Matemática numérica

Pedro H A Konzen

25 de maio de 2018

Licença

Este trabalho está licenciado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by-sa/4.0/ ou mande uma carta para Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Prefácio

Sumário

\mathbf{C}	apa	i
Li	icença	ii
P	refácio	iii
$\mathbf{S}_{\mathbf{l}}$	umário	iv
1	Introdução	1
2	Aproximação por mínimos quadrados 2.1 Problemas lineares	2 2 2
\mathbf{R}	espostas dos Exercícios	7
${f R}$	eferências Bibliográficas	8

Capítulo 1

Introdução

Em construção ...

Capítulo 2

Aproximação por mínimos quadrados

2.1 Problems lineares

Dado um conjunto de n pontos $\{(x_i,y_i)\}_{i=1}^n$, $x_i \neq x_j$ para $i \neq j$, e uma família de $m \leq n$ funções $\{f_i(x)\}_{i=1}^m$, o problema linear de aproximação por mínimos quadrados consiste em determinar os m coeficientes $\{c_i\}_{i=1}^m$ tal que a função

$$f(x) = \sum_{i=1}^{m} c_i f_i(x)$$

$$= c_1 f_1(x) + c_2 f_2(x) + c_3 f_3(x) + \dots + c_n f_n(x)$$
(2.1)

aproxime o conjunto de pontos dados no sentido de mínimos quadrados, i.e. os coeficientes que são solução do seguinte problema linear de minimização

$$\min_{\{c_1, c_2, \dots, c_n\}} \sum_{i=1}^n (y_i - f_i(x_i))^2.$$
 (2.2)

2.1.1 Equações normais

Afim de resolver o problema de mínimos quadrados (2.2), observamos que o erro quadrático

$$E := \sum_{i=1}^{n} (y_i - f_i(x_i))^2 = \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{m} c_j f_j(x_i) \right)^2$$
 (2.3)

tem seu mínimo para os coeficientes c_k tais que

$$\frac{\partial E}{\partial c_k} = 0, \quad k = 1, 2, 3, \dots, m. \tag{2.4}$$

Calculando estas derivadas parciais, temos

$$\frac{\partial E}{\partial c_k} = \frac{\partial}{\partial c_k} \sum_{i=1}^n \left(y_i - \sum_{j=1}^m c_j f_j(x_i) \right)^2
= 2 \sum_{i=1}^n \left(y_i - \sum_{j=1}^m c_j f_j(x_i) \right) f(x_k)
= 2 \sum_{i=1}^n y_i f(x_k) - 2 \sum_{i=1}^n \sum_{k=1}^m c_j f_j(x_i) f(x_k), \quad k = 1, 2, 3, \dots, m.$$
(2.5)

Desta forma, a equação (2.4) é equivalente a resolver o seguinte sistema linear

$$\sum_{i=1}^{n} \sum_{k=1}^{m} c_j f_j(x_i) f(x_k) = \sum_{i=1}^{n} y_i f(x_k), \quad k = 1, 2, 3, \dots, m.$$
 (2.6)

Agora, denotando

$$A := \begin{bmatrix} f_1(x_1) & f_2(x_1) & \cdots & f_m(x_1) \\ f_1(x_2) & f_2(x_2) & \cdots & f_m(x_2) \\ \vdots & \vdots & \vdots & \vdots \\ f_1(x_n) & f_2(x_n) & \cdots & f_m(x_n) \end{bmatrix}$$
(2.7)

o sistema linear (2.6) pode ser escrito na seguinte forma matricial

$$A^T A c = A^T y, (2.8)$$

onde $c = (c_1, c_2, \dots, c_m)$ é o vetor dos coeficientes e $y = (y_1, y_2, \dots, y_n)$ é o vetor das abscissas dos pontos dados.

Exemplo 2.1.1. (Ajuste de polinômios) Considere o problema de ajustar o conjunto de pontos

por um polinômio quadrático da forma

$$p(x) = p_1 x^2 + p_2 x + p_n (2.9)$$

3

Figura 2.1: Esboço do polinômio ajustado no Exemplo 2.1.1.

no sentido de mínimos quadrados.

Neste caso, a família de funções do problema de mínimos quadrados é $f_1(x)=x^2$, $f_2(x)=x$ e $f_3(x)=1$. Assim sendo, os coeficientes $p=(p_1,p_2,p_3)$ são solução do seguinte sistema linear

$$A^T A p = A^T y, (2.10)$$

onde $y = (y_1, y_2, y_3)$ e

$$A := \begin{bmatrix} x_1^2 & x_1 & 1 \\ x_2^2 & x_2 & 1 \\ x_3^2 & x_3 & 1 \\ x_4^2 & x_4 & 1 \end{bmatrix}. \tag{2.11}$$

Emfim, resolvendo as equações normais (2.10), obtemos

$$p(x) = 1,25x^2 - 0,188x - 0,203. (2.12)$$

A Figura 2.2 mostra um esboço dos pontos (em vermelho) e do polinômio ajustado (em azul).

Os coeficientes e um esboço do polinômio ajustado podem ser obtidos no GNU Octave com o seguinte código:

```
#pontos
x = [-1 0 1 1.5]';
y = [1.2, -0.1, 0.7, 2.4]';

#resol. as eqs. normais
A = [x.^2 x.^1 x.^0];
p = inv(A'*A)*A'*y

#esboco do pol. ajustado
xx = linspace(-1.25,1.75);
plot(x,y,'ro',...
xx,polyval(p,xx));grid
```

Exemplo 2.1.2. (Ajuste de curvas) Consideremos o mesmo conjunto de pontos do exemplo anterior (Exemplo 2.1.1). Aqui, vamos ajustar uma curva da forma

$$f(x) = c_1 \operatorname{sen}(x) + c_2 \cos(x) + c_3 \tag{2.13}$$

no sentido de mínimos quadrados. Para tanto, formamos a matrix

$$A := \begin{bmatrix} \sin(x_1) & \cos(x_1) & 1 \\ \sin(x_2) & \cos(x_2) & 1 \\ \sin(x_3) & \cos(x_3) & 1 \\ \sin(x_4) & \cos(x_4) & 1 \end{bmatrix}$$
(2.14)

e, então, resolvemos as equações normais $A^TAc = A^Ty$ para o vetor de coeficientes $c = (c_1, c_2)$. Fazendo isso, obtemos $c_1 = -0.198$, $c_2 = -2.906$ e $c_3 = 2.662$. A Figura ?? mostra um esboço da curva ajustada (linha azul) aos pontos dados (círculos vermelhos).

Os coeficientes e um esboço do polinômio ajustado podem ser obtidos no GNU Octave com o seguinte código:

#pontos

$$x = [-1 \ 0 \ 1 \ 1.5]';$$

 $y = [1.2, -0.1, 0.7, 2.4]';$

Figura 2.2: Esboço da curva ajustada no Exemplo 2.1.2.

```
#resol. as eqs. normais
A = [sin(x) cos(x) ones(4,1)];
c = inv(A'*A)*A'*y

#curva ajustada
f = @(x) c(1)*sin(x) + c(2)*cos(x) + c(3)

#esboco do pol. ajustado
xx = linspace(-1.25,1.75);
plot(x,y,'ro',...
xx,f(xx));grid
```

Exercícios

E 2.1.1. oi

Resposta dos Exercícios

E 2.1.1. tchau

Referências Bibliográficas

[1] R.L. Burden, J.D. Faires, and A.M. Burden. *Análise Numérica*. CENGAGE Learning, 10. ed. edition, 2015.