Distributing Active Learning Algorithms

Syed Mostofa Monsur Muhammad Abdullah Adnan

Bangladesh University of Engineering and Technology

• Machine learning models require huge amount of labeled data

Machine learning models require huge amount of labeled data

- Today a lot of data is plentiful and cheap
 - documents off the web
 - speech samples
 - images and video

Cannot label all the data

Difficult to label

Domain expert needed. **Expert physician labels medical imaging data**

Cannot label all the data

Difficult to label

Domain expert needed. Expert physician labels medical imaging data

Time consuming

may take hours/days. 1 minute of speech may take more than several minutes to label

Goal

 achieve good accuracy with a relatively smaller number of labeled samples

learning model labeled fitted model samples Train model label oracle lableled unlableled **Dataset Dataset** query unlabeled samples active query selection

- 1. Train model
- 2. Make Predictions on unlabeled data

- 1. Train model
- 2. Make Predictions on unlabeled data
- 3. Gather information from the predictions and feed them to query selection procedure

- l. Train model
- 2. Make Predictions on unlabeled data
- 3. Gather information from the predictions and feed them to query selection procedure
- 4. Selection procedure makes queries to oracle to get label

selection

- 1. Train model
- 2. Make Predictions on unlabeled data
- 3. Gather information from the predictions and feed them to query selection procedure
- 4. Selection procedure makes queries to oracle to get label
- Add labeled point to dataset

- ML algorithms that can query
- Selection procedure decide which instances we should label first
- Tries to derive an optimal labeling sequence
- Oracle provides labels
- Models achieve high accuracy with a small number of labeled samples

High Dimensional Data

- Complexity due to volume
- Need distributed storage

High Dimensional Data

- Complexity due to volume
- Need distributed storage

Distributed ML on the rise

- Need for scalable ML algorithms for cloud
- Data is distributed across the world
- Distributed frameworks: hadoop, spark

Related Works

Classic AL Strategies

- Uncertainty Sampling [Lewis et. Al]
- Query-by-Committee [Seung et. Al]

Extensive research on AL has resulted in various strategies

- Deep Reinforcement AL [Fang et. Al]
- AL with GAN (Generative Adversarial Nets) [Zhu and Bento]
- Deep Active Learning [Kronrod et. Al]
- Learning Active Learning from Data [Konyushkova et. al]

Current Researches do not study Active Learning from a Distributed Context

Related Works

Uncertainty Sampling [Lewis et. Al]

- Query the most uncertain sample first
- Samples near decision boundary
- *H* is measurement of uncertainty

$$x^* = \underset{x \in \mathcal{U}_t}{\operatorname{arg\,max}} \ H(\hat{y} = y \mid x)$$

Related Works

 Learning Active Learning from Data [Konyushkova et. al '17]

- Query selection procedure is a Regressor
- Uses properties of classifiers and data to predict the potential error reduction.
- Label sample which reduces the generalization most

HDFS

Hadoop Distributed File System (*Hadoop***)**

- Stores data across machines
- Blocks of data
- Workers store
- Namenode manages/schedules workers

Spark RDD

Resilient Distributed Datasets (*Spark***)**

- Stored on a cluster
- Each machine has partitions (chunks)
- Fault tolerant
- No specific ordering of data (no indexing)

2 Distributed Active Learning Algorithms

- Distributed Uncertainty Sampling
- Distributed Density Weighting
 - Uses : algorithm *construct-proximity-matrix*

Distributed Uncertainty Sampling

Algorithm 1

Distributed Uncertainty Sampling

- Distributed extension of Uncertainty sampling
- Select block of data which incurs the most uncertainty and send for labeling

$$\mathcal{X}^* = \underset{\{x_m^*, \dots, x_n^*\} \subset \mathcal{U}_t}{\operatorname{argmax}} \sum_{\{x_m^*, \dots, x_n^*\}} H(\hat{y} = y \mid x)$$

