Small Test Exact Solution Vectorized Bisection

This is the example vignette for function: **snw_vfi_main_bisec_vec** from the **PrjOptiSNW Package.** This function solves for policy function with vectorized bisection. Small Solution Analysis. Small Solution Analysis, husband 5 shocks, wife 1 shocks.

Test SNW_VFI_MAIN Defaults Small

Call the function with defaults parameters.

```
mp_param = snw_mp_param('default_small');
[V VFI,ap VFI,cons VFI,mp valpol more] = snw vfi main bisec vec(mp param);
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:18 of 17, time-this-age:0.06059
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:17 of 17, time-this-age:0.052828
SNW VFI MAIN BISEC VEC: Finished Age Group:16 of 17, time-this-age:0.032745
SNW VFI MAIN BISEC VEC: Finished Age Group:15 of 17, time-this-age:0.029085
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:14 of 17, time-this-age:0.035583
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:13 of 17, time-this-age:0.034991
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:12 of 17, time-this-age:0.033648
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:11 of 17, time-this-age:0.032963
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:10 of 17, time-this-age:0.033174
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:9 of 17, time-this-age:0.036843
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:8 of 17, time-this-age:0.04052
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:7 of 17, time-this-age:0.028633
SNW VFI MAIN BISEC VEC: Finished Age Group:6 of 17, time-this-age:0.035108
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:5 of 17, time-this-age:0.033838
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:4 of 17, time-this-age:0.033585
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:3 of 17, time-this-age:0.03214
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:2 of 17, time-this-age:0.028888
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:1 of 17, time-this-age:0.031611
Completed SNW_VFI_MAIN_BISEC_VEC; SNW_MP_PARAM=default_small; SNW_MP_CONTROL=default_base; time=0.72345
```

Small Param Results Define Frames

Define the matrix dimensions names and dimension vector values. Policy and Value Functions share the same ND dimensional structure.

```
% Grids:
age_grid = [19, 22:5:97, 100];
agrid = mp_param('agrid')';
eta_H_grid = mp_param('eta_H_grid')';
eta_S_grid = mp_param('eta_S_grid')';
ar_st_eta_HS_grid = string(cellstr([num2str(eta_H_grid', 'hz=%3.2f;'), num2str(eta_S_grid', 'watedu_grid = [0,1];
marry_grid = [0,1];
kids_grid = (1:1:mp_param('n_kidsgrid'))';
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
cl_mp_datasetdesc = {};
cl_mp_datasetdesc{1} = containers.Map({'name', 'labval'}, {'age', age_grid});
cl_mp_datasetdesc{2} = containers.Map({'name', 'labval'}, {'savings', agrid});
cl_mp_datasetdesc{3} = containers.Map({'name', 'labval'}, {'Hshock', eta_H_grid});
cl_mp_datasetdesc{4} = containers.Map({'name', 'labval'}, {'edu', edu_grid});
cl_mp_datasetdesc{5} = containers.Map({'name', 'labval'}, {'marry', marry_grid});
cl_mp_datasetdesc{6} = containers.Map({'name', 'labval'}, {'kids', kids_grid});
```

Analyze Savings and Shocks

First, analyze Savings Levels and Shocks, Aggregate Over All Others, and do various other calculations.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
mp_support_graph('cl_st_xtitle') = {'Savings States, a'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
```

MEAN(VAL(A,Z)), MEAN(AP(A,Z)), MEAN(C(A,Z))

1

2

a

0.0097656

3.2159e-05

0.00055365

Tabulate value and policies along savings and shocks:

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar_permute = [1,4,5,6,3,2];
% Value Function
tb_az_v = ff_summ_nd_array("MEAN(VAL(A,Z))", V_VFI, true, ["mean"], 4, 1, cl_mp_datasetdesc, ar
group
             savings
                         mean_Hshock__1_8395
                                               mean_Hshock__0_91976
                                                                       mean_Hshock_0
                                                                                       mean_Hshock_0_91976
     1
                               -21.426
                                                      -13.175
                                                                           -8.362
                                                                                             -5.4972
            0.0097656
                               -20.989
                                                                          -8.2755
     2
                                                      -13.027
                                                                                             -5.4264
                               -18.901
     3
             0.078125
                                                                          -7.8053
                                                                                             -5.0563
                                                      -12.204
     4
              0.26367
                               -15.612
                                                      -10.744
                                                                          -7.0124
                                                                                             -4.4893
     5
                0.625
                               -12.124
                                                      -8.9835
                                                                          -6.0664
                                                                                             -3.8998
     6
               1.2207
                               -9.0979
                                                      -7.2177
                                                                          -5.0967
                                                                                             -3.3546
     7
               2.1094
                               -6.7401
                                                      -5.6532
                                                                          -4.2107
                                                                                             -2.8614
     8
               3.3496
                               -4.9967
                                                      -4.3739
                                                                          -3.4359
                                                                                             -2.4175
     9
                               -3.7353
                                                      -3.3758
                                                                          -2.7788
                                                                                             -2.0342
    10
               7.1191
                               -2.8279
                                                       -2.617
                                                                          -2.2393
                                                                                             -1.7115
    11
               9.7656
                                -2.172
                                                      -2.0455
                                                                          -1.8057
                                                                                             -1.4379
    12
               12.998
                                -1.693
                                                      -1.6153
                                                                          -1.4614
                                                                                             -1.2066
    13
               16.875
                               -1.3389
                                                      -1.2899
                                                                          -1.1896
                                                                                             -1.0131
    14
               21.455
                               -1.0737
                                                                         -0.97552
                                                       -1.042
                                                                                            -0.85247
    15
               26.797
                                -0.872
                                                     -0.85104
                                                                         -0.80614
                                                                                            -0.71965
               32.959
    16
                              -0.71656
                                                     -0.70236
                                                                         -0.67148
                                                                                            -0.61005
    17
                   40
                              -0.59521
                                                     -0.58538
                                                                         -0.56375
                                                                                             -0.5196
               47.979
    18
                              -0.49932
                                                     -0.49238
                                                                         -0.47697
                                                                                            -0.44484
    19
               56.953
                              -0.42266
                                                     -0.41768
                                                                         -0.40651
                                                                                            -0.38285
    20
               66.982
                              -0.36074
                                                      -0.3571
                                                                         -0.34889
                                                                                            -0.33125
    21
               78.125
                              -0.31022
                                                     -0.30751
                                                                         -0.30139
                                                                                            -0.28809
    22
               90.439
                              -0.26861
                                                     -0.26658
                                                                         -0.26196
                                                                                            -0.25181
    23
               103.98
                              -0.23407
                                                     -0.23252
                                                                         -0.22899
                                                                                            -0.22118
    24
               118.82
                              -0.20516
                                                     -0.20397
                                                                         -0.20125
                                                                                            -0.19517
    25
                               -0.1808
                                                     -0.17987
                                                                         -0.17775
                                                                                            -0.17298
                  135
% Aprime Choice
tb_az_ap = ff_summ_nd_array("MEAN(AP(A,Z))", ap_VFI, true, ["mean"], 4, 1, cl_mp_datasetdesc, a
xxx MEAN(AP(A,Z)) xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
             savings
                         mean_Hshock__1_8395
                                               mean_Hshock__0_91976
                                                                       mean_Hshock_0
                                                                                       mean_Hshock_0_91976
                                                                                                              mea
    group
```

