

A Patient-Specific Self-supervised Model for Automatic X-ray/CT Registration

Baochang Zhang^{1,2}, Shahrooz Faghihroohi¹, Mohammad Farid Azampour¹, Shuting Liu¹, Reza Ghotbi³, Heribert Schunkert^{2,4}, and Nassir Navab¹

- ¹ Computer Aided Medical Procedures, Technical University of Munich, Munich, Germany
- ² German Heart Center Munich, Munich, Germany
- ³ HELIOS Hospital west of Munich, Munich, Germany
- ⁴ German Centre for Cardiovascular Research, Germany

INTRODUCTION

- ➤ Limitations of Existing methods:
- images using the pre-operative data has Manual initialization [1].
 - Requirement of manual annotation for training [2].
 - Reliance on conventional intensity-based refinement method [2].

> Goals

- Make full use of DRR generation.
- Patient-specific pose regression model for initialization.
- Diff-DeepDRR for refinement.
- Achieving high performance on both DRR and Xray.

METHODOLOGY

Patient's CT DRR Generation Procedure $R_x R_y R_z T_x T_y T_z$ Pose: < R&T >Uniform Random Pose Sampling Validation Set $R_x R_y R_z T_x T_y T_z$ Training Set

Augmentation of intra-operative X-ray

potential to reduce procedure time and

improve patient outcomes in minimally

invasive procedures.

> Motivation

> Proposed pose regression network

- Regularized Autoencoder constrains the features extracted by CNN backbone to contain necessary structure information
- Multi-Head Self-Attention Block captures patient-specific salient information automatically
- 2D Positional Embedding helps to be more sensitive to spatial transformation

> Incremental Learning strategy for training

- Avoid over-fitting
- Promote network performance.
- Training phase can be done within 1 hour using an NVIDIA GPU (Quadro RTX A6000)

Diff-DeepDRR

- Follows physics
- Differentiable
- High speed (256x256 image in 15.6 ms)
- **❖** The proposed method achieves an average runtime of around 2.5s

Predicted Pose R_x R_y R_z T_x T_y T_z Regression Network N Regression Network

Refinement Model

Comparison Results

c. Inference

Table 1. Comparison Results on DRR dataset

-	mTRE(mm)	SR(%)
[3]	7.68	67.13
[2]	4.21	91.9
Ours	2.67	100

Table 2. Comparison Results of refinement methods with same initialization on Xray dataset.

_	NCC	SSIM	CSS
Method in [2]	0.9773	0.9342	0.9375
Ours	0.9880	0.9469	0.9503

Fig 1. Results of refinement methods with same initialization on Xray Image.

EVALUATION

More Results of Our Method

Table 3. The results of ablation study & our method's results on 6 DRR datasets. # indicates previous surgical implants.

