Resume en Mathematiques de $\mathbf{T}^{\mathrm{ale}}$

Paul PLANCHON

VERSION DU 23 SEPTEMBRE 2016

Table des matières

Ι	Les	suites	, rappels de premiere
	A	Gener	alitees sur les suites
		A.1	Definitions
		A.2	Suites bornees
		A.3	Monotomie d'une suite
		A.4	Representation graphique d'une suite explicite
		A.5	Theoremes divers
	В	Suites	arithmetiques et geometriques
		B.1	Theoremes Somme
		B.2	Formules importantes a savoir
II	Cor	ivergei	nce et divergence des suites
	A	Conve	ergence d'une suite
		A.1	Partie entiere d'une suite
		A.2	Beaucoup de theoremes
		A.3	Theoreme fondamental
		A.4	Les limites fondamentales

Chapitre I

Les suites, rappels de premiere

A Generalitees sur les suites

A.1 Definitions

Propriété 1. Un raisonnement par recurrence ne s'applique que pour une proposition construite sur \mathbb{N} . Elle se passe en 2 etapes :

- **1.** L'initialisation : On verifie que la proposition est vraie pour la premiere valeur de l'entier naturel. (en general, n = 0, parfois n = 1 ou n = 2).
- **2.** L'heredite : cette etape se coupe en 2 etapes :
 - ${\bf a.}\ L'hypothese\ de\ recurence: On\ suppose\ que\ la\ proposition\ est\ vraie\ pour\ k.$
 - **b.** On demontre que la proposition est vraie pour le successeur de k, k+1.

A.2 Suites bornees

- $--\exists M \in \mathbb{R}/\forall n \in \mathbb{N}, U_n \leqslant M$
- $--\exists m \in \mathbb{R}/\forall n \in \mathbb{N}, U_n \geqslant m$
- $--\exists (m;M) \in \mathbb{R}^2/\forall n \in \mathbb{N}, m \leqslant U_n \leqslant M$

A.3 Monotomie d'une suite

Définition 1. Soit (U_n) une suite,

- 1. On dit que (U_n) est croissante ssi $\forall n \in \mathbb{N}, U_{n+1} U_n \geqslant 0$
- **2.** On dit que (U_n) est decroissante ssi $\forall n \in \mathbb{N}, U_{n+1} U_n \leq 0$

(Si les inegalites sont strictes, on dit que la suite sera, respectivement, strictement croissante et strictement decroissante).

Remarque:

Si tous les termes de la suite sont strictement positifs, alors :

- 1. $\frac{U_{n+1}}{U_n} \geqslant 1$, alors la suite est croissante
- 2. $\frac{U_{n+1}}{U_n} \leq 1$, alors la suite est decroissante

A.4 Representation graphique d'une suite explicite

Définition 2. Une suite est definie de maniere explicite si (U_n) s'exprime directement en fonction de n, cad, $U_n = f(n)$.

A.5 Theoremes divers

Propriété 2. On considere une suite (U_n) qui est definie de maniere explicite, cad $U_n = f(n)$, alors :

si f est croissante alors (U_n) aussi.

si f est decroissante alors (U_n) aussi.

si f est constante alors (U_n) aussi.

ATTENTION, LES RECIPROQUES SONT FAUSSES

Propriété 3. Toute suite croissante est minoree par son premier terme.

Toute suite decroissante est majoree par son premier terme.

B Suites arithmetiques et geometriques

$$\exists n \in \mathbb{R}/\forall n \in \mathbb{N}, U_{n+1} = U_n + r$$

B.1 Theorems Somme

Propriété 4. Soit (U_n) une suite de raison r et de premier terme U_0 .

1. $\forall n \in \mathbb{N}, U_n = U_0 + nr$

2.
$$\sum_{k=0}^{n} U_k = U_0 + U_1 + U_2 + ... + U_n = \frac{(n+1)(U_0 + U_n)}{2} = \frac{(nombre\ de\ terme)(premier\ terme\ +\ dernier\ terme)}{2}$$

Propriété 5. Soit (U_n) une suite s.a. de raison r et de premier terme U_a alors,

1. $U_n = U_0 + (n-a)r$

2.
$$U_a + U_{a+1} + ... + U_n = \frac{(n-a+1)(U_a+U_n)}{2}$$

 $\exists n \in \mathbb{R}/\forall n \in \mathbb{N}, U_{n+1} = q * U_n$

Propriété 6. Soit U_n une suite geo. de raison q $(q \neq 1 \text{ et } q \neq 0)$ et de premier terme U_0 .

