Deep Learning

Vijaya Saradhi

IIT Guwahati

Fri, 11th Sept 2020

Modified Neuron Model

2/40

Neural Networks as Directed Graphs

Directed Graphs

- Consists of links and nodes
- A node has associated signal x_i
- A directed link originates at node j and terminates at node k
- links are of two types
 - Synaptic links
 - Activation links

Neural Networks as Directed Graphs

Rules

Rule 1 A signal flows along a link only in one direction (arrow decides the flow)

Synaptic links Node signal x_j is multiplied by weight w_{kj} to produce node signal y_k

Activation links This links behavior is governed by activation function $\phi(.)$

$$x_{j} \bigcirc \underbrace{\qquad \qquad \qquad }_{\text{(a)}} \circ y_{k} = w_{kj}x_{j}$$

$$x_{j} \bigcirc \underbrace{\qquad \qquad }_{\text{(b)}} \circ y_{k} = \varphi(x_{j})$$

Neural Networks as Directed Graphs

Rules

Rule 2 A node signal equal to the sum of all signals entering the node

Rule 3 Signal at node is transmitted to each out going link with the same signal

Neuron Example as Directed Graphs

Neuron Model

Neuron Model - Directed Graph

- Rule 1 synaptic link: $x_0 \times w_{k0}$
- Rule 1 synaptic link: Second link: $x_1 \times w_{k_1}$
- Rule 1 synaptic link: m^{th} link: $x_m \times w_{km}$
- Rule 2: Node v_k : $x_0 \times w_{k0} + x_1 \times w_{k1} + \cdots + x_m \times w_{km}$
- Rule 1: activation link between node v_k and y_k
- Rule 1: activation link:

$$y_k = \phi\left(\sum_{j=1}^m w_{kj} x_j\right)$$

7 / 40

Neural Network Architectures

Types

- Single-layer feedforward networks
- Multi-layer feedforward networks
- Recurrent networks

FIGURE 15 Feedforward network with a single layer of neurons.

- Input layer
- Output layer
- Each node is a neuron model
- The arrow emerging out of single node is the output of the neuron model (y_k)

FIGURE 15 Feedforward network with a single layer of neurons.

Feedforward network with a single layer of neurons.

- Let the inputs be: x_1, x_2, \dots, x_m
- Let the weights on the first neuron be:

$$W_{11}, W_{12}, W_{13}, \cdots, W_{1m}$$

 Let the weights on the second neuron be:

$$W_{21}, W_{22}, W_{23}, \cdots, W_{2m}$$

Output of the first neuron will

be:
$$y_1 = \phi \left(\sum_{j=0}^m w_{1j} x_j \right)$$

Output of the second neuron

will be:
$$y_2 = \phi \left(\sum_{j=0}^m w_{2j} x_j \right)$$

FIGURE 15 Feedforward network with a single layer of neurons.

- Network is feed forward as the inputs and weigths are passing along the direction of the arrows of the network in one direction
- One example of the environment is presented to this network
- Known quantities:
 - One input example (one spam email and its assocaited features) that is

$$X_{i1}, X_{i2}, \cdots, X_{im}$$

Input examples class label: d_i

FIGURE 15 Feedforward network with a single layer of neurons.

- What is to be learned?
 - Weights for first neuron: $w_{11}, w_{12}, w_{13}, \cdots, w_{1m}$
 - Weights for second neuron: $w_{21}, w_{22}, w_{23}, \cdots, w_{2m}$
 - Weights for the last neuron: $W_{11}, W_{12}, W_{13}, \cdots, W_{1m}$

Multi layer feedforward networks

Multi layer feedforward networks

- Input layer, number of hidden layers and output layer
- Architecture is referred as: $m h_1 h_2 q$
- m input features; h₁ hidden units in the first layer
- h₂ hidden units in the second layers and q-output nodes
- First layers is the input layer; last layer is the output layer

Multi layer feedforward networks

 Computation at the first node of the output layer:

$$\bullet \ y_{21} = \phi \left(\sum_{j=0}^4 \frac{y_{1j} w_{2j}}{y_{1j} w_{2j}} \right)$$

