RO/KR 2 3. 1 1. 2004

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

출 원 번 호:

10-2003-0076354

Application Number

출 원 년 월 일 Date of Application 2003년 10월 30일

OCT 30, 2003

출 원

인 :

씨제이 주식회사

CJ Corp.

Applicant(s)

2004 년 10 월 28 일

특

COMMISSIONER

【서지사항】

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【참조번호】 0039

【제출일자】 2003.10.30

【국제특허분류】 C07D

【발명의 명칭】 4- 히드록시페닐글리신 유도체 및 그의 제조방법

【발명의 영문명칭】 4-Hydroxyphenylglycine derivatives and processes for the

preparation thereof

【출원인】

【명칭】 씨제이 주식회사

【출원인코드】 1-1998-003466-9

【대리인】

【성명】 이영필

【대리인코드】9-1998-000334-6【포괄위임등록번호】2003-042214-4

【대리인】

【성명】 이태호

【대리인코드】9-1998-000335-2【포괄위임등록번호】2003-042215-1

【대리인】

【성명】 오국진

【대리인코드】9-1999-000562-6【포괄위임등록번호】2003-042218-3

【발명자】

【성명의 국문표기】 서대원

【성명의 영문표기】 SEO,Dae Won

【주민등록번호】 710709-1480914

【우편번호】 435-050

【주소】 경기도 군포시 금정동 43-10번지 태원다세대 301호

【국적】 KR

【발명자】

정인화 【성명의 국문표기】

CHUNG, In Hwa 【성명의 영문표기】

690703-1788019 【주민등록번호】

449-813 【우편번호】

경기도 용인시 포곡면 영문리 인정베네치아빌리지 104동 804호 【주소】

【국적】 KR

【발명자】

이기봉 【성명의 국문표기】

【성명의 영문표기】 LEE, Ki Bong

590504-1268819 【주민등록번호】

360-210 【우편번호】

충청북도 청주시 상당구 율량동 현대아파트 201동 301호 【주소】

KR 【국적】

【발명자】

이인규 【성명의 국문표기】

LEE, In Kyu 【성명의 영문표기】

700807-1177816 【주민등록번호】

435-757 【우편번호】

경기도 군포시 오금동 율곡아파트 342동 1206호 【주소】

【국적】 KR 청구 【심사청구】

특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정에 의 【취지】

한 출원심사 를 청구합니다. 대리인

(인) 대리인 이영필

(인) 대리인 이태호

오국진 (인)

【수수료】

29,000 원 면 12 【기본출원료】

원 면 0 【가산출원료】 0 원 건 0 0

【우선권주장료】 원 항 365,000 8 【심사청구료】

394,000 원 【합계】

1. 요약서 명세서(도면)_1통 【첨부서류】

[요약서]

【요약】

본 발명은 세팔로스포린계 화합물의 제조용 중간체로서 유용한 하기 화학식 1의 4-히드 록시페닐글리신 유도체 및 그의 제조방법을 제공한다:

<화학식 1>

식 중, R은 아미노 보호기이다.

[색인어]

4-히드록시페닐글리신, 세프프로질, 세파트리진, 세파드록실

【명세서】

【발명의 명칭】

4-히드록시페닐글리신 유도체 및 그의 제조방법{4-Hydroxyphenylglycine derivatives and processes for the preparation thereof}

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

- 본 발명은 세팔로스포린계 화합물의 제조용 중간체로서 유용한 신규의 4-히드록시페닐글
 리신 유도체 및 그의 제조방법에 관한 것이다.
- 2> 세프프로질, 세파트리진 및 세파드록실 등의 경구용 세팔로스포린계 항생제는 하기에 나타낸 바와 같이, 4-히드록시페닐글리신 기를 공통적으로 포함한다.

