

Supersonic Second Order Analysis and Optimization Program User's Manual

W. C. Clever

ROCKWELL INTERNATIONAL CORPORATION Los Angeles, California 90009

CONTRACT NAS1-15820 September, 1984

(NASA-CR-172342) SUPERSONIC SECOND ORDER ANALYSIS AND CPTIMIZATION PROGRAM USER'S MANUAL (Fockwell International Corp.) 223 p CSCL 01A

N87-10842

Unclas G3/02 43855

Langley Research Center Hampton, Virginia 23665 NASA Contractor Report 172342

SUPERSONIC SECOND ORDER ANALYSIS AND OPTIMIZATION PROGRAM USER'S MANUAL

W.C. Clever

ROCKWELL INTERNATIONAL CORPORATION Los Angeles, California 90009

CONTRACT NAS1-15820 SEPTEMBER, 1984

FORWARD

This report was prepared by the Los Angeles Aerodynamics Group of Rockwell International, Los Angeles, California, for the Langley Research Center, National Aeronautics and Space Administration, Hampton, Virginia. The work was performed under Contract No. NAS1-15820, "Development of Second Order Potential Analysis/Design and Full Potential Analysis Aero Prediction Technology for Hypersonic Configuration Design." Mr. Noel Talcott and Mr. Kenneth M. Jones were the Project Monitors of this contract.

Mr. E. Bonner was the Program Manager and Dr. W. C. Clever was the principal investigator.

SUMMARY

Approximate nonlinear inviscid theoretical techniques for predicting aerodynamic characteristics and surface pressures for relatively slender vehicles at supersonic and moderate hypersonic speeds were developed. Emphasis was placed on approaches that would be responsive to conceptual design level of effort. Second order small disturbance and full potential theory was utilized to meet this objective.

Numerical codes were developed for relatively general three-dimensional geometries to evaluate the capability of the approximate equations of motion considered. This report represents a user's manual for the second order analysis and optimization codes. Contained herein for each program is a brief description, its input data, variables, and subprograms, a flow diagram, and a sample test case. Results from the computations indicate good agreement with experimental results for a variety of wing, body, and wing-body shapes. Case computation times of a minute on a CDC 176 were achieved for practical aircraft arrangements.

TABLE OF CONTENTS

	Page
INTRODUCTION	1
ANALYSIS PROGRAM WBODY	
DISCUSSION	3
INPUT DATA	4
SUBROUTINE DECRD1	19
LIST OF VARIABLES	21
SUBPROGRAMS	24
FLOW DIAGRAM	27
TEST CASE	32
OPTIMIZATION PROGRAM OPT	
DISCUSSION	110
INPUT DATA	112
LIST OF VARIABLES	137
SUBPROGRAMS	141
FLOW DIAGRAM	144
TEST CASE	148
REFERENCES	217

INTRODUCTION

An examination of the literature for supersonic/hypersonic aircraft provides an indication of the flexiblilty and generality required for an analysis technique. Typical configuration development variables include wing section, incidence, height, dihedral, planform, effectiveness of longitudinal control surfaces for trim, effectiveness of empennage for directional stability, and propulsion system-airframe interactions.

Response to these requirements at the conceptual design level have been by the hypersonic impact methods and the linearized analysis and design algorithms. These approaches can treat complex geometries efficiently with minimum response time and cost. Shortcomings exist with both methods. The impact methods ignore component interference effects and crossflow interactions. The linearized approaches exclude shocks, vorticity and entropy wakes and layers.

A need exists for an improved analysis technique to optimize vehicles designed to travel at supersonic/hypersonic speeds. The technique should be more accurate than simple noninterfering panel methods and more computationally efficient than the current explicit finite-difference methods. Enough of the physics of the flow should be included to allow realistic optimization and permit considerations of component interaction. Nonlinear potential theoretical formulations hold the promise of meeting these objectives for preliminary vehicle definition efforts.

To satisfy the analysis needs, a program was undertaken to advance the aerodynamic prediction capabilities at the conceptual design level. Numerical second-order potential small disturbance analysis was developed as a first step up from the widely used linear theory. Such formulation incorporates nonlinear behavior by iteration of the Prandtl-Glauert approximation. This approach is known to extend the prediction success for airfoil and cone surface pressures to substantially higher values of the hypersonic similarity parameter than the first-order theory. References 3 and 4 contain the details of the theoretical development of the second order analysis and optimization method.

This report provides a user's manual for the second order analysis and optimization codes. Contained herein for each program is a brief description, its input data format, a complete list of variables and subprograms, flow diagrams, and sample test cases.

The computer program entitled "SOPA-Second Order Potential Analysis and Optimization Program" can be obtained for a fee from:

Computer Software Management and Information Center (COSMIC) 112 Barrow Hall University of Georgia Athens, GA 30602 (404) 542-3265

Request the program packgage by the designation LAR 13314. The programs are written in FORTRAN V for use on the Control Data 6600 and the Cyber series of computers.

ANALYSIS PROGRAM WBODY

DISCUSSION

Computer program WBODY performs a linearized analysis of wing body combinations using axis and surface singularities. The solution satisfies the Prandtl-Glauert equation with boundary conditions as prescribed by the assumptions of thin wing theory. A second order solution may then be performed using the results of the first order (linearized) solution. The second order solution on the lifting surfaces is performed by using a modification of the exact result available for flow in two dimensions. On the body the second order solution combines an exact axisymmetric axial solution with the first order cross flow solution. The second order solution is not valid for transonic Mach numbers and should not be used for Mach numbers between 0.70 and 1.60. All output is placed in a dataset which may be used for computer graphics.

If a body is present and the use of axis singularities is indicated, isolated body axisymmetric axial and cross flow solutions will be performed first, using only the axis singularities. The axis singularities consist of linearly or quadratically varying line sources and quadratically or cubicly varying line doublets. The singularity and control point spacing are input by the program user. Either mass flux or velocity boundary conditions may be specified. A second order axial line source solution will be performed if indicated by the input.

The body panels are quadrilaterals of arbitrary shape having a constant source distribution. The lifting surface panels are quadrilaterals having two streamwise edges with a constant vortex distribution to simulate lift, and a constant or chordwise and spanwise linearly varying source distribution to simulate thickness.

The first order solution is performed by satisfying the condition of zero normal velocity, or zero mass flux if desired, at the panel control points of the body and lifting surfaces. The lifting surface boundary conditions are linearized and are satisfied on the mean camber line. The normal velocity or normal mass flux is composed of the sum of contributions from the free stream, angle of attack, and perturbations from the axis singularities, body panels, and lifting surface panels.

The complete first order solution is composed of a linear combination of four basic solutions:

- 1. The cross flow or add load solution. This solution contains no lifting surface thickness or camber.
- The camber solution. This solution satisfies the boundary conditions for the lifting surface camber with zero free stream velocity and zero normal velocity (or mass flux) on the body panels.
- 3. The lift due to thickness solution. This solution represents the additional load due to the normal velocities induced by the thickness of the lifting surfaces.
- 4. The lift due to the body solution. This solution represents the additional load due to the normal velocities induced by the body in axial flow with no camber.

The second order solution, if desired, is performed using the results of the first order (linear) solution.

INPUT DATA

Data is input using subroutine DECRD1, described on page 19, and is stored in the array called "DATA". All locations are initially set equal to 0. Each case contains:

Miscellaneous data	locations	6 - 88	
Body geometry data	locations	701 - 1900	
Lifting surface geometry	locations	1 - 5,	89 - 700
		and, 12	201 - 1900

All of the data except the lifting surface geometry data must be input first, with the last card having a negative location number. This data must include any input for body panels and axial singularities.

The lifting surface geometry data follows with the last card for each lifting surface having a negative location number.

The last surface or last card for a given case is indicated by a positive value in location 1.

The body or surface geometry may be read from an APAS (Aerodynamic Preliminary Analysis System, references 5 and 6) file using data location 14.

The first card in each case may be a title card containing up to 72 characters. If the first card contains a blank or a minus sign in the first column and blanks in columns 2 thru 4, it is assumed the card contains numerical data, and is not a title card.

In addition the first card for each lifting surface may be a title card containing up to 16 characters, i.e. $\cos 1 - 16$. This title will be used for the name of the surface.

The following is a description of the possible input for each case.

LOC	VARIABLE	DESCRIPTION
1	> 0.	The run will terminate. Indicates the last surface has been read. The run will terminate after the slender body geometry (if any) has been printed.
2	N	The number of panels in the chordwise direction for this surface.
3	M	The number of panels in the spanwise direction for this surface.
7		 Compute the aerodynamic influence matricies and the quasi-inverse matrix and store on unit 11. Compute source influence matrix and store on unit 11. The vortex and quasi-inverse matricies are assumed to already exist. Compute new aerodynamic influence matrix. Use aero influence matrix stored on unit 11. Read aero and quasi-inverse matricies from unit 11
		<pre>(A second order solution always requires a quasi-inverse matrix).</pre>
8	x.y	<pre>If x.y < 0. a 2nd order solution is performed. If y > 6 d/dy of v terms are included.</pre>

10	ITYPE	the type of source panels used.
		If =-2. linearly varying source panels are used
		(spanwise and chordwise without leading or trailing edge panels).
		If =-1. linearly varying source panels are used
		(chordwise varying only without leading
		or trailing edge panels).
		If = 0. Constant source panels are used
		If = 1. linearly varying source panels are used
		(chordwise varying only with leading
		and trailing edge panels).
		<pre>If = 2. linearly varying source panels are used</pre>
		(spanwise and chordwise with leading
		and trailing edge panels).
12		If < 0. Only the geometry and the axial
12		singularity solution will be calculated.
		If < - 2. The program will stop after all of the
		geometry (including axial singularity
		geometry) is calculated.
13	CENT	 Control point at panel centroid.
		Control point at panel center otherwise.
14		1 0 Obtain hody and have surface company from input
14	`	1.0 Obtain body and aero surface geometry from input
		1.0 Obtain body geometry from APAS (panels)
		1.1 Obtain slender body geometry from APAS,
		create panels, and save after aero geometry.
		1.2 Obtain slender body geometry from APAS, modify,
		create panels, and save after aero geometry.
		2.0 Same as 1.0, 1.1, and, 1.2, but includes
		2.0 Same as 1.0, 1.1, and, 1.2, but includes2.1 aero surface panels and geometry.
		2.2
		2.0 Use twist and cambers from APAS and input data.
		2.1 Use twist and cambers from input data only.
		2.2 Use twist and cambers from APAS dataset only.
	,	23.0 Obtain only aero surface panels and geometry from
	•	2 3.0 Obtain only aero surface panels and geometry from APAS (no body).
		mino the body.
		3.0 Use twist and cambers from APAS and input data.
		3.1 Use twist and cambers from input data only.
		3.2 Use twist and cambers from APAS dataset only.

```
15
                1. Print source dz/dx and z/c matricies
                2. Print both source and camber arrays
                3. Print camber slope matrix
16
      IPRNT

    No printing of panel geometry.

                1. Print body panel geometry (source panels).
                2. Print vortex panel geometry
                3. Print body panel and vortex panel geometry
               -1. Print body
                                panel geometry from APAS dataset.
               -2. Print vortex panel geometry from APAS dataset.
               -3. Print body panel and vortex panel geometry (APAS)
18
      0.K
                   K > 0
                            Print vn due to thickness.
                   K > 1
                            Print u due to thickness.
                   K > 2
                            Print v due to thickness.
                   K > 3
                            Print w due to thickness.
                            Print phi due to thickness.
                   R > 4
19
               Various orders of intermediate printout (-1. to 4.)
      INTMED
                    Least printout (no upper and lower surface Cp's)
              -1.
               2.
                    More Printout
                      Prints add load solution and v-normal
                      (w-w), (w-b), (b-w), (b-b)
               3.
               4.
                    Above + 2nd order boundary condition solutions
                    Above + odd and even 2nd order velocities and Cp's.
20
      DPLOT
               0. No data is placed in a plot dataset.

    Data is placed in an APAS dataset (geometry)

               2. Data is placed in a UDP dataset (for plotting).
             > 2. Data is placed in a
                                         UDP dataset (extended)
              DPLOT > 2. is required if the dataset is to be used for
                   a 2nd order optimization calculation.
21
      XIJ.XKL Detailed influence matrix calculation printout for
                vortex panels. From subroutine VORTEX.
               XIJ = 3 digit number for control point
               XKL = 3 digit number for panel number
22
      XIJ.XKL Detailed influence matrix calculation printout for
                source (thickness) panels. From subroutine PHIS11.
               XIJ = 3 digit number for control point
               XKL = 3 digit number for panel number
```

23 APRNT = IJ.KKK

```
.ne. 0. Print the aero influence matrix (vortex and body)
.qt. 0. Only normal velocities are printed.
```

.lt. 0. All velocities and phi are printed.

I or J = 0 nothing I or J = 1 vortex I - influenced I or J = 2 body J - influencing

I or J = 3 both

11.KKK vortex on vortex only 12.KKK body on vortex only 21.KKK vortex on body only ABS(APRNT) = 22.KKKbody on body only 13.KKK all on vortex 31.KKK vortex on all 23.KKK all on body 32.KKK body on all all on 32.KKK all

The influence matrix printout will stop after KKK rows are Printed. If KKK = 000 all of the rows are printed.

24 SPRNT = IJ.KKK

.ne. O. Print the source (thickness) influence matrix

> 0. Only normal velocities are printed.

< 0. All velocities and phi are printed.

I = 0 nothing

I = 1 vortex I - influenced panel

I = 2 body

I = 3 both

ABS(APRNT) = 1J.KKK source on vortex only source on body only 3J.KKK source on all

The influence matrix printout will stop after KKK rows are printed. If KKK = 000 all of the rows are printed.

- 25 > -1. Print perturbation velocities from axial singularities
 - = 0. Print velocities from sources

and doublets

- = 1. Print velocities from sources
- = 3. Print velocities from sources (1st and 2nd) and doublets
- = 4. Print velocities from sources (1st and 2nd)
- > 4. Print velocities from sources (1st and 2nd) and doublets
- 26-28 S.K Surface to be extended to centerline.
 - - S = surface number (in ascending order).
 - K = 0 Extend inboard panels with zero sweep.
 - K = 1 Extend inboard panels with same sweep.
 - K = 2 Extend inboard panels with negative sweep.
 - i.e. if DATA(26) = 2.0 the calculation of the aero
 influence matrix for surface # 2 will be
 performed by extending the inboard panels to
 y = 0. with zero sweep.
 - if < 0 the actual panel will be extended and locations 711-714 should be used.
- 29 < 0. beta * y / x is printed for each panel
- 30 MN Mach number used for order 2 solution CK2 array.
 - MN > 0. use MN as Mach number.
 - MN = 0. use freestream Mach number (generally used).
 - MN < 0. use normal Mach number.
 - if < 0. the maximum value of CK2 = MN
- 31 X00 the x value of the pivot point for angle of attack. used for second order theory only.
- 32 XCG For computing Cm, Cr, Cw, Cy
- 33 YCG For non-symmetric rolling moment only
- 34 ZCG For non-symmetric rolling moment only

35	MACH	The Mach number
36	RD	The x/c fraction of each panel where the normal velocity is interpolated to calculate the zero suction drag. If 0. a value of 0.515 is used.
37	RS	The x/c fraction of each panel which is used to curvefit (Cp,x) in order to obtain an approximate value for the leading edge suction. (default = 0.250)
		Drag Polar (41 points calculated)
38 39		Delta CL for drag polar. Default = .05 Starting CL for drag polar. Default = 0.
40	CBAR	The reference chord length for computing Cm if 0. CBAR = CAVG is used.
41	CAVG	The reference chord length. If 0. CAVG = SREF/SPAN
42	SREF	The reference area. if 0. SREF = total area
43	SPAN	Span, any consistent set of units may be used. This value is used for reference purposes only. If 0. SPAN = 2. * Y-max
44	RATIO	The chordwise control point location. if 0. default is 0.875 for Mach > 1. 0.875 for Mach < 1.

Data locations 45 - 47 apply to 2nd order solutions only.

45 IJK Printing of odd and even symmetry u,v,w velocities.

if DATA(45) = LMN. I = L, J = M, K = N

I J K = 0 No velocities printed = 0 none = 0 = 1 u velocities printed = 1 odd add load = 1 v velocities printed = 2 even = 2 twist and camber > 2 All velocities printed > 2 all = 3 thickness = 4 axial > 4

e.g. To print odd and even symmetry thickness v velocities.

use DATA(45) = 231. I = 2, J = 3, K = 1

- 46 IJK Printing of odd and even symmetry d/dx of u,v,w
- 47 IJK Printing of odd and even symmetry d/dy of v

I > 0 is required

48 J Printing of d/dx of camber and thickness normal velocities.

J = 1 Camber only.

J = 2 Thickness only.

J > 2 Both

The angle of attack of the surfaces with respect to the x,y plane (degrees). Used for second order theory only. ALPHAD is made up of ALPHAO and the angle of attack of the freestream with respect to the x-axis, ALPHAI.

i.e. ALPHAI = ALPHAD - ALPHAO

For a first order solution only ALPHAD matters.

- 51 ALPHAD(1) The angle of attack of the configuration with respect to the freestream (degrees).
- 52 ALPHAD(2)
- 58 ALPHAD(8) (maximum number of angles of attack = 8)

If ALPHAD(K) > 90. an add load solution is perfomed.

i.e. (ALPHAD = 1.0) - (ALPHAD = 0.0)

61 CAMTHK(1) Input in form OB-OV.CAM-THK, and used with ALPHAD(1)

OB = The order of the Cp on the body (one digit).
OV = The order of the Cp on the lifting surfaces)

CAM > 1 Camber included.

THK > 1 Thickness included.

CAM = 0 No Camber included.

THK = 0 No thickness included.

- OB, OV, CAM, THK are each one digit.
- If = 0. OB = 4, is used for the body Cp,
 OV, is determined by DATA(8), and
 camber and thickness are included
 - OV = 1, unless DATA(8) < 0.

```
determined by the value of OB.
         OB
               Cp
               Cp = -2 * u
          2
               Cp = -2 * u - beta2 * u*u - v*v - w*w
          3
               Cp = -2 * u - u*u - v*v - v*w
               Cp = Isentropic pressure formula
          4
               Cp = Isentropic for alpha = 0. + isentropic add load
              u,v,w use 1st order axial contributions if CAMTHK > 0
              u, v, w use 2nd order axial contributions if CAMTHK < 0
            CAMTHK = -31.02
    e.g.

    indicates, 2nd order u,v,w from axial solution (if performed).

   3 indicates, pressure formula #3 on body.
   1 indicates, 1st order Cp on lifting surfaces.
   O indicates, camber is not included.
   2 indicates, thickness is included.
62 CAMTHK(2)
               used with ALPHAD(2) .
68 CAMTHK(8) used with ALPHAD(8)
    The following data (89-700) are read for each lifting surface.
89
      TC
               The t/c due to thickness for this lifting surface
               If < 0. a thickness influence matrix is calculated</pre>
                 although TC = 0 is used. A second order solution
                 will always calculate a thickness influence matrix.
          Locations 90-94 are the thickness coefficients
          If 90-94 are all 0. a NACA 4 digit airfoil is used.
          If CO < 0.
                              a biconvex
                                             airfoil is used.
90
      C<sub>0</sub>
               The coefficient of the SQRT(x) term for thickness
91
      C1
               The coefficient of the x
                                              term for thickness
92
      C2
               The coefficient of the x**2
                                              term for thickness
93
      C3
               The coefficient of the x**3
                                              term for thickness
94
      C4
               The coefficient of the x**4
                                              term for thickness
```

The body pressure formula is

101	SWEEPL	The leading edge sweep in degrees. This value is ignored if 103 is .lt. 0., which means a planform shape is to be read in.
102	SWEEPT	The trailing edge sweep in degrees
103	ROOT	Root dimension or chord length along the symmetry axis <0. the planform shape is read in from 241-320 >0. this value is used to calculate the geometry
104	ROOTXO	The x value at the start of the root.
105	ROOTZO	The z value for the root. This value will be used with 109 or will be added to values from 121-160.
106	SPAN0	The value of the SPAN. Used with even spacing.
107	XSP	<pre>If < 0. the chordwise panel spacing is even If = 0. the chordwise panel spacing is cosine If > 0. the chordwise panel spacing is half cosine</pre>
108	FLAP	The x/c for the flap hinge
109	DIHDRL	The dihedral angle in degrees. (used with 105)
110	RATIOY	The spanwise control point location. If 0., the centroid is used unless location 201 is nonzero.
111	SYM	= 0. Symmetry about y=0. is assumed ≠ 0. No symmetry
112	ND	The number of chordwise locations of camber input.
113	MD	The number of spanwise locations of camber input. if MD < 3 only the first value will be used. i.e. all span stations will have the same camber.
		Planform Shape
121 161	Z(J) Y(J)	<pre>z values at the y coordinates y coordinates. (if ((Y(2)-Y(1))**2+(Z(2)-Z(1))**2) is 0. The semi span is broken into M equal segments) there must be M+1 values input</pre>
201	AC(1)	y coordinates for the control points. Nonzero values will be used to override values based on location 110.
241	XLE(J)	The leading edge coordinates at Y(J) These values are considered only if 103 is < 0 XLE(1) Corresponds to the coordinate on the axis XLE(m+1) corresponds to the coordinate at the tip any values which are exactly 0. will be changed to make the edge straight between the two surrounding nonzero values.
281	XTE(J)	The trailing edge coordinates. Same format as 241-280

```
The x/c values where the camber is input. See 112
321
      XD(I)
341
      YD(J)
                The y
                       values where the camber is input. See 113
361
      ZD(J)
                       values where the camber is input.
                The z
      TWIST(J) The twist in degrees at the above values of (y,z)
381
401
               The values of dz/dx for the camber.
                 401
                                     are for YD(1) at XD(1) to XD(ND)
                        to 400+ND
                 401+ND to 400+ND*2 are for YD(2) at XD(1) to XD(ND)
               These values are interpolated to obtain the boundary
                 conditions at the control points.
                    Body Geometry
702
      NY
               The number of panels around the body (half).
               The number of panels in the x direction on the body.
703
      NX
704
      NX
               The number of singularity segments on the slender
                 body. If < 0 the singularity segments will be
                 shifted along the Mach lines (supersonic only)
705
      NC
               The number of control points
                                               on the slender body.
706
       IJ.K
               I = the order of the source singularities (1,2).
               J = the order of the doublet singularities (2,3).
               If I = 0
                             I = 1 is used.
                             I = 2 is used.
               If I > 2
                             J = 2 is used.
                             J = 3 is used.
               If J > 3
               There is always a 1st order line source at the nose.
               There is always a 2nd order line doublet at the nose.
              IJ < 0
                       exact conical solution desired at nose.
              IJ > 30 the nose 1st order line source strength = 0.
                       the nose 2nd order line doublet strength = 0.
               K > 0
                       a second order axial solution is performed.
                       no r*phir**3 term included in order 2 solution.
                          r*phir**3 term included in order 2 solution.
707
      ECC
               The eccentricity of the body cross sections.
               Area = pi * r(I)**2 for body cross sections.
708
       = 0.
               Velocity boundary conditions on body (beta2x = 1.0)
       > 0.
               Mass flux boundary conditions on body. (beta2x = beta2)
```

- 709 M.N > 0 Print source and doublet solutions.
 M > 1 Print shifted singularity points and loads.
 > 2 Print source and doublet coefficients.
 - = 1 Print source influence matrix N = 2 Print doublet influence matrix > 2 Print both influence matricies
- 710 IU unit number for placing axial loads in a plot dataset (use unit 12)
- 711 WBI(1) = 0. the body and 1st surface intersection is computed.
 712 WBI(2) = 0. the body and 2nd surface intersection is computed.
- 713 WBI(3) = 0. the body and 3rd surface intersection is computed.
 714 WBI(4) = 0. the body and 4th surface intersection is computed.
- 715 DELTA Used to calculate the maximum allowable slope of bodies. For the axial singularity calculation a conical nose extension is constructed tangent to the body such that:

dr/dx = 1.0 / beta - DELTA if delta > 0.

This operation is performed only for Mach > 1.0 . on the region of the actual body where,

dr/dx > 1.0 / beta - DELTA

Tangent cone formulas are used to calculate Cp's.

The type of pressure coefficient calculation, and the angle of attack, for 721-726, are determined from locations 51-58 and 61-68.

721 THETA -1the 1st theta for Cp computation on body. 722 THETA - 2 the 2nd theta for Cp computation on body. 723 THETA - 3the 3rd theta for Cp computation on body. 724 THETA - 4 the 4th theta for Cp computation on body. 725 THETA - 5 the 5th theta for Cp computation on body. 726 THETA - 6 the 6th theta for Cp computation on body.

- 741 VSHELL(ISF)
 - = 1. the surface is a shell composed of vortex panels only the upper surface is considered.
 - = 0. the surface is a normal lifting surface.
- 751 XINLET(I) If .ne. 0. The x station is assumed to have an inlet the mass flow is (1.-XINLET(I)).
- 801 XG(I) The x coordinates of the body geometry sections.
- The x coordinates of the body panel cross sections. if XX(I) = 0., and DATA(703) > 0., XX(I) = XG(I) is assumed.
- 901 RR(I) The r values of the body geometry sections.
- 1001 X(I) The x coordinates of the slender body singularities. 1101 XC(I) The x coordinates of the slender body control points.
- 1201 CAM(IJ) The camber for each panel. Input as dz/dx at the control point (each surface input separately), unless the input is being read through an APAS dataset. For an APAS input all camber values are input at one time and the value of DATA(14) must be considered.
 - i.e. If the data is not being input through an APAS dataset, DATA(1200+I) is the initial camber dz/dx for the I'th panel of the surface being input.
- 1801 TWIST(J) The twist for each span station. This is for APAS dataset inputs only, and the twist values for all span stations are input at one time. See DATA(14) for additional information on twist input.

```
1996 FLOW(1) Mass flow coefficient for inlet # 1
1997 FLOW(2) Mass flow coefficient for inlet # 2
1998 FLOW(3) Mass flow coefficient for inlet # 3
1999 FLOW(4) Mass flow coefficient for inlet # 4
2000 FLOW(5) Mass flow coefficient for inlet # 5
```

FLOW(I) = Average value of (1.-beta2x*u) for all field point of inlet I (see location 708).

maximum of 200 field points

```
2001
       x, y, z, inlet #
                            for field point #1
2006
       x, y, z, inlet #
                            for field point #2
2011
       x, y, z, inlet #
                            for field point #3
2016
       x, y, z, inlet #
                            for field point #4
       x, y, z, inlet #
2021
                            for field point #5
2026
       x, y, z, inlet #
                            for field point #6
```

inlet # = 0 means the point is not an inlet point.

SUBROUTINE DECRD1

Subroutine DECRD1 is used to read input data from a fixed block dataset. The input data which is read is placed in floating point format into locations of the array "DATA" which appears in the argument list. The subroutine will also read a single title card of up to 72 characters and place the literal data in the array "TITLE" which also appears in the argument list. Subroutine DECRD1 allows input in two different formats, called decrd format and free format. A description of these input formats will follow.

The first time DECRD1 is entered, the first record is assumed to be in decrd format with LRECL = 72. LRECL is the length of each record which is read (maximum LRECL = 132).

If the characters "C", "D", or "F" appear in column 1, the card will not be read for any data (except for LRECL).

A 'C' indicates a comment card.

A 'D' indicates the following cards are to be read using decrd format.

An 'F' indicates the following cards are to be read using free format.

The value of LRECL appears in the card with an F in column 1 in the form LRECL(KLM), where KLM is a three digit integer. It will remain constant each time DECRD1 is entered, unless it is reset.

Unless the first card containing data in each entry to DECRD1 has a blank or a minus sign appearing in column 1, with blanks in columns 2-4, the first card is assumed to be a title card containing 72 characters of literal data. However, cards with the characters "C", "D", or "F" in column 1 do not count as data cards and may appear before the title card. When using free format, the first data card of an entry to DECRD1 should be checked carefully to see that the first four columns are of the correct form, to avoid confusion between a card containing title data and a card with numerical data.

DECRD FORMAT

In Decrd format each data card has the format I12,5E12.5. The first number on each card is an integer giving a location in the input array; the following numbers on the card specify the values to be input into that and the four immediately succeeding locations. These numbers can be input either in F format, which must include a decimal point or in E12.5 format. Locations left blank will remain unchanged. The last card to be read for each call to DECRD1 is signaled by having a negative location number.

FREE FORMAT

Data may be written in I, F, E, or D format separated by blanks, commas, or semicolons. The data will be placed in consecutive locations of the array "DATA" in the program. Data locations may be skipped by writing an X or using consecutive commas with nothing other than blanks between. When data locations are skipped, the previous values remain unchanged.

If the first piece of data on a card is a positive or negative integer, which is not a multiplying factor to be described below, it will be assumed to be the location number of the next piece of data on the card. If this integer is negative this card will be the last card read until subroutine DECRD1 is called again. This means the last card must have a negative location number as the first piece of data on the card. If the piece of data is not an integer, or if it is a multiplying factor, the data will be placed in consecutive locations continuing from the previous card.

A semicolon can be used to designate the end of one card and the start of a new card. This means that the next piece of data will be treated as if it were the first piece of data on a new card. For this new card everything in the previous paragraph applies.

An integer followed by '=' will cause the subsequent data to be placed in consecutive locations beginning with the integer. Blanks may be placed before or after the '='.

A * preceded by an integer is used to designate a multiplying factor, and will cause subsequent data to be repeated the integer number of times.

E.g. 5 * 4.4 will result in the value 4.4 being placed in 5 consecutive data locations starting with the appropriate data location. Writing 10*X will result in 10 data locations being skipped. Spaces before and after a * are ignored. A multiplier must be an integer (I format), and it must be > 1.

Everything within () will be ignored, unless it is preceded by a multiplying factor which is greater than one. E.g. $5*(3.24.6 \times 5)$ will cause the sequence of data ($3.24.6 \times 5$) to be repeated 5 times. Nested parentheses are not allowed.

