INTERNATIONAL AUDIO LABORATORIES ERLANGEN

A joint institution of Fraunhofer IIS and Universität Erlangen-Nürnberg

Feature Selection Using ADMM for Low-Complexity Acoustic Scene Classification

Lorenz Schmidt, Beran Kiliç, Nils Peters

Problem Definition

- ASC common task for resourced constrained devices
- This year: additional MMACs constraint

MACs scale with input features for convolutional models (here BC-Resnet)

Problem Definition

- ASC common task for resourced constrained devices
- This year: additional MMACs constraint MACs scale with input features for convolutional models (here BC-Resnet)
- Reasoning for feature selection
 - Reduce MACs by band decimation
 - Reduce weakly correlated features; make model more robust against overfitting
 - Interpret resulting feature masks for dataset

Toolbox – Alternating Direction Method of Multipliers (ADMM)

- Limit on number of features
- Split with add. equality constraint
- Dual decomposition + Agumented Lagrangian → ADMM

- Structured Pruning StructADMM
- Quantization ADMM-NN

Training Statistics after Feature Reduction

- Reduce weakly correlated features makes less prone to overfitting
- Training more stable during hyperparameter search → fewer runs

Training Statistics after Feature Reduction

- Reduce weakly correlated features makes less prone to overfitting
- Training more stable during hyperparameter search → fewer runs
- Reducing even more introduces bias for training validation score

Feature Selection Patterns

- Most information contained up to 8kHz
- Below 500Hz decimated by two; Below 80Hz no decimation
- Decreasing features lead to sparsity with regular patterns
- Interesting peak at ~19.8kHz

Bonus – Dataset Shift and Spectrogram Peak

	Airport [dB]	
Α	18.618	
В	15.255	
С	14.039	
S1	-6.322	
S2	9.270	
S3	-1.373	
S4	-0.507	
S5	-6.726	
S6	-1.777	

Bonus – Dataset Shift and Spectrogram Peak

	Airport [dB]	Tram [dB]
Α	18.618	-0.932
В	15.255	2.896
С	14.039	-0.502
S1	-6.322	-9.017
S2	9.270	5.103
S3	-1.373	-5.002
S4	-0.507	-4.792
S5	-6.726	-8.885
S6	-1.777	-6.285

