Matrices in Julia

Reese Pathak David Zeng Keegan Go Stephen Boyd

EE103 Stanford University

November 4, 2017

Matrices

- matrices in Julia are repersented by 2D arrays
- ▶ [2 -4 8.2; -5.5 3.5 63] creates the 2×3 matrix

$$A = \left[\begin{array}{rrr} 2 & -4 & 8.2 \\ -5.5 & 3.5 & 63 \end{array} \right]$$

- spaces separate entries in a row; semicolons separate rows
- size(A) returns the size of A as a pair, i.e.,
 A_rows, A_cols = size(A) # or
 # A_rows is size(A)[1], A_cols is size(A)[2]
- row vectors are $1 \times n$ matrices, e.g., [4 8.7 -9]

Indexing and slicing

- $ightharpoonup A_{ij}$ is found with A[i,j]
- ▶ can use ranges: A[1:2,1:3] is 2×3 submatrix or slice $A_{1:2,1:3}$
- : selects all elements along that dimension
 - A[:,3] is third column
 - A[2,:] is second row
- ► A[:] stacks the columns of A as a vector (column-major order)
- ▶ A' [:] stacks the rows of A as a vector (row-major order)

Block matrices

block matrix

$$X = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

(with A, B, C, and D matrices) is formed with

$$X = [A B; C D]$$

lacktriangle usual rules governing dimensions of A,B,C, and D apply

Useful matrices in Julia

- $ightharpoonup 0_{m imes n}$ is zeros(m,n)
- ightharpoonup m imes n matrix with all entries 1 is ones(m,n)
- $ightharpoonup I_{n \times n}$ is eye(n)
- ▶ diag(x) is diagm(x) (where x is a vector)

Transpose and matrix addition

- $ightharpoonup A^T$ is written A' (single quote mark)
- ► +/- are used for matrix addition/substraction (matrices must have the same size)
- ▶ for example,

$$\begin{bmatrix} 4.0 & 7 \\ -10.6 & 89.8 \end{bmatrix} + \begin{bmatrix} 19 & -34.7 \\ 20 & 1 \end{bmatrix}$$

is written

$$[4.0 7; -10.6 89.8] + [19 -34.7; 20 1]$$

Matrix-scalar operations

- ▶ matrix-scalar operations (+,-,*,\) apply elementwise
- scalar-matrix multiplication:

$$10 \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 10 & 20 \\ 30 & 40 \end{bmatrix}$$

(scalar can also appear on right of matrix)

matrix-scalar addition:

gives

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 10 & 10 \\ 10 & 10 \end{bmatrix} = \begin{bmatrix} 11 & 12 \\ 13 & 14 \end{bmatrix}$$

(which is not standard mathematical notation)

Matrix-vector multiplication

- * operator is used for matrix-vector multiplication
- ▶ for example,

$$\left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right] \left[\begin{array}{c} 5 \\ 6 \end{array}\right]$$

is written

Matrix multiplication

* is also used for matrix-matrix multiplication:

$$\left[\begin{array}{ccc} 2 & 4 & 3 \\ 3 & 1 & 5 \end{array}\right] \left[\begin{array}{ccc} 3 & 10 \\ 4 & 2 \\ 1 & 7 \end{array}\right]$$

is written

• A^k is A^k (for square matrix A)

Other functions

- sum of entries of a matrix: sum(A)
- average of entries of a matrix: mean(A)
- ▶ max(A,B) and min(A,B) finds the element-wise max and min respectively
 - the arguments must have the same size unless one is a scalar
- ▶ norm(A) is not what you might think
 - to find $\left(\sum_{i,j}A_{ij}^2\right)^{1/2}$ use $\mathtt{norm}(\texttt{A}[:])$ or $\mathtt{vecnorm}(\texttt{A})$

Computing regression model RMS error

the math:

- \blacktriangleright X is an $n \times N$ matrix whose N columns are feature n-vectors
- ▶ *y* is the *N*-vector of associated outcomes
- ▶ regression model is $\hat{y} = X^T \beta + v$ (β is n-vector, v is scalar)
- ▶ RMS error is $\mathbf{rms}(\hat{y} y)$

in Julia:

```
y_hat = X'*beta + v
rms_error = norm(y_hat-y)/sqrt(length(y))
```