Multiple Objectives for Residential PV

Set up.

One only needs to execute the following line once, in order to make sure recent enough packages are installed.

```
In [1]: #!pip install 'numpy>=1.17.2' 'pandas>=0.25.1'
```

Import packages.

```
In [2]:
        import os
        import sys
        sys.path.insert(0, os.path.abspath("../src"))
In [3]: import numpy
                                  as np
        import matplotlib.pyplot as pl
        import pandas
        import re
                                  as re
        import scipy.stats
                                 as st
        import seaborn
                                  as sb
        # The `tyche` package is located at <https://github.com/NREL/portfolio/t
        ree/master/production-function/framework/src/tyche/>.
        import tyche
                                  as ty
        from copy import deepcopy
```

Load data.

The data are stored in a set of tab-separated value files in a folder.

```
In [4]: designs = ty.Designs("../data/residential_pv_multiobjective")
In [5]: investments = ty.Investments("../data/residential_pv_multiobjective")
```

Compile the production and metric functions for each technology in the dataset.

```
In [6]: designs.compile()
```

Examine the data.

The functions table specifies where the Python code for each technology resides.

In [7]:	designs.f	unctio	ns					
Out[7]:		Style	Module	Capital	Fixed	Production	Metrics	Notes
	Technology							
	Residential PV	numpy	residential_pv_multiobjective	capital_cost	fixed_cost	production	metrics	

Right now, only the style <code>numpy</code> is supported.

The indices table defines the subscripts for variables.

In [8]: designs.indices
Out[8]:

			Offset	Description	Notes
Technology	Туре	Index			
		BoS	2	balance of system	
	Capital	Inverter	1	system inverters	
		Module	0	system module	
	Fixed	System 0		whole system	
Residential PV	Input	NaN	0	no inputs	
		GHG	2	reduction in GHGs	
	Metric	LCOE	0	reduction in levelized cost of energy	
		Labor	1	increase in spending on wages	
	Output	Electricity	0	electricity generated	

The designs table contains the cost, input, efficiency, and price data for a scenario.

In [9]: designs.designs

Out[9]:

				Value	Units	Notes
Technology	Scenario	Variable	Index			
		Input	NaN	0	1	no inputs
		Input efficiency	NaN	1	1	no inputs
	2015 Actual	Input price	NaN	0	1	no inputs
		Lifetime	BoS	1	system- lifetime	per-lifetime computations
		Liletime	Inverter	1	system- lifetime	per-lifetime computations
Residential PV						
PV		Lifetime	Inverter	1	system- lifetime	per-lifetime computations
		Liletime	Module	1	system- lifetime	per-lifetime computations
	Module Slow Progress	Output efficiency	Electricity	1	W/W	see parameter table for individual efficiencies
		Output price	Electricity	0	\$/kWh	not tracking electricity price
		Scale	NaN	1	system/system	no scaling

90 rows × 3 columns

The parameters table contains additional techno-economic parameters for each technology.

In [10]: designs.parameters

Out[10]:

			Offset	Value	Units	Notes
Technology	Scenario	Parameter				
		Customer Acquisition	19	st.triang(0.5, loc=2000, scale=0.2)	\$/system	BCA
		DC-to-AC Ratio	15	st.triang(0.5, loc=1.4, scale=0.00014)	1	IDC
	2015 Actual	Direct Labor	17	st.triang(0.5, loc=2000, scale=0.2)	\$/system	BLR
		Discount Rate	0	0.07	1/year	DR
		Hardware Capital	16	st.triang(0.5, loc=80, scale=0.008)	\$/m^2	BCC
Residential PV						
		Module Lifetime	4	st.triang(0.5, loc=26, scale=1)	yr	MLT
		Module O&M Fixed	7	st.triang(0.5, loc=19, scale=0.5)	\$/kWyr	MOM
	Module Slow Progress	Module Soiling Loss	10	st.triang(0.5, loc=0.05, scale=10E-06)	1	MSL
		Permitting	18	st.triang(0.5, loc=600, scale=0.06)	\$/system	BPR
		System Size	2	36	m^2	SSZ

210 rows × 4 columns

The results table specifies the units of measure for results of computations.

