

TEST REPORT

Test report no.: 1-8237/19-01-02-A

Deutsche Akkreditierungsstelle D-PL-12076-01-03

BNetzA-CAB-02/21-102

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 - 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: http://www.ctcadvanced.com mail@ctcadvanced.com e-mail:

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-04 & 05

Applicant

EUCHNER GmbH + Co. KG

Kohlhammerstraße 16

70771 Leinfelden-Echterdingen / GERMANY

Phone: +49 711 7597-0 Contact: Holger Kissing

holger.kissing@euchner.de e-mail·

Phone: +49 711 7597-336

Manufacturer

EUCHNER GmbH + Co. KG

Kohlhammerstraße 16

70771 Leinfelden-Echterdingen / GERMANY

Test standard/s

FCC - Title 47 CFR FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio

Part 15 frequency devices

Spectrum Management and Telecommunications Radio Standards Specification -RSS - 210 Issue 9

Licence-Exempt Radio Apparatus: Category I Equipment

Spectrum Management and Telecommunications Radio Standards Specification RSS - Gen Issue 5

- General Requirements for Compliance of Radio Apparatus

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Electronic-Key-System

EKS-A-IEX-G01-ST02/03 100401 / 003011 Model name: EKS-A-IEXA-G01-ST02/03/04 099265 / 010110

FCC ID: 2AJ5B-04 IC: d-04 Frequency: 125 kHz

Technology tested: Antenna: Integrated antenna

RFID

Power supply: 20.0 V to 28.0 V DC by external power supply

Temperature range: 0°C to +55°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:

Marco Bertolino Lab Manager

Radio Communications & EMC

Tobias Wittenmeier Testing Manager Radio Communications & EMC

Table of contents

1		of contents	
2	Gener	al information	3
	2.1	Notes and disclaimer	
	2.2	Application details	
	2.3	Test laboratories sub-contracted	3
3	Test s	tandard/s and references	
4		nvironment	
5	l est it	em	
	5.1	General description	
	5.2	Additional information	5
6	Descr	ption of the test setup	е
	6.1	Shielded semi anechoic chamber	-
	6.2	Shielded fully anechoic chamber	
	6.3	AC conducted	9
	6.4	Test setup for normalized measurement configurations	10
7	Seque	nce of testing	1
	7.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	11
	7.2	Sequence of testing radiated spurious 30 MHz to 1 GHz	
8	Measu	rement uncertainty	13
9	Summ	ary of measurement results	14
10	Add	itional comments	14
11	Mea	surement results	1
	11.1	Occupied bandwidth	41
	11.2	Field strength of the fundamental	
	11.3	Field strength of the harmonics and spurious	
	11.4	Conducted limits	
12	Obs	ervations	23
Δnr	nex A	Glossary	
	nex B	Document history	
		•	
Anr	nex C	Accreditation Certificate - D-PL-12076-01-04	25
Anr	nex D	Accreditation Certificate – D-PL-12076-01-05	26

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-8237/19-01-02 and dated 2019-04-30

2.2 Application details

Date of receipt of order: 2019-04-12
Date of receipt of test item: 2019-04-25
Start of test: 2019-04-25
End of test: 2019-04-26

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 26

3 Test standard/s and references

Test standard	Date	Description
FCC - Title 47 CFR Part 15 -/-		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 210 Issue 9	August 2016	Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment
RSS - Gen Issue 5	April 2018	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus

Guidance	Version	Description
ANSI C63.4-2014 ANSI C63.10-2013	-/-	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

© CTC advanced GmbH Page 4 of 26

Test environment

Temperature		T_{nom} T_{max} T_{min}	+22 °C during room temperature tests +55 °C during high temperature tests* 0 °C during low temperature tests*
Relative humidity content			55 %
Barometric pressure			1021 hpa
Power supply		V _{nom} V _{max} V _{min}	24.0 V DC by external power supply 28.0 V* 20.0 V*

^{*}No tests under extreme conditions required.

