

Maratona de Programação da SBC 2020

Sub-Regional Brasil do ICPC

07 de Noviembre del 2020

Sesión de Calentamiento

Información General

Este libro contiene 3 problemas; las páginas están enúmeradas del 1 al 5, sin considerar esta página. Por favor, verifique que su libro esté completo.

A) Sobre los nombres de los programas

- 1) Para soluciones en C/C++ y Python, el nombre del archivo de código fuente no es significativo, puede ser cualquier nombre.
- 2) Si su solución es en Java, el archivo debe ser llamado: $codigo_de_problema$. java donde $codigo_de_problema$ es la letra mayúscula que identifica al problema. Recuerde que en Java el nombre de la clase principal debe ser igual que el nombre del archivo.
- 3) Si su solución es en Kotlin, el archivo debe ser llamado: $codigo_de_problema$.kt donde $codigo_de_problema$ es la letra mayúscula que identifica al problema. Recuerde que en Kotlin el nombre de la clase principal debe ser llamado igual que el nombre del archivo

B) Sobre la entrada

- 1) La entrada de su programa debe ser leída de entrada standard.
- 2) La entrada está compuesta de un único caso de prueba, descrito en un número de línea que depende del problema.
- 3) Cuando una línea de entrada contiene varios valores, estos están separados por un único espacio en blanco; la entrada no contiene ningún otro espacio en blanco.
- 4) Cada línea, incluyendo la última, contiene exactamente un caracter de final-de-línea.
- 5) El final de la entrada coincide con el final del archivo.

C) Sobre la salida

- 1) La salida de su programa debe ser escrita en salida standard.
- 2) Cuando una línea de salida contiene varios valores, estos deben ser separados por un único espacio en blanco; la salida no debe contener ningún otro espacio en blanco.
- 3) Cada línea, incluyendo la última, debe contener exactamente un caracter de final-de-línea.

Promocional:

Problema A

Teleférico

Una clase universitaria hará un recorrido por las montañas y todos los estudiantes y monitores escolares tomarán un teleférico para subir a la cima de una montaña. La cabina del teleférico puede llevar un máximo de C personas durante un viaje a la cima, contando estudiantes y monitores escolares. Por razones de seguridad, debe haber al menos un monitor dentro de la cabina con los estudiantes. Por ejemplo, si caben C=10 personas en la cabina y la clase tiene A=20 estudiantes, los estudiantes podrían hacer tres viajes: el primero con 8 estudiantes y un monitor; el segundo con 6 estudiantes y un monitor; y el tercero con 6 estudiantes y un monitor.

Dados como entrada la capacidad C de la cabina y el número total de estudiantes en la clase A, debe escribir un programa que calcule el mínimo número de viajes en teleférico para llevar a todos los estudiantes a la cima de la montaña.

Si hoy tienes demasiada pereza para resolver el problema, no te preocupes: en la próxima página encontrarás soluciones para este problema.

Entrada

La primera línea de la entrada contiene un único número entero C, representando la capacidad máxima de la cabina del teleférico ($2 \le C \le 100$). La segunda línea de entrada contiene un único número entero A, representando el número total de estudiantes en la clase ($1 \le A \le 1000$).

Salida

Su programa debe imprimir una única línea con número entero que representan el número mínimo de viajes en el teleférico para llevar a todos los estudiantes a la cima de la montaña

Ejemplo de entrada 1	Ejemplo de salida 1	
10	3	
20		
Ejemplo de entrada 2	Ejemplo de salida 2	
12	5	
55		
Ejemplo de entrada 3	Ejemplo de salida 3	
100	1	
87		

Solución en C++

```
#include <iostream>
using namespace std;

int main(void){
  int C,A;

  cin >> C >> A; // lee la entrada

  int quociente = A/(C-1);
  int resto = A%(C-1);
  int resposta = quociente;
  if ( resto > 0 ) resposta++;

  cout << resposta << endl; // imprime la respuesta

  return 0;
}</pre>
```

