Делимость на попарно взаимно простые числа

Лемма 7

Пусть m_1, \ldots, m_k — попарно взаимно простые натуральные числа, $m = m_1 \ldots m_k$. Пусть $b \in \mathbb{Z}$ таково, что $b \in m_1, \ldots, b \in m_k$. Тогда $b \in m$.

Доказательство. Пусть $n_\ell=m_1\dots m_\ell$. Докажем индукцией по ℓ , что $b \ | \ n_\ell$.

ullet База $\ell=1$ очевидна.

Действительно очевидно

Переход $\ell \to \ell+1$. • По индукционному предположению $b=cn_\ell$, где $c\in\mathbb{Z}$.

- ullet Так как $cn_\ell=b\ \dot{}\ m_{\ell+1}$ и $(n_\ell,m_{\ell+1})=1$, по Свойству 3 взаимно простых чисел имеем $c\ \dot{}\ m_{\ell+1}.$
- ullet Тогда $c=dm_{\ell+1}$ и $b=dm_{\ell+1}n_\ell=dn_{\ell+1}.$

Алгебра. Глава

- 8,15 не простые, но взаимно простые.
- 6,8,9 взаимно простые (в совокупности) числа, но не попарно простые.
- 8, 15, 49 попарно простые и взаимно простые (в совокупности).

Попарно взаимно простые – любые два из множества взаимно просты

m = произведение таких чисел $m_1 \ldots m_k$

Если $b : n_l \Longrightarrow b = cn_l$

По индукции:

 $\mathbf{cn}_l = \mathbf{b} \stackrel{.}{:} \mathbf{m}_{l+l}$ и очев $(\mathbf{n}_l, \mathbf{m}_{l+l}) = 1$ по свойству $(\mathbf{a}_l \mathbf{b}) = 1$ и ас $\stackrel{.}{:} \mathbf{b} => \mathbf{c} \stackrel{.}{:} \mathbf{b}$ в нашем случае имеем: $(\mathbf{n}_l, \mathbf{m}_{l+l}) = 1$ и $\mathbf{cn}_l \stackrel{.}{:} \mathbf{m}_{l+l} => \mathbf{c} \stackrel{.}{:} \mathbf{m}_{l+l}$

Тогда представим $\mathbf{c}=\mathbf{dn}_l$ и $\mathbf{b}=\mathbf{dn}_l$ п $_{l+1}=\mathbf{dn}_{l+1}$ (мы просто добавили в произведение эдемент $\mathbf{m}_{l+1}=>$ все произведение теперь \mathbf{n}_{l+1})

Китайская теорема об остатках

Пусть $m \in \mathbb{N}$; $a,b \in \mathbb{Z}$. Будем говорить, что a сравнимо с b по модулю m, если $a - b \cdot m$. Обозначения: $a \equiv_m b$ или $a \equiv b \pmod{m}$.

Теорема 19

Пусть m_1, \ldots, m_k — попарно взаимно простые натуральные числа, $m=m_1\dots m_k$, $a_1,\dots,a_k\in\mathbb{Z}$. Тогда существует единственное такое $a \in \{0, 1, \dots, m-1\}$, что $a \equiv_{m_1} a_1, \dots,$ $a \equiv_{m_k} a_k$.

Доказательство. \exists . \bullet Пусть $n_\ell = m_1 \dots m_\ell$. Докажем индукцией по ℓ существование такого $b_{\ell} \in \mathbb{Z}$, что $b_{\ell} \equiv_{m_1} a_1$, \ldots , $b_\ell \equiv_{m_\ell} a_\ell$.

База $\ell=1$ очевидна. Реально: $b\equiv a\ (mod\ m)$, всегда $\exists\ b:\ b-a:m$

ПСВ – дают разные остатки по модулю

Переход $\ell o \ell+1$. ullet Так как $(m_{\ell+1},n_\ell)=1$ по Теореме 13 Теорема 13числа b_ℓ , $b_\ell + n_\ell$, $b_\ell + 2n_\ell$, ..., $b_\ell + (m_{\ell+1} - 1)n_\ell - \mathsf{\PiCB}$ $({\sf mod}\ m_{\ell+1})$ (они получены из ПСВ 0,1, . . . , $m_{\ell+1}-1$ умножением на n_ℓ и прибавлением b_ℓ).

Пусть $a_1,\ldots,a_m-\Pi CB\pmod m$, $k,b\in\mathbb Z$, причем (k,m)=1. Тогда $ka_1+b,\ldots,ka_m+b-\Pi CB\pmod m$ Доказательство. • Достаточно проверить критерий из

• Пусть $ka_i + b \equiv_m ka_j + b \iff k(a_i - a_j) \ m.$

• Так как (k, m) = 1, это означает, что

- ullet Значит, среди этих чисел есть число $kn_\ell+b_\ell\equiv_{m_{\ell+1}}a_{\ell+1}$ $a_{\ell+1}$ $a_{\ell+1}$ $a_{\ell+1}$ $a_{\ell+1}$ $a_{\ell+1}$ $a_{\ell+1}$ Положим $b_{\ell+1} := kn_{\ell} + b_{\ell}$.
- ullet Тогда $b_{\ell+1} a_{\ell+1} : m_{\ell+1}$.
- ullet По построению $b_{\ell+1}-b_{\ell} \cdot n_{\ell}$. Так как по индукционному предположению $b_{\ell} - a_i \cdot m_i$ для всех $i \in \{1, \ldots, \ell\}$, мы имеем $b_{\ell+1} - a_i = (b_{\ell+1} - b_{\ell}) + (b_{\ell} - a_i) \cdot m_i$
 - Алгебра. Глава
- Итак, мы получили число b_k , удовлетворяющее всем требованиям теоремы, кроме одного: число должно быть от 0 до m-1.

2. Целые числа. Д.В.Карпов

- ullet Для получения такого числа a поделим b_k с остатком на m: пусть $b_k = mq + a$, $0 \le a \le m - 1$.
- ullet Так как $a-b_k \ \dot{} \ m \ \dot{} \ m_i$ и $b_k-a_i \ \dot{} \ m_i$, то и $a-a_i \ \dot{} \ m_i$ для всех $i \in \{1, ..., k\}$.
- ! Предположим, что a и a' два различных числа, удовлетворяющих условию. Тогда $a - a' : m_i$ для всех $i \in \{1,\ldots,k\}.$
- ullet Так как m_1,\ldots,m_k попарно взаимно просты, по просты, по пусть m_1,\ldots,m_k попарно взаимно простые Лемме 7 $a-a' \stackrel{.}{\cdot} m=m_1\dots m_k$. Но |a-a'| < m, натуральные числа, $m=m_1\dots m_k$. Пусть $b\in \mathbb{Z}$ тако $a-a' \stackrel{.}{\cdot} m_1,\dots,b\stackrel{.}{\cdot} m_k$. Тогда $b\stackrel{.}{\cdot} m_1$. противоречие.
- Из доказательства единственности в Теореме 19 видно, что все целые числа a, для которых $a-a_i \cdot m_i$ при всех $i \in \{1, \dots, k\}$ образуют в точности один вычет по модулю $m=m_1\ldots m_k$.