

AD/A-001 701

COVERAGE PREDICTIONS FOR THE NAVY'S
FIXED VLF TRANSMITTERS

James P. Hauser, et al

Naval Research Laboratory
Washington, D. C.

September 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

350063

NRL Memorandum Report 2884

AD A001701

Coverage Predictions for the Navy's Fixed VLF Transmitters

JAMES P. HAUSER AND FRANKLIN J. RHOADS

*Electromagnetic Propagation Branch
Communications Sciences Division*

September 1974

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release, distribution unlimited.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

ADIA - 001701

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1 REPORT NUMBER NRL Memorandum Report 2884	2 GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4 TITLE (and Subtitle) COVERAGE PREDICTIONS FOR THE NAVY'S FIXED VLF TRANSMITTERS		5 TYPE OF REPORT & PERIOD COVERED Final Report
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) James P. Hauser and F. J. Rhoads		8. CONTRACT OR GRANT NUMBER(s)
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Research Laboratory Washington, D.C. 20375		10 PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS NRL Prob. 54R07-22 Project X1508 Task G Project X3297 Task G
11 CONTROLLING OFFICE NAME AND ADDRESS Naval Electronic Systems Command Washington, D.C. Defense Communications Agency, Washington, D.C.		12 REPORT DATE September 1974
14 MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 153
		15 SECURITY CLASS. (of this report) UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16 DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) VLF Communications Coverage Predictions Fixed VLF Transmitters		
Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE <small>U.S. Department of Commerce Springfield, VA 22151</small>		
20 ABSTRACT (Continue on reverse side if necessary and identify by block number) (U) This report is the eighth in a series which presents signal strength and signal-to-noise ratio predictions for the Navy's fixed very-low-frequency transmitters. Predictions given here are for all four seasons of the year. A new atmospheric noise prediction model used for these predictions is briefly discussed and the meaning of the predictions explained. This report supercedes all previous reports in this series.		

CONTENTS

INTRODUCTION	1
ATMOSPHERIC NOISE MODEL	1
PROPAGATION MODEL	2
PREDICTIONS	3
APPLICATION	3
TABLE 1	5
TABLE 2	6
REFERENCES	7
FIGURES	8

COVERAGE PREDICTIONS FOR THE NAVY'S FIXED VLF TRANSMITTERS

INTRODUCTION

The Navy, because of its need for accurate predictions of the reliability of its very-low-frequency (VLF) communications circuits, has tasked the Naval Research Laboratory (NRL) with the responsibility of maintaining a Long Wave Propagation Center and providing communications coverage predictions. NRL has published a series of reports, references (1-7), which provide communications coverage predictions for the Navy's fixed VLF transmitters. This report is a continuation of that series, being the eighth such report to be published.

This report differs from the previous reports in the series in three respects: (1) it contains predictions for all four seasons rather than a separate report for each season, (2) it is unclassified because it does not present coverage for specific systems, and (3) it makes use of a new atmospheric noise prediction model developed by Westinghouse Corporation, reference (8), and refined by NRL, reference (9). The new noise model replaces the CCIR noise model, reference (10), which was used in the previous reports. A classified appendix will be published giving coverage areas of the most strategic Navy systems, both operational and proposed.

The purpose of publishing a new prediction manual at this time is to show the effects of the new and improved atmospheric noise model in predicting communications coverage for the Navy's fixed VLF transmitters.

ATMOSPHERIC NOISE MODEL

Several inadequacies exist in the CCIR noise model. Three of these inadequacies are particularly relevant to the communications coverage predictions presented in this series of reports. (1) Using the CCIR model to generate worldwide contours of atmospheric noise in universal time leads to discontinuities between time zones and across the equator (Figure 1). (2) The CCIR model predicts the standard deviation and the voltage deviation, i.e., the difference in dB between the noise power and the voltage of the noise, as functions of time and frequency only, when it is known that these parameters are functions of location as well. (3) The validity of the CCIR model is especially questionable in areas far removed from atmospheric noise recording

Manuscript submitted August 23, 1974.

sites. During preparation of the CCIR model, thunderstorm day contour maps prepared by the World Meteorological Organization (WMO) were used as guidelines in extrapolating noise parameters into areas for which no atmospheric noise data existed; however, the extrapolation technique was not based on exact mathematical expressions relating thunderstorm activity to atmospheric noise and the WMO maps themselves were based on few data.

