Differentiaalvergelijkingen Thema 4

Het oplossen van tweede orde differentiaalvergelijkingen.

Jan van Hulzen

Domein Techniek, Ontwerpen en Informatica Opleiding Elektrotechniek

4 december 2024

Inhoudsopgave

- Overzicht cursus
 - Vorige week
 - Deze week
- 2 Tweede orde differentiaalvergelijkingen
 - Tweede orde differentiaalvergelijkingen met constante coëfficiënten
 - Tweede orde differentiaalvergelijkingen met complexe wortels
 - Tweede orde differentiaalvergelijkingen met identieke wortels
- 3 Samenvatting homogene oplossing tweede orde differentiaalvergelijking

Overzicht cursus

Overzicht cursus

Het vak differentiaalvergelijkingen bestaat uit

- 7 hoorcolleges + huiswerk opgaven
- Voltijd Woensdag (Maandag)
- Deeltijd Woensdag

Schriftelijk tentamen:

• huiswerk opgaven zijn een goede voorbereiding op het tentamen

Overzicht stof van vorige week

• Eerste orde differentiaalvergelijkingen die *lineair* zijn

$$\frac{dy}{dx} - y = \cos(x)$$

Het oplossen van lineaire differentiaalvergelijkingen met het superpositiebeginsel

$$y(x) = y_{hom} + y_{part}$$

• Eerste orde differentiaalvergelijkingen die exact zijn (Geen tentamenstof)

$$2x + y^2 + 2xy\frac{dx}{dy} = 0$$

• Het oplossen van exacte differentiaalvergelijkingen (Geen tentamenstof)

Overzicht stof van vandaag

• Lineaire, Homogene differentiaalvergelijkingen van de tweede orde

$$P(x)y'' + Q(x)y' + R(x)y = G(x)$$

• Tweede orde differentiaalvergelijkingen met constante coëfficiënten:

$$y'' + by' + cy = 0$$

Drie standaard oplossingen

Tweede orde differentiaalvergelijkingen

Tweede orde differentiaalvergelijkingen

• Een tweede orde differentiaalvergelijking ziet er uit als

$$\frac{d^2y}{dx^2} = f(x, y)$$
 of eigenlijk $\frac{d^2y}{dx^2} = f\left(x, y, \frac{dy}{dx}\right)$

Beperken we ons tot lineaire differentiaalvergelijkingen dan volgt:

$$\frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = g(x)$$

De begincondities zijn:

$$y'(x_0) = y'_0 \text{ en } y(x_0) = y_0$$

Tweede orde differentiaalvergelijkingen

• Over het algemeen zijn de vergelijkingen gedefinieerd als

$$P(x)y'' + Q(x)y' + R(x)y = G(x)$$

Oplossen van de vergelijking is makkelijker als deze eerst wordt omgeschreven tot

$$y'' + p(x)y' + q(x)y = g(x)$$

Waarin de functies p(x), q(x) en g(x) gedefinieerd zijn als

$$p(x) = \frac{Q(x)}{P(x)}$$
 $q(x) = \frac{R(x)}{P(x)}$ $g(x) = \frac{G(x)}{P(x)}$

• De begincondities zijn gegeven als

$$y(x_0) = y_0, \quad y'(x_0) = y'_0$$

- Een homogene, tweede orde differentiaalvergelijking met constante coëfficiënten ziet er uit als ay'' + by' + cy = 0.
- Een voorbeeld van een dergelijke vergelijking is

$$y''-y=0$$

• Mogelijke oplossingen zijn $y = c_1 e^x$ of $y = c_2 e^{-x}$ omdat

$$c_1 e^x - c_1 e^x = 0$$
 en $c_2 e^{-x} - c_2 e^{-x} = 0$

hieruit volgt dat ook moet gelden

$$y = c_1 e^x + c_2 e^{-x}$$

Naast de differentievergelijking kunnen ook begincondities gelden zoals

$$y'' - y = 0$$
, $y(0) = 9$ en $y'(0) = -1$

Invullen van de begincondities in de algemene oplossing levert

$$y(0) = c_1 e^x + c_2 e^{-x} = c_1 + c_2 = 9$$

 $y'(0) = c_1 e^x - c_2 e^{-x} = c_1 - c_2 = -1$

waarmee volgt

$$c_1 + c_2 = 9$$

 $c_1 - c_2 = -1$

• Waaruit onmiddellijk volgt $c_1 = 4$ en $c_2 = 5$ en dus

$$y = 4e^x + 5e^{-x}$$

• Een algebraïsche oplossing is ook mogelijk

$$ay'' + by' + cy = 0$$

• Vul de standaard oplossing $y_{hom} = e^{rx}$ en afgeleiden $y'_{hom}(x)$ en $y''_{hom}(x)$ in