LIST OF VARIABLES

GENERAL VARIABLES

CHORD(J)	The chord value at the centroid of span station J
IJS(IS)	The value of IJ where section IS begins
IJO(J)	The number of the first panel at span station J
ISO(ISF)	The section number where surface ISF begins.
JS(IS)	The span station where section IS begins
MS(IS)	The number of span stations in section IS
NB	The number of basic solutions.
NCHORD(J)	The number of panels at span station J
NS	The total number of sections
NSF	The total number of surfaces
NSPAN(ISF)	The number of span stations on surface ISF
NSL	The number of vortex shell sections
NST	The total number of span stations on all lifting
	surfaces.
NSTS	The number of source span stations
NTB	The number of body panels.
NTL	The number of vortex shell panels.
NTP	The total number of panels.
NTS	The number of source parameters.
NTSL	The total number of vortex shell span stations
NTV	The number of vortex panels.
•	

LIFTING SURFACE PANELS

COSZ(IJ) The cosine of the normal of panel IJ CX(I,IS)	CAM(IJ)	The normal velocity at the control point due to
CX(I,IS) DS(J) Width of span station J DWDX(IJ) DX(I,IS) ETA(J) PA(IJ) SINZ(IJ) The area of panel IJ TWIST(J) WTHK(IJ) X(KL,IC) X values of the corners of vortex panel IJ X(KL,IC) X value of the control point for vortex panel IJ X(LI,I) X(LI,I) X value at the leading left edge of span station J. X(KI,IS) X/C values for the midpoints of section IS X/C values for the midpoints of panels of section IS X/C values for the midpoints of panels of section IS	COSZ(IJ)	The cosine of the normal of panel IJ
DS(J) Width of span station J DWDX(IJ) The local dw/dx at thickness control point IJ DX(I,IS) Delta (x/c) for the panels of section IS ETA(J) Fraction of span running distance for (YCC(J), ZCC(J)) camber. PA(IJ) The area of panel IJ SINZ(IJ) The sine of the normal of panel IJ TWIST(J) Twist of span station J WTHK(IJ) The local dz/dx at thickness control point IJ X(KL,IC) x values of the corners of vortex panel KL (4) XC(IJ,1) x value of the centroid for vortex panel IJ XC(IJ,2) x value at the leading left edge of span station J. XLE(1,J) x value at the leading right edge of span station J. XM(I,IS) x/c values for the midpoints of panels of section IS	CX(I,IS)	x/c values for the control points of section IS
DWDX(IJ) DX(I,IS) Delta (x/c) for the panels of section IS Fraction of span running distance for (YCC(J), ZCC(J)) camber. PA(IJ) The area of panel IJ SINZ(IJ) The sine of the normal of panel IJ TWIST(J) WTHK(IJ) The local dz/dx at thickness control point IJ X(KL,IC) X values of the corners of vortex panel KL (4) XC(IJ,1) X value of the control point for vortex panel IJ XC(IJ,2) X value at the leading left edge of span station J. XLE(2,J) X/c values for the midpoints of panels of section IS	DS(J)	Width of span station J
DX(I,IS) ETA(J) Fraction of span running distance for (YCC(J),ZCC(J)) camber. PA(IJ) The area of panel IJ SINZ(IJ) The sine of the normal of panel IJ TWIST(J) WTHK(IJ) WTHK(IJ) X(KL,IC) X values of the corners of vortex panel KL (4) XC(IJ,1) XC(IJ,2) X value of the centroid for vortex panel IJ XC(IJ,2) XLE(1,J) X value at the leading left edge of span station J. XLE(2,J) X/C values for the midpoints of panels of section IS	DWDX(IJ)	The local dw/dx at thickness control point LI
Fraction of span running distance for (YCC(J), ZCC(J)) camber. PA(IJ) The area of panel IJ TWIST(J) Twist of span station J WTHK(IJ) X(KL,IC) X values of the corners of vortex panel KL (4) XC(IJ,1) XC(IJ,2) XLE(1,J) XLE(2,J) XM(I,IS) Fraction of span running distance for (YCC(J), ZCC(J)) camber. The area of panel IJ The sine of the normal of panel IJ Twist of span station J Twist of s	DX(I,IS)	Delta (x/c) for the panels of section IS
PA(IJ) SINZ(IJ) The area of panel IJ TWIST(J) WTHK(IJ) The local dz/dx at thickness control point IJ X(KL,IC) XC(IJ,1) XC(IJ,1) XC(IJ,2) XLE(1,J) XLE(2,J) XM(I,IS) The area of panel IJ The sine of the normal of panel IJ Twist of span station J Twist of span station J The local dz/dx at thickness control point IJ X(KL,IC) X values of the corners of vortex panel KL for vortex panel IJ XLE(1,J) X value at the leading left edge of span station J. XM(I,IS) X/c values for the midpoints of panels of section IS	ETA(Ĵ)	Fraction of span running distance for (YCC(J), ZCC(J))
TWIST(J) WTHK(IJ) X(KL,IC) XC(IJ,1) XC(IJ,2) XLE(1,J) XLE(2,J) X/C values for the midpoints of panel IJ X/C values for the control point IJ X(L) X	PA(IJ)	
TWIST(J) WTHK(IJ) X(KL,IC) XC(IJ,1) XC(IJ,2) XLE(1,J) XLE(2,J) XM(I,IS) The local dz/dx at thickness control point IJ X values of the corners of vortex panel KL (4) X value of the centroid for vortex panel IJ X value at the leading left edge of span station J. XLE(2,J) X/c values for the midpoints of panels of section IS	SINZ(IJ)	
WTHK(IJ) X(KL,IC) XC(IJ,1) XC(IJ,2) XC(IJ,2) XLE(1,J) XLE(2,J) XLE(2,J) X/C values for the midpoints of panels of section IS	TWIST(J)	
X(KL,IC) x values of the corners of vortex panel KL (4) XC(IJ,1) x value of the centroid for vortex panel IJ XC(IJ,2) x value of the control point for vortex panel IJ XLE(1,J) x value at the leading left edge of span station J. XLE(2,J) x value at the leading right edge of span station J. XM(I,IS) x/c values for the midpoints of panels of section IS	WTHK(IJ)	
XC(IJ,1) x value of the centroid for vortex panel IJ XC(IJ,2) x value of the control point for vortex panel IJ XLE(1,J) x value at the leading left edge of span station J. XLE(2,J) x value at the leading right edge of span station J. XM(I,IS) x/c values for the midpoints of panels of section IS	X(KL,IC)	x values of the corners of vortex panel KL (4)
XC(IJ,2) x value of the control point for vortex panel IJ XLE(1,J) x value at the leading left edge of span station J. XLE(2,J) x value at the leading right edge of span station J. XM(I,IS) x/c values for the midpoints of panels of section IS	XC(IJ,1)	x value of the centroid for vortex panel 1.1
XLE(1,J) x value at the leading left edge of span station J. XLE(2,J) x value at the leading right edge of span station J. XM(I,IS) x/c values for the midpoints of panels of section IS	XC(IJ,2)	
XLE(2,J) x value at the leading right edge of span station J. XM(I,IS) x/c values for the midpoints of panels of section IS	XLE(1,J)	x value at the leading left edge of span station J
XM(I,IS) x/c values for the midpoints of panels of section IS	XLE(2,J)	x value at the leading right edge of span station J.
XTE(1,J) x value at the trailing left edge of span station J.	XM(I,IS)	x/c values for the midpoints of panels of section IS
		x value at the trailing left edge of span station J.

```
XTE(2,J)
            x value at the trailing right edge of span station J.
XX(I,IS)
            x/c values for the panels of section IS
Y(KL.IC)
            y values of the corners of vortex panel KL (2)
YC(IJ)
            y value of the control point for vortex panel IJ
YCC(J)
            y value at the control point of span station J
YO(1.J)
            y value at the left edge of span station J.
Y0(2,J)
            y value at the right edge of span station J.
Z(KL.IC)
            z values of the corners of vortex panel KL (2)
ZC(IJ)
            z value of the control point for vortex panel IJ
ZCC(J)
            z value at the control point of span station J
ZTHK(IJ)
            The local z/c at thickness control point IJ
 ZO(1,J)
            z value at the left edge of span station J.
 ZO(2,J)
            z value at the right edge of span station J.
BODY PANELS
 B(I) = SQRT(DY(I)**2 + BETA2*DX(I)**2)
            tans**2 + beta2 for each side of body panel IJ
            = 1.- Mach**2 mass flux boundary conditions.
   i.e.
          (1. + beta2x * u) * XN + v * YN + (w + alpha) * ZN = 0.
 BETA2X
                           velocity boundary conditions.
  IBB(K)
            The body station number of the first station in body
              section K.
  IJB(K)
            The panel number of the first body panel in section K.
  NX(K)
            The number of x body stations for body section K
   NY(K)
            The number of panels at each body station (half) for
              body section K.
XB(IC,KL)
           x values of the corners of body panel KL (4)
XINLET(IJ) mass flow coefficient of body panel IJ; 0. = impermeable
XN(1,IJ) = x - component of body panel IJ normal
XN(2,IJ) = y - component of body panel IJ normal
XN(3,IJ) = z - component of body panel IJ normal
 XN(4) = XN(1) / XN(8)
 XN(5) = XN(2) / SQRT(XN(2)**2 + XN(3)**2)
 XN(6) = XN(3) / SQRT(XN(2)**2 + XN(3)**2)
XN(7) = SQRT(XN(2)**2 + XN(3)**2) / XN(8)
XN(8) = SQRT(beta2*XN(1)**2 + XN(2)**2 + XN(3)**2)
XN(9) = SQRT(
                  XN(1)**2 + XN(2)**2 + XN(3)**2) = 2. * area
XP(IC,KL)
            x values of the corners of body panel KL (4) planar
  XBO(I)
            The x value of the center of body station I.
X0(1,IJ)
            x value of the centroid of body panel IJ
X0(2,IJ)
            y value of the centroid of body panel IJ
```

```
XO(3,IJ) z value of the centroid of body panel IJ
YB(IC,KL) x values of the corners of body panel KL (4)
YP(IC,KL) x values of the corners of body panel KL (4) planar
ZB(IC,KL) x values of the corners of body panel KL (4)
ZP(IC,KL) x values of the corners of body panel KL (4) planar
```

COMPUTED VARIABLES

```
Cp(IJ,K) The delta-Cp across panel IJ from basic solution K.
```

```
UK(IJ,K) The control point upper surface x velocity.

VK(IJ,K) The control point upper surface binormal velocity.

WK(IJ,K) The control point upper surface normal velocity.
```

PK(IJ,K) The control point upper surface velocity potential.

```
US(IJ) The thickness induced upper surface x velocity.
VS(IJ) The thickness induced upper surface binormal velocity.
WS(IJ) The thickness induced upper surface normal velocity.
```

PS(IJ) The thickness induced upper surface velocity potential.

The following variables are required for 2nd order solutions only.

```
WSX(IJ) d/dx of WS(IJ) source normal velocity. - WCX(IJ) d/dx of WK(IJ,2) camber normal velocity.
```

KKX The number of 2nd order boundary condition solutions.

```
= 6 if there is no body.
= 9 if there is a body.
```

UBE(IJ,K) The even symmetry u velocities due to 2nd order b.c. UBO(IJ,K) The odd symmetry u velocities due to 2nd order b.c.

SUBPROGRAMS

FUNCTION

MAIN	Sets the main array size for the program.
ABMAIN	Reads input data, computes geometry, and sets array
	sizes.
ACMAIN	Controls the flow of the program.
AERO2	Controls the program flow for the computation of 1st
	or 2nd order pressures and loads.
AERO2B	Computes the u velocities due to 2nd order boundary Conditions.
AERO2P	Computes the 1st or 2nd order pressures from the induced velocities.
AERO2V	Computes the odd and even symmetry velocities induced by the basic solutions.
AMI NMX	Finds the largest, smallest or largest absolute value
	of the elements of an array.
APAS	Reads geometry from APAS output.
APASB	Modifies APAS body geometry coordinates to form desired
	panel coordinates.
AXXABA	Checks if an axis singularity solution is desired.
LIAXXA	Computes axis singularity source and doublet
	influence coefficients.
AXXBDY	Computes body geometry for axis singularity solution.
AXXBXR	Prints axisymmetric body geometry and coefficients of
	source and doublet coefficients.
AXXCSD	Computes coefficients of semi-infinite source and
	doublet line singularities.
AXXLIN	Computes x and r for axisymmetric body geometry.
AXXLOD	Computes Cp's and forces on isolated body from axis
	singularity solution.
AXXNCP	Integrates forces on body nose using Cp's from a
	tangent cone solution.
AXXNFO	Function for body nose curve fit.
AXXNF1	Function for body nose curve fit.
AXXNOS	Finds the point where a conical nose extension is added to the body in order to avoid body slopes in excess of the Mach angle.
AXXSLX	Controls program flow for axis singularity solution.
AXXTCN	Computes tangent cone Cp's on the body.
WVUXXA	Computes velocities from axis singularities.
AXXVEL	Computes velocities at panel control points from
	axis singularities.
AXXXIS	Computes influence coefficients for source and doublet
	semi-infinite line singularities.
BDYAIJ	Computes influence coefficients for body panels.
BDYSCE	Calculates u,v,w,phi influence coefficients for a
	•

unit strength source panel. BODYDS Prints arrays of characteristics at body panel control points. BODYG Computes body panel geometric characteristics. Computes and prints body geometry from input data. BODYGM BODYRD Reads body panel geometry from APAS dataset. BODYW Finds the intersection of the body and the aerodynmaic surfaces. CLCM Computes the lift drag and moment characteristics of aerodynamic surfaces. DECRD1 Reads the input data. DISPLY Prints arrays of characteristics at the panel control points of the aerodynmaic surfaces. DMXMVE Moves the elements of a double precision array. DSSPLY Prints arrays of characteristics at the panel corner points of the aerodynamic surfaces. **ENDREC** Used with errset to check for APAS type influence FIELD Computes first order field point properties using previously calculated influence coefficients and the first order solution. FXDX3 Integrates data using a third order curve fit through the nearest four points. GEOM Computes the geometric characteristics of the aerodynamic surfaces and panels. **GOMTRY** Computes the panel geometry for the aerodynamic surfaces. **HSHLDR** Solves sets of linear simultaneous equations in a least square sense. INLET Performs solution while satisfying boundary conditions at a set of inlet points. INTRP3 Interpolates or differentiates data using a third order curve fit through the nearest four points. INTRP4 Interpolates or differentiates data using a third or fourth order curve fit through the nearest four points. Interpolates or differentiates properties chordwise on an INTRPX aerodynamic surface using subroutine INTRP4. INTRPY Interpolates or differentiates properties spanwise on an aerodynamic surface using subroutine INTRP4. INTSCT Finds the intersection of two lines. LINEAR Fills in aerodynamic surface geometry not input, and Calculates geometry. MATRIX Computes aerodynamic influence coefficients for source and vortex panels on aerodynamic surfaces. MATRXF Displays arrays of data. MATRXT Displays arrays of data. MTXADD Adds multiples of two arrays. MTXMLT Multiplies two arrays. MTXMVE Moves the elements of an array.

NOTZRO	Checks to see if an array has any nonzero elements.
ORTHO	Solves sets of linear simultaneous equations using the method of succesive orthogonalizations. A quasi-inverse matrix may be computed or, if previously computed, used to perform the solution.
PHIS11	Calculates u,v,w,phi influence coefficients for aero surface source panel edges on control points.
PHIXY	Calculates v (binormal) velocities on aerodynamic surfaces from phi (for 2nd order solution).
PLOT	Writes geometry and aerodynamic data on a disk unit for computer graphics.
POLAR	Calculates first order drag polar and aerodynamic cofficients.
QUADPL	Computes body source panel geometric characteristics.
SQFIT	Calculates leading edge suction using a least square Curve fit of Cp to cot(x/c).
THICK	Computes wing thickness z/c, dz/dx, d2z/dx2 from input.
VORTEX	Calculates u,v,w,phi influence coefficients for aero surface vortex panel edges on control points.
VTXAIJ	Controls program flow for aerodynamic influence Coefficient calculation.
VTXDRG	Calculates vortex drag in the Trefftz plane.
VTXDR2	Calculates coefficients for VTXDRG.
VTXLFT	Calculates vortex lift from leading edge suction.
WBINF	Prints source or vortex influence matricies for aerodynamic surfaces.
WBSOL	Controls the matrix solution using subroutine ortho.
WBUVW	Calculates boundary conditions for solution.
WBVEL	Calculates u,v,w,phi at panel control points.
WINTRP	Interplolates velocities to various points on panels.
file	use
5	input data
6	Print output
8	scratch file
9	scratch file
10	scratch file
11	storage of influence matricies and quasi-inverse
12	plot output file
13	APAS geometry input file

FLOW DIAGRAM

```
*******
* AAMAIN *-
*******
******
              *****
* ABMAIN *<==> | <==>* DECRD1 *
*******
              *****
              ******
                             *******
           <==>* APAS *<=====>* APASB *
              *****
                             ******
              ******
           <==>* LINEAR *
              ******
              *******
           <==>* GOMTRY *
              ******
              ******
           <==>* THICK *
              ******
```

```
*******
               ******
* ACMAIN *<==> | <==> * GEOM *
*****
               ******
            <==>* BODYG *<==>|<==>* BODYRD *
               ******
                               ******
                               *******
                            <==>* AXXLIN *
                               ******
                               ******
                            <==>* QUADPL *
                               ******
                               ******
                            <==>* BODYGM *
                               ******
                               ******
                           <==>* BODYW *
                               ******
               *******
            <==>* AXXABA *<==> see Slender Body Flow diagram
               ******
               ******
                               ******
                                               ******
            <==>* VTXAIJ *<=====>* MATRIX *<==>|<==>* VORTEX *
               *******
                               *****
                                               ******
                                               *****
                                           <==>* PHIS11 *
                                               *******
```

```
******
                  ******
<==>* BDYAIJ *<=====>* BDYSCE *
   ******
   *****
<==>* WBUVW *
   ******
   ******
                  *******
<==>* WBSOL *<=====>* ORTHO *
   ******
   ******
<==>* WBVEL *
   ******
   ******
<==>* WBINF *
   ******
   ******
<==>* VTXDRG *<=====>* VTXDR2 *
   ******
                 ******
```


SLENDER BODY CALCULATION

```
*******
* AXXABA *
******
******
               ******
* AXXBDY *<==>|<==>* AXXLIN *
******
               *******
               ******
                              ******
                                          ******
            <==>* AXXNOS *<=====>* AXXNCP *<===>* AXXTCN *
               *******
                              ******
                                          ******
               ******
                              ******
            <==>* AXXSLX *<==>|<==>* AXXCSD *
               ******
                              ******
                              ******
                           <==>* AXXBXR *
                              *******
                              ******
                                            ******
                           <==>* AXXAIJ *<====>* AXXXIS *
                              ******
                              ******
                           <==>* HSHLDR *
                              *****
                              *****
                           <==>* AXXUVW *
                              ******
                              *******
                          <==>* AXXLOD *
                              ******
                              *******
                                            ******
           <==>* AXXVEL *<======>* AXXAIJ *<=>|<=>* AXXXIS *
               ******
                              *******
                                            ******
                                            *****
                                         <=>* AXXCOR *
                                            ******
```

TEST CASE

Results for the seventy degree delta wing-body arrangement of figure 1 are presented in this section.

The aerodynamic paneling representation used in the analysis is presented on figure 2 and is typical of the program geometrical graphics output.

Comparison of first and second order results with experiments for a Mach number of 6 and an angle of attack of 8 degrees are presented, on figure 3. Improved wing surface pressure coefficient predictions are systematically obtained for the second order analysis with the exception of the root section on the compression side and are in reasonably good agreement with measurements. Additional results are presented in references 2 and 3.

Test case input is presented on pages 41 through 43, and detailed program printed output is presented on pages 44 through 98. Typical aerodynamic data graphics output is presented on pages 99 through 109.

Figure 1. Completed

ORIGINAL PAGE 150 OF POOR QUALITY

254 Panels

Figure 2. Wing-Body Finite Element Model

ORIGINAL PAGE IS OF POOR QUALITY

Comparison of Interference Model Wing Surface Pressures in Presence of the Body at M = 6.0, α = 8° 3 Figure

Figure 3. Continued

Figure 3. Continued

Figure 3. Continued

Figure 3. Completed

TEST CASE INPUT DATA

```
WBODY.DATA(M600) 1ST-AX (10 X 11) (8 X 11) VEL B.C. NEG
                                                                  37X37
      CALCULATE NEW AERO MATRIX AND INVERSE AND SAVE (=2.0)
           7 2.
C
      IF < 0. CALCULATES A SECOND ORDER SOLUTION.
           8-1.
      = 2.0 FOR SPANWISE AND CHORDWISE LINEARLY VARING SOURCE PANELS.
C
          10 2.
C
     GEOMETRY CALCULATION ONLY
          12 0.
C
     CONTROL POINT AT PANEL CENTROID (VORTEX PANELS)
          13 1.
C
     NO PRINTING OF SOURCE (THICKNESS) DZDX AND Z/C MATRICIES
C
     = 3.0 PRINTS ALL PERTURBATION VELOCITIES DUE TO THICKNESS
          18 3.5
C
     PRINTS ALMOST EVERYTHING (EACH LOWER NUMBER PRINTS LESS)
          19 0.
C
       PLOT DATASET (EXTENDED)
                                   NO PLOT DATASET (= 0.)
C
     EXTENDS FIRST SURFACE TO PANEL CENTERLINE WITH NEGATIVE SWEEP
          26 1.2
C
          MACH NUMBER
          35 6.0
C
     PRINTS ODD AND EVEN SYMMETRY VELOCITIES
C
          45 334.
C
          46 334.
C
          47 334.
C
     PRINTS CAMBER AND THICKNESS NORMAL VELOCITIES
          48 0.0
C
       ANGLE OF ATTACK ( > 90. FOR ADD LOAD )
          51 99.0
                         99.0
                                                  8.0
C
          1ST ORDER AXIAL SOLUTION ( > 0. )
C
          ISENTROPIC = 4 (ON BODY)
C
            1ST ORDER = 1 (ON LIFTING SURFACES)
C
          NO
              CAMBER = 0
C
          NO THICKNESS = 0
          61 41.00
                        42.00
                                     41.00
                                                 42.00
```

ORIGINAL PAGE IS OF POOR QUALITY

```
C
       NUMBER OF PANELS AROUND THE BODY (HALF)
         702 8.
C
       AXIAL SINGULARITIES.
          < 0 MEANS EXACT CONICAL SOLUTION AT NOSE.
C
C
                  = AXIAL VARIATION ORDER OF SOURCE SINGULARITIES
C
                 = AXIAL VARIATION ORDER OF DOUBLET SINGULARITIES
         706-23.0
C
       VEL B.C. = 0.
         708 0.
C
       PRINT SOURCE AND DOUBLET SOLUTIONS.
         709 0.
         710 0.0
C
       IF > 0. NO BODY AND SURFACE INTERSECTION IS COMPUTED
                         1.
                                                 1.
                                     1.
C
       MAXIMUM ALLOWABLE SLOPE ON BODY = 1. / BETA - DATA(715)
         715 0.0029
C
       PRESSURE COEFFICIENT CALCULATION ON BODY (AXIAL SOLUTION)
         720 4.0
C
       ANGLE FOR PRESSURE COEFFICIENT CALCULATION.
                                                              90.
                         22.5
                                     45.
                                                  67.5
C
       X VALUES OF THE BODY GEOMETRY SECTIONS.
         801 0.0
                         1.00
                                     1.09
                                                  1.10
                                                              1.20
         806 1.30
                         1.40
                                     1.50
                                                  2.00
                                                              3.00
         811 4.00
                         5.00
                                     6.00
                                                  6.70
                                                              6.75
         816 6.80
                         6.810
                                     6.820
                                                  11.10
                                                              11,150
         821 11.203
                         11.30
                                     11.50
                                                  12.00
                                                              12.50
         826 13.00
                         13.50
                                     13.983
                                                  14.10
                                                              14.20
         831 14.30
                         14.40
                                     14.50
                                                  14.60
         836 14.80
                         16.9360
C
       X COORDINATES OF THE BODY PANEL CROSS SECTIONS (R INTERPOLATED)
         851 6.1839
         862 14.0775
C
       R VALUES OF THE BODY GEOMETRY SECTIONS.
         901 0.
                         0.250501
                                     0.265452
                                                  0.267113
                                                              0.283416
         906 0.299132
                         0.314302
                                     0.328960
                                                  0.395480
                                                              0.501051
         911 0.577263
                         0.628500
                                     0.656942
                                                  0.663870
                                                              0.663961
         916 0.663999
                         0.664
                                     0.664
                                                  0.664
                                                              0.664
         921 0.664
                         0.663791
                                     0.662036
                                                  0.649816
                                                              0.626208
         926 0.590771
                         0.542754
                                     0.483287
                                                  0.466763
                                                              0.451935
         931 0.436431
                         0.420224
                                     0.403653
                                                  0.387083
                                                              0.370513
         936 0.353943
                         0.0
       X COORDINATES OF THE AXIS SINGULARITIES.
        1001 0.0
                         0.75
                                     1.25
        1031 0.0
                         15.75
                                     16.25
                                                  16.9360
C
       X COORDINATES OF THE AXIAL SINGULARITY CONTROL POINTS
        1101 1.00
                         1.50
                                     2.00
        1131 16.00
                         16.50
           1 0.
```

```
WING
C
           CHORDWISE
                       SPANWISE # OF PANELS
           2 10.
                         11.
           T/C A THICKNESS MATRIX IS CALCULATED (UNLESS = 0.)
C
          89 0.05
                       -1.0
C
            ROOT ( < 0. INDICATES LEADING AND TRAILING EDGE INPUT)
         103-9.00
C
            < 0. INDICATE PANEL SPACING IS EVEN.
         107-1.0
       Y CORDINATES OF PANEL ENDS
C
         161 0.6640
                        0.9323
         172 3.2215
C
       X CORDINATES OF LEADING EDGE
         241 6.8072
         252 13.8333
C
       X CORDINATES OF TRAILING EDGE
         281 13.983
         292 13.983
         292 13.983
C
         = 1.0 LAST SURFACE HAS BEEN READ.
          1 1.0
C
          = -1.0 NO MORE CASES FOLLOW.
          1-1.
```

#BODY.DATACM600) 1ST-AX (10 X 11) (8 X 11) VEL B.C. NEG 37X37	INPUT DATA ARRAY	1.20000 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	23.0080 0.000 0.0000 0.	18390 0 169350 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L.00000 10.6000 11.0000 0. 5.00000E-02 -1.00000 0. 66400 0. 932300 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	91 000 80 000 90 0000 90 0000 90 00000 90 00000	00 00 00 00 00 00 00 00 00 00 00 00 00	6400 8072

CALL LINEAR MMAX =

					OP OF	RIGIN PO	AL DR (PAG		SY						
		• 0 2 0 0	+ C2*X**2 + C3*X**3+ C4*X**4) -2.00000 0.00000 0.00000	DWDK	20000	20000	20000	20000	20000	20000	20000	20000	••20000			
9N IM	BICONVEX AIRFOIL	THICKNESS DISTRIBU	2 = 1 * CCU*SURTEX) + CI*K 0.00000 2.00000 -		0.00000 .09500 .05000 .09000 .00475	0000 00000 0000 0000 2000 0000	0000 0000 0000 0000 0000		350000100 250000100		15000 00500 15000 00500		5000 0900	0.00000 .10000		

						ORI OF	GINAL POOR	PACE QUAL	ry			in the Advisor Con-		
	S RUN)	ALL OCATIONS)		USED) NOT USED)	SOLUTION)			TIONS		2 II = 5738 0 I2 = 5773	10 13 = 58431 10 15 = 58781 11 16 = 59131	1 = 5948 0 18 = 5983 0 10 = 5703 9 J2 = 5326	1 3604	
L A ARRAY SIZE)	L A ARRAY REQUIRED FOR THIS	A ARRAY LEFT AFTER	A SPACE IN A ARRAY)	A SPACE IF AN INVERSE IS U A SPACE IF AN INVERSE IS N A SPACE BASED ON SOLUTION)	E WHICH CAN BE REMOVED FOR E REQUIRED FOR MATRIX SOLU	OF SETS OF VORTE	OF PANELS OF VORTEX PANELS OF BODY PANELS OF SOURCE PARAMETERS	R OF VORTEX SHELL PANELS R OF VORTEX SHELL SPAN STA R OF VORTEX SHELL SECTIONS R OF SOURCE SPAN STATIONS	מו פמח ארפונית	AX - IJ1 = 62	14	J6 = 1J7 = 6 J7 = 1J8 = 1 NTK = 52	3=550	ENSIONS FOR THE ARRAYS R OF VORTEX SPAN STATIONS R OF PANELS R OF BODY PANELS R OF BODY PANELS R OF SOURCE PARAMETERS
70000 CTOTAL	34476 (TOTAL	35525 (TOTAL	35525 (EXTRA	67417 (EXTRA 58105 (EXTRA 58105 (EXTRA	5642 (SPAC)	B II NUMBE	TO II NUMBER IN	NTL = NUMBER NST = NUMBER NST = NUMBER NST = NUMBER	KY	J1 = 6378 J2 = 5227	103 = 50299 104 = 45349 105 = 44359 106 = 44018	JA = 3552 JX = 6601 JX = 6401	JŽ =	NUMBER OF DIM NSTC = NUMBE NTVC = NUMBE NTVC = NUMBE NTSC = NUMBE
MAX	TRE Q =	JNAX =	EXTRA =	IXTRA2 IXTRA0 = IXTRAX =	TX II	₽			63789					110 110 110 132 132
	:				- - - -			46	-					

SREF = SPAN =

18.73497

		OF ST					
CBAR = 2.90780 BETA2 = -35.0000 BETA = 5.91608 XCG = 0.00000 CAVG = 2.90780 SYM = 0.00000	NUMBER OF NUMBER OF NUMBER OF	IVTX = T ITHK = T IBDY = T IAXX = T	AAPAS = F				

						83/08/10		14.01					
	MBODA	DOY . DATA (M600)	1ST-AX	(10 × 11)	(8 X 11)	VEL B.	.C. NEG	37X37					:
								,					
		SURFACE NUMBE	ER 1	WING									1
7	>	7	XLE	XTE	SHP-LE	SWP-TE	NIS	CHORD	TUIST	X/C	S C	133	SI
	99	00		13.98	3 69.998	0 • 0 0 0	0.00000000	~-∞	0 • 0 0 0 0 0	ш	10	-	7
1	90	000	8.5	13.98	3 69.998	0.000	0.0000.0	• • •	0000000	ш	10	11	1
	.16	90 • • • 0	• 1 • • 4 8	13.98	3 69.998	0.000	0.0000.0	າດ	0.00000	ш	10	21	-
	50		. 80	13.98	9	000.0	0.0000.0	- ac u	0000000	w	10	31	-
	73		9.45	13.98	3 69.998	0.000	0.000000		0.00000	ш	10	41	1
	န္တာ နာလ နာလ	000	0.36	13.98	3 69.998	0.000	00000000	• •	0000000	ш	10	51	· —
	• 1 8 • 1 8	000 • • • •	20°00	13.98	3 69.998	0.000	0.000000	101	0000000	W	1.0	61	1
	. 4 d	000	1991.	13.98	3 69.998	0.000	0000000	9 M C	00000000	ш	10	11	1
	649	200 • •	2.24	13.98	3 69.998	0.00.0	0.0000.0	- ·	0.000000	w	10	81	-
	. 46 - 86 - 86 - 86	0000	2.86	13.98	3 69.998	0.000	0000000	*	0000000	ш	10	16	1
	2.081 3.081 3.222		13.6448	13.98 13.98 13.98	3 69.998 3	0.000	00000-0	.535	0.00000	w	10	101	H ,
48									OF				
4									IGINA! POOR				
									QUAL				
									TTY 111				i
												1	

