Double/Triple Patterning Aware Detailed Routing

Motivational Example

DPL-Aware Routing

Given

- Netlist
- > Routing grid
- Minimum spacing requirement
- > Two masks (colors)

Objective

- Route the nets with simultaneous color assignment
- Minimize the total wirelength, the number of stitches, vias and coloring conflicts

Double Patterning Technology Friendly Detailed Routing

Minsik Cho, Yongchan Ban, David Z. Pan

Overall Flow

- Simultaneous routing and decomposition
- No additional step for layout decomposition

Grid State for DPT

 Four possible states for each routing grid using a 2-bit variable – small overhead

B

Black-colorable

Existence of grey-colored objects in the proximity

BG

BG

 $B\overline{G}$

Grey-colorable

Existence of black-colored objects in the proximity

B

D

 $B\overline{G}$

BG

BG

BG

Uncolorable

Bicolorable

Existence of grey and blackcolored objects in the proximity

Non-existence of any colored objects in the proximity

Penalty for DPT-Unfriendly Path

 While finding a path during routing, the following cases along the path are penalized

- Perform a detailed routing using the A* search
- Additional cost modification to find a path

Penalty for DPT-Unfriendly Path

Penalty overhead of the DPFR

- Stitch reduction by α cost

Via reduction by γ cost

- More α penalty to the routing cost to discourage stitches.
- More γ penalty to decrease the # of vias.
- \bullet β » α to minimize the number of uncolored grids.
- Adjust the penalty costs with the degree of manufacturing difficulty.

Coloring Path & Shadow

Routing Path Coloring

Color Shadow

Double Patterning-Aware Detailed Routing with Mask Usage Balancing

Seong-I Lei, Chris Chu and Wai-Kei Mak

Introduction

Balanced mask usage can enhance layout printability

Overall Flow

Routing Grid Construction

- A uniform grid and the color of each track is defined before routing
- Each track is assigned either RED or BLUE and adjacent tracks in horizontal or vertical direction must be assigned different colors

- Determine the coloring assignment of a pin for later routing stage.
- Balance the mask usage of the two colors.
- Parameters and variables used in the ILP formulation.

Parameters	
N	the total number of nets
α	the lower bound of the coloring ratio
Variables	
p_a	0-1 integer variable that $p_a = 1$ if pin a is assigned
	to a RED track and $p_a = 0$ otherwise
s_j	0-1 integer variable that $s_j = 1$ means net j will
	have at least one stitch and $s_j = 0$ otherwise

The number of stitches is minimized in the objective.

$$\min \sum_{j=1}^{N} s_j$$

s.t.
$$p_a - p_b \le s_j \quad \forall \text{net } j(a,b)$$

$$p_a - p_b \ge -s_j \quad \forall \text{net } j(a,b)$$

$$(2)$$
 $s_i = '$

$$s_j=0$$

Constraint (3) for mask usage balancing.

$$\alpha \le \sum_{j=1}^{N} \frac{0.5HPWL_j}{totalHPWL} (p_a + p_b) \le 1 - \alpha \tag{3}$$

RED coloring ratio = (5+0+2)/(5+3+4) = 0.58

Pin coloring stage can help to reduce the number of stitches and balance the mask usage.

Maze Routing with Stitch Minimization

- We use A* search algorithm to perform maze routing.
- Minimize WL, the number of stitches and vias.
- If the solution propagates to a different color track, a stitch cost is added to the cost function.
- If the solution propagates to another layer, a via cost is added to the cost function.

Maze Routing with Stitch Minimization

After solving the ILP, if the two pins of a net are assigned to the same color, we will perform the maze routing using only the tracks of that color.

 Otherwise, we perform the maze routing using all the tracks.

Negotiated Congestion based Rip-up and Reroute

We adopt a negotiated congestion based routing scheme in rip-up and reroute.

TPL Aware Routing and Its Comparison with Double Patterning Aware Routing in 14nm Technology

Q. Ma, H. Zhang, M.D.F. Wong

TPL Aware Routing

- Most hard-to-decompose features are generated during the routing stage
- Considering TPL during routing can improve the layout decomposability

TPL Aware Routing

Given

- Netlist
- Routing grid
- Minimum spacing requirement
- Three masks (colors)

Objective

- Route the nets with simultaneous color assignment
- Minimize total color-conflicting wire length
- Minimize number of stitches

TPL Aware Maze Routing

- Route a single net
 - In presence of previously routed nets with color assignment
 - Minimize weighted sum of wire-length, colorconflicting wire-length and number of stitches

Graph splitting approach

Graph model for a non-terminal vertex

Graph model for a terminal vertex

TPL Aware Maze Routing (Cont')

Graph splitting approach

- Each intersection is modeled by a set of 12 nodes with associated edges
- At each intersection, type e_s edge implies the use of a stitch while type e₀ edge implies no stitch used there
- Type e₁ edge between two same colored nodes from adjacent intersections

cost of type e_0 edge = 0 cost of type e_s edge = penalty of a stitch

cost of type e₁ edge

- = 1 if no conflict with any previously routed and colored nets;
- or 1 + penalty of a unit of colorconflicting wire length, otherwise

TPL Aware Maze Routing (Cont')

Example

Routes on the original grid

Assume net routing order is: 1, 2, 3

blue conflict region after routing & coloring net 2

Routes on the expanded graph

red conflict region after routing & coloring net 1

Forbidding Stitch at Corner

- Corner stitch is undesirable
 - Overlay error
 - Line-end effect
- Adapt our graph model to forbid stitch at corner
 - Remove the edges corresponding to corner stitches
 - Not done yet!

Forbidding Stitch at Corner (Cont')

- Further split the graph
 - > Each vertex v is split into vⁱⁿ and v^{out}
 - Each edge within the original graph model is directed from a vⁱⁿ to a v^{out}

Graph model for TPL

Graph model for DPL

Overall Routing Scheme

- Route all nets one by one without resource sharing
- Edges where color-conflicts occurred become more costly
- Nets with color-conflicts are iteratively rerouted

Overall Routing Scheme (Cont')

- Balancing features on three masks
 - > Ensures that each mask is fully utilized
 - Helps the printability enhancement
- We effectively control the balancing on the fly
 - Neep track of the total wire length in each color I_{Red} , I_{Green} , I_{Blue}
 - Set edge cost proportional to total wire length in each color
 - » $c_{Red}/I_{Red} = c_{Green}/I_{Green} = c_{Blue}/I_{Blue}$
 - » The more edges in this color are used, the more expensive the edges in this color will be

References

- [Cho+ ICCAD08] Double Patterning Technology
 Friendly Detailed Routing
- ◆ [Lei+ ISQED2014] Double Patterning-Aware Detailed Routing with Mask Usage Balancing
- [Ma+ DAC2012] TPL Aware Routing and Its Comparison with Double Patterning Aware Routing in 14nm Technology