Correlación y Regresión Lineal

Abril 1 y 3, 2024

Prof. Sergio Béjar

Departamento de Estudios Políticos, CIDE

Objetivos Para Hoy

Usar correlación y regresión lineal para describir la relación entre dos variables.

Lo Que Hemos Construido

Todo lo que hemos estudiado hasta el momento nos sirve para construir una investigación cuantitativa "normal".

- Observamos la tendencia central y variación en nuestras variables.
- Hacemos inferencias sobre nuestras afirmaciones (i.e. hipótesis) de causa y efecto usando la lógica del muestreo aleatorio.

Si nuestro estadístico muestral es más que 1.96 errores estándar del parámetro poblacional, entonces tenemos mucha confianza (95%) rechazando el parámetro poblacional propuesto.

El Plan Para Hoy

Estudiaremos los siguientes temas.

- 1. Análisis Correlacional.
- 2. Análisis de Regresión.

Paquetes de R Que Usaremos

```
library(tidyverse) # para todo lo relacionado con nuestro workflow library(stevemisc) # para formatear algunas cosas
```

Base de Datos que Usaremos

La base de datos que usaremos esta disponible en la página Github de la clase. Se llama election.turnout.csv y contiene datos sobre el porcentaje de votantes que participaron (i.e. turnout) en la elección presidencial de Estados Unidos en 2016.

Correlación

Pregunta: ¿El porcentaje de votantes a nivel estatal varia como consecuencia del nivel de educación estatal?

- Education: % de personas en el estado con preparatoria. (Datos estimados para 2015)
- Turnout: % de participación ciudadana en elección presidencial del 2016.

Podemos hacer una conclusion preliminar usando un scatterplot.

• Pero primero vamos a ver un poco nuestros datos.

Analizamos Un Poco los Datos

Estados menos educados en EEUU

6 New Mexico

```
datos %>% select(state, perhsed) %>%
 top n(-5, perhsed) %>% arrange(perhsed)
##
          state perhsed
## 1 California
                  81.8
## 2
          Texas
                  81.9
                  82.3
## 3 Mississippi
## 4
      Louisiana 83.4
## 5
      Kentucky
                  84.2
```

84.2

Usando Otro Indicador de Educación...

Moraleja: Hay que tener cuidado con el indicador de educación que usamos. . .

```
datos %>% select(state, percoled) %>%
  top_n(-5, percoled) %>% arrange(percoled)
```

Los Estados Más Educados

```
datos %>% select(state, perhsed) %>%
top_n(5, perhsed) %>% arrange(-perhsed)
```

```
##
            state perhsed
          Montana
                     92.8
## 1
## 2
        Minnesota
                     92.4
                     92.3
## 3 New Hampshire
## 4
          Wyoming
                     92.3
## 5
           Alaska
                     92.1
```

De Nuevo, Universidad (College) es Diferente...

```
datos %>% select(state, percoled) %>%
top_n(5, percoled) %>% arrange(-percoled)
```

```
## state percoled
## 1 District of Columbia 54.6
## 2 Massachusetts 40.5
## 3 Colorado 38.1
## 4 Maryland 37.9
## 5 Connecticut 37.6
```

% de Participción (Turnout) en 2016...

```
datos %>% select(state, turnoutho) %>%
  top_n(5, turnoutho) %>% arrange(-turnoutho)
```

```
## state turnoutho
## 1 Minnesota 74.2
## 2 New Hampshire 71.4
## 3 Maine 70.5
## 4 Colorado 70.1
## 5 Wisconsin 69.4
```

Los Estados con Menor Participación (Turnout)

```
datos %>% select(state, turnoutho) %>%
 top n(-5, turnoutho) %>% arrange(turnoutho)
##
            state turnoutho
           Hawaii
                       42.2
## 1
## 2 West Virginia
                       50.1
                      51.2
## 3
        Tennessee
                      51.6
## 4
            Texas
## 5
         Oklahoma
                       52.4
```

Scatterplot de Nivel de Educación Estatal y Turnout en la Elección de 2016

% de Residentes de 25 años o más con al menos diploma de Prepa Datos: Elections Project, U.S. Census Bureau

Correlación

La relación entre educación y turnout es identificable facilmente: es positiva.

• La relación no es perfecta, pero se ve bastante "fuerte".

¿Qué tan fuerte? El coeficiente de correlación lineal de Pearson (r) nos lo dirá.

Coeficiente de Correlación lineal de Pearson, r

$$\sum \frac{\left(\frac{x_i - \overline{x}}{s_x}\right)\left(\frac{y_i - \overline{y}}{s_y}\right)}{n - 1}$$

...donde:

- x_i , y_i = observaciones individuales de x o y, respectivamente.
- \overline{x} , \overline{y} = medias muestrales de x y y, respectivamente.
- s_x , s_y = desviación estándar muestral de x y y, respectivamente.
- n = número de observaciones en la muestra.