In order to eliminate these as well as other shortcomings, NRL initiated the development of a new atmospheric noise prediction model at Westinghouse Georesearch Laboratory (WGL) under the direction of E. L. Maxwell, reference (8). A major portion of this effort was concentrated on producing an improved set of thunderstorm day contour maps. The improved WGL maps (Figure 2) include data from many locations for which the WMO maps (Figure 3) have no data. The WGL noise model then uses mathematical expressions based on the physics of lightning discharges to convert the improved thunderstorm day data into electromagnetic energy radiated from each area of the earth's surface. Each area is treated as an effective transmitter of noise energy propagated to the receiver location. The propagation model used is taken from Wait, reference (11), and is based on the work of Wait and Spies. The combined energies of all transmitters at the receiver location constitutes the WGL prediction of mean atmospheric noise. The other noise parameters, standard deviation and voltage deviation, are calculated from the thunderstorm day data using empirically derived mathematical relationships.

The WGL model eliminates the discontinuities inherent in the CCIR model and also predicts the standard deviation and voltage deviation as functions of location as well as of time and frequency. Most important, however, is the fact that it predicts atmospheric noise parameters more accurately than does the CCIR model, as can be seen by comparing Figures 4 and 5. The data used for the histograms in Figures 4 and 5 were recorded by a worldwide network of ARN-2 atmospheric radio noise recorders run by the Environmental Science Services Administration (ESSA). Further refinement of the WGL model by NRL, reference (9), produced even better agreement with the ESSA noise data (Figure 6). Figures 7 thru 30 present contours of atmospheric radio noise generated by NRL's empirically refined version of the WGL model. The figures are grouped by season and ordered by Universal Time (UT).

PROPAGATION MODEL

The propagation model used for this report is identical to the model used in references (4-7). Although the propagation models are the same, the designation of the coverage prediction program, which includes both the noise and the propagation models, has been changed from NCPP 70 to NCPP 74 because of the new noise model. Additional references pertinent to the development of the propagation model are given in references (1-7).

PREDICTIONS

Tables 1 and 2 list the figure numbers for the signal strength and signal-to-atmospheric noise ratio predictions respectively. The figure numbers of the prediction contour maps are arranged to correspond directly to the figure numbers appearing in the previous reports of the series. This allows for ease in comparing these predictions with previous ones. For convenience, the figures have been grouped by season - Summer (June, July, August), Fall (September, October, November), Winter (December, January, February), and Spring (March, April, May) - and the figure numbers have been prefixed by the first two letters of the season which they are for.

The signal strength predictions are based on the frequencies and nominal, effective radiated powers (ERP) given in Table 1. The ERP's used here have been deduced from the most recent radiation resistance measurements and antenna current logs available for each transmitter, and therefore reflect the nominal operating power of each transmitter as of June 1974. These ERP's differ little from those used in previous reports with the exception of NPG/NLK, which is now operating at roughly 130 kW rather than 250 kW due to a reduction in antenna current.

The signal strength contour levels are in decibels relative to one microvolt per meter ($\text{dB} > 1\mu\text{v}/\text{m}$) and represent the expected values that the signal strength will equal or exceed for the stated percentage of all hours of the season. For example, if one were to measure the signal strength of NAA continuously day and night for the entire summer season at 5°N , 30°W , 90 percent of the measurements should equal or exceed $60 \text{ dB} > 1\mu\text{v}/\text{m}$, the value determined from Figure SU 1. From Figure SU 2 at the same location, 99 percent of the measurements should equal or exceed $56 \text{ dB} > 1\mu\text{v}/\text{m}$.

The signal-to-atmospheric noise ratio predictions are listed in Table 2 and are based on a 1 kHz bandwidth and the same transmitter frequencies and ERP's as the signal strength predictions. The contour levels are given in dB and are interpreted in the same fashion as the signal strength contours.

APPLICATION

Since the received signal strength and signal-to-noise ratio are both linearly proportional to the transmitter ERP in dB, the signal and signal-to-noise ratio contours directly show the effect of changing the transmitter ERP. The area between adjacent signal-to-noise ratio contours is the extended coverage area gained by increasing the transmitter ERP by increments of 3 dB. For example, the area within which the signal-to-noise ratio is -3 dB or better is extended out from the -3 dB contour to the -6 dB contour if the transmitter ERP is increased 3 dB, and so on.

Of prime importance to the communication engineer and the communicator are the signal-to-noise ratio contours. For a given communication system the reliability with which a true message may be deciphered from one containing errors is a function of the character error rate (CER). For a given receiving system, type of modulation, coding, and information rate, the CER is a function of the received signal-to-noise ratio. Thus, once a system is specified, a tolerable CER can be specified, and in turn, a required signal-to-noise ratio can be determined which will provide reliable communications. With the required signal-to-noise ratio established, the corresponding signal-to-noise contour bounds the area within which receiver terminals can be deployed for reliable communications. A classified appendix to this report will be published treating coverage of the most strategic Navy systems, both operational and proposed.

