

Image processing

Thermo Fisher S C I E N T I F I C

Zpracování obrazu

Předmluva

Co mají společného udělení Nobelovy ceny za chemii 2017, zobrazení struktury virů HIV či Zika a výzkum proteinů ovlivňujících Alzheimerovu chorobu? Kryo-elektronovou mikroskopii! Pracuj na podpůrných algoritmech, které pomohou rozšířit tuto technologii co nejširšímu okruhu uživatelů.

Zadání

Úkolem je implementovat aplikaci, která dokáže načíst obrázek z transmisního elektronového mikroskopu ve formátu TIFF. Analyzovat, zda je, či není, ve vstupním obrazu viditelný elektronový svazek, a pakliže je, proložit jeho okraje elipsou. Výstupem algoritmu budou parametry elipsy v zadaném formátu.

Technická očekávání

- 1. Vstupem jsou obrazová data ve formátu TIFF s jedním kanálem a 16-bitovou hloubkou rozdělená do šesti kategorií podle obtížnosti jejich analýzy.
- 2. Výstupem algoritmu bude CSV soubor, který bude obsahovat parametry proložených elips ve správném formátu (viz přílohy).
- 3. Úspěšnost algoritmu bude vyhodnocena pomocí dodané hodnotící funkce, která porovná proložené elipsy s manuálně zaznačenými elipsami.
- Algoritmus musí být schopný jak proložit elipsu, tak rozhodnout, že na obrázku není viditelný okraj elektronového svazku, kterým by se dala elipsa proložit (viz prezentace).
- 5. Algoritmus využívá pouze vstupní obrazovou informaci a změna jeho chování v závislosti na kategorii obtížnosti není přípustná.
- 6. Použití open source knihoven není omezeno.

Kritéria hodnocení:

Vítězí tým, který dosáhne nejvyššího počtu bodů z celkových 100 b.

- Přesnost proložení elips v obrazu elektronového svazku; schopnost algoritmu rozeznat nepřítomnost obrazu elektronového svazku. Hodnoceno na základě přiložené funkce.
 65 b.
 - Body za každou kategorii jsou rozděleny podle následujícího klíče:
 - Kat. 1 4 b.
 - Kat. 2 6 b.
 - Kat. 3 8 b.
 - Kat. 4 12 b.
 - Kat. 5 15 b.
 - Kat. 6 20 b.

- V každé kategorii bude vyhodnocena průměrná úspěšnost proložení elips, ta pak bude vynásobena počtem bodů za danou kategorii a výsledek bude zaokrouhlen směrem nahoru.
- Kvalita navrženého řešení, úroveň a logická návaznost použitých metod zpracování obrazů. Hodnoceno subjektivně porotou. 10 b.
- Kvalita zdrojového kódu. Hodnoceno subjektivně porotou. 5 b.
- Výpočetní náročnost navrženého řešení. Hodnoceno subjektivně porotou s přihlédnutím k použitému programovacímu jazyku a hardware. – 5 b.
- Prezentace výsledků; schopnost "prodat" své řešení. 15 b.

Tvůrci zadání

Petr Walek

Absolvent Ústavu biomedicínského inženýrství FEKT VUT v Brně. Pracovní zkušenosti: 4 roky jako signal and image processing developer na Vojenském výzkumném ústavu; nyní rok jako System Engineer v Thermofisher se specializací na zpracování obrazů.

Lukáš Malý

Absolvent Biomedicínského inženýrství a bioinformatiky na FEKT VUT v Brně. V Thermo Fisher Scientific pracuje na pozici Software Scientist od roku 2018. Jeho rolí v týmu SWAT (Software Advanced Technology) je výzkum a vývoj prototypů využívajících moderní technologie, díky kterým jsou naše elektronové mikroskopy přesnější, rychlejší a více automatizované.

Přílohy:

Formát CSV souboru

Příklad CSV souboru s jednou nalezenou elipsou a jednou nenalezenou elipsou:

```
filename,ellipse_center_x,ellipse_center_y,ellipse_majoraxis,ellipse_minoraxis,ellipse_angle,elapsed_time
2018-02-15 17.26.47.474000_metadata.tiff,626.76,494.98,387.96,381.45,171,123
2018-02-15 17.29.31.987000_metadata.tiff,,,,,,123
```

První řádek tvoří hlavička s názvy proměnných, které jsou následující:

- filename název vstupního obrázku (bez cesty, s příponou)
- ellipse_center_x x-ová souřadnice středu elipsy v pixelech
- **ellipse_center_y** y-ová souřadnice středu elipsy v pixelech
- ellipse_majoraxis velikost hlavní poloosy v pixelech
- **ellipse_minoraxis** velikost vedlejší poloosy v pixelech
- ellipse_angle úhel natočení elipsy ve stupních
- **elapsed_time** délka trvání zpracování jednoho obrazu v milisekundách (začíná po načtení obrazu a končí před uložením parametrů elipsy).

