FIRST ORDER LOGIC

Thomas Tiam-Lee, PhD

Norshuhani Zamin, PhD

Last update: October 20, 2023

Limitations of Propositional Logic

 Some real-world ideas are impractical to represent in propositional logic.

• Example:

- All fruits are good for our health.
 - Apple is good for our health
 - Banana is good for our health
 - Pear is good for our health
 - Strawberry is good for our health
 - and so on...

Need to make a proposition for all of these.

Limitations of Propositional Logic

 Some real-world ideas are impractical to represent in propositional logic.

• Example:

- If some students in a class talks, then the class is noisy.
 - If Akmal talks, then the class is noisy.
 - If Farhana talks, then the class is noisy.
 - If Yin May talks, then the class is noisy.
 - If Jimmy talks, then the class is noisy.
 - and so on...

Need to make a proposition for all of these.

Modeling: First Order Logic

- Extension of propositional logic
- Allows for predicates, variables, constants and quantifiers

• Example:

- $\forall X \text{ (Fruit(}X\text{)} \rightarrow \text{GoodForHealth(}X\text{)})$
 - X is a fruit implies than X is good for health
- $(\exists X \; \mathsf{Talks}(X) \land \mathsf{StudentOfClass}(X, Y)) \rightarrow \mathsf{Noisy}(Y)$
 - If there exists an X such that X talks and X is a student in the class Y,
 then Y is noisy

First Order Logic: Syntax

- A term can be:
 - Constant symbol (e.g., arithmetic, linguistic)
 - Variable (e.g., *X*, *Y*, *P*, *Q*)
 - Function of terms (e.g., Sum(3, X), like(P, sandwich)
- A **formula** can be:
 - Atomic formula: predicate applied to terms (e.g., Knows(X, math))
 - Connectives applied to formulas (e.g., Student(X) \rightarrow Knows(X, math))
 - Quantifiers applied to formulas (e.g, $\forall X$ Student(X) \rightarrow Knows(X, math)

First Order Logic: Semantics

- Predicate: represents a relation or property that can be attributed to one or more objects within the domain of discourse.
 - Have no inherent meaning; its semantic is explicitly defined.
 - Arguments of a predicate can be a constant or a variable.
- Example:
 - Fruit(X) means that X is a fruit.
 - Parent(X, Y) means that X is a parent of Y.
- Make sure that predicate semantics are consistent!

First Order Logic: Semantics

 Quantifiers: Used to express the extent to which a given predicate holds true.

- Universal Quantifier (∀): means the statement is true for all possible substitutions of the variable
- Existential Quantifier (∃): means the statement is true for at least one substitution of the variable

First Order Logic: Semantics

- Examples:
 - All students know math.
 - $\forall X \; \mathsf{Student}(X) \to \mathsf{Knows}(X, \mathsf{math})$
 - There exists a student who knows math.
 - $\exists X \; \mathsf{Student}(X) \; \land \; \mathsf{Knows}(X, \mathsf{math})$
- Almost all of the time, ∀ is paired with → while ∃ is paired with ∧!

Quantifier Properties

- De Morgan's Law for quantifiers:
 - 1. $\neg \exists X P(X)$ is equivalent to $\forall X \neg P(X)$
 - 2. $\neg \forall X P(X)$ is equivalent to $\exists X \neg P(X)$

Examples:

- 1. Nobody likes tax = Everybody do not like tax $~\exists X \text{ like_tax}(X) \equiv \forall X ~\text{like_tax}(X) * \text{ by law #1}$
- Not everybody play soccer = Somebody do not play soccer
 ¬∀X play(X,soccer) ≡ ∃X ¬play(X,soccer) * by law #2

Theory of Sets

Venn Diagram Examples

All S are P - We can showcase it using two possible Venn Diagrams.

