EXERCISE 1 (A)

Given the following loop taken from a high level program:

```
do {
          BASEC[i] = BASEA[i] + BASEB[i] + INC1 + INC2;
          i++;
        }
while (i != N)
```

The program has been compiled in MIPS assembly code assuming that registers \$4 and \$7 have been initialized with values 0 and 4N respectively. The symbols BASEA, BASEB and BASEC are 16-bit constant. The processor clock cycle is 2 ns.

```
L1: lw $2, BASEA ($4)
addi $2, $2, INC1
lw $3, BASEB ($4)
addi $3, $3, INC2
add $5, $2, $3
sw $5, BASEC ($4)
addi $4, $4, 4
bne $4, $7, L1
```

Let us consider a single iteration of the loop executed by 5-stage pipelined MIPS processor WITHOUT any optimization in the pipeline.

• Draw the pipeline scheme by marking in RED the RAW (Read After Write) data hazards and in BLUE the control hazards:

Instruction	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	Type of Hazards
L1: lw\$2,BASEA(\$4)	IF	ID	EX	M	WB								
addi \$2,\$2,INC1		IF	Ð	ΣX	M	WB							RAW \$2
lw \$3,BASEB(\$4)			IF	ID	EX	M	WB						
addi \$3,\$3,INC2				IF •	E C	ΕZ	M	WB					RAW \$3
add \$5,\$2,\$3					IF		EΧ	M	WB				RAW \$3 (RAW \$2)
sw \$5,BASEC(\$4)						IF		EΧ	M	WB			RAW \$5
addi \$4, \$4, 4							IF	ID	EX	M	WR		
bne \$4,\$7,L1								IF		EX	M	WB	RAW \$4
									Œ	5			CNTR

• Insert in the following pipeline scheme the stalls needed to solve the previous data and control hazards:

Instruction	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
L1:1w\$2,BASEA(\$4)	IF	IF	IF	IF	ID	EX	M	WB																						
	S	S	S																											
addi \$2,\$2,INC1					IF	ID	ID	ID	ID	EX	M	WB																		
						S	S	S																						
lw \$3,BASEB(\$4)						IF	IF	IF	IF	ID	EX	M	WB																	
						S	S	S																						
addi \$3,\$3,INC2										IF	ID	ID	ID	ID	EX	M	WB													
											S	S	S																	
add \$5,\$2,\$3											IF	IF	IF	IF	ID	ID	ID	ID	EX	M	WB									
											S	S	S		S	S	S													
sw \$5,BASEC(\$4)															IF	IF	IF	IF	ID	ID	ID	ID	EX	M	WB					
															S	S	S		S	S	S									
addi \$4, \$4, 4																			IF	IF	IF	IF	ID	EX	M	WB				
																			S	S	S									
bne \$4,\$7,L1																							IF	ID	ID	ID	ID	EX	M	WB
																								S	S	S				

• Indicate synthetically in the first column the NUMBER OF STALLS to be inserted before (or during) each instruction to solve data and control hazards:

Num. of Stalls	Instruction	Type of Hazards
3	L1:1w\$2,BASEA(\$4)	CNTR
3	addi \$2,\$2,INC1	RAW \$2
	lw \$3,BASEB(\$4)	
3	addi \$3,\$3,INC2	RAW \$3
3	add \$5,\$2,\$3	RAW \$3
3	sw \$5,BASEC(\$4)	RAW \$5
	addi \$4, \$4, 4	
3	bne \$4,\$7,L1	RAW \$4

- Express the formulas, then calculate the following metrics:
 - Instruction Count per iteration (IC) = 8
 - Number of stalls per iteration = 18
 - CPI per iteration: CPI = Number of clock cycles / IC = (IC+ # stalls + 4) /IC = 30 / 8 = 3,75
 - Throughput (expressed in MIPS) per iteration: MIPS = f_{CLOCK} / (CPI * 10^6) = $(500 * 10^6)$ / $(3,75 * 10^6)$ = 133,3
 - Asymptotic CPI (N cycles): CPI $_{AS}$ = (IC + # stalls) / IC = (8 + 18) / 8 = 3,25
 - Asymptotic Throughput (expressed in MIPS) (N cycles): MIPS_{AS} = f_{CLOCK} / (CPI_{AS} * 10⁶) = (500 * 10⁶) / (3,25 * 10⁶) = 153,8

EXERCISE 1 (B)

Let us assume the following *optimizations* have been introduced in the pipeline:

- In the Register File, it is possible to read and write at the same address at the same clock cycle;
- Forwarding paths have been introduced;
- Program Counter calculation for branches has been anticipated in the ID stage;
 - Draw the pipeline scheme by marking in RED the RAW (Read After Write) data hazards and in BLUE the control hazards still remaining in the pipeline:

