Формализация сегмента Части I Этики Спинозы

Алекс Блюм и Стенли Малинович Π еревод Т.А. Шияна 1

Введение

В этой статье мы формализуем сегмент Части I Этики Спинозы в канонической нотации первопорядковой кванторной теории².

Формализованный сегмент состоит из определений, аксиом, первых восьми утверждений (теорем) и Утверждения XI – спинозовской версии онтологического аргумента существования Бога.

Мы выводим формулируемые утверждения посредством натурального вывода³ из аксиом и определений. Спиноза не приводит списка правил вывода, а аксиомы и определения играют одинаковую роль в его выводах (*derivations*).

Мы столкнулись с двумя видами трудностей. Первый вид составляют трудности, относимые нами на счет Спинозы, второй вид – трудности, относимые нами к ограниченности, присущей первопорядковому экстенсиональному языку.

Две трудности первого вида, которые мы встретили и попытались преодолеть, следующие. В Утверждении I встречается слово "первее" (prior), котя ни его самого, ни родственных ему терминов нет ни среди аксиом-определений, ни в выводе этого утверждения. В выводе Следствия (corollary) VI, являющегося леммой Утверждения VII, Спиноза привлекает истину, которой он ни выводит откуда-либо, ни приводит среди аксиом-определений. Эту истину, которую он привлекает, можно выразить так: "Нечто познается через само себя е.т.е. оно является своей собственной причиной". Мы преодолели эту и похожие трудности, добавив пять аксиом, которые назвали постулатами.

Первая встреченная нами трудность второго вида состоит в использовании модальных и модализированных терминов, начиная с самого первого определения. Мы попытались справиться с ней с помощью переформулировки и использования параметров. Вторая трудность второго вида, с которой мы столкнулись, это аксиома 6^4 – спинозовская формулировка референциальной теории истины. Мы преодолели трудность, представленную аксиомой 6, введением оператора истинности " ∇ " и представлением аксиомы 6 в виде первопорядковой аксиомной схемы 5 .

¹ Публикация русского перевода осуществлена с любезного разрешения Алекса Блюма. Перевод сделан с издания Blum A., Malinovich S. A Formalization of a Segment of Spinoza's Ethics // Metalogicon. Rivista internazionale di logica pura e applicata, di linguistica e di filosofia. Anno VI. N.1. Gennaio – Giugno 1993. Napoli/Roma, L.E.R. – T.III.

 $^{^2}$ Можно добавить: "с оператором истины". Мы убрали такое добавление, поскольку оно могло бы ввести в заблуждение. Оператор истины не упоминается в наших правилах вывода и появляется только однажды в аксиомной схеме 6. - A.Б., C.M.

³ Стандартные правила кванторной теории с равенством. – А.Б., С.М.

⁴ Здесь в тексте источника явная опечатка: указана цифра 7, хотя речь идет об аксиоме 6. Далее в источнике имеется множество опечаток в формульной части: пропущенные или не той формы скобки, лишние или пропущенные знаки отрицания, не правильные кванторы, не правильные переменные и т.п. Исправление подобных явных опечаток далее мной не оговаривается. – Т.Ш.

⁵ Интересную дискуссию на эту тему см. в Sarah Stebbins, *Necessity of Natural Language*, "Philosophical Studies", 37:1 (январь, 1980) с.с. 1-12. – А.Б., С.М.

Джордж Буль думал использовать Э*тику*, чтобы проиллюстрировать силу своего нового учения. Но он отчаялся, оставив нас с доказательствами в своем новом формализме только утверждений 6 и 7. Он писал:

Не часто встречается рассуждение, которое состояло бы в такой степени из игры терминами, определенными как эквивалентные; я посвятил здесь несколько страниц их описанию больше из-за интереса к предмету разговора, чем из-за достоинств демонстрации, как бы высоко некоторые их не оценивали 6 .

Список обозначений

Элементарные выражения⁸

```
Axy
          x – атрибут у;
Cxy
          x – причина y;
Dxy
          х зависит от у;
Ex
          х вечен;
Exy
          х – сущность у;
Fx
          х конечен;
Hx
          х абсолютно бесконечен;
Ixy
          х содержится в у;
Kx
          х конечен в своем роде;
Kxy
          х и у имеют одну и ту же природу;
Lxy
          х ограничивает у;
Mxy
          x - модус y;
Nx
          х имеет необходимое существование;
Pxy
          х первее у;
          х свободен;
Qx
Sx
          х – субстанция;
Txv
          х – действие у;
          х знает (познает) у;
Uxy
          z – общее у x и у.
Wxyz
                                      Onepamop
\lceil \nabla \alpha \rceil
          Гистинно, что α
```

⁶ Laws of Thought, N. Y. Dover Publications, без даты, первая публикация в 1854, с. 216. – А.Б., С.М.

