MATH-F307 - Mathématiques Discrètes Laurent LA FUENTE Notes de cours

André Madeira Cortes Nikita Marchant TABLE DES MATIÈRES 2

Table des matières

1	Théorie des Graphes	3
	1.1 Définitions	3
	1.2 Chemins dans les graphes	4
	1.3 Arbres	5
	1.3.1 Définitions	5
	1.3.2 Arbres couvrants et arbres à poids	6
	1.4 Isomorphisme	6
	1.5 Graphes hamiltoniens	
	1.6 Graphes Eulériens	8
	1.7 Application : le problème du voyageur de commerce (TSP)	9
	1.7.1 Énoncé du problème	
	1.7.2 Arbres couvrant minimum	
	1.8 Ordres partiels	
2	Arithmétique Modulaire	12
3	Combinatoire énumérative	13
4	Théorie des Codes	14
5	Transformées de Fourier discrètes	15

1 Théorie des Graphes

1.1 Définitions

Définition 1

Un graphe Γ est un triplet (V, E, γ) où V est un ensemble fini dont les éléments sont appelés sommets, E est un ensemble fini dont les éléments sont appelés arêtes, γ est une fonction $\gamma: E \to Paires(V)$. On nottera le plus souvent $\Gamma = (V, E)$ en omettant la fonction γ .

Soit $\gamma(e) = \{x, y\}$ pour $e \in E, x, y \in V$:

- 1. On dit que x et y sont adjacents.
- 2. On dit que e est incidente à x et y.

Définition 2

Soit $\Gamma = (V, E, \gamma)$ un graphe.

- 1. $\gamma(e) = \{x, x\}$ pour $e \in E, x \in V$ est appellé un lacet.
- 2. Si au moins 2 arêtes sont incidentes à 2 mêmes somments, on les appelle arêtes multiples.
- 3. Un graphe est simple s'il n'a ni lacet, ni arêtes multiples. Dans ce cas, on omet la fonction γ , on note $\Gamma = (V, E)$ et E est identifié un sous-ensemble de Paires(V).

Définition 3

Soit $\Gamma = (V, E)$ un graphe. Le degré d'un sommet $v \in V$ est le nombre d'arêtes incidentes à v, les lacets comptant pour 2 arêtes. On note le degré de v par deg(V).

Exemple

Dans la figure suivante, nous avons 2 sommets de degré 4 et 6 sommets de degré 1.

FIGURE 1 – Exemple degrés des sommets dans la molécule C_2H_6 .

Théorème 1

Soit $\Gamma = (V, E)$, alors

$$\sum_{i=1}^{\#V} deg(v_i) = 2\#E$$

Démonstration

Chaque arête contribue 2 fois dans la somme des degrés.

Corollaire

La somme des degrés des sommets d'un graphe est paire.

Définition 4

Le graphe complet K_n est le graphe simple à n sommets pour lequel chaque paire de sommets est une arête.

Exemple

Définition 5

Un graphe $\Gamma' = (U, F)$ est un sous-graphe de $\Gamma = (V, E)$ si $U \subseteq V$ et $F \subseteq E$. On nottera $\Gamma' \subseteq \Gamma$.

Exemple

 $K_m \leq K_n \text{ si } m \leq n.$

Exercice

Montrer que K_m possède $q = \frac{1}{2}n(n-1)$ arêtes.

1.2 Chemins dans les graphes

Définition 6

Soit $\Gamma = (V, E)$ et $v, w \in V$. Un chemin de v à w de longueur n est une séquence alternée de (n+1) sommets $v_0, v_1, ..., v_n$ et de n arêtes $e_1, e_2, ..., e_n$ de la forme

$$(v_0, e_1, v_1, e_2, ..., e_n, v_n)$$

dans laquelle chaque e_i est incident à v_{i-1} et v_i pour $1 \le i \le n$ et $e_i \ne e_j, \forall i \ne j \in 1,...,n$

Un chemin est simple si aucun sommet ne se répète sauf peut-être v_0 et v_n .

Dans un graphe simple on nottera juste la suite des sommets lorsque l'on décrit un chemin.

Définition 7

Un graphe $\Gamma = (V, E)$ est connexe si $\forall x, y \in V : \exists$ un chemin de x à y.

