Министерство образования и науки Российской Федерации Федеральное агентство по образованию

Федеральное государственное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный университет»

Математико-механический факультет

Конспект по истории и философии науки

Сарапулов Георгий Владимирович

Содержание

$\Gamma_{\rm J}$	ава 1	. История и философия науки	5
	1.1.	Основные стороны бытия науки. Характерные черты научного знания	5
	1.2.	Взаимосвязь истории науки и философии науки	5
	1.3.	Наука и духовная культура. Функции науки в жизни общества	6
	1.4.	Происхождение науки и периодизация истории её развития	6
	1.5.	Научная революция XVI - XVII веков	8
	1.6.	Классическая наука XVIII - XIX веков. Возникновение философии науки	
		как особой области философского знания	8
	1.7.	Современная наука. Историческая смена типов научной рациональности:	
		«классическая», «неклассическая», «постнеклассическая»	8
	1.8.	Эволюция подходов к анализу науки в XX веке	8
	1.9.	Логико-эпистемологический подход к осмыслению сущности науки	8
	1.10.	Позитивистская традиция в философии науки	8
	1.11.	Расширение круга философских проблем в постпозитивистской филосо-	
		фии науки	8
	1.12.	Философия науки в работах К.Поппера	8
	1.13.	Теория научных революций Т.Куна	8
	1.14.	Синтез конвенционализма и фальсификационизма в концепции филосо-	
		фии науки И.Лакатоса	8
	1.15.	Идея «исследовательских традиций» Ларри Лаудана	8
	1.16.	«Методологический анархизм» П.Фейерабенда	8
	1.17.	Социологический и культурологический подходы к исследованию разви-	
		тия науки	8
	1.18.	Феноменологические и герменевтические аспекты анализа научного зна-	
		ния	8
	1.19.	Наблюдение и эксперимент. Роль приборов в научном познании	8
	1.20.	Эмпирические факты и эмпирические зависимости. Процедуры форми-	
		рования факта и его "теоретическая нагруженность"	9
	1.21.	Эмпиризм и рационализм о соотношении теории и опыта	9

1.22.	Логическое оформление теории. Логико-методологические принципы клас-	
	сификации научных понятий и терминов	10
1.23.	«Дилемма теоретика» К.Гемпеля. Возможности устранения теоретиче-	
	ских терминов (результаты Ф. Рамсея и У.Крейга)	10
1.24.	Дедуктивная и индуктивная систематизация научной теории	10
1.25.	Формализация и математизация теоретического знания	10
1.26.	Гипотетико-дедуктивная схема развития научного познания	10
1.27.	Критерии выбора теории.	10
1.28.	Философские основания науки. Роль философских идей и принципов в	
	обосновании научного знания	10
1.29.	Первичные теоретические модели и законы. Принцип ceteris paribus («при	
	прочих равных условиях»)	10
1.30.	Проблема включения новых теоретических представлений в культуру	11
1.31.	Научные революции как «точки бифуркации» в развитии знания. Нели-	
	нейность процесса роста знаний	11
1.32.	Историческое развитие институциональных форм научной деятельности.	11
1.33.	Наука, экономика, власть. Проблемы организации, регулирования и кон-	
	троля над научными исследованиями	11
1.34.	Главные характеристики современной науки. Научный реализм и анти-	
	реализм	11
1.35.	Научный натурализм и фундаментализм	11
1.36.	«Старая» социология науки Роберта Мертона	11
1.37.	«Сильная программа» в эпистемологии науки	11
1.38.	Глобальный эволюционизм и современная научная картина мира	11
1.39.	Этика науки. Проблема ответственности учёных за их деятельность	11
1.40.	Сциентизм и антисциентизм	11
Глава 2	. Философия математики	12
2.1.	Метафизические, семантические и эпистемологические проблемы мате-	
	матики	13
2.2.	Математика как язык науки	13
2.3.	Проблема «непостижимой» эффективности математики в естественных	
	науках	13

2.4.	Конвенционализм в математике	13
2.5.	Место философии в обосновании математики	13
2.6.	Проблема недоопределенности математической теории. Существование	
	неизоморфных моделей	13
2.7.	Теорема Левенгейма-Сколема, «парадокс» Сколема	13
2.8.	Независимость континуум-гипотезы и ее отнологические последствия	13
2.9.	Квантовый бит и квантовые вычисления	13
2.10.	Теоремы Геделя о неполноте и их возможные философские интерпретации	13
2.11.	Д. Лукас и Д. Хофштадтер о возможностях «мыслящих» машин и чело-	
	веческого интеллекта	13
2.12.	Математический реализм, его разновидности	13
2.13.	Логицизм Фреге и Рассела. Неологицизм	13
2.14.	Математический формализм. Программа Гильберта	13
2.15.	Современный формализм Хаскеля Карри	13
2.16.	Интуиционизм и интуиционистская логика. Алгебры Гейтинга	13
2.17.	Возможные миры: семантика С. Крипке	13
2.18.	Современные тенденции в философии математики	13
2.19.	Структуралистский подход к обоснованию математики	13
2.20.	Математическое объяснение. Математика как метафора	13

Глава 1

История и философия науки

1.1. Основные стороны бытия науки. Характерные черты научного знания.

