MiniProject - 1

Group C - 2 : Use the following dataset and classify tweets into positive and negative tweets.

https://www.kaggle.com/ruchi798/data-science-tweets

In [4]:	<pre>import pandas as pd df = pd.read_csv('data_visualization.csv', low_memory=False)</pre>						
In [5]:	df						
Out[5]:		id	conversation_id	created_at	date	tim	
	0	1406335989484822531	1406335989484822531	2021-06-20 01:10:03 IST	2021- 06-20	01:10:0	
	1	1406292636789526537	1406292636789526537	2021-06-19 22:17:46 IST	2021- 06-19	22:17:4	
	2	1406082288035811330	1406082288035811330	2021-06-19 08:21:55 IST	2021- 06-19	08:21:5	
	3	1405948260796100610	1405948260796100610	2021-06-18 23:29:21 IST	2021- 06-18	23:29:2	
	4	1405942146960613376	1405942146960613376	2021-06-18 23:05:03 IST	2021- 06-18	23:05:0	
	•••						
	33585	7421815845	7421815845	2010-01-06 06:13:47 IST	2010- 01-06	06:13:4	
	33586	7416719938	7416719938	2010-01-06 03:24:09 IST	2010- 01-06	03:24:0	
	33587	7411837095	7411837095	2010-01-06 00:29:44 IST	2010- 01-06	00:29:4	
	33588	7404260176	7404260176	2010-01-05 19:45:15 IST	2010- 01-05	19:45:1	
	33589	7360941344	7360941344	2010-01-04 13:45:57 IST	2010- 01-04	13:45:5	

<class 'pandas.core.frame.DataFrame'> RangeIndex: 33590 entries, 0 to 33589 Data columns (total 36 columns):

#	Column	Non-Null Count	Dtype
0	id	33590 non-null	int64
1	conversation_id	33590 non-null	int64
2	created_at	33590 non-null	object
3	date	33590 non-null	object
4	time	33590 non-null	object
5	timezone	33590 non-null	int64
6	user_id	33590 non-null	int64
7	username	33590 non-null	object
8	name	33590 non-null	object
9	place	85 non-null	object
10	tweet	33590 non-null	object
11	language	33590 non-null	object
12	mentions	33590 non-null	object
13	urls	33590 non-null	object
14	photos	33590 non-null	object
15	replies_count	33590 non-null	int64
16	retweets_count	33590 non-null	int64
17	likes_count	33590 non-null	int64
18	hashtags	33590 non-null	object
19	cashtags	33590 non-null	object
20	link	33590 non-null	object
21	retweet	33590 non-null	bool
22	quote_url	1241 non-null	object
23	video	33590 non-null	int64
24	thumbnail	9473 non-null	object
25	near	0 non-null	float64
26	geo	0 non-null	float64
27	source	0 non-null	float64
28	user_rt_id	0 non-null	float64
29	user_rt	0 non-null	float64
30	retweet_id	0 non-null	float64
31	reply_to	33590 non-null	object
32	retweet_date	0 non-null	float64
33	translate	0 non-null	float64
34	trans_src	0 non-null	float64
35	trans_dest	0 non-null	float64
dtype	es: bool(1), float	:64(10), int64(8)	, object(1

dtypes: bool(1), float64(10), int64(8), object(17)

