5. Применение теоремы Гаусса (сферическая симметрия).

Поле равномерно заряженной сферы

Лано:

R — радиус заряженной сферы;

q — заряд сферы

Найти:

E(r), $0 \le r < R$ (внутри)

E(r), r > R (снаружи)

1. Берем вспомогательную поверхность - сферу радиусом г с центром в точке О. Считаем поток через поверхность сферы:

$$\Phi_S = \oint\limits_{\mathrm{c} \phi \mathrm{epa}} \vec{E} \; d\vec{S} = \oint\limits_{\mathrm{c} \phi \mathrm{epa}} E(r) \cdot \frac{\vec{r}}{r} \cdot d\vec{S} =$$

$$= \oint\limits_{\mathrm{c} \Phi \mathrm{epa}} E(r) \cdot \frac{r \cdot dS \cdot \cos 0}{r} = \oint\limits_{\mathrm{c} \Phi \mathrm{epa}} E \cdot dS = E \oint\limits_{\mathrm{c} \Phi \mathrm{epa}} dS = E \cdot S_{\mathrm{c} \Phi} = E \cdot 4\pi r^2.$$

- 2. Считаем заряд, попавший внутрь нашей вспомогательной сферы.
- а) r < R никакая часть заряда не попадает внутрь всп. сферы. Следовательно, q(внутр) = 0
- б) r >= R внутри всп. сферы оказывается весь заряд заряженной сферы радиусом R. q(внутр) = q
- 3. Приравниваем левую и правую части теоремы Гаусса.

a)
$$0 \le r < R$$
:

$$E \cdot 4\pi r^2 = 0 \implies E = 0.$$

b)
$$r > R$$
:

$$E \cdot 4\pi r^2 = \frac{q}{\varepsilon_0} \implies E = \frac{q}{4\pi \varepsilon_0 r^2}.$$

Поле равномерно заряженного шара

Дано:

R — радиус заряженного шара;

q — заряд шара или ho = const — плотность заряда

Найти:

E(r), $0 \le r < R$ (внутри)

E(r), $r \ge R$ (снаружи)

<u>Шаг 2</u>: для a) $0 \le r < R$ и для b) $r \ge R$:

$$\Phi_S = \oint\limits_{\mathrm{c} \phi \mathrm{epa}} \vec{E} \, d\vec{S} = \cdots = E \cdot 4\pi r^2.$$

 $\underline{\text{Шаг 3}}$: считаем заряд, попавший внутрь вспомогательной сферы $q^{\text{внутр}}$.

а) сначала рассмотрим ситуацию, когда вспомогательная поверхность находится внутри

заряженного шара $0 \le r < R$, заряд, попавший внутрь, можно представить как произведение плотности на объём пространства внутри вспомогательной сферы V_s (т.к. по условию $\rho = const$)

$$q^{\rm BHYTP} = \rho \cdot V_{\rm S} = \rho \frac{4}{3} \pi r^3.$$

b) заряженный шар находится внутри вспомогательной сферы $r \ge R$:

в этом случае весь заряд шара будет находиться внутри

вспомогательной сферы

$$q^{\text{внутр}} = q = \rho \frac{4}{3} \pi R^3.$$

Шаг 4: приравниваем левые и правые части

a) $0 \le r < R$

$$E \cdot 4\pi r^2 = \frac{\rho \frac{4}{3}\pi r^3}{\varepsilon_0} \implies E = \frac{\rho}{3\varepsilon_0} r;$$

b) $r \geq R$

$$E \cdot 4\pi r^2 = \frac{\rho \frac{4}{3}\pi R^3}{\varepsilon_0} \implies E = \frac{\rho R^3}{3\varepsilon_0 r^2} = \frac{\rho}{3\varepsilon_0} \frac{R^3}{r^2};$$

