Computação Gráfica I

Professor:

Jonh Edson

Conteúdo:

- Introdução

Computação Gráfica: noção clássica

DADOS

1.000000 1.000000 37.600000

2.000000 1.000000 39.600000

3.000000 1.000000 40.700000

4.000000 1.000000 42.600000

5.000000 1.000000 42.600000

 $6.000000 \ 1.000000 \ 43.100000$

1200 1200

Computação

IMAGENS

Aplicações: cinema

Aplicações: cinema

Aplicações: cinema

Aplicações: jogos eletrônicos

Aplicações: engenharia

Aplicações: indústria

Aplicações: medicina

Ana Elisa F. Schmidt – Tese de Doutorado – PUC-Rio

Aplicações: medicina

Aplicações: visualização científica

http://sdcd.gsfc.nasa.gov/SVS/stories/solve/toms.html

Sub-áreas da Computação Gráfica

Síntese de imagens

Processamento de imagens

Tons de cinza

Visão Computacional

Visão Computacional

Juiz Virtual – Tecgraf – PUC-Rio

Novas tendências: modelagem baseada em imagens

Fundamentos da Computação Gráfica

- Modelos físicos
- Modelos matemáticos

- Esquemas de representação.
- Estruturas de dados e algoritmos.

Fundamentos da Computação Gráfica

Requisitos da Computação Gráfica

EFICIÊNCIA

REALISMO

Profissionais da Computação Gráfica

- Usuários.
- Customizadores.
- Programadores de aplicações.
- Desenvolvedores de ferramentas.

- Anos 60-70
 - Ivan Sutherland (Sketchpad, 1963).
 - Tecnologia de display: terminais gráficos vetoriais capazes de armazenar primitivas (*raster* inviável, devido a custo de memória e capacidade de processamento).
 - Wire-frame, aplicações de CAD.
 - Problemas fundamentais: visibilidade, recorte, técnicas de modelagem geométrica (2D e 3D).

Anos 80

- Viabilização da tecnologia raster (economia de mercado, microcomputadores).
- Adaptação das técnicas wire-frame para raster.
- Z-buffer: inviável quando introduzido (1975), mas a tecnologia do futuro.
- Visualização realista, animação, iluminação global (radiosidade).
- Interfaces gráficas.

• Anos 90

- Consolidação do raster.
- Visualização volumétrica.
- Maior integração com imagens (modelagem e visualização baseada em imagens).
- Aquisição de movimentos.
- Realismo em movimento (efeitos especiais).

Na atualidade

- Programação em placas gráficas (indústria de jogos).
- Modelos de iluminação mais realistas(não Lambertianas).
- Aquisição de dados fotométricos mais precisos (HDR).
- Aquisição de geometria em tempo real.
- Modelos baseados em pontos.
- Superfícies de subdivisão.

Ciclo de vida dos problemas

- Os problemas essenciais são recolocados a cada mudança de tecnologia:
 - Modelagem.
 - Visibilidade.
 - Imageamento.
 - Animação.

Ferramentos para a programação gráfica

Programa do curso

Parte I

- Introdução.
- Cores.
- Imagens.
- Introdução à OpenGL.

Programa do curso

Parte II

- Sistemas Gráficos 2D.
 - Objetos Gráficos 2D.
 - Transformações geométricas no plano.
 - Algoritmos para rasterização de linhas e polígonos.
 - Recorte 2D.
 - Transformações de tela.

Programa do curso

Parte III

- Sistemas Gráficos 3D.
 - Objetos gráficos 3D.
 - Transformações geométricas 3D.
 - Instanciação de objetos.
 - Transformações de visualização e modelos de câmera virtual.
 - Eliminação de superfícies não visíveis.
 - Modelos de Iluminação.
 - Texturas.
 - Técnicas avançadas.