Thr Cys Val Val 385 390 395 Ala Gly Asp Val Pro Phe Gln Leu Arg Gln Ala Ser Glu Thr Gly Ser 405 410 415 Asp Ser Lys Lys Lys Tyr Phe Leu Gln Thr Thr Thr Pro Leu Asp Tyr 420 425 430 Glu Lys Val Lys Asp Tyr Thr Ile Glu Ile Val Ala Val Asp Ser Gly
435 440 445

Asn Pro Pro Leu Ser Ser Thr Asn Ser Leu Lys Val Gln Val Val Asp 450 455 Val Asn Asp Asn Ala Pro Val Phe Thr Gln Ser Val Thr Glu Val Ala 465 470 475 480 Phe Pro Glu Asn Asn Lys Pro Gly Glu Val Ile Ala Glu Ile Thr Ala
485 490 495 Ser Asp Ala Asp Ser Gly Ser Asn Ala Glu Leu Val Tyr Ser Leu Glu 500 505 510 Pro Glu Pro Ala Ala Lys Gly Leu Phe Thr Ile Ser Pro Glu Thr Gly 515 520 525 Glu Ile Gln Val Lys Thr Ser Leu Asp Arg Glu Gln Arg Glu Ser Tyr 530 535 540 Glu Leu Lys Val Val Ala Ala Asp Arg Gly Ser Pro Ser Leu Gln Gly 545 550 555 560 Thr Ala Thr Val Leu Val Asn Val Leu Asp Cys Asn Asp Asn Asp Pro 565 570 575 Lys Phe Met Leu Ser Gly Tyr Asn Phe Ser Val Met Glu Asn Met Pro 580 585 590 Ala Leu Ser Pro Val Gly Met Val Thr Val Ile Asp Gly Asp Lys Gly 595 600 605 Glu Asn Ala Gln Val Gln Leu Ser Val Glu Gln Asp Asn Gly Asp Phe 610 620 Val Ile Gln Asn Gly Thr Gly Thr Ile Leu Ser Ser Leu Ser Phe Asp 625 630 635 640 Arg Glu Gln Gln Ser Thr Tyr Thr Phe Gln Leu Lys Ala Val Asp Gly
645 650 655 Gly Val Pro Pro Arg Ser Ala Tyr Val Gly Val Thr Ile Asn Val Leu 660 665 670 Asp Glu Asn Asp Asn Ala Pro Tyr Ile Thr Ala Pro Ser Asn Thr Ser 675 680 685 His Lys Leu Leu Thr Pro Gln Thr Arg Leu Gly Glu Thr Val Ser Gln 690 695 700 Val Ala Ala Glu Asp Phe Asp Ser Gly Val Asn Ala Glu Leu Ile Tyr 705 710 715 720 Ser Ile Ala Gly Gly Asn Pro Tyr Gly Leu Phe Gln Ile Gly Ser His Ser Gly Ala Ile Thr Leu Glu Lys Glu Ile Glu Arg Arg His His Gly 740 745 750 Leu His Arg Leu Val Val Lys Val Ser Asp Arg Gly Lys Pro Pro Arg 755 760 765

Tyr Gly Thr Ala Leu Val His Leu Tyr Val Asn Glu Thr Leu Ala Asn 770 780 Arg Thr Leu Leu Glu Thr Leu Leu Gly His Ser Leu Asp Thr Pro Leu 785 790 795 800 Asp Ile Asp Ile Ala Gly Asp Pro Glu Tyr Glu Arg Ser Lys Gln Arg 805 810 815 Gly Asn Ile Leu Phe Gly Val Val Ala Gly Val Val Ala Val Ala Leu 820 825 830 Leu Ile Ala Leu Ala Val Leu Val Arg Tyr Cys Arg Gln Arg Glu Ala 835 840 845 Lys Ser Gly Tyr Gln Ala Gly Lys Lys Glu Thr Lys Asp Leu Tyr Ala 850 855 Pro Lys Pro Ser Gly Lys Ala Ser Lys Gly Asn Lys Ser Lys Gly Lys 865 870 875 Lys Ser Lys Ser Pro Lys Pro Val Lys Pro Val Glu Asp Glu Asp Glu 895 Ala Gly Leu Gln Lys Ser Leu Lys Phe Asn Leu Met Ser Asp Ala Pro Gly Asp Ser Pro Arg Ile His Leu Pro Leu Asn Tyr Pro Pro Gly Ser 915 920 925 Pro Asp Leu Gly Arg His Tyr Arg Ser Asn Ser Pro Leu Pro Ser Ile 930 935 Gln Leu Gln Pro Gln Ser Pro Ser Ala Ser Lys Lys His Gln Val 945 950 955 960 Gln Asp Leu Pro Pro Ala Asn Thr Phe Val Gly Thr Gly Asp Thr Thr 965 970 975 Ser Thr Gly Ser Glu Gln Tyr Ser Asp Tyr Ser Tyr Arg Thr Asn Pro 980 985 990 Pro Lys Tyr Pro Ser Lys Gln Leu Pro His Arg Arg Val Thr Phe Ser 995 1000 1005 Ala Thr Ser Gln Ala Gln Glu Leu Gln Asp Pro Ser Gln His Ser Tyr 1010 1020 Tyr Asp Ser Gly Leu Glu Glu Ser Glu Thr Pro Ser Ser Lys Ser 1025 1030 1035 104 Ser Gly Pro Arg Leu Gly Pro Leu Ala Leu Pro Glu Asp His Tyr Glu 1045 1050 1055 Arg Thr Thr Pro Asp Gly Ser Ile Gly Glu Met Glu His Pro Glu Asn 1060 1065 1070 Asp Leu Arg Pro Leu Pro Asp Val Ala Met Thr Gly Thr Cys Thr Arg 1075 1080 1085

G	1u	Cys 1090		G1u	Phe	Gly	His 1099		Asp	Thr	Cys	Trp 1100	Met)	Pro	Gly	Gln
	er 109		Pro	Ser	Arg	Arg 1110		Lys	Ser	Ser	Ala 1115		Lys	Leu	Ser	Thr 1120
F	he	Met	Pro	Tyr	Gln 112	Авр	Arg	Gly	Gly	Gln 1130	Glu O	Pro	Ala	Gly	Ala 113	Gly
s	er	Pro	Ser	Pro 1140		Glu	Asp	Arg	Asn 114	Thr	Lys	Thr	Ala	Pro 1150	val	Arg
I	eu	Leu	Pro 1155	Ser	Tyr	Ser	Ala	Phe 1160	Ser	His	Ser	Ser	His 1169	Asp	Ser	Сув
I	.ys	Asp 1170		Ala	Thr	Leu	Glu 117		Ile	Pro	Leu	Thr 1180		Thr	Ser	Asp
	he 185		Pro	Ala	Ala	Thr 1190		Ala	Ser	Ala	Gln 119		Ala	Lys	Arg	Glu 1200
1	le	Tyr	Leu													•

- (2) INFORMATION FOR SEQ ID NO:104:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2789 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (ix) FEATURE:

 - (A) NAME/KEY: CDS (B) LOCATION: 115..2622
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:

CGAAAGCC	AT GTCGGACT	CG TCGCCCAGC	G CCCAAGCGCT	AACCCGCTGA AAGT	TTCTCA 60
GCGAAATC	TC AGGGACGA	TC TGGACCCCG	TGAGAGGAAC	TGCTTTTGAG TGAG	ATG 117 Met 1
				ACC GGG AGG GTA Thr Gly Arg Val 15	
				GCT TCC ACG GTC Ala Ser Thr Val	
				TTC GCT GTG GGC Phe Ala Val Gly 45	

	Val					TTG Leu										309
						GCT Ala										357
						GTG Val										405
						TGC Cys										453
AAC Asn	CCG Pro 115	CTG Leu	GAG Glu	CTG Leu	TTC Phe	AGC Ser 120	GTG Val	GAA Glu	GTG Val	GTG Val	ATC Ile 125	CAG Gln	GAC Asp	ATC Ile	AAC Asn	501
						CCT Pro										549
GAG Glu	GCC Ala	G TG Val	GCT Ala	CCG Pro 150	GGG Gly	ACG Thr	CGC Arg	TTT Phe	CCG Pro 155	CTC Leu	GAG Glu	AGC Ser	GCG Ala	CAC His 160	GAT Asp	597
CCC	GAT Asp	CTG Leu	GGA Gly 165	AGC Ser	AAC Asn	TCT Ser	TTA Leu	CAA G1n 170	ACC Thr	TAT Tyr	GAG Glu	CTG Leu	AGC Ser 175	CGA Arg	AAT Asn	645
GAA Glu	TAC Tyr	TTT Phe 180	GCG Ala	CTT Leu	CGC Arg	GTG Val	CAG Gln 185	ACG Thr	CGG Arg	GAG Glu	GAC Asp	AGC Ser 190	ACC Thr	AAG Lys	TAC Tyr	693
GCG Ala	GAG Glu 195	CTG Leu	GTG Val	TTG Leu	GAG Glu	CGC Arg 200	GCC Ala	CTG Leu	GAC Asp	CGA Arg	GAA G1u 205	CGG Arg	GAG Glu	CCT Pro	AGT Ser	741
CTC Leu 210	CAG Gln	TTA Leu	GTG Val	CTG Leu	ACG Thr 215	GCG Ala	TTG Leu	GAC Asp	GGA Gly	GGG Gly 220	ACC Thr	CCA Pro	GCT Ala	CTC Leu	TCC Ser 225	789
GCC Ala	AGC Ser	CTG Leu	CCT Pro	ATT Ile 230	CAC His	ATC Ile	AAG Lys	GTG Val	CTG Leu 235	GAC Asp	GCG Ala	AAT Asn	GAC Asp	AAT Asn 240	GCG Ala	837
CCT Pro	GTC Val	TTC Phe	AAC Asn 245	CAG Gln	TCC Ser	TTG Leu	TAC Tyr	CGG Arg 250	GCG Ala	CGC Arg	GTT Val	CCT Pro	GGA Gly 255	GGA Gly	TGC Cys	885
Thr	Ser	Gly 260	Thr	Arg	Val	GTA Val	G1n 265	Val	Leu	Ala	Thr	Asp 270	Leu	Asp	Glu	933
GGC Gly	CCC Pro 275	AAC Asn	GGT Gly	GAA Glu	ATT Ile	ATT Ile 280	TAC Tyr	TCC Ser	TTC Phe	GGC	AGC Ser 285	CAC His	AAC Asn	CGC Arg	GCC Ala	981

				~~~	-											
					TTC Phe 295											1029
					GAC Asp											1077
					AAG Lys											1125
GTG Val	TTG Leu	GTG Val 340	GAG Glu	GTT Val	GTG Val	GAT Asp	GTG Val 345	AAT Asn	GAC Asp	AAC Asn	GCC Ala	CCG Pro 350	GAG Glu	ATC Ile	ACA Thr	1173
GTC Val	ACC Thr 355	TCC Ser	GTG Val	TAC Tyr	AGC Ser	CCA Pro 360	GTA Val	CCC Pro	GAG Glu	GAT Asp	GCC Ala 365	TCT Ser	GGG Gly	ACT Thr	GTC Val	1221
					GTG Val 375											1269
GTG Val	ACC Thr	TGC Cys	GAA Glu	GTT Val 390	CCA Pro	CCG Pro	GGT Gly	CTC Leu	CCT Pro 395	TTC Phe	AGC Ser	CTT Leu	ACT Thr	TCT Ser 400	TCC Ser	1317
					ACT Thr											1365
ACT Thr	GTG Val	CCA Pro 420	GAA Glu	TAC Tyr	AAC Asn	CTC Leu	AGC Ser 425	ATC Ile	ACC Thr	GCC Ala	CGA Arg	GAC Asp 430	GCC Ala	GGA Gly	ACC Thr	1413
CCT Pro	TCC Ser 435	CTC Leu	TCA Ser	GCC Ala	CTT Leu	ACA Thr 440	ATA Ile	GTG Val	CGT Arg	GTT Val	CAA Gln 445	GTG Val	TCC Ser	GAC Asp	ATC Ile	1461
AAT Asn 450	GAC Asp	AAC Asn	CCT Pro	CCA Pro	CAA Gln 455	TCT Ser	TCT Ser	CAA Gln	TCT Ser	TCC Ser 460	TAC Tyr	GAC	GTT Val	TAC Tyr	ATT Ile 465	1509
GAA Glu	GAA Glu	AAC Asn	AAC Asn	CTC Leu 470	CCC Pro	GGG Gly	GCT Ala	CCA Pro	ATA Ile 475	CTA Leu	AAC Asn	CTA Leu	AGT Ser	GTC Val 480	TGG Trp	1557
GAC Asp	CCC Pro	GAC Asp	GCC Ala 485	CCG Pro	CAG Gln	AAT Asn	GCT Ala	CGG Arg 490	CTT Leu	TCT Ser	TTC Phe	TTT Phe	CTC Leu 495	TTG Leu	GAG Glu	1605
CAA Gln	GGA Gly	GCT Ala 500	GAA Glu	ACC Thr	GGG Gly	CTA Leu	GTG Val 505	GGT Gly	CGC Arg	TAT Tyr	TTC Phe	ACA Thr 510	ATA Ile	AAT Asn	CGT Arg	1653
GAC Asp	AAT Asn 515	GGC Gly	ATA Ile	GTG Val	TCA Ser	TCC Ser 520	TTA Leu	GTG Val	CCC Pro	CTA Leu	GAC Asp 525	TAT Tyr	GAG Glu	GAT Asp	CGG Arg	1701

