

Banco de Dados I

04 - O Modelo Relacional

Marcos Roberto Ribeiro

Introdução

- Atualmente, o modelo de banco de dados relacional é o modelo de dados dominante na maioria dos SGBD
- Um banco de dados relacional é composto de tabelas (também chamadas de relações)
- O termo tabela é mais comum nos produtos comerciais
- Já o termo relação é mais comum na área acadêmica, sua origem está na abordagem relacional

Tabelas

- Uma tabela é um conjunto não ordenado de linhas (ou tuplas)
- Cada linha é composta por uma série de campos (ou valores de atributo)
- Cada campo é identificado por nome de campo (ou nome de atributo)
- O conjunto de campos das linhas de uma tabela que possuem o mesmo nome formam uma coluna

Exemplo: Tabela Funcionário

ID	Nome	IDDepto	IDCategoria
5	Sousa	D1	C5
3	Santos	D2	C5
2	Silva	D1	C2
1	Soares	D1	-

Chaves

- O conceito básico para estabelecer relações entre linhas de tabelas de um banco de dados relacional é o da chave
- Em um banco de dados relacional, há três tipos de chaves:
 - Chaves primárias
 - Chaves alternativas
 - Chaves estrangeiras

Chave primária

- Uma chave primária é uma coluna ou uma combinação de colunas cujos valores distinguem uma linha das demais dentro de uma tabela
- Quais as chaves primárias das tabelas a seguir?

Funcionário

	Nome		
		D1	
	Santos	D2	
	Silva	D1	C2
1		D1	

Dependente

	NumDep			
1	1		Filho	12/12/2001
1	2	Maria	Esposa	05/12/1980
2	1		Esposa	06/08/1985
	1	Paula	Esposa	12/11/1988
	2		Filho	03/04/2010

Chave primária

- Uma chave primária é uma coluna ou uma combinação de colunas cujos valores distinguem
 uma linha das demais dentro de uma tabela
- Quais as chaves primárias das tabelas a seguir?

Funcionário

<u>ID</u>	Nome	IDDepto	IDCategoria
<u>5</u>	Sousa	D1	C5
<u>3</u>	Santos	D2	C5
2	Silva	D1	C2
1	Soares	D1	-

Dependente

IDFunc	NumDep	Nome	Tipo	Nascimento
1	1	João	Filho	12/12/2001
1	2	Maria	Esposa	05/12/1980
2	1	Ana	Esposa	06/08/1985
5	1	Paula	Esposa	12/11/1988
5	2	José	Filho	03/04/2010

Chaves primárias compostas

<u>IDFunc</u>	NumDep	Nome	Tipo	Nascimento
1	1	João	Filho	12/12/2001
1	2	Maria	Esposa	05/12/1980
2	<u>1</u>	Ana	Esposa	06/08/1985
<u>5</u>	<u>1</u>	Paula	Esposa	12/11/1988
<u>5</u>	2	José	Filho	03/04/2010

- A tabela *Dependente* possui uma chave primária composta (colunas *IDFunc* e *NumDep*)
- Nesse caso, apenas um dos valores dos campos que compõem a chave não é suficiente para distinguir uma linha das demais, já que tanto um código de empregado quanto o número do dependente podem aparecer em diferentes linhas
- É necessário considerar ambos valores para identificar uma linha na tabela, ou seja, para identificar um dependente

Chaves estrangeiras

- Uma chave estrangeira é uma coluna ou uma combinação de colunas, cujos valores aparecem necessariamente na chave primária de uma tabela
- A chave estrangeira é o mecanismo que permite a implementação de relacionamentos em um banco de dados relacional
- No banco de dados a seguir, a coluna *IDDepto* da tabela *Funcionário* (marcada com *) é uma chave estrangeira em relação a chave primária da tabela *Departamento*
- Isso significa que, na tabela *Funcionário*, não podem aparecer linhas com um valor em *IDDepto* que não exista na coluna de mesmo nome da tabela *Departamento*

Exemplo: Departamento

IDDepto	Nome-Depto
<u>D1</u>	
D2	Engenharia
<u>D3</u>	Vendas

Exemplo: Funcionário

Nome	*IDDepto	
	D1	
Santos	D2	
	D1	C2
	D1	

Chaves estrangeiras

- Uma chave estrangeira é uma coluna ou uma combinação de colunas, cujos valores aparecem necessariamente na chave primária de uma tabela
- A chave estrangeira é o mecanismo que permite a implementação de relacionamentos em um banco de dados relacional
- No banco de dados a seguir, a coluna *IDDepto* da tabela *Funcionário* (marcada com *) é uma chave estrangeira em relação a chave primária da tabela *Departamento*
- Isso significa que, na tabela *Funcionário*, não podem aparecer linhas com um valor em *IDDepto* que não exista na coluna de mesmo nome da tabela *Departamento*

