Discussion 3

CS188 - Fall 19

Objectives

- Image representations
 - Why not pixels?
- (R)eview of image features
 - Why are they needed in computer vision?
 - Descriptors
 - Keypoints
- Computing image features
 - SIFT
 - Some Image processing tools
- Bag-Of-Words Model
 - Why does it work?

Goals and constraints

- The goal of computer vision could be summed up as helping computers interpret and understand their environment
 - One could define intelligence as 'capacity for survival'
 - o This implies ability to interact with your environment
 - Which implies an ability to understand it
 - No understanding => no interaction => no intelligence
- The only visual data that computers can leverage are images
 - 2D arrays of numbers
 - This is the data we can build intelligence from

Understanding our environment

- Humans recognize scenes (3D) through semantics
- From an evolutionary perspective, you need to be able to determine if you're in danger

Understanding our environment

- Humans recognize scenes (3D) through semantics
- From an evolutionary perspective, you need to be able to answer:

Should I start running?

Understanding images

- Humans recognize scenes through the objects within it
 - Eg: a blackboard, chair, tables, projector, people ->
 - Eg: sink, table, chairs, oven, cupboards ->

Understanding images

- Humans recognize scenes through the objects within it
 - Eg: a blackboard, chair, tables, projector, people -> classroom
 - Eg: sink, table, chairs, oven, cupboards -> kitchen
- If you can characterize objects in a scene, you can recognize the scene
 - If we replace 'scene' by 'image', we replace 'object' by ???

Understanding images

- Humans recognize scenes through the objects within it
 - Eg: a blackboard, chair, tables, projector, people -> classroom
 - Eg: sink, table, chairs, oven, cupboards -> kitchen
- If you can characterize objects in a scene, you can recognize the scene
 - If we replace 'scene' by 'image', we replace 'object' by 'patch'
 - A patch is just a subset (a small square) of the image
- If you can recognize patches in an image, you can recognize the image
 - Can we do this by comparing pixel values?

Using pixels

- Let's say that the computer understand that the left picture is a tiger. How do I use pixels to recognize the other tiger?
 - Looking at same pixel locations -> no match!
 - We need another representation

Conclusion

- We would like to represent images as a collection of patches
- If we were able to match patches in different images, we could recognize objects, and therefore scenes
- This could be used for image classification (and a lot of other things we'll talk about later)
- We cannot use pixels to match patches
 - Changing lighting would change pixel values
 - Changing scale would change pixel values
 - Changing viewpoint changes pixel values
- How do we do patch matching?

Object recognition and patch matching

 Assume that you're trying to recognize the same object in different images:

Mikolajczyk sequence

Patch matching: we would like to find the left image in the right image

Patch matching

- How do we proceed?
- Comparing pixel values

Mikolajczyk sequence

Which pixels to compare? -> This won't work

Matching pixels: a bad idea

- A change of scale will change pixel values in the image!
 - The patch will get larger or smaller in the image
 - Comparing pixel values won't work
- A change of orientation will change pixel values in the image!
 - The patch will deform, and move in the image
 - Comparing pixel values won't work
- A change of illumination will change pixel values in the image!
 - All pixel values in the image will increase (brighter image) or decrease (darker image)
 - Comparing pixel values won't work

A better solution

- In the real world, you are identified by fingerprints
 - o This uniquely identifies you as a person
 - You can change clothes, wear glasses, change haircut, you'll still be recognized
- We would like to do the same for patches
 - Extract a 'fingerprint' for that patch, that would remain the same in different images in which there was a change of:
 - Illumination
 - Scale
 - Viewpoint
 - That way, we could compute the fingerprint in image 1, computer the fingerprint in image 2: if the fingerprints are the same, we're looking at the same patch!
 - Fingerprints are called descriptors
 - Researchers came up with different ways of obtaining them

We're not interested in describing all patches
We're interested in *characteristic* patches in the image

 We're not interested in describing all patches We're interested in *characteristic* patches in the image

We're not interested in describing all patches
We're interested in *characteristic* patches in the image

We're not interested in describing all patches
We're interested in *characteristic* patches in the image

We're not interested in describing all patches
We're interested in *characteristic* patches in the image
These patches contain a **keypoint**

Why Corners?

Why Corners?

