UNIVERSITY OF CALIFORNIA

College of Engineering

Department of Electrical Engineering and Computer Sciences

EE40 Summer 09 SOLUTIONS

Frank Liao

MIDTERM EXAMINATION #2

Time allotted: 100 minutes

NAME: (print)	Last	First	Student ID#
LAB SECT	ION:	/	
	_	Days / Time	
I acknowled	lge that the UC rules on	academic honesty apply.	
		Signa	ture

INSTRUCTIONS:

- 1. SHOW YOUR WORK. Partial credit will be given only if your methods are clear to the grader.
- 2. Clearly mark (BOX or UNDERLINE) your answers.
- 3. Specify the units on answers whenever appropriate. Points will be deducted for missing units.
- 4. Closed book, closed notes. You are allowed ONE 8.5" x 11" sheet of notes. Calculators are allowed.

PHYSICAL CONSTANTS

<u>Description</u>	<u>Symbol</u>	<u>Value</u>	PROPERTIES OF SI	LICON A	T 300K
Electronic charge	q 1	.6×10 ⁻¹⁹ C	<u>Description</u>	Symbol	<u>Value</u>
Boltzmann's constant	k 8.6	2×10 ⁻⁵ eV/K	Intrinsic carrier concentration	n_{i}	$10^{10} \mathrm{cm}^{-3}$
Thermal voltage at 300K	$V_{\rm T} = kT/q$	0.026 V	Dielectric permittivity	$\mathcal{E}_{\mathrm{Si}}$	$1.0 \times 10^{-12} \text{ F/cm}$

Electron and Hole Mobilities in Silicon at 300K

Problem 1 [10 points]: Basic concepts and EE Technology

a) True/False and Multiple Choice. Select only ONE choice. No credit will be given to multiple answers. [2 pts each]

T

F

F

LCD stands for <u>Liquid Capacitance Display</u>.

(T)

The MEMS accelerometer uses a differential capacitance to detect motion.

T

If an RC circuit has a large time constant, τ , then it takes a long time for the capacitor in that circuit to charge and discharge.

- 4) What kind of filter is this?
- a) Lowpass
- b) Highpass
- c) Bandpass
- d) Bandreject

- 5) What is v_I , the voltage drop across C_I ?
- a) 4 V
- b) 8 V
- c) -4 V
- d) -8 V

Problem 2 [20 points]: Phasor Analysis

In the circuit below, $v_{in}(t) = 2 \cos(0.1 t + 30^{\circ})$.

a.) What is $v_{out}(t)$ in cosine form? [10 pts]

b.) If $v_{out} / v_{in} = (20 + j2\omega) (40 + j\omega) / j10\omega$, sketch the bode plot of the magnitude of the transfer function, $H(\omega)$. Label the axes appropriately, denoting critical angles, slopes and plateau values. [10 pts]

Problem 3 [30 points]: First-Order Transients

Consider the circuit below:

a.) Find the expression for $v_o(t)$ (piecewise expressions are acceptable) and plot $v_o(t)$ for 0 msec $\leq t \leq 10$ msec. Label the values of $v_o(0^+)$, $v_o(5^-)$, and $v_o(5^+)$. [20 pts]

Page 4

Show your work below. (Space for your answer is on the next page)

For
$$V_2$$
:

-60 \(\frac{1}{5} \)

 $V(5^+) = -4V$
 $V(0) = 0V$
 $V(5^+) = -4V$
 $V(0) = 0V$
 $V(5^+) = -4V$
 $V(0) = 0V$
 $V_2 : V_6(1) = -4e^{-t/5n}$

For $V_2 : V_6(1) = -4e^{-t/5n}$
 $V_3(1) = 2e^{-t/5n} - 4e^{-(t-5)/5n}$
 $V_3(1) = 2e^{-t/5n} - 4e^{-(t-5)/5n}$
 $V_3(1) = 2e^{-t/5n}$
 $V_3(1) =$

b.) Suppose we modify the circuit and apply a different input voltage.

Page 5

On the axes below, plot for $v_C(t)$ and $v_o(t)$. Use the large signal model for the diode with a turn-on voltage, V_D =0.7 V. Label the following values: (1) the final voltage of v_C , (2) the time, t, when v_C reaches its final voltage, (3) the final voltage of v_o , and (4) the time, t, when v_o reaches its final voltage. [10 points]

For V: V(0-)= V(0+)=0 V V(0)=1 V Space for work: 7= 15kx 14=15ms = Nc(t) = 1 - e - t/15m at V=0.7V the dide will turn on and for ve at 0.7V this happens at a7=1-e-t/15h For Vo: V. (0+)= 0.67 V V.(00)= UV 2= 15 ms =) $V_{5}(t)=0.67 e^{-t/ism}$ and at t=18 ms, $V_{0}=0.2 \text{ V}$ at t=18 ms, $V_{0}=0.2 \text{ V}$ at t=18 ms, $V_{0}=0.2 \text{ V}$ at $V_{0}=0.2$ $\nu_C(V) \blacktriangle$ 0.75 -0.5 -0.25 (20 **3**b 4b t (msec) $v_{\theta}(V)$ V(18)=0.2V 0,21/ 0.25 **2**b 30 40 t (msec)

SOLUTLANS

Problem 4 [20 points]: Doping and Carrier Concentrations

Consider a Si sample maintained under thermal equilibrium conditions at T = 300K, doped with phosphorous at a concentration of 2×10¹⁶ cm⁻³.

a.) Is this material n-type or p-type? What are the majority and minority carrier concentrations? [pts]

$$N = N_D = 2 \times 10^{16} \text{ cm}^{-3}$$

$$P = \frac{N_1^2}{N_2} = \frac{10^{20}}{2 \times 10^{16}} = 5 \times 10^3 \text{ cm}^{-3}$$

Write your answers here:

majority concentration:
$$2 \times 10^{16} \text{ cm}^{-3}$$

minority carrier concentration:

b.) Suppose this sample is additionally doped with boron at a concentration of 10¹⁶ cm⁻³. How will the carrier concentrations change? [3 pts]

$$N = N_D - N_A = 10^{16} \text{ cm}^{-3}$$

new majority concentration: ()

new minority carrier concentration: 10 4 ca-3

c.) Find the resistivity of this sample (with the boron doping). [*pts]

From the chart, using No+Na=3×1016cm-s

Mn 2 to cm/v/s

Problem 5 [20 points]: Diode Circuits

Consider the following diode circuit:

a.) Using the large-signal model, plot V_{out} as function of V_{in} of the circuit below. Remember, a diode about to turn on carries zero current but sustains V_D . For full credit, you must label all important points on the graph (e.g. slope or cross-over points).

b.) Suppose $R_1 = 2 \text{ k}\Omega$, $R_2 = 2 \text{ k}\Omega$, and $V_D = 0.7 \text{ V}$ and V_{in} is given by the waveform shown below. Plot V_{out} on the given axes.

