Frigate Fuel Consumption Indicator

Final Report

Harry Willemsen, Frans Kremer MARIN

Prepared by: MARIN 2, Haagsteeg 6708 PM Wageningen The Netherlands

PWGSC Contract Number: W7707-115112/001/HAL

Contract Scientific Authority: Eric Thornhill, Defence Scientist, 902-426-3100 x347

The scientific or technical validity of this Contract Report is entirely the responsibility of the contractor and the contents do not necessarily have the approval or endorsement of Defence R&D Canada.

Defence Research and Development Canada

Contract Report DRDC-RDDC-2014-C50

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comment arters Services, Directorate for Inf	s regarding this burden estimate formation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 20 SEP 2010		2. REPORT TYPE		3. DATES COVE 00-00-201 (red to 00-00-2010	
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER	
Frigate Fuel Consu	imption Indicator			5b. GRANT NUN	MBER	
				5c. PROGRAM E	ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NU	JMBER	
				5e. TASK NUME	BER	
5f. WORK UNIT NUMBER						
	ZATION NAME(S) AND AE eeg,6708 PM Wagen	` '	ands,	8. PERFORMING REPORT NUMB	G ORGANIZATION ER	
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	ND ADDRESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT	
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited				
13. SUPPLEMENTARY NO	OTES					
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	ATION OF:	17. LIMITATION OF	18. NUMBER	19a. NAME OF		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 14	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

FRIGATE; FUEL CONSUMPTION INDICATOR

Final Report

Report No. : 24650-1SP
Date : 20/09/2010

FRIGATE; FUEL CONSUMPTION INDICATOR

Final Report

MARIN order No. : 24650

Ordered by : DRDC Atlantic Attn. : Mr. E. Thornhill

E-mail address : Eric.Thornhill@drdc-rddc.gc.ca

Your reference : Purchase Order W7707-115112/001/HAL, dated 2010-08-03

Reported by : Harry Willemsen Reviewed by : Frans Kremer

CO	NIENIS	Page
1	INTRODUCTION	4
2	SELECTION OF SIMILAR VESSELS	5
3	SCATTER DIAGRAM	6
4	CALCULATION EXAMPLE	7
APP	ENDIX I: List of symbols	.A1.1 - A1.5

1 INTRODUCTION

DRDC Atlantic ordered the Maritime Research Institute Netherlands (MARIN) to perform a study on the hydrodynamic efficiency for frigate/destroyer type of vessels in order to improve their requirements for the allowable fuel consumption. MARIN proposed to evaluate the model test results of about 15/20 frigates from NATO related countries and to present this in dimensionless tables and diagram form.

The report will contain a section describing how the derived data have been obtained from the model test data, including assumptions and other relevant issues.

Based on our business confidentiality agreement with our relations the data of the scatter diagram derived don't show any reference or particulars vessels, but the ranges of the general parameters such as length, beam, displacement, prismatic coefficient, slenderness ratio, year of testing of the final selected vessels all with twin screw controllable pitch propellers are listed in a table in the next section.

Throughout this report SI units are used unless indicated otherwise, and a list of symbols is given in Appendix I.

2 SELECTION OF SIMILAR VESSELS

From the 22 frigate vessels found in our model database, 11 vessels are selected for evaluation of the model tests full scale trials performance predictions. A list of the main particulars of the vessels is shown in the next table.

Tested	Ship type	Lpp [m]	Los [m]	Taft [m]	Tfore [m]	B [m]	V [m3]	L/B	CM	CB	CP	В/Т	SL-ratio
2003	Frigate	110.99	114.60	4.86	4.86	14.81	3625.6	7.49	0.745	0.454	0.609	3.05	7.46
2004	Frigate	118.87	118.95	4.39	4.39	14.80	3828.0	8.03	0.800	0.496	0.620	3.37	7.60
2008	Frigate	103.50	103.79	3.64	3.64	13.03	2380.4	7.94	0.768	0.485	0.631	3.58	7.77
2009	Frigate	139.00	142.88	5.31	5.31	19.20	6341.5	7.24	0.789	0.448	0.568	3.62	7.72
1999	Frigate	133.20	133.40	4.86	4.86	17.52	5602.7	7.60	0.805	0.494	0.614	3.61	7.51
1997	Frigate	132.00	131.82	4.60	4.00	15.21	4461.5	8.68	0.817	0.517	0.633	3.54	8.01
2001	Frigate	130.20	130.57	5.28	4.93	17.13	5665.0	7.60	0.781	0.498	0.638	3.36	7.32
1990	Frigate	114.10	114.34	4.28	4.28	13.11	3146.0	8.70	0.803	0.491	0.612	3.06	7.80
1983	Frigate	122.00	121.98	4.63	4.38	14.79	3941.0	8.25	0.787	0.485	0.617	3.29	7.72
1983	Frigate	126.00	126.00	4.64	4.46	14.80	4092.0	8.51	0.796	0.482	0.606	3.32	7.88
1979	Frigate	126.00	126.00	4.12	4.12	13.60	3443.0	9.26	0.805	0.488	0.606	3.30	8.34

All vessels are equipped with twin screw controllable pitch propellers which satisfy the difficulty index: P-shaft/($V_{design} \times D^2$) > 25 where PS is the propulsive power per shaft for naval vessels, where D is the propeller diameter in metres and V is the maximum speed of design in knots.