Test item

General description 5.1

Kind of toot itom	Floatronia Kay System
Kind of test item :	Electronic-Key-System
Type identification :	EKS-A-IEX-G01-ST02/03
Type identification .	EKS-A-IEXA-G01-ST02/03/04
HMN :	-/-
PMN :	EKS-A-IEXA-G01-ST02/03/04; EKS-A-IEX-G01-ST02/03
HVIN :	04
FVIN :	-/-
C/N social number	EKS-A-IEX-G01-ST02/03: 003020
S/N serial number :	EKS-A-IEXA-G01-ST02/03/04: 010108
Hardware status :	V1.0.0
Software status :	V 4.02
Firmware status :	V4.02
Frequency :	125 kHz
Type of radio transmission:	Modulated carrier
Use of frequency spectrum:	Wiodulated Carrier
Type of modulation :	AM
Number of channels :	1
Antenna :	Integrated antenna
Power supply :	20.0 V to 28.0 V DC by external power supply
Temperature range :	0°C to +55°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-8237/19-01-01 AnnexA

1-8237/19-01-01_AnnexB

1-8237/19-01-01_AnnexD

© CTC advanced GmbH Page 5 of 26

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval	_	-
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 6 of 26

6.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

EMC32 software version: 10.30.0

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \(\mu V/m \))$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
3	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	12.12.2018	11.12.2019
5	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
6	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
7	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
8	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	371	300003854	vlKI!	24.11.2017	23.11.2020

© CTC advanced GmbH Page 7 of 26

6.2 Shielded fully anechoic chamber

Measurement distance: loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \ \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vIKI!	07.07.2017	06.07.2019
2	Α	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000032	300004510	ne	-/-	-/-
3	Α	Computer	Intel Core i3 3220/3,3 GHz, Prozessor	-/-	2V2403033A54 21	300004591	ne	-/-	-/-
4	Α	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO	-/-	300004682	ne	-/-	-/-
5	Α	Anechoic chamber	-/-	TDK	-/-	300003726	ne	-/-	-/-
6	Α	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	k	19.12.2018	18.12.2019

© CTC advanced GmbH Page 8 of 26

6.3 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

 $FS [dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 \(\mu V/m \))$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	892475/017	300002209	vIKI!	13.12.2017	12.12.2019
2	Α	RF-Filter-section	85420E	HP	3427A00162	300002214	NK!	-/-	-/-
3	Α	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	-/-	-/-
4	A	MXE EMI Receiver 20 Hz to 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405	k	12.12.2018	11.12.2019

© CTC advanced GmbH Page 9 of 26

6.4 Test setup for normalized measurement configurations

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 $\overline{\text{FS [dB}\mu\text{V/m]}} = 40.0 \text{ [dB}\mu\text{V/m]} + (-35.8) \text{ [dB]} + 32.9 \text{ [dB/m]} = 37.1 \text{ [dB}\mu\text{V/m]} (71.61 \ \mu\text{V/m})$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	EMI Test Receiver 9 kHz - 3 GHz incl. Preselector	ESPI3	R&S	101713	300004059	k	13.12.2018	12.12.2019
2	Α	Loop Antenna	-/-	ZEG TS Steinfurt	-/-	400001208	ev	-/-	-/-
3	Α	RF Cable BNC	RG58	Huber & Suhner	-/-	400001209	ev	-/-	-/-

© CTC advanced GmbH Page 10 of 26

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 11 of 26

^{*)}Note: The sequence will be repeated three times with different EUT orientations.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 12 of 26

8 Measurement uncertainty

Measurement uncertainty						
Test case Uncertainty						
Occupied bandwidth	± used RBW					
Field strength of the fundamental	± 3 dB					
Field strength of the harmonics and spurious	± 3 dB					
Receiver spurious emissions and cabinet radiations	± 3 dB					
Conducted limits	± 2.6 dB					

© CTC advanced GmbH Page 13 of 26

9 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS 210 Issue 9	See table!	2019-05-28	-/-
RF-Testing	RSS 210 Issue 9 RSS Gen Issue 5	See table!	2019-05-28	-/-

Test specification clause	Test case	Temperature conditions	Power source conditions	С	NC	NA	NP	Remark
RSS Gen Issue 5 (6.6)	Occupied bandwidth	Nominal	Nominal	\boxtimes				-/-
§ 15.209	Field strength of the fundamental	Nominal	Nominal	\boxtimes				-/-
§ 15.209 RSS Gen Issue 5 (6.13)	Field strength of the harmonics and spurious	Nominal	Nominal	\boxtimes				-/-
§ 15.109	Receiver spurious emissions and cabinet radiations	Nominal	Nominal			\boxtimes		-/-
§15.107 §15.207	Conducted limits	Nominal	Nominal	\boxtimes				-/-

Note: NA = Not applicable; NP = Not performed; C = Compliant; NC = Not compliant

10 Additional comments

Reference documents: None

Special test descriptions: There are two model variants: EKS-A-IEX-G01-ST02/03 without an external bell

wire connector and EKS-A-IEXA-G01-ST02/03/04 with an external bell wire

connector. For the spurious emissions measurements

EKS-A-IEXA-G01-ST02/03/04 was tested with a connected bell wire (worst

case situation).

