EE263 Autumn 2012–13 Stephen Boyd

Lecture 15 Symmetric matrices, quadratic forms, matrix norm, and SVD

- eigenvectors of symmetric matrices
- quadratic forms
- inequalities for quadratic forms
- positive semidefinite matrices
- norm of a matrix
- singular value decomposition

Eigenvalues of symmetric matrices

suppose $A \in \mathbf{R}^{n \times n}$ is symmetric, *i.e.*, $A = A^T$

fact: the eigenvalues of A are real

to see this, suppose $Av = \lambda v$, $v \neq 0$, $v \in \mathbf{C}^n$

then

$$\overline{v}^T A v = \overline{v}^T (A v) = \lambda \overline{v}^T v = \lambda \sum_{i=1}^n |v_i|^2$$

but also

$$\overline{v}^T A v = \overline{(Av)}^T v = \overline{(\lambda v)}^T v = \overline{\lambda} \sum_{i=1}^n |v_i|^2$$

so we have $\lambda = \overline{\lambda}$, *i.e.*, $\lambda \in \mathbf{R}$ (hence, can assume $v \in \mathbf{R}^n$)

Eigenvectors of symmetric matrices

fact: there is a set of orthonormal eigenvectors of A, i.e., q_1, \ldots, q_n s.t. $Aq_i = \lambda_i q_i$, $q_i^T q_j = \delta_{ij}$

in matrix form: there is an orthogonal Q s.t.

$$Q^{-1}AQ = Q^TAQ = \Lambda$$

hence we can express A as

$$A = Q\Lambda Q^T = \sum_{i=1}^n \lambda_i q_i q_i^T$$

in particular, q_i are both left and right eigenvectors

Interpretations

$$A = Q\Lambda Q^T$$

linear mapping y = Ax can be decomposed as

- resolve into q_i coordinates
- ullet scale coordinates by λ_i
- ullet reconstitute with basis q_i

or, geometrically,

- ullet rotate by Q^T
- ullet diagonal real scale ('dilation') by Λ
- ullet rotate back by Q

decomposition

$$A = \sum_{i=1}^{n} \lambda_i q_i q_i^T$$

expresses A as linear combination of 1-dimensional projections

example:

$$A = \begin{bmatrix} -1/2 & 3/2 \\ 3/2 & -1/2 \end{bmatrix}$$

$$= \left(\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}\right) \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix} \left(\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}\right)^{T}$$

proof (case of λ_i distinct)

since λ_i distinct, can find v_1, \ldots, v_n , a set of linearly independent eigenvectors of A:

$$Av_i = \lambda_i v_i, \qquad ||v_i|| = 1$$

then we have

$$v_i^T(Av_j) = \lambda_j v_i^T v_j = (Av_i)^T v_j = \lambda_i v_i^T v_j$$

so
$$(\lambda_i - \lambda_j)v_i^T v_j = 0$$

for $i \neq j$, $\lambda_i \neq \lambda_j$, hence $v_i^T v_j = 0$

- in this case we can say: eigenvectors are orthogonal
- in general case (λ_i not distinct) we must say: eigenvectors can be chosen to be orthogonal

Example: RC circuit

$$c_k \dot{v}_k = -i_k, \qquad i = Gv$$

 $G = G^T \in \mathbf{R}^{n \times n}$ is conductance matrix of resistive circuit

thus $\dot{v} = -C^{-1}Gv$ where $C = \mathbf{diag}(c_1, \dots, c_n)$

note $-C^{-1}G$ is not symmetric

use state $x_i = \sqrt{c_i}v_i$, so

$$\dot{x} = C^{1/2}\dot{v} = -C^{-1/2}GC^{-1/2}x$$

where $C^{1/2} = \mathbf{diag}(\sqrt{c_1}, \dots, \sqrt{c_n})$

we conclude:

