Finite Elements: examples 1

Colin Cotter

February 15, 2016

1. For a general partition $0 = x_0 < x_1 < \ldots < x_n = 1$ of the interval [0,1], let S be the piecewise linear finite element space known as P1. Compute the entries of the matrix

$$K_{ij} = a(\phi_i, \phi_j),$$

and the right-hand side vector

$$F_i = (\phi_i, f_I),$$

where $f_I \in S$ is the interpolant of f.

Solution: The local shape functions on the reference element interval [0, 1] are

$$\psi_0(x) = 1 - x, \quad \psi_1(x) = x,$$

and so

$$\psi_0'(x) = -1, \quad \psi_1'(x) = 1.$$

For i = j we have

$$K_{ii} = \int_0^1 \phi_i'(x)\phi_i'(x) \, \mathrm{d} \, x,\tag{1}$$

$$= \sum_{i=1}^{n} \int_{x_{j-1}}^{x_j} \phi_i'(x)\phi_i'(x) \, \mathrm{d} x, \tag{2}$$

$$= \frac{1}{x_i - x_{i-1}} \int_0^1 (\psi_1'(x'))^2 dx' + \frac{1}{x_{i+1} - x_i} \int_0^1 (\psi_0'(x'))^2 dx', \tag{3}$$

$$=\frac{1}{h_{i+1}} + \frac{1}{h_i},\tag{4}$$

where we have used the change of variables

$$x = x_{i-1} + x'(x_i - x_{i-1}).$$

The first term is removed for i = n. For i = j - 1 we have

$$K_{i,i+1} = \sum_{j=1}^{n} \int_{x_{j-1}}^{x_j} \phi_i'(x)\phi_{i+1}'(x) \,\mathrm{d}\,x,\tag{5}$$

$$= \frac{1}{x_{i+1} - x_i} \int_0^1 \psi_0'(x') \psi_1'(x) \, \mathrm{d} \, x', \tag{6}$$

$$= -\frac{1}{h_{i+1}}. (7)$$

Similarly, for i = j + 1, we have

$$K_{i,i-1} = -\frac{1}{h_{i-1}}.$$

Otherwise, $K_{ij} = 0$. Similarly,

$$F_i = \int_0^1 \phi_i(x) f_I(x) \, \mathrm{d} x,\tag{8}$$

$$= \sum_{j=1}^{n} \int_{x_{j-1}}^{x_j} \phi_i(x) f_I(x) \, \mathrm{d} x, \tag{9}$$

$$= h_i \int_0^1 \psi_1(x')(f_{i-1} + x'(f_i - f_{i-1})) \, \mathrm{d}x' + h_{i+1} \int_0^1 \psi_0(x')(f_i + x'(f_{i+1} - f_i)) \, \mathrm{d}x'$$
 (10)

$$= h_i \left(\frac{f_{i-1}}{2} + \frac{f_i - f_{i-1}}{3} \right) + h_{i+1} \left(\frac{f_i}{2} + \frac{f_{i+1} - f_i}{3} \right). \tag{11}$$

For an equispaced mesh with $h_i = x_i - x_{i-1} := h$, write down the resulting discretisation. How does it relate to finite difference approximations that you have seen before?

Solution: For $h_i := h$, we have

$$\frac{-u_{i-1} + 2u_i - u_{i+1}}{h^2} = \frac{f_{i-1}}{6} + \frac{f_i}{2} + \frac{f_{i+1}}{6},$$

for i < n. This is the centred difference formula for the second derivative with an averaged value of f on the right-hand side. The classical centred difference formula is

$$\frac{-u_{i-1} + 2u_i - u_{i+1}}{h^2} = f_i.$$

2. Give a weak formulation for the following ODEs,

(a)
$$-u'' + u = f, \quad u'(0) = u'(1) = 0.$$

Solution: Let b(u, v) be

$$b(u,v) = \int_0^1 u'v' + uv \, \mathrm{d} x.$$

Define V by

$$V = \{u \in L^2([0,1]) : b(u,u) < \infty\}.$$

Then, find $u \in V$ such that

$$b(u, v) = (f, v), \quad \forall v \in V.$$

(b)
$$-u'' + u = f, \quad u'(0) = 0, \ u'(1) = \alpha.$$

Solution: Under same definitions, find $u \in V$ such that

$$b(u, v) = (f, v) - v(1)\alpha, \quad \forall v \in V.$$

(c)
$$-u'' = f, \quad u'(0) = u'(1) = 0.$$

Solution: Let a(u, v) be

$$a(u,v) = \int_0^1 u'v' \, \mathrm{d} x.$$

Define V by

$$V = \{ u \in L^2([0,1]) : a(u,u) < \infty \}.$$

Then, find $u \in V$ such that

$$a(u, v) = (f, v), \quad \forall v \in V.$$

What is wrong with the formulation of the last ODE?

Solution: The problem with this formulation is that addition on an arbitrary constant to the solution u produces another solution, so the problem is not well-posed.

