

INDIAN INSTITUTE OF TECHNOLOGY MADRAS

Roll No. Man 1 / P 0 2 3

Name: H. Vull Total No. of Pages Quiz I Quiz-II/ Mid-Sem End-Semester Make-up Date: 24 61, 2020											
Semester & Degree : 1000 OS 8th Sum Course No. CS 6700 Part :											
Question No.		1	2	3	4	5	6	7	8	9	10
Marks		C	0	6	9	2	0	0	1	t-5	0
11	12	13	14	15	16	17	18	19	20	То	tal
-	1.5							l		12.5	
100	· .	An	swer on bo	th sides	of the pan	er includ	ing the	snace held	w		

$$V(s) = \begin{cases} 0 \\ 0 \end{cases} p(s) \qquad (Linear for approximator)$$
where $p(s) = \begin{cases} 1 \\ -1 \end{cases} p(s) = \begin{cases} 1 \\ -1 \end{cases} p(s) = \begin{cases} 0 \\ 0 \end{cases}$

$$V(s) = \begin{bmatrix} v(s_1) \\ v(s_2) \end{bmatrix} = \begin{bmatrix} \theta_0 & -\theta_1 + \theta_2 \\ -\theta_0 & -\theta_1 + \theta_2 \end{bmatrix}$$

$$V(s) = \begin{bmatrix} a - \theta_1 \\ -(a + \theta_1) \end{bmatrix}$$

a-0,, - (a+0,) are linearly and appendent as $\alpha(a-\theta_1) + \beta(-a-\theta_1) = 0$ d = 0, B

Sonkia (V) VOC=12/HOST dim (V) THT=12 MAIGH as Any point in 20 space (1R2) can be represented and the corresponding value function can be barnt. This is similar to a look-up table, where instead of hot - encodings, we we a different formulation. TD (0) : θ_{tH} \leftarrow θ_{t} + $a\left(\frac{R_{tH}}{R_{tH}} + \frac{1}{2}V_{t}(S_{th}) - V_{t}(S_{t})\right)V_{\theta_{t}}V_{t}(S_{t})$ >> 0+ + x (-5+7√(si) - √(sz)) Pot √(sz) $V(s_2) = \theta \theta(s_L)$ $\nabla_{\theta t} V_t(s_t) = \varnothing(s_t) = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ $\theta_{tH} \leftarrow \theta_{t} - d \left(-5 + \sqrt{V_{t}(s_{1})} - V_{t}(s_{2}) \right)$ $\rho_{H_2} \neq \rho_{t} = \sqrt{(-5 + \sqrt{V_{t}(s_1)} - V_{t}(s_2))}$ 0^{+1} $\in 0^{+} + (-2 + 3N^{+}(21) - N^{+}(27))$ where of devote the ith denut of of

In Case of polony ingrovement, The far any most of $\frac{Y}{R_n} + \frac{1}{2} \frac{1}{R_n} + \frac{1}{2} \frac{1}{R_n}$ This is equivalent to saying T" (s) = any ma q" (s, a) $\exists \quad T^{*}(s) \quad \exists \quad \text{max} \quad \left\{ \begin{array}{c} |s| \\ |s|$ ke taken vissole there exists a state is s.t. q (s, n) > v (s) - choosing that state would I got continuiting the fact that I is optimal v^{π} (s) = E_{π} [G_{t} | S_{t} = s] $= E_{\kappa} \begin{bmatrix} R_{+++} + R_{++2} + - - R_{++k} \end{bmatrix} S_{t} = S$ $= \frac{E_{\star}}{E_{\star}} \left[\begin{array}{c|c} R_{\star + H} & + & \sqrt{K} & (S_1) \\ - & R_{\star + H} & + & \sqrt{K} & (S_1) \end{array} \right]$

Scanned with CamScanner

1(0) = E[RE] $= \sum_{n=1}^{\infty} \gamma_{+}(n) \ T(n, \theta)$ Elis (FEHS) 9 (a)/ F to be them $\pi(a,\beta)$ e re(i)/p Thus, we have a definition for the policy is parametorized the temperature parameter B The updates are $P_{t+1}(n_t) = P_t(n_t) + \alpha(R_t - b_t) (1 - \pi_t(n_t))$ and VIH (a) = Vt(a) - x(R: -bt) Tt(a) + A fax More And the parameter can be updated as Apt = dn (Re- bg) 2 lnt (ag; Bg) cuted polocy graduat problem