	Glu	TTT Phe														1749
		ACC Thr														1797
		CCC Pro														1845
		CCT Pro 580														1893
		GAC Asp														1941
TTT Phe 610	G <b>GA</b> Gly	TCC Ser	CCT Pro	AAC Asn	CAG Gln 615	AGC Ser	CTT Leu	TTT Phe	GCC Ala	ATA Ile 620	GGG Gly	CTG Leu	CAC His	ACT Thr	GGT Gly 625	1989
		AGT Ser														2037
ACT Thr	CTC Leu	ACT Thr	GTC Val 645	TTG Leu	ATC Ile	AAA Lys	GAC Asp	AAT Asn 650	GGG Gly	GAG Glu	CCT Pro	TCG Ser	CTC Leu 655	TCC Ser	ACC Thr	2085
		ACC Thr 660														2133
		TTC Phe														2181
ACC Thr 690	TTT Phe	TAT Tyr	CTA Leu	CTT Leu	CTT Leu 695	TCT Ser	CTA Leu	ATC Ile	CTG Leu	GTT Val 700	TCT Ser	GTG Val	GGC Gly	TTC Phe	GTG Val 705	2229
GTC Val	ACA Thr	GTG Val	TTC Phe	GGA Gly 710	GTA Val	ATC Ile	ATA Ile	TTC Phe	AAA Lys 715	GTT Val	TAC Tyr	AAG Lys	TGG Trp	AAG Lys 720	CAG Gln	2277
TCT Ser	AGA Arg	GAC Asp	CTA Leu 725	TAC Tyr	CGA Arg	GCC Ala	CCG Pro	GTG Val 730	AGC Ser	TCA Ser	CTG Leu	TAC Tyr	CGA Arg 735	ACA Thr	CCA Pro	2325
GGG Gly	CCC Pro	TCC Ser 740	TTG Leu	CAC His	GCG Ala	GAC Asp	GCC Ala 745	GTG Val	CGG Arg	GGA Gly	GGC Gly	CTG Leu 750	ATG Met	TCG Ser	CCG Pro	2373
CAC His	CTT Leu 755	TAC Tyr	CAT His	CAG Gln	GTG Val	TAT Tyr 760	CTC Leu	ACC Thr	ACG Thr	GAC Asp	TCC Ser 765	CGC Arg	CGC Arg	AGC Ser	GAC Asp	2421

	CTG Leu																2469
AAC Asn	ACG Thr	CTG Leu	cgg Arg	AGC Ser 790	TGT Cys	GAT Asp	CCG Pro	GTG Val	TTC Phe 795	TAT Tyr	AGG Arg	CAG Gln	GTG Val	TTG Leu 800	GGT Gly		2517
	GAG Glu																2565
	CTG Leu																2613
	TTT Phe 835		TAG	GATO	GAA (	GATG:	TTTT	CC TO	GTG1	ATGC	A TTO	CACAC	CTTT				2662
CAA	TGG	TC :	rtcc:	raga:	rc A	AGT:	TAGTO	cc:	TTG:	rgag	ATG	STGG	CCT	CCA	SAGTGT	1	2722
GGT:	TGT	GT (	CCA	TTTC	AG G	GGA	AGATA	A CT	GAC	CAT	CTG	rgga	CCT	AATT	CACATO	:	2782
CTC	AGCG																2789

- (2) INFORMATION FOR SEQ ID NO:105:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 836 amino acids (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:

 Met
 Val
 Pro
 Glu
 Ala
 Trp
 Arg
 Ser
 Gly
 Leu
 Val
 Ser
 Thr
 Gly
 Arg
 Val

 Val
 Gly
 Leu
 Leu
 Gly
 Ala
 Leu
 Asn
 Asn

Asn Asp Asn Asn Pro Ala Phe Pro Thr Gln Glu Met Lys Leu Glu Ile 130 135 140 Ser Glu Ala Val Ala Pro Gly Thr Arg Phe Pro Leu Glu Ser Ala His Asp Pro Asp Leu Gly Ser Asn Ser Leu Gln Thr Tyr Glu Leu Ser Arg 165 170 175 Asn Glu Tyr Phe Ala Leu Arg Val Gln Thr Arg Glu Asp Ser Thr Lys Tyr Ala Glu Leu Val Leu Glu Arg Ala Leu Asp Arg Glu Arg Glu Pro Ser Leu Gln Leu Val Leu Thr Ala Leu Asp Gly Gly Thr Pro Ala Leu 210 215 220 Ser Ala Ser Leu Pro Ile His Ile Lys Val Leu Asp Ala Asn Asp Asn 225 230 240 Ala Pro Val Phe Asn Gln Ser Leu Tyr Arg Ala Arg Val Pro Gly Gly 245 250 255 Cys Thr Ser Gly Thr Arg Val Val Gln Val Leu Ala Thr Asp Leu Asp 260 265 270 Glu Gly Pro Asn Gly Glu Ile Ile Tyr Ser Phe Gly Ser His Asn Arg 275 280 285 Ala Gly Val Arg Gln Leu Phe Ala Leu Asp Leu Val Thr Gly Met Leu 290 295 300 Thr Ile Lys Gly Arg Leu Asp Phe Glu Asp Thr Lys Leu His Glu Ile 305 310 315 320 Tyr Ile Gln Ala Lys Asp Lys Gly Ala Asn Pro Glu Gly Ala His Cys 325 330 335 Lys Val Leu Val Glu Val Val Asp Val Asp Asp Asp Ala Pro Glu Ile 340 345 350Thr Val Thr Ser Val Tyr Ser Pro Val Pro Glu Asp Ala Ser Gly Thr 355 360 365 Val Ile Ala Leu Leu Ser Val Thr Asp Leu Asp Ala Gly Glu Asn Gly 370 375 380 Leu Val Thr Cys Glu Val Pro Pro Gly Leu Pro Phe Ser Leu Thr Ser 385 390 395 400 Ser Leu Lys Asn Tyr Phe Thr Leu Lys Thr Ser Ala Asp Leu Asp Arg 405 410 415 Glu Thr Val Pro Glu Tyr Asn Leu Ser Ile Thr Ala Arg Asp Ala Gly 420 425 430 Thr Pro Ser Leu Ser Ala Leu Thr Ile Val Arg Val Gln Val Ser Asp
435 440 445

Ile Asn Asp Asn Pro Pro Gln Ser Ser Gln Ser Ser Tyr Asp Val Tyr 450  $\phantom{\bigg|}455\phantom{\bigg|}$ Ile Glu Glu Asn Asn Leu Pro Gly Ala Pro Ile Leu Asn Leu Ser Val 465 470 475 Trp Asp Pro Asp Ala Pro Gln Asn Ala Arg Leu Ser Phe Phe Leu Leu 485 490 490 Glu Gln Gly Ala Glu Thr Gly Leu Val Gly Arg Tyr Phe Thr Ile Asn 500 505 510 Arg Asp Asn Gly Ile Val Ser Ser Leu Val Pro Leu Asp Tyr Glu Asp 515  $\phantom{\bigg|}525\phantom{\bigg|}$ Arg Arg Glu Phe Glu Leu Thr Ala His Ile Ser Asp Gly Gly Thr Pro 530 540 Val Leu Ala Thr Asn Ile Ser Val Asn Ile Phe Val Thr Asp Asg Asn 545 555 560 Asp Asn Ala Pro Gln Val Leu Tyr Pro Arg Pro Gly Gly Ser Ser Val 565 570 575 Glu Met Leu Pro Arg Gly Thr Ser Ala Gly His Leu Val Ser Arg Val  $580 \ \ \, 585 \ \ \, 590$ Val Gly Trp Asp Ala Asp Ala Gly His Asn Ala Trp Leu Ser Tyr Ser 595 600 605 Leu Phe Gly Ser Pro Asn Gln Ser Leu Phe Ala Ile Gly Leu His Thr 610 620 Gly Gln Ile Ser Thr Ala Arg Pro Val Gln Asp Thr Asp Ser Pro Arg Gln Thr Leu Thr Val Leu Ile Lys Asp Asn Gly Glu Pro Ser Leu Ser 645 650 655 Thr Thr Ala Thr Leu Thr Val Ser Val Thr Glu Asp Ser Pro Glu Ala 660 665 670Arg Ala Glu Phe Pro Ser Gly Ser Ala Pro Arg Glu Gln Lys Lys Asn 675 680 685 Leu Thr Phe Tyr Leu Leu Leu Ser Leu Ile Leu Val Ser Val Gly Phe 690 695 700 Val Val Thr Val Phe Gly Val Ile Ile Phe Lys Val Tyr Lys Trp Lys 705 710 715 720 Gln Ser Arg Asp Leu Tyr Arg Ala Pro Val Ser Ser Leu Tyr Arg Thr 725 730 735 Pro Gly Pro Ser Leu His Ala Asp Ala Val Arg Gly Gly Leu Met Ser 740 745 750 Pro His Leu Tyr His Gln Val Tyr Leu Thr Thr Asp Ser Arg Arg Ser 755 760 765 Asp Pro Leu Leu Lys Lys Pro Gly Ala Ala Ser Pro Leu Ala Ser Arg 775

Gln Asn Thr Leu Arg Ser Cys Asp Pro Val Phe Tyr Arg Gln Val Leu 800

Gly Ala Glu Ser Ala Pro Pro Gly Gln Val Arg Phe Ser Lys Ser Cys 815

Leu Thr Leu Leu Val Pro Phe Tyr Ser Tyr Ile Ile Leu Arg Arg Leu 820

Glu Leu Phe 835

- (2) INFORMATION FOR SEQ ID NO:106:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 2751 base pairs
      - (B) TYPE: nucleic acid
        (C) STRANDEDNESS: single
      - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: cDNA
  - (ix) FEATURE:
    - (A) NAME/KEY: CDS
    - (B) LOCATION: 115..2160
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 106:
- CGAAAGCCAT GTCGGACTCG TCGCCCAGCG CCCAAGCGCT AACCCGCTGA AAGTTTCTCA 117 Met GTC CCA GAG GCC TGG AGG AGC GGA CTG GTA AGC ACC GGG AGG GTA GTG 165 Val Pro Glu Ala Trp Arg Ser Gly Leu Val Ser Thr Gly Arg Val Val GGA GTT TTG CTT CTG CTT GGT GCC TTG AAC AAG GCT TCC ACG GTC ATT Gly Val Leu Leu Leu Leu Gly Ala Leu Asn Lys Ala Ser Thr Val Ile 213 CAC TAT GAG ATC CCG GAG GAA AGA GAG AAG GGT TTC GCT GTG GGC AAC 261 His Tyr Glu Ile Pro Glu Glu Arg Glu Lys Gly Phe Ala Val Gly Asn GTG GTC GCG AAC CTT GGT TTG GAT CTC GGT AGC CTC TCA GCC CGC AGG 309 Val Val Ala Asn Leu Gly Leu Asp Leu Gly Ser Leu Ser Ala Arg Arg TTC CCG GTG GTG TCT GGA GCT AGC CGA AGA TTC TTT GAG GTG AAC CGG 357 Phe Pro Val Val Ser Gly Ala Ser Arg Arg Phe Phe Glu Val Asn Arg
  70 75 80

		GGA Gly														405
		ACA Thr 100														453
		CTG Leu														501
GAC Asp 130	AAC Asn	AAT Asn	CCT Pro	GCT Ala	TTC Phe 135	CCT Pro	ACC Thr	CAG Gln	GAA Glu	ATG Met 140	AAA Lys	TTG Leu	GAG Glu	ATT Ile	AGC Ser 145	549
		GTG Val														597
CCC Pro	GAT Asp	CTG Leu	GGA Gly 165	AGC Ser	AAC Asn	TCT Ser	TTA Leu	CAA Gln 170	ACC Thr	TAT Tyr	GAG Glu	CTG Leu	AGC Ser 175	CGA Arg	AAT Asn	645
		TTT Phe 180														693
GCG Ala	GAG Glu 195	CTG Leu	GTG Val	TTG Leu	GAG Glu	CGC Arg 200	GCC Ala	CTG Leu	GAC Asp	CGA Arg	GAA Glu 205	CGG Arg	GAG Glu	CCT Pro	AGT Ser	741
		TTA Leu														789
GCC Ala	AGC Ser	CTG Leu	CCT Pro	ATT Ile 230	CAC His	ATC Ile	AAG Lys	GTG Val	CTG Leu 235	GAC Asp	GCG Ala	AAT Asn	GAC Asp	AAT Asn 240	GCG Ala	837
CCT Pro	GTC Val	TTC Phe	AAC Asn 245	CAG Gln	TCC Ser	TTG Leu	TAC Tyr	CGG Arg 250	GCG Ala	CGC Arg	GTT Val	CCT Pro	GGA Gly 255	GGA Gly	TGC Cys	885
ACC Thr	TCC Ser	GGC Gly 260	ACG Thr	CGC Arg	GTG Val	GTA Val	CAA Gln 265	GTC Val	CTT Leu	GCA Ala	ACG Thr	GAT Asp 270	CTG Leu	GAT Asp	GAA Glu	933
GGC Gly	CCC Pro 275	AAC Asn	GGT Gly	GAA Glu	ATT Ile	ATT Ile 280	TAC Tyr	TCC Ser	TTC Phe	GGC Gly	AGC Ser 285	CAC His	AAC Asn	CGC Arg	GCC Ala	981
GGC Gly 290	GTG Val	CGG Arg	CAA Gln	CTA Leu	TTC Phe 295	GCC Ala	TTA Leu	GAC Asp	CTT Leu	GTA Val 300	ACC Thr	GGG Gly	ATG Met	CTG Leu	ACA Thr 305	1029
ATC Ile	AAG Lys	GGT Gly	CGG Arg	CTG Leu 310	GAC Asp	TTC Phe	GAG Glu	GAC Asp	ACC Thr 315	AAA Lys	CTC Leu	CAT His	GAG Glu	ATT Ile 320	TAC Tyr	1077