⁷ Кроме этих предикатов подразумевается, как было оговорено авторами, наличие в языке равенства и соответствующих дедуктивных постулатов. – Т.Ш.

⁸ У авторов этот раздел назван *Термины*. – Т.Ш.

Правила вывода 9

Использование дедуктивных постулатов

Ai аксиома №i (A); Oi определение №i (D);

Пі постулат №і (Р);

Уі [теорема (доказанное выше утверждение) №і];

+ [посылка].

Свойства связок и отношений

В∨ введение дизъюнкции; Асс. ассоциативность ∨; В∧ введение конъюнкции;

Симп. симплификация [различные варианты исключения конъюнкции];

В введение импликации;

___ ограничение (запрет) на дальнейшее применение последней посылки и следующих за ней формул вывода вплоть до черты (после применения правила В⊃).

Эксп. закон экспортации ⊃;

О⊃ опр. материальной импликации;

О≡ опр. материальной эквивалентности;

ДМ законы Де Моргана;

КП контрапозиция;

Абс. поглощение (абсорбция);

Дист. дистрибутивность; Идемп. идемпотентность; Реф= [рефлексивность =]; Сим= [симметричность =].

Классические умозаключения

c.d. конструктивная дилемма;

h.s. гипотетический силлогизм (транзитивность \supset);

m.p. modus ponens;m.t. modus tollens.

Кванторные правила

В введение квантора существования;

 $B\forall$ введение квантора общности; $H\forall$ удаление квантора общности;

Q¬ пронесение отрицания через кванторы;

QД дистрибутивность кванторов [пронесение кванторов через связки];

⁹ С одной стороны, этот список у авторов содержит не только собственно «правила вывода», но и указания на другие допустимые действия: например, разрешения на вписывание в вывод определений, аксиом и т.п. Одно из указанных авторами правил вывода (коммутативность) так ни разу и не используется в выводе. В конце описаний правил вывода в круглых скобках воспроизводятся их авторские обозначения. С другой стороны, не все использованные авторами и указанные в анализе «правила вывода» были указаны ими в данном списке. Я дополнил список правил вывода ссылками на недостающие правила (их описание заключено в квадратные скобки) и для удобства восприятия разбил список на группы. – Т.Ш.

ПИ [переименование переменных].

Определения

1. "Под *причиною самого себя* я разумею то, сущность чего заключает в себе существование, иными словами, то, чья природа может быть представляема не иначе: как существующею" ¹⁰.

 $\forall x(Cxx \equiv Nx)$

2. "Конечною в своем роде называется такая вещь, которая может быть ограничена другой вещью той же природы. Так, например, тело называется конечным, потому что мы всегда представляем другое тело, еще большее. Точно так же мысль ограничивается другой мыслью. Но тело не ограничивается мыслью, и мысль не ограничивается телом".

 $\forall x(Kx \equiv \exists y(Kxy \land Lyx \land x \neq y))$

- 3. "Под *субстанцией* я разумею то, что существует само в себе и представляется само через себя, т.е. то, представление чего не нуждается в представлении другой вещи, из которой оно должно было бы образоваться".
- $a. \forall x(Sx \equiv Ixx)$
- $b. \forall x (Sx \equiv Dxx)$
- $c. \forall x (Sx \supset \neg \exists y (Dxy \land y \neq x))$
- 4. "Под *атрибутом* я разумею то, что ум представляет в субстанции как составляющее ее сущность".
- $a. \forall x \forall y (Axy \equiv (Sy \land Exy))$
- $b. \forall x \exists y (Sx \supset Ayx)$
- 5. "Под *модусом* я разумею состояние субстанции, иными словами, то, что существует в другом и представляется через другое".

$$\forall x \forall y (Mxy \equiv (Sy \land Ixy \land x \neq y \land Dxy))$$

6. "Под *Богом* я разумею существо абсолютно бесконечное, т.е. субстанцию, состоящую из бесконечно многих атрибутов, из которых каждый выражает вечную и бесконечную сущность".

$$\forall x(Gx \supset (Sx \land Hx))$$

7. "Свободной называется такая вещь, которая существует по одной только необходимости своей собственной природы и определяется к действию только сама собой. Необходимой же или, лучше сказать, принужденной называется такая, которая чем-либо иным определяется к существованию и действию по известному и определенному образу".

$$\forall x (Qx \equiv (Nx \wedge Cxx))$$

8. "Под *вечностью* я понимаю самое существование, поскольку оно представляется необходимо вытекающим из простого определения вечной вещи".

