LESSON 13

Continuous Random Variables

CSCI 3022

Course Logistics: Your Fifth Week At A Glance

Mon	Tues	Wed	Thurs	Fri
Complete Recorded Lesson Video Assignment(Canvas)		Attend & Participate in Class	HW 5 Due 11:59pm via Gradescope	In Class Quiz 4 Scope: Lessons 7-8 HW 4 Attend & Participate in Class
	Quiz 3 feedback/ grades posted		HW 4 feedback/ grades posted	HW 6 released

HW Note:

To receive credit on problems involving integration, you must show all steps evaluating the integral and simplifying.

No Credit:

$$\int_1^3 x^2 \, dx = \tfrac{7}{3}$$

Full Credit:

$$\int_1^3 x^2 \, dx$$

$$=\left.rac{x^3}{3}
ight|_1^2$$

$$=\frac{2^3}{3}-\frac{1^3}{3}$$

$$=\left\lfloor rac{7}{3}
ight
floor$$

Learning Objectives:

- Explain the difference between Probability Density Functions (PDFs) and Cumulative Distribution Functions (CDFs) and use both to calculate probabilities for continuous random variables
- Calculate Expected Value and Variance of Continuous RV

Introduction to Continuous RVs Probability Density Functions (PDF)

- Expected Value and Variance of Continuous RV
- Cumulative Distribution Functions (CDF)

In this class we're going to focus on a small subset of common distributions:

Discrete:

Bernoulli

Binomial

Poission

Continuous:

Uniform

Exponential

Normal

*See supporting materials for info on Geometric and Negative Binomial

CSCI 3022 Learning Goal: Use New Random Variables

Let's say you are learning about servers and networks.

You read about the M/D/1 queue:

"The service time busy period is distributed as a Borel with parameter $\mu=0.2$."

Goal: You can recognize terminology and understand experiment setup.

Probability Density Functions (PDF)

Introduction to Continuous RVs

- Probability Density Functions (PDF)
- Expected Value and Variance of Continuous RV
- Cumulative Distribution Functions (CDF)

From Discrete RV to Continuous Random Variables

People heights

You are volunteering at the local elementary school fundraiser.

- To buy a t-shirt for your friend Vanessa, you need to know her height.
- 1. What is the probability that your friend is 54.0923857234 inches tall?

From Discrete RV to Continuous Random Variables

People heights

You are volunteering at the local elementary school fundraiser.

- To buy a t-shirt for your friend Vanessa, you need to know her height.
- 1. What is the probability that your friend is 54.0923857234 inches tall?

Essentially 0

From Discrete RV to Continuous Random Variables

People heights

You are volunteering at the local elementary school fundraiser.

- To buy a t-shirt for your friend Vanessa, you need to know her height.
- 1. What is the probability that your friend is 54.0923857234 inches tall?
- 2. What is the probability that Vanessa is between 52-56 inches tall?

People heights

You are volunteering at the local elementary school fundraiser.

- To buy a t-shirt for your friend Vanessa, you need to know her height.
- 1. What is the probability that your friend is 54.0923857234 inches tall?

Essentially 0

2. What is the probability that Vanessa is between 52-56 inches tall?

$$P(52 < X \le 56)$$

People heights

You are volunteering at the local elementary school fundraiser.

- To buy a t-shirt for your friend Vanessa, you need to know her height.
- 1. What is the probability that your friend is 54.0923857234 inches tall?

Essentially 0

What is the probability that Vanessa is between 52-56 inches tall?

People heights

You are volunteering at the local elementary school fundraiser.

- To buy a t-shirt for your friend Vanessa, you need to know her height.
- 1. What is the probability that your friend is 54.0923857234 inches tall?

Essentially 0

2. What is the probability that Vanessa is between 52-56 inches tall?

Continuous Random Variable Definition:

A random variable X is continuous if there is a probability density function $f(x) \ge 0$ such that for $-\infty < x < \infty$:

$$P(a \le X \le b) = \int_a^b f(x) \, dx$$
 PDF Units: probability per units of X

Integrating a PDF must always yield a valid probability, no matter the values of a and b. The PDF must also satisfy:

$$\int_{-\infty}^{\infty} f(x) \, dx = P(-\infty < X < \infty) = 1$$

Integrate f(x) to get probabilities.

