APPENDIX

A. A2A: Baseline Algorithm (Section V-D of the main paper)

In this section, we provide a detailed description of the baseline algorithm, A2A, including its unbiasedness, variance, and complexity. Its pseudocode is presented in Algorithm 4. Here, $p(e,e') = \left(\frac{1}{|N_e|} + \frac{1}{|N_{e'}|}\right) \cdot \frac{1}{|E_{\geq 1}|} \text{ where } E_{\geq 1} = \{e: N_e \geq 1\}.$ Assume $E_{\geq 1}$ is given at first. Also, for space efficiency, we assume N_e is maintained (Line 4). HM(A,B) on Line 5 denotes the harmonic mean of A and B.

Algorithm 4: A2A

```
Input: (1) a directed hypergraph: G = (V, E) (2) # of samples n = q \cdot |E| for a given ratio q

Output: C[i] for every i \in [m]

1 C[i] \leftarrow 0, \forall i \in [m]

2 for 1:n do

3 | Choose e \in E_{\geq 1} uniformly at random

4 | N_e \leftarrow \{e' \in E \setminus \{e\} : e \cap e' \neq \emptyset\}

5 | C[f(e,e')] \leftarrow C[f(e,e')] + \frac{|E_{\geq 1}|}{2 \cdot n} \cdot HM(|N_e|,|N_{e'}|)

6 return C
```

Proposition 10 (Unbiasedness of A2A). Algorithm 4 is unbiased, i.e., $\mathbb{E}[C[i]] = |\Omega_i|, \forall i \in [m]$.

Proof. Follow the flow of the proof of Proposition 2.

Proposition 11 (Variance of A2A). For each $i \in [m]$, the variance of C[i] obtained by Algorithm 4 is

$$\begin{split} Var[C[i]] &= \sum_{(e,e') \in \Omega_i} \frac{1}{n} \left(\frac{1}{p(e,e')} - 1 \right) \\ &= \sum_{(e,e') \in \Omega_i} \frac{1}{n} \left(\frac{|E_{\geq 1}|}{2} \cdot HM(|N_e|,|N_{e'}|) - 1 \right). \end{split}$$

Proof. Follow the flow of the proof of Proposition 3.

Proposition 12 (Time and space complexity of A2A). The time complexity of Algorithm 4 is $O(n \cdot (\max_{e \in E} |\bar{e}| \cdot \max_{e \in E} |N_e|))$. Its space complexity is $O(\sum_{e \in E} |\bar{e}|)$.

Proof. The information of a given directed graph is stored in $O(\sum_{e \in E} |\bar{e}|)$ space at first. For time complexity, $O(\max_{e \in E} |\bar{e}| \cdot \max_{e \in E} |N_e|)$ time is required assuming $O(p \cdot q)$ time is taken for set union when there are p sets, of which size bounded by q. For space complexity, $O(|N_e|) \in O(\sum_{e \in E} |\bar{e}|)$ space is needed. Checking f(e, e') requires $O(\max_{(e,e') \in \Omega} \min(|\bar{e}|, |\bar{e}'|))$ -time, which is bounded by $O(\max_{e \in E} |\bar{e}| \cdot \max_{e \in E} |N_e|)$.

B. Randomization of Directed Hypergraphs (DHs) (Section III-B of the main paper)

To randomize DHs, we extend the configuration model, which is widely-used for (hyper)graphs [52], [38], to DHs. Algorithm 5 outlines the process of obtaining a randomized DH G' from the input DH G. It ensures that G' and G have the same distributions of hyperarc sizes and node degrees. Hyperarcs are paired and the nodes in the head sets of each pair are shuffled to obtain a shuffled set E_{temp} of hyperarcs (Lines 3-13). The same process is applied to the tail sets on E_{temp} (Lines 14-24) to obtain the final set E' of hyperarcs.

Algorithm 5: Randomization of Directed Hypergraphs

```
Input: a directed hypergraph: G = (V, E)
     Output: a randomized directed hypergraph: G' = (V', E')
 1 V' \leftarrow V, n_E \leftarrow |E|
2 E_{\text{temp}}, E' \leftarrow \emptyset, \emptyset
     // Shuffle the two head sets.
 3 for 1 : \lfloor n_E/2 \rfloor do
            Choose e_1, e_2 \in {E \choose 2} uniformly at random
            E \leftarrow E \setminus \{e_1, e_2\}^{2'}

H'_1, H'_2 \leftarrow \text{Shuffle}(H_1, H_2 | T_1, T_2)
            E_{\text{temp}} \leftarrow E_{\text{temp}} \cup \{\langle T_1, H_1' \rangle, \langle T_2, H_2' \rangle\}
 s if |E|=1 then
 9
            e_1 \in E
10
            Choose e_2 \in E_{\text{temp}} uniformly at random
            E_{\text{temp}} \leftarrow E_{\text{temp}} \setminus \{e_2\}
11
            H_1', H_2' \leftarrow \text{SHUFFLE}(H_1, H_2 | T_1, T_2)
12
            E_{\text{temp}} \leftarrow E_{\text{temp}} \cup \{\langle T_1, H_1' \rangle, \langle T_2, H_2' \rangle\}
     // Shuffle the two tail sets.
14 for 1: \lfloor n_E/2 \rfloor do
            Choose e_1, e_2 \in \binom{E_{\text{temp}}}{2} uniformly at random
15
           E_{\text{temp}} \leftarrow E_{\text{temp}} \setminus \{e_1, e_2\}
T_1', T_2' \leftarrow \text{Shuffle}(T_1, T_2 | H_1, H_2)
E' \leftarrow E' \cup \{\langle T_1', H_1 \rangle, \langle T_2', H_2 \rangle\}
16
17
18
19 if |E_{temp}| = 1 then
            e_1 \in E_{\text{temp}}
20
            Choose e_2 \in E' uniformly at random
21
            E_{\text{temp}} \leftarrow E_{\text{temp}} \setminus \{e_2\}
22
    23
24
     // Shuffle the two sets of nodes
26 Function SHUFFLE(S_1, S_2 | F_1, F_2)
            I \leftarrow S_1 \cap S_2
            R \leftarrow (S_1 \cup S_2) \setminus I
28
            R' \leftarrow R \setminus F_1 \setminus F_2
29
            S_1' \leftarrow \text{Choose } (|S_1 \setminus I \setminus F_2|) \text{ elements in } R' \text{ uniformly}
30
              at random
            S_2' \leftarrow R' \setminus S_2'
31
            return I \cup (S_1 \cap F_2) \cup S'_1, I \cup (S_2 \cap F_1) \cup S'_2
32
```

C. Generation of Directed Hypergraphs (DHs) (Section V-D of the main paper)

Algorithm 6 describes the process of generating a random DH of a desired size. The size of each hyperedge is determined uniformly at random (Line 3), and it consists of randomly selected nodes (Line 4), which are then randomly divided into head and tail sets of almost equal size (Line 5).

```
Algorithm 6: Generation of Directed HypergraphsInput: (1) the number n of nodes,<br/>
            (2) a ratio r of hyperedges to nodes,<br/>
            (3) the maximum size k of a hyperedgeOutput: a directed hypergraph: G = (V, E)1 V \leftarrow [n], E \leftarrow \emptyset2 for 1: r \cdot n do3 | Choose the hyperarc size d \in \{2, \ldots, k\} uniformly at random4 | Choose U \subseteq V such that |U| = d uniformly at random5 | T, H \leftarrow Split U into two groups of sizes \lfloor \frac{d}{2} \rfloor and \lceil \frac{d}{2} \rceil6 | E \leftarrow E \cup \{\langle T, H \rangle\}7 return G = (V, E)
```


Fig. 13. Log counts of DHGs in real-world and randomized directed hypergraphs (DHs). The counts of DHGs are clearly distinguished in real-world and randomized DHs.

D. Count Distributions (Section V-B of the main paper)

We analyze the occurrence distributions of DHGs in real-world and randomized directed hypergraphs (DHs). To ensure statistical significance, we generate ten randomized DHs and report the average counts. As shown in Figure 13, the counts

Fig. 14. In most cases, CPs based on the suggested significance measure demonstrate better clustering performance than the CPs based on Z-scores.

of DHGs in real-world directed hypergraphs are distinct from those in randomized directed hypergraphs.

E. Characterization of Hypergraphs with Characteristic Profile using Z-Scores (Section V-B of the main paper)

Instead of the suggested significance measure in Eq. (1), Z-scores can be used to compute the characteristic profiles (CPs) as follows:

$$\mu_i^G := \frac{|\Omega_i^G| - \overline{|\Omega_i^{G'}|}}{\operatorname{std}(|\Omega_i^{G'}|) + \epsilon},\tag{3}$$

where $|\Omega_i^G|$ represents the count of the instances of DHG-i in G, and $|\Omega_i^{G'}|$ and $\operatorname{std}(|\Omega_i^{G'}|)$ are the mean and standard deviation of the counts in ten randomized G's, respectively. We set ϵ to 1, preventing from the case where $\operatorname{std}(|\Omega_i^{G'}|)=0$. After computing the significances using Z-scores, we compute the similarity matrix and perform clustering by following the procedures in Section V-B. Note that, regardless of significance measures, using DHGs results in better domain-based differentiation compared to the others, with a 27% clustering performance gain in terms of macro f1-score, as shown in Figure 14. Also note that, in most cases, using the suggested significance measure (i.e., Eq. (1)) leads to better clustering performance than using Z-scores.

F. Experimental Settings for Hyperarc Prediction (Section V-C of the main paper)

In this section, we list the hyperparameter settings of the feature vectors and classifiers used for the hyperarc prediction and report the detailed experimental setups.