$$ar^2e^{rx} + bre^{rx} + ce^{rx} = 0$$

- Waarna door delen door e^{rx} volgt $ar^2 + br + c = 0$
- De standaard oplossing met twee vrijheidsgraden is

$$y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$$

• waarna met $y(x_0) = y_0$ en $y'(x_0) = y'_0$ volgt

$$y_0 = c_1 e^{r_1 x_0} + c_2 e^{r_2 x_0}, \quad y_0' = c_1 r_1 e^{r_1 x_0} + c_2 r_2 e^{r_2 x_0}$$

• De onbekende parameters c_1 en c_2 kunnen worden uitgedrukt in de standaard oplossing y_0 , y_0'

$$c_1 = \frac{y_0' - y_0 r_2}{r_1 - r_2} e^{-r_1 x_0}, \quad c_2 = \frac{y_0 r_1 - y_0'}{r_1 - r_2} e^{-r_2 x_0}$$

Standaard oplossing $(r_1, r_2 \in \mathbb{R}, r_1 \neq r_2)$

De oplossing van lineaire, homogene differentiaalvergelijking van de tweede orde:

$$ay'' + by' + cy = 0$$
, $y(x_0) = y_0$ en $y'(x_0) = y'_0$ is $y = c_1e^{r_1x} + c_2e^{r_2x}$ met

$$r_1, r_2 = -\frac{b}{2a} \pm \frac{1}{2a} \sqrt{b^2 - 4ac}, \quad c_1 = \frac{y_0' - y_0 r_2}{r_1 - r_2} e^{-r_1 x_0}, \quad c_2 = \frac{y_0 r_1 - y_0'}{r_1 - r_2} e^{-r_2 x_0}$$

- Een voorbeeld: y'' + 5y' + 6y = 0, y(0) = 16, y'(0) = -38
- vua $cr^2e^{rx} + 5cre^{rx} + 6ce^{rx} = 0$ volgt

$$r^2 + 5r + 6 = 0 \Rightarrow (r+2)(r+3) = 0, \quad r_1 = -2, r_2 = -3$$

• Invullen levert $y = c_1 e^{-2x} + c_2 e^{-3x}$ met y(0) = 16 en y'(0) = -38 zodat

$$y(0) = c_1 + c_2 = 16, \quad y'(0) = -2c_1 - 3c_2 = -38$$

• Dit levert $c_1 = 10$ en $c_2 = 6$ waarmee

$$y = 10e^{-2x} + 6e^{-3x}$$

Oefeningen

- Los op y'' + 7y' + 12y = 0, y(0) = 1, y'(0) = 4
- Los op y'' y' 2y = 0, y(0) = 4, y'(0) = 0
- Los op y'' + 5y' + 6y = 0, y(0) = 0, y'(0) = 0

- Een homogene, tweede orde differentiaalvergelijking met constante coëfficiënten ziet er uit als ay'' + by' + cy = 0.
- Vul de standaard oplossing $y_{hom} = e^{rx}$ en afgeleiden $y'_{hom}(x)$ en $y''_{hom}(x)$ in

$$ar^2e^{rx} + bre^{rx} + ce^{rx} = 0$$

- Waarna door delen door e^{rx} volgt $ar^2 + br + c = 0$
- De standaard oplossing met twee vrijheidsgraden is

$$y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$$

• waarna met $y(x_0) = y_0$ en $y'(x_0) = y'_0$ volgt

$$y_0 = c_1 e^{r_1 x_0} + c_2 e^{r_2 x_0}, \quad y_0' = c_1 r_1 e^{r_1 x_0} + c_2 r_1 e^{r_2 x_0}$$

