Математический анализ 4 семестр

shared with \heartsuit by artem Zholus

Содержание

1	Kpi	итерий Лебега интегрируемости по Риману	2
2	Суммируемые функции		3
	2.1	Неотрицательные суммируемые функции	3
	2.2	Суммируемые функции произвольного знака	4

1 Критерий Лебега интегрируемости по Риману

Определение (Колебание на отрезке).

$$\omega(f,c,d) = \sup_{[c,d]} f - \inf_{[c,d]} f =$$
 (по лемме из 1го семестра) $= \sup_{x',x'' \in [c,d]} |f(x') - f(x'')|$

Определение (Колебание функции в точке).

$$\omega(f, x) = \lim_{\delta \to 0} \omega(f, x + \delta, x - \delta)$$

Очевидно, колебание на отрезке неотрицательно, и, если $0 < \delta_1 < \delta_2$ то $\omega(f, x - \delta_1, x + \delta_1) < \omega(f, x - \delta_2, x + \delta_2)$. Поэтому, вышеприведенный предел существует.

Утверждение 1.1. $\omega(f,x)=0 \Leftrightarrow f \in C(x)$

Доказательство. 1. ← Раз функция непрерывна, значит она достигает на отрезке своего sup и inf. Значит, если устремить границы отрезка к одной точке, в пределе получим разность двух одинаковых чисел.

 $2. \Rightarrow \omega(f,x) = 0$ означает, что можно подобрать такую δ -окрестность для x, что она будет сколь угодно малой. Берем формулу $\sup_{x',x''\in[x-\delta,x+\delta]}|f(x')-f(x'')|=0$ фиксируем x''=x (от этого sup разве что уменьшится) и получаем определение непрерывности в x.

Определение. τ : - разбиение отрезка [a,b], если $\tau = \{x_j\}$: $a = x_0 < x_1 < \cdots < x_n = b$

Ведем кусочно-постоянную функию $g(\tau, x) = \omega(f, x_i, x_{i+1})$, при $x \in [x_i, x_{i+1}]$

Утверждение 1.2. $g(\tau_n,x) \xrightarrow[n \to +\infty]{} \omega(f,x)$ почти всюду на отрезке

Доказательство. Очевидно, мы можем подбирать τ_n так, чтобы границы отрезка, содержащего x совпали с границами из определения $\omega(f,x)$. Тогда для неграничных точек получим стремление. Граничных точек на конечном шаге - конечное число, а это значит, что мы не перейдем за границу счетной мощности (danger zone - МАТЛОГИКА), и предел будет почти всюду

Тогда, по теореме Лебега о предельном переходе под знаком интеграла, получаем:

$$\int_{[a,b]} g(\tau_n, x) dx \to \int_{[a,b]} \omega(f, x) dx$$

Левая часть, по лемме из первого семестра равна $\int\limits_{[a,b]}g(au_n,x)dx=\omega(f, au_n).$ Получаем:

$$\lim_{rang\tau_n \to 0} \omega(f, \tau_n) = \int_{[a,b]} \omega(f, x) dx$$

Это наша рабочая формула.

Теорема 1.3 (Критерий Лебега интегрируемости по Риману). $f \in \Re(a,b) \Leftrightarrow \lambda\{a: f \notin C(a)\} = 0$

Доказательство. 1. \Rightarrow

Пусть
$$\omega(f,x)=0$$
 почти всюду на $[a,b].$ Тогда $\int\limits_{[a,b]}\omega(f,x)dx=0 \Rightarrow f\in\Re[a,b]$

2. \Leftarrow Пусть $f \in \Re[a,b]$. Тогда, по определению, $\omega(f,\tau_n) \to 0$. Тогда $\int\limits_{[a,b]} \omega(f,x) dx = 0$. Но $\omega(f,x) \geqslant 0$. Значит $\omega(f,x) = 0$ почти всюду на [a,b] (И, по лемме, почти всюду непрерывна).

$\mathbf{2}$ Суммируемые функции

Неотрицательные суммируемые функции

Здесь и далее считаем, что мера μ - полная и σ -конечная. Наша задача - распространить интеграл Лебега на более широкую ситуацию. Считаем, что $E \in \mathcal{A}, f : E \xrightarrow{\text{измеримо}} \mathbb{R}, f(x) \geqslant 0$ на E.

Определение. $e \subset E$ называется допустимым для f если:

- 1. $\mu(e) < +\infty$
- $2. \, f$ ограничена на e

Утверждение 2.1. Непустые допустимые множества существуют.

Доказательство. Пусть $E_n = E(n < f(x) \leqslant n+1)$. Понятно, что $E = \bigcup E_n$. По σ -конечности $X = \bigcup_{n \in \mathbb{N}} X_n$, причем X_m - конечномерны. Тогда $E = \bigcup_{m=0}^\infty E_n X_m$ - допустимые множества. Если они все пустые, то E, тоже пусто. Значит среди них хотя бы ожно непустое.

