Traffic Flow Dynamics

Martin Treiber · Arne Kesting

Traffic Flow Dynamics

Data, Models and Simulation

Translated by Martin Treiber and Christian Thiemann

Martin Treiber Institut für Wirtschaft und Verkehr TU Dresden Dresden Germany Arne Kesting TomTom Development Germany GmbH Berlin Germany

ISBN 978-3-642-32459-8 ISBN 978-3-642-32460-4 (eBook) DOI 10.1007/978-3-642-32460-4 Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012944963

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

In order to keep people moving in times of rising traffic and limited resources, science is challenged to find intelligent solutions. Over the past few years, contributions from engineers, physicists, mathematicians, and behavioral psychologists have lead to a better understanding of driver behavior and vehicular traffic flow. This interdisciplinary field will surely produce further advances in the future. The focus is on new applications ranging from novel driver-assistance systems, to intelligent approaches to optimizing traffic flow, to the precise detection of traffic jams and the short-term forecasting of traffic for dynamic navigation aids.

This textbook offers a comprehensive and didactic account of the different aspects of vehicular traffic flow dynamics and how to describe and simulate them with mathematical models. We hope to make this fascinating field accessible to a broader readership; to date, it has only been documented in specialized scientific papers and monographs.

Part I describes how to obtain and interpret traffic flow data, the basis of any quantitative modeling. The second and main part is devoted to the different approaches and models used to mathematically describe traffic flow. The starting point of most models are the basic concepts of physics—many-particle systems, hydrodynamics, and classical Newtonian mechanics—augmented by behavioral aspects and traffic rules. At the website accompanying this book, the reader can interactively run a selection of traffic models and reproduce some of the simulation results displayed in the figures. Part III gives an overview of major applications including traffic-state estimation, fuel consumption, and emission modeling, determining travel times (the basis of dynamic navigation), and how to optimize traffic flow.

The book is written for students, lecturers, and professionals of engineering and transportation sciences and for interested students in general. It also offers material for project work in programming, numerical methods, simulation, and mathematical modeling at college and university level. The reference implementations in the

¹ see: www.traffic-flow-dynamics.org

vi Preface

multi-model open-source vehicular traffic simulator $MovSim^2$ can be used as a starting point for the reader's own simulation experiments and model development.

This work originates from the lecture notes of courses in traffic flow dynamics and modeling at the Dresden University of Technology, Germany; these have been previously published, by the same publisher, in the German book "Verkehrsdynamik und Simulation". The English edition has been updated and significantly extended to include new topics, e.g., on model calibration. To underline its text-book character, it contains many problems with elaborated solutions.

We thank all colleagues at our Department for Traffic Econometrics and Modeling at the Dresden University of Technology, particularly Dirk Helbing, for various scientific discussions and stimulations. We would also like to thank Marietta Seifert, Christian Thiemann, and Stefan Lämmer for suggestions and corrections. Special thanks go to Martin Budden for reviewing the manuscript as a native English speaker. He is also one of the main contributors to *MovSim*. Finally, we would like to thank Martina Seifert, Christine and Hanskarl Treiber, Ingrid, Bernd, and Dörte Kesting, Claudia Perlitius, and Ralph Germ who contributed to the book with valuable suggestions.

Dresden, June 2012

Martin Treiber Arne Kesting

² see: www.movsim.org

Contents

Part	Ι	Traffic Data
2	Tra	njectory and Floating-Car Data
	2.1	Data Collection Methods
	2.2	Time-Space Diagrams
	Pro	blems
3	Cro	oss-Sectional Data
	3.1	Microscopic Measurement: Single-Vehicle Data
	3.2	Aggregated Data
	3.3	Estimating Spatial Quantities from Cross-Sectional Data
		3.3.1 Traffic Density
		3.3.2 Space Mean Speed
	3.4	Determining Speed from Single-Loop Detectors
	Pro	blems
4	Rej	presentation of Cross-Sectional Data
	4.1	Time Series of Macroscopic Quantities
	4.2	Speed-Density Relation
	4.3	Distribution of Time Gaps
	4.4	Flow-Density Diagram
	4.5	Speed-Flow Diagram
	Pro	blems
5	Spa	ntiotemporal Reconstruction of the Traffic State
	5.1	Spatiotemporal Interpolation
	5.2	Adaptive Smoothing Method

viii Contents

		5.2.1 Characteristic Propagation Velocities	41
		5.2.2 Nonlinear Adaptive Speed Filter	42
		5.2.3 Parameters	43
		5.2.4 Testing the Predictive Power: Validation	43
			44
	5.3		45
		5.3.1 Model-Based Validation of a Data	
			47
			48
	Probl		50
Par	t II	Traffic Flow Modeling	
6	Gene	ral Aspects	55
	6.1	History and Scope of Traffic Flow Theory	55
	6.2	Model Classification	56
			56
		6.2.2 Mathematical Structure	59
			61
	6.3		63
	Probl		65
7		V 1	67
	7.1		67
	7.2	7 1	69
		ϵ	70
		1	71
		7.2.3 Changes in the Number of Lanes	72
		7.2.4 Discussion	74
	7.3	Continuity Equation from the Driver's Perspective	75
	7.4	Lagrangian Description	77
	Probl	ems	79
8	The 1	Lighthill-Whitham-Richards Model	81
	8.1		81
	8.2	•	83
	8.3		84
		8.3.1 Formation	84
			86
		1 6	87
	8.4		90
	8.5		90 91
	0.5		91 92
			92 93
		0.J.4 CHAIACICHNIC FIUDCHICS	77

