빅데이터 분석을 위한 데이터마이닝 방법론 SAS Enterprise Miner 활용사례를 중심으로

≪제3장≫ 의사결정나무분석

Chapter 3 Decision Tree Analysis

강현철, 한상태, 최종후, 이성건, 김은석, 엄익현 Update: 2014. 4. 1.

차례

- 3.1 의사결정나무의 개념
- 3.2 의사결정나무의 분리기준
- 3.3 의사결정나무분석의 특징
- 3.4 분석사례 1(분류나무): 신용평가 문제
- 3.5 분석사례 2(회귀나무): 평균임금의 예측
- 3.6 분석사례 3: 의사결정나무분석의 대화식 수행
- 3.7 의사결정나무모형에 대한 요약 테이블 작성
- 3.8 연습문제

데이터마이닝과 의사결정나무

• 데이터 탐색

✓ 사전에 이상치(outlier)를 검색하거나 분석에 필요한 변수 또는 모형에 포함되어야 할 상호작용의 효과를 찾아내기 위해서 사용될 수 있다.

• 예측모형

✓ 의사결정나무 자체가 하나의 분류 또는 예측모형으로 사용될 수 있다.

3.1.1 의사결정나무의 구성요소

≪사례≫ 신용평가 문제

3.1.2 의사결정나무의 형성과정

의사결정나무의 형성

✓ 분석의 목적과 자료구조에 따라서 적절한 분리기준(split criterion)과 정지규칙(stopping rule)을 지정하여 의사결정나무를 얻는다.

• 가지치기

✓ 분류오류(classification error)를 크게 할 위험(risk)이 높거나 부적절한 추론 규칙(induction rule)을 가지고 있는 가지(branch)를 제거한다.

• 타당성 평가

✓ 이익도표(gains chart)나 위험도표(risk chart)와 같은 모형평가 도구 또는 검증용 자료(test data)에 의한 교차타당성(cross validation) 등을 이용 하여 의사결정나무를 평가한다.

• 해석 및 예측

✓ 의사결정나무를 해석하고 예측모형을 구축한다.

≪사례≫ 최적 분리

478 개의 분리조합이 존재

- x₁에 대해서 239개 (x₁<.25, x₁<.26, etc.)
- x₂에 대해서 239개 (x₂<.43, x₂<.86, etc.)

... 《사례》 최적 분리

... 《사례》 최적 분리

... 《사례》 최적 분리

차례

- 3.1 의사결정나무의 개념
- 3.2 의사결정나무의 분리기준
- 3.3 의사결정나무분석의 특징
- 3.4 분석사례 1(분류나무): 신용평가 문제
- 3.5 분석사례 2(회귀나무): 평균임금의 예측
- 3.6 분석사례 3: 의사결정나무분석의 대화식 수행
- 3.7 의사결정나무모형에 대한 요약 테이블 작성
- 3.8 연습문제

3.2.1 분류나무(Classification Tree)

• 목표변수: 이산형(범주형; 질적변수)

분류나무의 분리기준

ID	AGE	JOB	CREDIT
001	40	В	Good
005	50	A	Bad
003	50	С	Bad
004	30	A	Good
005	40	С	Good

Cat. Good Bad 30.00 90 Total (100.00) 300

300명 (Good: 210, Bad: 90)

AGE: 20대 미만, 30대, 40대 이상

JOB : A, B, C

카이제곱 통계량의 p-값 엔트로피 지수 (Entropy Index)

카이제곱 통계량의 p-값

기대도수 (E_{ii})

人门入川		(0)	
VIVII	노수	(U)	
<u>-</u>		(IJ	

	Good	Bad	합계 (n _i .)
50	5b (70.0)	24 (30.0)	80
30, 40	154 (70.0)	bb (30.0)	220
합계 (n. _j)	210 (70.0)	90 (30.0)	33º (n)

	Good	Bad	합계 (n _i .)
50	32 (40.0)	48 (bo.o)	80
30, 40	178 (80.9)	42 (19.1)	220
합계 (n. _j)	210 (70.0)	90 (30.0)	33º (n)

$$E_{ij} = n_i \cdot n_{ij} / n$$

$$E_{11} = 80 \times 0.7 = 56$$

$$E_{12} = 80 \times 0.3 = 24$$

$$-\chi^{2} = \sum (E_{ij} - O_{ij})^{2} / E_{ij}$$

$$= (56-32)^{2}/56 + (24-48)^{2}/24$$

$$+ (154-178)^{2}/154 + (66-42)^{2}/66 = 46.75$$

$$- df = (r-1) \times (c-1) = (2-1) \times (2-1) = 1$$

- p-value = 0.00001

. . .

