Lista 5

Luiz Georg

15/0041390

10 de novembro de 2021

Questão 1

```
Output

Ad =

0.958397  0.0074842  0.
-0.325912  0.9636324  0.
-0.001651  0.0098192  1.

Bd =

0.0038405
-0.3846775
-0.0019338
```

Questão 2

Figura 1: Gráfico da evolução do vetor de estados no tempo

Questão 3

a)

Figura 2: Gráfico dos estados medidos, incluindo valores da planta, valores medidos, e valores estimados para o item a)

Figura 3: Gráfico do erro entre os estados estimados e os estados da planta para o item a)

Figura 4: Gráfico da diagonal da matriz de variância P para o item a)

Figura 5: Gráfico de χ^2 para o item a)

b)

Figura 6: Gráfico dos estados medidos, incluindo valores da planta, valores medidos, e valores estimados para o item b)

Figura 7: Gráfico do erro entre os estados estimados e os estados da planta para o item b)

Figura 8: Gráfico da diagonal da matriz de variância P para o item b)

Figura 9: Gráfico de χ^2 para o item b)

 $\mathbf{c})$

Figura 10: Gráfico dos estados medidos, incluindo valores da planta, valores medidos, e valores estimados para o item c)

 ${\bf Figura~11:~Gr\'afico~do~erro~entre~os~estados~estimados~e~os~estados~da~planta~para~o~item~c)}$

Figura 12: Gráfico da diagonal da matriz de variância P para o item c)

Figura 13: Gráfico de χ^2 para o item c)

d)

Figura 14: Gráfico dos estados medidos, incluindo valores da planta, valores medidos, e valores estimados para o item d)

Figura 15: Gráfico do erro entre os estados estimados e os estados da planta para o item d)

Figura 16: Gráfico da diagonal da matriz de variância P para o item d)

Figura 17: Gráfico de χ^2 para o item d)

Nos itens a) e b), as Figs. 3 and 7 mostram o acúmulo de erro no estimador quando ocorre a falha total do sensor. Como esperado, o valor estimado começa a divergir do valor real a partir dos 3 segundos, quando é simulada a falha dos sensores. O efeito é mais perceptível no estado θ , já que α está em um ponto de estabilidade. As Figs. 4 and 8 mostram que o estimador é capaz de perceber essa perda de acurácia, e a magnitude de incerteza em cada estado.

Já para os itens c) e d), é possível notar que a falha do sensor θ é muito mais grave que a falha do sensor α – em outras palavras, θ é muito mais importante para a estimação do sistema. Isso é esperado, pois o sistema é observável para a medida apenas de θ , mas não é observável para a medida apenas de α .

Uma sobreposição cuidadosa das Figs. 8 and 12 ou das Figs. 4 and 16 mostram uma variação muito pequena quando o sensor α está ligado ou desligado. Era esperado que a existência de uma medida fosse apresentar melhorias significativas ao estimador, mesmo que em um sistema não observável. Entretanto, a estabilidade de α no cenário simulado e as variâncias relativas dos sensores fazem com que essa influência seja muito pequena, quase imperceptível.

Quanto à análise de consistência estatística, podemos observar que todas as simulações estão dentro da distribuição esperada. A análise depende da distribuição do erro, mas é ponderada pela variância esperada. Como podemos observar, a variância esperada aumenta quando o erro aumenta e as Figs. 5, 9, 13 and 17 permitem dizer que a incerteza do estimador está calculada adequadamente e que as distribuições de erro se aproximam de uma distribuição gaussiana.