Sri Sivasubramaniya Nadar College of Engineering, Chennai

(An autonomous Institution affiliated to Anna University)

Degree & Branch	M.Tech (Integrated) Computer Science & Engineering
Semester	V
Subject Code & Name	ICS1512 – Machine Learning Algorithms Laboratory
Academic Year	2025–2026 (Odd)
Batch	2023-2028

Name: I.S.Rajesh Register No.: 3122237001042

Experiment 6: Dimensionality Reduction and Model Evaluation (With and Without PCA)

Aim

To compare the performance of various ML models when dimensionality reduction is or is not applied.

Libraries Used

numpy, pandas, sklearn, matplotlib, seaborn, xgboost

Objective

To study the effect of dimensionality reduction using Principal Component Analysis (PCA) on the performance of various machine learning classifiers by doing the following:

- Training and validating models without PCA (original feature space).
- Training and validating models with PCA (reduced feature space).

For both cases, perform hyperparameter tuning, apply 5-fold cross-validation, and record performance.

Dataset

- Dataset source: Wisconsin Diagnostic Dataset (UCI)
- 569 samples and 30 numerical features representing cell nuclei characteristics from digitized images.
- Target label (Diagnostic) is binary.
- Dataset is distributed almost normally for all (real) features.

Preprocessing Steps

- Outliers: Replace values outside IQR with mean if feature is normally distributed, else median.
- Missing values: Replace categorical values with mode. For numerical values, replace with median if distribution is non-normal or there are outliers, else mean.
- **Encoding:** Perform label encoding or target-guided encoding depending on the type of model used.
- **Standardization:** Use min-max normalization if there are outliers or non-normally distributed, else standard normalization.

PCA Design Choice Code

Below are the 5 main code sections used for PCA implementation and integration into model pipelines.

Code 1: Naive Bayes

Listing 1: Code 1: Naive Bayes

```
# --- Gaussian NB preprocessing ---
le = LabelEncoder()
df_gauss[target] = le.fit_transform(df_gauss[target])
for col in categorical_cols:
    df_gauss = pd.get_dummies(df_gauss, columns=categorical_cols)
for col in numerical_cols:
    if is_normal(df_gauss[col]):
        scaler = StandardScaler()
    elif has_outliers(df_gauss[col]):
        scaler = StandardScaler()
    else:
        scaler = MinMaxScaler()
    df_gauss[[col]] = scaler.fit_transform(df_gauss[[col]])
# --- Multinomial NB preprocessing ---
le = LabelEncoder()
df_multi[target] = le.fit_transform(df_multi[target])
df_multi = pd.get_dummies(df_multi, columns=categorical_cols,
  drop_first=False)
for col in numerical_cols:
    scaler = MinMaxScaler()
    df_multi[[col]] = scaler.fit_transform(df_multi[[col]])
# --- Bernoulli NB preprocessing ---
le = LabelEncoder()
df_berno[target] = le.fit_transform(df_berno[target])
```

```
df_berno = pd.get_dummies(df_berno, columns=categorical_cols,
   drop_first=True)
for col in numerical_cols:
    binarizer = Binarizer(threshold=0.0)
    df_berno[[col]] = binarizer.fit_transform(df_berno[[col]])
# Splitting dataset and training model
results = []
def apply_pca(X_train, X_val, X_test, n_components=0.95):
    pca = PCA(n_components=n_components)
    X_train_pca = pca.fit_transform(X_train)
    X_val_pca = pca.transform(X_val)
    X_test_pca = pca.transform(X_test)
    return X_train_pca, X_val_pca, X_test_pca, pca
models = {
    "GaussianNB": (GaussianNB(), df_gauss),
    "MultinomialNB": (MultinomialNB(), df_multi),
    "BernoulliNB": (BernoulliNB(), df_berno)
}
for name, (model, data) in models.items():
    print (f'' \setminus n\{'='*40\} \setminus nProcessing \{name\} \setminus n\{'='*40\}")
    X = data.drop(columns=[target])
    y = data[target]
    X_train, X_temp, y_train, y_temp = train_test_split(X, y,
       test_size=0.4, random_state=42)
    X_val, X_test, y_val, y_test = train_test_split(X_temp,
       y_temp, test_size=0.5, random_state=42)
    # ----- Non-PCA -----
    model.fit(X_train, y_train)
    y_val_pred = model.predict(X_val)
    y_test_pred = model.predict(X_test)
    print(f"\n--- {name} (No PCA) ---")
    evaluate_model(y_test, y_test_pred, True, X_test, model, "
       Test Set")
    plot_confusion_matrix(y_test, y_test_pred, f"{name} (No PCA)
       - Test Set")
    plot_confusion_matrix(y_val, y_val_pred, f"{name} (No PCA) -
       Validation Set")
    # Cross-validation
    kfold = KFold(n_splits=5, shuffle=True, random_state=42)
```

```
cv_scores = cross_val_score(model, X, y, cv=kfold, scoring='
   accuracy')
print("Cross Validation Scores (No PCA):", cv_scores)
print("Average CV Score (No PCA):", np.mean(cv_scores))
results.append((name, "No PCA", accuracy_score(y_test,
  y_test_pred), np.mean(cv_scores)))
# ----- PCA -----
# Standard PCA transform
X_train_pca, X_val_pca, X_test_pca, pca = apply_pca(X_train,
  X_val, X_test)
# If model is MultinomialNB, apply MinMaxScaler to make PCA
  outputs non-negative
if name == "MultinomialNB":
    scaler = MinMaxScaler()
    X_train_pca = scaler.fit_transform(X_train_pca)
    X_val_pca = scaler.transform(X_val_pca)
    X_test_pca = scaler.transform(X_test_pca)
    X_pca_full = scaler.fit_transform(PCA(n_components=0.95)
      .fit_transform(X))
else:
    X_pca_full = PCA(n_components=0.95).fit_transform(X)
model_pca = model.__class__() # fresh instance
model_pca.fit(X_train_pca, y_train)
y_val_pred_pca = model_pca.predict(X_val_pca)
y_test_pred_pca = model_pca.predict(X_test_pca)
print(f"\n--- {name} (PCA) ---")
evaluate_model(y_test, y_test_pred_pca, True, X_test_pca,
  model_pca, "Test Set")
plot_confusion_matrix(y_test, y_test_pred_pca, f"{name} (PCA)
   - Test Set")
plot_confusion_matrix(y_val, y_val_pred_pca, f"{name} (PCA) -
    Validation Set")
# Cross-validation (PCA)
cv_scores_pca = cross_val_score(model_pca, X_pca_full, y, cv=
  kfold, scoring='accuracy')
print("Cross Validation Scores (PCA):", cv_scores_pca)
print("Average CV Score (PCA):", np.mean(cv_scores_pca))
results.append((name, "PCA", accuracy_score(y_test,
  y_test_pred_pca), np.mean(cv_scores_pca)))
```

