More Conflict-Free Replicated Data Types

LATTICE THEORY FOR PARALLEL PROGRAMMING

Pierre Talbot

pierre.talbot@uni.lu

17th October 2025

University of Luxembourg

Definition of State-based CRDT

Definition

A state-based conflict-free replicated data type is a tuple $\langle L, \leq, S, value, f_1, \ldots, f_n \rangle$ where:

- $\langle L, \leq, \sqcup \rangle$ is a lattice¹.
- S is a set of values.
- f_1, \ldots, f_n are monotone and extensive functions over L (extensive: $\forall x, x \leq f(x)$).
- $value: L \rightarrow S$ returns the value modeled by the CRDT.

 $^{^{1}\}text{A}$ join semi-lattice to be precise, because we don't need the meet operation \sqcap .

Grow-only Counter

G-Counter

Let n be the number of replicas (nodes of the distributed system).

G-Counter is a CRDT $GC \triangleq \langle \mathbb{Z}^n, \dot{\leq}, \dot{\sqcup}, \bot, \mathbb{Z}, value, increment_1, \dots, increment_n \rangle$, where:

- $(x_1,\ldots,x_n) \leq (y_1,\ldots,y_n) \Leftrightarrow \forall 1 \leq i \leq n, x_i \leq y_i.$
- $(x_1,\ldots,x_n) \stackrel{.}{\sqcup} (y_1,\ldots,y_n) \stackrel{\triangle}{=} (max(x_1,y_1),\ldots,max(x_n,y_n)).$
- $\bot = (0, ..., 0)$.
- $increment_k(\langle x_1, \ldots, x_n \rangle) \triangleq \langle x_1, \ldots, x_k + 1, \ldots, x_n \rangle.$
- $value(\langle x_1, \ldots, x_n \rangle) \triangleq \sum_{1 \leq i \leq n} x_i$.

where $increment_k$ is executed on the k^{th} replica.

Exercise: Try to define a counter that is decreasing.

Decrease-only Counter

D-Counter

Let n be the number of replicas (nodes of the distributed system).

D-Counter is a CRDT $DC \triangleq \langle \mathbb{Z}^n, \preceq, \curlyvee, \mathbb{Z}, value, decrement_1, \ldots, decrement_n \rangle$, where:

- $(x_1,\ldots,x_n) \leq (y_1,\ldots,y_n) \Leftrightarrow \forall 1 \leq i \leq n, x_i \geq y_i.$
- $(x_1,\ldots,x_n) \ \ (y_1,\ldots,y_n) \triangleq (\min(x_1,y_1),\ldots,\min(x_n,y_n)).$
- $\bullet \perp = (0,\ldots,0).$
- $decrement_k(\langle x_1, \ldots, x_n \rangle) \triangleq \langle x_1, \ldots, x_k 1, \ldots, x_n \rangle$.
- $value(\langle x_1, \ldots, x_n \rangle) \triangleq \sum_{1 \leq i \leq n} x_i$.

Use-cases of G-Counter in Combinatorial Optimization

We explore a search tree in parallel, and wish to get the optimal solution.

- Branch-and-Bound: the replicas share a common objective bound, either an increasing or decreasing counter (if maximization or minimization problem).
- Statistics: the number of nodes explored in total, number of solutions, number of failed nodes,

Positive-Negative Counter (PN-Counter)

Positive-Negative Counter (PN-Counter)

PN-Counter

Let n be the number of replicas (nodes of the distributed system) and $I = \{1, \ldots, n\}$ PN-Counter is a CRDT $PN \triangleq \langle \mathbb{Z}^n \times \mathbb{Z}^n, \overset{.}{\subseteq}, \overset{.}{\sqcup}, \mathbb{Z}, value, \{increment_i\}_{i \in I}, \{decrement_i\}_{i \in I} \rangle$, where:

- The lattice-theoretic operations are inherited from the Cartesian product.
- The monotone functions are extended as follows:
 - $increment_k(\langle x_1, \ldots, x_n \rangle, D) \triangleq (\langle x_1, \ldots, x_k + 1, \ldots, x_n \rangle, D).$
 - $decrement_k(G, \langle x_1, \ldots, x_n \rangle) \triangleq (G, \langle x_1, \ldots, x_k + 1, \ldots, x_n \rangle).$
 - $value(G, D) \triangleq value(G) value(D)$.