Další řádky odpovídají parametrům elips pro jednotlivé obrazy. Není-li elipsa nalezena, pak hodnoty parametrů elipsy jsou prázdné.

Tento formát je nutno striktně dodržet, jelikož jej očekává vyhodnocovací algoritmus.

Souřadný systém

Souřádný systém parametrů elipsy se řídí systém použitým ve vykreslování elips v aktuální verzi OpenCV (4.1.0), který je znázorněn na následujícím obrázku:

- Počátek souřadného systému je vlevo nahoře.
- Hodnoty x-ové osy rostou zleva doprava.
- Hodnty y-ové osy rostou ze shora dolů.
- Hlavní poloosa je větší z poloos.
- Úhel natočení roste po směru hodinových ručiček a jeho počátek odpovídá x-ové ose.

Prezentace výsledků:

Po uplynutí časového limitu odevzdáte svá řešení do předpřipraveného repozitáře, po skončení soutěže už svá řešení nemůžete dále upravovat. K prezentaci výsledků si můžete připravit krátkou prezentaci svého řešení, kterou neodevzdáváte (a můžete ji tedy upravovat i po skončení časového limitu). Pořadí soutěžících na prezentaci výsledků bude náhodně vylosováno v sobotu v 8:00 a soutěžící budou pořadí prezentací znát před skončením časového limitu soutěže. Doporučujeme tedy připravovat prezentaci výsledků před skončením časového limitu, časy prezentací jsou fixní a dostatek času na přípravu prezentace po skončení limitu nelze zaručit.

Prezentace samotná je rozdělená do 3 částí. 3 minuty jsou připraveny pro nachystání prezentace, 6 minut je k dispozici pro představení soutěžního řešení a následně bude 6ti minutové kolo otázek ze strany porotců a odpovědí na ně. Celá prezentace včetně přípravy a diskuse nesmí překročit 15 minut, poté začíná příprava dalšího týmu.

Půl hodiny před koncem (9:30) dostanete přes repozitář test data, Za tuto půlhodinu již nesmíte upravovat svůj kód.

Občerstvení

Zajištěno po celou dobu soutěže, obědy máme rezervovány v menze Starý pivovar přímo v areálu, stačí se prokázat nametagem, který dostane každý soutěžící ráno.

PAVILON D 1. PODLAŽÍ D102

Hlavní místnost pro soutěžící

K **večeři** je pizza objednaná dle dotazníku zaslaného před soutěží.

Po celou dobu soutěže je před Místností D0206 v budově D "food corner". Zde budou k dispozici voda, sladké nápoje, káva, čaj i občersvení.

Snídaně bude rovněž nachystaná ve food corneru, na výběr bude sladká i slaná.

Soutěž bude ukončena slavnostním **raut**em ve studentském klubu Kachnička.

PAVILON D 2. SUTERÉN

CHODBA C 2. PODLAŽÍ

DOPROVODNÝ PROGRAM

Zranění

V případě **zranění** je na soutěži přítomná osoba proškolená na první pomoc. Je jí Veronika Koukalová (mob. +420 722 191 554) a Michael Roth (mob. +420 602 211 970)

Všechny zranění prosím hlaste na helpdesku ve vstupu do budovy D.

8:00	začátek registrace
9:00	Oficiální zahájení
9:15	Prezentace zadání
10:00	START
12:30	Obědy (okno 45 min)
18:15	Příjezd pizzy
00:00	Midnight meal
7:30	Snídaně
10:00	KONEC
10:15	Prezentace výsledků
11:45	Vyhodnocení výsledků
12:15	Raut
12:45	Vyhlášení, předání cen
13:15	Foto, ukončení
13:45	Raut

HELPDESK

Se všemi dotazy se neváhejte obrátit na organizátory, které poznáte podle černého trička s nápisem UnIT. Rovněž můžete využít našeho HELPDESKU umístěného ve vstupu do budovy D.