La composante connexe de Γ contenant x est le sous-graphe Γ' de Γ dont les sommets et les arêtes sont contenus dans un chemin de Γ démarrant en x.

Définition 8

Soit $\Gamma = (V, E)$ et $v \in V$.

Un cycle est un chemin de v à v.

Un cycle simple est un cycle de v à v dans lequel aucun sommet n'est répété (mis à part le départ et l'arrivée).

1.3 Arbres

1.3.1 Définitions

Définition 9

Un arbre est un graphe simple connexe qui ne contient aucun cycle.

Définition 10

Dans un arbre, les sommets de degré 1 sont appellés les feuilles.

Exemple

Proposition 1

Si T est un arbre avec $p \geq 2$ sommets, alors T contient au moins 2 feuilles.

Démonstration

T a p sommets. Tous les chemins sont de longueur inférieure ou égale à p. Considérons un chemin $v_0, v_1, ..., v_r$ pour $v_i \in V$, i = 0, ..., r de longueur maximale. Alors, v_0 et v_r sont de degré 1.

Théorème 2

Soit T un graphe simple à p sommets. Alors les 3 assertions suivantes sont équivalentes :

- i T est un arbre.
- $ii \ T \ a \ (p-1) \ ar {\hat e} tes \ et \ aucun \ cycle.$
- iii T a (p-1) arêtes et est connexe.

Démonstration

 $(i) \Rightarrow (ii) : Montrer \ qu'un \ arbre \ a \ p \ sommets \ a \ (p-1) \ arêtes.$

 $Par\ r\'ecurrence:$

- 1. p = 1 OK
- 2. Supposons que ce soit vrai pour tout arbre à $k \ge 1$ sommets et montrons le pour un arbre à (k+1) sommets. Soit T un tel arbre, il a au moins 2 feuilles. Enlevons une de ces feuilles ainsi que l'arête incidente. On obtient un arbre T' à k sommets. Par l'hypothese de récurrence : T' a (k-1) arêtes, donc T a k arêtes.
- $(ii) \Rightarrow (iii) : Supposons (ii) et T ne soit pas connexe.$

Notons $T_1, T_2, ..., T_t$ les composantes connexes de T avec $t \ge 2$. Chaque T_i est un arbre, pour $1 \le i \le t$ (car pas de cycle). Soit p_i le nombre de sommets de T_i , alors chaque T_i a $(p_i - 1)$ arêtes.

$$\sum_{i=1}^{t} p_i = p$$

$$et \qquad \qquad donc \Rightarrow t = 1$$

$$p-1 = \sum_{i=1}^{t} (p_i - 1) = p - t$$

$(iii) \Rightarrow (i) : Supposons que T ne soit pas un arbre.$

Alors, T contient un cycle C. Enlevons une arête de C. On obtient le sous-graphe T' de T qui est toujours connexe. Si T' contient un cycle, alors on itère le processus. Sinon, T' est un arbre à p sommets qui a strictement moins que (p-1) arêtes.

1.3.2 Arbres couvrants et arbres à poids

Définition 11

Un arbre couvrant dans un graphe Γ est un arbre qui est un sous-graphe de Γ et qui contient tous les sommets de Γ

Dans certains problèmes, certaines arêtes sont plus importantes que d'autres. En théorie des graphes, on modélise cela en assignant une valeur à chaque arête.

Définition 12

Un arbre à poids est un couple (Γ, w) où Γ est un arbre w est une fonction $w: E \to \mathbb{R}^+$. Le nombre w(e) est appelé le poids de l'arête e.

Exemple

1.4 Isomorphisme

Définition 13

Deux graphes $\Gamma_1 = (V_1, E_1, \gamma_1)$ et $\Gamma_2 = (V_2, E_2, \gamma_2)$ sont isomorphes s'il existe une bijection $f: V_1 \to V_2$ et une bijection $g: E_1 \to E_2$ telles que $\forall e \in E_1: e$ est incident à $v, w \in V_1$ ssi g(e) est incident à $f(v), f(w) \in V_2$. Le couple (f,g) est appelé un isomorphisme de graphe et on note $\Gamma_1 \cong \Gamma_2$.

