Solucions comentades

Demostra per contrarecíproc que per tot real *x* diferent de zero: P1)

"si
$$x + \frac{1}{x} < 2$$
, aleshores $x \le 0$ ".

En general una proposició de la forma $p \longrightarrow q$ es pot demostrar provant la proposició equivalent $\neg q \longrightarrow \neg p$. Això és el que es diu mètode de demostració pel contrarecíproc. En aquest cas, tindrem que provar

Per a tot real x diferent de zero, x > 0 *implica* $x + \frac{1}{x} \ge 2$. Vegem-ho:

Sigui x > 0 un nombre real. La inequació $x + \frac{1}{x} \ge 2$ és equivalent a $x^2 + 1 \ge 2x$, cosa que és certa perquè passem d'una a l'altra multiplicant ambdós termes pels mateixos elements positius, x>0 d'esquerra a dreta i $\frac{1}{x}>0$ de dreta a esquerra. És clar que aquesta inequació és equivalent a $x^2 - 2x + 1 \ge 0$. Ens adonem que $x^2 - 2x + 1 = (x - 1)^2$. Per tant la inequació anterior és equivalent a $(x-1)^2 \ge 0$ cosa que és sempre certa per ser el quadrat d'un nombre real. Com que aquesta darrera inequació és certa, per les equivalències, també ho es $x + \frac{1}{x} \ge 2$ com volíem demostrar.

Siguin *A*, *B* i *X* conjunts. P2)

- (a) Demostra que si $A \subseteq X$ i $B \subseteq X$, aleshores $(X \setminus A) \setminus (X \setminus B) = B \setminus A$.
- (b) Investiga si la igualtat anterior es compleix encara que no es compleixi la hipòtesi.

(a) Per demostrar que $(X \setminus A) \setminus (X \setminus B) = B \setminus A$, provarem que $(X \setminus A) \setminus (X \setminus B) \subseteq$ $B \setminus A \text{ i } B \setminus A \subseteq (X \setminus A) \setminus (X \setminus B).$

Per demostrar que $(X \setminus A) \setminus (X \setminus B) \subseteq B \setminus A$, considerem un element arbitrari $x \in$ $(X \setminus A) \setminus (X \setminus B)$. Per tant, $x \in X \setminus A$ i $x \notin X \setminus B$. Com que $x \in X \setminus A$, inferim que $x \in X$ i $x \notin A$. I com que $x \notin X \setminus B$, inferim que $x \notin X$ o $x \in B$. Així doncs, tenim que $x \in X \land x \notin A \land (x \notin X \lor x \in B)$. Ara, com que $x \in X \land (x \notin X \lor x \in B)$, deduïm que $x \in B$. Així doncs, tenim que $x \in B$ i $x \notin A$, i per tant $x \in B \setminus A$.

Demostrem ara que $B \setminus A \subseteq (X \setminus A) \setminus (X \setminus B)$. Considerem un element arbitrari $x \in$ $B \setminus A$. Per tant, $x \in B$ i $x \notin A$. Com que $x \in B$ i $B \subseteq X$, inferim que $x \in X$. Ara de $x \in X$ i $x \notin A$, inferim que $x \in X \setminus A$. I com que $x \in B$, deduïm que $x \notin X \setminus B$, ja que $x \notin X \setminus B$ si i només si $(x \notin X \lor x \in B)$. Així doncs, tenim que $x \in X \setminus A$ i $x \notin X \setminus B$, i per tant $x \in (X \setminus A) \setminus (X \setminus B)$.

- (b) Si no es compleix la hipòtesi, la igualtat anterior no es compleix necessàriament. Ho demostrem mitjançant el següent contraexemple. Siguin $X = \{0\}$, $A = \{1\}$ i $B = \{2\}$. Aleshores, tenim que $X \setminus A = \{0\}$ i $X \setminus B = \{0\}$, i per tant $(X \setminus A) \setminus (X \setminus B) = \emptyset$. D'altra banda, tenim que $B \setminus A = \{2\}$. Així doncs, $(X \setminus A) \setminus (X \setminus B) \neq B \setminus A$.
- P3) Considera $A = \{z \in \mathbb{Z} : |z| < |x|, \text{ per tot } x \ge 3\}$. Determina el conjunt A per extensió. Raona si són certes o falses les següents afirmacions
 - (a) $\emptyset \in \mathcal{P}(A)$,
- (d) $\{(2,\{2\})\}\subseteq \mathcal{P}(A\times A),$

- (b) $\{-1\} \subseteq \mathcal{P}(A)$, (e) $\emptyset \in \mathcal{P}(A \times \mathcal{P}(A))$, (c) $\{(2,\{2\})\} \in \mathcal{P}(A \times A)$, (f) $(-2,\emptyset) \in A \times \mathcal{P}(A)$.

