LES ARBRES BINAIRES

Exercices obligatoires

A CodeRunner

Faires les *codeRunner* sur les arbres binaires. Suivez les niveaux : 1, 2 et puis 3.

Le document *CodeRunner_ArbresTestes* donne une visualisation des arbres testés dans ce codeRunner.

B Expression arithmétique (à soumettre)

Chaque instance de la classe *ExpressionArithmetique* mémorise une expression arithmétique sous forme d'un arbre binaire de caractères.

Une expression arithmétique contient des opérateurs binaires (+, - , * , /) et des constantes entières.

Exemple d'expression:

$$\exp 1 : ((3-2) + (4*(9/3)))$$

Remarques importantes:

- On se limitera à des valeurs positives, codées sur un seul chiffre (de 0 à 9 donc).
- Les opérations seront toujours binaires : x+y, x-y, x*y, x/y. Pas de -x tout seul.
- Vous pouvez supposer que l'arbre est <u>correct</u> : il contient bien une expression arithmétique !

Complétez la classe ExpressionArithmetique.

Les méthodes à compléter seront récursives.

La classe *TestExpressionArithmetique* permet de tester vos méthodes avec l'arbre mis en exemple ci-dessus ainsi que les 3 arbres :

$$\exp 2: (4 + ((8 * (4 - 1)) + 4) - 1)$$

 $\exp 3:((3+2)+(4+(9+3)))$

exp4:3

Exercices défis

B2

Le constructeur de la classe *ExpressionArithmetique* ne vérifie pas l'arbre reçu en paramètre. Le constructeur devrait vérifier si l'arbre contient bien une expression arithmétique et lancer une *IllegalArgumentException* dans le cas échéant.

Dans la classe *TestExpressionArithmetique* les instructions permettant de tester ce défi sont mises en commentaire.

B3

● Dans la classe *ExpressionArithmetique*, ajoutez un constructeur qui reçoit en paramètre la notation infixe de l'expression arithmétique.

Exercice supplémentaire

B4

Une expression arithmétique peut contenir l'opérateur moins unaire. La question sur les arbres binaires de septembre 2020 propose de traiter de telles expressions arithmétiques.