PDF Units: probability per units of *X*

Comparing probability MASS vs probability DENSITY functions

PMF vs PDF

Discrete random variable X

Probability mass function (PMF): p(x)

To get probability:

$$P(X=x)=p(x)$$

Continuous random variable X

Probability density function (PDF): f(x)

To get probability:

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

Both are measures of how $\underbrace{likely}{X}$ is to take on a value or some range of values.

Computing probability

$$P(a \le X \le b) = \int_{a}^{b} f(x) \, dx$$

Let *X* be a continuous RV with PDF:

$$f(x) = \begin{cases} \frac{x}{2} & \text{if } 0 \le x \le 2\\ 0 & \text{otherwise} \end{cases}$$

What is $P(X \ge 1)$?

Computing probability

$$P(a \le X \le b) = \int_{a}^{b} f(x) \, dx$$

Let *X* be a continuous RV with PDF:

$$f(x) = \begin{cases} \frac{x}{2} & \text{if } 0 \le x \le 2\\ 0 & \text{otherwise} \end{cases}$$

(0 oth What is $P(X \ge 1)$?

Strategy 1: Integrate

$$P(1 \le X < \infty) = \int_{1}^{\infty} f(x)dx = \int_{1}^{2} \frac{1}{2}xdx$$
$$= \frac{1}{2} \left(\frac{1}{2}x^{2}\right) \Big|_{1}^{2} = \frac{1}{2} \left[2 - \frac{1}{2}\right] = \frac{3}{4}$$

Continuous Random Variables

Computing probability

$$P(a \le X \le b) = \int_a^b f(x) \, dx$$

Let *X* be a continuous RV with PDF:

$$f(x) = \begin{cases} \frac{x}{2} & \text{if } 0 \le x \le 2\\ 0 & \text{otherwise} \end{cases}$$

What is $P(X \ge 1)$?

Strategy 1: Integrate

$$P(1 \le X < \infty) = \int_{1}^{\infty} f(x)dx = \int_{1}^{2} \frac{1}{2}xdx$$
$$= \frac{1}{2} \left(\frac{1}{2}x^{2}\right) \Big|_{1}^{2} = \frac{1}{2} \left[2 - \frac{1}{2}\right] = \frac{3}{4}$$

Strategy 2: Know triangles

$$1 - \frac{1}{2} \left(\frac{1}{2} \right) = \frac{3}{4}$$

Wait! Is this even legal?

$$P(0 \le X < 1) = \int_0^1 f(x) dx$$
??

For a continuous random variable X with PDF f(x),

$$P(X=c)=\int_{c}^{c}f(x)dx=0.$$

Contrast with PMF in discrete case: P(X = c) = p(c)

For a continuous RV X with PDF f,

$$P(a \le X \le b) = \int_{a}^{b} f(x) \, dx$$

True/False:

- 1. P(X = c) = 0
- 2. $P(a \le X \le b) = P(a < X < b) = P(a \le X < b) = P(a < X \le b)$
- 3. f(x) is a probability
- 4. In the graphed PDF above, $P(x_1 \le X \le x_2) > P(x_2 \le X \le x_3)$

For a continuous RV X with PDF f,

$$P(a \le X \le b) = \int_a^b f(x) \, dx$$

True/False:

(x) = 1. P(X = c) = 0

- 2. $P(a \le X \le b) = P(a < X < b) = P(a \le X < b) = P(a < X \le b)$
- 3. f(x) is a probability
- 4. In the graphed PDF above, $P(x_1 \le X \le x_2) > P(x_2 \le X \le x_3)$

