GUJARAT TECHNOLOGICAL UNIVERSITY

DI/DA - SEMESTER - 1 - EXAMINATION - Winter-2024

Subject Code: 4300001 Date: 03-01-2025

Subject Name: Mathematics

Time: 10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

1. Attempt all questions.

2. Make Suitable assumptions wherever necessary.

3. Figures to the right indicate full marks.

4. Use of simple calculators and non-programmable scientific calculators are permitted.

5. English version is authentic.

Q.1`		Fill in the blanks using appropriate choice from the given options	14
		(યોગ્ય વિકલ્પ પસંદ કરી ખાલી જગ્યા પુરો)	
	1.	if $f(x) = \frac{1}{x}$, then the value of $f(1)$ is	
		a. 0 b. 1 c1 d2	
	2.	$log_b a \times log_a b = \underline{\hspace{1cm}}.$ a.0 b. 1 c. ab d. ab	
		a.0 b. 1 c. <i>ab</i> d. <i>ab</i>	
	૨.	$log_b a \times log_a b = \underline{\qquad}$	
		$log_b a imes log_a b =$ ଧ.០ ୱ. 1 કે. ab S. ab	
	3.	If $\begin{vmatrix} x & 3 \\ -2 & 2 \end{vmatrix} = 2 \text{ than } x = \underline{\qquad}$. a. 2 b1 c2 d3	
		a. 2 b1 c2 d3	
	3.	જો $\begin{vmatrix} x & 3 \\ -2 & 2 \end{vmatrix} = 2$ તો $x = $ અ. 2 બ1 ક2 53	
		અ. 2	
	4.	Find the value: $\begin{vmatrix} 6 & 4 \\ 1 & 2 \end{vmatrix}$ a. 8 b8 c2 d. 16	
		a. 8 b8 c2 d. 16	

٧.	કિંમત શોધોઃ $\begin{vmatrix} 6 & 4 \\ 1 & 2 \end{vmatrix}$.	
	અ. 8	
5.	135° = Radian.	
	a. $\frac{\pi}{4}$ b. $\frac{3\pi}{4}$ c. $\frac{5\pi}{4}$ d. $\frac{5\pi}{6}$	
Ч.	$135^{\circ} = $ રેડિયન $\frac{\pi}{4}$ બ. $\frac{3\pi}{4}$ ક. $\frac{5\pi}{4}$ S. $\frac{5\pi}{6}$	
	$\frac{3}{4}$ બ. $\frac{3}{4}$ ક. $\frac{5}{4}$ S. $\frac{5}{6}$	
	. 1200	
6.	sin 120° =	
	a. $\frac{2}{\sqrt{3}}$ b. $\frac{\sqrt{3}}{2}$ c. $\frac{1}{2}$ d. $\sqrt{3}$	
€.	$\sin 120^{\circ} =$	
	$\sin 120^{\circ} =$ ଧ୍ୟ. $\frac{2}{\sqrt{3}}$	
_		
7.	$sin\left(\frac{\pi}{2} + \theta\right) = \underline{\qquad}.$ a. $sin \theta$ b. $-sin \theta$ c. $cos \theta$ d. $-cosec \theta$	
	a. $\sin \theta$ b. $-\sin \theta$ c. $\cos \theta$ d. $-\csc \theta$	
9.	$sin\left(\frac{\pi}{2}+\theta\right)=$	
	$\forall \theta$. $\sin \theta$ $\forall \theta$. $-\sin \theta$ θ $\sin \theta$	
0	If $\overline{z} = (1.1.1)$ and $\overline{b} = (2.2.2)$ then $\overline{z} \times \overline{b}$	
8.	If $\bar{a} = (1,1,1)$ and $\bar{b} = (2,2,2)$ than $\bar{a} \times \bar{b} = \underline{\hspace{1cm}}$. a. $(2,2,2)$ b. $(1,1,1)$ c. $(3,3,3)$ d. $(0,0,0)$	
	a. (2,2,2) b. (1,1,1) c. (3,3,3) d. (0,0,0)	
٥.	જો $\bar{a}=(1,1,1)$ અને $\bar{b}=(2,2,2)$ તો $\bar{a}\times\bar{b}=$	
	અ. (2,2,2)	
9.	$\bar{a} = 2\hat{\imath} - \hat{\jmath} + \hat{k}$ and $\bar{b} = \hat{\imath} + \hat{\jmath} + \hat{k}$ than $\bar{a} \cdot \bar{b} = \underline{\hspace{1cm}}$.	
	a. 2 b2 c. 1 d. 0	
<u> </u>	જો $\bar{a} = 2\hat{\imath} - \hat{\jmath} + \hat{k}$ અને $\bar{b} = \hat{\imath} + \hat{\jmath} + \hat{k}$ તો $\bar{a} \cdot \bar{b} = \underline{\hspace{1cm}}$. અ. 2 બ2 કે. 1 S. 0	
	અ. ૮ ભ૮ 5. 1 5. 0	
10	If lines $5x - py = 3$ and $2x + 3y = 4$ are parallel to each other than,	
	<i>p</i> =	

