Review1. Logic

2019年5月27日 18:37

Proof examples

- Proof methods: <u>direct</u> proof, proof by <u>contrapositive</u>, proof by <u>contradiction</u>.
- Euler Circuit: if and only if a connected multigraph with at least 2 vertices has each of its vertex has even degree.

Logic

- Proposition logic: <u>declarative</u> statement either <u>true or false</u>.
 - Also called atomic (elementary) proposition.
 - Propositional logic refer to objects and their properties and relations.
- Logical connectives: connect to form <u>compound propositions</u> (复合命 题).
 - o Negation, conjunction (合取, 并), disjunction (析取, 或), exclusive or (异或), implication (蕴含式, →), biconditional (等值, ↔).
 - Implication: $p \rightarrow q$, p is hypothesis, q is conclusion. Equals p is sufficient for q, or q is necessary for p.
 - □ Converse, contrapositive, inverse.
 - Biconditional proposition: p iff q.
- Translation: use logic symbol to present language.

Truth table

- Constructing the truth table: 2ⁿ entities for n variables proposition.
- Bit string: sequence of 0 or more bits.

Tautology and contradiction

- Tautology: always <u>true</u> compound proposition.
 - o Contradiction: always <u>false</u> compound proposition.
 - Contingency: neither tautology nor contradiction.
- Equivalent: two propositions always have the same truth table.
 - Logically equivalent: a pair of <u>biconditional propositions</u> is <u>tautology</u>, $p \equiv q$ or $p \Leftrightarrow q$.

表 1-15 逻辑等价

双 1-15 逻辑等Ⅲ		
等 价 关 系	名称	
$p \wedge T = p$	恒等律	
$\rho \lor \mathbf{F} = \rho$		
$\rho \lor T \equiv T$	支配律	
$p \wedge F \equiv F$		
$p \lor p = p$	幂等律	
$p \land p = p$		
$q = (q_{\Gamma})$	双非律	
$p \lor q \equiv q \lor p$	交换律	
$p \land q = q \land p$		
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	结合律	
$(p \land q) \land r \equiv p \land (q \land r)$	50 C 345	
$p \lor (q \land r) = (p \lor q) \land (p \lor r)$	分配律	
$p \land (q \lor r) = (p \land q) \lor (p \land r)$		
$\neg (p \land q) \equiv \neg p \lor \neg q$	德摩根定律	
$\neg (p \lor q) \equiv \neg p \land \neg q$		
$p \lor (p \land q) = p$	吸收律	
$p \land (p \lor q) = p$		
$p \lor \neg p \equiv \mathbf{T}$	否定律	
$p \land \neg p \equiv F$		

表 1-16 涉及条件语句的逻辑等价

4C 1 10 19 20 36 11 44 17 18 20 14 17 18
$p \rightarrow q = \neg p \lor q$
$p \rightarrow q \equiv \neg q \rightarrow \neg p$
$p \lor q \equiv_{\neg} p \rightarrow q$
$p \wedge q \equiv_{\neg} (p \rightarrow_{\neg} q)$
$\neg (p \rightarrow q) = p \land \neg q$
$(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$
$(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r$
$(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)$
$(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$
表 1-17 涉及双条件的逻辑等价
$p \leftrightarrow q = (p \rightarrow q) \land (q \rightarrow p)$
$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$

 $p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$ $\neg (p \leftrightarrow q) = p \leftrightarrow \neg q$

Quantifiers and predicate

- Quantifiers: <u>universal</u> quantifier (all), <u>existential</u> quantifier (at least one).
- Predicate logic: constant, variable, and predicate.
 - o Universe (domain), truth set, truth value.
- De Morgan Law for quantifiers:

Negation	Equivalent Statement
$\neg \exists x \ P(x)$	$\forall x \ \neg P(x)$
$\neg \ \forall x \ P(x)$	$\exists x \ \neg P(x)$

- Nested quantifiers: more than one quantifiers in a predicate logic.
 - o Order of quantifiers, negation nested quantifier.

