STA 200A: Homework 5

- 1. Let $X \sim \text{Gamma}(\alpha, \lambda)$. Find E[1/X].
- 2. Let $X \sim \text{Uniform}[0,1]$, and put $Y = \sqrt{X}$. Find E[Y].
- 3. Let X be an Exponential(λ) rv. Derive a formula for $E[X^2]$.
- 4. Find the density function of $Y = e^Z$, where $Z \sim \mathcal{N}(\mu, \sigma^2)$. This is called the log-normal density, since $\log Y$ is normally distributed.
- 5. Let $f(x) = (1 + \alpha x)/2$ for $-1 \le x \le 1$ and f(x) = 0 otherwise, where $-1 \le \alpha \le 1$. Show that f is a density and find the corresponding cdf. Find the upper quartile of the distribution in terms of α .
- 6. Suppose X has the density function $f(x) = cx^2$ for $0 \le x \le 1$ and f(x) = 0 otherwise.
 - (a) Find c.
 - (b) Find the cdf $F_X(x)$.
 - (c) What is $P(0.1 \le X < 0.5)$?
- 7. If $X \sim \mathcal{N}(0, \sigma^2)$, find the density of Y = |X|.
- 8. Let $Z \sim N(0,1)$ be a standard normal rv. Let $g: \mathbb{R} \to \mathbb{R}$ be a differentiable function, with derivative g'. Show that the following identity holds.

$$E[g'(Z)] = E[Zg(Z)].$$

(You may assume both of these expectations exist. Also, for convenience, you may assume that $g(z)e^{-z^2/2}\to 0$ as $z\to\pm\infty$. In other words, the function g doesn't increase too quickly when |z| is large.)

9. Chapter 5, Theoretical Exercise 11 (just parts b and c)