Pontryagin Duality and Self-Dual Groups

Dip Saha IIT Palakkad

May, 2025

contents

- Character group or Dual group of a locally compact abelian group
- Properties of Character group
- Pontryagin Duality
- The correspondence between dual groups of subgroups and quotient groups of the dual
- Second Self Dual group
 Self Dual group
- Solenoid and their Dual

Recall

Theorem: G be a topological group,

 $\mathscr{U} = \{U : U \text{ is open } \& e \in U\}$ is a neighborhood system at e, then it satisfies following conditions,

- **1.** for every $U \in \mathcal{U}$, there is an $V \in \mathcal{U}$ such that $V^2 \in \mathcal{U}$.
- **2.** for every $U \in \mathcal{U}$, there is an $V \in \mathcal{U}$ such that $V^{-1} \in \mathcal{U}$.
- **3.** for every $U \in \mathcal{U}$ and for every $x \in U$, there is an $V \in \mathcal{U}$ such that $xV \subset U$.
- **4.** for every $U \in \mathcal{U}$ and $x \in G$, there is an $V \in \mathcal{U}$ such that $xVx^{-1} \subset U$.

Theorem: Let G be a group with identity e. If $\mathscr U$ be a collection of subsets of G, each containing e, satisfying the conditions given above and for every U_1, U_2 in $\mathscr U$ there exists U_3 in $\mathscr U$ such that $U_3 \subseteq U_1 \cap U_2$. Then the collection $\mathscr B = \{xU: x \in G \text{ and } U \in \mathscr U\}$ forms a basis for a topology with respect to which G forms a topological group and $\mathscr U$ is the neighborhood system at e.

Characters and Dual Groups

Definition

Let G be an locally compact abelian topological group. Every continuous homomorphism from G to $\mathbb T$ is called character of the group G.

Characters and Dual Groups

Definition

Let G be an locally compact abelian topological group. Every continuous homomorphism from G to $\mathbb T$ is called character of the group G.

Where
$$\mathbb{T} = \{z : |z| = 1\}.$$

$$\widehat{G} = \{ \chi : G \to \mathbb{T} : \chi(x_1 x_2) = \chi(x_1) \chi(x_2) \text{ and } \chi \text{ is continuous } \}.$$

Multiplication on \widehat{G} is defined by $\chi_1\chi_2(x) = \chi_1(x)\chi_2(x)$.

With respect to this multiplication operation \widehat{G} forms an abelian group. For any, $\chi \in \widehat{G}$, $\chi^{-1}(x) = \overline{\chi(x)}$ where, $x \in G$ and the identity character is defined as 1. The character group \widehat{G} is a subspace of $C(G,\mathbb{T})$ and so it derives compact open topology.

$\mathsf{Theorem}$

 \widehat{G} is a topological group with respect to the topology generated by $\Big\{\chi \cdot \mathsf{N}(\mathsf{K}, \mathsf{V}_{\epsilon}) : \mathsf{N}(\mathsf{K}, \mathsf{V}_{\epsilon}) \in \mathscr{U} \text{ and } \chi \in \widehat{\mathsf{G}}\Big\}.$

Where,
$$\epsilon > 0$$
, $V_{\epsilon} = \{z \in \mathbb{T} : |z - 1| < \epsilon\}$,

$$N(K, V_{\epsilon}) = \{ \chi \in \widehat{G} : |\chi(x) - 1| < \epsilon \text{ for all } x \in K \}.$$

K is a compact set in \widehat{G} and

$$\mathscr{U} = \{N(K, V_{\epsilon}) : K \text{ runs over compact subsets of } \widehat{G} \text{ and } \epsilon > 0\}.$$

Properties of Character group

Theorem

If G is locally compact abelian group, then \widehat{G} forms a locally compact abelian group.

Corollary

- **1** If G is compact then \widehat{G} is discrete.
- ② If G is discrete then \widehat{G} is compact.

Theorem

If G is locally compact abelian and second countable, then \widehat{G} is also second countable.

Theorem

Suppose that G_1 and G_2 are locally compact and 2^{nd} -countable topological groups. Then any surjective homomorphism is an open map.

Examples

- **1** The character group of \mathbb{Z} is \mathbb{T} .
- **2** The character group of \mathbb{R} is \mathbb{R} itself.

Pontryagin Duality

For an fixed x in G, where G is locally compact abelian group and, \widehat{G} is the character group of G.

