## QTII – Prof. D. Stöckinger Übung 13

Sophie Kollatzsch

TU Dresden

23.07.2021



## 5. There are several ways how one can motivate the Klein-Gordon or the Dirac equations. Can you describe some of them?

#### Klein-Gordon

Vergleich Energie/Impuls Beziehung

$$i\partial_t \phi = -rac{\Delta}{2m} \phi$$
 
$$E = rac{p^2}{2m}$$
 
$$-(\partial_t)^2 \phi = (-\Delta + m^2) \phi$$
 
$$E^2 = p^2 + m^2$$

#### Dirac

- Wunsch: 1. Ordnung in Ort und Zeit
- Umsetzung:

$$i\partial_t \psi = \sqrt{\mathsf{Klein}\text{-}\mathsf{Gordon}} \psi$$

• erfüllt durch  $\alpha, \beta \cong \gamma^{\mu}$ Matrizen 5. There are several ways how one can motivate the Klein-Gordon or the Dirac equations. Can you describe some of them?

#### **Alternativ: Lorentzgruppe**

- Feld = Darstellung der Lorentzgruppe
- Welche Darstellungen gibt es?
  - ightharpoonup skalares Feld  $\phi'(x') = \phi(x)$
  - ▶ Dirac-Spinorfeld  $\psi'(x') = S(\Lambda)\psi(x)$
  - **•** ...
- suche kovariante Feldgleichungen
  - $\phi$ : Klein-Gordon  $(\partial_{\mu}\partial^{\mu} + m^2)\phi(x) = 0$
  - $\blacktriangleright$   $\psi$ : Dirac  $(i\partial \!\!\!/ m)\psi(x) = 0$

## 1. What are the common versions of the $\gamma^\mu$ matrices? Which properties do you remember?

- $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}$
- $\gamma^{\mu\dagger} = \gamma^0 \gamma^\mu \gamma^0$
- $(\gamma^0)^2 = 1$  and  $(\gamma^i)^2 = -1$
- $(\gamma^{\mu})^* = \gamma^{\mu}$  expect  $(\gamma^2)^* = -\gamma^2$

Dirac representation  $[\gamma^0 \text{ diagonal}]$ 

$$\gamma^0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix}$$

Weyl (chiral) representation [all off-diagonal]

$$\gamma^0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix}$$

2. Can a spinor of the form  $\psi(x) = (e^{-iEt}, 0, 0, 0)^T$  be a solution of the free Dirac equation? (conditions?)

•  $\psi(x)$  describes particle in rest frame, i.e.  $p^{\mu} = (m, 0, 0, 0)^{T}$ 

$$\implies (-i\gamma^0\partial_0 + m)\psi(x) = 0$$

•  $\gamma^0$  should be diagonal  $\to$  Dirac representation!

$$\begin{pmatrix} -i\partial_0 + m & 0 \\ 0 & i\partial_0 + m \end{pmatrix} \psi(x) = \begin{pmatrix} -E + m \\ 0 \\ 0 \\ 0 \end{pmatrix} = 0$$

• only for particles with positive energy E = m

6. What is the Dirac equation in momentum space? Characterize the spinors u(p,s) and v(p,s).

- position space:  $(i\partial \!\!\!/ m)\psi(x) = 0$
- Ansatz:  $\psi(x) = w(p)e^{\mp ipx}$
- momentum space:  $(\pm p m)w(p) = 0$ 
  - (p m)u(p, s) = 0 (positive energy)
  - (p + m)v(p, s) = 0 (negative energy)
- $S_z u(p,s) = su(p,s)$  and  $S_z v(p,s) = -sv(p,s)$
- $\bar{u}(p, s_1)u(p, s_2) = 2m\delta_{s_1, s_2}$
- $\bar{v}(p, s_1)v(p, s_2) = -2m\delta_{s_1, s_2}$

3. What is the role of the gauge covariant derivative  $D^{\mu} = \partial^{\mu} - ieA^{\mu}$  in the context of Dirac or Klein-Gordon equations?

free theory

$$(i\partial \!\!\!/ -m)\psi =0 \quad (\partial_{\mu}\partial^{\mu}+m^2)\phi =0$$

interacting theory

$$(i\not D-m)\psi=0 \quad (D_{\mu}D^{\mu}+m^2)\phi=0$$

- $\partial_{\mu} \rightarrow D_{\mu}$  is called "minimale Kopplung"
- compact way to describe interaction with electromagnetic field  $A^{\mu}$

