Lista 2

Zadanie 1. Czy następujące układy wektorów są liniowo niezależne (nad \mathbb{R})? Rozszerz ich maksymalny podzbiór niezależny do bazy.

- 1. (1,1,0),(0,1,1),(1,1,1),(1,0,1);
- 2. (0,1,2), (1,1,1), (1,1,1);
- 3. (1,0,1,0), (1,2,0,1), (0,2,1,1), (0,0,1,1);
- 4. (1,0,1,0), (0,2,0,2), (1,1,0,0), (0,0,2,1).

Rozwiązanie Zauważmy, że układ wektorów (1,1,0), (0,1,1), (1,1,1), (1,0,1) nie może być niezależny, bo ma 4 wektory w 3-wymiarowej przestrzeni. Sprawdźmy, że pierwsze 3 wektory są liniowo niezależne:

Te wektory są w postaci schodkowej, czyli są liniowo niezależne.

Sprawdźmy teraz (1,0,1,0), (1,2,0,1), (0,2,1,1), (0,0,1,1):

I ten układ jest niezależny (po przestawieniu wektorów jest w postaci schodkowej).

Zadanie 2. Uzasadnij, że poniższe zbiory wektorów są liniowo niezależne (w odpowiednim \mathbb{R}^n), rozszerz je do bazy (odpowiedniego) \mathbb{R}^n :

- (2,2,7,-1),(3,-1,2,4),(1,1,3,1);
- (2,3,-4,-1),(1,-2,1,3);
- (2,3,5,-4,1),(1,-1,2,3,5).

Rozwiązanie Rozważmy drugi przykład.

Ten układ jest liniowo niezależny. Aby rozszerzyć go do bazy, weźmy np. $\vec{E}_3, \vec{E}_4.$

Ten układ jest w postaci schodkowej, ma 4 elementy, taki sam jak wymiar przestrzeni, czyli jest bazą. (Zauważmy, że brakując elementy bazy zawsze można dobrać z bazy standardowej.)

Zadanie 3. Rozważamy przestrzenie nad \mathbb{R} . Niech v_1, v_2, \dots, v_n będą liniowo niezależne. Dla jakich wartości $\alpha \in \mathbb{R}$ zbiory wektorów

- $\{\alpha v_1 + v_2, v_1 + \alpha v_2\}$
- $\{v_1 + v_2, v_2 + v_3, v_3 + v_4, \dots, v_{n-1} + v_n, v_n + \alpha v_1\}$

są liniowo niezależne?

(jakiej). Można na nich zastosować eliminację Gaußa.

Wskazówka: Można bezpośrednio z definicji, ale szybciej: zauważ, że v_1,\ldots,v_n są bazą przestrzeni liniowej

Rozwiązanie W pierwszym podpunkcie, odejmijmy α razy drugi wektor od pierwszego, uzyskujemy w ten sposób

$$\{(1-\alpha^2)v_2, v_1 + \alpha v_2\}$$

Jeśli $\alpha \in \{-1, 1\}$, to ten układ jest liniowo zależny, czyli był też ten oryginalny. W przeciwnym wypadku (nowy) układ jest liniowo niezależny: możemy pomnożyć pierwszy wektor przez $(1 - \alpha^2)^{-1}$ i odjąć α raz od drugiego, uzyskując układ $\{v_2, v_1\}$, który jest niezależny. Czyli również oryginalny układ był niezależny.

W drugim podpunkcie przytnijmy naszą przestrzeń do generowanej przez v_1, \ldots, v_n i wyraźmy wektory w bazie v_1, \ldots, v_n . Uzyskane wektory można zapisać jako (puste ola oznaczają 0):

Następnie odejmujemy od n-1-szego wiersza n-ty

Potem od n-2-go n-1-szy, n-3-go n-2-gi itd., aż od drugiego odejmiemy trzeci, uzyskując

tj. w *i*-tym wierszu (dla i > 1) mamy

$$((-1)^{n-i}\alpha, 0, \dots, 0, \underbrace{1}_{i-\text{te miejsce}}, 0, \dots, 0)$$
.

W ostatnim kroku od drugiego wiersza odejmujemy $(-1)^{n-2}\alpha$ razy pierwszy, otrzymując

Jeśli $1-(-1)^{n-2}\alpha=0$ ($\iff \alpha=(-1)^n$) to układ jest zależny (bo drugi wiersz to $\vec{0}$), w przeciwnym przypadku możemy odjąć od pierwszego wiersza wielokrotność drugiego, by uzyskać postać schodkową, czyli układ wektorów liniowo niezależnych.

