### Data Science Using Python, SAS, & R

### A Rosetta Stone for Analytical Languages

### Elaine Kearney

### **Table of Contents**

| R | Tutorial                                                                                                              | 5  |
|---|-----------------------------------------------------------------------------------------------------------------------|----|
| 1 | Reading in Data and Basic Statistical Functions                                                                       | 6  |
|   | 1.1 Read in the data                                                                                                  | 6  |
|   | a) Read the data in as a .csv file                                                                                    | 6  |
|   | b) Read the data in as a .xls file.                                                                                   | 6  |
|   | c) Read the data in as a .json file                                                                                   | 6  |
|   | 1.2 Find the dimensions of the data set.                                                                              | 6  |
|   | 1.3 Find basic information about the data set.                                                                        | 7  |
|   | 1.4 Look at the first 5 (last 5) observations.                                                                        | 7  |
|   | 1.5 Calculate means of numeric variables.                                                                             |    |
|   | 1.6 Compute summary statistics of the data set.                                                                       | 7  |
|   | 1.7 Descriptive statistics functions applied to columns of the data set                                               | 8  |
|   | 1.8 Produce a one-way table to describe the frequency of a variable                                                   | 8  |
|   | a) Produce a one-way table of a discrete variable                                                                     |    |
|   | b) Produce a one-way table of a categorical variable                                                                  | 8  |
|   | 1.9 Produce a two-way table to visualize the frequency of two categorical (or discrete) variables.                    |    |
|   | 1.10 Select a subset of the data that meets a certain criterion.                                                      | 9  |
|   | 1.11 Determine the correlation between two continuous variables.                                                      | 9  |
| 2 | Basic Graphing and Plotting Functions                                                                                 | 10 |
|   | 2.1 Visualize a single continuous variable by producing a histogram                                                   | 10 |
|   | 2.2 Visualize a single continuous variable by producing a boxplot                                                     | 10 |
|   | 2.3 Visualize two continuous variables by producing a scatterplot                                                     | 11 |
|   | 2.4 Visualize a relationship between two continuous variables by producing a scatterp and a plotted line of best fit. |    |
|   | 2.5 Visualize a categorical variable by producing a bar chart                                                         | 13 |

| 2.6 Visualize a continuous variable, grouped by a categorical variable, using side boxplots                          | -           |
|----------------------------------------------------------------------------------------------------------------------|-------------|
| a) Simple side-by-side boxplot without color                                                                         | 14          |
| b) More advanced side-by-side boxplot with color                                                                     | 15          |
| 3 Basic Data Wrangling and Manipulation                                                                              | 17          |
| 3.1 Create a new variable in a data set as a function of existing variables in the da                                | ıta set. 17 |
| 3.2 Create a new variable in a data set using if/else logic of existing variables in t set                           |             |
| 3.3 Create a new variable in a data set using mathematical functions applied to exvariables in the data set.         | _           |
| 3.4 Drop variables from a data set                                                                                   | 18          |
| 3.5 Sort a data set by a variable.                                                                                   | 18          |
| a) Sort data set by a continuous variable                                                                            | 18          |
| b) Sort data set by a categorical variable.                                                                          | 18          |
| 3.6 Compute descriptive statistics of continuous variables, grouped by a categori variable.                          |             |
| 3.7 Add a new row to the bottom of a data set                                                                        | 19          |
| 3.8 Create a user-defined function and apply it to a variable in the data set to create new variable in the data set |             |
| 4 More Advanced Data Wrangling                                                                                       | 21          |
| 4.1 Drop observations with missing information                                                                       | 21          |
| 4.2 Merge two data sets together on a common variable                                                                | 21          |
| a) First, select specific columns of a data set to create two smaller data sets                                      | 21          |
| b) Second, we want to merge the two smaller data sets on the common variabl                                          | e 22        |
| c) Finally, we want to check to see if the merged data set is the same as the original data set.                     | _           |
| 4.3 Merge two data sets together by index number only                                                                | 22          |
| a) First, select specific columns of a data set to create two smaller data sets                                      | 22          |
| b) Second, we want to join the two smaller data sets.                                                                | 23          |
| c) Finally, we want to check to see if the joined data set is the same as the original set                           |             |
| 4.4 Create a pivot table to summarize information about a data set                                                   | 23          |
| 4.5 Return all unique values from a text variable                                                                    | 24          |
| 5 Preparation & Basic Regression                                                                                     | 25          |
| 5.1 Pre-process a data set using principal component analysis.                                                       | 25          |
| 5.2 Split data into training and testing data and export as a .csv file                                              | 25          |

| 5.3 Fit a logistic regression model                                                  | 25 |
|--------------------------------------------------------------------------------------|----|
| 5.4 Fit a linear regression model                                                    | 26 |
| 6 Supervised Machine Learning                                                        | 28 |
| 6.1 Fit a logistic regression model on training data and assess against testing data | 28 |
| a) Fit a logistic regression model on training data                                  | 28 |
| b) Assess the model against the testing data                                         | 28 |
| 6.2 Fit a linear regression model on training data and assess against testing data   | 29 |
| a) Fit a linear regression model on training data                                    | 29 |
| b) Assess the model against the testing data                                         | 30 |
| 6.3 Fit a decision tree model on training data and assess against testing data       | 30 |
| a) Fit a decision tree classification model.                                         | 30 |
| b) Fit a decision tree regression model                                              | 32 |
| 6.4 Fit a random forest model on training data and assess against testing data       | 33 |
| a) Fit a random forest classification model.                                         |    |
| b) Fit a random forest regression model                                              | 34 |
| 6.5 Fit a gradient boosting model on training data and assess against testing data   | 35 |
| a) Fit a gradient boosting classification model.                                     |    |
| b) Fit a gradient boosting regression model                                          |    |
| 6.6 Fit an extreme gradient boosting model on training data and assess against testi | _  |
| a) Fit an extreme gradient boosting classification model                             | 38 |
| b) Fit an extreme gradient boosting regression model                                 |    |
| 6.7 Fit a support vector model on training data and assess against testing data      |    |
| a) Fit a support vector classification model                                         | 40 |
| b) Fit a support vector regression model                                             | 40 |
| 6.8 Fit a neural network model on training data and assess against testing data      | 41 |
| a) Fit a neural network classification model                                         | 41 |
| b) Fit a neural network regression model                                             | 42 |
| 7 Unsupervised Machine Learning                                                      | 43 |
| 7.1 KMeans Clustering                                                                | 43 |
| 7.2 Spectral Clustering                                                              | 43 |
| 7.3 Ward Hierarchical Clustering                                                     | 43 |
| 7.4 DBSCAN                                                                           | 44 |
| 7.5 Self-organized map                                                               | 44 |

| 8 Forecasting                                                                        | 46 |
|--------------------------------------------------------------------------------------|----|
| 8.1 Fit an ARIMA model to a timeseries.                                              | 46 |
| a) Plot the timeseries                                                               | 46 |
| b) Fit an ARIMA (0, 1, 1) model and predict 2 years (24 months)                      | 46 |
| 8.2 Fit a Simple Exponential Smoothing model to a timeseries                         | 47 |
| a) Plot the timeseries                                                               | 47 |
| b) Fit a Simple Exponential Smoothing model, predict 2 years (24 month predictions   | -  |
| 8.3 Fit a Holt-Winters model to a timeseries                                         | 49 |
| a) Plot the timeseries                                                               | 49 |
| b) Fit a Holt-Winters additive model, predict 2 years (24 months) out an predictions | -  |
| 8.4 Fit a Facebook Prophet forecasting model to a timeseries                         | 51 |
| 9 Model Evaluation & Selection                                                       | 53 |
| 9.1 Evaluate the accuracy of regression models                                       | 53 |
| a) Evaluation on training data                                                       | 53 |
| b) Evaluation on testing data                                                        | 53 |
| 9.2 Evaluate the accuracy of classification models                                   | 54 |
| a) Evaluation on training data                                                       |    |
| b) Evaluation on testing data                                                        | 54 |
| 9.3 Evaluation with cross validation                                                 | 55 |
| a) KFold                                                                             | 55 |
| b) ShuffleSplit                                                                      | 55 |
| Appendix                                                                             | 57 |
| 1 Built-in R Objects                                                                 | 57 |
| 2 R packages used in this tutorial                                                   | 57 |
| Alphabetical Index                                                                   | 59 |
| Array                                                                                | 59 |
| Data Frame                                                                           | 59 |
| Dictionary                                                                           | 59 |
| List                                                                                 | 59 |
| Vector                                                                               | 60 |

