Assignment 1

Rushi Shah

January 20, 2018

Problem 1

Let $X = \{1, 2, a\}$. Find the power set of X, P(X).

Problem 2

For each $n \in \mathbb{N}$, let $A_n = \{(n+1)k : k \in \mathbb{N}\}$

a)

What is $A_1 \cap A_2$?

b)

Determine the sets $\cup \{A_n : n \in \mathbb{N}\}\$ and $\cap \{A_n : n \in \mathbb{N}\}.$

Problem 3

Let A and B be two sets. Prove that $A \subseteq B$ iff $A \cap B = A$

Problem 4

Let A, B, and C be arbitrary sets. Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Problem 5

Let \mathbb{N} be the set of natural numbers, and | be the relation of divisibility (i.e. we say $y \in \mathbb{N}$ divides $x \in \mathbb{N}$, denoted by y|x, if there exists an integer n such that x = ny). Prove that | is an ordering relation on \mathbb{Z}

Problem 6

Let \leq be an ordering relation on the set X. We define the inverse of \leq , denoted by \geq , as follows: $\forall x,y \in X, x \geq y$ iff $y \leq x$. Prove that \geq is an ordering relation on X.

Problem 7

Let (X, \leq) be a totally-ordered space and $Y \subseteq X$ an nonempty subset of X. Let α be a lower bound of Y and β an upper bound of Y. Prove that $\alpha \leq \beta$.