Class 61

(8) T^* 1-1 \Rightarrow T dense range (Ex.4.13.3 (b))

Meaning: the <u>existence</u> & <u>uniqueness</u> of solu. of $\underline{Tx = y}$ & $\underline{T^*y^* = x^*}$ are related.

Ex.
$$T = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 on \Box ²

$$\therefore \begin{cases} ax_1 + bx_2 = y_1 \\ cx_1 + dx_2 = y_2 \end{cases}$$
 has solu $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \forall \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$

$$\Leftrightarrow \begin{cases} \overline{a}x_1 + \overline{c}x_2 = y_1 \\ \overline{b}x_1 + \overline{d}x_2 = y_2 \end{cases}$$
 solu $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ unique (if exist)

(9) In general, $\overline{\operatorname{ran} T}^* \subset \ker T^{\perp}$

Pf.: Let
$$x^* \in \overline{\operatorname{ran}}T^*$$

$$\therefore \exists y_n^* \in Y^* \ni T^* y_n^* \to x^* \text{ in } \|\cdot\|$$

Check: $\forall x \in \ker T$, $x^*(x) = 0$

$$(T^*y_n^*)(x)$$

$$||$$

$$y_n^*(Tx) = 0$$

(10) T^* dense range $\Rightarrow T$ 1-1

Pf.:
$$\because \operatorname{ran} T^* = X^* \subseteq (\ker T)^{\perp}$$

$$\Rightarrow (\ker T)^{\perp} = X^*$$

$$\Rightarrow (\ker T)^{\perp \perp} = X^{*\perp} = \{0\} \Rightarrow T \text{ is } 1\text{-}1$$

$$\text{ker } T \text{ by (5) needs Hahn-Banach Thm}$$

(11) (Banach's closed range thm)

X, Y Banach spaces, $T \in B(X, Y)$.

Then ranT closed $\Leftrightarrow ranT^*$ closed.

Moreover, in this case, $ran T^* = \ker T^{\perp}$

Lma. X, Y Banach spaces, $T \in B(X, Y)$

If ranT closed, then $\exists K > 0 \ni \forall y \in \text{ran}T$, $\exists x \in X \ni Tx = y \& ||x|| \le K \cdot ||y||$

Idea: Inverse mapping thm.

Meaning: If T 1-1, then $T: X \to \operatorname{ran} T$ 1-1, onto, conti. & both Banach spaces

 \therefore Inverse mapping thm $\Rightarrow T^{-1}$: ran $T \to X$ conti.

$$||x|| = ||T^{-1}y|| \le ||T^{-1}|| \cdot ||y||$$

Pf.: $:: T : X \to ranT$ onto, linear, bdd & ranT Banach space

$$\tilde{T}(\tilde{x}) = Tx$$

 $:: \tilde{T}: X / \ker T \to \operatorname{ran} T$ 1-1 onto, bdd

$$||Tx||$$

$$||T(x+x_1)|| \le ||T|| \cdot ||x+x_1|| \quad \forall x_1 \in \ker T$$

$$\Rightarrow ||Tx|| \le ||T|| \cdot ||\tilde{x}||$$

$$||\tilde{T}\tilde{x}||$$

$$\Rightarrow ||\tilde{T}|| \le ||T||$$

 $\Rightarrow \tilde{T}^{-1}$: ran $T \to X$ / ker T bdd (by Inverse mapping thm)

$$\therefore \text{ For } y \in \text{ran}T, \ \left\|\tilde{T}^{-1}y\right\| \le \left\|\tilde{T}^{-1}\right\| \cdot \left\|y\right\|$$

Tx for some $x \parallel \tilde{x} \parallel$

$$\inf \left\{ \|x + z\| : z \in \ker T \right\}$$

$$\therefore \exists z \in \ker T \ni ||x + z|| \le \left(\left\| \tilde{T}^{-1} \right\| ||y|| \right) + ||y|| \text{ (May assume } y \ne 0).$$

$$||x+z|| \le (||\tilde{T}^{-1}||+1) \cdot ||y||$$
, where $T(x+z) = Tx = y$.

Pf. of (11). "
$$\Rightarrow$$
": Check: ran $T^* = \ker T^{\perp}$

$$"\subseteq ": \operatorname{ran} T^* \subseteq \overline{\operatorname{ran} T^*} \subseteq \ker T^{\perp} \operatorname{by}(9)$$

Check: "⊇" (need open-mapping thm & <u>Hahn-Banach thm</u>)

Let $x^* \in \ker T^{\perp}$

Define
$$y^* : ran T \to F$$
 by $y^*(Tx) = x^*(x) \ \forall x \in X$

(1) y^* well-defined:

Check:
$$Tx_1 = Tx_2 \Rightarrow x^*(x_1) = x^*(x_2)$$

$$T(x_1 - x_2) = 0$$

$$\downarrow x_1 - x_2 \in \ker T$$

$$\downarrow x^*(x_1 - x_2) = 0$$

- (2) y^* linear
- $(3) y^* bdd$:

