রসায়ন : দ্বিতীয় পত্র

অধ্যায়-৪: তড়িৎ রসায়ন

101. CAT. 20391

- ক. নির্দেশক তড়িৎদার কী?
- খ. কাচে অ্যানিলিং করা হয় কেন?
- ণ্ উদ্দীপকের কোষটির তড়িচ্চালক বলের মান নির্ণয় করো। ৩
- কোষটি হতে অধিক সময় ধরে তড়িৎ উৎপাদনের ক্ষেত্রে কোনো প্রতিবন্ধকতার সৃষ্টি হবে কি? তোমার মতামত নাও।

১ নং প্রশ্নের উত্তর

- ক কোনো একক তড়িংছারের বিভব নির্ণয়ের জন্য একে তড়িংছার বিভব জানা আছে এ রকম যে তড়িংছারের সঞ্চো সংযোগ স্থাপন করে তড়িং রাসায়নিক কোষ গঠন করা হয় তাকে নির্দেশক তড়িংছার বলে।
- বা কাচে অ্যানিলিং প্রক্রিয়ার মাধ্যমে পান দেওয়া হয়। কাচকে পান না দিলে তা তাপ সহ্য করতে পারে না এমনকি কিছু সময় রেখে দিলে তা ভেঙে যায়। কারণ কাচে পান না দিলে এটি তাপমাত্রার পরিবর্তন কিংবা আঘাত সহ্য করতে পারে না। পান দেওয়ার ফলে কাচ সুষম হয়। ফলে কাচ তাপমাত্রা সহনীয়, ঘাতসহ ও টেকসই হয়। এজন্যই কাচে অ্যানিলিং করা হয়।
- উদ্দীপকের কোষের জিংক তড়িৎদ্বারের জারণ বিভব + 0.76 V এবং কপার তড়িৎদ্বারের বিজারণ বিভব + 0.34 V বা জারণ বিভব −0.34V। অর্থাৎ জিংক তড়িৎদ্বারের জারণ বিভব কপার তড়িৎদ্বারের জারণ বিভব অপেক্ষা বেশি। কাজেই জিংক তড়িৎদ্বার অ্যানোড ও কপার তড়িৎদ্বার ক্যাথোড হিসেবে ক্রিয়া করবে।

জারণ অর্ধ-বিক্রিয়া: $Zn(s) - 2e^- \rightarrow Zn^{2^+}(aq)$

বিজারণ অর্ধ-বিক্রিয়া: Cu^{2*}(aq) + 2e⁻ → Cu(s)

উদ্দীপকের বিক্রিয়াটিকে নিম্নোক্তভাবে প্রকাশ করা যায়-

$$Zn(s) + Cu^{2+}(aq) \rightleftharpoons Zn^{2+}(aq) + Cu(s)$$
উল্লেখিত কোষটির নার্নস্ট সমীকরণ—
$$E_{cell} = E_{cell}^0 - \frac{2.303RT}{nF} \log \frac{[Zn^{2+}]}{[Cu^{2+}]}$$

$$= \left(E_{Zn/Zn^{2+}} + E_{Cu^{2+}/Cu}\right)$$

$$- \frac{2.303 \times 8.314 \times 298}{2 \times 96500} \log \frac{(0.5)}{(0.25)}$$

$$= (0.76 + 0.34) - 8.89 \times 10^{-3}$$

$$= 1.09 \text{ V}$$

সূতরাং উদ্দীপকের কোষটির তড়িচ্চালক বলের মান হলো 1.09 V।

যে যেহেতু উদ্দীপকের তড়িং রাসায়নিক কোষে কোন লবণ সেতু ব্যবহার করা হয়নি, সেহেতু অধিক সময় ধরে তড়িং উৎপাদনে এ কোষে প্রতিবন্ধকতার সৃষ্টি হবে। উদ্দীপকের তড়িং রাসায়নিক কোষের জিংক তড়িংদ্ধারের জারণ বিভব বেশি হওয়ায় জিংক দণ্ডটি অ্যানোড হিসেবে কাজ করবে অর্থাং জিংক দণ্ড ক্ষয়প্রপ্রপ্র হয়ে দ্রবণে জিংক আয়নের ঘনতু বৃন্ধি করবে। ফলে সালফেট (SO4²) আয়নের ঘনতু তুলনামূলকভাবে প্রাস পাবে। আবার উদ্দীপকের তড়িং রাসায়নিক কোষের কপার তড়িংদ্ধারের জারণ বিভব কম হওয়ায় কপার দণ্ডটি ক্যাথোড হিসেবে কাজ করবে অর্থাং দ্রবণ হতে কপার দণ্ডে কপার জমা হবে। এজন্য

দ্রবণে কপার আয়নের ঘনত প্রাস পাবে। ফলে সালফেট (SO,2-) আয়নের ঘনত দ্রবণে তুলনামূলকভাবে বৃদ্ধি পাবে। যদি উদ্দীপকের তড়িৎ রাসায়নিক কোষে লবণ সেতু ব্যবহার করা হয় তাহলে লবণ সেতু মধ্যস্থ (যেমন— KCI) অন্যায়ন ও ক্যাটায়ন যথাক্রমে জারণ অর্ধকোষ ও বিজারণ অর্ধকোষের দিকে ধাবিত হয় এবং অতিরিক্ত চার্জ ঘনত্বকে প্রশমিত করে। ফলে অনেক সময় ধরে এ কোষ হতে তড়িৎ উৎপাদন পাওয়া যায়। কিন্তু উদ্দীপকের কোষে লবণ সেতু ব্যবহার করা হয়নি। ফলে অ্যানোডে জিংক আয়নের পরিমাণ বেড়ে যাবে এবং ক্যাঘোডে কপার আয়নের পরিমাণ কমে যাবে।

সূতরাং উভয় তড়িৎদ্বারের জারণ ও বিজারণ ক্রিয়া বাধাগ্রস্থ হবে এবং অল্প সময়ের মধ্যে কোষ বিক্রিয়া অর্থাৎ তড়িৎ উৎপাদন বন্ধ হয়ে যাবে।

2대 > 2

[DT. CAT. 2034]

ক, হেক্সামিন কী?

খ. CHCl3 কে বাদামী রঙিন বোতলে রাখা হয় কেন?

গ. উদ্দীপকে CaCl₂ ব্যবহার করা হলে কী কী উৎপন্ন হতো? কোষ বিক্রিয়ার মাধ্যমে দেখাও।

য়, উদ্দীপকের দ্রবণে যে ক্ষার উৎপন্ন হয় তার মূলনীতি লেখাে এবং তড়িৎকােষে কােন ধরনের রাসায়নিক বিক্রিয়া সম্পন্ন হয়েছে তা বিশ্লেষণ করাে।

২নং প্রশ্নের উত্তর

ত্র হেক্সামিন হলো হেক্সমিথিলিন টেট্টাঅ্যামিন (CH₂)₆N₄ যা হেটারো-সাইক্লিক জৈব যৌগ।

ČHCI3 কে বাদামী বর্ণের বোতলে রাখা হয়। কারণ CHCI3 সূর্যের আলোর উপস্থিতিতে জারিত হয়ে ফসজিন গ্যাস উৎপন্ন করে।

$$CHCl_3 + \frac{1}{2}O_2$$
 সূর্যের আলো $COCl_2 + HCl_3$
ফসজিন গ্যাস

এ ফসজিন গ্যাস স্বাস্থ্যের জন্য ক্ষতিকর। তাই CHCl3 কে বাদামী বর্ণের বোতলে সংরক্ষণ করা হয়।

 $CaCl_2$ পানিতে দ্রবীভূত হয়ে Ca^{2^*} আয়ন এবং Cl^- আয়ন উৎপন্ন করে। $CaCl_2$ এর জলীয় দ্রবণকে তভ়িৎ বিশ্লেষণ করা হলে ক্যাথোডে হাইড্রোজেন গ্যাস ও OH^- আয়ন এবং অ্যানোডে Cl_2 গ্যাস উৎপন্ন হয়। $2H_2O(aq) + 2e^- \longrightarrow H_2(g) + 2OH^-(aq)$ [ক্যাথোডে বিজারণ]

 $2H_2O(aq) + 2CI'(aq) \longrightarrow H_2(g) + Cl_2(g) + 2OH'(aq)$

এক্ষেত্রে Ca^{2+} আয়ন ধাতব ক্যালসিয়ামে পরিণত হয় না। কালসিয়াম আয়ন দর্শক আয়ন হিসেবে থাকে।

বিজারণ বিভবের মান থেকে দেখা যায় যে, পানির তড়িৎ বিশ্লেষণে অ্যানোডে অক্সিজেন গ্যাস উৎপন্ন হওয়ার কথা। কিন্তু অক্সিজেনের অতি উচ্চ বিভবের কারণে Cl₂ গ্যাস উৎপন্ন হয়।

য় উদ্দীপকে NaCi এর তড়িৎ বিশ্লেষণ দেখানো হয়েছে। জলীয় দ্রবণে সোডিয়াম ক্লোরাইড আয়নিত হয়ে Na⁺ এবং Cl⁻ আয়ন গঠন করে। একই সময়ে পানি কিছুটা বিয়োজিত হয়ে H' এবং OH আয়ন উৎপন্ন করে।

$$NaCl \longrightarrow Na^+ + Cl^-$$

 $H_2O \longrightarrow H^+ + OH^-$

উৎপন্ন ধনাত্মক আয়নের মধ্যে H⁺ এর বিজারণ বিভবের মান বেশি হওয়ায় হাইড্রোজেন ক্যাথোড কর্তৃক আকৃষ্ট হয়। H⁺ আয়ন ক্যাথোড হতে ইলেকট্রন গ্রহণ করে H2 গ্যাস উৎপন্ন করে। অপরদিকে অ্যানোডে Cl, গ্যাস উৎপন্ন হয়।

$$C\Gamma - e^- \longrightarrow CI$$

$$2Cl^- - 2e^- \longrightarrow Cl_2$$

ক্যাথোডে বিজারণ : H⁺ + e → H

$$2H^+ + 2e^- \longrightarrow H_2$$

দ্রবণে বিদ্যমান OH⁻ এবং Na⁺ আয়ন পরস্পর বিক্রিয়া করে NaOH উৎপদ্ন করে।

 $Na^+ + OH^- \longrightarrow NaOH$

এক্ষেত্রে অ্যানোডে জারণ এবং ক্যাথোডে বিজারণ সংঘটিত হয় এবং ইলেকট্রনের আদান প্রদান ঘটে। সূতরাং এক্ষেত্রে জারণ বিজারণ বিক্রিয়া সংঘটিত হয়েছে।

2110

 $(E_{Fe^{2+}/Fe}^{0} = -0.44V, E_{Cu^{2+}/Cu}^{0} = +0.34V, T = 298K)$

/DT. CAT. 2030/

- ক. প্রাইমারি স্ট্যান্ডার্ড পদার্থ কাকে বলে?
- খ. কোনো নমুনায় BOD অপেক্ষা COD এর মান বেশি হয় কেন?২
- গ, কোষটির e.m.f. নির্ণয় করো।
- ঘ় 'B' পাত্রটি আয়রন নির্মিত হলে কোষটির দীর্ঘ সময় সংরক্ষণের ক্ষেত্রে তোমার মতামত বিশ্লেষণ করো।

৩ নং প্রশ্নের উত্তর

- ক বিশৃন্ধ অবস্থায় প্রাপ্ত যেসব কঠিন পদার্থের প্রস্তুতকৃত দ্রবণের ঘনমাত্রা অনেকদিন পর্যন্ত অপরিবর্তিত থাকে তাদেরকে প্রাইমারি স্ট্যান্ডার্ড পদার্থ বলে।
- বী কোন নমুনায় COD এর মান BOD থেকে বেশি হয়। কেননা COD প্রক্রিয়ায় সকল প্রকার জীব ডাঙনযোগ্য ও অভাঙনযোগ্য পদার্থ জারিত হয়। এর ফলে অক্সিজেনের ব্যবহার বেশি হয়। কিন্তু BOD প্রক্রিয়ায় কেবলমাত্র জীব ভাঙনযোগ্য পদার্থসমূহ জারিত হওয়ায় অক্সিজেনের ব্যবহার কম হয়। সূতরাং বলা যায়, কোনো নমুনায় BOD অপেক্ষা COD এর মান বেশি হয়।
- গাঁ অ্যানোড পাত্রে FeSO4 দ্রবণের ঘনমাত্রা 1M হওয়ায় [Fe²⁺] = 1M এবং ক্যাথোডপাত্রে CuSO4 দ্রবর্ণের ঘনমাত্রা 2M হওয়ায় [Cu²⁺] = 2M প্রদত্ত কোষের কোষ বিক্রিয়াটি হলো—

$$Fe + Cu^{2+} \xrightarrow{2e^-} Fe^{2+} + Cu$$

এখন উদ্দীপকের কোষটির—

$$E_{cell}^{0} = E_{ox(anode)}^{0} + E_{rerl(cathode)}^{0}$$

= (0.44 + 0.34) V
= 0.78V $E_{Fe/Fe^{2+}}^{0} = 0.44V$
 $E_{Cu/2^{+}/Cu}^{0} = + 0.34V$

নার্নস্ট সমীকরণ মতে কোষটির তড়িচ্চালক বল,

$$E_{cell}=E_{cell}^0-rac{2.303~RT}{nF}\lograc{[Fe^{2^+}]}{[Cu^{2^+}]}$$
 = $0.78-rac{2.303\times8.314\times298}{2\times96500}\lograc{1}{2}$ = $0.78+(0.0088996)$ = $0.789~Volt$ \tag{CMলার গ্যাস ধ্বক, R = $8.314~JK^{-1}mol^{-1}$ তাপমাত্রা,T = $298K$ ইলেকট্রনের মোল সংখ্যা, $n=2$ ফ্যারাডে ধ্বক, $F=96500C$

সূতরাং উদ্দীপকের কোষটির e.m.f 0.789 Volt।

- 🌃 উদ্দীপকের 'B' পাত্রটি আয়রন নির্মিত হলে গঠিত কোষটি দীর্ঘ সময় সংরক্ষণে দুইটি বিষয় বিবেচ্য হবে।
 - i. Fe অ্যানোড হিসেবে ব্যবহৃত হচ্ছে কিনা।
- ii. Fe অ্যানোড হিসেবে ব্যবহৃত হলে বিক্রিয়া স্বতঃস্ফূর্ত হচ্ছে কিনা। Fe অ্যানোড হলে এক্ষেত্রে সংশ্লিষ্ট বিক্রিয়া হবে– **অ্যানোড অর্ধবিক্রিয়া:** Fe – 2e⁻ — → Fe²⁺ [জারণ বিক্রিয়া] ক্যাথোড অর্ধবিক্রিয়া : Cu²+ + 2e⁻ → Cu [বিজারণ বিক্রিয়া] অতএব সমগ্র কোষ বিক্রিয়া : Fe + Cu²⁺ → Fe²⁺ + Cu এখন কোষের তড়িচ্চালক বল, $E_{cell}^0 = E_{anode (ox)}^0 + E_{cathode (red)}^0$ = 0.44V + 0.34V

যেহেতু $E_{cell}^{0}>0$, সুতরাং বিক্রিয়াটি স্বতঃস্ফূর্ত হবে। অর্থাৎ আয়রন পাত্র ক্ষয় হবে। তাই 'B' পাত্রটি আয়রন নির্মিত হলে কোষটি দীর্ঘসময় সংরক্ষণ করা যাবে না।

ত্রর > ৪ কতিপয় ধাতুর জারণ বিভব এর মান দেওয়া হলো:

- (i) $A(s)/A^{2+}(aq) = +0.40V$
- (ii) $B(s)/B^{3+}(aq) = +1.66V$
- (iii) $P(s)/P^{2+}(aq) = +0.44V$

M.CAT. 2059/

- ক. ইলেকট্রোফাইল কী?
- 120 nm আকারবিশিষ্ট কণিকা ন্যানো কণা কিনা? ব্যাখ্যা করো। ২
- গ. (i) নং দ্রবণ ও (ii) নং দ্রবণকে লবণ সেতু ছারা সংযোগ করে গঠিত কোষের মোট কোষবিভব নির্ণয় করো।
- ঘ. (iii) নং দ্রবণকে A ও B ধাতুর নির্মিত পাত্রের কোনটিতে রাখা নিরাপদ? সক্রিয়তার ক্রম দিয়ে বিশ্লেষণ করো।

৪ নং প্রশ্নের উত্তর

- 🚭 বিক্রিয়াকালে ঝণাত্মক চার্জযুক্ত কার্বানায়ন বা এর ইলেকট্রনের প্রতি যেসব বিকারকের প্রবল আকর্ষণ থাকে এবং বিক্রিয়াকালে ইলেকট্রন গ্রহণ করে তাদেরকে ইলেকট্রোফাইল বলে।
- 🚰 যেসকল বন্তু কণার আকার 1-100 nm পর্যন্ত হয় তাদেরকে ন্যানো কণা বলে। 120 nm আকার বিশিষ্ট কণিকা ন্যানো কণা নয়। কেননা, 120 nm আকারবিশিষ্ট কণিকার আকার ন্যানো কণার রেঞ্জ 1-100 nm এর মধ্যে পড়ে না। কিন্তু 120 nm আকারবিশিষ্ট কণিকার আকার মিহি ও সৃক্ষকণার (100 – 2500 nm) রেজের মধ্যে পড়ে। এজন্যই 120 nm আকারবিশিষ্ট কণিকা ন্যানো কণিকা নয় বরং মিহি ও সৃক্ষকণা।
- বা উদ্দীপকের (i) নং ও (ii) নং দ্রবণকে লবণ সেতু দ্বারা সংযোগ করলে নিম্নোক্ত তড়িৎ রাসায়নিক কোষটি গঠিত হবে।

চিত্র: তড়িং রাসায়নিক কোষ

দেওয়া আছে, $A(s)/A^{2+}(aq) = +0.40 \text{ V}$ $B(s)/B^{3+}(aq) = +1.66 \text{ V}$

যেহেতু A/A^{2+} তড়িংদ্বারের জারণ বিভব B/B^{3+} তড়িংদ্বারের জারণ বিভবের তুলনায় কম, সেহেতু B/B^{3+} তড়িংদ্বারে জারণ এবং A/A^{2+} তড়িংদ্বারে বিজারণ বিক্রিয়া সংঘটিত হবে।

জারণ অর্থ-বিক্রিয়া: $B(s) - 3e^- \longrightarrow B^{2+}(aq)$; $F_{B/B}^{4}$ = 1.66V

বিজারণ অধ-বিক্রিয়া: $A^{2+}(aq) + 2e^{-} \longrightarrow A(s)$; $E_{A^{2+}/A}^{0} = -0.40V$

কোষ বিক্রিয়া: $(B(s) + A^{2+}(aq) \rightarrow B^{3+}(aq) + A(s); E_{cel}^{0} = + 1.26 \text{ V}$ সূতরাং (i) ও (ii) নং দ্রবণ দ্বারা গঠিত কোষের বিভব হবে + 1.26 V। য কোনো দ্রবণকে পাত্রে রাখার ক্ষেত্রে ২টি বিষয়ের উপর লক্ষ রাখা জরুরী।

i. পাত্রটি অ্যানোড হিসেবে ব্যবহৃত হচ্ছে কিনা।

ii. পাত্রটি অ্যানোড হিসেবে ব্যবহৃত হলে বিক্রিয়া স্বতঃস্ফূর্ত হচ্ছে কিনা। এখন, ∧ ধাতু নির্মিত পাত্রের ক্ষেত্রে কোষটির e.m.f অর্থাৎ—

$$E_{cell}^{0} = E_{ox}^{0} + E_{red}^{0}$$

$$= E_{A/A}^{0}^{2+} + E_{p^{2+}/p}^{0}$$

$$= 0.40 + (-0.44)$$

$$= -0.04$$
 $CHSSI SITE,$

$$E_{A/A}^{0}^{2+} = 0.40V$$

$$E_{p^{2+}/p}^{0} = -0.44V$$

আবার, B ধাতু নির্মিত পাত্রের ক্ষেত্রে কোষটির e.m.f অর্থাৎ-

$$E_{cell}^{0} = E_{ox}^{0} + E_{red}^{0}$$

$$= E_{B/B}^{0}^{3+} + E_{p}^{0}^{2+/p}$$

$$= + 1.66 + (-0.44)$$

$$= 1.22$$

$$QRITH,$$

$$E_{B/B}^{0}^{3+} = + 1.66V$$

$$E_{p}^{0}^{2+/p} = -0.44V$$

উপরোক্ত বিশ্লেষণ থেকে দেখা যায়, A ধাতুর পাত্রের ক্ষেত্রে কোষের তড়িচ্চালক বল ঋণাত্মক বলে কোষ বিক্রিয়া স্বতঃস্ফূর্তভাবে ঘটবে না। অর্থাৎ A ধাতুর পাত্রে (iii) নং দ্রবণ রাখলে পাত্র ক্ষয় হবে না। অপরদিকে B ধাতুর পাত্রের ক্ষেত্রে কোষের তড়িচ্চালক বল ধনাত্মক বলে কোষ বিক্রিয়া স্বতঃস্ফূর্তভাবে ঘটবে। অর্থাৎ B ধাতুর পাত্রে (iii) নং দ্রবণ রাখলে পাত্র ক্ষয় হবে। সূতরাং এখন বলা যায়, A এবং B ধাতুর পাত্রন্থরের মধ্যে A পাত্রটিতে উদ্দীপকের (iii) দ্রবণকে রাখা অধিক নিরাপদ ও যুক্তিযুক্ত হবে।

일 (aq), Al(s), Al³⁺(aq) || Sn²⁺(aq), Sn(s)

$$E_{Al^{3+}/Al}^{0} = -1.66(V)$$
 역작 $E_{Sn^{2+}/Sn}^{0} = -0.14(V)$

त्रा. ता. २०३७/

ক. চার্লসের সূত্র কী?

খ. HClO4- এ কেন্দ্রীয় পরমাণুর জারণ মান বের করো।

গ, Sn²⁺ এর ঘনমাত্রা 0.15M এবং Al³⁺ এর ঘনমাত্রা 0.25M হলে কোষটির তড়িচ্চালক বল নির্ণয় করো। ৩

ঘ. উদ্দীপকের কোষের তড়িৎ পরিবহনের কৌশল বিশ্লেষণ করো। ৪

৫নং প্রশ্নের উত্তর

ত্র 'স্থির চাপে নির্দিষ্ট ভরের কোনো গ্যাসের আয়তন এর পরম তাপমাত্রা বা কেলভিন তাপমাত্রার সমানুপাতিক।'

🔻 HCIO4 যৌগের কেন্দ্রীয় পরমাণু হলো Cl ।

সূতরাং HCIO4 যৌগের কেন্দ্রীয় পরমাণু CI এর জারণ মান +7।

অভএব কোষ ভায়গ্রামটি হলো : Al(s), Al^{3*}(aq)∥Sn^{2*}(aq), Sn(s) অভএব কোষ বিক্রিয়াটি হবে : 2Al + 3Sn^{2*} 6c → 2Al^{3*} + 3Sn নার্নস্ট-এর সমীকরণ মতে.

$$\begin{split} E_{cell} &= E_{cell}^{0} - \frac{2.303 RT}{nF} \log \frac{[Al^{3^{*}}]^{2}}{[Sn^{2^{*}}]^{3}} \\ &= E_{(Al/Al^{3^{*}})}^{0} + E_{(Sn^{2^{*}}/Sn)}^{0} - \frac{2.303 RT}{nF} \\ &\log \frac{[Al^{3^{*}}]^{2}}{[Sn^{2^{*}}]^{3}} \\ &= (1.66 V) + (-0.14 V) - \\ &\frac{2.303 \times 8.314 \times 298}{6 \times 96500} \times \log \frac{[0.25]^{2}}{[0.15]^{3}} \\ &= (1.52 - 0.00985 \times \log 18.52) V \end{split}$$

 $= (1.52 - 0.00985 \times 1.27) \text{ V}$

= 1.507 V

সূতরাং উদ্দীপকের কোষটির তড়িচ্চালক বল 1.507 V।

ত্র উদ্দীপকের কোষটিকে নিম্নোক্ত কোষ ভায়াগ্রাম চিত্রের মাধ্যমে দেখানো যায়।

উপরোক্ত তড়িং রাসায়নিক কোষটিতে $Al_2(SO_4)_3$ এর দ্রবণে Al দশু আনোডরূপে এবং $SnSO_4$ এর দ্রবণে Sn দশু ক্যাথোডরূপে ব্যবহৃত হয়। আনোড দশুকে ভোলীমিটারের ঝণাত্মক প্রান্তের সাথে এবং ক্যাথোড দশুকে ভোলমিটারের ধনাত্মক প্রান্তের সাথে যুক্ত করা হয়। এক্ষেত্রে $Al_2(SO_4)_3$ দ্রবণ বিশিষ্ট পাত্রকে অ্যানোড পাত্র এবং $SnSO_4$ দ্রবণ বিশিষ্ট পাত্রকে ক্যাথোড পাত্র বলা হয়। আনোড ও ক্যাথোড পাত্রের দ্রবণদ্বয়কে লবণ সেতু দ্বারা সংযোগ দেওয়া হয়। এখন অ্যানোড হতে Al পরমাণু 3টি ইলেকট্রন ত্যাগ করে Al^{3+} আয়নরূপে দ্রবণে চলে আসে। আ্যানোড বিক্রিয়া: $Al(s) - 3e^- \longrightarrow Al^{3+}$ (aq) [জারণ বিক্রিয়া]

আনোডে উৎপন্ন ইলেকট্রন তারের মধ্যদিয়ে ক্যাথোডে চলে আসে। ফলে ক্যাথোডে ইলেকট্রন ঘনত বৃদ্ধি পায়।

অপরদিকে ক্যাথোড পাত্রে SnSO4 দ্রবণ হতে Sn²⁺ আয়ন ক্যাথোডে গিয়ে 2টি ইলেকট্রন গ্রহণ করে Sn ধাতুর্পে ক্যাথোডের পায়ে জমা হয়।

ক্যাথোড বিক্রিয়া: Sn²⁺(aq) + 2e⁻ → Sn(s) [বিজারণ বিক্রিয়া]
উপরোক্ত দুইটি ঘটনা হতে দেখা যায়, অ্যানোড পাত্রে Al³⁺ আয়ন এবং
ক্যাথোড পাত্রে SO²⁺ আয়নের বৃদ্ধি ঘটে। Al³⁺ ও SO²⁺ আয়নদয়কে
প্রশমিত করার জন্য লবণ সেতু হতে ঋণাত্মক ও ধনাত্মক আয়ন যথাক্রমে
অ্যানোড ও ক্যাথোড পাত্রের দিকে ধাবিত হয়। এভাবে লবণ সেতু
অতিরিক্ত আয়নদ্বয়কে প্রশমিত করে ইলেকট্রন প্রবাহকে সচল রাথে।
সূতরাং উপরোক্ত বিশ্লেষণ থেকে বলা যায়, উদ্দীপকের কোষের
অ্যানোডে জাবের ও ক্যাথোড়ে বিজ্ঞাবর বিক্রিয়ার মাধ্যমে ইলেকট্রন

আনোডে জারণ ও ক্যাথোডে বিজারণ বিক্রিয়ার মাধ্যমে ইলেকট্রন প্রবাহ আনোড হতে ক্যাথোডের দিকে অর্থাৎ বিদ্যুৎ প্রবাহ ক্যাথোড হতে অ্যানোডের দিকে ধাবিত হয়।

/st. car. 2030/

ক, কাইরাল কার্বন কী?

খ, গ্যাসের গতিতত্ত্বের দুইটি শ্বীকার্য লেখো।

গ. উদ্দীপকের আলোকে কোষ বিক্রিয়াটির মোট কোষ বিভব নির্ণয় করো।

ছ. উদ্দীপকের কোষটিতে সংঘটিত বিক্রিয়া সম্পন্ন করে কোষটি
 উপস্থাপন করো।

৬ নং প্রয়ের উত্তর

ক কোন যৌগে একই কার্বন পরমাণুতে চারটি ভিন্ন পরমাণু বা মূলক যুক্ত থাকলে এ কার্বন পরমাণুর সাপেক্ষে যৌগটি অপ্রতিসম হয়ে থাকে, তখন ঐ কার্বনকে কাইরাল কার্বন বলে।

যা গ্যাসের গতিতত্ত্বের দুইটি স্বীকার্য হলো—

- গ্যাসের গঠন: যে কোনো গ্যাস তার নিজয় অসংখ্য ক্ষুদ্রাতিক্ষুদ্র কণিকার সমন্বয়ে গঠিত। এ কণিকা গোলাকার ও স্থিতিস্থাপক। এসব কণা সাধারণভাবে অণু এবং নিষ্কিয় গ্যাসের ক্ষেত্রে পরমাণু হিসেবে থাকে। যে কোনো নির্দিষ্ট গ্যাসের প্রতিটি অণুর আকার ও ভর অভিয়।
- গ্যাসের অণুসমূহের আয়তন: গ্যাসের অণুসমূহের আয়তন
 গ্যাস পাত্রের আয়তনের তুলনায় অতি নগণ্য।

ত উদ্দীপক হতে পাওয়া যায়—

$$E_{M/M^{2+}}^0 = 0.76V$$
 are $E_{M/M^{2+}}^0 = -0.34V$

বা, E_{M'2+/M} = 0.34V

উপরোক্ত জারণ বিভবের মান থেকে বলা যায়, M এর জারণ বিভব M' এর জারণ বিভব অপেক্ষা বেশি। এ জন্য প্রদত্ত কোষটিতে M অ্যানোড এবং M' ক্যাথোড হিসেবে ক্রিয়া করবে।

তাহলে এখন উদ্দীপকের কোষের কোষ বিক্রিয়াটি হবে—

 $E_{cell}^{0} = E_{ox(anode)}^{0} + E_{red(cathode)}^{0}$ $= E_{M/M}^{0}^{2+} + E_{M'2+/M'}^{0}$ = 0.76 + 0.34

= 1.10V

সূতরাং উদ্দীপকের কোষ বিক্রিয়াটির মোট কোষ বিভব 1.10V।

য় উদ্দীপকের কোষটিতে M ধাতু অ্যানোড হিসেবে ব্যবহৃত হয়। অ্যানোড হতে M পরমাণু দুটি ইলেকট্রন ত্যাগ করে দ্রবণে M²⁺ আয়নরূপে দ্রবণে চলে আসে।

অ্যানোডে অর্থকোষ বিক্রিয়া : $M \longrightarrow M^{2+} + 2e^-$ (জারণ বিক্রিয়া) অপরদিকে এ কোষে M' ধাতু ক্যাথোড হিসেবে ব্যবহৃত হয়। দ্রবণ হতে M'^{2+} আয়ন ক্যাথোডে গিয়ে দুটি ইলেকট্রন গ্রহণ করে M' ধাতুর্পে জমা হয়।

ক্যাথোডে অর্ধকোষ বিক্রিয়া: M'²⁺ + 2e⁻ → M' (বিজারণ বিক্রিয়া) অতএব সামগ্রিকভাবে কোষ বিক্রিয়াটি হলো—

M + M'²⁺ — ^{2e⁻}→ M²⁺ + M' উপরোক্ত কোষ বিক্রিয়ার কোষ ভায়াগ্রাম হলো: M/M²⁺ || M'²⁺/M' উদ্দীপকের অর্ধকোষ দুটি একটি লবণ সেতুর মাধ্যমে যুক্ত হয়ে আয়নের সমতা বজায় রাখে।

ক. মিনারেল ট্যানিং কাকে বলে?

খ্ব, দেখাও যে, সেমিমোলার দূবণ একটি প্রমাণ দূবণ।

 উদ্দীপকে কোষের অ্যানোড, ক্যাথোড এবং সামগ্রিক কোষ বিক্রিয়া লেখো।

ঘ, উদ্দীপকে উল্লেখিত কোষটি যদিও পরিবেশবাস্ধব তবুও এটি কি লাভজনক হবে? তোমার উত্তরের যথার্থতা বিচার করো।8

৭ নং প্রশ্নের উত্তর

কামড়ার মূল রাসায়নিক উপাদান কোলাজেন তন্তুর সাথে ক্রোমিয়াম লবণের (Mineral Salt) Cr এর ক্রস-সংযোগের মাধ্যমে কাঁচা চামড়া থেকে পাকা চামড়া প্রস্তুতকরণের প্রক্রিয়াকে মিনারেল ট্যানিং বলে।

আমরা জানি, যে দ্রবণের ঘনমাত্রা সঠিকভাবে জানা থাকে তাকে প্রমাণ দ্রবণ বলে। সেমিমোলার দ্রবণের ঘনমাত্রা 0.5M, যা আমরা সঠিকভাবে জানি। তাই সেমিমোলার দ্রবণ একটি প্রমাণ দ্রবণ। যেমন— Na_2CO_3 এর আণবিক ভর 106~g; সূতরাং $\left(\frac{1}{2} \times 201 \times 1000 \text{ mL}\right)$ বা $\frac{106}{2} = 53g$ যদি 1000~mL-এ দ্রবীভূত থাকে তবে এ দ্রবণের ঘনমাত্রা হবে 0.5~M। যেহেতু Na_2CO_3 এর উপরোক্ত দ্রবণের ঘনমাত্রা 0.5~M যা আমাদের সঠিকভাবে জানা, তাই সেমিমোলার দ্রবণ একটি প্রমাণ দ্রবণ।

ত্রা উদ্দীপকের কোষে বিশুন্ধ হাইড্রোজেন ও অক্সিজেন জ্বালানি হিসেবে ব্যবহার করা হয়। এ কোষে হাইড্রোজেন ও অক্সিজেনের মধ্যে সংঘটিত রিডক্স বিক্রিয়ার মাধ্যমে জ্বালানি কর্তৃক শক্তি উৎপাদিত হয়। অ্যানোডে হাইড্রোজেন জারিত হয়।

অ্যানোড বিক্রিয়া (জারণ) : $2H_2(g) + 4OH^*(aq) \rightarrow 4H_2O(l) + 4e^-$ অ্যানোড বিক্রিয়ায় পানি ও ইলেকট্রন অবমুক্ত হয়। ইলেকট্রন বাহ্যিক
সার্কিট দিয়ে ক্যাথোডে উপনীত হয়ে অক্সিজেনকে বিজারিত করে।
ক্যাথোড বিক্রিয়া (বিজারণ) : $O_2(g) + 2H_2O(l) + 4e^- \rightarrow 4OH^-$ সামগ্রিক কোষ বিক্রিয়া : $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$

য় উদ্দীপকের কোষটি হলো হাইড্রোজেন-অক্সিজেন ফুয়েল সেল। নিম্নলিখিত বৈশিক্ট্যের কারণে এ কোষটি পরিবেশবান্ধব ও লাভজনক হয়।

- অন্যান্য ডিজেল অথবা গ্যাস ইঞ্জিনের চেয়ে এ কোষের কার্যদক্ষতা অনেক বেশি।
- এ কোষ অত্যন্ত পরিবেশবান্ধব। এর মাধ্যমে বিদ্যুৎ উৎপাদন অধিকতর নিরাপদ ও লাভজনক। এর উৎপাদ হচ্ছে পানি ও তাপ। সূতরাং বিদ্যুৎ উৎপাদনে গ্রিন হাউস গ্যাস কিংবা পরিবেশ দূষকের উদ্ভব ঘটে না।
- এ কোষে নবায়নযোগ্য জ্বালানিও ব্যবহার করা যায়।
- iv. এ কোষ সহজেই পরিবহনযোগ্য। এ কারণে মহাশূন্যথানে একে ব্যবহার করা যায়।
- v. এ কোষে কোনো শব্দ দৃষণ ঘটে না।
- vi. এ কোষে কোনো রিচার্জিংয়ের প্রয়োজন হয় না।
- vii. এর কার্যক্ষমতা প্রায় 70-75% যা প্রচলিত কোষ অপেক্ষা বেশি।
- viii, এ কোষের রক্ষণাবেক্ষণ অনেকটা সহজ।
- ix. যানবাহনে এ কোষের ব্যবহার বৃদ্ধি করে জীবাশ্ম জ্বালানির উপর চাপ অনেকাংশে দ্রাস করা যায়।

ম. নিম্ন তাপমাত্রায় এ কোষের ক্ষেত্রে তাপের উদগীরণ নিয়তর হয়।
ফলে, সাময়িক প্রয়োগে এদের ব্যাপক যথোপযুক্ততা রয়েছে।
উপরিউক্ত বৈশিক্ট্যের কারণে হাইড্রোজেন অক্সিজেন ফুয়েল সেল
পরিবেশবান্ধব ও লাভজনক।

19.001. 20391

খ্র মানবদেহে ক্রোমিয়ামের প্রভাব ব্যাখ্যা করে।।

গ্র উদ্দীপকের কোষটির বিভব নির্ণয় করো।

ঘ. উদ্দীপকের কোষটির কীভাবে রাসায়নিক শক্তি বিদ্যুৎ শক্তিতে বুপান্তরিত হয় তা ব্যাখ্যা করো। ৪

৮ নং প্রশ্নের উত্তর

TDS (Total Dissolved Solid) স্বারা কোন নমুনা পানিতে সমস্ত দ্রবীভূত কঠিন পদার্থের পরিমাণকে বুঝায়।

মাটি ও পানিতে ক্রোমিয়ামের পুজিভবনে এটি খাদ্য শৃত্থালে অন্তর্ভুক্ত হয়। খাদ্য শৃত্থালের মাধ্যমে ক্রোমিয়াম মানব দেহে সংক্রমিত হয়। মানব দেহে Cr⁺⁶ এর শোষণ Cr⁺³ থেকে অধিকতর ফলপ্রসূভাবে সংঘটিত হয়। Cr⁺⁶ আয়ন শোষিত হয়ে লোহিত রক্তের কোষে হিমোমোরিনের সাথে যুক্ত হয়। চর্মের চুলকানি, চর্ম সংশ্লিন্ট বিভিন্ন বিরূপ প্রভাব, লিভার ও কিডনির ক্ষতি, আত্রিক ক্যাসারসহ বিভিন্ন উপসর্গের কারণ হচ্ছে Cr⁺⁶ এর বিষজনিত প্রভাব। ক্রোমিয়াম শিল্পের শ্রমিকদের মধ্যে ব্রভকাইটিসের উচ্চতর হার পরিলক্ষিত হয়। একে "Chromic Chromate Lung" নামে অভিহিত করা হয়। Cr⁺⁶ শুধু ক্যাসারের জন্যই দায়ী নয়, এর প্রভাবে জন্মণত ত্রটিও ঘটে থাকে।

গ উদ্দীপকের কোষের ক্ষেত্রে—

$$E_{Y^*/Y}^0 = +0.80V$$
 $\overline{\text{q}}$, $E_{Y/Y}^0 = -0.80V$
 $E_{X^{**}/X}^0 = -0.14V$ $\overline{\text{q}}$, $E_{X/X^{**}}^0 = 0.14V$

এখানে Y ও X তড়িংছার দুটির মধ্যে X তড়িংছারের জারণ বিভবের মান বেশি। কাজেই উদ্রেখিত কোষে X তড়িংছারটি অ্যানোড ও Y তড়িংছারটি ক্যাথোড হিসেবে ক্রিয়া করবে। তাহলে এক্ষেত্রে কোষ বিক্রিয়াটি হবে—

ম +
$$2Y^*$$
 \longrightarrow X^{2+} + $2Y$ আমরা জানি, নার্নস্ট সমীকরণ—

 $E_{cell} = E_{cell}^0 - \frac{2.303RT}{nF} \log \frac{[X^{2+}]}{[Y^*]^2}$

$$= E_{X/X^{2+}}^0 + E_{Y'/Y}^0$$

$$- \frac{2.303 \times 8.314 \times 298}{2 \times 96500} \log \frac{(0.15)}{(0.2)^2}$$

$$= 0.14 + 0.80 - 0.017$$

$$= 0.923V$$

$$QUICA,$$

$$n = 2$$

$$F = 96500 C$$

$$R = 8.314JK^{-1} \text{ mol}^{-1}$$

$$T = 298 K$$

$$[X^{2+}] = 0.15 M$$

$$[Y^*] = 0.2 M$$

$$E_{cell} = ?$$

অতএব, উদ্দীপকের কোষটির বিভব হলো 0.923V।

য়ে বে কোষটিতে রাসায়নিক শক্তি বিদ্যুৎ শক্তিতে রূপান্তরিত হয় তাকে তড়িৎ রাসায়নিক কোষ বলে। উদ্দীপকের কোষটি হলো—

যেখানে X তড়িংঘারটি অ্যানোড এবং Y তড়িংঘারটি ক্যাথোড হিসেবে ক্রিয়া করবে। একটি ধাতুর তার দ্বারা তড়িংঘারদ্বয়কে সংযোগ করলে X দন্ড হতে Y দন্ডের দিকে ইলেকট্রন প্রবাহিত হবে। এক্ষেত্রে Y দন্ড ধনাত্মক তড়িংঘার বা ক্যাথোড এবং X দন্ড ঋণাত্মক তড়িংঘার বা অ্যানোড হিসেবে ক্রিয়া করবে। X দন্ড হতে X পরমাণু দ্রবণে X²⁺ আয়নরূপে দ্রবীভূত হবে এবং এ সময় দুটি ইলেকট্রন নির্গত হবে।

নির্গত ইলেকট্রনদ্বয় তার দিয়ে Y দণ্ডে যাবে এবং দ্রবণের Y* আয়ন এ দুটি ইলেকট্রন গ্রহণ করে 2টি Y ধাতুব পরামাণুতে পরিণত হবে।

তাহলে সামগ্রিক কোষ বিক্রিয়াটি হবে-

$$X(s) + 2Y^{+}(aq) \longrightarrow X^{2+}(aq) + 2Y(s)$$

এভাবে কোষ বিক্রিয়া সংঘটিত হওয়ার ফলে ইলেকট্রন প্রবাহ এবং ইলেকট্রন প্রবাহের ফলে বিদ্যুৎ শক্তির প্রবাহ পাওয়া খায়।

19. CAT. 2014/

ক, প্রাইমারি স্ট্যান্ডার্ড পদার্থ কাকে বলে?

