The listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A benzimdazole compound according to formula I

or a physiologically compatible salt thereof,

in which

 R^{\perp} means a monocyclic or bicyclic C_{6-12} aryl group or a monocyclic or bicyclic 5-to 10-membered heteroaryl group with 1-4 heteroatoms selected from the group that consists of N, S or and O, wherein said aryl or heteroaryl group is unsubstituted or is substituted with up to three of the following substituents, independently of one another selected from:

F, Cl, Br, I,

C(NH)NH₂, C(NH)NHR⁴, C(NH)NR⁴R⁴, C(NR⁴)NH₂, C(NR⁴)NHR⁴,

 $C(NR^4)NR^4R^{4'}$,

XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴,

XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴,

XCN, XCOOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH,

XCONHOR⁴, XCOSR⁴,

XSR⁴, XSOR⁴, XSO₂R⁴,

SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴,

NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴)SO₂R⁴,

XNR⁴SO₂R⁴,

XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-

dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, and R4,

wherein when two of said substituents for the aryl or heteroaryl group, if they are in ortho-position to one another, can be they are optionally linked to one another in such a way

that they to jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl;

 R^2 means a monocyclic or bicyclic C_{6-10} aryl group or a monocyclic or bicyclic 5-to 10-membered heteroaryl group with 1-4 heteroatoms selected from the group that consists of N, S or and O, wherein said aryl or heteroaryl group is unsubstituted or is substituted with up to three of the following substituents, independently of one another selected from:

F, Cl, Br, I,

XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴,

XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴,

XCOOH, XCOOR⁴, XCONH₂, XCONHR⁴, XCONR⁴R⁴, XCONHOH,

XCONHOR⁴, XCOSR⁴,

XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴,

NO₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴)SO₂R⁴, XNR⁴SO₂R⁴, tetrahydro
2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7
dioxoisoindol-1-yl, and R⁴,

wherein when two of said substituents for the aryl or heteroaryl group, if they are in ortho-position to one another, ean-be they are optionally linked to one another in such a way that they to jointly form methanediyl-bisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl;

 R^3 means one or two substituents which are independently of one another <u>selected</u> from:

hydrogen,

F, Cl, Br, I,

XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴,

XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴,

XCN, XCOOH, XCOOR⁴, XCONH₂, XCONHR⁴, XCONR⁴R⁴, XCONHOH,

 $XCONHOR^4,\,XCOSR^4,\,XSR^4,\,XSOR^4,\,XSO_2R^4,\,SO_2NH_2,\,SO_2NHR^4,$

SO₂NR⁴R⁴',

NO₂, XNH₂, XNHR⁴, XNR⁴R⁴,

XNHSO₂R⁴, XNR⁴SO₂R⁴, XN(SO₂R⁴)(SO₂R⁴),

XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, or and R⁴,

wherein <u>when</u> two substituents R³, if they are in ortho-position to one another, ean be they are optionally linked to one another in such a way that they to jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl;

 R^4 and R^4 , independently of one another, mean $C_{1.4}$ perfluoroalkyl, $C_{1.6}$ alkyl, $C_{2.6}$ alkenyl, $C_{2.6}$ alkinyl, $C_{3.7}$ cycloalkyl, $C_{1.3}$ alkyl- $C_{3.7}$ cycloalkyl, $C_{1.3}$ alkyl- $C_{6.10}$ aryl, $C_{1.3}$ alkyl-5 to 10-membered heteroaryl with 1-4 heteroatoms selected from N, S and or O, atoms, $C_{6.10}$ aryl or 5- to 10-membered heteroaryl with 1-4 heteroatoms selected from N, S or and O atoms, wherein aryl and heteroaryl groups are unsubstituted or substituted by one or two substituents selected from F, Cl, Br, CH₃, C_2H_5 , NO₂, OCH₃, OC₂H₅, CF₃, and C_2F_5 , or ean optionally carry an annelated methanediylbisoxy group or ethane-1,2-diylbisoxy group, and wherein a 5-membered cycloalkyl ring ean optionally have has an N or O ring member, and wherein a 6- or 7-membered cycloalkyl ring ean optionally have has an N and/or O ring member, and wherein one or two ring members which are each ring nitrogens optionally ean be are substituted with C_{1-3} alkyl or C_{1-3} alkanoyl;

 R^5 and R^5 ', independently of one another, mean C_{1-6} alkyl, C_{2-6} alkenyl, or C_{2-6} alkinyl, wherein in each case a carbon atom ean be is optionally replaced by O, S, SO, SO₂, NH, N C_{1-3} alkyl or N C_{1-3} alkanoyl,

 C_{3-7} cycloalkyl- C_{0-3} alkyl, wherein a 5-membered cycloalkyl ring, ean optionally have has an N or O ring member and a 6- or 7-membered cycloalkyl ring ean optionally have has one or two ring members which are each N or O, wherein ring nitrogens optionally ean be are substituted with C_{1-3} alkyl or C_{1-3} alkanoyl,

 C_{6-10} aryl or 5- to 10-membered heteroaryl with 1-4 heteroatoms <u>selected</u> from N, S, and O,

whereby wherein the mentioned alkyl, alkenyl and alkinyl groups chains can be are optionally substituted with one of the previously mentioned cycloalkyls, aryls or heteroaryls,

whereby wherein all previously mentioned alkyl and cycloalkyl radicals ean be are optionally substituted with up to two substituents selected from CF₃, C₂F₅, OH, O C₁₋₃ alkyl, NH₂, NHC₁₋₃ alkyl, NHC₁₋₃ alkanoyl, N(C₁₋₃ alkyl)₂, N(C₁₋₃ alkyl)(C₁₋₃ alkanoyl), COOH,

CONH₂, and COO C_{1-3} alkyl, and all previously mentioned aryl and heteroaryl groups ean <u>are</u> optionally be substituted with one or two substituents selected from F, Cl, Br, CH₃, C_2H_5 , NO₂, OCH₃, OC₂H₅, CF₃, and C_2F_5 , or else ean <u>optionally</u> carry an annelated methanediylbisoxy, ethane-1,2-diylbisoxy group, or

 R^5 and R^5 together with the nitrogen atom form a 5-to 7-membered heterocyclic group, which ean optionally contains another oxygen, nitrogen or sulfur atom and ean be is optionally substituted by C_{1-4} alkyl, C_{1-4} alkoxy- C_{0-2} alkyl, C_{1-4} alkoxy-carbonyl, aminocarbonyl or phenyl;

A means C_{1-10} alkanediyl, C_{2-10} alkenediyl, C_{2-10} alkinediyl, or (C_{0-5} alkanediyl- C_{3-7} cycloalkanediyl- C_{0-5} alkanediyl), wherein a 5-membered cycloalkyl ring, ean optionally have has an N or O ring member, and a 6- or 7-membered cycloalkyl ring ean optionally have has one or two ring members which are each N or O, whereby wherein ring nitrogens optionally ean be are substituted with C_{1-3} alkyl or C_{1-3} alkanoyl,

whereby wherein in the above-mentioned aliphatic ehains groups, a carbon atom or two carbon atoms ean be are optionally replaced by O, NH, N C_{1-3} alkyl, N C_{1-3} alkanoyl, and whereby wherein alkyl or cycloalkyl groups ean be are optionally substituted with up to two substituents selected from =O, OH, O C_{1-3} alkyl, NH C_{1-3} alkyl, NH C_{1-3} alkanoyl, N(C_{1-3} alkyl)₂, and N(C_{1-3} alkyl)(C_{1-3} alkanoyl)₅:

B means COOH, COOR⁵, CONH₂, CONHNH₂, CONHR⁵, CONR⁵R^{5'}, CONHOH, CONHOR⁵, SO₃H, SO₂NH₂, SO₂NHR⁵, SO₂NR⁵R^{5'}, PO₃H, PO(OH)(OR⁵), PO(OR⁵)(OR^{5'}), PO(OH)(NHR⁵), PO(NHR⁵)(NHR^{5'}), or tetrazolyl, in each case bonded to a carbon atom of group A,

or the entire group Y-A-B is N(SO₂R⁴)(SO₂R⁴) or NHSO₂R⁴;

X means a bond, CH_2 , $(CH_2)_2$, $CH(CH_3)$, $(CH_2)_3$, $CH(CH_2CH_3)$, $CH(CH_3)CH_2$, or $CH_2CH(CH_3)$, and

Y means O, NH, NR⁴, NCOR⁴, or NSO₂R⁴,

provided that if Y means NH, NR4, NCOR4 or NSO2R4, and either

a) substituent R² contains a nitrogen-containing, saturated heterocyclic group, wherein said this heterocyclic group is not substituted in the imine nitrogen with H, methyl, ethyl, propyl or isopropyl,

or

b) in optionally present groups R² contains substituents XNHR⁴ or and/or XNR⁴R^{4'} of substituent R², in which R⁴ and/or R^{4'} does are not mean C₁₋₄ alkyl,

that then B does not mean COOH, SO_3H , PO_3H_2 or tetrazolyl at the same time, and R^1 and R^2 , independently of one another, mean C_{5-6} heteroaryl or phenyl, if the latter, independently of one another, which are unsubstituted, or are substituted simply with C_{1-6} alkyl, C_{1-4} perfluoroalkyl, OC_{1-6} alkyl, OC_{1-6} alkyl, O

whereby the following compounds are excluded:

- [(1,2-Diphenyl-1H-benzimidazol-6-yl)oxy]acetic acid methyl ester,
- 5-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]pentanoic acid methyl ester,
- 4-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]butanoic acid ethyl ester,
- 5-[[1-(4-nitrophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]-pentanoic acid methyl ester,
- 6-[[1-(4-nitrophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester, 5-[[1-(4-aminophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]pentanoic acid methyl ester,
- 5-[[1-[4-[[(4-chlorophenyl)sulfonyl]amino]phenyl]-2-phenyl-1H-benzimidazol-6-yl]oxy]pentanoic acid methyl ester,
- 5-[[1-[4-[(acetyl)amino]phenyl]-2-phenyl-1H-benzimidazol-6-yl]oxy]pentanoic acid methyl ester
- 5-[[1-(3-nitrophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]pentanoic acid methyl ester,
 - 6-[[1-(3-nitrophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester,
- 5-[[1-(3-aminophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]pentanoic acid methyl ester,
- 5-[[1-[3-[[(4-chlorophenyl)sulfonyl]amino]phenyl]-2-phenyl-1H-benzimidazol-6-yl]oxy]pentanoic acid methyl ester, and

5-[[1-[3-[(acetyl)amino]phenyl]-2-phenyl-1H-benzimidazol-6-yl]oxy]pentanoic acid methyl ester.

