Environmentally Conscious AI Improving Spatial Analysis and Reasoning

Clodéric Mars

MASA LIFE Lead

<u>cloderic.mars@masagroup.net</u> @clodericmars

What is Spatial Reasoning?

- Spatial objects
 - POIs
 - Areas/zones
 - Influence map
 - ...
- Relationships
 - Distance
 - Visibility
 - Accessibility
 - ...

"What is the closest bone that is not too old, out of the cat likely position and that I can chew while observing the street?"

How?

- List of points of interests
- Query several sources
 - "closest" **⇒** pathfinding
 - "not too old"

 metadata
 - "likely position"

 influence map
 - "observing" → visibility mesh, pvs
- Add some custom logic
- A little complex for "just" a dog!

Wouldn't it be cool if...

- Behavior designers can focus on using
 - "One stop" gateway
 - Expressive query
- Developers can extend and optimize
- Handle the "technical" complexity for the benefit of both

Inspirations

- Game industry
 - Environment Tactical Querying (ETQ) [Zielinsky 2013]
 - Tactical Position Selection (TPS) [Jack 2013]
- •GIS
 - PostGIS (postgis.net)

map

SELECT b

FROM bones WHERE b.metadata.age < 20

AND catInfluence(b.position) < 0.1 AND isVisible(\$.street,b.position)

ORDERED BY walkingDistance(b, \$.position) LIMIT 1

mesh

MASA LIFE's SpatialDB

walkingDistance bones isVisible catInfluence Evaluator Collection Evaluator Evaluator Cat Visibility Navmesh influence bones

Let's study a practical example!

Tactical behaviors in VBS2

- Tactical groups...
- ...navigating in a "hostile" environment
- Behaviors that don't depend on the environment

ARTIFICIAL INTELLIGENCE SUMMIT

GDCONF.COM

"select cover" query

Reach a zone and take cover

- •"select cover"
 - SpatialDB query
 - Distance
 - Protected direction
 - Availability
- •"assign cover"
 - SpatialDB update
 - Transactional

Technical stuffs

- SQLite (www.sqlite.org)
 - Easy to integrate
 - Public Domain
 - Mature

ARTIFICIAL INTELLIGENCE SUMMIT

- Fast
- Geospatial index (r-tree)
- Functions
- In-Memory
- peg/leg (piumarta.com/software/peg/)

How? ... with this implementation

- List of points of interests (bones)
- Query several sources (navmesh, visibility, ...)
- Add some custom logic

- **▶**SQLite Tables
 - metadata
 - spatial index
- **▶**SQLite Functions
 - Signature
 - Callback to subsystem
 - Metadata access/index
- SQLite 'arithmetic' and custom parser

What worked

- Fast implementation of first version
- Data driven behaviors
- Familiar query language
- OK performances

What needs to be improved

- Easy-to-use assignment
- Tools
 - inspection
 - sandbox
- Performances
 - grouping/ordering evaluators
 - time slicing
 - multithreading

Takeaways

- 1. **Decouple** (designer/developer)
- 2. Use **existing** tech (eg. SQLite)
- 3. Create a **familiar** language

