Hausaufgaben zum 16. 11. 2012

Arne Struck 6326505

19. November 2012

1.

a)

$$\begin{array}{rcl} X & = & \{1,2,3,4,5\} \\ Y & = & \{1,2,3,4,5,6,7\} \end{array}$$

 $g:X\to Y:$

gesamt:

$$7^5 = 16807$$

injektiv:

$$\frac{7!}{(7-5)!} = 2520$$

$$g(2) \neq g(3) \neq g(4)$$
:
$$7^3 \cdot 6 \cdot 5 = 10290$$

b)

$$\binom{49}{6} = 13983816$$

c)

$$\begin{pmatrix} 1000 \\ 997 \end{pmatrix} = \begin{pmatrix} 1000 \\ 3 \end{pmatrix} = 166167000$$

2.

a)

Nach bin. Lehrsatz:

zu bestimmen: a aus ax^5y^{11} aus $(x+y)^{16}$:

$$a = \begin{pmatrix} 16 \\ 5 \end{pmatrix} = \begin{pmatrix} 16 \\ 11 \end{pmatrix} = 4368$$

zu bestimmen: a aus $ax^3y^5z^2$ aus $(x+y+z)^{10}$:

$$a = \begin{pmatrix} 10 \\ 3, 5, 2 \end{pmatrix} = \frac{10!}{3! \cdot 5! \cdot 2!} = 2520$$

b)

CAPPUCCINO:

$$C = 3$$
 $A = 1$
 $P = 2$
 $U = 1$
 $A = 1$

MANGOLASSI:

$$\begin{array}{rcl} M & = & 1 \\ A & = & 2 \\ N & = & 1 \\ G & = & 1 \\ O & = & 1 \\ L & = & 1 \\ S & = & 2 \\ I & = & 1 \end{array} \Rightarrow \frac{10!}{2! \cdot 2!} = 907200$$

SELTERWASSER:

$$S = 3$$

 $E = 3$
 $L = 1$
 $T = 1$
 $R = 2$
 $W = 1$
 $A = 1$
 $\Rightarrow \frac{12!}{3! \cdot 3! \cdot 2!} = 19958400$

c)

Es handelt sich hierbei um Ziehen mit zurücklegen(da mehr Flaschen pro Sorte vorhanden sind, als gezogen werden) und ohne Berücksichtigung der Reihenfolge (da es egal ist, in welcher Reihenfolge die Kisten befüllt werden).

$$n = 10$$
 (Sorten)
 $k = 6$ (Kistengröße)

$$\binom{10-1+6}{6} = \frac{(9+6)!}{6! \cdot (15-6)!} = 5005$$

3.

Beh.:
$$\forall n \in \mathbb{N} : n \ge 3 \text{ gilt: } \sum_{i=3}^{n} \binom{i}{i-3} = \binom{n+1}{4}$$

Induktionsanfang: n = 3

$$\sum_{i=3}^{3} \binom{i}{i-3} = \binom{3}{0} = 1$$

$$\begin{pmatrix} 3+1\\4 \end{pmatrix} = \begin{pmatrix} 4\\4 \end{pmatrix} = 1$$

Induktionsanfang: Die Behauptung gilt für ein beliebiges, aber bestimmtes $n \in \mathbb{N}$.

<u>Induktionsschritt:</u>

zu zeigen:

$$\sum_{i=3}^{n+1} \binom{i}{i-3} = \binom{n+2}{4}$$

$$\begin{array}{ll} \sum\limits_{i=3}^{n+1} \binom{i}{i-3} &=& \sum\limits_{i=3}^{n} \binom{i}{i-3} + \binom{n+1}{n+1-3} \\ &\stackrel{\text{IA}}{=} & \binom{n+1}{4} + \binom{n+1}{n-2} \\ &=& \frac{(n+1)!}{4!\cdot(n+1-4)!} + \frac{(n+1)!}{(n-2)!\cdot(n+1-(n-2))!} \\ &=& \frac{(n+1)!}{4!\cdot(n-3)!} + \frac{(n+1)!}{3!\cdot(n-2)!} \\ &=& \frac{(n+1)!}{3!\cdot4\cdot(n-3)!} + \frac{(n+1)!}{3!(n-3)!\cdot(n-2)} \\ &=& \frac{(n+1)!\cdot(n-2)}{3!\cdot4\cdot(n-3)!\cdot(n-2)} + \frac{(n+1)!\cdot4}{3!\cdot4\cdot(n-3)!\cdot(n-2)} \\ &=& \frac{(n+1)!\cdot(n-2)+(n+1)!\cdot4}{4!\cdot(n-2)!} \\ &=& \frac{(n+1)!\cdot(n-2+4)}{4!\cdot(n-2)!} \\ &=& \frac{(n+1)!\cdot(n-2+4)}{4!\cdot(n-2)!} \\ &=& \frac{(n+2)!}{4!\cdot(n+2-4)!} \\ &=& \binom{n+2}{4} & \square \end{array}$$

4.

a)

$$\begin{array}{rcl} 2000 & - & (666 + 400 + 285) \\ & + & (133 + 95 + 57) \\ & - & 19 \\ & = \underline{915} \end{array}$$

b)

$$1000 - (333 + 200 + 142 + 90) + (66 + 47 + 30 + 28 + 18 + 12) - (9 + 6 + 4 + 2) + 1 = 416$$