Convolutional Neural Network (CNN)

Network Architecture designed for Image

Image Classification

(All the images to be classified have the same size.)

Image Classification

value represents intensity

Fully Connected Network

Do we really need "fully connected" in image processing?

Observation 1

Identifying some critical patterns

Perhaps human also identify birds in a similar way ... ©

https://www.dcard.tw/f/funny/p/233833012

Observation 1 A neuron does not have to see the whole image. Need to see the Input Laye Layer 2 whole image? χ_1 bird χ_{N} basic advanced detector detector

Some patterns are much smaller than the whole image.

Simplification 1

- Can different neurons have different sizes of receptive field?
- Cover only some channels?
- Not square receptive field?

Simplification 1 – Typical Setting

Each receptive field has a set of neurons (e.g., 64 neurons).

Observation 2

The same patterns appear in different regions.

Simplification 2 – Typical Setting

Each receptive field has a set of neurons (e.g., 64 neurons).

Simplification 2 – Typical Setting

Each receptive field has a set of neurons (e.g., 64 neurons).

Each receptive field has the neurons with the same set of parameters.

Benefit of Convolutional Layer

- Some patterns are much smaller than the whole image.
- The same patterns appear in different regions.

Another story based on *filter* ©

Convolutional Layer

Consider channel = 1 (black and white image)

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

1	-1	-1	
-1	1	-1	Filter 1
-1	-1	1	
-1	1	-1	
-1	1	-1	Filter 2
-1	1	-1	
			•

(The values in the filters are unknown parameters.)

Filter 1

stride=1

6 x 6 image

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

stride=1

6 x 6 image

Do the same process for every filter

Comparison of Two Stories

Neuron Version Story	Filter Version Story		
Each neuron only considers a receptive field.	There are a set of filters detecting small patterns.		
The neurons with different receptive fields share the parameters.	Each filter convolves over the input image.		

They are the same story.

Observation 3

Subsampling the pixels will not change the object

Pooling – Max Pooling

		_	_					
	1	-1	-1		-1	1	-1	
	-1	1	-1	Filter 1	-1	1	-1	Filter
	-1	-1	1		-1	1	-1	
3	-1		-3	-1	-1	-1	-1	-1
-3	1		0	-3	-1	-1	-2	1
-3	-3		0	1	-1	-1	-2	1
3	-2		-2	-1	-1	0	-4	3

The whole CNN

cat dog Convolution softmax Pooling **Fully Connected** Layers Convolution 00000000 Pooling Flatten

Application: Playing Go

48 channels in Alpha Go

Black: 1

white: -1

none: 0

Fully-connected network can be used

But CNN performs much better.

Why CNN for Go playing?

Some patterns are much smaller than the whole image

Alpha Go uses 5 x 5 for first layer

• The same patterns appear in different regions.

Why CNN for Go playing?

Subsampling the pixels will not change the object

Pooling

How to explain this???

Neural network architecture. The input to the policy network is a $19 \times 19 \times 48$ image stack consisting of 48 feature planes. The first hidden layer zero pads the input into a 23 \times 23 image, then convolves k filters of kernel size 5 \times 5 with stride 1 with the input image and applies a rectifier nonlinearity. Each of the subsequent hidden layers 2 to 12 zero pads the respective previous hidden layer into a 21×21 image, then convolves k filters of kernel size 3×3 with stride 1, again followed by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1×1 with stride 1, with a different bias for each position, and applies a softmax function. The match version of AlphaGo used k = 192 filters; Fig. 2b and Extended Data Tabl 256 and 384 filters

Alpha Go does not use Pooling

More Applications

Speech

https://dl.acm.org/doi/10.110 9/TASLP.2014.2339736

Natural Language Processing

https://www.aclweb.org/anthology/S15-2079/

To learn more ...

• CNN is not invariant to scaling and rotation (we need data augmentation ⊕).

Spatial Transformer Layer

https://youtu.be/SoCywZ1hZak (in Mandarin)