

Rancangan Acak Lengkap

Pendahuluan

- Pengertian dasar
 - Faktor
 - Taraf
 - Perlakuan (Treatment)
 - Respons
- Layout Percobaan & Pengacakan
- Penyusunan Data
- Analisis Ragam
- Perbandingan Rataan

Pengertian dasar

- Faktor: Variabel Bebas (X) yaitu variabel yang di kontrol oleh peneliti
 - Misalnya: varietas, pupuk, jenis kompos, suhu, biofertilizer, jenis tanah, dsb.
 - Biasanya disimbolkan dengan huruf kapital, misal Faktor Varietas disimbolkan dengan huruf V.
- Taraf/Level:
 - Faktor terdiri dari beberapa taraf/level
 - Biasanya disimbolkan dengan huruf kecil yang dikombinasikan dengan subscript angka.
 - misal 3 taraf dari Faktor Varietas adalah: v₁, v₂, v₃

Faktor	Banyaknya Taraf	Taraf					
Varietas (V)	Jenis: 3 taraf	IR-64 (v ₁)	Cisadane (v ₂)	S-969 (v ₃)			
Pupuk Nitrogen (N)	Dosis: 3 taraf	0 (n ₁)	100 (n ₂)	200 (n ₃)			
Pupuk Organik (O)	Jenis: 4 taraf	Pupuk Kandang Ayam (o ₁)	Pupuk Kandang Sapi (o ₂)	Pupuk Kandang Domba (o ₃)	Kompos (o ₄)		

Pengertian dasar

- Perlakuan: merupakan taraf dari Faktor atau kombinasi taraf dari faktor.
 - Untuk Faktor Tunggal:
 - Perlakuan = Taraf Faktor
 - \blacksquare Misal: v_1 , v_2 , v_3
 - Apabila > 1 Faktor:
 - Perlakuan = Kombinasi dari masing-masing taraf Faktor
 - Misal: $v_1 n_0$; $v_1 n_1$; dst

Pengertian dasar

- Respons: Variabel tak bebas (Y) yaitu:
 - variabel yang merupakan sifat atau parameter dari satuan percobaan yang akan diteliti
 - sejumlah gejala atau respons yang muncul karena adanya peubah bebas.
 - misalnya: Hasil, serapan nitrogen, P-tersedia, pH dsb.

Contoh Kasus Faktor Tunggal

Rancangan lingkungan

 Rancangan lingkungan: merupakan suatu rancangan mengenai bagaimana perlakuanperlakuan yang dicobakan ditempatkan pada unitunit percobaan.

- Yang termasuk dalam rancangan ini:
 - Rancangan Acak Lengkap (RAL),
 - Rancangan Acak Kelompok (RAK) dan
 - Rancangan Bujur Sangkar Latin (RBSL), Lattice.

Rancangan acak lengkap (RAL)

Ciri-Ciri RAL

Bahan/Media/ Satuan Percobaan

Perlakuan/ Treatment Satuan percobaan/ media/bahan percobaan homogen (dianggap homogen/seragam)

Hanya ada 1 Sumber Keragaman: **Perlakuan** (plus Galat)

Keragaman Respons
Hanya disebabkan oleh
Perlakuan dan Galat
(Galat = kesalahan dalam
pengamatan/pencatatan
data/faktor lain yg tidak
bisa dijelaskan)

Latar Belakang Penggunaan RAL

- Rancangan acak lengkap merupakan jenis rancangan percobaan yang paling sederhana.
- Satuan percobaan yang digunakan homogen atau tidak ada faktor lain yang mempengaruhi respon di luar faktor yang dicoba atau diteliti.
- Faktor luar yang dapat mempengaruhi percobaan dapat dikontrol. Misalnya percobaan yang dilakukan di laboratorium/Rumah Kaca.
- Banyak ditemukan di laboratorium atau rumah kaca.

Keuntungan RAL

- Perancangan dan pelaksanaannya mudah
- Analis datanya sederhana
- Fleksibel (sedikit lebih fleksibel dibanding RAK) dalam hal:
 - Jumlah perlakuan
 - Jumlah ulangan
 - dapat dilakukan dengan ulangan yang tidak sama
- Terdapat alternatif analisis nonparametrik yang sesuai

Keuntungan RAL...