Configuration descriptions: None

© CTC advanced GmbH Page 14 of 26

11 Measurement results

11.1 Occupied bandwidth

Measurement:

The emission bandwidth (x dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated x dB below the maximum in-band spectral density of the modulated signal.

Measurement parameters			
Detector:	Peak		
Resolution bandwidth:	1 % – 5 % of the occupied bandwidth		
Video bandwidth:	≥ 3x RBW		
Trace mode:	Max hold		
Analyser function:	99 % power function		
Used test setup:	See sub clause 6.4 - A		
Measurement uncertainty:	See sub clause 8		

Limit:

IC
for RSP-100 test report coversheet only

Result:

EKS-A-IEX-G01-ST02/03

99% emission bandwidth
8.0128 kHz

EKS-A-IEXA-G01-ST02/03/04

99% emission bandwidth
6.2179 kHz

© CTC advanced GmbH Page 15 of 26

Plot:

Plot 1: 99 % emission bandwidth EKS-A-IEX-G01-ST02/03

Date: 25.APR.2019 13:08:24

Plot 2: 99 % emission bandwidth EKS-A-IEXA-G01-ST02/03/04

Date: 25.APR.2019 13:13:08

© CTC advanced GmbH Page 16 of 26

11.2 Field strength of the fundamental

Measurement:

The maximum detected field strength for the carrier signal.

Measurement parameters			
Detector:	Quasi peak / peak (worst case)		
Resolution bandwidth:	9 kHz		
Video bandwidth:	≥ 3x RBW		
Trace mode:	Max hold		
Used test setup	See sub clause 6.2A		
Measurement uncertainty:	See sub clause 8		

Limit:

FCC & IC				
Frequency	Field strength	Measurement distance		
(MHz)	(dBµV/m)	(m)		
1.705 – 30.0	2400/F (kHz) (19.2 dBμV/m @ 125 kHz)	300		

Recalculation:

According to ANSI C63.10				
Frequency	Formula	Correction value		
125 kHz	$FS_{limit} = FS_{max} - 40 \log \left(\frac{d_{\textit{measure}}}{d_{\textit{measure}}}\right) - 20 \log \left(\frac{d_{\textit{limit}}}{d_{\textit{mearfield}}}\right)$ is the calculation of field strength at the limit distance, expressed in dBµV/m is the measured field strength, expressed in dBµV/m dnear field is the $\lambda 2\pi$ distance dneasure is the distance of the measurement point from EUT dlimit is the reference limit distance	-82.1 (from 3 to 300m)		

Result:

EKS-A-IEX-G01-ST02/03

Field strength of the fundamental					
Frequency	125 kHz				
Distance	@ 3 m @ 300 m				
Measured / calculated value (peak measurement)	43.0 dBμV/m	-39.1 dBμV/m			
Measured / calculated value (QP measurement)	42.2 dBμV/m	-39.9 dBμV/m			

EKS-A-IEXA-G01-ST02/03/04

Field strength of the fundamental					
Frequency	125 kHz				
Distance	@ 3 m @ 300 m				
Measured / calculated value (peak measurement)	41.6 dBμV/m	-40.5 dBμV/m			
Measured / calculated value (QP measurement)	40.8 dBμV/m	-41.3 dBμV/m			

© CTC advanced GmbH Page 17 of 26

11.3 Field strength of the harmonics and spurious

Measurement:

The maximum detected field strength for the harmonics and spurious.

