Gabarito - Lista 04

01 - E 02 - C03 - B

04 - B

05 - B

06 - A

07 - A

08 - E

09 - C

10 - A

11 – C 12 – E

12 – E 13 – A

14 – C

15 – C

16 –

Usando o algoritmo de Kruskal, tem-se a seguinte ordem de escolhas das arestas:

A-D com peso 5

C – E com peso 5

D-F com peso 6

A – B com peso 7

B-E com peso 7

B – C com peso 8 descartada

 $E-F\ com\ peso\ 8\ descartada$

E-G com peso 9

Peso total da AGM = 39

17 - E

18 -

(a) A formulação do jogo descrito como um problema de caminho mínimo passa por fazer corresponder a cada quadrícula um nó, que será numerado de cima para baixo e da esquerda para a direita: 1, 2, 3, 4, 5, 6 . . . Entre quadrículas adjacentes existirão ramos, orientados de acordo com os movimentos no tabuleiro. A distância associada a cada ramo será o número constante na quadrícula correspondente ao nó de chegada.

Na figura seguinte está representado o problema de caminho mínimo associado ao jogo descrito.

(b) A partir da figura e utilizando o algoritmo de Dijkstra, obtém-se o quadro seguinte:

	Nós											
iter	1	2	3	4	5	6	7	8	9	10	11	12
0	0*	∞										
1	0*	4^*	∞	∞	7	∞						
2	0*	4^*	7^*	∞	7	12	∞	∞	∞	∞	∞	∞
3	0*	4^*	7^*	13	7^*	12	13	∞	∞	∞	∞	∞
4	0*	4^*	7^*	13	7^*	12	13	∞	9*	∞	∞	∞
5	0*	4^*	7^*	13	7^*	12^{*}	13	∞	9^*	12	∞	∞
6	0*	4^*	7^*	13	7^*	12^{*}	13	∞	9*	12^{*}	∞	∞
7	0*	4^*	7^*	13^{*}	7^*	12^{*}	13	∞	9*	12^{*}	13	∞
8	0*	4^*	7^*	13*	7^*	12*	13*	21	9*	12*	13	∞
9	0*	4^*	7^*	13^{*}	7^*	12^{*}	13^{*}	21	9*	12^{*}	13^{*}	∞
10	0*	4^*	7^*	13^{*}	7^*	12^{*}	13*	21	9*	12^{*}	13^{*}	21^{*}

A solução mínima para o jogo descrito no enunciado é 21, e corresponde à distância mínima entre o nó 1 e o nó 12. O percurso óptimo está representado a traço grosso na figura seguinte:

