Where the patterns are: repetition-aware compression for colored de Bruijn Graphs

Alessio Campanelli¹, Giulio Ermanno Pibiri¹, Jason Fan², Rob Patro²

¹Ca' Foscari University of Venice

²University of Maryland

19th Workshop on Compression, Text, and Algorithms (WCTA 2024)

Puerto Vallarta, Jalisco, México - September 26th, 2024

The colored k-mer indexing problem

- We are given a collection $\mathcal{R} = \{R_1, \ldots, R_N\}$ of reference sequences. Each R_i is a (long) sequence over the DNA alphabet $\{A, C, G, T\}$
- Problem. We want to build an index for \mathcal{R} so that we can retrieve ColorSet $(x) = \{i \mid x \in R_i\}$ for any k-mer x
- A k-mer is a string of length k

The colored k-mer indexing problem

- We are given a collection $\mathcal{R}=\{R_1,\ldots,R_N\}$ of reference sequences. Each R_i is a (long) sequence over the DNA alphabet $\{A,C,G,T\}$
- Problem. We want to build an index for \mathcal{R} so that we can retrieve $ColorSet(x) = \{i \mid x \in R_i\}$ for any k-mer x
- A k-mer is a string of length k

- A lot of hype in the indexing community for the case where \mathscr{R} is a **pangenome**: a collection of related genomes
- Relevant for applications where sequences are first matched against known references.

- Goal. We want to build the map $x \to \text{ColorSet}(x) = \{i \mid x \in R_i\}$
- Two data structures:

- Goal. We want to build the map $x \to \text{ColorSet}(x) = \{i \mid x \in R_i\}$
- Two data structures:
 - 1. A **dictionary** \mathscr{D} that stores all distinct k-mers in $\mathscr{R} = \{R_1, \ldots, R_N\}$. \mathscr{D} stores n distinct k-mers and supports Lookup $(x) = h \in [1,n]$

- Goal. We want to build the map $x \to \text{ColorSet}(x) = \{i \mid x \in R_i\}$
- Two data structures:
 - 1. A **dictionary** \mathscr{D} that stores all distinct k-mers in $\mathscr{R} = \{R_1, \ldots, R_N\}$. \mathscr{D} stores n distinct k-mers and supports Lookup $(x) = h \in [1,n]$
 - 2. An **inverted index** \mathscr{L} that stores all $\{\operatorname{ColorSet}(x)\}_x$ in the order given by $\operatorname{Lookup}(x)$.

- The initial problem reduces to that of representing the two data structures ${\mathscr D}$ and ${\mathscr L}$.
- To do so at best, we must understand and exploit the properties of our problem

k-mers

Since we take all consecutive k-mers from our references, they share (k-1)-symbol overlaps

```
ACGGTAGAACCGATTCAAATTCGACGTAGC...

ACGGTAGAACCGAT

GGTAGAACCGATT

GTAGAACCGATTC

k=13

TAGAACCGATTCAA

AGAACCGATTCAA

GAACCGATTCAA

...
```

- Two important consequences:
 - 1. It is very likely that, given a k-mer x in a query sentence Q, and its answer returned from the index, next(x) has a very similar answer (compression of satellite data)
 - 2. Given the answer to x, the answer to next(x) can be computed faster than the answer for any arbitrary k-mer $y \neq next(x)$ (faster query time)

de Bruijn Graphs

- The dictionary \mathscr{D} is a set of k-mers with (k-1)-symbol overlaps
- One-to-one correspondence between \mathscr{D} and a de Bruijn Graph (dBG)

Example for k = 3

Colored de Bruijn Graphs

- Colored de Bruijn Graphs store the information of the references (colors) in which each k-mer appears
- References in ${\mathscr R}$ are spelled by **paths** in the graph

Colored de Bruijn Graphs

- Colored de Bruijn Graphs store the information of the references (colors) in which each k-mer appears
- References in ${\mathscr R}$ are spelled by **paths** in the graph

Colored compacted de Bruijn Graphs

• Paths having the same color along non branching paths can be collapsed into unitigs

Example for k = 3 and N = 6 references

Colored compacted de Bruijn Graphs

 Let's now consider the properties of colored compacted dBGs (c-dBG) and how they can be exploited for efficient indexing.

