

ML PROJECT (Mini)

Applying Regression

```
In [1]: import numpy as np
         import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         data=pd.read_excel("HEALTHEXP.xlsx")
         data.shape
In [3]:
         (274, 5)
Out[3]:
         data.columns
        Index(['Unnamed: 0', 'Year', 'Country', 'Spending_USD', 'Life_Expectancy'], dtype='object')
Out[4]:
In [5]: data.head(4)
Out[5]:
           Unnamed: 0 Year
                                Country Spending_USD Life_Expectancy
                     0 1970
                                               252.311
                                                                 70.6
                                Germany
                    1 1970
                                               192.143
                                  France
                                                                 72.2
                     2 1970 Great Britain
                                               123.993
                                                                 71.9
                     3 1970
                                               150.437
                                                                 72.0
                                  Japan
```

In [6]: data.dtypes

```
Unnamed: 0
                               int64
Out[6]:
                               int64
          Year
                              object
         Country
         Spending_USD
                             float64
         Life_Expectancy
                             float64
         dtype: object
         data.tail(4)
 In [7]:
Out[7]:
              Unnamed: 0 Year
                                  Country Spending_USD Life_Expectancy
          270
                      270 2020
                                                5468.418
                                                                   82.3
                                    France
          271
                      271 2020 Great Britain
                                                5018.700
                                                                   80.4
                      272 2020
          272
                                     Japan
                                                4665.641
                                                                   84.7
          273
                                      USA
                     273 2020
                                                                   77.0
                                               11859.179
In [8]: pd.isnull(data).sum()
         Unnamed: 0
                             0
Out[8]:
         Year
                             0
         Country
                             0
         Spending_USD
                             0
         Life Expectancy
         dtype: int64
         data.drop(['Unnamed: 0'],axis=1,inplace=True)
         data.head(2)
In [10]:
            Year Country Spending_USD Life_Expectancy
Out[10]:
          0 1970 Germany
                                 252.311
                                                  70.6
          1 1970
                   France
                                 192.143
                                                  72.2
In [11]: data.nunique()
```

```
51
         Year
Out[11]:
         Country
                               6
         Spending USD
                             274
         Life Expectancy
                             118
         dtype: int64
          pd.unique(data['Country'])
In [12]:
         array(['Germany', 'France', 'Great Britain', 'Japan', 'USA', 'Canada'],
Out[12]:
                dtype=object)
In [13]: data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 274 entries, 0 to 273
         Data columns (total 4 columns):
               Column
                                Non-Null Count Dtype
               -----
              Year
                                274 non-null
                                                int64
          1 Country
                               274 non-null
                                                object
              Spending USD
                               274 non-null
                                                float64
              Life Expectancy 274 non-null
                                                float64
         dtypes: float64(2), int64(1), object(1)
         memory usage: 8.7+ KB
In [14]: data.describe()
Out[14]:
                      Year Spending USD Life Expectancy
          count 274.000000
                               274.000000
                                              274.000000
          mean 1996.992701
                              2789.338905
                                               77.909489
```

std

14.180933

min 1970.000000

25% 1985.250000

50% 1998.000000

75% 2009.000000

max 2020.000000

2194.939785

123.993000

1038.357000

2295.578000

4055.610000

11859.179000

3.276263

70.600000

75.525000

78.100000

80.575000

84.700000

EDA

```
In [15]: sns.set(style="whitegrid")
In [16]: data.head(3)
            Year
                    Country Spending_USD Life_Expectancy
Out[16]:
          0 1970
                                                     70.6
                    Germany
                                   252.311
         1 1970
                      France
                                   192.143
                                                     72.2
         2 1970 Great Britain
                                   123.993
                                                     71.9
In [17]: ax=sns.countplot(y='Country',data=data,color='red')
          for bars in ax.containers:
              ax.bar_label(bars)
          plt.title('Count Of Countries')
          plt.xticks(rotation=90)
          plt.show()
```



```
In [18]: sns.histplot(data['Life_Expectancy'],color='green')
Out[18]: <Axes: xlabel='Life_Expectancy', ylabel='Count'>
```



```
In [19]: sns.histplot(data['Spending_USD'],color='blue')
Out[19]: <Axes: xlabel='Spending_USD', ylabel='Count'>
```



```
In [20]: sns.boxplot(x=data['Country'],y=data['Life_Expectancy'],palette='Set2')
Out[20]: <Axes: xlabel='Country', ylabel='Life_Expectancy'>
```


In [21]: sns.pairplot(data=data)

C:\Users\19mri\anaconda4\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

Out[21]: <seaborn.axisgrid.PairGrid at 0x1e3f9d8a390>

Multiple Linear Regression (Country= Japan):

In [22]:	data.head(4)					
Out[22]:		Year	Country	Spending_USD	Life_Expectancy	
	0	1970	Germany	252.311	70.6	
	1	1970	France	192.143	72.2	
	2	1970	Great Britain	123.993	71.9	
	3	1970	Japan	150.437	72.0	
			_J=data.gro _J.head(6)	upby([' <mark>Countr</mark> y	'']).get_group(
Out[24]:		Year	Country S	pending_USD L	ife_Expectancy	
	3	1970	Japan	150.437	72.0	
	8	1971	Japan	163.854	72.9	
	11	1972	Japan	185.390	73.2	
	14	1973	Japan	205.778	73.4	
	17	1974	Japan	242.018	73.7	
	21	1975	Japan	284.269	74.3	

Out[25]:	Year	Spending USD	Life_Expectancy
L - J -		J	

Year	1.000000	0.960871	0.987683
Spending_USD	0.960871	1.000000	0.914187
Life_Expectancy	0.987683	0.914187	1.000000

In [26]: sns.heatmap(country_J.corr(numeric_only=True),annot=True,cmap='Reds')