Exemplo: Departamento

IDDepto	Nome-Depto	
<u>D1</u>	Compras	
<u>D2</u>	Engenharia	
<u>D3</u>	Vendas	

Exemplo: Funcionário

<u>ID</u>	Nome	*IDDepto	IDCategoria
<u>5</u>	Sousa	D1	C5
3	Santos	D2	C5
2	Silva	D1	C2
1	Soares	D1	-

Restrições impostas pelas chaves estrangeiras

- A existência de uma chave estrangeira impõe restrições que devem ser garantidas em diversas situações de alteração do banco de dados
 - Quando uma linha é incluída ou alterada na tabela que contém a chave estrangeira.
 - Nesse caso, deve ser garantido que o valor da chave estrangeira apareça na coluna da chave primária referenciada
 - Em nosso exemplo, isso significa que um novo funcionário deve atuar em um departamento já existente no banco de dados
 - Quando uma linha é excluída na tabela que contém a chave primária referenciada pela chave estrangeira.
 - Deve ser garantido que na coluna da chave estrangeira não apareça o valor da chave primária que está sendo excluída
 - Em nosso exemplo, isso significa que um departamento não pode ser excluído, caso nele ainda existam empregados

Chaves estrangeiras em uma única tabela

- A palavra *chave estrangeira* pode ser enganosa, levando a acreditar que a referencia sempre seja uma chave primária de outra tabela
- Entretanto, uma chave estrangeira pode referenciar a chave primária da própria tabela

Exemplo: Funcionário

<u>ID</u>	Nome	IDDepto	IDCategoria	*IDSupervisor
<u>5</u>	Sousa	D1	C5	-
<u>3</u>	Santos	D2	C5	5
<u>2</u>	Silva	D1	C2	5
1	Soares	D1	-	2

Nesse exemplo, a coluna *IDSupervisor* é o código do funcionário supervisor

Chaves alternativas

- Em alguns casos, mais de uma coluna ou combinações de colunas podem servir para distinguir uma linha das demais
- Uma das colunas (ou combinação de colunas) é escolhida como chave primária
- As demais colunas ou combinações são denominadas chaves alternativas

Exemplo: Funcionário

<u>ID</u>	Nome	IDDepto	IDCategoria	<u>CPF</u>
<u>5</u>	Sousa	D1	C5	120.681.015-18
3	Santos	D2	C5	657.761.408-45
2	Silva	D1	C2	181.689.155-05
1	Soares	D1	-	806.321.034-10

Nesse exemplo, a coluna *CPF* é uma chave alternativa porque podemos distinguir um funcionário dos demais através de seu *CPF*

Chaves primárias x chaves alternativas

- Há duas diferenças básicas entre chaves primárias e alternativas:
 - Chaves primárias podem ser usadas para a criação de chaves estrangeiras
 - Chaves alternativas permitem valores nulos¹

- Quando, em uma tabela, mais de uma coluna ou combinações de colunas podem servir
- Na tabela Funcionário, que critério foi usado para preferir a coluna ID como chave
- Poderia ser qualquer uma, mas o campo ID é mais curto. Qual a vantagem disto?

¹Os valores nulos indicam que o campo não foi preenchido com nenhum valor IFMG - Campus Bambuí - DEC - ENGCOMP

Chaves primárias x chaves alternativas

- Há duas diferenças básicas entre chaves primárias e alternativas:
 - Chaves primárias podem ser usadas para a criação de chaves estrangeiras
 - Chaves alternativas permitem valores nulos¹

Qual será a chave primária?

- Quando, em uma tabela, mais de uma coluna ou combinações de colunas podem servir para distinguir uma linha das demais, surge a questão de qual critério deve ser usado para escolher a chave primária
- Na tabela Funcionário, que critério foi usado para preferir a coluna ID como chave primária e considerar a coluna CPF como chave alternativa?
- Poderia ser qualquer uma, mas o campo ID é mais curto. Qual a vantagem disto?

¹Os valores nulos indicam que o campo não foi preenchido com nenhum valor IFMG - Campus Bambuí - DEC - ENGCOMP

Chaves primárias x chaves alternativas

- Há duas diferenças básicas entre chaves primárias e alternativas:
 - Chaves primárias podem ser usadas para a criação de chaves estrangeiras
 - Chaves alternativas permitem valores nulos¹

Qual será a chave primária?

- Quando, em uma tabela, mais de uma coluna ou combinações de colunas podem servir para distinguir uma linha das demais, surge a questão de qual critério deve ser usado para escolher a chave primária
- Na tabela Funcionário, que critério foi usado para preferir a coluna ID como chave primária e considerar a coluna CPF como chave alternativa?
- Poderia ser qualquer uma, mas o campo ID é mais curto. Qual a vantagem disto?