Zadanie 4. Załóżmy, że dla przestrzeni liniowych W, W' (będących podprzestrzeniami V) zachodzi

$$\dim(\mathbb{W} + \mathbb{W}') = 1 + \dim(\mathbb{W} \cap \mathbb{W}') .$$

Udowodnij, że suma $\mathbb{W} + \mathbb{W}'$ jest jedną z przestrzeni \mathbb{W}, \mathbb{W}' , a przecięcie $\mathbb{W} \cap \mathbb{W}'$ —drugą.

Rozwiązanie Przypomnijmy, że

$$\dim(\mathbb{W} + \mathbb{W}') = \dim(\mathbb{W}) + \dim(\mathbb{W}') - \dim(\mathbb{W} \cap \mathbb{W}')$$

Porówując z zależnością w treści dostajemy

$$\dim(\mathbb{W}) + \dim(\mathbb{W}') - \dim(\mathbb{W} \cap \mathbb{W}') = 1 + \dim(\mathbb{W} \cap \mathbb{W}')$$

Po przeniesieniach

$$\dim(\mathbb{W}) + \dim(\mathbb{W}') - 1 = 2\dim(\mathbb{W} \cap \mathbb{W}')$$

Zauważmy, że

$$\dim(\mathbb{W}\cap\mathbb{W}')\leq\dim(\mathbb{W})$$

$$\dim(\mathbb{W}\cap\mathbb{W}')\leq\dim(\mathbb{W}')$$

Wymiar jest liczbą naturalną, gdyby więc dodatkowo zachodziło

$$\dim(\mathbb{W} \cap \mathbb{W}') \le \dim(\mathbb{W}) + 1$$
$$\dim(\mathbb{W} \cap \mathbb{W}') \le \dim(\mathbb{W}') + 1$$

to mielibyśmy

$$2\dim(\mathbb{W}\cap\mathbb{W}')\leq\dim(\mathbb{W})+\dim(\mathbb{W}')+2$$

co jest sprzeczne z wcześniejszą obserwacją. Czyli w przynajmniej jednym przypadku mam równość, tj.

$$\begin{split} \dim(\mathbb{W} \cap \mathbb{W}') &= \dim(\mathbb{W}) \quad lub \\ \dim(\mathbb{W} \cap \mathbb{W}') &= \dim(\mathbb{W}') \end{split}$$

Zauważmy teraz, że jeśli $\mathbb{V}' \leq \mathbb{V}$ oraz $\dim(\mathbb{V}') = \dim(\mathbb{V})$ to $\mathbb{V}' = \mathbb{V}$: bo bazę \mathbb{V}' można rozszerzyć do bazy \mathbb{V} , a obie są tej samej mocy. Czyli dostajemy, że

$$\mathbb{W} \cap \mathbb{W}' = \mathbb{W}$$
 lub
 $\mathbb{W} \cap \mathbb{W}' = \mathbb{W}'$

co oznacza

$$\mathbb{W}' \le \mathbb{W}$$
 lub $\mathbb{W} < \mathbb{W}'$

Zadanie 5. Niech $\mathbb{U}, \mathbb{W}, \mathbb{W}' \leq \mathbb{V}$. Udowodnij zawieranie:

$$(\mathbb{U}\cap\mathbb{W})+(\mathbb{U}\cap\mathbb{W}')\leq\mathbb{U}\cap(\mathbb{W}+\mathbb{W}')$$

Pokaż, że jeśli $\mathbb{W} \leq \mathbb{U}$ to w zachodzi równość obu stron zawierania.

Rozwiązanie Zauważmy, że suma przestrzeni wektorowych jest monotoniczna po obu argumentach, tj.

$$A \le A', B \le B' \implies A + B \le A' + B'$$

co wynika wprost z definicji: $A+B=\{a+b:a\in A,b\in B\}$ i każda suma postaci a+b, gdzie $a\in A,b\in B$ jest też w A'+B', bo $A\leq A',B\leq B'$.

