

Núcleo Básico das Engenharias

M002-A Álgebra e Geometria Analítica Cap. 3 – Planos

Prof. Edson J. C. Gimenez soned@inatel.br

2019/Sem1

Núcleo Básico das Engenharias - NB-21 — Algoritmos e Estruturas de Dados - 2º. Sem / 2014

Inatel

Referências

- Material adaptado da Apostila Álgebra e Geometria Analítica (NB020).
 - Prof^a. Karina Peres Mokarzel Carneiro, Prof. Luiz Felipe S. de Godoy, Prof. Rodrigo Guaracy Santana e Prof. Giovani Henrique F. Floriano.

Outras referências importantes:

- Geometria Analítica Alfredo Steinbruch e Paulo Winterle.
- Geometria Analítica: um tratamento vetorial. Ivan de Camargo e Paulo Boulos.
- Vetores e Geometria Analítica Paulo Winterle.

Plano

Definição:

- Um plano é uma entidade geométrica formada por infinitas retas e infinitos pontos.
- Para traçar um plano, três pontos não alinhados são necessários.
- O plano tem duas dimensões, ou seja, tem altura e largura ou altura e comprimento ou largura e comprimento, por isso, é chamado de bidimensional.
- Um plano é representado por uma letra minúscula do alfabeto grego.

Núcleo Básico das Engenharias - NB-21 – Algoritmos e Estruturas de Dados - 2º. Sem / 2014

3

InatelInstituto Nacional de Telecomunicações

Equação Geral do Plano

Sendo A(x₁, y₁, z₁) um ponto \in ao plano π e $\vec{n} = a\vec{i} + b\vec{j} + c\vec{k}$ um vetor não nulo, normal (ortogonal) ao plano.

Para que P(x, y, z) \in ao plano π é necessário que: $\vec{n} \cdot \overrightarrow{AP} = 0$

Sendo:
$$\overrightarrow{AP} = P - A = (x - x_1)\vec{i} + (y - y_1)\vec{j} + (z - z_1)\vec{k}$$

Vem:

$$((x-x_1)\vec{i} + (y-y_1)\vec{j} + (z-z_1)\vec{k})\cdot(a\vec{i} + b\vec{j} + c\vec{k}) = 0$$

$$a(x-x_1) + b(y-y_1) + c(z-z_1) = 0$$

$$ax + by + cz - ax_1 - by_1 - cz_1 = 0$$

Fazendo:
$$-ax_1 - by_1 - cz_1 = d$$

Resulta:

$$ax + by + cz + d = 0$$

Equação cartesiana do plano

Equação Geral do Plano

Obs.:

- 1) Como $\vec{n}=(a,b,c)$ é um vetor normal a π , qualquer vetor $k\cdot\vec{n}$, $k\neq 0$, também é vetor normal a π .
- 2) Os coeficientes a, b e c da equação geral do plano representam os componentes de um vetor normal ao plano: $\vec{n} = (a, b, c)$.
- 3) Para obter os pontos de um plano dado por uma equação geral, basta atribuir valores arbitrários a duas das variáveis e calcular o valor da outra variável na equação geral.

Exemplos 1/2/3

F

Equação Geral do Plano

Obtendo a equação geral do plano:

Plano paralelo a dois vetores e que passa por um ponto

$$\vec{n} = \vec{v}_1 \times \vec{v}_2$$

Plano paralelo a um vetor e que passa por dois pontos

Obtendo a equação geral do plano:

Plano que passa por três pontos

$$\vec{n} = \overline{AB} \times \overline{AC}$$

Plano que contém duas retas concorrentes

$$\vec{n} = \vec{r} \times \vec{s}$$

Núcleo Básico das Engenharias - NB-21 – Algoritmos e Estruturas de Dados - 2º. Sem / 2014

7

Inatel Instituto Nacional de Telecomunicações

Equação Geral do Plano

Obtendo a equação geral do plano:

Plano que contém duas retas paralelas

$$\vec{n} = \vec{s} \times \vec{R} \vec{S}$$

Plano que contém uma reta e que passa por um ponto não pertencente à reta.

$$\vec{n} = \vec{r} \times \overline{RA}$$

Equação Vetorial do Plano

Sejam A(x₀, y₀, z₀) um ponto \in ao plano π e os vetores $\vec{u} = (a_1, b_1, c_1)$ e $\vec{v} = (a_2, b_2, c_2)$ não colineares, paralelos a π .