- ullet eigenvalues $\lambda_1,\ldots,\lambda_n$ of $-C^{-1/2}GC^{-1/2}$ (hence, $-C^{-1}G$) are real
- eigenvectors q_i (in x_i coordinates) can be chosen orthogonal
- ullet eigenvectors in voltage coordinates, $s_i=C^{-1/2}q_i$, satisfy

$$-C^{-1}Gs_i = \lambda_i s_i, \qquad s_i^T Cs_i = \delta_{ij}$$

Quadratic forms

a function $f: \mathbf{R}^n \to \mathbf{R}$ of the form

$$f(x) = x^T A x = \sum_{i,j=1}^n A_{ij} x_i x_j$$

is called a quadratic form

in a quadratic form we may as well assume ${\cal A}={\cal A}^T$ since

$$x^T A x = x^T ((A + A^T)/2) x$$

 $((A + A^T)/2$ is called the *symmetric part* of A)

uniqueness: if $x^TAx = x^TBx$ for all $x \in \mathbf{R}^n$ and $A = A^T$, $B = B^T$, then A = B

Examples

$$\bullet ||Bx||^2 = x^T B^T B x$$

•
$$\sum_{i=1}^{n-1} (x_{i+1} - x_i)^2$$

•
$$||Fx||^2 - ||Gx||^2$$

sets defined by quadratic forms:

- ullet { $x \mid f(x) = a$ } is called a *quadratic surface*
- $\{ x \mid f(x) \leq a \}$ is called a *quadratic region*

Inequalities for quadratic forms

suppose $A=A^T$, $A=Q\Lambda Q^T$ with eigenvalues sorted so $\lambda_1\geq \cdots \geq \lambda_n$

$$x^{T}Ax = x^{T}Q\Lambda Q^{T}x$$

$$= (Q^{T}x)^{T}\Lambda (Q^{T}x)$$

$$= \sum_{i=1}^{n} \lambda_{i} (q_{i}^{T}x)^{2}$$

$$\leq \lambda_{1} \sum_{i=1}^{n} (q_{i}^{T}x)^{2}$$

$$= \lambda_{1} ||x||^{2}$$

i.e., we have $x^T A x \leq \lambda_1 x^T x$

similar argument shows $x^T A x \ge \lambda_n ||x||^2$, so we have

$$\lambda_n x^T x \le x^T A x \le \lambda_1 x^T x$$

sometimes λ_1 is called λ_{\max} , λ_n is called λ_{\min}

note also that

$$q_1^T A q_1 = \lambda_1 ||q_1||^2, \qquad q_n^T A q_n = \lambda_n ||q_n||^2,$$

so the inequalities are tight

Positive semidefinite and positive definite matrices

suppose
$$A = A^T \in \mathbf{R}^{n \times n}$$

we say A is *positive semidefinite* if $x^TAx \ge 0$ for all x

- denoted $A \ge 0$ (and sometimes $A \succeq 0$)
- $A \ge 0$ if and only if $\lambda_{\min}(A) \ge 0$, *i.e.*, all eigenvalues are nonnegative
- **not** the same as $A_{ij} \geq 0$ for all i, j

we say A is *positive definite* if $x^TAx > 0$ for all $x \neq 0$

- denoted A > 0
- A>0 if and only if $\lambda_{\min}(A)>0$, *i.e.*, all eigenvalues are positive

Matrix inequalities

- \bullet we say A is negative semidefinite if $-A \geq 0$
- we say A is negative definite if -A > 0
- ullet otherwise, we say A is *indefinite*

matrix inequality: if $B=B^T\in \mathbf{R}^n$ we say $A\geq B$ if $A-B\geq 0$, A< B if B-A>0, etc.

for example:

- $A \ge 0$ means A is positive semidefinite
- $\bullet \ \ A>B \ \text{means} \ x^TAx>x^TBx \ \text{for all} \ x\neq 0$

many properties that you'd guess hold actually do, e.g.,

- if $A \geq B$ and $C \geq D$, then $A + C \geq B + D$
- if $B \leq 0$ then $A + B \leq A$
- if $A \geq 0$ and $\alpha \geq 0$, then $\alpha A \geq 0$
- $A^2 \ge 0$
- if A > 0, then $A^{-1} > 0$

matrix inequality is only a partial order: we can have

$$A \not\geq B$$
, $B \not\geq A$

(such matrices are called *incomparable*)

