# Inference and Hypothesis Testing

## Review: one sample t-test

Goal: determine whether an unknown population mean is different from a specific value.

## Example1:

• Eric has dark hair

• Evidence (observation): The person has blond hair

⇒ This person is *not* Eric

## Example2

#### Test statistic: weight

Adult chickens weigh 6.2 ± 0.8 lb — Null distribution

Null hypothesis: this is a chicken

• Evidence/observation: *This weighs 10 lb* ← Observation

⇒ This is probably not a chicken

p-value

## **Null distributions**

• The <u>null hypothesis</u> is the statement of the quantity we want to test for Denoted  $H_0$ 

• Alternate hypothesis is everything else

Denoted H<sub>1</sub> or H<sub>a</sub>

Example 1:  $H_0$ : This person is Eric

H<sub>1</sub>:This person is NOT Eric

Example 2:  $H_0$ : This animal is a chicken

H<sub>1</sub>: This animal is NOT a chicken

#### **Test statistics**

- The test statistics is the quantity we use to determine rejection or acceptance of the null hypothesis
- denoted T

Example 1:  $H_0$ : This person is Eric

H<sub>1</sub>:This person is NOT Eric

T: color of the hair

Example 2:  $H_0$ : This animal is a chicken

H<sub>1</sub>: This animal is NOT a chicken

T: mean weight

## **Null distribution**

The <u>null distribution</u> is the distribution of the test statistic if the null hypothesis is true

• For test statistic T:  $P(T = t \mid H_0)$ 

Example2: H0: This animal is a chicken

H1: This animal is NOT a chicken

T: mean weight

Null distribution: 6.2 ± 0.8 lb

## A more general way to find the test statistics – t test

$$\circ T = \frac{Observed - Hypothesized}{SE(Observed)}$$

For this test statistics T, we can easily find its null-distribution, which is a t-distribution

#### Chicken example:

- Adult chickens weigh 6.2 ± 0.8 lb
- Observed mass is 10 lb
- T = (10 6.2) / 0.8 = 4.75
- P(|T| ≥ 4.75 | This is a chicken) = 2.03 × 10<sup>-6</sup>



## A more general way to find the test statistics – t test

$$\circ T = \frac{Observed - Hypothesized}{SE(Observed)}$$

#### • Sample mean example:

- Training data x<sub>1</sub> x<sub>2</sub> ...x<sub>n</sub>
- $\cdot H_0: \mu = 0 H_1: \mu \neq 0 \cdot$

$$T = \frac{\bar{x} - 0}{SE(\bar{x})} \sim t_{n-1}$$

# • Where $SE(\bar{x}) = \frac{\sigma}{n}$ , $\sigma = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}}$

• Example: n = 3,  $x_1 = 2$ ,  $x_2 = 3$ ,  $x_3 = 1$ ,  $\bar{x} = \frac{2+3+1}{3} = 2$ ,  $SE(\bar{x}) = \frac{1}{3}$ , t = 6

$$P(|T| \ge 6 | H_0) = 1.01 \times 10^{-5}$$

#### Student's t



#### Understand this figure



- $f(x|H_0) = pdf$  of null distribution = green curve
- Rejection region is a portion of the x-axis.
- Significance = probability over the rejection region = red area.