Contents ix

		8.5.3	Model Formulation with Measurable Quantities	96		
		8.5.4	Relation to Car-Following Models	97		
		8.5.5	Definition of Road Sections	99		
		8.5.6	Modeling Bottlenecks	100		
		8.5.7	Numerical Solution of the Cell-Transmission			
			Model	105		
		8.5.8	Solving the Section-Based Model	108		
		8.5.9	Examples	113		
	8.6		on and Burgers' Equation	121		
	Probl			123		
9	Macroscopic Models with Dynamic Velocity					
	9.1		scopic Acceleration Function	127		
	9.2		ties of the Acceleration Function	130		
	· · -	9.2.1	Steady-State Flow	130		
		9.2.2	Plausibility Conditions	130		
	9.3		Il Form of the Model Equations	132		
	7.5	9.3.1	Local Speed Adaptation	132		
		9.3.2	Nonlocal Anticipation	133		
		9.3.3	Limiting Case of Zero Adaptation Time	133		
		9.3.4	Pressure Term	134		
		9.3.5	Diffusion Terms	136		
		9.3.6	On- and Off-Ramp Terms	137		
	9.4		ew of Second-Order Models	137		
	J. ↑	9.4.1	Payne's Model	137		
		9.4.1	Kerner–Konhäuser Model	140		
		9.4.2	Gas-Kinetic-Based Traffic Model	140		
	9.5		ical Solution	145		
	9.3	9.5.1	Overview	145		
		9.5.1		143		
		9.5.2	Upwind and McCormack Scheme	147		
			Approximating Nonlocalities	140		
		9.5.4	Criteria for Selecting a Numerical	1.40		
		0.5.5	Integration Scheme	148		
		9.5.5	Numerical Instabilities	150		
	D 11	9.5.6	Numerical Diffusion	153		
	Probl	ems		153		
10			Car-Following Models	157		
	10.1		l Remarks	157		
	10.2		matical Description	159		
	10.3	Steady State Equilibrium and the Fundamental Diagram 16				
	10.4	e				
	10.5		heet of Dynamical Model Characteristics	165		
		10.5.1	Highway Scenario	165		
		10.5.2	City Scenario	168		

x Contents

	10.6	Optimal Velocity Model	168
	10.7	Full Velocity Difference Model	171
	10.7	Newell's Car-Following Model	173
		ems	178
	11001	enis	1/0
11	Car-l	Following Models Based on Driving Strategies	181
	11.1	Model Criteria	181
	11.2	Gipps' Model	183
		11.2.1 Safe Speed	183
		11.2.2 Model Equation	184
		11.2.3 Steady-State Equilibrium	185
		11.2.4 Model Characteristics	185
	11.3	Intelligent Driver Model	187
	11.3	•	188
		· · · · · · · · · · · · · · · · · · ·	188
		11.3.2 Mathematical Description	189
		11.3.3 Parameters	
		11.3.4 Intelligent Braking Strategy	191
		11.3.5 Dynamical Properties	193
		11.3.6 Steady-State Equilibrium	195
		11.3.7 Improved Acceleration Function	196
		11.3.8 Model for Adaptive Cruise Control	198
	Probl	ems	202
12	Mode	eling Human Aspects of Driving Behavior	205
	12.1	Man Versus Machine	205
	12.2	Reaction Times	207
	12.3	Estimation Errors and Imperfect Driving Capabilities	210
	12.3	12.3.1 Modeling Estimation Errors	210
		12.3.2 Modeling Imperfect Driving	213
	12.4	Temporal Anticipation	213
	12.5	Multi-Vehicle Anticipation	215
	12.5		218
	12.0	Brake Lights and Further Exogenous Factors Local Traffic Context	219
	12.8	Action Points	220
	12.9	The Wiedemann Car-Following Model	221
	Probl	ems	223
13	Cellu	ılar Automata	225
10	13.1	General Remarks	225
	13.1	Nagel-Schreckenberg Model	229
	13.2	Refined Models	232
	13.3		232
		13.3.2 KKW Model	233

