Planche TD 0

Ivan Lejeune*

29 janvier 2024

Exercice. Soit X un ensemble et δ la distance discrète sur cet ensemble.

- 1. Vérifier que δ est une distance sur X.
- 2. Déterminer les boules ouvertes et fermées de (X, δ) . Puis déterminer la topologie \mathcal{T}_{δ} associée à δ .

Solution. Soient $x, y, z \in X$

1. On rappelle

$$\delta(x,y) = \begin{cases} 0 & \text{si } x = y \\ 1 & \text{si } x \neq y \end{cases}$$

- (i) $\delta(x,y) \ge 0$ par définition
- (ii) $\delta(x,y) = 0 \iff x = y \text{ par definition}$
- (iii) Si $x \neq y$ alors $y \neq x$ donc $\delta(x, y) = \delta(y, x)$ par définition
- (iv) Si $\delta(x,y) + \delta(y,z) = 0$ alors x = y = z et $\delta(x,y) + \delta(y,z) \ge \delta(x,z)$. Sinon $\delta(x,y) + \delta(y,z) \ge 1 \ge \delta(x,z)$.

 δ vérifie les quatre propriétés donc c'est une distance sur X.

2. Pour $\varepsilon = 0$ on a

$$B(x,\varepsilon[=\varnothing])$$

$$B(x,\varepsilon]=\{x\}$$

Pour $\varepsilon \in]0,1[$ on a

$$B(x,\varepsilon[= \{x\}$$

$$B(x,\varepsilon] = \{x\}$$

Pour $\varepsilon \geq 1$ on a

$$B(x,\varepsilon) = X$$

$$B(x,\varepsilon] = X$$

La topologie \mathcal{T}_{δ} associée à δ est engendrée par l'union de l'ensemble des boules ouvertes de X. Comme on vient de le voir, il existe une boule ouverte associée à chaque élément $x \in X$. Ainsi on a

$$\mathcal{T}_{\delta} = \mathscr{P}(X)$$

Exercice. Soit E un espace vectoriel et \mathcal{N} une norme sur E, montrer que $d(x,y) = \mathcal{N}(y-x)$ est une distance sur E.

Solution. Soient $x, y \in E$

- (i) $d(x,y) = \mathcal{N}(y-x) \ge 0$ par définition d'une norme.
- (ii) $d(x,y) = 0 \iff \mathcal{N}(y-x) = 0 \iff x = y$ par définition d'une norme.
- (iii) $d(x,y) = \mathcal{N}(y-x) = |-1|\mathcal{N}(x-y) = d(y,x)$

^{*}Cours inspiré de M. Charlier et M. Akrout

(iv) Soit $z \in X$, on a

$$d(x,z) = \mathcal{N}(z-x)$$

$$= \mathcal{N}(z-x+y-y)$$

$$= \mathcal{N}((y-x)+(z-y))$$

$$\leq \mathcal{N}(y-x)+\mathcal{N}(z-y)$$

$$\leq d(x,y)+d(y,z)$$

 δ vérifie les quatre propriétés donc c'est une distance sur X.

Exercice. On considère les normes suivantes :

$$\mathcal{N}_1(x_1, \dots, x_n) = \sum_{i=1}^n |x_i|$$
$$\mathcal{N}_{\infty}(x_1, \dots, x_n) = \max_{i \in [1, n]} (|x_i|)$$

Montrer qu'elles sont des normes sur \mathbb{R}^n et dessiner leurs boules unités lorsque n = 2

Solution. Pour \mathcal{N}_1 on a

(i) On notera $x := (x_1, \dots, x_n)$ et $I = \{1, \dots, n\}$. On a alors

$$\mathcal{N}_1(x) = 0 \Longrightarrow \sum_{i=1}^n |x_i| = 0$$
 $\Longrightarrow \forall i \in I, x_i = 0$

