### Exercises Set 5

### Paul Dubois

August 6, 2024

#### Abstract

Only the questions with a \* are compulsory (but do all of them!).

# 1 Change of Basis

Let  $\mathcal{B} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$  be the standard canonical basis for  $\mathbb{R}^3$ .

Suppose we have another basis  $\mathcal{B}' = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$  for  $\mathbb{R}^3$  and let Q be the matrix whose columns are the coordinates of

$$\mathbf{u}_1 = \begin{pmatrix} 0.5 \\ -1 \\ 1 \end{pmatrix}_{\mathcal{B}}, \ \mathbf{u}_2 = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}_{\mathcal{B}}, \ \text{and} \ \mathbf{u}_3 = \begin{pmatrix} -0.25 \\ 0.5 \\ 0 \end{pmatrix}_{\mathcal{B}}$$

with respect to the standard basis. That is,  $Q = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{bmatrix}$ .

Let 
$$\mathbf{v} = \begin{pmatrix} -1\\3\\2 \end{pmatrix}_{\mathcal{B}'}$$
. Express  $\mathbf{v}$  in the standard basis  $\mathcal{B}$ .

Let  $\mathbf{w} = \begin{pmatrix} -1\\3\\2 \end{pmatrix}_{\mathcal{B}}$ . Express  $\mathbf{w}$  in the basis  $\mathcal{B}'$ .

#### 2 Variance and Covariance

Calculate the variance of the following set:

$$S_1 = \{1.5, 3, 5, 7.5, 8, 9\}$$

Calculate the variance of the following set:

$$S_2 = \{0, 2, 4, 6, 8, 10\}$$

Calculate the covariance of  $S_1$  and  $S_2$ .

Compute  $\hat{S}_1$  and  $\hat{S}_2$ , the standardized version of  $S_1$  and  $S_2$  (shifted to mean 0 and scaled to have a variance of 1).

Calculate the covariance of  $\hat{S}_1$  and  $\hat{S}_2$ . What do you remark?

### 3 Principal Component Analysis

Let 
$$S = \{A, B, C, D, E, F\}$$
 be a set of 5 points in  $\mathbb{R}^3$ .  
 $A = \begin{pmatrix} 2 \\ -0.4 \\ 0.1 \end{pmatrix}, B = \begin{pmatrix} 4 \\ -0.8 \\ -0.1 \end{pmatrix}, C = \begin{pmatrix} 12 \\ -2.4 \\ -0.5 \end{pmatrix}, D = \begin{pmatrix} 12 \\ -2.4 \\ 0.5 \end{pmatrix}, E = \begin{pmatrix} 14 \\ -2.8 \\ -0.1 \end{pmatrix},$  and  $F = \begin{pmatrix} 16 \\ -3.2 \\ 0.1 \end{pmatrix}$ .



#### 3.1 Standardization \*

Calculate  $\hat{S}$ , the standardized version of S (shifted to mean 0 and scaled to have a variance of 1).

#### 3.2 Covariance matrix \*

Compute the covariance of each pair of features. Compute also the variance of each feature. Arrange the values in a  $3 \times 3$  matrix (variance is covariance of a feature with itself).

### 3.3 Eigenvalues of the covariance matrix \*

Calculate the eigenvalues of the covariance matrix. Use the characteristic polynomial.

The variance explained by each feature is  $\frac{\lambda_i}{\lambda_1 + \lambda_2 + \lambda_3}$ . Order the features by decreasing importance.

<sup>&</sup>lt;sup>1</sup>Where  $\lambda_i$  are the eigenvalues.

# 3.4 Feature vectors (the "principal components") \*

For each eigenvalue, calculate the corresponding eigenvectors of the covariance matrix. These are the principal components, also called "feature vectors".

# 3.5 Recasting data on principal components axes \*

Project each item of data on the first two components, and plot them in a 2D graph.

### 3.6 Importance of standardization

Redo this exercise without standardizing your data to variance of one.

## 4 Principal Component Analysis with Python

(see notebook)

