Regularización

Big Data y Machine Learning para Economía Aplicada

Ignacio Sarmiento-Barbieri

Universidad de los Andes

Agenda

- 1 Recap: Predicción y Overfit
- 2 Regularización
 - Recap: OLS Mechanics
 - Ridge
 - Lasso
 - \bullet k > n
 - Ridge and Lasso: Pros and Cons
 - Elastic Net

Agenda

- 1 Recap: Predicción y Overfit
- 2 Regularización
 - Recap: OLS Mechanics
 - Ridge
 - Lasso
 - \bullet k > n
 - Ridge and Lasso: Pros and Cons
 - Elastic Net

Overfit y Predicción fuera de Muestra

Overfit y Predicción fuera de Muestra

Overfit y Predicción fuera de Muestra

- ML nos interesa la predicción fuera de muestra
- Overfit: modelos complejos predicen bien dentro de muestra, pero tienden a hacer un mal trabajo fuera de muestra
- ► Hay que elegir el modelo que "mejor" prediga fuera de muestra (out-of-sample)
 - Penalización ex-post: AIC, BIC, etc
 - Métodos de Remuestreo
 - Enfoque del conjunto de validación
 - ► LOOCV
 - ► Validación cruzada en K-partes (5 o 10)

Agenda

- Recap: Predicción y Overfit
- 2 Regularización
 - Recap: OLS Mechanics
 - Ridge
 - Lasso
 - \bullet k > n
 - Ridge and Lasso: Pros and Cons
 - Elastic Net

Agenda

- 1 Recap: Predicción y Overfit
- 2 Regularización
 - Recap: OLS Mechanics
 - Ridge
 - Lasso
 - \bullet k > n
 - Ridge and Lasso: Pros and Cons
 - Elastic Net

Regularización: Motivación

- Las técnicas econometricas estándar no están optimizadas para la predicción.
- ightharpoonup OLS minimiza el error "dentro de muestra", eligiendo β s de forma tal que

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - x_{i1}\beta_1 - \dots - x_{ip}\beta_p)^2$$
 (1)

o en forma matricial

$$min_{\beta}E(\beta) = (y - X\beta)'(y - X\beta) \tag{2}$$

Sarmiento-Barbieri (Uniandes)

OLS 1 Dimension

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2$$
(3)

Intuición en 2 Dimensiones (OLS)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - x_{i2}\beta_2)^2$$
(4)

Regularización: Motivación

- Las técnicas econometricas estándar no están optimizadas para la predicción.
- ightharpoonup OLS minimiza el error "dentro de muestra", eligiendo β s de forma tal que

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - x_{i1}\beta_1 - \dots - x_{ip}\beta_p)^2$$
 (1)

o en forma matricial

$$min_{\beta}E(\beta) = (y - X\beta)'(y - X\beta) \tag{2}$$

▶ Predicción queremos hacer un buen trabajo fuera de muestra

Sarmiento-Barbieri (Uniandes)

Regularización

- ► Asegurar cero sesgo dentro de muestra crea problemas fuera de muestra: trade-off Sesgo-Varianza
- Las técnicas de machine learning fueron desarrolladas para hacer este trade-off de forma empírica.
- Vamos a proponer modelos del estilo

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - x_{i1}\beta_1 - \dots - x_{ip}\beta_p)^2 + \lambda \sum_{j=1}^{p} R(\beta_j)$$
 (5)

▶ donde *R* es un regularizador que penaliza funciones que crean varianza

◆ロト ◆団 ▶ ◆ 重 ト ◆ 重 ・ か へ ○

Sarmiento-Barbieri (Uniandes)

Agenda

- 1 Recap: Predicción y Overfit
- 2 Regularización
 - Recap: OLS Mechanics
 - Ridge
 - Lasso
 - \bullet k > n
 - Ridge and Lasso: Pros and Cons
 - Elastic Net

Ridge

Para un $\lambda \geq 0$ dado, consideremos ahora el siguiente problema de optimización

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - x_{i1}\beta_1 - \dots - x_{ip}\beta_p)^2 + \lambda \sum_{j=1}^{p} (\beta_j)^2$$
 (6)

o en forma matricial

$$min_{\beta}E(\beta) = (y - X\beta)'(y - X\beta) + \lambda \beta'\beta$$
 (7)

Sarmiento-Barbieri (Uniandes)

Ridge: Intuición en 1 Dimension

- ▶ 1 predictor estandarizado
- ► El problema:

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda\beta^2$$
 (8)

► La solución?