- Output depends on the chosen activation function
- Input to the output layers is the 1st hidden layer
- Let its outputs are denoted as *y*₁₁, *y*₁₂, *y*₁₃, *y*₁₄
- The inputs in the 1st hidden layer are multiplied with the weights on the synaptic links going out of the first hidden

Recurrent networks

- Recurrent with no hidden layer
- Contains at least one feedback loop
- First neuron output is fed to rest of the three neurons
- Second neuron output is fed to rest of the other three neurons

$$y_k(n) = \mathbf{A}[x_j'(n)]$$

- Three Nodes are there $x_j(n), x'_j(n)$ and $y_k(n)$
- Two black colored directed links
- One blue colored directed link
- Node $x_i'(n)$ has two input links
 - One from node $x_i(n)$
 - One from node $y_k(n)$

$$y_k(n) = \mathbf{A}[x'_j(n)]$$

 $x'_j(n) = x_j(n) + \underbrace{\mathbf{B}[y_k(n)]}_{feedbackoutput}$

- Three Nodes are there $x_i(n), x_i'(n)$ and $y_k(n)$
- Two black colored directed links
- One blue colored directed link
- Node $x_i'(n)$ has two input links
 - One from node $x_j(n)$
 - One from node $y_k(n)$

- Three Nodes are there $x_i(n), x_i'(n)$ and $y_k(n)$
- Two black colored directed links
- One blue colored directed link
- Node $x_i'(n)$ has two input links
 - One from node $x_i(n)$
 - One from node $y_k(n)$

$$y_k(n) = \mathbf{A}[x_j'(n)]$$

$$x_j'(n) = x_j(n) + \underbrace{\mathbf{B}[y_k(n)]}_{feedbackoutput}$$

$$y_k(n) = \mathbf{A}[x_j(n) + \underbrace{\mathbf{B}[y_k(n)]}_{feedbackoutput}]$$

- Three Nodes are there $x_i(n), x_i'(n)$ and $y_k(n)$
- Two black colored directed links
- One blue colored directed link
- Node $x_i'(n)$ has two input links
 - One from node $x_i(n)$
 - One from node $y_k(n)$

$$y_k(n) = \mathbf{A}[x_j'(n)]$$

$$x_j'(n) = x_j(n) + \underbrace{\mathbf{B}[y_k(n)]}_{feedbackoutput}$$

$$y_k(n) = \mathbf{A}[x_j(n) + \underbrace{\mathbf{B}[y_k(n)]}_{feedbackoutput}]$$

$$= \mathbf{A}[x_j(n)] + \mathbf{A}\underbrace{\mathbf{B}[y_k(n)]}_{feedbackoutput}$$

- Three Nodes are there $x_i(n), x_i'(n)$ and $y_k(n)$
- Two black colored directed links
- One blue colored directed link
- Node $x_i'(n)$ has two input links
 - One from node $x_i(n)$
 - One from node $y_k(n)$

$$y_k(n) = \mathbf{A}[x_j'(n)]$$

$$x_j'(n) = x_j(n) + \underbrace{\mathbf{B}[y_k(n)]}_{feedbackoutput}$$

$$y_k(n) = \mathbf{A}[x_j(n) + \underbrace{\mathbf{B}[y_k(n)]}_{feedbackoutput}]$$

$$= \mathbf{A}[x_j(n)] + \mathbf{A} \underbrace{\mathbf{B}[y_k(n)]}_{feedbackoutput}$$

$$= \mathbf{A}[x_j(n)] + \mathbf{A}\mathbf{B}[y_k(n)]$$

- Three Nodes are there $x_i(n), x_i'(n)$ and $y_k(n)$
- Two black colored directed links
- One blue colored directed link
- Node $x_i'(n)$ has two input links
 - One from node $x_j(n)$
 - One from node $y_k(n)$