- Permasalahan data hilang lebih mudah ditangani (sedikit lebih mudah dibandingkan dengan RAK)
 - Data hilang tidak menimbulkan permasalahan analisis data yang serius
 - Kehilangan Sensitifitasnya lebih sedikit dibandingkan dengan rancangan lain
 - Derajat bebas galatnya lebih besar (maksimum). Keuntungan ini terjadi terutama apabila derajat bebas galat sangat kecil.
- Tidak memerlukan tingkat pemahaman yang tinggi mengenai bahan percobaan.

Kerugian RAL

- Terkadang rancangan ini tidak efisien.
- Tingkat ketepatan (presisi) percobaan mungkin tidak terlalu memuaskan kecuali unit percobaan benar-benar homogen
- Hanya sesuai untuk percobaan dengan jumlah perlakuan yang tidak terlalu banyak
- Pengulangan percobaan yang sama mungkin tidak konsisten (lemah) apabila satuan percobaan tidak benar-benar homogen terutama apabila jumlah ulangannya sedikit.

Kapan RAL digunakan?

- Apabila satuan percobaan benar-benar homogen, misal:
 - percobaan di laboratorium
 - Rumah Kaca
- Apabila tidak ada pengetahuan/informasi sebelumnya tentang kehomogenan satuan percobaan.
- Apabila jumlah perlakuan hanya sedikit, dimana derajat bebas galatnya juga akan kecil

Pengacakan dan Tata Letak

Pengacakan Dan Tata Letak Percobaan

- Pengacakan dilakukan agar analisis data yang dilakukan menjadi sahih.
- Pengacakan:
 - diundi (lotere),
 - daftar angka acak, atau
 - menggunakan bantuan software.

Pengacakan Dan Tata Letak Percobaan

Misalkan kita merancang:

Perlakuan (t): 7 taraf, misal A, B, C, D, E, F, G

Ulangan (r): 4 kali

A1, A2, A3, A4

B1, B2, B3, B4

C1, C2, C3, C4

D1, D2, D3, D4

:

G1, G2, G3, G4

Diperoleh:

tr = 7x4 = 28 satuan

percobaan

Perlakuan tersebut kita tempatkan secara acak ke dalam 28 satuan percobaan.

28 satuan percobaan

1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28

Pengacakan dengan cara pengundian

22

23

24

- Buat 28 gulungan kertas kode perlakuan (A1, A2, A3, ..., G3, G4)
- Lakukan pengundian (tanpa pemulihan).

Kode perlakuan yang jatuh pertama kali ditempatkan di kotak no 1, ke-2 ditempatkan di kotak no 2, dst. Misalkan kode C3 yang jatuh pertama kali, maka kotak no 1 diganti jadi C3, kode A2 jatuh pada urutan ke-2, maka kotak no 2 diganti dengan A2. Lakukan terus pengundian sampai kode perlakuan terakhir yang akan ditempatkan di kotak no 28.

1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
,						
C 3	A2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21

28

25

26

27

Pengacakan: Microsoft Excel

Buat tabel
dengan
jumlah baris
sesuai dengan
kombinasi
perlakuan
Pada kolom
ke-3 (C)
ditulis
Formula
"=RAND()":

Tata Letak RAL

22

E3	D3	E1	A4	G4	B2	A3
F4	C4	F1	B1	C3	В3	C1
F2	D2	G1	E4	A2	B4	D4
G3	F3	C2	E2	A1	G2	D1

Tabulasi Data

Tabulasi Data Rancangan Acak Lengkap Dengan 7 Perlakuan Dan 4 Ulangan

Illangan -	Perlakuan							
Ulangan	Α	В	С	D	E	F	G	Total
1	Y ₁₁	Y ₂₁	Y ₃₁	Y ₄₁	Y ₅₁	Y ₆₁	Y ₇₁	Y. ₁
2	Y ₁₂	Y ₂₂	Y ₃₂	Y ₄₂	Y ₅₂	Y ₆₂	Y ₇₂	Y. ₂
3	Y ₁₃	Y ₂₃	Y ₃₃	Y ₄₃	Y ₅₃	Y ₆₃	Y ₇₃	Y. ₃
4	Y ₁₄	Y ₂₄	Y ₃₄	Y ₄₄	Y ₅₄	Y ₆₄	Y ₇₄	Y. ₄
Total	Y ₁ .	Y ₂ .	Y ₃ .	Y ₄ .	Y ₅ .	Y ₆ .	Y ₇ .	Y

