Derivatives

CFA二级培训项目

讲师: 王慧琳

Topic Weightings in CFA Level II

Session NO.	Content	Weightings
Study Session 1-2	Quantitative Methods	5-10
Study Session 3	Economics	5-10
Study Session 4-5	Financial Statement Analysis	10-15
Study Session 6-7	Corporate Issuers	5-10
Study Session 8-10	Equity Valuation	10-15
Study Session 11-12	Fixed Income	10-15
Study Session 13	Derivatives	5-10
Study Session 14	Alternative Investments	5-10
Study Session 15-16	Portfolio Management	10-15
Study Session 17	Ethical and Professional Standards	10-15
		生型・ 创新・増值

Derivatives

Derivatives

- LM1 Pricing and Valuation of Forward Commitments
- LM2 Valuation of Contingent Claims

Pricing and Valuation of Forward Commitments

Framework

1. Forward

- Principle of Arbitrage-free Pricing
- Equity Forward and Futures Contracts
- Interest Rate Forward and Futures Contracts(FRA)
- Fixed-Income Forward and Futures Contracts
- 2. T-bond Futures
- 3. Swap
 - Interest Rate Swap Contracts
 - Currency Swap Contracts
 - Equity Swap Contracts

Price and Value

- The <u>price</u> is the predetermined price in the contract that the long should pay to the short to buy the underlying asset <u>at the settlement date.</u>
- > The contract value is zero to both parties at initiation.
- The <u>no-arbitrage principle</u>: tradable securities with <u>identical cash flow</u> payments must have the same price. Otherwise, traders would <u>be able to generate risk-free arbitrage profits</u>.
 - Two assets or portfolios with identical future cash flows, regardless of future events, should have same price;
 - The portfolio should yield the risk-free rate of return, if it generates certain payoffs.

Generic Pricing: No-Arbitrage Principle

- Pricing a forward contract is the process of determining the no-arbitrage price that will make the value of the contract be zero to both sides at the initiation of the contract.
 - Forward price=price that would not permit profitable riskless arbitrage in frictionless markets
 - $FP=S_0 \times (1+r_f)^T$ + Carrying Costs Carrying Benefits
- Strategies if there exists arbitrage profits
 - Cash-and-Carry Arbitrage
 - Reverse Cash-and-Carry Arbitrage

Forwards Arbitrage

- <u>Cash-and-Carry Arbitrage</u> with forward contract market price <u>too high</u> relative to carry arbitrage model.
 - If FP > $S_0 \times (1 + R_f)^T$

At initiation	At settlement date
Short a forward contract	Deliver the underlying to the long
 Borrow S₀ at the risk-free 	Get FP from the long
rate	Repay the loan amount of
 Use the money to buy the 	$S_0 \times (1 + R_f)^T$
underlying bond	

Forwards Arbitrage

- <u>Reverse Cash-and-Carry Arbitrage</u> with forward contract market price <u>too</u> <u>low</u> relative to carry arbitrage model.
 - If FP $< S_0 \times (1 + R_f)^T$

At initiation	At settlement date	
 Long a forward contract Short sell the underlying bond to get S₀ Invest S₀ at the risk-free rate 	 Pay the short FP to get the underlying bond Close out the short position by delivering the bond Receive investment proceeds S₀×(1+R_f)^T 	

Valuation of a forward contract

- <u>Valuation</u> of a forward contract means determining the value of the contract at some time during the life of the contract.
- > Two strategies to value a forward contract
 - Enter into an opposite contract and calculate the P/L at the moment
 - ✓ Same tenor
 - √ Same underling
 - ✓ Same counterparty to avoid counterparty risk
 - ✓ Is appropriate if suitable opposite contracts trading actively in the market $V_{long} = PV_{t,T} \left[F_t(T) F_0(T) \right] = \frac{F_t(T) F_0(T)}{\left(1 + R_t\right)^{T-t}}$

