Syntax and Semantics of Dependant Types

by Martin Hofmann

Louis Milhaud January 29, 2024

Université Paris Saclay

Outline

Introduction

Syntax

Term model

Semantic frameworks

Categories with Famillies (CwF)

Categories with Attributes (CwA)

Bonus

∏ Type former

Interpretation

Introduction

Definition

A dependant type is a family of types varying on the elements of another type.

Exemple:

$$Vec_{\sigma}(M), M: \mathbb{N}$$

Built on:

- nil_{σ} : $Vec_{\sigma}(0)$
- $Cons_{\sigma}(U, V) : Vec_{\sigma}(Succ(M))$

with $U : \sigma$ and $V : Vec_{\sigma}(M)$

Syntax

$$\begin{split} \varGamma ::= & \diamond \\ & \mid \varGamma, \mathsf{X} : \sigma \quad \text{provided } \mathsf{x} \text{ is not declared in } \varGamma \\ & \sigma, \tau ::= \varPi \mathsf{X} : \sigma.\tau \mid \varSigma \mathsf{X} : \sigma.\tau \mid \mathit{Id}_{\sigma}(\mathsf{M}, \mathsf{N}) \mid \mathbb{N} \\ & \mathsf{M}, \mathsf{N}, \mathsf{H}, \mathsf{P} ::= \mathsf{x} \mid \lambda \mathsf{x} : \sigma.\mathsf{M}^{\tau} \mid \mathsf{App}_{[\mathsf{x}:\sigma]_{\tau}}(\mathsf{M}, \mathsf{N}) \mid \mathsf{Pair}_{[\mathsf{x}:\sigma]_{\tau}}(\mathsf{M}, \mathsf{N}) \\ & \mid R^{\varSigma}_{[\mathsf{z}:\varSigma \mathsf{x}:\sigma.\tau]_{\rho}}([\mathsf{x} : \sigma, \mathsf{y} : \tau]\mathsf{H}, \mathsf{M}) \mid \mathsf{Refl}_{\sigma}(\mathsf{M}) \\ & \mid R^{\mathit{Id}}_{[\mathsf{x}:\sigma, \mathsf{y}:\sigma, \mathsf{p}: \mathit{Id}_{\sigma}(\mathsf{x}, \mathsf{y})]_{\tau}}([\mathsf{z} : \sigma]\mathsf{H}, \mathsf{M}, \mathsf{N}, \mathsf{P}) \mid \mathsf{0} \mid \mathsf{Suc}(\mathsf{M}) \mid \\ & R^{\mathbb{N}}_{[\mathsf{n}:\mathbb{N}]_{\sigma}}(\mathsf{H}_{\mathsf{z}}, [\mathsf{n} : \mathbb{N}, \mathsf{x} : \sigma]\mathsf{H}_{\mathsf{s}}, \mathsf{M}) \end{split}$$

Context morphisms

Let Γ and $\Delta \stackrel{\text{def}}{=} x_1 : \sigma_1, ..., x_n : \sigma_n$ be valid contexts. $f \stackrel{\text{def}}{=} (M_1, ..., M_n)$ is a context morphism (we write $\Gamma \vdash f \implies \Delta$) when the following n judgements hold:

$$\Gamma \vdash M_1 : \sigma_1$$
 $\Gamma \vdash M_2 : \sigma_2[M_1/x_1]$
...
 $\Gamma \vdash M_n : \sigma_n[M_1/x_1][M_2/x_2] \dots [M_{n-1}/x_{n-1}]$

Generalized substitution & Composition

If we have:

$$\vdash \Gamma, \Delta \text{ context} \quad \Gamma \vdash \tau \text{ type}$$

$$\Gamma \vdash f \implies \Delta$$

$$f \equiv (M_1, ..., M_n)$$

$$\Delta \equiv x_1 : \sigma_1, ..., x_n : \sigma_n$$

Then:

$$\tau[f/\Delta] \equiv \tau[M_1/x_1][M_2/x_2]...[M_n/x_n]$$

Thanks to **substitution** we can now define context morphism **composition**:

Let
$$\Delta \vdash g \implies \Theta$$
 a context morphism, with $g \equiv (N_1, ..., N_k)$
 $f \circ g \equiv (N_1[f/\Delta], ..., N_k[f/\Delta])$

Semantic frameworks

Objects

Let's first define some data structures in our semantic model:

- $\ensuremath{\mathcal{C}}$ category of contexts and context morphisms
- for $\Gamma \in \mathcal{C}$ a collection $Ty_{\mathcal{C}}(\Gamma)$ of semantic types
- for $\Gamma \in \mathcal{C}$ and $\sigma \in \mathit{Ty}_{\mathcal{C}}$ a collection $\mathit{Tm}_{\mathcal{C}}(\Gamma, \sigma)$ of semantic terms

Context formation & type extension

Formation:

- \top a **terminal** object in $\mathcal C$
- $\forall \Gamma \in \mathcal{C}, \ \langle \rangle_{\Gamma}$ denotes the unique morphism from Γ to \top

Type Extension:

- $\forall (\Gamma, \sigma) \in \mathcal{C} \times \mathit{Ty}_{\mathcal{C}}(\Gamma), \ \Gamma.\sigma \in \mathcal{C}$ is the **comprehension** of σ
- in the term model:

$$\frac{\vdash \Gamma \text{ context} \quad \Gamma \vdash \sigma \text{ type}}{\Gamma, \mathbf{X} : \sigma \text{ context}}$$

Substitution

Semantic substitution is described by one operation for types and one for terms.