খ. জৈব যৌগে কার্বোক্সিলিক মূলক শনান্তকরণ পরীক্ষা লেখো। ২

গ্র কোষটির কোষ বিভব নির্ণয় করো।

হ. ২নং দ্রবণকে সরিয়ে দিয়ে উত্ত স্থানে ৩নং দ্রবণ রাখা যাবে
 কিনা
 লাণিতিকভাবে বিশ্লেষণ করো।

৯ নং প্রশ্নের উত্তর

ক বিশুন্থ অবস্থায় প্রাপ্ত যেসব কঠিন পদার্থের প্রস্তুতকৃত দ্রবণের ঘনমাত্রা অনেকদিন পর্যন্ত অপরিবর্তিত থাকে তাদেরকে প্রাইমারি স্ট্যান্ডার্ড পদার্থ বলে।

একটি পরীক্ষানলে 2-3 cm³ NaHCO₃ দ্রবণ নিয়ে তাতে কার্বোক্সিলিক মূলক বিশিষ্ট যৌগের সামান্য পরিমাণ যোগ করে ঝাঁকানো হয়। এতে বুদবুদ আকারে CO₂ গ্যাস নির্গত হয় যা চুনের পানিকে ঘোলা করে।

$$O$$
 $R \longrightarrow R$
 $-C-OH + NaHCO_3 \longrightarrow R-COONa + H_2O + CO_2$
 $Ca(OH)_2 + CO_2 \longrightarrow CaCO_3 + H_2O_3$
(চুনের পানি)
 $(ঘোলা চুনের পানি)$
সিম্পান্ত : জৈব যৌগে $-COOH$ মূলক বিদ্যমান।

গ উদ্দীপকের কোষটিতে দেওয়া আছে—

$$E_{MM^{2+}}^{0} = +0.76 \text{ V}$$
 এবং $E_{M'M'^{2+}}^{0} = -0.34 \text{ V}$

এ মান থেকে বলা যায়, ১নং দ্রবপের তড়িংদ্বারের জারণ বিভব ২নং দ্রবপের তড়িংদ্বারের জারণ বিভব অপেক্ষা বেশি। অতএব M ধাতুর তড়িংদ্বারটি অ্যানোড এবং M' ধাতুর তড়িংদ্বারটি ক্যাথোড হিসেবে কাজ করবে।

আমরা জানি--

কোষ বিভব,
$$E_{cell} = E^0_{ox(anode)} + E^0_{red(cathode)}$$

$$= E^0_{M/M^{2+}} + E^0_{M'^{2+}/M'}$$

$$= (0.76 + 0.34) \text{ Volt}$$

$$= 1.1 \text{ Volt}$$

$$E^0_{M'/M^{2+}} = + 0.76 \text{ V}$$

$$E^0_{M'/M^{2+}} = -0.34 \text{ V}$$

$$\Rightarrow E^0_{M'^{2+}/M'} = 0.34 \text{ V}$$

সূতরাং উদ্দীপকের কোষের কোষ বিভব 1.1 Volt।

উদ্দীপকের ২নং দ্রবণকে 3 নং দ্রবণ দ্বারা প্রতিস্থাপন করা হলে (i)
নং দ্রবণে বিদ্যমান ধাতব দশু অ্যানোড এবং ৩নং দ্রবণে বিদ্যমান ধাতব
দশু ক্যাথোড হিসেবে কাজ করবে। কেননা, M" ধাতুর জারণ বিভব
M' ধাতুর জারণ বিভব অপেকা বেশি হওয়ায় M"SO4 দ্রবণে M' ধাতু
ক্যাথোড হিসেবে ক্রিয়া করবে।

অতএব কোষ বিভব,
$$E_{cell}^{0} = E_{ox}^{0} + E_{red}^{0}$$

$$= E_{M/M}^{0}^{2+} + E_{M''^{2+}/M''}^{0}$$

$$= 0.76 - 1.66$$

$$= -0.90 \text{ V}$$

$$= 0.76 \text{ V}$$

$$E_{M''^{2+}/M''}^{0} = -1.66 \text{ V}$$

$$E_{M/M^{2+}}^{0} = 0.76 \text{ V}$$

যেহেতু $E^{\circ}_{cell} < 0$, তাই এক্ষেত্রে তড়িৎ বিশ্লেষণ বিক্রিয়াটি স্বতঃস্ফূর্ত ভাবে ঘটবে না। অর্থাৎ কোষ থেকে বিদ্যুৎ প্রবাহ হবে না। সূতরাং ২নং দ্রবণকে সরিয়ে উক্ত স্থানে ৩নং দ্রবণ রাখা যাবে না।

প্রস ১১০ কয়েকটি ধাতুর প্রমাণ তড়িৎছার বিভব ও একটি কোষচিত্র—

- (i) $E_{Cu/Cu^{2+}}^0 = -0.34V$ (ii) $E_{Fe/Fe^{2+}}^0 = 0.44V$
- (iii) $E_{Z_0/Z_n^{2+}}^0 = 0.76V$

➤ FeSO, Eৰণ M. A. 20361

- একটি হেটারো অ্যালিসাইক্লিক যৌগের উদাহরণ দাও।
- খ. 44 g CO2 এর জন্য ভ্যান্ডার ওয়ালস্ সমীকরণটি লেখো।
- গ. 250 A বিদ্যুৎ 40 মিনিট চালনা করলে কত গ্রাম ধাতু ক্যাথোডে জমা হবে?
- ষ, উদ্দীপকের দ্রবণকে জিংক পাত্র এবং কপার পাত্রছয়ের কোনটিতে রাখা যৌত্তিক— বিশ্লেষণ করো।

১০ নং প্রশ্নের উত্তর

ক একটি হেটারো অ্যালিসাইক্লিক যৌগের উদাহরণ হলো ইথিলিন অক্সাইড বা ইথোক্সি ইথেন।

🚭 ভ্যান্ডার ওয়ালস্ সমীকরণটি হলো–

$$\left(P + \frac{n^2 a}{V^2}\right) (V - nb) = nRT$$
(i)

44 g CO2 = 1 mol CO2 অর্থাৎ 44 g CO2 এর ক্ষেত্রে-মোল সংখ্যা, n = 1 mol

(i) নং সমীকরণে n = 1 বসালে পাওয়া যায়—

$$\left(P + \frac{a}{V^2}\right)(V - b) = RT$$

সূতরাং 44 g CO2 এর জন্য ভ্যান্ডার ওয়ালস্ সমীকরণটি হলো-

$$\left(P + \frac{a}{V^2}\right)(V - b) = RT + C$$

প্র উদ্দীপকের কোষে FeSO4 দ্রবণের তড়িৎ বিশ্লেষণ দেখানো হয়েছে। FeSO4 দ্রবণের তড়িৎ বিশ্লেষণে Fe2+ আয়ন দুইটি ইলেকট্রন গ্রহণ করে ক্যাথোড়ে নিম্নরূপে বিজারিত হয়।

Fe²⁺ + 2e⁻ → Fe (ধাতুরূপে ক্যাথোডে সঞ্চিত)

1 mol

আমরা জানি ক্যাথোডে সঞ্চিত ভর,

W = ZIt

=
$$\frac{M}{nF} \times It = \frac{MIt}{nF}$$

= $\frac{55.85 \times 250 \times 40 \times 60}{2 \times 96500}$

= 173.63 g

जानविक ভর, M = 55.85

विদ্যুৎ প্রবাহ, I = 250A

সময়, t = 40 min = (40 × 60) s

যোজ্যতা, n = 2

ফ্যারাডে ধ্রুবক, F = 96500 C

আণবিক ভর, M = 55.85 বিদ্যুৎ প্রবাহ, 1 = 250A সময়, t = 40 min = (40 × 60) sec যোজ্যতা, n = 2

সূতরাং ক্যাথোডে 173.63 g Fe ধাতু জমা হবে।

কোনো দ্রবণকে পাত্রে রাখার ক্ষেত্রে ২টি বিষয়ের উপর লক্ষ্য রাখা জরুরী।

- পাত্রটি অ্যানোড হিসেবে ব্যবহৃত হচ্ছে কিনা।
- ii. পাত্রটি অ্যানোড হিসেবে ব্যবহৃত হলে বিক্রিয়া স্বতঃস্ফূর্ত হচ্ছে কিনা। এখন জিংক (Zn) নির্মিত পাত্রের ক্ষেত্রে—

কোষটির e.m.f অর্থাৎ
$$E_{cell}^0 = E_{ox}^0 + E_{red}^0 \\ = E_{Zn/Zn^{2+}}^0 + E_{Fe^{2+}/Fe}^0 \\ = 0.76 + (-0.44) \\ = 0.32V$$

$$Creat once,
$$E_{Zn/Zn^{2+}}^0 = 0.76V \\ E_{Cu/Cu^{2+}}^0 = 0.76V \\ E_{Cu/Cu^{2+}}^0 = 0.34V \\ E_{Fe/Fe^{2+}}^0 = 0.44V$$$$

আবার কপার (Cu) নির্মিত পাত্রের ক্ষেত্রে-কোষটির e. m., f অর্থাৎ $E_{cell}^0 = E_{col}^0 + E_{red}^0$ -0.34 + (-0.44)=-0.78V

উপরোক্ত বিশ্লেষণ থেকে দেখা যায়, জিংকের ক্ষেত্রে কোষের তড়িচ্চালক বল ধনাত্মক বলে কোষ বিক্রিয়া স্বতঃস্ফুর্তভাবে ঘটবে। অর্থাৎ Zn-পাত্রে FeSO₄ দ্রবণ রাখলে Zn-পাত্র ক্যা হবে। অপরদিকে কপারের ক্রেত্রে কোষের তড়িচ্চালক বল ঋণাত্মক বলে কোষ বিক্রিয়া স্বতঃস্কৃর্তভাবে ঘটবে না। অর্থাৎ Cu-পাত্রে FeSO4 দ্রবণ রাখলে Cu-পাত্র ক্ষয় হবে না। সূতরাং এখন বলা যায়, Zn এবং Cu-পাত্রন্থয়ের মধ্যে Cu-পাত্রটিতে উদ্দীপকের FeSO4 দ্রবণকে রাখা অধিক নিরাপদ ও যুক্তিযুক্ত হবে।

প্রনা \triangleright ১১ (i) পটাসিয়াম ক্লোরেট $\stackrel{\Delta}{\longrightarrow}$ \wedge (g) + KCl (s)

(ii) $Zn(s) + H_2SO_4(\overline{e} \overline{Y} \overline{Q}) \longrightarrow B(g) + ZnSO_4(aq)$

A এবং B উভয়ই একটি ফুয়েল সেলের জ্বালানি।

क. न्याता शार्धिकन की? খ. শিল্লে ETP-এর ব্যবহার করা হয় কেন?

গ. উদ্দীপকের 5g পরিমাণ A কে উৎপন্ন করতে কত গ্রাম বিক্রিয়ক

প্রয়োজন?

ঘ্ উদ্দীপকের A এবং B গ্যাস দ্বারা গঠিত কোষটি পরিবেশ বান্ধব হবে কিনা- বিশ্লেষণ করো।

১১ নং প্রশ্নের উত্তর

1 – 100 nm এর ত্রিমাত্রিক ক্ষুদ্র কণাকে ন্যানো পার্টিকেল বলে।

🛂 রাসায়নিক শিল্প কারখানায়, বর্জা পানি বা তরল পদার্থে জৈব ও অজৈব পদার্থ মিপ্রিত থাকে। এই বর্জা পানিকে effluent (নিঃসৃত) বলা হয়। এরূপ শিল্প কারখানার effluent থেকে ক্ষতিকর রাসায়নিক পদার্থকে পৃথক করার জন্য ETP (Effluent Treatment Plant) ব্যবহার করা হয়।

্যা উদ্দীপকের (i) নং বিক্রিয়াটিকে সম্পন্ন করে পাওয়া যায়—

$$2 \text{ KClO}_3 \longrightarrow 3O_2 + 2 \text{ KCl}$$

245 g

96 g

বিক্রিয়া মতে, 96 g O2 প্রস্তুত করতে বিক্রিয়ক প্রয়োজন 245 g।

$$5 \text{ g } O_2 \text{ ,... } \text{,... } \text{,... } \frac{245 \times 5}{96}$$

= 12.76 g

সূতরাং উদ্দীপকের 5 g পরিমাণ Λ অর্থাৎ O_2 কে উৎপন্ন করতে $12.76~\mathrm{g}$ বিক্রিয়ক প্রয়োজন।

🔞 উদ্দীপকের (i) ও (ii) নং বিক্রিয়াকে সম্পন্ন করে পাই—

$$KCl_3(s) \xrightarrow{\Delta} O_2(g) + KCl(s)$$
(A)

$$Zn(s) + H_2SO_4(PQ) \longrightarrow H_2(g) + ZnSO_4(aq)$$
(B)

বিক্রিয়া মতে, A ও B গ্যাসন্থয় যথাক্রমে O2 ও H2 I O2 ও H2 গ্যাস দিয়ে হাইড্রোজেন ফুয়েল সেল গঠিত হয়।

অ্যানোডে জারণ অর্থবিক্রিয়া :

 $2H_2(g) + 4OH(aq) \longrightarrow 4H_2O(l) + 4e^-; E^0 = +0.83V$

ক্যাথোডে বিজারণ অর্ধবিক্রিয়া

$$O_2(g) + 2H_2O(l) + 4e^- \longrightarrow 4OH^-(aq); E^0 = +0.40V$$
কোষ বিক্রিয়া : $2H_2(g) + O_2(g) \longrightarrow 2H_2O(l); E^0 = +1.23V$

চিত্র: হাইড্রোজেন-অক্সিজেন ফুয়েল সেল

H₂ ফুয়েল সেল একটি পরিবেশ বাস্থব বিদ্যুৎ উৎপাদনকারী কৌশল বা জেনারেটর। H₂ ফুয়েল সেল থেকে নির্গত বিশুন্থ পানি পরিবেশের কোনো অসুবিধা করে না। ফুয়েলের বন্ধন শক্তির 75% ব্যবহারযোগ্য বিদ্যুৎ শক্তিতে পরিণত হয়। নিকট ভবিষ্যতে হাইড্রোজেন ফুয়েল সেলের বিভিন্ন ক্ষেত্রে যেমন বৈদ্যুতিক যানবাহন পরিচালনায়, বাণিজ্যিক প্রতিষ্ঠানে, আবাসিক বাসাবাড়ি প্রভৃতিতে ব্যবহার পরিবেশ দূষণ রোধে পূর্ণ সহায়ক হবে।

29 ► 35 Fe/Fe++ (0.13 M) || Ag+ (0.0004 M)/Ag

T = 25°C,
$$E_{Fe}^{0} \leftrightarrow_{/Fe} = -0.44 \text{ V}$$

 $E_{Ag}^{0} +_{/Ag} = +0.80 \text{ V}$ / \mathcal{F} (41, 2019)

ক, কাৰ্বানায়ন কী?

- গ. উদ্দীপকের কোষের তড়িৎচালক বল নির্ণয় করো।
- ঘ. উদ্দীপকের অর্ধকোষ দুইটি আলাদাভাবে প্রমাণ হাইড্রোজেন অর্ধকোষের সাথে যুক্ত করে কোষ গঠন করলে উৎপন্ন কোষ দুইটির মধ্যে কী পার্থক্য পরিলক্ষিত হবে চিত্রসহ ব্যাখ্যা করো।8

১২ নং প্রশ্নের উত্তর

ক্র ঝণাত্মক চার্জযুক্ত কার্বন পরমাণু সংবলিত জৈব আয়নকে কার্বানায়ন বলে।

ETP এর পূর্ণর্প Effluent Treatment Plant। বর্তমান বিশ্বে টেক্সটাইল ও ডায়িং, চামড়া, পেপার পার, সিমেন্ট, ইপ্পাত প্রভৃতি শিল্পে ব্যবহৃত শিল্প বর্জ্য দ্বারা পানি দূষিত হয়। দূষকসমূহের মধ্যে জৈব ও অজৈব দুই ধরনের পদার্থই রয়েছে। তাই এ দূষিত পানিকে ETP এর মাধ্যমে শোধন করে বিশুদ্ধ ও পুনরায় ব্যবহার উপযোগী করার জন্য শিল্পে ETP ব্যবহার করা হয়।

গ প্রদত্ত উদ্দীপক হতে পাওয়া যায়–

$$E_{Fe^{++}/Fe}^{o}$$
 = -0.44 V বা, $E_{Fe/Fe^{++}}^{o}$ = +0.44 V
এবং $E_{Ag^{+}/Ag}^{o}$ = + 0.80 V বা, $E_{Ag/Ag^{+}}^{o}$ = -0.80 V

উপরোক্ত তড়িংদ্বার দুটির মধ্যে Fe তড়িংদ্বারের জারণ বিভব Ag তড়িংদ্বারে জারণ বিভব অপেক্ষা বেশি। কাজেই Fe তড়িংদ্বারটি অ্যানোড এবং Ag তড়িংদ্বারটি ক্যাথোড হিসেবে ক্রিয়া করবে। কোষ বিক্রিয়াটিকে নিম্নোক্তভাবে প্রকাশ করা যায়—

$$E_{cell} = E_{cell}^{n} - \frac{2.303RT}{nF} log \frac{[Fe^{++}]}{[Ag^{+}]^{2}}$$

$$\frac{E_{\text{Fe/Fe}^{++}}^{\circ} + E_{\text{Ag}^{+}/\text{Ag}}^{\circ} - 2.303 \times 8.314 \times 298}{2 \times 96500} \log \frac{(0.13)}{(0.0004)^{2}}$$
= 0.44 + 0.80 - 0.17
= 1.07 V

এখানে,
সর্বজনীন গ্যাস ধ্রুবক, R
= 8.314JK⁻¹ mol⁻¹
তাপমাত্রা, T = 298K
n = 2
ফ্যারাডের ধ্রুবক,
F = 96500 C
[Fe⁺⁺] = 0.13 M
[Ag⁺] = 0.0004 M
তড়িস্চালক বল, E_{cell} = ?

অতএব, উদ্দীপকের কোষটি তড়িৎচালক বল হলো 1.07 V।

ত্ত্ব উদ্দীপকের অর্ধকোষ দুইটি হলো যথাক্রমে Fe/Fe⁺⁺(0.13M) এবং Ag⁺(0.0004M)/Ag। যেখানে;

$$E_{Fe}^{0} \leftrightarrow_{/Fe} = -0.44V \text{ at, } E_{Fe/Fe}^{0}^{2+} = +0.44V$$

 $E_{Ag}^{0} +_{/Ag}^{-} = +0.80V \text{ at, } E_{Ag/Ag}^{0} + = -0.80V$

এখন, Fe/Fe⁺⁺ (0.13M) অর্ধকোষের সাথে প্রমাণ হাইড্রোজেন অর্ধকোষ যুক্ত করলে কোষটি হবে—

চিত্র: Fe/Fc (0.13M) অর্ধকোষের সাথে প্রমাণ হাইড্রোজেন অর্ধকোষের সমন্বয়ে গঠিত কোষ

এখন নার্নস্টের সমীকরণ অনুসারে পাই,

$$\begin{split} E_{cell}^{-1} &= E_{cell}^{0} - \frac{2.303 \text{RT}}{\text{nF}} \log \frac{[\text{Fe}^{++}]}{[\text{H}^{+}]} \\ &= E_{\text{Fe/Fe}}^{0} + + E_{\text{H}^{+}/\text{H}_{2}}^{0} \\ &- \frac{2.303 \times 8.314 \times 298}{2 \times 96500} \log \frac{[0.13]}{[1]} \\ &= 0.44 + 0 + 0.026 \\ &= 0.466 \text{V} \end{split}$$

এখানে,
[Fe⁺⁺] = 0.13M
[H⁺] = 1M
R = 8.314 JK⁻¹mol⁻¹
n = 2
ফ্যারাডের ধ্বক,
F = 96500 C
তাপমাতা, T = 298 K

আবার, প্রমাণ হাইড্রোজেন অর্ধকোষের সাথে $Ag^{\dagger}(0.0004M)/Ag$ অর্ধকোষ যুক্ত করলে কোষটি হবে—

 $H_2/H^*(1M) \parallel Ag^*(0.0004M)/Ag$ ইংলকট্রন $\rightarrow \bigcirc \leftarrow$ বিদ্যুৎ প্রবাহ $H_3/H^*(1M) \parallel Ag^*(0.0004M)/Ag$ ইংলকট্রন $\rightarrow \bigcirc \leftarrow$ বিদ্যুৎ প্রবাহ $H_3/H^*(1M) \parallel Ag^*(0.0004M)/Ag$ $H_3/H^*(1M) \parallel Ag^*(1M) \parallel Ag^*(1M)/Ag$

চিত্ৰ: প্ৰমাণ হাইছোজেন অৰ্ধকোষের সাথে Ag'(0,0004M)/Ag অৰ্ধকোষের সমন্বয়ে গঠিত কোষ

এখন, নার্নস্টের সমীকরণ অনুসারে পাই,

$$E_{cell} = E_{cell}^{o} - \frac{2.303RT}{nF} log \frac{[H^{+}]}{[Ag^{+}]}$$

$$= E_{H_{2}/H^{+}}^{o} + E_{Ag^{+}/Ag^{-}}^{o} \frac{2.303 \times 8.314 \times 298}{1 \times 96500}$$

$$log \left(\frac{1}{0.0004}\right) = 0 + 0.80 - 0.2$$

$$= 0.6V$$

এখানে, [H⁺] = 1 M [Ag⁺] = 0.0004 M R = 8.314 JK⁻ mol⁻¹ T = 298 K n = 1 F = 96500 C

এখন উপরোক্ত কোষদ্বয় হতে বলা যায় যে, ১ম কোষের তড়িচ্চালক বল হলো 0.466V এবং ২য় কোষের তড়িচ্চালক বল হলো 0.6V। ১ম কোষের অ্যানোড হলো আয়রন তড়িৎদ্বার এবং ক্যাথোড হলো হাইদ্রোজেন তড়িংদ্বার। আবার ২য় কোষের কেত্রে অ্যানোড হলো হাইড্রোজেন তড়িৎদ্বার এবং ক্যাথোড হলো সিলভার তড়িৎদ্বার। ১ম কোষের ক্ষেত্রে তড়িৎ প্রবাহিত হবে হাইড্রোজেন তড়িৎদার হতে আয়রন তডিৎদ্বারের দিকে এবং ২য় কোষের ক্ষত্রে বিপরীত ঘটনা ঘটবে।

出当 > 70

ডিকার্বক্সিলেশন বিক্রিয়া কী?

প্রোপেন মিথেনের সমগোত্রক— ব্যাখ্যা করো।

গ. B কোষে 10 মিনিট 5 amp বিদ্যুৎ চালনা করলে ক্যাথোডে সঞ্চিত পদার্থের পরিমাণ হিসাব করে দেখাও।

 ম. A কোষের চার্জিং ও ডিসচার্জিং বিক্রিয়া দেখিয়ে কোষটি সচল রাখার কৌশল বর্ণনা করো।

১৩ নং প্রশ্নের উত্তর

ক যে বিক্রিয়ায় সোডালাইম সহযোগে ফ্যাটি এসিডের সোডিয়াম লবণকে উত্তপ্ত করলে প্যারাফিন উৎপন্ন হয় তাকে ডিকার্বীঝ্রলেশন বিক্রিয়া বলে।

য প্রোপেন (CH₃CH₂CH₃) মিথেনের (CH₄) সমগোত্রক। কারণ প্রোপেন ও মিথেনের মধ্যে শুধুমাত্র একাধিক মিথিলিন মূলকের (–CH₂) পার্থক্য বিদ্যমান। এরা অ্যালকেন সমগোত্রীয় শ্রেণীর অন্তর্ভুক্ত। এদের সাধারণ সংকেত C_nH_{2n+2} । এ সমীকরণে n=1 হলে মিথেন (CH_4) পাওয়া যাবে এবং n = 3 হলে প্রোপেন (CH3CH2CH3) পাওয়া যাবে। সূতরাং প্রোপেন মিথেনের সমগোত্রক।

ত্রী উদ্দীপকের B কোষে বিদ্যুৎ চালনা করলে দ্রবণ হতে Ca²⁺ আয়ন ক্যাথোডে Ca ধাতুরূপে জমা হবে।

$$Ca^{2^+}(aq) + 2e^- \rightarrow Ca(s)$$
আমরা জানি,
 $W = ZIt$
 $= \frac{40 \times 5 \times 600}{2 \times 96500}$
 $= 0.621g$
 $Ca^{2^+}(aq) + 2e^- \rightarrow Ca(s)$
এখানে,
 $Ca^{2^+}(aq) + 2e^- \rightarrow Ca(s)$
 $Ca^{2^+}(aq) + 2e^- \rightarrow Ca(s)$
 $Ca^{2^+}(aq) + 2e^- \rightarrow Ca(s)$
এখানে,
 $Ca^{2^+}(aq) + 2e^- \rightarrow Ca(s)$
 $Ca^{2^+}(a$

অতএব, ক্যাথোডে সঞ্চিত Ca এর পরিমাণ হলো 0.621g।

য় উদ্দীপকের A কোষটি হলো লেড স্টোরেজ ব্যাটারী।

লেড স্টোরেজ ব্যাটারীর চার্জিং বিক্রিয়া:

আনোড বিক্রিয়া : PbSO₄(s) + H⁺(aq) + 2e⁻ → Pb(s) + H₂SO₄(aq) ক্যাথোড বিক্রিয়া: PbSO₄(s) + 2H₂O(l) → PbO₂(s) + H₂SO₄(aq) + 3H*(aq) + 2e

লেড স্টোরেজ ব্যাটারীর ডিসচার্জিং বিক্রিয়া :

অ্যানোড বিক্রিয়া: Pb(s) + H2SO4 (aq) → PbSO4(s) + H*(aq) + 2e* ক্যাথোড বিক্রিয়া: PbO₂(s) + H₂SO₄ (aq) + 3H*(aq) + 2e⁻ → $PbSO_4(s) + 2H_2O(l)$

সার্বিক বিক্রিয়া : Pb(s) + PbO₂(s) + 2H₂SO₄(aq)

লেড স্টোরেজ ব্যাটারী সচল রাখার কৌশল: এ কোষে যখন ডিসচার্জিং প্রক্রিয়া বিরাজ করে তখন বিদ্যুৎকরণ হয় বলে H₂SO₄ ও পানি উৎপন্ন হয়। আবার ব্যাটারী যখন বিদ্যুৎ গ্রস্থ হয় তখন H2SO4 মিশ্রিত পানি বিশ্লেষিত হয়ে H2 ও O2 গ্যাস আকারে নির্গত হয়। ফলে পানির পরিমাণ কমতে থাকে। এছাড়াও স্বতঃ বাষ্পীভবন প্রক্রিয়াতেও কিছু পানি বাষ্পীভূত হয়। তাই মাঝে মাঝে ব্যাটারিতে বিশূন্থ পানি যোগ করে H₂SO₄ দ্রবণের ঘনত্ব 1.2 রেখে এ কোষটিকে সচল রাখা হয়।

ক, প্লাস্টিসিটি কী?

মানব শরীরে ভারী ধাতু কীভাবে প্রবেশ করে?

গ. চিত্র-(১) এ 50 A বিদ্যুৎ 10 মিনিট চালনা করলে ক্যাথোডে কী পরিমাণ ধাতু জমা হবে?

ঘ, উদ্দীপক চিত্র-(১) ও চিত্র-(২) উভয়ই কোষ হলেও এদের শক্তির রূপান্তর ধরন ডিন্ন- বিশ্লেষণ করো।

১৪ নং প্রশ্নের উত্তর

ক তাপ প্রয়োগে পলিমার বস্তুর নমনীয়তা এবং চাপ প্রয়োগে এর বিভিন্ন আকৃতি লাভ করার ধর্মকে প্লাস্টিসিটি বৰে।

🛂 গরু-ছাগল প্রভৃতি তৃণভোজী প্রাণী ঘাস, লতা, গুদাসহ উদ্ভিদের লতাপাতা খায়। আবার মানুষ যেমনভাবে ফল-মূল শাকসবজি খেয়ে থাকে তেমনিভাবে তৃণভোজী প্রাণির মাংস ও দুধ খায়। এভাবে খাদ্যশক্তি উদ্ভিদ থেকে আনুক্রমিকভাবে মানুষের দেহে স্থানান্তরিত হয়। আর খাদ্যশন্তির এ স্থানান্তরের অনুক্রমকেই বলা হয় খাদ্য শৃঙ্গল। বিভিন্ন কারণে এই খাদ্য শৃঙ্খলে ভারী ধাতু যেমন, As, Cr, Pb, Cd, Hg ইত্যাদি প্রবেশ করে। মানুষ যখন খাদ্য গ্রহণ করে তখন খাদ্যের মাধ্যমে তা দেহে প্রবেশ করে এবং বিষক্রিয়ার সৃষ্টি হয়।

বী উদ্দীপকের চিত্র−১ এ FeSO4 দ্রবণের তড়িৎ বিশ্লেষণ দেখানো হয়েছে। FeSO4 দ্রবণের তড়িৎ বিশ্লেষণের ফলে Fe²⁺ আয়ন ক্যাথোডে নিম্নরূপে বিজারিত হয়ে ধাতুরূপে জমা হয়।

Fe²⁺ + 2e⁻ → Fe (ধাতুরূপে ক্যাথোড়ে সঞ্চিত)

- 2F 1 mol
আমরা জানি,
W = ZIt
=
$$\frac{55.85}{2 \times 96500} \times 50 \times 600$$

= 8.681 g

দেওয়া আছে-
তড়িং প্রবাহ, I = 50A
সময়, t = 10 min
= (10 × 60) sec
= 600 sec
তড়িং রাসায়নিক তুল্যাংক,
$$Z = \frac{55.85}{2 \times 96500}$$
জমাকৃত ভর, W = ?

সূতরাং ক্যাথোডে 8.681 g আয়রন জমা হবে।

🖫 উদ্দীপকের ১নং চিত্রের কোষটি তড়িৎ বিশ্লেষণ কোষ এবং ২নং চিত্রের কোষটি তড়িৎ রাসায়নিক কোষ। উভয়ই কোষ হলেও এদের শক্তির রূপান্তর প্রক্রিয়া সম্পূর্ণ ভিন্ন। ১নং কোষটিতে ব্যাটারি সংযুক্ত আছে যা তড়িচ্চালক বলের উৎস। অর্থাৎ, এ কোষে বর্তনী থেকে দ্রবণে

 $2PbSO_4(s) + 2H_2O(l)$

বিদ্যুৎ চালনা করা হলে কোষে তড়িৎ বিশ্লেষণ ঘটে এবং ক্যাথোডে Fe²⁺ আয়ন Fe পরমাণু (ধাতু) হিসেবে জমা হয়।

Fe²⁺ + 2e⁻ → Fe (ক্যাথোডে বিজারণ)
সূতরাং কোষটির তড়িৎচ্চালক বলের উৎস ব্যাটারি যা বর্তনীর সাথে যুক্ত
করা হয়। অন্যদিকে দ্বিতীয় কোষটিতে প্রথমটির মতো দুটি তড়িৎছার
বর্তনীর মাধ্যমে যুক্ত আছে কিন্তু বর্তনীতে কোনো ব্যাটারি যুক্ত নেই।
কোষটিতে সংঘটিত রাসায়নিক বিক্রিয়াই তড়িচ্চালক বল সৃষ্টি করে।
কোষটিতে Zn দশু অ্যানোড হিসেবে কাজ করে যা ইলেকট্রন ত্যাণ
করে দ্রবণে Zn²⁺ হিসেবে চলে যায়। এই ত্যাণকৃত ইলেকট্রন বর্তনীর
মধ্যদিয়ে ক্যাথোডে চলে আসে যা Cu²⁺ আয়ন দ্বারা শোষিত হয়।
এভাবে অ্যানোডে ইলেকট্রন উৎপন্ন এবং তা ক্যাথোতে শোষিত হওয়ার
মাধ্যমে বর্তনীতে বিদ্যুৎ প্রবাহিত হয়।

$$Zn-2e^-\longrightarrow Zn^{2+}$$
 (জ্যানোডে জারণ) $Cu^{2+}+2e^-\longrightarrow Cu$ (ক্যাথোডে বিজারণ)

কোষ বিক্রিয়া: Zn + Cu²⁺ ----> Zn²⁺ + Cu

সূতরাং উপরের আলোচনা সাপেক্ষে বলা যায় যে, উদ্দীপকের ১ম কোষে বিদ্যুৎ সরবরাহের ফলে রাসায়নিক বিক্রিয়া সংঘটিত হয় এবং ২য় কোষে রাসায়নিক বিক্রিয়ার মাধ্যমে বিদ্যুৎ উৎপন্ন হয়।

2위 ▶ 3@

[দেওয়া আছে, $E^0_{Mn/Mn^2+} = + 1.18V$ এবং $E^0_{AVAl^3+} = + 1.66V$]

19. (11. 2030)

- ক, ফ্যারাডের প্রথম সূত্রটি বিবৃত করো।
- খ. HCl গ্যাসের ব্যাপন হার NH₃ গ্যাস অপেক্ষা কম কেন?
- গ. উদ্দীপকে AI পাত্ৰে সংঘটিত অৰ্ধকোষ বিক্ৰিয়া ও কোষ বিক্ৰিয়া লেখো।
- ঘ. উদ্দীপকে উল্লেখিত পাত্রটি কিছু দিন পর ছিদ্র হয়ে য়াবে কেন?
 ব্যাখ্যা করো।

১৫ নং প্রশ্নের উত্তর

ক তড়িৎ বিশ্লেষণের সময় যে কোনো তড়িৎদ্বারে সংঘটিত রাসায়নিক বিক্রিয়ার পরিমাণ অর্থাৎ, কোনো তড়িৎদ্বারে সঞ্চিত বা দ্বীভূত পদার্থের পরিমাণ প্রবাহিত বিদ্যুতের পরিমাণের সমানুপাতিক।

HCI এর আণবিক ভর = 1 + 35.5 = 36.5 NH₃ এর আণবিক ভর = 14 + 1 × 3 = 17 গ্রাহামের ব্যাপন সূত্রানুযায়ী কোনো গ্যাসের,

NH3 এর আণবিক ভর কম হওয়ায় এর ব্যাপন হার HCI অপেক্ষা বেশি।

প্রাপ্ত উদ্দীপকে AI ধাতুর তৈরি পাত্রে MnSO₄ দ্রবণ রাখা আছে। এখানে দেওয়া আছে—

 $E_{Mo/Mo^{2+}}^{0}=\pm 1.18V$ এবং $E_{AVAI^{3+}}^{0}=\pm 1.66V$ কোনো কোষে ব্যবহৃত তড়িংহার গুলোর মধ্যে কোনটি অ্যানোড এবং কোনটি ক্যাথোড হিসেবে ক্রিয়া করবে তা তড়িংহার গুলোর জারণ বিভবের বা বিজারণ বিভবের মানের উপর নির্ভর করে। যেটির জারণ বিভবের মান বেশি সেটি অ্যানোড এবং যেটির জারণ বিভবের মান কম সেটি ক্যাথোড হিসেবে ক্রিয়া করে।

উপরোক্ত জারণ বিভবের মান থেকে দেখা যায়, AI ধাতুর জারণ বিভবের মান বেশি। সুতরাং AI ধাতুর তৈরি পাত্রটি এক্ষেত্রে অ্যানোড হিসেবে ক্রিয়া করে। তাহলে AI-পাত্র হতে AI-পরমাণু 3টি ইলেকট্রন ত্যাগ করে AI³⁺ আয়নরূপে দ্রবলে চলে আসে। অ্যানোডে অর্ধকোষ বিক্রিয়া: $Al - 3e^- \rightarrow Al^{3+}$ [জারণ বিক্রিয়া] . অপরদিকে দ্রবণের Mn^{2+} আয়ন $2\overline{U}$ ইলেকট্রন গ্রহণ করে Mn ধাতুরূপে পাত্রের গায়ে জমা হয়।

ক্যাথোডে অর্ধকোষ বিক্রিয়া: Mn²+ + 2e⁻ → Mn [বিজারণ বিক্রিয়া] সূতরাং সমগ্রিকভাবে কোষ বিক্রিয়াটি হলো–

$$2Al + 3Mn^{2+} \xrightarrow{6e^{-}} 2Al^{3+} + 3Mn$$

য় উদ্দীপকের AI পাত্রে MnSO4 দ্রবণ রাখা আছে। AI-পাত্রটি তথনই কিছুদিন পর ছিদ্র হবে যখন পাত্রটি অ্যানোড হিসেবে ক্রিয়া করবে। এখন AI-পাত্রটিকে যদি অ্যানোড হিসেবে বিবেচনা করা যায়, তাহলে বিক্রিয়াটি হবে—

কোষ বিভব,
$$E_{col}^0 = E_{col,annele}^0 + E_{red(cathode)}^0$$
 = $\{1.66 + (-1.18)\}V$ = $(1.66 - 1.18) V$ = $(1.66 - 1.18) V$ = $0.48 V$ বা, $E_{Mp}^{0.2+} = + 1.18V$ বা, $E_{Mp}^{0.2+} = + 1.18V$ বা, $E_{Mp}^{0.2+} = + 1.18V$

কোষ বিভব, $E_{cell}^{0} > 0$, অতএব কোষ বিক্রিয়াটি শ্বতঃস্ফূর্তভাবে ঘটবে। থেহেতু কোষ বিক্রিয়াটি শ্বতঃস্ফুর্তভাবে ঘটবে অর্থাৎ Al-পাত্র হতে Al পরমাণু ইলেকট্রন ত্যাণ করে Al³⁺ আয়নরূপে দ্রবণে চলে আসবে। সূতরাং উদ্দীপকের Al-পাত্রে MnSO₄ দ্রবণ দীর্ঘক্ষণ রেখে দিলে পাত্রটি ক্রয় হবে বা ছিদ্র হয়ে যাবে।

2위 > 16

 $E_{Zn^{2+}/Zn}^{0} = -0.76V; E_{M^{2+}/M}^{0} = -0.126V$

15. (41. 2029)

ক. TDS কী?

চামভা ট্যানিং করা প্রয়োজন কেন?

উদ্দীপকের দ্রবণের মধ্য দিয়ে কতক্ষণ বিদ্যুৎ প্রবাহিত করলে ক্যাথোডের ভর 1g বৃদ্ধি পাবে?

উদ্দীপকের ইলেকট্রোলাইট দ্রবণটি দীর্ঘদিন M ধাতু নির্মিত
পাত্রে সংরক্ষণ করার সম্ভাব্যতা যাচাই করো।

১৬ নং প্রশ্নের উত্তর

ক TDS (Total Dissolved Solid) শ্বারা কোন নমুনা পানিতে সমস্ত দ্ববিভত কঠিন পদার্থকে বুঝায়।

ক্রীবিত পশুর শরীরের চামড়া সাধারণত নরম ও নমনীয় যা দৃচ ও টেকসই হয়। কিন্তু মৃত পশুর চামড়া আর্দ্র হলে পচে যায় এবং শুচ্ক হলে শস্ত ও ভঙ্গার হয়। ট্যানিং প্রক্রিয়ায় চামড়াকে সুম্প্রিত করা এবং রাসায়নিক প্রক্রিয়ায় পঁচনশীলতা রোধ করা যায়।

সূতরাং চামড়াকে পঁচনশীলতা ও ভজাুরতার হাত থেকে রক্ষা করতে ট্যানিং করা প্রয়োজন হয়।

া উদ্দীপকের দ্রবণের মধ্য দিয়ে বিদ্যুৎ প্রবাহিত করলে দ্রবণের Zn²⁺ আয়ন ক্যাথোডে Zn ধাতুর্পে জমা হবে। ফলে যত গ্রাম Zn ক্যাথোডে জমা হবে ঠিক ক্যাথোডের ভর তত গ্রাম বৃদ্ধি পাবে।
Zn²⁺(aq) + 2e⁻ → Zn(s) ক্যাথোডে জমা হবে

আমরা জানি, W = ZItবা, $t = \frac{W}{ZI}$ বা, $t = \frac{1 \times 2 \times 96500}{65.5 \times 6.2}$ = 475.25 sec এখানে,
জিংক (Zn) এর তড়িৎ রাসায়নিক
তুল্যান্ডক, $Z = \frac{65.5}{2 \times 96500} \, \mathrm{g} \, \mathrm{Coul}^{-1}$ প্রবাহিত বিদ্যুৎ, $I = 6.2 \, \mathrm{amp}$ ক্যাথোডের ভর বৃদ্ধি, $W = 1 \, \mathrm{g}$ প্রয়োজনীয় সময়, t = ?

সূতরাং উদ্দীপকের দ্রবণের মধ্য দিয়ে 475.25 sec ধরে বিদ্যুৎ প্রবাহিত করলে ক্যাভের ভর Ig বৃদ্ধি পাবে। উদ্দীপকের দ্রবণটি M ধাতু নির্মিত পাত্রে সংরক্ষণের ক্ষেত্রে দুইটি বিষয়
বিবেচনায় রাখতে হবে—

i. M ধাতু নিৰ্মিত পাত্ৰটি অ্যানোড হিসেবে ব্যবহৃত হচ্ছে কিনা।

ii. কোষ বিক্রিয়া স্বতঃস্ফূর্তভাবে সংঘটিত হচ্ছে কিনা।

দেওয়া আছে, $E_{M^{2+}/M}^{0} = -0.126V$

ৰা, E_{MM²⁺} = 0.126V এবং E_{Zn²⁺/Zn} = - 0.76V

এখন উপরোক্ত i ও ii নং শর্তমতে কোষ বিক্রিয়াটিকে নিম্নোক্তভাবে প্রকাশ করা যায়—

 $M(s) + Zn^{2+}(aq) \longrightarrow M^{2+}(aq) + Zn(s)$ কোষের তড়িৎচালক বল, $E_{cell} = E_{M/M}^{0}^{2+} + E_{Zn}^{0}^{2+}/Zn$ = 0.126 + (-0.76) = 0.126 - 0.76= -0.634 V

যেহেতৃ $E_{cell} < 0$, কাজেই উদ্দীপকের ইলেকট্রোলাইট দ্রবণটিকে M ধাতুর পাত্রে রাখলে জিংক অ্যানোড হিসেবে ক্রিয়া করবে না। অর্থাৎ M ধাতুর পাত্র ক্ষয় হবে না। সুতরাং ইলেকট্রোলাইট দ্রবণটিকে দীর্ঘদিন M ধাতু নির্মিত পাত্রে সংরক্ষণ করা যাবে।

정취 ▶ 7 년

15. (41. 2034)

ক, ন্যানো পার্টিক্যাল কাকে বলে?

খ. 64 g অক্সিজেন গ্যাসের জন্য ভ্যানভারওয়ালস সমীকরণটি লেখো।

উদ্দীপকের কোষের অ্যানোডে সংঘটিত বিক্রিয়াটি দেখাও।

 উদ্দীপকের কোষে সংঘটিত বিক্রিয়ায় তড়িৎ প্রবাহের প্রয়োজনীয়তার যৌদ্ভিকতা বিশ্লেষণ করে।

১৭ নং প্রশ্নের উত্তর

যে সকল কণার আকার 1—100 nm তাদেরকে ন্যানো পার্টিক্যাল বলে।

স্বা ভ্যানডারওয়ালস্ এর সাধারণ সমীকরণ হচ্ছে—

$$\left(P + \frac{n^2 a}{V^2}\right) (V - nb) = nRT$$

এখন 64 g অক্সিজেন অর্থাৎ 2 mol অক্সিজেনের (n = 2) জন্য সমীকরণটি হবে—

$$\left(P + \frac{4a}{V^2}\right)(V - 2b) = 2RT$$

উদ্দীপকের কোষটিতে ইলেকট্রোলাইট হিসেবে বিগলিত MgCl₂ নেওয়া হয়েছে। এজন্য দ্রবণটিতে একটি মাত্র ক্যাটায়ন এবং একটি মাত্র অ্যানায়ন উপস্থিত থাকে। যদি জলীয় দ্রবণ নেওয়া হতো তবে একাধিক অ্যানায়ন ও ক্যাটায়ন উপস্থিত থাকত। পানির বিয়োজনে H' ক্যাটায়ন ও OH অ্যানায়ন উৎপন্ন হতো। এখানে বিদ্যুৎ প্রবাহ চালনা করা হলে অ্যানোডে কোনটি আগে জারিত বা ক্যাথোডে কোনটি বিজারিত হবে তা সংশ্লিষ্ট আয়নের প্রকৃতি, ঘনমাত্রা এবং তড়িৎ রাসায়নিক সারিতে তাদের অবস্থানের উপর নির্ভর করতো। বিগলিত MgCl₂ ব্যবহৃত হওয়ায় বিদ্যুৎ চালনা করলে কোষটিতে উপস্থিত

একটি মাত্র অ্যানায়ন (CI) জারিত হয়ে অ্যানোডে শুধুমাত্র ক্লোরিন (CI₂) গ্যাস উৎপন্ন করবে।

বিগলিত $MgCl_2$ এর বিয়োজন: $MgCl_2(I) \rightarrow Mg^{2+}(I) + 2CI^-(I)$

অ্যানোডে জারণ: 2Cl⁻(/) ----> Cl₂(g) + 2e⁻

য যে তড়িং কোষে বাইরের উৎস হতে বিদ্যুৎ প্রবাহের ফলে রাসায়নিক বিক্রিয়া ঘটে তাকে তড়িং বিশ্লেষ্য কোষ বলে। উদ্দীপকের কোষটি তেমনি একটি তড়িং বিশ্লেষ্য কোষ, কারণ এর সাথে বিদ্যুৎ শক্তির উৎস হিসেবে ব্যাটারি যুক্ত আছে। এখানে সংঘটিত জারণ-বিজারণ বিক্রিয়া স্বতঃস্ফূর্ত নয়। অর্থাৎ জারণ-বিজারণ বিক্রিয়াটি ব্যাটারির বিদ্যুৎ প্রবাহের উপর নির্ভর করে।

ব্যাটারির এ বিদ্যুৎ প্রবাহ দ্বারা কোষটিতে নিম্নোক্ত বিয়োজন এবং তারপর জারণ–বিজারণ বিক্রিয়া সংঘটিত হয়।

 $MgCl_2(I) \rightleftharpoons Mg^{2+}(I) + 2Cl^-(I)$ আনোডে জারণ: $2Cl^-(I) \longrightarrow Cl_2(g) + 2e^-$

ক্যাথোডে বিজারণ: Mg(I)2+ + 2e- → Mg(s)

যতক্ষণ পর্যন্ত ব্যাটারি হতে বিদ্যুৎ প্রবাহ সরবরাহ থাকবে ততক্ষণ পর্যন্ত রেডক্স বিক্রিয়া সংঘটিত হতে থাকবে। ব্যাটারি হতে বিদ্যুৎ প্রবাহ বন্ধের সাথে সাথে সমগ্র কোষ বিক্রিয়া বন্ধ হয়ে যাবে।

সূতরাং উপরোক্ত বিশ্লেষণ হতে বলা যায়, উদ্দীপকের কোষটিতে সংঘটিত বিক্রিয়ায় বিদ্যুৎ প্রবাহের প্রয়োজনীয়তা অনম্বীকার্য।

3년 > 7년

15. CAT. 2030,

ক, আয়োডোমিতি কী?