#### **R Tutorial**

Welcome to the R tutorial version of *Data Science Using Python, SAS, & R: A Rosetta Stone for Analytical Languages*. This tutorial includes examples of common data science tasks, organized in the same way across 3 data science languages. Before beginning this tutorial, please check to make sure you have R 3.3.1 installed (this is not required, but this was the release used to generate the following examples). Also, the following R packages are used throughout this tutorial. You may not need all of the following packages to fit your specific needs, but they are listed below, and also in Appendix Section 2 with more detail, for your information:

gdata | rjson | ggplot2 | dplyr | tree | randomForest | gbm | xgboost | e1071 | RSNNS | caret | kernlab | dbscan | kohonen | forecast | prophet

To install R packages you need to run the following in the R console:

install.packages("name of package")

Note: In R, comments are indicated in code with a "#" character, and arrays and matrices begin with index 1. Also, "<-" and "=" can be used interchangeably.

Now let's get started!

### 1 Reading in Data and Basic Statistical Functions

### 1.1 Read in the data.

```
a) Read the data in as a .csv file.
student <- read.csv('/Users/class.csv')
read.csv()
b) Read the data in as a .xls file.
# call the gdata package
library(gdata)
student_xls <- read.xls('/Users/class.xls', 1)
gdata | read.xls()</pre>
```

### c) Read the data in as a .json file.

There is more code involved in reading a .json file into R so it becomes a proper data frame. Also, this code is specific for a certain .json format, so you may have to change it to fix your needs.

rjson | fromJSON()

### 1.2 Find the dimensions of the data set.

The shape of an R data frame is available by calling the dim() function, with the data name as an argument.

```
dim(student)
## [1] 19 5
```

#### 1.3 Find basic information about the data set.

Information about an R data frame is available by calling the str() function, with the data name as an argument.

```
str(student)
## 'data.frame': 19 obs. of 5 variables:
## $ Name : Factor w/ 19 levels "Alfred", "Alice",..: 1 2 3 4 5 6 7 8 9 10
...
## $ Sex : Factor w/ 2 levels "F", "M": 2 1 1 1 2 2 1 1 2 2 ...
## $ Age : int 14 13 13 14 14 12 12 15 13 12 ...
## $ Height: num 69 56.5 65.3 62.8 63.5 57.3 59.8 62.5 62.5 59 ...
## $ Weight: num 112 84 98 102 102 ...
```

### 1.4 Look at the first 5 (last 5) observations.

The first 5 observations of a data frame are available by calling the head() function, with the data name as an argument. By default, head() returns 4 observations, but we can alter the function to return 5 observations in the way shown below (n=). The tail() function is analogous and returns the last observations.

```
head(student, n=5)
##
       Name Sex Age Height Weight
## 1 Alfred M 14
                    69.0 112.5
## 2
      Alice
             F 13
                    56.5
                           84.0
## 3 Barbara F 13
                    65.3
                           98.0
## 4
      Carol
             F 14
                    62.8 102.5
## 5
      Henry
             M 14
                    63.5 102.5
```

#### 1.5 Calculate means of numeric variables.

```
# We must apply the is.numeric() function to the data set which returns a
# matrix of booleans that we then use to subset the data set to return
# only numeric variables

# Then we can use the colMeans() function to return the means of
# column variables
colMeans(student[sapply(student, is.numeric)])

## Age Height Weight
## 13.31579 62.33684 100.02632
```

colMeans() | sapply() | is.numeric

### 1.6 Compute summary statistics of the data set.

Summary statistics of a data frame are available by calling the summary() function, with the data name as an argument.

```
summary(student)
##
               Sex
                                         Height
                                                       Weight
        Name
                          Age
## Alfred: 1
               F: 9
                      Min.
                            :11.00
                                     Min.
                                           :51.30
                                                    Min. : 50.50
## Alice : 1
               M:10
                      1st Qu.:12.00
                                     1st Qu.:58.25
                                                    1st Qu.: 84.25
## Barbara: 1
                      Median :13.00
                                     Median :62.80
                                                    Median : 99.50
## Carol : 1
                      Mean :13.32
                                     Mean
                                           :62.34
                                                    Mean
                                                          :100.03
                      3rd Qu.:14.50
                                     3rd Qu.:65.90
                                                    3rd Qu.:112.25
## Henry : 1
## James : 1
                            :16.00
                                     Max. :72.00
                                                    Max. :150.00
## (Other):13
```

1.7 Descriptive statistics functions applied to columns of the data set.

```
# Notice the subsetting of student with the "$" character
sd(student$Weight)
## [1] 22.77393
sum(student$Weight)
## [1] 1900.5
length(student$Weight)
## [1] 19
max(student$Weight)
## [1] 150
min(student$Weight)
## [1] 50.5
median(student$Weight)
## [1] 99.5
```

### 1.8 Produce a one-way table to describe the frequency of a variable.

a) Produce a one-way table of a discrete variable.

```
table(student$Age)
##
## 11 12 13 14 15 16
## 2 5 3 4 4 1
```

b) Produce a one-way table of a categorical variable.

```
table(student$Sex)
##
## F M
## 9 10
```

#### table()

# 1.9 Produce a two-way table to visualize the frequency of two categorical (or discrete) variables.

```
table(student$Age, student$Sex)

##

## F M

## 11 1 1

## 12 2 3

## 13 2 1

## 14 2 2

## 15 2 2

## 16 0 1
```

table()

#### 1.10 Select a subset of the data that meets a certain criterion.

```
# The "," character tells R to select all columns of the data set
females <- student[which(student$Sex == 'F'), ]</pre>
head(females, n=5)
##
       Name Sex Age Height Weight
## 2
      Alice F 13
                     56.5 84.0
## 3 Barbara F 13
                     65.3
                          98.0
## 4 Carol F 14
                     62.8 102.5
## 7
      Jane F 12
                     59.8 84.5
## 8 Janet F 15
                     62.5 112.5
```

which()

### 1.11 Determine the correlation between two continuous variables.

```
height_weight <- subset(student, select = c(Height, Weight))
cor(height_weight, method = "pearson")

## Height Weight
## Height 1.0000000 0.8777852
## Weight 0.8777852 1.0000000
```

subset() | cor()

### **2 Basic Graphing and Plotting Functions**

### 2.1 Visualize a single continuous variable by producing a histogram.

# Setting student\$Weight to a new variable "Weight" cleans up the labeling of
# the histogram
Weight <- student\$Weight
hist(Weight)</pre>

### **Histogram of Weight**



hist()

### 2.2 Visualize a single continuous variable by producing a boxplot.

# points(mean(Weight)) tells R to plot the mean on the boxplot
boxplot(Weight, ylab="Weight")
points(mean(Weight))



### boxplot() | points()

### 2.3 Visualize two continuous variables by producing a scatterplot.

Height <- student\$Height
# Notice here you specify the x variable, followed by the y variable
plot(Height, Weight)</pre>



plot()