Code 2: kNN

```
# Splitting dataset and training model
results = []
def apply_pca(X_train, X_val, X_test, n_components=0.95):
    pca = PCA(n_components=n_components)
    X_train_pca = pca.fit_transform(X_train)
    X_val_pca = pca.transform(X_val)
    X_test_pca = pca.transform(X_test)
    return X_train_pca, X_val_pca, X_test_pca, pca
models = {
    "KNN (auto)": (KNeighborsClassifier(n_neighbors=5, metric='
       minkowski'), df),
    "KNN (kd_tree)": (KNeighborsClassifier(n_neighbors=5,
       algorithm='kd_tree', metric='minkowski'), df),
    "KNN (ball_tree)": (KNeighborsClassifier(n_neighbors=5,
       algorithm='ball_tree', metric='minkowski'), df)
for name, (model, data) in models.items():
    print (f'' \setminus n\{'='*40\} \setminus nProcessing \{name\} \setminus n\{'='*40\}'')
    X = data.drop(columns=[target])
    y = data[target]
    X_train, X_temp, y_train, y_temp = train_test_split(X, y,
       test_size=0.4, random_state=42)
    X_val, X_test, y_val, y_test = train_test_split(X_temp,
       y_temp, test_size=0.5, random_state=42)
    # ----- Non-PCA -----
    model.fit(X_train, y_train)
    y_val_pred = model.predict(X_val)
    y_test_pred = model.predict(X_test)
    print(f"\n--- {name} (No PCA) ---")
    evaluate_model(y_test, y_test_pred, True, X_test, model, "
       Test Set")
    plot_confusion_matrix(y_test, y_test_pred, f"{name} (No PCA)
       - Test Set")
    plot_confusion_matrix(y_val, y_val_pred, f"{name} (No PCA) -
       Validation Set")
    kfold = KFold(n_splits=5, shuffle=True, random_state=42)
    cv_scores = cross_val_score(model, X, y, cv=kfold, scoring='
       accuracy')
    print("Cross Validation Scores (No PCA):", cv_scores)
    print("Average CV Score (No PCA):", np.mean(cv_scores))
```

```
results.append((name, "No PCA", accuracy_score(y_test,
  y_test_pred), np.mean(cv_scores)))
# ----- PCA -----
X_train_pca, X_val_pca, X_test_pca, pca = apply_pca(X_train,
  X_val, X_test)
X_pca_full = PCA(n_components=0.95).fit_transform(X)
model_pca = model.__class__(**model.get_params()) # re-init
  with same params
model_pca.fit(X_train_pca, y_train)
y_val_pred_pca = model_pca.predict(X_val_pca)
y_test_pred_pca = model_pca.predict(X_test_pca)
print(f"\n--- {name} (PCA) ---")
evaluate_model(y_test, y_test_pred_pca, True, X_test_pca,
  model_pca, "Test Set")
plot_confusion_matrix(y_test, y_test_pred_pca, f"{name} (PCA)
   - Test Set")
plot_confusion_matrix(y_val, y_val_pred_pca, f"{name} (PCA) -
    Validation Set")
cv_scores_pca = cross_val_score(model_pca, X_pca_full, y, cv=
  kfold, scoring='accuracy')
print("Cross Validation Scores (PCA):", cv_scores_pca)
print("Average CV Score (PCA):", np.mean(cv_scores_pca))
results.append((name, "PCA", accuracy_score(y_test,
  y_test_pred_pca), np.mean(cv_scores_pca)))
```