7		BODY SEGMEN	T NUMBER	1				oor
7	6•1	10	•	-	7.61	J1		QU
\$6596	>	2	>	7	>-	2	>	ب د سین پا∸ پا
6.598	0000	659	0000	664	0000	664	000	664
0.0006	466	• 466	469	469	4694	646 469	4694	619 469
7	 609	200 200 100 100	613	400 100 100 100 100 100 100 100 100 100	613	-25	613	-254
9.0543	609	000 000 000 000	613	2000 2000 2000 2000	6.04	・ こ い こ な	7 C	• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.0000	466	• 466	469	.469	469	469	469	469
0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.000	000	• 659	0000	•613 •664	000	664	000	• 613 • 664
0 0	•	54	9.7	614	*)5	11.2071	
0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.0000 .6640 0.2541 .6135 .2541 .2541	>	2	>	7	>-	7	>	7
2541	000.	664	000	664	000	664	000	664
6135	254 469	613 469	254	613 469	254 459	613 469	•254	613
65540	613	- 2554	613	• 254	613	-254	613	-254
11.9247	7 C		664	000	664	000.	664	000
0.25416135 0.25416135 0.00006640 0.00006440 0.00004440 0.0000 0.00004440 0.00004440 0.00004440 0.00004440 0.0000 0.00004440 0.00004440 0.00004440 0.00004440 0.00004440 0.00004440 0.00004440 0.00004440 0.00004440 0.	469	469	469	• 469 • 469	619 469	• 469	469	4634
Y Z Y Z Y Z 0.0000 .6524 0.0000 .6174 0.0000 .5575 0.0000 .470 0.2497 .6027 .2363 .5704 .2134 .5151 .1799 .434 .4613 .4613 .4555 .4365 .4365 .3323 .3323 .3323 .6027 .2497 .5704 .2134 .4700 0.000 .6027 .2497 .5704 .2363 .5151 .2134 .4342 .179 .6027 .2497 .5704 .2363 .5151 .2134 .4342 .179 .4613 .4613 .5764 .5151 .2134 .4342 .179	• 2000 • 0000	664	0000	•613 •664	• 254 • 000	664	.000	664
Y Z Y Z 0000 0000 6174 0.0000 6575 0.0000 434 2497 6027 2363 5704 2134 5151 0.000 436 4613 4365 4365 4365 3942 3942 3323 332 6027 2497 5704 2363 5151 0.000 6179 0.000 6027 2497 5704 2363 5151 2134 4342 179 6027 2497 5704 2363 5151 2134 4342 179 6027 2497 5704 2353 3323 <td>-</td> <td>24</td> <td>9</td> <td>N</td> <td>3.35</td> <td>6</td> <td>14.0775</td> <td></td>	-	24	9	N	3.35	6	14.0775	
0900 .6524 0.0000 .6174 0.0000 .470 -2497 .6027 .2363 .5704 .2134 .5151 .1799 .4342 -4613 .4613 .4365 .4365 .4365 .3323 .3323 -6027 .2497 .5704 .2134 .4700 0.000 -6027 .2497 .5704 .2363 .5151 .2134 .4342 -6027 .2497 .5704 .2363 .5151 .2134 .4342 .179	>	2	>-	7	>	2	>	2
4613 -4565 -3942 -3942 6027 -2497 -5151 -2134 -4362 6027 -2497 -6174 0.0000 -5575 0.0000 6027 -2497 -5363 -5151 -6134 6027 -2363 -5151 -6342 -4342 -4365 -4365 -4365 -4365	0000	652	.000 .236	617	000	557	000	4 70
5151 -2134 -4342 -179 6524 0.0000 -6174 0.0000 -5575 0.0000 -4700 0.000 6627 -2497 -5704 -2363 -5151 -2134 -4342 -179 4613 -4613 -4365 -3942 -3323 -332	461	461	436	436	394	394	332	332
60272497 -57042363 -51512134 -4342179 46134613 -43654365 -39423942332	6 5 5 5	4 C C C C C C C C C C C C C C C C C C C	27.5	90 70 70	3.15 5.15 5.15	.213	中でする	179
266- 1951 - 457 - 1951 - 4575 - 1951	602	200 200 200 200	570	23.6	51.5	213	41340	67.1
	104	1000	900	.430	7	. U.V.	332	. 3.52

						СХВХ	0000	0003	0000	0010	00230	9400
	ORIG	INAL F	AGE I	S Y		CDBX	0023	000	0000	24	.00254	27
						СГВХ	46	0078	0102	01.19 01.41	.01670	0230
						S+F*(S)/2	.0241	8673	2003	3714 0959	03224	0423
TIES						-	169	0.592	0502	0955 1222	.14442	1663
SINGULARITIES						1.09444 CNA	.3767	0613	.35/8 .8406	•4788 •2971	2.20547 2.15950	•1422
USING AXIS						0.00000 TO F(S)	.1086	2043	•421 <i>1</i> •6537	•1299 •2355	2.24999	.2437
SOLUTION						FROM CP	159	0078	010	0 192	• 04597 • 05582	603
BODY ALONE	3000 3000 3000 3000 3000 3000 3000 300		•29	600 €	.91	OF FORCES THE TA	49.	300	.93	9.0	8.218 9.069	4
	XX)	UKD = UKDX = LPHA =	ACH REF ETA	E T A	INTEGRATION R	268	1749	805 869	958 078	.22246	570
	2222	22 2		EXO0		X	0547	1641 2736	3830 4925	56019 7113	. 82083 . 93028	397
	1	1	1	1 .		i				1		

ì

•																						C) []	IÇ		1	7	:::	1		••• •••	
																						С	F	Ρ	d:	O F	₹	Q	U,	Ai	_1	η
8	PI	C	415	160	つぐ	S	0	D,	O	N	n	29	34	• (10	١v۵		W.	œ۱	-	ne	M	n٠	240	m	a	•	-	'n	_		VD.
н	S	₹.	.7	# ;	-0	67	5	~	56	4		- J	n	:	21	21	•21	5	•26	•21	?	87.	† - T -	10	90.	.05	40.	•04	*0.	•03	•03	•03
H		ī	• •		• (•		•	•	•		• 1))		1	•	•		ı	1	•	ı	•	1	•	1	•	ı	•	1	1	1
-	2	_		020	-	410	a.	•	0.	-	7	O II	7 -		תו		ď	un.	. ^ 1		- 1		¬ _	4.0		-	_	_	A 1	-		-
613	ਹ	W.	90	900	ىر عد	50	5	40	5	S	3) C) 	5	0	01	5	ぢ	i	S	寸	7.5	7C	70	2	2	02	02	N	02	02	C)
•16												• I	•	•	•		ŀ							1								Ĭ
11	2	•			۵u	110	90		Ω.	œ (n =	415				ın		~ (.		• •	٦-	. ~			•	۰.			_	_
ROX	X-0	440	667	660	טק היי	36	490	461	22	は ひ り む	7	5 N N	101	12	002	000	000	000	בי בי בי	200		75		30	*	375	644	516	583	40	563	557
1 0	R/D	-	-	•		•	-	 •	_,	9	P	36	? =				0	6	•	•	•	•	•		-	7	7	7	7	╗	7	7
Y A	0																														•	
IE TR	0	•	ST.		-1-4	•	77	ᠳ᠂	•	-	NΙ	ពេច	١Œ	יסו	0	_	0	ο.	- ·	3 P		30	00		~	~		•	. خوا	~ 1.		~
GE OME	R-0L	00	25	265	ころ	25	Ħ	200	ω. V.	ה הו	55	אני סע	95	99	66	ഹ	99	i۵۰	. 0 .	n	n	n e	20	•	-	m	'n	-	ėn.	~1	_	~
>		o			• `	•		Ī				•			•	•	•		•	•		•	•	•		•	•	•	•	•	•	•
8 00		0	5	95) C	. 0	0	0	-	-	0.0)	· =	0	0	0	01	Þ	-	50) >	5 6) C	. 0		0	0	9	0	0	_	0
THE	010	0 0 0	000				000	000) C		500	000	100	200) () ()) () () C		00	8	30	00	00	0	0	0	0
10	×	0	0	•	• (•		ស្រុ	•	•	•) • •		-	8	8	ر •	Ε,) • -	•	4 C	10 10	30		8	4.1	4.2		4.	\$ የ	4.6
0 3 0																		<u> </u>					-	-		_	_			,⊶,		_
I AD		7	9:		117	9	8		U.	• 9	10	0-	1.0	6	_	4	ស	20	- 0	N a	0 4	۲Ľ	ے (. 0	7	۰	<u>6</u>	Q.	٠,	۰۹	ا بيد	0
BEEN	XQX	65	vo.	1650	36	S	49	40	V 0	50	0 6) - -	0.2	OI	8	00	00)))	24	よて) C	83	60	37	4	S	58	\$	90	65
YS	OR	•	•			•	•	•	•	•	•	•	•	•	•	7	0 -	•	•	•	• [•	•	-	•	•	•	•	•	•		•
N				_	40	I PC			n.		n ~	عد و			_	_		_	· ·							_	_	-		•	_	_
NSIO	œ .	00	8,	6617	. ~	91	4	80 P	70	⊅ ∳⊏	70	30	38	39	40	40	2	1) C	10) (. - (.	10 2 2	シン シン	07	7	32	19	5	90	25	36	20
EXTE		c	-	70	10	Š	•	•	• •		•	•	9	• 6	•	9	9	٥	•	•	7	7,4	, c	,		~	•	•	*	•	4.	~ •
SE								_	_	_					_						-								:			
0N .	_	78	8		ğ	0	0) (၁ ၄ ၁ ၄	⊃¢ ∌¢) C		00	0	00	00	96) () C	ງ C) C		0	0	6	200	00	00	90	30		00
ICAL	×	വ	4	107	2	. ·	4	ຄຸດ	•	⊃ ¢ •) C		-	-	ထ	တ	× +	-	• °	9 4	'n		N.	<u>ت</u>			7	71	r) <	er u	្រុ	9
CONI		7			, , , ,	,—		7	45		ru	ب	. .	9	9	w)	Ø,	- -	7 -	-	- -	••		i emi	771		₹	~	 •	₹ 4	# *	-
⋖	-	-	2	ე 4	· ເຕ	9	~	æσ																56								

				ORI OF	GINAL POOR	PAGE QUALI	es.			
	RXX	000	0000 0000 0001	0000 0000 0000	0000	0021	• 000 • 000 • 060 • 064	00400 04400 04600	0.05 0.05 0.70	
	RXX	000	0000	+00 +003 +003 002 003 003	0022	0000	0000	\$ 4 £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £	• 065 • 065 • 067 • 070	* 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	RXX	000	0000 0000 00000 00000	.003 .003 .028 .028	0022	2000	0000	#400 #400 1000	.065 .065 .067	# 100000 # 1000000 # 1000000
	RXX	.000 .908 .056	052	0030	0000	0000	0000	\$4400 \$4400 \$0000	.064 .104 .072	N000000 000000 000000
	OR/OX	000	. 1392 1592 1594 1994	144 0093 061	00140	00000	0000	0000 0000 0000 0000 0000	• 151 • 151 • 158	1664 1664 16645 1657 1657
	DR/OX	2000	150	122 089 063	0000	0000	0000	0001 00001 00000 00000	1140 1155 1156 1158	11663 11663 11663 11663 11663 11653
ITIVES	DR/DX	6662 4355	.1639 .1500 .1544	1140 000 340 340 340 340 340 340 340 340 3	0000	0000	0000 0000 0000	000000000000000000000000000000000000000	151 151 159	
OMETRY DERIVATI	DR/DX	165 268 166	160 154 154	143 089 121 131 131	00139		0000 0000 0000		1145 150 159	1657 1657 0-0000 0-0000
BODY GEON	œ	99	283	2007	6536	00000 00000 4444	666 666 668 668 668	4004	4665 455 451 451 451	4037 4037 3871 0.0509
	×	.507 .693	12004	NO00	0000	6.800 6.800 6.820 6.820	1-150 1-203 1-300 1-300 1-300	0000 0000 0000	8000 8000 8000 8000	14-5000 14-5000 14-5000 14-7000 16-9360
) 	Han	400							これのもちらり

32 IS A LINEAR SOURCE STARTING AT X = SINGULARITY NUMBER

-.508

-.508 SINGULARITY NUMBER 31 IS A QUADRATIC DOUBLET STARTING AT X

52

MAX Extra

EG 37X37	DEGREES ADD LOAD	(0.5*G*M*M)	90 • 000	CP		00001		.0001	.0001	0000			000	0000		95000	.00062	0000	08000	-00008	06000 C6000	88000	8000	89000	0000	000) () () (
L B.C. NE	1.000 DE) - 1) / (67.500	G G		00324		• 0 0 2 9	•0028 •0028	9700		0021	•0050	0018	.0015	.0015	*100°		0013	0012	0012	0010	0008	0000	.0002		1000
X 11) VEL	ALPHA =)**(6/(6-1)	45.000	G G		00580	00500	052	8400			.0035	.0032	6200°	.0023	.0021	6100		.0015	0014	.0011	-0009	900	0000	0003	200	200
X 111) (8	1	1+W+W+2A+W)	22.500	CP		00743	0000	•00066	1900	/ C C C C -		4400	.0039	00000	0027	- 00 24	2000	•0017	•0015	0013	00100	-0007	0000	0000	0007	010	400
1ST-AX (10	ES OF ORDER	* (2U+U*U+V*V	0.000	CP		00 798	00 75	1200	9900		0051	• 0046	.0042	75 UU •	00 28	• 0025	• 00 22	.0017	.0015	0013	0000	• 00 00		0005	6000	710	0047
ATA (M600)	VELOCITIE	(1-0.2*M*M	THETA	œ	000	. 2505	395	452	になり	76	605	628	645	6 6 6 7 6 7	664	664	669	999	664	664	664	662	626	590	542	300	20
WB ODY +D) = d0		×	.507	1.0000	000	5000			5000	000	-500		000	.500		000	9.500		1.000		2000	3.000	3.500	5000	5.000

							0	R	IGI Pi	N/OC	AL OR	. F	A(
GREES ADD LOAD	5*6*H*H)	000-06	CP	0000	000	.0000	100	1000-	.0002	.0003	0000		4000		• 0 0 0 0 •	.0007	.0008	8000	6000	.0008	* 0008	7000	0000	0000	.0005	• 0010	0700	00
1.000 DE) - 1) / (0.	67.500	CP	032	032	•00031 •0029	028	97000	.0023	.0021	•0020	• 0 0 1 8 • 0 0 1 7	0015	C100•	4100	.0013	.0013	00012	0012	00100	\$000°			0000	0000	0000	0017	•01854 •01856
ALPHA =	*#))**(6/(6-1)	45.000	CP	058	0.58	.0052	40		.0038	.0035	00032	• 00 25 • 00 25	.0023	.0021	• UUI 9 • OOI 8	.0016	.0015	+ 100 001	0011	.0009	.0006			500	008	000	C90	•01830
1	V+H+H+2A+H)	22.500	CP	•0074	-0074	0 7 0 0 66	.0061	- C C C C C C C C C C C C C C C C C C C	.0048	+0044	0039	00000	-0027	•0024	22000	.0017	.0015	0013	11000	.0007	.0003			11111	0015	00400	0104	• 02/69 • 05252
ES OF ORDER	*(20+0*0+V*	0.00	ď	67 00	.0079	073 171	• 0 0 66		00 51	.0046	• 00 42	00037	• 00 28	• 00 25	00055	.0017	.0015	0013	5000	.0006	-0005	1000			0017	00 47	0119	.05790
VELOCITI	(1-0.2+M+H	THETA	œ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	53	とうな	501	147	605	628	645	656	664	664	664	664	664	664	400	662	649	626	こちょう	A A	403	320	253	122
	CP = 0.0		×		500	000 000			5000	000	• 500		000	. 500			. 500	000-0		1.500	2.000	2.500			500	5.000	5.500	000
					10	~	دري	۱0	~ @	<u>.</u>	2		110	*	E,	-	.8	61	> ~	25	(C)	4 (22	7	. 60	6	20 20	31 32

R CP	 - 	VEI OF LT	TES OF DRIFE	-	- VMQ IV	משט טעט מים		
THE TA C P C P C P C P C P C P C P C	 	(1-0.2*H*	* (2U+U*U+V*	+H+H+2A)**(6/(6-1)	- 11 /	# 9 *	
\$25050 \$2		THETA	0.00.0	8	45.000	67.500	000.06	
\$5079 \$5079 \$5079 \$5079 \$5000 \$5079 \$5070 \$5	×	αc			CP	CP	сь	
\$2000 \$3290 \$00018 \$00071 \$00355 \$00222 \$00300 \$3290 \$00018 \$0000 \$3290 \$00018 \$00000 \$3290 \$00018 \$00000 \$3290 \$00018 \$000000 \$3426 \$000000000 \$3426 \$0000000000 \$3426 \$000000000000000000000000000000000000	507	000	0007	0014	140	136	722	
\$5000 \$525 \$\text{-0001}{5000}\$\text{-00001}{5000}\$\text{-00001}{5000}\$\text{-00001}{5000}\$\text{-00001}{5000}\$\text{-00001}{5000}\$\text{-00001}{5000}\$\text{-00001}{	-500	329	0001	7000	035	122	318	
\$5011		3.4 4.5.3	21000	6000	1	0 0 0 0	265	
\$5000 \$5475 \$-000563 \$-000731) () () ()	501	.0042	0047			200 300	
\$5000	• 500	542	• 00 56	.0064	073	.0041	0 78	
\$\begin{array}{cccccccccccccccccccccccccccccccccccc		577		-0082		.0083	710	
\$\begin{array}{c} \text{5500} \text{6455} \\ \text{50102} \\ \text{6500} \\ \text{6455} \\ \text{5010} \\ \text{6455} \\ \text{5010} \\ \text{6460} \\ \text{6010} \\ \text{6460} \\ \text		628	1600	0113	1 7 0 1 0	• • 1 < 1 • • 1 5 A	2 2 2 3 4	
0000 6640 -01101 -01155 -012192 -012168 -012191 -012191 -012192 -012168 -012161 -012191 -012192 -012168 -012161 -012191 -012121 -012128 -012168 -012161 -01216	500	645	• 01 02	-0127	10	• 0193	143	
0000 6640 -01109 -01534 -02323 -02864 -02864 -02865 -02865 -002866 -00		2 9 9 9 C 9	0110	0140	197	0.0226	06100	
\$\begin{array}{c} \text{5000} \text{0.6640} & -00861 & -01379 & -02328 & -02889 & -02889 & -03009 & -001309 & -002009 & -002000 & \text{6640} & -000136 & -001334 & -03139 & -	0000	664	0110	.0153	232	.0278	• 0266	
\$6640 -001368 -011234 -013139 -03247 -03314 -03314 -033147 -03314 -03314 -033147 -03314 -0331	• 5000 • 5000 • 5000	664	-0086	0137	232	• 0 289	• 0285	
0000 6640 -00126 -00786 -02334 -03139 -03247 -03324 -03324 -03324 -033247 -033247 -033247 -033247 -033247 -033247 -033247 -03321 -033247 -03321 -033247 -03321 -03321 -03321 -03321 -03321 -03321 -03321 -03321 -03321 -03324 -03321 -03324 -03322 -03322 -03324 -033224 -033225 -033225 -033224 -033225 -033225 -033226 -033224 -033225 -033225 -033226 -0332		664	0000	-0172 -0107	ころの	8670°	00200 0 2 1 2	
\$5000	.000	664	• 00 12	.0092	25.00	0313	0324	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• 500	664	0010	•0018	233	0319	.0333	
\$5000 \$6498 \$\text{-000464}\$ \$\text{-000531}\$ \$\text{-00531}\$ \$\text{-005321}\$ \$\text{-005321}\$ \$\text{-005321}\$ \$\text{-005351}\$ \$-0053		669 664	00 33 00 45	• 00004	252	\$ 25 D •	04000	1.7 (J)
\$5000	000	664	00 25	45.00	231	0 2 4 0		:
.0000 .6498 .00066 .01174 .02901 .03678 .03925 .5000 .6262 .00464 .01591 .03225 .03839 .03955 .0000 .5908 .00715 .01919 .03496 .03957 .03967 .5000 .4809 .01365 .02140 .03968 .03968 .03968 .5000 .3208 .35840 .02525 .03795 .03968 .03968 .5000 .2380 .35840 .3490 .03796 .03968 .03968	.500	662	0046	.0067	25.5	0346	0364	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000	649	.0006	-0117	290	• 0367	.0381	£.
• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2000	626	• 00 46	0159	322	0383	• 0392	*
-0000 -0128 -01076 -02140 -03706 -03967 -0396 -0000 -4809 -00430 -02199 -03812 -03968 -0396 -0000 -01365 -011624 -031912 -03968 -0396 -0000 -2380 -35840 -14904 -03196 -0396 -0000 -1551 -07258 -14904 -04479 -03968 -0396		270	1,00.	1610	349	0393	• 0396	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2000	542	• 00 76	0214	370	•0396	• 0396	
-0150 -0150 -0150 -0150 -01512 -01518			24 00	61200	283	00396	• 0396	
*5000		700	1010	7010	してて	0000 0000	9000	
<u>.0000 1551 1.07258 59735 14379 1967 1967 1948</u>	5000	238	3584	1490	317	7650	00000	
	000		サウナン				1	

									1			i .		. P Q	1													
REES	.5 *G *M *M)	90.000	CP		03362	265	139	0 78	710	0.93	.0143	06100	1000	0285	00200	9070	0333	04000		0364	0381	2650	0396	.0396	.0396	0396	0396	112
8.000 DEG) - 1) / (0	67.500	d		•01365 •01222	080	000	.0041	121	0158	.0193	• 0 226	0220	289	•0298		0319	•0324	0770	0346	•0367		0.396	.0396	0396	0396	0396	396 398
ALPHA =)**(6/(6-1)	45.000	d)		• • • • • • • • • • • • • • • • • • •	0110	0045	.0073	1001	0151	.0174	0160	CT CU -	.0232	.0233	0000	0233	• 0232	1023	.0253	05200	2200	0370	.0385	.0391	.0379	0317	5120
-	*V+W*H+2A*H)	22.500	G D	1	.00071	000	400	.006	E 0	-011	.012	4100	010	013	•012		.007	9000		000	110.		021	021	•016	025	149	291 988
ES OF ORDER	*(2U+U+U+V	0.00.0	CP	1	.00015	100	400	.005	7 00	600	.010	011	100	.008	000		.001			000	000.		200	00	013	105	358	17
VELOCI TI	(1-0.2*H*H	THETA	œ	00	• 2505 • 3290	395	501	542	577	528	645	656	560	664	664	400	664	664	4004	62	649	900	3 d 2 d 2 d	480	403	320	238	155
) = d0		×	.507	1.5000	000		5000	000		.500	000		5000	000		5000	000.0		1.500	2.000	2000	20 C C C C C C C C C C C C C C C C C C C	4-000	4.500	5.000	5.500	5000
				: .	0	5	r LC	•	►a	o o																		31 32

THE VALUES OF VN AXIS-SOURCE 1ST ARE = 0.0

ON ALL LIFTING SURFACES

ORIGINAL PAGE 15 OF PODR QUALITY OF PO	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2		(X	XIS-SOURCE 1	ST					
2	COORDINATION OF THE PARTY OF TH		•542	.260	116.	•695				
X		000	000	000	000	000	000			
X 10.1307 10.8483 11.5559 12.2835 13.0011 13.7187 10.1307 10.8483 11.5559 12.2835 13.0011 13.7187 10.000	X 10-1307 10-8+83 11-5659 12-2835 13-0011 13-7187		#444 0000	0000 0000 0000	0000	0000	0000			
######################################	60000000000000000000000000000000000000	0 X 0 X	.004	0.848	•000 1 •565	•000 2•283	3.001	M.		
0000 0000 0000 0000 0000 0000 0000 0000 0000	00000000000000000000000000000000000000))		
### COUNTY PROPERTY PROPERTY	AND STATE OF	00	000	100	•019	• 0 52	•086	•123		
	6000 - 60				019 019 019	0022	• 0 8 6 • 0 8 6	• 123 • 123 • 123 • 123		
1000 - 10	11000			1000	0119	000	• 0 8 6 • 0 8 6	123	OI OF	
AL FAGE AS DR QUALITY	AL PAGE AS DR QUALITY	• •		100	• 010	200	• 0 8 6 • 0 8 6	•123 •123	RIGIN F PO	
PAGE AS QUALITY	PAGE IS QUALITY								OK WF	
GE AS ALITY									PA, QU	
	55 Y								GZ) Alit	
					-				SY	

MING

SURFACE NUMBER 1

	1 1		L Piloni R QUAL		
			3.0812	0000	
1.7307	0160 0353 0543	• 08995 • 10621 • 12127 • 13499	1582		
1.5021	0635 0897 11145	•15872 •17757 •19419 •20868	2319	0000	
1.2735	1352 1700 2017 2300	• 25469 • 27597 • 309412 • 30943	3325	0000	000000
1.0448	504 971 379	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	890		00000000000000000000000000000000000000
. 1957	40.00 80.40 0.400	. 70379 . 73762 . 76479 . 78557	792	0000 0010 0110 0410 88	00805 005150 005150 007617 008752
x/c	040m		95.	3555	**************************************

		OS.C	8724 7.1.1.1 000R QUALINA	7
		13,7187	-1.0180 -50551 -20025 -31655	018
9-4131	-1.0118 5777 2013 -2013 -2013 -8777	13.0011	-1.0157 -8411 -8753 -2020 -3753 -8411	0.1
8-6955	-1.0097 5719 -2008 -2008 -2008 -8719	12,2835	-1. -0.0174 -2024 -0.0124 -0.024 -0.024	017
1.9779	-1.0076 53708 -27004 57004 57004	11.5659	-1. -0.0206 -0.0300 -0	20
7.2603	-1.0049 -8519 -1.5692 -1.999 -8519	10.8483	-1.001 -001 -001 -001 -001 -001 -001 -00	4
6.5427	1.0055 .05596 .2000 .2000 .55996 .05596	10.1307	-1. -845936 -2016 -5016 -5016 -5016 -5016	1.0136
× 7	2.000 3.000 3.000 5.000 7.000 6.000 6.000	× ¬	00000000000000000000000000000000000000	00

VN AKIS-DOUBLET

STRENGTHS.
EDGE
NONZERO LEADING AND TRAILING EDGE STRENGT
AND
LEADING
NONZERO
ANELS.
SOURCE P
VARYING
LINEARLY
SPANHISE AND CHORDHISE LINEARLY VARYI
AND
SPANHISE

THE PANEL SWEEP ANGLES WERE CHANGED IN SIGN.

• 0 =

SURFACE NUMBER 1 WAS EXTENDED TO Y

THE PANEL SWEEP ANGLES WERE CHANGED IN SIGN. 0 11 1 WAS EXTENDED TO Y SURFACE NUMBER

S
S
1.1
R
$\overline{}$
ž
=
H
-
0
10
4.1
DUE
=
u
_
Z
>

					NAL P OOR Q	i
		13.7187	• 0 0 0 2	**************************************	003 007 002	SURFACES
9.4131	000000000000000000000000000000000000000	•900 •001	9	0187 0130 0130	000 144 000	ALL LIFTING S
8-6955	000000000000000000000000000000000000000	.283	159	- 00 3 8 0 0 3 8 0 0 3 8 0 0 3 8	007 029 159	0.000005 ON
1.9779	000	•000	000	- 0165 - 0004 - 0004	016 039 000	. XO ARE <
7.2603		.848	0.00.0	0033 0033 0033	040 003	THICKNESS VN AT
6.5427		.130	000-0	0.000 .0281 .0068 .0068	000 000 000	ALUES OF
׬	7 - 000 7 - 000 7 - 000 7 - 000 7 - 000 7 - 000	90°	. J. 00	00000 00000 00000000000000000000000000		THE ABS V

L	ď
9	ė
a	ō
7 L	e
L	Ī
_	_
6	,
902	5
=	
_	
U	•
ï	÷
ĭ	•
ž	ï
t	7
;	۱
:	
ひしておしょコト	,
Z	
,	•

							ORIGII OF PO	Mar p
				13.7187	0.2	0000 0000 00063	000 000 000	SURFACES
9.4131		000	0097 0097 0245 0-000	•001	0	1 00409 1 00187 0130	000	ALL LIFTING S
8.6955		000	0.0000	•000	. =	- 0000 - 0000 - 0000 - 0000 - 0000	604 504	0.000005 ON
1.9779		000		• 565 • 565	0000	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	003 003 003 003	K B.C ARE <
7.2603		000		. 8 4 8	000•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000 040 000	THICKNESS VORTE
6.5427		000		.130	000	0.0000 0281 0068	000 000 000	VALUES OF THI
×	7	000			7 0	Win 4 10	000	THE ABS

MTX = 10903 MTX = 10905 MTX0 = 11895 NAA = 29642 MAX00 = 70000 IS = 20000 198 X 198 MATRIX WAS SOLVED WITH SUBROUTINE ORTHO

THE MATRIX ROUS WERE READ FROM UNIT 9 .

5 SETS OF RIGHT MAND SIDE VECTORS, AND COLUMN PIVOTING MAS PERFORMED. THERE WERE

SOCUTION TIME = 18.228 SECONDS

DELTA CP ADD LOAD

			0	RIGINA F POO	L PAG R QU	ality		
			,		3.0812	0133		
	1.7307	0135 0139 0143	• 01540 • 01595 • 01595	0166 0164 0156	2.8671	1133	. 01332 . 01332 . 01332 . 01332 . 01332	
	1.5021	0141 0154 0154	.01622 .01684 .01686 .01607	0148 0142 0140	2.6422	SERVE SERVE	• 01332 • 01332 • 01332 • 01332 • 01332	
9NIM	1.2735	0152	•01728 •01622 •01468	0141 0133 0120	2.4152	0113	• 011333 • 011333 • 011346 • 011346	!
NUMBER 1	1.0448	118	01518 01424 01422 01358	010	2.1873	555	.01340 .01362 .01390 .01422	· !
SURFACE	1957	0191 0169 0145	.01395 .01415 .01272	0111 0120 0121	1.9591	1133	011568 011568 011568)
	X/C	15 25 25	• • • • • • • • • • • • • • • • • • •	955	3/X	3212	• • • • • • • • • • • • • • • • • • •) \

.0001 .0001 .0001 .0001 -00012 -0001 -0001 -0001 -0001	12,2835 13,0011 13,7187	-0187 -0075 -0081 -0054 -0119 -0043 -0040 -0058 -0056 -0012 -0006 -0001	0054 - 0119 - 0056 - 0054 055 055 055 055 055 055 055 055 05	AL PAGE EL	e de la companya de
000000000000000000000000000000000000000	11.5659	- 000 00 - 000 36 - 000 136 - 000 136	000 000 040	10 10	
	10.8483	.0003 .0038 .0013 .0013	000	2.9078	2.9078
	10.1307	- 0000 0000 00000 00000 00000	000	CAVG = 110 10 10	CAVG =
8-46-600 6-60000 6-600000 6-6000000000000	×	34 32 1 0 0 0 0 0 0 0 0 0 0	8 00 8 00	VIXORG	VTXDRG

		OR OF	IGHNAI POOF	(%) (%) QUA	15°		-	
					3.0812	606 606 606 606	NUUUL	6062
	1-7307	6062 6062 6062	• 60620 • 60620 • 60620 • 60620	6062 6062 6062	2.8671	6062 6062 6062	*60620 *60620 *60620 *60620	6062 6062
	1.5021	60 62 60 62 60 62	• 60620 • 60620 • 60620 • 60620	6062 6062 6062	2.6422	6062 6062 6062	• • • • • • • • • • • • • • • • • • •	6062 6062
MING	1.2735	062	• 60620 • 60620 • 60620 • 60620	062 062 062	2.4152	6622	• 60620 • 60620 • 60620	062
NUMBER 1	1.0448	622	• 60620 • 60620 • 60620 • 60620	6062 6062 6062	2.1873	0062	66000000000000000000000000000000000000	60 62 60 62
SURFACE	1957	062 062 062	• 60620 • 60620 • 60620	6062 6062 6062	1,9591	0000		062 062
	X/C	215	. • • • • • • • • • • • • • • • • • • •	984 200	x/c	30000 30000	• • • • • • • • • • • • • • • • • • •	ສດ ເປັນ

A 198 X 198 MATRIX WAS SOLVED WITH SUBROUTINE ORTHO USING A PREVIOUSLY CREATED QUASI-INVERSE MATRIX.

