Практическая работа №6 Расчёт машины для мойки плодов и овощей.

Цель работы: изучение классификации моечных машин, устройств и принципа действия линейной моечной машины, приобретение практических навыков по расчету моечных машин.

Теоретическая часть

Мойка определяет качество конечного продукта, причем ее режимы зависят от видов загрязнений. Если пищевое сырье обычно загрязнено частицами почвы, песка, остатками ботвы и т. п., то на поверхности тары содержатся сложные загрязнения, состоящие из жидкой и твердой фаз (жиры, частицы консервируемого продукта и т.д.). Состав загрязнений обусловливает разнообразие их механических свойств, различие в величине сил сцепления с поверхностью сырья или тары.

Для подавления жизнедеятельности микроорганизмов, входящих, как правило, в состав загрязнений, тара перед заполнением консервируемым продуктом подвергается дезинфекции. Дезинфекцию отмытых поверхностей проводят осветленным раствором с массовой долей хлорной извести 5 % или раствором с массовой долей гидроксида NaOH - 0,5 % или хлорамином.

Для мойки используются следующие моющие средства: анионо- и катионоактивные, амфолитные и неионогенные. Моющий раствор должен обеспечить смачивание поверхностей, диспергирование загрязнений (набухание, пептизация и дробление белковых веществ, омыление жиров) и стабилизацию отделившихся от поверхности загрязнений в моющем растворе.

Смачивание отмываемых поверхностей зависит от поверхностного натяжения моющего и межфазного раствора и межфазного натяжения на границе жидкость - твердое тело. Наиболее эффективное смачивание и мойка обеспечиваются при минимальном поверхностном натяжении моющего раствора. Для этого используют два метода снижения поверхностного натяжения воды или моющего раствора: тепловой и использующий поверхностно-активные вещества (ПАВ).

В зависимости от вида отмываемых поверхностей в состав моющего раствора входят разные вещества: эмульгирующие жиры и омыляющие жирные кислоты - едкая щелочь; пептизирующие белки и снижающие жесткость воды - тринатрийфосфат и др.; предотвращающие коррозию металла - жидкое стекло и ПАВ. Количество каждого компонента определяется видом и свойством отмываемых поверхностей.

Чистота отмываемых поверхностей определяется по отсутствию следов загрязнений, моющих средств и по количеству микроорганизмов на них.

					Практическая работа №6				
Изм.	Лист	№ докум.	Подпись	Дата	TIPURTH TOOKUN PUOOTU 3/20				
Разра	δ.				Расчёт машины для мойки	Лип	7.	Лист	Листов
Провед	D.							1	
Рецен.	3.				плодов и овощей.	ГГТУ им П.О. Сухого			
Н. Ко	нтр.								
Утвер	д.					гр С-			_

В настоящее время для мойки пищевого растительного сырья, тары и санитарной обработки оборудования применяются моечные машины различных типов и конструкций. Они классифицируются следующим образом: в зависимости от характера процесса (непрерывно и периодически действующие); от вида обрабатываемых объектов (для мойки сырья и мойки тары); по типу устройств, перемещающих отмываемые объекты (линейные и барабанные); по способу воздействия моющей среды (шприцевые, отмочные и отмочно-шприцевые).

Интенсификация процесса мойки при оптимальной темпера туре моющего раствора возможна за счет использования более эффективных моющих растворов либо турбулизации моющего раствора у загрязненных поверхностей. Движение моющего раствора у отмываемых поверхностей оказывает механический разрушающий эффект на загрязнения и ускоряет физико-химическое взаимодействие. Оно осуществляется разными способами: турбулизацией моющего раствора воздушным барботированием; механическим перемешиванием моющего раствора лопастями, насадками и т. д.; приведением моющего раствора в колебательное движение с помощью динамических вибраторов или гидродинамических излучателей: турбулизацией моющего раствора затопленными струями и т. д.

К моечным машинам предъявляются следующие требования: высокая степень чистоты отмываемых объектов, исключение порчи сырья или боя и деформации тары, минимальный расход воды и энергии, простота изготовления и обслуживания, высокая эксплуатационная надежность, малые габаритные размеры и масса. Для мойки сырья используется обычно проточная или оборотная водопроводная вода. После отмочки загрязнения с поверхности сырья удаляются щетками или жидкостными струями.

многообразия моечных машин наибольшее распространение вибрационные, лопастные, барабанные, получили ленточные, комбинированные, элеваторные, щеточные и др. Выбор моечной машины определяется структурно-механическими И прочностными свойствами растительного сырья, а также характером и количеством загрязнений на поверхности сырья.

