COMP4421 Assignment 3

$\begin{array}{c} {\rm MOHAMAD,\ Randitya\ Setyawan} \\ 20316273 \end{array}$

rsmohamad@ust.hk

November 30, 2018

Exercises

1. Lossless Compression

Original Source			Source Reduction									
Intensity	Prob	Code	1		2		3		4		5	
1	0.25	10	0.25	10	0.25	10	0.3125	11	0.4375	0	0.5625	1
3	0.25	01	0.25	01	0.25	01	0.25	10	0.3125	11	0.4375	0
9	0.1875	00	0.1875	00	0.1875	00	0.25	01	0.25	10		
7	0.125	110	0.125	110	0.1875	111	0.1875	00				
2	0.0625	1110	0.125	1111	0.125	110						
12	0.0625	11111	0.0625	1110								
15	0.0625	11110										

Intensity	Frequency	Compressed (bits)	Original Size	Compressed Size
1	4	2	16	8
3	4	2	16	8
9	3	2	12	6
7	2	3	8	6
2	1	4	4	4
12	1	5	4	5
15	1	5	4	5
Total			64	42

$$Compression\ ratio = uncompressed/compressed \\ = 64/42 \\ = 1.5238$$

2. Adaboost Learning Algorithm

Finding the weights: T = 1Sample weights: $\begin{bmatrix} 0.11111111 & 0.11111111 & 0.11111111 & 0.11111111 & 0.11111111 & 0.11111111 \end{bmatrix}$ 0.11111111 0.11111111 0.11111111] Error = 0.444444Classifier weight = 0.111572 T = 2Sample weights: [0.10557281 0.10557281 0.10557281 0.10557281 0.10557281 0.11803399 0.11803399 0.11803399 0.11803399] Error = 0.670820Classifier weight = -0.355949T = 3Sample weights: [0.092548 0.13211548 0.13211548 0.092548 0.092548 0.10347181 0.10347181 0.10347181 0.1477096] Error = 0.288568Classifier weight = 0.451175 T = 4Sample weights: [0.0794725 0.11344975 0.11344975 0.12478422 0.12478422 0.139513 0.08885295 0.08885295 0.12684067] Error = 0.750432Classifier weight = -0.550458T = 5Sample weights: [0.06716772 0.09588425 0.09588425 0.18287912 0.18287912 0.11791211 0.07509579 0.07509579 0.10720185] Error = 0.538358Classifier weight = -0.076866

(a) H3 and H1 have the highest weights. Final classifier:

$$H(\mathbf{x}) = sgn(0.4512 \cdot h_3(\mathbf{x}) + 0.1116 \cdot h_1(\mathbf{x}))$$

(b) Final classifier response:

$$[1, 1, -1, 1, -1, -1, -1, 1, -1]$$

Programming

1. Digit Segmentation

I used the given segmentation algoritm (row and column projections) with additional preprocessing and different method to handle digits that are close.

- Step 1: Clean and binarize the image
 - Convert the image to grayscale
 - Obtain the background (image sans digits) by dilating the grayscale image
 - Subtract the background to get a clean image of digits
 - Binarize the digits using OTSU algorithm
- Step 2: Separate the rows using the y-projections on the binarized image
- Step 3: Separate the columns in each row using x-projections
- Step 4: Create ROIs using the obtained rows and columns
- Step 5: Each ROI may contain 2 close digits, separate them by finding connected components

1.jpg

2.bmp

3.bmp

2. Adaboost Classification

I used 5 decision trees for the weak classifiers

1.jpg - accuracy=0.6429

2.bmp - accuracy=0.833

3.bmp - accuracy=0.8125

