Assignment Project Exam Help COMP9020 Foundations of Computer Science UNSWITTES://tutorcs.com

Outline

Assignment Project Exam Help

Variations on Basic Induction https://tutorcs.com

Assignment Project Exam Help

https://tutores.com

Assignment Project Exam Help

Recursive functions

https://tuitofrchse.com/a finite way

Induction

Reason about these objects in a finite way

Example

Recall the recursive program:

Example

Assignment Project Exam Help

$$if(n = 0): 0$$

https://tutorcs..com

Another attempt:

ExamWeChat: cstutorcs

sum2(n):return n*(n+1)/2

Induction proof **guarantees** that these programs will behave the same.

Inductive Reasoning

Suppose we would like to reach a conclusion of the form

Assignment Profesome type x ams Help examples.

E.g. From "This swan is white, that swan is white, in fact every swan httesses so fatishts "CS.COM"

Conclude: "Every Swan is white"

NB

This hav be good par to disore in proteess But it is not a valid principle of reasoning!

Mathematical induction is a variant that is valid.

Mathematical Induction

Mathematical Induction is based not just on a set of examples, but also a rule for deriving new cases of P(x) from cases for which P(x) is P(x) General structure of reasoning by mathematical induction:

Base Case [B]: $P(ay), P(a_2), \ldots, P(a_n)$ for some small set of example I_1 D S_n (of the LLD) I CS COM Inductive Step [I]: A general rule showing that if P(x) holds for some cases $x = x_1, \ldots, x_k$ then P(y) holds for some new case y, constructed in Some way from x_1, \dots, x_k then x_n

Conclusion: Starting with $a_1 \dots a_n$ and repeatedly applying the construction of y from existing values, we can eventually construct all values in the domain of interest.

7

Induction proof structure

Let P(x) be the proposition that ...

We will show that P(x) holds for all x by induction on x.

Base case: x = ...:

Assignment Project Exam Help

• so P(x) holds.

[Repented 1985] Attatores.com

Inductive case:

- Assume P(x) holds. That is,
 We will show A thold CSTUTORS
- So P(x) implies P(y).

[Repeat for all inductive cases]

Therefore, by induction, P(x) holds for all x.

Assignment Project Exam Help

https://tutorcs.com

Basic induction

Assignment en Project pli Extanura Help numbers.

Goal, Show P(n) holds for all $n \in \mathbb{N}$. TUTORS.COM

Approach: Show that:

Base case (B): P(0) holds; and

Inducive ech aft P(k Cycletin Okes) holds.

Example

Recall the recursive program:

Example

Assignment Project Exam Help

$$if(n = 0): 0$$

https://tutorcs..com

Another attempt:

ExamWeChat: cstutorcs

sum2(n): return n*(n+1)/2

Induction proof **guarantees** that these programs will behave the same.

Example

Let P(n) be the proposition that:

Assignment P(n):
$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}.$$
We wan show that $P(n)$ holds for all $n \in \mathbb{N}$ by induction on n .

Proof.

Thttps://tutorcs.com $\sum_{i=\frac{0(0+1)}{2}}^{[B]} f$

$$\sum_{i=0}^{n} i = \frac{0(0+1)}{2}$$

[I] VkWeChat: 1Cstutorcs

$$\sum_{i=0}^{k} i = \frac{k(k+1)}{2} \rightarrow \sum_{i=0}^{k+1} i = \frac{(k+1)(k+2)}{2}$$

(proof?)

Example (cont'd)

Proof.

