

Teoría de Homotopía

Juan Antonio Macías García
7 Julio 2014

CW-complejos, suspensión de un espacio y espacio de lazos

Fibraciones y cofibraciones

Grupos de Homotopía

CW-complejos, suspensión de un espacio y espacio de lazos

Un CW-complejo es un tipo particular de espacio topológico muy útil en la teoría de homotopía. Construimos los espacios llamados *n*-esqueletos:

$$X^0 \subset X^1 \subset \ldots \subset X^n \subset \ldots$$

Definimos entonces el CW-complejo como $X = \bigcup_{n \ge 0} X^n$.

Un ejemplo de CW-complejo es la esfera S^n . Tenemos dos construcciones posibles:

En esta descomposición, tomamos una 0-celda y una *n*-celda.

Un ejemplo de CW-complejo es la esfera S^n . Tenemos dos construcciones posibles:

En esta descomposición, tomamos una 0-celda y una *n*-celda.

Descomponemos la esfera en dos 0-celdas, dos 1-celdas, dos 2-celdas...

CW-Complejos

Una superficie orientable compacta M_g de género g está compuesta por una 0-celda, 2g 1-celdas y una 2-celda.

Suspensión y espacio de lazos

Definición

Dado un espacio topológico X, se define la suspensión de X como

$$\Sigma X = X \times I/(x,1) \sim (x',1)$$
$$(x,0) \sim (x',0)$$

Suspensión y espacio de lazos

<u>De</u>finición

Dado un espacio topológico X, se define la suspensión de X como

$$\Sigma X = {}^{\textstyle X} \times I_{/(x,1)} \sim (x',1) \\ (x,0) \sim (x',0)$$

Definición

Se define el espacio de lazos de *X* como

$$\Omega X = (X, x_0)^{(S^1, p_0)} = \{ f : I \longrightarrow X \mid f(0) = f(1) = x_0 \}$$

Suspensión y espacio de lazos

Teorema

Sean X e Y dos espacios punteados cualesquiera. Entonces $[X,\Omega Y]$ y $[\Sigma X,Y]$ son grupos. Además,

$$[X, \Omega Y] \cong [\Sigma X, Y]$$

Fibraciones y cofibraciones

Fibraciones y Cofibraciones

En distintos contextos matemáticos encontramos dos problemas básicos, común a todos ellos: el problema de la extensión y el problema del levantamiento.

Para estudiar estos problemas, vamos a ver dos conceptos: las fibraciones y las cofibraciones.

El problema de la extensión

Dado un diagrama de aplicaciones continuas

donde i es una inclusión en un contexto dado, ¿cuándo existe \widetilde{f} extensión de f?

Definición (Propiedad de extensión homotópica)

Sea $A \subset X$ un subespacio. Decimos que $i:A \hookrightarrow X$ o el par (X,A) tiene la propiedad de extensión homotópica (HEP) con respecto al espacio Y si dada una homotopía

$$G: A \times I \longrightarrow Y$$

existe $f: X \longrightarrow Y$ tal que $f(a) = G(a,0) \ \forall \ a \in A$, entonces existe $F: X \times I \longrightarrow Y$ tal que $f(x) = F(x,0) \ y \ F(a,t) = G(a,t) \ \forall \ t \in I, \ a \in A$.

Definición (Propiedad de extensión homotópica)

Sea $A \subset X$ un subespacio. Decimos que $i:A \hookrightarrow X$ o el par (X,A) tiene la propiedad de extensión homotópica (HEP) con respecto al espacio Y si dada una homotopía

$$G: A \times I \longrightarrow Y$$

existe $f: X \longrightarrow Y$ tal que $f(a) = G(a,0) \ \forall \ a \in A$, entonces existe $F: X \times I \longrightarrow Y$ tal que $f(x) = F(x,0) \ y \ F(a,t) = G(a,t) \ \forall \ t \in I, \ a \in A$.

Definición

Decimos que un par (X,A) (o la inclusión $i:A \hookrightarrow X$) es una cofibración si posee la HEP con respecto a todo espacio Y.

Adjunción de espacios

Consideramos dos espacios topológicos X e Y, un subespacio $A \subset Y$ y una aplicación $f:A \longrightarrow X$.

Definimos entonces la adjunción de los dos espacios como

$$X \cup_f Y := X \dot{\cup} Y /_{\sim}$$
, donde $x \in A \sim f(x)$.

Cilindro y cono de una aplicación

El cilindro de una aplicación f se define como:

$$M_f = Y \cup_{\widetilde{f}} (X \times I),$$

Cilindro y cono de una aplicación

El cilindro de una aplicación f se define como:

$$M_f = Y \cup_{\widetilde{f}} (X \times I),$$

El cono de f se define como:

$$C_f = {^Y \dot{\cup} \, CX}_{(x,1) \sim f(x)}$$

Cofibraciones

Podemos factorizar la función $f: X \longrightarrow Y$ como la composición $f = p \circ i$, donde i es la inclusión y p es la aplicación de retracción del cilindro al espacio Y.