Lma $\Rightarrow \forall y \in \text{ran}T, \exists x \in X \ni Tx = y \& ||x|| \le K \cdot ||y||.$

Hahn-Banach Thm \Rightarrow extend y^* to $Y \ni ||y^*||$ preserved

$$\therefore y^* \in Y^*$$

$$\therefore \text{Check: } T^* y^* = x^*$$

Check:
$$(T^*y^*)(x) = x^*(x) \forall x \in X$$

$$y^*(Tx)$$

$$:: \operatorname{ran} T^* = (\ker T)^{\perp} \text{ is closed.}$$

Cor. ranT closed

Then T 1-1 \Leftrightarrow T^* onto. (i.e. uniqueness of $Tx = y \Leftrightarrow$ existence of $T^*y^* = x^*$

Note: $||Tx|| \ge \delta ||x||$ for some $\delta > 0$ & $\forall x \Rightarrow \text{ran} T$ closed.

Pf.: Say, $Tx_n \rightarrow y$

Then
$$||Tx_n - Tx_m|| \ge \delta ||x_n - x_m||$$

$$\Rightarrow \{x_n\}$$
 Cauchy

Say,
$$x_n \to x$$

$$\Rightarrow Tx_n \to Tx$$

$$\therefore y = Tx \in \operatorname{ran} T$$

 \Rightarrow ranT closed

Homework:

Sec. 4.13. Ex. 4,5

Sec. 4.14. Conjugate space of L^p :

(F.Riesz, 1918)

Thm. (X, Ω, u) (positive) measure space, $1 , <math>\frac{1}{p} + \frac{1}{q} = 1$ ($\Rightarrow 1 < q < \infty$).

Then
$$L^p(u)^* \cong L^q(u)$$

(isometric isomorphic)

Pf.: (1)
$$\forall g \in L^q(X,u), x_g^*(f) \equiv \int fg du$$
 defines a bdd linear functional on $L^p(X,u)$ & $\|x_g^*\| \leq \|g\|_q$.

Pf.:
$$x_g^*$$
 linear in f . (i.e. $x_g^* (\alpha_1 f_1 + \alpha_2 f_2) = \alpha_1 x_g^* (f_1) + \alpha_2 x_g^* (f_2)$)

Hölder's
$$\leq \Rightarrow \left| \int fg du \right| \leq \left\| f \right\|_p \cdot \left\| g \right\|_q$$

$$\therefore \left| x_g^* (f) \right|$$

$$\therefore \left\| x_g^* \right\| \leq \left\| g \right\|_q$$

$$(2) x_{\alpha g_1 + \beta g_2}^* = \alpha x_{g_1}^* + \beta x_{g_2}^*$$

Check: $g \mapsto x_g^*$ is onto.

(cf. J.B.Conway, A course in functional analysis, Appen. B)

(3)
$$\forall x^* \in L^p(X, u)^*$$
, $\exists g \in L^q(X, u) \ni x^* = x_g^*$ & $\|x^*\| = \|g\|_q$

(I) Assume
$$u(X) < \infty$$

$$\forall V \in \Omega, \chi_V \in L^p$$

Define
$$v(V) = x^*(\chi_V) \in F$$

Check: (1)
$$v(\varnothing) = x^*(\chi_{\varnothing}) = x^*(0) = 0$$

(2) υ countably additive:

Let
$$\{V_n\}$$
 disjoint in Ω

Check:
$$\upsilon\left(\bigcup_{n}V_{n}\right) = \sum_{n}\upsilon(V_{n})$$

$$x^* \left(\chi_{\bigcup V_n} \right) \sum_n x^* \left(\chi_{V_n} \right)$$

$$x^*$$
 conti.

$$\begin{array}{c}
\therefore x^* \text{ conti.} \\
\text{Check: } \sum_{k=1}^{n} \chi_{V_k} \to \chi_{\bigcup V_n} \text{ in } L^p
\end{array}$$

$$\therefore \int_{X} \left| \sum_{k=n+1}^{\infty} \chi_{V_{k}} \right|^{p} du = \int_{k=n+1}^{\infty} \chi_{V_{k}} du = \sum_{k=n+1}^{\infty} u(V_{k}) \xrightarrow{\uparrow} 0 \text{ as } n \to 0$$

$$\therefore \left| \sum_{n} u(V_n) = u \left(\bigcup_{n} V_n \right) < \infty \right|$$

 $\therefore v$ (signed) measure

Moreover,
$$u(V) = 0 \Rightarrow \chi_V = 0$$
 a.e. $\Rightarrow \upsilon(V) = x^*(\chi_V) = x^*(0) = 0$.

∴*v* << *u*

∴ Radon-Nikodym Thm
$$\Rightarrow$$
 \exists meas. $g \ni \upsilon(V) = \int_V g du \ \forall V \in \Omega$

$$\parallel \qquad \parallel$$

$$x^*(\chi_V) \quad \int \chi_V g du$$

In parti., $V = X \Rightarrow g$ integrable on $X \Rightarrow g$ finite a.e.

$$\Rightarrow x^*(f) = \int fg du \ \forall \text{ simple } f.$$