Wouldn't it be possible to do the product of two CRDTs so we don't need to redefine all the operations?

Product of CRDTs

Let $A = \langle L, \leq_A, S_A, value_A, fa_1, \dots, fa_n \rangle$ and $B = \langle K, \leq_B, S_B, value_B, fb_1, \dots, fb_n \rangle$.

Product of CRDTs

We have $A \times B$ such that:

- The lattice-theoretic operations are inherited from the Cartesian product.
- Each monotone function $fa_i: A \to A$ and $fb_i: B \to B$ are extended to be applied pairwise on each component:
 - $fa'_i(x,y) \triangleq (fa_i(x),y)$
 - $fb'_i(x,y) \triangleq (x, fb_i(y))$
- $S = S_A \times S_B$ and $value(x, y) = (value_A(x), value_B(x))$.

Does this definition work to obtain PN-Counter?

Product Definition: Positive-Negative Counter (PN-Counter)

The treatment of *value* is not very satisfying and we would prefer to redefine it ourselves, so we can only use the product for combining some operations.

PN-Counter

PN-Counter is a CRDT $PN \triangleq \langle GC \times GC, \mathbb{Z}, value \rangle$ such that:

$$value(x, y) \triangleq value_{GC}(x) - value_{GC}(y)$$

Alternative Definition

PN-Counter is a CRDT $PN' \triangleq \langle GC \times DC, \mathbb{Z}, value \rangle$ such that:

$$value(x, y) \triangleq value_{GC}(x) + value_{DC}(y)$$

Exercise: Find another construction to obtain a similar CRDT (e.g., using lexicographic order).

Exercise: Prove that both definitions are equivalent.

Grow-only Set (G-Set)

Grow-Only Set (G-Set)

Based on another lattice construction: the powerset.

G-Set

Let X be a set of elements. G-Set is a CRDT $GS \triangleq \langle \mathcal{P}(X), \subseteq, \cup, \emptyset, \mathcal{P}(X), value, lookup, add \rangle$, where:

- The lattice-theoretic operations are inherited from the powerset construction.
- $value(S) \triangleq S$.
- $lookup(S, x) \triangleq x \in S$ of type $lookup : \mathcal{P}(X) \times X \to \mathbb{B}$ with $\mathbb{B} = \{true, false\}$.
- $add(S,x) \triangleq S \cup \{x\}.$

Grow-Only Set (G-Set)

Based on another lattice construction: the powerset.

G-Set

Let X be a set of elements. G-Set is a CRDT $GS \triangleq \langle \mathcal{P}(X), \subseteq, \cup, \emptyset, \mathcal{P}(X), value, lookup, add \rangle$, where:

- The lattice-theoretic operations are inherited from the powerset construction.
- $value(S) \triangleq S$.
- $lookup(S,x) \triangleq x \in S$ of type $lookup : \mathcal{P}(X) \times X \to \mathbb{B}$ with $\mathbb{B} = \{true, false\}$.
- $add(S,x) \triangleq S \cup \{x\}.$
- Exercise: Prove that $lookup_x \triangleq \lambda S.lookup(S,x)$ is a monotone function.
- Can we have a "decreasing-only set" CRDT?
- G-Set was the easy case... How can we remove elements?

Decreasing-Only Set (D-Set)

We store what is not in the set, instead of what is in the set.