- ↔ 상기에서, A가 -C=CH-CH₃일 경우 세프프로질이며, A가 1H-1,2,3-트리아졸-4-일-티오메틸일 경우 세파트리진이고, A가 -CH₃일 경우 세파드록실을 나타낸다.
- 종래에 4-히드록시페닐글리신의 반응성 유도체를 3-세펨 화합물과 반응시켜 세프프로질, 세파트리진 및 세파드록실 등의 경구용 세팔로스포린계 항생제를 제조하는 다양한 방법이 알려 져 있다.

예를 들어, 미국특허 제3,985,741호는 4-히드록시페닐글리신과 에틸클로로포메이트를 N-메틸모포린과 반응시켜 무수물로 제조한 후 7-아미노-디아세톡시-세팔로스포란산(7-ADCA)과 반응시켜 세파드록실을 제조하는 방법을 개시한 바 있으나, 수율 및 품질이 떨어져 사용하기 어려운 문제점이 있다.

미국특허 제4,520,022호, 제4,591,641호 및 제4,661,590호는 N,N'-디시클로헥실카보디이 미드를 아미노기가 보호된 4-히드록시페닐글리신과 세펨화합물의 반응 축합제로 사용하는 것을 개시하고 있으나, 반응 후 생성되는 N,N'-디시클로헥실우레아를 제거하기 어려워 공업적으로 사용하기 어려운 문제점이 있다.

- □국특허 제4,336,376호는 아미노기가 보호된 4-히드록시페닐글리신 염을 트리메틸실릴 -2-옥사졸리디논과 반응시켜 4-히드록시기를 보호한 후 아실클로라이드와 다시 반응시켜 4-히드록시페닐글리신 무수물을 제조한 후 7-아미노-디아세톡시-세팔로스포란산(7-ADCA)과 반응시켜 세파드록실을 제조하는 방법을 개시하고 있으나 먼저 실릴화를 실시해야하는 점과 반응의 불편함 등으로 산업화에 적용하기 어려운 문제점이 있다.
- 미국특허 제4,708,825호는 아미노기가 치환된 4-히드로시페닐글리신을 티오닐클로라이드
 와 염화수소 가스를 이용하여 4-히드록시페닐글리실 클로라이드 염산염을 제조한 후 세폠화합물과 반응시키는 방법을 개시하고 있으나 티오닐클로라이드와 염화수소 가스의 취급상의 문제점으로 산업화에 적용하기에는 쉽지 않다.
- 10> 미국특허 제3,925,418호, 제4,243,819호, 제4,464,307호 등은 4-히드록시페닐글리신을 제조하는 방법으로 과량의 포스겐을 사용하는 것을 개시하고 있으나 고독성인 포스겐의 취급, 반응 후 과량의 잔류 포스겐의 제거 및 반응조건 등의 작업상의 문제점으로 대량 생산에 적용하기에 어려움이 있다.

▷ 또한, 4-히드록시페닐글리신을 반응성 무수물로 제조하기 위한 방법으로 포스포러스 펜 타클로라이드, 포스포러스 옥시클로라이드 및 티오닐 클로라이드 등을 이용한 산 염화물의 제조, 이미다졸, 머캅토벤조티아졸 및 히드록시 벤조트리아졸 등을 이용한 활성 에스테르의 제법 등이 개시된 바 있으나, 산 염화물의 경우 히드록시기의 영향에 의해 반응성이 떨어지며, 활성 에스테르의 경우에는 반응성이 떨어지며, 부반응이 일어나는 문제점이 있다.

기타, 대한민국 특허공개 제2002-69431호, 제2002-69432호, 제2002-69437호, 제2002-69440호에서는 4-히드록시페닐글리신의 피발로일 또는 숙신이미드 유도체의 제조방법 및이를 사용하여 세프프로질 등의 세펨 화합물을 제조하는 방법이 개시된 바 있다.

【발명이 이루고자 하는 기술적 과제】

13> 본 발명은 상기 선행기술의 문제점을 해결하기 위한 것으로, 본 발명은 세팔로스포린계 항생제를 고수율 및 고순도로 간편히 제조할 수 있는 반응성 중간체 즉, 신규의 4-히드록시페 닐글리신 유도체 및 그의 제조방법을 제공한다.

