Тензорные разложения как инструмент сжатия нейронных сетей

Singular Matrixmen

Кафанов Степан Дворянков Роман Иудин Егор Мусаева Асият

Цель проекта

Сравнение работы CNN с использованием тензорного разложения и без него

- обучение классической resnet18
- модификация и обучение resnet18
- сравнение результатов (вычислительная сложность, память, accuracy)

Введение про тензорное разложение

Для матриц известно множество разложений.

Самые популярные для приложений:

$$A = LU$$

$$A = QR$$

$$A = U\Sigma V^*$$

рассматривали в прошлом проекте

Введение про тензорное разложение

Тензорные разложения представляют собой удобную модель структуры многомерных массивов, основанную на идее разделения переменных.

Тензоры являются обобщением матриц, структура которых также имеет повсеместное применение.

Вопросы: Можно ли также найти какие-то "хорошие" разложения, как и для матриц? Обобщается ли SVD, в частности?

Спойлер: единого обобщения нет

CPD (Canonical Polyadic decomposition)

Простейшим обобщение SVD-разложения.

 $(I \times J \times K)$

$$T(i_1,...,i_d) = \sum_{r=1}^{R} U_1(i_1,r)U_2(i_2,r)...U_d(i_d,r)$$

TKD (Tucker decomposition)

Является более устойчивым вариантом разложения. Его можно получить путём SVD-разложения вдоль каждой размерности и дальнейшего объединения результатов.

$$T(i_1, ..., i_d) = \sum_{r_1, ..., r_d} G(r_1, ..., r_d) U_1(i_1, r_1) U_2(i_2, r_2) ... U_d(i_d, r_d)$$

ResNet18

Проблема: деградация качества при добавлении новых слоев по причине затухания градиента

Решение: введение residual blocks, в котором есть skip connection

Graphic from the original paper

Classification error with Cifar-10 data. Graphic taken from the orignal paper.

Graphic from the original paper

ResNet18

ResNet-18 Architecture

Пример разложения сверточного слоя

```
* Before the decomposition:
Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
* After the decomposition:
Sequential(
 (0): Conv2d(64, 16, kernel size=(1, 1), stride=(1, 1),
bias=False)
 (1): Conv2d(3, 16, kernel size=(3, 3), stride=(1, 1), padding=(1,
1), bias=False)
 (2): Conv2d(3, 3, kernel size=(1, 1), stride=(1, 1))
```


Эксперименты

- 1. Resnet 18 -> Fine-tune (CFAR 10) -> результаты
- 2. Resnet 18 -> Fine-tune (CFAR 10) + CPD -> Fine-tune (CFAR 10) -> результаты
- 3. Resnet 18 -> Fine-tune (CFAR 10) + TKD -> Fine-tune (CFAR 10) -> результаты

Результаты экспериментов (GPU)

CPD TKD

- Вычислительная сложность: -45%
- Кол-во параметров: -50%

- Вычислительная сложность: -41%
- Кол-во параметров: -41%

	Pure	CPD	TKD
Computational complexity	37.25 MMac	20.55 Mmac (-45%)	21.81 Mmac (-41%)
Number of parameters	11.18 M	5.62 M (-50%)	6.4 M (-42%)
Accuracy	71.070%	17.840%	22.130%
Fine-tune	84% (20 эпох)	68.130% (5 эпох)	65.790% (5 эпох)

Выводы

Тензорное разложение сверточных слоев позволяется почти **в два раза** сократить количество параметров модели, число операций и при этом сохранить приемлемое качество с возможностью его повышения, если увеличить число эпох дообучения.

Планы

- На более мощном железе дообучить на большем количестве эпох, чтобы получить лучшее качество.
- Так как сжатие сети приводит к неустойчивости. В дальнейшем можно применить к факторизованным слоям нейронной сети алгоритм минимизации функции чувствительности тензорных разложений.

Ссылка на гитхаб

https://github.com/Mr-Grag-Universe/NLA_project_2.git