	a. $\frac{3}{2}$ b. $-\frac{3}{2}$ c. $-\frac{15}{2}$ d. $\frac{15}{2}$	
૧૦	જો સુરેખાઓ $5x - py = 3$ અને $2x + 3y = 4$ પરસ્પર સમાંતર હોય, તો $p =$	
	${}$ $\frac{3}{2}$ ${}$ $\frac{3}{2}$ ${}$ $\frac{15}{2}$ $\frac{15}{2}$ $\frac{15}{2}$	
11	The radius of the circle $x^2 + y^2 + 2x\cos\theta + 2y\sin\theta = 8$ is	
	a.1 b. $2\sqrt{3}$ c. $\sqrt{10}$ d. 3	
99	$x^2 + y^2 + 2x\cos\theta + 2y\sin\theta = 8$ વર્તુળની ત્રિજ્યા છે.	
	અ.1 બ. 2√3 ક. √10 S. 3	
12	$\lim_{x \to \infty} \frac{x^{n} - a^{n}}{x - a} = \underline{\qquad} n \in R$ $a.na^{n-1} b. \ (n-1)a^{n} c.(n-1)x^{n} d. \ nx^{n-1}$	
	a. na^{n-1} b. $(n-1)a^n$ c. $(n-1)x^n$ d. nx^{n-1}	
૧૨	$\lim_{x \to \infty} \frac{x^{n} - a^{n}}{x - a} = \underline{\qquad} . \ n \in R$ આ $. \ na^{n-1}$ ધ. $(n-1)a^{n}$ ક. $(n-1)x^{n}$ 5. nx^{n-1}	
	અ. na^{n-1}	
13	$\lim_{x \to 0} \frac{\sin x}{x} = \underline{\qquad}.$ a. 0 b. 1 c1 d. \infty	
	a. 0 b. 1 c1 d. ∞	
13	$\lim_{x\to 0}\frac{\sin x}{x}=\underline{\qquad}.$	
	$\lim_{x \to 0} \frac{\sin x}{x} = \underline{\qquad}.$ અ. 0 બ. 1 ક1	
14	Obtain the Limit of $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n$	
	a. 0 b. 1 c. e d. ∞	
૧૪	$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n $ નું લક્ષ મેળવો.	
	$n \to \infty$ (1 n) 당 다 다 다 2×10^{-10} (1 $\times 10^{-10}$) 나 1×10^{-10} (1 $\times 10^{-10}$) 1×10^{-10} (1 $\times 10^$	

Q.2	(A)	Attempt any two. (કોઈ પણ બે ના જવાબ આપો)	06
	1.	If $\begin{vmatrix} x-1 & 2 & 1 \\ x & 1 & x+1 \\ 1 & 1 & 0 \end{vmatrix} = 4$ than find x .	
	٩.	જો $\begin{vmatrix} x-1 & 2 & 1 \\ x & 1 & x+1 \\ 1 & 1 & 0 \end{vmatrix} = 4$ તો x શોધો.	
	2.	If $log\left(\frac{a+b}{2}\right) = \frac{1}{2}(log \ a + log \ b)$ than prove that $a = b$.	
	ર.	જો $\log\left(\frac{a+b}{2}\right) = \frac{1}{2}(\log a + \log b)$ સાબિત કરો કે $a = b$.	
	3.	Obtain the value of $tan 75^{\circ}$ or obtain the value of $tan \frac{5\pi}{12}$.	
	3.	$tan~75^{\circ}$ ની કિંમત શોધો. અથવા $tan~\frac{5\pi}{12}$ ની કિંમત શોધો.	
	(B)	Attempt any two. (કોઇ પણ બે ના જવાબ આપો)	08
	1.	If $\frac{x}{b-c} = \frac{y}{c-a} = \frac{z}{a-b}$ than prove that, (i) $xyz = 1$ (ii) $x^ay^bz^c = 1$	
	٩.	જો $\frac{x}{b-c} = \frac{y}{c-a} = \frac{z}{a-b}$ હોય, તો સાબિત કરો કે, (i) $xyz = 1$ (ii) $x^a y^b z^c = 1$	
	2.	If $f(x) = \frac{1-x}{1+x}$ than prove that, $f(f(x)) = x$.	
	ર.	જો $f(x) = \frac{1-x}{1+x}$ હોય, તો સાબિત કરો કે $f(f(x)) = x$.	
	3.	If $\begin{vmatrix} a & b & b \\ b & a & b \\ b & b & a \end{vmatrix} = 0$ than prove that, $a = b$ or $a = -b$.	
	3.	જો $\begin{vmatrix} a & b & b \\ b & a & b \\ b & b & a \end{vmatrix} = 0$ હોય, તો સાબિત કરો કે $a = b$ અને $a = -b$.	