14> 따라서, 본 발명은 세팔로스포린계 화합물의 제조용 중간체로서 유용한 신규의 4-히드록 시페닐글리신 유도체를 제공하는 것을 목적으로 한다.

또한, 본 발명의 목적은 상기 화합물을 제조하는 방법을 제공하는 것을 포함한다.
[발명의 구성 및 작용]

본 발명의 일 태양에 따라, 세프프로질, 세파드록실, 세파트리진 등의 4-히드록시페닐글리신 기를 갖는 세팔로스포린계 화합물의 제조용 중간체로서 유용한 화합물이 제공된다. 즉, 본 발명은 하기 화학식 1의 화합물을 제공한다:

【화학식 1】

> 식 중, R은 아미노 보호기이다.

상기 본 발명의 화합물은 바람직하게는 무수물 형태이며, 무수물 형태의 화학식 1의 화합물은 최종적으로 세팔로스포린계 항생제를 제조하는데 유용하게 사용될 수 있다.

상기 아미노 보호기는 세팔로스포린계 항생제 제조시 통상적으로 사용될 수 있는 아미노 보호기를 포함하며, 예를 들어 포밀, 아세틸, 벤질, 벤질리덴, 디페닐메틸, 트리페닐메틸, 트 리클로로에톡시카보닐, t-부톡시카보닐, 2-메톡시카보닐-1-메틸-비닐, 2-에톡시카보닐-1-메틸-비닐 등을 포함한다. 상기 본 발명에 따른 화합물 중, R은 2-에톡시카보닐-1-메틸-비닐인 화합 물이 경제성, 취급성, 및 최종 생성물의 수율 등의 측면에서 더욱 바람직하며, 에틸 아세토아 세테이트를 사용하여 2-에톡시카보닐-1-메틸-비닐 기를 도입할 수 있다.

》 상기 본 발명에 따른 화학식 1의 화합물은 세팔로스포린계 화합물 합성시 사용되는 통상의 유기용매, 예를 들어 메틸렌클로라이드, 아세토니트릴등에 대한 용해도가 매우 우수하므로, 별도로 여과 및 건조 등의 분리공정을 거치지 않고 직접 반응용액상으로 다음 공정(예를 들어, 아실화 반응)을 수행할 수 있다.

본 발명의 다른 태양에 따라, 상기 화학식 1의 화합물을 제조하는 방법이 제공된다. 즉,
 화학식 2의 화합물과 디클로로트리페닐포스포란을 염기 존재하에서 반응시키는 단계를 포함하는 화학식 1의 화합물의 제조방법이 제공된다:

<23> <화학식 1>

식 중, R은 아미노 보호기이고, R¹은 수소, 나트륨, 또는 포타슘이다.

- 상기 화학식 2의 화합물은 4-히드록시페닐글리신에 통상의 아미노 보호 반응을 수행함으로써, 원하는 아미노 보호기(예를 들어, 상기에서 언급한 아미노 보호기)를 갖는 화합물로 제조할 수 있다.
- 본 발명의 제조방법에 있어서, 디클로로트리페닐포스포란은 화학식 2의 화합물 1 당량에 대하여 1 ~ 5 당량, 바람직하게는 1.1 ~ 1.5 당량을 반응시키는 것이 바람직하다. 또한, 화학식 2의 화합물과 디클로로트리페닐포스포란과의 반응은 디클로로메탄, 아세토니트릴, 테트라하이드로퓨란, 및 이들의 혼합물로 이루어진 군으로부터 선택된 유기용매 중에서 반응시키는 것이 바람직하다. 또한, 상기 반응은 -30 ~ 20 ℃, 바람직하게는 -5 ~ 5℃의 반응온도에서 1~ 5 시간, 바람직하게는 1 ~ 2 시간 동안 수행할 수 있다.
- 본 발명의 제조방법에서 사용가능한 염기는 트리에틸아민, 디에틸아민, n-트리부틸아민, N,N-디메틸아닐린, 또는 피리딘을 포함하며, 이중 트리에틸아민이 바람직하게 사용될 수 있다.
 염기의 사용량은 상기 화학식 2의 화합물 1당량에 대하여 약 1 ~ 1.5 당량일 수 있으며, 1.1
 ~ 1.3 당량이 더욱 바람직하다.