Review2. Mathematical Proofs

2019年5月27日 18:37

Theorems and proofs

- Axiom (postulate): considered to be true.
 - o Theorem: proved to be true.
 - o Lemma: proved to be true, used to prove other theorems.
- Proof based on logical equivalences.

推理规则	永 真 式	名 称
<i>p p</i> → <i>q</i> ∴ <i>q</i>	$[p \land (p \rightarrow q)] \rightarrow q$	假言推理
$ \begin{array}{c} $	$[\neg q \land (p \rightarrow q)] \rightarrow \neg p$	取拒式
$ \begin{array}{c} p \to q \\ q \to r \\ \vdots p \to r \end{array} $	$[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$	假言三段论
⊅ ∨ q ¬⊅_ ∴q	$[(p \lor q) \land \neg p] \rightarrow q$	析取三段论
∴ <u>p</u> ∨ q	$p \rightarrow (p \lor q)$	附加
<u>⊅ ∧ q</u> ∴ p	$(p \land q) \rightarrow p$	化简
$\frac{p}{\frac{q}{p \wedge q}}$	$[(p) \land (q)] \rightarrow (p \land q)$	合取
<i>p∨q</i> ¬ <i>p∨r</i> ∴ <i>q∨r</i>	$[(p \lor q) \land (\neg p \lor r)] \rightarrow (q \lor r)$	消解

- Proof methods: <u>direct proof</u>, <u>by contrapositive</u>, <u>by contradiction</u>, <u>by cases</u>, <u>proof of equivalence</u>.
 - \circ <u>Vacuous proof</u>: prove $p \to q$ by prove p is always false.
 - Trivial proof: prove q is always true.

Review3. Sets and Functions

2019年5月27日 18:37

Sets

- Set: <u>unordered</u> collection of objects (elements, members).
 - o Built with sets: combinations, relations, graphs.
 - o Axiomatic set theory: avoid Russell's paradox.
- Venn diagram: visualize sets.
- Proper subset: belongs to but not equal.
 - o Two sets are equal if and only if each is a subset of the other.
- Cardinality: number of distinct elements in a finite set.
- Power set: the set of all subsets of set S, denoted by P(S).
- Tuples: ordered n-tuple with n elements and in order.
- Cartesian product: $A \times B$, all ordered pairs (a, b) of elements in A,
 - o Relation A from B: a subset of the Cartesian product.
- Union, intersection, complement, difference.
 - Union of a collection of sets and intersection of a collection of sets.
 - o <u>Disjoint</u>: intersection is empty set.
 - Inclusion and exclusion: $|A \cup B| = |A| + |B| |A \cap B|$
- Set identities:

等 式	名	称
$ \begin{array}{l} A \cup \varnothing = A \\ A \cap U = A \end{array} $	恒等律	
$ \begin{array}{ll} A \cup U = U \\ A \cap \varnothing = \varnothing \end{array} $	支配律	
$ \begin{array}{l} A \cup A = A \\ A \cap A = A \end{array} $	幂等律	
$\overline{(\overline{A})} = A$	补集律	
$ \begin{array}{l} A \cup B = B \cup A \\ A \cap B = B \cap A \end{array} $	交换律	
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	结合律	
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	分配律	
$\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$	徳摩根定	2律
$ \begin{array}{l} A \cup (A \cap B) = A \\ A \cap (A \cup B) = A \end{array} $	吸收律	
$ \begin{array}{l} A \cup \overline{A} = U \\ A \cap \overline{A} = \varnothing \end{array} $	补律	

- o Prove set identities using <u>membership tables</u>.
- Represent sets in computer: bit string to universal set and set inset-element to 1.

$$U = \{1, 2, 3, 4, 5\}$$

$$A = \{2, 5\} - A = 01001$$

$$B = \{1, 5\} - B = 10001$$

Functions

- Function from A to B: <u>exactly one</u> element of B to <u>each</u> element of A.
 - o A is domain, B is codomain.
 - \circ For f(a) = b, b is image and a is preimage.
 - Range of function: set of images of elements of A.
- Injective (one-to-one) function: f(x) = f(y) implies x = y
- Surjective (onto) function: for every element in B there is an element in A such that f(a) = b
 - Bijection: both one-to-one and onto.
- Inverse function: only for bijective function.
- Composition of functions: $(f \circ g)(x) = f(g(x))$
 - o Identity function maps element to itself.
- Floor function, ceiling function.

