3F3 – Statistical Signal Processing Examples Paper 2

Questions marked as '†' are straightforward questions testing fundamental concepts. The rest are Tripos style although not necessarily Tripos length.

1. Let $\{X_n\}_{n\geq 0}$ be a Markov chain taking values in $S=\{1,\ldots,L\}$ and let $P=(P_{i,j}:i,j\in S)$ be its transition probability matrix, i.e.

$$p(i_n|i_0,\ldots,i_{n-1}) = P_{i_{n-1},i_n}.$$

(a) †Show that the conditional probability mass function (cpmf) of X_2 given $X_1 = i_1$ satisfies

$$p(i_2|i_1) = P_{i_1,i_2}$$

(b) By generalising your solution, show

$$p(i_n|i_{n-1}) = P_{i_{n-1},i_n}.$$

- 2. A Bernoulli random process is a sequence of iid random variables X_n where X_n takes the values 1 or -1 with probabilities q and 1-q respectively.
 - (a) [†]Write down a Markov chain representation of this process, i.e. give the pmf of X_0 and its transition probability matrix P.
 - (b) Determine if this Bernoulli process is wide sense stationary.
- 3. Let $\{X_n\}_{n\geq 0}$ be a Markov chain taking values in $S = \{1, \ldots, L\}$. Let $\lambda = (\lambda_i : i \in S)$ be the initial distribution of the chain (i.e. the pmf of X_0) and P be the transition probability matrix of the chain where

$$P = \left[\begin{array}{ccc} \lambda_1 & \dots & \lambda_L \\ \vdots & & \vdots \\ \lambda_1 & \dots & \lambda_L \end{array} \right].$$

Show the Markov chain is *strictly stationary*, i.e. the joint pmf of (X_0, \ldots, X_k) and (X_m, \ldots, X_{m+k}) are the same for any integers m and k.

4. Consider the AR(1) process

$$X_n = aX_{n-1} + W_n$$

where |a| < 1 and $\{W_n\}_{n \in \mathbb{Z}}$ is a sequence of random variables satisfying $\mathbb{E}(W_n) = 0$, $\mathbb{E}(W_n^2) = \sigma^2$ and $\mathbb{E}(W_i W_j) = 0$ for $i \neq j$.

- (a) Assuming X_n has constant mean μ , find μ .
- (b) Assuming X_n has constant variance σ_X^2 , find σ_X .
- 5. Determine if each of the following processes is wide sense stationary.
 - (a) $X_n = U$ where U is a random variable.
 - (b) $X_n = A\cos(nf_0) + B\sin(nf_0)$ where A and B are independent zero mean random variables with equal variances with value 2.
 - (c) $Y_n = X_n X_{n-1}$ where X_n is the Bernoulli process of Q2.
- 6. Consider the AR(1) process in Q4.
 - (a) Find $\mathbb{E}\{X_nX_{n+k}\}$ for all integers n and k. Is the process wide sense stationary?
 - (b) Find the power spectrum density $S_X(f)$.
 - (c) Values of $R_X(k)$, estimated from data, are $R_X(0) = 5.26$ and $R_X(1) = 4.74$. Find parameters a and σ^2 and sketch $S_X(f)$.
- 7. For the AR(1) process in Q4, assume that $\{W_n\}_{n\in\mathbb{Z}}$ is a sequence of iid Gaussian random variables, $\mathbb{E}(W_n) = 0$ and $\mathbb{E}(W_n^2) = \sigma^2$. Assuming X_0 is $\mathcal{N}(\mu_0, \sigma_0^2)$, show that the random vector (X_0, \ldots, X_k) is a Gaussian random vector and find its mean vector and covariance matrix.
- 8. The MA(q) process is

$$X_n = \left(\sum_{i=1}^q b_i W_{n-i}\right) + W_n$$

where b_1, \ldots, b_q are the coefficients of the MA process and $\{W_n\}_{\mathbb{Z}}$ is a sequence of random variables with mean zero, variance σ^2 and $\mathbb{E}(W_iW_j) = 0$ when $i \neq j$.

- (a) Write X_n as the output of an LTI filter with infinite impulse response $\{h_k\}$ and give h_k .
- (b) Find $\mathbb{E}\{X_nX_{n+k}\}$ for all integers n and k. Is the process wide sense stationary?
- (c) Assuming $b_i = 1$ for $1 \le i \le q$, sketch $R_X(k)$.
- (d) Find $S_X(f)$ for the case q = 2. Plot $S_X(f)$ in Matlab. (Be careful to capture its periodicity.)

Answers:

- **Q 2** (a) The state-space is $S = \{-1, 1\}$, transition probability matrix is $P = \begin{bmatrix} q & 1-q \\ q & 1-q \end{bmatrix}$ and initial distribution $\lambda = (q, 1-q)$. (b) Is WSS.
- **Q** 4 (a) $\mu = 0$. (b) $\sigma_X^2 = \frac{\sigma^2}{1-a^2}$.
- ${f Q}$ 5 Yes for all parts.
- **Q 6** (a) Yes. $R_X(k) = a^{|k|} R_X(0)$. (b) $S_X(f) = \sigma^2 (1 + a^2 2a \cos(2\pi f))^{-1}$. (c) $a = 1, \sigma^2 = 1$.
- **Q 8** (a) $h_0 = 1$, $h_i = b_i$ for $0 < i \le q$ and $h_i = 0$ otherwise. (b) Yes. $R_X(k) = \sigma^2 \sum_{i=-\infty}^{\infty} h_i h_{k+i}$.
- S.S.Singh, October 2016