Geometrie pro počítačovou grafiku

Poznámky z přednášek

Letní semestr 2020/2021

Viktor Soukup, Lukáš Salak

Obsah

1	První přednáška	2
	1.1 Shodná zobrazení	2
2	Druhá přednáška	3

1 První přednáška

Využití:

- 1. počítačová grafika, animace
- 2. počítačový design
- 3. robotika, mechanika, CNC stroje
- 4. zpracování obrazu, umělé vidění...

1.1 Shodná zobrazení

Existuje šest shodností v rovině:

- 1. osová souměrnost
- 2. otočení
- 3. středová souměrnost
- 4. posunutí
- 5. posunuté zrcadlení
- 6. identita

Definice: osová souměrnost

Nechť je daná přímka o, kterou nazýváme osa souměrnosti. Potom pro obraz M' libovolného bodu M této přímky o platí M'=M. Ke každému X, který neleží na přímce o sestrojíme obraz X' následujícím způsobem:

Bodem X vedeme kolmici k na přímku o a její patu označíme X_0 . Na polopřímce opačné k polopřímce X_0X sestrojíme bod X' tak, že $|X'X_0| = |XX_0|$. Takto definované zobrazení nazýváme osová souměrnost s osou o.

Příklad: Je daná přímka p a body A, B v téže polorovině s hraniční přímkou p. Najděte všechny body $X \in p$ takové, aby součet |AX| + |BX| byl minimální. Řešení: jeden z bodů promítneme pomocí souměrnosti na druhou stranu a spojíme s druhým. Pak bod X bude průsečník |AB'| a p.

zo slidov 4. slide

Poznámka: 1. Shodné zobrazení, jehož všechny samodružné body vyplní přímku o, je souměrnost podle osy o (alternativní definice).

- 2. Jestliže existují na přímce dva různé samodružné body, pak každý bod této přímky je samodružný.
- 3. Má-li shodnost alespoň tři nekolineární samodružné body, je to identita.
- 4. Má-li shodnost dva různé samodružné body a není identitou, pak je osovou souměrností.
- 5. Samodružné přímky osové souměrnosti jsou přímky kolmé na osu souměrnosti.

Příklad: Napište analytické vyjádření osové souměrnosti s osami x a y.

Rešení: Vezmeme na ose x bod M=M'. Víme, že všechny body na x budou samodružné. Jiné body, které neleží na přímce (osi) x bude mít nějaké souřadnice B=[x,y]. Potom $B'=[x,-y]=[x',y']\forall x,y$. Víme, že x'=y a y'=-y. To je analytické vyjádření osové souměrnosti podle osi x. Podobně obráceně pro y.

Příklad: Obecný tvar přímky: Napište analytické vyjádření osové souměrnosti podle osy o: ax + by + c = 0 (Potažmo konkrétně 3x+4y-7=0).

Řešení:(screenshot z prednášky, okolo 50. minuty záznamu)

Definice: Otočení

Otočení (rotace) je zobrazení určené středem S a orientovaným úhlem velikosti ϕ , které bodu S přirazuje týž bod S a libovolnému bodu $X \neq S$ přiřazuje bod X' tak, že |X'S| = |XS| a orientovaný úhel XSX' má velikost ϕ . Bod S nazýváme střed otáčení a ϕ je úhel otáčení.

Poznámka: 1. Shodnost, která není ani identitou ani osovou souměrností, má nejvýše jeden samodružný bod.

- 2. Shodnost s právě jedním samodružným bodem je rotace (alternativní definice).
- 3. Složením dvou osových souměrností s růžnoběžnými osami vznikne otočení, jehož středem je průsečník těchto os.
- 4. Otočení se středem S a úhlem α převádí přímku p v přímku p' různoběžnou s p. Přitom dva vrcholové úhly, které p a p' svírají, mají velikost α .
- 5. Složením posunusí, rotace $R(O, \alpha)$ a posunutím dostaneme rotaci o libovolném středu.

2 Druhá přednáška

Příklad: Odvoď te analytické vyjádření otočení se středem v počátku souřadnicové soustavy o úhel α . Potom ukažte, že toto zobrazení má jeden bod <fuk>.

