Lecture 15, Oct. 4

15.1 Definition. An **ordered n-tuple** with entries in a set A, is a function $a: \{1, 2, 3, ...\} \rightarrow A$ where we write a(k) as a_k .

We write $a=(a_1,a_2,\dots)$ to indicate that $a=\{1,2,3,\dots\}\to A$ is given by $a(k)=a_k$ for $k\in\{1,2,3,\dots,n\}$ The set of all such n-tuples is denoted by A^n

$$A^n = \{(a_1, a_2, \dots) \mid each \ a_{\mathbb{Z}} \in A\}$$

15.2 Definition. A **sequence** with **entries** or **terms** in a set A is a function

$$a: \{1, 2, 3, \dots\} \to A$$

Where we write $a(k) = a_k$ or sometimes a function

a:
$$\{m, m+1, m+2, \dots\} \to A$$

where $m \in \mathbb{Z}$.

We write $a = (a_k)_{k>m} = (a_m, a_{m+1}, ...)$

or we write $a = \{a_k\}_{k > m} = \{a_m, a_{m+1}, \dots\}$

to indicate that $a = \{m, m+1, \dots\} \rightarrow A$ is given by $a(k) = a_k$

Remark. For sets A and B we define A^B to be the set of all functions

$$f: B \rightarrow A$$

Also the integer n is defined to be

$$n = \{0, 1, 2, \dots, n-1\}$$

So Actually

$$A^n = A^{\{0,1,2,\dots,n-1\}} = \{a \colon \{0,1,\dots,n-1\} \to A\}$$

and we write elements in A^n as $(a_0, a_1, \dots a_{n-1})$

And the set of sequences with entries in A is the set $A^{\mathbb{N}} = \{a \colon \{0, 1, 2, \dots\} \to A\}$

15.3 Definition. We say that a sequence is defined in **closed-form** when we are given a formula for a_k in terms of k.

We say that a sequence is defined **recursively** when we are given a formula for a_n in terms of k and in terms of previous terms a_i in the sequence.

15.4 Example. Fibonacci Sequence

$$a_{n+2} = a_{n+1} + a_n$$

15.5 Example. When we write

$$S_n = \sum_{k=1}^n \frac{1}{k^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$$

we mean that $S_1 = 1$ and $S_n = S_{n-1} + \frac{1}{n^2}$

15.6 Example. When we write

$$P_n = \prod_{k=1}^n \frac{2k-1}{2k}$$

We mean that $P_1 = \frac{1}{2}$ and $P_n = P_{n-1} \cdot \frac{2n-1}{2n}$

15.7 Example. When we write n!, we mean that 0! = 1 and $n! = (n-1)! \cdot n$ for $n \ge 1$

15.8 Example. In Set Theory, we define addition on \mathbb{N} , recursively as follows

$$0 = \emptyset$$
, $1 = \{0\}$, $x + 1 = x \cup \{x\}$

For $n \in \mathbb{N}$, n + 0 = n, $n + (m + 1) = (n + m) + 1 = (n + m) \cup \{(n + m)\}$

15.9 Theorem. Mathematical Induction Let F(n) be a mathematical statement about an integer n. Let $m \in \mathbb{Z}$

Suppose F(m) is true. (that is $[F]_{n\mapsto m}$)

Suppose that for all $k \ge m$, if F(k) is true then F(k+1) is true.

Then F(n) is true for all $n \ge m$.

15.10 Example. Define a_n recursively by $a_1 = 1$ and $a_{n+1} = \frac{n}{n+1} \cdot a_n + 1$. Find a closed-form formula for a_n

Solution. We have $a_1 = 1$, $a_2 = \frac{3}{2}$, $a_3 = \frac{4}{2}$,...

It appears that $a_n = \frac{n+1}{2}$

When $n = 1, \cdots$

Suppose
$$a_k = \frac{k+1}{2}$$

When n = k + 1 we have

$$a_n = a_{k+1} = \frac{k}{k+1} \cdot a_k + 1$$

$$= \frac{k}{k+1} \cdot \frac{k+1}{2} + 1$$

$$= \frac{k+2}{2}$$

$$= \frac{(k+1)+1}{2}$$

$$= \frac{n+1}{2}$$

By induction, $a_n = \frac{n+1}{2}$ forall $n \ge 1$

15.11 Exercise.

1.

$$\sum_{k=1}^{n} k^3$$

2.

$$\sum_{k=1}^{n} k^{3}$$

$$\prod_{k=1}^{n} (1 - \frac{1}{k^{2}})$$