Social Data ScienceFinal Projects & Shiny Applications

Dr. Thomas Davidson

Rutgers University

October 6, 2021

Plan

- 1. Course updates
- 2. Final projects
- 3. Developing Shiny applications in R

Course updates

▶ Reminder: Homework 2 released on Friday

▶ Deadline: Next Friday, 10/15, 5pm ET

Goals

- Build an interactive data visualization app, focused on a topic of social scientific interest
- Your chance to showcase skills and knowledge developed in this class
- Add to your portfolio or resume

Five steps

- Data collection
- Data cleaning
- Data analysis
- Data visualization
- Building and deploying an app

Data collection

- ► Collect a dataset
 - Data of interest to social scientists
 - Data sources:
 - APIs
 - Webscraping
 - Existing datasets (e.g. General Social Survey, American National Election Study)

Data cleaning

- Process dataset to extract relevant data
 - String pre-processing (more next week)
 - Parsing HTML
 - Merging datasets
 - Selecting, grouping, mutating, etc.

Data analysis

- Conduct an analysis of the dataset
 - Descriptive statistics (mean, median, mode, etc.)
 - Statistical tests (correlation, t-test, chi-squared, etc.)
 - Statistical modeling (regression, machine learning, topic modeling, etc.)
- ▶ Depending on the type of analysis, there may specific resources for using Shiny to show results

Data visualization

- Construct visualizations of the dataset
 - Relationships between variables
 - ► Trends over time
 - Maps
 - Animations
- Must have an interactive component

Building and deploying an app

- ► Use R Shiny to build an interactive app
- ▶ Deploy the app on the web using Shinyapps.io

Final deliverables

- A deployed Shiny app for interactive data visualization
- An organized Github repository for the project
 - ▶ Including a README with documentation
- A short written description of the work

Milestones

- ▶ Identify a suitable topic, next 2 weeks
 - ► All projects are subject to approval
- ▶ Initial proposal (due 10/22), ~2 weeks
 - A short description of the planned project including plan for data collection, cleaning, analysis, and visualization
- ▶ Prototype (due 11/19), ~6 weeks
 - A simple working prototype of your app
- ▶ Presentation (12/6 & 12/8), ~9 weeks
 - A chance to present your app and get feedback
- ▶ Finished app and deliverables submitted (12/16), ~10 weeks

Feedback

- There will be several opportunities for formal and informal feedback
- Informal
 - Office hours
 - Discuss before submitting proposals
 - Discussions with classmates
- ► Formal
 - Written feedback on proposal and prototype
 - Presentation

Teamwork

- You can work on the project individually or as part of a team
- Make a decision when you submit your proposal
- Teams will be require to submit an additional document describing contributions of each member
 - Ensure fair distribution of work
 - Git commit history to highlight contributions

What is Shiny?

- Shiny is a package you can use to build interactive web pages directly from R
 - It does not require any experience with HTML, CSS, or Javascript, etc.
- Apps can be hosted on standalone webpages, enabling anyone to access them
- Many extensions available, making Shiny a powerful tool for data visualization and construction of dashboards.

Example 1: Explore your weather

► A simple app to show trends in temperature and precipitation using data from NOAA

Example 1: Explore your weather

- ► This app visualizes an existing dataset containing information about average temperatures in a given location
- Features
 - ► Two different plots show temperature and precipitation
 - The user interface contains a search bar, return button, and a random city button
 - Options to change light/dark mode
 - Links to original data and code on Github

Example 2: Bloodbanks in India

- ► This app maps bloodbanks in India using data from the Open Government Platform
- ► Interactive, clickable map
- ► Tabs to show raw data and provide further details

More examples

► There are many more examples in the Gallery on the Shiny website.

Extensions

- ► There are many extensions of the Shiny framework
 - ▶ D3 for data-driven visualization. See 'r2d3' website
 - ► Leaflet for interactive mapping
 - ► Plotly for interactive plots
 - ► STMinsights for exploring structural topic models (Week 9)

This Github page lists a ton of Shiny resources.

Further readings

- ► RStudio's Shiny cheatsheet is a really useful quick reference.
- ► *Mastering Shiny* by Hadley Wickham is available for free online.
- RStudio has a two and a half hour long video tutorial, along with a set of short online tutorials
- Lots of videos on YouTube

Deployment

- ► Apps can be deployed for free using the Shiny Apps website.* You just need to do the following:
 - Sign up (you can use Github account)
 - ► Get credentials (key and secret)
 - Authorize credentials
 - Package app in appropriate format
 - Deploy
- ► Free accounts are limited to 5 apps and 25 active hours a month. You will need to ensure you do not exceed these limits.

Information on example files

- app.R is an example of simple Shiny app to interactively plot correlations, along with other descriptive statistics
- app2.R modifies the previous app to use the shinydashboards framework
- /app is a directory containing two files, ui.R and server.R (the components of app.R)
 - test.R uses the files in /app to launch a local version of the app
 - app_deploy_template.R can be run to deploy the app to shinyapps.io.
 - You must add credentials and other information to this template before running it.

Next week

► Introduction to Natural Language Processing

Questions