Capítulo 9

Sucesiones de números

En este capítulo introduciremos el concepto de límite de sucesiones reales.

9.1. Definiciones y ejemplos

Definición 9.1.1. Una sucesión de números reales es una lista infinita de números ordenados, $\{a_1, a_2, ..., a_n, ...\} \subseteq \mathbb{R}$. En este caso, a la sucesión $\{a_1, a_2, ..., a_n, ...\}$ la denotaremos por $\{a_n\}_{n \in \mathbb{N}}$.

Observación 9.1.2. Nótese que una sucesión no es más que una función $a: \mathbb{N} \longrightarrow \mathbb{R}$, donde $a(1) = a_1, a(2) = a_2, ..., a(n) = a_n, ...$, de manera que el orden importa. Así, es claro que podemos hablar del límite de una sucesión, o de sucesiones convergentes o divergentes, teniendo así las propiedades usuales de aritmética de límites. Además, tendremos sucesiónes crecientes $(a_n \leq a_{n+1})$ para todo $n \in \mathbb{N}$, decrecientes $(a_{n+1} \leq a_n)$ para todo $n \in \mathbb{N}$, estrictamente crecientes y estrictamente decrecientes.

Ejemplo 9.1.3.

- 1. Consideremos la sucesión $\{1, \frac{1}{2}, \frac{1}{3}, ..., \frac{1}{n}, ...\}$. Al término general de esta sucesión se le denota por a_n . Así, tenemos que $a_n = \frac{1}{n}$ para todo $n \in \mathbb{N}$.
 - Claramente esta sucesión es estrictamente decreciente, ya que n < n+1 para todo $n \in \mathbb{N}$, con lo que $a_{n+1} = \frac{1}{n+1} < \frac{1}{n} = a_n$ para todo $n \in \mathbb{N}$.
- 2. **Progresión aritmética:** una progresión aritmética es una sucesión de la forma $a_n = a_1 + (n-1)d$, para todo $n \in \mathbb{N}$, donde a_1 es el primer término de la sucesión y $d \in \mathbb{R}$ es la diferencia de la progresión.
- 3. **Progresión geométrica:** una progresión geométrica es una sucesión de la forma $a_n = ar^{n-1}$, para todo $n \in \mathbb{N}$, donde $a, r \in \mathbb{R}$. Al valor r se le denomina razón de la progresión.
- 4. $\lim_{n \to \infty} \frac{n^2 + 2n 1}{3n^2} = \frac{1}{3}.$

9.2. Algunos resultados sobre convergencia de sucesiones

Teorema 9.2.1. Sea $\{a_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$ una sucesión. Entonces se verifica:

1. Si $\{a_n\}_{n\in\mathbb{N}}$ es monótona creciente y acotada superiormente, entonces $\{a_n\}_{n\in\mathbb{N}}$ es convergente, es decir, existe $l\in\mathbb{R}$ tal que $\lim_{n\to\infty} a_n=l$.

2. Si $\{a_n\}_{n\in\mathbb{N}}$ es monótona decreciente y acotada inferiormente, entonces $\{a_n\}_{n\in\mathbb{N}}$ converge.

Ejemplo 9.2.2. Nótese que la sucesión $a_n = \frac{1}{n}$ para todo $n \in \mathbb{N}$ está acotada inferiormente por 0, ya que $0 < \frac{1}{n}$ para todo $n \in \mathbb{N}$. Además, como $\{a_n\}_{n \in \mathbb{N}}$ es decreciente entonces, por el teorema anterior, $\{a_n\}_{n \in \mathbb{N}}$ converge. De hecho, se tiene que $\lim_{n \to \infty} \frac{1}{n} = 0$.

Teorema 9.2.3. Toda sucesión convergente es acotada.

Ejemplo 9.2.4. El recíproco no es cierto. Basta considerar $a_n = (-1)^n$. Así, es claro que $\{a_n\}_{n\in\mathbb{N}}$ es acotada, sin embargo, $\{a_n\}_{n\in\mathbb{N}}$ no es convergente.

Teorema 9.2.5. (Criterio de Stolz). Sean $\{a_n\}_{n\in\mathbb{N}}$ y $\{b_n\}_{n\in\mathbb{N}}$ dos sucesiones y supongamos que se verifica alguna de las siguientes condiciones:

- 1. $\{b_n\}_{n\in\mathbb{N}}$ es estrictamente monótona creciente con $\lim_{n\to\infty} b_n = \infty$.
- 2. $\{b_n\}_{n\in\mathbb{N}}$ es estrictamente monótona decreciente con $b_n\neq 0$ para todo $n\in\mathbb{N}$ y tal que $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=0$.