4. What is the non-relativistic Hamiltonian for a charged particle in an electromagnetic field?

$$H = \frac{1}{2m} \left( \vec{p} + e \vec{A} \right)^2 - e \Phi$$

$$\mathcal{L} = \frac{1}{2} m \dot{\vec{x}}^2 + e \Phi - e \dot{\vec{x}} \vec{A}$$

$$\vec{p} = \frac{\partial \mathcal{L}}{\partial \dot{\vec{x}}} = m \dot{\vec{x}} - e \vec{A}$$

$$\implies \dot{\vec{x}} = \frac{\vec{p} + e \vec{A}}{m}$$

# 7. Sketch how one can derive the value g=2 and spin-orbit coupling from the Dirac equation?

- solving  $(i\not D m)\psi = 0$  with  $\psi = (\Psi_A, \Psi_B)$ , where  $\Psi_i$  2-comp. Pauli spinors
- system of equations

$$(E - m + e\Phi)\Psi_A - \vec{\sigma}(\vec{p} + e\vec{A})\Psi_B = 0$$
  
 $(-E - m - e\Phi)\Psi_B + \vec{\sigma}(\vec{p} + e\vec{A})\Psi_A = 0$ 

• non-rel. limit:  $mc^2 >>$  everything else, eliminate  $\Psi_B$ : Pauligleichung

$$(E-m)\Psi_A = \left| \frac{\left( \vec{p} + e \vec{A} \right)^2}{2m} + g \frac{e}{2m} \vec{S} \vec{B} + \mathcal{O} \left( \frac{1}{m^2} \right) \right| \Psi_A$$

•  $\mathcal{O}(1/m^2)$  includes  $\sim \vec{S} \vec{L}$  via Foldy–Wouthuysen

8. What is a possible basis of a 2-particle Hilbert space of two electrons (identical fermions), taking into account both the spin and position degree of freedom?

$$\mathcal{H}_2^{(-)} = \mathcal{H}_{\mathsf{position},2}^{(\pm)} \otimes \mathcal{H}_{\mathsf{spin},2}^{(\mp)}$$
  $\psi(ec{r_1},ec{r_2}) imes \chi(\sigma_1,\sigma_2) \in \mathcal{H}_2^{(-)}$ 

antisym. position  $\times$  sym. spin

$$\mathsf{sym.}\ \mathsf{position}\ \times\ \mathsf{antisym.}\ \mathsf{spin}$$

$$\frac{|nm\rangle - |mn\rangle}{\sqrt{2}} \times |\uparrow\uparrow\rangle \qquad \frac{|nm\rangle + |mn\rangle}{\sqrt{2}} \times \frac{|\downarrow\uparrow\rangle - |\uparrow\downarrow\rangle}{\sqrt{2}}$$

$$\frac{|nm\rangle - |mn\rangle}{\sqrt{2}} \times |\downarrow\downarrow\rangle$$

$$\frac{|nm\rangle - |mn\rangle}{\sqrt{2}} \times \frac{|\downarrow\uparrow\rangle + |\uparrow\downarrow\rangle}{\sqrt{2}}$$

9. An electron on the earth has the absolute same rest mass as an electron on the moon. How? How can we describe it in various formalism?



Teilchen  $\cong$  Anregungen eines Feldes (translationsinvariant)

10. Consider a  $2 \to 2$  process of 2-particle final state. Describe the role of the direct and exchange term contribution to the probability amplitude, and discuss the difference between distinguishable particles and two identical bosons/fermions.

 $(A,B) \rightarrow (a,b)$ 

B 
$$\longrightarrow$$
 b B  $\longrightarrow$  b  $P = |\mathcal{A}|^2 = |\langle f|i\rangle|^2$  unterscheidbar  $P = |\mathcal{A}^d|^2 + |\mathcal{A}^e|^2$  Bosonen  $P = |\mathcal{A}^d + \mathcal{A}^e|^2$  Fermionen  $P = |\mathcal{A}^d - \mathcal{A}^e|^2$ 

## 11. Discuss the chemical binding of the $H_2$ molecule. How does it arise from the fact that the two electrons are identical particles?

- Heitler-London:  $|\psi_{H_2}\rangle = |\phi_{H,A}, \phi_{H,B}\rangle^{(\pm)} \otimes |S, M\rangle$  mit  $|\phi_{H,i}\rangle$  Grundzustand für freies H-Atom
- Grundzustandsenergie minimal für S = 0, 1?

$$E = \frac{\langle \psi_{H_2} | H | \psi_{H_2} \rangle}{\langle \psi_{H_2} | \psi_{H_2} \rangle}$$

∃ nicht-klassische Austauschterme



 $\implies$  Ortsanteil symmetrisch, S = 0

### 12. What are some important properties of ${f c}$ reation/ ${f a}$ nnihilation operators?

Erzeugung symmetrisierter Zustände aus dem Vakuum mit  $b^{\dagger}=a^{\dagger},c^{\dagger}$ 

$$|n_1 \dots n_N\rangle^{(\pm)} = \frac{1}{\sqrt{NI}} b_{n_1}^{\dagger} \dots b_{n_N}^{\dagger} |0\rangle$$

