Assignment Task1

August 2, 2024

```
[86]: import pandas as pd
      import numpy as np
      import matplotlib.pyplot as plt
      import seaborn as sns
      import statsmodels.api as sm
      from statsmodels.formula.api import ols
      data=pd.read_csv('C:\\Users\\THINKPAD\\Downloads\\transfer_brazil.csv')
      print(data)
      print(f"Number of observations: {data.shape[0]}")
      print(data.dtypes)
      print(f"Number of observations: {len(data)}")
      new_column_names = {
          'id': 'Municipal ID',
          'state': 'State',
          'region': 'Major region',
          'transfer': 'Transfer',
          'pop82': 'Population 1982',
          'literate92': 'Literacy Rate 1992',
          'educ80': 'Education 1980',
          'educ91': 'Education 1991',
          'poverty80': 'Poverty Rate 1980',
          'poverty91': 'Poverty Rate 1991'
      }
      # Q1 Rename the columns
      print("\nQuestion 1:")
      data = data.rename(columns=new_column_names)
      print(data.head())
      print("\nAll column names:")
      print(data.columns.tolist())
      #Q2 Count string (object) and numeric columns
```

```
print("\nQuestion 2:")
string_columns = data.select_dtypes(include=['object']).columns
numeric_columns = data.select_dtypes(include=['int64', 'float64']).columns
print(f"Total number of variables: {len(data.columns)}")
print(f"Number of string variables: {len(string_columns)}")
print(f"Number of numeric variables: {len(numeric_columns)}")
# Print the names of string and numeric variables
print("\nString variables:")
print(list(string_columns))
print("\nNumeric variables:")
print(list(numeric_columns))
# Q3 Count variables with missing values
print("\nQuestion 3:")
data = data.rename(columns=new_column_names)
# Check for missing values
missing_values = data.isnull().sum()
print("Variables with missing values:") # Print results
for column, count in missing_values.items():
   if count > 0:
       print(f"{column}: {count} missing values")
# If there are no missing values
if missing_values.sum() == 0:
   print("There are no missing values in any of the variables.")
# Total number of missing values
total_missing = missing_values.sum()
print(f"\nTotal number of missing values across all variables: {total_missing}")
# Print summary of missing values
print("\nSummary of missing values:")
print(data.isnull().sum().to_string())
print("Question 4:")
# Check if all regions are represented
regions = ['N', 'NE', 'CO', 'SE', 'S']
represented regions = data['Major region'].unique()
all_regions_represented = all(region in represented_regions for region in_
 ⇔regions)
print(f"Are all five regions represented? {all regions represented}")
```

```
# Count municipalities in each region
region_counts = data['Major region'].value_counts().sort_index()
print("\nNumber of municipalities in each region:")
for region, count in region_counts.items():
   print(f"{region}: {count}")
# Question 5
print("\nQuestion 5:")
# Calculate mean, median, and standard deviation of population
mean_population = data['Population 1982'].mean()
median_population = data['Population 1982'].median()
std_population = data['Population 1982'].std()
print(f"Mean population: {mean_population:.2f}")
print(f"Median population: {median_population:.2f}")
print(f"Standard deviation of population: {std_population:.2f}")
# 6. Define large_pop variable
print("\nQuestion 6:")
pop_column = 'Population 1982' # Adjust this if the column name is different
q25, q75 = data[pop column].quantile([0.25, 0.75])
data['large_pop'] = np.where(data[pop_column] > q75, 1, np.
 ⇒where(data[pop column] < q25, 0, np.nan))
print(data)
# 7. Bar plot of mean literacy rate across regions
print("\nQuestion 7:")
plt.figure(figsize=(10, 6))
data.groupby('Major region')['Literacy Rate 1992'].mean().plot(kind='bar')
plt.title('Mean Literacy Rate in 1992 by Region')
plt.xlabel('Region')
plt.ylabel('Mean Literacy Rate')
plt.show()
# 8. Box plot for education years
print("\nQuestion 8:")
plt.figure(figsize=(10, 6))
data[['Education 1980', 'Education 1991']].boxplot()
plt.title('Distribution of Education Years in 1980 and 1991')
plt.ylabel('Years of Education')
plt.show()
```

```
# 9. Scatter plot for literacy rate and poverty rate
print("\nQuestion 9:")
plt.figure(figsize=(10, 6))
plt.scatter(data['Poverty Rate 1980'], data['Literacy Rate 1992'])
plt.xlabel('Poverty Rate in 1980')
plt.ylabel('Literacy Rate in 1992')
plt.title('Literacy Rate vs Poverty Rate')
plt.show()
# Identify numeric columns
numeric_columns = data.select_dtypes(include=[np.number]).columns
for col in numeric_columns:
   data[col] = data[col].fillna(data[col].mean())
# 10. Simple regression
print("\nQuestion 10:")
X = sm.add_constant(data['Transfer'])