Мойку растительного сырья производят погружением в воду (отмочка), ополаскиванием струями воды из насадок, использованием щеточных устройств, активным перемешиванием. В большинстве моечных машин применяют комбинацию перечисленных способов мойки.

Мойка предусматривает удаление с поверхности сырья остатков земли, песка, посторонних тяжелых и легких примесей (камни, листья, ветки, солома и др.). Для каждого вида сырья требуется свой способ и режим мойки.

Линейная моечная машина (рисунок 2.1) предназначена для мойки различных овощей и плодов, как с мягкой, так и с твердой структурой. Она состоит из ванны 1, транспортерного полотна 2, душевого устройства 3 и привода 4. На каркасе ванны 1 смонтированы псе узлы моечной машины.

						Лст
					Практическая работа №6	
Изм.	Лист	№ докум.	Подпись	Дата	± ±	

Рисунок 2.1. Линейная моечная машина: 1 - ванна; 2 - транспортерное полотно; 3 -душевое устройство; 4 — привод.

При работе машины плоды поступают в моечное пространство ванны непрерывно. Для более интенсивной мойки загрязненный продукт активно перемешивается за счет подводимого от нагнетателя сжатого воздуха. Вымытый продукт из моечного пространства перемещается наклонным транспортером, в верхней части которого (перед выгрузкой) он ополаскивается водой из душевого устройства.

Выгрузка продукта производится через лоток, регулируемый по высоте. Величина слоя продукта, поступающего на транспортерное полотно, регулируется заслонкой. Вода, поступающая в ванну через ополаскивающий душ, удаляется через сливную щель. Чистка ванны производится через грязевой люк и боковые окна.

·	·			
Изм.	Лист	№ докум.	Подпись	Дата

Практическая часть

Таблица 6.1 - Варианты индивидуальных заданий

Номер	Скорость	Длина зерка-	Диаметр трубо-	Вид перераба-	Длина тру-	Длина
вари-	транспортера	ла воды А, м	провода d_m , м	тываемого	бопровода l_m ,	транспортера
анта	ν _c , м/с			сырья	M	L, M
1	0,137	1,94	0,40	Кабачки	8,0	3,6
2	0,141	1,92	0,38	Перец	8,5	3,8
3	0,145	1,90	0,36	Баклажаны	9,0	3,4
4	0,149	1,88	0,34	Томаты	9,6	4,0
5	0,153	1,86	0,32	Лук	10,0	3,2
6	0,157	1,84	0,30	Яблоки	10.5	3,1
7	0,161	1,82	0,28	Груши	11,0	3,9
8	0,165	1,80	0,40	Сливы	11,5	3,3
9	0,169	1,81	0,38	Морковь	12,0	3,7
10	0,173	1,83	0,36	Кабачки	8,3	3,5
. 11	0,139	1,85	0,34	Перец	8,8	3,5
12	0,143	1,87	0,32	Баклажаны	9,3	3,6
13	0,147	1,89	0,30	Томаты	9,7	3,8
14	0,151	1,91	0,28	Лук	10,3	3,4
15	0,155	1,93	0,40	Яблоки	10,8	4,0
16	0,159	1,78	0,38	Груши	11,2	3,2
17	0,163	1,76	0,36	Сливы	11,6	3,1
18	0,167	1,74	0,34	Морковь	11,9	3,9
19	0,171	1,72	0,32	Перец	8,0	3,3
20	0,182	1,70	0,30	Баклажаны	8,5	3,7
21	0,180	1,71	0,28	Томаты	9,0	3,5
22	0,178	1,73	0,42	Лук	9,6	3,7
23	0,176	1,75	0,44	Яблоки	10,0	3,9
24	0,174	1,77	0,46	Груши	10.5	4,2
25	0,170	1,79	0,48	Сливы	0,11	4,4

Производительность Q, $\kappa r/c$, линейных моечных машин определяется производительностью рабочего транспортера

$$Q = b \cdot h_c \cdot \varphi_c \cdot \varphi_c \cdot v_c \tag{6.1}$$

где b - ширина рабочей части транспортера, м (определяется шириной инспекционного транспортера, которая составляет 0,6...0,9 м); h_c – высота слоя сырья, м; ϕ_c - коэффициент использования транспортера ϕ_c = 0,6...07); ρ_c - насыпная плотность сырья, кг/м³ (табл. 6.2); υ_c – скорость транспортера, м/с.

