

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Memory Arrays - 2

Reetinder Sidhu

Department of Computer Science and Engineering

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Memory Arrays - 2

Reetinder Sidhu

Department of Computer Science and Engineering

Course Outline

- Digital Design
 - Combinational logic design
 - Sequential logic design
 - **★** Memory Arrays 2
- Computer Organization
 - Architecture (microprocessor instruction set)
 - Microarchitecure (microprocessor operation)

Concepts covered

Memory Arrays

• Most high level languages (like C, C++ and Java) provide arrays

- Most high level languages (like C, C++ and Java) provide arrays
- Two operations are supported on arrays:

- Most high level languages (like C, C++ and Java) provide arrays
- Two operations are supported on arrays:
 - Read an array location

- Most high level languages (like C, C++ and Java) provide arrays
- Two operations are supported on arrays:
 - Read an array location

```
\star Ex: x = a[1];
```


- Most high level languages (like C, C++ and Java) provide arrays
- Two operations are supported on arrays:
 - Read an array location

```
\star Ex: x = a[1];
```

Write an array location

- Most high level languages (like C, C++ and Java) provide arrays
- Two operations are supported on arrays:
 - Read an array location

```
\star Ex: x = a[1];
```

Write an array location

```
\star Ex: a[0] = 1;
```


- Most high level languages (like C, C++ and Java) provide arrays
- Two operations are supported on arrays:
 - Read an array location

```
\star Ex: x = a[1];
```

Write an array location

$$\star$$
 Ex: a[0] = 1;

Can an array be implemented in hardware, as a logic circuit?

- Most high level languages (like C, C++ and Java) provide arrays
- Two operations are supported on arrays:
 - Read an array location
 - \star Ex: x = a[1];
 - ★ Input is array index
 - ★ Output is the value stored at the index
 - Write an array location
 - \star Ex: a[0] = 1;

Can an array be implemented in hardware, as a logic circuit?

- Most high level languages (like C, C++ and Java) provide arrays
- Two operations are supported on arrays:
 - Read an array location
 - \star Ex: x = a[1];
 - ★ Input is array index
 - ★ Output is the value stored at the index
 - Write an array location
 - \star Ex: a[0] = 1;
 - ★ Inputs are array index and the value to be stored at that index
 - Value stored at index location (no output)
- Can an array be implemented in hardware, as a logic circuit?

- The term index for software arrays means the same as address for hardware arrays
 - ► Short form **addr** typically used

- The term index for software arrays means the same as address for hardware arrays
 - Short form addr typically used
- For n memory locations, address should have \[\log_2 n \] bits

- The term index for software arrays means the same as address for hardware arrays
 - ► Short form **addr** typically used
- For n memory locations, address should have $\lceil \log_2 n \rceil$ bits
- Let start by constructing a simple memory that:
 - has eight locations
 - can store a single bit in each location
 - can perform a read or a write every clock cycle

PES UNIVERSITY ONLINE

- The term index for software arrays means the same as address for hardware arrays
 - Short form addr typically used
- For n memory locations, address should have \[\log_2 n \right] bits
- Let start by constructing a simple memory that:
 - has eight locations
 - can store a single bit in each location
 - can perform a read or a write every clock cycle

Memory Array

PES UNIVERSITY

- The term index for software arrays means the same as address for hardware arrays
 - ► Short form **addr** typically used
- For n memory locations, address should have [log₂ n] bits
- Let start by constructing a simple memory that:
 - has eight locations
 - can store a single bit in each location
 - can perform a read or a write every clock cycle
- Eight flip-flops required for storage

How to Construct a Memory Array Logic Circuit?

PES UNIVERSITY

- The term index for software arrays means the same as address for hardware arrays
 - Short form addr typically used
- For n memory locations, address should have [log₂ n] bits
- Let start by constructing a simple memory that:
 - has eight locations
 - can store a single bit in each location
 - can perform a read or a write every clock cycle
- Eight flip-flops required for storage

Read an array location

PES UNIVERSITY

- Read an array location
 - ▶ Input is address to be read (addr)

 $addr \stackrel{3}{\longrightarrow}$

PES UNIVERSITY

- Read an array location
 - ▶ Input is address to be read (addr)
 - Output is the value stored at the address (dout)

PES UNIVERSITY

- Read an array location
 - ▶ Input is address to be read (addr)
 - Output is the value stored at the address (dout)
 - ► So 8:1 mux required

- Read an array location
 - Input is address to be read (addr)
 - Output is the value stored at the address (dout)
 - ► So 8:1 mux required

- Read an array location
 - ▶ Input is address to be read (addr)
 - Output is the value stored at the address (dout)
 - ► So 8:1 mux required

OPES

- Read an array location
 - ▶ Input is address to be read (addr)
 - Output is the value stored at the address (dout)
 - ► So 8:1 mux required

How to Construct a Memory Array Logic Circuit?

- Read an array location
 - ► Input is address to be read (addr)
 - Output is the value stored at the address (dout)
 - ► So 8:1 mux required
- Write an array location

How to Construct a Memory Array Logic Circuit?

PES UNIVERSITY

- Read an array location
 - ► Input is address to be read (addr)
 - Output is the value stored at the address (dout)
 - ► So 8:1 mux required
- Write an array location
 - Inputs are address to be written (addr) and the value to be stored (din) at that address

How to Construct a Memory Array Logic Circuit?

- Read an array location
 - ▶ Input is address to be read (addr)
 - Output is the value stored at the address (dout)
 - ► So 8:1 mux required
- Write an array location
 - Inputs are address to be written (addr) and the value to be stored (din) at that address
 - ► Another input is write signal (wr) which if 1 indicates a write operation

How to Construct a Memory Array Logic Circuit?