Podemos factorizar la función $f: X \longrightarrow Y$ como la composición $f = p \circ i$, donde i es la inclusión y p es la aplicación de retracción del cilindro al espacio Y.

Teorema

Sea $f: X \longrightarrow Y$ una aplicación y consideremos la factorización, $f = p \circ i$. Entonces i es una cofibración y p una equivalencia de homotopía. En particular, toda aplicación f puede verse como una cofibración.

El problema del levantamiento

El otro problema con el que nos encontramos es el problema del levantamiento de aplicaciones continuas. Dado un diagrama

donde p es sobreyectiva, ¿cuándo existe \widetilde{f} levantamiento de f?

Definición (Propiedad de levantamiento homotópico)

Una aplicación $p: E \longrightarrow B$ tiene la propiedad de levantamiento homotópico (HLP) con respecto a un espacio X si dada una homotopía

$$G: X \times I \longrightarrow B$$

existe $g: X \longrightarrow E$ tal que G(x,0) = pg(x), existe entonces $\widetilde{G}: X \times I \longrightarrow E$ tal que $\widetilde{G}(x,0) = g(x)$ y $G = p \circ \widetilde{G}$.

Definición (Propiedad de levantamiento homotópico)

Una aplicación $p: E \longrightarrow B$ tiene la propiedad de levantamiento homotópico (HLP) con respecto a un espacio X si dada una homotopía

$$G: X \times I \longrightarrow B$$

existe $g: X \longrightarrow E$ tal que G(x,0) = pg(x), existe entonces $\widetilde{G}: X \times I \longrightarrow E$ tal que $\widetilde{G}(x,0) = g(x)$ y $G = p \circ \widetilde{G}$.

Definición

Decimos que la aplicación $p: E \longrightarrow B$ es una fibración si posee la HLP con respecto a cualquier espacio.

Definición

Sean $f: X \longrightarrow Z$ y $g: Y \longrightarrow Z$ dos aplicaciones con un codominio común. El pullback de las aplicaciones f y g se define:

$$P = \{(x, y) \in X \times Y \mid f(x) = g(y)\} \subset X \times Y$$

Dada $f: X \longrightarrow Y$ una aplicación cualquiera, podemos descomponerla de la siguiente forma

donde E_f es el pullback de p_1 y f.

Dada $f: X \longrightarrow Y$ una aplicación cualquiera, podemos descomponerla de la siguiente forma

donde E_f es el pullback de p_1 y f.

Teorema

Toda aplicación $f: X \longrightarrow Y$ es, salvo homotopía, una fibración.

Definición

Dado (X,x_0) un espacio topológico punteado. Definimos el grupo de homotopía n-ésimo como:

$$\pi_n(X, x_0) = [(I^n, \partial I^n), (X, x_0)], \text{ donde } I^n = [0, 1]^n.$$

Definición

Dado (X, x_0) un espacio topológico punteado. Definimos el grupo de homotopía n-ésimo como:

$$\pi_n(X, x_0) = [(I^n, \partial I^n), (X, x_0)], \text{ donde } I^n = [0, 1]^n.$$

$$(f+g)(s_1,\ldots,s_n) = \begin{cases} f(2s_1,s_2,\ldots,s_n) & \text{si } s_1 \leq \frac{1}{2}, \\ g(2s_1-1,s_2,\ldots,s_n) & \text{si } s_1 \geq \frac{1}{2}. \end{cases}$$

Definición

Dado (X, x_0) un espacio topológico punteado. Definimos el grupo de homotopía n-ésimo como:

$$\pi_n(X, x_0) = [(I^n, \partial I^n), (X, x_0)], \text{ donde } I^n = [0, 1]^n.$$

$$(f +_i g)(s_1, \dots, s_n) = \begin{cases} f(s_1, \dots, 2s_i, \dots, s_n) & \text{si } s_i \leq \frac{1}{2}, \\ g(s_1, \dots, 2s_i - 1, \dots, s_n) & \text{si } s_i \geq \frac{1}{2}. \end{cases}$$

Proposición (Argumento de Eckmann-Hilton)

Sea X un conjunto dotado de dos operaciones \bullet , \circ , y supongamos que

- 1. y ∘ poseen la misma unidad.
- 2. $\forall a, b, c, d \in X$ se verifica que

$$(a \bullet b) \circ (c \bullet d) = (a \circ c) \bullet (b \circ d).$$

Entonces \bullet y \circ coinciden, y son asociativas y conmutativas.

Proposición (Argumento de Eckmann-Hilton)

Sea X un conjunto dotado de dos operaciones \bullet , \circ , y supongamos que

- 1. y ∘ poseen la misma unidad.
- 2. $\forall a, b, c, d \in X$ se verifica que

$$(a \bullet b) \circ (c \bullet d) = (a \circ c) \bullet (b \circ d).$$

Entonces • y ∘ coinciden, y son asociativas y conmutativas.

