Scratch paper

Anonymous Università di Torino April 2019

Abstract Poche idee, ben confuse.

1 Introduction

2 Samples

The finite (fractional) expansion of a structure M is a many-sorted expansion that has a sort for M, which we call the home-sort, a sort for \mathbb{R} , the set of real numbers, and, for every n, a sort for the functions $s:M^n\to\mathbb{R}$ that are almost always 0.

These functions will be interpreted as (signed and fractional) multisets . Namely s(a) interpreted as the number of times a occurs in s. We use the following suggestive notation:

1.
$$a \in s = s(a)$$
 this is called the multiplicity of a in s ;

2.
$$|s| = \sum_{a \in M} a \in s$$
 this is called the size of s ;

3.
$$\left|\left\{a \in s : \varphi(a;b)\right\}\right| = \sum_{a \models \varphi(x;b)} a \in s.$$

We call these multisets samples and refer to their sorts collectively as sample-sort.

We will write M^f for the expansion above. The language of M^f is denoted by L^f . It expands L, the language of rings, and the language of vector spaces over \mathbb{R} . Each interpreted in the obvious sort. Moreover, L^f has a symbols for the functions in 1-3 above. In particular, 3 requires a symbol for every $\varphi(x;z) \in L$.

Let \mathcal{U} be a monster model of cardinality κ , a cardinal larger than the cardinality of L. We introduce two elementary extension of \mathcal{U}^f .

2.1 Definition We denote by \mathfrak{U}^{f_*} a saturated elementary extension of \mathfrak{U}^f of cardinality κ . As all saturated models of cardinality κ are isomorphic, we can assume that \mathfrak{U} is the homesort of \mathfrak{U}^{f_*} . We denote by \mathfrak{U}^{f_*} some elementary extension of \mathfrak{U}^{f_*} that realizes all types in $S(\mathfrak{U}^{f_*})$. Hence we have $\mathfrak{U}^f \prec \mathfrak{U}^{f_*} \prec \mathfrak{U}^{f_*}$. Elements of sample-sort in these models are called finite samples, internal samples, and (external) samples respectively.

The use of $\mathcal{U}_{*}^{f_{*}^{+}}$ is not ideal, it is introduced to replace the use of global types of sample-sort which also have drawbacks.

We write supp(s) for the support of s, that is, the set of those a in $\mathcal{U}_*^{f_*}$ such that $a \in s$ is positive.

Let s be an external sample. For every formula $\varphi(x;z) \in L$ and every $b \in \mathcal{U}^{|z|}$ we define

$$\operatorname{Av}_s \varphi(x;b) = \frac{\left|\left\{a \in s : \varphi(a;b)\right\}\right|}{|s|},$$

Below, ε always ranges over the positive standard reals. If a and b are hyperreals, we write $a \approx_{\varepsilon} b$ for $|a - b| < \varepsilon$. We write $a \approx b$ if $a \approx_{\varepsilon} b$ holds for every ε . We write $\operatorname{st}(a)$, for the standard part of the hyperrational number a. That is, the unique real number μ such that $\mu \approx a$.

The standard part of Av_s induces a finite probability measure on the algebra of definable subsets of $\mathcal{U}^{|x|}$. This measure has an unique extension to a Lebesgue probability measure on a σ -algebra. This is known as the Loeb measure.

- **2.2 Definition** We say that a sample s is smooth for $\varphi(x;z)$ over M if, for every $s' \equiv_M s$ and every $b \in \mathcal{U}^{|z|}$, we have $\operatorname{Av}_{s'} \varphi(x;b) \approx \operatorname{Av}_s \varphi(x;b)$.
- **2.3 Definition** Let $\varphi(x;z) \in L$ and let M be a model. An external s is
 - 1. invariant if, for every $b' \equiv_M b \in \mathcal{U}^{|z|}$, we have $\operatorname{Av}_s \varphi(x;b) \approx \operatorname{Av}_s \varphi(x;b')$.
 - 2. definable if, for every ε , the set $\{b \in \mathcal{U}^{|z|} : \operatorname{Av}_s \varphi(x;b) < \varepsilon\}$ is definable over M.
 - 3. satisfiable if, for all $b \in \mathcal{U}^{|z|}$, if $\operatorname{Av}_s \varphi(x;b) \not\approx 0$, then $\varphi(a;b)$ for some $a \in M^{|z|}$.
 - 4. generically stable if all of the above holds.

When $\varphi(x;z)$ and M are not clear from the context we add: for $\varphi(x;z)$ over/in M.

2.4 Fact Smooth samples are generically stable. (For some given $\varphi(x;z)$ and M.)

Proof We prove in turn 1-3 of the definition above.