model_simple = sm.OLS(data['Literacy Rate 1992'], X).fit()
predictions = model_simple.predict(X)
plt.plot(data['Transfer'], predictions, color='red')
plt.xlabel('Government Transfer')
plt.ylabel('Literacy Rate 1992')
plt.show()
# Print interpretations
print("Simple Regression Interpretation:")
print(f"Constant: {model_simple.params['const']:.2f} - Expected literacy rate_
 ⇔without transfers")
print(f"Transfer coefficient: {model_simple.params['Transfer']:.2f} - Change in_
 ⇔literacy rate for each unit of transfer")
# 11. Multiple regression
print("\nQuestion 11:")
X = sm.add_constant(data[['Transfer', 'Population 1982', 'Poverty Rate 1980', |
y = data['Literacy Rate 1992']
# Fit the multiple regression model
model_multiple = sm.OLS(y, X).fit()
# Predict values
predictions = model multiple.predict(X)
# Plotting the graph
plt.figure(figsize=(10, 6))
```

```
plt.scatter(y, predictions, alpha=0.5)
plt.xlabel('Actual Literacy Rate 1992')
plt.ylabel('Predicted Literacy Rate 1992')
plt.title('Actual vs Predicted Literacy Rate 1992')
plt.plot([y.min(), y.max()], [y.min(), y.max()], color='red', linestyle='--',u
 ⇔linewidth=2) # Line y=x for reference
plt.show()
print("\nMultiple Regression Interpretation:")
print(f"Transfer coefficient: {model_multiple.params['Transfer']:.2f} - Change_
 →in literacy rate for each unit of transfer, holding other factors constant")
# 12. Heterogeneous effects for poor vs non-poor municipalities
print("\nQuestion 12:")
data['poor'] = (data['Poverty Rate 1980'] > data['Poverty Rate 1980'].median()).
 →astype(int)
data['Transfer_poor'] = data['Transfer'] * data['poor']
# Define the predictors and the response variable
X = sm.add_constant(data[['Transfer', 'poor', 'Transfer_poor']])
y = data['Literacy Rate 1992']
# Fit the model
model_hetero = sm.OLS(y, X).fit()
# Predict values
predictions = model_hetero.predict(X)
# Plotting actual vs predicted values
plt.figure(figsize=(10, 6))
plt.scatter(y, predictions, alpha=0.5)
plt.xlabel('Actual Literacy Rate 1992')
plt.ylabel('Predicted Literacy Rate 1992')
plt.title('Actual vs Predicted Literacy Rate 1992 with Heterogeneous Effects')
plt.plot([y.min(), y.max()], [y.min(), y.max()], color='red', linestyle='--',__
 →linewidth=2) # Line y=x for reference
plt.show()
# Plotting the interaction effect
plt.figure(figsize=(10, 6))
plt.scatter(data['Transfer'], y, alpha=0.5, label='Actual')
plt.scatter(data['Transfer'], predictions, alpha=0.5, label='Predicted', u

¬color='red')
plt.xlabel('Government Transfer')
plt.ylabel('Literacy Rate 1992')
plt.title('Interaction Effect of Transfer and Poverty on Literacy Rate 1992')
```

```
plt.legend()
plt.show()
print("\nHeterogeneous Effects Interpretation:")
print(f"Transfer effect for non-poor: {model_hetero.params['Transfer']:.2f}")
print(f"Additional transfer effect for poor: {model_hetero.
 →params['Transfer_poor']:.2f}")
print(f"Total transfer effect for poor: {model_hetero.params['Transfer'] +__

→model_hetero.params['Transfer_poor']:.2f}")
# Q13. Heterogeneous impacts by large_pop
print("\nQuestion 13:")
data['Transfer_large_pop'] = data['Transfer'] * data['large_pop']
# Define the predictors and the response variable
X = sm.add_constant(data[['Transfer', 'large_pop', 'Transfer_large_pop']])
y = data['Literacy Rate 1992']
model_hetero_large_pop = sm.OLS(y, X).fit() # Fit the model
print(model_hetero_large_pop.summary())
# Determine the impact of transfers in large vs small municipalities
print("Impact of transfers in large municipalities:", model_hetero_large_pop.
 params['Transfer'] + model_hetero_large_pop.params['Transfer_large_pop'])
print("Impact of transfers in small municipalities:", model_hetero_large_pop.
 →params['Transfer'])
# Q14. Transform data to state level
print("\nQuestion 14:")
numeric_cols = data.select_dtypes(include='number').columns # Identify numeric_
state_data = data.groupby('State')[numeric_cols].mean().reset_index()
print(state_data.shape) # Should have 25 observations (one for each state)
print(state_data.head()) # Display the first few rows to verify
state_data.to_csv('C:\\Users\\THINKPAD\\Desktop\\transformed_state_data.csv',_
 index=False) # Save the transformed dataset to a new file if needed
# Q15. Reshape data
print("\nQuestion 15:")
id columns = ['State'] # Replace with actual identifier column if different
value_columns = ['Transfer', 'Population 1982', 'Poverty Rate 1980', 'Education |
 →1980', 'Literacy Rate 1992']
```

```
long_data = pd.melt(data, id_vars=id_columns, value_vars=value_columns, u

_var_name='variable', value_name='value') # Create a new DataFrame with theu

_year extracted from the column names

print(long_data.shape)# Verify the number of observations

print(long_data.head())# Print the reshaped dataset
```