► En 2 dim

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - x_{i2}\beta_2 + \lambda (\beta_1^2 + \beta_2^2))$$
(9)

▶ el dual es

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - x_{i1}\beta_2)^2$$
sujeto a
$$((\beta_1)^2 + (\beta_2)^2) < c$$
(10)

Sarmiento-Barbieri (Uniandes)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - x_{i1}\beta_2)^2 \text{ s.a } ((\beta_1)^2 + (\beta_2)^2) \le c$$
 (11)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - x_{i1}\beta_2)^2 \text{ s.a } ((\beta_1)^2 + (\beta_2)^2) \le c$$
 (12)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - x_{i1}\beta_2)^2 \text{ s.a } ((\beta_1)^2 + (\beta_2)^2) \le c$$
 (13)

Términos generales

- ► En regresión multiple (X es una matriz $n \times k$)
- ▶ Regresión: $y = X\beta + u$
- ► OLS

$$\hat{\beta}_{ols} = (X'X)^{-1}X'y$$

► Ridge

$$\hat{\beta}_{ridge} = (X'X + \lambda I)^{-1}X'y$$

Ridge vs OLS

- ► Ridge es sesgado $E(\hat{\beta}_{ridge}) \neq \beta$
- ▶ Pero la varianza es menor que la de OLS
- ▶ Para ciertos valores del parámetro $\lambda \Rightarrow MSE_{OLS} > MSE_{ridge}$

Example

 $photo\ from\ \texttt{https://www.dailydot.com/parsec/batman-1966-labels-tumblr-twitter-vine/allowers.}$

21 / 52

Sarmiento-Barbieri (Uniandes) Regularización

Agenda

- 1 Recap: Predicción y Overfit
- 2 Regularización
 - Recap: OLS Mechanics
 - Ridge
 - Lasso
 - \bullet k > n
 - Ridge and Lasso: Pros and Cons
 - Elastic Net

Lasso

ightharpoonup Para un $\lambda \geq 0$ dado, consideremos el siguiente problema de optimización

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - x_{i1}\beta_1 - \dots - x_{ip}\beta_p)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$
 (14)

o en forma matricial

$$min_{\beta}E(\beta) = (y - X\beta)'(y - X\beta) + \lambda||\beta||_{1}$$
(15)

Sarmiento-Barbieri (Uniandes)

Lasso Intuición en 1 Dimension

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda|\beta|$$
 (16)

- Un solo predictor, un solo coeficiente
- ightharpoonup Si $\lambda = 0$

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2$$
(17)

y la solución es

$$\hat{\beta}_{OLS}$$
 (18)

Sarmiento-Barbieri (Uniandes)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda|\beta|$$
(19)

$$\hat{\beta} > 0$$

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda\beta$$
 (20)

$$\hat{\beta} > 0$$

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda\beta$$
 (21)

 $\hat{\beta} > 0$

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda\beta$$
 (22)

 $\hat{\beta} > 0$

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda\beta$$
 (23)

$$\hat{\beta} > 0$$

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda\beta$$
 (24)

$$\hat{\beta} > 0$$

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda\beta$$
 (25)

 $\hat{\beta} > 0$

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda\beta$$
 (26)

Solución analitica

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda|\beta|$$
 (27)

Intuición en 2 Dimensiones (Lasso)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - x_{i1}\beta_2)^2 \text{ s.a } (|\beta_1| + |\beta_2|) \le c$$
 (28)

Example

photo from https://www.dailydot.com/parsec/batman-1966-labels-tumblr-twitter-vine/

Sobre la implementación

- ► Importante para aplicación:
 - Escala los datos
 - ightharpoonup Seleccion de λ

Selección de λ

- Asegurar cero sesgo dentro de muestra crea problemas fuera de muestra: trade-off Sesgo-Varianza
- Hacemos este trade-off de forma empírica.

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - x_{i1}\beta_1 - \dots - x_{ip}\beta_p)^2 + \lambda \sum_{j=1}^{p} R(\beta_j)$$
 (29)

- \triangleright λ es el precio al que hacemos este trade off
- Como elegimos λ?

