

(11)Publication number:

05-212732

(43) Date of publication of application: 24.08.1993

(51)Int.CI.

B29C 39/02 CO8G 18/08 **GO2B** 1/04 G02C 7/02 // B29K 75:00 B29L 11:00

(21)Application number: 04-021301

(71)Applicant: SEIKO EPSON CORP

(22)Date of filing:

06.02.1992

(72)Inventor: TAMAI MICHIHIKO

NOZAWA YOSHINOSUKE

(54) PRODUCTION OF POLYURETHANE LENS

(57)Abstract:

PURPOSE: To efficiently produce a polyurethane lens in a high yield in a large quantitie. CONSTITUTION: In the production of a polyurethane lens, a first process separately adding various additives to polyisocyanate and polyol (containing one having one or more OH group substituted with an SH group) to separately obtain uniform liquid mixtures, a second process separately degassing the polyisocyanate liquid mixture and polyol liquid mixture obtained in the first process and a third process injecting the polyisocyanate liquid mixture and polyol liquid mixture obtained from the second process in a lens producing mold under continuous mixing to subject the same to cast polymerization to obtain the polyurethane lens are employed.

LEGAL STATUS

[Date of request for examination]

18.12.1998

[Date of sending the examiner's decision of

23.10.2001

rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision

of rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP) (12) 公開特許公報(A) (11)特許出願公開番号

特開平5-212732

(43)公開日 平成5年(1993)8月24日

(51)Int.Cl. ⁵ B 2 9 C	39/02	識別記号	庁内整理番号 2126-4F	FI				技術表示箇所
C 0 8 G		NDK	8620-4 J					
G 0 2 B	1/04		7132-2K					
G02C	7/02							
# B 2 9 K	75: 00							
				審査請求	未請求	請求項の数1(全	5 頁)	最終頁に続く

(21)出願番号

特願平4-21301

(22)出願日

平成4年(1992)2月6日

(71)出願人 000002369

セイコーエブソン株式会社

東京都新宿区西新宿2丁目4番1号

(72)発明者 玉井 亨彦

長野県諏訪市大和3丁目3番5号セイコー

エブソン株式会社内

(72)発明者 野沢 吉之輔

長野県諏訪市大和3丁目3番5号セイコー・

エブソン株式会社内

(74)代理人 弁理士 鈴木 喜三郎 (外1名)

(54)【発明の名称】 ポリウレタンレンズの製造方法

(57)【要約】

【目的】本発明は、多量に、効率よく、髙歩留りが得ら れるポリウレタンレンズの製造方法を提供するものであ

【構成】本発明は、ポリイソシアネートとポリオール (OH基の1以上をSH基に置換したものを含む) それ ぞれ別々に各種添加剤を入れ、別々に均一な混合液を得 る第1工程、第1工程で得たポリイソシアネート混合液 と、ポリオール混合液をそれぞれ別々に脱気を行なう第 2工程、第2工程で得たポリイソシアネート混合液と、 ポリオール混合液を連続的に混合しながら、レンズ製造 用成形型内に注入し注型重合させてポリウレタンレンズ を得る第3工程の3工程よりなることを特徴とする。

10

【特許請求の範囲】

【請求項1】ポリイソシアネートと、ポリオール(〇H 基の1以上をSH基に置換したものを含む。) とを含む 単量体混合物をレンズ製造用成形型内で注型重合させて ボリウレタンレンズを製造する方法において、下記の3 つの工程を含むことを特徴とするポリウレタンレンズの 製造方法。

(イ) 前記ポリイソシアネートと、前記ポリオールそれ ぞれ別々に各種添加剤を入れ、別々に均一な混合液を得 る第1工程。

(ロ) 第1工程で得たポリイソシアネート混合液と、ポ リオール混合液をそれぞれ別々に脱気を行なう第2工 程。

(ハ) 前記ポリイソシアネート混合液と、前記ポリオー ル混合液を連続的に混合しながらレンズ製造用成形型内 に注入し、注型重合させてポリウレタンレンズを得る第 3工程。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、眼鏡用レンズ、カメラ 20 用レンズ等の各種光学用レンズに用いられる生産性の優 れたポリウレタンレンズの製造方法に関する。