- This example will be used in the following discussion
- Nodes with the same color have equal color sets

Larger example for k=3 and N=16 references

Properties of c-dBGs (1)

Unitigs spell references in ${\mathscr R}$

- We can represent the set of unitigs instead of the set of *k*-mers.
- Better space effectiveness and cache locality

- is represented with SSHash [Pibiri, 2022]
- SSHash stores a set of unitigs in any wanted order (order-preserving)

Properties of c-dBGs (2)

Unitigs are monochromatic

- We store a color set for each unitig, rather than for each k-mer because ColorSet(x) = ColorSet(y) if k-mers x and y ar part of the same unitig
- Thus, we need an efficient map from k-mers to unitigs

```
ACCG
CGCTCG
CGAACG
CGTCCG
CGGAT
ATTAT
GAGTT
ATGGA
GACA
```

```
\mathcal{L}
C_1 = [3,4,5,9,10,11,13,15]
C_2 = [2,3,15]
C_3 = [1,3,5,7,9,10,11]
C_4 = [1,3,5,7,9,11,13]
C_5 = [1,3,6,7,9,11,12,13,14,16]
C_6 = [6,8]
C_7 = [1,3,8,11,12,13,14,16]
C_8 = [12,16]
```

- is represented with SSHash [Pibiri, 2022]
- SSHash stores a set of unitigs in any wanted order, so it is easy to compute the unitig identifier unitig(x) of any given k-mer x
- The inverted index \mathcal{L} stores ColorSet(x) for each unitig in the order given by unitig(x)

Properties of c-dBGs (3)

Unitigs co-occur

- Distinct unitigs often have the same color set, i.e. they co-occur in the same subset of references → there are way less distinct color sets than unitigs
- We need an efficient map from unitigs to color sets

- SSHash stores a set of unitigs in any wanted order, so we can permute unitigs in \mathscr{D} so that consecutive unitigs have the same color
- Then, mapping a unitig to its color set is a simple Rank query over a bitmap

Experimental results

- These observations have been implemented in a tool called Fulgor [Fan et al. 2023].
- Fulgor achieves faster query times using less memory than other similar tools.

Dataset	Fulg	gor	Them	isto	MetaG	raph-B	MetaGra	ph-NB	COBS	
	mm:ss	GB	h:mm:ss	GB	mm:ss	GB	h:mm:ss	GB	h:mm:ss	GB
EC	2:10	1.67	3:40	2.46	22:00	30.44	1:05:41	0.40	45:11	34.93
SE-5K	1:10	0.80	3:50	1.82	14:14	36.54	20:32	0.33	38:34	41.93
SE-10K	2:20	2.06	7:35	4.16	28:15	92.18	43:40	0.61	1:01:14	84.20
SE-50K	12:00	18.24	42:02	33.14	NA	NA	4:30:03	2.72	3:54:18	408.82
SE -100K	24:00	42.20	1:22:00	75.93	NA	NA	9:40:06	4.82	8:07:29	522.56
SE -150K	37:00	70.55	2:00:13	124.27	NA	NA	NA	NA	7:47:14	522.63
GB	1:10	36.01	1:20	48.47	28:55	15.86	22:05	9.91	34:45	225.57

The times are the result of the command /usr/bin/time when executing a pseudoalignment query

Our contribution

Another important property

- 1. Unitigs spell references in \mathcal{R} .
- 2. Unitigs are monochromatic.
- 3. Unitigs co-occur.
- 4. Colors are similar when indexing pangenomes.
 - Implies that it is possible to achieve **better compression** if colors are not compressed individually, but repetitive patterns are factored out and compressed once.