 $^{^{10}}$ Русские цитаты из Спинозы приводятся по Спиноза Б. Избранные произведения. В 2-х томах. М., 1957. СПб., 1999. Т. 1. – Т.Ш.

 $\forall x (Ex \equiv Nx)$

Аксиомы и аксиомная схема

- 1. "Все, что существует, существует или само в себе, или в чем-то другом". $\forall x (Ixx \lor \exists y (x \neq y \land Ixy))$
- 2. "Что не может быть представляемо через другое, должно быть представляемо само через себя".

 $\forall x \forall y ((x \neq y \land \neg Dxy) \supset Dxx)$

3. "Из данной определенной причины необходимо вытекает действие, и наоборот, – если нет никакой определенной причины, невозможно, чтобы последовало действие".

 $\forall x(\exists yCxy \supset \exists zTzx) \land \forall x(\exists yTxy \supset \exists zCzx)$

- 4. "Знание действия зависит от знания причины и заключает в себе последнее". $\forall x \forall y (Cxy \supset \forall z (Uzy \supset Uzx))$
- 5. "Вещи, не имеющие между собой ничего общего, не могут быть и познаваемы одна через другую; иными словами представление одной не заключает в себе представления другой".

 $\forall x \forall y (\neg \exists z W x y z \supset (\exists v (U v x \land \neg U v y) \land \exists v (U v y \land \neg U v x) \land \neg D x y \land \neg D y x))$

- 6. "Истинная идея должна быть согласна с своим объектом". $\lceil \nabla \alpha \equiv \alpha \rceil$
- 7. "Сущность всего того, что может быть представляемо не существующим, не заключает в себе существования".

 $\forall x(Nx \supset \forall y(Eyx \supset \forall z(Azy \supset \exists u(z=u))))$

Постулаты

- Р1. Если x и y различны и x зависит от y, то y первее x. $\forall x \forall y ((x \neq y \land Dxy) \supset Pyx)$
- Р2. х зависит от самого себя е.т.е. х причина самого себя. $\forall x (Dxx \equiv Cxx)$
- Р3. х зависит от у или у зависит от х е.т.е. х и у имеют что-либо общее. $\forall x \forall y ((Dxy \lor Dyx) \equiv \exists w Wxyw)$
- P4. Если u сущность x и v сущность y, то x=y е.т.е. u=v. $\forall x \forall y \forall u \forall v ((Eux \land Evy) \supset (x=y \equiv u=v))$
- Р5. Что-либо является свободным е.т.е. его ничто не ограничивает. $\forall x (Qx \equiv \neg \exists y Lyx)$

Утверждения

Утверждение І. $\forall x \forall y ((Sx \land Myx) ⊃ Pxy)$.

"Субстанция по природе первее своих состояний".

Доказательство (набросок):

```
1. \forall x \forall y ((x \neq y \land Dxy) \supset Pyx)
                                                               \Pi 1:
2. (x\neq y \land Dxy) \supset Pyx
                                                               1, И∀ дважды;
3. \forall x \forall y (Mxy \equiv (Sy \land Ixy \land x \neq y \land Dxy))
                                                              01;
4. Mxy \equiv (Sy \wedge Ixy \wedge x \neq y \wedge Dxy)
                                                               3, И∀ дважды;
5. Mxy \supset (Sy \land Ixy \land x \neq y \land Dxy)
                                                              4, О≡, Симп.;
6. \neg Mxy \lor (Sy \land Ixy \land x \neq y \land Dxy)
                                                               5, O⊃;
7. \neg Mxy \lor (x \neq y \land Dxy)
                                                              6, Дистр., Симп.;
8. Mxy \supset (x \neq y \land Dxy)
                                                              7, O⊃;
9. Mxy \supset Pyx
                                                               8, 2, h.s.;
10. \negSy \vee (Mxy \supset Pyx)
                                                               9, Bv;
11. (\neg Sy \lor \neg Mxy) \lor Pyx
                                                               10, O\supset, A\lor;
```

12. $(Sy \land Mxy) \supset Pyx$ 11, ДМ, О \supset ; 13. $\forall x \forall y ((Sx \land Myx) \supset Pxy)$ 12, В \forall дважды, ПИ.

