# Formula Tables Signals and Transforms

October 19, 2021

## 1 Continuous Time Fourier Series

Trigonometric Continuous Time Fourier Series

$$x(t) = a_0 + \sum_{n=1}^{\infty} \left[ a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t) \right]$$

with

$$a_0 = \frac{1}{T_0} \int_{(T_0)} x(t) dt$$

$$a_n = \frac{2}{T_0} \int_{(T_0)} x(t) \cos(n\omega_0 t) dt$$

$$b_n = \frac{2}{T_0} \int_{(T_0)} x(t) \sin(n\omega_0 t) dt$$

## **Exponential Continuous Time Fourier Series**

$$x(t) = \sum_{n=-\infty}^{\infty} c_n e^{j n\omega_0 t} \quad \text{with} \quad c_n = \frac{1}{T_0} \int_{(T_0)} x(t) e^{-j n\omega_0 t} dt$$

## 2 Continuous Time Fourier Transform

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt \quad \text{and} \quad x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega)e^{j\omega t} d\omega$$

**Table 1.** Properties of the continuous time Fourier transform.

| Property           | Time Domain                                         | Frequency Domain                                                   |
|--------------------|-----------------------------------------------------|--------------------------------------------------------------------|
| Symmetry           | Real-valued                                         | $X(-\omega) = X^*(\omega)$                                         |
| Linearity          | $\alpha x_1(t) + \beta x_2(t)$                      | $\alpha X_1(\omega) + \beta X_2(\omega)$                           |
| Duality            | X(t)                                                | $2\pi x(-\omega)$                                                  |
| Scaling            | x(at)                                               | $\frac{1}{ a }X\left(\frac{\omega}{a}\right)$                      |
| Time shift         | $x(t-\Delta t)$                                     | $e^{-\mathrm{j}\omega\Delta t}X(\omega)$                           |
| Frequency shift    | $x(t)e^{\mathrm{j}\omega_0 t}$                      | $X(\omega-\omega_0)$                                               |
| Differentiation    | $\frac{\mathrm{d}^n x(t)}{\mathrm{d}t^n}$           | $(j\omega)^n X(\omega)$                                            |
| Integration        | $\int_{-\infty}^{t} x(\tau)  \mathrm{d}\tau$        | $\frac{1}{\mathrm{i}\omega}X(\omega) + \pi X(0)\delta(\omega)$     |
| Convolution        | $x_1(t) * x_2(t)$                                   | $X_1(\omega)X_2(\omega)$                                           |
| Multiplication     | $x_1(t)x_2(t)$                                      | $\frac{1}{2\pi}X_1(\omega)*X_2(\omega)$                            |
| Parseval's theorem | $E = \int_{-\infty}^{\infty}  x(t) ^2  \mathrm{d}t$ | $E = \frac{1}{2\pi} \int_{-\infty}^{\infty}  X(\omega) ^2 d\omega$ |

**Table 2.** Continuous time Fourier transforms of elementary signals.

|                                                 | v G                                                                         |
|-------------------------------------------------|-----------------------------------------------------------------------------|
| Time Domain $x(t)$                              | Fourier Transform $X(\omega)$                                               |
| Periodic signals                                |                                                                             |
| $T_0$ -periodic $(\omega_0 = \frac{2\pi}{T_0})$ | $X(\omega) = 2\pi \sum_{n=-\infty}^{\infty} c_n \delta(\omega - n\omega_0)$ |
|                                                 | with $c_n = \frac{1}{T_0} \int_0^{T_0} x(t)e^{-j n\omega_0 t} dt$           |

## Constant



$$X(\omega) = 2\pi\delta(\omega)$$

$$X(\omega) = 2\pi\delta(\omega)$$

$$2\pi$$

## Dirac delta function

$$x(t) = \delta(t)$$

$$x(t) = \delta(t)$$
1

$$X(\omega) = 1$$

$$X(\omega) = 1$$

$$\downarrow 0$$

$$\downarrow 0$$

$$\downarrow \omega$$

# ${\bf Rectangular\ pulse}$

$$x(t) = \operatorname{rect}\left(\frac{t}{T_0}\right)$$

$$x(t) = \operatorname{rect}\left(\frac{t}{T_0}\right)$$

$$-\frac{T_0}{2}$$

$$\frac{T_0}{2}$$

$$X(\omega) = T_0 \operatorname{sinc}\left(\frac{\omega T_0}{2\pi}\right)$$

$$X(\omega) = T_0 \operatorname{sinc}\left(\frac{\omega T_0}{2\pi}\right)$$

$$T_0$$

$$-3\frac{2\pi}{T_0} 2\frac{2\pi}{T_0} 2\frac{2\pi}{T_0} \frac{2\pi}{T_0} 3\frac{2\pi}{T_0}$$

