

UNIVERSIDAD NACIONAL DE COLOMBIA

Sede Bogotá

Departamento de Matemáticas

2029662 ANÁLISIS ARMÓNICO

LISTA DE EJERCICIOS 2

Prof.: Ricardo Pastrán

14 de abril de 2025

1. Convolución

(i.) Pruebe que si $f \in L^1(\mathbb{R}^n)$ y $g \in L^p(\mathbb{R}^n)$, con $1 \leq p \leq 2$, entonces

$$(f * g)^{\wedge}(\xi) = \widehat{f}(\xi)\widehat{g}(\xi)$$

en $L^{p'}(\mathbb{R}^n)$, donde $\frac{1}{p} + \frac{1}{p'} = 1$.

(ii.) Si $f \in L^p(\mathbb{R}^n)$ y $g \in L^{p'}(\mathbb{R}^n)$, con $\frac{1}{p} + \frac{1}{p'} = 1$, donde $1 , entonces <math>f * g \in C_{\infty}(\mathbb{R}^n)$. ¿Qué se puede afirmar cuando p = 1 o $p = \infty$?

- **2.** Si $f \in L^1(\mathbb{R}^n)$, f es continua en 0 y $\widehat{f} \geq 0$ entonces $\widehat{f} \in L^1(\mathbb{R}^n)$.
- 3. Producto de convolución S' * S
 - (i.) Sean $f, \phi y \psi \in \mathcal{S}(\mathbb{R}^n)$, pruebe que

$$\int_{\mathbb{R}^n} f * \phi(x) \ \psi(x) \ dx = \int_{\mathbb{R}^n} f(x) \ \widetilde{\phi} * \psi(x) \ dx,$$

donde $\widetilde{\phi}(x) = \phi(-x)$. Esto motiva la siguiente definición: Sean $T \in \mathcal{S}'(\mathbb{R}^n)$ y $\phi \in \mathcal{S}(\mathbb{R}^n)$,

$$T * \phi : \mathcal{S}(\mathbb{R}^n) \longrightarrow \mathbb{C}, \quad \psi \longmapsto T * \phi(\psi) := T(\widetilde{\phi} * \psi).$$

Pruebe que $T * \phi \in \mathcal{S}'(\mathbb{R}^n)$ y que

$$(T * \phi)^{\wedge} = \widehat{T}\widehat{\phi}$$
 en $\mathcal{S}'(\mathbb{R}^n)$.

(ii.) Por otro lado, si $T \in \mathcal{S}'(\mathbb{R}^n)$ y $\phi \in \mathcal{S}(\mathbb{R}^n)$, se define:

$$T *_1 \phi : \mathbb{R}^n \longrightarrow \mathbb{C}, \quad x \longmapsto T *_1 \phi(x) := T(\tau_x \widetilde{\phi}),$$

donde $\tau_x \phi(y) = \phi(y - x)$. Pruebe entonces que

$$T *_1 \phi \in C^{\infty}(\mathbb{R}^n) \cap \mathcal{S}'(\mathbb{R}^n)$$
 y $T *_1 \phi = T * \phi$.

4. Topología sobre $\mathcal{S}(\mathbb{R}^n)$ Definimos la aplicación

$$d: \mathcal{S}(\mathbb{R}^n) \times \mathcal{S}(\mathbb{R}^n) \longrightarrow \mathbb{R}_+$$

$$(\phi, \psi) \longmapsto \sum_{\alpha, \beta \in \mathbb{N}^n} 2^{-(|\alpha| + |\beta|)} \frac{\|\phi - \psi\|_{\alpha, \beta}}{1 + \|\phi - \psi\|_{\alpha, \beta}}$$

- (i.) Pruebe que $(\mathcal{S}(\mathbb{R}^n);d)$ es un espacio métrico completo.
- (ii.) Pruebe que para cualquier sucesión $(\phi_k)_k \subset \mathcal{S}(\mathbb{R}^n)$ y $\phi \in \mathcal{S}(\mathbb{R}^n)$, vale

$$\phi_k \xrightarrow{d} \phi$$
 si y solo si $\|\phi_k - \phi\|_{\alpha,\beta} \to 0$, $\forall \alpha, \beta \in \mathbb{N}^n$.

(iii.) Sea $f \in C^{\infty}(\mathbb{R}^n)$. Pruebe que

$$f \in \mathcal{S}(\mathbb{R}^n)$$
 si y solo si $x^{\alpha} \partial^{\beta} f \in L^2(\mathbb{R}^n)$, $\forall \alpha, \beta \in \mathbb{N}^n$.

(iv.) Muestre que

$$\mathcal{F}: \mathcal{S}(\mathbb{R}^n) \longrightarrow \mathcal{S}(\mathbb{R}^n)$$
$$\phi \longmapsto \widehat{\phi}$$

es un isomorfismo topológico.

5. Valor principal

Definimos

$$\text{v.p.}\Big(\frac{1}{x}\Big): \mathcal{S}(\mathbb{R}^n) \longrightarrow \mathbb{C}, \qquad \phi \mapsto \lim_{\epsilon \to 0} \int_{|x| \ge \epsilon} \frac{\phi(x)}{x} \, dx.$$

Pruebe que v.p. $\left(\frac{1}{r}\right) \in \mathcal{S}'(\mathbb{R}^n)$ y calcule $\left(\text{v.p.}\left(\frac{1}{r}\right)\right)^{\wedge}$.