

Spec. No. : C813N6 Issued Date : 2017.03.30

Revised Date : Page No. : 1/12

N- AND P-Channel Enhancement Mode MOSFET

MTC6601N6

	N-CH	P-CH
BVDSS	30V	-30V
ID	$3.7A(V_{GS}=10V)$	$-2.7A(V_{GS}=-10 V)$
D	37.7 m Ω (VGS=10V)	91.3 m Ω (V _{GS} =-10V)
RDSON (TYP.)	42.7 m Ω (Vgs= 4.5 V)	104 m Ω (V _{GS} =-4.5V)
	62.6 m Ω (VGS= 2.5 V)	132 m Ω (V _{GS} =-2.5V)

Features

- Simple drive requirement
- Low gate charge
- Low on-resistance
- Fast switching speed
- Pb-free lead plating and halogen-free package

Equivalent Circuit

Outline

Ordering Information

Device	Package	Shipping
MTC6601N6-0-T1-G	SOT-26 (Pb-free lead plating and halogen-free package)	3000 pcs / Tape & Reel

Spec. No. : C813N6 Issued Date : 2017.03.30

Revised Date : Page No. : 2/12

Absolute Maximum Ratings (Ta=25°C)

Parameter			Limits		Unit
	Farameter	Symbol	N-channel	P-channel	Oilit
Drain-Source Brea	kdown Voltage	BVDSS	30	-30	V
Gate-Source Voltag	ge	Vgs	±12	±12	V
	Ta=25°C ,V _{GS} =10V(N-CH),	ΙD	3.7	-2.7	A
Continuous Drain	V_{GS} =-10 V (P-CH)	ID	5.7	-2.7	
Current (Note 1)	T _A =70°C, V _{GS} =10V(N-CH),	Id	3.0	-2.2	
	V_{GS} =-10 V (P-CH)				
Pulsed Drain Current (Note 2)			22	-16	
Total Power Dissipation (Note 1)			1.14		W
Operating Junction and Storage Temperature			-55~+150		°C
Thermal Resistance, Junction-to-Ambient (Note 1)			110		00/11
Thermal Resistance	e, Junction-to-Case	RөJC	6	0	°C/W

Note : 1. Surface mounted on 1 in 2 copper pad of FR-4 board, $t \le 5$ sec; 180° C/W when mounted on minimum copper pad.

N-Channel Electrical Characteristics (Tj=25°C, unless otherwise specified)

11 Onamici	Liootiio	ai Ollaia	otol loti	<u>00 (1) 20</u>	o, unices outerwise specifica)	
Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
Static						
BV _{DSS}	30	-	-	V	V _{GS} =0V, I _D =250μA	
V _{GS(th)}	0.5	-	1.5	V	$V_{DS}=V_{GS}$, $I_D=250\mu A$	
I _{GSS}	-	-	±100	nA	$V_{GS}=\pm 12V, V_{DS}=0V$	
I _{DSS}	-	-	1	μА	$V_{DS}=24V$, $V_{GS}=0V$	
1088	-	-	25		V _{DS} =24V, V _{GS} =0V, Tj=70°C	
	-	37.7	55		$V_{GS}=10V, I_{D}=3.4A$	
*Rds(on)	-	42.7	65	mΩ	$V_{GS}=4.5V$, $I_D=3A$	
	-	62.6	90		V _{GS} =2.5V, I _D =2A	
*G _{FS}	-	4.3	-	S	$V_{DS}=5V$, $I_D=3A$	
Dynamic						
Ciss	-	315	-			
Coss	-	46	-	pF	$V_{DS}=15V$, $V_{GS}=0V$, $f=1MHz$	
Crss	-	33	-			
*td(ON)	-	3.6	-			
*t _r	-	16.6	-	ns	$V_{DS}=15V, I_{D}=3.4A, V_{GS}=10V, R_{G}=6\Omega$	
*td(OFF)	-	24.4	-	113	VDS 13 V, 1D 3.471, VGS 10 V, RG 022	
*t _f	-	4.2	-			
*Qg	-	9.4	-			
*Qgs	-	1.6	-	nC	$V_{DS}=15V$, $I_{D}=3.4A$, $V_{GS}=10V$	
*Qgd	_	0.8	-			
	Source-Drain Diode					
$*V_{\mathrm{SD}}$	-	0.8	1	V	$V_{GS}=0V$, $I_{S}=1A$	
*trr	-	7.7	-	ns	I _F =1A, V _{GS} =0V, dI _F /dt=100A/μs	
*Qrr	-	3.3	-	nC	11 171, ν 05-0 ν, αιτ/αι-100/ν/μ5	

