Homework 2 Deadline: 1401/1/15 23:59

signal and systems

1- if $x(t) = \sum_{k=-\infty}^{\infty} \beta_k \, \psi_k$ and $y(t) = \sum_{k=-\infty}^{\infty} \alpha_k \, \psi_k$ and ψ_k is from orthogonal set, solve the following statement in terms of α_k and β_k . note: the notation for the complex conjugate of z is z^*

$$\int x(t).y(t)^*$$

√2- suppose the delta function is defined as follows.

decompose the following signal using the delta function.

3- if $\Psi = \{\exp(jkw_0t), k \in Z\}$ and x(t) is given to you as follows. prove Ψ is an an orthogonal set and decompose x(t) using Ψ .

4- convolve \boldsymbol{x} and \boldsymbol{h} calculate the resulting function and sketch that.

convolution formula:

$$x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

Homework 2 Deadline: 1401/1/15

دانگاه فرزاری تخت.

signal and systems

23:59

- 5- find the impulse response the system described by y(t)' + 2y(t) = x(t)
- 6- find the impulse response the system described by $y[n] \frac{1}{2}y[n-1] = x[n]$
- 7- find the impulse response the system described by $y[n] \frac{1}{6}y[n-1] \frac{1}{6}y[n-2] = x[n]$
- 8- check causality and stability the system described by $y[n] = \sqrt[4]{[n] + \frac{1}{2}(x[n-1] + x[n+1])}$
- 9- find the impulse response the system described by y(t)'' + 2y(t)' = x(t)' + 2x(t) check causality, stability and memory less factors.