	Математический анал	мз IIII
Конспе	ект основан на лекциях Константина	Петровича Коха

Оглавление

1	Инт	Интеграл			
	1.1	Определение интеграла	2		
	1.2	Предельный переход под знаком интеграла	7		
		Произведение мер			
	1.4	Замена переменных в интеграле	14		
	1.5	Функции распределения			
2	Пов	Поверхностные интегралы			
	2.1	Поверхностный интеграл I рода	17		
		Поверхностный интеграл II рода			
3 Oc	Осн	новные интегральные формулы			
	3.1	Формула Грина	21		
	3.2	Формула Стокса			
	3.3	Формула Гаусса-Остроградского	21		
	3.4	Примеры дифференциальных операторов	22		
4 Ряд		ы Фурье			
	4.1	Пространство L^p	24		
		Гильбертовы пространства			
		Ряды фурье			
		Базис в Гильбертовом пространстве			

Глава 1

Интеграл

1.1 Определение интеграла

Общий контекст: $\langle X, \mathcal{A}, \mu \rangle$ — пространство с мерой

Определение. Введем обозначение

$$\mathcal{L}^0(X) = \{ f : X \to \overline{\mathbb{R}} \mid f \text{ измерима и п.в. конечна} \}.$$

Определение. Пусть $0 \le f: X \to \overline{\mathbb{R}}$ — ступенчатая функция, то есть

$$f=\sum_{fin}\lambda_k\chi_{E_k}.$$

Причем все E_k измеримы. Интеграл такой функции определим следующим образом:

$$\int_X f \, \mathrm{d}\mu \stackrel{def}{=} \sum_k \lambda_k \mu E_k.$$

Определение. Аналогично определим интеграл по измеримому множеству:

$$\int_{E} f \, \mathrm{d}\mu \stackrel{def}{=} \sum_{k} \lambda_{k} \mu(E \cap E_{k}).$$

Теорема 1.1.1. (Свойства интеграла ступенчатой функции)

- 1. Интеграл не зависит от допустимого разбиения.
- 2. $f \leq g \Longrightarrow \int f \, d\mu \leq \int g \, d\mu$.

Доказательство.

1. Пусть $f = \sum_k \lambda_k \chi_{E_k} = \sum_j \alpha_j \chi_{F_j}$. Тогда $f = \sum_{k,j} \lambda_k \chi_{E_k \cap F_j} = \sum_{k,j} \alpha_k \chi_{E_k \cap F_j}$. Пользуясь этим, перепишем интеграл:

$$\int_1 f = \sum_k \lambda_k \mu E_k = \sum_k \lambda_k \sum_j \mu(E_k \cap F_j) = \sum_j \alpha_j \sum_k \mu(E_k \cap F_j) = \sum_j \alpha_j \mu F_j = \int_2 f.$$

2. Воспользуемся общим допустимым разбиением:

$$\int f = \sum_{k} \lambda_k \mu E_k = \sum_{k,j} \lambda_k \mu(E_k \cap F_j) \leq \sum_{k,j} \alpha_j \mu(E_k \cap F_j) = \sum_{j} \alpha_j \mu F_j = \int g.$$

Определение. Пусть $0 \leqslant f: X \to \overline{\mathbb{R}}$ измерима. Интеграл такой функции определим так:

$$\int_X f \, \mathrm{d}\mu \stackrel{def}{=} \sup_{\substack{0 \le g \le f \\ g \text{ CTVIDEHY}}} \int_X g \, \mathrm{d}\mu.$$

Определение. Аналогично определим интеграл по измеримому множеству:

$$\int_{E} f \, \mathrm{d}\mu \stackrel{def}{=} \sup_{\substack{0 \le g \le f \\ g \text{ crynehy.}}} \int_{E} g \, \mathrm{d}\mu.$$

Теорема 1.1.2. (Свойства интеграла измеримой функции)

- Если функция ступенчатая, то интеграл совпадает с интегралом, определенным для ступенчатых функций.
- $0 \le \int f \, \mathrm{d}\mu \le +\infty$.
- $0 \le g \le f$, g ступенчатая, f измеримая, тогда $\int g \,\mathrm{d}\mu \le \int f \,\mathrm{d}\mu$.
- $0 \le g \le f$, f, g измеримы, тогда $\int g \, \mathrm{d}\mu \le \int f \, \mathrm{d}\mu$.

Доказательство.

- 1. Очевидно, так как супремум реализуется на самой интегрируемой функции.
- 3. Поскольку g ступенчатая и $0 \le g \le f$, g входит в супремум из определения интеграла f, поэтому автоматически $\int g \le \int f$.
- 2. Все ступенчатые функции, супремум по которым берется в определении интеграла функции g, входят так же и в супремум для интеграла f, так как $0 \le h \le g \le f$.

Определение. Пусть f — измеримая функция X, причем хотя бы один из интегралов срезок конечен. Для такой функции определим интеграл:

$$\int_X f \, \mathrm{d}\mu \stackrel{def}{=} \int_X f_+ \, \mathrm{d}\mu - \int_X f_- \, \mathrm{d}\mu.$$

Определение. Определим интеграл по измеримому множеству:

$$\int_E f \, \mathrm{d}\mu \stackrel{def}{=} \int_X f \cdot \chi_E \, \mathrm{d}\mu.$$

Определение. Назовем функцию *суммируемой*, если интегралы её срезок конечны.

Теорема 1.1.3. (Свойства интеграла)

- 1. Измеримая $f \geqslant 0 \Longrightarrow$ интеграл совпадает с предыдущим определением.
- 2. f суммируема $\iff \int |f| d\mu < +\infty$.
- 3. Интеграл монотонен по функции, то есть для измеримых f, g верно:

$$f \leq g \Longrightarrow \int_{F} f \, \mathrm{d}\mu \leq \int_{F} g \, \mathrm{d}\mu.$$

- 4. $\int_{E} 1 d\mu = \mu(E), \int_{E} 0 d\mu = 0.$
- 5. Пусть $\mu(E) = 0$, f измерима. Тогда

$$\int_E f \, \mathrm{d}\mu = 0.$$

6.
$$\int -f \, d\mu = -\int f \, d\mu, \ \forall c > 0 \ \int c \cdot f \, d\mu = c \cdot \int f \, d\mu.$$

7. Пусть
$$\exists \int_E f \, \mathrm{d}\mu$$
, Тогда

$$\left| \int_{E} f \, \mathrm{d}\mu \right| \leq \int_{E} |f| \, \mathrm{d}\mu.$$

8. Пусть f измерима на E, $\mu(E) < +\infty$, $\forall x \in E \ A \leq f(x) \leq B$, тогда

$$A \cdot \mu(E) \le \int_E f \, \mathrm{d}\mu \le B \cdot \mu(E).$$

Доказательство.

- 2. Следует из аддитивности интеграла по функции, что будет доказано позже.
- 1. Для неотрицательных f, g это уже было доказано. Для произвольных воспользуемся определением и тем соображением, что $f^+ \leq g^+$ и $f^- \geq g^-$:

$$\int_{E} f = \int_{E} f^{+} - \int_{E} f^{-} \leq \int_{E} g^{+} - \int_{E} g^{-} = \int_{E} g.$$

5. Если f ступенчата, то утверждение очевидно. Если $f \geqslant 0$ и измерима, то супремум из определения равен нулю. Если f – произвольная измеримая функция, то $\int f = \int f^+ - \int f^- = 0$.

2. Очевидным образом следует из определений и того, что $\sup cA = c \sup A$.

3.
$$-|f| \le f \le |f| \Longrightarrow -\int |f| \le \int f \le \int |f|$$
.

