

AHSANULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY (AUST)

ME-3105: FLUID MECHANICS

(LC-7: Problem on Rotation of Fluid Particle and Stream Function)

BY

Dr. FAZLAR RAHMAN Associate Professor, MPE, AUST

'φ (phi)' AND Ψ (psi)' FORMULA FOR PROBLEM SOLUTION (Note)

Velocity Potential ' ϕ ': The velocity potential $\phi = f(x, y, z)$ for steady flow,

$$\mathbf{u} = -\frac{\partial \phi}{\partial \mathbf{x}} \; ; \; \mathbf{v} = -\frac{\partial \phi}{\partial \mathbf{y}} \; ; \; \mathbf{w} = -\frac{\partial \phi}{\partial \mathbf{z}}$$

Continuity Equation: For incompressible fluid if the flow is steady then equation of continuity is given by,

$$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial \mathbf{v}}{\partial \mathbf{y}} + \frac{\partial \mathbf{w}}{\partial \mathbf{z}} = 0$$

$$\frac{\partial}{\partial x}\left(-\frac{\partial \phi}{\partial x}\right) + \frac{\partial}{\partial y}\left(-\frac{\partial \phi}{\partial y}\right) + \frac{\partial}{\partial z}\left(-\frac{\partial \phi}{\partial z}\right) = 0 \qquad \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = \nabla^2 \phi = 0$$

if the velocity potential satisfies the Laplace equation it represents the possible steady, incompressible, irrotational flow. Often an irrotational flow is known as **Potential flow**.

'φ (phi) 'AND 'Ψ (psi)' FORMULA FOR PROBLEM SOLUTION (Note)

For roatational flow, the rotation components are given by,

$$\omega_x = \frac{1}{2} \left(\frac{\delta w}{\delta y} - \frac{\delta v}{\delta z} \right) \quad \omega_y = \frac{1}{2} \left(\frac{\delta u}{\delta z} - \frac{\delta w}{\delta x} \right) \quad \omega_z = \frac{1}{2} \left(\frac{\delta v}{\delta x} - \frac{\delta u}{\delta y} \right)$$

Substituting the value of u, v and w interms of φ,

$$\omega_x = \frac{1}{2} \left(-\frac{\delta^2_{\varphi}}{\delta y \delta z} + \frac{\delta^2_{\varphi}}{\delta z \delta y} \right) \omega_y = \frac{1}{2} \left(-\frac{\delta^2_{\varphi}}{\delta z \delta x} + \frac{\delta^2_{\varphi}}{\delta x \delta z} \right) \omega_z = \frac{1}{2} \left(-\frac{\delta^2_{\varphi}}{\delta x \delta y} + \frac{\delta^2_{\varphi}}{\delta y \delta x} \right)$$

However ϕ is a continuous function then,

$$\frac{\delta^2_{\varphi}}{\delta y \delta z} = \frac{\delta^2_{\varphi}}{\delta z \delta y} \qquad \frac{\delta^2_{\varphi}}{\delta y \delta x} = \frac{\delta^2_{\varphi}}{\delta x \delta z} \qquad \frac{\delta^2_{\varphi}}{\delta x \delta y} = \frac{\delta^2_{\varphi}}{\delta y \delta x}$$

so $\omega_z = 0$, $\omega_y = 0$ and $\omega_x = 0$ i.e the flow is irrotational.

'φ (phi)' AND Ψ (psi)' FORMULA FOR PROBLEM SOLUTION (Note)

Stream Function '\Psi': $\psi = f(x, y)$ for steady flow such that

$$u = \frac{\partial \psi}{\partial y}$$
 $v = -\frac{\partial \psi}{\partial x}$

The Continuity equation for 2D incompressible flow,

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial x} = 0$$

By substituting the value of u, v and w in terms of ψ ,

$$\frac{\partial^2 \psi}{\partial x \partial y} - \frac{\partial^2 \psi}{\partial y \partial x} \equiv 0$$

Difference in ψ between streamlines is equal to volume flow rate between streamlines.

