Алгоритмы порождения допустимых суперпозиций существенно нелинейных моделей

Г.И. РУДОЙ

Аннотация. При восстановлении нелинейной регрессии предлагается рассмотреть набор индуктивно порожденных моделей с целью выбора оптимальной модели. В работе исследуются индуктивные алгоритмы порождения допустимых существенно нелинейных моделей. Предлагается алгоритм, порождающий все возможные суперпозиции заданной сложности за конечное число шагов. В вычислительном эксперименте приводятся результаты для задачи моделирования волатильности опционов.

1. Введение

В ряде приложений [1] [2] [3] возникает задача восстановления регрессии по набору измеренных данных с условием возможности проинтерпретировать полученные данные экспертом.

Одним из методов, позволяющих получать интерпретируемые модели, является символьная регрессия [4] [5], в ходе которой измеренные данные приближаются некоторой математической формулой, например $\sin x^2 + 2x$ или $\log x - \frac{e^x}{x}$. Одна из возможных реализаций этого метода предложена Джоном Коза [6] [7], использовавшим эволюционные алгоритмы для реализации символьной регрессии. Иван Зелинка предложил дальнейшее развитие этой идеи [8], получившее название аналитического программирования.

Фактически, получаемая формула является математической моделью [9] исследуемого процесса или явления, то есть, это математическое отношение, описывающее основные закономерности, присущие этому явлению.

Алгоритм построения требуемой математической модели выглядит следующим образом: дан набор примитивных функций, из которых можно строить различные формулы (например, степенная функция, +, sin, tan). Начальный набор формул строится либо произвольным образом, либо на базе некоторых предположений эксперта. Затем на каждом шаге производится оценка каждой из формул согласно функции ошибки либо другого ¹ функционала качества. На базе этой оценки у некоторой части формул случайным образом заменяется одна элементарная функция на другую (например, sin на соз или + на ×), а у некоторой другой части происходит взаимный попарный обмен подвыражениями в формулах.

Key words and phrases. Символьная регрессия, индуктивное порождение нелинейных моделей. Научный руководитель В. В. Стрижов.

¹Сходу не нашел публикаций на тему использования других функционалов. Похоже, у Владиславлевой что-то было, но пока не могу сослаться на что-то конкретное.

Среди возможных путей улучшения качества символьной регрессии — анализ информативности различных признаков. Например, в ходе работы эволюционного алгоритма можно выявлять, какие из параметров слабо влияют на качество получающейся формулы, и либо убирать их совсем, либо обеспечивать неслучайность замены элементарных функций или обмена поддеревьев с целью замены этих параметров на другие в предположении, что они, возможно, окажутся более информативными.

Целью данной работы является теоретическое обоснование алгоритмов индуктивного порождения моделей и анализ этих алгоритмов.

Другим вопросом, возникающим при применении подобных эволюционных алгоритмов, является их принципиальная теоретическая корректность: способен ли вообще такой алгоритм породить искомую формулу.

В части 2 данной работы формально поставлена задача построения алгоритма индуктивного порождения моделей. Затем, в части 3 строится искомый алгоритм для частного случая непараметризованных моделей и доказывается его корректность, а затем алгоритм обобщается на случай моделей, имеющих параметры. В части 4 описываются вспомогательные технические приемы, использованные в практическом алгоритме порождения моделей, описанном в части 5.

2. Постановка задачи

2.1. **Алгоритмическая часть.** Пусть дан набор $(\mathbf{x_i}, y_i) \mid i \in \{1, ..., N\}, \mathbf{x_i} \in \mathbb{R}^n, y_i \in \mathbb{R}$. Предполагается, что $\mathbf{y} \in \mathcal{N}^2$.

Требуется построить аналитическую функцию $f:R^n\to R$ из заданного множества элементарных функций G и доставляющую минимум некоторому функционалу ошибки.

- 2.2. **Теоретическая часть.** Пусть $G = \{g_1, \dots, g_{n_g}\}$ множество данных примитивных функций. Требуется:
 - Построить алгоритм \mathfrak{A} , за конечное число итераций порождающий любую конечную суперпозицию, являющуюся суперпозицией данных примитивных функций.
 - Указать способ проверки изоморфности двух суперпозиций.