<u>Hyperparameter settings of feature vectors:</u> The embedding dimensions of node2vec, hyper2vec, and deep hyperedges are all fixed to 91. Other hyperparameters of these methods are fixed to their default settings at the following links:

- node2vec (n2v): https://github.com/aditya-grover/node2vec
- hyper2vec (h2v): https://github.com/jeffhj/NHNE
- deep hyperedges (deep-h): https://github.com/0xpayne/dee p-hyperedges

Note that h-motif and triad do not have any hyperparameters. **Details of classifiers:** The hyperparameters of the tree-based classifiers (Decision Tree, Random Forest, XGBoost, and LightGBM), Logistic Regressor, KNN, and MLP are fixed to their default settings at the following links:

- **Decision Tree** (**DT**): https://scikit-learn.org/stable/module s/generated/sklearn.tree.DecisionTreeClassifier
- Random Forest (RF): https://scikit-learn.org/stable/modu les/generated/sklearn.ensemble.RandomForestClassifier
- XGBoost (XGB): https://xgboost.readthedocs.io/en/stable/

- LightGBM (LGBM): https://lightgbm.readthedocs.io/en/l atest/pythonapi/lightgbm.LGBMClassifier
- Logistic Regressor (LR): https://scikit-learn.org/stable/mo dules/generated/sklearn.linear_model.LogisticRegression
- KNN: https://scikit-learn.org/stable/modules/generated/skle arn.neighbors.KNeighborsClassifier
- MLP: https://scikit-learn.org/stable/modules/generated/skle arn.neural_network.MLPClassifier

The hyperparameters of the HNN-based classifiers (HGNN, FastHyperGCN, and UniGCNII) are set as follows: the number of layers and hidden dimension are all fixed to 2 and 128, respectively. We train HGNN and UniGCNII for 500 epochs using Adam with a learning rate of 0.001 and a weight decay of 10^{-6} , and FastHyperGCN for 200 epochs using Adam with a learning rate of 0.01, a weight decay of 5×10^{-4} , and a dropout rate of 0.5.

For these HNN-based classifiers, we employ early stopping, and to this end, we divide the fake hyperarcs into the train, validation, and test sets using a 6:2:2 ratio. In each set, we uniformly sample the same number of real hyperarcs as the number of fake hyperarcs. For every 50 epochs, we measure the validation accuracy and save the model parameters. Then, we use the checkpoint (i.e., saved model parameters) with the highest validation accuracy to measure test performance.

G. Application Results (Section V-C of the main paper)

In this section, we report the full results of the hyperarc prediction problem. Table IV reports the accuracy and AUROC and results (average over 100 trials). The best performances are highlighted in bold, and the second-best performances are underlined. Notably, in terms of average ranking, using DHG vectors, including the dimension reduced versions, performs best in most settings, achieving up to 33% higher AUROC on the bitcoin-2016 dataset and a 47% higher accuracy on the bitcoin-2014 dataset than the second best features.

TABLE IV

Hyperarc prediction performance. We compare nine hyperarc feature vectors using ten classifiers. The best performances are highlighted in bold, and the second-best performances are underlined. Notably, using DHG vectors leads to the best performance (up to 47% and 33% better in terms of accuracy and AUROC, respectively) in most settings, indicating that DHGs extract highly informative hyperarc features.

(a) metabolic-iAF1260b

Dime	ension	1	3	2	26		9	1		431
Measure	Model	DHG-13	triad	DHG-26	h-motif	DHG	n2v	h2v	deep-h	3h-motif
ACC	LR RF DT KNN MLP XGB LGBM HGNN FHGCN UGCNII	0.664±0.050 0.734±0.046 0.695±0.055 0.702±0.047 0.709±0.049 0.729±0.048 0.728±0.047 0.538±0.047 0.562±0.067 0.643±0.051	0.549±0.061 0.650±0.067 0.597±0.063 0.625±0.067 0.603±0.062 0.625±0.066 0.626±0.063 0.538±0.065 0.555±0.055	0.664±0.047 0.733±0.048 0.683±0.051 0.703±0.044 0.716±0.053 0.741±0.050 0.740±0.047 0.546±0.053 0.588±0.064 0.623±0.057	0.649±0.049 0.681±0.059 0.632±0.065 0.696±0.058 0.646±0.054 0.666±0.059 0.658±0.053 0.543±0.061 0.535±0.051	0.656±0.057 0.690±0.063 0.651±0.053 0.696±0.049 0.654±0.063 0.708±0.062 0.697±0.062 0.549±0.055 0.666±0.067	0.504±0.050 0.531±0.054 0.512±0.057 0.537±0.050 0.533±0.051 0.514±0.048 0.527±0.054 0.481±0.045 0.507±0.045	0.511±0.044 0.518±0.047 0.506±0.056 0.534±0.056 0.537±0.047 0.519±0.045 0.498±0.057 0.491±0.059 0.494±0.054	0.701±0.055 0.714±0.050 0.583±0.055 0.704±0.046 0.705±0.054 0.695±0.054 0.698±0.053 0.526±0.057 0.538±0.050 0.597±0.070	0.705±0.044 0.717±0.060 0.615±0.065 0.720±0.050 0.667±0.054 0.717±0.055 0.713±0.060 0.640±0.055 0.619±0.070 0.619±0.066
A	Iax vg. Avg.	0.734±0.046 0.670±0.066 2.500±1.360 DHG-13	0.650±0.067 0.596±0.036 6.600±0.663	0.741±0.050 0.674±0.064 2.200±0.980	0.696±0.058 0.633±0.051 5.200±1.536	0.708±0.062 0.659±0.045 3.900±1.578	0.537±0.050 0.514±0.017 8.500±0.500	0.537±0.047 0.512±0.015 8.500±0.500	0.714±0.050 0.646±0.072 4.600±1.800	0.720±0.050 0.663±0.059 3.000±1.265
AUROC	LR RF DT KNN MLP XGB LGBM HGNN FHGCN UGCNII	0.735±0.059 0.815±0.045 0.695±0.056 0.770±0.045 0.759±0.053 0.807±0.046 0.559±0.057 0.603±0.080 0.702±0.045	0.580±0.067 0.703±0.087 0.599±0.062 0.673±0.076 0.622±0.071 0.684±0.076 0.680±0.072 0.541±0.067 0.612±0.056 0.641±0.097	0.727±0.052 0.817±0.046 0.683±0.051 0.774±0.048 0.778±0.053 0.816±0.046 0.875±0.048 0.637±0.077 0.681±0.055	0.724±0.049 0.784±0.058 0.632±0.065 0.755±0.056 0.694±0.074 0.752±0.068 0.736±0.062 0.554±0.059 0.567±0.072 0.674±0.048	0.728±0.056 0.826±0.046 0.651±0.053 0.762±0.051 0.696±0.068 0.812±0.049 0.799±0.057 0.594±0.060 0.729±0.065 0.680±0.060	0.506±0.067 0.539±0.066 0.512±0.057 0.550±0.058 0.543±0.065 0.518±0.063 0.540±0.059 0.479±0.058 0.506±0.059 0.488±0.049	0.509±0.052 0.533±0.068 0.506±0.056 0.552±0.070 0.559±0.059 0.526±0.068 0.529±0.062 0.506±0.086 0.490±0.067 0.489±0.068	0.785±0.051 0.793±0.051 0.583±0.055 0.760±0.047 0.800±0.048 0.775±0.047 0.785±0.045 0.522±0.060 0.561±0.060 0.607±0.092	0.791±0.046 0.835±0.048 0.615±0.065 0.788±0.051 0.710±0.063 0.824±0.047 0.823±0.049 0.580±0.055 0.693±0.069 0.679±0.085
A	Iax vg. x Avg.	0.815±0.045 0.725±0.083 3.100±1.221	0.703±0.087 0.634±0.050 6.400±0.917	$\begin{array}{c} 0.817 \pm 0.046 \\ \underline{0.731 \pm 0.080} \\ \underline{2.600 \pm 0.917} \end{array}$	0.784 ± 0.058 0.687 ± 0.076 5.600 ± 0.663	$\begin{array}{c c} 0.826 \pm 0.046 \\ \hline 0.728 \pm 0.071 \\ 3.000 \pm 1.265 \end{array}$	0.550±0.058 0.518±0.023 8.600±0.490	0.559±0.059 0.520±0.023 8.400±0.490	0.800±0.048 0.697±0.108 5.100±2.022	$\begin{array}{c} 0.835{\pm}0.048 \\ 0.734{\pm}0.087 \\ 2.200{\pm}1.470 \end{array}$