Dans l'autre sens on a aussi

$$\forall i \in I, x_i = 0 \Longrightarrow \sum_{i=1}^{n} |x_i| = 0$$

$$\Longrightarrow \mathcal{N}_1(x) = 0$$

(ii) On considère $\lambda x := (\lambda x_1, \dots, \lambda x_n)$ avec $\lambda > 0$. On a alors

$$\mathcal{N}_{1}(\lambda x) = \sum_{i=1}^{n} |\lambda x_{i}|$$

$$= \sum_{i=1}^{n} |\lambda| |x_{i}|$$

$$= |\lambda| \sum_{i=1}^{n} |x_{i}|$$

$$= |\lambda| \mathcal{N}_{1}(x)$$

(iii) On considère $y := (y_1, \dots, y_n)$. On a alors

$$\mathcal{N}_1(x+y) = \sum_{i=1}^n |x_i + y_i|$$

$$\leq \sum_{i=1}^n |x_i| + |y_i|$$

$$\leq \mathcal{N}_1(x) + \mathcal{N}_1(y)$$

Ainsi \mathcal{N}_1 est bien une norme. Pour \mathcal{N}_{∞} on a (i) On notera $x := (x_1, \dots, x_n)$ et $I = \{1, \dots, n\}$. On a alors

$$\mathcal{N}_{\infty}(x) = 0 \Longrightarrow \max(|x_i|) = 0$$

 $\Longrightarrow \forall i \in I, x_i = 0$

Dans l'autre sens on a aussi

$$\forall i \in I, x_i = 0 \Longrightarrow \max(|x_i|) = 0$$

 $\Longrightarrow \mathcal{N}_{\infty}(x) = 0$

(ii) On considère $\lambda x := (\lambda x_1, \dots, \lambda x_n)$ avec $\lambda > 0$. On a alors

$$\mathcal{N}_{\infty}(\lambda x) = \max(|\lambda x_i|)$$
$$= |\lambda| \max(|x_i|)$$
$$= |\lambda| \mathcal{N}_{\infty}(x)$$

(iii) On considère $y := (y_1, \dots, y_n)$. On a alors

$$\mathcal{N}_{\infty}(x+y) = \max(|x_i + y_i|)$$

$$\leq \max(|x_i| + |y_i|)$$

$$\leq \max(|x_i|) + \max(|y_i|)$$

$$\leq \mathcal{N}_{\infty}(x) + \mathcal{N}_{\infty}(y)$$

Ainsi \mathcal{N}_{∞} est bien une norme. Les boules unités associées sont :

Exercice. Soit (X, d) un espace métrique et Dubai = D un point de X. On considère

$$d_{FE}(x,y) \coloneqq \begin{cases} 0 & \text{si } x = y \\ d(x,D) + d(y,D) & \text{sinon} \end{cases}$$

- 1. Montrer que d_{FE} est une distance sur X
- 2. On suppose que $(X, d) = (\mathbb{R}^2, \text{ euclidien})$ et D = 0. Pour $x \in X$, dessiner les boules ouvertes centrées en x.

3

3. Montrer que pour $x \neq D$, le singleton $\{x\}$ est ouvert.

Solution.

- 1. Il faut vérifier les 4 conditions d'une distance :
 - (i) $d_{FE}(x,y) \ge 0 \text{ car } d(x,y) \ge 0.$

- (ii) On a $x = y \Longrightarrow d_{FE}(x,y) = 0$ par définition. Si $d_{FE}(x,y) = 0$ alors on a x = y ou d(x,D) + d(y,D) = 0. Comme une distance est positive, cela implique d(x,D) = d(y,D) = 0, soit que x = y
- (iii) Si x = y, on a $d_{FE}(x, y) = d_{FE}(y, x)$. Dans le cas contraire on a

$$d_{FE}(x,y) = d_{FE}(x,D) + d_{FE}(y,D)$$
$$= d_{FE}(y,D) + d_{FE}(x,D)$$
$$= d_{FE}(y,x)$$

(iv) Soit $z \in X$. Si x = z, cela est évident. Dans le cas contraire on a

$$d(x,z) = \mathcal{N}(z-x)$$

$$= \mathcal{N}(z-x+y-y)$$

$$= \mathcal{N}((y-x)+(z-y))$$

$$\leq \mathcal{N}(y-x)+\mathcal{N}(z-y)$$

$$\leq d(x,y)+d(y,z)$$

2. On fixe x = (0, 1.5) et on fait varier $\varepsilon \in \{1, 2, 4\}$. Pour $\varepsilon = 1$ on a $B(x, \varepsilon[= \{x\}$

3. Comme on vient de le voir, pour $x \neq D$ on peut choisir $0 \leq \varepsilon < d(x, D)$ et on a alors $B(x, \varepsilon[=\{x\} \subset \{x\}. \text{ Soit, que } \{x\} \text{ est ouvert.})$