CS6170: RANDOMIZED ALGORITHMS PROBLEM SET #1

Name: Your name Marks: 25

ROLL No: Your roll number Due: August 27, 23:59

Problem 1 3 marks

Suppose that you want to generate a random permutation of the sequence of numbers 1 to *n*. You have at your disposal, a source of unbiased random bits. Give an efficient algorithm to generate a random permutation using as few random bits as possible from the source.

Solution: Type your solution here.

Problem 2 4 marks

While discussing Frievald's algorithm for verifying matrix multiplication, the following algorithms were proposed in class.

- 1. **Algorithm 1**: Given A, B, C, choose a number j uniformly at random from $\{1, 2, ..., n\}$ and multiply A with the j^{th} column of B and check if it matches the j^{th} column of C entrywise.
- 2. **Algorithm 2**: Given A, B, C, choose two numbers i and j uniformly at random from $\{1, 2, ..., n\}$ and multiply the i^{th} row of A and the j^{th} column of B and check if the product is equal to the $(i, j)^{th}$ entry of C.

Analyze the two algorithms and explain which one is better. Are these algorithms better than Frievald's algorithm? What is the running time of this algorithm if I want to make the error probability ϵ ?

Solution: Type your solution here.

Problem 3 5 marks

An s-t-cut in a graph is a set of edges such that their removal gives a new graph which does not contain a path from s to t. Consider the following modification of Karger's algorithm to compute the smallest s-t-cut in the graph: Choose a random edge in the graph such that it not between supernodes containing s and t, and contract it; keep continuing until the only two supernodes are the ones containing s and t, and output this as the minimum s-t-cut.

Show that there are graphs such that the success probability of this algorithm finding the minimum *s-t*-cut is exponentially small.

Solution: Type your solution here.

Problem 4 8 marks

Consider the following randomized algorithm.

Algorithm 1:

- $_1$ Set X ← 0
- ² repeat *n* times
- Set $X \leftarrow X + 1$ with probability $1/2^X$
- 4 Set $Y \leftarrow 2^X 1$
- (a) (5 marks) Compute $\mathbb{E}[Y]$.

Solution: Type your solution here.

(b) (3 marks) Give a tight bound on the number of bits required to represent X. Notice that the number of bits required to represent X is a random variable.

Solution: Type your solution here.

Problem 5 5 marks

A collection of n bits $X_1, X_2, ..., X_n$ are said to be k-wise independent if for every subset S of k bits among the n, and for $b_1, b_2, ..., b_k \in \{0, 1\}$, we have

$$\Pr\left[\bigcap_{i\in S} X_i = b_i\right] = \prod_{i\in S} \Pr\left[X_i = b_i\right]$$

Consider the following construction: Let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in \{0, 1\}^{\ell}$ be n vectors such that every set of k vectors are linearly independent over \mathbb{F}_2 . Let $\mathbf{y} \in \{0, 1\}^{\ell}$ be chosen uniformly at random. Define X_i s as follows:

$$X_i = \left(\sum_{j=1}^{\ell} \mathbf{x}_{i,j} \mathbf{y}_j\right) \mod 2.$$

Show that X_i s are k-wise independent.

Solution: Type your solution here.