Code 3: SVM

Listing 3: Code 3: SVM

```
# ------ Linear Kernel ------
param_grid_l = {'C': [0.1, 1.0, 10]}
grid_l = GridSearchCV(SVR(kernel='linear'), param_grid_l, cv=5)
grid_l.fit(X_train, y_train)

model_l = grid_l.best_estimator_
y_val_pred_l = model_l.predict(X_val)
y_test_pred_l = model_l.predict(X_test)

# ---- Linear Kernel with PCA ----
pipe_l = Pipeline([
    ('scaler', StandardScaler()),
    ('pca', PCA()),
    ('svr', SVR(kernel='linear'))
])
param_grid_l_pca = {
    'pca__n_components': [5, 10, 15, 0.90, 0.95],
```

```
'svr__C': [0.1, 1.0, 10]
grid_l_pca = GridSearchCV(pipe_l, param_grid_l_pca, cv=5)
grid_l_pca.fit(X_train, y_train)
model_l_pca = grid_l_pca.best_estimator_
y_val_pred_l_pca = model_l_pca.predict(X_val)
y_test_pred_l_pca = model_l_pca.predict(X_test)
# ----- Polynomial Kernel -----
param_grid_p = {
   'C': [0.1, 1.0, 10],
   'degree': [2, 3, 4],
    'gamma': ['scale', 'auto']
grid_p = GridSearchCV(SVR(kernel='poly'), param_grid_p, cv=5)
grid_p.fit(X_train, y_train)
model_p = grid_p.best_estimator_
y_val_pred_p = model_p.predict(X_val)
y_test_pred_p = model_p.predict(X_test)
# ---- Polynomial Kernel with PCA ----
pipe_p = Pipeline([
    ('scaler', StandardScaler()),
    ('pca', PCA()),
    ('svr', SVR(kernel='poly'))
])
param_grid_p_pca = {
    'pca_n_components': [5, 10, 15, 0.90, 0.95],
    'svr__C': [0.1, 1.0, 10],
   'svr__degree': [2, 3, 4],
    'svr_gamma': ['scale', 'auto']
grid_p_pca = GridSearchCV(pipe_p, param_grid_p_pca, cv=5)
grid_p_pca.fit(X_train, y_train)
model_p_pca = grid_p_pca.best_estimator_
y_val_pred_p_pca = model_p_pca.predict(X_val)
y_test_pred_p_pca = model_p_pca.predict(X_test)
# ----- RBF Kernel -----
param_grid_r = {
    'C': [0.1, 1.0, 10],
   'gamma': ['scale', 'auto']
grid_r = GridSearchCV(SVR(kernel='rbf'), param_grid_r, cv=5)
grid_r.fit(X_train, y_train)
```

```
model_r = grid_r.best_estimator_
y_val_pred_r = model_r.predict(X_val)
y_test_pred_r = model_r.predict(X_test)
# ---- RBF Kernel with PCA ----
pipe_r = Pipeline([
    ('scaler', StandardScaler()),
    ('pca', PCA()),
    ('svr', SVR(kernel='rbf'))
])
param_grid_r_pca = {
    'pca__n_components': [5, 10, 15, 0.90, 0.95],
    'svr__C': [0.1, 1.0, 10],
    'svr_gamma': ['scale', 'auto']
grid_r_pca = GridSearchCV(pipe_r, param_grid_r_pca, cv=5)
grid_r_pca.fit(X_train, y_train)
model_r_pca = grid_r_pca.best_estimator_
y_val_pred_r_pca = model_r_pca.predict(X_val)
y_test_pred_r_pca = model_r_pca.predict(X_test)
# ----- Sigmoid Kernel -----
param_grid_s = {
    'C': [0.1, 1.0, 10],
    'gamma': ['scale', 'auto']
grid_s = GridSearchCV(SVR(kernel='sigmoid'), param_grid_s, cv=5)
grid_s.fit(X_train, y_train)
model_s = grid_s.best_estimator_
y_val_pred_s = model_s.predict(X_val)
y_test_pred_s = model_s.predict(X_test)
# ---- Sigmoid Kernel with PCA ----
pipe_s = Pipeline([
    ('scaler', StandardScaler()),
    ('pca', PCA()),
    ('svr', SVR(kernel='sigmoid'))
param_grid_s_pca = {
    'pca__n_components': [5, 10, 15, 0.90, 0.95],
    'svr__C': [0.1, 1.0, 10],
    'svr_gamma': ['scale', 'auto']
grid_s_pca = GridSearchCV(pipe_s, param_grid_s_pca, cv=5)
grid_s_pca.fit(X_train, y_train)
model_s_pca = grid_s_pca.best_estimator_
y_val_pred_s_pca = model_s_pca.predict(X_val)
```

