Construction & Deployment Logistics

Building Aegis Station in Stages

Overview

Aegis Station is a modular world—constructed ring by ring, piece by piece. It doesn't require full completion to begin operations. This approach enables early science, early habitation, and early revenue.

Assembly Plan

Stage 1: Earth Launch and Orbital Assembly

- Modules launched to low Earth orbit (LEO) via heavy-lift vehicles
- Dry components only—no water until lunar orbit
- Segmented ring sections, central hub trusses, and systems bays assembled robotically or by crew
- Rings constructed independently to reduce schedule risk

Stage 2: Tug Transfer to Lunar Orbit

- Completed ring modules are moved to lunar orbit via electric tugs or hybrid propulsion stages
- Non-rotating hub remains in microgravity throughout
- Each ring is spun up only after orbital installation

Stage 3: Shielding Operations

- Once in lunar orbit, shielding begins using lunar-sourced water
- Tankers deliver directly to shield reservoirs embedded in the outer hull
- Shielding is done **per ring**, enabling operation before full station fill

Phased Ring Activation

Each ring is a **self-contained system**:

- Independent pressurization and life support
- Local power and crew quarters

- Dedicated thermal and ECLSS subsystems
- Physical separation ensures fault tolerance and safety

This means:

- Ring A can be inhabited and operational before Ring B and C are completed
- Early ring can serve as a pilot program, testbed, or limited-function habitat
- Initial crew (science, construction, systems) supports both habitation and expansion

Shielding Timeline and Integration

- Each ring's shielding volume: ~552,000 m³
- Fill begins immediately upon orbital arrival
- 30-tanker fleet with 30-ton capacity each
- ~900 tons/day across all rings
- Full station fill time: ~5 years, but each ring fills in ~1.6 years

Rings don't need to be 100% shielded to begin operations—lower deck shielding begins first, extending protection upward.

Construction Cost Breakdown

Component Estimated Cost

Launch and dry mass to LEO ~\$300 billion

Tug transfers to lunar orbit ~\$10–30 billion

Lunar water sourcing and fill ~\$250 billion

Total (Phase 1–3) ~\$560 billion

Includes station dry mass (~120,000 tons), shielding mass (~1.65M tons), and all transfer/assembly stages.

Why This Works

- Spreading deployment reduces schedule and budget pressure
- Early activation of Ring A proves out systems and delivers value
- Risk containment: problems in one ring don't affect the others
- Modular shielding allows gradual buildup of protection and infrastructure

Operational Timeline (Illustrative)

Year	Milestone
1	Launches of dry ring modules begin
2	Assembly of Ring A in LEO complete
3	Ring A moved to lunar orbit
4	Ring A begins shielding, early crew
5	Ring B under assembly in LEO
6	Ring A partially shielded, operational
7–8	Ring B joins Ring A in lunar orbit
10	Ring C arrives; station 100% complete

This phased model is **flexible**, **redundant**, and **resilient**—all core to Aegis Station's design philosophy.