Introduction

Euklidian Norm:
$$\|x\|_2 = \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{x^T x}$$

$$\|x\|_2^2 = x^T \cdot x$$

Weighting Eukl. Norm: $||x||_Q^2 = x^T Q \cdot x$

Frobenius Norm:
$$||x||_F^2 = trace(AA^T) = \sum_{i=1}^n \sum_{j=1}^m A_{ij}A_{ij}$$

Jacobian:
$$\nabla f(x) = \frac{\partial f}{\partial x}(x)$$
 in $\mathbb{R}^{n \times m}$ Hessian: $\nabla^2 f(x)$

Error in variables:
$$\hat{R}_{EV}(N) = \frac{\frac{1}{N}\sum_{k=1}^{N}u(k)}{\frac{1}{N}\sum_{k=1}^{N}i(k)}$$

Simple Approach:
$$\hat{R}_{SA}(N) = \frac{1}{N} \cdot \sum_{k=1}^{N} \frac{u(k)}{i(k)}$$

$$\begin{split} \text{Least Squares:} \quad \hat{R}_{LS}(N) &= \arg\min_{R \in \mathbb{R}} \sum_{k=1}^{N} (R \cdot i(k) - u(k))^2 \\ &= \frac{\frac{1}{N} \sum_{k=1}^{N} u(k) \cdot i(k)}{\frac{1}{N} \sum_{k=1}^{N} i(k)^2} \end{split}$$

Linear and non-linear models:

- linear if parameters linear i.e. $(\theta_1 x^2 + \theta_2 x + \theta_3)$
- nonlinear if i.e $(\sin(\theta_1)x + \theta_2)$ or derivatives in other orders than 1 Table of Derivatives:

 $x^T(B^T + B)$

f(x)	f'(x)
$g(x) \cdot h(x)$	$g'(x) \cdot h(x) + g(x) \cdot h'(x)$
g(h(x))	$g'(h(x)) \cdot h'(x)$
$\sin(x)$	$-\cos(x)$
$\cos(x)$	$\sin(x)$
$\tan(x) = \frac{\sin(x)}{\cos(x)}$	$\frac{1}{\cos^2(x)} = \sec^2(x)$
e^{kx}	$\frac{1}{k}e^{kx}$
ln(x)	$\frac{1}{x}$
$\log_a x$	$\frac{1}{\ln a}(x\ln x - x)$
4	4

Random Variables and Probability

 $x^T A$

 $x^T B x$

Dependent Probability: $P(A \vee B) = P(A) + P(B)$

Independent Prob.: $P(A, B) = P(A \wedge B) = P(A) \cdot P(B)$

Conditional Prob.: $P(A|B) = \frac{P(A|B)}{P(B)} = \frac{P(B|A) \cdot P(A)}{P(B)}$

$$P(X \in [a, b]) = \int_{a}^{b} p_{X}(x)dx \qquad \qquad p(x|y) = \frac{p(x, y)}{p(y)}$$

Mean/Expectation value: $\mathbb{E}\{\mu_X\} := \mu_X = \int_{-\infty}^{\infty} x \cdot p_X(x) dx$ $\mathbb{E}\{a+bX\} := a+b\mathbb{E}\{X\}$

Variance:
$$\sigma_X^2 := \mathbb{E}\{(X - \mu_X)^2\} = \mathbb{E}\{X^2\} - \mu_X^2$$

Standard deviation: $\sigma_X = \sqrt{\sigma_X^2}$

Distributions

$$\mathbf{M}\operatorname{ean}\colon \mu_X = \int_{-\infty}^\infty x \, p_X(x) dx = \int_a^b \frac{1}{b-a} \cdot x dx = \frac{a+b}{2} =: \mu_X$$

Normal distribution: $X \sim \mathcal{N}(\mu, \sigma^2)$ $\hat{\theta}_{LS} \sim \mathcal{N}(\theta_0, \Sigma_{\hat{\theta}})$

Gauss.png

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot exp(-\frac{(x-\mu)^2}{2\sigma^2})$$

$$p(x) = \frac{1}{\sqrt{(2\pi)^n \cdot det(\Sigma)}} \cdot exp(-\frac{1}{2} \cdot (x - \mu)^T \cdot \Sigma^{-1} \cdot (x - \mu))$$

Weibull distribution: $F(x) = 1 - e^{-(\lambda \cdot x)^k}$

Laplace distribution: $f(x|\mu, b) = \frac{1}{2b} \cdot exp\left(-\frac{|x-\mu|}{b}\right)$