Утверждение II. $\forall x \forall y ((Sx \land Sy \land \exists z \exists v (Azx \land Avy \land z \neq v)) \supset \neg \exists w Wxyw).$

"Две субстанции, имеющие различные атрибуты, не имеют между собой ничего общего".

Доказательство (набросок) 11 :

```
1. Sx \wedge Sy
                                                                +;
2. \exists z \exists v (Azx \land Avy \land v \neq z)
                                                                +;
3. Azx \land Avy \land v\neqz
                                                                +;
4. \forall x \forall x (Axy \equiv (Sy \land Exy))
                                                                O4a;
5. Azx \equiv (Sx \wedge Ezx)
                                                                4, ПИ, И∀ дважды;
                                                                5, О≡, Симп., О⊃, Дис., Симп., О⊃;
6. Azx \supset Ezx
7. Azx
                                                                3, Симп.;
8. Ezx
                                                                6, 7, m.p.;
9. Avy \equiv (Sy \wedge Evy)
                                                                4, И∀ дважды;
10. Avy \supset Evy
                                                                9, О≡, Симп., О⊃, Дис., Симп., О⊃;
11. Avy
                                                                3, Симп.;
12. Evy
                                                                10, 11, m.p.;
13. \forall x \forall y \forall u \forall v ((Eux \land Evy) \supset (x=y \equiv u=v))
                                                                \Pi 4;
14. (Ezx \land Evy) \supset (x=y \equiv z=v)
                                                                13, И∀ четырежды;
15. Ezx \wedge Evy
                                                                8, 12, B<sub>\(\)</sub>;
16. x=y \equiv z=v
                                                                14, 15, m.p.;
17. x=y \supset z=v
                                                                16, O≡;
18. v≠z
                                                                3, Симп.;
```

