

Kiểm tra 15'

Cho hàm $F(A,B,C) = \Sigma(0,3,5,7) + d(6)$

- a. Hiện thực hàm F sử dụng ít nhất các mạch 2-4 decoders và cổng OR
- b. Hiện thực hàm F sử dụng ít nhất các mạch 4-1 MUX

COMPUTER ENGINEERING

NHẬP MÔN MẠCH SỐ

CHƯƠNG 6: MẠCH TUẦN TỰ
- PHẦN TỬ NHỚ: MẠCH CHỐT,
FLIPFLOP

- Tổng quan
- Chốt S-R
- Chốt D
- Flipflop S-R
- Flipflop D
- Flipflop T
- Flipflop J-K
- Thiết kế chuyển đổi giữa các loại FF ERING

Tổng quan

- Các hệ thống số ngày nay đều gồm có hai thành phần: mạch tổ hợp (chương 5) để thực hiện các chức năng logic và các thành phần có tính chất nhớ (memory element) để lưu giữ các trạng thái trong mạch.
- Chương này sẽ học về:
 - ☐ Các thành phần có tính chất nhớ (Chốt, Flip-flop, thanh ghi,...)
 - Kết hợp các thành phần tổ hợp và thành phần tính chất nhớ để tạo nên các mạch tuần tự.

- Tổng quan
- Chốt S-R
- Chốt D
- Flipflop S-R
- Flipflop D
- Flipflop T
- Flipflop J-K
- Thiết kế chuyển đổi giữa các loại FF ERING

Chốt S-R

Chốt S-R

S và R chuyển từ mức 1 xuống mức 0 đồng thời → không xác định ngõ ra

Chốt S-R với ngõ vào cho phép

Chốt S-R với ngõ vào cho phép (tt)

Hoạt động của chốt S-R với trường hợp ngõ ra không xác định

- Tổng quan
- Chốt S-R
- Chốt D
- Flipflop S-R
- Flipflop D
- Flipflop T
- Flipflop J-K
- Thiết kế chuyển đổi giữa các loại FF ERING

Chốt D

C D		Q	QN		
		0	1		
1	1	1	0		
0 x		last Q	last QN		

Bảng sự thật

Loại bỏ những hạn chế trong chốt S-R khi
 S và R chuyển từ 1 xuống 0 đồng thời

- Ngõ vào điều khiển C giống với ngõ vào cho phép (enable)
 - Khi C tích cực, Q = D → chốt mở/trong suốt (transparent latch)

 C không tích cực, Q giữ giá trị trước đó
 → chốt đóng (close latch)

Chốt D

Hoạt động của chốt D

- Tổng quan
- Chốt S-R
- Chốt D
- Flipflop S-R
- Flipflop D
- Flipflop T
- Flipflop J-K
- Thiết kế chuyển đổi giữa các loại FF ERING

FF-S_R kích cạnh lên

(Positive-edge-triggered S_R flip-flop)

FF-S_R kích cạnh lên được thiết kế từ FF-D kích cạnh lên

Bảng sự thật

- Tổng quan
- Chốt S-R
- Chốt D
- Flipflop S-R
- Flipflop D
- Flipflop T
- Flipflop J-K
- Thiết kế chuyển đổi giữa các loại FF ERING

Flip-flop D(FF-D) kích cạnh lên

(Positive-edge-triggered D flip-flop)

D	CLK	Q	QΝ
0		0	1
1	_•	1	0

Bảng sự thật

- Một FF-D kích cạnh lên bao gồm một cặp chốt D kết nối sao cho dữ liệu truyền từ ngõ vào D đến ngõ ra Q mỗi khi có cạnh lên của xung Clock (CLK)
- Chốt D đầu tiên gọi là Chủ (master), hoạt động tại mức 0 của ngõ vào xung CLK
- Chốt D thứ hai gọi là Tớ (slave), hoạt động tại mức 1 của ngõ vào xung CLK

FF-D kích cạnh lên

(Positive-edge-triggered D flip-flop)

Hoạt động của **FF-D** kích cạnh lên

FF-D kích cạnh xuống

(Negative-edge-triggered D flip-flop)

Bảng sự thật

Ký hiệu

Một FF-D kích cạnh xuống thiết kế giống với FF-D kích cạnh lên, nhưng đảo ngõ vào xung Clock của 2 chốt D

