

• Distance = Length of actual path

- Displacement = Length of shortest path
- Distance > Idisplacement

A particle moves from A to B in a circular path of radius R covering an angle θ with uniform speed U

- Distance = $R\theta$ Displacement = $2RSin\left(\frac{\theta}{2}\right)$
- Ratio of Displacement to Distance = 25in
- Time $t = R\theta$
- Average Velocity = $\frac{\theta}{2}$
- Average Acceleration = $2U^2Sin\left(\frac{\theta}{2}\right)$

For uniform motion

Displacement = velocity x time

Average speed = |average velocity|=|instantaneous velocity|

Time average speed

$$\mathbf{v}_{\text{av}} = \frac{\textbf{Total distance covered}}{\textbf{Total time elapsed}} \quad = \frac{\mathbf{s}_1 + \mathbf{s}_2 + \mathbf{s}_3 + \ldots + \mathbf{s}_n}{\mathbf{t}_1 + \mathbf{t}_2 + \mathbf{t}_3 + \ldots + \mathbf{t}_n} \quad = \frac{\mathbf{v}_1 \mathbf{t}_1 + \mathbf{v}_2 \mathbf{t}_2 + \mathbf{v}_3 \mathbf{t}_3 + \ldots + \mathbf{t}_n}{\mathbf{t}_1 + \mathbf{t}_2 + \mathbf{t}_3 + \ldots + \mathbf{t}_n} \quad = \frac{\mathbf{v}_1 \mathbf{t}_1 + \mathbf{v}_2 \mathbf{t}_2 + \mathbf{v}_3 \mathbf{t}_3 + \ldots + \mathbf{t}_n}{\mathbf{t}_1 + \mathbf{t}_2 + \mathbf{t}_3 + \ldots + \mathbf{t}_n}$$

If
$$t_1 = t_2 = t_3 = \dots = t_n$$

 $v_{av} = \frac{V_1 + V_2 + V_3 + \dots + V_n}{2} = \frac{V_1 + V_2}{2}$ (Arithmetic mean of speeds)

Distance average speed

$$v_{av} = \frac{\text{Total distance covered}}{\text{Total time elapsed}} = \frac{s_1 + s_2 + s_3 + \dots + s_n}{t_1 + t_2 + t_3 + \dots + t_n} = \frac{s_1 + s_2 + s_3 + \dots + s_n}{\frac{s_1}{v_1} + \frac{s_2}{v_2} + \frac{s_3}{v_3} + \dots + \frac{s_n}{v_n}}$$

$$\text{If } s_1 = s_2 = s_3 = \dots s_n s$$

$$\text{then } v_{av} = \frac{n}{\frac{1}{v_1} + \frac{1}{v_2} + \frac{1}{v_3} + \dots + \frac{1}{v_n}} = \frac{2V_1V_2}{V_1 + V_2} \text{ (Harmonic mean of speeds)}$$

Motion with constant acceleration: Equations of motion

(i) v=u+at

(ii)
$$S = ut + \frac{1}{2} at^2$$

• A Person travels from A to B covers unequal distances in equal interval of time with constant acceleration a

initial velocity
$$U = \frac{3S_1 - S_2}{2t}$$

eleration
$$a = \frac{S_2 - S_1}{t^2}$$

(iii) $v^2 = u^2 + 2a.s$

• The number of planks required to stop the bullet

• The two ends of a train moving with constant acceleration pass a certain point with velocities u and v. The velocity with which the middle point of the train passes the same point is

$$V = \sqrt{\frac{u^2 + V^2}{2}}$$

• Calculation of stoping distance $s = \frac{u^2}{2a}$ $u \rightarrow s$ 0

$$= \frac{\mathbf{u}^2}{2\mathbf{a}} \qquad \mathbf{u} \rightarrow \mathbf{0}$$

(iv) $|s_n| = u + \frac{\alpha}{2}(2n-1)$

• Ratio of distance travelled in equal interval of time in a uniformly accelerated motion from rest