Definice (Středová souměrnost): Středová souměrnost se středem v S je shodné zobrazení, které bodu S přiřazuje týž bod S a libovolnému bodu $X \neq S$ přiřazuje bod X' tak, že bod S je středem úsečky XX'.

Poznámka (Vlastnosti středové souměrnosti): Platí:

- 1. Středovou souměrnost lze chápat jako speciální případ rotace.
- 2. Lze ji rozložit na dvě osové souměrnosti, jejichž osy jsou navzájem kolmé a procházejí středem souměrnosti S, který je jejich průsečíkem.
- 3. Je jednoznačně určena svým středem.
- 4. Má jediný samodružný bod a všechny směry jsou samodružné.
- 5. Obrazem každé přímky je přímka s ní rovnoběžná. Přímka, která prochází středem souměrnosti je samodružná.

Příklad: Je daná úsečka (těžnice) $|AS_{BC}| = 5cm$. Sestrojte všechny trojúhelníky ABC, s danou těžnicí t_a , c = 4cm, b = 7cm.

TODO reseni

Příklad: Odvoďte analytické vyjádření středové souměrnosti v rovině.

TODO reseni

Definice (Posunutí): Orientovanou úsečkou AB je dán vektor $\vec{v} = \vec{AB}$. Posunutí(translace) je zobrazení, které každému bodu roviny X přiřazuje bod X' tak, že $XX' = \vec{v}$, to znamená $X' = X + \vec{v}$.

Poznámka (Vlastnosti posunutí): 1. Lze definovat též jako shodnost složenou ze dvou osových souměrností s různými rovnoběžnými osami. Směr posunutí je kolmý na směr těchto os a jeho velikost je rovna dvojnásobku těchto vzdáleností.

2. Posunutí nemá žádný samodružný bod.

Příklad: Odvoď te analytické vyjádření posunutí.

TODO reseni

Definice (Grupa shodností v eukleidovském prostoru): Zobrazení $f: \mathbb{R}^n \to \mathbb{R}^n$ se nazývá shodné, jestliže pro každé dva body $X, Y \in \mathbb{R}^n$ platí |f(X)f(Y)| = |XY|

- Každé shodné zobrazení je prosté a afinní.
- Úsečka se zobrazí na úsečku, bod na bod atd.

Věta: Složení dvou shodných zobrazení je shodnost, shodnosti jsou prostá zobrazení a inverzní zobrazení ke shodnosti je opět shodnost.

Důkaz: TODO □

Věta: Shodná zobrazení $f: \mathbb{R}^n \to \mathbb{R}^n$ jsou právě zobrazení tvaru: f(X) = AX + p, kde $p \in \mathbb{R}^n$ je libovolný vektor a A je matice $n \times n$ splňující $A^T A = I_n$.

Důkaz: TODO □

Věta: Ke každé shodnosti existuje inverzní zobrazení.

Důkaz: TODO □

Definice (Přímé, nepřímé zobrazení): Zobrazení f je přímé, pokud det(A) = 1 a nepřímé, pokud det(A) = -1

Důsledek (Důsledky k předcházejícím větám): • Všechny shodnosti v \mathbb{R}^n tvoří grupu E(n). Její dimenze je n(n+1)/2.

- Lineární zobrazení vektorového prostoru \mathbb{R}^n do sebe, dané maticí A se nazývá asociované lineární zobrazení f.
- \bullet Bodům, které se zobrazí na sebe sama říkáme samodružné body f(X)=X. Směrům říkáme samodružné směry.
- Reálná vlastní čísla metice A mohou být pouze ± 1 .
- Přímé shodnosti tvoří podgrupu.
- \bullet Shodná zobrazení, kde A=E tvoří podgrupu posunutí.
- Shodná zobrazení, kde p = 0 tvoří podgrupu isometrií.

Věta: $Každá přímá shodnost v \mathbb{R}^2$ je buď posunutí, nebo otočení. Každá nepřímá shodnost je buď osová souměrnost, nebo posunutá osová souměrnost. (směr posunutí je rovnoběžný s osou)

Důkaz: TODO □

The End