D-Set

Let X be a set of elements. D-Set is a CRDT $DS \triangleq \langle \mathcal{P}(X), \subseteq, \cup, \emptyset, \mathcal{P}(X), value, lookup, remove \rangle$, where:

- The lattice-theoretic operations are inherited from the powerset construction.
- $value(S) \triangleq X \setminus S$.
- $lookup(S, x) \triangleq x \notin S$.
- $remove(S, x) \triangleq S \cup \{x\}.$

Question: Do you foresee any implementation issue?

Two-Phase Set (2P-Set)

Two-Phase Set (2P-Set)

Cartesian product of powerset.

2P-Set

2P-Set is a CRDT $TPS \triangleq \langle GS \times GS, \mathcal{P}(X), value, lookup, add, remove \rangle$, where:

- The lattice-theoretic operations are inherited from the Cartesian product.
- $value(A, R) \triangleq A \setminus R$.
- $lookup((A, R), x) \triangleq x \in A \land x \notin R$.
- $add((A,R),x) \triangleq (A \cup \{x\},R).$
- $remove((A, R), x) \triangleq (A, R \cup \{x\}) \text{ iff } lookup((A, R), x).$

We call the set of removed elements *R* the *tombstone set*.

- Exercise: Define this CRDT using the decreasing-only set CRDT defined previously.
- Once we delete an element, can we add it again later?

Observed-Remove Set (OR-Set)

Designing a Set CRDT Supporting Multiple Add/Remove

- Sequentially: the sequence add(S,x); remove(S,y); and remove(S,y); add(S,x); leads to the same result where $x \in S$ and $y \notin S$ (with $x \neq y$).
- Therefore, we would like our CRDT to have this convergence property as well!
- But some sequences are not commutative, e.g., add(S,x); remove(S,x); and remove(S,x); add(S,x);

Principle of Permutation Equivalence

Let P be the precondition, Q and Q' the postconditions and $u\|u'$ the concurrent execution.

$$\{P\}u;u'\{Q\}\wedge\{P\}u';u\{Q'\}\wedge Q\Leftrightarrow Q'\quad\Rightarrow\quad \{P\}u\|u'\{Q\}$$

What to do when $Q \neq Q'$? In a concurrent execution it would lead to non-determinism.

Designing a Set CRDT Supporting Multiple Add/Remove

- Sequent leads td
- Therefol
- But sor remove

Principle o

Let P be th $\{P\}u; u'\{Q\}$

What to do

Recovering Determinism for add(S,x) || remove(S,x)

Possible choices of postconditions:

- $\{\bot \in S\}$ (error mark)
- $\{x \in S\}$ (add wins—next slide)
- $\{x \notin S\}$ (remove wins)
- { $add(S,x) >_{CLK} remove(S,x) \Leftrightarrow x \in S$ } (last writer wins (LWW))

(S,x);

xecution.

lism.

Observed-Remove Set (OR-Set)

Intuitions

- Given *n* replicas, we assign a unique ID to each of them.
- We count the number of local operations $k \in \mathbb{N}$ performed on the set.
- Each time we add or remove an element in the set, we stick the unique pair $(id, k) \in \mathbb{N}^2$ to the element.
- Let **UID** $\triangleq \mathbb{N} \times \mathbb{N}$ be the set of all unique identifiers.

Exercise: Define the corresponding CRDT.

Observed-Remove Set (OR-Set)

Let $gen_i(A, T) \triangleq (i, 1 + \max\{k \in \mathbb{Z} \mid \exists x, ((i, k), x) \in (A \cup T)\}).$

OR-Set

OR-Set is a CRDT $ORS \triangleq \langle \mathcal{P}(\mathsf{UID} \times X)^2, \leq, \sqcup, (\emptyset, \emptyset), \mathcal{P}(X), value, lookup, add, remove \rangle$:

- $(A_1, T_1) \leq (A_2, T_2) \Leftrightarrow (A_1 \cup T_1) \subseteq (A_2 \cup T_2) \wedge T_1 \subseteq T_2$.
- $(A_1, T_1) \sqcup (A_2, T_2) \triangleq ((A_1 \setminus T_2) \cup (A_2 \setminus T_1), T_1 \cup T_2).$
- $value(A, T) \triangleq \{x \in X \mid \exists uid, (uid, x) \in A\}.$
- $lookup((A, T), x) \triangleq x \in value(A, T)$.
- $add_i((A,T),x) \triangleq (A \cup \{(gen_i(A,T),x)\}, T).$
- $remove_i((A, T), x) \triangleq let R = \{(uid, x) \mid (uid, x) \in A\} in (A \setminus R, T \cup R).$

Exercise: Prove the order \leq and the join \sqcup are consistent, i.e. $X \leq Y \Leftrightarrow X \sqcup Y = Y$. **Exercise**: Find a way to define this CRDT without having to redefine yourself the lattice

Exercise: Find a way to define this CRDT without having to redefine yourself the lattice operations.

Operation-based CRDTs (Formally)

Causal Order

Definition

Causal order is a partial order \prec on messages such that $m_1 \prec m_2$ if the replica that sent m_2 did so after receiving m_1 , or if the same replica sent m_1 before m_2 .

Replicas that receive messages in causal order means that a replica should not receive a message m_2 until after it has received all messages $m_1 \prec m_2$.

Definition of Operation-based CRDT

An operation-based CRDT is a tuple $\langle \Sigma, \sigma^0, eval, prepare, effect \rangle$ where:

- Σ is a set of states.
- $\sigma^0 \in \Sigma$ is the initial state.
- $eval(q, \sigma)$: read-only evaluation of the query q on state σ .
- $prepare(o, \sigma, r)$: prepares a message m given an operation o by replica r in state σ .
- effect (m, σ) : applies a message m on state σ , and returns the result. When convenient, we write this function as $m \cdot \sigma$.

Further, to ensure concurrent operations commute, we require that:

$$m_1 \cdot (m_2 \cdot \sigma) = m_2 \cdot (m_1 \cdot \sigma)$$

Because operations are not, in general, idempotent, it is essential that an exactly-once messaging mechanism is used.

Operation-based G-Counter

G-Counter

Let $\langle \mathbb{Z}, 0, eval, prepare, effect \rangle$ where:

- $eval(value, \sigma) = \sigma$.
- $prepare(add(n), \sigma, r) = add(n)$.
- $effect(add(n), \sigma) = n + \sigma$.

Exercise: Define an operation-based grow-only set CRDT.

Operation-based G-Set

G-Set

Let $\langle \mathcal{P}(X), \emptyset, eval, prepare, effect \rangle$ where:

- $eval(value, \sigma) = \sigma$.
- $eval(contains, x, \sigma) = x \in \sigma.$
- $prepare(add(x), \sigma, r) = add(x)$.
- $effect(add(x), \sigma) = \{x\} \cup \sigma.$

Distributed Algorithm for Operation-based CRDT

On each replica r, we have the following event-based algorithm:

```
1: state \sigma \in \Sigma, initially \sigma^0

2: on operation(\sigma):

3: m \leftarrow \text{prepare}(\sigma, \sigma, r)

4: \sigma \leftarrow \text{effect}(m, \sigma)

5: Broadcast m to other replicas

6: on receive(m):

7: \sigma \leftarrow \text{effect}(m, \sigma)

8: on query(q):

9: return eval(q, \sigma)
```

Note: Messages are assumed to be received in causal order.

References

- General Survey: P. S. Almeida, Approaches to Conflict-free Replicated Data Types, ACM Computing Survey, Sep. 2024.
- On composition of CRDTs:
 - Operation-based: M. Weidner, H. Miller, and C. Meiklejohn, Composing and decomposing op-based CRDTs with semidirect products, POPL 2020.
 - **State-based**: C. Baquero, P. S. Almeida, A. Cunha, and C. Ferreira, *Composition in State-based Replicated Data Types*, Bulletin of EATCS 3, no. 123 (2017).