SEQUENCE LISTING

<110> ImmunoGen, Inc. <120> ANTIBODIES TO NON-SHED MUC1 AND MUC16, AND USES THEREOF <130> A8340 <150> US 60/393,094 <151> 2002-07-03 <160> 33 <170> PatentIn version 3.2 <210> 1 <211> 86 <212> PRT <213> Homo sapiens <400> 1 Phe Leu Gln Ile Tyr Lys Gln Gly Gly Phe Leu Gly Leu Ser Asn Ile 5 Lys Phe Arg Pro Gly Ser Val Val Val Gln Leu Thr Leu Ala Phe Arg 25 Glu Gly Thr Ile Asn Val His Asp Val Glu Thr Gln Phe Asn Gln Tyr 35 Lys Thr Glu Ala Ala Ser Arg Tyr Asn Leu Thr Ile Ser Asp Val Ser 50 55 Val Ser Asp Val Pro Phe Pro Phe Ser Ala Gln Ser Gly Ala Gly Val 70 75 Pro Gly Trp Gly Ile Ala 85 <210> 2 <211> 108 <212> PRT <213> Homo sapiens <400> 2 Thr Asn Tyr Gln Arg Asn Lys Arg Asn Ile Glu Asp Ala Leu Asn Gln 5

Leu Phe Arg Asn Ser Ser Ile Lys Ser Tyr Phe Ser Asp Cys Gln Val 20 25 30 Ser Thr Phe Arg Ser Val Pro Asn Arg His His Thr Gly Val Asp Ser Leu Cys Asn Phe Ser Pro Leu Ala Arg Arg Val Asp Arg Val Ala Ile Tyr Glu Glu Phe Leu Arg Met Thr Arg Asn Gly Thr Gln Leu Gln Asn Phe Thr Leu Asp Arg Ser Ser Val Leu Val Asp Gly Tyr Ser Pro Asn 85 Arg Asn Glu Pro Leu Thr Gly Asn Ser Asp Leu Pro 100 <210> 3 <211> 20 <212> PRT <213> Homo sapiens <400> 3 Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His Gly 5 Val Thr Ser Ala 20 <210> 4 <211> 25 <212> PRT <213> Homo sapiens <400> 4 Phe Trp Ala Val Ile Leu Ile Gly Leu Ala Gly Leu Leu Gly Leu Ile Thr Cys Leu Ile Cys Gly Val Leu Val 20 <210> 5 <211> 4 <212> PRT <213> Homo sapiens <400> 5

Arg Asn Lys Arg

```
<210> 6
<211> 4
<212> PRT
<213> Homo sapiens
<400> 6
Ser Pro Leu Ala
<210> 7
<211> 86
<212> PRT
<213> Artificial Sequence
<220>
<223> Fusion protein
<220>
<221> MISC FEATURE
<222> (1)..(1)
<223> Glutathione S-transferase fusion site
<400> 7
Phe Leu Gln Ile Tyr Lys Gln Gly Gly Phe Leu Gly Leu Ser Asn Ile
Lys Phe Arg Pro Gly Ser Val Val Val Gln Leu Thr Leu Ala Phe Arg
            20
                                25
Glu Gly Thr Ile Asn Val His Asp Val Glu Thr Gln Phe Asn Gln Tyr
Lys Thr Glu Ala Ala Ser Arg Tyr Asn Leu Thr Ile Ser Asp Val Ser
Val Ser Asp Val Pro Phe Pro Phe Ser Ala Gln Ser Gly Ala Gly Val
                                        75
65
                    70
Pro Gly Trp Gly Ile Ala
<210> 8
<211> 21
<212> PRT
<213> Homo sapiens
```

<400> 8

Gln Leu Thr Leu Ala Phe Arg Glu Gly Thr Ile Asn Val His Asp Val 10 Glu Thr Gln Phe Asn 20 <210> 9 <211> 21 <212> PRT <213> Homo sapiens <400> 9 Gln Tyr Lys Thr Glu Ala Ala Ser Arg Tyr Asn Leu Thr Ile Ser Asp 10 Val Ser Val Ser Asp 20 <210> 10 <211> 21 <212> PRT <213> Homo sapiens <400> 10 Phe Leu Gln Ile Tyr Lys Gln Gly Gly Phe Leu Gly Leu Ser Asn Ile 10 5 Lys Phe Arg Pro Gly 20 <210> 11 <211> 21 <212> PRT <213> Homo sapiens <400> 11 Phe Arg Pro Gly Ser Val Val Val Gln Leu Thr Leu Ala Phe Arg Glu Gly Thr Ile Asn Val 20 <210> 12 <211> 19 <212> PRT <213> Homo sapiens <400> 12