Out[26]: <Axes: >

In [27]: from sklearn import linear_model

In [28]: model=linear_model.LinearRegression()

```
In [29]: x=country J.iloc[:,[0,3]]
In [30]: y=country J.Spending USD
In [31]: model.fit(x,y)
Out[31]:
         ▼ LinearRegression
         LinearRegression()
In [32]: country_J['Prediction in USD']=model.predict(x)
         C:\Users\19mri\AppData\Local\Temp\ipykernel 20308\3600233059.py:1: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-ver
         sus-a-copy
           country J['Prediction in USD']=model.predict(x)
In [33]: country J['error found']=country J['Spending USD']-country J['Prediction in USD']
         C:\Users\19mri\AppData\Local\Temp\ipykernel 20308\2124572304.py:1: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-ver
         sus-a-copy
           country_J['error found']=country_J['Spending_USD']-country_J['Prediction in USD']
In [34]: country J=country J.iloc[:,[0,1,3,2,4,5]]
                                                     # Overwrite
         country J.head(10)
In [35]:
```

ut[35]:		Year	Country	Life_Expectancy	Spending_USD	Prediction in USD	error found
	3	1970	Japan	72.0	150.437	468.501454	-318.064454
	8	1971	Japan	72.9	163.854	172.219913	-8.365913
	11	1972	Japan	73.2	185.390	229.183092	-43.793092
	14	1973	Japan	73.4	205.778	345.020392	-139.242392
	17	1974	Japan	73.7	242.018	401.983572	-159.965572
	21	1975	Japan	74.3	284.269	282.324391	1.944609
	25	1976	Japan	74.8	303.725	221.539331	82.185669
	28	1977	Japan	75.3	340.628	160.754270	179.873730
	31	1978	Japan	75.7	392.577	158.843329	233.733671
	35	1979	Japan	76.2	452.931	98.058269	354.872731
6]:	model.coef_						
6]:	array([233.58554048, -588.74120239])						
7]:	model.intercept_						
37]:	-41	7305.6	546711943	326			
] -							
38]:	mod	lel.pr	edict([[2	2023,70]])			
	<pre>C:\Users\19mri\anaconda4\Lib\site-packages\sklearn\base.py:464: UserWarning: X does not have valid feature names, but Linear ession was fitted with feature names warnings.warn(</pre>						
38]:	arr	ay([14	4026.0175	50441])			
[39]:				rics import r2_ _J['Spending_US		'Prediction in U	SD'])
out[39]:	0.9	728762	114992856	55			

FINAL SCORE OF THIS MOBEL (JAPAN):

97. % (Super-Model) ...

Multiple Linear Regression (Country= France):

In [40]:	data.head(5)					
Out[40]:		Year	Country	Spending_USD	Life_Expectancy	
	0	1970	Germany	252.311	70.6	
	1	1970	France	192.143	72.2	
	2	1970	Great Britain	123.993	71.9	
	3	1970	Japan	150.437	72.0	
	4	1970	USA	326.961	70.9	
In [41]:	F=	data.	groupby([' <mark>C</mark>	ountry']).get_	<pre>group('France')</pre>	
In [42]:	F.	head(10)			

Out[42]:		Year	Country	Spending_USD	Life_Expectancy
	1	1970	France	192.143	72.2
	20	1975	France	363.610	73.0
	39	1980	France	659.826	74.3
	65	1985	France	1001.145	75.4
	91	1990	France	1459.110	77.0
	96	1991	France	1558.033	77.2
	102	1992	France	1651.139	77.5
	108	1993	France	1753.485	77.5
	114	1994	France	1817.042	78.0
	120	1995	France	2100.918	78.1

In [43]: F.corr(numeric_only=True)

Out[43]: Year Spending_USD Life_Expectancy

Year	1.000000	0.986430	0.990654
Spending_USD	0.986430	1.000000	0.969428
Life_Expectancy	0.990654	0.969428	1.000000

In [44]: sns.heatmap(F.corr(numeric_only=True),annot=True,cmap='Greens')

Out[44]: <Axes: >

C:\Users\19mri\AppData\Local\Temp\ipykernel_20308\3198144415.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-ver sus-a-copy

F['USD Predict']=model2.predict(x)

In [50]: F['Error Found']=F['Spending_USD']-F['USD Predict']

C:\Users\19mri\AppData\Local\Temp\ipykernel_20308\130598603.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-ver sus-a-copy

F['Error Found']=F['Spending_USD']-F['USD Predict']

In [51]: F.head(10)

Out[51]:

		Year	Country	Spending_USD	Life_Expectancy	USD Predict	Error Found
	1	1970	France	192.143	72.2	-630.119491	822.262491
	20	1975	France	363.610	73.0	23.134459	340.475541
	39	1980	France	659.826	74.3	569.074985	90.751015
	65	1985	France	1001.145	75.4	1157.940881	-156.795881
	91	1990	France	1459.110	77.0	1639.493353	-180.383353
	96	1991	France	1558.033	77.2	1761.559069	-203.526069
	102	1992	France	1651.139	77.5	1862.162101	-211.023101
	108	1993	France	1753.485	77.5	2027.153187	-273.668187
	114	1994	France	1817.042	78.0	2084.830848	-267.788848
	120	1995	France	2100.918	78.1	2228.359249	-127.441249

In [52]: model2.coef_

```
Out[52]: array([ 164.99108568, -214.6268477 ])

In [53]: model2.intercept_
Out[53]: -310166.49987721804

In [54]: r2=r2_score(F['Spending_USD'],F['USD Predict'])

In [55]: print(r2)
0.9763009619905436
```

FINAL SCORE OF THIS MOBEL (FRANCE):

98 % (Very Super-Model) ...