Sequence

• A function from subset of integers to a set $S \{a_n\}$.

和	闭 形 式	和	闭 形 式
$\sum_{k=0}^{n} ar^{k} (r \neq 0)$	$\frac{ar^{n+1}-a}{r-1}, r\neq 1$	$\sum_{k=1}^{n} k^3$	$\frac{n^2 (n+1)^2}{4}$
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$	$\sum_{k=0}^{\infty} x^k, \mid x \mid < 1$	$\frac{1}{1-x}$
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$	$\sum_{k=1}^{\infty} kx^{k-1}, \mid x \mid < 1$	$\frac{1}{(1-x)^2}$

- Arithmetic progression (initial term and common difference), geometric progression (initial term and comm ratio).
 - Sum of geometric progression: $S = \sum (ar^j) = \frac{a(r^{n+1}-1)}{r-1}$
- Recursively defined sequences: previous elements and initial element.
- Countable set: finite or has the same cardinality as Z⁺.
 - o To prove same cardinality: find a bijective function.

Review4. Complexity of Algorithms

2019年5月27日 18:37

Algorithms

- Algorithm: <u>finite</u> sequence of <u>precise</u> instructions for performing a computation or for solving a problem.
- Big-O notation: f(n) = O(g(n)) when for some positive constant c and $n > n_0$ there is $|f(n)| \le c|g(n)|$
 - $\circ \left(f_1 + f_2\right)(x) = O\left(\max\left(\left|g_1(x)\right|, \left|g_2(x)\right|\right)\right)$
 - $\circ (f_1f_2)(x) = O(g_1(x)g_2(x))$
- Big-Omega notation: $f(n) = \Omega(g(n))$ for some positive integer c and $n > n_0$ there is f(n) > c|g(n)|
 - o Big-O is an upper bound while big- Ω is a lower bound.
- f(n) = O(g(n)) and $g(n) = O(f(n)) \rightarrow f(n) = O(g(n))$
- <u>Compute time complexity</u>: give <u>steps</u> and find time complexity for each step.
 - o Best case, worst case, and average case.
- NP-Complete problem: <u>any one</u> of NP-Complete problems has an efficient solution then all the them have efficient solutions.
 - Input size: the <u>minimum</u> number of <u>bits</u> needed to encode the <u>input</u> of the problem.
 - Class P: all decision problem solvable in polynomial time.
 - Certificate: corresponding to a <u>yes-input</u>. NP problem can be <u>verified</u> certificate <u>in polynomial time</u>.
 - o Problems belongs to NP: composite, D subset sum, SAT problem.
- Boolean formula satisfiable: assign <u>truth values</u> to acquire <u>final</u> <u>result 1</u>.

Review5. Number Theory

2019年5月27日 18:37

Number theory

- Division: a / b if exists interger c has b = ac, or $\frac{b}{a}$ is integer
 - Note a is factor of b and b is multiple of a.
 - \circ If a|b and a|c then a/(b+c)
 - o If a|b then a|bc for all integers c
 - \circ If a|b and b|c then a/c
 - o a = dq + r, q is quotient and r is remainder.
- Congruence: a is congruent to b modulo m if m/(a-b), denoted $a \equiv b \pmod{m}$
 - \circ Integers a and b are congruent modulo m <u>if and only if</u> there is an integer k such that a = b + km, or $a \mod m = b \mod m$
 - If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ then $a \neq c$ $\equiv b \neq d \pmod{m}$ and $ac \equiv bd \pmod{m}$
- Arithmetic modulo m:
 - \circ $a +_m b = (a + b) \mod m$, $a \cdot_m b = ab \mod m$
 - Closure, associativity, identity elements 0 and 1, additive inverses, commutativity, distributivity.