Лемма 1.1.4. Пусть $A=\bigsqcup_i A_i,\,A,A_i\in\mathcal{A},\,g:X\to\overline{\mathbb{R}},\,g\geqslant 0,$ ступенчата. Тогда

$$\int_A g \, \mathrm{d}\mu = \sum_i \int_{A_i} g \, \mathrm{d}\mu.$$

Доказательство. Пусть $g = \sum_k \lambda_k \chi_{E_k}$, тогда

$$\int_A g \, \mathrm{d}\mu = \sum_k \lambda_k \mu(E_k \cap A).$$

Воспользуемся счетной аддитивностью меры:

$$\sum_{k} \lambda_{k} \mu(E_{k} \cap A) = \sum_{k} \lambda_{k} \sum_{i} \mu(E_{k} \cap A_{i}).$$

Последний ряд сходится абсолютно, поэтому можно переставить порядок суммирования:

$$\sum_{k} \lambda_{k} \sum_{i} \mu(E_{k} \cap A_{i}) = \sum_{i} \sum_{k} \lambda_{k} \mu(E_{k} \cap A_{i}) = \sum_{i} \int_{A_{i}} g \, d\mu.$$

Теорема 1.1.5. Пусть $A=\bigsqcup_i A_i,\,A,A_i\in\mathcal{A},\,f:X\to\overline{\mathbb{R}},\,f\geqslant 0,$ измерима на A. Тогда

$$\int_A f \, \mathrm{d}\mu = \sum_i \int_{A_i} f \, \mathrm{d}\mu.$$

Доказательство.

(≤) Λ евая часть равенства аппроксимируется ступенчатыми функциями $0 \le g \le f$. Для них имеем:

$$\int_A g \, \mathrm{d}\mu = \sum_i \int_{A_i} g \, \mathrm{d}\mu \leqslant \sum_i \int_{A_i} f \, \mathrm{d}\mu.$$

Теперь имеем:

$$\int_{A} f \, \mathrm{d}\mu = \sup_{A} \int_{A} g \, \mathrm{d}\mu \leqslant \sum_{i} \int_{A_{i}} f \, \mathrm{d}\mu.$$

(\geqslant) Для начала рассмотрим случай, когда $A=A_1\sqcup A_2$. Рассмотрим ступенчатую функцию $0\leqslant g\leqslant f$ и функции g_1,g_2 такие, что $g_i\big|_{A_i}=g,\ g_i\big|_{\overline{A_i}}=0$. Очевидно, что $g_1+g_2=g$ на A. Тогда по построению:

$$\int_{A_1} g_1 d\mu + \int_{A_2} g_2 d\mu = \int_{A} (g_1 + g_2) d\mu = \int_{A} g d\mu \le \int_{A} f d\mu.$$

Возьмём супремум от обеих частей сначала по g_1 , потом по g_2 :

$$\int_{A_1} f \, \mathrm{d}\mu + \int_{A_2} f \, \mathrm{d}\mu \le \int_A f \, \mathrm{d}\mu.$$

Теперь разберемся с бесконечным случаем. Пусть $A = A_1 \sqcup A_2 \sqcup \ldots \sqcup A_n \sqcup B_n$, где $B_n = \bigsqcup_{i>n} A_i$. Тогда, пользуясь уже доказанным фактом для конечных разбиений, имеем:

$$\int_{A} f d\mu \geqslant \sum_{i=1}^{n} \int_{A_{i}} f d\mu + \int_{B_{n}} f d\mu \geqslant \sum_{i=1}^{n} \int_{A_{i}} f d\mu.$$

Совершая предельный переход при $n \to +\infty$, имеем:

$$\int_{A} f \, \mathrm{d}\mu \geqslant \sum_{i=1}^{+\infty} \int_{A_{i}} f \, \mathrm{d}\mu.$$

Следствие 1.1.6. Пусть $f: X \to \overline{\mathbb{R}}, f \ge 0$, измерима. Зададим отображение:

$$\nu \colon \mathcal{A} \to \overline{\mathbb{R}}_{\geq 0}$$
$$E \mapsto \int_{E} f \, \mathrm{d}\mu$$

Тогда ν – мера.

Доказательство. Единственное, что нужно проверить, это счетную аддитивность. Она как раз и проверена в теореме. ■

Лемма 1.1.7. Пусть f суммируема, g измерима, причем f=g при почти всех x. Тогда $\int\limits_{\mathbb{R}} f \ \mathrm{d}\mu = \int\limits_{\mathbb{R}} g \ \mathrm{d}\mu.$

Доказательство. Пусть $e \in \mathcal{A}$: $\mu e = 0$, f = g на $E \setminus e$. Тогда

$$\int\limits_E f \, \mathrm{d}\mu = \int\limits_{E \setminus e} f \, \mathrm{d}\mu + \int\limits_e f \, \mathrm{d}\mu = \int\limits_{E \setminus e} f \, \mathrm{d}\mu = \int\limits_{E \setminus e} g \, \mathrm{d}\mu = \int\limits_{E \setminus e} g \, \mathrm{d}\mu + \int\limits_e g \, \mathrm{d}\mu = \int\limits_E g \, \mathrm{d}\mu.$$

1.2 Предельный переход под знаком интеграла

Теорема 1.2.1. (Леви)

Пусть $f_n: X \to \overline{\mathbb{R}}$, измеримы, $\forall n \ 0 \le f_n \le f_{n+1}$ при почти всех $x \in X$. Пусть $f(x) = \lim_{n \to +\infty} f_n(x)$ при почти всех x. Тогда

$$\int_{Y} f \, \mathrm{d}\mu = \lim_{n \to +\infty} \int_{Y} f_n \, \mathrm{d}\mu.$$

Доказательство. Для начала отметим, что f измерима, как предел измеримых функций, поэтому её интеграл имеет смысл.

- (≥) Очевидно, поскольку $f(x) \ge f_n(x)$.
- (\leqslant) Докажем, что $\forall g: 0 \leqslant g \leqslant f$, g ступенчатая, $\forall c \in (0,1) \lim \int\limits_X f_n \geqslant c \int\limits_X g$. Пусть $E_n = X(f_n \geqslant cg)$. Очевидно, что $E_1 \subseteq E_2 \dots$ Кроме того, $\bigcup E_n = X$, потому что либо $\forall x \ f(x) > g(x)$ или f(x) = g(x), но c < 1, поэтому всегда f(x) > cg(x).

$$\int_X f_n d\mu \geqslant \int_{E_n} f_n d\mu \geqslant c \int_{E_n} g d\mu.$$

Совершим переход при $n \to +\infty$ в неравенстве:

$$\lim_{n\to+\infty}\int\limits_X f_n\,\mathrm{d}\mu \geqslant c\lim_{n\to+\infty}\int\limits_{E_n}g\,\mathrm{d}\mu.$$

Воспользуемся тем, что $E\mapsto\int\limits_E g\,\mathrm{d}\mu$ – мера, то есть обладает свойством непрерывности снизу:

$$\lim_{n\to+\infty}\int\limits_V f_n\,\mathrm{d}\mu\geqslant c\int\limits_V g\,\mathrm{d}\mu.$$

Из этого неравенства очевидно следует:

$$\lim_{n\to+\infty}\int_{\mathcal{V}}f_n\,\mathrm{d}\mu\geqslant\int_{\mathcal{V}}g\,\mathrm{d}\mu.$$

Возьмем теперь супремум по д от обеих частей и получим требуемое.

Теорема 1.2.2. Пусть $f, g \ge 0$, измеримы на E. Тогда

$$\int_{E} (f+g) d\mu = \int_{E} f d\mu + \int_{E} g d\mu.$$

Доказательство. Аппроксимируем f, g ступенчатыми фукнциями f_n , g_n . Теорема об аппроксимации поставляет такие f_n , g_n , что $0 \le f_n \le f$ и $0 \le g_n \le g$. f_n , g_n ступенчатые, поэтому

$$\int_{E} (f_n + g_n) d\mu = \int_{E} f_n d\mu + \int_{E} g_n d\mu.$$

По теореме Леви переходим к пределу при $n \to +\infty$:

$$\int_{E} (f+g) d\mu = \int_{E} f d\mu + \int_{E} g d\mu.$$

Следствие 1.2.3. Пусть f, g суммируемы на E. Тогда f + g суммируема, причем

$$\int_{E} (f+g) d\mu = \int_{E} f d\mu + \int_{E} g d\mu.$$

Доказательство.

