Unit-Circle Trigonometry Cheat Sheet

Definitions

$$\sin(\theta) = y$$

$$\cos(\theta) = x$$

$$cos(\theta) = x$$
 $tan(\theta) = \frac{y}{x} = \frac{sin(\theta)}{cos(\theta)} = slope$

Pythagorean Identities

$$\sin^2(\theta) + \cos^2(\theta) = 1$$

$$|\sin(\theta)| = \sqrt{1 - \cos^2(\theta)}$$

$$|\sin(\theta)| = \sqrt{1 - \cos^2(\theta)}$$
 $|\cos(\theta)| = \sqrt{1 - \sin^2(\theta)}$

$$\tan^2(\theta) + 1 = \frac{1}{\cos^2(\theta)}$$

$$\tan^{2}(\theta) + 1 = \frac{1}{\cos^{2}(\theta)} \qquad |\tan(\theta)| = \sqrt{\frac{1 - \cos^{2}(\theta)}{\cos^{2}(\theta)}} \qquad |\cos(\theta)| = \sqrt{\frac{1}{\tan^{2}(\theta) + 1}}$$

$$|\cos(\theta)| = \sqrt{\frac{1}{\tan^2(\theta) + 1}}$$

$$\tan^{2}(\theta) + 1 = \frac{1}{1 - \sin^{2}(\theta)}$$

$$|\tan(\theta)| = \sqrt{\frac{\sin^2(\theta)}{1 - \sin^2(\theta)}}$$

$$\tan^2(\theta) + 1 = \frac{1}{1 - \sin^2(\theta)} \qquad |\tan(\theta)| = \sqrt{\frac{\sin^2(\theta)}{1 - \sin^2(\theta)}} \qquad |\sin(\theta)| = \sqrt{\frac{\tan^2(\theta)}{\tan^2(\theta) + 1}}$$

Polar Coordinates

$$x = r \cdot \cos(\theta)$$
$$r = \sqrt{x^2 + y^2}$$

$$y = r \cdot \sin(\theta)$$

$$\theta = \arctan(y, x)$$

Special angles

- Draw an isosceles right triangle with a hypotenuse of length 1 and leg length of x. Solve $x^2 + x^2 = 1^2$
- to prove length ratios of $\frac{\sqrt{2}}{2}:\frac{\sqrt{2}}{2}:1$ for the $45^{\circ}-45^{\circ}-90^{\circ}$ triangle.

 Draw an equilateral triangle, and cut it in half to produce a right triangle with a hypotenuse of length 1, a leg of length 1/2, and another leg of length x. Solve $x^2+\left(\frac{1}{2}\right)^2=1^2$ to prove length ratios of $\frac{1}{2}: \frac{\sqrt{3}}{2}: 1$ for the $30^{\circ} - 60^{\circ} - 90^{\circ}$ triangle.. See the right-triangle cheat sheet for diagrams.
- Use symmetry of the unit circle to determine all coordinates shown below.

So, for example:

$$\sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2} \qquad \qquad \cos\left(\frac{2\pi}{3}\right) = \frac{-1}{2} \qquad \qquad \tan\left(\frac{2\pi}{3}\right) = \frac{\left(\frac{\sqrt{3}}{2}\right)}{\left(\frac{-1}{2}\right)} = -\sqrt{3}$$