14115 2 Hours / 50 Marks

Seat No.

- **Instructions**: (1) All Questions are *compulsory*.
 - (2) Illustrate your answers with neat sketches wherever necessary.
 - (3) Figures to the right indicate full marks.
 - (4) Assume suitable data, if necessary.
 - (5) Use of Non-Programmable Electronic Pocket Calculator is permissible.
 - (6) Use of steam tables, logarithmic, Mollier's chart is permitted.

Marks

1. **Attempt any NINE of the following:**

18

- State the classification of steam turbine based on direction of steam flow. (a)
- (b) Write any two provisions under Boiler Act for remedial measure.
- List the tests conducted for performance of I.C. engine. (c)
- (d) Define compressor capacity and swept volume.
- State the classification of pumps. (e)
- (f) State the meaning of impulse and reaction turbine.
- (g) Enlist the different power losses in steam turbine.
- Draw labelled sketch of single stage reciprocating compressor. (h)
- (i) Write the formula to calculate the power required to drive the centrifugal pump with meaning of each term.
- (i) State the applications of compressed air in industry.
- (k) List the different types of impellers of centrifugal pump.

2. Attempt any FOUR of the following:

16

- Explain the construction of Benson boiler with neat sketch. (a)
- (b) Differentiate between two stroke engine and four stroke engine.
- With neat sketch explain the working of vane type rotary compressor. (c) Write two applications of it.

17413 [2]

- (d) What is priming? Why it is necessary for centrifugal pump?
- (e) Steam at 6 bar pressure has enthalpy 2600 kJ/kg. Determine if the steam is wet or superheated and calculate the dryness fraction or the superheated temperature (Use steam properties given at the end of question paper)
- (f) Explain with neat sketch the working of starting motor of I.C. engine.

3. Attempt any FOUR of the following:

16

- (a) Differentiate between fire tube boiler and water tube boiler.
- (b) During the test on single cylinder oil engine working on the four stroke cycle and be fitted with a rope brake, the following readings are taken: Effective diameter of brake wheel = 625 mm.

Dead load on brake = 200 N.

Spring balance reading = 30 N.

Speed = 450 rpm

Area of indicator diagram = 420 mm^2

Length of indicator diagram = 60 mm

Spring scale = 1.1 bar per mm

Diameter of cylinder = 100 mm

Stroke = 150 mm

Quantity of oil used = 0.815 kg/hr

Calorific value of oil = 42000 kJ/kg

Calculate brake power and indicated power.

- (c) State the methods of energy saving in air compressor and explain any one.
- (d) Explain the construction and working of centrifugal pump with neat sketch.
- (e) Compare reciprocating compressor with centrifugal compressor.
- (f) State and draw different types of casings used in centrifugal pump.

Extract from Steam Table

(Saturated Water and Steam)

P	t_s	V_{f}	V_{g}	h_{f}	h_{fg}	h_{g}	$S_{ m f}$	S_{g}
(bar)	°C	m ³ /kg	m ³ /kg	kJ/kg	kJ/kg	kJ/kg	kJ/kg°K	kJ/kg°K
6	158.85	0.001101	0.3157	670.56	2086.3	2756.8	1.9312	6.76
8	170.43	0.001115	0.2404	721.11	2048.0	2769.1	2.046	6.66