 $\left(1+R_f\right)^{1-r}$

- Discounting back all the possible cash flow in the future
 - ✓ Do not forget benefits and costs
 - ✓ Use appropriate discounting rates

$$V_{long} = S_t - PVD_t - \frac{FP}{(1 + R_f)^{T-t}}$$

Pricing and Valuation of a forward contract

> Formula

Contract	T=0→Price	T=t→Value
T-bill Forwards	$FP = S_0 \times (1 + R_f)^T$	$V_{long} = S_t - \frac{FP}{\left(1 + R_f\right)^{T - t}}$
Forward on Dividend-Paying Stock	$FP = (S_0 - PVD_0) \times (1 + R_f)^T$	$V_{long} = S_t - PVD_t - \frac{FP}{(1 + R_f)^{T-t}}$
Forward on an Equity Index	$R_f^c = In(1 + R_f)$ $FP = S_0 \times e^{(R_f^c - \delta^c) \times T}$	$V_{long} = \frac{S_t}{e^{\delta^e \times (T-t)}} - \frac{FP}{e^{R_f^c \times (T-t)}}$
Coupon Bonds	$FP = (S_0 - PVC_0) \times (1 + R_f)^T$	$V_{long} = (S_t - PVC_t) - \frac{FP}{(1 + R_f)^{T-t}}$

Forward Rate Agreements (FRAs)

- > A <u>Forward Rate Agreement (FRA)</u> is a forward contract on an interest rate (LIBOR).
 - The long position can be viewed as the right and the obligation to borrow at the forward rate in the future;
 - The short position can be viewed as the right and the obligation to lend at the forward rate in the future;
 - No loan is actually made, and FRAs are always settled in cash at contract expiration.
- Let's take a 1×4 FRA for example. A 1×4 FRA is
 - a forward contract expires in 1 month,
 - and the underlying loan is settled in 4 months,
 - with a 3-month notional loan period.
 - The underlying interest rate is 90-day LIBOR in 30 days from now.

FRA Pricing

- The forward price in an FRA is the no-arbitrage forward rate (FR)
 - If spot rates are known, The FR is just the unbiased estimate of the forward interest rate:

Forward Pricing and Valuation – FRA

LIBOR, Euribor, and FRAs (Con't)

Settlement: settle in cash, but no actual loan is made at the settlement date.

- Payoff qualitative analysis:
 - ✓ If the reference rate at the expiration date is above the specified contract rate, the long will receive cash payment from the short;
 - ✓ If the reference rate at the expiration date is below the contract rate, the short will receive cash payment from the long.
- Payoff quantitative analysis

Framework

- Forward
 - Principle of Arbitrage-free Pricing
 - Equity Forward and Futures Contracts
 - Interest Rate Forward and Futures Contracts(FRA)
 - Fixed-Income Forward and Futures Contracts
 - Currency Forward Contracts
- 2. T-bond Futures
- 3. Swap
 - Interest Rate Swap Contracts
 - Currency Swap Contracts
 - Equity Swap Contracts

▶ T-bond Futures Contracts

- Underlying: Hypothetical 30 year treasury bond with 6% coupon rate.
- ➤ Bond can be deliverable: \$100,000 par value T-bonds with any coupon but with a maturity of at least 15 years.
- The short has a <u>delivery option</u> to choose which bond to deliver. Each bond is given a **conversion factor (CF)**, which means a specific bond is equivalent to CF standard bond underlying in futures contract.
 - For a specific Bond A:

$$FP_{\overline{k}\overline{k}} = FP_A \times \frac{1}{CF_A}$$

The short designates which bond he will deliver (cheapest-to-deliver bond).

Arbitrage from T-Bond futures

- There are methods to buy the underlying bond A
 - Buy bond A through T-bond futures

$$V_1 = FP_{\overline{k}\overline{k}} \times CF_A + AI_T$$

Buy bond through holding the bond at the beginning of the period

$$V_2 = (S_0^{clean} + AI_0) \times (1 + R_f)^T - FVC$$

> The available arbitrage profit is the present value of this difference

Arbitrage profit=
$$PV|V_2-V_1|$$

Quoted futures price and forward price

- Bond price is usually quoted as clean price
 - Clean price=full price-accrued interest
 - First, the futures price can be written as

$$FP^{full} = (S_0^{full} - PVC_0) \times (1 + R_f)^T = S_0 \times (1 + R_f)^T - FVC$$

If S₀ is given by clean price(quoted price)

$$FP^{full} = (S_0^{clean} + AI_0) \times (1 + R_f)^T - FVC$$

If the futures price is quoted as clean price

$$FP^{clean} + AI_T = (S_0^{clean} + AI_0) \times (1 + R_f)^T - FVC$$

- Noted that $AI_T \neq AI_0^*(1+R_f)^T$
- > The quoted futures price is adjusted with conversion factor

$$QFP^{clean} = FP^{clean} \times \frac{1}{CF} = \left[\left(S_0^{clean} + AI_0 \right) \times \left(1 + R_f \right)^T - AI_T - FVC \right] \times \frac{1}{CF}$$

