Problem 3

```
set.seed(123)
(K \leftarrow cbind(c(10,7,7,0),c(7,20,0,7),c(7,0,30,7),c(0,7,7,40)))
##
         [,1] [,2] [,3] [,4]
## [1,]
           10
                  7
## [2,]
             7
                 20
                        0
                              7
             7
                              7
## [3,]
                       30
## [4,]
                             40
\texttt{data} \leftarrow \texttt{as.data.frame(mvrnorm(n=10000,mu=c(0,0,0,0),Sigma=solve(K)))}
colnames(data) <- c("X1","X2","X3","X4")</pre>
```

Conditional independency

It represents following independencies:

$$X_1 \perp \!\!\! \perp X_4 | X_2, X_3$$
 and $X_2 \perp \!\!\! \perp X_3 | X_1, X_4$

The corresponding graph

Figure 1: fig 3-1

Fit with OLS

Residuals:

```
lmodel = lm(X1 ~ X4 + X2 + X3, data=data)
summary(lmodel)

##
## Call:
## lm(formula = X1 ~ X4 + X2 + X3, data = data)
##
```

```
Median
                 1Q
## -1.36729 -0.21127 0.00304 0.21389 1.20994
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                                     0.616
## (Intercept) 0.001934
                          0.003141
                                              0.538
                                              0.692
## X4
               0.007927
                           0.020037
                                     0.396
## X2
               -0.682729
                           0.012203 -55.950
                                              <2e-16 ***
                          0.015540 -44.741
## X3
              -0.695282
                                              <2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.3141 on 9996 degrees of freedom
## Multiple R-squared: 0.4564, Adjusted R-squared: 0.4563
## F-statistic: 2798 on 3 and 9996 DF, p-value: < 2.2e-16
```

X4 is not significant while X2 and X3 are. This means X4 and X1 is independent given X2 and X3.

```
lmodel = lm(X2 ~ X3 + X1 + X4, data=data)
summary(lmodel)
```

```
##
## Call:
## lm(formula = X2 ~ X3 + X1 + X4, data = data)
## Residuals:
       Min
                 10
                      Median
                                    30
## -0.90282 -0.15318 0.00188 0.15342 0.85952
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.001141
                           0.002247
                                     0.508
                                              0.612
## X3
               0.012316
                          0.012177
                                     1.011
                                               0.312
## X1
              -0.349303
                           0.006243 -55.950
                                              <2e-16 ***
## X4
              -0.352810
                          0.013891 -25.398
                                              <2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.2246 on 9996 degrees of freedom
## Multiple R-squared: 0.3841, Adjusted R-squared: 0.3839
## F-statistic: 2078 on 3 and 9996 DF, p-value: < 2.2e-16
```

X3 is not significant while X1 and X4 are. This means X2 and X3 is independent given X1 and X4.

Fit with gRim

cannot install package, remember to do it later

```
glist <- list( 'X1', 'X2', 'X3', 'X4' )</pre>
ddd <- cov.wt(data, method="ML")</pre>
fit <- ggmfit(ddd$cov, ddd$n.obs, glist) # Estimate parameters using IPF
fit$K
```

Х1 X2 ХЗ Х4

```
## X1 5.513255 0.00000 0.00000 0.00000
## X2 0.000000 12.21077 0.00000 0.00000
## X3 0.000000 0.00000 20.54787 0.00000
## X4 0.000000 0.00000 0.00000 33.73434
```

It did not work. K has more elements equal to zero than the original one.

Problem 4

```
set.seed(123)
( Sig <- cbind(c(3,-1.4,0,0),c(-1.4,3,1.4,1.4),c(0,1.4,3,0),c(0,1.4,0,3)) )

##      [,1] [,2] [,3] [,4]
## [1,]      3.0 -1.4      0.0      0.0
## [2,] -1.4      3.0      1.4      1.4
## [3,]      0.0      1.4      3.0      0.0
## [4,]      0.0      1.4      0.0      3.0

data <- as.data.frame(mvrnorm(n=10000,mu=c(0,0,0,0),Sigma=Sig))
colnames(data) <- c("X1","X2","X3","X4")</pre>
```

a)