Properties of c-dBGs (4)

Colors are similar when indexing pangenomes

Consider the example from before

- The pattern $\{3,5,9,11\}$ is represented three times
- The pattern {1,11,12,13,14,16} is represented twice

Properties of c-dBGs (4)

Colors are similar when indexing pangenomes

Consider the example from before

- Similarly, color sets C_1 , C_3 , and C_4 have very few differences
- The same is true for color sets C_5 and C_7

Two ways of partitioning color sets

$$C_1 = [3,4,5,9,10,11,13,15]$$
 $C_2 = [2,3,15]$
 $C_3 = [1,3,5,7,9,10,11]$
 $C_4 = [1,3,5,7,9,11,13]$
 $C_5 = [1,3,6,7,9,11,12,13,14,16]$
 $C_6 = [6,8]$
 $C_7 = [1,3,8,11,12,13,14,16]$
 $C_8 = [12,16]$
Horizontal partitioning

$$C_1 = [3,4,5,9,10,11,13,15]$$
 $C_2 = [2,3,15]$
 $C_3 = [1,3,5,7,9,10,11]$
 $C_4 = [1,3,5,7,9,11,13]$
 $C_5 = [1,3,6,7,9,11,12,13,14,16]$
 $C_6 = [6,8]$
 $C_7 = [1,3,8,11,12,13,14,16]$
 $C_8 = [12,16]$

Vertical partitioning

Horizontal partitioning (d-Fulgor)

- Let z be the number of distinct color sets
- Determine a partition of $[z] = \{1,...,z\}$ so that color sets in the same partition are similar
- Intuition: similar color sets share most of their colors. Create a representative color set for each partition that expresses its repetitiveness.
- All color sets within a partition are encoded as the symmetric difference between the original color set and the representative set.

Horizontal partitioning - Example

• Example for N=16 references, z=8 color sets and 3 horizontal partitions $\{1,3,4\}\{2,6\}\{5,7,8\}$

1. Permute unitigs and color sets they map to according to the partition

Horizontal partitioning - Example

• Example for N=16 references, z=8 color sets and 3 horizontal partitions $\{1,3,4\}\{2,6\}\{5,7,8\}$

2. Generate representative sets (\mathscr{A}) and differential color sets ($A_i \Delta C_i$)

Horizontal partitioning - Example

• Example for N=16 references, z=8 color sets and 3 horizontal partitions $\{1,3,4\}\{2,6\}\{5,7,8\}$

$$A_1 = [1,3,5,7,9,10,11,13]$$
 $A_2 = [2,3,6,8,15]$
 $A_3 = [1,3,11,12,13,14,16]$

Vertical partitioning (m-Fulgor)

- Recall that N is the number of references in \mathcal{R}
- Similarly, determine a partition of $[N] = \{1,...,N\}$ so that references in the same partition are similar
- Intuition: similar references induce similar color sets. Sequences of repeating colors in a partition are stored as partial color sets
- Color sets can be represented as sequences of references, or meta color sets, to those partial sets.

Example for N=16 references, z=8 color sets and 4 vertical partitions

1. Assign the new identifiers to the color sets and sort them

Example for N=16 references, z=8 color sets and 4 vertical partitions

Example for N=16 references, z=8 color sets and 4 vertical partitions

Example for N=16 references, z=8 color sets and 4 vertical partitions

Example for N=16 references, z=8 color sets and 4 vertical partitions

$$[6,7,8]$$
 $[6]$
 $-5=$
 $[6,8]$

Example for N=16 references, z=8 color sets and 4 vertical partitions

[6,7,8] [1,2,3]
[6]
$$-5 =$$
 [1]
[6,8] [1,3]

• Example for N=16 references, z=8 color sets and 4 vertical partitions

• Example for N=16 references, z=8 color sets and 4 vertical partitions

• Example for N=16 references, z=8 color sets and 4 vertical partitions

Combining the representations (md-Fulgor)

- Horizontal and vertical partitioning are based on orthogonal paradigms
- A combined representation could exploit the advantages of both approaches
- Intuition: Encode the color sets using vertical partitioning, then encode the partial sets
 using horizontal partitioning.

