Homework X

Problems

Problem 1:

Let G be a group with |G| = 6 (|G| denotes the number of elements of G). Assume that $a, b \in G$ are elements that are not equal to the identity and satisfy $a^3 = e, b^2 = e$.

- (a) Prove that e, a, a^2, b, ab, a^2b are all distinct.
- (b) The result from part (a) guarantees that $G = \{e, a, a^2, b, ab, a^2b\}$. Assume that $ba \neq ab$. Which of the 6 elements of G is equal to ba? Justify.
- (c) Fill in the multiplication table of G. Justify.

Answer 1:

(a)

- (1) $a \neq e$ given
- (2) $a^2 \neq e$ $a^2 = e \Rightarrow a^3 = a = e$ contradicts (1)
- (3) $a^2 \neq a$ $a^2 = a \Rightarrow a = e \text{ contradicts (1)}$
- (4) $b \neq e$ given
- (5) $b \neq a$ $b = a \Rightarrow e = b^2 = a^2$ contradicts (2)
- (6) $b \neq a^2$ $b = a^2 \Rightarrow e = b^2 = a^4 = a$ contradicts (1)
- (7) $ab \neq e$ $ab = e \Rightarrow b = a^3b = a^2$ contradicts (6)
- (8) $ab \neq a$ $ab = a \Rightarrow b = e \text{ contradicts } (4)$
- (9) $ab \neq a^2$ $ab = a^2 \Rightarrow b = a \text{ contradicts (5)}$
- (10) $ab \neq b$ $ab = b \Rightarrow a = e \text{ contradicts } (1)$
- (11) $a^2b \neq e$ $a^2b = e \Rightarrow b = a \text{ contradicts (5)}$
- (12) $a^2b \neq a$ $a^2b = a \Rightarrow ab = e \text{ contradicts } (7)$
- (13) $a^2b \neq a^2$ $a^2b = a^2 \Rightarrow b = e \text{ contradicts } (4)$

(14)
$$a^2b \neq b$$
 $a^2b = b \Rightarrow a^2 = e \text{ contradicts } (2)$

(15)
$$a^2b \neq ab$$
 $a^2b = ab \Rightarrow a = e \text{ contradicts (1)}$

(b) $ba = a^2b$ by elimination:

$$ba \neq e$$
 $ba = e \Rightarrow a = b$
 $ba \neq a$ $ba = a \Rightarrow b = e$
 $ba \neq a^2$ $ba = a^2 \Rightarrow a = b$
 $ba \neq b$ $ba = b \Rightarrow a = e$
 $ba \neq ab$ given

(c) Cayley table:

Problem 2:

Let G be a group and $a, b \in G$ be arbitrary elements.

- (a) Prove that $o(a) = o(a^{-1})$, where o(a) denotes the order of the element a.
- (b) Prove that o(ab) = o(ba) (note: we are not assuming that a and b commute).
- (c) Prove that $o(aba^{-1}) = o(b)$.

Answer 2:

(a) Let p = o(a) then

$$e = a^{p}(a^{-1})^{p}$$
$$= e(a^{-1})^{p}$$
$$= (a^{-1})^{p}$$
$$o(a) \le o(a^{-1})$$

Interchange a and a^{-1} to get $o(a^{-1}) \le o(a)$ and $o(a^{-1}) = o(a)$

(b) Let p = o(ab) and q = o(ba) with p >= q.

$$e = (ab)^{p}$$

$$bea = b(ab)^{p}a$$

$$ba = (ba)^{p}(ba)$$

$$e = (ba)^{p}$$

$$o(ba) \le o(ab)$$

Interchange a and b to get $o(ab) \le o(ba)$ and so o(ba) = o(ab)

(c) Let o(b) = p then

$$(aba^{-1})^p = aba^{-1}aba^{-1} \cdots aba^{-1}$$

$$= ab^p a^{-1}$$

$$= aea^{-1}$$

$$= e$$

$$o(aba^{-1}) \le o(b)$$

Reverse to get $o(b) \le o(aba^{-1})$ and so $o(b) = o(aba^{-1})$

Problem 3:

Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$. Prove that $o(A) = \infty$ by finding a formula for A^n . Use induction to prove that your formula holds for all n.

Answer 3:

Consider the Fibbonacci series defined:

$$F_0 = 0$$

$$F_1 = 1$$

$$F_k = F_{k-1} + F_{k-2}$$

We assert that $A^n = \begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix}$ and therefore $o(A) = \infty$ since the Fibbonacci series is monotonically increasing.

$$A^1 = \begin{bmatrix} F_2 & F_1 \\ F_1 & F_0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

If

$$A^{k-1} = \begin{bmatrix} F_k & F_{k-1} \\ F_{k-1} & F_{k-2} \end{bmatrix}$$

then

$$A^{k} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_{k} & F_{k-1} \\ F_{k-1} & F_{k-2} \end{bmatrix}$$
$$= \begin{bmatrix} F_{k} + F_{k-1} & F_{k-1} + F_{k-2} \\ F_{k} & F_{k-1} \end{bmatrix}$$
$$= \begin{bmatrix} F_{k+1} & F_{k} \\ F_{k} & F_{k-1} \end{bmatrix}$$

Problem 4:

Find the orders of all the elements in each of the following groups:

- (a) \mathbb{Z}_5
- (b) \mathbb{Z}_6
- (c) \mathbb{Z}_{12}^*
- (d) \mathbb{R}^*
- (e) \mathbb{Z}

Answer 4:

Showing only o(x) for $x \neq e$ and omitting brackets and subscripts:

- (a) \mathbb{Z}_5 : o(x) = 5
- (b) \mathbb{Z}_6 : o(1) = o(5) = 6 o(2) = o(4) = 3o(3) = 2
- (c) $\mathbb{Z}_{12}^* = \{1, 5, 7, 11\}:$ o(5) = o(7) = o(11) = 2
- (d) \mathbb{R}^* : o(-1) = 2 $o(x) = \infty$
- (e) \mathbb{Z} : $o(x) = \infty$

Theoretical Problems

Problem 5:

Prove that there is only one possible multiplication table for groups with 3 elements up to labeling the elements.

Answer 5:

Problem 6:

Prove that there are only two possible multiplication tables for groups with 4 elements up to labeling the elements.

Answer 6:

Problem 7:

Let G be a group and $a \in G$ an element. Assume that o(a) = n. Let k be an arbitrary integer. Prove that $a^k = e \iff n \mid k$.

Answer 7:

Problem 8:

Let G be a group and $a \in G$ an element. Assume that o(a) = n. Let k_1, k_2 be integers. Prove that $a^{k_1} = a^{k_2}$ if and only if $n \mid (k_1 - k_2)$.

Answer 8: