Lecture Note: Coordinates and Differentials on a Plane Curve

1 Setup

Let $f \colon \mathbb{R} \to \mathbb{R}$ be a C^1 -function and define the embedded curve

$$C = \{(x, y) \in \mathbb{R}^2 \mid y = f(x)\}.$$

Fix $a \in \mathbb{R}$ and set

$$p = (a, f(a)) \in C.$$

2 Coordinate System on C

1. Define the global parametrization

$$\Phi \colon \mathbb{R} \longrightarrow C, \quad \Phi(t) = (t, f(t)).$$

2. Its inverse is

$$\Phi^{-1} \colon C \longrightarrow \mathbb{R}, \quad (x,y) \mapsto x.$$

3. Thus t is a coordinate on C, and every $p \in C$ is uniquely $p = \Phi(t)$.

3 Coordinate System on T_pC

1. Differentiate Φ at t = a:

$$d\Phi_a(1) = \frac{d}{dt}(t, f(t))\Big|_{t=a} = (1, f'(a)) =: \vec{v} \in T_pC.$$

2. By definition,

$$T_pC = \operatorname{span}\{(1, f'(a))\} \subset T_p\mathbb{R}^2.$$

3. Every $v \in T_pC$ writes $v = \tau(1, f'(a))$ for a unique $\tau \in \mathbb{R}$. Hence τ is a fiber coordinate on T_pC .

4 The Functions $x, y: C \to \mathbb{R}$

$$x = \pi_1|_C \colon C \to \mathbb{R}, \quad (x, y) \mapsto x,$$

 $y = \pi_2|_C \colon C \to \mathbb{R}, \quad (x, y) \mapsto y.$

Restricted to $\Phi(t)$, these give

$$x(\Phi(t)) = t, \quad y(\Phi(t)) = f(t).$$

5 The Differentials $dx, dy: T_pC \to \mathbb{R}$

1. In the ambient \mathbb{R}^2 , the differentials act by

$$dx(v_1, v_2) = v_1, \quad dy(v_1, v_2) = v_2.$$

2. On the generator $\vec{v} = (1, f'(a)) \in T_pC$,

$$dx(\vec{v}) = 1$$
, $dy(\vec{v}) = f'(a)$.

3. Hence dx, dy extract the x- and y-components of any vector in T_pC .

Abstract Graduate-Level Synthesis

Let M=C be the 1-dimensional submanifold of \mathbb{R}^2 defined by y=f(x). The chart $\Phi\colon\mathbb{R}\to M$ endows M with the coordinate t, and its differential $d\Phi$ trivializes the tangent bundle,

$$d\Phi \colon T\mathbb{R} \cong \mathbb{R} \longrightarrow TM, \quad \tau \mapsto \tau \Phi'(t).$$

Dually, the ambient projections restrict to

$$dx, dy: TM \longrightarrow \mathbb{R},$$

providing a coframe. Thus (t) on M and (dx, dy) on TM constitute local frames that distinguish base points from tangent vectors, a paradigm that generalizes to all smooth manifolds.