The slenderness-ratio, based on the submerged length (Los) divided by the 1/3 power of the displacement volume (V) of the selected vessel is between 7.4 and 8.5, prismatic coefficient (CP) is around 0.6 and the length between the perpendiculars (Lpp) is between 103.5 and 139 m.

Apart from the application of sonar bulb type bow, keel dome type or no sonar at all, stabiliser fins and intermediate struts configurations, the remaining appendages are quite similar. The aft body however, show more difference when comparing transom immersion, trim wedge application and aft body design; this has more influence on the power requirements in the low speed cruise region around 18 knots than for the combat region around 30 knots speed of ship. The deviation observed (+/- 20 per cent) is shown in the scatter diagram presented in the next section.

3 SCATTER DIAGRAM

After evaluation of the model tests full scale trials performance predictions where the total delivered power was made dimensionless with the admiral coefficient for propulsion: CAD=0.7477 x DISV $^{(2/3)}$ x VS 3 / PD with DISV in m 3 , VS in knots and PD in kW, less scatter was found on the basis of the Froude number defined by the length (FNL) than the volumetric Froude number (FNV) based on the speed in metres per second divide by the square root of the acceleration of the gravity (9.81 m/s 2) divide by DISV $^{(1/3)}$.

Based on this diagram an average trend line on the basis of FNL and CAD scatter the following equation is chosen: $y = 13,395x^4 - 13,378x^3 + 3,109x^2 - 108x + 249$ with regression type polynomial order 4.

In the next section these formulas are given in an example calculation.

4 CALCULATION EXAMPLE

SL-ratio =	7.67	(SL-ratio >	7.46 < 8.34	1)	
Los [m]	124.03	(Los >103.	8<142.9 m)		
Eta-shaft	104%				
	Displv				
Displv	4228.6	m3			
	V	FNL	CAD	PD-total	PB per engine
	KNOTS			kW	kW
	5	0.074	253	96	50
	6	0.089	256	165	86
	7	0.103	258	260	135
	8	0.118	261	384	200
	9	0.133	263	542	282
	10	0.148	265	739	384
	11	0.162	266	979	509
	12	0.177	267	1267	659
	13	0.192	267	1610	837
	14	0.207	266	2015	1048
	15	0.221	265	2490	1295
	16	0.236	263	3046	1584
	17	0.251	260	3695	1922
	18	0.266	256	4451	2315
	19	0.280	252	5330	2772
	20	0.295	246	6353	3304
	21	0.310	240	7542	3922
	22	0.325	233	8926	4641
	23	0.339	226	10536	5479
	24	0.354	218	12411	6454
	25	0.369	209	14594	7589
	26	0.384	201	17135	8910
	27	0.398	192	20089	10446
	28	0.413	183	23513	12227
	29	0.428	174	27467	14283
	30	0.443	165	32001	16640
	31	0.457	157	37148	19317
	32	0.472	149	42910	22313
	33	0.487	143	49231	25600
	34	0.502	137	55979	29109
	35	0.516	133	62923	32720

Wageningen, September 2010

MARITIME RESEARCH INSTITUTE NETHERLANDS

APPENDIX I

LIST OF SYMBOLS

Symbol	Symbol in computer print	Title					
--------	--------------------------	-------	--	--	--	--	--

GEOMETRY OF SHIP AND PROPELLER

 A_{BT} Transverse cross-section area of bulbous bow

Expanded propeller blade area A_{E} A_F/A_O Expanded propeller blade area ratio Midship sectional area below still waterline A_{M}

 A_{O} Propeller disc area

Transom area below still waterline A_T

Transom area ratio A_T/A_M A_W Waterplane area

Maximum transverse sectional area below still waterline A_X В Maximum breadth moulded at or below still waterline

 B_{M} Maximum breadth moulded at midship Maximum breadth moulded at still waterline B_{WL} Chord length of propeller blade section С

c/D Chord length-diameter ratio

Chord length between reference line and leading edge CREF

Chord length between maximum thickness point and leading \mathbf{C}_{t}

edge

Block coefficient C_B

Midship section coefficient C_{M} C_P Longitudinal prismatic coefficient Waterplane area coefficient C_{WP}

d Hub diameter d/D Hub-diameter ratio D Propeller diameter

FB Position of centre of buoyancy aft of FP f Camber of propeller blade section

 $h_{\text{o}} \\$ Submergence of propeller shaft axis measured from still water-

plane

Height of centroid of ABT above keel h_B

Half angle of entrance İΕ

 L_{OA} Length overall

Length overall submerged Los Length between perpendiculars L_{PP}

Length on still waterline L_{WL}

LCB Longitudinal position of centre of buoyancy

Symbol	Symbol in computer print	Title
$\begin{array}{l} P \\ P/D \\ r \\ R \\ S,S_{HULL} \\ S_{APP} \\ S_1,S_{TOT} \\ t \\ t/c \\ T \\ T_A \\ T_F \\ Z \end{array}$		Propeller pitch Pitch-diameter ratio Radius of propeller blade section Radius of propeller Projected wetted surface bare hull Wetted surface area appendages Total wetted surface area Maximum thickness of propeller blade section Maximum thickness-chord length ratio Mean draught moulded Moulded draught at aft perpendicular Moulded draught at forward perpendicular Number of blades
λ Φ ∇	DISV	Scale ratio Pitch angle of propeller section Displacement volume moulded