	Unnamed: 0	id s	state	region	transfer	pop82	literate92	educ80	\
0	0	60	AC	N	1.0	19613	0.477099	1.0	
1	1	65	AC	N	0.0	9343	0.718631	0.9	
2	2	70	AC	N	0.0	9728	0.732984	0.8	
3	3	71	AC	N	1.0	23592	0.552023	1.0	
4	4	73	AC	N	1.0	14701	0.689840	1.5	
•••		•••	•••	•••	•••	•••	•••		
1781	1781	5540	GO	CO	1.0	11358	0.897674	2.4	
1782	1782	5543	GO	CO	1.0	19807	0.942466	2.1	
1783	1783	5546	GO	CO	0.0	9172	0.938462	1.9	
1784	1784	5556	GO	CO	0.0	12788	0.904412	2.7	
1785	1785	5560	GO	CO	0.0	7929	0.925258	2.5	
	educ91 p	overty8	30 na	verty91					
0	2.480469	0.795	-	0.75124					
1	3.216730	0.412		0.66797					
2	3.966312	0.413		0.53811					
0	0.005000	0 400	20	0 00040					

3 3.005882 0.4808 0.69243 0.5765 0.59126 4 3.887701 1781 5.757010 0.4395 0.45988 0.47847 1782 5.117808 0.6323 1783 5.453846 0.5226 0.54856 1784 6.661765 0.5792 0.41773 1785 5.160622 0.5472 0.46174