Useful statistic definitions

Covariance and Correlaton: $\sigma(X,Y) := \mathbb{E}(X - \mu_X)(Y - \mu_Y)$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (X - \mu_X)(y - \mu_Y) \cdot p_{X,Y}(x,y) \, dx \, dy$$

Covariance Matrix: $\Sigma_x = cov(X) = \mathbb{E}\{XX^T\} - \mu_x \mu_x^T \text{ is PSD}$

$$\Sigma = \begin{bmatrix} \sigma_x^2 & \sigma_{yx} \\ \sigma_{xy} & \sigma_y^2 \end{bmatrix}$$
 $\sigma_{xy} = \sigma_{yx} = \rho_{xy} \cdot \sigma_x \cdot \sigma_y$ where ρ is correlation

Elamensional Random Variables:
$$\mathbb{E}f(X) = \int_{\mathbb{R}^n} f(x) p_X(x) d^n x$$

$$cov(X) = \mathbb{E}\{(X - \mu_X)(X - \mu_X)^T\}$$

$$cov(X) = \mathbb{E}\{XX^T\} - \mu_X \mu_X^T$$

$$cov(Y) = \Sigma_y = A \Sigma_x A^T \quad for \quad y = A \cdot x$$

$$\mathbb{E}\{AX\} = A \cdot \mathbb{E}\{X\}$$

Rules for variance:

$$\begin{aligned} var(aX) &= a^2 \cdot var(X) \\ var(X+Y) &= var(X) + var(Y) + 2 \cdot cov(X,Y) \end{aligned}$$

Verschiebesatz: $var(X) = \mathbb{E}((X - \mathbb{E}(X))^2) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$

Bayes Theorem:

Bayes Theorem:

$$P(A|B) = \frac{P(A,B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$$

Correlation:

uncorrelated if $\rho(X,Y) = 0$, $\rho(X,Y) := \frac{cov(X,Y)}{\sigma_{-}\sigma_{+}}$

Statistical estimators:

Biased and Unbiasedness An estimator $\hat{\theta}_N$ is called unbiased iff $\mathbb{E}\{\hat{\theta}_N(y_N)\}=$ θ_0 , where θ_0 is the true value of a parameter. Otherwise, is called

Asymptotic Unbiasedness An estimator $\hat{\theta}_N$ is called asymptotically unbiased $\inf \lim_{N \to \infty} \mathbb{E}\{\hat{\theta}_N(y_N)\} = \theta_0$

Consistency An estimator $\hat{\theta}_N(y_N)$ is called consistent if, for any $\epsilon > 0$, the probability $P(\hat{\theta}_N(y_N) \in [\theta_0 - \epsilon, \theta_0 + \epsilon])$ tends to one as $N \to \infty$.

Unconstrainded Optimization

Theorem 1: (First Order Necessary Conditions)

If $x^* \in D$ is local minimizer of $f:D \to \mathbb{R}$ and $f \in C^1$ then $\nabla f(x^*) = 0$ Definition (Stationary Point) A point \bar{x} with $\nabla f(\bar{x}) = 0$ is called a stationary point of f.

Theorem 2: (Second Order Necessary Conditions)

If $x^* \in D$ is local minimizer of $f: D \to R$ and $f \in C^2$ then

Theorem 3: (Second Order Sufficient Conditions and Stability under Perturbations)

Assume that $f: D \to R$ is C^2 . If $x^* \in D$ is a stationary point and $\nabla^2 f(x^*) \succ 0$ then x^* is a strict local minimizer of f. In addition, this minimizer is locally unique and is stable against small perturbations of f, i.e. there exists a constant C such that for sufficiently small $p \in \mathbb{R}^n$ holds

$$||x^* - arg \min_{x} (f(x) + p^T x)|| \le C||p||$$

Linear Least Squares Estimation

Preliminaries: i.i.d. and Gaussian noise

Overall Model: $y(k) = \phi(k)^T \theta + \epsilon(k)$

LS cost function as sum: $\sum_{k=1}^{N} (y(k) - \phi(k)^{T} \theta)^{2}$

LS cost function: $f(\theta) = \|y_N - \Phi_N \theta\|_2^2$

Unique minimizers: $\hat{\theta}_{LS} = \underset{\theta \in \mathbb{R}}{arg \, min} \, f(\theta) \theta^* = \underbrace{(\Phi^T \Phi)^{-1} \Phi^T}_{} y$

Pseudo Inverse: $\Phi^+ = (\Phi^T \Phi)^{-1} \Phi^T$

Weighted Least Squares (unitless)

