Systemy Baz Danych

Algebra Relacyjna

Bartosz Zieliński

Algebra Relacyjna

- Definiuje operacje na relacjach dające w wyniku relacje.
- Zbiór wszystkich możliwych relacji wraz z tymi operacjami tworzy algebrę w sensie matematycznym.
- Operacje można składać w bardziej złożone wyrażenia.
- Pomiędzy operacjami występują nietrywialne związki pozwalające na wyrażenie tej samej relacji na różne sposoby.
- Wyrażenia algebry relacyjnej definiują zawsze zapytania niezależne od dziedziny.

Algebra Relacyjna a Implementacja Wykonywania Zapytań w DBMS

- Wystarczy aby DBMS implementował operatory relacyjne.
- Aby wykonać dane zapytanie wystarczy teraz wykonać po kolei operacje z wyrażenia definiującego to zapytanie.

W rzeczywistych RDBMS-ach

- Interpreter SQL tłumaczy zapytanie SQL na wyrażenie algebry relacyjnej.
- Optymalizator może przekształcić to wyrażenie na równoważne (definiujące tą samą relację) ale wykonujące się szybciej, korzystając z reguł algebry relacyjnej.
- Dla niektórych operatorów istnieje kilka algorytmów je implementujących wybieranych przez optymalizator.

Operatory w Algebrze Relacyjnej

- Przemianowanie atrybutów (rename)
- Projekcje (projections)
- Selekcje (selections)
- Operatory teoriomnogościowe
 - Unia, Przecięcie, Różnica, Iloczyn kartezjański
- Operatory złączenia
 - złączenie naturalne, złączenie równościowe (equijoin),
 θ-złączenia, złączenia zewnętrzne (outer joins) itp.
- Dzielenie relacji
- Obliczenia domenowe (domain computations)
- Agregacje

Operacja Przemianowania Atrybutu $\rho_{B/A}$

Operacja $\rho_{B/A}(R)$ przemianowania atrybutu A na B zamienia w relacji R nazwę atrybutu A na B (aby wynik operacji był dobrze zdefiniowany wymagamy aby $A \in Attr(R)$ i $B \notin Attr(R)$).

Jobs					
JobId	Name	MinSalary	MaxSalary		
1	IT Specialist	8000	20000		
2	Sales Specialist	5000	9000		
3	Administration	7000	10000		

$\rho_{\mathsf{MinimalnaPensja}/\mathsf{MinSalary}}(\mathbf{Jobs})$

Jobld	Name MinimalnaPensja		MaxSalary
1	IT Specialist	8000	20000
2	Sales Specialist	5000	9000
3	Administration	7000	10000

Unia, Przecięcie i Różnica

Operacje unii $(R \cup S)$, przecięcia $(R \cap S)$ i różnicy $(R \setminus S)$ są zdefiniowane dla relacji R i S takich że Attr(R) = Attr(S). Wtedy

$$\mathsf{Attr}(R \cap S) = \mathsf{Attr}(R \cup S) = \mathsf{Attr}(R \setminus S) := \mathsf{Attr}(R)$$

i

- Rows $(R \cup S) := \text{Rows}(R) \cup \text{Rows}(S)$ (krotki w $R \cup S$ to te i tylko te krotki które są w R lub S)
- $\mathsf{Rows}(R \cap S) := \mathsf{Rows}(R) \cap \mathsf{Rows}(S)$ (krotki w $R \cup S$ to te i tylko te krotki które są w R i w S)
- $\mathsf{Rows}(R \setminus S) := \mathsf{Rows}(R) \setminus \mathsf{Rows}(S)$ (krotki w $R \cup S$ to te i tylko te krotki które są w R i których nie ma w S)

Przykład Unii, Przecięcia i Różnicy

	R		<u>S</u>	R	∪ <i>S</i>	R	∩ <i>S</i>	F	$R \setminus S$
Α	В	Α	В	Α	В	Α	В	A	В
1	10	1	10	1	10	1	10	3	30
2	20	2	20	2	20	2	20	4	40
3	30	5	50	3	30			-	
4	40			4	40				
				5	50				

Rzutowanie Krotek na Podzbiór Atrybutów

Definicja

Niech t będzie krotką i niech $X\subseteq \mathsf{Attr}(t)$. Wówczas **rzutowaniem** krotki t na podzbiór atrybutów X nazywamy krotkę $t|_X$ zdefiniowaną przez

$$Attr(t|_X) := X$$
, $(t|_X).A = t.A$ dla każdego $A \in X$.

Przykład

$$t = \frac{\mathbf{A} \quad \mathbf{B} \quad \mathbf{C}}{1 \quad 2 \quad 3}, \quad t|_{\{\mathbf{A},\mathbf{C}\}} = \frac{\mathbf{A} \quad \mathbf{C}}{1 \quad 3}.$$

Złączenia Krotek

Definicja

Niech t_1 i t_2 będą krotkami takimi że $t_1|_X=t_2|_X$, gdzie $X:=\operatorname{Attr}(t_1)\cap\operatorname{Attr}(t_2)$ (warunek ten jest zawsze spełniony gdy $X=\emptyset$). Wówczas **złączeniem** t_1 i t_2 nazywamy krotkę $t_1\bowtie t_2$ t.ż. $\operatorname{Attr}(t_1\bowtie t_2):=\operatorname{Attr}(t_1)\cup\operatorname{Attr}(t_2)$ i

$$(t_1 \bowtie t_2).A := egin{cases} t_1.A & \mathsf{gdy} \ A \in \mathsf{Attr}(t_1) \ t_2.A & \mathsf{gdy} \ A \in \mathsf{Attr}(t_2) \end{cases}.$$

Przykład

$$\frac{A \quad B}{1 \quad 2} \bowtie \frac{B \quad C}{2 \quad 3} = \frac{A \quad B \quad C}{1 \quad 2 \quad 3}, \qquad \frac{A \quad B}{1 \quad 2} \bowtie \frac{C}{3} = \frac{A \quad B \quad C}{1 \quad 2 \quad 3}$$

Iloczyn Kartezjański

Iloczyn kartezjański relacji jest określony dla par relacji o rozłącznych zbiorach atrybutów. Niech R i S będą relacjami takimi że $\mathsf{Attr}(R) \cap \mathsf{Attr}(S) = \emptyset$. Wówczas **iloczyn kartezjański** $R \times S$ jest relacją o atrybutach $\mathsf{Attr}(R \times S) := \mathsf{Attr}(R) \cup \mathsf{Attr}(S)$ i krotkach

$$\mathsf{Rows}(R \times S) := \{t_1 \bowtie t_2 \mid t_1 \in R, t_2 \in S\}$$

Zauważmy że $R \times S = S \times R$ (ponieważ $t_1 \bowtie t_2 = t_2 \bowtie t_1$). Na przykład

	<u>R</u>			5
A	В		С	D
1	10		3	30
2	20		4	40

	R	× <i>S</i>	
Α	В	С	D
1	10	3	30
1	10	4	40
2	20	3	30
2	20	4	40

Projekcja na Podzbiór Atrybutów

Niech R będzie relacją i niech $X \subseteq Attr(R)$. Wtedy $\pi_X(R)$ jest relacją o atrybutach X i krotkach

$$\mathsf{Rows}\big(\pi_X(R)\big) := \big\{t|_X \mid t \in R\big\}$$

Przykład projekcji na podzbiór atrybutów:

Employees					
ld	FirstName	LastName	Salary	Jobld	
1	Toru	Takemitsu	10000.11	1	
2	Philip	Glass	9000.00	3	
3	Michael	Nyman	10000.50	1	
4	Henryk	Górecki	11000.00	1	
5	Thomas	Tallis	8000.80	2	
6	Arvo	Pärt	15000.70	1	
7	Arnold	Schönberg	6000.00	2	
8	Anton	Webern	6500.12	2	
9	Alban	Berg	6750.50	2	
10	Olivier	Messiaen	9500.00	3	

$\pi_{\{JobId\}}(Employees)$			
Jobld			
1			
2			
3			

Operacja Selekcji

Przypuśćmy że R jest relacją i niech φ będzie warunkiem określonym na krotkach o atrybutach $\mathsf{Attr}(R)$. Wówczas $\sigma_{\varphi}(R)$ jest relacją o atrybutach $\mathsf{Attr}(\sigma_{\varphi}(R)) := \mathsf{Attr}(R)$ i krotkach

$$\mathsf{Rows}(\sigma_{\varphi}(R)) := \{t \mid t \in R \text{ i } t \text{ spełnia } \varphi\}$$

Zauważmy że

$$\begin{split} \sigma_{\varphi \text{ and } \psi}(R) &= \sigma_{\varphi}(R) \cap \sigma_{\psi}(R) \\ \sigma_{\varphi \text{ or } \psi}(R) &= \sigma_{\varphi}(R) \cup \sigma_{\psi}(R) \\ \sigma_{\mathsf{not } \varphi}(R) &= R \setminus \sigma_{\varphi}(R) \end{split}$$

Operacje Selekcji cd.

Atomowymi operacjami selekcji

nazywamy operacje postaci $\sigma_{C\theta D}(R)$ i $\sigma_{C\theta v}(R)$ gdzie $C, D \in \mathsf{Attr}(R)$, $v \in \mathcal{U}$, a θ jest operatorem porównania takim jak $<, \leq, =$, itp.

Proste operacje selekcji

tworzone są z operacji atomowych przy pomocy operatorów boolowskich.

Złożone operacje selekcji

mogą korzystać także z kwantyfikatorów po innych relacjach.

Przykład Atomowej Operacji Selekcji

		. ,		
ld	FirstName	LastName	Salary	Jobld
6	Arvo	Pärt	15000.70	1
7	Arnold	Schönberg	6000.00	2
8	Anton	Webern	6500.12	2
9	Alban	Berg	6750.50	2
10	Olivier	Messiaen	11000.00	3

$\sigma_{\mathbf{Salary} \geq 10000}(\mathbf{Employees})$

ld	FirstName	LastName	Salary	JobId
6	Arvo	Pärt	15000.70	1
10	Olivier	Messiaen	11000.00	3

Przykład Prostej Operacji Selekcji

_	
Em.	10,4000
	oloyees

		1		
ld	FirstName	LastName	Salary	Jobld
6	Arvo	Pärt	15000.70	1
7	Arnold	Schönberg	6000.00	2
8	Anton	Webern	6500.12	2
9	Alban	Berg	6750.50	2
10	Olivier	Messiaen	11000.00	3

$\sigma_{\mathbf{JobId=3}\vee\mathbf{Salary}>15000}(\mathbf{Employees})$

Id	FirstName	LastName	Salary	Jobld
6	Arvo	Pärt	15000.70	1
10	Olivier	Messiaen	11000.00	3

Operacja Złączenia Naturalnego

Przypuśćmy że relacje R i S są takie że $Attr(R) \cap Attr(S) \neq \emptyset$.

Złączenie naturalne $R \bowtie S$

jest relacją o atrybutach $\mathsf{Attr}(R \bowtie S) := \mathsf{Attr}(R) \cup \mathsf{Attr}(S)$ i krotkach

$$\begin{split} \mathsf{Rows}(R \bowtie S) \\ &= \big\{ t_1 \bowtie t_2 \mid t_1 \in R \land t_2 \in S \land t_1 |_{\mathsf{Attr}_R \cap \mathsf{Attr}_S} = t_2 |_{\mathsf{Attr}_R \cap \mathsf{Attr}_S} \big\}. \end{split}$$

Przypomnijmy że

$$(t_1 \bowtie t_2)(A) := \begin{cases} t_1.A & \text{gdy } A \in Attr(R) \\ t_2.A & \text{gdy } A \in Attr(S) \end{cases} \qquad (= t_2 \bowtie t_1(A))$$

Zauważmy że $R \bowtie S = S \bowtie R$.

Przykład Operacji Złączenia Naturalnego

Empl	oyees
------	-------

ld	FirstName	LastName	Salary	Jld
1	Toru	Takemitsu	10000.11	1
2	Philip	Glass	9000.00	3
3	Michael	Nyman	10000.50	1
4	Henryk	Górecki	11000.00	1
5	Thomas	Tallis	8000.80	2
6	Arvo	Pärt	15000.70	1
7	Arnold	Schönberg	6000.00	2
8	Anton	Webern	6500.12	2
9	Alban	Berg	6750.50	2
10	Olivier	Messiaen	9500.00	3

	Jobs		
Jld	Name	Min	Max
1 2 3	IT Specialist Sales Specialist Administration	8000 5000 7000	20000 9000 10000

Employees ⋈ Jobs

ld	FirstName	LastName	Salary	Jld	Name	Min	Max
1	Toru	Takemitsu	10000.11	1	IT Specialist	8000	20000
2	Philip	Glass	9000.00	3	Administration	7000	10000
3	Michael	Nyman	10000.50	1	IT Specialist	8000	20000
4	Henryk	Górecki	11000.00	1	IT Specialist	8000	20000
5	Thomas	Tallis	8000.80	2	Sales Specialist	5000	9000
6	Arvo	Pärt	15000.70	1	IT Specialist	8000	20000
7	Arnold	Schönberg	6000.00	2	Sales Specialist	5000	9000
8	Anton	Webern	6500.12	2	Sales Specialist	5000	9000
9	Alban	Berg	6750.50	2	Sales Specialist	5000	9000
10	Olivier	Messiaen	9500.00	3	Administration	7000	10000

Złączenie Naturalne a Inne Operacje

Złączenie naturalne można zdefiniować korzystając z operacji **projekcji**, **selekcji**, **przemianowania** oraz **iloczynu kartezjańskiego**.

Niech Attr
$$(R) \cap$$
 Attr $(S) = \{A_1, \ldots, A_n\}$ i niech $\{B_1, \ldots, B_n\} \subseteq \mathcal{A} \setminus \text{Attr}(R) \cup \text{Attr}(S)$. Oznaczmy $\sigma_{\vec{A} = \vec{B}} := \sigma_{A_1 = B_1 \wedge \cdots \wedge A_n = B_n}$ oraz $\rho_{\vec{B}/\vec{A}} := \rho_{B_1/A_1} \circ \cdots \circ \rho_{B_n/A_n}$. Wówczas

$$R \bowtie S = \pi_{\operatorname{Attr}(R) \cup \operatorname{Attr}(S)} \left(\sigma_{\vec{A} = \vec{B}} \left(R \times \rho_{\vec{B} / \vec{A}}(S) \right) \right)$$

Skoro **złączenie naturalne** (inne złączenia zresztą też) może zostać zdefiniowane przy pomocy innych operacji po co traktować je jako odrębną operację komplikując algebrę relacyjną?

Złączenia, Iloczyny Kartezjańskie i Implementacja

Przypuśćmy że $\operatorname{Attr}(R) \cap \operatorname{Attr}(S) = \{A\}, \ B \notin \operatorname{Attr}(R) \cup \operatorname{Attr}(S)$ |R| = N i |S| = M. Wówczas $|R \times \rho_{B/A}(S)| = MN$ ale $|R \bowtie S| \leq N$ jeśli wartość A jednoznacznie identyfikuje krotkę w S.

Istnieje wiele algorytmów implementacji złączenia niewymagających tworzenia danych pośrednich o rozmiarze MN.

Przykładem jest naiwny algorytm który wymaga MN operacji ale korzysta jedynie z $|R|+|S|+|R\bowtie S|$ rekordów w pamięci:

for all
$$t_1 \in R$$

for all $t_2 \in S$
if $(t_1(A) = t_2(A))$ yield $t_1 \bowtie t_2$

 istnieją też znacznie bardziej efektywne algorytmy zarówno korzystające jak i nie korzystające z indeksów.

θ-Złączenia i Złączenia Warunkowe

Przypuśćmy że R i S są relacjami takimi że $Attr(R) \cap Attr(S) = \emptyset$. Niech $C \in Attr_R$, $D \in Attr_S$ i niech θ będzie jednym z binarnych operatorów porównania <, >, \le , \ge , =, itp.

θ -złączenie relacji R i S (na C, D)

jest zdefiniowane jako $R \bowtie_{C\theta D} S := \sigma_{C\theta D}(R \times S)$

- W ogólności mamy dla pewnego warunku ϕ będącego kombinacją boolowską warunków postaci $A\theta B$, gdzie $A \in \text{Attr}(R)$ a $B \in \text{Attr}(S)$, **złączenie warunkowe** $R \bowtie_{\Phi} S := \sigma_{\Phi}(R \times S)$.
- Szczególny przypadek $R \bowtie_{A_1=B_1 \land \dots \land A_k=B_k} S$ nazywa się złączeniem równościowym (equijoin).

Dwa Oznaczenia Pomocnicze

Niech X będzie skończonym zbiorem atrybutów. Niech $\operatorname{\mathbf{null}}_X$ będzie relacją zawierającą pojedyńczą krotkę o atrybutach X i wartości $\operatorname{\mathbf{NULL}}$ dla każdego z tych atrybutów, tzn., $\operatorname{\mathsf{Attr}}(\operatorname{\mathbf{null}}_X) = X$ i $\operatorname{\mathsf{Rows}}(\operatorname{\mathbf{null}}_X) = \{t\}$, gdzie $t.A = \operatorname{\mathbf{NULL}}$ dla każdego $A \in X$.

Przypuśćmy że złączenie naturalne $R\bowtie S$ jest określone. Oznaczmy przez R_{-S} relację składającą się z krotek należących do R dla których nie istnieją odpowiadające (w sensie złączenia) krotki w relacji S:

$$R_{-S} := R \setminus \pi_{\mathsf{Attr}_R}(R \bowtie S)$$

Dodatkowo oznaczmy $R_{-S}^{\bowtie} := R_{-S} \times \mathbf{null}_{\mathsf{Attr}(S) \setminus \mathsf{Attr}(R)}$.

Złączenia Zewnętrzne

Złączenia zewnętrzne, zdefiniowane dla tych samych par relacji co złączenia naturalne, oprócz złączonych krotek zawierają także wszystkie krotki z jednej lub obu relacji biorących udział w złączeniu dla których nie istnieje odpowiadająca krotka z drugiej relacji

Wyróżniamy następujące rodzaje złączeń zewnętrznych:

■ Lewe złączenie zewnętrzne (left outer join)

$$R^{(+)}\bowtie S:=R\bowtie S\cup R^{\bowtie}_{-S}$$

Prawe złączenie zewnętrzne (right outer join)

$$R\bowtie^{(+)} S := R\bowtie S\cup S^{\bowtie}_{-R}$$

■ Pełne złączenie zewnętrzne (full outer join)

$$R^{(+)}\bowtie^{(+)} S := R\bowtie S\cup R^{\bowtie}_{-S}\cup S^{\bowtie}_{-R}$$

Przykłady Złączeń Zewnętrznych

R	
X	Υ
10	1
20	2
30	2
100	3

Υ	Z	
1	X1	
2	X2	
4	X4	

$R^{(+)}\bowtie S$			
Х	Υ	Z	
10	1	X1	
20	2	X2	
30	2	X2	
100	3	NULL	

R ⋈	1(+)	5
Х	Υ	Z
10	1	X1
20	2	X2
30	2	X2
NULL	4	X4

$R^{(+)}\bowtie^{(+)} S$				
Х	Υ	Z		
10	1	X1		
20	2	X2		
30	2	X2		
100	3	NULL		
NULL	4	X4		

/	$R\bowtie S$			
X	Υ	Z		
10	1	X1		
20	2	X2		
30	2	X2		

Warunkowe Złączenia Zewnętrzne

Także złączenia warunkowe występują w (trzech) wersjach zewnętrznych

R	
X	
1	
2	
10	

S
Υ
0
9

$$\begin{array}{c|c}
R^{(+)} \bowtie_{X < Y} S \\
\hline
X & Y \\
\hline
1 & 9 \\
2 & 9 \\
10 & NULL
\end{array}$$

$R\bowtie_{X$, 5
Х	Υ
NULL	0
1	9
2	9

$R^{(+)}\bowtie$	$\stackrel{(+)}{x_{\leq Y}} S$
Х	Y
NULL	0
1	9
2	9
10	NULL

$R\bowtie$	X < Y
X	Y
1	9
2	9

Operator Dzielenia Relacji

Chcemy mieć operator ÷ będący odwrotnością iloczynu kartezjańskiego w tym sensie że

$$(K \times S) \div S = K$$

Przypuśćmy że R is S są relacjami takimi że $\mathsf{Attr}(S) \subsetneq \mathsf{Attr}(R)$. Oznaczmy $X := \mathsf{Attr}(R) \setminus \mathsf{Attr}(S)$. Wówczas $R \div S$ jest relacją o atrybutach X zdefiniowaną jako największa relacja K taka że

$$K \subseteq \pi_X(R)$$
 i $K \times S \subseteq R$.

Przykład Użycia Operatora Dzielenia Relacji

- Zadanie: Podać identyfikatory programistów którzy znają wszystkie języki wymienione w ImpLang
- Rozwiązanie: Programmers ÷ ImpLang

Programmers		
ld	Language	
1	C++	
1	Java	
1	Haskell	
2	Haskell	
2	Java	
3	C++	
3	Java	

ImpLang	
Language	
C++	
Java	

${\bf Programmers} \div {\bf ImpLang}$
ld
1
3

Operator Dzielenia Relacji a Inne Operatory

Przypuśćmy że R is S są relacjami takimi że $\mathsf{Attr}(S) \subsetneq \mathsf{Attr}(R)$. Oznaczmy $X := \mathsf{Attr}(R) \setminus \mathsf{Attr}(S)$. Wówczas

$$R \div S = \pi_X(R) \setminus \pi_X\left((\pi_X(R) \times S) \setminus R\right)$$

gdzie $(\pi_X(R) \times S) \setminus R$ to zbiór elementów które powinny być w R gdyby był on iloczynem kartezjańskim rzutowania R na X z S, ale ich w R nie ma.

Przykłady Własności Operatorów Algebry Relacyjnej

Równości poniżej oznaczają że jeśli wyrażenie po jednej ze stron jest dobrze określone, to dobrze określone jest też wyrażenie po drugiej stronie i są one sobie równe.

- Naturalne złączenia i iloczyny kartezjańskie są **przemienne**, czyli $R \bowtie S = S \bowtie R$ i $R \times S = S \times R$.
- Naturalne złączenia i iloczyny kartezjańskie są łączne, czyli

$$(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T), \quad (R \times S) \times T = R \times (S \times T)$$

Przypuśćmy że warunek φ zależy wyłącznie od atrybutów relacji
 R. Wówczas

$$\sigma_{\Phi}(R \bowtie S) = \sigma_{\Phi}(R) \bowtie S.$$

Podobna własność zachodzi dla iloczynów kartezjańskich.