UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Prof. Adriano Barbosa

Exame — Cálculo III

Eng. de Energia	14 de Outubro de 2016
-----------------	-------------------------

1	
2	
3	
4	
5	
Total	

Aluno(a):.....

(1) Determine o domínio de f(x,y) e calcule, se existir, $\lim_{(x,y)\to(0,0)} f(x,y)$, com

$$f(x,y) = \begin{cases} \frac{x^4 - y^4}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0) \\ 0, & \text{se } (x,y) = (0,0) \end{cases}$$

(2) Seja $u=x^2y^3+z^4$, com $x=t+3t^2$, $y=te^t$ e $z=t\mathrm{sen}(t)$. Calcule $\frac{du}{dt}$.

(3) Calcule, se existir, os pontos de máximo, mínimo e sela da função $f(x,y)=x^3-3xy+\frac{1}{2}y^2$.

(4) Complete os limites de integração e calcule a integral

$$\iint_R x \ dA = \int_{\square}^{\square} \int_{\square}^{\square} x \ dy \ dx$$

onde R é a região delimitada pelo arco de circular e o segmento de reta como na figura abaixo.

(5) Calcule o trabalho realizado pelo campo vetorial $F(x,y) = (4x^3y^2 - 2xy^3, 2x^4y - 3x^2y^2 + 4y^3)$ ao mover uma partícula ao longo do caminho $r(t) = (\cos(t), \sin(t)), 0 \le t \le \pi$.

Boa Prova!