Model Linier & Analisis Ragam RAL

Model Linier RAL

$$Y_{ij} = \mu_i + \varepsilon_{ij}$$

$$= \mu + (\mu_i - \mu) + \varepsilon_{ij}$$

$$= \mu + \tau_i + \varepsilon_{ij}$$

i = 1,2,...,t; $j = 1,2,...r_i$; $\mu_i = mean perlakuan ke-i$

$$\sum_{i=1}^t \tau_i = 0$$

$$E(Y_{ij}) = \mu + \tau_i = \mu_i$$

 μ = rata-rata umum (mean populasi)

 $\tau_i = (\mu_i - \mu) = \text{Pengaruh aditif dari perlakuan}$ ke-i

 ε_{ij} = galat percobaan/pengaruh acak dari perlakuan ke-i ulangan ke-j dengan ε_{ij} \sim N(0, σ^2)

t = jumlah perlakuan dan

r_i = banyaknya ulangan dari perlakuan ke-i, untuk percobaan yang mempunyai ulangan sama, r_i = r.

Analisis Ragam

- Analisis ragam merupakan suatu analisis untuk memecah keragaman total menjadi beberapa komponen pembentuknya.
- Penduga kuadrat terkecil bagi parameter-parameter di dalam model rancangan acak lengkap diperoleh sebagai

berikut:

Parameter	Penduga
μ	$\hat{\mu} = \overline{Y}$
τί	$\hat{\tau}_{i} = \overline{Y}_{i.} - \overline{Y}$
ε _{ij}	$\hat{\varepsilon}_{ij} = Y_{ij} - \overline{Y}_{i.}$

Analisis Ragam

Parameter	Penduga
μ	$\hat{\mu} = \overline{Y}$
τί	$\hat{\tau}_{i} = \overline{Y}_{i.} - \overline{Y}$
ε _{ij}	$\hat{\varepsilon}_{ij} = Y_{ij} - \overline{Y}_{i.}$

Penguraian Data

Ulangan	kontrol	P1	P2	Р3	P4	P5	Р6	_	_
1	89.8	84.4	64.4	75.2	88.4	56.4	65.6		$\hat{\mu}$ =
2	93.8	116.0	79.8	62.4	90.2	83.2	79.4		Rata-rata
3	88.4	84.0	88.0	62.4	73.2	90.4	65.6		keseluruhan
4	112.6	68.6	69.4	73.8	87.8	85.6	70.2	*	
Rataan ($\overline{Y_i}$.)	96.15	88.25	75.40	68.45	84.90	78.90	70.20	Y = 80.32	
Pengaruh Perlakuan	15.83	7.93	-4.92	-11.87	4.58	-1.42	-10.12	0.00	
$(\tau_i = \overline{Y}_i \overline{Y})$								1	
(", ","									

$$\tau_i = \overline{Y}_i \cdot - \overline{Y} \cdot \cdot$$

- = Pengaruh Perlakuan:
- = selisih antara rata-rata
 perlakuan dan ratarata keseluruhan

Jumlah Total Pengaruh Perlakuan

$$\sum_{i=1}^t \tau_i = 0$$

penguraian keragaman total kedalam beberapa komponen penyusunnya

Penguraian Data

Model Linier:

$$Y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$

Ingat bahwa:

Parameter	Penduga
μ	$\hat{\mu} = \overline{Y}$
τί	$\hat{\tau}_{i} = \overline{Y}_{i.} - \overline{Y}$
ε _{ij}	$\hat{\varepsilon}_{ij} = Y_{ij} - \overline{Y}_{i.}$

Sehingga model linier tersebut bisa ditulis dalam bentuk:

$$Y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$

$$Y_{ij} = \overline{Y}... + (\overline{Y}_{i.} - \overline{Y}..) + (Y_{ij} - \overline{Y}_{i.})$$

$$(Y_{ij} - \overline{Y}..) = (\overline{Y}_{i.} - \overline{Y}..) + (Y_{ij} - \overline{Y}_{i.})$$

