From Missing Data to Model Performance: A Full Pipeline for Diabetes Classification in Pima Indian Females

Statistical Learning and Large Data Gabriele Cini, Flavio Di Lisio, Giorgia Di Santolo

OVERVIEW

- 1.Introduction
- 2. EDA and data wrangling
- 3.PCA
- 4. Clustering
- 5. Feature selection
- 6. Classification
- 7. Closing remarks

INTRODUCTION

- Context and background: why diabetes?
- Our aim
- Medical considerations

DATA VISUALIZATION - I

The Dataset is from the National Institute of Diabetes and Digestive and Kidney Diseases, all patients (768) are females at least 21 years old of Pima Indian heritage.

In figure the distribution of the 8 continuous variables:

- Number of times pregnant
- Plasma Glucose Concentration at 2 Hours in an Oral Glucose Tolerance Test (GTT)
- Diastolic Blood Pressure (mmHg)
- Triceps Skin Fold Thickness (mm)
- 2-Hour Serum Insulin (µU/ml)
- Body Mass Index (Weight in kg / (Height in m)²)
- Diabetes Pedigree Function: a synthesis of the diabetes mellitus history in relatives
- Age (years)

Outcome

In figure the barplot of the categorical variable:

- Outcome → unbalanced
 - 0: unaffected
 - 1: affected

SCALING

- We decided to consider the "0" of Glucose, Blood Pressure and BMI variables as "NA", and we removed those rows.
- We performed a Min-Max Scaling to the continuous variables.

SKIN THICKNESS PREDICTION

For the SkinThickness variable, we decided to estimate values rather than directly remove observations with NaN data.

This was decided due to the high number of not available observations (29.56%) and the high correlation between NaN SkinThickness and other NaN variables.

For the estimation we used a k-nearest neighbour model by assigning the mean value of the nearest k points to the interested observation.

We first had a test model run to observe the performance, then we applied the model to the entire dataset.

The model is quite good, as a Mean Absolute Percentage Error of about 10.57% is observed, a clearly better solution than using the average or median observed value (36% MAPE).

DATA VISUALIZATION FOR PREDICTED VALUES

density(x = df\$SkinThickness)

CORRELATION

We identified high correlation (> 0.30) between:

- BMI and SkinThickness
- Age and Pregnancies
- Insulin and Glucose
- Blood Pressure and Age

PRINCIPAL COMPONENT ANALYSIS (PCA) - I

We performed a PCA analysis, looking at the percentage of explained variances:

- Four elements are required in order to achieve 75% explainancy
- PC1 and PC2 explain 55.5% of the variance

PRINCIPAL COMPONENT ANALYSIS (PCA) - II

The loadings in the PCA - biplot:

- PC1 shows a predominantly negative correlation with the variables Pregnancies and Age.
- Both PC1 and PC2 are negatively correlated with the variable Glucose.

CLUSTERING - I

We indentified the optimal number of clusters:

- for the Hierarchical Clustering method: **3**
- for the K-Means clustering method using the Within cluster dissimilarity/distance strategy: 3

CLUSTERING - II

Clusters silhouette plot Average silhouette width: 0.22

1.0 -

• Hierarchical clustering

○ Adjusted Rand Index (ARI) = 0.175

Clusters silhouette plot Average silhouette width: 0.24

1.00 -

Average	Si	lhoue	ette Score: 0.2403					
cluster size ave.sil.width								
1	1	140	0.08					
2	2	214	0.17					
3	3	370	0.34					

- K-Means clustering
 - Adjusted Rand Index (ARI) = 0.207

FEATURE SELECTION

In doing feature selection we adopt the Best Subset approach, giving the low number of variables and thus models to test.

Our results suggests the best model adopts 4 variables, these being "Glucose", "BMI", "Pregnancies", "DiabetesPedigreeFunction"

CLASSIFICATION PIPELINE

Algorithms tested:

- K nearest neighbors
- Logistic regression
- LDA
- Naive Bayes Classifier
- Decision Tree
- Random Forest
- SVM

- Grid search stratified CV5 with SMOTE
- Training on entire dataset

CI of metrics estimated with bootstrap with B=1000

CLASSIFICATION PIPELINE: DETAIL

SMOTE

ALL FEATURES

model	accuracy	recall	precision	f1
decision tree	0.72	0.67	0.58	0.62
random forest	0.75	0.65	0.63	0.64
lda	0.75	0.62	0.71	0.66
naive bayes	0.76	0.62	0.76	0.68
logistic regression	0.76	0.63	0.74	0.68
svm	0.76	0.7	0.53	0.6
knn	0.73	0.58	0.77	0.66

SELECTED FEATURES

model	accuracy	recall	precision	f1
decision tree	0.72	0.77	0.57	0.65
random forest	0.75	0.69	0.62	0.66
lda	0.77	0.72	0.65	0.68
naive bayes	0.76	0.77	0.62	0.69
logistic regression	0.77	0.71	0.65	0.67
svm	0.77	0.57	0.71	0.63
knn	0.72	0.77	0.57	0.65

SIMILAR PERFORMANCES!

