Data Science Engineering Project with R

Dataset: Car Price Prediction

Manuel Weihmann & Daniel Stepanovic

2025-10-19

Table of contents

1	Introduction						
	1.1	Libraries	2				
2	Dat		2				
	2.1	Data source	2				
	2.2	Data import	2				
	2.3	Data dictionary	3				
3	Summary statistic tables						
	3.1	Numeric variables: mean, sd, min, Q1, median, Q3, max	4				
	3.2	Categorical variables: number of levels $+$ top 5 most common					
4	Data visualisations						
	4.1	Price histogram (shape of prices)	6				
	4.2	Do brands look different?	8				
	4.3	One-line check: brand effect	9				
5	Sun	nmary	10				

1 Introduction

♦ Introduction

This report looks at car prices and asks: do brands differ in price?

- Data handling: load the CSV and create a clean brand column
- Descriptive stats: quick numbers for price (min, median, mean, max)
- Visuals: a histogram of prices and boxplots by brand
- Simple model: test if price differs by brand
- Takeaways: what matters, what we found, and limits of the data

1.1 Libraries

library(tidyverse)

2 Data

2.1 Data source

We use the Car Price Prediction dataset (CarPrice_Assignment.csv). It contains 205 cars and 26 variables (price, brand/model, technical specs).

2.2 Data import

```
cars <- readr::read_csv("data/CarPrice_Assignment.csv")</pre>
```

- 10 character variables
- 16 numeric variables

2.3 Data dictionary

```
dict <- data.frame(
    Variable = names(cars),
    Type = sapply(cars, function(x) paste(class(x), collapse = ", "))
)
knitr::kable(dict)</pre>
```

	Variable	Type
car_ID	car_ID	numeric
symboling	symboling	$\operatorname{numeric}$
CarName	CarName	character
fueltype	fueltype	character
aspiration	aspiration	character
doornumber	doornumber	character
carbody	carbody	character
drivewheel	drivewheel	character
enginelocation	enginelocation	character
wheelbase	wheelbase	$\operatorname{numeric}$
carlength	carlength	$\operatorname{numeric}$
carwidth	carwidth	$\operatorname{numeric}$
carheight	carheight	$\operatorname{numeric}$
curbweight	curbweight	$\operatorname{numeric}$
enginetype	enginetype	character
cylindernumber	cylindernumber	character
enginesize	enginesize	numeric
fuelsystem	fuelsystem	character
boreratio	boreratio	numeric
stroke	stroke	numeric
compressionratio	compressionratio	numeric
horsepower	horsepower	numeric
peakrpm	peakrpm	numeric
citympg	citympg	numeric
highwaympg	highwaympg	numeric
price	price	numeric

3 Summary statistic tables

3.1 Numeric variables: mean, sd, min, Q1, median, Q3, max

# A tibble: 16 x 8								
	n	mean	sd	min	q1	median	q3	max
	<dbl></dbl>							
1	205	103	59.3	1	52	103	154	205
2	205	0.83	1.25	-2	0	1	2	3
3	205	98.8	6.02	86.6	94.5	97	102.	121.
4	205	174.	12.3	141.	166.	173.	183.	208.
5	205	65.9	2.15	60.3	64.1	65.5	66.9	72.3
6	205	53.7	2.44	47.8	52	54.1	55.5	59.8
7	205	2556.	521.	1488	2145	2414	2935	4066
8	205	127.	41.6	61	97	120	141	326
9	205	3.33	0.27	2.54	3.15	3.31	3.58	3.94
10	205	3.26	0.31	2.07	3.11	3.29	3.41	4.17
11	205	10.1	3.97	7	8.6	9	9.4	23
12	205	104.	39.5	48	70	95	116	288
13	205	5125.	477.	4150	4800	5200	5500	6600
14	205	25.2	6.54	13	19	24	30	49
15	205	30.8	6.89	16	25	30	34	54
16	205	13277.	7989.	5118	7788	10295	16503	45400

The numeric table shows the main summary stats (mean, sd, quartiles) for each numeric variable (e.g., price, enginesize, horsepower).

3.2 Categorical variables: number of levels + top 5 most common

```
is_cat <- function(x) is.factor(x) || is.character(x)
cats <- names(cars)[sapply(cars, is_cat)]

cat_summary <- do.call(rbind, lapply(cats, function(v){
   tab <- sort(table(cars[[v]]), decreasing = TRUE)
   top <- head(paste(names(tab), tab, sep=": "), 5)
   data.frame(
    variable = v,
    n_levels = length(tab),
    top_levels = paste(top, collapse = " | "),
    row.names = NULL
   )
}))
cat_summary</pre>
```

```
# A tibble: 10 x 3
  variable n_levels top_levels
  <chr>
                    <int> <chr>
1 CarName
                      147 peugeot 504: 6 | toyota corolla: 6 | toyota corona: ~
2 fueltype
                        2 gas: 185 | diesel: 20
                        2 std: 168 | turbo: 37
3 aspiration
4 doornumber
                        2 four: 115 | two: 90
5 carbody
                        5 sedan: 96 | hatchback: 70 | wagon: 25 | hardtop: 8 |~
6 drivewheel
                        3 fwd: 120 | rwd: 76 | 4wd: 9
7 enginelocation
                        2 front: 202 | rear: 3
                        7 ohc: 148 | ohcf: 15 | ohcv: 13 | dohc: 12 | 1: 12
8 enginetype
9 cylindernumber
                        7 four: 159 | six: 24 | five: 11 | eight: 5 | two: 4
10 fuelsystem
                        8 mpfi: 94 | 2bbl: 66 | idi: 20 | 1bbl: 11 | spdi: 9
```

The categorical table lists how many levels each label variable has and the top categories with counts.

4 Data visualisations

Make a simple "brand" from the first word of CarName

```
cars <- cars |>
mutate(brand = tolower(sub(" .*", "", CarName)))
```

4.1 Price histogram (shape of prices)

```
ggplot(cars, aes(price)) +
  geom_histogram(bins = 30) +
  labs(title = "Price distribution", x = "Price", y = "Count")
```

Price distribution

Range: from 5,118 to $45,400 \rightarrow \text{very wide spread}$.

Middle (median): $10,295 \rightarrow \text{half the cars cost} \quad 10,295 \text{ and half} \quad 10,295.$

Average (mean): 13,277, which is higher than the median \rightarrow suggests a right-skewed distribution (some expensive cars pull the average up).

Middle 50% (IQR): Q3 - Q1 = 16,503 - 7,788 = 8,715 \rightarrow typical prices in the middle half span about 8.7k.

Possible high outliers: A common cutoff is Q3 + 1.5×IQR $\,$ 29,576. Since the max is 45,400, there are likely high-price outliers.

What we can conclude

Prices are skewed to the right with some very expensive cars.

The median (10,295) is a better "typical price" than the mean here.

For plots/models, using log(price) will often give clearer patterns.

4.2 Do brands look different?

```
# Keep the 8 most common brands (everything else = "other") so the plot is clean
top_brands <- cars |>
    count(brand, sort = TRUE) |>
    slice_head(n = 8) |>
    pull(brand)

cars_small <- cars |>
    mutate(brand_simple = if_else(brand %in% top_brands, brand, "other"))

# Boxplot: prices by brand
ggplot(cars_small, aes(x = reorder(brand_simple, price, FUN = median), y = price)) +
    geom_boxplot() +
    coord_flip() +
    labs(title = "Prices by brand (Top 8 + other)", x = "Brand", y = "Price")
```

Prices by brand (Top 8 + other)

4.3 One-line check: brand effect

```
# Super simple test: price ~ brand (no other variables)
fit <- lm(price ~ brand_simple, data = cars_small)
summary(fit)</pre>
```

Call:

lm(formula = price ~ brand_simple, data = cars_small)

Residuals:

Min 1Q Median 3Q Max -11710.1 -3423.2 -938.2 1852.4 28538.9

Coefficients:

	${\tt Estimate}$	Std. Error	t value	Pr(> t)	
(Intercept)	8184.7	2006.0	4.080	6.55e-05	***
brand_simplemazda	3135.9	2740.7	1.144	0.25393	
brand_simplemitsubishi	1055.1	2836.9	0.372	0.71036	
brand_simplenissan	2231.0	2632.5	0.847	0.39777	
brand_simpleother	8676.4	2161.0	4.015	8.46e-05	***
brand_simplepeugeot	7304.4	2963.0	2.465	0.01455	*
brand_simplesubaru	356.6	2895.4	0.123	0.90212	
brand_simpletoyota	1512.0	2389.9	0.633	0.52770	
brand_simplevolvo	9878.5	2963.0	3.334	0.00102	**

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7233 on 196 degrees of freedom Multiple R-squared: 0.2125, Adjusted R-squared: 0.1804 F-statistic: 6.611 on 8 and 196 DF, p-value: 1.22e-07

5 Summary

- Brand matters: A simple ANOVA/linear model (price ~ brand) is significant.
- Effect size: Brand explains about 20% of price differences (R² 0.21)—important, but not the whole story.
- Who looks pricier (vs. Honda baseline): Volvo, Peugeot, and "other" are notably higher; the other top brands are not clearly different in this simple model.
- Caveat: These gaps also reflect specifications (engine size, horsepower, weight). Without controls, we may overstate pure brand effects.

Brand matters for price (significant) and explains ~20% of the variation; Volvo/Peugeot/"other" are pricier than the baseline, but much of the price is driven by specs—brand premiums change once we control for engine size, horsepower, and weight.