0.0034995

0.0052722

0.049878

0.053281

0.24382

0.24787

3	0.078125	0.021863	0.029676	0.083029	0.2805
4	0.26367	0.13323	0.14751	0.20012	0.38877
5	0.625	0.39134	0.41034	0.45315	0.64573
6	1.2207	0.84131	0.86393	0.91226	1.0928
7	2.1094	1.5303	1.5542	1.6156	1.7559
8	3.3496	2.4876	2.5118	2.573	2.6876
9	5	3.7642	3.7887	3.8498	3.9922
10	7.1191	5.4275	5.4525	5.5145	5.6929
11	9.7656	7.4794	7.5043	7.5679	7.7532
12	12.998	9.9124	9.9329	9.9956	10.186
13	16.875	12.928	12.95	13.005	13.196
14	21.455	16.529	16.548	16.604	16.783
15	26.797	20.601	20.618	20.668	20.837
16	32.959	25.307	25.325	25.37	25.525
17	40	30.667	30.689	30.742	30.886
18	47.979	36.761	36.782	36.841	36.999
19	56.953	43.773	43.795	43.847	44.012
20	66.982	51.605	51.628	51.688	51.85
21	78.125	59.954	59.977	60.037	60.209
22	90.439	69.265	69.288	69.35	69.526
23	103.98	79.75	79.771	79.831	80.004
24	118.82	91.112	91.136	91.198	91.364
25	135	103.47	103.49	103.54	103.72

% Consumption Choices

tb_az_c = ff_summ_nd_array("MEAN(C(A,Z))", cons_VFI, true, ["mean"], 4, 1, cl_mp_datasetdesc, a

MEAN(C group	(A,Z)) xxxxx savings	mean_Hshock1_8395	mean_Hshock0_91976	mean_Hshock_0	mean_Hshock_0_91976
1	0	0.30273	0.43104	0.68779	1.2165
2	0.0097656	0.31374	0.44074	0.69581	1.2239
3	0.078125	0.37308	0.49663	0.74605	1.271
4	0.26367	0.48039	0.59659	0.846	1.3793
5	0.625	0.64735	0.75745	1.0153	1.5439
6	1.2207	0.89649	1.0013	1.2519	1.7913
7	2.1094	1.2479	1.3498	1.5854	2.1634
8	3.3496	1.7393	1.8394	2.0734	2.6754
9	5	2.3872	2.4859	2.7182	3.2909
10	7.1191	3.1917	3.289	3.5191	4.0542
11	9.7656	4.2188	4.3155	4.543	5.07
12	12.998	5.5439	5.6447	5.8722	6.3933
13	16.875	7.0334	7.133	7.3676	7.8866
14	21.455	8.754	8.8551	9.0887	9.6188
15	26.797	10.886	10.989	11.228	11.768
16	32.959	13.336	13.439	13.682	14.235
17	40	16.151	16.249	16.485	17.049
18	47.979	19.321	19.42	19.65	20.2
19	56.953	22.728	22.827	23.062	23.605
20	66.982	26.539	26.637	26.865	27.41
21	78.125	31.125	31.222	31.451	31.986
22	90.439	36.11	36.207	36.433	36.965
23	103.98	41.348	41.447	41.676	42.21
24	118.82	47.206	47.302	47.528	48.07
25	135	53.636	53.735	53.966	54.501

Graph Mean Values:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(value(a,z)), a=x, z=color'};
```


Graph Mean Savings Choices:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(APRIME(a,z)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(APRIME(a,z))'};
ff_graph_grid((tb_az_ap{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Graph Mean Consumption:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(C(a,z)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(C(a,z))'};
ff_graph_grid((tb_az_c{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Analyze Kids and Marriage and Age

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
ar_row_grid = ["k0M0", "K1M0", "K2M0", "k0M1", "K1M1", "K2M1"];
mp_support_graph('cl_st_xtitle') = {'Age'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('st_rounding') = '6.2f'; % format shock legend
mp_support_graph('cl_scatter_shapes') = { 'o', 'd', 's', 'o', 'd', 's'};
mp_support_graph('cl_colors') = {'red', 'red', 'red', 'blue', 'blue', 'blue'};
```

MEAN(VAL(KM,J)), MEAN(AP(KM,J)), MEAN(C(KM,J))

Tabulate value and policies:

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar_permute = [2,3,4,1,6,5];
% Value Function
tb az v = ff summ nd array("MEAN(VAL(KM,J))", V VFI, true, ["mean"], 3, 1, cl mp datasetdesc, a
group
            kids
                   marry
                           mean_age_19
                                         mean age 22
                                                       mean age 27
                                                                     mean age 32
                                                                                   mean age 37
                                                                                                 mean age 42
                             -4.7384
                                                         -3.9125
                                                                       -3.6403
                                                                                     -3.4202
     1
             1
                     0
                                           -4.2839
                                                                                                   -3.2286
     2
             2
                     0
                             -6.2307
                                                          -5.014
                                                                       -4.5943
                                                                                     -4.2483
                                                                                                   -3.9542
                                           -5.5732
     3
             3
                     0
                             -6.9818
                                                         -5.7685
                                                                                     -4.9708
                                                                                                   -4.6532
                                           -6.3368
                                                                       -5.3334
     4
             1
                     1
                             -4.1822
                                           -3.7934
                                                         -3.4691
                                                                       -3.2086
                                                                                      -2.984
                                                                                                   -2.7815
     5
             2
                     1
                              -5.157
                                            -4.667
                                                         -4.2348
                                                                       -3.8784
                                                                                     -3.5654
                                                                                                   -3.2867
     6
             3
                     1
                             -5.5929
                                           -5.1267
                                                         -4.7056
                                                                        -4.352
                                                                                     -4.0378
                                                                                                   -3.7489
% Aprime Choice
tb_az_ap = ff_summ_nd_array("MEAN(AP(KM,J))", ap_VFI, true, ["mean"], 3, 1, cl_mp_datasetdesc,
xxx MEAN(AP(KM,J))
                   XXXXXXXXXXXXXXXXXXXXXXXXXXXX
   group
            kids
                   marry
                           mean_age_19
                                         mean_age_22
                                                       mean_age_27
                                                                     mean_age_32
                                                                                   mean_age_37
                                                                                                 mean_age_42
     1
             1
                     0
                             34.931
                                           34.726
                                                         34.665
                                                                       34.554
                                                                                     34.362
                                                                                                   34.077
     2
             2
                     0
                             34.603
                                           34.334
                                                         34.198
                                                                       33.995
                                                                                     33.692
                                                                                                   33.286
     3
             3
                     0
                             34.187
                                           33.968
                                                         33.877
                                                                       33.705
                                                                                     33.427
                                                                                                   33.033
     4
             1
                     1
                             34.821
                                           34.617
                                                         34.566
                                                                       34.458
                                                                                     34.268
                                                                                                   33.984
     5
             2
                     1
                              34.67
                                            34.45
                                                         34.364
                                                                       34.205
                                                                                     33.951
                                                                                                   33.592
     6
             3
                             34.303
                                           34.118
                                                         34.065
                                                                       33.937
                                                                                     33.705
                                                                                                   33.363
```

group	kids	marry	mean_age_19	mean_age_22	mean_age_27	mean_age_32	mean_age_37	mean_age_4
1	1	0	6.8531	7.1729	7.4988	7.8167	8.1435	8.4993
2	2	0	7.182	7.5653	7.9659	8.3756	8.813	9.2907
3	3	0	7.5973	7.931	8.2872	8.6657	9.0783	9.5438

4	1	1	7.1848	7.5242	7.8662	8.2047	8.552	8.9277
5	2	1	7.3021	7.6535	8.0269	8.412	8.8205	9.2678
6	3	1	7.6455	7.9599	8.297	8.6497	9.0324	9.462

Graph Mean Values:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(value(KM,J)), a=age, z=kids+marry'};
mp_support_graph('cl_st_ytitle') = {'MEAN(value(KM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Savings Choices:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(APRIME(KM,J)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(APRIME(KM,J))'};
ff_graph_grid((tb_az_ap{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Consumption:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(C(KM,J)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(C(KM,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Analyze Education and Marriage and Age

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
ar_row_grid = ["E0M0", "E1M0", "E0M1", "E1M1"];
mp_support_graph('cl_st_xtitle') = {'Age'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('st_rounding') = '6.2f'; % format shock legend
mp_support_graph('cl_scatter_shapes') = {'*', 'p', '*', 'p' };
mp_support_graph('cl_colors') = {'red', 'red', 'blue', 'blue'};
```