**Table 2.** Continuous time Fourier transforms of elementary signals (cont'd.).

| Time Domain $x(t)$ | Fourier Transform $X(\omega)$ |
|--------------------|-------------------------------|
| G: C               |                               |

# Sinc function

$$x(t) = \operatorname{sinc}\left(\frac{t}{T_0}\right)$$

$$x(t) = \operatorname{sinc}\left(\frac{t}{T_0}\right)$$

$$-2T_0 - T_0 \qquad T_0 \qquad 2T_0 \qquad t$$

$$X(\omega) = T_0 \operatorname{rect}\left(\frac{\omega T_0}{2\pi}\right)$$

$$X(\omega) = T_0 \operatorname{rect}\left(\frac{\omega T_0}{2\pi}\right)$$

$$T_0 \longrightarrow \omega$$

Sinc function (alternative parametrization)

$$x(t) = \frac{\omega_0}{\pi} \operatorname{sinc}\left(\frac{\omega_0 t}{\pi}\right)$$

$$x(t) = \frac{\omega_0}{\pi} \operatorname{sinc}\left(\frac{\omega_0 t}{\pi}\right)$$

$$-2\frac{\pi}{\omega_0} - \frac{\pi}{\omega_0}$$

$$\frac{\pi}{\omega_0}$$

$$\frac{\pi}{\omega_0}$$

$$\frac{\pi}{\omega_0}$$



## Exponential

$$x(t) = e^{-at}u(t) \ (a > 0)$$

$$x(t) = e^{-at}u(t)$$
1



**Table 2.** Continuous time Fourier transforms of elementary signals (cont'd.).

## Time Domain x(t)

# Fourier Transform $X(\omega)$

## Multiple real-valued poles

$$x(t) = \frac{1}{(n-1)!} t^{n-1} e^{-at} u(t)$$

$$(a > 0, n = 1, 2, \dots)$$

$$x(t) = \frac{1}{(n-1)!} t^{n-1} e^{-at} u(t)$$



$$X(\omega) = \frac{1}{(a + j\omega)^n}$$



## Sine

$$x(t) = \sin(\omega_0 t)$$



$$X(\omega) = j \pi \left[ \delta(\omega + \omega_0) - \delta(\omega - \omega_0) \right]$$
$$|X(\omega)| = \pi \left[ \delta(\omega + \omega_0) + \delta(\omega - \omega_0) \right]$$



#### Cosine

$$x(t) = \cos(\omega_0 t)$$



$$X(\omega) = \pi \left[ \delta(\omega + \omega_0) + \delta(\omega - \omega_0) \right]$$
  
$$X(\omega) = \pi \left[ \delta(\omega + \omega_0) + \delta(\omega - \omega_0) \right]$$



# 3 Laplace Transform

$$X(s) = \int_0^\infty x(t)e^{-st} dt$$
 and  $x(t) = \frac{1}{2\pi j} \int_{\sigma - j\omega}^{\sigma + j\omega} X(s)e^{st} ds$ 

**Table 3.** Properties of the Laplace transform.

| Property                             | Time Domain                               | Laplace Domain                                                |
|--------------------------------------|-------------------------------------------|---------------------------------------------------------------|
| Linearity                            | $\alpha x_1(t) + \beta x_2(t)$            | $\alpha X_1(s) + \beta X_2(s)$                                |
| Scaling $(a > 0)$                    | x(at)                                     | $\frac{1}{a}X\left(\frac{s}{a}\right)$                        |
| Time shift                           | $x(t - \Delta t)$                         | $e^{-s\Delta t}X(s)$                                          |
| s-domain shift                       | $x(t)e^{at}$                              | X(s-a)                                                        |
| Differentiation (first order)        | $\frac{\mathrm{d}x(t)}{\mathrm{d}t}$      | sX(s) - x(0)                                                  |
| Differentiation $(n\text{th order})$ | $\frac{\mathrm{d}^n x(t)}{\mathrm{d}t^n}$ | $s^{n}X(s)-s^{n-1}x(0)-s^{n-2}x^{(1)}(0)-\cdots-x^{(n-1)}(0)$ |
| Integration                          | $\int_0^t x(\tau)  \mathrm{d}\tau$        | $\frac{1}{s}X(s)$                                             |
| Convolution                          | $x_1(t) * x_2(t)$                         | $X_1(s)X_2(s)$                                                |
| Multiplication                       | $x_1(t)x_2(t)$                            | $\frac{1}{2\pi j} X_1(s) * X_2(s)$                            |
| Initial value<br>theorem             | $\lim_{t \to 0} x(t)$                     | $\lim_{s \to \infty} sX(s)$                                   |
| Final value theorem                  | $\lim_{t\to\infty}x(t)$                   | $\lim_{s \to 0} sX(s)$                                        |

