

LAB 5 FUNCTIONAL DEPENDENCIES

Created by Taylor Qin Don't distribute with others outside the tutorial!

TABLE OF CONTENTS

UPDATE ANOMALIES

- Insertion anomalies: the inability to add data to the database due to absence of other data.
- * Deletion anomalies: the unintended loss of data due to deletion of other data.
- Modification anomalies: a data inconsistency that results from data redundancy and a partial update

FUNCTIONAL DEPENDENCIES AND IMPLICATION

- FDs tell us "relationship between and among attributes"!
 - Components: Determinant & Dependant
- Implied FDs
 - Let Σ be a set of FDs. Check whether or not $\Sigma \models X \to W$ holds? We need to
 - ① Compute the set of all attributes that are dependent on X, which is called the closure of X under Σ and is denoted by X^+ .
 - $\Sigma \models X \to W \text{ holds iff } W \subseteq X^+.$

X -> W

EXERCICE

Consider a relation schema $R = \{A, B, C, D, E, F\}$ with the following set Σ of functional dependencies:

 $AB \rightarrow C$, $CF \rightarrow B$, $BC \rightarrow AD$ and $D \rightarrow E$.

Does AB \rightarrow D hold on any relation of R that satisfies Σ ?

EXERCICE

Consider a relation schema $R = \{A, B, C, D, E, F\}$ with the following set Σ of functional dependencies:

 $AB \rightarrow C$, $CF \rightarrow B$, $BC \rightarrow AD$ and $D \rightarrow E$.

Does $AB \rightarrow D$ hold on any relation of R that satisfies Σ ?

compute the closure of AB, i.e.,

(AB) +

= AB by AB \rightarrow AB

= ABC by AB \rightarrow C

= ABCD by $BC \rightarrow AD$ Yes!

(B)+

= B by B->B

C is not included in (B)+

B->C does not hold

IDENTIFYING FD

- * Analyse data requirements
- Analyse sample data

IDENTIFYING FD (ADR)

Consider the following:
HOTEL(hotelNo, hotelName, city) with PK
{hotelNo}
ROOM(roomNo, hotelNo, type, price) with PK
{roomNo, hotelNo}
GUEST(guestNo, guestName, guestAddress) with
PK {guestNo}
BOOKING(guestNo, hotelNo, date, roomNo) with
PK {?}

Which functional dependency does the following requirement imply?

R1 A booking can be made for one day only.

IDENTIFYING FD (ADR)

Which functional dependency does the following requirement imply?

R1 A booking (for one room in one hotel by one guest) can be made for one day only (==in one date).

{guestNo, hotelNo, roomNo} → {date}

guestNo	hotelNo	roomNo	Date
001	H1	R101	28/08/2020
001	H1	R101	29/08/2020

Does not hold! Same combination on the LHS does not imply RHS...

PRACTICE

Consider the following:
HOTEL(hotelNo, hotelName, city) with PK
{hotelNo}
ROOM(roomNo, hotelNo, type, price) with PK
{roomNo, hotelNo}
GUEST(guestNo, guestName, guestAddress) with
PK {guestNo}
BOOKING(guestNo, hotelNo, date, roomNo) with
PK {?}

Which functional dependency does the following requirement imply?

RX Only one guest can book a room in one hotel per day.

PRACTICE

Which functional dependency does the following requirement imply?

RX Only one guest can book a room in one hotel per day.

Same as R5: A room in any hotel can only be booked by one guest on the same date, i.e., no double-booking.

{roomNo, hotelNo, date} -> {guestNo}

101, A, 21/9, 668 101, A, 21/9, 669

IDENTIFYING FD

- * Analyse data requirements
- Analyse sample data

IDENTIFYING FD (ASD)

Identifying all FDs (depending on the table only)

Customer_ID	SALES	Price
1001	Laundry detergent	12
1007	Toothpaste	(3)
1010	Chlorine bleach	4
1024	Toothpaste	(3)

IDENTIFYING FD (ASD)

Customer_ID -> Product? Yes Customer_ID -> Price? Yes Product -> Price? Yes

What if the Customer_ID in row 1 is 1007 changed to 1007?