Inductive step [I]:

ssignment Project Exam Help

$$=\frac{(k+1)(k+2)}{2}$$

Outline

Assignment Project Exam Help

Variations on Basic Induction https://tutorcs.com

Variations

Assignment Project Exam Help

- 2 Induction steps > 1
- High induction tutores.com
- Forward-backward induction
- 6 Startus Conduction: Cstutores

Assignment Project Exam Help

```
If [B] P(m) [I] https://tuttores.com [C] \forall n \geq m(P(n))
```

Example

Assignment Project Exam Help Theorem. For all $n \ge 1$, the number $8^n - 2^n$ is divisible by 6.

```
[B] h_{\rm rel}^{81} is divisible by 6 r.C.S. sC h_{\rm rel}^{12} is divisible by 6 r.C.S. h_{\rm rel}^{12} is di
```

Prove [I] using the "trick" to rewrite 8^{k+1} as $8 \cdot (8^k - 2^k + 2^k)$ which allows you to apply the littor $8^k - 2^k$

Assignment Project Exam Help

```
If [B] P(m) [I] https://tuteores.com [C] P(n) for every \ell'th n \ge m
```

Example

Assignment Project Exam Help Every 4th Fibonacci number is divisible by 3.

[B] $F_4 = 3$ is divisible by 3 [I] \mathbf{D} Sthen \mathbf{U} \mathbf{D} \mathbf{G} \mathbf{S} \mathbf{COM}

Prove [I] by rewriting F_{k+4} in such a way that you can apply the IH on F_k CSTUTORCS

Strong Induction

A STais is a person which the inductive hypothesis is an engaged point R(k) holds for a single value, we use all values up to k.

```
https://tutorcs.com

[B] P(m)

[I] [P(m) \land P(m+1) \land ... \land P(k)] \rightarrow P(k+1) for all k \ge m then VeChat: cstutorcs

[C] P(n), for all n \ge m
```

Assignment Project Exam Help

[B] h $\frac{2}{k}$ is a product of primes constant $\frac{1}{2}$ with $\frac{1}{2}$ with $\frac{1}{2}$ written as a product of primes, then k+1 can be written as a product of primes, for all $k \geq 2$

Prowe Chat: cstutorcs

Negative Integers, Backward Induction

NB

Induction can be conducted over any subset of \mathbb{Z} with least element. Thus m can be pegative, eg. base case $m=-10^6$ Help NB

One can apply induction in the 'opposite' direction p(m) p(m). It means considering the integers with the opposite ordering where the next number after n is n-1. Such induction would be used to prove some p(n) for all $n \le m$.

NB WeChat: cstutorcs

Sometimes one needs to reason about all integers \mathbb{Z} . This requires two separate simple induction proofs: one for \mathbb{N} , another for $-\mathbb{N}$. They both would start form some initial values, which could be the same, e.g. zero. Then the first proof would proceed through positive integers; the second proof through negative integers.

Forward-Backward Induction

Idea

Assignment Project Exam Help

- prove $P(k_i)$ for infinitely many $k_0 < k_1 < k_2 < k_3 < \dots$
- $h_{k_1}^{\mu}$ $h_{k_2}^{\mu}$ $h_{k_1}^{\mu}$ $h_{k_1}^{\mu}$ $h_{k_2}^{\mu}$ $h_{k_1}^{\mu}$ $h_{k_1}^{\mu}$ $h_{k_1}^{\mu}$ $h_{k_2}^{\mu}$ $h_{k_1}^{\mu}$ $h_{k_1}^{\mu}$ $h_{k_2}^{\mu}$ $h_{k_1}^{\mu}$ $h_{k_1}^{\mu}$

WeChat: cstutorcs

NB

This form of induction is extremely important for the analysis of algorithms.

Outline

Assignment Project Exam Help

https://tutorcs.com

Structural Induction

Basic induction allows us to assert properties over **all natural numbers**. The induction scheme (layout) uses the recursive

Assignment Project Exam Help

The induction schemes can be applied not only to natural numbers (and integers) but to any partially ordered set in general – especially those defined recursively.

nups://tutorcs.com

The basic approach is always the same — we need to verify that

- [B] the property holds for all minimal objects objects that have no predesessors; they are usually very simple objects allowing immediate verification
- [I] for any given object, if the property in question holds for all its predecessors ('smaller' objects) then it holds for the object itself

```
Assignment Project Exam Help If w \in \Sigma^* then aw \in \Sigma^* for all a \in \Sigma
```

Structural induction of Σ . / Tutores. com Goal: Show P(w) holds for all $w \in \Sigma^*$.