3. Пути решения задачи: теоретическая часть

Условимся считать, что каждой суперпозиции f сопоставлено дерево Γ_f , эквивалентное этой суперпозиции и строящееся следующим образом:

- В вершинах дерева находятся соответствующие примитивные функции.
- Число дочерних вершин у некоторой вершины равно арности соответствующей функции, а их порядок (в смысле обхода в глубину) соответствует порядку аргументов соответствующей функции.
- В листьях дерева находятся свободные переменные.

²А правда, зачем?

• Порядок вершин в смысле уровня относительно корня дерева определяет порядок вычисления примитивных функций: дерево вычисляется снизу вверх. То есть, сначала подставляются конкретные значения свободных переменных, затем вычисляются значения в вершинах, все дочерние вершины которых — свободные переменные, и так далее до тех пор, пока не останется единственная вершина, бывшая корнем дерева, содержащая результат выражения.

Таким образом, вычисление значения суперпозиции в некоторой точке эквивалентно подстановке соответствующих значений свободных переменных в граф выражения.

Для примера рассмотрим граф, соответствующий суперпозиции $\sin(\ln x_1) + \frac{x_2^3}{2}$:

3.1. Алгоритм порождения суперпозиций. Итак, пусть дано множество примитивных функций $G = \{g_1, \ldots, g_{n_g}\}$ и множество свободных переменных $X = \{x_1, \ldots, x_{n_x}\}$. Сначала опишем итеративный алгоритм, позволяющий за конечное число итераций построить суперпозицию произвольной наперед заданной длины без учета числовых коэффициентов. Для удобства будем исходить из предположения, что множество G состоит только из унарных и бинарных функций, и разделим его соответствующим образом на два подмножества: $G = G_b \cup G_u \mid G_b = \{g_{b_1}, \ldots, g_{b_k}\}, G_u = \{g_{u_1}, \ldots, g_{u_l}\}$, где G_b — множество всех бинарных функций, а G_u — множество всех унарных функций из G. Потребуем также наличия id в G_b .

Алгоритм 1. Алгоритм **Q** итеративного порождения суперпозиций.

- (1) Инициализируем вспомогательное множество $\mathcal{I}_f = \{(x,0) \mid x \in X\}.$
- (2) Инициализируем множество $\mathcal{F}_0 = X$.

(3) Для множества \mathcal{F}_i построим вспомогательное множество U_i , состоящее из результатов применения функций из G_u к элементам \mathcal{F}_i :

$$U_i = \{ g_u \circ f \mid g_u \in G_u, f \in \mathcal{F}_i \}$$

(4) Аналогичным образом построим вспомогательное множество B_i для бинарных функций:

$$B_i = \{ g_b \circ (f, h) \mid g_b \in G_b, f, h \in \mathcal{F}A_i \}$$

- (5) Обозначим $\mathcal{F}_{i+1} = \mathcal{F}_i \cup U_i \cup B_i$.
- (6) Для каждой суперпозиции f из \mathcal{F}_{i+1} добавим пару (f, i+1) в множество \mathcal{I}_f , если суперпозиция f еще там не присутствует.
- (7) Перейдем к следующей итерации.

Тогда $\mathcal{F} = \cup_0^\infty \mathcal{F}_i$ — множество всех возможных суперпозиций конечной длины, которые можно построить из данного множества примитивных функций.

Вспомогательное множество \mathcal{I}_f позволяет запоминать, на какой итерации была впервые встречена данная суперпозиция. Это необходимо, так как каждая суперпозиция, впервые порожденная на i-ой итерации, будет порождена еще раз и на любой итерации после i.

Алгоритм $\mathfrak A$ очевидным образом обобщается на множество G, содержащее функции произвольной (но имеющей конечную верхнюю грань) арности. Действительно, для такого обобщения достаточно строить аналогичным образом вспомогательные множества для этих функций.

Утверждение 1. Алгоритм $\mathfrak A$ корректен: любую конечную суперпозицию он действительно породит за конечное число шагов.

