Análisis de los datos disponibles

- □ Tipos de Variables
- Cuantitativas y cualitativas

- Descripciones estadísticas
 - Medidas de tendencia central
 - Medidas de dispersión

- Gráficos
 - Diagrama de barras
 - □ Diagrama de torta
 - Histograma
 - □ Diagrama de caja
 - Diagrama de dispersión

Tipos de variables

Cuantitativas o numéricas

- □ DISCRETAS (cant. de empleados, cant. de alumnos, etc)
- CONTINUAS (sueldo, metros cuadrados, beneficios, etc.)

Cualitativas o categóricas

- NOMINALES: nombran al objeto al que se refieren sin establecer un orden (estado civil, raza, idioma, etc.)
- ORDINALES: se puede establecer un orden entre sus va medio, bajo, etc)

Redes Neuronales

DRUG5.CSV

Se busca predecir si el tipo de fármaco que se debe administrar a un paciente afectado de rinitis alérgica es el habitual o no.

DRUG5.CSV

- □ Se dispone de información de pacientes afectados de rinitis alérgica:
 - Age: Edad
 - Sex: Sexo
 - BP (Blood Pressure): Tensión sanguínea.
 - Cholesterol: nivel de colesterol.
 - Na: Nivel de sodio en la sangre.
 - K: Nivel de potasio en la sangre.
 - Cada paciente ha sido medicado con un único fármaco de entre cinco posibles: DrugA, DrugB, DrugC, DrugX, DrugY.

DRUG5.CSV

□ Drug5.csv contiene 200 muestras de pacientes atendidos previamente

Nro.	Age	Sex	ВР	Colesterol	Na	K	Drug
1	23	F	HIGH	HIGH	0,792535	0,031258	drugY
2	47	M	LOW	HIGH	0,739309	0,056468	drugC
3	47	M	LOW	HIGH	0,697269	0,068944	drugC
4	28	F	NORMAL	HIGH	0,563682	0,072289	drugX
5	61	F	LOW	HIGH	0,559294	0,030998	drugY
	•••	•••	•••		•••	•••	•••
•••	•••		•••		•••	•••	•••
•••	•••	•••	•••		•••	•••	•••
197	16	M	LOW	HIGH	0,743021	0,061886	drugC
198	52	M	NORMAL	HIGH	0,549945	0,055581	drugX
199	23	M	NORMAL	NORMAL	0,78452	0,055959	drugX
200	40	F	LOW	NORMAL	0,683503	0,060226	drugX

□ Drug5.csv contiene 200 muestras de pacientes atendidos previamente

Nro.	Age	Sex	ВР	Colesterol	Na	K	Drug
1	23	F	HIGH	HIGH	0,792535	0,031258	drugY
2	47	М	LOW	HIGH	0,739309	0,056468	drugC
3	47	M	LOW	HIGH	0,697269	0,068944	drugC
4	28	F	NORMAL	HIGH	0,563682	0,072289	drugX
5	61	F	LOW	HIGH	0,559294	0,030998	drugY
•••							•••

- □ ¿Cuántos atributos tiene la tabla?
- □ ¿De qué tipo es cada uno de ellos?

Análisis de los datos disponibles

- □ Tipos de Variables
 - Cuantitativas y cualitativas

- Descripciones estadísticas
 - Medidas de tendencia central
 - Media, moda, mediana, rango medio
 - Medidas de dispersión
 - Varianza, Desviación estándar, Rango
 - Cuartiles, Rango intercuartil

- Gráficos
 - Diagrama de barras
 - □ Diagrama de torta
 - Histograma
 - Diagrama de caja
 - Diagrama de dispersión

Descripciones estadísticas básicas

 Identifican propiedades de los datos y destacan qué valores deben tratarse como ruido o valores atípicos

MEDIDAS DE TENDENCIA CENTRAL

- Media
- Mediana
- Moda
- □ Rango medio

MEDIDAS DE DISPERSION

- Varianza
- Desviación estándar
- Rango
- Cuartiles
- Rango Intercuartil

MEDIA

□ La MEDIA es el promedio de los valores del atributo. Dicho atributo debe ser numérico.