(b) metabolic-iJ01366

Dime	ension	1	.3	2	26		9	1		431
Measure	Model	DHG-13	triad	DHG-26	h-motif	DHG	n2v	h2v	deep-h	3h-motif
	LR	0.662±0.051	0.584 ± 0.055	0.658 ± 0.050	0.648 ± 0.051	0.656 ± 0.048	0.506 ± 0.052	0.505 ± 0.042	0.713 ± 0.057	0.699 ± 0.051
	RF	0.742 ± 0.050	0.666 ± 0.065	0.730 ± 0.045	0.704 ± 0.059	0.698 ± 0.068	0.532 ± 0.045	0.527 ± 0.045	0.723 ± 0.048	0.710 ± 0.066
	DT	$0.694{\pm}0.051$	0.612 ± 0.064	0.680 ± 0.053	0.641 ± 0.057	0.656 ± 0.071	0.509 ± 0.053	0.517 ± 0.049	0.582 ± 0.061	0.612 ± 0.055
	KNN	0.705±0.049	0.628 ± 0.063	0.689 ± 0.045	0.691 ± 0.055	0.682±0.051	0.520 ± 0.053	0.539 ± 0.049	0.725 ± 0.054	0.715 ± 0.061
ACC	MLP	0.718±0.049	0.618 ± 0.064	0.705 ± 0.042	0.653 ± 0.055	0.656±0.059	0.537 ± 0.048	0.539 ± 0.052	0.710 ± 0.055	0.644 ± 0.051
ACC	XGB	0.741 ± 0.050	0.657 ± 0.062	0.732 ± 0.045	0.681 ± 0.054	0.709 ± 0.053	0.519 ± 0.051	0.523 ± 0.048	0.703 ± 0.050	0.719 ± 0.059
	LGBM	0.740 ± 0.052	0.632 ± 0.058	0.734 ± 0.051	0.663 ± 0.056	0.720±0.057	0.509 ± 0.050	0.530 ± 0.047	0.702 ± 0.050	0.713 ± 0.063
	HGNN	0.542±0.052	0.550 ± 0.043	0.564 ± 0.046	0.553 ± 0.036	0.569 ± 0.055	0.499 ± 0.056	0.522 ± 0.037	0.545 ± 0.036	0.558 ± 0.050
	FHGCN	0.591±0.052	0.566 ± 0.059	0.599 ± 0.054	0.532 ± 0.053	0.653 ± 0.071	0.504 ± 0.045	0.498 ± 0.048	0.548 ± 0.060	0.619 ± 0.067
	UGCNII	0.660±0.059	0.610 ± 0.050	0.646 ± 0.055	0.616 ± 0.048	0.621 ± 0.051	0.518 ± 0.047	0.514 ± 0.034	0.633 ± 0.035	0.647 ± 0.052
M	lax	$0.742 {\pm} 0.050$	0.666 ± 0.065	0.734 ± 0.051	0.704 ± 0.059	0.720±0.057	0.537 ± 0.048	0.539 ± 0.049	0.725 ± 0.054	0.719 ± 0.059
A	vg.	0.680 ± 0.064	0.612 ± 0.035	0.674 ± 0.055	0.638 ± 0.054	0.662 ± 0.042	0.515 ± 0.011	0.521 ± 0.013	0.658 ± 0.070	0.664 ± 0.053
Rank	Avg.	2.300±1.900	6.400 ± 0.917	2.800 ± 0.980	5.300 ± 1.005	3.800±1.720	8.600 ± 0.490	8.400 ± 0.490	4.000 ± 2.049	3.400±1.497
Measure	Model	DHG-13	triad	DHG-26	h-motif	DHG	n2v	h2v	deep-h	3h-motif
	LR	0.725±0.064	0.622±0.057	0.724±0.053	0.727±0.058	0.721±0.053	0.501±0.063	0.504±0.058	$0.795 {\pm} 0.048$	0.782±0.053
	RF	0.824±0.048	0.730 ± 0.076	0.817 ± 0.045	0.794 ± 0.057	0.834 ± 0.048	0.541 ± 0.055	0.546 ± 0.066	0.803 ± 0.043	0.820 ± 0.054
	DT	0.694 ± 0.051	0.611 ± 0.064	0.680 ± 0.053	0.641 ± 0.057	0.656±0.071	0.509 ± 0.053	0.517 ± 0.049	0.582 ± 0.061	0.612 ± 0.055
	KNN	0.774±0.051	0.673 ± 0.077	0.762 ± 0.046	0.752 ± 0.055	0.746 ± 0.054	0.535 ± 0.065	0.560 ± 0.059	0.778 ± 0.051	0.779 ± 0.055
AUROC	MLP	0.782 ± 0.050	0.646 ± 0.072	0.761 ± 0.049	0.705 ± 0.075	0.687 ± 0.061	0.548 ± 0.063	0.559 ± 0.069	0.804 ± 0.048	0.682 ± 0.059
AUROC	XGB	0.814±0.049	0.710 ± 0.070	0.813 ± 0.047	0.765 ± 0.054	0.819 ± 0.045	0.530 ± 0.063	0.537 ± 0.061	0.792 ± 0.047	0.818 ± 0.049
	LGBM	0.818 ± 0.049	0.687 ± 0.063	0.813 ± 0.049	0.747 ± 0.055	$0.822 {\pm} 0.047$	0.515 ± 0.057	0.541 ± 0.064	0.794 ± 0.046	0.812 ± 0.047
	HGNN	0.571±0.060	0.552 ± 0.052	0.587 ± 0.048	0.551 ± 0.049	0.601 ± 0.062	0.509 ± 0.051	0.526 ± 0.027	0.534 ± 0.043	0.596 ± 0.053
	FHGCN	0.640±0.062	0.615 ± 0.065	0.647 ± 0.062	0.553 ± 0.070	0.720 ± 0.072	0.506 ± 0.059	0.484 ± 0.059	0.566 ± 0.065	0.692 ± 0.070
	UGCNII	0.713±0.070	0.647 ± 0.056	0.692±0.059	0.663±0.044	0.663±0.058	0.502 ± 0.045	0.503±0.035	0.642±0.043	0.704±0.069
	lax	0.824 ± 0.048	0.730 ± 0.076	0.817±0.045	0.794 ± 0.057	0.834±0.048	0.548 ± 0.063	0.560 ± 0.059	0.804 ± 0.048	0.820 ± 0.054
	vg.	0.736 ± 0.079	0.649 ± 0.050	0.730 ± 0.074	0.690 ± 0.082	0.727 ± 0.075	0.520 ± 0.016	0.528 ± 0.024	0.709 ± 0.108	0.730 ± 0.080
Rank	Avg.	2.600 ± 1.114	6.400 ± 0.800	3.400 ± 0.800	5.200 ± 1.166	2.900 ± 2.071	8.900 ± 0.300	8.100 ± 0.300	4.600 ± 2.289	2.900 ± 1.513

 $\left(c\right)$ email-enron

Dime	ension	1	3	2	6		9	1		431
Measure	Model	DHG-13	triad	DHG-26	h-motif	DHG	n2v	h2v	deep-h	3h-motif
	LR	0.772±0.058	0.732 ± 0.058	0.795±0.065	0.752 ± 0.053	0.804±0.054	0.578 ± 0.069	0.492 ± 0.058	0.590 ± 0.062	0.749±0.068
	RF	0.775 ± 0.056	0.712 ± 0.058	0.780 ± 0.071	0.773 ± 0.056	0.796 ± 0.053	0.626 ± 0.069	0.562 ± 0.073	0.592 ± 0.063	0.754±0.066
	DT	0.696 ± 0.064	0.654 ± 0.057	0.705 ± 0.054	0.689 ± 0.071	0.705 ± 0.069	0.551 ± 0.069	0.528 ± 0.073	0.542 ± 0.068	0.650±0.076
	KNN	0.761±0.068	0.694 ± 0.058	0.769 ± 0.064	0.737 ± 0.056	0.777 ± 0.055	0.636 ± 0.058	0.571 ± 0.070	0.567 ± 0.061	0.720±0.066
ACC	MLP	0.810 ± 0.050	0.731 ± 0.054	0.808 ± 0.062	0.751 ± 0.053	0.805 ± 0.055	0.639 ± 0.073	0.551 ± 0.080	0.588 ± 0.064	0.721±0.070
ACC	XGB	0.763±0.059	0.709 ± 0.060	0.780 ± 0.064	0.763 ± 0.064	0.775 ± 0.060	0.614 ± 0.072	0.579 ± 0.074	0.577 ± 0.066	0.750±0.074
	LGBM	0.765 ± 0.057	0.709 ± 0.060	0.775 ± 0.060	0.763 ± 0.056	0.756 ± 0.059	0.609 ± 0.064	0.580 ± 0.077	0.581 ± 0.074	0.750 ± 0.076
	HGNN	0.505±0.047	0.538 ± 0.074	0.512 ± 0.044	0.543 ± 0.063	0.499±0.049	0.513 ± 0.055	0.526 ± 0.048	0.512 ± 0.058	0.510±0.049
	FHGCN	0.587±0.077	0.703 ± 0.101	0.598 ± 0.079	0.651 ± 0.090	0.693 ± 0.117	0.536 ± 0.061	0.566 ± 0.076	0.550 ± 0.069	0.680 ± 0.096
	UGCNII	0.668±0.063	0.727 ± 0.046	0.675±0.063	0.708 ± 0.065	0.710±0.050	0.673 ± 0.045	0.689 ± 0.055	0.582 ± 0.051	0.719±0.058
M	lax	0.810 ± 0.050	0.732 ± 0.058	0.808 ± 0.062	0.773 ± 0.056	0.805±0.055	0.673 ± 0.045	0.689 ± 0.055	0.592 ± 0.063	0.754±0.066
A	vg.	0.710 ± 0.092	0.691 ± 0.055	0.720 ± 0.093	0.713 ± 0.068	0.732 ± 0.087	0.597 ± 0.049	0.564 ± 0.049	0.568 ± 0.025	0.700 ± 0.071
Rank	Avg.	4.100±2.300	4.400±2.059	2.800 ± 1.939	3.500 ± 0.922	2.800 ± 2.272	7.000 ± 1.183	7.600 ± 1.960	7.900 ± 1.136	4.900±1.375
Measure	Model	DHG-13	triad	DHG-26	h-motif	DHG	n2v	h2v	deep-h	3h-motif
	LR	0.855±0.052	0.783 ± 0.062	0.870±0.059	$0.826{\pm}0.058$	0.883±0.049	0.627 ± 0.071	0.480 ± 0.076	0.634 ± 0.074	0.820±0.066
	RF	0.839 ± 0.055	0.773 ± 0.059	0.850 ± 0.068	0.856 ± 0.054	0.880 ± 0.047	0.684 ± 0.071	0.624 ± 0.098	0.623 ± 0.074	0.841±0.069
	DT	0.699 ± 0.064	0.652 ± 0.057	0.708 ± 0.056	0.690 ± 0.071	0.707 ± 0.069	0.551 ± 0.069	0.529 ± 0.073	0.542 ± 0.068	0.651±0.075
	KNN	0.827±0.059	0.745 ± 0.060	0.829 ± 0.067	0.810 ± 0.048	0.846 ± 0.051	0.685 ± 0.073	0.597 ± 0.089	0.591 ± 0.073	0.788 ± 0.065
AUROC	MLP	0.881 ± 0.039	0.780 ± 0.062	0.881 ± 0.059	0.825 ± 0.061	0.883 ± 0.047	0.697 ± 0.067	0.618 ± 0.096	0.636 ± 0.069	0.786±0.073
Acroc	XGB	0.833 ± 0.049	0.765 ± 0.067	0.851 ± 0.065	0.847 ± 0.057	0.863 ± 0.052	0.666 ± 0.082	0.632 ± 0.097	0.610 ± 0.077	0.831±0.074
	LGBM	0.840±0.051	0.769 ± 0.063	0.849 ± 0.063	0.847 ± 0.060	0.842±0.056	0.655 ± 0.081	0.635 ± 0.094	0.612 ± 0.085	0.837±0.070
	HGNN	0.507±0.064	0.554 ± 0.070	0.521 ± 0.053	0.543 ± 0.070	0.505 ± 0.052	0.532 ± 0.070	0.543 ± 0.062	0.532 ± 0.080	0.505±0.060
	FHGCN	0.642±0.078	0.773 ± 0.073	0.663 ± 0.085	0.738 ± 0.099	0.804 ± 0.102	0.548 ± 0.075	0.619 ± 0.084	0.570 ± 0.073	0.763±0.103
	UGCNII	0.722±0.066	0.788 ± 0.052	0.724±0.066	0.767±0.065	0.787±0.048	0.706 ± 0.045	0.739 ± 0.056	0.606±0.059	0.784±0.070
	ax	0.881 ± 0.039	$0.788 {\pm} 0.052$	0.881 ± 0.059	$0.856 {\pm} 0.054$	0.883±0.049	0.706 ± 0.045	0.739 ± 0.056	0.636 ± 0.069	0.841±0.069
	vg.	0.764 ± 0.114	0.738 ± 0.072	0.775 ± 0.112	0.775 ± 0.093	0.800 ± 0.111	0.635 ± 0.063	0.601 ± 0.067	0.596 ± 0.035	0.761 ± 0.100
Rank	Avg.	4.400±1.685	4.500 ± 2.110	3.100 ± 1.814	3.400 ± 0.800	2.100 ± 2.071	7.200 ± 0.980	7.300 ± 2.100	8.000 ± 1.483	5.000±1.612