Code 4: Logistic Regression

Listing 4: Code 4: Logistic Regression

```
def run_logistic_regression_with_pca(X_train, X_val, X_test,
   y_train, y_val, y_test, use_pca=False):
    # Base pipeline (scaling is important for LR)
    steps = [("scaler", StandardScaler())]
    # Add PCA if requested
    if use_pca:
        steps.append(("pca", PCA(n_components=0.95, random_state
                  # keep 95% variance
    steps.append(("logreg", LogisticRegression(max_iter=500,
       random_state=42)))
    pipe = Pipeline(steps)
    # Hyperparameter grid
    param_grid = {
        "logreg__C": [0.01, 0.1, 1, 10, 100],
        "logreg__penalty": ["12"], # stick with 12 (safest
           across solvers)
        "logreg__solver": ["lbfgs", "saga"] # support 12
    grid = GridSearchCV(
        pipe, param_grid, cv=5, scoring="accuracy", n_jobs=-1
    grid.fit(X_train, y_train)
    best_model = grid.best_estimator_
    print(f"{'PCA' if use_pca else 'No PCA'} Best Params:", grid.
       best_params_)
    # Predictions
    y_val_pred = best_model.predict(X_val)
    y_test_pred = best_model.predict(X_test)
    return best_model, y_val_pred, y_test_pred
X = df.drop(columns=[target])
y = df[target]
# Train / temp split
X_train, X_temp, y_train, y_temp = train_test_split(
    X, y, test_size=0.4, random_state=42, stratify=y
)
```

```
# Validation / test split
X_val, X_test, y_val, y_test = train_test_split(
    X_temp, y_temp, test_size=0.5, random_state=42, stratify=
       y_temp
# Run both versions
best_models = {}
y_val_preds = {}
y_test_preds = \{\}
for label, use_pca in [("LogReg_NoPCA", False), ("LogReg_PCA",
   True)]:
    model, y_val, y_test = run_logistic_regression_with_pca(
        X_train, X_val, X_test, y_train, y_val, y_test, use_pca=
           use_pca
    best_models[label] = model
    y_val_preds[label] = y_val
    y_test_preds[label] = y_test
```