Approach: Show that:

Base We A told Castutores

Inductive case (I): If P(w) holds then P(aw) holds for all $a \in \Sigma$.

Recall:

Formal definition of Σ^* :

Assignment Project Exam Help

Formal definition of concatenation:

Formal definition of length:

```
(length.l) length(aw) = 1 + length(w)
```

Prove:

```
length(wv) = length(w) + length(v)
```

Let P(w) be the proposition that, for all $v \in \Sigma^*$:

Assignment Project Exam Help

We will show that P(w) holds for all $w \in \Sigma^*$ by **structural** induction on w. //tutorcs.com

Base case ($w = \lambda$):

= length(w) + length(v) (length.B)

Proof cont'd:

Inductive case (w = aw'**):** Assume that P(w') holds. That is, for all $v \in \Sigma^*$:

Assignment Project Exam Help

So P(aw') holds.

We have $P(\lambda)$ and for all $w' \in \Sigma^*$ and $a \in \Sigma$: $P(w') \to P(aw')$. Hence P(w) holds for all $w \in \Sigma^*$.

Assignment Project Exam Help

• append(aw, x) = a (append(w, x))

Provattps://tutorcs.com For all $w, v \in \Sigma^*$ and $x \in \Sigma$:

We Chart CSHIO(CS)

Assignment Project Exam Help For all $w, v \in \Sigma^*$ and $x \in \Sigma$: append(wv, x) = w(append(v, x)).

```
Proof By induction of W. LOTACS (COM [B] Append(W, x) = append(a(wv), x) (concat.B)
= a \text{ append}(wv, x) \text{ (append.I)}
= a \text{ append}(wv, x) \text{ (append.I)}
= a \text{ append}(v, x) \text{ (IH)}
= (aw) \text{ append}(v, x) \text{ (concat.I)}
```

Assignment Project Exam Help

```
Define rev : \Sigma^* \to \Sigma^*:

tttps(x) \neq tutores.com (rev.1) rev(a \cdot w) = append(reverse(w), a)
```

Assignments Project Exam Help

```
Proof: By induction on w...

[B] rev(\lambda v) = rev(v) (concat.B)

https://teltorcs.com

= rev(v)rev(\lambda) (concat.I)

(rev.B)

[I] rev((aw')) = rev(a(w'v)) (concat.I)

= rev(a(w'v)) = rev(a(w'v)) (rev.I)

= rev(v)rev(w'), a) (IH)

= rev(v)append(rev(w'), a) (Example 2)

= rev(v)rev(aw') (rev.I)
```

Example 4: Induction on more complex structures

Recall expressions in the Proof assistant:

- Assignment expression then so is (E) and E^c

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, b, ... z are expressions

 (B) A, B, ..., Z, a, ... z are expressions

 (B) A, B, ..., Z, a, ... z are expressions

 (B) A, B, ..., Z, a, ... z are expressions

 (B) A, B, ..., Z, a, ... z are expressions

 (B) A, B, ..., Z, a, ... z are expressions

 (B) A, B, ..., Z, a, ... z are expressio

 - (R) If E_1 and E_2 are expressions then:

https://tutorcs.com

- $(E_1 \setminus E_2)$, and
- $(E_1 \oplus E_2)$ are expressions.

WeChat: cstutorcs

In any valid expression, the number of (equals the number of)

Proof: By induction on the structure of E...

Exercise

As strictise ment Project Exam Help

Then $s_1 = 1$, $s_2 = \frac{1}{2}$, $s_3 = \frac{2}{3}$, $s_4 = \frac{3}{5}$, $s_5 = \frac{5}{8}$, ...

The numbers in numerator and denominator remind one of the Fibonald Least vector tutorcs.com

Prove by induction that

Outline

Assignment Project Exam Help

https://tutores.com

Assing the metal Project Exam Help

