

education

Department:
Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICAL LITERACY P2

FEBRUARY/MARCH 2009

MEMORANDUM

MARKS: 150

Symbol	Explanation
M	Method
MA	Method with accuracy
CA	Consistent accuracy
A	Accuracy
С	Conversion
S	Simplification
RT/RG	Reading from a table/Reading from a graph
F	Choosing the correct formula
SF	Substitution in a formula
J	Justification
P	Penalty, e.g. for no units, incorrect rounding off
	etc.
R	Rounding Off/Reason

This memorandum consists of 16 pages.

DoE/Feb. - March 2009

QUES	TION 1	[35]	
Ques	AS	Solution	Explanation
1.1	12.1.1 12.3.2	Number of loaves = $\frac{12.5 \text{ kg}}{450 \text{ g}} \checkmark \text{M}$	1M dividing
		$= \frac{12500 g}{450 g} \checkmark C$ $= 27,78 \checkmark CA$	1C converting to grams
		∴ 27 loaves ✓ R	1CA simplification 1R rounding down
		OR ✓M ✓C	OR
		Number of loaves = $\frac{12,5 \text{ kg}}{0,450 \text{ kg}}$ = 27,78 ✓ CA ∴ 27 loaves ✓ R	1M dividing 1C converting to kilograms 1CA simplification 1R rounding down (4)
1.2	12.2.1	Total cost = Fixed cost + (number of loaves × cost per loaf) $\mathbf{A} = 400 + (120 \times R3,50) \checkmark SF$ $= R820 \checkmark A$	1SF substitution
		AND $1 \ 240 = 400 + (\mathbf{B} \times \mathbf{R}3,50) \checkmark SF$ $840 = (\mathbf{B} \times \mathbf{R}3,50)$ $240 = \mathbf{B} \checkmark \mathbf{A}$	1A total cost 1SF substitution 1A number of loaves (4
1.3	12.2.1	Income = number of loaves × price of loaf	
		$\mathbf{C} = 120 \times \mathbf{R}6,00\checkmark\mathbf{S}\mathbf{F}$	1SF substitution
		= R720,00 ✓ A AND	1A income
		960 = D ×R6,00 ✓ SF	1SF substitution
		$\mathbf{D} = \frac{960}{6} = 160 \text{ loaves } \checkmark A$	1A number of loaves

1A 'cost' cutting y-axis at 400

1CA point of intersection

2A each graph is a straight line (solid or broken)

1A 'income' starting at the origin

1A labelling the graphs correctly

2A any other two points plotted correctly (8)

Ques	AS	Solution	Explanation
1.5.1	12.2.3	160 loaves must be sold ✓RG	1RG reading from graph
		✓ CA At this point both the cost and the income are the same and are equal to R960. ✓ CA	1CA income is R960 1CA cost is R960 (3)
1.5.2	12.2.3	R1 380 ✓✓ RG	2RG reading from graph (CA from graph) (2)
1.5.3	12.2.3	125 loaves [Accept any whole number value between 120 and 130] ✓✓2RG	2RG reading from graph (CA from graph) (2)
1.5.4	12.2.3	Cost of making 300 loaves = R1 450 ✓ RG	1RG reading cost from graph
		Income from selling 250 loaves = R1 500 ✓RG	1RG reading income
			from graph
		Profit = R1 500 - R1 450 = R50 \(\sqrt{CA}\)	1CA profit
		= K30 V CA	(CA from graph) (3)
1.6	12.2.1	The maximum number of batches per day = $6 \checkmark RT$	2RT reading from the time line
		The maximum number of loaves baked each day	
		= 6 × 20 loaves ✓M = 120 loaves ✓CA	1M multiplying 1CA maximum number
		- 120 loaves • CA	of loaves
		So, the order for 110 loaves may be accepted. ✓ CA	1CA conclusion

