Complete experimental results

Here, we present the complete results of the motivation experiments. First, we will release the raw data for Section 4.1, and the results are as follows. The numbers in the first row, such as 0.8, represent the sampling ratios.

Model	80%	40%	20%	10%
CFKG	0.2444	0.1797	0.1082	0.0983
CKE	0.2453	0.1522	0.0544	0.0243
RippleNet	0.1633	0.1192	0.0774	0.0530
MCRec	0.2132	0.1243	0.0935	0.0825
KGCN	0.2149	0.1259	0.0677	0.0425
KGNNLS	0.2117	0.1281	0.0631	0.0378
KGAT	0.2583	0.1410	0.0664	0.0202
KGIN	0.2406	0.1711	0.0770	0.0289
MCCLK	0.2699	0.1759	0.0555	0.0149
KGRec	0.2560	0.1758	0.0876	0.0291
Diffkg	0.2520	0.1551	0.0479	0.0177
CL-SDKG	0.2627	0.1802	0.0621	0.0204
path _{max}	0.2132	0.1243	0.0935	0.0825
embedding _{max}	0.2453	0.1797	0.1082	0.0983
GNN_{max}	0.2727	0.1802	0.0876	0.0425
LightKG	0.2929	0.21202	0.1012	0.0861
Improve	7.41%	17.66%	15.49%	102.40%

Table 1: The Recall@10 of different models across different sparsity scenarios on Last.FM.

Model	80%	40%	20%	10%
CFKG	0.1100	0.0717	0.0329	0.0304
CKE	0.1069	0.0590	0.0200	0.0094
RippleNet	0.0656	0.0416	0.0259	0.0196
MCRec	0.0881	0.0433	0.0296	0.0231
KGCN	0.0924	0.0474	0.0232	0.0145
KGNNLS	0.0891	0.0460	0.0216	0.0110
KGAT	0.1152	0.0529	0.0227	0.0082
KGIN	0.1243	0.0667	0.0294	0.0130
MCCLK	0.1228	0.0676	0.0204	0.0058
KGRec	0.1117	0.0673	0.0310	0.0125
Diffkg	0.1192	0.0620	0.0195	0.0059
CL-SDKG	0.1054	0.0571	0.0155	0.0079
path-based _{max}	0.0881	0.0433	0.0296	0.0231
embedding _{max}	0.1100	0.0717	0.0329	0.0304
GNN _{max}	0.1243	0.0676	0.0310	0.0145
LightKG	0.1350	0.0819	0.0396	0.0267
Improve	8.61%	21.15%	27.74%	84.14%

Table 2: The MRR@10 of different models across different sparsity scenarios on Last.FM.

Model	0.8	0.4	0.2	0.1	0.05
CFKG	0.1862	0.1272	0.0925	0.0615	0.0603
CKE	0.1848	0.1136	0.0760	0.0604	0.0473
RippleNet	0.1589	0.1031	0.0694	0.0619	0.0575
MCRec	0.1610	0.1051	0.0690	0.0603	0.0550
KGCN	0.1595	0.1014	0.0738	0.0604	0.0575
KGNNLS	0.1592	0.0945	0.0711	0.0601	0.0542
KGAT	0.1738	0.1124	0.0833	0.0585	0.0311
KGIN	0.1970	0.1254	0.0802	0.0612	0.0557
MCCLK	0.1853	0.1198	0.0841	0.0523	0.0475
KGRec	0.1960	0.1290	0.0934	0.0572	0.0399
DiffKG	0.1846	0.0846	0.0615	0.0512	0.0357
CL-SDKG	0.1861	0.1122	0.0742	0.0602	0.0445
path _{max}	0.1610	0.1051	0.0694	0.0619	0.0575
embedding _{max}	0.1862	0.1272	0.0925	0.0615	0.0603
GNN_{max}	0.1970	0.1290	0.0934	0.0612	0.0575
LightKG	0.2015	0.1284	0.0996	0.0699	0.0587
Improve	2.33%	-0.47%	6.65%	14.22%	2.16%

Table 3: The Recall@10 of different models across different sparsity scenarios on ML-1M.

Model	80%	40%	20%	10%	5%
CFKG	0.3405	0.2025	0.1487	0.1077	0.1047
CKE	0.3456	0.1878	0.1354	0.1092	0.0904
RippleNet	0.306	0.1729	0.1250	0.1103	0.1021
MCRec	0.3233	0.1757	0.1245	0.1099	0.1032
KGCN	0.3055	0.1734	0.1307	0.1084	0.1029
KGNNLS	0.3051	0.1688	0.1279	0.107	0.0989
KGAT	0.3412	0.1870	0.1408	0.1101	0.0647
KGIN	0.3551	0.1976	0.1349	0.1157	0.1004
MCCLK	0.3474	0.1900	0.1431	0.1063	0.0815
KGRec	0.3570	0.2029	0.1544	0.1086	0.0834
DiffKG	0.3428	0.1594	0.1202	0.0492	0.0378
CL-SDKG	0.3428	0.1858	0.1329	0.1052	0.0857
path _{max}	0.3233	0.1757	0.125	0.1103	0.1032
embedding _{max}	0.3456	0.2025	0.1487	0.1077	0.1047
GNN _{max}	0.3570	0.2029	0.1544	0.1157	0.1029
LightKG	0.3785	0.2032	0.1491	0.1237	0.1032
Improve	6.02%	0.14%	-3.43%	5.10%	0.09%

Table 4: The MRR@10 of different models across different sparsity scenarios on ML-1M.

