

Transportation Model

INSTRUCTOR: DR. KHUSRO MIAN

Transportation Model:

The transportation model is a special class of linear programming that deals with shipping a commodity from sources to destination. The objective is to determine the shipping schedule that minimizes the total shipping cost while satisfying supply and demand limits.

Mapping Method:

Formation Transportation Model:

There is single item that has to be transported from ' \mathbf{m} ' sources to ' \mathbf{n} ' destinations. The supply in source ' \mathbf{i} ' is ' $\mathbf{a_i}$ ' and the demands in destination ' \mathbf{j} ' is ' $\mathbf{b_j}$ '. The unit cost of transportation from sources ' \mathbf{i} ' to destination ' \mathbf{j} ' is ' C_{ij} '.

Let X_{ij} be the quantity of the item transported from sources to destination. The objective function is:

Min
$$W = i \sum^m j \sum^n C_{ij} X_{ij}$$

Subject to $i \sum^n X_{ij} \le a_i$ Supply $j \sum^m X_{ij} \le b_i$ Demand

$$X_{ij}\!\geq 0$$

Transportation Table:

Destination							
Sources		D ₁	D ₂	D ₃	Supply		
	S ₁	C ₁₁	C ₁₂	C ₁₃	a 1		
	S ₂	C ₂₁	C ₂₂	C ₂₃	a ₂		
	S ₃	C ₃₁	C ₃₂	C ₃₃	a ₃		
	Demand	b ₁	b ₂	b ₃	Supply = Demand		

$$a_1+a_2+a_3 = b_{1+} b_{2+} b_3$$

Transportation Matrix:

$$\mathbf{X}_{ij} = \begin{bmatrix} x_{11} & x_{12} & x_{13} & x_{14} \\ x_{21} & x_{22} & x_{23} & x_{24} \\ x_{31} & x_{32} & x_{33} & x_{34} \end{bmatrix}$$

Problem 1:

ABC Auto has three plants in A, B and C city and four major distribution center D₁, D₂, D₃ and D₄. The capacities of the three plants during the next quarter are 6, 1 and 10 cars. The quarterly demands at the four distribution center are 7, 5, 3 and 2 cars. The transportation costs per car in the table in different rates in \$ are:

Destination									
Sources	D ₁ D ₂ D ₃ D ₄ Supply								
	Α	2	3	11	7	6			
	В	1	0	6	1	1			
	С	5	8	15	9	10			
	Demand	7	5	3	2	17			

Solution:

Let L.P model of the problem is given by:

Min:
$$W = 2x_{11} + 3x_{12} + 11x_{13} + 7x_{14} + 1x_{12} + 0x_{22} + 6x_{23} + 1x_{24} + 5x_{31} + 8x_{32} + 15x_{33} + 9x_{34}$$

Subject to:
$$X_{11} + X_{12} + X_{13} + X_{14} \le 6$$

 $X_{21} + X_{22} + X_{23} + X_{24} \le 1$ Supply
 $X_{31} + X_{32} + X_{33} + X_{34} \le 10$
 $X_{11} + X_{21} + X_{31} \le 7$
 $X_{12} + X_{22} + X_{32} \le 5$ Demand
 $X_{13} + X_{23} + X_{33} \le 3$
 $X_{14} + X_{24} + X_{34} \le 2$

Transportation Map:

Sources Demands

Transportation Matrix:

$$X_{ij} = \begin{bmatrix} 6 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 5 & 3 & 2 \end{bmatrix}$$

Putting the corresponding values of the matrix into W we get:

$$W = 2 \times 6 + 0 + 0 + 0 + 1 \times 1 + 0 + 0 + 0 + 0 + 8 \times 5 + 3 \times 5 + 9 \times 2$$

W = 116 **Answer**

North West Corner Method:

There are three steps to the solution of transportation model:

1. Starting with the cell at upper left corner of the transportation matrix $X_{11} = Min (a_1, b_1)$

2. If
$$Min(a_1, b_1) = a_1$$
 then $X_{11} = a_{11}$
 $X_{21} = Min(a_2, b_1 - X_{11})$

If Min
$$(a_1, b_1) = b_1$$
 then $X_{11} = b_{11}$
 $X_{12} = Min (a_1-X_{11}, b_2)$

3. If
$$a_1 = b_1$$
, $X_{11} = a_1 = b_1$
 $X_{12} = Min(a_1 - a_1, b_1) = o$
OR
 $X_{21} = Min(a_2, b_1 - b_1) = o$

Transportation Table:

Destination										
Sources		D_1 D_2 D_3 Supply								
	S ₁	C ₁₁	C ₁₂	C ₁₃	a ₁					
	S ₂	C ₂₁	C ₂₂	C ₂₃	a ₂					
	S ₃	C ₃₁	C ₃₂	C ₃₃	a ₃					
	Demand	b ₁	b ₂	b ₃	=					

Problem 1:

Determine the basic feasible solution to the following transportation problem.

Destination								
Sources	D ₁ D ₂ D ₃ D ₄ Supply							
	Α	2	3	11	7	6		
	В	1	0	6	1	1		
	С	5	8	15	9	10		
	Demand	7	5	3	2	17		

Solution:

The objective function of the given transportation model.

Min:
$$W = 2x_{11} + 3x_{12} + 11x_{13} + 7x_{14} + 1x_{12} + 0x_{22} + 6x_{23} + 1x_{24} + 5x_{31} + 8x_{32} + 15x_{33} + 9x_{34}$$

By North West Corner Method:

$$X_{11} = Min (a_1, b_1)$$

$$X_{11} = Min (6, 7)$$

$$X_{11} = 6$$

$$X_{21} = Min (a_2, b_1 - X_{11})$$

$$X_{21} = Min (1, 7 - 6)$$

$$X_{21} = Min (1, 1)$$

$$X_{\scriptscriptstyle 21}=1$$

$$X_{3^1} = \mathbf{0}$$

$$X_{\scriptscriptstyle 22}=0$$

$$X_{32} = Min(a_3, b_2)$$

$$X_{32} = Min (10, 5)$$

$$X_{32} = 5$$

$$X_{33} = Min (a_3- X_{32}, b_3)$$

 $X_{33} = Min (10-5, 3)$
 $X_{33} = Min (5, 3)$
 $X_{33} = 3$

$$X_{34} = Min (a_3- X_{33}, b_4)$$

 $X_{34} = Min (10-3, 2)$
 $X_{34} = Min (7, 2)$
 $X_{34} = 2$

Transportation Matrix:

$$X_{ij} = \begin{bmatrix} 6 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 5 & 3 & 2 \end{bmatrix}$$

And we know that $X_{12} = X_{13} = X_{14} = X_{22} X_{23} = X_{24} = 0$. Hence:

The objective function:

$$W = 2 \times 6 + 0 + 0 + 0 + 1 \times 1 + 0 + 0 + 0 + 0 + 8 \times 5 + 3 \times 5 + 9 \times 2$$

W = 116 Answer

Problem 2:

Solve the objective function of transportation model by North West Corner Method.

Destination									
Sources	D_1 D_2 D_3 D_4 Supply								
	Α	19	30	50	10	7			
	В	70	30	40	60	9			
	С	40	8	70	20	18			
	Demand	5	8	7	14	34			