Networks and Random Processes

Problem sheet 1

Sheet counts 45/100 homework marks, [x] indicates weight of the question. Please put solutions in my pigeon hole or give them to me by **Friday**, **18.10.2019**, **1pm**.

All plots must contain axis labels and a legend (can be added by hand if necessary). Use your own judgement to find reasonable and relevant plot ranges.

1.1 Simple random walk (SRW)

[18]

- (a) Consider a SRW on $\{1,\ldots,L\}$ with probabilities $p\in[0,1]$ and q=1-p to jump right and left, respectively, and consider periodic as well as closed boundary conditions. For both cases, sketch the transition matrix P of the process (see lectures). Decide whether the process is irreducible, and give all stationary distributions π and state whether they are reversible. (Hint: Use detailed balance.) Where necessary, discuss the cases p=1 and p=q=1/2 separately from the general case $p\in(0,1)$.
- (b) Consider the same SRW with absorbing boundary conditions, sketch the transition matrix P, decide whether the process is irreducible, and give all stationary distributions π and state whether they are reversible. Let $h_k^L = \mathbb{P}[X_n = L \text{ for some } n \geq 0 | X_0 = k]$ be the absorption probability in site L. Give a recursion formula for h_k^L and solve it for $p \neq q$ and p = q.
- (c) Simulate 500 realizations of a SRW with L=10, closed boundary conditions and with a value for $p=1-q\in(0.6,0.9)$ of your choice. For all simulations use $X_0=1$. Plot the empirical distribution after 10 and 100 time steps in form of a histogram, and compare it with the theoretical stationary distribution from (a). Repeat a single realization of the same simulation up to 50 and 500 time steps and plot the fraction of time spent in each state as a histogram, comparing to the stationary distribution.

1.2 Generators and eigenvalues

Γ14⁻

Consider the continuous-time Markov chain $(X_t : t \ge 0)$ with generator $G = \begin{pmatrix} -2 & 1 & 1 \\ 1 & -4 & 3 \\ 0 & 1 & -1 \end{pmatrix}$.

- (a) Draw a graph representation for the chain (i.e. connect the three states by their jump rates), and give the transition matrix P^Y of the corresponding jump chain $(Y_n : n \in \mathbb{N}_0)$.
- (b) Consider the Taylor series of the matrix P_t and convince yourself that $\frac{d}{dt}P_t|_{t=0}=G$, $\frac{d^2}{dt^2}P_t|_{t=0}=G^2$ etc..

Assume that $G = B^{-1}\Lambda B$, with diagonal matrix $\Lambda \in \mathbb{C}^{3\times 3}$ and eigenvalues λ_i of G on the diagonal, and with some matrix $Q \in \mathbb{C}^{3\times 3}$. Show that

$$P(t) = \exp(tG) = Q^{-1} \begin{pmatrix} 1 & 0 & 0 \\ 0 e^{\lambda_2 t} & 0 \\ 0 & 0 & e^{\lambda_3 t} \end{pmatrix} Q.$$

(It is not necessary to compute entries of the matrix Q!)

(c) Compute λ_2 and λ_3 . Use this to compute $p_{11}(t)$, i.e. determine the coefficients in

$$p_{11}(t) = a + b e^{\lambda_2 t} + c e^{\lambda_3 t}$$
.

(Again, it is not necessary to compute the matrix Q, instead use what you know about $p_{11}(0)$ and $\frac{d}{dt}p_{11}(t)|_{t=0}$ etc.)

(d) What is the stationary distribution π of X?

1.3 Pólya urn models

[18]

Consider the following experiment: Place k balls each of distinct color indexed by $i=1,\ldots,k$ in an urn. Draw one ball uniformly at random, then replace *two* balls of the colour just drawn in the urn. Iterate.

- (a) Give the state space S, the initial condition $\underline{X}(n)$ and the transition probabilities $p(\underline{x},\underline{y})$, $\underline{x},\underline{y}\in S$ to define a stochastic process $\big(\underline{X}(n):n=0,1,\ldots\big)$ keeping track of the contents $\underline{X}(n)$ as a function of discrete time n.
- (b) For k=2 sketch the state space and the transition probabilities between states.

Still for k = 2, show that for all $(x_1, x_2) \in S$ and all $n \ge 1$

$$\mathbb{P}[\underline{X}(n) = (x_1, x_2)] = \frac{1}{n+1} \, \delta_{n+2, x_1 + x_2} \,,$$

i.e. the distribution at time n is uniform.

Use this to show that $\frac{1}{n+2}\underline{X}(n) \to (U,1-U) \ ,$

where $U \sim U[0, 1]$ is a uniform random variable on [0, 1].

Consider a **generalized Pólya urn model** with k types or colours on the same state space S with transition probabilities

$$p(\underline{x}, \underline{x} + \underline{e}_i) = \frac{f_i x_i^{\gamma}}{\sum_{j=1}^k f_j x_j^{\gamma}},$$

where the $f_i > 0$ denote the **fitness** of type i and $\gamma \geq 0$ is a **reinforcement parameter**.

(c) Simulate the model for k=500 types with equal fitness $f_i\equiv 1$ for $\gamma=0,\,0.5,\,1$ and 1.5. For each γ , show the **empirical tail distributions** of $\underline{X}(n)$ for $n=5000,\,20000$ and 80000 in one plot, and do the same for the normalized data $\frac{1}{n+k}\underline{X}(n)$ (8 plots in total).

Choose the plot ranges reasonably and explain what you observe.

Background info: For $\gamma > 1$ it is known that the system exhibits **monopoly**, i.e. as $n \to \infty$ almost all balls in the urn will be of a single type.

1.4 Wright-Fisher model of population genetics

(Class only)

Consider a fixed population of L individuals. At time t=0 each individuum i has a different type $X_0(i)$, for simplicity we simply put $X_0(i)=i$. Time is counted in discrete generations $t=0,1,\ldots$ In generation t+1 each individuum i picks a parent $j\sim U(\{1,\ldots,L\})$ uniformly at random, and adopts its type, i.e. $X_{t+1}(i)=X_t(j)$. This leads to a discrete-time Markov chain $(X_t:t\in\mathbb{N})$.

- (a) Give the state space of the Markov chain $(X_t : t \in \mathbb{N})$. Is it irreducible? What are the stationary distributions? (Hint: if unclear do (c) first to get an idea.)
- (b) Let N_t be the number of individuals of a given species at generation t, with $N_0=1$. Is $(N_t:t\in\mathbb{N})$ a Markov process? Give the state space and the transition probabilities. Is the process irreducible? What are the stationary distributions? What is the limiting distribution as $t\to\infty$ for the initial condition $N_0=1$?
- (c) Simulate the dynamics of the full process $(X_t:t\in\mathbb{N})$ up to generation T. Store the trajectory $(X_t:t=1,\ldots,T)$ in a $T\times L$ matrix, with ordered types such that $X_t(1)\leq\ldots\leq X_t(L)$ for all t, and visualise the matrix with a heat map. You may use the suggested parameter value L=100 and appropriate T, or any other that make sense (it is a good idea to vary them to get a feeling for the model). Address the following points, supported by appropriate visualisations:
 - Explain the emerging patterns in a couple of sentences, what will happen when you run the simulation long enough?
 - How long will it roughly take on average to reach stationarity (depending on L)? Test your answer using (at least) three values for L, e.g. 10, 50 and 100.