MATH 8510, Abstract Algebra I Fall 2016

Exercises 6-1

Due date Thu 29 Sep 4:00PM

Exercise 1 (3.5.10). Consider the alternating group A_4 . Prove that there is a chain of normal subgroups $\{(1)\}N_0 \leq N_1 \leq \cdots \leq N_k = A_4$ such that each quotient N_i/N_{i-1} is abelian. (This says that A_4 is solvable.)

Hint: Set $N = \{(1), (12)(34), (13)(24), (14)(23)\} \subseteq A_4$, and prove the following:

- (a) Prove that $N \leq A_4$.
 - *Proof.* (i) It is obvious $N \subseteq A_4$
 - (ii) N is not empty since $e_{A_4} = (1) \in N$.
 - (iii) Since $N = \{(1), (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\},\$
 - $((1\ 2)(3\ 4))((1\ 3)(2\ 4)) = (1\ 4)(2\ 3) \in N$, and
 - $((1\ 2)(3\ 4))((1\ 4)(2\ 3)) = (1\ 3)(2\ 4) \in N$, and
 - $((1\ 3)(2\ 4))((1\ 4)(2\ 3)) = (1\ 2)(3\ 4) \in N.$
 - Similarly,
 - $((1\ 3)(2\ 4))((1\ 2)(3\ 4)) = (1\ 4)(2\ 3) \in N$, and
 - $((1\ 4)(2\ 3))((1\ 2)(3\ 4)) = (1\ 3)(2\ 4) \in N$, and
 - $((1\ 4)(2\ 3))((1\ 3)(2\ 4)) = (1\ 2)(3\ 4) \in N.$
 - So N is abelian.
 - (iv) $((1\ 2)(3\ 4))((1\ 2)(3\ 4)) = (1) \in N$.
 - $((1\ 3)(2\ 4))((1\ 3)(2\ 4)) = (1) \in N.$
 - $((1\ 4)(2\ 3))((1\ 4)(2\ 3))=(1)\in N.$

So the inverses of $(1\ 2)(3\ 4)$, $(1\ 3)(2\ 4)$ and $(1\ 4)(2\ 3)$ are themselves, respectively, which are in N.

Thus, N is a subgroup of A_4

(b) Prove that $N \setminus \{(1)\} = \{\tau \in A_4 \mid |\tau| = 2\}.$

Proof. Let $D = \{(a \ b \ c), a, b, c \in \{1, 2, 3, 4\}, a \neq b \neq c\}.$

Then $D \subseteq A_4$ since $(a \ b \ c) = (a \ c)(a \ b)$.

We have $(a \ b \ c)(a \ b \ c) = (a \ c \ b)$ and $(a \ b \ c)(a \ b \ c) = (1)$, so $|(a \ b \ c)| = 3$.

Beside, we have $|D| = \frac{4!}{3} = 8$. Since $|N| + D = 12 = |A_4|$ and $N \cap D = \emptyset$,

 $A_4 = N \cup D$.

So we know all the elements with order 2 are in A_4 .

Moreover, all elements in A_4 has order 2 except element (1). Thus,

$$N \setminus \{(1)\} = \{ \tau \in A_4 \mid |\tau| = 2 \}.$$

(c) Prove that for all $\sigma \in A_4$, for all $\tau \in N \setminus \{(1)\}$, the element $\sigma \tau \sigma^{-1}$ has order 2, so it is in N.

Proof. For all $\tau \in N \setminus \{(1)\}$, we have $\tau \tau = (1)$ since the order of the elment of $N \setminus \{(1)\}$ is 2.

For all $\sigma \in A_4$, $\tau \in N \setminus \{(1)\}$,

$$(\sigma\tau\sigma^{-1})(\sigma\tau\sigma^{-1}) = \sigma\tau\tau\sigma^{-1}$$
$$= \sigma(1)\sigma^{-1}$$
$$= (1).$$

So the element $\sigma\tau\sigma^{-1}$ has order 2, and then $\sigma\tau\sigma^{-1} \in N$.

Thus, $N \subseteq A_4$.

Since $|A_4/N| = \frac{|A_4|}{N} = 3$ by Lagrange Theorem, A_4/N is simple and cyclic. Then A_4/N is abelian.

As a result, we have a trivial chain $N \subseteq A_4$.

Since |N| = 4, by Jordan-Hölder theorem, there is a chain of subgroups

$$\{(1)\} = N_0 N_1 ... N_k = N.$$

N is abelian by part (i), so $N_0, N_1, ..., N_{k-1}$ are also abelian since they are subgroups of N.

Thus, $N_1/N_0, N_2/N_1.., N/N_{n-1}$ are abelian.

Combine the chain $\{(1)\} = N_0 \subseteq N_1 \dots \subseteq N_k = N$ with the chain $A_4 \subseteq N$, we get a new chain

$$N_0 \subseteq N_1 \dots \subseteq N \subseteq A_4$$
,

where $N_1/N_0, N_2/N_1..., N/N_{k-1}, A_4/N$ are abelian.

Exercise 2 (4.1.9). Assume that G acts transitively on a finite set A, and let $H \subseteq G$. Note that H also acts on A. Let $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_r$ be the distinct orbits of H on A

- (a) Prove that G permutes the sets $\mathcal{O}_1, \mathcal{O}_2, \dots, \mathcal{O}_r$ in the sense that for each $g \in G$ and each $i \in [r] = \{1, \ldots, r\}$, there is a j such that $g\mathcal{O}_i = \mathcal{O}_j$ where $g\mathcal{O} = \mathcal{O}_j$ $\{ga \in G \mid a \in \mathcal{O}\}$. Prove that G acts transitively on $\{\mathcal{O}_1, \mathcal{O}_2, \dots, \mathcal{O}_r\}$. Deduce that all orbits of H on A have the same cardinality.
- (b) Prove that if $a \in \mathcal{O}_1$, then $|\mathcal{O}_1| = [H: H \cap G_a]$, and prove that $r = [G: HG_a]$.