Let
$$f: \Gamma \to \Delta$$
, $g: \Delta \to \Theta$, $\sigma \in \mathit{Ty}(\Theta)$ and $M \in \mathit{Tm}(\Theta, \sigma)$

- $-\{g\}: Ty(\Theta) \to Ty(\Delta)$
- $-\{g\}: \mathsf{Tm}(\Theta,\sigma) \to \mathsf{Tm}(\Delta,\sigma\{g\})$
- compatible with composition and identities:

$$\begin{split} \sigma\{id_{\varTheta}\} &= \sigma &\in \mathit{Ty}(\varTheta) \\ \sigma\{g \circ f\} &= \sigma\{g\}\{f\} \in \mathit{Ty}(\varGamma) \\ M\{id_{\varTheta}\} &= M &\in \mathit{Tm}(\varTheta, \sigma) \\ M\{g \circ f\} &= M\{g\}\{f\} \in \mathit{Tm}(\varGamma, \sigma\{g \circ f\}) \end{split}$$

p & v Morphisms

p morphism:

- $p(\sigma): \Gamma.\sigma \to \Gamma$ is the projection associated to σ
- in the term model:

$$\Gamma, \mathbf{x} : \sigma \vdash \mathbf{p} \implies \Gamma$$

v morphism:

- $v_{\sigma} \in \mathit{Tm}_{\mathcal{C}}(\Gamma.\sigma, \sigma\{p(\sigma)\})$ is the second projection
- in the term model:

$$\Gamma, \mathbf{x} : \sigma \vdash \mathbf{x} : \sigma$$

Term Extension

Let
$$f : \Gamma \to \Delta$$
, $\sigma \in Ty(\Delta)$ and $M \in Tm(\Gamma, \sigma\{f\})$.

- $\langle f, M \rangle_{\sigma} : \Gamma \to \Delta.\sigma$ is the extension of f by M
- if $g:\Theta\to \Gamma$ then it satisfies the following:

$$\begin{split} \mathbf{p}(\sigma) \circ \langle f, \mathsf{M} \rangle_{\sigma} &= f &: \varGamma \to \varDelta \\ \mathbf{v}\{\langle f, \mathsf{M} \rangle_{\sigma}\} &= \mathsf{M} &\in \mathit{Tm}(\varGamma, \sigma\{f\}) \\ \langle f, \mathsf{M} \rangle_{\sigma} \circ g &= \langle f \circ g, \mathsf{M}\{g\} \rangle_{\sigma} : \varTheta \to \varDelta.\sigma \\ \langle \mathbf{p}(\sigma), \mathbf{v} \rangle_{\sigma} &= \mathit{id}_{\varDelta.\sigma} &: \varDelta.\sigma \to \varDelta.\sigma \end{split}$$

CwF: first definition

To recap, a **Category with families** is the following tuple:

$$(\mathcal{C}, \textit{Ty}, \textit{Tm}, -\{-\}, \top, \langle \rangle_{-}, -..., p, v, \langle -, -\rangle_{-})$$

Definitions & Fam **Category**

The category \mathcal{F} am of families of sets has:

- as objects pairs $A = (A^0, A^1)$
- as arrows f between A and B a pair (f^0, f^1)

We also define the functor $\mathcal{F}:\mathcal{C}^{op}\to\mathcal{F}$ am such that:

$$\mathcal{F}(\Gamma) = (\mathsf{Ty}_{\mathcal{C}}(\Gamma), (\mathsf{Tm}_{\mathcal{C}}(\Gamma, \sigma))_{\sigma \in \mathsf{Ty}_{\mathcal{C}}(\Gamma)})$$

CwF: second definition

We can now define a category with families with:

- a category ${\mathcal C}$ with terminal object
- a functor $\mathcal{F} = (\mathit{Ty}, \mathit{Tm}) : \mathcal{C}^{\mathit{op}} \to \mathcal{F}\mathit{am}$
- a comprehension for each $\Gamma \in \mathcal{C}$ and $\sigma \in \mathit{Ty}_{\mathcal{C}}(\Gamma)$

${\bf q}$ morphism & Weakening

- q morphism:

Let
$$f: \Theta \to \Gamma$$
 and $\sigma \in Ty(\Gamma)$

$$\mathbf{q}(f,\sigma):\Theta.\sigma\{f\}\to\Gamma.\sigma$$

$$\stackrel{\mathsf{def}}{=} \langle f\circ \mathbf{p}(\sigma\{f\}), \mathbf{v}_{\sigma\{f\}}\rangle_{\sigma}$$

- Weakening maps:

$$w := p(\sigma) : \Gamma . \sigma \to \Gamma$$

$$| q(w, \tau)$$

Pullback property

Let C a CwF, $f: \Theta \to \Gamma$ and $\sigma \in Ty(\Gamma)$ the following diagram commutes:

CwA definition

A **category with attributes** consists of:

- A category $\mathcal C$ with terminal object \top
- A functor $Ty: \mathcal{C}^{op} \to Set$
- $\forall \sigma \in Ty(\Gamma)$ an object $\Gamma.\sigma$ and a morphism $p(\sigma) : \Gamma.\sigma \to \Gamma$
- $\forall f: \Theta \to \Gamma$ and $\sigma \in Ty(\Gamma)$ a pullback diagram:

such that $q(id_{\Gamma}, \sigma) = id_{\Gamma, \sigma}$ and $q(f \circ g, \sigma) = q(f, \sigma) \circ q(g, \sigma\{f\})$.

Bonus

∏ Type former

- Type former for the functions with return type depending on the parameter
- Set-theoretic equivalent: Cartesian product over a family of sets: $\Pi_{i \in I}B_i$
- preserved by definitional equality

$$\frac{\Gamma \vdash \sigma \text{ type} \quad \Gamma, \mathsf{X} : \sigma \vdash \tau \text{ type}}{\Gamma \vdash \Pi \mathsf{X} : \sigma . \tau \text{ type}} \mathsf{Form}$$

Π Rules

$$\frac{\Gamma, \mathbf{x} : \sigma \vdash \mathbf{M} : \tau}{\Gamma \vdash \lambda \mathbf{x} : \sigma.\mathbf{M}^{\tau} : \Pi \mathbf{x} : \sigma.\tau} Intro$$

$$\frac{\varGamma \vdash \textit{M} : \varPi\textit{x} : \sigma.\tau \quad \varGamma \vdash \textit{N} : \sigma}{\varGamma \vdash \textit{App}_{[\textit{x}:\sigma]\tau}(\textit{M},\textit{N}) : \tau[\textit{N}/\textit{x}]}\textit{Elim}$$

$$\frac{\varGamma \vdash \lambda x : \sigma.M^{\tau} : \varPi x : \sigma.\tau \quad \varGamma \vdash N : \sigma}{\varGamma \vdash \mathsf{App}_{[x:\sigma]\tau}(\lambda x : \sigma.M^{\tau}, N) = M[N/x] : \tau[N/x]}\mathsf{Comp}$$

Π type former interpretation

For each $\sigma \in Ty(\Gamma)$, $\tau \in Ty(\Gamma.\sigma)$, $L \in Tm(\Gamma.\sigma,\tau)$, $M \in Tm(\Gamma,\Pi(\sigma,\tau))$ and $N \in Tm(\Gamma,\sigma)$ we can define:

- the type $\Pi(\sigma, \tau) \in \mathit{Ty}(\Gamma)$
- the term $\lambda_{\sigma,\tau}(L) \in Tm(\Gamma,\Pi(\sigma,\tau))$
- the term $App_{\sigma,\tau}(M,N) \in Tm(\Gamma,\tau\{\overline{M}\})$

such that

$$\begin{split} App_{\sigma,\tau}(\lambda_{\sigma,\tau}(M),N) &= M\{\overline{N}\} &\qquad \Pi - C \\ \Pi(\sigma,\tau)\{f\} &= \Pi(\sigma\{f\},\tau\{\mathbf{q}(f,\sigma)\}) &\qquad \Pi - S \\ \lambda_{\sigma,\tau}(M)\{f\} &= \lambda_{\sigma\{f\},\tau\{\mathbf{q}(f,\sigma)\}}(M\{\mathbf{q}(f,\sigma)\}) &\qquad \lambda - S \\ App_{\sigma,\tau}(M,N)\{f\} &= App_{\sigma\{f\},\tau\{\mathbf{q}(f,\sigma)\}}(M\{f\},N\{f\}) &\qquad App - S \end{split}$$

Interpretation function

Let [-] an interpretation function such that:

24

Soundness properties

$$\Gamma \vdash \stackrel{\$}{\Longrightarrow} \llbracket \Gamma \rrbracket \in \mathcal{C}$$

$$\Gamma \vdash \sigma \stackrel{\$}{\Longrightarrow} \llbracket \Gamma; \sigma \rrbracket \in Ty(\llbracket \Gamma \rrbracket)$$

$$\Gamma \vdash M : \sigma \stackrel{\$}{\Longrightarrow} \llbracket \Gamma; M \rrbracket \in Tm(\llbracket \Gamma; \sigma \rrbracket)$$

$$\vdash \Gamma = \Delta \text{ context } \stackrel{\$}{\Longrightarrow} \llbracket \Gamma \rrbracket = \llbracket \Delta \rrbracket$$

$$\Gamma \vdash \sigma = \tau \text{ type } \stackrel{\$}{\Longrightarrow} \llbracket \Gamma; \sigma \rrbracket = \llbracket \Gamma; \tau \rrbracket$$

$$\Gamma \vdash M = N : \sigma \stackrel{\$}{\Longrightarrow} \llbracket \Gamma; M \rrbracket = \llbracket \Gamma; N \rrbracket$$