Završní ispít iz Elektromagnetskih polja

20.6.2017.

1. Koaksijalni kabel zanemarivog otpora protjecan je strujom I=1 Λ . Unutarnji vodić kabela nalazi se na potencijalu $\phi_1=100$ V, a vanjski je na potencijalu 0. Odredite iznos Poyntingova vektora zadano je R=0.25 cm. R=0.75 cm. u izolaciji vodiča za r=0.5~cm (prema slici). Zadano je $R_1=0.25~cm$, $R_2=0.7~cm$, $R_3=0.25~cm$

2. U prostoru sa značajkama $\varepsilon_r=7$ i $\mu_r=1$ zadano je električno polje: $\vec{E} = 100e^{-\alpha t}\cos(\omega t - \beta z)\vec{a}_x$

gdje su α i β konstante. Odredite vektor magnetskog polja \vec{H} pomoću Faradayevog zakona.

2. Odredite inducirani napon u trokutnoj petlji prema slici koja se nalazi u polju beskonačno duge ravne strujinice protjecane strujom $i(t)=l_0e^{-t}\sin(\omega t)$.

4. Jakost električnog polja ravnog vala koji se prostire u sredstvu bez gubitaka zadana je s:

$$\vec{E} = 100d_x \cos(\omega t - x - 2y)$$
 $\begin{bmatrix} V \\ m \end{bmatrix}$.

Svojstva materijala su $c_r = 4$, $\mu_r = 1$. Odredite izraz za vektor jakosti magnetskog polja H te

S. Ova magnetska materijala razdvaja ravnina $x+y+z=\sqrt{3}$. Ishodište O(0,0,0) se nalazi u sredstvu s relativnom permeablinosti $\mu_{+1}=4$, gdje je magnetska indukcija zadana s 81=1a×0.5ay $\overline{\mu}_{+1}=4$. Odnedite nagnetsku indukciju \overline{B}_2 u sredstvu s relativnom magnetskom

ur2=1 ur1=4