**Table 4.** Table of unilateral Laplace transform pairs for causal signals x(t) (x(t) = 0 for t < 0).

| Time domain $x(t)$                                     | Laplace transform $X(s)$                       | ROC                           |
|--------------------------------------------------------|------------------------------------------------|-------------------------------|
| Dirac delta function $x(t) = \delta(t)$                | X(s) = 1                                       | All s                         |
| Unit step $x(t) = u(t)$                                | $X(s) = \frac{1}{s}$                           | $\operatorname{Re}\{s\} > 0$  |
| Exponential $x(t) = e^{-at}u(t)$                       | $X(s) = \frac{1}{a+s}$                         | $\operatorname{Re}\{s\} > -a$ |
| Ramp $x(t) = tu(t)$                                    | $X(s) = \frac{1}{s^2}$                         | $\operatorname{Re}\{s\} > 0$  |
| Higher order ramp $x(t) = t^n u(t)$                    | $X(s) = \frac{n!}{s^{n+1}}$                    | $\operatorname{Re}\{s\} > 0$  |
| Cosine $x(t) = \cos(\omega_0 t) u(t)$                  | $X(s) = \frac{s}{\omega_0^2 + s^2}$            | $\operatorname{Re}\{s\} > 0$  |
| Sine $x(t) = \sin(\omega_0 t) u(t)$                    | $X(s) = \frac{\omega_0}{\omega_0^2 + s^2}$     | $\operatorname{Re}\{s\} > 0$  |
| Decaying cosine $x(t) = e^{-at} \cos(\omega_0 t) u(t)$ | $X(s) = \frac{a+s}{(a+s)^2 + \omega_0^2}$      | $\operatorname{Re}\{s\} > -a$ |
| Decaying sine $x(t) = e^{-at} \sin(\omega_0 t) u(t)$   | $X(s) = \frac{\omega_0}{(a+s)^2 + \omega_0^2}$ | $\operatorname{Re}\{s\} > -a$ |

## 4 Discrete Time Fourier Series

$$x[k] = \sum_{n=0}^{K_0 - 1} c_n e^{j n\Omega_0 k}$$
 with  $c_n = \frac{1}{K_0} \sum_{k=0}^{K_0 - 1} x[k] e^{-j n\Omega_0 k}$ 

# 5 Discrete Time Fourier Transform

$$X(\Omega) = \sum_{k=-\infty}^{\infty} x[k]e^{-j\Omega k}$$
 and  $x[k] = \frac{1}{2\pi} \int_{0}^{2\pi} X(\Omega)e^{j\Omega k} d\Omega$ 

**Table 5.** Properties of the discrete time Fourier transform.

| Property                         | Time Domain                    | Frequency Domain                                                                                    |
|----------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------|
| Periodicity                      | -                              | $X(\Omega) = X(\Omega + 2\pi)$                                                                      |
| Symmetry                         | Real-valued                    | $X(-\Omega) = X^*(\Omega)$                                                                          |
| Linearity                        | $\alpha x_1[k] + \beta x_2[k]$ | $\alpha X_1(\Omega) + \beta X_2(\Omega)$                                                            |
| Time shifting $(k_0:$ integer)   | $x[k-k_0]$                     | $e^{-\mathrm{j}\Omega k_0}X(\Omega)$                                                                |
| Time differencing                | x[k] - x[k-1]                  | $\left(1 - e^{-j\Omega}\right) X(\Omega)$                                                           |
| Frequency domain differentiation | $-\operatorname{j} kx[k]$      | $rac{\mathrm{d}X(\Omega)}{\mathrm{d}\Omega}$                                                       |
| Time summation                   | $\sum_{n=-\infty}^{k} x[n]$    | $\frac{X(\Omega)}{1 - e^{-j\Omega}} + \pi X(0) \sum_{m = -\infty}^{\infty} \delta(\Omega - 2\pi m)$ |
| Convolution                      | $x_1[k] * x_2[k]$              | $X_1(\Omega)X_2(\Omega)$                                                                            |
| ${\rm Multiplication}^{\dagger}$ | $x_1[k]x_2[k]$                 | $\frac{1}{2\pi}X_1(\Omega)*X_2(\Omega)$                                                             |

**Table 5.** Properties of the discrete time Fourier transform (cont'd.).

| Property           |                                            | Frequency Domain                                         |
|--------------------|--------------------------------------------|----------------------------------------------------------|
| Parseval's theorem | $E = \sum_{k = -\infty}^{\infty}  x[k] ^2$ | $E = \frac{1}{2\pi} \int_0^{2\pi}  X(\Omega) ^2 d\Omega$ |

<sup>&</sup>lt;sup>†</sup>The convolution is on the interval  $0...2\pi$ .