$$\bar{X} = \frac{\sum_{i=1}^{N} x_i}{N}$$

N es la cantidad de valores a promediar

Ejemplo

30 36 47 50 52 52 56 60 63 70 70 110

$$\bar{X} = \frac{30 + 36 + 47 + 50 + 52 + 52 + 60 + 63 + 70 + 70 + 110}{12} = \frac{696}{12} = 58$$

MEDIA

□ La MEDIA es el promedio de los valores del atributo. Dicho atributo debe ser numérico.

$$\bar{X} = \frac{\sum_{i=1}^{N} x_i}{N}$$

N es la cantidad de valores a promediar

Ejemplo

30 36 47 50 52 52 56 60 63 70 70 110

$$\bar{X} = 58$$

MEDIA TRUNCADA

¿cómo se calcula? ¿para qué sirve?

- Divide a los valores del atributo en dos partes iguales de manera que los anteriores son todos menores que él y los siguientes son mayores.
- Antes de calcularla deben ordenarse los valores del atributo.

□ Ejemplo: atributo numérico con una **cantidad impar** de valores

30 36 47 50 52 52 (56) 57 60 63 70 70 110

$$\tilde{X} = x_{(N+1)/2} = 56$$

- Divide a los valores del atributo en dos partes iguales de manera que los anteriores son todos menores que él y los siguientes son mayores.
- Antes de calcularla deben ordenarse los valores del atributo.

□ Ejemplo: atributo numérico con una **cantidad impar** de valores

30 36 47 50 52 52 56 57 60 63 70 70 110

$$\tilde{X} = 56$$

- Divide a los valores del atributo en dos partes iguales de manera que los anteriores son todos menores que él y los siguientes son mayores.
- Antes de calcularla deben ordenarse los valores del atributo.

□ Ejemplo: atributo numérico con una cantidad par de valores

30 36 47 50 52 52 56 60 63 70 70 110

$$\tilde{X} = \frac{x_{N/2} + x_{(N+1)/2}}{2} = \frac{52 + 56}{2} = 54$$

- Divide a los valores del atributo en dos partes iguales de manera que los anteriores son todos menores que él y los siguientes son mayores.
- Antes de calcularla deben ordenarse los valores del atributo.

□ Ejemplo: atributo numérico con una cantidad par de valores

30 36 47 50 52 52 56 60 63 70 70 110

$$\tilde{X} = 54$$

- También puede calcularse sobre atributos ordinales. En tal caso, el resultado será o bien el valor que divide al conjunto en dos partes iguales o bien se dirá que "la mediana está entre los valores ...".
- Antes de calcularla deben ordenarse los valores del atributo.

□ Ejemplo: atributo ordinal con una **cantidad impar** de valores

chico chico chico medio medio grande grande

$$\tilde{X} = medio$$

- También puede calcularse sobre atributos ordinales. En tal caso, el resultado será o bien el valor que divide al conjunto en dos partes iguales o bien se dirá que "la mediana está entre los valores ...".
- Antes de calcularla deben ordenarse los valores del atributo.

□ Ejemplo: atributo ordinal con una **cantidad par** de valores

chico chico medio medio grande grande

$$\tilde{X} = medio$$

- También puede calcularse sobre atributos ordinales. En tal caso, el resultado será o bien el valor que divide al conjunto en dos partes iguales o bien se dirá que "la mediana está entre los valores ...".
- Antes de calcularla deben ordenarse los valores del atributo.

□ Ejemplo: atributo ordinal con una **cantidad par** de valores

chico chico chico medio grande grande

 \tilde{X} está entre "chico" y "medio"

MODA

- La moda es el valor que aparece con mayor frecuencia. Por lo tanto, puede determinarse para atributos cualitativos y cuantitativos.
- □ Es posible que la mayor frecuencia corresponda a varios valores diferentes, lo que da lugar a más de una MODA.
- Los conjuntos de datos con uno, dos o tres modas se denominan unimodal, bimodal y trimodal, respectivamente.
- □ En general, un conjunto de datos con dos o más modas es multimodal.
- Si cada valor de los datos ocurre sólo una vez, entonces no hay moda.