	Symbol in	
Symbol	computer	Title
	print	

RESISTANCE, OPEN WATER AND PROPULSION

$\begin{array}{c} B_P \\ C_A \\ C_A\mathsf{A} \\ C_A\mathsf{D} \\ CAV \ N \\ CAV \ P \\ C_D \end{array}$	CA CAA CAD CAV N CAV P	Taylor's propeller coefficient Incremental resistance coefficient for model-ship correlation Air resistance coefficient Admiralty coefficient for propulsion Cavitation influension faktor on rotation rate Cavitation influension faktor on power Drag coefficient
$C_D abla$		Power-displacement coefficient
C_{E}	CE	Admiralty coefficient for resistance
C_{F}	CF	Specific frictional resistance coefficient
ΔC_F		Roughness allowance coefficient
C_L	CL	Lift coefficient
C_P		Power loading coefficient
C_R	CRES	Specific residual resistance coefficient
C_T	CT	Specific total resistance coefficient
C_{Th}		Thrust loading coefficient
C_T		Resistance-displacement coefficient
C_V	CV	Specific total viscous resistance coefficient
C_W	CW	Specific wavemaking resistance coefficient
F	F	Towing force in propulsion test
F_D	FD	Viscous scale effect on resistance
Fn	FN	Froude number
F_P	PULL	Pull of ship
F_{PO}	PULL	Pull of ship in bollard condition
g		Acceleration due to gravity
J	J	Advance coefficient
J_{V}	JV	Apparent advance coefficient
1+k	1+K	Three-dimensional form factor on flat plate friction
k _p		Equivalent sandroughness of propeller blade surface
k _s	140	Roughness height of hull surface
KQ	KQ	Torque coefficient
K _T	KT	Thrust coefficient
K _{TD}	KT-D	Duct thrust coefficient
K _{TP}	KT-P	Propeller thrust coefficient

Symbol	Symbol in computer print	Title
n	N	Rate of revolutions
P_B		Brake power
P_{D}	PD	Power delivered to the propeller(s)
P_{E}	PE	Effective power
P_{l}		Indicated power
P_S	PS	Shaft power
P_T		Thrust power
Q	Q	Torque
R	R	Resistance in general
R_n	RN	Reynolds number
R_A		Model-ship correlation resistance
R_{F}	RF	Frictional resistance
R_{TR}	RTR	Viscous pressure resistance of transom
R_V	RV	Total viscous resistance
R_{VP}	RVP	Viscous pressure resistance
R_W	RW	Wavemaking resistance
s_A		Apparent slip ratio
S _R		Real slip ratio
t	THDF	Thrust deduction fraction
t*		Thrust deduction fraction from load variation test
T	TH	Thrust
T_D	TH-D	Duct thrust
T_N	TH-N	Nozzle thrust
T_P	TH-P	Propeller thrust
T _U	THU	Thrust of azimuthing thruster unit
V	V	Speed of ship or model
V_A	VA	Advance speed of propeller relative to water flow
V _r	Vr	Radial flow velocity component in the direction of the z-axis of the Pitot tube, and is positive if directed down for strut orientation tests or outward in a wake survey
V_t	Vt	Tangential flow velocity component in the direction of the y- axis of the Pitot tube, and is positive if directed to port for strut orientation tests or in clockwise direction in a wake survey
V_x	Vx	Longitudinal flow velocity component in the direction of the x-axis of the Pitot tube, and is positive if directed aft
\mathbf{W}_{T}	WT	Effective wake fraction on thrust identity
z_{V}		Sinkage due to speed

Symbol	Symbol in computer print	Title
$\begin{array}{l} \beta \\ \eta_B \\ \eta_D \\ \eta_G \\ \eta_H \\ \eta_M \\ \eta_o \\ \eta_R \\ \eta_S \\ \nu \\ \rho \\ \tau \end{array}$	ETA-D ETA-H ETA-O ETA-R	Advance angle of propeller blade section Propeller efficiency behind ship Propulsive efficiency Gearing efficiency Hull efficiency Mechanical efficiency Propeller efficiency in open water Relative-rotative efficiency on thrust identity Shafting efficiency Coefficient of kinemetic viscosity Mass density Ratio propeller thrust and total thrust of ducted propeller system
-m -o -s	-M -O -S	Subscript for model Subscript for open water Subscript for ship