

第六章 图

郑征

zhengz@buaa.edu.cn

软件与控制研究室

第六章 图

第3讲图的矩阵表示

前言

- 图:
 - 计算机如何理解;
 - 算法如何运算;

- 。 。 。

第3讲 图的矩阵表示

- 1. 关联矩阵M(D), M(G)
- 2. 邻接矩阵A(D), 相邻矩阵A(G)
- 3. 用A的幂求不同长度通路(回路)总数
- 4. 可达矩阵P(D), 连通矩阵P(G)
- 5. 单源最短路径问题, Dijkstra算法

有向图关联矩阵

- 设D=<V,E>是无环有向图,V={v₁,v₂,...,v_n},
 E={e₁,e₂,...,e_m};

$$m_{ij} = \begin{cases} 1, v_i 是 e_j 的起点 \\ 0, v_i 与 e_j 不关联 \\ -1, v_i 是 e_j 的终点 \end{cases}$$

有向图关联矩阵(例)

有向图关联矩阵(性质)

- 每列和为零: Σⁿ_{i=1}m_{ii}=0
- 每行**绝对值**和为d(v): $d(v_i) = \Sigma^m_{j=1} m_{ij}$, 其中 1的个数为d+(v), -1的个数为d-(v)
- 握手定理: $\Sigma^n_{i=1}\Sigma^m_{j=1}m_{ij}=0$
- 平行边: 相同两列

$$M(D) = \begin{matrix} e_1 & e_2 & e_3 & e_4 & e_5 & e_6 \\ v_1 & -1 & -1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ v_3 & 0 & 0 & -1 & -1 & 1 & -1 \\ v_4 & 0 & 0 & 0 & 0 & -1 & 1 \end{matrix}$$

无向图关联矩阵

- 设G=<V,E>是无环无向图, $V=\{v_1,v_2,...,v_n\}$, $E=\{e_1,e_2,...,e_m\}$

$$m_{ij} = \begin{cases} 1, v_i 与 e_j 关联 \\ 0, v_i 不 与 e_j 关联 \end{cases}$$

无向图关联矩阵(例)

无向图关联矩阵(性质)

因为一条边有两个结点

- 每列和为2: $\Sigma^n_{i=1}m_{ij}=2\left(\Sigma^n_{i=1}\overline{\Sigma^m}_{j=1}m_{ij}=2m\right)$
- 每行和为d(v): d(v_i)=Σ^m_{i=1}m_{ii}
- 每行所有1对应的边构成断集(比较:割集)
- 平行边: 相同两列
- 伪对角阵: 对角块是连通分支

$$M(G) = \begin{matrix} v_1 \\ v_1 \\ v_2 \\ v_3 \\ v_4 \end{matrix} \qquad \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \qquad M(G) = \begin{bmatrix} M(G_1) \\ M(G_2) \\ & & \ddots \\ & & & M(G_k) \end{bmatrix}$$

有向图邻接矩阵

- 设D=<V,E>是有向图,V={v₁,v₂,...,v_n}
- 邻接矩阵(adjacence matrix):
 A(D)=[a_{ij}]_{n×n}, a_{ij} = 从v_i到v_j的边数

$$A(D) = \begin{matrix} v_1 & v_2 & v_3 & v_4 \\ v_1 & 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ v_3 & 0 & 0 & 1 \\ v_4 & 0 & 0 & 1 & 1 \end{matrix}$$

有向图邻接矩阵(性质)

- 每行和为出度: Σⁿ_{j=1}a_{ij}=d+(v_i)
- 每列和为入度: Σⁿ_{i=1}a_{ij}=d⁻(v_i)
- 握手定理: $\Sigma^n_{i=1}\Sigma^n_{j=1}a_{ij}=\Sigma^n_{i=1}d^-(v_j)=m$
- 环个数: Σⁿ_{i=1}a_{ii}

$$A(D) = \begin{matrix} v_1 & v_2 & v_3 & v_4 \\ v_1 & 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ v_3 & 0 & 0 & 1 \\ v_4 & 0 & 0 & 1 & 1 \end{matrix}$$

邻接矩阵与通路数

矩阵相乘??