... 카이제곱 통계량의 p-값

기대도수 (E_{ii})

	Good	Bad	합계 (n _i .)
20, 30	134 (70.0)	58 (30.0)	192
40	7b (70.0)	32 (30.0)	108
합계 (n. _j)	210 (70.0)	90 (30,0)	33º (n)

	Good	Bad	합계 (n _i .)
20, 30	124 (64.6)	ь8 (35.4)	192
40	8b (79.b)	(2o' 1)	108
합계 (n. _j)	210 (70.0)	90 (30.0)	33º (n)

$$\begin{split} E_{ij} &= n_i. \; n._j \, / \, n \\ E_{11} &= 192 \times 0.7 = 134 \\ E_{12} &= 192 \times 0.3 = 58 \end{split} \quad \begin{array}{l} -\chi^2 = \sum \; (E_{ij} - O_{ij})^2 \, / \, E_{ij} \\ &= (134\text{-}124)^2 / 134 + (58\text{-}68)^2 / 58 \\ &+ (76\text{-}86)^2 / 76 + (32\text{-}22)^2 / 32 = 7.45 \\ &- \text{df} = (\text{r-1}) \times (\text{c-1}) = (2\text{-}1) \times (2\text{-}1) = 1 \\ &- \text{p-value} = 0.0063 \end{split}$$

\dots 카이제곱 통계량의 p-값

지니 지수(Gini index)

$$1 - \sum_{j=1}^{r} p_j^2 = 2 \sum_{j < k} p_j p_k$$

high diversity, low purity

Pr(interspecific encounter) = $1-2(3/8)^2-2(1/8)^2 = .69$

Pr(interspecific encounter) = $1-(6/7)^2-(1/7)^2 = .24$

... 지니 지수(Gini index)

$$G = 1 - (210/300)^{2} - (90/300)^{2}$$

$$= .42$$

$$G = 1 - \sum (n_{j}/n_{0})^{2}$$

$$\Delta G = G$$

$$- G_{L} \times (n_{L}/n) - G_{R} \times (n_{R}/n)$$

$$G_L = 1 - (32/80)^2 - (48/80)^2$$
 $G_R = 1 - (178/220)^2 - (42/220)^2$
= .48 = .31

Improvement =
$$0.42 - 0.48 \times (80/300) - 0.31 \times (220/300)$$

= 0.065

엔트로피 지수(Entropy index)

$$H(p_1, p_2, ..., p_r) = -\sum_{i=1}^{r} p_i \log_2(p_i)$$

분류나무의 분리기준

- 카이제곱 통계량의 p-값 : CHAID, Kass(1980)
- 지니 지수 (Gini Index) : CART, BFOS(1984)

$$\Sigma\Sigma P(i)P(j) = \Sigma P(j)(1 - P(j)) = 1 - \Sigma P(j)^2$$
$$= 1 - \Sigma (n_j/n_0)^2$$

엔트로피 지수 (Entropy index): C4.5, Quinlan(1993)

$$-\Sigma P(i) \log_2 P(i)$$

✓ 카이제곱 통계량이 지니 지수나 엔트로피 지수에 비해서 보다 단순한 형태의 나무구조 를 가지게 하는 경향이 있음.

3.2.2 회귀나무(Regression Tree)

• 목표변수: 연속형(구간형; 양적변수)

회귀나무의 분리기준

ID	SEX	AGE	EDUC	SALES
001	F	25	12	122
005	M	47	12	161
003	F	49	Ь	214
004	F	3ь	12	207
005	M	29	15	183
		•••	•••	

구매금액

Mean 186.73 Std.Dev 54.28 1084 (100.00%) Predicted 186.73

1084명

SEX: M, F

Splitting Criteria

AGE : 18~64

EDUC: 6~18

F-통계량의 p-값

$$\overline{y} = 186.73$$
, $n = 1084$

$$\overline{y}_1 = 197.40, \quad n_1 = 632$$

$$\overline{y}_2 = 171.80, \quad n_2 = 452$$

$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \overline{y})^2 = \sum_{i=1}^{k} n_i (\overline{y}_i - \overline{y})^2 + \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \overline{y}_i)^2$$

전체제곱합(TSS) = 처리제곱합(SST) + 오차제곱합(SSE)

$$F = \frac{MST}{MSE} = \frac{SST/(k-1)}{SSE/(n-k)}$$

분산의 감소량(Variance reduction)

$$V = \sum (y_j - \overline{y})^2 / n = 54.28^2$$

$$V_L = 52.92^2$$

$$V_R = 52.67^2$$

$$\Delta V = V - V_L \times (n_L/n) - V_R \times (n_R/n)$$

$$= 54.28^2 - 52.92^2 \times (632/1084) - 52.67^2 \times (452/1084)$$

$$= 159.33$$

차례

- 3.1 의사결정나무의 개념
- 3.2 의사결정나무의 분리기준
- 3.3 의사결정나무분석의 특징
- 3.4 분석사례 1(분류나무): 신용평가 문제
- 3.5 분석사례 2(회귀나무): 평균임금의 예측
- 3.6 분석사례 3: 의사결정나무분석의 대화식 수행
- 3.7 의사결정나무모형에 대한 요약 테이블 작성
- 3.8 연습문제

3.3.1 의사결정나무분석의 장점

• 해석의 용이성

- ✓ 나무구조에 의해서 모형이 표현되기 때문에 모형을 사용자가 쉽게 이해할 수 있다.
- ✓ 새로운 개체에 대한 분류 또는 예측을 하기 위해서 뿌리마디로부터 끝마디까지를 단순히 따라가면 되기 때문에, 새로운 자료에 모형을 적합시키기가 매우 쉽다.
- ✓ 나무구조로부터 어떤 입력변수가 목표변수를 설명하기 위해서 더 중요한지를 쉽게 파악할 수 있다.

• 상호작용 효과의 해석

- ✓ 두 개 이상의 변수가 결합하여 목표변수에 어떻게 영향을 주는지를 쉽게 알 수 있다.
- ✓ 의사결정나무는 유용한 입력변수나 상호작용(interaction)의 효과 또는 비선형성 (nonlinearity)을 자동적으로 찾아내는 알고리즘이라고 할 수 있다.

• 비모수적 모형

- ✓ 의사결정나무는 선형성(linearity)이나 정규성(normality) 또는 등분산성(equal variance) 등의 가정을 필요로 하지 않는 비모수적인(nonparametric) 방법이다.
- ✓ 의사결정나무에서는 순서형 또는 연속형 변수는 단지 순위(rank)만 분석에 영향을 주기 때문에 이상치(outlier)에 민감하지 않다는 장점을 가지고 있다.

3.3.2 의사결정나무분석의 단점

• 비연속성

- ✓ 의사결정나무에서는 연속형 변수를 비연속적인 값으로 취급하기 때문에 분리의 경계점 근 방에서는 예측오류가 클 가능성이 있다.
- ✓ 최근에는 이러한 단점을 극복하기 위하여, 앞서 논의한 장점을 해치지 않고 모수적 모형이 나 신경망 등을 의사결정나무와 결합하는 방법들이 연구되고 있다.

• 선형성 또는 주효과의 결여

✓ 회귀모형에서는 회귀계수나 오즈비(odds ratio)를 이용하여 결과에 대한 유용한 해석을 얻을 수 있다. 즉, 선형모형(linear model)에서 주효과(main effect)는 다른 예측변 수와 관련시키지 않고서도 각 변수의 영향력을 해석할 수 있다는 장점을 가지고 있는데 의 사결정나무에서는 선형(linear) 또는 주효과(main effect) 모형에서와 같은 결과를 얻 을 수 없다는 한계점이 있다.

• 비안정성

- ✓ 분석용 자료(training data)에만 의존하는 의사결정나무는 새로운 자료의 예측에서는 불 안정(unstable)할 가능성이 높다. 이와 같은 현상은 분석용 자료의 크기가 너무 작은 경우와 너무 많은 가지를 가지는 의사결정나무를 얻는 경우에 빈번히 발생한다.
- ✓ 따라서 검증용 자료(test data)에 의한 교차타당성(cross validation) 평가나 가지치기에 의해서 안정성 있는 의사결정나무를 얻는 것이 바람직하다.

차례

- 3.1 의사결정나무의 개념
- 3.2 의사결정나무의 분리기준
- 3.3 의사결정나무분석의 특징
- 3.4 분석사례 1(분류나무): 신용평가 문제
- 3.5 분석사례 2(회귀나무): 평균임금의 예측
- 3.6 분석사례 3: 의사결정나무분석의 대화식 수행
- 3.7 의사결정나무모형에 대한 요약 테이블 작성
- 3.8 연습문제

3.4.1 분석흐름도 작성과 변수 탐색

변수 편집 메뉴

변수들의 분포에 대한 탐색

통계량 탐색(StatExplore) 노드 - 결과

멀티플롯(MultiPlot) 노드 - 결과

3.4.2 모형 평가와 결과 보기

모델비교(Model Comparison) 노드 - 결과

의사결정트리(Decision Tree) 노드 - 결과

의사결정트리(Decision Tree) 노드 - 결과: 트리

3.4.3 의사결정나무의 수정

다지분리(Multiway Splits)

의사결정트리 노드 - 결과: 트리(다지분리 적용)

모델 비교(Model Comparison) 노드 - 결과

정지규칙의 설정(사전 가지치기)