Correlation represented by graph

 $X_1 \perp \!\!\! \perp X_3 \ X_1 \perp \!\!\! \perp X_4 \ X_2 \perp \!\!\! \perp X_4$ and they are not independent given X_2

Correlation Matrix

```
solve(Sig)
```

```
## [,1] [,2] [,3] [,4]

## [1,] 0.5427350 0.4487179 -0.2094017 -0.2094017

## [2,] 0.4487179 0.9615385 -0.4487179 -0.4487179

## [3,] -0.2094017 -0.4487179 0.5427350 0.2094017

## [4,] -0.2094017 -0.4487179 0.2094017 0.5427350
```

b)

The moralized graph looks like

Every element of the precision matrix is not equal to 0 because every vertex is adjacent to another one. It does not imply the correlation suggested in (a)

c)

It is different from original covariance matrix as the elements on the diagonal are not the same.

Problem 5

```
g <- dagitty( "dag{ x <- u1; u1 -> m <- u2; u2 -> y }" ) df = simulateSEM(g, N = 1000, standardized = TRUE) plot(g)
```

Plot coordinates for graph not supplied! Generating coordinates, see ?coordinates for how to set you


```
reg = lm(y \sim x + m, data = df)
summary(reg)
##
## Call:
## lm(formula = y \sim x + m, data = df)
## Residuals:
##
                1Q Median
       Min
                                   ЗQ
## -2.89042 -0.68302 -0.03076 0.67329 3.15642
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.02718
                        0.03113 -0.873 0.3829
## x
              -0.06637
                          0.03043 -2.181
                                           0.0294 *
              0.17789
                          0.03119 5.703 1.55e-08 ***
## m
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.9843 on 997 degrees of freedom
## Multiple R-squared: 0.03459, Adjusted R-squared: 0.03265
## F-statistic: 17.86 on 2 and 997 DF, p-value: 2.398e-08
```

confint(reg)

```
## 2.5 % 97.5 %

## (Intercept) -0.0882695 0.033915940

## x -0.1260776 -0.006660248

## m 0.1166794 0.239103260
```

The confidence interval of the effect (x) does not contain 0. This means the effect is negative. Sufficient adjustment sets

```
adjustmentSets(g, exposure = 'x', outcome = 'y', type = 'all')

## {}
## { u1 }
## { m, u1 }
## { u2 }
## { m, u2 }
## { u1, u2 }
## { m, u1, u2 }
```

One of the sufficient set is { m, u1, u2 }. The confidence interval of the effect (x) contains 0.

```
reg = lm(y \sim x + m + u1 + u2, data = df)
summary(reg)
```

```
##
## lm(formula = y \sim x + m + u1 + u2, data = df)
##
## Residuals:
      Min
                10 Median
                                3Q
                                       Max
## -2.6795 -0.6075 -0.0431 0.6084 3.1632
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.01797
                           0.02854
                                   -0.630
                                             0.5290
## x
              -0.04940
                           0.02812 -1.757
                                             0.0793 .
## m
                0.05752
                           0.03121
                                     1.843
                                             0.0656 .
## u1
               -0.05409
                           0.03018
                                   -1.792
                                             0.0734 .
## u2
                0.42206
                           0.03109 13.577
                                             <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.9019 on 995 degrees of freedom
## Multiple R-squared: 0.1912, Adjusted R-squared: 0.1879
## F-statistic: 58.8 on 4 and 995 DF, p-value: < 2.2e-16
```

confint(reg)

```
## 2.5 % 97.5 %

## (Intercept) -0.073976553 0.038028095

## x -0.104580175 0.005786093

## m -0.003724192 0.118756250

## u1 -0.113306761 0.005132062

## u2 0.361056182 0.483060050
```

Another one of the sufficient set is { u2 }. The confidence interval of the effect (x) contains 0.

```
reg = lm(y \sim x + u2, data = df)
summary(reg)
##
## Call:
## lm(formula = y \sim x + u2, data = df)
## Residuals:
##
      Min
                               3Q
               1Q Median
                                      Max
## -2.6052 -0.5939 -0.0578 0.5936 3.0800
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.01639 0.02858 -0.574
## x
              -0.05286
                          0.02786 -1.897
                                            0.0581 .
## u2
               0.44091
                          0.02937 15.012
                                           <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.9033 on 997 degrees of freedom
## Multiple R-squared: 0.1869, Adjusted R-squared: 0.1853
## F-statistic: 114.6 on 2 and 997 DF, p-value: < 2.2e-16
confint(reg)
                   2.5 %
                              97.5 %
## (Intercept) -0.0724672 0.039688379
## x
              -0.1075186 0.001807503
               0.3832788 0.498547229
## u2
```

The conclusion is that if the features input is a sufficient adjustment set plus exposure, the effect will not be significant.