- 2. (Currently Amended) A benzimdazole compound according to claim 1, wherein
- R^1 is a monocyclic or bicyclic C_{6-12} aryl group or a monocyclic or bicyclic 5- to 10-membered heteroaryl group with 1-2 heteroatoms selected from the group—that consists of N, S or and O, wherein said aryl or heteroaryl group is unsubstituted or substituted with up to three of the following substituents, independently of one another:

F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, NO₂, XNHR⁴, XNR⁴R⁴, or R⁴,

whereby wherein when two of said substituents for the aryl or heteroaryl group, if they are in ortho-position to one another, can be they are optionally linked to one another in such a way that they to jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl or butane-1,4-diyl.

3. (Currently Amended) A benzimdazole compound according to claim 1, wherein

 R^2 is a monocyclic or bicyclic C_{6-10} aryl group or a monocyclic or bicyclic 5- to 10-membered heteroaryl group with 1-2 heteroatoms selected from the group—that consists of N, S or and O, wherein said aryl or heteroaryl group is unsubstituted or substituted with up to three of the following substituents, independently of one another selected from:

F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴,

XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴,

XCOOH, XCOOR⁴, XCONH₂, XCONHR⁴, XCONR⁴R⁴, XCONHOH,

XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴,

NO₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴)SO₂R⁴, XNR⁴SO₂R⁴, and R⁴, whereby wherein when two of said substituents for the aryl or heteroaryl group, if they are in ortho-position to one another, ean be they are optionally linked to one another in such a way that they to jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl.

- 7 - SCH-1738

4. (Currently Amended) A benzimdazole compound according to claim 1, wherein R³ is one or two substituents, which are, independently of one another selected from: hydrogen, F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴N⁴, XNHSO₂R⁴, XNR⁴SO₂R⁴, XN(SO₂R⁴)SO₂R⁴, XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, er and R⁴,

whereby wherein when two substituents R³, if they are in ortho-position to one another, ean be they are optionally linked to one another in such a way that they to jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl.

5. (Currently Amended) A benzimdazole compound according to claim 1, wherein R^4 and R^4 , independently of one another, are each CF_3 , C_2F_5 , C_{1-4} alkyl, C_{2-4} alkenyl, C_{2-4} alkinyl, C_{3-6} cycloalkyl, (C_{1-3} alkyl- C_{3-6} cycloalkyl), phenyl or 5- to 6-membered heteroaryl with 1-2 heteroatoms selected from N, S of and O atoms, wherein the phenyl and heteroaryl group is unsubstituted or substituted with one or two substituents selected from the group that consists of F, Cl, Br, CH_3 , C_2H_5 , OCH_3 , OC_2H_5 , CF_3 , and C_2F_5 , and

in a 5-membered cycloalkyl ring, a ring member ean be is optionally an N or an O atom, and in a 6-membered cycloalkyl ring, one or two ring members are optionally ean in each case be an N or O atom, whereby wherein ring nitrogens optionally ean be are substituted with C_{1-3} alkyl or C_{1-3} alkanoyl.

6. (Currently Amended) A benzimdazole compound according to claim 1, wherein R⁵ and R^{5'}, independently of one another, are each

C₁₋₆ alkyl, whereby wherein a carbon atom ean be is optionally exchanged for replaced by O, NH, NC₁₋₃ alkyl, or NC₁₋₃ alkanoyl;

 C_{3-7} cycloalkyl- C_{0-3} alkyl, whereby wherein in a 5-membered cycloalkyl ring, a ring member ean be is optionally an N or an O atom, and in a 6- or 7-membered cycloalkyl ring, one or two ring members ean are optionally in each case be an N or O atom, ring nitrogens optionally ean be are substituted with C_{1-3} alkyl or C_{1-3} alkanoyl,

whereby wherein the mentioned C_{1-6} alkyl part group can be is optionally substituted with one of the previously mentioned cycloalkyls, or

a 5- to 6-membered heteroaromatic compound with 1-2 heteroatoms, selected from tN, S or and O,

whereby wherein all previously mentioned alkyl and cycloalkyl parts groups are, optionally, substituted with up to two substituents that consist of selected from CF₃, OH, and O C₁₋₃ alkyl, and the previously mentioned heteroaryl groups are, optionally, substituted with one or two substituents that consist of selected from F, Cl, CF₃, CH₃, C₂H₅, OCH₃, and OC₂H₅, or

R⁵ and R⁵ together with the nitrogen atom form a 5- to 7-membered heterocyclic compound, which ean optionally eontain contains another oxygen, nitrogen or sulfur atom and is unsubstituted or substituted with C₁₋₄ alkyl, C₁₋₄ alkoxy-C₀₋₂ alkyl, C₁₋₄ alkoxy-carbonyl, aminocarbonyl or phenyl.

V7. (Currently Amended) A benzimdazole compound according to claim 1, wherein A is C_{1-10} alkanediyl, C_{2-10} alkenediyl, C_{2-10} alkinediyl, or (C_{0-5} alkanediyl- C_{3-7} cycloalkanediyl- C_{0-5} alkanediyl), whereby wherein in a 5-membered cycloalkanediyl ring, a ring member ean be is optionally an N or an O atom, or in a 6- or 7-membered cycloalkyl ring, one or two ring members ean are optionally in each case be an N or O atom, whereby wherein ring nitrogens optionally ean be are substituted with C_{1-3} alkyl or C_{1-3} alkanoyl,

whereby wherein in the alkanediyl, alkenediyl, and alkinediyl groups ehains, a carbon atom or two carbon atoms ean be are optionally exchanged for O, NH, NC₁₋₃ alkyl, or NC₁₋₃ alkanoyl.

- 8. (Previously Presented) A benzimdazole compound according to claim 1, wherein B means COOH, COOR⁵, CONH₂, CONHR⁵, CONR⁵R^{5'}, CONHOH, CONHOR⁵ or tetrazolyl, which in each case is bonded to a carbon atom of group A.
- 9. (Previously Presented) A benzimdazole compound according to claim 1, wherein X means a bond or methylene.

- 10. (Previously Presented) A benzimdazole compound according to claim 1, wherein Y means O.
- 11. (Currently Amended) A benzimdazole compound according to claim 1, wherein said compound is selected from:
 - [(1,2-Diphenyl-1H-benzimidazol-6-yl)oxy]acetic acid isopropyl ester
 - 3-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]propanoic acid methyl ester
 - 2-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]propanoic acid methyl ester
 - 4-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]butanoic acid isopropyl ester
 - 5-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]pentanoic acid isopropyl ester
 - 6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanoic acid methyl ester
 - 6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanoic acid isopropyl ester
 - 6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanamide
 - N-methoxy-6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanamide
 - N-(phenylmethoxy)-6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanamide
 - N-hydroxy-6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanamide
 - 7-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]heptanoic acid methyl ester
- 6-[[1-(3-nitrophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
- 6-[[2-phenyl-1-[3-(trifluoromethyl)phenyl]-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[2-phenyl-1-[3-(trifluoromethyl)phenyl]-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
- 6-[[1-(3-cyanophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[1-(3-cyanophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
 - 6-[[1-(3-cyanophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid
- 6-[[1-(4-cyanophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[1-(4-cyanophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester

- 10 - SCH-1738

6-[[1-(3-chlorophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester 6-[[1-(3-chlorophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester 6-[[1-(4-chlorophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester 6-[[1-(4-chlorophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester 6-[[1-(3-methylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester 6-[[1-(3-methylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester 6-[[1-(4-methylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester 6-[[1-(4-methylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester 6-[[1-(3,4-dimethylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester 6-[[1-(3,5-dimethylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester 6-[[1-(3,5-dimethylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester 6-[[1-(3-methoxyphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester 6-[[1-(4-methoxyphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester 6-[[1-(3,4-dimethoxyphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester 6-[[1-[3,4-(methylenedioxy)phenyl]-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester 6-[[1-[3,4-(methylenedioxy)phenyl]-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic

acid

- 6-[[2-phenyl-1-(3,4,5-trimethoxyphenyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
 - 6-[[2-phenyl-1-(3,4,5-trimethoxyphenyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid
- 6-[[2-phenyl-1-(3,4,5-trimethoxyphenyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
- 6-[[1-[4-(N,N-dimethylamino)phenyl]-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[1-[4-(N,N-dimethylamino)phenyl]-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid
- 6-[[1-phenyl-2-[3-(trifluoromethyl)phenyl]-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
- 6-[[2-(3-chlorophenyl)-1-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[2-(3-chlorophenyl)-1-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
- 6-[[2-(4-chlorophenyl)-1-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[2-(4-chlorophenyl)-1-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
- 6-[[2-(4-methylphenyl)-1-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[2-(4-methylphenyl)-1-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
 - 6-[[1-phenyl-2-(4-pyridinyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
 - 6-[(1,2-diphenyl-5-nitro-1H-benzimidazol-6-yl)oxy]hexanoic acid methyl ester
 - 6-[(1,2-diphenyl-5-nitro-1H-benzimidazol-6-yl)oxy]hexanoic acid isopropyl ester
- 6-[[5-[[(4-bromophenyl)sulfonyl]amino]-1,2-diphenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
- 6-[[5-[[(4-chlorophenyl)sulfonyl]amino]-1,2-diphenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[5-[[(4-chlorophenyl)sulfonyl]amino]-1,2-diphenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester

- 12 - SCH-1738

- 6-[[1,2-diphenyl-5-[[(3-methylphenyl)sulfonyl]amino]-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
- 6-[[1,2-diphenyl-5-[[(4-methylphenyl)sulfonyl]amino]-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
- 6-[[1,2-diphenyl-5-[[(4-methoxyphenyl)sulfonyl]amino]-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
- 6-[[1,2-diphenyl-5-[[[(4-trifluoromethyl)phenyl]sulfonyl]amino]-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
- 6-[[5-[[[4-(acetylamino)phenyl]sulfonyl]amino]-1,2-diphenyl-1H-benzimidazol-6-yl]oxy]-hexanoic acid isopropyl ester
- 6-[[5-[[bis(3-chlorophenyl)sulfonyl]amino]-1,2-diphenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
- 6-[[1,2-diphenyl-5-[(propylsulfonyl)amino]-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
- 6-[[5-[(benzylsulfonyl)amino]-1,2-diphenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
 - 2-[2-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]ethoxy]acetic acid methyl ester
 - 3-[2-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]ethoxy]propanoic acid methyl ester
 - 6-[[1-(3-nitrophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid ethyl ester
- 6-[[4-acetyl-1-(4-methylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[1-(4-methylphenyl)-2-phenyl-1H-benzimidazol-5-yl]oxy]hexanoic acid methyl ester
- 6-[[2-phenyl-1-[4-(thiomethyl)phenyl]-1H-benzimidazol-5-yl]oxy]hexanoic acid methyl ester
- 6-[[2-phenyl-1-[(4-(thiomethyl)phenyl]-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
 - 6-[[2-phenyl-1-(3-thienyl)-1H-benzimidazol-5-yl]oxy]hexanoic acid methyl ester
 - 6-[[2-phenyl-1-(3-thienyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
 - 4-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]butanoic acid methyl ester
- N-(phenylmethoxy)-6-[[2-phenyl-1-(3,4,5-trimethoxyphenyl)-1H-benzimidazol-6-yl]oxy]-hexanamide
 - N,N-dimethyl-6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanamide

- N-isopropyl-6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanamide
- 6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]-1-pyrrolidin-1-ylhexan-1-one
- 5-[[5-[[(4-chlorophenyl)sulfonyl]amino]-1,2-diphenyl-1H-benzimidazol-6-yl]oxy]pentanoic acid methyl ester
- 6-[[5-[[(4-chlorophenyl)sulfonyl]amino]-1-(4-methylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[5-[[(4-chlorophenyl)sulfonyl]amino]-1-(4-methoxyphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[4-(acetyloxy)-1-(4-methylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[4-hydroxy-1-(4-methylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[4-hydroxy-1-(4-methylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid, or and
- 6-[[7-methyl-1-(4-methylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester.
- 12. (Currently Amended) A benzimdazole compound according to claim 1, wherein said compound is selected from:
- 6-[[2-Phenyl-1-(3-pyridyl)-1H-benzimidazol-5-yl]oxy]hexanoic acid methyl ester
- 6-[[2-phenyl-1-(3-pyridyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[2-phenyl-1-(4-pyridyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[2-(4-fluoro-phenyl)-1-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[2-(4-methoxyphenyl)-1-phenyl-1H-benzimidazol-6-yl]oxy]-hexanoic acid methyl ester
- 6-[[2-(4-bromophenyl)-1-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[2-[4-(trifluoromethyl)phenyl]-1-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[1-phenyl-2-(benzothien-2-yl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[1-phenyl-2-(benzothien-2-yl)-1H-benzimidazol-6-yl]oxy]hexanoic acid
- 6-[[5-hydroxy-1-(4-methylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
- 6-[[5-hydroxy-1-(4-methylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid

- 6-[[5-methoxy-1-(4-methylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid isopropyl ester
- 6-[[5-hydroxy-1-(4-methylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[5-methoxy-1-(4-methylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- $6\hbox{-}[[5\hbox{-}[[(4\hbox{-}chlorophenyl)sulfonyl]amino}]\hbox{-}1\hbox{-}(3,4\hbox{-}dimethylphenyl)\hbox{-}2\hbox{-}phenyl\hbox{-}1H-benzimidazol-}$
- 6-yl]oxy]hexanoic acid methyl ester benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[5-[[(4-chlorophenyl)sulfonyl]amino]-2-(4-fluorophenyl)-1-(4-methoxyphenyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[5-[[(4-chlorophenyl)sulfonyl]amino]-1-(4-methoxyphenyl)-2-(4-methoxyphenyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 4-[[5-[[(4-chlorophenyl)sulfonyl]amino]-1-(4-methoxyphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]butanoic acid methyl ester
- 5-[[5-[[(4-chlorophenyl)sulfonyl]amino]-1-(4-methoxyphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]pentanoic acid methyl ester
- 5-[[5-[[(4-chlorophenyl)sulfonyl]amino]-1,2-diphenyl-1H-benzimidazol-6-yl]oxy]pentanoic acid methyl ester
- 6-[[5-[[(4-(trifluoromethyl)phenyl)sulfonyl]amino]-1-(4-methoxyphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[5-[[(4-chlorophenyl)sulfonyl]methylamino]-1-(4-methoxyphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[1-(indan-5-yl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[1-(indan-5-yl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid
- 6-[[1-(3-fluorophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[2-(4-nitrophenyl)-1-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- 6-[[1-phenyl-2-(3-pyridinyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester
- N-(cyclopropylmethoxy)-6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanamide
- N-isobutoxy-6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanamide
- N-(cyclopropylmethoxy)-6-[2-phenyl-1-(3,4,5-trimethoxyphenyl)-1H-benzimidazol-6-yl)oxy]-hexanamide

```
N-isobutoxy-6-[2-phenyl-1-(3,4,5-trimethoxyphenyl)-1H-benzimidazol-6-yl)oxy]hexanamide
N-(2-methoxyethyl)-6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanamide
N-(3-methoxypropyl)-6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanamide
N-isobutyl-6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanamide
6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]-1-morpholin-1-ylhexan-1-one
N,N-di(-2-methoxyethyl)-6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanamide
N-isopentyl-6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanamide
N-(pyridin-2-yl)-6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanamide
N-(pyridin-3-yl)-6-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]hexanamide
N-isopropyl-6-[[1-(3,4-dimethylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanamide
N,N-dimethyl-6-[[1-(3,4-dimethylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanamide
N,N-diethyl-6-[[1-(3,4-dimethylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanamide
N-isobutyl-6-[[1-(3,4-dimethylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanamide
N-cyclopropyl-6-[[1-(3,4-dimethylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanamide
N-cyclobutyl-6-[[1-(3,4-dimethylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanamide
N-tert-butyl-6-[[1-(3,4-dimethylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanamide
(R)-6-[[1-(3,4-dimethylphenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]1-(2-methoxymethyl)-
pyrrolidin-1-ylhexan-1-one
N-(3-imidazol-1-yl-propyl)-6-[[1-(3,4-dimethylphenyl)-2-phenyl-1H-benzimidazol-6-
yl]oxy]hexanamide
N-(2-pyridin-2-ylethyl)-6-[[1-(3,4-dimethylphenyl)-2-phenyl-1H-benzimidazol-6-
yl]oxy]hexanamide
```

N-(3-methoxypropyl)-6-[[1-(indan-5-yl)-2-phenyl-1H-benzimidazol-6-yl]oxy]heptanamide 6-[[1-(4-methylphenyl)-2-(3-pyridyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester 6-[[1-(4-methylphenyl)-2-(4-pyridyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester 6-[[1-(4-methylphenyl)-2-(2-thienyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester 6-[[1-(4-methylphenyl)-2-(3-thienyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester 6-[[1-(4-methylphenyl)-1-(4-methylphenyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester 6-[[1-(4-methylphenyl)-2-(2-furyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester 6-[[1-(4-methylphenyl)-2-(3-furyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester

- 16 - SCH-1738

6-[[1-(4-methylphenyl)-2-(5-methyl-2-thienyl)-1H- benzimidazol-6-yl]oxy]hexanoic acid methyl ester or and 6-[[1-(4-methylphenyl)-2-(3-methyl-2-thienyl)-1H-benzimidazol-6-yl]oxy]hexanoic acid

- 13. (Previously Presented) A process for preparing a pharmaceutical composition comprising combining a compound according to claim 1 with a pharmaceutical vehicle or diluent.
- 14. (Previously Presented) A pharmaceutical composition comprising one or more compounds according to claim 1 and one or more vehicles or diluents.
- 15. (Currently Amended) A method for treating a patient suffering from a disease associated with microglia activation chronic inflammation comprising administering to said patient an effective amount of a benzimidazole compound of formula II

$$R^3$$
 N
 R^2
 R^1
(II)

or a physiologically compatible salt thereof,

in which

methyl ester.

R¹ means a monocyclic or bicyclic C_{6-12} aryl group or a monocyclic or bicyclic 5- to 10-membered heteroaryl group with 1-4 heteroatoms selected from N, S and O, whereby wherein when said aryl or heteroaryl group ean be is optionally substituted with up to three of the following substituents, independently of one another selected from:

F, Cl, Br, I, C(NH)NH₂, C(NH)NHR⁴, C(NH)NR⁴R⁴, C(NR⁴)NH₂, C(NR⁴)NHR⁴,

C(NR⁴)NR⁴R⁴, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴,

XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴,

XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴,

XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴,

XNHSO₂R⁴, XN(SO₂R⁴)(SO₂R⁴), XNR⁴SO₂R⁴, XNHCOR⁴, XNHCOOR⁴,

XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl,

2,7-dihydro-2,7-dioxoisoindol-1-yl, and R⁴,

wherein when two of said substituents for the aryl or heteroaryl group, if they are in ortho-position to one another, ean they are optionally be linked to one another in such a way that they to jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl;

 R^2 means a monocyclic or bicyclic C_{6-10} aryl group or a monocyclic or bicyclic 5-to 10-membered heteroaryl group with 1-4 heteroatoms selected from N, S and O, wherein said aryl or heteroaryl group ean-be is optionally substituted with up to three of the following substituents, independently of one another selected from:

F, Cl, Br, I, C(NH)NH₂, C(NH)NHR⁴, C(NH)NR⁴R⁴, C(NR⁴)NH₂, C(NR⁴)NHR⁴,

C(NR⁴)NR⁴R⁴, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴,

XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴,

XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴,

XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴,

XNHSO₂R⁴, XN(SO₂R⁴)(SO₂R⁴), XNR⁴SO₂R⁴, XNHCOR⁴, XNHCOOR⁴,

XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, and R⁴,

whereby wherein when two of said substituents for the aryl or heteroaryl group, if they are in ortho-position to one another, can be they are optionally linked to one another in such a way that they to jointly form methanediyl-bisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl;

R³ stands for one or two substituents which are each independently of one another selected from:

hydrogen, F, Cl, Br, I, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONHR⁴, XCONR⁴R⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XNR⁴SO₂R⁴, XN(SO₂R⁴), XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, or 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, 9f and R⁴,

wherein when two substituents R³, if they are in ortho-position to one another, can be they are optionally linked to one another in such a way that they to jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl;

 R^4 and $R^{4'}$, independently of one another, mean C_{1-4} perfluoroalkyl, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkinyl, C_{3-7} cycloalkyl, (C_{1-3} alkyl- C_{3-7} cycloalkyl), C_{1-3} alkyl- C_{6-10} aryl, C_{4-3} alkyl-5 to 10-membered C_{1-3} alkyl-5 to 10-membered heteroaryl with 1-4 heteroatoms selected from N, S or and O atoms, C_{6-10} aryl, or 5- to 10-membered heteroaryl with 1-4

heteroatoms selected from N, S or and O atoms, wherein the C₆₋₁₀ aryl and heteroaryl groups ean be are optionally substituted with one or two substituents selected from F, Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅, or else can optionally carry an annelated methanediylbisoxy group or ethane-1,2-diylbisoxy group, and wherein a 5-membered cycloalkyl ring ean optionally have has an N or O ring member, and wherein a 6- or 7-membered cycloalkyl ring ean optionally have has one or two ring members selected have from N and O, wherein ring nitrogens optionally ean be are substituted with C₁₋₃ alkyl or C₁₋₃ alkanoyl,

 R^5 and R^5 , independently of one another, mean hydrogen, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkinyl, wherein in each case a carbon atom ean be is optionally replaced by O, S, SO, SO₂, NH, N C_{1-3} alkyl or N C_{1-3} alkanoyl,