• $(f+g)_{\pm} \le |f+g| \le |f| + |g|$, поэтому интегралы

$$\int_{E} (f+g)_{\pm} \,\mathrm{d}\mu$$

конечны, то есть f + g суммируема.

• Пусть h = f + g:

$$h_{+} - h_{-} = f_{+} - f_{-} + g_{+} - g_{-} \Longrightarrow h_{+} + f_{-} + g_{-} = h_{-} + f_{+} + g_{+} \Longrightarrow$$

$$\int h_{+} + \int f_{-} + \int g_{-} = \int h_{-} + \int f_{+} + \int g_{+} \Longrightarrow$$

$$\int (f + g) d\mu = \int_{E} f d\mu + \int_{E} g d\mu$$

Определение. $\mathcal{L}(X) = \{ f \mid f : X \to \overline{\mathbb{R}}, \int |f| d\mu < +\infty \}$

Лемма 1.2.4. $\mathcal{L}(X)$ – линейное пространство.

Теорема 1.2.5. Пусть $u_n: X \to \mathbb{R}, u_n \ge 0$ почти везде, u_n измеримы на E. Тогда

$$\int_{\mathbb{R}} \left(\sum_{n=1}^{+\infty} u_n \right) d\mu = \sum_{n=1}^{+\infty} \int_{\mathbb{R}} u_n d\mu.$$

Доказательство. Пусть $S_n(x) = \sum_{i=1}^n u_n(x), \ 0 \leqslant S_n(x) \leqslant S_{n+1}(x)$ почти везде, S(x) =

 $\sum_{i=1}^{+\infty}u_n(x)=\lim_{n o +\infty}S_n(x)$. Тогда по теореме Леви:

$$\int_{E} S d\mu = \lim_{n \to +\infty} \int_{E} S_n(x) d\mu = \lim_{n \to +\infty} \sum_{i=1}^{n} \int_{E} u_n(x) d\mu = \sum_{i=1}^{+\infty} \int_{E} u_n(x) d\mu.$$

Следствие 1.2.6. Пусть u_n измеримы, причем $\sum_{n=1}^{+\infty}\int\limits_E|u_n|\,\mathrm{d}\mu<+\infty$, тогда ряд $\sum_{n=1}^{+\infty}u_n$

сходится абсолютно почти везде на Е.

Доказательство.

$$\int_{E} \sum_{i=1}^{+\infty} |u_n| \, \mathrm{d}\mu = \sum_{i=1}^{+\infty} \int_{E} |u_n| \, \mathrm{d}\mu < +\infty.$$

Поэтому ряд под первым интегралом сходится.

Теорема 1.2.7. (Абсолютная непрерывность интеграла)

Пусть f – суммируемая функция. Тогда

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall E \in \mathcal{A} \colon \ \mu(E) < \delta \ \left| \int_{E} f \ \mathrm{d}\mu \right| < \varepsilon.$$

Доказательство. Пусть $X_n = X(f \ge n)$. Тогда $X_n \supseteq X_{n+1} \supseteq \dots$ Кроме того, посколько f суммируема, она не может быть бесконечной на множестве меры, отличной от нуля, то есть $\mu(\bigcap X_n) = 0$.

• $\forall \varepsilon > 0 \; \exists n_{\varepsilon} \colon \int\limits_{X_{n_{\varepsilon}}} |f| < \frac{\varepsilon}{2}.$ Это выполнено потому, что отображение $A \mapsto \int\limits_{A} |f| -$ мера, то есть непрерывно сверху:

$$\int_{X_n} |f| \, \mathrm{d}\mu \xrightarrow[n \to +\infty]{} \int_{\bigcap X_n} |f| \, \mathrm{d}\mu = 0.$$

• По ε положим $\delta=\frac{\varepsilon}{2n_{\varepsilon}}$. Пусть теперь $\mu E<\delta$, вычислим интеграл:

$$\left| \int_{E} f \, \mathrm{d}\mu \right| \leq \int_{E} |f| \, \mathrm{d}\mu = \int_{E \cap X_{n_{\varepsilon}}} |f| \, \mathrm{d}\mu + \int_{E \setminus X_{n_{\varepsilon}}} |f| \, \mathrm{d}\mu \leq \int_{X_{n_{\varepsilon}}} |f| \, \mathrm{d}\mu + n_{\varepsilon} \cdot \frac{\varepsilon}{2n_{\varepsilon}} < \varepsilon.$$

Следствие 1.2.8. Пусть $e_n \in \mathcal{A}$, $\mu(e_n) \xrightarrow[n \to +\infty]{} 0$, f – суммируемая функция, тогда

$$\int_{e_n} |f| \, \mathrm{d}\mu \xrightarrow[n \to +\infty]{} 0.$$

1.3 Произведение мер

В этом разделе мы начинаем с того, что по двум пространствам $\langle X, \mathcal{A}, \mu \rangle$, $\langle Y, \mathcal{B}, \nu \rangle$ строим пространство $\langle X \times Y, \mathcal{A} \times \mathcal{B}, \mu \times \nu \rangle$.

Лемма 1.3.1. A, B – полукольца, тогда $A \times B$ – полукольцо.

Определение. \mathcal{A} , \mathcal{B} – полукольца, назовем тогда $\mathcal{A} \times \mathcal{B}$ полукольцом измеримых прямоугольников. Заведем отображение:

$$m_0: \mathcal{A} \times \mathcal{B} \to \overline{\mathbb{R}}$$

 $A \times B \mapsto \mu(A) \cdot \nu(B)$

Теорема 1.3.2.

- m_0 мера на полукольце $\mathcal{A} \times \mathcal{B}$.
- Если μ , ν σ -конечны, тогда m_0 тоже σ -конечна.

Определение. Мы получили $\langle X \times Y, \mathcal{A} \times \mathcal{B}, m_0 \rangle$ — пространство с мерой на полукольце. Продолжим её, пользуясь теоремой о продолжении, до σ -алгебры, которую будем обозначать $\mathcal{A} \otimes \mathcal{B}$. Результирующее пространство назовем произведением пространство с мерой, а полученную меру — произведением мер.

Теорема 1.3.3. Произведение мер ассоциативно.

Теорема 1.3.4. $\lambda_{m+n} = \lambda_m \times \lambda_n$.

Определение. Пусть $C \subseteq X \times Y$. Тогда *сечением* для произвольного $x \in X$ назовем множество

$$C_x \stackrel{def}{=} \{ y \in Y \mid (x, y) \in C \}.$$

Замечание. Для сечений верны формулы, связанные с операциями над множествами, подобные этой:

$$\left(\bigcup_{\alpha} C_{\alpha}\right)_{x} = \bigcup_{\alpha} (C_{\alpha})_{x}.$$

Теорема 1.3.5. (Принцип Кавальери)

Пусть μ , ν – σ -конечные полные меры, $m = \mu \times \nu$, $C \in \mathcal{A} \otimes \mathcal{B}$, тогда

- При почти всех $x \, C_x \in \mathcal{B}$.
- Отображение $x \mapsto v(C_x)$ измеримо на X.

•
$$m(C) = \int_{X} v(C_x) d\mu$$
.

Следствие 1.3.6. Пусть $C \in A \otimes B$, $p_1(C) \in A$, тогда

$$m(C) = \int_{p_1(C)} \nu(C_x) d\mu.$$

Следствие 1.3.7. Пусть $f:[a,b] \to \mathbb{R}, f \in C$, тогда

$$\int_{a}^{b} f(x) dx = \int_{[a,b]} f d\lambda_{1}.$$

Замечание. Пусть $f \ge 0$, измерима, тогда

$$\lambda_2\Pi\Gamma(f,[a,b]) = \int_{[a,b]} f \,\mathrm{d}\lambda_1.$$

Определение. Пусть $f: X \times Y \to \overline{\mathbb{R}}, \ C \in X \times Y$. Зафиксируем $x \in X$ и определим отображение:

$$f_x : C_x \to \overline{\mathbb{R}}$$

 $y \mapsto f(x, y)$

Аналогично определим $f_y : C_y \to \overline{\mathbb{R}}$ для всех $y \in Y$.

