Practice Problem 5

Ian Chen

February 20, 2024

Problem 1 — Create the confusion matrix for both models.

Answer

Model 1	Predicted(+)	Predicted(-)	$Model \ 2$	Predicted(+)	Predicted(-)
Actual(+)	3	2	Actual(+)	5	0
Actual(-)	1	4	Actual(-)	4	1

Problem 2 — Calculate the accuracy of each model. Which model is better on the basis of accuracy?

Answer

Accuracy = (TP + TN) / nModel 1: (3 + 4) / 10 = 0.7Model 2: (5 + 1) / 10 = 0.6Model 1 has a higher accuracy.

Problem 3 — Calculate the true positive rate (TPR) of each model. Which model is better on the basis of TPR?

Answer

TPR = TP / (TP + FN) $Model \ 1: \ 3 / (3 + 2) = 0.6$ $Model \ 2: \ 5 / (5 + 0) = 1$ $Model \ 2 \ has \ a \ higher \ TPR.$

Problem 4 — Calculate the F-measure (of the positive class only) for each model. Which model is better on the basis of F-measure?

Answer

$$\begin{array}{l} precision = TP \ / \ (TP + FP) \\ recall = TP \ / \ (TP + FN) \\ F = \frac{2 \times precision \times recall}{precision + recall} \\ precision_1 = \frac{3}{3+1} = 0.75 \\ recall_1 = \frac{3}{3+2} = 0.6 \\ F_1 = \frac{2 \times 0.75 \times 0.6}{0.75 + 0.6} = 0.6667 \\ precision_2 = \frac{5}{5+4} = 0.5556 \\ recall_2 = \frac{5}{5+0} = 1 \\ F_2 = \frac{2 \times 0.5556 \times 1}{0.5556 \times 1} = 0.7143 \\ Model \ 2 \ has \ a \ higher \ F-measure. \end{array}$$