QUES	QUESTION 2 [21]			
Ques	AS	Solution	Explanation	
2.1.1	12.1.3	Net monthly salary = $\frac{R144000}{12} \checkmark M$ $= R12000 \checkmark S$	1M dividing 1S simplification (2)	
2.1.2	12.1.3	Amount remaining each month = R12 000 − R8 400 = R3 600 ✓ CA	1CA balance after expenses	
		90% of R3 $600 = 0.9 \times R3 600 \checkmark M$	1M Calculating 90% of	
		= R3 240 ✓CA	savings 1CA saving per month	
			(3)	
2.2	12.1.3	F? x = 3000 $i = \frac{10,8\%}{12} = 0,009 \text{ per month } \checkmark A$ $n = 11 \text{ months} \checkmark A$	1A value of <i>i</i> . 1A value of n	
		$F = \frac{x[(1+i)^n - 1]}{i}$ $= \frac{3000[(1+0,009)^{11} - 1]}{0,009} \checkmark SF \checkmark SF$ $= R34 525,83 \checkmark CA$	2SF substitution 1CA final amount (5)	

Ques	AS	Solution	Explanation
2.3	12.1.1	Increase = 10% of R12 000	
		$=\frac{10}{100} \times R12\ 000 \checkmark M$	1M calculating 10%
		= R1 200 ✓A	1A actual increase
		New monthly salary = R12 000 + R1 200 ✓ CA = R13 200 ✓ CA	1CA adding increase 1CA new monthly salary
		OR	
		Increase = $0.1 \times R12000 \checkmark M$	1M calculating 10% 1A actual increase
		$= R1 \ 200 \ \checkmark A$ New monthly salary = R12 000 + R1 200 \ ✓ CA $= R13 \ 200 \ \checkmark CA$	1CA adding increase 1CA new monthly salary
		OR	1M for 110%
		✓M ✓A	1A original salary
		New monthly salary = 110% of R12 000	1M multiplication
		$=\frac{110}{100} \times R12\ 000 \checkmark M$	1A new salary
		= R13 200 ✓A	
		OR	
		Annual increase = 10% of R144 000	
		$=\frac{10}{100} \times R144\ 000 \checkmark M$	1M for 10%
		$= R14400 \checkmark A$	1A increase in salary
		Annual new salary = $R144\ 000 + R14\ 400$ = $R158\ 400\ \checkmark CA$	1CA annual new salary
		New monthly salary = $\frac{158\ 400}{12}$ = R13 200 \checkmark CA	1CA new salary
		✓ M ✓ M	(4)
2.4	12.1.3	New monthly expenses = $R8400 + R3900 - R700$	1M adding new expense
		= R11 600 ✓ CA	1M subtracting public transport cost
			1CA new monthly expenditure
			(3)

Ques	AS	Solution	Explanation
2.5	12.2.1	Distance = speed × time $Speed = \frac{distance}{time} \checkmark A$	1A Changing subject
		$= \frac{18 \text{ km}}{\frac{15}{60} \text{h}} \checkmark \text{SF}$	1SF substitution 1C converting to hours
		= 72 km/h ✓ CA	1CA average speed
		OR	
		15 minutes = 0,25 h ✓C Speed = $\frac{\text{distance}}{\text{time}}$ ✓A	1C converting to hours 1A Changing subject
		$= \frac{18 \text{ km}}{0.25 \text{ h}} \checkmark \text{SF}$	1SF substitution
		= 72 km/h ✓CA	1CA average speed (4)

QUES	STION 3	3 [23]	
Ques	AS	Solution	Explanation
3.1.1	12.3.1	$= 2\pi r^2 + 2\pi rh$	1SF substitution
		$= 2 \times 3.14 \times (1 \text{ m})^2 + 2 \times 3.14 \times 1 \text{ m} \times 2 \text{ m}$	1A multiplication
		$= 6.28 \text{ m}^2 + 12.56 \text{ m}^2$ $= 18.84 \text{ m}^2$ $= 18.84 \text{ m}^2$	1CA area (3)
3.1.2	12.1.1 12.2.1 12.3.1	Area to be painted = Surface area of tank + area of stand \checkmark M \checkmark CA = 18,84 m ² + 1 m ² = 19,84 m ²	1M adding areas 1CA total area
		3 m ² of surface needs 1ℓ 19,84 m ² of surface will need $\frac{19,84}{3} \ell$ \checkmark M = 6,613333333 ℓ \checkmark CA	1M dividing 1CA computation
		∴7 ℓ of paint is needed ✓R	1R rounding up (5)
3.1.3	12.1.1	OPTION 1 $7 \times 1 \ell = 7 \times R23,63 \checkmark M$ = R165,41	1M first option
		OPTION 2 $1 \times 5 \ell + 2 \times 1 \ell = R113,15 + 2 \times R23,63 \checkmark M$ = R160,41	1M second option
		∴ It is more economical to buy 2 one litre tins and a 5 litre tin than to buy 7 one litre tins ✓CA	1CA conclusion (3)