For a continuous RV X with PDF f,

$$P(a \le X \le b) = \int_{a}^{b} f(x) \, dx$$

True/False:

$$(x) = 1$$
. $P(X = c) = 0$

$$\nearrow$$
 2. $P(a \le X \le b) = P(a < X < b) = P(a \le X < b) = P(a < X \le b)$

- 3. f(x) is a probability
- 4. In the graphed PDF above, $P(x_1 \le X \le x_2) > P(x_2 \le X \le x_3)$

Interval width $dx \rightarrow 0$

For a continuous RV X with PDF f,

$$P(a \le X \le b) = \int_a^b f(x) \, dx$$

True/False:

$$(x) = 1$$
. $P(X = c) = 0$

$$\nearrow$$
 2. $P(a \le X \le b) = P(a < X < b) = P(a \le X < b) = P(a < X \le b)$

- \times 3. f(x) is a probability
 - 4. In the graphed PDF above,

$$P(x_1 \le X \le x_2) > P(x_2 \le X \le x_3)$$

Interval width $dx \rightarrow 0$

It's a probability density!

For a continuous RV X with PDF f,

$$P(a \le X \le b) = \int_{a}^{b} f(x) \, dx$$

True/False:

$$(1.)$$
 $P(X=c)=0$

$$\nearrow$$
 2. $P(a \le X \le b) = P(a < X < b) = P(a \le X < b) = P(a < X \le b)$

 \times 3. f(x) is a probability

4. In the graphed PDF above, $P(x_1 \le X \le x_2) > P(x_2 \le X \le x_3)$

 x_1 x_2 x_3 support: values of

x where f(x) > 0

Interval width $dx \rightarrow 0$

It's a probability density!

Compare area under the curve

Determining valid PDFs

$$P(a \le X \le b) = \int_a^b f(x) \, dx$$

Which of the following functions are valid PDFs?

1. f(x) $\int_{-\infty}^{\infty} f(x)dx = 0.5$ 2. g(x)

Expected Value & Variance

Introduction to Continuous RVs

- Probability Density Functions (PDF)
- Expected Value and Variance of Continuous RV
- Cumulative Distribution Functions (CDF)

Expectation and Variance

Discrete RV X
$$E[X] = \sum_{x} x p(x)$$

$$E[g(X)] = \sum_{x} g(x) p(x)$$

Continuous RV X
$$E[X] = \int_{-\infty}^{\infty} x f(x) \ dx$$

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f(x) \ dx$$

Both continuous and discrete RVs
$$E[aX + b] = aE[X] + b$$

$$Var(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2$$

$$Var(aX + b) = a^2 Var(X)$$
Linearity of Expectation Properties of variance

TL;DR: $\sum_{x=a}^{b} \Rightarrow \int_{a}^{b}$

Expected Value & Variance of Continuous Random Variables

Let *X* be a continuous RV with PDF:

$$f(x) = \begin{cases} \frac{x}{2} & \text{if } 0 \le x \le 2\\ 0 & \text{otherwise} \end{cases}$$

a). What is E[X]?

b). What is Var[X]?

Expected Value & Variance of Continuous Random Variables

Let X be a continuous RV with PDF:

$$f(x) = \begin{cases} \frac{x}{2} & \text{if } 0 \le x \le 2\\ 0 & \text{otherwise} \end{cases}$$

a). What is E[X]?

$$E[X] = \int_{-\infty}^{\infty} x f(x) \, dx$$

$$=\int_0^2 x rac{x}{2} \, dx = \int_0^2 rac{x^2}{2} \, dx$$

$$= \int_0^\infty x \frac{\pi}{2} dx = \int_0^\infty \frac{\pi}{2} dx$$
 $= \frac{x^3}{6} \Big|_0^2 = \frac{2^3}{6} - \frac{0^3}{6} = \frac{8}{6} = \boxed{\frac{4}{3}}$

b). What is
$$Var[X]$$
?
$$Var[X] = E[X^2] - (E[X])^2$$

$$E[X^2] = \int_{-\infty}^{\infty} x^2 f(x) \, dx$$

$$= \int_0^2 x^2 \frac{x}{2} \, dx = \int_0^2 \frac{x^3}{2} \, dx$$

$$= \left. \frac{x^4}{8} \right|_0^2 = \frac{2^4}{8} - \frac{0^4}{7} = \frac{16}{8} = 2$$

$$Var[X] = 2 - (\frac{4}{3})^2 = \boxed{\frac{2}{9}}$$

Introduction to Continuous RVs

Probability Density Functions (PDF)