- 设A(D)=A=[a_{ij}]_{n×n}, $A^r = A^{r-1} \bullet A$, $(r \ge 2)$, $A^r = [a^{(r)}_{ij}]_{n\times n}$, $B_r = A + A^2 + ... + A^r = [b^{(r)}_{ij}]_{n\times n}$
- 定理4: $\mathbf{a}^{(r)}_{ij} = \mathbf{M} \mathbf{v}_i \mathbf{到} \mathbf{v}_j \mathbf{K}$ 度为r的通路总数 $\Sigma^{n}_{i=1} \Sigma^{n}_{j=1} \mathbf{a}^{(r)}_{ij} = \mathbf{K}$ 度为r的通路总数 $\Sigma^{n}_{i=1} \mathbf{a}^{(r)}_{ii} = \mathbf{K}$ 度为r的回路总数
- 推论: $b^{(r)}_{ij} = \text{从} v_i \text{到} v_j$ 长度 \leq r的通路总数 \wedge $\Sigma^n_{i=1} \Sigma^n_{j=1} b^{(r)}_{ij} =$ 长度 \leq r的通路总数 \wedge $\Sigma^n_{i=1} b^{(r)}_{ii} =$ 长度 \leq r的回路总数. #

定理4(证明)

自学

2018/11/4

- 证明: (归纳法) (1)r=1: a⁽¹⁾_{ij}=a_{ij}, 结论根据 定义显然.
 - (2) 设r≤k时结论成立, 当r=k+1时, a^(k)_{it}•a⁽¹⁾_{tj}=从v_i到v_j最后经过v_t的长度为 k+1的通路总数,

 $a^{(k+1)}_{ij} = \sum_{t=1}^{n} a^{(k)}_{it} \cdot a^{(1)}_{tj} = \text{从v}_{i} 到 v_{j}$ 的长度为 k+1的通路总数.#

14

邻接矩阵求通路数(例)

$$A(D) = v_{2} \begin{bmatrix} v_{1} & v_{2} & v_{3} & v_{4} \\ v_{1} & 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ v_{4} & 0 & 0 & 1 \end{bmatrix}$$

$$A^2 = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

$$B^2 = \begin{bmatrix} 0 & 2 & 3 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix} \qquad A^{4} = \begin{bmatrix} 0 & 0 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 3 & 5 \end{bmatrix}$$

$$B^{3} = \begin{bmatrix} 0 & 2 & 4 & 4 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 4 & 6 \end{bmatrix} \qquad B^{4} = \begin{bmatrix} 0 & 2 & 7 & 8 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 4 & 7 \\ 0 & 0 & 7 & 11 \end{bmatrix}$$

$$A^4 = \begin{bmatrix} 0 & 0 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 3 & 5 \end{bmatrix}$$

$$B^4 = \begin{bmatrix} 0 & 2 & 7 & 8 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 4 & 7 \\ 0 & 0 & 7 & 11 \end{bmatrix}$$

用邻接矩阵求通路数(例,续)

- v₂到v₄长度为3和4的通路数: 1, 2
- v₂到v₄长度≤4的通路数: 4
- v₄到v₄长度为4的回路数:5
- V₄到V₄长度≤4的回路数: 11

$$A^{2} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix} \qquad A^{3} = \begin{bmatrix} 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix} \qquad A^{4} = \begin{bmatrix} 0 & 0 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 3 & 5 \end{bmatrix}$$

$$B^{2} = \begin{bmatrix} 0 & 2 & 3 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix} \qquad B^{3} = \begin{bmatrix} 0 & 2 & 4 & 4 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 4 & 6 \end{bmatrix} \qquad B^{4} = \begin{bmatrix} 0 & 2 & 7 & 8 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 4 & 7 \\ 0 & 0 & 7 & 11 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & \boxed{1} \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix}$$

$$B^3 = \begin{bmatrix} 0 & 2 & 4 & 4 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 4 & 6 \end{bmatrix}$$

$$A^4 = \begin{bmatrix} 0 & 0 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 3 & 5 \end{bmatrix}$$

$$B^4 = \begin{vmatrix} 0 & 2 & 7 & 8 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 4 & 7 \\ 0 & 0 & 7 & 11 \end{vmatrix}$$

用邻接矩阵求通路数(例,续)

- 长度=4的通路(不含回路)数: 16
- 长度≤4的通路和回路数: 53, 15

$$A^2 = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

$$B^{2} = \begin{bmatrix} 0 & 2 & 3 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix} \qquad B^{3} = \begin{bmatrix} 0 & 2 & 4 & 4 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 4 & 6 \end{bmatrix} \qquad B^{4} = \begin{bmatrix} 0 & 2 & 7 & 8 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 4 & 7 \\ 0 & 0 & 7 & 11 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix} \qquad A^{3} = \begin{bmatrix} 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix} \qquad A^{4} = \begin{bmatrix} 0 & 0 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \\ \hline 0 & 0 & 3 & 5 \end{bmatrix}$$

$$B^3 = \begin{bmatrix} 0 & 2 & 4 & 4 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 4 & 6 \end{bmatrix}$$

$$A^{4} = \begin{bmatrix} 0 & 0 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 3 & 5 \end{bmatrix}$$

$$B^4 = \begin{bmatrix} 0 & 2 & 7 & 8 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 4 & 7 \\ 0 & 0 & 7 & 11 \end{bmatrix}$$