Agenda

- 1 Recap: Predicción y Overfit
- 2 Regularización
 - Recap: OLS Mechanics
 - Ridge
 - Lasso
 - \bullet k > n
 - Ridge and Lasso: Pros and Cons
 - Elastic Net

More predictors than observations (k > n)

- ▶ What happens when we have more predictors than observations (k > n)?
 - ► OLS?
 - ► Ridge?
 - ► Lasso?

OLS when k > n

- ▶ Rank? Max number of rows or columns that are linearly independent
 - ▶ Implies $rank(X_{k \times n}) \le min(k, n)$
- ▶ MCO we need $rank(X_{k \times n}) = k \implies k \le n$
- ▶ If $rank(X_{k \times n}) = k$ then rank(X'X) = k
- ▶ If k > n, then $rank(X'X) \le n < k$ then (X'X) cannot be inverted
- ▶ Ridge and Lasso work when $k \ge n$

Ridge when k > n

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - \dots - x_{ik}\beta_k)^2 + \lambda \sum_{j=1}^{k} (\beta_j)^2$$
 (30)

- ▶ Solution → data augmentation
- ► Intuition: Ridge "adds" *k* additional points.
- ▶ Allows us to "deal" with $k \ge n$

Ridge when k > n

Adding k additional points

Lasso when k > n

- ▶ In the k > n case, the lasso selects at most n variables before it saturates,
- ▶ This is because because of the nature of the convex optimization problem.

Agenda

- 1 Recap: Predicción y Overfit
- 2 Regularización
 - Recap: OLS Mechanics
 - Ridge
 - Lasso
 - \circ k > n
 - Ridge and Lasso: Pros and Cons
 - Elastic Net

- ► Objective 1: Accuracy
 - lacktriangle Minimize prediction error (in one step) ightarrow Ridge, Lasso
- Objective 2: Dimensionality
 - ▶ Reduce the predictor space → Lasso's free lunch
- ▶ More predictors than observations (k > n)
 - OLS fails
 - Ridge augments data
 - Lasso chooses at most *n* variables

- ▶ When we have a group of highly correlated variables,
 - Lasso chooses only one.

- ▶ When we have a group of highly correlated variables,
 - Lasso chooses only one. Makes it unstable for prediction.
 - ▶ Ridge shrinks the coefficients of correlated variables toward each other.
 - For usual n > k situations, if there are high correlations between predictors, it has been empirically observed that the prediction performance of the lasso is dominated by ridge regression (Tibshirani, 1996).
 - ▶ For k > n situations?

Agenda

- 1 Recap: Predicción y Overfit
- 2 Regularización
 - Recap: OLS Mechanics
 - Ridge
 - Lasso
 - \circ k > n
 - Ridge and Lasso: Pros and Cons
 - Elastic Net

Elastic net

$$min_{\beta}EN(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij}\beta_j)^2 + \lambda \left(\alpha \sum_{j=1}^{p} |\beta_j| + \frac{(1-\alpha)}{2} \sum_{j=1}^{p} (\beta_j)^2\right)$$
(31)

- ightharpoonup Si $\alpha = 1$ Lasso
- ightharpoonup Si $\alpha = 0$ Ridge

50 / 52

Elastic Net

- ► The elastic net simultaneously does automatic variable selection and continuous shrinkage, and it can select groups of correlated variables.
- ▶ It is like a stretchable fishing net that retains 'all the big fish'.
- ➤ Simulation studies and real data examples show that the elastic net often outperforms the lasso in terms of prediction accuracy

$$min_{\beta}EN(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij}\beta_j)^2 + \lambda \left(\alpha \sum_{j=1}^{p} |\beta_j| + \frac{(1-\alpha)}{2} \sum_{j=1}^{p} (\beta_j)^2\right)$$
(32)

- Strict convexity part of the penalty (ridge) solves the grouping instability problem
- ▶ How to choose (λ, α) ? → Bidimensional Crossvalidation

Sarmiento-Barbieri (Uniandes) Regularización

Example

photo from https://www.dailydot.com/parsec/batman-1966-labels-tumblr-twitter-vine/

52 / 52