Konstruksjon av høydimensjonale nevralt nettverk-potensialer for molekylærdynamikk

John-Anders Stende

Fysisk institutt Universitetet i Oslo

Masterpresentasjon, oktober 2017

Molekylærdynamikk

Nevrale nettverk

Nevralt nettverk-potensial

NNP for Si

Konklusjon og fremtidig arbeid

Table of Contents

Molekylærdynamikk

Nevrale nettverk

Nevralt nettverk-potensial

NNP for S

Konklusjon og fremtidig arbeid

Hva er molekylærdynamikk?

- Numerisk metode for å simulere atomers og molekylers bevegelser i gasser, væsker og faste stoffer.
- Virtuelt eksperiment.

Dynamikk

- ▶ Partiklenes interaksjoner styrer dynamikken.
- ▶ Interaksjonene bestemmes av et kraftfelt **F**:

$$\mathbf{F} = -\nabla V(\mathbf{r})$$

Potensiell energiflate / potensial):

$$V(\mathbf{r}), \quad \mathbf{r} = (\mathbf{r}_1, \mathbf{r}_2, \cdots, \mathbf{r}_N)$$

V(r) inneholder fysikken.

Ab inito molekylærdynamikk Løse Schrödinger-likningen ved hvert tidssteg. Klassisk molekylærdynamikk Bruke en predefinert analytisk funksjon.

Klassisk potensial

$$V(\mathbf{r}) \approx \sum_{i}^{N} V_1(\mathbf{r}_i) + \sum_{i,j}^{N} V_2(\mathbf{r}_i, \mathbf{r}_j) + \sum_{i,j,k}^{N} V_3(\mathbf{r}_i, \mathbf{r}_j, \mathbf{r}_k) + \dots$$

- 1. Hvor mange ledd bør tas med?
- 2. Hvordan bør leddene se ut?

Eksperiementer / kvantemekanikk

Empirisk potensial:

- 1. Starte med en funksjonsform med noen parametre.
- 2. Bestemme parametre fra eksperimentelle data.

Kvantemekanisk potensial:

- 1. Produsere kvantemekaniske data.
- 2. Tilpasse en generell funksjonsform til datasettet.
- ► Fordeler: Ab inito nøyaktighet, ingen bias, overførbart.
- Ulemper: Rent matematisk uttrykk, all relevant data må inkluderes.

Interpolere datasett

- Spliner
- Minste kvadraters metode
- Kunstige nevrale nettverk

Table of Contents

Molekylærdynamikk

Nevrale nettverk

Nevralt nettverk-potensial

NNP for S

Konklusjon og fremtidig arbeid

Kunstige nevrale nettverk

- Maskinlæringsalgortime.
- ► Etterlikner biologiske nevrale nettverk.
- Kunstige nevroner sender signaler i form av matematiske funksjoner.

$$y = f\left(\sum_{i=1}^{n} w_i x_i + b_i\right) = f(u)$$

- ▶ x_i: Inputsignaler.
- w_i: Vekter forsterkning/forminksning.
- ▶ *u*: Sum signalmiksing i soma.
- \blacktriangleright f(u): Akteriveringsfunksjon aksjonspotensial.

Fully-connected feed-forward nettverk.

- ▶ Hvert nevron i et lag er koblet til alle nevroner i neste lag.
- ▶ Informasjon propagares kun fremover fra input til output.

Detaljert beskrivelse

- ► Hver forbindelse/pil har en vekt w.
- ▶ Hver node har en bias b.
- ▶ Inneholder 25 parametre { w, b}

Analytisk uttrykk

$$y_1^3 = f_3 \left[\sum_{j=1}^3 w_{1j}^3 f_2 \left(\sum_{k=1}^3 w_{jk}^2 f_1 \left(\sum_{m=1}^2 w_{km}^1 x_m + b_k^1 \right) + b_j^2 \right) + b_1^3 \right]$$

= $f_3(x_1, x_2)$

- ▶ Mapping: $(x_1, x_2) \in \mathbb{R}^2 \to y_1^3 \in \mathbb{R}$.
- Ved å justere de 25 parameterne får uttrykket stor fleksibilitet.
- Dimensjonene til nettet (inputs og outputs) må stemme overens med funksjonen som skal tilpasses.
- ► Et nettverk med ett skjult lag kan approksimere enhver kontinuerlig funksjon.