Contents xi

	13.4	Comparison of Cellular Automata	
		and Car-Following Models	236
	Probl	ems	237
14	Lane	-Changing and Other Discrete-Choice Situations	239
	14.1	Overview	239
	14.2	General Decision Model	240
	14.3	Lane Changes	242
		14.3.1 Safety Criterion	242
		14.3.2 Incentive Criterion for Egoistic Drivers	243
		14.3.3 Lane Changes with Courtesy: MOBIL Model	244
		14.3.4 Application to Car-Following Models	245
	14.4	Approaching a Traffic Light	250
	14.5	Entering a Priority Road	252
	Probl	ems	253
15	Stabi	ility Analysis	257
	15.1	Formation of Stop-and-Go Waves	257
	15.2	Mathematical Classification of Traffic Flow Instabilities	259
	15.3	Local Instability	267
	15.4	String Instability.	272
	10.1	15.4.1 String Instability Conditions for	_,_
		Car-Following Models	272
		15.4.2 Flow Stability of Macroscopic Models	279
		15.4.3 Application to Specific Models	283
	15.5	Convective Instability and Signal Velocities	288
	15.6	Nonlinear Instability and the Stability Diagram	294
	15.7	Stability Classes	296
	15.8	Short-Wavelength Collective Instabilities	298
		ems	299
	~		• • •
16		oration and Validation	303
	16.1	General Aspects	304
		16.1.1 Mathematical Principles	304
		16.1.2 Nonlinear Optimization	307
		16.1.3 Assessing Models	311
		16.1.4 Implementing and Running a Calibration	313
	16.2	Calibration to Microscopic Observations	314
		16.2.1 Data Preparation	315
		16.2.2 Global Approach	318
		16.2.3 Local Approach	321
	16.3	Calibration to Macroscopic Observations	325
		16.3.1 Fitting Local Properties of Traffic Flow	326
		16.3.2 Calibration to Global Properties	328

xii Contents

	16.4 Probl	Validation	333 337
17	The 1	Phase Diagram of Congested Traffic States	339
	17.1	From Ring Roads to Open Systems	339
	17.2	Analysis of Traffic Patterns: Dynamic Phase Diagram	340
		17.2.1 Stability Class 1	342
		17.2.2 Stability Class 2	345
		17.2.3 Stability Class 3	346
	17.3	Simulating Congested Traffic Patterns	
		and the Phase Diagram	347
	17.4	Reality Check: Observed Patterns of Traffic Jams	350
	Probl	ems	350
Par	t III	Applications of Traffic Flow Theory	
18	Traff	ic Flow Breakdown and Traffic-State Recognition	355
	18.1	Traffic Flow Breakdown: Three Ingredients	
		to Make a Traffic Jam	355
	18.2	Do Phantom Traffic Jams Exist?	360
	18.3	Stylized Facts of Congested Traffic	361
	18.4	Empirical Reality: Complex Patterns	363
	18.5	Fundamentals of Traffic State Estimation	364
	Probl	ems	365
19	Trav	el Time Estimation	367
	19.1	Definitions of Travel Time	367
	19.2	The Method of Trajectories	368
	19.3	The Method of Accumulated Vehicle Counts	369
	19.4	A Hybrid Method	371
	19.5	Virtual Stationary Detectors	373
	19.6	Virtual Trajectories	373
	19.7	Instantaneous Travel Time	375
	Probl	ems	376
20		Consumption and Emissions	379
	20.1	Overview	379
		20.1.1 Macroscopic Models	380
		20.1.2 Microscopic Models	382
		20.1.3 Relation Between Fuel Consumption	
		and CO ₂ Emissions	383

Contents xiii

	20.2	Speed-Profile Emission Models	383
	20.3	Modal Emission Models	385
		20.3.1 General Remarks	385
		20.3.2 Phenomenological Models	386
		20.3.3 Load-Based Models	387
	20.4	Physics-Based Modal Consumption Model	388
		20.4.1 Driving Resistance	388
		20.4.2 Engine Power	390
		20.4.3 Consumption Rate	391
		20.4.4 Characteristic Map for Engine Efficiency	392
		20.4.5 Output Quantities	394
		20.4.6 Aggregation to a Macroscopic Modal	
		Consumption Model	397
	Probl	ems	397
21	Mode	el-Based Traffic Flow Optimization	403
21	Mode 21.1	el-Based Traffic Flow Optimization	403 403
21			
21	21.1	Basic Principles	403
21	21.1 21.2	Basic Principles	403 405
21	21.1 21.2 21.3	Basic Principles	403 405 407
21	21.1 21.2 21.3 21.4	Basic Principles	403 405 407 411
21	21.1 21.2 21.3 21.4 21.5	Basic Principles	403 405 407 411 412
21	21.1 21.2 21.3 21.4 21.5 21.6	Basic Principles	403 405 407 411 412 416
221	21.1 21.2 21.3 21.4 21.5 21.6	Basic Principles	403 405 407 411 412 416 417
21	21.1 21.2 21.3 21.4 21.5 21.6	Basic Principles	403 405 407 411 412 416 417 417
	21.1 21.2 21.3 21.4 21.5 21.6 21.7	Basic Principles	403 405 407 411 412 416 417 417 418