Философия науки - область на границе философии и конкретного научного знания, где всеобщее, составляющее предмет философского познания, существует в неразрывном единстве с конкретным предметом научного знания. Потребность философского осмысления особенностей научного познания возникает в связи с изменениями количесва и уровня знаний в ходе исторического развития научного знания.

Науку как сложное явление необходимо рассматривать с нескольких позиций. С одной стороны, как совокупность наний и процессов их получения, то есть процессов познания. С другой стороны, наука - социальный институт, сформировавшийся на определенном этапе развития и представленный различными социальными формами организации (НИИ, университеты и т. п.). В третьих, наука является особой областью культуры и всегда находится в социально-культурном контексте.

Черты научного знания: Систематичность, Воспроизводимость, Выводимость, Доступность для обобщений и предсказаний, Проблемность, Проверяемость, Критичность, Ориентация на практику

1.2. Взаимосвязь истории науки и философии науки.

История науки и философия науки возникают и развиваются вместе с самой наукой. Объективная истоиря науки является временной последовательностью попыток построить представление о том, что такое наука. Субъективная история науки - попытки описать объективную историю науки - зародилась позднее самой науки как ее историческое самосознание. Когда исследуются методы, применяющиеся этих попытках, изучается сам историко-научный процесс - речь идет об историографии науки.

Существует точка зрения, что история науки является дескриптивной, а философия - нормативной. Однако, согласно Юму, нормы невыводимы из фактов, а факты - из норм.

Другой подход к различению основан на оппозиции синхронического изучения науки (изучения исторических срезов научных структур), которым занимается философия, и диахронического изучения (эволюционный аспект науки), которым занимается история. Однако каждая синхроническая система имеет прошлое и будущее в качестве неотделимых структурных элементов, а эволючия носит системный характер.

В связи с этим нет четкого разделения, в действительности обе выполняют роли интерпретации и реконструкции, взаимодействуя друг с другом.

1.3. Наука и духовная культура. Функции науки в жизни общества.

1.4. Происхождение науки и периодизация истории её развития.

В настоящее время отсутствует единое понимание происхождения науки. Признано положение, что науки вместе с философией зародилась внутри древнего мифологического сознания, но по поводу ее становления как самостоятельной области общественной деятельности есть разные точки зрения.

Наука могла возникнуть в доисторические времена с появлением первых знаний о мире и формированием продуманных навыков приспособления. Другие авторы считают временем рождения науки античность, считая основным критерием науки теоретизацию знаний против их рецептурности. Факт рождения науки связывают с учением об идеях Платона, физической теорией Аристотеля, достижения в космогонии и логике. По третьей точке зрения - в Средневековье с распространением эксперимента в естествознании. Многие считают, что наука в собственном смысле зародилась в XVI - XVII веках в период, называемый «великой научной революцией», когда ученые систематически начали применять научный подход со специфическим отношением между теорией и опытом.

Таким образом, формирование науки - долгий исторический процесс Принято выделять четыре основных периода:

- 1. с I тыс. до н. э. до XVI века: период преднауки с осмыслением житейского опыта, натурфилософскими учениями, обособлением областей знаний
- 2. XVI XVII века: великая научная революция, когда были заложены основы со-

временного естествознания, появились стандарты научного знания, формулировки законов в строгой математической форме, развивалась методология, появились ученые-профессионалы.

- 3. XVII XIX век: классическая наука с фундаментальными теориями в математике, естествознании, гуманитарных науках, возникновением технических наук, ростом социальной и культурной роли науки.
- 4. XX век: постклассическая наука, начавшаяся научной революцией с величайшими открытиями в математике, физике, биологии, развтием нейрофизиологии, медицины, лингвистики, экономической теории, кибернетики, теории информации, характеризующаяся ростом взаимосвязей между дисциплинами и ускорением темпов изменений.

- 1.5. Научная революция XVI XVII веков.
- 1.6. Классическая наука XVIII XIX веков. Возникновение философии науки как особой области философского знания.
- 1.7. Современная наука. Историческая смена типов научной рациональности: «классическая», «неклассическая», «постнеклассическая»
- 1.8. Эволюция подходов к анализу науки в XX веке.
- 1.9. Логико-эпистемологический подход к осмыслению сущности науки.
- 1.10. Позитивистская традиция в философии науки.
- 1.11. Расширение круга философских проблем в постпозитивистской философии науки.
- 1.12. Философия науки в работах К.Поппера.
- 1.13. Теория научных революций Т.Куна.
- 1.14. Синтез конвенционализма и фальсификационизма в концепции философии науки И.Лакатоса.
- 1.15. Идея «исследовательских традиций» Ларри Лаудана.
- 1.16. «Методологический анархизм» П.Фейерабенда.
- 1.17. Социологический и культурологический подходы к исследованию развития науки.
- 1.18. Феноменологические и герменевтические аспекты анализа научного знания. 8
- 1.19. Наблюдение и эксперимент. Роль приборов в научном

ка: ощущения, вопсприятия, представления. Структурные компоненты: наблюдатель, объект исследования, условия наблюдения, средства наблюдения.