Ques	AS	Solution	Explanation
3.2.1	12.3.1	$V = \pi r^{2}h \checkmark SF$ $= 3.14 \times (1 \text{ m})^{2} \times 2 \text{ m}$ $= 6.28 \text{ m}^{3} \checkmark A$ $= 6.280 \ell \checkmark C$	1SF substituting r 1SF substituting h 1A computation 1C converting to ℓ
3.2.2	12.1.1	In 1 hour the generator uses $\frac{72 \ell}{36} \checkmark M$ = $2 \ell \checkmark A$	1M finding rate 1A computation 1C converting to hrs
		7 days = 7 × 24 h = 168 h \checkmark C In 7 days the generator uses 168 × 2 ℓ = 336 ℓ \checkmark S	1S simplification
		Original amount of diesel = 80% of 6 280 ℓ = $\frac{80}{100} \times 6280 \ \ell \checkmark M$	1M percentage
		= 5 024 ℓ ✓ S	1S simplification
		Amount of diesel remaining = $5.024 \ell - 336 \ell \checkmark M$ = $4.688 \ell \checkmark S$	1M subtraction 1S simplification (8)

$\begin{array}{c} 10 \\ NSC-Memorandum \end{array}$

QUES	QUESTION 4 [21]			
Ques	AS	Solution	Explanation	
4.1	12.4.4	Limpopo ✓RT	1RT correct province (1)	
4.2.1	12.4.4	Gauteng and KwaZulu-Natal ✓A ✓A	1A Gauteng 1A KwaZulu-Natal (2)	
4.2.2	12.4.4	Gauteng and KwaZulu-Natal ✓A ✓A	1A Gauteng 1A KwaZulu-Natal (2)	
4.2.3	12.4.4	The higher the estimated million vehicle kilometres travelled, the higher the number of fatalities and vice versa. ✓✓ J	2J description of relationship (2)	
4.3.1	12.1.1 12.4.2	Fatalities in Gauteng = $\frac{3 \text{ 412}}{15 \text{ 392}} \times 100\% \text{ \checkmark M}$	1RT reading Gauteng fatalities from the table	
		= 22,17% ✓ A	1M multiplying by 100% 1A percentage fatalities (3)	
4.3.2 (a)	12.1.1 12.4.4	Gauteng: Number of fatalities per million vehicle kilometres travelled \checkmark M $= \frac{\text{number of fatalities in Gauteng in 2006}}{\text{number of million vehicle km travelled in Gauteng in 2006}}$ $= \frac{3412}{44042} \checkmark \text{RT} \checkmark \text{RT}$ $= 0.077 \checkmark \text{A}$	1M use of the correct formula 2RT correct reading from the table 1A solution	
			(4)	

Ques	AS	Solution	Explanation
4.3.2 (b)	12.1.1 12.4.4	Northern Cape ✓ A Number of fatalities per million vehicle kilometres travelled =	1A identifying the province
		$= \frac{389}{2894} \checkmark RT \checkmark RT$	2RT correct reading from the table
		= 0,134 ✓ CA	1CA solution (4)
4.3.3	12.4.4	0,077 < 0,134 ✓ CA This means that fewer fatal accidents occur in Gauteng per million vehicle kilometres travelled then in Northern Capa	1CA Calculation
		million vehicle kilometres travelled than in Northern Cape. Gauteng is safest ✓ J ✓ J	2J Justification
		OR	
		Any other similar or relevant answer.	(3)