TABLE 1
SIGNAL STRENGTH PREDICTIONS

Figure* Number	Time Availability	Transmitter	Frequency (kHz)	ERP (kW)
1	90%			
2	99%	NAA, Cutler	17.8	1000
3	90%			
4	99%	NWC, North West Cape	22.3	1000
5	90%			
6	99%	NPG/NLK, Jim Creek	18.6	130
7	90%			
8	99%	NBA, Balboa	24.0	110
9	90%			
10	99%	NDT, Yosami	17.4	40
11	90%			
12	99%	NSS, Annapolis	21.4	400
13	90%			
14	99%	NPM, Lualualei	23.4	630

*Each figure number in the table represents four figures, one for each season, in the body of the report. In the body of the report, each figure number is prefixed by the first two letters of the season for which the prediction is given.

TABLE 2
SIGNAL-TO-ATMOSPHERIC NOISE RATIO PREDICTIONS

Figure* Number	Time Availability	Transmitter	Frequency (kHz)	ERP (kW)
15	90%			
16	99%	NAA, Cutler	17.8	1000
17	90%			
18	99%	NWC, North West Cape	22.3	1000
19	90%			
20	99%	NPG/NLK, Jim Creek	18.6	130
21	90%			
22	99%	NBA, Balboa	24.0	110
23	90%			
24	99%	NDT, Yosami	17.4	40
25	90%			
26	99%	NSS, Annapolis	21.4	400
27	90%			
28	99%	NPM, Lualualei	23.4	630

* Each figure number in the table represents four figures, one for each season, in the body of the report. In the body of the report, each figure number is prefixed by the first two letters of the season for which the prediction is given.

REFERENCES

1. J. P. Hauser and F. J. Rhoads, "Coverage Predictions for the Navy, Fixed, VLF Transmitter Facilities for June, July, and August," (U), NRL Confidential Memorandum Report 2029
2. J. P. Hauser and F. J. Rhoads, "Coverage Predictions for the Navy, Fixed, VLF Transmitter Facilities for December, January, and February," (U), NRL Confidential Memorandum Report 2053
3. J. P. Hauser and F. J. Rhoads, "Coverage Predictions for the Navy, Fixed, VLF Transmitter Facilities for March, April, and May," (U), NRL Confidential Memorandum Report 2090
4. J. P. Hauser and M. C. Lawrence, "Coverage Predictions for the Navy, Fixed, VLF Transmitter Facilities for June, July, and August," (U), NRL Confidential Memorandum Report 2134
5. J. P. Hauser, "Coverage Predictions for the Navy, Fixed, VLF Transmitter Facilities for September, October, and November," (U), NRL Confidential Memorandum Report 2157
6. J. P. Hauser, "Coverage Predictions for the Navy, Fixed, VLF Transmitter Facilities for December, January, and February," (U), NRL Confidential Memorandum Report 2179
7. J. P. Hauser, "Coverage Predictions for the Navy, Fixed, VLF Transmitter Facilities for March, April, and May," (U), NRL Confidential Memorandum Report 2211
8. E. L. Maxwell, Westinghouse Georesearch Laboratory, "Development of a VLF Atmospheric Noise Prediction Model", 1970
9. J. P. Hauser and F. J. Rhoads, "Analysis of a VLF Atmospheric Noise Prediction Model", NRL Memorandum Report to be published November 1974
10. CCIR Report 322, "World Distribution and Characteristics of Atmospheric Radio Noise", 1964
11. A. D. Watt, "VLF Radio Engineering", International Series of Monographs in Electromagnetic Waves, Volume 14.

Fig. 1 - Atmospheric noise contours ($\text{dB} > \text{L}_{\text{UV}} / (\text{m} \cdot 1 \text{ kHz BW})$) for 20 kHz (January, 1200 UT) using the CCIR atmospheric noise model

FIG. 2 - NGL thunderstorm ray contour map for January

Fig. 3 - WMO thunderstorm day contour map for January

Fig. 1 - Histogram of errors in predicting mean atmospheric noise power using the CCIR model

Fig. 5 - Histogram of errors in predicting mean atmospheric noise power using the WGL model

Fig. 6 - Histogram of errors in predicting mean atmospheric noise power using the NRL empirically refined version of the WGL model

FIG. 3 - Atmospheric noise contours ($\text{dB}_{\text{LLV/m}} - 1 \text{ kHz BW}$) for 20 kHz (January, 0800 UT) using the IRL empirically refined version of the WGL model

Fig. 10 - Atmospheric noise contours ($\text{dB}_{\text{LW}} - 1 \text{ kHz BW}$) for 20 kHz (January, 1200 UT) using the JRL empirically refined version of the WGL model.

Fig. 11 - Atmospheric noise contours (iB_{DST} in μ T/m - 1 kHz Dst) for 20 kHz (January, 1600 UT) using the IRL empirically refined version of the WGL model.