memory usage: 9.0+ MB

```
In [7]: | df['tweet'][10]
```

Out[7]: 'We are pleased to invite you to the EDHEC DataViz Challenge grand final fo r a virtual exchange with all Top 10 finalists to see how data visualizatio n creates impact and can bring out compelling stories in support of @UNICE F's mission. https://t.co/Vbj9B48VjV'

```
In [9]: import nltk
        nltk.download('vader lexicon')
        from nltk.sentiment.vader import SentimentIntensityAnalyzer
```

```
import re
          import pandas as pd
          import nltk
          nltk.download('words')
          words = set(nltk.corpus.words.words())
In [10]: sid
Out[10]: <nltk.sentiment.vader.SentimentIntensityAnalyzer at 0x1f069c99d0>
In [14]: sentence = df['tweet'][0]
         sid.polarity scores(sentence)['compound']
Out[14]: 0.7089
In [15]: import re
         import nltk
         from nltk.corpus import words
         word list = set(words.words())
         def cleaner(tweet):
             tweet = re.sub("@[A-Za-z0-9]+", "", tweet) # Remove @ mentions
             tweet = re.sub(r"(?:\@|http?\://|https?\://|www)\S+", "", tweet)
             tweet = " ".join(tweet.split()) # Remove extra spaces
             tweet = tweet.replace("#", "").replace(" ", " ") # Remove hashtags and
             tweet = " ".join(
                 w for w in nltk.wordpunct tokenize(tweet)
                 if w.lower() in word list or not w.isalpha()
             return tweet
         df['tweet_clean'] = df['tweet'].apply(cleaner)
In [16]: # Define custom sentiment dictionary
         word_dict = {
             'manipulate': -1,
             'manipulative': -1,
             'jamescharlesiscancelled': -1,
             'jamescharlesisoverparty': -1,
             'pedophile': -1,
             'pedo': -1,
              'cancel': -1,
             'cancelled': -1,
              'cancel culture': 0.4,
              'teamtati': -1,
```

sid = SentimentIntensityAnalyzer()

```
'teamjames': 1,
              'teamjamescharles': 1,
              'liar': -1
          # Initialize the analyzer and update the lexicon
         sid = SentimentIntensityAnalyzer()
          sid.lexicon.update(word_dict)
          # Apply compound score to cleaned tweets
         list1 = []
         for i in df['tweet clean']:
             score = sid.polarity_scores(str(i))['compound']
             list1.append(score)
          # store the results in a new column
         df['sentiment_score'] = list1
In [29]: df['sentiment'] = pd.Series(list1)
         def sentiment_category(sentiment):
             if sentiment > 0:
                  return 'positive'
              elif sentiment == 0:
                  return 'neutral'
             else:
                 return 'negative'
         df['sentiment_category'] = df['sentiment'].apply(sentiment_category)
In [30]: df = df[['tweet', 'date', 'id', 'sentiment', 'sentiment category']]
         df.head()
```

```
tweet date
                                                      id sentiment sentiment_category
Out[30]:
                Take your
               storytelling
                          2021-
                                  1406335989484822531
          0
                                                              0.7089
                                                                                   positive
               to the next 06-20
              level using...
                 Choosing
                 Fonts for
                           2021-
                                  1406292636789526537
                                                              0.0000
          1
                Your Data
                                                                                    neutral
                           06-19
              Visualization
                     | b...
                 This data
              visualization 2021-
                                  1406082288035811330
                                                              0.0000
                                                                                   neutral
             shows where 06-19
              our greate...
               Looking for
              examples of 2021-
                                  1405948260796100610
                                                              0.4019
                                                                                   positive
             stellar charts 06-18
               made so...
                     With
               #WISQARS
                     Data 2021-
                                  1405942146960613376
                                                             -0.4215
                                                                                  negative
              Visualization, 06-18
                  you can
                    disp...
In [31]: neg = df[df['sentiment category']=='negative']
          neg = neg.groupby(['date'], as index=False).count()
          pos = df[df['sentiment_category']=='positive']
          pos = pos.groupby(['date'], as index=False).count()
          pos = pos[['date','id']]
          neg = neg[['date','id']]
In [36]: import plotly.graph objs as go
          # Create figure
          fig = go.Figure()
          # Assuming pos and neg are filtered DataFrames like:
          # pos = df[df['sentiment_category'] == 'positive']
          # neg = df[df['sentiment category'] == 'negative']
          # Plot positive tweets
          fig.add trace(go.Scatter(
              x=pos['date'],
              y=pos['id'],
              name='Positive Tweets',
              mode='markers+lines',
              line=dict(shape='linear', color='green'),
              connectgaps=True
          ))
          # Plot negative tweets
          fig.add trace(go.Scatter(
```

```
x=neg['date'],
    y=neg['id'],
    name='Negative Tweets',
    mode='markers+lines',
    line=dict(shape='linear', color='red'),
    connectgaps=True
))

# Show the figure
fig.show()
```