Some S are P –
The most common way to represent this are:

 $\forall X \exists Y \ Knows(X,Y) \ not \ the \ same \ as \ \forall Y \ \exists X \ Knows(X,Y)$

Predicate	Meaning
Student(X)	X is a student
Course(Y)	Y is a course
Takes(X, Y)	X has already taken Y (X and Y are not necessarily students nor courses)

Every student has taken at least one course.

Predicate	Meaning
Student(X)	X is a student
Course(Y)	Y is a course
Takes(X, Y)	X has already taken Y (X and Y are not necessarily students nor courses)

- Every student has taken at least one course.
 - $\forall X \exists Y \ Student(X) \land Course(Y) \rightarrow Takes(X,Y)$

Predicate	Meaning
Student(X)	X is a student
Course(Y)	Y is a course
Takes(X, Y)	X has already taken Y (X and Y are not necessarily students nor courses)

• Bob takes all courses that Alice has taken.

Predicate	Meaning
Student(X)	X is a student
Course(Y)	Y is a course
Takes(X, Y)	X has already taken Y (X and Y are not necessarily students nor courses)

- Bob takes all courses that Alice has taken.
 - $\forall Y \text{ Course}(Y) \land \text{ Takes}(\text{Alice}, Y) \rightarrow \text{ Takes}(\text{Bob}, Y)$

Predicate	Meaning
Student(X)	X is a student
Course(Y)	Y is a course
Takes(X, Y)	X has already taken Y (X and Y are not necessarily students nor courses)

Some courses are taken by every student.

Predicate	Meaning
Student(X)	X is a student
Course(Y)	Y is a course
Takes(X, Y)	X has already taken Y (X and Y are not necessarily students nor courses)

- Some courses are taken by every student.
 - $\forall X \exists Y \; \text{Student}(X) \; \land \; \text{Course}(Y) \to \text{Takes}(Y, X)$

First Order Vs. Propositional Logic

 You can think of first order logic as just a syntactic sugar for propositional logic!

StudentAlice
StudentBob
StudentAlice → SmartAlice
StudentBob → SmartBob
(StudentAlice ∧ CreativeAlice) ∨
(StudentBob ∧ CreativeBob)

Modus Ponens Inference Rule

- Since first order logic is just a syntactic sugar for propositional logic, we should be able to apply the same inference rules.
- Modus Ponens is applicable to first order logic.
- For it to be complete, statements must be expressed in Horn clauses.

Unification

- Process of finding substitutions for variables in multiple predicates to make them identical.
- Unify p(a,X) and p(a,b)
 - Answer: {*X*/b}
- Unify p(a,X) and p(Y,b)
 - Answer: {*Y*/a, *X*/b}
- Unify p(a,X) and p(Y,f(Y))
 - Answer: {Y/a, X/f(a)}

- Unify p(a,X) and p(X,b)
 - Answer: Unification failure.
 - Justification: If $\{X/a\}$ then p(a,a) <> p(a,b)
- Unify p(a,b) and p(X,X)
 - Answer: Unification failure.
 - Justification: If $\{X/a\}$ then p(a,b) <> p(a,a)

KB

```
Student(Alice)
Parent(Bob, Alice)
\forall X \text{ Student}(X) \rightarrow \text{Smart}(X)
\forall X \forall Y \text{ Smart}(X) \land \text{Parent}(Y, X) \rightarrow \text{Proud}(Y)
```

KB

Student(Alice)

Parent(Bob, Alice)

 $\forall X \; \mathsf{Student}(X) \to \mathsf{Smart}(X)$

 $\forall X \forall Y \; \mathsf{Smart}(X) \; \land \; \mathsf{Parent}(Y,X) \to \mathsf{Proud}(Y)$

Unification: {*X*/**Alice**}

Student(Alice), $\forall X$ Student(X) \rightarrow Smart(X)

Smart(Alice)

```
Student(Alice)
Parent(Bob, Alice)
\forall X \text{ Student}(X) \rightarrow \text{Smart}(X)
\forall X \forall Y \text{ Smart}(X) \land \text{Parent}(Y, X) \rightarrow \text{Proud}(Y)
Smart(Alice)
```

