

Real-Time Fraud Detection System in Finance

EURON

Real-Time Fraud Detection System in Finance – AI-Powered Architecture

★ Use Case: AI-Driven Real-Time Fraud Detection in Financial Transactions

Objective:

To design an **AI-powered fraud detection system** that monitors **real-time financial transactions**, detects anomalies, prevents fraudulent activities (e.g., identity theft, transaction fraud, money laundering), and alerts financial institutions in real time.

★ 1. Functional Architecture Flow (Business Perspective)

Core Functional Modules & Workflows

Module	Functionality
Real-Time Transaction Monitoring	Monitors online banking, credit card payments, wire transfers, and digital wallets for anomalies.
Anomaly Detection Engine	Detects suspicious patterns using AI (unsupervised learning, anomaly detection).
Behavioral Analysis Engine	Tracks user spending habits, device fingerprinting, and geolocation analysis.
Risk Scoring System	Assigns a fraud risk score to each transaction.
Rule-Based Detection System	Uses predefined fraud rules for quick rule-based detection.
Machine Learning Fraud Detection	AI models detect unknown fraud patterns using deep learning and ensemble models.
Real-Time Alerting & Actions	Triggers real-time alerts for high-risk transactions and auto- blocks fraudulent transactions.
Explainability & Case Management	Provides reasoning for flagged transactions to financial investigators.
Regulatory Compliance Monitoring	Ensures adherence to regulations (KYC, AML, PSD2, PCI-DSS).

Step-by-Step Functional Flow

1. Transaction Capture & Data Ingestion

- Transactions from banks, payment gateways, and ATMs are streamed in realtime.
- o User identity, IP address, device ID, and location data are collected.

2. Feature Engineering & Enrichment

- o AI extracts key transaction features (time, frequency, amount, location).
- o Additional external data (e.g., credit score, past fraud reports) is linked.

3. Fraud Detection Model Execution

- o **Rule-Based Engine**: Flags transactions matching predefined fraud rules.
- o **AI-Based Model**: Anomaly detection, user profiling, and deep learning models analyze transaction patterns.
- o **Risk Scoring System**: Assigns a risk score to each transaction.

4. Decision-Making & Real-Time Actions

- o **Low-Risk Transaction:** Allowed with no action.
- o **Medium-Risk Transaction:** Requires OTP validation.
- o **High-Risk Transaction:** Auto-blocked, triggers fraud investigation.

5. Alerting & Reporting

- o High-risk transactions are flagged in the fraud investigation dashboard.
- o Investigators receive detailed risk assessments and transaction history.

6. Continuous Learning & Model Retraining

- o AI models are retrained based on newly discovered fraud patterns.
- o Investigator feedback is used to improve AI predictions.

★ 2. Technical Architecture Flow (Deep Dive into Components)

This architecture ensures real-time fraud detection, AI-powered decision-making, and seamless integration with banking systems.

1 Data Ingestion Layer

• Sources:

- o Transaction Data Streams (Credit card, wire transfers, digital payments)
- o **User Behavior Data** (Login activity, IP address, device ID)
- o **External APIs** (Blacklist databases, credit score providers)

Technologies:

- o **Kafka / RabbitMQ** (Real-time transaction event streaming)
- o **Apache Flink / Spark Streaming** (Real-time data processing)
- o AWS Kinesis / Google PubSub (Cloud-based event ingestion)

2 Data Storage & Processing Layer

- Data Storage:
 - Transactional Data Storage: PostgreSQL / MySQL (Historical transaction records)
 - NoSQL Database: MongoDB / Cassandra (Unstructured user activity logs)
 - o **Graph Database**: Neo4j / TigerGraph (For detecting fraud rings)
- Processing & Feature Engineering:
 - o Apache Spark / Databricks (Distributed processing for feature engineering)
 - o **Feature Store**: Feast / Tecton (For AI model feature reuse)

3 AI & Machine Learning Layer

- Rule-Based Detection System:
 - o **Drools / OpenRules** (Rule-based fraud detection)
 - o **Predefined Rules** (e.g., "Large transaction in a new location")
- Machine Learning Models for Fraud Detection:
 - Supervised Learning Models:
 - Gradient Boosting (XGBoost, LightGBM, CatBoost)
 - Random Forest
 - Unsupervised Learning for Anomaly Detection:
 - Autoencoders (Detect deviations from normal patterns)
 - Isolation Forest, DBSCAN
 - Oeep Learning Models:
 - LSTMs (Detect fraud based on sequential transaction history)
 - Graph Neural Networks (GNNs for detecting fraud rings)
- AI Model Development & Training:
 - TensorFlow, PyTorch, Scikit-Learn
 - o AutoML (H2O.ai, Google AutoML) for model tuning

4 AI Model Deployment & Serving Layer

- Real-Time Model Serving:
 - o TensorFlow Serving / TorchServe (AI Model Deployment)
 - FastAPI / Flask / gRPC for API Endpoints
 - o Triton Inference Server for multi-model serving
- Streaming AI Decision Making:
 - o Apache Flink / Kafka Streams (For real-time fraud detection)
 - o Serverless AI Execution (AWS Lambda, Google Cloud Functions)
- Edge AI for Banking Terminals & ATMs:

o **NVIDIA Jetson / Intel OpenVINO** (Deploying fraud detection at ATMs)

5 Decision & Action Layer

- Risk Scoring & Real-Time Decisioning
 - Low-Risk: No action required.
 - o **Medium-Risk:** 2FA authentication triggered (OTP, biometric verification).
 - o **High-Risk:** Transaction auto-blocked, investigation triggered.
- Fraud Investigation Dashboard
 - Case management tools for fraud analysts.
 - o AI-powered insights & fraud heatmaps.

6 Monitoring, Logging & AI Governance

- Model Monitoring & Drift Detection
 - o **MLflow / Prometheus / Grafana** (For tracking model drift)
- Explainability & Bias Detection
 - o SHAP / LIME for AI Explainability
- Observability & Logs
 - o ELK Stack (Elasticsearch, Logstash, Kibana)
- Security & Compliance
 - o PCI-DSS, GDPR, PSD2 Compliance
 - o End-to-End Encryption for Financial Data

★ 3. Full Technical Stack

LayerTechnologiesData IngestionKafka, Airflow, Apache Flink

Storage PostgreSQL, MongoDB, Neo4j

Processing & AI TensorFlow, PyTorch, Scikit-Learn, XGBoost

Model Serving & DecisioningFastAPI, TensorFlow Serving, FlinkMonitoring & LoggingMLflow, Prometheus, Grafana, ELKDeployment & CloudKubernetes, Docker, AWS Lambda

- 1. Transaction Captured → AI Model Analyzes Pattern
- 2. Risk Score Assigned → Decision Taken (Allow, Verify, Block)
- 3. Real-Time Alerts Sent for High-Risk Transactions
- 4. Fraud Investigators Review & Improve AI Model
- 5. AI Model Learns & Improves Over Time

★ 5. Business Benefits

- \checkmark Fraud Prevention in Real Time \rightarrow AI detects and stops fraudulent transactions instantly.
- \checkmark Enhanced Customer Security \rightarrow Prevents identity theft, account takeovers.
- **⊘** Regulatory Compliance → Ensures compliance with AML & fraud prevention laws.
- **⊘** Automated Decision Making → AI reduces manual fraud investigations.
- \checkmark Continuous Learning \rightarrow AI models adapt to new fraud tactics.