Correction Ds no 5

Exercice 1

On note $E = \mathbb{R}_2[X]$ l'espace des polynômes de degré ≤ 2 .

On note aussi $\mathcal{B} = (P_0, P_1, P_2)$ la base canonique de E définie par :

•
$$P_0(X) = 1$$

▶
$$P_1(X) = X$$

▶
$$P_2(X) = X^2$$

PARTIE I : Étude d'un endomorphisme de E.

Soit f l'application qui, à tout $P \in E$, associe le polynôme Q tel que : $Q(X) = (X-1) \cdot P'(X) + P(X)$.

- **1.** Montrer que f est un endomorphisme de E.
 - ▶ **Linéarité de** f Soient $A,B \in E$ deux polynôme, et $\lambda,\mu \in \mathbb{R}$ deux scalaires.

On a alors :
$$f(\lambda \cdot A + \mu \cdot B) = (X - 1) \cdot (\lambda \cdot A + \mu \cdot B)'(X) + (\lambda \cdot A + \mu \cdot B)(X)$$
$$= (X - 1) \cdot (\lambda \cdot A'(X) + \mu \cdot B'(X)) + \lambda \cdot A(X) + \mu \cdot B(X)$$
$$= \lambda \cdot \left[(X - 1) \cdot A'(X) + A(X) \right] + \mu \cdot \left[(X - 1) \cdot B'(X) + B(X) \right]$$
$$= \lambda \cdot f(A) + \mu \cdot f(B).$$

L'application f est bien linéaire.

(L'image de la combinaison linéaire est la combinaison linéaire des images.)

ightharpoonup Stabilité de E par f

Si $P \in E = \mathbb{R}_2[X]$, alors $\deg(P) \le 2$, donc $\deg(P') \le 1$, donc $\deg((X-1) \cdot P') \le 2$.

On a donc bien : $deg(f(P)) \le 2$, donc: $P \in E = \mathbb{R}_2[X]$.

L'espace E est bien stable par f.

2. Vérifier que la matrice A de f dans \mathcal{B} , s'écrit sous la forme : $A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & -2 \\ 0 & 0 & 3 \end{bmatrix}$

 $f(P_0) = (X-1) \cdot P_0' + P_0 = 1$

$$f(P_1) = (X-1) \cdot P_1' + P_1 = X - 1 + X = 2 \cdot X - 1$$

$$f(P_2) = (X-1) \cdot P_2' + P_2 = (X-1) \cdot 2X + X^2 = 3 \cdot X^2 - 2 \cdot X$$

3. Quelles sont les valeurs propres de f?

L'endomorphisme f est-il: diagonalisable?

- ▶ un automorphisme de E?
- Valeurs propres

La matrice A est triangulaire : ses valeurs propres sont donc ses coefficients diagonaux.

Ainsi, le spectre de f est : $Sp(f) = Sp(A) = \{1,2,3\}.$

Diagonalisabilité

L'endomorphisme f de E a 3 valeurs propres distinctes, et E est de dimension 3.

L'endomorphisme f est donc diagonalisable.

Inversibilité

La matrice *A* est inversible (0 n'est pas valeur propre).

L'endomorphisme f est donc un automorphisme.

- **4.** Déterminer l'image par f des polynômes R_0 , R_1 , R_2 définis par : ▶ $R_0(X) = 1$
 - $R_1(X) = X 1$
 - $R_2(X) = (X-1)^2$

On a:
$$f(R_0) = (X-1) \cdot R'_0 + R_0 = 1$$
,

soit:
$$f(R_0) = R_0$$
.

$$f(R_1) = (X-1) \cdot R_1' + R_1 = X-1+X-1 = 2 \cdot (X-1),$$

soit:
$$f(R_1) = 2 \cdot R_1$$
,

•
$$f(R_2) = (X-1) \cdot R_2' + R_2 = (X-1) \cdot 2(X-1) + (X-1)^2 = 3(X-1)^2$$
, soit: $f(R_2) = 3 \cdot R_2$.

5. Montrer que $\mathcal{B}' = (R_0, R_1, R_2)$ est une base de vecteurs propres de f.

▶ la matrice de passage P de la base \mathcal{B} à la base \mathcal{B}

- et la matrice D de f dans la base \mathcal{B}' .
- Base de vecteurs propres

On a bien vérifié que R_0, R_1, R_2 sont des vecteurs propres de f.

Ils sont associés aux valeurs propres 1,2,3 respectivement.

La famille qu'ils forment ensemble est donc libre.

(par concaténation pour des $vp \neq .$)

Comme dim(E) = 3, cette famille est une base.

▶ Matrice de passage On a : $R_0 = 1 = P_0$

$$R_1 = X - 1 = -P_0 + P_1$$

$$R_2 = (X-1)^2 = X^2 - 2X + 1 = P_0 - 2 \cdot P_1 + P_2$$

Ainsi la matrice de passage P s'écrit : $P = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$.

▶ Matrice dans la nouvelle base

trice dans la nouvelle base

L'expression des $f(R_i)$ correspond à la matrice diagonale : $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$.

