Syntax and Semantics Exercise Session 4

Exercise 1

Consider the following regular expressions:

- a) $(a^* \cup b^+) \cup b^*$
- b) $(\epsilon \cup a)b^* \cup b^+b^*$
- c) $(a \cup ba \cup bb)(a \cup b)^*$
- d) $(a^* \cup b^*)^+ \cup (b^+a^*)^* \cup (a^*b^+)^+$
- i) For each of these, write five words that belong to their language and five words that do not belong to their language.
- ii) Convert each of these expressions to NFAs.

Exercise 2

Using the algorithm from the course, convert the finite automata in Fig. 1 to regular expressions.

Figure 1: Finite Automata for Exercise 2

Exercise 3

Give state diagrams of NFAs with the specific number of states recognizing each of the following languages with the alphabet $\{a, b\}$.

- a) The language $a^*b^*a^+$ with three states
- b) The language $a^*(bba^+)^*$ with three states
- c) The language L_1 with five states $L_1 = \{w \mid w \text{ contains the string abab}\}$
- d) The language L_2 with six states

 $L_2 = \{ w \mid w \text{ contains an even number of a or exactly two b} \}.$