제 2 교시

수학 영역

5지선다형

- 1. $\frac{1}{\sqrt[4]{3}} \times 3^{-\frac{7}{4}}$ 의 값은? [2점]

 - ① $\frac{1}{9}$ ② $\frac{1}{3}$ ③ 1 ④ 3 ⑤ 9

- **2.** 함수 $f(x) = 2x^3 + 4x + 5$ 에 대하여 f'(1)의 값은? [2점]

- ① 6 ② 7 ③ 8 ④ 9 ⑤ 10

 $oldsymbol{3}$. 등비수열 $\{a_n\}$ 에 대하여

$$a_1 = 2$$
, $a_2 a_4 = 36$

일 때,
$$\frac{a_7}{a_3}$$
의 값은? [3점]

- ① 1 ② $\sqrt{3}$ ③ 3 ④ $3\sqrt{3}$ ⑤ 9

4. 함수

$$f(x) = \begin{cases} 2x + a & (x \le -1) \\ x^2 - 5x - a & (x > -1) \end{cases}$$

- 이 실수 전체의 집합에서 연속일 때, 상수 a의 값은? [3점]

- ① 1 ② 2 ③ 3 ④ 4 ⑤ 5

- **5.** 함수 $f(x) = 2x^3 + 3x^2 12x + 1$ 의 극댓값과 극솟값을 각각 M, m이라 할 때, M+m의 값은? [3점]
 - ① 13
- 2 14
- ③ 15
- 4 16
- ⑤ 17

- $\textbf{6.} \quad \frac{\pi}{2} < \theta < \pi 인 \ \theta 에 대하여 \ \frac{\sin \theta}{1 \sin \theta} \frac{\sin \theta}{1 + \sin \theta} = 4 일 \ \text{때},$ cosθ의 값은? [3점]
 - ① $-\frac{\sqrt{3}}{3}$ ② $-\frac{1}{3}$ ③ 0 ④ $\frac{1}{3}$ ⑤ $\frac{\sqrt{3}}{3}$

7. 수열 $\{a_n\}$ 은 a_1 =-4이고, 모든 자연수 n에 대하여

$$\sum_{k=1}^{n} \frac{a_{k+1} - a_{k}}{a_{k} a_{k+1}} = \frac{1}{n}$$

을 만족시킨다. a_{13} 의 값은? [3점]

- $\bigcirc -9$ $\bigcirc -7$ $\bigcirc -5$ $\bigcirc -3$ $\bigcirc -1$

8. 삼차함수 f(x)가

$$\lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 1} \frac{f(x)}{x - 1} = 1$$

을 만족시킬 때, f(2)의 값은? [3점]

① 4 ② 6

3 8

4 10

⑤ 12

9. 수직선 위를 움직이는 점 P의 시각 t(t>0)에서의 속도 v(t)가

$$v(t) = -4t^3 + 12t^2$$

이다. 시각 t=k에서 점 P의 가속도가 12일 때, 시각 t=3k에서 t=4k까지 점 P가 움직인 거리는? (단, k는 상수이다.) [4점]

① 23

② 25

③ 27

4 29

⑤ 31

10. 두 양수 a, b에 대하여 곡선 $y = a \sin b \pi x \left(0 \le x \le \frac{3}{b}\right)$ 이 직선 y=a와 만나는 서로 다른 두 점을 A, B라 하자. 삼각형 OAB의 넓이가 5이고 직선 OA의 기울기와

직선 OB의 기울기의 곱이 $\frac{5}{4}$ 일 때, a+b의 값은?

(단, 0는 원점이다.) [4점]

1

② 2 ③ 3 ④ 4

⑤ 5

11. 다항함수 f(x)가 모든 실수 x에 대하여

$$xf(x) = 2x^3 + ax^2 + 3a + \int_1^x f(t) dt$$

를 만족시킨다. $f(1) = \int_0^1 f(t)dt$ 일 때, a+f(3)의 값은? (단, a는 상수이다.) [4점]

- \bigcirc 5
- ② 6
- 3 7 4 8

⑤ 9

- 12. 반지름의 길이가 $2\sqrt{7}$ 인 원에 내접하고 $\angle A = \frac{\pi}{3}$ 인 삼각형 ABC가 있다. 점 A를 포함하지 않는 호 BC 위의 점 D에 대하여 $\sin(\angle BCD) = \frac{2\sqrt{7}}{7}$ 일 때, $\overline{BD} + \overline{CD}$ 의 값은? [4점]