[0002]

【従来の技術】眼鏡用プラスチックレンズ用樹脂として 従来主に用いられている、ジエチレングリコールビス (アリルカーボネート) 樹脂レンズは、ガラスレンズに 比較し、安全性、易加工性、ファッション性などにおい て優れており、近年急速に普及している。しかし、ジエ チレングリコールビス (アリルカーボネート) 樹脂の屈 折率は1、50とガラスレンズに比べ小さいために、外 30 周部の厚みが厚くなり、見映えが悪いという欠点を有し ている。このため、眼鏡レンズのプラスチック化は、高 屈折率樹脂材料による薄型プラスチックレンズへの要望 を高めている。高屈折率樹脂材料としてはポリウレタン レンズが知られている。ポリウレタンレンズの製造方法 としては、例えば、特開昭60-217229号公報に おいては、ポリイソシアネートとS原子含有ポリオール とを同時に混合し、均一に撹拌して注型重合を行ない、 ポリウレタンレンズを得る方法が提案されている。ま イソシアネートとポリオールの水酸基の全てをメルカブ ト基に置換したポリチオールとを同時に混合し、均一に 撹拌して注型重合を行ないポリウレタンレンズを得る方 法が提案されている。

[0003]

【発明が解決しようとする課題】しかしながら、特開昭 60-217229号公報及び特開昭60-19901 6号公報に提案されている方法によって得られるポリウ レタンレンズはポリイソシアネートとポリオール又はポ リチオールを混合した瞬間からウレタン反応が開始し、

ウレタン反応による発熱により重合が加速的に進むた め、大量のバッチ製造がしにくく、少量のバッチ製造を 何回も繰り返えさなければレンズを製造できないという 問題点を有していた。又、少量バッチ製造に対してもウ レタン単量体混合物は空気を溶解し易く、完全に脱気を 行なってもその後空気と接触していると再度空気が溶解 し、注型重合後のレンズ内部に気泡が生じるため、高い 歩留りが得られないという問題点も有していた。

【0004】従って、本発明の目的はポリイソシアネー トとポリオール(OH基の1以上をSH基に置換したも のを含む。以下同様。)よりなる種々のポリウレタン製 造において、より多量に、効率よく、高歩留りが得られ る製造方法を提供することにある。

[0005]

【課題を解決するための手段】上記目的を達成するため に、本発明は、ポリイソシアネートと、ポリオールとを 含ふ単量体混合物をレンズ製造用成形型内で注型重合さ せてポリウレタンレンズを製造する方法において、下記 の3つの工程を含むことを特徴とする。

【0006】(イ)前記ポリイソシアネートと、前記ポ リオールそれぞれ別々に各種添加剤を入れ、別々に均一 な混合液を得る第1工程。

【0007】(ロ) 第1工程で得たポリイソシアネート 混合液と、ポリオール混合液をそれぞれ別々に脱気を行 なう第2工程。

【0008】(ハ)前記ポリイソシアネート混合液と、 前記ポリオール混合液を連続的に混合しながらレンズ製 造用成形型内に注入し、注型重合させてポリウレタンレ ンズを得る第3工程。