모델 비교(Model Comparison) 노드 - 결과

차례

- 3.1 의사결정나무의 개념
- 3.2 의사결정나무의 분리기준
- 3.3 의사결정나무분석의 특징
- 3.4 분석사례 1(분류나무): 신용평가 문제
- 3.5 분석사례 2(회귀나무): 평균임금의 예측
- 3.6 분석사례 3: 의사결정나무분석의 대화식 수행
- 3.7 의사결정나무모형에 대한 요약 테이블 작성
- 3.8 연습문제

분석사례 - 2를 위한 다이어그램

3.5.1 변수들의 분포에 대한 탐색

3.5.2 의사결정트리 노드의 실행과 결과 보기

의사결정트리(Decision Tree) 노드 - 결과: 트리

차례

- 3.1 의사결정나무의 개념
- 3.2 의사결정나무의 분리기준
- 3.3 의사결정나무분석의 특징
- 3.4 분석사례 1(분류나무): 신용평가 문제
- 3.5 분석사례 2(회귀나무): 평균임금의 예측
- 3.6 분석사례 3: 의사결정나무분석의 대화식 수행
- 3.7 의사결정나무모형에 대한 요약 테이블 작성
- 3.8 연습문제

의사결정트리(Decision Tree) 노드의 속성 패널

대화식 의사결정트리 윈도우

노드 분리 및 분리 규칙 편집 대화상자

규칙 편집 대화상자

Ám	DEBTINC - Interval 분리 규칙	×			
타켓 변수: BAD					
결측값 할당					
○ 특정 가지 1 ∨					
◉ 별도의 결측값 가지					
○ 모든 가지					
가지					
가지	분할점				
2	< 0,0000 < 11,7112				
3 4	 41,0928 45,1848 	*	DEDTING	T-4 H = 1 = 1 = 1	×
5	>= 45, 1848	ÀM.	DEBITING -	· Interval 분리 규칙	· ·
6	결측값	타겟 변수: BAD			
새로운 분할점: 미	가지 추가 가지 제거	결측값 할당			
MITE CER. U	2134 451 2134 0051	○ 특정 가지 1	<u> </u>		
	확인 취소	◉ 별도의 결측값 가지			
		○ 모든 가지			
		가지			
		가지		분할점	
		1 2	>=	0,0000 0,0000	
		3		결측값	
		새로운 분할점:		가지 추가 가지 제거	
		- 53 -		확인 취소 적용	재설정

노드 분석이 수행된 결과

의사결정트리(Decisiom Tree) 노드 - 결과

차례

- 3.1 의사결정나무의 개념
- 3.2 의사결정나무의 분리기준
- 3.3 의사결정나무분석의 특징
- 3.4 분석사례 1(분류나무): 신용평가 문제
- 3.5 분석사례 2(회귀나무): 평균임금의 예측
- 3.6 분석사례 3: 의사결정나무분석의 대화식 수행
- 3.7 의사결정나무모형에 대한 요약 테이블 작성
- 3.8 연습문제

의사결정나무모형에 대한 요약 테이블의 예

C		07 D 1	DEBTING	DELINO	CLAGE	3/ATTUE
Segment	n	%Bad	DEBTINC	DELINQ	CLAGE	VALUE
전체	4,172	20.0%	-	-	-	-
1	347	83.0%	43.5 이상	0.5 이상	_	_
	(8.3%)		Missing			
2	406	63.8%	43.5 이상	0.5 미만	178.2 미만	_
	(9.7%)		Missing	Missing	Missing	
3	237	29.1%	43.5 이상	0.5 미만	178.2 이상	_
	(5.7%)		Missing	Missing		
4	498	17.3%	43.5 미만	0.5 이상	_	_
	(11.9%)					
5	231	14.7%	43.5 미만	0.5 미만	_	49328.5 미만
	(5.5%)			Missing		Missing
6	476	12.4%	31.2 이상	0.5 미만	123.5 미만	49328.5 이상
	(11.4%)		43.5 이하	Missing	Missing	
7	100	7.0%	43.5 미만	0.5 미만	123.5 이상	209545 이상
	(2.4%)			Missing		
8	1,588	1.7%	43.5 미만	0.5 미만	123.5 이상	49328.5 이상
	(38.1%)			Missing		209545 미만
9	289	1.4%	31.2 미만	0.5 미만	123.5 미만	49328.5 이상
	(6.9%)			Missing	Missing	
중요도(Importance)		1.000	0.355	0.293	0.108	

차례

- 3.1 의사결정나무의 개념
- 3.2 의사결정나무의 분리기준
- 3.3 의사결정나무분석의 특징
- 3.4 분석사례 1(분류나무): 신용평가 문제
- 3.5 분석사례 2(회귀나무): 평균임금의 예측
- 3.6 분석사례 3: 의사결정나무분석의 대화식 수행
- 3.7 의사결정나무모형에 대한 요약 테이블 작성
- 3.8 연습문제

연습문제 3-8을 위한 다이어그램