(d) email-eu

Dime	ension	1	.3	2	26		9	1		431
Measure	Model	DHG-13	triad	DHG-26	h-motif	DHG	n2v	h2v	deep-h	3h-motif
	LR	0.854±0.009	0.837 ± 0.013	0.855 ± 0.009	0.776 ± 0.019	0.869 ± 0.010	0.618 ± 0.028	0.496 ± 0.012	0.659 ± 0.019	0.799 ± 0.017
	RF	0.883±0.009	0.839 ± 0.011	0.890 ± 0.008	0.838 ± 0.011	0.907 ± 0.010	0.652 ± 0.017	0.515 ± 0.021	0.668 ± 0.020	0.840 ± 0.011
	DT	0.825±0.010	0.787 ± 0.016	$\overline{0.828\pm0.010}$	0.761 ± 0.016	0.849 ± 0.012	0.546 ± 0.015	0.504 ± 0.019	0.564 ± 0.015	0.753 ± 0.018
	KNN	0.867±0.009	0.838 ± 0.011	0.868 ± 0.008	0.780 ± 0.014	0.875 ± 0.010	0.573 ± 0.009	0.556 ± 0.040	0.677 ± 0.013	0.795 ± 0.013
ACC	MLP	0.904±0.008	0.857 ± 0.012	0.911 ± 0.007	0.821 ± 0.023	0.906 ± 0.011	0.660 ± 0.047	0.507 ± 0.018	0.675 ± 0.048	0.808 ± 0.027
ACC	XGB	0.885±0.008	0.854 ± 0.011	0.891 ± 0.008	0.831 ± 0.012	0.903 ± 0.009	0.654 ± 0.018	0.522 ± 0.017	0.656 ± 0.022	0.840 ± 0.011
	LGBM	0.889±0.009	0.856 ± 0.011	0.895 ± 0.008	0.839 ± 0.010	0.906 ± 0.010	0.645 ± 0.027	0.512 ± 0.010	0.645 ± 0.026	0.846 ± 0.011
	HGNN	0.521±0.015	0.520 ± 0.015	0.523 ± 0.016	0.523 ± 0.020	0.529 ± 0.020	0.512 ± 0.018	0.505 ± 0.014	0.513 ± 0.017	0.526 ± 0.021
	FHGCN	0.607±0.087	0.790 ± 0.136	0.622 ± 0.095	0.638 ± 0.060	0.742 ± 0.072	0.512 ± 0.020	0.519 ± 0.038	0.547 ± 0.054	0.678 ± 0.072
	UGCNII	0.772±0.014	0.859 ± 0.008	0.788 ± 0.013	0.726 ± 0.009	0.783 ± 0.013	0.724 ± 0.014	0.740 ± 0.020	0.706 ± 0.013	0.762 ± 0.011
Max		0.904 ± 0.008	0.859 ± 0.008	0.911 ± 0.007	0.839 ± 0.010	0.907±0.010	0.724 ± 0.014	0.740 ± 0.020	0.706 ± 0.013	0.846 ± 0.011
A	vg.	0.801 ± 0.125	0.804 ± 0.098	0.807 ± 0.124	0.753 ± 0.097	0.827 ± 0.113	0.610 ± 0.067	0.538 ± 0.069	0.631 ± 0.062	0.765 ± 0.093
Rank	Avg.	3.600±1.020	3.700 ± 1.487	2.400 ± 1.114	5.400 ± 1.114	1.400±0.663	8.100 ± 0.300	8.600 ± 0.917	7.200 ± 0.600	4.600±1.200
Measure	Model	DHG-13	triad	DHG-26	h-motif	DHG	n2v	h2v	deep-h	3h-motif
	LR	0.922±0.009	0.876 ± 0.009	0.926±0.008	0.838 ± 0.015	0.933±0.008	0.691 ± 0.013	0.494±0.018	0.722±0.014	0.868±0.013
	RF	0.941±0.007	0.901 ± 0.009	0.946 ± 0.005	0.921 ± 0.007	0.960 ± 0.005	0.737 ± 0.016	0.529 ± 0.032	0.770 ± 0.015	0.925 ± 0.007
	DT	0.827±0.010	0.785 ± 0.017	0.830 ± 0.010	0.762 ± 0.016	0.852 ± 0.012	0.546 ± 0.015	0.504 ± 0.019	0.564 ± 0.015	0.754 ± 0.018
	KNN	0.915±0.008	0.881 ± 0.010	0.915 ± 0.007	0.854 ± 0.013	0.920 ± 0.008	0.701 ± 0.013	0.586 ± 0.059	0.749 ± 0.014	0.870 ± 0.010
AUROC	MLP	0.960±0.005	0.911 ± 0.010	0.963 ± 0.004	0.909 ± 0.013	0.962 ± 0.006	0.790 ± 0.014	0.539 ± 0.052	0.802 ± 0.017	0.887 ± 0.021
Acroc	XGB	0.945±0.006	0.905 ± 0.009	0.949 ± 0.005	0.917 ± 0.007	0.961 ± 0.005	0.747 ± 0.014	0.557 ± 0.033	0.777 ± 0.014	0.925 ± 0.008
	LGBM	0.948±0.006	0.908 ± 0.008	0.952 ± 0.005	0.923 ± 0.006	0.963±0.005	0.761 ± 0.014	0.555 ± 0.032	0.796 ± 0.013	0.930 ± 0.007
	HGNN	0.524 ± 0.020	0.516 ± 0.017	0.524 ± 0.020	0.520 ± 0.020	0.529 ± 0.028	0.504 ± 0.018	0.502 ± 0.014	0.500 ± 0.017	0.524 ± 0.024
	FHGCN	0.724 ± 0.082	$0.888 {\pm} 0.041$	0.745 ± 0.080	0.724 ± 0.051	0.849 ± 0.054	0.520 ± 0.029	0.550 ± 0.057	0.614 ± 0.070	0.768 ± 0.062
	UGCNII	0.864±0.011	0.912 ± 0.007	0.881 ± 0.010	0.805 ± 0.010	0.874 ± 0.010	0.793 ± 0.014	0.812 ± 0.020	0.784 ± 0.012	0.849±0.008
M	lax	0.960 ± 0.005	0.912 ± 0.007	0.963 ± 0.004	0.923 ± 0.006	0.963 ± 0.005	0.793 ± 0.014	0.812 ± 0.020	0.802 ± 0.017	0.930 ± 0.007
	vg.	0.857±0.131	0.848 ± 0.116	0.863 ± 0.130	0.817 ± 0.119	0.880 ± 0.125	0.679 ± 0.107	0.563 ± 0.087	0.708 ± 0.103	0.830 ± 0.118
Rank	Avg.	3.300 ± 0.640	4.200 ± 1.833	2.300 ± 0.900	5.500 ± 0.671	1.400 ± 0.663	8.000 ± 0.447	8.500 ± 0.922	7.400 ± 0.800	4.400 ± 1.200