Ellipsoids

if $A = A^T > 0$, the set

$$\mathcal{E} = \{ \ x \mid x^T A x \le 1 \ \}$$

is an *ellipsoid* in \mathbf{R}^n , centered at 0

semi-axes are given by $s_i = \lambda_i^{-1/2} q_i$, *i.e.*:

- eigenvectors determine directions of semiaxes
- eigenvalues determine lengths of semiaxes

note:

- in direction q_1 , x^TAx is large, hence ellipsoid is thin in direction q_1
- in direction q_n , x^TAx is *small*, hence ellipsoid is *fat* in direction q_n
- $\sqrt{\lambda_{\rm max}/\lambda_{\rm min}}$ gives maximum eccentricity

if $\tilde{\mathcal{E}} = \{ x \mid x^T B x \leq 1 \}$, where B > 0, then $\mathcal{E} \subseteq \tilde{\mathcal{E}} \iff A \geq B$

Gain of a matrix in a direction

suppose $A \in \mathbf{R}^{m \times n}$ (not necessarily square or symmetric)

for $x \in \mathbb{R}^n$, ||Ax||/||x|| gives the amplification factor or gain of A in the direction x

obviously, gain varies with direction of input x

questions:

- what is maximum gain of A
 (and corresponding maximum gain direction)?
- what is minimum gain of A (and corresponding minimum gain direction)?
- how does gain of A vary with direction?

Matrix norm

the maximum gain

$$\max_{x \neq 0} \frac{\|Ax\|}{\|x\|}$$

is called the *matrix norm* or *spectral norm* of A and is denoted ||A||

$$\max_{x \neq 0} \frac{\|Ax\|^2}{\|x\|^2} = \max_{x \neq 0} \frac{x^T A^T A x}{\|x\|^2} = \lambda_{\max}(A^T A)$$

so we have $\|A\| = \sqrt{\lambda_{\max}(A^TA)}$

similarly the minimum gain is given by

$$\min_{x \neq 0} ||Ax|| / ||x|| = \sqrt{\lambda_{\min}(A^T A)}$$

note that

- $A^TA \in \mathbf{R}^{n \times n}$ is symmetric and $A^TA \ge 0$ so $\lambda_{\min}, \ \lambda_{\max} \ge 0$
- ullet 'max gain' input direction is $x=q_1$, eigenvector of A^TA associated with λ_{\max}
- \bullet 'min gain' input direction is $x=q_n$, eigenvector of A^TA associated with λ_{\min}

example:
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} 35 & 44 \\ 44 & 56 \end{bmatrix}$$

$$= \begin{bmatrix} 0.620 & -0.785 \\ 0.785 & 0.620 \end{bmatrix} \begin{bmatrix} 90.7 & 0 \\ 0 & 0.265 \end{bmatrix} \begin{bmatrix} 0.620 & -0.785 \\ 0.785 & 0.620 \end{bmatrix}^{T}$$

then
$$||A|| = \sqrt{\lambda_{\max}(A^T A)} = 9.53$$
:

$$\left\| \begin{bmatrix} 0.620 \\ 0.785 \end{bmatrix} \right\| = 1, \qquad \left\| A \begin{bmatrix} 0.620 \\ 0.785 \end{bmatrix} \right\| = \left\| \begin{bmatrix} 2.19 \\ 5.00 \\ 7.81 \end{bmatrix} \right\| = 9.53$$

min gain is $\sqrt{\lambda_{\min}(A^TA)}=0.514$:

$$\left\| \begin{bmatrix} -0.785 \\ 0.620 \end{bmatrix} \right\| = 1, \qquad \left\| A \begin{bmatrix} -0.785 \\ 0.620 \end{bmatrix} \right\| = \left\| \begin{bmatrix} 0.45 \\ 0.12 \\ -0.21 \end{bmatrix} \right\| = 0.514$$

for all $x \neq 0$, we have

$$0.514 \le \frac{\|Ax\|}{\|x\|} \le 9.53$$

Properties of matrix norm

- consistent with vector norm: matrix norm of $a \in \mathbf{R}^{n \times 1}$ is $\sqrt{\lambda_{\max}(a^T a)} = \sqrt{a^T a}$
- for any x, $||Ax|| \le ||A|| ||x||$
- scaling: ||aA|| = |a|||A||
- triangle inequality: $||A + B|| \le ||A|| + ||B||$
- definiteness: $||A|| = 0 \Leftrightarrow A = 0$
- norm of product: $||AB|| \le ||A|| ||B||$

