Data-Driven Modeling dan Forecasting untuk Transmisi COVID-19

Agus Hasan

Center for Unmanned Aircraft Systems Mærsk McKinney Møller Institute University of Southern Denmark SimcovID

May 2020

Outline

- Tujuan
- Data yang tersedia
- Framework yang dipakai
 - ► Model dinamik
 - Vektor data
 - Asimilasi data
- Contact Index (CI)
- Hasil dan pembahasan

Tujuan

▶ Mengukur intensitas penyebaran COVID-19

Proyeksi satu bulan kedepan (forecasting)

Data yang tersedia

Jumlah populasi: N = 273523615

Date	Month	Susceptible (S)	Infectious (I)	Recovered (R)	Dead (D)
:	:	:	:	:	:
28	4	273512077	7484	1254	773
29	4	273511669	7596	1391	784
30	4	273511183	7804	1522	792
1	5	273510673	8160	1591	800
2	5	273510276	8347	1665	831
3	5	273509702	8471	1876	845
:	•		:	:	:

- https://www.worldometers.info/coronavirus/
- https://kawalcovid19.id/
- https://corona.jakarta.go.id/id/data-pemantauan
- ▶ etc

Framework yang dipakai

- ▶ Model dinamik (x(k+1))
- ightharpoonup Vektor data $(\mathbf{y}(k))$
- Asimilasi data

Discrete-time stochastic augmented compartmental model.

$$S(k+1) = \left(1 - \frac{\Delta t}{NT_i} R_t(k) I(k)\right) S(k)$$

$$I(k+1) = \left(1 - \frac{\Delta t}{T_i}\right) I(k) + \frac{\Delta t}{NT_i} R_t(k) I(k) S(k)$$

$$R(k+1) = R(k) + \frac{1 - \chi}{T_i} \Delta t I(k)$$

$$D(k+1) = D(k) + \frac{\chi}{T_i} \Delta t I(k)$$

$$R_t(k+1) = R_t(k)$$

parameter	simbol
Case-Fatality Rate	χ
waktu infeksi	T_i

Discrete-time stochastic augmented compartmental model.

$$S(k+1) = \left(1 - \frac{\Delta t}{NT_i} R_t(k) I(k)\right) S(k) + w_1$$

$$I(k+1) = \left(1 - \frac{\Delta t}{T_i}\right) I(k) + \frac{\Delta t}{NT_i} R_t(k) I(k) S(k) + w_2$$

$$R(k+1) = R(k) + \frac{1 - \chi}{T_i} \Delta t I(k) + w_3$$

$$D(k+1) = D(k) + \frac{\chi}{T_i} \Delta t I(k) + w_4$$

$$R_t(k+1) = R_t(k) + w_5$$

parameter	simbol
Case-Fatality Rate	χ
waktu infeksi	T_i

Discrete-time stochastic augmented compartmental model.

$$S(k+1) = \left(1 - \frac{\Delta t}{NT_i} R_t(k) I(k)\right) S(k) + w_1$$

$$I(k+1) = \left(1 - \frac{\Delta t}{T_i}\right) I(k) + \frac{\Delta t}{NT_i} R_t(k) I(k) S(k) + w_2$$

$$R(k+1) = R(k) + \frac{1 - \chi}{T_i} \Delta t I(k) + w_3$$

$$D(k+1) = D(k) + \frac{\chi}{T_i} \Delta t I(k) + w_4$$

$$R_t(k+1) = R_t(k) + w_5$$

parameter	simbol
Case-Fatality Rate	χ
waktu infeksi	T_i

 $\mathbf{w}(\mathbf{k}) \sim \mathcal{N}(\mathbf{0}, \mathbf{Q}) \leftarrow \text{distribusi normal.}$

Kita definisikan

$$x(k+1) = \begin{pmatrix} S(k+1) \\ I(k+1) \\ R(k+1) \\ D(k+1) \\ R_t(k+1) \end{pmatrix}$$

Model diskrit dapat ditulis sebagai

$$x(k+1) = f(x(k)) + w(k)$$

Framework yang dipakai

- ▶ Model dinamik (x(k+1))√
- ightharpoonup Vektor data (y(k))
- Asimilasi data

Vektor Data

Vektor data dapat ditulis sebagai

$$\mathbf{y}(k) = \begin{pmatrix} S(k) \\ I(k) \\ R(k) \\ D(k) \end{pmatrix}$$

Vektor Data

Vektor data dapat ditulis sebagai

$$\mathbf{y}(k) = \begin{pmatrix} S(k) \\ I(k) \\ R(k) \\ D(k) \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}}_{\mathbf{C}} \underbrace{\begin{pmatrix} S(k) \\ I(k) \\ R(k) \\ D(k) \\ R_t(k) \end{pmatrix}}_{\mathbf{x}(k)}$$

Vektor Data

Vektor data dapat ditulis sebagai

$$\mathbf{y}(k) = \begin{pmatrix} S(k) \\ I(k) \\ R(k) \\ D(k) \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}}_{\mathbf{C}} \underbrace{\begin{pmatrix} S(k) \\ I(k) \\ R(k) \\ D(k) \\ R_{\mathbf{t}}(k) \end{pmatrix}}_{\mathbf{x}(k)} + \mathbf{v}(k)$$

Asumsi

 $\mathbf{v}(\mathbf{k}) \sim \mathcal{N}(\mathbf{0}, \mathbf{R}) \leftarrow \text{distribusi normal.}$

Framework yang dipakai

- ▶ Model dinamik (x(k+1))√
- ▶ Vektor data (y(k))✓
- Asimilasi data

Asimilasi Data

Inisialisasi Q, R, P(0|0)

Prediksi

$$\hat{\mathbf{x}}(k|k-1) = \mathbf{f}(\hat{\mathbf{x}}(k-1|k-1))$$

$$P(k|k-1) = F(k)P(k|k-1)F(k)^{\mathsf{T}} + Q$$

Update

$$K(k) = P(k|k-1)C^{\mathsf{T}} (CP(k|k-1)C^{\mathsf{T}} + R)^{-1}$$

$$\hat{\boldsymbol{x}}(k|k) = \hat{\boldsymbol{x}}(k|k-1) + \underbrace{\boldsymbol{K}(k)}_{\text{posteriori estimate}} \underbrace{(\boldsymbol{y}(k) - \boldsymbol{C}\hat{\boldsymbol{x}}(k|k-1))}_{\text{data injeksi}}$$

$$P(k|k) = (I - K(k)C)P(k|k-1)$$

F(k) adalah matrix Jacobi dari f(k).

Contact Index (CI)

$$CI = \frac{R_t}{R_0}$$
 atau $CI = \frac{R_t}{Rt_{max}}$

Kontak Indeks (KI)

Total lockdown

Testing, Tracing, Tracking, Treating

Lockdown

Lockdown

Physical distancing

Lockdown

Lockdown

Partial lockdown

Lockdown