I'll skip number systems part, as it's basic in previous course.

Prime

- Positive integer greater than 1 and <u>divisible only by 1 and itself</u> is prime.
 - o Composite: not prime.
- Fundamental theorem of arithmetic: every integer greater than 1 can be written uniquely as a prime or as the product of two or more primes.
- GCD (greatest common divisor) and LCM (least common multiple).
 - Relatively prime: gcd(a, b) = 1
 - o Find gcd: factorization (can also find lcm), Euclidean algorithm.
 - a = bq + r then gcd(a, b) = gcd(b, r)
 - \circ Bezout's identity: gcd(a, b) = sa + tb
 - If gcd(a, b) = 1 and a/bc then a/c
 - If $ac \equiv bc \pmod{m}$ and gcd(c, m) = 1 then $a \equiv b \pmod{m}$
- Mersenne primes: prime form $2^p 1$, and p is prime.
- Goldbach's conjecture: integer n > 2 is the sum of two primes.

Linear congruence

- Congruence form $ax \equiv b \pmod{m}$
- Inverse of a modulo m: $\overline{a}a \equiv 1 \pmod{m}$
 - \circ Solution to linear congruence: $x \equiv \bar{a}b \pmod{m}$
 - $ax \equiv b \pmod{n} \rightarrow d = \gcd(a, n)$ and $d/b \rightarrow ra + sn = d$ and $x_0 = \frac{rb}{d} \rightarrow x \equiv \frac{rb}{d} \pmod{\frac{n}{d}}$
- Chinese reminder theorem:

```
x \equiv a_1 \pmod{m_1}
x \equiv a_2 \pmod{m_2}
x \equiv a_n \pmod{m_n}
  om = m_1 m_2 \cdots m_n \text{ and } M_k = \frac{m}{m_k} \text{ and } \gcd(m_k, M_k) = 1 \rightarrow y_k M_k
      \equiv 1 \pmod{m_k} \rightarrow x_0 = a_1 M_1 y_1 + a_2 M_2 y_2 + \cdots + a_n M_n y_n \rightarrow x
      \equiv x_0 \pmod{m}
   • Another solution:
         2x \equiv 2 \pmod{6}
         3x \equiv 2 \pmod{7}
         2x \equiv 4 \pmod{8}
      首先求解第一个方程,得到x = 1 \pmod{3},于是令x = 3k + 1,第二个方程就变为:
         9k \equiv -1 \pmod{7}
      解得k = 3 \pmod{7}。于是,再令k = 7/+3,第三个方程就可以化为:
         42/ \equiv -16 \pmod{8}
      解出: /= 0 \pmod{4}, 即 /= 4m。代入原来的表达式就有 x = 21(4m) + 10 = 84m + 10,即解为:
         x \equiv 10 \pmod{84}
```

- Modular arithmetic and congruencies: pseudorandom number generators, hash functions, cryptography.
 - o <u>Pseudorandom number generator</u>: modulus m, multiplier a, increment c, seed x_0 , $x_{n+1} = (ax_n + c) \pmod{m}$
 - Cryptography: symmetric cryptography, asymmetric cryptography, RSA cryptography, DLP and EI Gamal cryptography, Diffie-Hellman key exchange protocol, and cryptocurrency.
- Fermat's little theorem: p is prime, $x \nmid p \rightarrow x^{p-1} \equiv 1 \pmod{p}$
- Euler' totient function $\Phi: x^{\Phi(n)} \equiv 1 \pmod{n}$
- Cryptography: kryptos (secret) and graphos (writing).
 - o RSA public key cryptosystem: large primes p and q, n = pq and $\Phi(n) = (p-1)(q-1) \rightarrow \gcd(e, \Phi(n)) = 1$ and $ed \equiv 1 \pmod{\Phi(n)} \rightarrow C = M^e \mod n$ and $M = C^d \mod n$
 - C is encryption and M is decryption.
 - I'll skip other methods of cryptography and if you are interested, you can join cryptography course next semester.