CONFIDENCE INTERVAL OF METRICS

model	accuracy	recall	precision	f1
decision tree	0.72 (0.69, 0.83)	0.77 (0.53, 0.79)	0.57 (0.51, 0.78)	0.65 (0.53, 0.76)
random forest	0.75 (0.67, 0.81)	0.69 (0.47, 0.73)	0.62 (0.5, 0.77)	0.66 (0.52, 0.69)
lda	0.77 (0.67, 0.82)	0.72 (0.58, 0.83)	0.65 (0.48, 0.75)	0.68 (0.55, 0.76)
naive bayes	0.76 (0.61, 0.79)	0.77 (0.52, 0.81)	0.62 (0.41, 0.67)	0.69 (0.48, 0.72)
logistic regression	0.77 (0.67, 0.82)	0.71 (0.56, 0.81)	0.65 (0.48, 0.75)	0.67 (0.53, 0.75)
svm	0.77 (0.67, 0.81)	0.57 (0.34, 0.63)	0.71 (0.47, 0.8)	0.63 (0.43, 0.68)
knn	0.72 (0.63, 0.79)	0.77 (0.62, 0.86)	0.57 (0.44, 0.69)	0.65 (0.54, 0.75)

SUMMARY

- The dataset is unbalanced
- We performed Exploratory Data analysis
- We filled the missing values using a k-nearest neighbour model
- We scaled the dataset
- We performed a Principal Component Analysis and a Clustering Analysis
- We selected the most relevant Features
- We tested several classification techniques
- What's next ...

ESSENTIAL BIBLIOGRAPHY

- The dataset: https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database/data
- Smith, J.W., Everhart, J.E., Dickson, W.C., Knowler, W.C., & Johannes, R.S. (1988). Using the ADAP learning algorithm to forecast the onset of diabetes mellitus. In Proceedings of the Symposium on Computer Applications and Medical Care (pp. 261--265). IEEE Computer Society Press.
- Chang, V., Bailey, J., Xu, Q. A., & Sun, Z. (2023). Pima Indians diabetes mellitus classification based on machine learning (ML) algorithms. Neural Computing and Applications, 35(22), 16157-16173.
- Nitesh, V. C. (2002). SMOTE: synthetic minority over-sampling technique. J Artif Intell Res, 16(1), 321.
- McInnes, L., Healy, J., & Melville, J. (2018). Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426.

Thank you for your attention

Gabriele Cini, Flavio Di Lisio, Giorgia Di Santolo

DESCRIPTIVE STATISTICS OF THE UNSCALED DATASET - I

Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction
Min. : 0.000	Min. : 0.0	Min. : 0.00	Min. : 0.00	Min. : 0.0	Min. : 0.00	Min. :0.0780
1st Qu.: 1.000	1st Qu.: 99.0	1st Qu.: 62.00	1st Qu.: 0.00	1st Qu.: 0.0	1st Qu.:27.30	1st Qu.:0.2437
Median : 3.000	Median :117.0	Median : 72.00	Median :23.00	Median : 30.5	Median :32.00	Median :0.3725
Mean : 3.845	Mean :120.9	Mean : 69.11	Mean :20.54	Mean : 79.8	Mean :31.99	Mean :0.4719
3rd Qu.: 6.000	3rd Qu.:140.2	3rd Qu.: 80.00	3rd Qu.:32.00	3rd Qu.:127.2	3rd Qu.:36.60	3rd Qu.:0.6262
Max. :17.000	Max. :199.0	Max. :122.00	Max. :99.00	Max. :846.0	Max. :67.10	Max. :2.4200
Age	Outcome					
Min. :21.00	Min. :0.000					
1st Qu.:24.00	1st Qu.:0.000					
Median :29.00	Median :0.000					
Mean :33.24	Mean :0.349					
3rd Qu.:41.00	3rd Qu.:1.000					
Max. :81.00	Max. :1.000					

DESCRIPTIVE STATISTICS OF THE UNSCALED DATASET - II

· ·	vars	n	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis	se
Pregnancies	1	768	3.85	3.37	3.00	3.46	2.97	0.00	17.00	17.00	0.90	0.14 0	.12
Glucose	2	768	120.89	31.97	117.00	119.38	29.65	0.00	199.00	199.00	0.17	0.62 1	.15
BloodPressure	3	768	69.11	19.36	72.00	71.36	11.86	0.00	122.00	122.00	-1.84	5.12 0	. 70
SkinThickness	4	768	20.54	15.95	23.00	19.94	17.79	0.00	99.00	99.00	0.11	-0.53 0	. 58
Insulin	5	768	79.80	115.24	30.50	56.75	45.22	0.00	846.00	846.00	2.26	7.13 4	.16
BMI	6	768	31.99	7.88	32.00	31.96	6.82	0.00	67.10	67.10	-0.43	3.24 0	. 28
DiabetesPedigreeFunction	7	768	0.47	0.33	0.37	0.42	0.25	0.08	2.42	2.34	1.91	5.53 0	. 01
Age	8	768	33.24	11.76	29.00	31.54	10.38	21.00	81.00	60.00	1.13	0.62 0	.42
Outcome	9	768	0.35	0.48	0.00	0.31	0.00	0.00	1.00	1.00	0.63	-1.60 0	. 02