Perlakuan	Data Uterin	Rataan Umum	Ragam	Pengaruh Aditif dari Perlakuan	Galat (Sisaan)
	Yij	μ	Yij-μ	τί	εij=Yij-μ-τi
kontrol	89.8	80.32	9.48	15.83	-6.35
kontrol	93.8	80.32	13.48	15.83	-2.35
kontrol	88.4	80.32	8.08	15.83	-7.75
kontrol	112.6	80.32	32.28	15.83	16.45
P1	84.4	80.32	4.08	7.93	-3.85
:	:	:		:	:
P5	85.6	80.32	5.28	-1.42	6.70
P6	65.6	80.32	-14.72	-10.12	-4.60
P6	79.4	80.32	-0.92	-10.12	9.20
P6	65.6	80.32	-14.72	-10.12	-4.60
P6	70.2	80.32	-10.12	-10.12	0.00
Jumlah Kuadrat	186121.4	180642.89	5478.507	2415.937	3062.57

Penguraian Keragaman Total

30

$$Y_{ij} = \overline{Y}.. + (\overline{Y}_{i.} - \overline{Y}..) + (Y_{ij} - \overline{Y}_{i.})$$
$$(Y_{ii} - \overline{Y}..) = (\overline{Y}_{i.} - \overline{Y}..) + (Y_{ii} - \overline{Y}_{i.})$$

Analisis Ragam diperoleh dari pemisahan Jumlah Kuadrat Total Terkoreksi (JKT)!!

$$JKT = \sum_{i=1}^{t} \sum_{j=1}^{r} (Y_{ij} - Y_{..})^{2}$$

$$\sum_{i=1}^{t} \sum_{j=1}^{r} (Y_{ij} - Y_{..})^{2} = \sum_{i=1}^{t} \sum_{j=1}^{r} [(\overline{Y}_{i.} - \overline{Y}_{..})^{2} + (Y_{ij} - \overline{Y}_{i.})^{2}]^{2}$$

$$=\sum_{i=1}^{t}\sum_{j=1}^{r}(\overline{Y}_{i.}-\overline{Y}..)^{2}+\sum_{i=1}^{t}\sum_{j=1}^{r}(Y_{ij}-\overline{Y}_{i.})^{2}+2\sum_{i=1}^{t}\sum_{j=1}^{r}(\overline{Y}_{i.}-\overline{Y}..)(Y_{ij}-\overline{Y}_{i.})$$

$$\sum (Y_{ij} - \overline{Y}..)^2 = \sum (\overline{Y}_{i.} - \overline{Y}..)^2 + \sum (Y_{ij} - \overline{Y}_{i.})^2$$

$$\mathsf{JKT} = \mathsf{JKP} + \mathsf{JKG}$$

Perlakuan	Data Uterin	Rataan Umum	Ragam	Pengaruh Aditif dari Perlakuan	Galat (Sisaan)
	Yij	μ	Yij-μ	τi	εij=Yij-μ-τι
kontrol	89.8	80.32	9.48	15.83	-6.35
kontrol	93.8	80.32	13.48	15.83	-2.35
kontrol	88.4	80.32	8.08	15.83	-7.75
kontrol	112.6	80.32	32.28	15.83	16,45
P1	84.4	80.32	4.08	7.93	-3.85
:	:	:			:
P5	85.6	80.32	5.28	-1.42	6.70
P6	65.6	80.32	-14.72	-10.12	-4.60
P6	79.4	80.32	-0.92	-10.12	9.20
P6	65.6	80.32	-14.72	-10.12	-4.60
		32	-10.12	-10.12	0.00
		2.89	5478.507	2415.937	3062.57

