Applicazioni Lineari - Sommario

Tutto sulle applicazioni lineari (penultimo argomento)

A. DEFINIZIONE BASE

A1. Definizione basilare

Definizione di Applicazione Lineare

Definizione base di applicazione lineare. Esempi.

0. Preambolo

OSS 0.a. (Aree di indagine della matematica) La matematica è una materia che studia principalmente due temi: da un lato lo studio di certi determinate entità matematiche, come le matrici, i vettori, i sistemi lineari e i spazi vettoriali.

Dall'altro lato, la matematica si occupa anche di collegare questi oggetti studiati mediante le *funzioni* (Funzioni); tra poco studieremo delle funzioni che in oggetto prendono dei *spazi vettoriali* (Spazi Vettoriali), evidenziando la loro complessità e ricchezza, dovute al fatto che i *spazi vettoriali* sono sostanzialmente degli insiemi con più restrizioni.

1. Definizione di Applicazione Lineare

#Definizione

Definizione 1.1. (applicazione lineare da V a V primo)

Siano V, V' due K-spazi V-spazi V-spa

$$(V,V',f)\sim f:V\longrightarrow V'$$

una applicazione lineare se valgono due condizioni: A1. (Additività) "L'immagine della somma è la somma delle immagini"

$$orall v_1, v_2 \in V, f(v_1 + v_2) = f(v_1) + f(v_2)$$

A2. (Omogeneità) "L'immagine dello scalamento è lo scalamento dell'immagine"

$$orall v \in V, f(\lambda v) = \lambda f(v)$$

OSS 1.1. (*Operazioni stesse ma diverse*) Notiamo che nelle proprietà A1. e A2. (additività e omogeneità) abbiamo l'associazione tra due operazioni diverse; a sinistra abbiamo la somma (scalamento) definita in V, d'altro lato abbiamo una "altra" somma (scalamento) definita in V'. Per essere più precisi sarebbe preferibile scrivere

$$f(v_1+v_2)=f(v_1)\oplus f(v_2)$$

е

$$f(\lambda \cdot v) = \lambda \odot f(v)$$

dove $+, \cdot$ sono definite in V e invece \oplus, \odot in V'.

2. Esempi di Applicazione Lineari

#Esempio

Esempio 1.1. (Esempio di applicazione lineare da 2D a 1D)

Sia $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ una funzione dove

$$f\left(inom{x}{y}
ight)=x+2y$$

Allora per verificare che f sia a tutti gli effetti un'applicazione lineare, proviamo l'additività e l'omogeneità di f. In un colpo solo la verifichiamo scrivendo

$$egin{aligned} f\left(\lambda\cdot\left(inom{x_1}{y_1}+inom{x_2}{y_2}
ight)
ight)&=f\left(inom{\lambda x_1+\lambda x_2}{\lambda y_1+\lambda y_2}
ight)\ &=(\lambda x_1+\lambda x_2)+2(\lambda y_1+\lambda y_2)\ &=\lambda(x_1+2y_1)+\lambda(x_2+2y_2)\ &=f\left(\lambdainom{x_1}{y_1}
ight)+f\left(\lambdainom{x_2}{y_2}
ight) \end{aligned}$$

Applicazioni Lineari Notevoli

Prime applicazioni lineari che verranno date per noti: trasformazione lineare associata ad una matrice, funzione coordinante.

1. Trasformazione lineare associata ad una matrice

#Definizione

Definizione 1.1. (trasformazione lineare associata alla matrice)

Sia $A \in M_{m,n}(K)$ una matrice (Matrice > ^18867e). Allora la matrice A definisce una funzione del tipo

$$L_A:K^n\longrightarrow K^m;v\mapsto A\cdot v$$

La *funzione* associa un vettore K^n ad un vettore $A \cdot v$ che vive in K^n ; ricordiamoci che · rappresenta la *moltiplicazione riga per colonna* (Operazioni particolari con matrici > ^eecbc9).

#Proposizione

Proposizione 1.1. (L_A è un'applicazione lineare)

Per ogni matrice $A \in M_{m,n}(K)$ la funzione precedentemente definita L_A è una applicazione lineare (Definizione di Applicazione Lineare > ^9b39f9).

#Dimostrazione

DIMOSTRAZIONE della proposizione 1.1.

Siano $v_1, v_2 \in K^n$. Allora sfruttando delle *proprietà* della moltiplicazione riga per colonna (Operazioni particolari con matrici > ^5cf872), otteniamo

$$egin{aligned} L_A(v_1+v_2) &= A \cdot (v_1+v_2) \ &= A \cdot v_1 + A \cdot v_2 \ &= L_A(v_1) + L_A(v_2) \end{aligned}$$

Similmente, supponendo $\lambda \in K$, dimostriamo che

$$L_A(\lambda v) = A \cdot (\lambda v) = \lambda (A \cdot v) = \lambda L_A(v)$$

Esempio particolare

#Esempio

Esempio 1.1. (rotazione nel piano di un angolo α in senso antiorario)