# 2.4 Visualize a relationship between two continuous variables by producing a scatterplot and a plotted line of best fit.

```
plot(Height, Weight)

# Lm() models Weight as a function of Height and returns the parameters
# of the Line of best fit
model <- lm(Weight~Height)
coeff <- coef(model)
intercept <- as.matrix(coeff[1])[1]
slope <- as.matrix(coeff[2])[1]

# abline() prints the line of best fit
abline(lm(Weight~Height))

# text() prints the equation of the line of best fit, with the first
# two arguments specifying the x and y location, respectively, of where
# the text should be printed on the graph
text(55, 140, bquote(Line: y == .(slope) * x + .(intercept)))</pre>
```



lm() | coef() | as.matrix() | abline() | text() | bquote()

### 2.5 Visualize a categorical variable by producing a bar chart.



barplot() | names()

# 2.6 Visualize a continuous variable, grouped by a categorical variable, using side-by-side boxplots.

a) Simple side-by-side boxplot without color.

```
# Subset data set to return only female weights, and then only male weights
Female_Weight <- student[which(student$Sex == 'F'), "Weight"]
Male_Weight <- student[which(student$Sex == 'M'), "Weight"]

# Find the mean of both arrays
means <- c(mean(Female_Weight), mean(Male_Weight))

# Syntax indicates Weight as a function of Sex
boxplot(student$Weight ~ student$Sex, ylab= "Weight", xlab= "Sex")

# Plot means on boxplots in blue
points(means, col= "blue")</pre>
```



### b) More advanced side-by-side boxplot with color.



 $ggplot2 \mid factor() \mid c() \mid aes() \mid geom\_boxplot() \mid stat\_summary()$ 

### 3 Basic Data Wrangling and Manipulation

# 3.1 Create a new variable in a data set as a function of existing variables in the data set.

```
# Notice here how you can create the BMI column in the data set just by
# naming it
student$BMI <- student$Weight / (student$Height)**2 * 703</pre>
head(student, n=5)
##
       Name
               Sex Age Height Weight
## 1 Alfred
              Male 14
                        69.0 112.5 16.61153
## 2
      Alice Female 13
                        56.5 84.0 18.49855
## 3 Barbara Female 13
                        65.3 98.0 16.15679
                        62.8 102.5 18.27090
## 4 Carol Female 14
## 5
      Henry Male 14
                        63.5 102.5 17.87030
```

# 3.2 Create a new variable in a data set using if/else logic of existing variables in the data set.

```
# Notice the use of the ifelse() function for a single condition
student$BMI Class <- ifelse(student$BMI<19.0, "Underweight", "Healthy")</pre>
head(student, n=5)
##
       Name
               Sex Age Height Weight
                                         BMI
                                               BMI Class
## 1 Alfred
                        69.0 112.5 16.61153 Underweight
              Male 14
      Alice Female 13
                         56.5 84.0 18.49855 Underweight
## 3 Barbara Female 13 65.3 98.0 16.15679 Underweight
      Carol Female 14 62.8 102.5 18.27090 Underweight
## 4
              Male 14 63.5 102.5 17.87030 Underweight
## 5
      Henry
```

ifelse()

# 3.3 Create a new variable in a data set using mathematical functions applied to existing variables in the data set.

Using the log(), exp(), sqrt(), ifelse() and abs() functions.

```
student$LogWeight <- log(student$Weight)
student$ExpAge <- exp(student$Age)
student$SqrtHeight <- sqrt(student$Height)
student$BMI_Neg <- ifelse(student$BMI < 19.0, -student$BMI, student$BMI)
student$BMI_Pos <- abs(student$BMI_Neg)

# Create a Boolean variable
student$BMI_Check <- (student$BMI == student$BMI_Pos)
head(student, n=5)

## Name Sex Age Height Weight BMI BMI_Class LogWeight
## 1 Alfred Male 14 69.0 112.5 16.61153 Underweight 4.722953</pre>
```

```
## 2
      Alice Female
                    13
                         56.5
                                84.0 18.49855 Underweight
                                                           4.430817
                    13
## 3 Barbara Female
                         65.3
                                98.0 16.15679 Underweight
                                                           4.584967
## 4
      Carol Female
                    14
                         62.8 102.5 18.27090 Underweight 4.629863
## 5
                         63.5 102.5 17.87030 Underweight 4.629863
      Henry
              Male
                    14
##
        ExpAge SqrtHeight
                           BMI Neg BMI Pos BMI Check
## 1 1202604.3
                8.306624 -16.61153 16.61153
                                                 TRUE
## 2 442413.4
                7.516648 -18.49855 18.49855
                                                 TRUE
## 3 442413.4
                8.080842 -16.15679 16.15679
                                                 TRUE
## 4 1202604.3
                7.924645 -18.27090 18.27090
                                                 TRUE
## 5 1202604.3
                7.968689 -17.87030 17.87030
                                                 TRUE
```

### 3.4 Drop variables from a data set.

```
# -c() function tells R not to select the columns listed
student <- subset(student, select = -c(LogWeight, ExpAge, SqrtHeight,</pre>
                                        BMI Neg, BMI Pos, BMI Check))
head(student, n=5)
##
        Name
                Sex Age Height Weight
                                            BMI
                                                  BMI Class
## 1
     Alfred
               Male
                     14
                          69.0 112.5 16.61153 Underweight
       Alice Female
                     13
                          56.5
                                 84.0 18.49855 Underweight
## 3 Barbara Female
                     13
                          65.3
                                98.0 16.15679 Underweight
## 4
       Carol Female
                     14
                          62.8 102.5 18.27090 Underweight
## 5
       Henry
               Male 14
                          63.5 102.5 17.87030 Underweight
```

### 3.5 Sort a data set by a variable.

### a) Sort data set by a continuous variable.

```
student <- student[order(student$Age), ]</pre>
# Notice that R uses a stable sorting algorithm by default
head(student, n=5)
##
        Name
                Sex Age Height Weight
                                           BMI
                                                 BMI Class
## 11
       Jovce Female 11
                          51.3
                                 50.5 13.49000 Underweight
## 18 Thomas
               Male
                     11
                          57.5
                                 85.0 18.07335 Underweight
## 6
       James
               Male
                     12
                          57.3
                                 83.0 17.77150 Underweight
## 7
        Jane Female 12
                          59.8
                                 84.5 16.61153 Underweight
## 10
       John
               Male 12
                          59.0
                                 99.5 20.09437 Healthy
```

### b) Sort data set by a categorical variable.

```
student <- student[order(student$Sex), ]</pre>
# Notice that the data is now sorted first by Sex and then within Sex by Age
head(student, n=5)
##
                 Sex Age Height Weight
                                             BMI
                                                   BMI Class
         Name
## 11
        Jovce Female
                     11
                           51.3
                                  50.5 13.49000 Underweight
## 7
         Jane Female
                      12
                           59.8
                                  84.5 16.61153 Underweight
       Louise Female 12
## 13
                           56.3
                                  77.0 17.07770 Underweight
## 2
        Alice Female 13
                           56.5
                                  84.0 18.49855 Underweight
## 3 Barbara Female 13
                           65.3
                                  98.0 16.15679 Underweight
```

# 3.6 Compute descriptive statistics of continuous variables, grouped by a categorical variable.

```
# Notice the syntax of Age, Height, Weight, and BMI as a function of Sex aggregate(cbind(Age, Height, Weight, BMI) ~ Sex, student, mean)

## Sex Age Height Weight BMI

## 1 Female 13.22222 60.58889 90.11111 17.05104

## 2 Male 13.40000 63.91000 108.95000 18.59424
```

aggregate() | cbind()