Val Pro Phe Pro Phe Ser Ala Gln Ser Gly Ala Gly Val Pro Gly Trp 10 Gly Ile Ala <210> 13 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> Fusion protein <220> <221> MISC FEATURE <222> (1)..(1) <223> Glutathione S-transferase fusion site <400> 13 Thr Asn Tyr Gln Arg Asn Lys Arg Asn Ile Glu Asp Ala Leu Asn Gln 5 Leu Phe Arg Asn Ser Ser Ile Lys Ser Tyr Phe Ser Asp Cys Gln Val 25 Ser Thr Phe Arg Ser Val Pro Asn Arg His His Thr Gly Val Asp Ser 35 Leu Cys Asn Phe Ser Pro Leu Ala Arg Arg Val Asp Arg Val Ala Ile 50 Tyr Glu Glu Phe Leu Arg Met Thr Arg Asn Gly Thr Gln Leu Gln Asn 70 75 65 Phe Thr Leu Asp Arg Ser Ser Val Leu Val Asp Gly Tyr Ser Pro Asn 85 Arg Asn Glu Pro Leu Thr Gly Asn Ser Asp Leu Pro 105 100 <210> 14 <211> 20 <212> PRT <213> Homo sapiens <400> 14 Ser Ser Val Leu Val Asp Gly Tyr Ser Pro Asn Arg Asn Glu Pro Leu

5/22

15

10

Thr Gly Asn Ser

5

<210> 15

<211> 20

<212> PRT

<213> Homo sapiens

<400> 15

Thr Asn Tyr Gln Arg Asn Lys Arg Asn Ile Glu Asp Ala Leu Asn Gln
1 5 10 15

Leu Phe Arg Asn 20

<210> 16

<211> 21

<212> PRT

<213> Homo sapiens

<400> 16

Phe Arg Asn Ser Ser Ile Lys Ser Tyr Phe Ser Asp Cys Gln Val Ser 1 5 10 15

Thr Phe Arg Ser Val

<210> 17

<211> 23

<212> PRT

<213> Homo sapiens

<400> 17

Ser Val Pro Asn Arg His His Thr Gly Val Asp Ser Leu Cys Asn Phe 1 5 10 15

Ser Pro Leu Ala Arg Arg Val 20

<210> 18

<211> 28

<212> PRT

<213> Homo sapiens

<400> 18

Asp Arg Val Ala Ile Tyr Glu Glu Phe Leu Arg Met Thr Arg Asn Gly 6/22

15

Thr Gln Leu Gln Asn Phe Thr Leu Asp Arg Ser Ser 20 25

<210> 19

<211> 515

<212> PRT

<213> Artificial Sequence

<220>

<223> Exemplary Muc1 protein

<400> 19

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr
1 5 10 15

Val Leu Thr Val Val Thr Gly Ser Gly His Ala Ser Ser Thr Pro Gly 20 25 30

Gly Glu Lys Glu Thr Ser Ala Thr Gln Arg Ser Ser Val Pro Ser Ser 35 40 45

Thr Glu Lys Asn Ala Val Ser Met Thr Ser Ser Val Leu Ser Ser His 50 55 60

Ser Pro Gly Ser Gly Ser Ser Thr Thr Gln Gly Gln Asp Val Thr Leu 70 75 80

Ala Pro Ala Thr Glu Pro Ala Ser Gly Ser Ala Ala Thr Trp Gly Gln 85 90 95

Asp Val Thr Ser Val Pro Val Thr Arg Pro Ala Leu Gly Ser Thr Thr 100 105 110

Pro Pro Ala His Asp Val Thr Ser Ala Pro Asp Asn Lys Pro Ala Pro 115 120 125

Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr 130 135 140

Arg Pro Pro Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser 145 150 155 160