Эксперимент - целенаправленное, четко выраженное активное изучение и фиксированных об объекте в специально созданных и точно фиксированных и контролируемых условиях. Структурные компоненты: определенная пространственно-временная область, изуаемая система, протокол эксперимента, реакции системы.

Эксперимент оьладает рядом преимуществ: вопроизводимость, обнаружение характеристик, ненаблюдаемых в естественных условиях, возможность изолировать явление через варьирование условий, расширенные возможности использования приборов и автоматизации.

Эксперимент - связующее звено между эмпирическим и теоретическим этапами: он призван проверять определенные гипотезы, а его резултаты всегда интерпретируются с точки зрения теории.

Роль приборов в усилении органов чувств, их дополнении новыми модальностями, повысить эффективность за счет ускорения, усиления и автоматизации некоторых мыслительных операций. Приборам свойственны погрешности, они способны вносить возмущения в наблюдаемый объект.

1.20. Эмпирические факты и эмпирические зависимости. Процедуры формирования факта и его "теоретическая нагруженность".

1.21. Эмпиризм и рационализм о соотношении теории и опыта.

Эпмирический уровень научного знания включает наблюдение, эксперимент, группировку, классификацию, описание результатов наблюдений и экспериментов, моделирование. Теоретический уровень включает в себя выдвижение, построение и разработку научных гипотез и теорий, формулирование законов, выведение следствий, сопоставление различных гипотез и теорий, процедуры объяснения и предсказания.

Уровни различаются по предмету: эмпирическое исследование направлено на явления и зависимости, теоретическое исследование начелено на выявление сущностных связей. Отличаются также средства познания, понятия, используемые методы

- 1.22. Логическое оформление теории. Логико-методологические принципы классификации научных понятий и терминов.
- «Дилемма теоретика» К.Гемпеля. Возможности устранения теоретических терминов (результаты Ф. Рамсея и У.Крейга)
- 1.24. Дедуктивная и индуктивная систематизация научной теории.
- 1.25. Формализация и математизация теоретического знания.
- 1.26. Гипотетико-дедуктивная схема развития научного познания.
- 1.27. Критерии выбора теории.
- 1.28. Философские основания науки. Роль философских идей и принципов в обосновании научного знания.
- 1.29. Первичные теоретические модели и законы. Принцип ceteris paribus («при прочих равных условиях»).

факторы, не входящие в вном виде в формулировку результата, остаются неизменными, эксперимент проводится в обычных условиях.

- 1.30. Проблема включения новых теоретических представлений в культуру.
- 1.31. Научные революции как «точки бифуркации» в развитии знания. Нелинейность процесса роста знаний.
- 1.32. Историческое развитие институциональных форм научной деятельности.
- 1.33. Наука, экономика, власть. Проблемы организации, регулирования и контроля над научными исследованиями.
- 1.34. Главные характеристики современной науки. Научный реализм и антиреализм.
- 1.35. Научный натурализм и фундаментализм.
- 1.36. «Старая» социология науки Роберта Мертона.
- 1.37. «Сильная программа» в эпистемологии науки.
- 1.38. Глобальный эволюционизм и современная научная картина мира.
- 1.39. Этика науки. Проблема ответственности учёных за их деятельность.
- 1.40. Сциентизм и антисциентизм.

Глава 2

Философия математики

- 2.1. Метафизические, семантические и эпистемологические проблемы математики
- 2.2. Математика как язык науки
- 2.3. Проблема «непостижимой» эффективности математики в естественных науках
- 2.4. Конвенционализм в математике
- 2.5. Место философии в обосновании математики
- Проблема недоопределенности математической теории.
 Существование неизоморфных моделей
- 2.7. Теорема Левенгейма-Сколема, «парадокс» Сколема
- 2.8. Независимость континуум-гипотезы и ее отнологические последствия
- 2.9. Квантовый бит и квантовые вычисления
- 2.10. Теоремы Геделя о неполноте и их возможные философские интерпретации
- 2.11. Д. Лукас и Д. Хофштадтер о возможностях «мыслящих» машин и человеческого интеллекта
- 2.12. Математический реализм, его разновидности
- 2.13. Логицизм Фреге и Рассела $_3$ Неологицизм
- 2.14. Математический формализм. Программа Гильберта