

No.3 Dancing Coin

重庆大学代表队

马祥芸

Problem 题目

Take a strongly cooled bottle and put a coin on its neck. Over time you will hear a noise and see movements of the coin.

Explain this phenomenon and investigate how the relevant parameters affect the dance.

拿一个强烈冷却的瓶子,然后把一个硬币放在瓶颈口上。一段时间后你会听到噪音并观察到这个硬币的运动。解释这一现象,并研究相关参数如何影响这个舞蹈。

特征量描述

Experiment 实验

标准实	验环境	整体图
容积	330ml	
硬币	第五版一元硬币	
室温	296. 15°C±1K	
冷冻温度	-249.15K±1K	
加热温度	333.15K±1K	THE PARTY OF THE P
浸没深度	80.0mm±1mm	
保持水平		上海 (

Noise 噪音

- 利用Adobe Audition音频分析软件 捕获了硬币跳动的声音
- 跳动产生的声音分贝随时间并没有明显的规律,具有较强随机性

在跳动声音前,多次捕获到异常增大的频率约14K

Data Collection 数据收集

改变了标准实验下硬币个数与容器体积,对硬币跳起高度进行了测量:

• 高度的跳动具有较强的随机性

2018/8/19

Problem No.3 Dancing Coin

5

Data Collection 数据收集

标准实验跳起间隔测量:

• 跳动间隔可以用作描述硬币跳动现象的"特征量"

Theoretical Analysis 理论分析

- 抽象建模
- 气体温度函数求解
- 硬币运动分析

Heat Transfer 传热

①傅里叶定律:

单位时间内通过给定截面的热量,正比例于垂直于该截面方向上的温度变化率和截面面积。

$$\frac{\mathrm{dQ}}{\mathrm{d}t} = -\lambda A \frac{\mathrm{d}T}{\mathrm{d}D}$$

②变截面热传导:

简化计算引入对数平均半径:

$$r_m = \frac{\mathbf{r}_2 - r_1}{\ln(\frac{r_2}{r_1})}$$

将变截面积转化为定截面积

#在r2=2 r1时, 计算误差不超过5%

Heat Transfer 传热

数据及	及符号
T_{t}	加热温度(K)
T_f	冷冻温度(K)
T_{k}	标况温度(K)

吸收热量

损失热量

$$dQ_1 = \frac{2\pi r_{m1}h_1\lambda}{D}(T_t - T)dt$$

$$dQ_2 = \frac{\pi r_0^2\lambda}{D}(T_t - T)dt$$

$$dQ_3 = \frac{2\pi r_{m2}h_2\lambda}{D}(T_f - T)dt$$

$$dQ_4 = \frac{\pi \lambda L_1 (r_{m1} + r_{m2})}{D} (T_f - T) dt$$

$$dQ_5 = \frac{\pi \lambda L_2(r_{m2} + r_{m3})}{D} \left(T_f - T \right) dt$$

$$dQ_{total} = dQ_1 + dQ_2 + dQ_3 + dQ_4 + dQ_5$$

Heat Transfer 传热

• 硬币跳起前为等体升温:

$$dQ = \nu C_{V,m} dT$$

$$dT = \frac{dQ}{\nu C_{V,m}}$$

• 初始物质的量:

$$v = \frac{V}{V'_{m}}$$

$$v_0 = \frac{T_0}{T_k} \frac{V}{V_m}$$

•温度函数:

$$\longrightarrow T = \int_0^t dT$$

10

#A数据引自MatWeb

#Vm可引自Heat Capacity and Equipartition of Energy From Physics LibreTexts

2018/8/19

Problem No.3 Dancing Coin

Gas Temperature 气体温度

- 气体在极短时间内上升到最大稳态温度 $T_{max} = 312.67K$
- 与Comsol模拟最大稳态温度的**误差**E = 5.70%
- 因此气体快速升温膨胀对硬币做功释放气体

t/s

Equation of motion of Coins 硬币运动方程

液层拉伸更大容易破裂

硬币中心不重合

 $L_{\rm p} > L_{\rm 0}$ (以红色五角星为支点)

稳态: $F_{\mathbf{p}}L_{\mathbf{p}} = F_{\mathbf{0}}L_{\mathbf{0}}$

持续升温Fp增大

稳态打破而转动: $F_pL_p > F_0L_0$

- 气体分子被快速压出瓶子,突破水层形成噪音
- 损失一定物质的量△v,瓶内的高温气体补充上来继续跳动

Critical Temperature 临界温度

$$(F_{P}L_{P} - F_{0}L_{0})dt = Iw$$
 $E_{k} = \frac{1}{2}Iw^{2} = 2mg\overline{h_{c}}$
 $\Delta \bar{p} = \frac{F_{p}}{\pi r_{inside}^{2}}$
 $\Delta \bar{p}V = vR\Delta \bar{T}$

$$= \frac{1}{2}Iw^{2} = 2mg\overline{h_{c}}$$

$$\Delta \bar{p} = \frac{F_{p}}{\pi r_{inside}^{2}}$$

$$\Delta \bar{T} = \frac{V(F_{0}L_{0}dt + 2\sqrt{mgI\overline{h_{c}}})}{\pi r_{inside}^{2}L_{p}vRdt}$$

$$\downarrow F_{p}(L_{p})$$

$$\downarrow T_{p}(L_{p})$$

$$\downarrow T_{p}(L_{p})$$

标准实验下作用时间:

$$dt \approx 0.013$$
s (远小于跳起间隔)
$$\overline{h_c} = 0.298mm$$
 (实验测量90个样本点)

初次跳起所需温度,带入vo:

$$\overline{T_{Require}} = \Delta \overline{T} + T_k = 250.32 \text{K} < T_{max} = 312.67 \text{K}$$