FF-D với ngõ vào điều khiển

Bảng sự thật

Mach logic

Ký hiệu

- Một chức năng quan trọng của FF-D là khả năng lưu giữ (store) dữ liệu sau cùng hơn là nạp vào (load) dữ liệu mới tại cạnh của xung Clock
- Để thực hiện được chức năng trên, ta thêm vào ngõ vào cho phép (enable input) của mỗi FF, thường ký hiệu là EN hoặc CE (chip enable)

FF-D với ngõ vào điều khiển bất đồng bộ

(D-FF with asynchronous inputs)

PR PRESET	CLR	CLK	D DATA	Q	Q
1	1	1	0	0	1
1	1	1	1_	11	0
0	1	X	X	1	0
1	0	X	Х	0	1
0	0	X	X	1	1

Bảng sự thật

Mach logic

- Các ngõ vào bất đồng bộ (Asynchronous inputs) thường được sử dụng để ép ngõ ra Q của FF-D đến một giá trị mong muốn mà không phụ thuộc ngõ vào D và xung CLK
- Những ngõ vào này thường ký hiệu **PR** (preset) và **CLR** (clear)
- **PR** và **CLR** thường được dùng để *khởi tạo giá trị ban đầu* cho các FF hoặc phục vụ cho mục đích kiểm tra hoạt động của mạch.

- Tổng quan
- Chốt S-R
- Chốt D
- Flipflop S-R
- Flipflop D
- Flipflop T
- Flipflop J-K
- Thiết kế chuyển đổi giữa các loại FF ERING

FF-T (Toggle FF)

- Flip-flop đảo trạng thái tại cạnh lên của xung Clock (CLK) chỉ khi ngõ vào **EN** và **T** tích cực.

					EN	
EN	Т	CLK	Q	Q'		
0	×	×	last Q	last Q'	т —	
1	0	₹	last Q	last Q'		
1	1	£	Q'	Q	2U 0	
11			•		~_	

Bảng sự thật

Hoạt động của **FF-T** tích cực cạnh lên của xung Clock

- Tổng quan
- Chốt S-R
- Chốt D
- Flipflop S-R
- Flipflop D
- Flipflop T
- Flipflop J-K
- Thiết kế chuyển đổi giữa các loại FF ERING

FF-J_K kích cạnh lên

(Edge-triggered J_K flip-flop)

Bảng sự thật

FF-J_K kích cạnh lên được thiết kế từ FF-D kích cạnh lên

Hoạt động của FF-J_K kích cạnh lên

FF-JK với ngõ vào điều khiển bất đồng bộ

25

- Tổng quan
- Chốt S-R
- Chốt D
- Flipflop S-R
- Flipflop D
- Flipflop T
- Flipflop J-K
- Thiết kế chuyển đổi giữa các loại FF ERING

- Tổng quan
- Chốt S-R
- Chốt D
- Flipflop S-R
- Flipflop D
- Flipflop T
- Flipflop J-K
- Thiết kế chuyển đổi giữa các loại FF

Thiết kế chuyển đổi giữa các loại FF

Q(t)	Q(t+1)	J	K	Т	D	R	S
0	0	0	X	0	0	X	0
0	1	1	X	1	1	0	1
1	0	X	1	1	0	1	0
1	1	X	0	0	1	0	X

TK Flip flop sang T Flip-flop TK Flip flop sang D Flip-flop

$$J = T$$

$$K = T$$

$$J = D$$

$$K = D'$$

RS Flip flop sang JK Flip-flop D Flip flop sang T Flip-flop

$$R = KQ$$

$$S = JQ'$$

$$D = T'Q + TQ'$$

Tóm tắt nội dung chương học

- Qua Phần 1 Chương 6, sinh viên cần nắm những nội dung chính sau:
 - ☐ Mạch tuần tự là gì? Kiến trúc tổng quát của mạch tuần tự? Khi nào thì trong thiết kế cần sử dụng mạch tuần tự?
 - ☐ Chức năng, hoạt động và thiết kế các loại mạch latch, flipflop: SR, D, T, JK
 - ☐ Phương pháp chuyển đổi thiết kế qua lại giữa các loại flipflop

COMPUTER ENGINEERING

Thảo luận?

