LẬP TRÌNH ARM - STM32

TỔNG QUAN STM32F103C8T6

Date: July 25, 2025

GIỚI THIỆU

GIỚI THIỆU

STM32

Family (Dòng sản phẩm)

Dòng vi điều khiển 32-bit của hãng STMicroelectronic

ARM Cortex-M -> STM32

Series (Dòng vi xử lý)

0: Cortex-M0

1,2: Cortex-M3

3,4: Cortext-M4

7: Cortex-M7

Type (Loại vi điều khiển)

L: Low power

F: Mainstream

H: High performance

W: Wirless

Sub - series (Dòng con)

Xác định cấu hình chi tiết hơn trong cùng một series.

Các dòng con có số cao hơn thường có nhiều tính năng hơn.

Ex: F101 < F102 < F103 < F105...

03

Pin count (số lượng chân)

C: 48 pins

R: 64 pins

V: 100 pins

Z: 144 pin

Flash size

6: 32KB E: 512KB

8: 64KB

G: 1MB

B: 128KB

C: 256KB

Package

T: LQFP

U: UFQFPN

Y: WLCSP

GIỚI THIỆU

Lõi: ARM 32 bit Cortex M3

• Tần số hoạt động lên tới 72 MHz

• Bộ nhớ: 64 Kb Flash, 20Kb SRAM

• Điện áp: 2~3.6 VDC

• Tổng số I/O: 37

• ADC: 2x12 bit, tần số lấy mẫu 1MHz

• DAC: Không

• DMA: Điều khiển 7 kênh DMA

• Timer: 4 bộ, 16 bit (IC, OC, PWM)

Giao diện kết nối: 2xl2C, 3xUSART, 2xSPI, CAN,

1xUSB 2.0 full-speed, 1xCAN

• Kiểu chân: LQFP48

LẬP TRÌNH ARM - STM32

GPIO

Date: July 25, 2025

STM32F1 - PINOUT

Power Supply Pins

STM32F1 - PINOUT

STM32F1 - PINOUT

Power Supply Pins

- GPIOA (PAn)
- GPIOB (PBn)
- GPIOC (PCn)
- GPIOD

• • • • • • • • •

STM32F1 - PINOUT

Figure 13. Basic structure of a standard I/O port bit

STM32F1 - GPIO Mode

1

Mode Input

- Input floating: ngõ vào thả nổi
- Input pull-up: ngõ vào có trở kéo lên VCC
- Input pull-down: ngõ vào
 có trở xuống GND
- Analog: sử dụng ADC, DAC

2

Mode Output

- Out open-drain: ngõ ra cực máng thả nổi
- Output push-pull: ngõ ra đẩy kéo

Mode AFIO

- Alternate function pushpull: vừa là ngõ vào vừa là ngõ ra, không có trở kéo lên và kéo xuống ở input, output giống Out push-pull, remap.
- Alternate function opendrain: giống Alternate function push-pull nhưng cực máng để hở

GPIO_InitTypedef X;
(Khai báo biến X thuộc kiểu GPIO_InitTypedef)

 $X.GPIO_Pin = A;$ (Lệnh chọn chân cấu hình) A: Chọn chân 0 A: Chọn chân 1 GPIO Pin 0 GPIO Pin 1 Chọn chân 15 Chọn tất cả các chân 0-15 GPIO Pin 15 Chú ý: Nếu muốn chọn nhiều chân thì ta sử dụng GPIO Pin All lệnh OR "|" giữa các lựa chọn Ví dụ: X.GPIO Pin = GPIO Pin 0|GPIO Pin 3;

X.GPIO_Mode = B;

(Lệnh cấu hình chế độ hoạt động)

B:

GPIO_Mode_AIN
GPIO_Mode_IN_FLOATING
GPIO_Mode_IPD
GPIO_Mode_IPU
GPIO_Mode_Out_OD
GPIO_Mode_Out_PP
GPIO_Mode_AF_OD
GPIO Mode AF PP

B:

