Towards an axiomatic theory of probability
The abstract probability space

Towards an axiomatic theory of probability
The abstract probability space

* The sample space Ω is a conceptual space of all possible conceivable outcomes of a gedanken (thought) chance experiment.

Towards an axiomatic theory of probability
The abstract probability space

- * The sample space Ω is a conceptual space of all possible conceivable outcomes of a gedanken (thought) chance experiment.
- * An *event* A is a subset of the sample space. The collection F of events of interest forms an algebra in which finite or countable set-theoretic operations on events result in events.

Towards an axiomatic theory of probability
The abstract probability space

- * The sample space Ω is a conceptual space of all possible conceivable outcomes of a gedanken (thought) chance experiment.
- * An *event* A is a subset of the sample space. The collection F of events of interest forms an algebra in which finite or countable set-theoretic operations on events result in events.
- * The *probability measure* P is a set function that maps each event A into a real number via a fixed procedure: $A \mapsto P(A)$.

Towards an axiomatic theory of probability
The abstract probability space

- * The sample space Ω is a conceptual space of all possible conceivable outcomes of a gedanken (thought) chance experiment.
- * An *event* A is a subset of the sample space. The collection F of events of interest forms an algebra in which finite or countable set-theoretic operations on events result in events.
- * The *probability measure* P is a set function that maps each event A into a real number via a fixed procedure: $A \mapsto P(A)$.

Axioms of probability measure

- Positivity: $P(A) \ge 0$.
- *Normalisation*: $P(\Omega) = 1$.
- Additivity: If $\{A_j, j \ge 1\}$ are pairwise disjoint events, $P(\bigcup_j A_j) = \sum_j P(A_j)$.

Towards an axiomatic theory of probability
The abstract probability space

- * The sample space Ω is a conceptual space of all possible conceivable outcomes of a gedanken (thought) chance experiment.
- * An *event* A is a subset of the sample space. The collection F of events of interest forms an algebra in which finite or countable set-theoretic operations on events result in events.
- * The *probability measure* P is a set function that maps each event A into a real number via a fixed procedure: $A \mapsto P(A)$.

Axioms of probability measure

- Positivity: $P(A) \ge 0$.
- *Normalisation*: $P(\Omega) = 1$.
- Additivity: If $\{A_j, j \ge 1\}$ are pairwise disjoint events, $P(\bigcup_j A_j) = \sum_j P(A_j)$.

Basic properties of probability measure

- The impossible event: $P(\emptyset) = 0$.
- Boundedness: $0 \le P(A) \le 1$.
- *Monotonicity*: If $A \subseteq B$, then $P(A) \le P(B)$.
- Boole's inequality: $P(A \cup B) \le P(A) + P(B)$,

$$\mathbf{P}(\mathbf{A}_1 \cup \mathbf{A}_2 \cup \cdots \cup \mathbf{A}_n) \leq \mathbf{P}(\mathbf{A}_1) + \mathbf{P}(\mathbf{A}_2) + \cdots + \mathbf{P}(\mathbf{A}_n).$$

- Additivity: $P(A) + P(A^c) = 1$.
- *Inclusion–exclusion*: $P(A \cup B) = P(A) + P(B) P(A \cap B)$.

The probabilist's trinity (Ω , \mathcal{F} , P)

- * What is the collection of conceptual outcomes w of the chance experiment?
- * What are the events A, B, C, ... of interest?
- * What are the chances associated with the events?

Sample space: Ω

Algebra of events: F

Probability measure: P(·)