Electronics & Magnetism

Hertzberg, Joakim D. May 22, 2024

FYS01a: Physics 1a

This document has used LaTeX in combination with TikZ for type setting.

Contents

1	Fun	ndamental Quanitites
	1.1	Charge
	1.2	Potential Difference
	1.3	Flow
2	Cir	cuits & Quanitites
	2.1	Circuits in series
	2.2	Circuits in parallel
	2.3	Resistor Equivalence

1 Fundamental Quanitites

1.1 Charge

Charge is measured in Coulomb (C). In equations, it's often symbolised with q_n .

1.2 Potential Difference

Potential Difference (alterenatively Voltage) is the difference in the amount of energy that a charge carrier has between 2 points.

1.3 Flow

Flow (alterenatively Amperage), measured in A (Amperes), but in equations denoted as I is the amount of charge moving through a certain cross-section per unit of time.

$$I = C \ s^{-1}$$

2 Circuits & Quanitites

The structure of a circuit affects how the $\mathit{Voltage}$, $\mathit{Resistance}, \, \& \, \mathit{Amperage}$ behaves.

2.1 Circuits in series

For a circuit connected in series it is true that:

$$R = \sum_{k=1}^{n} R_n$$

$$I=I_1=I_2\cdots I_n$$

$$V = \sum_{k=1}^{n} V_n$$

2.2 Circuits in parallel

For a circuit connected in parallel it is true that:

$$\frac{1}{R} = \sum_{k=1}^{n} \frac{1}{R_n}$$

$$I = \sum_{k=1}^{n} I_n$$

$$V = V_1 = V_2 \cdots V_n$$

2.3 Resistor Equivalence

If there is a given circuit where the resistors are connected differently throughout the whole circuit, i.e. There may be two resistors connected in series, connected to a another one in parallel, the rules given in **2.1** and **2.2** may be used to find an equivalent resistor.

Here, one may find an equivalent resistor to R_1 and R_2 using $R = \sum_{k=0}^{n} R_n$. Let the equivalent resistor be R_{ϵ} :