Доказательство. Чтобы убедиться в этом, найдем номер итерации, на котором будет порождена некоторая произвольная конечная суперпозиция f. Для этого достаточно представить суперпозицию f в виде соответствующего графа Γ_f и рекурсивно пройти от вершин к листьям, составляя цепочку соотношений на номера итераций по следующим правилам:

- Если вершина, полученная на i-ой итерации унарная функция, то это функция от выражения, полученного на (i-1)-ой итерации.
- Если вершина, полученная на i-ой шаге бинарная функция, то это функция от двух выражений, как минимум одно из которых получено на (i-1)-ой итерации, а другое на (i-1)-ой или ранее.
- Если это узел со свободной переменной, то он получен на нулевой итерации.

При помощи этой цепочки соотношений можно получить номер итерации, на которой суперпозиция f была порождена.

Иными словами, для любой суперпозиции мы можем указать конкретный номер итерации, на котором она будет получена, что и требовалось.

Алгоритм в таком виде не позволяет получать выражения для численных коэффициентов. Покажем, однако, на примере конструирования множеств U_i и B_i , как

исходный алгоритм может быть расширен с учетом таких коэффициентов путем введения параметров:

$$U_i = g_u \circ (\alpha f + \beta)$$
$$B_i = g_b \circ (\alpha f + \beta, \psi h + \phi)$$

Здесь параметры α, β зависят только от комбинации g_u, f (или g_b, f, h для $\alpha, \beta, \psi, \phi$). Соответственно, для упрощения их индексы опущены.

Иными словами, мы предполагаем, что каждая суперпозиция из предыдущих итераций входит в следующую, будучи умноженной на некоторой коэффициент и с константной поправкой.

Очевидно, при таком добавлении параметров $\alpha, \beta, \psi, \phi$ мы не изменяем мощности получившегося множества суперпозиций, поэтому алгоритм и выводы из него остаются корректны. В частности, исходный алгоритм является частным случаем данного при $\alpha \equiv \psi \equiv 1, \beta \equiv \phi \equiv 0$.

 $\alpha, \beta, \psi, \phi$ являются параметрами модели. В практических приложениях можно оптимизировать значения этих параметров у получившихся суперпозиций, например, алгоритмом Левенберга-Марквардта [10] [11].

Заметим также, что такая модификация алгоритма позволяет нам получить единицу, например, для построения суперпозиций типа $\frac{1}{x}$: $1=\alpha \ id \ x+\beta \mid \alpha=0, \beta=1.$

Отдельно подчеркнем, что численные коэффициенты у различных суперпозиций различны. Однако, так как на разных итерациях алгоритма мы можем получить, вообще говоря, одну и ту же суперпозицию с точностью до этих коэффициентов, их необходимо не учитывать при тестировании различных суперпозиций на равенство.

Кроме того, опять же, заметим, что и этот алгоритм очевидным образом обобщается на случай множества G, содержащего функции произвольной арности.

- 3.2. **Бесконечные суперпозиции.** В предложенных ранее методах [8] построения суперпозиций необходимо было самостоятельно следить за тем, чтобы в ходе работы алгоритма не возникало «зацикленных» суперпозиций типа f(x,y) = g(f(x,y),x,y). Заметим, что в предложенном алгоритме $\mathfrak A$ такие суперпозиции не могут возникнуть по построению.
- 3.3. **Множество допустимых суперпозиций.** Предложенный выше алгоритм позволяет получить действительно все возможные суперпозиции, однако, не все они будут пригодны в практических приложениях: например, $\ln x$ имеет смысл только при x>0, а $\frac{x}{0}$ не имеет смысла вообще никогда. Выражения типа $\frac{x}{\sin x}$ имеют смысл только при $x\neq \pi k$.

Таким образом, необходимо введение понятия множества *допустимых* суперпозиций — то есть, таких суперпозиций, которые в условиях некоторой задачи корректны.

Одним из способов построения только допустимых суперпозиций является модификация предложенного алгоритма таким образом, чтобы отслеживать совместность областей определения и областей значения соответствующих функций в ходе построения суперпозиций. Для свободных переменных это будет, в свою очередь, означать

необходимость задания областей значений пользователем при решении конкретных задач.

Заметим, что, хотя теоретически возможно выводить допустимость выражений вида $\frac{x}{\sin x}$ исходя из заданных условий на свободную переменную (например, что $x \in (\frac{\pi}{4}, \frac{\pi}{2})$), в общем случае это потребует решения неравенств в общем виде, что вычислительно неэффективно 3 .

