>>> IF013 - Fundamentos Teóricos de Informática
>>> Licenciatura de Sistemas - UNPSJB - Sede Trelew

Name: Celia Cintas[†], Pablo Navarro[‡], Samuel Almonacid[§]

Date: August 9, 2017

[-]\$ _

[†]cintas@cenpat-conicet.gob.ar, cintas.celia@gmail.com, @RTFMCelia

 $^{^\}ddagger$ pnavarro@cenpat-conicet.gob.ar, pablo1n7@gmail.com

[§]almonacid@cenpat-conicet.gob.ar, almonacid.samuel.tw@gmail.com

>>> Unidad 1

- 1. Autómatas finitos. Reconocedores. Traductores. Diagrama de estados. Autómatas finitos no deterministas.
- 2. Equivalencia entre autómatas finitos deterministas y no deterministas. Morfismos sobre autómatas. Autómata Cociente.
- 3. Propiedades de lenguajes aceptados por Autómatas Finitos. Expresiones y lenguajes regulares.
- 4. Propiedades algebraicas de los lenguajes regulares. Equivalencia entre autómatas finitos y lenguajes regulares.
- 5. Teorema de Kleene. Gramáticas regulares. Relación entre gramáticas regulares y autómatas finitos.
- 6. Usos y aplicaciones de los autómatas finitos y lenguajes regulares.

[1. Unidad 1]\$ _

>>> Teorema de Kleene

Teorema

Un lenguaje L es regular si y sólo si es reconocido por un AF.

Demostración

La clase de lenguajes regulares es la clase más chica de lenguajes que contiene al conjunto \emptyset , a λ , a los símbolos del alfabeto y es cerrada bajo unión, concatenación y estrella de Kleene. La prueba será por construcción del AF.

* El menor AF para $\overline{L}=\emptyset$ es $M=(S,\Sigma,\delta,s_0,F)$, $S=\{s_0\}$, $i\in \Sigma$, $F=\emptyset$.

>>> Teorema de Kleene (Cont.)

Demostración

* El menor autómata finito que reconoce λ es $M=(S,\Sigma,\delta,s_0,F)$, $S=\{s_0,s_1\}$, $i\in\Sigma$, $F=\{s_0\}$.

* El menor autómata finito que reconoce i es $M=(S,\Sigma,\delta,s_0,F)$, $S=\{s_0,s_1,s_2\}$, $i\in\Sigma$, $F=\{s_1\}$.

[2. Lenguajes Regulares]\$ _

>>> Teorema de Kleene (Cont.)

Demostración

* Queremos probar que $L_1 \cup L_2$ es un lenguaje aceptado por un AF. Lo demostraremos por construcción:

Sean
$$M_1=(S_1,\Sigma,\delta_1,s_1,F_1)$$
 y $M_2=(S_2,\Sigma,\delta_2,s_2,F_2)$.

Construimos un autómata finito M no determinista que acepte $L(M_1) \cup L(M_2)$.

$$M = (S, \Sigma \cup \{\lambda\}, \delta, s, F)$$
, donde:

- * $S = S_1 \cup S_2 \cup \{s\}$ (s es el estado inicial).
- * $F = F_1 \cup F_2$.
- * $\delta = \delta_1 \cup \delta_2 \cup \{\delta(s, \lambda) = \{s_1, s_2\}\}$.

Por lo que: $\delta(s,w)\supseteq q,q\in F$, si y solo si:

$$\delta_1(s_1,w)\supseteq q,q\in F_1$$
 o $\delta_2(s_2,w)\supseteq q,q\in F_2$. Por lo tanto

$$L(M) = L(M_1) \cup L(M_2).$$

>>> Teorema de Kleene (Cont.)

Demostración

- * La concatenación $(L(M) = L(M_1) \cdot L(M_2))$ se demuestra de manera simil al punto anterior.
- * Solo queda demostrar que $L(M)=L(M_1)^*$, donde M_1 es un AF y M es un AFND que construiremos. dado $M_1=(S_1,\Sigma,\delta_1,s_1,F_1)$ construimos M tal que tiene todos los estados de M_1 y un nuevo estado inicial s_1 . Este nuevo estado también es aceptador, para poder reconocer λ . $S=S_1\cup\{s_1\}$ s es el estado inicial, $s\not\in S_1$ $F=F_1\cup\{s\}$ $\delta=\delta_1\cup\{\delta(s,\lambda)=s_1\}\cup\{\delta(s_i,\lambda)=s_1,s_i\in F_1\}$

>>> Propiedades de los Lenguajes Regulares

Ahora veremos clausura bajo ciertas operaciones, que nos permitirán una mayor comprensión del concepto de lenguajes regulares.

