CSE 3502

INFORMATION SECURITY MANAGEMENT

Lab Assessment – ACL

L19+L20 | SJT516 Dr. Lavanya K

WINTER SEMESTER 2021-22

by

SHARADINDU ADHIKARI 19BCE2105

Exp. Standard Access List

Standard access lists are the oldest type of access lists, dating back as early as Cisco IOS Software Release 8.3. Standard access lists control traffic by comparing the source address of packets to the addresses configured in the access list.

In all software releases, the access list number for the standard IP access lists can be anything from 1 to 99. In Cisco IOS Software Release 12.0.1, standard IP access lists began using additional numbers from 1300 to 1999. These additional numbers are sometimes referred to as the *expanded range*. In addition to using numbers to identify access lists, Cisco IOS Software Release 11.2 and later added the ability to use names to define standard IP access lists. We will learn how to configure both numbered and named access lists as we proceed in this chapter.

Table: Access List Types and Corresponding Numbers

Access List Type	Number Range
IP Standard Access Lists	1-99
IP Standard Access Lists (expanded range)	1300-1999
IP Extended Access Lists	100-199
IP Extended Access Lists (expanded range)	2000-2699

We can differentiate between standard and extended access lists in the numbered format simply by looking at the access list number. Based on the number used when access list is created, the router also knows which type of syntax to expect as the list is entered. By using numbers 1 - 99 or 1300 - 1999, we are essentially telling the router that we want to create a standard IP access list. Thus the router will expect the standard IP access list syntax specifying only the source IP address in access list entries.

Components for Std. ACL:

Device	Interface	IP Address	Subnet Mask	Default Gateway
Router R1	G0/0	192.168.1.1	255.255.255.0	N/A
	G0/1	10.0.0.1	255.255.255.0	N/A
	G0/2	11.0.0.1	255.255.255.0	N/A
PC0	Fa0	10.0.1.2	255.255.255.0	10.0.0.1
PC1	Fa0	11.0.0.2	255.255.255.0	11.0.0.1
Server	Fa0	8.8.8.8	255.255.255.0	8.8.8.1

Commands:

Device	Command Executed
--------	------------------

Procedure:

Step 1: HWIC-2T Module insertion in Router0

Step 2: Router0 configuration

4

Step 3: PC0 and PC1 IP configuration

Step 4: Configuring standard access list in Router0

Step 5: Sending PDUs, showcasing successful communication with PC0 and unsuccessful communication with PC1.

Final Topology:

Exp. Extended Access List

To be more precise when matching a certain network traffic, extended access lists are used. Extended access lists are more difficult to configure and require more processor time than the standard access lists, but they enable a much more granular level of control.

With extended access lists, you can evaluate additional packet information, such as:

- source and destination IP address
- type of TCP/IP protocol (TCP, UDP, IP...)
- source and destination port numbers

Components for Ext. ACL:

Device	Interface	IP Address	Subnet Mask	Default Gateway	SwitchPort
Router R1	Fa0/0	192.168.1.1	255.255.255.0	N/A	S1
	Fa0/1	192.168.2.1	255.255.255.0	N/A	S0
PC0	Fa0	192.168.2.2	255.255.255.0	192.168.2.1	S0
PC1	Fa0	192.168.2.3	255.255.255.0	192.168.2.1	S0
Server	Fa0	192.168.1.100	255.255.255.0	192.168.1.1	S1

Commands:

Device	Commands Executed
	Extended ACL
Router R0	en
	conf t
	access-list 120 deny tcp host 192.168.2.2 host 192.168.1.100 eq 80
	access-list 120 deny tcp host 192.168.2.2 host 192.168.1.100 eq 21
	access-list 120 deny icmp host 192.168.2.2 host 192.168.1.100 echo
	Access-list 120 permit ip any any
	Interface fa0.1
	Ip access group 120 in

end

8

Step 1: PC0 and PC1 IP configurations

Step 2: Router0 FastEthernet0/0 and FastEthernet0/1 configurations

Step 3: Server IP configuration

9

Step 4: Sending PDUs, showcasing Successful Communication from PC0 and PC1 to Server

Step 5: Router0 CLI Access List Configuration

Step 6: Showing the status of ICMP pings from PC0 and PC1 to the Server, respectively

Step 7:

PC0 Web Browser (IP Packet): Unsuccessful PC1 Web Browser (IP Packet): Successful

Step 8: Showcasing PC0 and PC1's FTP Communication with Server

12

© Sharadindu Adhikari, 19BCE2105 sharadindu Adhikari, 19BCE2105

Final Topology:

