Verificación de Hablantes a través de la Voz Trabajo Final de Procesamiento Digital de Señales

Iván F. Schweikofski, Camila Saucedo y Darién J. Ramírez Tutor: Matias F. Gerard

Introducción

Identificación automática del hablante

Identificación del hablante

Decidir si la persona está o no dentro de un conjunto de personas.

Verificación del hablante

Decidir si el hablante es quien dice ser.

Implementación

- Base de datos.
- Señal de entrada.
- Ventaneo de la señal de entrada.
- Selección de ventanas sonoras.
- **5** Extracción de características $(F_0, \text{ Formantes y MFCC}).$
- Comparación mediante DTW.
- Decisión.

Sonidos sonoros y sonidos sordos

Ventaneo con ventanas sonoras.

- Sonidos sonoros: baja cantidad de cruces por cero y alta energía. Periodicidad.
- Sonidos sordos: mayor densidad de cruces por cero y menor energía.

Frecuencia fundamental F_0

Autocorrelación.

$$\frac{1}{fmax} = \frac{1}{300} \le T_0 \le \frac{1}{50} = \frac{1}{f_{min}}$$

Preénfasis

$$y[n] = x[n] - ax[n-1]$$
 $0.9 \le a \le 0.97$ $y[1] = x[1]$

$$0.9 \le a \le 0.9$$

$$y[1] = x[1]$$

Frecuencias formantes

- Respuesta en frecuencia. Predicción lineal. Wiener-Hopf.
- Parámetros del sistema y factor de ganancia. Levinson-Durbin.
- \bullet H(z). Máximos locales.

MFCC.

- Ventana. DFT.
- Filtros triangulares.

$$F_{mel} = 1000 \log_2 \left(1 + \frac{F_{Hz}}{1000} \right)$$

4 IDFT.

DTW

Intento / Persona	F_0	Formantes	MFCC
1	OK	OK	OK
2	OK	ERROR	OK
3	OK	OK	OK
4	OK	ERROR	OK
5	ERROR	OK	OK
6	OK	OK	OK
7	OK	OK	OK
8	OK	ERROR	OK
9	ERROR	ERROR	ERROR
10	ERROR	OK	OK

DTW - Formantes

		Valor real	
		V	F
Valor predicto	V	8	2
	F	1	9

Sensibilidad:
$$\frac{VP}{(VP+FN)}=\frac{8}{8+2}=0.8$$
 Especificidad: $\frac{VN}{(VN+FP)}=\frac{9}{9+1}=0.9$

Ruido blanco:

$$\mu=0, \sigma=0.5$$
 $SNR=45[dB]$ 9/10 aciertos.

Ruido ambiente:

$$SNR = 30[dB]$$

 $10/10$ aciertos
 $SNR = 25[dB]$
 $7/10$ aciertos

Conclusiones

- F_0 por si sola no es un buen método de verificación pero complementa.
- 2 Las formantes son poco precisas. Suelen arrojar falsos negativos.
- Substitution de la localitation de la localitati
- Todos los métodos son poco robustos al ruido, para que la verificación sea correcta, se necesita una relación señal/ruido de al menos 30 dB.
- Ante la distorsión de la voz de una persona que se encontraba pregrabada en la base de datos, la verificación se muestra inestable.

Preguntas

¿Preguntas?