¹¹ В этом доказательстве мной переставлены действия последних двух шагов, что делает рассуждение более последовательным: вначале применяется закон импортации импликации и только следующим шагом – введение кванторов. Соответственно, в приводимом выводе на 46-м шаге стоит формула, отличная от соответствующей формулы источника перевода. Несколько аналогичных небольших изменений внесено и в доказательства утверждений III и VI. Поскольку конкретная форма самих доказательств не имеет значения для рассматриваемой темы формализации, то эти изменения далее мной не оговариваются. – Т.Ш.

```
19. z≠v
                                                                          18, Сим=;
20. x≠y
                                                                          17, 19, m.t.;
21. \forall x(Sx \supset \neg \exists y (Dxy \land y \neq x))
                                                                          O3c;
                                                                          21, Q¬, ДМ, О⊃;
22. \forall x(Sx \supset \forall y(Dxy \supset y=x))
23. Sx \supset \forall y(Dxy \supset y=x)
                                                                          22, И∀;
24. Sx
                                                                          1, Симп.;
                                                                          23, 24, m.p.;
25. \forall y(Dxy \supset y=x)
26. Dxy \supset y=x
                                                                          25, И∀;
27. y≠x
                                                                         20, Сим=;
28. ¬Dxy
                                                                         26, 27, m.t.;
29. Sy \supset \forall x(Dyx \supset x=y)
                                                                         22, ПИ, И∀;
30. Sy
                                                                          1, Симп.;
31. \forall x(Dyx \supset x=y)
                                                                          29,30, m.p.;
32. Dyx \supset x=y
                                                                          31, И∀;
33. ¬Dyx
                                                                          32, 20, m.t.;
34. \neg Dxy \land \neg Dyx
                                                                         28, 33, B<sub>\(\)</sub>;
35. \neg (Dxy \lor Dyx)
                                                                          34, ДМ;
36. \forall x \forall y ((Dxy \lor Dyx) \equiv \exists w Wxyw)
                                                                         П3;
37. (Dxy \lor Dyx) \equiv \exists wWxyw
                                                                          36, И∀ дважды;
38. \exists w W x y w \supset (D x y \vee D y x)
                                                                          37, O≡;
39. ¬∃wWxyw
                                                                          38, 35, m.t.;
1. (Azx \land Avy \land v \neq z) \supset \neg \exists wWxyw
                                                                          3-39, B⊃;
                                                                         40, В∀ дважды;
2. \forall z \forall v ((Azx \land Avy \land v \neq z) \supset \neg \exists w Wxyw)
3. \exists z \exists v (Azx \land Avy \land v \neq z) \supset \neg \exists w Wxyw
                                                                         41, Дис⊃ дважды;
4. \exists z \exists v (Azx \land Avy \land v \neq z) \supset (\exists z \exists v (Azx \land Avy \land v \neq z) \supset \neg \exists w Wxyw)
                                                                                                                   2-42, B⊃;
5. \exists z \exists v (Azx \land Avy \land v \neq z) \supset \neg \exists w Wxyw
                                                                                               43, Имп. ⊃, Идемп ∧;
6. (Sx \land Sy) \supset (\exists z \exists v (Azx \land Avy \land v \neq z) \supset \neg \exists w Wxyw)
                                                                                               1-44, B⊃;
7. (Sx \wedge Sy \wedge \exists z \exists v (Azx \wedge Avy \wedge v \neq z)) \supset \neg \exists w Wxyw
                                                                                               45, Имп ⊃;
8. \forall x \forall y ((Sx \land Sy \land \exists z \exists v (Azx \land Avy \land v \neq z)) \supset \neg \exists w Wxyw)
                                                                                               46, В∀ дважды.
      Утверждение III. \forall x \forall y (\neg \exists z Wxyz \supset (\neg Cxy \land \neg Cyx)).
"Вещи, не имеющие между собой ничего общего, не могут быть причиной одна
другой".
     Доказательство (набросок):
1. \forall x \forall y (Cxy \supset \forall z (Uzy \supset Uzx))
                                                                          A4;
2. Cxy \supset \forall z(Uzy \supset Uzx)
                                                                          1, И∀ дважды;
3. \forall x \forall y (\neg \exists z W x y z \supset (\exists v (U v x \land \neg U v y) \land \exists v (U v y \land \neg U v x) \land \neg D x y \land \neg D y x))
                                                                                                                              A5;
4. \neg \exists z Wxyz \supset (\exists v(Uvx \land \neg Uvy) \land \exists v(Uvy \land \neg Uvx) \land \neg Dxy \land \neg Dyx)
                                                                                                             3, И∀ дважды;
5. \neg \exists z Wxyz \supset \exists v (Uvy \land \neg Uvx)
                                                                         4, О⊃, Дист., Симп., О⊃;
6. \forall v(Uvy \supset Uvx) \supset \exists zWxyz
                                                                         5, КП, Q¬, ДМ, О⊃;
7. Cxy \supset \exists zWxyz
                                                                         2, 6, ПИ, h.s.;
8. \neg \exists z Wxyz \supset \neg Cxy
                                                                         7, KΠ;
9. \forall y \forall x (Cyx \supset \forall z (Uzx \supset Uzy))
                                                                          1, ПИ;
```

9, И∀ дважды;