In [11]: designs.results

Units Notes

Out[11]:

Technology	Variable	Index	
	Cost	Cost	\$/system
		GHG	ΔgCO2e/system
Residential PV	Metric	LCOE	Δ\$/kWh
		Labor	Δ\$/system
	Output	Electricity	kWh

The tranches table specifies multually exclusive possibilities for investments: only one Tranch may be selected for each Category.

```
In [12]: investments.tranches
Out[12]:
```

Amount Notes

Category	Tranche	Scenario	
	BoS High R&D	Bos Fast Progress	900000.0
BoS R&D	BoS Low R&D	BoS Slow Progress	300000.0
	BoS Medium R&D	Bos Moderate Progress	600000.0
	Inverter High R&D	Inverter Fast Progress	3000000.0
Inverter R&D	Inverter Low R&D	Inverter Slow Progress	1000000.0
	Inverter Medium R&D	Inverter Moderate Progress	2000000.0
	Module High R&D	Module Fast Progress	4500000.0
Module R&D	Module Low R&D	Module Slow Progress	1500000.0
	Module Medium R&D	Module Moderate Progress	3000000.0

The investments table bundles a consistent set of tranches (one per category) into an overall investment.

```
In [13]: investments.investments
Out[13]:
```

Notes

Investment	Category	Tranche	
	BoS R&D	BoS High R&D	
High R&D	Inverter R&D	Inverter High R&D	
	Module R&D	Module High R&D	
	BoS R&D	BoS Low R&D	
Low R&D	Inverter R&D	Inverter Low R&D	
	Module R&D	Module Low R&D	
	BoS R&D	BoS Medium R&D	
Medium R&D	Inverter R&D	Inverter Medium R&D	
	Module R&D	Module Medium R&D	

Evaluate the scenarios in the dataset.

In [14]: scenario_results = designs.evaluate_scenarios(sample_count=50)

In [15]: scenario_results.xs(1, level="Sample", drop_level=False)

Units	Value					
		Index	Variable	Sample	Scenario	Technology
\$/system	19539.227944	Cost	Cost			Residential
ΔgCO2e/system	-0.004906	GHG				PV
Δ\$/kWh	-0.000009	LCOE	Metric	1	2015 Actual	
Δ\$/system	-0.009447	Labor				
kWh	184100.029294	Electricity	Output			
\$/system	17560.275391	Cost	Cost			
ΔgCO2e/system	-0.002930	GHG				
Δ\$/kWh	0.010743	LCOE	Metric	1	BoS Fast Progress	
Δ\$/system	-484.964445	Labor				
kWh	184104.428731	Electricity	Output			
\$/system	17930.790363	Cost	Cost			
ΔgCO2e/system	-0.008140	GHG				
Δ\$/kWh	0.008724	LCOE	Metric	1	BoS Moderate Progress	
Δ\$/system	-355.032086	Labor				
kWh	184092.828163	Electricity	Output			
\$/system	19001.261275	Cost	Cost			
ΔgCO2e/system	0.000722	GHG				
Δ\$/kWh	0.002920	LCOE	Metric	1	BoS Slow Progress	
Δ\$/system	-170.988190	Labor				
kWh	184112.562550	Electricity	Output			
\$/system	17927.843781	Cost	Cost			
ΔgCO2e/system	2.073089	GHG				
Δ\$/kWh	0.011132	LCOE	Metric	1	Inverter Fast Progress	
Δ\$/system	0.014390	Labor				
kWh	188727.498356	Electricity	Output			
\$/system	18549.854277	Cost	Cost			
ΔgCO2e/system	2.454672	GHG				
Δ\$/kWh	0.008276	LCOE	Metric	1	Inverter Moderate Progress	
Δ\$/system	-0.016391	Labor			i iogress	
kWh	189577.242742	Electricity	Output			
\$/system	19283.451011	Cost	Cost	1	Inverter Slow Progress	
ΔgCO2e/system	2.402211	GHG				
Δ\$/kWh	0.004344	LCOE	Metric			
Δ\$/system	0.028991	Labor				

					Value	Units
Technology	Scenario	Sample	Variable	Index		
			Output	Electricity	189460.418312	kWh
			Cost	Cost	18836.689674	\$/system
				GHG	50.035249	ΔgCO2e/system
	Module Fast Progress	1	Metric	LCOE	0.042387	Δ\$/kWh
				Labor	-0.024688	Δ\$/system
			Output	Electricity	295534.037838	kWh
			Cost	Cost	18959.524231	\$/system
				GHG	43.536179	ΔgCO2e/system
	Module Moderate Progress	1	Metric	LCOE	0.038668	Δ\$/kWh
	· ·			Labor	0.054460	Δ\$/system
			Output	Electricity	281061.312296	kWh
			Cost	Cost	19568.582984	\$/system
				GHG	13.834233	ΔgCO2e/system
	Module Slow Progress	1	Metric	LCOE	0.015074	Δ\$/kWh
				Labor	-0.024580	Δ\$/system
			Output	Electricity	214918.292681	kWh