Q.3	(A)	Attempt any two. (કોઈ પણ બે ના જવાબ આપો)	06
	1.	Prove that $\frac{\sin A + \sin 2A + \sin 3A}{\cos A + \cos 2A + \cos 3A} = \tan 2A$	
		$\frac{1}{2}$ $\frac{1}$	
	૧.	સાબિત કરો કે: $\frac{\sin A + \sin 2A + \sin 3A}{\cos A + \cos 2A + \cos 3A} = \tan 2A$	
	2.	Prove that $\frac{1+\sin\theta+\cos\theta}{1+\sin\theta-\cos\theta} = \cot\frac{\theta}{2}$	
	2.	Prove that $\frac{1}{1+\sin\theta-\cos\theta} = \cot\frac{\pi}{2}$	
	ર.	સાબિત કરો કે: $\frac{1+\sin\theta+\cos\theta}{1+\sin\theta-\cos\theta}=\cot\frac{\theta}{2}$	
	3.	Find the center and radius of the circle $2x^2 + 2y^2 - 8x + 4y + 2 = 0$.	
	3.	વર્તુળ $2x^2 + 2y^2 - 8x + 4y + 2 = 0$ નું કેન્દ્ર અને ત્રિજ્યા શોધો.	
	(B)	Attempt any two. (કોઈ પણ બે ના જવાબ આપો)	08
	1.	Plot the graph of $2\sin \frac{x}{3}$, $0 < x \le 3\pi$.	
	٩.	$y=2sin \frac{x}{3}$, $0 < x \le 3\pi$ નો આવેખ દોરો.	
	2.	Prove that $tan^{-1}\frac{2}{3} + tan^{-1}\frac{10}{11} + tan^{-1}\frac{1}{4} = \frac{\pi}{2}$	
	ર.	સાબિત કરો કે: $tan^{-1}\frac{2}{3} + tan^{-1}\frac{10}{11} + tan^{-1}\frac{1}{4} = \frac{\pi}{2}$	
	3.	$\overline{a} = 2\hat{\imath} - \hat{\jmath}$ and $\overline{b} = \hat{\imath} + 3\hat{\jmath} - 2\hat{k}$ than obtain $ (\overline{a} + \overline{b}) \times (\overline{a} - \overline{b}) $.	
	3.	જો $\bar{a}=2\hat{\imath}-\hat{\jmath}$ અને $\bar{b}=\hat{\imath}+3\hat{\jmath}-2\hat{k}$ તો $ (\bar{a}+\bar{b})\times(\bar{a}-\bar{b}) $. મેળવો.	
Q.4	(A)	Attempt any two. (કોઇ પણ બે ના જવાબ આપો)	06
	1.	Find $(10\hat{i} + 2\hat{j} + 3\hat{k})$. $[(\hat{i} - 2\hat{j} + 2\hat{k}) \times (3\hat{i} - 2\hat{j} - 2\hat{k})]$.	
	٩.	$(10\hat{\imath} + 2\hat{\jmath} + 3\hat{k}).[(\hat{\imath} - 2\hat{\jmath} + 2\hat{k}) \times (3\hat{\imath} - 2\hat{\jmath} - 2\hat{k})]$ શોધો.	