- 1. If s is smooth for $\varphi(x;z)$ over M, then there is an internal sample $s' \in \mathcal{U}^{f_*}$ such that $\operatorname{Av}_{s'} \varphi(x;b) \approx \operatorname{Av}_s \varphi(x;b)$ for all $b \in \mathcal{U}^{|z|}$. Then 1 follows.
- 2. The set $\{b \in \mathcal{U}^{|z|} : \operatorname{Av}_s \varphi(x;b) < \varepsilon\}$ is definable in \mathcal{U}^{f_*} because, by invariance of s, we may replace s with any internal sample $s' \equiv_M s$. As this set is invariat over M, it is definable over M^f and therefore, over M.
- 3. Let $b \in \mathcal{U}^{|z|}$ be such that $\operatorname{Av}_s \varphi(x;b) > \varepsilon$. Pick a sample s' such that $s \equiv_M s' \downarrow_{M^f} b$. By the smoothness of s, we obtain $\operatorname{Av}_{s'} \varphi(x;b) > \varepsilon$. Let $s_0 \in M^f$ such that $\operatorname{Av}_{s_0} \varphi(x;b) > \varepsilon$. Clearly, some element of $\operatorname{supp}(s_0)$ proves 3.

Smooth samples are invariant. The converse need not be true in general, but we have the following.

- **2.5 Fact** For every internal sample s, the following are equivalent
 - 1. s is invariant for $\varphi(x;z)$ over M;

2. s is smooth for $\varphi(x;z)$ over M.

Proof By the fact above, implication $2\Rightarrow 1$ holds for every sample. We prove $1\Rightarrow 2$. Let $s\in \mathcal{U}^{f_*}$ be an invariat internal sample. Assume for a contradiction that $\operatorname{Av}_{s'}\varphi(x;b)\not\approx_{\varepsilon}\operatorname{Av}_{s}\varphi(x;b)$ for some $b\in \mathcal{U}^{|x|}$ and some sample $s'\equiv_{M} s$. Pick a internal sample $s''\equiv_{M,s} s'$. Then $\operatorname{Av}_{s''}\varphi(x;b)\not\approx_{\varepsilon}\operatorname{Av}_{s}\varphi(x;b)$. As $s''\equiv_{M} s$ are both in \mathcal{U}^{f_*} , this contradicts the invariance of s.

The following is a useful characterization of smoothness.

- **2.6 Lemma** The following are equivalent for every external sample s
 - 1. s is smooth over M;
 - 2. for every $b \in \mathcal{U}^{|z|}$ there is a finite sample $s_0 \in M^f$ such that $\operatorname{Av}_s \varphi(x;b) \approx_{\varepsilon} \operatorname{Av}_{s_0} \varphi(x;b)$. (The sample s_0 depends on M, epsilon and b.)
 - 3. there are some finite samples $s_1, \ldots, s_n \in M^f$ such that for every $b \in \mathcal{U}^{|z|}$ we have $\operatorname{Av}_s \varphi(x;b) \approx_{\varepsilon} \operatorname{Av}_{s_i} \varphi(x;b)$ for some s_i . (The samples s_1, \ldots, s_n as well as the number n depend on ε and M.)

Proof Implication $3\Rightarrow 1$ is clear. We prove $1\Rightarrow 2$, so, fix a $b\in \mathcal{U}^{|z|}$. Let μ be the standard part of $\operatorname{Av}_s \varphi(x;b)$ Let s' be a sample such that $s\equiv_M s'\downarrow_{M^f} b$. By smoothness, $\operatorname{Av}_{s'}\varphi(x;b)\approx \mu$. As $s'\downarrow_{M^f} b$ there is an $s_0\in M^f$ such that $\operatorname{Av}_{s_0}\varphi(x;b)\approx_{\varepsilon}\mu$.

We prove $2\Rightarrow 3$ by compactness. Suppose not, then the following global type is dinitely consistent, hence realized in $\mathcal{U}^{f^+_*}$

$$p(y) = \left\{ \operatorname{Av}_y \varphi(x,b) \not\approx_{\varepsilon} \operatorname{Av}_{s_0} \varphi(x\,;b) \ : \ s_0 \in M^{\mathrm{f}}, \ b \in \mathfrak{U}^{|z|} \right\}$$
 This is a contradiction.

- **2.7 Definition** Let $\varphi(x;z) \in L$. Let $\mathcal{B} \subseteq \mathcal{U}^{|z|}$ be arbitrary. We say that s is uniform on \mathcal{B} if for every ε there is a finite sample $s_0 \in M^f$ such that $\operatorname{Av}_s \varphi(x,b) \approx_{\varepsilon} \operatorname{Av}_{s_0} \varphi(x,b)$ for every $b \in \mathcal{B}$. (The sample s_0 depends on ε and M.) We add for $\varphi(x;z)$ over M when these are not clear from the context.
- **2.8 Lemma** Let s be uniform on \mathbb{B} and such that $\operatorname{Av}_s \varphi(x;b) > \varepsilon$ for every $b \in \mathbb{B}$. Then there is a finite cover of \mathbb{B} , say $\mathbb{B}_1, \ldots, \mathbb{B}_n$, such that all types $p_i(x) = \{\varphi(x;b) : b \in \mathbb{B}_i\}$ are consistent.

