NAIL062 P&P Logika: Worksheet 3 – Algebra of Propositions, SAT

Cíle výuky: Po absolvování cviení student

- $\bullet$  rozumí souvislosti výrok/teorií a na [T-]ekvivalenci a mnoin model (tzv. algebra výrok), umí aplikovat v konkrétních píkladech
- umí zakódovat daný problém jako instanci problému SAT
- získal praktickou zkuenost s pouitím SAT solveru
- rozumí algoritmu pro eení 2-SAT pomocí implikaního grafu (vetn nalezení vech model), umí aplikovat na píklad
- rozumí algoritmu pro eení Horn-SAT pomocí jednotkové propagace , umí aplikovat na píklad
- rozumí algoritmu DPLL a umí jej aplikovat na píklad

## PÍKLADY NA CVIENÍ

**Problem 1.** Nech  $|\mathbb{P}| = n$  a mjme výrok  $\varphi \in VF_{\mathbb{P}}$  takový, e  $|M(\varphi)| = k$ . Urete poet a na ekvivalenci:

- (a) výrok  $\psi$  takových, e  $\varphi \models \psi$  nebo  $\psi \models \varphi$ ,
- (b) teorií nad  $\mathbb{P}$ , ve kterých platí  $\varphi$ ,
- (c) kompletních teorií nad  $\mathbb{P}$ , ve kterých platí  $\varphi$ ,
- (d) teorií T nad  $\mathbb{P}$  takových, e  $T \cup \{\varphi\}$  je bezesporná.

Uvame navíc spornou teorii  $\{\varphi, \psi\}$  kde  $|M(\psi)| = p$ . Spotte a na ekvivalenci:

- (e) výroky  $\chi$  takové, e  $\varphi \lor \psi \models \chi$ ,
- (f) teorie, ve kterých platí  $\varphi \vee \psi$ .
- **Solution.** (a) Podmínku vyjádíme pomocí mnoin model:  $M(\varphi) \subseteq M(\psi)$  nebo  $M(\psi) \subseteq M(\varphi)$ . Víme, e vech model je  $2^n$ , a  $|M(\varphi)| = k$ . Chceme spoítat, kolik je moných mnoin  $M(\psi)$ . Podmínku  $M(\varphi) \subseteq M(\psi)$  spluje  $2^{2^n-k}$  mnoin (tj. tolik je nadmnoin dané k-prvkové mnoiny uvnit  $2^n$ -prvkové mnoiny), podmínku  $M(\psi) \subseteq M(\varphi)$  spluje  $2^k$  mnoin. Musíme ale být opatrní, abychom pípad  $M(\psi) = M(\varphi)$  nezapoítali dvakrát. Celkem máme  $2^{2^n-k}+2^k-1$  moných mnoin model, tedy výrok  $\psi$  a na ekvivalenci.
- (b)  $T \models \varphi \ pr\'{a}v \ kdy \ M(T) \subseteq M(\varphi), \ takov\'{y}ch \ mnoin \ M(T) \ je \ 2^k$
- (c) Navíc máme podmínku |M(T)| = 1, 1-prvkových podmnoin k-prvkové mnoiny je k.
- (d) Peloeno do ei model, podmínka íká, e  $M(T \cup \{\varphi\}) \neq \emptyset$ . Máme  $M(T \cup \{\varphi\}) = M(T, \varphi) = M(T) \cap M(\varphi)$  (jde o modely, ve kterých platí zárove T a  $\varphi$ ). Poítáme tedy kolik moných mnoin M(T) má neprázdný prnik s k-prvkovou mnoinou  $M(\varphi)$ . To lze vyjádit nap. jako  $(2^k-1)\cdot(2^{2^n-k})$ , kde  $2^k-1$  je poet moných (neprázdných) "prnik"  $M(T)\cap M(\varphi)$ , a  $2^{2^n-k}$  znamená, e pro modely, ve kterých neplatí  $\varphi$ , si meme libovoln zvolit, zda budou v naí mnoin.
- (e) Protoe  $\{\varphi,\psi\}$  je sporná, víme, e  $\emptyset = M(\varphi,\psi) = M(\varphi) \cap M(\psi)$ . Poítáme mnoiny  $M(\chi)$  takové, e  $M(\varphi \lor \psi) \subseteq M(\chi)$ . Díky Lindenbaum-Tarského algebe víme, e  $M(\varphi \lor \psi) = M(\varphi) \cup M(\psi)$ . Z disjunktnosti máme  $|M(\varphi) \cup M(\psi)| = k+p$ , snadno spoítáme, e mnoných mnoin model  $M(\chi)$  je  $2^{2^n-(k+p)}$ .
- (f) M(T) musí být podmnoinou (k+p)-prvkové  $M(\varphi \vee \psi)$ , je jich tedy  $2^{k+p}$ .

