

Campus Cajazeiras

PROGRAMAÇÃO P/ WEB 2

PROF. DIEGO PESSOA

DIEGO.PESSOA@IFPB.EDU.BR

@DIEGOEP

CST em Análise e Desenvolvimento de **Sistemas**

APRESENTAÇÃO DA DISCIPLINA

EMENTA

- Arquitetura, ciclo de vida, conceitos e ferramentas para a construção de Aplicações Web avançadas.
- Novos padrões arquiteturais e paradigmas de desenvolvimento.
- ▶ Tópicos avançados e tendências.

OBJETIVO GERAL

Exposição prática a conceitos, ferramentas e princípios do desenvolvimento de aplicações Web baseadas na arquitetura de microsserviços, juntamente com as boas práticas e técnicas de implantação utilizando-se dos princípios de DevOps.

OBJETIVOS ESPECÍFICOS

- Tornar o aluno capacitado a entender os fundamentos, desenvolver e gerenciar uma aplicação Web avançada baseada em microsserviços.
- Aplicar e gerenciar os principais frameworks utilizados no desenvolvimento de aplicações Web.
- Apresentar todo o fluxo de desenvolvimento de uma aplicação Web avançada, da concepção, desenvolvimento, configuração, implantação e disponibilização para o usuário final.

PLÁGIO & CÓDIGO DE HONRA

- Não trabalhe em exercícios que não os seus
- Não copie e cole partes do seu exercício de fontes de terceiros
- Não copie código de terceiros
- Cite as referências

AVALIAÇÃO

- Homeworks semanais individuais de acordo com tópicos de aula
- Projeto incluindo a concepção, desenvolvimento, implantação e documentação de aplicação Web baseada em microsserviços desenvolvida ao longo do semestre
 - Grupos de no máximo duas pessoas

TÓPICOS PRINCIPAIS

- ▶ 1. Revisão e aprofundamento de conceitos fundamentais
- 2. Migrando de aplicações monolíticas para microsserviços
- 3. Desenvolvendo lógica de negócio
- 4. Comunicação entre microsserviços
- ▶ 5. Gerenciamento de Consultas

- 6. Padrões para consumo como APIs externas
- > 7. Testes em microsserviços
- 8. Desenvolvendo serviços prontos para produção
- 9. Implantação de microsserviços
- ► 10. Tópicos avançados e tendências

AMBIENTE DO CURSO

- Página principal: https://github.com/diegoep/pweb2
 - Agenda, Lectures, homeworks, source code
- Canal de comunicação: <u>pweb2-2018-1.slack.com</u>
 - Avisos, compartilhamento de material complementar, discussões, dúvidas

DICAS

- ► E-mail @academico.ifpb.edu.br
- Github student pack: https://education.github.com/pack
- Licença Intellij: http://intellij-support.jetbrains.com

Baseado em:

https://github.com/vinicius3w/i

https://resources.sei.cmu.edu/asset_files/Presentation/2017_017_001_497911.pdf

Coloque esse conceito na sua cabeça dura: o software fará qualquer coisa que eu projetar que ele faça.

DESENVOLVIMENTO DE APLICAÇÃO WEB MODERNA

PROCESSO: INTEGRAÇÃO/DEPLOYMENT CONTÍNUO

ORGANIZAÇÃO: PEQUENA, TIMES AUTÔNOMOS

ARQUITETURA: ?????????????

MAS O QUE É UMA ARQUITETURA DE SOFTWARE?

""THE SOFTWARE ARCHITECTURE OF A COMPUTING SYSTEM IS THE SET OF STRUCTURES NEEDED TO REASON ABOUT THE SYSTEM, WHICH COMPRISE SOFTWARE ELEMENTS, RELATIONS AMONG THEM, AND PROPERTIES OF BOTH.""

Documenting Software Architectures, Bass et al

EM OUTRAS PALAVRAS...

- Arquitetura de Software = (elementos, relações, propriedades)
- São multi-dimensionais (descritas por muitas visões)
 - Visão = Arquitetura aplicada num contexto específico

VISÃO LÓGICA

- ► Elementos: classes e pacotes
- Relações: herança e associações

VISÃO DE IMPLEMENTAÇÃO

- Elementos: módulos e componentes
- Relações: dependências

VISÃO DE PROCESSO

- Elementos: processos
- ▶ Relações: comunicação inter-processo (IPC)

VISÃO DE DEPLOYMENT

- Elementos: "máquinas
- Relações: rede

4+1 CENÁRIOS

- Derivado dos casos de uso
- Integra as visões

MAS ENTÃO... QUAL ESTILO ARQUITETURAL SEGUIR?

""... AN ARCHITECTURAL STYLE DETERMINES THE VOCABULARY OF COMPONENTS AND CONNECTORS THAT CAN BE USED IN INSTANCES OF THAT STYLE, TOGETHER WITH A SET OF CONSTRAINTS ON HOW THEY CAN BE COMBINED....""

David Garlan and Mary Shaw, An Introduction to Software Architecture

O PAPEL DA ARQUITETURA

- Manutenibilidade, Evolabilidade, Testabilidade, Implantabilidade
- Escalabilidade, Segurança, Confiabilidade

AFETA VELOCIDADE DE IMPLANTAÇÃO

NOS DIAS DE HOJE...

NEGÓCIOS PRECISAM INOVAR MAIS RÁPIDO! SOFTWARES PRECISAM SER CONSTRUÍDOS MAIS RÁPIDO!

REDUÇÃO DO TEMPO DE ENTREGA

AUMENTO DA FREQUÊNCIA DE IMPLANTAÇÃO

VOLTANDO... DESENVOLVIMENTO DE APLICAÇÃO WEB MODERNA

PROCESSO: INTEGRAÇÃO/DEPLOYMENT CONTÍNUO

ORGANIZAÇÃO: PEQUENA, TIMES AUTÔNOMOS

ARQUITETURA: ????????????

TRADICIONAL: ARQUITETURA MONOLÍTICA

WAR / EAR INTERFACE GRÁFICA MÓDULO DE **USUÁRIOS BROWSER / CLIENT** MÓDULO DE **PEDIDOS** MÓDULO DE **VISÃO LÓGICA PRODUTOS SERVIDOR WEB OU SERVIDOR DE APLICAÇÕES**

ESTRUTURA A APLICAÇÃO COMO UM ÚNICO COMPONENTE EXECUTÁVEL

APLICAÇÃO MONOLÍTICA DE SUCESSO... [SERÁ?]

APLICAÇÃO SEGUE CRESCENDO, CRESCENDO, CRESCENDO...

BEM-VINDO AO MONOLITHIC HELL

- Desenvolvimento e implantação ágil se torna impossível
- Tecnologias usadas começam a ficar obsoletas, mas...
- Refatorar não é mais viável!

ALTERNATIVA: MICROSSERVIÇOS

ESTILO ARQUITETURAL
QUE ESTRUTURA UMA
APLICAÇÃO COMO UM
CONJUNTO DE SERVIÇOS
FRACAMENTE
ACOPLADOS,
ORGANIZADOS A PARTIR
DA LÓGICA DE NEGÓCIO

microservices.io

MICROSSERVIÇOS - FUNCIONAMENTO

- Serviços se comunicam entre si através de protocolos síncronos como HTTP/REST ou protocolos assíncronos como AMQP.
- Serviços podem ser desenvolvidos de maneira independente um do outro.
- Cada serviço possui seu próprio banco de dados, evitando o acoplamento entre serviços
- Consistência de dados é mantida através do uso do padrão Saga.

MICROSSERVIÇOS - BENEFÍCIOS

- ▶ Permite a integração e implantação contínua de aplicações grandes e complexas
- Melhor estabilidade serviços menores são mais fáceis de testar
- ▶ Melhor "implantabilidade" serviços podem ser implantados de maneira independente
- Permite a organização do desenvolvimento em múltiplos times com responsabilidades específicas e independentes
- Cada microserviço é relativamente pequeno fácil de entender e mais rápido de manipular na IDE
- A aplicação inicia mais rápido, o que diminui o tempo de implantação e torna o desenvolvimento mais produtivo
- Melhor isolamento de falha: se há vazamento de memória em um serviço, só ele será afetado. Os outros continuarão a responder as requisições normalmente.
- Elimina o comprometimento a longo prazo com um stack de tecnologias. Quando um novo serviço é desenvolvido, ele pode utilizar novas tecnologias. Reescrever um serviço existente também torna-se viável.

MICROSSERVIÇOS - DESVANTAGENS

- Desenvolvedores precisam lidar com a complexidade adicional de criar um sistema distribuído
- Ferramentas/IDEs são orientadas a construir aplicações monolíticas e não proveem suporte explícito para aplicações distribuídas
- ▶ Testes integrados são mais difíceis de executar (são muitos serviços/componentes)
- Desenvolvedores precisam implementar um mecanismo de comunicação inter-serviços
- Implementar casos de uso que contenham com múltiplos serviços sem usar transações distribuídas é difícil
- Implementar casos de uso que contenham múltiplos serviços requer uma coordenação cuidadosa entre os times
- Maior complexidade de implantação e configuração.
- Aumento do consumo de memória. A arquitetura de microsserviços substitui as N instâncias monolíticas por NxM instâncias de serviços. Cada uma roda na sua própria JVM (ou equivalente), o que é necessário para isolar as instâncias.

PARA MITIGAR AS DESVANTAGENS...

PADRÕES RELACIONADOS A MICROSSERVIÇOS

EXEMPLO DE STACK DE TECNOLOGIAS

HOMEWORK

HOMEWORK 1.1 - INGRESSO NO WORKSPACE SLACK DO CURSO COM E-MAIL ACADÊMICO

- ► Slack workspace: https://pweb2-2018-1.slack.com
- Se cadastre pelo endereço: https://
 pweb2-2018-1.slack.com/signup (importante: utilizar e-mail @academico.ifpb.edu.br)
- Ao entrar no workspace da disciplina, poste alguma mensagem no canal #General.

HOMEWORK 1.2 - CRIAÇÃO DE REPOSITÓRIO PRIVADO NO GITHUB

- Se autentique (ou crie uma conta caso não tenha) no Github.
- Crie um repositório **privado** chamado HW1.
- Vá até a opção "Settings", "Collaborators and Teams" e adicione apenas o professor (@diegoep) como colaborador.
- Obs.: Para criar repositórios privados no Github gratuitamente, é preciso aderir ao Education Pack (https://education.github.com/pack/). Para isso, é necessário usar o e-mail @academico.ifpb.edu.br.

HOMEWORK 1.3 - REVISÃO DE CONCEITOS BÁSICOS DO GIT

- Resolva o primeiro nível em: https://try.github.io até chegar na tela de "Congratulations". Salve um print screen da tela.
- ▶ Faça o clone do seu repositório privado que está no Github para a sua máquina. Crie uma branch chamada "HW1.1-[seunome]" e adicione nela um arquivo de texto contendo o seu nome completo e a imagem contendo o print da tela da conclusão do exercício. Dê commit/push para que os dados fiquem disponíveis no repositório privado do Github.
- Para pontos extras (+50%), resolva os quatro primeiros níveis em: http://pcottle.github.io/learnGitBranching/ e atualize sua branch enviando o print da tela confirmando a realização do exercício.