 $\int R_2(X) + 2 \cdot R_1(X) + R_0(X) = P_2(X),$ $R_1(X) + R_0(X) = P_1(X).$

En déduire la matrice de passage de la base \mathcal{B}' à la base \mathcal{B}

(X-1)+1=X, soit $P_1=R_0+R_1$, On vérifie que l'on a bien :

$$(X-1)^2 + 2 \cdot (X-1) + 1 = X^2, \text{ soit } P_2 = R_0 + 2 \cdot R_1 + R_2.$$

La matrice de passage dans l'autre sens, inverse de P, est donc donnée par : $P^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$. Écrire A^{-1} en fonction de D^{-1} . Démontrer, pour $n \in \mathbb{N}$, que : $[A^{-1}]^n = P \cdot [D^{-1}]^n \cdot P^{-1}$. **7.** Écrire A^{-1} en fonction de D^{-1} . Démontrer, pour $n \in \mathbb{N}$, que : $[A^{-1}]^n = P \cdot [D^{-1}]^n \cdot P^{-1}$.

Expliciter la troisième colonne de la matrice $[A^{-1}]^n$.

On a: $A = P \cdot D \cdot P^{-1}$, d'où: $A^{-1} = P \cdot D^{-1} \cdot P^{-1}$.

On vérifie par récurrence que l'on a bien : $[A^{-1}]^n = P \cdot [D^{-1}]^n \cdot P^{-1}$.

La troisième colonne de A^{-n} est : $\begin{bmatrix} A^{-1} \end{bmatrix}^n \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = P \cdot \begin{bmatrix} D^{-1} \end{bmatrix}^n \cdot P^{-1} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = P \cdot \begin{bmatrix} D^{-1} \end{bmatrix}^n \cdot \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ $= P \cdot \begin{pmatrix} \frac{1}{2^n} \\ \frac{1}{2^n} \\ \frac{1}{2^n} \end{pmatrix} = \begin{pmatrix} 1 - \frac{2}{2^n} + \frac{1}{3^n} \\ \frac{2}{2^n} - \frac{2}{3^n} \\ 1 \end{pmatrix}.$

PARTIE II: Suite d'épreuves aléatoires.

On dispose d'une urne qui contient trois boules numérotées de 0 à 2.

On s'intéresse à une suite d'épreuves définies de la manière suivante :

- La première épreuve consiste à choisir au hasard une boule dans cette urne.
- ▶ Si *j* est le numéro de la boule tirée, on enlève de l'urne toutes les boules dont le numéro est strictement supérieur à *j*, le tirage suivant se faisant alors dans l'urne ne contenant plus que les boules numérotées de 0 à *j*.

On considère alors la variable aléatoire réelle X_k égale au numéro de la boule obtenue à la $k^{\text{ème}}$

épreuve. $(avec\ k \ge 0)$ On note alors U_k la matrice unicolonne définie par : $U_k = \begin{pmatrix} \mathbb{P}\big(X_k = 0\big) \\ \mathbb{P}\big(X_k = 1\big) \\ \mathbb{P}\big(X_k = 2\big) \end{pmatrix}$.

 $(avec \mathbb{P}(X_k = j) \ la \ probabilité \ de \ tirer \ la \ boule \ numéro \ j \ à \ la \ k^{ème}$ épreuve.)

On convient de définir la matrice U_0 par : $U_0 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

8. Déterminer la loi de X_2

(On pourra s'aider d'un arbre).

Calculer l'espérance et la variance de X₂

- On a: $\mathbb{P}(X_1=0) = \mathbb{P}(X_1=1) = \mathbb{P}(X_1=2) = \frac{1}{3}$.
- **9.** Par utilisation de la formule des probabilités totales, prouver que $k \in \mathbb{N}$, on $a: U_{k+1} = A^{-1} \cdot U_k$.

La formule des probabilités totales s'écrit : $\mathbb{P}(X_{k+1}=i) = \sum_{j=0}^{2} \mathbb{P}_{[X_k=j]}(X_{k+1}=i) \cdot \mathbb{P}(X_k=j)$ soit :

$$\begin{cases} \mathbb{P}(X_{k+1}=0) = \mathbb{P}(X_k=0) + \frac{1}{2} \cdot \mathbb{P}(X_k=1) + \frac{1}{3} \cdot \mathbb{P}(X_k=2) \\ \mathbb{P}(X_{k+1}=1) = \frac{1}{2} \cdot \mathbb{P}(X_k=1) + \frac{1}{3} \cdot \mathbb{P}(X_k=2) \\ \mathbb{P}(X_{k+1}=2) = \frac{1}{3} \cdot \mathbb{P}(X_k=2) \end{cases}$$

$$\begin{cases} \mathbb{P}_{[X_k=0]}(X_{k+1}=0) & \mathbb{P}_{[X_k=0]}(X_{k+1}=0) \\ \mathbb{$$

La matrice de transition s'écrit: $\begin{bmatrix} \mathbb{P}_{[X_{k}=0]}(X_{k+1}=0) & \mathbb{P}_{[X_{k}=1]}(X_{k+1}=0) & \mathbb{P}_{[X_{k}=2]}(X_{k+1}=0) \\ \mathbb{P}_{[X_{k}=0]}(X_{k+1}=1) & \mathbb{P}_{[X_{k}=1]}(X_{k+1}=1) & \mathbb{P}_{[X_{k}=2]}(X_{k+1}=1) \\ \mathbb{P}_{[X_{k}=0]}(X_{k+1}=2) & \mathbb{P}_{[X_{k}=1]}(X_{k+1}=2) & \mathbb{P}_{[X_{k}=2]}(X_{k+1}=2) \end{bmatrix} = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \vdots & \frac{1}{2} & \frac{1}{3} \\ \vdots & \vdots & \frac{1}{3} \end{bmatrix} = A^{-1}.$

On a alors bien : $U_{k+1} = A^{-1} \cdot U_k$.

