Practice Midterm 2

- 1. True or False.
 - (a) S_3 is cyclic.
 - (b) $(\mathbb{Z}_2 \times \mathbb{Z}_3, +)$ is a cyclic group.
 - (c) If σ is a cycle, then σ^3 can also be expressed as a cycle.
 - (d) If σ and μ are permutations, then $\sigma \mu = \mu \sigma$.
 - (e) The order of S_5 is 100.
- 2. Let H be a subgroup of G and

$$C(H) = \{g \in G; gh = hg \text{ for all } h \in H\}.$$

Prove that C(H) is a subgroup of G.

- 3. Consider the group $GL_2(\mathbb{R})$. Let $A = \begin{bmatrix} 0 & 1 \\ \frac{1}{2} & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 2 \\ -1 & 0 \end{bmatrix}$, and C = AB.
 - (a) Find |A|, |B|, and |C|.
 - (b) If the order is finite, then please list all the elements of the cyclic group generated by the element.
- 4. Consider the group $(\mathbb{Z}_{18}, +_{18})$ under modular addition.
 - (a) Find all generators of \mathbb{Z}_{18} .
 - (b) Find all distinct subgroups of \mathbb{Z}_{18} .

5. Let
$$\sigma = \begin{pmatrix} 2 & 1 & 5 \end{pmatrix} \begin{pmatrix} 3 & 4 \end{pmatrix}$$
 and $\mu = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 4 & 2 & 1 \end{pmatrix}$.

- (a) Evaluate $\sigma\mu$.
- (b) Find σ^{-1} .
- (c) What is the order of μ ?

6. Let
$$\sigma = (2 \ 1 \ 5 \ 3)(3 \ 2 \ 6)$$
.

- (a) Write σ as a multiplication of disjoint cycles.
- (b) Write σ as a multiplication of transpositions.
- (c) Is σ an element in A_6 ?