খ. প্রমাণ হাইড্রোজেন তড়িংদ্বার বলতে কী বুঝ?

 গ. উদ্দীপকের তড়িৎ রাসায়নিক কোষটির প্রমাণ তড়িজালক বল হিসাব করো।

ঘ. উদ্দীপকের বিজারণ অর্ধকোষে বিদ্যমান তড়িৎ বিশ্লেষ্যকে দস্তার পাত্রে রাখা যাবে কিনা— গাণিতিকভাবে বিশ্লেষণ করো। [E⁰_{Zn/Zn²⁺} = + 0.76V]

১৮ নং প্রশ্নের উত্তর

যে প্রক্রিয়ায় একটি জারক পদার্থের সজ্যে আয়োডিন লবণের (KI) বিক্রিয়ায় বিমৃত্ত আয়োডিনকে প্রমাণ থায়োসালফেট দ্রবণ দ্বারা ট্রাইটেশন করে মৃত্ত আয়োডিনের পরিমাণ নির্ধারণ করা হয় তাকে আয়োডোমিতি বলে।

একক মোলার ঘনমাত্রা বিশিষ্ট কোন H⁺ আয়নের দ্রবণে প্লাটিনাম পূড়ার আন্তরণ যুক্ত প্লাটিনাম পাত (Platinised platinum) রেখে I (atm) বায়ুচাপে বিশুন্ধ হাইড্রাজেন গ্যাস বুদবুদ আকারে সরবরাহ করলে যে তড়িংদ্বার উৎপন্ন হয় তাকে প্রমাণ হাইড্রোজেন তড়িংদ্বার বলা হয়। প্রমাণ হাইড্রোজেন তড়িংদ্বারের গঠন নিম্নরূপ—
Pt, H₂(g) (1atm) | H⁺(aq) (1.0 M); E⁰ = 0.0 V
25°C তাপমাত্রায় 1 molar দ্রবণে 1 atm চাপে বিশুন্ধ হাইড্রোজেন

$$\frac{1}{2}H_2 \Longrightarrow H^+ + e^-; E_{ox}^0 = 0$$

া উদ্দীপকের তড়িৎ রাসায়নিক কোষটিতে তড়িৎ বিশ্লেষ্য হিসেবে ASO4 ও BSO4 দ্রবণ ব্যবহার করা হয়েছে। ASO4 দ্রবণে A-ধাতুর তড়িৎদ্বার ও BSO4 দ্রবণে B-ধাতুর তড়িৎদ্বার ব্যবহৃত হয়েছে।

গ্যাস চালনা করলে নিম্নলিখিত উভমুখী বিক্রিয়া সংঘটিত হবে।

দেওয়া আছে.

 $E_{A/A}^{0}{}^{2+}=0.80$ V, অর্থাৎ A-ধাতুর জারণ বিভব = 0.80V এবং $E_{B^{2+}/B}^{0}=-0.40$ V বা, $E_{B/B}^{0}{}^{2+}=0.40$ V, অর্থাৎ B-ধাতুর জারণ বিভব = 0.40V যেহেতু A এর জারণ বিভবের মান B এর জারণ বিভবের মান অপেকা

যেহেতু A এর জারণ বিভবের মান B এর জারণ বিভবের মান অপেকা বেশি, কাজেই A ধাতুর তড়িংদ্বারটি অ্যানোড এবং B ধাতুর তড়িংদ্বারটি ক্যাথোড হিসেবে ক্রিয়া করে।

এখন উদ্দীপকের কোষটির তড়িচ্চালক বল,

$$\begin{split} E_{ceil}^{0} &= E_{gx(anode)}^{0} + E_{red(cathode)}^{0} \\ &= E_{A/A}^{2+} + E_{B^{2+}/B}^{0} \\ &= \{0.80 + (-0.40)\}V \\ &= (0.80 - 0.40)V \\ &= 0.40V \end{split}$$

সূতরাং উদ্দীপকের কোষটির তড়িচ্চালক বল 0.40V।

উদ্দীপকের কোষটিতে B ধাতুর তড়িংখার ক্যাথোড হিসেবে ক্রিয়া করে। আমরা জানি, ক্যাথোডে সর্বদাই বিজারণ বিক্রিয়া সম্পন্ন হয়। কাজেই যে অর্ধকোষটিতে ক্যাথোড অবস্থান করবে সেটিই হবে বিজারণ অর্ধকোষ। সূতরাং উদ্দীপক থেকে দেখা যায়, বিজারণ অর্ধকোষটিতে তড়িং বিশ্লেষ্য হিসেবে BSO4 দ্রবণ ব্যবহৃত হয়েছে। এখন BSO4 দ্রবণকে Zn পাত্রে রাখলে দুটি বিষয়ের উপর লক্ষ্য রাখা জরুরী।

- পাত্রটি অ্যানোড হিসেবে ব্যবহৃত হচ্ছে কিনা।
- পাত্রটি অ্যানোড হিসেবে ব্যবহৃত হলে বিক্রিয়া য়তঃস্ফূর্তভাবে ঘটছে কিনা ৷

Zn পাত্রকে অ্যানোড হিসেবে বিবেচনা করলে Zn ও BSO4 দ্রবণের মধ্যে সংঘটিত বিক্রিয়াটি হবে—

জারণ অর্ধকোষ বিক্রিয়া : Zn – 2e — Zn²*

বিজারণ অর্ধকোষ বিক্রিয়া : B²+ 2e → B

সামগ্রিকভাবে কোষ বিক্রিয়া : Zn + B²⁺ ----> Zn²⁺ + B এখন কোষের তড়িচ্চালক বল,

$$\begin{split} E_{cell}^0 &= E_{cox(anode)}^0 + E_{fed(cathode)}^0 \\ &= E_{Zo/Zo^{2+}}^0 + E_{B^{2+}/B}^0 \\ &= \{0.76 + (-0.40)\} \text{ V} \\ &= (0.76 - 0.40) \text{V} \\ &= 0.36 \text{V} \end{split}$$

 $E_{cell}^0>0$, অর্থাৎ কোষ বিক্রিয়াটি শ্বতঃস্ফূর্তভাবে ঘটবে। যেহেতু বিক্রিয়াটি শ্বতস্ফূর্তভাবে ঘটবে, কাজেই Z_n পাত্র অ্যানোড হিসেবে ক্রিয়া করবে। Z_n পাত্র অ্যানোড হিসেবে ক্রিয়া করার অর্থ হলো Z_n পাত্র ক্ষয় হওয়া। এখন উপরোক্ত বিশ্লেষণ থেকে বলা যায় যে, উদ্দীপকের বিজারণ অর্ধকোষের BSO_4 দ্রবণকে Z_n পাত্রে রাখলে পাত্রটি ক্ষয়প্রাপ্ত হবে। সূত্রাং BSO_4 দ্রবণকে Z_n পাত্রে রাখা যাবে না।

3일 > 79

19. CT. 20391

- ক. পেপটাইড বন্ধন কী?
- খ. ফেনল অম্লধর্মী কেন?
- গ. চিত্র-১ এর কোষটির তড়িচ্চালক বল (EMF) নির্ণয় করো। ৩
- ঘ় চিত্র-১ ও চিত্র-২ এর মধ্যে পার্থক্য কোষ বিক্রিয়াসহ বিশ্লেষণ করো।

১৯ নং প্রশ্নের উত্তর

ত্র একটি অ্যামাইনো এসিডের কার্বক্সিল মূলক অপর একটি অ্যামাইনো এসিডের α-অ্যামিনো মূলকের সাথে যুক্ত হলে যে অ্যামাইড বন্ধন গঠিত হয় তাকে পেপটাইড বন্ধন বলে।

ক্ষেনল অম্লধমী। কারণ ফেনলে উপস্থিত বেনজিন বলয় অনুরণনের মাধ্যমে অক্সিজেন এর বন্ধন ইলেকট্রন জোড় বেনজিন বলয়ের দিকে ধারিত হয়। ফলে O—H বন্ধন দূর্বল হয়ে পড়ে। ফলে H⁺ আয়ন ত্যাগ করে ফেনল ফিনেট আয়নে রুপান্তরিত হয়।

তাছাড়া ফেনল NaOH এর সাথে বিক্রিয়ায় লবণ ও পানি উৎপন্ন করে।

তাই ফেনল অমধর্মী।

গ দেওয়া আছে,উদ্দীপকের চিত্র-১ এর কোষটির ক্ষেত্রে—

$$E_{A/A^{2+}}$$
 = + 1.18 V বা, $E_{A^{2+}/A}$ = -1.18V এবং $E_{B^{2+}/B}$ = + 0.34 V

যেহেতু $E_{A^{2+}/A}$ তড়িৎদ্বারের বিজারণ বিভব $E_{B^{2+}/B}$ তড়িৎদ্বারের বিজারণ বিভবের চেয়ে কম, সেহেতু $E_{A^{2+}/A}$ তড়িৎদ্বারে জারণ এবং $E_{B^{2+}/B}$ তড়িৎদ্বারে বিজারণ ক্রিয়া সংঘটিত হবে।

চিত্র-১ এর কোষটির কোষ বিক্রিয়াকে নিম্নোক্তভাবে প্রকাশ করা যায়-

$$A(s) + B^{2*}(aq) \xrightarrow{2e^-} A^{2*}(aq) + B(s)$$

কোষটির $E_{cell}^{"} = E_{A/A^{2*}} + E_{B^{2*}/B} = 1.18 + 0.34 = 1.52 V$
নার্নস্ট সমীকরণ অনুযায়ী পাই,

$$\begin{split} E_{cell}^{ii} &= E_{cell}^{ii} - \frac{0.0592}{n} \log \frac{[A^{2^+}]}{[B^{2^+}]} & \text{ and } n = 2 \\ &= 1.52 - \frac{0.0592}{2} \log \frac{1.0}{1.5} = 1.525 \text{ V} & [A^{2^+}] = 1.0 \text{ M} \\ [B^{2^+}] &= 1.5 \text{ M} \end{split}$$

সূতরাং উদ্দীপকের চিত্র-১ এর কোষটির তড়িচ্চালক বল (EMF) হলো 1.525 V ।

উদ্দীপকের চিত্র-১ ও চিত্র ২ এর কোষদ্বয় হলো যথাক্রমে তড়িৎ
রাসায়নিক কোষ ও তড়িৎ বিশ্লেষ্য কোষ। এদের মধ্যে পার্থক্য কোষ
বিক্রিয়াসহ হলো

তড়িৎ রাসায়নিক কোষ	তড়িৎ বিশ্লেষ্য কোষ		
10000	[2] 12 - 그 아니까지 다 하지네 [4] 2. 아이는 - 그리스티 타 하는 10 - 그리스테 다음이다.		
 তড়িৎ রাসায়নিক কোষ হলো তড়িৎ শক্তি উৎপাদী কোষ 			
চলে, বিদ্যুৎ উৎস যেমন	iii. তড়িৎ বিশ্লেষ্য কোষের বাহ্যিক বর্তনীতে তড়িচ্চালক বলের উৎস যেমন ব্যাটারি যুক্ত থাকতে হয়।		
iv. এ কোষের অ্যানোড ঝণাত্মক ও ক্যাথোড ধনাত্মক।	iv. তড়িৎ বিশ্লেষ্য কোষের অ্যানোড ধনাত্মক ও ক্যাথোড শ্বণাত্মক।		
 দূটি ভিন্ন পাত্রে দূটি ভিন্ন তড়িৎ বিশ্লেষ্যের মধ্যে তড়িৎদ্বার দূটি অবস্থিত। 			

vi. রেডক্স বিক্রিয়া বাহ্যিক উৎসের vi. রেডক্স বিক্রিয়া স্বতঃস্ফৃর্তভাবে বিদ্যুৎ প্রবাহের উপর নির্ভরশীল। চলতে থাকে। vii.জারণ অর্ধবিক্রিয়া (অ্যানোড): vii জারণ অর্ধবিক্রিয়া (আনোড): $A(s) \rightarrow A^{2+}(aq) + 2e^{-}$ $2Cl^{-}(aq) \rightarrow Cl_{2}(g) + 2e^{-}$ বিজারণ অর্ধবিক্রিয়া (ক্যাথোড) বিজারণ অর্ধবিক্রিয়া (ক্যাথোড): $2Na^{+}(aq) + 2e^{-} \rightarrow 2Na(s)$ $B^{2+}(aq) + 2e^- \rightarrow B(s)$ কোষ বিক্রিয়া: A(s) + B²⁺(aq) → কোষ বিক্রিয়া: 2Cl (aq) + 2Na A24(aq) + B(s) $(aq) \rightarrow Cl_2(g) + 2Na(s)$ এক্ষেত্রে A হলো অধিক সক্রিয় বিজারক এবং B হলো অধিক সক্রিয় জারক।

2위 > 26

PA. CAT. 2019/

- क. CFC की?
- খ তড়িৎ বিশ্লেষণ একটি জারণ-বিজারণ বিক্রিয়া-ব্যাখ্যা করে। ২
- গ্. চিত্র-B এর চার্জিং ও ডিসচার্জিং এবং কোম বিক্রিয়া বর্ণনা করো। ৩
- ছ. চিত্র-A এবং চিত্র-B এর সুবিধা ও অসুবিধা বিশ্লেষণ করো।৪ ২০ নং প্রশ্লের উত্তর

মিথেন ও ইথেনের (CH4, C2H6) ক্লোরো ফ্রোরো উদ্ভূতক যৌগসমূহকে CFC (Chioro Flouro Carbon) বলে।

তি তি বিশ্লেষণ একটি জারণ-বিজারণ বিক্রিয়া কারণ তড়িং বিশ্লেষণ প্রক্রিয়ায় অ্যানোড়ে জারণ এবং ক্যাথোড়ে বিজারণ বিক্রিয়া সংঘটিত হয়। গলিত NaCl দ্রবণে Na⁺ ও Cl⁻ হিসেবে থাকে। বিদ্যুৎ চালনা করলে Cl⁻ অ্যানোড়ে গিয়ে ইলেকট্রন ত্যাগ করে জারিত হয় এবং Na⁺ ক্যাথোড় হতে ইলেকট্রন গ্রহণ করে বিজারিত হয়।

জ্যানোড বিক্রিয়া : $Cl^- - e^- \rightarrow \frac{1}{2}Cl_2$ (জারণ)

ক্যাথোড বিক্রিয়া : $Na^+ + e^- \rightarrow Na$ (বিজারণ)

অতএব তড়িৎ বিশ্লেষণ একটি জারণ-বিজারণ বিক্রিয়া।

ত্র উদ্দীপকের চিত্র-B এর কোষটি হলো লিথিয়াম আয়ন ব্যাটারী। লিথিয়াম আয়ন ব্যাটারীর চার্জিং, ডিসচার্জিং এবং কোষ বিক্রিয়ার বর্ণনা হলো— চার্জিং ও ডিসচার্জি: লিথিয়াম ব্যাটারির ক্ষেত্রে অ্যানোড ও ক্যাথোড
তড়িৎদ্বারের মধ্যে Li* এর স্থানান্তরের ফলে ইলেকট্রনের দান ও গ্রহণ
এর মাধ্যমে ডিসচার্জিং ও চার্জিং প্রক্রিয়া সম্পন্ন হয়। এটি সম্পূর্ণ দুটি
বিপরীত প্রক্রিয়া। চার্জিং এর সময় ক্যাথোড তড়িৎদ্বারের LiCoO2 হতে
Li* মুক্ত হয়ে প্রথমে তড়িৎ বিশ্লেষ্য ও বিভেদ পর্দা অতিক্রম করে
অ্যানোডে গিয়ে চার্জ মুক্ত হয়। ডিসচাজিংয়ের সময় গ্রাফাইড অ্যানোডের
Li* মুক্ত হয়ে তড়িৎ বিশ্লেষ্য ও বিভেদ পর্দা অতিক্রম করে ক্যাথোডে
চার্জ মক্ত হয়। এ বাাটারির—

ধনাত্মক তড়িৎয়ারের বিক্রিয়া : LiCoO₂ === Li_(1-n) CoO₂ + nLi⁺ + ne⁻

ঋণাত্মক তড়িৎদ্বারের বিক্রিয়া: nLi' +ne + C. ⇒ nLiC

সামগ্রিককোষ বিক্রিয়া : $Li^* + e + LiCoO_2 \rightarrow Li_2O + CoO$

যখন অতিরিক্ত চার্জ 5.2 Volts অতিক্রম করে, তখন-

 $LiCoO_2 \rightarrow Li^+ + CoO_2 + e$

এক্ষেত্রে Co³⁺ ও Co⁴⁺ এর মধ্যে আয়নের বিনিময় ঘটে এবং ইলেকট্রন উৎপন্ন হয়।

ব্যাটারির চার্জের সময়: $Co^{3+} \rightarrow Co^{4+} + e$

এবং ডিসচার্জের সময়: $Co^{4+} + e \rightarrow Co^{3+}$, এ বিক্রিয়া সম্পন্ন হয়।

উদ্দীপকের চিত্র-A এবং চিত্র-B কোষদ্বয় খলো যথাক্রমে লেড স্টোরেজ ব্যাটারী এবং লিখিয়াম আয়ন ব্যাটারী। নিচে এদের সুবিধা ও অসুবিধা বিশ্লেষণ করা হলো—

লেড স্টোরেজ ব্যাটারি-

সুবিধা : লেড স্টোরেজ ব্যাটারির অভ্যন্তরীণ রোধ কম হওয়ায় লেড স্টোরেজ ব্যাটারি থেকে উচ্চ বিদ্যুৎ শক্তি পাওয়া যায়। লেড এসিড ব্যাটারিকে রিচার্জ করে বার বার ব্যবহার করা সম্ভব। একটি পূর্ণ চার্জযুক্ত লেড স্টোরেজ ব্যাটারিতে H_2SO_4 এর ঘনত্ব $1.29~g/cm^3$ এর বেশি থাকে। H_2SO_4 এর ঘনত্ব কমলে ব্যাটারির চার্জ লেভেল কমার নির্দেশ করে। তুলনামূলক কম দামে লেড স্টোরেজ ব্যাটারি সর্বত্র পাওয়া যায়।

অসুবিধা: লেড স্টোরেজ ব্যাটারিতে 36–38% (w/w) H₂SO₄ এর জলীয় দ্রবণ ব্যবহৃত হয়। এই H₂SO₄ এর সংস্পর্শে ত্বকের বার্ন ক্ষত হওয়ার সম্ভাবনা থাকে। লেড-স্টোরেজ ব্যাটারি রিচার্জের সময় H₂SO₄ গ্যাস বের হতে পারে। তাই রিচার্জকালে লেড স্টোরেজ ব্যাটারির নিকটে আগুন বা জ্বলন্ত শিখা রাখা যাবে না। লেড স্টোরেজ ব্যাটারির ওজন 30–60 পাউভ হয়ে থাকে। এত ভারী লেড ব্যাটারিকে তুলতে গিয়ে অসতর্কতা বশত পেশীতে ব্যথা বা আহত হওয়ার সম্ভাবনা থাকে। লেড-স্টোরেজ ব্যাটারি বর্জারূপে ফেলে দিলে লেড মাটিতে দূষণ সৃষ্টি করে।

লিখিয়াম আয়ন ব্যাটারির-

সুবিধা: লেড ধাতু ও নিকেল ধাতু দিয়ে তৈরি ব্যাটারির তুলনায় লিথিয়াম আয়ন ব্যাটারি হালকা। তাই মোটরযানে এটি ব্যবহারযোগ্য। নিকেল ও লেড ধাতু থেকে তৈরি ব্যাটারির তুলনায় লিথিয়াম ব্যাটারি দীর্ঘস্থায়ী হওয়ায় এটি তুলনামূলকভাবে কম বর্জার্পে মাটিতে যুক্ত হয়। লিথিয়াম ব্যাটারির শক্তি অন্য যে কোনো ব্যাটারির তুলনায় বেশি।

অসুবিধা: লিথিয়াম ব্যাটারি রিচার্জেবল না হওয়ায় একবার ব্যবহার শেষে পরিত্যক্ত বা বর্জা হয়। আবার ইলেকট্রনিক যন্ত্রপাতিতে যুক্ত থাকলে, তখন প্রতিস্থাপন করা যায় না। বৈদ্যুতিক যন্ত্রে ব্যবহৃত অবস্থায় লিথিয়াম ব্যাটারিতে লীক বা ফুটা হলে ঐ বৈদ্যুতিক যন্ত্র উত্তপ্ত হয় এবং পরে আগুন জ্বলে ওঠে। লিথিয়াম ব্যাটারিগুলো সংস্পর্শে থাকলে ফ্রিকশন বা সংঘর্ষের কারণে পরিবেশে বিষাক্ত গ্যাস সৃষ্টি হয়। পানি বাস্পের সংস্পর্শে ধাতু ক্লয় ঘটে এবং ৪৮, গ্যাস নির্গত হয়।

নিকেল, সিলভার এবং জিংক এর প্রমাণ বিজারণ বিভবের মান যথাক্রমে -0.25V, + 0.799V এবং -0.76V।

ক. এসিড বৃষ্টি কী?

খ. সিমেন্ট তৈরিতে জিপসাম ব্যবহার করা হয় কেন?

গ. উদ্দীপকের কোষটিতে সংঘটিত অর্ধকোষ বিক্রিয়া এবং কোষ বিক্রিয়া লেখো।

ঘ, উদ্দীপকের অ্যানোডের দ্রবণটিকে জিংক এর পাত্রে সংরক্ষণ করা যাবে কিনা গাণিতিকভাবে মৃল্যায়ন করে। 8

২১ নং প্রশ্নের উত্তর

ক্র মানবসৃষ্ট বায়ু দূষণ ক্রিয়ার ফলে বায়ুমণ্ডলে অধঃক্ষেপণ বৃষ্টিতে pH
এর মান 5.6 এর কম হলে ঐ অধঃক্ষেপণ বৃষ্টিকে এসিড বৃষ্টি বলে।

জিপসাম (CaSO₄.2H₂O) এর উপস্থিতিতে সিমেন্টের জমাট বাঁধার প্রক্রিয়া ধীরণতিতে ঘটে। কারণ, জিপসাম ট্রাইক্যালসিয়াম অ্যালুমিনেট এর সাথে বিক্রিয়া করে অদ্রবণীয় ক্যালসিয়াম সালফো অ্যালুমিনেট উৎপদ্ধ করে। এর ফলে দুক্ত জমাট বাঁধতে সাহায্য করে এর্প ট্রাইক্যালসিয়াম অ্যালুমিনেট আপাত দৃষ্টিতে দুরীভূত হয়। যে কারণে সিমেন্ট দুক্ত জমাট বাঁধতে পারে না।

3 CaO.Al₂O₃ + 3(CaSO₄,2H₂O) + 2H₂O \rightarrow 3CaO. Al₂O₃. 3CaSO₄ 2H₂O + 6H₂O

তবে এর প্রভাবে সিমেন্টের সম্পূর্ণরূপে জমাট বাঁধতে যথেষ্ট পরিমাণ পানির উপস্থিতিতে কয়েক সপ্তাহ সময় লাগলেও উৎপন্ন কঠিন পদার্থের দৃঢ়তা ও শক্তির বৃশ্বি ঘটে।

র্বা উদ্দীপকের কোষটি একটি তড়িৎ রাসায়নিক কোষ। কোষটিতে— Ni এর প্রমাণ বিজারণ বিভব = – 0.25V

Ag " " = + 0.799V

অতএব Ni জারিত হবে এবং Ag বিজ্ঞারিত হবে। ফলে Ni আনোড হিসেবে এবং Ag ক্যাথোড হিসেবে কাজ করবে। আনোড পাত্রে Ni-দশু হতে Ni পরমাণু 2টি ইলেকট্রন ত্যাগ করে Ni²⁺ আয়নরূপে দ্রবণে চলে আসে।

আনোভে অর্থকোষ বিক্রিয়া: $N_1 \rightarrow N_1^{2+} + 2e^-$

ক্যাথোড পাত্রে Ag* আয়ন ক্যাথোড হতে 1টি ইলেকট্রন গ্রহণ করে Ag ধাতুরূপে ক্যাথোডে জমা হয়।

ক্যাথোডে অর্ধকোষ বিক্রিয়া : 2∧g' + 2e⁻ → 2Ag সূতরাং সামগ্রিকভাবে কোষ বিক্রিয়াটি হবে—

$$2Ag^{2} + Ni \xrightarrow{2e} 2Ag + Ni^{2+}$$

য় উদ্দীপকের আনোড পাত্রের দ্রবণ হলো Ni(NO3)2 দ্রবণ। একে Zn পাত্রে রাখলে Zn পাত্রকে অ্যানোড হিসেবে বিবেচনা করতে হবে।

Zn এর প্রমাণ বিজারণ বিভব = - 0.76V তাহলে Zn এর প্রমাণ জারণ বিভব = + 0.76V এবং Ni এর প্রমাণ বিজারণ বিভব = - 0.25V এখন কোষ বিভব

$$E_{cell} = E_{effert} + E_{feeffert}$$

= 0.76 + (-0.25)
= (0.76 - 0.25)V
= 0.51V

এখানে E_{cell} ধনাত্মক। সুতরাং কোষ বিক্রিয়া স্বতঃস্ফূর্ত হবে। কোষ বিক্রিয়া স্বতঃস্ফূর্ত হওয়া মানে Z_n পাত্র ক্ষয় হওয়া। যেহেতু $Ni(NO_3)_2$ দ্রবণ Z_n পাত্রে রাখলে Z_n পাত্র ক্ষয়প্রাপ্ত হবে। কাজেই $Ni(NO_3)_2$ দ্রবণকে Z_n পাত্রে রাখা যাবে না।

国記 ▶ ママ

18. CAT. 2030/

क. इंगिंभि की?

- থ. কেন্দ্রাকর্ষী প্রতিস্থাপন বিক্রিয়ায় ক্লোরোবেনজিন অপেকা 4নাইট্রো ক্লোরোবেনজিন অধিক সক্রিয় কেন?
- গ. উদ্দীপকের কোষটির তড়িৎচালক বল হিসাব করে।
- ঘ. "উদীপকের বিজারণ অর্ধকোষের তড়িৎ বিশ্লেষ্য দ্রবণকে জিংকের পাত্রে রাখা উচিৎ নয়।"— উত্তিটির যথার্থতা প্রতিপাদন করো। 8

২২ নং প্রশ্নের উত্তর

ক্রি শিল্প কারখানার বর্জা পানি (Effluent) থেকে ক্ষতিকর রাসায়নিক পদার্থকে পৃথক করার প্রক্রিয়াকে ETP (Effluent Treatment Plant) বলে।

ব্র ক্লোরোবেনজিন ও 4-নাইট্রোক্লোরোবেনজিন এর সংকেত হলো—

4-नाइँछो क्रात्तावनजिन

ক্লোরোবেনজিনের C-Cl বন্ধন বেশ দৃ
। অর্থাৎ Cl কে বেনজিন চক্র
হতে কেন্দ্রাকষী -OH, -NH2, -CN ইত্যাদি মূলক দ্বারা প্রতিস্থাপন
করা কঠিন। এ কারণে ক্লোরোবেনজিন সহজে কেন্দ্রাকষী প্রতিস্থাপন
বিক্রিয়া দেয় না। অপরদিকে 4-নাইট্রো ক্লোরোবেনজিনে ইলেকট্রনাকষী
নাইট্রোমূলক (-NO2) যুক্ত থাকায় এটি বেনজিন চক্র হতে ইলেকট্রন
ঘনত্বকে নিজের দিকে টেনে নেয়। ফলে C-Cl বন্ধন কিছুটা দুর্বল হয়।
এতে কেন্দ্রাকষী বিকারক দ্বারা Cl-পরমাণু তুলনামূলকভাবে সহজে
প্রতিস্থাপিত হয়। সূতরাং কেন্দ্রাকষী প্রতিস্থাপন বিক্রিয়ায়
ক্লোরোবেনজিন অপেক্ষা 4-নাইট্রো ক্লোরোবেনজিন অধিক সক্রিয়।

্যা ১৮ (গ) নং সৃজনশীল প্রশ্লোত্তর দুইব্য।

🔽 ১৮ (ঘ) নং সৃজনশীল প্রশ্নোত্তর দ্রন্টব্য।

의원▶২৩

দেওয়া আছে, $E^{o}_{MoMo^{2+}} = 1.18 \text{ V}$ এবং $E^{o}_{AVAi^{3+}} = +1.66 \text{V}$

TT. CTT. 2039/

- ক. ভায়াজোকুরণ কী?
- া, অ্যালকাইন-১ অমধর্মী কেন?
- গ. উদ্দীপকে AI পাত্তে সংঘটিত কোষ বিক্রিয়া লেখো।
- ঘ, উদ্দীপকে উল্লিখিত পাত্রটি কিছুদিন পর ছিদ্র হয়ে যাবে
 কিনা-- বিশ্লেখণ করো।

২৩ নং প্রশ্নের উত্তর

0-5°C তাপমাত্রায় প্রাইমারি অ্যারোমেটিক অ্যামিনের সাথে NaNO₂ এবং অজৈব এসিডের বিক্রিয়ায় ভায়াজোনিয়াম লবণ প্রস্তুত করার পশ্বতিতে ভায়োজোকরণ বলে।

আলকাইন-1 (RC = CH) অয়ধমী। এর কারণ অ্যালকাইন-। অণুর C পরমাণু sp সংকরিত। এ সংকর অরবিটালে s ও p এর অনুপাত (1:1)। ক্ষুদ্রাকৃতি s অরবিটাল এর অনুপাত তুলনামূলকভাবে বেশি হওয়ায় অ্যালকাইন-। এর C-H বন্ধনের শেয়ারকৃত ইলেকট্রন যুগল C পরমাণুর নিউক্লিয়াসের অধিকতর কাছে দৃঢ়ভাবে যুক্ত থাকে। তাই দূরে অবস্থিত H পরমাণুতির বন্ধন শিথিল হয়ে যায়। ফলে বন্ধনটি ভেক্তো H⁺ আয়ন হিসেবে সহজে বিচ্যুত হয়। এজন্যই অ্যালকাইন-। অয়ধমী হয়।

প ১৫ (গ) নং সৃজনশীল প্রয়োত্তর দুইব্য।

য ১৫ (ঘ) নং সৃজনশীল প্রশ্নোত্তর দ্রফীব্য।

ত্রা \blacktriangleright ১৪ (i) পটাসিয়াম ক্লোরেট $\stackrel{\Delta}{\longrightarrow}$ A(g) + KCl(s) (ii) Zn(s) + H₂SO₄ (লঘু) \longrightarrow B(g) + ZnSO₄

14. (41. 2039/

क. कार्र्वाकाणियन की?

খ. 0.50 nm দৈর্ঘ্যের তামার তারকে বাঁকানো সম্ভব নয় কেন? ২

গ. উদ্দীপকে 0.07g পরিমাণ A উৎপন্ন করতে কত গ্রাম বিক্রিয়কের প্রয়োজন?

ঘ, উদ্দীপকে A ও B গ্যাস দ্বারা ঘটিত কোষটি কীর্প হবে—
 বিশ্লেষণ করো।

২৪ নং প্রশ্নের উত্তর

ধনাথক চার্জযুক্ত কার্বন পরমাণু সংবলিত জৈব আয়নকে কার্বোক্যাটায়ন বলে।

0.50 nm দৈর্ঘ্যের (প্রকৃতপক্ষে 0.50 nm ব্যাস বিশিষ্ট) তামার তারটি ন্যানোকণার চেয়েও ক্ষুদ্র। ন্যানোকণার আকার হচ্ছে 1 থেকে 100 nm। এ ধরনের ক্ষুদ্র কণা স্পূল বস্তুর বৈশিষ্ট্য প্রদর্শন করে না। সাধারণত কপার তারের ব্যাস 50 nm এর চেয়ে বেশি হলে এটিকে সহজেই বাকানো যায়। কিতু একই কপার তারের ব্যাস 0.50 nm হলে (< 50nm) এটি অত্যন্ত শক্ত হয়। কারণ এ তারটি অসংখ্য ন্যানোকণা হারা গঠিত। ফলে একে কোনভাবেই বাকানো যায় না।

🌃 উদ্দীপকের (i) নং বিক্রিয়াটিকে সম্পন্ন করে পাই—

$$2KClO_3 \xrightarrow{\Delta} 3O_2(g) + 2KCl(s)$$

 $245g \qquad A$
 $3\times32g$

এখন, $3 \times 32 \text{ g O}_2$ উৎপন্ন করতে বিক্রিয়ক, KCIO_3 লাগে $= 245 \text{ g} \cdot$

 \Rightarrow 1g " " " $=\frac{245}{3 \times 32}$ g

 $\Rightarrow 0.07g$ " " = $\frac{245 \times 0.07}{3 \times 32}g$ = 0.1801 g

সুতরাং, 0.07g পরিমাণ Λ অর্থাহা O_2 উৎপন্ন করতে বিক্রিয়ক, পটাসিয়াম ক্লোরেট প্রয়োজন 0.1801g।

য় উদ্দীপকের (ii) নং বিক্রিয়াটি সম্পন্ন করে পাই—

 $Zn(s) + H_2SO_4 (\overline{e}\overline{q}) \longrightarrow H_2(g) + ZnSO_4$

A ও B অর্থাৎ অক্সিজেন ও হাইড্রোজেন ব্যবহার করে তড়িৎ শক্তি উৎপাদন করা যাবে। যে সেলের মাধ্যমে এই তড়িৎ শক্তি উৎপাদন করা যাবে সেটি হাইড্রোজেন ফুয়েল সেল নামে পরিচিত। এখানে হাইড্রোজেন ফুয়েল হিসেবে ব্যবহৃত হয়।

হাইড্রোজেন ফুয়েল সেল তিনটি অংশে বিভক্ত— অ্যানোড, ক্যাথোড ও ইলেকট্রোলাইট। অ্যানোড হিসেবে Ni আবরণযুক্ত সচ্ছিদ্র গ্রাফাইট এবং ক্যাথোড হিসেবে Ni ও NiO এর আবরণ দেওয়া গ্রাফাইট ব্যবহৃত হয়। ইলেকট্রোলাই হিসেবে তপ্ত KOH ব্যবহার করা হয়।

কোষের অ্যানোডে হাইড্রোজেনের প্রবাহ চালনা করা হয়। এখানে হাইড্রোজেন, প্রোটন এবং ইলেকট্রনে বিভাজিত হয়। আ্যানোড বিক্রিয়া (জারণ): $H_2 \rightarrow 2H' + 2e^-; E^0 =$ পূন্য ভোল্ট (0V)নতুন গঠিত প্রোটন পলিমার ইলেকট্রোলাইট মেমব্রেনের ভেতর দিয়ে

নতুন গঠিত প্রোটন পলিমার ইলেকট্রোলাইট মেমব্রেনের ভেতর দিয়ে অতিক্রম করে ক্যাথোড-পার্শ্বে উপনীত হয়। ইলেকট্রনসমূহ বাহ্যিক সার্কিট দিয়ে অ্যানোড থেকে ক্যাথোডে প্রবাহিত হয়। ফলে, জ্বালানি কোষে বিদ্যুৎ প্রবাহের সৃষ্টি হয়। এই একই সময়ে কোষের ক্যাথোড পাশে অক্সিজেন প্রবাহ চালনা করা হয়। ক্যাথোডে অক্সিজেন অণু পলিমার ইলেকট্রোলাইট মেমব্রেন ভেদ করে আগত প্রোটন এবং বাহ্যিক সার্কিট দিয়ে প্রবেশকৃত ইলেকট্রনের সাথে বিক্রিয়া করে পানি গঠন করে।

ক্যামোড বিক্রিয়া বিজারণ : $\frac{1}{2} {\rm O}_2(g) + 2 H^{\dagger} + 2 e^- \rightarrow {\rm H}_2 {\rm O}(I)$: ${\rm E}^0 = 1.229 \ {\rm V}$

সামগ্রিক বিক্রিয়া: $H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(I)$; $E^0 = 1.229 \text{ V}$

জ্বা ১২৫ A এবং B দুটি রিচার্জেবল ব্যাটারি। বাটারি A আই.পি.এস., মোটর গাড়ীতে, অপরদিকে ব্যাটারি B ল্যাপটপ, সেলফোন ইত্যাদিতে ব্যবহৃত হয়।

/য় লো ২০১৫/

ক, প্লাস্টিসিটি কী?

খ. TDS বলতে কী বুঝ?

গ. A-এর কোষ বিক্রিয়া লেখো।

 উদ্দীপকের ∧-এর তুলনায় B অধিক পরিবেশ বাল্ধব— বিশ্লেষণ করো।

২৫ নং প্রশ্নের উত্তর

ব্র তাপ প্রয়োগে পলিমার বস্তুর নমনীয়তা এবং চাপ প্রয়োগে এর বিভিন্ন আকৃতি লাভ করার ধর্মকে প্লাশ্টিসিটি বলে।

সারক্ষেস ওয়াটারে থাকা সমগ্র দ্রবীভূত কঠিন বস্তুকে TDS (Total dissolved solids) বলে। TDS এর মান দ্বারা ঐ নমুনা পানিতে থাকা জৈব, আজৈব কলয়েভাল কণা এবং এর চেয়ে ছোট আণবিক ও আয়নিক সব পদার্থের সামগ্রিক পরিমাণকে বুঝায়। TDS এর অন্তর্ভুক্ত প্রধান রাসায়নিক পদার্থসমূহ হলো Ca²⁺, Na⁺, K⁺, PO₄³, NO₃, Cl ইত্যানি।

উদ্দীপকের ব্যাটারি A আই,পি,এস ও মোটর গাড়ীতে ব্যবহৃত হয়।
আমরা জানি আই,পি,এস ও মোটর গাড়ীতে সাধারণত লেড স্টোরেজ
ব্যাটারি ব্যবহৃত হয়। লেড স্টোরেজ ব্যাটারির কোষটিকে নিম্নোক্তাবে
প্রকাশ করা যায়।

Pb, PbSO₄(s)/H₂SO₄ (कलीय)/PbO₂(s), Pb

উপরোক্ত কোষটির কোষ বিক্রিয়াকে দুইটি প্রক্রিয়ায় বর্ণনা করা যায়।

(i) ভিসচার্জ প্রক্রিয়া: এই প্রক্রিয়ায় লেড ইলেকট্রোড ইলেকট্রন ত্যাগ করে জারিত হয়ে অদ্রবণীয় PbSO₄ এর মসৃণ আবরণ তৈরি করে। ত্যাগকৃত ইলেকট্রন বাহ্যিক সার্কিট দিয়ে ক্যাথোডে (PbO₂-এ) প্রবেশ করে। ক্যাথোডে PbO₂ এর বিজারণ ঘটে।

অ্যানোড বিক্রিয়া : $Pb(s) + H_2SO_4(aq) \rightarrow PbSO_4(s) + 2H^+(aq) + 2e^-$

ক্যাথোড বিক্রিয়া ; PbO₂(s) + 2e⁻ + 2H⁺(aq) + H₂SO₄(aq) → PbSO₄(s) + 2H₂O(I)

অতএৰ সমগ্ৰ কোষ বিক্ৰিয়াটি হলো-

 $Pb(s) + PbO_2(s) + 2H_2SO_4(aq) \rightarrow 2PbSO_4(s) + 2H_2O(l)$

(ii) রিচার্জ প্রক্রিয়া: এ ক্ষেত্রে বাইরের উৎস থেকে একমুখী বিদ্যুৎ প্রবাহিত করে কোষকে চার্জিত করা হয়।

অ্যানোড বিক্রিয়া : PbSO₄ + 2e⁻ + 2H⁺ → Pb(s) + H₂SO₄(aq) ক্যাথোড বিক্রিয়া : PbSO₄(s) + 2H₂O(f) → PbO₂(s) + 2H⁺(aq) +

 $H_2SO_4(aq) + 2e^-$

অতএব সমগ্র কোষ বিক্রিয়াটি হলো— $2PbSO_4(s) + 2H_2O(I) \rightarrow Pb(s) + PbO_2(s) + 2H_2SO_4(aq)$ সূতরাং উপরোক্ত দুইটি প্রক্রিয়া থেকে নলা যায়, ডিসচাজিং এবং চার্জিং
উভয়ই ঘটনা এক সঞ্জো বিবেচনা করলে উদ্দীপকের A কোষের সমগ্র
কোষ বিক্রিয়াটি হবে একটি উভমুখী বিক্রিয়া। বিক্রিয়াটি—

$$Pb(s) + PbO_2(s) + 2H_2SO_4(aq) \xrightarrow{\text{ভিসচার্জিং}} 2PbSO_4(s) + 2H_2O(l)$$

উদ্দীপকে উল্লেখিত A এবং B ব্যাটারি দুটি যথাক্রমে লেড স্টোরেজ এবং লিথিয়াম আয়ন ব্যাটারি (LIB)। লেড স্টোরেজ ব্যাটারি বর্জারূপে ফেলে দিলে লেড ধাতু মাটিতে দৃষণ সৃষ্টি করে। লেড আয়ন (Pb²⁺) মাটি থেকে খাদ্য শৃজ্ঞলে প্রবেশ করে দেহে বিভিন্ন প্রকার রোগ সৃষ্টি করে। পক্ষান্তরে, নিকেল ও লেড ধাতু থেকে তৈরি ব্যাটারির তুলনায় লিথিয়াম ব্যাটারি দীর্ঘস্থায়ী হওয়ায় এটি তুলনামূলকভাবে কম বর্জারূপে মাটিতে যুক্ত হয়। লেড স্টোরেজ ব্যাটারিতে তড়িৎদ্বার হিসেবে ভারী লেড প্লেটের পরিবর্তে LIB তে হালকা Li/C আনোভরূপে এবং লিথিয়াম আয়রন ফসফেট ক্যাথোডরূপে ব্যবহৃত হয়। এছাড়া লেড স্টোরেজ ব্যাটারিতে H₂SO₄ তড়িৎ বিশ্লেষ্যের পরিবর্তে LIB তে অনেক কম ঝুঁকিপূর্ণ জৈব দ্রাবকে Li-যৌগ ব্যবহার করা হয়।

লেড বা ক্যাডমিয়াম বিষক্রিয়াযুক্ত (toxic) হলেও LIB এর কোন উপাদান বিষক্রিয়াযুক্ত নয় বলে LIB অনেক পরিবেশবান্ধব।

প্রাণ্ড ১৬

 $E_{M^{2+}/M}^{0} = -0.25V$, $E_{M^{+}/M^{+}}^{0} = +0.799V$ and $E_{Zn^{2+}/Zn}^{0} = -0.76V$

क, अनुवन्धी कात्रक की? .

খ. ল্যাকটিক এসিড আলোক সমাণুতা প্রদর্শন করে কেন?

