- Contesta las preguntas en las hojas blancas que se te darán. Indica claramente el número de problema e inciso. No es necesario que copies la pregunta.
- El total de puntos es 47. Las preguntas están ordenadas en orden decreciente de puntos, es decir, lás primeras son las de mayor puntaje.
- Si no entregaste el proyecto, se calificará sobre un total de 20 puntos. De lo contrario se calificará sobre un total de 10 puntos.
- 1. (13 puntos) El plano hiperbólico es $\mathbb{H} := \mathbb{R}^2_+ = \{(x,y) \in \mathbb{R}^2 \mid y > 0\}$ junto con la métrica

$$g = \frac{1}{y^2} \left(dx \otimes dx + dy \otimes dy \right)$$

y sea ∇ la conexión de Levi-Civita asociada a la métrica g

(a) (3 puntos) Usando la fórmula de Koszul:

$$g(\nabla_X Y, Z) = \frac{1}{2} \left[Xg(Y,Z) + Yg(X,Z) - Zg(X,Y) + g([X,Y],Z) - g([X,Z],Y) - g([Y,Z],X) \right]$$

calcula los símbolos de Christoffel para la carta canónica de \mathbb{H}^2 . (Sugerencia: recuerda que los corchetes de campos coordenados se anulan identicamente)

- (b) (1 punto) Sea $\alpha: I \to \mathbb{R}$ una función diferenciable y estrictamente positiva. Dada c una constante, define la función $\gamma_c: I \to \mathbb{H}$ como $\gamma(t) = (c, \alpha(t))$. Calcula el campo $\dot{\gamma}_c(t)$.
- (c) (2 puntos) Sea D_t la derivada covariante sobre la curva γ_c asociada a la conexión. Calcula $D_t(\dot{\gamma}_c(t))$.
- (d) (4 puntos) Encuentra α diferenciable y creciente tal que para toda $c \in \mathbb{R}$, la curva γ_c satisface que $D_t(\dot{\gamma}_c(t))=0$
- (e) (3 puntos) Considera la función $f: \mathbb{R}^2 \to \mathbb{R}^2$ dada por f(z) = -1/z, donde $z \in \mathbb{R}^2 = \mathbb{C}$ es considerado como un número complejo. Demuestra que f es una isometría de \mathbb{H}^2 .
- 2. (10 puntos) Recuerda que si $\alpha: I \to M$ es un curva difereciable en la variedad es posible definir, a partir de una conexión, un operador $D_t: \mathfrak{X}(\alpha) \to \mathfrak{X}(\alpha)$ sobre los campos vectoriales a lo largo de α , llamada la derivada covariante, tal que
 - a) $D_t(X+Y) = D_tX + D_tY$ para todos $X, Y \in \mathfrak{X}(\alpha)$
 - b) $D_t(fX) = \frac{df}{dt}X + fD_tX$ para todos $X \in \mathfrak{X}(\alpha)$ y $f: I \to \mathbb{R}$.

Se dice que un campo $X \in \mathfrak{X}(\alpha)$ es paralelo (a lo largo de α) si $D_t X = 0$. Recuerden que demostramos lo siguiente: Para todo $t_0 \in I$ y $v \in T_{\alpha(t_0)}M$, existe un único campo paralelo $X_v \in \mathfrak{X}(\alpha)$ tal que $X_v(t_0) = v$. El transporte paralelo a lo largo de α es una familia de funciones $P_s : T_{\alpha(t_0)}M \to T_{\alpha(t_0+s)}M$ definidas por

$$P_s(v) = X_v(t_0 + s)$$

- (a) (3 puntos) Demuestra que P_s es una transformación lineal
- (b) (1 punto) Demuestra que si $\{v_1, \dots, v_n\}$ es una base de $T_{\alpha(t_0)}M$ entonces $\{X_{v_1}(t), \dots, X_{v_n}(t)\}$ es una base de $T_{\alpha(t)}M$ para toda $t \in I$.
- (c) (2 puntos) Demuestra que P_s es un isomorfismo lineal.
- (d) (4 puntos) Demuestra que si $X \in \mathfrak{X}(\alpha)$ entonces

$$D_t X(t_0) = \lim_{s \to 0} \frac{P_s^{-1}(X(t_0 + s)) - X(t_0)}{s}$$

3. (6 puntos) Sea ∇ la conexión en \mathbb{R}^3 definida por las siguientes ecuaciones:

$$egin{array}{lll}
abla_X X = 0 & &
abla_X Y = -Z & &
abla_X Z = Y \\
abla_Y Y = 0 & &
abla_Y X = Z &
abla_Y Z = -X \\
abla_Z Z = 0 & &
abla_Z X = -Y &
abla_Z Y = X \\
abla_Z Y = X &
abla_Z Y = X \\
abla_Z Y = X &
abla_Z Y = X \\
abla_Z Y = X &
abla_Z Y = X &$$

