Solving Mixed Integer Linear Programs using Cutting Planes

Tobias Kohler

May 16, 2024

Mixed Integer Linear Program

Mixed Integer Linear Program (MILP) and Relaxation

MILP (standard form)

$$c, x \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$$

LP Relaxation

$$\min_{x} c^{\top} x$$
s.t. $x \in P_{LP}$

$$:= \{x \mid Ax \le b, x \in \mathbb{R}_{>0}^{n} \}$$

Example

$$\min_{x,y} - y$$
s.t. $3x + 2y \le 6$

$$-3x + y \le 0$$

$$(x, y) \in \mathbb{Z}_{\geq 0} \times \mathbb{R}_{\geq 0}$$

$$\min_{x,y} - y$$
s.t. $3x + 2y \le 6$

$$-3x + y \le 0$$

$$(x, y) \in \mathbb{R}_{>0} \times \mathbb{R}_{>0}$$

Observations

$$\mathbf{c}^{\top} x_{LP}^* \leq c^{\top} x_{MILP}^*.$$

Observations

- $\mathbf{c}^{\top} x_{LP}^* \leq c^{\top} x_{MILP}^*$.
- If $x_{LP}^* \in F_{MILP}$, then $c^\top x_{LP}^* = c^\top x_{MILP}^*$.

Observations

- $c^{\top} x_{IP}^* \leq c^{\top} x_{MIP}^*$
- If $x_{IP}^* \in F_{MILP}$, then $c^\top x_{IP}^* = c^\top x_{MILP}^*$.
- \mathbf{x}_{IP}^* can be found at a vertex of P_{LP} (Simplex Algorithm).

Cutting Planes

Cutting Planes

Illustration

- An inequality $a^{\top}x \leq r$ is valid for a set F_{MILP} if $a^{\top}x \leq r$ is satisfied for all $x \in F_{MILP}$.
- For $x_{LP}^* \in P_{LP} \setminus F_{MILP}$ we define a <u>cutting plane</u> (or cut) w.r.t. x_{LP}^* as any valid inequality $a^\top x \le r$ for F_{MILP} such that:

$$a^{\top}x_{LP}^{*} > r$$

Cutting Planes Algorithm

```
1: LP \leftarrow Relaxation of the MILP

2: repeat

3: x^* \leftarrow Optimal solution of the LP

4: if (x_1^*, ..., x_{n_1}^*) \notin \mathbb{Z}^{n_1} then

5: Add a cut w.r.t. x^* to the LP

6: until (x_1^*, ..., x_{n_1}^*) \in \mathbb{Z}^{n_1}

7: return x^*
```

Cutting Strategy

Question: How to generate "good" and useful cuts?

Cutting Strategy

Question: How to generate "good" and useful cuts?

■ Good: Cut away as much as possible (while staying feasible)

Cutting Strategy

Question: How to generate "good" and useful cuts?

- Good: Cut away as much as possible (while staying feasible)
- Useful: Cut away the optimal solution of the relaxation

Convex Hull

Create convex hull - equivalent to relaxation. But too expensive (exponential!)

Any real number $a \in \mathbb{R}$ can be expressed as

$$a = |a| + f_a$$

for some unique $|a| \in \mathbb{Z}$ and $f_a \in [0, 1)$.

- $|a| = \max\{z \in \mathbb{Z} \mid z < a\}$ is the integer part of a.
- \bullet $f_a = a |a|$ is the fractional part of a.

Any real number $a \in \mathbb{R}$ can be expressed as

$$a = |a| + f_a$$

$$f_a = 0 \Leftrightarrow a = \lfloor a \rfloor \Leftrightarrow a \in \mathbb{Z}$$

for some unique $|a| \in \mathbb{Z}$ and $f_a \in [0, 1)$.

- $|a| = \max\{z \in \mathbb{Z} \mid z < a\}$ is the integer part of a.
- \bullet $f_a = a |a|$ is the fractional part of a.

Any real number $a \in \mathbb{R}$ can be expressed as

$$a = |a| + f_a$$

for some unique $\lfloor a \rfloor \in \mathbb{Z}$ and $f_a \in [0, 1)$.