- ① $\frac{19}{2}$ ② 10 ③ $\frac{21}{2}$ ④ 11 ⑤ $\frac{23}{2}$

- 13. 첫째항이 -45이고 공차가 d인 등차수열 $\left\{a_n\right\}$ 이 다음 조건을 만족시키도록 하는 모든 자연수 d의 값의 합은? [4점]
 - (가) $|a_m| = |a_{m+3}|$ 인 자연수 m이 존재한다.
 - (나) 모든 자연수 n에 대하여 $\sum_{k=1}^{n} a_k > -100$ 이다.
 - ① 44
- 2 48
- 3) 52
- **4** 56
- ⑤ 60

14. 최고차항의 계수가 1이고 f'(0) = f'(2) = 0인 삼차함수 f(x)와 양수 p에 대하여 함수 g(x)를

$$g(x) = \begin{cases} f(x) - f(0) & (x \le 0) \\ f(x+p) - f(p) & (x > 0) \end{cases}$$

이라 하자. <보기>에서 옳은 것만을 있는 대로 고른 것은? [4점]

- ㄱ. p=1일 때, g'(1)=0이다.
- oxdot ... g(x)가 실수 전체의 집합에서 미분가능하도록 하는 양수 p의 개수는 1이다.
- ㄷ. $p \ge 2$ 일 때, $\int_{-1}^{1} g(x) dx \ge 0$ 이다.
- ① ¬
- ② 7, L ③ 7, ⊏

- 4 4, 5 7, 4, 5

15. 수열 $\left\{a_n\right\}$ 은 $\left|a_1\right| \leq 1$ 이고, 모든 자연수 n에 대하여

$$a_{n+1} = \begin{cases} -2a_n - 2 & \left(-1 \le a_n < -\frac{1}{2}\right) \\ 2a_n & \left(-\frac{1}{2} \le a_n \le \frac{1}{2}\right) \\ -2a_n + 2 & \left(\frac{1}{2} < a_n \le 1\right) \end{cases}$$

을 만족시킨다. $a_5 + a_6 = 0$ 이고 $\sum_{k=1}^5 a_k > 0$ 이 되도록 하는 모든 a_1 의 값의 합은? [4점]

- ① $\frac{9}{2}$ ② 5 ③ $\frac{11}{2}$ ④ 6 ⑤ $\frac{13}{2}$

단답형

16. $\log_2 100 - 2\log_2 5$ 의 값을 구하시오. [3점]

17. 함수 f(x)에 대하여 $f'(x) = 8x^3 - 12x^2 + 7$ 이고 f(0) = 3일 때, f(1)의 값을 구하시오. [3점]

수학 영역

18. 두 수열 $\{a_n\},\ \{b_n\}$ 에 대하여

$$\sum_{k=1}^{10} \left(a_k + 2b_k \right) = 45 \,, \quad \sum_{k=1}^{10} \left(a_k - b_k \right) = 3 \,$$

일 때,
$$\sum_{k=1}^{10} \left(b_k - \frac{1}{2}\right)$$
의 값을 구하시오. [3점]

19. 함수 $f(x) = x^3 - 6x^2 + 5x$ 에서 x의 값이 0에서 4까지 변할 때의 평균변화율과 f'(a)의 값이 같게 되도록 하는 0 < a < 4인 모든 실수 a의 값의 곱은 $\frac{q}{p}$ 이다. p + q의 값을 구하시오. (단, p와 q는 서로소인 자연수이다.) [3점]

20. 함수 $f(x) = \frac{1}{2}x^3 - \frac{9}{2}x^2 + 10x$ 에 대하여 x에 대한 방정식

$$f(x) + |f(x) + x| = 6x + k$$

의 서로 다른 실근의 개수가 4가 되도록 하는 모든 정수 k의 값의 합을 구하시오. [4점]

8

수학 영역

21. a > 1인 실수 a에 대하여 직선 y = -x + 4가 두 곡선

$$y = a^{x-1}, \quad y = \log_a(x-1)$$

과 만나는 점을 각각 A, B라 하고, 곡선 $y=a^{x-1}$ 이 y축과 만나는 점을 C라 하자. $\overline{AB}=2\sqrt{2}$ 일 때, 삼각형 ABC의 넓이는 S이다. $50\times S$ 의 값을 구하시오. [4점]