Ala Pro Asp Thr Arg Pro Pro Pro Gly Ser Thr Ala Pro Ala Ala His 165 170 175 Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Asn Arg Pro Ala Leu Ala Ser Thr Ala Pro Pro Val His Asn Val Thr Ser Ala Ser Gly Ser 215 Ala Ser Gly Ser Ala Ser Thr Leu Val His Asn Gly Thr Ser Ala Arg 230 Ala Thr Thr Thr Pro Ala Ser Lys Ser Thr Pro Phe Ser Ile Pro Ser 250 245 His His Ser Asp Thr Pro Thr Thr Leu Ala Ser His Ser Thr Lys Thr 265 260 Asp Ala Ser Ser Thr His His Ser Thr Val Pro Pro Leu Thr Ser Ser 280 Asn His Ser Thr Ser Pro Gln Leu Ser Thr Gly Val Ser Phe Phe 295 Leu Ser Phe His Ile Ser Asn Leu Gln Phe Asn Ser Ser Leu Glu Asp 315 310 305 Pro Ser Thr Asp Tyr Tyr Gln Glu Leu Gln Arg Asp Ile Ser Glu Met 330 325 Phe Leu Gln Ile Tyr Lys Gln Gly Gly Phe Leu Gly Leu Ser Asn Ile 340 350 Lys Phe Arg Pro Gly Ser Val Val Val Gln Leu Thr Leu Ala Phe Arg 360 355 Glu Gly Thr Ile Asn Val His Asp Val Glu Thr Gln Phe Asn Gln Tyr 370 375 Lys Thr Glu Ala Ala Ser Arg Tyr Asn Leu Thr Ile Ser Asp Val Ser 390 395 385 Val Ser Asp Val Pro Phe Pro Phe Ser Ala Gln Ser Gly Ala Gly Val 410 405