						GGC Gly			Pro						AAA Lys	1125
GTG Val	TTG Leu	GTG Val 340	GAG Glu	GTT Val	GTG Val	GAT Asp	GTG Val 345	AAT Asn	GAC Asp	AAC Asn	GCC Ala	CCG Pro 350	GAG Glu	ATC Ile	ACA Thr	1173
GTC Val	ACC Thr 355	TCC Ser	GTG Val	TAC Tyr	AGC Ser	CCA Pro 360	GTA Val	CCC Pro	GAG Glu	GAT Asp	GCC Ala 365	TCT Ser	GGG Gly	ACT Thr	GTC Val	1221
ATC Ile 370	GCT Ala	TTG Leu	CTC Leu	AGT Ser	GTG Val 375	ACT Thr	GAC Asp	CTG Leu	GAT Asp	GCT Ala 380	GGC Gly	GAG Glu	AAC Asn	GGG Gly	CTG Leu 385	1269
GTG Val	ACC Thr	TGC Cys	GAA Glu	GTT Val 390	CCA Pro	CCG Pro	GGT Gly	CTC Leu	CCT Pro 395	TTC Phe	AGC Ser	CTT Leu	ACT Thr	TCT Ser 400	TCC Ser	1317
CTC Leu	AAG Lys	AAT Asn	TAC Tyr 405	TTC Phe	ACT Thr	TTG Leu	AAA Lys	ACC Thr 410	AGT Ser	GCA Ala	GAC Asp	CTG Leu	GAT Asp 415	CGG Arg	GAG Glu	1365
ACT Thr	GTG Val	CCA Pro 420	GAA Glu	TAC Tyr	AAC Asn	CTC Leu	AGC Ser 425	ATC Ile	ACC Thr	GCC Ala	CGA Arg	GAC Asp 430	GCC Ala	GGA Gly	ACC Thr	1413
CCT Pro	TCC Ser 435	CTC Leu	TCA Ser	GCC Ala	CTT Leu	ACA Thr 440	ATA Ile	GTG Val	CGT Arg	GTT Val	CAA Gln 445	GTG Val	TCC Ser	GAC Asp	ATC Ile	1461
AAT Asn 450	GAC Asp	AAC Asn	CCT Pro	CCA Pro	CAA Gln 455	TCT Ser	TCT Ser	CAA Gln	TCT Ser	TCC Ser 460	TAC Tyr	GAC Asp	GTT Val	TAC Tyr	ATT Ile 465	1509
GAA Glu	GAA Glu	AAC Asn	AAC Asn	CTC Leu 470	CCC Pro	GGG Gly	GCT Ala	CCA Pro	ATA Ile 475	CTA Leu	AAC Asn	CTA Leu	AGT Ser	GTC Val 480	TGG Trp	1557
GAC Asp	CCC Pro	GAC Asp	GCC Ala 485	CCG Pro	CAG Gln	AAT Asn	GCT Ala	CGG Arg 490	CTT Leu	TCT Ser	TTC Phe	TTT Phe	CTC Leu 495	TTG Leu	GAG Glu	1605
CAA Gln	GGA Gly	GCT Ala 500	GAA Glu	ACC Thr	GGG Gly	CTA Leu	GTG Val 505	GGT Gly	CGC Arg	TAT Tyr	TTC Phe	ACA Thr 510	ATA Ile	AAT Asn	CGT Arg	1653
GAC Asp	AAT Asn 515	GGC Gly	ATA Ile	GTG Val	TCA Ser	TCC Ser 520	TTA Leu	GTG Val	CCC Pro	CTA Leu	GAC Asp 525	TAT Tyr	GAG Glu	GAT Asp	CGG Arg	1701
CGG Arg 530	GAA Glu	TTT Phe	GAA Glu	TTA Leu	ACA Thr 535	GCT Ala	CAT His	ATC Ile	Ser	GAT Asp 540	GGG Gly	GGC Gly	ACC Thr	CCG Pro	GTC Val 545	1749
CTA Leu	GCC Ala	ACC Thr	Asn	ATC Ile 550	AGC Ser	GTG Val	AAC Asn	ATA Ile	TTT Phe 555	GTC Val	ACT Thr	GAT Asp	CGC Arg	AAT Asn 560	GAC Asp	1797

AAT GCC CCC CAG GTC CTA TAT CCT CGG CCA GGT GGG AGC TCG GTG GAG Asn Ala Pro Gin Val Leu Tyr Pro Arg Pro Gly Gly Ser Ser Val Glu 568	1845
ATG CTG CCT CGA GGT ACC TCA GCT GGC CAC CTA GTG TCA CGG GTG GTA Met Leu Pro Arg Gly Thr Ser Ala Gly His Leu Val Ser Arg Val Val 580	1893
GGC TGG GAC GGC GAT GGA GGG CAC AAT GCC TGG CTC TCC TAC AGT CTC Gly Trp Asp Ala Asp Ala Gly His Asn Ala Trp GDS FSS 600	1941
TTT GGA TCC CCT AAC CAG AGC CTT TTT GCC ATA GGG CTG CAC ACT GGT Phe Gly Ser Pro Asn Gln Ser Leu Phe Ala Ile Gly Leu His Thr Gly 610 625	1989
CAA ATC AGT ACT GCC CGT CCA GTC CAA GAC ACA GAT TCA CCC AGG CAG Gln Ile Ser Thr Ala Arg Pro Val Gln Asp Thr Asp Ser Pro Arg Gln 635 630	2037
ACT CTC ACT GTC TTG ATC AAA GAC AAT GGG GAG CCT TCG CTC TCC ACC Thr Leu Thr Val Leu Ile Lys Asp Asn Gly Glu Pro Ser Leu Ser Thr 650	2085
ACT GCT ACC CTC ACT GTG TCA GTA ACC GAG GAC TCT CCT GAA GCC CGA Thr Ala Thr Leu Thr Val Ser Val Thr Glu Asp Ser Pro Glu Ala Arg 660 665	2133
GCC GAG TTC CCC TCT GGC TCT GCC AGT TANACCTTCT TTANTTATGG Ala Glu Phe Pro Ser Gly Ser Ala Ser 675	2180
ATTAGCCATT AACATTTTTG AAACGTGGAC CATTTAACCT CGGCCTACCC CCTCCAACTG	2240
TCCTGGTGAT GAGTTCATTA GCTAAGTTAA ATTAATTGAA CTTTGATCTA AACCAAAACA	2300
AATCAGGAAA ATAAAGCTGT AAAGGAACTT ATCAAGCATT CCAAAACCAA CTAGAAATTA	2360
CTTGAAGTTT CGAGTGAGCA TTGCCTGTGC CAGTATTCTT CATTATAGGA TTATAAACTC	2420
GTTTTTTTCC CAAAGCGCAT GTCTACGCCA GGCAGAGGAG TAATTATTCA GCCAATTTCA	2480
TGGATGTAAC GATGGATATA AATAATTGAT AGCACCTAGA GGCTTCCAGT TTGGGTGGAA	2540
GGCTAAAAGT AGAGGGGAAC TCACTCACTT GAGAAATGAT ATTTAAGTGA ATAAATAGTT	2600
CTCTTCTATG AAACTATTAC TATTTAGTTC TCTGGAAAAC TTAAGTGTAT TAATGATTAG	2660
AACATCAAAT CCTAAGTAAA GAAATGACAT TTTAAATATA AAAAGCCAAA CTTTAAATAA	2720
ATCATAGAGA CCTCAGACAT AATATAGGAA A	2751

## (2) INFORMATION FOR SEQ ID NO:107:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 682 amino acids
    (B) TYPE: amino acid
    (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:107: Met Val Pro Glu Ala Trp Arg Ser Gly Leu Val Ser Thr Gly Arg Val Val Gly Val Leu Leu Leu Gly Ala Leu Asn Lys Ala Ser Thr Val 20 25 30 Ile His Tyr Glu Ile Pro Glu Glu Arg Glu Lys Gly Phe Ala Val Gly Asn Val Val Ala Asn Leu Gly Leu Asp Leu Gly Ser Leu Ser Ala Arg Arg Phe Pro Val Val Ser Gly Ala Ser Arg Arg Phe Phe Glu Val Asn 65 70 75 80 Arg Glu Thr Gly Glu Met Phe Val Asn Asp Arg Leu Asp Arg Glu Glu 85 Leu Cys Gly Thr Leu Pro Ser Cys Thr Val Thr Leu Glu Leu Val Val 100 105 110 Glu Asn Pro Leu Glu Leu Phe Ser Val Glu Val Val Ile Gln Asp Ile 115 120 125 Asn Asp Asn Asn Pro Ala Phe Pro Thr Gln Glu Met Lys Leu Glu Ile 130 135 140 Ser Glu Ala Val Ala Pro Gly Thr Arg Phe Pro Leu Glu Ser Ala His 145 150 155 160 Asp Pro Asp Leu Gly Ser Asn Ser Leu Gln Thr Tyr Glu Leu Ser Arg 165 170 175Asn Glu Tyr Phe Ala Leu Arg Val Gln Thr Arg Glu Asp Ser Thr Lys Tyr Ala Glu Leu Val Leu Glu Arg Ala Leu Asp Arg Glu Arg Glu Pro 195 200 205 Ser Leu Gln Leu Val Leu Thr Ala Leu Asp Gly Gly Thr Pro Ala Leu 210 215 220 Ser Ala Ser Leu Pro Ile His Ile Lys Val Leu Asp Ala Asn Asp Asn 225 230 235 240 Ala Pro Val Phe Asn Gln Ser Leu Tyr Arg Ala Arg Val Pro Gly Gly 245 250 255 Cys Thr Ser Gly Thr Arg Val Val Gln Val Leu Ala Thr Asp Leu Asp 260 265 270Glu Gly Pro Asn Gly Glu Ile Ile Tyr Ser Phe Gly Ser His Asn Arg 275 280 285 Ala Gly Val Arg Gln Leu Phe Ala Leu Asp Leu Val Thr Gly Met Leu 290 295 300 Thr Ile Lys Gly Arg Leu Asp Phe Glu Asp Thr Lys Leu His Glu Ile 305 310 315 320

Tyr Ile Gln Ala Lys Asp Lys Gly Ala Asn Pro Glu Gly Ala His Cys 325 330 335 Lys Val Leu Val Glu Val Val Asp Val Asn Asp Asn Ala Pro Glu Ile 340 345 350Thr Val Thr Ser Val Tyr Ser Pro Val Pro Glu Asp Ala Ser Gly Thr 355 360 365 Val Ile Ala Leu Leu Ser Val Thr Asp Leu Asp Ala Gly Glu Asn Gly 370 380 Leu Val Thr Cys Glu Val Pro Pro Gly Leu Pro Phe Ser Leu Thr Ser 385 390 395 400 Ser Leu Lys Asn Tyr Phe Thr Leu Lys Thr Ser Ala Asp Leu Asp Arg 405 410 415 Glu Thr Val Pro Glu Tyr Asn Leu Ser Ile Thr Ala Arg Asp Ala Gly  $420 \hspace{1.5cm} 425 \hspace{1.5cm} 430$ Thr Pro Ser Leu Ser Ala Leu Thr Ile Val Arg Val Gln Val Ser Asp 435 440 445 Ile Asn Asp Asn Pro Pro Gln Ser Ser Gln Ser Ser Tyr Asp Val Tyr
450 455 460 Ile Glu Glu Asn Asn Leu Pro Gly Ala Pro Ile Leu Asn Leu Ser Val 465 470 475 480 Trp Asp Pro Asp Ala Pro Gln Asn Ala Arg Leu Ser Phe Phe Leu Leu 485 490 495 Glu Gln Gly Ala Glu Thr Gly Leu Val Gly Arg Tyr Phe Thr Ile Asn 500 505 510 Arg Asp Asn Gly Ile Val Ser Ser Leu Val Pro Leu Asp Tyr Glu Asp 515 520 525 Arg Arg Glu Phe Glu Leu Thr Ala His Ile Ser Asp Gly Gly Thr Pro 530 540 Val Leu Ala Thr Asn Ile Ser Val Asn Ile Phe Val Thr Asp Arg Asn 545 550 555 560 Asp Asn Ala Pro Gln Val Leu Tyr Pro Arg Pro Gly Gly Ser Ser Val 565 570 575 Glu Met Leu Pro Arg Gly Thr Ser Ala Gly His Leu Val Ser Arg Val 580 585 590 Val Gly Trp Asp Ala Asp Ala Gly His Asn Ala Trp Leu Ser Tyr Ser 595 600 605 Leu Phe Gly Ser Pro Asn Gln Ser Leu Phe Ala Ile Gly Leu His Thr 610 620 Gly Gln Ile Ser Thr Ala Arg Pro Val Gln Asp Thr Asp Ser Pro Arg 625 630 635 640

Gln Thr Leu Thr Val Leu Ile Lys Asp Asn Gly Glu Pro Ser Leu Ser Thr Thr Ala Thr Leu Thr Val Ser Val Thr Glu Asp Ser Pro Glu Ala 660 665 670

Arg Ala Glu Phe Pro Ser Gly Ser Ala Ser

- (2) INFORMATION FOR SEQ ID NO:108:
  - (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2831 base pairs

    - (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: cDNA
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:

GAATTCGGCA	CGAGGCTGAA	CTGAGGGTGA	CGGACATAAA	CGACTATTCT	CCAGTGTTCA	60
GTGAAAGAGA	AATGATACTG	AGGATACCAG	AAAACAGTGC	TCGGGGAAAT	ACATTCCCTT	120
TAAACAATGC	TCTGGACTCA	GACGTAGATA	TCAACAATAT	CCAGACCTAT	AGGCTCAGCT	180
CAAACTCTCA	TTTCCTGGTT	GTAACCCGCA	ACCGCAGTGA	TGGCAGGAAG	TACCCAGAGC	240
TGGTGCTGGA	GAAAGAACTG	GATCGAGAGG	AGGAACCTGA	GCTGAGGTTA	ACGCTGACAG	300
CTTTGGATGG	TGGCTCTCCT	CCCCGGTCTG	GGACGACACA	GGTCCTCATT	GAAGTAGTGG	360
ACACCAACGA	TAATGCACCC	GAGTTTCAGC	AGCCAACATA	CCAAGTGCAA	ACTCCCGAGA	420
ACAGTCCCAC	CGGCTCTCTG	GTACTCACAG	TCTCAGCCAA	TGACTTAGAC	AGTGGAGACT	480
ATGGGAAAGT	CTTGTACGCA	CTTTCGCAAC	CCTCAGAAGA	TATTAGCAAA	ACATTCGAGG	540
TAAACCCTGT	AACCGGGGAA	ATTCGCCTAC	GAAAAGAGGT	GAATTTTGAA	ACTATTCCTT	600
CGTATGAAGT	GGTTATCAAG	GGGACGGACG	GGGGAGGTCT	CTCAGGAAAA	TGCACTCTGT	660
TACTGCAGGT	GGTGGACGTG	AATGACAATG	CCCCAGAAGT	GATGCTATCT	GCGCTAACCA	720
ACCCAGTCCC	AGAAAATTCC	CCCGATGAGG	TAGTGGCTGT	TTTCAGTGTT	AGAGATCCTG	780
actctgggaa	CAACGGAAAA	GTGATTGCAT	CCATCGAGGA	AGACCTGCCC	TTTCTTCTAA	840
AATCTTCAGG	AAAGAACTTT	TACACTTTAG	TAACCAAGGG	AGCACTTGAC	AGGGAAGAAA	900
GAGAGCAATT	GAACATCACC	ATCACAGTCA	CTGACCTGGG	CATACCCAGG	CTCACCACCC	960
AACACACCAT	AACAGTGCAG	GTGGCAGACA	TCAACGACAA	TGCCCCCTCC	TTCACCCAAA	1020
CCTCCTACAC	CATGTTTGTC	CGCGAGAACA	ACAGCCCCGC	CCTGCACATA	GGCACCATCA	1080
GCGCCACAGA	CTCAGACTCA	GGATCCAATG	CCCACATCAC	CTACTCGCTG	CTACCGCCCC	1140

ARGACCCACA GCTGGCCCTC GACTCGCTCA TCTCCATCAA TGTAGACAAC GGGCAGCTGT 1200 TCGCGCTCAG GGCGCTAGAC TATGAGGCTC TGCAGGGCTT CGAGTTCCAT GTGGGCGCCA 1260 CAGACCAAGG CTCGCCCGCG CTCAGCAGCC AGGCTCTGGT GCACGTGGTG GTGTTGGACG 1320 ACAATGACAA TGCGCCCTTC GTGCTCTACC CGCTGCAAAA CGCCTCTGCA CCCTTCACTG 1380 AGCTGCTGCC CAGGGCGGCA GAGCCTGGAT ACCTGGTTAC CAAGGTGGTA GCTGTGGACC 1440 GCGACTCTGG CCAGAATGCC TGGCTGTCAT TCCAGCTGCT CAAGGCCACG GAGCCCGGGC 1500 TGTTCAACGT ATGGGCGCAC AATGGCGAGG TACGCACCTC CAGGCTGCTG AGCGAGCGCG 1560 ACGCACCCAA GCACAAGCTG CTGCTGTTGG TCAAGGACAA TGGAGATCCT CCACGCTCTG 1620 CCAGTGTTAC TCTGCACGTG CTAGTGGTGG ATGCCTTCTC TCAGCCCTAC CTGCCTCTGC 1680 CAGAGGTGGC GCACGACCCT GCACAAGAAG AAGATGCGCT AACACTCTAC CTGGTCATAG 1740 CTTTGGCATC TGTGTCTTCT CTCTTCCTCT TGTCTGTGCT GCTGTTCGTG GGGGTGAGGC 1800 TCTGCAGGAG GGCCAGGGCA GCCTCTCTGA GTGCCTATTC TGTGCCTGAA GGCCACTTTC 1860 CTGGCCAGCT GGTGGATGTC AGAGGTATGG GGACCCTGTC CCAGAGCTAC CAGTATGATG 1920 TATGTCTGAT GGGGGATTCT TCTGGGACCA GCGAATTTAA CTTCTTAAAG CCAGTTCTGC 1980 CTAGCTCTCT GCACCAGTGC TCTGGGAAAG AAATAGAGGA AAATTCCACA CTCCAGAATA 2040 GTTTTGGGTT TCATCATTAA TAGAAAACTA CTTTACAGAT ATTTAATTCC AAATATCATC 2100 TIGITGATTA ACTARAGICI GITCACATGI AGCTAGCIAG CARCGATITI AATGITCACI 2160 TTACCCATCT TTTTTCAGGG TCATGTCTAA AGCTACAAGT TTGNCTTTAC TTATACTTGT 2220 CGCACAGAAT NNNNNNNN TGGTGTATAA GTCACAGTCA TGGGATACTG GCACAAGATG 2280 GCAGCTTGAT TGCTCAGTTA TGGCTGCAAA GGGGNGCTTG AGTTTAGGGA ATGTGTTAGA 2340 GCTGGAATAA GTTTTCTGAG AAATGTGTAA GACAAATTTC TTTTGCACAT TCCCTGTGTT 2400 CCTGTACCCC TGTTTCCAGA ACTACGAAAT GTGTCATCAG AAGGCATGCT CACATTTTCC 2460 CCTTTGTTTG CGTGACCCGG GTGCCAGAAA TTAAATAAAA TTAGCATGGA GTTCAATGCA 2520 GCATTAAAAC AAAGTTACTT CTACAAACCT TTTATTCGAC GGTTAAAATT GTAACTTCCC 2580 CACCCATGAG GCTGGCTGTA AGAACCAGTA TGAATGGGTG TCTATCGCAA CCTTATTTTC 2640 AAAAATCAAA CAAAAGGAGA AATGAGAGAC CAAACAACAC GCTACAGGAA AGATTTCATA 2700 AGGATGTATG TATGGACACA AAAACTGGGA TACAGACATT TTAAATCTGT TGGTACCACA 2760 TGGTGGCGCT GCAGGCTAAA GAAATGCAAG GGAAATTAAA AAGAGGCTGA GCTAGAAGTC 2820 AAAAAAAAA A 2831

#### (2) INFORMATION FOR SEQ ID NO:109:

# (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3353 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA

- (ix) FEATURE:
  (A) NAME/KEY: CDS
  (B) LOCATION: 763..3123

#### (xi) SEQUENCE DESCRIPTION: SEO ID NO:109:

(X1) SEQUENCE DESCRIPTION: SEQ ID NO:109:	
GTATTTTTCC ACAGTTTAAA ATTTTCATAA AATCATAACT CTCTGACTTT ATGTAGAAAG	60
GATACCACAC TGGAATTAAC GTGTAGCTTT TTCTTGATGT AATCCAACCA ATGGGAGCAC	120
AATTCTGGTA CATAGGCTGT CTAGAATTTG AAAGAAATTA AAGAATTCAT TTTGTTTTGC	180
TGATAAATTT TTAAGAAATC ACGTGGCTTT ATGTTATTAT TATTACAAGA TGACTGATCA	240
CTATTATGTC TTCTTTCACT TCTCAATTTC CCTCAGAACA CTACACCCAG ACTACAGGCT	300
CTGGAGGGTG GGGACCATGT CTGGGTTGTT TACTGATGTA TTTCATAATT TGGCACATAG	360
AGACCAATAA TACTCCTTTA AATGAAGAAA TTAATAATTA CCATTGCGTG ATATTGTGAT	420
TACATCATTT CCTCCCAATT TCCAAACTCC TAATAGAATA GAGAATAGAT CAATTGTAGC	480
AATTCGTTTC GAAGCAAAGA CAACGCATGG TGGCGCTGCA GGCTAAGGCT TCAAAAAAAG	540
GAAAAGGAAA AAGCCCATGA AATGCTACTA GCTACTTCAG ACCTCTTTCA GCCTAAGAGG	600
AAAGCCTGTT AGCAGAGCAC GGACCAGTGT CTCCGGAGAA TGCTATTCTC CTACATTTCC	660
GAACAGGTTA TCAACGCACA GATCGATCAC TGCCTCTGTC CCATCGCTCC CTGAAGTAGC	720
TCTGACTCCG GTTCCTTGAA AGGGGCGTGT ACAGAAGTAA AC ATG GAG CCT GCA Met Glu Pro Ala 1	774
GGG GAG CGC TTT CCC GAA CAA AGG CAA GTC CTG ATT CTC CTT CTT TTA Gly Glu Arg Phe Pro Glu Gln Arg Gln Val Leu Ile Leu Leu Leu Leu 5 10 20	822
CTG GAA GTG ACT CTG GCA GGC TGG GAA CCC CGT CGC TAT TCT GTG ATG Leu Glu Val Thr Leu Ala Gly Trp Glu Pro Arg Arg Tyr Ser Val Met 35	870
GAG GAA ACA GAG AGA GGT TCT TTT GTA GCC AAC CTG GCC AAT GAC CTA Glu Glu Thr Glu Arg Gly Ser Phe Val Ala Asn Leu Ala Asn Asp Leu 40 45 50	918
GGG CTG GGA GTG GGG GAG CTA GCC GAG CCG GGA GCC CGG GTA GTT TCT Gly Leu Gly Ala Gly Glu Leu Ala Glu Arg Gly Ala Arg Val Val Ser $^{65}_{55}$	966

		AAC Asn														1014
		AAT Asn														1062
		ATA Ile														1110
		GCT Ala														1158
		GAA Glu 135														1206
		GTG Val														1254
		GTT Val														1302
		CGC Arg														1350
GAC Asp	ACA Thr	GAA Glu	CTG Leu 200	GAT Asp	CGC Arg	GAG Glu	GAG Glu	CAG Gln 205	GCC Ala	GAG Glu	CTC Leu	AGA Arg	TTA Leu 210	ACC Thr	TTG Leu	1398
		GTG Val 215														1446
CTC Leu	ATC Ile 230	TTG Leu	GTC Val	TTG Leu	GAC Asp	GCC Ala 235	AAT Asn	GAC Asp	AAT Asn	GCC Ala	CCG Pro 240	GAG Glu	TTT Phe	GTG Val	CAG Gln	1494
GCG Ala 245	CTC Leu	TAC Tyr	GAG Glu	GTG Val	CAG Gln 250	GTC Val	CCA Pro	GAG Glu	AAC Asn	AGC Ser 255	CCA Pro	GTA Val	GGC Gly	TCC Ser	CTA Leu 260	1542
		AAG Lys														1590
		TAC Tyr														1638
GAG Glu	CTA Leu	AGC Ser 295	AGC Ser	CTT Leu	TCA Ser	GGA Gly	GAA Glu 300	ATT Ile	CGA Arg	CTA Leu	ATT Ile	AAA Lys 305	AAA Lys	CTA Leu	GAT Asp	1686

		ACA Thr														1734
	Gly	CTT				Cys										1782
AAC Asn	GAT Asp	AAC Asn	TTC Phe	CCG Pro 345	GAA Glu	CTA Leu	AGT Ser	ATT Ile	TCA Ser 350	TCA Ser	CTT Leu	ACC Thr	AGC Ser	CCT Pro 355	ATT Ile	1830
Pro	GAG Glu	AAT Asn	TCT Ser 360	CCA Pro	GAG Glu	ACA Thr	GAA Glu	GTG Val 365	GCC Ala	CTG Leu	TTT Phe	AGG Arg	ATT Ile 370	AGA Arg	GAC Asp	1878
CGA Arg	GAC Asp	TCT Ser 375	GGA Gly	GAA Glu	AAT Asn	GGA Gly	AAA Lys 380	ATG Met	ATT Ile	TGC Cys	TCA Ser	ATT Ile 385	CAG Gln	GAT Asp	GAT Asp	1926
GTT Val	CCT Pro 390	TTT Phe	AAG Lys	CTA Leu	AAA Lys	CCT Pro 395	TCT Ser	GTT Val	GAG Glu	AAT Asn	TTC Phe 400	TAC Tyr	AGG Arg	CTG Leu	GTA Val	1974
ACA Thr 405	GAA Glu	GGG Gly	GCG Ala	CTG Leu	GAC Asp 410	AGA Arg	GAG Glu	ACC Thr	AGA Arg	GCC Ala 415	GAG Glu	TAC Tyr	AAC Asn	ATC Ile	ACC Thr 420	2022
ATC Ile	ACC Thr	ATC Ile	ACA Thr	GAC Asp 425	TTG Leu	GGG Gly	ACT Thr	CCA Pro	AGG Arg 430	CTG Leu	AAA Lys	ACC Thr	GAG Glu	CAG Gln 435	AGC Ser	2070
ATA Ile	ACC Thr	GTG Val	CTG Leu 440	GTG Val	TCG Ser	GAC Asp	GTC Val	AAT Asn 445	GAC Asp	AAC Asn	GCC Ala	CCC Pro	GCC Ala 450	TTC Phe	ACC Thr	2118
CAA Gln	ACC Thr	TCC Ser 455	TAC Tyr	ACC Thr	CTG Leu	TTC Phe	GTC Val 460	CGC Arg	GAG Glu	AAC Asn	AAC Asn	AGC Ser 465	CCC Pro	GCC Ala	CTG Leu	2166
CAC His	ATC Ile 470	GGC Gly	AGT Ser	GTC Val	AGC Ser	GCC Ala 475	ACA Thr	GAC Asp	AGA Arg	GAC Asp	TCG Ser 480	GGC Gly	ACC Thr	AAC Asn	GCC Ala	2214
CAG Gln 485	GTC Val	ACC Thr	TAC Tyr	TCG Ser	CTG Leu 490	CTG Leu	CCG Pro	CCC Pro	CAG Gln	GAC Asp 495	CCG Pro	CAC His	CTG Leu	CCC Pro	CTA Leu 500	2262
ACC Thr	TCC Ser	CTG Leu	GTC Val	TCC Ser 505	ATT Ile	AAC Asn	ACG Thr	GAC Asp	AAC Asn 510	GG <b>C</b> Gly	CAC His	CTG Leu	TTC Phe	GCT Ala 515	CTC Leu	2310
CAG Gln	TCG Ser	CTG Leu	GAC Asp 520	TAC Tyr	GAG Glu	GCC Ala	CTG Leu	CAG Gln 525	GCT Ala	TTC Phe	GAG Glu	TTC Phe	CGC Arg 530	GTG Val	GGC Gly	2358
GCC Ala	ACA Thr	GAC Asp 535	CGC Arg	GGC Gly	TTC Phe	CCG Pro	GCG Ala 540	CTG Leu	AGC Ser	AGC Ser	GAG Glu	GCG Ala 545	CTG Leu	GTG Val	CGA Arg	2406