10. Écrire U_k en fonction de A^{-1} et U_0

On a, pour tout $k \in \mathbb{N}$, la relation : $U_{k+1} = A^{-1} \cdot U_k$. (même pour pour k = 0!)

Par récurrence immédiate, on trouve donc : $U_k = [A^{-1}]^k \cdot U_0$.

11. *Pour tout* $k \in \mathbb{N}$ *, donner la loi de* X_k *et vérifier que l'on a :*

$$\lim_{k \to +\infty} \mathbb{P}\big(X_k = 0\big) = 1, \quad \lim_{k \to +\infty} \mathbb{P}\big(X_k = 1\big) = 0, \quad \lim_{k \to +\infty} \mathbb{P}\big(X_k = 2\big) = 0$$

Comme $U_0 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, le vecteur U_k est le troisième vecteur colonne de $\begin{bmatrix} A^{-1} \end{bmatrix}^k$.

On l'a calculé à la question 7.. Il vient donc : $\mathbb{P}(X_k = 0) = 1 - \frac{2}{2^n} + \frac{1}{3^n}$

 $\mathbb{P}(X_k=1)=\frac{2}{2^n}-\frac{2}{3^n},$

 $\blacktriangleright \quad \mathbb{P}\big(X_k=2\big)=\tfrac{1}{3^n}.$

Le passage à la limite donne bien :

$$\lim_{k \to +\infty} \mathbb{P}(X_k = 0) = 1,$$

$$\lim_{k \to +\infty} \mathbb{P}(X_k = 1) = 0,$$

$$\lim_{k \to +\infty} \mathbb{P}(X_k = 2) = 0.$$

(Il y a convergence en loi, vers la constante déterministe qui vaut 0.)

Exercice 2

PARTIE I : Étude d'une variable aléatoire

On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ définie, pour tout $t \in \mathbb{R}$, par : $f(t) = \frac{e^{-t}}{(1+e^{-t})^2}$.

1. Vérifier que la fonction f est paire

Pour $t \in \mathbb{R}$, on a: $f(t) = \frac{e^{-t}}{(1+e^{-t})^2}$. On calcule: $f(-t) = \frac{e^t}{(1+e^t)^2} = \frac{e^t}{\left[e^t \cdot (e^{-t}+1)\right]^2}$ $=\frac{\mathrm{e}^t}{\mathrm{e}^{2t}\cdot(\mathrm{e}^{-t}+1)^2}=\frac{\mathrm{e}^{-t}}{(\mathrm{e}^{-t}+1)^2}$ On obtient bien, pour $t\in\mathbb{R}$, l'identité : f(-t)=f(t). La fonction f est donc paire.

2. *Montrer que f est une fonction densité.*

La fonction *f* vérifie : • f est continue sur \mathbb{R} ,

- f est positive sur \mathbb{R} . Il reste donc à vérifier que : $\int_{\mathbb{R}} f = 1$.
- ▶ **Primitivation de** f Pour $A \in \mathbb{R}$, on calcule l'intégrale : $\int_0^A f(t) dt = \int_0^A \frac{e^{-t}}{(1+e^{-t})^2} dt.$

On reconnaît une intégrande de la forme : $\int -\frac{u'}{u^2} = \left[\frac{1}{u}\right]$, pour $u(t) = 1 + e^{-t}$.

Ainsi: $\int_{0}^{A} f(t) dt = \left[\frac{1}{1 + e^{-t}} \right]_{0}^{A} = \frac{1}{1 + e^{-A}} - \frac{1}{2}.$

► Convergence des intégrales $\int_0^{+\infty} f$ et $\int_0^0 f$

On passe à la limite $A \to +\infty$, en remarquant que : $\lim_{A \to +\infty} e^{-A} = 0$.

Il vient: $\lim_{A \to +\infty} \int_0^A f(t) dt = \lim_{A \to +\infty} \left(\frac{1}{1 + e^{-A}} - \frac{1}{2} \right) = 1 - \frac{1}{2} = \frac{1}{2}.$

Ainsi, on a convergence, et: $\int_{0}^{+\infty} f(t) dt = \frac{1}{2}.$

Par parité de f, on trouve aussi : $\int_{0}^{0} f(t) dt = \int_{0}^{+\infty} f(t) dt = \frac{1}{2}.$

Conclusion

L'intégrale $\int_{-\infty}^{+\infty} f(t) dt$ est convergente et vaut : $\int_{-\infty}^{0} f(t) dt + \int_{0}^{+\infty} f(t) dt = \frac{1}{2} + \frac{1}{2} = 1$. La fonction f est donc bien une densité.

Remarque stratégique

À la question suivante, l'énoncé nous fournit la primitive $\frac{1}{1+e^{-x}}$ dont nous avions besoin.

Dans la suite de l'exercice, on considère une variable aléatoire réelle X admettant pour densité f.