DoE/Feb. - March 2009

QUES	QUESTION 5 [25]				
Ques	AS	Solution	Explanation		
5.1.1	12.3.4	C3 ✓A	1A correct grid reference (1)		
5.1.2	12.3.4	South East ✓A	1A relative position (1)		
5.1.3	12.3.4	Turn left into 4 th Street ✓A Turn left into Buiten Street ✓A After passing Gerrie Visser Street turn right into the next street. You will see the petrol station ahead of you. ✓A	1A direction in 4 th St. 1A direction in Buiten St. 1A last turn into the garage		
		OR			
		Turn left into 4 th Street Turn left into Wishart Street ✓ A Turn right into Gerrie Visser Street ✓ A Turn left into Buiten Street ✓ A At the next street turn right. You will see the petrol station ahead of you.	1A direction in Wishart 1A turn into Gerrie Visser St. 1A direction in Buiten St. and finding the garage		
		OR			
		Turn in a northerly direction along 4 th Street. ✓A Turn in a westerly direction along Buiten Street. ✓A After passing Gerrie Visser Street, turn in a northerly direction into the next street you come to. You will see the petrol station ahead of you. ✓A	1A direction in 4 th St. 1A direction in Buiten St. 1A last turn into the garage (3)		
5.1.4 (a)	12.3.3	Distance = $(26 + 40 + 24 + 20) \text{ mm } \checkmark M$ = $110 \text{ mm } \checkmark A$ = $11 \text{ cm } \checkmark C$	1M adding measurements 1A computation 1C converting to centimetres (3)		
5.1.4 (b)	12.3.3	1 cm represents 11 000 cm ✓ M So, 11 cm = 11 000×11 cm ✓ M	1M using scale in cm 1M multiplying by 11		
		= 121 000 cm ✓CA = 1 210 m	1CA answer in cm		
		= 1,21 km ✓C	1C convert to kilometres (4)		

$\begin{array}{c} 13 \\ NSC-Memorandum \end{array}$

Ques	AS	Solution	Explanation
5.2.1	12.4.3	Mean = \checkmark M $\frac{62+57+55,5+64+70+60+62+60+50+97+56+71+61+48+59,5+60+61}{17}$	1M formula
		$= \frac{1054}{17} \checkmark A$ $= 62 \text{ km/h} \checkmark CA$	1A sum of scores 1CA mean (3)
5.2.2	12.4.3	Mode is 60 km/h ✓A	1A correct mode (1)
5.2.3	12.4.3	The speeds, written in order, are: $\checkmark M \checkmark A$ 48; 50; 55,5; 56; 57; 59,5; 60; 60; <u>60</u> ; 61; 61; 62; 62; 64; 70; 71; 97 The median = 60 km/h \checkmark A	1M ascending order 1A median position 1A value of median (3)
5.2.4	12.4.4	The mode and median speed are both 60 km/h. ✓J The mean speed is 62 km/h, but this speed is affected by the one fast driver who is driving at 97 km/h. ✓J So, it looks like most people stick to the speed limit. ✓J So their request for a stop street should be turned down. ✓J	4J justification (4)
5.2.5	12.4.4	Install speed bumps outside the school. ✓J Install flashing warning lights in the roads leading to the school ✓J OR Have a scholar patrol. Any other suitable alternatives	2J justification (2)

QUESTION 6 [25]				
Ques	AS	Solution	Explanation	
6.1.1	12.4.4	There is a steady increase in income $\sqrt{J}\sqrt{J}$ OR any other suitable explanation of trend.	2J Justification (2)	
6.1.2	12.1.1 12.4.4	mean = $\frac{(3 + 3.5 + 4.5) \text{ hundred thousand}}{9} \checkmark M$ $= \frac{11 \text{hundred thousand}}{9} \checkmark S$ $= 1.22 \text{ hundred thousand rand} \checkmark CA$ OR $R122\ 000$	1M method 1A correct denominator 1S simplification 1CA solution (4)	
6.1.3	12.4.6	Graph 2 \checkmark A The vertical scale starts at 2,5 and gives the impression that the quarterly increase is larger than it actually is. \checkmark J	1A answer 2J justification (3)	
6.2.1 (a)	12.3.1	The bath covers 27 squares. \checkmark M \checkmark A One block is 20 cm by 20 cm $20 \text{ cm} = \frac{20}{100} \text{ m}$ $= 0.2 \text{ m} \checkmark \text{C}$ 1 block = $0.2 \text{ m} \times 0.2 \text{ m} = 0.04 \text{ m}^2 \checkmark \text{A}$ The area under the bath = $27 \times 0.04 \text{ m}^2 \checkmark \text{CA}$ OR The length of the bath is 9 blocks = $9 \times 20 \text{ cm}$ $= 1.80 \text{ cm} \checkmark \text{A}$ $= \frac{180}{100} \text{ m}$ $= 1.8 \text{ m} \checkmark \text{C}$ The width of the bath $= 3 \times 20 \text{ cm}$	1 M counting the blocks 1A correct counting 1C converting 1A area of 1 block 1M multiplying 1CA solution 1M counting blocks for length 1A length 1C converting	
		The width of the bath = $3 \times 20 \text{ cm}$ = 60 cm = 0.6 m Area under the bath = $1.8 \text{ m} \times 0.6 \text{ m}$ $\checkmark \text{M}$ = 1.08 m^2 $\checkmark \text{CA}$	1C converting 1M multiplying 1CA solution (6)	