Review6. Mathematical Induction

2019年5月27日 18:37

Mathematical induction

- Start from $\underline{\text{small}}$ examples, then suppose for $\underline{\text{k case}}$ the proposition establishes, finally prove $\underline{\text{k+1}}$ is also establish.
 - o Basic step, inductive hypothesis, and inductive step.
 - Strong principle and weak principle.
- <u>Well-ordering principle</u>: every set of non-negative integers has a smallest element.

Review7. Recursion

2019年5月27日 18:37

Recursion

- Inductive analysis (prove correctness), towers of Hanoi.
- Recurrences: function defined on the set of $\underline{n-1}$ values.
 - o Initial condition(s), base case(s).
- Iterating a recurrence: bottom-up, top-down.
 - $T(n) = rT(n-1) + g(n) \text{ and initial condition } T = a \rightarrow T(n)$ $= r^n a + \sum_{i=1}^n r^{n-i} g(i)$

Divide and conquer

- For given form: T(n) = rT(n-1) + 1 with initial condition $T = b \rightarrow T(n) = r^n b + \frac{a(1-r^n)}{1-r}$
- Divide and conquer formula: $T(n) = rT\left(\frac{n}{m}\right) + a$
 - o Example: binary search.

Linear recurrence relation

- Degree k relation with constant coefficients: $a_n = c_1 a_{n-1} + c_2 a_{(n-2)} + c_k a_{n-k}$
 - Linear, homogeneous (all terms are multiples of aj's), degree k, constant coefficients.
 - \circ CE (characteristic equation): $\boldsymbol{r^k} \sum_{i=1}^k c_i \boldsymbol{r^{k-1}} = \boldsymbol{0}$
 - If CE has k distinct roots r_i , then $a_n = \sum_{i=1}^k a_i r_i^n$
- You are an adult and you should solve these questions by yourself.
- Degenerate roots in general: t roots r_1, \cdots, r_t with multiplicities m_1, \cdots, m_t

$$\circ a_n = \sum_{i=1}^t \left(\sum_{j=0}^{m_i-1} a_{i,j} n^j \right) r_i^n$$

Generating function

- Used to characterize sequences.
- $G(x) = a_0 + a_1 x + \cdots + a_k x^k + \cdots = \sum_{k=0}^{\infty} a_k x^k$
 - \circ Generate function of $a_k = {m \choose k}$: $G(x) = (1 + x)^m$
- Addition and multiplication of generating function.

$$(1+x)^n = \sum_{k=0}^n C(n,k)x^k$$
$$(1+ax)^n = \sum_{k=0}^n C(n,k)a^kx^k$$
$$(1+x^r)^n = \sum_{k=0}^n C(n,k)x^{rk}$$

$$\frac{1-x^{n+1}}{1-x} = \sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n}$$

$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^{k} = 1 + x + x^{2} + \dots$$

$$\frac{1}{1-ax} = \sum_{k=0}^{\infty} a^{k} x^{k} = 1 + ax + a^{2} x^{2} + \dots$$

$$\frac{1}{1-x^{r}} = \sum_{k=0}^{\infty} x^{rk} = 1 + x^{r} + x^{2r} + \dots$$

$$\frac{1}{(1-x)^{2}} = \sum_{k=0}^{\infty} (k+1)x^{k} = 1 + 2x + 3x^{2} + \dots$$

$$\frac{1}{(1-x)^{n}} = \sum_{k=0}^{\infty} (k+1)x^{k} = 1 + 2x + 3x^{2} + \dots$$

$$\frac{1}{(1-x)^{n}} = \sum_{k=0}^{\infty} C(n+k-1,k)x^{k}$$

$$\frac{1}{(1-ax)^{n}} = \sum_{k=0}^{\infty} C(n+k-1,k)(-1)^{k}x^{k}$$

$$\frac{1}{(1-ax)^{n}} = \sum_{k=0}^{\infty} C(n+k-1,k)a^{k}x^{k}$$

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

$$\ln(1+x) = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}x^{k}}{k} = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots$$