Regresjon med nevralt nettverk

- ▶ Mål: Interpolere datasett av konfigurasjoner X og energier Y slik at $NN: X \in \mathbb{R}^n \to Y \in \mathbb{R}$.
- ▶ Referansenergiene *Y* regnes ut kvantemekanisk.
- ► Trening: Iterativt justere parameterne slik at nettets output matcher referanseenergiene.
- Én enkelt konfigurasjon kalles et treningseksempel.

Feilen til nettet defineres ved en cost-funksjon:

Gjennomsnittlig kvadratisk feil:

$$\Gamma = \frac{1}{2N} \sum_{i=1}^{N} (Y_i - y_i)^2$$

Cost-funksjonen minimieres med gradient descent:

$$\theta_{k+1} = \theta_k - \gamma \nabla_{\theta_k} \Gamma(\theta)$$

- \triangleright θ_k : Vektor av parametre ved iterasjon k.
- $\triangleright \gamma$: Steglengde/læringsrate.

Hvordan finne gradienten av et nevralt nettverk?

$$y_1^3 = f_3 \left[\sum_{j=1}^3 w_{1j}^3 f_2 \left(\sum_{k=1}^3 w_{jk}^2 f_1 \left(\sum_{m=1}^2 w_{km}^1 x_m + b_k^1 \right) + b_j^2 \right) + b_1^3 \right]$$

Backpropagation

- Verdien av cost-funksjonen (feilen) propagares bakover fra output til input.
- ► Alle deriverte innhentes ved å propagere feilen én gang.
- En anvendelse av kjerneregelen.

Table of Contents

Molekylærdynamikk

Nevrale nettverk

Nevralt nettverk-potensial

NNP for S

Konklusjon og fremtidig arbeid

Hvor mange nettverk?

- ▶ Ett nettverk: Uhåndterlig størrelse.
- Atomære nettverk,

$$E = \sum_{i=1}^{N} E_i$$

▶ Behler-Parrinello: Hver atomenergi E_i avhenger kun av naboatomer innenfor en cutoff-radius r_c .

Høydimensjonalt potensial - utfordringer

- 1. Varierende antall naboer.
- 2. Translasjonell og rotasjonell invarians.
- 3. Rekkefølgen på naboer.

Behler-Parrinello-metoden: Symmetrifunksjoner

- Et sett av såkalte symmetrifunksjoner transformerer de kartesiske koordinatene til alle naboer til en vektor av symmetriverdier.
- 2. Symmetrifunksjonene er atomsentrerte.
- 3. Symmetrifunksjonene er definert som summer over naboer.

Behler-Parrinello eksempel

- Symmetrifunksjone beskriver hvert atoms kjemiske omgivelser.
- Hvert atom har både et eget nettverk og et eget sett av symmetrifunksjoner.
- ► Alle atomer av samme kjemiske element har identiske nettverk og symmetrifunksjonssett.

Cutoff-funksjon

Monotonisk minkende del av en cosinus-funksjon.

$$f_c(r_{ij}) = \begin{cases} 0.5[\cos(\pi r_{ij}/r_c) + 1], & r_{ij} \leq r_c \\ 0, & r_{ij} > r_c \end{cases}$$

Radiell symmetrifunksjon

$$G_i^{\mathrm{rad}} = \sum_{j=1}^{N} \exp[-\eta (r_{ij} - r_s)^2] f_c(r_{ij})$$

Angulær symmetrifunksjon

$$G_i^{
m ang} = 2^{1-\zeta} \sum_{j \neq i} \sum_{k>j} \left[(1+\lambda \cos heta_{jik})^{\zeta} \, \exp[-\eta (r_{ij}^2 + r_{ik}^2)] \, f_c(r_{ij}) f_c(r_{ik}) \right]$$