KB

KB

```
Student(Alice)
Parent(Bob, Alice)
\forall X \text{ Student}(X) \rightarrow \text{Smart}(X)
\forall X \forall Y \text{ Smart}(X) \land \text{Parent}(Y, X) \rightarrow \text{Proud}(Y)
Smart(Alice)
```

The knowledge base changed, so we need to scan the knowledge base again.

```
KB
```

```
Student(Alice)
Parent(Bob, Alice)
\forall X \text{ Student}(X) \rightarrow \text{Smart}(X)
\forall X \forall Y \text{ Smart}(X) \land \text{Parent}(Y, X) \rightarrow \text{Proud}(Y)
Smart(Alice)
```

Unification:
{X/Alice, Y/Bob}

Smart(Alice), Parent(Bob, Alice), $\forall X \forall Y \text{ Smart}(X) \land \text{Parent}(Y, X) \rightarrow \text{Proud}(Y)$

Proud(Bob)

```
Student(Alice)
Parent(Bob, Alice)
\forall X \text{ Student}(X) \rightarrow \text{Smart}(X)
\forall X \forall Y \text{ Smart}(X) \land \text{Parent}(Y, X) \rightarrow \text{Proud}(Y)
Smart(Alice)
Proud(Bob)
```

KB

```
Student(Alice)
Parent(Bob, Alice)
\forall X \text{ Student}(X) \rightarrow \text{Smart}(X)
\forall X \forall Y \text{ Smart}(X) \land \text{Parent}(Y, X) \rightarrow \text{Proud}(Y)
Smart(Alice)
Proud(Bob)
```

The knowledge base changed, so we need to scan the knowledge base again.

KB

```
Student(Alice)
Parent(Bob, Alice)
\forall X \text{ Student}(X) \rightarrow \text{Smart}(X)
\forall X \forall Y \text{ Smart}(X) \land \text{Parent}(Y, X) \rightarrow \text{Proud}(Y)
Smart(Alice)
Proud(Bob)
```

Converged!

Resolution Inference

- Since first order logic is just a syntactic sugar for propositional logic, we should be able to apply the same inference rules.
- Resolution inference is applicable to first order logic.
- Formulas must be converted to Conjunctive Normal Form (CNF).

Converting First Order Logic to CNF

1. Remove the implications

```
p \rightarrow q \equiv \neg p \lor q

p \land q \rightarrow r \equiv \neg p \lor \neg q \lor r

p \leftrightarrow q \equiv (\neg p \lor q) \land (\neg q \lor p)

p \land q \equiv p, q (separate p and q into individual clause)
```

2. Push negations inside

$$\neg(p \lor q) \equiv \neg p \land \neg q$$

 $\neg(p \land q) \equiv \neg p \lor \neg q$

3. Remove double negations

$$\neg \neg p \equiv p$$

4. Distribute ∨ over ∧

$$p \lor (q \lor r) \equiv (p \lor q) \land (p \lor r)$$

5. Remove all quantifiers

Removing Quantifiers

Universal Quantifiers:

- Just remove them. It is assumed that all formulas in the knowledge base are universally quantified.
 - ∀X Student(X) becomes Student(X)

Existential Quantifiers:

- Replace the variable with a <u>Skolem variable</u>* and remove the existential quantifier.
 - $\exists X \text{ Knows}(X, \text{ math}) \text{ becomes Knows}(a, \text{ math})$

Example Conversion to CNF

 $\forall X \; \mathsf{Student}(X) \to \mathsf{Smart}(X)$

Initial formula

Example Conversion to CNF

 $\forall X \; \mathsf{Student}(X) \to \mathsf{Smart}(X)$

 $\forall X \neg Student(X) \lor Smart(X)$

Initial formula

Remove Implication

Example Conversion to CNF

 $\forall X \; \mathsf{Student}(X) \to \mathsf{Smart}(X)$

 $\forall X \neg Student(X) \lor Smart(X)$

 \neg Student(X) \lor Smart(X)