[1786 rows x 11 columns]
Number of observations: 1786

Unnamed: 0 int64 id int64 object state region object float64 transfer pop82 int64 literate92 float64 educ80 float64 educ91 float64 poverty80 float64 poverty91 float64

dtype: object

Number of observations: 1786

Question 1: Unnamed: 0 Municipal ID State Major region Transfer Population 1982 \ 0 60 AC N 1.0 19613 0 1 65 ACN 0.0 9343 1 2 2 N 70 AC0.0 9728 3 3 71 ACN 23592 1.0 4 73 ACN 1.0 14701 Literacy Rate 1992 Education 1980 Education 1991 Poverty Rate 1980 \ 2.480469 0 0.477099 1.0 0.7950 0.9 1 0.718631 3.216730 0.4121 2 0.8 0.4131 0.732984 3.966312 3 1.0 0.552023 3.005882 0.4808 4 1.5 0.689840 3.887701 0.5765 Poverty Rate 1991 0 0.75124 0.66797 1 2 0.53811

All column names:

['Unnamed: 0', 'Municipal ID', 'State', 'Major region', 'Transfer', 'Population 1982', 'Literacy Rate 1992', 'Education 1980', 'Education 1991', 'Poverty Rate 1980', 'Poverty Rate 1991']

Question 2:

3

4

Total number of variables: 11 Number of string variables: 2 Number of numeric variables: 9

0.69243

0.59126

String variables:

['State', 'Major region']

Numeric variables:

['Unnamed: 0', 'Municipal ID', 'Transfer', 'Population 1982', 'Literacy Rate 1992', 'Education 1980', 'Education 1991', 'Poverty Rate 1980', 'Poverty Rate 1991']

Question 3:

Variables with missing values:

Literacy Rate 1992: 1 missing values Education 1980: 1 missing values Education 1991: 1 missing values Poverty Rate 1980: 1 missing values

Total number of missing values across all variables: 4

Summary of missing	values:		
Unnamed: 0	0		
Municipal ID	0		
State	0		
Major region	0		
Transfer	0		
Population 1982	0		
Literacy Rate 1992	1		
Education 1980	1		
Education 1991	1		
Poverty Rate 1980	1		
Poverty Rate 1991	0		

Question 4:

Are all five regions represented? True

Number of municipalities in each region:

CO: 128 N: 104 NE: 688 S: 340 SE: 526

Question 5:

Mean population: 13775.37 Median population: 12920.00

Standard deviation of population: 4475.26

Question 6:

quest.	1011 0.							
	Unnamed: 0 Mun	icipal ID	State	Major	region	Transfer	Population 1982	\
0	0	60	AC		N	1.0	19613	
1	1	65	AC		N	0.0	9343	
2	2	70	AC		N	0.0	9728	
3	3	71	AC		N	1.0	23592	
4	4	73	AC		N	1.0	14701	
•••	•••	•••		•••	•••		•••	
1781	1781	5540	GO		CO	1.0	11358	
1782	1782	5543	GO		CO	1.0	19807	
1783	1783	5546	GO		CO	0.0	9172	
1784	1784	5556	GO		CO	0.0	12788	
1785	1785	5560	GO		CO	0.0	7929	
	Literacy Rate 1	.992 Educa	ation 1	.980 I	Education	1991 Po	verty Rate 1980	\
0	0.477	099		1.0	2.4	80469	0.7950	
1	0.718	8631		0.9	3.2	16730	0.4121	
2	0.732	984		0.8	3.9	66312	0.4131	
3	0.552	2023		1.0	3.0	05882	0.4808	
4	0.689	840		1.5	3.8	87701	0.5765	

•••	•••	•••	•••	•••
1781	0.897674	2.4	5.757010	0.4395
1782	0.942466	2.1	5.117808	0.6323
1783	0.938462	1.9	5.453846	0.5226
1784	0.904412	2.7	6.661765	0.5792
1785	0.925258	2.5	5.160622	0.5472