SOLUTION TIME = 2.218 SECONDS

64

THE MATRIX ROWS WERE READ FROM UNIT 11 .

⁹ SETS OF RIGHT HAND SIDE VECTORS, AND COLUMN PIVOTING WAS PERFORMED. THERE WERE

					OR OF	iginal Poor	PAS QUA			
ADD LOAD							3.0812	11333	01332 01332 01332 01332 01332	0133
THICKNESS			1.7307	0135 0135 0143	• 01540 • 01540 • 01595 • 01645	0166 0164 0156	2.8671	1111	• • • • • • • • • • • • • • • • • • •	133
O CAMBER, NO ST ORDER AKIA			1.5021	0141	.01684 .01684 .01686	0148 0148 0140	2.6422	1133	01132 011322 011332 011332	133
SS	DER 1	HING	1.2735	015201111		0141 0133 0120	2.4152	0133 0133 0133	• • • • • • • • • • • • • • • • • • •	6133
000 DEGREE 000 DEGREE	TA CP TO OR	NUMBER 1	1.0448	168 180 172	• • • • • • • • • • • • • • • • • • •	107	2.1873	0133 0133 0133		8 + + 1 n
ALPHA = 1.	DEL	SURFACE	. 1951	0191 0169 0145	• 011343 • 01415 • 011272	0120	1.9591	00100		7910
			x/c	2225	 	ວິດຕຸ	X/C	3222 3223		0

			The second secon			1	GINAL POOR (1 1	
ADD LOAD							13.7187	000	-0012 -0016 -0016 -0017	
ICKNESS OLUTION		-	9.4131	.001	- 0015 - 0038 - 0061	000	13.0011	000	- 0026 - 0033 - 0031 - 0010 - 0014	
BER. NO TH			8.6955	•001	10001 00014 00014	000	12.2835	000		
NO CAN	4ULA		7.9779	•005	-0021	000	11.5659	-0006 -0028 -0039	-000 -00058 -00046	-17596 -00383 -585885 -000000
DEGREES DEGREES	PRESSURE FORMI	VOW ORDER 1	7.2603	.002		000	10.8483	000	- 0000 0000 00000 00000	CL8X(2) : CD8X(2) : CX8X(2) : COB8
1.000	SENTROPIC	BODY U.	6.5427	003	111000	0000	10.1307	000	- 00000 00000 00000 00000 174	.17596 .58585 .00307
ALPHA	CP = I			700	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0000	× ¬	000	8 4 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	CLBX(1) = CXBX(1) = CXBX(1) = CLBB = = CXBX

	NO CAMBER	2	HICKNESS	ORDER = 1	83	83/08/10	14.01		
	MB 00Y.	•0 ATA (M600	1) 1ST-AX	(10 X 11) (8)	X 11) VEL	L B.C. NEG	37X37		
	A D L	ANGLE OF AT JET DEFLECT THRUST COEF MACH NUMBER	TTACK = TION ANGLE = FFICIENT = E	1 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DEGREES	ADD LOAD			
:	SURFACE	E NUMBER	1	NING.					
	٨	CN	CN+C/CAVG	CT*C/CAVG	COC/CAV6	ХСР	TRIST	COS	CHORD
	2001	011001 01438	0323		000	553 549 753	000	000	. 813 . 129
						. 51440 . 511438 . 511968	0000	0000	アキュウストロウ
	3253 355 3643 3643 3643 3643 3643 3643 364	0132 0131 0129 0115	0108 0078 0050 0021		4000	0000	POOO	00000	1.1232
ر	SUR		•01440	0.00000.0	•00025	11.47829 =	•		
			0.00000 =	CY		= 0000000	Z-CP	0.00000	
			.00720 =	TOTAL FORCE	COEFFICIENT	URFACE	; •		
:			, CL	CT	CD(0)	X-CP			OR:
TOTAL (CONFIGURATION	TION	.01973	0 0 0 0 0 0 0 0	•00034	9.98678			Odii POJ
ē	VORTEX LIFT		.01973	00000000		9.98678			
	CO (0)	10	+5000.	COLVIXI	31	60000.			
_	CD(0)/CL*	* 5 =	•86366	CD(VTX)/	/CL**2 =	.23880			
	E (0)	10	.1663	EtVIXI		•6016			
	ZERO	SUCTION D	DRAG MINUS LE	LEADING EDGE TH	HRUST	RS = .2	250	M = 0	
	00	"	-00034						
J	כס / כריי	#2 ==	. 86366						

						PRIGINA F POO	L PAG			
(WAVE DRAG DUE TO LIFT)										
.62487	.1663	WANTED A COLUMN TO THE COLUMN	+00034	.86366	.1663					
CDW / CL**2 =	II	VORTEX LIFT	± 00	/ CL**2						

												OR OF	PC	VAL WR	PA II QUAL			
							DX/L	90	• 09091 • 09091	060	26	0.00	90		-			
14.01	37X37						CO*L/DX	0000	C+0000•	00000	5000		00001					
83/08/10	VEL B.C. NEG	ADD LOAD				7.8936	CL*L/0X	00301	• 002710 • 002710	00284	0304	0140	0087					
1 8	8 X 11) V	00 DEGREES 00 DEGREES	000		VTS	TH = 7	00	00000					00000	.000031	•000085	10 TH	0.0533	0 31 801 0 0 40 2 9
ORDER =	(10 X 11) (000	000	RE FORMULA	E COEFFICIEN	L = LENG	CL	00027	• 0 0 0 2 4 6 • 0 0 0 2 4 6	00025	0027	00017	00000	.002264	•005335	R R	26	1576 2733
THICKNESS) IST-AX	TACK ION ANGLE	FIUIE	OPIC PRESSURE	ECTION FORCE	NUMBER 1	X0/L	404	• 12035 • 22727 • 31818	104	30°	727	542 545	1.20738	.75516	PANEL	1 .00	200 c
CAMBER, NO T	ODY.DATACH600	유교	NUMBE	CP = ISENTROP	BODY S	SEGMENT NUM	0 x	5427	7.97790 8.69550	9-4131	484 484 584 584	2.2835	3.7187	9.53055	5.96091	UPSTREAM	00 30 7	• • • • • • • • • • • • • • • • • • •
NO C/	10.87				,	800Y	SECTION		VM ◆	The state of the s		0 0 0		PANELS	вотн	BODY	75	۲ د د د د

:							
	SURFACE	NUMBER 1	PING				
2	. 1957	1.0448	1.2735	1.5021	1.7307		
046	0174	44100	0174	-0174	0174		
こうりょう	0174	00174	0174	0174	0174		ORIG
- 4550 - 950 - 950	01745 01745 01745	01745	01745 01745 01745	01745 01745 01745	- 01745 - 01745 - 01745		INAL F
) (/c	1.9591	2.1873	2.4152	2.6422	2.8671	3.0812	JALIT
2010L	0174	4710 4710 4710	0174	4710	0174	4710	
0000000000000000000000000000000000000		011745		- 011745 - 011745 - 011745 - 011745 - 011745		01145 011745 011745 011745	

>
RA
AR
_
IJ
×
S
S

NI NG

SURFACE NUMBER 1

			OR OF	IGINA POO	ML PAGE R QUAL	Sales Constitution of the
				3.0812	2000	00000000000000000000000000000000000000
1.7307	2200		200 000 000	2.8671	2000	250000 00000000000000000000000000000000
1.5021	20 00 20 00 20 00		. 2000 . 2000	2.6422	20000	20000000000000000000000000000000000000
1.2735	2000 2000 2000		• 2000 • 2000	2.4152	20000	
1.0448	2000		2000	2.1873	2000	- 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1957	2000		2000	1,9591	2222	000000 000000 000000 000000 000000 00000
X/C	0 -10 F	4004 4000 4000 4000	93.0	X/C	3220	000000 000000 000000

HING

SURFACE NUMBER 1

	1	GINAL POOR (·-			
				3.0812	.01275 .01875 .02275	247 247 187	0127 0047
1.7307	0047	02475 02475 02475 02275	0127	2.8671	0000	447	27
1.5021	0047 0127 0187	02275 02475 02475 02275	0127	2.6422	010 0112 0282	•02475 •02475 •02275 •01875	0127 0047
1.2735	0047 0127 0187	0 2 2 7 3 0 2 2 7 3 0 2 2 7 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0047	2.4152	0000 0000 0000	• 02475 • 02475 • 02275 • 01875	0127 0047
1.0448	0127	02275 02475 02275 02275	0127	2.1873	1124 124 124 127	.02475 .02475 .02275 .01875	127 047
.1957	0047 0127 0187	. 02275 . 02475 . 02275	0127	1.9591	00047 0127 0187 0227	• 02475 • 02475 • 02275 • 01875	0127 0047
X/C	200 - 200 -	 WANA DOOO	980	х/с	3210 3210 3210		85 95

SURFACE	NUMBER 1	HING				
1957	1.0448	1.2735	1.5021	1.7307		
902 702 501	0.902 0.701 0.501	0 90 3 0 70 2 0 50 1	0.20	0 90 5 0 70 3 0 50 2		
0000 0000 0000 0000 0000	- 0 3 0 0 8 - 0 1 0 0 3 - 0 3 0 0 8	- 03010 - 01003 - 01003 - 03010	-03013 -01004 -01004 -03013	• 0 3017 • 0 1 0 0 6 • 0 1 0 0 6		
9720	0501 0701 0902	0501 0702 0903	030 070 090	0 50 2 0 70 3 0 90 5		ORIG OF P
9591	2-1873	2.4152	2.6422	2.8671	3.0812	TVAL.
90 705 303 203	2500 5000	0.916 0.712 0.509 0.305	0930 0724 0517 0310	0 980 0 762 0 544 0 326	1624 1263 0902 0541	S PALL
011008 01008 03023 0108		-01018 -01018 -03055 -05091	- 011034 - 031034 - 03103	- 01089 - 03268 - 05447	- 01805 - 05415 - 09025	
906	0.0	•0715 •0916	0124	-0762 -0980	1263	

V

MING

SURFACE NUMBER

	ORIGINAL POOR Q	age () Ualit	
		3.0812	03084 002563 001644 00213 001102 01688 01678 01678
1.7307	011727 01951 000984 000275 00075 01263	2.8671	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1.5021		2.6422	01174 01381 00996 00630 00630 00789 01129
1.2735		2-4152	011749 01361 01361 01528 01082
1.0448		2 • 1 8 7 3	1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
.7957		1.9591	011731 001353 00626 000274 000274 00021 00121 001075 01107
x/c	**************************************	x/c	

		CK2(IJ) ARRA	★ ∀}				
	SURFACE	NUMBER 1	PING				
	.1957	1.0448	1.2735	1.5021	1.7307		
	6062	6062	6062	909	6062		
900	• 60620	•60620	•60620	•60620	•60620		
	6062 6062	6062	6062	606	6062		
50	062	6062	6062	909 909	7909 4062		
	6062	6062	6062	506	6062		
	062	6062	6062 6062	505 606	6062		
	062	6062	6062	909	6062		WAZ.
	1.9591	2.1873	2.4152	2.6422	2.8671	3.0812	
0	6062	6062	6062	6062	6062	062	age I
0	6062	6062	6062	6062	6062	062	
5 0	000	6062	6062	6062	6062	062	
) F	4444	7000	7000	2000	2909	062	
· •	062	2000 6062	2909 6062	ならない	6362 6062	062 062	
0	6062	6062	6062	6062	6062	062	
> c	240	50000	6062	6062	6062	062	
00	• 60 620	• 60 620	•60620	• 50 620	•60620	•50520 •60620	

				ORI	SM	y To A (SA)	1	
LOAD 0				OF I	POO	R QUAI	812	11 11 13 13 13 13 13 13 13 13 13 13 13 1
ESS ADD			_	888 099 36			3.0	######################################
NO THICKNE I AL SOLUTI			1.7307	4486	199	016	2.8671	
O CAMBER.			1.5021	.01497 .01531 .01574	0165 0165 0157	0140 0138	2.6422	0
Z	DER 2	9NI#	1.2735	• 0 0 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	01158 01143 0139	0113	2.4152	
100 DEGREES 100 DEGREES	A CP TO OR	IUMBER 1	1.0448	.01670 .01759 .01673	0139 0139 0133	0100	2.1873	
ALPHA = 1.0 ALPHA = 1.0	DELT	SURFACE N	.1957	• 01842 • 01643 • 01412	01136 01136 01136	0110 01110 0110	1.9591	. 011332 . 011332 . 011481 . 011529 . 01529 . 01551 . 01559
			x/c	• • • • • • • • • • • • • • • • • • •	មួយ សម្រាស	950	:	

ALPI	HAI = 1.000	DEGREES	1ST OR	DER AXIAL S	OLUTION	AUU LUAU		
: do	= ISENTROPIC P	PRESSURE FORMULA	JLA					
	BODY	U.V.H ORDER 2						
*	6.5427	7.2603	1.9779	8.6955	9.4131			
;								
00	•003	.002	•002	.001	•001			
00	200	002	200	100	100			
	- 00011		6000	1000	-0061			
			100		900			
	000	002	000	001	001		С О	
77	10.1307	10.8483	11.5659	12,2835	13.0011	13.7187	1	
000	000	000	000	000	000	000	- No. 1	
00.	000	000	.003	003	002	000		
	4 5 0 0 • • • • • • • • • • • • • • • • •	2900°	-00+1 -0058	0038	-0026 -0033	-0012		
	000	000	00 00 4 k	00 00 00	003 001	100		
00	00	100	000	000	100	000		
LBX(1)	.1759	LB X(2)	•1759					
C X B X (1) = C X B X (1) = C C X B X (1) = C C X B X (1) = C X B X (1)	. 00385 00307	COBX(2) = COBB = =	0 0 0 0					

Number Date									
SURFACE NUMBER 1 ***C NUMBER 1 ***	MB0	. D ATA (M60	1 1ST-AX	10 X 11) (8	11)	B.C.	37X37		
SURFACE NUMBER 1 V CHACCANG CLCCANG XCP THIST COS CHORD 1-175 -01104 -01105 -0110		NGLE OF A			DE GREE DE GREE	: !			
1.045	SUR						1 6	300	000
1.956	*	Z	2	3/2•1	CUCACA	ACF	218		813
15 15 15 15 15 15 15 15	0.40	132	0310		000 000 000 000	しゅう			501
CONFIGURATION		1004 1004 1006	0223		#4000 #4000	491 5017 516 516		0000	. 645 645 990
CONTEXTION CONTEXT LIFT COLOS = CY COLOS 0.00000 2.5CP CONTEXT LIFT COLOS 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0	14000 14000	11234	000000000000000000000000000000000000000		14400	5000 5000 5000	0000	0000	• 354 • 535
CONFIGURATION CL CT CD(0) K-CP CONFIGURATION CD(0) = .00034 CD(0)/CL*2 = .86625 CD(VTX)/CL*2 = .250 ZERO SUCTION DRAG MINUS LEADING EDGE THRUST CD(0) = .00034 CD(0) = .00034 CD(0) = .00034 CD(0) = .22216 CD(0) = .250 CD(0) = .250	(SURFA	CE)	10	00000	0002	1.48229	X-CP		
CONFIGURATION			00000	U		1	Z-CP	0.00000	
CONFIGURATION CONFIG			- 00111	23					
CONFIGURATION .01967 0.000000 .00034 9.98511 ORTEX LIFT .01967 0.000000 9.98511 CD(0)/CL*2 = .00034 0.00000 9.98511 CD(0)/CL*2 = .00034 CD(VTX)/CL*2 = .22216 E(0) = .00034 CD(VTX)/CL*2 = .250 M0 = 0 CD(0)/CL*2 = .250 M0 = 0 CD(0)/CL*3 = .250 M0 = 0 CD(0)/CL*4 = .00034			_	TOTAL FORCE	COEFFICIENT	_			
CONFIGURATION ORTEX LIFT ORT			כר	13	(0)00	K-CP			
ORTEX LIFT		URATION	.01967	00000000	+0000*	9.98511			- 1
(0) = .000034 CD(VTX)/CL**2 = .000009 (0) /CL**2 = .86625 CD(VTX)/CL**2 = .22216 (0) = .1658 E(VTX) = .6466 ZERO SUCTION DRAG MINUS LEADING EDGE THRUST RS = .250 M0 = 0 = .000034	. 0	.1FT		0 0 0 0 0 0 0		9.98511			
(0)/CL**2 = .86625	(0)(0)	BO	•00034	CDCVTX)		60000			
(0) = .1658 E(VTX) = .6466 ZERO SUCTION DRAG MINUS LEADING EDGE THRUST RS = .250 M0 = .00034	CD (0)/	**2		COCVIX	**2	.22216			
ZERO SUCTION DRAG MINUS LEADING EDGE THRUST RS = .250 MO = .00034		84	.1658		31	.6466			
= .0003	32	SUCTION	RAG MINUS	EDGE	HRUST	II S	250	11	
	CD	11	.00034						

		ORIGINAL PAGE OF POOR QUAR	
CHAVE DRAG DUE TO LIFT)			
	.86625 .1658		
4 / CL**2	CD / CL**2 = E	79	

											OF	(IGI	NAL OOR	QL	JALITY			
							DX/L	606	• 09091 • 09091	6060	6 06 0 6 06 0	6060	6060 6060					
14-01	37X37					10 mm	CD*L/0X	000	0000043		0000	0000	0000					
83/08/10	VEL B.C. NEG	ADD LOAD				.8936	CL*L/0X	030	• 002558 • 002710	0028	0025 0030	024	0008 0006					
	8 X 11)	00 DEGREES 00 DEGREES	00	And the second s	NTS	TH = 7.	CD	0000	400000 400000 400000		00000 00000	000000	000000	.000031	•000085	ВОТН	0533	• 031801 • 004029
ORDER =	(10 X 11) (11 0000	0.0	SSURE FORMULA	CE COEFFICIENT	L = LENGTH	CL	005	• 000233 • 000246		000 000 2000	0002 0001	000	.002264	.005335	ELS	0226	21576 02733
THICKNESS	0) 1ST-AX	TTACK	FFICIEN	ENTROPIC PRESS	SECTION FORCE	NUMBER 1	X0/L	454	.22727	4 0 9 0 4	909	6818 7727	636 545	1.20738	.75516	PANE	71	255 95 0
CAMBER, NO	ODY.DATACHGO	E OF	UST CO	CP = ISENT	BODY	DY SEGMENT NU	X	.5427	7-26030	•6955 •4131	0.8483	1.56592.22835	.0011 .7187	9.53055	5.96091	UPSTREAM	O	• • • • • • • • • • • • • • • • • • •
00	87				,	800	SECTION	~			9 ~ 80	0 0	110	PANELS	вотн	BODY	75	כא /ר כא /ר

	ALPHAI = 8.	•000 DEGREES •000 DEGREES	ŽÄ	O CAMBER. NO. ST ORDER AXI	O THICKNESS AL SOLUTION	41 0 2		
	130	LTA CP TO ORDE	. B 1					
-	SURFACE	NUMBER 1	PINE					
x/c	1951	1.0448	1.2735	1.5021	1.7307			
212	1528 1359 1164	1346 1441 1375	215 293 369	1135	11183			
	11157	11394 11394 11376	.13826 .12975 .11742 .11357	12979 13473 13489 12858	.11900 .12321 .12761 .13158			
987	0 9 6 6 0 9 7 4	0950 0861 0926	129 068 960	1189 1140 1121	312		dginai Poor	
رد	1.9591	2.1873	2.4152	2.6422	2.8671	3.0812	1	
വവവവ	1068 1068 1087 1113	1065 1065 1066 1067	1065 1065 1065 1065	1065 1065 1065	0000 0000 0000	1065 1065 1065		
4654 6000 6000	• 11432 • 11747 • 12064	•10723 •10899 •11122 •11374	.10660 .10661 .10666	10659 10659 10659	• 10659 • 10659 • 10659	• 106559 • 106559 • 10659		
952	1271 1300	1163 1190	1072 1083	1066 1066	1065 1065	1065 1065		
81								

				OR OF	IGINAL POOR	PACI QUAL	15 17	
							3.0812	
THICKNESS L SOLUTION			1.7307	.0377 .0431	1 0 0 5 2 9 8 1 0 0 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•0684 •0678 •0647	2.8671	00000000000000000000000000000000000000
CAMBER. NO			1.5021	.0462 .0522 .0579	- 06365 - 06825 - 06986 - 06658	•0615 •0590 •0579	2.6422	
	0ER 1	9N1#	1.2735	• 0552 • 0625 • 0692	- 0 7179 - 0 6740 - 0 68102 - 0 5893	• 0 584 • 0 552 • 0 497	2.4152	
000 DEGREES 000 DEGREES	ER CP TO OR	NUMBER 1	1.0448	0666	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0493 0452 0517	2.1873	111111 0000000000000000000000000000000
LPHA = 8.	adn :	SURFACE	. 1951	0800	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0624	1.9591	
4 4			x/c	200	• • • • • • • • • • • • • • • • • • •	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	x/c	• • • • • • • • • • • • • • • • • • •

	ALPHA = ALPHAI =	8 • 000 8 • 000	DEGREES DEGREES	21	O CAMBER, NO	O THICKNESS AL SOLUTION			
:		LOWER CP	TO ORDE	ER 1					
	SURFACE	ACE NUMBE	1 T	9NI#					
	.7957	1.0	84	1.2735	1.5021	1.7307			
	000 7-00 8-2-00 8-2-00 8-2-00 8-2-00	• • •	6.980	0663	0672 0662 0659	0706 0682 0668			
3000		2000	50464 50464 50464 50464	. 0 66 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	.06614 .06503 .06503	• 06562 • 06565 • 06561			
	000 000 000	• • •	444 000 786	0516 0516 0463	000 005 055 054 054	0631 0633 0605		GINAL POOR	
	91	2.1	873	2.4152	2.6422	2.8671	3.0812		
0000	0533 0533 0683 4483	••••	555	05533 05333 05333	0533 0533 0533 333	0000 0000 00000 00000	00000		
	.06715 .06639 .06580		7151 6972 6821 6725		• 05330 • 05330 • 05330 • 05330	• 05330 • 05330 • 05330 • 05330	- • • • • • • • • • • • • • • • • • • •		
	0652 0652	• •	561 661	0701 0701	0533 0533	0533	0533 0533		

						1	ORIGIN OF PO	AL PA OR QU	GZ 13 ALITY		
								13.7187	000 100 844	. 0014 0017 0018 0048	
ICKNESS OLUTION			9-4131		0000	127		13.0011	025 005 034	- 00 3 4 4 2 0 3 2 0 3 2 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 0 0	
MBER, NO TH ROER AXIAL S			8-6955	¥ 0 0 4	228	.134	-0208 -0107 -0412	12,2835	000000000000000000000000000000000000000	-0312 00719 00507 00364	
NO CAL	ULA	•	7.9779		027	.117	-0141 -0158 -0465	11.5659	007 019 023	- 0262 - 0978 - 0675 - 0443	0.000 0.000 0.0000 0.0000 0.0000 0.0000
DEGREES DEGREES	RESSURE FORMULA	.V.W ORDER 1	7.2603	-	026	• 0 2 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	- 0095 - 0219 - 0526	10.8483	000	- 0239 - 1130 - 0807 - 0359	0000 0000 0000 0000 0000
8 = 1 8 000	ISENTROPIC PR	B00 Y U	6.5427	-	925	020	-0023 -0313 -0627	10.1307	000000000000000000000000000000000000000	-0250 -1129 -0770 -0084	00000
ALPHA	= d0		×	ה כ			7.000 4.000 8.000	84	000	2000000000000000000000000000000000000	X C C C C C C C C C C C C C C C C C C C

			CHORD	. 813 . 529 . 501	2.08132 2.06138 2.06138 2.06138	. 144 . 124 . 533					OF	IG!! Po	VAL NON	PAG Çuk		
			SOO	000		0000		0.00000								
70.4	37X37		THIST	000		0000	X-CP	43-4 1-CP								
01/00/60	L B.C. NEG		ХСР	245 246	• 49708 • 51735 • 51968 • 51046	H000	11.47829 =	0.00000 =	(SURFACE)		X-CP	9.99760	9.99760	•00295	.22504	•6384
ה ה	X II) VEL	DEGREES DEGREES	CDC/CAVG	33		0000	•01608		COEFFICIENT	.00022	(0)00	.00022		H ·	/CL**2 =	**
OVDEN -	(10 X 11) (8	000000	WING CT*C/CAVG	000		0000	00000000	73 CA	TOTAL FORCE	•	CT	00000000	0 0 0 0 0 0 0 0	COCVTX)	COCVIXI	E (VTX)
INTERNETS) 1ST-AX	TACK = 100 ANGLE = FICTENT =	1 CN*C/CAVG	2587 2417 2213	1490 1486 1386	4000	.11520	= 000000	- 05760 =		כר	.16263	.16263	.02678	1.01248	•1419
CAMBER NO .	WBODY.DATA(M600	ANGLE OF AT JET DEFLECT THRUST COEF MACH NUMBER	CE NUMBER	1104	11222	00000000000000000000000000000000000000				.881		SATION	-	H	.442	ij
E C C D D	AB OD A	47 - 2	SURFACE	100	10 ~ 0 · 1	30000 00000 00000 00000 00000 00000 00000	L (SURFACE			TOTAL (THICKNESS		TOTAL CONFIGURATION	VORTEK LIFT	(0) (0)	*13/(0)03	E (0)

RS

ZERO SUCTION DRAG MINUS LEADING EDGE THRUST
= .02678

							OR	IGINAI POOF	PACE QUAL	in in it is a second of the s	
	(MAVE DRAG DUE TO LIFT)										
1.01248	.78743	.1419		.02678	1.01248	•1419					
H	11	11		11	11	**					
CD / CL**2	COM / CL**2		X LIFT		/ CL **2						
3	MOD	ы	WITH VORTEX LIFT	03	03	, ш		8	: : : : : : : : : : : : : : : : : : :		

									and the second s							OR!				
							DX/L	909	6060	900 909	6060	6 06 6 06	909	09091						
14.01	37X37						CD+L/DX	389	323	315	391	442	311	.002001						
83/08/10	VEL B.C. NEG					7.8936	CL*L/0X	2799	02314	2262	02806	3170	02588	•010333 •008441						
1 = 1	(8 X 11)	100 DEGREES 100 DEGREES	0		ENTS	6TH = 1	00	0035	00029	0028	0035	00000	0028	.000182	.003416	•010694		ВОТН	04743	•010694 •303630 •038465
ORDER :	(10 x 11) (= 8 0000 = 00000	000	SURE FORMULA	COEFFICE	L = LENG	כר	0254	01200	0205	00255	00288	0235 0198	.000940	.022863	.047432		ELS	- œ	103416 121830 128103
THICKNESS	00) 1ST-AX	ATTACK CTION ANGLE	7 1 C 1 C	SENTROPIC PRESSURE	SECTION FORCE	NUMBER 1	X0/L	0454	1363	181	4090	5909	818 727	. 95455	1.22915	.81096		PANE	æ:	800 363 02
CAMBER, NO	ODY.DATA(M60	ANGLE OF A	ACH NU	CP = ISEN	BODY	Y SEGMENT	X	.5427	2603	6955	9.4131	0.8483	1 • 5659 2 • 2835	13.00110	9.70238	6.40142		UPSTREAM	02.4	• 0 0 7 2 4 0 8 1 8 1 6 3 1 0
ON	8m				,	800	SECTION	-	NF	? ◆(۰,	œ o¬	110	PANELS	Вотн	87	BOOY	כֿר	7 000 000 000

		OR!(OF	aneal Poor	guali Quali	E ti					
42 0 0							3.0812	1065 1065 1065	•10659 •10659 •10659 •10659 •10659	
THICKNESS L SOLUTION			1.7307	1182 1190 1207	• 122390 • 123590 • 12828	1314 1287 1231	2.8671	1065 1065 1065	• 10659 • 10659 • 10659 • 10659	
CAMBER, NO T ORDER AXIAL			1.5021	1197 1224 1259	**************************************	1121	2.6422	1065 1065 1065	10659 10659 10659 10669 10660	
NO 1.S	ER 2	MING	1.2735	1294 1352	•13500 •125689 •11505	1110 1052 0946	2.4152	1065 1065 1065	10660 10661 10666 10685 110726	
000 DEGREES 000 DEGREES	TA CP TO ORDE	NUMBER 1	1.0448	1335 1407 1338	•11847 •11139 •10141	0934 0845 0897	2.1873	1065 1065 1066 1067	11815 111839 112040 12187 12341	
ALPHA = 8. ALPHAI = 8.	DEL	SURFACE	.1957	1473 1314 1129	•10857 •11045 •09952 •08801	0852 0894 0882	1.9591	1065 11068 111855	• 12057 • 12230 • 12598 • 12598 • 12961	
			х/с	252	•••• សមាល ១០១១១	₩ 800 800	x/C	30000 30000	••••••••••••••••••••••••••••••••••••••	

	ALPHAI =	8.000 DEG	REES REES	1ST ORDER AX	IAL SOLUTION		
		UPPER CP TO	ORDER 2				
	SURFACE	NUMBER	1 WING	92			
х/с	.7957	1.0448	1.2735	1.5021	1.7307		
ນເນເນ	.0410 .0380	- 0354 - 0390 - 0383	1 0 29 5	.0242 .0278 .0311	0187		
	- 03265 - 03285 - 03007	111	7 03822 4 03666 0 03413 6 03324	- 03412 - 03635 - 03729	- 02831 - 03087 - 03318		
വവവ	.0380 .0426	0285 0265 0307	0350 0316 0291	0333	0363 0353		ORIGI OF P
	1.9591	2 - 1 8 7 3	2.4152	2.6422	2.8671	3.0812	MALL OOR
വവവവ	.0296 .0297 .0191 .0221	0296 0296 0296 0297	-0296 -0296 -0296	• 0296 • 0296 • 0296	.0296 .0296 .0296	• 1296 • 0296 • 0296 • 0296	
48.44.00 60.00 60.00 60.00		01173	-02966 6 -02966 8 -02968 3 -02972	- 02966 - 02966 - 02966 - 02966	- 02966 - 02966 - 02966 - 02966	- 02966 - 02966 - 02966 - 02966	
ດທິດ	• 0 34 2 • 0 34 2	•0262 •0279	-•0298 -•0190	• 0296 • 0296	•0296 •0296	•0296 •0296	