									110							
		GTG Val														2454
	Gln	AAC Asn														2502
		GGC Gly														2550
GGC Gly	CAG Gln	AAC Asn	GCC Ala 600	TGG Trp	CTG Leu	TCG Ser	TAC Tyr	CAG Gln 605	CTG Leu	CTC Leu	AAG Lys	GCC Ala	ACG Thr 610	GAG Glu	CCC Pro	2598
		TTC Phe 615														2646
CTG Leu	CTG Leu 630	AGC Ser	GAG Glu	CGC Arg	GAC Asp	GTG Val 635	GCC Ala	AAG Lys	CAC His	AGG Arg	CTA Leu 640	GTG Val	GTG Val	CTG Leu	GTC Val	2694
AAG Lys 645	GAC Asp	AAT Asn	GGC Gly	GAG Glu	CCT Pro 650	CCG Pro	CGC Arg	TCG Ser	GCC Ala	ACA Thr 655	GCC Ala	ACG Thr	CTG Leu	CAA Gln	GTG Val 660	2742
		GTG Val														2790
GCC Ala	CCG Pro	GCC Ala	CAA Gln 680	GCC Ala	CAG Gln	GCC Ala	GAC Asp	TCG Ser 685	CTT Leu	ACC Thr	GTC Val	TAC Tyr	CTG Leu 690	GTG Val	GTG Val	2838
GCA Ala	TTG Leu	GCC Ala 695	TCG Ser	GTG Val	TCT Ser	TCG Ser	CTC Leu 700	TTC Phe	CTC Leu	TTC Phe	TCG Ser	GTG Val 705	TTC Phe	CTG Leu	TTC Phe	2886
GTG Val	GCA Ala 710	GTG Val	CGG Arg	CTG Leu	TGC Cys	AGG Arg 715	AGG Arg	AGC Ser	AGG Arg	GCG Ala	GCC Ala 720	TCA Ser	GTG Val	GGT Gly	CGC Arg	2934
TGC Cys 725	TCG Ser	GTG Val	CCC Pro	GAG Glu	GGC Gly 730	CCC Pro	TTT Phe	CCA Pro	GGG Gly	CAT His 735	CTG Leu	GTG Val	GAC Asp	GTG Val	AGC Ser 740	2982
GGC	ACC Thr	GGG Gly	ACC Thr	CTT Leu 745	TCC Ser	CAG Gln	AGC Ser	TAC Tyr	CAG Gln 750	TAC Tyr	GAG Glu	GTG Val	TGT Cys	CTG Leu 755	ACG Thr	3030
GGA Gly	GGC Gly	TCT Ser	GAA Glu 760	AGT Ser	AAT Asn	GAT Asp	TTC Phe	AAG Lys 765	TTC Phe	TTG Leu	AAG Lys	CCT Pro	ATA Ile 770	TTC Phe	CCA Pro	3078
AAT Asn	ATT Ile	GTA Val 775	AGC Ser	CAG Gln	GAC Asp	TCT Ser	AGG Arg 780	AGG Arg	AAA Lys	TCA Ser	GAA Glu	TTT Phe 785	CTA Leu	GAA Glu		3123
TAAT	GTAC	GT A	TCT	TAGO	T T	CCG	CCGI	CTC	TTA	TTT	TGT	CTTCC	TC F	CTTI	TCACC	3183

TTAGTTTTTT	TTAACCCTTT	AGTAATCTTG	AATTCTACTT	TTTTTTAAAT	TTCTACTGTT	3243
GTCTTTAGTA	ATGTTACTCA	TTTCCTTTGT	CTGATTGTTA	GTTTTCAAAT	TATTGTATTA	3303
TTATAAATAT	TTTATATCAG	GAAAGTTCAT	ATTTCTGAAT	AAATTAATAG		3353

#### (2) INFORMATION FOR SEQ ID NO:110:

- (i) SEQUENCE CHARACTERISTICS:
  (A) LENGTH: 787 amino acids

  - (B) TYPE: amino acid (D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:110: Met Glu Pro Ala Gly Glu Arg Phe Pro Glu Gln Arg Gln Val Leu Ile 1 5 10 15 Leu Leu Leu Leu Glu Val Thr Leu Ala Gly Trp Glu Pro Arg Arg Tyr Ser Val Met Glu Glu Thr Glu Arg Gly Ser Phe Val Ala Asn Leu Ala Asn Asp Leu Gly Leu Gly Val Gly Glu Leu Ala Glu Arg Gly Ala 50 60 Arg Val Val Ser Glu Asp Asn Glu Gln Gly Leu Gln Leu Asp Leu Gln 65 70 75 80 Thr Gly Gln Leu Ile Leu Asn Glu Lys Leu Asp Arg Glu Lys Leu Cys
85 90 95 Gly Pro Thr Glu Pro Cys Ile Met His Phe Gln Val Leu Leu Lys Lys Pro Leu Glu Val Phe Arg Ala Glu Leu Leu Val Thr Asp Ile Asn Asp His Ser Pro Glu Phe Pro Glu Arg Glu Met Thr Leu Lys Ile Pro Glu 130 135 140 Thr Ser Ser Leu Gly Thr Val Phe Pro Leu Lys Lys Ala Arg Asp Leu 145 150 155 160 Asp Val Gly Ser Asn Asn Val Gln Asn Tyr Asn Ile Ser Pro Asn Ser 165 170 175 His Phe His Val Ser Thr Arg Thr Arg Gly Asp Gly Arg Lys Tyr Pro Glu Leu Val Leu Asp Thr Glu Leu Asp Arg Glu Glu Gln Ala Glu Leu Arg Leu Thr Leu Thr Ala Val Asp Gly Gly Ser Pro Pro Arg Ser Gly 210 215 220

Thr Val Gln Ile Leu Ile Leu Val Leu Asp Ala Asn Asp Asn Ala Pro Glu Phe Val Gln Ala Leu Tyr Glu Val Gln Val Pro Glu Asn Ser Pro 245 250 255 Val Gly Ser Leu Val Val Lys Val Ser Ala Arg Asp Leu Asp Thr Gly 260 265 270 Thr Asn Gly Glu Ile Ser Tyr Ser Leu Tyr Tyr Ser Ser Gln Glu Ile 275 280 285 Asp Lys Pro Phe Glu Leu Ser Ser Leu Ser Gly Glu Ile Arg Leu Ile 290 295 300 Lys Lys Leu Asp Phe Glu Thr Met Ser Ser Tyr Asp Leu Asp Ile Glu 305 310 315 320 Ala Ser Asp Gly Gly Gly Leu Ser Gly Lys Cys Ser Val Ser Val Lys Val Leu Asp Val Asn Asp Asn Phe Pro Glu Leu Ser Ile Ser Ser Leu 340 345 350Thr Ser Pro Ile Pro Glu Asn Ser Pro Glu Thr Glu Val Ala Leu Phe Arg Ile Arg Asp Arg Asp Ser Gly Glu Asn Gly Lys Met Ile Cys Ser 370 375 380 Ile Gln Asp Asp Val Pro Phe Lys Leu Lys Pro Ser Val Glu Asn Phe 385 390 395 400 Tyr Arg Leu Val Thr Glu Gly Ala Leu Asp Arg Glu Thr Arg Ala Glu 405 410 415Tyr Asn Ile Thr Ile Thr Ile Thr Asp Leu Gly Thr Pro Arg Leu Lys
420 425 430 Thr Glu Gln Ser Ile Thr Val Leu Val Ser Asp Val Asn Asp Asn Ala 435 440 445 Pro Ala Phe Thr Gln Thr Ser Tyr Thr Leu Phe Val Arg Glu Asn Asn 450 455 460 Ser Pro Ala Leu His Ile Gly Ser Val Ser Ala Thr Asp Arg Asp Ser 465 470 480 Gly Thr Asn Ala Gln Val Thr Tyr Ser Leu Leu Pro Pro Gln Asp Pro 485 490 495 His Leu Pro Leu Thr Ser Leu Val Ser Ile Asn Thr Asp Asn Gly His Leu Phe Ala Leu Gln Ser Leu Asp Tyr Glu Ala Leu Gln Ala Phe Glu 515 520 525 Phe Arg Val Gly Ala Thr Asp Arg Gly Phe Pro Ala Leu Ser Ser Glu 530 540

Ala Leu Val Arg Val Leu Val Leu Asp Ala Asn Asp Asn Ser Pro Phe Val Leu Tyr Pro Leu Gln Asn Gly Ser Ala Pro Cys Thr Glu Leu Val Pro Arg Ala Ala Glu Pro Gly Tyr Leu Val Thr Lys Val Val Ala Val 580 585 590 Asp Gly Asp Ser Gly Gln Asn Ala Trp Leu Ser Tyr Gln Leu Leu Lys 595 600 605 Ala Thr Glu Pro Gly Leu Phe Gly Val Trp Ala His Asn Gly Glu Val Arg Thr Ala Arg Leu Leu Ser Glu Arg Asp Val Ala Lys His Arg Leu 625 630 635 640 Val Val Leu Val Lys Asp Asn Gly Glu Pro Pro Arg Ser Ala Thr Ala 645 650 655 Thr Leu Gln Val Leu Leu Val Asp Gly Phe Ser Gln Pro Tyr Leu Pro 660 665 670 Leu Pro Glu Ala Ala Pro Ala Gln Ala Gln Ala Asp Ser Leu Thr Val Tyr Leu Val Val Ala Leu Ala Ser Val Ser Ser Leu Phe Leu Phe Ser 690 695 700 Val Phe Leu Phe Val Ala Val Arg Leu Cys Arg Arg Ser Arg Ala Ala 705 710 715 720 Ser Val Gly Arg Cys Ser Val Pro Glu Gly Pro Phe Pro Gly His Leu 725 730 735 Val Asp Val Ser Gly Thr Gly Thr Leu Ser Gln Ser Tyr Gln Tyr Glu 740 745 750 Val Cys Leu Thr Gly Gly Ser Glu Ser Asn Asp Phe Lys Phe Leu Lys 755 760 765 Pro Ile Phe Pro Asn Ile Val Ser Gln Asp Ser Arg Arg Lys Ser Glu 770 775 780

Phe Leu Glu 785

- (2) INFORMATION FOR SEQ ID NO:111:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 3033 base pairs
      - (B) TYPE: nucleic acid
      - (C) STRANDEDNESS: single
      - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: cDNA

- (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 138..2528

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:

(**	, 55	2021		bock		· ·	224		0.11	••					
GTGATTG	GAC	GTGT	TTTT	GT G	ACTA'	TTTG	G GA	AGAA	GACA	CCT	CCT	AAT	CAGA	TTTACT	60
CCAATAT	CTT	CCCG	GACC	CT C	ATGA	GTGG	A TT	GCAA	TTGA	CTT	GAAG	AAG	CAGC	ACCCTC	120
AGGACTG	AAT	CTGA											CAG Gln 10		170
AGG CAA Arg Gln	GTC Val	TTT Phe 15	TTT Phe	CTT Leu	ACT Thr	ATA Ile	TTG Leu 20	TCG Ser	TTA Leu	TTG Leu	TGG Trp	AAG Lys 25	TCT	AGC Ser	218
TCT GAG Ser Glu	GCC Ala 30	ATT Ile	AGA Arg	TAT Tyr	TCC Ser	ATG Met 35	CCA Pro	GAA Glu	GAA Glu	ACA Thr	GAG Glu 40	AGT Ser	GGC Gly	TAT Tyr	266
ATG GTG Met Val 45	Ala	AAC Asn	CTG Leu	GCG Ala	AAA Lys 50	GAT Asp	CTG Leu	GGG Gly	ATC Ile	AGG Arg 55	GTT Val	GGA Gly	GAA Glu	CTG Leu	314
TCC TCT Ser Ser 60	AGA Arg	GGA Gly	GCT Ala	CAA Gln 65	ATC Ile	CAT His	TAC Tyr	AAA Lys	GGA Gly 70	AAC Asn	AAA Lys	GAA Glu	CTT Leu	TTG Leu 75	362
CAG CTG Gln Leu	GAT Asp	GCA Ala	GAG Glu 80	ACT Thr	GGG Gly	AAT Asn	TTG Leu	TTC Phe 85	TTA Leu	AAG Lys	GAA Glu	AAA Lys	CTA Leu 90	GAC Asp	410
AGA GAA Arg Glu	CTG Leu	CTG Leu 95	TGT Cys	GGA Gly	GAG Glu	ACA Thr	GAA Glu 100	CCC Pro	TGT Cys	GTG Val	CTG Leu	AAC Asn 105	TTC Phe	CAG Gln	458
ATC ATA Ile Ile	CTG Leu 110	GAA Glu	AAC Asn	CCT Pro	ATG Met	CAG Gln 115	TTC Phe	TTC Phe	CAA Gln	ACT Thr	GAA Glu 120	CTG Leu	CAG Gln	CTC Leu	506
ACA GAT Thr Asp 125	ATA Ile	AAC Asn	GAC Asp	CAT His	TCT Ser 130	CCA Pro	GAG Glu	TTC Phe	CCC Pro	AAC Asn 135	AAG Lys	AAA Lys	ATG Met	CTT Leu	554
CTA ACA Leu Thr 140	ATT Ile	CCT Pro	GAG Glu	AGT Ser 145	GCC Ala	CAT His	CCA Pro	GGG Gly	ACT Thr 150	GTG Val	TTT Phe	CCT Pro	CTG Leu	AAG Lys 155	602
GCA GCT Ala Ala	CGG Arg	GAC Asp	TCT Ser 160	GAC Asp	ATA Ile	GGG Gly	AGC Ser	AAC Asn 165	GCT Ala	GTT Val	CAG Gln	AAC Asn	TAC Tyr 170	ACA Thr	650
GTC AAT Val Asn	CCC Pro	AAC Asn 175	CTC Leu	CAT His	TTC Phe	CAC His	GTC Val 180	GTT Val	ACT Thr	CAC His	AGT Ser	CGC Arg 185	ACA Thr	GAT Asp	698

GGC Gly	AGG Arg	AAA Lys 190	TAC Tyr	CCA Pro	GAG Glu	CTG Leu	GTG Val 195	CTG Leu	GAC Asp	AGA Arg	GCC Ala	CTG Leu 200	GAT Asp	AGG Arg	GAG Glu	74	6
	CAG Gln 205														GCT Ala	79	4
	TCC Ser															84	2
	GAT Asp															89	0
	GAG Glu															93	8
	TTA Leu															98	6
	TAT Tyr 285															103	4
	CAT His															108	2
	GAA Glu															113	0
	GCT Ala															117	В
	AGG Arg															122	6
	GCT Ala 365															127	4
	GTG Val															132:	2
	GAG Glu															137	0
AAC Asn	AGA Arg	GCT Ala	GAG Glu 415	TAC Tyr	AAC Asn	ATC Ile	ACC Thr	ATC Ile 420	ACG Thr	GTC Val	TCA Ser	GAT Asp	CTG Leu 425	GGC Gly	ACA Thr	141	В

Pro	AGG Arg	Leu 430	Thr	ACC	G1n	CAC His	ACC Thr 435	Ile	ACA Thr	GTG Val	Gln	Val 440	Ser	Asp	ATC Ile		1466
AAC	GAC Asp 445	Asn	GCC	Pro	GCC Ala	Phe 450	Thr	CAA Gln	ACC	TCC Ser	TAC Tyr 455	Thr	ATG Met	TTT Phe	GTC Val		1514
CAC His 460	Glu	AAC	AAC	AGC Ser	Pro 465	GCC	CTG Leu	CAC	ATA Ile	GGC Gly 470	Thr	ATC	AGT Ser	GCC Ala	ACA Thr 475		1562
GAC Asp	TCA Ser	GAC Asp	TCA Ser	GGC Gly 480	TCC	AAT Asn	GCC Ala	CAC	ATC Ile 485	ACC Thr	TAC	TCG Ser	CTG Leu	CTG Leu 490	CCG Pro		1610
Pro	Asp	Asp	Pro 495	Gln	Leu	GCC Ala	Leu	Asp 500	Ser	Leu	Ile	Ser	Ile 505	Asn	Val		1658
Asp	Asn	510	Gln	Leu	Phe	GCG Ala	Leu 515	Arg	Ala	Leu	Asp	Tyr 520	Glu	Ala	Leu		1706
Gln	525	Phe	Glu	Phe	Tyr	GTG Val 530	Gly	Ala	Thr	Asp	Gly 535	Gly	Ser	Pro	Ala		1754
540	Ser	Ser	Gln	Thr	Leu 545	GTG Val	Arg	Met	Val	Val 550	Leu	Asp	Asp	Asn	Asp 555		1802
VPII	AIG	PIO	Pne	560	Leu	TAC Tyr	Pro	Leu	565	Asn	Ala	Ser	Ala	Pro 570	Сув		1850
Inr	Glu	Leu	575	Pro	Arg	GCA Ala	Ala	Glu 580	Pro	Gly	Tyr	Leu	Ile 585	Thr	Lys		1898
Vai	vai	590	Val	Asp	Arg	GAC Asp	Ser 595	Gly	Gln	Asn	Ala	Trp 600	Leu	Ser	Phe		1946
CAG Gln	CTA Leu 605	CTT Leu	AAA Lys	GCT Ala	ACA Thr	GAG Glu 610	CCA Pro	GGG Gly	CTG Leu	TTC Phe	AGT Ser 615	GTA Val	TGG Trp	GCA Ala	CAC His		1994
AAT Asn 620	GGT Gly	GAA Glu	GTG Val	Arg	ACC Thr 625	ACT Thr	AGG Arg	CTG Leu	CTG Leu	AGT Ser 630	GAG Glu	CGA Arg	GAT Asp	GCT Ala	CAG Gln 635		2042
Lys	HIS	Lys	Leu	Leu 640	Leu	CTG Leu	Val	Lys	Asp 645	Asn	Gly	Asp	Pro	Leu 650	Arg		2090
TCT Ser	GCC Ala	ABN	GTC Val 655	ACT Thr	CTT Leu	CAC His	Val	CTA Leu 660	GTG Val	GTG Val	GAT Asp	Gly	TTC Phe 665	TCG Ser	CAG Gln	:	2138

CCT TAC CTA CCA TTG GCT GAG GTG GCA CAG GAT TCC ATG CAA GAT AAT Pro Tyr Leu Pro Leu Ala Glu Val Ala Gln Asp Ser Met Gln Asp Asn 670 680	2186
TAC GAC GTT CTC ACA CTG TAC CTA GTC ATT GCC TTG GCA TCT GTA TCT TYR Asp Val Leu Thr Leu Tyr Leu Val Ile Ala Leu Ala Ser Val Ser 685	2234
TCT CTC TTC CTC TTC TCT GTA GTG CTC TTT GTG GGG GTG AGG CTC TGC Ser Leu Phe Leu Leu Ser Val Val Leu Phe Val Gly Val Arg Leu Cys 700 715	2282
AGG AGG GCC AGG GAG GCC TCC TTG GGT GAC TAC TCT GTG CCT GAG GGA Arg Arg Ala Arg Glu Ala Ser Leu Gly Amp Tyr Ser Val Pro Glu Gly 725 $^{\prime}$ 720 $^{\prime}$	2330
CAC TTT CCT AGC CAC TTG GTC GAT GTC AGC GGT GCC GGG ACC CTG TCC His Phe Pro Ser His Leu Val Asp Val Ser Gly Ala Gly Thr Leu Ser 735 740	2378
CAG AGT TAT CAA TAT GAG GTC TGT CTT AAT GGA GGT ACT AGA ACA AAT GIn Ser Tyr Gln Tyr Glu Val Cys Leu Asn Gly Gly Thr Arg Thr Asn $750$	2426
GAG TTT AAC TTT CTT AAA CCA TTG TTT CCT ATC CTT CCG ACC CAG GCT Glu Phe Asn Phe Leu Lys Pro Leu Phe Pro IL Leu Pro Thr Gln Ala 765 770	2474
GCT GCT GCT GAA GAA AGA GAA AAC GCT GTT GTG CAC AAT AGC GTT GGA Ala Ala Ala Glu Glu Arg Glu Arn Ala Val Val His Arn Ser Val Gly 785 795	2522
TIC TAT TAGAGCACTG ATTITGAAGT GGTGGTTACC TCATTTTTCC TTAACTATCC Phe Tyr	2578
CTGATGTAGA ATGGTGTAGT GCCGTGAATC AACTCCTGAG ATATATGTTC ATTTTATCCT	2638
TTGTTTTGAA TCAAACTATT CAGATGTGAT CCTACTCTAG AGAATTTGGT TCTACTCCAT	2698
TGTGTTTGTT TAGATTTCTA CGCCATACCA GTGCATGCTG GGTTGTTTTT TTTTTTACAA	2758
TTATTATAAC TTTGCTTTGG AGGGGAACTC ATATTCGCTG TAACGAATTG GAACCACTTT	2818
CATTGTTAGA GATGCCTTGC TTTGTTGTGT TATTTCAGAC AGGGTCTTAA ATTGTAGCCC	2878
TGGGTGACCT GAAATGACTA TGTACAGACT GACTTTGAAT TTGTGGCAGT CCATCTGCCT	2938
CTGTTGTCCT ATGTTGGGAT TGTGAGCATG CATGAGTAGG CTCAGCTGTG GTGAGCGACC	2998
ТТААТАААА ТСАААТАСТА ААААААААА ААААА	3033

# (2) INFORMATION FOR SEQ ID NO:112:

- (i) SEQUENCE CHARACTERISTICS:
  (A) LENGTH: 797 amino acids
  (B) TYPE: amino acid
  (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:

Met Glu Thr Ala Leu Ala Lys Ile Pro Gln Gln Arg Gln Val Phe Phe 1 5 10 15 Leu Thr Ile Leu Ser Leu Leu Trp Lys Ser Ser Ser Glu Ala Ile Arg Tyr Ser Met Pro Glu Glu Thr Glu Ser Gly Tyr Met Val Ala Asn Leu 35 40 45 Ala Lys Asp Leu Gly Ile Arg Val Gly Glu Leu Ser Ser Arg Gly Ala Gln Ile His Tyr Lys Gly Asn Lys Glu Leu Leu Gln Leu Asp Ala Glu 65 70 75 80 Thr Gly Asn Leu Phe Leu Lys Glu Lys Leu Asp Arg Glu Leu Leu Cys Gly Glu Thr Glu Pro Cys Val Leu Asn Phe Gln Ile Ile Leu Glu Asn 100 \$100\$Pro Met Gln Phe Phe Gln Thr Glu Leu Gln Leu Thr Asp Ile Asn Asp 115 120 125 His Ser Pro Glu Phe Pro Asn Lys Lys Met Leu Leu Thr Ile Pro Glu 130 135 140 Ser Ala His Pro Gly Thr Val Phe Pro Leu Lys Ala Ala Arg Asp Ser 145 150 155 160 Asp Ile Gly Ser Asn Ala Val Gln Asn Tyr Thr Val Asn Pro Asn Leu 165 170 175 His Phe His Val Val Thr His Ser Arg Thr Asp Gly Arg Lys Tyr Pro 180 185 190 Glu Leu Val Leu Asp Arg Ala Leu Asp Arg Glu Glu Glu Pro Glu Leu 195 200 205 Thr Leu Ile Leu Thr Ala Leu Asp Gly Gly Ala Pro Ser Arg Ser Gly 210 215 220 Thr Thr Val His Ile Glu Val Val Asp Ile Asn Asp Asn Ser Pro 225 230 235 240 Gln Phe Val Gln Ser Leu Tyr Lys Val Gln Val Pro Glu Asn Asn Pro 245 250 250 Leu Asn Ala Phe Val Val Thr Val Ser Ala Thr Asp Leu Asp Ala Gly 260 265 270 Val Tyr Gly Asn Val Thr Tyr Ser Leu Phe Gln Gly Tyr Gly Val Phe 275 280 285 Gln Pro Phe Val Ile Asp Glu Ile Thr Gly Glu Ile His Leu Ser Lys 290 295 300

Glu Leu Asp Phe Glu Glu Ile Ser Asn His Asn Ile Glu Ile Ala Ala 305 310 315 320 Thr Asp Gly Gly Leu Ser Gly Lys Cys Thr Val Ala Val Gln Val 325 330 335 Leu Asp Val Asn Asp Asn Ala Pro Glu Leu Thr Ile Arg Lys Leu Thr 340 345 350 Val Leu Val Pro Glu Asn Ser Ala Glu Thr Val Val Ala Val Phe Ser 355 360 365 Val Ser Asp Ser Asp Ser Gly Asp Asn Gly Arg Met Val Cys Ser Ile 370 380 Pro Asn Asn Ile Pro Phe Leu Leu Lys Pro Thr Phe Glu Asn Tyr Tyr 385 390 395 400 Thr Leu Val Thr Glu Gly Pro Leu Asp Arg Glu Asn Arg Ala Glu Tyr  $^{\circ}$  405 410 410 415 As Ile Thr Ile Thr Val Ser Asp Leu Gly Thr Pro Arg Leu Thr Thr 420 430 Gln His Thr Ile Thr Val Gln Val Ser Asp Ile Asn Asp Asn Ala Pro Ala Phe Thr Gln Thr Ser Tyr Thr Met Phe Val His Glu Asn Asn Ser 450 460 Pro Ala Leu His Ile Gly Thr Ile Ser Ala Thr Asp Ser Asp Ser Gly 465 470 475 Ser Asn Ala His Ile Thr Tyr Ser Leu Leu Pro Pro Asp Asp Pro Gln 485 490 495 Leu Ala Leu Asp Ser Leu Ile Ser Ile Asn Val Asp Asn Gly Gln Leu 500 505 510 Phe Ala Leu Arg Ala Leu Asp Tyr Glu Ala Leu Gln Ser Phe Glu Phe 515 520 525 Tyr Val Gly Ala Thr Asp Gly Gly Ser Pro Ala Leu Ser Ser Gln Thr 530 535 540 Leu Val Arg Met Val Val Leu Asp Asp Asn Asp Asn Ala Pro Phe Val 545 550 555 560 Leu Tyr Pro Leu Gln Asn Ala Ser Ala Pro Cys Thr Glu Leu Leu Pro 565 570 575 Arg Ala Ala Glu Pro Gly Tyr Leu Ile Thr Lys Val Val Ala Val Asp 580 585 590 Arg Asp Ser Gly Gln Asn Ala Trp Leu Ser Phe Gln Leu Leu Lys Ala 595 600 605 Thr Glu Pro Gly Leu Phe Ser Val Trp Ala His Asn Gly Glu Val Arg 610 620