- **3.** Montrer que, pour $x \in \mathbb{R}$, la fonction de répartition de X s'écrit : $F_X(x) = \frac{1}{1 + e^{-x}}$. Interpréter la valeur de la probabilité : $F_X(0)$.
 - Calcul de la fonction de répartition

Pour $x \in \mathbb{R}$, on a bien : $F_X(x) = \mathbb{P}(X \le x) = \int_{-\infty}^x f(t) dt = \int_0^0 f(t) dt + \int_0^x f(t) dt$. $=\frac{1}{2}+\frac{1}{1+a^{-x}}-\frac{1}{2}=\frac{1}{1+a^{-x}}$

On vérifie par acquit de conscience que l'on a bien :

$$F_X \operatorname{est} \mathcal{C}^1 \operatorname{et} \quad F_X' = f,$$

$$\lim_{-\infty} F_X = 0, \quad \lim_{+\infty} F_X = 1$$

• Interprétation de $F_X(0)$

On a : $F_X(0) = \frac{1}{2} = \mathbb{P}(X \le 0)$. La valeur 0 est donc la **médiane** de la distribution de X.

(c'est toujours le cas lorsque la fonction densité est paire!)

4. a) Montrer que l'intégrale $\int_0^{+\infty} t \cdot f(t) dt$ converge.

On vérifie que l'on a la négligeabilité : $t \cdot f(t) = o(\frac{1}{t^2})$.

En effet, pour $t \ge 0$, on a: $0 \le \frac{t \cdot f(t)}{\frac{1}{t^2}} = t^3 \cdot \frac{e^{-t}}{(1 + e^{-t})^2} \le t^3 \cdot e^{-t} \to 0$, pour $t \to +\infty$.

Ainsi: $t \cdot f(t) \ge 0$

• $t \cdot f(t)$ est négligeable devant $\frac{1}{t^2}$ Or l'intégrale $\int_1^{+\infty} \frac{\mathrm{d}t}{t^2}$ est convergente par le **critère de Riemann.**

L'intégrale $\int_0^{+\infty} t \cdot f(t) dt$ est donc convergente.

b) Montrer que X admet une espérance et que : $\mathbb{E}[X] = 0$.

On utilisera l'imparité de la fonction : $t \mapsto t \cdot f(t)$.

Montrons que l'intégrale $\int_{-\infty}^{+\infty} t \cdot f(t) dt$ est absolument convergente.

Sa partie négative est : $\int_{-\infty}^{0} t \cdot f(t) dt$ et sa partie positive est : $\int_{0}^{+\infty} t \cdot f(t) dt$.

Or la fonction $t \mapsto t \cdot f(t)$ est impaire, car f est paire.

Ces deux intégrales sont donc de même nature, et opposées.

On a montré que $\int_0^{+\infty} t \cdot f(t) \, \mathrm{d}t$ est convergente, donc $\int_{-\infty}^{+\infty} t \cdot f(t) \, \mathrm{d}t$ est absolument convergente et vaut 0. L'espérance $\mathbb{E}[X]$ existe donc bien, et vaut 0.

- c) En intégrant par parties, montrer, pour $A \in \mathbb{R}$, que : $\int_0^A t \cdot f(t) \, dt = -\frac{A}{1 + e^A} + \int_0^A \frac{1}{1 + e^t} \, dt.$ Dérivons la fonction dans l'intégrale à droite : $\left(\frac{1}{1 + e^t}\right)' = -\frac{e^t}{(1 + e^t)^2} = -f(-t) = -f(t).$ Par intégration par parties, il vient donc bien : $\int_0^A t \cdot f(t) \, dt = \left[-\frac{t}{1 + e^t}\right]_0^A \int_0^A -\frac{1}{1 + e^t} \, dt.$
- **d)** Vérifier que la fonction $u: t \mapsto -\ln(1+e^{-t})$ est une primitive de $v: t \mapsto \frac{1}{1+e^{t}}$.

 On calcule la dérivée de u. Il vient bien : $u'(t) = -\frac{e^{-t}}{1+e^{-t}} = \frac{\frac{1}{e^{t}}}{1+e^{-t}} = \frac{1}{e^{t}+1}$.
- **e)** En déduire la valeur de l'intégrale : $\int_0^{+\infty} t \cdot f(t) dt$, et celle de l'espérance : $\mathbb{E}[|X|]$.

On conclut le calcul : $\int_0^A t \cdot f(t) \, dt = -\frac{A}{1 + e^A} + \int_0^A \frac{1}{1 + e^t} \, dt = -\frac{A}{1 + e^A} + \int_0^A u'(t) \, dt$ $= -\frac{A}{1 + e^A} + \left[u(t) \right]_0^A = \ln(2) - \frac{A}{1 + e^A} - \ln(1 + e^{-A}).$

Le passage à la limite $A \to \infty$ donne : $\int_0^{+\infty} t \cdot f(t) dt = \ln(2)$.

Pour l'espérance, on trouve : $\mathbb{E}\big[\,|X|\,\big] = \int_{-\infty}^{+\infty} |t| \cdot f(t) \,\mathrm{d}t = 2 \cdot \int_{0}^{+\infty} t \cdot f(t) \,\mathrm{d}t = 2 \cdot \ln(2).$

(Encore par parité de f)

PARTIE II : Étude d'une autre variable aléatoire

On considere l'application $\varphi : \mathbb{R} \to \mathbb{R}$ définie, pour tout x de \mathbb{R} , par : $\varphi(x) = \ln(1 + e^x)$.