10. Cyx $\supset \forall$ z(Uzx \supset Uzy)

11. $\neg \exists z W x y z \supset \exists v (U v x \land \neg U v y)$	4, О⊃, Дист., Симп., О⊃;	
12. $\forall v(Uvx \supset Uvy) \supset \exists zWxyz$	11, КП, Q¬, ДМ, О⊃;	
13. Cyx $\supset \forall v(Uvx \supset Uvy)$	10, ПИ;	
14. $Cyx \supset \exists zWxyz$	13, 12, h.s.;	
15. ¬∃zWxyz ⊃ ¬Cyx	13, КП;	
16. $(\neg \exists z Wxyz \supset \neg Cxy) \land (\neg \exists z Wxyz \supset \neg Cyx)$	8, 15, B∧;	
17. $\neg \exists z Wxyz ⊃ (\neg Cxy \land \neg Cyx)$	16, О⊃, Дист., О⊃;	
18. $\forall x \forall y (\neg \exists z Wxyz \supset (\neg Cxy \land \neg Cyx))$	17, В∀ дважды.	
	, , , , , ,	
Утверждение IV. $\forall x \forall y ((Sx \land Sy \land x \neq y) \supset (\exists z (Azx \land \neg Azy) \lor \exists v (Mvx \land \neg Mvy)).$ "Две или более различные вещи различаются между собой или различием атрибутов субстанций, или различием их модусов (состояний)". Доказательство (набросок):		
1. $Sx \wedge Sy \wedge \forall z(Azx \supset Azy)$	+;	
2. Sx	1, Симп.;	
3. Sy	1, Симп.;	
$4. \ \forall z (Azx \supset Azy)$	1, Симп.;	
5. $Azx \supset Azy$	4, И∀;	
6. $\forall x \forall y (Axy \equiv (Sy \land Exy))$	O4a;	
7. Azy \equiv (Sy \wedge Ezy)	6, ПИ; И∀ дважды;	
8. Azy \supset (Sy \land Ezy)	7,О≡, Симп.;	
9. Azx \equiv (Sx \wedge Ezx)	6, ПИ; И∀ дважды;	
10. $(Sx \wedge Ezx) \supset Azx$	9, О≡, Симп.;	
11. $(Sx \wedge Ezx) \supset Azy$	10, 5, h.s.;	
12. $(Sx \wedge Ezx) \supset (Sy \wedge Ezy)$	11, 8, h.s.;	
13. $Sx \supset (Ezx \supset (Sy \land Ezy))$	12, Эксп. ⊃;	
14. $Ezx \supset (Sy \land Ezy)$	13, 2, m.p.;	
15. Ezx ⊃ Ezy	14, О⊃, Дист., Симп., О⊃;	
16. $Ezx \supset (Ezx \wedge Ezy)$	15, Абс.;	
17.Ezx	+;	
18. Ezx ∧ Ezy	16, 17, m.p.;	
19. $\exists z (Ezx \land Ezy)$	18, B∃;	
20 Few = 7-(Few , Few)	17 10 D	
20. $Ezx \supset \exists z(Ezx \land Ezy)$	17-19, B⊃;	
21. $\forall z (Ezx \supset \exists z (Ezx \land Ezy))$	20, B∀;	
22. $\exists z Ezx \supset \exists z (Ezx \land Ezy)$	21, QД; O4b;	
23. $\forall x \exists y (Sx \supset Ayx)$,	
24. Sx ⊃ ∃yAyx	23, И∀, QД;	
25. ∃yAyx	24, 2, m.p.;	
26. $Azx \supset (Sx \land Ezx)$	9, О≡, Симп.;	
27. Azx \supset Ezx	26, О⊃, Дист., Симп.;	
28.Azx	+;	
29. Ezx	27, 28, m.p.;	
30. ∃zEzx	29, B∃;	

```
31. Azx \supset \exists zEzx
                                                                       28-30, B⊃;
32. \forallz(Azx \supset \existszEzx)
                                                                       31, B∀;
33. \exists zAzx \supset \exists zEzx
                                                                       32, QД;
34. ∃zAzx
                                                                       25, ПИ;
35. ∃zEzx
                                                                       33, 34, m.p.;
36. \existsz(Ezx ∧ Ezy)
                                                                       22, 35, m.p.;
37. \forall x \forall y \forall u \forall v ((Eux \land Evy) \supset (x=y \equiv u=v))
                                                                       \Pi 4;
38. (Ezx \wedge Ezy) \supset (x=y \equiv z=z)
                                                                       37, И∀ четырежды;
39.Ezx \wedge Ezy
                                                                       +;
40. x=y = z=z
                                                                       38, 39, m.p.;
41. (x=y \supset z=z) \land (z=z \supset x=y)
                                                                       40, O≡;
42. z=z
                                                                       Реф=;
                                                                       41, Симп.;
43. z=z \supset x=y
                                                                       43, 42, m.p.;
44. x=y
45. Ezx \land Ezy \supset x=y
                                                                       39-44, B⊃;
46. \forallz(Ezx \land Ezy \supset x=y)
                                                                       45, B∀;
47. \existsz(Ezx ∧ Ezy) \supset x=y
                                                                       46, QД;
48. x=y
                                                                       47, 36, m.p.;
49. Sx \wedge Sy \wedge \forall z(Azx \supset Azy) \supset x=y
                                                                       1-48, B⊃;
50. \neg (Sx \land Sy \land \forall z(Azx \supset Azy)) \lor x=y \lor \exists v(Mvx \land \neg Mvy)
                                                                                                      49, Bv;
51. \neg (Sx \land Sy) \lor x = y \lor \neg \forall z (Azx \supset Azy) \lor \exists v (Mvx \land \neg Mvy)
                                                                                                      50, ДМ, Ком;
52. (Sx \land Sy \land x \neq y) \supset (\exists z(Azx \land \neg Azy) \lor \exists v(Mvx \land \neg Mvy)
                                                                                                      51, ДМ, О≡, QД;
53. \forall x \forall y ((Sx \land Sy \land x \neq y) \supset (\exists z (Azx \land \neg Azy) \lor \exists v (Mvx \land \neg Mvy))
                                                                                                      52, В∀ дважды.
```

