

Adv. Natural Language Processing

Lecture 7

Previous Lecture

- Introduction to N Grams
- Estimating N-Grams Probabilities
- Evaluation and Perplexity
- Generalization and Zeros
- Laplace Smoothing (Add 1)
- Interpolation and Backoff
- Kneser-Ney Smoothing

Today's Lecture

- Spelling Corrections Task
- Noisy Channel Model of Spelling
- Real World Spelling Corrections
- State of the Art Systems

Spelling Correction and the Noisy Channel

Spelling Correction Task

Applications for spelling correction

Word processing

Phones

Web search

Showing results for <u>natural language</u> processing

MS(CS), Bahria University, Search instead for natural language processing

Spelling Tasks

- 1. Spelling Error Detection
- 2. Spelling Error Correction:
 - Autocorrect
 - hte → the
 - Suggest a correction
 - Suggestion lists

Types of Spelling Errors

- Non-word Errors
 graffe → giraffe
- 2. Real-word Errors
 - a. Typographical Errors
 - their → there
 - b. Cognitive Errors (homophones)
 - piece → peace
 - $too \rightarrow two$

Rates of Spelling Errors

26%: Web queries: Wang et al. 2003

13%: Retyping, no backspace: Whitelaw et al. English&German

7%: Words corrected retyping on smart devices.

2%: Words uncorrected on organizer: Soukoreff & MacKenzie 2003

1-2%: Retyping: Kane and Wobbrock 2007, Gruden et al. 1983

1. Non-word Spelling Errors

Non-word spelling error detection:

- Any word not in a dictionary is an error
- The larger the dictionary the better

Non-word spelling error correction:

- Generate *candidates*: real words that are similar to error
- Choose the one which is best:
 - Shortest weighted edit distance
 - Highest noisy channel probability

2. Real word Spelling Errors

For each word w, generate candidate set:

- Find candidate words with similar pronunciations
- Find candidate words with similar spelling
- Include w in candidate set

Choose best candidate

- 1. Noisy Channel
- 2. Classifier

Spelling Correction and the Noisy Channel

Noisy Channel Model of Spelling

Noisy Channel Intuition

Noisy Channel Intuition

MS(CS), Bahria University, Islamabad

Noisy Channel

We see an observation *x* of a misspelled word Find the correct word *w*

Noisy Channel

$$\hat{w} = \underset{w \in V}{\operatorname{argmax}} P(w \mid x)$$
$$= \underset{w \in V}{\operatorname{argmax}} \frac{P(x \mid w)P(w)}{P(w)}$$

$$= \operatorname*{argmax}_{w \in V} P(x \mid w) P(w)$$

The Bayes' rule (from Bayesian Classification) will be used to break down the probability P(a|b)

$$P(a|b) = \frac{P(b|a)P(a)}{P(b)}$$

We can simplify by dropping the denominator P(x).

Why P(x) is dropped?

Since we are choosing a potential correction word out of all words, we will be computing P(x|w)P(w) / P(x) for each word.

But P(x) doesn't change for each word.

Therefore, we can choose the word that _maximizes this simpler formula hammad Asfand-e-yar

MS(CS), Bahria University, Islamabad

Noisy Channel

$$\hat{w} = \underset{w \in V}{\operatorname{argmax}} P(w \mid x)$$

$$P(x \mid w)P(x \mid w) = P(x \mid w) P(x \mid w)$$

$$= \underset{w \in V}{\operatorname{argmax}} \frac{P(x \mid w)P(w)}{P(x)}$$

$$= \operatorname*{argmax}_{w \in V} P(x \mid w) P(w)$$

Then it means that maximizing is depended on the two things according to formula;

- 1) $P(x \mid w)$; i.e. likely hood (MLE)
- 2) P(w); i.e. Prior

The expression " $P(x \mid w)$ " is called the Channel Model, which is also called Error Model

The expression "P(w)" is called the <u>Language Model</u> as seen before, i.e. the probability of the correct word

History: Noisy Channel for Spelling (1990)

IBM

Mays, Eric, Fred J. Damerau and Robert L. Mercer. 1991. Context based spelling correction. Information Processing and Management, 23(5), 517–522

AT&T Bell Labs

Kernighan, Mark D., Kenneth W. Church, and William A. Gale. 1990. A spelling correction program based on a noisy channel model. Proceedings of COLING 1990, 205-210

MS(CS), Bahria University, Islamabad

Non-word Spelling Error example

acress

Candidate generation

Words with similar spelling Small edit distance to error

Words with similar pronunciation

Small edit distance of pronunciation to error

Damerau-Levenshtein edit distance

Minimal edit distance between two strings, where edits are:

- Insertion
- Deletion
- Substitution
- Transposition of two adjacent letters

Words within 1 of acress

Error	Candidate Correction	Correct Letter	Error Letter	Type
acress	actress	t	_	deletion
acress	cress	_	a	insertion
acress	caress	са	ac	transposition
acress	access	С	r	substitution
acress	across	0	е	substitution
acress	acres	_	S	insertion
acress	acres	_	S	insertion