6.2.1	
(b)	

Number of squares to be tiled = $54 \checkmark_A \checkmark_M$

1 square = $0.2 \text{ m} \times 0.2 \text{ m} = 0.04 \text{ m}^2 \checkmark \text{C}$

54 squares = $54 \times 0.04 \text{ m}^2 \quad \checkmark \text{M}$ = $2.16 \text{ m}^2 \quad \checkmark \text{CA}$

OR

Length of bathroom = $10 \times 20 \text{ cm} = 200 \text{ cm} = 2 \text{ m}^{\checkmark}\text{C}$ Breadth of the bathroom = $9 \times 20 \text{ cm} = 180 \text{ cm} = 1.8 \text{ m}$

Area of bathroom = $2 \text{ m} \times 1.8 \text{ m}$ $\checkmark M$ = 3.6 m^2 $\checkmark A$

Length of basin = 60 cm = 0.6Width of the basin = $3 \times 20 \text{ cm}$ = 30 cm = 0.6 m

Area under the basin = $0.6 \text{ m} \times 0.6 \text{ m}$ CA

Area to be tiled = $3.6 \text{ m}^2 - (1.08 \text{ m}^2 + 0.36 \text{ m}^2)$ = $2.16 \text{ m}^2 \checkmark \text{CA}$

OR

Size of bathroom = 9×10 squares = 90 squares \checkmark A

Size of the bath = 3×9 squares = 27 squares \checkmark A

Size of wash basin = 3×3 squares = 9 squares \checkmark A

Area to be tiled = 90 - 27 - 9 = 54 squares

Area = $54 \times 0.2 \text{ m} \times 0.2 \text{ m}$ = $2.16 \text{ m}^2 \checkmark \text{CA}$ 1 M counting the blocks 1A correct counting 1C area of block in m²

1M multiplying

1CA solution

OR

1C converting

1M substitution into area formula 1A solution

1CA area under basin

1CA solution

1M multiplication 1A size of room

1A size of bath

1A size of wash basin

1CA solution (5)

Copyright reserved

Please turn over

6.2.2 Number of square metres of tiles needed = $(2,16 + 10\% \text{ of } 2,16) \text{ m}^2 \checkmark \text{M}$ = $(2,16 + \frac{10}{100} \checkmark \text{A} 2,16) \text{ m}^2$ = $(2,16 + 0,216) \text{ m}^2$ = $2,376 \text{ m}^2 \checkmark \text{CA}$

> Number of boxes of tiles = $\frac{2,376}{1,5}$ \checkmark M = 1,574 boxes = 2 boxes \checkmark R

OR

Number of boxes of tiles = $\frac{2,16}{1,5}$ \checkmark M = 1,44 boxes \checkmark CA \checkmark A 10% extra = $\frac{10}{100}$ × 1,44 = 0,144 \checkmark CA

Number of boxes = 1,44 + 0,144 = 1,584= 2 boxes \checkmark R

OR

Number of boxes of tiles = $\frac{2,16}{1,5}$ = 1,44 boxes \checkmark CA

√A110% × 1,44 = $\frac{110}{100}$ × 1,44 = 1,584 √CA = 2 boxes √R

1M method

1A calculating %

1CA simplification

1M dividing

1R Rounding up

OR

1M method

1CA simplification 1A calculating % 1CA Solution

1R rounding up

OR

1M method (division)

1CA Solution

1A calculating % 1CA simplification 1R Rounding up

(5)

TOTAL: 150