## Lookup table for the critical value z

|               | z    | 0.00  | 0.01  | 0.02  | 0.03  | 0.04  | 0.05  | 0.06  | 0.07  | 0.08                                           | 0.09  | z    |
|---------------|------|-------|-------|-------|-------|-------|-------|-------|-------|------------------------------------------------|-------|------|
|               | 0.00 | .5000 | .5040 | .5080 | .5120 | .5160 | .5199 | .5239 | .5279 | .5319                                          | .5359 | 0.00 |
|               | 0.10 | .5398 | .5438 | .5478 | .5517 | .5557 | .5596 | .5636 | .5675 | .5714                                          | .5753 | 0.10 |
|               | 0.20 | .5793 | .5832 | .5871 | .5910 | .5948 | .5987 | .6026 | .6064 | .6103                                          | .6141 | 0.20 |
|               | 0.30 | .6179 | .6217 | .6255 | .6293 | .6331 | .6368 | .6406 | .6443 | .6480                                          | .6517 | 0.30 |
|               | 0.40 | .6554 | .6591 | .6628 | .6664 | .6700 | .6736 | .6772 | .6808 | .6844                                          | .6879 | 0.40 |
|               | 0.50 | .6915 | .6950 | .6985 | .7019 | .7054 | .7088 | .7123 | .7157 | .7190                                          | .7224 | 0.50 |
|               | 0.60 | .7257 | .7291 | .7324 | .7357 | .7389 | .7422 | .7454 | .7486 | .7517                                          | .7549 | 0.60 |
|               | 0.70 | .7580 | .7611 | .7642 | .7673 | .7704 | .7734 | .7764 | .7794 | .7823                                          | .7852 | 0.70 |
|               | 0.80 | .7881 | .7910 | .7939 | .7967 | .7995 | .8023 | .8051 | .8078 | .8106                                          | .8133 | 0.80 |
|               | 0.90 | .8159 | .8186 | .8212 | .8238 | .8264 | .8289 | .8315 | .8340 | .8365                                          | .8389 | 0.90 |
|               | 1.00 | .8413 | .8438 | .8461 | .8485 | .8508 | .8531 | .8554 | .8577 | .8599                                          | .8621 | 1.00 |
|               | 1.10 | .8643 | .8665 | .8686 | .8708 | .8729 | .8749 | .8770 | .8790 | .8810                                          | .8830 | 1.10 |
|               | 1.20 | .8849 | .8869 | .8888 | .8907 | .8925 | .8944 | .8962 | .8980 | .8997                                          | .9015 | 1.20 |
|               | 1.30 | .9032 | .9049 | .9066 | .9082 | .9099 | .9115 | .9131 | .9147 | .9162                                          | .9177 | 1.30 |
|               | 1.40 | .9192 | .9207 | .9222 | .9236 | .9251 | .9265 | .9279 | .9292 | .9306                                          | .9319 | 1.40 |
|               | 1.50 | ,9332 | .9345 | .9357 | .9370 | .9382 | .9394 | .9406 | .9418 | .9429                                          | .9441 | 1.50 |
| $\rightarrow$ | 1.60 | .9452 | .9463 | .9474 | .9484 | .9495 | .9505 | .9515 | .9525 | .9535                                          | .9545 | 1.60 |
|               | 1.70 | .9554 | .9564 | .9573 | .9582 | .9591 | .9599 | .9608 | .9616 | .9625                                          | .9633 | 1.70 |
|               | 1.80 | .9641 | .9649 | .9656 | .9664 | .9671 | .9678 | .9686 | .9693 | .9699                                          | .9706 | 1.80 |
|               | 1.90 | .9713 | .9719 | .9726 | .9732 | .9738 | .9744 | .9750 | .9756 | .9761                                          | .9767 | 1.90 |
|               | 2.00 | .9772 | .9778 | .9783 | .9788 | .9793 | .9798 | .9803 | .9808 | .9812                                          | .9817 | 2.00 |
|               | 2.10 | .9821 | .9826 | .9830 | .9834 | .9838 | .9842 | .9846 | .9850 | .9854                                          | .9857 | 2.10 |
|               | 2.20 | .9861 | .9864 | .9868 | .9871 | .9875 | .9878 | .9881 | .9884 | .9887                                          | .9890 | 2.20 |
|               | 2.30 | .9893 | .9896 | .9898 | .9901 | .9904 | .9906 | .9909 | .9911 | .9913                                          | .9916 | 2.30 |
|               | 2.40 | .9918 | .9920 | .9922 | .9925 | .9927 | .9929 | .9931 | .9932 | .9934                                          | .9936 | 2.40 |
|               | 2.50 | .9938 | .9940 | .9941 | .9943 | .9945 | .9946 | .9948 | .9949 | .9951                                          | .9952 | 2.50 |
|               | 2.60 | .9953 | .9955 | .9956 | .9957 | .9959 | .9960 | .9961 | .9962 | .9963                                          | .9964 | 2.60 |
|               | 2.70 | .9965 | .9966 | .9967 | .9968 | .9969 | .9970 | .9971 | .9972 | THE RESERVE AND ADDRESS OF THE PERSON NAMED IN | .9974 | 2.70 |
| 950           | 2.80 | .9974 | .9975 | .9976 | .9977 | .9977 | .9978 | .9979 | .9979 | .9980                                          | .9981 | 2.80 |



## p-values

- The <u>p-value</u> is the probability of observing an *equal or more extreme* value of the test statistic than observed t, assuming the null hypothesis
  - ∘ For test statistic T, this is  $P(T \ge t \mid H_0)$
  - Lower -> observation is more unlikely -> more surprised

- p-values < α are considered "significant"
  - reject the null hypothesis
  - t is more extreme than z

## **EXAMPLE**

 The goal of a study by Klingler et al. was to determine how symptom recognition and perception influence clinical presentation as a function of race. They characterized symptoms and care-seeking behavior in African-American patients with chest pain seen in the emergency department. One of the presenting vital signs was systolic blood pressure. Among 157 African-American men, the mean systolic blood pressure was 146 mm Hg with a standard deviation of 27. We wish to know if, on the basis of these data, is there any evidence to support the claim at  $\alpha = 0.05$  that the mean systolic blood pressure for a population of African-American men is greater than 140.

#### Solution

Hypotheses

$$H_0: \mu \le 140$$

$$H_A$$
:  $\mu > 140$ 

We want to make a decision of rejection or non-rejection with 95% confidence

Step 1 Set  $\alpha = 0.05$ 

Step 2 Use the look up table to find z = 1.65

Step 3 Compute t, the test statistics using the given dataset

$$t = \frac{146 - 140}{27/\sqrt{157}} = \frac{6}{2.1548} = 2.78$$

**Step 4** Reject  $H_0$  since 2.78>1.65 (t>z)

## **Group work**

• Find whether we can reject the null hypothesis with 99% confidence? What about 99.9% confidence?