Candidate generation

80% of errors are within edit distance 1 Almost all errors within edit distance 2

Also allow insertion of space or hyphen

- thisidea → this idea
- inlaw → in-law

Language Model

Use any of the language modeling algorithms we've learned

Unigram, Bigram, Trigram

Web-scale spelling correction Stupid backoff

Unigram Prior probability

Counts from 404,253,213 words in Corpus of Contemporary English (COCA)

word	Frequency of word	P(word)
actress	9,321	.0000230573
cress	220	.0000005442
caress	686	.0000016969
access	37,038	.0000916207
across	120,844	.0002989314
acres	12,874	.0000318463

Channel Model Probability

Error model probability, Edit probability

Kernighan, Church, Gale 1990

Misspelled word
$$x = x_1, x_2, x_3...x_m$$

Correct word $w = w_1, w_2, w_3,..., w_n$

P(x|w) = probability of the edit (deletion/insertion/substitution/transposition)

Computing Error Probability: confusion matrix

To construct the Channel Model a confusion matrix is to be created.

Insertion and deletion conditioned on previous character

Confusion Matrix for Spelling Errors sub[X, Y] = Substitution of X (incorrect) for Y (correct)

	X					31	սոքչ	A , I	J	Sub	SHLL	ıuv			rrect)		ci) i	i O I	1 ((.011	cci)						
		a	ь	С	d	e	f	g	h	i	j	k	1	m	n	0	p	q	r	S	t	u	v	w	x	У	Z
	a	0	0	7	1	342	0	0	2	118	0	1	0	0	3	76	0	0	1	35	9	9	0	1	0	5	0
	b	0	0	9	9	2	2	3	1	0	0	0	5	11	5	0	10	0	0	2	1	0	0	8	0	0	0
	c	6	5	0	16	0	9	5	0	0	0	1	0	7	9	1	10	2	5	39	40	1	3	7	1	1	0
	d	1	10	13	0	12	0	5	5	0	0	2	3	7	3	0	1	0	43	30	22	0	0	4	0	2	0
	С	388	0	3	11	0	2	2	0	89	0	0	3	0	5	93	0	0	14	12	6	15	0	1	0	18	0
	f	0	15	0	3	1	0	5	2	0	0	0	3	4	1	0	0	0	6	4	12	0	0	2	0	0	0
	g	4	1	11	11	9	2	0	0	0	1	1	3	0	0	2	1	3	5	13	21	0	0	1	0	3	0
	h	1	8	0	3	0	0	0	0	0	0	2	0	12	14	2	3	0	3	1	11	0	0	2	0	0	0
<	i	103	0	0	0	146	0	1	0	0	0	0	6	0	0	49	0	0	0	2	1	47	0	2	1	15	0
	j	0	1	1	9	0	0	1	0	0	0	0	2	1	0	0	0	0	0	5	0	0	0	0	0	0	0
	k	1	2	8	4	1	1	2	5	0	0	0	0	5	0	2	0	0	0	6	0	0	0	. 4	0	0	3
	1	2	10	1	4	0	4	5	6	13	0	1	0	0	14	2	5	0	11	10	2	0	0	0	0	0	0
	m	1	3	7	8	0	2	0	6	0	0	4	4	0	180	0	6	0	0	9	15	13	3	2	2	3	0
-	n	2	7	6	5	3	0	1	19	1	0	4	35	78	0	0	7	0	28	5	7	0	0	1	2	0	2
	0	91	1	1	3		0	0	0	25	0	2	0	0	0	0	14	0	2	4	14	39	0	0	0	18	0
	p	0	11	1	2	0	6	5	0	2	9	0	2	7	6	15	0	0	1	3	6	0	4	1	0	0	0
	q	0	0	1	0	0	0	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	r	0	14	0	30	12	2	2	8	2	0	5	8	4	20	1	14	0	0	12	22	4	0	0	1	0	0
	s	11	8	27	33	35	4	0	1	0	1	0	27	0	6	1	7	0	14	0	15	0	0	5	3	20	1
	t	3	4	9	42	7	5	19	5	0	1	0	14	9	5	5	6	0	11	37	0	0	2	19	0	7	6
	u	20	0	0	0	44	0	0	0	64	0	0	0	0	2	43	0	0	4	0	0	0	0	2	0	8	0
	v	0	0	7	0	0	3	0	0	0	0	0	1	0	0	1	0	0	0	8	3	0	0	0	0	0	0
	w	2	2	1	0	1	0	0	2	0	0	1	0	0	0	0	7	0	6	3	3	1	0	0	0	0	0
	х	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0
ria	У	0	0	2	0	15	0	1	7	15	0	0	0	2	0	6	1	0	7	36	8	5	0	0	1	0	0
110	z	0	0	0	7	0	0	0	0	0	0	0	7	5	0	0	0	0	2	21	3	0	0	0	0	3	0

Generating the Confusion Matrix

You can also generate the confusion matrix table by yourself. The Peter Norvig collected errors from Wikipedia and other online resources. So, you can construct the matrix from the given list of errors.

