

Multifunction voltage regulator for car radio

Features

- Four outputs:
 - 8.5 V @ 500 mA
 - 5 V @ 300 mA Permanent
 - 5 V @ 800 mA
 - 3.3 V @ 800 mA
- 2 A high side driver
- Reset function
- Ignition comparator
- Load dump protection
- Thermal shutdown
- Overcurrent limitation
- All pins ESD protected

Description

The L5957 contains a triple voltage regulator and a power switch.

The IC includes a monitoring circuit for detection.

The IC features a very low quiescent current in standby.

Table 1. Device summary

Order code	Package	Packing
L5957PD	PowerSO20 (slug up)	Tube
L5957PDTR	PowerSO20 (slug up)	Tape and reel
L5957	Multiwatt15 (Vertical)	Tube

Contents L5957

Contents

1	Bloc	k and pins connection diagrams5
2	Elec	trical specifications6
	2.1	Absolute maximum ratings
	2.2	Thermal data 6
	2.3	Electrical characteristics
3	Pack	rage information
4	Revi	sion history

List of tables

List of tables

	Device summary	
Table 2.	Absolute maximum ratings	6
Table 3.	Thermal data	6
Table 4.	Electrical characteristics	6
Table 5.	Document revision history	5

List of figures L5957

List of figures

Figure 1.	Block diagram	5
Figure 2.	Pins connection	5
Figure 3.	Typical application circuit	9
Figure 4.	Maximum ESR for stability valid for all the regulators outputs	
Figure 5.	Timing diagram of regulators and power switch	. 10
Figure 6.	Backup and reset diagram	. 11
Figure 7.	Hold and thermal protection	. 11
Figure 8.	Ignition buffer diagram	. 12
Figure 9.	Protection of the power switch	. 12
Figure 10.	Short circuit diagram	. 12
Figure 11.	PowerSO20 (slug up) mechanical data and package dimensions	. 13
Figure 12	Multiwatt15 (vertical) mechanical data and package dimensions	14

1 Block and pins connection diagrams

Figure 1. Block diagram

Figure 2. Pins connection

5/

2 Electrical specifications

2.1 Absolute maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{SDC}	DC operating supply voltage	30	V
V _{STR}	Transient supply voltage	50	V
I _O	Output current	internally limited	
T _{op}	Operating temperature range	-40 to 85	°C
T _{stg}	Storage temperature	-55 to 150	°C
T _j	Junction temperature	-55 to 150	°C
P_d	Power dissipation T _{case} = 85 °C	43	W

2.2 Thermal data

Table 3. Thermal data

Symbol	Parameter	PowerSO	Multiwatt	Unit
R _{th j-case}	Thermal resistance junction-to-case Max.	1.5	1.8	°C/W

2.3 Electrical characteristics

 V_S = 14.4 V; T_{amb} = 25 °C; unless otherwise specified.

Table 4. Electrical characteristics

iabic 4.	iceti icai citaracteri stics					
Symbol	Parameter	Min.	Тур.	Max.	Unit	
Input supplies	3					
V _{in1}	Input supply voltage 1	Operating	9	-	18	V
V _{in2}	Input supply voltage 2	Operating	6	-	18	V
	Total quiescent current	Standby (-20 °C to 85 °C) IGN _{IN} = 5 V	-	-	70	μА
I_{q}		REGx = 5 V, REGsw = 5 V, IGNIN = 5 V	-	5	-	mA
		Standby (-20 °C to 85 °C) IGN _{IN} = 5 V, V _{CC} = 18 V	-	100	-	μΑ
Load Dump V _{in1}	Battery over voltage	V _{in1}	18	20	22	٧
Load Dump V _{in2}	- Battery over voltage	V _{in2}	18	20	22	V

Table 4. Electrical characteristics (continued)