#### 3.7 Add a new row to the bottom of a data set.

```
# Look at the tail of the data currently
tail(student, n=5)
##
        Name Sex Age Height Weight
                                              BMI Class
                                        BMI
## 1
      Alfred Male 14
                        69.0 112.5 16.61153 Underweight
## 5
       Henry Male 14
                        63.5 102.5 17.87030 Underweight
## 17 Ronald Male 15
                        67.0 133.0 20.82847
                                                Healthy
## 19 William Male 15
                        66.5 112.0 17.80451 Underweight
## 15 Philip Male 16 72.0 150.0 20.34144
                                                Healthv
# rbind.data.frame() function binds two data frames together by rows
student <- rbind.data.frame(student, data.frame(Name='Jane', Sex = 'F',</pre>
                                              Age = 14, Height = 56.3,
                                              Weight = 77.0,
                                              BMI = 17.077695,
                                              BMI Class = 'Underweight'))
tail(student, n=5)
         Name Sex Age Height Weight
##
                                          BMI
                                               BMI Class
## 5
        Henry Male 14 63.5 102.5 17.87030 Underweight
       Ronald Male 15
## 17
                         67.0 133.0 20.82847
                                                 Healthy
## 19 William Male 15
                         66.5 112.0 17.80451 Underweight
## 15
       Philip Male 16
                         72.0 150.0 20.34144
                                                 Healthy
## 110
         Jane F 14
                         56.3 77.0 17.07769 Underweight
```

data.frame() | rbind.data.frame()

# 3.8 Create a user-defined function and apply it to a variable in the data set to create a new variable in the data set.

```
toKG <- function(lb) {
   return(0.45359237 * lb)
}
student$Weight_KG <- toKG(student$Weight)
head(student, n=5)</pre>
```

```
##
        Name Sex Age Height Weight BMI
                                             BMI_Class Weight_KG
## 11
       Joyce Female 11
                        51.3
                               50.5 13.49000 Underweight 22.90641
## 7
        Jane Female 12
                        59.8
                               84.5 16.61153 Underweight
                                                       38.32856
## 13 Louise Female 12
                        56.3
                               77.0 17.07770 Underweight
                                                       34.92661
## 2
       Alice Female 13
                        56.5
                              84.0 18.49855 Underweight 38.10176
## 3 Barbara Female 13
                        65.3 98.0 16.15679 Underweight 44.45205
```

user-defined functions

### 4 More Advanced Data Wrangling

### 4.1 Drop observations with missing information.

```
# Notice the use of the fish data set because it has some missing
# observations
fish <- read.csv('/Users/fish.csv')</pre>
# First sort by Weight, requesting those with NA for Weight first
fish <- fish[order(fish$Weight, na.last=FALSE), ]</pre>
head(fish, n=5)
##
       Species Weight Length1 Length2 Length3 Height Width
                   NA
                         29.5
                                 32.0
                                         37.3 13.9129 5.0728
## 14
         Bream
## 41
         Roach
                  0.0
                         19.0
                                 20.5
                                         22.8 6.4752 3.3516
## 73
         Perch
                  5.9
                         7.5
                                  8.4
                                         8.8 2.1120 1.4080
                                  9.8
## 146
         Smelt
                  6.7
                         9.3
                                         10.8 1.7388 1.0476
## 148 Smelt
                  7.0
                         10.1
                                10.6 11.6 1.7284 1.1484
new fish <- na.omit(fish)</pre>
head(new fish, n=5)
##
       Species Weight Length1 Length2 Length3 Height Width
## 41
         Roach
                  0.0
                         19.0
                                 20.5
                                         22.8 6.4752 3.3516
## 73
         Perch
                  5.9
                          7.5
                                  8.4
                                          8.8 2.1120 1.4080
## 146
         Smelt
                  6.7
                          9.3
                                  9.8
                                         10.8 1.7388 1.0476
## 148
         Smelt
                  7.0
                         10.1
                                 10.6
                                         11.6 1.7284 1.1484
```

na.omit()

## 147

Smelt

7.5

### 4.2 Merge two data sets together on a common variable.

10.0

### a) First, select specific columns of a data set to create two smaller data sets.

10.5

11.6 1.9720 1.1600

```
# Notice the use of the student data set again, however we want to reload
# it without the changes we've made previously
student <- read.csv('/Users/class.csv')</pre>
student1 <- subset(student, select=c(Name, Sex, Age))</pre>
head(student1, n=5)
##
        Name Sex Age
## 1 Alfred
               M 14
## 2
       Alice
                  13
## 3 Barbara
                  13
               F 14
## 4
       Carol
## 5
       Henry M 14
```

--

```
student2 <- subset(student, select=c(Name, Height, Weight))</pre>
head(student2, n=5)
##
       Name Height Weight
## 1 Alfred 69.0 112.5
## 2 Alice
              56.5
                    84.0
## 3 Barbara
              65.3
                    98.0
## 4 Carol
              62.8 102.5
## 5
      Henry
              63.5 102.5
```

b) Second, we want to merge the two smaller data sets on the common variable.

```
new <- merge(student1, student2)</pre>
head(new, n=5)
##
       Name Sex Age Height Weight
## 1 Alfred
             M 14
                    69.0 112.5
## 2
     Alice
             F 13
                    56.5
                         84.0
## 3 Barbara F 13
                    65.3
                         98.0
## 4
      Carol F 14
                    62.8 102.5
## 5
      Henry M 14
                    63.5 102.5
```

merge()

c) Finally, we want to check to see if the merged data set is the same as the original data set.

```
all.equal(student, new)
## [1] TRUE
```

all.equal()

4.3 Merge two data sets together by index number only.

a) First, select specific columns of a data set to create two smaller data sets.

```
newstudent1 <- subset(student, select=c(Name, Sex, Age))
head(newstudent1, n=5)

## Name Sex Age
## 1 Alfred M 14
## 2 Alice F 13
## 3 Barbara F 13
## 4 Carol F 14
## 5 Henry M 14</pre>
```

```
newstudent2 <- subset(student, select=c(Height, Weight))
head(newstudent2, n=5)</pre>
```

```
## Height Weight
## 1 69.0 112.5
## 2 56.5 84.0
## 3 65.3 98.0
## 4 62.8 102.5
## 5 63.5 102.5
```

#### b) Second, we want to join the two smaller data sets.

```
new2 <- cbind(newstudent1, newstudent2)</pre>
head(new2, n=5)
       Name Sex Age Height Weight
##
## 1 Alfred
             M 14
                    69.0 112.5
## 2
      Alice
             F 13
                    56.5
                          84.0
## 3 Barbara F 13
                    65.3
                          98.0
## 4
      Carol
            F 14
                    62.8 102.5
      Henry M 14
## 5
                    63.5 102.5
```

## c) Finally, we want to check to see if the joined data set is the same as the original data set.

```
all.equal(student, new2)
## [1] TRUE
```

### 4.4 Create a pivot table to summarize information about a data set.

```
# Notice we are using a new data set that needs to be read into the
# environment
price <- read.csv('/Users/price.csv')</pre>
# call the dplyr package
library(dplyr)
# The following code is used to remove the "," and "$" characters from the
# ACTUAL column so that values can be summed
price$ACTUAL <- gsub('[$]', '', price$ACTUAL)</pre>
price$ACTUAL <- as.numeric(gsub(',', '', price$ACTUAL))</pre>
filtered = group by(price, COUNTRY, STATE, PRODTYPE, PRODUCT)
basic_sum = summarise(filtered, REVENUE = sum(ACTUAL))
head(basic sum, n=5)
## Source: local data frame [5 x 5]
## Groups: COUNTRY, STATE, PRODTYPE [3]
##
##
     COUNTRY
                        STATE PRODTYPE PRODUCT REVENUE
      <fctr>
##
                       <fctr>
                                 <fctr> <fctr>
                                                    <dbl>
## 1 Canada British Columbia FURNITURE
                                            BED 197706.6
## 2 Canada British Columbia FURNITURE
                                           SOFA 216282.6
## 3 Canada British Columbia
                                 OFFICE CHAIR 200905.2
```

```
## 4 Canada British Columbia OFFICE DESK 186262.2
## 5 Canada Ontario FURNITURE BED 194493.6
```

### dplyr | group\_by | summarise()

### 4.5 Return all unique values from a text variable.

### print(unique(price\$STATE))

```
## [1] California
                              Colorado
                                                    Florida
## [4] Illinois
                              New York
                                                    North Carolina
## [7] Texas
                             Washington
                                                    Baja California Norte
## [10] Campeche
                             Michoacan
                                                    Nuevo Leon
## [13] British Columbia
                             Ontario
                                                    Quebec
## [16] Saskatchewan
## 16 Levels: Baja California Norte British Columbia California ...
Washington
```

#### unique()

In the following sections, several data set will be used more than once for prediction and modeling. Often, they will be re-read into the environment so we are always going back to the original, raw data.