Утверждение V. $\forall x \forall y ((Sx \land Sy \land x \neq y) \supset \neg \exists z Wxyz)$.

"В природе вещей не может быть двух или более субстанций одной и той же природы, иными словами, с одним и тем же атрибутом".

Доказательство (набросок):

1. $Sx \wedge Sy \wedge \exists zWxyz$	+;
2. Sx	Симп.;
3. Sy	Симп.;
4. ∃zWxyz	Симп.;
5. $\forall x \forall y ((Dxy \lor Dyx) \equiv \exists w Wxyw)$	П5;
6. $(Dxy \lor Dyx) \equiv \exists wWxyw$	5, И∀ дважды;
7. $\exists w Wxyw \supset (Dxy \lor Dyx)$	6, О≡, Симп.;
8. ∃wWxyw	4, ПИ;
9. $(Dxy \lor Dyx)$	7, 8, m.p.;
10. $\forall x(Sx \supset \neg \exists y (Dxy \land y \neq x))$	O3c;
11. $Sx \supset \neg \exists y (Dxy \land y \neq x)$	10, И∀;
12. ¬∃y (Dxy ∧ y≠x)	11, 2, m.p.;
13. \forall y(Dxy \supset y=x)	12, Q¬, ДМ, О⊃;
14. Dxy \supset y=x	13, И∀;
15. Sy $\supset \neg \exists x (Dyx \land x \neq y)$	10, ПИ, И∀;
16. $\neg \exists x (Dyx \land x \neq y)$	15, 3, m.p.;

17. $\forall x(Dyx \supset x=y)$	16, Q¬, ДМ, О⊃;
18. $Dyx \supset x=y$	17, И∀;
19. $(Dxy \supset y=x) \land (Dyx \supset x=y)$	14, 18, В∧;
20. $y=x \lor x=y$	19, 9, c.d.;
21. $x=y \lor x=y$	20, Сим=;
22. $x=y$	21, Идемп.;
23. $(Sx \land Sy \land \exists zWxyz) \supset x=y$	1-22, В⊃;
24. $(Sx \land Sy) \supset (\exists zWxyz \supset x=y)$	23, Эксп. ⊃;
25. $(Sx \land Sy) \supset (x\neq y \supset \neg \exists zWxyz)$	24, КП;
26. $(Sx \land Sy \land x\neq y) \supset \neg \exists zWxyz$	25, Эксп. ⊃;
27. $\forall x \forall y((Sx \land Sy \land x\neq y) \supset \neg \exists zWxyz)$	26, В∀ дважды;

Утверждение VI. $\forall x \forall y ((Sx \land Sy \land x \neq y) \supset \neg Cxy).$

"Одна субстанция не может производиться другой субстанцией". Доказательство (набросок):

1. $\forall x \forall y ((Sx \land Sy \land x \neq y) \supset \neg \exists z Wxyz)$ У5; 2. $(Sx \land Sy \land x \neq y) \supset \neg \exists z Wxyz$ 1, И \forall дважды; 3. $\forall x \forall y (\neg \exists z Wxyz \supset (\neg Cxy \land \neg Cyx))$ У3; 4. $\neg \exists z Wxyz \supset (\neg Cxy \land \neg Cyx)$ 3, И \forall дважды; 5. $\neg \exists z Wxyz \supset \neg Cxy$ 4, Дист., Симп.; 6. $(Sx \land Sy \land x \neq y) \supset \neg Cxy$ 2, 5, h.s.; 7. $\forall x \forall y ((Sx \land Sy \land x \neq y) \supset \neg Cxy)$ 6, В \forall дважды;

Утверждение VII. $\forall x(Sx ⊃ Nx)$.

"Природе субстанции присуще существование".