**Problem 2.** Sestrojte implikaní graf daného 2-CNF výroku. Je splnitelný? Pokud ano, najdte njaké eení: (a) výrok  $\varphi$  níe, (b)  $\varphi \wedge \neg p_1$ , (c)  $\varphi \wedge \neg p_1 \wedge (p_1 \vee p_2)$ .

$$\varphi = (p_1 \vee \neg p_2) \wedge (p_2 \vee p_3) \wedge (\neg p_3 \vee \neg p_1) \wedge (\neg p_3 \vee \neg p_4) \wedge (p_4 \vee p_5) \wedge (\neg p_5 \vee \neg p_1)$$

**Solution.** (a) Sestrojíme implikaní graf. Zjistíme, e má dv komponenty silné souvislosti:  $C = \{p_1, p_2, \neg p_3, p_4, \neg p_5\}$  a  $\overline{C} = \{\neg p_1, \neg p_2, p_3, \neg p_4, p_5\}$ , nevede mezi nimi ádná hrana. Po kontrakci komponent tedy máme dvouvrcholový graf  $\mathcal{G}^*$  bez hran, ten má dv topologická uspoádání:  $(C, \overline{C})$  a  $(\overline{C}, C)$ , která odpovídají modelm (0, 0, 1, 0, 1) a (1, 1, 0, 1, 0).

- (b) Komponenty jsou stejné, ale do  $\mathcal{G}^*$  pibude hrana  $C \to \overline{C}$ , tedy jediné topologické uspoádání je  $(C, \overline{C})$ , co odpovídá modelu (0, 0, 1, 0, 1).
- (c) Implikaní graf je nyní siln souvislý, tedy jeho jediná komponenta obsahuje (vechny) dvojice opaných literál. To znamená, e výrok je nesplnitelný.

**Problem 3.** Pomocí jednotkové propagace zjistte, zda je následující Hornv výrok splnitelný. Pokud ano, najdte njaké splující ohodnocení.

$$(\neg p_1 \lor p_2 \lor \neg p_3) \land (\neg p_1 \lor p_2) \land p_1 \land (\neg p_1 \lor \neg p_2 \lor p_3) \land (p_1 \lor \neg p_2 \lor \neg p_4) \land (\neg p_2 \lor \neg p_3 \lor \neg p_4) \land (p_4 \lor \neg p_5 \lor \neg p_6)$$

**Solution.** Provádíme postupn jednotkovou propagaci pes literály  $p_1, p_2, p_3, \neg p_4$ , zbývá výrok  $\neg p_5 \lor \neg p_6$ . Ten staí ohodnotit tak, aby alespo jedna z výrokových promnných  $p_5, p_6$  byla ohodnocená nulou. Modely výroku jsou tedy:  $\{(1,1,1,0,0,1),(1,1,1,0,1,0),(1,1,1,0,1,1)\}$ 

Problem 4. Pomocí algoritmu DPLL rozhodnte, zda je následující CNF formule splnitelná:

$$(\neg p_1 \lor \neg p_2) \land (\neg p_1 \lor p_2) \land (p_1 \lor \neg p_2) \land (p_2 \lor \neg p_3) \land (p_1 \lor p_3)$$

**Solution.** Výrok neobsahuje jednotkovou klauzuli ani literál s istým výskytem, musíme tedy vtvit, nap. pes  $p_1$ :

- $Z \varphi \wedge p_1$  dostáváme po jednotkové propagaci  $\neg p_2 \wedge p_2 \wedge (p_2 \vee \neg p_3)$ , po jednotkové propagaci pes  $\neg p_2$  dostáváme  $\square \wedge \neg p_3$ , co obsahuje prázdnou klauzuli  $\square$ , tedy je nesplnitelné.
- Z φ ∧ ¬p<sub>1</sub> dostáváme po jednotkové propagaci ¬p<sub>2</sub> ∧ (p<sub>2</sub> ∨ ¬p<sub>3</sub>) ∧ p<sub>3</sub>, po jednotkové propagaci pes ¬p<sub>2</sub> dostáváme ¬p<sub>3</sub> ∧ p<sub>3</sub>, po jednotkové propagaci pes ¬p<sub>3</sub> dostáváme prázdnou klauzuli □, tedy opt je nesplnitelné.

V obou (vech) vtvích výpotu jsme dokázali nesplnitelnost, výrok je tedy nesplnitelný.

**Problem 5.** Mjme daný orientovaný graf. Chceme zjistit, zda je acyklický, a pokud ano, nalézt njaké jeho topologické uspoádání. Zakódujte tento problém do SAT.