				RIGIN F PO	AL PAC OR QU		•0812	10000	0000	16970
SULUITON			1.7307	0 9 9 5 0 9 6 7 0 9 5 2	.09460 .09460 .09510 .09574	0 951 0 924 0 8 7 8	2.8671 3	9933	07693 07693 07693 07693	7693
ORDER AXIAL			1.5021	0955 0945 0947	.09572 .09679 .09482 .08991	0824 0788 0775	2.6422		699	0769
18.1	2 S	NING	1.2735	0 94 8 0 96 1 0 98 3	.09678 .09023 .08092	0779 0736 0655	2.4152	.07693 .07693 .07693	769 769 769 771	1660
.000 DEGREES	WER CP TO ORDE	NUMBER 1	1.0448	0 981 1 0 1 6 0 9 5 5	.07805 .07805 .07821	0580 0580 0589	2.1873	. 07693 . 07693 . 07695	1986 1986 1986	0954 0954
LPHAI = 8.	L 0 E	SURFACE	. 1957	1062 0933 0790	. 077592 . 06944 . 06048	0541 0514 0456	1.9591	.07693 .07712 .09938	00000 00000 00000 00000	0950 0953

ALPHA = 8.000 DEGREES IST CRABER AND THICKNESS ALPHA SOLUTION Second Color						iom .		
ALPHA = 8.000 DEGREES INO CAMBER. NO THICKNESS K 6.5427 7.2603 7.9779 8.6955 9.4131 1.000012001030177010301580178 5.00002560257027702680277027702690277 -					7187	0011 0048 0445 0855	0.045 0.017 0.048 0.282	
ALPHA = 8.000 DEGREES INT CAMBER, NO THI SO CP = ISENTROPIC PRESSURE FORMULA BODY U.V.W ORDER 2 1.000	KNE		•	0000100 0000100 0000000000000000000000	.0365 3.0011 13	00250	00300 00300 0038 0028	
ALPHA = 8.000 DEGREES NO ALPHA = 8.000 DEGREES DEGREES NO ALPHA = 8.000 DEGREES	AMBER. NO THI ORDER AXIAL SO		•695	0000000 0000000 0000000000000000000000	2.283	000	2000	0,00000
ALPHA = 8.000 DEGREE ALPHA = 8.000 DEGREE ALPHA = 8.000 DEGREE BODY U.V.W OR BODY U.V.W OR CP = ISENTROPIC PRESSURE BODY U.V.W OR CP = OD S	NO 1ST	ľ	.977	.000 .0017 .0027 .0014 .0014	.046	000	.097 .097 .067 .044	• 17 • 00 • 00
ALPHA = 8.00 ALPHA = 8.00 CP = ISENTROPIC BODY BODY BODY BODY BODY BODO COSCI	DEGREE DEGREE PRESSURE	V.V ORDE	•260	000000000000000000000000000000000000000	0.848		23000	CBXC CBXC XBXC CBXC
CCCCC	A = 8.0 AI = 8.0 ISENTROPI	8	.542	000000000000000000000000000000000000000	.062	0000	00772	
	4		*	000000	ב פ פ	000		LBX(1) 08X(1) XBX(1) LBB XBB

. ,				., ,,, ,,				,			i sesari il				4					
					CHORD	. 813 . 501	4 • 8 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	. 364 . 123 . 535				i	- 1	ANI OO	1	PACII JUALI				
					cos	0000	000000 000000 1-00000 1-11	0000		0.00000									M 0	
14.01	37X37				TRIST	000			X-CP	Z-CP	;								250	
83/08/10	L B.C. NEG				XCP	511	• 49129 • 51698 • 51588	1000	11.48229 =	= 0000000	_		X-CP	10966.6	9,99601	.00550	.20933	•6863	RS = •2	
83,	X 11) VEL	DEGREES OEGREES			CDC/CAV6	334		0558	.01602		COEFFICIENT	.00040	CD(O)	.0000		11	/CL**2 =	11	THRUST	
ORDER = 2	10 X 11) (8	00000	00000*9	LING	CT+C/CAV6	000			0.0000000	C	TAL FORCE		CT	0 0 0 0 0 0 0	0.00000	CD(VTX)	CD(VTX)	ECUTX	LEAD ING EDGE TO	-
THICKNESS	IST-AK (OF ATTACK = =		-	CN+C/CAVG	2484 2367 2246	036 1920 1910 1910	087 063 040 017	.11471	= 0000000	5736		נר	.16215	.16215	.02671	1.01596	.1414	DRAG MINUS LE	•02671
CAMBER, NO TH	00Y-0 ATA(M600)	ANGLE OF AT	HRUST COEFF Ach Number	CE NUMBER	CN	1060 1122 1187	122 122 11246 1198 1138	10342 10342 09245	The state of the s			\$81		AT I ON	_	11	- 2	ŧı	SUCTION	ti
0 N	MB 00Y	•		SURFACE	>	. 19 . 04 . 27		20.6415 20.8642 30.864	. S			CTHICKNESS		. CONFIGURATION	VORTEX LIF	(0) GO	CD(0)/CL**2	E (0)	ZERO	CO
† †		i r		t .		-an	4800	800	TOTAL		92	TOTAL		TOTAL	UITH V	·				•

								ORIGINO OF PO	V. 136					
			,										:	
	TO LIFT													
	OUE.													
	CUAVE DRAG		-											
1.01596	.80663	.1414		.02671	1.01596							•		
11		11		11	11 11									
CD / CL**2	CL**2		LIFT		CL**2									
/ 00	/ MOD	u	H VORTEX LIFT	C	, 200							:		
			HI IH				•		93		C	2		

	* · · · · · · · · · · · · · · · · · · ·								
	WBOUT . DAIA	(M600) 1ST-AX	X (10 X 11)	(8 × 11)	VEL B.C. NEG	3 37X37			
	ANGLE JET DE THRUST MACH N	OF ATTACK FLECTION ANGL COEFFICIENT	H H H	00000 DEGREE 00000 DEGREE 00000	oo				
	I = 40	SENTROPIC	PRESSURE FORMUL	₹.					
	60	ODY SECTION	FORCE COEFFICIE	IENTS					
80	ODY SEGMEN	T NUMBER 1	1 = 1	NGTH =	7.8936				
SECTION	0 X	X0/L	CL	CD	CL*L/0X	CO*L/OX	0X/L		
-	.542	4540 - 0454	00254	0.35	2799	00389	90		
	7.2603 7.9779 8.6955	0000	• 002104 • 002314 • 002057	• 00 0 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	• 023140 • 025456 • 022628	• 003231 • 003534 • 003159	• 09091 • 09091		
רסי	0.130	0.005	00530 00536		026040	00351 00363		OF	
~ cc g	1 • 565 1 • 565 2 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 ×	6818 0 • 6818 0 7727	00235	000000000000000000000000000000000000000	02588	00311	060	RIG!!	
10,	718	0 8636 0 9545	00094	00018 00036	01033	00200	060	NAL. OOR	
PANELS	9.7023	8 1.22915	•022863	-003416				₽Æ QU	
вотн	6.4014	2 .81096	.047432	•010694				ge is Ality	
A008	UPSTR	EAM	PANELS	ВОТН					
Č	•	02456	02286	04743					
CXV		001217 081800 010363	.221830 .028103	.010074 .303630 .038465					

I

	(0)00	E (0)	CDCVTX)	E(VTX)	CD(S+0)	ALPHA	x-cp	
6	140	0.00	000	915	1	00.	0000	
50	990	521	900	015	068	.53	9861	
-	こってい	063	023	010	<u> </u>	90.	9861	
20	240	7	000		245	9.	9861	
20) こ こ で の	14 00 00	2- 7-4 0-0	コピ	3.99 8.09		9861	
.0	841	536	21.4	75) Q	このこと	7007	
0	129	558	292	015	129	7.73	9867	
29	460	5	382	121	150	0.26	9867	
>	356	384 400	483	012	936	2 . 80	.9867	
20	200	777	3.V		256	5.00	9867	
2	9 9 9	₩ ₩ ₩	771		25	180	1986	
20	37809	16053	10089	• 60 C C C C C C C C C C C C C C C C C C	*3228*	30.403	9-98678	
0	377	608	170	6015	4377	110	7986	
0	018	610	343	6015	118	3.00	9867	
2	501	119	528	6015	5763	3.53	9867	
9	\$ C C C C C C C C C C C C C C C C C C C	613	725	012	133	3.07	9867	
29	702	614	934	6015	7207	5.60	.9867	
-	200	619	155	6015	8024	8.13	.9867	iG F
⊃ເ ວເ	400	919	233	210	8886	190	9867	1
) C	0.747	107	200		としているというできること	2.50	9861	
20	244	- Ö	C 4	7	7777	+ (+ (7861	
2 4	000	C 4	907		2011.	1705	7861	
) C	1 2 8 6 0	710	720	110	11170	1000	7867	
) C.	4 9 8 8	10	- C	75	900	10 10	7000	
, 0	61129	200	300	14. 14.	67700		7007	
) 	7375	500) d) d) d	74	0 T T T T T T T T T T T T T T T T T T T	-0	7007	
. 😊	635	620	200	75	76	1	7007	i Z
_	000	10		,				

X-CP	9-98678 9-98678 9-98678 9-98678 9-98678 9-98678 9-98678	ORIGINAL PAGE IS OF POOR QUALITY
ALPHA	78.545 831.0745 886.142 986.143 943.2210 945.244 96.278 98.811	
(0+8)00	2012 2012 2012 2012 2012 3012 3013 3013	
E(VTX)	**************************************	
CDCVTX)	. 5731 . 651132 . 65013 . 73132 . 86206 . 95519	
E (0)		
CDCO)	22.12.22.22.22.22.22.22.22.22.22.22.22.2	
າວ	00000000000000000000000000000000000000	

_	9			,	3			14.01		
	2	WEGUT - DATAC MEGU) IST - AX	x 010	11) (8	8 X 11)	VEL B.C.	NEG	37X37		
11 11 1		18.73497 6.44300	900 X X	11 11	00	00000				
1 11 11		2.00180 2.00180 6.00100	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	, ,, ,,	0 0	.51500 .21576				
7 11		.01973463 * ALPHA	•	•00000	_					
11	1	06777811 * ALPHA	+	•00000						
11		-3.43447680 * CL	+	00000	11	-3.43448 * (כר -	0000		
1 11	!	0.00000000 * ALPHA**2	•	0.0000	30 * ALF	ALPHA + 0.00000	00		OI,	GW.
j.		0.00000000 + CL**2	•	0.0000	10 · CF	• 0•0000	00			POCA.
1	1									
	:									
- 1										

	• • • • • • • • • • • • • • • • • • • •	+ .00470	+ 0 • 0 0 0 0 0 0 •	• • • • • • • • • • • • • • • • • • • •	+ .00470	ORIGIOF PO	NAL POOR Q	AGE UALI	0.0000	
TION - CD(100)	0000008 * ALPHA +	000008 * ALPHA +	O.DODOOO * ALPHA	000400 * CT	000409 + CL +	0000000 * CF	2)**2	12)**2	10)**2	
+ NEAR FIELD DRAG CALCULATI	.00034443 & ALPHA**2 +	.00034443 * ALPHA**2 +	.00009300"#"ALPHA**2"#	.88439947 * CL**2 *	*88439947 * CL**2 +	-23879769 * CL**2 +	*88439947 * (CL0002	.88439947 * (CL0002	•23879769 * (CL0000	
20C - 1 ON	= (0)00	= (0+8)00	CD(100) =	- (0)(0)	= (0+8)00	CD(100) =	= (0)00	= (0+8)00	CO(100) =	

ORIGINAL FACE IS OF POOR QUALITY

DATA SET 4 PLOT FILE CREATED BY OPT ALPHA = 8.00 DEG

EVIER: : TO PLOT 0 TO BYPASS THIS DATA SET

ENTER 8 TO PROCEED TO THE NEXT CASE.

1 TO PLOT THE THICKNESS DISTRIBUTION.
2 TO PLOT THE CAMBER DISTRIBUTION.
3 TO PLOT Z/C'S FROM TWIST & CAMBER.
4 TO PLOT Z/C'S FROM TWIST CAMBER & FLAPS.
5 TO PLOT CP NET.
6 TO PLOT CP UPPER.
7 TO PLOT CP UPPER.
8 TO PLOT CP UPPER AND CP LOWER.
9 TO PLOT SPANWISE CHARACTERISTICS.

> 9 TO EXIT CLIST.

. ?

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL FALLE VS OF POOR QUALITY

ENTER 0 TO PROCEED TO THE NEXT CASE.

TO PLOT THE THICKNESS DISTRIBUTION.
TO PLOT THE CAMBER DISTRIBUTION.
TO PLOT Z/C'S FROM TWIST & CAMBER A.
TO PLOT Z/C'S FROM TWIST CAMBER A. FI APER

0 TO PLOT OF BOTH. 0 TO PLOT OF UPPER AND C P.OT FILE CREATED BY OPT

DATA SE ... 4 MACH = 5.26 S. 3.20 M. H. A. 3.80 DEG EVTER: 1 TO PLOT
8 TO BYPASS THIS DATA ST

ENTER: 1. TO PLOT SPANWISE CHARACTERISTICS OF SURFACE 0 TO BYPASS

ENTER 1 UNDER ITEM TO PLOT OR @ TO BYPASS
IWIST Chaccavg CN CDaccavg CTaccavg

105

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL FOLK OF OF POOR CORE

ORIGINAL PAGE IS OF POOR QUALITY

37X37

NEG

B.C.

VEL

(18 X 11) (8 X 1!) SURFACE * 1

WBCDY, DATA (MEGO) 1ST-AX ALPIA = 8.888 SPANWISE DRAS

ORIGINAL FASE 19 OF POOR QUALITY

OPTIMIZATION PROGRAM OPT

DISCUSSION

The computer program OPT obtains the optimum camber, twist, and/or flap deflections for a given configuration by obtaining the minimum zero suction drag subject to various constraints. On the lifting surface panels, the component of force in the drag direction is equal to the local angle of incidence times the force in the direction normal to the panel. The zero suction drag is thus defined as the sum:

$$Cd * SREF = sum Cp(i) * Alpha(i) * Pa(i)$$

$$i=1$$

The index i runs over all N finite elements (panels) into which the aerodynamic surfaces are divided, and

Cp(i) Is the delta Cp across element i
Alpha(i) Is the local angle of attack of element i
Pa(i) Is the area of element i

All pressures and velocities in program OPT are computed using subroutines from program WBODY which, for first order analysis, uses all of the assumptions of linearized, thin wing theory. Optimizations may be performed at all Mach numbers on configurations having up to ten surfaces, and one body. The program does not compute configuration geometry or aerodynamic influence matricies. This information is read from data files which are created by other programs such as WBODY or APAS.

The final optimized result may be constrained to maintain a total lift coefficient and center of pressure, and various combinations of lift coefficients on any specified set of surfaces, spanwise section lift coefficients, spanwise variation of sectional center of pressure (x/c-C.P.), spanwise twist variation, twist and camber over specified span stations, and flap deflection angle.

For a first order optimization, with or without a paneled body, two different methods are used. The first uses constraint functions for chordwise pressure distributions at any or all span stations. Span stations having no chordwise pressure constraint functions may be thought of as actually having a number of constraint functions equal to the number of chordwise panels. Each function is then a delta function which is equal to 1.0 on the panel equal to the constraint function number, and equal to 0.0 elsewhere.

The second method uses chordwise polynomial curves, and flap deflection slopes over selected panels as camber constraint functions. The solution in each case consists of the coefficients of these constraint functions at each span station. If a paneled body is present, since its' geometrical shape is fixed, the only degree of freedom allowed for it is the angle of attack, which may be constrained to a fixed value if desired.

Second order optimizations may be performed, using camber constraint functions on planar configurations without a body. The influence of thickness must be considered, otherwise the result will be the same as a first order result.

Cases using chordwise pressure constraint functions, or using no constraint functions, will be referred to as a Cp optimization. This method of solution first yields panel strengths (delta-Cp's on vortex panels and source strengths on body source panels) which result in minimum drag, subject to any constraints, and then the camber and twist is determined from the panel strengths and the aerodynamic influence matrix.

When using camber constraint functions, the optimization will be called a twist optimization, which is a shortened form of saying twist and camber optimization. This name originates because the solution yields the twist and camber shapes which result in minimum drag, subject to any constraints. The panel strengths (delta-Cp's on vortex panels and source strengths on body source panels) may be obtained by solving the set of simultaneous equations using the aerodynamic influence matrix. The simplest case using this method would be a solution which considered only the lowest order camber functions, consisting of uncambered constraint functions (first order polynomials) at each span station. This would mean the angle of attack or twist at each span station was the only degree of freedom, and the solution would consist of the optimum distribution of twist with whatever initial camber was input.

The program uses geometry data, aerodynamic influence matricies, and the quasi-inverse matrix (if present), from either computer program WBODY, APAS or UDP. These data are read from datasets which are allocated to the correct unit numbers.

The program may also be used for analysis only using the geometry and aerodynamic influence matricies read from the respective datasets.

INPUT DATA

Input data, which directs the program operation, is read using subroutine DECRD1, described on page 19, and is stored in the array called "DATA". All locations are initially set equal to 0. Jet flap and vortex lift capability are not available in the program at this time and any input which refers to these capabilities could cause unpredictable results.

There are three different types of program operation, a Cp optimization, a twist optimization, and an analysis. The following is a brief description of the program input necessary for these three different modes. A more detailed description of all input locations follows.

CD OPTIMIZATION

This option may be used to find optimum twist and camber subject to various constraints. Span stations may be designated where a specified camber is to be maintained, or where a specified chordwise Cp distribution is to be maintained. The unknowns consist of panel Cp's, at span stations where there are no constraint functions, and the coefficients of chordwise Cp functions at span stations where there are constraint functions. The camber is obtained by multiplying the optimized Cp distribution by the aerodynamic influence matrix.

The following data must be input for a Cp optimization.

Input variables	location
Total CL	4
XCG - the desired center of pressure	32

The following input is optional

Input variables 1	ocation	default
The number of chordwise Cp constraint functions The type of aero matrix and inverse	5	2
Second order anlysis of optimized result	8	0. none
Roll, yaw, and side force constraints (asymmetric Reference span station for angle of attack	2) 11 21	none 1
Input camber Mach number for suction calculation	29 35	none geometry
<pre>x/c for n-velocity in drag analysis & optimization CBAR</pre>	on 36 40	0.515,0.875 qeometry
CAVG SREF	41 42	geometry geometry

Relative delta CL at span stations x/c of center of pressure (C.P.) at span stations Relative delta x/c-C.P. at span stations Relative delta CL at span stations Span stations with no constraint functions x/c's to input camber (method # 3, see loc 29) z/c's to input camber (method # 3, see loc 29) Twist constraint reference stations Additional input camber (method # 2, see loc 29)	301 351 401 551 601 951	++++++++	none none see 5 none none
or fixed chordwise Cp distributions 2	840 340		none none

The default "geometry" means the values from the dataset which contain the geometry are used.

The following input data controls the output which is printed

Type of Printout	location	default
Constraint equation printout Thickness z/c, dz/dx, and initial camber	1 4 15	none none
Geometry Additional printout	16	some
Plot dataset created	19 20	some none

TWIST OPTIMIZATION

This option may be used to find optimum twist camber and flap deflections. The constraint functions consist of camber geometry shapes, which result in a series of unit solutions, and the optimization consists of finding the coefficients of these unit solutions. The Cp's are obtained by solving a set of simultaneous equations using the aerodynamic influence matrix.

The final wing camber will be equal to the input wing camber (see data location 29) plus the appropriate sum of the camber constraint functions (if any) plus any flap defections.

The following data must be input for a twist optimization.

Input variables	location
Total CL	4
Twist optimization flag > 0.	17
XCG - the desired center of pressure	32

The following input is optional

Input variables	locatio	n default
The number of camber constraint functions	5	1
The type of aero matrix and inverse	7	0.
Second order optimization or analysis	8	none
Roll, yaw, and side force constraints (asymmetri	ric) 11	none
Trimmed or not trimmed	12	not
Reference span station for angle of attack	21	1
Type of interpolation for flaps	23	none
Input camber	29	none
Mach number for suction calculation	35	geometry
<pre>x/c for n-velocity in drag calculation and OPT</pre>	36	0.515,0.875
CBAR	40	geometry
CAVG	41	geometry
SREF	42	geometry
SPAN	43	geometry
Additional angles of attack	52	none
Additional angles of attack (unit solutions)	62	
Individual surface CL's	71	none
Flap panel locations	81	+ none
Constraints on camber functions	151	+ none
Constraints on twist	351	+ none
Zero input camber at span stations	401	+ none
<pre>x/c's to input camber (method # 3, see loc 29</pre>	9) 551	+ none
z/c's to input camber (method # 3, see loc 29	9) 601	+ none
Twist constraint reference stations	951	+ none
Additional input camber (method # 2, see loc 29	3) 2840	+ 1.0
Flap panel ratios and deflections	3340	+ none

The default "geometry" means the values from the dataset which contain the geometry are used.

The print control input is the same as for a Cp optimization.

ANALYSIS

The program may be used to analyze a given configuration at various angles of attack with or without camber. The program uses the specified input geometry and aerodynamic influence matrix. The Cp's at specified span stations may be set equal to zero in order to find the influence of various span stations or surfaces on other span stations or surfaces.

The following data input is required for an analysis.

Input variable location

Analysis flag = 1.0 12

The following input is optional

Input variables	location	default
The type of aero matrix and inverse	7	0.
Second order analysis	8	none
Roll, yaw, and side force constraints (asymmetrical)	ric) 11	none
Reference span station for angle of attack	21	1
Type of interpolation for flaps	23	none
Input camber	29	none
Mach number for suction calculation	35	geometry
x/c for n-velocity in drag calculation	36	0.515
CBAR	40	geometry
CAVG	41	geometry
SREF	42	geometry
Span	43	geometry
Angle of attack	51	add load
Unit solutions	61	41.02
Surface CL's	71	none
Span stations to zero Cp or camber	81 +	none
Additional input twist	351 +	none
x/c's to input camber (method # 3, see 29)	551 +	none
z/c's to input camber (method # 3, see 29)	601 +	none
Twist constraint reference stations	951 +	none
Additional input camber (method # 2, see 29)	2840 +	1.0
Flap panel ratios and deflections	3340 +	none

The default "geometry" means the values from the dataset which contain the geometry are used.

The print control input is the same as for a Cp optimization.

DETAILED DESCRIPTION FOR DATA INPUT

Location

Data

- If this value is nonzero the case is terminated
- 4 The total CL of all surfaces.
- 5 I.J NFX = I = The number of chordwise constraint functions NFY = J = The number of spanwise constraint functions

Two cases:

- 1. DATA(17) = 0. Called a Cp optimization.
 Cp optimized camber results from Cp
 - I = 0 NFX = 2 is used as a default value.
 I < 0 No constraint functions are used.</pre>
 - Constraint functions should always be used for subsonic Mach numbers.
 - Individual span stations may be specified where no constraint functions are desired using data locations beginning at 401.
 - Fixed span stations (see location 81) always have no constraint functions.
 - NFY is ignored (NFY = 0 is used regardless of input)
- 2. DATA(17) > 0. Called a twist optimization.

 Camber optimized Cp results from camber
 - I = 0 Twist only is optimized. (same as I = 1)
 I > 1 Twist + (I-1) camber constraint are used.
 - If J = NFY > 0 (works only with a single surface)
 - The twist (or camber constraint coefficient) values, U(k,eta), are constrained spanwise on each surface In the form:

7 IMATRX.JMATRX

- IMATRX < 0 If the aero matrix is from WBODY.
- IMATRX < 1 If the last aero matrix is an inverse matrix.
- IMATRX < 2 If 1st aero matrix is a thickness matrix.
- JMATRX > 0 This is used only with configurations having bodys which are paneled with source panels.

JMATRX	Bodymx	Body Cp	Un	(for body configurations only)
0	Yes	No	No	
1	Yes	No	Yes	
2	Yes	Yes	Yes	
3-4	Half	No	No	(does constraint functions)
5	No	No	No	,
6	No	Yes	No	
7-9	No	No	No	

- 8 < 0. Second order analysis.
 - ≤ -1. Second order optimization is performed.
 - < -1. Second order optimization, including thickness drag. A second order optimization can be used with DATA(17) > 0. only
- The value of q (dynamic pressure). This input is used to signal that a flexible configuration is being considered. This can be used only with a twist optimization (DATA(17) > 0.).
- The number of g's at the design CL (DATA(4)). This value is used to multiply the weights from locations 1801-2301 in order to find the deflections due to the inertial loads on a flexible configuration.
- 11 If 0. The symmetry data from the geometry dataset is ignored.
 - = 1. Constraint equation included for roll.
 - = 2. Constraint equations included for roll and yaw.
 - = 3. Constraint equations included for roll yaw and side force.
 - > 3. Uses symmetry data with no additional constraints.

These constraints are used only for asymmetric configurations XCG, YCG and ZCG obtained from DATA(32-34)

If a negative number is input, a solution is obtained for flap settings to satisfy a roll constraint for a flexible configuration. When applied to symmetric configurations an anti-symmetric aero matrix should be used. If q = 0. is desired (DATA(9)), set q < 0.

- 12 If < 2. Prints geometry only, no optimization or analysis.
 - If = -2. No add load and no drag polar.
 - If = -1. If DATA(17) > 0., calculates trimmed polar.
 - If = 0. An add load and an optimization is computed.
 - If = 1. Computation using input cambers (analysis only).
 - If > 1. Computation using Cp's from plot dataset (WBODY).
- 14 MIX.NUX MIX = the number of constraint equations printed

 NUX = the number of Q(I,J) (drag matrix) rows printed.

 If greater than the number of equations, all are printed.

 If a negative number is input the equations will be printed

 Only if the matrix is singular.
- 15 = 1. Print source dz/dx and z/c matricies
 - = 2. Print both source and camber arrays
 - = 3. Print camber slope matrix
- The geometry printout

 If > 0. or < -1. A wide range of geometric parameters will be printed.
- 17 If > 0. A twist optimization will be performed, unless DATA(12) > 0.
 - It may be recalled that a twist optimization is only a term used to designate the type of optimization procedure involved. The twist optimization procedure may be used to find optimum twist camber and flap deflections. The following input should be considered when performing a twist optimization.
 - The final wing camber will be equal to the input wing camber (see discussion for data location 29) plus the appropriate sum of the camber constraint functions (if any) plus any flap defections.

- Printout of velocities due to thickness (source panels).
 - ≥ 1. printout of w velocities (normal to panel).
 - ≥ 2. printout of u velocities (x direction).
 - ≥ 3. printout of v velocities (bi-normal to panel).
 - ≥ 4. printout of z/c for thickness.
 - ≥ 5. printout of dw/dx (2nd order only).
- 19 INTMED Various orders of intermediate printout (-2. to 4.)
 - -2. Least printout (no drag n-velocities)
 - -1. No upper and lower surface cps
 - Prints flexible unit solutions and
 (w-w), (w-b), (b-w), (b-b)
 - 3. Above +
 - 4. Above + 2nd order boundary condition solutions
- 20 DPLOT 0. No data is placed in a plot dataset.
 - 1. Data is placed in an APAS plot dataset (geometry).
 - 2. Data is placed in a UDP plot dataset.
 - > 2. Data is placed in a UDP plot dataset (extended).
- The reference span station which will be used to calculate the angle of attack. This angle of attack is only used for reference purposes in order to calculate twist. If AO(K) and AO(J) are the local angles of attack with respect to the freestream, COSZ(J) and COSZ(K) are the local dihedral angles, and K is the reference span station, then:

 $\lambda = \lambda 0(K) / \cos z(K)$

and the value of twist for span station J will be:

 $TWIST(J) = \lambda O(J) - \lambda lpha * COSZ(J)$

- K = 0 K = 1 is used. If a body is present then Alpha is determined by the angle of attack of the body.
- K > 0 This station is used as the reference span station. determined by the angle of attack of the body.
- 24 < 0. All normal velocities (slopes), used to compute the zero suction drag, are interpolated chordwise from the boundary condition control points (usually x/c = 0.875 of each panel) to x/c = RD (see DATA(36)). A third order curve fit is used for this purpose.</p>

- Otherwise (default), the normal velocities are interpolated assuming possible discontinuities where flap panels occur (see locations 81-150), and the chordwise interpolation of normal velocities is performed while the flap deflections are removed. The interpolation is performed using information obtained in data location 36.
- 26-28 S.K Surface to be extended to centerline (paneled bodies only)
 - If > 0 The surface will only be extended when the aero
 influence matrix is calculated.
 - S = surface number (in ascending order).
 - K = 0 Extend inboard panels with zero sweep.
 - K = 1 Extend inboard panels with same sweep.
 - K = 2 Extend inboard panels with negative sweep.
 - i.e. if DATA(26) = 2.0 The calculation of the aero
 influence matrix for surface # 2 will be
 performed by extending the inboard panels to
 y = 0. with zero sweep.
- 29 N.MF (N,M,F integers) Initial camber input specification.
 - N < 0 No initial camber is assumed.

There are three ways of inputing any initial camber and the resulting camber slopes from each method will be added together.

- Reading span station twists and camber normal velocities at panel control points from the dataset containing the geometry.
- Inputing normal velocities at panel control points using locations beginning at 2840 or 3340. For cases where it is appropriate, values of twist may be input using data locations beginning at 351.
- 3. Inputing x/c and z/c using locations beginning at 3951 and 4001.

method # 1

- If M > 0, the camber will be read from the geometry
 dataset in the following manner.
- M = 1 The camber values only (not the twist or angle of attack) are to be read from the geometry dataset. Any twist in the initial camber is removed.
- M = 2 The camber values only (not the twist or angle of attack) are to be read from the geometry dataset.
- M = 3 The twist and camber values (no angle of attack) are to be read from the geometry dataset.
- M = 4 The twist, camber and angle of attack are to be read from the geometry dataset.
 - If $F \ge 0$, the camber will be read from the geometry dataset in the following manner.
- F ≥ 2 The flap values will be read from the geometry dataset and subtracted from the initial camber.
- F ≥ 4 After subtracting from the initial camber, any flap deflections from the geometry dataset are set equal to zero.

method # 2

Unless N < 0, twist and camber values may be obtained from normal velocities (normal facing upward from the panel) input in the order of the control points beginning in locations 2840 and 3340. The values input in these locations may include both twist and camber. If no values are input, there will be no be no camber input by this method, since all data locations are initially set equal to zero for the first case. The values from the 2840's are assumed to represent a smooth camber distribution and will be interpolated to compute drag. The values from the 3340's are assumed to be due to flap deflections and will not be interpolated when drag is computed (see DATA(24)).

method # 3

If N > 0 camber may be input in the following manner.