 C_{3-7} cycloalkyl- C_{0-3} alkyl, wherein a 5-membered cycloalkyl ring ean optionally have has an N or O ring member and a 6- or 7-membered cycloalkyl ring ean optionally have has one or two ring members selected from N and O, wherein ring nitrogens optionally ean be are substituted with C_{1-3} alkyl or C_{1-3} alkanoyl,

C₆₋₁₀ aryl or 5- to 10-membered heteroaryl with 1-4 heteroatoms selected from N, S, and O, whereby wherein the mentioned alkyl, alkenyl and alkinyl groups chains can be are optionally substituted with one of the previously mentioned cycloalkyls, aryls or heteroaryls,

whereby wherein all previously mentioned alkyl and cycloalkyl radicals ean are optionally be substituted with up to two substituents selected from CF₃, C₂F₅, OH, O C₁₋₃ alkyl, NH2, NH C₁₋₃ alkyl, NH C₁₋₃ alkanoyl, N (C₁₋₃ alkyl)₂, N(C₁₋₃ alkyl)(C₁₋₃ alkanoyl), COOH, CONH₂, and COO C₁₋₃ alkyl, and all previously mentioned aryl and heteroaryl groups ean be are optionally substituted with one or two substituents selected from F, Cl, Br, CH₃,

 C_2H_5 , NO_2 , OCH_3 , OC_2H_5 , CF_3 , and C_2F_5 or else can optionally carry an annelated methanediylbisoxy, or ethane-1,2-diylbisoxy group, or

 R^5 and R^5 together with the nitrogen atom form a 5-to 7-membered group, which ean optionally eontain contains another oxygen, nitrogen or sulfur atom and ean be is optionally substituted by C_{1-4} alkyl, C_{1-4} alkoxy- C_{0-2} alkyl, C_{1-4} alkoxy-carbonyl, aminocarbonyl or phenyl,

A means C_{1-10} alkanediyl, C_{2-10} alkanediyl, C_{2-10} alkanediyl, $(C_{0-5}$ alkanediyl- C_{3-5} alkanediyl), $(C_{0-5}$ alkanediyl), or $(C_{0-5}$ alkanediyl-heteroarylene- C_{0-5} alkanediyl),

wherein the aryl and heteroaryl groups ean are optionally be substituted with one or two substituents selected from F, Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅, wherein a 5-membered cycloalkyl ring ean optionally have has a ring member selected from N and O, and a 6- or 7-membered cycloalkyl ring ean optionally have has one or two ring members selected from N and O, wherein ring nitrogens optionally ean be are substituted with C_{1-3} alkyl or C_{1-3} alkanoyl,

wherein in the mentioned aliphatic groups ehains, one or two carbon atoms ean are each optionally be replaced by for O, NH, NR^4 , $NCOR^4$, or NSO_2R^4 ,

and wherein alkyl or cycloalkyl groups ean be are optionally substituted with up to two substituents selected from F, OH, OR⁴, OCOR⁴, =O, NH₂, NR⁴R^{4'}, NHCOR⁴, NHCONHR⁴, NHSO₂R⁴ SH, and SR⁴,

B means hydrogen, OH, OCOR⁵, OCONHR⁵, OCOOR⁵, COR⁵, C(NOH)R⁵, C(NOR⁵)R⁵, C(NO(COR⁵))R⁵, COOH, COOR⁵, CONH₂, CONHNH₂, CONHNH₅, CONR⁵R⁵, CONHOH, CONHOR⁵, SO₃H, SO₂NH₂, SO₂NHR⁵, SO₂NR⁵R⁵, PO₃H, PO(OH)(OR⁵), PO(OR⁵)(OR⁵), PO(OH)(NHR⁵), PO(NHR⁵)(NHR⁵), or tetrazolyl, respectively each bonded to a carbon atom of group A,

or the entire group Y-A-B is N(SO₂R⁴)(SO₂R⁴) or NHSO₂R⁴,

X means a bond, CH₂, (CH₂)₂, CH(CH₃), (CH₂)₃, CH(CH₂CH₃), CH(CH₃)CH₂, or CH₂CH(CH₃), and

Y means a bond, O, S, SO, SO₂, NH, NR⁴, NCOR⁴, or $\frac{NSO_2R^4}{NSO_2R^4}$.

16. (Currently Amended) A method according to claim 15, wherein

R¹ means a monocyclic or bicyclic aryl group or a monocyclic or bicyclic 5- to 10-membered heteroaryl group with 1-2 heteroatoms selected from the group that consists of N, S and O, wherein said aryl or heteroaryl group can be is optionally substituted with up to three of the following substituents, independently of one another selected from:

F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XCN, COOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, NO₂, XNHR⁴, XNR⁴R⁴, and or R⁴,

wherein when two of said substituents for the aryl or heteroaryl group, if they are in ortho-position to one another, ean be they are optionally linked to one another in such a way that they to jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl.

17. (Currently Amended) A method according to claim 15, wherein,

R² means a monocyclic or bicyclic aryl group or a monocyclic or bicyclic 5- to 10-membered heteroaryl group with 1-2 heteroatoms selected from N, S and O, wherein said aryl group or heteroaryl group ean be is optionally substituted with up to three of the following substituents, independently of one another selected from:

F, CI, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴)(SO₂R⁴), XNR⁴SO₂R⁴, XNHCOOR⁴, XNHCOOR⁴, XNHCOOR⁴, XNHCOOR⁴, XNHCOOR⁴, NHCOOR⁴, NHCOOR⁴, XNHCOOR⁴, XN

whereby wherein when two of said substituents for the aryl or heteroaryl group, if they are in ortho-position to one another, ean be they are optionally linked to one another in such a way that they to jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl or, butane-1,4-diyl.

18. (Currently Amended) A method according to claim 15, wherein

R³ stands for one or two substituents, which independently of one another, each mean:

hydrogen, F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴,

XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴,

XCN, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂,

XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XNR⁴SO₂R⁴, XN(SO₂R⁴)(SO₂R⁴), XNHCOR⁴,

XNHCOOR⁴, XNHCONHR⁴, or R⁴,

wherein when two substituents R³, if they are in ortho-position to one another, ean be they are optionally linked to one another in such a way that they to jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl or, butane-1,4-diyl.

19. (Currently Amended) A method according to claim 15, wherein R⁴ and R⁴, independently of one another, mean CF₃, C₂F₅, C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkinyl, C₃₋₆ cycloalkyl, (C₁₋₃ alkyl-C₃₋₆ cycloalkyl), C₁₋₃ alkylaryl, C₁₋₃ alkylheteroaryl, monocyclic aryl or 5- to 6-membered heteroaryl with 1-2 heteroatoms selected from N, S or

and O atoms, wherein said the aryl and heteroaryl groups ean be are optionally substituted with one or two substituents selected from F, Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅, or else ean optionally carry an annelated methanediylbisoxy or ethane-1,2-diylbisoxy group, and in addition wherein a 5-membered cycloalkyl ring ean optionally have has a ring member selected from N and O, and a 6-membered cycloalkyl ring ean optionally have has one or two ring members selected from N and O, wherein ring nitrogens optionally ean be are substituted with C_{1-3} alkyl or C_{1-3} alkanoyl.

20. (Currently Amended) A method according to claim 15, wherein

 R^5 and $R^{5'}$, independently of one another, ean-be are optionally C_{1-6} alkyl wherein a carbon atom ean is optionally be replaced by O, NH, N C_{1-3} alkyl, N C_{1-3} alkanoyl, or C_{3-7} cycloalkyl- C_{0-3} alkyl, wherein a 5-membered cycloalkyl ring ean optionally have has a ring member selected from N and O, and a 6- or 7-membered cycloalkyl ring ean optionally have has one or two ring members selected from N and O, wherein ring nitrogens optionally ean be are substituted with C_{1-3} alkyl or C_{1-3} alkanoyl, wherein the mentioned C_{1-6} alkyl part ean group is optionally be substituted with one of the previously mentioned cycloalkyls or else a 5- to 6-membered heteroaromatic group with 1-2 heteroatoms selected from N, S and O,

wherein all previously mentioned alkyl and cycloalkyl parts groups ean be are optionally substituted with up to two substituents selected from CF₃, OH, and O C₁₋₃ alkyl, and the previously mentioned heteroaryl groups ean are optionally be substituted with one or two substituents selected from F, Cl, CF₃, CH₃, C₂H₅, OCH₃, and OC₂H₅,

or R^5 and $R^{5'}$ together with the nitrogen atom form a 5- to 7-membered heterocyclic group which optionally contains another oxygen, nitrogen or sulfur atom and is optionally substituted by C_{1-4} alkyl, C_{1-4} alkoxy- C_{0-2} alkyl, C_{1-4} alkoxy-carbonyl, aminocarbonyl or phenyl.

21. (Currently Amended) A method according to claim 15, wherein

A means C_{1-10} alkanediyl, C_{2-10} alkenediyl, C_{2-10} alkinediyl, (C_{0-5} alkanediyl- C_{3-7} cycloalkanediyl- C_{0-5} alkanediyl), or (C_{0-5} alkanediyl-heteroarylene- C_{0-5} alkanediyl), wherein if when a heteroaryl group is present it is optionally substituted with one or two substituents selected from F, Cl, Br, CH₃, C_2H_5 , NO₂, OCH₃, OC₂H₅, CF₃, and C_2F_5 , and in addition wherein a 5-membered cycloalkyl ring ean optionally have has a ring member selected from N and O, and a 6- or 7-membered cycloalkyl ring ean optionally have has one or two ring

- 24 - SCH-1738

members selected from N and O, wherein ring nitrogens optionally ean-be are substituted with C_{1-3} alkyl or C_{1-3} alkanoyl,

wherein in aliphatic ehains groups one or two carbon atoms ean be are optionally replaced by O, NH, N C_{1-3} alkyl, N C_{1-3} alkanoyl, or NSO₂ C_{1-3} alkyl, and whereby wherein alkyl or cycloalkyl groups parts ean be are optionally substituted with up to two F atoms or by one of the substituents selected from OH, O C_{1-3} alkyl, O C_{1-3} alkanoyl, =O, NH₂, NH C_{1-3} alkyl, N $(C_{1-3}$ alkyl)₂, NH C_{1-3} alkanoyl, N $(C_{1-3}$ alkyl) $(C_{1-3}$ alkyl), NHCOO C_{1-3} alkyl, NHCONH C_{1-3} alkyl, NHSO₂ C_{1-3} alkyl, SH, and S C_{1-3} alkyl.

- 22. (Previously Presented) A method according to claim 15, wherein
- B means hydrogen, OH, OCOR⁵, OCONHR⁵, OCOOR⁵, COOH, COOR⁵, CONH₂, CONHR⁵, CONR⁵R^{5'}, CONHOH, CONHOR⁵, or

tetrazolyl, in each case bonded to a carbon atom of group A.

