Weight

Weight is the downwards force of gravity.

As weight is a force, it is measured in units called newtons. The symbol for the unit is N.

A medium apple has a weight of about 1 N.

An object's weight depends on its mass (measured in kilograms or grams).

The weight also depends on the strength of the local gravity.

1 The weights of some objects (on Earth) are given in the table.

Object	Mass (g)	Mass (kg)	Weight (N)
Apple	100		1.0
Full bottle	1200		12
Rat	400		4.0
Kitten	1600		16

- (a) Fill in the column with masses in kilograms.
- (b) Plot a graph of weight against mass. Add a best fit straight line
- (c) What is the weight of a $0.6~\mathrm{kg}$ bag of flour? Use the graph.
- (d) What is the mass of a 15 N weight? Use the graph.

On Earth, the rules for converting between units of mass and weight are

- Weight (N) = Mass (kg) $\times 10$
- Mass $(kg) = Weight(N) \div 10$
- 2 Convert these masses into weights in newtons.
 - (a) 2.0 kg

(c) 0.8 kg

(e) 540 g

(b) 3.0 kg

(d) 5.4 kg

- (f) 30 g
- 3 Convert these weights into masses in kilograms.
 - (a) 20 N

(c) 250 N

(e) 4 N

(b) 50 N

(d) 12 N

(f) 0.7 N

4	Convert these weights into m (a) 8.0 N	asses in gi (b) 0.5 N	rams.	(c) 0.02 N		
Th	e <mark>weight</mark> of a kilogram depend	s on the st	rength of g	gravity.		
	Earth, one kilogram weighs 10 the Moon, one kilogram weig			each kilogram weighs 3 N. s, one kilogram weighs 7 N.		
5	What is the weight of (a) 5 kg on Mars?		(c) 50	(c) 50 kg on the Moon?		
	(b) 2 kg on Venus?		(d) 60) kg on Mars?		
6	How many kilograms of mass would you ne (a) 15 N on Mars?			eed to weigh (c) 34 N on the Moon?		
	(b) 28 N on Venus?		(d) 30	00 N on Mars?		
lts	e weight of each kilogram is ca symbol is g and it is measured e gravitational field strength or	in <mark>N/kg.</mark>				
7	Write down the gravitational (a) the Moon			h (giving the units) on (c) Venus		
8	Complete the word equations (a) Weight =	s using We (b) Mass =	_	and g .		
9	Rewrite your word equations (a) $W=$	using sym (b) $m=$	bols. W is v	weight and m is mass. (c) $g =$		
10	Calculate the gravitational field strength (g) on (a) Neptune if a $300~{\rm kg}$ rocket weighs $3300~{\rm N}$.					
	(b) Jupiter if a 3 kg rabbit weig	ghs 69 N.				