$$Q = \kappa \Gamma / c$$

						Лс
					Практическая работа №6	
Изм.	Лист	№ докум.	Подпись	Дата	1	

Таблица 6.2- Насыпная плотность плодов и овощей

Сырье	Высота слоя сырья, h_{C} , м	Насыпная плотность ρ_C , $\kappa \Gamma/M^3$
Кабачки	0,14	450500
Перец	0,08	200300
Баклажаны	0,16	330430
Томаты	0,06	580630
Лук	0,05	490520
Яблоки	0,07	430580
Груши	0,06	450510
Сливы	0,03	530680
Морковь	0,05	560590

Время отмочки сырья τ , c, определяется полезным объемом ванны W_n ,м³

$$\tau = \frac{W_n \cdot \rho_c}{Q} \tag{6.2}$$

Полезный объем ванны W_n определяется площадью зеркала воды в ванне F_3 , M^2 . При обычной призматической форме ванны

$$W_{n} = \frac{F_{3} \cdot H_{m}}{2} \tag{6.3}$$

где H_{m} - глубина наиболее погруженной точки несущей ветви транспортера (обычно H_{m} =0,6...0,7 м).

Площадь зеркала воды в ванне моечной машины F_3 , M^2 ,

$$F_3 = A \cdot B \tag{6.4}$$

где A - длина зеркала воды в ванне, м; B - расстояние между боковыми стенками ванны, м (B=b+0.1=

$$F_3 =$$

$$W_n =$$

 $\tau =$

Количество воздуха и необходимый напор, под которым он должен подаваться в барботер, определяются размерами зеркала воды в ванне и глубиной погружения отверстия истечения воздуха из барботеров. Практикой

						Лст
					Практическая работа №6	
Изм.	Лист	№ докум.	Подпись	Дата	1	

эксплуатации моечных машин установлена следующая норма: 1,5м3 воздуха в минуту на 1 м2 площади зеркала воды, т.е.

$$W_b = \frac{1.5 \cdot F_3}{60} \tag{6.5}$$

 $W_b =$

Нагнетатель воздуха для моечной машины выбирается по расходу воздуха W_b и необходимому напору P_b .

Поскольку длина воздуховода для подвода воздуха к барботерам и скорость воздуха в воздуховоде малы, потерями по длине воздуховода можно пренебречь, тогда P_b , Πa ,

$$P_{_{B}} = \frac{\rho_{_{B}} \cdot \nu_{_{B}}^{2}}{2} \cdot (1 + \Sigma \zeta) + \rho_{_{\mathcal{R}}} \cdot h_{_{\mathcal{R}}} \cdot g$$

где $\rho_{\text{в}}$ - плотность воздуха, кг/м³ ($\rho_{\text{в}}=0.00129$ кг/м³); $\upsilon_{\text{в}}$ - скорость воздуха в воздуховоде, м/с ($\upsilon_{\text{в}}$ рекомендуется не более 10 м/с); ξ – коэффициент местного сопротивления (в расчете принимать $\Sigma \xi = 0.30...0.45$); $\rho_{\text{ж}}$ - плотность воды, кг/м³ ($\rho_{\text{ж}}=1000$ кг/м³); $h_{\text{ж}}$ - глубина погружения в воду отверстий барботера, м ($h_{\text{ж}}=H_{\text{м}}+0.1$ м); g=9.81 м/с² - ускорение свободного падения.

 $P_{_{\!\scriptscriptstyle{
m B}}}=$

Мощность электродвигателя для привода нагнетателя воздуха $N_{\scriptscriptstyle B}$, кВт

$$N_{_{B}} = \frac{W_{_{B}} \cdot P_{_{B}}}{1000 \cdot \eta_{_{B}}} \tag{6.7}$$

где $W_{\scriptscriptstyle B}$ =0,037- расход подаваемого воздуха, м/с; $P_{\scriptscriptstyle B}$ - необходимый напор, Па ; $\eta_{\scriptscriptstyle B}$ - КПД нагнетателя ($\eta_{\scriptscriptstyle B}$ = 0,6...0,8).

 $N_e =$

Мощность, необходимая для привода центробежного насоса, подающего жидкость к душевым или шприцевым устройствам $N_{\rm ж}$, кВт, определяется по формуле, аналогичной формуле.

$$N_{x} = \frac{Q_{x} \cdot P_{x}}{1000 \cdot \eta_{x}} \tag{6.8}$$

где $Q_{\text{ж}}$ - расход жидкости, м³/c; $P_{\text{ж}}$ - напор жидкости у насоса, Па ($P_{\text{ж}}$ =0,2...0,3 МПа); η_{H} - КПД насоса (η_{H} = 0,70...0,85).