Pro Gly Trp Gly Ile Ala Leu Leu Val Leu Val Cys Val Leu Val Ala 420 425 430

Leu Ala Ile Val Tyr Leu Ile Ala Leu Ala Val Cys Gln Cys Arg Arg 435 440 445

Lys Asn Tyr Gly Gln Leu Asp Ile Phe Pro Ala Arg Asp Thr Tyr His 450 455 460

Pro Met Ser Glu Tyr Pro Thr Tyr His Thr His Gly Arg Tyr Val Pro 465 470 475 480

Pro Ser Ser Thr Asp Arg Ser Pro Tyr Glu Lys Val Ser Ala Gly Asn 485 490 495

Gly Gly Ser Ser Leu Ser Tyr Thr Asn Pro Ala Val Ala Ala Thr Ser 500 505 510

Ala Asn Leu 515

<210> 20

<211> 2234

<212> PRT

<213> Artificial Sequence

<220>

<223> Exemplary Muc16 protein

<400> 20

Met Glu His Ile Thr Lys Ile Pro Asn Glu Ala Ala His Arg Gly Thr 1 5 10 15

Ile Arg Pro Val Lys Gly Pro Gln Thr Ser Thr Ser Pro Ala Ser Pro 20 25 30

Lys Gly Leu His Thr Gly Gly Thr Lys Arg Met Glu Thr Thr Thr Thr 35 40 45

Ala Leu Lys Thr Thr Thr Thr Ala Leu Lys Thr Thr Ser Arg Ala Thr 50 55 60

Leu Thr Thr Ser Val Tyr Thr Pro Thr Leu Gly Thr Leu Thr Pro Leu 65 70 75 80

Asn Ala Ser Arg Gln Met Ala Ser Thr Ile Leu Thr Glu Met Met Ile 9/22

Pro Ser Val Leu Asn Arg Glu Ser Glu Thr Thr Ala Ser Leu Val Ser 130 135 140

Arg Ser Gly Ala Glu Arg Ser Pro Val Ile Gln Thr Leu Asp Val Ser 145 150 155 160

Ser Ser Glu Pro Asp Thr Thr Ala Ser Trp Val Ile His Pro Ala Glu 165 170 175

Thr Ile Pro Thr Val Ser Lys Thr Thr Pro Asn Phe Phe His Ser Glu 180 185 190

Leu Asp Thr Val Ser Ser Thr Ala Thr Ser His Gly Ala Asp Val Ser 195 200 205

Ser Ala Ile Pro Thr Asn Ile Ser Pro Ser Glu Leu Asp Ala Leu Thr 210 215 220

Pro Leu Val Thr Ile Ser Gly Thr Asp Thr Ser Thr Thr Phe Pro Thr 225 230 235 240

Leu Thr Lys Ser Pro His Glu Thr Glu Thr Arg Thr Thr Trp Leu Thr 245 250 255

His Pro Ala Glu Thr Ser Ser Thr Ile Pro Arg Thr Ile Pro Asn Phe 260 265 270

Ser His His Glu Ser Asp Ala Thr Pro Ser Ile Ala Thr Ser Pro Gly 275 280 285

Ala Glu Thr Ser Ser Ala Ile Pro Ile Met Thr Val Ser Pro Gly Ala 290 295 300

Glu Asp Leu Val Thr Ser Gln Val Thr Ser Ser Gly Thr Asp Arg Asn 305 310 315 320

Met Thr Ile Pro Thr Leu Thr Leu Ser Pro Gly Glu Pro Lys Thr Ile 10/22 Ala Ser Leu Val Thr His Pro Glu Ala Gln Thr Ser Ser Ala Ile Pro 340 345 350

Thr Ser Thr Ile Ser Pro Ala Val Ser Arg Leu Val Thr Ser Met Val 355 360 365

Thr Ser Leu Ala Ala Lys Thr Ser Thr Thr Asn Arg Ala Leu Thr Asn 370 380

Ser Pro Gly Glu Pro Ala Thr Thr Val Ser Leu Val Thr His Pro Ala 385 390 395 400

Gln Thr Ser Pro Thr Val Pro Trp Thr Thr Ser Ile Phe Phe His Ser 405 410 415

Lys Ser Asp Thr Thr Pro Ser Met Thr Thr Ser His Gly Ala Glu Ser 420 425 430

Ser Ser Ala Val Pro Thr Pro Thr Val Ser Thr Glu Val Pro Gly Val 435 440 445

Val Thr Pro Leu Val Thr Ser Ser Arg Ala Val Ile Ser Thr Thr Ile 450 455 460

Pro Ile Leu Thr Leu Ser Pro Gly Glu Pro Glu Thr Thr Pro Ser Met 465 470 475 480

Ala Thr Ser His Gly Glu Glu Ala Ser Ser Ala Ile Pro Thr Pro Thr 485 490 495

Val Ser Pro Gly Val Pro Gly Val Val Thr Ser Leu Val Thr Ser Ser 500 505 510

Arg Ala Val Thr Ser Thr Thr Ile Pro Ile Leu Thr Phe Ser Leu Gly 515 520 525

Glu Pro Glu Thr Thr Pro Ser Met Ala Thr Ser His Gly Thr Glu Ala 530 535 540

Gly Ser Ala Val Pro Thr Val Leu Pro Glu Val Pro Gly Met Val Thr 545 550 555 560

Ser Leu Val Ala Ser Ser Arg Ala Val Thr Ser Thr Thr Leu Pro Thr 11/22

- Leu Thr Leu Ser Pro Gly Glu Pro Glu Thr Thr Pro Ser Met Ala Thr 580 585 590
- Ser His Gly Ala Glu Ala Ser Ser Thr Val Pro Thr Val Ser Pro Glu 595 600 605
- Val Pro Gly Val Val Thr Ser Leu Val Thr Ser Ser Ser Gly Val Asn 610 615 620
- Ser Thr Ser Ile Pro Thr Leu Ile Leu Ser Pro Gly Glu Leu Glu Thr 625 630 635 640
- Thr Pro Ser Met Ala Thr Ser His Gly Ala Glu Ala Ser Ser Ala Val 645 650 655
- Pro Thr Pro Thr Val Ser Pro Gly Val Ser Gly Val Val Thr Pro Leu 660 665 670
- Val Thr Ser Ser Arg Ala Val Thr Ser Thr Thr Ile Pro Ile Leu Thr 675 680 685
- Leu Ser Ser Ser Glu Pro Glu Thr Thr Pro Ser Met Ala Thr Ser His 690 695 700
- Gly Val Glu Ala Ser Ser Ala Val Leu Thr Val Ser Pro Glu Val Pro 705 710 715 720
- Gly Met Val Thr Ser Leu Val Thr Ser Ser Arg Ala Val Thr Ser Thr 725 730 735
- Thr Ile Pro Thr Leu Thr Ile Ser Ser Asp Glu Pro Glu Thr Thr Thr 740 745 750
- Ser Leu Val Thr His Ser Glu Ala Lys Met Ile Ser Ala Ile Pro Thr 755 760 765
- Leu Ala Val Ser Pro Thr Val Gln Gly Leu Val Thr Ser Leu Val Thr 770 775 780
- Ser Ser Gly Ser Glu Thr Ser Ala Phe Ser Asn Leu Thr Val Ala Ser 785 790 795 800
- Ser Gln Pro Glu Thr Ile Asp Ser Trp Val Ala His Pro Gly Thr Glu 12/22