For i.i.d noise: Unweight Least Squares is optimal: W = I

$$f_{WLS}(\theta) = \sum_{k=1}^{N} \frac{(y(k) - \phi(k)^T \theta)^2}{\sigma_{\epsilon}^2(k)} = \|y_N - \Phi_N \theta\|_W^2$$
$$= (Y_N - \Phi \cdot \theta)^T \cdot W \cdot (Y_N - \Phi \cdot \theta)$$

Solution for WLS:

$$\hat{\theta}_{WLS} = \tilde{\Phi}^+ \tilde{y} \qquad \text{mit } \tilde{\Phi} = W^{\frac{1}{2}} \Phi \text{ und } \tilde{y} = W^{\frac{1}{2}} y$$

$$= \underset{\theta \in \mathbb{R}}{\arg \min} f_{WLS}(\theta) = (\Phi^T W \Phi)^{-1} \Phi^T W y$$

Ill-Posed Least Squares

Singular Value Decomposition: $A = USV^T \in \mathbb{R}^{mxn}$ with $U \in \mathbb{R}^{mxm}$, $V \in \mathbb{R}^{nxn}$ and $S \in \mathbb{R}^{mxn}$ where S is a Matrix with non-negative elements $(\sigma_1,\ldots,\sigma_r,0,\ldots,0)$ on the diagonal and 0 everywhere else.

Moore Penrose Pseudi Inverse:

$$\Phi^{+} = VS^{+}U^{T} = V(S^{T}S + \alpha I)^{-1}S^{T}U^{T}$$

 Φ^+ therefore selects $\theta^* \in S^*$ with minimal norm.

Regularization for Least Squares:

$$\lim_{a \to 0} (\Phi^T \Phi + \alpha I)^{-1} \Phi^T = \Phi^+ \quad \text{with } \Phi^+ MPPI$$

$$\theta^* = (\Phi^T \Phi + \alpha \mathbb{I})^{-1} \Phi^T u$$

Statistical Analysis of WLS

Expectation of Least Squares Estimator:

$$E\{\hat{\theta}_{WLS}\} = E\{(\Phi_{N}^{T}W\Phi_{N})^{-1}\Phi_{N}^{T}Wy_{N}\} = \theta_{0}$$

Covariance of the least squares estimator:

$$\begin{split} &cov(\hat{\theta}_{WLS}) = \left(\boldsymbol{\Phi}_{N}^{T} \boldsymbol{W} \boldsymbol{\Phi}_{N}\right)^{-1} = \left(\boldsymbol{\Phi}_{N}^{T} \boldsymbol{\Sigma}_{\in N}^{-1} \boldsymbol{\Phi}_{N}\right)^{-1} \\ &cov(\hat{\theta}_{WLS}) \succeq \left(\boldsymbol{\Phi}_{N}^{T} \boldsymbol{W} \boldsymbol{\Phi}_{N}\right)^{-1} \end{split}$$

Example LLS

Example of the Linear Least Square Estimator for: N=2

$$\varepsilon(1) \sim \mathcal{N}(0|\sigma_1^2)$$

$$\varepsilon(2) \sim \mathcal{N}(0|\sigma_2^2)$$

$$N=2; \quad \Sigma_{\varepsilon_N} = \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix} \qquad W^{OPT} = \Sigma_{\varepsilon_N}^{-1} = \begin{bmatrix} \frac{1}{\sigma_1^2} & 0 \\ 0 & \frac{1}{\sigma_2^2} \end{bmatrix}$$

$$\begin{split} cov(\hat{\theta}_{WLS}) &= \left(Y_N - \Phi_N \theta\right)^T \cdot W \cdot \left(Y_N - \Phi_N \theta\right) \\ &= \sum_{k=1}^2 (y(k) - \phi(k)^T \theta) \cdot \frac{1}{\sigma_k^2} \cdot (y(k) - \phi(k)^T \theta) \end{split}$$

Measuring the goodness of Fit using: R^2 $(0 \le R^2 \le 1)$

$$\begin{split} R^2 &= 1 - \frac{\|y_N - \Phi_N \hat{\theta}\|_2^2}{\|y_N\|_2^2} = 1 - \frac{\|\epsilon_N\|_2^2}{\|y_N\|_2^2} \\ &= \frac{\|y_N\|_2^2 - \|\epsilon_N\|_2^2}{\|y_N\|_2^2} = \frac{\|\hat{y}_N\|_2^2}{\|y_N\|_2^2} \end{split}$$

Residual: $\epsilon_N \uparrow \rightarrow R^2 \rightarrow 0 \ (\Rightarrow bad)$

