Pracownia z analizy numerycznej

Sprawozdanie do zadania **P.0.12.** Prowadzący: mgr. Filip Chudy

Wrocław, 24 października 2022, 21:37

Spis treści

1.	Wstęp
2.	Przybliżanie wartości $\ln \frac{1}{2}$
	2.1. Metoda
	Wyniki 2

1. Wstęp

W matematyce bardzo często pojawiają się wartości niewymierne, takie jak $\ln \frac{1}{2}$, których nie możemy wyrazić w sposób przystępny dla człowieka. Z tego powodu, powstało wiele metod przybliżania funkcji w określonych punktach. Jedną z nich jest użycie szeregu Taylora, opisanego przez Brooka Taylora w 1715 roku oraz wspomniana przez Jamesa Gregory'a w 1671 r.

W swojej istocie twierdzenie Taylora mówi, że jeśli dana jest funkcja f klasy C^n , czyli różniczkowalna n razy w każdym punkcie jej dziedziny, to możemy ją przybliżyć w otoczeniu dowolnego punktu a za pomocą szeregu:

$$f(x) = \sum_{k=0}^{n} \left(\frac{(x-a)^k}{k!} f^{(k)}(a) \right) + R_n(x,a),$$

gdzie $R_n(x,a)$ spełnia

$$\lim_{x \to a} \frac{R_n(x, a)}{\|x - a\|^n} = 0.$$

Jak nietrudno zauważyć, wartość $R_n(x,a)$ przy x bardzo blisko a jest zaniedbywalnie mała, więc w trakcie obliczeń możemy ją pominąć.

Celem niniejszego sprawozdania jest sprawdzenie dokładności przybliżania funkcji za pomocą szeregów Taylora. W \$\$ omówione zostanie przybliżanie ustalonych wartości funkcji $\ln x$ w punkcie $x=\frac{1}{2}$. Wykorzystany zostanie szereg Maclaurina funkcji $\ln(x+1)$ w okolicach x=0 dla stopni wielomianu n=1,2,...,16. Wyniki porównane zostaną z wynikiem bibliotecznej funkcji $\log(x)$ w języku Julia. Otrzymane dane zostaną zaprezentowane w formie tabeli oraz grafów otrzymanych za pomocą załączonego w pliku program. jl. Dodatkowo, funkcje użyte w programie zostaną zaprezentowane w formie Jupyter Notebook w pliku program. ipynb.

2. Przybliżanie wartości $\ln \frac{1}{2}$

2.1. Metoda

W celu obliczenia wartości l
n $\frac{1}{2}$ użyte zostanie przybliżanie funkcji

$$f(x) = \ln(1+x)$$

w pobliżu a=0 za pomocą szerega Maclaurina.

Wzór na pochodną funkcji ln(x + 1) jest powszechnie znany:

$$\frac{d}{dx}\ln(x+1) = \frac{1}{x+1},$$

natomiast wzór na pochodną k-tego stopnia, można wyliczyć w prosty sposób:

(1)
$$\frac{d^k}{dx^k}\ln(x+1) = (-1)^{k+1} \frac{(k-1)!}{(1+x)^k}.$$

Wzór na szereg Taylora ln(1+x) w pobliżu a=0, to:

$$f(0) = \sum_{i=0}^{n} \frac{f^{(k)}(x)}{k!} (x-0)^{n} + R(x,0) = \sum_{i=1}^{n} (-1)^{i+1} \frac{x^{i}}{i} + R(x,0).$$

Wyniki

Wyniki oszacowań wartości l
n $\frac{1}{2}$ zostały zaprezentowane na Grafie 1, natomiast wartości błędów są widoczne w Tabeli 1 oraz na Grafie 2.

Stopień wielomianu	Błąd bezwzględny	Błąd względny
1	0.193147	0.278652
2	0.0681472	0.0983156
3	0.0264805	0.0382033
4	0.0108555	0.0156612
5	0.00460551	0.00664435
6	0.00200135	0.00288733
7	0.000885276	0.00127718
8	0.000396995	0.000572742
9	0.000179981	0.000259657
10	8.23244e-5	0.000118769
11	3.79352e-5	5.47289e-5
12	1.75902e-5	2.53772e-5
13	8.20013e-6	1.18303e-5
14	3.84047e-6	5.54063e-6
15	1.80597e-6	2.60546e-6
16	8.52295e-7	1.2296e-6

Tabela 1. Błąd bezwzględny i względny otrzymanego wyniku w stosunku do funkcji bibliotecznej w zależności od stopnia wielomianu użytego do obliczeń.

Rysunek 1. Wyniki programu dla różnych stopni wielomianu z naniesioną wartością funkcji bibliotecznej.

Rysunek 2. Zależność między wartością bezwzględną błędów względnego i bezwzględnego a stopniem wielomianu.

Graf 2 pokazuje, że wraz ze wzrostem stopnia wielomianu używanego do przybliżenia poszukiwanej wartośći dokładność rośnie niemalże wykładniczo. Dla wielomianów stopnia co najmniej 9 oba błędy stają się bliskie zero tak, że możemy je pomijać dla obliczeń na Float64. Możliwe też jest, że funkcja biblioteczna opiera się na metodzie analogicznej do zaprezentowanej w powyższej pracy.