- 23. (Previously Presented) A method according to claim 15, wherein
- X means a bond or CH_2 .
- 24. (Previously Presented) A method according to claim 15, wherein
- Y means a bond, O, S, NH, NR⁴, NCOR⁴ or NSO₂R⁴.
- 25. (Previously Presented) A compound according to claim 1, wherein said compound is 6-[[1-(4-methylphenyl)-2-phenyl-1H-benzimdazol-6-yl]oxy] hexanoic isopropyl ester.
- 26. (Previously Presented) A method according to claim 15, wherein said compound is 6-[[1-(4-methylphenyl)-2-phenyl-1H-benzimdazol-6-yl]oxy] hexanoic isopropyl ester.
- 27. (Currently Amended) A benzimdazole compound according to claim 1, wherein
- R^{1} is a monocyclic or bicyclic C_{6-12} aryl group or a monocyclic or bicyclic 5- to 10-membered heteroaryl group with 1-2 heteroatoms selected from the group that consists of

N, S or <u>and</u> O, <u>whereby wherein</u> the mentioned aryl or heteroaryl group <u>ean be</u> is optionally substituted with up to three of the following substituents, independently of one another:

F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH, CONHOR⁴, XCOSR⁴, XSR⁴, NO₂, XNHR⁴, XNR⁴R⁴, or R⁴,

whereby wherein when two of said the substituents for the aryl or heteroaryl group, if they are in ortho-position to one another, ean be they are optionally linked to one another in such a way that they to jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl;

 R^2 is a monocyclic or bicyclic C_{6-10} aryl group or a monocyclic or bicyclic 5- to 10-membered heteroaryl group with 1-2 heteroatoms selected from the group that consists of N, S or and O, whereby wherein the mentioned-aryl or heteroaryl group can be is optionally substituted with up to three of the following substituents, independently of one another:

F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCOOH, XCOOR⁴, XCONH₂, XCONHR⁴, XCONR⁴R⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴)SO₂R⁴, XNR⁴SO₂R⁴, and or R⁴,

whereby wherein when two of said-the substituents for the aryl or heteroaryl group, if they are in ortho-position to one another, can be they are optionally linked to one another in such a way that they to jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl;

R³ is one or two substituents, which are each, independently of one another selected from:

hydrogen, F, CI, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴N⁴, XNHSO₂R⁴, XNR⁴SO₂R⁴, XN(SO₂R⁴)SO₂R⁴, XNHCOR⁴, XNHCOOR⁴, XNHCOOR⁴, XNHCONHR⁴, et and R⁴,

whereby wherein when two substituents R³, if they are in ortho-position to one another, ean be they are optionally linked to one another in such a way that they to jointly form ean be methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl;

 R^4 and R^4 , independently of one another, are each CF₃, C₂F₅, C₁₋₄ alkyl, C₂₋₄ alkenyl,

 C_{2-4} alkinyl, C_{3-6} cycloalkyl, (C_{1-3} alkyl- C_{3-6} cycloalkyl), phenyl or 5- to 6- membered heteroaryl with 1-2 <u>heteroatoms selected from</u> N, S or <u>and</u> O atoms, wherein said phenyl and heteroaryl groups are unsubstituted or substituted with one or two substituents <u>selected</u> from F, Cl, Br, CH₃, C_2H_5 , OCH₃, OC₂H₅, CF₃, and C_2F_5 , and

wherein in a 5-membered cycloalkyl ring, a ring member ean <u>is</u> optionally be an N or an O atom, and in a 6-membered cycloalkyl ring, one or two ring members ean in each case optionally be <u>are</u> an N or O atom, <u>whereby wherein</u> ring nitrogens optionally ean be <u>are</u> substituted by C_{1-3} alkyl or C_{1-3} alkanoyl;

R⁵ and R⁵, independently of one another, are each

 C_{1-6} alkyl, whereby wherein a carbon atom ean be is optionally exchanged for O, NH, NC_{1-3} alkyl, or NC_{1-3} alkanoyl,

 C_{3-7} cycloalkyl- C_{0-3} alkyl, wherein in a 5-membered cycloalkyl ring, a ring member ean <u>is</u> optionally be an N or an O atom, and in a 6- or 7-membered cycloalkyl ring, one or two ring members ean <u>is</u> in each case optionally be N or O atom, wherein ring nitrogens optionally ean be <u>are</u> substituted by C_{1-3} alkyl or C_{1-3} alkanoyl, or

a 5- to 6-membered heteroaromatic compound with 1-2 heteroatoms select from N, S of and O, which is unsubstituted or substituted with one or two substituents selected from

F, Cl, CF₃, CH₃, C_2H_5 , OCH₃, and OC₂H₅, or

R⁵ and R⁵, together with the nitrogen atom, form a 5- to 7-membered heterocyclic group which ean optionally eontain-contains another oxygen, nitrogen or sulfur atom and which is unsubstituted or substituted by C₁₋₄ alkyl, C₁₋₄ alkoxy-C₀₋₂ alkyl, C₁₋₄ alkoxy-carbonyl, aminocarbonyl or phenyl;

A is C_{1-10} alkanediyl, C_{2-10} alkenediyl, C_{2-10} alkinediyl, or (C_{0-5} alkanediyl- C_{3-7} cycloalkanediyl- C_{0-5} alkanediyl),

wherein in a 5-membered cycloalkyl ring, a ring member ean <u>is</u> optionally be an N or an O atom, or in a 6- or 7-membered cycloalkyl ring, one or two ring members ean <u>are</u> in each case optionally be N or O atom, wherein ring nitrogens optionally ean be <u>are</u> substituted by C_{1-3} alkyl or C_{1-3} alkanoyl,

wherein in the alkanediyl, alkenediyl, and alkinediyl groups chains a carbon atom or two carbon atoms can are optionally each be replaced by O, NH, NC₁₋₃ alkyl, or NC₁₋₃ alkanoyl;

- B is COOH, COOR⁵, CONH₂, CONHR⁵, CONR⁵R^{5'}, CONHOH, CONHOR⁵ or tetrazolyl, which in each case is bonded to a carbon atom of group A;
 - X is a bond or methylene; and
 - Y is O.
 - 28. (Currently Amended) A compound according to claim 1, wherein
- R¹ is phenyl, biphenyl, naphthyl, indane, fluorenyl, pyrrolyl, thienyl, furanyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, pyrazolyl, furazanyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, thienoimidazolyl, indolyl, isoindolyl, benzothiophenyl, benzofuranyl, benzimidazolyl, indazolyl, imidazopyridinyl, purinyl, quinolyl, isoquinolyl, phthalazinyl, quinazolinyl, quinaxolinyl, cinnolinyl, naphthyridinyl or pteridinyl, which in each case is unsubstituted or substituted with up to three of the following substituents, independently of one another selected from:
 - F, Cl, Br, I, C(NH)NH₂, C(NH)NHR⁴, C(NH)NR⁴R⁴, C(NR⁴)NH₂, C(NR⁴)NHR⁴, C(NR⁴)NR⁴R⁴, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴

XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴)SO₂R⁴, XNR⁴SO₂R⁴, XNHCOR⁴, XNHCOR⁴, XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, and R⁴,

wherein when two of said substituents for the aryl or heteroaryl group, if they are in ortho-position to one another, ean be they are optionally linked to one another in such a way that they to jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl;

R² <u>is phenyl, biphenyl, naphthyl, indane, fluorenyl, pyrrolyl, thienyl, furanyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, pyrazolyl, furazanyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, thienoimidazolyl, indolyl, isoindolyl, benzothiophenyl, benzofuranyl, benzimidazolyl, indazolyl, imidazopyridinyl, purinyl, quinolyl, isoquinolyl, phthalazinyl, quinazolinyl, quinaxolinyl, cinnolinyl, naphthyridinyl or pteridinyl, which in each case is unsubstituted or subsituted with up to three of the following substituents, independently of one another <u>selected from</u>:</u>

F, Cl, Br, I, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, C(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCOOH, XCOOR⁴, XCONH₂, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴)SO₂R⁴, XNR⁴SO₂R⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-d ihydro-2,7-dioxoisoindol-1-yl, and R⁴,

wherein <u>when</u> two of said substituents for the aryl or heteroaryl group, if they are in ortho-position to one another, ean be <u>they are optionally</u> linked to one another in such a way that they <u>to</u> jointly form methanediyl-bisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl;

 R^4 and $R^{4'}$, independently of one another, mean C_{1-4} perfluoroalkyl, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkinyl, C_{3-7} cycloalkyl, C_{1-3} alkyl- C_{3-7} cycloalkyl, C_{1-3} alkyl- C_{6-10} aryl, C_{1-3} alkyl-5 to 10-membered heteroaryl with 1-4 heteroatoms selected from N, S or and O atoms, or

phenyl, biphenyl, naphthyl, indane, fluorenyl, pyrrolyl, thienyl, furanyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, pyrazolyl, furazanyl, pyridyl, pyrimidinyl,

- 29 - SCH-1738

pyrazinyl, pyridazinyl, thienoimidazolyl, indolyl, isoindolyl, benzothiophenyl, benzofuranyl, benzimidazolyl, indazolyl, imidazopyridinyl, purinyl, quinolyl, isoquinolyl, phthalazinyl, quinazolinyl, quinaxolinyl, cinnolinyl, naphthyridinyl or pteridinyl, which in each case is unsubstituted or substituted by one or two substituents selected from F, Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅, or ean optionally carry an annelated methanediylbisoxy group or ethane-1,2-diylbisoxy group, and

wherein a 5-membered cycloalkyl ring ean optionally have has an N or O ring member, and wherein a 6- or 7-membered cycloalkyl ring ean optionally have has N and/or O ring members, and wherein one or two ring members which are each ring nitrogens optionally ean-be are substituted with C₁₋₃ alkyl or C₁₋₃ alkanoyl; and

 R^5 and $R^{5'}$, independently of one another, mean C_{1-6} alkyl, C_{2-6} alkenyl, or C_{2-6} alkinyl, wherein in each case a carbon atom ean be is optionally replaced by O, S, SO, SO₂, NH, N C₁₋₃ alkyl or N C₁₋₃ alkanoyl,

 C_{3-7} cycloalkyl- C_{0-3} alkyl, wherein a 5-membered cycloalkyl ring, can optionally have has an N or O ring member and a 6- or 7-membered cycloalkyl ring can optionally have has one or two ring members which are each N and/or O, wherein ring nitrogens optionally can be are substituted with C_{1-3} alkyl or C_{1-3} alkanoyl,

phenyl, biphenyl, naphthyl, indane, fluorenyl, pyrrolyl, thienyl, furanyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, pyrazolyl, furazanyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, thienoimidazolyl, indolyl, isoindolyl, benzothiophenyl, benzofuranyl, benzimidazolyl, indazolyl, imidazopyridinyl, purinyl, quinolyl, isoquinolyl, phthalazinyl, quinazolinyl, quinaxolinyl, cinnolinyl, naphthyridinyl or pteridinyl,

whereby wherein the mentioned alkyl, alkenyl and alkinyl groups chains can be are optionally substituted with one of the previously mentioned cycloalkyls, aryls or heteroaryls,

whereby wherein all previously mentioned alkyl and cycloalkyl radicals ean be are optionally substituted with up to two substituents selected from CF₃, C₂F₅, OH, O C₁₋₃ alkyl, NH2, NH C₁₋₃ alkyl, NH C₁₋₃ alkanoyl, N (C₁₋₃ alkyl)₂, N(C₁₋₃ alkyl)(C₁₋₃ alkanoyl), COOH, CONH₂, and COO C₁₋₃ alkyl, and all previously mentioned aryl and heteroaryl groups ean are optionally be substituted with one or two substituents selected from F, Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅, or else ean optionally carry an annelated methanediylbisoxy, ethane-1,2-diylbisoxy group,

or R^5 and $R^{5'}$ together with the nitrogen atom form a 5-to 7-membered heterocyclic group, which ean optionally contain contains another oxygen, nitrogen or sulfur atom and ean be is optionally substituted by C_{1-4} alkyl, C_{1-4} alkoxy- C_{0-2} alkyl, C_{1-4} alkoxy-carbonyl, aminocarbonyl or phenyl.