5. a) Montrer que φ est une bijection de \mathbb{R} sur un intervalle I à préciser.

> La fonction φ est : continue

> > • strictement croissante sur \mathbb{R} .

Par le théorème de la bijection continue, φ réalise donc une bijection : $\mathbb{R} \to \varphi(\mathbb{R})$.

On a:
$$\varphi(\mathbb{R}) = \lim_{-\infty} \varphi : \lim_{+\infty} \varphi[$$
. On vérifie que : $\lim_{-\infty} \varphi = \ln(1) = 0$

$$\lim_{+\infty} \varphi = \lim_{+\infty} \ln = +\infty$$

Ainsi: $I = \varphi(\mathbb{R}) =]0; +\infty[$.

b) Pour tout y de I, exprimer: $\varphi^{-1}(y)$.

Soit y > 0. On résout l'équation : $y = \varphi(x) \iff y = \ln(1 + e^x) \iff e^y = 1 + e^x$ \iff $e^x = e^y - 1 \iff x = \underbrace{\ln(e^y - 1)}_{=\varphi^{-1}(y)}.$

Ainsi, on a: $\varphi^{-1}(y) = \ln(e^y - 1)$.

On considère la variable aléatoire réelle *Y* définie par : $Y = \varphi(X)$.

6. **a)** Justifier: $\mathbb{P}(Y \leq 0) = 0$.

On a $Y = \varphi(X)$, et φ ne prend que des valeurs > 0.

Ainsi, on a: Y > 0, d'où: $\mathbb{P}(Y \le 0) = 0$.

b) Déterminer la fonction de répartition de Y.

Pour y > 0, on résout : $F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(\varphi(X) \le y) = \mathbb{P}(X \le \varphi^{-1}(y)) = F_X(\varphi^{-1}(y))$.

On a trouvé précédemment : $F_X(x) = \frac{1}{1 + e^{-x}}$ et $\varphi^{-1}(y) = \ln(e^y - 1)$.

Il vient donc:
$$F_Y(y) = \frac{1}{1 + \exp\left[-\ln\left(e^y - 1\right)\right]}$$

= $\frac{1}{1 + \frac{1}{e^y - 1}} = \frac{e^y - 1}{e^y} = 1 - e^{-y}$, pour $y > 0$.

c) Reconnaître alors la loi de Y et donner, sans calcul, son espérance et sa variance.

On reconnaît, pour Y, la fonction de répartition de la loi exponentielle $\mathcal{E}(1)$.

- **Densité** elle est donnée par : $f_Y(y) = \begin{cases} e^{-y} & \text{pour } y \ge 0 \\ 0 & \text{sinon.} \end{cases}$
- Espérance et variance $\mathbb{E}[Y] = 1$ et Var(Y) = 1.
- 7. On utilise le script Scilab suivant afin de simuler un échantillon de la loi à densité f.

```
1 N = 10<sup>5</sup> // taille de l'échantillon
 Y = grand(1, N, "exp", 1)
                                                   0.2
                                                   0.15
4 histplot(60,X) // tracé de l'histogramme
                                                   0.1
_6 t = linspace(-8,8)
                                                   0.05
7 densite = exp(-t) ./ (1+exp(-t)).^2
 plot(t,densite) // tracé de la densité
```

a) En quoi la représentation graphique obtenue confirme-t-elle l'étude dans la PARTIE II? L'histogramme suit de près la fonction densité tracée.

Celle-ci est la fonction f donnée par : $f(t) = \frac{e^{-t}}{(1+e^{-t})^2}$.

La loi simulée par l'échantillon X est donc bien celle de X.

La loi simulée par l'échantillon Y (paramètre "exp") correspond bien à celle de $Y \hookrightarrow \mathcal{E}(1)$.

b) Compléter l'instruction manquant au script.

On a: $Y = \varphi(X)$, d'où: $X = \varphi^{-1}(Y) = \ln(e^{Y} - 1)$.

L'instruction manquante est donc : X = log(exp(Y)-1).

c) Quelle constante mathématique reconnaît-on dans le résultat du calcul suivant?

--> mean(abs(X)/2) // ans = 0.6938775

De quelle question de la Partie I vérifie-t-on ainsi le résultat?

On reconnaît $ln(2) \approx 0.69$.

On corrobore le résultat de la question **4.e**), soit : $\mathbb{E}[|X|] = 2 \cdot \ln(2)$.

PARTIE III : Étude d'une convergence en loi

On considère une suite de variables aléatoires réelles $(X_n)_{n \in \mathbb{N}^*}$.

On suppose qu'elles sont :
• mutuellement indépendantes,

ightharpoonup de même densité f, où f a été définie dans la partie I.

Pour tout $n \ge 1$ entier, on pose : $T_n = \max(X_1, ..., X_n)$ et $U_n = T_n - \ln(n)$.

- **8.** Soit $n \ge 1$ un entier.
 - **a)** Déterminer la fonction de répartition de T_n .