Symbol	Parameter Test condition		Min.	Тур.	Max.	Unit
Regulator 1			•	•		•
V _{o (REG 1)}	Output voltage 8.5 V	-	8	8.5	9	V
43.7	I in a manufation	V _{in1} = 10 to 18 V; I = 500 mA	-	-	50	mV
ΔV	Line regulation	V _{in1} = 9.3 to 18 V; I = 10 mA	-	-	50	mV
ΔVi	Load regulation	I _{reg1} = 1 to 500 mA	-	-	100	mV
Iq	Quiescent current	I _{reg1} = 10 mA	-	-	5	mA
PSRR	Supply voltage ripple rejection	f = 1 kHz; V _{in1} = 1.5 Vpp; I _o = 500 mA	50	-	-	dB
V _{drop}	Drop out voltage	I _{reg1} = 500 mA ⁽¹⁾	-	-	0.6	V
I _m	Current limit	$R_{short} = 0.5 \Omega$	0.6	-	1.2	Α
Regulator 2						
V _{o (ST BY)}	Output voltage 5 V	-	4.7	5	5.3	V
	1.	V _{in1} = 7 to 18 V; I = 300 mA	-	-	50	mV
ΔV	Line regulation	V _{in1} = 6 to 18 V; I = 10 mA	-	-	50	mV
ΔVi	Load regulation	I _{reg2} = 1 to 300 mA	-	-	100	mV
Iq	Quiescent Current	I _{reg2} = 10 mA	-	-	3	mA
PSRR	Supply voltage ripple rejection	f = 1 kHz; V _{in1} = 1.5 Vpp; I _o = 300 mA	50	-	-	dB
1/	Dren aut valtage	$I_{reg2} = 300 \text{ mA}^{(1)}$	-	-	1.5	V
V_{drop}	Drop out voltage	I _{reg2} = 100 mA ⁽¹⁾	-	-	0.6	V
I _m	Current limit	$R_{short} = 0.5 \Omega$	400	-	800	mA
Regulator 3						
V _{o (REG 3)}	Output voltage 5V	-	4.75	5	5.25	V
43.7	I in a manufation	V _{in2} = 7 to 18 V; I = 800 mA	-	-	50	mV
ΔV	Line regulation	V _{in2} = 6 to 18 V; I = 10 mA	-	-	50	mV
ΔVi	Load regulation	I _{reg3} = 1 to 800 mA	-	-	100	mV
Iq	Quiescent current	I _{reg3} = 10 mA	-	-	5	mA
PSRR	Supply voltage ripple rejection	f = 1 kHz; V _{in1} = 1.5 Vpp; I _o = 800 mA	50	-	-	dB
V _{drop}	Drop out voltage	I _{reg3} = 800 mA ⁽¹⁾		-	1.5	V
I _m	Current limit $R_{short} = 0.5 \Omega$		1	-	2	Α
Regulator 4			•	•	•	•
V _{o (REG 4)}	Output voltage 3.3V	-	3.10	3.3	3.50	V
ΔV	Line regulation	V _{in2} = 6 to 18 V; I = 800 mA	-	-	50	mV
ΔV	Line regulation	V _{in2} = 6 to 18 V; I = 10 mA	-	-	50	mV

Table 4. Electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
ΔVi	Load regulation	I _{reg4} = 1 to 800 mA	-	-	100	mV
Iq	Quiescent current	I _{reg4} = 10 mA	-	-	5	mA
PSRR	Supply voltage ripple rejection	f = 1 kHz; V _{in1} = 1.5 Vpp; I _o = 800 mA	48	-	-	dB
V _{drop}	Drop out voltage	I _{reg4} = 800 mA ⁽¹⁾	-	-	2.65	V
I _m	Current limit	$R_{short} = 0.5 \Omega$	0.9	-	2	Α
Power switch						
V _{dropSW}	Drop voltage power switch	I _{dcSW} = 1.8 A max.	-	-	0.5	V
I _{pSW1}	Darla sumant management to	Peak time < 10 ms	2	-	3.5	Α
I _{pSW2}	Peak current power switch	Peak time > 40 ms	1	-	2	Α
SW _{DEL}	Delay Protection	-	15	-	45	ms
Reset buffer (w	vith push-pull buffer)					
RES	RES falling	Vreg2 = 5 V	4.6	4.7	4.8	V
RES	RES rising	Vreg2 = 5 V	4.65	4.8	4.95	V
V _{HYS(RES)}	Hysteresis of reset buffer	-	50	-	200	mV
IH _{source (RES)}	High level source current	Reset = 0 V	1000	1300	1600	μА
IL _{sink (RES)}	Low level sink current	Reset = 5 V	14	16	18	mA
RES _{delay}	Cres = 47nF	-	10	-	60	ms
ΔTRES	Reset rise and fall time	$R = 10 \text{ k}\Omega$ $C = 15 \text{ pF}$	-	-	50	μS
I _{Charge}	Charge current	C _{RES} = 0 V	3	5	10	μΑ
I _{Discharge}	Discharge current	C _{RES} = 5 V	1	-	3	mA
V _{TH(F)}	Falling voltage threshold	-	1	1.2	1.4	V
V _{TH(R)}	Rising voltage threshold	-	2.5	2.8	3.5	V
V _{ol}	Low level	I _{SINK(RES)} = 1 mA		0.3	0.5	V
V _{oh}	High level	-	4.5	Vreg2	5.5	٧
Hold signal						
V _{lowl}	Hold output low for V _{in1} low	Low detection	-	-	9	V
V _{lowh}	Hold output high for V _{in1} normal	Normal high detection	10	-	18	٧
V _{lowl}	Hold output low for V _{in1} high	low detection	22	-	-	V
V _{HOLD R}	Low V _{IN1} threshold	V _{IN1} Low TH.	9	9.5	10	V
V _{HYS (HOLD_L)}	Hysteresis low TH.	-	50	150	200	mV
V _{HOLD F}	High V _{IN1} threshold	V _{IN1} High TH.	18	20	22	V
V _{HYS (HOLD_M)}	Hysteresis high TH.	-	50	150	250	mV