MODA

- La moda es el valor que aparece con mayor frecuencia. Por lo tanto, puede determinarse para atributos cualitativos y cuantitativos.
- □ Ejemplo: atributo numérico

```
30 36 47 50 52 52 56 60 63 70 70 110
```

- □ Hay 2 modas y sus valores son 52 y 70
- Ejemplo: atributo nominal

■ La moda es "chino" por ser el valor que aparece más veces

RANGO MEDIO

- El rango medio es fácil de calcular y también puede utilizarse para evaluar la tendencia central de un conjunto de datos numéricos.
- Es la media de los valores máximo y mínimo del conjunto.

Ejemplo

30 36 47 50 52 52 56 60 63 70 70 110

rango medio =
$$\frac{maximo + minimo}{2} = \frac{110 + 30}{2} = \frac{140}{2} = 70$$

Medidas descriptivas

Atributo AGE - DRUG5.CSV		
MINIMO	15	
MEDIA	44.3	
MEDIANA	45	
MAXIMO	74	
RANGO MEDIO	44.5	
MODA	47	

Atributo AGE - DRUG5_ATIPICOS.CSV			
MINIMO	15		
MEDIA	45		
MEDIANA	45		
MAXIMO	174		
RANGO MEDIO	94.5		
MODA	47		

Analisis_Drug5.ipynb

Descripciones estadísticas básicas

 Identifican propiedades de los datos y destacan qué valores deben tratarse como ruido o valores atípicos

MEDIDAS DE TENDENCIA CENTRAL

- Media
- Mediana
- Moda
- Rango medio

MEDIDAS DE DISPERSION

- Varianza
- Desviación estándar
- Rango
- Cuartiles
- Rango Intercuartil

VARIANZA Y DESVIACION ESTANDARD

- La varianza mide la dispersión de los datos con respecto a la media.
- Valores bajos indican que las observaciones de los datos tienden a estar muy cerca de la media, mientras que valores altos indican que los datos están muy dispersos.

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2 = \left(\frac{1}{N} \sum_{i=1}^{N} x_i^2\right) - \bar{x}^2$$

 $lue{}$ La desviación estándar σ es la raíz cuadrada de la varianza

VARIANZA Y DESVIACION ESTANDARD

Ejemplo

30 36

47

50

52 52

56 60

63

70

70

110

VARIANZA POBLACIONAL

$$\sigma^2 = \left(\frac{1}{N} \sum_{i=1}^{N} x_i^2\right) - \bar{x}^2 = \frac{1}{12} (30^2 + 36^2 + \dots + 110^2) - 58^2 \approx 379.17$$

$$\sigma \approx \sqrt{379.17} \approx 19.47$$

VARIANZA Y DESVIACION MUESTRAL

Ejemplo

30 36 47 50 52 52 56 60 63 70 70 110

VARIANZA MUESTRAL

$$S^{2} = \left(\frac{1}{N-1} \sum_{i=1}^{N} x_{i}^{2}\right) - \bar{x}^{2} = \frac{1}{11} (30^{2} + 36^{2} + \dots + 110^{2}) - 58^{2} \approx 413.64$$

$$S \approx \sqrt{413.64} \approx 20.34$$

RANGO

 El rango de un conjunto de valores numéricos es la diferencia entre los valores máximo y mínimo de dicho conjunto.

Ejemplo

30 36 47 50 52 52 56 60 63 70 70 110

$$rango = maximo - minimo = 110 - 30 = 80$$

Cuantiles, Cuartiles y Percentiles

- Los cuantiles son valores que dividen un conjunto numérico ordenado en partes iguales. Es decir que determinan intervalos que comprenden el mismo número de valores.
- Los cuantiles más usados son los siguientes:
 - CUARTILES: dividen la distribución en cuatro partes.
 - DECILES: dividen la distribución en diez partes.
 - Centiles o PERCENTILES: dividen la distribución en cien partes.
 - El percentil es una medida de posición usada en estadística que indica, una vez ordenados los datos de menor a mayor, el valor de la variable por debajo del cual se encuentra un porcentaje dado de observaciones en un grupo.