*Pulse Test : Pulse Width ≤300μs, Duty Cycle≤2%

^{2.} Pulse width limited by maximum junction temperature.

Spec. No. : C813N6 Issued Date : 2017.03.30 Revised Date :

Page No. : 3/12

P-Channel Electrical Characteristics (Tj=25°C, unless otherwise specified)

				\)	, , ,				
Symbol	Min.	Тур.	Max.	Unit	Test Conditions				
Static									
BV _{DSS}	-30	-	-	V	V _{GS} =0V, I _D =-250μA				
V _{GS(th)}	-0.5	-	-1.2	V	V _{DS} =V _{GS} , I _D =-250μA				
Igss	-	-	±100	nA	$V_{GS}=\pm 12V, V_{DS}=0V$				
I _{DSS}	-	-	-1	^	V_{DS} =-24V, V_{GS} =0V				
1088	-	-	-10	μΑ	V _{DS} =-24V, V _{GS} =0, Tj=70°C				
	-	91.3	110		V_{GS} =-10V, I_{D} =-2.3A				
*Rds(on)	-	104	145	mΩ	V_{GS} =-4.5V, I_{D} =-2A				
	-	132	190		V _{GS} =-2.5V, I _D =-1A				
*G _{FS}	-	4	-	S	V _{DS} =-5V, I _D =-2.3A				
Dynamic									
Ciss	-	480	-						
Coss	-	63	ı	pF	V_{DS} =-15V, V_{GS} =0V, f=1MHz				
Crss	-	33	ı						
*t _{d(ON)}	-	4.4	ı						
*t _r	-	17.2	-	ns	V_{DD} =-15V, I_{D} =-2.3A, V_{GS} =-4.5V, R_{G} =6 Ω				
*td(OFF)	-	43	-	115	VDD13 V, ID2.3A, VGS4.3 V, RG-022				
*t _f	-	6.8	-						
*Qg	-	11.4	-						
*Qgs	-	1.3	-	nC	V_{DS} =-15V, I_D =-2.3A, V_{GS} =-10V				
*Qgd	-	0.7	-						
Source-Drain	Source-Drain Diode								
$*V_{\mathrm{SD}}$	-	-0.83	-1	V	$V_{GS}=0V$, $I_{S}=-1A$				
*trr	-	7	-	ns	I _F =-1A, V _{GS} =0V, dI _F /dt=100A/μs				
*Qrr	-	2.9	-	nC	11 -111, v 05-0 v, u1r/ut-100/Λ/μ5				

*Pulse Test : Pulse Width ≤300μs, Duty Cycle≤2%

Recommended Soldering Footprint

Spec. No.: C813N6 Issued Date: 2017.03.30 Revised Date:

Page No.: 4/12

N-channel Typical Characteristics

Brekdown Voltage vs Ambient Temperature

Static Drain-Source On-State resistance vs Drain Current

Reverse Drain Current vs Source-Drain Voltage

Static Drain-Source On-State Resistance vs Gate-Source Voltage

Drain-Source On-State Resistance vs Junction Tempearture

ID, Maximum Drain Current(A)

Spec. No. : C813N6 Issued Date : 2017.03.30 Revised Date :

Page No. : 5/12

N-channel Typical Characteristics(Cont.)

Spec. No. : C813N6 Issued Date : 2017.03.30 Revised Date :

Page No.: 6/12

N-channel Typical Characteristics(Cont.)