N = ND > 2, the number of x/c values where the z/c values for camber are specified (locations 3951,4001). These x/c stations are the same for all span stations and must include x/c = 0. and x/c = 1. The camber, and z/c's apply to fixed span stations only (see DATA(81)), unless DATA(17) > 0.

- 31 X00 The x value of the pivot point for angle of attack.
 Used for second order theory only.
- 32 XCG The desired center of pressure (to override value from the geometry dataset. If a value < -99999. is input the XCG constraint is not used.
- 33 YCG For non-symmetric rolling moment only (see DATA(11))
- 34 ZCG For non-symmetric rolling moment only (see DATA(11))
- The freestream Mach number (used for computing leading edge suction only).

 If 0. the value from the geometry dataset will be used.

 If < 0. the Mach number will be set equal to 0.
- 36 RC The x/c on each panel where the normal velocities (local angles of incidence) are interpolated for optimizing drag and for computing drag.

If RC < 0. OPT @ x/c = - RC analysis @ x/c = 0.515If RC = 0. OPT @ x/c = 0.875 analysis @ x/c = 0.515If RC > 0. OPT @ x/c = 0.875 analysis @ x/c = RC

Recall that the drag increment from each panel is equal to the delta Cp times the area times the local angle of incidence. The local angle of incidence may vary in the chordwise direction, and the boundary condition is satisfied on each panel only at $\mathbf{x}/\mathbf{c} = 0.875$. Therefore the interpolation is necessary to obtain an angle of incidence for each panel which is a closer approximation to the average value for the panel.

37 RS The x/c fraction of each panel which is used to curvefit (x,Cp(x)) in order to obtain an approximate value for the leading edge suction (default = 0.250).

Since RS < 1.0, if the value is input as M.RS, with M ≥ 1, M will be the number of functions used for the curvefit. If M = 0, the default value is 3 functions (i.e. M = 3). If < 0. a detailed printout results.

Drag polar (41 points given)

Delta CL for drag polar. Default = 0.05 Starting CL for drag polar. Default = 0.0

- 40 CBAR The reference chord length for computing Cm
 If 0. CBAR = CAVG is used.
- 41 CAVG The reference chord length.

 If 0. value from the geometry dataset is used.
- 42 SREF The reference area.

 If 0. value from the geometry dataset is used.
- Span Span, any consistent set of units may be used. This value is used for reference purposes only.

 If 0. value from the geometry dataset is used.
- Initial guess for angle of attack (for configurations having bodys paneled with source panels)
- 51 ALPHAD(1) The configuration angle of attack with respect to the freestream (degrees). This is in addition to any camber distribution. For an optimization the resulting angle of attack is used for ALPHAD(1). If a value is input for ALPHAD(1), and a body is present, it will be assumed to be a constraint on the body angle of attack.
- 52 ALPHAD(2) The 2nd angle of attach where an analysis is desired. 58 ALPHAD(8) (maximum number of angles of attack = 8)
 - If ALPHAD(K) < -90. ALPHAD(K-1) is used.
 - If ALPHAD(K) > 90. an add load solution is given.
 - i.e. $(\lambda lpha = 1.0) (\lambda lpha = 0.0)$
- 61 CAMTHK(1) Input in form OB-OV.CAM.THK, and used with ALPHAD(1)

This input is used to define which set of unit solutions to combine into a final solution. Since the solution is linear, the unit solutions may be combined in any combination.

OB = the order of the Cp on the body (one digit).

OV = the order of the Cp on the lifting surfaces).

CAM > 1 camber included.

THK > 1 thickness included.

CAM = 0 no camber included.

THK = 0 no thickness included.

OB, OV, CAM, THK are each one digit.

```
If = 0. OB = 4, is used for the body Cp,
                                  is determined by DATA(8), and
                                   camber and thickness are included.
                           OV = 2, if DATA(8) < 0.
                  If < 0. Same as above except the 2nd order axial
                             solution (if performed) is used to
                             calculate u,v,w.
                  The body pressure formula is
                    determined by the value of OB.
         OB
               Cp
               Cp = -2 * u
          2
               Cp = -2 * u - beta2 * u*u - v*v - w*w
          3
               Cp = -2 * u -
                                    U*U - V*V - W*W
               Cp = Isentropic pressure formula (default)
               Cp = Isentropic for Alpha = 0. + isentropic add load.
              u,v,w Use 1st order axial contributions if camthk > 0
              u, v, w Use 2nd order axial contributions if camthk < 0
    E.g.
            CAMTHK = -31.02
 - Indicates, 2nd order u, v, w from axial solution (if performed).
   3 indicates, pressure formula #3 on body.
   1 indicates, 1st order Cp on lifting surfaces.
   O indicates, camber is not included.
   2 indicates, thickness is included.
62 CAMTHK(2) Used with ALPHAD(2)
  CAMTHK(8) Used with ALPHAD(8)
```

The desired values of CL for each surface. (maximum of 10)

If 0. the CL will not be constrained for that surface.

71

- The input depends on whether a Cp optimization, a twist optimization, or an analysis is to be performed.
 - * * * For a Cp optimization (DATA(17) = 0.) * * *
 - The input consists of the list of span station numbers where a fixed camber is desired, followed by a list of span stations (input as negative numbers) where a fixed Cp distribution is desired.
 - The span stations where a fixed camber is desired are referred to as fixed span stations, and the resulting camber slopes will be equal to the initial input camber. The list of span station numbers must be in ascending order.

These span stations have the following properties:

- 1. If a span station number in the list is input as J.K, K > 0, rather than just J., then the J'th span station is assumed to be a fixed span station with an unknown value of twist (see 351 for a definition of twist). All subsequent fixed span stations will have this value of twist (plus any twist difference specified by the inital input camber, which may contain twist, or the values obtained from locations beginning at 351), until another J.K is found in the list of fixed span stations. (e.g. this option could be used for a fixed surface with an unknown deflection).
- 2. There are no Cp constraint functions used. Each panel Cp is regarded as an unknown (this can be thought of as a delta function type constraint function).
- 3. The initial twist and camber is used (see the discussion for data location 29).
- 4. The final slopes are obtained by adding the optimized angle of attack to any initial input twist and camber.
- 5. No x/c-C.P. constraint is allowed.
- 6. No CL*c/CAVG constraint is allowed.

The span stations where a fixed Cp distribution is desired are input as negative numbers following the list of span stations where a fixed camber is desired. The list of span station numbers must be in ascending order. The Cp distribution for this span station is input in place of normal velocities in locations beginning at 2840.

i.e. If the span station has panel numbers beginning with ij1 and ending with ij2, the Cp's are input in locations (2840 + ij1 - 1) thru (2840 + ij2 - 1).

These span stations have the following properties:

- There is one Cp constraint functions used at each of these stations. This constraint function has the desired Cp distribution.
- 2. If a span station number in the list is input as J.K, K > 0, rather than just - J., then the J'th span station will have the desired Cp distribution multiplied by a constant to be determined during the optimization.
- 3. No x/c-C.P. constraint is allowed.
- 4. No CL*c/CAVG constraint is allowed.
- 5. Twist constraints may be used in the same manner as with span stations which do not have a fixed camber (see the above discussion of fixed span stations and the discussion of twist constraints at data location 351).
- * * * For a twist optimization (DATA(17) > 0.) ***

These locations are used to define the panels where flaps are located. It may be recalled that a twist optimization is only a term used to designate the type of optimization procedure involved. The twist optimization procedure may be used to find optimum twist camber and flap deflections. Further properties of these flaps (deflection ratios) may be input in locations beginning with 3340.

An input value of J.MMNNKK means that for span station
J flap number KK runs from panels MM to panels nn.
If KK is input as 00 it will be set equal to 01.
A maximum of 20 flaps are allowed (KK=20).

* * * For an analysis

(DATA(12) = 1.) * * *

For an analysis these locations are used to specify the span stations where the Cp's are to be set equal to zero, or the normal velocities on all panels of the span station are to be set equal to zero.

This feature may be used to find the normal velocities induced on any set of span stations (or surfaces) by the remaining set of span stations (or surfaces). The normal velocities induced at the panel control points by all span stations where the panel Cp's were not set equal to zero may be found under the heading "DRAG N-VELOCITIES" in the printed output. Angle of attack and the presence or absence of camber may be controlled using locations 51-58 and 61-68. Data location 36 should be set equal to 0.875 to supress the interpolation of the normal velocities to other than the panel control point (x/c = 0.875). The average incidence of induced velocities, for the first angle of attack only, may be found under the twist column in the printed output, or in the plot output dataset as twist.

The span station numbers should be input in ascending order.

- 1. A span station number input as a positive number will cause the panel Cp's to be set equal to 0.0 on that span station. The panel Cp's on all remaining span stations (except those as described below) will remain at the value achieved after an analysis at the specified angle of attack, and with or without the presence of camber.
- 2. A span station number input as a negative number will result in the normal velocities on each panel of that span station to be equal to 0.0. The Cp's on all span stations input as negative numbers are adjusted to achieve this result by canceling the normal velocities induced by all panels where the Cp's were not set equal to 0.0.

151 ** For a Cp optimization (DATA(17) = 0.) **

The desired values of CL*C/CAVG at each span station. If 0. is input, the value is unconstrained.

** For a twist optimization (DATA(17) > 0.) **

Used in conjunction with DATA(5), these locations are used to fix the coefficients of the camber constraint functions to desired values (input < 1.), or to constrain the value to be equal to the value at another span station (input the other span station number \geq 1.). If left 0., the coefficient value is unconstrained and an optimized value will be chosen. Only the camber constraints are input at these locations. For twist constraints see location 351.

If a camber constraint coefficient of a given order is constrained, all higher order coefficients at the same station are also constrained, even if zero is input.

Input is in order of the functions at each span station.

151 1st camber function for station # 1 152 2nd camber function for station # 1

150+(NFX-1) 1st camber function for station # 2
2nd camber function for station # 2

Locations 201 - 350 are used for Cp optimizations only.

- 201 The relative value of delta CL at each span station If no values are input, the constraints will be satisfied exactly.
- The desired values of x/c-C.P. At each span station If 0. is input, the value is unconstrained
- The relative value of delta x/c-C.P. at span stations At least one of these values must be nonzero if any x/c-C.P. values are asked for. If a uniform change in x/c-C.P. is desired the value in these locations should be equal to the expected value of CL*c/CAVG.

- These locations are used for inputing initial twist values or twist constraints. The input in these locations depends on whether a Cp optimization, a twist optimization, or an analysis is being performed. The twist of a span station is defined below.
 - * * * For a Cp optimization (DATA(17) = 0.) * * *
 - If span station J is a fixed span station, the values input in DATA(350+J) are treated as part of the initial twist input for span station J. Therefore if span station JP is the immediately preceding fixed span station (to span station J), which had an unknown value of twist (J.K in DATA(81-150)), the resulting optimization will have:

```
TWIST(J) = TWIST(JP) + (TWISTO(J) - TWISTO(JP))
```

where TWISTO(J) and TWISTO(JP) are the initial twist input values for span stations J, and, JP respectively (see data(29) for the input of initial twist and camber.

- If J = 1 the angle of attack of the first span station will be equal to DATA(351) plus any initial angle of attack (from locations beginning at 2840 and 3340 and the geometry input dataset (fixed span stations only).
- If span station J is not a fixed span station, any values input in DATA(350+J) are will be used to constrain the twist difference between span station, J, and a reference span station, JR. If DATA(350+J) = 0. the value of TWIST(J) will be unconstrained. Therefore the resulting optimization will have:

TWIST(J) = DATA(350+J) + TWIST(JR)

JR = DATA(950+J)

TWIST(J) = DATA(350+J)

If DATA(350+J) = 0, then the twist of span station J will not be constrained.

Any values input in DATA(350+J) will be used to constrain the twist difference between span station, J, and a reference span station, JR. If the initial twist of station J was set equal to zero (see data(401)), the twist constraint is made on the final twist difference between the stations. If the initial twist was not set equal to zero, the constraint is made on the difference in the twist increments which are added to the initial twists at the two span stations.

final twist difference constraint

TWIST(J) = DATA(350+J) + TWIST(JR) + TWISTO(JR)

constraint on increment

TWIST(J) = DATA(350+J) + TWIST(JR)

Where:

TWISTO(L) is the initial input twist of any station L
TWIST(L) is the increment of twist give to station L

TWIST(L) + TWISTO(L) is the final twist of station L

JR = DATA(950+J)

if JR = 0 JR = J-1 is used

if JR > 0 JR = JR is used

if JR < 0 the constraint is made with respect to the free stream. i.e.

TWIST(J) = DATA(350+J)

If J = 1 the angle of attack of the first span station will be equal to DATA(351) plus any initial angle of attack (from locations beginning at 2840 and 3340 and the geometry input dataset.

* * * For an analysis

(DATA(12) = 1.) * * *

TWIST(J) = DATA(350+J) + Twist0(J)

i.e. the initial twist of span station J is
Increased by a fixed increment (DATA(350+J)).

The twist of a given span station is defined as the angle of attack of the span station (with any camber removed) with respect to the freestream, when the angle of attack of the configuration is zero. This means the twist of span station J is equal to the local angle of attack with respect to the freestream, $\lambda O(J)$, reduced by the angle of attack, λ hpha, times the local dihedral angle, COSZ(J).

i.e. $TWIST(J) = \lambda O(J) - \lambda lpha * COSZ(J)$

Alpha Is either the angle of attack of the reference span station or zero (see DATA(21)).

The angle of attack, Alpha, may be obtained from the local angle of attack, AO(K), of the reference span station K, which is measured with respect to the freestream.

 $\lambda = -\lambda O(K) / COSZ(K)$

e.g. Suppose reference span station K and span station J have local angles of attack AO(K), and AO(J), with both AO(J) and AO(K) measured with respect to the freestream. Let COSZ(K) and COSZ(J) be the local dihedral angles. Then if a(K) and A(J) are the respective angles of attack after a pitch angle Alpha:

A(K) = AO(K) + Alpha * COSZ(K)

 $\lambda(J) = \lambda O(J) + \lambda lpha * COSZ(J)$

The twist of span station J is defined as the local angle of attack, $\lambda(J)$, when the reference angle of attack, $\lambda(K) = 0$. Therefore using the above:

Alpha = -AO(K) / COSZ(K), and

 $TWIST(J) = \lambda O(J) - \lambda O(K) + COSZ(J) / COS(K)$

401 ** For a Cp optimization

The span stations where no constraint functions are desired. See also location 5.

** For a twist optimization **

Input as J.KL, where J is the span station where the camber or twist from the geometry dataset are to be set equal to zero (see location 29 for a discussion of input camber).

If K = 0 the camber values are set equal to zero. If L = 0 the twist values are set equal to zero.

e.g. an input value of 12.02 means that span station 12 will have the camber, but not the twist, from the input dataset set equal to zero.

The J values (span stations) must input in ascending order.

The x/c values where the camber is specified (see 601).

The z/c values for camber.

The values for x/c = 0. and 1. must be specified.

The z/c values for each x/c at every span station are input in consecutive locations starting with location 451. The values are input first in the order of the x/c values for a given span station, and next in the order of the span stations. Any location left blank will be assumed to have a z/c value of 0.

Camber values should be input only for fixed span stations (location 81), or when a twist optimization is preformed (location 17). Twist values may be input using locations 351 to 400.

If an analysis only is being performed, data location 17 should be made > 0. In this case all span stations must be input (although 0. is permissible). This is to avoid confusion of the fixed span stations with span stations where the Cp is to be set equal to zero (see the discussion for an analysis under location 81).

951 Twist constraint stations. L = DATA(950+J)

Twist constraint at span station J implies a nonzero of DATA(350+J).

- L < 0 Any twist constraint at span station j will be made with respect to the free stream.
- L > 0 Any twist constraint at span station j will be made with respect to span station L.
- L > nst Any twist constraint at span station j will be made with respect to the body.

Hinge Moments locations 1001 - 1100

The values in the following locations are for calculating or constraining up to twenty-five hinge moment coefficients. The hinge moments are calculated by taking the sum of the moments induced about a given line by a set of prescribed panels. Hinge moments may be constrained only when performing a twist optimization (DATA(17) > 0.).

The two points which determine each line about which the moments are taken, are input in locations beginning at 1001. The panels determining each integration area are input in locations beginning at 1051.

- 1001 The x value of the 1st point for hinge moment line number 1.
- 1002 The y value of the 1st point for hinge moment line number 1.
- 1003 The z value of the 1st point for hinge moment line number 1.
- 1004 The x value of the 2nd point for hinge moment line number 1.
- 1005 The y value of the 2nd point for hinge moment line number 1.
- 1006 The z value of the 2nd point for hinge moment line number 1.
- 1007 CBAR for hinge moment number 1 (if 0. uses CAVG).
- 1008 The constrained value for this hinge moment (no constraint if 0)
- 1009 if < 0. hinge moment array number 1 will not be printed.
- 1010 Reference area for hinge moment number 1 (if 0. uses SREF).

- 1011 The x value of the 1st point for hinge moment line number 2.
- 1012 The y value of the 1st point for hinge moment line number 2.
- 1013 The z value of the 1st point for hinge moment line number 2.
- 1014 The x value of the 2nd point for hinge moment line number 2.
- 1015 The y value of the 2nd point for hinge moment line number 2.
- 1016 The z value of the 2nd point for hinge moment line number 2.
- 1017 CBAR for hinge moment number 2 (if 0. uses CAVG).
- 1018 The constrained value for this hinge moment (no constraint if 0)
- 1019 if < 0. hinge moment array number 2 will not be printed.
- 1010 Reference area for hinge moment number 1 (if 0. uses SREF).

Beginning in this location the panel numbers for determining each hinge moment are listed. An input value of 0. indicates the last panel number for a given hinge moment calculation has been input. A sequence of panel numbers may be input by inputing a negative panel number after a positive number.

i.e. 1051 3 5 10 20 - 55 0 3 - 40

will have panel numbers 3,5,10, and 20 thru 55 for #1
and panel numbers 3 thru 40 for #2
due to camber, input in same order as the control points.
These values will added to camber values input by other
means. These values are assumed to represent a smooth
camber distribution and will be interpolated to compute
drag.

- 1200 If > 0. The effect of the normal velocities due to thickness will be included in the optimization.
- 1201 The normal velocities at the panel control points due to thickness.
- 1801 The total weight distributed over each panel. These values are used in conjunction with location 10 to obtain the deflections induced by the inertial loads on a flexible configuration.

- The normal (outward) velocities at the control points due to camber, input in same order as the control points. These values will added to camber values input by other means. These values are assumed to represent a smooth camber distribution and will be interpolated to compute drag.
 - These locations are also used to input a desired Cp distribution for a given span station (see the discussion for data(81)).
 - i.e. If the span station with a desired Cp distribution has panel numbers beginning with ij1 and ending with ij2, the Cp's are input in locations (2840 + ij1 1) thru (2840 + ij2 1).
- 3340 The same as for 2840 except the values are assumed to be due to flap deflections and will not be interpolated when drag is computed, nor will the the deflections contribute to camber when computing twist.
 - If flap panel ratios are desired for a twist and flap optimization, (DATA(17) > 0.), the flap panel ratios are input in these locations. I.e. if panel IJ is a panel of flap # j, and it is desired that this panel will deflect 0.60 units for each unit deflection of flap # j, then set:

Data(3340+IJ-1) = 100.60

The value of 100. is added to differentiate between initial deflections and flap panel ratios. It is assumed that panel IJ is defined as a flap panel through locations 81-160.

LIST OF VARIABLES

OPTIMIZATION VARIABLES

NFX	The number of constraint functions at each station
NFJ	The number of constraint functions at each station (jet)
	the number of constraint functions at each station (jet)
ISFX	The surface number where the jet attaches
	(if ISFX = NSF the jet is removed)
ISFJ	The surface number of the jet
1010	
	(if ISFJ .gt. NSF) There is no jet
ITRIM	The character array number for trim variation variable
JTRIM	The constraint equation number for the trim variation.
KTRIM	The variable which determines the desired variable for
KIKIM	trim variation.
	trim variation.
NCLS	The number of surface CL constraints
NCLY	The number of spanwise CL constraints
NPB	The number of panels on fixed span stations
NSTB	The number of case stations without constraint funding
NTWIST	The number of span stations without constraint functions The number of twist constraints
NUTWST	
NXCP	The number of unknown twists on fixed span stations
NACF	The number of x/c-C.P. constraints
CAM(IJ)	The normal velocity at the control point due to such a
WF(IJ)	The normal velocity at the control point due to camber
WI (10)	The deflections at the control points due to flaps.
M1	The number of equations to be solved exactly
M2	The number of equations to be solved least square
NU	The total number of unknowns
MLT	The total number of B(ML)
· · · · · ·	THE COURT HUMBER OF BIMD!

GENERAL VARIABLES

CHORD(J)	The chord value at the centroid of span station J
IJS(IS)	The value of IJ where section IS begins
IJ0(J)	The number of the first panel at span station J
ISO(ISF)	The section number where surface ISF begins.
JS(IS)	The span station where section IS begins
MS(IS)	The number of span stations in section IS
NB	The number of basic solutions.
NCHORD(J)	The number of panels at span station J
NS	The total number of sections
NSF	The total number of surfaces
NSPAN(ISF)	The number of span stations on surface ISF
NSL	The number of vortex shell sections
nst	The total number of span stations on all lifting

surfaces.

NSTS	The number of source span stations
NTB	The number of body panels.
NTL	The number of vortex shell panels.
NTP	The total number of panels.
NTS	The number of source parameters.
NTSL	The total number of vortex shell span stations
NTV	The number of vortex panels.

LIFTING SURFACE PANELS

CAM(IJ)	The normal velocity at the control point due to
COSZ(IJ)	The cosine of the normal of panel IJ
CX(I,IS)	<pre>x/c values for the control points of section IS</pre>
DS(J)	Width of span station J
DWDX(IJ)	The local dw/dx at thickness control point IJ
DX(I,IS)	Delta (x/c) for the panels of section IS
ETA(J)	Fraction of span running distance for (YCC(J), ZCC(J))
	camber.
PA(IJ)	The area of panel IJ
SINZ(IJ)	The sine of the normal of panel IJ
TWIST(J)	Twist of span station J
WF(IJ)	The deflections at the control points due to flaps.
WTHK(IJ)	The local dz/dx at thickness control point IJ
X(KL,IC)	x values of the corners of vortex panel KL (4)
XC(IJ,1)	x value of the centroid for vortex panel IJ
XC(IJ,2)	x value of the control point for vortex panel IJ
XLE(1,J)	x value at the leading left edge of span station J.
XLE(2,J)	x value at the leading right edge of span station J.
XM(I,IS)	<pre>x/c values for the midpoints of panels of section IS</pre>
XTE(1,J)	x value at the trailing left edge of span station J.
XTE(2,J)	x value at the trailing right edge of span station J.
XX(I,IS)	x/c values for the panels of section IS
Y(KL,IC)	y values of the corners of vortex panel KL (2)
YC(IJ)	y value of the control point for vortex panel IJ
ACC(1)	y value at the control point of span station J
Y0(1,J)	y value at the left edge of span station J.
Y0(2,J)	y value at the right edge of span station J.
Z(KL,IC)	z values of the corners of vortex panel KL (2)
ZC(IJ)	z value of the control point for vortex panel IJ
ZCC(J)	z value at the control point of span station J
ZTHK(IJ)	The local z/c at thickness control point IJ
ZO(1,J)	z value at the left edge of span station J.
Z0(2,J)	z value at the right edge of span station J.

BODY PANELS

```
SQRT(DY(I)**2 + BETA2*DX(I)**2)
   B(I)
            tans**2 + beta2 for each side of body panel IJ
BT(IC,IJ)
 BETA2X
                            velocity boundary conditions.
            = 1.- Mach**2 mass flux boundary conditions.
  IBB(K)
            The body station number of the first station in body
              section K.
  IJB(K)
            The panel number of the first body panel in section K.
   NX(K)
            The number of x body stations for body section K
   NY(K)
            The number of panels at each body station (half) for
              body section K.
XB(IC,KL)
            x values of the corners of body panel KL (4)
  XBO(I)
            The x value of the center of body station I.
XINLET(IJ)
            mass flow coefficient of body panel IJ; 0. = impermeable
 XN(1,IJ)
            x - component of body panel IJ normal
            y - component of body panel IJ normal
 XN(2,IJ)
 XN(3,IJ)
            z - component of body panel IJ normal
 XN(4)
            XN(1) / XN(8)
 XN(5)
            XN(2) / SQRT(XN(2)**2 + XN(3)**2)
 XN(6)
            XN(3) / SQRT(XN(2)**2 + XN(3)**2)
 xn(7)
            SQRT(XN(2)**2 + XN(3)**2) / XN(8)
 XN(8)
            SQRT(beta2*XN(1)**2 + XN(2)**2 + XN(3)**2)
 XN(9)
                       XN(1)**2 + XN(2)**2 + XN(3)**2) = 2. * area
            SORT(
XP(IC,KL)
            x values of the corners of body panel KL (4) planar
X0(1,IJ)
            x value of the centroid of body panel IJ
XO(2,IJ)
            y value of the centroid of body panel IJ
XO(3,IJ)
            z value of the centroid of body panel IJ
YB(IC,KL)
            x values of the corners of body panel KL
                                                      (4)
YP(IC,KL)
            x values of the corners of body panel KL
                                                       (4)
                                                           planar
ZB(IC,KL)
            x values of the corners of body panel KL
                                                      (4)
ZP(IC,KL)
            x values of the corners of body panel KL
```

COMPUTED VARIABLES

- Cp(IJ,K) The delta-Cp across panel IJ from basic solution K.
- UK(IJ,K) The control point upper surface x velocity.
- VK(IJ,K) The control point upper surface binormal velocity.
- WK(IJ,K) The control point upper surface normal velocity.
- PK(IJ,K) The control point upper surface velocity potential.
- US(IJ) The thickness induced upper surface x velocity.
- VS(IJ) The thickness induced upper surface binormal velocity.
- WS(IJ) The thickness induced upper surface normal velocity.
- PS(IJ) The thickness induced upper surface velocity potential.

The following variables are required for 2nd order solutions only.

- WSX(IJ) d/dx of WS(IJ) source normal velocity.
- WCX(IJ) d/dx of WK(IJ,2) camber normal velocity.

KKX The number of 2nd order boundary condition solutions.

- = 6 if there is no body.
- = 9 if there is a body.
- UBE(IJ,K) The even symmetry u velocities due to 2nd order b.c. UBO(IJ,K) The odd symmetry u velocities due to 2nd order b.c.

SUBPROGRAMS

 λ * signifies the subroutine is from program WBODY

SUBROUTI	NE	FUNCTION
MAIN ABMAIN		Sets the main array size for the program. Reads input data, computes geometry, and sets array sizes.
ACMAIN AERO2	*	Controls the flow of the program. Controls the program flow for the computation of 1st or 2nd order pressures and loads.
AERO2B	*	Computes the u velocities due to 2nd order boundary Conditions.
AERO2P	*	Computes the 1st or 2nd order pressures from the induced velocities.
AERO2V	*	Computes the odd and even symmetry velocities induced by the basic solutions.
XMINMX	*	Finds the largest, smallest or largest absolute value of the elements of an array.
BAINFL	*	Computes normal velocities after the Cp's or normal velocities on specified span stations are set equal to zero.
BODYGM BODYMX	*	Computes and prints body geometry from input data. Performs calculations for optimizations with paneled bodies.
BODYRD	*	Reads body panel geometry from APAS dataset.
BODYW	*	Finds the intersection of the body and the aerodynmaic surfaces.
CAMBER		Computes camber from input.
CLCM	*	Computes the lift drag and moment characteristics of aerodynamic surfaces.
CLOPT		Controls flow of calculation for a Cp optimization.
CNSTRn		Calculates the Cp constraint functions for a Cp optimization.
CP2		Adds second order terms to the Cp's for an twist optimization using second order pressures.
DECRD1	*	Reads the input data.
DISPLY	*	Prints arrays of characteristics at the panel control points of the aerodynmaic surfaces.
DMXMVE	*	Moves the elements of a double precision array.
DSSPLY	*	Prints arrays of characteristics at the panel corner points of the aerodynamic surfaces.
ENDREC	*	Used with errset to check for APAS type influence matrix.

FIELD Computes first order field point properties using previously calculated influence coefficients and the first order solution. FXDX3 Integrates data using a third order curve fit through the nearest four points. FLXSOL Directs the calculation for the add load and basic load and obtains the deflections due to inertia forces. FXROLL Prints rolling moment coefficients for rolling moment flap optimizations on flexible configurations. GEOM Computes the geometric characteristics of the aerodynamic surfaces and panels. **GEOMR** Reads input geometry from geometry dataset. Solves simultaneous equations using Gaussian elimination. GAUSS **HSHLDR** Solves sets of linear simultaneous equations in a least square sense. Interpolates or differentiates data using a third order INTRP3 curve fit through the nearest four points. INTRP4 Interpolates or differentiates data using a third or fourth order curve fit through the nearest four points. INTRPX Interpolates or differentiates properties chordwise on an aerodynamic surface using subroutine INTRP4. INTRPY Interpolates or differentiates properties spanwise on an aerodynamic surface using subroutine INTRP4. MATRXF Displays arrays of data. MATRXT Displays arrays of data. MAXCHK Checks for variable which exceed maximum value. MTXADD Adds multiples of two arrays. MTXMLT Multiplies two arrays. MTXMVE Moves the elements of an array. NOTZRO Checks to see if an array has any nonzero elements. ORTHO Solves sets of linear simultaneous equations using the method of succesive orthogonalizations. A quasi-inverse matrix may be computed or, if previously computed, used to perform the solution. PHIXY Calculates v (binormal) velocities on aerodynamic surfaces from phi (for 2nd order solution). PLOT Writes geometry and aerodynamic data on a disk unit for computer graphics. POLAR Calculates first order drag polar and aerodynamic cofficients. PTNFRM Calculates Cp's from the constraint function coefficients in a Cp optimization. QIJT Computes drag coefficients for thickness drag in an optimization using 2nd order Cp's. OUADMX Uses the method of Lagrange multipliers to maximize a quadratic form subject to a set of constraint equations. REGION Calculates hinge moment coefficients. SOFIT Calculates leading edge suction using a least square Curve fit of Cp to $\cot(x/c)$.