2019年5月27日 18:37

Counting

- Determine the number of these objects.
 - o The product rule and the sum rule or combination.
 - o Inclusion-exclusion principle: $|A \cup B| = |A| + |B| |A \cap B|$

$$|\cup_{i=1}^n E_i| = \sum_{k=1}^n (-1)^{k+1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} |E_{i_1} \cap E_{i_2} \cap \dots \cap E_{i_k}|$$

- Determine the number of onto functions, the appears on tree leaves.
- Pigeonhole principle: a set of objects stored in a set of bins.
 - If there are <u>k+1 objects and k bins</u>, then there is <u>at least one</u> <u>bin with two or more objects</u>.
 - o <u>N objects in k bins</u>, at least one bin containing $\left[\frac{N}{k}\right]$ objects.
 - Example: bijective functions number, counting triangles, counting pairs.
- The bijection principle: two sets have <u>same size</u> if and only if there is a <u>one-to-one function</u> from one set onto the other.

Binomial coefficient

- K-element permutation of N: a list of k distinct elements chosen from a set N.
- Unorder set formula:

$$\binom{n}{k} = C(n, k) = \frac{P(n, k)}{k!} = \frac{n!}{k!(n-k)!}$$

$$\circ \sum_{i=0}^{n} \binom{n}{i} = 2^{n}$$

- Pascal's triangle: each entry in Pascal's triangle is the sum of two entries directly above it.
 - o Pascal's identity: $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$
- Algebraic proof, combinatorial proof, bijective proof, binomial proof.
 - o Binomial theorem: $(x \neq y)^n = \sum_{i=0}^n \binom{n}{i} x^{n-i} y^i$

$$\sum_{i=0}^{n} \binom{n}{i} = 2^n$$

o Trinomial coefficient: $\binom{n}{k_1 \ k_2 \ k_3} = \frac{n!}{k_1!k_2!k_3!}$

Review9. Relations

2019年5月27日 18:37

Binary relation

- ullet Binary relation from A to B is a <u>subset</u> of a Cartesian product $m{A} imes m{B}$
 - o Set R belongs to relation: a R b means $(a, b) \in R$, noted as $a \rightarrow b$
 - o Use table to represent binary relation.
- Relation: one to many relationships between elements in A and B.
- Number of binary relations:
 - o On a set A: 2^{n^2}
 - \circ Reflexive: $2^{n(n-1)}$
 - \circ Total preorder: $\sum_{k=0}^{n} k! S(n, k)$
 - o Total order: n!
 - \circ Equivalence relation: $\sum_{k=0}^{n} S(n, k)$
- Reflexive relation: $(a, a) \in R$ for every $a \in A$
 - ∘ Irreflexive relation: $(a, a) \notin R$ for every $a \in A$
- Symmetric relation: $(b, a) \in R$ and $(a, b) \in R$ for all $a, b \in A$
 - o Antisymmetric relation: $(b, a) \in R$ and $(a, b) \in R$ implies a = b for all $a, b \in A$
- Transitive relation: $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$ for all $a, b, c \in A$
- Combining relations: union, intersection, difference.
- Composite of relations: composite of R and S notes $S \circ R$
 - \circ $(a, b) \in R$ and $(b, c) \in S \rightarrow (a, c) \in S \circ R$
 - \circ Powers R^n defined: $R^1 = R$ and $R^{n+1} \circ R$
 - \circ Transitive relation if and only if $R^n \subseteq R$ for $n = 1, 2, 3 \cdots$

N-ary relation

- Relation on n sets, these sets are domains of R.
 - o Degree of R is n.
 - \circ R is functional in A_i if contains at most one n-tuple (\cdots, a_i, \cdots) for any value a_i within domain A_i .
- Relational database I'll skip due to you already chosen database principle.
- Represent relations: explicit list, table, function, zero-one matrix, directed graph.