22. 최고차항의 계수가 1인 삼차함수 f(x)에 대하여 함수

$$g(x) = f(x-3) \times \lim_{h \to 0+} \frac{|f(x+h)| - |f(x-h)|}{h}$$

가 다음 조건을 만족시킬 때, f(5)의 값을 구하시오. [4점]

- (7) 함수 g(x)는 실수 전체의 집합에서 연속이다.
- (나) 방정식 g(x)=0은 서로 다른 네 실근 α_1 , α_2 , α_3 , α_4 를 갖고 $\alpha_1+\alpha_2+\alpha_3+\alpha_4=7$ 이다.

* 확인 사항

- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.
- 이어서, **「선택과목(확률과 통계)」** 문제가 제시되오니, 자신이 선택한 과목인지 확인하시오.

제 2 교시

수학 영역(확률과 통계)

5지선다형

- **23.** 확률변수 X가 이항분포 $B\left(60, \frac{1}{4}\right)$ 을 따를 때, E(X)의 값은?
 - \bigcirc 5
- 2 10
- ③ 15
- **4** 20
- (5) 25

[2점]

- 24. 네 개의 수 1, 3, 5, 7 중에서 임의로 선택한 한 개의 수를 a 라 하고, 네 개의 수 2, 4, 6, 8 중에서 임의로 선택한 한 개의 수를 b라 하자. $a \times b > 31$ 일 확률은? [3점]
- ① $\frac{1}{16}$ ② $\frac{1}{8}$ ③ $\frac{3}{16}$ ④ $\frac{1}{4}$ ⑤ $\frac{5}{16}$

- **25.** $\left(x^2 + \frac{a}{x}\right)^5$ 의 전개식에서 $\frac{1}{x^2}$ 의 계수와 x의 계수가 같을 때, 양수 a의 값은? [3점]
 - 1

- 2 2 3 3 4 4
- ⑤ 5
- **26.** 주머니 A에는 흰 공 2개, 검은 공 4개가 들어 있고, 주머니 B에는 흰 공 3개, 검은 공 3개가 들어 있다. 두 주머니 A, B와 한 개의 주사위를 사용하여 다음 시행을 한다.

주사위를 한 번 던져 나온 눈의 수가 5 이상이면 주머니 A 에서 임의로 2개의 공을 동시에 꺼내고, 나온 눈의 수가 4 이하이면 주머니 B에서 임의로 2개의 공을 동시에 꺼낸다.

이 시행을 한 번 하여 주머니에서 꺼낸 2개의 공이 모두 흰색일 때, 나온 눈의 수가 5 이상일 확률은? [3점]

- ① $\frac{1}{7}$ ② $\frac{3}{14}$ ③ $\frac{2}{7}$ ④ $\frac{5}{14}$ ⑤ $\frac{3}{7}$

수학 영역(확률과 통계)

3

- **27.** 지역 A에 살고 있는 성인들의 1인 하루 물 사용량을 확률변수 X, 지역 B에 살고 있는 성인들의 1인 하루 물 사용량을 확률변수 Y라 하자. 두 확률변수 X, Y는 정규분포를 따르고 다음 조건을 만족시킨다.
 - (가) 두 확률변수 X, Y의 평균은 각각 220과 240이다.
 - $(\cdot \cdot)$ 확률변수 Y의 표준편차는 확률변수 X의 표준편차의 $1.5 \, \mathrm{th}$ 이다.

지역 A에 살고 있는 성인 중 임의추출한 n명의 1인 하루 물 사용량의 표본평균을 \overline{X} , 지역 B에 살고 있는 성인 중 임의추출한 9n명의 1인 하루 물 사용량의 표본평균을 \overline{Y} 라

