Chapter 1

Metric Spaces

Definition 1.0.1. A metric space is a set X with a function $d: X \times X \to \mathbb{R}_{\geq 0}(d$ is the metric, or the distance function) satisfying the following properties for all $x, y, z \in X$:

- Non-negativity: $d(x,y) \ge 0$ and d(x,y) = 0 if and only if x = y.
- Symmetry: d(x,y) = d(y,x).
- Triangle inequality: $d(x,z) \le d(x,y) + d(y,z)$.

Example 1.0.1. $X = \mathbb{R}, d(x, y) = ||x - y||$

Example 1.0.2. X is finite, d(x,y) = 1 if $x \neq y$, d(x,x) = 0 (discrete metric)

Example 1.0.3. X is a finite set of vertices of a connected graph, d(x,y) is the length of the shortest path between x and y (graph metric)

Example 1.0.4. $X = \mathbb{R}^n$, d(x,y) = ||x-y|| (Euclidean metric)

Example 1.0.5. $X = \mathbb{R}^n$, $d(x,y) = \sum_{i=1}^n |x_i - y_i|$ (manhattan metric)

Example 1.0.6. $X = \mathbb{R}^n$, $d(x, y) = \max_{1 \le i \le n} |x_i - y_i|$ (sup metric)

Exercise Prove that the above examples are indeed metric spaces (You may use Cauchy-Schwarz inequality which is stated later).

Example 1.0.7. $X = \mathbb{R}^2$, P = (x, y), P' = (x', y')

$$d(P, P') = \begin{cases} |x - x'| + |y| + |y'| & \text{if } x \neq x' \\ |y - y'| & \text{if } x = x' \end{cases}$$

Example 1.0.8. X = C[0,1] (the set of continuous functions on [0,1]), $d(f,g) = \max_{x \in [0,1]} |f(x) - g(x)|$ (sup metric)

Example 1.0.9. $X = C[0,1], d(f,g) = \int_0^1 |f(x) - g(x)| dx$ (L¹ metric)

Remark We cannot replace X by the set of all integrable functions, because the distance between two functions may be zero even if they are not equal (they may differ on a set of measure zero).

Definition 1.0.2 (Normed Space). Let V be a vector space over \mathbb{R} . A norm on V is a function $\|\cdot\|: V \to \mathbb{R}_{\geq 0}$ satisfying the following properties for all $u, v \in V$ and all $a \in \mathbb{R}$:

- Non-negativity: $||v|| \ge 0$ and ||v|| = 0 if and only if v = 0.
- Absolute homogeneity: ||av|| = |a|||v||.
- Triangle inequality: $||u + v|| \le ||u|| + ||v||$.

Remark A norm defines a metric by d(u, v) = ||u - v|| on V.

Example 1.0.10. $||v|| = \sqrt{\sum_{i=1}^{n} |v_i|^2}$ (Euclidean norm)

Example 1.0.11. $||v|| = \sum_{i=1}^{n} |v_i|$ (manhattan norm)

Example 1.0.12. $||v|| = \max_{1 \le i \le n} |v_i|$ (sup norm)

Example 1.0.13. $V = C[0,1], ||f|| = \max_{x \in [0,1]} |f(x)|$ (sup norm)

Example 1.0.14. $V = C[0,1], ||f|| = \int_0^1 |f(x)| dx \ (L^1 \ norm)$

Definition 1.0.3 (l_p -Spaces). Let $1 \le p < \infty$.

- $l_{\infty} = \{x = (x_1, x_2, ...) : \sup_i |x_i| < \infty\}$ with norm $||x||_{\infty} = \sup_i |x_i|$.
- $l_1 = \{x = (x_1, x_2, \ldots) : \sum_i |x_i| < \infty\}$ with norm $||x||_1 = \sum_i |x_i|$.
- $l_2 = \{x = (x_1, x_2, \dots) : \sum_i |x_i|^2 < \infty\}$ with norm $||x||_2 = \sqrt{\sum_i |x_i|^2}$.
- $l_p = \{x = (x_1, x_2, \dots) : \sum_i |x_i|^p < \infty\}$ with norm $||x||_p = (\sum_i |x_i|^p)^{1/p}$.

Property 1.0.1. $l_p \subseteq l_q$ if p < q

Example 1.0.15.
$$x_n = \frac{1}{n}$$
. $\sum_{1}^{\infty} \frac{1}{n} = \infty$ but $\sum_{1}^{\infty} \frac{1}{n^2} < \infty$. So $x = (1, \frac{1}{2}, \frac{1}{3}, \dots) \in l_2$ but $x \notin l_1$.

Definition 1.0.4 (Euclidean Space/Vector Space with Inner Product). Let V be a vector space over \mathbb{R} . An inner product on V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ satisfying the following properties for all $u, v, w \in V$ and all $a \in \mathbb{R}$:

- **Positivity:** $\langle v, v \rangle \geq 0$ and $\langle v, v \rangle = 0$ if and only if v = 0.
- Symmetry: $\langle u, v \rangle = \langle v, u \rangle$.
- Bilinearity: $\langle au + w, v \rangle = a \langle u, v \rangle + \langle w, v \rangle$.

Remark. We always use Euclidean Space as the default example of inner product space.

Theorem 1.0.1 (Cauchy-Schwarz Inequality). For all $u, v \in V$, $|\langle u, v \rangle| \leq ||u|| ||v||$.

Proof Let $f(t) = ||u + tv||^2 = \langle u + tv, u + tv \rangle$. Then using the properties of quadratic polynomials.

Property 1.0.2. $||v|| = \sqrt{\langle v, v \rangle}$ is a norm on V.

Proof. Use Cauchy-Schwarz inequality: $|\langle u, v \rangle| \le ||u|| ||v||$.

Corollary 1.0.1. l_2 -norm satisfies the triangle inequality.

Proof. l_2 is an Euclidean Space(infinite dimensions) with $\langle x, y \rangle = \sum_i x_i y_i$ and $||x||_2 = \sqrt{\sum_i |x_i|^2}$.

Remark. $||x||_p$ does not come from an inner product if $p \neq 2$.

Theorem 1.0.2. l_p are normed spaces.

Proof. This will be proved later in the course.