- Ala Ser Ser Val Val Pro Thr Leu Thr Val Ser Thr Gly Glu Pro Phe 820 825 830
- Thr Asn Ile Ser Leu Val Thr His Pro Ala Glu Ser Ser Ser Thr Leu 835 840 845
- Pro Arg Thr Thr Ser Arg Phe Ser His Ser Glu Leu Asp Thr Met Pro 850 855 860
- Ser Thr Val Thr Ser Pro Glu Ala Glu Ser Ser Ser Ala Ile Ser Thr 865 870 875 880
- Thr Ile Ser Pro Gly Ile Pro Gly Val Leu Thr Ser Leu Val Thr Ser 885 890 895
- Ser Gly Arg Asp Ile Ser Ala Thr Phe Pro Thr Val Pro Glu Ser Pro 900 905 910
- His Glu Ser Glu Ala Thr Ala Ser Trp Val Thr His Pro Ala Val Thr 915 920 925
- Ser Thr Thr Val Pro Arg Thr Thr Pro Asn Tyr Ser His Ser Glu Pro 930 935 940
- Asp Thr Thr Pro Ser Ile Ala Thr Ser Pro Gly Ala Glu Ala Thr Ser 945 950 955 960
- Asp Phe Pro Thr Ile Thr Val Ser Pro Asp Val Pro Asp Met Val Thr 965 970 975
- Ser Gln Val Thr Ser Ser Gly Thr Asp Thr Ser Ile Thr Ile Pro Thr 980 985 990
- Leu Thr Leu Ser Ser Gly Glu Pro Glu Thr Thr Thr Ser Phe Ile Thr 995 1000 1005
- Tyr Ser Glu Thr His Thr Ser Ser Ala Ile Pro Thr Leu Pro Val 1010 1015 1020
- Ser Pro Gly Ala Ser Lys Met Leu Thr Ser Leu Val Ile Ser Ser 1025 1030 1035
- Gly Thr Asp Ser Thr Thr Thr Phe Pro Thr Leu Thr Glu Thr Pro 13/22

1040	1045	1050

Tyr	Glu 1055	Pro	Glu	Thr	Thr	Ala 1060	Ile	Gln	Leu	Ile	His 1065	Pro	Ala	Glu
Thr	Asn 1070	Thr	Met	Val	Pro	Lys 1075	Thr	Thr	Pro	Lys	Phe 1080	Ser	His	Ser
Lys	Ser 1085	Asp	Thr	Thr	Leu	Pro 1090	Val	Ala	Ile	Thr	Ser 1095	Pro	Gly	Pro
Glu	Ala 1100	Ser	Ser	Ala	Val	Ser 1105	Thr	Thr	Thr	Ile	Ser 1110	Pro	Asp	Met
Ser	Asp 1115		Val	Thr	Ser	Leu 1120		Pro	Ser	Ser	Gly 1125	Thr	Asp	Thr
Ser	Thr 1130		Phe	Pro	Thr	Leu 1135		Glu	Thr	Pro	Tyr 1140	Glu	Pro	Glu
Thr	Thr 1145		Thr	Trp	Leu	Thr 1150		Pro	Ala	Glu	Thr 1155		Thr	Thr
Val	Ser 1160		Thr	Ile	Pro	Asn 1165		Ser	His	Arg	Gly 1170		Asp	Thr
Ala	Pro 1175		Met	Val	Thr	Ser 1180		Gly	Val	Asp	Thr 1185		Ser	Gly
Val	Pro 1190		Thr	Thr	Ile	Pro 1195		Ser	Ile	Pro	Gly 1200		Val	Thr
Ser	Gln 1205		Thr	Ser	Ser	Ala 1210		Asp	Thr	Ser	Thr 1215	Ala	Ile	Pro
Thr	Leu 1220		Pro	Ser	Pro	Gly 1225		Pro	Glu	Thr	Thr 1230	Ala	Ser	Ser
Ala	Thr 1235		Pro	Gly	Thr	Gln 1240		Gly	Phe	Thr	Val 1245	Pro	Ile	Arg
Thr	Val 1250		Ser	Ser	Glu	Pro 1255		Thr	Met	Ala	Ser 1260		Val	Thr
His	Pro	Pro	Gln	Thr	Ser	Thr	Pro		Ser 14/22		Thr	Thr	Ser	Ser

