Übung Festigkeitsanforderungen und -nachweis

Aufgabe 1 (Festigkeitsanforderungen) Als Absolvent(in) der Schienenfahrzeugtechnik bei einem Zulieferunternehmen ist es Ihre erste Aufgabe, einen Sensor (z.B. ein Dopplerradar) mit einer Masse $m=50\,\mathrm{kg}$ in einem Abstand von $x_A=200\,\mathrm{mm}$ zur Anschraubfläche im Bereich der Pufferbohle zu befestigen. Aufgrund der beengten Einbaulage wählen Sie eine Kragarmkonstruktion.

Abbildung 1: Darstellung des Aufbaus

- 1. Was sind die Nachteile einer solchen Kragarmkonstruktion?
- 2. Welche alternativen Konstruktionen sollten gewählt werden?
- 3. Bestimmen Sie die Anforderungen an den Festigkeitsnachweise gemäß EN 12663-1 und EN 12663-2 für folgenden Fälle:
 - a) Statischer Nachweis, Personenfahrzeug
 - b) Nachweis auf Dauerfestigkeit, Personenfahrzeug
 - c) Statischer Nachweis, Güterwagen
 - d) Nachweis auf Dauerfestigkeit, Güterwagen

Gehen Sie dabei von einem Stahl S 355 aus.

Aufgabe 2 (Festigkeitsanforderungen) Führen Sie den Festigkeitsnachweis für die oben bestimmten Lastfälle für eine Kragarm aus einem Rundstahl $d=25\,\mathrm{mm}$. Als Material nehmen Sie S355 mit einer Streckgrenze von $355\,\frac{\mathrm{N}}{\mathrm{mm}^2}$ sowie einer dauerfest ertragbaren Biegespannung von $235\,\frac{\mathrm{N}}{\mathrm{mm}^2}$ an.

Datum: 14. AACHEN

UNIVERSITY OF APPLIED SCIENCES

Datei: SFTI-16-Ue1 1 Datum: 14. April 2016