Contents

ay 25
Review
Assumptions for Inference for Regression
Scatterplot
Things to Note
Residual Plot $(e_i \text{ vs } \hat{y}_i, e_i \text{ vs } y_i) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$
Normal Quantile Plot (qq Plot)
ANOVA for Linear Regression
ANOVA Table
Alternate Formulation 1
Alternate Formulation 2

Day 25

Review

Population model: $y = \beta_0 + \beta_1 x + \epsilon$

- $\epsilon \sim N(0\sigma)$
- $\mu_{\mathbf{y}|\mathbf{x}} = \beta_0 + \beta_1 x$
- $y = \mu_{y|x} + \epsilon$

Least Square Equation: $\hat{y} = b_0 + b_1 x$

Residuals: $e_i = y_i - \hat{y}_i$

Assumptions for Inference for Regression

Video Lecture

- 1. Linear model is appropriate
- 2. Residuals are normally distributed
- 3. Residuals will have $\mu = 0$ & unknown σ [independent of x]
- 4. Residuals are independent

Scatterplot

Things to Note

- 1. Linear form
- 2. Hard to check
- 3. Strength of relationship is roughly constant across entire range of x-values

Residual Plot $(e_i \text{ vs } \hat{y}_i, e_i \text{ vs } y_i)$

- 1. Residuals scattered around 0 with no obvious trend
- 2. Hard to check
- 3. No fanning

Normal Quantile Plot (qq Plot)

Z-Score of residual vs Z-Score corresponding to cumulative proportion (assuming N(0,1))

- Can't check
- Points more-or-less along a straight line
 - Points fall off line near 0: really bad
 - * Distribution of residuals is not symmetric
 - $-\,$ points follow line from -1 to 1, roughly symmetric
 - How quickly they fall away
 - How big the difference is

ANOVA for Linear Regression

One way ANOVA:

• Hypothesis: $\mu_1 = \mu_2 = ... = \mu_i$

• Population mean does not depend on group

• Population mean of y does not depend on x

– Hypothesis: $\mu_{y|x} = \mu_y$

- Or equivalently, $\beta_1 = 0$

ANOVA Table

import later

Alternate Formulation 1

• Coefficient of determination

$$r^2 = \frac{SSM}{SST}$$

• Represents the proportion of variation y that is explained by/accounted for by the model.

• ANOVA tests whether this proportion is "significant"

Alternate Formulation 2

• Compare two models:

– Null Model: $\mu_{y|x} = \beta_0$

 $-\mu_{\mathbf{y}|\mathbf{x}} = \beta_0 + \beta_1 x$

Reject H_0 : Our model is "significantly better" than null model at explaining changes in $y \implies$ we should use linear model

Fail to reject H_0 : Our model is <u>not</u> significantly better than null model \implies we should use smaller model (null model)