OPES

- Read an array location
 - ► Input is address to be read (addr)
 - Output is the value stored at the address (dout)
 - ► So 8:1 mux required
- Write an array location
 - Inputs are address to be written (addr) and the value to be stored (din) at that address
 - ► Another input is write signal (wr) which if 1 indicates a write operation
 - Value stored at index location (no output)

How to Construct a Memory Array Logic Circuit?

OPES

- Read an array location
 - ▶ Input is address to be read (addr)
 - Output is the value stored at the address (dout)
 - ► So 8:1 mux required
- Write an array location
 - Inputs are address to be written (addr) and the value to be stored (din) at that address
 - ► Another input is write signal (wr) which if 1 indicates a write operation
 - Value stored at index location (no output)

How to Construct a Memory Array Logic Circuit?

- Read an array location
 - ► Input is address to be read (addr)
 - Output is the value stored at the address (dout)
 - ► So 8:1 mux required
- Write an array location
 - Inputs are address to be written (addr) and the value to be stored (din) at that address
 - ► Another input is write signal (wr) which if 1 indicates a write operation
 - Value stored at index location (no output)

How to Construct a Memory Array Logic Circuit?

- Read an array location
 - ► Input is address to be read (addr)
 - Output is the value stored at the address (dout)
 - ► So 8:1 mux required
- Write an array location
 - Inputs are address to be written (addr) and the value to be stored (din) at that address
 - ► Another input is write signal (wr) which if 1 indicates a write operation
 - Value stored at index location (no output)

How to Construct a Memory Array Logic Circuit?

- Read an array location
 - ► Input is address to be read (addr)
 - Output is the value stored at the address (dout)
 - ► So 8:1 mux required
- Write an array location
 - Inputs are address to be written (addr) and the value to be stored (din) at that address
 - ► Another input is write signal (wr) which if 1 indicates a write operation
 - Value stored at index location (no output)

How to Construct a Memory Array Logic Circuit?

- Read an array location
 - ► Input is address to be read (addr)
 - Output is the value stored at the address (dout)
 - ► So 8:1 mux required
- Write an array location
 - Inputs are address to be written (addr) and the value to be stored (din) at that address
 - ► Another input is write signal (wr) which if 1 indicates a write operation
 - Value stored at index location (no output)

MEMORY ARRAYS - 2 How to Construct a Memory Array Logic Circuit?

 We extend our construction to a memory array of eight locations each of which can store 16 bits

MEMORY ARRAYS - 2 How to Construct a Memory Array Logic Circuit?

- We extend our construction to a memory array of eight locations each of which can store 16 bits
 - Above array size is specified as 8-word × 16-bit or simply 8 × 16

MEMORY ARRAYS - 2 How to Construct a Memory Array Logic Circuit?

- We extend our construction to a memory array of eight locations each of which can store 16 bits
 - Above array size is specified as 8-word \times 16-bit or simply 8×16
- Each row now contains 16 flip-flops with common en and clk inputs
- The 8:1 mux now has 16-bit data inputs and output

How to Construct a Memory Array Logic Circuit?

- We extend our construction to a memory array of eight locations each of which can store 16 bits
 - Above array size is specified as 8-word × 16-bit or simply 8 × 16
- Each row now contains 16 flip-flops with common en and clk inputs
- The 8:1 mux now has 16-bit data inputs and output

How to Construct a Memory Array Logic Circuit?

- We extend our construction to a memory array of eight locations each of which can store 16 bits
 - Above array size is specified as 8-word × 16-bit or simply 8 × 16
- Each row now contains 16 flip-flops with common en and clk inputs
- The 8:1 mux now has 16-bit data inputs and output
- In general, an n × m array contains n words of m bits each

How to Construct a Memory Array Logic Circuit?

- We extend our construction to a memory array of eight locations each of which can store 16 bits
 - Above array size is specified as 8-word × 16-bit or simply 8 × 16
- Each row now contains 16 flip-flops with common en and clk inputs
- The 8:1 mux now has 16-bit data inputs and output
- In general, an n × m array contains n words of m bits each
 - Each memory element is called a bit cell

MEMORY ARRAYS - 2 Memory Ports

- A memory port is a set of signals that provide read and/or write access to a memory address in the array
- One read / write port:
 - ► addr, wr, din and dout

Memory Ports

- A memory port is a set of signals that provide read and/or write access to a memory address in the array
- Two ports
- One read port:
 - ► rd addr and dout
- One write port:
 - wr_addr, wr and din

MEMORY ARRAYS - 2 Memory Array Organization

- Structure of a memory array of n-word × m-bit is shown
- Implementation of a small register file would have similar structure
- Other larger arrays may have different internal structures
 - Such as using a decoder with wordlines and bitlines
 - Latches instead of flip-flops
- However, the internal structures of (random access) memory arrays are functionally equivalent to the shown structure

MEMORY ARRAYS - 2 Memory Array Organization

- Structure of a memory array of n-word × m-bit is shown
- Implementation of a small register file would have similar structure
- Other larger arrays may have different internal structures
 - Such as using a decoder with wordlines and bitlines
 - Latches instead of flip-flops
- However, the internal structures of (random access) memory arrays are functionally equivalent to the shown structure

MEMORY ARRAYS - 2 Types of Memory Arrays

Memory	Transistors per	Latency	Application
type	bit cell		
flip-flop	20	fast	Register file
$SRAM^1$	6	medium	CPU cache
DRAM ²	1	slow	Main memory

¹Static Random Access Memory

²Dynamic Random Access Memory

Think About It

- We have seen a memory array with one read port and one write port
- In a lab assignment, you implement a memory array with two read ports
- Can you design a memory array with two write ports?
 - What additional concerns, if any, would you need to handle?