

Lista de Questões – Capítulo 2 – Conflito Animal Evolução Social I

Scripts R do gráfico ternário para jogos evolucionários

- eiras.animalconflict.R
- eiras.ternary.replot.R
- eiras.rgb2rgbstring.R
- eiras.text.leading.R
- eiras.redblue.gradation.R
- eiras.friendlycolor.R
- eiras.exit.R
- eiras.tern.graph.R
- eiras.tern.coord.R

- a) Construir a matriz de recompensas do jogo H-D-Anarquista e explicar o cálculo de cada uma das recompensas.
- b) Explicar o motivo pelo qual a estratégia Anarquista pura comum é EEE sobre as estratégias puras mutantes raras Pomba e Falcão (v < c).
- c) Implementar e produzir o gráfico ternário para v = 2 e c = 3.

Plotar e interpretar o diagrama ternário do jogo H-D-Assessor para:

(a)
$$x = 0.75$$
, $v = 2 e c = 1$

(b)
$$x = 0.75$$
, $v = 1$ e c = 2

(c)
$$x = 0.55$$
, $v = 1$ e c = 2

(d)
$$x = 0.55$$
, $v = 2 e c = 1$

Hawk-Dove-Assessor

O avaliador (A) é uma estratégia de assimetria na qual os indivíduos não têm a mesma probabilidade de obter o recurso em cada encontro diádico. Um indivíduo A verifica seu tamanho em comparação com seu oponente: caso seja maior, assume o comportamento de H; caso seja menor, age como D. Uma vez que age como H contra outro H, por ser maior, tem uma probabilidade de vencer maior que 50% (x>0.5). Em cada encontro, como os tamanhos dos indivíduos são aleatórios, a probabilidade do avaliador ser maior que seu oponente é 50%.

A tabela de recompensas é:

	Hawk	Dove	Assessor
Hawk	$\frac{v-c}{2}$	v	$v(1-\frac{x}{2})-c\frac{x}{2}$
Dove	0	$\frac{v}{2}$	$\frac{v}{4}$
Assessor	$v^{\frac{x}{2}} + c(\frac{x}{2} - \frac{1}{2})$	$\frac{3v}{4}$	$\frac{v}{2}$

• Mostre que o jogo H-D-Assessor é H-D-Bourgeois se $x = \frac{1}{2}$ usando a tabela de recompensas e gráfico ternário.

 Qual é a alteração no comportamento do Retaliator que produz a estratégia XRetaliator com gráfico ternário do jogo D-H-XR abaixo?

Considerar o jogo D-H-ShortTemper.

- 1. Analisar as condições de EEE para as três estratégias;
- 2. Implementar e produzir gráficos ternários explorando as relações entre v, c e x.

Short temper

Nesta estratégia os indivíduos S agem com falcão quando são menores. Daí (por serem menores) sua probabilidade de vencer a luta é x < 0.5. Como reagem contra a provocação, indivíduos S entre si e com D regaem sem agressão, comportando-se como D. Configurando ShortTemper.xlsx obtivemos a tabela de recompensas:

	Hawk	Dove	Short Temper
Hawk	$\frac{v-c}{2}$	v	$v(1-\frac{x}{2})-c\frac{x}{2}$
Dove	0	$\frac{v}{2}$	$\frac{v}{2}$
Short Temper	$v^{\frac{x}{2}} + c(\frac{x}{2} - \frac{1}{2})$	$\frac{v}{2}$	$\frac{v}{2}$

Considerar o jogo Retaliator-H-Assessor.

- 1. Construir a matriz de recompensas;
- 2. Analisar as condições de EEE para as três estratégias;
- 3. Implementar e produzir gráficos ternários explorando as relações entre v, c e x.