硬币由连续跳动模式释放气体分子至临界温度超过 T_{max} ,进入随机跳动模式

Pattern Transformation 模式转化

The Loss of v 物质的量的损失

- 由Traker可知, 跳起过程的时间大约为Δt ≈0.033s
- 对压强做二次衰减近似,高度上升做线性近似

待测	则量
质心跳起高度	$\overline{h_c}$
平均时间间隔	$\overline{\Delta t}$

	俯	视	冬
--	---	---	---

伯努利原理:
$$\frac{1}{2}\rho V_{speed}^2 = \Delta \bar{p} + at^2 + bt$$

$$h_c = k_2 t$$

$$V_{loss} = K \int_0^{0.033} \pi \overline{h_c} \left[\left(V_{speed} t \right)^2 + V_{speed} t L_0 \right] dt$$

п

 $v_{loss} = rac{V_{loss}}{V_{m}}$ 第一跳动模式次数:

$$n = \frac{v_0 - (\frac{\bar{p}V}{RT_{max}})}{v_{loss}}$$

Investigate Parameters 研究参数

- 改变硬币质量
- 改变加热温度
- 改变浸没深度

Change The Mass 改变质量

- 为硬币添加配重块,每个质量≈3.58±0.02g:
 - 添加第一个磁铁, $\overline{\Delta t} = 0.397s$,跳动高度难以测量
 - 添加第二个磁铁, 第一跳动模式消失, Δt普遍很大
 - 当磁铁加到第三个时,硬币几乎不跳动

• 结论:

- 硬币的跳动与硬币本身的质量有极大关系
- 在硬币质量在一元硬币附近时, 跳动模式比较明显

Heating Temperature Change 加热温度改变

Change The Immersion Depth 改变浸没深度

19

Verify 验证

实验编号	
303.15K	
313.15K	
323.15K	
343.15K	
30mm	
40mm	
50mm	
60mm	
70mm	

- 实验上发现加热温度越高跳动次数越多
- 理论求解第一模式跳动次数与实验次数高度符合

总结

- · 通过数据分析找出了硬币跳动的"特征量△t"
- 对实验进行了抽象建模并计算出了气体温度函数,与模拟值相差5.7%
- 对硬币的运动现象进行了分析
- 理论上计算了第一跳动模式的次数
- 对以下参数进行了研究:
 - · 加热温度: △t对温度改变不敏感, 温度越高△t越小
 - · 浸没深度: 随着浸没深度的增大, △t变小
 - 硬币质量: 对△t影响巨大, 高度难以测量, 跳动模式不清晰
- 通过变异系数验证了对同一实验△t均匀的猜想
- 对所有实验的第一跳动模式次数进行了求解, 与理论较好符合

Thanks For Listening!

Interval时间间隔

- · △t均匀性分析:
 - 变数系数 = $\frac{标准差}{平均值}$

•	参考标准实验的第二跳动模式的	变异系数=0.8

实验编号	
1	303.15K
2	313.15K
3	323.15K
4	333.15K
5	343.15K
6	30.0mm
7	40.0mm
8	50.0mm
9	60.0mm
10	70.0mm
11	单配重

Dancing Mode Translation 跳动模式转化

24

由于瓶壁的温度在上升,所以散热在不断减少 T_{max} 在缓慢增大

$$\Delta \bar{T} = \frac{V(F_0 L_0 dt + 2\sqrt{mgI\overline{h_c}})}{\pi r_{inside}^2 L_p \mathbf{v} R dt}$$

与物质的量成反比, 而物质的量不断减少。所以

 $T_{require}$ 急剧增大 当 $T_{require} > T_{max}$

进入第二跳动模式。由于 T_{max} 在缓慢增大,所以跳动不会停止。同时两种模式的过渡是缓慢的

浸没深度	跳动间隔	跳动高度	跳动次数	理论	
70mm 311.511	0.270s	0.547mm	68	71.6412	
60mm 310.305	0.395s	0.748mm	52	57.2036	
50mm 308.906	0.415s	0.756mm	58	55.3948	
40mm 307.325	0.442s	0.947mm	43	43.5068	
30mm 305.524	0.505s	0.979mm	46	43.2079	
温度	跳动间隔	跳动高度		跳动次数	理计

温度	跳动间隔	跳动高度	跳动次数	理论
70	0.252s	0.5568mm	71	75.202
50	0.39s	0.712mm	54	56.478
40	0.350s	0.752mm	45	46.6932
30	0.352s	0.689mm	37	42.8099

理论上 $C_{V,m}$ 对于气体而言并非定值,其值会随着温度的升高而变大。 双原子分子氢气,它的 $C_{V,m}$ -T图如下

温度在200K-1000K(-73°C -727°C——实验温度范围内)之间 $C_{V,m}\approx\frac{5}{2}R$ 其它双原子气体的 $C_{V,m}$ 随温度变化的情况也与氢气相似仅在高温趋近 $\frac{7}{2}R$ 因此空气的 $C_{V,m}\approx\frac{5}{2}R$

29

数据及符号			
r_0	29. 8mm		
r_{m1}	27. 5mm		
r_{m2}	17. 9mm		
r_{m3}	10.8mm		
L_1	25. 0mm		
L_2	90. 0mm		
h_1	80. 0mm		
h_2	45. 0mm		
T_{t}	加热温度(K)		
T_f	冷冻温度(K)		

v	物质的量(mol)
V	体积(330ml)
V_m	$\frac{5}{2}R$
R	普适气体常数 (8.31J·m ⁻¹ ·K ⁻¹)
T_0	室温(296.15K)
2010/0/12	1.38 w/(m · K)

T	温度(k)
Q	热量(j)
λ	导热系数 (w/(m·K))
A	截面积(m ²)
D	厚度(m)

