15.093J Optimization Methods

Lecture 4: The Simplex Method II

1 Outline

SLIDE 1

- Revised Simplex method
- The full tableau implementation
- Finding an initial BFS
- The complete algorithm
- The column geometry
- Computational efficiency

2 Revised Simplex

SLIDE 2

Initial data: A,b,c

- 1. Start with basis $\boldsymbol{B} = [\boldsymbol{A}_{B(1)}, \dots, \boldsymbol{A}_{B(m)}]$ and \boldsymbol{B}^{-1} .
- 2. Compute $p' = c'_B B^{-1}$ $\overline{c}_j = c_j p' A_j$
 - If $\overline{c}_j \geq 0$; x optimal; stop.
 - Else select $j : \overline{c}_j < 0$.

SLIDE 3

- 3. Compute $\boldsymbol{u} = \boldsymbol{B}^{-1} \boldsymbol{A}_j$.
 - If $u \leq 0 \Rightarrow$ cost unbounded; stop
 - Else

4.
$$\theta^* = \min_{1 \le i \le m, u_i > 0} \frac{x_{B(i)}}{u_i} = \frac{u_{B(l)}}{u_l}$$

- 5. Form a new basis \overline{B} by replacing $A_{B(l)}$ with A_j .
- 6. $y_j = \theta^*, y_{B(i)} = x_{B(i)} \theta^* u_i$

SLIDE 4

- 7. Form $[B^{-1}|u]$
- 8. Add to each one of its rows a multiple of the lth row in order to make the last column equal to the unit vector e_l .

The first m columns is \overline{B}^{-1} .

2.1 Example

SLIDE 5

SLIDE 6

B =
$$\{A_1, A_3, A_6, A_7\}$$
, BFS: $\boldsymbol{x} = (2, 0, 2, 0, 0, 1, 4)'$
 $\boldsymbol{c}' = (0, 7, 0, 2, -3, 0, 0)$

$$B = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}, \quad B^{-1} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ -1 & 1 & 1 & 0 \\ -1 & 1 & 0 & 1 \end{bmatrix}$$

 $(u_1, u_3, u_6, u_7)' = \vec{B}^{-1} A_5 = (1, -1, 1, 1)'$ $\theta^* = \min(\frac{2}{1}, \frac{1}{1}, \frac{4}{1}) = 1, \quad l = 6$ l = 6 (A_6 exits the basis).

SLIDE 7

$$[B^{-1}|u] = \begin{bmatrix} 0 & 1 & 0 & 0 & 1\\ 1 & -1 & 0 & 0 & -1\\ -1 & 1 & 1 & 0 & 1\\ -1 & 1 & 0 & 1 & 1 \end{bmatrix}$$

$$\Rightarrow \overline{B}^{-1} = \begin{bmatrix} 1 & 0 & -1 & 0\\ 0 & 0 & 1 & 0\\ -1 & 1 & 1 & 0\\ 0 & 0 & -1 & 1 \end{bmatrix}$$

2.2 Practical issues

SLIDE 8

• Numerical Stability

 ${\cal B}^{-1}$ needs to be computed from scratch once in a while, as errors accumulate

• Sparsity

 B^{-1} is represented in terms of sparse triangular matrices

3 Full tableau implementation

SLIDE 9

$-c_B'B^{-1}b$	$c'-c_B'B^{-1}A$
$B^{-1}b$	$B^{-1}A$

or, in more detail,

$-c_B'x_B$	\overline{c}_1	 \overline{c}_n
$x_{B(1)}$		
:	$\boldsymbol{B}^{-1}\boldsymbol{A}_1$	 $\boldsymbol{B}^{-1}\boldsymbol{A}_n$
$x_{B(m)}$		

3.1 Example

SLIDE 10

min
$$-10x_1 - 12x_2 - 12x_3$$

s.t. $x_1 + 2x_2 + 2x_3 + x_4 = 20$
 $2x_1 + x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + x_3 + x_6 = 20$
 $x_1, \dots, x_6 \ge 0$

BFS: $\boldsymbol{x} = (0, 0, 0, 20, 20, 20)'$ B=[$\boldsymbol{A}_4, \boldsymbol{A}_5, \boldsymbol{A}_6$]

Slide 11

		x_1	x_2	x_3	x_4	x_5	x_6
	0	-10	-12	-12	0	0	0
$x_4 =$	20	1	2	2	1	0	0
$x_5 =$	20	2*	1	2	0	1	0
$x_6 =$	20	2	2	1	0	0	1

$$\overline{c}' = c' - c'_B B^{-1} A = c' = (-10, -12, -12, 0, 0, 0)$$

SLIDE 12

		x_1	x_2	x_3	x_4	x_5	x_6
	100	0		-2		5	-
$x_4 =$	10					-0.5	0
$x_1 =$	10	1	0.5	1	0	0.5	0
$x_6 =$	0	0	1	-1	0	-1	1