TRIM		Used for trim polar calculations.
TRANSQ		Performs the transformation used for spanwise constraints
		on twist optimization constraint functions.
TWOPT		Controls flow of calculation for a twist optimization.
TWOPTP		Calculates panel Cp's which result from a twist
		optimization.
TWOPTQ		Calls QUADMX and checks for optimization of quadratic
_		form.
TWST		Separates twist and camber from normal velocities at
		panel control points and computes camber z/c's.
VTXDRG	*	Calculates vortex drag in the trefftz plane.
VTXDR2	*	Calculates coefficients for vtxdrg.
VTXMAX	*	Subroutine used for optimization with vortex lift.
VTXLFT	*	Calculates vortex lift from leading edge suction.
WCNSTR		Calculates the camber constraint functions for a twist
		optimization (NFX > 1).
WINTRP	*	Interplolates velocities to various points on panels.
		paners.
file		use
5		input data
6		Print output
8		scratch file
9		scratch file
10		scratch file
11		storage of influence matricies and quasi-inverse
12		plot output file
13		APAS geometry input file
14		file for output of trim variation calculation

FLOW DIAGRAM


```
TWIST OPTIMIZATION
           *******
                         *****
        ******
                         ******
                         *****
                                     *******
                      <==>* CP2 *<====>* QIJT
                        ******
λ
N
                         ******
                                     *******
À
L
                      <==>* WBSOL *<====>* ORTHO *
                         ******
Y
                         ******
I
                      <==>* REGION *
S
                        *******
                         ******
                      <==>* FXROLL *
                         ******
                         *****
                                     ******
                      <==>* TWOPTQ *<=>|<=>* TRANSQ *
                                     ******
                         *****
                                     *******
                                   <=>* QUADMX *
                                     ******
                                     ******
                                     * WBSOL *
                                     ******
                                        V
                                     ******
                                     * ORTHO *
                                     ******
                                     *******
                     <==>* TWOPTP *<====>* MAXCHK *
                         ******
                                    *******
```

ORIGINAL PAGE IS OF POOR QUALITY

TEST CASE

Results for the aspect ratio 2.5, sixty-three degree leading edge sweep trapezoidal wing of figure 4 are presented in this section. The 10 X 10 uniform chordwise and spanwise aerodynamic paneling used for optimization is indicated and is typical of planform graphics output of the program.

A M = 2.0, CL = 0.10 trimmed second order minimum drag due to lift case of figure 5 is presented in the remainder of this section. A root chord twist constraint was imposed to remove the small disturbance apex singularity common to subsonic leading edge problems. This result is compared to first and second order optima as a function of the longitudinal stability parameter dCm/dCl or alternatively the pitching moment at zero lift, Cmo. The supersonic nonlinear small disturbance minimum drag results are the first published to the knowledge of the author. The best second order result for the present problem is 6% lower than first order optimization and occurs at approximately twice the stability level. The first and second order lifting efficiency of a flat plate of the same planform is shown for comparison purposes. The impact of twist and camber for the subsonic leading edge case under consideration is substantial. Additional results are presented in reference 3.

Test case input is presented on pages 151 and 152. Detailed program output for this case is presented on pages 153 through 202 Typical aerodynamic data graphics output is presented on pages 203 through 216.

ORIGINAL POLICY OF POOR QUALITY

Figure 4. Three Dimensional Second Order Optimum
Model Problem

ORIGINAL PASE 19 OF POOR QUALITY

Figure 5. First and Second Order Optima for a Subsonic Edge Condition M = 2.0, C_L = 0.1

ORIGINAL SOLL OF POOR COLLINS

TEST CASE INPUT

```
C63-45 OPT T/C = 0.050 AT M = 4.0 1ST NO CONSTRAINT XCG = FREE C63-45 THICK OPT T/C = 0.050 AT M = 4.0 2ND TWIST, NF=3.3 XCG = 12.0
             OPT T/C = 0.050 AT M = 4.0 2ND TWIST, NF=3.3 XCG = 12.0
FREE FORMAT
       < 0. IF NO JETFLAP
            2-1.
C
        CL-TOTAL
            4 0.1000
      # CHORD-CONST F'S < 0. = NONE
            5 3.3
C
     MATRICIES FROM WBODY, INCLUDING INVERSE (-3.0 INCLUDES THICKNESS)
           7-3.5
C
        2ND ORDER ANALYSIS < 0.
C*
        2ND ORDER OPT
                         =,< -1.; < -2. FOR THKDRG
C
       ADD LOAD
                  OPT, = 0. IF < - 2., GEOMETRY ONLY WILL BE PRINTED.
           12 1.0
           12 0.0
C
     IF > 0., THE NUMBER OF CONSTRAINT EQUATIONS PRINTED.
           14-100.100
C
     CAMBER
             PRINTOUT = 3.0
          15 3.0
C
     GEOMETRY PRINTOUT = 2.0
          16 0.
C ** TWIST OPTIMIZATION IF > 0.
          17 1.
C
     MOST PRINTOUT = 2.0, NO UPPER LOWER CP < 0.
          19-1.
C
     > 0. FOR A PLOT DATASET
           20 2.0
C*
     EXTEND FIRST SURFACE TO CENTERLINE
C
          26 1.2
C
      CAMBER SPECIFICATION ( < 0. FOR NO CAMBER INPUT )
          29-1.
C*
            XCG
          32 12.000
C
         NO XCG CONSTRAINT
C
          32 -99999.
C
         MACH NUMBER '
          35 4.00
C
      CONTROL PT FOR DRAG CALCULATION (& OPTIMIZATION IF < 0.)
          36 0.875
C
      CONTROL PT FOR SUCTION CALCULATION < 0 FOR CURVE FIT PRINTOUT
          37 0.250
```

ORIGINAL PAGE IS OF POOR QUALITY

С		CAVG	SREF	SPAN		
	41	0.0	160.0	0.0		
С			SYMMETRY	U,V,W		
С		334.		•		
Č			SYMMETRY D/DX	U.V.W		
Č		334.		-,.,		
č	ANGLE OF		CK			
•		0.0	-99.00	99.00	0.0	0.0
С		-THK	33.00	33.00	0.0	0.0
		11.22	12.22	12.02	12.02	11.02
C*	FIXED SI			12.02	12.02	11.02
C	81		2.			
C	CAMBER CO					
C		1.E-0				
		0.0	0.0			
	155	0.0	0.0			
С						
С	TWI ST					
	351	0.0	-1.50	0.0	0.0	0.0
		0.0	1.0	1.0	0.0	0.0
С				- • •		•••
_	1	0.				
-		-1.				
	•					

ORIGINA OF POC 3.3000000 2.75564002199732220 63-45 WING AT M = 2.00 T/C = 0.050 10 X 10 PANELS KCG = 12.0 -1-0000000 0-.10000000 -100-10000 10.41 83/07/18 -1.000000 NSFCHK ------1.0000000 -3.5000000 1.0000000 -1.500000 SOURCE HATRIX INPUT DATA ARRAY THERE IS A .87500000 000000 10 153

	2		7000	4 17017	
		. .		CTOTAL A ABBAY OF	
	LUMAX	110	443	CTOTAL A ARRAY LE	
	KTR	10	544	CEXTRA SPACE IN A ARRAY	
	IXTRA2 IXTRA0 IXTRAX	10 10 10	69095 66743 69095	CEXTRA SPACE IF AN INVERSE IS USED) CEXTRA SPACE IF AN INVERSE IS NOT USED) CEXTRA SPACE BASED ON SOLUTION)	
	MAA	10 41	11136 605	(SPACE WHICH CAN BE RENG	
				3 H NB H NUMBER OF SETS	
				= NTP = NUMBER OF PANELS = NTP = NUMBER OF VORTEX PANELS = NUMBER OF BODY PANELS = NUMBER OF BODY PANELS	OR OF
				O H NST. H NUMBER OF VORTEX SHELL O H NST. H NUMBER OF VORTEX SHELL O H NST. H NUMBER OF VORTEX SHELL	GINAL POOR
154				H NBOY H NUMBER OF BODY SEGMENTS H KKKO H KKK	PAGE QUAL
			9	4580 = K	IS ITY
				62165 1 + MAX = 1.11 = 5421 11 = 6.3 62165 1.12 = 1.12 = 2415 1.2 = 6.4 60865 1.12 = 1.13 = 1.500 1.3 = 6.4 5.865 1.14 = 1.500 1.4 = 6.4	
			19 P @ X	58565 55439 . [J6 = 3126 J6 = 6458 55439 . [J7 = 3126 J7 = 6458 54439 . [J8 = 1000 J8 = 6458 64701 . [J8 = 600 J8 = 6458	
) Y = 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
			DIMENSIC	2	
	1000	00000	NENE NE		

	ORIGINAL	
	OF POOR CUALITY	
000000000		
900000000		
	S S S S S S S S S S S S S S S S S S S	
	20000000 ANA	
	ACC COCC COCC COCC COCC COCC COCC COCC	
000000000		
999999999		
00000000	# decodes	
	MSKI 0 C H	

SECTIONS	OR GINAL PAGE 18 OF POOR QUALITY	
SREF = 160.00000 CBAR = 20.00000 BETA = 2.00000 BETA = 11.80000 CAVG = 11.80000 CAVG = 0.00000 SYM = 0.0000000000000000000000000000000000	126 H AAPAS H F	

		9	G							
,	7		KTE	SHP-LE	SUP-TE	SIN	СНОВЭ	TRIST	X/C NC	1.061
004	99	96	3.00 3.40	63.435	45.000	0 0 0 0 0	- C		-	•
1 • 0 • • 0 • • • 0 • • • 0 • 0 • 0 • 0 •	80 c	0900 0000 0000 0000		63.435	45.000	0.00000	200	0.00000		=======================================
90		96		63.435	45.000	0.00000	- 100	000000	E 10	21
60				•	45.000	00000-0	3U 6	00000000	E 10	31
40	90	80.00	7.49 8.00	•	_42.000	000000		-000000-0-	E-10	41
800	000	2-07	8. 48 9. 00	•	42-000	0000000)Vie	0000000	E 10	21
00		2-97 4-00	9 7 0 0 0 0	63.435	45.000	0-00000	Ne	0 0 0 0 0 0 0	£ 10	-61
40	90	4.97 6.00	1000	63.435	45.000	0 • 0 0 0 0 0		0000000	E 10	11
80	90	8-00	2.00	63.435	45.000	0.0000.0	, Nic	0000000	E 10	- 18
-00	90	20	3.07	63.435	45.000	0000000	100	0000000	E 10	16
THE VALUE	UES OF CAMBE	ER SLOPES	ARE :	0 * 0	ON ALL	LIFTING SU	SURFACES			
SRC 4 APAS		11 11								
	⊢ 16 11 11								envas. Poor	
RDER2 J		→ 11 11 11							QUAL	
3									ïŸ	
THE NUMBER OF THE TOTAL NU	JHBER OF UNK	SOLVED	EKACTLY =	31						

									PAGE QUALI				
							12804						
			:			~	3287 12804						
						152	1036 12804						
10		31	00	9990		00	3287 12804	•	-0-c	9 90-	N→ea	- CO	
= 51		11	10 18	10 10-10 11	16 16 16	00	6387 2804	AL =		14 14 11 14		N II II II	
NUMBER OF CHORDULSE PANE	12	NUMBER	TI ONS)		_	0	9704 3100 1	- 101	K F FORCE		(= 1.0 ONS)	TATIONS VALUES VALUES FLECTIO	
HORDEL	2 2 2 3	TOTAL	AN STA		1.0	0-0	487 186	S	CL ATTACK A SIDE	ರ	TWOPT) CAMBER ECTION STATI	SPAN S KLISI Amber Lap de	
R OF C	u5 11	ı	XED SP	15	E CL	0-0	9119	EQUATION	RFACE GLE OF GLE YAM	NUN		NNN CEEN NNNN NNNN	
LIMBE	134	S	COE	N CI	ZL		31	INT	の マ マ マ マ マ マ マ マ マ マ マ マ マ	NZZZ OXOZ	ZZZZ	, 6333	
MAXIHUM N	50	UNKNOHN	PSTRAI	LECTI NGLES COEFF	7C-CP 0R SP	300	3100	ONSTRAI	STAN	NE STATE	NNN	8888 8000	
	U2 13	7	EL C	ST A BER	STAN			000	STRA	SSTRA	STRA STRA STRA STRA	SZSS	
THE	7		< 0.					158	10000	0000 NXXX	0000	IXXI	

A 100 X 100 MATRIX WAS SOLVED WITH SUBROUTINE ORTHO USING A PREVIOUSLY CREATED QUASI-INVERSE MATRIX.

THE MATRIX ROWS WERE READ FROM UNIT 13 .

THERE WERE 31 SETS OF RIGHT HAND SIDE VECTORS, AND COLUMN PIVOTING WAS PERFORHED.

SOLUTION TIME = .580 SECONDS

	•,		s gs to	• • •	. •		٠.	• • • •		· · · · · · · · · · · · · · · · · · ·	1.1		in the second	
						ORIG	NAL		3					
						OF P	oor (UALI						
											1			
				i .										
		i i												
	16													
	91													
	19											<u> </u>		
	1													
	31													
														:
			•											
	ED					-				-				
	CALLED													
	CP2													
	JTINE													
•	SUBROUTINE													
	S											-		
							159							
			<u>.</u>								ty will	.	e e e e	

					RIGINA POOF										
	4.4902	151 496 496		229	9.4762	103 103 818 818		170							0.0000000000000000000000000000000000000
	3.4912	097 125 125		000	8.4815	2167 0913 0680	1404M 1404M 1400M 1400M 1400M	0418 0389	4640.	-3.9000	- B - B - B - B - B - B - B - B - B - B	-1251	-5a1864 9.6226	-1-5588 60-7950	.09014421
NIN	2.4921	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000	200	7.4848	2000 2000 2000 2000	04181	036	19494	-3.1000	-8-0000	- 855	4.1667	-14-0296	0.000000000
NUMBER 1	1.4928	0633 0314	1000 1000 1000 1000 1000 1000 1000 100	022 025 025 025 025	6.4872	1565	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0334	.6694	1.7000	-8.0000 -8.0000	-1.0000	-2.3805	-26.5004 35.8534	7333333 41250000
SURFACE NL	.4933	00 4 00 4 00 4 00 5 00 5		0246	5.4889	1344		0315	194 - 6094 694 - 8594	000 2.5000	0000 -8-0000 0000 -8-0000	846 -9895 407 -8373	137 -8931 188 -3.0040	419 -38-9711 119 -23-3827	1 1
	K/C	いしょう	100000 100000 100000	987	х/с	2012 2013 2013	26.00 20.00	983	162	3.3	1.8	-	5.4	10.9	-

							t de la companya de l			a de Maria									
-20000000	0.0000000	- 20000000	- 2000000000000000000000000000000000000	20000000	0.0000000	2000000 0-0000000	-20000000000000000000000000000000000000	2000000000000000000000000000000000000	0.0000000	2000000	000000000000000000000000000000000000000	20000000	0.0000000	28000000 0-0000000	00	2000000 0-000000 0-0000000	0.80000000	2000000 0-0000000	20000000 0-00000000
0.0000000000000	0.000000000	0.0000000000000000000000000000000000000	.01001602	01001602	0.0000000000000000000000000000000000000	0.05008011	0.00000000	09014421	0.0000000000	0.0000000000000000000000000000000000000	.05009468	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.01001894	03005681	0.0000000000000000000000000000000000000	0.00000000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000
0.00000000	0.0000000000000000000000000000000000000	0.02275000	.02475000	0.02475000	0.00000000	0.000000000000	0.0000000000000000000000000000000000000	.00475800	0.0000000000	0.01275000	01875000	0.02275000	0-00-0000000	02475000	0.02275000	0.00000000000	0.00000000	0.00475000	0.00475000
. 31250000	.21250000	•7333333 •11250000	.7333333	0 8750000	18750000	-28750000	•7333333 • 38758000	48750000	. 41250000	.7333333	.21250040	.11250000	.01250000	-08750000	-1333333	28750000	38750000	- 48750000	.1333333
-	-	-	-	-		-	#	-	4	-		-	-	-	-	-	4	-	-
7	7	•	ហ	9	7	60	•	0.1	-	8	m.	+	r.	9	-	5 0	6	10	-
2	M			9	2.	60	o	10	10	53	13	+1	15	16	1	18	19	20	21

						OF	RIGINA POC	L P R Q	AAZ UALI	ie Ty									
200000000	0.00000000		26000000 0-00000000	20000000	- 2000000 0 - 00000000	2000000 0-0000000	20000000 0-00000000	2000000 0-00000000	0.00000000	0.00000000	- 20000000 0-00000000	20000000 0-00000000	0.00000000	- 20000000 0 0000000	- 20 00 00 00 0 0- 00 00 00 00 0	20000000	0.0000000000000000000000000000000000000	20000000	20000000 0-00000000
0.0000000000000000000000000000000000000	0.000000000	0.0000000000000000000000000000000000000	.01002272 0.00000000	0.00000000	0.000000000	0.00011361	07015905	0.000000000	0-000000000	0.00000000000000	.05013885 0.0000000	.03006331 0.00000000	0.000000000	0.00000000	03008331 0-00000000	05013885	0.00000000	0.0000000000000000000000000000000000000	.09031238 0.00000000
0.0000000000000000000000000000000000000	0.00800000	0.002275000	.02475000	0.0000000000	0.000000000	0.0000000000	01275000	0.00475000	0.0000000000000000000000000000000000000	01275000	0.0000000000000000000000000000000000000	.02275000	0.000000000	0.02475000	0.02275000	.01875000	0.000000000	0.00475000	.00475808 0.0000000000
. 31250000	.21250000	1333333	.7333333	08750080	-18750000	-28750000	-73333333 38750000	48750000	41250000	.73333333	.73333333	.1333333	.01250000	-13333333	-187533333 -18750000	-7333333 28750000.	3875 0000	.7333333	•7333333 •41250000
-	-	-	-	1	-	-	-	1	-	-	-	-		-	-	-	+	-	-
~	*	•	ស	9	1	80	6	10	-	8	n	•	5	9	_	8	6	10	-
22	23	24	52	56	27	28	53	30	164	32	33	♦ n	35	36	37	38	39	0+	41

					1		NAL OOR (F-Reg.	1 V										
20000000	0.00000000	- 2000000 - 00000000	-20000000000000000000000000000000000000	20000000	0.0000000000000000000000000000000000000	2000000 0-0000000	000000000000000000000000000000000000000	200000000000000000000000000000000000	0.00000000	- 20 00 00 00 00 00 00 00 00 00 00 00 00 0	- 20000000	20000000	0.000000 0.0000000 0.0000000	20000000	-2000000	- 20000000	0.00000000	0.000000	0.0000000
.07024296	0.00000000	. 03010+13 0.0000000	.01003471	0-000000000	0.000000000	0-05017354	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.0000000000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	.03013386	0.00000000	0.00000000	03013386	0.000000000	0.00000000	0.00000000	0.0000000000000000000000000000000000000
0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.02275000	0.02475000	0.00475000	0.00000000	0.00808000	0.00275000	0.00475000	0.000000000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.02275000	0.00 00 00 00 00 00 00 00 00 00 00 00 00	0-02475000	0.002275000	0.0000000000000000000000000000000000000	0.000000000	0.00475000	.00475000 0.80000000
• 7333333 • 31250000	.21250000	. 7333333	•7333333 •01250000	08750000	-13333333	-,2875800B	• 73333333 • 38750000	48750000	. 41250000	.7333333	.7333333	.11250000	.01250000	-1333333 08750880	-1333333	28750000	38750000	-73333333 -48750000	•73333333 •41250000
	4	-	-	-	-	-		-	-	-	-	-	-	-			-	-	-
~	m	•	G	9	7	•	6	10	-	~	m	•	2	9	-	₩	6	10	-
45	43	*	45	9	7.6	₩.	6	20	165	52	53	\$6	55	26	57	85	29		19

							ORIG OF P				, , , , , , , , , , , , , , , , , , ,								
20000000 000000000	0.00000000	- 20000000 - 000000000000000000000000000	20000000	20000000 0-00000000	0.0000000000000000000000000000000000000	- 2000 0000 0000 0000 0000 0000 0000 000	20000000	20000000 0-00000000	0.0000000	20 00 00 00 0 0 00 00 00 00 0	- 20000000 0-00000000	20000000	0.00000000	- 2000000	- 50000000 - 000000000	20000000 0-00000000	0.0000000	2000000 0-0000000	0-00000000
0.0000000000000000000000000000000000000	0.000000000	0.03017845	.01005948 0.00000000	0.00000000000	0.00000000	0.00000000	0.00000000	0.000000000	0.00000000000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.00000000	0.00000000	0.0000000000	0.00000000	0.00000000	0.0000000000	.09112346
0.001275000	0.000000000000	0.02275000	.02475000	0.0000000000000000000000000000000000000	0.002275000	0.01875000	01275000	.000475000	0.000000000000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.02275000	0.0000000000	0.02475000	0.002275000	0.0000000000000000000000000000000000000	0.000000000	0.00475000	000000000000000000000000000000000000000
.7333333	.21250000	.11250000	.7333333	08750000	-18750000	28750000	.73333333	48750000	41250000	. 73333333	.21250000	.11250000	.01250000	08750000	-18750000	28750000	38750000	- 48750000	. 73333333
-	-	-	-	-	+	-	-	-	-	1		1	1	-	-	-	4	-	-
2		•	SC.	9	1	60	6	10	1	~	n	•	S	9	1	&	9	10	-
95	63	†9	65	99	19	89	69	70	1	.66	13	7	75	16	11	78	79	08	18

								PRIGI									77 77 77 77 77 77 77 77 77 77 77 77 77	
20000000 0-00000000	2000000 0-0000000	2000000 0-0000000	-20000000000000000000000000000000000000	- 20 0000000000000000000000000000000000	0.0000000	- 20 000000 0 000000	20000000	20000000	0.0000000	2000000 0- 0000000	0.0000000000000000000000000000000000000	20000000 0-00000000	0.0000000 0.00000000	2000000 0-00000000	0.0000000	20 000 000 0-00 000 000	0.0000000	2000000 0-0000000
0.0000000000000000000000000000000000000	0.000000000	03037449	.01012483	0.0000000000000000000000000000000000000	0.0000000000000	0.05062414	07087380 0-00000000	09112346	0.00000000	.07145503	000000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.000000000	01020786	03062358	0.00000000	0.00000000	0.00187075
01275000	0.0000000000000000000000000000000000000	02275000	0.02475000	0.02475000	0.00275000	0.00.00.00.00.00.00.00.00.00.00.00.00.0	0.0000000000000000000000000000000000000	0.00475000	0.0000000000000000000000000000000000000	01275000	001875000	0.002275000	0.00475000	0.02475000	02275000	0.0080800000000000000000000000000000000	0.00000000	000475000
.73333333	.21250000	.7333333 .11250080	.7333333	08750000	-18750000	28750000	. 73333333	48750000	. 41250000	. 7333333	.21250000	.11250000	.01250000	-73333333 -008750000	-187533333	28750000	38750000	- 48750000
-	-	-	-	1	-	-	-	-		-	-	_	-	-	-	-	-	-
~	M	•	ហ	9	1	8	6	0	-	~	m	•	v	9	~	æ	6	10
82	83	8	85	9,8	87	88	69	90	91	92	93	46	95	96	16	96	99	100

					ORIGIN OF PO	IAL PA	nce is		
	4.4902	4004442	• 03475 • 03475 • 03249	290	9.4762	00 00 00 00 00 00 00 00 00 00 00 00 00	• • • • • • • • • • • • • • • • • • •	22	
	3.4912	900	.023143 .02968 .02873	027 026 025	8.4815	843 843 846 846		414	
NING	2.4921	000		025 025 025	7.4848	4000 4000 4000	2000 2000 2000 2000 2000 2000 2000 200	038	
NUMBER 1	1.4928	000	.02632 .02531 .02531	023	6.4872	1000 8384 0100	0000 0000 0000 0000 0000 0000 0000	0334 0334	
SURFACE N	• 4933	0000	.02471 .02435 .02395	0234	5.4889	00000 0000 0000 0000 0000 0000		0316 0305	
	K/C	B → C		7 de 0	x/c	2000 N	- • • • • • • • • • • • • • • • • • • •	96 83	168

					ORIGINAL PLANTS
		0.2	00000000000000000000000000000000000000	62	98 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
		3.4912 4.490	-00000000 -00000000 -1111	8.4815 9.47	
ADD	NIN	2.4921	nateranten e-ceccecc e-ceccecc e-ceccecc 	7.4848	000 00 00 00 00 00 00 00 00 00 00 00 00
CP2 - CP1	SURFACE NUMBER 1	3 1.4928	86225262 1103264020 1103264020 11103264020 11103264020 11103264020 11103264020	6.4872	
	SURF	/C .493		5.4889	000-000-000-000-000-000-000-000-000-00

			ORIG OF	SINAL POOR	PAGE QUALI					0.000000
										0.0000
	4.4902	1514964		293	9.4762	2629 1103 0818 0618		0170		E+03 0.0000
	3.4912	97		6 1 3 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	8.4815	0000 0000 0000 0000 0000	2457 4457 4457 4457 4457 4457	0418 0389		.1600 1.000
92 18	2.4921	0 80 5 0 36 7 0 33 4		222	7.4846	40 00 87 00 87 00 87 00	10000 10000 10000 10000	935 935 1	00000000	00000 1.00
NOTOER T	1.4928	0633 0314 0297		4000	6.4872	4000 4000 4000 4000	0000 0000 0000 0000 0000 0000 0000	00 00 00 00 00 00	DATACIL) =	.1000E+00
SURFACE	.4933	00445	10000 10000 10000 10000 10000 10000	222	5.4889	00000000000000000000000000000000000000		0315 0306	50	1 1 1
	X/C	25.0	10000	1080 3000	x/c	20 - 20 20 - 20 20 - 20 - 20		-00 -00 -00 -00	170	1 2 1

300000000000000000000000000000000000000		PAGE 12 QUALITY		
	IS PERFORNED.		HU NSF NST 10 J0 13 1 10 30 12	
00 do do do do	UNN PIVOTING LA		3 NF MUS MUSI	
	OUTINE ORTHO . Ectors, and column	READ.	31 6 1 S A B A B A B A B A B A B A B A B A B A	DEGREES DEFES
	ED WITH SUBR OM UNIT 9 . HAND SIDE V NDS	CH ROW	INS - V •K) • ETA(J) •	421 - 63373 4-11 - 63373 6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-
	HATRIX WAS SOLVED US WERE READ FROM 1 SETS OF RIGHT HA = .013 SECONDS	DUMMY READ FOR EA	FORMED UNKNOWN L-MAK J) = SUM V(L) K =>	09852001 36098038 54535053 30434024 0F ATTACK =
20 00 00 00 000	19 K 19 MATRIX RO RE WERE UTION TIME	THERE IS 1	TRANSFORME U(K,J) = ISF L K =>	1 2 1 3 1 THE ANGLE
#####################################	A THE THE SOLI	172		

			0	RIGINAL F POOR	PAGE QUALI	is Iy				
					10000					
				00000000000000000000000000000000000000	0000					
	IS IN TTACK. PECT	STATION	ļ							
	STATIONS GLE OF A BITH RESI	(REFERENCE :	NCRE TUTS		54.04 4.04 4.03 4.03 4.03 4.03 4.03 4.03					
	ND SPAN R AND AN EASURED	CRE	INITIAL	ير الدراد الدراء						
	AT FLAPS A IST CAMBE TACK IS H	DEGREES	FINA	10000000000000000000000000000000000000	60MP4 60MP4 60MP4					
OPT INIZATION	ACK GIVEN INITIAL TH ANGLE OF A	+•6864	NITI				'			
THIST OF	ANGLE OF ATT TION TO ANY ADDITIONAL HE FREESTREAL	OF ATTACK	RENE ESTR GLE TTAC		7927 7987 7987 7987 7987 7987 7987 7987					
	THE THIS THE TAILS	ANGLE	NON	- and a	g~&6-0		174	·		

ORDER

280

CP(1J,2)

CP(IJ,2) 1ST ORDER

				OR OF	IGINAL POOR	PAGE QUAL	17Y		
	4.4902	262	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	533	9.4762	137 549 768 168	2004 2004 2004 2004 2004 2004	036	
	3.4912	1338		0802 0659 0491	8.4815	0000 0000 0000 0000	11276	1111	B SECONDS
9NIR	2.4921	1244	1000m	0420	7.4848	0742 0942 1106	3000m	1044	IION = 2.308
IUMBER 1	1.4928	2427		0736 0666 0581	6.4872	1032 11032 1178	11.23	0931 0791	FOR OPTIMIZATION
SURFACE NUMBER	.4933	1208 1214 1214		0740 0715 0684	5.4889	8110 8100 400k	- • • • • • • • • • • • • • • • • • • •	0641	EXECUTION TIME F
	K/C	040 555		955	X/C	5000		98	176

NING

SURFACE NUMBER 1

				AL PA DR QU					
4.4902	•5285E-0 •7024E-0 7355F-0	30000000000000000000000000000000000000	.2789E-0 .6092E-0 .8572E-1	9.4762	. 551956 . 556556 . 556556 . 556556 . 55656 . 55666 . 556666 . 556666 . 55666 . 556666 . 55666 . 55666 . 556666 . 55666 . 55666 . 55666 . 5566	4-128 3-94125 3-42925 1-103 2-59805 1-103	•4531E-0 •0817E-1		
3.4912	-4671E-	56-4702E-03	-8464E- -9168E- -2143E-	8.4815		44.64.64.64.64.64.64.64.64.64.64.64.64.6	•5533E-0 •4694E-1		
2.4921	.9458E-0	10-00 10-00 10-00 11-1-1 10-00 11-1-1 10-00 10-0	.3155E-0 -2482E-0 -4745E-1	7.4848	. 2627 . 8547 . 85457 . 95156 . 1961 . 1961	2. 25. 25. 25. 25. 25. 25. 25. 25. 25. 2	. 5287E-0 . 7756E-1		
1.4928	.8338E-0 .8938E-0	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	-9651E-0 -8579E-0 -2056E-1	6.4872	. 7954E-0 . 7106E-0 . 7115E-0	55-55-55-55-55-55-55-55-55-55-55-55-55-	.4049E-0 .8572E-1		
. 4933	-6000E-09		4000E-09 6000E-09 9968E-16 -	5.4889	.2610E-03 .3409E-03 .4109E-03	74-56-51 7-01-51 7-	•2071E-03 •9389E-18 -		
X/C	150 000 000	10000 10000 10000	0000	x/c	0000		000	178	