গ্র উদ্দীপকের কোষটির কোষ বিক্রিয়া উল্লেখপূর্বক e.m.f. নির্ণয় করো।

ঘ. উদ্দীপকের অ্যানোডের দ্রবণকে জিংক-এর পাত্রে সংরক্ষণ করা যাবে কিনা— গাণিতিকভাবে বিশ্লেষণ করো। 8

২৬ নং প্রশ্নের উত্তর

ক্র কোনো অন্ন থেকে একটি প্রোটন (H⁺) অপসারণ করলে যে ক্ষারকের সৃষ্টি হয় তাকে ঐ অন্নের অনুবন্ধী ক্ষারক বলে।

🔞 ল্যাকটিক এসিডের গাঠনিক সংকেত হলো–

ল্যাকটিক এসিডের কেন্দ্রীয় কার্বন পরমাণুটি অপ্রতিসম কার্বন আর অপ্রতিসম কার্বনযুক্ত জৈব যৌগ আলোক সমাণুতা প্রদর্শন করে।

d-ল্যাকটিক এসিড /-ল্যাকটিক এসিড
d-সমাণুটি একবণী এক সমতলীয় আলোকে ডানদিকে ঘুরায় এবং /সমাণুটি একবণী এক সমতলীয় আলোকে বাম দিকে ঘুরায়। সূতরাং
ল্যাকটিক এসিড আলোক সমাণতা প্রদর্শন করে।

্রা দেওয়া আছে,

$$E_{M^{2+}/M}^{0} = -0.25 \text{ V}$$
 31, $E_{M/M^{2+}}^{0} = 0.25 \text{ V}$

এবং En'+M = +0.799 V

যেহেতু $E_{M^2+M}^{\circ}$ তড়িংদ্বারের বিজারণ বিভব $E_{M'+M'}$ তড়িংদ্বারের বিজারণ বিভবের চেয়ে কম, সেহেতু $E_{M^2+M}^{\circ}$ তড়িংদ্বারে জারণ এবং $E_{M'+M'}$ তড়িংদ্বারে বিজারণ ক্রিয়া সংঘটিত হবে।

জারণ অর্ধবিক্রিয়া: M(s) – 2e⁻ → M²⁺(aq) (অ্যানোডে বিক্রিয়া) বিজারণ ": 2 M'^{*}(aq) + 2e⁻ → 2M'(s) (ক্যাথোডে বিক্রিয়া)

কোষ বিক্রিয়া : M(s) + 2M' (aq) → M2+ (aq) + 2M'(s)

चन,

"e.m.f =
$$E_{M/M}^{0}^{2+} + M_{M'+M'}^{0}$$

= 0.25 + 0.799
= 1.049 V

সূতরাং উদ্দীপকের কোষটির e.m.f 1.049 V ।

আ উত্তর 'গ' হতে পাই, উদ্দীপকের অ্যানোড তড়িংদ্বার হলো $E_{MM^{2+}}$ এবং এর দ্রবণ হলো $M(NO_3)_2$ । এখন, $M(NO_3)_2$ দ্রবণকে জিংক পাত্রে সংরক্ষণ করতে চাইলে নিম্নোক্ত দুটি শর্ত বিবেচনা করতে হবে।

(i) জিংক পাত্রটি অ্যানোড হিসেবে ব্যবহৃত হচ্ছে কিনা।

(ii) কোষ বিক্রিয়াটি য়তঃস্ফূর্তভাবে ঘটছে কিনা।দেওয়া আছে,

$$E_{M^{2+}/M}^{0} = -0.25 \text{ V}$$
এবং $E_{Zn^{2+}/Zn}^{0} = -0.76 \text{ V}$ বা, $E_{Zn/2n^{2+}}^{0} = 0.76 \text{ V}$
এক্ষেত্রে কোষ বিক্রিয়াটিকে নিম্নোক্তভাবে প্রকাশ করা যায়।
 $Z_D(s) + M^{2+}(aq) \longrightarrow Zn^{2+}(aq) + M(s)$
এখন কোষ বিভব, $E_{cell}^{0} = E_{Zn/Zn^{2+}}^{0} + E_{M^{2+}/M}^{0}(s)$
 $= 0.76 + (-0.25)$
 $= 0.51 \text{ V}$

যেহেতু $E_{cell} > 0$, সেহেতু কোষ বিক্রিয়া স্বতঃস্ফূর্তভাবে ঘটবে। কোষ বিক্রিয়া স্বতঃস্ফূর্ত হওয়া মানে Z_{n} –পাত্র ক্ষয় হওয়া। যেহেতু $M(NO_3)_3$ দ্রবণ Z_{n} পাত্রে রাখলে Z_{n} –পাত্র ক্ষয় হবে, কাজেই $M(NO_3)_3$ দ্রবণকে Z_{n} পাত্রে রাখা যাবে না।

21 > 29

17. CAT. 2016/

- ক, ভায়াজোকরণ কী?
- थ. भिथारेन जाभिन जानिनित्नत क्रांस विन कातीय- वाचा कंद्रा। २
- গ. M"SO4 দ্রবর্ণের pH এর মান সাতের চেয়ে কম- ব্যাখ্যা করো। ৩
- ঘ. ১ এবং ২ নম্বর সেলে 50 কুলম্ব বিদ্যুৎ প্রবাহিত করলে বিভিন্ন তড়িৎদ্বারে বিভিন্ন পরিমাণ পদার্থ সঞ্চিত হওয়ার কারণ বিশ্লেষণ করো।

২৭ নং প্রশ্নের উত্তর

ত যে প্রক্রিয়ায় কোনো অ্যারোমেটিক প্রাইমারি অ্যামিন নিম্ন তাপমাত্রায় খনিজ এসিডের উপস্থিতিতে HNO_2 এর সাথে বিক্রিয়া করে ভায়াজোনিয়াম্ লবণে রূপান্তরিত হয় তাকে ভায়াজোকরণ বলে।

আনিলিনের N-পরমাণুর নিঃসজা ইলেকট্রন যুগল আংশিকভাবে বেনজিন বলয়ের সঞ্জারণশীল ন ইলেকট্রনের সাথে মিলিত হয়। ফলে Nএর নিঃসজা ইলেকট্রন জোড় বেনজিন বলয়ের দিকে আকৃষ্ট থাকে। তখন
প্রোটনের সাথে N-পরমাণুর নিঃসজা ইলেকট্রন যুগলের সন্লিবেশন বন্ধন
গঠনের সম্ভাবনা কমে যায়। এ কারণে অ্যানিলিন দুর্বল ক্ষারক। অপরদিকে
মিথাইল অ্যামিনে মিথাইল মূলক N-পরমাণুতে ইলেকট্রন খনত্ব বৃদ্ধি করে।
ফলে মিথাইল অ্যামিনের পানি থেকে প্রোটন গ্রহণের ক্ষমতা বৃদ্ধি পায়।
তাই মিথাইল অ্যামিন অ্যানিলিনের চেয়ে বেশি ক্ষারীয়।

উদ্দীপকে M" মৌলের পারমাণবিক ভর 63.5। অতএব এটি হলো Cu। কাজেই ৩নং দ্রবণটি হলো $CuSO_4$ দ্রবণ। $CuSO_4$ হলো দুর্বল ফারক $Cu(OH)_2$ ও সবল অন্ন H_2SO_4 এর লবণ। এটি পানিতে দ্রবীভূত অবস্থায় প্রথমে আয়নে বিভক্ত হয়। পরে দ্রবণে Cu^{2+} আয়ন পানির সাথে নিম্নোক্ত সমীকরণ মতে বিক্রিয়া করে দ্রবণে হাইদ্রোনিয়াম আয়ন (H_3O^+) বৃদ্ধি করে।

$$CuSO_4(s) \xrightarrow{H_2O} Cu^{2+} (aq) + SO_4^{2-} (aq)$$

 $Cu^{2*}(aq) + 4H_2O(I) \Longrightarrow Cu(OH)_2(aq) + 2H_3O^*(aq)$ H_3O^* আয়ন বৃদ্ধি মানে প্রোটন আয়ন বৃদ্ধি। তাই $CuSO_4$ এর জলীয় দ্রবণ অগ্লীয় হয়। দ্রবণ অগ্লীয় হলে pH এর মান 7 এর কম থাকে। সূতরাং $CuSO_4$ এর জলীয় দ্রবণের pH এর মান 7 এর কম হয়।

M' এর পারমাণবিক ভর 108। অতএব এটি হলো Ag। তাহলে
 ১নং দ্রবণ হলো AgNO3 দ্রবণ। M" এর পারমাণবিক ভর 52। অতএব
 এটি হলো Cr। তাহলে ২নং দ্রবণ হলো Cr(NO3)3 দ্রবণ। দুটি সেলে
 একই পরিমাণ অর্থাৎ 50 C বিদ্যুৎ প্রবাহিত করা হয়েছে।

ফ্যারাভের ২য় সূত্রানুসারে, যদি বিভিন্ন তড়িৎ বিশ্লেষ্য পদার্থের দ্রবণের মধ্যে একই সময়ের জন্য একই পরিমাণ তড়িৎ প্রবাহিত করা হয় তবে তড়িৎদ্বারে সঞ্চিত বা দ্রবীভূত পদার্থের ভর পদার্থসমূহের নিজ নিজ তড়িৎ রাসায়নিক তুল্যাংকের সমানুপাতিক।

এখন Ag এর তড়িৎ রাসায়নিক তুল্যাংক,
$$Z_1 = \frac{108}{1 \times 96500}$$

= 1.12×10^{-3}

এবং
$$Cr$$
 এর তড়িৎ রাসায়নিক তুল্যাংক, $Z_2 = \frac{52}{3 \times 96500}$
= 1.8×10^{-1}

ফ্যারাডের দ্বিতীয় স্ত্রানুসারে, W = ZIt তাহলে সঞ্চিত ∧g এর ভর,

 $W_2 = 1.8 \times 10^{-4} \times 50 \times t$ = 0.009 × t এখানে, t হলো উভয় ক্ষেত্রে তড়িৎ প্রবাহের সময়।

উপরোক্ত মান থেকে দেখা যাচ্ছে সঞ্চিত Ag এর ভর বেশি। সূতরাং তড়িৎ রাসায়নিক তুল্যাংকের পার্থক্যের কারণে উদ্দীপকের ১ এবং ২ নং সেলে বিভিন্ন তড়িৎছারে বিভিন্ন পরিমাণ পদার্থ সঞ্চিত হয়। প্রা > ২৮ রসায়ন ল্যাবে প্রদর্শক মহোদয় নিকেল লবণের একটি দ্রবণকে তামার পাত্রে সংরক্ষণ করতে বললে ল্যাব সহকারী ভূল করে তা একটি দস্তার পাত্রে রেখে দিলেন। নিকেল ও দন্তার জারণ বিভব যথাক্রমে +0.25∨ এবং +0.76∨। /ব. বে. ২০১৫

ক. লবণ সেতু কী?

19, 191, 2010

 খ. সিলভারের তড়িং রাসায়নিক তুল্যাঙ্ক 0.00118 gC⁻¹ বলতে কী বুঝায়?

গ, উদ্দীপকে লবণের দ্রবণে 60 মিনিট ধরে 0.1 অ্যাম্পিয়ার বিদ্যুৎ চালনায় ক্যাথোডে কী পরিমাণ ধাতু জমা হবে?

য়. উদ্দীপকে উল্লেখিত তড়িৎ বিশ্লেষ্যটি দীর্ঘ দিন জিডক-এর পাত্রে সংরক্ষণ করা যাবে কি? e.m.f এর মাধ্যমে বিশ্লেষণ করো। ৪

২৮ নং প্রশ্নের উত্তর

ব্দু দুটি অর্ধকোষের পরোক্ষ সংযোগের জন্য KCI বা KNO, দ্রবণ ভর্তি উন্টানো U-আকৃতির যে কাচনল ব্যবহৃত হয় তাকে লবণ সেতু বলে।

শ্রি সিলভারের তড়িং রাসায়নিক তুল্যাংক 0.001118 gC⁻¹ বলতে বুঝায় সিলভারের জলীয় দ্রবপে প্রতি কুলয় তড়িং প্রবাহে 0.001118 g সিলভার ধাতু অ্যানোডে দ্রবীভৃত বা ক্যাথোডে জমা হবে।

প্রপত্ত উদ্দীপকে উল্লেখিত লব্দটি হলো নিকেল লবণ। তড়িৎ বিশ্লেষণের ক্ষেত্রে Ni-লবণের দ্রবণে তড়িৎ প্রবাহিত করলে দ্রবণ হতে Ni²⁺ আয়ন ক্যাথোড়ে নিম্নরূপে জমা হয়।

Ni²⁺ + 2e → Ni (ধাতুরূপে ক্যাথোডে সঞ্চিত)

সূত্ৰমতে, W =
$$\frac{\text{MIt}}{z \times F}$$

= $\frac{58.69 \times 60 \times 60 \times 0.1}{2 \times 9600}$
= 0.10947g

এখানে,
সময়, t = 60 min = 60 × 60s
তড়িৎ প্রবাহ, 1 = 0.1A
আণবিক ভর, M = 58.69
যোজনী, z = 2
ফ্যারাডে ধ্রুবক, F = 96500 C
জমাকৃত ধাতু, W = ?

সূতরাং ক্যাথোডে 0.10947g Ni-ধাতু জমা হবে।

য় উদ্দীপকের তড়িং বিশ্লেষাটি হলো Ni লবণের দ্রবণ। দেওয়া আছে, Ni এর জারণ বিভব 0.25V এবং Zn এর জারণ বিভব 0.76V। জারণ বিভবের উপর মৌলের বিজারিত করার ক্ষমতা নির্ভর করে। যে মৌলের জারণ বিভব বেশি, সেই মৌল অন্য মৌলকে বিজারিত করে নিজে জারিত হওয়ার ক্ষমতা বেশি। এক্ষেত্রে জিঙক এর জারণ বিভব নিকেলের জারণ বিভব থেকে বেশি। সূতরাং Zn, Ni এর লবণ থেকে Ni কে বিজারিত করবে এবং নিজে জারিত হবে।

জারণ অর্ধকোষ বিক্রিয়া: $Zn \longrightarrow Zn^{2+} + 2e^-$ বিজারণ অর্ধকোষ বিক্রিয়া: $Ni^{2+} + 2e^- \longrightarrow Ni$

সমগ্র কোষ বিক্রিয়া: $Zn + Ni^{2*} \longrightarrow Zn^{2*} + Ni$ এখন কোষের তড়িচ্চালক বল,

$$\begin{split} E_{cell}^{0} &= E_{oic(anode)}^{0} + E_{red(cathode)}^{0} \\ &= E_{Zn/Zn^{2+}}^{0} + E_{Ni^{2+}/Ni}^{0} \\ &= \{0.76 + (-0.25)\} \text{ V} \\ &= 0.51 \text{ V} \end{split}$$

দেওয়া আছে, $E_{Zt/Zn^{2+}}^{0} = 0.76V$ $E_{NVN^{2+}}^{0} = 0.25V$ বা, $E_{Ni^{2+}/Ni}^{0} = -0.25V$

যেহেতু $E_{cell}^0 > 0$, কাজেই কোষ বিক্রিয়া শ্বতঃস্ফূর্ত হবে। কোষ বিক্রিয়া শ্বতঃস্ফূর্ত হওয়া মানে Z_n পাত্র ক্ষয় হওয়া। সূতরাং Z_n এর পাত্রে N_i লবণের দ্রবণ সংরক্ষণ করা যাবে না।

ক, তড়িৎদ্বার কী?

খ. একক তড়িংদার বিভব বলতে কী বুঝ?

গ. আনোভের দ্রবণকে Al-পাত্রে রাখলে কী ঘটবে?

উদ্দীপকের কোষে Zn-এর পরিবর্তে হাইড্রোজেন তড়িৎদারের
ব্যবহারে কোনো পরিবর্তন হবে কি? ব্যাখ্যা করো।

 ৪

২৯ নং প্রশ্নের উত্তর

ক তড়িৎ বিশ্লেষ্য কোষে যে দুটি ধাতব পরিবাহী অথবা গ্রাফাইটের দণ্ড নিমজ্জিত থাকে তাদেরকে তড়িৎদ্বার বলে।

কামের প্রত্যেকটি তড়িংদ্বারের পৃষ্ঠতলে একটি নির্দিষ্ট বিন্দুতে যে বিভবের সৃষ্ট হয় তাকে একক তড়িংদ্বার বিভব বলে

জিজ্ঞক (Zn) এর তড়িংদার বিভব 0.76V বলতে বৃঝায় কোনো বিদ্যুৎ উৎস হতে যদি 0.76V বিদ্যুৎ সরবরাহ করা হয় তাহলে Zn ইলেকট্রোড হতে Zn পরমাণু ইলেকট্রন ত্যাণ করে ধাতব আয়ন হিসেবে দ্রবণে চলে আসে।

📆 ১৫(ঘ) নং সৃজনশীল প্রশ্লোত্তর দ্রুউব্য।

্য প্রদত্ত কোষটির বিক্রিয়া ; Zn(s) + Cu²⁺ ← Zn²⁺ + Cu(s) তড়িংচালক শস্তি,

$$E_{cell} = E^{\circ}_{cell} - \frac{0.0592}{n} \log \frac{[Zn^{2+}]}{[Cu^{2+}]}$$

$$\Rightarrow E_{cell} = E^{\circ}_{Zn/Zn^{2+}} + E^{\circ}_{Cu^{2+}/Cu} - \frac{0.0592}{2} \log \frac{0.1}{0.05}$$

$$= 0.76 + 0.34 - \frac{0.0592}{2} \times 0.301029$$

$$= 1.1089 \text{ Volt}$$

অ্যানোডে Zn এর পরিবর্তে H_2 ব্যবহার করলে কোষ বিক্রিয়াটি হবে। $H_2(g)+Cu^{2+}(s)\Longrightarrow 2H^+(s)+Cu(s)$ H_2 -তড়িংদ্বার বিভব, $E^o_{H_0/H^+}=0$ volt

 $E^{ceil} = E_o^{H^3/H_*} + E_o^{Co_5/Cn}$

= (0 + 0.34) V

= 0.34 Volt

অর্থাৎ, তড়িংচ্চালক শক্তির মান কমে যাবে। তড়িৎচ্চালক শক্তির মান কমে যাওয়ায় বিক্রিয়াক আগের চেয়ে ধীরে হবে।

 $Pb^{2+}(aq) \longrightarrow Ni^{2+}(aq) + Pb(s)$ $E^{0}_{Ni^{2+}/Ni} = -0.25V \text{ GeV} E^{0}_{Pb^{2+}/Pb} = -0.126V$

(भारता कारकाँ करनका)

ক, লুকাস বিকারক কী?

খ. বেনজিনকে আারোমেটিক যৌগ বলা হয় কেন?

গ্র উদ্দীপকের কোষের চিত্র আঁক ও কোষ বিক্রিয়া লিখ।

ঘ, বিক্রিয়াটি য়তঃস্ফুতভাবে ঘটবে কি? - গাণিতিকভাবে ব্যাখ্যা
করো।

৩০ নং প্রশ্নের উত্তর

ক অনার্দ্র ZnCl2 এবং গাঢ় HC। এর মিশ্রণকে লুকাস বিকারক বলে।

যে সকল যৌগ অ্যারোমেটিসিটি অর্থাৎ হাকেল তত্ত্ব মেনে চলে তাদেরকে অ্যারোমেটিক যৌগ বলে। হাকেল তত্ত্ব মতে যেসব বলয়াকার সমতলীয় জৈব যৌগের অণুতে সঞ্চরণশীল (4n + 2) সংখ্যক পাই (π) ইলেকট্রন থাকে তাদেরকে অ্যারোমেটিক যৌগ শলে। বেনজিনের গঠন চেন্টা সমতলীয় চাক্রিক এবং বলয় গঠনকারী পরমাণর সংখ্যা 6।

ii. বলয় গঠনকারী প্রতিটি পরমাণুতে p-অরবিটাল আছে। আপবিক অরবিটালে সঞ্চারনশীল π ইলেকট্রন সংখ্যা 6 যা $[4n+2=4\times 1+2=6$ (যখন n=1)] হাকেল তত্ত্বকে অনুসরণ করে। একারণে বেনজিন একটি অ্যারোমেটিক যৌগ।

গ ২১ (গ) নং সৃজনশীল প্রশ্নোত্তর অনুরূপ।

য ২১ (ঘ) নং সৃজনশীল প্রশ্নোত্তর অনুরূপ।

প্রশা > ৩১

2

9

 $\Sigma_{\text{Fe/Fe}} = +0.44 \text{ V}, 12 \text{ sn/Sn} = 0.036 \text{ V}$ [1887520] $\Sigma_{\text{Fe/Fe}} = 0.036 \text{ V}$

क. कृरग्रन काथ की?

খ, বেনজিন একটি অ্যারোমেটিক যৌগ–ব্যাখ্যা করে।

 উদ্দীপকের আানোড ও ক্যাথোড বিক্রিয়া লিখ এবং 25°C তাপমাত্রায় এর emf হিসাব করো।

ঘ. Sn পাত্রে Fc₂(SO₄)₂ দ্রবণে রাখা যাবে কিনা-গাণিতিকভাবে বিশ্লেষণ করো।

৩১ নং প্রশ্নের উত্তর

ক যে কোষে তড়িৎ রাসায়নিক বিক্রিয়ার মাধ্যমে হাইড্রোজেন অথবা হাইড্রোজেন ঘটিত জ্বালানিকে সরাসরি বৈদ্যুতিক শক্তিতে পরিণত করা হয় তাকে ফুয়েল সেল বলে।

য় যে সকল যৌগ অ্যারোমেটিসিটি অর্থাৎ হাকেল তত্ত্ব মেনে চলে তাদেরকে অ্যারোমেটিক যৌগ বলে। হাকেল তত্ত্ব মতে যেসব বলয়াকার সমতলীয় জৈব যৌগের অপুতে সঞ্চরণশীল (4n + 2) সংখ্যক পাই (#) ইলেকট্রন থাকে তাদেরকে অ্যারোমেটিক যৌগ বলে।

 বেনজিনের গঠন চেল্টা সমতলীয় চাক্রিক এবং বলয় গঠনকারী পরমাপুর সংখ্যা 6।

ii. বলয় গঠনকারী প্রতিটি পরমাণুতে p-অরবিটাল আছে। আগবিক অরবিটালে সম্বারনশীল π ইলেকট্রন সংখ্যা 6 যা $[4n+2-4\times 1+2=6$ (যখন n=1)] হাকেল তত্ত্বকে অনুসরণ করে।

একারণে বেনজিন একটি অ্যারোমেটিক যৌগ।

🕥 ৫(গ) নং সৃজনশীল প্রশ্লোতর দ্রন্টব্য। 🗀

য ৩(ঘ) নং সৃজনশীল প্রশ্নোতরের অনুরূপ।

 Sn^{2+} = 0.15M, $[AI^{3+}] = 0.25M$ GR $E^{\circ}_{Sn^{2+}/Sn} = -0.14V$ (25°C) $[Sn^{2+}] = 0.15M$, $[AI^{3+}] = 0.25M$ GR $E^{\circ}_{Sn^{2+}/Sn} = -0.14V$ (25°C)

ক, লবণ সেতু কী?

খ. 64g O2 গ্যাসের জন্য ভ্যান্ডার ওয়ালস সমীকরণ লিখ।

থ. 64g O2 গ্যানের অন্য ভ্যানভার ওরালন সমাকরণ লব। গ. কোষের emf বলতে কী বুঝং উদ্দীপকের কোমের বিক্রিয়া লিখ। ত

ঘ. কোষের বিক্রিয়াটি স্বতস্ফুতভাবে ঘটবে কি?

৩২ নং প্রমের উত্তর

কু দৃটি ভড়িৎদ্বারের মাঝে পরোক্ষ সংযোগ স্থাপনের জন্য ওড়িং বিশ্লেষা লবপের (NaCl, Na₂SO₄, KCl, NH₄Cl প্রভৃতি) দ্রবণপূর্ণ যে বাঁকা কাচনল (U-আকৃতির) ব্যবহার করা হয় তাকে লবণ সেতু বলে।

ব্র ভ্যানডারওয়ালস এর সাধারণ সমীকরণ হচ্ছে—

$$\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$

এখন 64 g অক্সিজেন অর্থাৎ 2 mol অক্সিজেনের (n = 2) জন্য সমীকরণটি হবে—

$$\left(P + \frac{4a}{V^2}\right)(V - 2b) = 2RT$$

া তড়িৎ রাসায়নিক কোষে সৃষ্টি বিভব যা তড়িৎচার্জকে প্রবাহিত বা চালিত করে তাকে কোষের তড়িচ্চালক বল বা সংক্ষেপে emf বলে। উদ্দীপকের AI তড়িংহারের প্রমাণ বিজারণ বিভব

 $E_{Al^{97}/Al} = -1.66 \text{ V}$ এবং Sn তড়িৎদ্বারের প্রমাণ বিজারণ বিভব $E^{\circ}_{Sn^{29}/So} = -0.14 \text{ V}$ । অর্থাৎ Al এর প্রমাণ বিজারণ বিভব Sn এর প্রমাণ বিজারণ অপেক্ষা কম। এজন্য Al এর জারণ হবে ও Sn এর বিজারণ হবে। অর্থাৎ Sn তড়িৎদ্বার ক্যাথোড ও Al তড়িৎদ্বার অ্যানোড।

অ্যানোড অর্ধবিক্রিয়া : $AI \longrightarrow AI^{3+} + 3e^-$ ক্যাথোড অর্ধবিক্রিয়া : $Sn^{2+} + 2e^- \longrightarrow Sn$

কোষ বিক্রিয়া : 2AI + 3Sn²⁺ = 2AI³⁺ + 3Sn

য উদ্দীপকের কোষটির কোষ বিক্রিয়া : 2AI + 3Sn²⁺ ⇒ 2AI³⁺ + 3Sn

দেওয়া আছে.

 Sn^{2+} আয়নের ঘনমাত্রা, $[Sn^{2+}] = 0.15 M$

 Al^{3+} " $[Al^{3+}] = 0.25 M$

এখন.

$$E_{Cell} = E^{\circ}_{Cell} - \frac{RT}{nF} \ln \frac{[Al^{3+}]^2}{[Sn^{2+}]^3}$$

এখন.

$$E_{ceil} = E^o_{orien} + E^o_{feorien}$$

= + 1.66 + (-.14) V
= 1.52 V

এখানে.

স্থানান্তরিত ইলেকট্রন সংখ্যা, n = 6

গ্যাস ধ্বক, R = 8.316 J mol -1K-1

তাপমাত্রা, T = 25°C

= (25 + 273) K

= 298 K

$$\therefore E_{cell} = 1.52 - \frac{8.316 \times 298}{6 \times 96500} \ln \frac{(0.25)^2}{(0.15)^3}$$

$$= 1.52 - 9.857 \times 10^{-3} \times 1.2676$$

$$= 1.5075 \text{ V}$$

এখানে, E_{cell} এর মান ধনাত্মক। সূতরাং, কোষ বিক্রিয়া স্বতঃস্ফূর্ত।

2H ▶ 90 Zn/ZnSO4 (0.01M) || CuSO4 (0.001M) /Cu

 $[E_{Zn^{2+}/Zn} = -0.76 \text{ V}, E_{Cu^{2+}/Cu} = +0.34v]$

(स्मोक्सातशाँ कृताकाँ करनवा)

- ক, বিয়ার্ট-ল্যাম্বার্ট সূত্রটি বর্ণনা কর।
- খ. H2SO4 কেন লেড স্টোরেজ ব্যাটারীতে ব্যবহৃত হয়?
- গ্র উদ্দীপকের কোষটির তভিচ্চালক বল গণনা কর।
- ঘ. উদ্দীপকে অনুসারে কপার পাত্রে ZnSO₄ দ্রবণ রাখা কি সম্ভব?
 ব্যাখ্যা কর।

৩৩ নং প্রশ্নের উত্তর

ক কোনো দ্রবণে আপতিত রশ্মির নির্গত অংশের তীব্রতা প্রাসের হার শোষক মাধ্যমের পুরুত্ব এবং দ্রবণের ঘনমাত্রার সমানুপাতিক।

ব্যাটারিকে সক্রিয় ও কার্যকর করার জন্য ব্যাটারির মধ্যে 1.15 আপেক্ষিক গুরুত্বের H₂SO₄ দ্রবণ যোগ করা হয়। বিক্রিয়া : কোষ, Pb, PbSO₄ | H₂SO₄ (দ্রবণ) | PbO₂ (দ্রবণ)

অ্যানোড বিক্রিয়া : Pb + H2SO4 ---- PbSO4 + 2e-

ক্যাখোড বিক্রিয়া : PbO₂ + 4H⁺ + SO₄²⁻ + 2e⁻ → PbSO₄ + 2H₂O

📅 ১ (গ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ।

য ১০ (ঘ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ।

ক. প্রমাণ ইলেকট্রোড বিভব কী?

খ. পরিমাণগত পন্ধতিতে pH মিটারের ব্যবহার লিখ।

গ. উদ্দীপকের emf হিসাব করো। যেখানে জারণ বিভব ও বিজারণ বিভব যথাক্রমে +1.7V ও +0.3V এবং ঘনমাত্রা যথাক্রমে 0.1M ও 0.05M]

ঘ. উদ্দীপকের কোষটি শক্তি উৎপাদনের জন্য একটি নির্ভরযোগ্য উৎস –ব্যাখ্যা করো।

৩৪ নং প্রশ্নের উত্তর

ক প্রমাণ অবস্থায় অর্থাৎ 25°C তাপমাত্রায় 1M ঘনমাত্রা বিশিষ্ট তড়িৎ বিশ্লেষ্যের সাথে তড়িৎদ্বারের যে বিভব পার্থক্যের সৃষ্টি হয় তাকে প্রমাণ তড়িৎদ্বার বিভব বলে।

য pH মিটারের ব্যবহার:

i. পরিমাণগত পশ্বতিতে pH মেট্রিক টাইট্রেশনে pH মিটার ব্যবহৃত হয়।

 বিভিন্ন রাসায়নিক শিল্পে যেমন, রং শিল্পে, ঔষধ শিল্পে, রঞ্জন শিল্পে pH মিটার ব্যাপকভাবে ব্যবহৃত হয়।

iii. ল্যাবরেটরিতে দ্রবণের অন্ধীয় বা ক্ষারীয় অবস্থা নির্ণয় করার উদ্দেশ্যে pH ব্যবহার করা হয়।

iv. পানির বিশুন্ধতার মানদণ্ড হিসেবে pH মাপার জন্য pH মিটার ব্যবহার করে থাকি।

প্রামরা জানি,

$$E_{cell} = E^{\circ}_{cell} - \frac{0.0592}{n} \log \frac{[\text{বিজারণ}]}{[\text{জারণ}]}$$
....(i)

এখানে, E° জাবে = E°Al/Al³⁺ = + 1.70 V

 $E^{o}_{footest} = E^{o}_{Cu^{2+}/Cu} = \pm 0.30V$

$$\begin{array}{l} E^{o}_{\ cell} = E^{o}_{\ untert} + E^{o}_{\ feature 1} \\ = (1.70 + 0.30) V \\ = 2.0 V \end{array} \hspace{0.2cm} \begin{bmatrix} Cu^{2^{+}} \\ Al^{3^{+}} \end{bmatrix} = 0.1 M \\ Al^{3^{+}} = 0.05 M \end{array}$$

(i)নং হতে পাই,

২

$$E_{cell} = 2.0 - \frac{0.0592}{6} \log \frac{[Al^{3+}]^2}{[Cu^{2+}]^3}$$

$$= 2.0 - \frac{0.0592}{6} \log \frac{(0.05)^2}{(0.1)^2}$$

$$= 2.0 - 3.926 \times 10^{-3}$$

 E_{cell} \P EMF = 1.996 V

অ্যানোড জারণ বিক্রিয়া; $Al(s) \rightarrow Al^{3+}_{(aq)} + 3e^{-}$ ক্যাথোডে বিজারণ বিক্রিয়া : Cu²⁺(uq) + 2e →Cu(s)

সার্বিক কোষ বিক্রিয়া; 2Al(s) + 3Cu⁺²(aq) ==== 2Al¹⁺(aq) + 3Cu(s) অ্যালুমিনিয়াম ইলেকট্রন ত্যাগ করে জারিত হয় এবং ত্যাগকৃত ইলেকট্রন বহিঃবর্তনী দিয়ে ক্যাথোডের দিকে প্রবাহিত হয়। ক্যাথোডে Cu²⁺ আয়ন উক্ত ইলেকট্রনকে গ্রহণ করে বিজারিত হয় ও ক্যাথোডের গায়ে Cu ধাতু জমা হয়। এভাবে বাম থেকে ডানদিকে ইলেকট্রনের প্রবাহ তথা তড়িৎ শক্তি প্রবাহিত হয়।

যেহেতু E_{coll} = 1.996V ধনাত্মক তাই ক্রমাগতভাবে রাসায়নিক শক্তি ব্যবহার করে তড়িংশক্তি উৎপন্ন হবে।

23 D OG

 $E^{0}(Mg^{2+}/Mg) = -2.36V$ এবং $E^{0}(Ag^{+}/Ag)$

ক. রেফারেন্স তড়িংছার কী?

খ. 0.1M NaOH এবং 0.1M NH4OH এর মধ্যে কোনটি তড়িৎ পরিবাহীতা বেশি— ব্যাখ্যা কর।

ণ্, উদ্দীপকের ১নং কোষের সাম্যধ্রুবকের মান নির্ণয় কর।

ঘ_ উদ্দীপকের ২নং কোষটির অ্যানোভ ও ক্যাথোড সংঘটিত বিক্রিয়া উল্লেখপূর্বক পরিবেশের উপর প্রভাব সম্পর্কে তোমার মতামত ব্যাখ্যা কর।

৩৫ নং প্রহার উত্তর

😎 কোনো একক তড়িংদ্বারের বিভব নির্ণয়ের জন। একে তড়িংহার বিভব জানা আছে এ রকম যে তড়িংনারের সঞ্জো সংযোগ স্থাপন করে ভড়িৎ রাসায়নিক কোষ গঠন করা হয় তাকে রেফারেন্স তড়িৎস্বার বলে।

0.1M NaOH & 0.1M NH4OH यह भएवा 0.1M NaOH यह ভড়িৎ পরিবাহীতা বেশি। NH₄OH ও NaOH এর মধ্যে NaOH একটি শক্তিশালী তড়িং বিশ্লেষ্য পদার্থ এবং NH₄OH একটি দুর্বল তড়িৎ বিশ্লেষ্য। ঘনমাত্রা সমান হওছায় NaOH এর দ্রবণে উৎপন্ন আয়নের (Na' ও OH) পরিমাণ বেশি, তাই NaOH এর তড়িং পরিবাহিতা বেশি।

$$NaOH \longrightarrow Na^* + OH^-$$

NH $_4OH \longrightarrow SIRHO \longrightarrow NH_4^* + OH^-$

ক্র এখানে, $E_{Ag'/Ag}^0 = +0.799V$ এবং $E_{Mg'/Mg}^0 = -2.36V$ দুইটি বিজারণ বিভবের মধ্যে যেই কোষের মানটি বড় সেটি বিজারিত হবে ও অপরটি জারিত হবে।

$$: E_{Mg/Mg^{3}}^{0} = + 2.36V$$
 $E = E_{Mg/Mg^{3}}^{0} + E_{Ag/Ag}^{0}$
 $= (2.36 + 0.799)V$
 $= 3.159V$
আমরা জানি,

$$E_{cell} = E_{cell}^0 - \frac{0.0592}{n} \log Q \dots (i)$$

সাম্যাবস্থায়, EMF বা, $E_{cell} = 0$

$$0 = E_{cell}^{*} - \frac{0.0592}{n} \log Q$$

$$\Rightarrow \frac{0.0592}{2} \log Q = 3.159$$

$$\Rightarrow \log Q = \frac{3.159}{0.0296}$$

$$\Rightarrow Q = \log^{-1} \left(\frac{3.159}{0.0296} \right)$$

সাম্যধুৰক Q = 🗴 (অসীম) অৰ্থাৎ বিক্ৰিয়াটি অনেক বেশি সম্মুখবৰ্তী (বিক্রিয়াটি প্রায় শেষ হয়ে যাবে)।

🗸 ২নং কোষের ক্ষেত্রে—

আনোডে জারণ বিক্রিয়া : 2H₂ + 4OH → 4H₂O + 4e ক্যাথোভে বিজারণ বিক্রিয়া : $O_2 + 2H_2O + 4e \longrightarrow 4OH^-$

সার্বিক কোষ বিক্রিয়া : $2H_2 + O_2 \longrightarrow 2H_2O$

উদ্দীপকের (ii) নং কোষটি হলো হাইড্রোজেন ফুয়েল সেল।

এ সেলের জ্বালানি হিসেবে হাইড্রোজেন ও অক্সিজেন ব্যবহার করা হয়। H₂ – O₂ ফুয়েল সেলে সাধারণত NI ধাতুর আস্তরণপূর্ণ গাফাইটকে তড়িৎদার হিসেবে ব্যবহৃত হয়। এক্ষেত্রে তড়িৎদারদমকে KOH দ্রবণে • ভূৰিয়ে রাখা হয়। এ সেলের জরণ বিক্রিয়ায় শক্তি সরাসরি তড়িৎ শক্তিতে রূপান্তরিত হয়। এ সেলের তড়িৎ দক্ষতা প্রায় 98% এবং এটিকে প্রায় 1000 ঘণ্টা যাবং ব্যবহার করা যায়।

এটি অত্যন্ত হালকা হওয়ায় যান্ত্রিক সুবিধা বিবেচনা করে এটিকে মহাশুনায়ানে ব্যবহার করা হয়। এ সেলের বিদ্যুতের ঘনত্ব অনেক বেশি খওয়ায় কোনো প্রকার অসুবিধা ব্যতিরেকে পৃথক একক সেলগুলোকে সংযুক্ত করে উচ্চ ভোন্টেজ উৎপন্ন করা সম্ভব। এ কোষটি নবায়নযোগ্য জ্বালানির উৎস হিসেবেও বিবেচিত। একেত্রে উৎপন্ন পদার্থ শুধু পানি হওয়ায় তা পরিবেশে কোনো বুপ দৃষণ ঘটায় না। এ সেলে কোনোরুপ শব্দ দূষণ তা তাপীয় নূষণ ঘটে না বলে এটিকে আবাসিক এলাকায় স্থাপন করা যায়। সর্বোপরি, এসব সুবিধাসমূহ বিবেচনা করে কোষটিকে পরিবেশ বাস্ধব ফুয়েল সেল বলা যায়।

出当 > 0を

[मर्गेत ८७म करमञ् । गर्म]

ক, প্রমাণ তড়িংদ্বার বিভব কী?

খ, লেড সঞ্ময়ী কোষে H₂SO₄ এবং Pb ধাতুর ভূমিকা ব্যাখ্যা

গ, উদ্দীপকের এসিড দ্রবণের pii নির্ণয় কর।

ঘ, উদ্দীপকের উভয় তড়িৎদার নির্দেশক তড়িৎদার হিসেবে কাজ করে- বিশ্লেষণ কর।

৩৬ নং প্রয়ের উত্তর

📆 প্রমাণ অবস্থায় অর্থাৎ 25°C তাপমাত্রায় IM ঘনমাত্রা বিশিষ্ট তড়িৎ বিশ্লেষ্যের সাথে তড়িৎস্নারের যে বিভব পার্থক্যের সৃষ্টি হয় তাকে প্রমাণ তড়িংদ্বার বিভব বলে।

🛾 লেভ সঞ্ময়ী কোষ একটি বিচার্জেবল ব্যাটারী। এ কোষে তড়িৎ বিশ্লেষ্যরূপে H₂SO₄ ব্যবহার করা হয়। ডিসচার্জিং এর সময়

বিদ্যুৎক্ষরণের ফলে H_2SO_4 উৎপন্ন হয়। আবার চার্জিং করা হলে H_2SO_4 উৎপন্ন হয়। আবার চার্জিং করা হলে H_2SO_4 পুনরুৎপাদিত হয়।

লেড (Pb) পাতটি ডিসচার্জের সময় অ্যানোড ও চার্জিং এর সময় ক্যাথোড হিসেবে কাজ করে।

তা আমরা জানি,

হাইড্রোজেন তড়িংদার

$$E_{H_2/H^+} = 0.0592 \text{ pH} \dots (i)$$

নির্দেশক ক্যালোমেল তড়িংহারের সাথে হাইদ্রোজেন তড়িংহার যুক্ত করলে

$$\begin{split} E_{cell} &= E_{H_2/H^*} = E_{calornel} \\ &\Rightarrow E_{cell} = 0.0592 \text{ pH} + E_{cal} \\ &\Rightarrow \text{pH} = \frac{E_{cell} - E_{cal}}{0.0592} \dots \end{aligned} \tag{ii)}$$

এবানে, E_{cell} = 0.57V এবং E_{cel} = 0.33V'

.: (ii) নং হতে পাই

$$pH = \frac{0.57 - 0.33}{0.0592}$$

.: pH = 4.05

- নির্দেশক তড়িংহার : কোন তড়িংহার বা ইলেকট্রোডের বিভব মান পরিমাপ করার জন্য অবশাই তাকে একটি প্রমাণ তড়িংহারের সাথে যুক্ত করে একটি সম্পূর্ণ কোষ তৈরি করার পর ঐ সৃষ্ট কোষের e.m.। নির্ণয় করতে হয়। এ প্রমাণ তড়িংহারকে নির্দেশক বা রেফারেন্স তড়িংহার বলা হয়। নির্দেশক বা রেফারেন্স তড়িংহার দুই প্রকার। যেমন
- প্রাইমারি নির্দেশক যেমন প্রমাণ হাইড্রোজেন তড়িৎয়ার ও
- সেকেন্ডারি নির্দেশক যেমন ক্যালোমেল তড়িৎয়ার।

অ্যানোডরুপী জিভক তড়িৎদারের সাথে প্রমাণ হাইদ্রোজেন তড়িৎদারের সংযোগের ফলে সৃষ্ট কোষের তড়িচ্চালক বলের সাহায্যে জিভক তড়িৎদারের বিভব নির্ণয় করা যায়। এক্ষেত্রে কোষটি হবে নিম্নরূপ:

 $Zn(s) / Zn^{24}(aq) | H^4(aq) (a = 1), H_2(g) (1atm) | Pt. E^{\alpha}_{OSFR} = 0.76$

পটেনসিওমিটারের সাহায্যে কোষটির বিভব নির্ণয় করা যায়। প্রাপ্ত e.m.f হচ্ছে Zn | Zn²' তড়িংছারের বিভবের মান 0.76 Volt (হাইড্রোজেন ক্ষেলে), কেননা, প্রমাণ হাইড্রোজেন তড়িংছারের বিভব শূন্য। এক্ষেত্রে জিংক তড়িংছারের জারণ এবং হাইড্রোজেন তড়িংছারের বিজ্ঞারণ ঘটে। যেমন,

জিংক তড়িৎমার : $Zn(s) = Zn^{2*}(aq) + 2e^{-} E^{o}_{ox} = 0.76 \text{ Volt}$ ঘাইড্রোজেন তড়িৎমার : $2H^{*}(aq) + 2e^{-} = H_{2}(g) (1atm)E^{o}_{red} = 0.00 \text{ Volt}$

 $+ H_2(g) (1atm) E_{edl}^o = 0.76 Volt$

প্রমাণ ক্যালোমেল ইলেকট্রোড মূলত মারকারি, মারকিউরাস ক্লোরাইড ও KCI দ্রবণ দারা গঠিত একটি সেকেডারি নির্দেশক তডিংঘার। ইলেকট্রোডটিকে নিমনুপে প্রকাশ করা হয়:

Hg | Hg2Cl2(s), KCl (1 mole)

25°C তাপমাত্রায় প্রমাণ হাইড্রোজেন ইলেকট্রোডের সাথে হাইড্রোজেন স্কেলে ক্যালোমেল ইলেকট্রোডের সাথে হাইড্রোজেন স্কেলে ক্যালোমেল ইলেকট্রোডের মান হলো:

- Hg/Hg₂Cl₂(s)/0.1M KCl; E°_{OX} = -0.334V
- Hg/Hg₂Cl₂(s)/0.1M KCl; E^o_{OX} = -0.280V
- Hg/Hg₂Cl₂(s)/সম্পৃত্ত KCl; E°_{OX} = -0.24V
 এই মানগুলোকে প্রমাণ মান হিসেবে ব্যবহার করে অন্য একটি অর্ধকোষের মান নির্ণয় করা যায়।

অবকোবের মান নিশার করা বায় । এভাবে হাইড্রোজেন তড়িৎহার ও ক্যালোমেল তড়িৎহার নির্দেশক তড়িৎহার হিসেবে ব্যবহৃত হয় ।

2717 D 09

যেখানে, E^a_{Zn/Zn²⁺} = + 0.76V, E^a_{Cu/Cu²⁺} = - 0.34V /প্রাক্তিক উত্তর্গ্য মতেল কলেজ, চাকা/

Z

क. COD की?