Donde X, Y, Z son los campos canónicos (es decir: $X = \partial_x, Y = \partial_y y Z = \partial_z$).

- (a) (1 punto) Calcula la torsión de la conexión ∇
- (b) (2 puntos) Demuestra que ∇ es compatible con la métrica euclidiana de \mathbb{R}^3
- (c) (3 puntos) Sea $V_1 = \cos(z)X + \sin(z)Y$ y $V_2 = \cos(z + \pi/2)X + \sin(z + \pi/2)Y$. Demuestra que $\nabla_Z V_1 = 0$ y que $\nabla_Z V_2 = 0$. Demuestra que $\{Z, V_1, V_2\}$ son un marco ortonormal de \mathbb{R}^3 .
- (d) ¿Qué nos dice el inciso anterior sobre el transporte paralelo de la conexión ∇ a lo largo de rectas paralelas al eje z?
- 4. (6 puntos) Sea $f: \mathbb{R}^2 \to \mathbb{R}$ una función diferenciable y sea $\omega = \frac{1}{2}(dx \otimes dy dy \otimes dx)$. (A ω se le llama la forma simpléctica de \mathbb{R}^2)
 - (a) (3 puntos) Demuestra que existe un único campo vectorial X_f tal que $df = \omega(X_f, -)$, es decir, que para cualquier otro campo Y se tiene que $df(Y) = \omega(X_f, Y)$. Dicho campo recibe el nombre de campo hamiltoniano de f.
 - (b) (1 punto) Demuestra que X_f es tangente a los conjuntos de nivel de f.
 - (c) (2 puntos) Sea $f(x,y) = -\cos(x) + y^2$. Esboza los conjuntos de nivel de f y el campo X_f . ¿Qué puedes decir de las curvas integrales de X_f ? ¿ X_f tiene puntos fijos (equilibrios)? ¿tiene órbitas periódicas? ¿tiene órbitas no acotadas?
- 5. (5 puntos) Sea ∇ una conexión en M. Denotaremos el espacio vectorial de los 1-tensores sobre M por $\Omega_1(M)$.
 - (a) (3 puntos) Define el operador $\tau: \mathfrak{X}(M) \times \mathfrak{X}(M) \times \Omega_1(M) \to \mathbb{R}$ como sigue:

$$\tau(X, Y, \omega) := \omega(\nabla_X Y - \nabla_Y X - [X, Y])$$

Demuestra que τ es un campo $\binom{2}{1}$ -tensorial.

- (b) (2 puntos) Demuestra que si $\tau = 0$, entonces los símbolos de Christoffel de ∇ con respecto a un marco coordenado son simétricos con respecto a los índices inferiores, es decir: $\Gamma_{ij}^k = \Gamma_{ji}^k$.
- 6. (5 puntos) (a) (2 puntos) Encuentra un campo X en \mathbb{R}^2 tal que X(x,0)=0 para todo $x\in\mathbb{R}$ pero que $[\partial_x,X]\neq 0$ en el eje x. (Esto demuestra que la derivada de Lie no da una manera adecuada de derivar campos a lo largo de curvas)
 - (b) (2 puntos) Demuestra que la derivada de Lie no es una conexión.
 - (c) (1 punto) ¿ Es cierto que si ∇_1 y ∇_2 son dos conexiones y $\lambda \in \mathbb{R}$, entonces $\lambda \nabla_1 + \nabla_2$ es una nueva conexión?
- 7. (2 puntos) Sea ∇ una conexión sobre M y $\gamma: I \to M$ una curva constante. Sea $X \in \mathfrak{X}(\gamma)$.

 Demuestra que $D_t(X)(t) = \lim_{h\to 0} \frac{1}{h}(X(t+h) X(t))$, donde D_t es la derivada covariante sobre γ asociada a ∇ .

Fin del exámen