상기 디클로로트리페닐포스포란은 트리페닐포스핀과 헥사클로로에탄을 반응시켜 얻어질 수 있으며, 이를 반응식으로 나타내면 다음 반응식 1과 같다.

트리페닐포스포란

디클로로트리페닐포스포란

- 상기 반응식 1에 따른 반응은 유기용매 중에서 약 -5 ~ 5 ℃ (바람직하게는 약 0 ℃)에서 약 1 ~ 3 시간 (바람직하게는 약 2시간) 동안 수행할 수 있다. 사용가능한 유기용매는 테트라하이드로퓨란, 디클로로메탄, 클로로포름, 사염화탄소, 디메틸포름아미드, 디메틸아세트아미드, 1,4-디옥산, 또는 아세토니트릴 등을 포함하며, 이 중 디클로로메탄 또는 디메틸아세트 아미드가 바람직하게 사용될 수 있다.
- 》 상기 트리페닐포스핀과 헥사클로로에탄을 반응시키는 단계 및 화학식 2의 화합물과 디클로르티페닐포스포란을 염기 존재하에서 반응시키는 단계는 별도의 분리공정 없이 동일 반응용기에서 수행되는 것(즉, 동일-반응용기 반응, one-pot reaction)이 바람직하다. 이를 반응식으로 나타내면 반응식 2와 같다.

- 이하, 본 발명을 실시예를 통하여 더욱 상세히 설명한다. 그러나, 이들 실시예는 본 발명을 예시하기 위한 것으로 본 발명의 범위를 제한하는 것은 아니다.
- > 실시예 1. (2-에톡시카보닐-1-메틸-비닐아미노)-(4-히드록시페닐)-아실옥시포스포니움 클로라이드의 제조

7> <u>단계 A</u>

8> 트리페닐포스핀 9.9g (0.038mol)과 헥사클로로에탄 8.8g (0.038mol)을 메틸렌클로라이드 100ml에 차례로 투입하고 0 ℃에서 2시간 동안 반응시킨 후, 반응온도를 -5 ℃로 냉각하고 포타슘 (2-에톡시카보닐-1-메틸-비닐아미노)-(4-히드록시페닐)-아세테이트 10g (0.031mol) 및 트리에틸아민 8g을 차례로 투입하고 2시간 동안 교반하였다.

39> <u>단계 B</u>

- 단계 A에서 석출된 결정을 여과하여 메틸렌클로라이드 20m1로 세척한 후, 얻어진 여과액을 감압증류하여 용매를 제거한 다음, 석출된 결정을 여과하고 진공건조하여 백색의 표제화합물 17.5g (96.7%)을 수득하였다.
- $H-NMR(δ, CHC1_3-d_1)$ 1.31(3H, d, 8.6Hz, $-OCH_2CH_3$), 1.75(1H, m, -NHCHCCO-), 4.23(2H, m, $-OCH_2CH_3$), 4.51(1H, d, 8.3Hz, -NHCHCCO-), 4.81(1H, d, 8.0Hz, -NHCH(Ph)CO-), 6.63(2H, d, 8.0Hz), 6.91(2H, d, 8.1Hz), 7.31(6H, m), 7.65(9H, m)
- ◇ 실시예 2. 7-[2-아미노-2-(4-히드록시페닐)아세트아미도]-3-[프로펜-1-일]-3-세폠-4-카르복실
 산(세프프로질)의 제조
- 실시예 1의 단계 A에서 얻어진 반응액을 -40 ℃로 냉각하고,
 7-아미노-3-[프로펜-1-일]-3-세펨-4-카르복실산 6.88g (0.029mol)을 메틸렌클로라이드 40ml,
 물 10ml와 트리에틸아민 6.5g에 용해시킨 용액을 상기 -40 ℃로 냉각된 용액에 천천히 1시간 동안 적가하였다.
- 4> 적가가 완료된 후, 같은 온도에서 2시간 동안 반응시킨 후 반응액의 온도를 0 ℃로 조절하고 생성된 불용성 고체를 여과하였다. 여액을 반응기로 이송하여 6N HCl 20ml를 가한 후 1시간 교반하였다. 반응액에 10% NaOH를 가하여 pH를 3.2로 조절하여 2시간 동안 0 ℃에서 교반한후 여과하여 백색의 표제화합물 9.6g(83%)을 수득하였다.
- H-NMR(δ , D_2O-d_2): 1.65(3H, d, 8.6Hz, -CH=CH<u>CH_3(cis)</u>), 1.81(0.21H, d, 8.6Hz, -CH=CH<u>CH_3(trans)</u>), 3.22(1H, d, 18Hz, 2-H), 3.55(1H, d, 18Hz, 2-H), 5.15(1H, d, 4.6Hz,