Fig. 12 - Atmospheric noise contours ($\text{dB} > \text{Luv}/\text{m} - 1 \text{ kHz EW}$) for 20 kHz (January, 2000 UT) using the NRL empirically refined version of the WGL model

Fig. 13 - Atmospheric noise contours ($1B_{\text{LUV}}/m = 1 \text{ kHz BW}$) for 20 kHz (April, 0000UT) using the NRL empirically refined version of the WGL model

FIG. 14 - Atmospheric noise contours (dB) for 20 kHz (April, 0400 UT) using the NRL empirically refined version of the WGL model

Fig. 15 - Atmospheric noise contours ($10^{-3}\mu\text{W/m}^2 - 1 \text{ kHz}$ EW) for 20 kHz (April, 0800 UT) using the NRL empirically refined version of the W3L model

Fig. 16 - Atmospheric noise contours ($iB_{Luv}/m - 1 \text{ kHz BW}$) for 20 kHz (April, 1200 UT) using the NRL empirically refined version of the WGL model

Fig. 17 - Atmospheric noise contours ($1B\text{-}1\mu\text{V/m} - 1\text{ kHz BW}$) for 20 kHz (April, 1600 UT) using the NRL empirically refined version of the WGL model

Fig. 18 - Atmospheric noise contours ($\text{dB}_{\text{Luv}}/\text{m} - 1 \text{ kHz Ew}$) for 20 kHz (April, 2000 UT) using the NRL empirically refined version of the WGL model

Fig. 1) - Atmospheric noise contours ($\text{dB DUV/m} - 1 \text{ kHz EMI}$) for 20 kHz (July, 0000 UT) using the NRL empirically refined version of the WGL model

Fig. 20 - Atmospheric noise contours ($iB > 1 \mu V/m - 1 \text{ kHz BW}$) for 20 kHz (July, 0400 UT) using the NRL empirically refined version of the WGL model

FIG. 21 - Atmospheric noise contours (dE_{Bluv}/m - 1 kHz BW) for 20 kHz (July, 0300 UT) using the WGL empirically refined version of the WGL model

Fig. 22 - Atmospheric noise contours ($1E>1\nu_{\text{uv}}/\text{m} - 1 \text{ kHz BW}$) for 20 kHz (July, 1200 UT) using the NRL empirically refined version of the WGL model

Fig. 23 - Atmospheric noise contours ($\text{dB}_{\text{Luv}}/\text{m} - 1 \text{ kHz BW}$) for 2 kHz (July, 1600 UT) using the IRL empirically refined version of the WGL model

Fig. 24 - Atmospheric noise contours ($1B\Delta\nu/m - 1\text{ kHz BW}$) for 20 kHz (July, 2000 UT) using the NRL empirically refined version of the WGL model

FIG. 25 - Atmospheric noise contours ($1B_{\text{Luv}}/m - 1 \text{ kHz B.M.}$) for 20 kHz (October, 2000 UT) using the NRL empirically refined version of the WGL model.

Fig. 26 - Atmospheric noise contours ($\text{dB-}\mu\text{V/m - 1 kHz BW}$) for 20 kHz (October, 0400 UT) using the NRL empirically refined version of the W3L model

Fig. 27 - Atmospheric noise contours (dB) for 20 kHz (October, 0800 UT) using the NRL empirically refined version of the WGL model

Fig. 28 - Atmospheric noise contours ($B_v > 1 \mu\text{V/m} - 1 \text{ kHz}$) for 20 kHz (October, 1200 UT) using the IRL empirically refined version of the WGL model

Fig. 29 - Atmospheric noise contours ($\text{dB} \Delta \mu\text{V/m} - 1 \text{ kHz BW}$) for 20 kHz (October, 1600 UT) using the NRL empirically refined version of the WGL model

Fig. 30 - Atmospheric noise contours ($1B1\mu V/m - 1\text{ kHz BW}$) for 20 kHz (October, 2000 UT) using the NRL empirically refined version of the WGL model.

