Quantized Network Coding for Sensor Networks with Applications in Smart Power Grid

Mahdy Nabaee

December 9, 2011

Sensor Networks in Substations

-Photos are taken from the following paper:

A. Nasipuri, R. Cox, J. Conrad, L. Van der Zel, B. Rodriguez, and R. McKosky, Design considerations for a large-scale wireless sensor network for substation monitoring," in 2010 IEEE 35th Conference on Local Computer Networks, pp. 866-873, oct. 2010.

Data Gathering in Sensor Networks

Data Gathering in Sensor Networks

Application based assumptions:

- Correlation of sensed data in substations because of the nature of sensed data.
- We model sensed data as k-sparse or k-compressible data.

Transmission Methods in Network

Transmission Methods in Network

NC vs PF for Data Gathering

For data gathering scenario, in *lossless* networks:

- Packet Forwarding is sufficient for transmission of independent messages.
 - Knowledge of network connectivity is required for optimal flow of information.
 - Achievable rate region is the same as min max upper bound.

NC vs PF for Data Gathering

For data gathering scenario, in *lossless* networks:

- Packet Forwarding is sufficient for transmission of independent messages.
 - Knowledge of network connectivity is required for optimal flow of information.
 - Achievable rate region is the same as min max upper bound.
- Packet Forwarding + Distributed Source Coding is sufficient for transmission of arbitrarily dependent messages.
 - Knowledge of inter-node dependency is required for optimal SW coding.
 - DSC and PF can be done separately, as long as work point in rate tube is determined.

Why NC over PF?

- Lossy Networks: achievable rate region using NC is better than that of PF; e.g. erasure networks.
- Error Probability and Diversity: embedded path diversity in NC increases robustness to link failures.
- Flexibility: robustness to network changes makes it more flexible to add/remove nodes.
- Distributed Source Coding: random linear network coding can perform embedded inter-node compression.

Linear Network Coding
Quantized Network Coding
QNC meets Compressed Sensing
RIP Problem
QNC Measurement Noise

Linear Network Coding in lossless networks

 Calculates linear combinations in a <u>finite</u> field, according to network coding coefficients.

Linear Network Coding in lossless networks

 Calculates linear combinations in a <u>finite</u> field, according to network coding coefficients.

 Decoding is possible, by using matrix inversion in the field, if measurement matrix is full rank.

Linear Network Coding in lossless networks

 Calculates linear combinations in a <u>finite</u> field, according to network coding coefficients.

 Decoding is possible, by using matrix inversion in the field, if measurement matrix is full rank.

Question

What happens if not enough measurements are collected at decoder?

Quantized Network Coding

Network Coding + Quantization o QNC

- Linear network coding in real field with semi-random coefficients,
- Quantization to couple NC result with finite capacity of links.

QNC meets Compressed Sensing

 $\underline{\textit{n}}_{\textit{eff},\textit{tot}}$: effect of quantization noise at decoder

Decoding for: $[\Psi_{tot}]_{m \times n} \cdot [\underline{x}]_{n \times 1} + [\underline{n}_{eff,tot}]_{m \times 1} = [\underline{z}_{tot}]_{m \times 1}$

- If Ψ_{tot} is full rank, a matrix inversion can recover \underline{x} , with respect to an error, caused by $\underline{n}_{eff,tot}$.
- If not, we have an under-determined set of equations, which for Compressed Sensing decoding (ℓ₁-minimization) may help.

ℓ_1 -min decoding for QNC

CS claims recovery may be made for m < n:

$$[\Psi_{tot}]_{m \times n} \cdot [\underline{x}]_{n \times 1} + [\underline{n}_{eff,tot}]_{m \times 1} = [\underline{z}_{tot}]_{m \times 1}, \tag{1}$$

or,

$$\Psi_{tot} \cdot \phi \cdot \underline{s} + \underline{n}_{eff,tot} = \underline{z}_{tot}, \tag{2}$$

where \underline{s} is k-sparse, and $\left|\left|\underline{n}_{\text{eff,tot}}\right|\right|_2 \leq \epsilon$, for a finite ϵ .

Linear Network Coding
Quantized Network Coding
QNC meets Compressed Sensing
RIP Problem
QNC Measurement Noise

ℓ_1 -min decoding for QNC

CS claims recovery may be made for m < n:

$$[\Psi_{tot}]_{m \times n} \cdot [\underline{x}]_{n \times 1} + [\underline{n}_{eff,tot}]_{m \times 1} = [\underline{z}_{tot}]_{m \times 1}, \tag{1}$$

or,

$$\Psi_{tot} \cdot \phi \cdot \underline{s} + \underline{n}_{eff,tot} = \underline{z}_{tot}, \tag{2}$$

where \underline{s} is k-sparse, and $\left|\left|\underline{n}_{\text{eff,tot}}\right|\right|_2 \leq \epsilon$, for a finite ϵ .

ℓ_1 -min recovery

$$\underline{\hat{x}} = \phi \cdot \arg\min_{\underline{s}'} \left| \left| \underline{s}' \right| \right|_1, \ \ s.t. \ \left| \left| \underline{z}_{tot} - \Psi_{tot} \cdot \phi \cdot \underline{s}' \right| \right|_2 \leq \max \left| \left| \underline{n}_{\text{eff},tot} \right| \right|_2$$

(3)

ℓ_1 -min decoding for QNC

$$[\Psi_{tot}]_{m\times n}\cdot [\phi]_{n\times n}\cdot [\underline{s}]_{n\times 1}+[\underline{n}_{\mathit{eff},tot}]_{m\times 1}=[\underline{z}_{\mathit{tot}}]_{m\times 1}$$

Advantage:

If we have robust recovery, when m < n, we have a *saving* in the required number of channel uses \longrightarrow **inter-node compression**.

