I Restitution du cours

- 1 Énoncer le théorème de convergence dominée ainsi que le théorème de changement de variable pour les intégrales généralisées.
- 2 Énoncer le théorème d'intégration par parties pour les intégrales généralisées ainsi que le théorème d'intégration terme à terme.
- 3 Énoncer les théorèmes de comparaison pour les fonctions intégrables ainsi que la définition de l'intégrale généralisée sur un intervalle [a;b[de \mathbb{R} .

II Questions de cours

- 1 Prouver que l'intégrale $\int_0^{+\infty} t e^{-\lambda t} dt$, où $\lambda>0$, est convergente, et déterminer sa valeur.
- 2 Prouver la convergence de l'intégrale $I=\int_0^{+\infty}\frac{\ln(t)}{1+t^2}\mathrm{d}t$ puis calculer sa valeur à l'aide du changement de variable $t=\frac{1}{2}$.
 - 3 Justifier l'existence et calculer la valeur de $I=\int_0^{+\infty} \frac{t}{e^t-1} \mathrm{d}t.$

III Exercices

Exercice 1 :

- 1 Montrer que l'intégrale $\int_0^{+\infty} \frac{1}{(1+t^2)^2} dt$ converge.
- 2 Déterminer sa valeur en utilisant le changement de variable $t = \tan(\theta)$.
- 3 On se propose de retrouver cette valeur sans changement de variable.
 - a) Montrer l'existence de $I = \int_0^{+\infty} \frac{x^2}{(1+x^2)^2} dx$ et calculer sa valeur.
 - b) En déduire la valeur de $J = \int_0^{+\infty} \frac{1}{(1+x^2)^2} dt$.

Exercice 2:

1 - Étudier le domaine de définition de la fonction f définie par :

$$f(x) = \int_{1}^{+\infty} \frac{1}{(1+t)t^{x}} dt$$

- 2 Calculer f(1).
- 3 Préciser la monotonie de la fonction f.
- 4 Montrer que pour tout $x \in]0; +\infty[$:

$$f(x) + f(x+1) = \frac{1}{x}$$

5 - Donner la limite, puis un équivalent de f(x) quand x tend vers $+\infty$.

Exercice 3:

- 1 Montrer que $x \mapsto \frac{\ln(x)}{(1+x)^2}$ est intégrable sur $[1; +\infty[$.
- 2 Pour b > 0, calculer $\int_1^b \frac{\ln(x)}{(1+x)^2} dx$ en fonction de b.
- 3 En déduire la valeur de $\int_1^{+\infty} \frac{\ln(x)}{(1+x)^2} dx$.

Exercice 4:

Soient 0 < a < b.

- 1 Justifier la convergence de $\int_0^{+\infty} \frac{e^{-at} e^{-bt}}{t} dt$.
- 2 Soient 0 < x < y. Démontrer que :

$$\int_{x}^{y} \frac{e^{-at} - e^{-bt}}{t} dt = \int_{ax}^{bx} \frac{e^{-t}}{t} dt - \int_{ay}^{by} \frac{e^{-t}}{t} dt$$

3 - Démontrer que, pour tout réel z>0, on a :

$$e^{-bz} \ln \left(\frac{b}{a}\right) \le \int_{az}^{bz} \frac{e^{-t}}{t} dt \le e^{-az} \ln \left(\frac{b}{a}\right)$$

4 - En déduire que :

$$\int_0^{+\infty} \frac{e^{-at} - e^{-bt}}{t} dt = \ln\left(\frac{b}{a}\right)$$

Exercice 5:

Soit b un réel strictement positif.

- 1 Montrer que l'intégrale généralisée $\int_0^1 \frac{1}{1+t^b} \mathrm{d}t$ est convergente.
- 2 Montrer que pour tout $n \in \mathbb{N}$, $\int_0^1 t^{nb} dt$ existe et calculer sa valeur.
- 3 On souhaite prouver que :

$$\int_0^1 \frac{1}{1+t^b} dt = \sum_{n=0}^{+\infty} \frac{(-1)^n}{nb+1}$$

- a) Est-il possible d'obtenir ce résultat avec un théorème d'intégration terme à terme ?
 - b) Est-il possible d'obtenir ce résultat avec le théorème de convergence dominé?
 - c) Est-il possible d'obtenir ce résultat autrement?

Exercice 6:

On considère les intégrales suivantes :

$$I = \int_0^{+\infty} \frac{1}{t^3 + 1} dt$$
 et $J = \int_0^{+\infty} \frac{t}{t^3 + 1} dt$

- 1 Montrer l'existence de I et de J et montrer que J=I.
- 2 Calculer $A = \int_0^{+\infty} \frac{1}{u^2 u + 1} du$.
- 3 En considérant I + J, donner la valeur de I.