Студент: Карабанов Егор

Группа: 2362 Вариант: ОD

Дата: 31 марта 2024 г.

Комбинаторика и теория графов

Индивидуальное домашнее задание №1

Задание 1. Дано множество $M = \{19, 33, 69, 72, 77, 91, 96, 97\}$ и следующие бинарные отношения на нем:

- $F_1(x,y) = 1 \Leftrightarrow \exists z \in M : (x-z)(y-z) < 0;$
- $F_2(x,y) = 1 \Leftrightarrow x \geq y$ поразрядно;
- $F_3(x,y) = 1 \Leftrightarrow [\frac{x}{5}] = [\frac{y}{5}];$
- $F_4(x,y) = 1 \Leftrightarrow x^2 y^3$ нечетно;
- $F_5(x,y) = 1 \Leftrightarrow |x-y| < 10$.

Для каждого из отношений:

- 1. Проверить, является ли бинарное отношение (далее б.о.) рефлексивным, арефлексивным, симметричным, антисимметричным, асимметричным, транзитивным.
- 2. Построить матрицы и графы этих б.о.
- 3. Определить, являются ли эти б.о. отношениями эквивалентности, частичного порядка, линейного порядка, строгого порядка).
- 4. Для отношений эквивалентности построить классы эквивалентности.
- 5. Для отношений частичного порядка применить алгоритм топологической сортировки и получить отношение линейного порядка.
- 6. Для нетранзитивных отношений построить транзитивное замыкание, используя алгоритм Уоршелла.

Решение. Бинарное отношение F_1

Отношение F_1 можно переформулирвоать, как $\exists z \in M : x < z < y$ или y < z < x

Построим матрицу смежности для б.о. F_1

Из матрицы смежности видно, что бинарное отношение F_1 является арефлексивным, т.к. элементы матрицы смежности на главной диагонали не равны единице, и симметричным, т.к. относительно главной диагонали матрица зеркальна.

Построим граф для б.о. F_1 :

Бинарное отношение не является транзитивным, т.к., например, между вершинами 96 и 97 есть путь длины 2, но нет пути длины 1. Отношение F_1 :

- Арефлексивное
- Симметричное
- Не транзитивное

Для построения транзитивного замыкания применим алгоритм Уоршелла:

Решение. Бинарное отношение F_2 Построим матрицу смежности для б.о. F_2

	19	33	69	72	77	91	96	97
19	/ 1	0	0	0	0	0	0	0 \
33	0	1	0	0	0	0	0	0
69	1	1	1	0	0	0	0	0
72	0	0	0	1	0	0	0	0
77	0	1	0	1	1	0	0	0
91	0	0	0	0	0	1	0	0
96	0	1	0	1	0	1	1	0
97	0	1	0	1	1	1	1	1 /

Бинарное отношение F_2 рефлексивное, т.к все элементы матрицы смежности на главной диагонали равны единице, и антисимметричное, т.к. выше главное диагонали в матрице находятся только 0.

Бинарное отношение F_2 транзитивно, т.к. для любых вершин, между котрыми есть путь длины 2 найдется и путь длины 1.

Отношение F_2 :

- Рефлексивное
- Антисимметричное
- Транзитивное

Соответственно, оно является отношением частичного порядка (не линейный порядок, т.к. на графе не между всеми вершинами есть ребро).

Граф после применения топологической сортировки для дополнения отношения F_2 до отношения линейного порядка будет выглядеть следующим образом (если в качестве начальной вершины каждый

раз принимать вершину c наименьшим значением из множества ещё не пройденных вершин, то c возрастанием номера вершины, её номер будет наоборот убывать):

А матрица линейного отношения F_2 , дополненного до отношения линециного порядка, будет соответствовать данной (все нули под главной диагональю становятся единицами):

	19	33	69	72	77	91	96	97
19	/ 1	0	0	0	0	0	0	0 \
33	1	1	0	0	0	0	0	0
69	1	1	1	0	0	0	0	0
72	1	1	1	1	0	0	0	0
77	1	1	1	1	1	0	0	0
91	1	1	1	1	1	1	0	0
96	1	1	1	1	1	1	1	0
97	$\setminus 1$	1	1	1	1	1	1	1 /

Peшение. Бинарное отношение F_3

Построим матрицу смежности для б.о. F_3

Бинарное отношение F_3 рефлексивное, т.к все элементы матрицы смежности на главной диагонали равны единице, и симметричное, т.к. матрица зеркальна относительно главной диагонали.

Бинарное отношение F_3 транзитивно, т.к. на графе отсутствуют пути длины 2.

Отношение F_3 :

- Рефлексивное
- Симметричное
- Транзитивное

Соответственно, оно является отношением эквивалентности. Множество М разбивается на классы эквивалентности по целой части при делении на 5. А именно:

- \bullet {19} целая часть = 2
- \bullet {33} целая часть = 6
- $\{69\}$ целая часть =13
- \bullet $\{72\}$ целая часть =14
- $\{77\}$ целая часть = 15

- $\{91\}$ целая часть =18• $\{96,97\}$ целая часть =19

Pешение. Бинарное отношение F_4

Построим матрицу смежности для б.о. F_4

	19	33	69	72	77	91	96	97
19	$\int 0$	0	0	1	0	0	1	0 \
33	0	0	0	1	0	0	1	0
69	0	0	0	1	0	0	1	0
72	1	1	1	0	1	1	0	1
77	0	0	0	1	0	0	1	0
91	0	0	0	1	0	0	1	0
96	1	1	1	0	1	1	0	1
97	0 /	0	0	1	0	0	1	0 /

Бинарное отношение F_4 арефлексивное, т.к. элементы матрицы смежности на главной диагонали не равны единице, и симметричное, т.к. матрица зеркальна относительно главной диагонали.

Бинарное отношение F_4 не транзитивно. Например, между вершинами 96 и 72 есть несколько путей длины 2, но нет ни одного пути длиной 1.

Отношение F_4 :

- Арефлексивное
- Симметричное
- Не транзитивное

Для построения транзитивного замыкания применим алгоритм Уоршелла:

Pешение. Бинарное отношение F_5

Бинарное отношение F_5 рефлексивное, т.к все элементы матрицы смежности на главной диагонали равны единице, и симметричное, т.к. матрица зеркальна относительно главной диагонали.

Бинарное отношение F_5 транзитивно, т.к. для всех вершин, между которыми есть путь длины 2, есть и путь длины 1.

Отношение F_5 :

- Рефлексивное
- Симметричное
- Транзитивное

Соответственно оно является отношением эквивалентности.

Множество М будет разбито на классы эквивалентности по разности между элементами < 10, а именно:

- \bullet {19} нет больше элементов, разность с которыми будет < 10
- $\{33\}$ нет больше элементов, разность с которыми будет <10
- $\{69,72,77\}$ разность между любыми 2-мя элементами <10
- $\{91, 96, 97\}$ разность между любыми 2-мя элементами <10