	Instruction	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	Type of Hazards
L1:	lw\$2,BASEA(\$4)	TF	ID	EX	M	WB										CNTR
	addi \$2,\$2,INC1		IF	ID	EX	M	WB									RAW \$2
	lw \$3,BASEB(\$4)			IF	ID	EX	W	WB								
	addi \$3,\$3,INC2				IF	ID (EX	M	WB							RAW \$3
	add \$5,\$2,\$3					IF	ID	EX	M	WB						
	sw \$5,BASEC(\$4)						IF	ID	EX	M	WB					
	addi \$4, \$4, 4							IF	ID (EX	M	WB				
	bne \$4,\$7,L1								IF		ЪX	M	WB			RAW \$4

• Insert in the following pipeline scheme the stalls needed to solve the hazards by marking in GREEN the forwarding paths used:

	Instruction	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	Forwarding path
L1:	lw\$2,BASEA(\$4)	IF-S	IF	ID	EX	M	WB											
	addi \$2,\$2,INC1			IF	ID	EX-S	EX	M	WB									MEM-EX \$2
	lw \$3,BASEB(\$4)				IF	ID-S	ID	EX	M	WB								
	addi \$3,\$3,INC2						IF	ID	EX-S	EX .	M	WB						MEM-EX \$3
	add \$5,\$2,\$3							IF	ID-S	ID	EX	M	WB					EX-EX \$3
	sw \$5,BASEC(\$4)									IF	ID	EX	M	WB				EX-EX \$5
	addi \$4, \$4, 4										IF	ID	EX	M	WB			
	bne \$4,\$7, L1											IF	ID-S	ID	EX	M	WB	EX-ID \$4

• Indicate synthetically in the first column the number of stalls to be inserted before (or during) each instruction to solve the hazards:

Num. of Stalls	Instructions	Type of Hazard
1	L1:1w\$2,BASEA(\$4)	CNTR
1	addi \$2,\$2,INC1	RAW \$2
	lw \$3,BASEB(\$4)	
1	addi \$3,\$3,INC2	RAW \$3
	add \$5,\$2,\$3	
	sw \$5,BASEC(\$4)	
	addi \$4, \$4, 4	
1	bne \$4,\$7,L1	RAW \$4

- Express the formulas, then calculate the following metrics:
 - Instruction Count per iteration (IC) = 8
 - Number of stalls per iteration = 4
 - CPI per iteration: CPI = # cycles / IC = (IC+ # stalls + 4) /IC = 16 / 8 = 2
 - Throughput (expressed in MIPS) per iteration: MIPS = f_{CLOCK} / (CPI * 10⁶) = (500 * 10⁶) / (2 * 10⁶) = 250
 - Asymptotic CPI (N cycles): CPI $_{AS}$ = (IC+ # stalls) / IC = (8 + 4) / 8 = 1,5
 - Asymptotic Throughput (expressed in MIPS) (N cycles): MIPS_{AS} = f_{CLOCK} / (CPI_{AS} * 10⁶) = (500 * 10⁶) / (1,5 * 10⁶) = 333,33

EXERCISE 1 (C)

Besides the previous optimizations, we assume to introduce Static branch prediction for backward branches: branch always taken

• Draw the pipeline scheme by marking in RED the RAW (Read After Write) data hazards and in BLUE the control hazards still remaining in the program:

	Instruction	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	Type of Hazards
L1:	lw\$2,BASEA(\$4)	IF	ID	EX	A	WB										
	addi \$2,\$2,INC1		IF	ID	EX	M	WB									RAW \$2
	lw \$3,BASEB(\$4)			IF	ID	EX	W	WB								
	addi \$3,\$3,INC2				IF	ID (EX	M	WB							RAW \$3
	add \$5,\$2,\$3					IF	ID	EX	M	WB						
	sw \$5,BASEC(\$4)						IF	ID	EX	M	WB					
	addi \$4, \$4, 4							IF	ID (EX	M	WB				
	bne \$4,\$7,L1								IF		EΧ	M	WB			RAW \$4

• Insert in the following pipeline scheme the stalls needed to solve the hazards by marking in GREEN the forwarding paths used:

Instruction	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	Forwarding path
L1:1w\$2,BASEA(\$4)	IF	ID	EX	M	WB											
addi \$2,\$2,INC1		IF	ID	EX-S	EX	M	WB									MEM-EX \$2
lw \$3,BASEB(\$4)			IF	ID-S	ID	EX	M	WB								
addi \$3,\$3,INC2					IF	ID	EX-S	EX	M	WB						MEM-EX \$3
add \$5,\$2,\$3						IF	ID-S	ID	EX	M	WB					EX-EX \$3
sw \$5,BASEC(\$4)								IF	ID	EX	M	WB				EX-EX \$5
addi \$4, \$4, 4									IF	ID	EX	M	WB			
bne \$4,\$7, L1										IF	ID-S	iD	EX	M	WB	EX-ID \$4

• Indicate synthetically in the first column the number of stalls to be inserted before (or during) each instruction to solve the hazards:

Num. Stalli	Istruzione	Type of Hazards
	L1:1w\$2,BASEA(\$4)	
1	addi \$2,\$2,INC1	RAW \$2
	lw \$3,BASEB(\$4)	
1	addi \$3,\$3,INC2	RAW \$3
	add \$5,\$2,\$3	
	sw \$5,BASEC(\$4)	
	addi \$4, \$4, 4	
1	bne \$4,\$7,L1	RAW \$4

- Express the formulas, then calculate the following metrics:
 - Instruction Count per iteration (IC) = 8
 - Number of stalls per iteration = 3
 - Asymptotic CPI (N cycles): CPI $_{AS}$ = (IC + # stalls) / IC = (8 + 3) / 8 = 1,375
 - Asymptotic Throughput (expressed in MIPS) (N cycles): MIPS_{AS} = f_{CLOCK} / (CPI_{AS} * 10⁶) = (500 * 10⁶) / (1,375 * 10⁶) = 363,6

EXERCISE 1 (D)

Besides the previous optimizations, we assume the **scheduling** of the assembly program has been optimized as follows:

```
L1: lw $2, BASEA ($4)
lw $3, BASEB ($4)
addi $4, $4, 4
addi $2, $2, INC1
addi $3, $3, INC2
add $5, $2, $3
bne $4, $7, L1
sw $5, (BASEC-4) ($4) # branch delay slot
```

• Draw the pipeline scheme by marking in RED the RAW (Read After Write) data hazards and in BLUE the control hazards still remaining in the program (if any) and adding by GREEN ARROWs the forwarding paths used to solved the hazards:

Istruzione	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	Forwarding Path
L1: lw \$2,BASEA(\$4)	IF	ID	EX	M	WB								
lw \$3,BASEB(\$4)		IF	ID	EX	M	WB							
addi \$4, \$4, 4			IF	ID	EX	M	WB						
addi \$2,\$2,INC1				IF	ID	EX	M 🐧	WB					
addi \$3,\$3,INC2					IF	ID	EX	M	WB				
add \$5,\$2,\$3						IF	ID	EX	M	WB			MEM-EX\$2 + EX-EX\$3
bne \$4,\$7,L1							IF	ID	ΕX	M	WB		
sw \$5,BASEC-4(\$4)								IF	ID	EX	M	WB	EX-ID \$5

- Express the formulas, then calculate the following metrics:
 - Instruction Count per iteration (IC) = 8
 - Number of stalls per iteration = 0
 - Asymptotic CPI (N cycles): CPI AS = (IC + # stalls) / IC = 1 = CPI ideal
 - Asymptotic Throughput (expressed in MIPS) (N cycles): MIPS_{AS} = MIPS ideal = f_{CLOCK} / (CPI_{ideal} * 10⁶) = (500 * 10⁶) / (1 * 10⁶) = 500

EXERCISE 1 (E)

We assume that, in the previously scheduled and optimized program, each READ access in the **MEM** phase to the data cache generates a **DATA CACHE MISS** requiring **2 stalls** to access the memory:

```
L1: lw $2, BASEA ($4)
lw $3, BASEB ($4)
addi $4, $4, 4
addi $2, $2, INC1
addi $3, $3, INC2
add $5, $2, $3
bne $4, $7, L1
sw $5, (BASEC-4) ($4) # branch delay slot
```

• Draw the pipeline scheme by inserting the stalls due to memory accesses and adding GREEN ARROWs for the forwarding paths used:

Instruction	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	Forwarding Path
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
L1:lw \$2,BASEA(\$4)	IF	ID	EX	M-S	M-S	M	WB										
lw \$3,BASEB(\$4)		IF	ID	EX-S	EX_S	EX	M-S	M-S	M	WB							
addi \$4, \$4, 4			IF	ID-D	ID_S	ID	EX-S	EX_S	EX	M	WB						
addi \$2,\$2,INC1				IF-S	IF-S	IF	ID-D	ID_S	ID	EX	M	WB					
addi \$3,\$3,INC2							IF-S	IF-S	IF	ID	EX	M	WB				
add \$5,\$2,\$3										IF	ID	EΧ	M	WB			MEM-EX\$2 + EX-EX\$3
bne \$4,\$7,L1											IF	ID	EX	M	WB		
sw \$5,BASEC-4(\$4)												IF	ID	EX	M	WB	EX-ID \$5

• Calculate the following metrics:

- Instruction Count per iteration (IC) = 8
- Number of stalls per iteration = 4 for the memory accesses (2 stalls for each data cache miss)
- Asymptotic CPI (N cycles): CPI $_{AS}$ = (IC + # stalls) / IC = (8 + 4) / 8 = 1,5
- Asymptotic Throughput (expressed in MIPS) (N cycles): MIPS_{AS} = f_{CLOCK} / (CPI_{AS} * 10⁶) = (500 * 10⁶) / (1,5 * 10⁶) = 333,33