3.4. Множество «минимальных» суперпозиций. В ходе работы алгоритма могут возникать суперпозиции вида x+x и 2x, и хотя эти выражения эквивалентны, они представляются различными формулами. Аналогично эквивалентны x+y и y+x, отличающиеся порядком следования слагаемых. Таким образом, необходим способ нормализации суперпозиций.

Во-первых, необходимо обеспечивать одинаковый порядок следования операндов, например, упорядочивая их каким-либо образом у коммутирующих бинарных функций.

Во-вторых, необходимо иметь набор правил, позволяющих проверить равенство x+x и 2x. Иными словами, необходимо иметь набор связей между различными функциями из множества данных примитивных функций. Заметим, что в общем случае эта задача требует введения значительного числа правил и по определению сводится к последовательному переборному их применению к различным подвыражениям суперпозиции.

В связи с этим может оказаться более эффективным иной подход к сравнению суперпозиций: так как по условию практической задачи значения искомой функции даны в конечном числе точек, то для проверки на равенство достаточно вычислить получившиеся суперпозиции в этих точках и сравнить их. 4

Другим способом, позволяющим избежать разрастания количества правил, может являться использование только «независимых» функций. Например, sin и соз связаны известным тригонометрическим соотношением с точностью до знака, а значит, \sin и $\tan = \frac{\sin}{\cos}$ также связаны, как и ряд прочих тригонометрических функций, поэтому предлагается среди примитивных функций оставить лишь \sin и стандартные арифметические действия для вывода прочих тригонометрических функций через соответствующие соотношения.

Однако, можно заметить два часто встречающихся шаблона правил, связывающих различные функции:

- Для унарных функций это $f \circ g = h$ (например, $\ln \circ \exp = id$).
- Для бинарных функций это f(x, g(x, i)) = g(x, s(i)). Например, x + xi = x(i+1): здесь $f = (+), g = (\times), s(i) = i+1$.

 $^{^3}$ А было бы вычислительно эффективно — все равно, похоже, было бы NP-сложной задачей

⁴Кстати, может, можно придумать какой-нибудь оптимальный алгоритм поиска расходящихся точек? Ну или эвристику хотя бы, позволяющую перебирать данные точки не в лоб, а более целенаправленно и позволяя находить точки, в которых значения различаются, более быстро.

В практических приложениях представляется целесообразным использование набора правил такого вида вкупе с использованием только «независимых» тригонометрических функций, то есть, по факту, какой-нибудь одной из них и еще одной обратной.

4. Алгоритм Левенберга-Марквардта и мультистарт

Алгоритм Левенберга-Марквардта \mathfrak{LM} предназначен для решения задачи минимизации функции, представляющей из себя сумму квадратичных членов. В частности, он используется для оптимизации параметров нелинейных регрессионных моделей в предположении, что в качестве критерия оптимизации используется среднеквадратичная ошибка модели на обучающей выборке:

$$S(\beta) = \sum_{i=1}^{m} [y_i - f(\mathbf{x_i}, \beta)]^2 \to \min,$$

где β — вектор параметров модели (суперпозиции) f.

 $\mathfrak{L}\mathfrak{M}$ может рассматриваться как комбинация методов Гаусса-Ньютона и градиентного спуска.

Перед началом работы алгоритма задается начальный вектор параметров β_0 . На каждой итерации этот вектор заменяется новой оценкой, $\beta + \delta$. Для определения δ используется линейное приближение функции:

$$\mathbf{f}(\mathbf{x}, \beta + \delta) \approx \mathbf{f}(\mathbf{x}, \beta) + \mathbf{J}\delta$$

где \mathbf{J} — якобиан функции \mathbf{f} в точке β .

Приращение δ в точке β , доставляющей минимум S, равно нулю, поэтому для нахождения последующего значения приращения δ приравняем нулю вектор частных производных S по β . То есть, в векторной нотации:

$$S(\beta + \delta) \approx \|\mathbf{y} - \mathbf{f}(\beta) - \mathbf{J}\delta\|^2$$
.

