Nom et prénom :		Mathématiques pour la cryptographie ENSIBS - S5 - 2022/2023	
Contrôle Durée : 50 minutes. Les réponses devront toujours être justifiées. Les documents, les ordinateurs et les autres appareils électroniques sont interdits			
Cocher la (ou les) bonne(s) répons	se(s) aux questions à cl	noix multiples.	
Question 1. (Cours) Donner l'énoncé complet du théorème d'identité de Bézout.		Question 7. Soient $a \in \mathbb{N}$ et p un nombre premier. Si $p a^2$ alors $p a$.	
		v	□ Faux
		•••••	• • • • • • • • • • • • • • • • • • • •
Question 2. (Cours) Alice décide d'utiliser le cryptosystème RSA pour envoyer un message confidentiel M à Bob. La clé publique de Bob est (e,n) et sa clé privée est d. (a) Quelle condition le message M doit remplir et comment elle le chiffre ?		Exercice 1. Résoudre dans \mathbb{Z} le système $\begin{cases} x \equiv 1 [35] \\ x \equiv 2 [24] \end{cases}$ Indication : $35 \times 11 - 24 \times 16 = 1$.	
(b) Supposons que Bob a reçu le message chiffré C. Comment il le déchiffre ?		Exercice 2. Supposons que $n = 101 \times 113$, $e_1 = 8765$, et $e_2 = 7653$. Note: 101 et 113 sont des nombres premiers. (1) Calculer $\varphi(n)$. (2) Lequel de e_1 et e_2 est un choix valide de clé de chiffrement	
Question 3. Un nombre pair ne peut pas être premier.		RSA (pour le module n). Justifier votre réponse. (3) Pour l'exposant de cryptage valide, calculer la clé privée d, l'exposant de décryptage correspondant.	
□ Vrai □ Faux		(4) En utilisant d, déchiffrer le message chiffré $c = 3233$. Indication: calculer $c^8 \pmod{n}$.	
Question 4. Cocher les nombres qui ne	□ 57	Exercice 3. Factorise	er le nombre RSA $n = 3$ 844 384 501 x nombres premiers distincts sachant que
$\begin{array}{c cccc} \square & 55 & & \square & 0 \\ \square & 11 & & \square & -7 \end{array}$	□ 1 □ 79	3 117	$7761\ 185^2 \equiv 1\ (\bmod n).$
Question 5. Sachant que			
$2052 = 17 \times 136 - 260,$			
quel est le reste de la division euclidien □ 15 □ 17 □ aucune des autres réponses propos □ 12 □ −260	ées		
Question 6. Soient $a, b, c \in \mathbb{N}$. Si $a \mid c$ et	b c alors ab c. □ Faux		