### **5 Preparation & Basic Regression**

### 5.1 Pre-process a data set using principal component analysis.

```
# Notice we are using a new data set that needs to be read into the
# environment
iris <- read.csv('/Users/iris.csv')</pre>
features <- subset(iris, select = -c(Target))</pre>
pca <- prcomp(x = features, scale = TRUE)</pre>
print(pca)
## Standard deviations:
## [1] 1.7061120 0.9598025 0.3838662 0.1435538
##
## Rotation:
                      PC1
                                   PC2
##
                                              PC3
                                                          PC4
## SepalLength 0.5223716 -0.37231836 0.7210168 0.2619956
## SepalWidth -0.2633549 -0.92555649 -0.2420329 -0.1241348
## PetalLength 0.5812540 -0.02109478 -0.1408923 -0.8011543
## PetalWidth 0.5656110 -0.06541577 -0.6338014 0.5235463
```

prcomp()

### 5.2 Split data into training and testing data and export as a .csv file.

```
# Set the sample size of the training data
smp_size <- floor(0.7 * nrow(iris))

# set.seed() is used to specify a seed for a random integer so that the
# results are reproducible
set.seed(29)
train_ind <- sample(seq_len(nrow(iris)), size = smp_size)

train <- iris[train_ind, ]
test <- iris[-train_ind, ]
write.csv(train, file = "/Users/iris_train_R.csv")
write.csv(test, file = "/Users/iris_test_R.csv")</pre>
```

floor() | nrow() | set.seed() | sample() | seq\_len() | write.csv()

### 5.3 Fit a logistic regression model.

```
# Notice we are using a new data set that needs to be read into the # environment
```

```
tips <- read.csv('/Users/tips.csv')
# The following code is used to determine if the individual left more
# than a 15% tip
tips$fifteen <- 0.15 * tips$total_bill</pre>
tips$greater15 <- ifelse(tips$tip > tips$fifteen, 1, 0)
# Notice the syntax of greater15 as a function of total bill
# You could fit the model of greater15 as a function of all
# other variables with "greater15 ~ ."
logreg <- glm(greater15 ~ total bill, data = tips,</pre>
              family = "binomial"(link='logit'))
summary(logreg)
##
## Call:
## glm(formula = greater15 ~ total bill, family = binomial(link = "logit"),
##
       data = tips)
##
## Deviance Residuals:
      Min
                 10
                      Median
                                           Max
                                   3Q
## -1.6757 -1.1766
                      0.8145
                               1.0145
                                        2,0774
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.64772
                           0.35467
                                     4.646 3.39e-06 ***
                           0.01678 -4.319 1.57e-05 ***
## total bill -0.07248
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 335.48 on 243 degrees of freedom
## Residual deviance: 313.74 on 242 degrees of freedom
## AIC: 317.74
##
## Number of Fisher Scoring iterations: 4
```

glm()

### 5.4 Fit a linear regression model.

```
# Notice the syntax of tip as function of total_bill
linreg <- lm(tip ~ total_bill, data = tips)
summary(linreg)

##
## Call:
## lm(formula = tip ~ total_bill, data = tips)
##
## Residuals:</pre>
```

```
## Min 1Q Median 3Q Max
## -3.1982 -0.5652 -0.0974 0.4863 3.7434
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.920270 0.159735 5.761 2.53e-08 ***
## total_bill 0.105025 0.007365 14.260 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.022 on 242 degrees of freedom
## Multiple R-squared: 0.4566, Adjusted R-squared: 0.4544
## F-statistic: 203.4 on 1 and 242 DF, p-value: < 2.2e-16</pre>
```

#### lm()

### **6 Supervised Machine Learning**

Many of the following models will make use of the predict() function.

# 6.1 Fit a logistic regression model on training data and assess against testing data.

a) Fit a logistic regression model on training data.

```
# Notice we are using new data sets that need to be read into the environment
train <- read.csv('/Users/tips train.csv')</pre>
test <- read.csv('/Users/tips test.csv')</pre>
train$fifteen <- 0.15 * train$total bill
train$greater15 <- ifelse(train$tip > train$fifteen, 1, 0)
test$fifteen <- 0.15 * test$total bill
test$greater15 <- ifelse(test$tip > test$fifteen, 1, 0)
logreg <- glm(greater15 ~ total bill, data = train,
             family = "binomial"(link='logit'))
summary(logreg)
##
## glm(formula = greater15 ~ total bill, family = binomial(link = "logit"),
##
      data = train)
##
## Deviance Residuals:
##
      Min 10 Median
                                 3Q
                                          Max
## -1.6409 -1.1929 0.8144
                              1.0027
                                       2.0381
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.64613 0.39459 4.172 3.02e-05 ***
## total_bill -0.07064 0.01849 -3.820 0.000134 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 267.61 on 194 degrees of freedom
## Residual deviance: 250.58 on 193 degrees of freedom
## AIC: 254.58
##
## Number of Fisher Scoring iterations: 4
```

### b) Assess the model against the testing data.

```
# Prediction on testing data
predictions <- predict(logreg, test, type = 'response')
predY <- ifelse(predictions < 0.5, 0, 1)</pre>
```

```
# If the prediction probability is less than 0.5, classify this as a 0
# and otherwise classify as a 1. This isn't the best method -- a better
# method would be randomly assigning a 0 or 1 when a probability of 0.5
# occurrs, but this insures that results are consistent

# Determine how many were correctly classified
Results <- ifelse(predY == test$greater15, "Correct", "Wrong")
table(Results)

## Results
## Correct Wrong
## 34 15</pre>
```

glm()

# 6.2 Fit a linear regression model on training data and assess against testing data.

a) Fit a linear regression model on training data.

```
# Notice we are using new data sets that need to be read into the environment
train <- read.csv('/Users/boston_train.csv')</pre>
test <- read.csv('/Users/boston_test.csv')</pre>
# Fit a linear regression model
# The "." character tells the model to use all variables except the response
# variabe (Target)
linreg <- lm(Target ~ ., data = train)</pre>
summary(linreg)
##
## Call:
## lm(formula = Target ~ ., data = train)
##
## Residuals:
##
       Min
                 10 Median
                                    3Q
                                            Max
## -15.6466 -2.8461 -0.5395
                               1.7077 26.2160
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
                           6.504968
                                      5.551 5.73e-08 ***
## (Intercept) 36.108196
## X0
                -0.085634
                           0.042774 -2.002 0.046077 *
                0.046034
                            0.017150
## X1
                                      2.684 0.007626 **
## X2
                0.036413
                           0.076006 0.479 0.632186
## X3
                3.247961 1.074138 3.024 0.002686 **
              -14.872938 4.636090 -3.208 0.001463 **
## X4
                           0.536993 6.661 1.10e-10 ***
## X5
                3.576869
                -0.008703
                            0.016853 -0.516 0.605890
## X6
## X7
               -1.368905 0.252960 -5.412 1.18e-07 ***
```

```
0.082366 3.802 0.000170 ***
## X8
           0.313120
           ## X9
           -0.976900 0.170996 -5.713 2.43e-08 ***
## X10
           ## X11
           ## X12
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.988 on 340 degrees of freedom
## Multiple R-squared: 0.7236, Adjusted R-squared: 0.7131
## F-statistic: 68.48 on 13 and 340 DF, p-value: < 2.2e-16
```