Теорема 1.3.8. (Тонелли)

Пусть $\mu,\ \nu-\sigma$ -конечные полные меры, $m=\mu\times\nu,\ f:X\times Y\to\overline{\mathbb{R}},\ f\geqslant 0,$ измерима по мере m. Тогда

- При почти всех $x f_x$ измерима на Y.
- Отображение $x \mapsto \varphi(x) = \int_{Y} f(x,y) dv = \int_{Y} f_{x} dv$ измеримо на X.

•
$$\int_{X\times Y} f(x,y) dm = \int_X \left(\int_Y f(x,y) d\nu \right) d\mu.$$

Теорема 1.3.9. (Фубини)

Пусть μ , $\nu-\sigma$ -конечные полные меры, $m=\mu\times\nu$, $f:X\times Y\to\overline{\mathbb{R}}, f\geqslant 0$, **суммируема**. Тогда

- При почти всех $x f_x$ **суммируема** на Y.
- Отображение $x \mapsto \varphi(x) = \int_Y f(x,y) dv = \int_Y f_x dv$ суммируемо на X.

•
$$\int_{X\times Y} f(x,y) dm = \int_X \left(\int_Y f(x,y) dv \right) d\mu.$$

Следствие 1.3.10. Если $p_1(C)$ измеримо, то

$$\int_C f \, \mathrm{d}m = \int_{X \times Y} f \, \chi_C \, \mathrm{d}m = \int_X \left(\int_Y f \, \chi_C \, \mathrm{d}\nu \right) \mathrm{d}\mu = \int_{p_1(C)} \left(\int_{C_X} f \, \mathrm{d}\nu \right) \mathrm{d}\mu.$$

Замечание. Посмотрим на два вида сходимости: по мере и в смысле интеграла:

1.
$$f_n \Longrightarrow f \Longleftrightarrow \mu X(|f_n - f| < \varepsilon) \to 0$$
.

$$2. \int_{X} |f_n - f| \, \mathrm{d}\mu \to 0.$$

Оказывается, верно $2 \Longrightarrow 1$, но без дополнительных требований неверно $1 \Longrightarrow 2$.

Теорема 1.3.11. (Лебега о мажорированной сходимости)

Пусть f_n, f измеримы и почти везде конечны, $f_n \Longrightarrow_{\mu} f$, $\exists g$:

- $\forall n |f_n| \leq g$ при почти всех x.
- *g* суммируема на *X*.

В такой ситуации д называется Мажорантой. Тогда

- f_n , f суммируемы.
- $\bullet \int_{Y} |f_n f| \, \mathrm{d}\mu \to 0.$

Следствие 1.3.12. В условиях предыдущей теоремы верно

$$\int\limits_{Y} f_n \, \mathrm{d}\mu \xrightarrow[n \to +\infty]{} \int\limits_{Y} f \, \mathrm{d}\mu.$$

Теорема 1.3.13. Пусть f_n, f измеримы и почти везде конечны, $f_n \to f$ почти везде, $\exists g$:

- $\forall n |f_n| \leq g$.
- g суммируема на X.

Тогда

• f_n , f суммируемы.

$$\bullet \int_{Y} |f_n - f| \, \mathrm{d}\mu \to 0.$$

Следствие 1.3.14. В условиях предыдущей теоремы верно

$$\int\limits_X f_n \,\mathrm{d}\mu \xrightarrow[n \to +\infty]{} \int\limits_X f \,\mathrm{d}\mu.$$

12

Теорема 1.3.15. (Фату)

Пусть $f_n \geqslant 0, \, f_n$ измеримы, $f_n \to f$ почти везде. Если

$$\exists c > 0 \colon \forall n \int_X f_n \, \mathrm{d}\mu \leq c.$$

TO

$$\int_{Y} f \, \mathrm{d}\mu \leqslant c.$$

Следствие 1.3.16. Теорема Фату верна и в случае $f_n \Longrightarrow_{\mu} f$.

Следствие 1.3.17. Пусть $f_n \geqslant 0, \, f_n$ измеримы, тогда

$$\int_{Y} \underline{\lim} f_n \, \mathrm{d}\mu \leq \underline{\lim} \int_{Y} f_n \, \mathrm{d}\mu.$$

1.4 Замена переменных в интеграле

Определение. Отображение $\Phi: X \to Y$ называется *измеримым*, если

$$\forall B \in \mathcal{B} \ \Phi^{-1}(B) \in \mathcal{A}.$$

Иначе говоря, прообраз измеримого множества измерим.

Лемма 1.4.1. $\Phi^{-1}(\mathfrak{B}) - \sigma$ -алгебра.

Определение. При фиксированном измеримом $\Phi: X \to Y$ отображение

$$\nu \colon \mathcal{B} \to \overline{\mathbb{R}}$$
$$B \mapsto \mu(\Phi^{-1}(B))$$

назовем образом меры и при отображении Ф.

Лемма 1.4.2. Образ меры при отображении является мерой.

Замечание.
$$v(B) = \int_{\Phi^{-1}(B)} 1 \,\mathrm{d}\mu$$

Замечание. Если функция $f:Y\to\overline{\mathbb{R}}$ измерима относительно $\mathcal{B},$ то $f\circ\Phi\colon X\to\overline{\mathbb{R}}$ измерима относительно $\mathcal{A}.$

Определение. Пусть $\omega: X \to \overline{\mathbb{R}}$, $\omega \ge 0$, измерима. В этом контексте ω называется весовой функцией. Тогда взвешенным образом меры μ с весом ω называется мера

$$\nu(B) = \int_{\Phi^{-1}(B)} \omega \, \mathrm{d}\mu$$

Теорема 1.4.3. (Об интегрировании по взвешенному образу меры)

Пусть $\Phi \colon X \to Y$ – измеримое отображение, $0 \le \omega \colon X \to \overline{\mathbb{R}}$ – весовая функция, измерима на $X, \ \nu$ – взвешенный образ меры μ с весом ω . Тогда для любой измеримой $f \colon Y \to \overline{\mathbb{R}}$ верно:

- $f \circ \Phi$ измерима на X.
- $\int_{Y} f \, \mathrm{d}\nu = \int_{X} (f \circ \Phi) \, \omega \, \mathrm{d}\mu$

Следствие 1.4.4. Пусть f суммируема на $Y, B \in \mathcal{B}$, тогда в условиях теоремы:

$$\int_{B} f \, \mathrm{d} \nu = \int_{\Phi^{-1}(B)} (f \circ \Phi) \, \omega \, \mathrm{d} \mu.$$

Определение. В ситуации X = Y, A = B, $\Phi = \mathrm{id}$, если $\omega \geqslant 0$ измерима, причем $v(B) = \int\limits_{B} \omega \, \mathrm{d}\mu$, ω называется плотностью меры ν относительно меры μ . В таком случае

$$\int_{X} f \, \mathrm{d}\nu = \int_{X} f \, \omega \, \mathrm{d}\mu.$$

Теорема 1.4.5. (Критерий плотности)

Пусть ν – мера на $\mathcal{A},\ \omega\geqslant 0$ измерима, тогда верно, что ω – плотность ν относительно μ тогда и только тогда, когда

$$\forall A \in \mathcal{A} \inf_{A} \omega \cdot \mu(A) \leq \nu(A) \leq \sup_{A} \omega \cdot \mu(A).$$

Лемма 1.4.6. Пусть f, g – суммируемые на X функции, причем

$$\forall A \in \mathcal{A} \int_{A} f \, \mathrm{d}\mu = \int_{A} f \, \mathrm{d}\mu.$$

Тогда f = g почти везде.