Estimating the Covariance with the Single Experiment

$$\hat{\sigma}_{\varepsilon}^{2} := \frac{1}{N-d} \sum_{k=1}^{N} (y(k) - \phi(k)^{T} \hat{\theta}_{LS})^{2} = \frac{\|y_{N} - \phi_{N} \hat{\theta}_{LS}\|_{2}^{2}}{N-d}$$

$$\hat{\Sigma}_{\hat{\theta}} \coloneqq \hat{\sigma}_{\varepsilon}^2 (\phi_N^T \phi_N)^{-1} = \sigma_{\varepsilon}^2 (\Phi_N^+ \Phi_N^{+T}) = \frac{\|y_N - \phi_N \hat{\theta}_{LS}\|_2^2}{N - d} \cdot (\phi_N^T \phi_N)^{-1}$$

Bayesian Estimation and the Maximum a Posteriori Estimate

Assumptions:

- Measurement:
$$y_N \in \mathbb{R}^N$$
 has i.i.d. noise - Linear Model: $M(\theta) = \phi_N \cdot \theta$ and $\theta \in \mathbb{R}$

$$p(\theta|y_N) = \frac{p(y_N, \theta)}{p(y_N)} = \frac{p(y_N|\theta) \cdot p(\theta)}{p(y_N)}$$

$$\hat{\theta}_{MAP} = \operatorname*{arg\,min}_{\theta \subset \mathbb{D}} \left\{ -\log(p(y_N|\theta)) - \log(p(\theta)) \right\}$$

MAP Example: Regularised Least Squares

$$\theta = \bar{\theta} \pm \sigma_{\theta}$$
 with $\bar{\theta} = \theta_{a-priori}$

$$\hat{\theta}_{MAP} = \mathop{\arg\min}_{\theta \in \mathbb{R}} \frac{1}{2} \cdot \frac{1}{\sigma_{\epsilon 2}} \cdot \|y_N - \Phi_N \cdot \theta\|_2^2 + \frac{1}{2} \cdot \frac{1}{\sigma_{\theta}^2} \cdot (\theta - \bar{\theta})^2$$

Maximum Likelihood Estimation

L2 Estimation: Maximum Likelihood Estimation (ML)

- Measurement Errors assumed to be Normally distributed
- Model described by a non-linear function M(θ)
- Every unbiased estimator needs to satisfy the Cramer-Rau inequality, which gives a lower bound on the covariance matrix

Model: $y = M(\theta) + \epsilon$

$$P(y|\theta) = C \prod_{i=1}^{N} exp\left(\frac{-(y_i - M_i(\theta))^2}{2 \cdot \sigma_i^2}\right) \quad C = \prod_{i=1}^{N} \frac{1}{\sqrt{2 \cdot \pi \sigma_i^2}}$$

Positive log-Likelihood: Logarithm makes

$$\log p(y|\theta) = \log(C) + \sum_{i=1}^{N} -\frac{(y_i - M_i(\theta))^2}{2 \cdot \sigma_i^2}$$

Negative log-Likelihood:

$$\hat{\theta}_{ML} = \underset{\theta \in \mathbb{R}^d}{arg \max} \ p(y|\theta) = \underset{\theta \in \mathbb{R}^d}{arg \min} \sum_{i=1}^N \frac{(y_i - M_i(\theta))^2}{2\sigma_i^2}$$

$$= \arg\min_{\theta} \frac{1}{2} \sum_{i=1}^{N} \left(\frac{y_i - M_i(\theta)}{\sigma_i} \right)^2$$

$$= \underset{\theta \in \mathbb{R}^d}{\arg\min} \frac{1}{2} \|S^{-1}(y - M(\theta))\|_2^2 \quad \text{mit: } S = \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_N \end{bmatrix}$$

- Measurement Errors assumed to be Laplace distributed and more robust against outliers

$$\begin{aligned} \min_{\theta} & \|y - M(\theta)\|_1 = \min_{\theta} \sum_{i=1}^{N} |y_i - M_i(\theta)| \\ \Rightarrow & \text{median of } \{Y_1, \cdots, Y_N\} \end{aligned}$$