			. Television of the state of th		
4933 1.4928	2.4921	3.4912	4-4902		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.205	.323	•4368 •1166		
5 - 0357	740	920	-0736		
200-1 		100			
2 0413	.042	042	0426		
0447 50508	048	.051 .062	0535		
9 - 0588	. 0 70	.076	.0793	OI	
6.4872	7.4848	8-4815	9.4762	RIGIN/ POC	
1 - 6567	.783	. 9536 24 74	-2183	AL F	
-1213	162	2208	3069	©.4.º AUÇ	
6 - 0772		1316	1739		
	700	986		₩ *	
60634 50757	.067 .069	-0851 -0743	279		
	•				
•					
	~~~~~~~~~   ~  ~~~~~~~~~~~	22-22-32-4-4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		10	6 - 4872 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

CAMBER

V-NORMAL

					OF OF	RIGINAI POOR	- PAGI	E IS LITY	
	4.4902	1151 0496 0413	.03789 .03452 .03207 .03064	0301 0293 0283	9.4762	2629 1103 0818 065		125	
	3.4912	127	.03408 .03124 .02944 .02880	28 27 26	8.4815	2000 4000 4000 4000	00000000000000000000000000000000000000	0 3 8 0 3 8	
9213	2.4 921	0 80 5 0 36 7 0 3 3 4	.03068 .02853 .02750	265 259 257	7.4848	4000 0000 0000	004400 004400 004100	900 900 900	
NUMBER 1	1.4928	0633 0314 0297	.02777 .02637 .02604	0252 0250 0249	6.4872	1565	00000000000000000000000000000000000000	400 400	
SURFACE N	.4933	0445 0269 0265	. 02551 . 025507 . 02497	0246 0245 0245	5.4889	1344	0000 0000 0000 0000	0310	
	X/C	040	• • • • • • • • • • • • •	750 850 950	x/c	32 32 32 32 32 32 32 32 32 32 32 32 32 3		20 CD 20 CD	182

LOAD

ADD

V-NORMAL

DRAG V-NORMAL CAMBER

			ORIC OF I	INAL POOR	PAGE QUALI	<b>S</b>		
	4.4902	. 0 9288 . 0 6914 . 0 6107 . 0 5474	5000 5000 5000	9.4762	8000		823 792	
	3.4912		4448 1448	8.4815	0992	- • • • • • • • • • • • • • • • • • • •	0692	10 10
EING	2.4921		0333	7.4848	08926	004 006 006 006 006 006 006 006 006 006	0598	10 10
NUMBER 1	1.4928		250 250 250 250 250 250 250 250 250 250	6.4872	00953	2000 2000 2000 2000 2000 2000 2000 200	0568 0572	8.0000
SURFACE N	.4933			5.4889	0953		0539 0564	CAV6 = 100 10 10
	x/c	* • • • • • • • • • • • • • • • • • • •	<b>4≈</b> 6€	x/c	SE CAL	4000 0000 0000	95	184 184

PINE

SURFACE NUMBER

			ORIG OF P	inal Oor (	PAGE QUALIT	Y		CREATED QUASI-INVERSE MATRIX.	PERFORNED.
4.4902	S S S S S S S S S S S S S S S S S S S		S S S S S S S S S S S S S S S S S S S	9.4762	2444 2444 2444 2444		7333	USING A PREVIOUSLY	COLUMN PIVOTING MAS
3.4912	S S S S S S S S S S S S S S S S S S S	**************************************	S S S S S S S S S S S S S S S S S S S	8-4815	SE S	• • • • • • • • • • • • • • • • • • •	50 50 50 50 50 50 50 50 50 50 50 50 50 5	ORTHO	• VECTORS• AND CO
2.4921	7333		24 24 24 24 24 24 24	7.4848	1444 1444 1444 1444		7333	WITH SUBROUTINE	UNIT 13 And Side
1.4928	7333		7333	40	7333 7333 7333	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7333	HAS SOLVED	E READ FRO Of Right
• 4933	7333		7333	889	アファア	SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	7333	X 100 MATRIX	ROUS WE 6 SET
K/C	844 888	 Nond	- 60 2000		, , , , o=ku nunu oooo	in na a	26 20 1	A 100	THE NATRIX THERE WERE

.134 SECONDS

SOLUTION TIME =

					PRIGINA F POO					
11		• + 902	162	115 115 1092 1092	544	762	1049 1000	00 46 070 8 10 59	300	
		3.4912 4.4	12338 12128 12128 144	102946 102946 10294	06593 06593 06593 06593	•4815 9•4	06191 • 0 098031 • 0		11111	
	SUL	2.4921 3	1722	110424 1100424 1004040	0648 0648 0648	7.4848 8	7001	204 196 167	1044	
•686 DEGREES LTA CP TO ORDE	NUMBER 1	1.4928	1242		0666	6.4872	•107682 •10320 •11788	200	162	
ALPHAI = 4.	SURFACE	.4933	1208 1214 1214		044	5.4889	12004	89	0614 0641	
		x/c	N CO CO	MANA MUNNA COOC	98-48	K/C		4500	98. 1931	186

SURFACE NUMBER 1 MING  ***********************************	**************************************	SURFACE NUMBER 1  -4933	12	ORIGIN OF PO
-0.32590.10020.21730.52400.077110.52400.077110.52400.077110.52400.077110.52400.077110.52400.077110.52400.077110.52400.077110.52400.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.077110.07711	10259010020217305240007410525001002053550540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402054020540205402	-4933 1-4928 2-4921 3-49 -0156301002 -01563013851 -015653013851 -015859014108 -01585901488 -01585901488 -0158591260313616 -01585901417135580148 -015959015995015159 -12923151599151595 -15921151599151595 -15931151595151595 -1798218795151595 -1798218795151595	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ORIGIN OF PO
	0.0525900100200121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600121600	-01325901100201365101365101365101365101365101365101365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201365201	225 2416 2416 252 252 252 253 253 253 253 253	ORIGIN OF PO
03348 -004106 -005862 -006862 -007409 -0048877 -007409 -0048877 -007409 -0048877 -007409 -007408 -007408 -007408 -007408 -007408 -007408 -007408 -007408 -007408 -007408 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -007409 -0074	103348	-05348061670758520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858520858	15 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ORIGIN OF PO
10245 -11408 -11502 -11502 -11502 -11502 -11502 -11502 -11502 -11502 -11502 -11502 -11502 -11502 -11502 -11502 -11502 -11502 -11502 -11502 -11502 -11502 -11502 -11502 -11502 -11502 -11502 -11502 -11502 -11502 -11502 -11502 -11502 -11502 -11502 -11502 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503 -11503	10245 -1140811519 -1140811502 -126021250315395 -11408115025 -1260215396 -10417104171089 -105141089712396 -108971089312326 -12923159312866 -12923159312866 -12923159312866 -12923159312866 -12923159312866 -12923159312866 -12923159312866 -12923159312866 -12923159312866 -12923129832298322983	10245 10245 10245 11735 -11408 -12602 -13558 -13558 -1468 -12079 -12079 -12079 -15921 -15921 -15931 -15931 -16855 -15931 -15931 -16851 -15931 -15931 -15931 -15931 -16855 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -16855 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15931 -15	15 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 4 6 1 1 5 9 4 6 1 1 5 9 4 6 1 1 5 9 4 6 1 1 5 9 4 6	ORIGIN OF PO
-4889 6-4872 7-4848 8-4815 9-4762 OC 009409 -10417 -11099 -12190 -15026 003022 OC 00249 -05132 -064936 -064481 -05515 -0512079 -12322 -15026 OC 003022 -150893 -12322 -15662 -15662 -15799 -15593 -15664 -15799 -15805 -15993 -22037 -22188 -22050 -22983 -225799	-4889 6-4872 7-4848 8-4815 9-4762 009409 00249 00249 00249 005132 00859 001668 003022 005132 005132 008936 008937 005132 008937 005132 008937 005132 008937 005132 008937 005132 008937 005132 008937 005132 008937 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 0051389 00		15 9.4762 190 .1502 668 .03612 880 .03612	IGIN PO
09409	09409	09409 •00249 •00268 •05115 •05115 •065132 •10837 •10897 •11616 •12079 •14572 •15931 •17411 •16651 •17982 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795 •18795	190 668 •0302 481 •0361 889 •0847	JAL OR
-1207911616120791232212346 -1292313893146511514115662 -1457215799168651765919664 -1593117411188001994322188 -17050187952203722188 -1798219974220502398325799	-1207911616120791232213346 -1292313693146511514115662 -14672157991686519664 -15931187411188001994322188 -17982199742205152398325799	•10897116161207912 •12923138931665115 •15572157991686517 •17050187952205022	322 1234	PASE QUAL
			659 - 1986 659 - 1966 943 - 1924 931 - 1924 931 - 1924	

	LOUER	CP TO ORDER				
	SURFACE NUI	NUMBER 1	9N 17			
	.4933	1.4928	1-4921	3.4912	4.1902	
	1763 1047	1957	1939	807	799 087	
900	0.05652	.004892 .002919		- 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		OKi
	01357 03092 04893	0678	.08196 .08196 .08415	44 44 40 40 40 40 40 40 40 40 40 40 40 4	0855 0825 0825 0525	Géorge Poor
	5.4889	6.4872 7	7.4848	8.4815	9.4762	170 / 18 QUAL
	1782 1076 0697	809r 1608 1658 1658	1400	805	840 1040 707	TY
ວລວວວ	0012394 0012394 002396 1062996 1062996	1000442 1004398 1009474 112063	10000000000000000000000000000000000000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
CCLBXC1) CCBXC1) CXBXC1) CKBB		CLBK(2) COBK(2) CXBX(2) CDBB		0000		

ORIGINAL PAGE OF POOR QUALITY 4762 5 .481 8 11 7.48 **ee**000000 COMPUTATION N-VELOCITIE 200110000 20001000 20001000 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 2000100 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 200000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 200000 SURFACE NUMBER œ ORAG DRAG FOR USED 5.4889 X/C PANEL യയ്യായ തയ്യായ വ 189 X/C . . . . . . . .

		COS	2 1-00000 112-50 1-00000 111-50		8 1.00000 5.51 1.00000 4.51 3 1.00000 4.51		0.0000									MO = 0	
17/18 10.41 XCG = 12.0		XCP TUIST	40790 0.0000 40133 -1.4967	5117 -3.1951 7306 -3.8622	51235 -+-325 53552 -+-7547 58051 -5-406	+90756 = X-CP	.99107 = X=CP	URFACE)		X-CP	.90756	• 92628	.00125	.12572	•0128	• 250	TO THE RESIDENCE AND ADDRESS OF THE PARTY OF
83/0 D PANELS	DEGREES DEGREES 0	CDC/CAV6	124	• • • • • • • • • • • • • • • • • • •	4000 4000	.00327 11	00	COEFFICIENT (S	•00820	(0)(0)	.00820 11	11	11	/CL**2 =	"	THRUST RS	
ORDER = 1	00000000000000000000000000000000000000	WING CTec/CAV6	000		9000	-000095	22	TOTAL FORCE		CT	-000095	00000000	CDCVTX	COCVTX	ECVTX	EAD ING EDGE	
KNESS 2.00	TACK ION ANGLE FICIENT	1 CN±C/CAV6		. 10624 . 10624 . 10634	not an in	09660*	0.0000.0 0.04980	- 04980		נר	09660*	•09939	.00327	.32958	.3863	DRAG MINUS L	00317
MBER, AND 5 HING AI	ANGLE OF AT JET DEFLECT THRUST COEF MACH NUMBER	ACE NUMBER CN	0972 0981	09826	10023	E)			ESS)		RATION	FT	88	Les2 =	11	SUCTION	11
CA 63-4		SURFACE	944	3-491 5-490 5-489	1000c	(SURFACE			TOTAL (THICKNESS		TOTAL CONFIGURATION	VORTEX LIF	(0)(0)	COKON/CL*	E ( 0 )	ZERO	CO

.19425 (WAVE DRAG DUE TO LIFT)		.00326 .33800	• 3858	OF POOR		
COW / CLee2 =	TEK LIFT	CD / CL**2 =			91	

	4.686 DEGREE 4.686 DEGREE DELTA CP TO OR	EES EES ORDER 2	CAMBER. AND	D THICKNESS	1 1 21	
SURFACE	NUMBER 1	9N I I				
•4933	1.4928	2.4921	3.4912	4.4902		
2063 1246	2126	1909	1264	120		ORIG OF I
09101	0.000 0.000 0.000 0.000 0.000 0.000	09799	11232	• 11924 • 11934 • 10533		INAL OOR
0 7 2 0 0 6 9 1 0 6 6 1	4669	- 400 - 400	0000 0000	000 600 600		Page Quali
5.4889	6.4872	7.4848	8-4815	9.4762		<u> </u>
1222	110342	1040	2000 21/4	1138 0572 0749		
	112162 111562 10689 6589		11111111111111111111111111111111111111	• 10050 • 11711 • 10850		
0735	048	0954	300	0918		

	ALPHA =	4.686 DEGREE 4.686 DEGREE	တတ	CAMBER, AND	D THICKNESS		
	3	UPPER CP TO OR	ORDER 2				
	SURFACE	E NUMBER 1	9 IN				
2/	.4933	1.4928	2-4921	3.4912	4-4902	·	
0 <u></u>	-029 -0119 -0115	-0134 -0176	0196 0196	002	0133		
2000 2000 2000	-02618 -03751 -04989	1 1 1	530 663 771	840	10548 1054	(	
าเกเกเก	1000	1085		<del></del>	11992 13242 15808	ORIGIN	
2/	5.4889	6.4872	7.4848	8-4815	9.4762	al Pa R Qu	
	0000	• 0 6299 • 0 6299 • 0 6328	9000	000000000000000000000000000000000000000	322 1282 1290 230	GE IS ALITY	: : :
4555 555 555	1184 1184 1328	12711460	25.25	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 0 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		
98.	1609	1937	.211	1586 1586 1600	1525		

	LOWER	CP TO 0R	DER 2			
	SURFACE NU	NUMBER 1	3	5		
	.4933	1.4928	2.4921	3.4912	4.4902	
	1772 11130 0859	1992 1130 0787	1986 1115 0755	192 108 074	187 106 174	
		.05570 .03626 .01766	. 0 3163 . 0 1240 . 0 1240	400- 0000 0000 0000 0000		OF OF
	000 4008 111 123	04490	0323	40M	112	RIGINAL POOR
	5.4889	6.4872	7.4848	8.4815	9.4762	. 723 1 <b>Q</b> UA
	1891	1972	2009 0620 3620	7884 7884 7887	4364 2355 2039	
1000c	2000	-01155 -03913	-00750		-1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493 -1493	
าเกเก	.0873 .1184	1214	.0986 .1238	.0567 .0615	0607 2767	
CLBK(1) COBK(1) CXBK(1) CLBB CKBB		CCLBX		0000		

ORIGINAL . OF POOR QUALITY 000504 00050 00050 00050 00050 00050 00050 00050 4762 000000000 6 8.4815 ##000000H 8750 HING 848 Ħ COMPUTATION 11111 Ť . S N-VELOCITIE 872 4926 SURFACE NUMBER 2000--000 DRAG 1111111 * Ö Ye FOR 20 967 USED 933 5.488 000000000 X/C PANEL K/C X/C 195 .....

•	THICKNESS N = 2.00 I/C	ORDER = 2 C = 0.050 10	83 X 10 PANEL	83/07/18 ELS KGG = 12.	10.41		
EFLECT T COEFF	TACK SILON ANGLE SILON ANGLE SILON ANGLE SILON S	00000000000000000000000000000000000000	DEGREES DEGREES				
NUMBER CN	1 CN±C/CAV6	NING CT*C/CAVG	CDC/CAV6	KCP	TUIST	COS	CHORD
968	2399 278	00035	0012	3858 3858 3858	. 0000 4967	0000	506
10 9 5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				**************************************			4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	10 00 00 00 00 00 00 00 00 00 00 00 00 0	0 00 1 3	0031	180	4 d d d d d d d d d d d d d d d d d d d	00	
	05024 =	DTAL FORCE	COEFFICIENT	URFACED			
	כר	13	•00800	X-CP			
TOTAL CONFIGURATION ITH VORTEX LIFT	.10049	.000133	• 00809	11.79081			RIGINAI POOF
	.00314	VTK		.00126			
,	7 0	E(VTX)	= 7 = 1	1.0232			
UCTION DR	AG MINU	DING EDGE	THRUST	# S #	250	0 H	
II II	.08301						

CDW / CL**2 = E	-17367 (MAVE DRAG DUE TO LIFT)	
WITH VORTEK LIFT		
= 64413 / 03	.00313	
	-4077	
		OR OF.
		GINAL POOR
		93.2.3 <b>Q</b> 0.2.3.
And the second s		

2	.4921 3.491	912	4.4902	
• •	8344 • 6 5795 • 7	964	386 801	
		60000000000000000000000000000000000000	6690 6690 6690 6690 6690 6690 6690 6690	OR OF
	3551 1018 44 8640		062 796 557	GINAL POOR
7.4	848 8•481	315	9•4762	PAGE
	36 67 99	1040	2428 3428 3459	15 117
	2011 0111 015 015 015 015 015 015	1000 1000 1000 1000 1000 1000 1000 100	79916 77265 77265	
	950 150	191	478 360	

100000	บ	CDCO	E (0)	CDEVTX	EC VTX)	CD(S+0)	ALPHA	X-CP	
100   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101	000	0 12	000	` E	000	00			
10000	500	017	608	3	6702				
**************************************		032	865	12	0136		2	71101	
250000 01350 02544 001693 1.05389 001276 7.049 12.25990 00226 00225 12.25990 00226 00225 12.25990 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 00226 0022	500	074	960	7	0576	7	2	1986-6	
10   10   10   10   10   10   10   10		136	**	7	.0538	127	0	2 3984	
1000 00446 35673 001509 100394 05294 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12.55675 12	300	218	449	76	-0432	2	2	2004	
\$5000		0321	267	2	.0328	291		566	
\$\begin{array}{c} \text{\$4500} \\ \text{\$6500}	200	4440	507	22	0239	100	5.5	200	
\$5000 097530 334239 002552 1-01016		0588	461	0	0164		1.75	2.6410	
\$5000	200	0753	423	5	.0101	7		777	
\$55000	000	0938	393	16			7C		
65000         13697         33466         004600         99553         15219         16461         173555           65000         18616         31283         05416         99319         16461         127355           75000         22711         322867         05416         99319         16761         127355           75000         28767         05500         98543         21667         127555           85000         28677         07555         98543         21667         127555           95000         28767         07555         98543         227564         12770           95000         35271         32655         10507         24844         22747           95000         35271         32766         10557         34555         25484         12770           95000         43287         32867         13017         27664         12786         34555         25667           1000         43287         32868         15788         97665         34566         12786         12786           1000         43287         32868         15788         45866         12786         12786           1000         43287         32868	500	1143	368			) (	- Y		
65000         16163         33283         05416         99319         16755         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555         17555 <td< td=""><td>000</td><td>369</td><td>346</td><td></td><td>9966</td><td>26</td><td></td><td></td><td></td></td<>	000	369	346		9966	26			
70000 18834 33126 00530 99028 16735 18 814 12 74523 18 810 0000 22171 322867 00525 98771 19260 19999 12 77523 18 810 0000 228080 322867 009355 998339 22 343 12 770523 12 77080 22 810 0000 32565 12 77080 24 844 22 343 12 77080 12 77080 24 844 22 343 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 77080 12 770	500	616	328	7	9941	46	0		
75000         -21711         -3298         07251         9877         1275553           85000         -224793         -32867         08269         98543         21963         2175553           85000         -224793         -32867         08269         98543         21963         21963         21963         217717           95000         -31573         -32567         -10507         98157         -27903         217717         1277718           95000         -35271         -32567         -10507         98157         -27903         22-343         1277717           95000         -35271         -32567         -10507         97842         -34556         23-696         12-77717           1000         -47597         -32143         -27684         27-684         12-77717           1000         -47597         -3216         97362         41919         28-69         12-7717           1000         -56841         -3236         -1576         97362         45995         30-576         12-8069           2000         -56841         -3236         -15831         -2236         45995         32-26         58040           3500         -3219         -22504	000	883	312	30	9 9 3 3	70			
8000 24793 32867 08269 98349 21963 21167 1276364 85000 318080 32867 08359 98339 24844 22 343 1276364 95500 31800 32573 32573 11727 97892 31140 22 343 127717 97892 31140 22 3519 127717 97892 31160 24646 22 343 127717 97892 31160 24646 22 343 127717 97892 31160 24646 22 343 127717 97892 3160 24646 22 34555 2462 1278788 97706 34555 25674 127717 97862 41919 28 22 512 79263 127717 97893 30 578 12 8069 2500 47597 4500 47597 4500 47597 31 22 8069 47597 4500 61771 32 2143 22 4706 47597 4500 61771 32 2143 22 4706 47597 4500 61771 32 2143 22 4706 47597 47793 5670 61771 32 2143 22 4706 47597 47793 5670 61771 32 2143 22 4706 47597 47793 5670 61777 57 2143 27 47179 57 2143 27 47179 57 2143 27 47179 57 2143 27 47179 4700 61774 27 47179 4700 61774 27 47179 4700 61774 27 47179 4700 61774 27 47179 4700 61774 27 47179 4700 61774 27 47179 4700 61774 27 47179 4700 61774 27 47179 4700 61774 27 47179 4700 61774 27 47179 4700 61774 27 47179 4700 61774 27 47179 4700 61774 27 47179 4700 61774 27 47179 4700 61774 27 47179 4700 61774 27 47179 4700 61774 27 47179 4700 61774 27 47179 4700 61774 27 47179 4700 61774 27 47179 4700 61774 27 47179 4700 61774 27 47179 4700 61774 27 47179 4700 61774 27 47179 4700 61774 27 47179 47179 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 4700 61774 470	200	171	298	25	9877	200		7017	
98339	000	419	286	26	9854	16	,,,	75 76 - 6	
98000         32565         10507         98157         27903         23.519         12.7726           99000         35271         32572         13013         97992         31140         24.696         12.7826           10000         43217         13013         97842         34555         25.872         12.7826           10000         47597         32368         15788         97706         38148         27.049         12.7826           15000         47597         32368         15788         97582         41919         28.225         12.78684           15000         47597         32217         97582         49995         30.578         12.8046           25000         56841         32207         20454         97265         54301         31.759         12.8074           35000         4500         46995         30.578         12.8074         22143         97265         54301         31.2807         22143         97265         34.108         12.81581         55.284         12.81581         55.284         12.81581         55.284         12.81581         55.284         12.81581         55.284         12.81581         55.284         12.81581         55.5754         95.940	200	808	276	3	833	8	5.4		
200         3521         3257         31140         24.696         12.7828           05000         43283         13613         97842         34555         25.872         12.7829           15000         43283         32368         1367         9776         38148         27.049         12.79263           15000         47597         32368         1367         97582         41919         228.225         12.79263           15000         47597         32368         17276         97467         45868         12.79263           25000         56841         32256         18831         97467         45868         30.578         12.80069           25000         66907         32207         20454         97265         54301         31.755         12.81046           3500         72247         32143         97175         58784         32.931         12.81324           4500         72247         32043         27524         9701         77.5301         77.5301         77.5301         77.5301         77.5301         77.5301         77.5301         77.5301         77.5301         77.5301         77.5301         77.5301         77.5301         77.5301         77.5301         77.5		151	266	30	815	790		7.771	
0000	9000	176	257	2	199	7	4.69	7828	
15783		716	25.0	20	784	155	5.87	.7879	
1500		いとい	2 4 2	436	270	314	7.04	2.7926	
25000		, ,	236	578	758	161	8.22	2 - 7968	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		117	77	121	952	386	9.40	2.8006	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 C S S S S S S S S S S S S S S S S S S	*! **! **	200	883	736	999	0.57	8042	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9002.	111	220	042	726	30	1.75	8074	
-55000 -77793 -32119 -23900 -97091 -63445 34-108 12-81324 -97000 -77793 -32079 -25724 -97013 -682445 35-284 12-81581 -85000 -83545 35-284 12-81581 -850000 -83545 35-284 12-81581 -850000 -83545 35-284 12-81581 -850000 -83502 -32808 -29573 -96877		690	216	214	717	378	2.93	A104	
-40000 -77793 -32079 -25724 -97013 -68284 35-284 12-81581 -45000 -83545 -32043 -27615 -96940 -73301 36-461 12-81621 -50000 -89502 -32808 -29573 -96872 -78496 -7764	UNC.	224	777	390	709	3		A1 30	
•50000 •85545 •32848 •27615 •96940 •73381 36•461 [2-8182] ·3 •50000 •89502 •32888 •29573 -96879 •78496 •77.547 •5-5008		677	207	572	701	128	5.28	A158	
•3000 •89502 •32608 •29573 46642 19464 17547 1550048		200	\$02	761	294	30	9 + 9	A182	
	0005.	950	200	957	587	6 *	7.63	A20A	

.

1122	
00000000000000000000000000000000000000	ORIGINAL PAGE 19 OF POOR QUALITY
11	
99999999999999999999999999999999999999	
11.009 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	
20000000000000000000000000000000000000	200
	• 55000       • 95664       • 31976       • 31598       • 96808       • 83870       38.814       12.8225         • 65000       1.02031       • 31946       • 35891       • 96691       • 99150       12.8226         • 65000       1.02031       • 31891       • 35850       • 96691       • 99150       12.8226         • 75000       1.22365       • 31892       • 40371       • 96587       1.01057       42.343       12.8296         • 80000       1.25958       • 31892       • 40371       • 96587       1.01142       43.512       12.8296         • 80000       1.56958       • 31892       • 4566       1.00142       45.65       12.8327         • 9000       1.4454       31778       • 51678       96494       1.19447       48.25       12.8354         • 9000       1.60362       31778       • 52648       96410       1.40239       49.402       12.8354         • 9000       1.60362       31759       • 52648       96571       1.40239       49.402       12.8354

							ORIGINAL FORMS
10.41							
83/07/18 X 10 PANELS XCG =	11. -000000 -000000000000000000000000000		=13567 + ( CI		* ALPHA +00187	+ Cr +000#	4
T/C = 0.050 10	×>~ >>>0 >>0 >>0 >>0 >>0 >>0 >>0	+ 09958	+ .02568 + .01217	SUCTION	2 + .000840	+ .008889	• 0813 14e2
.45 WING AT M = 2.80	160 • 00 000 20 • 00 000 8 • 00 000 2 • 0 0000	*04250002 * ALPHA	00576608 * ALPHA	DUE TO LEADING EDGE	00009870 + ALPHA++2	05464301 * CL**2	05464301 + ( CL
63-45	NCCAPE CCAPE CANG CANG II II II II II	נו "	" " 5	FORCES	11	201	

= (0)00	**************************************	004331 + ALPHA +	.00728
CD(S+0) =	.00064307 * ALPHA**2 +	003491 + ALPHA +	•00541
CD(100) =	.00024256 * ALPHA.*2 +	001329 * ALPHA +	•00215
= (0)00	-41066549 * CL**2 +	020123 * CL +	.00120
= (0+5)00	*35602249 * CL**2 *	011234 + CL +	•00076
CD(100) =	•13428747 • CL**2 •	004521 + CL +	•00037
= (0)00	•41066549 • ( CL0245	. )**2	ORI OF
= (0+8)00	.35602249 * ( CL0158	1 3002 +	GINAL POOR 19000
CD(190) =	.13428747 • ( CL0168	+ )**5	PAGE QUAL
202			TY

63-45 WING AT M = 2.00 T/C = 0.050 INPUT DISPLAY ANGLES (YAW, PITCH, ROLL) 17-38-28-8

10 X 10 PANELS

```
CATA SET 1 PLOT FILE CREATED BY OPT MACH = 2.00 Q = 0.0 A_DLA = 4.69 DEG NSFCHK= 1

ENTER: 1 TO PLOT 0 TO BYPASS THIS DATA SET
```

ENTER 0 TO PROCEED TO THE NEXT CASE.

1 TO PLOT THE THICKNESS DISTRIBUTION.
2 TO PLOT THE CAMBER DISTRIBUTION.
3 TO PLOT Z/C'S FROM TWIST & CAMBER.
4 TO PLOT Z/C'S FROM TWIST CAMBER & FLAPS.
5 TO PLOT CP NET.
6 TO PLOT CP UPPER.
7 TO PLOT CP BOTH.
8 TO PLOT CP UPPER AND CP LOWER.
9 TO PLOT SPANWISE CHARACTERISTICS.
> 9 TO EXIT CLIST.

1









ORIGINAL PAGE IS OF POOR QUALITY



ORIGINAL PROFES IS



ORIGINAL PAGE OF POOR QUALITY



ORIGINAL PAGE (S OF POOR QUALITY



ORIGINAL PAGE IS OF POOR QUALITY



ORIGINAL FACE OF POOR QUALITY

8.000 0.800 TWIST, NF=3.3 0.680 2Y/B SND SND 8.500 63-45 THICK OPT T/C = 0.050 AT M = 2.0
ALPHA = 4.688 LOCAL CL SURFACE # 1 9.396 8.288 9.189 8.160 9.140 9.120 8.189 9.969 9.640 9.686 0.656 ORDER ರ

ORIGINAL PAGE 188 OF POOR QUALITY



ORIGINAL PARTY OF POOR QUALITY

XCG = 12.0

TWIST, NF=3.3

SND SND

2.0

THICK CPT T/C = 0.050 AT M = 4.688 SUCTION FORCE SURFACE # 1

63-45 | A∟PHA =

6.999 8.88 9.700 8.688 2Y/B 8.5ee 9.499 6.325 **9.**266 6.183 e.e032**56**.... 2.eee24e... 3. eee1 89... e. 222350· a. eee350-3. e0025g:: 3.600158-B. 32004B.. e. 0224pg 9. 2200<del>3</del>9-. . . . . . CTC/CH46

XCG = 12.0TWIST, NF=3.3 SS 2.0 SURFACE # OPT T/C = 0.050 CENTER OF PRESS. SUR



## REFERENCES

- Clever, W. C., Malmuth, N.D., and Shankar, V., "Formulation of Aerodynamic Prediction Techniques for Hypersonic Configuration Design," NASA CR-158994, February 1979.
- Clever, W. C., and Shankar, V., "Aerodynamic Prediction Techniques for Supersonic/Hypersonic Configuration Design," NASA CR-165651, March 1981.
- Clever, W. C., and Shankar, V., "Nonlinear Potential Analysis Techniques for Supersonic/Hypersonic Configuration Design," NASA CR-166078, March 1983.
- Shankar, V., and Clever, W. C., "Nonlinear Potential Analysis Techniques for Supersonic/Hypersonic Aerodynamic Design," NASA CR-172299, March 1984.
- Bonner, E., Clever, W. C., and Dunn, K., "Aerodynamic Preliminary Analysis System II," Part I - Theory, NASA CR-165627, April 1981.
- 6. Divan, P., "Aerodynamic Preliminary Analysis System II," Part II - User's Manual, NASA CR-165628, April 1981.

1. Report No. NASA CR-172342	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle SUPERSONIC SECOND ORDER AN	ALYSIS AND OPTIMIZATION	5. Report Date August 30, 1984
PROGRAM USER'S MANUAL		6. Performing Organization Code
7. Author(s) W. C. Clever		8. Performing Organization Report No.
Performing Organization Name and Address     Rockwell International		10. Work Unit No.
P. O. Box 92098	0009	11. Contract or Grant No. NAS1-15820
12. Sponsoring Agency Name and Address National Aeronautics and S	pace Administration	13. Type of Report and Period Covered Contractor report
Langley Research Center Hampton, Virginia 23665		14. Sponsoring Agency Code

15. Supplementary Notes

Technical monitors: Noel A. Talcott, Jr. and Kenneth M. Jones

## 16. Abstract

Approximate nonlinear inviscid theoretical techniques for predicting aerodynamic characteristics and surface pressures for relatively slender vehicles at supersonic and moderate hypersonic speeds were developed. Emphasis was placed on approaches that would be responsive to conceptual configuration design level of effort. Second order small disturbance theory was utilized to meet this objective.

Numerical codes were developed for analysis and design of relatively general three dimensional geometries. Results from the computations indicate good agreement with experimental results for a variety of wing, body, and wingbody shapes. Case computational times of one minute on a CDC 176 are typical for practical aircraft arrangements.

17. Key Words (Suggested by Author(s))
Aerodynamic Theory
Potential Analysis
Supersonic/Hypersonic

18. Distribution Statement



19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of Pages 217

22. Price