FIG. SU 1 - SIGNAL LEVEL CONTOURS IN $\text{dB} > \text{UV/m}$
 NAA (17.8kHz 1000km), CUTLER
 SUMMER 90% TIME AVAILABILITY

FIG. SU 2 - SIGNAL LEVEL CONTOURS IN dB>JUV/N
NAR (170KHz, 1000kW), CUTLER
SUMMER 99% TIME AVAILABILITY

FIG. SU 3 - SIGNAL LEVEL CONTOURS IN $\text{dB} > \text{UVW}$
 NMC (22, 3kHz, 1000km) ▲ NORTHWEST CAPE
 SUMMER 90% TIME AVAILABILITY

FIG. SU 4 - SIGNAL LEVEL CONTOURS IN $\text{dB} > \text{UV/N}$
 NWC 022, 3KHZ, 1000KM, NORTHWEST CAPE
 SUMMER 99% TIME AVAILABILITY

FIG. SU 5 - SIGNAL LEVEL CONTOURS IN dB JU/N
NPG (18.6KHZ, 130KWI) JIM CREEK
SUMMER 30% TIME AVAILABILITY

FIG. SU 6 - SIGNAL LEVEL CONTOURS IN dB_{UV/W}
NPG 018.6kHz, 130km * JIM CREEK

FIG. SU 7 - SIGNAL LEVEL CONTOURS IN dB>1μV/M
 NBR 24.0KHZ, 110KWH, BALBOA
 SUMMER 90% TIME AVAILABILITY

FIG. SU B - SIGNAL LEVEL CONTOURS IN dB > 10V/M
 NBR (24_oOKHZ^o 110KWH) , BALBOA
 SUMMER 99% TIME AVAILABILITY

FIG. SU 9 - SIGNAL LEVEL CONTOURS IN dB $\mu\text{W}/\text{m}^2$
 NOT (17°40'N, 140°E) → YOKOHAMA
 SUMMER 90% TIME AVAILABILITY

FIG. SU 10 - SIGNAL LEVEL CONTOURS IN $\mu\text{B} > 1 \mu\text{W/m}^2$
 NDT (17.4KHZ, 40KWH) * YOSAMI
 SUMMER 99% TIME AVAILABILITY

FIG. SU 11 - SIGNAL LEVEL CONTOURS IN $\mu\text{V/M}$
NSS (21.4 kHz, 400 km, ANNAPOLIS
SUMMER 90% TIME AVAILABILITY

FIG. SU 12 - SIGNAL LEVEL CONTOURS IN dB > 10⁻¹⁴ W/M
NSS (21.4 kHz) 400KWH 9 ANNAPOLIS
SUMMER 99% TIME AVAILABILITY

FIG. SU 13 - SIGNAL LEVEL CONTOURS IN dB>1UV/N
NPN (23.4KHZ, 630KWH, LURLUREI
SUMMER 90% TIME AVAILABILITY

FIG. SU 14 - SIGNAL LEVEL CONTOURS IN dB>10V/N
NPN (23.4KHZ, 630KWH, LURLUFILE)
SUMMER 99% TIME AVAILABILITY

FIG. SU 15 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NAR (17.8 KHz, 1000Km) CUTLER
 SUMMER 90% TIME AVAILABILITY 1KHz BANDWIDTH

LONG WAVE PROPAGATION CENTER

(NCP 74)

FIG. SU 16 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NAR (17.8KHZ, 10000W), CUTLER,
 SUMMER 99% TIME AVAILABILITY 1KHZ BANDWIDTH

(NCPP 74)

FIG. SU 17 - SIGNAL TO ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NWC (22° 3KHZ, 1000KWH) NORTHWEST CAPE
 SUMMER 90% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. SU 18 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NMC (22°, 3kHz, 1000km) ♦ NORTHWEST CAPE
 SUMMER 99% TIME AVAILABILITY 1kHz BANDWIDTH

FIG. SU 19 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 SUMMER 90% TIME AVAILABILITY 1 MHz BANDWIDTH
 SPP 18.0 GHz, 130W, 6' JIM CREEK

FIG. SU 20 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NPG (1B, 5KHZ, 130KW) , JIM CREEK
 SUMMER 99% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. SU 21 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NBA (24.0KHz, 110kW) , BALBOA
 SUMMER 90% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. 22 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NBR (24, 0 kHz, 110 km), BULGAR
 SUMMER 99% TIME AVAILABILITY 1 kHz BANDWIDTH

FIG. SU 23 -- SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NDT (17, 4KHZ, YOKOI) ♦ YOSAMI
 SUMMER 90% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. SU 24 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NJT (17.4kHz, 40km) ° YOSAMI
 SUMMER 99% TIME AVAILABILITY 1kHz BANDWIDTH

F16. SU 25 - SIGNAL-TD-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NSS [21.4kHz, 400km] → ANNAPOLIS
 SUMMER 90% TIME AVAILABILITY 1kHz BANDWIDTH

FIG. SU 26 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB

FIG. SU 27 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NPM (23° 4kHz, 630kHz) LURUALEJ
 SUMMER 90% TIME AVAILABILITY 1kHz BANDWIDTH

FIG. SU 2B - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NPN (23.4KHz, 630Kw, LURUALE)
 SUMMER 99% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. FR 1 - SIGNAL LEVEL CONTOURS IN $\text{dB} > \text{UV/N}$
 NAR (17.8kHz, 1000km), CUTLER
 FALL 90% TIME AVAILABILITY