Space in GB

Dataset		Fulgor		d-Fulgor		m-Fulgor		md-Fulgor	
	$\overline{\mathrm{dBG}}$	Color sets	Total	Color sets	Total	Color sets	Total	Color sets	Total
EC	0.29	1.36 (83%)	1.65	0.45 (61%)	0.74	0.40 (58%)	0.69	0.24~(45%)	0.52
SE-5K	0.16	0.59 (79%)	0.75	0.20~(56%)	0.36	0.16~(50%)	0.32	0.11 (40%)	0.27
SE -10K	0.35	1.66~(83%)	2.01	0.48~(58%)	0.83	0.34~(49%)	0.70	0.22 (39%)	0.57
SE-50K	1.25	17.03 (93%)	18.29	4.31~(77%)	5.57	2.08~(62%)	3.34	1.38~(52%)	2.64
SE-100K	1.71	40.71 (96%)	42.43	9.37~(84%)	11.10	3.75~(68%)	5.47	2.26~(57%)	3.98
SE -150K	2.02	68.61 (97%)	70.65	15.73 (89%)	17.77	5.27~(72%)	7.31	3.22~(61%)	5.26
GB	21.29	15.54 (42%)	36.83	7.51 (26%)	28.81	9.16 (30%)	30.46	6.19 (23%)	27.48

Space in GB

Dataset		Fulgor		d-Fulgor		m-Fulgor		md-Fulgor	
	$\overline{\mathrm{dBG}}$	Color sets	Total	Color sets	Total	Color sets	Total	Color sets	Total
EC	0.29	1.36 (83%)	1.65	0.45~(61%)	0.74	0.40 (58%)	0.69	0.24~(45%)	0.52
SE-5K	0.16	0.59 (79%)	0.75	0.20~(56%)	0.36	0.16~(50%)	0.32	0.11 (40%)	0.27
SE -10K	0.35	1.66 (83%)	2.01	0.48~(58%)	0.83	0.34~(49%)	0.70	0.22 (39%)	0.57
SE-50K	1.25	17.03 (93%)	18.29	4.31~(77%)	5.57	2.08~(62%)	3.34	1.38~(52%)	2.64
SE-100K	1.71	40.71 (96%)	42.43	9.37~(84%)	11.10	3.75~(68%)	5.47	2.26~(57%)	3.98
SE -150K	2.02	68.61 (97%)	70.65	15.73 (89%)	17.77	5.27 (72%)	7.31	3.22 (61%)	5.26
GB	21.29	15.54 (42%)	36.83	7.51 (26%)	28.81	9.16 (30%)	30.46	6.19 (23%)	27.48

Pseudoalignment efficiency

Dataset	Hit rate	Fulgor		d-Fulgor		m-Fulgor		md-Fulgor	
		mm:ss	\overline{GB}	h:mm:ss	$\overline{\mathrm{GB}}$	mm:ss	GB	h:mm:ss	\overline{GB}
EC	98.99	2:10	1.67	5:20	0.78	2:30	0.73	5:00	0.57
SE-5K	89.49	1:10	0.80	2:00	0.41	1:16	0.37	1:48	0.32
SE -10K	89.71	2:20	2.06	4:30	0.90	2:28	0.77	3:34	0.65
SE-50K	91.25	12:00	18.24	29:00	5.82	13:10	3.64	22:25	2.95
SE -100K	91.41	24:00	42.20	1:02:00	11.58	27:00	6.08	50:00	4.62
SE -150K	91.52	37:00	70.55	1:38:00	18.51	41:30	8.29	1:15:00	6.28
GB	92.91	1:10	36.01	1.00	28.17	1:09	29.79	1.03	26.88

Pseudoalignment efficiency

Dataset	Hit rate	Fulgor		d-Fulgor		m-Fulgor		md-Fulgor	
		mm:ss	$\overline{\mathrm{GB}}$	h:mm:ss	$\overline{\mathrm{GB}}$	mm:ss	GB	h:mm:ss	GB
EC	98.99	2:10	1.67	5:20	0.78	2:30	0.73	5:00	0.57
SE-5K	89.49	1:10	0.80	2:00	0.41	1:16	0.37	1:48	0.32
SE-10K	89.71	2:20	2.06	4:30	0.90	2:28	0.77	3:34	0.65
SE-50K	91.25	12:00	18.24	29:00	5.82	13:10	3.64	22:25	2.95
SE -100K	91.41	24:00	42.20	1:02:00	11.58	27:00	6.08	50:00	4.62
SE -150K	91.52	37:00	70.55	1:38:00	18.51	41:30	8.29	1:15:00	6.28
GB	92.91	1:10	36.01	1.00	28.17	1:09	29.79	1.03	26.88

Overall space/time trade-off

Overall space/time trade-off

Thank you!

Thank you! Any questions?