Krefter for et grunnstoff

$$F_{i,x} = -\frac{\partial E}{\partial x_i} = -\sum_{j=1}^{N_i+1} \frac{\partial E_j}{\partial x_i} = -\sum_{j=1}^{N_i+1} \sum_{s=1}^{M} \frac{\partial E_j}{\partial G_s} \frac{\partial G_s}{\partial x_i}$$

 $E_i = \text{NN}[\mathbf{G}(\mathbf{r}_{ik})]$

 $\mathbf{F}_i = -\nabla_i \mathbf{E}$

Table of Contents

Molekylærdynamikk

Nevrale nettverk

Nevralt nettverk-potensial

NNP for Si

Konklusjon og fremtidig arbeid

Simuleringspakker

LAMMPS

- Pakke for klassisk molekylærdynamikk utviklet ved Sandia National Laboratories.
- Kjøres ved inputscripts med egen syntaks.
- Vi har utvidet med samplingsalgoritme og nevralt nettverk-potensial.

TensorFlow

- Maskinlæringspakke utviklet av Google.
- ▶ Vi har brukt TensorFlow Python API til å utvikle en modell for regresjon med nevrale nettverk.

Konstruksjon av et nevralt nettverk-potensial (NNP)

- 1. Generere treningsdata som er relevant for applikasjonen av NNP.
- 2. Trene et nevralt nettverk for å tilpasse en funksjon til dataene.
- 3. Bruke det trente nettverket som et analytisk potensial i molekylærdynamikksimuleringer.

Initiell sampling

- ▶ Stillinger-Weber.
- ▶ $T \in [0,500]$ K.
- ► Konfigurasjoner og energies samples med samplingsalgoritme.

Ekstrapolasjon

Lagre max og min for hver symmetryfunksjon.

Interpolasjon - multiple-NN-metoden

Gridsøk

Layers	Nodes	RMSE	Epoch	Time
L=1	4	4.445	37035	575
	8	2.250	37305	570
	12	2.303	37980	622
	16	2.201	39780	630
	20	1.860	36180	617
	24	1.928	37305	621
	28	2.407	39375	697
	32	2.214	38700	672
L = 2	4	2.947	39960	750
	8	1.933	36180	671
	12	1.450	37350	766
	16	1.791	32265	633
	20	1.492	24840	546
	24	2.118	37620	819
	28	1.455	37350	895
	32	2.008	14895	344

Tilpasse endelig treningssett

Velger nettet med lavest RMSE etter 40000 epoker. RMSE: 0.864 meV.

RMSE krefter

RMSE: 41.2 meV

Radiell distribusjonsfunksjon g(r)

Sammenlikner tidsmidlet SW og NN.

Mekaniske egenskaper

	NNP	Analytic SW	Relative error
Bulk modulus	103.0	101.4	1.58 %
Shear modulus	53.6	56.4	5.22 %
Poisson ratio	0.348	0.335	3.88 %

Table of Contents

Molekylærdynamikk

Nevrale nettverk

Nevralt nettverk-potensial

NNP for S

Konklusjon og fremtidig arbeid

Det ideelle potensial

- Potensialet bør være nøyaktig.
- Burde finnes måter å systematisk forbedre potensialet.
- Potensialet bør være generelt og anvendbart på alle typer systemer.
- Potensialet b
 ør kunne modellere faseoverganger.
- Potensialet bør være høydimensjonalt, dvs. avhenge av alle frihetsgrader.

Det ideelle potensial fortsetter

- Konstruksjonen av potensialet bør være så automatisert som mulig.
- Potensialet bør være prediktivt.
- Potensialet bør være raskt å evaluere.
- Konstruksjonen bør ikke ta for mye tid.
- Analytisk derivert bør være tilgjengelig.

Fremtidig arbeid

- ► Ab inito data.
- Mer nøyaktige krefter.
- Andre systemer.
- Optimering.