Sia $\alpha \in \mathbb{R}$ un *angolo* e consideriamo la matrice "rotazione"

$$R_lpha = egin{pmatrix} \coslpha & -\sinlpha \ \sinlpha & \coslpha \end{pmatrix}$$

Allora l'applicazione lineare rappresentato da

$$L_{R_lpha}:\mathbb{R}^2\longrightarrow\mathbb{R}^2$$

rappresenterebbe la rotazione di un angolo α in senso *antiorario*. Calcoliamo ad esempio

$$L_{R_lpha}(egin{pmatrix}1\0\end{pmatrix})=egin{pmatrix}\coslpha&-\sinlpha\\sinlpha&\coslpha\end{pmatrix}\cdotegin{pmatrix}1\0\end{pmatrix}=egin{pmatrix}\coslpha\\sinlpha\end{pmatrix}$$

Invece per esercizio si lascia al lettore di calcolare

$$L_{R_lpha}(inom{0}{1})$$

(vi è dato un suggerimentino nella figura sottostante!)

GRAFICO 1.1. (Situazione grafica)

2. Applicazione lineare coordinante

#Definizione

Definizione 2.1. (funzione coordinante)

Sia V un K-spazio vettoriale di dimensione finita (Dimensione > ^3a9321), suppongo $\dim V = n \in \mathbb{N}$.

Sia \mathcal{B} una base (Definizione di Base > ^def430).

Allora definiamo la funzione che prende le coordinate di un vettore rispetto a \mathcal{B} in questo modo:

$$F_{\mathcal{B}}:V\longrightarrow K^n$$

dove, dato un vettore $v \in V$ e applicandoci questa funzione ho il vettore K^n che contiene tutte le coordinate di v rispetto alla base \mathcal{B} (Definizione di Base > ^820fd0).

Infatti questa definizione è ben posta in quanto \mathcal{B} è base di V, pertanto ogni vettore v è espressione *unica* dello span della *base*. Quindi

$$F_{\mathcal{B}}(v) = igl(rac{\lambda_1}{\lambda_n} igr), v = \lambda_1 v_1 + \ldots + \lambda_n v_n$$

#Proposizione

Proposizione 2.1. (invertibilità della funzione coordinante)

La funzione $F_{\mathcal{B}}$ è *iniettiva* in quanto abbiamo che ogni vettore è *espressione* unica dello span della base; si può verificare che è anche suriettiva. Quindi questa applicazione lineare è biiettiva, quindi invertibile (Funzioni > ^7b369f).

Allora si dice che $F_{\mathcal{B}}$ è un isomorfismo di spazi vettoriali.

3. Applicazioni lineari inverse di isomorfismi

#Esercizio

Esercizio 3.1. (inverse degli isomorfismi come spazi vettoriali)

Provare che se $f:V\longrightarrow V'$ è biiettiva, allora $f^{-1}:V'\longrightarrow V$ è anch'essa un'applicazione lineare. Quindi dimostrare che se una applicazione lineare

è isomorfa, allora considerando la sua inversa si conserveranno le stesse proprietà.

#Dimostrazione

DIMOSTRAZIONE dell'esercizio 3.1.

1. Dimostro la additività di f^{-1} : Considero innanzitutto la composizione $f\circ f^{-1}$, che per definizione deve valere

$$(f\circ f^{-1})(V')=V'$$

Allora calcolo $f \circ f^{-1}$ per $v_1' + v_2'$ in due modi diversi: nella prima considerandoli "assieme", nell'altra "distinguendo" le immagini.

$$\begin{cases} 1. \ f(\boxed{f^{-1}(v_1' + v_2')}) = v_1' + v_2' \\ 2. \ f(f^{-1}(v_1')) + f(f^{-1}(v_2')) = v_1' + v_2' \stackrel{\text{AL1 di } f}{\Longrightarrow} f(\boxed{f^{-1}(v_1') + f^{-1}(v_2')}) = \\ \implies f^{-1}(v_1' + v_2') = f^{-1}(v_1') + f^{-1}(v_2') \end{cases}$$

2. Dimostro l'omogeneità di f^{-1} : I procedimenti sono analoghi.

$$\begin{cases} f(f^{-1}(\lambda v')) = \lambda v' \\ \lambda \cdot f(f^{-1}(v')) = f(\lambda \cdot f^{-1}(v')) = \lambda v' \\ \Longrightarrow f^{-1}(\lambda v') = \lambda f^{-1}(v') \blacksquare \end{cases}$$

Da chiedere al prof. Gallet (o al tutor Varutti) se il ragionamento è effettivamente giusto

B. NUCLEO E IMMAGINE

- B1. Definizione di Nucleo e Immagine
- B2. Proposizioni su ker, im
- B3. Teorema di struttura per le applicazioni lineari
- B4. Conseguenze del teorema di strutture per le applicazioni

lineari

C. DIMENSIONE

- C1. Definizione di Dimensione per Applicazione Lineare
- C2. Teorema di Dimensione per le Applicazioni Lineari
- C3. Conseguenze del teorema di dimensione delle Applicazioni Lineari

D. PARTE DA PIANIFICARE

Parte da svolgere.