- $\lfloor a \rfloor = \max\{z \in \mathbb{Z} \mid z \leq a\}$ is the integer part of a.
- $f_a = a \lfloor a \rfloor$ is the fractional part of a.

$$f_a = 0 \Leftrightarrow a = |a| \Leftrightarrow a \in \mathbb{Z}$$

■
$$\lfloor -a \rfloor = -\lceil a \rceil$$
 where $\lceil a \rceil = \min\{z \in \mathbb{Z} \mid z \geq a\}$

Any real number $a \in \mathbb{R}$ can be expressed as

$$a = |a| + f_a$$

for some unique $\lfloor a \rfloor \in \mathbb{Z}$ and $\mathit{f}_a \in [0,\,1).$

- $\lfloor a \rfloor = \max\{z \in \mathbb{Z} \mid z \leq a\}$ is the integer part of a.
- $f_a = a \lfloor a \rfloor$ is the fractional part of a.

$$f_a = 0 \Leftrightarrow a = |a| \Leftrightarrow a \in \mathbb{Z}$$

■
$$\lfloor -a \rfloor = -\lceil a \rceil$$
 where $\lceil a \rceil = \min\{z \in \mathbb{Z} \mid z \geq a\}$

$$lacksquare$$
 $a \in \mathbb{Z}$ and $a \leq b \Rightarrow a \leq \lfloor b \rfloor$

Any real number $a \in \mathbb{R}$ can be expressed as

$$a = |a| + f_a$$

for some unique $|a| \in \mathbb{Z}$ and $f_a \in [0, 1)$.

- $|a| = \max\{z \in \mathbb{Z} \mid z < a\}$ is the integer part of a.
- \bullet $f_a = a |a|$ is the fractional part of a.

$$f_a = 0 \Leftrightarrow a = |a| \Leftrightarrow a \in \mathbb{Z}$$

■
$$a \in \mathbb{Z}$$
 and $a \le b \Rightarrow a \le \lfloor b \rfloor$

$$lacksquare a \in \mathbb{Z}$$
 and $a \geq b \Rightarrow a \geq \lceil b \rceil$

Chvátal–Gomory Inequality for Integer Linear Programs

Let $\sum_{i=1}^n a_{ij} x_i \leq b_i$ for an Integer Linear Program $(x \in \mathbb{Z}_{>0}^n)$. Then the following inequalities are valid for any $\alpha > 0$:

$$\alpha \geq 0$$

$$\sum_{i=1}^{n} \lfloor \alpha a_{ij} \rfloor x_j \leq \alpha b_i$$

$$x_j \ge 0$$

$$\sum_{i=1}^{n} |\alpha a_{ii}| x_i \leq |\alpha b_i|$$

$$x_i \in \mathbb{Z}$$

Example

Illustration

Chvátal–Gomory Inequality

If not all variables are integer, these inequalities are not valid. Show that it does not work for mixed integer problem

Basic Mixed Integer Rounding Inequalities I

Let
$$x \in \mathbb{Z}_{>0}$$
, $y \in \mathbb{R}_{>0}$, $b \in \mathbb{R}_{>0} \setminus \mathbb{Z}$. Then

$$x \le \lfloor b \rfloor$$
 is a valid inequality for $\{x + y \le b\}$ (1)

and

$$x \ge \lceil b \rceil$$
 is a valid inequality for $\{-x + y \le -b\}$ (2)

Basic Mixed Integer Rounding Inequalities I

Hello World

Basic Mixed Integer Rounding Inequalities II

Let $x \in \mathbb{Z}_{>0}$, $y \in \mathbb{R}_{>0}$, $b \in \mathbb{R}_{>0} \setminus \mathbb{Z}$. Then

$$x - \frac{1}{f_b - 1} \le \lfloor b \rfloor \text{ is a valid inequality for } \{x - y \le b\}$$
 (1)

and

$$x + \frac{1}{f_b} \ge \lceil b \rceil$$
 is a valid inequality for $\{-x - y \le -b\}$ (2)

Basic Mixed Integer Rounding Inequalities II

General Mixed Integer Rounding Inequality

Let $F_{MIR} = \{(x, y) \in \mathbb{Z}_{>0}^2 \times \mathbb{R}_{>0} \mid a_1x_1 + a_2x_2 - y \leq b\}$ where $a \in \mathbb{R}^2$, $b \in \mathbb{R} \setminus \mathbb{Z}$ and assume that $f_1 \leq f_b \leq f_2$. Then the inequality

$$\lfloor a_1 \rfloor x_1 + \left(\lfloor a_2 \rfloor + \frac{f_2 - f_b}{1 - f_b} \right) x_2 - \frac{1}{1 - f_b} y \le \lfloor b \rfloor$$

is valid for F_{MIP} .