Observa que $A = \{z \in \mathbb{Z} : |z| < |x|, \text{ per tot } x \ge 3\} = \{z \in \mathbb{Z} : |z| < 3\}.$ Per tant, $A = \{0, 1, -1, 2, -2\}.$

(a)
$$\emptyset \in \mathcal{P}(A)$$

La condició és certa, perquè el conjunt buit ∅ és un subconjunt de qualsevol conjunt.

(b)
$$\{-1\} \subseteq \mathcal{P}(A)$$

Tenim que

$$\{-1\} \subseteq \mathcal{P}(A) \iff -1 \in \mathcal{P}(A) \iff -1 \subseteq A.$$

Ara, com que -1 no és un conjunt, és impossible que $-1 \subseteq A$. Per tant, la condició és falsa.

(c)
$$\{(2,\{2\})\}\in \mathcal{P}(A\times A)$$

Tenim que

$$\{(2,\{2\})\}\in \mathcal{P}(A\times A)\Longleftrightarrow \{(2,\{2\})\}\subseteq A\times A\Longleftrightarrow (2,\{2\})\in A\times A\Longleftrightarrow 2\in A\wedge \{2\}\in A.$$

Aleshores, com que $\{2\}$ no és a la llista d'elements d'A, deduïm que la condició és falsa.

(d)
$$\{(2,\{2\})\}\subseteq \mathcal{P}(A\times A)$$

Tenim que

$$\{(2,\{2\})\}\subseteq \mathcal{P}(A\times A)\Longleftrightarrow (2,\{2\})\in \mathcal{P}(A\times A)\Longleftrightarrow (2,\{2\})\subseteq A\times A.$$

Ara, com que $(2, \{2\})$ no és un conjunt de parells ordenats, és impossible que $(2, \{2\}) \subseteq A \times A$. Per tant, la condició és falsa.

(e)
$$\emptyset \in \mathcal{P}(A \times \mathcal{P}(A))$$

Com que $A \times \mathcal{P}(A)$ és un conjunt i el conjunt buit \emptyset és un subconjunt de qualsevol conjunt, tenim que $\emptyset \subseteq A \times \mathcal{P}(A)$, i per tant $\emptyset \in \mathcal{P}(A \times \mathcal{P}(A))$. Així doncs, la condició és certa.

(f)
$$(-2,\emptyset) \in A \times \mathcal{P}(A)$$
.

Clarament,

$$(-2,\emptyset) \in A \times \mathcal{P}(A) \iff -2 \in A \land \emptyset \in \mathcal{P}(A).$$

Aleshores, com que -2 es troba en la llista d'elements d'A i el conjunt buit és un subconjunt de qualsevol conjunt, tenim que la condició és certa.

P4) En el conjunt $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ definim la relació,

$$(n,m) \equiv (p,q) \iff \text{ existeixen } k,k' \in \mathbb{Z} \text{ tal que } n-p=2k \text{ i } m-q=3k'.$$

- (a) Demostra que \equiv és d'equivalència.
- **(b)** Troba les classes d'equivalència (1,2), (1,-2), (-1,2).
- (c) Descriu, justificadament, el conjunt quocient i digues quants elements té.
- a) Donat un conjunt A, una relació $R \subseteq A \times A$ s'anomena d'equivalència si les següents propietats són certes per a R:
 - **R** és reflexiva: $\forall a \in A (aRa)$.
 - **R** és simètrica: $\forall a, b \in A (aRb \longrightarrow bRa)$.
 - **R** és transitiva: $\forall a, b, c \in A (aRb \land bRc \longrightarrow aRc)$

Recordem que fem servir la notació aRb com a abreviatura de $(a,b) \in R$.

Al nostre cas la relació \equiv és una relació sobre el conjunt $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$. Veiem que efectivament és una relació d'equivalència.

- (a) \equiv **és reflexiva**: En efecte, donat $(n, m) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$, notem que $(n, m) \equiv (n, m)$ atès que $n n = 2 \cdot 0$ i $m m = 3 \cdot 0$.
- (b) \equiv **és simètrica**: En efecte, donats $(n,m), (p,q) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ tals que $(n,m) \equiv (p,q)$. Notem que per definició, existeixen $k,k' \in \mathbb{Z}$ tals que n-p=2k i m-q=3k'. Això implica que existeixen $\ell,\ell' \in \mathbb{Z}$ tals que $p-n=2\ell$ i $q-m=3\ell'$, simplement considerant $\ell=-k$ i $\ell'=-k'$. Tot plegat, $(p,q) \equiv (n,m)$. Com que (n,m), (p,q) eren arbitraris es conclou que la relació \equiv és simètrica.
- (c) \equiv **és transitiva**: En efecte, fixem $(n, m), (p, q), (r, s) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ arbitraris tals que $(n, m) \equiv (p, q)$ i $(p, q) \equiv (r, s)$. Per definició,

$$(n,m) \equiv (p,q) \longleftrightarrow \exists k, k' \in \mathbb{Z} (n-p=2k \wedge m-q=3k')$$

$$(p,q) \equiv (r,s) \longleftrightarrow \exists \ell, \ell' \in \mathbb{Z} \ (p-r=2\ell \land q-s=3\ell')$$

