



Given two positive integers n and m, construct a random simple graph with n vertices and m edges and determine whether the graph is planar. If it is, draw it in such a way that there are no crossing edges. If it is not, determine the thickness of the graph.

- simple graph
- planarity
- plane graph
- thickness

- simple graph an undirected graph in which both multiple edges and loops are disallowed
- planarity
- plane graph
- ▶ thickness

- simple graph an undirected graph in which both multiple edges and loops are disallowed
- planarity a graph that is planar can be drawn such that no edges cross each other
- plane graph
- ▶ thickness

- simple graph an undirected graph in which both multiple edges and loops are disallowed
- planarity a graph that is planar can be drawn such that no edges cross each other
- plane graph the actual drawing
- thickness

- simple graph an undirected graph in which both multiple edges and loops are disallowed
- planarity a graph that is planar can be drawn such that no edges cross each other
- ▶ plane graph the actual drawing
- $\blacktriangleright$  thickness the smallest number of planar graphs into which the edges of G can be partitioned

- Planarity check
- Thickness algorithm
- ► Drawing algorithm

Þ

- ► Planarity check we made a not-so-efficient algorithm
- Thickness algorithm
- Drawing algorithm

Þ

- ► Planarity check we made a not-so-efficient algorithm
- ► Thickness algorithm works on some graphs
- Drawing algorithm

Þ

- Planarity check we made a not-so-efficient algorithm
- ► Thickness algorithm works on some graphs
- ▶ Drawing algorithm we didn't write a drawing algorithm

- Planarity check we made a not-so-efficient algorithm
- Thickness algorithm works on some graphs
- Drawing algorithm we didn't write a drawing algorithm
- But we create did the script

- Planarity check we made a not-so-efficient algorithm
- Thickness algorithm works on some graphs
- Drawing algorithm we didn't write a drawing algorithm
- But we create did the script using libraries



## Stellingen

- Een graaf is planair dan en slechts dan als hij niet ofwel K<sub>5</sub> of K<sub>3,3</sub> als minor heeft
- De minor H uit G is een graaf die uit G gemaakt kan worden door de volgende operaties:
  - Een edge verwijderen
  - Een vertex verwijderen
  - Edge contraction

# Edge Contraction



## Stellingen

- Een graaf is planair dan en slechts dan als al zijn biconnected componenten planair zijn
  - Biconnected betekend dat er geen enkele vertex kan worden weggehaald zodat de graaf niet meer connected is.

## Stellingen

- Voor een planaire graaf met v >= 3 geldt:
  e < 3v 6</li>
- Voor een planaire graaf met v >= 3 zonder cycels van lengte 3 geldt: e < 2v - 4</li>
- Voor v het aantal vertices en e het aantal edges

## Algoritme

- Allereerst wordt de graaf gesplits in zijn biconnected componenten
- Voor ieder component wordt bepaald of het  $K_5$  of  $K_{3,3}$  als *minor* bevat
- Dit doen we door alle mogelijke *minors* af te gaan en te kijken of deze *isomorph* zijn aan  $K_5$  of  $K_{3,3}$
- O(2^n)

## Algoritme

- We kunnen het algorithme nog optimalizeren:
- Wanneer de vergelijkingen e < 3v -6 of e < 2v -4 niet gelden voor een graaf, is de graaf niet planair
- Dus heeft de graaf K<sub>5</sub> of K<sub>3,3</sub> als minor
- Wanneer we dus een minor van G vinden waarvoor de vergelijkingen niet gelden, is G ook niet planair

## Algoritme

- Dus gaan we eerst de minors proberen te maken uit G die zoveel mogelijk edges hebben met zo min mogelijk vertices
- Dus we proberen e te maximaliseren, en v te minimaliseren
- Is alleen sneller voor niet-planaire grafen, voor planaire grafen moeten nog steeds alle minors doorlopen worden

 Kleinste aantal planaire deelgrafen waarin je de de edges van een graaf kan verdelen.



• Eerste algoritme: complexiteit te groot

• Eerste algoritme: complexiteit te groot

$$e(e!)^2(e^4+n^2)$$

### Thickness-Bisection algoritme:



#### Thickness-Bisection algoritme:

Thickness-Bisection algoritme:

- Bepaal of de thickness groter of kleiner dan avg is:
  - Ga alle verdelingen van de graaf in avg delen af
  - Als je een verdeling hebt gevonden met allemaal panaire grafen, is de thickness kleiner dan of gelijk aan avg
  - Anders is de thickness groter dan avg

• Testset: K<sub>n</sub>, K<sub>n,n</sub>, één vertex, wheel grahp

## Demo bisection algoritme

Planarity decision algorithm



Demoucron, Malgrange and Pertuiset (1964)

Start with from a graph  ${\cal G}$ 

- ightharpoonup Take from a graph G a subgraph H
- ightharpoonup H is any cycle from G (so H is planar)
- $\blacktriangleright$  We iteratively extend H to G
- $\blacktriangleright$  We determine S, a set of
  - ightharpoonup edge not in H but endpoints are in H
  - ightharpoonup connected component in G, not in H, with the vertices of attachment
- lacktriangle We select a fragment  $S_i$  and a face which can accept  $S_i$



- Choose a H
- 2. Compute all faces of H
- 3. Compute the fragments
- 4. If there are no fragments, the graph is planar
- 5. Compute admissible faces for fragments
- 6. If there is a fragment without an admissible face, the graph is not planar
- 7. If there is a fragment only one admissible face, embed it, go to 2
- 8. Chose a fragment and embed it



Graph G



| 02 03 03 03 05 05 05 05 05 05 05 05 05 05 05 05 05    | $F_1 = 123945$<br>$F_2 = 567$<br>$F_3 = 6987$<br>$F_4 = 5496$<br>$F_5 = 1239875$                                           | $S_1$ $S_2$ $S_3$ | $F(S_1) = 1, 5$<br>$F(S_2) = 1, 5$<br>$F(S_3) = 2$ |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------|
| 05 05 05 05 05 05                                     | $F_1 = 123945$<br>$F_2 = 567$<br>$F_3 = 6987$<br>$F_4 = 465$<br>$F_5 = 496$<br>$F_6 = 1239875$                             | $S_1$ $S_2$ $S_2$ | $F(S_1) = 1, 6$<br>$F(S_2) = 1, 6$                 |
| 02 02 03 03 04 05 05 05 05 05 05 05 05 05 05 05 05 05 | $F_1 = 125$<br>$F_2 = 23945$<br>$F_3 = 567$<br>$F_4 = 6987$<br>$F_5 = 465$<br>$F_6 = 496$<br>$F_7 = 1239875$               | $v_1$ $g_1$ $g_2$ | $F(S_1)=7$                                         |
| 27 C2             | $F_1 = 125$<br>$F_2 = 23945$<br>$F_3 = 567$<br>$F_4 = 6987$<br>$F_5 = 465$<br>$F_6 = 496$<br>$F_7 = 123$<br>$F_8 = 139875$ |                   |                                                    |