Nilai pada akhir persamaan bernilai nol, karena:

$$\sum_{j=1}^{r} (Y_{ij} - \overline{Y}_{i.}) = \sum \varepsilon_{ij} = 0$$

Penguraian Keragaman Total

Perlakuan	Data Uterin	Rataan keseluruhan	Ragam Total	Pengaruh Aditif dari Perlakuan	Galat (Sisaan)
Model Linier	Y _{ii}	μ	Yij-μ	τ	ε _{ii} =Υ _{ii} -μ-τ _i
kontrol	89.8	80.32	9.48	15.83	-6.35
:	:	:		•	:
P6	70.2	80.32	-10.12	-10.12	0.00
Jumlah Kuadrat	186121.4	180642.89	5478.507	2415.937	3062.57
	*TXI	¥ ¥	T T	JKP	JKG
	$\sum_{i=1}^{l} \sum_{j=1}^{l} (Y_{ij})^2$ JKT*	$\sum_{i=1}^{l} \sum_{j=1}^{r} (\overline{Y})^{2}$ FK	$\sum_{i=1}^{\iota} \sum_{j=1}^{r} (\overline{Y}_{i.} - \overline{Y})^{2}$ JKT	$\sum_{i=1}^{t} \sum_{j=1}^{r} (Y_{ij} - Y_{})^{2}$ JKP	$\sum_{i=1}^{t} \sum_{j=1}^{r} (Y_{ij} - \overline{Y}_{i.})^{2}$ JKG
	JKT _{terkorek}	= JKT*-FK = 186121.4 - 1 = 5478.507	180642.89	JKT = JKP + JKG	A > MO -

Asumsi dan Hipotesis

Asumsi:

Model Tetap	Model Acak
$E(\tau_i) = \tau$; $\sum_{i=1}^{t} \tau_i = 0$; $\varepsilon_{ij} \stackrel{bsi}{\sim} N(0, \sigma^2)$	$E(\tau_i) = 0$; $E(\tau_i^2) = \sigma_\tau^2$; $\varepsilon_{ij} \stackrel{bsi}{\sim} N(0, \sigma^2)$

Hipotesis:

Hipotesis yang Akan Diuji:	Model Tetap	Model Acak
H_0	Semua τ _i = 0	$\sigma_{\tau}^2 = 0$
H ₁	Tidak semua τ _i = 0	$\sigma_{\tau}^2 > 0$

Tabel Analisis Ragam

Sumber Keragaman (SK)	Jumlah Kuadrat (JK)	Derajat Bebas (db)	Kuadrat Tengah (KT)	F-Hitung
Perlakuan	t-1	JKP	KTP	KTP/KTG
Galat	t(r-1)	JKG	KTG	
Total	tr-1	JKT		

Galat Baku

$$S_{\overline{Y}} = \sqrt{\frac{2KT(Galat)}{r}}$$

Untuk membandingkan nilai tengah perlakuan

Contoh Terapan

Contoh RAL:

 Berikut ini adalah hasil pengujian estrogen beberapa larutan yang telah mengalami penanganan tertentu. Berat uterin tikus dipakai sebagai ukuran keaktifan estrogen. Berat uterin dalam miligram dari empat tikus untuk setiap kontrol dan enam larutan yang berbeda dicantumkan dalam tabel berikut)

Perlakuan		Ular	Jumlah		
Pellakuali	1	2	3	4	Juilliali
kontrol	89.8	93.8	88.4	112.6	384.6
P1	84.4	116.0	84.0	68.6	353.0
P2	64.4	79.8	88.0	69.4	301.6
P3	75.2	62.4	62.4	73.8	273.8
P4	88.4	90.2	73.2	87.8	339.6
P5	56.4	83.2	90.4	85.6	315.6
P6	65.6	79.4	65.6	70.2	280.8
Jumlah	524.2	604.8	552.0	568.0	2249

Langkah-langkah Pengujian Hipotesis:

- Karena hanya terdapat 7 perlakuan yang tersedia, maka model yang cocok adalah model tetap. Model tersebut adalah:
 - $Y_{ij} = \mu + \tau_i + \varepsilon_{ij}$; i =1,2,...,7 dan j = 1,2,3,4
 - dengan
 - Y_{ij} = berat uterin dari tikus ke-j yang memperoleh perlakuan ke-i
 - μ = mean populasi berat uterin
 - τ_i = pengaruh perlakuan ke-i
 - ϵ_{ii} = pengaruh acak pada tikus ke-j yang memperoleh perlakuan ke-i.
- Asumsi : lihat asumsi untuk model tetap
- Hipotesis yang akan diuji :
 - $□ H_0 : Semua τ_j = 0$ (atau tidak ada pengaruh perlakuan terhadap berat uterin tikus)
 - $I_1 : Tidak semua τ_j = 0; atau minimal ada satu perlakuan yang mempengaruhi berat uterin tikus.$