#### Bosonen

$$[a_n, a_n^{\dagger}] = \delta_{nm}^{(+)}$$

$$a^{\dagger}\ket{n}=\sqrt{n+1}\ket{n+1}$$

$$a|n\rangle = \sqrt{n}|n-1\rangle$$

#### Fermionen

$$c_n^{\dagger}: \mathcal{H}_N^{(-)} \to \mathcal{H}_{N+1}^{(-)}$$
  
 $\{c_n, c_m^{\dagger}\} = \text{``}\delta_{nm}^{\prime\prime}$ 

$$c^{\dagger}c^{\dagger}=0$$

 $<sup>^{1}=\</sup>delta_{nm}$ , falls Zustände  $|n\rangle$ ,  $|m\rangle$  normiert

13. How can you express the free Hamiltonian (for kinetic energy) in terms of c/a operators?

$$H = T + V$$

$$\hat{T} = \sum_{p} \frac{p^2}{2m} a_p^{\dagger} a_p$$
 bzw.  $\hat{T} = \int \mathrm{d}p \, \frac{p^2}{2m} a_p^{\dagger} a_p$ 

- für jedes p ein HO
- Anregungszahl  $\hat{n}_p = a_p^\dagger a_p$
- $\sum_p$  bzw.  $\int \mathrm{d}p \implies$  Unabhängigkeit der einzelnen Moden, keine Wechselwirkung

14. How can you express the interaction Hamiltonian of two particles bounded with the Coulomb potential in terms of c/a operators? Which mathematical operation appears?

$$V(x_1,x_2)=rac{1}{4\pi}rac{1}{|x_1-x_2|}\quad ilde{V}(q)=rac{1}{q^2}$$

 Coulombpotential translationsinvariant (nur abhängig von relativen Größen)

$$\hat{V} = rac{1}{2} \int \mathrm{d}^3 p_1 \mathrm{d}^3 p_2 \mathrm{d}^3 q \; \tilde{V}(q) a^{\dagger}_{p_1+q} a^{\dagger}_{p_2-q} a_{p_2} a_{p_1}$$



### $\ddot{\mathsf{U}}\mathsf{07},\ \#\mathsf{2},\ \mathsf{Ziel}\colon$ finde Besetzungszahldarstellung

Festlegung Reihenfolge

$$|n_1,n_2,\ldots\rangle=(a_1^{\dagger})^{n_1}(a_2^{\dagger})^{n_2}\ldots|0\rangle$$

Reihenfolge definiert Vorzeichen (Fermionen)

$$a_{4}^{\dagger}a_{7}^{\dagger}a_{5}a_{1}a_{1}^{\dagger}a_{3}^{\dagger}a_{5}^{\dagger}a_{8}^{\dagger}\ket{0} \implies (-1)^{N}a_{5}a_{1}a_{1}^{\dagger}a_{3}^{\dagger}a_{4}^{\dagger}a_{5}^{\dagger}a_{7}^{\dagger}a_{8}^{\dagger}\ket{0}$$

N Permutationen?

$$\{a_{n'}^{\dagger}, a_{n}^{\dagger}\} = \{a_{n'}, a_{n}\} = 0$$
 (1)

$$\{a_{n'}^{\dagger}, a_n\} = \delta_{nn'} \tag{2}$$

- Tausch mit gleichem Daggerstatus, immer (1)
- Tausch mit unterschiedlichen Daggerstatus, falls n ≠ n'
   (2)

$$(-1)^{0}a_{4}^{\dagger}a_{7}^{\dagger}a_{5}a_{1}a_{1}^{\dagger}a_{3}^{\dagger}a_{5}^{\dagger}a_{8}^{\dagger} \mid 0\rangle$$

$$(-1)^{1}a_{4}^{\dagger}a_{5}a_{7}^{\dagger}a_{1}a_{1}^{\dagger}a_{3}^{\dagger}a_{5}^{\dagger}a_{8}^{\dagger} \mid 0\rangle$$

$$(-1)^{2}a_{5}a_{4}^{\dagger}a_{7}^{\dagger}a_{1}a_{1}^{\dagger}a_{3}^{\dagger}a_{5}^{\dagger}a_{8}^{\dagger} \mid 0\rangle$$

$$(-1)^{3}a_{5}a_{4}^{\dagger}a_{1}a_{7}^{\dagger}a_{1}^{\dagger}a_{3}^{\dagger}a_{5}^{\dagger}a_{8}^{\dagger} \mid 0\rangle$$

$$(-1)^{4}a_{5}a_{4}^{\dagger}a_{1}a_{1}^{\dagger}a_{7}^{\dagger}a_{3}^{\dagger}a_{5}^{\dagger}a_{8}^{\dagger} \mid 0\rangle$$

$$(-1)^{5}a_{5}a_{4}^{\dagger}a_{1}a_{1}^{\dagger}a_{3}^{\dagger}a_{7}^{\dagger}a_{5}^{\dagger}a_{8}^{\dagger} \mid 0\rangle$$

$$\cdots$$

$$(-1)^{9}a_{5}a_{1}a_{1}^{\dagger}a_{3}^{\dagger}a_{4}^{\dagger}a_{5}^{\dagger}a_{7}^{\dagger}a_{8}^{\dagger} \mid 0\rangle$$