6-H), 5.66(1H, d, 4.6Hz, 7-H), 5.75(1H, m, vinyl-H), 5.96(1H, m, vinyl-H), 6.91(2H, d, 8.0Hz, phenyl-H), 7.38(2H, d, 8.0Hz, phenyl-H)

【발명의 효과】

본 발명에 따른 4-히드록시페닐글리신 유도체는 일반적인 반응조건에서 쉽게 제조할 수 있으며, 추가의 분리나 정제과정을 거치지 않고 고수율 및 고순도로 세팔로스포린계 항생제 제조용 중간체로 사용할 수 있다.

【특허청구범위】

【청구항 1】

하기 화학식 1의 화합물:

<화학식 1>

식 중, R은 아미노 보호기이다.

【청구항 2】

제1항에 있어서, 무수물 형태인 것을 특징으로 하는 화합물.

【청구항 3】

화학식 2의 화합물과 디클로로트리페닐포스포란을 염기 존재하에서 반응시키는 단계를 포함하는 화학식 1의 화합물의 제조방법:

<화학식 1>

<화학식 2>

식 중, R은 아미노 보호기이고, R¹은 수소, 나트륨, 또는 포타슘이다.

【청구항 4】

제3항에 있어서, 화학식 2의 화합물 1 당량에 대하여 디클로로트리페닐포스포란 1.1 ~ 1.5 당량을 반응시키는 것을 특징으로 하는 제조방법.

【청구항 5】

제3항에 있어서, 디클로로메탄, 아세토니트릴, 테트라하이드로퓨란, 및 이들의 혼합물로이루어진 군으로부터 선택된 유기용매 중에서 반응시키는 것을 특징으로 하는 제조방법.

【청구항 6】

제3항에 있어서, 상기 염기가 트리에틸아민, 디에틸아민, n-트리부틸아민, N,N-디메틸아 닐린, 및 피리딘으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 제조방법.

【청구항 7】

제3항에 있어서, 상기 디클로로트리페닐포스포란이 트리페닐포스핀과 헥사클로로에탄을 반응시켜 얻어진 것임을 특징으로 하는 제조방법.

【청구항 8】

제7항에 있어서, 상기 트리페닐포스핀과 핵사클로로에탄을 반응시키는 단계 및 화학식 2의 화합물과 디클로로트리페닐포스포란을 염기 존재하에서 반응시키는 단계가 동일 반응용기에서 수행되는 것을 특징으로 하는 제조방법.

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/KR04/002770

International filing date: 30 October 2004 (30.10.2004)

Document type: Certified copy of priority document

Document details: Country/Office: KR

Number: 10-2003-0076354

Filing date: 30 October 2003 (30.10.2003)

Date of receipt at the International Bureau: 22 December 2004 (22.12.2004)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.