ICMC - USP

SCC0270 - Redes Neurais

Projeto 3

Kohonen e Rede PCA

Docente: Roseli Aparecida Francelin Romero

Aluno: Lucas Antognoni de Castro, 8936951

São Carlos Novembro 2017

Enunciado

Para o terceiro projeto da disciplina de Redes Neurais foram implementadas e testadas as redes de Kohonen e PCA Adaptativa, para a clusterização e redução da dimensão dos dados, respectivamente. Além disso, foi implementada a PCA clássica com o intuito de comparar os resultados obtidos na classificação utilizando um *Multilayer Perceptron*.

Plataforma utilizada

O referido trabalho foi confeccionado no sistema operacional *Linux* (*Ubuntu*), utilizando um ambiente de desenvolvimento com a *IDE Visual Studio Code* e terminal. O código foi desenvolvido na linguagem de programação *Python* e suas bibliotecas.

Dados

Foram utilizadas duas bases de dados para o projeto: Iris e Vinho. A primeira apresenta 150 amostras relacionadas à plantas do tipo iris. São levados em conta os seguintes atributos, em centímetros:

- Comprimento da sépala
- Largura da sépala
- Largura da pétala
- Comprimento da pétala

Para cada amostra, existem 3 tipos possíveis de classes:

- Iris-Setosa
- Iris-Versicolor
- Iris-Virginica

Já a segunda consiste em 178 exemplares de vinhos contendo 13 atributos numéricos de valores reais ou inteiros. Cada um apresenta um rótulo entre [1, 2, 3] que identifica a região de origem da amostra.

Testes e Resultados

Rede Kohonen

A arquitetura da rede utilizada foi:

Largura (mapa)	Altura (mapa)	Número de amostras	Alpha	Iterações
10	10	178	0.1	5000

O mapa resultante foi:

Podemos verificar que no canto superior esquerdo temos tons mais claros e conforme vamos descendo o eixo vertical e seguindo para direita no eixo horizontal, notamos, com um pouco de dificuldade, tons cada vez mais escuros e opacos. Assim podemos inferir que identificam valores das três classes de vinhos da base de dados utilizada.

PCA e MLP

Foram utilizadas as implementações do PCA Clássico e do MLP do pacote *sklearn* da linguagem python e implementada uma biblioteca para a Rede PCA Adaptativa (*adaptative_pca.py*). Ao rodar cada PCA são retornados os 2 atributos com maior significância para o conjunto de dados, que são utilizados para o treinamento e classificação com a MLP. A arquitetura e parâmetros para a rede utilizados foram:

Entrada	Saída	Eta	Mi	Alpha	Iteraçõe s	Epslon
4	4	0.001	0.001	0.5	1000	1e-7

Após a execução do programa foram obtidos os seguintes resultados médios:

Entrada	Acurácia		
PCA Clássico	84.444%		
Rede PCA Adaptativa	95.657%		

Pelas tabelas podemos verificar que a escolha dos atributos pelo segundo modelo permitiu um valor mais alto de acurácia durante a classificação dos dados.

Executando

Extraia os arquivos da pasta e em um terminal navegue até o diretório do projeto. Para executar a rede de Kohonen digite o seguinte comando:

python3 kohonen.py

Para executar a PCA Clássica, Rede PCA Adaptativa e o *Multilayer Perceptron* digite o seguinte comando:

python3 script.py

Os programas serão executados e os resultados serão impressos na tela.