- 전달인자를 받아 반환인자로 리턴하는 함수를 활용할 것.
- for, if, while 문 등을 반드시 사용할 것. (단순 printf 금지)
- 단순 조건문 반복은 인정하지 않음.
- 주어진 조건을 모두 만족해야 함.

1. 기본 입출력 및 알고리즘 테스트

Bit 간의 OR 연산은 비교하는 두 비트가 모두 0일 때 0을 출력하며, 그 외에는 1을 출력한다. AND 연산은 비교하는 두 비트가 모두 1일 때만 1을 출력하며, 그 외에는 0을 출력한다.

0~999의 십진수 2개를 입력받아 아래와 같은 결과를 출력하는 코드를 작성하시오. 입력받은 십진수를 각각 10bit 이진수로 변환하여 계산한다.

이진수 논리연산 결과를 십진수로 변환한다.

입력 :

>> 271 150

출력 :

- >> 271 (10) = 01 0000 1111 (2)
- >> 150 (10) = 00 1001 0110 (2)
- >> 01 0000 1111 (2) AND 00 1001 0110 (2) = 00 0000 0110 (2) = 6 (10)
- >> 01 0000 1111 (2) OR 00 1001 0110 (2) = 01 1001 1111 (2) = 415 (10)

- 전달인자를 받아 반환인자로 리턴하는 함수를 활용할 것.
- for, if, while 문 등을 반드시 사용할 것. (단순 printf 금지)
- 단순 조건문 반복은 인정하지 않음.
- 주어진 조건을 모두 만족해야 함.

2. 좌수법/우수법 탈출

좌수법 혹은 우수법은 미로에서 현재 좌표기준으로 왼쪽 혹은 오른쪽 의 벽을 따라 미로를 탈출하는 알고리즘이다.

5 by 5의 미로가 있으며 시작 위치에서 출발하여 종료 위치까지 좌수법/우수법을 이용해 이동하면 된다. 그때 이동하는 좌표를 출력하라.

- 미로는 5by5 matrix로 만들어야 하며, 좌수법/우수법은 알고리즘으로 구현해야함 (단순 좌표출력 x)
- 이미 지나온 칸과 현재의 칸은 벽으로 막혀 있다고 가정한다.
- 아래 예시의 그림에서 벽 위치는 무시한다. (별도 데이터로 사전 작성하지 않아도 된다.)
- 예) (1,5)->(1,4)->(1,3)...->(3,3) (좌수법)
- 예) (1,1)->(1,2)->(1,3)...->(3,3) (우수법)

(5.1)	(5,2)	(5.3)	(5,4)	(5.5) (4.5)	
(4,1)	(4,2)	(4.3) 중로 (3.3)	(3.4)		
(3.1)					
(2,1)	(2,2)	(2.3)	(2.4)	(2.5)	
시작 (1.1)	(1,2)	(1,3)	(1,4)	(1,5)	

(5,1)	(5.2)	(5,3)	(5,4)	(5,5)
(4.1)	(4.2)	(4,3)	(4.4)	(4,5)
(3_1)	(3.2)	종료 (3,3)	(3,4)	(3,5)
(2,1)	(2.2)	(2,3)	(2,4)	(2,5)
(1.1)	(1,2)	(1,3)	(1,4)	시작 (1,5)

- 전달인자를 받아 반환인자로 리턴하는 함수를 활용할 것.
- for, if, while 문 등을 반드시 사용할 것. (단순 printf 금지)
- 단순 조건문 반복은 인정하지 않음.
- 주어진 조건을 모두 만족해야 함.

3. 경로 설정

맵 정보는 현재의 위치에서 갈 수 있는 경로를 나타내 주어야 한다. 주어진 5 by 5 미로에서 임의의 좌표를 입력했을 때, 해당 좌표에서 벽을 만나기 전까지 직선으로 가장 많이 갈 수 있는 방향 및 이동 경로를 출력하라.

- 입력한 좌표가 벽이라면 벽이라고 출력되게 하시오.
- 갈 수 있는 경로의 칸수가 동일하다면 둘다 출력 되게 하시오.

예) (4,5) 입력 시 경로 '하', (3,5)->(2,5)->(1,5) 출력

- 전달인자를 받아 반환인자로 리턴하는 함수를 활용할 것.
- for, if, while 문 등을 반드시 사용할 것. (단순 printf 금지)
- 단순 조건문 반복은 인정하지 않음.
- 주어진 조건을 모두 만족해야 함.

