Groupe IPESUP Année 2022-2023

TD 2 : Arithmétique

Divisibilité, division euclidienne:

Exercice 1. (*)

Montrer que $\forall n \in \mathbb{N}$:

n(n+1)(n+2)(n+3) est divisible par 24, n(n+1)(n+2)(n+3)(n+4) est divisible par 120.

Exercice 2. (*)

Montrer que si n est un entier naturel somme de deux carrés d'entiers alors le reste de la division euclidienne de n par 4 n'est jamais égal à 3.

Exercice 3. (*)

Montrer que le reste de la division euclidienne de 2^{65362} par 7 est 2.

Exercice 4. (*)

Donner le reste de la division de 100^{1000} par 13.

Exercice 5. (**)

- 1. Montrer que le reste de la division euclidienne par 8 du carré de tout nombre impair est 1.
- 2. Montrer de même que tout nombre pair vérifie $x^2 = 0 \pmod{8}$ ou $x^2 = 4 \pmod{8}$.
- 3. Soient a, b, c trois entiers impairs. Déterminer le reste modulo 8 de $a^2 + b^2 + c^2$ et celui de 2(ab + bc + ca).
- 4. En déduire que les deux nombres précédents ne sont pas des carrés. Montrer ensuite que ab + bc + ca n'en est pas un non plus.

Exercice 6. (***)

Soient $x, y, z \in \mathbb{Z}$ trois entiers solutions de l'équation de Fermat $x^3 + y^3 = z^3$. Montrer que l'un des entiers x, y ou z est multiple de 3.

Algorithme d'Euclide, pgcd, ppcm:

Exercice 7. (*)

- 1. Trouver $u, v \in \mathbb{Z}$ tels que $126u + 230v = 126 ^ 230$.
- 2. Calculer le pgcd des nombres suivants :
 - a) 390,720,450.
- b) 180,606,750.

Exercice 8. (**)

Soit $n \in \mathbb{Z}$.

- 1. Donner $(3n+1) \wedge (2n+5)$.
- 2. Montrer que les entiers $n^3 + 3n^2 5$ et n + 2 sont premiers entre eux.

Exercice 9. (**)

Déterminer les couples d'entiers naturels de pgcd 18 et de somme 360. De même avec pgcd 18 et produit 6480.

Exercice 10. (**)

Soient $a = 1 \ 111 \ 111 \ 111 \ \text{et } b = 123 \ 456 \ 789$. Trouver $u, v \in \mathbb{Z}$ tels que $au + bv = \operatorname{pgcd}(a, b)$.

Exercice 11. (*)

Démontrer que le nombre $7^n + 1$ est divisible par 8 si n est impair; dans le cas n pair, donner le reste de sa division par 8.

Groupe IPESUP Année 2022-2023

Nombres premiers, nombres premiers entre eux:

Exercice 12. (*)

Montrer que tout entier composé $n \in \mathbb{N}^*$ possède un diviseur premier inférieur ou égal à \sqrt{n} .

Exercice 13. (*)

Combien 15! admet-il de diviseurs?

Exercice 14. (**)

Démontrer que $\sqrt[5]{\frac{4}{3}}$ est un irrationnel.

Exercice 15. (***)

Soit $(x,y) \in \mathbb{N}^2$, justifier que l'équation

$$x^2 = y^2 + (x \wedge y) + 2$$

admet (2,1) et (2,0) pour seules solutions.

Exercice 16. (**)

Soit X l'ensemble des nombres premiers de la forme 4k + 3 avec $k \in \mathbb{N}$.

- 1. Montrer que X est non vide.
- 2. Montrer que le produit de nombres de la forme 4k + 1 est encore de cette forme.
- 3. On suppose que X est fini et on l'écrit alors $X = \{p_1, \ldots, p_n\}$. Soit $a = 4p_1p_2 \ldots p_n 1$. Montrer par l'absurde que a admet un diviseur premier de la forme 4k + 3.
- 4. Montrer que ceci est impossible et donc que X est infini.

Exercice 17. (***)

Montrer qu'il existe une infinité de nombres premiers de la forme 6k + 5.