'φ (phi) 'AND 'Ψ (psi)' FORMULA FOR PROBLEM SOLUTION (Note)

For two dimensional flow.

$$\begin{split} u &= \frac{\delta \psi}{\delta y} \; ; \; \; v = -\frac{\delta \psi}{\delta x} \; (\text{for stream line}) \; \text{and} \; \psi = \psi(x,y) \\ u &= -\frac{\delta \varphi}{\delta x} \; ; \; v = -\frac{\delta \varphi}{\delta y} \; (\text{for velocity potential}) \; \text{and} \; \varphi = \varphi(x,y) \\ d\psi &= \frac{\delta \psi}{\delta x} \cdot dx + \frac{\delta \psi}{\delta y} \cdot dy = -v \cdot dx + u \cdot dy \; \; \text{and} \\ d\varphi &= \frac{\delta \varphi}{\delta x} \cdot dx + \frac{\delta \varphi}{\delta y} \cdot dy = -u \cdot dx - v \cdot dy \end{split}$$

The line of constant
$$\psi$$
 are streamline i.e. $d\psi = 0$ $\frac{dy}{dx} \bigg|_{\psi_{constant}} = \frac{v}{u}$

Along a line of constant
$$\phi$$
, $d\phi = 0$ $\frac{dy}{dx} = -\left(\frac{u}{v}\right)$

The product of slope of ψ = constant line and velocity potential line φ = constant line is negative 1 i.e. both lines are perpendicular where they intersect.

FORMULA FOR ACCELERATION OF FLUID PERTICLE PROBLEM (Note)

$$w = \frac{dz_{particle}}{dt}$$

$$V = i \cdot u + j \cdot v + k \cdot w$$

$$\frac{D}{Dt} = \frac{d}{dt} = \frac{\delta}{\delta t} + (\stackrel{\rightarrow}{V} \cdot \stackrel{\rightarrow}{\nabla})$$

PROBLEM ON VELOCITY POTENTIAL 'Φ 'AND STREAM FUNCTION 'Ψ'

Problem-1: In a two dimensional incompressible flow the fluid velocity components are given by u = x - 4y and v = -y - 4x. Show that the flow satisfies the continuity equation and obtain the expression for stream function. If the flow is potential. Obtain the expression for the velocity potential.

SEE HAND ANALYSIS

PROBLEM ON VELOCITY POTENTIAL 'Φ 'AND STREAM FUNCTION 'Ψ'

Problem-2: The velocity components in a two-dimensional flow field are expressed by

$$u = \frac{y^3}{3} + 2x - x^2y$$

 $v = xy^2 - 2y - \frac{x^3}{3}$

Show that the flow is (a). Incompressible and irrotational; (b). Obtain expression for stream function ψ and (c). Obtain expression for velocity potential ϕ .

SEE HAND ANALYSIS

PROBLEM ON VELOCITY POTENTIAL 'Φ 'AND STREAM FUNCTION 'Ψ'

Problem 3: The velocity components in a two-dimensional flow field are expressed by

$$u = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$
 $v = -\frac{2xy}{(x^2 + y^2)^2}$

Show that (a). Flow is incompressible and irrotational;

- (b). The points (2,2) and $(1, 2 \sqrt{3})$ are located in the same streamline.
- (c). Determine the discharge across a line joining points (1,1) and (2,2) given that thickness of the fluid stream normal to the xy plane is 't'.

Fazlar Rahman, Associate Prof., MPE, AUST, LEC-7

PROBLEM ON FLUID ACCELERATION

Problem-4: The velocity of a fluid flow is given by the following vector,

$$\overrightarrow{V} = x^3 y \mathbf{i} + y^2 z \mathbf{j} - (3x^2 y z + y z^2) \mathbf{k}$$

- (a). Show that the flow is steady and incompressible.
- (b). Find the velocity and acceleration of fluid particle at point (1, 2, 3).

SEE HAND ANALYSIS