Cấu hình chế độ hoạt động
Ngõ vào tương tự
Ngõ vào thả nổi
Ngõ vào kéo xuống
Ngõ vào kéo lên
Ngõ ra cực thu hở
Ngõ ra đẩy kéo
Chức năng thay thế cực thu hở
Chức năng thay thế đẩy kéo

X.GPIO_Speed = C;
(Lệnh cấu hình tốc độ)

C:

C:

GPIO_Speed_10MHz
GPIO_Speed_2MHz
GPIO_Speed_50MHz

GPIO_Speed_10MHz GPIO Speed 2MHz

GPIO Speed 50MHz

GPIO_Init(GPIOx, &X);
(Lệnh cấu hình cho GPIOx theo các thông số được lưu trong biến X)

uint16 t A;

A = GPIO_ReadInputDataBit(B, C);

(Lệnh đọc trạng thái logic chân C của port B rổi lưu vào biến A)

B:

GPIOA

GPIOB

•••

C:

GPIO_Pin_0

GPIO Pin 1

•••

GPIO_Pin_15

B: PORT cần đọc dữ liệu

ĐọC PORTA

Đọc PORTB

. . .

C:

Chọn chân 0

Chọn chân 1

•••

Chọn chân 15

GPIO_Write(A, B); (Lệnh xuất dữ liệu ra 16 chân của PORT)

GPIOA

GPIOB

•••

A:

A: PORT cần xuất dữ liệu

Xuất ra PORTA

Xuất ra PORTB

•••

B: Số nguyên 16 bit ứng với

trạng thái 16

chân của PORT cần xuất.

GPIO_SetBits(A, B);

(Lệnh xuất mức '1' ra 1 chân vi điều khiển)

A:

GPIOA

• • •

GPIOG

B:

GPIO Pin 0

•••

GPIO_Pin_15

PIO_Pin_All

A: PORT cần xuất

Xuất ra PORTA

• • •

Xuất ra PORTG

B: Chân cần xuất

Chân số 0

• •

Chân số 15

Tất cả các chân của PORT

GPIO_ResetBits(A, B);

(Lệnh xuất mức '0' ra 1 chân vi điều khiển)

A:

GPIOA

•••

GPIOG

B:

GPIO_Pin_0

•••

GPIO_Pin_15

GPIO_Pin_All

A: PORT cần xuất

Xuất ra PORTA

•••

Xuất ra PORTG

B: Chân cần xuất

Chân số 0

•

Chân số 15

Tất cả các chân của PORT

GPIO_SetBits(A, B);

(Lệnh xuất mức '1' ra 1 chân vi điều khiển)

A:

GPIOA

• • •

GPIOG

B:

GPIO Pin 0

•••

GPIO_Pin_15

PIO_Pin_All

A: PORT cần xuất

Xuất ra PORTA

• • •

Xuất ra PORTG

B: Chân cần xuất

Chân số 0

• •

Chân số 15

Tất cả các chân của PORT

GPIO_ResetBits(A, B);

(Lệnh xuất mức '0' ra 1 chân vi điều khiển)

A:

GPIOA

•••

GPIOG

B:

GPIO_Pin_0

•••

GPIO_Pin_15

GPIO_Pin_All

A: PORT cần xuất

Xuất ra PORTA

•••

Xuất ra PORTG

B: Chân cần xuất

Chân số 0

•

Chân số 15

Tất cả các chân của PORT

STM32F1 - LED

- Là viết tắt của Light Emitting Diot
- Có khả năng phát quang
- Bóng đèn led hay còn gọi là đi-ốt phát quang

Cấu tạo LED đơn với 2 cực **Anode** và **Cathode**:

- Anode: cực dương (chân dài, bản cực nhỏ)
- Cathode: cực âm (chân ngắn, bản cực lớn)

STM32F1 - LED

Cách 1	Cách 2						
Mức logic 0: LED OFF	Mức logic 0: LED ON						
Mức logic 1: LED ON	Mức logic 1: LED OFF						