Лемма 1.4.7. (Об образе малых кубических ячеек)

Пусть \mathcal{O} открыто, $\Phi \colon \mathcal{O} \subseteq \mathbb{R}^m \to \mathbb{R}^m$, $\mathbf{a} \in \mathcal{O}$, Φ дифференцируемо в \mathbf{a} , $\det \Phi'(\mathbf{a}) \neq 0$, $c > |\det \Phi'(\mathbf{a})| > 0$. Тогда

$$\exists \delta > 0 \ \forall Q - \text{Ky}\delta, Q \subset B(\mathbf{a}, \delta) \ \lambda \Phi(Q) < c \cdot \lambda(Q).$$

Лемма 1.4.8. Пусть $\mathbb O$ открыто, $f: \mathbb O \subseteq \mathbb R^m \to \mathbb R$, $f \in C(\mathbb O)$, $A \in \mathfrak M^m$, $A \subseteq Q$, Q – куб, причем $\mathrm{Cl}(Q) \subseteq \mathbb O$. Тогда

$$\inf_{\substack{A \subset G \\ G \text{ OTKIDISTO}}} \left(\lambda(G) \cdot \sup_{G} f \right) = \lambda(A) \cdot \sup_{A} f.$$

Теорема 1.4.9. Пусть \emptyset открыто, $\Phi \colon \mathbb{O} \subseteq \mathbb{R}^m \to \mathbb{R}^m$ – диффеоморфизм, $A \in \mathfrak{M}^m$, $A \subseteq \mathbb{O}$, тогда

$$\lambda \Phi(A) = \int_A |\det \Phi'| \, \mathrm{d}\lambda_m.$$

Теорема 1.4.10. Пусть \mathcal{O} открыто, $\Phi \colon \mathcal{O} \subseteq \mathbb{R}^m \to \mathbb{R}^m$ – диффеоморфизм, $\mathcal{O}^1 = \Phi(\mathcal{O})$, f – измеримая неотрицательная функция, тогда

$$\int_{\Omega^1} f(y) dy = \int_{\Omega} f(\Phi(x)) |\det \Phi'(x)| dx.$$

Замечание. То же верно и в случае, когда f суммируема.

1.5 Функции распределения

Определение. Пусть $h: X \to \overline{\mathbb{R}}$ – измеримая и почти везде конечная функция, причем $\forall t \in \mathbb{R} \ \mu X(h < t) < +\infty$. Тогда функция $H(t) = \mu X(h < t)$ называется функцией распределения h по мере μ .

Замечание. H(t) не убывает.

Замечание. Пусть h измерима, тогда для любого борелевского $B \in \mathcal{B}(\mathbb{R})$ $h^{-1}(B)$ измерим.

Определение. Стандартное продолжение $\mu_H([a,b)) = H(b-0) - H(a-0)$ называется мерой Бореля-Стилтьеса.

Лемма 1.5.1. Пусть $h: X \to \overline{\mathbb{R}}$ – измеримая и почти везде конечная функция, H – её функция распределения. Тогда на $\mathcal{B}(\mathbb{R})$ $\mu_H = H(\mu)$.

Теорема 1.5.2. Пусть $0 \le f : \mathbb{R} \to \mathbb{R}$ – функция, измеримая по Борелю, $h : X \to \overline{\mathbb{R}}$ – измеримая и почти везде конечная функция, H – её функция распределения, μ_H – мера Бореля-Стилтьеса для H. Тогда

$$\int\limits_X f \circ h \, \mathrm{d}\mu = \int\limits_{\mathbb{R}} f \, \mathrm{d}\mu_H.$$

Глава 2

Поверхностные интегралы

2.1 Поверхностный интеграл І рода

Определение. Пусть M – простое гладкое двумерное многообразие в \mathbb{R}^3 , $\varphi \colon \mathcal{O} \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ – параметризация M, тогда $E \subseteq M$ называется измеримым, если $\varphi^{-1}E \in \mathfrak{M}^2$.

Определение. Введем обозначение:

$$A_M \stackrel{def}{=} \{ E \subseteq M \mid E \text{ измеримо} \}.$$

Замечание. $A_M - \sigma$ -алгебра.

Определение. На A_{M} заведем меру:

$$S: \mathcal{A}_M \to \overline{\mathbb{R}}$$

$$E \mapsto \int\int\limits_{\varphi^{-1}(E)} \|\varphi'_u \times \varphi'_v\| \, du dv.$$

Замечание. Замкнутые, открытые, компактные $E \subset M$ измеримы.

Лемма 2.1.1. S не зависит от выбора параметризации.

Определение. $f:M\to \overline{\mathbb{R}}$ измерима по мере S, если $f\circ \varphi$ измерима на 0 по мере λ .

Определение. Пусть M — простое гладкое двумерное многообразие, φ — его параметризация, $0 \le f: M \to \overline{\mathbb{R}}$ измерима по S, тогда *поверхностным интегралом I рода* назовем интеграл

$$\iint_{M} f \, \mathrm{d}S.$$

Или развернуто, пользуясь теоремой об интегрировании по взвешенному образу меры:

$$\iint_{M} f \, dS = \iint_{\varphi^{-1}(M)} f(x(u,v), y(u,v), z(u,v)) \cdot \|\varphi'_{u} \times \varphi'_{v}\| \, du dv.$$

Определение. $M \subseteq \mathbb{R}^3$ назовем *кусочно-гладким многообразием* в \mathbb{R}^3 , если M представляется в виде конечного дизъюнктного объединения объектов вида

- простое гладкое двумерное многообразие.
- простое гладкое одномерное многообразие (носитель гладкого пути).
- точка.

Определение. Мера S на кусочно-гладком многобразии $E = \bigsqcup_i M_i$ вычисляется следующим образом:

$$S(E) = \sum_{i} S(E \cap M_i).$$

2.2 Поверхностный интеграл II рода

Определение. *Поверхностью* будем называть простое гладкое двумерное многообразие.

Определение. *Стороной поверхности* называется непрерывное векторное поле единичных нормалей к этой поверхности.

Определение. Поверхность называется *двусторонней*, если для неё существует непрерывное поле нормалей. Иначе она называется *односторонней*.

Пример. Лента Мебиуса – односторонняя поверхность.

Определение. *Репером* называется пара линейно независимых касательных векторов.

Определение. Пусть Ω – двусторонняя поверхность в \mathbb{R}^3 , $F:\Omega\to\mathbb{R}^3$, $n_0\colon\mathbb{R}^3\to\mathbb{R}^3$ – сторона поверхности. Тогда интегралом II рода функции F по поверхности Ω назовем интеграл

$$\int_{\Omega} \langle F, n_0 \rangle \, \mathrm{d}S.$$

Замечание.

- Смена стороны на противоположную влечет замену знака.
- Интеграл II рода не зависит от параметризации.
- Пусть $F = \langle P, Q, R \rangle$. Тогда интеграл II рода записывают так:

$$\int_{\Omega} \langle F, n_0 \rangle \, \mathrm{d}S = \int_{\Omega} P \, \mathrm{d}y \, \mathrm{d}z + Q \, \mathrm{d}z \, \mathrm{d}x + R \, \mathrm{d}x \, \mathrm{d}y.$$

• Пусть поверхность задана параметризацией x(u,v), y(u,v), z(u,v). Получим нормальный вектор, перемножив векторно касательные векторы:

$$n = \begin{pmatrix} x'_u \\ y'_u \\ z'_u \end{pmatrix} \times \begin{pmatrix} x'_v \\ y'_v \\ z'_v \end{pmatrix} = \begin{pmatrix} \begin{vmatrix} y'_u y'_v \\ z'_u z'_v \end{vmatrix}, \begin{vmatrix} z'_u z'_v \\ x'_u x'_v \end{vmatrix}, \begin{vmatrix} x'_u x'_v \\ y'_u y'_v \end{vmatrix} \end{pmatrix}^T.$$

