Outline

- Data preprocessing
- Decomposing a dataset: instances and features
- Basic data descriptors
- Feature spaces and proximity (similarity, distance) measures
- Feature transformation for text data

Univariate descriptors 1/5

Let $x_1,...,x_n$ be a random sample of an attribute X.

Measures of **central tendency** of X include (most common numerical descriptive measure):

(Arithmetic) mean/ center/ average:

$$\bar{x} = \frac{1}{n} \sum_{1}^{n} x_{i}$$

Weighted average:

$$\bar{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$$

- Median: the central element in ascending ordering
 - Middle value if odd number of values, or average of the middle two values otherwise
- Mode: Value that occurs most frequently in the data
 - Unimodal, bimodal, trimodal

Univariate descriptors 2/5

Mean is susceptible to the influence of outliers.

Median is less influenced by outliers.

Mode can also be used for the description of non-numeric (e.g. categorical) variables.

Generally **better**: describing variables by more than one univariate descriptor, e.g. mean + median indicates type of skew.

Univariate descriptors 3/5

Let $x_1,...,x_n$ be a random sample of an attribute X. The **degree** to which X values **tend to spread** is called

dispersion or **variance** of X:

- Range: max value min value
 - Q₁ (25th percentile), Q₃ (75th percentile)
 - Median is the 50th percentile
- 5 number summary: min, Q_1 , median, Q_3 , max
 - Boxplots to visualize them
- Variance σ^2 :

$$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{n} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i} \right)^{2} \right]$$

Standard deviation σ : $\sigma = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - \bar{x})^2}$

Box plot of data from the Michelson–Morley experiment [source: https://en.wikipedia.org/wiki/Box plot]

Univariate descriptors 4/5

Example: The normal distribution curve

- $^{\sim}68\%$ of values drawn from a normal distribution are from μ - σ to μ + σ
- $^{\circ}95\%$ of the values lie from μ -2 σ to μ +2 σ
- \sim 99.7% of the values are from μ -3 σ to μ +3 σ

Source: http://en.wikipedia.org/wiki/Normal_distribution

Univariate descriptors 5/5

Let $x_1,...,x_n$ be a random sample of an attribute X. For visual inspection of X, several types of charts are useful, e.g.:

- Boxplots
 - 5 number summary
- Histograms:
 - Summarizes the distribution of X
 - X axis: attribute values, Y axis: frequencies
 - Absolute frequency: for each value a, h(a) = # occurrences of a in the sample
 - □ Relative frequency: f(a) = h(a)/n
- Different types of histograms, e.g.:
 - Equal width:
 - It divides the range into *N* intervals of equal size
 - Equal frequency/ depth:
 - It divides the range into N intervals, each containing approximately same number of samples
 - Inuition: High frequencies more important than low frequencies
 → higher resolution for high frequent values

Source: https://db.inf.uni-tuebingen.de/staticfiles/teaching/ws1011/db2/db2-selectivity.pdf

Bivariate descriptors 1/5

- Given two attributes X, Y one can measure how strongly they are correlated
 - □ For numerical data → correlation coefficient
 - □ For categorical data $\rightarrow \chi^2$ (chi-square)

Bivariate descriptors 2/5: for numerical features

Correlation coefficient (also called Pearson's product moment coefficient) :

$$r_{XY} = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) \cdot (y_i - \overline{y})}{n\sigma_X \sigma_Y} = \frac{\sum_{i=1}^{n} (x_i y_i) - n\overline{x}\overline{y}}{n\sigma_X \sigma_Y}$$

- □ n: # tuples; x_i, y_i: the values in the ith tuple for X, Y
- value range: $-1 \le r_{XY} \le 1$
- the higher |r_{XY}| the stronger the (anti-)correlation
 - $\Box r_{XY} > 0$ positive correlation
 - □ r_{XY} < 0 negative correlation
 - $\Box r_{XY} \sim 0$ no correlation/independent

Bivariate descriptors 3/5: for numerical features

Visual inspection of correlation

Figure 5.11. Scatter plots illustrating correlations from -1 to 1.

Contingency table

For categorical/ nominal features $X = \{x_1, ..., x_c\}$, $Y = \{y_1, ..., y_r\}$

Bivariate descriptors 4/5: for categorical features

Represents the absolute frequency h_{ij} of each combination of values (x_i, y_j) and the marginal frequencies h_i , h_i of X, Y.

Attribute Y

×
ā
Ž
듄
Ħ
~

	Medium-term unemployment	Long-term unemployment	Total
No education	19	18	37
Teaching	43	20	63
Total	62	38	100

• Chi-square χ^2 test

$$\chi^{2} = \sum_{i=1}^{c} \sum_{j=1}^{r} \frac{(o_{ij} - e_{ij})^{2}}{e_{ij}}$$

 o_{ij} :observed frequency e_{ij} : expected frequency

$$e_{ij} = \frac{h_i h_j}{n}$$

Bivariate descriptors 4/5: for categorical features

o_{ii} observed frequencies Chi-square example

e_{ii} expected frequencies

	•			
		Play chess	Not play chess	Sum (row)
ŀ	Like science fiction	250 (90)	200 (360)	450
	Not like science fiction	50 (210)	1000 (840)	1050
	Sum(col.)	300	1200	1500

X² (chi-square) calculation (numbers in parenthesis are expected counts calculated based on the data distribution in the two categories)

$$\chi^2 = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93$$

It shows that like_science_fiction and play_chess are correlated in the group

Outline

- Data preprocessing
- Decomposing a dataset: instances and features
- Basic data descriptors
- Feature spaces and proximity (similarity, distance) measures
- Feature transformation for text data