ℓ_1 -min decoding for QNC

$$[\Psi_{tot}]_{m\times n}\cdot [\phi]_{n\times n}\cdot [\underline{s}]_{n\times 1}+[\underline{n}_{\mathsf{eff},tot}]_{m\times 1}=[\underline{z}_{tot}]_{m\times 1}$$

Advantage:

If we have robust recovery, when m < n, we have a saving in the required number of channel uses \longrightarrow inter-node compression.

How to ensure robust recovery?

Theorem: If $\Theta_{tot}=\Psi_{tot}\cdot\phi$ satisfies Restricted Isometry Property (RIP) of order 2k with constant $\delta_{2k}<\sqrt{2}-1$, then:

$$||\underline{x} - \hat{\underline{x}}||_2 = ||\underline{s} - \hat{\underline{s}}||_2 \le c_1(\delta_{2k}) \cdot \max \left| \left| \underline{n}_{\text{eff,tot}} \right| \right|_2. \tag{4}$$

Problem I: Satisfaction of RIP

Restricted Isometry Property

As a norm conservation property, $\Theta_{m\times n}$ is said to satisfy RIP of order k, with constant δ_k , if for all k-sparse vector \underline{s} , we have:

$$1 - \delta_k \le \frac{||\Theta \cdot \underline{\mathbf{s}}||_2^2}{||\underline{\mathbf{s}}||_2^2} \le 1 + \delta_k. \tag{5}$$

Problem I: Satisfaction of RIP

Restricted Isometry Property

As a *norm conservation* property, $\Theta_{m \times n}$ is said to satisfy RIP of order k, with constant δ_k , if for all k-sparse vector \underline{s} , we have:

$$1 - \delta_k \le \frac{||\Theta \cdot \underline{s}||_2^2}{||\underline{s}||_2^2} \le 1 + \delta_k. \tag{5}$$

Random matrices with i.i.d Gaussian entries satisfy RIP, with an overwhelming probability.

Linear Network Coding
Quantized Network Coding
QNC meets Compressed Sensing
RIP Problem
ONC Magazinement Naire

Problem I: Satisfaction of RIP

Restricted Isometry Property

As a *norm conservation* property, $\Theta_{m \times n}$ is said to satisfy RIP of order k, with constant δ_k , if for all k-sparse vector \underline{s} , we have:

$$1 - \delta_{\mathbf{k}} \le \frac{||\Theta \cdot \underline{\mathbf{s}}||_2^2}{||\underline{\mathbf{s}}||_2^2} \le 1 + \delta_{\mathbf{k}}. \tag{5}$$

Random matrices with i.i.d Gaussian entries satisfy RIP, with an overwhelming probability.

Our results:

We could find simple conditions on NC coefficients which ensures the entries of resulting Θ_{tot} are random independent Gaussian.

Problem II: Effective Measurement Noise in QNC

$$\Psi_{tot} \cdot \underline{\mathbf{x}} + \underline{\mathbf{n}}_{\mathsf{eff},\mathsf{tot}} = \underline{\mathbf{z}}_{\mathsf{tot}}$$

Quantization Noise at Nodes

 We use uniform quantizer in a constant range for all nodes and vary the step size, depending on the capacity of edges.

Problem II: Effective Measurement Noise in QNC

$$\Psi_{tot} \cdot \underline{x} + \underline{n}_{eff,tot} = \underline{z}_{tot}$$

Quantization Noise at Nodes

 We use uniform quantizer in a constant range for all nodes and vary the step size, depending on the capacity of edges.

Quantization Noise Propagation

- Quantization noises at each outgoing edge is considered as a random source which propagates noise in the network and has a transfer function to decoder ports.
- We have calculated an *upper bound* on the ℓ_2 -norm of effective noise, at the decoder ports, $||\underline{n}_{eff tot}||_2$.

Simulation Setup

- Random deployment with 100 nodes and 1100 edges,
- Uniformly distributed sparse vector, <u>s</u>,
- ullet Random sparsity transform, $\phi,$
- $\frac{\text{non zero elements}}{\text{all elements}} = 0.1, 0.2, 0.3,$
- Unit capacity for edges,
- Block length of 25,
- QNC with ℓ_1 -min decoding,
- Packet forwarding using shortest distance routing,

Simulation Results: Compression Ratio vs SNR

Conclusion

- Although network coding has no advantage over packet forwarding, in terms of achievable rate for both independent and correlated messages, it is a good alternative because of its flexibility, and embedded route diversity.
- Moreover, experiments show that QNC with ℓ_1 -min decoding has compression advantageous over packet forwarding and conventional network coding, even when the knowledge of inter-node dependency is not available at encoders.

Current Work and Future Plans

Currently working on:

• theoretical RIP based results for robust ℓ_1 -min decoding.

Current Work and Future Plans

Currently working on:

• theoretical RIP based results for robust ℓ_1 -min decoding.

Plans for the future:

- power efficient quantized network coding,
- estimation of sparsity transform at decoder,
- quantized network coding in lossy networks and error probability analysis,
- message generation synchronization,
- numerical stability of decoding, for ill-conditioned measurement matrices.