FIG. FA 2 - SIGNAL LEVEL CONTOURS IN $\text{dB} > 1\mu\text{V/m}$
 NAR (17°, 8kHz, 1000kW), CUTLER
 FALL 99% TIME AVAILABILITY

FIG. FA 4 - SIGNAL LEVEL CONTOURS IN dB > IUV/H
 NWC (22.3KHz, 10000km), NORTHWEST CRPE
 FALL 99% TIME AVAILABILITY

FIG. FA 5 - SIGNAL LEVEL CONTOURS IN dB>10V/M
NPG (18.6KHZ, 130KW) , JIM CREEK
FALL 90% TIME AVAILABILITY

FIG. FA 6 - SIGNAL LEVEL CONTOURS IN $\text{dB} > 10\text{V/m}$
 NPG (18.6kHz, 130kW), JIM CREEK
 FALL
 99% TIME AVAILABILITY

FIG. FR 7 - SIGNAL LEVEL CONTOURS IN $\text{dB} > 1\mu\text{V/m}$
NBA (24.0 kHz, 110 kHz, BALBOA
FALL 90% TIME AVAILABILITY

FIG. FA 8 - SIGNAL LEVEL CONTOURS IN dB>1uV/m
NBA (24,0KHz, 110KW) ♀ BALBOR
FALL 99% TIME AVAILABILITY

FIG. FR 9 - SIGNAL LEVEL CONTOURS IN dB>1UV/M
 NDT (17.4KHZ, 40KMI, YOSAMI
 FALL 90% TIME AVAILABILITY

FIG. FA 11 - SIGNAL LEVEL CONTOURS IN dB>1 μ V/M
NSS (21.4kHz, 400kW), ANNAPOLIS
FALL 90% TIME AVAILABILITY

FIG. FA 12 - SIGNAL LEVEL CONTOURS IN dB>1UV/M
NSS (21.4KHZ, 400KWI, ANNAPOLIS
FALL
39% TIME AVAILABILITY

FIG. FA 13 - SIGNAL LEVEL CONTOURS IN $\Delta B > 1 \mu V/M$
 NFM (23.4 KHz, 630KHz), LURLUREI
 FALL 90% TIME AVAILABILITY

FIG. FA 15 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NAF (17° 8KHZ, 1000KW), CUTLER
 FALL 90% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. FA 14 - SIGNAL LEVEL CONTOURS IN dB>10V/M
NPM (23.4KHZ, 630KW) , LUALUALEI
FALL 99% TIME AVAILABILITY

FIG. FA 16 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NAA (17.8KHZ, 1000KW) , CUTLER
 FALL 99% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. FA 1B - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NMC (22.3KHZ, 1000KW), NORTHWEST CAPE
 FALL 99% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. FA 19 - SIG:IL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NPG (18_a, 6KHZ, 130KWH)⁹ JIM CREEK
 FALL
 90% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. FA 20 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NPG (18° 6kHz, 130kW), JIM CREEK
 FALL 99% TIME AVAILABILITY 1kHz BANDWIDTH

FIG. FA 21 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NBA (24°OKHz, 110kW), BALBOA
 FALL 90% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. FR 22 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NBR (24_oOKHZ, 110KWH) * BALBOA
 FRL 99% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. FA 23 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NOT (17.4KHZ, 40KW) ♦ YOSAMI
 FALL 90% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. FA 24 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NDT (17.4KHZ, 40KM) * YOSAMI
 FALL 99% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. FA 25 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NSS (21) 4kHz, 400km, ANNAPOLIS
 FALL 90% TIME AVAILABILITY 1kHz BANDWIDTH

FIG. FA 26 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NSS (21.4kHz, 400km), ANNAPOLIS
 FALL 99% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. FA 28 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NPM (23° 4KHZ, 63°W), LUALUALEI
 FALL
 99% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. WI 1 - SIGNAL LEVEL CONTOURS IN $\text{dB} > \text{UV/m}$
NAR (17.8kHz, 1000kW), CUTLER
WINTER 90% TIME AVAILABILITY

FIG. WI 2 - SIGNAL LEVEL CONTOURS IN dB>10V/M
 NAR (17.8KHZ, 1000KW) > CUTLER
 WINTER 99% TIME AVAILABILITY

WINTER 90% TIME AVAILABILITY
NMC (22.3KHz, 1000KM), NORTHWEST CAPE

FIG. WI 3 - SIGNAL LEVEL CONTOURS IN dB>ULV/M
LONG WAVE PROPAGATION CENTER
(NCP 74)