#### b) Assess the model against the testing data.

```
# Predict on testing data
prediction = data.frame(matrix(ncol = 0, nrow = nrow(test)))
prediction$predY = predict(linreg, newdata = test)

# Compute the squared difference between predicted tip and actual tip
prediction$sq_diff <- (prediction$predY - test$Target)**2

# Compute the mean of the squared differences (mean squared error)
# as an assessment of the model
mean_sq_error <- mean(prediction$sq_diff)
print(mean_sq_error)

## [1] 17.77131</pre>
```

lm()

# 6.3 Fit a decision tree model on training data and assess against testing data.

### a) Fit a decision tree classification model.

```
i) Fit a decision tree classification model on training data and determine variable importance.
# Notice we are using new data sets that need to be read into the environment
train <- read.csv('/Users/breastcancer_train.csv')
test <- read.csv('/Users/breastcancer_test.csv')

# call the tree package
library(tree)

treeMod <- tree(Target ~ ., data = train, method = "class")

# Plot the decision tree
plot(treeMod)
text(treeMod)</pre>
```



```
# Determine variable importance
summary(treeMod)

##

## Regression tree:
## tree(formula = Target ~ ., data = train, method = "class")

## Variables actually used in tree construction:
## [1] "X23" "X27" "X1" "X28" "X4"

## Number of terminal nodes: 6

## Residual mean deviance: 0.02688 = 10.54 / 392

## Distribution of residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.97820 -0.01575 0.02183 0.00000 0.02183 0.98430
```

#### ii) Assess the model against the testing data.

```
# Prediction on testing data
out <- predict(treeMod, test)
out <- unname(out)
predY <- ifelse(out < 0.5, 0, 1)

# Determine how many were correctly classified
Results <- ifelse(test$Target == predY, "Correct", "Wrong")
table(Results)</pre>
```

```
## Results
## Correct Wrong
## 159 12
```

tree

### b) Fit a decision tree regression model.

```
i) Fit a decision tree regression model on training data and determine variable importance.
train <- read.csv('/Users/boston_train.csv')
test <- read.csv('/Users/boston_test.csv')

treeMod <- tree(Target ~ ., data = train)

# Plot the decision tree
plot(treeMod)
text(treeMod)</pre>
```



```
# Determine variable importance
summary(treeMod)
##
## Regression tree:
```

```
## tree(formula = Target ~ ., data = train)
## Variables actually used in tree construction:
## [1] "X5" "X12" "X7" "X0"
## Number of terminal nodes: 7
## Residual mean deviance: 14.67 = 5091 / 347
## Distribution of residuals:
      Min. 1st Ou. Median
                                  Mean 3rd Qu.
                                                     Max.
## -28.0000 -1.8070 0.3264 0.0000 2.2320 10.0100
ii) Assess the model against the testing data.
# Prediction on testing data
prediction = data.frame(matrix(ncol = 0, nrow = nrow(test)))
prediction$predY = predict(treeMod, newdata = test)
# Determine mean squared error
prediction$sq diff <- (prediction$predY - test$Target)**2</pre>
mean_sq_error <- mean(prediction$sq_diff)</pre>
print(mean sq error)
## [1] 25.12126
```

tree

# 6.4 Fit a random forest model on training data and assess against testing data.

- a) Fit a random forest classification model.
- i) Fit a random forest classification model on training data and determine variable importance.

ii) Assess the model against the testing data.

```
# Prediction on testing data
predY <- predict(rfMod, test)

# Determine how many were correctly classified
Results <- ifelse(test$Target == predY, "Correct", "Wrong")
table(Results)

## Results
## Correct Wrong
## 166 5</pre>
```

randomForest | as.factor()

### b) Fit a random forest regression model.

```
i) Fit a random forest regression model on training data and determine variable importance.
train <- read.csv('/Users/boston_train.csv')</pre>
test <- read.csv('/Users/boston test.csv')</pre>
# call the randomForest package
library(randomForest)
set.seed(29)
rfMod <- randomForest(Target ~ ., data = train)</pre>
# Determine variable importance
var_import <- importance(rfMod)</pre>
var_import <- data.frame(sort(var_import, decreasing = TRUE,</pre>
                                 index.return = TRUE))
var_import$MeanDecreaseGini <- var_import$x</pre>
var import$X <- var import$ix - 1</pre>
var_import <- subset(var_import, select = -c(ix, x))</pre>
head(var_import, n=5)
##
     MeanDecreaseGini X
## 1
              8662.298 12
## 2
              8451.836 5
              2147.288 0
## 3
## 4
              2105.072 7
## 5
              1915.570 2
```

# ii) Assess the model against the testing data. # Prediction on testing data prediction = data.frame(matrix(ncol = 0, nrow = nrow(test))) prediction\$predY = predict(rfMod, newdata = test) # Determine mean squared error prediction\$sq\_diff <- (prediction\$predY - test\$Target)\*\*2 mean\_sq\_error <- mean(prediction\$sq\_diff) print(mean\_sq\_error) ## [1] 9.028163</pre>

randomForest

# 6.5 Fit a gradient boosting model on training data and assess against testing data.

a) Fit a gradient boosting classification model.

i) Fit a gradient boosting classification model on training data and determine variable importance.



```
head(var_import, n=5)

## var rel.inf
## X27 X27 27.50103
## X7 X7 20.68575
## X23 X23 19.49976
## X22 X22 15.46766
## X13 X13 3.46162
```

#### ii) Assess the model against the testing data.

## b) Fit a gradient boosting regression model.

# i) Fit a gradient boosting regression model on training data and determine variable importance.



```
head(var_import, n=5)

## var rel.inf
## X12 X12 41.882259
## X5 X5 32.846422
## X7 X7 8.298140
```

gbm

# 6.6 Fit an extreme gradient boosting model on training data and assess against testing data.

a) Fit an extreme gradient boosting classification model.

ii) Assess the model against the testing data.

```
Results <- ifelse(test$Target == predY, "Correct", "Wrong")
table(Results)
## Results
## Correct Wrong
## 165 6</pre>
```

xgboost

#### b) Fit an extreme gradient boosting regression model.

```
i) Fit an extreme gradient boosting regression model on training data.
train <- read.csv('/Users/boston train.csv')</pre>
test <- read.csv('/Users/boston_test.csv')</pre>
# call the xgboost package
library(xgboost)
set.seed(29)
# Fit the model
xgbMod <- xgboost(data.matrix(subset(train, select = -c(Target))),</pre>
                  data.matrix(train$Target), max depth = 3, nrounds = 10,
                  n_estimators = 2500, shrinkage = .01)
## [1] train-rmse:17.131615
## [2] train-rmse:12.419768
## [3] train-rmse:9.116973
## [4] train-rmse:6.777830
## [5] train-rmse:5.182819
## [6] train-rmse:4.113659
## [7] train-rmse:3.403357
## [8] train-rmse:2.955893
## [9] train-rmse:2.677797
## [10] train-rmse:2.485887
ii) Assess the model against the testing data.
```

# 6.7 Fit a support vector model on training data and assess against testing data.

- a) Fit a support vector classification model.
- i) Fit a support vector classification model on training data.

Note: In implementation scaling should be used.

```
train <- read.csv('/Users/breastcancer train.csv')</pre>
test <- read.csv('/Users/breastcancer_test.csv')</pre>
# call the e1071 package
library(e1071)
# Fit a support vector classification model
svMod <- svm(Target ~ ., train, type = 'C-classification', kernel = 'linear',</pre>
scale = FALSE)
ii) Assess the model against the testing data.
# Prediction on testing data
predY <- unname(predict(svMod, subset(test, select = -c(Target))))</pre>
# Determine how many were correctly classified
Results <- ifelse(test$Target == predY, "Correct", "Wrong")</pre>
table(Results)
## Results
## Correct
             Wrong
## 162
```

e1071 | svm()

- b) Fit a support vector regression model.
- i) Fit a support vector regression model on training data.