1265 1270 1275

Phe	Ser 1280	His	Ser	Ser	Pro	Asp 1285	Ala	Thr	Pro	Val	Met 1290	Ala	Thr	Ser
Pro	Arg 1295	Thr	Glu	Ala	Ser	Ser 1300		Val	Leu	Thr	Thr 1305	Ile	Ser	Pro
Gly	Ala 1310	Pro	Glu	Met	Val	Thr 1315	Ser	Gln	Ile	Thr	Ser 1320	Ser	Gly	Ala
Ala	Thr 1325	Ser	Thr	Thr	Val	Pro 1330		Leu	Thr	His	Ser 1335	Pro	Gly	Met
Pro	Glu 1340		Thr	Ala	Leu	Leu 1345		Thr	His	Pro	Arg 1350	Thr	Gly	Thr
Ser	Lys 1355		Phe	Pro	Ala	Ser 1360		Val	Phe	Pro	Gln 1365	Val	Ser	Glu
Thr	Thr 1370		Ser	Leu	Thr	Ile 1375		Pro	Gly	Ala	Glu 1380		Ser	Thr
Ala	Leu 1385		Thr	Gln	Thr	Thr 1390		Ser	Leu	Phe	Thr 1395		Leu	Val
Thr	Gly 1400		Ser	Arg	Val	Asp 1405		Ser	Pro	Thr	Ala 1410	Ser	Pro	Gly
Val	Ser 1415		Lys	Thr	Ala	Pro 1420		Ser	Thr	His	Pro 1425		Thr	Glu
Thr	Ser 1430		Met	Ile	Pro	Thr 1435		Thr	Leu	Ser	Leu 1440		Leu	Leu
Glu	Thr 1445		Gly	Leu	Leu	Ala 1450		Ser	Ser	Ser	Ala 1455		Thr	Ser
Thr	Ser 1460		Leu	Thr	Leu	Thr 1465		Ser	Pro	Ala	Val 1470		- Gly	Leu
Ser	Ser 1475		. Ser	lle	Thr	Thr 1480		Lys	Pro	Glr	1485	Va]	Thr	Ser
Trp) Asn	Thr	Glu	. Thr	Ser	Pro	Ser	. Val	LThr	s Sei	val	Gl	/ Pro	Pro

15/22

1490 1495 1500

Glu	Phe 1505	Ser	Arg	Thr	Val	Thr 1510	Gly	Thr	Thr	Met	Thr 1515	Leu	Ile	Pro
Ser	Glu 1520	Met	Pro	Thr	Pro	Pro 1525	Lys	Thr	Ser	His	Gly 1530	Glu	Gly	Val
Ser	Pro 1535	Thr	Thr	Ile	Leu	Arg 1540	Thr	Thr	Met	Val	Glu 1545	Ala	Thr	Asn
Leu	Ala 1550	Thr	Thr	Gly	Ser	Ser 1555	Pro	Thr	Val	Ala	Lys 1560	Thr	Thr	Thr
Thr	Phe 1565		Thr	Leu	Ala	Gly 1570		Leu	Phe	Thr	Pro 1575	Leu	Thr	Thr
Pro	Gly 1580		Ser	Thr	Leu	Ala 1585		Glu	Ser	Val	Thr 1590	Ser	Arg	Thr
Ser	Tyr 1595		His	Arg	Ser	Trp 1600		Ser	Thr	Thr	Ser 1605	Ser	Tyr	Asn
Arg	Arg 1610	_	Trp	Thr	Pro	Ala 1615		Ser	Thr	Pro	Val 1620	Thr	Ser	Thr
Phe	Ser 1625		Gly	Ile	Ser	Thr 1630		Ser	Ile	Pro	Ser 1635		Thr	Ala
Ala	Thr 1640		Pro	Phe	Met	Val 1645		Phe	Thr	Leu	Asn 1650		Thr	Ile
Thr	Asn 1655		Gln	Tyr	Glu	Glu 1660		Met	Arg	His	Pro 1665	Gly	Ser	Arg
Lys	Phe 1670		Ala	Thr	Glu	Arg 1675		Leu	Gln	Gly	Leu 1680		Lys	Pro
Leu	Phe 1685		Asn	Ser	Ser	Leu 1690		Tyr	Leu	Tyr	Ser 1695		Cys	Arg
Leu	Ala 1700		Leu	Arg	Pro	Glu 1705		Asp	Ser	Ser	Ala 1710		Ala	Val
Asp	Ala	Ile	Cys	Thr	His	Arg	Pro		Pro 6/22		Asp	Leu	. Gly	Leu