Sumant ambdues expressions de la dreta tenim que

$$n - r = 2(k + \ell)$$

$$m - s = 3(k' + \ell')$$

Llavors concloem que $(n, m) \equiv (r, s)$. Com que (n, m), (p, q) i (r, s) eren arbitraris es té que \equiv és transitiva.

b) Donada una relació d'equivalència $R\subseteq A$ i $a\in A$, definim \bar{a} la classe de a com el conjunt

$$\bar{a} = \{b \in A : aRb\}.$$

Passem ara a calcular les respectives classes d'equivalència.

$$\overline{(1,2)} = \{(n,m) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) : (1,2) \equiv (n,m)\} =
\{(n,m) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) : \exists k, k' \in \mathbb{Z} (n-1=2k, m-2=3k')\} =
\{(n,m) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) : \exists k, k' \in \mathbb{Z} (n=2k+1, m=3k'+2)\}$$

$$\overline{(1,-2)} = \{(n,m) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) : (1,-2) \equiv (n,m)\} = \{(n,m) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) : \exists k,k' \in \mathbb{Z} (n-1=2k, m+2=3k')\} = \{(n,m) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) : \exists k,k' \in \mathbb{Z} (n=2k+1, m=3k'-2)\}$$

Finalment, notem que $1 - (-1) = 2 \cdot 1$ i que $2 - 2 = 3 \cdot 0$. Llavors $(1,2) \equiv (-1,2)$, i per tant $\overline{(1,2)} = \overline{(-1,2)}$.

c) Donada $R \subseteq A \times A$ una relació d'equivalència, definim el conjunt quocient de A per R, com el conjunt

$$A/R = \{\bar{a} : a \in A\}.$$

A aquest respecte, sabem que qualsevol bona representació del conjunt quocient ens dóna una partició sobre el conjunt A. Seguint aquesta idea passem a raonar quina seria una bona representació del conjunt quocient.

Donat $(n,m) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ anem a veure quines condicions determinen a una classe $\overline{(p,q)}$ perquè $(n,m) \in \overline{(p,q)}$. Sabem que qualsevol número enter és senar o parell (mòdul signe) i per tant, n=2k o be n=2k+1, per a cert $k \in \mathbb{Z}$. Del mateix mode, tot nombre enter m pot ser escrit de la forma m=3k, m=3k+1 o bé m=3k+2, per a cert $k \in \mathbb{Z}$. Tot plegat, tenim la següent casuística perquè $(n,m) \equiv (p,q)$:

- **n=2k**: En aquest cas, si p és qualsevol nombre parell tindrem que n-p=2k' per a cert $k' \in \mathbb{Z}$.
 - (a) **m=3k**: En aquest cas, si q és qualsevol múltiple de 3 tindrem que n-p=3k' per a cert $k' \in \mathbb{Z}$. Llavors, $(n,m) \in \overline{(0,3)}$
 - (b) **m=3k+1**: En aquest cas, si $q = 3\ell + 1$ per a qualsevol $\ell \in \mathbb{Z}$ tindrem que n p = 3k' per a cert $k' \in \mathbb{Z}$. Llavors, $(n, m) \in \overline{(0, 1)}$
 - (c) **m=3k+2**: En aquest cas, si $q = 3\ell + 2$ per a qualsevol $\ell \in \mathbb{Z}$ tindrem que n p = 3k' per a cert $k' \in \mathbb{Z}$. Llavors, $(n, m) \in \overline{(0, 2)}$
- n=2k+1: En aquest cas, si p és qualsevol nombre senar tindrem que n-p=2k' per a cert $k' \in \mathbb{Z}$.
 - (a) **m=3k**: En aquest cas, si q és qualsevol múltiple de 3 tindrem que n-p=3k' per a cert $k' \in \mathbb{Z}$. Llavors, $(n,m) \in \overline{(1,3)}$
 - (b) **m=3k+1**: En aquest cas, si $q = 3\ell + 1$ per a qualsevol $\ell \in \mathbb{Z}$ tindrem que n p = 3k' per a cert $k' \in \mathbb{Z}$. Llavors, $(n, m) \in \overline{(1, 1)}$
 - (c) **m=3k+2**: En aquest cas, si $q = 3\ell + 2$ per a qualsevol $\ell \in \mathbb{Z}$ tindrem que n p = 3k' per a cert $k' \in \mathbb{Z}$. Llavors, $(n, m) \in \overline{(1, 2)}$

Tot plegat tenim que una bona representació del conjunt quocient serà

$$\mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) / \equiv = \{ \overline{(0,1)}, \overline{(0,2)}, \overline{(0,3)}, \overline{(1,1)}, \overline{(1,2)}, \overline{(1,3)} \}$$

que té 6 elements.