e. Result

	$mTRE\downarrow mPD\downarrow$		$\mathrm{D}\!\!\downarrow$	$Rx\downarrow$		$Ry\downarrow$		Rz↓		Tx↓		$\text{Ty} \downarrow$		$\mathrm{Tz}\!\!\downarrow$		SR↑	
_	(mm) (mm)		(degree)		(degree)		(degree)		(mm)		(mm)		(mm)		(%)		
	mean	std	mean	std	mean	std	mean	std	mean	std	mean	std	mean	std	mean	std	(, 0)
$oldsymbol{A}$	6.71	2.75	6.83	2.05	0.98	0.78	0.93	0.76	0.71	0.56	2.44	2.05	2.57	1.99	3.92	3.05	88.66
$\boldsymbol{A}\!+\!\boldsymbol{B}$	6.13	2.50	6.39	2.07	0.93	0.78	0.99	0.79	0.62	0.52	2.10	1.82	2.33	1.91	3.49	2.73	90.97
$m{A}+m{C}$	6.17	2.65	6.12	1.98	1.01	0.80	0.85	0.68	0.70	0.58	1.99	1.75	2.05	1.74	3.72	2.88	91.34
$\boldsymbol{A}\!+\!\boldsymbol{B}\!+\!\boldsymbol{C}$	5.92	2.57	6.01	2.02	1.02	0.80	0.83	0.65	0.64	0.54	1.92	1.75	2.05	1.78	3.39	2.71	93.31
$\boldsymbol{[A\!+\!B\!+\!C]^*}$	5.43	2.18	5.80	2.05	0.90	0.73	0.82	0.65	0.57	0.47	1.80	1.53	1.80	1.50	2.89	2.26	95.25
$[A+B+C]^*+D\\proposed$	2.85	1.91	2.92	1.93	0.41	0.53	0.31	0.39	0.24	0.35	1.00	0.83	0.90	0.84	1.55	1.35	100.00
dataset1	2.85	1.91	2.92	1.93	0.41	0.53	0.31	0.39	0.24	0.35	1.00	0.83	0.90	0.84	1.55	1.35	100.00
dataset 2	2.54	1.28	3.08	1.72	0.38	0.55	0.35	0.38	0.22	0.29	0.65	0.60	0.90	0.51	1.38	0.88	100.00
dataset3	2.71	1.14	3.30	1.45	0.26	0.31	0.33	0.40	0.23	0.26	0.84	0.64	1.04	0.71	1.51	1.09	100.00
dataset 4	2.72	1.32	3.12	1.53	0.27	0.48	0.26	0.33	0.23	0.32	0.90	0.86	1.04	0.66	1.58	1.10	100.00
dataset 5	2.73	1.03	3.09	1.22	0.35	0.35	0.35	0.33	0.24	0.22	0.74	0.69	0.97	0.58	1.52	1.09	100.00
$\boldsymbol{dataset6\#}$	2.50	1.48	2.57	1.67	0.36	0.43	0.27	0.39	0.20	0.27	0.75	0.64	0.86	1.00	1.44	1.20	100.00

A: Efficientnet-b0 as backbone; **B:** Regularized Autoencoder; **C:** MHSAB & Positional Embedding; **D:** Refinement Model; *: Trained via Incremental Learning Strategy.

Table 4. The results of our method on X-ray Cases

_	Case1	Case2	Case3	Case4	Case 5	Case6	Case 7	Case8	Case9	Case 10	Mean	Std
$\overline{\text{PD}\downarrow}$	0.6762	1.8400	1.4251	2.8431	0.6770	1.3244	1.2777	1.4181	1.5259	2.5655	1.5573	0.6687
NCC↑	0.9885	0.9752	0.9867	0.9941	0.9858	0.9870	0.9888	0.9943	0.9913	0.9880	0.9880	0.0051
SSIM↑	0.9395	0.9220	0.9348	0.9736	0.9424	0.9456	0.9436	0.9616	0.9649	0.9412	0.9469	0.0146
$CSS\uparrow$	0.9427	0.9321	0.9392	0.9750	0.9453	0.9481	0.9463	0.9630	0.9664	0.9448	0.9503	0.0127

Fig 2. Qualitative Results on X-ray cases.

- Attention maps come from MHSAB;
- Init. Error maps means the result of pose regression model;
- Final Error maps means the result after refinement

REFERENCES

- 1. Meng, C., Wang, Q., Guan, S., Sun, K., Liu, B.: 2d-3d registration with weighted local mutual information in vascular interventions. IEEE Access 7, 162629–162638(2018)
- 2. Grimm, M., Esteban, J., Unberath, M., Navab, N.: Pose-dependent weights and domain randomization for fully automatic x-ray to ct registration. IEEE Transactions on Medical Imaging 40(9), 2221–2232 (2021)
- 3. Salehi, S.S.M., Khan, S., Erdogmus, D., Gholipour, A.: Real-time deep pose estimation with geodesic loss for image-to-template rigid registration. IEEE transactions on medical imaging 38(2), 470–481 (2018)

CONCLUSION

- > we present a patient-specific and self-supervised end-to-end approach for automatic X-ray/CT rigid registration.
- ➤ Our method effectively addresses the primary limitations of existing methods, such as requirement of manual annotation, dependency on conventional derivative-free optimization, and patient-specific concerns.
- The evaluation results of our proposed method illustrates its superiority and its ability to generalize to X-rays even when trained solely on DRRs.