

Dmitriy (Dima) Gorenshteyn
Sr. Data Scientist,
Memorial Sloan Kettering Cancer Center

- 22 Occupation Observations
- 15 Measurements of Average Income from 2001-2016


```
print(oes)
                            2001
                                  2002
                                       2003
                                             2004 2005 . . .
Management
                           70800 78870 83400 87090 88450 ...
Business Operations
                           50580 53350 56000 57120 57930 ...
Computer Science
                          60350 61630 64150 66370 67100 ...
Architecture/Engineering
                          56330 58020 60390 63060 63910 ...
Life/Physical/Social Sci. 49710 52380 54930 57550 58030 ...
Community Services
                          34190 34630 35800 37050 37530
. . .
```


Next Steps: Hierarchical Clustering

- Evaluate whether pre-processing is necessary
- Create a distance matrix
- Build a dendrogram
- Extract clusters from dendrogram
- Explore resulting clusters

Let's practice!

Reviewing the Hierarchical Clustering Results

Dmitriy (Dima) Gorenshteyn
Sr. Data Scientist,
Memorial Sloan Kettering Cancer Center

The Dendrogram

The Trends

Connecting The Two

Next Steps: k-means Clustering

- Evaluate whether pre-processing is necessary
- Estimate the "best" k using the elbow plot
- Estimate the "best" k using the maximum average silhouette width
- Explore resulting clusters

Let's cluster!

Review K-means Results

Dmitriy (Dima) Gorenshteyn
Sr. Data Scientist,
Memorial Sloan Kettering Cancer Center

Comparing The Two Clustering Methods

	Hierarchical Clustering	k-means
Distance Used:	virtually any	euclidean only
Results Stable:	Yes	No
Evaluating # of	dendrogram, silhouette,	silhoette,
Clusters:	elbow	elbow
Computation	Relatively Higher	Relatively
Complexity:		Lower

What you have learned?

• Chapter 1:

- What is distance
- Why is scale important

• Chapter 2:

- How linkage works
- How the dendrogram is formed
- How to analyze your clusters

• Chapter 3:

- How k-means works
- How to estimate k
- How to analyze how well an observation fits in a cluster

Lot's More to Learn

- k-mediods
- DBSCAN
- Optics

Congratulations!