$$y_{k}(n) = \mathbf{A}[x'_{j}(n)]$$

$$x'_{j}(n) = x_{j}(n) + \mathbf{B}[y_{k}(n)]$$

$$feedbackoutput$$

$$y_{k}(n) = \mathbf{A}[x_{j}(n) + \mathbf{B}[y_{k}(n)]]$$

$$feedbackoutput$$

$$= \mathbf{A}[x_{j}(n)] + \mathbf{A} \mathbf{B}[y_{k}(n)]$$

$$feedbackoutput$$

$$= \mathbf{A}[x_{j}(n)] + \mathbf{A}\mathbf{B}[y_{k}(n)]$$

$$y_{k}(n) = \frac{\mathbf{A}}{(1-\mathbf{A}\mathbf{B})}[x_{j}(n)]$$

$$(1)$$

Recurrent networks

with one hidden layer

Modern Architectures

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4006–1000.

Knowledge Representation

Definition

Stored information or models used by a person or a machine to interpret, predict and appropriately respond to the outside world.

Knowledge Representation

Discussion

Knowledge of the world consists of two kinds of information:

- Prior Information the known facts.
- Class related prior information example: 20% of emails belong to spam;
- Feature related prior information example 2: 90% of spam emails contain the word "Free Free Free"
- Incorporating such information is of

Knowledge Representation

Four main points

- Rule 1 Similar inputs from similar classes should produce similar representations inside the network
- Rule 2 Inputs to be categorized as separate classes should be given widely different representation in the network
- Rule 3 Importance to specific features is given through involving large number of neurons
- Rule 4 Prior information is achieved through design of neural network.

Introduction

- Obtain best result under given circumstance
- In engineering discipline the goal is to minimize the effort required or maximize the desired benefit
- These are expressed as function of certain decision variables
- Optimization can be defined as the process of finding conditions that gives maximum or minimum value of a function

Introduction

Figure 1.1 Minimum of f(x) is same as maximum of -f(x).

Statement Of Optimization Problem

Optimization problem

minimize
$$f$$
 $f(\mathbf{x})$
subject to $g_j(\mathbf{x}) \leq 0 \ \forall \ j = 1, 2, \cdots, m$
 $l_j(\mathbf{x}) = 0 \ \forall \ j = 1, 2, \cdots, p$

- x: Design variables/ design vector
- $f(\mathbf{x})$: objective function
- $g_i(\mathbf{x})$ inequality constraints
- $l_i(\mathbf{x})$ equality constraints
- Constrained optimization problem

Variations

- Design variables:
 - Single variable/Multivariable
 - Continuous values/integer values
- objective function
 - Linear
 - Non-linear
 - Convex
 - Single objective/multi objective
 - Unimodal/multimodal
- Constraints
 - No constraints
 - only $l_i(.)$ which are linear
 - both $g_i(.)$ and $l_i(.)$
 - Convex

Nature of objective functions

- When there are no constraints present the problem is an unconstrained optimization
- When there are constrains present the problem is known as constrained optimization
- Linear Optimization When $f(\mathbf{x})$ is linear and only linear constraints are present
- Non Linear Optimization when f(x) is nonlinear
- Convex Optimization When $f(\mathbf{x})$ is convex and constraints are linear

Single variable optimization

Local optimal

f(x) has a minimum at $x = x^*$ if $f(x^*) \le f(x^* + h)$ for all sufficiently small positive and negative values of h.

f(x) has a maximum at $x = x^*$ if $f(x^*) \ge f(x^* + h)$ for all sufficiently small positive and negative values of h.

Global optimal

 $x = x^*$ found in the interval [a, b] such that x^* minimizes f(x)

Single Variable

Necessary Condition

if f(x) is defined in the interval [a, b] and has a local minimum at $x = x^*$; let the first order derivative of f(x) exists at $x = x^*$ then

$$\frac{df(x)}{dx} = 0$$

Example

Example

$$f'(x) = 60(x^4 - 3x^3 + 2x^2) = 60x^2(x - 1)(x - 2)$$

$$f'(x) = 0 \text{ at } x = 0, 1 \text{ and } 2.$$

Multi Variable

Necessary Condition

Let
$$\mathbf{x} = (x_1, x_2, \dots, x_m)$$

If f(x) has a maximum or minimium point at $x = x^*$. Assume partial derivatives of f(x) exists at x^* then