16. Compare the structure of wave functions for (i) 1dim scattering at a potential barrier, (ii) 3dim scattering at short-range potential.

i) 1dim: Ebene Wellen - incoming, reflected and transmitted

$$\psi \cong e^{ikx} + re^{-ikx} + te^{ikx}$$

ii) 3dim: Ebene Welle + Kugelwelle

$$\psi \cong e^{i\vec{k}\vec{r}} + f(\theta,\phi) \frac{e^{ikr}}{r}$$

# 17. How can you derive the relationship between the scattering amplitude $f(\theta,\phi)$ and the differential cross section?

Definition als Proportionalitätsfaktor/effektive Querschnittsfläche

$$\mathrm{d}I_{\mathsf{aus}} = |\vec{j}_{\mathsf{ein}}|\mathrm{d}\sigma$$

bekannt aus QM

$$\mathrm{d}I_{\mathsf{aus}} = |\vec{j}_{\mathsf{aus}}| r^2 \mathrm{d}\Omega$$

Stromdichten ( $\phi 
ightarrow \vec{j}_{
m ein} \quad \psi_{
m streu} 
ightarrow \vec{j}_{
m aus}$ )

$$\vec{j} = \frac{1}{2mi} \left( \psi^* \vec{\nabla} \psi - \psi \vec{\nabla} \psi^* \right)$$

$$d\sigma = |f(\theta, \phi)|^2 d\Omega$$

15.+18. What are the two approximation methods to describe scattering processes? Describe the basic principles!

#### Bornsche Näherung

- Störungsreihe  $\psi^{(n)} \propto V^n$  $\rightarrow$  Feynmandiagramme
- $\psi^{(1)} \propto \tilde{V}(\vec{q})$
- Gültigkeitsbereich?!
  - optisches Theorem (keine imaginären Beiträge)
  - schwaches Potential

#### Partialwellenmethode

- Entwicklung nach  $Y_{nlm}$  (neue Basis, m=0 Zentralpotential)
- einlaufend vs. streu.: Phase  $\delta_l$
- oft reicht *l* = 0

#### Was ist der physikalische Unterschied?

- Entwicklung in Potenzen von V (Näherung) vs. Wahl einer praktischen Basis (keine Näherung)
- Tendenz: Reichweite Potential R
  - ► *Rk* >> 1 eher Born [z.B. Ü11 #5, Ü12 #3]
  - ightharpoonup Rk << 1 eher *kleine l*

semiklassisch: Streuparameter b. keine Streuung wenn

$$b = \frac{l\hbar}{\hbar k} = \frac{l}{k} > R$$
$$\implies l_{max} \approx Rk$$

19. What is the integral equation for the scattering wave function from which you can derive the first Born approximation?

- SGL + Greensche Funktion + RB = Integralgleichung
- $G(\vec{x} \vec{x}') \sim \frac{e^{ik|\vec{x}_1 \vec{x}_2|}}{|\vec{x}_1 \vec{x}_2|}$

$$\psi_{\vec{k}}(\vec{x}) = e^{i\vec{k}\vec{x}} + \int d^3x' G(\vec{x} - \vec{x}') v(x') \psi_{\vec{k}}(\vec{x}')$$
$$v(x') = 2mV(x')$$

• = Lippmann-Schwinger Gleichung in Ortsdarstellung

20. What is the result of the first Born approximation for the scattering amplitude? Give and discuss some example potentials!

$$f^{(1)}(\theta,\phi) = -\frac{m}{2\pi} \tilde{V}(\vec{q})$$

- Coulomb
- Yukawa
- Delta
- ...

21. Describe the derivation of scattering phase for scattering at a hard sphere (inside  $V=\infty$ )!

Radialgleichung + RB  $\implies$  Bestimmungsgleichung  $\delta_I$ 

$$(\partial_r^2 + k^2)u_l = v_{eff}u_l$$
 mit  $v_{eff} = 2mV + \frac{l(l+1)}{r^2}$ 

- meist reicht / = 0
- innen:  $V = \infty \implies u_l = 0$
- ullet außen: freie Lösungen  $\sim e^{\pm ikr}$ , Ansatz

$$u_l \sim \sin(kr + \delta_l)$$

• RB:  $u_I(r=R)=0 \implies \delta_I=?$ 

### Viel Erfolg bei der Klausur! ©