하자. $P(\overline{X} \le 215) = 0.1587$ 일 때, $P(\overline{Y} \ge 235)$ 의 값을 오른쪽 표준정규분포표를 이용하여 구한 것은? (단, 물 사용량의 단위는 L이다.) [3점]

z	$P(0 \le Z \le z)$
0.5	0.1915
1.0	0.3413
1.5	0.4332
2.0	0.4772

- ① 0.6915
- ② 0.7745
- ③ 0.8185

- **4** 0.8413
- ⑤ 0.9772

- **28.** 집합 $X = \{1, 2, 3, 4, 5, 6\}$ 에 대하여 다음 조건을 만족시키는 함수 $f: X \rightarrow X$ 의 개수는? [4점]
 - (가) f(3) + f(4)는 5의 배수이다.
 - (나) f(1) < f(3)이고 f(2) < f(3)이다.
 - (다) f(4) < f(5)이고 f(4) < f(6)이다.
 - ① 384 ② 394
- 3 404
- 414
- (5) 424

4

수학 영역(확률과 통계)

단답형

29. 두 이산확률변수 X, Y의 확률분포를 표로 나타내면 각각 다음과 같다.

X	1	3	5	7	9	합계
P(X=x)	a	b	c	b	a	1
Y	1	3	5	7	9	합계
P(Y=y)	$a + \frac{1}{20}$	b	$c - \frac{1}{10}$	b	$a + \frac{1}{20}$	1

 $V(X) = \frac{31}{5}$ 일 때, $10 \times V(Y)$ 의 값을 구하시오. [4점]

- **30.** 네 명의 학생 A, B, C, D에게 같은 종류의 사인펜 14개를 다음 규칙에 따라 남김없이 나누어 주는 경우의 수를 구하시오. [4점]
 - (가) 각 학생은 1개 이상의 사인펜을 받는다.
 - (나) 각 학생이 받는 사인펜의 개수는 9 이하이다.
 - (다) 적어도 한 학생은 짝수 개의 사인펜을 받는다.

* 확인 사항

- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.
- 이어서, 「선택과목(미적분)」 문제가 제시되오니, 자신이 선택한 과목인지 확인하시오.

2022학년도 대학수학능력시험 9월 모의평가 문제지

제 2 교시

수학 영역(미적분)

5지선다형

23. $\lim_{n\to\infty} \frac{2\times 3^{n+1}+5}{3^n+2^{n+1}} 의 값은? [2점]$

 \bigcirc 2

② 4

3 6 4 8

24. $2\cos\alpha = 3\sin\alpha$ 이고 $\tan(\alpha+\beta) = 1$ 일 때, $\tan\beta$ 의 값은?

[3점]

① $\frac{1}{6}$ ② $\frac{1}{5}$ ③ $\frac{1}{4}$ ④ $\frac{1}{3}$ ⑤ $\frac{1}{2}$

25. 매개변수 t로 나타내어진 곡선

$$x = e^t - 4e^{-t}, \quad y = t + 1$$

에서 $t = \ln 2$ 일 때, $\frac{dy}{dx}$ 의 값은? [3점]

- ① 1 ② $\frac{1}{2}$ ③ $\frac{1}{3}$ ④ $\frac{1}{4}$ ⑤ $\frac{1}{5}$

26. 그림과 같이 곡선 $y = \sqrt{\frac{3x+1}{x^2}} (x>0)$ 과 x축 및

두 직선 $x=1,\;x=2$ 로 둘러싸인 부분을 밑면으로 하고 x축에 수직인 평면으로 자른 단면이 모두 정사각형인 입체도형의 부피는? [3점]

- ① $3\ln 2$ ② $\frac{1}{2} + 3\ln 2$
- $31+3\ln 2$
- $4 \frac{1}{2} + 4 \ln 2$ $5 1 + 4 \ln 2$

수학 영역(미적분)

3

27. 그림과 같이 AB₁ = 1, B₁C₁ = 2 인 직사각형 AB₁C₁D₁이 있다.
∠AD₁C₁을 삼등분하는 두 직선이 선분 B₁C₁과 만나는 점 중점 B₁에 가까운 점을 E₁, 점 C₁에 가까운 점을 F₁이라 하자.
E₁F₁ = F₁G₁, ∠E₁F₁G₁ = π/2 이고 선분 AD₁과 선분 F₁G₁이 만나도록 점 G₁을 잡아 삼각형 E₁F₁G₁을 그린다.
선분 E₁D₁과 선분 F₁G₁이 만나는 점을 H₁이라 할 때, 두 삼각형 G₁E₁H₁, H₁F₁D₁로 만들어진 ✓ 모양의 도형에 색칠하여 얻은 그림을 R₁이라 하자.