						Лст
					Практическая работа №6	
Изм.	Лист	№ докум.	Подпись	Дата	1	

Расход жидкости Q_{x} , м³/с

$$Q_{x} = \mu \cdot \frac{\pi \cdot d^{2}}{4} \cdot n \cdot \sqrt{\frac{2 \cdot P_{u}}{\rho_{x}}}$$
 (6.9)

где μ - коэффициент расхода (для цилиндрического насадка μ = 0,82; для конического сходящегося μ = 0,95; для конического расходящегося μ =0,48; вид насадка выбирается самостоятельно); d - диаметр отверстия барботера, м (выбирается равным 0,75; 1,25; 1,50; мм в зависимости от вида перерабатываемого сырья, меньшие значения выбираются для мелких плодов и овощей); n - количество одинаковых отверстий барботера (в расчете принимается n = 50...60); P_u - напор жидкости у отверстия истечения, Π a (в расчете принимается P_u = P_{π} = 0,2...0,3 М Π a); ρ_{π} - плотность моющей жидкости, кг/м 3 (ρ_{π} = 1000 кг/ м 3).

$$Q_{\mathcal{H}} =$$

$$N_{\infty} =$$

Напор жидкости у насоса

$$P_{x} = P_{y} + P_{n} \tag{6.10}$$

где P_n - потеря напора от местных и путевых сопротивлений, Па.

Потеря напора, Па

$$P_{n} = \frac{\rho_{*} \cdot \nu_{*}^{2}}{2} \cdot \left[1 + \Sigma \left(\xi + \lambda_{*} \cdot \frac{1_{m}}{d_{m}} \right) \right]$$
 (6.11)

где $\upsilon_{\rm ж}$ - скорость жидкости в трубопроводе, м/с ($\upsilon_{\rm ж}$ рекомендуется не более 2 м/с); ξ - коэффициент местного сопротивления (выбирается по справочнику, в расчете принять $\xi=0.85$); $\lambda_{\rm ж}$ - коэффициент сопротивления трения по длине трубопровода; $l_{\rm m}$ - длина трубопровода, м; $d_{\rm m}$ – диаметр трубопровода, м.

Коэффициент сопротивления трения по длине трубопровода определяется по следующим формулам

$$\lambda_{*} = \frac{0.3164}{\text{Re}^{0.25}} \tag{6.12}$$

						Лст
					Практическая работа №6	
Изм.	Лист	№ докум.	Подпись	Дата	1 1	

при Re ≤ 100 000

$$\lambda_{**} = \left(\frac{0.555}{\lg \frac{Re}{7}}\right)^2 \tag{6.13}$$

при Re ≥ 100 000 здесь Re - число Рейнольдса

 $\mu_{\text{ж}}$ - кинематическая вяз-кость моющей жидкости ($\mu_{\text{ж}} = 1{,}01\ 10^{-6}\ \text{m}^2/\text{c}$).

$$\lambda_{\infty} = \left(\frac{0.555}{\text{lg} - 7}\right)^{2} =$$

$$P_{n} = \frac{1}{2} \cdot \left[1 + \Sigma\left(\frac{1}{2}\right)\right] =$$

$$P_{\infty} = \frac{1}{2} \cdot \left[1 + \frac{1}{2}\left(\frac{1}{2}\right)\right] =$$

Мощность N_{mp} , кВт, для привода основного транспортера

$$N_{mp} = \frac{A_m \cdot v_c}{1000 \cdot \eta} \tag{6.14}$$

где A_m - тяговое усилие транспортера, $H; \upsilon_c$ - скорость транспортера, $m/c; \eta$ - КПД передаточных механизмов ($\eta = 0.61...0.78$).

Тяговое усилие определяется методом обхода контура с учетом максимальной загрузки. Ориентировочно тяговое усилие A_m , $H\cdot M$, можно определить по формуле

$$A_{m} = (0.215 \cdot q_{o} \cdot L_{r} + 50 + 0.215 \cdot q \cdot L) \cdot g$$
 (6.15)

где q_o - масса полезной нагрузки на 1 м транспортера, кг ($q_o=8...12$ кг); q - масса 1 м транспортера без груза, кг (q=4,4...5,1 кг); $L_{\scriptscriptstyle \Gamma}$ - длина груженой части транспортера, м ($L_{\scriptscriptstyle \Gamma}=0,65$ L); L - длина транспортера, м; g=9,81 м/с²- ускорение свободного падения.

$$A_m = N_{mp} =$$

Вывод: изучили классификацию моечных машин, устройство и принцип действия линейной моечной машины, приобрели практические навыков по расчету моечных машин.

						Лст
					Практическая работа №6	
Изм.	Лист	№ докум.	Подпись	Дата	1 1	