Exercise 1.10.3.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a smooth function.

Show that $-f$ is a Lyapunov function for the gradient flow.	(2)
Show that the trajectories of the gradient flow are orthogonal to the level sets of f .	(3)
Proof + reasoning:	
Let's write out the relevant definitions.	(4)
The gradient flow is the flow of the differential equation $\dot{x} = \nabla f(x)$. Denote the time- t gradient flow by $g^t : \mathbb{R}^n \to \mathbb{R}^n$. For all $x \in \mathbb{R}^n$ and	(5)
$t \in \mathbb{R}^+$, write $g_x(t) := g^t(x)$.	(6)
For each x this defines $g_x : \mathbb{R}^+ \to \mathbb{R}^n$.	(7)
Let $x \in \mathbb{R}^n$ and $t \in \mathbb{R}^+$. Note $(f \circ g_x)(0) = f(x)$ and $(f \circ g_x)(t) = f(g^t(x))$.	(8)
By (8), if $(f \circ g_x)'(s) \ge 0$ for all $s \in \mathbb{R}^+$ then $-f$ is Lyapunov.	(9)
By (5), $g'_x(t) = \nabla f(g_x(t))$.	(10)
By the multivariate chain rule and (10),	
$(f \circ g_x)'(t) = \langle \nabla f(g_x(t)), g_x'(t) \rangle = \langle g_x'(t), g_x'(t) \rangle$	
where $\langle \cdot, \cdot \rangle$ is the inner product in \mathbb{R}^n .	(11)
By definition of inner products, $\langle g'_x(t), g'_x(t) \rangle \geq 0$.	(12)
By (11) , (12) and (9) , $-f$ is Lyapunov.	(13)
Next, we want to show statement (2).	(14)
To express orthogonality, we need a common inner product space, but this is just \mathbb{R}^n in our case.	(15)
Which vectors are we trying to prove are orthogonal? I think, given some point $x \in \mathbb{R}^n$, we should compare the time derivative of the orbit of x at $t = 0$, with a vector in \mathbb{R}^n 'tangent' to the level set of f at $f(x)$.	(16)
How can we define the tangent vector?	(17)
Let $x \in \mathbb{R}^n$.	(18)
Define the level set $C := f^{-1}(f(x))$.	(19)
C is a subset of \mathbb{R}^n , but I don't think it is necessarily a smooth manifold. Still, we can define tangent vectors in terms of smooth paths in \mathbb{R}^n :	(20)
Let $T_x = {\dot{\gamma}(0) : \exists \varepsilon > 0 \text{ s.t. } \gamma : (-\varepsilon, \varepsilon) \to C \text{ is smooth and } \gamma(0) = x}.$	(21)
By (10), $(f \circ g_x)'(0) = \nabla f(g_x(0)) = \nabla f(x) = g_x'(0)$.	(22)
Let $V \in T_x$, with corresponding path $\gamma: (-\varepsilon, \varepsilon) \to C$.	(23)
We need to show $\langle V, \nabla f(x) \rangle = 0$.	(24)
Since $\gamma(t) \in C$ for all $t \in (-\varepsilon, \varepsilon)$, $f(\gamma(t)) = f(\gamma(0))$ for all $t \in (-\varepsilon, \varepsilon)$.	(25)

(1)

By the multivariate chain rule,

$$\langle \nabla f(x), V \rangle = \sum_{k=1}^{n} V_{k} \frac{\partial f}{\partial y_{k}}(x)$$

$$= \sum_{k=1}^{n} V_{k} \frac{\partial f}{\partial y_{k}}(\gamma(0))$$

$$= \sum_{k=1}^{n} \dot{\gamma}(0)_{k} \frac{\partial f}{\partial y_{k}}(\gamma(0))$$

$$= (f \circ \gamma)'(0). \tag{26}$$

By (25), $(f \circ \gamma)'(0) = 0$, so by (26), $\langle \nabla f(x), V \rangle = 0$, so by (22), the trajectories of the gradient flow are orthogonal to the level sets of f. (27)