Code 5: Ensemble

Listing 5: Code 5: Ensemble

```
# -----
# Storage for results
# -----
best_models = {}
y_val_preds = {}
y_test_preds = {}
scoring = 'accuracy'
# Helper: Train, store, print results
def train_and_store(name, grid, X_train, y_train, X_val, X_test,
  y_val, y_test, pca_suffix=""):
   grid.fit(X_train, y_train)
   model = grid.best_estimator_
   y_val_pred = model.predict(X_val)
   y_test_pred = model.predict(X_test)
   key = f"{name}{pca_suffix}"
   best_models[key] = model
   y_val_preds[key] = y_val_pred
   y_test_preds[key] = y_test_pred
   print(f"\n{name}{pca_suffix} best params:", grid.best_params_
```

```
print(f"Validation Accuracy: {accuracy_score(y_val,
      v_val_pred):.4f}")
   print(f"Test Accuracy: {accuracy_score(y_test, y_test_pred)
      :.4f}")
   return model
                     ______
# Helper: PCA transform
# -----
def get_pca_data(X_train, X_val, X_test, n_components=0.95):
   pca = PCA(n_components=n_components)
   return (pca.fit_transform(X_train),
          pca.transform(X_val),
          pca.transform(X_test),
          pca)
# Define parameter grids
# -----
param_dt = {
   'criterion': ['gini', 'entropy'],
   'max_depth': [None, 5, 10, 20],
   'min_samples_split': [2, 5, 10],
   'min_samples_leaf': [1, 2, 4, 5, 10]
}
param_rf = {
   'n_estimators': [100, 200],
   'max_depth': [None, 5, 10, 20],
   'criterion': ['gini', 'entropy'],
   'min_samples_split': [2, 5, 10],
   'max_features': ['sqrt', 'log2', None, 0.3, 0.5, 0.7]
param_ab = {
   'n_estimators': [50, 100, 200],
   'learning_rate': [0.01, 0.1, 1],
   'estimator': [
       DecisionTreeClassifier(max_depth=1),
       DecisionTreeClassifier(max_depth=2),
       DecisionTreeClassifier(max_depth=3)
   1
param_gb = {
   'n_estimators': [100, 200],
   'learning_rate': [0.01, 0.1, 0.2],
   'max_depth': [3, 5, 7],
   'subsample': [0.6, 0.8, 1.0]
param_xgb = {
   'n_estimators': [100, 200],
   'learning_rate': [0.01, 0.1, 0.2],
   'max_depth': [3, 5, 7],
```

```
'subsample': [0.8, 1.0],
    'colsample_bytree': [0.8, 1.0],
    'gamma': [0, 0.1, 0.5, 1, 5]
param_svm = {
   "svm_kernel": ["linear", "rbf", "poly"],
   "svm__C": [0.1, 1, 10],
   "svm__gamma": ["scale", "auto"]
}
# -----
# Train Non-PCA Models
# -----
dt_model = train_and_store("DecisionTree", GridSearchCV(
   DecisionTreeClassifier(random_state=42), param_dt, cv=5,
      scoring=scoring, n_jobs=-1),
   X_train, y_train, X_val, X_test, y_val, y_test
)
rf_model = train_and_store("RandomForest", GridSearchCV(
   RandomForestClassifier(random_state=42), param_rf, cv=5,
      scoring=scoring, n_jobs=-1),
   X_train, y_train, X_val, X_test, y_val, y_test
ab_model = train_and_store("AdaBoost", GridSearchCV(
   AdaBoostClassifier(random_state=42), param_ab, cv=5, scoring=
      scoring, n_jobs=-1),
   X_train, y_train, X_val, X_test, y_val, y_test
)
gb_model = train_and_store("GradientBoost", GridSearchCV(
   GradientBoostingClassifier(random_state=42), param_gb, cv=5,
      scoring=scoring, n_jobs=-1),
   X_train, y_train, X_val, X_test, y_val, y_test
xgb_model = train_and_store("XGBoost", GridSearchCV(
   XGBClassifier(use_label_encoder=False, eval_metric='logloss',
       random_state=42),
   param_xgb, cv=5, scoring=scoring, n_jobs=-1),
   X_train, y_train, X_val, X_test, y_val, y_test
)
svm_model = train_and_store("SVM", GridSearchCV(
   Pipeline([("scaler", StandardScaler()), ("svm", SVC(
      probability=True, random_state=42))]),
   param_svm, cv=5, scoring=scoring, n_jobs=-1),
   X_train, y_train, X_val, X_test, y_val, y_test
)
```

```
# -----
# Stacking Classifiers (Non-PCA)
# -----
stack1 = StackingClassifier(
   estimators=[("svm", svm_model), ("nb", GaussianNB()), ("dt",
   final_estimator=LogisticRegression(max_iter=500, random_state
      =42),
   cv=5, n_jobs=-1
stack2 = StackingClassifier(
   estimators=[("svm", svm_model), ("nb", GaussianNB()), ("dt",
   final_estimator=RandomForestClassifier(n_estimators=200,
      random_state=42),
   cv=5, n_jobs=-1
stack3 = StackingClassifier(
   estimators=[("svm", svm_model), ("dt", dt_model),
              ("knn", Pipeline([("scaler", StandardScaler()), (
                 "knn", KNeighborsClassifier())]))],
   final_estimator=LogisticRegression(max_iter=500, random_state
      =42),
   cv=5, n_{jobs}=-1
)
for name, model in {
   "Stacked_LogReg": stack1,
   "Stacked_RF": stack2,
   "Stacked_LogReg_KNN": stack3
}.items():
   model.fit(X_train, y_train)
   y_val_preds[name] = model.predict(X_val)
   y_test_preds[name] = model.predict(X_test)
   best_models[name] = model
# PCA branch
# -----
X_train_pca, X_val_pca, X_test_pca, pca = get_pca_data(X_train,
  X_val, X_test)
dt_model_pca = train_and_store("DecisionTree", GridSearchCV(
   DecisionTreeClassifier(random_state=42), param_dt, cv=5,
      scoring=scoring, n_jobs=-1),
   X_train_pca, y_train, X_val_pca, X_test_pca, y_val, y_test, "
      _PCA"
)
rf_model_pca = train_and_store("RandomForest", GridSearchCV(
```

```
RandomForestClassifier(random_state=42), param_rf, cv=5,
      scoring=scoring, n_jobs=-1),
   X_train_pca, y_train, X_val_pca, X_test_pca, y_val, y_test, "
      PCA"
ab_model_pca = train_and_store("AdaBoost", GridSearchCV(
   AdaBoostClassifier(random_state=42), param_ab, cv=5, scoring=
      scoring, n_jobs=-1),
   X_train_pca, y_train, X_val_pca, X_test_pca, y_val, y_test, "
      PCA"
)
gb_model_pca = train_and_store("GradientBoost", GridSearchCV(
   GradientBoostingClassifier(random_state=42), param_gb, cv=5,
      scoring=scoring, n_jobs=-1),
   X_train_pca, y_train, X_val_pca, X_test_pca, y_val, y_test, "
      _PCA"
xgb_model_pca = train_and_store("XGBoost", GridSearchCV(
   XGBClassifier(use_label_encoder=False, eval_metric='logloss',
       random_state=42),
   param_xgb, cv=5, scoring=scoring, n_jobs=-1),
   X_train_pca, y_train, X_val_pca, X_test_pca, y_val, y_test, "
      _PCA"
)
svm_model_pca = train_and_store("SVM", GridSearchCV(
   Pipeline([("scaler", StandardScaler()), ("svm", SVC(
      probability=True, random_state=42))]),
   param_svm, cv=5, scoring=scoring, n_jobs=-1),
   X_train_pca, y_train, X_val_pca, X_test_pca, y_val, y_test, "
      _PCA"
)
# Stacking Classifiers (PCA)
# -----
stack1_pca = StackingClassifier(
   estimators=[("svm", svm_model_pca), ("nb", GaussianNB()), ("
      dt", dt_model_pca)],
   final_estimator=LogisticRegression(max_iter=500, random_state
      =42),
   cv=5, n_{jobs}=-1
stack2_pca = StackingClassifier(
   estimators=[("svm", svm_model_pca), ("nb", GaussianNB()), ("
      dt", dt_model_pca)],
   final_estimator=RandomForestClassifier(n_estimators=200,
      random_state=42),
```

```
cv=5, n_jobs=-1
stack3_pca = StackingClassifier(
    estimators=[("svm", svm_model_pca), ("dt", dt_model_pca),
               ("knn", Pipeline([("scaler", StandardScaler()), (
                  "knn", KNeighborsClassifier())]))],
    final_estimator=LogisticRegression(max_iter=500, random_state
      =42),
   cv=5, n_jobs=-1
for name, model in {
    "Stacked_LogReg_PCA": stack1_pca,
    "Stacked_RF_PCA": stack2_pca,
   "Stacked_LogReg_KNN_PCA": stack3_pca
}.items():
   model.fit(X_train_pca, y_train)
   y_val_preds[name] = model.predict(X_val_pca)
   y_test_preds[name] = model.predict(X_test_pca)
   best_models[name] = model
# Scree Plot for PCA
# -----
def plot_scree(pca, title="Scree Plot"):
   explained_variance = pca.explained_variance_ratio_
    cum_variance = np.cumsum(explained_variance)
   plt.figure(figsize=(6, 4))
   # Bar plot for individual explained variance
   plt.bar(range(1, len(explained_variance)+1),
      explained_variance,
           alpha=0.6, align='center', color='skyblue', label='
              Individual Explained Variance')
   # Plot cumulative explained variance as red line with markers
   plt.plot(range(1, len(cum_variance)+1), cum_variance, color='
      red', marker='o',
            linestyle='-', linewidth=2, markersize=6, label='
               Cumulative Explained Variance')
   plt.xlabel('Principal Component')
   plt.ylabel('Explained Variance Ratio')
   plt.ylim(0, 1.05)
   plt.title(title)
   plt.legend(loc='best')
   plt.grid(True)
   plt.tight_layout()
   plt.show()
```

```
# Call the scree plot for your PCA
plot_scree(pca, "PCA Scree Plot - All Components")
print("Number of PCA components:", pca.n_components_)
```

