Об анализе расширенных регулярных языков с памятью

Дельман А.Д.

МГТУ им. Н.Э. Баумана

01.07.24

Регулярные выражения и конечные автоматы

Академические регулярные выражения $\Re \mathcal{E}$

- $\alpha_1, \alpha_2 \in \Re \mathcal{E}, \alpha_1 \mid \alpha_2$ описывает слова или из α_1 , или из α_2 (альтернатива);
- $\alpha_1, \alpha_2 \in \Re \mathcal{E}, \alpha_1 \alpha_2$ описывает слова с префиксами из α_1 и суффиксами из α_2 (конкатенация);
- $\alpha \in \Re \mathcal{E}$, α^* ноль или более конкатенаций α с собой (итерация Клини).

Регулярное выражение: a* | bc

Автомат Глушкова Автомат Томпсона

Обратные ссылки

Обратные ссылки (backreferences), как расширение регулярных языков, довольно распространено в современных библиотеках. Позволяют обращаться к ячейкам памяти, содержимое которых описывается подвыражениями.

- ε -семантика ссылки на неинициализированную память считаются ε ;
- Ø-семантика ссылки на неинициализированную память недопустимы.

Формализм CSY

Формализация Кампеану-Саломаа-Ю

- Безымянные группы захвата:
 Каждая скобочная группа (...) считается группой захвата в память и автоматически нумеруется по очерёдности вхождений открывающих скобок в выражение.
- Ссылка i на скобочную группу с номером i может появиться, только если скобочная группа уже закрыта;
- Ø-семантика.

Пример

- $((a^*)b^*)\setminus 2\setminus 1$ описывает язык $a^nb^ma^{2n}b^m$;
- $((a^*)b^* \mid 1)^* \setminus 2$ некорректно в СSY.

Формализм Шмида

Определение

Reference word (ref-слово) — регулярные выражения, расширенные специальными символами $[i,]i, \&i \mid i \in \mathbb{N}$, где &i — переменная, а [i,]i — скобки, выделяющие подвыражение для нее. При этом если выражение $[i\omega]_i$ — ref-слово, то ω не содержит &i. Допускает несбалансированность именованных скобочных групп.

Далее рассматриваем выражения в ε -семантике и со сбалансированными квадратными скобками.

MFA

Конечный автомат с памятью — MFA

Пятерка $\langle Q, \Sigma, \delta, q_0, F \rangle$:

- Q множество состояний автомата;
- Σ входной (терминальный) алфавит автомата;
- δ множество правил перехода. Переходы помечаются действиями над памятью: о открытие ячейки, c закрытие ячейки, r сброс до ε ;
- $q_0 \in Q$ начальное состояние, $F \subseteq Q$ множество конечных состояний.

Операция сброса не применяется в оригинальной статье Шмида и необходима, чтобы сделать алгебру действий над памятью композиционно замкнутой.

MFA состояния памяти

Конфигурация *MFA*

- текущее состояние;
- содержимое памяти;
- конфигурации ячеек:

$$\begin{cases} O & (open) \\ C & (closed) \end{cases}$$

- ullet Начальная конфигурация памяти: $(q_0, w, (\varepsilon, C), \dots, (\varepsilon, C))$.
- Действия над ячейками памяти происходят до чтения с ленты.

Пример построения автомата по частям

Регулярное выражение: a*b[c]:1&1

Результат

Регулярное выражение: a*b[c |]: 1&1

Автомат:

Аналог автомата Глушкова

Регулярное выражение: a*b[c|]:1&1

Линеаризованное регулярное выражение: $a_0^*b_1[c_2\mid]:1\&_{1.3}$

Автомат:

Множество First:

 a_0 , b_1

Множество Last:

 $\&_{1.3}$

Множество Follow:

 $(a_0,a_0)\;(a_0,b_1)\;(b_1,c_2)\;(b_1,\&_{1.3})\;(c_2,\&_{1.3})$

Пример *MFA*

Регулярное выражение: $[aaa^*]:1\&1\&1^*$


```
При \&1=\alpha^2 распознает \alpha^{2(k+1)} \&1=\alpha^3 распознает \alpha^{3(k+1)} ... \&1=\alpha^n распознает \alpha^{n(k+1)}
```

Пример *MFA*

Регулярное выражение: $([\&2]:1[\&1a]:2)^*$

Состояние памяти в финальном а2:

```
1-я итерация: \langle (\epsilon,C), (\alpha,O) \rangle, распознанное слово: \alpha 2-я: \langle (\alpha,C), (\alpha\alpha,O) \rangle, распознанное слово: \alpha+\alpha\alpha\alpha=\alpha^4 3-я: \langle (\alpha\alpha,C), (\alpha\alpha\alpha,O) \rangle, распознанное слово: \alpha^4+\alpha\alpha\alpha\alpha=\alpha^9 ... n-я: \langle (\alpha^n,C), (\alpha^{n+1},O) \rangle, распознанное слово: \alpha^{\sum_{k=0}^n (2k+1)} = \alpha^{(n+1)^2} ...
```

Языки МҒА

• Существующие модели, такие как стековые автоматы и сети Петри, не подходят для описания языков *MFA*.

Анализ регулярных языков

Некоторые разрешимые задачи:

- Эквивалентность DFA;
- Вложение языков;
- Эквивалентность NFA;
- Универсальность языка.

 Иногда на практике применяются более простые отношения, позволяющие оптимизировать анализ представлений.

Сложность анализа расширенных языков

Образцы позволяют описывать подмножество языков ref-слов.

Пример: $aXbXcX \rightarrow a[(a \mid b \mid c)^*]: 1b\&1c\&1$

«Decision Problems for Patterns» Jiang T., Salomaa A., Salomaa K., Yu S. (1993)

• Вложение языков образцов неразрешимо даже в малом алфавите.

 \ll Inclusion of pattern languages and related problems \gg Freydenberger D. D. (2011)

• Эквивалентность языков расширенных регулярных выражений неразрешима даже для малого числа ячеек памяти.

LTS

Определение

Labelled Transition System — тройка $\langle S, \Sigma, Q \rangle$, где S — множество состояний, Σ — множество меток, Q — множество переходов (троек из $S \times \Sigma \times S$).

Любую машину состояний можно определить её графом переходов \mathfrak{T} , то есть полному описанию всех возможных путей.

Симуляция и бисимуляция *LTS*

Определение

Если \lesssim — симуляция для $\mathit{LTS} = \langle S, \Sigma, Q \rangle$, то

$$\forall p, q \in S(p \lesssim q \Rightarrow (\exists p', \alpha((p \overset{\alpha}{\longrightarrow} p') \Rightarrow \exists q'(q \overset{\alpha}{\longrightarrow} q' \ \& \ p' \lesssim q'))$$

Определение

Если одновременно выполняются $p \lesssim q$ и $q \lesssim p$, то говорят, что p и q находятся в отношении бисимуляции (обозначается $p \sim q$).

Бисимуляция состояний в единственной LTS обобщается и на бисимуляцию между двумя разными LTS.

• Проверка бисимилярности графов переходов \mathfrak{T}_1 и \mathfrak{T}_2 при начальной конфигурации $\langle q_S, q_S' \rangle$ может быть представлена в виде игры между Атакующим и Защитником.

Бисимуляция NFA

ullet Два NFA \mathscr{A}_1 и \mathscr{A}_2 бисимилярны $(\mathscr{A}_1 \sim \mathscr{A}_2)$, если их графы переходов $\mathfrak{T}(\mathscr{A}_1)$ и $\mathfrak{T}(\mathscr{A}_2)$ бисимилярны.

При построении бисимуляции $\mathfrak{T}(\mathscr{A}_1) \sim \mathfrak{T}(\mathscr{A}_2)$ нужно добавить ограничения на бисимуляцию начальных и конечных состояний.

Таким образом, для бисимуляции *NFA* \mathscr{A}_1 и \mathscr{A}_2 необходимы следующие условия:

- lacktriangle каждому состоянию \mathscr{A}_1 бисимилярно состояние \mathscr{A}_2 , и наоборот;
- $oldsymbol{arnothing}$ стартовому состоянию \mathscr{A}_1 бисимилярно стартовое состояние \mathscr{A}_2 ;
- $oldsymbol{3}$ каждому финальному состоянию \mathscr{A}_1 бисимилярно финальное состояние \mathscr{A}_2 , и наоборот.

