LII Olimpíada Internacional e XXVI Olimpíada Iberoamericana Quarto Teste de Seleção 14 de maio de 2011

Instruções:

- Não resolva mais de uma questão por folha de almaço. Escreva seu nome em cada folha que usar. Entregue também o rascunho, pois ele pode ser utilizado a seu favor na correção.
- É proibido o uso de calculadora ou computador. É permitido o uso de régua, esquadro e compasso.
- Tudo o que você escrever deve ser justificado.
- Todas as questões têm o mesmo valor.
- Duração da prova: 5 horas.
- Não divulgue o conteúdo desta prova até julho de 2011! Alguns dos problemas foram retirados do Banco da IMO 2010, que deve permanecer secreto até essa data.

▶ PROBLEMA 1

Encontre o menor inteiro positivo n tal que é possível pintar cada uma das 64 casas de um tabuleiro 8×8 de uma entre n cores de modo que quaisquer quatro casas que formam um L como na figura a seguir (ou figuras congruentes obtidas através de rotações e/ou reflexões) têm cores diferentes.

▶PROBLEMA 2

Duas circunferências ω_1 e ω_2 , de centros O_1 e O_2 , respectivamente, se cortam em dois pontos A e B. Sejam X e Y pontos sobre ω_1 . As retas XA e YA cortam ω_2 novamente em Z e W, respectivamente, de modo que A está entre X e Z e A está entre Y e W.

Sejam M o ponto médio de O_1O_2 , S o ponto médio de XA e T o ponto médio de WA. Prove que MS = MT se, e somente se, os pontos X, Y, Z e W estão sobre uma circunferência.

▶PROBLEMA 3

Sejam a, b, c, reais tais que a + b + c + d = 6 e $a^2 + b^2 + c^2 + d^2 = 12$. Prove que

$$36 \le 4(a^3 + b^3 + c^3 + d^3) - (a^4 + b^4 + c^4 + d^4) \le 48.$$

▶PROBLEMA 4

Sejam a, b inteiros e $P(x) = ax^3 + bx$. Para cada inteiro positivo n dizemos que o par ordenado (a, b) é n-tástico se n divide P(m) - P(k) implica n divide m - k para todos inteiros m, k. Dizemos que (a, b) é totaltástico se (a, b) é n-tástico para infinitos inteiros positivos n.

- (a) Encontre um par (a, b) que é 51-tástico mas não totaltástico.
- (b) Prove que todos os pares 2010-tásticos são totaltásticos.