【0009】以下、本発明を詳細に説明する。

【0010】本発明においてポリウレタンレンズを製造 するための単量体として用いられるポリインシアネート は、特に限定はないが、トリレンジイソシアネート、キ シリレンジイソシアネート、ジフェニルメタンジイソシ アネート、ポリメリック型ジフェニルメタンジイソシア ネート、トリジンジイソシアネート、ナフタレンジイソ シアネート、ヘキサメチレンジイソシアネート、イソホ ロンジイソシアネート、水添キシリレンジイソシアネー ト、水添ジフェニルメタンジイソシアネート、テトラメ た、特開昭60-199016号公報においては、ポリ 40 チルキシリレンジイソシアネート、2.5-ビス(イソ シアネートメチル) ビシクロ[2.2.1] ヘプタン、 2.6-ビス(イソシアネートメチル)ビシクロ[2. 2. 1] ヘプタン、3.8-ピス(イソシアネートメチ ル) トリシクロ [5. 2. 1. 0^{2.6}] ーデカン、3. 9-ビス (イソシアネートメチル) トリシクロ [5. 2. 1. 0 * 6] - デカン、4. 8 - ピス (イソシアネ ートメチル)トリシクロ[5.2.1.02.6]ーデカ ン、4、9-ビス(イソシアネートメチル)トリシクロ 「5.2.1.0^{2.6}] - デカン、ダイマー酸ジイソシ 50 アネート等のポリイソシアネート化合物およびそれらの

化合物のアロファネート変性体、ビユレット変形体、イ ソシアヌレート変性体があげられ、単独あるいは、必要 に応じて2種以上の混合物として用いてもよい。その他 2以上の官能基を有するイソシアネート化合物を用いる ことができ、さらに、芳香族イソシアネート化合物(官 能基は2以上) にC1又はBr等のハロゲン原子を導入 しても良い。

【0011】特に好ましいイソシアネート化合物として は、キシリレンジイソシアネート、イソホロンジイソシ 『アネート、ヘキサメチレンジイソシアネートで代表され 10 る無黄変型イソシアネート化合物が挙げられる。

【0012】本発明において、ポリウレタンレンズ製造 のためにポリイソシアネートとの反応に供せられるポリ オールも特に限定されるものではない。例えば、エチレ ングリコール、ジエチレングリコール、プロピレングリ コール、グリセロブタンジオール、グリセロール、ペン タンジオール、ペンタントリオール、ヘキサンジオー ル、ヘキサントリオール、シクロヘキサンジオール、シ クロヘキサントリオール等が挙げられるが、これらのポ リオールの水酸基の一部又は全てをメルカプト基に置き 20 換えたものが、注型重合における反応性及びレンズ用樹 脂としての屈折率の点から好んで用いられ、4-メルカ プトメチルー3、6-ジチオー1、8-オクタンジチオ ール、ペンタエリスリトールテトラ(3-メルカプトプ ロピオネート)等のチオール化合物が特に好ましい。

【0013】次に前記ポリイソシアネートと、前記ポリ オールそれぞれ別々に各種添加剤を入れ、別々に均一な 混合液を得る第1工程について説明する。

【0014】第1工程では内部離型剤、鎖延長剤、架橋 剤、光安定剤、紫外線吸収剤、酸化防止剤、分散染料・ 油溶染料・顔料などの着色剤、反応触媒等をポリイソシ アネートとポリオールそれぞれ別々に入れ均一な混合液 を得る工程である。

【0015】2種以上のポリイソシアネート又はポリオ ールを混合物として使用する場合は、この第1工程で混 合してもかまわない。

【0016】更に、第1工程で得たポリイソシアネート 混合液とポリオール混合液をそれぞれ別々に脱気を行な う第2工程について説明する。

リイソシアネート及びポリオールは品質保持のため窒素 バージを行なっている。この溶存窒素と液混合時の空気 の巻き込みによる溶存空気を除去する工程がこの第2工 程である。

【0018】第2工程での脱気方法は一般的に行なわれ ている真空脱気方式、気体分離膜を用いた膜脱気方式等 を用いることができる。いずれの方式であっても溶存室 素および溶存空気を確実に脱気しておくことが重要であ

【0019】さらに、前記ポリイソシアネート混合液

と、前記ポリオール混合液を連続的に混合しながらレン ズ製造用成形型内に注入し、注型重合させてポリウレタ ンレンズを得る第3工程について説明する。

【0020】ポリイソシアネートとポリオールの混合割 合は、NCO/OH又はSH(官能基)モル比が通常 0.5~3.0であり、好ましくは0.5~1.5の範 囲内である。

