Méthode des loups gris

DJIAVOUDINE QUTHBULHAMEED & AHMADI AMIR

Encadrant de projet : Boubaker DAACHI

8 décembre 2024

- Introduction
- 2 L'état de l'art
- 3 Principe de GWO
- 4 Algorithme GWO
- Methodes similaires
- 6 Exemple de démonstration
- Conclusion

Introduction

- Objectif
- Inspiration biologique
- Applications
- Avantages

Origine

Introduction

- Proposé par Mirjalili en 2014.
- Inspiré du comportement social des loups gris pour la chasse

Comparaisons

- Performances proches ou supérieures à PSO et GA dans certains cas.
- Simplicité et peu de paramètres à régler.
- Points forts : efficacité, simplicité, capacité à équilibrer exploration et exploitation.

Limites et évolutions

- Versions améliorées : GWO hybride, multi-objectif.
- Limites : risque de stagnation dans un optimum local, dépendance aux paramètres, Sensibilité à la façon dont les positions des loups sont initialisées.
- Applications : énergie, robotique, bioinformatique, ingénierie.

La nature et l'algorithme GWO

Étape dans la nature	Étape dans l'algorithme GWO		
Hiérarchie sociale	Classement des solutions en $\alpha, \beta, \delta, \omega$		
Encerclement de la proie	Mise à jour des positions en fonction de α,β,δ		
Repérage de la proie	Évaluation de la fonction objectif pour identifier les leaders		
Attaque de la proie	Exploitation des solutions proches		
Exploration du territoire	Exploration de nouvelles régions		
Collaboration et coordination	Ajustement collectif des solutions pour converger vers l'optimum		

Fig. : Hiérarchie sociale du loup gris

Le loup alpha est considéré comme le loup dominant de la meute et tous ses ordres doivent être suivis par les membres de la meute.

Recherche et positionnement

Les loups utilisent leurs sens (odorat, vue, ouïe) pour identifier une cible.

Ils analysent les informations collectives pour localiser la proie la plus accessible.

9/24

 Pendant la chasse, les loups gris adoptent une stratégie d'encerclement de leur proje. . Ce comportement d'encerclement peut être modélisé à l'aide des équations mathématiques suivantes :

$$D = C \cdot Xp(t) - A \cdot X(t)$$
 (1)

$$X(t+1) = Xp(t) - A\cdot D$$
 (2)

t représente l'itération actuelle dans le processus de chasse des loups gris.

A et C sont des vecteurs de coefficients qui influencent les déplacements des loups et leur rapprochement avec la proje. Xp est le vecteur position de la proie et X indique le vecteur position d'un loup gris.

- . C : Sert à savoir si les loups sont proches ou éloignés de la proie, avec des valeurs comprises entre [0, 1].
- . A : Définit le déplacement des loups.
 - Si A est grand, les loups se déplacent de manière plus large et imprécise
 - Si A est petit, les loups se déplacent de facon plus précise autour de la proie...

Les vecteurs A et C sont calculés à chaque itération selon les formules suivantes :

$$A = 2a.r_2.2a$$
 (3)

$$C = 2.r_2 \tag{4}$$

Chasse au loup gris

Calcul des distances $(D \alpha, D \beta, D \delta)$:

 $D\alpha = C1 \cdot X\alpha - X$

 $D\beta = C2 \cdot X\beta - X$ $D\delta = C3 \cdot X\delta - X$

Mise à jour des positions (X1, X2, X3) :

 $X1 = X\alpha - A1 \cdot D\alpha$

 $X2 = X\beta - A2 \cdot D\beta$ $X3 = X\delta - A3 \cdot D\delta$

Position finale (X(t+1)): X1 + X2 + X3

3

- . La valeur de A diminue progressivement de 2 à 0 au fil des itérations
- . Cela réduit la plage de variation du coefficient A
- . Lorsque |A| < 1, l'agent se rapproche de la proie en ajustant sa position

- . Lorsque |A| > 1
- . Les loups restent dans la phase de recherche
- . Ils continuent à explorer d'autres zones pour localiser la proie

Initialisation :

- Génération d'une population initiale de solutions (loups).
- Définition des coefficients de contrôle (\vec{A}, \vec{C}, a) .

Mise à jour des positions :

• Les positions sont ajustées en fonction des trois meilleurs loups (α, β, δ) .

• L'équilibre entre exploration et exploitation est maintenu grâce aux coefficients \vec{A} et \vec{C}

Critère d'arrêt :

• L'algorithme s'arrête lorsqu'un nombre maximal d'itérations est atteint ou si les solutions convergent.

