Clase 6.1

Análisis Markoviano Jorge Vasuqez

Proceso de Decisión de Márkov (MDP)

Supuesto de Márkov

- Información del Estado: puedes predecir la probabilidad de lo que va a pasar
- Estado *St* es Markov si y solo si:

$$p(s_{t+1}|s_t,a_t) = p(s_{t+1}|h_t,a_t)$$

• El futuro solo depende del valor presente

Supuesto de Markov

- El futuro solo depende de su valor presente
 - Control de hipertensión: el estado es la presión de sangre, y la acción es tomar o no tomar el medicamento. ¿Es este un sistema markoviano?
 - Compra online: estado es el producto que estoy mirando, y la acción es que otro producto te recomiendo como software. ¿Es este un sistema markoviano?

Supuesto de Markov

- Pero, todos puedes transformarlos en modelos markovianos
 - Seteando el estado por una historia
- En la práctica, se usa muchas veces las ultimas observaciones como estadística suficiente para crear una historia
- La Representación de Estados tiene muchas implicancias:
 - Complejidad Computacional
 - Data requerida
 - Rendimiento esperado

¿Qué es la Historia?

- Historia ht = (a1, s1, r1, ..., at, st, rt)
- Agente escoge su acción basada en su historia
- Estado es information asumida para determiner que pasa despues
 - St = (ht)

Observación Full MDP

MDP Parcialmente Observable o POMDP

- El estado del agente no es el mismo que el estado del entorno
- El agente construye su propio estado
 - St=ht
 - Sensores parciales
 - RNN

Proceso de Decisión Secuenciales: Bandits

- Acciones no tienen influencia en estados siguientes
- No hay recompensas atrasadas

Tipos de Entorno

0.8

Determinísticos:

- Dado secuencia de estados (historia) y acciones, observación única y recompensas.
- Común <u>supuesto</u> en <u>robótica</u> y control automático

Estocástico:

- Dado secuencia de estados your acción, multiple potenciales observaciones y recompensas
- Común en supuestos para clientes, pacientes.
- Paradigma

Tipos de Entorno - Ejemplo Rover

5

- Estados: Ubicación del Rover (s1, ..., s7)
- Acciones: TryLeft o TryRight
- Recompensas:
 - +1 en estado s1
 - +10 en estado s7
 - 0 en todo el resto de los estados

Modelo

Modelo

Transition

P(s' | S, a)

- Representación de como el mundo cambia en respuesta a la acción de un agente.
- Política T : S > Función de mapeo del agente para pasar de estados a acciones

Modelo:

- Representación de como el mundo cambia en respuesta a la acción de un agente.
- Dinámica o <u>Fransiciones del modelo</u> predice el estado del agente en el siguiente estado

Modelo de Recompensas predice recompensas inmediatas

$$r(s_t = s, a_t = a) = \mathbb{E}[r_t | s_t = s, a_t = a]$$

- Modelo:
 - Modelo de Recompensas:

s_1	s_2	s_3	S_4	s_5	s ₆	S ₇
$\hat{r}=0$	$\hat{r}=0$	$\hat{r}=0$	$\hat{r}=0$	$\hat{r}=0$	$\hat{r} = 0$	$\hat{r}=0$

• Modelo de Transiciones:

$$0.5 = P(s_1|s_1, \text{TryRight}) = P(s_2|s_1, \text{TryRight})$$

$$0.5 = P(s_2|s_2, \text{TryRight}) = P(s_3|s_2, \text{TryRight}) \cdots$$

• El modelo puede estar equivocado

Política

- Función de mapeo del agente para pasar de estados a acciones
- Il determina como el agente escoge acciones
- $\pi: S \to A$
- Política Determinística:

$$\pi(s)=a$$

$$\pi(a|s) = Pr(a_t = a|s_t = s)$$

- Función de Valor (v = 0)
 - $\pi(s1) = \pi(s2) = \dots = \pi(s7) =$ TryRight
 - Números muestran el valor de $V^{\pi}(s)$ para esta política π y este factor de descuento γ

s_1	s_2	s_3	S_4	s_5	s ₆	<i>S</i> ₇
$V^{\pi}(s_1)=+1$	$V^{\pi}(s_2)=0$	$V^{\pi}(s_3)=0$	$V^{\pi}(s_4)=0$	$V^{\pi}(s_5)=0$	$V^{\pi}(s_6)=0$	$V^{\pi}(s_7) = +10$

Tipos de Agentes RL

Basados en Modelo

- Modelo solo
- Puede o no puede tener una politica o una function de valor
- Libre de Modelo
 - Función de valor y/o Función de Política
 - No hay modelo

Tipos de Agentes RL

Desafíos en aprender a hacer una buena secuencia de decisiones

Planificación

- Modelo dado de como el entorno funciona
- Dinámica y Modelo de recompensas
- Desenrollar
- Algoritmo computa para maximizar recompensas esperadas
- Esto sin interacción con el mundo real

Aprendizaje por Refuerzo

- Agente no sabe como funciona el mundo
- Interactúa con el mundo para implícita o explícitamente aprender
- El agente mejora su política (puede tener planificación)

Planning

- Ejemplo de Planificación (Planning)
 - Solitario
 - Saber todas las reglas del juego, modelo perfecto
 - Si tomas acción a desde el estado s
 - Puede computar una distribución de prob. Sobre el sigte stado
 - Puede computar puntaje
 - Puede planear hacia delante para decidir la acción optimal
 - Programacion dinámica, tree search

Ejemplos de Exploración vs Explotación

- Películas
 - Explotar una película
 - Explorar una nueva
- Advertising
 - Mostrar la mas efectiva hasta le momento
 - Mostrar una diferente
- Manejo
 - Explotar la ruta mas rápida hasta el momento
 - Intentar una ruta diferente

- E overdy

Evaluación vs Control

Evaluación

• Estimar o predecir recompensas esperados siguiendo una política dad

Control

• Es una optimización, encontrar la mejor política

Control de Política del Rover

- Factor de Descuento, $\gamma = 0$
- Cual es la política que optimiza la suma de recompensas esperadas con descuento