 Expected Value and Variance of Continuous RV

Cumulative Distribution Functions (CDF)

CDFs

Cumulative Distribution Functions (CDFs)

For a continuous random variable X with PDF f(x), the CDF of X is

$$F(a) = P(X \le a) = \int_{-\infty}^{a} f(x)dx$$

CDF is a probability, though PDF is not.

If you learn to use CDFs, you can avoid integrating the PDF.

Addendum to main takeaway #1

Integrate f(x) to get probabilities.*

*If you have
$$F(a)$$
, you already have probabilities, since $F(a) = \int_{-\infty}^{a} f(x) dx$

$$P(a \le X \le b) = \int_{a}^{b} f(x) \, dx$$

Cumulative Distribution Functions (CDFs)

For a continuous random variable X with PDF f(x), the CDF of X is

$$F(a) = P(X \le a) = \int_{-\infty}^{a} f(x)dx$$

THUS:
$$P(a \le X \le b) =$$

For a continuous random variable X with PDF f(x), the CDF of X is

$$F(a) = P(X \le a) = \int_{-\infty}^{a} f(x)dx$$

$$P(a \le X \le b) = F(b) - F(a)$$

Proof:

$$F(b) - F(a) = \int_{-\infty}^{b} f(x)dx - \int_{-\infty}^{a} f(x)dx$$
$$= \left(\int_{-\infty}^{a} f(x)dx + \int_{a}^{b} f(x)dx\right) - \int_{-\infty}^{a} f(x)dx$$
$$= \int_{a}^{b} f(x)dx$$

Cumulative Distribution Functions (CDFs)

For a continuous random variable X with PDF f(x), the CDF of X is

$$F(a) = P(X \le a) = \int_{-\infty}^{a} f(x)dx$$

Matching (choices are used 0/1/2 times)

1.
$$P(X < a)$$

A.
$$F(a)$$

2.
$$P(X > a)$$

B.
$$1-F(a)$$

3.
$$P(X \ge a)$$

$$C.$$
 $F(b)-F(a)$

4.
$$P(a \le X \le b)$$
 D. $F(a) - F(b)$

D.
$$F(a) - F(b)$$

For a continuous random variable X with PDF f(x), the CDF of X is

$$F(a) = P(X \le a) = \int_{-\infty}^{a} f(x)dx$$

Matching (choices are used 0/1/2 times)

1.
$$P(X < a)$$
 A. $F(a)$

2.
$$P(X > a)$$
 B. $1 - F(a)$

3.
$$P(X \ge a)$$
 C. $F(b) - F(a)$ (next slide)
4. $P(a \le X \le b)$ D. $F(a) - F(b)$

$$4. \quad P(a \le X \le b) \qquad \qquad \mathsf{D}. \quad F(a) - F(b)$$

CDF Continuous Random Variables

Let *X* be a continuous RV with PDF:

$$f(x) = \begin{cases} \frac{x}{2} & \text{if } 0 \le x \le 2\\ 0 & \text{otherwise} \end{cases}$$

c). What is the CDF of X?

PMF, PDF and CDFs in Python

from scipy import stats

X=stats.distribution

Distribution Names and Reference Pages in Scipy:

 bernoulli
 norm

 binom
 expon

 poisson
 uniform

Function	Defined for	Description
X.pmf(k, params)	DISCRETE RV (Bernoulli, Binom, etc))	P(X=k)
X.pdf(k, params)	CONTINUOUS RV (Uniform, Expon, Norm, etc)	Probability Density, i.e. probability per unit x , when X=k.
X.cdf(k, params)	BOTH Discrete and Continuous	$P(X \le k)$