【0021】液移送には、各種の定量ポンプが使用でき る。混合は、ダイナミックミキサー、スタティックミキ サー等を用いることができる。この際、注意すべきこと は空気の接触と空気の巻き込みである。この第3工程で は極力、空気との接触と巻き込みをなくす必要がある。

【0022】注型重合における重合温度としては、初期 温度は5~50℃の範囲が好ましく5~50時間をかけ 100~140℃に昇温すると良い。初期温度が5℃よ り低いと不必要に重合時間が長くなり、又初期温度が5 0℃より高いと得られたレンズは光学的に不均質になり やすい。さらに最終温度が100℃未満であると未反応 物が残りやすく重合度も低くなり、屈折率、表面硬度な どの諸物性が低下し、最終温度が140℃を超えると得 られたレンズが黄変する。

【0023】レンズ製造用成形型は、ガラス製のモール ド、金属性のモールド及びセラミック性のモールドとE VA・EEA・PE・テフロン等の樹脂からなるガスケ ットとの組み合わせたものが挙げられる。また、樹脂製 ガスケットの代わりに、PE・PP・PET製の粘着テ ープあるいはヒートシールテープ等を使用してもかまわ ない。

【0024】得られたポリウレタンレンズに対しては染 30 色、研磨ならびに耐摩耗性を有する、シリコン含有又は アルカリ系薄膜や無機又は有機物質による反射防止膜を 施すことができ、さらに防曇処理、揆水揆油処理を施し ても良い。

[0025]

【実施例】以下実施例により本発明を更に詳しく説明す るが、本発明はこれらの実施例に限定されるものではな

【0026】[実施例1]

〈第1工程〉m-キシリレンジイソシアネート940g 【0017】通常、ポリウレタンレンズ製造のためのポ 40 に内部離型剤1.5g、2-(5-メチル-2-ヒドロ キシフェニル)ベンゾトリアゾール0.9gを入れ充分 に撹拌した。この混合物を以下"A混合物"と呼ぶ。 【0027】一方、4ーメルカプトメチルー3、6ージ チオー1、8-オクタンジチオール870gにジプチル スズラウレート0.2gを入れ充分に撹拌した。この混 合物を以下"B混合物"と呼ぶ。

> 【0028】〈第2工程〉A混合物とB混合物をそれぞ れ別々に強撹拌しながら、1mmHgの真空下で60分 間脱気を行なった。

50 【0029】(第3工程) A混合物とB混合物をそれぞ

5

れの定量ローラーボンプで吐出比1.1:1で吐出し、 内径4mmのスタティックミキサーで混合しながらガラス型とテフロン製ガスケットよりなるモールド型中に注入した(aレンズ)。そのままの状態で3時間放置後、 再度前述と同様の方法でモールド型中に注入した(bレンズ)。その後、40℃で7時間保持し、40℃から120℃まで10時間かけて昇温する加熱炉中で重合を行ない、冷却後、ガスケットとガラス型をはずし、aレンズとbレンズのボリウレタンレンズを得た。aレンズとbレンズは内部にも全く気泡はなく、光学性能も満足で10きるもので、屈折率は1.66、アッベ数は33であった。

【0030】又、注入時の液温および粘膜の上昇はな く、3時間後も全く初期と同じように注入ができた。 【0031】[比較例1] m-キシリレンジイソシアネ ート940g、4-メルカブトメチル-3、6-ジチオ -1、8-オクタンジチオール870g、ジブチルスズ ラウレート0.2g、内部離型剤1.5g、2-(5-メチル-2-ヒドロキシフェニル) ベンゾトリアゾール 0.9gを混合し、充分に撹拌した後、強撹拌をしなが 20 ら1mmHgの真空下で60分脱気を行なった。その 後、ガラス型とテフロン製ガスケットよりなるモールド 型中に注入した(cレンズ)。そのままの状態で3時間 放置後、再度モールド型中に注入した(dレンズ)、そ の後40℃で7時間保持し、40℃から120℃まで1 0時間かけて昇温する加熱炉中で重合を行ない、冷却 後、ガスケットとガラス型をはずし、Cレンズと dレン ズのポリウレタンレンズを得た。両レンズ共、屈折率は 1.66、アッベ数は33と実施例1と同じであった。 c レンズは内部にも全く気泡はなく、光学性能も満足で きるものであったが、dレンズは内部に気泡が発生して おり、光学歪も発生していた。