(e) citation-data-science

Dime	ension	1	3	2	6		9	1		431
Measure	Model	DHG-13	triad	DHG-26	h-motif	DHG	n2v	h2v	deep-h	3h-motif
	LR	0.907±0.008	0.602 ± 0.018	0.918 ± 0.007	0.751 ± 0.039	0.921 ± 0.011	0.527 ± 0.017	0.504 ± 0.008	0.593 ± 0.022	0.837±0.027
	RF	0.952 ± 0.006	0.644 ± 0.022	0.952 ± 0.008	0.855 ± 0.017	0.977 ± 0.004	0.548 ± 0.015	0.500 ± 0.012	0.599 ± 0.023	0.923±0.007
	DT	0.914 ± 0.011	0.583 ± 0.018	0.906 ± 0.015	0.777 ± 0.026	0.963±0.005	0.511 ± 0.016	0.497 ± 0.015	0.539 ± 0.015	0.848 ± 0.015
	KNN	0.922±0.007	0.594 ± 0.016	$0.925{\pm}0.007$	0.787 ± 0.025	0.917±0.010	0.558 ± 0.013	0.514 ± 0.021	0.592 ± 0.014	0.844±0.012
ACC	MLP	0.967 ± 0.005	0.637 ± 0.026	0.971 ± 0.005	0.822 ± 0.035	0.969 ± 0.005	0.545 ± 0.024	0.502 ± 0.010	0.633 ± 0.037	0.888 ± 0.018
ACC	XGB	0.958 ± 0.005	0.639 ± 0.025	0.961 ± 0.006	0.843 ± 0.024	0.975 ± 0.004	0.547 ± 0.018	0.505 ± 0.011	0.618 ± 0.024	0.927±0.011
	LGBM	0.957±0.006	0.652 ± 0.022	0.960 ± 0.006	0.849 ± 0.020	0.977 ± 0.004	0.546 ± 0.020	0.504 ± 0.010	0.601 ± 0.026	0.930 ± 0.009
	HGNN	0.572±0.010	0.534 ± 0.013	0.585 ± 0.012	0.543 ± 0.015	0.595 ± 0.009	0.542 ± 0.012	0.535 ± 0.017	0.519 ± 0.013	0.554 ± 0.017
	FHGCN	0.593±0.093	0.556 ± 0.067	0.621 ± 0.095	0.597 ± 0.087	0.754 ± 0.091	0.505 ± 0.015	0.504 ± 0.013	0.502 ± 0.008	0.622 ± 0.099
	UGCNII	0.923±0.009	0.657 ± 0.012	0.927±0.009	0.798 ± 0.013	0.932±0.005	0.769 ± 0.016	0.630 ± 0.028	0.541 ± 0.011	0.823±0.010
M	Iax	0.967 ± 0.005	0.657 ± 0.012	0.971 ± 0.005	0.855 ± 0.017	0.977 ± 0.004	0.769 ± 0.016	0.630 ± 0.028	0.633 ± 0.037	0.930 ± 0.009
A	vg.	0.866 ± 0.143	0.610 ± 0.041	0.873 ± 0.136	0.762 ± 0.102	0.898 ± 0.119	0.560 ± 0.072	0.519 ± 0.038	0.574 ± 0.042	0.820 ± 0.123
Rank	Avg.	3.000±0.775	6.300 ± 0.640	2.000 ± 0.632	4.900 ± 0.300	1.300±0.640	7.500 ± 0.806	8.600 ± 0.663	7.600 ± 0.917	3.800 ± 0.600
Measure	Model	DHG-13	triad	DHG-26	h-motif	DHG	n2v	h2v	deep-h	3h-motif
	LR	0.963±0.005	0.644 ± 0.016	0.969±0.006	0.857±0.019	0.969±0.005	0.564 ± 0.015	0.512 ± 0.016	0.653 ± 0.013	0.927±0.012
	RF	0.987 ± 0.003	0.703 ± 0.023	0.987 ± 0.003	0.939 ± 0.008	0.997 ± 0.001	0.573 ± 0.019	0.498 ± 0.017	0.707 ± 0.020	0.975 ± 0.004
	DT	0.914 ± 0.011	0.583 ± 0.018	0.906 ± 0.015	0.777 ± 0.026	0.963±0.005	0.511 ± 0.016	0.497 ± 0.015	0.539 ± 0.015	0.848 ± 0.015
	KNN	0.963 ± 0.005	0.629 ± 0.020	0.965 ± 0.005	0.857 ± 0.023	0.962±0.006	0.595 ± 0.015	0.520 ± 0.030	0.633 ± 0.016	0.908±0.010
AUROC	MLP	0.993 ± 0.002	0.693 ± 0.028	0.994 ± 0.002	0.914 ± 0.021	0.990±0.004	0.597 ± 0.021	0.510 ± 0.016	0.776 ± 0.013	0.938±0.012
покос	XGB	0.991 ± 0.002	0.703 ± 0.025	0.992 ± 0.002	0.937 ± 0.009	0.997 ± 0.001	0.579 ± 0.016	0.507 ± 0.022	0.747 ± 0.012	0.983±0.003
	LGBM	0.990±0.002	0.719 ± 0.021	0.992 ± 0.002	0.941 ± 0.008	0.998 ± 0.001	0.587 ± 0.014	0.511 ± 0.023	0.782 ± 0.011	0.984±0.003
	HGNN	0.595±0.016	0.523 ± 0.013	0.616 ± 0.016	0.528 ± 0.017	0.629 ± 0.008	0.537 ± 0.014	0.540 ± 0.022	0.510 ± 0.013	0.555±0.019
	FHGCN	0.703 ± 0.069	0.637 ± 0.060	0.728 ± 0.069	0.700 ± 0.053	0.861 ± 0.059	0.516 ± 0.028	0.513 ± 0.021	0.505 ± 0.011	0.753 ± 0.059
	UGCNII	0.972±0.005	0.714±0.013	0.974±0.005	0.874±0.010	0.975±0.005	0.851±0.016	0.672±0.042	0.547±0.012	0.899±0.008
	Iax	0.993±0.002	0.719 ± 0.021	0.994 ± 0.002	0.941 ± 0.008	0.998±0.001	0.851 ± 0.016	0.672 ± 0.042	0.782 ± 0.011	0.984 ± 0.003
	vg.	0.907 ± 0.133	0.655 ± 0.061	0.912 ± 0.125	0.832 ± 0.125	0.934 ± 0.108	0.591 ± 0.092	0.528 ± 0.049	0.640 ± 0.104	0.877 ± 0.126
Rank	Avg.	2.800 ± 0.600	6.900 ± 0.539	2.000 ± 0.632	5.200 ± 0.600	1.400 ± 0.800	7.500 ± 0.806	8.400 ± 1.200	7.000 ± 1.342	3.800 ± 0.600

(f) citation-software

Dime	ension	1	3	2	16		9	1		431
Measure	Model	DHG-13	triad	DHG-26	h-motif	DHG	n2v	h2v	deep-h	3h-motif
	LR	0.908±0.005	0.662 ± 0.015	0.912±0.004	0.767 ± 0.007	0.919±0.007	0.541 ± 0.018	0.508 ± 0.013	0.625 ± 0.019	0.829±0.010
	RF	0.966±0.003	0.702 ± 0.019	0.968 ± 0.003	0.866 ± 0.022	$0.984{\pm}0.002$	0.568 ± 0.018	0.501 ± 0.012	0.621 ± 0.022	0.941 ± 0.004
	DT	0.945±0.004	0.623 ± 0.012	0.944 ± 0.004	0.783 ± 0.045	0.974 ± 0.002	0.519 ± 0.010	0.498 ± 0.016	0.548 ± 0.009	0.875 ± 0.012
	KNN	0.947 ± 0.004	0.652 ± 0.013	0.945 ± 0.003	0.834 ± 0.013	0.941±0.005	0.578 ± 0.010	0.521 ± 0.026	0.606 ± 0.006	0.884 ± 0.008
ACC	MLP	0.978 ± 0.002	0.699 ± 0.018	0.979 ± 0.002	0.844 ± 0.029	0.980 ± 0.002	0.575 ± 0.032	0.512 ± 0.022	0.652 ± 0.041	0.919 ± 0.011
ACC	XGB	0.971±0.002	0.704 ± 0.018	0.973 ± 0.002	0.850 ± 0.037	0.984 ± 0.002	0.562 ± 0.023	0.506 ± 0.008	0.636 ± 0.024	0.943 ± 0.007
	LGBM	0.969 ± 0.003	0.713 ± 0.016	0.971 ± 0.002	0.860 ± 0.032	0.984 ± 0.002	0.560 ± 0.028	0.502 ± 0.006	0.622 ± 0.025	0.946 ± 0.006
	HGNN	0.560±0.009	0.529 ± 0.008	0.562 ± 0.009	0.534 ± 0.011	0.555 ± 0.007	0.553 ± 0.009	0.568 ± 0.009	0.521 ± 0.006	0.543 ± 0.007
	FHGCN	0.561±0.074	0.594 ± 0.089	0.572 ± 0.074	0.609 ± 0.086	0.738 ± 0.098	0.503 ± 0.013	0.502 ± 0.009	0.503 ± 0.009	0.630 ± 0.084
	UGCNII	0.917 ± 0.005	0.718 ± 0.010	0.921 ± 0.005	0.739 ± 0.010	0.917±0.006	0.827 ± 0.016	0.823 ± 0.009	0.578 ± 0.012	0.792 ± 0.006
Max		0.978 ± 0.002	0.718 ± 0.010	0.979 ± 0.002	0.866 ± 0.022	$0.984{\pm}0.002$	0.827 ± 0.016	0.823 ± 0.009	0.652 ± 0.041	0.946 ± 0.006
A	vg.	0.872 ± 0.157	0.660 ± 0.058	0.875 ± 0.155	0.769 ± 0.108	0.898 ± 0.134	0.579 ± 0.086	0.544 ± 0.095	0.591 ± 0.049	0.830 ± 0.132
Rank	Avg.	2.900±1.221	6.200 ± 1.077	2.300 ± 1.005	5.200 ± 1.077	1.700±1.100	7.200 ± 1.400	7.800 ± 2.561	7.500 ± 0.806	4.200±1.077
Measure	Model	DHG-13	triad	DHG-26	h-motif	DHG	n2v	h2v	deep-h	3h-motif
	LR	0.977±0.003	0.722 ± 0.015	0.979±0.002	0.890 ± 0.008	0.980±0.003	0.584 ± 0.010	0.516 ± 0.008	0.688 ± 0.008	0.943±0.005
	RF	0.993±0.001	0.777 ± 0.012	0.994 ± 0.001	0.945 ± 0.012	0.999 ± 0.000	0.611 ± 0.015	0.502 ± 0.017	0.739 ± 0.013	0.986 ± 0.001
	DT	0.945±0.004	0.623 ± 0.012	0.944 ± 0.004	0.783 ± 0.045	0.974 ± 0.002	0.519 ± 0.010	0.498 ± 0.016	0.548 ± 0.009	0.875 ± 0.012
	KNN	0.976 ± 0.002	0.702 ± 0.015	0.976 ± 0.002	0.899 ± 0.010	0.974 ± 0.003	0.632 ± 0.011	0.531 ± 0.034	0.659 ± 0.007	0.940 ± 0.006
AUROC	MLP	0.997 ± 0.001	0.775 ± 0.016	0.997 ± 0.001	0.930 ± 0.018	0.996±0.002	0.671 ± 0.019	0.544 ± 0.048	0.806 ± 0.009	0.964 ± 0.008
AUROC	XGB	0.995±0.001	0.781 ± 0.014	0.996 ± 0.001	0.939 ± 0.019	0.999 ± 0.000	0.620 ± 0.017	0.522 ± 0.020	0.786 ± 0.009	0.991 ± 0.001
	LGBM	0.995±0.001	0.792 ± 0.012	0.996 ± 0.001	0.946 ± 0.017	0.999 ± 0.000	0.626 ± 0.019	0.525 ± 0.020	0.807 ± 0.008	0.991 ± 0.001
	HGNN	0.584 ± 0.012	0.510 ± 0.012	0.589 ± 0.011	0.509 ± 0.023	0.587 ± 0.006	0.562 ± 0.009	0.590 ± 0.012	0.508 ± 0.007	0.551 ± 0.014
	FHGCN	0.651±0.094	0.714 ± 0.054	0.659 ± 0.085	0.718 ± 0.050	0.852 ± 0.044	0.513 ± 0.025	0.511 ± 0.024	0.505 ± 0.013	0.732 ± 0.045
	UGCNII	0.972±0.002	0.792 ± 0.011	0.973±0.003	0.812 ± 0.010	0.971±0.003	0.899 ± 0.016	0.895 ± 0.007	0.609 ± 0.015	0.868±0.005
M	lax	0.997±0.001	0.792 ± 0.012	0.997±0.001	0.946 ± 0.017	0.999±0.000	0.899 ± 0.016	0.895 ± 0.007	0.807 ± 0.008	0.991 ± 0.001
	vg.	0.909±0.147	0.719 ± 0.086	0.910 ± 0.145	0.837 ± 0.132	0.933 ± 0.123	0.624 ± 0.103	0.564 ± 0.113	0.666 ± 0.113	0.884 ± 0.134
Rank	Avg.	2.900±1.300	6.400 ± 1.020	2.200 ± 1.077	5.300 ± 1.269	1.800 ± 0.980	7.200 ± 1.400	7.700 ± 2.532	7.300 ± 1.187	4.200±1.077