Solución en C

```
#include<stdio.h>
int main(){
    int C, A, q, r, ans;

    scanf("%d", &C); // lee la entrada
    scanf("%d", &A);

    q = A/(C-1);
    r = A%(C-1);

    ans = q;
    if(r>0) ans++;
    printf("%d\n",ans); // imprime la respuesta
    return 0;
}
```

Solución en Python

```
C = int(input()) # lee la entrada
A = int(input())

quociente, resto = A//(C-1), A%(C-1)
resposta = quociente
if resto>0:
    resposta += 1

print(resposta) # imprime la respuesta
```

Solución en Java

```
import java.util.Scanner;
```

```
public class A {
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        int quociente, resto, resposta;
        int C,A;

        C=in.nextInt(); // lee la entrada
        A=in.nextInt();

        quociente=A/(C-1);
        resto=A%(C-1);
        resposta=quociente;
        if (resto>0)
            resposta=resposta+1;

        System.out.println(resposta); // imprime la respuesta
    }
}
```

Solución en Kotlin

```
fun main(){
   var C = readLine()!!.toInt() // lee la entrada
   var A = readLine()!!.toInt()

   var q = A/(C-1)
   var r = A%(C-1)

   var ans = q
   if(r>0) ans++

   println(ans) // imprime la resposta
}
```

Problema B

Factorial

El factorial de un número entero positivo N, representado como N!, se define como el producto de todos los números enteros positivos menores o iguales que N. Por ejemplo: $4! = 4 \times 3 \times 2 \times 1 = 24$.

Dado un número entero positivo N, debes escribir un programa que determine el número k más pequeño tal que $N = a_1! + a_2! + \ldots + a_k!$, donde cada a_i con $1 \le i \le k$ es un número entero positivo.

Por ejemplo, cuando N=10 la respuesta es 3, porque es posible escribir N como la suma de 3 números factoriales: 10=3!+2!+2!. Cuando N=25, la respuesta es 2, porque es posible escribir N como la suma del 2 números factoriales: 25=4!+1!.

Entrada

La entrada consiste de una única linea que contiene un entero N $(1 \le N \le 10^5)$.

Salida

Su programa debe imprimir una única línea con un número entero que representan la cantidad mínima de números factoriales que suman N.

Ejemplo de entrada 1	Ejemplo de salida 1
10	3
Ejemplo de entrada 2	Ejemplo de salida 2
25	2

Problema C Calificación Olvidada

Juan no es muy bueno para las matemáticas pero aprendió que el promedio de dos números es igual a la suma de esos dos números dividido por dos. Es decir, el promedio de dos números A y B es $M = \frac{A+B}{2}$.

La profesora de cálculo le dijo a Juan las calificaciones que el obtuvo en las dos pruebas realizadas. Las dos calificaciones son números enteros entre 0 y 100. Juan fácilmente calculó el promedio de las dos pruebas, que también resultó en un número entero.

Sin embargo, Juan es muy olvidadizo y ahora no recuerda cuáles eran las calificaciones que obtuvo en las pruebas. Solo recuerda una de las calificaciones obtenidas. Afortunadamente, también recuerda el promedio entre las dos calificaciones.

¿Puedes ayudar a Juan a determinar la calificación de la prueba que no recuerda?

Entrada

La primera línea de entrada contiene un número entero A ($0 \le A \le 100$), que representa la calificación de una de las pruebas. La segunda línea contiene un número entero M ($0 \le M \le 100$), que representa el promedio entre las dos calificaciones que obtuvo Juan en las pruebas.

Salida

Su programa debe imprimir una única línea con un número entero que representan la calificación de la prueba que Juan no recuerda.

Ejemplo de entrada 1	Ejemplo de salida 1	
100	40	
70		
Ejemplo de entrada 2	Ejemplo de salida 2	
80	70	
75		
Ejemplo de entrada 3	Ejemplo de salida 3	
1	99	
50		