Perhitungan Analisis Ragam (1-2):

Langkah 1: Hitung Faktor Koreksi

$$FK = \frac{Y..^2}{rt} = \frac{2249^2}{28} = 180642.89$$

Langkah 2: Hitung Jumlah Kuadrat Total

$$JKT = \sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij}^{2} - FK$$

$$= (89.8^{2} + 93.8^{2} + \dots + 65.6^{2} + 70.2^{2}) - 180642.89$$

$$= 5478.51$$

Perhitungan Analisis Ragam (3-4):

Langkah 3: Hitung Jumlah Kuadrat Perlakuan

$$JKP = \sum_{i=1}^{t} \frac{Y_{i}^{2}}{r} - FK$$

$$= \frac{(384.6^{2} + 353^{2} + 301.6^{2} + 273.8^{2} + 339.6^{2} + 315.6^{2} + 280.8^{2})}{4} - 180642.89$$

$$= 2415.94$$

Langkah 4: Hitung Jumlah Kuadrat Galat

$$JKG = JKT - JKP$$
$$= 3062.57$$

Perhitungan Analisis Ragam (5-6):

Langkah 5: Buat Tabel Analisis Ragam beserta Nilai F-tabelnya

Tabel Analisis Ragam dari Berat Uterin Tikus

Sumber	Derajat	Jumlah	Kuadrat	Fhitung	Ftabel	
keragaman (SK)	bebas (db)	kuadrat (JK)	tengah (KT)	riiitulig	5%	1%
Perlakuan	6	2415.94	402.66	2.76*	2.573	3.812
Galat	21	3062.57	145.84			
Total	27	5478.51				

$$F_{(0.05,6,21)} = 2.573$$
 $F_{(0.01,6,21)} = 3.812$

Langkah 6: Hitung Koefisien Keragaman (KK)

$$KK = \frac{\sqrt{KTG}}{\overline{Y}..} \times 100\% = \frac{\sqrt{145.84}}{80.32} \times 100\%$$
$$= 15.03\%$$

Perhitungan Analisis Ragam (7):

Langkah 7: Buat Kesimpulan

- Karena Fhitung (2.76) > 2.573 maka:
 - **kita tolak H₀**: $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ pada taraf kepercayaan 95%
- \blacksquare Karena Fhitung (2.76) ≤ 3.812 maka:
 - kita **gagal untuk menolak H₀**: $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ pada taraf kepercayaan 99%
- Hal ini berarti:
 - pada taraf kepercayaan 95%, minimal terdapat satu perlakuan yang berbeda dengan yang lainnya.
 - Namun pada taraf kepercayaan 99%, semua rata-rata perlakuan tidak berbeda dengan yang lainnya.
- Keterangan:
 - Biasanya, tanda bintang satu (*) diberikan, apabila nilai F-hitung lebih besar dari F(0.05) dan tanda bintang dua (**) diberikan apabila nilai F-hitung lebih besar dari F(0.01)

Perbandingan Rataan

Fisher's LSD/BNT

(Topik ini untuk sementara bisa dilewati, Untuk memahami perbandingan rata-rata secara detail, lihat **Bahasan Materi Perbandingan Nilai Rata-rata**)

Hitung Nilai LSD

Sumber	Derajat	Jumlah	Kuadrat	Fhitung	Ft	abel
keragaman (SK)	bebas (db)	kuadrat (JK)	tengah (KT)	riiiturig	5%	1%
Perlakuan	6	2415.94	402.66	2.76	2.573	3.812
Galat	21	3062.57	145.84			
Total	27	5478.51				

$$LSD = t_{(0.05/2);21} \sqrt{\frac{2KTG}{r}}$$

$$= 2.08 \times \sqrt{\frac{2(145.84)}{4}}$$

$$= 17.76$$

$$Jika \left| \mu_i - \mu_j \right| \left\langle \begin{array}{l} > LSD_{0.05} \\ \leq LSD_{0.05} \end{array} \right|$$

tolak H₀, kedua rata - rata berbeda nyata tolak H₀, kedua rata - rata tidak berbeda nyata