29. (Currently Amended) A method according to claim 15, wherein

R¹ is a monocyclic or bicyclic aryl group or a monocyclic or bicyclic 5- to 10-membered heteroaryl group with 1-2 heteroatoms selected from the group that consists of N, S and O, wherein said aryl or heteroaryl group can be is optionally substituted with up to three of the following substituents, independently of one another selected from:

F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XCN, COOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, NO₂, XNHR⁴, XNR⁴R⁴, and R⁴,

wherein when two of said substituents for the aryl or heteroaryl group, if they are in ortho-position to one another, ean be they are optionally linked to one another in such a way that they to jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl;

R² means a monocyclic or bicyclic aryl group or a monocyclic or bicyclic 5- to 10-membered heteroaryl group with 1-2 heteroatoms selected from N, S and O, wherein said aryl group or heteroaryl group ean be is optionally substituted with up to three of the following substituents, independently of one another selected from:

F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴)(SO₂R⁴), XNR⁴SO₂R⁴, XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, OF and R⁴,

whereby wherein when two of said substituents for the aryl or heteroaryl group, if they are in ortho-position to one another, ean be they are optionally linked to one another in such a way that they to jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl or, butane-1,4-diyl;

is one or two substituents, which independently of one another, each mean: hydrogen, F, Cl, Br, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R^{4'}, XC(NO(COR⁴))R^{4'}, XCN, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R^{4'}, NO₂, XNH₂, XNHR⁴, XNR⁴R^{4'}, XNHSO₂R⁴, XNR⁴SO₂R^{4'}, XN(SO₂R⁴)(SO₂R^{4'}), XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, or R⁴,

wherein when two substituents R³, if they are in ortho-position to one another, can be they are optionally linked to one another in such a way that they to jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or, butane-1,4-diyl;

 R^4 and R^4 , independently of one another, mean CF_3 , C_2F_5 , C_{1-4} alkyl, C_{2-4} alkenyl, C_{2-4} alkinyl, C_{3-6} cycloalkyl, (C_{1-3} alkyl- C_{3-6} cycloalkyl), C_{1-3} alkylaryl, C_{1-3} alkylheteroaryl, monocyclic aryl or 5- to 6-membered heteroaryl with 1-2 heteroatoms selected from N, S or and O atoms, wherein said the aryl and heteroaryl groups can be are optionally substituted with one or two substituents selected from F, Cl, Br, CH_3 , C_2H_5 , NO_2 , OCH_3 , OC_2H_5 , CF_3 , and C_2F_5 or else can optionally carry an annelated methanediylbisoxy or ethane-1,2-diylbisoxy group, and in addition wherein a 5-membered cycloalkyl ring can optionally have has one or two ring members selected from N and O, and a 6-membered cycloalkyl ring can optionally have has one or two ring members selected from N and O, wherein ring nitrogens optionally can be are substituted with C_{1-3} alkyl or C_{1-3} alkanoyl;

 R^5 and R^5 , independently of one another, can be are C_{1-6} alkyl wherein a carbon atom can is optionally be replaced by O, NH, N C_{1-3} alkyl, N C_{1-3} alkanoyl, or C_{3-7} cycloalkyl- C_{0-3} alkyl, wherein a 5-membered cycloalkyl ring can optionally have has a ring member selected from N and O, and a 6- or 7-membered cycloalkyl ring can optionally have has one or two ring members selected from N and O, wherein ring nitrogens optionally can be are substituted with C_{1-3} alkyl or C_{1-3} alkanoyl, wherein the mentioned C_{1-6} alkyl part group can is optionally be substituted with one of the previously mentioned cycloalkyls or clse a 5- to 6-membered heteroaromatic group with 1-2 heteroatoms selected from N, S and O,

wherein all previously mentioned alkyl and cycloalkyl parts groups ean be are optionally substituted with up to two substituents selected from CF₃, OH, and O C₁₋₃ alkyl, and the previously mentioned heteroaryl groups ean are optionally be substituted with one or two substituents selected from F, Cl, CF₃, CH₃, C₂H₅, OCH₃, and OC₂H₅, or

R⁵ and R⁵ together with the nitrogen atom form a 5- to 7-membered heterocyclic group which optionally contains another oxygen, nitrogen or sulfur atom and is optionally substituted by C₁₋₄ alkyl, C₁₋₄ alkoxy-C₀₋₂ alkyl, C₁₋₄ alkoxy-carbonyl, aminocarbonyl or phenyl;

means C_{1-10} alkanediyl, C_{2-10} alkenediyl, C_{2-10} alkinediyl, (C_{0-5} alkanediyl- C_{3-7} cycloalkanediyl- C_{0-5} alkanediyl), or (C_{0-5} alkanediyl-heteroarylene- C_{0-5} alkanediyl), wherein if when a heteroaryl group is present it is optionally substituted with one or two substituents selected from F, Cl, Br, CH₃, C_2H_5 , NO₂, OCH₃, OC₂H₅, CF₃, and C_2F_5 , and in addition wherein a 5-membered cycloalkyl ring ean optionally have has a ring member selected from N and O, and a 6- or 7-membered cycloalkyl ring ean optionally have has one or two ring members selected from N and O, wherein ring nitrogens optionally ean be are substituted with C_{1-3} alkyl or C_{1-3} alkanoyl,

wherein in aliphatic groups chains one or two carbon atoms can be are optionally replaced by O, NH, N C₁₋₃ alkyl, N C₁₋₃ alkanoyl, or NSO₂ C₁₋₃ alkyl, and whereby wherein alkyl or cycloalkyl parts groups can be are optionally substituted with up to two F atoms or by one of the substituents selected from OH, O C₁₋₃ alkyl, O C₁₋₃ alkanoyl, =O, NH₂, NH C₁₋₃ alkyl, N (C₁₋₃ alkyl)₂, NH C₁₋₃ alkanoyl, NHCOO C₁₋₃ alkyl, NHCONH C₁₋₃ alkyl, NHSO₂ C₁₋₃ alkyl, SH, and S C₁₋₃ alkyl;

- B means hydrogen, OH, OCOR⁵, OCONHR⁵, OCOOR⁵, COOH, COOR⁵, CONH₂, CONHR⁵, CONR⁵R^{5'}, CONHOH, CONHOR⁵, or tetrazolyl, in each case bonded to a carbon atom of group A;
 - X means a bond or CH₂; and
 - Y means a bond, O, S, NH, NR⁴, NCOR⁴ or NSO₂R⁴.
- 30. (Previously Presented) A method according to claim 15, wherein in R¹, R², R⁴, R⁴, R⁵ and R⁵, said aryl groups are substituted or unsubstituted phenyl, biphenyl, naphthyl, indane, or fluorenyl, and said heteroaryl group are substituted or unsubstituted pyrrolyl,

thienyl, furanyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, pyrazolyl, furazanyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, thienoimidazolyl, indolyl, isoindolyl, benzothiophenyl, benzofuranyl, benzimidazolyl, indazolyl, imidazopyridinyl, purinyl, quinolyl, isoquinolyl, phthalazinyl, quinazolinyl, quinaxolinyl, cinnolinyl, naphthyridinyl or pteridinyl.

- 31. (Currently Amended) A compound according to claim 1, wherein
- R^1 is a monocyclic or bicyclic C_{6-12} aryl group which is unsubstituted or is substituted with up to three of the following substituents, independently of one another selected from:

F, Cl, Br, I, C(NH)NH₂, C(NH)NHR⁴, C(NH)NR⁴R⁴, C(NR⁴)NH₂, C(NR⁴)NHR⁴, C(NR⁴)NR⁴R⁴, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴)SO₂R⁴, XNR⁴SO₂R⁴, XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5- dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, and R⁴;

 R^2 is a monocyclic or bicyclic C_{6-10} aryl group which is unsubstituted or is substituted with up to three of the following substituents, independently of one another selected from:

F, Cl, Br, I, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCOOH, XCOOR⁴, XCONH₂, XCONHR⁴, XCONR⁴R⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴)SO₂R⁴, XNR⁴SO₂R⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, and R⁴;

 R^3 is one or two substituents which are independently of one another <u>selected</u> from:

hydrogen, F, Cl, Br, I, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONHR⁴, XCONR⁴R⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XNR⁴SO₂R⁴, XN(SO₂R⁴)(SO₂R⁴), XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, of and R⁴;

 R^4 and $R^{4'}$, independently of one another, are each C_{1-4} perfluoroalkyl, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkinyl, C_{3-7} cycloalkyl, C_{1-3} alkyl- C_{3-7} cycloalkyl, C_{1-3} alkyl- C_{6-10} aryl, or C_{6-10} aryl, wherein aryl groups are unsubstituted or substituted by one or two substituents selected from F, Cl, Br, CH₃, C_2H_5 , NO₂, OCH₃, OC₂H₅, CF₃, and C_2F_5 ,

R⁵ and R⁵, independently of one another, are each

 C_{1-6} alkyl, C_{2-6} alkenyl, or C_{2-6} alkinyl, wherein in each case a carbon atom ean be <u>are</u> is optionally replaced by O, S, SO, SO₂, NH, N C_{1-3} alkyl or N C_{1-3} alkanoyl,

 C_{3-7} cycloalkyl- C_{0-3} alkyl, or

 C_{6-10} aryl;

A is C_{1-10} alkanediyl, C_{2-10} alkenediyl, C_{2-10} alkinediyl, or (C_{0-5} alkanediyl- C_{0-5} alkanediyl),

wherein in the alkanediyl, alkenediyl, and alkinediyl groups ehains, a carbon atom or two carbon atoms ean be are optionally replaced by O, NH, NC₁₋₃ alkyl, or NC₁₋₃ alkanoyl, and wherein alkanediyl and cycloalkanediyl groups ean be are optionally substituted with up to two substituents selected from =O, OH, OC₁₋₃ alkyl, NH₂, NHC₁₋₃ alkyl, NHC₁₋₃ alkanoyl, N(C₁₋₃ alkyl)₂, and N(C₁₋₃ alkyl)(C₁₋₃ alkanoyl); and

B is COOH, COOR⁵, CONH₂, CONHNH₂, CONHR⁵, CONR⁵R^{5'}, CONHOH, CONHOR⁵, SO₃H, SO₂NH₂, SO₂NHR⁵, SO₂NR⁵R^{5'}, PO₃H, PO(OH)(OR⁵), PO(OR⁵)(OR^{5'}), PO(OH)(NHR⁵), or PO(NHR⁵)(NHR^{5'}), in each case bonded to a carbon atom of group **A**, or

the entire group Y-A-B is N(SO₂R⁴)(SO₂R⁴) or NHSO₂R⁴.