(g) qna-math

Dime	ension	1	3	2	6		9	1		431
Measure	Model	DHG-13	triad	DHG-26	h-motif	DHG	n2v	h2v	deep-h	3h-motif
	LR	0.606 ± 0.010	0.553 ± 0.013	0.607 ± 0.010	0.579 ± 0.011	0.604±0.009	0.500 ± 0.005	0.504 ± 0.006	0.566 ± 0.009	0.615±0.012
	RF	0.640 ± 0.008	0.620 ± 0.012	0.641 ± 0.008	0.613 ± 0.017	0.673 ± 0.010	0.503 ± 0.010	0.502 ± 0.010	0.581 ± 0.024	0.656 ± 0.015
	DT	0.598 ± 0.009	0.572 ± 0.010	0.595 ± 0.009	0.547 ± 0.016	0.617 ± 0.011	0.502 ± 0.008	0.502 ± 0.011	0.547 ± 0.013	0.574 ± 0.017
	KNN	0.607 ± 0.008	0.553 ± 0.011	0.605 ± 0.007	0.576 ± 0.011	0.601±0.010	0.504 ± 0.009	0.506 ± 0.015	0.523 ± 0.008	0.603 ± 0.010
ACC	MLP	0.639 ± 0.017	0.590 ± 0.014	0.640 ± 0.016	0.598 ± 0.015	0.679 ± 0.010	0.505 ± 0.009	0.503 ± 0.005	0.611 ± 0.043	0.626 ± 0.020
ACC	XGB	0.643 ± 0.008	0.629 ± 0.011	0.644 ± 0.009	0.607 ± 0.019	0.681 ± 0.010	0.502 ± 0.010	0.508 ± 0.008	0.601 ± 0.027	0.668 ± 0.016
	LGBM	0.651 ± 0.008	0.641 ± 0.012	0.652 ± 0.009	0.618 ± 0.019	0.690 ± 0.009	0.504 ± 0.009	0.506 ± 0.008	0.577 ± 0.027	0.686 ± 0.015
	HGNN	0.552 ± 0.010	0.529 ± 0.008	0.552 ± 0.009	0.525 ± 0.011	0.549 ± 0.011	0.520 ± 0.011	0.546 ± 0.007	0.545 ± 0.008	0.548 ± 0.008
	FHGCN	0.501 ± 0.006	0.516 ± 0.029	0.501 ± 0.004	0.503 ± 0.007	0.512 ± 0.022	0.500 ± 0.003	0.502 ± 0.008	0.507 ± 0.016	0.508 ± 0.017
	UGCNII	0.613±0.005	0.599 ± 0.010	0.614±0.004	0.583 ± 0.009	0.607±0.006	0.615 ± 0.010	0.637 ± 0.008	0.743 ± 0.013	0.609±0.008
Max		0.651 ± 0.008	0.641 ± 0.012	0.652 ± 0.009	0.618 ± 0.019	0.690 ± 0.009	0.615 ± 0.010	0.637 ± 0.008	0.743 ± 0.013	0.686 ± 0.015
Avg.		0.605 ± 0.044	0.580 ± 0.041	0.605 ± 0.045	0.575 ± 0.037	0.621 ± 0.057	0.515 ± 0.034	0.521 ± 0.040	0.580 ± 0.063	0.609 ± 0.052
Rank	Avg.	3.500±1.628	5.600 ± 1.855	3.100 ± 1.814	6.200 ± 1.249	2.500±1.910	8.200 ± 1.778	7.100 ± 2.071	5.700 ± 1.847	3.100±1.375
Measure	Model	DHG-13	triad	DHG-26	h-motif	DHG	n2v	h2v	deep-h	3h-motif
	LR	0.653±0.008	0.580±0.014	0.655±0.010	0.620±0.011	0.652±0.011	0.499±0.009	0.514±0.010	0.600±0.009	0.666±0.013
	RF	0.692 ± 0.009	0.663 ± 0.015	0.695 ± 0.009	0.657 ± 0.020	0.734 ± 0.011	0.505 ± 0.012	0.504 ± 0.014	0.767 ± 0.020	0.716±0.019
	DT	0.602 ± 0.009	0.569 ± 0.010	0.599 ± 0.009	0.547 ± 0.016	0.621 ± 0.011	0.502 ± 0.008	0.502 ± 0.011	0.547 ± 0.013	0.574 ± 0.017
	KNN	0.647 ± 0.009	0.570 ± 0.012	0.644 ± 0.009	0.601 ± 0.013	0.638 ± 0.012	0.506 ± 0.011	0.511 ± 0.019	0.561 ± 0.012	0.638 ± 0.013
AUROC	MLP	0.696 ± 0.015	0.634 ± 0.015	0.700 ± 0.016	0.649 ± 0.015	0.737 ± 0.013	0.514 ± 0.013	0.509 ± 0.010	0.834 ± 0.011	0.679 ± 0.022
AUROC	XGB	0.700 ± 0.009	0.677 ± 0.014	0.702 ± 0.009	0.660 ± 0.020	0.744 ± 0.011	0.504 ± 0.012	0.513 ± 0.011	0.823 ± 0.010	0.736 ± 0.016
	LGBM	0.708 ± 0.008	0.694 ± 0.015	0.711 ± 0.010	0.679 ± 0.016	0.755 ± 0.010	0.505 ± 0.014	0.513 ± 0.012	0.844 ± 0.009	0.758 ± 0.013
	HGNN	0.576 ± 0.010	0.535 ± 0.012	0.575 ± 0.008	0.520 ± 0.011	0.570±0.013	0.519 ± 0.012	0.566 ± 0.009	0.551 ± 0.010	0.568 ± 0.009
	FHGCN	0.504 ± 0.011	0.545 ± 0.044	0.502 ± 0.008	0.507 ± 0.010	0.538 ± 0.031	0.501 ± 0.005	0.507 ± 0.020	0.521 ± 0.028	0.525 ± 0.028
	UGCNII	0.666±0.008	0.642 ± 0.011	0.667±0.007	0.620 ± 0.011	0.658 ± 0.007	0.661 ± 0.012	0.689 ± 0.007	0.817 ± 0.014	0.659±0.009
	lax	0.708±0.008	0.694 ± 0.015	0.711 ± 0.010	0.679 ± 0.016	0.755±0.010	0.661 ± 0.012	0.689 ± 0.007	$0.844{\pm}0.009$	0.758 ± 0.013
	vg.	0.644 ± 0.062	0.611 ± 0.055	0.645 ± 0.064	0.606 ± 0.058	0.665 ± 0.072	0.521 ± 0.047	0.533 ± 0.055	0.687 ± 0.133	0.652 ± 0.073
Rank	Avg.	3.700 ± 1.847	5.900 ± 1.814	3.500 ± 1.688	6.600 ± 1.200	2.900 ± 1.578	8.400 ± 1.200	7.000 ± 2.145	3.500 ± 2.617	3.500 ± 1.360