$$\left. \frac{\partial f(\mathbf{x})}{\partial x_1} \right|_{x_1 = x_1^*} = \left. \frac{\partial f(\mathbf{x})}{\partial x_2} \right|_{x_2 = x_2^*} = \dots = \left. \frac{\partial f(\mathbf{x})}{\partial x_m} \right|_{x_n = x_m^*} = 0$$

$$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}\bigg|_{\mathbf{x}=\mathbf{x}^*} = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \frac{\partial f(\mathbf{x})}{\partial x_2} \\ \vdots \\ \frac{\partial f(\mathbf{x})}{\partial x_{-}} \end{bmatrix}\bigg|_{\mathbf{x}=\mathbf{x}^*} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \mathbf{0}$$

Example

$$f(x_1, x_2) = x_1^3 + x_2^3 + 2x_1^2 + 4x_2^2 + 6$$

Necessary Condition

$$\frac{\partial f(x_1, x_2)}{\partial x_1} = 3x_1^2 + 4x_1 = x_1(3x_1 + 4) = 0$$

$$\frac{\partial f(x_1, x_2)}{\partial x_2} = 3x_2^2 + 8x_2 = x_2(3x_2 + 8) = 0$$

These equations satisfy at (0, 0), $(0, -\frac{8}{3})$, $(-\frac{4}{3}, 0)$ and $(-\frac{4}{3}, -\frac{8}{3})$

Contours

Descent Direction

Definition

A search direction \mathbf{d}^t is a descent direction at point \mathbf{x}^t if the condition $\nabla f(\mathbf{x}^t).\mathbf{d}^t \leq 0$ is satisfied

36 / 40

Descent Direction

Condition

$$f(\mathbf{x}^{(t+1)}) < f(\mathbf{x}^t) < f(\mathbf{x}^t + \alpha \bigtriangledown f(\mathbf{x}^t).\mathbf{d}^t)$$
(2)

CS590

Maximum Descent Direction

Condition

When $\mathbf{d}^t = - \bigtriangledown f(\mathbf{x}^t)$ maxim decrease in function value is obtained Let $\mathbf{d}^t = (1,0)^T$ Example: $f(x_1,x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$ Let $\mathbf{x}^t = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ Let $\mathbf{d}^t = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\bigtriangledown f \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -46 \\ -38 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 0 \end{pmatrix} = -46$

Maximum Descent Direction

Condition

When $\mathbf{d}^t = - \nabla f(\mathbf{x}^t)$ maxim decrease in function value is obtained

Example:
$$f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$

Let
$$\mathbf{x}^t = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

When
$$\mathbf{d}^t = - \nabla f(\mathbf{x}^t) = \begin{pmatrix} 46 \\ 38 \end{pmatrix}$$

$$\nabla f\left(\left(\begin{array}{c}1\\1\end{array}\right)\right) = \left(\begin{array}{c}-46\\-38\end{array}\right)$$

$$(-46-38)\left(\begin{array}{c}46\\38\end{array}\right)=-3560$$

Gradient Descent

Algorithm

Step 1 Choose a maximum number of iterations M to be performed, an initial point $x^{(0)}$, two termination parameters ϵ_1 , ϵ_2 , and set k=0.

Step 2 Calculate $\nabla f(x^{(k)})$, the first derivative at the point $x^{(k)}$.

Step 3 If $\|\nabla f(x^{(k)})\| \le \epsilon_1$, Terminate;

Else if $k \ge M$; **Terminate**;

Else go to Step 4.

Step 4 Perform a unidirectional search to find $\alpha^{(k)}$ using ϵ_2 such that $f(x^{(k+1)}) = f(x^{(k)} - \alpha^{(k)} \nabla f(x^{(k)}))$ is minimum. One criterion for termination is when $|\nabla f(x^{(k+1)}) \cdot \nabla f(x^{(k)})| \le \epsilon_2$.

Step 5 Is $\frac{\|x^{(k+1)}-x^{(k)}\|}{\|x^{(k)}\|} \le \epsilon_1$? If yes, Terminate;

Else set k = k + 1 and go to Step 2.

40 / 40