可达矩阵

- 设D=<V,E>是有向图,V={v₁,v₂,...,v_n},
- 可达矩阵: P(D)=[p_{ij}]_{n×n},
 1, 从v_i可达v_j
 p_{ij} = {
 0, 从v_i不可达v_j

可达矩阵(性质)

- 主对角线元素都是1: ∀v_i∈V, 从v_i可达v_i
- 强连通图: 所有元素都是1
- 伪对角阵: 对角块是连通分支的可达矩阵
- $\forall i \neq j$, $p_{ij} = 1 \Leftrightarrow b^{(n-1)}_{ij} > 0$

邻接矩阵幂次的和

$$P(D) = \begin{bmatrix} P(D_1) & & & \\ & P(D_2) & & \\ & & \ddots & \\ & & P(D_k) \end{bmatrix}$$

可达矩阵(例)

$$A(D) = \begin{matrix} v_1 & v_2 & v_3 & v_4 \\ v_1 & 0 & 2 & 1 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{matrix}$$

$$P = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$P = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$A^2 = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

$$B^2 = \begin{bmatrix} 0 & 2 & 3 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix} \qquad A^{4} = \begin{bmatrix} 0 & 0 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 3 & 5 \end{bmatrix}$$

$$B^{3} = \begin{bmatrix} 0 & 2 & 4 & 4 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 4 & 6 \end{bmatrix} \qquad B^{4} = \begin{bmatrix} 0 & 2 & 7 & 8 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 4 & 7 \\ 0 & 0 & 7 & 11 \end{bmatrix}$$

$$A^4 = \begin{bmatrix} 0 & 0 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 3 & 5 \end{bmatrix}$$

$$B^4 = \begin{bmatrix} 0 & 2 & 7 & 8 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 4 & 7 \\ 0 & 0 & 7 & 11 \end{bmatrix}$$

无向图相邻矩阵

- **★**设G=<V,E>是无向简单图,V={v₁,v₂,...,v_n}
- ★相邻矩阵(adjacence matrix): A(G)=[a_{ij}]_{n×n}, a_{ii}=0,

$$a_{ij} = \begin{cases} 1, v_i 与 v_j 相邻, i \neq j \\ 0, v_i 与 v_j 不相邻 \end{cases}$$

无向图相邻矩阵(性质)

- A(G)对称: a_{ij}=a_{ji}
- 每行(列)和为顶点度: Σⁿ_{i=1}a_{ij}=d(v_i)
- 握手定理: $\Sigma^n_{i=1}\Sigma^n_{j=1}a_{ij}=\Sigma^n_{i=1}d(v_j)=2m$

$$A(G) = v_{2} \begin{bmatrix} v_{1} & v_{2} & v_{3} & v_{4} \\ v_{1} & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ v_{4} & 1 & 0 & 0 \end{bmatrix}$$

相邻矩阵与通路数

- 定理5: $\mathbf{a}^{(r)}_{ij} = \mathbf{M} \mathbf{v}_i \mathbf{到} \mathbf{v}_j \mathbf{K}$ 度为 \mathbf{r} 的通路总数 $\mathbf{v}_i \mathbf{v}_{i=1} \mathbf{a}^{(r)}_{ii} = \mathbf{K}$ 度为 \mathbf{r} 的回路总数. #
- 推论1: a⁽²⁾ii=d(vi). #
- 推论2: G连通⇒距离d(v_i,v_j)=min{r|a^(r)_{ij}≠0}.

用相邻矩阵求通路数(例)

$$A(G) = \begin{matrix} v_1 & v_2 & v_3 & v_4 \\ v_1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ v_4 & 1 & 1 & 0 & 0 \end{matrix}$$

$$A^{2} = \begin{bmatrix} 2 & 1 & 1 & 1 \\ 1 & 3 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 2 \end{bmatrix} \qquad A^{3} = \begin{bmatrix} 2 & 4 & 1 & 3 \\ 4 & 2 & 3 & 4 \\ 1 & 3 & 0 & 1 \\ 2 & 4 & 1 & 2 \end{bmatrix} \qquad A^{4} = \begin{bmatrix} 7 & 6 & 4 & 6 \\ 6 & 11 & 2 & 6 \\ 4 & 2 & 3 & 4 \\ 6 & 6 & 4 & 7 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 2 & 4 & 1 & 3 \\ 4 & 2 & 3 & 4 \\ 1 & 3 & 0 & 1 \\ 2 & 4 & 1 & 2 \end{bmatrix}$$

$$A^4 = \begin{vmatrix} 7 & 6 & 4 & 6 \\ 6 & 11 & 2 & 6 \\ 4 & 2 & 3 & 4 \\ 6 & 6 & 4 & 7 \end{vmatrix}$$

用相邻矩阵求通路数(例,续)