□ Ejemplo:

30 36 47 50 52 52 56 60 63 70 70 110

$$Q_1 = 49.25$$

$$Q_2 = 54$$

$$Q_3 = 64.75$$

- □ Los cuartiles suelen representarse como Q1, Q2 y Q3.
- El 2do. cuartil o Q2 coincide con la MEDIANA.
- □ Para hallar las posiciones de Q1 y Q3 usaremos (N+1)/4 y 3(N+1)/4 respectivamente, siendo N la cantidad de valores disponibles.
 - □ Si no hay parte decimal, se toma directamente el elemento.
 - Si la posición corresponde a un número con parte decimal entre el elemento i y el i+1, se determinar un factor realizando una interpolación lineal.

El cuartil será:

$$Q = x_i + (x_{i+1} - x_i) * factor$$

□ Ejemplo:

30 36 47 50 52 52 56 60 63 70 70 110

- □ La ubicación de Q1 es (N+1)/4, es decir, (12+1)/4=13/4=3.25
- □ Como no es un número entero calculamos su valor entre el 3ro y el 4to elemento.

$$Q_1 = x_3 + (x_4 - x_3) * factor$$

CUARTILES – cálculo del factor

i	$\overline{F_i}$
1	0.00
2	0.09
3	0.18
4	0.27
5	0.36
6	0.45
7	0.55
8	0.64
9	0.73
10	0.82
11	0.91
12	1.00

$$N = 12$$

$$F_i = \frac{i-1}{N-1}$$

CUARTILES – cálculo del factor

Ubicación de Q1

(N+1)/4 = 13/4 = 3.25

	X	F_i
	30	0.00
	36	0.09
Q1 🔷	47	0.18
Q I 7	50	0.27
	52	0.36
	52	0.45
	56	0.55
	60	0.64
	63	0.73
	70	0.82
	70	0.91
_	110	1.00

$$N = 12$$

$$F_i = \frac{i-1}{N-1}$$

$$F_i = \frac{i-1}{N-1}$$

_		
	X	F_i
	30	0.00
	36	0.09
Q1 🕏	47	0.18
WI 7	50	0.27
	52	0.36
	52	0.45
	56	0.55
	60	0.64
	63	0.73
	70	0.82
	70	0.91
_	110	1.00

$$F_i = \frac{i-1}{N-1}$$

	X	$\overline{F_i}$
	30	0.00
	36	0.09
Q1 🕏	47	0.18
Q I ¬	50	0.27
	52	0.36
	52	0.45
	56	0.55
	60	0.64
	63	0.73
	70	0.82
	70	0.91
_	110	1.00

Interpolación lineal

$$factor = \frac{0.25 - F_3}{F_4 - F_3} = \frac{0.25 - 0.18}{0.27 - 0.18} = \mathbf{0.75}$$

$$Q_1 = 47 + (50 - 47) * \mathbf{0.75} = 49.25$$

□ Ejemplo:

```
30 36 47 50 52 52 56 60 63 70 70 110
```

- □ La ubicación de Q3 es 3(N+1)/4 = 3*(12+1)/4 = 3*13/4 = 9.75
- Como no es un número entero calculamos su valor entre el 9no y el 10mo elemento.

$$Q_3 = x_9 + (x_{10} - x_9) * factor$$

= 63 + (70 - 63) * 0.25 = 64.75

$$F_i = \frac{i-1}{N-1}$$

<i>X</i> 30	<i>F_i</i> 0.00	1.00
36	0.09	0.80
47	0.18	0.75
50	0.27	
52	0.36	
52	0.45	Interpolación lineal
56	0.55	$factor = \frac{0.75 - F_9}{F_{10} - F_9} = \frac{0.75 - 0.73}{0.82 - 0.73} = 0.25$
60	0.64	7
63	0.73	$Q_3 = 63 + (70 - 63) * 0.25 = 64.75$
70	0.82	
70	0.91	0.00
110	1.00	$Q_3 = 64.75$