Si

$$\lim_{n\to\infty} \frac{a_n - a_{n-1}}{b_n - b_{n-1}} = l,$$

 $con \ l \in \mathbb{R} \cup \{-\infty, \infty\}, \ entonces$

$$\lim_{n\to\infty} \frac{a_n}{b_n} = l.$$

Ejemplo 9.2.6.

1. Calcular $\lim_{n\to\infty} \frac{1+2+3+...+n}{n}$.

Consideremos $a_n = 1 + 2 + 3 + ... + n$ y $b_n = n$, para todo $n \in \mathbb{N}$.

Como b_n es estrictamente creciente con $\lim_{n\to\infty}b_n=\infty$ entonces, por el criterio de Stolz,

$$\lim_{n \to \infty} \frac{a_n - a_{n-1}}{b_n - b_{n-1}} = \lim_{n \to \infty} \frac{1 + 2 + 3 + \dots + n - (1 + 2 + 3 + \dots + (n-1))}{n - (n-1)} = \lim_{n \to \infty} \frac{n}{1} = \infty,$$

con lo que

$$\lim_{n\to\infty}\frac{1+2+3+\ldots+n}{n}=\infty.$$

2. Calcular $\lim_{n \to \infty} \frac{1 + 2\sqrt{2} + 3\sqrt[3]{3} + \dots + n\sqrt[n]{n}}{n^2}$.

Consideremos $a_n = 1 + 2\sqrt{2} + 3\sqrt[3]{3} + \dots + n\sqrt[n]{n}$ y $b_n = n^2$ para todo $n \in \mathbb{N}$.

Como b_n es estrictamente creciente con $\lim_{n\to\infty}b_n=\infty$ entonces, por el criterio de Stolz,

$$\lim_{n \to \infty} \frac{a_n - a_{n-1}}{b_n - b_{n-1}} = \lim_{n \to \infty} \frac{1 + 2\sqrt{2} + 3\sqrt[3]{3} + \ldots + n\sqrt[n]{n} - (1 + 2\sqrt{2} + 3\sqrt[3]{3} + \ldots + (n-1)\sqrt[n-1]{n-1}}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{1 + 2\sqrt{2} + 3\sqrt[3]{3} + \ldots + n\sqrt[n]{n} - (1 + 2\sqrt{2} + 3\sqrt[3]{3} + \ldots + (n-1)\sqrt[n-1]{n-1}}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{1 + 2\sqrt{2} + 3\sqrt[3]{3} + \ldots + n\sqrt[n]{n} - (1 + 2\sqrt{2} + 3\sqrt[3]{3} + \ldots + (n-1)\sqrt[n-1]{n-1}}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{1 + 2\sqrt{2} + 3\sqrt[3]{3} + \ldots + n\sqrt[n]{n} - (1 + 2\sqrt{2} + 3\sqrt[3]{3} + \ldots + (n-1)\sqrt[n-1]{n-1}}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{1 + 2\sqrt{2} + 3\sqrt[3]{3} + \ldots + n\sqrt[n]{n} - (1 + 2\sqrt{2} + 3\sqrt[3]{3} + \ldots + (n-1)\sqrt[n-1]{n-1}}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{1 + 2\sqrt{2} + 3\sqrt[3]{3} + \ldots + n\sqrt[n]{n} - (n-1)\sqrt[n-1]{n-1}}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{1 + 2\sqrt{2} + 3\sqrt[3]{3} + \ldots + n\sqrt[n]{n} - (n-1)\sqrt[n-1]{n-1}}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{1 + 2\sqrt{2} + 3\sqrt[3]{3} + \ldots + n\sqrt[n]{n} - (n-1)\sqrt[n-1]{n-1}}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{1 + 2\sqrt{2} + 3\sqrt[3]{3} + \ldots + n\sqrt[n]{n} - (n-1)\sqrt[n-1]{n-1}}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{1 + 2\sqrt{2} + 3\sqrt[3]{3} + \ldots + n\sqrt[n]{n}}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{1 + 2\sqrt{2} + 3\sqrt[3]{3} + \ldots + n\sqrt[n]{n}}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{1 + 2\sqrt{2} + 3\sqrt[n]{3} + \ldots + n\sqrt[n]{n}}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{1 + 2\sqrt{2} + 3\sqrt[n]{3} + \ldots + n\sqrt[n]{n}}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{1 + 2\sqrt[n]{n}}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{1 + 2\sqrt[n]{n}}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{1 + 2\sqrt[n]{n}}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{1 + 2\sqrt[n]{n}}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{1 + 2\sqrt[n]{n}}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{1 + 2\sqrt[n]{n}}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{1 + 2\sqrt[n]{n}}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{1 + 2\sqrt[n]{n}}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{1 + 2\sqrt[n]{n}}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{1 + 2\sqrt[n]{n}}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{1 + 2\sqrt[n]{n}}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{1 + 2\sqrt[n]{n}}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{1 + 2\sqrt[n]{n}}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{1 + 2\sqrt[n]{n}}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{1 + 2\sqrt[n]{n}}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{1 + 2\sqrt[n]{n}}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{1 + 2\sqrt[n]{n}}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{1 + 2\sqrt[n]{n}}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{1 + 2\sqrt[n]{n}}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{1$$