- v₁到v₂长度为4的通路数: 6 14142,14242,14232,12412,14212,12142
- V₁到V₃长度为4的通路数: 4 12423,12323,14123,12123
- v₁到v₁长度为4的回路数: 7 14141,14241,14121,12121, 12421,12321,12141,

$$A^2 = \begin{bmatrix} 2 & 1 & 1 & 1 \\ 1 & 3 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 2 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 2 & 4 & 1 & 3 \\ 4 & 2 & 3 & 4 \\ 1 & 3 & 0 & 1 \\ 2 & 4 & 1 & 2 \end{bmatrix}$$

连通矩阵

- 设G=<V,E>是无向简单图,V={v₁,v₂,..., v_n},
- 连通矩阵: P(G)=[p_{ij}]_{n×n},
 1, 若v_i与v_j连通
 0, 若v_i与v_j不连通

连通矩阵(性质)

- **★**主对角线元素都是1: $\forall v_i \in V, v_i = v_i$ 连通
- ★连通图: 所有元素都是1
- ☀份对角阵: 对角块是连通分支的连通矩阵

*设B_r=A+A²+...+A^r=
$$[b^{(r)}_{ij}]_{n\times n}$$
, 则 $\forall i\neq j$, $p_{ij}=1 \Leftrightarrow b^{(n-1)}_{ij}>0$

$$P(G) = \begin{bmatrix} P(G_1) & & & & \\ & P(G_2) & & & \\ & & \ddots & & \\ & & P(G_k) & & \end{bmatrix}$$

连通矩阵(例)

单源最短路径问题

- 单源最短路径 (single-source shortest paths)问题: 给定带权图G(有向或无向)和顶点s, 求从s到其余顶点的最短路径
- 所有顶点之间最短路径(all-pairs shortest paths)问题: 给定带权图G(有向或无向), 求G所有顶点对之间的最短路径
- 带权图路径长度: W(P)=Σ_{e∈E(P)}W(e)

Dijkstra算法

- 输入: 带权图G=<V,E,W>, W非负, s∈V
- 输出: 以s为根的最短路径树
- 算法:

```
d(s)=0;

pred(s)=0;

d(j)=\infty for all j\inV-{s};

LIST=V;
```

Dijkstra算法(续)

```
while LIST≠Ø
  {Vertex selection}
   let i be a vertex for wihch d(i)=min<sub>i=LIST</sub>d(j);
  LIST=LIST-{i};
  {Distance update}
  for each (i,j)∈E
       if d(j)>d(i)+W(i,j) then
           d(j)=d(i)+W(i,j); pred(j)=i;
```

Dijkstra算法(例1-1)

遍	标号	LIST	选	更新
1	$0,\infty,\infty,\infty,\infty$	1,2,3,4,5	1	d(2)=7,d(3)=4
2				
3				

Dijkstra算法(例1-2)

遍	标号	LIST	选	更新
1	$0,\infty,\infty,\infty,\infty$	1,2,3,4,5	1	d(2)=7,d(3)=4
2	0,7,4,∞,∞	2,3,4,5	3	d(2)=min{7,4+2}=6,
				d(5)=9

Dijkstra算法(例1-3)

遍	标号	LIST	选	更新
2	$0,7,4,\infty,\infty$	2,3,4,5	3	d(2)=min{7,4+2}=6,
				d(5)=9
3	0,6,4,∞,9	2,4,5	2	d(4)=9,
				$d(5)=min{9,6+1}=7$

Dijkstra算法(例1-4,5)

遍	标号	LIST	选	更新
3	0,6,4,∞,9	2,4,5	2	d(4)=9, d(5)=min{9,6+1}=7
4	0,6,4,9,7	4,5	5	$d(3)=min{4,7+2}=4$
5	0,6,4,9,7	4	4	d(5)=min{7,9+4}=7

Dijkstra算法(例1-1~5)

遍	标号	LIST	选	更新
1	$0,\infty,\infty,\infty,\infty$	1,2,3,4,5	1	d(2)=7,d(3)=4
2	0,7,4,∞,∞	2,3,4,5	3	d(2)=min{7,4+2}=6, d(4)=9,
3	0,6 ,4,∞,9	2,4,5	2	d(4)=9, d(5)=min{9,6+1}=7
4	0,6,4,9,7	4,5	5	$d(3)=min{4,7+2}=4$
5	0,6,4,9,7	4	4	d(5)=min{7,9+4}=7

Dijkstra算法(例1-结果)

Dijkstra算法(例1)

总结

- 关联矩阵M(D), M(G)
- 邻接矩阵A(D), 相邻矩阵A(G)
- 用A的幂求不同长度通路(回路)总数
- 可达矩阵P(D), 连通矩阵P(G)
- · 单源最短路径问题, Dijkstra算法