Measurement parameters				
Detector:	Quasi peak / average or			
Detector.	peak (worst case – pre-scan)			
	F < 150 kHz: 200 Hz			
Resolution bandwidth:	150 kHz < F < 30 MHz: 9 kHz			
	30 MHz < F < 1 GHz: 120 kHz			
	F < 150 kHz: 1 kHz			
Video bandwidth:	150 kHz < F < 30 MHz: 100 kHz			
	30 MHz < F < 1 GHz: 300 kHz			
Trace mode:	Max hold			
Lload tost setup:	9 kHz to 30 MHz: see sub clause 6.2A			
Used test setup:	30 MHz to 1 GHz: see sub clause 6.1A			
Measurement uncertainty:	See sub clause 8			

Limit:

FCC & IC					
Frequency	Field strength	Measurement distance			
(MHz)	(dBµV/m)	(m)			
0.009 - 0.490	2400/F(kHz)	300			
0.490 - 1.705	24000/F(kHz)	30			
1.705 – 30	30 (29.5 dBµV/m)	30			
30 – 88	100 (40 dBμV/m)	3			
88 – 216	150 (43.5 dBµV/m)	3			
216 – 960	200 (46 dBμV/m)	3			

Result:

Detected emissions					
Frequency (MHz)	Detector	Resolution bandwidth (kHz)	Detected value		
All emissions were more than 10 dB below the limit. For emissions between 30 MHz and 1 GHz see result					

table below the plots.

© CTC advanced GmbH Page 18 of 26

Plots:

Plot 1: 9 kHz - 30 MHz, magnetic emissions EKS-A-IEXA-G01-ST02/03/04

© CTC advanced GmbH Page 19 of 26

Plot 2: 30 MHz – 1 GHz, vertical and horizontal polarization, valid for EKS-A-IEX-G01-ST02/03 and EKS-A-IEXA-G01-ST02/03/04

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
46.082	18.67	30.0	11.33	1000	120	103.0	V	180.0	15
47.986	20.27	30.0	9.73	1000	120	98.0	V	45.0	15
184.302	17.94	33.5	15.56	1000	120	98.0	V	45.0	12
414.706	35.54	36.0	0.46	1000	120	100.0	V	91.0	17
425.026	26.00	36.0	10.00	1000	120	100.0	V	0.0	17
599.036	29.45	36.0	6.55	1000	120	98.0	V	135.0	20

© CTC advanced GmbH Page 20 of 26

11.4 Conducted limits

Measurement:

Measurement of the conducted spurious emissions for an intentional radiator that is designed to be connected to the public utility (AC) power line.

Measurement parameters					
Detector:	Quasi peak / average or				
Detector.	peak (worst case – pre-scan)				
Resolution bandwidth:	F < 150 kHz: 200 Hz				
	F > 150 kHz: 9 kHz				
Video bandwidth:	F < 150 kHz: 1 kHz				
Video paridwidir.	F > 150 kHz: 100 kHz				
Trace mode:	Max hold				
Used test setup	See sub clause 6.3A				
Measurement uncertainty:	See sub clause 8				

Limit:

FCC & IC						
Frequency	Quasi-peak	Average				
(MHz)	(dBµV/m)	(dBµV/m)				
0.15 – 0.5	66 to 56*	56 to 46*				
0.5 – 5	56	46				
5 – 30.0	60	50				

Result: Valid for EKS-A-IEX-G01-ST02/03 and EKS-A-IEXA-G01-ST02/03/04

Detected emissions						
Frequency (MHz) Detector Resolution bandwidth (kHz) Detected value						
	See result table below the plots.					

© CTC advanced GmbH Page 21 of 26

Plots: Valid for EKS-A-IEX-G01-ST02/03 and EKS-A-IEXA-G01-ST02/03/04

Plot 1: 150 kHz to 30 MHz, phase line

Result:

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	(dBµV)
0.154900	45.44	20.30	65.733	35.16	20.70	55.860
0.469499	34.08	22.45	56.523	31.14	15.73	46.871
0.544395	35.91	20.09	56.000	33.77	12.23	46.000
0.624877	34.07	21.93	56.000	32.43	13.57	46.000
2.417449	32.18	23.82	56.000	30.13	15.87	46.000
3.431169	31.14	24.86	56.000	26.79	19.21	46.000
4.916811	33.48	22.52	56.000	29.20	16.80	46.000
4.977583	21.12	34.88	56.000	10.12	35.88	46.000
5.050218	21.20	38.80	60.000	10.16	39.84	50.000
11.976722	25.47	34.53	60.000	18.14	31.86	50.000
12.834675	29.85	30.15	60.000	25.40	24.60	50.000
12.910486	31.30	28.70	60.000	24.60	25.40	50.000