- * brindan herramientas para la construcción y simulación de AF.
- * esclarecen aún mas el nexo entre los autómatas finitos y las expresiones regulares.
- * muestra que los LR son estables.
- * ayudan a identificar el tipo de un lenguaje.

>>> Propiedades de los Lenguajes Regulares

Definición

La clase de los lenguajes aceptados por AF, es decir la clase de los lenguajes regulares, es cerrada bajo: unión, concatenación, estrella de Kleene, complemento e Intersección.

Problemas decidibles sobre LR:

- * Pertenencia: dado un lenguaje regular L y $\alpha, \alpha \in \Sigma^*$, α pertenece a L?
- * Finitud: dado L, es L finito?
- * Vacuidad: es L vacío?
- * Equivalencia: dados L_1 y L_2 son equivalentes?

>>> Gramáticas

Estudiaremos uno de los tipos de generadores de lenguajes formales: las gramáticas estructuradas por frases. Estos dispositivos comienzan a partir de un iniciador designado con antelación y su operación está limitada por un conjunto de reglas. La teoría que describe los generadores de lenguajes, es decir las gramáticas, complementa a la de autómatas. Ambos son necesarios en la especificación y análisis de los lenguajes de computación.

[3. Gramáticas]\$ _ [9/20]

Definición

Definiremos gramática estructurada por frases (GEF), como una cuádrupla (V_n,V_t,S,P) donde:

- * V_n es un conjunto finito de símbolos no terminales o símbolos auxiliares.
- st V_t es un conjunto finito de símbolos terminales.
- * S es el símbolo inicial.
- * P conjunto finito de reglas de producción de la forma $\alpha \to \beta$ donde $\alpha in(V_n \cup V_t)^+ V_n (V_n \cup V_t)^+$ y $\beta \in (V_n \cup V_t)^*$. Las reglas de producción nos permiten generar las palabras.

De aquí en adelante, asumiremos que $V_n
eq \emptyset, V_t
eq \emptyset \; y \; V_n \cap V_t = \emptyset$

[4. Gramáticas]\$ _ [10/20]

>>> Gramáticas (Cont.)
$$G=(V_n,V_t,S,P)$$

$$V_n=\{S\}$$

$$V_t=\{0,1\}$$

$$P=\{S\to 0S,S\to 1\}$$

Definición

Sea $G=(V_n,V_t,S,P)$ una gramática y $\phi,\mu\in (V_t\cup V_n)$, diremos que $\mu\alpha\phi$ deriva directamente a $\mu\beta\phi$ en G, y lo escribiremos como $\mu\alpha\phi\xrightarrow{G}\mu\beta\phi$ si existe una producción $\alpha\to\beta$ en P.

Definición

Dadas dos cadenas α, β se dice que α deriva a β según la gramática G, notado $\alpha \xrightarrow{G+} \beta$, si β puede obtenerse por aplicación de reglas de producción de G a partir de α , es decir: $\alpha \xrightarrow{G} \gamma_1, \xrightarrow{G} \gamma_2, \cdots, \gamma_{n-1} \xrightarrow{G} \gamma_n, \gamma_n \xrightarrow{G} \beta$

Definición

Sea una gramatica $G=(V_n,V_t,S,P)$, $L(G)=\{w\in V_t^*|S\xrightarrow{G+}w\}$ es el lenguaje generado por G.

>>> Clasificación de Chomsky

Computational and volutionary aspects of language. Martin A. Nowak, Natalia L. Komarova and Partha Niyogi, 2002. Nature.

[4. Gramáticas]\$ _ [12/2

>>> Gramáticas Regulares (Tipo 3)

Definición

Una gramática regular (GR), como una cuádrupla (V_n,V_t,S,P) donde:

- * V_n es un conjunto de símbolos no terminales.
- * V_t es un conjunto de símbolos terminales.
- lacksquare S es el símbolo inicial.
- * P conjunto finito de reglas de producción de la forma $\alpha \to \beta$ tales que:
 - * α es un solo no terminal, $\alpha \in V_n$.
 - * β es un solo terminal o es un terminal concatenado con un no terminal, es decirm $\beta=a$ o $\beta=aB$, donde $a\in V_t$ y $B\in V_n$

>>> Gramáticas Regulares (Tipo 3) (Cont.)