Доказательство (набросок):

1. $\forall x(Sx \equiv Dxx)$	O3b;
2. $Sx \supset Dxx$	1, И∀, О≡, Симп.;
3. $\forall x(Dxx \equiv Cxx)$	П2;
4. $Dxx \equiv Cxx$	3, И∀;
5. $(Dxx \supset Cxx) \land (Cxx \supset Dxx)$	4, O≡;
6. $Dxx \supset Cxx$	5, Симп.;
7. $Sx \supset Cxx$	2, 6, h.s.;
8. $\forall x (Cxx \equiv Nx)$	O1;
9. $Cxx \supset Nx$	8, И∀, О≡, Симп.;
10. $Sx \supset Nx$	7, 9, h.s.;
11. $\forall x(Sx \supset Nx)$	10, B∀.

Утверждение VIII. $\forall x(Sx \supset (\neg Kx \land \neg \exists yLyx)).$

"Всякая субстанция необходимо бесконечна".

Доказательство (набросок):

1. Sx +; 2. $\forall x(Sx \equiv Dxx)$ O3b; 3. $Sx \equiv Dxx$ 2, $H\forall$; 4. $Sx \supset Dxx$ 3, $O\equiv$, $Cum\pi$.;

5. Dxx	4, 1, m.p.;
6. $\forall x(Dxx \equiv Cxx)$	П2;
7. $Dxx \equiv Cxx$	6, И∀;
8. $Dxx \supset Cxx$	7, О≡, Симп.;
9. Cxx	8, 5, m.p.;
10. $\forall x (Cxx \equiv Nx)$	O1;
11. $Cxx \equiv Nx$	10, И∀;
12. $Cxx \supset Nx$	11, О≡, Симп.;
13. Nx	12, 9, m.p.;
14. $\forall x (Qx \equiv (Nx \wedge Cxx))$	O7;
15. $Qx \equiv (Nx \wedge Cxx)$	14, И∀;
16. $(Nx \wedge Cxx) \supset Qx$	15, О≡, Симп.;
17. Nx \wedge Cxx	13, 9, B∧;
18. Qx	16, 17, m.p.;
19. $\forall x (Qx \equiv \neg \exists y Lyx)$	П5;
20. Qx ≡ $\neg \exists y Ly x$	19, И∀;
21. Qx $\supset \neg \exists y Ly x$	20, О≡, Симп.;
22. ¬∃yLyx	21, 18, m.p.;
23. ∀y¬Lyx	22, Q¬;
24. ¬Lyx	23, И∀;
25. \neg Lyx $\lor \neg$ Kxy \lor x=y	24, B∨;
26. \neg (Lyx ∧ Kxy ∧ x≠y)	25, ДМ;
27. $\forall y \neg (Lyx \land Kxy \land x \neq y)$	26, B∀;
28. $\neg \exists y (Lyx \land Kxy \land x \neq y)$	27, Q¬;
29. $\forall x(Kx \equiv \exists y(Kxy \land Lyx \land$	√ x≠y)) O2;
30. $Kx \equiv \exists y(Kxy \land Lyx \land x \neq x)$	y) 29, И∀;
31. $Kx \supset \exists y(Kxy \land Lyx \land x \neq x \neq x \land x \neq x \land x \neq x \land x \Rightarrow x \Rightarrow$	4 у) 30, О≡, Симп.;
32. ¬Kx	31, 28, m.t.;
33. \neg Kx ∧ \neg ∃yLyx	32, 22, B∧;
$\overline{34.Sx} \supset (\neg Kx \land \neg \exists y Lyx)$	1-33, B⊃;
$35. \forall x (Sx \supset (\neg Kx \land \neg \exists y Lyx))$	(a)) 34, B∀.

Утверждение XI. $\forall x (Gx \supset Nx)$.

"Бог, или субстанция, состоящая из бесконечно многих атрибутов, из которых каждый выражает вечную и бесконечную сущность, необходимо существует".

Доказательство (набросок):

1 \/ (G (G II))	06
1. $\forall x (Gx \supset (Sx \land Hx))$	O6;
2. $Gx \supset (Sx \wedge Hx)$	1, И∀;
3. $Gx \supset Sx$	2, О⊃, Дист., Симп., О⊃;
$4. \ \forall x(Sx \supset Nx)$	У7;
5. $Sx \supset Nx$	4, И∀;
6. $Gx \supset Nx$	3, 5, h.s.;
7. $\forall x (Gx \supset Nx)$	6, B∀.