Proof Let $s_0 \in M^f$ be as in Definition 2.7. As s_0 is finite, we may assume that $\operatorname{supp}(s_0) = \{a_1, \ldots, a_n\}$. Let $\mathcal{B}_i = \{b \in \mathcal{B} : \varphi(a_i; b)\}$. As $\operatorname{Av}_{s_0} \varphi(x; b) > 0$ for all $b \in \mathcal{B}$, these \mathcal{B}_i are the required cover of \mathcal{B} .

2.9 Corollary If s be uniform on $\langle b_i : i < \omega \rangle$ for $\varphi(x;z)$ over M, where $\langle b_i : i < \omega \rangle$ is a sequence of indiscernibles such that $\operatorname{Av}_s \varphi(x;b_i) > \varepsilon$ for every $i < \omega$, then the type $\{\varphi(x;b_i) : i < \omega\}$ is consistent.

2.10 Corollary Let s be uniform on \mathcal{C} for $\varphi(x;z)$ over M. Then $\operatorname{Av}_{s}[\psi(x;c) \leftrightarrow \psi(x;c')] > \varepsilon$ does not hold for all $c, c' \in \mathcal{C}$, $c \neq c'$. **Proof** Suppose for a contradiction that a set C as above exists. Apply Lemma 2.8 to the folmula $\varphi(x;z,z') = [\psi(x;z) \leftrightarrow \psi(x;z')]$ and the set $\mathcal{B} = \{\langle c,c' \rangle \in \mathbb{C}^2 : c \neq c' \}$. The sets \mathcal{B}_i obtained from the lemma induce a finite coloring of the complete graph on \mathcal{C} . By the Ramsey theorem there is an infinite monochromatic set $A \subseteq \mathcal{C}$. Hence $\{\psi(x;a) \leftrightarrow \psi(x;a') : a,a' \in A, a \neq a'\}$ is consistent. As |A| > 2 this is impossible. The nip formulas **3.1 Theorem** Let $\varphi(x;z) \in L$ be a nip formula. Then every sample is uniform on M over M. Proof Questo è Vapnik-Chervonenkis. For smooth samples the Vapnik-Chervonenkis Theorem can be strengthened as follows. (The difference is that below b ranges over $\mathcal{U}^{|z|}$.) **3.2 Corollary** Let $\varphi(x;z) \in L$ be nip. Every smooth sample s is uniform for $\varphi(x;z)$ on \mathcal{U} over M. **Proof** By Theorem 3.1, there is an $s_0 \in M^f$ such that $\operatorname{Av}_s \varphi(x;b) \approx_{\varepsilon} \operatorname{Av}_{s_0} \varphi(x;b)$ for all $b \in M^{|z|}$. Suppose for a contradiction that $\operatorname{Av}_s \varphi(x;b') \not\approx_{\varepsilon} \operatorname{Av}_{s_0} \varphi(x;b')$ for some $b' \in \mathcal{U}^{|z|}$. Pick a $s' \subseteq \mathcal{U}^{|x|}$ such that $b' \downarrow_M s' \equiv_M s$. By the smoothness of s, we obtain $\operatorname{Av}_{s'}\varphi(x;b') \not\approx_{\varepsilon} \operatorname{Av}_{s_0}\varphi(x;b')$. As $b' \downarrow_M s'$, the same formula holds for some $b \in$ $M^{|z|}$. Once again by smoothness, $\operatorname{Av}_{s}\varphi(x;b)\not\approx_{\varepsilon}\operatorname{Av}_{s_{0}}\varphi(x;b)$. A contradiction. **3.3 Definition** A formula $\varphi(x;z) \in L$ is distal if there is a formula $\psi(x;z_1,\ldots z_n) \in L$ such that for every finite set $A \subseteq \mathcal{U}^f$ and every $b \in \mathcal{U}^{|x|}$ there are $a_1, \ldots, a_n \in \text{supp}(s)$ such that $\psi(x; a_1, ..., a_n) \leftrightarrow p(x)$, where $p(x) = \operatorname{tp}_{\varphi}(b/A)$. **3.4 Theorem (false)** The following are equivalent

- 1. $\varphi(x;z) \in L$ is distal;
- 2. for every sample $s \in \mathcal{U}^{f_*^+}$, if s is generically stable for $\varphi(x;z)$ over M then s is smooth for $\varphi(x;z)$ over M.