CUARTILES

□ Ejemplo:

30 36 47 50 52 52 56 60 63 70 70 110

$$Q_1 = 49.25$$

$$Q_2 = 54$$

$$Q_3 = 64.75$$

RANGO INTERCUARTIL

- La distancia entre Q1 y Q3 es una medida sencilla de dispersión que da el rango cubierto por la mitad de los datos.
- □ Esta distancia se denomina rango intercuartil (RIC) y se define como

$$RIC = Q_3 - Q_1$$

Ejemplo:

30 36 47 50 52 52 56 60 63 70 70 110
$$Q_1 = 49.25$$
 $Q_2 = 54$ $Q_3 = 64.75$

$$RIC = Q_3 - Q_1 = 64.75 - 49.25 = 15.50$$

Análisis de los datos disponibles

- □ Tipos de Variables
 - Cuantitativas y cualitativas

- Descripciones estadísticas
 - Medidas de tendencia central
 - Media, moda, mediana, rango medio
 - Medidas de dispersión
 - Varianza, Desviación estándar, Rango
 - Cuartiles, Rango intercuartil

□ Gráficos ←

- Diagrama de barras
- Diagrama de torta
- Histograma
- □ Diagrama de caja
- Diagrama de dispersión

Analisis Drug5.ipynb

Atributo Drug - Diagrama de barras

Atributo Drug - Gráfico de Torta

Atributo AGE – Histograma

(Atributo AGE del archivo Drug5_atipicos.CSV)

Diagrama de caja - Ejemplo

50

30

Minimo

40

Q2

si son leves o extremos

Maximo

70

80

Q3

60

Cuartiles y RIC del atributo AGE

(Atributo AGE del archivo Drug5_atipicos.CSV)

Luego de ordenar los valores del atributo AGE deben identificarse los valores que los dividen en cuatro partes iguales.

$$RIC = Q_3 - Q_1 = 58 - 31 = 27$$

Diagrama de caja (en construcción)

Atributo AGE (archivo Drug5_atipicos.csv)

Minimo	15
Q1	31
Q2	45
Q3	58
Maximo	174

RIC	Q3 - Q1 = 58 - 31 = 27
Lim.Inf	Q1 - $1.5*RIC = 31-1.5*27 = -9.5$
Lim.Sup	Q3 + 1.5*RIC =58+1.5*27 = 98.5

Hay valores fuera de rango?

Diagrama de caja (en construcción)

Minimo	15
Q1	31
Q2	45
Q3	58
Maximo	174

RIC	Q3 - Q1 = 58 - 31 = 27
Lim.Inf	Q1 - $1.5*RIC = 31-1.5*27 = -9.5$
Lim.Sup	Q3 + 1.5*RIC =58+1.5*27 = 98.5

Valor atípico o fuera de rango

 Los valores de la muestra que pertenezcan a alguno de estos intervalos

[Q1-
$$3*RIC$$
; Q1 - 1.5*RIC) o (Q3 + 1.5*RIC; Q3 + 3*RIC]

serán considerados valores fuera de rango leves.

- Los valores de la muestra inferiores a
 - Q1 3*RIC o superiores a Q3 + 3*RIC serán considerados valores fuera de rango extremos.

Diagrama de caja

Atributo AGE

Minimo	15
Q1	31
Q2	45
Q3	58
Maximo	174

RIC	Q3 - Q1= 27
Lim.Inf	Q1 - 1.5*RIC = -9.5
Lim.Sup	Q3 + 1.5*RIC = 98.5

Los bigotes indican el rango de los valores de la muestra comprendidos en el intervalo

$$[Q1 - 1.5 * RIC ; Q3 + 1.5 * RIC] = [-9.5, 98.5]$$

Diagrama de caja

Atributo AGE

Minimo	15
Bigote Inferior	15
Q1	31
Q2	45
Q3	58
Bigote Superior	74
Maximo	174

- Los valores de AGE que pertenezcan a [-50; -9.5) o (98.5; 139] se considerarán atípicos leves.
- Los valores del atributo AGE inferiores a -50 o superiores a 139 se considerarán atípicos extremos.

Histograma y diagrama de caja

(Atributo AGE archivo Drug5_atipicos.CSV)

Diagrama de caja usando BY

```
df = pd.read_csv('Drug5_atipicos.csv')
df.boxplot(column=['Age'], by='Cholesterol')
```


CUARTILES - Edades c/Colesterol NORMAL [32. 42. 57.]

CUARTILES - Edades c/Colesterol HIGH [29.5 47. 59.]

Análisis_Drug5.ipynb

Diagrama de Dispersión

 Consiste en dibujar pares de valores (x_i, y_i) medidos de la v.a. (X,Y) en un sistema de coordenadas

Entre X e Y no hay ninguna relación funcional

Diagrama de Dispersión

 Consiste en dibujar pares de valores (x_i, y_i) medidos de la v.a. (X,Y) en un sistema de coordenadas

Entre X e Y podría existir un relación funcional que corresponde a una parábola

Diagrama de Dispersión

 Consiste en dibujar pares de valores (x_i, y_i) medidos de la v.a. (X,Y) en un sistema de coordenadas

Entre X e Y existe una relación lineal. Este es el tipo de relación que nos interesa

Relación entre atributos numéricos

Al momento de construir un modelo resulta de interés saber si dos atributos numéricos se encuentran linealmente relacionados o no. Para ello se usa el coeficiente de correlación lineal.

Diagrama de dispersión entre la longitud y el ancho del pétalo de una flor.

Coeficiente de correlación lineal

 $\ \square$ Dados dos atributos X e Y el coeficiente de correlación lineal entre ellos se calcula de la siguiente forma

$$Corr(X,Y) = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

siendo Cov(X,Y) la covarianza entre X e Y y σ_X y σ_Y los desvíos de cada variable.

Covarianza y desvío estándar

 \square Dadas dos variables X y Y

$$Cov(X,Y) = \left[\sum_{i=1}^{N} (x_i - \mu_X)(y_i - \mu_Y)\right]/N$$

$$\sigma_X = \sqrt{\left[\sum_{I=1}^N (x_i - \mu_X)^2\right]/N}$$

Covarianza

$$Cov(X,Y) = \left[\sum_{i=1}^{N} (x_i - \mu_X)(y_i - \mu_Y)\right] / N$$

 La covarianza es un valor que indica el grado de variación conjunta de dos variables aleatorias respecto a sus medias.

Coeficiente de correlación lineal

INTERPRETACION

- □ Si 0.5≤ abs(Corr(A,B)) < 0.8 se dice que A y B tienen una correlación lineal débil.
- □ Si abs(Corr(A,B)) ≥ 0.8 se dice que A y B tienen una correlación lineal fuerte
- □ Si **abs(Corr(A,B))<0.5** se dice que A y B no están correlacionados linealmente. Esto NO implica que son independientes, sólo que entre ambos no hay una correlación lineal.

Ejemplo

□ El valor del **coeficiente de correlación lineal** entre los atributos PETALLENGTH y PETALWIDTH es **0.96**

Ejemplo

□ El valor del **coeficiente de correlación lineal** entre los atributos SEPALLENGTH y SEPALWIDTH es **-0.11**

Resumen

- □ Tipos de Variables
 - Cuantitativas y cualitativas
- Descripciones estadísticas
 - Medidas de tendencia central
 - Media, moda, mediana, rango medio
 - Medidas de dispersión
 - Varianza, desviación estándar
 - Rango
 - Cuartiles, Rango intercuartil

- Gráficos
 - Diagrama de barras
 - Diagrama de torta
 - Histograma
 - Diagrama de caja
 - Diagrama de dispersión
 Coeficiente de correlación lineal