Sammanfattning av

Yashar Honarmandi yasharh@kth.se

28januari2019

Sammanfattning

Detta är en sammanfattning av SI1200 Fysikens matematiska metoder. Den innehåller essentiella resultat och metoder som dyker upp i kursen.

Innehåll

1	Ordinarie differentialekvationer	1
2	Partiella differentialekvationer	1
3	Speciella funktioner	3

1 Ordinarie differentialekvationer

Sturm-Liouvilles sats Sturm-Liouvilles sats säjer att ett problem på formen

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(p \frac{\mathrm{d}f}{\mathrm{d}x} \right) + qf + \lambda wf = 0,$$

$$Af(a) + B \, \mathrm{d}f \, x(a) = 0,$$

$$Cf(b) + D \, \mathrm{d}f \, x(b) = 0.$$

där p, q och w är kontinuerliga reellvärda funktioner, har oändligt många lösningar f_n motsvarande distinkta egenvärden λ_n . Dessa lösningar utgör ett fullständigt ortogonalt system i ett Hilbertrum av funktioner med inreprodukt

$$\langle f|g\rangle = \int_{a}^{b} dx (f(x))^* g(x).$$

Detta rummet betecknas även $L^2([a,b])$. Vi vet även att om

$$f = c_i f_i$$

där f_i är basfunktioner för Hilbertrummet, är

$$c_i = \frac{\langle f|f_i\rangle}{\langle f_i|f_i\rangle}$$
, ingen summation.

2 Partiella differentialekvationer

Dirichletvillkor Betrakta en differentialekvation som skall lösas på ett domän Ω . Dirichletvillkor är på formen

$$u(x,t) = 0, x \in \partial \Omega.$$

Neumannvillkor Betrakta en differentialekvation som skall lösas på ett domän Ω . Neumannvillkor är på formen

$$n_i \partial_i u(x,t) = 0, x \in \partial \Omega,$$

där n är normal på $\partial\Omega$.

Robinvillkor Betrakta en differentialekvation som skall lösas på ett domän Ω . Robinvillkor är på formen

$$\alpha(x,t)u(x,t) + \beta(x,t)n_i\partial_i u(x,t) = 0, x \in \partial\Omega,$$

där n är normal på $\partial\Omega$.

Homogena och inhomogena grejer En differentialekvation på formen

$$Lu = f$$

kallas för homogen om f=0 och inhomogen annars. Vi definierar homogena och inhomogena randvillkor analogt.

Flerdimensionell variant av Sturm-Liouvilles sats Problemet

$$\Delta f = \lambda f,$$

$$f(x) = 0, x \in \partial \Omega$$

har o
ändligt många lösningar f_n med distinkta egenvärden $\lambda_n > 0$ så att lösningarna bildar en fullständig mängd och är ortogonala med inreprodukten

$$\langle f|g\rangle = \int_{\Omega} \mathrm{d}^n x \, f^*(x)g(x).$$

För problemet

$$\Delta f = \lambda f,$$

$$\alpha(x, t)u(x, t) + \beta(x, t)n_i\partial_i u(x, t) = 0, x \in \partial\Omega,$$

där n är normal på $\partial\Omega$, finns det oändligt många ortogonala lösningar med distinkta egenvärden, där dessa bildar en fullständig mängd.

Spektralsatsen Låt A vara en självadjungerad operator med diskret spektrum. Då har A oändligt många egenfunktioner. Dessa är ortogonala och bildar en fullständig mängd.

Figur 1: Peak fysiker.

Lösning av PDE:er for dummies Fysiker hatar honom. Här kan du läsa hans tre enkla steg för att göra teoretisk fysik komplett vid att lösa partiella differentialekvationer:

- 1. Bestäm lösningar till det homogena problemet.
- 2. Välj lösningar som passar till randvillkoren. Sturm-Liouvilles sats garanterar att det finns lösningar. Låt den allmänna lösningen vara en linjärkombination av dessa.
- 3. Hitta motsvarande lösningar till variabler som inte har randvillkor.
- 4. Skriv upp den allmänna lösningen som en linjärkombination av lösningarna du har fått innan.
- 5. Välj koefficienter som passar till initialvillkoren. Det finns även satser som hjälper med detta.