Distributed Uncertainty Sampling

Algorithm 1

Distributed Uncertainty Sampling

Algorithm 2

- Density Weighting
 - Uncertainty sampling lacks robustness to outliers
 - Query strategy needs to incorporate representativeness information
 - Density heuristic captures representativeness of a block of data

Algorithm 2

- Density Weighting
 - Uncertainty sampling lacks robustness to outliers
 - Query strategy needs to incorporate representativeness information
 - Density heuristic captures representativeness of a block of data

$$\mathcal{X}_{ID}^* = \underset{\{x_m^*, \dots x_n^*\} \subset \mathcal{U}_t}{\operatorname{argmax}} \sum_{\{x_m^*, \dots x_n^*\}} \phi_A(x) \times \left(\frac{1}{U} \sum_{x' \in \mathcal{U}} S(x, x')\right)^{\beta}$$

Algorithm 2

- Density Weighting
 - Uncertainty sampling lacks robustness to outliers
 - Query strategy needs to incorporate representativeness information
 - Density heuristic captures representativeness of a block of data

$$\mathcal{X}_{ID}^* = \underset{\{x_m^*, \dots x_n^*\} \subset \mathcal{U}_t}{\operatorname{argmax}} \sum_{\{x_m^*, \dots x_n^*\}} \phi_A(x) \times \left(\frac{1}{U} \sum_{x' \in \mathcal{U}} S(x, x')\right)^{\beta}$$

Algorithm 2

- Density Weighting
 - Uncertainty sampling lacks robustness to outliers
 - Query strategy needs to incorporate representativeness information
 - Density heuristic captures representativeness of a block of data

$$\mathcal{X}_{ID}^* = \underset{\{x_m^*, \dots x_n^*\} \subset \mathcal{U}_t}{\operatorname{argmax}} \sum_{\{x_m^*, \dots x_n^*\}} \phi_A(x) \times \left(\frac{1}{U} \sum_{x' \in \mathcal{U}} S(x, x')\right)^{\beta}$$

Algorithm 2

Construct Proximity Matrix

Algorithm 3 Construct-Proximity-Matrix

- Need to calculate proximity of datapoints for Distributing Density Weighting
- Implemented using a series of transformations of Spark's CoordinateMatrix and BlockMatrix libraries

Experimental Setup

6 Node Cluster

- 6*16 GB Memory
- 6*8 cores
- 160G Disk Space
- Apache-Hadoop, Apache-Spark, Ubuntu

Datasets (Real and Synthetic)

- Google Quickdraw (28x28 bitmap images; subset 1G
- Striatum (10k x 100 3D Electron Microscopy stack of rat neural tissue)
- XOR (0.5G checker board synthetic data set)

quick draw dataset

striatum dataset

Accuracy Gain Per Iteration

Figure 6.1: Accuracy gain per iteration for Striatum dataset

Figure 6.2: Accuracy gain per iteration for Quick draw dataset

Figure 6.3: Accuracy gain per iteration for XOR dataset

Accuracy vs Running time

Figure 6.5: Accuracy vs running time for Striatum Data

Fig. 6. Accuracy vs running time for Quick Draw Data

Figure 6.7: Accuracy vs running time for XOR Data

Shuffle I/O algo 1750 dist-DW dist-RAND 1500 dist-US 1250 1000 MB 750 500 250

Figure 6.4: Running time for various datasets

Figure 6.8: Amount of bytes read in shuffle for algorithms

ColumnSimilarity() Vs Create-Proximity-Matrix Algorithm

Time in seconds	Time in seconds
	Tille III Secolias

Size	Columnsimilarity	Create-Proximity
1000	22	12
2000	62	13
3000	148	14
4000	297	15
5000	out of memory	17

Striatum

Time in :	seconds	Time	in seconds

Size	Columnsimilarity	CreateProximity
1000	15	16
2000	40	17
3000	96	18
4000	188	22
5000	out of memory	19

Quick Draw Dataset

Conclusion

- In this work, we have implemented two distributed active learning algorithms
- The algorithms are tested with both real and synthetic datasets.
- In future we want to explore other areas of active learning in scale.

Thank You