**Solution.** eení jen naznaíme. Jako jazyk zvolme  $\mathbb{P} = \{p_{uv} \mid u, v \in V\}$ , kde  $p_{uv}$  bude znamenat, e vrchol u je v topologickém uspoádání (oste) ped v. To, e jde o ostré uspoádání, vyjádíme pomocí následujících axiom:

- $\neg p_{vv}$  pro vechna  $v \in V$
- $p_{uv} \rightarrow \neg p_{vu} \ pro \ vechna \ u, v \in V$
- $p_{uv} \wedge p_{vw} \rightarrow p_{uw}$  pro vechna  $u, v, w \in V$

Zbývá vyjádit, e vechny grafové hrany vedou v topologickém uspoádání dopedu:

•  $p_{uv}$  pro vechny hrany  $(u, v) \in E$ 

Nakonec axiomy výe pevedeme do CNF, v mnoinovém zápisu dostáváme:

$$S = \{ \{ \neg p_{vv} \}, \{ \neg p_{uv}, \neg p_{vu} \}, \{ \neg p_{uv}, \neg p_{vw}, \neg p_{uw} \} \mid u, v, w \in V \} \cup \{ \{ p_{uv} \} \mid (u, v) \in E \}$$

## Dalí píklady k procviení

**Problem 6.** Uvame následující výroky  $\varphi$  a  $\psi$  nad  $\mathbb{P} = \{p, q, r, s\}$ :

$$\varphi = (\neg p \lor q) \to (p \land r)$$

$$\psi = s \to q$$

- (a) Urete poet (a na ekvivalenci) výrok  $\chi$  nad  $\mathbb{P}$  takových, e  $\varphi \wedge \psi \models \chi$ .
- (b) Urete poet (a na ekvivalenci) úplných teorií T nad  $\mathbb{P}$  takových, e  $T \models \varphi \wedge \psi$ .
- (c) Najdte njakou axiomatizaci pro kadou (a na ekvivalenci) kompletní teorii T nad  $\mathbb{P}$  takovou, e  $T \models \varphi \wedge \psi$ .

**Problem 7.** Pomocí algoritmu jednotkové propagace najdte vechny modely:

$$(\neg a \lor \neg b \lor c \lor \neg d) \land (\neg b \lor c) \land d \land (\neg a \lor \neg c \lor e) \land$$

$$(\neg c \lor \neg d) \land (\neg a \lor \neg d \lor \neg e) \land (a \lor \neg b \lor \neg e)$$

Problem 8. ete pomocí implikaního grafu jako v Píkladu 2, a také pomocí algoritmu DPLL jako v Píkladu 4:

- (a)  $(p_1 \vee \neg p_2) \wedge (p_2 \vee p_3) \wedge (\neg p_3 \vee p_1) \wedge (\neg p_3 \vee \neg p_4) \wedge (p_4 \vee p_5) \wedge (\neg p_5 \vee p_1)$ (b)  $(p_0 \vee p_2) \wedge (p_0 \vee \neg p_3) \wedge (p_1 \vee \neg p_3) \wedge (p_1 \vee \neg p_4) \wedge (p_2 \vee \neg p_4) \wedge (p_0 \vee \neg p_5) \wedge (p_1 \vee \neg p_5) \wedge (p_2 \vee \neg p_4) \wedge (p_3 \vee \neg p_4) \wedge (p_4 \vee p_5) \wedge (p_4 \vee \neg p_5) \wedge (p_4 \vee \neg$  $\neg p_5) \land (\neg p_1 \lor \neg p_6) \land (p_4 \lor p_6) \land (p_5 \lor p_6) \land p_1 \land \neg p_7$

**Problem 9.** Lze obarvit ísla od 1 do n dvma barvami tak, e neexistuje monochromatické e<br/>ení rovnice a+b=c pro ádná  $1 \leq a < b < c \leq n$ ? Sestrojte výrokovou formul<br/>i $\varphi_n$  v CNF která je splnitelná, práv kdy to lze. Zkuste nejprve n = 8.

Zkuste si doma: Napite skript generující  $\varphi_n$  v DIMACS CNF formátu. Pouijte SAT solver k nalezení nejmeního n pro které takové obarvení neexistuje (tj. kadé 2-obarvení obsahuje monochromatickou trojici a < b < c takovou, e a + b = c).

Problem 10. Vta o tyech barvách íká, e následující mapy lze obarvit 4 barvami tak, e ádné dva sousedící regiony nemají stejnou barvu. Najdte takové obarvení pomocí SAT solveru.



## K zamylení

**Problem 11.** Pro danou formuli  $\varphi$  v CNF najdte a 3-CNF formuli  $\varphi'$  takovou, e  $\varphi'$  je splnitelná, práv kdy  $\varphi$  je splnitelná. Popite efektivní algoritmus konstrukce  $\varphi'$  je-li dána  $\varphi$  (tj. redukci z problému SAT do problému 3-SAT).

**Problem 12.** Zakódujte problém setídní dané *n*-tice celých ísel do SAT.

**Problem 13.** Zakódujte do SAT známou hádanku o farmái, který potebuje pepravit pes eku vlka, kozu, a hlávku zelí.