$(h) \ {\it qna-server}$

Dime	ension	1	.3	2	26		9	1		431
Measure	Model	DHG-13	triad	DHG-26	h-motif	DHG	n2v	h2v	deep-h	3h-motif
	LR	0.556±0.007	0.530 ± 0.011	0.557 ± 0.007	0.533 ± 0.009	0.561 ± 0.007	0.502 ± 0.004	0.509 ± 0.008	0.556 ± 0.007	0.553 ± 0.007
	RF	0.643±0.005	0.590 ± 0.012	$\overline{0.640\pm0.004}$	0.565 ± 0.012	0.661 ± 0.004	0.500 ± 0.006	0.503 ± 0.005	0.565 ± 0.018	0.631 ± 0.010
	DT	0.615 ± 0.005	0.572 ± 0.012	0.614 ± 0.005	0.528 ± 0.008	0.626 ± 0.006	0.500 ± 0.007	0.501 ± 0.007	0.545 ± 0.009	0.571 ± 0.011
	KNN	0.628 ± 0.005	0.566 ± 0.010	0.626 ± 0.005	0.538 ± 0.007	0.619 ± 0.006	0.504 ± 0.007	0.502 ± 0.009	0.576 ± 0.005	0.562 ± 0.008
ACC	MLP	0.670 ± 0.005	0.603 ± 0.014	0.670 ± 0.005	0.544 ± 0.013	0.668 ± 0.005	0.509 ± 0.006	0.506 ± 0.011	0.598 ± 0.040	0.584 ± 0.014
ACC	XGB	0.658 ± 0.005	0.612 ± 0.016	0.656 ± 0.005	0.575 ± 0.013	0.679 ± 0.005	0.503 ± 0.005	0.503 ± 0.007	0.585 ± 0.019	0.647 ± 0.010
	LGBM	0.666 ± 0.004	0.624 ± 0.013	0.665 ± 0.005	0.585 ± 0.011	0.688 ± 0.004	0.504 ± 0.006	0.503 ± 0.007	0.567 ± 0.018	0.657 ± 0.009
	HGNN	0.588 ± 0.005	0.546 ± 0.005	0.588 ± 0.005	0.539 ± 0.005	0.579 ± 0.006	0.535 ± 0.007	0.572 ± 0.006	0.571 ± 0.005	0.591 ± 0.005
	FHGCN	0.502 ± 0.008	0.515 ± 0.027	0.502 ± 0.007	0.505 ± 0.014	0.530 ± 0.041	0.501 ± 0.003	0.501 ± 0.005	0.502 ± 0.009	0.514 ± 0.030
	UGCNII	0.657±0.006	0.605 ± 0.005	0.656 ± 0.006	0.595 ± 0.007	0.713 ± 0.005	0.563 ± 0.005	0.653 ± 0.006	0.752 ± 0.007	0.652 ± 0.005
Max		0.670±0.005	0.624 ± 0.013	0.670±0.005	0.595±0.007	0.713±0.005	0.563 ± 0.005	0.653 ± 0.006	0.752 ± 0.007	0.657±0.009
A	vg.	0.619 ± 0.052	0.576 ± 0.035	0.617±0.051	0.551 ± 0.027	$\overline{0.632 \pm 0.057}$	0.512 ± 0.020	0.525 ± 0.047	0.582 ± 0.062	0.596 ± 0.046
Rank	Avg.	2.500±1.432	5.100 ± 1.513	3.200±1.400	6.700 ± 1.100	1.800 ± 1.077	8.600 ± 0.490	7.800 ± 1.470	4.900 ± 1.700	4.400±1.497
Measure	Model	DHG-13	triad	DHG-26	h-motif	DHG	n2v	h2v	deep-h	3h-motif
	LR	0.596±0.005	0.558 ± 0.009	0.597±0.006	0.553±0.010	0.598±0.006	0.512±0.006	0.528±0.006	0.586±0.006	0.587±0.009
	RF	0.704±0.005	0.637 ± 0.017	0.701 ± 0.005	0.595 ± 0.016	0.728 ± 0.005	0.501 ± 0.008	0.504 ± 0.009	0.748 ± 0.017	0.692 ± 0.013
	DT	0.619 ± 0.005	0.571 ± 0.010	0.618 ± 0.005	0.524 ± 0.008	0.630 ± 0.006	0.500 ± 0.007	0.501 ± 0.007	0.545 ± 0.009	0.571 ± 0.011
	KNN	0.681 ± 0.005	0.599 ± 0.013	0.678 ± 0.005	0.552 ± 0.009	0.669 ± 0.006	0.505 ± 0.008	0.503 ± 0.013	0.610 ± 0.008	0.586 ± 0.010
AUROC	MLP	0.719 ± 0.006	0.630 ± 0.014	0.719 ± 0.006	0.573 ± 0.013	0.717±0.006	0.511 ± 0.006	0.525 ± 0.013	0.815 ± 0.010	0.631 ± 0.015
AUROC	XGB	0.713 ± 0.006	0.653 ± 0.021	0.711 ± 0.005	0.612 ± 0.016	0.745 ± 0.005	0.504 ± 0.007	0.507 ± 0.011	0.801 ± 0.007	0.712 ± 0.013
	LGBM	0.719±0.005	0.669 ± 0.018	0.719 ± 0.005	0.628 ± 0.014	0.753 ± 0.005	0.506 ± 0.009	0.513 ± 0.010	0.813 ± 0.007	0.729 ± 0.010
	HGNN	0.629 ± 0.006	0.563 ± 0.006	0.629 ± 0.005	0.543 ± 0.006	0.619 ± 0.008	0.534 ± 0.008	0.599 ± 0.007	0.585 ± 0.009	0.631 ± 0.009
	FHGCN	0.508±0.016	0.546 ± 0.049	0.507 ± 0.016	0.528 ± 0.025	0.593 ± 0.041	0.502 ± 0.007	0.503 ± 0.012	0.511 ± 0.018	0.557 ± 0.045
	UGCNII	0.731 ± 0.007	0.649 ± 0.007	0.728 ± 0.006	0.636 ± 0.008	0.645±0.005	0.594 ± 0.010	0.713 ± 0.006	$0.824 {\pm} 0.008$	0.719±0.007
M	lax	0.731±0.007	0.669±0.018	0.728±0.006	0.636±0.008	0.753±0.005	0.594±0.010	0.713±0.006	0.824±0.008	0.729±0.010
A	vg.	0.662±0.069	0.607 ± 0.043	0.661 ± 0.068	0.575 ± 0.039	0.670 ± 0.058	0.517 ± 0.027	0.540 ± 0.064	$0.684 {\pm} 0.121$	0.641 ± 0.063
Rank	Avg.	3.000 ± 1.265	5.600 ± 1.020	3.500 ± 1.628	6.900 ± 1.044	2.700 ± 1.792	8.900 ± 0.300	7.500 ± 1.285	3.100 ± 2.166	3.800 ± 1.400

(i) bitcoin-2014

Dime	ension	1	3	26			9	01		431
Measure	Model	DHG-13	triad	DHG-26	h-motif	DHG	n2v	h2v	deep-h	3h-motif
ACC	LR RF DT KNN MLP XGB LGBM HGNN FHGCN UGCNII	0.552±0.003 0.914±0.003 0.886±0.003 0.879±0.003 0.763±0.011 0.902±0.004 0.882±0.005 0.730±0.003 0.517±0.027 0.853±0.003	0.524±0.002 0.731±0.029 0.703±0.027 0.699±0.014 0.612±0.049 0.765±0.036 0.633±0.030 0.623±0.090 0.771±0.003	0.581±0.006 0.919±0.003 0.891±0.003 0.878±0.003 0.838±0.015 0.912±0.003 0.896±0.004 0.731±0.003 0.516±0.025 0.855±0.002	O.O.T.*	0.626±0.022 0.927±0.010 0.896±0.017 0.838±0.016 0.922±0.002 0.935±0.003 0.935±0.002 0.727±0.003 0.705±0.103	0.527±0.027 0.540±0.013 0.507±0.010 0.577±0.011 0.555±0.031 0.554±0.014 0.560±0.018 0.632±0.004 0.504±0.009 0.773±0.008	0.527±0.014 0.517±0.005 0.503±0.005 0.537±0.010 0.538±0.023 0.520±0.012 0.526±0.016 0.628±0.003 0.504±0.010 0.711±0.005	0.580±0.027 0.608±0.039 0.549±0.011 0.639±0.004 0.629±0.039 0.615±0.032 0.606±0.034 0.600±0.030 0.505±0.009 0.652±0.003	O.O.T.*
Max Avg. Rank Avg.		0.914±0.003 0.788±0.139 2.700±0.781	0.771±0.003 0.682±0.077 4.300±1.187	0.919±0.003 0.802±0.137 2.000±0.775	h-motif	0.935±0.003 0.836±0.106 1.600±0.917	0.773±0.008 0.573±0.075 5.700±0.640	0.711±0.005 0.551±0.063 6.600±0.663	0.652±0.003 0.598±0.042 5.100±1.136	3h-motif
ACTRESTC	LR RF DT KNN MLP XGB LGBM HGNN FHGCN UGCNII	0.559±0.013 0.971±0.001 0.885±0.004 0.941±0.002 0.854±0.013 0.966±0.002 0.954±0.003 0.815±0.002 0.536±0.044 0.932±0.003	0.616±0.007 0.799±0.034 0.704±0.031 0.744±0.016 0.679±0.053 0.841±0.033 0.847±0.030 0.663±0.004 0.714±0.055 0.854±0.003	0.674±0.021 0.972±0.001 0.890±0.003 0.941±0.003 0.971±0.000 0.971±0.002 0.962±0.002 0.816±0.003 0.540±0.046 0.933±0.002	O.O.T.*	0.693±0.014 0.976±0.004 0.900±0.014 0.905±0.015 0.968±0.002 0.980±0.002 0.808±0.002 0.822±0.028 0.926±0.003	0.569±0.003 0.562±0.015 0.507±0.010 0.606±0.013 0.622±0.029 0.575±0.015 0.583±0.018 0.664±0.004 0.510±0.021 0.855±0.008	0.559±0.002 0.524±0.008 0.503±0.005 0.556±0.012 0.577±0.031 0.549±0.009 0.558±0.011 0.664±0.003 0.506±0.015 0.790±0.005	0.640±0.003 0.729±0.022 0.549±0.011 0.694±0.005 0.771±0.009 0.784±0.005 0.607±0.002 0.506±0.012 0.713±0.003	O.O.T.*
A	ax vg. : Avg.	0.971±0.001 0.841±0.155 3.100±1.513	0.854±0.003 0.746±0.081 4.200±0.980	$\begin{array}{c} 0.972 \pm 0.001 \\ \hline 0.862 \pm 0.138 \\ \hline 1.900 \pm 0.539 \end{array}$		$0.980\pm0.003 0.896\pm0.090 1.600\pm0.917$	0.855±0.008 0.605±0.095 5.500±0.671	0.790±0.005 0.579±0.083 6.400±0.917	0.789 ± 0.005 0.678 ± 0.094 5.300 ± 1.269	

^{*} O.O.T: out-of-time (> 1 day).