• De contanten r_1 en r_2 kunnen bepaald worden met de ABC formule

$$r_1, r_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

• Als $b^2 - 4ac < 0$ dan worden de wortels complex

$$r_1, r_2 = \lambda \pm i\mu$$

Invullen in de standaard oplossing geeft

$$y_1 = e^{r_1 x} = e^{(\lambda + i\mu)x}, \quad y_2 = e^{r_2 x} = e^{(\lambda - i\mu)x}$$

Gebruiken we de formule van Euler dan volgt

$$e^{iax} = \cos ax + i \sin ax$$
 en $e^{-iax} = \cos ax - i \sin ax$

• Een complexe wortel heeft een reël deel als $b \neq 0$ zodat met Euler volgt

$$y_1 = e^{(\lambda + i\mu)x} = e^{\lambda x}(\cos \mu x + i\sin \mu x), \quad y_2 = e^{(\lambda - i\mu)x} = e^{\lambda x}(\cos \mu x - i\sin \mu x)$$

- De vergelijking ay'' + by' + cy = 0 heeft alleen reële coëfficiënten dus oplossingen in complexe vorm zijn ongewenst.
- Door gebruik te maken van het principe dat je oplossingen mag optellen kunnen de complexe gedeelten tegen elkaar wegvallen.
- De oplossing $y_n = ie^{\lambda x} \cos \mu x$ kunnen we schrijven als $y_n = c_n e^{\lambda x} \cos \mu x$.
- Definieer nu een hulpvariabelen m(x) en n(x) zodat

$$m(x) = y_1(x) + y_2(x), \quad n(x) = y_1(x) - y_2(x)$$

• het volgt dat het complexe gedeelte in m(x) wegvalt

$$m(x) = y_1(x) + y_2(x) = e^{\lambda x} (\cos \mu x + i \sin \mu x) + e^{\lambda x} (\cos \mu x - i \sin \mu x)$$
$$= 2e^{\lambda x} \cos \mu x$$

• Invullen van de resultaten in n(x) levert

$$n(x) = y_1(x) - y_2(x) = e^{\lambda x} (\cos \mu x + i \sin \mu x) - e^{\lambda x} (\cos \mu x - i \sin \mu x)$$
$$= 2ie^{\lambda x} \sin \mu x$$

• vervangen we de exponent 2 en 2i door c_1 en c_2 dan volgt

$$m(x) = c_1 e^{\lambda x} \cos \mu x$$
, $n(x) = c_2 e^{\lambda x} \sin \mu x$

zodat uiteindelijk

$$y(x) = c_1 e^{\lambda x} \cos \mu x + c_2 e^{\lambda x} \sin \mu x$$

- Voorbeeld: Los op 2y'' + 2y' + y = 0, y(0) = 1, y'(0) = 1
- Vul de standaard oplossing $y_{hom} = e^{rx}$ en afgeleiden $y'_{hom}(x)$ en $y''_{hom}(x)$ in

$$2r^2e^{rx} + 2re^{rx} + e^{rx} = 0$$

- Waarna door delen door e^{rx} volgt $2r^2 + 2r + 1 = 0$
- Invullen van de ABC formule levert

$$r_1, r_2 = \frac{-2 \pm \sqrt{4-8}}{4} = r = -1/2 \pm (1/2)i$$

Het volgt dat

$$r_1 = \lambda + i\mu, r_2 = \lambda - i\mu \text{ met } \lambda = -\frac{1}{2}, \mu = \frac{1}{2}$$

zodat de oplossing wordt

$$y(x) = c_1 e^{-x/2} \cos \frac{1}{2} x + c_2 e^{-x/2} \sin \frac{1}{2} x, \quad y(0) = c_1 = 1, y'(0) = \frac{1}{2} c_1 + \frac{1}{2} c_2 = 1, c_2 = 1$$

Oefeningen

- Los op: y'' + 4y' + 5y = 0, y'(0) = -1 y(0) = 1
- Los op: y'' + 4y = 0, y'(0) = 1 y(0) = 1
- Los op: y'' + 2y' + 10y = 0, y'(0) = 1 $y(0) = -\frac{1}{2}$