Um ponto $P(x, y, z) \in \text{ ao plano } \pi \text{ se}$:

$$\overrightarrow{AP} = h\vec{u} + t\vec{v}$$

Substituindo:

$$P - A = h\vec{u} + t\vec{v}$$

$$P = A + h\vec{u} + t\vec{v}$$

que, em coordenadas fica:

$$(x, y, z) = (x_0, y_0, z_0) + h(a_1, b_1, c_1) + t(a_2, b_2, c_2)$$

Equação vetorial do plano

lúcleo Básico das Engenharias - NB-21 – Algoritmos e Estruturas de Dados - 2º. Sem / 2014

9

Inatel Instituto Nacional de Telecomunicações

Equação Paramétrica do Plano

Da equação vetorial do plano

$$(x, y, z) = (x_0, y_0, z_0) + h(a_1, b_1, c_1) + t(a_2, b_2, c_2)$$

Obtém-se:

$$(x, y, z) = (x_0 + a_1h + a_2t, y_0 + b_1h + b_2t, z_0 + c_1h + c_2t)$$

Pela condição de igualdade, vem:

$$\begin{cases} x = x_0 + a_1 h + a_2 t \\ y = y_0 + b_1 h + b_2 t & h, t \in R \\ z = z_0 + c_1 h + c_2 t) \end{cases}$$

Equações paramétricas do plano

Obs.: h e t são denominados parâmetros (variáveis auxiliares).

Seja o plano π de equação ax + by + cz + d = 0.

1) Se
$$y = z = 0$$
 e $x = m$: $am + d = 0 \rightarrow m = -\frac{d}{d}$

O ponto $A_1(m,0,0)$ é a interseção do plano π com o eixo x.

2) Se
$$x = z = 0$$
 e $y = n$: $bn + d = 0 \rightarrow n = -\frac{d}{b}$

O ponto $A_2(0,n,0)$ é a interseção do plano π com o eixo y.

3) Se
$$x = y = 0$$
 e $z = p$: $cp + d = 0 \rightarrow p = -\frac{d}{c}$

O ponto $A_3(0,0,p)$ é a interseção do plano π com o eixo z.

11

Equação Segmentária do Plano

Da equação cartesiana ax + by + cz + d = 0, vem:

$$ax + by + cz = -d$$

$$\frac{ax}{-d} + \frac{by}{-d} + \frac{cz}{-d} = 1$$

$$\frac{x}{-d/a} + \frac{y}{-d/b} + \frac{z}{-d/c} = 1$$

$$\frac{x}{m} + \frac{y}{n} + \frac{z}{p} = 1$$

Equação segmentária do plano

Sejam os planos: π_1 : $a_1x + b_1y + c_1z + d_1 = 0$ e π_2 : $a_2x + b_2y + c_2z + d_2 = 0$, e sejam $n_1 = (a_1, b_1, c_1)$ e $n_2 = (a_2, b_2, c_2)$ os vetores normais a π_1 e π_2 , então:

1) **Ângulo entre planos**: o menor ângulo que um vetor normal de π_1 forma com um vetor normal de π_2 é dado por:

$$\cos(\theta) = \frac{|\overrightarrow{n_1} \cdot \overrightarrow{n_2}|}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|}, \ \ 0 \le \theta \le 90^{\circ}$$

2) **Condição de paralelismo entre planos**: se dois planos são paralelos, seus vetores normais também são; assim:

$$\pi_1 // \pi_2 \rightarrow \overrightarrow{n_1} // \overrightarrow{n_2} :: \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

3) **Condição de perpendicularismo entre planos**: se dois planos são perpendiculares, seus vetores normais também são; assim:

$$\pi_1 \perp \pi_2 \rightarrow \overrightarrow{n_1} \perp \overrightarrow{n_2} \therefore \overrightarrow{n_1} \cdot \overrightarrow{n_2} = 0 \rightarrow a_1 a_2 + b_1 b_2 + c_1 c_2 = 0$$

Núcleo Básico das Engenharias - NB-21 – Algoritmos e Estruturas de Dados - 2º. Sem / 2014

13

Exercícios