Framework

- 1. Forward
 - Principle of Arbitrage-free Pricing
 - Equity Forward and Futures Contracts
 - Interest Rate Forward and Futures Contracts(FRA)
 - Fixed-Income Forward and Futures Contracts
 - Currency Forward Contracts
- 2. T-bond Futures
- 3. Swap
 - Interest Rate Swap Contracts
 - Currency Swap Contracts
 - Equity Swap Contracts

Pricing a plain vanilla swap

Since a floating-rate bond has a value equal to its par value at initiation, what we will do is to find a fixed-rate bond with a value equal to the same par value at initiation. Denote C as the fixed coupon amount when the par value is equal to 1(also known as fixed swap rate), we have:

• 1 =
$$C \times B_1 + C \times B_2 + C \times B_3 + \dots + C \times B_n + 1 \times B_n$$

$$C = \frac{1 - B_n}{B_1 + B_2 + \dots + B_n}$$

- Recall that B_n is the discount factor, which is the present value of \$1 in n periods. It's important to note that C is a periodic rate, and you must annualize it to get the annual swap rate.
- Swap rate=annualized periodic rate(C)

Valuing a plain vanilla swap

The value of a receive-fixed, pay-floating interest rate swap is simply the value of <u>buying a fixed-rate bond</u> and <u>issuing a floating-rate bond</u>.

- Notes: the value of a floating rate bond will be equal to the notional amount at any of its periodic settlement dates when the next payment is set to the market rate (floating).
- The valuation formula:

$$V_{swap}(X) = B_{flt} - B_{fix}$$
 $V_{swap}(Y) = B_{fix} - B_{flt}$
$$Or \ V_{payer\ swap} = PV_{t,T}[F_t(swap\ rate) - F_0(swap\ rate)]$$

Pricing a currency swap

Currency Swap

- A currency swap entails the <u>exchange of principal and interest in one</u>
 <u>currency for the principal and interest in another currency</u>.
- Principal is exchanged at beginning/inception and end/maturity.

There are four ways to construct the swap

- Swap 1: pay dollar fixed at 5.56% and receive Euro fixed at 3.68%.
- Swap 2: pay dollar fixed at 5.56% and receive Euro floating.
- Swap 3: pay dollar floating and receive Euro fixed at 3.68%.
- Swap 4: pay dollar floating and receive Euro floating.
 - ✓ In the swap 4 (floating for floating), there is no pricing problem because there is no fixed rate. We should only set the notional principal to €0.8 for every 1\$.

Valuation a currency swap

Currency Swap

- Some days later, the term structures in both countries **will change**, and the exchange rate will also be different. You can calculate the fixed- and floating-rate bond prices in both currencies, and then you will get the swap value just as you do in a plain vanilla swap.
- The valuation of currency swap is given by:

$$V_{Swap} = B_D - S_0 B_F$$
$$V_{swap} = S_0 B_F - B_D$$

Pricing an equity swap

- There are three types of equity swaps: (1) pay fixed rate and receive equity return; (2) pay floating rate and receive equity return; (3) pay one equity return and receive another equity return. We only need to price the first type of swaps because there are no fixed rates in the other two.
- We have the same formula as for the plain vanilla swap to get the periodic swap rate of an equity swap:

$$C = \frac{1 - B_n}{B_1 + B_2 + \dots + B_n}$$

➤ Why is this the case? We can exchange a fixed-rate bond with periodic coupon rate of C for a stock or an index with the notional amount equal to the par value of the bond, because the bond value at inception is equal to par.

Valuation of Contingent Claims

Framework

- 1. Binomial Model——The Expectations Approach
 - The one –period binomial stock model
 - The two –period binomial stock model
 - Interest rate binomial model
- 2. Black-Scholes-Merton Model
- 3. Option Greeks and Implied Volatility
- 4. Binomial Model——The No-arbitrage Approach
- 5. Black Option Valuation Model
 - Option On Futures
 - Interest Rate Option
 - Swaptions

Create synthetic instruments

- > There are two reasons why investors might wants to create synthetic positions in the securities.
 - To price options by using combinations of the other instruments with known prices.
 - **To earn arbitrage profits** by exploiting relative mispricing among the four securities. If put-call parity doesn't hold, an arbitrage profit is available.