Separationsmetoden Separationsmetoden är ett sätt att lösa homogena partiella differentialekvationer på. Låt $u(x_1, \ldots, x_n)$ vara en lösning till Lu = 0, där L är en linjär differentialoperator. Separationsmetoden går ut på att göra ansatsen

$$u = \prod_{i=1}^{n} X_i(x_i).$$

Denna ansatsen gör förhoppningsvis att differentialekvationen kan skrivas som

$$\frac{1}{X_1}L_1X_1 = \frac{1}{\prod_{i=1}^n X_i}L'\prod_{i=1}^n X_i.$$

Varje sida beror av olika variabler, varför de måste vara lika med en konstant. På detta sättet kan det ursprungliga problemet förhoppningsvis separeras i delproblem som är enkla att lösa.

Lösningsstrategi för inhomogena problem Om man har ett problem med inhomogeniteter i differentialekvationen och/eller villkoren, finns det olika strategier för att lösa detta problemet:

- dela upp lösningen i en homogen och partikulär lösning. Den partikulära lösningen fås då vid att gissa en lösning.
- flytta inhomogeniteten från villkoren till differentialekvationen, för sen att försöka lösa det.
- serieutveckla ekvationen och lösningen, vilket ger ett ODE-problem för basfunktionerna.

Här specifieras hur metod två fungerar.

För att utdypa kring andra metoden, betrakta ekvationen

$$Lu = 0,$$

$$Au(\mathbf{x}, t) = f(\mathbf{x}, t), x \in \partial\Omega,$$

där både L och A är linjära operatorer. Antag att man hittar en funktion w som uppfyller Aw=f på randen, och inför v=u-w, där u är en lösning. Denna uppfyller

$$\partial_t v + Lv = \partial_t u + Lu - \partial_t w - Lw = -\partial_t w - Lw, Av(\mathbf{x}, t) = 0, x \in \partial\Omega.$$

3 Speciella funktioner

Trigonometriska och hyperbolskap funktioner Trigonometriska funktioner kan utvidgas via deras Taylorpolynom till att även ta komplexa argument. Det samma kan hyperbolska funktioner, vilket ger relationen

$$cos(ix) = cosh x,$$

 $sin(ix) = i sinh x.$

Besselfunktioner I lösning av Laplaces ekvation på enhetsskivan dyker det upp två funktioner J_n och Y_n . Dessa har följande egenskaper:

- J_n är begränsad när $r \to \infty$.
- $J_n \propto r^{|n|} \, \mathrm{da} \, r \to 0.$
- $J_n \propto r^{-|n|} \, \mathrm{d}\mathring{\mathrm{a}} \, r \to 0.$

Dessa definieras, för heltaliga n och positiva argument, av

$$J_n(\theta) = \frac{1}{2\pi} \int_0^{2\pi} dr \, r e^{-in\theta + ir \sin \theta},$$

$$Y_n(\theta) = \frac{1}{\pi} \left(\int_0^{\pi} dr \sin(\theta \sin r - nr) - \int_0^{\infty} dr \, (e^{nr} + (-1)^n e^{-nr}) e^{-\theta \sinh r} \right).$$

Legendrepolynom

Klotytefunktioner Laplaceoperatorn i sfäriska koordinater innehåller en del som endast beror på r och en del som beror av vinklarna. Dens egenfunktioner är klotytefunktionerna

$$Y_{l,m}(\theta,\phi) = Ne^{im\phi}P_m^l(\cos\theta).$$

För ett fixt l finns det 2l+1 möjliga värden av m. Dessa är alla heltal som uppfyller $|m| \leq l$.