খ. মোলার দ্রবণ একটি প্রমাণ দ্রবণ— ব্যাখ্যা করো।

প. 25°C তাপমাত্রায় উদ্দীপকের তড়িং রাসায়নিক কোষটির তড়িংচালক বল (cmf) নির্ণয় করো।

ঘ, উদ্দীপকের বিজারণ অর্ধকোষে বিদ্যমান তড়িৎ বিশ্লেষ্য পদার্থকে লোহার পাত্রে রাখা যাবে কি? গাণিতিকভাবে বিশ্লেষণ করো। [Erepe2+ = + 0.44 V]

৩৭ নং প্রয়ের উত্তর

পানির নমুনায় পচনশীল ও অপচনশীল সব ধরনের জৈব দৃষক পদার্থকে বিযোজনের জন্য প্রয়োজনীয় অক্সিজেনের পরিমাণকে COD (Chemical Oxygen Demand) বলে।

বি দ্রবণের ঘনমাত্রা সঠিকভাবে জানা থাকে তাকে প্রমাণ দ্রবণ বলে। যেমন- 1 মোলার দ্রবণ বলতে 1L বা 1000 mL দ্রবণে 1 mol দ্রব দ্রবীভূত থাকাকেই বোঝায় অর্থাৎ এর ঘনমাত্রা 1M, যা আমাদের জানা। তাই যোলার দ্রবণ একটি প্রমাণ দ্রবণ।

্র উদ্দীপকের কোষে ক্ষেত্রে—

$$\begin{split} E_{cell} &= E_{cell}^0 - \frac{RT}{nF} \ln \frac{[Zn^{2+}]}{[Cu^{2+}]} \\ &= E_{Zn/Zn^{3+}}^0 - E_{Cu/Cu^{2+}}^0 - \frac{8.31 \times 298}{2 \times 96500} \\ & \cdot \\ & \cdot \\ & \ln \frac{0.1}{0.05} \end{split} \quad \begin{split} E_{Zn/Zn^{3+}}^0 &= +0.76V \\ E_{Cu/Cu^{3+}}^0 &= -0.34V \\ T &= 25^{\circ}C = 25 + 273 \\ &= 298K \\ n &= 2 \\ F &= 96500 \end{split}$$

 $= 0.76 - (-0.34) - 8.89 \times 10^{-3}$ = 1.09V

সূতরাং কোষটির তড়িংচালক বল 1.09V ।

🗓 ১৮(ঘ) নং সৃজনশীল প্ররোভরের অনুরূপ।

প্রশ্ন ১ ওচ

/धारेंछिहान स्कृत कड करमक, प्रतिवित्त, छाका/

ক, এনানশিওমার কী?

- इंथाइँगरक (প্রাপাইনের সমগোত্রক বলা হয়—বয়াখ্যা কর।
- গ, 25°C তাপমাত্রায় উদ্দীপকের কোষের EMF নির্ণয় কর। ৩
- ঘ. উদ্দীপকের Y পাত্রটি জিচ্ক ধাতু দ্বারা তৈরি হলে কোষে কি
 পরিবর্তন হবে গাণিতিকভাবে ব্যাখ্যা কর।

৩৮ নং প্রশ্নের উত্তর

যে আলোক সমাপুছয় সমাবর্তিত আলোর তলকে ঘড়ির কাঁটার দিকে ও বিপরীত দিকে একই মাত্রায় আবর্তন করে এবং তাই তাদের সমমোলার মিশ্রণের আবর্তন মাত্রা প্রশমিত হয়ে শূন্য হয়ে যায়, তাদেরকে পরস্পরের এনানসিওমার বলে।

🚮 একই কার্যকরী মূলক বিশিষ্ট যৌগ যারা একই সাধারণ সংকেতকে সমর্থন করে তাদেরকে সমগোত্রক বলে। ইথাইন (C2H2) ও প্রোপাইনের কার্যকরী মূলক একই এবং তা হলো কার্বন-কার্বন ত্রিবন্ধন। প্রোপাইন (C3H4) ও ইথাইন একই সাধারণ সংকেত C4H2a ,-কে সমর্থন করে।

> $CH_3 - C = C - H$ প্রোপাইন

 $H - C \equiv C - H$

এই কার্যকরী মূলক (- C = C -) বিদ্যমান।

 C_nH_{2n-2} এর মধ্যে n=2 হলে, $C_2H_2 \rightarrow 3$ থাইন

n=3 হলে, $C_3H_4 \rightarrow$ প্রোপাইন

অতএব, ইথাইন ও প্রোপাইন সমণোত্রক।

প ১৮(গ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ।

য এখানে, E⁰A^{2*}/A = - 0.44 V এবং $E^0_{R^{2+}/R} = 0.34 \text{ V}$

B এর বিজারণ বিভবের মান A থেকে বেশি, তাই B বিজারিত হবে ও A জারিত হবে।

∴
$$E^{\circ}_{Cell} = E^{\circ}_{antan} + E^{\circ}_{famin}$$

⇒ $E^{\circ}_{Cell} = E^{\circ}_{A/A^{2+}} = E^{\circ}_{B^{2+}/B}$

= $(0.44 + 0.34)V$

∴ $E^{\circ}_{Cell} = 0.78 V$

এখানে, E°cell = (+ ve), সূতরাং বিক্রিয়াটি স্বতঃস্ফুর্তভাবে ঘটবে এবং বিদ্যুৎ প্রবাহের দিক হবে বাম থেকে ডানদিকে

আবার যদি Y পাত্রটি Zn খারা তৈরি করা হয়, তখন ∧ এর বিজারণ ও Zn এর জারণ ঘটবে।

$$E^{\circ}_{Cell} = E^{\circ}_{anjeq} + E^{\circ}_{Ramjeq}$$

= $E^{\circ}_{Zn/Zn^{2+}} = E^{\circ}_{A^{2+}/A}$
= $0.76 + (-0.44)$
= 0.32 Volt

এখানে, E°_{Cell} = +ve, বিক্রিয়াটি স্বতঃস্ফুর্তভাবে ঘটবে। কিন্তু বিদ্যুৎ প্রবাহের দিক হবে পূর্বের প্রবাহের বিপরীত দিকে। অর্থাৎ বিদ্যুৎ প্রবাহের দিক হবে ডান থেকে বামদিকে।

$$2 + \sqrt{2}$$
 (i) $Z_n(s) / Z_n(qq) | Fe_{(qq)}^{2+} / Fe_{(q)} ; E_{cel}^{0} = +0.32 \text{ V}$

(ii) $Zn/Zn \frac{2+}{(aq)} || Ag^{+}_{(aq)} / Ag(s); E^{0}_{cel} = +1.56V$ [Zn /Zn2+ 43 E° = + 0.76V]

[िकानुगर्निया नुग युक्त अत करनाम, छाना]

क. या जिंदा की?

খ. পরীক্ষাগারে H₂S এর পরিবর্তে থায়োঅ্যাসিটামাইড ব্যবহার করা সুবিধাজনক কেন?

গ. প্রমাণ অবস্থায় Fe ও Ag-তড়িৎদ্বার দ্বারা গঠিত কোষের বিভব নির্ণয় করো।

ঘ. (ii) নং কোষে [Ag[†]] = 1.5 × 10⁻³M হলে কোষটির আলোর উজ্জ্বলতার কোনো পরিবর্তন ঘটবে কিং গণিতিকভাবে ব্যাখ্যা করো।

৩৯ নং প্রশ্নের উত্তর

😨 ফুড লেকার হচ্ছে এমন এক ধরনের জৈব পঁদার্থ, যাকে ক্যানিং এর সময় খাদ্য বস্তু বহনকারী পাত্রের গায়ে এমনভাবে প্রলেপ দেয়া হয় যেন তা খাদ্য বস্তুকে ধাতৰ পদার্থের সংস্পর্ণ হতে দূরে রাখে।

📆 H₂S একটি বিষাক্ত পদার্থ এই কারণে গুনগত বিশ্লেষণে H₂S এর বিকল্প হিসেবে থায়োজ্যাসিটামাইড ব্যবহার করা হয়। CH1CSNH2 যৌগ পানির সাথে বিক্রিয়া করে H₂S উৎপন্ন করে যার প্রায় সম্পূর্ণ অংশ দ্রবলে থেকে যায় এবং বিভিন্ন আয়নের সাথে বিক্রিয়া করে। ফলে পরিবেশ দৃষিত হয় না। এজন্য H2S এর পরিবর্তে CH3CSNH2 ব্যবহার করা হয়।

 $CH_3CSNH_2 + H_2O \longrightarrow CH_3CONH_2 + H_2S \downarrow$

Fe(s) |Fe²⁺(aq) | Ag⁺/Ag (iii) এখানে.

$$= 0.76 - 0.32$$

:. E⁰FoFe2+ = 0.44 Volt | অনুৰূপভাবে E⁰Ag*/Ag = 0.80 V

∴ (iii) এর বিভব = 0.80 – (– 0.44)

= 1.24 volt

Fe + $2Ag^{\dagger} \longrightarrow Fe^{2+} + 2Ag$ নার্নস্ট সমীকরণ মতে.

$$E_{cell} = E_{cell}^0 - \frac{0.0592 \text{ V } [Fe^{2^+}]}{2 [Ag^+]^2}$$

$$E_{cell} = 1.24 - \frac{0.0592 \text{ V } [Fe^{2^+}]}{2 [Ag^+]^2}$$

প্রমাণ অবস্থায় [Ag*] = 1M হলেও প্রশ্নে 1.5 × 10 ³M বলায় উপরের সমীকরণ হতে E_{coll} এর মান কমে যাবে।

উপরের সমীকরণে [Ag'] এর ঘনমাত্রা কমলে $\frac{0.092V}{2}$. $\frac{[Fe^{2^{*}}]}{[Ag^{*}]^{2}}$ রাশির মান বাড়বে। ফলে কোষের বিভব প্রমাণ বিভব 1.24 volt থেকে কমে যাবে। তাই আলোক উজ্জ্বলতা কমবে।

21 > 80 (i) Zn/Zn2*.E = 0.76V

(ii) Cu/Cu^{2+} ; $E^{\alpha} = -0.34V$

(iii) Fe/Fe^{2+} ; $E^{o} = 0.44V$

[किंकाबुमनिभा नन भूकम क्षक करमण, ठाका]

क. नााता क्या की?

খ. NH2 মূলক অথোঁ ও প্যারা নির্দেশক কেন?

গ্. (i) ও (ii)নং তড়িৎদার দারা গঠিত কোমের সংকেত, চিত্র ও কোষ বিভবের মান নিণয় কর।

ঘ. FeSO₄ দ্রবণকে তামার পাত্রে রাখা থাবে কী? গাণিতিভাবে ব্যাখ্যা কর।

৪০ নং প্রশ্নের উত্তর

🐼 1-100 nm আকার বিশিষ্ট ত্রিমাত্রিক ক্ষুদ্র কণাকে ন্যানো পার্টিক্যাল বলে ৷

📆 – NH2 মূলকের নাইট্রোজেনে এক জোড়া মুক্ত ইলেকট্রন রয়েছে। **এই মূলক বেনজিনের কার্বনের সাথে বন্ধনে আবন্ধ থাকলে এটি এর** মুক্তজোড় ইলেকট্রন বেনজিন চক্রকে প্রদান করে। নাইট্রোজেনের মুক্তজোড় ইলেকট্রন বেনজিন চক্রের দিকে স্থানান্তরিত হওয়ায় নাইট্রোজেন ধনাত্মক আধান এবং বেনজিন চক্র ঝণাত্মক আধান প্রাপ্ত হয়। ফলে বেনজিনে নিমন্ত্রপ রেজোন্যান্স ঘটে।

উপরের রেজোন্যান্স হতে দেখা যায় II. III ও IV এসব ক্ষেত্রে অর্থো ও প্যারা অবস্থানে ইলেকট্রন ঘনত তুলনামূলক বেশি থাকে। তাই, –NH3 অর্থো প্যারা নির্দেশক। (অর্থাৎ ইলেকট্রফাইলকে 2, 4, 6 স্থানে আকর্ষণ করে)

ৰ এখানে, $E_{Z_0/Z_0^{3}}^0 = 0.76V$

এবং $E_{C\omega/Cu^2}^0 = -0.34V$

যেহেতু Zn/Zn²⁺ এর জারণ বিভবের মান বেশি, সূতরাং জিংক জারিত হবে ও Cu²⁺ বিজারিত হবে।

(i) নং ও (ii) নং দ্বারা গঠিত কোষের সংকেত :

 $Zn(s) | Zn_{(aq)}^{2+} | Cu_{(aq)}^{2+} | Cu(s)$

অ্যানোডে জারণ : $Zn(s) \longrightarrow Zn_{(aq)}^{2+} + 2e^-$

ক্যাথোডে বিজারণ : Cu(s) + 2e → Cu(s)

সার্বিক বিক্রিয়া :
$$(Zn(s) + Cu_{(aq)}^{2+} \Longrightarrow Zn_{(aq)}^{2+} + Cu(s)$$

কোষ বিভব = $E_{\text{জারণ}}^0 + E_{\text{বিজারণ}}^0$

 $= E_{Zn/Zn^2}^0 = E_{Cu^2/Cu}^0$ = (0.76 + 0.34)V

ত্ব ১০(ছ) নং সৃজনশীল প্রশ্নোতরের অনুরূপ।

2점 > 85

200 mL 0.5M Zn (NO₃)₂

 $E_{Zn^{2+}/Zn}^{0} = -0.763 \text{V}$ $E_{Fe^{2+}/Fe}^{0} = -0.44 \text{V}$

(पाका करनाम, पाका)

ক, অসামঞ্জস্য বিক্রিয়া কাকে বলে?

খ. হাইড্রোজেন ফুয়েল সেল পরিবেশ বান্ধব –ব্যাখ্যা কর।

গ. উদ্দীপকের দ্রবণের মধ্য দিয়ে 25 মিনিট বিদ্যুৎ প্রবাহ চালনার পর দ্রবণের ঘনমাত্রা গণনা কর।

ঘ. উদ্দীপকের ইলেকট্রোলাইট দ্রবণটি লোহার পাত্রে দীর্ঘ সময় সংরক্ষণ করা যাবে কিনা গাণিতিক যুক্তি দাও। 8

৪১ নং প্রশ্নের উত্তর

ত্র যে বিক্রিয়ায় একটি পদার্থ একাধারে জারক ও বিজারক হিসেবে কাজ করে, তাকে অসামঞ্জস্য বিক্রিয়া বলে।

হাইড্রোজেন ফুয়েল সেলের মাধ্যমে বিদ্যুৎ উৎপাদনে কোনো প্রকার
শব্দ দূষণ ঘটে না। প্রচলিত জীবাশ্য জ্বালানি ব্যবহার করে বিদ্যুৎ
উৎপাদনের ক্ষেত্রে বায়ু দূষক SO₂, NO₂ উদ্বায়ী জৈব যৌগ এবং প্রচুর
পরিমাণে CO₂ উৎপত্ন হয়। কিন্তু হাইড্রোজেন ফুয়েল সেল থেকে শুধু
বিশুন্থ পানি নির্গত হয়; যা পরিবেশের কোনো ক্ষতি করে না। এজন্য
হাইড্রোজেন ফুয়েল সেলকে পরিবেশবান্ধব বলা হয়।

ণা Zn^{2} প্রবর্ণের আয়তন, V = 250 mL দ্বণের ঘনমাত্রা, S = 0.5 M দ্বণে Zn^{2} এর পরিমাণ = w আমরা জানি, w = SMV

=
$$(0.5 \times 65.5 \times \frac{250}{1000})$$
g
= 8.1875 g

এখানে, E°_{Zn²⁺/Zn} = - 0.76 V এবং E°_{Fe²⁺/Fe} = - 0.44 V

যেহেতু $E^{\circ}_{Fe^{2+}/Fe} \ge E^{\circ}_{Zn^{2+}/Zn}$

Fe²⁺ বিজারিত হবে Zn জারিত হবে। দ্রবণে Zn²⁺ আয়ন উৎপন্ন করবে।

এখানে, তড়িৎ প্রবাহ, I = 2.5 amp

তড়িৎ প্রবাহের সময়, t = (25 × 60) sec

= 1500 sec Zn(NO₃)₂ দ্রবণের আয়তন, V = 200 mL

Zn(NO₃)₂ প্রবণের আর্থন, V = 200 mi. " খনমাত্রা, S = 0.5M

এখানে, দ্রবণে Zn^{2+} এর পরিমাণ w = S'M'V'

$$w = \frac{56}{2 \times 96500} \times 2.5 \times 25 \times 60$$

= 1.088 g

$$w = \frac{65.5}{2 \times 96500} \times 2.5 \times 25 \times 60$$

 Zn^{2+} এর তড়িৎ রাসায়নিক তুলাংক, $Z = \frac{65.5}{2 \times 96500}$ g/c

= 3.3937 × 10⁻⁴g/c

বিদ্যুৎ প্রবাহের ফলে অ্যানোড ক্ষয় হবে। ফলে দ্রবণে Zn²⁺ দ্রবীভূত হবে।

দ্রবণে Zn2+ এর পরিমাণ = ZIt

=
$$(3.3937 \times 10^{-4} \times 2.5 \times 1500)$$
g
= 1.2726 g

দ্রবণে Zn²⁺ এর মোট পরিমাণ = (1,2726 + 8,1875)g

 $= 9.46 \, \mathrm{g}$

তড়িৎ প্রবাহের পর দ্রবণের ঘনমাত্রা = S'

$$S' = \frac{1000w}{MV}$$

$$= \frac{1000 \times 9.46}{65.5 \times 250}$$

$$= 0.58 \text{ M}$$

য় ৩ (ঘ)নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ।

জ্ম ▶ ৪২

(शमिक्रम करनवा, जाका)

ক. α-গ্লাইকোসাইড বন্ধন কাকে বলে?

.

খ. নাইলন 6.6 বলতে কি বুঝ, বিক্রিয়া লেখ।

- 3

۸-চিত্রের ক্যাথোডে কী পরিমাণ ধাতু জমা হবে?

ঘ. ৪-চিত্রে কোষটি সচল রাখার ক্ষেত্রে ব্যবস্থাটি কতটুকু

যুক্তিযুক্ত ব্যাখ্যা করো।

৪২ নং প্রশ্নের উত্তর

ক্র দুই অণু α -D গ্লুকোজের একটির C_1 ও অপরটির C_4 এর দুটি - OH মূলক থেকে এক অণু পানি অপসারণের মাধ্যমে ঘনীভবন বিক্রিয়ায় C-O-C যে নতুন বন্ধন সৃষ্টি হয়, তাকে α -গ্লাইকোসাইড বন্ধন বলে।

াইলন 6 % 6 একটি ঘনীভবন পলিমার। ঘনীভবন পলিমারকরণ বিক্রিয়ায় এটি উৎপাদন করা হয়। হেক্সামিথিলিন ডাইঅ্যামিন [H₂ N-(CH₂)₆ -NH₂] ও অ্যাডিপিক এসিড [HOOC -(CH₂)₄ - COOH] এর সমমোলার মিশ্রণকে TiO₂ প্রভাবকের উপস্থিতিতে উত্তপ্ত করলে ঘনীভবন পলিমারকরণ ঘটে এবং নাইলন - 6 % 6 উৎপন্ন হয়। এ পলিমারটির দুটি মনোমারের প্রতিটিতে 6 টি করে কার্বন পরমাণু থাকায় এর নাম নাইলন 6 % 6।

nH₂N - (CH₂)₆ - NH₂ + n HOOC - (CH₂)₄ - COOH ↓ HN -(CH₂)₆ - NH - CO - (CH₂)₄ - CO_→ n + nH₂O ना≷लन 6 % 6 গ A চিত্রের ক্যাথোডে জমাকৃত ধাতুর পরিমাণ নির্ণয় : আমরা জানি, জমাকৃত ধাতুর পরিমাণ, W = Z_{Ag}It (i) এখানে. তড়িৎ প্ৰবাহ, I = 80 mA = 80 × 10⁻³ Amp প্রবাহের সময়, t = 20 min = (20 × 60) sec = 1200 sec পারমাণবিক ভর তড়িৎ রাসায়নিক তুলাংক, Z_{AB} = 107.87 1 × 96500 = 0.0011178 g/c $= 1.1178 \times 10^{-3} \text{ g/c}$ নং সমীকরণ-এ মান বসিয়ে পাই, $W = (1.1178 \times 10^{-3} \times 80 \times 10^{-3} \times 1200)g$ = 0.1073gক্যাথোডে জমাকৃত Ag ধাতু = 0.1073g ব দেওয়া আছে, E° Fe/Fe2- = 0.44 Volt $E^{o}_{Cu/Cu^{2}} = -0.34 \text{ Velt}$:. E° Cu21/Cu = 0.34 Volt আমরা জানি. $E_0^{coll} = E_0^{collect} + E_0^{collect}$ $= E^{\circ}_{Fo/Fe^{2+}} + E^{\circ}_{Cu^{2+}/Cu}$ =(0.44 + 0.34) Volt = 0.78 Volt কোষটির জন্য সার্বিক বিক্রিয়া হলো : $Fe(s) + Cu^{2+}(aq) \Longrightarrow Fe^{2+}(aq) + Cu(s)$ নার্নস্ট সমীকরণ অনুসারে পাই, $E_{cell} = E_{cell}^0 - \frac{0.0592}{n} \log \frac{[Fe^{2^n}]}{[Cu^{2^n}]}$ $=0.78-\frac{0.0592}{2}\log\left(\frac{2}{1}\right)$

যেহেতু E_{cell} তথা তড়িচ্চালক শস্তির মান ধনাত্মক সেহেতু কোষ বিক্রিয়াটি স্বতঃস্ফর্তভাবে ঘটবে অর্থাৎ রাসায়নিক বিক্রিয়ার ফলে বিদ্যুৎ

অতএব, কোষটি সচল রাখার ক্ষেত্রে উদ্দীপকের ব্যবস্থাটি অত্যন্ত যুক্তিযুক্ত।

의위 > 8♥ i. Pb

ii. PbO₂ আবরণযুক্ত লেড

iii. তড়িৎবিশ্লেষ্য দ্রবণ: H2SO4

/भारेनटकीन करनवा, छाका।

۷

2

ক, অনুবন্ধী অম কী?

খ, S2O2 একটি বিজারক। ব্যাখ্যা কর।

গ সেন্টিমোলার তড়িৎ বিশ্লেষ্য দ্রবণের ঘনমাত্রাকে ppm এককে

ঘ. i. ii ও iii দ্বারা গঠিত তড়িৎ কোষে চার্জিং ও ডিসচার্জিং বিক্রিয়াগুলো দেখাও।

৪৩ নং প্রশ্নের উত্তর

ক কোনো ক্ষারকের সাথে একটি প্রোটন সংযোগের ফলে যে অন্নের সৃষ্টি হয় তাকে ঐ ক্ষারকের অনুবন্ধী অম বলে।

🔻 S₂O,⁻² এ কেন্দ্রীয় পরমাণুর জারণ মান +2। আয়োডিন (I2) এর সাথে বিক্রিয়ার পর এর পরিবর্তিত অবস্থা S4O6-2। এর কেন্দ্রীয় পরমাণুর জারণ মান·+2.5। विक्रिग्नाि :

$$2S_2O_3^{-2} + I_2 \longrightarrow S_4O_6^{-2} + 2I^-$$

এখন দৃটি আয়োডিন দুটি ইলেকট্রন গ্রহণ করে 21 এ পরিণত হয় এবং দটি S₂O₂-2 মূলক দৃটি ইলেকট্রন ত্যাগ করে বিজারকের ভূমিকা পালন করে।

∴ S₂O₃⁻² একটি বিজারক।

¶ 0.01M H₂SO₄ দ্রবণ অর্থাৎ দ্রবণে HCI এর পরিমাণ 0.01 mol/L. 0.01M 1L 표적여 H₂SO₄

[H₂SO₄ এর আণবিক ডর 98g] = 0.01 × 98g = 980 mg

∴ দ্রবণে H₂SO₄ এর পরিমাণ 980 mg/ L = 980 ppm

📵 (i), (ii), (iii) শ্বারা গঠিত কোষ হলো রিচার্জেবল লেড স্টোরেজ ব্যাটারী।

ডিসচার্জ এর বিক্রিয়াগুলো

বাম তড়িৎখারে বা অ্যানোডে বিক্রিয়া :

$$Pb \longrightarrow Pb^{+2} + 2e^{-}$$

 $Pb^{+2} + SO_4^{-2} \longrightarrow PbSO_4 (s)$

সামগ্রিক বিক্রিয়া :

$$Pb^{+2} + SO_4^{-2} + \longrightarrow PbSO_4(s) + 2e^{-1}$$

 $E^{\circ} = +0.356V$

ভান তড়িংদ্বারে বিক্রিয়া বা ক্যাথোডে বিক্রিয়া :

$$PbO_2^{(S)} + 4H^+ + SO_4^{-2} + 2e^- \longrightarrow PbSO_4(s) + 2H_2O;$$

 $E^{\circ} = + 1.168 \text{ V}$

মূল বিক্রিয়াটি নিম্নলিখিত প্রক্রিয়ায় সম্পন্ন হয়।

$$PbO_2(s) + 2H_2O \longrightarrow pb^{+4} + 4OH^{-1}$$

$$Pb^{+4} + 2e^{-} \longrightarrow Pb^{+3}$$

$$Pb^{+4} + 2e^{-} \longrightarrow Pb^{+2}$$

 $Pb^{+2} + SO_4^{-2} \longrightarrow PbSO_4$

$$4OH^- + 4H^+ \longrightarrow 4H_2O$$

কোষ বিক্রিয়া:

$$Pb + PbO_2(s) + 4H^* + 2SO_4^{-2} \xrightarrow{\text{[Gসচার্জ]}} 2PbSO_4(s) + 2H_2O$$
 $E^{\circ}_{Cell} = 2.091 \text{ V}$

त्रिहार्ज विक्रिया :

ক্যাথোড তড়িৎদারের বিক্রিয়া :

 $PbSO_4(s) + 2e^- \longrightarrow Pb(s) + SO_4^{-1}(aq)$

অ্যানোড তড়িৎদ্বারের বিক্রিয়া :

 $PbSO_4(S) + 2H_2O(I) \longrightarrow PbO_2(s) + SO_4^{-2}(aq) + 4H^+(aq) + 2e^-$ কোষ বিক্রিয়া:

 $2PbSO_a(s) + 2H_2O(I) \xrightarrow{bhor} Pb(s) + PbO_2(s) + 4H^+(aq) + SO_4^{-2}(aq)$

21 × 88

[विभिजाइभि करनक, जाका]

ক, জুইটার আয়ন কী?

খ. ক্লোরোফরমকে রঙিন বোতলে রাখা হয় কেন?

গ, উদ্দীপকের দ্রবণের মধ্য দিয়ে কতক্ষণ বিদ্যুৎ প্রবাহিত করলে ক্যাথোডের ভর 1g বৃন্ধি পাবে?

ঘ উদ্দীপকের ইলেকট্রোলাইট দ্রবণটি দীর্ঘদিন M ধাতু নির্মিত পাত্রে সংরক্ষণ করার সম্ভাব্যতা যাচাই কর।

৪৪ নং প্রশ্নের উত্তর

ভ আমাইনো এসিডের –COOH মূলকটি প্রোটন ত্যাগ করে কার্বক্সিলেট আয়নে (-COO⁻) এবং -NH₂ মূলকটি সে প্রোটন গ্রহণ করে অ্যামোনিয়াম (–NH3⁺) আয়নে পরিণত হয়ে যে শ্বিমেরুযুক্ত আয়ন সৃষ্টি করে তাকে জুইটার আয়ন বলে।

 ক্রারোফরম পরিবেশের অক্সিজেনের সাথে অতিবেগুণি রশ্মির উপস্থিতিতে বিক্রিয়া করে ফসজিন উৎপল্ল করে।

$$CHCl_3 + \frac{1}{2}O_2 \longrightarrow COCl_2 + HCl$$

ক্রোরোফরম ফসজিন

যেহেতু a বোতল অক্সিজেন শূন্য করা সম্ভব হয় না, তাই অতিবেগুণী রশ্মি থেকে বিচ্ছিন্ন রাখতে রঙিন বোতল ব্যবহার করা হয়।

- গ ১৬(গ) নং সৃজনশীল প্রশ্নোত্তর দ্রুইব্য।
- য ১৬(ঘ) নং সূজনশীল প্রশ্নোত্তর দ্রফীব্য।

2131 ▶8¢

Fc এবং AP-এর প্রমাণ বিজারণ বিভব যথাক্রমে 0.88 এবং -1.66V

ক আংশিক চাপ কী?

খ, জারণ সংখ্যা ও যোজনীর মধ্যে পার্থক্য লিখ।

- গ. উদ্দীপকের কোষটির কোষ বিক্রিয়া লিখ এবং কোষটি উপস্থাপন করো।
- ঘ. Fe দক্তের পাত্রে Al₂(SO)3 দূবণ এবং Al দক্তের পাত্রে FeSO₄
 দূবণ রাখা যাবে কি না— যুক্তিসহ বিশ্লেষণ করো।
 8

৪৫ নং প্রশ্নের উত্তর

কানো নির্দিষ্ট তাপমাত্রায় বিক্রিয়াখীন কোনো গ্যাস মিশ্রণের কোন একটি উপাদান গ্যাস ঐ তাপমাত্রায় মিশ্রণের সমস্ত আয়তন একাকী দখল করলে যে চাপ প্রয়োগ করে তাকে ঐ উপাদান গ্যাসের আংশিক চাপ বলে।

হা জারণ সংখ্যা ও যোজনীর পার্থক্য :

জারণ সংখ্যা	যোজনী	
i. কোনো যৌগে কোনো একটি পরমাণুর ধনাত্মক ঋণাত্মক চার্জের মানই হলো জারণ সংখ্যা।	 কোনো মৌলের যোজনী অপর মৌলের সাথে যুক্ত হবার ক্ষমতাকে বুঝায়। 	
ii. এটি ধনাত্মক, ঝণাত্মক ও শূন্য হতে পারে।	 যোজনী সর্বদা নিরপেক্ষ সংখা হয় কিন্তু শূন্য হতে পারে না। 	
iii. জারণমান পূর্ণসংখ্যা ও ভগ্নাংশ হতে পারে। যেমন Fe ₃ O ₄ যৌগে Fe এর জারণমান +2.67	iii. যোজনী সর্বদা পূর্ণ সংখ্যা হবে ভগ্নাংশ হবে না।	

ক্র উদ্দীপকের কোষের Fe ও AI এর প্রমাণ বিজারণ বিভব যথাক্রমে –

0.88V এবং –1.66V। AI এর প্রমাণ বিজারণ বিভব কম বলে সেটি
জারিত হবে ও Fe বিজারিত হবে। অর্থাৎ এক্ষেত্রে AI অ্যানোড ও Fe
ক্যাথোড।

আনোড অর্ধকোষ বিক্রিয়া : $AI \longrightarrow AI^{3+} + 3e$

₹1, 2A1 ---> 2A13+ + 6e

ক্যাথোড অর্ধকোষ বিক্রিয়া : Fe²⁺ + 2e → Fe

বা, 3Fe²⁺ + 6e --- > 3Fe

কোষটি হলো : Al(s) / Al³⁺(aq) || Fe²⁺(aq) /Fe(s)

উদ্দীপকের Fe ও Al এর প্রমাণ বিজারণ বিভব যথাক্রমে -0.88V ও -1.66V। এক্টেরে Al এর প্রমাণ বিজারণ বিভব কম। যখন Al দণ্ডের পাত্রে FeSO₄ দ্রবণ রাখা হয় তখন Al অ্যানোড হিসাবে কাজ করে কারণ এর প্রমাণ বিজারণ বিভব কম বলে এটি জারিত হবে। আর FeSO₄ দ্রবণ ক্যাথোড হিসাবে কাজ করে। অর্থাৎ বিজারিত হয়।

এখন,
$$E_{cell} = E_{cell} + E_{famist}$$

= +1.66 + (-0.88) V
= +0.78 V

যেহেতু কোষ বিভবের মান ধনাত্মক সেহেতু কোষ বিক্রিয়া স্বতঃস্ফুর্তভাবে ঘটে। অর্থাৎ AI জারিত হয়ে AI আয়নে পরিণত হয়। ফলে AI এর পাত্র ক্ষয়প্রাপ্ত হবে। তাই AI এর পাত্রে FeSO, দ্রবণ রাখা যাবে না।

কিন্তু যুখন Fe এর পাত্রে Al₂(SO₄)₃ দ্রবণ রাখা হবে তখন Fe এর বিজারণ বিভব বেশি বলে সেটি বিজারিত হবে। অর্থাৎ ক্যাথোড হিসাবে কাজ করবে। আমরা জানি, তড়িৎ বিশ্লেষণের সময় আ্যানোড ক্ষয়প্রাপ্ত হয়, ক্যাথোড হয় না। তাই এক্ষেত্রে Fe পাত্র ক্ষয়প্রাপ্ত হবে না। অর্থাৎ, Fe এর পাত্রে Al₂(SO₄)₃ দ্রবণ রাখা যাবে।

क. डाइन की?

9

খ, করোসান একটি জারণ প্রক্রিয়া-ব্যাখ্যা কর।

গ, কোষ বিক্রিয়ার সাম্যধ্রুবকের মান নির্ণয় কর। ৩

ঘ. E_{cell} এর মান 0.19V হলে $_{X}$ এর মান নির্ণয় কর।

৪৬ নং প্রয়ের উত্তর

ক সোডিয়াম ক্লোরাইড (NaCl) এর সম্পৃত্ত জলীয় দ্রবণকে ব্রাইন বলে।

থা ধাতুর ক্ষয় একটি তড়িৎ রাসায়নিক পদ্ধতি এবং এ পদ্ধতিতে সব সময় অ্যানোড ক্ষয়প্রাপ্ত হয়। কারণ আমরা জানি, যখন কোন বিভবের মান ধনাত্মক হয় তখন একটি কোষের রাসায়নিক বিক্রিয়া খতঃস্ফুর্তভাবে ঘটে। যখন অ্যানোভের জারণ বিভব ক্যাথোডের বিজারণ বিভবের মানের চেয়ে বেশি থাকে তখনই কোষ বিভব ধনাত্মক হয় এবং কোষ বিক্রিয়া খতঃস্ফুর্তভাবে ঘটে। ফলে ধাতু ক্ষয় হয়। তড়িৎ রাসায়নিক সারিতে যে তড়িৎদ্বারের অবস্থান যত উপরে অর্থাৎ যে তড়িৎদ্বারের বিজারণ বিভবের মান কম, সে তড়িৎদ্বার অ্যানোড হিসেবে কাজ করে এবং ক্ষয়প্রাপ্ত হয়।

সূতরাং বলা যায়, করোসান একটি জারণ প্রক্রিয়া।

না উদ্দীপকের সংগ্রিষ্ট বিক্রিয়াটি হলো :

Fe³⁺ (x M) + I⁻ (0.2 M) \rightleftharpoons Fe²⁺ (0.1 M) + I₃⁻ (0.2 M) 4 \approx Fe³⁺/Fe²⁺ = 0.77 V

$$E^{\circ}_{I_3^-/I^-} = 0.54 \text{ V}$$

 $E^{\circ}_{I^-B_3^-} = -0.54 \text{ V}$

কোষ বিক্রিয়ার সাম্যধ্রক,
$$Q = \frac{[G \circ v][F \circ v]}{[A \circ v][F \circ v]} = \frac{[G \circ v][F \circ v]}{[F \circ v]} = \frac{Q}{[F \circ v]} = \frac{[G \circ v][F \circ v]}{[F \circ v]} = \frac{0.1 \times 0.2}{x \times 0.2}$$

$$\therefore Q = \frac{0.1}{x}$$

য় উদীপকের বিক্রিয়াটির সমতাকৃত সমীকরণ : অ্যানোডে জারণ বিক্রিয়া : 21⁻ – 2e — → 1₂

ক্যাথোডে বিজারণ বিক্রিয়া : $2Fe^{3*} + 2e \longrightarrow 2Fe^{2*}$

এখন,
$$E^{\circ}_{cell}$$
 = $E^{\circ}_{qrgeq} + E^{\circ}_{franceq}$
= $E^{\circ}_{1} \dot{h}_{2} + E^{\circ}_{Fe} \dot{h}_{2}^{3*} / Fe^{3*}$
= $(-0.54 + 0.77)$ volt
= 0.23 volt

নার্নস্ট সমীকরণ অনুসারে পাই,

$$E^{\circ}_{cell} = E^{\circ}_{cell} - \frac{0.0592}{n} \log Q$$

$$\Rightarrow 0.19 = 0.23 - \frac{0.0592}{2} \log \left(\frac{0.1}{x} \right) \qquad | \begin{array}{c} \text{dist}(7), \\ \text{n} = 2 \\ \text{E}^{\circ}_{cell} = 0.23V \\ \text{E}^{\circ}_{cell} = 0.19V \\ \\ \Rightarrow 0.04 \times 2 = 0.0592 \log \left(\frac{0.1}{x} \right) \\ \Rightarrow 1.3513 = \log \left(\frac{0.1}{x} \right) \\ \Rightarrow \log \left(\frac{0.1}{x} \right) = 1.3513 \\ \Rightarrow \left(\frac{0.1}{x} \right) = 10^{1.3513} \\ \Rightarrow \frac{0.1}{x} = 22.4543 \\ \Rightarrow x = 0.1 \times 0.0445 \\ \Rightarrow x = 4.45 \times 10^{-3} \text{ M} \\ \therefore x = 4.45 \times 10^{-3} \text{ M}$$

পেওয়া আছে, E°_{Zo/Zo}²⁺ = + 0.76 এবং E°_{Al/Al}³⁺ = + 1.66v /এम है अहेठ व्यक्तिक करनवा, रकामांबाढ़ी, भाकीभुंड।

- ক, আয়োডোমিতি কি?
- খ্য তড়িৎ বিশ্লেষণ সম্পর্কিত বিজ্ঞানী ফ্যারাডের প্রথম সূত্রটি লিখ। ২
- গ্. উদ্দীপকের Al- পাত্রে সংঘটিত সামগ্রিক কোষ বিক্রিয়াটি লিখ। ৩
- ঘ্ট্র উদ্দীপকের উল্লিখিত পাত্রটি কিছু দিন পর ছিদ্র হয়ে যাবে কিনা emF-এর মাধ্যমে বিশ্লেষণ কর।

৪৭ নং প্রশ্নের উত্তর

🥳 যে প্রক্রিয়ায় একটি জারক পদার্থের সজে আয়োডিন লবণের (KI) বিক্রিয়ায় বিমন্ত আয়োডিনকে প্রমাণ থায়োসালফেট দ্রবণ দ্বারা ট্রাইটেশন করে মৃক্ত আয়োভিনের পরিমাণ নির্ধারণ করা হয় তাকে আয়োডোমিতি वर्ल ।

🚭 তড়িৎ বিশ্লেষণের সময় যেকোন তড়িৎদ্বারে সঞ্চিত বা দ্রবীভূত পদার্থের পরিমাণ প্রবাহিত বিদ্যুতের পরিমাণের সমানুপাতিক। কোন পদার্থের তড়িৎ বিশ্লেষণে O কলম্ব বিদ্যুৎ সঞ্চালনে W পরিমাণ পদাৰ্থ জমা হলে-

এখানে Z হচ্ছে রাসায়নিক তুল্যান্ডক।

প Al-পাত্রে সংঘটিত বিক্রিয়াটি নিচে তুলে ধরা হলো— তডিৎদ্বার বিক্রিয়া :

সামগ্রিক কোষ বিক্রিয়া:

 $2Al(s) + 3Zn^{2+}(aq) \longrightarrow 2Al^{3+}(aq) + 3Zn(s)$ কোষ ডায়াগ্রাম :

 $Al(s) | Al^{3+}(aq) | Zn^{2+}(aq) | Zn(s)$

ম A1 পাত্রটি ছিদ্র হয়ে যাবে। ব্যাখ্যা—

কোন পাত্রে অন্য একটি দূবণ রাখলে পাত্রটি ক্ষয়প্রাপ্ত হয় যদি পাত্রটি আানোড হিসাবে ব্যবহারের ফলে প্রাপ্ত কোষের emf ধনাত্মক হয়।

A) পাত্রটিকে অ্যানোড হিসাবে ব্যবহার করলে প্রাপ্ত কোষের emf.

$$E_0^{\text{cell}} = E_0^{\text{VI/VI}_{p^*}} - E_0^{\text{Zu}_{p^*/\text{Zu}}} +$$

দেওয়া আছে

$$E_{\text{Al/Al}^3}^0 = +0.76\text{V}$$

 $E_{\text{Al/Al}^3}^0 = +1.66\text{V}$

$$E_{cell}^{0} = (1.66 - 0.76)V$$

= 0.9 V

যেহেতু Al-পাত্রটিকে অ্যানোড হিসাবে ব্যবহার করে প্রাপ্ত emf ধনাত্মক, সেহেতু Al-পাত্রটি ছিদ্র হয়ে থাবে।

$$\mathbf{E}_{cell} = \mathbf{E}_{cell}^0 + \frac{\mathbf{RT}}{\mathbf{nF}} \ln \frac{[\mathbf{A}^{n^*}]^x}{[\mathbf{B}^{n^*}]^y}$$

/भतकाति बङ्गांचन्तु करमणः, (गानानगः॥)

ক, পরমশুন্য তাপমাত্রা কী?

খ. জৈব যৌগে –OH সনান্তকরণ কীভাবে করবে?

গ্. উদ্দীপকের কোষটির গঠন, কোষ বিক্রিয়া ও কোষ সংকেত

ঘ. A পাত্রে B" দ্ববণ রাখলে পাত্র ক্ষয় হবে কিনা? যুক্তি দাও। দৈওয়া আছে EB/B" = .76 V, EATH/A = .34VI

৪৮ নং প্রশ্নের উত্তর

ক যে তাপমাত্রায় কোনো গ্যাসের আয়তন তাত্ত্বিকভাবে শূন্য হয়, তাকে পরমশুন্য তাপমাত্রা বলে।

🛂 PCI, সহ পরীকা : অনার্দ্র জৈব যৌগ বা নিষ্ক্রিয় দ্রাবক ইথার বা বেনজিন দ্রবীভূত জৈব যৌগকে PCI, এর সঞ্চো উত্তপ্ত করলে যদি IICI গ্যাস নির্গত হয় এবং নির্গত HCI গ্যাস NH, দ্রবণ সিক্ত করে গ্লাস রভের সংস্পর্শে NILCI এর সাদা ধোঁয়া সৃষ্টি করে তবে যৌগটি আলিকোহল হবে।

 $R-CH_2OH + PCI_5 \rightarrow R-CH_2-CI + POCI_3 + HCI_1$ $HCI + NH_3 \rightarrow NH_4CI$

সাদা ধোয়া

তা উদ্দীপকের সমীকরণটি হলো:

$$E_{cell} = E_{cell}^0 + \frac{RT}{nF} \ln \frac{[A^{n+}]^x}{[B^{n+}]^y}$$

এখানে, [An+] = বিক্রিয়ক আয়নের ঘনমাত্রা

[Bⁿ⁺] = উৎপাদ

সূতরাং, কোষটির বিক্রিয়া হলো :

অ্যানোড অর্ধকোষ বিক্রিয়া : B → Bⁿ⁺ + ne⁻⁻

ক্যাথোড কোষ বিক্রিয়া:

$$: A^{n+} + ne \longrightarrow A$$

 $A^{n+} + B \longrightarrow B^{n+} + A$

কোষের গঠন :

কোষটির সংকেত: B/B* | A**/A

য দেওয়া আছে,

B এর জারণ বিভব, E_{B/Bⁿ⁺} = 0.76 V

A " " , $E_{A^{n+}/A} = 0.34 \text{ V}$

সূতরাং, A এর জারণ বিভব হবে, E_{A/Aⁿ⁺} = - 0.34V

B এর জারণ বিভব, A এর জারণ বিভব অপেক্ষা বেশি।

সূতরাং, A পাত্রে B^{n+} দূবণ রাখলে A পাত্র বিজারিত হবে ও দূবণ জারিত হবে।

সূতরাং, $E_{cell} = E$ জারণ + E বিজারণ . = 0.76 + 0.34V = + 1.1V

এখানে, E_{cell} এর মান ধনাত্মক। তাই এক্ষেত্রে B স্বতঃস্ফূর্তভাবে জারিত হয়ে B^{n*} আয়নে পরিণত হবে। A জারিত হয় না অর্থাৎ A ক্ষয়প্রাপ্ত হয় না তথা পাত্রটি ছিদ্র হয় না। তাই A পাত্রে B^{n*} দূবণ রাখা যাবে। পাত্র ক্ষয় হবে না।

2# ► 85 Al(s)/Al3+ (0.25M)/Sn2+ (0.3M)

 $E^{\circ}_{Sn/Sn^{2+}} = 0.14V$, $E_{AU/Al^{3+}} = 1.66V$, $E^{\circ}_{Fe/Fe^{2+}} = 0.76$

(धानन्म (धारन करमता, भग्रभनमित्य) = (1.66 - 0

ক. লবণ সেতৃ কী?