Pour $x \in \mathbb{R}$, on a l'égalité d'événements : $[T_n \le x] = [\max(X_1, ..., X_n) \le x]$

$$= [X_1 \leq x, X_2 \leq x, \dots, X_n \leq x]$$

On passe aux probabilités : $\mathbb{P}(T_n \leq x) = \mathbb{P}\left(\bigcap_{k=1}^n [X_k \leq x]\right) = \prod_{k=1}^n \mathbb{P}([X_k \leq x]).$

Pour chaque k, on a: $\mathbb{P}([X_k \leq x]) = F_X(x) = \frac{1}{1+e^{-x}}$

Il vient donc : $F_{T_n}(x) = \prod_{k=1}^n \frac{1}{1 + e^{-x}} = \left(\frac{1}{1 + e^{-x}}\right)^n$.

b) Pour $x \in \mathbb{R}$, en déduire : $\mathbb{P}(U_n \le x) = \frac{1}{\left(1 + \frac{e^{-x}}{n}\right)^n}$.

Pour $x \in \mathbb{R}$, on a l'égalité d'événements : $[U_n \le x] = [T_n - \ln(n) \le x] = [T_n \le x + \ln(n)].$

Ainsi: $F_{U_n}(x) = F_{T_n}(x + \ln(n)) = \frac{1}{(1 + e^{-[x + \ln(n)]})^n}$.

Or:
$$1 + e^{-[x + \ln(n)]} = 1 + \frac{e^{-x}}{e^{\ln(n)}} = 1 + \frac{e^{-x}}{n}$$
.

On trouve bien ainsi le résultat demandé : $F_{U_n}(x) = \frac{1}{\left(1 + \frac{e^{-x}}{n}\right)^n}$.

9. En déduire que la suite de variables aléatoires $(U_n)_{n\in\mathbb{N}^*}$ converge en loi.

Préciser la fonction de répartition limite. Montrer que la loi limite est associée à une densité que l'on déterminera.

On passe à la limite quand $n \to +\infty$ dans l'expression de $F_{U_n}(x)$.

On reconnaît la limite d'Euler : $\left(1 + \frac{\lambda}{n}\right)^n \to \exp(\lambda)$

Démonstration (Limite d'Euler) : On a : $\left(1 + \frac{\lambda}{n}\right)^n = \exp\left[n \cdot \ln\left(1 + \frac{\lambda}{n}\right)\right]$.

On connaît l'équivalent : $\ln(1+h) \sim h$ quand $h \to 0$.

Ainsi : $n \cdot \ln\left(1 + \frac{\lambda}{n}\right) \sim n \cdot \frac{\lambda}{n} = \lambda$. Par continuité de l'exponentielle, il vient bien : $\left(1 + \frac{\lambda}{n}\right)^n \to e^{\lambda}$.

Ainsi: $\lim_{n \to +\infty} \left(1 + \frac{\mathrm{e}^{-x}}{n}\right)^n = \exp\left(\mathrm{e}^{-x}\right).$ Il vient donc: $\lim_{n \to +\infty} F_{U_n}(x) = \frac{1}{\exp\left(\mathrm{e}^{-x}\right)} = \exp\left(-\mathrm{e}^{-x}\right).$

La fonction de répartition limite $F: x \mapsto \exp(-e^{-x})$ vérifie : F est C^1 et croissante,

$$\lim_{-\infty} F = 0, \quad \lim_{+\infty} F = 1.$$

C'est donc la fonction de répartition d'une variable à densité.

Il y a donc bien convergence en loi.

La densité associée à la limite est la dérivée : $f: x \mapsto F'(x) = \left[\exp\left(-e^{-x}\right)\right]' = e^{-x} \cdot \exp\left(-e^{-x}\right)$.

Exercice 3

On considère l'application φ définie sur \mathbb{R}_+^* par :

$$\forall x > 0$$
, $\varphi(x) = \ln(x) - \ln(x+1) + \frac{1}{x}$.

Étude de la fonction φ

1. Étude en 0⁺

- **a)** Montrer que pour $x \to 0^+$, on a l'équivalent : $\varphi(x) \sim \frac{1}{x}$. $\varphi(x) \sim \frac{1}{x}.$ On montre l'équivalent en étudiant la limite de : $x \cdot \varphi(x) = x \cdot \ln(x) x \cdot \ln(x+1) + 1$. On trouve bien que $\lim_{x\to 0^+} x \cdot \varphi(x) = 1$, d'où l'équivalent en 0^+ suivant : $\varphi(x) \sim \frac{1}{x}$.
- **b)** Déterminer la limite de $\varphi(x)$ lorsque x tend vers 0^+ .

Pour
$$x \to 0^+$$
, on a: $\varphi(x) = \underbrace{\ln(x)}_{\to -\infty} - \underbrace{\ln(x+1)}_{\to 0} + \underbrace{\frac{1}{x}}_{\to +\infty}$.

On a donc une forme indéterminée $-\infty + \infty$

Par croissance comparée, c'est la puissance $\frac{1}{r}$ qui est prépondérante sur $\ln(x)$, donc la limite est $+\infty$. (C'est cohérent avec le résultat précédent $\varphi(x) \sim \frac{1}{x}$.)

c) L'intégrale $\int_{0}^{1} \varphi(x) dx$ converge-t-elle?

On a trouvé en 0^+ l'équivalent suivant : $\varphi(x) \sim \frac{1}{x}$.