- 3. For a general partition $0 = x_0 < x_1 < \ldots < x_n = 1$ of the interval [0,1], let S be the piecewise quadratic finite element space known as P2, defined by the following:
 - (a) $S \subset C^0([0,1])$.
 - (b) For $v \in S$, $v|_{[x_{j-1},x_j]}$ is a quadratic function of x.
 - (c) v(0) = 0.

Find a nodal basis for S, using the nodes for P1 plus nodes at element midpoints $(x_j + x_{j+1})/2$.

Solution: In the reference element [0,1], the nodal points are $(z_0, z_1, z_2) = (0, 0.5, 1)$. The nodal basis in the reference element satisfies

$$\psi_i(z_j) = \delta_{ij}$$
.

We get

$$\psi_i(x') = \frac{\prod_{j \neq i} (x' - x_j)}{\prod_{i \neq i} (x_i - x_j)},$$

hence,

$$\psi_0(x') = \frac{(x' - 0.5)(x' - 1)}{0.5 \times 1} = 2x'^2 - 3x' + 1,\tag{12}$$

$$\psi_1(x') = \frac{x'(x'-1)}{-0.5 \times 0.5} = -4x'^2 + 4x',\tag{13}$$

$$\psi_2(x') = \frac{x'(x'-0.5)}{0.5} = 2x'^2 - x'. \tag{14}$$

Derivatives are

$$\psi_0'(x') = 4x' - 3,\tag{15}$$

$$\psi_1'(x') = -8x' + 4,\tag{16}$$

$$\psi_2'(x') = 4x' - 1. \tag{17}$$

Evaluate the matrix K for this basis.

Solution: The local matrix is

$$\hat{K}_{ij} = \frac{1}{h} \int_0^1 \psi_i'(x) \phi_j'(x) \,\mathrm{d} x,$$

so we have

$$\hat{K}_{00} = \frac{1}{h} \int_0^1 (4x' - 3)^2 \, \mathrm{d} \, x = \frac{7}{3h},$$

$$\hat{K}_{11} = \frac{1}{h} \int_0^1 (-8x' + 4)^2 \, \mathrm{d} \, x = \frac{16}{3h},$$

$$\hat{K}_{22} = \frac{1}{h} \int_0^1 (4x' - 1)^2 \, \mathrm{d} \, x = \frac{7}{3h},$$

$$\hat{K}_{01} = \hat{K}_{10} = \frac{1}{h} \int_0^1 (4x'^2 - 3)(-8x'^2 + 4) \, \mathrm{d} \, x = -\frac{8}{3h},$$

$$\hat{K}_{02} = \hat{K}_{20} = \frac{1}{h} \int_0^1 (4x'^2 - 3)(4x'^2 - 1) \, \mathrm{d} \, x = \frac{1}{3h},$$

$$\hat{K}_{12} = \hat{K}_{21} = \frac{1}{h} \int_0^1 (-8x'^2 + 4)(4x'^2 - 1) \, \mathrm{d} \, x = \frac{-8}{3h}.$$

The local matrix is

$$\hat{K} = \begin{pmatrix} \frac{7}{3h} & -\frac{8}{3h} & \frac{1}{3h} \\ -\frac{8}{3h} & \frac{16}{3h} & \frac{-8}{3h} \\ \frac{1}{3h} & \frac{-8}{3h} & \frac{7}{3h} \end{pmatrix}.$$

Hence, if we adopt a global node numbering such that odd numbered nodes are located at subinterval midpoints, and even numbered nodes are located at subinterval boundaries, then for odd i,

$$K_{ii} = \frac{16}{3h_{i/2}}, \quad K_{i,i+1} = K_{i+1,i} = K_{i,i-1} = K_{i-1,i} = \frac{-8}{3h_{i/2}}.$$

For even i,

$$\begin{split} K_{ii} &= \frac{7}{3} \left(\frac{1}{h_{i/2}} + \frac{1}{h_{i/2+1}} \right), \\ K_{i,i-1} &= -\frac{8}{3} \frac{1}{h_{i/2}}, \\ K_{i,i-2} &= \frac{1}{3} \frac{1}{h_{i/2}}, \\ K_{i,i+1} &= -\frac{8}{3} \frac{1}{h_{i/2+1}}, \\ K_{i,i+2} &= \frac{1}{3} \frac{1}{h_{i/2+1}}. \end{split}$$

4. Under the same assumptions as Theorem 1.8, prove that

$$||u - u_I|| \le Ch^2 ||u''||.$$

(hint: make use of the fact that u(0) = 0 to write u in terms of u'.)

