11강. Policy Gradient methods

Contents

- Policy Gradient
 - Overview
 - Advantages
 - Stochastic policy
 - Policy performance
 - Stochastic Gradient Ascent
 - Policy Gradient Theorem
- REINFORCE
 - Overview
 - Parallel learning
 - Exploration strategy
 - Code Ex. REINFORCE + Parallel Agent Learning

- Actor-Critic
 - Overview
- A2C
 - Overview
 - Return vs. Advantage
 - Stochastic Gradient Ascent
 - REINFORCE vs. A2C
 - Code Ex.: A2C + Parallel Agent Learning

Policy Gradient methods

 So far, we learned Q value-based methods, the policy is defined based on Q values

Value table:

$$a = \underset{a}{arg max} Q(s, a)$$

Function approximators:

$$a = \arg\max_{a} \hat{q}(s, a|\theta)$$

• PG methods use a function approximator, not to estimate Q value, but to estimate the probabilities of taking each action: $\pi(a|s,\theta) \in [0,1]$

• The neural network is the policy (stochastic):

Advantages

 Value-based methods cannot represent stochastic policies in a simple way

Greedy policy: Epsilon-greedy policy
$$\pi(a'|s) \begin{cases} 1 \text{ if } a' = \arg\max_{a} \hat{q}(s, a|\theta) \\ 0 \text{ else} \end{cases} (a'|s) \begin{cases} 1 - \varepsilon + \frac{\varepsilon}{|A|} \text{ if } a' = \arg\max_{a} \hat{q}(s, a|\theta) \\ \frac{\varepsilon}{|A|} \text{ else} \end{cases}$$

• Imagine a poker game where the agent has imperfect information If $\pi^*(s) = [0.7,0.3]$, how do we represent it?

Advantages

• The policy changes more smoothly during learning:

Value-based methods:

when the maximum q-value changes, they choose a new action 100% of the time.

$$a = \arg\max_{a} \hat{q}(s, a|\theta)$$

Policy gradient methods:

the probability of choosing an action changes in small increments

$$a \sim \pi(s|\theta)$$

The probabilities of taking an action gradually increase if the action turns out to be effective and gradually decrease if not

Stochastic policy

• The neural network can be viewed as a function:

$$y = \varphi_2(\varphi_1(x \cdot w1) \cdot w2)$$

• By changing its parameters W1, we can modify it to approximate the function we are interested in

Stochastic policy

 By normalizing the neural network's output, softmax activation function is perfect tool to generate probability vector, y

Stochastic policy

• Discrete action space:

Continuous action space:

Policy performance

• If we want to find the optimal policy, we need to be able to compare them.

• We will define policy performance as: $J(\theta)$

the performance of the policy is a function of its parameters

$$J(\theta) = E^{\pi \theta}[R|s]$$

= $V^{\pi \theta}(s)$
= $\sum_a \pi_{\theta}(a|s) Q^{\pi \theta}(s,a)$ By changing the parameters of the neural net., we change the policy

Policy performance

• If $J_{\pi 1}(\theta) > J_{\pi 2}(\theta)$, then we consider that $J_{\pi 1}(\theta)$ is better than $J_{\pi 2}(\theta)$

• Our goal is to find the θ values that maximize policy performance:

$$\pi * (a|s,\theta) = \arg\max_{a} J(\theta)$$

• We will use the experience samples that the agent obtains to approximate the policy's performance as $\hat{J}(\theta)$

SGA

• We will approximate the optimal θ values by stochastic gradient ascent (SGA):

$$\theta_{t+1} = \theta_t + \alpha \, \nabla \hat{J}(\theta)$$

we'll take the gradient step in the direction of steepest ascent

where:

$$\nabla \hat{J}(\theta) = \begin{bmatrix} \frac{\partial \hat{J}(\theta)}{\partial \theta_1}, \frac{\partial \hat{J}(\theta)}{\partial \theta_2}, \dots, \frac{\partial \hat{J}(\theta)}{\partial \theta_n} \end{bmatrix}$$

SGA

Optimizing the policy using values that the agent can observe.

$$= \mathsf{E}_{\mathsf{a}}^{\pi\theta} \left[Q^{\pi\theta}(s,a) \; \nabla_{\theta} log \pi_{\theta}(a|s) \right]$$
$$\approx \underline{\hat{E}} \left[Q^{\pi\theta}(s,a) \; \nabla_{\theta} log \pi_{\theta}(a|s) \right]$$