খ. তড়িংদার বিভবের উপর ঘনমাত্রা এবং তাপমাত্রার প্রভাব ব্যাখ্যা করো।

গ. উদ্দীপকের কোষের ইলেকট্রোড বিক্রিয়া ও কোষ বিক্রিয়া লিখ এবং 25°C অ্যানোড বিভব বের করো।

ঘ. উদ্দীপকের অ্যানোডে Fe/Fe^{2*} || Sn^{2*} + /Sn ব্যবহার করলে কোষ দুইটির কোনটি ব্যবহার করা লাভজনক গাণিতিকভাবে বিশ্লেষণ করো।

৪৯ নং প্রশ্নের উত্তর

ক দুটি তড়িংদ্বারের মাঝে পরোক্ষ সংযোগ স্থাপনের জন্য তড়িং বিশ্লেষ্য লবণের (NaCl, Na₂SO₄, KCl, NH₄Cl প্রভৃতি) দ্রবণপূর্ণ যে বাঁকা কাচনল (U-আকৃতির) ব্যবহার করা হয় তাকে লবণ সেতু বলে।

ত ড়িং বিভবের মান দ্রবণের ঘনমাত্রা ও তাপমাত্রা দ্বারা প্রভাবিত হয় যা নার্নস্ট সমীকরণের সাহায্যে ব্যাখ্যা করা যায়। একটি জারণ অধবিক্রিয়া M/M²⁺ এর জন্য সমীকরণ বিবেচনা করি।

 $M \to M^{A+} + ne^{-}$(i)

(i) নং এর জন্য নার্নস্ট সমীকরণ হলোঃ

$$E_{M/M^{n+}} = E^{o}_{M/M^{n+}} - \frac{2.303RT}{nF} \log \frac{[Mn^{+}]}{[M]}$$
....(ii)

এখানে, R মোলার গ্যাস ধ্বক, T =তাপমাত্রা $[Mn^{\dagger}]$ দ্ববণ M আয়নের ঘনমাত্রা F =ফ্যারাডে (96500C)

(ii)নং সমীকরণ থেকে সহজেই বুঝা যাচ্ছে E_{MM}^{A+} তড়িং দ্বার বিভবের মান $[M^{n+}]$ এর ঘনমাত্রা ও তাপমাত্রা (T) দ্বারা প্রভাবিত হবে। অনুরূপভাবে বিজারণ বিভবও দ্রবণের ঘনমাত্রা ও তাপমাত্রা দ্বারা প্রভাবিত হবে। সূতরাং তড়িংদ্বারের মান দ্রবণের ঘনমাত্রা ও তাপমাত্রা দ্বারা প্রভাবিত হয়।

ত্র উদ্দীপকের কোষটি হলোঃ

 $Al_{(s)}/Al^{3+}_{(0.25M)} \parallel Sn^{2+}_{(0.3M)}/Sn_{(s)}$

অ্যানোডে জারণ বিক্রিয়া : $Al(s) \rightarrow Al^{3+}(aq) + 3e^{-}$

ক্যাখোডে বিজারণ বিক্রিয়া: $Sn^{2+}(aq) + 2e^- \rightarrow Sn(s)$

সার্বিক কোষ বিক্রিয়া: 2Al(s) + 3Sn²⁺(aq)2Al³⁺(aq) + 3 Sn(s) 25°C তাপমাত্রা অ্যানোড বিভব:

তাপমাত্রা, T = (25 + 273)K = 298 K

ঘনমাত্রা, [Al³⁺] = 0.25 M

$$[Al(s)] = 1$$

মোলার গ্যান ধুবক, R = 8.314 Jk⁻¹ mol⁻¹

ফ্যারাডে, F = 96500 Coul

 $E_{AVAI^{3+}} = 1.66V$

ইলেকট্রন স্থানান্তর, n=3 নার্নস্ট সমীকরণ অনুসারে,

$$E_{AVAI}^{3+} = E^{\circ}_{AVAI^{3+}} - \frac{2.303RT}{nF} \log \frac{[A1^{3+}]}{[A1]}$$

$$\Rightarrow E_{AVAI}^{3+} = 1.66 - \frac{2.303 \times 8.314 \times 298}{3 \times 96500} \log \left(\frac{0.25}{1}\right)$$

$$= 1.66 - \frac{0.0592}{3} \log (0.25)$$

$$= (1.66 + 0.0118)V$$

$$\therefore E_{AVAI}^{3+} = 1.6718$$

👣 সার্বিক কোষটির জন্য নানস্ট সমীকরণ—

$$\begin{split} E_{\text{Cell}} &= E_{\text{cell}}^0 - \frac{0.0592}{6} \, \log \frac{[\text{Al}^{3+}]^2}{[\text{Sn}^{2+}]^3} \, [\because \, n = 6 \, (\%) \, \text{West } E^{\text{Total}}] \\ &= E_{\text{AlAl}^{3+}}^0 + E_{\text{Sn}^{2+}/\text{Sn}}^0 - \frac{0.0592}{6} \, \log \frac{(0.25)^2}{(0.3)^3} \\ &= 1.66 - 0.14 - \frac{0.592}{6} \times 0.3645 \\ &= 1.66 - 0.14 - 0.00359 \\ &= (1.66 - 0.1436) \, \text{V} = 1.516 \, \text{V} \end{split}$$

কোষটিতে অ্যানোড হিসেবে Fe/Fe^{2+} ব্যবহার করলে কোষটি হবে— $Fe/Fe^{2+} \parallel Sn^{+2+}/_{Sn}$

নার্নস্ট সমীকরণ:
$$E_{cell} = E_{cell}^0 - \frac{0.0592}{n} \log \frac{[Fe^{2^+}]}{[Sn^{2^+}]}$$

$$\Rightarrow E_{cell} = E_{Fe^{2^+/Fe}}^0 + E_{Sn^{2^+/Sn}}^0 - \frac{0.0592}{2} \log \left(\frac{0.25}{0.3}\right)$$

$$= 0.44 - 0.14 - (-0.0023437)$$

$$= 0.4423 - 014$$

:. E_{cell} = 0.3023 V

এখানে অ্যানোড হিসেবে Fe/Fe²⁺ ব্যবহার করলে তড়িৎচালক শস্তির মান 0.3023 V যা অ্যানোড হিসেবে AI/AI³⁺ ব্যবহার করে প্রাপ্ত মান 1.516 V এর চেয়ে কম। সুতরাং অ্যানোড হিসেবে AI/AI³⁺ ব্যবহার করা লাভজনক।

25 ≥00

(जानन त्यारन कलक, यग्रमनिश्र)

ক, তড়িৎ রাসায়নিক তুল্য কী?

খ. NaCl(aq) পরিবাহী হওয়ার কারণ ব্যাখ্যা করো।

গ. 25 amp বিদ্যুৎ 40 min বর্তনীতে প্রবাহিত হলে দ্রবীভূত Zn এর পরিমাণ বের করো।

ঘ, উদ্দীপক কোষের কোষ বিক্রিয়া এবং কাথোডে Cu এবং পরিবর্তে Sn ব্যবহার করলে কোষ বিক্রিয়ার ভিন্নতার কারণ বিশ্লেষণ করো।

৫০ নং প্রশ্নের উত্তর

ক্র তড়িৎ বিশ্লেষণের সময় এক কুলম্ব বিদ্যুৎ প্রবাহের ফলে কোনো পদার্থের যত পরিমাণ অ্যানোডে দ্রবীভূত বা ক্যাথোডে সঞ্চিত হয় তাকে সেই পদার্থের তড়িৎ রাসায়নিক তুল্যাঙ্ক বলা হয়।

Na⁺Cl⁻ একটি আয়নিক কেলাসাকার যৌগ। জলীয় দ্রবণে NaCl লবণ সম্পূর্ণরূপে বিয়োজিত হয়ে ধনাত্মক Na⁺ ও ঝণাত্মক Cl⁻ আয়ন তৈরি করে। ধনাত্মক ও ঝণাত্মক আয়ন থাকায় এর মধ্য দিয়ে তড়িৎ প্রবাহিত করলে নতুন পদার্থ তৈরি করে। সুতরাং NaCl দ্রবণ একটি তড়িৎ বিশ্লেষ্য পরিবাহী।

গ ১৬(গ) নং সৃজনশীল প্রশ্নোতরের অনুরূপ।

ট্র উদ্দীপকের কোষ বিক্রিয়াঃ

আনোডে জারণ বিক্রিয়া : $Zn(s) \rightarrow Zn^{3+}(aq) + 2e^{-}$

ক্যাথোডে বিজারণ বিক্রিয়া: $Cu^{2^+}(aq) + 2e^- \rightarrow Cu(s)$ সার্বিক কোষ বিক্রিয়া: $Zn(s) + Cu^{2^+} \Longrightarrow Zn^{2^+} + Cu(s)$

উদ্দীপকের কোষে ক্যাথোডে Cu এর পরিবর্তে Sn ব্যবহার করলে বিক্রিয়ার তেমন কোনো পরিবর্তন ঘটবে না।

এখানে E°_{Zn/Zn²+} = 0.76 V

 $E^{\circ}_{Cu/Cu^{2+}} = -0.34 \text{ V}$

 $E^{o}_{5n/5n^{2+}} = 0.14V$

তড়িৎদার বিভবের মান বিশ্লেষণ করে দেখা যাচ্ছে যে, জিংক এর জারণ বিভব মান সবচেয়ে বেশি।

সূতরাং Zn ও Cu এর মধ্যে জিংক জারিত হবে ও Cu²⁺ বিজারিত হবে যা উপরের কোষ বিক্রিয়ায় দেখানো হয়েছে।

আবার, Zn ও Sn এর মধ্যে Zn এর জারণ বিভব Sn এর চেয়ে বেশি, তাই Zn জারিত হবে ও Sn²⁺ জারিত হবে।

ক্যাথোড থিসেবে Cu বা Sn থাকেই ব্যবহার করা হউক না কেন। কেবল বিজারণ বিক্রিয়াই হচ্ছে। সূতরাং Cu ও Sn- এর ব্যবহারে বিক্রিয়ার ধরনের কোনো পরিবর্তন হবে না।

টিন এর অবস্থান সক্রিয়তা সিরিক্তে Cu- এর উপরে অবস্থান করে তাই Cu- এর পরিবর্তে টিন ব্যবহার করলে বিক্রিয়াটি ধীরে হবে। কারণ তড়িৎ চালক শক্তির মান (E_{cell}) কম হবে।

$$E_{cell} = E^{0}_{Zn/Zn^{2+}} + E^{o}_{Cu^{2+}/cu}$$
= (0.76 + 0.34) V
= 1.10 V

 $E_{cell} = E^{\circ}_{Zn/Zn^{2+}} + E^{\circ}_{Sn^{2+}/Sn}$

=0.76 + (-0.14)

= 0.62 V

의체 ▶ 67

[নিকেল এবং সিলভারের প্রমাণ বিজারণ বিভবের মান

যথাক্রমে: -0.25V এবং +0.799 V]
/আবদল কাদির যোৱা সিটি কলেল, নরসিংদী/

ক, টাইটোশন কী?

স্যান্তমেয়ার বিক্রিয়া ব্যাখ্যা কর।

গ, চিত্র-(২) এর ক্ষেত্রে কোষটির মোট বিভব নির্ণয় কর।

ঘ. চিত্র-(১) এর কোষটি পরিবেশ বান্ধব কিনা – বিশ্লেষণ কর। ৪

৫১ নং প্রশ্নের উত্তর

ক্র একটি জানা ঘনমাত্রার দ্রবণের সাহায্যে অজানা ঘনমাত্রার দ্রবণের ঘনমাত্রা নির্ণয়ের পশ্বতিকে টাইট্রেশন বলে।

ভারাজোনিয়াম লবণের সাথে সমপরিমাণ কিউপ্রাস হ্যালাইড ও অধিক পরিমাণ অনুরূপ হ্যালোজেন হাইড্রো-এসিড (যেমন, HCl বা, BHr এসিড) যোগ করে মিপ্রণটিকে 100°C তাপমাত্রায় উত্তপ্ত করলে ভারাজোনিয়াম লবণের ভারাজো মূলক হ্যালোজেন পরমাণু দ্বারা প্রতিস্থাপিত হয়ে হ্যালোকেনজিন ও N, গ্যাস উৎপর হয়। এ বিক্রিয়াকে আবিষ্কারকের নামানুসারে স্যাভমেয়ার বিক্রিয়া বলে। যেমন—

বেনজিন ডায়াজোনিয়াম ক্লোরাইডের সাথে সমপরিমাণ Cu_2Cl_2 ও গাঢ় HCI মিশ্রিত করে ঐ মিশ্রণকে 100°C তাপমাত্রায় উত্তপ্ত করলে ডায়াজোনিয়াম লবণের ডায়াজোমূলক ক্লোরিন পরমাণু দ্বারা প্রতিস্থাপিত হয়ে ক্লোরোবেনজিন ও N_2 গ্যাস উৎপন্ন হয়।

গ্র কোষ ডায়াগ্রাম : Ni(s)/Ni²⁺ (aq)/ Ag⁺(aq)/Ag (s) কোষ বিক্রিয়া : Ni(s) + 2Ag⁺ (aq) → Ni²⁺ (aq) + 2Ag(s) দেওয়া আছে,

বিজারণ বিভব, E°_{Ni¹⁴/Ni} = -0.25V

$$E^{\circ}_{Ag^{2*}/Ag} = +0.799V$$

∴ কোষটির বিভব বা e.m.f এর সমীকরণ হবে,

$$E_{cell}^{o} = E_{Ni/Ni}^{o} + E_{Ag/Ag}^{o}$$

= $E_{Ag'/Ag}^{o} - E_{Ni}^{o}/Ni}$
= $(0.799 + 0.25)V$
= $1.049 V$

: কোষটির মোট বিভব এর মান 1.049 V

। ৭ নং প্রয়ের 'ঘ' এর উত্তরের অনুরুপ।

31 > Q2

(सवारकाणा भवकाषि करूका, स्मारकाणा)

ক, লবণ সেতু কী?

খ. 25°C তাপমাত্রায় Fe/Fe²' ∥ Cu²⁺/Cu কোষটির সামাধ্রবক গণনা কর। ২

গ. উদ্দীপকের কোষটির আলোকে ইলেক্ট্রাপ্লেটিং এর ব্যাখ্যা কর।৩

ঘ. উদ্দীপকের দ্রবণের মধ্যে 30 min ধরে বিদ্যুৎ চালনা করলে দ্রবণের ঘনমাত্রা কত হবে?

৫২ নং প্রশ্নের উত্তর

ক্রি দুটি ভড়িৎদ্বারের মাঝে পরোক্ষ সংযোগ স্থাপনের জন্য তড়িৎ বিশ্লেষ্য লবণের (NaCl, Na₂SO₄, KCl, NH₄Cl প্রভৃতি) দ্রবণপূর্ণ যে বাঁকা কাচনল (U-আকৃতির) ব্যবহার করা হয় তাকে লবণ সেতু বলে।

কাষ বিক্রিয়া : $Fe + Cu^{2+} \Longrightarrow Fe^{2+} + Cu$ নার্নস্ট স্মীকরণ থেকে পাই, $E_{cell} \doteq E^{\circ}_{cell} - \frac{0.0592}{n} \log K$

সাম্যাবস্থায় $E_{cell}^{\kappa} = 0$ সূতরাং, $E_{cell} = \frac{0.0592}{n} \log K$ $\Rightarrow 0.78 = \frac{0.0592}{n} \log K$ $\Rightarrow \log K = 0.037948$

:. K = 1.09

তড়িং বিশ্লেষ্যের মধ্য দিয়ে কোনো অধিক সক্রিয় ধাতুর উপর কম সক্রিয় ধাতুর প্রলেপ সৃষ্টি করাকে ইলেকট্রোপ্লেটিং বলে। একে তড়িং প্রলেপন ও বলা হয় এবং এই পদ্ধতিতে কোনো ধাতুর উপর বিশেষভাবে নিকেল ধাতুর প্রলেপ দেয়া হয়।

যে ধাতুর উপর প্রলেপ দেয়া হবে তাকে ক্যাথোড হিসেবে এবং যার প্রলেপ দেয়া হবে সেই ধাতব পাতকে অ্যানোড হিসেবে ব্যবহার করতে হবে। যেমন Ni এর প্রলেপ করতে চাইলে নিকেলকে ক্যাথোড তড়িংদ্বার হিসেবে ব্যবহার করতে হবে। এরপর বাইরে দিকে তড়িং প্রবাহ চালনা করলে বিক্রিয়ার মাধ্যমে তড়িং প্রলেপন হতে থাকবে।

অ্যানোডে জারণ বিক্রিয়া : $Ni(s) \longrightarrow Ni^{2^*} + 2e^-$

উৎপন্ন নিকেল ক্যাটায়ন (Ni²⁺) ক্যাথোডে গিয়ে দুইটি ইলেকট্রন গ্রহণ করে বিজারিত হয়ে প্রলেপ আকারে অ্যানোড দণ্ডের উপর জমা হবে। ক্যাথোডে বিজারণ: Ni²⁺ + 2e⁻ — Ni(s): প্রলেপ

ষ ৪১ (গ) নং সৃজনশীল প্রশ্লোত্তর দুউবা।

(नवरकांशा मतकाति करमकः, (मवरकांशा)

- ক. প্যারাসিটামলের সংকেত লিখ।
- খ. -NH, মূলত অর্থো-প্যারা নির্দেশক ব্যাখ্যা কর।
- গ, উদ্দীপকের কোষটির emf হিসাব কর।
- ঘ. উদ্দীপকের অ্যানোড অর্ধকোষটি AI এর তৈরি হলে তড়িৎ দীর্ঘ দিন সংরক্ষণ করা যাবে কিনা? ব্যাখ্যা কর।

তে নং প্রশ্নের উত্তর

🚭 প্যারাসিটামল এর সংকেত :

NH₂ মূলকের নাইট্রোজেনে এক জোড়া মুক্ত ইলেকট্রন রয়েছে। এই মূলক বেনজিনের কার্বনের সাথে বন্ধনে আবন্ধ থাকলে এটি এর মুক্তজোড় ইলেকট্রন বেনজিন চক্রকে প্রদান করে। নাইট্রোজেনের মুক্তজোড় ইলেকট্রন বেনজিন চক্রের দিকে স্থানাগুরিত হওয়ায় নাইট্রোজেন ধনাত্মক আধান এবং বেনজিন চক্র ঝণাত্মক আধান প্রাপ্ত হয়। ফলে বেনজিনে নিয়র্প রেজোন্যাক্স ঘটে।

উপরের রেজোন্যান্স হতে দেখা যায় II, III ও IV এসব ক্ষেত্রে অর্থো ও প্যারা অবস্থানে ইলেকট্রন ঘনত তুলনামূলক বেশি থাকে। তাই, –NH₂ অর্থো প্যারা নির্দেশক। (অর্থাৎ ইলেকট্রফাইলকে 2, 4, 6 স্থানে আকর্ষণ করে)।

ত্র ১(গ) নং সূজনশীল প্রশ্নোত্তর দ্রুইব্য।

য ২১(ঘ) নং সৃজনশীল প্রশ্নোতরের অনুরূপ।

27 1 ▶ 08

(लारपुत महकाति करमण, लारपुत)

- ক. ডেটলের সংকেত লিখ।
- খ. সিরামিক সামগ্রী তৈরীতে গ্লেজিং ব্যবহার করা হয় কেন?
- গ. 250A বিদ্যুৎ $\frac{1}{2}$ ঘণ্টা চালনা করলে কত গ্রাম ধাতু ক্যাথোডে জমা হবে নির্ণয় করো।
- উদ্দীপকের দ্রবণটিকে টিন পাত্র না কপার পাত্র কোনটিতে রাখা

 ব্যৌক্তিক- পাণিতিক ডাবে বিশ্লেষণ করো।

 ৪

৫৪ নং প্রশ্নের উত্তর

🐼 Detol এর গাঠনিক সংকেত নিম্নরূপ :

4-ক্লোরো-3, 5-ডাইমিশ্বাইলু

অ -উচ্চ তাপমাত্রায় (100°C) পোড়ানো সিরামিক সামগ্রি পোরাস (ছিদ্রযুক্ত) হয়। এ পোরাস অবস্থা দূর করা তথা সিরামিক সামগ্রির বাহ্যিক সৌন্দর্য বৃদ্ধি করার জন্য সিরামিক সামগ্রি গ্লেজিং তরলে ডুবিয়ে পুনরায় 700 – 800°C তাপমাত্রায় পোড়ানো হয়। কখনো কখনো সিরামিক পদার্থে রঙিন আন্তরণ দেওয়ার জন্য রঞ্জক পদার্থ গ্লেজিং তরলে মেশানো হয়। অর্থাৎ সিরামিক সামগ্রির গায়ে মসৃন ও উজ্জ্বল্য বৃদ্ধির জন্য গ্লেজিং করা হয়।

🖥 ১০ নং প্রশ্নের 'গ' নং প্রশ্নের উত্তরের অনুরূপ।

🔞 ১০ নং প্রশ্নের 'ঘ' নং প্রশ্নের উত্তরের অনুরূপ।

20 10

/ताष्ट्रभारी करमज, त्राव्टभारी/

- ক, সরবিক এসিডের IUPAC নাম লিখ।
- থ, গ্যাপভানিক কোষে লবণ সেতুর ভূমিকা ব্যাখ্যা কর।
- গ. 35°C তাপমাত্রায় কেইষটির emf হিসাব কর।
- ঘ. উদ্দীপকে রিডক্স বিক্রিয়া সংঘটিত হচ্ছে –বিশ্লেষণ কর।

৫৫ নং প্রশ্নের উত্তর

ক 2, 4- হেক্সাডাইনয়িক এসিড অথবা হেক্সা –2, 4- ডাই- নয়িকএসিড

ভাল্টাইক বা গ্যালভানিক সেলের ক্যাথোড ও অ্যানোড প্রকোষ্ঠে যথাক্রমে জারণ ও বিজারণ বিক্রিয়া চলতে থাকে। যার ফলে অ্যানোড প্রকোষ্ঠে ধনাত্মক ও ক্যাথোড প্রকোষ্ঠে ঋণাত্মক আয়নের সংখ্যা ধীরে ধীরে বৃদ্ধি পেতে থাকে। বৃদ্ধি পাওয়া এই চার্জ জারণ ও বিজারণ প্রক্রিয়াকে ব্যাহত করে ইলেকট্রন প্রবাহ নিরবিচ্ছিন্ন থাকতে দেয় না। তাই সমস্যা সমাধানে দুটি প্রকোষ্ঠের মাঝখানে সন্ট ব্রীজ ব্যবহার করা হয়। সন্ট ব্রীজ এর দর্শক আয়নসমূহ বৃদ্ধি পাওয়া চার্জকে প্রশমিত করে।

্র উদ্দীপকের কোষটির জন্য কোষ বিক্রিয়া হলো—

$$A(s) + B^{2+}(aq) \Longrightarrow A^{2+}(aq) + B(s)$$

এখন, $E_{cell}^0 = E_{origin}^0 + E_{cell}^0$

$$= E_{A/A^{2+}}^{o} + E_{B^{2+}/B}^{o}$$

$$= 0.80 + (-0.40)$$

$$= 0.40 \text{ V}$$

নার্নস্ট সমীকরণ হতে আমরা জানি,

$$E_{cell} = E_{cell}^{o} - \frac{RT}{nF} \ln Q - (i)$$

এখানে, T = (35 + 273)K = 308 K

$$R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$$

n = 2 এবং F = 96500 coul

(1) নং হতে পাই

$$E_{\text{cell}} = 0.40 - \frac{8.314 \times 308}{2 \times 96500} 2.303 \log \frac{[A^{2+}]}{[B^{2+}]}$$

 \overline{A} 1, $E_{cell} = 0.40 - 0.030556 \log_{10} \left(\frac{0.1}{0.5} \right)$

বা, E_{cell} = 0.40 + 0.021357

.: Ecell = 40.0215

্য উদ্দীপকের কোষের--

অ্যানোভে জারণ বিক্রিয়া : $A(s) 2e^- \longrightarrow A^{2+}(aq)$

ক্যাথোডে বিজারণ বিক্রিয়া : B2+(aq) + 2e ---- B(s)

সার্বিক কোষ বিক্রিয়া : A(s) + B2 (aq) = A2 (aq) + B(s)

বিক্রিয়াটিতে A দুইটি ইলেকট্রন ত্যাগ করে জারিত হয়েছে অর্থাৎ এটি জারণ বিক্রিয়া। B²⁺ আয়নিক 2টি ইলেকট্রন গ্রহণ করে বিজারিত হয়েছে অর্থাৎ এটি বিজরণ বিক্রিয়া। যে বিক্রিয়া একই সাথে জারণ ও বিজারণ ঘটে তাকে বিভিন্ন বিক্রিয়া বলে। সূতরাং উদ্দীপকের কোষে সংঘটিত বিক্রিয়াটি একটি রিভিন্ন বিক্রিয়া।

ক. ফুড এডিটিভ কী?

খ, গ্লাস ক্রিনারের পরিস্ফার করণ কৌশল ব্যাখ্যা কর।

গ. চিত্র-১ এর কোষটিতে ক্যাথোডে উৎপন্ন গ্যাসটি পরিবেশ বান্ধব যে কোষে জ্বালানি হিসেবে ব্যবহৃত হয় সেটির কোষ বিক্রিয়া উপস্থাপন কর।

ঘ. চিত্র-২ এর পাত্রে অবস্থিত দ্রবণটি দস্তা ও তামার পাত্রদ্বয়ের রাখার যৌক্তিকতার তুলনামূলক বিশ্লেষণ কর।
৫৬ নং প্রশ্লের উত্তর

ক খাদ্যের রং, গন্ধ ও স্থাদ উন্নত করার জন্য যেসব রাসায়নিক পদার্থ ব্যবহার হয় তাদের ফুড অ্যাডিটিভ বলে।

প্রাসে লেগে ময়লার মধ্যে থাকে গ্রিজ বা চর্বি ও ধুলাবালি এবং বিভিন্ন ব্যাকটেরিয়া ও ফাজাাস। গ্লাস ক্লিনারে Welting Agent রূপে থাকা সোডিয়াম লরাইল সালফেটের লিপোফিলিক অংশ গ্লাসে লেগে থাকা এ সকল তৈলান্ত ময়লার সাথে আবন্ধ হয়ে কাচতল থেকে এগুলোকে তুলে ফেলে। আলগা এই ময়লা লিকার অ্যামোনিয়ায় দ্রবীভূত হয়ে সোড লরাইল সালফেট থেকে আলাদা হয়ে য়য়। ফলে এগুলো পানির উপর ভেসে উঠে। এতে খুব সহজেই পানি দ্বারা কাচতল ধৌত করে এর উপরিতল থেকে ময়লা দুরীভূত করা য়য়। অপরদিকে অ্যামোনিয়া অত্যন্ত বিষাক্ত হওয়ায় য়াসের উপর উৎপন্ন ব্যাকটেরিয়া ও ফাজাাস খুব সহজেই ধ্বংস হয়।

লিকার অ্যামোনিয়া + তৈলাক্ত ময়লা \rightarrow তৈলাক্ত ময়লার ইমালশন অ্যামোনিয়া (NH_3) + ব্যাকটেরিয়া/ফাঞ্জাস \rightarrow মূলত ব্যাকটেরিয়া/ফাঞ্জাস।

ত্রাইন হলো NaCl এর সম্পৃত্ত জলীয় দ্রবণ এর তড়িৎ বিশ্লেষণে ক্যাথোডে H⁺ ও Na⁺ আয়ন এবং অ্যানোডে OH ও Cl আয়ন বিদ্যমান থাকে।

ক্যাথোডে বিজারণ বিক্রিয়াঃ

 $2H^+ + 2e^- \rightarrow H_2(g)$

 $Na^+ + e^- \rightarrow Na$

সূতরাং ক্যাথোডে উৎপন্ন গ্যাসীয় পদার্থটি হলো H_2 । H_2 কে জ্বালানি হিসেবে ব্যবহার করে $H_2{-}O_2$ ফুলে সেল উৎপন্ন করা হয়। $H_2{-}O_2$

ফুয়েল সেল একটি পরিবেশ বাস্থব কোষ। এই কোষে তড়িৎবিশ্লেষ্য পদার্থ হিসেবে KOH কার ব্যবহার করা হয়। নিম্নে কোষটিতে সংঘটিত বিক্রিয়া উল্লেখ করা হলো—

অ্যানোডে জারণ বিক্রিয়া : $2H_2 + 4OH^- \rightarrow 4H_2O + 4e^-$ ক্যাথোডে বিজারণ বিক্রিয়া: $O_2 + 2H_2O + 4e \rightarrow 4OH^-$

সার্বিক কোষ বিক্রিয়া: $2H_2 + O_2 \rightarrow 2 H_2O$

এই বিক্রিয়া উৎপাদ ছিসেবে H_2O উৎপন্ন হয় বিধায় $H_2 - O_2$ ফুয়েল সেল অত্যন্ত পরিবেশ বান্ধব।

১০(ঘ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ।

271 > 69 (i) A (s)/ A2 (aq) (0.05M) // B*(aq) (0.03M)/ B (s)

(ii) $H_2SO_4 + FeSO_4 + KMnO_4 \rightarrow ?$

/रगुड़ा क्यार्थनारपर्वे भारतिक स्कूल ७ करनक/

क. न्याता-भाषित्कन की?

আলকোহল পানিতে দ্রবণীয় কেন?

 উদ্দীপকের (ii) বিক্রিয়াটি পূর্ণ কর এবং আয়ন-ইলেকট্রন পম্প্রতিতে সমতা কর।

য়, উদ্দীপকের (i) কোষটি গঠন করে বিদ্যুৎ উৎপাদন সম্ভব কিনা? গাণিতিক যুক্তি বিশ্লেষণ কর।

৫৭ নং প্রয়ের উত্তর

বল যেসকল বস্তু কপার আকার 1–100 nm হয় তাদেরকে ন্যানো কণা বলা হয়।

আলকোহল (R-OH) পানিতে দ্রবণীয়। কারণ— অ্যালকোহল
অণুতে অক্সিজেনযুক্ত কার্যকরী মূলক থাকায় এরা এদের কার্যকরী মূলক
ছারা পানি অণুর সাথে হাইড্রোজেন বন্ধন গঠন করতে পারে। ফলে
তাদের মধ্যকার আকর্ষণের জন্য পরস্পরের অণুসমূহ মিশ্রিত হতে
পারে।

চিত্র : অ্যালকোহল ও পানি অণুর মধ্যকার হাইড্রোজেন বন্ধন

নিম্নে আয়ন ইলেকট্রন পম্পতিতে (ii) নং বিক্রিয়াটি সমতাকরণ করা হলো—

বিজারণ অর্ধ-বিক্রিয়া : MnO₄ + 8H + 5e → Mn² + 4H₂O বিক্রিয়া দুটি যোগ করে পাই.

 $5Fe^{2+} + 8H^{+}MnO_{4} \longrightarrow 5Fe^{3+} + 4H_{2}O + Mn^{2+}$

উভয়পক্ষে দর্শক আয়নগুলো যোগ করে পাই,

10 FeSO₄ + $8H_2SO_4$ + $2KMnO_4 \longrightarrow 5Fe_2 (SO_4)_3 + K_2SO_4 + <math>2MnSO_4 + 8H_2O$

ত্র ৫(ঘ) নং সৃজনশীল প্রয়োত্তরের অনুরূপ।

21:100

25°C তাপমাত্রায়,

 $E_{\text{Zn/Zn}^{2+}}^{0} = 0.76\text{V}, E_{\text{Cu/Cu}^{2+}}^{0} = 0.34\text{V}$

[मतकाति गरीम वृत्तवुत्त करनवः, शावना]

- ক. লবণ সেতু কী?
- খ. CFC কীভাবে ওজোনস্তর ক্ষয় করে?
- গ, উদ্দীপকের B পাত্রটি দস্তার তৈরি হলে উৎপন্ন কোষটির স্থায়িত্ব সম্পর্কে মতামত ব্যাখ্যা করো। ৩
- উদ্দীপকের কোষটির কোষ বিভব নির্ণয় করো।

৫৮ নং প্রশ্নের উত্তর

কুটি তড়িৎদ্বারের মাঝে পরোক্ষ সংযোগ স্থাপনের জন্য তড়িৎ বিশ্লেষ্য লবণের (NaCl, Na₂SO₄, KCl, NH₄Cl প্রভৃতি) দ্রবণপূর্ণ যে বাকা কাচনল (U-আকৃতির) ব্যবহার করা হয় তাকে লবণ সেতু বলে।

সূর্য থেকে আগত UV রশ্মির প্রভাবে CFC বিয়োজিত হয়ে ক্রোরিন ফ্রি
রেডিক্যাল (CI') উৎপন্ন করে। এই ক্রোরিন ফ্রি-রেডিক্যাল নিম্নোক্তভাবে
ওজনস্তরের কয় করে—

$$Cl_{2}CF_{2} + h\nu \longrightarrow Cl' + ClCF'_{2}$$

$$Cl' + O_{3} \longrightarrow ClO' + O_{2}$$

$$O_{3} + h\nu \longrightarrow O_{2} + O'$$

$$\begin{bmatrix} ClO' + O' \longrightarrow Cl' + O_{2} \\ Cl' + O_{3} \longrightarrow ClO' + O_{2} \\ \hline O_{3} + O' \longrightarrow 2O_{2} \end{bmatrix}$$

$$bg$$

এডাবে Cl'-এর মাধ্যমে ওজনস্তরের ক্ষতি হয়।

- 🚺 ৩(ঘ) নং সৃজনশীল প্রশ্নোত্তর দ্রম্টব্য।
- 🖫 ৩(গ) নং সৃজনশীল প্রশ্লোতর দ্রফব্য।

 $A(s)/A^{2+}(0.1M) \parallel B^{+}(0.2M)/B(s)$

27°C তাপমাত্রায়,

$$E^{c}_{A/A^{2+}} = 0.76V, E^{0}_{B/B^{+}} = -0.77V$$

[महत्काति मधीम बुमव्य स्टानवा, भावना]

- क. 11 फुरान (अन की?
- কপারের প্রমাণ বিজারণ বিভব 0.34V ব্যাখ্যা করে।
- 250 A বিদ্যুৎ 50 মিনিট ধরে চালনা করলে কী পরিমাণ ধাতু ক্যাথোডে জমা হবে?
- ঘ. উদীপকের A²+ প্রবণের ঘনমাত্রা পরিবর্তন করে 0.04M করা হলে কোষের emf কীর্প পরিবর্তন ঘটবে বলে তুমি মনে করো?

৫৯ নং প্রয়ের উত্তর

ক হাইড্রোজেন ফুয়েল সেল এক প্রকার তড়িৎ রাসায়নিক কোষ যেখানে H_2 গ্যাস ফুয়েল হিসাবে ব্যবহার করা হয় এবং রাসায়নিক শক্তিকে তড়িৎ শক্তিতে রূপান্তরিত করা হয়।

ব্রী কপারের প্রমাণ বিজারণ বিভব 0.34 Volt বলতে বোঝায় যে প্রমাণ হাইড্রোজেন ইলেকট্রোডের আপেক্ষিক একক সক্রিয়তাবিশিন্ট Cu²⁺ এর দ্রবণে কপার দশু নিমজ্জিত করে উৎপন্ন অর্ধ কোষে বিজারণ বিক্রিয়া সংঘটিত হওয়ার প্রবণতা বা বিভব 0.34 Volt।

- ১৩(গ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ।
- বি কোষ ভায়াগ্রাম; A(s)/A²⁺(0.1M)||B⁺(0.2M)/B(s)

 27° C ভাপমাত্রায়, $E^{0}_{A/A^{2+}} = 0.76V$

$$E^0_{B/B^+} = -0.77V$$

$$E^{0}_{cell} = E^{0}_{A/A^{2+}} - E^{0}_{B/B^{+}}$$

$$= 0.76 - (-0.77)$$

$$= 1.53V$$

কোষটির কোষ বিক্রিয়া; A(s) + 2B⁺(aq) → A²⁺(aq) + 2B(s) কোষ বিক্রিয়ায় 2 mol ইলেকট্রন আদান-প্রদান হয়েছে; তাই n = 2 mol ∴ তড়িৎ কোষটির EMF এর সমীকরণহবে নিমন্তুপ–

$$E = E_{cell}^{0} + \frac{2.303RT}{nF} log \frac{[B^{+}]^{2}}{[A^{2^{+}}]}$$

A²⁺ আয়নে ঘনমাত্রা 0.1M থাকা অবস্থায় EMF,

$$E_1 = 1.53 + \frac{2.303 \times 8.314 \times 300}{2 \times 96500} \log \frac{(0.2)^2}{0.1}$$

$$E_1 = 1.518V$$

A2+ আয়নে ঘনমাত্রা 0.04M করা হলে, EMF,

$$E_2 = 1.53 + \frac{2.303 \times 8.314 \times 300}{2 \times 96500} \log \frac{(0.2)^2}{0.04}$$

= 1.53V

সূতরাং A²⁺ আয়নে ঘনমাত্রা 0.04M করা হলে কোষটির EMF বৃদ্ধি পাবে।

প্রনা ১৬০ রসায়ন ল্যাবে প্রদর্শক সাহেব নিকেল লবণের একটি দ্রবণ তামার পাত্রে সংরক্ষণ করতে বললে ল্যাব সহকারী ভূল করে তা একটি দস্তার পাত্রে রেখে দিলেন। নিকেল ও দস্তার জারণ বিভব যথাক্রমে + 0.25 ∨ এবং 0.76 ∨।

(ক্রিক্রপুর সরবারি মহিনা ক্রনের)

- ক, লবণ সেতৃ কী?
- সলভারের তড়িৎ রাসায়নিক তুলাংক 0.001118gc⁻¹ বলতে কি বৃঝায়?
- ণ, উদ্দীপকে লবণের দ্রবণে 60 মিনিট ধরে 0.1 অ্যাম্পিয়ার বিদ্যুৎ চালনায় ক্যাথোড়ে কী পরিমাণ ধাতু জমা হবে।
- ঘ. উদ্দীপকে উল্লেখিত তড়িং বিশ্লেষাটি দীর্ঘদিন জিংক এর পাত্রে
 সংরক্ষণ করা যাবে কি? e.m.f এর মাধ্যমে ব্যাখ্যা কর।

৬০ নং প্রশ্নের উত্তর

ক্রি দুটি তড়িংদ্বারের মাঝে পরোক্ষ সংযোগ স্থাপনের জন্য তড়িং বিশ্লেষ্য লবণের (NaCl, Na₂SO₄, KCl, NH₄Cl প্রভৃতি) দ্রবণপূর্ণ যে বাকা কাচনল (U-আকৃতির) ব্যবহার করা হয় তাকে লবণ সেতু বলে।

পিলভারের তড়িৎ রাসায়নিক তুল্যান্ডক 0.001118gC⁻¹ বলতে বুঝায় তড়িৎ বিশ্লেষণের সময় এক কুলম্ব তড়িৎ প্রবাহিত করলে ক্যাথোড়ে 0.001118g সিলভার জমা হবে।

- রি ১০(গ) নং সৃজনশীল প্রশ্নোভরের অনুরূপ।
- য ১৬(ঘ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ।

- ক, ন্যানো কণার সংজ্ঞা লিখ।
- খ. লেভ স্টোরেজ ব্যাটারীতে মাঝে মাঝে পানি যোগ করা হয় কেন?
- গ, উদ্দীপকের কোষটির বিভব নির্ণয় করো।
- ছ- উদ্দীপকের কোষে তড়িৎ পরিবহনের কৌশল চিত্র ছারা বিশ্লেষণ করো।

৬১ নং প্রশ্নের উত্তর

ক 1-100 nm আকারের খুবই ক্ষুদ্র কণাকে ন্যানো ৰুণা বলে।

সঞ্যা ব্যাটারি চার্জিতকরণের পূর্বে পানি যোগ করা হয়। কারণ ব্যাটারি যখন চার্জিত হয় তখন H_2SO_4 মিপ্রিত পানি বিশ্লিষ্ট হয়ে H_2 এবং O_2 গ্যাসে পরিণত হয়। ফলে পানির পরিমাণ কমতে থাকে। আবার স্বতঃবাদ্পীভবনের মাধ্যমেও কিছু পানি বাদ্পাকারে নির্গত হয়। তাই ব্যাটারিতে মাঝে মাঝে পানি যোগ করে H_2SO_4 দ্রবণের ঘনমাত্রা 1.2 তে স্থির রাখা হয়।

- 🐒 ৫(গ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ।
- ত ৫(ঘ) নং সৃজনশীল প্রয়োত্তরের অনুরূপ।

/भूनिय भारेक स्कून এछ करमज, त्रःपुत/

- ক. অনুবন্ধী ক্ষারক কী?
- খ্ কার্বন মনোঅক্সাইডকে নীরব ঘাতক বলা হয় কেন?
- গ. উদ্দীপকের A পাত্রটি Zn ধাতুর হলে ঐ পাত্রে দ্রবণটি সংরক্ষণ করা যাবে কি? তোমার উত্তরের স্বপক্ষে যুক্তি দাও। ৩
- ঘ, উদ্দীপক B পাত্রের তড়িৎ রাসায়নিক কোষটির emf নির্ণয় কর।

৬২ নং প্রশ্নের উত্তর

কানো অন্ধ থেকে একটি প্রোটন (H¹) অপসারণ করলে যে ফারকের সৃষ্টি হয় তাকে ঐ অন্নের অনুবন্ধী ক্ষারক বলে।

© বর্ণহীন, গন্ধহীন গ্যাস। তাই পরিবেশে এর উপস্থিতি মানুষ সহজে বুঝতে পারে না। CO নিঃশ্বাসের সজো প্রাণিদেহে ঢুকে রক্তর হিমোগ্নোবিনের সজো জটিল যৌগ গঠন করে এবং প্রাণিদেহে অক্সিজেন পরিবহনে ব্যাহত ঘটায়। ফলে বিভিন্ন শ্বাস কইজিনিত রোগ সৃষ্টি হয়। এ ছাড়া O₂ পরিবহনে অসুবিধার কারণে শরীরের টিস্যুতে O₂ সরবরাহের জন্য হৃদপিভের উপর চাপ পড়ে। ফলে হৃদরোগে আক্রান্ত হওয়ার সম্ভাবনা বেড়ে যায়। এ ঘটনাটি প্রাণীর অগোচরে ঘটে। এজন্য CO কে নীরব ঘাতক বলা হয়।

া উদ্দীপকের A পাত্রে আছে FeSO4 দ্রবণ। পাত্রটি Zn এর হলে কি ঘটবে সেটা নির্ণয় করতে হবে। দেওয়া আছে,

Zn এর বিজারণ বিভব, Eza2+/Zn = -.76 V

Fe এর বিজারণ বিভব, E_{Fe¹⁺/Fe} = - 0.44 V

Zn এর বিজারণ বিভব Fe অপেক্ষা কম অর্থাৎ Zn এর জারণ ঘটবে ও Fe এর বিজারণ ঘটবে। অর্থাৎ Zn অ্যানোড ও FeSO4 ক্যাথোড হিসাবে কাজ করবে।

এখন,

 $E_{cell} = E_{arget} + E_{faunter}$

= 0.76 + (-0.44) V

= 0.32 V

যেহেতু কোষ বিভবের মান ধনাত্মক তাই বিক্রিয়া স্বতঃস্ফূর্তভাবে ঘটবে। অর্থাৎ Z_n এর জারণ ঘটবে ও Z_n পাত্র ক্ষয়প্রাপ্ত হবে। সূতরাং, পাত্রে $FeSO_4$ দ্রবণ রাখা যাবে না।

ত্র উদ্দীপকের B পাত্রে আছে ZnSO4 দ্রবণে Zn তড়িংদার ও NiSO4 দ্রবণে Ni তড়িংদার।

দেওয়া আছে,

Zn এর বিজারণ বিভব, Ezn^{2*}/Zn = - 0.76 V

Ni এর বিজারণ বিভব, E_{Ni²¹/Ni} = - 0.22 V

ZnSO4 দ্রবণের অর্থাৎ Zn²⁺ আয়নের ঘনমাত্রা,

 $[Zn^{2+}] = 0.75 \text{ M}$

 Ni^{2+} আয়নের ঘনমাত্রা, $[Ni^{2+}] = 0.50 M$

এখানে, Zn এর বিজারণ বিভব Ni অপেক্ষা কম বলে Zn অ্যানোড ও Ni হবে ক্যাথোড। কোষ বিক্রিয়াটি হবে,