$$S_1:S_2:S_3 = 1:3:5$$

• for uniform accelerated motion

$$v_{avg} = \frac{u+v}{2}$$

Different Cases	v-t graph	s-t graph
1. Uniform motion	v v=constant	s surt
2. Uniformly accelerated motion with u =0 at t=0	** v=0t	$\begin{array}{c} \uparrow S \\ \downarrow \\ \downarrow \\ \downarrow \\ \uparrow \end{array}$
 Uniformly accelerated with u ≠ 0 at t=0 	u V V V V V V V V V V V V V V V V V V V	$s = ut + \frac{1}{2}at^2$
 Uniformly accelerated motion with u≠0 and s=s₀ at t=0 	u V V U v at	$s = s_0 + ut + \frac{1}{2}at^2$
5. Uniformly retarded motion till velocity becomes zero	u v v t	$ \uparrow^{S} s = ut - \frac{1}{2}\alpha t^{2} $ $ \uparrow_{0} \uparrow_{1} $
6. Uniformly retarded then accelerated in opposite direction	u † ₀ →†	Å ^S

Important point about graphical analysis of motion

• Instantaneous velocity is the slope of position time curve

 $\left[v = \frac{dx}{dt}\right]$ $\Delta x = \int v dt$

• v-t curve area gives displacement.

• Slope of velocity-time curve = instantaneous acceleration

• a-t curve area gives change in velocity.

 $\Delta v = \int adt$

MOTION ALONG A STRAIGHT LINE

A car accelerates from rest at a constant rate α for some time, after which it decelerates at a constant rate β , to come to rest. If the total time elapsed is t, the maximum velocity v_{max} = $\frac{\alpha\beta}{\alpha+\beta}$ † Total Distance = $\frac{1}{2} \left(\frac{\alpha\beta}{\alpha+\beta}\right)$ † 2 attained

$$V_{\text{max}} = \frac{\alpha\beta}{\alpha + \beta}$$

Total Distance =
$$\frac{1}{2} \left(\frac{\alpha \beta}{\alpha + \beta} \right)$$

MOTION UNDER GRAVITY

Sign Convension -

(i) initial velocity

+ve = upward motion -ve = downward motion

(ii) Acceleration Always -ve

(iii) Displacement

+ve = final position is above initial position -ve = final position is below initial position

Zero = final position & initial position are at same level

• Object is dropped from top of a tower

(i) Ratio of displacement in equal interval of time $S_1:S_2:S_3....=1:3:5....$

(ii) Ratio of time of covering equal distance

$$t_1:(t_2-t_1):(t_3-t_2):\ldots:(t_n-t_{n-1})=1:(\sqrt{2}-\sqrt{1}):(\sqrt{3}-\sqrt{2}):\ldots:(\sqrt{n}-\sqrt{n-1})$$

(iii) Ratio of distance covered at the end of time t:2t:3t:...=12:22:32....

• If a body is thrown vertically up with a velocity u in the uniform gravitational field (neglecting air resistance) then

(i) Maximum height attained $H = \frac{u}{2a}$

(ii) Time of ascent = time of descent

(iii) Total time of flight = $\frac{20}{3}$

(iv) Velocity of fall at the point of projection = u (downwards)

• At any point on its path the body will have same speed for upward journey and downward journey. If a body thrown upwards crosses a point in time t, & t, respectively then

height of point $h=\frac{1}{2}gt_1t_2$ Maximum height $H=\frac{1}{8}g(t_1+t_2)^2$

• A body is thrown upward, downward & horizontally with same speed takes time t, t, & t, respectively to reach the ground then

 $\dagger_3 = \sqrt{\dagger_1 \dagger_2}$ & height from where the particle was throw is $h = \frac{1}{2} g_1^{\dagger_1} \dagger_2$