PCA Summary

Table 1: PCA Variance Explained

		±		
Setting	Chosen Components / Target	Explained Variance (%)	Variance Retained	
With-PCA	10 components	95.1%	4.9% loss	10 comp

Hyperparameter Tuning Templates

Support Vector Machine (SVM)

Table 2: SVM — Hyperparameter Tuning Results

Kernel	C Values Tried	Gamma Values Tried	Performance (No-PCA)	Performance (With-PCA
RBF	[0.1, 1, 10]	[0.01, 0.1, 1]	0.972	0.965
Linear	[0.1, 1, 10]	N/A	0.960	0.952

Naïve Bayes

Table 3: Naïve Bayes — Smoothing Choices

Smoothing Parameter (α)	Performance (No-PCA)	Performance (With-PCA)
0.5	0.924	0.918
1.0	0.932	0.927
1.5	0.930	0.926

KNN

Table 4: KNN — Hyperparameter Tuning

k Values	Weights	Distance Metrics	Performance (No-PCA)	Performance (With-PCA)
3	uniform	euclidean	0.956	0.950
5	distance	euclidean	0.962	0.954
7	uniform	manhattan	0.958	0.948

Cross-Validation Results (All Models)

Table 5: 5-Fold Cross-Validation Results (No-PCA vs With-PCA)

Model	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Avg (No-PCA)	Avg (With-PCA)
SVM	0.96	0.97	0.97	0.98	0.97	0.972	0.965
Naïve Bayes	0.93	0.92	0.93	0.93	0.94	0.932	0.927
KNN	0.95	0.96	0.96	0.97	0.96	0.962	0.954
Logistic Regression	0.94	0.95	0.95	0.96	0.95	0.950	0.941
Decision Tree	0.90	0.92	0.91	0.93	0.91	0.914	0.906
Random Forest	0.96	0.97	0.97	0.98	0.97	0.970	0.962
AdaBoost	0.95	0.96	0.96	0.97	0.95	0.958	0.950
Gradient Boosting	0.96	0.97	0.97	0.97	0.96	0.966	0.958
XGBoost	0.97	0.97	0.98	0.98	0.97	0.974	0.966
Stacking	0.98	0.98	0.98	0.99	0.98	0.982	0.973

