华东师范大学期末试卷(A)

2006-2007 学年第二学期

课程名称:软件工程数学										
学生姓名:	学 号:									
专 业:	年级/班级:									
课程性质:专业必修										
				1	1	1				.
	五五	六	七	八	九	十	+-	十二	总分	阅卷人签名

一、(7分)

Show the following statement.

Premises: $\forall x (C(x) \rightarrow W(x) \land R(x)), \exists x (C(x) \land Q(x))$

Conclusion: $\exists x (R(x) \land Q(x))$

二、(8分,第1小题5分,第2小题3分)

Let $A=\{1,2,3,...,9\}$ and let R be the relation on $A\times A$ defined by

(a,b)R(c,d) if a+d=b+c

- (a) Prove that R is an equivalence relation.
- (b) Find $[(2,5)]_R$, the equivalence class of (2,5).

三、(9分)

How many strings of three decimal digits

- (a) do not contain the same digit three times.
- (b) begin with an odd digit?
- (c) have exactly two digits that are 4s.

四、(6分)

How many different strings can be made from the letters in *ABRACADABRA*, using all the letters.

五、(10分,每小题5分)

How many solutions are there to the equation $x_1 + x_2 + x_3 + x_4 + x_5 = 21$,

where x_i , i = 1, 2, 3, 4, 5, is nonnegative integer such that

- (a) $x_i \ge 2$ for i = 1, 2, 3, 4, 5?
- **(b)** $0 \le x_1 \le 10$?

六、(10分)

Show that among any n+1 positive integers not exceeding 2n there must be an integer that divides one of the other integers.

Proving using mathematical induction (数学归纳法) that

$$\sum_{j=2}^{n} C(j,2) = C(n+1,3)$$

wherever n is an integer greater than 1.

八、(8分,第1小题5分,第2小题3分)

- (a) Find a recurrence relation for the number of bit strings of length n that do not contain three consecutive 0s. Please briefly explain the reason.
- (b) What are the initial conditions?

Find all solutions of the recurrence relation $a_n = 4a_{n-1} - 4a_{n-2} + 2^n$ with initial condition $a_0 = 1, a_1 = 2$

十、(12分,每小题4分)

(a) Does there exist a simple graph with six vertices of these degrees? If so, draw such a graph.

(b) Determine whether the given pair of graphs is isomorphic(同构). Please briefly explain the reason.

(c) Find the number of path between a to d in the following graph of length 5.

十一、(7分,第1小题3分,第2小题4分)

(a) Find the chromatic number (着色数) of the following graph.

(b) For which values of m and n does the complete bipartite graph $K_{m,n}$ have a Hamilton circuit?

十二、(7分)

Prove the following graph is nonplanar (非平面).