Дифференциирование по δ и приравнивание нулю приводит к следующему уравнению для δ :

$$(\mathbf{J}^T \mathbf{J})\delta = \mathbf{J}^T [\mathbf{y} - \mathbf{f}(\beta)].$$

Левенберг предложил заменить $(\mathbf{J}^T\mathbf{J})$ на $(\mathbf{J}^T\mathbf{J} + \lambda \mathbf{I})$, где λ — некоторый параметр регуляризации. Марквардт дополнил это предложение с целью более быстрого движения по тем направлениям, где градиент меньше. Для этого вместо \mathbf{I} используется диагональ матрицы $\mathbf{J}^T\mathbf{J}$, и искомое уравнение на δ выглядит как:

$$(\mathbf{J}^T\mathbf{J} + \lambda diag(\mathbf{J}^T\mathbf{J}))\delta = \mathbf{J}^T[\mathbf{y} - \mathbf{f}(\beta)].$$

Решая это уравнение, получаем окончательное выражение для δ :

$$\delta = (\mathbf{J}^T \mathbf{J} + \lambda diag(\mathbf{J}^T \mathbf{J}))^{-1} \mathbf{J}^T [\mathbf{y} - \mathbf{f}(\beta)].$$

Как и всякий подобный алгоритм оптимизации, $\mathfrak{L}\mathfrak{M}$ находит лишь локальный минимум. Для решения этой проблемы применяется метод *мультистарта*: случайным образом задается несколько начальных приближений, и для каждого из них запускается $\mathfrak{L}\mathfrak{M}$. Если найдено несколько различных локальных минимумов, то выбирается тот из них, в котором значение $S(\beta)$ меньше всего.

5. Вычислительный эксперимент

5.1. **Алгоритм.** Несмотря на то, что указанный ранее итеративный алгоритм порождения суперпозиций позволяет получить, в принципе, произвольную суперпозицию, для практических применений он непригоден, как и любой алгоритм, реализующий полный перебор, в связи с чрезмерной вычислительной сложностью. Вместо него можно использовать стохастические алгоритмы и ряд эвристик, позволяющих на практике получать за приемлемое время результаты, удовлетворяющие заранее заданным условиям «достаточной пригодности».

В настоящей работе предлагается следующий алгоритм:

Алгоритм 2. Алгоритм стохастического порождения суперпозиций. Вход:

- Множество примитивных функций.
- Множество точек обучающей выборки.
- ullet N_{max} максимальное число одновременно рассматриваемых суперпозиций.
- ullet I_{max} максимальное число итераций алгоритма.
- F_{min} минимальная приспособленность суперпозиций.
- (1) Инициализируется начальный массив суперпозиций случайным образом.
- (2) Оптимизируются параметры суперпозиций алгоритмом $\mathfrak{L}\mathfrak{M}$.
- (3) Для каждой еще не оцененной суперпозиции f рассчитывается значение функции ошибки S_f на обучающей выборке, и ставится в соответствие значение F_f , характеризующее «приспособленность» суперпозиции $f\colon F_f=\frac{1}{1+S_f}$. Таким образом, чем лучше результаты суперпозиции, тем ближе значение ее приспособленности κ 1, u, наоборот, чем хуже тем ближе κ 0. Если данная суперпозиция точно описывает данные, то значение ее приспособленности в точности равно единице.
- (4) Массив суперпозиций сортируется согласно их приспособленности.
- (5) Наименее приспособленные суперпозиции удаляются из массива до тех пор, пока его размер не станет равен $N_m ax$.
- (6) Отбирается некоторая часть наименее приспособленных суперпозиций. У этой части происходит случайная замена одной функции или свободной переменной на другую. Замена такова, чтобы сохранилась структура суперпозиции, а именно в случае замены функции сохраняется арность, а свободная переменная заменяется только на другую свободную переменную. При этом исходные суперпозиции сохраняются в множестве.
- (7) Повторяются шаги 3-4.

