0

NOLCO Exam

Duration 1h30 - Open book

EXERCICE 1.

Consider the following nonlinear system $([x_1 \ x_2 \ x_3]^T$ being the state vector and u the control input)

$$\dot{x}_1 = x_2 \cdot \cos(x_1) + x_3^2
\dot{x}_2 = x_1 \cdot u + \sin(x_3)
\dot{x}_3 = -x_1 \cdot x_3$$
(1)

with the output (for control) $y = x_1$. The control objective is to force y to 0. The single measurement is x_3 .

Structural analysis.

- 1. Analyze the accessibility of the system.
- 2. Analyze the observability of the system. Precise, if necessary, the singularities.

Control design.

- 3. Evaluate the relative degree of the system (1) versus the output y.
- 4. Does it exist internal dynamics (not controlled)? Justify your response. Do not analyze its stability.
- 5. Calculate a control input *u* which allows to linearize, by an input-output point-of-view, the system. Specify, if it is the case, control singularities.
- 6. Propose a controller such that the input-output behavior of the system is equivalent to a system with a damping coefficient ζ and a proper pulsation ω .

EXERCICE 2.

Consider the following uncertain system $([x_1 \ x_2]^T)$ being the state vector and u being the control input)

$$\dot{x}_1 = x_2
\dot{x}_2 = \gamma(t) + \beta(t) \cdot u$$
(2)

Functions $\gamma(t)$ and $\beta(t)$ are unknown such that

$$|\gamma(t)| \leq \gamma_M$$
 and $0 < \beta_m \leq \beta(t) \leq \beta_M$.

- 1. Recall the main advantages/drawbacks of the sliding mode control strategy.
- 2. Design the sliding variable σ allowing to force x_1 towards a reference strategy $x_1^r(t)$, thanks to a first order sliding mode controller, in spite of the uncertainties. Justify the choice.

- 3. Give the condition on K ensuring that the previous objective can be reached thanks to the control $u = -K \operatorname{sign}(\sigma)$.
- 4. Suppose now that the control law strategy is based on *twisting* algorithm. In this case, how to define the sliding variable if the objective is to ensure that x_1 reaches $x_1^r(t)$ in a finite time?
- 5. What would be the interest of the *super-twisting* algorithm? In this case, is it possible to get a finite time convergence of x_1 towards $x_1^r(t)$? Justify.

Consider now the system $([x_1 \ x_2 \ x_3]^T$ being the state vector and $[u_1 \ u_2]^T$ being the control input vector)

$$\dot{x}_1 = x_2 \cdot \cos(x_1)
\dot{x}_2 = x_3^2 \cdot u_1 + u_2
\dot{x}_3 = x_1 \cdot u_2 - u_1 + x_3^2$$
(3)

The objectives are to force x_1 and x_3 to 0. Propose a controller allowing to decouple and to give, in closed-loop, at x_1 the behavior of a second order system with a damping coefficient ζ and a proper pulsation ω , and at x_3 the behavior of a first order system with a response time equal to t_r . Is there an internal dynamics? Justify.