FIG. WI 4 - SIGNAL LEVEL CONTOURS IN $\text{dB} > 1\text{uV/m}$
 NWC (22.3KHZ, 1000KW), NORTHWEST CAPE
 WINTER 99% TIME AVAILABILITY

FIG. HI 5 - SIGNAL LEVEL CONTOURS IN $\Delta B > 100 \text{ nV/m}$
 NPG (18.6 kHz, 130 kW), JIM CREEK
 WINTER 90% TIME AVAILABILITY

FIG. WJ 6 - SIGNAL LEVEL CONTOURS IN dB JUv/M
NPG (18.6KHZ, 130KWH, JIM CREEK
WINTER 99% TIME AVAILABILITY

FIG. WI 7 - SIGNAL LEVEL CONTOURS IN $\text{dB} > 100\text{W/M}$
NBA (24.0KHZ, 110KW), BALBOR
WINTER 90% TIME AVAILABILITY

FIG. WI 8 - SIGNAL LEVEL CONTOURS IN dB>1μV/N
NBA (24, 0KHZ, 110KW) , BALBOA
WINTER 99% TIME AVAILABILITY

FIG. WJ 9 - SIGNAL LEVEL CONTOURS IN $\mu\text{W/M}$
NDT 17.4KHZ, ЧОКИ , YOSAMI
WINTER 90% TIME AVAILABILITY

FIG. WI 10 - SIGNAL LEVEL CONTOURS IN dB > IUV/M
 NDT (17.4KHZ, 40KW, YOSAM)
 WINTER 99% TIME AVAILABILITY

FIG. WJ 11 - SIGNAL LEVEL CONTOURS IN $\text{dB} > 10\text{V/M}$
NSS (21.4KHZ, 400KW), ANNAPOLIS
WINTER 90% TIME AVAILABILITY

FIG. A1 12 - SIGNAL LEVEL CONTOURS IN dB > 10V/M
 NSS (21.4KHZ, 400KW) , ANNAPOLIS
 WINTER 99% TIME AVAILABILITY

LONG WAVE PROPAGATION CENTER

FIG. HI 13 - SIGNAL LEVEL CONTOURS IN dB UV/N
NFM (23.4kHz, 630KWH, LURUALEJ
WINTER 90% TIME AVAILABILITY

FIG. HI 14 - SIGNAL LEVEL CONTOURS IN dB>UV/M
NFM (23.4 KHZ, 630KMI, LUALUALEI
WINTER 99% TIME AVAILABILITY

FIG. WI 15 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NAR (17.8KHZ, 1000KWH) , CUTLER
 WINTER 90% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. WI 16 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN $\Delta\delta$
 NRA (17.8KHZ, 1000KWH) CUTLER
 WINTER 99% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. WI 17 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NWC (22°, 3KHZ, 1000KW) • NORTHWEST CAPE
 WINTER 90% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. W1 18 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NMC (22_m 3KHZ, 1000KW), NORTHWEST CAPE
 WINTER 99% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. WI 19 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NPG (18.6KHZ, 130KM) , JIN CREEK
 WINTER 90% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. WI 2D - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NPG {18.6KHZ, 130KW}, JIM CREEK
 WINTER 99% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. WI 21 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NBR (24.0KHz, 110kW), BAL30A
 WINTER 90% TIME AVAILABILITY 1KHz BANDWIDTH

NBR (24°OKHz, 110Km, BALBOA
WINTER 99% TIME AVAILABILITY 1KHz BANDWIDTH

FIG. WJ 23 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NOT (17.4KHZ, YOKOHAMA, YOSAM)
 WINTER 90% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. WJ 24 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NDT (17.4KHZ, 40KW), YOSAM
 WINTER 99% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. WI 25 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NSS (21.4kHz, 400kW), ANNAPOLIS
 WINTER 90% TIME AVAILABILITY 1kHz BANDWIDTH

FIG. W1 26 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NSS (21.4kHz, 400km), ANNAPOLIS
 WINTER 99% TIME AVAILABILITY 1kHz BANDWIDTH

LONG WAVE PROPAGATION CENTER

FIG. WI 27 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NPM (23.4KHZ, 630KWH, LURLURLE)
 WINTER 90% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. WI 28 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NPM (23.4KHZ, 630KWH, LULU/LUEI
 WINTER 99% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. SP 1 - SIGNAL LEVEL CONTOURS IN $\text{dB} > 10\text{V/M}$
 NAR (17.8KHZ, 1000KW), CUTLER
 SPRING 90% TIME AVAILABILITY

FIG. SP 2 - SIGNAL LEVEL CONTOURS IN $\text{dB} > 10\mu\text{V/M}$
 NAA (17.8kHz, 1000kW), CUTLER
 SPRING 99% TIME AVAILABILITY

