

Universidad Nacional de Colombia Facultad de ingeniería mecánica y mecatrónica

Andrés Holguín Restrepo

Índice

- 1. IIOT
- 2. Propuesta de proyecto
- 3. Papers relacionados
- 4. Conclusiones
- 5. Referencias

11

Integración de dispositivos y sistemas de carácter industrial en una red de comunicación.

- Edge Computing
- Mantenimiento predictivo
- Análisis de Big Data Industrial

- Ciberseguridad
- Robótica industrial
- Redes eléctricas inteligentes
- Monitoreo remoto

Implementación cámaras realsense en SDVs

Papers relacionados

Cloud Computing Fuzzy
Adaptive Predictive Control for
Mobile Robots

Fuzzy logic based mobile robot target tracking in dynamic hostile environment

Tracking Control For Wheeled Mobile Robot Using RGBD Sensor

Objetivos y Cloud computing

Lograr el seguimiento de trayectorias en tiempo real y evitar obstáculos con control de movimientos de carácter elípticos.

Fig. 5. The structure of the cloud computing fuzzy adaptive predictive control.

Dynamic System) [2]

Resultados

Fig. 7. Relative Position Schematic Diagram

[2]

Fig. 8. Obstacle avoidance experiments with fuzzy adaptive controller [2]

Fuzzy logic based mobile robot target tracking in dynamic hostile environment

DAQ y dirección objetivo

Figure 1 (a): RGB image

Figure 1 (b): Depth image

[3]

Figure 3: Target direction

Control difuso

Figure 2: fuzzy logic based navigation controller

Figure 5: Membership function for angle

Figure 6: Membership function for distance

[3]

[3]

Figure 9: Membership function for moving direction

$$L_{moving_direction} = \{L, FL, F, FR, R\}$$

Resultados

Figure 11 (a): Dynamic environment with a specified target

Figure 11 (b): Path taken by the robot

Figure 13 (a): Hostile environment with two targets

Figure 13 (b): Path taken by the robot

Configuración del espacio

Fig. 1 a) A general description of the system. b) The Mobile robot as seen from the depth camera.

[4]

Fig. 4 Obstacle detection

Adquisición de datos y planificación de rutas

Detección de obstáculos

(b)

(a)

Fig. 9. Vision information. (a)RGB image captured by the ASUS Xtion Pro. (b) Raw depth image captured by the ASUS Xtion Pro. [4]

Probabilistic Roadmap path planning algorithm (PRM)

Fig. 10. Path planning. The scene converted to a binary image. (b) PRM path

Control y red de comunicación

Ecuación diferencial del sistema

$$M(q)\ddot{q} + C(q, \dot{q})\dot{q} + G(q) = B(q)\tau - A^{T}(q)\lambda$$

$$V(t) = \begin{bmatrix} v \\ \omega \end{bmatrix} = \begin{bmatrix} k_{1}\tilde{x} + v_{d}\cos\tilde{\phi} \\ \omega_{d} + k_{2}v_{d}\tilde{y} + k_{3}v_{d}\sin\tilde{\phi} \end{bmatrix}$$

Diagrama de bloques

Fig. 2 control design

Red de comunicación

Fig. 13. Tracking trajectory in (X, Y) plan.

Resultados

Fig. 11. Tracking control for mobile robot. (a) Tracking trajectory of x-position, (b) Tracking trajectory of y-position (c) Tracking trajectory of φ-direction.

Conclusiones

- A partir de los avances de la IIOT, se han podido desarrollar avances tecnológicos en la comunicación de dispositivos y servicios para optimizar procesos industriales.
- Los sensores de profundidad son capaces de generar la información necesaria para poder desarrollar trayectorias óptimas en robots móviles.
- El uso de controladores difusos ha ayudado al control de AGVs en espacios con obstáculos estáticos y dinámicos.

Referencias

[1] fin/DMB/MLA/LOF. (2019, July 2). LabFabEx, un laboratorio para mostrar. Agencia UNAL. https://agenciadenoticias.unal.edu.co/detalle/labfabex-un-laboratorio-para-mostrar

[2] Yu, W. S., & Chen, C. C. (2019). Cloud Computing Fuzzy Adaptive Predictive Control for Mobile Robots. *Proceedings - 2018 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2018*, 4094–4099. https://doi.org/10.1109/SMC.2018.00694

[3] Fernando, T., Gammulle, H., & Walgampaya, C. (2015, July 14). Fuzzy logic based mobile robot target tracking in dynamic hostile environment. 2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications, CIVEMSA 2015. https://doi.org/10.1109/CIVEMSA.2015.7158609

[4] Fareh, R., Rabie, T., & Baziyad, M. (2017). Tracking Control For Wheeled Mobile Robot Using RGBD Sensor. 2017 4th International Conference on Control (CoDIT'17).