Note: In implementation scaling should be used.

```
train <- read.csv('/Users/boston_train.csv')
test <- read.csv('/Users/boston_test.csv')

# call the e1071 package
library(e1071)

svMod <- svm(Target ~ ., train, scale = FALSE)</pre>
```

```
ii) Assess the model against the testing data.
# Prediction on testing data
prediction = data.frame(matrix(ncol = 0, nrow = nrow(test)))
prediction$predY <- unname(predict(svMod, test))</pre>
prediction$sq_diff <- (prediction$predY - test$Target)**2</pre>
print(mean(prediction$sq diff))
## [1] 79.81455
e1071 | svm()
6.8 Fit a neural network model on training data and assess against
testing data.
a) Fit a neural network classification model.
i) Fit a neural network classification model on training data.
# Notice we are using new data sets
train <- read.csv('/Users/digits_train.csv')</pre>
test <- read.csv('/Users/digits test.csv')</pre>
trainInputs <- subset(train, select = -c(Target))</pre>
testInputs <- subset(test, select = -c(Target))
# call the RSNNS package
library(RSNNS)
set.seed(29)
trainTarget <- decodeClassLabels(train$Target)</pre>
testTarget <- decodeClassLabels(test$Target)</pre>
# Fit neural network regression model
nnMod <- mlp(trainInputs, trainTarget, size = c(100), maxit = 200)</pre>
ii) Assess the model against the testing data.
# Prediction on testina data
predictions <- predict(nnMod, testInputs)</pre>
# Determine how many were correctly classified
confusionMatrix(testTarget, predictions)
##
          predictions
## targets 1 2 3 4 5 6 7 8 9 10
        1 57 0 0 0 1 0 0 0 0
##
##
        2 155 0 1 0 0 0 0 1 0
##
       3 1 0 51 0 0 0 0 0 2 4
       4 0 0 4 49 0 0 0 2 0 4
##
      5 0 0 0 0 54 0 0 0 0 0
##
```

6 0 0 0 0 0 56 2 0 0 1

##

```
## 7 0 0 0 0 0 0 41 0 0 0
## 8 0 2 0 0 0 0 49 0 0
## 9 0 3 0 0 0 0 0 42 0
## 10 0 2 0 1 1 1 0 0 1 51
```

RSNNS | confusionMatrix()

#### b) Fit a neural network regression model.

```
i) Fit a neural network regression model on training data.
train <- read.csv('/Users/boston_train.csv')</pre>
test <- read.csv('/Users/boston_test.csv')</pre>
# call the RSNNS package
library(RSNNS)
set.seed(29)
# Scale input data
scaled_train <- data.frame(scale(subset(train, select = -c(Target))))</pre>
scaled_test <- data.frame(scale(subset(test, select = -c(Target))))</pre>
# Fit neural network regression model, dividing target by 50 for scaling
nnMod <- mlp(scaled_train, train$Target / 50, maxit = 250, size = c(100))</pre>
scale()
# Assess against testing data, remembering to multiply by 50
preds = data.frame(matrix(ncol = 0, nrow = nrow(test)))
preds$predY <- predict(nnMod, scaled_test)*50</pre>
preds$sq_error <- (preds$predY - test$Target)**2</pre>
print(mean(preds$sq_error))
## [1] 12.75267
```

**RSNNS** 

## 7 Unsupervised Machine Learning

# 7.1 KMeans Clustering

```
iris = read.csv('/Users/iris.csv')
iris$Species = ifelse(iris$Target == 0, "Setosa",
                      ifelse(iris$Target == 1, "Versicolor", "Virginica"))
features <- as.matrix(subset(iris, select = c(PetalLength, PetalWidth,</pre>
                                               SepalLength, SepalWidth)))
set.seed(29)
kmeans <- kmeans(features, 3)</pre>
table(iris$Species, kmeans$cluster)
##
##
                 1 2 3
                50 0 0
##
     Setosa
    Versicolor 0 48 2
##
##
    Virginica 0 14 36
```

kmeans()

# 7.2 Spectral Clustering

```
# call the kernlab package
library(kernlab)
set.seed(29)
spectral <- specc(features, centers = 3, iterations = 10, nystrom.red = TRUE)</pre>
labels <- as.data.frame(spectral)</pre>
table(iris$Species, labels$spectral)
##
##
                 1 2 3
##
     Setosa
                50 0 0
    Versicolor 0 47 3
##
    Virginica 0 3 47
##
```

kernlab | specc()

# 7.3 Ward Hierarchical Clustering

```
set.seed(29)
```

Hierarchical Clustering in R | hclust()

#### 7.4 DBSCAN

```
# call the dbscan package
library(dbscan)

set.seed(29)

# eps = 0.5 is default in Python
dbscan <- dbscan(features, eps = 0.5)

table(iris$Species, dbscan$cluster)

##
## 0 1 2
## Setosa 1 49 0
## Versicolor 6 0 44
## Virginica 10 0 40</pre>
```

dbscan

# 7.5 Self-organized map

```
# call the kohonen package
library(kohonen)

# Seed chosen to match SAS and R results
set.seed(5)

fit <- som(features, mode = "online", somgrid(4, 4, "rectangular"))

plot(fit, type = "dist.neighbour", shape = "straight")</pre>
```

# Neighbour distance plot



kohonen

# **8 Forecasting**

#### 8.1 Fit an ARIMA model to a timeseries.

## a) Plot the timeseries.

```
# Read in new data set
air <- read.csv('/Users/air.csv')
air_series <- air$AIR
plot.ts(air_series, ylab="Air")</pre>
```



#### plot.ts()

```
b) Fit an ARIMA (0, 1, 1) model and predict 2 years (24 months).
```

```
a_forecast <- forecast(a_fit, 24)

plot(a_forecast, xlab = "Month", ylab = "Air")</pre>
```

# Forecasts from ARIMA(0,1,1)(0,1,1)[12]



arima() | forecast

# 8.2 Fit a Simple Exponential Smoothing model to a timeseries.

#### a) Plot the timeseries.

```
# Read in new data set
usecon <- read.csv('/Users/usecon.csv')

petrol_series <- usecon$PETROL

petrol <- ts(petrol_series, frequency = 12)

plot.ts(petrol, ylab="Petrol")</pre>
```



ts() | plot.ts()

b) Fit a Simple Exponential Smoothing model, predict 2 years (24 months) out and plot predictions.

```
# call the forecast package
library(forecast)

ses_fit <- ses(petrol, h=24, alpha = 0.9999)

plot(ses_fit, xlab = "Month", ylab = "Petrol")</pre>
```

# Forecasts from Simple exponential smoothing



forecast

# 8.3 Fit a Holt-Winters model to a timeseries.

#### a) Plot the timeseries.

```
vehicle_series <- usecon$VEHICLES

vehicle <- ts(vehicle_series, frequency = 12)

plot.ts(vehicle, ylab="Vehicle")</pre>
```



ts() | plot.ts()

b) Fit a Holt-Winters additive model, predict 2 years (24 months) out and plot predictions.

```
# call the forecast package
library(forecast)

add_fit <- HoltWinters(vehicle, seasonal = "additive")

add_forecast <- forecast(add_fit, 24)

plot(add_forecast)</pre>
```

# **Forecasts from HoltWinters**



#### forecast

# 8.4 Fit a Facebook Prophet forecasting model to a timeseries.

```
air <- read.csv('/Users/air.csv')
# call the prophet & dplyr packages
library(prophet)
library(dplyr)
air_df <- data.frame(matrix(ncol = 0, nrow = nrow(air)))
air_df$ds <- as.Date(air$DATE, format = "%m/%d/%Y")
air_df$y <- air$AIR
m <- prophet(air_df, yearly.seasonality = TRUE, weekly.seasonality = FALSE)
## Initial log joint probability = -2.46502
## Optimization terminated normally:
## Convergence detected: absolute parameter change was below tolerance
future <- make_future_dataframe(m, periods = 24, freq = "month")
forecast <- predict(m, future)</pre>
```