$$\lim_{n\to\infty}\frac{n\sqrt[n]{n}}{n^2-\left(n^2-2n+1\right)}=\lim_{n\to\infty}\frac{n\sqrt[n]{n}}{2n-1}=\lim_{n\to\infty}\frac{\sqrt[n]{n}}{2-\frac{1}{n}}=\frac{1}{2},$$

con lo que

$$\lim_{n \to \infty} \frac{1 + 2\sqrt{2} + 3\sqrt[3]{3} + \dots + n\sqrt[n]{n}}{n^2} = \frac{1}{2}.$$

Corolario 9.2.7. Sea $\{a_n\}_{n\in\mathbb{N}}$ una sucesión tal que $\lim_{n\to\infty} a_n = l$, con $l\in\mathbb{R}\cup\{-\infty,\infty\}$. Entonces se verifica:

- 1. $\lim_{n \to \infty} \frac{a_1 + \dots + a_n}{n} = l.$
- 2. $\lim_{n\to\infty} \sqrt[n]{a_1\cdots a_n} = l$, si $a_n > 0$ para todo $n \in \mathbb{N}$.

Corolario 9.2.8. Sea $\{a_n\}_{n\in\mathbb{N}}$ una sucesión tal que $a_n>0$ para todo $n\in\mathbb{N}$. Si $\lim_{n\to\infty}\frac{a_n}{a_{n-1}}=l$, con $l\in\mathbb{R}\cup\{-\infty,\infty\}$, entonces $\lim_{n\to\infty}\sqrt[n]{a_n}=l$.

Ejemplo 9.2.9. Consideremos la sucesión $a_n = \sqrt[n]{n}$ para todo $n \in \mathbb{N}$. Veamos que $\lim_{n \to \infty} \sqrt[n]{n} = 1$. Para ello, consideremos la sucesión $b_n = n$ para todo $n \in \mathbb{N}$.

Como $\lim_{n\to\infty} \frac{b_n}{b_{n-1}} = \lim_{n\to\infty} \frac{n}{n-1} = 1$, entonces $\lim_{n\to\infty} \sqrt[n]{b_n} = \lim_{n\to\infty} \sqrt[n]{n} = 1$.

Teorema 9.2.10. (Fórmula de Stirling). Para $n \to \infty$, se tiene que n! puede aproximarse por $n^n e^{-n} \sqrt{2\pi n}$. En términos formales, $\lim_{n \to \infty} \frac{n!}{n^n e^{-n} \sqrt{2\pi n}} = 1$.

Ejemplo 9.2.11. Calcular $\lim_{n\to\infty} \frac{n^{n+\frac{1}{2}}}{n!}$.

Aplicando la fórmula de Stirling, tenemos que

$$\lim_{n\to\infty}\frac{n^{n+\frac{1}{2}}}{n!}=\lim_{n\to\infty}\frac{n^{n+\frac{1}{2}}}{n^ne^{-n}\sqrt{2\pi n}}=\lim_{n\to\infty}\frac{n^n\sqrt{n}}{n^ne^{-n}\sqrt{2\pi n}}=\lim_{n\to\infty}\frac{1}{e^{-n}\sqrt{2\pi}}=\infty.$$

Los siguientes resultados son casos análogos a los estudiados para funciones.

Proposición 9.2.12. (Criterio del sandwich). Sean $\{a_n\}_{n\in\mathbb{N}}$, $\{b_n\}_{n\in\mathbb{N}}$ y $\{c_n\}_{n\in\mathbb{N}}$ tres sucesiones tales que $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n$. Si $a_n \leq b_n \leq c_n$, entonces $\lim_{n\to\infty} b_n = \lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n$.

Ejemplo 9.2.13. Sea $a_n = \text{sen}(-\frac{1}{n})$.

Como

$$0 \le \left| \operatorname{sen} \left(-\frac{1}{n} \right) \right| \le \left| -\frac{1}{n} \right| = \frac{1}{n}$$

para todo $n \in \mathbb{N}$ y $\lim_{n \to \infty} 0 = \lim_{n \to \infty} \frac{1}{n} = 0$ entonces, por el criterio del sandwich, $\lim_{n \to \infty} \left| \operatorname{sen} \left(-\frac{1}{n} \right) \right| = 0$ y, por tanto $\lim_{n \to \infty} \operatorname{sen} \left(-\frac{1}{n} \right) = 0$.

