TDT4136 Logic And Reasoning Systems Exercise 2

 $\begin{array}{c} {\rm Stian~Hvatum~(hvatum)} \\ {\rm MTDT} \end{array}$

15. september 2011

Innhold

1	\mathbf{Pro}	positio	onal Logic	1
	1.1	Truth	and proofs	1
		1.1.1	Truth table for $((p \Rightarrow q) \land (\neg q \Rightarrow r) \land r) \Rightarrow p \dots \dots$	1
		1.1.2	How many models can you find for the formula: $((p \Rightarrow$	
			$q) \wedge (-q \Rightarrow r) \wedge r) \Rightarrow p?$	1
		1.1.3	Is the formula $((p \Rightarrow q) \land (\neg q \Rightarrow r) \land r) \Rightarrow psatisfiable?$.	1
		1.1.4	The iacme-algorithm	1
		1.1.5	Express the following sentences in Propositional Logic:	1
		1.1.6	Convert the above formulas to Conjunctive Normal Form	
			and prove with resolution that: "John's car is not working."	2
		1.1.7	The Deduction Theorem	2
2	Firs	\mathbf{t} Ord	er Predicate Logic	3
	2.1	Expre	ss the following sentences in first order predicate logic	3
			F	
		2.1.1	A boy kisses a girl	3
		2.1.1 2.1.2		$\frac{3}{3}$
			A boy kisses a girl	
	2.2	$2.1.2 \\ 2.1.3$	A boy kisses a girl	3
	2.2	$2.1.2 \\ 2.1.3$	A boy kisses a girl	3
	2.2	2.1.2 2.1.3 Expre	A boy kisses a girl Francine talked to every person in the room All paid jobs absorb and degrade the mind	3 3
	2.2	2.1.2 2.1.3 Expre 2.2.1	A boy kisses a girl	3 3
	2.2	2.1.2 2.1.3 Expre 2.2.1	A boy kisses a girl Francine talked to every person in the room All paid jobs absorb and degrade the mind	3 3 3

1 Propositional Logic

1.1 Truth and proofs

1.1.1 Truth table for $((p \Rightarrow q) \land (\neg q \Rightarrow r) \land r) \Rightarrow p$

p	q	r	$\neg q$	$(p \Rightarrow q)$	$(\neg q \Rightarrow r)$	$((p \Rightarrow q) \land (\neg q \Rightarrow r) \land r)$	$((p \Rightarrow q) \land (\neg q \Rightarrow r) \land r) \Rightarrow p$
0	0	0	1	1	0	0	1
0	0	1	1	1	1	1	0
0	1	0	0	1	1	0	1
0	1	1	0	1	1	1	0
1	0	0	1	0	0	0	1
1	0	1	1	0	1	0	1
1	1	0	0	1	1	0	1
1	1	1	0	1	1	1	1

1.1.2 How many models can you find for the formula: $((p \Rightarrow q) \land (-q \Rightarrow r) \land r) \Rightarrow p$?

Det er 6 modeller som tilfredsstiller formelen.

1.1.3 Is the formula $((p \Rightarrow q) \land (\neg q \Rightarrow r) \land r) \Rightarrow p$ satisfiable?

Ja, den er vist tilfredsstilt i tabellen over.

1.1.4 The iacme-algorithm

Given the $KB=(p\Rightarrow q)\wedge (\neg q\Rightarrow r)\wedge r$. ACME Soft wants to sell you its fantastic inference algorithm: iacme. They claim that the following derivation is good: $KB \vdash_{iacme} p$. Explain if iacme is any good or not.

ACME Soft påstår at de har en algoritme iacme slik at p kan bevises ut ifra KB, eller at p medfølger fra KB. Problemet er at KB er sann også i tilfeller der p ikke er det. Dermed kan ikke algoritmen iacme være noe bra.

1.1.5 Express the following sentences in Propositional Logic:

"If John drives to the airport then he catches the plane." $D \Rightarrow P$

"If John's car is working then he drives to the airport." $C \Rightarrow D$

"John did not catch the plane." $\neg P$

1.1.6 Convert the above formulas to Conjunctive Normal Form and prove with resolution that: "John's car is not working."

 $D \Rightarrow P$ blir $\neg D \lor P$

 $C \Rightarrow D$ blir $\neg C \lor D$

-P er alt på denne formen

Settningen blir da: $(\neg D \lor P) \land (\neg C \lor D) \land (\neg P)$

Tabell for denne setningen:

D	P	С	$\neg D$	$\neg P$	$\neg C$	$\neg D \lor P$	$\neg C \lor D$	$(\neg D \lor P) \land (\neg C \lor D) \land (\neg P)$
0	0	0	1	1	1	1	1	1
0	0	1	1	1	0	1	0	0
0	1	0	1	0	1	1	1	0
0	1	1	1	0	0	1	0	0
1	0	0	0	1	1	0	1	0
1	0	1	0	1	0	0	1	0
1	1	0	0	0	1	1	1	0
1	1	1	0	0	0	1	1	0

Vi ser at den eneste modellen der kunnskapsbasen er sann, er en modell der bilen ikke fungerer (-D), altså kan vi konkludere med at bilen ikke fungerer.

1.1.7 The Deduction Theorem

Given $a_1, a_2, \ldots, a_n \models a$. Prove that $a_1, a_2, \ldots, a_{n-1} \models (a_n \Rightarrow a)$ by using the Deduction Theorem and standard logical equivalences?

Vi bruker deduksjonsteoremet, $a \models b \Leftrightarrow a \Rightarrow b$, og får følgende utfall:

$$\underbrace{a_1,a_2,\ldots,a_n\models a}_{\begin{array}{c} a_1,a_2,\ldots,a_n\models a\\ \hline a_1,a_2,\ldots,a_{n-1}\models a\vee a_n\models a\\ \hline a\vee(b\Rightarrow a)\equiv(b\Rightarrow a) & a_1,a_2,\ldots,a_{n-1}\models a\vee a_n\Rightarrow a\\ \hline a_1,a_2,\ldots,a_{n-1}\models(a_n\Rightarrow a) \\ \\ \text{(Jeg ønsker gjerne en kommentar på denne, da jeg føler meg litt på gyngende} \\ \end{aligned}}$$

(Jeg ønsker gjerne en kommentar på denne, da jeg føler meg litt på gyngende grunn. . .)

2 First Order Predicate Logic

- 2.1 Express the following sentences in first order predicate logic
- 2.1.1 A boy kisses a girl

 $\exists x \ \exists y \ boy(x) \land girl(y) \land kiss(x,y)$

2.1.2 Francine talked to every person in the room

 $\forall x \ person(x) \land in(x, Room) \Rightarrow talk \ to(Francine, x)$

2.1.3 All paid jobs absorb and degrade the mind

 $\forall x \ paid(x) \land job(x) \Rightarrow absorbs(x, Mind) \land degrades(x, Mind)$

- 2.2 Express the following sentences in first order predicate logic
- 2.2.1 Jack loves a girl who doesn't love him

 $\exists x \ girl(x) \land loves(Jack, x) \land \neg loves(x, Jack)$

2.2.2 Jack was given a rose by all the girls, except by the one he loves

 $\forall x \; \exists y \; \exists z \; girl(x) \land \neg loves(Jack, x) \land girl(z) \land loves(Jack, z) \land rose(y) \Rightarrow gives(x, y, Jack) \land \neg gives(z, y, Jack)$

2.2.3 Not everything that can be counted counts, and not everything that counts can be counted

 $\exists x \ \exists y \ (countable(x) \land \neg counts(x)) \land (\neg countable(y) \land counts(y))$