Π обедит #398

Сбор геометрии регионов связ. в-ва

Е.П.Константинова 1 , Д.Г.Каграманян 2 , Б.Б.Страумал 3 , Л.Н.Щур 4 28 апреля 2021 г.

1 Задача

Требуется собрать статистику с фотографий микроструктур исследуемого сплава. Интересующие характеристики

- распределение углов связующего вещества
- ullet распределение диаметров описанной окружности связующего вещества
- распределение максимальных дуг (рис. 1)

2 Исходные данные

Ранее при помощи детектора контура [1] были выделены границы регионов связующего вещества и затем аппроксимированы при помощи линейной функции (рис. 2). Каждый регион задается упорядоченным набором вершин.

¹исследователь,lizaconst@icloud.com

 $^{^2}$ исследователь,dgkagramanyan@edu.hse.ru

³соруководитель,straumal@issp.ac.ru

⁴руководитель,levshchur@gmail.com

Рис. 1: дуга АВ (желтый цвет), проведенная в многоугольнике

Рис. 2: Выделенные регионы связующего вещества с линиями периметра (серые прямые)

3 Сбор геометрии

3.1 Распределение углов

Принцип работы алгоритма выделения контура 2 основан на проходе границы региона связующего вещества матрицей свертки по часовой стрелке (рис. 3).

На этом основан наш способ подсчёта углов. Будем считать, что нам интересны «внутренние» углы — на рисунке 3 они отмечены зелёным. «Внешний» угол можно получить если из 360° вычесть внутренний угол.

Заметим, что нас интересует угол между векторами против часовой стрелки.

Рассмотрим вектора \overrightarrow{b} и \overrightarrow{c} с координатами (x_1, y_1) и (x_2, y_2) соответственно (рис. 4). Угол между векторами α :

$$\alpha = \frac{(\overrightarrow{b}, \overrightarrow{c})}{|\overrightarrow{b}||\overrightarrow{c}|} \cdot \frac{180^{\circ}}{\pi}$$

Однако в данном случае мы получим угол от 0° до 180° . В нашей постановке задачи это нас не устраивает — мы же хотим отличать внутренние углы от внешних.

Для того чтобы узнать направление полученного угла мы воспользуемся векторным произведением (рис. 5). (Допишем третью нулевую координату

Рис. 3: направление обхода контура

Рис. 4: пара векторов

Рис. 5: тройка векторов

векторам). Вектор, получившийся в результате векторного произведения будет образовывать с векторами \overrightarrow{b} и \overrightarrow{c} правую тройку. Таким образом мы и определяем какой угол нас интересует - α или $360^{\circ} - \alpha$.

Видим, что на самом деле направление угла определеляет знак определителя:

$$D = \left| \begin{array}{cc} x_1 & x_2 \\ y_1 & y_2 \end{array} \right|$$

Если D>=0, то искомый угол равен α , если D<0, то искомый угол $360^{\circ}-\alpha$.

3.2 Распределение диаметров

Диаметром пустоты будем называть диаметр окружности с наименьшим радиусом, в которую можно вписать пустоту.

Пока что мы принимаем за диаметр максимальное расстояние между точками многоугольника.

Тем не менее этот способ не всегда рабочий. Пример:

Рис. 6: пример неверного определение диаметра

Над этим ещё нам предстоит поработать.

3.3 Распределение дуг

Пусть нужно провести дугу из первого угла региона во второй. Для этого нужно реализовать следующую последовательность алгоритмов

• триангуляция многоугольника;

- поиск точек медиан на сторонах треугольников, которые находятся внутри региона;
- создание графа из точек медиан и соединение их ребрами
- поиск кратчайшего пути в графе из исходной вершины угла в заданную.

4 Выводы

Список литературы

[1] Satoshi Suzuki, Keiichi Abe - Topological Structural Analysis of Digitized Binary Images by Border Following