Chapter 31

Fundamentals of Circuits

(Circuit Elements and Diagrams & Kirchoff's Laws and the Basic Circuit)

31.1: Circuit Elements and Diagrams

Simple circuit of a resistor and a capacitor connected by wires to a battery.

31.1:

Circuit Elements and Diagrams

Simple circuit of a resistor and a capacitor connected by wires to a battery.

Equivalent circuit diagram

31.1: Circuit Elements and Diagrams

Circuit elements with equivalent symbols..

31.2: Kirchoff's Laws and the Basic Circuit

For a circuit junction, Kirchoff's Junction rule holds...

$$\int \sum I_{in} = \sum I_{out}$$

Junction law: $I_1 = I_2 + I_3$

31.2:

Kirchoff's Laws and the Basic Circuit

For a circuit, Kirchoff's Loop rule holds...

$$\Delta V_{loop} = \sum (\Delta V)_i = 0$$

Loop law: $\Delta V_1 + \Delta V_2 + \Delta V_3 + \Delta V_4 = 0$

31.2: Kirchoff's Laws and the Basic Circuit

Using Kirchoff's loop law...

- 1. Draw a circuit diagram, labeling quantities.
- 2. Assign a direction to the current.
- 3. "Travel" around the loop.
- 4. Apply the loop law:

$$\sum (\Delta V)_i = 0$$

Quiz Question 1

The current through the 3 Ω resistor is

- 1. 9 A.
- 2. 6 A.
- 3. 5 A.
- 4. 3 A.
- 5. 1 A.

i.e. 31.1: Two resistors and two batteries

Analyze the circuit shown in the figure.

- a. Find the current in and the potential difference across each resistor.
- b. Draw a graph showing how the potential changes around the circuit, starting from V = oV at the negative terminal of the 6 V battery.