Create synthetic instruments

- > There are four synthetic instruments
 - A synthetic European call option:synthetic call = put + stock bond

$$C_0 = P_0 + S_0 - \frac{X}{(1 + R_f)^T}$$

A synthetic European put option:synthetic put = call + bond - stock

$$P_0 = C_0 + \frac{X}{(1 + R_f)^T} - S_0$$

• A synthetic pure-discount risk-less bond: $\frac{X}{(1+R_f)^T} = P_0 + S_0 - C_0$ synthetic bond = put + stock - call

A synthetic stock position:synthetic stock = call + bond - put

$$S_0 = C_0 + \frac{X}{(1 + R_f)^T} - P_0$$

One-period binomial model

- A binomial model: A model for pricing options in which the underlying price can move to only one of two possible new prices.
 - At time 0 node, there are only two possible future paths in the binomial process, an up move (S⁺) and a down move (S⁻).
- ➤ We start off by having only one binomial period, which means that the underlying price moves to two new prices at option expiration.
 - Assume that u = 1/d.

Expectation approach

Risk-neutral probability of an up move is π_u ; Risk-neutral probability of an down move is $\pi_d = 1 - \pi_u$

$$\pi_{\mathbf{u}} = \frac{1 + R_f - d}{u - d}$$

We start with a call option. If the stock goes up to S_1^+ , the call option will be worth C_1^+ . If the stock goes down to S_1^- , the call option will be worth C_1^- . We know that the value of a call option will be its intrinsic value on expiration date. Thus we get: $C_1^+ = \text{Max}(0, S_1^+ - X)$; $C_1^- = \text{Max}(0, S_1^- - X)$

value of an option:
$$c = \left[\pi_u C_1^+ + \pi_d C_1^-\right] \times \frac{1}{\left(1 + R_f\right)^T}$$

The two –period binomial model

The binomial interest rate tree

- The **binomial interest rate tree** is a set of possible interest rate paths that we use to value options on bonds or interest rates.
- Two-Period Binomial Interest Rate Tree

The binomial interest rate tree

- > You don't need to know how to construct an interest rate tree, since it will be given to you on the exam, we will learn that from Fixed Income.
- You should know that the interest rates given are <u>one-year forward rates</u> <u>from each node</u>.
- You also should know that <u>risk-neutral probabilities</u> for The binomial interest rate tree, π and $1-\pi$, are always 0.5.

Interest rate option

Interest rate call option

- An option which has a positive payoff if the reference interest rate, usually the market interest rate, is greater than the exercise rate.
- Payoff=max{0, reference rate-exercise rate}*notional principal

Interest rate put option

- An option which has a positive payoff if the reference interest rate, usually the market interest rate, is smaller than the exercise rate.
- Payoff=max{0, exercise rate-reference rate}*notional principal

Framework

- 1. Binomial Model——The Expectations
 - The one –period binomial model
 - The two –period binomial model
 - Interest rate binomial model
- 2. Black-Scholes-Merton Model
- 3. Option Greeks and Implied Volatility
- 4. Binomial Model——The No-arbitrage Approach
- 5. Black Option Valuation Model
 - Option On Futures
 - Interest Rate Option
 - Swaptions

Continuous-time option pricing model

- The underlying assumptions of the BSM model are
 - The price of the underlying asset follows a lognormal distribution;
 - The (continuous) risk-free rate is known and constant;
 - The volatility of the underlying asset is known and constant;
 - The markets are frictionless;
 - There are no cash flows on the underlying asset;
 - The options valued are European options.

The Value of European option using the BSM

> The BSM formulas for the prices of European call and put options are:

$$C_{0} = [S_{0} \times N(d_{1})] - [X \times e^{-R_{f}^{c} \times T} \times N(d_{2})]$$

$$P_{0} = C_{0} - S_{0} + (X \times e^{-R_{f}^{c} \times T})$$

Remember that you can always use put-call parity to calculate the put value

> where:

- S_0 = underlying asset price; X = strike price; T = time to maturity
- R_f^c = continuously compounded risk-free rate
- σ = volatility of the underlying asset
- N() = cumulative normal probability

$$d_{1} = \frac{\ln\left(\frac{S_{0}}{X}\right) + \left[R_{f}^{c} + (0.5 \times \sigma^{2})\right] \times T}{\sigma \times \sqrt{T}}$$

$$d_{2} = d_{1} - (\sigma \times \sqrt{T})$$

Features of BSM

- Leveraged stock investment
 - Borrow money to invest in stock

$$C_0 = S_0 \times N(d_1) - X \times e^{-R_f^c \times T} \times N(d_2)$$

 Buying the bond(or lend) with the proceeds from short selling the underlying

$$P_0 = X \times e^{-R_f^c \times T} \times N(-d_2) - S_0 \times N(-d_1)$$

- \triangleright **N(d₂):** The prob. of an in-the-money call
- The present value of option payoff

$$C_0 = e^{-R_f^c \times T} \left\{ [S_0 e^{R_f^c \times T} \times N(d_1)] - [X \times N(d_2)] \right\}$$

Framework

- 1. Binomial Model——The Expectations
 - The one –period binomial model
 - The two –period binomial model
 - Interest rate binomial model
- 2. Black-Scholes-Merton Model
- 3. Option Greeks and Implied Volatility
- 4. Binomial Model——The No-arbitrage Approach
- 5. Black Option Valuation Model
 - Option On Futures
 - Interest Rate Option
 - Swaptions

Greeks	Sensitivity factor	Relationship	
		Call option	Put option
Delta	Underlying price	Positive (Delta>0)	Negative (Delta<0)
Vega	Volatility	Positive (Vega>0)	Positive (Vega>0)
Rho	Risk-free rate	Positive (Rho>0)	Negative (Rho<0)
Theta	Passage of time	Closer to maturity → value declines (Theta<0)	Closer to maturity → value declines (Theta<0*)
/	Strike price	Negative	Positive

• The features of Theta is also called **time decay**. There is an exception when the European put option is deep in the money, the residual time to maturity has not worthy to long position.

The Option Delta

- The relationship between the option price and the price of the underlying asset has a special name: the delta. The option delta is defined as:
 - delta = Change in option price / Change in underlying price
- > The relationship between delta of a call and put:
 - The call option's delta is defined as:

$$\checkmark$$
 delta_{call} = $(C_1 - C_0)/(S_1 - S_0) = \Delta C/\Delta S$

• The delta of a put option is the call option's delta minus one:

$$\checkmark$$
 delta_{put} = $(P_1 - P_0)/(S_1 - S_0) = \Delta P/\Delta S = deltacall - 1$

- > The BSM perspective:
 - The call option's delta is also equal to $N(d_1)$ from the BSM model, and the put option's delta equals $N(d_1) 1$.
 - If the underlying has a dividend yield of δ , the call option's delta is also equal to $e^{-\delta T}N(d_1)$ from the BSM model, and the put option's delta equals $e^{-\delta T}(N(d_1) 1)$.

- The call delta increases from 0 to 1 as stock price increases.
 - When the call option is deep out-of-the-money, the call delta is close to zero. The option price changes a very small amount for a given change in the stock price.
 - When the call option is deep in-the-money, the call delta is close to one.
 The option price changes almost one dollar for a one-dollar change in the stock price.
- ➤ The put delta increases from -1 to 0 as stock price increases.
 - When the put option is deep in-the-money, the put delta is close to -1.
 - When the put option is deep out-of-the-money, the put delta is close to zero.
- > When t approaches maturity, a in-the-money call's delta is close to 1, while a out-of-the-money call's delta is close to 0.

Call Value

Dynamic hedging

- However, the delta-neutral hedging is a <u>dynamic process</u>, since <u>the delta is</u> <u>constantly changing</u>.
 - The delta will change if the underlying stock price changes.
 - The delta would change as the option moves toward the expiration day.
 - As the delta changes, the number of calls that should be sold or bought to construct the delta-neutral portfolio changes.
 - Delta-neutral hedging is often referred to as dynamic hedging.

```
number\ of\ options\ needed\ to\ delta\ hedge = \frac{number\ of\ shares\ hedged}{delta\ of\ call\ option} = number\ of\ shares\ hedged \times hedge\ ratio
```


The Option Gamma

- The gamma defines the sensitivity of the option delta to a change in the price of the underlying asset. The option gamma is defined as:
 - gamma = $(delta_1 delta_0)/(S_1 S_0) = \Delta delta/\Delta S$
- Call and put options on the same stock with the same T and X have equal gammas.
 - A long position in calls or puts will have a positive gamma.
 - Gamma is largest when the option is at-the-money.
 - If the option is deep in- or out-of-the-money, gamma approaches zero.
- ➤ **Gamma is largest when the option is at the money**, which means delta is very sensitive to a change in the stock price. Then we must rebalance the delta-neutral portfolio more frequently. This leads to higher transaction cost .

