FIT5145 Introduction to Data Science

Module 4

Data Resources, Processes, Standards and Tools

2019 Lecture 8

Monash University

Reminder: NIST Analysis

data sources: where the data comes from

data volume: how much there is

data velocity: how it changes over time

data variety: what different kinds of data there is

data veracity: correctness problems in the data

software: software needed to do the work

analytics: broadly, what sorts of statistical analysis and

visualisation needed

processing: broadly, computational requirements

capabilities: broadly, key requirements of the operational system

security/privacy: nature of needs here

lifecycle: ongoing requirements

other: noteable factors

Discussion: Data Wrangling Examples

"How we found the worst place to park in New York City" is examples, and a discussion of the complexities of getting data out of New York City:

Danger spots for cycles: <u>NYPD crash data</u> obtained by daily download of PDF files followed by (non-trivial) extraction

NB. they now have Excel data to ease the work!

Dirty waterways: <u>fecal coliform measurements on waterways</u> from

Department of Environmental Protection's website;

extracted from Excel sheets per site; each in a different format

Faulty road markings: parking tickets for fire-hydrants by location from <u>NYC Open Data portal</u> need to normalize the addresses supplied

Unit Schedule: Modules

Module	Week	Content		
1.	1	overview and look at projects		
	2	(job) roles, and the impact		
2.	3	data business models		
	4	application areas and case studies		
3.	5	characterising data and "big" data		
	6	data sources and case studies		
4.	7	resources and standards		
	8	resources case studies		
5.	9	data analysis theory		
	10	data analysis process		
6.	11	issues in data management		
	12	GUEST SPEAKER & EXAM INFO		

Learning Outcomes (Week 8)

By the end of this week you should be able to:

- Explain about standards we introduce in different aspects of the process of Data Science
- Explain how to access to new data sources through APIs
- Identify how different APIs work
- Describe different software tools and programming languages in data science, and their popularity over time

ASIDE: Mapping Flight Data

24 Hour European Flight Traffic Visualization

Standards and Issues (ePub section 4.5)

- some standards
- open data and open source software
- APIs and SaaS

Some Standards

Semi-Structured Data

Semi-structured data is data that is presented in XML or JSON:

- ► see some examples here
- Note YAML (Yet Another Markup Language), which is just an indentation (easier to read) version of JSON
- standard libraries for reading/writing/manipulating semi-structured data exist in Python, Perl, Java
- don't need to know all the details of XML (and related Schema languages)
 many good online tutorials, e.g. <u>W3schools.com</u>

Model Language

PMML ::= Predictive Model Markup Language

PMML provides a standard language for describing a (predictive) model that can be passed between analytic software (e.g. from R to SAS).

- ► PMML: An Open Standard for Sharing Models
- A list of products working with PMML is the <u>PMML Powered page</u> on DMG site.

FLUX Question

Which of the following statement is FALSE?

- PMML is a standard language for describing a predictive model
- Semi-structured data is data that is presented in XML and JSON
- C. JSON is easier to read than YAML

FLUX Question

A vector of ages data was saved to file in the following format:

```
{"Age":{"0":39,"1":28,"2":44,"3":25,"4":32,"5":33,"6":31,"7 ":26,"8":22,"9":25,"10":28}}
```

What format is this?

- A. RDF
- B. XML
- C. JSON
- D. CSV

Standards and Issues Open data and open source software

critical infrastructure and tools

Open Source Software Awards

Here's how you learn about which tools are important!

BOSSIE is **B**est **O**pen **S**ource **S**oftware awards, held in September.

- ► <u>BOSSIE awards 2015 for Big Data</u> and <u>BOSSIE awards 2016 for Big Data</u>
- BOSSIE awards 2017 for <u>machine learning and</u> <u>deep learning tools</u> and for <u>databases and</u> <u>analytics tools</u>

Open Source Software Awards, cont.

- 2015: big data tools, Spark and "elastic" processing, scalable ML and databases, stream/real-time processing (ML, search, analysis, storage, time-series), security
- 2016: big data tools, pipelines, TensorFlow, distributed IR (Solr), NoSQL analytics, stream analytics, graph database
- 2017: big data and analytics tools, GPU acceleration, real-time SQL, more Spark, Solr, R, graph databases
- 2017: ML tools, deep learning, scalable prediction, Python, gradient boosting, TensorFlow

machine learning and analytics on top of big data now main stream!

Popular Open Source Projects

Let's have a look at what all these Open Source Projects doing

- 1. Apache Hadoop Distributed File System (HDFS)
- 2. Apache Hadoop YARN
- 3. Apache Spark
- Apache Cassandra (distributed NoSQL, wide-column store)
- 5. Apache HBase (distributed NoSQL, wide-column store)
- 6. Apache Hive (distributed SQL)
- 7. <u>Apache Mahout</u> (distributed linear algebra with GPU)
- 8. Apache Pig (data flow and data analysis on top of Hadoop)
- 9. Apache Storm (distributed real-time computation)
- 10. Apache Tez (dataflow for Hive and Pig)

Many state-of-the-art platforms integrated into *Hortonworks*.

