

## VIT

## **Vellore Institute of Technology**

(Deemed to be University under section 3 of UGC Act, 1956)

B.Tech. Winter Semester 2024-25 School Of Computer Science and Engineering (SCOPE)

# Notes Cryptography and Network Security

Apurva Mishra: 22BCE2791

Date: CAT - II

## **Contents**

| 1 | Module 3: Asymmetric Encryption Algorithm and Key Exchange | 3 |
|---|------------------------------------------------------------|---|
|   | 1.1 Principles                                             | 3 |
|   | 1.2 RSA                                                    | 3 |
|   | 1.3 ElGamal                                                | 3 |
|   | 1.4 Elliptic Curve cryptography                            | 4 |
|   | 1.5 Homomorphic Encryption and Secret Sharing              | 4 |
|   | 1.6 Key distribution and Key exchange protocols            | 4 |
|   | 1.7 Diffie-Hellman Key Exchange                            | 4 |
|   | 1.8 Man-in-the-Middle Attack                               | 5 |
| 2 | Module 4: Message Digest and Hash Functions                | 5 |
|   | 2.1 Requirements for Hash Functions                        | 5 |
|   | 2.2 Security of Hash Functions                             | 5 |

| 2.3 | Message Digest (MD5) 5     |
|-----|----------------------------|
| 2.4 | Secure Hash Function (SHA) |
| 2.5 | Birthday Attack            |
| 2.6 | HMAC                       |

## 1 Module 3: Asymmetric Encryption Algorithm and Key Exchange



### 1.1 Principles

| Algorithm      | Encryption/Decryp- | Digital Signature | Key Exchange |
|----------------|--------------------|-------------------|--------------|
|                | tion               |                   |              |
| RSA            | Yes                | Yes               | Yes          |
| Elliptic Curve | Yes                | Yes               | Yes          |
| Diffie-Hellman | No                 | No                | Yes          |

#### 1.2 RSA

#### 1.2.1 Steps

1. Choose two large primes:

$$P, Q$$

$$N = P * Q$$
(1)

2. Choose public and private key:

$$K_{\mathrm{pub}} \mid K_{\mathrm{pub}} \text{ is not factor of } \phi(N)$$

$$K_{\mathrm{pri}} \mid (K_{\mathrm{pri}} * K_{\mathrm{pri}}) \mod \phi(N) = 1$$

$$(2)$$

3. Encrypt:

$$CT = PT^{K_{\text{pub}}} \mod N \tag{3}$$

4. Decrypt:

$$PT = CT^{K_{\text{pri}}} \bmod D \tag{4}$$

#### 1.3 ElGamal

1. Choose public numbers such that:

- $\alpha,q$  are prime
- $\alpha$  is primitive root of q

$$\alpha, q$$
 (5)

2. A: Compute

• Private Key:  $X_{
m A}$ 

• Public Key :  $\{q, \alpha, Y_{\mathrm{A}}\}$ 

$$X_{\mathbf{A}} \mid X_{\mathbf{A}} \in (1, q - 1)$$

$$Y_{\mathbf{A}} = \alpha^{\mathbf{X}_{\mathbf{A}}} \bmod q$$

$$(6)$$

3. B

• Message:  $M \mid M \in [1,q-1]$ • Random :  $k \mid k \in [1,q-1]$ 

4. Encrypt  $(C_1, C_2)$ :

$$C_1 = \alpha^k \mod q$$

$$C_2 = KM \mod q$$
(7)

5. A: Decrypt

$$K = C_1^{X_A} \mod q$$

$$M = C_2 K^{-1} \mod q$$
(8)

If a message must be broken up into blocks and sent as a sequence of encrypted blocks, a unique value of k should be used for each block. If k is used for more than one block, knowledge of one block M1 of the message enables the user to compute other blocks as follows. Let

### 1.4 Elliptic Curve cryptography

- 1.5 Homomorphic Encryption and Secret Sharing
- 1.6 Key distribution and Key exchange protocols

## 1.7 Diffie-Hellman Key Exchange

- 1. Choose public numbers such that:
  - g is primitive root of n
  - g,n are primes

$$g, n$$
 (9)

2. Choose private numbers:

$$\begin{aligned}
x_{\mathbf{A}} \mid x < n \\
y_{\mathbf{B}} \mid y < n
\end{aligned} \tag{10}$$

3. New public values:

$$A = g^x \mod n$$

$$B = g^y \mod n$$
(11)

4. Generate Keys User side:

$$K_{A} = B^{x} \mod n$$

$$K_{B} = A^{y} \mod n$$

$$K_{A} == K_{B}$$
(12)

#### 1.8 Man-in-the-Middle Attack

## 2 Module 4: Message Digest and Hash Functions

### 2.1 Requirements for Hash Functions

A Hash Function H accepts a variable length block of data M as input and produces a fixed size result h=H(M) referred to as a **hash value** or **hash code**.

A **Cryptographic Hash Function** for which it is computationally infesible to find:

- 1. M which maps to a predefined h
- 2.  $(M_1, M_2)$  which map to same h

#### 2.2 Security of Hash Functions

## 2.3 Message Digest (MD5) Setup

#### Steps:

#### 1. Padding

Padding bits P:

$$P = 1 \cdot \sum_{i}^{n} 0_{i} \tag{14}$$

Padding is always added, even if:

$$O = 512 \cdot x = M + 64 \text{ bits } | x \in [1, \infty)$$
 (15)

Examples:  $\{10, 100, 1000\}$ 

Output:

$$O_1 = M + P \tag{16}$$

#### 2. Append Length

$$L = \operatorname{len}(M) \mid \text{expressed in 64 bits}$$
 (17)

Then,

$$O_2 = O_1 + L \tag{18}$$

Output:

$$\begin{split} O_2 &= O_1 + L \\ O_2 &= M + P + L \end{split} \tag{19}$$

#### 3. Divide into 512 bit blocks

$$O_3 = \sum_i^n a_i \mid \text{where len(a)} == 512$$
 
$$O_3 = \{a_1, a_2, ..., a_n\}$$
 
$$(20)$$

#### 4. Initialize Chaining Variable

Chaining variables:  $\{A,B,C,D\}$  are initialised, each 32 bits.

| Α | 01 | 23 | 45 | 67 |
|---|----|----|----|----|
| В | 89 | AB | CD | EF |
| С | FE | ВС | DA | 98 |
| D | 76 | 54 | 32 | 10 |

#### 5. Process Block

There are 4 rounds.

Let 
$$\{a, b, c, d\} = \{A, B, C, D\}$$

Divide 512 bits in sub-blocks of 32 bits each (16 sub-blocks):

$$a_i = \sum_{j=1}^{16} b_j \mid \text{where len(b)} == 32 \text{ bits}$$
 (21)

Initialize constant t: [u32; 64]

Then round function:

$$abcd`=f_r(abcd,\{b_1,..,b_{16}\},t) \eqno(22)$$

## 2.4 Secure Hash Function (SHA)



+ = word-by-word addition mod 2<sup>64</sup>

Figure 11.9 Message Digest Generation Using SHA-512

## 2.5 Birthday Attack

## **2.6 HMAC**