Sample mean that follows $\pi\theta$

Policy gradient theorem

state distribution following policy π

q-value of a stateaction pair following policy π

Policy gradient theorem

$$\nabla J(\theta) \propto \sum_{s} \mu(s) \sum_{a} q_{\pi}(s, a) \, \nabla \pi(a|s, \theta)$$

- The PG is,
 - proportional to the return of each action in each state,
 - multiplied by the gradient of the probability of taking that action in that state
 - and weighted by the frequency with which we observe each state following that policy

Policy gradient theorem

$$\nabla J(\theta) \propto \sum_{s} \mu(s) \sum_{a} q_{\pi}(s, a) \, \nabla \pi(a|s, \theta)$$

- If an action in a state produces a positive return, we must increase the probability of picking that action to increase the return.
- If that action produces a negative return, the probability of taking that action must be reduced.

REINFORCE

- Policy gradient + Monte Carlo
- We will perform stochastic gradient ascent(SGA):

$$\theta_{t+1} = \theta_t + \alpha \, \nabla \hat{J}(\theta)$$

• To do this we will have to approximate the gradient of the policy performance estimate $\nabla \hat{J}(\theta)$ using samples collected from the environment

• Note there's no bootstrapping, $Q^{\pi\theta}(s,a) = E^{\pi\theta}[R|s,a]$

$$\begin{array}{l} \bullet \ \nabla_{\theta} \mathsf{J}(\theta) = \sum_{a} \nabla_{\theta} \pi_{\theta}(a|s) \underline{R_{s,a}} \\ = \sum_{a} \underline{\pi_{\theta}(a|s)} \, \underline{R_{s,a}} \underline{\nabla_{\theta} log} \pi_{\theta}(a|s) \\ \qquad \qquad \qquad \text{Distribution of collected data} \end{array}$$
 Equal to
$$\frac{\nabla_{\theta} \pi_{\theta}(a|s)}{\pi_{\theta}(a|s)}$$

$$= \mathsf{E}_{\mathsf{a}}^{\ \pi\theta} \left[R_{s,a} \, \nabla_{\theta} log \pi_{\theta}(a|s) \right]$$
$$\approx \underline{\hat{E}} \left[R_{s,a} \, \nabla_{\theta} log \pi_{\theta}(a|s) \right]$$

Sample mean that follows $\pi\theta$

• We will perform stochastic gradient ascent(SGA):

$$\theta_{t+1} = \theta_t + \alpha \, \nabla \hat{J}(\theta)$$

REINFORCE perform stochastic gradient ascent(SGA):

$$\theta_{t+1} = \theta_t + \alpha \gamma^t G_t \quad \nabla \ln \pi(\alpha | s, \theta)$$

Initialize heta of the parameterized policy $\pi_{ heta}$ and learning rate η

While True

Generate an episode $\ e = (s_0, a_0, r_1, s_1, \cdots, s_{T-1}, a_{T-1}, r_T, s_T)$ using $\pi_{ heta}$

Get an episode

$$\Delta_{\theta} = 0$$

For
$$t \in 0: T-1$$

$$g_t = \sum_{k=t}^{T-1} \gamma^{k-t} r_{k+1}$$

$$\Delta_{ heta} \leftarrow \Delta_{ heta} + g_t
abla_{ heta} \log \pi_{ heta}(a|s)$$

$$heta \leftarrow heta + \eta \cdot \Delta_{ heta}$$

- g_t is the actual return obtained starting at time t of the episode(all the rewards obtained until the end of the episode)
- the gradient of the policy performance estimate Δ_{θ} using samples collected from the environment
- Stochastic gradient ascent:

Parallel learning

- Successive state tend to be very be very similar to the previous one, and this is called the time correlation problem
- The solution used with Policy Gradient methods

Parallel learning

- We want to maintain the agent's exploration but we do not have mechanisms such as ε -greedy policies
- Now the neural net. is our policy. How to incorporate an exploration mechanism into our neural network?
- We will incentivize the agent to keep the entropy of its policy as high as possible

$$H(X) = -\sum_{x \in X} p(x) \cdot \ln p(x)$$

What is Entropy? the level of uncertainty of a random variable

if
$$p(X = x_1) = 1$$
, $p(X = x_2) = 0$, $H(X) = -[1 \cdot \ln(1) + 0 \cdot \ln(0)] = 0$

if
$$p(X = x_1) = 0.5$$
, $p(X = x_2) = 0.5$, $H(X) = -[0.5 \cdot \ln(0.5) + 0.5 \cdot \ln(0.5)] \approx 0.6931$

