Definitions

Term	Notation Example(s)	We say in English
sequence	x_1, \dots, x_n x_1, \dots, x_n where $n = 0$ x_1, \dots, x_n where $n = 1$ x_1, \dots, x_n where $n = 2$ x_1, x_2	A sequence x_1 to x_n An empty sequence A sequence containing just x_1 A sequence containing just x_1 and x_2 in order A sequence containing just x_1 and x_2 in order
all integers all positive integers all natural numbers	\mathbb{Z}^+ N	The (set of all) integers (whole numbers including negatives, zero, and positives) The (set of all) strictly positive integers The (set of all) natural numbers. Note : we use the convention that 0 is a natural number.
function rule definition piecewise rule definition function application	$f(x) = x + 4$ $f(x) = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$ $f(7)$ $f(z)$ $f(g(z))$	Define f of x to be $x + 4$ Define f of x to be x when x is nonnegative and to be $-x$ when x is negative f of f or f applied to f or the image of f under f of f or f applied to f or the image of f under f of f of f of f or f applied to f
absolute value square root	$\begin{vmatrix} -3 \\ \sqrt{9} \end{vmatrix}$	The absolute value of -3 The non-negative square root of 9

Data types

Term	Examples:	
	(add additional	examples from class)
set	$7 \in \{43, 7, 9\}$	$2 \notin \{43, 7, 9\}$
unordered collection of elements		
repetition doesn't matter		
Equal sets agree on membership of all elements		
n-tuple		
ordered sequence of elements with n "slots" $(n > 0)$		
repetition matters, fixed length		
Equal n-tuples have corresponding components equal		

string

ordered finite sequence of elements each from specified set repetition matters, arbitrary finite length Equal strings have same length and corresponding characters equal

$Special\ cases:$

When n = 2, the 2-tuple is called an **ordered pair**.

A string of length 0 is called the **empty string** and is denoted λ .

A set with no elements is called the **empty set** and is denoted $\{\}$ or \emptyset .

Defining sets

To define a set using **roster method**, explicitly list its elements. That is, start with { then list elements of the set separated by commas and close with }.

To define a set using **set builder definition**, either form "The set of all x from the universe U such that x is ..." by writing

$$\{x \in U \mid ...x...\}$$

or form "the collection of all outputs of some operation when the input ranges over the universe U" by writing

$$\{...x... \mid x \in U\}$$

We use the symbol \in as "is an element of" to indicate membership in a set.

Example sets: For each of the following, identify whether it's defined using the roster method or set builder notation and give an example element.

Set operations

To define a set we can use the roster method, set builder notation, a recursive definition, and also we can apply a set operation to other sets.

New! Cartesian product of sets and set-wise concatenation of sets of strings

Definition: Let A and B be sets. The **Cartesian product** of A and B, denoted $A \times B$, is the set of all ordered pairs (a, b) where $a \in A$ and $b \in B$

$$A\times B=\{(a,b)\mid a\in A \text{ and } b\in B\}$$

Definition: Let A and B be sets of strings over the same alphabet. The **set-wise concatenation** of A and B, denoted $A \circ B$, is the set of all results of string concatenation ab where $a \in A$ and $b \in B$

$$A \circ B = \{ab \mid a \in A \text{ and } b \in B\}$$

Fill in the missing entries in the table:

Set	Example elements in this set:
B	A C G U
	(A,C) (U,U)
$B \times \{-1, 0, 1\}$	
$\{-1,0,1\} \times B$	
	(0, 0, 0)
$\{\mathtt{A},\mathtt{C},\mathtt{G},\mathtt{U}\}\circ\{\mathtt{A},\mathtt{C},\mathtt{G},\mathtt{U}\}$	
	GGGG