Мера S выгдялит следующим образом:

$$dS = \|\varphi'_{n} \times \varphi'_{n}\| \ dudv = \|n\| \ dudv.$$

Вычислим интеграл:

$$\begin{split} \int\limits_{\Omega} \left\langle F, n_0 \right\rangle \mathrm{d}S &= \iint\limits_{\widetilde{\Omega}} \left(P \left| \begin{matrix} y_u' y_v' \\ z_u' z_v' \end{matrix} \right| + Q \left| \begin{matrix} z_u' z_v' \\ x_u' x_v' \end{matrix} \right| + R \left| \begin{matrix} x_u' x_v' \\ y_u' y_v' \end{matrix} \right| \right) \cdot \frac{1}{\|n\|} \cdot \|n\| \; \mathrm{d}u \mathrm{d}v = \\ \iint\limits_{\widetilde{\Omega}} \left(P \left| \begin{matrix} y_u' y_v' \\ z_u' z_v' \end{matrix} \right| + Q \left| \begin{matrix} z_u' z_v' \\ x_u' x_v' \end{matrix} \right| + R \left| \begin{matrix} x_u' x_v' \\ y_u' y_v' \end{matrix} \right| \right) \mathrm{d}u \mathrm{d}v \end{split}$$

Замечание. Посчитаем интеграл поля (0,0,R) по поверхности Ω , заданной графиком (то есть, имеющей параметризацию вида x,y,z(x,y)).

$$\iint_{\Omega^{+}} R \, \mathrm{d}x \, \mathrm{d}y = \iint_{\widetilde{\Omega}} \left(P \begin{vmatrix} y'_{u} y'_{v} \\ z'_{u} z'_{v} \end{vmatrix} + Q \begin{vmatrix} z'_{u} z'_{v} \\ x'_{u} x'_{v} \end{vmatrix} + R \begin{vmatrix} x'_{u} x'_{v} \\ y'_{u} y'_{v} \end{vmatrix} \right) \mathrm{d}u \, \mathrm{d}v = \iint_{\widetilde{\Omega}} R(x, y, z(x, y)) \, \mathrm{d}u \, \mathrm{d}v$$

Замечание. Попробуем посчитать объём фигуры Ω , ограниченной графиками z_1, z_2 :

$$\begin{split} \lambda_3(\Omega) &= \iint\limits_{\widetilde{\Omega}} \left(z_1(x,y) - z_2(x,y) \right) \mathrm{d}x \mathrm{d}y = \iint\limits_{\widetilde{\Omega}} z_1(x,y) \, \mathrm{d}x \mathrm{d}y - \iint\limits_{\widetilde{\Omega}} z_2(x,y) \, \mathrm{d}x \mathrm{d}y \\ &= \iint\limits_{\partial\Omega^+} z \, \mathrm{d}x \mathrm{d}y \end{split}$$

В последнем переходе мы воспользовались предыдущим замечанием и тем, что у нижней части фигуры (ограниченной z_1) нормали направлены в другую сторону.

Замечание. Пусть γ – гладкая кривая в \mathbb{R}^2 (лежит в плоскости xy), Ω – цилиндр над γ . Тогда

$$\iint\limits_{\Omega} R \, \mathrm{d}x \, \mathrm{d}y = 0.$$

Доказательство.

Первое доказательство: по формуле из первого замечания мы собираемся интегрировать какую-то функцию по носителю пути по двумерной мере. Носитель гладкого пути по такой мере всегда имеет меру 0.

Второе доказательство: мы пытаемся интегрировать $\langle F, n_0 \rangle$. Заметим, что у F не равна нулю только третья координата (R), тогда как вектор нормали к цилиндру над xy всегда имеет z=0. Таким образом, мы интегрируем функцию, тождественно равную нулю.

Глава 3

Основные интегральные формулы

3.1 Формула Грина

Замечание. В данном контексте рассматривается D: компактное, связное, односвязное множество в \mathbb{R}^2 , ограниченное кусочно-гладкой кривой. При этом граница ∂D направлена против часовой стрелки (фигура всегда находится слева).

Теорема 3.1.1. (Формула Грина)

Пусть P, Q – гладкие векторные поля в U(D). Тогда

$$\iint\limits_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \int\limits_{\partial D} P dx + Q dy.$$

Замечание. Формула "аддитивна" по фигуре.

3.2 Формула Стокса

Замечание. В данном контексте рассматривается Ω – двусторонняя поверхность с границей. n_0 – её сторона. $\partial \Omega$ – кусочно-гладкая кривая, согласованная по ориентации со стороной поверхности.

Теорема 3.2.1. (Формула Стокса)

Пусть $\langle P, Q, R \rangle$ – гладкое векторное поле в $U(\Omega)$. Тогда

$$\int_{\partial \Omega} P \, \mathrm{d}x + Q \, \mathrm{d}y + R \, \mathrm{d}z = \iint_{\Omega} \left(R_y' - Q_z' \right) \mathrm{d}y \, \mathrm{d}z + \left(P_z' - R_x' \right) \mathrm{d}z \, \mathrm{d}y + \left(Q_x' - P_y' \right) \mathrm{d}x \, \mathrm{d}y$$

Замечание. Формула "аддитивна" по фигуре.

3.3 Формула Гаусса-Остроградского

Замечание. В данном контексте рассматриваются

$$V = \{(x, y, z) \mid (x, y) \in \Omega, f(x, y) \le z \le F(x, y)\}.$$

Здесь $\Omega \subseteq \mathbb{R}^2$ – замкнутое множество, $\partial \Omega$ – кусочно-гладкая кривая в \mathbb{R}^2 , $f, F \in C^1(\Omega)$. Рассматриваем внешнюю сторону фигуры.

Теорема 3.3.1. (Формула Гаусса-Остроградского)

Пусть $R: U(V) \to \mathbb{R}, R \in C^1(U(V))$. Тогда

$$\iiint\limits_V \frac{\partial R}{\partial z} \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \iint\limits_{\partial V^+} R \, \mathrm{d}x \, \mathrm{d}y.$$

Следствие 3.3.2. В условиях формулы Гаусса-Остроградского, верно

$$\iiint\limits_V \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz = \iint\limits_{\partial V^+} P dy dz + Q dz dx + R dx dy.$$

Следствие 3.3.3. Пусть l – фиксированное направление в \mathbb{R}^3 . Тогда

$$\iiint\limits_V \frac{\partial f}{\partial l} \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \iint\limits_{\partial V^+} f \cdot \langle l, n_0 \rangle \, \mathrm{d}S.$$

3.4 Примеры дифференциальных операторов

Определение. Пусть $C^1 \ni A = \langle P, Q, R \rangle$ – векторное поле в \mathbb{R}^3 . Тогда *дивергенцией А* называется

$$\operatorname{div} A \stackrel{\text{def}}{=} \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}.$$

Замечание. Дивергенцию поля в точке можно вычислять так:

$$\operatorname{div} A(a) = \lim_{r \to 0} \frac{1}{\lambda_3 B} \iiint_{B(a,r)} \operatorname{div} A \, dx dy dz = \lim_{r \to 0} \frac{1}{\lambda_3 B} \iint_{S(a,r)} \langle A, n_0 \rangle \, dS.$$

Последнюю формулу можно интерпретировать как величину потока, проходящего через сферу с центром в данной точке достаточно малого радиуса. То есть, дивергенция характеризует точку как "источник" поля.

Определение. Пусть $C^1 \ni A = \langle P, Q, R \rangle$ – векторное поле в \mathbb{R}^3 . Тогда *ротором А* называется

$$\operatorname{rot} A \stackrel{def}{=} \langle R'_{y} - Q'_{z}, P'_{z} - R'_{x}, Q'_{x} - P'_{y} \rangle.$$

Замечание. $V: \mathcal{O} \to \mathbb{R}^3$, \mathcal{O} – односвязная область, rot V=0. Тогда V потенциально.

Замечание. $V: \mathcal{O} \to \mathbb{R}^3$, \mathcal{O} – односвязная область, rot V=0. Тогда

Если γ – петля, то

$$\int_{\gamma} P \, \mathrm{d}x + Q \, \mathrm{d}y + R \, \mathrm{d}z = 0.$$

• Если γ – путь, то интеграл

$$\int_{Y} P \, \mathrm{d}x + Q \, \mathrm{d}y + R \, \mathrm{d}z.$$

зависит только от начальной и конечной точек пути.

Замечание. Если $\mathbb O$ не односвязна, но rot V=0, то все равно интеграл по пути не зависит от самого пути.

Если в поле нет источников, то откуда может взяться поток через поверхность?

