

深度學習 Deep Learning

可解釋性人工智慧 Explainable AI

Instructor: 林英嘉 (Ying-Jia Lin)

2025/05/19

Course GitHub

Slido # DL 0519

Outline

- Introduction
- Class-activation Map (CAM)
- Grad-CAM
- Code

Prediction of a Machine Learning Model

黑箱

作業

Example: Classification

- Test model: resnet18 pre-trained on ImageNet-1K
- Method: Class activation map (CAM)

Input Image

Pembroke Welsh Corgi

window shade

Visualizing Feature Maps in a CNN

• 151st channel on the conv5 layer of a deep neural network trained on ImageNet

Example with SHAP

狐獴

mongoose

獴科

Figure source: https://github.com/shap/shap

-0.006-0.004-0.0020.000 0.002 0.004 0.006 SHAP value

模型的可解釋性與效能

Figure source: Morocho-Cayamcela, Manuel Eugenio, Haeyoung Lee, and Wansu Lim. "Machine learning for 5G/B5G mobile and wireless communications: Potential, limitations, and future directions." IEEE access 7 (2019): 137184-137206.

Figure source: https://9gag.com/gag/aOYA1mE?ref=pn.mw

Why is Explainable AI important?

- 確認機器學習模型的判斷合理
 - 建立信任(使用者/政府)
- 改進機器學習模型
 - 從模型輸出找出改進的策略

Convolutional Neural Networks (Recap)

[Recap] The whole Process of a CNN

CNN: Convolutional Neural Networks

[Recap] Convolutions (stride = 1)

1	1	1	1	0	0
0	1	1	0	1	0
0	0	1	1	0	0
0	0	1	1	1	0
0	0	0	1	1	0
0	0	0	0	0	0

Stride = 1

1	0	0
0	1	0
0	0	-1

Filter

Element-wise multiplication

1

[Recap] Convolutions (stride = 1)

1	1	1	1	0	0
0	1	1	0	1	0
0	0	1	1	0	0
0	0	1	1	1	0
0	0	0	1	1	0
0	0	0	0	0	0

Stride = 1

1	0	0
0	1	0
0	0	-1

Filter

Element-wise multiplication

1	1	1	2
-1	1	1	0
0	0	1	2
0	0	1	2

feature map

[Recep] 2x2 Pooling (example of Max Pooling)

1	3	1	2
-1	1	1	0
0	1	1	0
0	0	1	2

3	2
1	2

參數:

- kernel_size=2
- stride = 2

[Recep] 2x2 Pooling (example of Average Pooling)

1	3	1	2
-1	1	1	0
0	1	1	0
0	0	1	2

参數:

ize=2

• stride = 2

1	1	
0.25	1	

[Recap] Convolutional Neural Networks (CNN)

[Recap] FC layer 參數量

FC: fully-connected

RGB images	參數量比較 (不算 bias 數)
FC layer	128* 4 * 4 * 10 = 20480

如果不要拉平 (flattening) 呢?

Global Average Pooling (GAP)

Feature Map

1	3	1	2
-1	1	1	0
0	1	1	0
0	0	1	2

CNN with Global Average Pooling (GAP)

18

FC: fully-connected

加入GAP後參數量下降

Original version

GAP version

RGB images	參數量比較 (不算 bias 數)
Original	128* 4 * 4 * 10 = 20480
GAP	128 * 10 = 1280

加入 GAP 後 Testing Error 下降

Table 5: Global average pooling compared to fully connected layer.

_	Method	Testing Error
Original	mlpconv + Fully Connected	11.59%
_	mlpconv + Fully Connected + Dropout	10.88%
	mlpconv + Global Average Pooling	10.41%

*Dropout 也是減少FC layer中node連接數量的方法

ResNet 架構

https://arxiv.org/abs/1512.03385

(Recap)

ResNet 的最後也是 GAP + FC

Residual X Layer(s) + Y

Class-activation Map (CAM)

[Recap] Convolutional Neural Networks (CNN)

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Class-activation Map (CAM)

*假設使用 ImageNet pre-trained model

Why Global "Average" Pooling?

How about Global "Summation" Pooling?

How about Global "Max" Pooling (GMP)?

Table 2. Localization error on the ILSVRC validation set. *Back-prop* refers to using [22] for localization instead of CAM.

Method	top-1 val.error	top-5 val. error
GoogLeNet-GAP	56.40	43.00
VGGnet-GAP	57.20	45.14
GoogLeNet	60.09	49.34
AlexNet*-GAP	63.75	49.53
AlexNet-GAP	67.19	52.16
NIN	65.47	54.19
Backprop on GoogLeNet	61.31	50.55
Backprop on VGGnet	61.12	51.46
Backprop on AlexNet	65.17	52.64
GoogLeNet-GMP	57.78	45.26

CAM的問題

不是每個模型最後面都是 GAP + FC (E.g., VGG-16 的最後是 3 層 FC \ ViT 的最後只有 FC)

Grad-CAM (1)

Grad: gradients

i, j: feature map 中x軸與y軸位置

A: feature map

k: feature map 的數目

 y^c : 對應到 class c 的 label ID

Step1: 計算特定 class (假設是 y^0)

對於任一張 feature map 中每個

位置 $(A_{i,j}^k)$ 的梯度 $\frac{\partial y^c}{\partial A_{i,j}^k}$

Grad-CAM (2)

為什麼要使用梯度?

i,j: feature map 中x軸與y軸位置

A: feature map

k: feature map 的數目

 y^c : 對應到 class c 的 label ID

- $\frac{\partial y^c}{\partial A_{i,j}^k}$ 代表 feature map 中任意位置的數值 $(A_{i,j}^k)$ 對 y^c 的影響
- 如果一 feature map 有位置 $A_{i,j}^k$ 對 y^c 的影響很大 $(\frac{\partial y^c}{\partial A_{i,j}^k}$ 很大), α_k^c 也會跟著被放大,代表該 feature map 可能對 y^c 特別重要

Automatic Evaluations

- Annotated datasets
 - ILSVRC (ImageNet Large Scale Visual Recognition Challenge) Localization
- Human Evaluation

Figure source: https://www.kaggle.com/c/imagenet-object-localization-challenge/overview/description

Example: Medical Image Classification

Pelvic X-ray fracture classification with Grad-CAM

Example: VQA (Visual Question Answering)

VQA with explanations

Question: What time of year was the picture likely taken?

Answer: fall

Ground Truth Explanations:

- The child is wearing a long sleeve shirt and pants but no coat.
- 2) There are brown leaves on the sidewalk.
- 3) The time is fall.

Whitehouse, Chenxi, Tillman Weyde, and Pranava Swaroop Madhyastha. "Towards a Unified Model for Generating Answers and Explanations in Visual Question Answering." Findings of EACL 2023.

Question: What is Person1 going to do? Answer: Person1 is going to lead a business meeting.

Ground Truth Explanation:
Person1 is at the head of a table of men in suits.

重要論文

- Network In Network: https://arxiv.org/abs/1312.4400
- Class-activation Map (CAM): https://arxiv.org/abs/1512.04150
- Grad-CAM: https://arxiv.org/abs/1610.02391
- SHAP: https://arxiv.org/abs/1705.07874
- Guided back-propagation: https://arxiv.org/pdf/1412.6806

延伸主題

可不可以完全不要FC LAYERS?

FC layers 會大量增加參數

完全沒有採用 FC layers 的模型 (論文)

- Network In Network: https://arxiv.org/abs/1312.4400
- SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size (ICLR 2017): https://openreview.net/forum?id=S1xh5sYgx

Channels 數目調整

*維度意義:(C, H, W)

(128, 4, 4) (10, 4, 4)

(128, 4, 4) (10, 4, 4)

PyTorch 寫法

```
torch.nn.Conv2d(
   in_channels=128,
   out_channels=10,
   kernel_size=3,
   padding=1,
)
```

Filters 參數 (weights) 數量

```
128*10*3*3 =
11,520
```

1 x 1 convolution

```
torch.nn.Conv2d(
   in_channels=128,
   out_channels=10,
   kernel_size=1,
   padding=0,
)
```

128*10*1*1 = 1,280

1 x 1 Convolution

1	1	1	1	0	0
0	1	1	0	1	0
0	0	1	1	0	0
0	0	1	1	1	0
0	0	0	1	1	0
0	0	0	0	0	0

Stride = 1

1 1 1 1 0 0

1

Filter (假設數值為1)

CNN with Global Average Pooling (GAP)

PyTorch

Class-activation Map (CAM)

*假設使用 ImageNet pre-trained model

Full-connected (FC) layer

需要取得中間輸出

register_forward_hook

作業繳交時程

項目	一般截止日期	畢業生截止日期
Hemework 3	2025/05/12 23:59 (W13)	同左
Homework 4	2025/06/06 23:59 (W16)	2025/05/ <mark>28</mark> 23:59 (W15)
Checkpoint3 簡報檔案 (5/26報告組)	2025/05/ <mark>25</mark> 23:59 (W15)	同左
Checkpoint3 簡報檔案 (6/02報告組)	2025/06/ <mark>01</mark> 23:59 (W16)	-
Final project 程式碼與書面報告	2025/06/06 23:59 (W16)	2025/05/ <mark>28</mark> 23:59 (W15)

Week 15 / Week 16 之前要繳交什麼?

- 一組繳交一份,請上傳至 Teams
- 檔名:DL_teamN_checkpoint3.pdf 或 DL_teamN_checkpoint3.pptx
- 前10頁: Checkpoint1+2 原始簡報內容 (如有需要,可修改)
- 後5頁(或更多):新進度補充
 - 1. 實作的方法介紹 (代表各組需完成初步實作),可以包含:
 - 資料前處理、模型介紹、訓練策略 (如 loss function、optimizer、scheduler 等) 等...
 - 2. 與上次 (Checkpoint2) 的差異
 - 3. 實驗結果比較(含實驗設定說明),可比較上次結果
 - 4. Kaggle Leaderboard 名次或分數 (請截圖貼到pptx中)
 - 5. 時程規劃(再來還要簡單測試什麼?用表格列出未來1週內的可能測試與安排)
- 6. 針對 Checkpoint3 之前的小組分工細節

Final Project 各個階段分數佔比

Final Project 佔學期總成績 30%

查核點 (週次)	對象: 繳交內容	分數佔比
Checkpoint1 (Week 11)	All teams: 進度報告 PPT (5 pages)檔案	5%
Checkpoint2 (Week 13)	All teams: 進度報告 PPT (5+5 pages*)檔案 Selected teams: 取6組 (1題目2組) 於課堂中報告,1組10min	5%
Checkpoint3 (Week 15-16)	All teams: 最終口頭報告	10%
Checkpoint4 (Week 16-17)	All teams: 書面報告檔案	10%

^{*}繼承Checkpoint1內容+實作

互評機制

- 每人要為與自己相同題目的組別打分數
- 打分數表單將於 Week 15 上課前公布

Thank you!

Instructor: 林英嘉

yjlin@cgu.edu.tw

TA: 林君襄

becky890926@gmail.com