YOHO model for Audio Segmentation and Sound Event Detection

Davide Capone [SM3500601] Enrico Stefanel [SM3500554] {davide.capone, enrico.stefanel}@studenti.units.it

Data Science and Scientific Computing Master's Course Department of Mathematics and Geosciences University of Trieste

A.Y. 2023-2024

Contents

Introduction

Audio Segmentation and Sound Event Detection

YOHO model

Proposed improvements

Architectural improvements

Conclusions

Audio Segmentation and Sound Event Detection

Introduction 000

Datasets

Introduction $\stackrel{\circ}{\circ}$ \bullet \circ

Metrics

. . .

YOHO model

Presented in 2021[1]...

Output shape

Figure: The YOHO output shape.

Network Architecture

. . .

Loss Function

$$\mathcal{L}_c(\hat{y}, y) = \begin{cases} (\hat{y}_1 - y_1)^2 + \\ (\hat{y}_2 - y_2)^2 + (\hat{y}_3 - y_3)^2 & \text{if } y_1 = 1 \\ (\hat{y}_1 - y_1)^2, & \text{if } y_1 = 0 \end{cases}$$

where y and \hat{y} are the ground-truth and predictions respectively. $y_1 = 1$ if the acoustic class is present and $y_1 = 0$ if the class is absent. y_2 and y_3 , which are the start and endpoints for each acoustic class are considered only if y = 1. In other words, $(\hat{y}_1 - y_1)^2$ corresponds to **the classification loss** and $(\hat{y}_2 - y_2)^2 + (\hat{y}_3 - y_3)^2$ corresponds to **the regression loss**.

Other Details

. . .

Proposed improvements

Proposed improvements

Conclusions

Questions?

References

Satvik Venkatesh, David Moffat, and Eduardo Reck Miranda. "You Only Hear Once: A YOLO-like Algorithm for Audio Segmentation and Sound Event Detection". In: Applied Sciences 12.7 (Mar. 2022), p. 3293. ISSN: 2076-3417. DOI: 10.3390/app12073293. URL: http://dx.doi.org/10.3390/app12073293.