IFMG - Campus Bambuí - DEC - ENGCOMP

¹Os valores nulos indicam que o campo não foi preenchido com nenhum valor

Domínios

- Quando uma tabela do banco de dados é definida, para cada coluna da tabela, deve ser especificado um conjunto de valores que os campos podem assumir
- Esse conjunto de valores é chamado de domínio da coluna ou domínio do campo (ou ainda tipo)
- Além disso, deve ser especificado se os campos da coluna podem estar vazios (ser nulos ou null)
- Estar vazio indica que o campo não recebeu nenhum valor de seu domínio

Funcionário

<u>ID</u>	Nome	IDDepto	IDCategoria
<u>5</u>	Sousa	D1	C5
<u>3</u>	Santos	D2	C5
2	Silva	D1	C2
1	Soares	D1	-

O campo IDCategoria do funcionário 1 apresenta valor nulo

Valores obrigatórios

- As colunas nas quais não são admitidos valores vazios são chamadas de colunas obrigatórias
- As colunas nas quais podem aparecer campos vazios são chamadas de colunas *opcionais*
- Todas as colunas que compõem a chave primária devem ser obrigatórias

Restrições de integridade

- Um dos objetivos primordiais de um SGBD é a integridade de dados
- Dizer que os dados de um banco de dados estão íntegros significa dizer que eles refletem corretamente a realidade representada pelo banco de dados e que são consistentes entre si
- Existem mecanismos de *restrições de integridade* para que um banco de dados permaneça íntegro
- Uma restrição de integridade é uma regra de consistência de dados que deve ser garantida
- No caso da abordagem relacional, as restrições de integridade são classificadas como:
 - Integridade de domínio
 - Integridade de vazio
 - Integridade de chave
 - Integridade referencial

Integridade de domínio: especifica que o valor de um campo deve obedecer a definição de valores admitidos para a coluna (o domínio da coluna)

ntegridade de vazio: define se os campos de uma coluna podem ou não ser vazios (se a coluna é obrigatória ou opcional)

Integridade de chave: especifica que os valores da chave primária e alternativa devem ser únicos

Integridade de domínio: especifica que o valor de um campo deve obedecer a definição de valores admitidos para a coluna (o domínio da coluna)

Integridade de vazio: define se os campos de uma coluna podem ou não ser vazios (se a coluna é obrigatória ou opcional)

Integridade de chave: especifica que os valores da chave primária e alternativa devem ser únicos

Integridade de domínio: especifica que o valor de um campo deve obedecer a definição de valores admitidos para a coluna (o domínio da coluna)

Integridade de vazio: define se os campos de uma coluna podem ou não ser vazios (se a coluna é obrigatória ou opcional)

Integridade de chave: especifica que os valores da chave primária e alternativa devem ser únicos

Integridade de vazio: define se os campos de uma coluna podem ou não ser vazios (se a coluna é obrigatória ou opcional)

Integridade de chave: especifica que os valores da chave primária e alternativa devem ser únicos

Restrições semânticas

- As categorias de restrições mencionadas são garantidas automaticamente pelo sistema de banco de dados, isto é, não precisam ser tratadas via programação
- Há muitas outras restrições de integridade que não se encaixam em nenhuma das categorias mencionadas e que normalmente não são garantidas pelo sistema de banco de dados
- Essas restrições são chamadas de restrições *semânticas*
- Exemplos de restrições semânticas:
 - Um empregado do departamento denominado Finanças n\u00e3o pode ter a categoria funcional Engenheiro
 - Um empregado não pode ter um salário maior que seu superior imediato

Modelagem lógica

- Na modelagem conceitual, vimos como representar um banco de dados através de DER, sem nos preocuparmos com o modelo relacional
- Na modelagem lógica vamos especificar bancos de dados considerando o modelo relacional, com isto os modelos de dados (também chamados de esquemas lógicos) criados estarão mais próximos do esquema físico dos sistemas de banco de dados relacionais
- A especificação de um banco de dados relacional deve conter:
 - Tabelas que formam o banco de dados
 - Colunas que as tabelas possuem
 - Restrições de integridade
- Esquemas lógicos podem ser representados textualmente e graficamente através de diagramas

Representação textual

- O esquema lógico pode ser escrito diretamente com a linguagem *Structured Query Language (SQL)*
- Porém, vamos utilizar uma notação mais simplificada para facilitar o entendimento e, posteriormente, converter para SQL

Exemplo: Funcionário

ID	Nome	IDDepto	IDCategoria
5	Sousa	D1	C5
3	Santos	D2	C5
2	Silva	D1	C2
1	Soares	D1	-

funcionario(id, nome, id_depto, id_categoria)

■ Os nomes no esquema lógico devem ser parecidos com nomes de variáveis, ou seja, não devem conter caracteres especiais