Recursive Linear Least Squares

$$\theta_{ML}(N) = \mathop{\arg\min}_{\theta \in \mathbb{R}} \frac{1}{2} \|y_N - \Phi_N \cdot \theta\|_2^2 \qquad \text{(forgetting factor: } \alpha\text{)}$$

$$\hat{\theta}_{ML}(N+1) = \operatorname*{arg\,min}_{\theta \in \mathbb{R}^d} \left(\alpha \cdot \frac{1}{2} \cdot \|\theta - \hat{\theta}_{ML}(N)\|Q_N^2 \right)$$

$$+\frac{1}{2} \cdot \|y(N+1) - \varphi(N+1)^T \cdot \theta\|_2^2$$

$$Q_0$$
 given, and $\hat{\theta}_{ML}(0)$ given

$$Q_{N+1} = \alpha \cdot Q_N + \varphi(N+1) \cdot \varphi(N+1)^T$$

$$\hat{\theta}_{ML}(N+1) = \hat{\theta}_{ML}(N) + Q_{N+1}^{-1} \cdot \varphi(N+1)$$

$$\cdot \left[y(N+1) - \varphi(N+1)^T \cdot \hat{\theta}_{ML}(N) \right]$$

Cramer-Rao-Inequality (Fisher information Matrix M)

$$\begin{array}{ll} \Sigma_{\hat{\theta}} \succeq M^{-1} = (\Phi_N^T \cdot \Sigma^{-1} \cdot \Phi)^{-1} & M = \int_{y_n} \nabla_{\theta}^2 L(\theta_0, y_n) \cdot p(y_n | \theta_0) dy_n \\ \text{Assumptions}. \end{array}$$

- Minimising a Linear Model
- Gaussian Noise: $X \sim \mathcal{N}(0, \Sigma)$

$$\begin{split} L(\theta, y_N) &= -\log(p(y_N | \theta)) \\ &= \frac{1}{-} \cdot \left(\Phi_N \cdot \theta - y_N\right)^T \cdot \Sigma^{-1} \cdot \left(\Phi_N \cdot \theta - y_N\right) \end{split}$$

$$M = \mathbb{E}\{\nabla_{\theta}^{2} L(\theta, y_{N})\} = \nabla_{\theta}^{2} L(\theta, y_{N}) = \Phi_{N}^{T} \cdot \Sigma^{-1} \cdot \Phi_{N}$$

 $\Rightarrow W = \Sigma^{-1}$ is the optimal weighting Matrix for WLS.

Continuous Time Systems

Ordinary Differential Equations (ODE):

$$\dot{x} = f(x(t), u(t), \epsilon(t), p)$$

Differential Algebraic Equations(DAE):

$$\dot{x} = f(x(t), u(t), \epsilon(t), p)$$

$$0 = g(x, z).$$

LTI Sytem (ODE):

$$\dot{x} = Ax + Bu$$
 $y = Cx + Du$

$$G(s) = C(sI - A)^{-1}B + D$$

Numerical Integration Methods

Euler Integration Step

$$\tilde{x}(t; x_{init}, u_{const}) = x_{init} + tf(x_{init}, u_{const}), \quad t \in [0, \Delta t]$$

$$\tilde{x}_{j+1} = \tilde{x}_j + hf(\tilde{x}_j, u_{const}), \quad j = 0, ..., M-1$$

- Approximation becomes better by decreasing the step size h
- Concistency Error: h2
- Total Number of steps: $\Delta t/h$
- Error in the final step of order $h\Delta t$
- Linear in step size → order one
- Taking more steps is more accurate but needs more computional

Runge-Kutta Method of Order Four

$$k_1 = f(\tilde{x}_j, u_{const})$$

$$k_2 = f(\tilde{x}_j, \frac{h}{2}k_1, u_{const})$$

$$k_3 = f(\tilde{x}_j, \frac{h}{2}k_2, u_{const})$$

$$k_4 = f(\tilde{x}_i, hk_3, u_{const})$$

$$\tilde{x}_{j+1} = \tilde{x}_j + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

One Step of RK4 is thus as expensive as four steps of euler accurrency of final approximation is of order $h^4\Delta$ t

→ rk4 needs fewer functions to obtain the same accuracy level as euler

Discrete Time Systems

Det. Model as State Space Stoch, Model as State Space

Det. Model as Input-Output Stoch. Model as Input-Output

State Space Model

 $x_{k+1} = f_k(x_k, u_k), k = 0, 1, \dots, N-1$ with input vector u_k and state vector x_k

Input-Output Model $y(k) = h(u(k), \dots, u(k-n), y(k-1), \dots, y(k-n))$

LTI system as State-Space Model:

$$x_{k+1} = Ax_k + Bu_k, \quad k = 0, 1, ..., N-1.$$

LTI system as Input-Output Model:

$$b_0 + b_1 s + ... + b_n s^n$$

$$G(s) = \frac{b_0 + b_1 s + \dots + b_n s^n}{a_0 + a_1 s + \dots + a_{n-1} s^{n-1} + s^n} \quad | \cdot s = z^{-1}$$

$$G(z) = \frac{b_0 + b_1 z^{-1} + \dots + b_n z^{-n}}{a_0 + a_1 z^{-1} + \dots + a_n z^{-n}}$$

$$=\frac{b_0z^n+b_nz^{n-1}+\ldots+b_n}{a_0z^n+a_1z^{n-1}+\ldots+a_n}\quad\Rightarrow \text{Also called "polynomial model"}.$$

