A. Pasando lista

Problema

Eres profesor de una clase de la que te piden que pases asistencia. Cada alumno, según llega a clase, confirma su asistencia y en la lista aparece su número identificador como un entero. Sin embargo, el sistema es algo nuevo y a ratos vuelve a aparecer por error en la lista un alumno ya registrado.

Tu objetivo es, dada la lista de identificadores **A** con longitud **n**, obtener el número de identificadores únicos en ella sin hacer uso de estructuras adicionales (sets, listas, etc).

Entrada

Cada prueba contiene múltiples casos de prueba. La primera línea contiene el número de casos de prueba t (1 $\leq t \leq$ 100). La descripción de los casos de prueba sigue a continuación.

Cada caso de prueba consta de dos líneas. La primera contiene el valor de n ($1 \le n \le 10000$) y la segunda contiene los n valores A1, A2, A3,...,AN con los identificadores de los alumnos.

Salida

Para cada caso de prueba, imprime un solo número: el número de alumnos que han asistido.

Ejemplo entrada

```
3
4
5 2 2 3
6
1 3 5 7 8 2
8
1 1 1 1 1 1 1
```

salida

```
3
6
1
```

B. Prevención de riesgos

Problema

Hay n niños que quieren subir a una noria, y tu tarea es encontrar una góndola para cada niño.

Cada góndola puede tener uno o dos niños, y además, el peso total en una góndola no puede exceder **x**. Conoces el peso de cada niño.

¿Cuál es el número mínimo de góndolas necesarias para los niños?

Entrada

La primera línea contiene un valor n ($1 \le n \le 10000$) para la cantidad de niños y el valor x para el peso máximo.

La segunda línea contiene *N* enteros *A1, A2, A3, ..., AN* (1≤*Ai*≤*x*).

Salida

Para cada caso de prueba, imprime un solo número: el número de góndolas necesarias para meter a todos los niños

Ejemplos

entrada

4 10

7 2 3 9

salida

3

entrada

10 2

1 2 2 1 1 2 2 2 2 2

salida

9

C. SSIFF

Problema

Se está dando lugar el Festival de Cine de San Sebastián. Tienes el abono completo y quieres ver tantas películas como puedas.

Dispones de todos los horarios con la hora a la que empieza y acaba cada película. ¿Cuántas películas puedes ver como máximo?

Entrada

La primera línea de cada caso de prueba contiene un entero n ($1 \le n \le 100000$) — el número de películas calendarizadas.

Las siguientes *n* líneas contienen dos valores enteros *a* y *b* (1≤*a*≤*b*≤100000000)).

Salida

Para cada caso de prueba, imprime un solo valor: el máximo número de películas a las que puedes atender, suponiendo que te mueves de una película a otra instantáneamente.

Ejemplo entrada

```
6
4 8
2 7
1 5
6 8
8 11
3 6
```

salida

3