【0032】また、3時間後には液温が20℃から45℃に上昇しており、粘度も12℃PSから100℃PSに上昇しており、中央底部の一部分がゲル化を起こしていた。3時間後の注入も非常にしずらいものであった。【0033】[実施例2]

〈第1工程〉m-キシリレンジイソシアネート1000gに内部離型剤1.8g、2-(2'-ヒドロキシー5'-t-オクチルフェニル)ベンゾトリアゾール1.15gを入れ充分に撹拌した。この混合物を以下"E混合物"と呼ぶ。

【0034】一方、ペンタエリスリトールテトラ(3-メルカプトプロビオネート)1300gにジブチルスズ ジクロライド0.18gを入れ充分に撹拌した。との混 合物を以下"F混合物"と呼ぶ。

【0035】〈第2工程〉E混合物とF混合物をそれぞれ別々に強撹拌をしながら、1mmHgの真空下で60分間脱気を行なった。

【0036】〈第3工程〉E混合物とF混合物をそれぞれの定量ピストンポンプで吐出比1.3:1で吐出し、内径4mmのスタティックミキサーで混合しながら、ガラス型とテフロン製ガスケットよりなるモールド型中に注入した(eレンズ)。そのままの状態で3時間放置後、再度前述と同様の方法でもモールド型中に注入した(fレンズ)。その後、実施例1と同様の昇温パターンにより重合を行ない、冷却後、ガスケットとガラス型をはずし、eレンズとfレンズのポリウレタンレンズを得た。eレンズとfレンズは内部にも全く気泡はなく、光学性能も満足できるもので、屈折率は1.59、アッベ数は36であった。

【0037】又、注入時の液温および粘膜の上昇はな く、3時間後も全く初期と同じように注入ができた。 【0038】 [比較例2] m-キシリレンジイソシアネ ート1000g、ペンタエリスリトールテトラ(3-メ ルカプトプロピオネート) 1300g、ジブチルスズジ クロライド 0. 18g、内部離型剤 1. 8g、2-(2'-ヒドロキシ-5'-t-オクチルフェニル)ベ ンゾトリアゾール1.15gを混合し、充分に撹拌した 後、強撹拌をしながら1mmHgの真空下で60分脱気 を行なった。その後、ガラス型とテフロン製ガスケット よりなるモールド型中に注入した(gレンズ)。そのま まの状態で3時間放置後、再度モールド型中に注入した (hレンズ)。その後、実施例1と同様の昇温パターン により重合を行ない、冷却後、ガスケットとガラス型を はずし、gレンズとhレンズのポリウレタンレンズを得 た。両レンズ共、屈折率は1.59、アッベ数は36と 実施例2と同様であった。 g レンズは内部にも全く気泡 はなく、光学性能も満足できるものであった。 h レンズ は内部に気泡が発生しており、光学歪も発生していた。 【0039】又、3時間後には液温が20℃から43℃ に上昇しており、粘度も20CPSから95CPSに上 昇しており、中央底部の一部分がゲル化を起こしてい た。3時間後の注入も非常にしずらいものであった。 [0040]

【発明の効果】本発明により上述の如く、ポリイソシアネートとポリオールよりなる各種のポリウレタンレンズ製造において、より多量に、効率よく、高歩留りで得られることが可能になった。

40

(5)

特開平5-212732

フロントページの続き

(51)Int.Cl.' . B29L 11:00

識別記号

FΙ

技術表示箇所