**Table 6.** Discrete time Fourier transforms of elementary signals.

| Time Domain $x[k]$                                    | Fourier Transform $X(\Omega)$                                               |
|-------------------------------------------------------|-----------------------------------------------------------------------------|
| Periodic signals                                      |                                                                             |
| $K_0$ -periodic $(\Omega_0 = \frac{2\pi}{K_0})$       | $X(\Omega) = 2\pi \sum_{n=-\infty}^{\infty} c_n \delta(\Omega - n\Omega_0)$ |
|                                                       | with $c_n = \frac{1}{K_0} \sum_{k=0}^{K_0 - 1} x[k] e^{-j n\Omega_0 k}$     |
| Constant                                              |                                                                             |
| x[k] = 1                                              | $X(\Omega) = 2\pi \sum_{m=-\infty}^{\infty} \delta(\Omega - 2\pi m)$        |
| x[k] = 1                                              | $X(\Omega)$                                                                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                       |
| Unit impulse $x[k] = \delta[k]$                       | $X(\Omega) = 1$                                                             |
| $x[k] = \delta[k]$                                    | $X(\Omega)$                                                                 |
| 1                                                     | 1 1                                                                         |
| k $-10$ $-5$ $5$ $10$                                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                        |

**Table 6.** Discrete time Fourier transforms of elementary signals (cont'd.).

| Time Domain $x[k]$                                    | Fourier Transform $X(\Omega)$                                   |
|-------------------------------------------------------|-----------------------------------------------------------------|
| Unit step                                             |                                                                 |
| x[k] = u[k]                                           | $X(\Omega) = \pi \sum_{m=0}^{\infty} \delta(\Omega - 2\pi m) +$ |
|                                                       | $\frac{1}{1 - e^{-j\Omega}}$                                    |
| x[k] = u[k]                                           | $ X(\Omega) $                                                   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$           |
| -10 $-5$ 5 10                                         | $-2\pi$ $-\pi$ $\pi$ $2\pi$                                     |

# Rectangular pulse

$$x[k] = \operatorname{rect}\left[\frac{k}{2N+1}\right]$$

$$x[k] = \operatorname{rect}\left[\frac{k}{2N+1}\right]$$

$$-N$$

$$N$$

$$X(\Omega) = \frac{\sin\left(\frac{(2N+1)\Omega}{2}\right)}{\sin\left(\frac{\Omega}{2}\right)}$$



## Sinc function

$$x[k] = \operatorname{sinc}\left[\frac{k}{K_0}\right]$$

$$x[k] = \operatorname{sinc}\left[\frac{k}{K_0}\right]$$

$$-2K_0 - K_0 \qquad K_0 \qquad 2K_0$$

$$X(\Omega) = K_0 \sum_{m} \operatorname{rect}\left(\frac{\Omega - 2\pi m}{\frac{2\pi}{K_0}}\right)$$



**Table 6.** Discrete time Fourier transforms of elementary signals (cont'd.).

## Time Domain x[k]

## Fourier Transform $X(\Omega)$

## Sinc function (alternative parametrization)

$$x[k] = \frac{\Omega_0}{\pi} \operatorname{sinc}\left[\frac{\Omega_0 k}{\pi}\right]$$
$$x[k] = \frac{\Omega_0}{\pi} \operatorname{sinc}\left[\frac{\Omega_0 k}{\pi}\right]$$

$$X(\Omega) = \sum_{m} \operatorname{rect}\left(\frac{\Omega - 2\pi m}{2\Omega_0}\right)$$

$$X(\Omega)$$





## Exponential

$$x[k] = a^{k}u[n] (|a| < 1)$$

$$x[k] = rect \left[\frac{k}{2N+1}\right]$$

$$1$$

$$-10$$

$$-5$$

$$5$$

$$10$$

$$X(\Omega) = \frac{1}{1 - ae^{-j\Omega}}$$



## Sine

$$x[k] = \sin(\Omega_0 k)$$







#### Cosine

$$x[k] = \cos(\Omega_0 k)$$

$$X(\Omega) = \pi \sum_{m=-\infty}^{\infty} [\delta(\Omega + \Omega_0 - 2\pi m) + \delta(\Omega - \Omega_0 - 2\pi m)]$$