SALES			
Customer_ID	Product	Price	
1001	Laundry detergent	12	
1007	Toothpaste	3	
1010	Chlorine bleach	4	
1024	Toothpaste	3	

IDENTIFYING FD (ASD)

What if the Customer_ID in row 1 is changed to 1007?

Customer_ID -> Product? No (R1 & R2)

Customer_ID -> Price? No (R1 & R2)

Product -> Customer_ID? No (R2 & R4)

Product -> Price? Yes

Price -> Customer_ID? No (R2 & R4)

Price -> Product? Yes

Customer_ID, Product -> Price?

No need to check, Product -> Price

Customer_ID, Price -> Produce? No need

Product, Price -> Customer_ID? No (R2 & R4)

SALES			
Customer_ID	Product	Price	
1001	Laundry detergent	12	
1007	Toothpaste	3	
1010	Chlorine bleach	4	
1024	Toothpaste	3	

LAB EXERCISE

Lab 3.4 Identifying all FDs

(4) Consider the relation shown in Figure 3.

X	Y	Z
a_1	b	c_1
a_1	b	c_2
a_2	b	c_1
a_2	b	c_3

Figure 3: A relation for Exercise (2)

LAB EXERCISE

Lab 3.4 Identifying all FDs

 $\{Z->Y, X->Y\}$

(4) Consider the relation shown in Figure 3.

-			
X	Ý	\mathbf{Z}	
a_1	b	c_1	
a_1	b	c_2	
a_2	b	c_1	
a_2	b	<i>C</i> 3	C1

Figure 3: A relation for Exercise (2)

candidate key/minimal superkey/key

minimal != minimum

MMM

{ABC}

primary key

FINDING KEYS

superkeys, candidate keys, primary keys...

HOTEL(hotelNo, hotelName, city) with PK {hotelNo} ROOM(roomNo, hotelNo, type, price) with PK {roomNo, hotelNo}

GUEST(guestNo, guestName, guestAddress) with PK {questNo}

BOOKING(questNo, hotelNo, date, roomNo) with PK {?}

R1 A booking can be made for one day only. $\{guestNo, hotelNo, roomNo\} \rightarrow \{date\}$

RX Only one guest can book a room in one hotel per day. {roomNo, hotelNo, date} -> {guestNo}

What are the keys?

FINDING KEYS

FDs:

{guestNo, hotelNo, roomNo} → {date} {roomNo, hotelNo, date} -> {guestNo}

What are the keys?

Check (X) + for every subset of {guestNo, hotelNo, date, roomNo}.

compute the closure for all of its subset X+ = R -> X is a superkey check for the proper subset Y in X

$$Y + = R ?$$

if none of the subsets has Y + = R, then X = key.

FINDING KEYS

(A,B,C,D)

{A} {B} {C} {D} no!

{AB}(key!) {AC} {BC}(key!) {BD}(key!) {CD}

FDs:

{guestNo, hotelNo, roomNo} \rightarrow {date} {roomNo, hotelNo, date} -> {guestNo}

What are the keys?

Check (X) + for every subset of $\{gu \in No, hotel No, d \neq e, room No\}$.

{hotelNO} + = {hotelNO}
{hotelNO, roomNo} + = {hotelNO, roomNo}
{hotelNO, roomNo, guestNo} + = {guestNo, hotelNo, roomNo, date}
{roomNo, hotelNo, date} is also valid

prime attributes: all attributes occurring in a key

EQUIVALENCE OF FDS

 $\Sigma 1$ and $\Sigma 2$ are equivalent if $\Sigma 1*=\Sigma 2*$.

Lab Q6: Consider a relation R = {A, B, C, D}.

