EC P - Critical Edges

https://www.spoj.com/problems/EC_P

Given a connected graph, you must find all the edges that are critical, in other words you must find the edges which when removed divide the graph.

Input

The first line contains a NC ($1 \le NC \le 200$), the number of test cases integer. Then follow NC test cases.

Each case begins with two integers
$$N$$
 $(1 \le N \le 700)$ and M $\left(N-1 \le M \le \frac{N*(N-1)}{2}\right)$,

the number of nodes and the number of edges respectively. Then follow M lines, each with a pair of integers a b $(1 \le a, b \le N)$ indicate that between the node a and the node b there is an edge.

Output

For each test case print the list of ways to protect the following format:

Caso #n

t

 $x_1 y_1$

 $x_2 y_2$

14 1

 $x_t y_t$

Where n is the case number (starting from 1), t is the total of critical edges, list elements x_i y_i indicates, for each line, there is a critical edge between the node x_i and node y_i $(1 \le x_i \le y_i \le N)$. In addition, the list should be sorted in no-decreasing order first by x_i and then by y_i . Also $x_i < y_i$ must hold.

If there isn't any critical edge print: "Sin bloqueos" (quotes for clarity).

Example:

Input	Output
3	Caso #1
5 4 1 2 4 2 2 3 4 5	1 2 2 3 2 4 4 5 Caso #2 2
5 5 1 2 1 3 3 2 3 4 5 4	3 4 4 5 Caso #3 Sin bloqueos
4 6 1 3 1 4 2 1 3 2 4 2 4 3	