浙江工业大学 线性代数期末试卷 (2018~2019第一学期)

任课教师	学院班级:		选课班中编号:			
学号:			得分:			
题号	_	=	Ξ	四		
得分						
一. 填空题(每:	空 3 分, 共 30 分)	本题得分	}		
1. 已知行列式	$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = m, \begin{vmatrix} a_{12} \\ a_{22} \end{vmatrix}$	$\begin{vmatrix} a_{13} & a_{11} \\ a_{23} & a_{21} \end{vmatrix} = n$,则行	 ·列式			
$\begin{vmatrix} a_{11} & a_{12} + 2a_{13} \\ a_{21} & a_{22} + 2a_{23} \end{vmatrix}$	=o					
2. 设向量组 α =	$=(1,0,a)^T, \beta=(2,0)$	$(4,3)^T, \gamma = (1,3,2)^T$	线性相关,则。	<i>i</i> =		
3. 设矩阵 A 的	内秩为 2, 且η _ι =	$=(1,2,3)^T, \eta_2=(2,1)^T$	1,4)	齐 次线性方程组		
$AX = \beta$ 的两个	特解,则方程组	<i>AX</i> = 2 <i>β</i> 的通解	为	o		
4. 已知矩阵 <i>A</i> =	$\begin{bmatrix} 1 & 2 & 0 & 3 \\ 4 & 4 & 2 & 5 \\ 3 & a & 2 & 2 \end{bmatrix} $	J秩 R(A)<3,则 a	/=o			
5. 矩阵 $A = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$	2 0 3 0 0 4 的逆矩阵	$A^{-1} =$	0			
6. 设矩阵 $A = \begin{bmatrix} 0 & 10 & 6 \\ 1 & -3 & -3 \\ -2 & 10 & 8 \end{bmatrix}$,已知 $\alpha = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$ 是它的一个特征向量,则 α 所对应的						
特征值为						
7. 设向量 <i>α</i> ,,	β 的 长 度 依 次	为 2 和 3, 5	则 向 量 α+β 与	$\alpha - \beta$ 的内积		

- 8. 设矩阵 A 为三阶方阵,且A-E,A-2E,2A+E均为不可逆矩阵,则 |A|=______o
- 9. 已知 $\alpha_1,\alpha_2,\alpha_3$ 与 β_1,β_2,β_3 是三维向量空间 R^3 的两组基,若

$$\beta_1 = \alpha_1 + \alpha_3, \beta_2 = \alpha_1 + \alpha_2 + 2\alpha_3, \beta_3 = \alpha_1 + \alpha_2, \quad \text{M}(\beta_1, \beta_2, \beta_3) = (\alpha_1, \alpha_2, \alpha_3)$$

10. 设 $A = (\alpha_1, \alpha_2, \alpha_3)$ 为正交矩阵,则 $2\alpha_1^T \alpha_3 + 3\alpha_2^T \alpha_2 =$ ________。

二. 单项选择题(每小题 2 分,共 10 分)

本题得分

1. 设矩阵

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \quad B = \begin{bmatrix} a_{31} & a_{32} & a_{33} \\ a_{11} & a_{12} & a_{13} \\ a_{21} + a_{11} & a_{22} + a_{12} & a_{23} + a_{13} \end{bmatrix},$$

$$P_{1} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \quad P_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix},$$

则必有()

- (A) $AP_1P_2 = B$ (B) $AP_2P_1 = B$ (C) $P_1P_2A = B$ (D) $P_2P_1A = B$
- 2. 设 $AX = \beta$ 为非齐次线性方程组,则下列命题正确的有()
- (A) 若 AX = O 有非零解,则 $AX = \beta$ 有无穷多解
- (B) 若 $AX = \beta$ 有无穷多解,则 AX = O 必有非零解
- (C) 若 AX = O 只有唯一零解,则 $AX = \beta$ 必有非零解
- (D) 若 $AX = \beta$ 无解,则 AX = O 也无解
- 3. 设 ξ_1,ξ_2,ξ_3 是齐次线性方程组AX=O的基础解系,则下列向量组中也是 AX = O 的基础解系的是 ()
- (A) $\xi_1 \xi_2, \xi_2 \xi_3, \xi_3 \xi_1$ (B) $\xi_1 + \xi_2, \xi_2 + \xi_3, \xi_3 + \xi_1$
- (C) $\xi_1 \xi_2 + \xi_3, \xi_1 + 4\xi_2 \xi_3, 2\xi_1 + 3\xi_2$

- (D) $\xi_1 + \xi_2, \xi_2 \xi_3, \xi_3 + \xi_1$
- 4. 设 λ 是 n 阶可逆方阵 A 的特征值,p 为对应的一个特征向量,则以下结论正 确的是(
- (A) p 也是矩阵 A^{-1} 的属于特征值 λ^{-1} 的特征向量
- (B) p 也是矩阵 A^T 的属于特征值 λ 的特征向量
- (C) $(A \lambda E)X = O$ 的所有解都是 A 的特征向量
- (D) $(A \lambda E)X = O$ 的所有解都可表示为kp

5. 矩阵
$$\begin{bmatrix} 1 & a & 1 \\ a & b & a \\ 1 & a & 1 \end{bmatrix}$$
 与 $\begin{bmatrix} 2 & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 0 \end{bmatrix}$ 相似的充分必要条件是()

- (A) *a*=0, *b*=2 (B) *a*=0, *b* 为任意常数 (C) *a*=2, *b*=0 (D) *a*=2, *b* 为任意常数
- 三、计算题(每题10分,共50分)

1	2	3	4	5	本题总得分

1. 求向量组:
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$ 的秩和一个极大无关组,并把

其余向量用该极大无关组线性表示。

2. 求一个齐次线性方程组, 使它的基础解系为

$$\xi_1 = \begin{pmatrix} 0, & 1, & 2, & 3 \end{pmatrix}^T, \ \xi_2 = \begin{pmatrix} 3, & 2, & 1, & 0 \end{pmatrix}^T$$

3. 已知线性方程组

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_2 + 2x_3 + 2x_4 = 1 \\ -x_2 + ax_3 - 2x_4 = b \\ 3x_1 + 2x_2 + x_3 + ax_4 = -1 \end{cases}$$

- (1) 问 a、b 满足何种关系时,方程组无解?
- (2) 问 *a、b* 满足何种关系时,方程组有无穷多解?并在此时求出方程组的通解。

4. 若矩阵 $A = \begin{bmatrix} 2 & 2 & 0 \\ 8 & 2 & a \\ 0 & 0 & 6 \end{bmatrix}$ 相似于对角矩阵 Λ ,试确定常数 a 的值,并求可逆矩阵

P, $otin P^{-1}AP = \Lambda$ \circ

5. 若 $A^3 = O$,问A + E是否可逆?若可逆,求 $(A + E)^{-1}$ 。

四、证明题(每题5分,共10分)

1	2	本题总得分

1. 设向量组 A 的秩与向量组 B 的秩相等,且向量组 A 可由向量组 B 线性表示,证明向量组 A 与向量组 B 等价。

2. 设 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 是 4 阶矩阵, A^* 为 A 的伴随矩阵。若 $(1,0,0,1)^T$ 是方程组 AX = O 的一个基础解系。证明: $\alpha_2, \alpha_3, \alpha_4$ 是 $A^*X = O$ 的一个基础解系。