	2.	A particle under the constant forces $(1,2,3)$ and $(3,1,1)$ is displaced from point $(0,1,-2)$ to point $(5,1,2)$. Calculate the total work done by the particle.	
	ર.	એક કણ ઉપર અયળ બળો (1, 2, 3) અને (3, 1, 1) કાર્ય કરે છે. આ બળોની અસર હેઠળ તે કણ બિંદુ (0, 1, -2) થી ખસીને (5, 1, 2) બીજા બિંદુ આગળ આવે છે. કુલ કાર્ય શોધો.	
	3.	5x + 6y + 3 = 0 and $x - 11y + 7 = 0$ are two intersecting lines find the angle between them.	
	3.	છેદક રેખાઓ $5x + 6y + 3 = 0$ અને $x - 11y + 7 = 0$ વચ્ચેનો લધુકોણ શોધો.	
	(B)	Attempt any two. (કોઇ પણ બે ના જવાબ આપો)	08
	1.	Find the unit vector perpendicular to $\bar{a} = (1, -1, 1)$ and $\bar{b} = (2, 3, -1)$.	
	٩.	$\bar{a}=(1,-1,1)$ અને $\bar{b}=(2,3,-1)$ ને લંબ આવેલો એકમ સિંદશ મેળવો.	
	2.	Prove that angle between vectors $3\hat{i} + \hat{j} + 2\hat{k}$ and $2\hat{i} - 2\hat{j} + 4\hat{k}$ is $\sin^{-1}\frac{2}{\sqrt{7}}$	
	ર.	સાબિત કરો કે $3\hat{\imath} + \hat{\jmath} + 2\hat{k}$ અને $2\hat{\imath} - 2\hat{\jmath} + 4\hat{k}$ વચ્ચે નો ખૂણો $\sin^{-1}\frac{2}{\sqrt{7}}$ છે.	
	3	Find the Limit of $\lim_{x \to -1} \frac{2x^3 + 5x^2 + 4x + 1}{3x^3 + 5x^2 + x - 1}$.	
	3.	$\lim_{x \to -1} \frac{2x^3 + 5x^2 + 4x + 1}{3x^3 + 5x^2 + x - 1} $ નું લક્ષ શોધો.	
Q.5	(A)	Attempt any two. (કોઈ પણ બે ના જવાબ આપો)	06
	1.	Find the Limit of $\lim_{x\to 1} \frac{\sqrt{x+7}-\sqrt{3x+5}}{\sqrt{3x+5}-\sqrt{5x+3}}$.	
	٩.		
	l.	$\lim_{x\to 1} \frac{\sqrt{x+7}-\sqrt{3x+5}}{\sqrt{3x+5}-\sqrt{5x+3}} $ નું લક્ષ મેળવો.	

2.	Find the Limit of $\lim_{x\to 0} \frac{\cos(ax) - \cos(bx)}{x^2}$.	
ર.	$\lim_{x\to 0} \frac{\cos(ax) - \cos(bx)}{x^2} $ નું લક્ષ મેળવો.	
3.	Find the Limit of $\lim_{x\to 3} \frac{x^3-27}{\sqrt[3]{x}-\sqrt[3]{3}}$.	
3.	$\lim_{x \to 3} \frac{x^3 - 27}{\sqrt[3]{x} - \sqrt[3]{3}}$ નું લક્ષ મેળવો.	
(B)	Attempt any two. (કોઇ પણ બે ના જવાબ આપો)	08
1.	Find the equation of lines passing through point A($3\sqrt{3}$, 4) and making angle $\frac{\pi}{6}$ with line $\sqrt{3}x - 3y + 5 = 0$.	
٩.	$A(3\sqrt{3},4)$ માંથી પસાર થતી અને રેખા $\sqrt{3}x - 3y + 5 = 0$ સાથે $\frac{\pi}{6}$ માપનો ખૂણો બનાવતી રેખાઓનાં સમીકરણ મેળવો.	
2.	Find the equation of circle passing through origin and point (1,2) and whose center lies on the X-axis.	
ર.	ઊગમબિંદુ અને (1,2) માંથી પસાર થતા અને જેનું કેન્દ્ર X-અક્ષ પર હોય તેવા વર્તુળનું સમીકરણ મેળવો.	
3.	Find the equation of lines passing through point $A(-8, -10)$ and product of its intercepts on both axis is -40.	
3.	A(-8, -10) માંથી પસાર થતી તથા જેની બંને અક્ષો પરના અંતઃખંડો નો ગુણાકાર -40 હોય, તેવી રેખાઓ નાં સમીકરણ મેળવો.	