- Max. point where our confidence in our predictions will go down.
- Max. point where it surprises us

- What is the entropy of a policy?
- Uncertainty in the action to be selected in a state:

$$H_{\pi}(A_t) = -\sum_{a \in At} \pi(a|St) \cdot \ln \pi(a|St)$$

- Random variable(A_t) is the action the policy will choose in a state.
- The entropy is computed by multiplying the probability of choosing each action by its logarithm and adding up the results

- What is the entropy of a policy?
- Imagine that we have 4 actions available

- What is the entropy of a policy?
- In order for the agent to explore the environment. We must keep the entropy of the policy high
- We add the entropy to the function to be maximized:

$$\theta_{t+1} = \theta_t + \alpha \left[\gamma^t G_t \ \nabla \ln \pi(\alpha | s, \theta) + \beta \nabla H(\pi) \right]$$

Advantages in optimizing a policy:
 Exploration, Robustness, Policy refinement

Parallel REINFORCE learning

13: end for

```
Algorithm 1 REINFORCE
 1: Input: \alpha learning rate, \gamma discount factor.
 2: Initialize parallel environments E
 3: Initialize policy parameters \theta
 4: for episode in 1..N do
          Use \pi(s|\theta) to collect |E| trajectories: S_0, A_0, R_1, \dots, R_T
          G = 0
 6.
     for t = T-1..0 do
              G = R_t + \gamma G
               Compute entropy regularization: \mathbf{H_t} = -\sum_a \pi(a|\mathbf{S_t}) \ln \pi(a|\mathbf{S_t})
               \hat{J}(\boldsymbol{\theta}) = \gamma^t \boldsymbol{G} \ln \pi(\boldsymbol{A_t} | \boldsymbol{S_t}, \boldsymbol{\theta}) + \boldsymbol{H_t}
10:
               \boldsymbol{\theta} = \boldsymbol{\theta} + \alpha \nabla \hat{J}(\boldsymbol{\theta})
11:
                                                                     We also try to maximize the
          end for
12:
                                                                     entropy of the policy
```

Code Ex.

- Upload 'REINFORCE_CartPole.ipynb' file onto Colab
- Upload 'utils.py' file onto Colab
- Upload 'parallel_env.py' file onto Colab
- Add 'pip install numpy==1.23.1

Code Ex.

- Cartpole: move a cart (black) such that it balances a pendulum (brown) without moving too far from the center.
- State: The agent observes current position and velocity of the cart, as well as angle and velocity of the pole (cart position, cart velocity, pole angle, pole angular velocity)
- Action: It can act by pushing the cart to the left (value 0) or to the right (value 1).
- Reward:+1 for every step

Actor-Critic

'Monte-Carlo' Policy Gradient method

•
$$J(\theta) = \sum_{a} \pi_{\theta}(a|s) R_{s,a}$$

'Actor-Critic' method requires Q or V to calculate PG

•
$$J(\theta) = \sum_{a} \pi_{\theta}(a|s) Q^{\pi\theta}(s,a)$$

•
$$J(\theta) = \sum_{s'} \sum_{a} p(s'|s,a) \pi_{\theta}(a|s) [r + \gamma V^{\pi\theta}(s)]$$

- TD + Policy Gradient
 - Optimize the neural network during the episode by bootstrapping the value of the next state
 - Recall Temporal Difference (TD) learn at each time step
- Agent has both actor and critic networks

Advantage Actor-Critic(A2C)

 Excess return of choosing the a action instead of following the policy:

$$Adv_{\pi}(s,a) = q_{\pi}(s, a) - v_{\pi}(s)$$

$$Adv_{\pi}(s,a) = q_{\pi}(s, a) - \sum_{a} \pi(a|s) q\pi(s, a)$$

 We want to reinforce the actions that obtain better results and discourage those that obtain worse results

$$Adv_{\pi}(s,a) = q_{\pi}(s, a) - v_{\pi}(s)$$

$$Adv_{\pi}(s,a) > 0$$
:

Taking the action, a is **better** than simply following the policy

 $Adv_{\pi}(s,a) < 0$:

Taking the action a is worse than following the policy

• We can estimate the advantage of an action as:

$$\hat{A}dv_{\pi}(s,a) = r(s, a) + \gamma \hat{v}_{\pi}(s') - \hat{v}_{\pi}(s)$$

$$\theta_{t+1} = \theta_t + \alpha \gamma^t \underline{G_t} \nabla \ln \pi (A_t | S_t, \theta_t)$$
The best is -1