Or l'intégrale $\int_0^1 \frac{dx}{x}$ diverge (*critère de Riemann*), donc l'intégrale $\int_0^1 \varphi(x) dx$ diverge aussi.

2. Étude en $+\infty$

- **a)** Rappeler le développement limité à l'ordre 2 de $\ln(1+h)$ quand $h \to 0$. Ce développement limité à l'ordre 2 quand $h \to 0$ s'écrit : $\ln(1+h) = h - \frac{h^2}{2} + o(h^2)$.
- **b)** Montrer que $\forall x > 0$, on peut écrire : $\varphi(x) = \frac{1}{x} \ln\left(1 + \frac{1}{x}\right)$. On a bien pour x > 0: $\varphi(x) = \ln(x) - \ln(x+1) + \frac{1}{x} = \ln(\frac{x}{x+1}) + \frac{1}{x}$ $=\frac{1}{r}-\ln\left(\frac{x+1}{r}\right)=\frac{1}{r}-\ln\left(1+\frac{1}{r}\right)$
- **c)** En déduire que pour $x \to +\infty$, on a l'équivalent : $\varphi(x) \sim \frac{1}{2x^2}$.

Pour $x \to +\infty$, on a: $\frac{1}{x} \to 0$.

Par le dével^t limité de $\ln(1+h)$ pour $h=\frac{1}{x}$, il vient $\varphi(x)=\frac{1}{x}-\left[\frac{1}{x}-\frac{1}{2}\cdot\left(\frac{1}{x}\right)^2+o\left(\frac{1}{x}\right)^2\right]$. Ainsi, $=\frac{1}{2\cdot x^2}+o(\frac{1}{x^2})$

on a bien pour $x \to +\infty$, l'équivalent : $\varphi(x) \sim \frac{1}{2 \cdot x^2}$.

d) Déterminer la limite de $\varphi(x)$ lorsque x tend vers $+\infty$. On passe à la limite dans l'écriture obtenue : $\varphi(x) = \frac{1}{x} - \ln\left(1 + \frac{1}{x}\right)$. Il vient en effet : $\lim_{x \to +\infty} \varphi(x) = 0$. **e)** L'intégrale $\int_{1}^{+\infty} \varphi(x) dx$ converge-t-elle?

On a trouvé pour $x \to +\infty$, l'équivalent : $\varphi(x) \sim \frac{1}{2x^2}$.

Or: \blacktriangleright les deux fonctions φ et $x \mapsto \frac{1}{2 \cdot x^2}$ sont continues sur $(1; +\infty)$.

Ainsi l'intégrale $\int_{1}^{+\infty} \varphi(x) dx$ converge absolument, donc elle converge.

3. Dresser le tableau de variation de φ et y faire apparaître les limites de φ en 0^+ et $+\infty$.

La fonction φ est de classe \mathcal{C}^{∞} sur son domaine de définition par opérations usuelles.

Pour
$$x > 0$$
, on trouve: $\varphi'(x) = \frac{1}{x} - \frac{1}{x+1} - \frac{1}{x^2}$
= $\frac{1}{x^2 \cdot (x+1)} \cdot \left[x \cdot (x+1) - x^2 - (x+1) \right] = -\frac{1}{x^2 \cdot (x+1)}$

Ainsi la dérivée $\varphi'(x) < 0$ sur $]0; +\infty[$.

La fonction φ est donc strictement décroissante sur $]0; +\infty[$, et va de $+\infty$ jusqu'à 0. (ses limites)

Résolution de l'équation $\varphi(x) = 1$.

- **4.** Montrer que l'équation $\varphi(x) = 1$ possède une unique solution notée α et que $\frac{1}{3} < \alpha < \frac{1}{2}$.
 - ightharpoonup Existence et unicité de la solution α

La fonction φ est \rightarrow continue sur $]0; +\infty[$

▶ strictement décroissante sur $]0;+\infty[$.

Par le théorème de la bijection monotone, elle réalise donc une bijection de $]0;+\infty[$ sur $\varphi(]0;+\infty[)=\lim_{t\to\infty}\varphi;\lim_{0^+}\varphi[=]0;+\infty[.$

Comme on a bien $1 \in]0; +\infty[= \varphi(]0; +\infty[)$, il existe un unique antécédent par φ de 1, donc une unique solution à l'équation $\varphi(x) = 1$.

- ► **Encadrement de** α (On rappelle l'expression $\varphi(x) = \frac{1}{x} \ln(1 + \frac{1}{x})$)
 - On calcule $\varphi(\frac{1}{3}) = \frac{1}{\frac{1}{3}} \ln(1 + \frac{1}{\frac{1}{3}}) = 3 \ln(4)$ = $3 - 2 \cdot \ln(2) \approx 3 - 2 \times 0,7 = 1,6 > 1$
 - On calcule $\varphi(\frac{1}{2}) = \frac{1}{\frac{1}{2}} \ln(1 + \frac{1}{\frac{1}{2}}) = 2 \ln(3)$ $\approx 2 - 1, 1 = 0, 9 < 1$

Ainsi, on a $\varphi(\frac{1}{3}) > \varphi(\alpha) > \varphi(\frac{1}{2})$, d'où par décroissance stricte de $\varphi: \frac{1}{3} < \alpha < \frac{1}{2}$.