	Poverty	Rate	1991	large	_pop
0		0.7	75124		1.0
1		0.6	6797		0.0
2		0.5	3811		0.0
3		0.6	59243		1.0
4		0.5	9126		NaN
				•••	
1781		0.4	15988		NaN
1782		0.4	17847		1.0
1783		0.5	4856		0.0
1784		0.4	1773		NaN
1785		0.4	16174		0.0

[1786 rows x 12 columns]

Question 7:

Question 8:

Question 9:

Question 10:

Simple Regression Interpretation:

Constant: 0.79 - Expected literacy rate without transfers

Transfer coefficient: -0.01 - Change in literacy rate for each unit of transfer

Question 11:

Multiple Regression Interpretation: Transfer coefficient: -0.01 - Change in literacy rate for each unit of transfer, holding other factors constant

Question 12:

Heterogeneous Effects Interpretation: Transfer effect for non-poor: -0.00

Additional transfer effect for poor: -0.01

Total transfer effect for poor: -0.01

Question 13:

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations:	OLS Squares aug 2024 21:05:21 1786	Prob (F-stat Log-Likeliho AIC:	0.008 0.006 4.588 0.00332 696.75 -1386.		
Df Residuals: Df Model:		1782 3	BIC:		-1364.
Covariance Type:	nc	nrobust			
======================================		:=======			
=====					
0.975]	coef	std er	r t	P> t	[0.025
const	0.7934	0.00	8 102.179	0.000	0.778
0.809					
Transfer	0.0492	0.01	9 2.597	0.009	0.012
0.086					
large_pop 0.039	-0.0039	0.02	2 -0.177	0.860	-0.047
Transfer_large_pop	-0.0739	0.03	1 -2.382	0.017	-0.135
Omnibus: Prob(Omnibus): Skew: Kurtosis:		216.128 0.000 -0.615 2.246	Jarque-Bera (JB):		0.519 154.976 2.23e-34 13.6

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Impact of transfers in large municipalities: -0.024757240605623905 Impact of transfers in small municipalities: 0.04918450244204748

Question 14:

(25, 14)

State Unnamed: 0 Municipal ID Transfer Population 1982 \ 0 AC 2.0 67.800000 0.600000 15395.400000

```
1
     AL
              524.0
                      1696.301887 0.622642
                                                 14121.622642
2
     AM
               17.0
                       106.440000 0.560000
                                                 14853.640000
3
     ΑP
               67.5
                       300.000000
                                    0.500000
                                                 15023.000000
4
     BA
              689.0
                      2031.453659 0.546341
                                                 14539.000000
   Literacy Rate 1992 Education 1980
                                        Education 1991
                                                       Poverty Rate 1980 \
0
             0.634115
                              1.040000
                                              3.311419
                                                                  0.535500
1
             0.512070
                              0.815094
                                              2.889367
                                                                  0.807706
2
             0.592499
                              1.164000
                                              2.851951
                                                                  0.640680
3
             0.723053
                              1.950000
                                              4.067100
                                                                  0.598300
4
             0.656047
                             0.956585
                                              3.205314
                                                                  0.728363
   Poverty Rate 1991
                                            Transfer_poor
                                                           Transfer_large_pop
                      large_pop
                                      poor
0
                       0.500112
                                                 0.200000
            0.648202
                                  0.200000
                                                                      0.500112
1
                       0.547423
                                                 0.603774
                                                                      0.471867
            0.823275
                                  0.981132
2
            0.737751
                       0.560314
                                  0.640000
                                                 0.400000
                                                                      0.420157
3
            0.649590
                       0.500000
                                  0.500000
                                                 0.000000
                                                                      0.500000
            0.811631
                       0.549045 0.897561
                                                 0.487805
                                                                      0.429399
Question 15:
(8930, 3)
  State variable
                  value
     AC Transfer
                     1.0
0
```

0.0

0.0

1.0

1.0

[]:

1

2

3

4

AC

AC

AC

Transfer

Transfer

Transfer

AC Transfer