- (8) Производится случайный обмен поддеревьями наиболее приспособленных суперпозиций. При этом исходные суперпозиции сохраняются в массиве.
- (9) Повторяются шаги 3-4.
- (10) Проверяются условия останова: если либо число итераций больше I_{max} , либо в массиве есть хотя бы одна суперпозиция с приспособленностью больше, чем F_{min} , то алгоритм останавливается, и результатом является наиболее приспособленная суперпозиция, иначе переход к шагу 2.
- 5.2. **Данные.** В вычислительном эксперименте используются данные о волатильности опционов Brent Crude Oil.

Волатильность σ — финансовый показатель, характеризующий изменчивость цены. Волатильность является важным финансовым показателем и используется в управлении финансовыми рисками, так как представляет собой меру риска использования финансового инструмента (некоторого финансового документа, передача которого обеспечивает получение денежных средств) за некоторый заданный промежуток времени.

Волатильность пропорциональна стандартному отклонению σ_{SD} стоимости финансового инструмента и обратно пропорциональна квадратному корню из временного периода, обычно измеряемого в годах:

$$\sigma = \frac{\sigma_{SD}}{\sqrt{P}}.$$

Если P измеряется в годах, то σ называется среднегодовой волатильностью, и волатильность σ_T за интервал времени T, выраженный в годах, рассчитывается по формуле:

$$\sigma_T = \sigma \sqrt{T}$$
.

Например, если стандартное отклонение стоимости в течение дня составляет 0.01, а в году 252 торговых дня, то волатильность будет равна:

$$\sigma = \frac{0.01}{\sqrt{\frac{1}{252}}} \approx 0.159.$$

Отсюда волатильность за месяц будет равна:

$$\sigma_M = 0.159 \sqrt{\frac{1}{12}} \approx 0.0459.$$

Список литературы

- [1] P. Barmpalexis, K. Kachrimanis, A. Tsakonas, and E. Georgarakis. Symbolic regression via genetic programming in the optimization of a controlled release pharmaceutical formulation. *Chemometrics and Intelligent Laboratory Systems*, 107(1):75–82, 2011.
- [2] Peng Shi and Wei Zhang. A copula regression model for estimating firm efficiency in the insurance industry. *Journal of Applied Statistics*, 38(10):2271–2287, October 2011.

- [3] Selen Onel, Abe Zeid, Sagar Kamarthi, and Meredith Hinds Harris. Analysis of risk factors and predictive model for recurrent falls in community dwelling older adults. *Int. J. of Collaborative Enterprise*, 1:359–380, February 01 2011.
- [4] J. W. Davidson, D. A. Savic, and G. A. Walters. Symbolic and numerical regression: experiments and applications. In Robert John and Ralph Birkenhead, editors, *Developments in Soft Computing*, pages 175–182, De Montfort University, Leicester, UK, 29-30 June 2000. 2001. Physica Verlag.
- [5] Claude Sammut and Geoffrey I. Webb. Symbolic regression. In Claude Sammut and Geoffrey I. Webb, editors, *Encyclopedia of Machine Learning*, page 954. Springer, 2010.
- [6] John R. Koza. Genetic programming. In James G. Williams and Allen Kent, editors, *Encyclopedia of Computer Science and Technology*, volume 39, pages 29–43. Marcel-Dekker, 1998. Supplement 24.
- [7] John R. Koza. Introduction to genetic algorithms, August 15 1998.
- [8] Ivan Zelinka, Zuzana Oplatkova, and Lars Nolle. I. ZELINKA et al: ANALYTICAL PROGRAMMING ... ANALYTIC PROGRAMMING – SYMBOLIC REGRESSION BY MEANS OF ARBITRARY EVOLUTIONARY ALGORITHMS, August 14 2008.
- [9] Ю. Н. Павловский. Имитационные модели и системы. Фазис, 2000.
- [10] D. W. Marquardt. An algorithm for least-squares estimation of non-linear parameters. *Journal of the Society of Industrial and Applied Mathematics*, 11(2):431–441, 1963.
- [11] J. J. Moré. The Levenberg-Marquardt algorithm: Implementation and theory. In *G.A. Watson*, Lecture Notes in Mathematics 630, pages 105–116. Springer-Verlag, Berlin, 1978. Cited in Åke Björck's bibliography on least squares, which is available by anonymous ftp from math.liu.se in pub/references.

Московский физико-технический институт, $\Phi Y\Pi M$, каф. «Интеллектуальные системы»