ПОРТФОЛИО

ВЫЧИСЛИТЕЛЬНЫЙ ЭКСПЕРИМЕНТ «ИССЛЕДОВАНИЕ ВИДИМЫХ ТРАЕКТОРИЙ ДВИЖЕНИЯ ПЛАНЕТ СОЛНЕЧНОЙ СИСТЕМЫ

Резюме

Вычислительный эксперимент "Исследование видимых траекторий движения планет солнечной системы" проведен

студенткой 1 курса, ИВТ 1/(1), ИИТ и ТО

Сорокиной Ириной

Библиография

- 1. Бухман, Н.С. Концепции современного естествознания : учебное пособие / Н.С. Бухман, Л. М. Бухман. Самара : АСИ СамГТУ, [б. г.]. Часть 1 : Физика и астрономия 2012. 104 с. ISBN 978-5-9585-0473-2. Текст : электронный // Электронно-библиотечная система «Лань» : [сайт]. URL: https://e.lanbook.com/book/73860 (дата обращения: 24.09.2019). Режим доступа: для авториз. пользователей.
- 2. Гусейханов, М.К. Основы астрономии: учебное пособие / М.К. Гусейханов. 4-е изд., стер. Санкт-Петербург: Лань, 2019. 152 с. ISBN 978-5-8114-4063-4. Текст: электронный // Электронно-библиотечная система «Лань»: [сайт]. URL: https://e.lanbook.com/book/114684 (дата обращения: 24.09.2019). Режим доступа: для авториз. пользователей.
- 3. Севрюков, П.Ф. Механика в физике и астрономии может быть интересной: монография / П.Ф. Севрюков. Ставрополь: СГПИ, 2018. 232 с. ISBN 978-5-906137-85-2. Текст: электронный // Электронно-библиотечная система «Лань»: [сайт]. URL: https://e.lanbook.com/book/117689 (дата обращения: 24.09.2019). Режим доступа: для авториз. пользователей.

Справочник

- 1. <u>Интернет-портал с</u>
 <u>основной информацией о</u>
 <u>планетах Солнечной</u>
 <u>системы</u>
- 2. <u>Подробная теория о</u> законах движения планет
- 3. <u>Сайт с картой Солнечной</u> <u>системы в правильном</u> <u>масштабе</u>
- 4. <u>Глоссарий</u>

Цикада цитат

• Звёзды показывают нам Величие и красоту Вселенной, в которой, мы, вечные странники космоса, стремимся оты кать свою звезду.

• Валентин Петрович Рычков

 Я не уверен, что человеческая раса проживет еще хотя бы тысячу лет, если не найдет возможности вырваться в кос мос. Существует множество сценариев того, как может погибнуть все живое на маленькой планете. Но я оптимист. Мы точно достигнем звезд.

• Стивен Хокинг

- Человечество не останется вечно на Земле, но в погоне за светом и пространством сначала робко проникнет за пределы атмосферы, а затем завоюет себе все околосолнечное пространство.
 - Константин Эдуардович Циолковский

Цель лабораторной работы:

Организовать и провести вычислительный эксперимент для исследования видимых траекторий движения планет Солнечной системы средствами электронных таблиц.

Постановка задачи:

Исследовать видимую траекторию движения Марса относительно Земли.

Математическая модель:

Земля — Марс:

$$X = R_{Mapca}^* \cos(w_{Mapca}^* t + \phi) - R_{3eмлu}^* \cos(w_{3eмлu}^* t + \phi)$$
 $Y = R_{Mapca}^* \sin(w_{Mapca}^* t + \phi) - R_{3eмлu}^* \sin(w_{3eмлu}^* t + \phi)$
 $W = 2\pi/T$, где T — период обращения планеты вокруг Солнца.

Земля — Марс:

```
X=227.900.000*\cos(w_{Mapca}^*t)-149.600.0000*\cos(w_{3eм\pi u}^*t)
Y=227.900.000*\sin(w_{Mapca}^*t)-149.600.0000*\sin(w_{3em\pi u}^*t)
W= 2\pi/T, где T — период обращения планеты вокруг Солнца.
```

На основании математической модели построили график траектории движения Марса относительно Земли

Постановка задачи:

Построить траекторию движения точки М, лежащей на ободе колеса. Скорость центра колеса постоянна.

Обоснование решения с точки зрения физики: Оговорим, что при решении данной задачи, не будем брать в расчет трение, то есть колесо катится без скольжения. Предположим, что в начальный момент времени t, точка M находилась в точке O (рисунок), следовательно, дуга MA будет равна отрезку OA. Так как дуга $AM = R^*\phi$; а отрезок OA - это пройденный точкой путь (=v*t), $R^*\phi = v^*t$ и $\phi = \omega t$ (где ωt), основываясь на уравнение движения точки по окружности получим формулы для расчета координат точки M в момент времени t:

 $x=v^*t - R^*sin(w^*t); y=R-R^*cos(\phi) = R^* (1 - cos(w^*t));$

Математическая модель:

Значения радиуса, скорости и угловой частоты постоянны по условию - R = 15 см, v = 5 см в секунду, \omega = v/R = 0.33 рад/с, зададим интервал расчета координат h = 0,35; Подставляем имеющиеся значения в формулы и расчитываем координаты от заданного t.

$$x(t) = 0.05 - 0.15 * SIN (0.33 * t);$$

 $y(t) = 0.15 * (1 - COS(0.33 * t));$

Величина	Значение	Время (t), c	x=x(t)	y=y(t)
Радиус колеса (R) м	0,15	0,35	0,00003967206	0,001019675969
Скорость (v) м/с	0,05	0,7	0,00031672915	0,004064840688
Число Пи	3,141592	1,05	0,00106532888	0,009094093073
Интервал (h)	0,35	1,4	0,00251321791	0,01603905702
Круговая частота (w)	0,333333333	1,75	0,00487863561	0,02480531103

На основании расчетов координат точки, построили траекторию движения материальной точки на ободе колеса.

Заключение

- Выполнив первое задание, можно сделать вывод о цикличности траектории движения Марса относительно Земли.
- Выполнив второе задание, можно сделать вывод о том, что материальная точка, лежащая на колесе движется по циклоиде.