Problem 6

Construct the graph

```
g <- dagitty( "dag{
   D -> E -> A <- B <- G <- F -> H;
   G -> H;
   C -> H; C-> B; C->F; C-> E
   E -> F
}" )

df = simulateSEM(g, N = 10000, standardized = TRUE)
plot(g)
```

Plot coordinates for graph not supplied! Generating coordinates, see ?coordinates for how to set you

Effects E on F

Sufficient adjustment sets

```
adjustmentSets(g, exposure = 'E', outcome = 'F', type = 'all')
## { C }
## { C, D }
Adjustment sets { C }
reg = lm(F \sim E + C, data = df)
summary(reg)
##
## Call:
## lm(formula = F \sim E + C, data = df)
##
## Residuals:
##
       Min
                1Q Median
                                 3Q
                                        Max
## -3.4891 -0.6332 0.0049 0.6412 3.7133
##
## Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
                           0.009435 -0.958
## (Intercept) -0.009042
                                               0.338
## E
               0.273661
                           0.009488 28.844
                                              <2e-16 ***
## C
                0.207902
                           0.009518 21.842
                                              <2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.9434 on 9997 degrees of freedom
## Multiple R-squared: 0.1054, Adjusted R-squared: 0.1052
## F-statistic: 589.1 on 2 and 9997 DF, p-value: < 2.2e-16
Adjustment sets { C, D }
reg = lm(F \sim E + C + D, data = df)
summary(reg)
##
## lm(formula = F \sim E + C + D, data = df)
##
## Residuals:
      Min
                10 Median
                                3Q
                                       Max
## -3.4676 -0.6338 0.0067 0.6427 3.7105
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.008974 0.009435 -0.951
                                               0.342
               0.282678
                           0.011696 24.169
                                              <2e-16 ***
## C
                0.208975
                           0.009553 21.876
                                              <2e-16 ***
## D
               0.015329
                           0.011628
                                    1.318
                                               0.187
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.9434 on 9996 degrees of freedom
## Multiple R-squared: 0.1056, Adjusted R-squared: 0.1053
## F-statistic: 393.3 on 3 and 9996 DF, p-value: < 2.2e-16
All other variables
reg = lm(F \sim ., data = df)
summary(reg)
## Call:
## lm(formula = F \sim ., data = df)
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -3.4704 -0.6250 -0.0003 0.6338 3.8190
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
```

```
## (Intercept) -0.009162
                           0.009385 -0.976
                                               0.329
                           0.010210
## A
                0.001863
                                      0.182
                                               0.855
                0.015339
## B
                           0.009687
                                      1.583
                                               0.113
## C
                0.234798
                           0.009844
                                    23.851
                                              <2e-16 ***
## D
                0.011964
                           0.011568
                                     1.034
                                               0.301
                0.276885
                           0.012342 22.434
## E
                                              <2e-16 ***
## G
                0.006011
                           0.009948
                                      0.604
                                               0.546
## H
               -0.101338
                           0.010069 -10.065
                                              <2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.9382 on 9992 degrees of freedom
## Multiple R-squared: 0.1158, Adjusted R-squared: 0.1152
## F-statistic:
                  187 on 7 and 9992 DF, p-value: < 2.2e-16
```