- If G_t < 0, discourages the actions that will have negative return
 - If an action led to a negative return, that action was disincentivized even if it was the least bad action available
 - Eventually it gets to the best policy, but a long time to get there
 - Using the return, the agent was not able to make these distinctions

Update rule: A2C

• A2C:

$$\theta_{t+1} = \theta_t + \alpha \gamma^t \widehat{A} dv_t \nabla \ln \pi (A_t | S_t, \theta_t)$$

$$Adv(s, \downarrow)$$

- If $\widehat{A}dv_t>0$, reinforces the actions that are better
 - In a bad state, the advantage function helps the agent understand which action is the lesser evil and helps it to reinforce that action
 - If action, ↓ is lesser evil, Adv(s, ↓) is positive
 - It also allows it to see which action is the worst in a very good state and disincentivize it

SGA

• Where the advantage is the temporal difference error

$$\widehat{A}dv_{t} = R_{t+1} + \gamma \widehat{v}(s_{t+1} | \omega) - \widehat{v}(s_{t} | \omega)$$

- Bootstrapped value. We don't need to the end of episode to update the NN
- Bootstrapped value: the estimate of the rest of the rewards that we expect to get starting from the next state
- The baseline eliminates the effect of the state that we're in.
- Subtract this because we want to evaluate only the merit of that action

REINFORCE vs. A2C

- REINFORCE:
- Used true return: $R_{t+1} + \gamma R_{t+2} + ... + \gamma^{T-t-1} R_T$
- Unbiased empirical return, but with high variance
- A2C:
- Used bootstrapping: $R_{t+1} + \gamma \hat{v}(s_{t+1}) \hat{v}(s_t)$
 - Learning occurs during the episode
 - we don't need to the end of episode to update the NN.
- Reducing variance accelerates learning
 - Bootstrapping introduces bias but reduces variance

Algorithm 1 Advantage Actor-Critic (A2C)

- 1: **Input:** α learning rate, γ discount factor.
- 2: Initialize parallel environments E
- 3: Initialize policy network parameters θ
- 4: Initialize value network parameters w
- 5: for episode in 1..N do
- 6: Initialize parallel environments E and obtain initial states S_0
- 7: **for** t = 0..T-1 **do**
- 8: $A_t \sim \pi(S_t|\theta)$
- 9: Execute the actions in the environments E and obtain R_{t+1}, S_{t+1}
- 10: Update the value network with SGD:

$$L(\boldsymbol{w}) = \frac{1}{|E|} \left[\boldsymbol{R_{t+1}} + \gamma v(\boldsymbol{S_{t+1}} | \boldsymbol{w}) - v(\boldsymbol{S_t} | \boldsymbol{w}) \right]^2$$
(1)

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \alpha \nabla L(\boldsymbol{w}) \tag{2}$$

11: Update the policy network with SGA:

$$A\hat{d}v_t = R_{t+1} + \gamma v(S_{t+1}|w) - v(S_t|w)$$
(3)

$$\hat{J}(\boldsymbol{\theta}) = \gamma^t \boldsymbol{A} \hat{\boldsymbol{d}} \boldsymbol{v_t} \ln \pi(\boldsymbol{A_t} | \boldsymbol{S_t}, \boldsymbol{\theta}) + \boldsymbol{H_t}$$
(4)

$$\boldsymbol{\theta} = \boldsymbol{\theta} + \alpha \nabla \hat{J}(\boldsymbol{\theta}) \tag{5}$$

 $H(X) = -\sum p(x) \cdot \ln p(x)$

12: end for

13: end for

Code Ex.

- Arcrobot: swing the lower part of a twolink robot up to a given height.
- Observations space: The agent observes current positions and velocities of the joints.
- Action space: It can act by applying positive torque (value 0), no torque (value 1), or negative torque (value 2) only to the joint between the two links.

0	1	2	3	4	5
$\cos(\theta_1)$	$\sin(\theta_1)$	$\cos(\theta_2)$	$\sin(\theta_2)$	$\dot{ heta}_1$	$\dot{ heta}_2$

Action	0	1	2
Torque	-1	0	1

Code Ex.

- Upload 'A2C_Acrobot.ipynb' file onto Colab
- Upload 'utils.py' file onto Colab
- Upload 'parallel_env.py' file onto Colab
- Add 'pip install numpy==1.23.1