(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-152508

(43)公開日 平成5年(1993)6月18日

技術表示箇所 F I 庁内整理番号 識別記号 (51)Int.Cl.⁵ H01L 25/065 25/07 25/18 B HOIL 25/08 7220-4M 審査請求 未請求 請求項の数 2(全 4 頁) (71)出願人 000004237 特願平3-335977 (21)出願番号 日本電気株式会社 東京都港区芝五丁目7番1号 平成3年(1991)11月27日 (22)出願日 (72)発明者 松永 孝子 東京都港区芝五丁目7番1号 日本電気株 式会社内 (74)代理人 弁理士 鈴木 章夫

(54)【発明の名称】 半導体装置

(57)【要約】

【目的】 半導体チップを封止する樹脂に蓄積される電 荷によって、素子低圧部における反転が生じ、これが原 因とされるリーク等の基本動作異常を防止して信頼性の 高い半導体装置を得る。

【構成】 樹脂1で封止する半導体チップ4に設けた低 圧部24を覆うように別の半導体チップ5を搭載し、各 半導体チップ4、5の導電層(サブストレート9等)で 低圧部24を包囲する。このため、低圧部24は導電層 9によって樹脂1とは電気的に遮蔽され、樹脂1に電荷 が蓄積された場合でも、低圧部24における反転及びリ ークが防止される。

【特許請求の範囲】

【請求項1】 高圧部と低圧部の素子を表面に形成した 半導体チップを樹脂封止してなる半導体装置において、 一の半導体チップ上に少なくとも前記低圧部を覆うよう に別の半導体チップを搭載し、前記低圧部を各半導体チ ップの各導電層で包囲するように構成したことを特徴と する半導体装置。

【請求項2】 別の半導体チップは素子形成面を前記一 の半導体チップの素子形成面に対向させ、バンプ電極に よって相互に電気接続してなる請求項1の半導体装置。 【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は半導体装置に関し、特に 高圧部と低圧部とを持ち樹脂封止される半導体装置に関 する。

[0002]

【従来の技術】高圧部と低圧部とをもつ樹脂封止型の半 導体装置の一例を図4乃至図6に示す。図4は断面図、 図5はその一部の拡大図、図6は平面構成図である。と 4をマウントし、ポンディングワイヤ6によってリード 3と接続している。その上で、全体を樹脂1で封止して いる。このとき、半導体チップ4は素子形成を行わない チップ裏面側をアイランド2にマウントし、素子形成を 行うチップ表面を樹脂1と接している。素子は中央領域 に設けた低圧部24と、その周囲に設けた高圧部25と で構成される。

【0003】アイランド2及び半導体チップ4の素子形 成領域は、図5のように、フィールド酸化膜15で画成 されたP- サブストレート9内にNウェル領域10を形 30 成し、イオン注入或いは拡散によってP・ガードリング 領域11、N'ガードリング領域12、P'領域13 N・領域14等を形成している。これにポリシリコンゲ ート電極16、酸化膜19及びアルミニウム電極17を 設けてPchMOS、NchMOSを形成し、CMOS構造 を実現している。このチップ表面はカバー用絶縁膜20 で覆われて樹脂1と接し、チップ裏面はP゚サブストレ ート9がアイランド2にマウントされて、アイランド2 が樹脂1と接している。

[0004]

【発明が解決しようとする課題】この従来の半導体装置 では、低圧部24は1~10V程度の低い電圧範囲で動作 するが、高圧部25には10~300V程度の電圧が印加さ れる。このため、半導体の実使用時には、リード3及び ボンディングワイヤ6に高電圧がかかることになる。図 6に示すように、半導体チップ4は外周部を多数のボン ディングワイヤ6でとり囲まれているため、ボンディン グワイヤ6及びリード3にプラスの高電圧が印加される と、強電界によりモールド用の樹脂1内の可動イオンの 移動や分極により、ボンディングワイヤ6から遠い半導 50 7を設け、PchMOS, NchMOSを形成し、CMOS

体チップ4の中央部で素子形成領域と接する樹脂1面に

プラスの電荷がたまる。このプラス電荷から伸びる電気 力線はフィールド酸化膜15下のP* ガードリング領域 11を反転させる。

【0005】又、ボンディングワイヤ6及びリード3に マイナスの高電圧が印加されると、逆にフィールド酸化 膜15下のN¹ガードリング領域12が反転する。この 現象は髙圧印加を考慮されていない上、レイアウト上チ ップ中央部に配置されることの多い低圧部24において 特に顕著であり、この反転により発生するリーク電流は 印加電圧が高く、印加時間が長い程増加し、高温、高電 圧印加による信頼性評価結果によれば4時間程度の電圧 印加で103~107倍にも増加し、半導体装置の基本動作 異常となり、信頼性を著しく低下させる原因となってい る。本発明の目的は、このような基本動作異常を防止し て信頼性の高い半導体装置を提供することにある。