그림 R_1 에 선분 AB_1 위의 점 B_2 , 선분 E_1G_1 위의 점 C_2 , 선분 AD_1 위의 점 D_2 와 점 A를 꼭짓점으로 하고

 $\overline{AB_2}:\overline{B_2C_2}=1:2$ 인 직사각형 $AB_2C_2D_2$ 를 그린다. 직사각형 $AB_2C_2D_2$ 에 그림 R_1 을 얻은 것과 같은 방법으로 \nearrow 모양의 도형을 그리고 색칠하여 얻은 그림을 R_2 라 하자.

이와 같은 과정을 계속하여 n 번째 얻은 그림 R_n 에 색칠되어 있는 부분의 넓이를 S_n 이라 할 때, $\lim S_n$ 의 값은? [3점]

① $\frac{2\sqrt{3}}{9}$ ② $\frac{5\sqrt{3}}{18}$ ③ $\frac{\sqrt{3}}{3}$ ④ $\frac{7\sqrt{3}}{18}$ ⑤ $\frac{4\sqrt{3}}{9}$

28. 좌표평면에서 원점을 중심으로 하고 반지름의 길이가 2인 원 C와 두 점 A(2,0), B(0,-2)가 있다. 원 C 위에 있고 x좌표가 음수인 점 P에 대하여 \angle PAB= θ 라 하자. 점 $Q(0,2\cos\theta)$ 에서 직선 BP에 내린 수선의 발을 R라 하고, 두 점 P와 R 사이의 거리를 $f(\theta)$ 라 할 때, $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} f(\theta) d\theta$ 의 값은? [4점]

4

수학 영역(미적분)

단답형

29. 이차함수 f(x)에 대하여 함수 $g(x) = \{f(x) + 2\}e^{f(x)}$ 이 다음 조건을 만족시킨다.

- (가) f(a) = 6인 a에 대하여 g(x)는 x = a에서 최댓값을 갖는다.
- (나) g(x)는 x=b, x=b+6에서 최솟값을 갖는다.

방정식 f(x)=0의 서로 다른 두 실근을 α , β 라 할 때, $(\alpha-\beta)^2$ 의 값을 구하시오. (단, a, b는 실수이다.) [4점]

30. 최고차항의 계수가 9인 삼차함수 f(x)가 다음 조건을 만족시킨다.

$$(7) \lim_{x \to 0} \frac{\sin(\pi \times f(x))}{x} = 0$$

(나) f(x)의 극댓값과 극솟값의 곱은 5이다.

함수 g(x)는 $0 \le x < 1$ 일 때 g(x) = f(x)이고 모든 실수 x에 대하여 g(x+1) = g(x)이다.

g(x)가 실수 전체의 집합에서 연속일 때, $\int_0^5 x g(x) dx = \frac{q}{p}$ 이다. p+q의 값을 구하시오. (단, p와 q는 서로소인 자연수이다.) [4점]

* 확인 사항

- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.
- 이어서, 「선택과목(기하)」 문제가 제시되오니, 자신이 선택한 과목인지 확인하시오.

제 2 교시

수학 영역(기하)

5지선다형

- **23.** 좌표공간의 점 A(3,0,-2)를 xy평면에 대하여 대칭이동한 점을 B라 하자. 점 C(0, 4, 2)에 대하여 선분 BC의 길이는? [2점]

- ① 1 ② 2 ③ 3 ④ 4 ⑤ 5
- **24.** 쌍곡선 $\frac{x^2}{a^2} \frac{y^2}{16} = 1$ 의 점근선 중 하나의 기울기가 3일 때, 양수 *a*의 값은? [3점]

- ① $\frac{1}{3}$ ② $\frac{2}{3}$ ③ 1 ④ $\frac{4}{3}$ ⑤ $\frac{5}{3}$

25. 좌표평면에서 세 벡터

$$\vec{a} = (3, 0), \quad \vec{b} = (1, 2), \quad \vec{c} = (4, 2)$$

에 대하여 두 벡터 $\stackrel{\rightarrow}{p}$, $\stackrel{\rightarrow}{q}$ 가

$$\overrightarrow{p} \cdot \overrightarrow{a} = \overrightarrow{a} \cdot \overrightarrow{b}, \quad |\overrightarrow{q} - \overrightarrow{c}| = 1$$

