LogicChen-Yu Wei

Wumpus World

Performance

Gold +1000, death -1000, -1 per step, -10 for using the arrow

Environment

Perceive stench if adjacent to wumpus

Perceive breeze if adjacent to pit

Perceive glitter if in the square of gold

Can grab gold if in the square of gold

Can shoot and kill wumpus if you're facing it

(shooting uses up the only arrow)

Die if entering a square with pit or living wumpus

Actions

Left turn, right turn, forward, grab, shoot

Sensors

Breeze, glitter, smell

4

3

2

ОК		
OK A	ок	

Systems with Logical Reasoning

- Knowledge base
 - Consists of some prior knowledge
- Inference engine
 - Derive new knowledge or make some claims
- User Interaction
 - **Tell** information
 - Ask question

Example: Expert System

Knowledge base

If has_hair, then mammal.

If mammal and has_hooves, then ungulate.

If has_feathers, then bird.

If mammal and carnivore and has_dark_spots, then cheetah.

If mammal and carnivore and has_black_stripes, then tiger.

If bird and does_not_fly and has_long_neck, then ostrich.

User interaction

File Edit Settings Run Debug Help

Welcome to SWI-Prolog (threaded, 64 bits, version 9.2.6)

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software. Please run ?- license. for legal details.

For online help and background, visit https://www.swi-prolog.org For built-in help, use ?- help(Topic). or ?- apropos(Word).

?- go.

Does the animal have hair? yes.

Does the animal eat meat? |: no.

Does the animal have pointed teeth? |: no.

Does the animal have hooves? |: yes.

Does the animal have long legs? |: yes.

I guess that the animal is: giraffe true.

?- ■

Example: wumpus world

Knowledge base

Perceive stench if adjacent to wumpus

Perceive breeze if adjacent to pit

Perceive glitter if in the square of gold

. . .

User interaction

Tell the logic system whether stench, breeze, glitter is perceived Ask for the next action

Inference Engine

3

2

Ingredients of Propositional Logic

Sentence

Knowledge base consists of "sentences"

Inference algorithm derives new "sentences" and add them to the knowledge base

Example:

```
KB = \{ \text{"Rain} \rightarrow \text{Wet"}, \text{"Rain"} \}
```

Inference algorithm derives a new sentence "Wet" based on KB

Now KB becomes

```
KB = {"Rain→Wet", "Rain", "Wet" }
```

Ingredients of Logic – Syntax

Define what are valid sentences.

E.g., syntax in **python**:

"for x in range(10): " Valid

"for x range(10): " Invalid (the python interpreter cannot understand)

E.g. syntax in **math**:

"
$$x + y = 5$$
" Valid

"
$$x 5 = y +$$
" Invalid

Ingredients of Logic – Syntax

Syntax in **propositional logic**:

- A proposition symbols X is a sentence
 (a propositional symbol is a Boolean variable)
- If α is a sentence then $\neg \alpha$ is a sentence
- If α and β are sentences then $\alpha \wedge \beta$ is a sentence
- If α and β are sentences then $\alpha \vee \beta$ is a sentence
- If α and β are sentences then $\alpha \Rightarrow \beta$ is a sentence
- If α and β are sentences then $\alpha \Leftrightarrow \beta$ is a sentence

The \neg , \wedge , \vee , \Rightarrow , \Leftrightarrow symbols have no meaning here. Their meanings are specified by the "semantics" of logic (discussed next).

Let's first define "models". A model is a configuration of the world.

In propositional logic, a model is an **assignment of truth values** to propositional symbols.

E.g., There are four possible models in the raining example:

$$f = \mathsf{Rain} \vee \mathsf{Wet}$$

models where the sentence f is true

Р	Q	(P ^ Q)
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Р	Q	(P v Q)
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Р	Q	(P =>Q)
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Р	Q	(P ⇔Q)
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

 $f: (Rain \lor Wet) \Rightarrow Unhappy$

 $\mathcal{M}(f)$: the set of models where sentence f is true.

Elements of Logic – Knowledge Base

Knowledge base = a collection of sentences

Let $KB = \{Rain \lor Snow, Traffic\}.$

Elements of Logic – Knowledge Base

Adding more formulas to the knowledge base:

Shrinks the set of models:

$$\mathcal{M}(\mathsf{KB})$$
 \longrightarrow $\mathcal{M}(\mathsf{KB}) \cap \mathcal{M}(f)$

$$\mathcal{M}(\{\mathsf{Rain},\mathsf{Rain}\to\mathsf{Wet}\})$$

Recap: Propositional Logic

- **Sentence:** propositional symbols, or their negations (\neg) , or their combinations through \land , \lor , \Rightarrow , \Leftrightarrow .
- Models: An assignment of truth values to propositional symbols.
- Knowledge base: a set of sentences
- $\mathcal{M}(f)$: the set of models where sentence f is true.

Entailment

- Sentence α entails sentence β means that (in high level) sentence β follows logically from sentence α
- Denoted as $\alpha \models \beta$
- $\alpha \vDash \beta$ if and only if $\mathcal{M}(\alpha) \subset \mathcal{M}(\beta)$
- **Example:** Rain ∧ Snow ⊨ Snow

Inference Algorithms

- Given KB, the algorithm decides whether sentence α can be entailed.
 - KB $\models \alpha$?
- Soundness (correctness)
 - The algorithm only say yes when α is entailed by KB.
- Completeness
 - For any α that KB entails, the algorithm says yes.

A (Simple) Inference Algorithm: Model Checking

```
function TT-ENTAILS?(KB, \alpha) returns true or false
  inputs: KB, the knowledge base, a sentence in propositional logic
           \alpha, the query, a sentence in propositional logic
  symbols \leftarrow a list of the proposition symbols in KB and \alpha
  return TT-CHECK-ALL(KB, \alpha, symbols, \{\})
function TT-CHECK-ALL(KB, \alpha, symbols, model) returns true or false
  if EMPTY?(symbols) then
      if PL-True?(KB, model) then return PL-True?(\alpha, model)
      else return true // when KB is false, always return true
  else
      P \leftarrow \text{First}(symbols)
      rest \leftarrow REST(symbols)
      return (TT-CHECK-ALL(KB, \alpha, rest, model \cup \{P = true\})
              and
              TT-CHECK-ALL(KB, \alpha, rest, model \cup \{P = false \}))
```

Theorem Proving

Idea: Instead of checking all models, will just perform manipulations on the sentence level.