Teachable machine

PRESENTER: YIN JEH NGUI, JASON
NATIONAL YANG MING CHIAO TUNG UNIVERSITY
10TH NOV 2021

Roadmap

AI, ML, DL?

How have AI evolved?

Teachable machine

- Intro
- Collect data
- Train models
- Infer from image
- Export model

Prospects

Applications

Background of Al

Back in 1958, Frank Rosenblatt at Cornell design the first artificial neural network

- Described presciently as "Pattern-recognizing device"
- Era of mainframe computers filled rooms and ran on vacuum tubes
- Inspired by the interconnections between neurons in the brain

Limitation of computing hardware soon overcame

- Moore's Law and other improvements in hardware
- Yielded a roughly 10-million-fold increase in the number of computations that a computer could do in a second
- Inclusion GPU in computation

Interest in artificial intelligence (AI) is revisited in the late 2000s

- Tools available up to the computing challenge
- Renamed as "deep learning"
- Extra layers of neurons is introduced

Observation that the transistors amount in a dense integrated circuit (IC) doubles about every two years

AI, ML, DL?

Artificial Intelligence

A science devoted to making machines think and act like humans.

Machine Learning

Focuses on enabling computers to perform tasks without explicit programming.

Deep Learning

A subset of machine learning based on artificial neural networks.

(Middleton, 2021)

(Copeland, 2016)

ML/DL

Expert-knowledge based model (ML)

- Modelling based on professional know-how
- (Geotechnical) modelling with governing equations
- Early AI were rule based, applying logic and expert knowledge to derive results (machine learning)
 - Supervised / semi-supervised / unsupervised
 - Reinforcement learning

Flexible statistical models (most AI/DL)

- Require myriad combinations of priori, activation functions, bias, weighting and networks
- Use numerous neurons (in neural networks) to train suitable Al model
- Provide outcomes with probability [87% cat]

(Mahapatra, 2019)

From ML to DL

Machine learning

- Computers still think and act like machines
- Needs manual feature extraction

Deep learning

- Computers learn to think using structures modeled from human brain
- Multi-layered "deep neural networks"
- Non-linear data transformation => increasingly abstract

ML vs DL

	Machine learning	Deep learning (NN)
Hardware	Less complex Run on conventional computers	Powerful hardware GPU for parallel computing
Time	Quick set up and operation Limited in performance	More setup time Instantaneous result, improved quality over time with more data
Approach	Structured data Traditional algorithms (e.g. linear regression)	large volumes of unstructured data Neural networks
Applications	Already in use in your email inbox, bank, and doctor's office	Complex and autonomous programs (e.g. self-driving cars / robots that perform advanced surgery)

Deep learning

Feedforward neural network

- Simplest neural network
- Maybe with single/multi-layer neurons + backpropagation (multi-layer perceptron)
- Input layer => hidden layer => output layer

Convolutional Neural Networks (CNN)

- Convolution: process of applying weight-based filter across every element of an image
 - Assist in computer vision, helping computer to "see" and "understand" what is in the picture
- Designed to work with images
- Good for feature scanning in image
 - oldentify people, cars, shipwreck at ocean floor, landslide
- Highest growth over the decade

Recurrent Neural Networks (RNN)

- Introduce MEMORY in algorithm
 - o Computer remembers past data and decisions, include in consideration of current data
- Natural language processing: considers tone and content in text comprehension
 - Personality chat robot: **NLP** (Natural language processing) + LSTM (Long Short-term Memory)
 - Personal assistance (Hey Siri , OK Google...)
- Map direction: remembers best route by majority of people

More to come...

Combinations of multiple RNN/CNN

(Phi, 2018)

Main ML/DL frameworks

Machine learning relies on algorithms

- ML/DL frameworks simplify this process
- tool, interface, or library for easy development of AI model
- without understanding the underlying algorithms

Python is the predominant ML programming language

- Do we use Tensorflow or Pytorch?
 - Tensorflow : Google Brain
 - Pytorch : Facebook AI Research (FAIR)
 - scikit-Learn : Old standards of the data science world, great ML tool for quick interpretation
- All are interchangeable

Don't reinvent the wheel

Unless you want to change <u>fundamentally</u>

Neural network library built on top of **TensorFlow**

But what is a neural network?

Al too complicated?

- START SIMPLE

Teachable machine

- GOOGLE INC.
- BRIDGE FROM ML TO DL
- TEACH MACHINES TO THINK (DL)

Using shuffled data (CPU/GPU exhaustive)

What can I use to teach it?

Teachable Machine is flexible – use files or capture examples live. It's respectful of the way you work. You can even choose to use it entirely on-device, without any webcam or microphone data leaving your computer.

Images

Teach a model to classify images using files or your webcam.

Sounds

Teach a model to classify audio by recording short sound samples.

