

planetmath.org

Math for the people, by the people.

partial mapping

Canonical name PartialMapping
Date of creation 2013-03-22 13:59:31
Last modified on 2013-03-22 13:59:31
Owner mathcam (2727)

Last modified by mathcam (2727)

Numerical id 5

Author mathcam (2727)

Entry type Definition Classification msc 03E20 Let X_1, \dots, X_n and Y be sets, and let f be a function of n variables: $f: X_1 \times X_2 \times \dots \times X_n \to Y$. $x_i \in X_i$ for $2 \le i \le n$. The induced mapping $a \mapsto f(a, x_2, \dots, x_n)$ is called the *partial mapping* determined by f corresponding to the first variable.

In the case where n=2, the map defined by $a\mapsto f(a,x)$ is often denoted $f(\cdot,x)$. Further, any function $f:X_1\times X_2\to Y$ determines a mapping from X_1 into the set of mappings of X_2 into Y, namely $\overline{f}:x\mapsto \underline{(y\mapsto f(x,y))}$. The converse holds too, and it is customary to identify f with \overline{f} . Many of the "canonical isomorphisms" that we come across (e.g. in multilinear algebra) are illustrations of this kind of identification.