▶ The critical role of volatility

- Historical volatility and implied volatility
 - Historical volatility is using historical data to calculate the variance and standard deviation of the continuously compounded returns.

$$S_{R_i^c}^2 = \frac{\sum_{i=1}^N \left(R_i^c - \overline{R}_i^c\right)^2}{N - 1}$$

$$\sigma = \sqrt{S_{R_i^c}^2}$$

• If we have S_0 , X, R_f , and T, we can set the BSM price equal to the market price and then work backwards to get the volatility. This volatility is called the **implied volatility**. The most basic method to get the implied volatility is trial and error.

Framework

- 1. Binomial Model——The Expectations
 - The one –period binomial model
 - The two –period binomial model
 - Interest rate binomial model
- 2. Black-Scholes-Merton Model
- 3. Option Greeks and Implied Volatility
- 4. Binomial Model——The No-arbitrage Approach
- 5. Black Option Valuation Model
 - Option On Futures
 - Interest Rate Option
 - Swaptions

No-arbitrage approach with binomial tree

Hedge Ratio:

h (hedge ratio) =
$$\frac{C_1^+ - C_1^-}{S_1^+ - S_1^-}$$
 (shares per option)

- If the portfolio is constructed as long 1 call and short h stock, the portfolio should exist no delta risk.
 - $c_0 = hS_0 + PV(-hS^- + c^-) = hS_0 + PV(-hS^+ + c^+)$ where $h \ge 0$
 - $p_0 = hS_0 + PV(-hS^- + p^-) = hS_0 + PV(-hS^+ + p^+)$ where $h \le 0$

Framework

- 1. Binomial Model——The Expectations
 - The one –period binomial model
 - The two –period binomial model
 - Interest rate binomial model
- 2. Black-Scholes-Merton Model
- 3. Option Greeks and Implied Volatility
- 4. Binomial Model——The No-arbitrage Approach
- 5. Black Option Valuation Model
 - Option On Futures
 - Interest Rate Option
 - Swaptions

Options on Futures

- Option Underlying: futures price
- Call option is the present value of the difference between part of futures price and part of exercise price;
- Leverage: Call option can be thought as long futures financed by bond.

> Interest rate Option

- Option Underlying: Forward rate or FRA rate;
- Interest rate call option gains when rates rise and put option gains when rate fall.

Option on Swap

- Option Underlying: Forward swap rate
- Gives the holder the right, but not the obligation, to enter a swap at the pre-agreed swap rate—the exercise rate.

Swaption contracts

- A swaption is an option to enter into a swap. We will focus on the plain vanilla interest rate swaption. The notation for swaptions is similar to FRAs. For example, a swaption that matures in 2 years and gives the holder the right to enter into a 3-year swap at the end of the second year is a 2×5 swaption.
- A payer swaption is an option to enter into a swap as the fixed-rate payer.
 - If interest rate increases, the payer swaption value will go up. So a payer swaption is equivalent to a put option on a coupon bond. *Another view?*
 - It's also equivalent to a **call option on floating rate**. 从利率上涨中获利
- A receiver swaption is an option to enter into a swap as the fixed-rate receiver (the floating-rate payer). If interest rate increases, the receiver swaption value will go down. So a receiver swaption is equivalent to a call option on a coupon bond. 从利率下跌中获利

It's not the end but just beginning.

Thought is already is late, exactly is the earliest time. 感到晚了的时候其实是最早的时候。

- 如果您认为金程课程讲义/题库/视频或其他资料中存在错误,欢迎您告诉我们,所有提交的内容我们会在最快时间内核查并给与答复。
- 如何告诉我们?
 - 将您发现的问题通过电子邮件告知我们,具体的内容包含:
 - ✓ 您的姓名或网校账号
 - ✓ 所在班级 (E.g.,2023年5月CFA二级智能班)
 - ✓ 问题所在科目(若未知科目,请提供章节、知识点)和页码
 - ✓ 您对问题的详细描述和您的见解
 - 请发送电子邮件至: <u>academic.support@gfedu.net</u>
- ▶ 非常感谢您对金程教育的支持,您的每一次反馈都是我们成长的动力。后续 我们也将开通其他问题反馈渠道(如微信等)。