 $Zn + Ni^{2+} = Ni + Zn^{2+}$

এখানে,

ইলেকট্রনের মোল সংখ্যা, n = 2

তাপমাত্রা, T = 298 K

এখন,

$$\begin{split} E_{cell} &= E_{energ} + E_{flowrger} \\ &= 0.76 + (-0.22) \text{ V} \\ &= 0.54 \text{ V} \\ \therefore E_{cell} &= E^{\circ}_{cell} - \frac{RT}{nF} \ln \frac{[Zn^{2+}]}{[Ni^{2+}]} \\ &= 0.54 - \frac{8.316 \times 298}{2 \times 96500} \ln \left(\frac{0.75}{0.50}\right) \\ &= 0.53 \text{ V} \end{split}$$

অতএব কোষ্টির emf হলো 0.53V।

2위 > GO

/पुलिश भारेस स्कून ७७ वरमञ, उरपुत/

- ক. সিলভারের তড়িৎ রাসায়নিক তুলাংক 1.118 × 10⁻³ বলতে কী বুঝং
- খ. CFC কীভাবে ওজোনস্তর ধ্বংস করে?
- গ. উদ্দীপকের পাত্র -1 কোষে 50 A বিদ্যুৎ 5 মিনিট চালনা করলে ক্যাথোডে কী পরিমাণ ধাতু সঞ্চিত হবে?
- ঘ. উদ্দীপকের পাত্র-1 নং ও পাত্র -2নং দুটি তড়িং কোষ হলেও এদের শক্তির রূপান্তরের ধরণ ভিন্ন, তা বিশ্লেষণ কর। 8

৬৩ নং প্রশ্নের উত্তর

ক্রি সিলভারের তড়িৎ রাসায়নিক তুল্যান্ডক 1.118 × 10⁻³ g coul⁻¹ বলতে বুঝায় তড়িৎ বিশ্লেষণের সময় এক কুলম্ব বিদ্যুৎ প্রবাহের ফলে সিলভারের 1.118 × 10⁻³ g অ্যানোডে দ্রবীভূত বা ক্যাথোডে সঞ্চিত হয়।

CFC হলো ক্লোরো ফ্লোরো কার্বন। CFC অণুগুলো ধীরে ধীরে ওপর
থেকে স্ট্র্যাটোম্ফিয়ারে পৌছে। তখন CFC অণু UV-রশ্মি আলোক
য়ারা C-Cl বন্ধন তেজো মুক্ত ইলেকট্রনযুক্ত ক্লোরিন পরমাণু উৎপর
করে। Cl মুক্তমূলক ওজোন অণু (O₃) এর সাথে বিক্রিয়া করে প্রথমে
ক্লোরিন মনোঅক্সাইড মুক্তমূলক (ClO¹) ও O₂ উৎপর করে। পরে ClO¹
মুক্তমূলক অক্সিজেন পরমাণুর সাথে বিক্রিয়া করে O₂ অণু ও ক্লোরিন
পরমাণু তৈরি করে।

$$CF_2Cl_2 \xrightarrow{UV} CF_2Cl^{\bullet} + Cl^{\bullet}\uparrow$$

 $O_3 + Cl^{\bullet} \rightarrow ClO^{\bullet} + O_2$
 $ClO^{\bullet} + O \rightarrow Cl^{\bullet} + O_2$

ত্রি ১৩(গ) নং সৃজনশীল প্রয়োত্তরের অনুরূপ।

য ১৪(ঘ) নং সৃজনশীল প্রশ্লোত্তরের অনুরূপ।

231 > 68

- (i) 2 KNO₃ → 2KNO₂ + A
- (ii) $Zn + H_2SO_4 \longrightarrow ZnSO_4 + BP_2$

/हें=भाशनी भारतिक म्कूज ७ करनाज, कृषिया/

- ক, লবণ সেতু কী?
- খ. প্রমাণ H- তড়িৎ দ্বারের বিভব শূন্য ধরা হয় কেন?
- গ. উদ্দীপকের 5 g A উৎপন্ন করতে কত গ্রাম বিক্রিয়ক প্রয়োজন তা নির্ণয় করো।
- घ. A ও B গ্যাস দ্বারা গঠিত কোষটি পরিবেশ বান্ধব হবে কী?
 বিশ্লেষণ করো।

৬৪ নং প্রশ্নের উত্তর

কু দুটি তড়িৎদারের মাঝে পরোক্ষ সংযোগ স্থাপনের জন্য তড়িৎ বিশ্লেষ্য লব্ণের (NaCl, Na₂SO₄, KCl, NH₄Cl প্রভৃতি) দূবলপূর্ণ যে বাঁকা কাচনল (U-আকৃতির) ব্যবহার করা হয় তাকে লবণ সেতু বলে।

প্রমাণ H তড়িৎছারে 25°C তাপমাত্রায় latm চাপে এবং IM H* আয়নের দ্রবণে Pt ের দ্বারা H, গ্যাস সংযুক্ত করা হয়। এই অবস্থায় দ্রবণ এবং ইলেকট্রোডের মধ্যে ইলেকট্রন ত্যাগ বা গ্রহণের কোন প্রবণতা দেখা যায় না বলে প্রমাণ ।। তড়িৎদারের বিভব শুন্যে ধরা হয়।

পা ১১(গ) নং সূজনশীল প্রশ্লোত্তরের অনুরূপ।

য ১১(ঘ) নং সজ্নশীল প্রশ্নোত্তর দ্রন্টব্য।

21 > 60

/हेम्भारानी भावतिक म्कुम ७ करनक, कृषिशा/

- ক. আয়োডোমিতি কী?
- খ. CFC কীভাবে ওজোনস্তর ক্ষয় করে?
- গ্. ক্যাথোডে কী পরিমাণ Fe জমা হবে তা নির্ণয় করো।
- 0 ঘ. উদ্দীপক দ্রবণকে দস্তার পাত্রে রাখা যৌত্তিক হবে কী? গাণিতিকভাবে ব্যাখ্যা করে।

৬৫ নং প্রশ্নের উত্তর

ক যে প্রক্রিয়ায় একটি জারক পদার্থের সজ্যে আয়োডিন লবণের (KI) বিক্রিয়ায় বিমুক্ত আয়োডিনকে প্রমাণ থায়োসালফেট দ্রবণ দ্বারা ট্রাইটেশন করে মুক্ত আয়োডিনের পরিমাণ নির্ধারণ করা হয় তাকে আয়োডোমিতি বলে ৷

👸 সূর্য থেকে আগত UV রশ্মির প্রভাবে CFC বিয়োজিত হয়ে ক্লোরিন ফ্রি রেডিক্যাল (Cl') উৎপন্ন করে। এই ক্লোরিন ফ্রি-রেডিক্যাল নিমোক্তভাবে ওজনস্তরের ক্ষয় করে—

$$Cl_{2}CF_{2} + hv \longrightarrow Cl' + ClCF'_{2}$$

$$Cl' + O_{3} \longrightarrow ClO' + O_{2}$$

$$O_{3} + hv \longrightarrow O_{2} + O'$$

$$\begin{bmatrix} ClO' + O' \longrightarrow Cl' + O_{2} \\ \underline{Cl' + O_{1} \longrightarrow ClO' + O_{2}} \\ O_{1} + O' \longrightarrow 2O_{2} \end{bmatrix}$$

$$55$$

এভাবে Ci'-এর মাধ্যমে ওজনস্তরের ক্ষতি হয়।

গ ১০(গ) নং সজনশীল প্রশ্নোতর দুস্টব্য।

য ১০(ঘ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ।

अभा > ५५

i. $E^{0}_{Zn/Zn^{2+}} = -0.34V$; ii. $E^{0}_{Fe/Fe^{2+}} = +0.44V$; iii. $E^{0}_{Zn/Zn^{2+}} = +0.76V$ (शामीशाम मराजन करमान, ठीमशुज्ञ)

ক, আয়োডোমিতি কী?

H₁PO₄ অপেকা HNO₃ সরল কেন?

গ, উদ্দীপক দ্রবণে 250mA বিদ্যুৎ 40min ধরে চালনা করলে ক্যাথোডে কতটি পরমাণু জমা হবে?

ঘ, উদ্দীপকের দ্রবণটিকে দম্ভা ও তামার পাত্রন্বয়ের কোনটিতে সংরক্ষণ করা যৌত্তিক? প্রদত্ত তথ্যের আলোকে তোমার মতামত বিশ্লেষণ করে।

৬৬ নং প্রশ্নের উত্তর

যে প্রক্রিয়ায় একটি জারক পদার্থের সজে। আয়োভিন লবণের (KI) বিক্রিয়ায় বিমুক্ত আয়োডিনকে প্রমাণ থায়োসালফেট দূবণ দারা ট্রাইটেশন করে মৃক্ত আয়োডিনের পরিমাণ নির্ধারণ করা হয় তাকে আয়োডোমিতি

🜌 আমরা জানি, অব্রি এসিডসমৃথের ক্ষেত্রে যার কেন্দ্রীয় পরমাণুর ধনাত্মক জারণ সংখ্যা যত বেশি তার তীব্রতাও ততো বেশি হয়। আবার ধনাত্মক জারণ সংখ্যার মান সমান হলে যে প্রমাণুর আকার ছোট তার তীব্রতা বেশি হয়।

> ±5 HNO: H₂PO₄

HNO3 ও H3PO4 এর কেত্রে কেন্দ্রীয় পরমাণু নাইট্রোজেন ও ফসফরাসের ধনাত্মক জারণ সংখ্যার মান সমান। কিন্তু নাইট্রোজেনের আকার ফসফরাস অপেক্ষা ছোট বিধায় এতে চার্জ ঘনত বেশি। তাই শ্বভাবতই HNO, এর তীব্রতা H,PO4 অপেক্ষা অধিক হয়।

$$Cu^{2+} + 2e^{-} \longrightarrow Cu(s)$$
2 mole 6.022×10^{23}

.: 2F বা 2 × 96500C তড়িৎপ্রবাহে সঞ্চিত হয় 6,022 × 10²³টি

600C " "
$$\frac{6.022 \times 10^{23}}{96500} \times 600\overline{\mathbb{G}}$$

= $3.74 \times 10^{21}\overline{\mathbb{G}}$

য ১০(ঘ) নং সৃজনশীল প্রশ্নোত্তর দ্রুইব্য।

 $259 > 99 A^{2+}/A; E^0 = -0.76V$ B^{2+}/B ; $E^0 = +0.34V$, C^{2+}/C ; $E^0 = -0.44 \text{ V}$

(लागाशानी मतकाति पश्नि। करमकः)

ক. বিজারন তড়িৎদ্বার বিভব কাকে বলে?

কোষে লবণ সেতৃর ভূমিকা লিখ।

 'B' নির্মিত পাত্রে MgSO₄ রাখা যাবে কি? (Mg²⁺/Mg; $E^{\circ} = 2.3 \text{ V}$

ঘ. উপরের তড়িৎঘার দ্বারা গঠিত সম্ভাব্য কোষগুলো থেকে কোন কোষটিকে তুমি সবচেয়ে ভাল বল মনে করে? উত্তরের স্বপক্ষে যুক্তি দেখাও।

৬৭ নং প্রশ্নের উত্তর

🚮 যদি দ্রবণের মধ্যক্ষ আয়নের ধাতব পরমাণুতে পরিণত হওয়ার প্রবণতা বেশি হয়, তাহলে ধাতুর পাত ও ঐ দ্রবণের মধ্যে যে বিভব পার্থক্যের সৃষ্টি হয় তাকে বিজারণ বিভব বলে।

🔃 দুটি ভিন্ন অর্ধকোম্বের মধ্যে ইউ (U) আকৃতি নলের KCI, KNO3 বা NH4NO, এর সম্পুক্ত দ্রবণ নিয়ে নলের উভয় মুখে তুলা লাণিয়ে নলটি দুটি অর্ধকোমের দ্রবপে নিমজ্জিত করে যে পরোক্ষ সংযোগ স্থাপন করা হয় তাকে লবণ সেতু বলে। লবণ সেতুর সংযোগের মাধ্যমে দুটি অর্ধকোষের দ্রবণ সংযুক্ত হয়ে বৈদ্যুতিক সার্কিট পূর্ণ করে বলে তড়িৎ রাসায়নিক কোষ গঠিত হয়।

উদ্দীপকের B এর প্রমাণ বিজারণ বিভব B^{2+}/B ; $E^0 = + 0.34V$ এবং Mg এর প্রমাণ বিজারণ বিভব Mg^{2+}/Mg ; $E^0 = 2.3V$ অর্থাৎ Mg এর প্রমাণ বিজারণ বিভব B এর প্রমাণ বিজারণ অপেকা বেশি : সুতরাং, B নির্মিত পাত্রে $MgSO_4$ দ্রবণ রাখলে Mg বিজারিত হবে ও B জারিত হবে ।

এখন, E_{cell} = E⁰ জারণ + E⁰ বিজারণ = (- 0.34 + 2.3)V = + 1.96V

এখানে, E_{call}^0 এর মান ধনাত্মক অর্থাৎ কোষ বিক্রিয়া স্বতঃস্ফূর্ত। তাই B পাত্র ক্ষয়প্রাপ্ত হবে। এজন্য B পাত্রে MgSO4 দ্রবণ ম্রাখা যাবে না।

য উদ্দীপকের তড়িংদ্বার তিনটির প্রমাণ বিভব হলো :

 A^{2+}/A ; $E^0 = -0.76V$, B^{2+}/B ; $E^0 = +0.34V$ এবং C^{2+}/C ; $E^0 = -0.44V$ । এদের মধ্যে সবচেয়ে বেশি প্রমাণ বিজারণ বিভবের পার্থক্য A ও B এর এবং সেটি হলো : (0.34 - (-0.76) বা, $1.10 \ V$ ।

A²⁺/A ও B²⁺/B তড়িংদার দিয়ে যখন তড়িং বিশ্লেষণ কোষ তৈরী করা হবে তখন B এর প্রমান বিজ্ঞারণ বিভব বেশি হলে সেটি বিজ্ঞারিত হবে এবং A জারিত হবে। অর্থাৎ, B জারক হিসেবে কাজ করবে ও A বিজ্ঞারক হিসাবে কাজ করবে। আমরা জানি, তড়িং বিশ্লেষণ কোষে তড়িংদার দুটির প্রমাণ বিজ্ঞারণ বিভবের মান যত বেশি হবে অ্যানোড তত বেশি বিজ্ঞারিত হবে ও ক্যাথোড তত বেশি জাতিত হবে। ফলে, অধিক বিভব পার্থক্যের জন্য ইলেকট্রন প্রবাহ বেশি হবে ফলে বিদ্যুৎ প্রবাহও বেশি হবে।

সূতরাং A^{2+}/A ও C^{2+}/C অথবা B^{2+}/B ও C^{2+}/C তড়িংদ্বার অপেক্ষা A^{2+}/A ও B^{2+}/B তড়িংদ্বারের প্রমাণ বিজারণ বিভবের মানের পার্থক্য বেশি বলে A^{2+}/A ও B^{2+}/B তড়িংদ্বারদ্বয় দ্বারা গঠিত কোষ সবচেয়ে ভালো হবে।

5년 **>** 60

 $E^{o}_{Al^{3+}/Al} = -1.60V$ $E^{o}_{Cl^{2+}/Cu} = +0.34V$

(ठाउँशाम करनाम, ठाउँशाम)

- ক. মোলার দ্রবর্ণ কাকে বলে?
- খ. কাচকে অতিশীতলীকৃত তরল বলা হয় কেন?
- গ. ডানের তড়িংছারটি আলাদা করে নিয়ে দ্রবণের মধ্য দিয়ে 2amp বিদ্যুৎ 5 মিনিট ধরে চালনা করলে কী পরিমান কপার জমা হবে? [Cu = 63.5 g/mol]
- ঘ. উদ্দীপকের Anode-এর দ্রবণটি Zn-এর পাত্রে সংরক্ষণ করা যাবে কি? [Zn-এর প্রমাণ বিজারণ বিভব-0,799V। 8

৬৮ নং প্রশ্নের উত্তর

ক্রি স্থির তাপমাত্রায় কোন দ্রবণের 1 litre-এ 1 mol দ্রব দ্রবীভূত থাকলে ঐ দ্রবণকে মোলার দ্রবণ বলে।

বা কাচ উৎপাদনের সময় তার কাঁচামালগুলোকে অধিক তাপমাত্রায় গলানো হয়। তারপর গলিত কাচকে যান্ত্রিক উপায়ে আকৃতি প্রদান করা হয়। এরপর কাচকে অ্যানেলিং করার জন্য তাপ দিয়ে ধীরে ধীরে ঠান্ডা করা হয়। শেষ পর্যন্ত গলিত থেকে কঠিন কাাচ পাওয়া যায়। এজন্য কাঁচকে অতিশীতলীকৃত তরল বলা হয়।

🕜 ১০ নং প্রশ্নের (গ) এর অনুরূপ।

য ১০ নং প্রয়ের (ঘ) এর অনুরূপ।

- প্রন ▶৬৯ কতিপয় ধাতুর বিজারণ বিভবের মান নিম্নরূপ:
 - i. $X^{+}(aq)/X(s) = +0.80 \text{ V}$
 - ii. $Y^{3+}(aq)/Y(s) = -1.66 \text{ V}$
 - iii. $Z^{2+}(aq)/Z(s) = -0.44 \text{ V}$

/इंग्लाशनी चार्यान मुक्त व करमल, ठडेंग्राय/

- क. न्यारना कवा की?
- খ. H₃PO₄ ও HNO₃ এর মধ্যে কোনটি সরল, ব্যাখ্যা করো।
- গ. (i) নং (ii) নং অর্ধ কোষকে লবণ সেতু দারা সংযুক্ত করে
 গঠিত কোম্বের কোম বিভব হিসাব করো। ৩
- ঘ. (iii) নং অর্থ কোষের দ্রবণকে X ও Y ধাতুর পাত্রের কোনটিতে রাখা নিরাপদ তা কোষ বিক্রিয়ার সতঃস্ফূর্ততা দ্বারা ব্যাখ্যা করেন।

৬৯ নং প্রক্লের উত্তর

1-100 nm আকার বিশিষ্ট ত্রিমাত্রিক ক্ষুদ্র কণাকে ন্যানো পার্টিক্যাল বলে।

ব্ধ অক্সোএসিডের আন্নত্ব এদের কেন্দ্রীয় পরমাণুর জারণমানের উপর নির্ভর করে। H₃PO₄ ও HNO₃ হলো অক্সো এবং এদের কেন্দ্র পরমাণু হলো P ও N। যৌগ দুইটিতে P ও N এর জারণমান + 5। যেমন +5 H₃PO₄ HNO₃।

কেন্দ্রীয় পরমাণুর জারণমান সমান হলে কেন্দ্রীয় পরমাণুর মধ্যে যার আকার ছোট সেটাই শক্তিশালী এসিড। যেহেতু N এর আকার P-এর চেয়ে ছোট, তাই HNO3 অম্বত্ব H3PO4 এর চেয়ে বেশি।

গ ৩(গ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ।

ত্র ৩(ঘ) নং সৃজনশীল প্রশ্লোত্তরের অনুরূপ।

일위 ▶ 90

 $E_{Sn/Sn}^{0}^{2+} = 0.14V$ $E_{Cu/Cu}^{0}^{2+} = -0.34V$ $E_{Ag/Ag}^{0}^{+} = -0.799 V$

(४३४)ाम निर्धि करभीरतमन बाहर करनक।

- ক. ফ্যারাডের ১ম সূত্রটি লেখ।
- থ, মানবদেহে আর্সেনিকের প্রভাব ব্যাখ্যা কর।
- গ. উদ্দীপকের চিত্র-১ এর দ্রবণে 10 Amp বিদ্যুৎ 45 মিনিট ধরে চালনা করলে ক্যাথোডে সঞ্চিত ধাতুর পরিমাণ হিসাব কর। ৩
- ঘ, উদ্দীপকের দ্রবণটিকে, টিন এবং কপার পাত্রদ্বয়ের কোনটিতে রাখা যাবে? গাণিতিকভাবে বিশ্লেষণ কর। 8

৭০ নং প্রশ্নের উত্তর

ত তড়িং বিশ্লেষণের সময় যে কোনো তড়িংদারে সংঘটিত রাসায়নিক বিক্রিয়ার পরিমাণ অর্থাৎ, কোনো তড়িংদ্বারে সঞ্চিত বা দ্রবীভূত পদার্থের পরিমাণ প্রবাহিত বিদ্যুতের পরিমাণের সমানুপাতিক।

বাদ্যে শৃঞ্চলে আর্সেনিক দূষণের প্রভাব: মানুষের স্বাস্থের ওপর আর্সেনিকের ক্ষতিকারক প্রভাবগুলোর মধ্যে অন্যতম হচ্ছে 'র্য়াক ফুট ডিজিজ'। এ ছাড়া আর্সেনিকের দূষণে যকৃত কোষে লিপিডের সঞ্চয় ঘটে। লিপিড সঞ্চিত লিভারকে 'ফ্যাটি-লিভার' বলে। আর্সেনিকের ক্রনিক বিষ ক্রিয়ায় আক্রান্ত গর্ভবতী মায়ের ভ্রণের বৃদ্ধি ব্যাহত হয়, জন্মত্রুটি ঘটে এবং অপরিণত ভ্রণের গর্ভপাত ঘটে। জিনের মিউটেশনের ফলে অম্বাভাবিক শারীরবৃত্তীয় বৈশিষ্ট্য দেখা দেয়। আর্সেনিকের কারসিনোজেনিক প্রভাবে ক্যানার কোষের বৃদ্ধি সহজে ঘটে, তাই

আর্সেনিক আক্রান্তদের মধ্যে ফুসফুস-ক্যান্সার ও শ্কিন ক্যান্সারে মৃত্যুর সংখ্যা বেশি। ব ১০(গ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ।

য ১০(ঘ) নং সূজনশীল প্রশ্লোতরের অনুরূপ।

প্রসা ▶ ৭১ আমান একটি তড়িৎ বিশ্লেষ্য হিসেবে Cr₂(SO₄)₃ দ্রবণ নেয়। অপরদিকে ইকবাল অনুরূপ একটি কোষে তড়িৎ বিশ্লেষ্য হিসেবে CuSO4 দ্রবণ নেয়। দুজনেই তাদের সব তড়িৎ বিশ্লেষণ কোষে 5 amp মাত্রায় তড়িৎ 60 মিনিট ধরে চালনা করে। Cr = 52, Cu = 63.5 $E^{\circ}_{Fe^{2+}/Fe} = -0.44V$; $E^{\circ}_{Al^{3+}/Al} = -1.66 V$ [कञ्चराजात भिक्ति करमज]

ক. হাইড্রোজেন ফুয়েল সেল কী?

খ. আলুমিনিয়ামের পাত্রে ফেরাস সালফেট দ্রবণ রাখা থাবে কী?২

গ্, ইকবাল তার তড়িৎ বিশ্লেষণ কোষে কী পরিমাণ কপার সঞ্চিত করতে পারবে?

ঘ. আমান ও ইকবাল দুজনের পরীক্ষায় সঞ্চিত ধাতুর পরিমাণ একইরপ হবে কীনা, তোমার মতামত বিশ্লেষণ কর।

৭১ নং প্রশ্নের উত্তর

😨 হাইড্রোজেন ফুয়েল সেল এক প্রকার তড়িৎ রাসায়নিক কোষ যেখানে H₂ গ্যাস ফুয়েল হিসাবে ব্যবহার করা হয় এবং রাসায়নিক শস্তিকে তড়িৎ শক্তিতে রূপান্তরিত করা হয়।

য এক্ষেত্রে রাসায়নিক সমীকরণ:

 $2Al + 3FeSO_4 \implies Al_2(SO_4)_3 + 3Fe$

যেহেতু E°_{cell} = + ve, বিক্রিয়া স্বতঃস্ফূর্তভাবে ঘটবে। সুতরাং AI পাত্রে FeSO4 দ্রবণ রাখা যাবে না।

🛐 উদ্দীপকে ইকবাল একটি তড়িং বিশ্লেষণ কোষে তড়িং বিশ্লেষ্য হিসাবে CuSO4 দ্রবণ নেয়।

CuSO4 দ্রবণের তড়িং বিশ্লেষণে Cu²+ আয়ন নিম্নরূপে বিজারিত হয়:

 $Cu^{2+} + 2e^{-} \rightarrow Cu$

1 mol

এখানে, প্রবাহমাত্রা, I = 5 amp

সময়, t = 60 min

 $=(60 \times 60) \sec$

= 3600 sec

Cu এর পারমাণবিক ভর, M = 63.5

স্থানান্তরিত ইলেকট্রনের মোল সংখ্যা, n = 2

আমরা জানি, $W = \frac{MIt}{av}$

$$\Rightarrow W = \frac{963.5 \times 5 \times 3600}{2 \times 96500} g$$
= 5.922 g

সূতরাং ইকবাল তার তড়িৎ বিশ্লেষণ কোষে 5.922 g Cu সঞ্চিত করতে পারবে ।

য়া উদ্দীপকে আমান তড়িৎ বিশ্লেষণ কোষে $Cr_2(SO_4)_3$ দূৰণ নেয় 1 এক্ষেত্রে, Cr³⁺ আয়ন Cr₂(SO₄)3 দ্রবণে নিম্নরূপে বিজারিত হয়ঃ $Cr^{3+} + 3e^- = Cr$

স্থানান্তরিত ইলেকট্রনের মোল সংখ্যা, n = 3 🕟

প্ৰবাহ মাত্ৰা, I = 5 amp

তড়িৎ প্রবাহের সময়কাল, t = 60 min

 $= (60 \times 60) \text{ sec}$

= 3600 sec

Cr এর পারমাণবিক ভর, M = 52

সঞ্চিত Cr এর ভর = W

এখন,
$$W = \frac{MIt}{nF}$$

$$\Rightarrow W = \frac{52 \times 36000 \times 5}{3 \times 96500} g$$

:. W = 3.23 g

অর্থা, আমান 3.23g Cr সঞ্চিত করতে পারবে। কিন্তু (প)নং থেকে প্রাপ্ত, ইকবালের সঞ্চিত করা Cu এর ভর 5.922g। সূতরাং আমান ও ইকবাল দুজনের পরীক্ষায় সঞ্চিত ধাতুর পরিমাণ একইরূপ হবেনা।

প্রমা > 93 Cr(s) Cr³⁺(aq) (0.2M) || Sn²⁺ (0.15M) | Sn(s), দেয়া আছে,

 $E^{\circ}_{Cr}^{\beta+}/_{Cr} = 0.74V$, $E^{\circ}_{Srt}^{2+}/_{Sn} = -0.14V$, $E^{\circ}_{Ni}^{2+}/_{Ni} = 0.25V$

|ब्रामामायाभ क्यान्कैनए.घग्छै भावनिक स्कून এक करनक, शिरनछै|

ক. ফুয়েল সেল কী?

খ, লবণ সেতু ব্যবহার করা হয় কেন?

গ. 25° C তাপমাত্রায় উদ্দীপকের কোষটির বিভব নির্ণয় কর।

ঘ, উদ্দীপকের ক্যাথোডের দ্রবণটিকে নিকেলের পাত্রে সংরক্ষণ कड़ा यादि की? विद्मिष्ठ कर्न ।

৭২ নং প্রশ্নের উত্তর

ক যে কোনে তড়িং রাসায়নিক বিক্রিয়ার মাধ্যমে হাইড্রোজেন অথবা হাইড্রোজেন ঘটিত জ্বালানিকে সরাসরি বৈদ্যুতিক শক্তিতে পারণত করা হয় তাকে ফুয়েল সেল বলে।

ব্যু তড়িৎ রাসায়নিক কোমে লবণ সেতু ব্যবহার করার কারণ হলো–

- → লবণ সেতু অর্ধকোময়য়য়য় উভয় দ্রবণের মধ্যে সংযোগ স্থাপন করে কোষের বর্তনী পূর্ণ করে।
- → লবণ সেতুর মধ্যস্থ তড়িৎ বিশ্লেষ্য যেমন, KNO₃ উভয় অর্ধকোষের দ্রবণের সাথে কোন রাসায়নিক বিক্রিয়া করে না; বরং উভয় তরলের মধ্যে প্রয়োজনমত ধনাত্মক ও ঝণাত্মক আয়ন বিনিময়ের ব্যাপন প্রক্রিয়ার মাধ্যমরূপে কাজ করে।
- → লবণ সেতু উভয় অর্ধকোষের দ্রবণের তড়িৎ-নিরপেক্ষতা বজায় রাখতে কাজ করে।
- → লবণ সেতুর অভাবে উভয় অর্ধকোয়ে জারণ-বিজারণ ক্রিয়া বাধাপ্রাপ্ত হয়ে অল্প সময়ের মধ্যে কোষ বিক্রিয়া তথা বিদ্যুৎ প্রবাহ বন্ধ হয়ে যায়।

🛂 ১২(গ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ।

য ১০(ঘ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ।

21 > 90

/भिरमाँ भवकाति गविना करनात/

ক. স্বত:জারণ-বিজারণ বিক্রিয়া কী?

খ. DMFC কোষের সুবিধা লেখো।

উদ্দীপকের কোষের কার্যপ্রণালি বিক্রিয়াসহ লেখো।

উদ্দীপকের কোষের বিভব নির্ণয় কর।

৭৩ নং প্রশ্নের উত্তর

ক একটি জারণ বিজারণ বিক্রিয়া যদি কোনো একটি পদার্থের একই সাথে জারণ ও বিজারণ দুইটিই ঘটে তাকে স্বতঃজারণ বিজারণ বিক্রিয়া বলে।

Direct Method Fuel Cell বা DMFC কোষের সুবিধাগুলো হলো—

- i. এটি ওজনে হালকা
- ii. ফুলে হিসেবে মিথানল সহজলভ্য
- iii. নিরাপদ হওয়ায় বাণিজ্যিক সংরক্ষণ অধিকতর সুবিধাজনক।
- iv. উচ্চ এনাজি ঘনত্ব সম্পন্ন কোষ।

গ ৫(ঘ)নং সৃজনশীল প্রশ্নোত্তর দ্রফীব্য।

য় উদ্দীপকের M মৌলের পারমাণবিক ভর 65.1. তাই M মৌলটি হলো জিংক (Zn) এবং M' মৌলের পারমাণবিক ভর 63.5, তাই M' মৌলটি হলো কপার (Cu)। অতএব, উদ্দীপকের কোষটি হলো গ্যালভানিক বা ড্যানিয়েল কোষ।

ণ্যালভানিক বা ড্যানিয়েল সেল হলো এক প্রকার তড়িৎ রাসায়নিক কোষ। এ কোষে জিঙ্কের একটি পাত জিঙ্ক লবণের দ্রবণে (Zn²¹) এবং একটি কপার পাত কপার লবণের দ্রবণে (Cu²¹) আংশিক ডুবিয়ে রেখে পাত দুটির উপরের অংশকে তার দ্বারা যুক্ত করা হয়। এতে তারে মধ্যে দিয়ে বিদ্যুৎ প্রবাহিত হয়। এক্ষত্রে জিঙ্ক দশু ঋণাত্মক প্রান্ত এবং কপার দশু ধনাত্মক প্রান্ত হিসেবে কাজ করে। জিঙ্ক ও কপার লবণদ্বয়ের দ্রবণ একটি সচ্ছিদ্র প্রাচীর দ্বারা পৃথক করা থাকে। জ্যানিয়েল কোষে জিঙ্ক জারিত হয়ে Zn² আয়নে পরিণত হয় এবং এবং দ্রবণে যায়। জিঙ্ক জারিত হয়ে যে দুটি ইলেকট্রন ত্যাণ করে তা জিঙ্ক দণ্ডেই সঞ্চিত হয়।

Zn(s) === Zn⁺⁺(aq) + 2e⁻ (জারণ প্রক্রিয়া)

ইলেকট্রনম্বর জিডেকর পাত থেকে সংযোগ তারের মধ্যদিয়ে প্রবাহিত হয়ে কপার পাতে আসে এবং নিকটবতী কপার সালফেট দ্রবণের কপার আয়নের সাথে যুক্ত হয়ে শোষিত হয় অর্থাৎ বিজ্ঞারিত হয়। সেই সাথে ধাতব পাতে কপার জমা হয়।

 $Cu^{2+}(aq) + 2e^- \Longrightarrow Cu(s)$ (বিজারণ প্রক্রিয়া)

সূতরাং ড্যানিয়েল কোষে সামগ্রিকভাবে নিম্নোক্ত জারণ-বিজারণ বিক্রিয়া সংঘটিত হয়।

 $Zn(s) + Cu^{2+}(aq) \Longrightarrow Zn^{2+}(aq) + Cu(s)$

এভাবে তড়িৎ কোষে জারণ-বিজারণ বিক্রিয়ার মাধমে ইলেকট্রন ত্যাগ ও শোষণের মাধ্যমে বিদ্যুৎ উৎপন্ন হয়।

প্রয় ▶ 98 (i) জিংক ধাতুর পাত্রে NiSO4 দ্রবণ রাখা এবং Ni²⁺ /Ni = −0.25V, Zn²⁺/Zn = −0.76V

(ii) তামার পাত্রের MgSO4 দ্রবণ রাখা এবং

 $Cu^{2+}/Cu = 0.34V$, $Mg^{2+}/Mg = -2.3V$

/त्रिटनएँ मतकाति पश्चिम करमञ्जा

- ক, প্ৰমাণ কোষ বিভব কী?
- খ. লেড স্টোরেজ ব্যাটারি অপেক্ষা লিথিয়াম আয়ন ব্যাটারি পরিবেশ বান্ধব কেন?
- গ. (i) নং উদ্দীপকে 5amp তড়িৎ 60 min ধরে চালনা করলে তড়িংদ্বারে কি পরিমাণ ধাতু সঞ্চিত হবে?
- ঘ, উদ্দীপকের কোনটি দ্রবণ দীর্ঘকাল সংরক্ষণ করা যাবে? বিশ্লেষণ কর।

৭৪ নং প্রশ্নের উত্তর

কোনো একটি কোষের দুই তড়িৎদ্বারের বিভব পার্থক্যকে কোষ বিভব বলে। লৈড স্টোরেজ ব্যাটারী বর্জার্পে ফেলে দিলে লেড (pb) ধাতু
মাটিতে দূষণ সৃষ্টি করে। লেড আয়ন pb মাটি থেকে থাদা শৃঙ্খলে
প্রবেশ করে মান্যের দেহে বিভিন্ন প্রকার রোগ সৃষ্টি করতে পারে,
এমনকি ক্যান্সারও সৃষ্টি হতে পারে। লিথিয়াম আয়ন ব্যাটারী হালকা ও
উগ্র শক্তি কার্যদক্ষতা সম্পন্ন। নিকেল ও লেড ধাতু থেকে তৈরি ব্যাটারী
তুলনায় লিথিয়াম ব্যাটারী দীর্ঘস্থায়ী হওয়ায়, এটি তুলনামূলক কম
বর্জারূপে মাটিতে যুক্ত হয়। এজন্য এটি স্বাধিক পরিবেশ বান্ধব।

জ উদ্দীপকের (i)নং কোষের কোষ বিক্রিয়াটি হলো —
Ni²⁺(aq) + Zn(s) ⇒ Zn²⁺(aq) + Ni(s)
তড়িৎ প্রবাহের ফলে নিকেল ধাতু ক্যাথোডে সঞ্চিত হবে।
আমরা জানি, ক্যাথোডে সঞ্চিত পদার্থের পরিমাণ W = Zlt(i)
এখানে, I = তড়িৎপ্রবাহ = 5 amp

I = তড়িৎ প্রবাহের সময় = 60 min = (60 × 60) sec = 36 00 sec ...

Z = তড়িৎ রাসায়নিক তুলাংক $= \frac{$ পারমাণবিক ভর $}{$ যোজনী \times কুলম্ব সংখ্যা $= \frac{58.70}{2 \times 96500} \, \mathrm{g/c}$ $= 3.04 \times 10^{-4} \, \mathrm{g/c}$

এখন (i)নং হতে পাই, $W = (3.04 \times 10^{-4} \times 5 \times 3600)g$ $\Rightarrow W_{Ni} = 5.47 g$

য $Zn + Ni^{2+} \Longrightarrow Zn^{2+} + Ni \longrightarrow$ কোষটির জন্য

$$\begin{split} E^o_{coll} &= E^o_{enceq} + E^o_{fenceq} \\ &= E_{Zn/Zn^{2+}} + E_{Ni^{2+}/Ni} \\ &= 0.76 + (-0.25) \\ &= (0.76 - 0.25) V \\ &= 0.51 \ V \end{split} \qquad \begin{aligned} &\text{distr}, \\ &E^o_{Zn^{2+}/Zn} = -0.76 V \\ &\therefore E^o_{Zn/Zn^{2+}} = +0.76 V \end{aligned}$$

বিক্রিয়াটি স্বতস্ফূর্তভাবে ঘটবে।

সূতরাং Zn-পাত্রে NiSO4 সংরক্ষণ করা যাবে না।

(ii) $Cu + Mg^{2+}$ \rightleftharpoons $Cu^{2+} + Mg \longrightarrow$ কোষটির জন্য

$$E^{\circ}_{Cell} = E^{\circ}_{Cu/Cu^{2+}} E^{\circ}_{Mg^{2+}Mg}$$

$$= (-0.34 - 2.3)V$$

$$= -2.64 V$$
 $E^{\circ}_{Cu^{2+}/Cu} = -0.34V$

$$E^{\circ}_{Cu/Cu^{2+}} = 0.34 V$$

$$E^{\circ}_{Mg^{2+}/Cu} = -2.3V$$

E°_{Cell} = − Ve হওয়ায় বিক্রিয়াটি স্বতঃস্ফূর্তভাবে ঘটবে না, সূতরাং Cu পাত্রে MgSO₄ দ্রবণ বেশি সময় ধরে সংরক্ষণ করা যাবে।

231 ▶ 90 (i) KClO₃ → A + B(g)

(ii) লোহিততপ্ত Fe+ স্টীম → C + D(g)

/कृष्णिमा भवकाति करमञ, कृष्णिमा/

ক, প্রাইমারী নির্দেশক তড়িৎদার কী?

খ, সিরামিকসে গ্লেজিং করা হয় কেন?

গ. উদ্দীপকের বিক্রিয়ায় প্রমাণ অবস্থায় 82.6g KClO₃ থেকে যে পরিমাণ B এবং 42g তপ্ত Fe থেকে যে পরিমাণ D পাওয়া যায় তার মধ্যে কোনটির আয়তন কম বা বেশি হবে? নির্ণয় কর। ৩

ঘ. উদ্দীপকের B ও D ব্যবহার করে যে ফুয়েল সেল প্রস্তুত করা যায় যায় তার গঠন ও কার্যাবলি বর্ণনা কর।

৭৫ নং প্রশ্নের উত্তর

ক একক মোলার ঘনমাত্রা বিশিষ্ট কোনো [H[†]] আয়নের দ্রবণে প্লাটিনাম গুঁড়ার আস্তরণ যুক্ত প্লাটিনাম পাত রেখে 1(atm) বায়ুচাপে বিশুন্ধ হাইড্রোজেন গ্যাস বুদবুদ আকারে সরবরাহ করলে যে তড়িংছার তৈরি হয় তাকে প্রমাণ হাইড্রোজেন তড়িংছার বা প্রাইমারি নির্দেশক তড়িংছার বলে। উচ্চ তাপমাত্রায় (100°C) পোড়ানো সিরামিক সামগ্রি পোরাস (ছিদ্রযুক্ত) হয়। এ পোরাস অবস্থা দূর করা তথা সিরামিক সামগ্রির বাহ্যিক সৌন্দর্য বৃদ্ধি করার জন্য সিরামিক সামগ্রি গ্লেজিং তরলে ডুবিয়ে পুনরায় 700 – 800°C তাপমাত্রায় পোড়ানো হয়। কখনো কখনো সিরামিক পদার্থে রঙিন আন্তরণ দেওয়ার জন্য রঞ্জক পদার্থ গ্লেজিং তরলে মেশানো হয়। অর্থাৎ সিরামিক সামগ্রির গায়ে মসৃন ও উজ্জ্বল্য বৃদ্ধির জন্য গ্লেজিং করা হয়।

উদ্দীপকের রাসায়নিক সমীকরণ (i) থেকে পাই—

A B
2KClO₃ = 2KCl + 3O₂(g)
2(39 + 35.5 + 16 × 3) 3 × 22.4
সমীকরণ থেকে পাই—

STP (T

2 × 122.5kg KClO₄ থেকে 3 × 22.4 L O₂ পাওয়া যায়

∴ 82.6 KCl₃ থেকে
$$\frac{3 \times 22.4 \times 82.6}{2 \times 122.5}$$

= $\frac{55550.72}{245}$

= 22.656 L O2 পাওয়া যায় I

উদ্দীপকের রাসায়নিক সমীকরণ (II) থেকে পাই— লোহিত তপ্ত Fe+ স্টীম অর্থাৎ $3Fe+4H_2O=Fe_3O_4+4H_2O$ 3×55.85 4×22.4 L সমীকরণ থেকে পাই—

STP (TO-

 3×55.85 g Fe স্টীমের সাথে বিক্রিয়া করে উৎপন্ন করে— 4×22.4 L H_2

$$\therefore$$
 42 g Fe স্টীমের সাথে বিক্রিয়া করে উৎপন্ন করে = $\frac{4 \times 22.4 \times 42}{3 \times 55.85}$ = $\frac{3763.2}{167.55}$ = 22.46 L H₂

এখানে, B = 22.656 L আয়তন O₂ D = 22.46 L আয়তন H₂ ∴ B- এর আয়তন বেশি।

B ও D অর্থাৎ হাইড্রোজেন ও অক্সিজেন ব্যবহার করে হাইড্রোজেন
ফুয়েল সেল প্রস্তুত করা যায়।

গঠন: হাইড্রোজেন ফুয়েল সেল এ তপ্ত KOH দ্রবণ ইলেকট্রোলাইট হিসেবে উপস্থিত থাকে। এ সেলে অ্যানোড হিসেবে নিকেল আবরণযুক্ত সছিদ্র গ্রাফাইট এবং ক্যাথোড হিসেবে নিকেল ও নিকেল অক্সাইড প্রভাবক হিসেবে কাজ করে।

কার্যপ্রণালী : অ্যানোডে জ্বালানী হিসেবে H2 গ্যাস এবং ক্যাথোডে জারক

O₂ গ্যাস প্রবেশ করানো হয়। উচ্চ চাপে প্রবিষ্ট গ্যাস সছিদ্র গ্রাফাইট দিয়ে তপ্ত KOH দ্রবর্গে প্রবেশ করে।

অ্যানোডে প্রবিষ্ট হাইড্রোজেন তপ্ত KOH দ্রবণের –OH আয়নের সজ্যে বিক্রিয়া করে ইলেকট্রন বিমৃত্ত করে। এ ইলেকট্রন বহিঃবর্তনী দিয়ে ক্যাথোডে প্রবাহিত হয়। ক্যাথোডে স্থানান্তরিত ইলেকট্রন O_2 এবং O_3 এর সঙ্গো যুক্ত হয়ে OH আয়ন গঠন করে।

আ্যানোডে অর্ধবিক্রিয়া (জারণ) : $2H_2(g) + 4^-OH(q) \rightarrow 4H_2O(l) + 4e^-$ ক্যাথোডে অর্ধবিক্রিয়া (বিজারণ): $O_2(g) + 2H_2O(l) + 4e^- \rightarrow 4^-$ OH(aq)

সামগ্রিক সেল বিক্রিয়া (জারণ–বিজারণ): $2H_2(g) + O_2(g) = 2H_2O(l)$ আর এ প্রক্রিয়ায় অ্যানোডে বিমৃত্ত ইলেকট্রনের প্রবাহই তড়িৎপ্রবাহের সৃষ্টি করে।

2151 ▶ 98 Cd/Cd²⁺ (0.02M) || H⁺/H₂(0.5atm),Pt এখানে, E°Cd²⁺/Cd = -0.402 V

(कृष्णिया भतकाति करमञ, कृष्णिया)

क. विग्रात न्यासार्टे मृजिंग निय।

খ. শিলে ETP ব্যবহার করা হয় কেন?

