

Basic Electrical Technology

LECTURE 4 - 30 OCTOBER 2021

NETWORK REDUCTION

Sign Convention for Kirchoff's Voltage Law (KVL)

Rise in potential, because we are going negative terminal of the battery to postive terminal. Therefore, EMF = + E

Fall in potential, because we are going postive terminal of the battery to negative terminal. Therefore, EMF = - E

Fall in potential, because we are going in the direction of current.

Therefore, voltage drop = - IR

Rise in potential, because we are going in opposite direction of current. Therefore, voltage drop = + IR

(a) Sign conventions for emfs

+ E: Travel direction from – to +:

−E: Travel direction from + to -:

(b) Sign conventions for resistors

+IR: Travel opposite to current direction:

$$\frac{I}{P} \xrightarrow{P} \frac{I}{P}$$

—IR: Travel in current direction:

$$\begin{array}{c}
\leftarrow \text{Travel} - \\
I & \leftarrow \\
R & + \\
\end{array}$$

Voltage Division (in Series Circuit)

$$V = V_1 + V_2$$

$$V = V_1 + V_1 \frac{R_2}{R_1}$$

$$V_1 = V \frac{R_1}{R_1 + R_2}$$

$$V_2 = V \frac{R_2}{R_1 + R_2}$$

Current Division (in Parallel Circuit)

$$I = I_1 + I_2$$

$$I = I_1 + I_1 \frac{R_1}{R_2}$$

$$I_1 = I \frac{R_2}{R_1 + R_2}$$

$$I_2 = I \frac{R_1}{R_1 + R_2}$$

Find voltage V_1 and V_2 as marked in the given circuit using voltage division rule.

Ans: 8.333 V and 1.667 V

Find voltage V_5 as marked in the given circuit using voltage division rule.

Ans: 1.667 V

Find current I_x as marked in the given circuit using current division rule.

Ans: 4 A

NETWORK REDUCTION TECHNIQUE

Practical Voltage source

Practical Current source

Practical Voltage source

V_s + R + R_L - b

Practical Current source

 $V_s = R \times I_s$

Find current in 6 K Ω resistor by converting current source to a voltage source.

Ans: 5 mA

Reduce the following circuit to a current source in parallel with a resistor across the terminals A & B.

Ans. 1.33 A (from B to A) in parallel with 1.2 Ohms

Find the voltage across 12 Ω resistor (i.e., V_x) by source transformation method.

Ans. - 48 V

Homework 1

Calculate the equivalent resistance across the terminals A and N.

 $R_{AN} = 1.4741 \Omega$

Homework 2

In the circuit shown, compute the value of V_S needed to deliver a current of I_S = 0.25 A using source transformation.

Ans: $V_s = 28 V$

Quiz Time (Ungraded)

Quiz Question

Determine current flowing through 10 Ohm resistor. All resistances are in Ohms.

Ans. 4 A