This work is licensed under CC-BY 4.0 International.

Illustration reprinted from Pete Bankhead.

Introduction to Bioimage Analysis using QuPath

Antoine A. Ruzette & Simon F. Nørrelykke Image Analysis Collaboratory

Get the course materials

https://hms-iac.github.io/qupath-workshop

One-stop resource for everything we'll cover today

Let's download an example image

- 1. Browse to the workshop website >
- 2. Download the .vsi whole-slide image
- 3. Once done, unzip it
- 4. Save it
- 4. Right-click on the installer file > Open > Confirm Open

Workshop plan

- 1. Introduction to digital image analysis
- 2. Installing QuPath and your first project
- 3. GUI layout and toolbars
- 4. Introducing objects: annotations and detections
- 5. Saving, sharing and receiving QuPath projects
- 6. Nuclei detection and measurements (incl. StarDist)
- 7. Cell classification
- 8. Automating tissue annotations (pixel classifier)
- 9. Advance topic: scripting and workflows

Acknowledgments

- Pete Bankhead et al.
 - QuPath and its amazing documentation
- Peter Sobolewski
 - Introduction to QuPath workshop at the The Jackson Laboratory
- Nina Kozlova
 - Whole-slide image used in this workshop

Self-introductions

- 1. My **name** is *Antoine*
- 2. My position is as a Computational Biologist
- 3. My lab is the Image Analysis Collaboratory and the Megason Lab
- 4. I have confocal microscopy images of cancer tissues, embryos, ...
- 5. A **fun fact** about me is *I used to be a brewer*

Goals

- 1. Motivate the use of algorithms in image analysis
- 2. Introduce some image-analysis nomenclature
- 3. Learn to use QuPath effectively and reproducibly

Reasons to learn image processing

- Make pretty pictures (processing)
 - publications, talks, websites, ...
- Get numbers out of pictures (analysis)
 - cell sizes, vessel lengths, GPF expression level, ...
- Make experiment possible (automation)
 - whole-genome screen: millions of images
- Objectivity and Reproducibility
 - in science, it's your duty!

Reasons **not** to learn image processing

none

Why should we analyze images with computers at all?

Color perception and pattern recognition is individual – science less so

https://www.moillusions.com/perfect-circles-optical-illusion/

http://www.brainbashers.com

Color perception and pattern recognition is individual – science less so

https://www.moillusions.com/perfect-circles-optical-illusion/

http://www.brainbashers.com

In other words,

"Each human brain is a very complex neural network trained on different data – predictions will vary"

Antoine

A typical image analysis workflow

- There are typically five steps in an image analysis
- · Often a good idea to structure work along these lines before starting

Think of this even *before* you acquire the images!

otherwise image analysis may become only a *post-mortem* on your experiment

Image processing vs analysis

Image Formation

object in → image out

Image Analysis

image in → features out

Obj	Area	Perim
1	324.2	98.5
2	406.7	140.3
3	487.1	159.2
4	226.3	67.8
5	531.8	187.6
6	649.5	203.1
7	582.6	196.4
8	498.0	162.9
9	543.2	195.1

Computer Vision

image in → interpretation out

The series shows microtubule growth in a live neuron. The average speed of the distal ends is comparable in the cell body, dendrites, axons, and growth cones.

Image Processing

image in → image out

Computer Graphics

numbers in → image out

X	Y	I
-3.54	-2.32	0.50
-2.78	-1.90	0.12
-1.15	0.42	3.09
0.45	1.65	5.89
1.83	2.18	7.72
2.98	3.33	2.07
4.21	3.96	-4.58
5.62	4.54	-11.45
7.16	5.02	-3.63

Visualization

image in → representation out

What is an image?

A digital image is a matrix of numbers!

Pixel = Picture Element

Images in publications and presentations should be used to **communicate** a finding... not **be** the finding

this is your data

this is your result

this just helps to communicate the result

Display your images

Mapping Image Intensity to Monitor Intensity (Look Up Tables)

LUT = how the grey values are <u>displayed</u>

<u>LUTs do not change the pixel values</u>

Images and Colors

Lookup Tables (LUTs)

LUT = how the grey values are <u>displayed</u>

<u>LUTs do not change the pixel values</u>

lmage (8 bit)	Displayed color
0	
1	
100	S S
255	

lmage (8 bit)	Displayed color
0	
1	4
•••	11) VOSO (U)
100	Se S
•••	
255	

Display images: color, brightness & contrast

OuPath workshop

- If you are imaging a blue fluorophore, you are not forced to display it in blue!
- Pixel histogram represents the distribution of pixel values in the image
- LUT range

*You are NOT changing the pixels values, you are just changing how the image is displayed (unless you click on the "Apply" button).

Which image has more fluorescence?

Mean:	4803	4803
Display range:	188- 16828	188- 45514

Mean:	4803	4803
Display range:	188- 16828	188- 16828

Save the downloaded example image (cont.)

- 1. Browse to the workshop website >
- 2. Download the .vsi whole-slide image (~2-5 min)
- 3. Create a folder named *qupath_workshop* (outside of your *downloads* folder)
- 4. Once the download is finished, unzip
- 5. Save the unzipped folder in the newly created *qupath_workshop* folder