

DÉTECTION DE FAUX BILLETS

Introduction

Contexte

- Situation
 - Contrat pour l'ONCFM, ONG de lute contre la fausse monnaie
 - Mise en place de moyens de detection de contrefaçons
- Mission
 - Mise en place d'un *modèle* de detection de faux billets
- Moyens
 - Cahier des charges
 - Données d'entrées

Objectifs

- Créer un programme de détection
 - Définir si un billet est vrai ou faux
 - En fonction des caractéristiques géométriques du billet
- Explorer les données
 - Comprendre les données fournies
- Préparer les données
 - Nettoyer et preparer le jeu de données
- Comparer et choisir le Meilleur modèle
 - Générer *différents* modeles
 - Comparer ces modèles
 - Sélection du meilleur modèle
 - Mise en situation

EXPLORATION / PRÉPARATION DES DONNÉES

Exploration des données

Données fournies

- Déscription des données
 - > Taille du dataset
 - 1500 entrées
 - 7 variables
 - 1000 Billets vrais
 - > 500 Billets faux
 - > 37 données manquantes
 - > Type de données
 - > Dimensions des billets en mm (float)
 - Type : Vrai / Faux (bool)

Exploration des données

Données manquantes

- Informations
 - Concerne 37 billets
 - 29 vrais
 - > 8 faux
- □ Importance de la variable
 - > Pairplot avec difference entre les billets
 - margin_low pourrait aider à différencier les billets

Conclusions

- Pourcentage concerné
 - Concerne 2,46% du dataset (nb. de lignes)
- Pistes possibles
 - Suppression de ces lignes
 - > Imputation par la moyenne ou la médiane
 - Régression linéaire
 - **>** ...
- Solution retenue
 - > Régression linéaire

Préparation des données

Régression Linéaire Multiple

Préparation

- Changement de True/False en 0/1
- Standardisation des données

Données explicatives

- Heatmap pour une première idée
- Fonction backward selection
 - Prise en compte de toutes les variables explicatives
 - Recherche des variables minimisant l'écart entre la droite de régression et la target
 - Elimination des variables p value > 0,05
- Variables retenues
 - is genuine
 - margin up

Evaluation du modèle

MSE: 0,375

Evaluation

 $MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

R² (variance modèle / variance données): 61,8 %

Normalité des résidus : NOK

QQ-plot

Shapiro: p value < 0,05

Homscédasticité des résidus (variance constante) : NOK

Test de Levène : p value < 0,05

Multicolinéarité : **OK**

VIF

Imputation des valeurs manquantes

Régression Linéaire Multiple

- Application
 - Validation du modèle
 - Utilisation du modèle sur le dataset incomplet
- Regroupement des données
 - Concatenation du dataset avec nouvelles données et celui des billets complets
 - Obtention du dataset final pour la suite du projet

Dataset final

- Infos sur le dataset
 - Comparaison entre le dataset de base et final
 - Pas de difference notable

```
df final clean['margin low'].describe().round(4)
         1500.0000
            -0.0048
std
            0.9943
           -2.2694
25%
           -0.6871
           -0.2652
            0.5787
            3.6379
Name: margin_low, dtype: float64
df_scaled_not_nan['margin_low'].describe().round(4)
         1463.0000
            0.0000
            1.0003
min
           -2.2694
25%
           -0.7097
           -0.2652
75%
            0.5787
            3.6379
Name: margin_low, dtype: float64
```


MODÈLE DE PRÉDICTION

Exploration des données

Recherche de pistes

Corrélations

- > Pairplot avec separation du type
- Heatmap
- ACP

Analyse Composantes Principales

Cercle de corrélation

- Le type de billet est fortement corrélé à length
- Le type est fortement anticorrélé à margin_up, low et height_right

Modèle de prédiction - Régression logistique

Création du modèle

- Données explicatives
 - Fonction backward
 - Prise en compte de toutes les variables explicatives
 - Itération
 - Elimination des variables p value > 0,05
 - Variables retenues
 - length
 - margin_up
 - margin_low
 - height_right
- Entrainement du modèle
- Sauvegarde du modèle
 - Utilisation de JobLib

Evaluation du modèle

- Scores
 - Train/Test set
 - Entrainement du modèle sur Trainset
 - Evaluation du modèle sur Testset
- Scores
 - Score global : 98,667 %
 - Precision : 98,5 %
 - Recall : 99,495 %
 - > F1 Score : **98,995** %
- Matrice de confusion
 - Réel vs Prédict
- Courbe ROC
 - Aire sous la courbe : 0,9828

Modèle de prediction - KMeans

Création du modèle

- Définition des centroïdes
 - GroupBy sur is_genuine
 - Calcul des centroïdes
 - Paramètrage de Kmeans
 - Nombre de cluster
 - Centroïdes
- Remarque
 - Kmeans est un algorithme de clustering
- Entrainement du modèle
- Sauvegarde du modèle
 - Utilisation de JobLib

Evaluation du modèle

- Scores
 - Train/Test set
 - > Entrainement du modèle sur Trainset
 - Evaluation du modèle sur Testset
- Scores
 - Score global : **Pas disponible**
 - Precision : 97,98 %
 - Recall : 97,98 %
 - F1 Score : **97,98** %
- Matrice de confusion
 - Réel vs Prédict
- Courbe ROC
 - Aire sous la courbe : 0,9703

Modèle de prediction - KNN

Création du modèle

- GridSearch
 - Recherche des meilleurs paramètres
 - > Possibilité de définir plusieurs paramètres
 - Récupération des meilleurs paramètres selon le score
- Entrainement du modèle
- Sauvegarde du modèle
 - Utilisation de JobLib

Evaluation du modèle

- Scores
 - Train/Test set
 - Entrainement du modèle sur Trainset
 - Evaluation du modèle sur Testset
- Scores
 - Score global : 98,667 %
 - Precision : 98,5 %
 - Recall : **99,495** %
 - > F1 Score : 98,995 %
- Matrice de confusion
 - Réel vs Prédict
- Courbe ROC
 - Aire sous la courbe : 0,9828

Modèle de détection - Comparaison - Sélection

Comparaison des modèles

Régression logistique

> AUC ROC: 98,277 %

Score global : 98,667 %

> F1 Score : 98,995 %

KMeans

> AUC ROC: 97,29 %

Score global : Pas disponible

Accuracy (equivalent score global): 97,333 %

> F1 Score: 97,98 %

□ KNN

> AUC ROC : 98,277 %

Score global : 98,667 %

> F1 Score : **98,995** %

Sélection du modèle

Conclusions

- > Régression logistique et KNN equivalent
- Kmeans en retrait
- > Choix de la regression logistique
 - Statistiques lors des prediction
 - Ressources système

APPLICATION FINALE

Merci pour votre attention!

