# DATA 609 - Homework 5

Joshua Sturm October 15, 2018

# Chapter 6 problems

### 1 (Page 228, exercise #1)

Consider a model for the long-term dining behavior of the students at College USA. It is found that 25% of the students who eat at the college's Grease Dining Hall return to eat there again, whereas those who eat at Sweet Dining Hall have a 93% return rate. These are the only two dining halls available on campus, and assume that all students eat at one of these halls. Formulate a model to solve for the long-term percentage of students eating at each hall.

#### 1 Solution

The transitional matrix is

```
## Markov Chain 1
## A 2 - dimensional discrete Markov Chain defined by the following states:
## Grease, Sweet
## The transition matrix (by rows) is defined as follows:
## Grease Sweet
## Grease 0.25 0.75
## Sweet 0.07 0.93
```

And the markov chain is show plotted below:



Let  $G_n$  = the percentage of students who eat at Grease Dining Hall at the end of period n. \ Let  $S_n$  = the percentage of students who eat at Sweet Dining Hall at the end of period n.

Then,

$$G_{n+1} = 0.25G_n + 0.07S_n \setminus S_{n+1} = 0.75G_n + 0.93S_n$$

We can visualize the model's prediction over time.

| ## |    | n  | Grease    | Sweet     |
|----|----|----|-----------|-----------|
| ## | 1  | 0  | 0.5000000 | 0.5000000 |
| ## | 2  | 1  | 0.1600000 | 0.8400000 |
| ## | 3  | 2  | 0.0988000 | 0.9012000 |
| ## | 4  | 3  | 0.0877840 | 0.9122160 |
| ## | 5  | 4  | 0.0858011 | 0.9141989 |
| ## | 6  | 5  | 0.0854442 | 0.9145558 |
| ## | 7  | 6  | 0.0853800 | 0.9146200 |
| ## | 8  | 7  | 0.0853684 | 0.9146316 |
| ## | 9  | 8  | 0.0853663 | 0.9146337 |
| ## | 10 | 9  | 0.0853659 | 0.9146341 |
| ## | 11 | 10 | 0.0853659 | 0.9146341 |

We can see the model converges after 10 timesteps.

To view this graphically:



## 2 (Page 232, exercise #1)

Consider a stereo with CD player, FM-AM radio tuner, speakers (dual), and power amplifier (PA) components, as displayed with the reliabilities shown in Figure 6.11. Determine the system's reliability. What assumptions are required in your model?



### 2 Solution

We can divide it into three parts: - The PA system - The CD and FM-AM radio - Speaker 1 and speaker 2 Let  $R_1, R_2$ , and  $R_3$  represent the above three parts, respectively. Then,

$$R_1 = 0.95$$
  
 $R_2 = R_2(1) + R_2(2) - (R_2(1) \times R_2(2)) = 0.98 + 0.97 - (0.98 \times 0.97) = 0.9994$   
 $R_3 = R_3(1) + R_3(2) - (R_3(1) \times R_3(2)) = 0.99 + 0.99 - (0.99 \times 0.99) = 0.9999$ 

The reliability of the system as whole is  $R_1 \times R_2 \times R_3$ .

$$R = 0.95 \times 0.9994 \times 0.9999 = 0.9493351.$$

References: - https://rpubs.com/JanpuHou/326048 - https://www.datacamp.com/community/tutorials/markov-chain-analysis-references: - https://www.datacamp.com/com/com/com/com/com/com/c