Solution: We aim to show that

$$\int_{x_{j-1}}^{x_j} (u - u_I)(x)^2 dx \le c(x_j - x_{j-1})^4 \int_{x_{j-1}}^{x_j} u''(x)^2 dx,$$

since summing over elements will give the result. After a change of variables to the unit interval, this is equivalent to

$$\int_0^1 w(x) \, \mathrm{d} \, x \le c \int_0^1 w''(x) \, \mathrm{d} \, x,$$

for w(0) = w(1) = 0. To show this, we write

$$w(x) = \int_0^x w'(t) \, \mathrm{d} t,$$

and therefore, from Rolle's theorem, there exists $0 \le \xi \le 1$ such that

$$w(x) = \int_0^x \int_{\varepsilon}^y w''(t) dt dy.$$

Then, by Schwartz's inequality,

$$|w(x)| \leq \int_0^x \left| \int_{\xi}^y 1 \, \mathrm{d}t \right|^{1/2} \left| \int_{\xi}^y w''(t)^2 \, \mathrm{d}t \right|^{1/2} \, \mathrm{d}y,$$

$$\leq \int_0^x |y - \xi|^{1/2} \left| \int_0^1 w''(t)^2 \, \mathrm{d}t \right|^{1/2} \, \mathrm{d}y,$$

$$\leq \frac{x}{2} \left| \int_0^1 w''(t)^2 \, \mathrm{d}t \right|^{1/2}.$$

Squaring and integrating gives

$$\int_0^1 w(x)^2 dx \le \frac{1}{4} \int_0^1 w''(x)^2 dx,$$

and we obtain the required result with c = 1/4.

5. Under the same assumptions as Theorem 1.8, prove the following version of Sobolev's inequality:

$$||v||_{\max}^2 \le Ca(v,v), \quad \forall v \in V \cap C^1([0,1]).$$

Give a value for C.

Solution: Since $v \in V$, we have v(0) = 0. Since $v \in C^1([0,1])$, we have

$$v(x) = \int_0^x v'(y) \,\mathrm{d}\,y.$$

From the Schwartz inequality, we have

$$|v(x)| \le \left| \int_0^x 1 \, \mathrm{d} \, x \right|^{1/2} \left| \int_0^x (v'(x))^2 \, \mathrm{d} \, x \right|^{1/2},$$

$$\le x^{1/2} \left| \int_0^1 (v'(x))^2 \, \mathrm{d} \, x \right|^{1/2},$$

and so

$$\max_{0 \le x \le 1} |v(x)| \le c \left| \int_0^x (v'(x))^2 \, \mathrm{d} \, x \right|^{1/2},$$

with c = 1.

6. Show that the dual basis for the cubic Hermite element determines the cubic polynomials.

Solution: Let P be a cubic polynomial on the triangle K such that $N_i(P) = 0$, i = 1, 2, 3, 4, 5, 6. Let L_1 , L_2 and L_3 be the three edges of the triangle opposite vertices z_1 , z_2 and z_3 respectively. Restricting P to L_1 , we find that $P(z_0) = P'(z_0) = P(z_1) = P'(z_1)$ where ' indicates differentiation in the direction of L_1 . Therefore $P|_{L_1}$ has double roots at z_0 and z_1 , and so $P|_{L_1} = 0$. Similar argument for the other three edges means that $P = cL_1L_2L_3$ for constant c. But, P also vanishes at the midpoint z_4 , so c = 0.

7. Let $\mathcal{I}_K f$ be the interpolant for a finite element K. Show that \mathcal{I}_K is a linear operator. Solution:

$$\mathcal{I}_K(f + \alpha g) = \sum_{i=1}^n \phi_i(x)(f + \alpha g)(x_i),$$

$$= \sum_{i=1}^n \phi_i(x)f(x_i) + \alpha \sum_{i=1}^n \phi_i(x)g(x_i),$$

$$= \mathcal{I}_K f + \alpha \mathcal{I}_K g.$$

8. Let K be a rectangle, Q_2 be the space of biquadratic polynomials, and let \mathcal{N} be the dual basis associated with the vertices, edge midpoints and the centre of the rectangle. Show that \mathcal{N} determines the finite element. Solution: Let z_i , i = 1, 2, 3, 4 be the rectangle vertices, z_i , i = 5, 6, 7, 8 be the edge midpoints, and z_9 be the rectangle centre. Let L_1 , L_2 , L_3 and L_4 be the linear functions determining the top, bottom, left and right rectangle edges respectively. Then L_1 and L_2 are functions of x only, whilst L_3 and L_4 are functions of y only. If P is biquadratic, then P restricted to L_1 is quadratic, and vanishes at three points on L_1 . Therefore, $P|_{L_1} = 0$. The same reasoning for the other three edges means that we have

$$P = cL_1L_2L_3L_4,$$

where c must be constant since $L_1L_2L_3L_4$ is biquadratic. Since P also vanishes at the rectangle centre, we conclude that P = 0 as required.

9. For K being the unit square, determine the nodal basis for the element in the previous question. Solution: The local basis functions are determined as products

$$\Phi_{3i+j}(x,y) = \phi_i(x)\phi_j(y), \quad 0 \le i, j \le 2,$$

where $\phi_i(x)$ is the 1D quadratic Lagrange basis function.