Thr 625	Thr	Arg	Leu	Leu	Ser 630	Glu	Arg	Asp	Ala	Gln 635	Lys	His	Lys	Leu	Leu 640
Leu	Leu	Val	Lys	Asp 645	Asn	Gly	Asp	Pro	Leu 650	Arg	Ser	Ala	Asn	Val 655	Thr
Leu	His	Val	Leu 660	Val	Val	Asp	Gly	Phe 665	Ser	Gln	Pro	Tyr	Leu 670	Pro	Leu
Ala	Glu	Val 675	Ala	Gln	Asp	Ser	Met 680	Gln	Asp	Asn	Tyr	Asp 685	Val	Leu	Thr
Leu	Tyr 690	Leu	Val	Ile	Ala	<b>Leu</b> 695	Ala	Ser	Val	Ser	Ser 700	Leu	Phe	Leu	Leu
Ser 705	Val	Val	Leu	Phe	Val 710	Gly	Val	Arg	Leu	Cys 715	Arg	Arg	Ala	Arg	Glu 720
Ala	Ser	Leu	Gly	Asp 725	Tyr	Ser	Val	Pro	Glu 730	Gly	His	Phe	Pro	Ser 735	His
Leu	Val	Asp	Val 740	Ser	Gly	Ala	Gly	Thr 745	Leu	Ser	Gln	Ser	Tyr 750	Gln	Tyr
Glu	Val	Cys 755	Leu	Asn	Gly	Gly	Thr 760	Arg	Thr	Asn	Glu	Ph <b>e</b> 765	Asn	Phe	Leu
Lys	Pro 770	Leu	Phe	Pro	Ile	Leu 775	Pro	Thr	Gln	Ala	Ala 780	Ala	Ala	Glu	Glu
Arg 785	Glu	Asn	Ala	Val	Val 790	His	Asn	Ser	Val	Gly 795	Phe	Tyr			

- (2) INFORMATION FOR SEQ ID NO:113:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 2347 base pairs
      (B) TYPE: nucleic acid
      (C) STRANDEDNESS: single
      (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: cDNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:113:

AAAACACGGG	GGAAATGACA	GTAGCAAAGA	ATCTGGACTA	TGAAGAATGC	TCATTGTATG	60
AAATGGAAAT	ACAGGCTGAA	GATGTGGGGG	CGCTTCTGGG	GAGGAGCAAA	GTGGTAATTA	120
TGGTAGAAGA	TGTAAATGAC	AATCGGCCAG	AAGTGACCAT	TACATCCTTG	TTTAACCCGG	180
TATTGGAAAA	TTCTCTTCCC	GGGACAGTAA	TTGCCTTCTT	GAATGTGCAT	GACCGAGACT	240
CTGGAAAGAA	CGGCCAAGTT	GTCTGTTACA	CGCATGATAA	CTTACCTTTT	AAATTAGAAA	300
AGTCAATAGA	TAATTATTAT	AGATTGGTGA	CATGGAAATA	TTTGGACCGA	GAAAAAGTCT	360
CCATCTACAA	TATCACAGTG	ATAGCCTCAG	ATCTACCACC	CCLCMCMCMC	10TC 1110TT	400

ACATTGCCCT GATTGTGGCA GACACTAATG ACAACCCTCC TCGTTTTCCT CACACCTCCT 480 ACACAGCCTA TATTCCAGAG AACAACCTGA GGGGCGCCTC CATCTTCTCA CTGACTGCAC 540 ATGATCCTGA CAGTCAGGAA AATGCACAGG TCACTTACTC TGTGTCTGAG GACACCATAC 600 AGGGAGTGCC TTTGTCCTCT TATATCTCCA TCAACTCAGA TACTGGTGTC CTGTATGCAC 660 TGCACTCTTT TGACTTCGAG AAGATACAAG ACTTGCAGCT ACTGGTTGTT GCCACTGACA 720 GTGGAAGCCC ACCTCTCAGC AGCAATGTGT CATTGAGCTT GTTTGTGTTG GACCAGAACG 780 ACAACGCACC TGAGATTCTA TATCCTAGCT TCCCCACAGA TGGCTCCACT GGTGTGGAAC 840 TAGCACCCCG CTCTGCAGAG CCTGGATACC TAGTGACCAA AGTGGTGGCA GTGGACAAAG 900 ACTCAGGACA GAATGCTTGG CTGTCCTACC GTCTGCTGAA GGCCAGCGAA CCTGGGCTCT 960 TCTCTGTAGG ACTTCACACG GGTGAGGTGC GTACAGCGAG GGCCCTGCTG GACAGAGATG 1020 CTCTCAAACA GAATCTGGTG ATGGCCGTGC AGGACCATGG CCAACCCCCT CTCTCGGCCA 1080 CTGTAACTCT CACTGTGGCA GTGGCTAACA GCATCCCTGA GGTGTTGGCT GACTTGAGCA 1140 GCATTAGGAC CCCTGGGGTA CCAGAGGATT CTGATATCAC GCTCCACCTG GTGGTGGCAG 1200 TGGCTGTGGT CTCCTGTGTC TTCCTTGTCT TTGTCATTGT CCTCCTAGCT CTCAGGCTTC 1260 AGCGCTGGCA GAAGTCTCGC CAGCTCCAGG GCTCCAAAGG TGGATTGGCT CCTGCACCTC 1320 CATCACATTT TGTGGGCATC GACGGGGTAC AGGCTTTTCT ACAAACCTAT TCTCATGAAG 1380 TCTCGCTCAC TTCAGGCTCC CAGACAAGCC ACATTATCTT TCCTCAGCCC AACTATGCAG 1440 ACATGCTCAT TAACCAAGAA GGCTGTGAGA AAAATGATTC CTTATTAACA TCCATAGATT 1500 TTCATGAGAG TAACCGTGAA GATGCTTGCG CCCCGCAAGC CCCGCCCAAC ACTGACTGGC 1560 GTTTCTCTCA AGCCCAGAGA CCCGGCACGA GCGGATCCCA AAATGGGGAT GAAACCGGCA 1620 CCTGGCCCAA CAACCAGTTC GATACAGAGA TGCTGCAAGC CATGATCTTG GCCTCTGCCA 1680 GTGAAGCCGC TGATGGGAGC TCCACTCTGG GAGGGGGCAC TGGCACTATG GGTTTGAGCG 1740 CTCGATATGG ACCCCAGTTT ACCCTGCAGC ACGTGCCTGA CTACCGCCAG AACGTGTACA 1800 TCCCTGGCAG CAATGCCACA CTGACCAACG CAGCTGGCAA ACGAGATGGC AAGGCTCCGG 1860 CAGGCGGCAA TGGCAACAAC AACAAGTCGG GCAAGAAAGA GAAGAAGTAA TATGGAGGCC 1920 AGGCCTTGAG CCACAGGGCA GCCTCCCTCC CCAGCCAGTC CAGCTTGTCC TTACTTGTAC 1980 CCAGGCCTCA GAATTTCAGG GCTCACCCCA GGATTCTGGT AGGAGCCACA GCCAGGCCAT 2040 GCTCCCCGTT GGGAAACAGA AACAAGTGCC CAAGCCAACA CCCCCTCTTT GTACCCTAGG 2100 GGGGTTGAAT ATGCAAAGAG AGTTCTGCTG GGACCCCCTA TCCAATCAGT GATTGTACCC 2160 ACATAGGTAG CAGGGTTAGT GTGGATACAC ACACACACA ACACACACA ACACACACA 2220 CCCTTGTCCT CCGCAGTGCC TGCCACTTTC TGGGACTTTC TCATCCCCCT ACGCCCTTCC 2280

									- 150	<i>,</i> -						
TT	TATCO	TCT	CCC	ACCC	AGA (	CACAC	CTG	T GO	AGA	TAAA	TTT	recec	ATG	CTG	TGCT	AA 2340
AA	<b>LAAA</b>															2347
(2)	INF	ORMA	TION	FOF	SEÇ	ID	NO:1	14:								
	(1	(	A) I B) I C) S	ENGT YPE:	H: 2	CTEF 1972 :leic TESS: lin	base aci sir	pai d	.rs							
	(ii	) MO	LECU	LE I	YPE:	CDN	A									
			A) N B) L	AME/	ION:	CDS 2	1849		ID N	0:11	4:					
A G	AG G lu A 1	CT G la A	CT C la H	AC C	AC C is L 5	TG G	TC C	TC A eu T	hr A	CC T la S 10	CG G er A	AT G sp G	GC G ly G	ly L	AG YS 15	46
CCG Pro	CCT Pro	CGC Arg	TCT Ser	AGC Ser 20	Thr	GTG Val	CGC	ATC Ile	CAC His 25	GTG Val	ACA Thr	GTG Val	TTG Leu	GAT Asp 30		94
AAT Asn	GAC Asp	AAT Asn	GCC Ala 35	Pro	GTT Val	TTT Phe	CCT Pro	CAC His 40	Pro	ATT Ile	TAC Tyr	CGA Arg	GTG Val 45	AAA Lys	GTC Val	142
CTT Leu	GAG Glu	AAC Asn 50	ATG Met	Pro	CCA Pro	GGC Gly	ACG Thr 55	CGG Arg	CTG Leu	CTT Leu	ACT Thr	GTA Val 60	ACA Thr	GCC Ala	AGC Ser	190
GAC Asp	CCG Pro 65	GAT Asp	GAG Glu	GGA Gly	ATC Ile	AAC Asn 70	GGA Gly	AAA Lys	GTG Val	GCA Ala	TAC Tyr 75	AAA Lys	TTC Phe	CGG Arg	AAA Lys	238
ATT Ile 80	AAT Asn	GAA Glu	AAA Lys	CAA Gln	ACT Thr 85	CCG Pro	TTA Leu	TTC Phe	CAG Gln	CTT Leu 90	AAT Asn	GAA Glu	AAT <b>As</b> n	ACT Thr	GGG Gly 95	286
GAA Glu	ATA Ile	TCA Ser	ATA Ile	GCA Ala 100	AAA Lys	AGT Ser	CTA Leu	GAT Asp	TAT Tyr 105	GAA Glu	GAA Glu	TGT Cys	TCA Ser	TTT Phe 110	TAT Tyr	334
GAA Glu	ATG Met	GAA Glu	ATA Ile 115	CAA Gln	GCC Ala	GAA Glu	GAT Asp	GTG Val 120	GGG Gly	GCA Ala	CTT Leu	CTG Leu	GGG Gly 125	AGG Arg	ACC Thr	382
AAA Lys	TTG Leu	CTC Leu 130	ATT Ile	TCT Ser	GTG Val	GAA Glu	GAT Asp 135	GTA Val	AAT Asn	GAC Asp	AAT Asn	AGA Arg 140	CCA Pro	GAA Glu	GTG Val	430
TTE	ATT Ile	ACG Thr	TCT Ser	TTG Leu	TTT Phe	AGC Ser	CCA Pro	GTG Val	TTA Leu	GAA Glu	AAT Asn	TCT Ser	CTT Leu	CCC Pro	GGG Gly	478

