

Architectures des réseaux mobiles

André-Luc BEYLOT ENSEEIHT

Département Télécommunications et Réseaux

PLAN GENERAL

- Introduction
- Architecture Protocolaire du GSM
- GPRS

Introduction

- Réseaux de mobiles : Un monde très orienté « Télécoms »
 - Téléphonie : suprématie du GSM (Global System for Mobile communications)
 - Intégration voix/données nécessaire : GPRS (General Packet Radio System)
 - Débit supérieur, multimédia : UMTS (Universal Mobile Telecom. System)
- Réseaux (Privés) sans fil: 1 évolution des réseaux locaux
 - Réseaux personnels : Bluetooth
 - Réseaux locaux sans fil : IEEE 802.11
- Diffusion
 - DVB-T
 - DVB-S
- Internet
 - IP-mobile, ... MANET (Mobile Ad-hoc NETworks)

Réseaux de Mobiles et Réseaux sans fil

- Réseaux de mobiles
 - Un utilisateur mobile = capable de communiquer à l'extérieur de son réseau d'origine en conservant son adresse
 - Exemples:
 - GSM:
 - Mobilité autorisée au sein de réseaux utilisant le GSM
 - Utilisation de la HLR et de la VLR
 - IP-mobile
 - On parle désormais de gestion du nomadisme
- Réseaux sans fil : lié au support de transmission
 - Système de communications sans prise murale
 - Utilisation du support hertzien
 - Exemples : téléphone sans cordon de résidence

Réseaux cellulaires

- Atténuation du signal => concept cellulaire
- Augmentation du nombre d'utilisateurs
 - Cellules de plus en plus petites
 - Micro-cellules et antennes petites faible puissance d'émission

Caractéristiques des réseaux de mobiles

- Méthodes d'accès au support : FDMA, TDMA, CDMA
- L'allocation des ressources: FCA, DCA, HCA
- La sécurité : authentification, cryptage des données
- Le transfert intercellulaire : Handover ou Handoff
- Le paging
- Le contrôle de puissance
- Le dimensionnement
 - probabilité de blocage
 - probabilité de coupure

Fonctions du Réseau Cellulaire

- Gestion de la mobilité (Mobility Management)
 - HLR (Home Location Register): 1 par réseau d'abonnement
 - VLR (Visitor Location Register): 1 par zone d'enregistrement
 - Compromis: Enregistrement/Paging
- Gestion des Appels (Call Management)
 - Mise en place, fermeture des connexions
 - C'est de la signalisation : typiquement SS7
- Gestion des Ressources Radio (Radio Resource Management)
 - Choix de la fréquence porteuse la plus forte
 - Contrôle de puissance

Schémas d'architectures des réseaux de mobiles

Architecture Simplifiée du GSM

PRINCIPAUX PROTOCOLES DU GSM

BSSAP: Base Station Subsytem Application Part SCCP: Signalling Connection Control Part MTP: Message Transfer Part (protocoles du SS7) 10

Interface Air - Couche 1

Différents canaux logiques

Broadcast Channel (BCH) unidirectionnel en diffusion	Frequency Correction Channel (FCCH) \downarrow	Calage Fréquence Porteuse	
	Synchronization Channel (SCH) \downarrow	Synchro + Identification	
	Broadcast Control Channel (BCCH) ↓	Information Système	
Common Control Channel (CCCH)	Paging Channel (PCH) ↓	Appel du Mobile	
	Random Access Channel (RACH) ↑	Accès aléatoire du mobile	
	Access Grant Channel (AGCH) ↓	Allocation de Ressources	
	Cell Broadcast Channel (CBCH) ↓	Messages courts diffusés	
Dedicated Control Channel (DCCH)	Stand-Alone Dedicated Control Channel (SDCCH) $\uparrow\downarrow$	Signalisation	
	Slow Associated Control Channel (SACCH) $\downarrow\uparrow$	Supervision de la liaison	
	Fast Associated Control Channel (FACCH) ↓↑	Exécution du Handover	
Traffic Channel (TCH)	Traffic Channel for coded speech (TCH/FS) (TCH/HS) ↑↓	Voix plein/demi débit	
	Traffic Channel for data ↑↓	Données utilisateur	