Deterministic Model

The output of the system can be obtained with absolute certainty. The Output u or the state x, depend on the known inputs $u(1), \ldots, u(N)$, the previous Outputs $y(1), \ldots, y(N)$ or state x(n-1) and initial conditions. State Space Model

$$x(t+1) = f(x(k), u(k)) \\$$

$$y(k) = g(x(k), u(k))$$

Initial conditions: $x(1) = x_{init}$

Input-Output Model

$$y(k) = h(u(k), ..., u(k-n), y(k-1), ..., y(k-n))$$

Initial conditions: $y(1)=y_1,\ldots,y(n)=y_n$ $u(1)=u_1,\ldots,u(n)=u_n$ Finite Impulse Response (FIR):

$$y(k) = b_0 u(k) + \dots + b_{n_b} u(k - n_b)$$

$$G(z) = b_0 + b_1 z^{-1} + \dots + b_{n_b} z^{-n_b} \mid \cdot \frac{z^{n_b}}{z^{n_b}}$$

$$=\frac{b_0z^{n_b}+b_1z^{n_{b-1}}+...+b_{n_b}}{z^{n_b}}$$

Auto Regressive Models with Exogenous Inputs (ARX):

$$a_0y(k) + \dots + a_{n_a}y(k - n_a) = b_0u(k) + \dots + b_{n_b}u(k - n_b)$$

$$G(z) = \frac{b_0 z^n + b_1 z^{n-1} + \dots + b_n}{a_0 z^n + a_1 z^{n-1} + \dots + a_n}$$

The next output depends on the previous output. Also called IIR (infinite impulse response)

Stochastic Model

Real systems are far from deterministic

- there is stochastic noise $\epsilon(k)$
- there are constant and unknown parameters p

• measured outputs depend y(k) depend in both, $\epsilon(k)$ and p Assumptions: noise is i.i.d and enters the model like a normal input, but as a random variable

State Space Model

$$x(t+1) = f(x(k), u(k), \epsilon(k))$$

$$y(k) = g(x(k), u(k), \epsilon(k))$$

Input-Output Model

$$y(k) = h(u(k),...,u(k-n),y(k-1),...,y(k-n),\epsilon(k),...,\epsilon(k-n))$$

$$\quad \text{for} \quad k=n+1, n+2, \dots$$

Measurement Noise (Output Error Model)

$$y(k) = M(k; U, x_{init}, p) + \epsilon(k)$$

Stochastic Disturbance (Equation Errors)

$$y(k) = h(p, u(k), ..., u(k-n), y(k-1), ..., y(k-n)) + \epsilon(k)$$

for
$$k = n + 1, n + 2, ...$$

Linear In the Parameters models (LIP):

$$y(k) = \sum_{i=1}^{d} \theta_i \phi_i(u(k)..., y(k-1), ...) + \epsilon(k)$$

$$y(k) = \varphi(k)^T \theta + \epsilon(k)$$
 where $\varphi = (\phi_1(\cdot), ..., \phi_d(\cdot))$

LIP-LTI Models with Equation Errors (ARX) combining best of two worlds (LTI and LIP)

$$a_0y(k) + \dots + a_{n_0}y(k - n_0) = b_0u(k) + \dots + b_{n_0}u(k - n_0) + \epsilon(k)$$

Auto-regressive moving average with eXogeneous input (AR-

$$a_0y(k)+\ldots+a_{n_a}y(k-n_a)$$

$$b_0 u(k) + \dots + b_{n_b} u(k - n_b) + \epsilon(k) + c_1 \epsilon(k - 1) + \dots + c_{n_x} \epsilon(k - n_c)$$

Auto-regressive moving average without inputs (ARMA):

$$\begin{array}{l} a_0y(k)+\ldots+a_{n_a}y(k-n_a) \\ = \end{array}$$

 $\epsilon(k) + c_1 \epsilon(k-1) + \dots + c_{n_x} \epsilon(k-n_c)$

Where c_i represent the noise coefficient Have to use non-linear leas squares with the unknown noise terms $\epsilon(k-i)$

Difference Deterministic and Stochastic Models

- $-stochasticnoise\epsilon(k)$
- -unknownbut constant parameter p
- $-measured outputy(k) depend on both, \epsilon(k) and p$