(j) bitcoin-2015

Dime	ension	1	3	26			9	1		431
Measure	Model	DHG-13	triad	DHG-26	h-motif	DHG	n2v	h2v	deep-h	3h-motif
	LR	0.539±0.016	0.539±0.006	0.561±0.003		0.566±0.002	0.528±0.029	0.532±0.013	0.569±0.027	
	RF	0.928 ± 0.003	0.686 ± 0.034	0.929 ± 0.003		0.926 ± 0.012	0.552 ± 0.012	0.520 ± 0.006	0.598 ± 0.037	
	DT	0.904 ± 0.004	0.664 ± 0.036	0.905 ± 0.003		0.889 ± 0.021	0.512 ± 0.009	0.504 ± 0.005	0.543 ± 0.011	
	KNN	0.906 ± 0.002	0.658 ± 0.028	0.895 ± 0.003		0.839 ± 0.025	0.592 ± 0.008	0.539 ± 0.009	0.628 ± 0.004	
ACC	MLP	0.825 ± 0.018	0.635 ± 0.027	0.854 ± 0.014		$0.920{\pm}0.015$	0.571 ± 0.029	0.553 ± 0.023	0.619 ± 0.039	
ACC	XGB	0.918 ± 0.005	0.721 ± 0.042	0.923 ± 0.004		0.939 ± 0.005	0.571 ± 0.012	0.519 ± 0.011	0.606 ± 0.028	
	LGBM	0.901 ± 0.007	0.725 ± 0.038	0.908 ± 0.006	O.O.T.*	0.941 ± 0.003	0.574 ± 0.019	0.526 ± 0.015	0.596 ± 0.030	O.O.T.*
	HGNN	0.748 ± 0.003	0.636 ± 0.003	0.750 ± 0.003		0.750 ± 0.003	0.641 ± 0.006	0.630 ± 0.004	0.603 ± 0.002	
	FHGCN	0.545 ± 0.063	0.599 ± 0.098	0.574 ± 0.067		0.699 ± 0.112	0.506 ± 0.013	0.503 ± 0.008	0.503 ± 0.006	
	UGCNII	0.866 ± 0.003	0.773 ± 0.005	0.867±0.002		0.858 ± 0.002	0.782 ± 0.005	0.717 ± 0.003	0.651 ± 0.003	
M	lax	0.928 ± 0.003	0.773 ± 0.005	0.929 ± 0.003		$0.941 {\pm} 0.003$	0.782 ± 0.005	0.717 ± 0.003	0.651 ± 0.003	
A [·]	vg.	0.808 ± 0.142	0.664 ± 0.064	0.817 ± 0.134		$0.833 {\pm} 0.118$	0.583 ± 0.076	0.554 ± 0.064	0.592 ± 0.041	
Rank	Avg.	2.800±1.077	4.000 ± 0.775	1.800 ± 0.748		2.000 ± 0.894	5.600 ± 0.917	6.700 ± 0.458	5.100 ± 1.578	
Measure	Model	DHG-13	triad	DHG-26	h-motif	DHG	n2v	h2v	deep-h	3h-motif
	LR	0.552 ± 0.008	0.612 ± 0.010	0.692±0.005		0.696±0.012	0.592 ± 0.003	0.563 ± 0.003	0.627 ± 0.003	
	RF	0.977 ± 0.001	0.755 ± 0.040	0.978 ± 0.001		0.977±0.004	0.578 ± 0.014	0.528 ± 0.008	0.715 ± 0.023	
	DT	0.903 ± 0.004	0.672 ± 0.035	0.904 ± 0.004		0.893±0.019	0.512 ± 0.009	0.504 ± 0.005	0.543 ± 0.011	
	KNN	0.957 ± 0.002	0.705 ± 0.032	0.952 ± 0.002		0.906±0.021	0.627 ± 0.012	0.558 ± 0.011	0.681 ± 0.006	
AUROC	MLP	0.917 ± 0.014	0.690 ± 0.020	0.938 ± 0.008		$0.967{\pm}0.005$	0.639 ± 0.032	0.596 ± 0.030	0.761 ± 0.013	
Acroc	XGB	0.974 ± 0.002	0.797 ± 0.046	0.977 ± 0.002		0.981 ± 0.004	0.596 ± 0.012	0.553 ± 0.009	0.776 ± 0.007	
	LGBM	0.965 ± 0.003	0.806 ± 0.040	0.969 ± 0.003	O.O.T.*	$0.983 {\pm} 0.002$	0.597 ± 0.012	0.561 ± 0.009	0.782 ± 0.007	O.O.T.*
	HGNN	0.832 ± 0.003	0.663 ± 0.003	0.834 ± 0.003		0.828 ± 0.002	0.681 ± 0.006	0.666 ± 0.005	0.605 ± 0.002	
	FHGCN	0.592 ± 0.079	0.712 ± 0.070	0.623 ± 0.077		$0.823 {\pm} 0.040$	0.510 ± 0.018	0.504 ± 0.011	0.503 ± 0.008	
	UGCNII	0.940 ± 0.002	0.857 ± 0.006	0.941±0.002		0.935±0.002	0.863 ± 0.005	0.795 ± 0.004	0.713 ± 0.004	
	lax	0.977±0.001	0.857 ± 0.006	0.978 ± 0.001		$0.983 {\pm} 0.002$	0.863 ± 0.005	0.795 ± 0.004	0.782 ± 0.007	
	vg.	0.861 ± 0.150	0.727 ± 0.072	0.881 ± 0.120		$0.899 {\pm} 0.088$	0.619 ± 0.095	0.583 ± 0.084	0.671 ± 0.093	
Rank	Avg.	2.900 ± 1.578	4.200 ± 0.980	1.700 ± 0.640		2.000 ± 1.000	5.400 ± 0.800	6.500 ± 0.671	5.300 ± 1.269	

^{*} O.O.T: out-of-time (> 1 day).

(k) bitcoin-2016

LR	
LR	431
ACC RF 0.915±0.002 0.694±0.030 0.921±0.001 0.994±0.002 0.907±0.016 0.599±0.008 0.504±0.005 0.547±0.011 0.866±0.028 0.809±0.006 0.567±0.010 0.536±0.009 0.626±0.003 0.806±0.028 0.809±0.001 0.866±0.020 0.567±0.010 0.536±0.009 0.626±0.003 0.806±0.028 0.809±0.001 0.923±0.003 0.549±0.027 0.545±0.026 0.630±0.040 0.923±0.003 0.549±0.027 0.545±0.026 0.630±0.040 0.923±0.003 0.549±0.027 0.545±0.026 0.630±0.040 0.923±0.003 0.549±0.027 0.545±0.026 0.630±0.040 0.923±0.003 0.549±0.027 0.545±0.026 0.630±0.030 0.938±0.005 0.544±0.012 0.522±0.013 0.621±0.030 0.938±0.005 0.544±0.012 0.522±0.013 0.621±0.030 0.938±0.005 0.544±0.012 0.522±0.016 0.610±0.032 0.749±0.003 0.627±0.005 0.629±0.003 0.597±0.004 0.712±0.110 0.504±0.011 0.504	3h-motif
ACC DT 0.888±0.002 0.671±0.029 0.894±0.002 0.890±0.001 0.866±0.028 0.890±0.001 0.866±0.020 0.567±0.010 0.536±0.009 0.626±0.003 0.800±0.011 0.923±0.003 0.549±0.002 0.545±0.020 0.536±0.009 0.626±0.003 0.923±0.003 0.549±0.002 0.536±0.009 0.626±0.003 0.923±0.003 0.549±0.002 0.545±0.020 0.630±0.011 0.938±0.005 0.544±0.012 0.522±0.013 0.621±0.030 0.938±0.005 0.544±0.012 0.522±0.013 0.621±0.030 0.938±0.005 0.544±0.012 0.522±0.013 0.621±0.030 0.751±0.002 0.712±0.110 0.504±0.010 0.502±0.013 0.621±0.030 0.771±0.010 0.720±0.004 0.646±0.004 0.646±0.004 0.806±0.005 0.862±0.003 0.771±0.010 0.720±0.004 0.646±0.004 0.806±0.032 0.938±0.005 0.771±0.010 0.720±0.004 0.646±0.004 0.806±0.032 0.884±0.003 0.771±0.010 0.720±0.004 0.646±0.004 0.806±0.032 0.884±0.003 0.771±0.010 0.720±0.004 0.646±0.004 0.806±0.032 0.884±0.003 0.771±0.010 0.720±0.004 0.646±0.004 0.806±0.032 0.884±0.003 0.771±0.010 0.720±0.004 0.646±0.004 0.806±0.032 0.884±0.003 0.771±0.010 0.720±0.004 0.646±0.004 0.806±0.032 0.884±0.003 0.771±0.010 0.720±0.004 0.646±0.004 0.806±0.032 0.888±0.121 0.568±0.075 0.554±0.065 0.596±0.041 0.806±0.032 0.884±0.003 0.800±0.032 0.800±0.032 0.800±0.032 0.800±0.032 0.800±0.032 0.800±0.032 0.800±0.032 0.800±0.032 0.974±0.001 0.978±0.003 0.550±0.012 0.529±0.009 0.725±0.021 0.978±0.003 0.550±0.012 0.529±0.009 0.725±0.021 0.997±0.014 0.592±0.014 0.553±0.011 0.678±0.006 0.997±0.014 0.592±0.014 0.553±0.011 0.678±0.006 0.997±0.014 0.592±0.014 0.553±0.011 0.678±0.006 0.990±0.016 0.990±0.016 0.599±0.008 0.581±0.003 0.770±0.007 0.988±0.002 0.968±0.002 0.600±0.026 0.587±0.033 0.770±0.007 0.968±0.002 0.600±0.026 0.587±0.033 0.770±0.007 0.968±0.002 0.600±0.026 0.587±0.033 0.770±0.007 0.968±0.002 0.600±0.026 0.587±0.033 0.770±0.007 0.968±0.002 0.600±0.026 0.5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
ACC MLP 0.825±0.010 0.591±0.030 0.830±0.011 0.923±0.003 0.549±0.027 0.545±0.026 0.630±0.040 0.938±0.005 0.544±0.012 0.522±0.013 0.621±0.030 0.938±0.005 0.544±0.012 0.522±0.013 0.621±0.030 0.675±0.002 0.733±0.003 0.575±0.002 0.749±0.003 0.551±0.016 0.529±0.016 0.610±0.032 0.749±0.003 0.627±0.005 0.629±0.003 0.597±0.004 0.749±0.003 0.627±0.005 0.629±0.003 0.597±0.004 0.712±0.110 0.504±0.011 0.	
ACC XGB	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	O.O.T.*
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Rank Avg. 3.000 ± 0.894 4.000 ± 0.775 1.900 ± 0.700 1.700 ± 0.900 6.000 ± 0.775 6.400 ± 0.800 5.000 ± 1.612 Measure Model DHG-13 triad DHG-26 h-motif DHG $n.02$ <td></td>	
Measure Model DHG-13 triad DHG-26 h-motif DHG n2v h2v deep-h	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3h-motif
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
ACROC VCD 0.074 0.001 0.001 0.071 0.001 0.003 0.003 0.570 0.011 0.702 0.005	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	O.O.T.*
HGNN 0.833 ± 0.002 0.659 ± 0.003 0.834 ± 0.002 0.827 ± 0.002 0.659 ± 0.006 0.663 ± 0.004 0.596 ± 0.003	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
UGCNII <u>0.937±0.003</u>	
$ \text{Max} \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Avg. 0.862 ± 0.132 0.726 ± 0.074 0.866 ± 0.133 0.898 ± 0.099 0.596 ± 0.096 0.582 ± 0.085 0.673 ± 0.095	
Rank Avg. 2.700 ± 0.781 4.300 ± 1.005 2.100 ± 0.831 1.600 ± 0.917 5.700 ± 0.781 6.400 ± 0.917 5.200 ± 1.470	

^{*} O.O.T: out-of-time (> 1 day).