- How could we define a corner?
 - 2 edges in different orientations
 - 2 strong gradients in different directions

Conclusion

- Image features are the characteristic subsets of an image
- Image features are made up of:
 - A keypoint: a characteristic **location**, generally containing a corner
 - A descriptor: which describes the patch around the keypoint, and acts like a fingerprint for that patch
- Given enough image features, you can describe an image
- Comparing images can now be done without pixels by comparing their features

SIFT: a TLDR

- SIFT is a method to extract image features
- Typically, 50~200 features can be extracted from a single image
 - This depends on the image contents, the 'richer' the image, the more features can be extracted
 - A good rule of thumb for an image being rich is the number of corners
- How are SIFT features computed?
- First, we find a set of candidate keypoints
 - Maxima in the scale-space (image is blurred with Gaussian Kernels of different standard deviation, and downsampled)
 - o These maxima can be thought of as strong corners at a particular scale
- Second, some keypoints are discarded:
 - Those that might have been created by noise
 - Those that lie on an edge
- Third, keypoints that don't have a strong orientation are discarded
 - The orientation is the mode of the distributions of gradient in the patch
- Fourth, the descriptor is computed
 - It is a histogram of gradients, in different subsets of the patch
 - The full descriptor is 128 dimensional

Some Code for image processing

Laplacian Kernel:

0	-1	0	
-1	4	-1	
0	-1	0	

-	-1	-1	-1
-	-1	8	-1
-	-1	-1	-1

Gaussian Kernel:

1/1003	0	0	1	2	1	0	0
	0	3	13	22	13	3	0
	1	13	59	97	59	13	1
	2	22	97	159	97	22	2
	1	13	59	97	59	13	1
	0	3	13	22	13	3	0
	0	0	1	2	1	0	0

Prewitt and Sobel Kernels:

-1

From image features to Bag-Of-Words

A SIFT descriptor is a way to recognize the same point **in the scene** (3D) from different **images** (2D) with different scale, illumination, viewpoint

- It describes an image patch
- A single SIFT feature is not enough to represent an image - it just contains local information
 - O How do we represent the entire image with SIFT?
 - Take a lot of image features! Within a single image, extract hundreds of SIFT features
- Using this, how do we compare images?
 - o If most of their features match, the images are probably related

Bag-Of-Words

- Words here are "visual"
 - BOW actually comes from Natural Language Processing, text documents would be represented by their frequency of use of certain words
 - With images, "words" are image features (eg: obtained through SIFT) - ie 'iconic' image patches
- We do not want them to be 'ordered'
 - The order in which the features appear/are detected should not matter
 - Therefore all the features are recorded in random order, like you would place them in a bag

A Natural Language Processing Idea

- Let's see how this works in NLP
 - Where computer vision deals with images, NLP deals with text
- How could you classify text documents?
 - Let's say, between economic papers and a car magazine ...
- First, look at all documents that are available, and extract the most 'meaningful' words
 - These are the words that appear the most
 - o GDP, engine, horsepower, budget, driving, Dow-Jones, bitcoin ...
- These meaningful words create a **vocabulary**

A Natural Language Processing Idea

- Second, for each document, count how many vocabulary words are used
 - You go through all documents again, and just record which words are used (every time a vocabulary word is spotted, add one to a counter)
 - You end up with a histogram for each document
 - Describing how that document used the vocabulary

Now if I tell you:

- 1.txt => GDP:0, Engine:3, Horsepower:7,budget:2,Dow-J:0,driving:8
- 2.txt=> GDP:13,Engine:3,Horsepoer:0,budget:8,Dow-J:5,driving:3

A Natural Language Processing Idea

- Second, for each document, count how many vocabulary words are used
 - You go through all documents again, and just record which words are used (every time a vocabulary word is spotted, add one to a counter)
 - You end up with a histogram for each document
 - Describing how that document used the vocabulary

Now if I tell you:

- 1.txt => GDP:0, Engine:3, Horsepower:7,budget:2,Dow-J:0,driving:8
- 2.txt=> GDP:13,Engine:3,Horsepoer:0,budget:8,Dow-J:5,driving:3
- 1 was in a car magazine, 2 in an economic journal!
- Why is it called a 'Bag' ?
 - That representation of the document doesn't depend on the order of appearance of the words in the document!
 - They are all thrown, unordered, in a 'bag'

NLP to computer vision

- The idea is the same in CV
 - Replace 'word' with 'image feature' and 'text document' with 'image'
- First, extract features from all images at your disposal
- Second, cluster them to find the most representative image features => vocabulary
- Third, represent your training set as a histogram of vocabulary words, and train a classifier
 - The classifier learns what the histogram of a particular class looks like
- To test => feed histograms representing your test set to the classifier

In practice

iconic image fragments

Vocabulary

- You will build a set of features that you can compare every image against
 - This is your vocabulary
- To do so, you will extract 100's of features from different images, and cluster them together

o That way your vocabulary will contain only relevant features that

occur frequently

An example with

faces:

Vocabulary

I can do the same process for several images:

Vocabulary: representation

100-1000 images

~100 visual words

The BOW representation of an image

- detect interest point features
- find closest visual word to region around detected points

record number of occurrences, but not position

How is this useful for classification?

- For your homework, you have categories like streets and forests
- Step 1: Represent all images in your training set using the BOW model
 - Your image will now be a vector of features
 - Hopefully, pictures of streets will share a lot of similar features, that are different from the features forests share
- Step 2: Train a classifier
 - What does the histogram of a street picture look like? What does the histogram of a picture of a forest look like? They won't be represented by the same features
- Step 3: Apply the classifier to the test image
 - Extract its BOW representation
 - Does its histogram look like that of a forest, or a street?