Example for State Space Model

$$\ddot{a} = m \cdot \dot{a} + g \cdot a + c \cdot u$$

$$y = \dot{a}$$

$$x = \begin{bmatrix} a \\ \dot{a} \end{bmatrix} \dot{x} = \begin{bmatrix} \dot{a} \\ \ddot{a} \end{bmatrix} \dot{x} = Ax + Bu \quad y = Cx + Du$$

$$A = \begin{bmatrix} 0 & 1 \\ g & m \end{bmatrix} B = \begin{bmatrix} 0 \\ c \end{bmatrix} C = \begin{bmatrix} 0 & 1 \end{bmatrix} D = \begin{bmatrix} 0 \end{bmatrix}$$

Pure Output Error (OE) Minimization

Assume: i.i.d. gaussian noise only affecting output using non-linear least squares

$$\theta_{ML} = \min_{\theta} \sum_{k=1}^{N} (y(k) - M(k; U, x_{init}p))^2$$

Output Error Minimization for FIR Models: lead to convex problems, therefore global minimum can be found

$$y(k) = (u(k), u(k-1), ..., u(k-n_{n_k})) \cdot \theta + \varepsilon(k)$$

$$= \min_{\boldsymbol{\theta}} \sum_{k=n_b+1}^N (y(k) - \qquad \left(u(k), u(k-1), ..., u(k-n_{n_b})\right) \qquad \cdot \boldsymbol{\theta})^2$$

Deterministic part is also $M(k; U, x_{init}, p)$

They often need a very high dimension n_b to obtain a reasonable fit. As a consequence ARX models are usually used instead.

Equation Error Minimization: Assume: i.i.d. $\epsilon(k)$ noise enters the input-output equation as additive disturbance

$$y(k) = h(p, u(k), ..., u(k-n), y(k-1), ..., y(k-n)) + \epsilon(k)$$

for
$$k = n + 1, n + 2$$

if the i.i.d noise is gaussian, a maximum likelihood formulation to estimate the unknown parameter vector $\theta = p$ is given:

$$\theta_{ML} = \min_{\theta} \sum_{k=n+1}^{N} (y(k) - h(p, u(k), ..., y(k-1), ...)))^{2}$$

u and k are known input and output measurements, and the algorithm minimises the so called equation errors or prediction errors. This problem is also known as Prediction error minimisation (PEM) Such a problem is convex if p enters linearly in f, i.e. if the model is linear-in-the-parameters (LIP) PEM of LIP Models

$y(k) = \varphi(k)^T \theta + \epsilon(k)$

where $\varphi = \left(\phi_1(\cdot), ..., \phi_d(\cdot)\right)^T$ are the regressor variables considering this last expression, the prediction error minimisation (PEM) problem can be formulated as:

$$\min_{\theta} \underbrace{\sum_{k=1}^{N} (y(k) - \varphi(k)^{\mathrm{T}} \theta)^{2}}_{=\|y_{N} - \Phi_{N} \theta\|_{2}^{2}}$$

Which can be solved using LLS $\theta^* = \Phi_N^{\dagger} y_N$ Special Case: PEM of LIP-LTI Models with Equation Errors(ARX) General ARX model equation

 $a_0 y(k) + \ldots + a_{n_a} y(k - n_a) = b_0 u(k) + \ldots + b_{n_b} u(k - n_b) + \epsilon(k)$ In order to have a determined estimation problem, a_0 has to be fixed, otherwise the number of optimal solutions would be infinitive. Therefore we sually fix $a_0 = 1$ and use $\theta = (a_1, ..., a_{n_0}, b_0, ..., b_{n_k})^T$ as the parameter estimation vector. The regressor vector is given by

$$\varphi = (-y(k-1), ..., -y(k-n_a), u(k), ..., u(k-n_b))^{\mathrm{T}}$$

leading to the optimal solution provided by LLS:

$$y(k) = \varphi(k)^{\mathrm{T}} \theta + \epsilon(k)$$

Pure Output Error (OE) Minimization

Models with Input and Output Errors:

$$y(k) = M(k; U + \varepsilon_N^u, x_{init}, p) + \epsilon^y(k)$$

model.pdf

Assume: i.i.d. gaussian noise on both input and output with variance σ_{ii}^2 for the input and σ_u^2 for the output

$$\begin{split} \arg\min_{\theta} \sum_{k=1}^{N} \frac{1}{\sigma_{y}^{2}} (y(k) - M(k; U + \epsilon_{N}^{u}, x_{init}, p))^{2} + \frac{1}{\sigma_{u}^{2}} (\epsilon_{u}(k))^{2} \\ \arg\min_{\theta} \sum_{k=1}^{N} \frac{1}{\sigma_{y}^{2}} (y(k) - M(k; \tilde{U}, x_{init}, p))^{2} + \frac{1}{\sigma_{u}^{2}} (u(k) - \tilde{u}(k))^{2} \end{split}$$

