Proof. Once it is shown that both functions $u \rightarrow s(1/u)$ and $u \rightarrow \omega(1/u)$ are convex on $[\frac{1}{q}, \frac{1}{p}]$, the assertion follows from Thm.1.1 and the relation $s(r) \le w(r)$ for every r . Since w(u) = w(u)log r(T, (1)) (see A-III, (1.4)) , (1.2) implies that $u \rightarrow \omega(1/u)$ is a convex function. By C-III, Thm.1.1 we have $r(R(k,A_{ij})) = (k-s(u))^{-1}$ for $k \in \mathbb{N}$ sufficiently large. The assumption (1.3) implies that $R(\lambda,A_r)_{L^r \cap L^s} = R(\lambda,A_s)_{L^r \cap L^s}$ for r , $s \in [p,q]$ and $\lambda \in \mathbb{C}$ with Re λ large enough. Hence by (1.2) $u + \log [r(R(k,A_{1/n}))]$ is a convex function for large $k \in \mathbb{N}$. We have

 $\log \left[\left(1 - \frac{1}{k} s(1/u) \right)^{-k} \right] = k \cdot \log k + k \cdot \log \left[k - s(1/u) \right]^{-1} =$

 $= k \cdot \log k + k \cdot \log \left[r (R(k, A_{1/u}))^{-1} \right],$ hence all the functions $u + \log[(1 - \frac{1}{k} s (1/u))^{-k}]$, $k \in \mathbb{N}$, are convex. It follows that $u \rightarrow s(1/u) = \lim_{k \to \infty} (\log \left[\left(1 - \frac{1}{k} s(1/u) \right)^{-k} \right])$ is convex as well.

One can apply the corollary to Schrödinger operators on the spaces $L^p(\mathbb{R}^n)$, i.e., operators A = A + V where A is the Laplacian and V is a multiplication operator, see Simon (1982) for details. In Thm. B.5.1 (l.c.) it is shown that for certain potentials V the type is independent of $p \in [1,\infty)$. Thus the assumptions of (a) are satisfied. Part (b) can be applied if q > 2 and if A_1 has compact resolvent. Then all operators A_r , $1 \le r < q$ have compact resolvent and therefore their spectra coincide. In particular, $s(A_r)$ is independent of $r \in [1,q)$.

As shown in A-IV, Ex.1.2(2), the equality $s(A) = \omega(A)$ may not hold for positive semigroups on arbitrary Banach lattices. However, the knowledge of s(A) is still sufficient to determine the growth bound $\omega_{+}(A)$ of the strong solutions of the abstract Cauchy problem. In fact, combining Theorems 1.1 and 1.2 of C-III with Theorem 1.4 of A-IV we obtain the following fundamental result for the stability of positive semigroups.

Theorem 1.3. Let A be the generator of a positive semigroup $(T(t))_{t>0}$ on a Banach lattice. Then $s(A) = \omega_1(A) \in \sigma(A)$.

Recalling the definition of ω_1 (A) (see A-IV,Def.1.1) and the fact that s(A) is always an element of $\sigma(A)$, we can reformulate the statement of Thm.1.3 as follows .