Propiedades de la r de Pearson

- 1. Es simétrica.
- 2. Está contenida entre -1 y 1.
- 3. Es estandarizada.

Scatterplot de Nivel de Educación Estatal y Turnout en la Elección Presidencial del 2016

% Residentes de 25 años o más con al menos diploma de Preparatoria

Datos: Elections Project, U.S. Census Bureau.

Educación y Turnout (Z Scores)

- Casos en cuadrante superior-derecho están por encima de medias de x y y.
- Casos en cuadrante inferior-izquierdo están por debajo de la media de x y y.
- Cuandrante superior-izquierdo e inferior-derecho son cuadrantes de correlación negativa.

Dicho esto, el coeficiente de correlación lineal r es 26.41369/50, o .52.

 Podemos decir informalmente que hay una relación positiva fuerte entre las dos variables.

... Calculando en R

Nuestro Outlier, Hawaii...

```
datos %>%
  filter(state != "Hawaii") %>%
  summarize(cor = cor(perhsed, turnoutho))

## cor
## 1 0.6540847
```

Regresión Lineal

El coeficiente de correlación tiene algunas características interesantes.

- Es otra herramienta analítica que puede ser usada como "primer paso".
- Útil para detectar multicolinearidad.
 - Esto es cuando dos variables independientes están muy correlacionadas y es difícil detectar el efecto parcial de cada una (lo veremos más adelante).

Pero es neutral en lo que es x y lo que es y.

• Es decir, no nos dice nada sobre la causa-efecto.

La regresión nos ayuda con eso.

Demistificando la Regresión

¿Les parece familiar?

$$y = mx + b$$

Demistificando la Regresión

Es la ecuación de una línea recta con pendiente e intercepto.

- b es el intercepto: el valor observado de y cuando x = 0.
- *m* es la pendiente, mide el cambio que hay *y* por cada cambio unitario en *x*.

Demistificando la Regresión

La ecuación pendiente-intercepto es, en esencia, la representación de una regresión lineal.

• Los estadísticos o econometristas statisticians preferieren la siguiente notación

$$y = a + b(x)$$

La b es el **coeficiente de regresión** que indica el cambio en y por cada cambio de unidad en x.

Un Ejemplo Simple

Supongamos que quiero explicar tu calificación en un examen (y) usando el número de horas que estudiaste para dicho examen (x).

Calificación (y)
55
61
67
73
79
85
91
97

Tabla: Horas de estudio y calificación en examen.

Un Ejemplo Simple

En esta clase, el estudiante que estudió 0 hours sacó 55.

- El estudiante que estudió 1 hora obtuvo un 61.
- Quien estudió 2 obtuvo un 67.
- ...y así sucesivamente...

Cada hora de estudio adicional produce un cambio de seis unidades en la calificación. Lo podemos denotar así:

$$y = a + b(x) = \text{Calificación} = 55 + 6(x)$$

Nótese que el intercepto de y es en 55.

Un Ejemplo Menos Simple

En realidad los datos nunca son tan simples. Compliquemos un poco. . .

Horas (x)	Calificación (y)	Calificación Estimada (ŷ)
0	53	55
0	57	
1	59	61
1	63	
2	65	67
2	69	
3	71	73
3	75	
4	77	79
4	81	
5	83	85
5	87	
6	89	91
6	93	
7	95	97
7	99	

Un Ejemplo Menos Simple

Complicando un poco los datos no cambia la linea de regresión.

- Notemos que la regresión promedia sobre diferencias.
- Una hora de estudio adicional, *en promedio*, corresponde a un incremento de seis unidades en la calificación.
- Hemos visto nuestras observaciones (y) y nuestros estimados $(\hat{y}, \text{ o } y\text{-gorro})$.

Nuestra Línea de Regresión

La línea de regresión es:

$$\hat{y} = \hat{a} + \hat{b}(x) + e$$

...donde:

- \hat{y} , \hat{a} y \hat{b} son estimados de y, a, y b sobre los datos.
- e es el error.
 - El error contiene: error de muestreo aleatorio, y el error de predicción.

Obtención del Coeficiente de Regresión

¿Cómo se obtiene el coeficiente de regresión en datos más complejos?

- Empezamos con el **error de predicción**, formalmente: $y_i \hat{y}$.
- Los elevamos al cuadrado. Esto es: $(y_i \hat{y})^2$
 - La suma de los errores al cuadrado es igual a cero.

El coeficiente de regresión que resulta *minimiza* la suma de diferencias al cuadrado $((y_i - \hat{y})^2)$.

 En otras palabras: regresión de "mínimos cuadrados ordinarios" (OLS -Ordinary Least Squares).

El siguiente gráfico nos da una representación de esto usando el ejemplo de educación y turnout estatal.