# plot(m, forecast)



Facebook Prophet R API

#### 9 Model Evaluation & Selection

# 9.1 Evaluate the accuracy of regression models.

a) Evaluation on training data.

```
train <- read.csv('/Users/boston train.csv')</pre>
test <- read.csv('/Users/boston test.csv')</pre>
set.seed(29)
# Random Forest Regression Model
# call the randomForest package
library(randomForest)
rfMod <- randomForest(Target ~ ., data = train)</pre>
# Evaluation on training data
predY <- predict(rfMod, train)</pre>
predY <- unname(predY)</pre>
# Determine coefficient of determination score
r2_rf <- 1 - ( (sum((train$Target -
                        predY)**2)) / (sum((train$Target -
                                             mean(train$Target))**2)) )
print(paste0("Random forest regression model r^2 score (coefficient of
determination): ", r2 rf))
## [1] "Random forest regression model r^2 score (coefficient of
determination): 0.972080769152132"
```

#### b) Evaluation on testing data.

randomForest | predict() | unname()

The formula used here for the coefficient of determination score is based off the Python skearn formula for r2\_score. For more information about model assessment in R, please review information about the R package caret.

# 9.2 Evaluate the accuracy of classification models.

#### a) Evaluation on training data.

```
train <- read.csv('/Users/digits_train.csv')
test <- read.csv('/Users/digits_test.csv')

set.seed(29)

# Random Forest Classification Model
# call the randomForest package
library(randomForest)

rfMod <- randomForest(as.factor(Target) ~ ., data = train)

# Evaluation on training data
predY <- predict(rfMod, train)
predY <- unname(predY)

# Determine accuracy score
accuracy_rf <- (1/nrow(train)) * sum(as.numeric(predY == train$Target))
print(paste0("Random forest model accuracy: ", accuracy_rf))

## [1] "Random forest model accuracy: 1"</pre>
```

#### b) Evaluation on testing data.

```
# Random Forest Classification Model (rfMod)

# Evaluation on testing data
predY <- predict(rfMod, test)
predY <- unname(predY)

# Determine accuracy score
accuracy_rf <- (1/nrow(test)) * sum(as.numeric(predY == test$Target))
print(paste0("Random forest model accuracy: ", accuracy_rf))

## [1] "Random forest model accuracy: 0.974074074074074"</pre>
```

#### randomForest | predict() | unname()

The formula used here for the accuracy score is based off the Python skearn formula for accuracy\_score. For more information about model assessment in R, please review information about the R package caret.

#### 9.3 Evaluation with cross validation.

#### a) KFold

```
# Notice we are using a new data set that needs to be read into the
# environment
breastcancer = read.csv('/Users/breastcancer.csv')
# call the caret and randomForest packages
library(caret)
library(randomForest)
set.seed(29)
# Create the 5 cross validation folds
train control <- trainControl(method = "cv", number = 5,
                               savePredictions = TRUE)
# Convert Target into a factor variable for the random forest model
breastcancer$Target <- factor(breastcancer$Target, levels = c(1,0),</pre>
                               labels = c(1, 0)
# Train the model, using the 5 cross validation folds
model <- train(Target~., data = breastcancer, trControl = train control,</pre>
               method = "rf")
# Assess the accuracy of the model
tab <- model<pre>$pred
tab$correct <- (tab$pred == tab$obs)</pre>
tab$correct_num <- ifelse(tab$correct=="TRUE", 1, 0)</pre>
aggdata <- unname(as.matrix(aggregate(correct_num ~ Resample, tab, sum)))</pre>
aggdata <- as.numeric(aggdata[,2])</pre>
counts <- unname(table(tab$Resample))</pre>
accuracy \leftarrow c(0,0,0,0,0)
for (i in 1:5) {
  accuracy[i] <- aggdata[i]/counts[i]</pre>
print(paste0("Accuracy: ", round(mean(accuracy)*100, digits=2), "% +/- ",
             round(sd(accuracy)*100, digits=2), "%"))
## [1] "Accuracy: 95.77% +/- 1.68%"
```

caret | randomForest | trainControl()

## b) ShuffleSplit

```
# call the caret and randomForest packages
library(caret)
library(randomForest)
```

```
set.seed(29)
X = subset(breastcancer, select = -c(Target))
Y = breastcancer$Target
# Create the data partition
trainIndex <- createDataPartition(Y, times = 5, p = 0.7, list = FALSE)</pre>
accuracy \leftarrow c(0, 0, 0, 0, 0)
for (i in 1:5) {
  nam <- paste("data_train", i, sep ="")</pre>
  assign(nam, breastcancer[trainIndex[,i],])
  nam <- paste("data_test", i, sep ="")</pre>
  assign(nam, breastcancer[-trainIndex[,i],])
}
data train <- list(data train1, data train2, data train3, data train4,
                    data_train5)
data test <- list(data test1, data test2, data test3, data test4, data test5)
# Train the model and assess the accuracy
for (i in 1:5) {
  fit <- randomForest(as.factor(Target) ~ ., data = data_train[[i]])</pre>
  Prediction <- predict(fit, data test[[i]])</pre>
  Prediction <- unname(Prediction)</pre>
  correct <- (data_test[[i]]$Target == Prediction)</pre>
  counts <- unname(table(correct))</pre>
  accuracy[i] <- counts[2] / sum(counts)</pre>
}
print(paste0("Accuracy: ", round(mean(accuracy)*100, digits=2), "% +/- ",
              round(sd(accuracy)*100, digits=2), "%"))
## [1] "Accuracy: 96.24% +/- 0.53%"
```

caret | randomForest | createDataPartition()

# **Appendix**

# 1 Built-in R Objects

#### **Vectors**

- Logical
- Numeric
- Integer
- Complex
- Character
- Raw

Lists

**Matrics** 

**Arrays** 

**Factors** 

**Data Frames** 

# 2 R packages used in this tutorial

## gdata

Data manipulation

rjson

Converting R objects into JSON objects, and JSON objects into R objects

ggplot2

Visualizations and graphics

dplyr

Working with data frame like objects

tree

Decision trees models

randomForest

Random forest models

#### gbm

Gradient boosting models

#### xgboost

Extreme gradient boosting models

#### e1071

Support vector machine models

#### **RSNNS**

Neural network models

#### caret

Training and plotting classification and regression models

#### kernlab

Spectral clustering

#### dbscan

**DBSCAN** clustering

#### kohonen

Supervised and unsupervised self-organizing maps

#### forecast

Displaying and analyzing time series for forecasting

## prophet

Tools for forecasting using the Facebook Prophet model

## **Alphabetical Index**

# **Array**

A one-dimensional data frame. Please see the following example of array creation and access:

```
my_array <- c(1, 3, 5, 9)
print(my_array)
## [1] 1 3 5 9
print(my_array[1])
## [1] 1</pre>
```

#### **Data Frame**

An R Data Frame is a two-dimensional tabular structure with labeled axes (rows and columns), where data observations are represented by rows and data variables are represented by columns.

# **Dictionary**

A dictionary is an associative array which is indexed by keys which map to values. Therefore, a dictionary is an unordered set of key:value pairs where each key is unique. In R, a dictionary can be implemented using a named list. Please see the following example of named list creation and access:

```
student <- read.csv('/Users/class.csv')
values <- student$Age
names(values) <- student$Name
print(values["James"])
## James
## 12</pre>
```

#### List

An R list is a sequence of comma-separated objects that need not be of the same type. Please see the following example of list creation and access:

```
list1 <- list('item1', 102)
print(list1)

## [[1]]
## [1] "item1"
##
## [[2]]
## [1] 102</pre>
```

```
print(list1[1])
## [[1]]
## [1] "item1"
```

# Vector

A vector is a one-dimensional data structure which is able to hold different classes of elements, but only one class per vector.

For more information on R packages and functions, along with helpful examples, please see R.