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CNF	CNF7[1:0]		MODE7[1:0]		CNF6[1:0] MODE6[1:0]		E6[1:0]	CNF	CNF5[1:0] MODE5[1:0]		E5[1:0]	CNF4[1:0]		MODE4[1:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CNF	CNF3[1:0]		MODE3[1:0]		2[1:0]	MODE2[1:0]		CNF1[1:0]		MODE1[1:0]		CNF0[1:0]		MODE	E0[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

CONFIGUR	ATION MODE	CNF1	CNF0	MODE1	MODE0	PxODR Register
General purpose	Push-pull	0	0	01 - 10) MHz	0 or 1
output	Open-drain	U	1	10: 10	0 or 1	
Alternate	Push-pull	1	0	11:50	X	
Function output	Open-drain		1	11.50	X	
	Analog input	0	0			X
Innut	Input floating	0	1] ,		
Input	Input pull-down	1	0	\ \ \ \ \	0	
	Input pull-up	1	U			1

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CNF1	CNF15[1:0]		MODE15[1:0]		CNF14[1:0] MODE14[1:0]		14[1:0]	CNF1	CNF13[1:0] MODE13[1:0]		13[1:0]	CNF12[1:0]		MODE12[1:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CNF1	CNF11[1:0]		MODE11[1:0]		CNF10[1:0]		10[1:0]	CNF9[1:0]		MODE9[1:0]		CNF8[1:0]		MODE8[1:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

CONFIGUR	ATION MODE	CNF1	CNF0	MODE1	MODE0	PxODR Register
General purpose	Push-pull	0	0	01 - 10) MHz	0 or 1
output	Open-drain	U	1	10: 10	0 or 1	
Alternate	Push-pull	1	0	11:50	X	
Function output	Open-drain		1	11.50	X	
	Analog input	0	0			X
Input	Input floating	0	1			
Input	Input pull-down	1	0	\	,	0
	Input pull-up	1	U			1

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				Res	erved					TIM11 EN	TIM10 EN	TIM9 EN		Reserved	3
										rw	rw	rw			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ADC3 EN	USART 1EN	TIM8 EN	SPI1 EN	TIM1 EN	ADC2 EN	ADC1 EN	IOPG EN	IOPF EN	IOPE EN	IOPD EN	IOPC EN	IOPB EN	IOPA EN	Res.	AFIO EN
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw		rw

Bit-Wise Logical Operators

		AND	OR	EX-OR	Inverter	
A	В	A&B	A B	A^B	$Y = \sim B$	
0	0	0	0	0	1	
0	1	0	1	1	0	
1	0	0	1	1		
1	1	1	1	0		

1110 1111

& 0000 0001

0000 0001

1110 1111

0000 0001

1110 1111

 $\sim 1110\ 1011$

0001 0100

Shift Operations in C

- data >> number of bits to be shifted right
- data << number of bits to be shifted left</p>

0001 1100 0000 0100

Setting a bit in a Byte to 1

We can use | operator to set a bit of a byte to 1

 $GPIOA \rightarrow ODR = (1 << 4); //set bit 4 (5th bit) of GPIOA >> ODR$

Clearing a bit in a Byte to 0

We can use | operator to set a bit of a byte to 1

GPIOB->ODR &= \sim (1<<4); //clear bit 4 (5th bit) of GPIOB->ODR

STM32F1 - Button

Cách 1	Cách 2
Tích cực mức 1	Tích cực mức 0
Logic 0: nhấn nút	Logic 0: nhả nút
Logic 1: nhả nút	Logic 1: nhấn nút

STM32F1 - Button

Tín hiệu rung nhiễu khi nhấn nút

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IDR15	IDR14	IDR13	IDR12	IDR11	IDR10	IDR9	IDR8	IDR7	IDR6	IDR5	IDR4	IDR3	IDR2	IDR1	IDR0
г	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

uint16_t A;

 $A = P \rightarrow IDR$

(Lệnh đọc trạng thái logic 16 chân của 1 PORT rổi lưu vào biến A)