Definición

Si todas las producciones son de la forma $A \to xB$ o $A \to x$, donde $A,B \in V_n$ y $x \in V_t$. Entonces la gramática es llamada lineal a derecha.

Definición

Si todas las producciones son de la forma $A\to Bx$ o $A\to x$, donde $A,B\in V_n$ y $x\in V_t.$ Entonces la gramática es llamada lineal a izquierda.

$$G = (V_n, V_t, S, P)$$

$$V_n = \{S, B\}$$

$$V_t = \{a, b\}$$

$$P = \{S \rightarrow a, S \rightarrow aB, B \rightarrow bB, B \rightarrow aB, B \rightarrow b, B \rightarrow a\}$$

Cómo sabemos si la cadena $abbaba \in L(G)$??

S
ightarrow aB
ightarrow abbB
ightarrow abbaB
ightarrow abbabB
ightarrow abbaba

>>> Gramáticas Regulares y Autómatas Finitos

Teorema

Sea G una gramática regular. L(G) es un lenguaje generado por G si y solo si existe un autómata finito M que reconoce L(M), tal que L(M)=L(G).

Demostración

Veamos la demostración en dos partes:

- * Sea $G=(V_n,V_t,S,P)$ una GR, existe un AF M tal que si $x\in L(M)$ entonces $x\in L(G)$. Consideremos a $M=(K,V_t,\delta,S,F)$. Dada G, espicificaremos el resto del AFND, M de la siguiente manera:
 - 1. Los estados de M son V_n de G más un estado adicional A. $K=V_n\cup\{A,R\}$; $A,R\not\in V_n$
 - 2. $F = \{A\}$, excepto que P tenga $S \to \lambda$, en ese caso $F = \{A, S\}$.

>>> Gramáticas Regulares y Autómatas Finitos (Cont.)

Demostración

- * Definimos δ considerando los siguientes casos:
 - * $\delta(B,a) \supseteq \{A\}, \ si'B \to a' \in P; a \in V_t; B, A \in V_n.$
 - * $\delta(B,a) \supseteq \{C\}, \ si'B \to aC' \in P; \ a \in V_t; \ B,C \in V_n.$
 - * $\delta(B,a)\supseteq\{R\}, R\not\in F$, para todo par $(B,a)\in S\times \Sigma$ no considerado en la definición del autómata.

Ahora consideremos la segunda parte: Dado un autómata finito M existe una GR G tal que si $x\in L(G)$ entonces $x\in M(G)$. A partir de un AFND $M=(S,\Sigma,\delta,s_0,F)$ Definamos una gramática $G=(S,\Sigma,s_0,P)$ donde P esta formada por:

- * B o aC, si $\delta(B,a) = C$.
- * $B \to a$, si $\delta(B,a) = C$ y $C \in F$.

De esta manera definimos un AFND a partir de una GR. Ahora solo queda en chequear que la cadena x se puede generar con G y que x es cadena aceptada en el AF M.

>>> Gramáticas Regulares y Autómatas Finitos (Cont.)

$$M = (S, \Sigma, \delta, s_0, F)$$

$$S = \{s_0, s_1, s_2\}$$

$$\Sigma = \{a, b\}$$

$$F = s_1$$

$$\delta \mid a \quad b$$

$$s_0 \mid s_0 \quad s_1$$

$$s_1 \mid s_1 \quad s_2$$

$$s_2 \mid s_2 \quad s_0$$

$$D = \{S_0, S_1, S_2\}$$

$$V_t = \{a, b\}$$

$$P = \{S_0 \rightarrow aS_0, S_0 \rightarrow bS_1, S_0 \rightarrow bS_1, S_0 \rightarrow bS_1, S_0 \rightarrow bS_1, S_0 \rightarrow bS_2, S_1 \rightarrow a, S_2 \rightarrow aS_2, S_2 \rightarrow bS_0\}$$

$$S_0 \mid b \mid s_2 \mid a$$

$$S_1 \rightarrow bS_2, S_1 \rightarrow a, S_2 \rightarrow aS_2, S_2 \rightarrow bS_0\}$$

>>> Gramáticas Regulares y Expresiones Regulares

something here

>>> Pumping Lemma para AFD

something here

>>> Gracias!

Bibliografía

- 1. Introduction to Automata Theory, Languages, and Computation Hopcroft et. al 2007 (3er ed.)
- 2. Teoría de la Computación Gonzalo Navarro 2011.
- 3. Fundamentos de Cs. de la Computación Juan Carlos Augusto 1995.

[9. The End]\$ _