ДЗ по комбинаторике (ИУ7, 3 сем.)

Задача №1 (2 б.)

Найти число ломаных, ведущих из точки A (0,0) в точку D (10,10), проходящих через точку B и хотя бы через одну из точек C_1, C_2, C_3, C_4 (табл. 1). Вершины ломаной имеют целые неотрицательные координаты, каждое звено ломаной направлено либо вверх, либо вправо.

Таблица 1

Вариант	В	C_1	C_2	C_3	C_4
1	(3, 4)	(5, 3)	(6, 4)	(7, 5)	(7, 6)
2	(4, 3)	(1, 1)	(0, 2)	(7, 7)	(8, 3)
3	(2, 5)	(4, 6)	(4, 7)	(6, 5)	(8, 3)
4	(3, 5)	(1, 9)	(2, 2)	(6, 8)	(7, 5)
5	(5, 2)	(5, 3)	(3, 1)	(8, 7)	(9, 7)
6	(8, 8)	(3, 3)	(5, 4)	(7, 7)	(9, 4)
7	(7, 8)	(2, 8)	(2, 5)	(3, 6)	(9, 9)
8	(8, 7)	(2, 3)	(4, 4)	(5, 2)	(9, 7)
9	(8, 6)	(3, 2)	(3, 7)	(4, 4)	(5, 5)
10	(2, 3)	(3, 4)	(5, 3)	(1, 2)	(8, 9)
11	(8, 8)	(3, 3)	(4, 5)	(7, 7)	(4, 7)
12	(8, 7)	(8, 2)	(9, 8)	(6, 3)	(8, 6)
13	(7, 8)	(3, 2)	(4, 4)	(5, 5)	(2, 5)
14	(6, 8)	(2, 3)	(7, 3)	(4, 9)	(8, 9)
15	(3, 2)	(4, 3)	(3, 3)	(4, 7)	(9, 8)
16	(4, 3)	(3, 0)	(7, 6)	(8, 7)	(5, 7)
17	(3, 4)	(0, 2)	(3, 1)	(7,7)	(3, 8)
18	(5, 2)	(6, 4)	(7, 4)	(5, 6)	(6, 7)
19	(5, 3)	(1, 0)	(1, 3)	(8, 6)	(5, 7)
20	(2, 5)	(9, 7)	(9, 5)	(7, 8)	(8, 9)
21	(2, 3)	(1, 1)	(4, 1)	(5, 4)	(6, 8)
22	(8, 9)	(1, 3)	(4, 6)	(5, 4)	(6, 5)
23	(7,7)	(4, 2)	(2, 3)	(3, 5)	(7, 9)
24	(7, 9)	(0, 1)	(3, 2)	(4, 5)	(9, 9)
25	(7, 8)	(2, 2)	(3, 1)	(4, 3)	(8, 7)
26	(8, 7)	(1, 1)	(2, 8)	(4, 4)	(9, 9)
27	(5, 5)	(1, 0)	(3, 4)	(5, 5)	(9, 9)
28	(2, 3)	(3, 3)	(4, 3)	(5, 4)	(9, 8)
29	(6, 6)	(0, 3)	(0, 1)	(8, 9)	(6, 3)
30	(2, 2)	(6, 4)	(7, 4)	(7,7)	(2, 3)

Задача №2 (3 б.)

А) Решить однородное линейное рекуррентное соотношение

$$x_{n+2} + a_1 x_{n+1} + a_2 x_n = 0$$

при начальных условиях $x_1 = b_1, x_2 = b_2$ (таблица 2).

Б) Найти общее решение неоднородного линейного рекуррентного соотношения

$$x_{n+2} + a_1 x_{n+1} + a_2 x_n = c_n$$
 (таблица 2).

Таблица 2

таолица 2					
Вариант	a_1	a_2	$b_{_{1}}$	b_2	C_n
1	-1	-2	0	-1	$3n \cdot 2^n$
2	-2	-15	1	0	$(n+1)3^n$
3	-1	-3/4	1	0	$5\cdot 2^{-n}$
4	-1	-6	2	1	$2n^2 + n$
5	-1	-12	1	-2	$(2n-1)2^{2n}$
6	-2	-8	1	2	$3n(-2)^n$
7	2	-24	2	1	$n \cdot 5^n$
8	-2	-5/4	1	3	$n^2 + 1$
9	-2	-3/4	1	0	$2n(-2)^{-n}$
10	3	-7/4	1	1	$3n \cdot 7^n$
11	1	-2	1	-3	3n-1
12	-2	1	-3	1	n
13	-1	-12	1	1	$3n(-3)^n$
14	-3	-10	1	1	$2n^2 - 1$
15	-4	-5	1	-1	$n^2 \cdot 5^n$
16	4	3	-1	1	2n + 3
17	5	-4	2	0	n^2
18	-1	-20	0	9	$n \cdot 3^n$
19	-1	-30	2	1	$(n+1)\cdot 4^n$
20	3	2	1	2	$-n^2 + 10$
21	4	-12	-2	1	$(n+1)2^n$
22	5	6	2	-1	$(n-1)6^n$
23	-3	-4	1	2	$5n^2 + 2$
24	2	24	0	1	$(2n+1)2^{2n}$
25	-7	12	1	0	$(n-3)3^n$
26	-9	-10	1	-1	$n \cdot 10^n$
27	1	-6	4	-1	$(3n-1)2^n$
28	2	1	1	-5	
29	6	9	7	0	$n(-1)^n$ $2(-3)^n$
30	4	4	3	-1	$n^2 + n$

Задача №3 (2 б.)

Найти структурный перечень и общее число неэквивалентных m-цветных раскрасок фигуры (неориентированного графа), изображенной на рис. в табл. 3 и 4 (m=2 или m=3).

Найти коэффициент при r^kb^l (или при $r^kb^lw^s$) и дать его содержательную интерпретацию.

Множество цветов есть $\{r,b\}$ при m=2 и $\{r,b,w\}$ при m=3.

k+l=n при m=2 и k+l+s=n при m=3 (n – число вершин графа).

Таблица 3 Два цвета (m=2)

		T	T
Вариант	Граф	K	l
1		<i>K</i> 2	4
2		3	3
3		4	5
4		5	3
5		5	5
6		1	5

7	•	3	5
8		2	3
9		4	1
10		3	3
11		4	4
12		7	3
13		4	6
14		2	8
15		2	4

Таблица 4

Tри ивета (m = 3)

1 pu quema (m = 5)						
Вариант	Граф	k	L	S		

16	•	1	3	2
17		3	2	3
18		3	3	3
19		2	2	2
20		5	2	2
21		1	3	3
22		2	2	3
23		2	1	5
24		3	3	2
25		2	2	3
26		3	1	3

27	2	3	1
28	3	5	3
29	1	1	4
30	3	1	2