Pruebas estadísticas en R: X2, t y ANOVA

RLadies Cuernavaca, junio de 2022

Aurora Labastida

Pruebas de hipótesis

¿La altura promedio es distinta según el sexo?

Promedios iguales

Hipótesis nula H

Promedios diferentes

Hipótesis alternativa H,

Pruebas de hipótesis

¿La toxina está asociada con la enfermedad?

Hipótesis nula H_o

Variables no asociadas

Hipótesis alternativa H,

Variables asociadas

Pruebas de hipótesis

Sabemos cuál es la probabilidad (p) de observar distintos valores del estadístico cuando H_o es verdadera.

Pruebas de hipótesis

Pruebas de hipótesis

		No Paramétrica			Paramétrica
		Nominal: 2 categorías	Nominal: 3 o más categorías	Numérica no normal (u ordinal)	Numérica
	1 Grupo	X² Bondad de ajuste	X² Bondad de ajuste	X² Bondad de ajuste	T de Student para una muestra
Muestras Indepen- dientes	2 Grupos	X² de homogeneidad + corrección de Yates o test exacto de Fisher	X² de homogeneidad	U Mann-Whitney	T de Student para muestras independientes
	3 o más Grupos	X² de homogeneidad	X² de homogeneidad	H Kruskal-Wallis	ANOVA
Muestras relacionadas	2 Mediciónes	Mc Nemar	Q de Cochran	Wilcoxon	T de Student para muestras no independientes
(Estudio longitudinal)	3 o más Mediciones	Q de Cochran	Q de Cochran	Friedman	ANOVA para muestras no independientes

Test X²

Enfermedad NO SI NO 100 100 200 Toxina SI 50 150 200 150 250 400

 H_0 : Las variables son independientes entre sí

H₁: Las variables están asociadas entre sí

$$X^{2} = \sum_{e} \frac{(o-e)^{2}}{100} = \frac{(100-75)^{2}}{100} + \frac{(100-125)^{2}}{125} + \frac{(50-75)^{2}}{75} + \frac{(150-125)^{2}}{125}$$

Test X²

Grados de libertad (k) = (Número de filas - 1) x (Número de columnas - 1)

Valores observados (o)

		Enferr NO	nedad Sl	
	NO	100	100	200
Toxina	SI	50	150	200
		150	250	400

Test X²
Valores esperados (e) Residuales de Pearson

75	125	200
75	125	200
150	25	400

150	250	400
-2.9	2.2	200
2.9	-2.2	200

Test X²

Valores observados (o)

Valores esperados (e) Residuales de Pearson

75	125	200
75	125	200
150	25	400

2.9	-2.2	200
-2.9	2.2	200
150	250	400

$$X^2 = \sum_{e} \frac{(o-e)^2}{e}$$

$$r = \frac{o - e}{\sqrt{e}}$$

contribución del residual=
$$\frac{r^2}{x^2}$$

t de Student

Para un grupo

 H_{\circ} : El promedio es distinto a mu

Para dos grupos

 ${\rm H_{\odot}}$: Los promedios de los grupos A y B son iguales

t de Student

Para un grupo

 $H_{_{0}}$: El promedio es distinto a mu

$$t = \frac{(\overline{X} - mu)^2}{s / \sqrt{n}}$$

Para dos grupos

 ${\rm H_{\odot}}$: Los promedios de los grupos A y B son iguales

$$t = \frac{(\overline{X}_{1} - \overline{X}_{2})^{2}}{\sqrt{\frac{s_{1}^{2} + s_{2}^{2}}{n_{1}^{2} + n_{2}^{2}}}}$$

t de Student

Grados de libertad (k)

Para un grupo k = n - 1

Para dos grupos $k = n_{1} n_2 - 2$

ANOVA

- ${\rm H_{\, o}}$: Los promedios de los grupos son iguales entre si
- H₁: Por lo menos un promedio es distinto a los demás
- F= Variación explicada por los grupos
 Variación no explicada por los grupos
- F= Variación entre el promedio de los grupos Variación al interior de los grupos

ANOVA

 $\mathsf{df_1} = \mathsf{Grupos} - \mathsf{l} \qquad \qquad \mathsf{df_2} = \mathsf{n-l}$ $(\mathit{df_1} = 1, \mathit{df_2} = 1)$ $(\mathit{df_1} = 10, \mathit{df_2} = 20)$ $(\mathit{df_1} = 5, \mathit{df_2} = 4)$ $0 \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5$

¡Muchas gracias!