Discrete Random Processes (EDRP)

Lecture 8

L08 1 / 2

Branching processes - cont'd

L08 2 / 2

Branching processes - a quick review

• *i*-th individual in a population produces a random number X_i of children according to the offspring distribution

$$\mathbf{a} = (a_0, a_1, \ldots).$$

- assumption: X_1, X_2, \ldots an i.i.d. sequence (with common distribution **a**)
- Z_n the size of the *n*-th generation (assumption: $Z_0 = 1$)
- a branching process the sequence $(Z_n)_{n\in\mathbb{N}_0}$
- $\bullet \ Z_n = \sum_{i=1}^{Z_{n-1}} X_i$

L08 3 / 2

Review - cont'd

• μ - the mean of the offspring distribution (=the average number of children produced by any individual),

$$\mu = \sum_{k} k a_k$$

- the mean size of the *n*th generation is $\mathbb{E} Z_n = \mu^n$, $n \in \mathbb{N}_0$
- $(Z_n)_n$ is
 - subcritical if $\mu < 1$,
 - critical if $\mu = 1$,
 - and supercritical if $\mu > 1$,
- if subcritical, then $\lim_n \mathbb{E} Z_n = 0$; if critical, then $\lim_n \mathbb{E} Z_n = 1$; if supercritical, then $\lim_n \mathbb{E} Z_n = +\infty$

4 / 2

Branching processes and probability generation functions

Let

$$G(s) = \sum_{k=0}^{\infty} s^k a_k$$

be the probability generating function of the offspring distribution.

Theorem 1

The probability of eventual extinction of a branching process is the smallest positive root of the equation

$$s = G(s)$$
.

Clearly, since the value of any pgf at 1 is 1, s=1 satisfies the equation, but there could well be other solutions.

_08 5 / 2

Some consequences of the theorem

Corollary 2

In the subcritical $\mu < 1$ case, the population goes extinct with probability 1.

L08 6 / 21

Some consequences of the theorem - cont'd

Corollary 3

The population goes extinct with probability 1 also for $\mu=1$, even though for each generation the expected generation size is $\mathbb{E}(Z_n)=\mu^n=1$.

L08 7 / 2

Some consequences of the theorem - cont'd

Corollary 4

For the supercritical case $\mu > 1$, the expected generation size Z_n grows without bound. However, the theorem gives that even in this case there is a positive probability of eventual extinction.

L08 8 / 21

Example 1

Find the extinction probability for a branching process with offspring distribution $\mathbf{a} = (1 - p, 0, p)$, where $p \in (0, 1)$.

L08 9 / 27

Probability of extinction revisited

The probability of eventual extinction of a branching process is the smallest positive root of the equation

$$s = G(s),$$

where G is the pgf of the offspring distribution.

The equation is the basis of a numerical, recursive method to approximate the extinction probability in the supercritical case.

L08 10 / 2

Algorithm

To find the smallest root:

- 1. Initialize with $s_0 \in (0,1)$.
- 2. Successively compute $s_n := G(s_{n-1})$ for $n \ge 1$.
- 3. Set $s = s_n$ for large n.

Example 2

Analyze the algorithm for

$$G(s)=\frac{1}{2}+\frac{1}{2}s.$$

L08 11 / 2

Example 3

Analyze the algorithm for

$$G(s) = 1 - p + ps^2, \quad p \in (0,1).$$

L08 12 / 27

Convergence can be shown to be exponentially fast, so that n can often be taken to be relatively small (for example $n \approx 10 - 20$).

Example 4

Let $\mathbf{a} = (0.1, 0.1, 0.8, 0, 0, ...)$. If $s_0 = 0.5$ then the first 11 values of s_n are:

n	1	2	3	4	5	6
Sn	0.233	0.1667312	0.1389126	0.1293286	0.1263136	0.1253955

n	7	8	9	10	11
Sn	0.1251188	0.1250356	0.1250107	0.1250032	0.125001

Then it follows $s_{12} = 0.1250003$, $s_{13} = 0.1250001$ and, starting from s_{14} , all the remaining s_n equal 0.125 = 1/8.

L08

Example 5

If $\mathbf{a} = (0.1, 0.1, 0.8)$ (again), and if $s_0 = \mathbf{0.99}$, then the first 22 values s_1, \ldots, s_{22} generated by the algorithm, are:

```
1 s = 0.971465 12 s = 0.1308717
2 s = 0.9521419 13 s = 0.1267891
3 s = 0.9204736 14 s = 0.1255393
4 s = 0.8698647 15 s = 0.125162
5 s = 0.7923182 15 s = 0.1250486
6 s = 0.6814463 17 s = 0.1250146
7 s = 0.5396399 18 s = 0.1250044
8 s = 0.3869329 19 s = 0.1250013
9 s = 0.258467 20 s = 0.1250004
10 s = 0.1792908 21 s = 0.1250001
11 s = 0.1436452 22 s = 0.125
```

14 / 27

Example 6

If $\mathbf{a}=(0.2,0.2,0.2,0.2,0.2)$ and $s_0=0.01$, then the first 20 values s_1,\ldots,s_{20} generated by the algorithm, are:

1	s = 0.2505486	11	s = 0.275681
2	s = 0.2665984	12	s = 0.2756817
3	s = 0.2723346	13	s = 0.275682
4	s = 0.2744399	14	s = 0.2756821
5	s = 0.27522	15	s = 0.2756822
6	s = 0.2755101	16	s = 0.2756822
7	s = 0.2756181	17	s = 0.2756822
8	s = 0.2756583	18	s = 0.2756822
9	s = 0.2756733	19	s = 0.2756822
10	s = 0.2756789	20	s = 0.2756822

15 / 2

Size of the *n*-th generation

Consider a branching process $(Z_n)_{n\in\mathbb{N}_0}$ with offspring distribution

$$\mathbf{a} = (a_0, a_1, a_2, \ldots).$$

Recall that by G we denote the probability generating function of \mathbf{a} , that is

$$G(s) = \sum_{k=0}^{\infty} s^k a_k.$$

For $n \geq 0$, let

$$G_n(s) = \mathbb{E}\left(s^{Z_n}\right) = \sum_{k=0}^{\infty} s^k \mathbb{P}(Z_n = k)$$

be the probability generating function of the nth generation size Z_n .

Theorem 5

The pgf G_n of the nth generation size Z_n satisfies

$$G_n(s) = G_{n-1}(G(s)), \quad n \geq 1.$$

So the pgf of Z_n is the composition of the pgf of Z_{n-1} and the pgf of the offspring distribution.

Notice that

• since $Z_0 = 1$ (a deterministic start of the population), we have

$$G_0(s) = s$$

further,

$$G_1(s) = G_0(G(s)) = G(s)$$

(this confirms that the distribution of Z_1 is the offspring distribution **a**).

17 / 2

In general, the pgf od Z_n is the n-fold composition of the offspring generating function:

L08 18 / 2

Thus

$$G_n(s) = \underbrace{G(\ldots G(G(s))\ldots)}_{n-\mathrm{fold}}.$$

How can this be useful?

- Knowing G_n , one can recover the distribution of the n-th generation size.
- From the recursive formula for G_n , one can quickly justify the fact that

$$\mathbb{E} Z_n = \mu^n.$$

L08 19 / 2'

Example 7

Assume that $a_k = 1$ for some $k \in \mathbb{N}_0$ (that is, the number of children born to the ith individual is k). Find the distribution of the n-th generation size.

L08 20 / 2

Example 8

Assume that $\mathbf{a} = (1/2, 1/2, 0, \ldots)$. Find the distribution of Z_n .

L08 21 / 2