MEAN(VAL(EKM,J)), MEAN(AP(EKM,J)), MEAN(C(EKM,J))

Tabulate value and policies:

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar permute = [2,3,6,1,4,5];
% Value Function
tb_az_v = ff_summ_nd_array("MEAN(VAL(EKM,J))", V_VFI, true, ["mean"], 3, 1, cl_mp_datasetdesc,
group
           edu
                 marry
                         mean_age_19
                                      mean_age_22
                                                   mean_age_27
                                                                mean_age_32
                                                                              mean_age_37
                                                                                           mean_age_42
     1
            0
                   0
                           -6.4015
                                        -5.8666
                                                     -5.3879
                                                                  -4.9966
                                                                               -4.6557
                                                                                             -4.3525
     2
            1
                   0
                           -5.5658
                                        -4.9294
                                                     -4.4088
                                                                  -4.0487
                                                                               -3.7705
                                                                                            -3.5382
     3
                                         -4.913
                   1
                            -5.35
                                                     -4.5196
                                                                  -4.1777
                                                                                -3.867
                                                                                            -3.5814
                           -4.6046
                                        -4.1451
                                                     -3.7534
                                                                  -3.4483
                                                                               -3.1912
                                                                                             -2.9633
% Aprime Choice
tb_az_ap = ff_summ_nd_array("MEAN(AP(EKM,J))", ap_VFI, true, ["mean"], 3, 1, cl_mp_datasetdesc,
group
                 marry
                         mean_age_19
                                      mean_age_22
                                                   mean_age_27
                                                                mean_age_32
                                                                              mean_age_37
                                                                                           mean_age_42
     1
            0
                   0
                           34.682
                                        34.444
                                                     34.272
                                                                  34.048
                                                                               33.753
                                                                                             33.374
     2
            1
                   0
                                        34.241
                                                     34.222
                                                                  34.121
                                                                               33.901
                                                                                             33.556
                           34,465
     3
                           34.725
                                        34.514
                                                                  34.177
                                                                               33.914
                                                                                            33.569
            0
                   1
                                                     34.372
     4
            1
                   1
                           34.47
                                        34.277
                                                     34.291
                                                                  34.223
                                                                               34.035
                                                                                             33.724
% Consumption Choices
tb_az_c = ff_summ_nd_array("MEAN(C(EKM,J))", cons_VFI, true, ["mean"], 3, 1, cl_mp_datasetdesc,
group
           edu
                 marry
                         mean_age_19
                                      mean_age_22
                                                   mean_age_27
                                                                mean_age_32
                                                                              mean_age_37
                                                                                           mean_age_42
     1
            0
                   0
                           7.1022
                                        7.4087
                                                     7.7357
                                                                  8.0845
                                                                               8.4713
                                                                                            8.9105
     2
            1
                   0
                           7.3195
                                        7.7041
                                                     8.0988
                                                                  8.4875
                                                                               8.8852
                                                                                             9.312
     3
            0
                   1
                           7.2307
                                        7.5253
                                                     7.8393
                                                                  8.1757
                                                                               8.5471
                                                                                            8.9685
     4
            1
                   1
                           7.5242
                                        7.8997
                                                     8.2875
                                                                  8.6685
                                                                               9.0562
                                                                                            9.4697
```

Graph Mean Values:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(value(EM,J)), a=age, z=kids+marry'};
mp_support_graph('cl_st_ytitle') = {'MEAN(value(EM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Savings Choices:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(APRIME(EK,J)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(APRIME(EK,J))'};
ff_graph_grid((tb_az_ap{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Consumption:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(C(EK,J)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(C(EK,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