Table 4. Electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit		
Ignition buffer	gnition buffer (push-pull with schmitt trigger)							
IGN _{IN}	IGN _{out falling}	-	1.03	1.17	1.28	V		
IGN _{IN}	IGN _{out rising}	-	1.18	1.27	1.33	V		
V _{hys(IGNout)}	Hysteresis of ignition buffer	-	30	50	100	mV		
IH _{source(IGNout)}	High level source current	I _{GNout} = 0 V	1000	1500	2000	μΑ		
IL _{sink(IGNout)}	Low level sink current	I _{GNout} = 5 V	10	15	20	mA		
V _{ol}	Low level	IL _{sink (IGNout)} = 1 mA	-	0.3	0.5	V		
V _{oh}	High level	-	4.5	Vreg2	5.5	V		
IGN _{RISE}	Rising time	C = 15 pF	-	-	10	μS		
IGN _{FALL}	Fall time	C = 15 pF	-	-	10	μS		
I _{CLAMP}	Input clamp current	V _{CC} < V _{IGN} < 50 V	-	-	2	mA		
IGN _{IN}	Input voltage	Operative	0	-	50	V		
Enable input (regulators 1,3,4 and power switch)								
V _{TH}	Voltage threshold	-	1.3	-	2.3	V		
EN _{IN}	Input voltage	Operative	0	-	5	V		

Drop condition means that the supply voltage drop down to 100 mV from the regulated output and the regulator is sourcing its maximal load current.

Typical application circuit Figure 3. VIN1 POWER SWITCH EN SW 470 μF REG 1 REG1 100 nF Cfilt (*) REG 2 REG2 Cfilt (*) REG 3 REG3 ENREG3 REG 4 REG4 ENREG1-4 HOLD to µProcessor DUMP LOAD PROTECTION THERMAL PROTECTION RES CRES 10 K Ω IGNITION BUFFER AC00427 IGN_{OUT} (*) Recommended output filtering capacitors for all the regulators: C range = 5 μ F to 100 μ F, ESR range = 0.5 Ω to 10 Ω (T= -40 $^{\circ}$ C to +85 $^{\circ}$ C)

ESR
[Ω]
10

Maximum ESR

5

Stable region
1

0.5

Minimum ESR

5

10

100

C [μF]

Figure 4. Maximum ESR for stability valid for all the regulators outputs

Backup and reset diagram Figure 6. VBATT 14

Figure 8. Ignition buffer diagram

Figure 9. Protection of the power switch

Figure 10. Short circuit diagram

L5957 Package information

3 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>.

 $\mathsf{ECOPACK}^{(\! R \!)}$ is an ST trademark.

Figure 11. PowerSO20 (slug up) mechanical data and package dimensions

OUTLINE AND MECHANICAL DATA

PowerSO20 (SLUG UP)

Package information L5957

Figure 12. Multiwatt15 (vertical) mechanical data and package dimensions

DIM.		mm		inch		
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A5						0.197
В			2.65			0.104
С			1.6			0.063
D		1			0.039	
Е	0.49		0.55	0.019		0.022
F	0.66		0.75	0.026		0.030
G	1.02	1.27	1.52	0.040	0.050	0.060
G1	17.53	17.78	18.03	0.690	0.700	0.710
H1	19.6			0.772		
H2			20.2			0.795
L	21.9	22.2	22.5	0.862	0.874	0.886
L1	21.7	22.1	22.5	0.854	0.87	0.886
L2	17.65		18.1	0.695		0.713
L3	17.25	17.5	17.75	0.679	0.689	0.699
L4	10.3	10.7	10.9	0.406	0.421	0.429
L7	2.65		2.9	0.104		0.114
М	4.25	4.55	4.85	0.167	0.179	0.191
M1	4.73	5.08	5.43	0.186	0.200	0.214
S	1.9		2.6	0.075		0.102
S1	1.9		2.6	0.075		0.102
Dia1	3.65		3.85	0.144		0.152

OUTLINE AND MECHANICAL DATA

L5957 Revision history

4 Revision history

Table 5. Document revision history

Date	Revision	Changes
11-Feb-2008	1	Initial release.
08-Jan-2010	2	Updated Section 1: Block and pins connection diagrams on page 5. Updated Figure 3, 5 and 6.
20-Sep-2013	3	Updated disclaimer.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

16/16 Doc ID 14442 Rev 3

