NOTATION

Symbols which only arise once, and are defined on the spot, are not listed.

```
width of Hertzian contact zone
\frac{b}{R} = 4\left(\frac{W}{2\pi}\right)^{\frac{1}{2}} = 4P_0
C capacitance C_D inter-specimen capacitance C_F, C_S pad-disc capacitances
                 specific heat
\boldsymbol{E}
                internal energy
\boldsymbol{E}
                  e.m.f.
E_1, E_2 elastic moduli of solids in contact
\frac{1}{E'} = \frac{1}{2} \left[ \frac{1 - \sigma_1^2}{E_1} + \frac{1 - \sigma_2^2}{E_2} \right]
e_x, e_y, e_z, e_{xy} strain components in solids
rac{F}{F}
                  surface shear force
                  F/2\eta u
F'
                  F/E'R
                  surface shear force in pure rolling
                  surface shear force due to sliding
G
                   \alpha E'
                  shear modulus
G
H
                  h/R
                  lubricant film thickness
                  film thickness at point of maximum pressure
h_m
h_0
                  film thickness on line of centres
              2/\pi E'
K
                   thermal conductivity
```

xii	NOTATION	
l L	gear centre distance width of leading edge of electrode	
M	W'/P'_0	
N_1, N_2	speeds in r.p.m. of gear wheel and pinion	
P P' P ₀	p/E' line load/unit length on solid surface p_0/E'	
$P'_{0},_{1},_{2}$	load per unit length carried by individual rollers in a roller bearing assembly	
P_0'	maximum load per unit length carried by most heavily loaded roller	
P_x, P_y	hydrodynamic force components per unit length of cylinder	
$\frac{P'_x}{P_x}$, etc.	$P_x/E'R$	
p	pressure	
p_0	Hertzian maximum pressure	
$P_r, P_\theta, q_{r\theta}$ P_x, P_y, q_{xy} stresses in solids		
Q	volume rate of flow of lubricant q/E'	
$rac{oldsymbol{arrho}}{oldsymbol{arrho}}$	Q/uh_0 , dimensionless flow rate	
\overline{q}	reduced pressure, defined by	
	$q = (1 - e^{-\alpha p})/\alpha$	
\boldsymbol{q}	heat flow	
R	effective radius of roller pair = $\frac{R_a R_b}{R_a \pm R_b}$	
R_a , R_b	radii of cylinders or rollers in contact	
R_1	radius of roller bearing inner race	
R_1, R_2	pitch circle radii of gear wheels	
R_g	gear ratio	
r r, θ, z	radius of roller coordinates	
S s	R/h_0 additional coordinate in x-direction	

 r/R_1

s

```
distance between point of gear contact and pitch point
S
               fractional distance along line of action of gears measured
Sfrac.
               from base circle of wheel
U
               \eta_0 u/E'R
и
               \frac{1}{2}(u_1 + u_2)
               surface velocities of solids in x-direction
u_1, u_2
               fluid velocities in x-, y-, z-directions
u, v, w
               solid displacements in x-, y-, z-directions
u, v, w
               \eta_0(u_1-u_2)/E'R
V
W
               w/E'R
W'
                total load per unit length on roller bearing
                 \left( = \frac{\text{total load on bearing}}{\text{length of rollers}} \right)
               load per unit length of cylinder
w
X
               x/b
                coordinates
x, y, z
\boldsymbol{Z}
                total number of rollers in bearing
                pressure exponent of viscosity, \eta = \eta_0 \exp(ap)
α
                \frac{\omega_c}{O} 2(1 + s)
α
                \frac{\omega}{\Omega} \frac{2s(1+s)}{(1+2s)}
β
                temperature exponent of viscosity, \eta = \eta_x \exp(-\gamma \theta)
γ
1
                radial clearance in roller bearing
δ
                deflection
                dielectric constant
ε
                radial interference in roller bearing
ε
                viscosity
η
                "controlling viscosity", viscosity at
\eta_0
                conditions of entry to contact
                viscosity of lubricant at supply temperature
\eta_L
                viscosity at ordinate where du/dy = (u_2 - u_1)/h
\eta_n
                viscosity at solid surface temperature
\eta_s
 θ
                temperature
```

xiv	NOTATION
μ	coefficient of friction
Q Q _m Qo	fluid density fluid density at point of max. pressure fluid density at conditions of entry to contact
σ_1,σ_2	Poisson's ratio
au	tangential surface stress
$egin{array}{c} arphi \ arphi \ \psi \end{array}$	energy dissipation function stress function pressure angle
$egin{array}{c} arOmega \ \omega \ \end{array}$ ω_c	angular velocity of bearing inner race angular velocity of a bearing roller about its centre relative to rotating axes angular velocity of bearing roller centre
	about shart axis (cage speed)
$\stackrel{\cdot}{\psi}$ Ω	pressure angle angular velocity of bearing inner race angular velocity of a bearing roller about its centre relative to rotating axes