Deux graphes isomorphes ont les mêmes propriétés.

Exemple

Figure 2 – Deux graphes isomorphes

1.5 Graphes hamiltoniens

FIGURE 3 – Graphe hamiltonien et cycle hamiltonien

STUFF MISSING HERE

Théorème 3 (Dirac 1950)

Soit $\Gamma = (V, E)$ un graphe simple avec $p \geq 3$ sommets. Si $\forall v \in V : deg(v) \geq \frac{1}{2}p$, alors Γ est Hamiltonien.

Démonstration

 Γ est connexe. Soit $C = (v_0, v_1, ..., v_k)$ un plus long chemin simple dans Γ avec $v_0 \neq v_k, k < p$.

 $deg(v_0) \geq \frac{p}{2}$, tous les sommets adjacents à v_0 sont dans $\{v_1, ..., v_k\}$

 $deg(v_k) \geq \frac{p}{2}$, tous les sommets adjacents à v_k sont dans $\{v_0, ..., v_{k-1}\}$

Comme k < q, il doit exister $i \in \{0, ..., k-1\}$ tel que $\{v_i, v_k\} \in E$ et $\{v_0, v_{i+1}\} \in E$. On obtient un cycle $\widetilde{C} = (v_0, v_1, ..., v_i, v_k, v_{k-1}, ..., v_{i+1}, v_0)$

On $nq(?) \widetilde{C}$ est un cycle Hamiltonien.

Supposons:

 $\exists y \in \widetilde{C} \Rightarrow \textit{On peut supposer que } \{v_j, y\} \in E \textit{ pour } j = \{0, ..., k\}.$

 \Rightarrow On construit un chemin $\overline{C}=(y,v_j,v_{j-1},...v_0,v_{i+1},...,v_k,v_i,v_{i-1},...,v_{j-1}).$ \overline{C} est un chemin plus long que C.

<Second Dessin>

Illustration : Code de Gray

Un code de Gray d'ordre n est un arrangement cyclique de 2^n mots binaires de longueur n tels que 2 mots adjacents ne diffèrent qu'en une seule position.

Exemple

Figure 4 – Les 2 chemins, C en rouge, \widetilde{C} en vert.

Le code de Grey ci-dessus provient d'un cycles Hamiltonien.

<dessin cube et cycle>

Un code de Gray d'ordre (n+1) se construit à partir d'un code de Gray d'ordre n comme suit :

- 1. On écrit le code de Gray donné d'ordre n en ajoutant à la fin de chaque mot un zero.
- 2. On le fait suivre par le même code de Gray parcouru dans l'autre sens et en ajoutant à la fin de chaque mot un 1.

1.6 Graphes Eulériens

Définition 14

Un cycle Eulérien dans un graphe Γ est un cycle qui contient toutes les arêtes de Γ . Un graphe est Eulérien s'il contient un cycle Eulérien.

Exemple

SOME EXAMPLE

Proposition 2

Si un graphe est Eulérien, alors tous ses sommets sont de degré pair.

Lemme

Soit Γ un graphe dans lequel chaque sommet est de degré pair, alors l'ensemble E se partitionne en une union de cycles (arête-)disjointe.

Exemple

<DRAWING 3 CYCLES>

Démonstration

Par récurrence, sur le nombre d'arêtes

- 1. Le lemme est vrai pour q = 2.
- 2. Supposons qu'il soit vrai pour tout graphe à $q \le k$ arêtes et montrons-le pour un graphe à (k+1) arêtes.
- 3. Soit v_0 un sommet de Γ . On démarre un chemin en v_0 et on le suit jusqu'à ce qu'un sommet soit répété 2 fois. On le note v_j et C le cycle de v_j à v_j .
- 4. Soit Γ' le sous-graphe de Γ , obtenu par V = V' et $E' = E \setminus C$. Γ' a $\#E' \leq k$ arêtes. Par hypothèse de récurence, les arêtes de Γ' se partitionnent en une union arête-disjointe de cycles $C_1 \cup C_2 \cup ... \cup C_n$.
- 5. Donc, $C_1 \cup C_2 \cup ... \cup C_n$ est une partition arête-disjointe des arêtes de Γ .
- 6. RECHECK THIS DEMO, SEEMS FISHY

Théorème 4

Soit Γ un graphe connexe. Alors, Γ est eulerien si et seulement si chaque sommet a un degré pair.