Save results.

```
In [16]: scenario_results.to_csv("output/residential_pv_multiobjective/example-sc
enario.csv")
```

Plot GHG metric.

```
In [17]: | g = sb.boxplot(
              x="Scenario",
              y="Value",
              data=scenario_results.xs(
                  ["Metric", "GHG"],
                  level=["Variable", "Index"]
              ).reset_index()[["Scenario", "Value"]],
              order=[
                  "2015 Actual"
                  "Module Slow Progress"
                  "Module Moderate Progress"
                  "Module Fast Progress"
                  "Inverter Slow Progress"
                  "Inverter Moderate Progress"
                  "Inverter Fast Progress"
                  "BoS Slow Progress"
                  "BoS Moderate Progress"
                  "BoS Fast Progress"
              ]
         g.set(ylabel="GHG Reduction [gCO2e / system]")
         g.set_xticklabels(g.get_xticklabels(), rotation=30);
```


Plot LCOE metric.

```
In [18]: g = sb.boxplot(
             x="Scenario",
             y="Value",
             data=scenario_results.xs(
                  ["Metric", "LCOE"],
                  level=["Variable", "Index"]
              ).reset_index()[["Scenario", "Value"]],
             order=[
                  "2015 Actual"
                  "Module Slow Progress"
                  "Module Moderate Progress"
                  "Module Fast Progress"
                  "Inverter Slow Progress"
                  "Inverter Moderate Progress"
                  "Inverter Fast Progress"
                  "BoS Slow Progress"
                  "BoS Moderate Progress"
                  "BoS Fast Progress"
              ]
         )
         g.set(ylabel="LCOE Reduction [USD / kWh]")
         g.set_xticklabels(g.get_xticklabels(), rotation=30);
```


Plot labor metric.

```
In [19]: | g = sb.boxplot(
              x="Scenario",
              y="Value",
              data=scenario_results.xs(
                  ["Metric", "Labor"],
                  level=["Variable", "Index"]
              ).reset_index()[["Scenario", "Value"]],
              order=[
                  "2015 Actual"
                  "Module Slow Progress"
                  "Module Moderate Progress"
                  "Module Fast Progress"
                  "Inverter Slow Progress"
                  "Inverter Moderate Progress"
                  "Inverter Fast Progress"
                  "BoS Slow Progress"
                  "BoS Moderate Progress"
                  "BoS Fast Progress"
              ]
         g.set(ylabel="Labor Increase [USD / system]")
         g.set_xticklabels(g.get_xticklabels(), rotation=15);
```


Evaluate the investments in the dataset.

```
In [20]: investment_results = investments.evaluate_investments(designs, sample_co
    unt=50)
```

Costs of investments.

In [21]: investment_results.amounts

Out[21]:

Amount

Investment	
High R&D	8400000.0
Low R&D	2800000.0
Medium R&D	5600000.0

Benefits of investments.

In [22]: investment_results.metrics.xs(1, level="Sample", drop_level=False)

Value

Unit

Out[22]:

Investment	Category	Tranche	Scenario	Sample	Technology	Index																		
		BoS	BoS			GHG	-0.003736	ΔgCO2e/syste																
Low R&D	BoS R&D	Low	Slow	1	Residential PV	LCOE	0.002792	Δ\$/kW																
		R&D	Progress			Labor	-154.121648	Δ\$/syste																
		Inverter	Inverter			GHG	2.222498	ΔgCO2e/syste																
High R&D	Inverter R&D	High	Fast	1	Residential PV	LCOE	0.011431	Δ\$/kW																
		R&D	Progress			Labor	-0.036005	Δ\$/syste																
		Inverter	Inverter			GHG	2.529230	ΔgCO2e/syste																
Medium R&D	Inverter R&D	Medium	Moderate	1	Residential PV	LCOE	0.007250	Δ\$/kW																
		R&D	Progress			Labor	0.059053	Δ\$/syste																
		Inverter	Inverter	1		GHG	2.311315	ΔgCO2e/syste																
Low R&D	Inverter R&D	Low R&D	Slow		Residential PV	LCOE	0.004397	Δ\$/kW																
		Παυ	Progress			Labor	-0.015249	Δ\$/syste																
		Module	Module			GHG	51.608236	ΔgCO2e/syste																
High R&D	Module R&D	High R&D	Fast	1	Residential PV	LCOE	0.043701	Δ\$/kW																
		Παυ	Progress			Labor	0.079159	Δ\$/syste																
		Module	Module			GHG	38.543220	ΔgCO2e/syste																
Medium R&D	Module R&D	Medium R&D	Moderate Progress	1	Residential PV	LCOE	0.035966	Δ\$/kW																
		Παυ	Progress			Labor	-0.030530	Δ\$/syste																
		Module	Module			GHG	16.062350	ΔgCO2e/syste																
Low R&D	Module R&D	Low R&D	Slow	Slow			1	1	1	1	1	1	1	1	1	1	1	1	1	1	Residential PV	LCOE	0.016943	Δ\$/kW
		Παυ	i iogiess			Labor	-0.022079	Δ\$/syste																

```
In [23]: investment_results.summary.xs(1, level="Sample", drop_level=False)
Out[23]:
```

