## Today's condent

- -) Revise Subarray
- -> Subsequences vs subsets
- -) Check subset with given sum
- -) sum of all subsets
- -) sum of max of all subsets.

### Subarray basics.

0 1 2 --- N

Continuous post of the array.

// Swassay: (5 e).

Total subassays =  $\frac{N(N+1)}{2}$ 

# Subsequence: Sequence generated by deleting 200 or mile elements from the oblay.

## Subarrays vs subsequences.



## 0 1 2 3 4 ar (5): {-3 0 1 2 6}

|            | Subarray | Subsequence  |
|------------|----------|--------------|
| [1, 2,6]   | <b>~</b> | <b>✓</b>     |
| (-3, 1, 2) | *        | <b>✓</b>     |
| (0, 1, 2)  | <b>✓</b> | <b>✓</b>     |
| (-3, 1, 6) | ×        | $\checkmark$ |
| [4, 1,0]   | ×        | ×            |

# Sorting in subsequence.

$$ar(3): \{3, -2, 1\}$$
 Sort  $\{-2, 1, 3\}$ .

| All subsequences.                        | All subsequences.                 |
|------------------------------------------|-----------------------------------|
| <b>2</b> 3                               | <u> </u>                          |
| 834 ———————————————————————————————————— | {33.                              |
| ٤-2}                                     |                                   |
| {1}                                      |                                   |
| {3,-2}                                   | 7 {-2,33.                         |
| {-2,13 —                                 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |
| { 3, 13                                  | ₹1,33                             |
| £ 3,-2,13                                | 七-2,1,34.                         |

If we sort, subsequences will changel,

Subsets: Exactly same as subsequence, on

order doesn't matter

| Ay subsets.   |
|---------------|
|               |
| { 33          |
|               |
| {1}<br>{-4,3} |
| { 1/3}        |
| - { 1,-23     |
| f-2,1,3}.     |
|               |

If you sort, subsets would change.

## Valentine day.

2

Rose



count no of subsequences.

Given N Elements?



25 options.



No. of subsequences = 27. [ { } is considered ].

No. of subsets 
$$= 2^{N}$$
. (No duplicates).

// Subset -> order doesn't moder -> 2 (distinct).



K=20, retain false.

### ideas:

## Bit manipulation:

$$\begin{bmatrix} 3 & -2 & 1 \end{bmatrix}$$
,  $2^{N} = 2^{3} = 8$ . subsets.  $\begin{bmatrix} 0, 4 \end{bmatrix}$ .

map each 8 subsets to a number from [0,7].

```
subset sum.
          subsets.
          []
                       0
                       3
          [3]
 0 0 1
: 0 1 0
          [-2]
          [3,-2]
         しい
  0
          [3,1]
  1 0 1
  1 1 0 [-2,1]
  [3,-2,1]
                       2
```

def checkforSubsetSumk (arr, k, m)

for i in range (0, 2<sup>N</sup>).

// for every i, check all N bit positions

Sum=0: // each subset Sum.

for j in range (0, N)

if (check Bit (i,j))

Sum = Sum + arr(j)

if (Sum == k) return true.

return false

TC: 0(N\*2"). SC: 0(1).

## Advanced constant.

- (i) using backtracking O(2).
- (ii) using reconsion

  + ap [o(n\*k)).

On: Given N distinct elements, sum of subset sums.

| { 3, 1, 49.      |      |
|------------------|------|
| Subsets:         | Sum. |
| { }              | 0    |
| £ 3 } ✓          | 3    |
| {13 V            | 1    |
| V{4}             | 4    |
| €3,13//          | 4    |
| √ {3,43 <b>√</b> | 7    |
| 1 5 1, 43 1      | 5    |
| 13,1,43          | 1 8  |
| D                | = 32 |
|                  |      |

Tc: 0(2\*\*N).

sc: 0(1).

idea 2: contribution technique.

No. of times each element is repeating?



9: Given an array, find the sum of max of every subsequence]

| Subsequences. | max.       |
|---------------|------------|
| ()            | D          |
| C\$J          | 3 🗸        |
| ני            | <b>V</b> 1 |
| <b>(-4)</b>   | -4 →       |
| (3 1)         | 3 <b>~</b> |
| [3 -4]        | 3 🗸        |
| C1 -47        | VI         |
| [3 1 -4]      | 3 ✓        |
|               | Sum = 10   |

idea: Generade all subsequences.  $0(2^N*N)$ .

ideaz: Contribution technique.



(i) Sort the array.

```
Sum Of Max Of Every Subsequence (arr, n)
   def
   ٤
                                                            7c: 0(NlogN+N)=0(Nlogn)
           // sort the array in ascending . - ) NhogN.
                                                             Sc: 0(1).
            Sum = 0.
            for i in range (0,m)
                 Sum = Sum + ar(i) * (15
            return sum
   z
To00:
             Sum of (max of every subsequence)
              Sum of (min of every subsequence)
```

END OF INTERMEDIATE MODULE.