Определение (Несобственный интеграл Лебега). $\int\limits_E f d\mu \stackrel{\text{def}}{=} \sup_{e-\text{допустимо}} \int\limits_e f d\mu$

Определение (Суммируемая функция). Функция f называется суммируемой на множестве E, если $\int f d\mu <$ $+\infty$

Очевидно, если $\mu E < +\infty, \ f(x) \geqslant 0, \ {\rm To} \int\limits_E f d\mu = \sup\limits_{e \subset E} \int\limits_e f d\mu.$

Проверим аддитивность и линейность.

Теорема 2.2 (σ -аддитивность несобственного интеграла Лебега). Пусть $E = \bigcup_n E_n$ - дизоюнктны. Тогда $\int\limits_E f = \sum\limits_n \int\limits_{E_n} f$

Докажем в два этапа. сначала конечную аддитивность, потом σ -аддитивность

Доказательство. 1. Пусть $E=E_1\cup E_2.$ Пусть $e_1\in E_1,\ e_2\in E_2$ - допустимые. И любое допустимое для E множество $e=e_1\cup e_2$. Для определенного интеграла мы знаем, что $\int\limits_e f=\int\limits_{e_1} f+\int\limits_{e_2} f\leqslant \int\limits_{E_1} f+\int\limits_{E_2} f$

Переходя к sup по e получаем $\int\limits_E f \leqslant \int\limits_{E_1} f + \int\limits_{E_2} f$

В обратную сторону. Считаем, что f - суммируема (иначе все тривиально). По определению \sup , $\forall \varepsilon > 0 \ \exists e_j \subset E_j : \int\limits_{E_j} f - \varepsilon < \int\limits_{e_j} f.$

 $\int\limits_{E_1} f + \int\limits_{E_1} f - 2\varepsilon < \int\limits_{e_1} f + \int\limits_{e_2} f = \int\limits_{e} f \leqslant \int\limits_{E} f.$ Устремив $\varepsilon \to 0$ получим $\int\limits_{E_1} f + \int\limits_{E_2} f \leqslant \int\limits_{E} f.$ Значит $\int\limits_{E_1} f + \int\limits_{E_2} f = \int\limits_{E} f$

2. Итак, пусть $e = \bigcup_{n=1}^{+\infty} e_n$. Очевидно $\int\limits_{e_n} f \leqslant \int\limits_{E_n} f$ и $\int\limits_{e} f = \sum\limits_{n} \int\limits_{e_n} f$. Значит $\int\limits_{E} f \leqslant \sum\limits_{n} \int\limits_{E_n} f$. Обратно. $\forall \varepsilon > 0 \; \exists e_n \subset E_n :$

 $\int\limits_{E_n} f - rac{arepsilon}{2^n} < \int\limits_{e_n} f$. Сложим первые p неравенств: $\sum\limits_{1}^{p} \int\limits_{E_n} f - arepsilon \sum\limits_{1}^{p} rac{1}{2^n} < \sum\limits_{1}^{p} \int\limits_{e_n} f \leqslant \int\limits_{E} f$. Устремляя $p o + \infty$,

получаем $\sum_{r=1}^{+\infty} \int_{\Gamma} f - \varepsilon \leqslant \int_{\Gamma} f$. Теперь устремим $\varepsilon \to 0$ и получим обратное неравенство.

Теорема 2.3 (Линейность несобственного интеграла Лебега).

1.
$$\int_{E} \alpha f = \alpha \int_{E} f, \ \alpha > 0$$

2.
$$\int_{E} (f+g) = \int_{E} f + \int_{E} g$$

Доказательство. Первое свойство следует непосредственно из определения. Докажем второе. Итак, пусть $E_n = E(n < f + g \leqslant n + 1)$. Тогда, очевидно, $E = \bigcup_n E_n$. По σ -конечности можно написать $X = \bigcup_n X_n$. От X_n мы хотим дизъюнктности, поэтому, если они не таковы, то проделаем следующий трюк: $X = X_1 \cup (X_2 \setminus X_1) \cup \cdots \cup (X_n \setminus \bigcup_1^{n-1} X_j) \cup \ldots$. Теперь E можно разбить как $E = \bigcup_{n,m} E_n X_m$ - эти множества

 $X = X_1 \cup (X_2 \setminus X_1) \cup \cdots \cup (X_n \setminus \bigcup_{1}^{n-1} X_j) \cup \cdots$. Теперь E можно разбить как $E = \bigcup_{n,m} E_n X_m$ - эти множества дизъюнктны и допустимы для f + g. Далее по σ -аддитивности пишем: $\int_E (f + g) = \sum_n \int_A (f + g) = ($ по линейности определенного интеграла $) = \sum_n \int_A f + \sum_n \int_A g = ($ по σ -аддитивности несобственного $) = \int_E f + \int_E g$

Утверждение 2.4. Если $0\leqslant f\leqslant g,\ mo\int\limits_E f\leqslant\int\limits_E g$

 \square Доказательство. \mathbf{TODO}

2.2 Суммируемые функции произвольного знака ТОДО