Corolario 9.2.14. Sean $\{a_n\}_{n\in\mathbb{N}}$ y $\{b_n\}_{n\in\mathbb{N}}$ dos sucesiones tales que $\lim_{n\to\infty} a_n = 0$ y $\{b_n\}_{n\in\mathbb{N}}$ es acotada. Entonces $\lim_{n\to\infty} a_n b_n = 0$.

Ejemplo 9.2.15. Consideremos la sucesión $a_n = \frac{\operatorname{sen}\left(\frac{1}{n}\right)}{n^2}$.

Como sen $\left(\frac{1}{n}\right) \leq 1$ para todo $n \in \mathbb{N}$ y $\lim_{n \to \infty} \frac{1}{n^2} = 0$, entonces $\lim_{n \to \infty} a_n = 0$.

Teorema 9.2.16. Sean $\{a_n\}_{n\in\mathbb{N}}$ y $\{b_n\}_{n\in\mathbb{N}}$ dos sucesiones tales que $\lim_{n\to\infty} a_n = 1$, $\lim_{n\to\infty} b_n = \pm \infty$ y existe $\lim_{n\to\infty} b_n(a_n-1)$. Entonces

$$\lim_{n\to\infty} a_n^{b_n} = e^{\lim_{n\to\infty} b_n(a_n-1)}.$$

Ejemplo 9.2.17. Por el teorema anterior, se tiene que

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e^{\lim_{n\to\infty} n\frac{1}{n}} = e,$$

ya que
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right) = 1$$
, $\lim_{n\to\infty} n = \infty$ y $\lim_{n\to\infty} n \left(1+\frac{1}{n}-1\right) = 1$.

Ejercicios

1. Calcula los siguientes límites:

1)
$$\lim_{n \to \infty} \sqrt[n]{a}$$
, con $a > 0$

$$2) \lim_{n \to \infty} \frac{(n!e^n)^2}{n^{2n+1}}$$

3)
$$\lim_{n\to\infty} \frac{\operatorname{sen}(n)}{\sqrt{n}}$$

4)
$$\lim_{n\to\infty} \log\left(\frac{2n-1}{n}\right)$$

$$5) \lim_{n \to \infty} \frac{2^n - 1}{2^n}$$

6)
$$\lim_{n \to \infty} (2\log(3n) - \log(n^2 + 1))$$

7)
$$\lim_{n \to \infty} \frac{n \sqrt[n]{n!}}{\sqrt[n]{(2n)!}}$$

8)
$$\lim_{n\to\infty} \frac{n^{n-1}}{(n-1)^n}$$

9)
$$\lim_{n\to\infty} \frac{1+\sqrt{2}+\sqrt{3}+\ldots+\sqrt{n}}{\sqrt{n^3}}$$

10)
$$\lim_{n\to\infty} \frac{1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}}{\log(n)}$$

11)
$$\lim_{n \to \infty} \frac{1 + 2^2 + 3^3 + \dots + n^n}{n^n}$$

12)
$$\lim_{n \to \infty} \frac{1+2!+3!+...+n!}{n!}$$

13)
$$\lim_{n\to\infty} \frac{n}{\sqrt[n]{n!}}$$

14)
$$\lim_{n\to\infty}\frac{n^2}{2^n}$$

15)
$$\lim_{n \to \infty} \frac{2n^2 - 7n + 3}{(n-1)^2}$$

16)
$$\lim_{n\to\infty} \frac{\sqrt{n+1}}{n\sqrt{n}}$$

$$17) \lim_{n \to \infty} n^{-\frac{3}{n}}$$

18)
$$\lim_{n\to\infty} \sqrt[n]{2^n + 3^n}$$

19)
$$\lim_{n\to\infty} \left(\frac{n+1}{n-2}\right)^{3n}$$

20)
$$\lim_{n\to\infty} \frac{n!}{n^n}$$

21)
$$\lim_{n\to\infty} \frac{n\cos(n)}{n^2+1}$$

22)
$$\lim_{n\to\infty} \frac{\arctan(3n)}{n}$$

2. Demostrar que la sucesión

$$a_n = \frac{e^n + (-e)^n}{e^n}, \ \forall n \in \mathbb{N}$$

no tiene límite, mientras que la sucesión

$$b_n = \frac{e^n + (-e)^n}{\pi^n}, \ \forall n \in \mathbb{N}$$

si que lo tiene. Obtener el valor de $\lim_{n\to\infty} b_n$.