1715	1720	1725

Asp	Arg 1730	Glu	Arg	Leu	Tyr	Trp 1735	Glu	Leu	Ser	Asn	Leu 1740	Thr	Asn	Gly
Ile	Gln 1745	Glu	Leu	Gly	Pro	Tyr 1750	Thr	Leu	Asp	Arg	Asn 1755	Ser	Leu	Tyr
Val	Asn 1760	Gly	Phe	Thr	His	Arg 1765	Ser	Ser	Met	Pro	Thr 1770	Thr	Ser	Thr
Pro	Gly 1775	Thr	Ser	Thr	Val	Asp 1780	Val	Gly	Thr	Ser	Gly 1785	Thr	Pro	Ser
Ser	Ser 1790	Pro	Ser	Pro	Thr	Ala 1795	Ala	Gly	Pro	Leu	Leu 1800	Met	Pro	Phe
Thr	Leu 1805	Asn	Phe	Thr	Ile	Thr 1810	Asn	Leu	Gln	Tyr	Glu 1815	Glu	Asp	Met
Arg	Arg 1820	Thr	Gly	Ser	Arg	Lys 1825	Phe	Asn	Thr	Met	Glu 1830	Ser	Val	Leu
Gln	Gly 1835	Leu	Leu	Lys	Pro	Leu 1840	Phe	Lys	Asn	Thr	Ser 1845	Val	Gly	Pro
Leu	Tyr 1850	Ser	Gly	Cys	Arg	Leu 1855	Thr	Leu	Leu	Arg	Pro 1860	Glu	Lys	Asp
Gly	Ala 1865	Ala	Thr	Gly	Val	Asp 1870	Ala	Ile	Cys	Thr	His 1875	Arg	Leu	Asp
Pro	Lys 1880	Ser	Pro	Gly	Leu	Asn 1885	Arg	Glu	Gln	Leu	Tyr 1890	Trp	Glu	Leu
Ser	Lys 1895	Leu	Thr	Asn	Asp	Ile 1900	Glu	Glu	Leu	Gly	Pro 1905	Tyr	Thr	Leu
Asp	Arg 1910	Asn	Ser	Leu	Tyr	Val 1915	Asn	Gly	Phe	Thr	His 1920	Gln	Ser	Ser
Val	Ser 1925	Thr	Thr	Ser	Thr	Pro 1930	Gly	Thr	Ser	Thr	Val 1935	Asp	Leu	Arg
Thr	Ser	Gly	Thr	Pro	Ser	Ser	Leu		Ser 7/22	Pro	Thr	Ile	Thr	Leu

1940	1945	1950

Leu	Arg 1955	Asp	Ile	Gln	Asp	Lys 1960	Val	Thr	Thr	Leu	Tyr 1965	Lys	Gly	Ser
Gln	Leu 1970	His	Asp	Thr	Phe	Arg 1975	Phe	Cys	Leu	Val	Thr 1980	Asn	Leu	Thr
Met	Asp 1985	Ser	Val	Leu	Val	Thr 1990	Val	Lys	Ala	Leu	Phe 1995	Ser	Ser	Asn
Leu	Asp 2000	Pro	Ser	Leu	Val	Glu 2005	Gln	Val	Phe	Leu	Asp 2010	Lys	Thr	Leu
Asn	Ala 2015		Phe	His	Trp	Leu 2020	_	Ser	Thr		Gln 2025	Leu	Val	Asp
Ile	His 2030	Val	Thr	Glu	Met	Glu 2035	Ser	Ser	Val	Tyr	Gln 2040	Pro	Thr	Ser
Ser	Ser 2045	Ser	Thr	Gln	His	Phe 2050	Tyr	Pro	Asn	Phe	Thr 2055	Ile	Thr	Asn
Leu	Pro 2060	Tyr	Ser	Gln	Asp	Lys 2065	Ala	Gln	Pro	Gly	Thr 2070	Thr	Asn	Tyr
Gln	Arg 2075	Asn	Lys	Arg	Asn	Ile 2080	Glu	Asp	Ala	Leu	Asn 2085	Gln	Leu	Phe
Arg	Asn 2090	Ser	Ser	Ile	Lys	Ser 2095	Tyr	Phe	Ser	Asp	Cys 2100	Gln	Val	Ser
Thr	Phe 2105	_	Ser	Val	Pro	Asn 2110	Arg	His	His	Thr	Gly 2115	Val	Asp	Ser
Leu	Cys 2120	Asn	Phe	Ser	Pro	Leu 2125	Ala	Arg	Arg	Val	Asp 2130	Arg	Val	Ala
Ile	Tyr 2135	Glu	Glu	Phe	Leu	Arg 2140	Met	Thr	Arg	Asn	Gly 2145	Thr	Gln	Leu
Gln	Asn 2150	Phe	Thr	Leu	Asp	Arg 2155	Ser	Ser	Val	Leu	Val 2160	Asp	Gly	Tyr
Ser	Pro	Asn	Arg	Asn	Glu	Pro	Leu		Gly 8/22	Asn	Ser	Asp	Leu	Pro