Define a map, $\Gamma_x : \widehat{G} \to \mathbb{T}$ by $\Gamma_x(\chi) = \chi(x)$, for $\chi \in \widehat{G}$.

Proposition

- The above map Γ_{\times} is well defined and continuous homomorphism from \widehat{G} to \mathbb{T} .
- ② Define a map $\Phi: G \to \widehat{\widehat{G}}$ by $\Phi(x) = \Gamma_x$ for x in G, is a continuous homomorphism.

Theorem

Let G be compactly generated, locally compact second countable abelian group, then the mapping $\Phi:G\to \widehat{\widehat{G}}$ is a topological isomorphism.

The Correspondence between dual group of subgroups and quotient groups of the dual

Definition

Let G be a locally compact abelian group with character group \widehat{G} . Let H be an arbitrary non-empty subset of G. $A(\widehat{G},H)$ is the subset of \widehat{G} consisting of all $\chi \in \widehat{G}$ such that $\chi(h)=1$ for all h in H. $A(\widehat{G},H)$ is called the *annihilator* of H in \widehat{G} .

Theorem

Let G be a locally compact abelian group with character group \widehat{G} , and let H be a closed subgroup of G. Let Y be the character group of the locally compact abelian group G/H. Then the group Y is topologically isomorphic with the group Y.

Example of Self Dual group

Let ${\mathfrak a}$ be a fixed but arbitrary double infinite sequence of positive integers,

$$\mathfrak{a} = \{\ldots, a_{-2}, a_{-1}, a_0, a_1, a_2, \ldots\}, \text{ where each } a_n > 1.$$

Example of Self Dual group

Let $\mathfrak a$ be a fixed but arbitrary double infinite sequence of positive integers,

$$\mathfrak{a} = \{\ldots, a_{-2}, a_{-1}, a_0, a_1, a_2, \ldots\}, \text{ where each } a_n > 1.$$

Consider the Cartesian product $\prod_{n\in\mathbb{Z}}\{0,1,\ldots,a_n-1\}=\prod_{n\in\mathbb{Z}}\mathbb{Z}_{a_n}.$

$$\Omega_{\mathfrak{a}} = \{x \in \prod_{n \in \mathbb{Z}} \mathbb{Z}_{a_n} : x_n = 0, \ \forall n < n_0\}, \ \text{where} \ \ n_0 \ \ \text{depends on} \ \ x.$$

We define **addition** on $\Omega_{\mathfrak{a}}$ as follows :

Example of Self Dual group

Let $\mathfrak a$ be a fixed but arbitrary double infinite sequence of positive integers,

$$\mathfrak{a} = \{\ldots, a_{-2}, a_{-1}, a_0, a_1, a_2, \ldots\}, \text{ where each } a_n > 1.$$

Consider the Cartesian product $\prod_{n\in\mathbb{Z}}\{0,1,\ldots,a_n-1\}=\prod_{n\in\mathbb{Z}}\mathbb{Z}_{a_n}.$

$$\Omega_{\mathfrak{a}} = \{x \in \prod_{n \in \mathbb{Z}} \mathbb{Z}_{a_n} : x_n = 0, \ \forall n < n_0\}, \text{ where } n_0 \text{ depends on } x.$$

We define **addition** on $\Omega_{\mathfrak{a}}$ as follows :

Let, $x, y \in \Omega_{\mathfrak{a}}$ and let n_0 and m_0 are the least integer such that $x_{n_0} \neq 0$ and $y_{m_0} \neq 0$.

Let $p_0 = \min\{n_0, m_0\}$ and $z_n = 0$ for all $n < p_0$.

Then $x_{p_0}+y_{p_0}=a_{p_0}t_{p_0}+z_{p_0}$, where $z_{p_0}\in\{0,1\ldots,a_{p_0}-1\}$ and t_{p_0} is a integer.

Then the next sum is, $x_{p_0+1}+y_{p_0+1}+t_{p_0}=a_{p_0+1}t_{p_0+1}+z_{p_0+1},$ where $z_{p_0+1}\in\{0,1\ldots,a_{p_0+1}-1\}$ and t_{p_0+1} is an integer.

Proceeding similar manner the get the sum of x+y to be the sequence $z=(z_n)$ in $\Omega_{\mathfrak{a}}$.

Define, $0+x=x+0=x, \ \forall \ x\in\Omega_{\mathfrak{a}}$, where 0 is the sequence in $\Omega_{\mathfrak{a}}$, which is identically zero.