Замечание. $\operatorname{div} V = 0$, тогда для любой "разумной" фигуры Ω выполнено

$$\iint\limits_{\partial\Omega} \langle V, n_0 \rangle \, \mathrm{d}S = 0.$$

Определение. Поле V называется *соленоидальным* в $\Omega \subseteq \mathbb{R}^3$, если у него существует векторный потенциал, то есть $\exists B$ – векторное поле такое, что $\operatorname{rot} B = V$ на Ω .

Теорема 3.4.1. (Критерий соленоидальности поля) A соленоидально в $\Omega \Longleftrightarrow \operatorname{div} A = 0$ на Ω

Глава 4

Ряды Фурье

4.1 Пространство L^p

Определение. Комплексное отображение $f: X \to \mathbb{C}$ назовем *измеримым*, если $f(x) = g(x) + ih(x), g,h: X \to \mathbb{R}$, причем g,h измеримы.

Определение. Аналогично определим суммируемые комплексные отображения.

Определение. Пусть $f: X \to \mathbb{C}$, f(x) = g(x) + ih(x), $g, h: X \to \mathbb{R}$. Тогда определим интеграл:

$$\int_{E} f \, \mathrm{d}\mu \stackrel{def}{=} \int_{E} g \, \mathrm{d}\mu + i \int_{E} h \, \mathrm{d}\mu.$$

Замечание.

$$\left| \int_{\mathbb{R}} f \, \mathrm{d}\mu \right| \leq \int_{\mathbb{R}} |f| \, \mathrm{d}\mu.$$

Теорема 4.1.1. (Интегральное неравенство Гёльдера)

Пусть $p,q>1,\,\frac{1}{p}+\frac{1}{q}=1,\,f,g:X\to\mathbb{C}$ – измеримые почти везде заданные функции. Тогда

$$\int_{X} |f g| d\mu \leq \left(\int_{X} |f|^{p} d\mu\right)^{\frac{1}{p}} \cdot \left(\int_{X} |g|^{q} d\mu\right)^{\frac{1}{q}}.$$

Теорема 4.1.2. (Интегральное неравенство Минковского)

Пусть $f, g: X \to \mathbb{C}, p \ge 1$, тогда

$$\left(\int\limits_X |f+g|^p \,\mathrm{d}\mu\right)^{\frac{1}{p}} \leqslant \left(\int\limits_X |f|^p \,\mathrm{d}\mu\right)^{\frac{1}{p}} + \left(\int\limits_X |g|^p \,\mathrm{d}\mu\right)^{\frac{1}{p}}.$$

Определение. Пусть $\langle X, \mathcal{A}, \mu \rangle$ – пространство с мерой. Тогда для $1 \leq p < +\infty$ положим

$$\mathcal{L}^p(X,\mu) \stackrel{def}{=} \left\{ f : \text{п.в.} \ X \to \mathbb{C}(\mathbb{R}) \ | \ f \ \text{измерима,} \int\limits_X |f|^p \, \mathrm{d}\mu < +\infty
ight\}.$$

Замечание. $\mathcal{L}^{p}(X,\mu)$ – линейное пространство.

Определение. Зададим на \mathcal{L}^p отношение эквивалентности: $f \sim g$ тогда и только тогда, когда f = g почти везде. Положим

$$L^p(X,\mu) \stackrel{def}{=} \mathcal{L}^p(X,\mu) / \sim$$
.

Определение. В L^p заведем норму: $\|[f]\| \stackrel{def}{=} \left(\int_X |f|^p \, \mathrm{d}\mu \right)^{\frac{1}{p}}$.

Определение. Пусть $f:X \to \overline{\mathbb{R}}$ задана почти везде. Тогда *существенным супремумом* f называется

$$\operatorname{ess\,sup} f \stackrel{def}{=} \inf \{ A \in \overline{\mathbb{R}} \mid f(x) \leq A \text{ n.B.} \}.$$

Теорема 4.1.3. (Свойства существенного супремума)

- $\operatorname{ess\,sup}_{x} f \leq \operatorname{sup}_{x} f$.
- $f(x) \le \operatorname{ess\,sup}_x f$ при почти всех x.

•
$$\left| \int_{X} f g \, d\mu \right| \le \operatorname{ess \, sup}_{X} |f| \cdot \int_{X} |g|.$$

Определение. Для $p = \infty$:

$$\mathcal{L}^{\infty}(X,\mu)\stackrel{def}{=}\left\{f: \text{п.в. } X \to \mathbb{C}(\mathbb{R}) \mid f \text{ измерима, ess sup } f < +\infty \right\}.$$

Замечание. $\mathcal{L}^{\infty}(X,\mu)$ – линейное пространство.

Определение. Пространство L^{∞} зададим аналогично конечному случаю. Нормой на этом пространстве положим ess sup.

Теорема 4.1.4. (О вложении пространств L^p) Пусть $\mu(X) < +\infty$, $1 \le r < s \le +\infty$. Тогда

- $L^r(X,\mu) \subset L^s(X,\mu)$.
- $||f||^s \le \mu(X)^{\frac{1}{s} \frac{1}{r}} \cdot ||f||_r$.

Следствие 4.1.5. Пусть $\mu(E) < +\infty, \ 1 \le s < r \le +\infty, \ f_n, f \in L^s, \ f_n \xrightarrow{L^r} f$, тогда $f_n \xrightarrow{I_s} f$.

Теорема 4.1.6. (О сходимости в L^p и по мере) Пусть $1 \le r < +\infty$, $f_n, f \in L^p$, тогда

- $f_n \xrightarrow{I_p} f \Longrightarrow f_n \Longrightarrow f$.
- $f_n \Longrightarrow_{\mu} f$, либо $f_n \to f$ почти везде, тогда если $\exists g \in L^p \colon \ |f_n| \leqslant g$, то $f_n \Longrightarrow_{L^p} f$.

Замечание. L^{∞} – полное метрическое пространство.

Теорема 4.1.7. (Полнота пространств L^p)

 $\forall 1 \leq p \leq \infty \ L^p$ полно.

Определение. Пусть X – топологическое пространство, тогда множество $A \subset X$ называется всюду плотным, если Cl(A) = X. Иначе говоря, $Int(X \setminus A) = \emptyset$, или $\forall x \in X \ \forall U(x) \ U(x) \cap A \neq \emptyset$.

Определение. Множество всех ступенчатых функций $g: X \to \overline{\mathbb{R}}$ обозначим St(X).

Лемма 4.1.8. Пусть $1 \le p \le +\infty$, тогда множество $St(X) \cap L^p$ плотно в L^p .

Определение. (Четвертая аксиома отделимости)

Топологическое пространство называется *нормальным*, если в нем любые два замкнутые непересекающиеся множества отделимы, причем любое одноточечное множество замкнуто.

Лемма 4.1.9. (Урысон)

Пусть X — нормальное топологическое пространство, F_0, F_1 — замкнутые непересекающиеся множества. Тогда существует непрерывная функция $f: X \to \mathbb{R}$, такая, что

- $0 \le f \le 1$.
- $f|_{F_0} = 0.$
- $f|_{F_1} = 1$.

Определение. Φ инитной ϕ ункцией в \mathbb{R}^m называется ϕ ункция f такая, что

$$\exists B(a,r)\colon f\big|_B=0.$$

По умолчанию, f непрерывна.

Теорема 4.1.10. Множество финитных функций плотно в L^p при $1 \le p < +\infty$.

Замечание. Условие $p \neq +\infty$ существенно.

Определение. Множество непрерывных T-периодических функций будем обозначать $\widetilde{C}([0,T])$.

Теорема 4.1.11. (О непрерывности сдвига)

Пусть $f_h(x) = f(x+h)$. Тогда

- f равномерно непрерывна в $\mathbb{R}^m \Longrightarrow \|f_h f\|_{\infty} \xrightarrow[h \to 0]{} 0.$
- $1 \le p < +\infty, f \in L^p \Longrightarrow ||f_h f||_p \xrightarrow[h \to 0]{} 0.$
- $f \in \widetilde{C}([0,T]) \Longrightarrow ||f_h f||_{\infty} \xrightarrow[h \to 0]{} 0.$
- $1 \le p < +\infty, f \in L^p([0,T]) \Longrightarrow ||f_h f||_{\infty} \xrightarrow[h \to 0]{} 0.$

4.2 Гильбертовы пространства

Определение. *Гильбертовым пространством* называется линейное пространство \mathcal{H} со скалярным произведением, полное как метрическое пространство с метрикой и нормой, порожденными скалярным произведением:

- $\langle , \rangle : \mathcal{H} \times \mathcal{H} \to \mathbb{R}(\mathbb{C}).$
- $\| \ \| : \mathcal{H} \to \mathbb{R}, \|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}.$
- $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$, $\langle \mathbf{x}, \mathbf{x} \rangle = 0 \iff \mathbf{x} = \mathbf{0}$.
- $\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$.
- $\langle \alpha \mathbf{x} + \beta \mathbf{y}, \mathbf{z} \rangle = \alpha \langle \mathbf{x}, \mathbf{z} \rangle + \beta \langle \mathbf{y}, \mathbf{z} \rangle$.

Далее Н – Гильбертово пространство.

Определение. Ряд $\sum_{i=1}^{+\infty} a_n$, $a_n \in \mathcal{H}$, называется $cxo\partial sumumcs$, если $S_N \stackrel{def}{=} \sum_{i=1}^N a_i$ таково, что $\exists S \in \mathcal{H} \colon \|S_N - S\| \to 0$. Иными словами, последовательность частичных сумм ряда сходится к элементу \mathcal{H} .

Определение. $x \perp y \iff \langle x, y \rangle = 0$.

Определение. Пусть $A \subseteq \mathcal{H}$. Тогда по определению $\mathbf{x} \perp A \Longleftrightarrow \forall \mathbf{y} \in A \mathbf{y} \perp \mathbf{x}$.

Определение. Ряд называется *ортогональным*, если все его элементы попарно ортогональны.

Теорема 4.2.1. (Свойства сходимости в Гильбертовых пространствах) Пусть $\mathbf{x}_i, \mathbf{y}_i \in \mathcal{H}$. Тогда

- $\mathbf{x}_n \to \mathbf{x}_0, \mathbf{y}_n \to \mathbf{y}_0 \Longrightarrow \langle \mathbf{x}_n, \mathbf{y}_n \rangle \to \langle \mathbf{x}_0, \mathbf{y}_0 \rangle$.
- Пусть ряд $\sum \mathbf{x}_k$ сходится. Тогда $\forall \mathbf{y} \in \mathcal{H} \ \langle \sum \mathbf{x}_k, \mathbf{y} \rangle = \sum \langle \mathbf{x}_k, \mathbf{y} \rangle.$
- Пусть ряд $\sum \mathbf{x}_k$ ортогонален. Тогда $\sum \mathbf{x}_k$ сходится тогда и только тогда, когда $\sum \|\mathbf{x}_k\|^2$ сходится. Более того, в этом случае $\left\|\sum \mathbf{x}_k\right\|^2 = \sum \|\mathbf{x}_k\|^2$.

Определение. Ортогональным семейством векторов называется $\{\mathbf{e}_k\} \subseteq \mathcal{H}$ такое, что $\mathbf{e}_k \bot \mathbf{e}_{j \neq k}$. Если более того $\|\mathbf{e}_k\| = 1$, то семейство называется ортонормированным.

Определение. $L_2 \stackrel{def}{=} L^2([0, 2\pi], \lambda_1)$.

Теорема 4.2.2. Пусть $\{\mathbf e_k\}$ – ОС, $\mathbf x \in \mathcal H$, $\mathbf x = \sum_{k=1}^{+\infty} c_k \mathbf e_k$. Тогда

- ОС линейно независима.
- $c_k = \frac{\langle \mathbf{x}, \mathbf{e}_k, \rangle}{\|\mathbf{e}_k\|^2}$.
- $c_k \mathbf{e}_k = \mathcal{P}_{\{t\mathbf{e}_k\}}^{\perp}$, то есть $\mathbf{x} = c_k \mathbf{e}_k + \mathbf{z}$, $\mathbf{z} \perp \mathbf{e}_k$.

4.3 Ряды фурье

Определение. Пусть $\{\mathbf{e}_k\}$ – ОС, $\mathbf{x} \in \mathcal{H}$, тогда числа $c_k(\mathbf{x}) = \frac{\langle \mathbf{x}, \mathbf{e}_k \rangle}{\|\mathbf{e}_k\|^2}$ называются коэффициентами фурье вектора \mathbf{x} по системе \mathbf{e}_k .

Определение. Ряд $\sum_k c_k(\mathbf{x})\mathbf{e}_k$ называется рядом Фурье \mathbf{x} по \mathbf{e}_k .

Замечание. При перенормировке ОС ряд Фурье не меняется.

Теорема 4.3.1. (О свойстах частичных сумм ряда Фурье) Пусть $\mathcal{L} = Lin(\mathbf{e}_1, \dots, \mathbf{e}_n)$. Тогда

- $S_n = \mathcal{P}_{\mathcal{L}}^{\perp}(\mathbf{x})$, то есть $\mathbf{x} = S_n + \mathbf{z}$, $\mathbf{z} \perp \mathcal{L}$.
- S_n элемент наилучшего приближения \mathbf{x} в \mathcal{L} , то есть $\forall \mathbf{y} \in \mathcal{L} \ \|S_n \mathbf{x}\| \leq \|\mathbf{y} \mathbf{x}\|$.
- $||S_n|| \leq ||\mathbf{x}||$.

Следствие 4.3.2. (Неравенство Бесселя)

$$\sum_{k=1}^{+\infty} |c_k(\mathbf{x})|^2 \|\mathbf{e}_l\|^2 \le \|x\|^2.$$

Теорема 4.3.3. (Рисс, Фишер) Пусть $\{e_k\}$ – ОС, $x \in \mathcal{H}$. Тогда

- Ряд Фурье х сходится в \mathcal{H} .
- $\mathbf{x} = \sum_{k=1}^{+\infty} c_k(\mathbf{x}) \mathbf{e}_k + \mathbf{z}, \ \forall k \ \mathbf{z} \perp \mathbf{e}_k.$

•
$$\mathbf{x} = \sum_{k=1}^{+\infty} c_k(\mathbf{x}) \mathbf{e}_k \iff ||\mathbf{x}||^2 = \sum_{k=1}^{+\infty} |c_k(\mathbf{x})|^2 ||\mathbf{e}_k||^2.$$

Определение. Равенство Парсиваля, или уравнение замкнутости:

$$||x||^2 = \sum_{k=1}^{+\infty} |c_k(\mathbf{x})|^2 ||\mathbf{e}_k||^2.$$

4.4 Базис в Гильбертовом пространстве

Определение. *Базисом* в Гильбертовом пространстве называется ОС $\{e_k\}$, если выполняется условие:

$$\forall \mathbf{x} \in \mathcal{H} \ \mathbf{x} = \sum_{k=1}^{+\infty} c_k(\mathbf{x}) \mathbf{e}_k.$$

Определение. ОС $\{e_k\}$ называется *полной*, если

$$\forall \mathbf{x} \in \mathcal{H}: \{\mathbf{e}_k\} \cup \mathbf{x}$$
 – не ОС.

Определение. ОС $\{e_k\}$ называется *замкнутой*, если для любого её элемента выполняется уравнение замкнутости.

Теорема 4.4.1. (Характеризация базиса)

Пусть $E = \{\mathbf{e}_k\}$ – OC. Тогда эквивалентны утверждения:

- *E* базис.
- $\forall \mathbf{x}, \mathbf{y} \in \mathcal{H} \ \langle \mathbf{x}, \mathbf{y} \rangle = \sum_{k=1}^{+\infty} c_k(\mathbf{x}) \cdot \overline{c_k(\mathbf{y})} \cdot \|\mathbf{e}_k\|^2$
- Е замкнута.
- Е полна.
- $Lin(\mathbf{e}_1, \mathbf{e}_2, ...)$ плотно в \mathcal{H} .