

38

SEM0530 - Problemas de Engenharia Mecatrônica II

6. Aproximação numérica de EDOs de 2a ordem

Marcelo A. Trindade (trindade@sc.usp.br)

6. Aproximação numérica de EDOs de 2a ordem

Tarefa

- Dado o pêndulo simples mostrado na figura, deseja-se determinar a evolução do deslocamento angular $\theta(t)$ ao longo de um dado intervalo de tempo para dadas condições iniciais
- Considere que o cabo é rígido porém com massa desprezível e comprimento constante $r=(1+N/100)\ \mathrm{m}$, sendo N formado pelos dois últimos algarismos do Número USP do aluno

- Considere que $m=1~{
 m kg}$ e que o amortecimento (dissipação) é representado por um momento em relação ao pino ($M=cr^2\dot{\theta}$, com $c=0.5~{
 m Nms/rad}$)
- Usando integração numérica, determine a evolução do deslocamento angular $\theta(t)$ sendo que ele parte da posição vertical ($\theta(0)=0$) com velocidade angular ($\dot{\theta}(0)=15~{\rm rad/s}$)
- Apresente as evoluções em gráficos (θ vs t; $\dot{\theta}$ vs t; $\dot{\theta}$ vs θ)
- Usando a aproximação numérica, determine também quantas voltas completas o pêndulo executa antes de parar (outros parâmetros relevantes poderiam também ser extraídos, como p.ex., evolução da tração no cabo, frequência de oscilação)
- Apresentar em relatório único em PDF, memória de cálculo, scripts MATLAB, gráficos solicitados, soluções encontradas e conclusões.