Definition

 $\Omega_{\mathfrak{a}}$ with the above addition is called $\mathfrak{a}\text{-adic}$ numbers. The subset

$$\Delta_0 = \{ x \in \Omega_{\mathfrak{a}} : x_n = 0, \ \forall n < 0 \}$$

of $\Omega_{\mathfrak{a}}$, with respect to the addition is called $\mathfrak{a}\text{-adic}$ integers.

If all the integers a_n are equal to some fixed integer r>1, we write $\Omega_{\mathfrak{r}}$ and $\Delta_{\mathfrak{r}}$ and called \mathfrak{r} -adic numbers and \mathfrak{r} -adic integers.

Theorem

The \mathfrak{a} -adic numbers $(\Omega_{\mathfrak{a}})$ is an ablian group with respect to the addition and Δ_0 is a subgroup of $\Omega_{\mathfrak{a}}$.

Definition

For each integer k, let $\Lambda_k = \{x \in \Omega_{\mathfrak{a}} : x_n = 0 \ \forall n < k\}$. For distinct elements $x,y \in \Omega_{\mathfrak{a}}$, let $\sigma(x,y) = \frac{1}{2^m}$, where m is the least integer for which $x_m \neq y_m$ and for all $x \in \Omega_{\mathfrak{a}}$, and let $\sigma(x,x) = 0$.

Theorem

The collection $\mathscr{U} = \{\dots, \Lambda_{-k}, \dots, \Lambda_{-1}, \Lambda_0, \Lambda_1, \dots, \Lambda_k, \dots\}$ satisfy the conditions of neighborhood system. Then they defined a topology on $\Omega_{\mathfrak{a}}$ under which $\Omega_{\mathfrak{a}}$ is an topological group. The sets Λ_k are compact open subgroups of $\Omega_{\mathfrak{a}}$. $\Omega_{\mathfrak{a}}$ is Hausdorff, locally compact and σ -compact and totally disconnected. The function σ is an invariant metric on $\Omega_{\mathfrak{a}}$.

Lemma

Let, u be an element of Λ_k such that $u_n = 0 \ \forall n \neq k$ and $u_k = 1$. Then the set, $\{lu\}_{l=-\infty}^{\infty}$ is a dense subgroup of Λ_k .

Theorem

The character group of $\Omega_{\mathfrak{a}}$ is topologically isomorphic with $\Omega_{\mathfrak{a}^*}$, where $a_n^* = a_{-n}$ for all $n \in \mathbb{Z}$.

The character group of $\Omega_{\mathfrak{r}}$ is itself.

Theorem

The character group of \mathfrak{a} -adic integers (Δ_0) is isomorphic to the group $\mathbb{Z}(\mathfrak{a}^{\infty})$.

Where,
$$\mathbb{Z}(\mathfrak{a}^{\infty}) = \{\exp(2\pi i (\frac{1}{a_0 a_1 \dots a_n})) : I \in \mathbb{Z}, n \in \mathbb{N}\}.$$

Solenoid and their Dual

Definition

Consider $\mathbb{R} \times \Delta_0$, the additive locally compact group. $u=(u_n)$ be an element in Δ_0 such that $u_n=0$, for all $n \neq 0$ and $u_0=1$. Let $B=\{(n,nu)\}_{n=-\infty}^\infty$ be the subgroup of $\mathbb{R} \times \Delta_0$. Consider the quotient group $\mathbb{R} \times \Delta_0/B$, we call this group \mathfrak{a} -adic solenoid and denote it as $\Sigma_{\mathfrak{a}}$.

Theorem

The group Σ_{α} is compact, connected, abelian group containing a dense one-parameter subgroup.

Theorem

The dual group of \mathfrak{a} -adic solenoid $(\Sigma_{\mathfrak{a}})$ is the discrete additive group of rational (\mathbb{Q}_d) .

Where
$$\mathbb{Q}_d = \{\frac{m}{a_0 a_1 \dots a_n}: n = 0, 1, 2, \dots; m \in \mathbb{Z}\}.$$

References

- George McCarty, *Topology: An Introduction with Application to Topological Groups*, Dover Publications, 1988.
- 2 L. Pontryagin, *Topological Groups*, Princeton University Press, 1946.
- Edwin Hewitt and Kenneth A. Ross, Abstract Harmonic Analysis, Volume I, Springer, 1963.
- James R. Munkres, *Topology*, 2nd Edition, Prentice Hall, 2000.

Thank You!