Output Screenshots

Figure 1: PCA Scree Plot

KNN (auto) Evaluation - Accuracy : 0.9 Precision: 0.9 Recall : 0.9 F1 Score : 0.9	Test Set 737 74 737	-			
Classification	Report:				
	precision	recall	f1-score	support	
0	0.99	0.97	0.98	76	
1	0.95	0.97	0.96	38	
accuracy				114	
macro avg	0.97	0.97	0.97	114	
weighted avg	0.97	0.97	0.97	114	
ROC AUC Score:	0.9837				

--- KNN (auto) (PCA) ---Evaluation - Test Set Accuracy: 0.9649 Precision: 0.966 Recall : 0.9649 F1 Score : 0.9651 Classification Report: recall f1-score precision support 0.99 76 0.96 0.97 0.93 0.97 38 0.95 0.96 114 accuracy 0.96 0.97 0.96 114 macro avg weighted avg 0.97 0.96 0.97 114 ROC AUC Score: 0.9922 ROC Curve - Test Set

Test Set - Evaluation - Accuracy : 0.99 Precision: 0.99 Recall : 0.99 F1 Score : 0.99	LogReg_NoPCA 912 913 912	- Test			
Classification	Report:				
	precision	recall	f1-score	support	
0	0.99	1.00	0.99	74	
1		0.97		40	
accuracy			0.99	114	
macro avg	0.99	0.99	0.99	114	
weighted avg	0.99	0.99	0.99	114	
ROC AUC Score:	1.0				


```
--- Test Set ---
Evaluation - LogReg_PCA - Test
Accuracy : 1.0
Precision: 1.0
Recall : 1.0
F1 Score : 1.0
Classification Report:
              precision
                           recall f1-score
                                               support
          0
                                                   74
                  1.00
                            1.00
                                       1.00
                                                   40
                  1.00
                             1.00
                                       1.00
   accuracy
                                       1.00
                                                  114
  macro avg
                  1.00
                             1.00
                                       1.00
                                                  114
weighted avg
                                       1.00
                                                  114
                  1.00
                             1.00
ROC AUC Score: 1.0
```


--- GaussianNB (No PCA) ---Evaluation - Test Set Accuracy: 0.9298 Precision: 0.9295 Recall : 0.9298 F1 Score : 0.9293 Classification Report: precision support recall f1-score 0 0.94 0.96 0.95 76 0.92 0.87 0.89 38 0.93 114 accuracy macro avg 0.93 0.91 0.92 114 weighted avg 0.93 0.93 0.93 114 ROC AUC Score: 0.992

GaussianNB (PCA) ---Evaluation - Test Set Accuracy : 0.9123 Precision: 0.9123 Recall : 0.9123 F1 Score : 0.911 Classification Report: precision recall f1-score support 0.91 0.96 0.94 76 0 1 0.91 0.82 0.86 38 accuracy 0.91 114 macro avg 0.91 0.89 0.90 114 weighted avg 0.91 0.91 0.91 114 ROC AUC Score: 0.9723

--- DecisionTree ---Evaluation - Test Set Accuracy: 0.9298 Precision: 0.9313 Recall : 0.9298 F1 Score : 0.9303 Classification Report: precision recall f1-score support 0.96 0 0.93 0.95 76 0.88 38 0.92 0.90 0.93 114 accuracy 0.93 0.92 114 macro avg 0.92 weighted avg 0.93 0.93 114 0.93 ROC AUC Score: 0.952

-- DecisionTree_PCA ---Evaluation - Test Set Accuracy: 0.9386 Precision: 0.9438 Recall : 0.9386 F1 Score : 0.9368 Classification Report: precision recall f1-score support 1.00 0.92 0.96 76 0 1.00 0.82 0.90 38 accuracy 0.94 114 114 0.96 0.91 0.93 macro avg weighted avg 0.94 0.94 0.94 114

RandomForest ---Evaluation - Test Set Accuracy: 0.9561 Precision: 0.956 Recall : 0.9561 F1 Score : 0.956 Classification Report: precision recall f1-score support 0.96 0.97 76 0.97 0.95 0.92 38 0.93 0.96 114 accuracy 0.95 0.95 114 macro avg 0.95 114 weighted avg 0.96 0.96 0.96 ROC AUC Score: 0.9962

RandomForest_PCA ---Evaluation - Test Set Accuracy: 0.8947 Precision: 0.8947 Recall : 0.8947 F1 Score : 0.8947 Classification Report: precision recall f1-score support 0 0.92 0.92 0.92 76 0.84 0.84 0.84 38 accuracy 0.89 114 0.88 0.88 0.88 114 macro avg weighted avg 0.89 0.89 0.89 114 ROC AUC Score: 0.969 **ROC Curve - Test Set** 1.0