Пример

Первое регулярное выражение: $(aa^*)^*b$

Второе регулярное выражение: a*b

Бисимуляция и эквивалентность

• Бисимилярные *NFA* распознают равные языки, но эквивалентность является менее сильным отношением.

3 проигрывает (не может перейти по с)

3 проигрывает (не может перейти по b)

Бисимуляция и равенство

Существования бисимуляции *NFA* недостаточно, чтобы гарантировать их буквальное равенство.

Представленные автоматы бисимилярны, но не равны.

Слияние по бисимуляции

Бисимилярные состояния в автомате можно объединить, при этом не изменив распознаваемый язык.

Это преобразование часто позволяет существенно упростить NFA.

 Для класса детерминированных конечных автоматов DFA такое слияние равносильно минимизации.

Как определение переносится на MFA

- Все группы захвата используются:
 [a*]:1[a*]:1&1 и т.п. исключаем;

Автомат по выражению $a^*[a^*]: 1\&1:$

Граф переходов:

Пример игры

Автомат по выражению $a^*[a^*]:1\&1$: Автомат по выражению $[a^*]:1a^*\&1$:

24 / 35

Пример бисимилярных МFА

Первое регулярное выражение: $[aa^*]:1a\&1$

Второе регулярное выражение: a[a*a]:1&1

Пример бисимилярных МFA, но сложнее

Первое регулярное выражение: a[a]: 1a[&1a]: 2&2

$$\xrightarrow{\text{0}} \xrightarrow{\text{a}} \xrightarrow{\text{0}} \xrightarrow{\text{a}} \xrightarrow{\text{0}} \xrightarrow{\text{2}} \xrightarrow{\text{2}} \xrightarrow{\text{3}} \xrightarrow{\text{2}} \xrightarrow{\text$$

$$\longrightarrow \underbrace{\left(0, \varepsilon, \varepsilon\right)}_{a} \xrightarrow{a} \underbrace{\left(1, \varepsilon, \varepsilon\right)}_{a} \xrightarrow{a} \underbrace{\left(2, a, \varepsilon\right)}_{a} \xrightarrow{a} \underbrace{\left(3, a, \varepsilon\right)}_{a} \xrightarrow{\&_{1}} \xrightarrow{4} \underbrace{\left(4, a, a\right)}_{a} \xrightarrow{a} \underbrace{\left(5, a, a^{2}\right)}_{a} \xrightarrow{\&_{2}} \xrightarrow{b} \underbrace{\left(5, a, a^{2}\right)}_{a} \xrightarrow{b} \underbrace{\left(5, a, a$$

Второе регулярное выражение: [a]:1a[a&1]:2a&2

$$\longrightarrow \underbrace{(0,\varepsilon,\varepsilon)} \xrightarrow{a} \underbrace{(1,a,\varepsilon)} \xrightarrow{a} \underbrace{(2,a,\varepsilon)} \xrightarrow{a} \underbrace{(3,a,a)} \xrightarrow{\&_1} \underbrace{(4,a,a^2)} \xrightarrow{a} \underbrace{(5,a,a^2)} \xrightarrow{\&_2} \underbrace{(5,a,a^2)} \underbrace{(5,a,a^2)} \xrightarrow{\&_2} \underbrace{(5,a,a^2)} \underbrace{(5,a,$$

Сложность сравнения переходов по ссылкам

Язык $\mathscr{L}(\mathsf{MFA}_\pi)$ состоит из слов, которые могут лежать с ячейках памяти.

 $\left\{a^nb^n\mid n\in\mathbb{N}\right\}\in\mathscr{L}(\mathsf{MFA}_\pi)$ в рекурсивном случае. 3-я ячейка хранит такой язык: $\left([{}_2\mathtt{a}\&1\,b]_2[{}_1\mathtt{a}\&2\,b]_1\right)^*[{}_3(\&1\mid\&2)]_3$.