Peter Norvig's list of errors

http://norvig.com/ngrams/

Peter Norvig's list of counts of single-edit errors

MS(CS), Bahria University, Islamabad

Channel Model

Kernighan, Church, Gale 1990

$$P(x|w) = \begin{cases} \frac{\operatorname{del}[w_{i-1}, w_i]}{\operatorname{count}[w_{i-1} w_i]}, & \text{if deletion} \\ \frac{\operatorname{ins}[w_{i-1}, x_i]}{\operatorname{count}[w_{i-1}]}, & \text{if insertion} \\ \frac{\operatorname{sub}[x_i, w_i]}{\operatorname{count}[w_i]}, & \text{if substitution} \\ \frac{\operatorname{trans}[w_i, w_{i+1}]}{\operatorname{count}[w_i w_{i+1}]}, & \text{if transposition} \end{cases}$$

 x_i is the error word.

 w_i is the correct word.

MS(CS), Bahria University, Islamabad W_{i-1} is the previous to the correct word. Instructor: Dr. Muhammad Asfand-e-yar

Channel Model for acress

Channel Model

Candidate Correction	Correct Letter	Error Letter	x w	P(x word)
actress	t	-	c ct	.000117
cress	_	а	a #	.00000144
caress	ca	ac	ac ca	.00000164
access	С	r	r c	.000000209
across	0	е	elo	.0000093
acres	_	S	es e	.0000321
acres	_	S	ss s	.0000342

MS(CS), Bahria University, Islamabad

Noisy Channel Probability for acress

To make readable

Candidate Correction	Correct Letter	Error Letter	x w	P(x word)	P(word)	10 ⁹ *P(x w)P(w)
actress	t	_	c ct	.000117	.0000231	2.7
cress	_	а	a #	.00000144	.000000544	.00078
caress	ca	ac	ac ca	.00000164	.00000170	.0028
access	С	r	r c	.000000209	.0000916	.019
across	0	е	elo	.0000093	.000299	2.8
acres	_	S	es e	.0000321	.0000318	1.0
acres	_	S	ss s	.0000342	.0000318	1.0

Channel Model

MS(CS), Bahria University, Islamabad

Instructor: Dr. Muhammad Asfand-e-yar

Language Model

Noisy Channel Probability for acress

To make readable

						- Teadable
Candidate Correction	Correct Letter	Error Letter	x w	P(x word)	P(word)	10 ⁹ *P(x w)P(w)
actress	t	-	c ct	.000117	.0000231	2.7
cress	_	а	a #	.00000144	.000000544	.00078
caress	са	ac	ac ca	.00000164	.00000170	.0028
access	С	r	r c	.000000209	.0000916	.019
across	0	е	elo	.0000093	.000299	2.8
acres	_	S	es e	.0000321	.0000318	1.0
acres	_	S	ss s	.0000342	.0000318	1.0

Channel Model

MS(CS), Bahria University, Islamabad

Instructor: Dr. Muhammad Asfand-e-yar

Language Model

Using a Bigram Language Model

"a stellar and versatile acress whose combination of sass and glamour..."

- We checked in previous slides by Unigram
- Now we will check through Bigram

MS(CS), Bahria University, Islamabad

Using a Bigram Language Model

"a stellar and versatile acress whose combination of sass and glamour..."

Counts from the Corpus of Contemporary American English with add-1 smoothing

```
P(actress|versatile) = .000021; P(whose|actress) = .0010
P(across|versatile) = .000021; P(whose|across) = .000006
```

```
P("versatile actress whose") = .000021 \times .0010 = 210 \times 10^{-10}
P("versatile across whose") = .000021 \times .000006 = 1 \times 10^{-10}
```

MS(CS), Bahria University, Islamabad

Using a Bigram Language Model

"a stellar and versatile acress whose combination of sass and glamour..."

Counts from the Corpus of Contemporary American English with add-1 smoothing

```
P(actress|versatile) = .000021; P(whose|actress) = .0010
P(across|versatile) = .000021; P(whose|across) = .000006
```

```
P("versatile actress whose") = .000021 \times .0010 = 210 \times 10^{-10}
P("versatile across whose") = .000021 \times .000006 = 1 \times 10^{-10}
```

MS(CS), Bahria University, Islamabad

Evaluation

Some spelling error test sets

- Wikipedia's list of common English misspelling
- Aspell filtered version of that list
- Birkbeck spelling error corpus
- Peter Norvig's list of errors (includes Wikipedia and Birkbeck, for training or testing)

You can develop your training set from any of these sets and test sets to check your model that how it works.