Closure

- <u>Reflexive closure</u>: contains R, is reflexive, is minimal.
- Closures: with property P of relation R on set A, and S is minimal.
- <u>Transitive closure</u>: find all pairs of elements that are connected with a directed path.

Connectivity relation

• Consists of all pairs (a, b) there is a path between a and b in R.

$$\circ R^* = \bigcup_{k=1}^{\infty} R^k$$

 \circ The <u>transitive closure</u> of a relation R equals the connectivity relation R^* .

Other relations

- Equivalence relation: reflexive, symmetric, transitive.
 - \circ Equivalence class: the set of all elements related to an element of A, denoted $[a]_R$: $[a]_R = \{b: (a, b) \in R\}$
- Partition of a set S:

$$A_i \cap A_j = \emptyset, \ i \neq j \text{ and } S = \bigcup_{i=1}^k A_i$$

- Partial order (poset): reflexive, antisymmetric, transitive.
 - \circ Comparability: elements in **poset** (S, \leq) are comparable if either $a \leq b$ or $b \leq a$
- Total order (chain): every two elements in poset are comparable.
- Lexicographic ordering: on two posets, $(a_1, a_2) < (b_1, b_2) \rightarrow a_1 < b_1$ or $a_1 = b_1$ then $a_2 < b_2$
- <u>Hasse diagram</u>: representation of partial ordering.
 - o Maximal and minimal elements: **no** $b \in S$ **that** a < b, so does minimal.
 - o Greatest and least: $b \le a$ for $b \in S$, so does least.
 - \circ Upper bound and lower bound: $a \leq u$ for all $a \in A$, so does lower bound.
 - Least upper bound and greatest lower bound.
- Well-ordered set: a poset is <u>total ordering</u> and <u>every nonempty subset</u> of S has a least element.
- Lattices: <u>partial ordered set</u> with every pair of elements has both least upper bound and greatest lower bound.

Review10. Graphs

2019年5月27日 18:37

<mark>Graph</mark>

- Vertices, edges (endpoints, joins, adjacent), incident (connect).
- Graph: G = (V, E)
 - o Simple graph, multigraph pseudograph: edges number and loop.
 - Complete graph K_n: all vertices incident to edge.
 - o Directed graph, undirected graph.
- <u>Degree</u> of vertex: **deg**(v), initial vertex and terminal vertex in directed graph, corresponding in-degree and out-degree.
- Cycle, wheel, and n-dimensional hypercube.
- Bipartite graphs: partitioned into two <u>disjoint</u> subsets.
 - o Complete bipartite graph, matching, and maximum matching.
- Union, intersection of graph.
- Representation: adjacency lists, adjacency matrices, incidence matrices.
- <u>Isomorphism</u>: a and b are adjacent in G_1 if and only if f(a) and f(b) are adjacent in G_2 .
 - Function f is <u>one-to-one</u> and <u>onto</u>.
- Path (circuit, simple), length, connectivity, connected component.
 - o Disconnected: cut vertices and cut edges.
- <u>Euler Circuit</u>: the degree of every vertex must be <u>even</u>, or <u>exactly two</u> <u>vertices of odd</u> degree.
- Hamilton path: a simple path passes through all vertices exactly once.
- Shortest path problem, weighted graph.

Planar graph

- Draw in plane without any edges crossing.
- <u>Euler's formula</u>: e edges v vertices then the number of regions in a planar representation is r = e v + 2
- Degree of region: number of edges on the boundary of this region.
- Elementary subdivision: remove an edge $\{u, v\}$ and add a new vertex w to $\{u, w\}$, $\{w, v\}$.