: X - 1

Supplementary Material for 'Discovery and analysis of topographic features using learning algorithms: A seamount case-study'

Andrew P. Valentine, Lara M. Kalnins and Jeannot Trampert

Table 1. Example seamount picking parameters and performance metrics.

	Region	\overline{P}	λ_P	Order	λ	E_{max}	SR	FPR	TP^{b}	FN^{b}	\overline{FP}
		(m)	(km)		(km)		%	%			
Reference ^c	Pacific	300	100	3	10	7	73.2	5.2	128 (14)	51 (37)	8
	Atlantic	300	100	3	10	7	67.1	33.7	53 (16)	26 (58)	35
SR > 80%	Pacific	300	250	4	5	15	87.2	27.4	156(27)	23(24)	69
	Atlantic	300	250	4	5	15	81.0	58.7	64 (43)	15(29)	152
FPR < 1%	Pacific	500	100	5	25	8	63.1	0.8	113(6)	66 (45)	1
	Atlantic	100	100	3	20	4	37.2	0.0	29(2)	49(72)	0
$K\&W^d$	Pacific	100	_	_	_	_	72.8	4.9	131(6)	49(45)	7
	Atlantic	100	_	_	_	_	70.9	61.9	56 (40)	23(35)	156
$K\&W > 300 \mathrm{m^e}$	Pacific	300	_	_	_	_	72.8	4.9	131 (5)	49(46)	7
	Atlantic	300	_	_	_	_	68.4	52.4	54 (35)	25 (40)	98

^a 'True positives' (TP), number of hand-selected seamounts identified by automatic algorithm; 'False negatives' (FN), number of hand-selected seamounts missed by automatic algorithm; 'False positives' (FP), number of seamounts found by automatic algorithm that do not correspond to hand-selected seamounts. All other quantities are as defined in main text: P, prominence; λ_P , wavelength of 10th-order Butterworth filter used to calculate prominence; 'Order', order of Butterworth filter applied to E grid; λ , wavelength of Butterworth filter applied to E grid; E_{max} , threshold for picking minima; SR, success rate; FPR, false positive rate. There are E for E and E grid points, or sites that may be picked, in each E grid.

References

Kim, S.-S., and P. Wessel (2011), New global seamount census from altimetry-derived gravity data, *Geophysical Journal International*, 186, 615–631.

^b Quantities in parentheses relate to sites identified as 'possible seamounts' during visual inspection (see Figs. 2 & 3 of main text). Total numbers of definite and possible seamounts are not identical between runs because any picks that produce a match across the boundary of the test region are excluded from the counts.

^c As illustrated in Figs. 2(f) & 3(f).

^d Catalogue of Kim and Wessel [2011].

^e Catalogue of Kim and Wessel [2011], filtered to remove any seamounts for which the authors report a 'height' of less than 300 m.