1. $U_n = U_0 * q^n$

2.
$$\sum_{k=0}^{n} U_n = U_0 + U_1 + \dots + U_n = U_0 * \frac{1-q^{n+1}}{1-q}$$

 ${\it Cas\ particuliers}$:

1. pour
$$q = 1$$
, $U_n = U_0$, donc, $U_0 + U_1 + U_2 + ... + U_n = (n+1)U_0$.

2. pour
$$q = 0$$
, $U_n = 0$ avec $n \ge 1$, $U_0 + U_1 + ...U_n = U_0$

B.2 Formules importantes a savoir

Propriété 7. Soit
$$q \in \mathbb{R} \setminus \{1\}$$
 alors $1+q+q^2+q^3+\ldots+q^n=\frac{1-q^{n+1}}{1-q}$

Chapitre II

Convergence et divergence des suites

A Convergence d'une suite

A.1 Partie entiere d'une suite

Propriété 8. Soit $x \in \mathbb{R}$. On appelle partie entiere de x, notee, E(x), l'unique entier verifiant :

$$E(x) \leqslant x < 1 + E(x)$$

Propriété 9. $(\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N}) / (\forall n \in \mathbb{N}), n \geqslant n_0) |U_n - l| < \varepsilon$

A.2 Beaucoup de theoremes

Propriété 10. Si une suite est convergente, alors sa limite est unique.

Propriété 11. Si une suite est convergente, alors elle est bornee.

Propriété 12. On considere une suite u_n qui converge vers l alors,

- **1.** si (u_n) est croissante, on aura $\forall n \in \mathbb{N}, u_n \leq l$
- **2.** si (u_n) est decroissante, on aura $\forall n \in \mathbb{N}, u_n \geqslant l$

Propriété 13. Toute suite constante est convergente.

Propriété 14. On considere deux suites (u_n) et (v_n) . On suppose qu'il existe un entier $n_0 \in \mathbb{N}/\forall n \in \mathbb{N}, n \geqslant n_0$, on ait, $u_n \leqslant v_n$ On suppose que (u_n) converge vers l et (v_n) vers l'. Alors, $l \leqslant l'$.

Propriété 15. Soit (u_n) une suite arithmetique,

- **1.** On suppose que u_n est majoree par M et qu'elle converge vers l. Alors, $l \leq M$.
- **2.** On suppose que u_n est minoree par m et qu'elle converge vers l. Alors, $l \ge M$.

A.3 Theoreme fondamental

Propriété 16. 1. Toute suite croissante et majoree est alors convergente.

2. Toute suite decroissante et minoree est alors convergente.

Propriété 17. On considere 3 suites u_n, v_n, w_n . On suppose qu'il existe un entier $n_0 \in \mathbb{N}/\forall n \in \mathbb{N}, n \geq n_0$.

On $a: u_n \leqslant v_n \leqslant w_n$.

On suppose que les suites extremes u_n et w_n sont convergente vers l, alors v_n converge aussi vers l.

A.4 Les limites fondamentales

Propriété 18. Limites a connaître :

- 1. $\lim_{n\to\infty}(\frac{k}{n})=0$ avec k une constante.
- **2.** $\lim_{n\to\infty} \left(\frac{k}{n^2}\right) = 0$ avec k une constante.
- **3.** $\lim_{n\to\infty} \left(\frac{k}{n^p}\right) = 0$ avec k une constante et $p \in \mathbb{N}^*$.
- **4.** $\lim_{n\to\infty} \left(\frac{k}{\sqrt{n}}\right) = 0$ avec k une constante.

Propriété 19. Soit (u_n) une suite, si $\lim_{n\to\infty} u_n = l$ alors $\lim_{n\to\infty} u_{n+1} = l$ $\lim_{n\to\infty} u_{n+p} = l$ (avec $p \in \mathbb{N}^*$)