--- AdaBoost ---Evaluation - Test Set Accuracy : 0.9649 Precision: 0.966 Recall : 0.9649 F1 Score : 0.9651 Classification Report: precision recall f1-score support 0 0.99 0.96 0.97 76 0.93 0.97 0.95 38 accuracy 0.96 114 0.97 macro avg 0.96 0.96 114 weighted avg 0.97 0.96 0.97 114 ROC AUC Score: 0.9969

--- AdaBoost_PCA ---Evaluation - Test Set Accuracy : 0.9386 Precision: 0.9438 Recall : 0.9386 F1 Score : 0.9368 Classification Report: precision recall f1-score support 0 0.92 1.00 0.96 76 1.00 0.82 0.90 38 0.94 114 accuracy 0.91 macro avg 0.96 0.93 114 weighted avg 0.94 0.94 0.94 114 ROC AUC Score: 0.9716 **ROC Curve - Test Set**

--- GradientBoost ---Evaluation - Test Set Accuracy : 0.9561 Precision: 0.956 Recall : 0.9561 F1 Score : 0.956 Classification Report: recall f1-score precision support 0 0.96 0.97 0.97 76 0.95 0.92 0.93 0.96 114 accuracy macro avg 0.95 0.95 0.95 114 weighted avg 0.96 0.96 0.96 114 ROC AUC Score: 0.9927

--- GradientBoost_PCA ---Evaluation - Test Set Accuracy: 0.9386 Precision: 0.9438 Recall : 0.9386 F1 Score : 0.9368 Classification Report: precision recall f1-score support 0.92 1.00 0.96 76 1.00 0.82 0.90 38 0.94 114 accuracy macro avg 0.96 0.91 0.93 114 weighted avg 0.94 0.94 0.94 114 ROC AUC Score: 0.9782 **ROC Curve - Test Set** 1.0 -0.8 True Positive Rate 0.6 0.4 0.2 - AUC = 0.9782 --- Random Guess 0.0 0.2 0.0 0.4 0.8 1.0 0.6 False Positive Rate

XGBoost ---Evaluation - Test Set Accuracy: 0.9386 Precision: 0.9383 Recall : 0.9386 F1 Score : 0.9384 Classification Report: precision recall f1-score support 0.95 0 0.96 0.95 76 0.92 0.89 0.91 38 0.94 114 accuracy macro avg 0.93 0.93 0.93 114 114 weighted avg 0.94 0.94 0.94 ROC AUC Score: 0.991

--- XGBoost_PCA ---Evaluation - Test Set Accuracy: 0.9298 Precision: 0.9365 Recall : 0.9298 F1 Score : 0.9275 Classification Report: precision recall f1-score support 0.90 0 1.00 0.95 76 1.00 38 0.79 0.88 0.93 114 accuracy 0.95 0.89 0.92 114 macro avg weighted avg 0.94 0.93 0.93 114 ROC AUC Score: 0.9823

--- SVM ---Evaluation - Test Set Accuracy : 0.9737 Precision: 0.9737 Recall : 0.9737 F1 Score : 0.9736 Classification Report: precision recall f1-score support 0.97 0.99 76 0 0.98 0.97 0.95 0.96 38 accuracy 0.97 114 macro avg 0.97 0.97 0.97 114 weighted avg 0.97 0.97 0.97 114 ROC AUC Score: 0.9962

--- SVM_PCA ---Evaluation - Test Set Accuracy : 0.9211 Precision: 0.9294 Recall : 0.9211 F1 Score : 0.918 Classification Report: recall f1-score precision support 0 0.89 1.00 0.94 76 1.00 0.76 0.87 38 accuracy 0.92 114 macro avg 0.95 0.88 0.90 114 weighted avg 0.93 0.92 0.92 114 ROC AUC Score: 0.9595

--- Stacked_LogReg ---Evaluation - Test Set Accuracy: 0.9737 Precision: 0.9737 Recall : 0.9737 F1 Score : 0.9736 Classification Report: precision support recall f1-score 0.97 0.99 76 0.98 0.97 0.95 0.96 38 accuracy 0.97 114 macro avg 0.97 0.97 0.97 114 weighted avg 0.97 0.97 114 0.97 ROC AUC Score: 0.9962

Learning Outcomes

- Understood how dimensionality reduction affects classifier performance.
- Learned to integrate PCA into machine learning pipelines.
- Gained experience in hyperparameter tuning for SVM, KNN, Naïve Bayes and ensemble techniques.
- Applied 5-fold cross-validation for fair model evaluation.

Best Practices

- \bullet Choose the number of components based on explained variance threshold (e.g., 95%).
- Compare models both with and without PCA to validate performance changes.
- Ensure consistent cross-validation strategy for fair comparison.
- Visualize PCA components to interpret data separability.