SECOND SEMESTER 2020-2021

Course Handout Part II

Date: 16-01-2021

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : MATH F342

Course Title : Differential Geometry
Instructor-in-Charge : S. K. Vishwakarma

Scope and Objective of the Course: The objective of this course is to provide a systematic exposition of the essential concepts of modern differential geometry, and an understanding and appreciation for the intrinsic beauty of these concepts, as well as their deep relationships to computer and physical Sciences. The under current is to generalize and reinforce the classical subject in a modern way.

Textbooks:

1. D. Somasundaram, Differential Geometry A First Course, Narosa Publishing House, First Edition, 2012.

Reference books

- 1. Pressley, A Elementary Differential Geometry, 2nd Edition(Corrected Print), Springer (2012)
- 2. Gray A, Abbena E, Salamon S Modern differential geometry of curves and surfaces with MATHEMATICA, 3rd Edition, CRC Press (2006)
- 3. Oprea, J Differential Geometry and Its Applications, Mathematical Association of America(2007)

Course Plan:

Lecture No.	Learning objectives	Topics to be covered	Chapter in the Text Book	
1-3	Examining the curves in space and surface along with tangent, normal, curvature, asymptotes.	Space curve, Parametrization, Arc Length, Tangent & Osculating Plane, Normal, Binormal	1.1-1.6	
4-5		Curvature, Torsion, Behavior of curve at a point	1.7-1.9	
6-8		Contact between curve and surfaces, Osculating circle and sphere, Spherical curvature, Involutes and Evolutes	1.10-1.13	
9-10	Parameterization of curves and the properties of surfaces.	Representation of surface, Curves, Tangent plane and surface normal	2.1-2.6	
11-12		General Surfaces of Revolution, Helicoid, First Fundamental Form	2.7-2.9	
13-15	properties of surfaces.	Direction Coefficients, Families of Curves, Orthogonal Trajectories, Isometric Correspondence	2.10-2.14	

16-17		Geodesics and their differential equation, Canonical geodesic equations	3.1-3.3
18-20	Canonical geodesic equations and its	Geodesics and its normal properties, Existence Theorem	3.4-3.7
21-22	normai properties	normal properties Geodesics Parallel. Geodesics Polar Coordinates and curvatures	
23-25		Gauss-Bonnet Theorem, Gaussian Curvatures, Surface of constant curvature	3.11-3.13
26-28		Second Fundamental Form, Classification of points, Principal curvatures	4.1-4.4
29-30	Maximum and minimum curvatures along a given direction.	Lines of curvature, Dupin indicatrix, Developable surfaces	4.5-4.7
31-32		Developable with space curves, Minimal surfaces	4.8-4.10
33-34		Ruled Surfaces, Three Fundamental Form	4.11-4.12
35-36		Tensor equation, Gauss Equations	5.1-5.3
37-38	Fundamental Equation of surface, Gauss equations	Weingarten equations, Mainardi-Coddazzi equation	5.4-5.5
39-40	_	Parallel surfaces, Fundamental existence theorem	5.6-5.7

Evaluation Scheme:

Component	Duration	Weightage (%)	Date & Time	Nature of Component
Quiz-1	TBA	10	TBA	Open Book
Mid-sem	90 mins	30	06/03 1.30 - 3.00PM	Open Book
Assignment-1	TBA	10	TBA	Open Book
Quiz-2	TBA	10	TBA	Open Book
Comprehensive Exam		40	07/05 FN	Open Book

^{*} The total marks of all the components, taken together will be 100.

Make-up will be given only for very genuine cases and prior permission has to be obtained from the I/C.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable

.INSTRUCTOR-IN-CHARGE

^{6.} Chamber consultation hour: To be announced in the class.

^{7.} Notices: The notices concerning this course will be displayed on the CMS Notice Board only.

^{8.} Make-up Policy: