Розвиваємо алгоритмічне мислення

Алгоритми зі списками

Нижче наведені умови задач та їх розв'язки, оформлені у вигляді блок-схем. Для першої задачі наведено програмну реалізацію запропонованого алгоритму.

Вам необхідно **проаналізувати** ці **задачі та алгоритми** і **скласти програми їх вирішення**, використовуючи наведені блок-схеми.

Пропонуємо самостійно протестувати правильність складених програм за допомогою наведених прикладів вхідних даних та результатів виконання програм для цих даних.

Це завдання не оцінюється і не впливає на підсумкову оцінку за курс та отримання сертифікату.

Задача 1.

Створити список, який містить 10 значень цілого типу. Організувати введення цього списку з клавіатури. Вивести отриманий список на екран. Знайти суму всіх елементів списку.

Пояснення розв'язку

Оголошуємо список таs.

Організовуємо цикл з параметром i, де i буде змінюватися від 0 до 9 з кроком 1. В тілі циклу організовуємо введення значення цілого типу у змінну e1. Значення змінної e1 заносимо в список mas.

Повторно використовуємо цикл з параметром і та організовуємо вивід елементів списку mas на екран.

Оголошуємо змінну sum для знаходження суми та присвоюємо їй значення 0.

Втретє використовуємо цикл з параметром i та почергово додаємо елементи списку mas до значення змінної sum.

Виводимо значення sum на екран.

Код:

```
mas = []
for i in range(10):
    el= int(input())
    mas.append(el)
for i in range(10):
    print(mas[i], end=" ")
sum = 0
for i in range(10):
    sum= sum + mas[i]
print()
print("Sum of elements: ",sum)
```

Вхідні дані	Вихідні дані
1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 Sum of elements: 10
1 2 3 6 5 4 9 8 7 6	1 2 3 6 5 4 9 8 7 6 Sum of elements: 51

Задача 2.

Створити список, який складатиметься з 7 значень дійсного типу. Організувати введення цього списку з клавіатури. Знайти добуток додатних елементів списку.

Пояснення розв'язку

Оголошуємо список mas.

Організовуємо цикл з параметром i, де i буде змінюватися від 0 до 6 з кроком 1. В тілі циклу організовуємо введення значення дійсного типу у змінну el. Значення змінної el заносимо в список mas.

Оголошуємо змінну result для знаходження добутку додатних елементів та присвоюємо їй значення 1.

Повторно використовуємо цикл з параметром i. В циклі перевіряємо чи чергове значення списку mas додатне, якщо так то, домножаємо значення змінної result на відповідне значення списку mas.

Виводимо значення result на екран.

Вхідні дані	Вихідні дані
1.2 -4 5.8 -6.2 8.4 1.2 -7	70.1567999999999
2 1 -7 -4.5 -8 3.5 -9	7.0

Задача 3.

Створити список, який складатиметься з 9 значень цілого типу. Організувати введення цього списку з клавіатури. Знайти кількість від'ємних елементів списку

Пояснення розв'язку

Оголошуємо список mas.

Організовуємо цикл з параметром i, де i буде змінюватися від 0 до 8 з кроком 1. В тілі циклу організовуємо введення значення цілого типу у змінну e1. Значення змінної e1 заносимо в список mas.

Оголошуємо змінну count для знаходження кількості від'ємних елементів та присвоюємо їй значення 0.

Повторно використовуємо цикл з параметром і. В циклі перевіряємо чи чергове значення списку mas від'ємне, якщо так, то збільшуємо значення змінної count на 1.

Виводимо значення count на екран.

Вхідні дані	Вихідні дані
4	4
-7	
8 -7	
1	
2	
-1 7	
7 -2	
-2	
1	0
1	
1	
1	
1	
1	
1	
1	
1	

Задача 4.

Створити список , який складатиметься з 6 значень дійсного типу. Організувати введення цього списку з клавіатури. Знайти максимальний елемент списку

Пояснення розв'язку

Оголошуємо список mas.

Організовуємо цикл з параметром i, де i буде змінюватися від 0 до 5 з кроком 1. В тілі циклу організовуємо введення значення дійсного типу у змінну el. Значення змінної el заносимо в список mas.

Оголошуємо змінну max для знаходження максимального елемента списку та присвоюємо їй значення першого елемента списку (списку) mas = [0].

Повторно використовуємо цикл з параметром i. В циклі перевіряємо чи чергове значення списку mas є більшим за max, якщо так, то присвоюємо це значення змінній max.

Виводимо значення тах на екран.

Вхідні дані	Вихідні дані
4 3.8 8.5 -9 6.7 7.1	8.5
10.2 9.1 -14 4 1 5	10.2

Задача 5.

Створити список, який складатиметься з 12 значень дійсного типу. Організувати введення цього списку з клавіатури. Знайдіть кількість елементів списку (включаючи максимальний), які відмінні від найбільшого елемента не більше ніж на 30%.

Пояснення розв'язку

Для розв'язку задачі 5 скористаємося розв'язком задачі 4 (введення елементів списку та пошук максимального).

Тепер оголошуємо змінну count, для знаходження кількості елементів, що відрізняються від максимального не більше ніж на 30% та присвоюємо їй значення 0. Втретє використовуємо цикл з параметром і та почергово порівнюємо чи значення елементів списку mas більші або рівні значенню max*0.7, якщо так, то збільшуємо значення змінної count на 1.

Виводимо значення count на екран.

Вхідні дані	Вихідні дані
2 8 15.6 -1 10 12 13.4 -8 12.4 2	4
2 -8 1.5	
7 5	4

9	
24	
18 -14.5	
-14.5	
19.5	
8	
16.8	
12.3 -1.2	
-1.2	
7	

Задача 6.

Створити список, який складатиметься з 8 значень дійсного типу. Організувати введення цього списку з клавіатури. Поміняти місцями максимальний та мінімальний елементи списку.

Пояснення розв'язку

Організовуємо цикл з параметром i, де i буде змінюватися від 0 до 7 з кроком 1. В тілі циклу організовуємо введення значення дійсного типу у змінну el. Значення змінної el заносимо в список mas.

Оголошуємо змінну max для знаходження максимального елемента списку та присвоюємо їй початкове значення mas[0].

Оголошуємо змінну min для знаходження мінімального елемента списку та присвоюємо їй початкове значення mas[0].

Оголошуємо ще дві змінні іmax та іmin для збереження відповідно індексів максимального та мінімального елементів списку та присвоюємо їм значення 0.

Повторно використовуємо цикл з параметром i. В циклі перевіряємо чи чергове значення списку mas є більшим за max, якщо так, то присвоюємо це значення змінній max і при цьому змінній imax присвоюємо значення рівне i. Також перевіряємо чи чергове значення списку mas є меншим за min, якщо так, то присвоюємо це значення змінній min і при цьому змінній imin присвоюємо значення рівне i.

Після завершення циклу робимо заміну mas[imax] = min, a mas[imin] = max.

Втретє використовуємо цикл з параметром i та організовуємо вивід елементів списку mas на екран.

Блок-схема:

,

Вхідні дані	Вихідні дані
2.4 8 7 -1.5 4.2 9 -6.3	2.4 8 7 -1.5 4.2 9 11 -6.3
1.4 -7 1.3 8.2	1.4 14 1.3 8.2

14	-7
-1 -2	-1 -2
8	8

Задача 7.

Створити список, який складатиметься з 10 значень цілого типу. Організувати введення цього списку з клавіатури. Серед елементів з непарними номерами (індексами) знайдіть найбільший елемент списку, який ділиться на 3 без остачі. (Гарантовано, що в списокі є хоча б один непарний елемент, який ділиться на 3).

Пояснення розв'язку

Оголошуємо список mas.

Організовуємо цикл з параметром i, де i буде змінюватися від 0 до 9 з кроком 1. В тілі циклу організовуємо введення значення цілого типу у змінну e1. Значення змінної e1 заносимо в список mas.

Оголошуємо змінну ind та присвоюємо їй значення 1.

Opeaнiзовуємо цикл while з умовою mas[ind]%3 !=0. В тілі циклу збільшуємо значення ind на 2. В цьому циклі ми знайдемо перший елемент списку з непарним номером, який кратний 3.

Оголошуємо змінну max для знаходження максимального елемента списку та присвоюємо їй значення mas[ind].

Повторно використовуємо цикл з параметром i, який змінюється від ind do 9 з кроком 2. В циклі перевіряємо чи виконуються одночасно дві умови mas[i] > max та mas[i] %3 == 0, якщо так, змінній max присвоюємо значення mas[i]. Виводимо значення max на екран.

Вхідні дані	Вихідні дані
3	6
4	
5	
6	
7	
8	
9 1	
2 7	
24	0
-1	
48	
-9	
48 -9 23 -6	
-6 9	
0	
U	

l o	
I -O	
l	
1 - / 4	
1 , .	
' '	

Задача 8.

3 клавіатури вводять число. Знайти суму цифр числа (див. задачу 9 алгоритми з циклами)

Пояснення розв'язку

Організовуємо ввід числа п з клавіатури.

Оголошуємо список mas.

Використовуючи цикл while з умовою n !=0. В тілі циклу в список mas додаємо значення n \$ 10 та виконуємо дію n=n//10. Після закінчення циклу в списокі mas буде записано всі цифри числа n.

Оголошуємо змінну sum для знаходження суми та присвоюємо їй значення 0. Використовуємо цикл з параметром i, який змінюється від 0 до len(mas)-1 з кроком 1 та почергово додаємо елементи списку mas до значення змінної sum. Виводимо значення sum на екран.

Вхідні дані	Вихідні дані
123	6
400006	10

Задача 9.

Напишіть програму, яка формує список з 10 цілих чисел - членів арифметичної прогресії (користувач задає значення першого члена і різницю арифметичної прогресії). Знайдіть суму десяти членів цієї арифметичної прогресії.

Пояснення розв'язку

Арифметична прогресія - це послідовність чисел, кожен член якої, починаючи з другого, утворюється додаванням до попереднього члена одного й того ж числа, яке

називають різницею прогресії. Наприклад, в прогресії 5, 8, 11, 14, 17, 20, 23, ... перший член прогресії — 5, різниця — 3.

Оголошуємо список mas.

Організовуємо ввід змінних $first_elem$ ma step ste

Додаємо до списку mas значення first elem.

Організовуємо цикл з параметром i, де i буде змінюватися від 1 до 9 з кроком 1. В тілі циклу організовуємо введення списку за формулою $mas.append\ (mas[i-1]+step)$.

Далі для підрахунку суми членів прогресії скористаємося розв'язком задачі 1 для знаходження суми елементів списку та виводимо результат на екран.

Блок-схема:

Вхідні дані	Вихідні дані
1 1	55

2 -3	-115
2 3	155

Задача 10.

Перевірити чи введене число є паліндромом

Пояснення розв'язку

Паліндром (перевертень) — слово, число, набір символів, словосполучення або віршований рядок, що однаково читається в обох напрямках. Наприклад: 123321, "дід", "козак з казок".

Організовуємо ввід числа п з клавіатури.

Оголошуємо список mas.

Використовуючи розв'язок задачі 8, заповнюємо список таз цифрами числа п.

Далі в змінну count **збережемо половину довжини списку** len (mas) //2.

Оголосимо змінну flag, якій присвоємо початкове значення **True**. Ця змінна буде індикатором того, що відповідні числа співпадають.

Організовуємо цикл з параметром i, де i буде змінюватися від 0 до count з кроком 1. В тілі циклу організовуємо порівняння mas[i] != mas[len(mas)-1-i], якщо умова виконується то присвоюємо flag значення Falsei виходимо з циклу.

Далі перевіряємо значення flag, якщо воно рівне **True**, то виводимо на екран "palindrome", інакше виводимо "not a palindrome".

Вхідні дані	Вихідні дані
123454321	palindrome
12354321	not a palindrome
123321	palindrome
4	palindrome