- 32. (Currently Amended) A method according to claim 15, wherein
- R^1 is a monocyclic or bicyclic C_{6-12} aryl group which is unsubstituted or is substituted with up to three of the following substituents, independently of one another selected from:

F, Cl, Br, I, C(NH)NH₂, C(NH)NHR⁴, C(NH)NR⁴R⁴, C(NR⁴)NH₂, C(NR⁴)NHR⁴, C(NR⁴)NR⁴R⁴, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴)SO₂R⁴, XNR⁴SO₂R⁴, XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, and R⁴;

 R^2 is a monocyclic or bicyclic C_{6-10} aryl group which is unsubstituted or is substituted with up to three of the following substituents, independently of one another selected from:

F, Cl, Br, I, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCOOH, XCOOR⁴, XCONH₂, XCONHR⁴, XCONR⁴R⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴)SO₂R⁴, XNR⁴SO₂R⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, and R⁴;

R³ is one or two substituents which are independently of one another <u>selected</u> from:

hydrogen, F, Cl, Br, I, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONHR⁴, XCONR⁴R⁴, XCONHOH, XCONHOR⁴,

XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XNR⁴SO₂R⁴, XN(SO₂R⁴)(SO₂R⁴), XNHCOR⁴, XNHCOR⁴, XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, of and R⁴;

 R^4 and $R^{4'}$, independently of one another, are each C_{1-4} perfluoroalkyl, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkinyl, C_{3-7} cycloalkyl, C_{1-3} alkyl- C_{3-7} cycloalkyl, C_{1-3} alkyl- C_{6-10} aryl, or C_{6-10} aryl, wherein aryl groups are unsubstituted or substituted by one or two substituents selected from F, Cl, Br, CH₃, C_2H_5 , NO₂, OCH₃, OC₂H₅, CF₃, and C_2F_5 ,

R⁵ and R⁵, independently of one another, are each

 C_{1-6} alkyl, C_{2-6} alkenyl, or C_{2-6} alkinyl, wherein in each case a carbon atom ean be is optionally replaced by O, S, SO, SO₂, NH, N C_{1-3} alkyl or N C_{1-3} alkanoyl,

C₃₋₇ cycloalkyl-C₀₋₃ alkyl, or

 C_{6-10} aryl;

A is C_{1-10} alkanediyl, C_{2-10} alkenediyl, C_{2-10} alkinediyl, or (C_{0-5} alkanediyl- C_{3-7} cycloalkanediyl- C_{0-5} alkanediyl),

wherein in the alkanediyl, alkenediyl, and alkinediyl groups ehains, a carbon atom or two carbon atoms ean be are optionally replaced by O, NH, NC_{1-3} alkyl, or NC_{1-3} alkanoyl, and wherein alkanediyl and cycloalkanediyl groups ean be are optionally substituted with up to two substituents selected from =O, OH, OC_{1-3} alkyl, NHC_{1-3} alkyl, NHC_{1-3} alkanoyl, $N(C_{1-3}$ alkyl)₂, and $N(C_{1-3}$ alkyl)(C_{1-3} alkanoyl); and

B is COOH, COOR⁵, CONH₂, CONHNH₂, CONHR⁵, CONR⁵R^{5'}, CONHOH, CONHOR⁵, SO₃H, SO₂NH₂, SO₂NHR⁵, SO₂NR⁵R^{5'}, PO₃H, PO(OH)(OR⁵), PO(OR⁵)(OR^{5'}), PO(OH)(NHR⁵), or PO(NHR⁵)(NHR^{5'}), in each case bonded to a carbon atom of group A, or

the entire group Y-A-B is N(SO₂R⁴)(SO₂R⁴) or NHSO₂R⁴.

- 33. (Currently Amended) A method according to claim 15, wherein said patient is suffering from AIDS dementia, amyotrophic lateral sclerosis, Creutzfeldt-Jacob disease, Down's syndrome, diffuse Lewy body's disease, Huntington's disease, leukoencephalopathy, multiple sclerosis, Parkinson's disease, Pick's disease, Alzheimer's disease, stroke, temporary lobe epilepsy or tumors. neuro inflammation.
- 34. (Previously Presented) A method according to claim 15, wherein said patient is suffering from a stroke.
- 35. (Previously Presented) A method according to claim 32, wherein said compound is 6-[[1-(4-methylphenyl)-2-phenyl-1H-benzimdazol-6-yl]oxy] hexanoic isopropyl ester.
- 36. (Previously Presented) A method according to claim 32, wherein said compound is 6-[[1-(4-methylphenyl)-2-phenyl-1H-benzimdazol-6-yl]oxy] hexanoic isopropyl ester.
- 37. (New) A method according to claim 15, wherein said patient is suffering from neurohal dysfunction or degeneration.
- 38. (New) A method according to claim 15, wherein said patient is suffering from neurohal Alzheimer's disease.

39. (New) A benzimdazole compound according to formula I

$$\begin{array}{c|c}
R^3 & N \\
N & R^2
\end{array}$$

$$\begin{array}{c|c}
R^1 & (I)
\end{array}$$

or a physiologically compatible salt thereof, in which

 R^{\perp} means a monocyclic or bicyclic C_{6-12} aryl group, wherein said aryl is unsubstituted or is substituted with up to three of the following substituents, independently of one another selected from:

F, Cl, Br, I,

C(NH)NH₂, C(NH)NHR⁴, C(NH)NR⁴R⁴, C(NR⁴)NH₂, C(NR⁴)NHR⁴,

 $C(NR^4)NR^4R^4$,

XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴,

XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴,

XCN, XCOOH, XCOOR⁴, XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH,

XCONHOR⁴, XCOSR⁴,

XSR⁴, XSOR⁴, XSO₂R⁴,

SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴,

NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XN(SO₂R⁴)SO₂R⁴,

XNR⁴SO₂R⁴,

XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-

dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, and R4,

wherein when two of said substituents for the aryl group are in ortho-position to one another, they are optionally linked to one another to jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl;

 R^2 means a monocyclic or bicyclic C_{6-10} aryl group, wherein said aryl is unsubstituted or is substituted with up to three of the following substituents, independently of one another selected from:

F, Cl, Br, I,

XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴,

XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴,

XCOOH, XCOOR⁴, XCONH₂, XCONHR⁴, XCONR⁴R^{4'}, XCONHOH,

XCONHOR⁴, XCOSR⁴,

XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴,

2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-

dioxoisoindol-1-yl, and R⁴,

wherein when two of said substituents for the aryl group are in ortho-position to one another, they are optionally linked to one another to jointly form methanediyl-bisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl;

R³ means one or two substituents which are independently of one another selected from:

hydrogen,

F, Cl, Br, I,

XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴.

XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴,

XCN, XCOOH, XCOOR⁴, XCONH₂, XCONHR⁴, XCONR⁴R⁴, XCONHOH,

XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴,

SO₂NR⁴R⁴,

NO₂, XNH₂, XNHR⁴, XNR⁴R⁴,

 $XNHSO_2R^4$, $XNR^4SO_2R^{4'}$, $XN(SO_2R^4)(SO_2R^{4'})$,

XNHCOR⁴, XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-

dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, and R⁴,

wherein when two substituents R^3 are in ortho-position to one another, they are optionally linked to one another to jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl;

R⁴ and R⁴, independently of one another, mean C₁₋₄ perfluoroalkyl, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkinyl, C₃₋₇ cycloalkyl, C₁₋₃ alkyl-C₃₋₇ cycloalkyl, C₁₋₃ alkyl-C₆₋₁₀ aryl, or C₆₋₁₀ aryl, wherein aryl groups are unsubstituted or substituted by one or two substituents selected from F, Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅, or optionally carry an annelated methanediylbisoxy group or ethane-1,2-diylbisoxy group,

 R^5 and $R^{5'}$, independently of one another, mean C_{1-6} alkyl, C_{2-6} alkenyl, or C_{2-6} alkinyl, wherein in each case a carbon atom is optionally replaced by O, S, SO, SO₂, NH, N C_{1-3} alkyl or N C_{1-3} alkanoyl,

C₃₋₇ cycloalkyl-C₀₋₃ alkyl, or

C₆₋₁₀ aryl, wherein the mentioned alkyl, alkenyl and alkinyl groups are optionally substituted with one of the previously mentioned cycloalkyls, or aryls,

wherein all previously mentioned alkyl and cycloalkyl radicals are optionally substituted with up to two substituents selected from CF₃, C₂F₅, OH, O C₁₋₃ alkyl, NH₂, NHC₁₋₃ alkyl, NHC₁₋₃ alkanoyl, N(C₁₋₃ alkyl)₂, N(C₁₋₃ alkyl)(C₁₋₃ alkanoyl), COOH, CONH₂, and COO C₁₋₃ alkyl, and all previously mentioned aryl groups are optionally substituted with one or two substituents selected from F, Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅, or optionally carry an annelated methanediylbisoxy, ethane-1,2-diylbisoxy group,

A means C_{1-10} alkanediyl, C_{2-10} alkenediyl, C_{2-10} alkinediyl, or (C_{0-5} alkanediyl- C_{3-7} cycloalkanediyl- C_{0-5} alkanediyl),

wherein in the above-mentioned aliphatic groups, a carbon atom or two carbon atoms are optionally replaced by O, NH, N C_{1-3} alkyl, N C_{1-3} alkanoyl, and wherein alkyl or cycloalkyl groups are optionally substituted with up to two substituents selected from =O, OH, O C_{1-3} alkyl, NH $_{2-3}$ alkyl, NH $_{2-3}$ alkanoyl, N(C_{1-3} alkyl) $_{2-3}$, and N(C_{1-3} alkyl)(C_{1-3} alkanoyl),

B means COOH, COOR⁵, CONH₂, CONHNH₂, CONHR⁵, CONR⁵R^{5'}, CONHOH, CONHOR⁵, SO₃H, SO₂NH₂, SO₂NHR⁵, SO₂NR⁵R^{5'}, PO₃H, PO(OH)(OR⁵), PO(OR⁵)(OR^{5'}), PO(OH)(NHR⁵), PO(NHR⁵)(NHR^{5'}), or tetrazolyl, in each case bonded to a carbon atom of group A,

or the entire group Y-A-B is N(SO₂R⁴)(SO₂R⁴) or NHSO₂R⁴;

