What are the major functions of an 1/0 module? I/o module stands for Input/ Output module, which is a device that acts as the connective bridge between a computer system at one end and an 1/0 or peripheral device of some kind at the other, Such as a printer, web cam or scanner. This enables a computer system to carry out its intended function, which is to communicate with the external world in which ever way it needs to · The key tasks of I/O Module's 1) Processor communication: This involves a number of tasks, primarily the transference of data between the processor and an Ilo module, accepting and decoding commands sent by the processor, reporting of current status, and an ability for the I/O module to recognise its own unique address 2 Device communication: It needs to be able to perform standard device communications, such as reporting of 3 Control and timing: An IIO module needs to be capable of managing data flow between a computer's internal resources and any connected external devices (A) Data buffering: A crucial Function that manages the speed discrepancy that exists between the speed of FOR EDUCATIONAL USE

transfer of data between the processor and					
memory and peripherial devices					
Detecting errors, whether mechanical (such as a					
printer experiencing a paper jum) or data based,					
and reporting them to the processor is another					
vital Function of an I/O module.					
- Thus, without an I/O module the ability for					
the exchange of data between a processor					
and a peripheral device is non-existent, also					
making the ability to interplet data into					
information ready for communication and					
consumption impossible.					
Compare numbry mapped I/O programmed I/O					
Memory mapped I/O Programmed I/O					
1 External asynchronous 1 Processor has to check					
input is used to tell the each I/O device in					
processor that Ilo divice sequence and in					
needs its services and effect 'ask' each one					
hence processor does if it needs communic-					
not have to theck ation with the					
whether I/O devices processor.					
needs it services or not					
2) The processor is 2 During polling processor					
allowed to execute its is busy and therefore					
instruction in sequence have serious and					
and only stop to service decremented effect on					
and unity stop					

FOR EDUCATIONAL USE

undaram

	Memory mapped 7/0	Programmed I/O			
	I/O device when it is	effect on system			
	told to do so by the	throughput			
	device itself, this	0 /			
	increased system				
	throughput	3			
TD	3 Implemented using	3) It is implemented			
	interrupt hardware	without in terrupt			
	Support +	hard ware support			
	1 Must be enabled to	@ Does not depend on			
	process interrupt driven	interrupt States			
	710				
 	(5) System throughput	5) System throughout			
	does not depend on	decreases as number			
		of Ilo devices			
	connected in the system.	increases			
<u> </u>	lalvite note on interrupt driven Ilo				
- Ans	This technique is used to overcome the limitation of programmed I/O. (2) In interrupt driven I/O, instead of making the				
*					
	processor to verify the status of I/O module. It				
	is the responsibility of I/O module to intimate				
	3 CPU responds to interrupt signals and stores				
	the return address from the program counter				
	(PC) into the memory stack and then the control				
	brunches to a interrupt service routine (ISR).				
	1 ISR processes the required Ilo Transfer				
<u>Sundaram</u>	FOR EDUCATIONAL USE				

5	After (pmpletion	of execut	ing interru	of routing
	CPU Yetus	ins to pre	vinus prod	ram and a	ontinue
		was doing			
	Interrupt				
1.1			xception	ccuses CPU	to transf
	the conti	al tempor	arily fro	m its curre	ent progra
	to anth	ar procram	i.c. int	errupt hand	1100.
	BLOCK D	icy ram fo	Y TAKEYYUE	ot Driven I	10
		· ·			-
		Interro	of Request	(INTR)	and the second
	CPU				T/O
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Taterrupt	Acknowledge	r. onent	sy's tem
		(ACKNOWLEDGE INTA)	J C · S · · · · · · · · · · · · · · · · ·	
	Trancfe	r control	From mair	program +	-o
		Handler		7-1-0	
	- Mary	/ Harris =			
		Main Progra	ı <i>r</i>		
	1	the property		1	
	2	•			
17	nterrupt	9			Interrupt
C	ccurs_i			1	Handler'
	rere i+1			9	
				•	
	M	• .			
-		•			
-					
	1				
-					
-					E CO
3		<u> </u>	FOR EDUCATIONA	AL USE	

	-				
	COUL Movin Program	Interrupt Service Routine			
	execution	Executive Sequence			
	Request device	Strirt TSR			
	to get recidy	0.12.61-11-6			
		Save C.P.U Status			
		Execute Data			
	Check next	Transfer Tastruction			
	Introduction &				
	1 execute data	Bestore			
		Processor Status			
	check for NO				
	Interrupt	Enable			
		intarupt			
	Yes				
_	COULTSR ASSOCIAND	Return to			
	with this interrupt	Main Program			
		1 Dug 2 Francis No. 11 miles			
<u> </u>	What is the need of DMA? Explain its various techniques of data transfer.				
	techniques of data th	ansier			
Ans					
Gundaram	FOR EDUCATIONAL USE				

DMA Function

DMA Function

- DMA involves an additional module on the system bus. The DMA module (Figure 7.11) is capable of mimicking the processor and, indeed, of taking over control of the system from the processor.
- It needs to do this to transfer data to and from memory over the system bus.
- For this purpose, the DMA module must use the bus only when the processor does not need it, or it must force the processor to suspend operation temporarily.
- The latter technique is more common and is referred to as cycle stealing, because the DMA module in effect steals a bus cycle.

DMA Function

When the processor wishes to read or write a block of data, it issues a command to the DMA module, by sending to the DMA module the following information:

- Whether a read or write is requested, using the read or write control line between the processor and the DMA module
- The address of the I/O device involved, communicated on the data lines
- The starting location in memory to read from or write to, communicated on the data lines and stored by the DMA module in its address register
- The number of words to be read or written, again communicated via the data lines and stored in the data count register

DMA Function

- The processor then continues with other work.
- It has delegated this I/O operation to the DMA module.
- The DMA module transfers the entire block of data, one word at a time, directly to or from memory, without going through the processor.
- When the transfer is complete, the DMA module sends an interrupt signal to the processor.
- Thus, the processor is involved only at the beginning and end of the