5. Compléter l'algorithme de dichotomie pour encadrer α dans un intervalle d'amplitude 10^{-2} .

```
a = 1/3
b = 1/2
while (b-a)>.01
m = (a+b)/2
if phi(m) > 1
then a = m
else b = m
end
end
disp([a,b]) // affiche: 0.4635417 0.46875
```

Une variable à densité.

Soit X une variable aléatoire réelle admettant pour densité de probabilité la fonction f donnée $\forall x \in \mathbb{R}, \quad f(x) = \left\{ \begin{array}{ll} \frac{1}{x^2 \cdot (x+1)} & \text{si } x > \alpha \\ 0 & \text{si } x \leq \alpha \end{array} \right.$ par: (où α désigne le réel défini à la question 4.)

6. **a)** Rappeler l'expression de $\varphi'(x)$.

On a trouvé $\forall x > 0$, l'expression : $\varphi'(x) = -\frac{1}{x^2 \cdot (x+1)}$, soit $\varphi'(x) = -f(x)$, pour $x > \alpha$.

- **b)** Vérifier que f est bien une densité de probabilité.
 - **Continuité sauf en** α

La fonction f est continue sur α ; $+\infty$ [: c'est une fraction rationnelle. Elle est donc continue sur \mathbb{R} , sauf en α .

- ▶ **Positivité** La fonction f est bien positive ou nulle sur \mathbb{R}
- ▶ **Intégrale** On a trouvé une primitive de f sur $]\alpha$; $+\infty$ [: la fonction $-\varphi$.

Ainsi pour
$$A \ge \alpha$$
, on trouve $\int_{\alpha}^{A} f(x) dx = \left[-\varphi(x) \right]_{\alpha}^{A} = \underbrace{\varphi(\alpha)}_{=1} - \underbrace{\varphi(A)}_{=0}$.

On trouve donc bien: $\int_{\alpha}^{+\infty} x \cdot f(x) dx = \lim_{A \to +\infty} \int_{\alpha}^{A} x \cdot f(x) dx = 1$

La fonction f est donc bien une densité de probabilités.

7. *Montrer que X admet une espérance* $\mathbb{E}[X]$.

Sous réserve de convergence, on a :
$$\mathbb{E}[X] = \int_{\alpha}^{+\infty} x \cdot f(x) \, \mathrm{d}x = \int_{\alpha}^{+\infty} \frac{\mathrm{d}x}{x \cdot (x+1)}.$$

On remarque l'équivalent, en $+\infty$, de l'intégrande : $\frac{1}{x \cdot (x+1)} \sim \frac{1}{x^2}$. Par Riemann, l'intégrale est donc bien convergente, et la variable X admet une espérance.

8.

a) Démontrer que pour $x > \alpha$, on a: $x \cdot f(x) = \varphi'(x) + \frac{1}{x^2}$. Pour $x > \alpha$, on calcule: $\frac{1}{x^2} = \frac{x+1}{x^2 \cdot (x+1)} = -(x+1) \cdot \varphi'(x) = -x \cdot \varphi'(x) - \varphi'(x) = x \cdot f(x) - \varphi'(x)$.

On trouve bien le résultat demandé : $x \cdot f(x) = \varphi'(x) + \frac{1}{x^2}$.

b) En déduire que l'espérance de X est donnée par : $\mathbb{E}[X] = \frac{1-\alpha}{\alpha}$.

On obtient donc pour $A \ge \alpha$ l'expression : $\int_{\alpha}^{A} x \cdot f(x) \, dx = \int_{\alpha}^{A} (\varphi'(x) + \frac{1}{x^2}) \, dx.$

On primitive ainsi : $\int_{\alpha}^{A} x \cdot f(x) \, dx = \left[\varphi(x) - \frac{1}{x} \right]_{\alpha}^{A} = \left(\underbrace{\varphi(A) - \frac{1}{A}}_{=0} \right) - \underbrace{\left(\varphi(\alpha) - \frac{1}{\alpha} \right)}_{=1}.$ Par passage à la limite $(A \to +\infty)$, on trouve : $\int_{\alpha}^{+\infty} x \cdot f(x) \, dx = \frac{1}{\alpha} - 1 = \frac{1-\alpha}{\alpha}.$ C'est la valeur demandée de l'espérance $\mathbb{E}[X]$

c) Donner un encadrement de $\mathbb{E}[X]$ par deux entiers consécutifs.

On a trouvé l'encadrement : $\frac{1}{3} < \alpha < \frac{1}{2}$. $= \frac{3-1=2}{\alpha}$ Or : $\mathbb{E}[X] = \frac{1}{\alpha} - 1$, donc on obtient l'encadrement demandé : $\frac{1}{\frac{1}{3}} - 1 > \mathbb{E}[X] > \frac{1}{\frac{1}{2}} - 1$.

9. La variable aléatoire réelle X admet-elle une variance?

Sous réserve de convergence, on aurait : $\mathbb{E}[X^2] = \int_{\alpha}^{+\infty} x^2 \cdot f(x) \, \mathrm{d}x = \int_{\alpha}^{+\infty} \frac{\mathrm{d}x}{x+1}$

Mais cette intégrale est divergente par le critère de Riemann.

La variable *X* n'a donc pas de moment d'ordre 2. Elle n'a donc pas non plus de variance.