Day12_Notes.md 2023-10-12

STM32 GPIO Alternate Functions

- GPIO pins are multiplexed with other peripherals.
- Each GPIO pin can have up to 16 alternate functions.
 - Refer STM32 data sheet for the details.
- Alternate function (0 to 15) can be set in GPIO AFR register.
 - GPIOx[7:0] alternate functions to be set in GPIOx_AFRL (4-bits for each pin).
 - GPIOx[15:8] alternate functions to be set in GPIOx_AFRH (4-bits for each pin).
- GPIO pin mode should be set to Alt Function [10] into MODER register.

Basic communication types

- Parallel
- Serial

Serial communication

- Synchronous
- Asynchronous

Serial Protocols

- peer to peer/end to end/Ad-hoc
- bus
- star

Protocol types

- Simplex
- Half Duplex
- Full Duplex

USART vs UART

- USART -- Universal Synchronous Asynchronous Receiver Transmitter
 - Single byte or multi-byte communication (in a data frame)
- UART -- Universal Asynchronous Receiver Transmitter
 - Single byte communication (in a data frame)

RS-232

- Physical characteristics
 - Type
 - Full-duplex
 - Peer-to-peer
 - Connections/Wires/Pins

Day12_Notes.md 2023-10-12

- Tx: Transmit
- Rx: Receive
- Gnd
- Connector
 - Old: DB-25Standard: DB-9
- Half Serial Cable: Only 3 wires connected -- Rx, Tx, Ground.
- Full Serial Cable: 9 wires connected
- Voltage/current levels
 - NRZ (Not Returning Zero)
 - CMOS Voltage levels
 - +3V to +25V -- Logic 0 -- Space
 - -3V to -25V -- Logic 1 -- Mark *TTL Voltage (0V-0 and 5V-1) ---> RS-232 Line Driver
 ---> CMOS Voltage levels
 - TTL <--> MAX-232 <--> CMOS
- o Bit-rate / Baud rate
 - Standard baud rates: 9600, 38400, 115200, ...
- Logical characteristics
 - o Data frame
 - Start bit --> Always 0
 - Data bits --> 5 to 9 bits -- LSB Tx First
 - Parity bit --> Even/Odd/1/0/No
 - Stop bit(s) --> Always 1
 - Error conditions
 - Partity error: Parity mismatched on receiver end (w.r.t. config)
 - Frame error: Stop bit is 0
 - Read overrun: The uC is processing some data and not read the data transmitted.
 - write overrun:
 - Noise error: Detected in STM32 with oversampling.

STM32 USART

- STM32F407xx has 4 USART and 2 UART.
- Features
 - Full-duplex, synchronous & asynchronous communication
 - NRZ standard format
 - Flexible configuration
 - Fractional baud rate * Programmable word length, stop bits, parity....
 - Transfer detection flags
 - Error detection flags

Day12 Notes.md 2023-10-12

- o Parity, Overrun, Frame and Noise error
- Transfer and Error interrupts
- o Programmable hardware control
- STM32 Oversampling
 - To detect noise while receiving data over-sampling technique is employed in STM32.
 - This technique samples receiver pin signal multiple times (based on OVER8 bit).
 - For OVER8=1, max baud = PCLK/8 but receiver tolerance to clock deviation is less.
 - For OVER8=0, max baud = PCLK/16 but receiver tolerance to clock deviation is more. Preferred in noisy environment.
- STM32 UART baud rate calculation
- USART registers
 - USART_DR: Composed of two registers TDR & RDR.
 - USART_BRR: USART divisor
 - USART_CR1, CR2, CR3: Control registers
 - USART_SR: Hardware control, interrupts and error flags.

USART Tx and Rx with polling

- USART Initialization
 - Configure GPIO
 - Enable clock
 - Set Alternate function & mode
 - Config output type & pull-up/down
 - Configure USART
 - Enable clock
 - Comm. attributes (CRx)
 - Baud rate setting
 - Enable UART
- USART Send
 - Wait for last char to transmit (TXE flag)
 - Write the char into DR
- UART Receive
 - Wait for a char to be received (RXNE flag)
 - Read the received char from DR

STM32 Interrupt Handling

- USART Initialization
 - Configure GPIO
 - Enable clock
 - Set Alternate function & mode

Day12_Notes.md 2023-10-12

- Config output type & pull-up/down
- Configure USART
 - Enable clock
 - Comm. attributes (CRx)
 - Baud rate setting
- Enable interrupt in NVIC (ISER)
- Enable UART
- USART Send String
 - Wait for last string to transmit
 - Get ready for new transmission
 - string address
 - start index = 0
 - Enable TXEIE interrupt
- UART ISR
 - Verify the source of the interrupt
 - If string is not completed, send next char
 - Otherwise stop the transmission and mark the end of current transmission.