Ministère de l'Éducation Nationale Centre National des Examens et Concours de l'Éducation

EXAMEN: Baccalauréat Général

Série: Terminale Sciences Expérimentales (TSExp)

Épreuve: Mathématiques

République du Mali Un Peuple-Un But-Une Foi

BAC 2021 SESSION : Août 2021 Coefficient: 3

1.....(6 pts)

Durée: 3 h

On considère, dans $\mathbb C$, le polynôme p(z) suivant :

$$p(z) = z^3 + 9iz^2 + 2(-11+6i)z - 3(12+4i).$$

- 1. Démontre que l'équation p(z) = 0 admet une solution réelle notée z_1 que l'on déterminera.
- 2. Détermine le polynôme q(z) tel que $p(z) = (z z_1)q(z)$.
- 3. Démontre que l'équation q(z) = 0 admet une solution imaginaire pure notée z_2 que l'on déterminera.
- 4. Résous, dans \mathbb{C} , l'équation p(z) = 0.
- 5. On note z_3 , la troisième solution de l'équation p(z) = 0.

Démontre que les points A, B et C du plan complexe d'affixes respectives z_1 , z_2 et z_3 sont alignés.

Exercice 2.....(5 pts)

Soit la suite (u_n) définie par : $\begin{cases} u_1 = -2 \\ u_{n+1} = \frac{u_n}{1 - u_n} \cdot (v_n) \text{ est la suite définie par : } v_n = \frac{u_n + 1}{u_n} . \end{cases}$

- 1. Exprime v_{n+1} en fonction de v_n .
- 2. Déduis-en la nature de la suite (v_n) .
- 3. Exprime v_n en fonction de n puis u_n en fonction de n.
- 4. On pose $S_n = v_1 + v_2 + \dots + v_n$
 - a. Exprime S_n en fonction de n.
 - b. Calcule la somme des 30 premiers termes de la suite (v_n) .

Problème.....(9 pts)

I. Soit la fonction g définie sur $]0; +\infty[$ par : $x \mapsto g(x) = -x^2 + 1 - \ln x$.

- 1. Dresse le tableau de variations de g.
- 2. Calcule g(1) puis étudie le signe de g(x) suivant les valeurs de x.
- II. Soit la fonction f définie sur $]0; +\infty[$ par : $x \mapsto f(x) = -\frac{1}{2}x + 1 + \frac{\ln x}{2x}$.
- 1. Dresse le tableau de variations de f.
- 2. Démontre que l'équation f(x) = 0 admet deux solutions notées α et β avec $\alpha \prec \beta$.
- 3. a. Montre que la droite (Δ) d'équation $y = -\frac{1}{2}x + 1$ est asymptote à la courbe (C) de f au voisinage de $+\infty$.
 - b. Etudie la position relative $de(C)et(\Delta)$.
- 4. Trace (C) et (Δ) dans le même repère.
- 5. Calcule en fonction de α et β , l'aire de la partie du plan délimitée par la courbe (C) et l'axe des abscisses.