DAI Assignment-3

Aditya Neeraje, Balaji Karedla, Moulik Jindal

October 7, 2024

Contents

1	\mathbf{Fin}	nding optimal bandwidth
	1.1	Part 1
		1.1.1 Part (a)
		1.1.2 Part (b)
	1.2	Part 2
2	Det	tecting Anomalous Transactions using KDE
	2.1	Designing a custom KDE Class
		Estimating Distribution of Transactions

1 Finding optimal bandwidth

1.1 Part 1

1.1.1 Part (a)

We know that the estimator for distribution function \hat{f} is given by

$$\hat{f}(x) = \sum_{i=1}^{m} \frac{\hat{p}_{i}}{h} \mathbb{1} [x \in B_{i}]$$
(1)

Also given, v_j is the number of points falling in the j^{th} bin and $\hat{p}_j = \frac{v_j}{n}$. From this,

$$\int \hat{f}(x)^2 dx = \int \left(\sum_{j=1}^m \frac{\hat{p}_j}{h} \mathbb{1} \left[x \in B_j \right] \right)^2 dx$$

$$= \sum_{j=1}^m \int_{B_j} \left(\sum_{j=1}^m \frac{\hat{p}_j}{h} \mathbb{1} \left[x \in B_j \right] \right)^2 dx$$

$$= \sum_{j=1}^m \int_{B_j} \left(\frac{\hat{p}_j}{h}\right)^2 dx$$

$$= \sum_{j=1}^m \left(\frac{\hat{p}_j}{h}\right)^2 \times h$$

$$= \frac{1}{n^2 h} \sum_{j=1}^m v_j^2$$

1.1.2 Part (b)

The histogram estimator after removing the i^{th} observation is given by

$$\hat{f}_{(-i)}(x) = \sum_{i=1}^{m} \frac{\hat{p}_{j,-i}}{h} \mathbb{1} \left[x \in B_j \right]$$
(2)

where $\hat{p}_{j,-i} = \frac{v_{j,-i}}{n-1}$ and $v_{j,-i}$ is the number of points falling in the j^{th} bin after removing the i^{th} observation.

Now,

$$\sum_{i=1}^{n} \hat{f}_{(-1)}(X_i) = \sum_{1}^{n} \sum_{j=1}^{m} \frac{\hat{p}_{j,-i}}{h} \mathbb{1} [X_i \in B_j]$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \frac{v_{j,-i}}{(n-1)h} \mathbb{1} [X_i \in B_j]$$

$$= \sum_{j=1}^{m} \sum_{i=1}^{n} \frac{v_{j,-i}}{(n-1)h} \mathbb{1} [X_i \in B_j]$$

$$= \sum_{j=1}^{m} \frac{v_j - 1}{(n-1)h} \mathbb{I} [X_i \in B_j] \qquad \text{(since whenever } \mathbb{1} [X_i \in B_j] = 1, v_{j,-i} = v_j - 1)$$

$$= \sum_{j=1}^{m} \frac{v_j - 1}{(n-1)h} v_j$$

$$= \frac{1}{(n-1)h} \sum_{i=1}^{m} v_j^2 - v_j$$

- 1.2 Part 2
- 2 Detecting Anomalous Transactions using KDE
- 2.1 Designing a custom KDE Class
- 2.2 Estimating Distribution of Transactions