ACA Thr 160	Val	ATT	GCC Ala	TTC Phe	TTG Leu 165	AGT Ser	GTG Val	CAT His	GAC Asp	CAA Gln 170	Asp	TCT Ser	GGA Gly	AAG Lys	AAT Asn 175	526
GGT Gly	CAA Gln	GTT Val	GTC Val	TGT Cys 180	Tyr	ACA Thr	CGT Arg	GAT Asp	AAT Asn 185	TTA Leu	CCT Pro	TTT Phe	AAA Lys	TTA Leu 190		574
						TAT Tyr										622
CGA Arg	GAA Glu	AAT Asn 210	GTC Val	TCT Ser	ATC Ile	TAC Tyr	AAT Asn 215	ATC Ile	ACA Thr	GTG Val	ATG Met	GCC Ala 220	TCA Ser	GAT Asp	CTA Leu	670
GGA Gly	ACA Thr 225	CCA Pro	CCT Pro	CTG Leu	TCC Ser	ACT Thr 230	GAA Glu	ACT Thr	CAA Gln	ATC Ile	GCT Ala 235	CTG Leu	CAC His	GTG Val	GCA Ala	718
GAC Asp 240	ATT Ile	AAC Asn	GAC Asp	AAC Asn	CCT Pro 245	CCT Pro	ACT Thr	TTC Phe	CCT Pro	CAT His 250	GCC Ala	TCC Ser	TAC Tyr	TCA Ser	GCG Ala 255	766
TAT Tyr	ATC Ile	CTA Leu	GAG Glu	AAC Asn 260	AAC Asn	CTG Leu	AGA Arg	GGA Gly	GCC Ala 265	TCC Ser	ATC Ile	TTT Phe	TCC Ser	TTG Leu 270	ACT Thr	814
GCA Ala	CAC His	GAC Asp	CCC Pro 275	GAC Asp	AGC Ser	CAG Gln	GAG Glu	AAT Asn 280	GCC Ala	CAG Gln	GTC Val	ACT Thr	TAC Tyr 285	TCT Ser	GTG Val	862
ACC Thr	GAG Glu	GAC Asp 290	ACG Thr	CTG Leu	CAG Gln	GGG Gly	GCG Ala 295	CCC Pro	CTG Leu	TCC Ser	TCG Ser	TAT Tyr 300	ATC Ile	TCC Ser	ATC Ile	910
AAC Asn	TCT Ser 305	GAC Asp	ACC Thr	GGT Gly	GTC Val	CTG Leu 310	TAT Tyr	GCG Ala	CTG Leu	CAA Gln	TCT Ser 315	TTC Phe	GAC Asp	TAT Tyr	GAG Glu	958
CAG Gln 320	ATC Ile	CGA Arg	GAC Asp	CTG Leu	CAG Gln 325	CTA Leu	CTG Leu	GTA Val	ACA Thr	GCC Ala 330	AGC Ser	GAC Asp	AGC Ser	GGG	GAC Asp 335	1006
CCG Pro	CCC Pro	CTC Leu	AGC Ser	AGC Ser 340	AAC Asn	ATG Met	TCA Ser	CTG Leu	AGC Ser 345	CTG Leu	TTC Phe	GTG Val	CTG Leu	GAC Asp 350	CAG Gln	1054
AAT Asn	GAC Asp	AAC Asn	GCG Ala 355	CCC Pro	GAG Glu	ATC Ile	CTG Leu	TAC Tyr 360	CCC Pro	GCC Ala	CTC Leu	CCC Pro	ACA Thr 365	GAC Asp	GGT Gly	1102
TCC Ser	ACT Thr	GGC Gly 370	GTG Val	GAG Glu	CTG Leu	GCG Ala	CCC Pro 375	CGC Arg	TCC Ser	GCA Ala	GAG Glu	CGT Arg 380	GGC Gly	TAC Tyr	CTG Leu	1150
GTG Val	ACC Thr 385	AAG Lys	GTG Val	GTG Val	GCG Ala	GTG Val 390	GAC Asp	AGA Arg	GAC Asp	TCG Ser	GGC Gly 395	CAG Gln	AAC Asn	GCC Ala	TGG Trp	1198

CTG TCC TAC CGC CTG CTC AAG GCC AGC GAG CCG GGA CTC TTC TCG GTG Leu Ser Tyr Arg Leu Leu Lys Ala Ser Glu Pro Gly Leu Phe Ser Val 400 405 415	1246
GGT CTG CAC ACG GGC GAG GTG CGC ACG GCC CTG CTG GAC AGA GLY Leu His Thr Gly Glu Val Arg Thr Ala Arg Ala Leu Leu Asp Arg 420 $420$	1294
GAC GCC CTC AAG CAG AGC CTC GTG GCC GTC CAG GAC CAT GGC CAG ABP Ala Leu Lys Gin Ser Leu Val Val Ala Val Gin Asp His Gly Gin 435 440	1342
CCC CCT CTC CCC ACT GTC ACC CTC ACC GTA GCC GTG GCT GAC AGC Pro Pro Leu Ser Ala Thr Val Thr Leu Thr Val Ala Val Ala Aep Ser 450	1390
ATC CCC GAA GTC CTG ACC GAG TTG GGC AGT CTG AAG CCT TCG GTC GAC Ile Pro Glu Val Leu Thr Glu Leu Gly Ser Leu Lys Pro Ser Val Asp 465 $470 \\$	1438
CCG AAC GAT TCG AGC CTT ACA CTC TAT CTC GTG GTG GCA GTG GCT GCC Pro Asn Aep Ser Ser Leu Thr Leu Tyr Leu Val Val Ala Val Ala Ala 480 485 495	1486
ATC TCC TCT GTC TTC GCC TTT GTC GCT GTG GTT CTG GGG CTC AGG Ile Ser Cys Val Phe Leu Ala Phe Val Ala Val Leu Leu Gly Leu Arg 500	1534
CTG AGG CGC TGG CAC AAG TCA CGC CTG CTC CAG GAT TCC GGT GGC AGA Leu Arg Arg Trp His Lys Ser Arg Leu Leu Gln Asp Ser Gly Gly Arg 515 520 525	1582
TTG GTA GGC GTG CCT GCC TCA CAT TTT GTG GGT GTT GAG GAG GTA CAG Leu Val Gly Val Pro Ala Ser His Phe Val Gly Val Glu Glu Val Gln 530 540	1630
GCT TTC CTG CAG ACC TAT TCC CAG GAA GTC TCC CTC ACC GCC GAC TCG Ala Phe Leu Gln Thr Tyr Ser Gln Glu Val Ser Leu Thr Ala Aep Ser 545	1678
CGG AAG AGT CAC CTG ATC TTT CCC CAG CCC AAC TAC GCA GAC ATC CTC ATG Lys Ser His Leu Ile Phe Pro Gln Pro Aen Tyr Ala Asp Het Leu 560 770 770 870 870 870 870 870 870 870 87	1726
ATC AGT CAG GAG GGC TGT GAG AAA AAT GAT TGT TTG TTA ACA TGC GTA Ile Ser Gln Glu Gly Cys Glu Lys Asn Asp Ser Leu Leu Thr Ser Val S80 $$ 590 $$	1774
GAT TIT CAT GAA TAT AAG AAT GAA GCT GAT CAT GGT CAG GTG AGT TTA ASP Phe His Glu Tyr Lys Asn Glu Ala Asp His Gly Gln Val Ser Leu $605$	1822
GTT CTT TGC TTG CTT TTA ATT TCC AGA TGAATTTTAT TTGGCATAAA Val Leu Cys Leu Leu Ile Ser Arg 610	1869
TTATGTTTTG AAAAACATTG TGAAGATAGT TGAAAATAAT TTTTAAGGTG TATCACAGAG	1929
TTTTGGGTTT ATTTTGGTGG TGTTACCAAA AAATTGAACT CTAATAGTCA TAGGTTATTG	1989
TTTCATTTGC TTTTAAACGA CTTGGAAAAG ATTGTTCCAC CATTTTAAAC CTTCCAGTAT	2049

T	TTATTCCTA	TTATCACTCA	TTCACTTAAG	AAGTAGCTAC	CCGTCCATAC	TGGTAATTTT	210
G	CTATTGTTT	GTTTGTGTGT	GTGTGTGTGT	GTGTGTGT	GTGTGTGTAT	CCCAAACTAG	216
A	acttcagaa	AATTATCAAG	AAGTCTAAAG	CCTTGTTATT	AGCTTAGCAA	AAGTAAAATA	222
T	ATCTCAGAA	TTTTTAGGGT	TATGTTTAGC	ATTTGAACCT	GTAACTAGGC	TCTTGTATAT	2289
T'	TCTTCACTT	TAAACCTCTT	TTCTGAGCCC	TGTTTCTGTA	CCAGTGCCCT	TCAAAACTTT	2349
A	ATACTTCTT	ACCATCCTTC	AAAACATGAA	CAAACTTTAA	AGATGGATCT	TGGTGGGAGA	2409
T	GAGACTGGT	TACTAAATAT	TAAGTATGTG	AGTCAGTGGT	CACCTGGGCT	CCATCCCCAT	2469
G	BAGACATGA	AATCTAAAGC	CTAGAATGTC	CATTGCTCCC	CCAAACAAAA	AACAAAAGCA	2529
A	AAACATTAG	ATCTGAATTA	AAATGTAATT	TTAAACTGTT	GAAAGTGACT	TTTGTAAAAT	2589
À.	TGTAAGAAC	ATATTTCAAT	ACAATTCCAA	TTAGCTGTTT	CGGTTGTGCA	TTGATGTGAA	2649
GI	rggtgagaa	TGTTGATATT	AAGAACCAAT	GTTTCAGGTA	CACAAGTTCT	AAATAAGCTG	2709
A	CAATTCAA	TTAAAGTTAT	TCAGTCTTGG	CTGGACACAG	TGCCTCATGT	CTGAAATCCC	2769
AC	CACTTTGG	GAGGCTGGGG	CAGGAGGACC	GCTTGAGCCC	CGGGGGTTTG	AAACTGCAGT	2829
G?	GCTATGAT	CATGCCACTG	CACTCCAGCC	TAGGTGGCAG	AACTAGACCC	TGTCTCTAAA	2889
A.F	AACTATTA	TTAGGCCGCG	TGCGGTGGCT	CACGCCTGTA	ATCCCAGCAC	TTTGGGAGAC	2949
TG	AGGTGGGT	GGATCACCTG	AGC				2972

- (2) INFORMATION FOR SEQ ID NO:115:
  - (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 616 amino acids

    - (B) TYPE: amino acid (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:115:
- Glu Ala Ala His His Leu Val Leu Thr Ala Ser Asp Gly Gly Lys Pro 1 10 15 Pro Arg Ser Ser Thr Val Arg Ile His Val Thr Val Leu Asp Thr Asn  $20 \hspace{1cm} 25 \hspace{1cm} 30$ Glu Asn Met Pro Pro Gly Thr Arg Leu Leu Thr Val Thr Ala Ser Asp 50 60
- Pro Asp Glu Gly Ile Asn Gly Lys Val Ala Tyr Lys Phe Arg Lys Ile 65 70 75 80

Asn Glu Lys Gln Thr Pro Leu Phe Gln Leu Asn Glu Asn Thr Gly Glu 85 90 95 Ile Ser Ile Ala Lys Ser Leu Asp Tyr Glu Glu Cys Ser Phe Tyr Glu 100 105 110 Met Glu Ile Gln Ala Glu Asp Val Gly Ala Leu Leu Gly Arg Thr Lys Leu Leu Ile Ser Val Glu Asp Val Asn Asp Asn Arg Pro Glu Val Ile 130 135 140 Ile Thr Ser Leu Phe Ser Pro Val Leu Glu Asn Ser Leu Pro Gly Thr 145 150 155 160 Val Ile Ala Phe Leu Ser Val His Asp Gln Asp Ser Gly Lys Asn Gly 165 170 175 Gln Val Val Cys Tyr Thr Arg Asp Asn Leu Pro Phe Lys Leu Glu Lys 180 185 190 Ser Ile Gly Asn Tyr Tyr Arg Leu Val Thr Arg Lys Tyr Leu Asp Arg 195 200 205 Glu Asn Val Ser Ile Tyr Asn Ile Thr Val Met Ala Ser Asp Leu Gly
210 215 220 Thr Pro Pro Leu Ser Thr Glu Thr Gln Ile Ala Leu His Val Ala Asp 225 230 235 240 Ile Asn Asp Asn Pro Pro Thr Phe Pro His Ala Ser Tyr Ser Ala Tyr 245 250 255 Ile Leu Glu Asn Asn Leu Arg Gly Ala Ser Ile Phe Ser Leu Thr Ala 260 265 270 His Asp Pro Asp Ser Gln Glu Asn Ala Gln Val Thr Tyr Ser Val Thr 275 280 285 Glu Asp Thr Leu Gln Gly Ala Pro Leu Ser Ser Tyr Ile Ser Ile Asn 290 295 300 Ser Asp Thr Gly Val Leu Tyr Ala Leu Gln Ser Phe Asp Tyr Glu Gln 305 310 315 320Ile Arg Asp Leu Gln Leu Leu Val Thr Ala Ser Asp Ser Gly Asp Pro Pro Leu Ser Ser Asn Met Ser Leu Ser Leu Phe Val Leu Asp Gln Asn 340 345 350 Asp Asn Ala Pro Glu Ile Leu Tyr Pro Ala Leu Pro Thr Asp Gly Ser 355 360 365 Thr Gly Val Glu Leu Ala Pro Arg Ser Ala Glu Arg Gly Tyr Leu Val Thr Lys Val Val Ala Val Asp Arg Asp Ser Gly Gln Asn Ala Trp Leu 385 390 395 400

Ser Tyr Arg Leu Leu Lys Ala Ser Glu Pro Gly Leu Phe Ser Val Gly Leu His Thr Gly Glu Val Arg Thr Ala Asp Ala Leu Leu Asp Arg Asp 425

Ala Leu Lys Glu Val Arg Thr Ala Arg Ala Leu Leu Asp Arg Asp 425

Ala Leu Lys Glu Ser Leu Val Val Ala Val Glu Asp His Gly Glu Pro 445

Pro Leu Ser Ala Thr Val Thr Leu Thr Val Ala Val Ala Val Ala Asp Ser Ile 460

Ass Asp Ser Ser Leu Thr Leu Tyr Leu Val Val Ala Val Ala Val Ala Ala Ile 470

Ass Asp Ser Ser Leu Ala Phe Val Ala Val Val Ala Val Ala Ala Ile 495

Ser Cys Val Phe Leu Ala Phe Val Ala Val Leu Leu Gly Leu Arg Leu 505

Arg Arg Trp His Lys Ser Arg Leu Leu Gln Asp Ser Gly Glu Arg Leu 515

Fhe Leu Gln Thr Tyr Ser Gln Glu Val Ser Leu Leu Gly Leu Gln Ala Ser Arg 545

Lys Ser His Leu 516

Phe Pro Gln Pro Asp Fer Leu Thr Ala Asp Met Lou 545

Ser Gln Glu Gly Cys Glu Lys Asn Asp Ser Leu Leu Thr Ser Val Asp 590

Phe His Glu Tyr Lys Asn Glu Ala Asp His Gly Gln Val Ser Leu Val 605

Leu Cys Leu Leu Leu Ile Ser Arg 610 615