Démonstration

- \Rightarrow OK par proposition précédente.
- $\Leftarrow Par\ le\ Lemme: E\ se\ partitionne\ en\ une\ union\ (arête-)disjointe\ de\ cycles\ C_1 \cup C_2 \cup ... \cup C_n.$
 - 1. $Si \ n=1$, c'est bon.
 - 2. Si n > 1, comme Γ est connexe, \exists une arête incidente à un $v \in C_1$ et un $w \notin C_1$. Cette arête est dans C_j pour un j = 2, ..., n (car on a une partition de E). On attache ce cycle en v. S'il reste des cycles dans la partition, on itère ce procédé jusqu'à avoir utilisé tous les cycles.

1.7 Application : le problème du voyageur de commerce (TSP)

1.7.1 Énoncé du problème

Énoncé : Un vendeur de livres démarre de chez lui et doit visiter un certain nombre de librairies avant de rentrer chez lui. Comment doit-il choisir sa route pour minimiser la distance parcourue?

Objet mathématique : Un graphe valué (à chaque arête est associé un nombre appelé poids) où les sommets représentent les librairies et les arêtes représentent les routes.

<VALUED K5 GRAPH HERE>

Objectif: Trouver un cycle hamiltonien de poids minimal.

Remarque : Un graphe complet K_n à n sommets possède $\frac{1}{2}(n-1)!$ cycles hamiltoniens differents. Par exemple, pour $n=10 \Rightarrow 181440$ cycles. On ne connait pas encore d'algorithme efficance qui donne une solution au problème.

1.7.2 Arbres couvrant minimum

Définition 15

Un arbre couvrant dans un graphe Γ est un arbre qui est un sous-graphe de Γ et qui contient tous les sommets de Γ .

Exemple

< GRAPH TO MIN SPANNING TREE EXAMPLES HERE>

Il existe un algorithme qui donne des arbres couvrants de poids minimum dans un graphe valué.

Algorithme de Kurskal:

- i Choisir une arêtes de plus petit poids.
- ii Choisir parmi les arêtes restantes une arête de plus petit poids dont l'inclusion ne crée pas un cycle.
- iii Continuer jusqu'à obtenir un arbre couvrant.

Exemple

< GRAPH K5 WITH PATH HERE>

Remarque : Si C est un cycles hamiltonien dans un graphe Γ , alors $\forall e \in E$ arête de C : $C \setminus \{e\}$ est un arbre couvrant.

 \Rightarrow (Solution de TSP) \geq (longueur minimum d'un arbre couvrant)

Mieux : Soit v un sommet de Γ . Tout cycle hamiltonien contient 2 arêtes incudentes à v. Le reste du chemin est un arbre couvrant de $\Gamma \setminus \{v\}$.

 \Rightarrow (Solution de TSP) \geq (\sum des longueurs des 2 plus courtes arêtes incidentes à v) + (longueur minimum d'un arbre couvrant de $\Gamma \setminus \{v\}$)

Remarque : ∃ borne supérieure à TSP en utilisant des cycles euleriens.

1.8 Ordres partiels

Définition 16

Soit P un ensemble. Un ordre partiel sur P est une relation sur P, c'est à dire un ensemble de couples $(p_1, p_2) \in P \times P$, noté $p1 \le p2$ tel que :

- 1. $p \le p$ (réflexive)
- 2. $(p \le q \ et \ q \le p) \Rightarrow p = q \ (anti-symétrique)$
- 3. $(p \le q \ et \ q \le r) \Rightarrow p \le r \ (transitive)$

On note (P, \leq) un ensemble partiellement ordonné.

Exemple 1. (\mathbb{N}, \leq)

2. $(\mathbb{N}, |)$ où a | b si $\exists c \in \mathbb{Z}$ tel que $a \cdot c = b$ $(a, b \in \mathbb{Z})$

Un ordre partiel (bla bla bla)

2 Arithmétique Modulaire

3 Combinatoire énumérative

4 THÉORIE DES CODES 14

4 Théorie des Codes

5 Transformées de Fourier discrètes