4. 최적 주행속도 구하기

다음 조건에 해당하는 입력 변수의 값을 함수에 입력하였을 때 목표 지점에 도달하는 최단 시간을 구하는 함수를 만드시오. (0.1초당 속도값과 이동 거리를 출력) (아래 사이트 참고)

https://www.linearmotiontips.com/how-to-calculate-velocity/

[조건]

입력 변수

- 1. 출발 속도 (m/s)
- 2. 도착 속도 (m/s)
- 3. 최고 속도 (m/s)
- 4. 최고 가속도&감속도 (m/s)
- 5. 총 거리: 90m

입력 및 출력 예시

```
출발 속도를 입력하시오(m/s) : 0
도착 속도를 입력하시오(m/s) : 10
최고 속도를 입력하시오(m/s) : 10
최고 가속도 & 감속도를 입력하시오(m/s^2) : 2
총 거리를 입력하시오(m) : 60
0.00sec : 0.00m/s, 0.00m
0.10sec : 0.20m/s, 0.01m
0.20sec : 0.40m/s, 0.04m
0.30sec : 0.60m/s, 0.09m
10.60sec : 0.60m/s, 56.16m
10.70sec : 0.60m/s, 57.09m
10.80sec : 0.40m/s, 58.04m
10.90sec : 0.20m/s, 59.01m
11.00sec : -0.00m/s, 60.00m
tr = 5.00 ts = 1.00 tf = 5.00
```

(tr: Rising Time, ts: Steady time tf: Falling Time)

- 전달인자를 받아 반환인자로 리턴하는 함수를 활용할 것.
- for, if, while 문 등을 반드시 사용할 것. (단순 printf 금지)
- 단순 조건문 반복은 인정하지 않음.
- 주어진 조건을 모두 만족해야 함.

5. 바퀴 회전수 구하기

5.1 직선이동

바퀴가 달린 이동 로봇 (마이크로마우스 등) 의 경우, 바퀴의 회전 수로 이동 거리를 표시한다.

바퀴의 지름과 목표 이동 거리를 입력하면 바퀴의 회전 수를 출력하는 코드를 작성하시오.

입력 및 출력 예시

1. 이동할 거리(m) : 10 2. 바퀴의 지름(m) : 0.1 1. 회전해야할 바퀴의 회전 수, 각도 : 31.83바퀴 , 11459.16도

- 전달인자를 받아 반환인자로 리턴하는 함수를 활용할 것.
- for, if, while 문 등을 반드시 사용할 것. (단순 printf 금지)
- 단순 조건문 반복은 인정하지 않음.
- 주어진 조건을 모두 만족해야 함.

5.2 회전이동

바퀴가 달린 이동 로봇이 위의 그림과 같이 회전할 경우, 좌/우 바퀴의 회전 수에 차이가 발생한다. 조건이 다음과 같이 주어졌을 때, 두 바퀴 각각의 회전 각도를 계산하시오.

[조건]

도로의 폭 : 1m

두 바퀴사이의 거리: 0.7m

회전 각도 : 90도 입력 및 출력 예시

```
바퀴의 자름을 입력하시오.(0.1m): 1
회전 방향을 입력하시오(1: 조, 2: 우): 1
회전 시간을 입력하시오(s): 5
1. 우측 바퀴 회전수: 0.43바퀴, 회전량: 153,00도
2. 좌측 바퀴 회전수: 0.07바퀴, 회전량: 27.00도
3. 0.1초당 회전 각도출력:
time: right - left
0.00: 0.00 - 0.00
0.10: 3.06 - 0.54
0.20: 6.12 - 1.08
0.30: 9.18 - 1.62
```

4.60 : 140.76 - 24.84 4.70 : 143.82 - 25.38 4.80 : 146.88 - 25.92 4.90 : 149.94 - 26.46 5.00 : 153.00 - 27.00

추가설명 <좌수법 탈출> 좌수법 탈출 알고리즘 예시)

좌수법의 중요한 점은 '진행방향의 왼쪽 벽' 이므로, 진행방향의 업데 이트와 진행 방향 쪽의 벽면체크 알고리즘이 필수이다. 이것은 5번 메뉴와 밀접한 관련이 있다.

좌수법 탈출 알고리즘 순서 예시)

1. 진행방향 판별 2. 주파가능성판별 3. 위치 이동