Przechodząc do treści zadania: zauważmy, że z jednej strony:

$$(\mathbb{U}\cap\mathbb{W})\leq\mathbb{U}, (\mathbb{U}\cap\mathbb{W}')\leq\mathbb{U} \implies (\mathbb{U}\cap\mathbb{W})+(\mathbb{U}\cap\mathbb{W}')\leq\mathbb{U}+\mathbb{U}=\mathbb{U}$$

Jednocześnie

$$(\mathbb{U}\cap\mathbb{W})\leq\mathbb{W}, (\mathbb{U}\cap\mathbb{W}')\leq\mathbb{W}' \implies (\mathbb{U}\cap\mathbb{W})+(\mathbb{U}\cap\mathbb{W}')\leq\mathbb{W}+\mathbb{W}'$$

Łącząc te dwa zawierania dostajemy

$$(\mathbb{U}\cap\mathbb{W})+(\mathbb{U}\cap\mathbb{W}')\leq\mathbb{U}\cap(\mathbb{W}+\mathbb{W}')$$

Przechodząc do drugiego punktu: przyjrzyjmy się lewej stronie, tj. $(\mathbb{U}\cap\mathbb{W})+(\mathbb{U}\cap\mathbb{W}')$. Używając założenia można to uprościć do

$$(\mathbb{U} \cap \mathbb{W}) + (\mathbb{U} \cap \mathbb{W}') = \mathbb{W} + (\mathbb{U} \cap \mathbb{W}')$$

Rozważmy dowolny wektor z prawej strony, tj.

$$\mathbb{U} \cap (\mathbb{W} + \mathbb{W}')$$

jest on postaci w+w', gdzie $w\in \mathbb{W}, w'\in \mathbb{W}'$, jednocześnie $w+w'\in \mathbb{U}$. Zauważmy, że skoro $w\in \mathbb{U}$, to również $-w\in \mathbb{U}$ i w takim razie $w'=w+w'-w\in \mathbb{U}$. Czyli $w'\in \mathbb{W}'\cap \mathbb{U}$. I w takim razie

$$w + w' \in \mathbb{W} + (\mathbb{W}' \cap \mathbb{U})$$

,

Zadanie 6. Wyraź w bazach $B = \{(1,2,3); (0,1,2); (0,0,1)\}$ oraz $C = \{(1,-1,2); (0,1,1); (0,-1,1)\}$ wektory

- (1,0,0)
- (0,1,0)
- (0,0,1)
- (7,3,2)
- (-2,1,5)
- (3, -2, 1).

Rozwiązanie Wyraźmy wektor $\vec{E}_1=(1,0,0)$ w bazie B, oznaczmy $\vec{b}_1=(1,2,3), \vec{b}_2=(0,1,2), \vec{b}_3=(0,0,1)$. Jeśli $(\vec{E}_1)_B=(\alpha,\beta,\gamma)$ to

$$\alpha \cdot b_1 + \beta \cdot b_2 + \gamma \cdot b_3 = E_1$$

Co sprowadza się do układu równań

$$\left\{ \begin{array}{llll} 1 \cdot \alpha & +0 \cdot \beta & +0 \cdot \gamma & = & 1 \\ 2 \cdot \alpha & +1 \cdot \beta & +0 \cdot \gamma & = & 0 \\ 3 \cdot \alpha & +2 \cdot \beta & +1 \cdot \gamma & = & 0 \end{array} \right. .$$

Z pierwszego równania dostajemy $\alpha=1$, wtedy z drugiego $\beta=-2$ oraz z trzeciego $\gamma=1$. Czyli

$$(1,0,0)_B = (1,-2,1)$$

Używając analogicznego podejścia pokazujemy, że

$$(0,1,0)_B = (0,1,-2)$$
 $(0,0,1)_B = (0,0,1)$

Korzystając z tego, że reprezentacja w bazie jest homomorfizmem, mamy:

$$(7,3,2)_B = 7 \cdot (E_1)_B + 3(E_2)_B + 2(E_3)_B$$

= $7 \cdot (1,-2,1) + 3 \cdot (1,-2,1) + 2 \cdot (0,0,1)$
= $(10,-16,12)$

Pozostałe przykłady liczymy w podobny sposób.

Zadanie 7. Wyznacz wymiary $LIN(S) \cap LIN(T)$ oraz LIN(S) + LIN(T) dla

- $S = \{(1, 2, 0, 1), (1, 1, 1, 0)\}, T = \{(1, 0, 1, 0), (1, 3, 0, 1)\};$
- $S = \{(2, -1, 0, -2), (3, -2, 1, 0), (1, -1, 1, -1)\}, T = \{(3, -1, -1, 0), (0, -1, 2, 3), (5, -2, -1, 0)\}.$

Rozwiązanie W pierwszym przykładzie widać, że oba układy są liniowo niezależne — wystarczy od jednego wektora odjąć drugi, by dostać układ w postaci schodkowej. Czyli

$$\dim(\operatorname{LIN}(S)) = \dim(\operatorname{LIN}(T)) = 2$$

Zobaczmy teraz, ile jest wektorów niezależnych w $S \cup T$:

Układ jest zależny, bo drugi i trzeci wiersza są takie same. Jednocześnie pozostałe wektory są niezależne (postać schodkowa). Czyli

$$\dim(\operatorname{LIN}(S \cup T)) = 3$$

W takim razie

$$\dim(\operatorname{LIN}(S \cap T)) = \dim(\operatorname{LIN}(S)) + \dim(\operatorname{LIN}(T)) - \dim(\operatorname{LIN}(S \cup T)) = 2 + 2 - 3 = 1.$$

Zadanie 8 (* Nie liczy się do podstawy.). *Uwaga: w tym zadaniu nie można korzystać z twierdzenia o równoliczności baz ani z lematu o wymianie.*

Używając eliminacji Gaußa udowodnij następujące twierdzenie:

Jeśli $B = \{b_1, \ldots, b_k\}$ jest bazą przestrzeni liniowej \mathbb{V} , to zbiór liczący k+1 wektorów jest liniowo zależny. W tym celu wyraź wektory v_1, \ldots, v_{k+1} w bazie B i przeprowadź na tej reprezentacji eliminację Gaußa. Wywnioskuj z tego twierdzenia, że każde dwie bazy przestrzeni skończenie wymiarowej są równoliczne.

Zadanie 9. Niech $\mathbb{W} \leq \mathbb{V}$ będą przestrzeniami liniowymi, zaś $U \subseteq \mathbb{V}$. Udowodnij, że następujące warunki są równoważne:

- 1. istnieje wektor $u \in \mathbb{V}$, taki że $U = u + \mathbb{W}$;
- 2. istnieje wektor $u \in U$, taki że U = u + W;
- 3. dla każdego wektora $u \in U$ zachodzi $U = u + \mathbb{W}.$

Udowodnij też równoważność poniższych warunków:

- 1. istnieje wektor $u \in \mathbb{V}$, taki że U-u jest przestrzenią liniową;
- 2. istnieje wektor $u \in U$, taki że U-u jest przestrzenią liniową;
- 3. dla każdego wektora $u \in U$ zbiór U-u jest przestrzenią liniową.

Zadanie 10. Niech $\mathbb{W} \leq \mathbb{V}$ będzie podprzestrzenią liniową, zaś U i U' jej warstwami. Pokaż, że

$$U = U'$$
 lub $U \cap U' = \emptyset$.

Możesz skorzystać z Zadania 9, nawet jeśli nie potrafisz go udowodnić.

Rozwiązanie Niech U,U' będą warstwami podprzestrzeni $\mathbb{W}.$

Rozważmy przecięcie $U \cap U'$. Jeśli jest puste, to teza jest spełniona. Jeśli nie jest, to niech $\vec{v} \in U \cap U'$. Wtedy zgodnie z Zadaniem 9 mamy

$$U = \vec{v} + \mathbb{W}$$
$$U' = \vec{v} + \mathbb{W}$$

Zauważmy, że

$$U \cap U' = (\vec{v} + \mathbb{W}) \cap (\vec{v} + \mathbb{W})$$

wprost z definicji sumy łatwo sprawdzić, że

$$(\vec{v} + \mathbb{W}) \cap (\vec{v} + \mathbb{W}) = \vec{v} + \mathbb{W}$$

Co daje tezę.

Zadanie 11. Niech $\mathbb V$ będzie przestrzenią liniową, zaś U i U' warstwami jakichś (niekoniecznie takich samych) podprzestrzeni $\mathbb V$.

Pokaż, że przecięcie $U \cap U'$ jest puste lub jest warstwą (jakiejś podprzestrzeni).

Rozwiązanie Rozważmy przecięcie $U \cap U'$. Jeśli jest puste, to teza jest spełniona. Jeśli nie jest, to niech $\vec{v} \in U \cap U'$. Wtedy zgodnie z Zadaniem 9 mamy

$$U = \vec{v} + \mathbb{W}$$
$$U' = \vec{v} + \mathbb{W}'$$

dla odpowiednich przestrzeni liniowych $\mathbb{W}, \mathbb{W}' \leq \mathbb{V}.$ Zauważmy, że

$$U \cap U' = (\vec{v} + \mathbb{W}) \cap (\vec{v} + \mathbb{W}')$$

wprost z definicji sumy łatwo sprawdzić, że

$$(\vec{v} + \mathbb{W}) \cap (\vec{v} + \mathbb{W}') = \vec{v} + (\mathbb{W} \cap \mathbb{W}')$$

Wiemy, że $\mathbb{W} \cap \mathbb{W}' \leq \mathbb{V}$ jest podprzestrzenią, i tym samym $U \cap U'$ jest warstwą przestrzeni $\mathbb{W} \cap \mathbb{W}'$.