Work and Salary Surveys

A number of organisations run salary surveys. These are usually interesting because they also describe what tasks people do and what software they use.

- O'Reilly's Salary Survey: behind login, slides summarised next
 - ► 2016 Data Science Salary Survey,
 - really interesting content on software used, ...
 - ► 2017 European Data Science Salary Survey,
 - really interesting content on tasks done, coding versus meetings, ..
- ► Kaggle state of data science and machine learning
 - really interesting content on job title, education, methods, barriers, getting started
 - explore this one online!

Tool Number from 2014 Survey

Figure 1-13. Number of tools used

Software Usage Survey

2016 Data Science Salary Survey

Survey: Clusters amongst the Respondents

Analysts and data scientists with very small tool stacks, as well as programmers and developers who aren't data scientists; this functions as a miscellaneous category

Analysts and engineers who use many Microsoft tools

Cluster 3 Coding analysts and data scientists, Python-dominant

Cluster 4 Data engineers and architects who use many different tools, largely open-source

Survey: Commonly Used Software

	Cluster				
Tools	- 1	2	3	4	
Windows	86%	92%	48%	55%	
SQL	62%	75%	65%	80%	
Excel	66%	84%	59%	60%	
R	30%	69%	67%	69%	
Python	27%	32%	96%	84%	
Linux	37%	21%	70%	91%	
Mac OS X	26%	23%	70%	67%	
MySQL	26%	33%	41%	57%	
ggplot	13%	33%	53%	52%	
Microsoft SQL Server	32%	51%	17%	27%	
Tableau	17%	56%	21%	37%	
Scikit-learn	7%	7%	73%	57%	
Matplotlib	5%	5%	67%	42%	
Oracle	22%	31%	10%	30%	
Bash	9%	7%	42%	58%	
PostgreSQL	11%	12%	26%	53%	
Spark	9%	6%	20%	69%	

	Cluster				
Tools	1	2	3	4	
Hive	11%	13%	23%	46%	
Java	16%	8%	14%	44%	
Unix	10%	12%	21%	36%	
JavaScript	12%	8%	18%	39%	
Apache Hadoop	5%	6%	18%	55%	
Shiny	5%	19%	21%	27%	
D3	5%	6%	20%	49%	
Spark MILib	2%	3%	14%	49%	
Visual Basic/VBA	11%	24%	6%	5%	
Cloudera	6%	8%	11%	30%	
SQLite	7%	4%	15%	24%	
Redshift	5%	7%	10%	21%	
MongoDB	4%	5%	15%	24%	
ElasticSearch	5%	3%	9%	33%	
Teradata	6%	13%	8%	13%	
PowerPivot	10%	19%	2%	2%	
C++	7%	3%	13%	17%	
Weka	5%	5%	8%	25%	

Survey: Operating Systems

OPERATING SYSTEMS (Respondents could choose more than one OS)

Survey: Programming Languages

Survey: Relational Databases

Survey: Management and Big Data

Survey: Visualization

Coding versus Meetings

Career Choices

Tasks - Time

Tasks – Salary

Standards and Issues APIs and SaaS

REST API Terminology

API: Application Programmer Interface

▶ Routines providing programatic access to an application.

REST: REpresentational State Transfer

- ▶a stateless API usually running over HTTP
- Watch a simple introduction to REST-based APIs in this video: <u>REST API concepts and examples</u> by WebConcepts

SaaS: Software as a Service

► The provisioning of software in a Web browser and/or via an API over the Web as a subscription service.

FLUX Question

Name a popular data/information API.

Example Data/Information APIs

Many companies are exposing their data **and their website functionality** as APIs for others to make use of:

- ► Facebook API
- ► Twitter API
 - e.g. search tweets
- ► LinkedIn API
- ► Google Maps API
- ► Youtube API
 - e.g. documentation
- ► Amazon Advertising API
- ► TripAdvisor API
- ► New York Times API

The API Economy

Companies provide functionality via APIs so that others can make use of their data and services:

- ► <u>The Application Economy: A New Model for IT</u>(CISCO)
- ► <u>ProgrammableWeb API Category: Data</u>
- ► <u>Top 30 Predictive Analytics API</u> (see #4)
- ► 20+ Machine Learning as a Service Platforms

And for something completely different:

- ► <u>The Sharing Economy | Bullish</u> (on TechCrunch)
 - ▶ these companies are huge users of data science!