Variance of estimates All other variables < { C } < { C, D }

Effects B on A

Sufficient adjustment sets

```
adjustmentSets(g, exposure = 'B', outcome = 'A', type = 'all')
```

```
## { E }
## { C, E }
## { D, E }
## { C, D, E }
## { C, F }
## { C, D, F }
## { E, F }
## { C, E, F }
## { D, E, F }
## { C, D, E, F }
## { C, G }
## { C, D, G }
## { E, G }
## { C, E, G }
## { D, E, G }
## { C, D, E, G }
## { C, F, G }
## { C, D, F, G }
## { E, F, G }
## { C, E, F, G }
## { D, E, F, G }
## { C, D, E, F, G }
## { E, H }
## { C, E, H }
## { D, E, H }
## { C, D, E, H }
## { C, F, H }
## { C, D, F, H }
## { E, F, H }
```

```
## { C, E, F, H }
## { D, E, F, H }
## { C, D, E, F, H }
## { C, G, H }
## { C, D, G, H }
## { E, G, H }
## { C, E, G, H }
## { D, E, G, H }
## { C, D, E, G, H }
## { C, F, G, H }
## { C, D, F, G, H }
## { E, F, G, H }
## { C, E, F, G, H }
## { D, E, F, G, H }
## { C, D, E, F, G, H }
Sufficient adjustment set { E }
reg = lm(A \sim B + E, data = df)
summary(reg)
##
## Call:
## lm(formula = A \sim B + E, data = df)
##
## Residuals:
##
       Min
                1Q Median
                                 3Q
                                        Max
## -4.0834 -0.6134 -0.0121 0.6227 3.5832
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.003610
                           0.009195 -0.393
                                                0.695
## B
                0.064007
                           0.009255
                                      6.916 4.93e-12 ***
## E
                0.405688
                           0.009182 44.181 < 2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
## Residual standard error: 0.9193 on 9997 degrees of freedom
## Multiple R-squared: 0.1672, Adjusted R-squared: 0.167
## F-statistic: 1004 on 2 and 9997 DF, p-value: < 2.2e-16
Sufficient adjustment set { C, D, E, G, H }
reg = lm(A \sim B + C + D + E + F + G , data = df)
summary(reg)
##
## Call:
## lm(formula = A \sim B + C + D + E + F + G, data = df)
##
## Residuals:
##
       Min
                1Q Median
                                 ЗQ
                                        Max
```

```
## -4.0833 -0.6107 -0.0132 0.6209 3.5697
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -0.0036327
                          0.0091964
                                      -0.395
                                                 0.693
                0.0611686
                           0.0094741
                                       6.456 1.12e-10 ***
## B
## C
               -0.0147689
                           0.0095744
                                      -1.543
                                                 0.123
## D
               -0.0052588
                           0.0113331
                                      -0.464
                                                 0.643
## E
                0.4008581
                           0.0117258
                                      34.186
                                               < 2e-16 ***
## F
                0.0004585
                           0.0097537
                                       0.047
                                                 0.963
## G
               -0.0076699
                           0.0093327
                                      -0.822
                                                 0.411
## --
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9193 on 9993 degrees of freedom
## Multiple R-squared: 0.1675, Adjusted R-squared: 0.167
## F-statistic:
                  335 on 6 and 9993 DF, p-value: < 2.2e-16
All other variables
reg = lm(A \sim ., data = df)
summary(reg)
##
## Call:
## lm(formula = A ~ ., data = df)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -4.0708 -0.6121 -0.0147 0.6206 3.5601
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.003560
                           0.009196 -0.387
                                               0.6987
                                      6.455 1.13e-10 ***
## B
                0.061155
                           0.009474
## C
                                     -1.842
               -0.018264
                           0.009915
                                               0.0655
## D
               -0.004895
                           0.011336
                                     -0.432
                                               0.6659
## E
                0.401103
                                     34.204
                                             < 2e-16 ***
                           0.011727
## F
                0.001789
                           0.009803
                                      0.182
                                               0.8552
## G
                                     -0.396
               -0.003855
                           0.009748
                                               0.6925
## H
                0.013435
                           0.009915
                                      1.355
                                               0.1754
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.9193 on 9992 degrees of freedom
## Multiple R-squared: 0.1676, Adjusted R-squared: 0.167
## F-statistic: 287.5 on 7 and 9992 DF, p-value: < 2.2e-16
```

Variance of estimates All other variables $> \{ C, D, E, F, G \} > \{E\}.$

Two results are on the contrary. The explanation is that B has only one path directly out to A while E has one to F and another one to A.