Initial formula

Remove Implication

Remove quantifiers

KB

```
Student(Alice)
Parent(Bob, Alice)
\forall X \text{ Student}(X) \rightarrow \text{Smart}(X)
\forall X \forall Y \text{ Smart}(X) \land \text{Parent}(Y, X) \rightarrow \text{Proud}(Y)
```


KB

```
Student(Alice)
Parent(Bob, Alice)
\negStudent(X) \lor Smart(X)
\forall X \forall Y \text{ Smart}(X) \land \text{ Parent}(Y, X) \rightarrow \text{Proud}(Y)
```

```
Student(Alice)
Parent(Bob, Alice)
¬Student(X) \lor Smart(X)

\forall X \forall Y \text{ Smart}(X) \land \text{ Parent}(Y, X) \rightarrow \text{Proud}(Y)
Convert to CNF
```

KB

Student(Alice)

Parent(Bob, Alice)

- $\neg Student(X) \lor Smart(X)$
- $\neg Smart(X) \lor \neg Parent(Y, X) \lor Proud(Y)$

KB

Student(Alice)

Parent(Bob, Alice)

 $\neg Student(X) \lor Smart(X)$

 $\neg Smart(X) \lor \neg Parent(Y, X) \lor Proud(Y)$

Unification: {*X*/**Alice**}

Student(Alice), \neg Student(X) \lor Smart(X)

Smart(Alice)

Student(Alice) Parent(Bob, Alice)

- $\neg Student(X) \lor Smart(X)$
- $\neg Smart(X) \lor \neg Parent(Y, X) \lor Proud(Y)$

Smart(Alice)

```
Student(Alice)
Parent(Bob, Alice)
¬Student(X) V Smart(X)
¬Smart(X) V ¬ Parent(Y, X) V Proud(Y)
Smart(Alice)
```

Unification: {X/Alice, Y/Bob}

Parent(Bob, Alice), $\neg Smart(X) \lor \neg Parent(Y, X) \lor Proud(Y)$ $\neg Smart(Alice) \lor Proud(Bob)$

KB

```
Student(Alice)
```

Parent(Bob, Alice)

- $\neg Student(X) \lor Smart(X)$
- $\neg Smart(X) \lor \neg Parent(Y, X) \lor Proud(Y)$

Smart(Alice)

¬Smart(Alice) ∨ Proud(Bob)

KB

```
Student(Alice)
```

Parent(Bob, Alice)

- $\neg Student(X) \lor Smart(X)$
- $\neg Smart(X) \lor \neg Parent(Y, X) \lor Proud(Y)$

Smart(Alice)

¬Smart(Alice) ∨ Proud(Bob)

The knowledge base changed, so we need to scan the knowledge base again.

```
KB
```

```
Student(Alice)
```

Parent(Bob, Alice)

- $\neg Student(X) \lor Smart(X)$
- $\neg Smart(X) \lor \neg Parent(Y, X) \lor Proud(Y)$

Smart(Alice)

¬Smart(Alice) ∨ Proud(Bob)

Smart(Alice), ¬Smart(Alice) ∨ Proud(Bob)

Proud(Bob)

KB

Student(Alice)

Parent(Bob, Alice)

- $\neg Student(X) \lor Smart(X)$
- $\neg Smart(X) \lor \neg Parent(Y, X) \lor Proud(Y)$

Smart(Alice)

¬Smart(Alice) V Proud(Bob)

Proud(Bob)

Converged!

Acknowledgments

- Stanford University CS221 Autumn 2021 course. Available online at: https://stanford-cs221.github.io/autumn2021
- Previous CSINTSY slides by the following instructors:
 - Raymund Sison, PhD
 - Joanna Pauline Rivera
- Previous slides by the following instructors:
 - Norshuhani Zamin, PhD