গ. উদ্দীপকের কোন পাত্রের দ্রবণকে রূপার পাত্রে রাখা যাবে তা নির্ণয় কর। রূপার বিজারণ বিভব + 0.799V

ঘ. উদ্দীপকের বিজারণ অর্ধকোষের উপস্থিত জলীয় দ্রবণের pH কত গাণিতিকভাবে বিশ্লেষন কর। কোষটির তড়িচ্চালক বলের মান 0.419V।

৭৬ নং প্রস্লের উত্তর

কানো দ্রবণে আপতিত রশ্মির নির্গত অংশের তীব্রতা হ্রাসের হার শোষক মাধ্যমের পুরুত্ব এবং দ্রবণের ঘনমাত্রার সমানুপাতিক।

শিল্প কারখানার বর্জ্য পানি (effluent) থেকে ক্ষতিকর রাসায়নিক পদার্থকে পৃথক করার প্রক্রিয়াকে ETP (Effluent Treatment Plant) বলে। বর্তমান বিশ্বে টেক্সটাইল ও ডায়িং, চামড়া, পেপার পাল্প, সিমেন্ট, ঔষধ, চিনি, সার প্রভৃতি শিল্পের বর্জ্য ছারা পানি দৃষিত হয়। এতে ব্যাপকভাবে পরিবেশ দৃষণ ঘটে এবং জীবকূলের উপর বির্প প্রভাব পড়ে। দৃষকসমূহের মধ্যে জৈব ও অজৈব দুই রকম পদার্থই রয়েছে। এ দৃষিত পানিকে শোধন করে বিশুন্ধর্পে পরিবেশে ত্যাগ ও পুনরার ব্যবহার উপযোগী করার জন্য ETP ব্যবহার করা হয়।

গ্র ২৬(ঘ)নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ।

হলো ৷

ত্বি
$$Cd/Cd^{2+}$$
 (0.02M) ||H⁺/H₂ (0.5) Pt
 $E^{\circ}Cd^{2+}/Gd = 0.402$
 $E^{\circ}Cd^{2+} = 0.402$
 $E^{\circ}_{cell} = E_{anode (ox)} + E_{cathode (red)}$
 $= E_{Cd/Cd^{+2}} + E_{H^{+}/H_{2}}$
 $= 0.402$
 $E_{cell} = 0.419$
নার্নিস্ট সমীকরণ থেকে,
 $E_{cell} = E^{\circ}_{cell} - \frac{2.303 \text{ RT}}{\text{nF}} \log \frac{[Cd^{+2}]}{[H^{+}]} [n = 2]$
 $\Rightarrow 0.419 = 0.402 - \frac{2.303 \times 8.314 \times (298)}{2 \times 96500} \log \frac{[Cd^{+2}]}{[H^{+}]}$
 $\Rightarrow -0.575 = \log [Cd^{+}] - \log [H^{+}]$
 $\Rightarrow pH = -0.575 - \log [0.02]$

প্ররা ▶ ৭৭ দুটি লোহার তৈরী চামচে পার্থক্য সৃষ্টি করতে ১ম চামচে নিজের নিকেল এবং ২য় চামচে ক্রোমিয়াম এর প্রলেপ দেবার জন্য এদের লবণের দ্রবণে 1 ঘণ্টা 20 মিনিট যাবং 4.5A বিদ্যুৎ প্রবাহিত করা

[मतकाति रेमराम शराज्य जानी करनाव, बरियान]

- ক, রাসায়নিক তুল্যাংক কী?
- খ, প্রমাণ H ইলেকট্রোড এর গঠন বর্ণনা কর।
- গ, উদ্দীপকের প্রক্রিয়া অনুসরণ করে কীর্পে বিশুন্থ কপার ধাতু নিম্কাশন করা যায় বর্ণনা কর । ৩
- ছ, উদ্দীপকে ১ম ও ২য় চামচের মধ্যে কোনটি অধিকতর ভারী হবে তাহা পরিমাণ নির্ণয়সহ মতামত দাও। 8

৭৭ নং প্রশ্নের উত্তর

ক যে পরিমাণ পদার্থ হাইড্রোজেনের 1 g এর সাথে বিশেষ বিক্রিয়ার মাধ্যমে মিলিত হয় অথবা উহাকে মুক্ত বা প্রতিস্থাপিত করতে পারে সে পরিমাণ পদার্থকে ঐ পদার্থের রাসায়নিক তুল্যাংক বা তুল্যভর বলে।

একক মোলার ঘনমাত্রা বিশিষ্ট কোনো H⁺ আয়নের দ্রবণে প্লাটিনাম পূড়ার আন্তরণ যুক্ত প্লাটিনাম পাত (Platinised platinum) রেখে 1 (atm) বায়ুচাপে বিশৃদ্ধ হাইড্রাজেন গ্যাস বুদবুদ আকারে সরবরাহ করলে যে তড়িংশ্লার উৎপন্ন হয় তাকে প্রমাণ হাইড্রোজেন তড়িংশ্লার বলা হয়। প্রমাণ হাইড্রোজেন তড়িংশ্লারের গঠন নিম্নর্প—
Pt, H₂(g) (latm) | H⁺(aq) (1.0 M); E⁰ = 0.0 V
25°C তাপমাত্রায় 1 molar দ্রবণে 1 atm চাপে বিশৃদ্ধ হাইড্রোজেন গ্যাস চালনা করলে নিম্নলিখিত উভমুখী বিক্রিয়া সংঘটিত হবে।

$$\frac{1}{2}H_2 \rightleftharpoons H^+ + e^-$$
; $E_{ox}^0 = 0$

আানোডে: Cu = Cu²⁺ + 2e (জারণ) ক্যাথোডে: Cu²⁺ + 2e = Cu (বিজারণ)

তড়িৎ বিশ্লেষণে Cu -এর পাশাপাশি Zn, Fe জারিত হয় এবং আয়নে রূপান্তরিত হয়। রাসায়নিক সারিতে Cu এর অবস্থান নিচে হওয়ায় শুধু Cu^{2+} সায়ন জমা হয়।

১ম চামচ Ni যার আণবিক ভর M = 58.69 ২য় চামচ Cr যার আণবিক ভর M = 51.99 উভয় ক্ষেত্রে বিদ্যুৎ পরিবহন এর মাত্রা ও সময় একই,

i = 4.5A t = 1 h 20 min

 $=3600 + (120 \times 60)$

= 4800 s

১ম ক্ষেত্রে

 $W_1 = Z_1 it$ $= \frac{M_1}{nF} it$

nr n = 2 নিকেলের জন্য

 $= \frac{58.69}{2 \times 96500} \times 4.5 \times 4800$

=6.569g

২য় ক্ষেত্রে,

n = 3 Cr এর জন্য

 $W_2 = T_2it$

 $=\frac{M_2}{n \times F}$ it

 $=\frac{51.99}{3\times96500}\times4.5\times4800$

= 3.871

১ম চামচ অধিকতর ভারী ৷

21위 ▶ 9상

/कार्किनयके भावनिक स्कून ७ करमण, (भारधनमार्श)

ক. কার্যকরী মূলক কাকে বলে?

খ. সাইফেজ নীতিটি বিবৃত কর।

গ: উদ্দীপকের পাত্রে সংঘটিত বিক্রিয়া অর্ধকোষ ও পূর্ণকোষ বিক্রিয়া হিসেবে উপস্থাপন কর। ৩

ঘ. উদ্দীপকে উল্লিখিত পাত্রে দ্রবণটিকে সংরক্ষণ না করে তামার পাত্রে দীর্ঘকাল সংরক্ষণ করা উচিত হবে কিনা

 যুক্তিসহকারে
 বিশ্লেষণ করে।

৭৮ নং প্রয়ের উত্তর

ক কার্যকরী মূলক: যে পরমাণু বা মূলক কোনো জৈব যৌগের অণুতে বিদ্যমান থেকে কার্যত এর তথ্য এর শ্রেণির ধর্ম ও বিক্রিয়ার প্রকৃতি নির্ধারণ করে থাকে তাকে ঐ যৌগের বা শ্রেণির কার্যকরীমূলক বলে।

"হ্যালোজেনো অ্যালকেন থেকে HX অপসারণের বেলায় যে কার্বনের কম সংখ্যক β হাইড্রোজেন থাকে, সেই কার্বন থেকে H-পরমাণু α— কার্বনের হ্যালোজেন (X) সহ মিলে HX রূপে অপসারিত হয়ে অ্যালকিন উৎপন্ন করে।" অপর কথায়, হ্যালোজেনো অ্যালকেন (RX) থেকে HX অপসারণ এমনভাবে ঘটে যেন অপেক্ষাকৃত বেশি শাখান্তিত অ্যালকিন প্রধান উৎপাদ হতে পারে। অধিক শাখান্তিত বা অ্যালকাইল প্রতিস্থাপিত অ্যালকিন অধিক স্থায়ী হয়। যেমন—

2 CH, − CH, − CH − CH, aic KOH
2 CH, − CH, − CH − CH, [2- বিউলি (80%)]
2-রোমে বিউলে Bx

2-বিউটিন এর বেলায় কার্বন-কার্বন দ্বিবন্ধনের দুদিকে দুটি শাখা যেমন,
দুটি CH, মূলক রয়েছে এবং 1- বিউটিন এর বেলায় দ্বিবন্ধনের
একদিকে একটি মাত্র শাখা শিকল যেমন CH, − CH₂-মূলক রয়েছে।

গ্র উদ্দীপক থেকে জারণ অর্ধবিক্রিয়া :

 $Mg \longrightarrow Mg^{+2} + 2e^{-}$

বিজারণ অর্ধ বিক্রিয়া :

$$Zn^{+2} + 2e^{-} \longrightarrow Zn$$

$$Mg + Zn^{+2} \longrightarrow Zn + Mg^{+2}$$

∴জারণ অর্ধকোষ

Mg/MgSO₄

় বিজারণ অর্ধকোষ

ZnSO₄/Zn

পূৰ্ণকোষ— যেহেতু কোনো লবণ সেতু ব্যবহৃত হয়নি— Mg / MgSO4 || ZnSO4/ Zn

ঘ উল্লেখিত পাত্রে বিক্রিয়ার সম্ভাবনা Mg + ZnSO4 = MgSO4 + Zn কোষটি হবে Mg / MgSO4 / ZnSO4/ Zn কোষের তড়িচ্চালক শক্তি

$$\begin{split} E^{o}_{Cell} &= E^{o}_{sta~(femer)} - E^{o}_{sta~(emer)} \\ & (stitute) \quad (stitute) \\ &= E^{o}_{Zn^{*2}/Zn} - E^{o}_{Mg^{*2}/Mg} \\ &= -0.76 - (-2.36) \\ &= 1.6~V \end{split}$$

E°_{Cell} এর মান ধনাত্মক।

∴ বিক্রিয়া সংগঠিত হয়।

যদি Cu এর পাত্রে রাখা হত তবে সম্ভাব্য বিক্রিয়া :

 $Cu + ZnSO_4 = CuSO_4 + Zn$

কোষ হত

Cu + Cu⁺² / Zn⁺² / Zn
কোষের তড়িচ্চালক শক্তি

E°_{Cell} = E°_{Zn⁺²/Zn} - E°_{Cu⁺²/Cu}
= - 0.76 - (- 3.4)
= - 0.42 V.

∴ এই পাত্রে রাখলে বিক্রিয়া সংগঠিত হবে না।
এই পাত্রে ZnSO₄ রাখা অধিকতর যুত্তিযুত্ত।

প্রশ্ন > ৭৯

 $E_{Fe/Fe^{2x}} = +0.44V$; $E_{Al/Al}^{3x} = +1.66V$

/अवकारि वि. ध्या करमण, रविशाला

ş

- ক. ফুয়েল সেল কী?
- থ. বেনজিনকে অ্যারোমেটিক যৌগ বলা হয় কেন?
- গ. উদ্দীপকের কোমের সংকেত লিখ এবং অর্ধকোষ বিক্রিয়া পৃথক করে ব্যাখ্যা করো।
- ঘ. উদ্দীপকের Fe দন্ডের পাত্রে Al₂(SO₄), দ্রবণ এবং Al দন্ডের পাত্রে FeSO₄ দ্রবণ রাখা যাবে কী না, তা গাণিতিকভাবে বিশ্লেষণ করো।

৭৯ নং প্রশ্নের উত্তর

যে কোষে তড়িৎ রাসায়নিক বিক্রিয়ার মাধ্যমে হাইড্রোজেন অথবা হাইড্রোজেন ঘটিত জ্বালানিকে সরাসরি বৈদ্যুতিক শক্তিতে পরিণত করা হয় তাকে ফুয়েল সেল বলে।

থে সকল জৈব যৌগে সমতলীয় বলয়াকার বিদ্যমান এবং যাতে (4n + 2) সংখ্যক π ইলেকট্রন থাকে তাদেরকে অ্যারোমেটিক যৌগ বলে। অ্যারোমেটিক যৌগের ক্ষেত্রে (4n + 2) সংখ্যক π ইলেকট্রন থাকার নিয়মকে হাকেল নিয়ম বলে। যেখানে π হচ্ছে পূর্ণ সংখ্যা।

যেমন— ্রি বেনজিনে n = 1 এবং ইহাতে তিনটি π বন্ধন বিদ্যমান সূতরাং এতে ছয়টি ইলেকট্রন বিদ্যমান।

হাকেল নিয়ম অনুসারেও এতে $4 \times 1 + 2 = 6$ টি π ইলেকট্রন থাকবে।

ভিদ্দীপকের কোষের সংকেত- Fe/ FeSO $_4$ / Al $_2$ (SO $_4$) $_3$ / Al আনোড অর্ধকোষ বিক্রিয়া : 3Fe(s) \longrightarrow 3Fe $^{2+}$ (aq) + 6e $^-$ (জারণ) ক্যাথোড অর্ধকোষ বিক্রিয়া : 2 Al $^{3+}$ (aq) + 6e $^-\longrightarrow$ 2Al(s)

(বিজারণ)

সেল বিক্রিয়া : 3Fe(s) + 2 Al³⁺ (aq) \Longrightarrow 3Fe²⁺ (aq) + 2 Al (s) অ্যানোডে Fe তড়িৎদার এর 3টি Fe পরমাণু এর প্রতিটি 2টি মোট 6টি e দ্রবণে ত্যাণ করে তার দিয়ে ক্যাথোডে চলে যায়। ক্যাথোডে দ্রবণ থেকে 2টি Al³⁺ আয়ন এই 6টি ইলেকট্রন গ্রহণ করে Al পরমাণু হিসেবে ক্যাথোডের গায়ে জমা হয়।

ট্র উদ্দীপকের Fe দণ্ডের পাত্রে Al₂(SO₄)₃ দ্রবণ রাখা যাবে কিন্তু Al দণ্ডের পাত্রে FeSO₄ দ্রবণ রাখা যাবে না।

প্রথম কোষে, কোষ বিভব, E_{cell} = E_{Fe/Fe^{2*}} + E_{Al^{1*}/Al} = 0.44 + (- 1.66)

= -1.22 V

কোষ বিডব ঋণাত্মক অর্থাৎ স্বতস্ফূর্ত বিক্রিয়া ঘটবে না। সুতরাং Fe দন্ডের পাত্রে Al₂(SO₄)₃ দ্রবণ রাখা যাবে। দ্বিতীয় ক্ষেত্রে,

কোষ বিভব, E_{cell} = E_{AVAI} + E_{Fe^{1*}/Fe}
= 1.66 + (- 0.44)
= 1.22 V

কোষ বিভব ঋণাত্মক অর্থাৎ স্বতস্ফূর্ত বিক্রিয়া ঘটবে। সূতরাং AI দণ্ডের পাত্রে FeSO4 দ্রবণ রাখা যাবে না।

21 > bo (i) E_{X/X}?* = + 0.76 V

- (ii) $E_{Y/Y}^{2*} = -0.34 \text{ V}$
- (iii) $E_{Z/Z}^{2+} = +1.18 \text{ V}$

/मतकाति वि. धयः करन्यः, वतिभाना

ক. ফরমালিন কী?

- খ. সঞ্জয়ী ব্যাটারী চার্জিতকরণের পূর্বে পানি ব্যবহার করা হয়
 কেন?
- গ. উদ্দীপকের Z মৌলটির পারমাণবিক সংখ্যা 25 হলে ZSO₄
 . দ্রবণের মধ্য দিয়ে 450 mA তড়িৎ 2.5 ঘন্টা যাবৎ প্রবাহিত
 করলে ক্যাথোডে কী পরিমাণ Z প্রমাণ জমা হবে?
- ঘ, উদ্দীপকের অর্ধকোষ দ্বারা গঠিত কোন কোষটি উত্তম—

 যুক্তিসহকারে বিশ্লেষণ করো।

৮০ নং প্রশ্নের উত্তর

HCHO (ফরমালডিহাইড) এর 40% জলীয় দ্রবণকে ফরমালিন বলে।

সঞ্যী ব্যাটারি চার্জিতকরণের পূর্বে পানি যোগ করা হয়। কারণ ব্যাটারি যখন চার্জিত হয় তখন H_2SO_4 মিশ্রিত পানি বিশ্লিন্ট হয়ে H_2 এবং O_2 গ্যাসে পরিণত হয়। ফলে পানির পরিমাণ কমতে থাকে। আবার স্বতঃবাচ্পীভবনের মাধ্যমেও কিছু পানি বাচ্পাকারে নির্গত হয়। তাই ব্যাটারিতে মাঝে মাঝে পানি যোগ করে H_2SO_4 দ্রবণের ঘনমাত্রা 1.2 তে স্থির রাখা হয়।

🗿 ১৩ নং প্রশ্নের 'গ' এর অনুরূপ।

উদ্দীপকের (ii) ও (iii) নং অর্ধকোষ দুটি দ্বারা গঠিত কোষটি উত্তম। কারণ এক্ষেত্রে কোষ বিভব বেশি পাওয়া যাবে। তিনটি অর্ধকোষের মধ্য থেকে যেকোন দুইটি নিয়ে জারণ বিভবের পার্থক্য বের করলে দেখা যায় যে, (ii) ও (iii) এর ক্ষেত্রে পার্থক্য বেশি হয়। কোষটি, $Z/Z^{2+} \parallel Y^{2+}/Y$

এক্ষেত্রে কোষ বিভব,

 $E_{Cell} = E_{Z/Z}^{2*} + E_{Y}^{2*}_{/Y} = + 1.18 + 0.34 = 1.52 \text{ V}$ সূতরাং (ii) ও (iii) নং অর্ধকোষ দ্বারা পঠিত কোষটি উত্তম।

রসায়ন দ্বিতীয় পত্র

	চতুর্থ অধ্যায়: তড়িৎ রসায়ন			 NaCl এর পাঢ় জলীয় দ্রবণ 		
0 × 13	ননটি তড়িৎ অপরিবা	ছী পদার্থ্য (জান)		নিকেল ক্লোরাইডের লঘু দ্রবণ	0	
		প্র সোনা	19	২৬৯. NaCl দ্রবণগুলোর মধ্যে কোনটির আপেক্ষিব পরিবাহিতা সর্বোচ্চ? (অনুধানন)	č.	
400	গ্রাফাইট	. 550	0	● 0.01(M) ● 0.2(M)		
1000	ননটি বিদ্যুৎ অপরিব			® 0.3(M) ® 0.5(M)	0	
	चल, जका		esto.y.	২৭০.তড়িৎ বিশ্লেষণকালে ধনাত্মক আয়ন আকৃষ্ট হয়	1	
(3)	দ্ৰবীভূত NaCl	উচ্চ চাপে H₂ প	্যাস	কোন তড়িংছারে? (অনুধানন)	N:	
	নিম্নচাপে N ₂ গ্যাস		0	ক্তানোভেক্তাথোভে		
	গনটি ইলেকট্রনীয় পা		5	 জ অ্যামিটারে জ লবণ সেতৃতে 	0	
	CuSO ₄ দ্ৰবণ			২৭১. Mg(OH)2 যৌগটি— (অনুধাৰন)		
	Cu ভার		0	i. তীব্ৰ তড়িং বিশ্লেষ্য পদাৰ্থ		
				ii. শক্তিশালী ক্ষার		
৬২. তাপমাত্রা বৃন্ধির সাথে ইলেকট্রনীয় পরিবাহিতার কী ঘটে? (জান)			310	iii. ইলেকট্রনীয় পরিবাহী পদার্থ		
	বৃদ্ধি পায়	হাস পায		নিচের কোনটি সঠিক?		
		ত্ত্তি নিরপেক্ষ থাকে	0			
		७९ পরিবহনে শক্তির নে	कान	(1) II (2) III (3) II (4) III	0	
	क्षित्र घटि ना? (ब्बन)	Y HATCH HOA'S	2270	২৭২. এক মোল তড়িৎ কী? (आন)		
100		Good conductor	T	 এক কুলম্ব তড়িং এক ফ্যারাডে তড়িং 		
	Super conductor		Ø	 ৩.1 ফ্যারাডে তড়িং ০.1 কুলয় তড়িং 	0	
		শ্বয্য পদার্থ? (জান)		२१७.5A विमार 5min श्रद CuSO4 छवरन क्षवाहिए	5	
Contract to the second second	C ₂ H ₅ NH ₂	TOURS OF THE PARTY		করলে ক্যাথোড়ে কি পরিমাণ Cu সম্ভিত হবে		
		[®] (CH₃COO)₂Pb	9	(असम्) /अक्रमारी स्थाउ-२०३४/		
	The second secon	विद्राया भनार्थ? (बान		● 9,87g ● 4.96 g		
	H ₂ C ₂ O ₄			(9) 0.985 g (9) 0.496 g	0	
1	Mg(OH) ₂	® HI €	•	২৭৪.ক্রোমিয়াম সালকেট দ্রবণে তিন ক্যারাডে বিদ্যু চালনা করলে ক্যাথোডে সঞ্চিত ক্রোমিয়ামের		
৬৬. তী	ৰ তড়িৎ বিশ্লেষ্য	পদার্থসমূহ দ্রবণে বে	कान	পরিমাণ কতঃ [Cr এর পারমাণবিক ভর 52		
	কম্পায় থাকে? (জ্ঞান	THE STATE OF THE PARTY OF THE P		(श्रामा) जिल्ला कार्ड-२०३०/		
	অ-আয়নিত অবস		9.5	③ 17.33g ⑤ 52g		
	সম্পূর্ণ আয়নিত ও			104g (156g	0	
1	অর্ধ আয়নিত অব	ম্থায়	75	২৭৫.সিলভার নাইট্রেট দ্রবণের মধ্য দিয়ে 1.2 A	Ø.	
1	যৌণ অবস্থায়		0	বিদ্যুৎ কতক্ষণ চালনা করলে ক্যাথোডে 1.61g	3	
69.0.0	11(N) HCI, 0.01(N	N) H2SO4 वर 0.01	(N)	সিলভার জমা হবে? (প্রয়োগ) /বরিশাদ বোর্ড-২০১৫/		
200		রিবাহিতার ক্রম (ধরে ব		ৰ 40 মিনিট ৰ 30 মিনিট	- 5	
100	The second secon	মাত্রা এবং আপেণি		ক্ত 25 মিনিট ক্তি 20 মিনিট	0	
		ন) কোনটি? (অনুধাৰন)		২৭৬.বিশুম্ব অ্যালুমিনার গলনাতক এবং ক্রায়োলাইট		
	HCI < H ₂ SO ₄ > H ₃ PO ₄ > H ₂ SO ₄			ও ফ্লোরস্পার মিশ্রণসহ গলনাডক সেট কোনটি:		
	H ₁ PO ₄ < H ₂ SO ₄		150	(MA)		
- 37	H ₂ PO ₄ > H ₂ SO ₄	4. 3730 to 1	8	② 2050°C, 1000°C ② 2050°C, 950°C ② 2050°C, 950°C ② 2050°C, 950°C ③ 2050°C, 950°C ② 2050°C, 950°C ③ 2050°C, 950°C ③ 2050°C, 950°C ② 2050°C, 950°C ③ 2050°C, 950°C ② 2050°C, 950°C ③ 2050°C ③ 2050°C ③ 2050°C ③ 2050°C ⑤ 2050°C ⑥ 2050°C	en.	
		नेरम छिष् ठानना का	লে _	⑨ 2270°C, 660°C ⑨ 2270°C, 660°C	0	
	Control of the second of the s	নোডে Cl ₂ গ্যাস উৎ	The second secon	২৭৭,1৮ বিদ্যুৎ চার্জ তড়িৎ বিশ্লেষণের মধ্যে প্রবাহিত		
4 1 2 2 2	বঁ? (অনুধাৰন)	AND THE PROPERTY OF THE PARTY O	W-6-21	হলে শ্বিযোজী মৌলের করটি পরমাণু ক্যাপোণে	2	
(3)		র জলীয় দ্রবণ	14	সঞ্জিত হবে? (প্রয়োগ) (ক) 60.023×10 ²² (ি) 60.022×10 ²³		
-	NaCl এর লঘু জ			 60.023×10²² 60.022×10²³ 3.011×10²³ 6.023×10²⁴ 	0	
				(9) 0.023×10	40	

চতুর্থ অধ্যায়: তড়িৎ রসায়ন রসায়ন দ্বিতীয় পত্র ২৭৮.কোন তড়িৎ বিশ্লেষ্য কোষে গলিত সোডিয়াম (3) Cu¹² ক্লোরাইড নিয়ে 4 hr ব্যাপি 10 amp বিদ্যুৎ ২৮৮ কোনটি সবচেয়ে বেশি তড়িৎ ধনাজ্ৰক? চালনা করলে ক্যাথোডে কত গ্রাম সোভিয়াম (অনুধাৰন) জমা হবে? (প্রয়োগ) Au Au Hg (4) 343g 3.43g 0 Pb Pb 0 ② 2.43g ® 34.3g ২৮৯.কোনটি মধ্যম সক্রিয় ধাতু? (জান) ২৭৯.250 ml 1(M) AgNO3 প্রবর্ণ থেকে সমস্ত Ag* K (Ag আরন Ag ধাতুতে রূপান্তরিত করতে প্রয়োজনীয় 0 Mg Pb তড়িতের পরিমাণ কত? (প্রয়োগ) ২৯০.কোনটি অধিক সক্রিয় ধাতু? (অনুধানন) 24125 কুলছ থ 24125 কুলম্ব ® Fe Ca Ca প্ৰ 48250 কুলছ ব্ৰ 28250 কুলছ T Cu ® Hg ২৯১. ম্যাণনেসিয়াম ঠান্ডা পানির সাথে কীর্পে বিক্রিয়া २४०. ७ पिर विद्याचा स्वरंभित्र भेषा भिरत ३ कुनम विमार চার্জ প্রবাহিত করলে যত গ্রাম পদার্থ ক্যাথোডে क्त्रदि? (कान) জমা হয়, তাকে কী বলা হয়? (প্রয়োগ) ক্তি অতি দুত মন্থর বিক্রিয়া দেয় না প্রত্যন্ত মন্থর ক্তি তুলাভর ও ১ কুলছ ২৯২,পাড়লা HCI এর সাথে কোনটি দুড বিক্রিয়া भगातारङ ঐ পদার্শ্বের তড়িৎ রাসায়নিক তুল্যাভক পের? (ক্সান) Ca Fe ২৮১,5A বিদ্যুৎ 10 মিনিট য়াবৎ CuSO, স্তবণে Mg ② Zn প্রবাহিত করলে ক্যাথোডে কী পরিমাণ Cu ২৯৩ হাইড্রোজেন তড়িৎদারের বিভব পার্থক্য কত? সঞ্চিত হবে |Cu এর পাঃ ভর = 63.5) (প্রয়োগ) (स्थान) ① 0.985g ● 0.980g 3 0 1.0 ① 0.987g (9) 9.87g ® 1.1 1.5 ২৮২.১ মোল ইলেকট্রন চার্জ = কড ফ্যারাডে? (আন) ২৯৪.Fe এর জারণ বিভবের মান Ni এর চেয়ে কড থ 2 ফ্যারাডে 3 क्याताएं भूषे? (अनुधावन) প । ফ্যারাডে থ ব ফ্যারাডে 📵 অর্ধেক সমান ২৮৩.তুঁতের দ্রবণে 40 min সময় 160 mA বিদ্যুৎ ন্ত তিনগুণ ণ) দ্বিগুণ প্রবাহিত করলে তড়িংশ্বারে কয়টি কপার পরমাণু ২৯৫, লবণ সেতুতে নিচের কোন লবণটি ব্যবহৃত হয়? ভামা হবে? (প্রয়োগ) (खान) /क्रिक्सा त्याड-२०३०/ ③ 1.3×10²³ ③ 1.19×10⁻²¹ @ CuCl₂ ③ CaCl₂ (1.19×10²³ 1.19×10²¹ ® KCI (SO₄)3 ২৮৪.CuSO4 দ্রবণে 60 min ধরে 5A তড়িং প্রবাহিত ২৯৬.শুক্ত কোষের emf কত? (জান) করা হলে ক্যাথোডে কী পরিমাণ কপার জমা 1.0 V 3 1.0 Amp হবে? (প্রয়োগ) 1.5 Amp ® 1.5V ② 2.295 g ২৯৭ জানিয়েল সেলের তড়িজালক বলের মান কত? ® 59.22 g ① 5.922 g (জান) 3 1.1 Amp □ 1.1 V ২৮৫.কোনটি সক্রিয়তার সঠিক ক্রম? (অনুধাবন) 11 V 11 Amp Na>K>Al>Li Au > Ag > Al > Hg ২৯৮.কোনটির প্রমাণ জারণ বিভবের মান বেশি? ① Li>K>Ca>Na (অনুধাবন) ⊕ Fe/Fe²⁺ T H>Hg>Fe>Mg ২৮৬.তড়িৎ রাসায়নিক সক্রিয়তা সিরিজের নিম্নের Cu/Cu²⁺ (Au/Au³⁺ ২৯৯. লবণ সেতুতে ব্যবহৃত হয় না কোনটি? (জান) कानि गठिक? [बिडिगाम (बार्ड-२०३०] (अनुधानन) KCI Al > Ni ▼ Zn > Mg 1 NH4NO (Cu > Sn (1) HgCl₂ Fe > Na ৩০০.ধাতৰ পরমাণুর সক্রিয়তা বেশি হলে এর দ্রবণ २৮१.NaCl, HCl, CaCl, धन् CuCl, धन्रानं मार्था **ठा**न कीवृत रग्न? (आन) তড়িৎ বিশ্লেষণ চলাকালে কোনটি স্বার আগে ক বেশি ৰ কম বিজারিত হবে? (অনুধানন)

অপরিবর্তিত

Na[⋆]

● H,

কম বা বেশি

চতুর্থ অধ্যায়: তড়িৎ রসায়ন রসায়ন দ্বিতীয় পত্র ৩০১.ল্যাকলেল কোষে MnO2 ব্যবহৃত হয় কেন? विमुष्ट পরিবছনের সময় রাসায়নিক পরিবর্তন ঘটে (অনুধাৰন) আয়নীয় প্রবাহের ফলে তড়িৎ প্রবাহ ঘটে অ্যানোড হিসেবে বিগলিত বা দ্রবীভূত অবস্থায় তড়িৎ পরিবছন করে কোষকে পোলারায়ন মৃক্ত রাখতে নিচের কোনটি সঠিক? इेलकिट्यानाइँ विस्मत्व i e ii (i Siii ইলেকট্রোলাইটের তারলা বৃদ্ধি করতে Ø (i, ii G iii e ii e iii ৩০২, লেড-এসিড ব্যাটারি মূলত কী? (জান) ৩১১, তড়িৎ বিশ্লেষ্য পরিবাহিতার নিয়ামক প্রাইমারি সেল পি লেকল্যান্স সেল আয়নের ঘনমাত্রা ডিনিয়েল সেল ন্ত্ৰ সঞ্জয়ী কোষ 0 ii. তড়িৎ বিশ্লেষ্যের প্রকৃতি ৩০৩,সেকেভারি কোষ মূলত কী? (অনুধানন) iii. চাপ পুনঃচার্জ সামর্থ্য কোষ নিচের কোনটি সঠিক? তড়িৎ রাসায়নিক কোষ i Sii 1 Siii ভ্যানিয়েল কোষ ii e ii 🕦 ௵ i, ii ❸ iii চার্জ সামর্থ্য নয় ৩১২, 63.5g Cu তৈরি করতে বিদ্যুৎ প্রয়োজন হ ৩০৪.H₂ তড়িৎদ্বারে অনুপশ্থিত কোনটি? (জান) (উচ্চতর দক্ষতা) ক Pt তার ৰ লবণ সেতু 2 × 96,500 C প্রাক্তা ত্তি বিশৃশ্ব Hg 2F 1F ৩০৫.হাইড্রোজেন ফুয়েল সেলে অ্যানোড ও ক্যাথোড নিচের কোনটি সঠিক? হিসেবে নিচের কোনটি ব্যবহৃত হয়? (জান) 3 i Gii (i S iii /मिरमि (मार्ड-२०३०/ P, Ni 🕲 3 Ag ூ ii பிii (i) B ii, i (1) 📵 গ্রাফাইট Pt ৩১৩, ক্যারাভের প্রথম সুত্রের কেক্রে— (অনুধানন) ৩০৬,ক্যালোমেল ইলেকট্রড ব্যবহার করে pH নির্ণয়ের ii. W = ZQW = ZItসঠিক সূত্র কোনটি? (অনুধানন) $pH = \frac{1}{0.0591}$ নিচের কোনটি সঠিক? Ecell $pH = \frac{E_{rell} - E_{rell}}{-0.0591}$ (3) $pH = \frac{E_{cell} - E_{cell}}{-0.0591}$ i e ii (i S iii ii e iii ® i, ii 8 iii ৩০৭,হাইড্রোজেন তড়িংমারের বিডব পার্থক্য কড়া ৩১৪. ফ্যারাডের ১ম সূত্রের সাহায্যে— (অনুধারন) (स्तान) @ 1.5V **ডড়িংছারে সঞ্জিত পদার্থের পরিমাণ নির্ণয়** ③ 1.10V (V) করা যায় @ 2.5 পদার্থের রাসায়নিক তুল্যাক্ত নির্ণয় করা যায় ७०४ धाकार्य (जनुशासन) পদার্থের আয়তন নির্ণয় করা যায় একটি কার্বনের রূপভেদ নিচের কোনটি সঠিক? তড়িৎ পরিবাহী পদার্থ இ ர் வேர் @ i S iii একটি পিচ্ছিল ধরনের পদার্থ mi Bii (P) ® i, ii 8 iii নিচের কোনটি সঠিক? कोर. Ag/Ag* (1.0M) जन Zn/Zn2* (1M) (i Siii B i Gii অৰ্বকোন্যয়ের সমন্তরে গঠিত ௵ ii ⊌iii ® i, ii S iii কোবের কেতে— (উচ্চতর দক্তা) ৩০৯, সেমিকডার্টর পদার্থ— (অনুখাৰন) জিংক ইলেকট্রোডটি আনোড সিলিকন ii. आनुमिनियाम Zn ইপেকটোডে বিজারণ ঘটে iii. जारमिनग्राम ৰাহ্যিক তারের মধ্য দিয়ে Zn থেকে Ag নিচের কোনটি সঠিক? পাতে e⁻ এর প্রবাহ ঘটে (i G iii i 🖲 i নিচের কোনটি সঠিক? (ii e iii (Ti, ii e iii i e ii (T) i (T) iii ৩১০. তঞ্চিৎ বিশ্লেষ্য পরিবাহীর ক্ষেত্রে— (অনুধানন) 🖲 ii 🖲 iii ® i, ii 8 iii

চতুর্থ অধ্যায়: তড়িৎ রসায়ন রসায়ন দ্বিতীয় পত্র জারণ বিজারণ বিক্রিয়া •34. Fe(s) + Cu2+(aq) → Fe2+(aq) + Cu(s); এর তড়িং বিশ্লেষণের ক্ষেত্রে— (উচ্চতর দক্ষতা) মতঃস্ফূর্তভাবে ঘটে iii. শ্বতঃস্কৃতভাবে ঘটে না Erefre > Ecucu2* নিচের কোনটি সঠিক? E"Fe2+/Fe > E"Cu2+/Cu E"Fe 2+/Fe < E"Cu2+/Cu @ i 8 ii in Di নিচের কোনটি সঠিক? (1) i, ii G iii m ii G iii ® i gii (i g iii ৩২২. শেভ স্টোরেজ ব্যাটারি— (প্রয়োগ) (i, ii & iii ii & iii PbO2 ক্যাথোডে ব্যবস্ত হয় ♦) 9. Zn + H₂SO₄ → ZnSO₄ + H₂; विदिशाणिक Pb ধাতু অ্যানোভে ব্যবহৃত হয় **(400**— (553 443) iii. DC কারেন্ট ছারা চার্জিত করা হয় ক্যাথোড অর্ধবিক্রিয়া: Zn2* + 2e -নিচের কোনটি সঠিক? তড়িৎদার হিসেবে 🗠 ব্যবহৃত হয় ® i e ii m vi 🕲 iii. হাইড্রোজেনের বিজারণ বিভব জিথকের চেয়ে বেশি 1 111 B ii 1 (1) i, ii @ iii নিচের কোনটি সঠিক? ৩২৩ লেড সম্বন্ধীকোষ বচ্ছে— (অনুধারন) ® i vii (T) i G iii সেকেভারী কোষ ii. প্রাইমারি কোষ ii & iii (T) i, ii (B) iii iii. ভোশ্টেইক কোষ ৩১৮, দবণ সেতুর ভূমিকা— (প্রয়োগ) নিচের কোনটি সঠিকা গ্যালভানিক কোষের বর্তনী পূর্ণ করা (a) i (3 ii iii Bi (B) উভয় অর্ধকোষের ধনাত্রক আয়ন সংখ্যা Ø (1) i, ii @ iii இ ர் பேர் সমান রাখা ৩২৪, লিখিয়াম আয়ন ব্যাটারি —— (প্রয়োগ) উভয় অর্ধকোষের বৈদ্যুতিক উচ্চ শক্তি কার্যদক্ষতা সম্পন্ন নিরপেকতা বজায় রাখা ল্যাপটপে ব্যবহৃত হয় নিচের কোনটি সঠিক? পূর্ণাজা ডিসচার্জে নম্ট হয়ে যায় ® i €ii iii 🖲 i নিচের কোনটি সঠিক? e ii Siii (i, ii S iii @ i 8 ii (i Siii ৩১৯. K, L, M ও N নামক মৌলসমূহের প্রমাণ iii B ii 🕲 (iii e iii বিজারণ বিভব যথাক্রমে -0.74, -1.5, -2.5 ও ৩২৫.পিথিয়াম আয়ন ব্যাটারি--- /সরবারি পি সি. বংগক –2.87 মৌলসমূহের জারিত হওয়ার প্রবণতা -*বাংগ্রহাট]* (অনুধারন) (উচ্চতর দকতা) প্রাইমারী কোষ M<N<L ii. M>L>K রিচার্জের ব্যাটারি iii. N>L>K নিচের কোনটি সঠিক? मा। भएन ব্যবহৃত হল সেলফোন, কম্পিউটার প্রভৃতিতে 3 isii (i e iii নিচের কোনটি সঠিক? (1) i, ii (2) iii m v ii v iii (a) i (3 ii (i G iii ৩২০.ধাতুর প্রমাণ জারণ বিভবের মান হতে পারে (অনুধাৰন) m ii V iii (i, ii & iii ধনাত্রক ii. ঝণাতাক উদ্দীপকটি পড়ে ৩২৬-৩২৮ নং প্রশ্নের উত্তর দাও: iii. भूना $Zn/ZnSO_4(1.0M) \parallel CuSO_4 (1.0M) / Cu$ निरुद्र कानि गठिकः ৩২৬.কোষটির e.m.f কড়? (অনুধানন) ③ 1.5∨ 3 2.0V 3 i G ii i i g iii 0 (1.10V ® 6.0V 3 @ ii G iii (i, ii G iii ৩২৭ কোষটির ক্যাপোডে কী বিক্রিয়া ঘটে? (প্রয়োগ) \mathfrak{I} . Cu(s) + Zn²⁺(aq) \longrightarrow Cu²⁺(aq) + Zn(s); विचारन Zn2+/Zn = - 0.76V, Cu2+/Cu = +

0.34V তাহলে বিক্রিয়াটি— (উচ্চতর দক্ষতা)

① $Cu^{2*} + 2e = Cu$ ② $Zn^{2*} + 2e = Zn$

রসায়ন দ্বিতীয় পত্র

৩২৮ কোষটির তড়িৎমারময় পারস্পরিক পরিবর্তনে (উচ্চতর দক্ষতা)

- কোষবিভব- 1.10V
- কোষ বিক্রিয়া হয় না
- আনোড হ্রাস পেলেও অপরিবর্তিত থাকে

নিচের কোনটি সঠিক?

- 3 i Sii
- Ti G iii
- m ii Siii
- ® i, ii 8 iii

উদ্দীপকটি দেৰে ৩২৯ ও ৩৩০ নং প্রশ্নের উত্তর দাও:

তিনটি তড়িৎদার ও তাদের তড়িৎদার বিভব দেয়া আছে,

 $Zn(s)/Zn^{2*}(aq)$ $E^{\circ} = +0.76V$

Fe(s)/Fe2*(aq) $E^{o} = + 0.44 V$

 $Cu(s)/Cu^{2+}(aq)$ $E^{\circ} = -0.34V$

তড়িৎদ্বার তিনটি দ্বারা গঠিত দুটি কোষ হল–

 $Zn(s)/Zn^{2*}(aq) || Fe^{2*}(aq)/Fe(s)$

Zn(s)/Zn2+(aq)|| Cu2+(aq)/Cu(s) / जान्यानी त्यार्थ-२०३०/

৩২৯.গঠিত কোষসমূহে কোন তড়িৎদার হতে ধনাত্মক

आग्नन प्रवर्ण श्रादन कद्राव? (अनुधारन)

- Fe(s)/Fe2*(aq)
- (1) Zn(s)/Zn2*(aq)

Cu(s)/Cu2+(aq)

৩৩০.কোষ দুটিতে কোষ বিভবের মান যথাক্রমে-

- ★ +1.20V, +0.42V ★ +0.32V, +0.42V
- (f) +0.32V, +1.10V (f) -0.32V, -0.10V

চিত্রটি দেখে ৩৩১ ও ৩৩২ নং প্রপ্লের উত্তর দাও:

চিত্র : হাইড্রোজেনের তড়িংদ্বার

৩৩১.চিত্রে প্রদর্শিত রাসায়নিক দ্রবণটি কোন ধরনের?

- (অনুধাৰন) অদীয়
- कात्रीय
- পিপপপপপপপপপপপপপপপপপপপপপপপপপপপপপপপপপপপপপপপपप</l
- তীব্র কারীয়

৩৩২, উল্লেখিত কোষটি— (উচ্চতঃ দক্ষতা)

চতুর্থ অধ্যায়: তড়িৎ রসায়ন

- প্রমাণ তড়িংছার হিসেবে ব্যবহৃত হয়
- e.m.f 0 Volt প্রকাশ করে
- হাইড্রোজেন আয়নের বিজারণ প্রকাশ করে নিচের কোনটি সঠিক?
- ® i €ii
- Ti S iii
- m ii e iii
- (i, ii G iii

চিত্রটি লেখে ৩৩৩ ও ৩৩৪ নং প্রমের উত্তর দাও:

७७७. X मृनठ की? (अनुशायन)

- তড়িৎ বিশ্লেষণ কোষ
 গ্যালভানিক কোষ
- লিড সঞ্বয়ী কোষ ® ফুয়েল কোষ

৩৩৪. A ও B পাত সংযুক্ত করা হলে—(উভতর দছতা)

- A থেকে B পাতের দিকে ~ প্রবাহিত হয়
- B পাতের ডর হ্রাস পায়
- iii. A পাতের ভর বৃদ্ধি পায় নিচের কোনটি সঠিক?
- i Bi
- (i G iii
- m ii B iii
- (1) i, ii 8 iii

উদ্দীপক দেখে পরবর্তী দুটি প্রস্নের উত্তর দাও:

৩৩৫ কোষটির তড়িকালক বলের মান কত?

- ② 0.76∨
- 1.10V
- ① 1.23V
- ® 2.03V

৩৩৬,সঠিক কোষ বিক্রিয়া কোনটি?

- 3 $2H_2 + O_2 \longrightarrow 2H_2O$
- 1 $2H_2O \longrightarrow 2H_2 + O_2$
- $H_1 + O_2 \longrightarrow H_2O_2$