# **Understanding Hierarchies in Computer Science Conferences**

Aditya Garg Aashutosh Trivedi Ansa Mary Ephraim

## **Motivation**

- Different conferences are rated differently
- We attempt to understand the structure of the community associated with conferences at different tiers of rating
- We find various trends of
  - Similarity between venues/conferences
  - Measure of research carried out
  - Measure of people getting into research
- These metrics are evaluated year on year as well as tier wise

# The data

|               | ACM      | DBLP        | CiteSeerX | Google<br>Scholar | Web of Science |
|---------------|----------|-------------|-----------|-------------------|----------------|
| Free          | Partly   | Yes         | Yes       | Yes               | No             |
| Downloadable  | No       | Yes         | Yes       | No                | Yes            |
| Citation info | Yes      | Few records | Yes       | Yes               | Yes            |
| # records     | 1.59 mil | 1.46 mil    | 32.23 mil | NA                | 45.68 mil      |

#### The data

<u>Initial hurdles</u> – 5 datasets but still couldn't get the data we were looking for

- •SNAP database: very small dataset, for Physic papers not in interest set.
- •Google Scholar: Used *Scrapy* to start building a web scraper. Involved sharp learning curve, limit on downloads. Required restarts, cleaning and manipulation.
- •DBLP: 1.3 Gb of clean annotated metadata for papers published in Computer Science. Missing citation and keyword information.
- •CiteseerX from the website : <xml> data, no citation information present.

## The data

<u>Initial hurdles</u> – 5 datasets but still couldn't get the data we were looking for

#### <u>CiteseerX directly from Penn State:</u>

- •Over 40 Gb of data in XML and over 60 Gb MYSQL dump stored in Amazon S3.
- •Stored on HPC.
- •No mySQL on HPC.
- •Tried parsing using Perl, Python and Bash scripts one line at a time.
- •Data not indexed.
- •Cleaning and clustering required due to data being automatically scraped by a crawler.



# Design

#### **Tiers**

- *CORE* Computing Research & Education computer science rankings
- We decided to split the data into 4 different tiers as per ranking of the conference/journal.
- This gave us a better picture about the kind/measure of research at what level.
  - Tier 1 flagship conferences
  - Tier 2 excellent conferences
  - Tier 3 good conferences
  - Tier 4 other honorable conferences

#### Similarity between authors across conferences



Focused on the Database community in DBLP

Similarity measured using Jaccard distance on the author sets

#1 Hive partitioning by conference.

# 2 Hive streaming with Python map reduce functions.

#3 Pig followed by Java

Jaccard distance =  $A \cap B/A \cup B$ 





#### Hadoop MR

- Selected <xml> data was transformed and flattened to get each record into a single line for easier implementation of MR.
- E.g.

Inproceedings author:Roberto Brunelli|Ornella Mich title:Efficient Image Retrieval by Examples. year:2000 pages:145-162 crossref:conf/vdb/2000 booktitle:VDB

url:db/conf/vdb/vdb2000.html#BrunelliM00

- •More people getting into research
- •Healthy increase of top tier conferences instead of lower tier

#### Number of Authors over the years - Total and Tier wise



- •Steady amount of research per author, good as number of authors increasing
- •Top tier conferences performing better than lower tier
- •Lotka Law of 60%

#### Average number of papers per author over the years Total and Tier wise



- •Steady number of collaborators
- •Many conferences also have limit on maximum number of collaborators

## Average number of collaborators per author over the years



- •Number of single authored papers reducing over time. Better networking & collaboration opportunity.
- •Good as collaborators allow different perspective and usually allow deeper research

#### Number of single authored papers over the years Total and Tier wise - normalized



- •New people coming into research more or less stable
- •Higher in lower ranked conferences. Makes sense since usually people will enter with lower ranked conferences

#### Number of new authors over the years Total and Tier wise - normalized



# Paper based statistics

#### Hive:

- As only certain fields were required for Hive analytics, the files were transformed into a tab delimited file having the following format key year conference authors-array
- Then these were put in the tables through Hive
- The configured file was also split according to the Tiers and the analytics were also found on the tier files

# Paper based statistics

Avg Aurhors per Paper

- •Steady increase shows increasing trend of collaboration amongst authors.
- •Publish or Perish Theory

Average authors per Paper (Cumulative and Tier Wise)



# Paper based statistics

Number of Papers

- •Healthy and steady increase in number of papers published
- •More papers published in top tier conferences.

#### Number of Papers (Cumulative and Tier Wise)



#### **Future Work**

- Our data-set and associated techniques can also be used for further predictions like
  - What makes a paper acceptable
  - What gets a paper cited more often than others
  - Do people who get published, work in groups or alone?
  - What are the likely venues to publish given the authors one has worked with
  - Keyword analysis to identify what gets a paper cited more often
  - Structure of collaboration network/degrees of separation

#### References

- T. White. Hadoop: The Definitive Guide. O'Reilly Media Inc., Sebastopol, CA, May 2012.
- J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In proceedings of 6th Symposium on Operating Systems Design and Implementation, 2004.
- S. Ghemawat, H. Gobioff, S. T. Leung. The Google File System. In Proceedings of the nineteenth ACM Symposium on Operating Systems Principles SOSP '03, 2003.
- Mario A. Nascimento, Jorg Sander and Jeffrey Pound. Analysis of SIGMOD's Co-Authorship Graph
- Vladimir Batagelj and Andrew Mrvar. Some Analyses of Erdos" Collaboration Graph.
- Michal Jacovi, Vladimir Soroka, Gail Gilboa-Freedman, Sigalit Ur, Elad Shahar, Natalia Marmasse. The Chasms of CSCW: A Citation Graph Analysis of the CSCW Conference.
- Yi Han, Bin Zhou, Jian Pei, Yan Jia. Understanding Importance of Collaborations in Co-authorship Networks: A Supportiveness Analysis Approach.
- M.E.J. Newman. The structure of scientific collaboration networks.
- Alan F. Smeaton, Gary Keogh, Cathal Gurrin, Kieran McDonald and Tom Sodring. Analysis of Papers from Twenty-Five Years of SIGIR Conferences: What Have We Been Doing for the Last Quarter of a Century?

# **Special Thanks**

- Professor McIntosh for her continuous support in providing guidance and data options.
- Penn State University