Educación y Turnout en la Elección del 2016 (EEUU)

La línea que minimiza la suma de los errores al cuadrado se hace a través de esos puntos.

Error Estándar del Coeficiente de Regresión

Cada parámetro (o variable) en el modelo de regresión viene con un error estándar.

- Que estima con que precisión el modelo estima el valor desconocido del coeficiente(s).

El procedimiento para estimar los errores estándar no es tan sencillo.

- Necesitamos la diagonal de raíces cuadradas de la matriz de varianza-covarianza.
- Y para ello requerimos álgebra matricial, que sale de nuestros objetivos en esta clase.

En R lo podemos obtener con facilidad.

Paquete 1m en R

```
summary(M1 <- lm(turnoutho ~ perhsed, data=datos))</pre>
##
## Call:
## lm(formula = turnoutho ~ perhsed, data = datos)
##
## Residuals:
              10 Median 30
##
      Min
                                    Max
## -21.529 -3.510 1.176 3.676 8.994
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -32.3027 21.3948 -1.510
                                           0.138
## perhsed 1.0553 0.2423 4.355 6.77e-05 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.247 on 49 degrees of freedom
## Multiple R-squared: 0.2791, Adjusted R-squared: 0.2644
## F-statistic: 18.97 on 1 and 49 DF, p-value: 6.765e-05
```

Lo que Vemos con summary

Lo más importante:

- "Estimaciones": intercepto de y, y coeficientes de regresión.
- Errores Estándar: un estimado de la variabilidad alrededor del coeficiente estimado.
- Pruebas estadísticas (estadístico t, valor de p): los usaremos para hacer inferencias.
- R^2 s: mide que tan bien nuestro modelo se ajusta a los datos.

Otros estadísticos (menos importantes):

- Estadístico *F*: "significancia total" del modelo.
- Error estándar residual: error estándar de los residuos.
 - Usado para calcular los errores estándar junto a la matriz varianza-covarianza.
- Distribución de los residuales: nos da un resúmen del rango de los residuales.

También en R pero con Fórmulas

```
X <- model.matrix(M1) # Intercepto + perhsed</pre>
# Suma de cuadrado residuales
sigma2 <- sum((datos$turnoutho - fitted(M1))^2) / (nrow(X) - ncol(X))</pre>
sqrt(sigma2) # error estándar residual
## [1] 5.246687
sqrt(diag(solve(crossprod(X))) * sigma2)
## (Intercept) perhsed
     21.394761
                  0.242304
##
```

Educación y Turnout en la Elección del 2016 (EEUU)

La línea que minimiza la la suma de los errores al cuadrado se hace a través de esos puntos.

Regresión: Educación y Turnout

Esta sería nuestra línea de regresión:

$$\hat{y} = -32.30 + 1.05(x)$$

Interpretamos esto de la siguiente forma:

- Para el estado en donde nadie se gradúa de preparatoria, el turnout será de -32.30%.
 - Un poco extraño el resultado, pero es porque no centramos las variables. . .
- Por cada incremento unitario en el porcentaje de personas que se gradúan de prepa, el turnout se incrementará en apoximadamente 1.05%.

¿Qué podemos decir sobre b-gorro ($\hat{b}=1.05$?)

- Si usamos una muestra diferente, ¿observaríamos algo muy diferente?
- ¿Cómo lo podemos saber?

Esto lo hemos visto antes. ¿Se acuerdan de los valores Z?

$$Z = \frac{\overline{x} - \mu}{s.e.}$$

Hacemos lo mismo, pero usando una distribución t Student.

$$t = \frac{\hat{b} - \beta}{s.e.}$$

 \hat{b} es el coeficiente de regresión. ¿Qué es β ?

β es **cero**.

- Estamos probando si el coeficiente de regresión es un artefacto del proceso de muestreo.
- Estamos probando que hay (o no) relación entre x y y.

Esto simplifica las cosas.

$$t=\frac{\hat{b}}{s.\epsilon}$$

En el ejemplo de educación y turnout, es lo siguiente.

$$t = \frac{1.05}{.24} = 4.35$$

El coeficiente de regresión está a más de cuatro errores estándar de cero.

- La probabilidad de observarlo si β fuera realmente cero es de .000067.
- Por lo tanto, inferimos que nuestro coeficiente es estadísticamente signiificativo con 95% de confianza.

Conclusión

- El coeficiente de correlación no ayuda a saber si existe relación entre dos variables. Pero hay otras herramientas para hacer una inferencia más adecuada.
- Una de esas herramientas en la regresión lineal simple, a la que regresaremos la próxima semana.

Table of Contents

Introducción

Correlación

Regresión Lineal

Demistificando la Regresión Un Ejemplo Simple Obtención del Coeficiente de Regresión

Inferencia en Regresión

Conclusión

Conclusión