© CTC advanced GmbH Page 22 of 26

Plot 2: 150 kHz to 30 MHz, neutral line

Result:

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	(dBµV)
0.154414	49.23	16.53	65.759	40.31	15.56	55.874
0.230743	44.31	18.11	62.423	37.11	16.58	53.693
0.460779	36.63	20.04	56.679	33.63	13.49	47.121
0.541117	36.41	19.59	56.000	34.56	11.44	46.000
1.312079	35.59	20.41	56.000	33.00	13.00	46.000
1.390006	34.67	21.33	56.000	32.14	13.86	46.000
4.848440	21.19	34.81	56.000	10.17	35.83	46.000
4.922193	21.39	34.61	56.000	10.09	35.91	46.000
12.298433	21.68	38.32	60.000	12.97	37.03	50.000
12.459388	24.01	35.99	60.000	14.70	35.30	50.000
12.533116	27.07	32.93	60.000	13.93	36.07	50.000
13.145271	30.17	29.83	60.000	25.61	24.39	50.000

12 Observations

No observations except those reported with the single test cases have been made.

© CTC advanced GmbH Page 23 of 26

Annex A Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
ОС	Operating channel
ocw	Operating channel bandwidth
OBW	Occupied bandwidth
ООВ	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz

© CTC advanced GmbH Page 24 of 26

Annex B Document history

Version	Applied changes	Date of release
-/-	Initial release	2019-04-30
-A	Editorial corrections	2019-05-28

Annex C Accreditation Certificate - D-PL-12076-01-04

first page	last page
Dakks Deutsche Akkrediterungsstelle Deutsche Akkreditierungsstelle GmbH	Deutsche Akkreditierungsstelle GmbH
Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation	Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa-Alliee 52 Bundesaltee 130 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig
The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields: Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian	
Standards Standards	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Askreditierungsstelle GmbH (DAXS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation artisted by DAMS. The accreditation was granted pursuant to the Act on the Accreditation Body (AMSStelleG) of 31 July 2009 (Redired Law) scales to 12, 32(3) and the Regulation (EC) No 756/2008 of the furnpean Parlaments and of the Conformation of the Conformation (CO) (CO) (CO) (CO) (CO) (CO) (CO) (CO)
The accreditation certificate shall only apply in connection with the notice of accreditation of 11.01.2019 with the accreditation number D-PL-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 7 pages. Registration number of the certificate: D-PL-12076-01-04	Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.uropean-accreditation.org ILAC: www.lac.org IAF: www.laf.nu
The Annual and Advision	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-04.pdf

© CTC advanced GmbH Page 25 of 26

Annex D Accreditation Certificate - D-PL-12076-01-05

first page	last page
Deutsche Akkreditierungsstelle	
Deutsche Akkreditierungsstelle GmbH	Deutsche Akkreditierungsstelle GmbH
Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation	Office Berlin Office Frankfurt am Main Office Braunschweig Spitterimark: 10 Europa-Allee S.2 Bundesalee: 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig
The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken	
is competent under the terms of DIN EN ISO/IEC 17025-2005 to carry out tests in the following fields:	
Telecommunication (FCC Requirements)	
	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkrediterungsstelle GmbH (DAKAS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAKAS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) of 31 July 2009
	[Federal Law Gastett is 1, 2625] and the Regulation (EC) No 765/2086 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accrediation and market surveillance relating to the marketing of products (Official Journal of the European Union 1,238 of 9 July 2008, p. 30), DANGS is a signatory to the Multilateral Agreements for Multial Recognition of the European co-peration for Accreditation (EA), international Accreditation Forum (IAF) and International Laboratory Accreditation Cooperation (LICA). The signatories to these agreements recognise each other's accreditations.
The accreditation certificate shall only apply in connection with the notice of accreditation of 11.01.2019 with the accreditation number D-PL-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 5 pages.	The up-to-date state of membership can be retrieved from the following websites: EA: www.curupean-accreditation.org BAC: www.blac.org BAF: www.blac.org
Registration number of the certificate: D-PI-12076-01-05	
Frankfurt am Main, 11.01.2019 Opt Soft User Elimineritätöt Head of Division	g x
In required	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05.pdf

© CTC advanced GmbH Page 26 of 26