Domínios

- No esquema lógico, devemos considerar domínios de campos que serão utilizados em sistemas de bancos de dados
- Existem diversos domínios padrões da SQL e cada sistema pode possuir domínio específicos.
- Porém, inicialmente, vamos considerar os seguintes:

CHAR: Valores alfanuméricos com tamanho fixo

VARCHAR: Valores alfanuméricos com tamanho variável

INTEGER: Valores numéricos inteiros (pode ser abreviado para **INT**)

FLOAT: Valores numéricos fracionários

DATE: Datas

TIME: Hora

DATETIME: Data e hora

Domínios

■ Para a tabela funcionário, podemos considerar os seguintes domínios:

- Para os tipos CHAR e VARCHAR, é preciso informar o número máximo de caracteres a ser armazenado
- Se os campos *IDDepto* e *IDCategoria* fossem numéricos, poderíamos utilizar o tipo INT

Integridade de vazio

- A integridade de vazio pode ser especificada com o sinal de + antes do campo
- Nesse caso, os campos precedidos com esse sinal não podem aceitar valores nulos

Exemplo: Funcionário

ID	Nome	IDDepto	IDCategoria
5	Sousa	D1	C5
3	Santos	D2	C5
2	Silva	D1	C2
1	Soares	D1	-

■ Estamos considerando que os campos ID, Nome e IDDepto são obrigatórios

Chaves primárias

-

A representação da chave primária é feita mantendo os campos que a compõem sublinhados

Exemplo: Funcionário

<u>ID</u>	Nome	IDDepto	IDCategoria
<u>5</u>	Sousa	D1	C5
<u>3</u>	Santos	D2	C5
<u>2</u>	Silva	D1	C2
1	Soares	D1	-

Chaves alternativas

As chaves alternativas permanecem com o sublinhado duplo

Exemplo: Funcionário

<u>ID</u>	Nome	IDDepto	IDCategoria	<u>CPF</u>
<u>5</u>	Sousa	D1	C5	120.681.015-18
<u>3</u>	Santos	D2	C5	657.761.408-45
2	Silva	D1	C2	<u>181.689.155-05</u>
1	Soares	D1	-	806.321.034-10

Chaves estrangeiras

- As colunas que compõem a chave estrangeira devem ser marcadas com *
- Além disso, é necessário especificar a tabela de origem

Exemplo: Departamento e funcionário

IDDepto	Nome-Depto	
<u>D1</u>	Compras	
<u>D2</u> Engenharia		
<u>D3</u>	Vendas	

<u>ID</u>	Nome	*IDDepto	IDCategoria
<u>5</u>	Sousa	D1	C5
3	Santos	D2	C5
2	Silva	D1	C2
1	Soares	D1	-

departamento(+id_depto CHAR(4), +nome_depto VARCHAR(30))

funcionario(+id INT, +nome VARCHAR(50),

- *+id_depto CHAR(4), id_categoria CHAR(4))
- *funcionario.id_depto: departamento.id_depto

Representação gráfica

- As representações gráficas de esquema lógico são muito utilizadas em ferramentas de modelagem de dados
- Cada ferramenta utiliza uma notação própria, mas, em geral, todas as notações têm uma certa semelhança
- Duas ferramentas interessantes são:
 - MySQL Workbench: exclusivo para o SGBD MySQL com suporte a múltiplos diagramas (https://www.mysql.com/products/workbench/)
 - SQL Power Architect: suporta múltiplos SGBDs, mas os projetos devem ter um único diagrama (http://www.bestofbi.com/page/architect)

Exemplo

```
Representação Textual
```

SQL Power Architect

funcionario

id: INTEGER NOT NULL [PK]

nome: VARCHAR(50) NOT NULL id_depto: CHAR(4) NOT NULL id categoria: CHAR(4)

cpf: CHAR(11) [AK]

MySQL Workbench

Restrição de unicidade no MySQL Workbench

■ A ferramenta MySQL Workbench não exibe a restrição de unicidade, mas é possível defini-la

Chaves estrangeiras

funcionario

id: INTEGER NOT NULL [PK]

nome: VARCHAR(50) NOT NULL
id_categoria: CHAR(4)
cpf: CHAR(11) [AK]
id_depto: CHAR(4) NOT NULL [FK]

nome_depto: VARCHAR(30) NOT NULL

MySQL Workbench

ELMASRI, R.; NAVATHE, S. B. **Sistemas de banco de dados**. 6. ed. São Paulo: Pearson Addison Wesley, 2011.

HEUSER, C. A. **Projeto de banco de dados**. 6. ed. Porto Alegre: Bookman, 2009.

RAMAKRISHNAN, R.; GEHRKE, J. **Sistemas de gerenciamento de banco de dados**. 3. ed. São Paulo: McGrawHill. 2008.