Spec. No. : C813N6 Issued Date : 2017.03.30 Revised Date :

Page No. : 7/12

P-channel Typical Characteristics

Brekdown Voltage vs Ambient Temperature

Static Drain-Source On-State resistance vs Drain Current

Reverse Drain Current vs Source-Drain Voltage

Static Drain-Source On-State Resistance vs Gate-Source Voltage

Drain-Source On-State Resistance vs Junction Tempearture

Spec. No. : C813N6 Issued Date : 2017.03.30 Revised Date :

Page No. : 8/12

P-channel Typical Characteristics(Cont.)

Tj, Junction Temperature(°C)

Spec. No. : C813N6 Issued Date: 2017.03.30 Revised Date:

Page No.: 9/12

P-channel Typical Characteristics(Cont.)

Spec. No.: C813N6 Issued Date: 2017.03.30 Revised Date:

Revised Date : Page No. : 10/12

Reel Dimension

Carrier Tape Dimension

Spec. No. : C813N6 Issued Date : 2017.03.30 Revised Date :

Page No. : 11/12

Recommended wave soldering condition

Product	Peak Temperature	Soldering Time		
Pb-free devices	260 +0/-5 °C	5 +1/-1 seconds		

Recommended temperature profile for IR reflow

Profile feature	Sn-Pb eutectic Assembly	Pb-free Assembly		
Average ramp-up rate (Tsmax to Tp)	3°C/second max.	3°C/second max.		
Preheat				
-Temperature Min(Ts min)	100°C	150°C		
-Temperature Max(Ts max)	150°C	200°C		
-Time(ts min to ts max)	60-120 seconds	60-180 seconds		
Time maintained above:				
-Temperature (T∟)	183°C	217°C		
– Time (t∟)	60-150 seconds	60-150 seconds		
Peak Temperature(T _P)	240 +0/-5 °C	260 +0/-5 °C		
Time within 5°C of actual peak temperature(tp)	10-30 seconds	20-40 seconds		
Ramp down rate	6°C/second max.	6°C/second max.		
Time 25 °C to peak temperature	6 minutes max.	8 minutes max.		

Note: 1. All temperatures refer to topside of the package, measured on the package body surface.

^{2.}For devices mounted on FR-4 PCB of 1.6mm or equivalent grade PCB. If other grade PCB is used, care should be taken to match the coefficients of thermal expansion between components and PCB. If they are not matched well, the solder joints may crack or the bodies of the parts may crack or shatter as the assembly cools.

Spec. No.: C813N6 Issued Date: 2017.03.30 Revised Date:

Page No.: 12/12

SOT-26 Dimension

DIM	Millimeters		Inches		DIM	Millimeters		Inches	
DIIVI	Min.	Max.	Min.	Max.	DIIVI	Min.	Max.	Min.	Max.
Α	1.050	1.250	0.041	0.049	Е	1.500	1.700	0.059	0.067
A1	0.000	0.100	0.000	0.004	E1	2.650	2.950	0.104	0.116
A2	1.050	1.150	0.041	0.045	е	0.950 (BSC)		0.037 (BSC)	
b	0.300	0.500	0.012	0.020	e1	1.800	2.000	0.071	0.079
С	0.100	0.200	0.004	0.008	Ĺ	0.300	0.600	0.012	0.024
D	2.820	3.020	0.111	0.119	θ	0°	8°	0°	8°

Notes: 1.Controlling dimension: millimeters.

2.Maximum lead thickness includes lead finish thickness, and minimum lead thickness is the minimum thickness of base material. 3.If there is any question with packing specification or packing method, please contact your local CYStek sales office.

Material:

• Lead : Pure tin plated.

• Mold Compound : Epoxy resin family, flammability solid burning class:UL94V-0.

Important Notice:

- All rights are reserved. Reproduction in whole or in part is prohibited without the prior written approval of CYStek.
- CYStek reserves the right to make changes to its products without notice.
- CYStek semiconductor products are not warranted to be suitable for use in Life-Support Applications, or systems.
- CYStek assumes no liability for any consequence of customer product design, infringement of patents, or application assistance.