Towards an omnilingual model for solving morphological analogies

Safa AlSaidi, Amandine Decker, Stephanie Monteiro

M2 - Software Project

- Reminder
- 2 Issues
- New objective
- 4 Regression task
- Our approach
- 6 Preliminary results
- 7 Future work

Reminder of our aim

Apply decoder to the regression task (solving analogies)

$$A: B:: C: X \xrightarrow{X=?} A: B:: C: D$$

e.g. $star: stars:: cat: X \rightarrow cats$

- Current output: vectors (≠ word)
- Aim: transform these vectors into words

- Reminder
- 2 Issues
- New objective
- 4 Regression task
- Our approach
- 6 Preliminary results
- 7 Future work

Results

А	:	В	::	С	:	expected D	output D
schieben	:	schiebend	::	vergeben	:	vergebend	antisemitischer
schieben	:	vergeben	::	schiebend	:	vergebend	beschäftigter
schiebend	:	vergebend	::	schieben	:	vergeben	antisemitischer
schiebend	:	schieben	::	vergebend	:	vergeben	antisemitischer
vergebend	:	vergeben	::	schiebend	:	schieben	erschiesen
vergebend	:	schiebend	::	vergeben	:	schieben	angeregterem
vergeben	:	schieben	::	vergebend	:	schiebend	antisemitischer

Output:

- 30 different words for German
- 22 for Arabic

Discussion

- Redundant outputs: decoder stuck on a few words
- 2 Possible solution to implement: VAE
- Lack of time

- Reminder
- 2 Issues
- New objective
- 4 Regression task
- Our approach
- 6 Preliminary results
- 7 Future work

New objective

Regression task based on transfer

$$A: B:: C: X \xrightarrow{X=?} A: B:: C: D$$

e.g. $dog: dogs:: chat: X \rightarrow chats$

- Input: A and B in language 1, C in language 2
- Output: D in language 2
- Same transformation for A, B and C, D

- Reminder
- 2 Issues
- New objective
- 4 Regression task
- 5 Our approach
- 6 Preliminary results
- 7 Future work

Regression method

Figure: Structure of the analogy solver model

 $word_D \leftarrow word with closest embedding to D$

Previous results

Results from [Alsaidi et al., 2021]

- Reminder
- 2 Issues
- New objective
- 4 Regression task
- Our approach
- 6 Preliminary results
- 7 Future work

Our approach

- Find good pairs of languages
 - ► languages that have same transformations (i.e. same features)
 - ► languages that transfer well from one to another (based on previous experiments)
- Build analogies only when A,B in language 1 and C,D in language 2 have the same features
- The unknown word is either C or D

Language pairs

Figure: Number of possible analogies per language pair

Language pairs

Source language	Target language	Nb different features	Transfer accuracy (%)	(source, target) nb features
Hungarian	German	3	90	(86, 98)
Hungarian	Finnish	19	84	(86, 95)
Turkish	Finnish	6	81	(187, 95)
German	Hungarian	3	74	(98, 86)
Hungarian	Spanish	4	72	(86, 84)
Finnish	Turkish	6	70	(95, 187)

Table: Information on the language pairs (ranked by transfer accuracy).

- Reminder
- 2 Issues
- New objective
- 4 Regression task
- 5 Our approach
- 6 Preliminary results
- Future work

First trial

	hungarian, german	turkish, finnish	hungarian, finnish
Cosine similarity	58.9	39.5	18.9
Euclidean distance	57.7	39.1	16.8

Table: Accuracy for the regression task on the three (source, target) language pairs.

Discussion

- Few common features
- Performance seems to decrease when number of features increases (to confirm)
- Fine-tuning the embeddings

- Reminder
- 2 Issues
- New objective
- 4 Regression task
- Our approach
- 6 Preliminary results
- Future work

Future work

- 22 Nov Regression model + decoder / Variational auto-encoder
- 10 Dec Qualitative analysis / Regression model + decoder
- 14 Jan Application docker & webpage
- 3 Feb Report

Future work

- 22 Nov Regression model + decoder / Variational auto-encoder
- 10 Dec Qualitative analysis / Regression model + decoder
- 14 Jan Regression + Application docker & webpage
- 3 Feb Report

شكراجزيلا Thank you Merci អរគុណ Obrigado

References I

Alsaidi, S., Decker, A., Marquer, E., Murena, P.-A., and Couceiro, M. (2021). Tackling morphological analogies using deep learning – extended version.

Lim, S., Prade, H., and Richard, G. (2019).

Solving word analogies: A machine learning perspective.

In Kern-Isberner, G. and Ognjanovic, Z., editors, *Symbolic and Quantitative Approaches to Reasoning with Uncertainty, 15th European Conference, ECSQARU 2019, Belgrade, Serbia, September 18-20, 2019, Proceedings,* volume 11726 of *Lecture Notes in Computer Science*, pages 238–250.

Springer.