Units

Value

Investment	Sample	Index		
		GHG	18.369929	ΔgCO2e/system
Low R&D	1.0	LCOE	0.024131	Δ\$/kWh
		Labor	-154.158977	Δ\$/system
		GHG	53.830735	ΔgCO2e/system
High R&D	1.0	LCOE	0.055133	Δ\$/kWh
		Labor	0.043155	Δ\$/system
		GHG	41.072450	ΔgCO2e/system
Medium R&D	1.0	LCOE	0.043216	Δ\$/kWh
		Labor	0.028523	Δ\$/system

Save results.

Plot GHG metric.

```
In [26]: g = sb.boxplot(
    x="Investment",
    y="Value",
    data=investment_results.metrics.xs(
        "GHG",
        level="Index"
    ).reset_index()[["Investment", "Value"]],
    order=[
        "Low R&D" ,
        "Medium R&D",
        "High R&D" ,
        ]
    )
    g.set(ylabel="GHG Reduction [gCO2e / system]")
    g.set_xticklabels(g.get_xticklabels(), rotation=15);
```


Plot LCOE metric.

```
In [27]: g = sb.boxplot(
    x="Investment",
    y="Value",
    data=investment_results.metrics.xs(
        "LCOE",
        level="Index"
    ).reset_index()[["Investment", "Value"]],
    order=[
        "Low R&D" ,
        "Medium R&D",
        "High R&D" ,
        ]
    )
    g.set(ylabel="LCOE Reduction [USD / kWh]")
    g.set_xticklabels(g.get_xticklabels(), rotation=15);
```


Plot labor metric.

```
In [28]: g = sb.boxplot(
    x="Investment",
    y="Value",
    data=investment_results.metrics.xs(
        "Labor",
        level="Index"
    ).reset_index()[["Investment", "Value"]],
    order=[
        "Low R&D"
        "Medium R&D",
        "High R&D"
        ]
    )
    g.set(ylabel="Labor Increase [USD / system]")
    g.set_xticklabels(g.get_xticklabels(), rotation=15);
```


Multi-objective decision analysis.

THIS IS A WORK IN PROGRESS.

Compute costs and metrics for tranches.

Tranches are atomic units for building investment portfolios. Evaluate all of the tranches, so we can assemble them into investments (portfolios).

```
In [29]: tranche_results = investments.evaluate_tranches(designs, sample_count=50
0)
```

Display the cost of each tranche.

In [30]: tranche_results.amounts

Amount

Out[30]:

Category	Tranche	
	BoS High R&D	900000.0
BoS R&D	BoS Low R&D	300000.0
	BoS Medium R&D	600000.0
Inverter R&D	Inverter High R&D	3000000.0
	Inverter Low R&D	1000000.0
	Inverter Medium R&D	2000000.0
Module R&D	Module High R&D	4500000.0
	Module Low R&D	1500000.0
	Module Medium R&D	3000000.0

Display the metrics for each tranche.

In [31]: tranche_results.summary

Out[31]:

				Value	Units
Category	Tranche	Sample	Index		
			GHG	-0.008180	ΔgCO2e/system
			1.0	LCOE	0.002697
BoS R&D	BoS Low R&D		Labor	-141.625878	Δ\$/system
	2.0	2.0	GHG	0.001385	ΔgCO2e/system
		LCOE	0.002853	Δ\$/kWh	
		499.0		0.015400	Δ\$/kWh
Module R&D Module		+33.0	Labor	-0.013703	Δ\$/system
	Module Low R&D		GHG	15.055054	ΔgCO2e/system
		500.0	LCOE	0.016352	Δ\$/kWh
			Labor	-0.039216	Δ\$/system

10500 rows × 2 columns

Save the results.

Here is an incomplete work-in-progress on plotting metrics for tranches. The axis labels etc. need fixing.

/nix/store/f9jr3lh0ix952h7lr0xiwq9gkl1yckk1-python3-3.6.9-env/lib/pytho n3.6/site-packages/seaborn/axisgrid.py:715: UserWarning: Using the boxp lot function without specifying `order` is likely to produce an incorre ct plot.

warnings.warn(warning)

Out[33]: <seaborn.axisgrid.FacetGrid at 0x7fca48641be0>

Compute all combinations of tranches.

Set up investment scenarios.

We're just building all legal combinations of tranches into investment portfolios.

```
In [34]: z = None
         for imod in np.append(investments.tranches.xs("Module R&D").reset index(
         "Scenario").index.unique().values, ""):
             for iinv in np.append(investments.tranches.xs("Inverter R&D").reset_
         index("Scenario").index.unique().values, ""):
                 for ibos in np.append(investments.tranches.xs("BoS R&D").reset i
         ndex("Scenario").index.unique().values, ""):
                     w = None
                     name = imod
                     if iinv != "":
                         if name != "":
                             name = name + " + "
                         name = name + iinv
                     if ibos != "":
                         if name != "":
                             name = name + " + "
                         name = name + ibos
                     if imod != "":
                         w = pd.DataFrame({
                             "Investment" : [name
                             "Category" : ["Module R&D"],
                             "Tranche"
                                         : [imod
                             "Notes"
                                         : [""
                                                          ],
                         }).append(w)
                     if iinv != "":
                         w = pd.DataFrame({
                             "Investment" : [name
                             "Category" : ["Inverter R&D"],
                             "Tranche" : [iinv
                                                            ],
                                          : [""
                                                            ],
                         }).append(w)
                     if ibos != "":
                         w = pd.DataFrame({
                             "Investment" : [name
                             "Category" : ["BoS R&D"],
                             "Tranche"
                                          : [ibos
                                         : [""
                             "Notes"
                                                       ],
                         }).append(w)
                     if w is not None:
                         z = w.append(z)
         z.set_index(["Investment", "Category", "Tranche"], inplace=True)
         investments.investments = z
```

N	_	
IN	O	Le:

Tranche	Category	Investment
BoS Medium R&D	BoS R&D	BoS Medium R&D
BoS Low R&D	BoS R&D	BoS Low R&D
BoS High R&D	BoS R&D	BoS High R&D
Inverter Medium R&D	Inverter R&D	Inverter Medium R&D
BoS Medium R&D	BoS R&D	Inverter Medium R&D + BoS Medium R&D
Inverter High R&D	Inverter R&D	Module High R&D + Inverter High R&D + BoS Low R&D
Module High R&D	Module R&D	
BoS High R&D	BoS R&D	
Inverter High R&D	Inverter R&D	Module High R&D + Inverter High R&D + BoS High R&D
Module High R&D	Module R&D	

144 rows × 1 columns

Evaluate the investments.

```
In [35]: investment_results = investments.evaluate_investments(designs, sample_co
unt=50)
In [36]: investment_results.amounts
```

Out[36]:

Amount

Investment	
BoS High R&D	900000.0
Inverter Medium R&D + BoS High R&D	2900000.0
Inverter Low R&D + BoS High R&D	1900000.0
Inverter High R&D + BoS High R&D	3900000.0
Module Medium R&D + BoS High R&D	3900000.0
Module Low R&D + Inverter Medium R&D	3500000.0
Module High R&D + Inverter Medium R&D	6500000.0
Module High R&D	4500000.0
Module Low R&D	1500000.0
Module Medium R&D	3000000.0

63 rows × 1 columns

```
In [37]: investment_results.summary.xs(1, level="Sample", drop_level=False)
```

Out[37]:

			Value	Units
Investment	Sample	Index		
		GHG	0.000405	ΔgCO2e/system
BoS Low R&D	1.0	LCOE	0.002630	Δ\$/kWh
		Labor	-139.177759	Δ\$/system
Inverter Medium R&D + BoS Low R&D	1.0	GHG	1.918760	ΔgCO2e/system
Inverter Median Flad + DOS LOW Flad	1.0	LCOE	0.009344	Δ\$/kWh
Module Low R&D + BoS Medium R&D	1.0	LCOE	0.015399	Δ\$/kWh
Module Low Had + Boo Mediam Had		Labor	0.023847	Δ\$/system
		GHG	14.708698	ΔgCO2e/system
Module Low R&D + BoS High R&D	1.0	LCOE	0.015399	Δ\$/kWh
		Labor	0.023847	Δ\$/system

183 rows × 2 columns

Plot the results.

Cost of investments.

LOCE benefits.

GHG benefits.

Labor benefits.

```
In [43]: g = sb.boxplot(data=w.xs("Labor"), y="Investment", x="Value", orient="h"
    , order=ww)
    g.set(xlabel="Labor Increase [$/system]");
```