[0006]

【課題を解決するための手段】本発明の半導体装置は、 樹脂封止する半導体チップに設けた低圧部を覆うように れらの図に示すように、アイランド2上に半導体チップ 20 別の半導体チップを搭載し、各半導体チップの導電層で 低圧部を包囲するように構成する。例えば、別の半導体 チップは素子形成面を一の半導体チップの素子形成面に 対向させ、バンプ電極によって相互に電気接続する。

[0007]

【作用】低圧部は両半導体チップの導電層によって包囲 されるため、樹脂とは電気的に遮蔽された状態となり、 樹脂に蓄積される電荷による影響を解消する。

[0008]

【実施例】次に、本発明について図面を参照して説明す る。図1は本発明の一実施例の断面図、図2はその要部 の拡大断面図、図3は全体平面図である。アイランド2 上に半導体チップ4をマウントし、ボンディングワイヤ 6によってリード3と接続し、素子形成を行わないチッ プ裏面側をアイランド2に接している。又、半導体チッ プ4には高圧用素子を形成した高圧部25と、低圧用素 子を形成した低圧部24が形成されるが、この低圧部2 4はチップの中央部分に形成される。そして、半導体チ ップ4よりも小さく形成された他の半導体チップ5を表 面を下向きにして半導体チップ4の低圧部24の上に載 40 せ、素子形成を行うチップ表面部に設けたバンプ電極8 によって、半導体チップ4の表面部の電極と接着させて いる。その上で、全体を樹脂1で封止している。

【0009】図2に示すように、半導体装置チップ4及 び5のいずれも、フィールド酸化膜15で画成された素 子領域のP・サブストレート9内にNウェル領域10を 形成し、イオン注入或いは拡散によってP・ガードリン グ領域11、N ガードリング領域12、P 領域1 3、N⁺ 領域14等を形成している。これにポリシリコ ンゲート電極16、酸化膜19及びアルミニウム電極1

構造の低圧部24を構成している。

【0010】そして、半導体チップ4、5は層間絶縁膜 18上に設けたアルミニウムパッド21をカバー用絶縁 膜20の窓を通してバンプ8により相互に接続してい る。これにより、素子形成を行わない P- サブストレー ト9による導電層が低圧部24を包囲することになり、 この導電層で低圧部24と樹脂1との間を電気的に遮蔽 している。

【0011】したがって、ボンディングワイヤ6及びリ ード3に高圧電位が印加された場合に、素子形成領域と 10 【図3】図1の平面図である。 接する樹脂1面にプラスあるいはマイナスの電荷が蓄積 されても、半導体チップ4,5の各低圧部24は導電層 によって電気的にシールドされ、フィールド酸化膜15 下の反転が発生せず、リークは発生せず、信頼性が向上 されることになる。

【0012】因に、本発明者の実験によれば、従来では 4時間程度の電圧印加で10°~10′倍にも増加して いたリーク電流が、本発明によれば全く増加することが なく、リーク不良、動作異常等の発生が防止され、信頼 性が向上されたことが確認されている。

[0013]

【発明の効果】以上説明したように本発明は、一の半導 体チップと、この上に搭載した別の半導体チップの各導 電層によって低圧部を包囲しているので、低圧部と樹脂 とを導電層によって遮蔽でき、、ボンディングワイヤ及* * びリードに高圧電位が印加されて樹脂面に電荷が蓄積さ れた場合でも、低圧部における反転が発生せず、リーク を防止して半導体装置の信頼性を向上させるという効果 を有する。

【図面の簡単な説明】

【図1】本発明の半導体装置の一実施例の全体構成を示 す断面図である。

【図2】図1の要部の内部構成を示す拡大断面図であ る。

【図4】従来の半導体装置の全体構成を示す断面図であ る。

【図5】図4の一部の内部構成を示す拡大断面図であ る。

【図6】図4の平面図である。

【符号の説明】

- 1 樹脂
- 2 アイランド
- 3 リード
- 20 4 一の半導体チップ
 - 5 別の半導体装置
 - 6 ボンディングワイヤ
 - 9 サブストレート
 - 24 低圧部
 - 25 高圧部

【図1】

[図3]

[図2]

【図4】

[図6]

【図5】