X means a bond, CH_2 , $(CH_2)_2$, $CH(CH_3)$, $(CH_2)_3$, $CH(CH_2CH_3)$, $CH(CH_3)CH_2$, or $CH_2CH(CH_3)$, and

Y means O, NH, NR⁴, NCOR⁴, or NSO₂R⁴, provided that Y means NH, NR⁴, NCOR⁴ or NSO₂R⁴, and

G Y

 R^2 contains substituents XNHR⁴ and/or XNR⁴R^{4'}, in which R⁴ and/or R^{4'} are not C₁₋₄ alkyl,

then B does not mean COOH, SO₃H, PO₃H₂ or tetrazolyl, and R¹ and R² are phenyl, which is unsubstituted, or is substituted with C₁₋₆ alkyl, C₁₋₄ perfluoroalkyl, O C₁₋₆ alkyl, O C₁₋₆ alkyl, COOH, COO C₁₋₆ alkyl, COOH₂, CONHR⁴, NO₂, NH₂, NHCOR⁴, NHSO₂R⁴, or with 1 or 2 halogen atoms selected from F, Cl, Br, and I, and whereby the following compounds are excluded:

- [(1,2-Diphenyl-1H-benzimidazol-6-yl)oxy]acetic acid methyl ester,
- 5-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]pentanoic acid methyl ester,
- 4-[(1,2-diphenyl-1H-benzimidazol-6-yl)oxy]butanoic acid ethyl ester,
- 5-[[1-(4-nitrophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]-pentanoic acid methyl ester,
 - 6-[[1-(4-nitrophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester,
- 5-[[1-(4-aminophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]pentanoic acid methyl ester,
- 5-[[1-[4-[[(4-chlorophenyl)sulfonyl]amino]phenyl]-2-phenyl-1H-benzimidazol-6-yl]oxy]pentanoic acid methyl ester,
- 5-[[1-[4-[(acetyl)amino]phenyl]-2-phenyl-1H-benzimidazol-6-yl]oxy]pentanoic acid methyl ester
- 5-[[1-(3-nitrophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]pentanoic acid methyl ester,
 - 6-[[1-(3-nitrophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]hexanoic acid methyl ester,
- 5-[[1-(3-aminophenyl)-2-phenyl-1H-benzimidazol-6-yl]oxy]pentanoic acid methyl ester,
- 5-[[1-[3-[[(4-chlorophenyl)sulfonyl]amino]phenyl]-2-phenyl-1H-benzimidazol-6-yl]oxy]pentanoic acid methyl ester, and
- 5-[[1-[3-[(acetyl)amino]phenyl]-2-phenyl-1H-benzimidazol-6-yl]oxy]pentanoic acid methyl ester.

40. (New) A method for treating a patient suffering from a disease associated with microglia activation comprising administering to said patient an effective amount of a benzimidazole compound of formula II

$$R^3$$
 N
 R^2
 R^1
(II)

or a physiologically compatible salt thereof, in which

 R^1 means a monocyclic or bicyclic C_{6-12} aryl group, wherein when said aryl group is optionally substituted with up to three of the following substituents, independently of one another selected from:

F, Cl, Br, I, C(NH)NH₂, C(NH)NHR⁴, C(NH)NR⁴R⁴, C(NR⁴)NH₂, C(NR⁴)NHR⁴,

C(NR⁴)NR⁴R⁴, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴,

XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴,

XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴,

XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴,

XNHSO₂R⁴, XN(SO₂R⁴)(SO₂R⁴), XNR⁴SO₂R⁴, XNHCOR⁴, XNHCOOR⁴,

XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl,

2,7-dihydro-2,7-dioxoisoindol-1-yl, and R⁴,

wherein when two of said substituents for the aryl group are in ortho-position to one another, they are optionally linked to one another to jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl;

 R^2 means a monocyclic or bicyclic $C_{6\text{-}10}$ aryl group, wherein said aryl group is optionally substituted with up to three of the following substituents, independently of one another selected from:

F, Cl, Br, I, C(NH)NH₂, C(NH)NHR⁴, C(NH)NR⁴R⁴, C(NR⁴)NH₂, C(NR⁴)NHR⁴,

C(NR⁴)NR⁴R⁴, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴,

XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴,

XCONH₂, XCONR⁴R⁴, XCONHR⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴,

XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴,

XNHSO₂R⁴, XN(SO₂R⁴)(SO₂R⁴), XNR⁴SO₂R⁴, XNHCOR⁴, XNHCOOR⁴,

XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, 2,5-dihydro-2,5-dioxopyrrol-1-yl,

2,7-dihydro-2,7-dioxoisoindol-1-yl, and R⁴,

wherein when two of said substituents for the aryl group are in ortho-position to one another, they are optionally linked to one another to jointly form methanediyl-bisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl;

R³ stands for one or two substituents which are each independently of one another selected from:

hydrogen, F, Cl, Br, I, XOH, XOR⁴, XOCOR⁴, XOCONHR⁴, XOCOOR⁴, XCOR⁴, XC(NOH)R⁴, XC(NOR⁴)R⁴, XC(NO(COR⁴))R⁴, XCN, XCOOH, XCOOR⁴, XCONH₂, XCONHR⁴, XCONR⁴R⁴, XCONHOH, XCONHOR⁴, XCOSR⁴, XSR⁴, XSOR⁴, XSO₂R⁴, SO₂NH₂, SO₂NHR⁴, SO₂NR⁴R⁴, NO₂, XNH₂, XNHR⁴, XNR⁴R⁴, XNHSO₂R⁴, XNR⁴SO₂R⁴, XN(SO₂R⁴), XNHCOR⁴, XNHCOOR⁴, XNHCONHR⁴, tetrahydro-2,5-dioxopyrrol-1-yl, or 2,5-dihydro-2,5-dioxopyrrol-1-yl, 2,7-dihydro-2,7-dioxoisoindol-1-yl, and R⁴,

wherein when two substituents R³ are in ortho-position to one another, they are optionally linked to one another to jointly form methanediylbisoxy, ethane-1,2-diylbisoxy, propane-1,3-diyl, or butane-1,4-diyl;

 R^4 and $R^{4'}$, independently of one another, mean C_{1-4} perfluoroalkyl, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkinyl, C_{3-7} cycloalkyl, (C_{1-3} alkyl- C_{3-7} cycloalkyl), C_{1-3} alkyl- C_{6-10} aryl, or C_{6-10} aryl, wherein the C_{6-10} aryl groups are optionally substituted with one or two substituents selected from F, Cl, Br, CH₃, C_2H_5 , NO₂, OCH₃, OC₂H₅, CF₃, and C_2F_5 , or optionally carry an annelated methanediylbisoxy group or ethane-1,2-diylbisoxy group,

 R^5 and R^5 ', independently of one another, mean hydrogen, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkinyl, wherein in each case a carbon atom is optionally replaced by O, S, SO, SO₂, NH, N C_{1-3} alkyl or N C_{1-3} alkanoyl,

C₃₋₇ cycloalkyl-C₀₋₃ alkyl, or

 C_{6-10} aryl,

wherein the mentioned alkyl, alkenyl and alkinyl groups are optionally substituted with one of the previously mentioned cycloalkyls or aryls,

wherein all previously mentioned alkyl and cycloalkyl radicals are optionally substituted with up to two substituents selected from CF_3 , C_2F_5 , OH, OC_{1-3} alkyl, NH2, NHC_{1-3} alkyl, NHC_{1-3} alkanoyl, $N(C_{1-3}$ alkyl)₂, $N(C_{1-3}$ alkyl)(C_{1-3} alkanoyl), COOH, $CONH_2$, and $COOC_{1-3}$ alkyl, and all previously mentioned aryl groups are optionally substituted with one or two substituents selected from F, CI, Br, CH_3 , C_2H_5 , NO_2 , OCH_3 , OC_2H_5 , CF_3 , and C_2F_5 or optionally carry an annelated methanediylbisoxy, or ethane-1,2-diylbisoxy group,

A means C_{1-10} alkanediyl, C_{2-10} alkenediyl, C_{2-10} alkinediyl, (C_{0-5} alkanediyl- C_{3-5} alkanediyl- C_{0-5} alkanediyl), or (C_{0-5} alkanediylarylene- C_{0-5} alkanediyl),

wherein the aryl groups are optionally substituted with one or two substituents selected from F, Cl, Br, CH₃, C₂H₅, NO₂, OCH₃, OC₂H₅, CF₃, and C₂F₅,

• (3

wherein in the mentioned aliphatic groups, one or two carbon atoms are each optionally replaced by O, NH, NR⁴, NCOR⁴, or NSO₂R⁴,

and wherein alkyl or cycloalkyl groups are optionally substituted with up to two substituents selected from F, OH, OR⁴, OCOR⁴, =O, NH₂, NR⁴R^{4'}, NHCOR⁴, NHCOOR⁴, NHCONHR⁴, NHSO₂R⁴ SH, and SR⁴,

B means hydrogen, OH, OCOR⁵, OCONHR⁵, OCOOR⁵, COR⁵, C(NOH)R⁵, C(NOR⁵)R^{5'}, C(NO(COR⁵))R^{5'}, COOH, COOR⁵, CONH₂, CONHNH₂, CONHNH₂, CONHR⁵, CONR⁵R^{5'}, CONHOH, CONHOR⁵, SO₃H, SO₂NH₂, SO₂NHR⁵, SO₂NR⁵R^{5'}, PO₃H, PO(OH)(OR⁵), PO(OR⁵)(OR^{5'}), PO(OH)(NHR⁵), PO(NHR⁵)(NHR^{5'}), or tetrazolyl, each bonded to a carbon atom of group A,

or the entire group Y-A-B is N(SO₂R⁴)(SO₂R⁴) or NHSO₂R⁴,

- X means a bond, CH_2 , $(CH_2)_2$, $CH(CH_3)$, $(CH_2)_3$, $CH(CH_2CH_3)$, $CH(CH_3)CH_2$, or $CH_2CH(CH_3)$, and
 - Y means a bond, O, S, SO, SO₂, NH, NR⁴, NCOR⁴, or NSO₂R⁴.
- 41. (New) A benzimdazole compound according to formula I of claim 1, wherein all heterocyclic groups are selected from pyridinyl, pyridyl, thienyl, imidazol, indonyl, furyl, pyrrolidin, morpholin, piperidin, and piperazine.

42. (New) A method for treating a patient suffering from a disease associated with microglia activation according to claim 15, comprising administering to said patient an effective amount of a benzimidazole compound of formula II wherein all heterocyclic groups are selected from pyridinyl, pyridyl, thienyl, imidazol, indonyl, furyl, pyrrolidin, morpholin, piperidin, and piperazine.

412 1