Exercise:

$$\Sigma 1 = \{A \rightarrow C, AC \rightarrow B\} \text{ and } \Sigma 2 = \{A \rightarrow B, A \rightarrow C\}$$

Sig_1 -> Sig_2

1. A->B holds in sig_1

2. A->C holds in sig_1

Sig_2 -> Sig1

1. A->C holds in sig_2

2. AC->B holds in sig_2

(AC)+ = ABC (by A->B)

EQUIVALENCE OF FDS

MMM

 $\Sigma 1$ and $\Sigma 2$ are equivalent if $\Sigma 1*=\Sigma 2*$.

Lab Q6: Consider a relation R = {A, B, C, D}.

Exercise:

$$\Sigma 1 = \{A \rightarrow C, AC \rightarrow B\} \text{ and } \Sigma 2 = \{A \rightarrow B, A \rightarrow C\}$$

$$\Sigma1* = {A \rightarrow C, AC \rightarrow B, A \rightarrow B},$$

$$\Sigma$$
2* = {A \rightarrow B, A \rightarrow C, AC \rightarrow B}. Yes!

MINIMAL COVER

Steps:

- 1. start from Σ
- 2. check whether all the FDs in Σ have only one attribute on the right hand side
- 3. check whether all the FDs in Σ have have minimized FDs on the left hand side
- 4. look for a redundant FD

MINIMAL COVER

Example: $\Sigma = \{B \rightarrow A, D \rightarrow A, AB \rightarrow D\}$

A->XY

1. start from Σ

 $\Sigma m = \{B \rightarrow A, D \rightarrow A, AB \rightarrow D\}$

A->X, A->Y

2. check whether all the FDs in Σ have only one attribute on the right hand side $\Sigma m = \{B \rightarrow A, D \rightarrow A, AB \rightarrow D\}$

Check whether all the FDs in Σ have have minimized FDs on the left hand side
For AB → D, can we convert it into A → D?
NO!
can we convert it into B → D?
YES! B → AB → ABD
Σm = {B → A, D → A, B → D}

4. look for a redundant FD

MINIMAL COVER

Example: $\Sigma = \{B \rightarrow A, D \rightarrow A, AB \rightarrow D\}$

- 1. start from Σ
- 2. check whether all the FDs in Σ have only one attribute on the right hand side
- 3. Check whether all the FDs in Σ have have minimized FDs on the left hand side $\Sigma m = \{B \rightarrow A, D \rightarrow A, B \rightarrow D\}$
- 4. look for a redundant FD $B \rightarrow A$ redundant? YES! $B \rightarrow BD \rightarrow BDA$ $\Sigma m = \{D \rightarrow A, B \rightarrow D\}$

PRACTICE

R = {A, B, C, D}

$$\Sigma$$
 = {A \rightarrow B, AB \rightarrow CD, A \rightarrow D}

PRACTICE

R = {A, B, C, D}

$$\Sigma$$
 = {A \rightarrow B, AB \rightarrow CD, A \rightarrow D}

- 1. start from Σ $\Sigma m = \{A \rightarrow B, AB \rightarrow CD, A \rightarrow D\}$
- 2. check whether all the FDs in Σ have only one attribute on the right hand side $\Sigma m = \{A \rightarrow B, AB \rightarrow C, AB \rightarrow D, A \rightarrow D\}$
- Check whether all the FDs in Σ have have minimized FDs on the left hand side
 For AB → C, can we convert it into A → C?
 YES! A → AB → ABC.
 Same for AB → D.
 Σm = {A → B, A → C, A → D, A → D}
- 4. look for a redundant FD $\Sigma m = \{A \rightarrow B, A \rightarrow C, A \rightarrow D\}$

$\{A->B, A->C\}$

MOVE ONTO LAB EXERCISE

Ask in the channel if you have any questions!

Note: for ER diagram in A2, if you are using other software, you must follow the terms in TerraER.

