

Title: IoT-Driven Smart Irrigation for Automated Plant Watering

Paper ID: 183

Track: IoT

Presenter's & Author's details:

Rakhi Yadav

B.Tech 3rd Year, Student

MITS, Gwalior

ORGANIZED BY:

माधव प्रौद्योगिकी एवं विज्ञान संस्थान, ग्वालियर (म.प्र.), भारत MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (M.P.), INDIA

Content

- 1. Introduction
- 3. Experimental Framework
- 5. Results & Observations
- 7. Conclusion & Future Scope

- 2. Objective & Research Scope
- 4. Implementation & Working
- 6. Comparison with Existing Systems

1. Introduction

Problem 1

- Water scarcity and inefficient irrigation impact modern agriculture.
- Manual watering leads to overwatering or underwatering, reducing crop yield.

Solution ?

 IoT-based smart irrigation optimizes water usage and enhances plant health.

Key Features of the System

- Real-time monitoring
- Automated irrigation
- Energy-efficient design
- Mobile connectivity
- Minimal water wastage

2. Objectives & Research Scope

Objectives

- Develop an IoT-based automated irrigation system.
- Optimize water use with real-time soil moisture data.
- Integrate Bluetooth-based mobile monitoring and control.
- Enhance efficiency by reducing manual intervention.

Research Scope

- **Technology Integration:** Utilization of Arduino Uno, soil moisture sensors, DHT11, Bluetooth module, and a DC pump.
- System Functionality: Real-time monitoring and automated irrigation.
- Energy Efficiency: Low power consumption.
- Scalability: Suitable for small-scale and large-scale agricultural applications.

3. Experimental Framework

System Architecture

Hardware	Software
Arduino UNO	Arduino IDE
DHT11	(for coding)
Soil Moisture Sensor	Mobile Application
Relay, DC Pump, etc.	(for Bluetooth monitoring)

Experimental Setup

Duration: 7-day test

 Method: Monitored soil moisture, temperature, and water usage

Comparison: Traditional vs.smart irrigation

4. Implementation & Working

Working of System

The proposed system operates in the following sequential steps:

Step 1: Sensor Data Collection

Step 2: Threshold Condition Checking

Step 3: Signal Transmission to Relay Module

Step 4: Pump Activation

Step 5: Continuous Monitoring of Sensor Data

Step 6: Pump Deactivation

Step 7: Real-Time Data Transmission and Display

Step 8: Arduino IDE Code Execution

5. Results & Observations

Day	Soil Moisture (Before Irrigation)	Soil Moisture (After Irrigation)	Pump Activation	Temperature (°C)	Humidity (%)
1	480	520	Yes	24.0	48%
2	470	515	Yes	23.8	46%
3	490	505	Yes	24.2	49%
4	460	525	Yes	24.1	50%
5	500	500	No	24.5	51%
6	485	510	Yes	23.9	47%
7	470	520	Yes	24.3	50%

6. Comparison with Existing Systems

Feature	Manual Watering	Timer-Based System	Proposed IoT-Based System
Water Trigger	Human Decision	Pre-set time intervals	Real-time sensor data
Water Usage	High	Moderate	Required (Up to 30% less water use)
Automation Level	None	Partial	Fully Automated
Human Effort	High	Moderate	Minimal
Crop Health	Uneven	Uneven	Healthier Crops
Real-time Monitoring	No	No	Yes (IoT-enabled via Mobile Application)

Advantages:

- Smart irrigation ensures plants get the right amount of water at the right time—automatically!
- The system adapts to various soil types, ensuring efficient watering for all kinds of plants.

7. Conclusion & Future Scope

Conclusion

- ➤ **Automation:** Uses real-time sensor data for irrigation
- ➤ Efficiency: Reduces water wastage and manual effort
- ➤ Usability: Bluetooth-based remote monitoring

Future Scope

- ☐ AI Integration: Predicts irrigation needs using weather and crop data
- ☐ Cloud Access: Enables global monitoring via IoT
- ☐ Sustainability: Uses solar power to cut costs
- ☐ Scalability: Supports large farms with LoRaWAN

Thank you

Any Ques?