Teorema

Si $n \ge 2$, entonces $\pi_n(X, x_0)$ es abeliano.

Grupos de Homotopía Relativa

Definición

Consideramos (X, x_0) espacio topológico punteado y A tal que $x_0 \in A \subset X$. Denominamos $I^{n-1} = \partial I^n - I^{n-1}$.

Definimos entonces el grupo de homotopía relativa *n*-ésimo como

$$\pi_n(X, A, x_0) = [(I^n, \partial I^n, J^{n-1}), (X, A, x_0)]$$

Con la anterior operación definida, $\pi_n(X, A, x_0)$ es un grupo si $n \ge 2$ y es abeliano si $n \ge 3$.

Sucesión exacta larga en homotopía

Teorema

La sucesión

$$\dots \longrightarrow \pi_n(A, x_0) \longrightarrow \pi_n(X, x_0) \longrightarrow \pi_n(X, A, x_0) \longrightarrow \pi_{n-1}(A, x_0) \longrightarrow \dots$$
$$\dots \longrightarrow \pi_1(X, A, x_0) \longrightarrow \pi_0(A, x_0) \longrightarrow \pi_0(X, x_0)$$

es exacta.

Teorema

Sea $p: E \longrightarrow B$ una fibración. Tomamos $b_0 \in B$ y un elemento x_0 de la fibra de $b_0, x_0 \in F = p^{-1}(b_0)$. Entonces

$$\pi_n(p): \pi_n(E, F, x_0) \longrightarrow \pi_n(B, b_0)$$

es isomorfismo si $n \ge 1$.

Teorema

Sea $p: E \longrightarrow B$ una fibración. Tomamos $b_0 \in B$ y un elemento x_0 de la fibra de $b_0, x_0 \in F = p^{-1}(b_0)$. Entonces

$$\pi_n(p): \pi_n(E, F, x_0) \longrightarrow \pi_n(B, b_0)$$

es isomorfismo si $n \ge 1$.

$$\dots \longrightarrow \pi_n(E, x_0) \xrightarrow{\pi_n(i)} \pi_n(E, F, x_0) \longrightarrow \pi_{n-1}(F, x_0) \longrightarrow \dots$$

$$\cong |_{\pi_n(p)} |_{\pi_n(B, b_0)}$$

Un espacio recubridor es una fibración con fibra discreta, por lo tanto $\pi_i(F,x_0)=0 \ \forall i\geq 1 \ y \ \pi_0(F,x_0)$ es el conjunto de componentes arcoconexas que contienen a x_0 .

$$0 \longrightarrow \pi_n(E, x_0) \stackrel{\cong}{\longrightarrow} \pi_n(B, b_0) \longrightarrow 0 \quad \text{si } n \ge 2,$$
$$\pi_1(E, x_0) \longrightarrow \pi_1(B, b_0) \quad \text{es inyectiva.}$$

Un espacio recubridor es una fibración con fibra discreta, por lo tanto $\pi_i(F,x_0)=0 \ \forall i\geq 1 \ y \ \pi_0(F,x_0)$ es el conjunto de componentes arcoconexas que contienen a x_0 .

$$0 \longrightarrow \pi_n(E, x_0) \stackrel{\cong}{\longrightarrow} \pi_n(B, b_0) \longrightarrow 0 \quad \text{si } n \ge 2,$$
$$\pi_1(E, x_0) \longrightarrow \pi_1(B, b_0) \quad \text{es inyectiva.}$$

Si tomamos $exp: \mathbb{R} \longrightarrow S^1$ espacio recubridor, tenemos que

$$\pi_i(S^1) = 0, \ i \ge 2; \qquad \pi_1(S^1) = \mathbb{Z}.$$

Considerando el espacio proyectivo complejo definido como

$$\mathbb{C}P^n = S^{2n+1}/\sim$$
.

De esta forma, obtenemos un fibrado

$$S^1 \longrightarrow S^{2n+1} \longrightarrow \mathbb{C}P^n$$
.

Si
$$n = 1$$
,

$$S^1 \longrightarrow S^3 \longrightarrow S^2$$

$$\underbrace{\pi_n(S^1)}_{=0} \longrightarrow \pi_n(S^3) \xrightarrow{\cong} \pi_n(S^2) \longrightarrow \underbrace{\pi_{n-1}(S^1)}_{=0} \longrightarrow \dots$$

$$\dots \longrightarrow \underbrace{\pi_2(S^1)}_{=0} \longrightarrow \underbrace{\pi_2(S^3)}_{=0} \longrightarrow \pi_2(S^2) \xrightarrow{\cong} \underbrace{\pi_1(S^1)}_{=\mathbb{Z}} \longrightarrow \underbrace{\pi_1(S^3)}_{=0} \longrightarrow \underbrace{\pi_1(S^2)}_{=0}$$

Por tanto, obtenemos que

$$\begin{cases} \pi_n(S^3) = \pi_n(S^2) & \text{si } n \ge 3 \\ \pi_2(S^2) = \mathbb{Z} \end{cases}$$