Poses

Teach a model to classify body positions using files or striking poses in your webcam.

Create a new project

Gather Train Infer

■ Teachable Machine

Gather Train Infer

■ Teachable Machine

Image inference/prediction

Slanted image detection

Training details

Teachable Machine splits your samples into two buckets

- Training samples: 85% to train the model
 - How to correctly classify new samples into the classes
- Test samples: 15% never used to train the model, for checking
 - Used to check how well is the model on new, never-before-seen data

Training details

Underfit

- Classifies poorly
- Model hasn't captured the complexity of the training samples

Overfit

- Model classified the training samples too closely
- Fails to make correct classifications on the test samples
- Usually sample dropout is used (discard, throw away some training samples)

Epochs

- Every training sample has been fed through the model at least once
- For epochs = 50, the model you are training will work through the entire training dataset 50 times.

Export to google drive

Export trained model for GTM

Inference process on python

Sample code

```
gtm_rockpaperscissor.py ×
 gtm_rockpaperscissor.py > ...
      """gtm_rockpaperscissor.py"""
      from keras.models import load model
  4 from PIL import Image, ImageOps
      import numpy as np
      # Load the model
  8 model = load_model('keras_model.h5')
 10 # Create the array of the right shape to feed into the keras model
 11 # The 'length' or number of images you can put into the array is
 12 # determined by the first position in the shape tuple, in this case 1.
 data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
 # Replace this with the path to your image
 15 image = Image.open('<IMAGE_PATH>')
 16 #resize the image to a 224x224 with the same strategy as in TM2:
 17 #resizing the image to be at least 224x224 and then cropping from the center
 18 size = (224, 224)
      image = ImageOps.fit(image, size, Image.ANTIALIAS)
 21 #turn the image into a numpy array
 22 image array = np.asarray(image)
 23 # Normalize the image
 24 normalized image array = (image_array.astype(np.float32) / 127.0) - 1
 26  data[0] = normalized_image_array
      # run the inference
      prediction = model.predict(data)
      print(prediction)
```

```
# Function to determine label
def prediction_outcome(prediction, labels):
    # Find index with maximum probability
   max_index = np.argmax(prediction)
   # Treat probability with higher than 0.5 as identified
   if prediction.max() > 0.5:
        show_text = labels[max_index]
    else:
        show_text = "Not identified"
    print(show_text)
   return show text
# Plot data and prediction
result = prediction_outcome(prediction, labels)
img = mpimg.imread(test_image)
imgplot = plt.imshow(img)
plt.title(result)
plt.show()
```

Extra notes

CPU/GPU version of trained model are sometimes not interchangeable

- Make sure training is done on similar setup
- Train on CPU => Infer on CPU
- Train on GPU => Infer on GPU
- Train on GPU => Infer on CPU

The analogy to deep learning is that

- the rocket engine is the deep learning models and
- the fuel is the huge amounts of data we can feed to these algorithms.
 - Andrew Ng

- Co-founder and head of Google Brain
 - Former Chief Scientist at Baidu
 - Co-Founder of Coursera

Teachable machine

- GOOGLE INC.
- BRIDGE FROM ML TO DL
- TEACH MACHINES TO THINK (DL)

Using shuffled data (CPU/GPU exhaustive)

End of presentation

THANK YOU!

Bibliography

Middleton, M. (2021, February 8). *Deep Learning vs. Machine Learning—What's the Difference?* https://flatironschool.com/blog/deep-learning-vs-machine-learning/

Rowe, W., and Johnson, J. (2020, September 8). *Top Machine Learning Frameworks To Use in 2021*. BMC Blogs. https://www.bmc.com/blogs/machine-learning-ai-frameworks/

Copeland, M. (2016, July 29). The Difference Between AI, Machine Learning, and Deep Learning? | NVIDIA Blog. The Official NVIDIA Blog. https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/

Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y. M. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection. *ArXiv:2004.10934 [Cs, Eess]*. http://arxiv.org/abs/2004.10934

Thompson, N. C., KRISTJAN GREENEWALD, KEEHEON LEE, and GABRIEL F. MANSO. (2021, September 24). *Deep Learning's Diminishing Returns*. IEEE Spectrum. https://spectrum.ieee.org/deep-learning-computational-cost

Mahapatra, S. (2019, January 22). Why Deep Learning over Traditional Machine Learning? Medium. https://towardsdatascience.com/why-deep-learning-is-needed-over-traditional-machine-learning-1b6a99177063

Garling, C. (2015, May). Andrew Ng: Why 'Deep Learning' Is a Mandate for Humans, Not Just Machines | WIRED. https://www.wired.com/brandlab/2015/05/andrew-ng-deep-learning-mandate-humans-not-just-machines/

Machine learning using TDR signals