Tabel Nilai Kritis t-student

							t						
_ * 1	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0.05	0.02	0.01	0.001
1	0.158	0.325	0.510	0.727	1.000	1.376	1.963	3.078	6.314	12.706	31,821	63.657	636.619
2	0.142	0.289	0.445	0.617	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	31.599
3	0.137	0.277	0.424	0.584	0.765	0.978	1.250	1.638	2.353	3.132	4.541	5.841	12.924
4	0.134	0.271	0.414	0.569	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	8.610
5	0.132	0.267	0.408	0.559	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	6.869
6	0.131	0.265	0.404	0.553	0.718	0.906	1.134	1.440	1.943	2.417	3.143	3.707	5.959
7	0.130	0.263	0.402	0.549	0.711	0.895	1.119	1.415	1.895	2.355	2.998	3,499	5.408
8	0.130	0.262	0.399	0.546	0.706	0.889	1.108	1.397	1.860	2.306	2.895	3.355	5.041
9	0.129	0.261	0.398	0.543	0.703	0.883	1.100	1.383	1.833	2.252	2.821	3.250	4.781
10	0.129	0.260	0.397	0.542	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.587
11	0.129	0.260	0.396	0.540	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.437
12	0.128	0.259	0.395	0.539	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	4.318
13	0.128	0.259	0.394	0.538	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	4.221
14	0.128	0.258	0.393	0.537	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	4.140
15	0.128	0.258	0.393	0.536	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	4.073
16	0.128	0.258	0.3	1:1-: 4	L			1.337	1.746	2.120	2.583	2.921	4.015
17	0.128	0.257	0.3	ıllal (t _{(0.05/}	2. 21)		1.333	1740	2.110	2.567	2.898	3.965
18	0.127	0.257	0.3		(0.00)	-,,		1.330	1.734	2.101	2.552	2.878	3.922
19	0.127	0.257	0.3	2.08	3			1.328	1.725	2.093	2.539	2.851	3.883
20	0.127	0.257	0.3					1.325	1.725	2,186	2.528	2.845	3.850
21	0.127	0.257	0.391	0.532	0.000	0.009	1.063	1.020	1.721	2.080	2.518	2.831	3.819
22	0.127	0.256	0.390	0.532	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.792
23	0.127	0.255	0.390	0.532	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.768
24	0.127	0.256	0.390	0.531	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.745
25	0.127	0.255	0.390	0.531	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.725

Urutkan Rata-rata Perlakuan

Urutkan Rata-rata Perlakuan (dalam contoh ini rata-rata diurutkan dari kecil ke besar)

Perlakuan (T)	Rata-rata
kontrol	96.15
P1	88.25
P2	75.40
P3	68.45
P4	84.90
P5	78.90
P6	70.20

Perlakuan (T)	Rata-rata
P3	68.45
P6	70.20
P2	75.40
P5	78.90
P4	84.90
P1	88.25
kontrol	96.15

Pengujian

45

$$LSD = t_{0.05/2;21} \sqrt{\frac{2KTG}{r}}$$

$$= 2.08 \times \sqrt{\frac{2(145.84)}{4}}$$

$$= 17.76$$

Jika
$$\left|\mu_{i}-\mu_{j}\right|\left\langle >17.76\right.$$

tolak H₀, kedua rata - rata berbeda nyata tolak H₀, kedua rata - rata tidak berbeda nyata

Perlakuan (T)		Р3	Р6	P2	Р5	P4	P1	kontrol	Notasi
Periakuan (1)	Rata-rata	68.45	70.20	75.40	78.90	84.90	88.25	96.15	
Р3	68.45	0.00							a
P6	70.20	1.75 tn	0.00						a
P2	75.40	6.95 tn	5.20 tn	0.00					ab
P5	78.90	10.45 tn	8.70 tn	3.50 tn	0.00				abc
P4	84.90	16.45 tn	14.70 tn	9.50 tn	6.00 tn	0.00			abc
P1	88.25	19.80 *	18.05 *	12.85 tn	9.35 tn	3.35 tn	0.00		bc
kontrol	96.15	27.70 *	25.95 *	20.75 *	17.25 tn	11.25 tn	7.90 tn	0.00	С