Singular value decomposition

more complete picture of gain properties of A given by singular value decomposition (SVD) of A:

$$A = U\Sigma V^T$$

where

- $A \in \mathbf{R}^{m \times n}$, $\mathbf{Rank}(A) = r$
- $U \in \mathbf{R}^{m \times r}$, $U^T U = I$
- $V \in \mathbf{R}^{n \times r}$, $V^T V = I$
- $\Sigma = \mathbf{diag}(\sigma_1, \dots, \sigma_r)$, where $\sigma_1 \ge \dots \ge \sigma_r > 0$

with $U = [u_1 \cdots u_r]$, $V = [v_1 \cdots v_r]$,

$$A = U\Sigma V^T = \sum_{i=1}^r \sigma_i u_i v_i^T$$

- σ_i are the (nonzero) singular values of A
- \bullet v_i are the right or input singular vectors of A
- u_i are the *left* or *output singular vectors* of A

$$A^T A = (U \Sigma V^T)^T (U \Sigma V^T) = V \Sigma^2 V^T$$

hence:

• v_i are eigenvectors of A^TA (corresponding to nonzero eigenvalues)

•
$$\sigma_i = \sqrt{\lambda_i(A^TA)}$$
 (and $\lambda_i(A^TA) = 0$ for $i > r$)

$$\bullet ||A|| = \sigma_1$$

similarly,

$$AA^T = (U\Sigma V^T)(U\Sigma V^T)^T = U\Sigma^2 U^T$$

hence:

• u_i are eigenvectors of AA^T (corresponding to nonzero eigenvalues)

•
$$\sigma_i = \sqrt{\lambda_i(AA^T)}$$
 (and $\lambda_i(AA^T) = 0$ for $i > r$)

- $u_1, \ldots u_r$ are orthonormal basis for range(A)
- $ullet v_1, \dots v_r$ are orthonormal basis for $\mathcal{N}(A)^{\perp}$

Interpretations

$$A = U\Sigma V^T = \sum_{i=1}^r \sigma_i u_i v_i^T$$

linear mapping y = Ax can be decomposed as

- ullet compute coefficients of x along input directions v_1,\ldots,v_r
- scale coefficients by σ_i
- reconstitute along output directions u_1, \ldots, u_r

difference with eigenvalue decomposition for symmetric A: input and output directions are different

- ullet v_1 is most sensitive (highest gain) input direction
- ullet u_1 is highest gain output direction
- $\bullet \ Av_1 = \sigma_1 u_1$

SVD gives clearer picture of gain as function of input/output directions

example: consider $A \in \mathbb{R}^{4 \times 4}$ with $\Sigma = \operatorname{diag}(10, 7, 0.1, 0.05)$

- input components along directions v_1 and v_2 are amplified (by about 10) and come out mostly along plane spanned by u_1 , u_2
- input components along directions v_3 and v_4 are attenuated (by about 10)
- ||Ax||/||x|| can range between 10 and 0.05
- \bullet A is nonsingular
- ullet for some applications you might say A is effectively rank 2

example: $A \in \mathbb{R}^{2 \times 2}$, with $\sigma_1 = 1$, $\sigma_2 = 0.5$

- resolve x along v_1 , v_2 : $v_1^T x = 0.5$, $v_2^T x = 0.6$, i.e., $x = 0.5v_1 + 0.6v_2$
- now form $Ax = (v_1^T x)\sigma_1 u_1 + (v_2^T x)\sigma_2 u_2 = (0.5)(1)u_1 + (0.6)(0.5)u_2$