General Mixed Integer Rounding Inequality

Simplex Algorithm

Simplex finds $x^* \in P_{LP} \times \mathbb{R}^{N-n}_{>0}$ and creates the optimal simplex tableau:

i—th row in the simplex tableau

$$x_{B_i} + \sum_{j \in NB} \bar{a}_{ij} x_j = \bar{b}_i$$

- x_1, \dots, x_n : Integer problem variables
- $x_{n_1+1}, ..., x_n$: Real problem variables
- $x_{n+1}, ..., x_N$: (Real) slack variables

■
$$B = \{B_1, ..., B_m\}$$
: Basic variables

■ $NB = \{1, ..., N\} \setminus B$: Nonbasic variables $(x_i^* = 0 \text{ for } j \in NB)$

Gomory Mixed Integer Cut

Let $N_1 = NB \cap \{1, ..., n_1\}$, $N_2 = NB \cap \{n_1 + 1, ..., x_N\}$. Consider the i-th row in the optimal simplex tableau

$$x_{B_i} + \sum_{j \in \mathcal{N}_1} \bar{a}_{ij} x_j + \sum_{j \in \mathcal{N}_2} \bar{a}_{ij} x_j = \bar{b}_i$$

and assume $B_i \leq n_1$ but $x_{B_i}^* = \bar{b}_i \notin \mathbb{Z}$. Then the Gomory Mixed Integer Cut

$$x_{B_i} + \sum_{\substack{j \in N_1 \\ f_{ij} \le f_i}} \lfloor \bar{a}_{ij} \rfloor x_j + \sum_{\substack{j \in N_1 \\ f_{ij} > f_i}} \left(\lfloor \bar{a}_{ij} \rfloor + \frac{f_{ij} - f_i}{1 - f_i} \right) x_j + \sum_{\substack{j \in N_2 \\ \bar{a}_{ij} < 0}} \left(\frac{\bar{a}_{ij}}{1 - f_i} \right) x_j \le \lfloor \bar{b}_i \rfloor$$

is a valid inequality for F_{MIP} that is not satisfied by x^* .

Gomory Mixed Integer Cut

Cutting Planes Algorithm

- Let a MILP be given with feasible region $F_{MILP} = \{x \in \mathbb{Z}_{>0}^{n_1} \times \mathbb{R}_{>0}^{n-n_1} \mid Ax \leq b\}$ for some $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.
- The relaxation is the LP obtained by removing the integer constraints, so its feasible region is the polyhedron $P_{LP} = \{x \in \mathbb{R}^n_{>0} \mid Ax \leq b\}$.
- Repeat the following two steps until $x^* \in F_{MILP}$:
 - **1** Solve the LP using the Simplex Algorithm and obtain $x^* \in P_{LP}$
 - 2 TODO

Project Demonstration

Only adding an arbitrary, single cutting plane is very inefficient if the problem dimension is large.

- Only adding an arbitrary, single cutting plane is very inefficient if the problem dimension is large.
 - Heuristic to evaluate the efficiency of a cutting plane (e.g. euclidean distance to x^*).

- Only adding an arbitrary, single cutting plane is very inefficient if the problem dimension is large.
 - Heuristic to evaluate the efficiency of a cutting plane (e.g. euclidean distance to x^*).
 - Add multiple cutting planes in each iteration.

- Only adding an arbitrary, single cutting plane is very inefficient if the problem dimension is large.
 - Heuristic to evaluate the efficiency of a cutting plane (e.g. euclidean distance to x^*).
 - Add multiple cutting planes in each iteration.
- Other cutting plane strategies exist.

Branch & Bound 00

Branch & Bound

- Similar to Cutting Planes Solve Problem Relaxation, add constraints until solution is found
- Divide & Conquer

Branch & Bound

Branch & Cut

Branch & Cut

- Hello World
- Cutting Planes + Branch & Bound = Branch & Cut

References