Een algebraïsche oplossing is ook mogelijk

$$ay'' + by' + cy = 0$$

• Vul de standaard oplossing $y_{hom} = e^{rx}$ en afgeleiden $y'_{hom}(x)$ en $y''_{hom}(x)$ in

$$ar^2e^{rx} + bre^{rx} + ce^{rx} = 0$$

- Waarna door delen door e^{rx} volgt $ar^2 + br + c = 0$
- Volgt nu dat $b^2 4ac = 0$ en dus zijn er twee identieke wortels

$$r_1 = r_2 = -b/2a$$

• De oplossing is nu $y_1 = c_1 e^{r_1 x}$ $y_2 = c_2 e^{r_2 x}$ maar omdat $r_1 = r_2$ is het niet mogelijk om twee oplossingen te vinden

• De oplossing kan nu gevonden worden door het uitbreiden van de onbekende parameter naar een parameter afhankelijk van x

$$y(x) = m(x)e^{rx}, r = -b/2a$$

De afgeleiden van y worden dan

$$y'(x) = m'(x)e^{-bx/2a} - \frac{b}{2a}m(x)e^{-bx/2a}$$
$$y''(x) = m''(x)e^{-bx/2a} - \frac{b}{2a}m'(x)e^{-bx/2a} + \frac{b^2}{4a^2}m(x)e^{-bx/2a}$$

• Invullen in ay'' + by' + cy = 0 levert

$$am''(x) + (b-b)m'(x) + \left(\frac{b^2}{4a} - \frac{b^2}{2a} + c\right)m(x) = 0$$

• Omdat b - b = 0 volgt

$$am''(x) + \left(c - \frac{b^2}{4a}\right)m(x) = 0$$

Waarin de term $c - b^2/4a$ gelijk is aan 0 omdat $b^2 - 4ac = 0$ het volgt dan dat

$$am''(x) = 0 \Rightarrow m''(x) = 0$$

Een functie die voldoet is

$$m(x) = d_1 x + d_2$$

Combineren levert de tweede oplossing

$$y_2(x) = m(x)e^{rx} = d_1xe^{rx} + d_2e^{rx}$$

De uiteindelijke oplossing is dus

$$y(x) = c_1 x e^{-bx/2a} + c_2 e^{-bx/2a}$$

- Voorbeeld: Los op y'' + 2y' + y = 0 met y(0) = 1, y'(0) = 1
- het volgt dat

$$r^2 + 2r + 1 = 0 \Rightarrow (r+1)(r+1) = 0$$

• met $r_1 = r_2 = -1$

$$y(x) = c_1 x e^{-bx/2a} + c_2 e^{-bx/2a}$$

Hieruit volgt

$$y(0)=c_2=1$$

De tweede afgeleide is dan

$$y'(x) = c_1 e^{-bx/2a} - \frac{bc_1}{2a} x e^{-bx/2a} - \frac{b}{2a} e^{-bx/2a}$$

- zodat $y'(0) = c_1 1 = 1$
- De uiteindelijke oplossing wordt dan

$$y(x) = 2xe^{-x} + e^{-x}$$

Oefeningen

- Los op: y'' + 10y' + 25y = 0, y'(0) = 2 y(0) = 1
- Los op: y'' + 8y' + 16y = 0, y'(0) = 4 y(0) = 2
- Los op: y'' + 4y' + 4y = 0, y'(0) = 0 y(0) = 1

Samenvatting

Homogene oplossing tweede orde differentiaalvergelijking

$$ay'' + by' + cy = 0 \Rightarrow ar^2 + br + c = 0$$

Geval	Wortels	Basis	Algemene oplossing
1	Verschillend	$e^{r_1 \times}, e^{r_2 \times}$	$y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$
'	r_1, r_2	, c	y = c1c + c2e
П	Herhaald	e^{rx}, xe^{rx}	$y=\left(c_{1}+c_{2}x\right)e^{rx}$
	$r=r_1=r_2$		
	Complex	_	
III	$r_1 = \lambda + i\mu,$	$e^{\lambda x}\cos\mu x$	$y=e^{\lambda x}(c_1\cos\mu x+c_2\sin\mu x)$
	$r_2 = \lambda - i\mu$		