Example Processing APIs or Web Services

Some companies are exposing their **tools/services** as APIs or browser based tools for others to make use of:

- ► Azure Machine Learning Studio
- Figure-Eight Human in the Loop ML with croudsourcing support
- <u>Watson REST API</u> for semantic web, metadata, entity analysis in text
- ► Google Cloud Prediction API
 - is closing down in April 2018, and they will focus on cloud solutions

SaaS Examples

- Email systems (Google, Microsoft Office365),
- File sharing systems (Dropbox, Box, Microsoft One drive, Google drive ..)
- Business systems (Salesforce, Servicenow, ..)

Why SaaS

- Pay as you go
- Scale up/down
- Low maintenance
- Performance, better infrastructure

Disadvantage: data privacy

Case Studies of Data and Standards (ePub section 4.8)

look at some examples of standardised data collections

Freebase and DBPedia

Freebase:

- ► an example of a graph database we looked at earlier
- graph can be represented in RDF which is triples of URIs
- now owned by Google, and decommissioned
- used by others as a knowledge-base in many text processing pipelines:
 - ► e.g., using <u>TextRazor</u> to extract meaning from text

<u>DBpedia</u>:

- aim to extract all structured content from information in Wikipedia
- open source project
- effectively replaced Freebase

Twitter

Twitter is the most famous microblogging platform

- with big corporate use
- contains lots of metadata: information about users, their follower network, locations, hashtags, emojis+emoticons,

...

Sample Twitter XML Data

```
<?xml version="1.0" encoding="UTF-8" ?>
- <statuses type="array">
 - «status»
    <created at>Wed Jun 10 00:57:28 +0000 2009</created at>
    <id>2097065233</id>
    <text>sitting in yegas @ airport, kid in stroller, with dyd player in lap, First ever for me, HELLO! </text>
    <source>web</source>
    <truncated>false</truncated>
    <in reply to status id />
    <in reply to user id />
    <favorited>false</favorited>
    <in reply to screen name />
   - <user>
      <id>5189091</id>
      <name>kristin bednarz</name>
      <screen name>kristinbednarz</screen name>
      <location>iPhone: 33.447393,-101.821675</location>
      <description>photographer in WEST TEXAS</description>
      <url>http://www.yourlifemypassion.com</url>
      cprotected>false</protected>
      <followers_count>245</followers_count>
      cprofile background color>
      file text color>3E4415/profile text color>
      cprofile_link_color>D02B55/profile_link_color>
      cprofile sidebar fill color>
      cprofile_sidebar_border_color>829D5E/profile_sidebar_border_color>
      <friends_count>90</friends_count>
      <created at>Thu Apr 19 04:54:45 +0000 2007
/created at>
      <favourites count>3</favourites count>
      <utc offset>-21600</utc offset>
```

Twitter App Ecosystem

from **Gadgetdaily.xyz**

Twitter Developer API

See Twitter's developer platform

- library interfaces for Java, C++, Javascript, Python, Perl, PHP, Ruby, ...
- ► allows other applications to manage Twitter data for users
- extensive developer policy
- ► see search API doc
- ► lots of example case studies

Medical Data Dictionaries

The Unified Medical Language System (UMLS)

Medical Data Dictionaries, cont.

ICD: the International Classification of Diseases

- used to classify diseases and other health problems
- based on health and vital records
- ► for example:
 - ▶ Pneumonia due to Streptococcus pneumoniae

Medical Data Dictionaries, cont.

Other Medical Dictionaries:

- ► SNOMED CT
 - ▶ Systematized Nomenclature of Medicine Clinical Terms
- ► Gene Ontology
 - concepts for describing gene function

Usage of Medical Dictionaries:

- controlled vocabularies
- semantic data exploration
- clinical surveillance
- decision support

Publishing Repositories

- PUBMED, we have seen before
- ACM Digital Library
- Global Patent Index provided by the EPO
- Semantic Scholar for research article search

News and Event Registry

Event Registry

- collect news article globally, process and organise as events
- perform concept and event identification
- create a document database for inspection
- sometimes news stored as <u>NewsML</u>

Government Data

- ► US Government's Data. GOV
- ► NYC Open Data
- ► <u>Australia's Urban Intelligence Network (AURIN)</u> e.g. <u>SD Private Health Insurance</u>
- ► BioGrid Australia
 - curated for research use and usually require getting approval to use

Unit Schedule: Next Week

Module	Week	Content
1.	1	overview and look at projects
	2	(job) roles, and the impact
2.	3	data business models
	4	application areas and case studies
3.	5	characterising data and "big" data
	6	data sources and case studies
4.	7	resources and standards
	8	resources case studies
5.	9	data analysis theory
	10	data analysis process
6.	11	issues in data management
	12	GUEST SPEAKER & EXAM INFO