CS372 FORMAL LANGUAGES & THE THEORY OF COMPUTATION

Dr.Nguyen Thi Thu Huong

Phone: +84 24 38696121, Mobi: +84 903253796

Email: huongnt@soict.hust.edu.vn,

huong.nguyenthithu@hust.edu.vn

Unit 7

Turing Machines

The Language Hierarchy

Languages accepted by

Turing Machines

 $a^nb^nc^n$

WW

Context-Free Languages

 a^nb^n

 WW^{R}

Regular Languages

a *

a*b*

Turing machines

- Informal description of a Turing Machine
- Formal definition of a Turing machine
- Configuration
- Decidable languages

Informal Description

- Components
- The tape
- State
- Transition

Components of a Turing Machine

Control Unit

The Tape

No boundaries -- infinite length

Read-Write head

The head moves Left or Right

The head at each transition (time step):

- 1. Reads a symbol
- 2. Writes a symbol
- 3. Moves Left or Right

Time 0

Time 1

- 1. Reads α
- 2. Writes k
- 3. Moves Left

Time 1

Time 2

- 1. Reads b
- 2. Writes f
- 3. Moves Right

The Input String

Head starts at the leftmost position of the input string

States & Transitions

$$\begin{array}{c|c}
q_1 & a \to b, R \\
\hline
 & q_2
\end{array}$$

Time 1

Time 2

$$q_1$$
 $a \rightarrow b, R$ q_2

Time 1

Time 2

• • • • •

$$\begin{array}{ccc}
 & a \to b, L \\
\hline
 & q_1
\end{array}$$

Time 1

Time 2

$$\begin{array}{c|c}
 & \Diamond \to g, R \\
\hline
 & q_1
\end{array}$$

Determinism

Allowed

Not Allowed

No epsilon transitions allowed

Example: Partial Transition Function

.

Allowed:

No transition for input symbol *c*

Halting

The machine *halts* in a state if there is no transition to follow

Halting Example 1:

No transition from q_1

HALT!!!

Halting Example 2:

No possible transition from q_1 and symbol c

HALT!!!

Accepting States

- Accepting states have no outgoing transitions
- •The machine halts and accepts

Acceptance

Accept Input

string

If machine halts in an accept state

Reject Input

string

If machine halts in a non-accept state

or

If machine enters an *infinite loop*

Turing Machine Example

Input alphabet

$$\Sigma = \{a,b\}$$

Accepts the language:

$$\begin{array}{c}
a \to a, R \\
\hline
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 &$$

Time 0

Time 1

Time 2

Time 3

Time 4

Rejection Example

No possible Transition

A simpler machine for same language

but for input alphabet

$$\Sigma = \{a\}$$

Accepts the language:

Halt & Accept

Not necessary to scan input

Infinite Loop Example A Turing machine

for language

$$a*+b(a+b)*$$

$$b \to b, L$$

$$a \to a, R$$

$$Q_0 \longrightarrow \Diamond, L$$

$$Q_1$$

Time 0

Time 1

Time 2

Formal Definition of a Turing machine

A Turing Machine is represented by a 7-tuple $T = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$:

Q is a finite set of states

 Σ is the input alphabet, where $\square \notin \Sigma$

 Γ is the tape alphabet, a superset of Σ ; $\square \in \Gamma$

 $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$ is the transition function

 $q_0 \in Q$ is the start state

q_{accept} ∈ Q is the accept state

 $q_{reject} \in Q$ is the reject state, and $q_{reject} \neq q_{accept}$

Configuration of a Turing machine

State diagrams of TMs

Like with PDA, we can represent Turing machines by (elaborate) diagrams.

If transition rule says: $\delta(q_i,b) = (q_j,c,R)$, then:

Languages of Turing machines

A TM recognizes a language iff it accepts all and only those strings in the language.

A language L is called *Turing-recognizable* or *recursively enumerable* iff some TM recognizes L.

A TM decides a language L iff it accepts all strings in L and rejects all strings not in L.

A language L is called *decidable* or *recursive* iff some TM decides L.

A TM that decides $\{0^{2^n} | n \ge 0\}$

We want to accept iff:

- the input string consists entirely of zeros, and
- the number of zeros is a power of 2.

High-Level Idea.

- Repeatedly divide the number of zeros in half until it becomes an odd number.
- If we are left with a single zero, then accept.
- Otherwise, reject.

Example: a TM that decides { 0 2 n | n ≥ 0 }

Description:

- Sweep from left to right, cross out every other 0.
 (Divides number in half.)
- 2. If in step 1, the tape had only one **0**, accept.
- 3. Else if the tape had an odd number of **0**'s, *reject*.
- 4. Move the head back to the first input symbol.
- 5. Go to step 1.

Formal Description

T = (Q,
$$\Sigma$$
, Γ , δ , q_1 , q_{accept} , q_{reject}), Q ={ q_1 , q_2 , q_3 , q_4 , q_5 }, Σ = {0}, Γ = {0, X, \square }, q_1 is the start state

1)
$$\delta(q_1, 0) = (q_2, \square, R)$$

2)
$$\delta(q_1, \square) = (q_{reject}, \square, R)$$

3)
$$\delta(q_1, X) = (q_{reject}, X, R)$$

4)
$$\delta(q_2, 0) = (q_3, X, R)$$

5)
$$\delta(q_2, X) = (q_2, X, R)$$

6)
$$\delta(q_2, \square) = (q_{accept}, \square, R)$$

7)
$$\delta(q_3, 0) = (q_4, 0, R)$$

8)
$$\delta(q_3, X) = (q_3, X, R)$$

9)
$$\delta(q_3, \square) = (q_5, \square, L)$$

10)
$$\delta(q_4, 0) = (q_3, X, R)$$

11)
$$\delta(q_4, X) = (q_4, X, R)$$

12)
$$\delta(q_4, \square) = (q_{reject}, \square, R)$$

13)
$$\delta(q_5, 0) = (q_2, 0, L)$$

14)
$$\delta(q_5, X) = (q_5, X, L)$$

15)
$$\delta(q_5, \square) = (q_2, \square, R)$$

Mark the beginning of string

Reject □

Reject X

Mark 0 with X

Move right through X's

Accept strings with length is a power of 2

Skip one symbol 0

Move right through X's

Read blank symbol on the right. Move to state q5

Mark 0 with X (Skip one 0, mark one 0)

Move right through X's

Reject strings with length is not a power of 2

Move the head back to the beginning of string

