0.1 title: KM-620

1 Equations

KM-620.1

$$\epsilon_{ts}\left(\sigma_{t}, E_{y}, \gamma_{1}, \gamma_{2}\right) = \frac{\sigma_{t}}{E_{y}} + \gamma_{1} + \gamma_{2}$$

KM-620.2

$$\gamma_1\left(\epsilon_1, H\right) = \frac{\epsilon_1}{2} \cdot \left(1 - \tanh\left(H\right)\right)$$

KM-620.3

$$\gamma_2\left(\epsilon_2, H\right) = \frac{\epsilon_2}{2} \cdot \left(1 + \tanh\left(H\right)\right)$$

KM-620.4

$$\epsilon_1 \left(\sigma_t, A_1, m_1 \right) = \left(\frac{\sigma_t}{A_1} \right)^{\frac{1}{m_1}}$$

KM-620.5

$$A_1\left(\sigma_{ys}, \epsilon_{ys}, m_1\right) = \frac{\sigma_{ys} \cdot (1 + \epsilon_{ys})}{\left(\log(1 + \epsilon_{ys})\right)^{m_1}}$$

KM-620.6

$$m_1(R, \epsilon_p, \epsilon_{ys}) = \frac{\log(R) + \epsilon_p - \epsilon_{ys}}{\log\left(\frac{\log(1 + \epsilon_p)}{\log(1 + \epsilon_{ys})}\right)}$$

KM-620.7

$$\epsilon_2 \left(\sigma_t, A_2, m_2 \right) = \left(\frac{\sigma_t}{A_2} \right)^{\frac{1}{m_2}}$$

KM-620.8

$$A_2\left(\sigma_{uts}, m_2\right) = \frac{\sigma_{uts} \cdot e^{m_2}}{m_2^{m_2}}$$

KM-620.9

$$H\left(\sigma_{t}, \sigma_{ys}, \sigma_{uts}, K\right) = \frac{2 \cdot \left(\sigma_{t} - \left(\sigma_{ys} + K \cdot \left(\sigma_{uts} - \sigma_{ys}\right)\right)\right)}{K \cdot \left(\sigma_{uts} - \sigma_{ys}\right)}$$

KM-620.10

$$R\left(\sigma_{ys}, \sigma_{uts}\right) = \frac{\sigma_{ys}}{\sigma_{uts}}$$

KM-620.11

$$\epsilon_{ys}() = 0.002$$

KM-620.12

$$K(R) = 1.5 \cdot R^{1.5} - 0.5 \cdot R^{2.5} - R^{3.5}$$

KM-620.13

$$\sigma_{utst}\left(\sigma_{uts}, m_2\right) = \sigma_{uts} \cdot e^{m_2}$$

2 Tables

Table KM-620

Material
Ferritic steel
Austenitic stainless steel and nickelbased alloys
Duplex stainless steel
Precipitation hardening, nickel based
Aluminum
Copper
Titanium and zirconium

Max. Temp. (°F)	m_2	m_3	m_4	m_5	ϵ_p
900	$0.6 \cdot (1.0 - R)$	$2 \cdot \log \left(1 + \frac{El}{100}\right)$	$\log\left(\frac{100}{100-RA}\right)$	2.2	2.0e - 5
900	$0.75 \cdot (1.0 - R)$	$3 \cdot \log \left(1 + \frac{El}{100}\right)$	$\log\left(\frac{100}{100-RA}\right)$	0.6	2.0e - 5
900	$0.7 \cdot (0.95 - R)$	$2 \cdot \log \left(1 + \frac{El}{100}\right)$	$\log\left(\frac{100}{100-RA}\right)$	2.2	2.0e - 5
1000	$1.09 \cdot (0.93 - R)$	$1 \cdot \log \left(1 + \frac{El}{100}\right)$	$\log\left(\frac{100}{100-RA}\right)$	2.2	2.0e - 5
250	$0.52 \cdot (0.98 - R)$	$1.3 \cdot \log \left(1 + \frac{El}{100}\right)$	$\log\left(\frac{100}{100-RA}\right)$	2.2	5.0e - 6
150	$0.5 \cdot (1.0 - R)$	$2 \cdot \log \left(1 + \frac{El}{100}\right)$	$\log\left(\frac{100}{100-RA}\right)$	2.2	5.0e - 6
500	$0.5 \cdot (0.98 - R)$	$1.3 \cdot \log \left(1 + \frac{El}{100}\right)$	$\log\left(\frac{100}{100-RA}\right)$	2.2	2.0e - 5

NOTE: Ferritic steel includes carbon, low alloy, and alloy steels, and ferritic, martensitic, and iron-based age-hardening stainless steels.

3 Nomenclature

Mandatory Appendix 1: Nomenclature

 $A_1 = \text{curve fitting constant for the elastic region of the stress-strain curve (KM-620)}$

 $A_2 = \text{curve fitting constant for the plastic region of the stress-strain curve (KM-620)}$

 $E_y =$ modulus of elasticity evaluated at the temperature of interest, see ASME Section II Part D

El = minimum specified elongation, %

H = undefined

K = undefined

 $m_1 = undefined$

 m_2 = value calculated from Table KM-620

 m_3 = value calculated from Table KM-620

 m_4 = value calculated from Table KM-620

 m_5 = value listed in Table KM-620

R = Sy/Su

RA = minimum specified reduction of area, %

 γ_1 = true strain in the micro-strain region of the stress-strain curve (KM-620)

 γ_2 = true strain in the macro-strain region of the stress-strain curve (KM-620)

 $\epsilon_p =$ stress-strain curve fitting parameter (KM-620)

 $\epsilon_{ts} = \text{true total strain (KM-620)}$

 $\epsilon_{ys} = 0.2\%$ engineering offset strain (KM-620)

 ϵ_1 = true plastic strain in the micro-strain region of the stress-strain curve (KM-620)

 ϵ_2 = true plastic strain in the macro-strain region of the stress-strain curve (KM-620)

 σ_t = true stress at which the true strain will be evaluated (KM-620)

 σ_{uts} = engineering ultimate tensile stress evaluated at the temperature of interest (KM-620)

 σ_{ys} = engineering yield stress evaluated at the temperature of interest (KM-620)

 σ_{utst} = true ultimate tensile stress evaluated at the true ultimate tensile strain