Bayesian Hierarchical Modeling in Stan

Dina Sinclair

21 June 2018

Outline

Introduction

Maths

Frequentism

Bayesianism

Hierarchical Models

Computation

Monte Carlo Methods

Markov Chains

Stan

Applications

City Model

Takeaways

Bayesian?? Hierarchical Modeling?? Stan??

Frequentist Approach

Frequentists base their conclusions on *significance testing*. This involves:

- A hypothesis to test
- A significance level α
- a p-value
- lacktriangle statistical significance when p<lpha

Bayesian Approach

Bayesians like to use *Bayes' theorem*, which looks at the probability event θ will happen given event y happened already:

$$p(\theta|y) = \frac{p(\theta)p(y|\theta)}{p(y)}$$

This allows us to condition on y, our prior knowledge.

Bayesianism

"To the non-Bayesian, a Bayesian is someone who pollutes clean data with a subjective prior distribution. But, to the Bayesian, a classical statistician is someone who arbitrarily partitions all the available information into something called "the data" which can be analyzed and something called "prior information" which is off limits" - Andrew Gelman

Hierarchical Models

Bayesian models can also impose structure on the data.

Computational Problems Begin

So what happens if you're calculating your Bayesian probabilities and you get stuck trying to find p(y), where

$$p(y) = \int_{\theta} p(y|\theta)p(\theta)d\theta$$

The problem: Calculating this integral can get messy! 1

¹Dustin Stansbury, *The Clever Machine*

Monte Carlo Methods for Integration

Expected value of some function f(x) of a random variable X distributed through p(x):

$$E[x] = \int_{p(x)} p(x)f(x)dx \approx \int_{\theta} p(y|\theta)p(\theta)d\theta$$

Which has the same structure as our first integral.

Monte Carlo Methods

Monte Carlo Methods for Integration

Since we can approximate expected values using

$$E_{p(x)}[f(x)] \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

we can do the same here!

$$E_{\theta}\left[p(y|\theta_i)\right] \approx \frac{1}{N} \sum_{i=1}^{N} p(y|\theta_i)$$

Markov Chains

Markov Chain Sampling

So how do we sample from a distribution quickly and effectively? Markov chains!

Stan

So coding this sounds... fun, right?

000000

Stan

So coding this sounds... fun, right?

That depends on the language you code in.

Stan

Java

```
public class HelloWorld
{
    public static void main (String[] args)
    {
        System.out.println("Hello, world!");
    }
}
```

```
Java

Python

public class HelloWorld {
    public static void main (String[] args) {
        System.out.println("Hello, world!");
    }
```

000000

000000


```
File Edit Selection Find View Goto Tools Project Preferences Help
        randomEffectsModeConstrainedLstan >
         int<lower=0> J; // number of individuals per study
        int<lower=0> I; // number of studies
        real Y[I, J]; // data points from study i individual j
real<lower=0> sigmaSq[I, J]; // var of effect estimates
       parameters {
        real<lower=0> tau;
         real theta[I];
       transformed parameters {
       model {
           target += normal_lpdf(theta[i] | mu, tau^2);
           for (j in 1:J){
              target += normal_lpdf( Y[i, j] | theta[i], sigmaSq[i, j]);
```

Stan

Why choose Stan?

- Free, open source
- ► Faster to write
- Faster to run
- Easier to learn
- ► Easier to understand/reproduce other people's code

We want to implement a program in a subset of cities. Where will be the most effective to implement it?

We want to implement a program in a subset of cities. Where will be the most effective to implement it?

Initial priors

We want to implement a program in a subset of cities. Where will be the most effective to implement it?

Initial priors \rightarrow Pilot programs

We want to implement a program in a subset of cities. Where will be the most effective to implement it?

Initial priors \rightarrow Pilot programs \rightarrow Updated priors

We want to implement a program in a subset of cities. Where will be the most effective to implement it?

Initial priors \rightarrow Pilot programs \rightarrow Updated priors \rightarrow Action

The city example is simple, but it gets at some key ideas.

- ► Hierarchical modeling can help us improve experimental design.
- With Stan, hierarchical modeling is a realistic path.
- Statistics and other fields use these tools regularly why not economics?

Takeaways

For those that are curious, Stan has a great website and growing number of tutorials at mc-stan.org

If all goes well, my cities example will be online by the time I've left GPI as well!