Interface Air - Couche 1

Interface Air - Couche 2

- Canaux de trafic : rien
- Canaux de signalisation :
 - DCCH: LAPDm
 - BCH BCCH (contrôle de la qualité et synchronisation) : rien
 - CCCH + BCCH : transparent (message de niveau 3 mis dans des trames sans en-tête ni acquittement
- LAPDm : version mobile du LAPD utilisé dans le RNIS-BE
 - Pas de fanion
 - Longueur fixe: 23 octets sur SDCCH et FACCH, 21 sur SACCH

Adresse Commande Longueur	Information	Bourrage
---------------------------	-------------	----------

LAPDm

- SAPI = 3 bits
 - En fait seuls 0 et 3 sont utilisés : 0 sig, 3 SMS
- Champ de commande
 - cf. LAPB : SABM, pas de SREJ
- Champ de longueur (bit M: fragmentation)
- Procédures de dialogue
 - Mode sans connexion: trames UI sans acquittement
 - Mode avec connexion : SABM/UA ; fenêtre de taille 1
 - Multiplexage : SAPI (attention canaux dédiés)
 - Pour SMS : SAPI 3, messages confirmés (mode connecté)
 - usager en communication : SACCH associé, sinon SDCCH
 - SDCCH et FACCH utilisé pour des messages de sig => cnx
 - SACCH (SAPI 0) : utilisé pour des mesures => pas de cnx

Couche 3 sur l'interface radio

- Comporte 3 sous-couches : RR, MM et CM
- CM redivisée en CC (Call Control), SS(Supplementary Services),
 SMS (Short Messages)
- Pas de processus d'encapsulation entre les couches
- Format de messages commun pour les sous-couches

Discriminateur de protocole Identificateur de transaction	type de message	Champs obligatoires de longueur fixe	Champs obligatoires de longueur variable	Champs optionnels
---	--------------------	--	--	----------------------

- Identificateur de transaction : éventuellement plusieurs communications avec mise en attente
- Discriminateur de protocole : Sous-couche à laquelle il se rapporte

Couche 3 sur l'interface radio

- Couche RR:
 - Gère la connexion radio
 - Etablissement d'un canal dédié + rétablissement en cas de handover
 - Etablie entre MS et BSC
- Couche MM:
 - Gestion de la mobilité (échange MS et réseau localisation)
 - Sécurité
 - Connexions MM: pas de message spécifique. Considérée comme établie lors de l'envoi de messages de CM, SMS
- Couche CM:
 - Assez proche des fonctionnalités offertes dans les réseaux fixes (CC, SS)
 - Seuls les SMS sont spécifiques

Interface Abis (BTS-BSC)

- Débit = 16 ou 64 Kbit/s
- Au niveau 2 (canaux D): protocole LAP-D
 - Messages de sig des niveaux supérieurs
 - Messages de supervision et de maintenance de la BTS
 - Messages internes de gestion de la liaison de données BTS-BSC
 - Différents SAPI dans l'adresse des trames
 - 1 TRX (Transmitter/Receiver Module) gère une fréquence
 - de adresses TEI différentes pour les TRX ;
 - 🖟 numéro de slot message de niveau 3

17

Interface Abis - niveau 3

- Messages transparents : BSC <-> MS
 - discriminateur, type de message, numéro de slot, canal logique, SAPI (0 ou 3) + message
- Messages non transparents : Gestion de la BTS 18

Interface A

- Interface BSC MSC
- Repose sur le SS7 :
 - 3 couches basses
 - SSCS (sous-système de commande des connexions sémaphores) ou SCCP (Signalling Connection Control Part)
 - BSSAP: Base Station Subsystem Application Part
 - BSSMAP (BSS Management Part)
 - Message de gestion d'un BSC ex: ressources disponibles ? (SCCP sans connexion classe 0)
 - Messages liés à un canal dédié handover, allocation, libération (SCCP avec connexion - classe 2)
 - DTAP : messages de sig transitant par le BSC (transparent)
 - utilise SCCP avec connexion
 - Discrimination : en-tête des messages BSSAP (distribution)

Interface A

Exemple: Allocation canal signalisation

Exemple: Signalisation « paging »

Exemple: Appel Sortant

Exemple: Appel Entrant

Exemple: Handover intra-BSC

Exemple: Mise à jour localisation

Architecture Protocolaire SMS

SME : Short Message Entity

Transfert d'1 SMS depuis 1 mobile

Transfert d'1 SMS vers 1 mobile

SC

Compte-rendu d'expédition

MAP Forward Short Message ack

MAP rapport délivrance

MAP rapport délivrance ack

SMS CP-ack

libération

Transmission d'1 SMS sur SDCCH

