

FACULDADE DE TECNOLOGIA SENAC RIO									
Curso: Análise e Desenvolvimento de Sistemas	Semestre letivo: 2021.2								
Unidade Curricular: Raciocínio Lógico e Matemátic	Módulo: 1								
Professor: Agnaldo Cieslak	Data: / 2021								
Competências a serem avaliadas:	Indicadores de Competência:								
Projetar sistemas de informação Orientados a Objetos		raciocínio lógico e matemático para oblemas computacionais;							
Alunos:	1	Conceito:							
Gabarito									

Atividade 8 - Inferência -> argumentos

Objetivo:

Os alunos deverão aplicar a metodologia de análise de argumentação pelas regras de inferência.

1- Um detetive entrevistou quatro testemunhas de um crime. A partir das histórias das testemunhas, o detetive concluiu que, se o mordomo está dizendo a verdade, então o cozinheiro também está; o cozinheiro e o jardineiro, ambos, não podem estar dizendo a verdade; o jardineiro e o zelador, ambos, não estão mentindo; e se o zelador está dizendo a verdade, então o cozinheiro está mentindo. Para cada uma das quatro testemunhas, o detetive pode determinar se a pessoa está mentindo ou dizendo a verdade?

Sugestão: Montar os argumentos em linguagem simbólica da lógica;

Resolver através de tabela verdade

Resposta:

As quatro testemunhas podem ser identificadas pelas variáveis C (cozinheiro), J (jardineiro), M (mordomo) e Z (zelador), que serão usadas para indicar que estão falando a verdade.

Sejam os seguintes argumentos:

- (a) $M \to C$
- (b) $C \oplus J$
- (c) $\neg J \oplus \neg Z$
- (d) $Z \rightarrow \neg C$

Pelos quatro argumentos acima, não é possível aplicar uma regra de inferência. Se fizermos uma tabela da verdade, podemos identificar o cenário no qual as quatro premissas supostamente são verdadeiras, conforme mostrado a seguir.

		Variáveis				Premissas				
		C	J	M	Z	(a)	(b)	(c)	(d)	
1.		V	V	V	V	V	F	F	F	
2.		V	V	V	F	V	F	V	V	
3.		V	V	F	V	V	F	F	F	
4.		V	V	F	F	V	F	V	V	
5.		V	F	V	V	V	V	V	F	
6.		V	F	V	F	V	V	F	V	
7.		V	F	F	V	V	V	V	F	
8.		V	F	F	F	V	V	F	V	
9.		F	V	V	V	F	V	F	V	
10.		F	V	V	F	F	V	V	V	
11.		F	V	F	V	V	V	F	V	
12.	\rightarrow	F	V	F	F	V	V	V	V	
13.		F	F	V	V	F	V	V	V	
14.		F	F	V	F	F	F	F	V	
15.		F	F	F	V	V	F	V	V	
16.		F	F	F	F	V	F	F	V	

→ As premissas são verdadeiras para a linha 12, ou seja, o jardineiro fala a verdade e as outras testemunhas não.

2- Sistema de especificações é consistente: O roteador pode enviar mensagens para o sistema principal somente se ele tratar um novo espaço de endereço. Para o roteador tratar o novo espaço de endereço, é necessário que a última versão do software seja instalada. O roteador pode enviar mensagens ao sistema principal se a última versão do software estiver instalada. O roteador não trata o novo espaço.

Sugestão: Usar Modus Ponens e Modus Tollens organizando as proposições na ordem.

Resposta:

Sejam os seguintes argumentos:

p = O roteador pode enviar mensagens para o sistema principal.

q = O roteador trata um novo espaço de endereço.

r = A última versão do software seja instalada.

Tradução dos fatos para as proposições:

- (a) p somente se $q \equiv p \rightarrow q$
- (b) para qé necessário $r \equiv r$ é uma condição necessária para $\mathbf{q} \equiv q \rightarrow r$
- (c) p se $r \equiv r \rightarrow p \equiv \neg p \rightarrow \neg r$
- (d) ¬q

De du ção:

(i)
$$p \rightarrow q$$
 (a) $\neg q$ (d) $\neg p$ Modus Tollens

(ii)
$$\neg p \rightarrow \neg r$$
 (c) $\neg p$ (i) Modus Ponens

Pelas deduções acima, as três proposições são falsas: $\neg q$ de acordo com (d), $\neg p$ de acordo com (i) e $\neg r$ de acordo com (ii). Se todas três proposições são falsas, as quatro especificações são verdadeiras e elas são consistentes.

3- O sistema está em um estado de multiuso se e somente se estiver operando normalmente. Se o sistema está operando normalmente, o núcleo do sistema operacional (kernel) está funcionando. O kernel não está funcionando ou o sistema está no modo de interrupção. Se o sistema não está em um estado de multiuso, então está em um modo de interrupção. O sistema não está no modo de interrupção. Este sistema é consistente?

Sugestão: Montar os argumentos em linguagem simbólica da lógica;

Colocar as proposições em ordem;

Resolver usando as deduções de Silogismo disjuntivo, Modus Tollens, Modus Tollens, Simplificação conjuntiva, Modus Tollens

Resposta:

Sejam os seguintes argumentos:

p = O sistema está em um estado de multiuso.

q = O sistema está operando normalmente.

r = O núcleo do sistema operacional (kernel) está funcionando.

s = O sistema está no modo de interrupção.

Tradução dos fatos para as proposições:

(a)
$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

- (b) $q \rightarrow r$
- (c) $\neg r \lor s$
- (d) $\neg p \rightarrow s$
- (e) ¬s

Deduções:

(i)
$$\neg r \lor s$$

(c) (e)

Silogismo Disjuntivo

(ii)
$$q \rightarrow r$$

 $\neg r$

(b)

Modus Tollens

(iii)
$$\neg p \rightarrow s$$

(d) (e)

Modus Tollens

(iv)
$$(p \to q) \land (q \to p)$$

 $p \to q$

(a) Simplificação Conjuntiva

$$\begin{array}{ccc} (\mathbf{v}) & p \rightarrow q & & (\mathbf{i}\mathbf{v}) \\ \neg q & & (\mathbf{i}\mathbf{i}) \end{array}$$

Modus Tollens

Há uma divergência em (iii) e em (v), não podendo a proposição p ser ao mesmo tempo V e F. Logo o sistema é inconsistente.