Phe Trp Ala Val Ile Leu Ile Gly Leu Ala Gly Leu Leu Gly Leu 2180 2185 Ile Thr Cys Leu Ile Cys Gly Val Leu Val Thr Thr Arg Arg Arg 2200 2205 2195 Lys Lys Glu Gly Glu Tyr Asn Val Gln Gln Gln Cys Pro Gly Tyr 2215 Tyr Gln Ser His Leu Asp Leu Glu Asp Leu Gln 2230 2225 <210> 21 <211> 710 <212> DNA <213> Homo sapiens <400> 21 ggatccatga caccgggcac ccagtctcct ttcttcctgc tgctgctcct cacagtgctt 60 acagttgtta caggttctgg tcatgcaagc tctaccgact acaaggacga cgatgacaag 120 180 tctagattcc qaaacaqcag catcaagagt tatttttctg actgtcaagt ttcaacattc aggtetgtee ccaacaggea ccacaceggg gtggacteee tgtgtaactt etegecaetg 240 gctcggagag tagacagagt tgccatctat gaggaatttc tgcggatgac ccggaatggt 300 360 acccagetge agaactteae eetggacagg ageagtgtee ttgtggatgg gtatteteee aacagaaatg agcccttaac tgggaattct gaccttccct tctgggctgt catcctcatc 420 ggcttggcag gactcctggg actcatcaca tgcctgatct gcggtgtcct ggtgaccacc 480 cgccggcgga agaaggaagg agaatacaac gtccagcaac agtgcccagg ctactaccag 540 tcacacctag acctggagga tctgcaagcg gccgctcgag ccaccatgga acaaaaactc 600 660 atctcaqaaq aqqatctggc tagcgaacaa aaactcatct cagaagagga tctggaacaa aaactcatct cagaagagga tctgaccggt taaatgcatc tagagggccc 710 <210> 22 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> PCR primer

<400> 22

ttttaagctt accatgccct tttcaagaa

```
<210> 23
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 23
                                                                     30
tttgatatct cattgcagat cctccaggtc
<210> 24
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 24
                                                                     29
gggagccggg ttggcccatg tccgccatg
<210> 25
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 25
                                                                     30
atgggccaac ccggctccct caagttcaac
<210> 26
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 26
                                                                     41
ttttaagctt caccatgccc ttgttcaaga acaccagtgt c
<210> 27
<211> 35
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 27
                                                                     35
ttttggatcc tcattgcaga tcctccaggt ctagg
```

```
<210> 28
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 28
                                                                     32
aaaagcggcc gcttgcagat cctccaggtc ta
<210> 29
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 29
                                                                     21
gaatggtacc cagctgcaga a
<210> 30
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 30
                                                                     22
gctgggtacc attccgggtc at
<210> 31
<211>
      30
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 31
                                                                     30
caagtctaga ttccgaaaca gcagcatcaa
<210> 32
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 32
                                                                      31
ttttggatcc atcacaccgg gcacccagtc t
```

```
<210> 33
<211> 56
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 33
ggaatctaga cttgtcatcg tcgtccttgt agtcggtaga gcttgcatga ccagaa 56
```