פרק 3: הסתברות מותנית ואי-תלות (סיכום) פרק 3:2.11)

הסתברות מותנית:

. P(B) > 0 שני מאורעות במרחב מדגם S, כך שמתקיים שני מאורעות יהיו

A בתנאי A בתנאי (המותנית) ההסתברות המאורע B מתרחש, אם ידוע שהמאורע A יתרחש, נקראת ההסתברות (המותנית) של A בתנאי A בתנאי A מסומנת ב- A (חמוגדרת על-ידי A בתנאי A מסומנת ב- A (חמוגדרת על-ידי A בתנאי A בתנאי A מחומנת ב- A (חמוגדרת על-ידי A בתנאי A בתנאי

נוסחת הכפל:

$$P(A_1 \cap A_2 \cap ... \cap A_n) = P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_1 \cap A_2) \cdot ... \cdot P(A_n \mid A_1 \cap A_2 \cap ... \cap A_{n-1})$$

נוסחת ההסתברות השלמה:

, $B_1 \cup B_2 \cup ... \cup B_n = S$ המקיימים , S המקיימים , B_1 מאורעות B_2 ,... , B_2 , B_3 ויהיו ויהיו ויהיו אורע במרחב מדגם ... אז - אז

$$P(A) = P(A \cap B_1) + P(A \cap B_2) + \dots + P(A \cap B_n)$$

= $P(A \mid B_1)P(B_1) + P(A \mid B_2)P(B_2) + \dots + P(A \mid B_n)P(B_n)$

נוסחת בייס:

, $B_1 \cup B_2 \cup ... \cup B_n = S$ המקיימים ב- S, המקיימים B_n ,... , B_2 , B_1 ויהיו ויהיו S ויהיו במרחב אז אז אז - אז

$$P(B_j \mid A) = \frac{P(B_j \cap A)}{P(A)} = \frac{P(A \mid B_j)P(B_j)}{P(A \mid B_1)P(B_1) + P(A \mid B_2)P(B_2) + \dots + P(A \mid B_n)P(B_n)}$$

מאורעות בלתי-תלויים:

S מאורעות במרחב מדגם B יהיו

$$P(A \cap B) = P(A)P(B)$$
 – או- A ייקראו בלתי-תלויים, אם מתקיים תנאי האי-תלות A

 $P(B \mid A) = P(B)$ וגם $P(A \mid B) = P(A)$ וגם ולא-ריקים מתקיים וגם וגם וגם $P(A \mid B) = P(A)$

S מאורעות במרחב מדגם A_n, \dots, A_2, A_1 יהיו

- האי-תלווים, אם לכל תת-קבוצה A_{ir} ,..., A_{i2} , A_{i1} שלהם מתקיים תנאי האי-תלוות ייקראו בלתי-תלווים, אם לכל ה

$$P(A_{i1} \cap A_{i2} \cap ... \cap A_{ir}) = P(A_{i1})P(A_{i2}) \cdot ... \cdot P(A_{ir})$$

S מדגם במרחב מאורעות M_1 , מאורעות מדגם יהיו

. ייקראו בלתי-תלויים, אם המאורעות בכל תת-קבוצה סופית שלהם בלתי-תלויים. A_{2} , A_{1}

מאורעות בלתי-תלויים בתנאי:

S ו- B מאורעות במרחב מדגם B יהיו

-תלות האי-תלויים מתקיים תנאי האי-תלויים בתנאי A_2 ו- A_1

$$P(A_1 \cap A_2 | B) = P(A_1 | B)P(A_2 | B)$$

:טענות

- . אם Aו- B בלתי-תלויים, אז Aו- B בלתי-תלויים, B^C ו- B בלתי-תלויים, וו- B^C בלתי-תלויים. אפשר להכליל טענה זו ל- B מאורעות.
- תרחש אותו זרים אל אותו ניסוי מקרי, אז בחזרות בלתי-תלויות על ניסוי זה, המאורע A יתרחש . B . A אם A יתרחש . $\frac{P(A)}{P(A) + P(B)}$
- כאשר B מאורע במרחב מדגם S המקיים המקיים , P(b)>0 היא פונקציית הסתברות לכל דבר, כלומר , P(b)>0 היא מקיימת את שלושת אקסיומות ההסתברות:
 - $0 \le P(A|B) \le 1$ מתקיים S במרחב המדגם A במרחב לכל מאורע
 - P(S|B) = 1 .2
 - $Pigg(igcup_{i=1}^{\infty}A_i \left| B
 ight) = \sum\limits_{i=1}^{\infty}P(A_i \left| B
 ight)$ מתקיים S מתקיים S במרחב במרחב ... A_2 , A_1 מאורעות זרים S לכל סדרה של מאורעות זרים S במרחב המדגם S מתקיים S במרחב המדגם S מתקיים S מתקיים
 - . נוסחת ההסתברות השלמה למאורעות מותנים:

אם להום (כלומר, האיחוד שלהם הוא מאורע ריק) וכוללים (כלומר, האיחוד שלהם שלהם לכלומר, החיתוך מאורע החיתוך אם B_n ,... , B_2 , B_1 שווה למרחב המדגם) ואם C הוא מאורע המקיים שווה למרחב המדגם) ואם C

$$P(A \mid C) = P(A \mid B_1 \cap C)P(B_1 \mid C) + P(A \mid B_2 \cap C)P(B_2 \mid C) + ... + P(A \mid B_n \cap C)P(B_n \mid C)$$