

Online Shoppers Purchasing Intention

Taous Bedouhene, Inès Baazia, Elise Barbier - DIA 1-Python for Data-Analysis

Table of Contents

I- Introduction

II- The ins and outs

III- Our database

IV- Our answers

V- Our model

VI- Graphic interface

INTRODUCTION

The ins and outs

About 70% of carts are abandoned, which happens when a potential customer chooses products to buy without ever going through the checkout process.

We will produce whether the user buys the product or not

Our Database

- We use a dataset that gives us an estimation of online shoppers purchasing intention.
- We aim to find a model based on the data, which will be used to make predictions on new data to know if the purchase was successful or not.

Attributes

- Administrative
- Administrative Duration
- Informational
- Informational Duration
- Product Related
- Product Related Duration
- Bounce Rate
- Exit Rate
- Page Valuer un sous-titre

- Special Day
- Mounth
- Operating Systems
- Browser
- Region
- Traffic Type
- Visitor Type
- Weekend
- Revenu

The variable we are trying to predict is the revenue

New values

- "Moyenne_Administrative": mean of the time spent on the administrative part
- "Moyenne_Informational": mean of the time spent on the informational part
- "Moyenne_ProductRelated": mean of the time spent on the product related part

Data-visualization

Data-visualization

Data-visualization

Matrix of correlations

It shows that our target (Revenue) has high correlation with:

- Administrative
- Administrative_Duration
- Informational
- Informational_Duration
- ProductRelated
- ProductRelated_Duration
- PageValues

Our model

1800

Support Vector Machine

1600 1.6e+02 1.9e+03 1400 1200 1000 800 600 2.2e+02 2e+02 400 Naive Bayes

1.9e+03

- 1800

1600

1400

- 1200

1000

800

600

400

1.6e+02

2e+02

K Nearest Neighbour

Linear Discriminant Analysis

Our model

Accurancy obtained according to each model studied:

- Support Vector Machine: 0.832
- •Naive Bayes: 0.844
- •Random Forest Classification: 0.844
- •K Nearest Neighbour: 0.853
- •Logistic Regression: 0.865
- Decision Tree Classification: 0.851
- •Gradient Boosting Classification: 0.888
- •Linear Discriminant Analysis: 0.858

Our best model

Best accurancies:

- Random Forest: 0.891
- Gradient Boosting: 0.888

Graphic interface

THANK YOU