Аппроксимации конечными автоматами

Action-NFA $-\pi_{\mathcal{M}}(\mathscr{A})$:

- Операции над памятью удаляются;
- Ссылки становятся элементами входного алфавита;
- Action-бисимуляция необходима для бисимуляции MFA.

Регулярное выражение: $([a]:1\mid [b]:2)^*\&1\&2$

Аппроксимации конечными автоматами

Symbolic-NFA $-\pi^{\mathcal{M}}(\mathscr{A})$:

- Операции над памятью считаются входными символами;
- Symbolic-бисимуляции достаточно для бисимуляции MFA.

Регулярное выражение: a[b|]:1*&1

Экспериментальный алгоритм

Сравнение содержимого ячеек памяти

- Решение уравнений в словах. Простой пример: Для автоматов по [aa*] : 1a&1 и a[a*a] : 1&1 значения ссылок &1 $_{\mathscr{A}_1}$ и &1 $_{\mathscr{A}_2}$ всегда совпадают, так как $\forall \omega = \alpha^k$, $\alpha \omega = \omega \alpha$;
- Сравнение языков *NFA*.

Убедиться, что решающие состояния Action-бисимилярны и между ними отсутствуют перекрестные связи.

Найти Action-бисимилярные состояния с входящими в них переходами по ссылкам с равными номерами.

Каждому такому состоянию в одном автомате найти соответствующее по языку групп захвата в другом.

Как такое можно тестировать?

Фаззинг

- Параметризованный генератор расширенных регулярных выражений;
- Параметризованный генератор автоматов;
- Сравнительный парсинг строк по двум автоматам.

Отношения между аппроксимациями и бисимуляцией:

$$\left(\sim^{\mathcal{M}}\right)\subseteq\left(\sim\right)\subseteq\left(\sim_{\mathcal{M}}\right)$$

- **①** Сгенерировать \mathscr{A}_1 и \mathscr{A}_2 ;
- $m{Q}$ Вычислить $\mathscr{A}_1 \sim \mathscr{A}_2$, $\pi_{\mathbb{M}}(\mathscr{A}_1) \sim \pi_{\mathbb{M}}(\mathscr{A}_2)$, $\pi^{\mathbb{M}}(\mathscr{A}_1) \sim \pi^{\mathbb{M}}(\mathscr{A}_2)$.
- lacktriangle Если $\left(\pi_{\mathcal{M}}(\mathscr{A}_1) \sim \pi_{\mathcal{M}}(\mathscr{A}_2)\right)
 eq \left(\pi^{\mathcal{M}}(\mathscr{A}_1) \sim \pi^{\mathcal{M}}(\mathscr{A}_2)\right)$, проверить вручную экспериментальный результат \sim .

Пример слияния по бисимуляции

Исходный автомат:

Автомат после слияния:

Классы эквивалентности по бисимуляции:

$$\{\&_{1.6}\}; \{b_3, b_4, b_5\}; \{a_0, a_1, a_2\}; \{S\};$$

Разбор слов по MFA: исходный автомат

Слова порождаются выражением $a^*(bb)^*c$

Шаг итерации: 10

		Длина	Время	Примо в поминости
	Шаги			Принадлежность
		строки	парсинга	языку
1	1	1	0.000000	false
2	3446	31	0.033000	false
3	27051	61	0.266000	false
4	90886	91	0.885000	false
5	213381	121	2.000000	false
6	416226	151	3.893000	false
7	720211	181	6.786000	false
8	1136976	211	10.619000	false
9	1695561	241	15.859000	false
10	2417896	271	22.886000	false
11	3309451	301	31.140000	false
12	4399946	331	41.744000	false
13	5723221	361	54.087000	false

Разбор слов по *MFA*: оптимизированный автомат

	Шаги	Длина	Время	Принадлежность
		строки	парсинга	языку
1	1	1	0.000000	false
2	77	31	0.000000	false
3	179	61	0.001000	false
4	292	91	0.002000	false
5	409	121	0.003000	false
6	533	151	0.004000	false
7	663	181	0.006000	false
8	790	211	0.007000	false
9	923	241	0.008000	false
10	1062	271	0.009000	false
11	1199	301	0.010000	false
12	1337	331	0.012000	false
13	1484	361	0.013000	false

Спасибо за внимание!