DESCRIPTIVE STATISTICS OF THE SCALED DATASET - I

Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI
Min. :0.00000	Min. :0.0000	Min. :0.0000	Min. :0.0000	мin. :0.00000	мin. :0.0000
1st Qu.:0.05882	1st Qu.:0.3597	1st Qu.:0.4082	1st Qu.:0.1658	1st Qu.:0.00000	1st Qu.:0.1902
Median :0.17647	Median :0.4710	Median :0.4898	Median :0.2391	Median :0.05674	Median :0.2904
Mean :0.22741	Mean :0.5025	Mean :0.4939	Mean :0.2405	Mean :0.09988	Mean :0.2918
3rd Qu.:0.35294	3rd Qu.:0.6323	3rd Qu.:0.5714	3rd Qu.:0.3080	3rd Qu.:0.15426	3rd Qu.:0.3763
Max. :1.00000	Max. :1.0000	Max. :1.0000	Max. :1.0000	Max. :1.00000	Max. :1.0000
DiabetesPedigreeF	unction Age	Outcome			
мin. :0.00000	Min. :0).0000 x0:475			
1st Qu.:0.07131	1st Qu.:0).0500 X1:249			
Median :0.12852	Median :0).1333			
Mean :0.16941	Mean :0).2058			
3rd Qu.:0.23463	3rd Qu.:0). 3333			
мах. :1.00000	Max. :1	.0000			

DESCRIPTIVE STATISTICS OF THE SCALED DATASET - II

	vars	n	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis	se
Pregnancies	1	724	0.23	0.20	0.18	0.21	0.17	0	1	1	0.90	0.16	0.01
Glucose	2	724	0.50	0.20	0.47	0.49	0.19	0	1	1	0.52	-0.32 (0.01
BloodPressure	3	724	0.49	0.13	0.49	0.49	0.12	0	1	1	0.14	0.90 (0.00
SkinThickness	4	724	0.24	0.11	0.24	0.24	0.10	0	1	1	0.65	3.22 (0.00
Insulin	5	724	0.10	0.14	0.06	0.07	0.08	0	1	1	2.19	6.74 (0.01
BMI	6	724	0.29	0.14	0.29	0.28	0.14	0	1	1	0.60	0.91 (0.01
DiabetesPedigreeFunction	7	724	0.17	0.14	0.13	0.15	0.11	0	1	1	1.91	5.56 (0.01
Age	8	724	0.21	0.20	0.13	0.18	0.17	0	1	1	1.08	0.48 (0.01
Outcome*	9	724	1.34	0.48	1.00	1.31	0.00	1	2	1	0.66	-1.57 (0.02

DIMENSIONAL REDUCTION - PCA

DIMENSIONAL REDUCTION - t-SNE and UMAP

CLASSIFICATION - DECISION TREE

Metrics:

- Accuracy: 0.72 (0.69, 0.83)
- Recall: 0.77 (0.53, 0.79)
- Precision: 0.57 (0.51, 0.78)
- F1: 0.65 (0.53, 0.76)

CI 95% estimated with R=1000, BCa method cp = 0.001

CLASSIFICATION - RANDOM FOREST

mtry = 2

- Accuracy: 0.75 (0.67,0.81)
- Recall: 0.69 (0.47, 0.73)
- Precision: 0.62 (0.5, 0.77)
- F1: 0.66 (0.52, 0.69)

CLASSIFICATION - LDA

- Accuracy: 0.77 (0.67, 0.82)
- Precision: 0.65 (0.48, 0.75)
- Recall: 0.75 (0.58, 0.83)
- F1: 0.68 (0.55, 0.76)

CLASSIFICATION - KNN

k = 11

- Accuracy: 0.72 (0.63, 0.79)
- Precision: 0.57 (0.44, 0.69)
- Recall: 0.77 (0.62, 0.86)
- F1: 0.65 (0.54, 0.75)

CLASSIFICATION - LOGISTIC REGRESSION

alpha=0.5, lambda =0

- Accuracy: 0.77 (0.67, 0.82)
- Precision: 0.65 (0.48, 0.75)
- Recall: 0.71 (0.56, 0.81)
- F1: 0.67 (0.53, 0.75)

CLASSIFICATION - NAIVE BAYES

- Accuracy: 0.76 (0.61, 0.79)
- Precision: 0.62 (0.41, 0.67)
- Recall: 0.77 (0.52, 0.81)
- F1: 0.69 (0.48, 0.72)

2/

CLASSIFICATION - SVM

kernel = 'rbf', sigma=0.01, C=1

- Accuracy: 0.77 (0.67, 0.81)
- Precision: 0.71 (0.47, 0.8)
- Recall: 0.57 (0.34, 0.63)
- F1: 0.63 (0.43, 0.68)