**Table 6.** Discrete time Fourier transforms of elementary signals (cont'd.).

| Time Domain $x[k]$                               | Fourier Transform $X(\Omega)$                                                       |
|--------------------------------------------------|-------------------------------------------------------------------------------------|
| $x[k] = \cos(\Omega_0 k)$ $-K_0 \qquad \qquad k$ | $X(\Omega)$ $-2\pi \qquad -\pi \qquad -\Omega_0 \; \Omega_0 \qquad \pi \qquad 2\pi$ |

### 6 Discrete Fourier Transform

$$X[l] = \sum_{k=0}^{K-1} x[k] e^{-j l k \frac{2\pi}{K}} \quad \text{and} \quad x[k] = \frac{1}{K} \sum_{l=0}^{K-1} X[l] e^{j l k \frac{2\pi}{K}}$$

#### 7 z-Transform

$$X(z) = \sum_{k=0}^{\infty} x[k]z^{-k} \quad \text{and} \quad x[k] = \frac{1}{2\pi i} \oint X(z)z^{k-1} dz$$

**Table 7.** Properties of the z-transform.

| Property                           | Time Domain                    | z-Domain                                                   |
|------------------------------------|--------------------------------|------------------------------------------------------------|
| Linearity                          | $\alpha x_1[k] + \beta x_2[k]$ | $\alpha X_1(z) + \beta X_2(z)$                             |
| Time shifting                      | x[k-m]                         | $z^{-m}X(z)$                                               |
| Convolution                        | $x_1[k] * x_2[k]$              | $X_1(z)X_2(z)$                                             |
| Scaling                            | $a^k x[k]$                     | $X\left(\frac{z}{a}\right)$                                |
| Time difference                    | x[k] - x[k-1]                  | $(1-z^{-1})X(z)$                                           |
| Accumulation Initial value theorem | $\sum_{m=0}^{k} x[m]$          | $\frac{1}{1-z^{-1}}X(z)$ $x[0] = \lim_{z \to \infty} X(z)$ |

**Table 7.** Properties of the z-transform (cont'd.).

| Property            | Time Domain | z-Domain                                                |
|---------------------|-------------|---------------------------------------------------------|
| Final value theorem | -           | $\lim_{k \to \infty} x[k] = \lim_{z \to 1} (z - 1)X(z)$ |

**Table 8.** Table of unilateral z-transform pairs for causal signals x[k] (x[k] = 0 for k < 0).

| Time domain $x[k]$                 | z-Transform $X(z)$                                                                | ROC     |
|------------------------------------|-----------------------------------------------------------------------------------|---------|
| Unit impulse $x[k] = \delta[k]$    | X(z) = 1                                                                          | all $z$ |
| Unit step $x[k] = u[k]$            | $X(z) = \frac{1}{1 - z^{-1}}$                                                     | z  > 1  |
| Exponential                        | 1 2                                                                               | 1.1.    |
| $x[k] = a^k u[k]$ Ramp             | $X(z) = \frac{1}{1 - az^{-1}}$                                                    | z  >  a |
| x[k] = ku[k]                       | $x(z) = \frac{z^{-1}}{(1 - z^{-1})^2}$                                            | z  > 1  |
| Cosine                             | (1 ~ )                                                                            |         |
| $x[k] = \cos(\Omega_0 k) u[k]$     | $X(z) = \frac{1 - z^{-1}\cos(\Omega_0)}{1 - 2z^{-1}\cos(\Omega_0) + z^{-2}}$      | z  > 1  |
| Sine                               |                                                                                   |         |
| $x[k] = \sin(\Omega_0 k) u[k]$     | $X(z) = \frac{z^{-1}\sin(\Omega_0)}{1 - 2z^{-1}\cos(\Omega_0) + z^{-2}}$          | z  > 1  |
| Decaying cosine                    | 1 -1 (0)                                                                          |         |
| $x[k] = a^k \cos(\Omega_0 k) u[k]$ | $X(z) = \frac{1 - az^{-1}\cos(\Omega_0)}{1 - 2az^{-1}\cos(\Omega_0) + a^2z^{-2}}$ | z  >  a |
| Decaying sine                      | -1 : (0)                                                                          |         |
| $x[k] = a^k \sin(\Omega_0 k) u[k]$ | $X(z) = \frac{az^{-1}\sin(\Omega_0)}{1 - 2az^{-1}\cos(\Omega_0) + a^2z^{-2}}$     | z  >  a |