Universal function approximator

A Neural Network is a Universal Function Approximator.

This means that an NN that is sufficiently

- wide (large number of neurons per layer)
- and deep (many layers; deeper means the network can be narrower)

can approximate (to arbitrary degree) the function represented by the training set.

Recall that the training data $\langle \mathbf{X}, \mathbf{y} \rangle = [(\mathbf{x^{(i)}}, \mathbf{y^{(i)}}) | 1 \le i \le m]$ is a sequence of input/target pairs.

This may look like a strange way to define a function

- but it is indeed a mapping from the domain of \mathbf{x} (i.e., \mathcal{R}^n) to the domain of \mathbf{y} (i.e., \mathcal{R})
- subject to $\mathbf{y}^i = \mathbf{y}^{i'}$ if $\mathbf{x}^i = \mathbf{x}^{i'}$ (i.e., mapping is unique).

We give an intuitive proof for a one-dimensional function

all vectors x, y, W, b are length 1.

For simplicity, let's assume that the training set is presented in order of increasing value of \mathbf{x} , i.e.

$$\mathbf{x}^{(0)} < \mathbf{x}^{(1)} < \dots \mathbf{x}^{(m)}$$

Consider a single neuron with a ReLU activation, computing $max(0, \mathbf{W}\mathbf{x} + \mathbf{b})$

Let's plot the output of this neuron, for varying W, b.

The slope of the neuron's activation is W and the intercept is b.

By making slope \mathbf{W} extremely large, we can approach a vertical line.

In [4]: $= \text{nnh.plot_steps}([\text{nnh.NN}(1,0), \text{nnh.NN}(10,0), \text{nnh.NN}(100,0), \text{nnh.NN}(1000,0),$

And by varying feature axis.	the intercept (bias) we can shift this vertical line to any point on

In [14]: $= \text{nnh.plot_steps}([\text{nnh.NN}(1,0), \text{nnh.NN}(1,10), \text{nnh.NN}(1,20), \text{nnh.NN}(1,30),])$

With a little effort, we can construct a neuron

- With near infinite slope
- Rising from the x-axis at any offset.

```
In [38]: slope = 1000
start_offset = 0
start_step = nnh.NN(slope, -start_offset)
    _= nnh.plot_steps( [ start_step ] )
```



```
In [39]: end_offset = start_offset + .0001
end_step = nnh.NN(slope, - end_offset)
```

and add the two neurons together, we can approximate a step functiion

- unit height
- 0 output at inputs less than the x-intercept
- unit output for all inputs greater than the intercept).

(The sigmoid function is even more easily transformed into a step function).

Let us construct *m* step neurons

• step neuron i with intercept $\mathbf{x^{(i)}}$, for $1 \le i \le m$

If we connect the m step neurons to a "final" neuron with 0 bias, linear activation, and weights

$$\mathbf{W}_{1} = \mathbf{y}^{(1)}$$

$$\mathbf{W}_{i} = \mathbf{y}^{(i)} - \sum_{i'=1}^{i-1} \mathbf{W}_{i'}$$

We claim that the output of this neuron approximates the training set.

To see this:

- Consider what happens when we input $\mathbf{x}^{(i)}$ to this network.
- The only step neurons that are active (non-zero) are those corresponding to inputs $1 \le i' \le i$.
- The output of the final neuron is the sum of the outputs of the first *i* step neurons.
- By construction, this sum is equal to $\mathbf{y^{(i)}}$.

Thus, our two layer network outputs $\mathbf{y^{(i)}}$ given input $\mathbf{x^{(i)}}$.

Financial analogy: if we have call options with completely flexible strikes and same expiry, we can mimic an arbitrary payoff in a similar manner.

```
In [7]: print("Done")
```

Done