$$\hat{g} = \arg\min_{g} \left(\sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int \left[g^{(m)}(x) \right]^2 dx \right),$$

For all of (a) - (d): this sigma not counted, because is positive and constant. Arg min forces the integral to be near 0

(a)
$$m = 0$$
 $g^{(0)} \rightarrow 0 \Rightarrow g(x) = 0$ will minimize the area (integral)

(b) m = 1
$$g^{(1)} -> 0 => \hat{g} = \text{constant (c)}$$

(c)
$$m = 2$$
 $g^{(2)} \rightarrow 0 = \hat{g} = c*x + d$

(d)
$$m = 3$$
 $g^{(3)} \rightarrow 0 = \hat{g} = c*x^2 + d*x + k$

(e) The integral not counted. In this case g is a spline itself.

RStudio

File Edit Code View Plots Session Build Debug Profile Tools

Console Terminal × Background Jobs ×

R • R 4.4.2 · ~/ ~/ >
> x <- -2:2
> y <- 1 + x + 3*(x-1)*(x-1)*I(x>1)
> plot(x,y)
> |

*** PLOT ON THE NEXT PAGE ***