Fourier Transformation

$$F\{F\}(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$$

$$f(t) = F^{-1}{F}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega)e^{-j\omega t} d\omega$$

$$U(m) := \sum_{k=0}^{N-1} u(t)e^{-j\frac{2\pi mk}{N}}$$

$$u(n) := \sum_{k=0}^{N-1} U(k)e^{j\frac{2\pi kn}{N}}$$

Useful frequency things

$$\omega = 2\pi f = \frac{2\pi}{T}$$
 $f_s > 2f_{max}$ $T = N\Delta t = \frac{N}{f_s}$

Aliasing and Leakage Errors

Aliasing Error: Due to sampling of continous signal to discrete signal. Avo-

$$f_{Nyquist} = \frac{1}{2\Delta t} [\text{Hz}] \quad or \quad \omega_{Nyquist} = \frac{2\pi}{2\Delta t} [\text{rad/s}]$$

$$\omega_{base} := \frac{2\pi}{N \cdot \Delta t} = \frac{2\pi}{T} \to \omega = m \frac{2\pi}{N \cdot \Delta t}$$

Crest Factor = Scheitelfaktor

Crest Factor
$$= \frac{u_{max}}{u_{rms}}$$
 with $: u_{rms} := \sqrt{\frac{1}{T} \int_0^T u(t)^2 dt}$ and $u_{max} := \max_{t \in [0,T]} |u(t)|$

Optimising Multisine for optimal crest factor

Frequency: Choose frequencies in logarithmic manner as multiples of the base frequency. $\omega_{k+1}/\omega_k \approx 1.05$

Phase: To prevent high peaks (Crest Factor) in the Signal, the phases of the different frequencies are modulated accordingly. (Positive inter-

Multisine Identification Implementation procedure

Window Length: Integer multiple of sampling time: $T = N \cdot \delta t$

Harmonics of base frequency: Are contained in multisine

Highest contained Frequency: Is half of Nyquist frequency: $\omega_{Nyquist} =$

 $\frac{4\Delta T}{4\Delta T}$ and Analysis: (Step 2): Insert Multisine periodically. Drop first Periods (till transients died out). Record M Periods, each with N samples, of input and output data. Average all the M periods and make the DFT (or vice versa). Finally build transfer function: $\hat{G}_{j\omega_k} = \frac{\hat{Y}(k(p))}{\hat{U}(k(p))}$

Nonparametric and Frequency Domain Identification Models

Impulse response and transfer function:

$$y(t) = \int_{0}^{\infty} g(\tau)u(t-\tau)\,\delta t$$

$$Y(s) = G(s) \cdot U(s)$$

$$G(s) = \int_{0}^{\infty} e^{-st} g(t) dt$$

Bode diagram from frequency sweeps:

$$u(t) = A \cdot \sin(\omega \cdot t), \quad y(t) = \|G(j \cdot \omega)\|A \cdot \sin(\omega \cdot t + \alpha)$$

Bode Diagramm

Magnitude = Amplitude $|G(j\omega)|$

Phase $arg G(j\omega)$

Hier sollten wir glaub noch bisschen was rein machen

Recursive Least Squares

New Inverse Covariance: $Q_K = Q_{k-1} + \phi_K \phi_K^T$

Kalman Filter

Valid for Discrete and Linear!

If recursive least squares: $x_{k+1} = A_k \cdot x_k$

 $x_{k+1} = A_k \cdot x_k + \omega_k$ and $y_k = C_k \cdot x_k + v_k$

Steps of Kalman Filter

$$\hat{x}_{[k|k-1]} = A_{k-1} \cdot \hat{x}_{[k-1|k-1]}$$

$$P_{[k|k-1]} = A_{k-1} \cdot P_{[k-1|k-1]} \cdot A_{k-1}^T \cdot W_{k-1}$$

If RLS, without: W_{k-1}

$$P_{[k|k]} = (P_{[k|k-1]}^{-1} + C_k^T \cdot V^{-1} \cdot C_k)^{-1}$$

$$\hat{x}_{[k|k]} = \hat{x}_{[k|k-1]} + P_{[k|k]} \cdot C_k^T \cdot V^{-1} \cdot (y_k - C_k \cdot \hat{x}_{[k|k-1]})$$