- 을 만족시킬 때, $|\stackrel{
 ightarrow}{p}-\stackrel{
 ightarrow}{q}|$ 의 최솟값은? [3점]

- ① 1 ② 2 ③ 3 ④ 4
- **⑤** 5
- 26. 초점이 F인 포물선 $y^2 = 4px$ 위의 한 점 A에서 포물선의 준선에 내린 수선의 발을 B라 하고, 선분 BF와 포물선이 만나는 점을 C라 하자. $\overline{AB} = \overline{BF}$ 이고 $\overline{BC} + 3\overline{CF} = 6$ 일 때, 양수 p의 값은? [3점]
- ① $\frac{7}{8}$ ② $\frac{8}{9}$ ③ $\frac{9}{10}$ ④ $\frac{10}{11}$ ⑤ $\frac{11}{12}$

수학 영역(기하)

27. 그림과 같이 $\overline{AD} = 3$, $\overline{DB} = 2$, $\overline{DC} = 2\sqrt{3}$ 이고

 \angle ADB = \angle ADC = \angle BDC = $\frac{\pi}{2}$ 인 사면체 ABCD가 있다.

선분 BC 위를 움직이는 점 P에 대하여 $\overline{AP} + \overline{DP}$ 의 최솟값은? [3점]

- ① $3\sqrt{3}$ ② $\frac{10\sqrt{3}}{3}$ ③ $\frac{11\sqrt{3}}{3}$
- $4\sqrt{3}$ $5\frac{13\sqrt{3}}{3}$

28. 그림과 같이 두 점 F(c, 0), F'(-c, 0)(c > 0)을 초점으로

하는 타원 $\frac{x^2}{16} + \frac{y^2}{12} = 1$ 위의 점 P(2, 3)에서 타원에 접하는

직선을 l이라 하자. 점 F를 지나고 l과 평행한 직선이 타원과 만나는 점 중 제2사분면 위에 있는 점을 Q라 하자.

두 직선 F'Q와 l이 만나는 점을 R, l과 x축이 만나는 점을 S라 할 때, 삼각형 SRF'의 둘레의 길이는? [4점]

- ① 30
- ② 31
- ③ 32
- **4** 33
- **⑤** 34

단답형

29. 그림과 같이 한 변의 길이가 8인 정사각형 ABCD에 두 선분 AB, CD를 각각 지름으로 하는 두 반원이 붙어 있는 모양의 종이가 있다. 반원의 호 AB의 삼등분점 중 점 B에 가까운 점을 P라 하고, 반원의 호 CD를 이등분하는 점을 Q라 하자. 이 종이에서 두 선분 AB와 CD를 접는 선으로 하여 두 반원을 접어 올렸을 때 두 점 P, Q에서 평면 ABCD에 내린 수선의 발을 각각 G, H라 하면 두 점 G, H는 정사각형 ABCD의 내부에 놓여 있고, $\overline{PG} = \sqrt{3}$, $\overline{QH} = 2\sqrt{3}$ 이다. 두 평면 PCQ와 ABCD가 이루는 각의 크기가 θ 일 때, $70 \times \cos^2 \theta$ 의 값을 구하시오. (단, 종이의 두께는 고려하지 않는다.) [4점]

30. 좌표평면에서 세 점 A(-3,1), B(0,2), C(1,0)에 대하여 두 점 P, Q가

$$|\overrightarrow{AP}| = 1$$
, $|\overrightarrow{BQ}| = 2$, $\overrightarrow{AP} \cdot \overrightarrow{OC} \ge \frac{\sqrt{2}}{2}$

를 만족시킬 때, $\overrightarrow{AP} \cdot \overrightarrow{AQ}$ 의 값이 최소가 되도록 하는 두 점 P, Q를 각각 P_0 , Q_0 이라 하자. 선분 AP_0 위의 점 X에 대하여 $\overrightarrow{BX} \cdot \overrightarrow{BQ_0} \ge 1$ 일 때, $|\overrightarrow{Q_0X}|^2$ 의 최댓값은 $\frac{q}{p}$ 이다. p+q의 값을 구하시오. (단, O는 원점이고, p와 q는 서로소인 자연수이다.) [4점]

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.