

Departamento de Matemática, Universidade de Aveiro

Álgebra Linear e Geometria Analítica — Agrup. IV Exame de Recurso; 5 de fevereiro de 2018

Duração: 2h30min

- Justifique todas as respostas e indique os cálculos efetuados -

[50pts]

1. Sejam
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & -1 \\ 1 & 2 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ -1 \\ -2 \\ -3 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad D = \begin{bmatrix} 1 \\ -2 \\ 0 \\ 0 \end{bmatrix}.$$

- (a) Usando o método de eliminação de Gauss–Jordan, mostre que $[A|B] \sim [C|D]$.
- (b) Indique: car(A), nul(A). Qual é a dimensão do espaço nulo de A? Justifique.
- (c) Classifique o sistema AX = B e determine o conjunto das suas soluções.
- (d) Verifique se a matriz C^TA é invertível e obtenha o seu determinante.

[20pts]

- 2. Sejam $\mathcal R$ a reta que passa em A(1,0,-1) com a direção de u=(1,2,3) e $\mathcal P$ o plano de equação x+y-z=4.
 - (a) Determine a posição relativa de \mathcal{P} e \mathcal{R} .
 - (b) Calcule a distância da reta \mathcal{R} ao plano \mathcal{P} .

[30pts]

- 3. Considere em \mathbb{R}^3 os seguintes vetores: $X_1 = (1, -1, 1), \ X_2 = (1, 0, -1), \ X_3 = (1, -1, -1).$
 - (a) Mostre que $\mathcal{B} = (X_1, X_2, X_3)$ é uma base de \mathbb{R}^3 .
 - (b) Sabendo que $\mathcal{S}=(Y_1,Y_2,Y_3)$ é uma base de \mathbb{R}^3 e que a matriz de mudança de base de \mathcal{S} para \mathcal{B} é $M_{\mathcal{B}\leftarrow\mathcal{S}}=\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & -1 \end{bmatrix}$, determine os vetores Y_1,Y_2 e Y_3 .
 - (c) Considerando que $[Z]_S=\begin{bmatrix} 2 & -1 & 3 \end{bmatrix}^T$, determine as coordenadas de Z na base \mathcal{B} .

[55pts]

- 4. Considere a matriz $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$.
 - (a) Calcule os valores próprios de A.
 - (b) Mostre que $\mathcal{B}=((-1,1,0),(1,1,-2))$ é uma base ortogonal do subespaço próprios de A associado ao valor próprio -1.
 - (c) A é diagonalizável? Justifique, calculando, em caso afirmativo, uma matriz diagonal semelhante a A e uma respetiva matriz diagonalizante.
 - (d) Obtenha uma equação reduzida da quádrica $X^TAX+4=0$, indicando a mudança de variável efetuada, e classifique-a.

[25pts]

- 5. Considere a aplicação linear $\phi \colon \mathbb{R}^2 \to \mathcal{P}_1$ tal que $\phi(1,0) = 2t+1$ e $\phi(0,1) = t-1$.
 - (a) Determine a imagem de ϕ , indique uma sua base e a sua dimensão.
 - (b) ϕ é um isomorfismo? Justifique.

[20pts]

6. Seja A uma matriz $n \times n$. Mostre que o conjunto das matrizes que permutam com A,

$$\mathcal{P}_A = \left\{ X \in \mathbb{R}^{n \times n} : AX = XA \right\} ,$$

é um subespaço vetorial de $\mathbb{R}^{n \times n}$.