FIG. SP 3 - SIGNAL LEVEL CONTOURS IN $\text{dB}_{\text{JUV/M}}$
 NWC (22.3KHZ, 1000KM), NORTHWEST CAPE
 SPRING 90% TIME AVAILABILITY

FIG. SP 4 - SIGNAL LEVEL CONTOURS IN $\mu\text{W/N}$
NMC (22.3 kHz, 1000 km), NORTHWEST CAPE
SPRING 99% TIME AVAILABILITY

FIG. SP 5 - SIGNAL LEVEL CONTOURS IN dB_{UV/N}
NPG (18.6KHZ, 130KW), JIM CREEK
SPRING 90% TIME AVAILABILITY

**FIG. SP 6 - SIGNAL LEVEL CONTOURS IN BREVARD
SPRING 1986, 6KHZ, 130KWH , JIM CREEK**

LONG WAVE PROPAGATION CENTER

FIG. SP 7 - SIGNAL LEVEL CONTOURS IN dB>1UV/M
NBA (24.0KHZ, 110KW), BALBOA
SPRING 90% TIME AVAILABILITY

FIG. SP 8 - SIGNAL LEVEL CONTOURS IN $\text{dB}/\text{mV/m}$
SPRING 99% TIME AVAILABILITY
NNB (244 MHz), 110KM, BROAD

LONG WAVE PROPAGATION CENTER

FIG. SP 9 - SIGNAL LEVEL CONTOURS IN dB>UV/N
NOT U7.4KHZ, 40KH, YOSAM
SPRING 90% TIME AVAILABILITY

(NCPW 74)

LONG WAVE PROPAGATION CENTER

FIG. SP 10 - SIGNAL LEVEL CONTOURS IN $\text{dB} > 1\mu\text{V}/\text{m}$
 NDT (17.4KHZ, 40KW), YOSAMI
 SPRING 99% TIME AVAILABILITY

FIG. SP 11 - SIGNAL LEVEL CONTOURS IN dB>UV/N
NSS (21.4KHZ, 400KM) , ANNAPOLIS
SPRING 90% TIME AVAILABILITY

FIG. SP 12 - SIGNAL LEVEL CONTOURS IN dB>1UV/M
NSS (21.4KHZ, 400KWM) , ANNAPOLIS
SPRING 99% TIME AVAILABILITY

FIG. SP 13 - SIGNAL LEVEL CONTOURS IN dB OVER THE NORTHERN HEMISPHERE
NM (23, 4KHZ, 630KW) • LULU/LULE
SPRING 90% TIME AVAILABILITY

FIG. SP 14 - SIGNAL LEVEL CONTOURS IN $\text{dB} > 10\mu\text{V/M}$
 NPM (23.4KHZ, 630KW), LURLUREI
 SPRING 99% TIME AVAILABILITY

FIG. SP 15 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NAA Q17.8KHZ, 10000W, 5 CUTLER
 SPRING 90% TIME AVAILABILITY 1KHZ BANDWIDTH

**FIG. SP 16 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
NRA (17.8KHZ, 1000KWH), CUTLER
SPRING 99% TIME AVAILABILITY 1KHZ BANDWIDTH**

FIG. SP 17 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NWC (22° 3KHZ, 1000KW), NORTHWEST CAPE
 SPRING 90% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. SP 18 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NWC (22.3KHZ, 1000W) • NORTHWEST CAPE
 SPRING 99% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. SP 19 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NPG (18.6KHZ, 130KW), JIM CREEK
 SPRING 90% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. SP 20 - SIGNAL-TD-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NPG (18.6KHZ, 130KW), JIM CREEK
 SPRING 99% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. SP 21 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NBR (24, 0KHZ, 110KHZ) , BALBOR
 SPRING 90% TIME AVAILABILITY 1KHZ BANDWIDTH

**FIG. SP 23 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
NDT (17.4KHZ, 40KWH, YOSAMI)
SPRING 90% TIME AVAILABILITY 1KHZ BANDWIDTH**

FIG. SP 24 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NOT (17.4KHZ, 40KWH, YOSAMI)
 SPRING 39% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. SP 25 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NSS (21.4KHz, 400kW), ANNAPOLIS
 SPRING 90% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. SP 26 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NSS (21.4KHZ, 400KM), ANNAPOLIS
 SPRING 99% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. SP 27 - SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NPM (23.4KHZ, 630KW), LURLUAEJ
 SPRING 90% TIME AVAILABILITY 1KHZ BANDWIDTH

FIG. SP 28 . SIGNAL-TO-ATMOSPHERIC NOISE RATIO CONTOURS IN dB
 NFM (23.4KHZ, 630KWH, LURLURE)
 SPRING 99% TIME AVAILABILITY 1KHZ BANDWIDTH