Slide 13

		x_1	x_2	x_3	x_4	x_5	x_6
	120	0	-4	0	2	4	0
$x_3 =$	10	0	1.5	1	1	-0.5	0
$x_1 =$	0	1	-1	0	-1	1	0
$x_6 =$	10	0	2.5*	0	1	-1.5	1

SLIDE 14

		x_1	x_2	x_3	x_4	x_5	x_6
	136				3.6		
$x_3 =$	4	0	0	1	0.4	0.4	-0.6
	4	1	0	0	-0.6	0.4	0.4
$x_2 =$	4	0	1	0	0.4 -0.6 0.4	-0.6	0.4

SLIDE 15

4 Comparison of implementations

Slide 16

	Full tableau	Revised simplex
Memory	O(mn)	$O(m^2)$
Worst-case time	O(mn)	O(mn)
Best-case time	O(mn)	$O(m^2)$

5 Finding an initial BFS

SLIDE 17

- Goal: Obtain a BFS of Ax = b, $x \ge 0$ or decide that LOP is infeasible.
- Special case: $b \ge 0$

5.1 Artificial variables

SLIDE 18

$$Ax = b, \quad x \ge 0$$

- 1. Multiply rows with -1 to get $b \geq 0$.
- 2. Introduce artificial variables y, start with initial BFS y = b, x = 0, and apply simplex to auxiliary problem

min
$$y_1 + y_2 + \ldots + y_m$$

s.t. $Ax + y = b$
 $x, y \ge 0$

SLIDE 19

- 3. If $cost > 0 \Rightarrow LOP$ infeasible; stop.
- 4. If cost = 0 and no artificial variable is in the basis, then a BFS was found.
- 5. Else, all $y_i^* = 0$, but some are still in the basis. Say we have $A_{B(1)}, \ldots, A_{B(k)}$ in basis k < m. There are m k additional columns of A to form a basis.

SLIDE 20

6. Drive artificial variables out of the basis: If lth basic variable is artificial examine lth row of $\boldsymbol{B}^{-1}\boldsymbol{A}$. If all elements $=0 \Rightarrow$ row redundant. Otherwise pivot with $\neq 0$ element.

6 A complete Algorithm for LO

SLIDE 21

Phase I:

- 1. By multiplying some of the constraints by -1, change the problem so that $b \geq 0$.
- 2. Introduce y_1, \ldots, y_m , if necessary, and apply the simplex method to min $\sum_{i=1}^m y_i$.
- 3. If cost> 0, original problem is infeasible; STOP.

- 4. If cost=0, a feasible solution to the original problem has been found.
- 5. Drive artificial variables out of the basis, potentially eliminating redundant rows.

SLIDE 22

Phase II:

- 1. Let the final basis and tableau obtained from Phase I be the initial basis and tableau for Phase II.
- 2. Compute the reduced costs of all variables for this initial basis, using the cost coefficients of the original problem.
- 3. Apply the simplex method to the original problem.

6.1 Possible outcomes

SLIDE 23

- 1. Infeasible: Detected at Phase I.
- 2. \boldsymbol{A} has linearly dependent rows: Detected at Phase I, eliminate redundant rows.
- 3. Unbounded (cost= $-\infty$): detected at Phase II.
- 4. Optimal solution: Terminate at Phase II in optimality check.

7 The big-M method

SLIDE 24

min
$$\sum_{j=1}^{n} c_j x_j + M \sum_{i=1}^{m} y_i$$
s.t.
$$Ax + y = b$$

$$x, y \ge 0$$

8 The Column Geometry

SLIDE 25

$$\begin{array}{ll}
\min & c'x \\
\text{s.t.} & Ax = b \\
e'x = 1 \\
x \ge 0
\end{array}$$

$$x_1 \begin{bmatrix} \mathbf{A}_1 \\ c_1 \end{bmatrix} + x_2 \begin{bmatrix} \mathbf{A}_2 \\ c_2 \end{bmatrix} + \dots + x_n \begin{bmatrix} \mathbf{A}_n \\ c_n \end{bmatrix} = \begin{bmatrix} \mathbf{b} \\ z \end{bmatrix}$$

SLIDE 26

SLIDE 27

9 Computational efficiency

SLIDE 28

Exceptional practical behavior: linear in n Worst case

$$\begin{array}{ll} \max & x_n \\ \text{s.t.} & \epsilon \leq x_1 \leq 1 \\ & \epsilon x_{i-1} \leq x_i \leq 1 - \epsilon x_{i-1}, \qquad i = 2, \dots, n \end{array}$$

SLIDE 29

SLIDE 30

Theorem

- The feasible set has 2^n vertices
- The vertices can be ordered so that each one is adjacent to and has lower cost than the previous one.
- There exists a pivoting rule under which the simplex method requires $2^n 1$ changes of basis before it terminates.

MIT OpenCourseWare http://ocw.mit.edu

15.093 J / 6.255 J Optimization Methods Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.