Krzysztof Pszeniczny nr albumu: 347208 str. 1/2

Zadanie 24

Zauważmy, że $\mathfrak{m}_i \not\subseteq \mathfrak{m}_{i+1}$, gdyż inaczej nie byłyby to parami różne ideały maksymalne. Zatem istnieje $a_i \in \mathfrak{m}_i$ takie, że $a_i \not\in \mathfrak{m}_{i+1}$. Analogicznie istnieje $a_n \in \mathfrak{m}_n$ takie, że $a_n \not\in \mathfrak{m}_1$.

Seria: 2 z pierścieni

Rozpatrzmy $a = a_1 \dots a_n$. Oczywiście $a = (a_1 \dots a_{i-1} a_{i+1} \dots a_n) a_i \in \mathfrak{m}_i$. Zatem $a \in I$, skąd gdyby I był pierwszy, mielibyśmy $\exists_i a_i \in I$, czyli w szczególności $a_i \in \mathfrak{m}_{(i \mod n)+1}$, wbrew założeniu.

Zadanie 28

Zauważmy, że p = 2,3 nie spełniają żadnego z warunków w zadaniu (ich reszty mod 6 to ani nie 1 ani nie 5), zatem załóżmy dalej, że p \notin {2,3}. Zauważmy, że oczywiście R = $\mathbb{Z}[\sqrt{-3}]/(p) \cong (\mathbb{Z}[x]/(x^2+3))/(p) \cong \mathbb{Z}/(p)[x]/(x^2+3)$. Zauważmy dalej, że równanie $\left(\frac{x-1}{2}\right)^3 = 1 \iff (x-1)^3 = 8 \iff x^3 - 3x^2 + 3x - 9 = 0 \iff (x-3)(x^2+3) = 0$. Zatem w $\mathbb{Z}/(p)$ istnieje pierwiastek kwadratowy z -3 wtedy i tylko wtedy gdy istnieje nietrywialny pierwiastek trzeciego stopnia z jedności (ewentualny wiszący tu przypadek x=3 nie daje pierwiastka kwadratowego z -3, gdyż $3^2+3=12$, co jest niezerowe modulo p różne od 2 i 3). Jednak na mocy tw. Lagrange'a i tw. Cauchy'ego taki pierwiastek istnieje wtedy i tylko wtedy gdy $3 \mid p-1$.

Zatem gdy p \equiv 5 (mod 6) to nie ma pierwiastka wielomianu x^2+3 , zatem jest on nierozkładalny (bo stopnia 2), zatem R $\cong \mathbb{Z}/(p)[x]/(x^2+3) \cong GF(p^2)$. Gdy zaś x^2+3 ma pierwiastek to ma dwa (i to różne, gdyż pochodna, czyli 2x zeruje się tylko w zerze, a zero nie jest pierwiastkiem tego wielomianu (bo p \neq 3)), zatem z twierdzenia Sun Tzu mamy: $\mathbb{Z}/(p)[x]/(x^2+3) \cong \mathbb{Z}/(p)[x]/(x-\alpha) \times \mathbb{Z}/(p)[x]/(x-\beta) \cong GF(p)^2$.

Zadanie 29

Mamy $f^* = (\circ f)$, $f^*(v) = v \circ f$.

Część a

Zauważmy, jak wygląda $f^*:\mathfrak{m}_b/\mathfrak{m}_b^2\to\mathfrak{m}_a/\mathfrak{m}_a^2$. Zauważmy, że w dziedzinie mamy tak naprawdę wielomiany liniowe, gdyż zabijamy część kwadratową i wyższe, a część stała jest zerowa (w b). Analogicznie w przeciwdzienie (tam mamy zerowość w a). Zatem przechodząc do f^* na ilorazach widzimy, że tak naprawdę interesuje nas to, co f robi z częścią liniową, czyli dokładnie to, jaka jest jego pochodna (która jest z definicji liniowym przybliżeniem). Zatem $f^*([\nu]) = [\nu \circ f] = [\nu \circ (Df)]$. Ponadto jeśli się ograniczymy do brania ν liniowych (a możemy, bo część kwadratową i wyższe zabijamy), to $[\nu \circ (Df)] = 0 \iff \nu \circ (Df) = 0$, gdyż transformacja liniowa współrzędnych nie zrobi nam wielomianu wyższego stopnia.

No ale oczywiście jak wiemy z pierwszego semestru GAL-u, $\circ(Df) = (Df)^*$ jest monomorfizmem wtedy i tylko wtedy, gdy Df jest epimorfizmem, czyli ma rząd r.

Część b

Niech $\psi:\mathfrak{m}_{\alpha}/\mathfrak{m}_{\alpha}\to\overline{\mathfrak{m}}_{\alpha}/\overline{\mathfrak{m}}_{\alpha}^2$ będzie takie, że $\psi([f])=[[f]]$. Oczywiście jeśli [f]=[0], czyli f jest sumą kwadratów wielomianów z \mathfrak{m}_{α} , to w $\overline{\mathfrak{m}}_{\alpha}$ to też będzie suma kwadratów wielomianów, zatem [[f]]=0. Ponadto ψ dobrze się zachowuje przy działaniach pierścienia, zatem jest dobrze określone i homomorfizmem.