Model	80%	40%	20%	10%
CFKG	0.1968	0.1357	0.1098	0.0840
CKE	0.1979	0.1177	0.0631	0.0237
RippleNet	0.1561	0.1006	0.0753	0.0446
MCRec	0.1524	0.0983	0.0723	0.0461
KGCN	0.1550	0.1058	0.0757	0.0551
KGNNLS	0.1508	0.0948	0.0728	0.0525
KGAT	0.1925	0.1356	0.0679	0.0351
KGIN	0.2090	0.1455	0.0911	0.0765
MCCLK	0.2025	0.1468	0.1005	0.0671
KGRec	0.2035	0.1448	0.0986	0.0771
DiffKG	0.2039	0.1355	0.0843	0.0439
CL=SDKG	0.2036	0.1367	0.0947	0.0685
path _{max}	0.1561	0.1006	0.0753	0.0461
embedding _{max}	0.1979	0.1357	0.1098	0.0840
GNN_{max}	0.2090	0.1468	0.1005	0.0771
LightKG	0.2120	0.1582	0.1148	0.0931
Improve	1.44%	7.77%	14.23%	20.75%

Table 5: The Recall@10 of different models across different sparsity scenarios on AMZ-B.

Model	80%	40%	20%	10%
CFKG	0.0987	0.0632	0.0515	0.0422
CKE	0.1037	0.0575	0.0266	0.0146
RippleNet	0.0838	0.0484	0.0422	0.0257
MCRec	0.0791	0.0472	0.0415	0.0274
KGCN	0.0738	0.0501	0.0418	0.0309
KGNNLS	0.0750	0.0482	0.0396	0.0247
KGAT	0.0997	0.0652	0.0283	0.0169
KGIN	0.1099	0.0722	0.0452	0.0407
MCCLK	0.1065	0.0715	0.5050	0.0389
KGRec	0.1094	0.0707	0.0483	0.0415
DiffKG	0.1116	0.0622	0.0457	0.0286
CL-SDKG	0.1134	0.0635	0.0473	0.0404
path _{max}	0.0838	0.0484	0.0422	0.0274
embedding _{max}	0.1037	0.0632	0.0515	0.0422
GNN _{max}	0.1134	0.0722	0.0505	0.0415
LightKG	0.1173	0.0762	0.0577	0.0472
Improve	3.44%	5.54%	14.26%	13.73%

Table 6: The MRR@10 of different models across different sparsity scenarios on AMZ-B.

Next, we present the rest experimental results with the attention mechanism removed.

Model	80%	40%	20%	10%	5%
KGAT	0.1830	0.1124	0.0833	0.0585	0.0311
KGAT _{a-}	0.1837	0.1152	0.0795	0.0611	0.0317
KGIN	0.1970	0.1254	0.0802	0.0612	0.0557
KGIN _{a-}	0.1971	0.1250	0.0799	0.0607	0.0554
MCCLK	0.1853	0.1198	0.0841	0.0723	0.0475
MCCLK _{a-}	0.1860	0.1193	0.0841	0.0693	0.0478
KGRec	0.1960	0.1290	0.0934	0.0572	0.0399
KGRec _a _	0.1966	0.1293	0.0942	0.0600	0.0399
DiffKG	0.1846	0.0846	0.0615	0.0512	0.0357
Diffkg _{a-}	0.1892	0.0877	0.0611	0.0557	0.0391
CL-SDKG	0.1861	0.1122	0.0742	0.0602	0.0445
CL-SDKG _a _	0.1881	0.1134	0.0795	0.0611	0.0473
Average Average $_{a-}$ Improve	0.1887	0.1139	0.0795	0.0601	0.0424
	0.1901	0.1150	0.0797	0.0613	0.0435
	0.76%	0.95%	0.33%	2.02%	2.70%

Table 7: The Recall@10 after removing the attention mechanism on ML-1M.

Model	80%	40%	20%	10%
KGAT	0.1925	0.1356	0.0679	0.0351
$KGAT_{a-}$	0.1872	0.1342	0.0666	0.0316
KGIN	0.2090	0.1455	0.0911	0.0765
$KGIN_{a-}$	0.2081	0.1466	0.0901	0.0738
MCCLK	0.2025	0.1468	0.1005	0.0671
$MCCLK_{a-}$	0.2016	0.1477	0.1042	0.0671
KGRec	0.2035	0.1448	0.0986	0.0771
$KGRec_{a-}$	0.2041	0.1476	0.0976	0.0773
DiffKG	0.2039	0.1355	0.0843	0.0439
$\mathrm{Diff}\mathrm{KG}_{a-}$	0.2098	0.1394	0.0875	0.0477
CL-SDKG	0.2036	0.1367	0.0947	0.0685
CL-SDKG_{a-}	0.2050	0.1379	0.0964	0.0697
Average	0.2025	0.1408	0.0895	0.0614
$Average_{a-}$	0.2026	0.1422	0.0904	0.0612
Improve	0.07%	1.01%	0.99%	-0.28%

Table 8: The Recall@10 after removing the attention mechanism on AMZ-B.