Na mocy twierdzenia o izomorfizmie wystarczy wykazać, że ciąg

$$\mathfrak{m}_{b}/\mathfrak{m}_{b}^{2} \xrightarrow{\circ (\mathrm{Df})} \mathfrak{m}_{a}/\mathfrak{m}_{a}^{2} \xrightarrow{\psi} \overline{\mathfrak{m}}_{a}/\overline{\mathfrak{m}}_{a}^{2}$$

jest dokadny.

Oczywiście jeśli weźmiemy $[\nu] \in \mathfrak{m}_b/\mathfrak{m}_b^2$ dla ν – wielomian liniowy, to $[\nu \circ Df] = [\nu \circ f]$, zatem $\psi([\nu \circ Df]) = [[\nu \circ f]]$, lecz $\nu \circ f$ jest kombinacją liniową wielomianów f_i o zerowym wyrazie wolnym przy ustawieniu środka układu współrzędnych w b (bo $\nu(b) = 0$), zatem jest to kombinacja wielomianów $f_i - b_i$, zatem $[\nu \circ f] = 0$ w $k[x_1, \ldots, x_n]/(f_1 - b_1, \ldots, f_r - b_r)$.

Pozostaje sprawdzić, że jeśli $\psi([u])=0$ dla pewnego $\mathfrak u$ – liniowego zerującego się $\mathfrak w$ $\mathfrak a$, to $\mathfrak u=\mathfrak v\circ Df$ dla pewnego $\mathfrak v$ liniowego zerującego się $\mathfrak w$ $\mathfrak b$. Warunek $\psi([\mathfrak u])=0$ mówi, że $[[\mathfrak u]]=0$, czyli $[\mathfrak u]_{(f_1-b_1,\ldots,f_r-a_r)}\in\overline{\mathfrak m}_{\mathfrak a}^2$, zatem mamy, że $\mathfrak u$ jest sumą: kwadratów pewnych wielomianów $(\overline{\mathfrak m}_{\mathfrak a}^2)$ oraz odpowiednich wielomianowych

Algebra Termin: 2014-12-16

wielokrotności wielomianów f_1-b_1,\ldots,f_r-b_r (zauważmy, że f_i-b_i jest wielomianem o zerowym wyrazie wolnym). Jednak w u interesuje nas jedynie część conajwyżej liniowa, zatem mamy, że u jest kombinacją liniową części liniowych wielomianów f_i-b_i , zatem jest to pewna kombinacja wierszy macierzy Df, czyli $u=v\circ(Df)$ dla pewnego v (swobodnie tu zamieniam funkcję, wielomian i macierz, gdyż raczej nie prowadzi to do nieporozumień), gdzie u jest we współrzędnych o środku w a, zaś v jest we współrzędnych o środku w b, gdyż mnożenie przez Df przeprowadza nas w inny układ współrzędnych. Oczywiście stąd v(b)=0. Zatem $\mathrm{im}(\circ(Df))=\ker\psi$, czyli ciąg ten jest dokładny.

Seria: 2 z pierścieni

Zadanie 30

Zauważmy, ze $\nu(a+b\alpha)=|a^2+ab(\alpha+\beta)+b^2\alpha\beta|=|a^2+ab-b^2|$, gdzie ostatnia róceność wynika ze wzorów Viety. Multiplikatywność ν jest oczywista. Gdy określimy $\overline{a+b\alpha}=a+b\beta$, to widzimy, że $\bar{\cdot}$ jest homomorfizmem, gdyż $\mathbb{Z}[\alpha]\cong\mathbb{Z}[x]/(x^2-x-1)\cong\mathbb{Z}[\beta]$ (z nierozkładalności x^2-x-1 – wprawdzie \mathbb{Z} nie jest ciałem, ale jednak x^2-x-1 ma współczynnik wiodący jeden, a zatem ten sam dowód, który daje wyżej wymienione izomorfizmy nad \mathbb{Q} działa też nad \mathbb{Z}) i złożenie tych izomorfizmów daje $\bar{\cdot}$. Mamy jednak $\nu(x)=|x\overline{x}|$, co jest multiplikatywne z multiplikatywności $\bar{\cdot}$ oraz modułu rzeczywistego.

Pozostaje wykazać warunek z dzieleniem z resztą. Załóżmy więc, że mamy dane $\alpha + b\alpha$ i $c + d\alpha$, przy czym to drugie jest niezerowe. Dzieląc tak jak liczby rzeczywiste i usuwając niewymierność z mianownika uzyskujemy $\frac{\alpha+b\alpha}{c+d\alpha}=p+q\alpha$, gdzie $p,q\in\mathbb{Q}$. (najpierw sprowadzamy do postaci $\hat{p}+\hat{q}\sqrt{5}$, a potem stosownym przekształceniem liniowym piszemy $\hat{p}+\hat{q}\sqrt{5}=p+q\alpha$).

Niech teraz x, y będą liczbami całkowitymi najbliższymi p, q. Zauważmy teraz, że tak jak na wykładzie, wystarczy pokazać, że $\nu((p-x)+(q-y)\alpha)<1$, gdzie waluację rozszerzamy na $\mathbb{Q}[\alpha]$ w oczywisty sposób.

Ale to jest prawda, gdyż |p-x|, $|q-y| \leqslant \frac{1}{2}$, zatem $\nu((p-x)+(q-y)\alpha) \leqslant |(p-x)^2|+|(p-x)(q-y)|+|(q-y)^2| \leqslant \frac{3}{4} < 1$.

Algebra Termin: 2014-12-16