L'algorithme des loups gris

15/24

Schema simplifié

Initialiser la population des loups gris X_i (i = 1, 2, ..., n) Initialiser les paramètres a=2, A et C (en utilisant l'équation 2 et 4) Calculer la fitness de chaque membre de la population $X\alpha$ = le meilleur agent de recherche $X\beta$ = le deuxième meilleur agent de recherche $X\delta$ = le troisième meilleur agent de recherche Tant que (t < nombre maximum iterations) Pour chaque agent de recherche Mettre à jour la position de l'agent (en utilisant l'équation 6) Fin pour (en utilisant l'équation 2 et 4) Mettre à jour a . A et C Calculer la fitness de tous les agents de recherche Mettre à jour $X\alpha$, $X\beta$, $X\delta$ Fin tant que Retourner Xa

Caractéristique	GWO	CSA	ACO	Firefly Algorithm
Inspiration biolo- gique	Hiérarchie sociale des loups gris	Comportement parasitaire du coucou	Comportement des fourmis dans la recherche de nourriture	Comportement des lucioles (atti- rance lumineuse)
Exploration	Basée sur α, β, δ	Lévy Flight pour des sauts aléa- toires	Recherche basée sur les phéro- mones	Attirance vers des solutions plus brillantes
Exploitation	Exploitation diri- gée par les leaders	Exploration locale avec Lévy Flight	Exploitation par le suivi des phéro- mones	Exploitation via l'attraction lumi- neuse
Méthode de convergence	Hiérarchie sociale et mise à jour des positions	Lévy Flights + sélection des meilleures solutions	Mise à jour des phéromones et évaporation	Attirance vers des solutions plus brillantes
Applications	Optimisation continue, multi- objectifs	Optimisation de fonctions complexes	Problèmes com- binatoires (TSP, etc.)	Optimisation continue et conception de réseaux
Complexité	Modérée (dépend de la taille de la population)	Modérée (dépend de la taille des sauts)	Elevée (calculs de phéromones et evaporation)	Modérée (calculs d'attraction lumi- neuse)
Avantage	Bonne gestion de l'exploration/exploitation	Bonne gestion des solutions com- plexes	Efficace pour les problèmes combi- natoires	Simple et efficace pour l'optimisa- tion continue
Inconvénient	Sensible aux pa- ramètres et aux conditions initiales	Convergence lente sur certains pro- blèmes	Sensible à la quantité de phéro- mones	Moins efficace pour les problèmes combinatoires

Autres algorithmes bio-inspirés

- Ant Colony Optimization (ACO) 1992 Comportement des fourmis.
- Whale Optimization Algorithm (WOA) 2016 cet algorithme est basé sur le comportement de chasse des baleines à bosse. Mieux adapté aux problèmes multidimensionnels.
- Cuckoo Search Algorithm (CSA) 2009 Comportement des coucous, qui parasitent les nids d'autres oiseaux.
- Artificial Bee Colony (ABC) 2005 Comportement des abeilles en recherche de nourriture. il est excellente pour l'optimisation combinatoire.

1. Initialisation des positions des loups :

- Position du loup $\alpha: X_{\alpha} = (5,4)$
- Position du loup $\beta: X_{\beta} = (3,3)$
- Position du loup $\delta: X_{\delta} = (1, 2)$
- Position du loup à mettre à jour : $\mathbf{X} = (2,1)$

Les paramètres sont :

$$A = [0.5, -1.2], \quad C = [1.4, 1.1]$$

Intervalles des valeurs : [0, 10]

2. Calcul des distances D_{α} , D_{β} , D_{δ} :

Les distances D sont calculées :

$$D_{\alpha} = |C_1 \cdot X_{\alpha} - X|, \quad D_{\beta} = |C_2 \cdot X_{\beta} - X|, \quad D_{\delta} = |C_3 \cdot X_{\delta} - X|$$

• Pour D_{α} :

$$D_{\alpha} = |C \cdot X_{\alpha} - X| = |[1.4 \cdot 5, 1.1 \cdot 4] - [2, 1]|$$

$$D_{\alpha} = |[7.0, 4.4] - [2, 1]| = |[5.0, 3.4]| = [5.0, 3.4]$$

• Pour D_{β} :

$$D_{\beta} = |C \cdot X_{\beta} - X| = |[1.4 \cdot 3, 1.1 \cdot 3] - [2, 1]|$$

$$\mathcal{D}_{\beta} = |[4.2, 3.3] - [2, 1]| = |[2.2, 2.3]| = [2.2, 2.3]$$

• Pour D_{δ} :

$$D_{\delta} = |C \cdot X_{\delta} - X| = |[1.4 \cdot 1, 1.1 \cdot 2] - [2, 1]|$$

$$D_{\delta} = |[1.4, 2.2] - [2, 1]| = |[-0.6, 1.2]| = [0.6, 1.2]$$

Démonstration (la suite)

3. Calcul des nouvelles positions $X_{(i+1)}$:

$$X_{(i+1)} = \frac{1}{3} (X_1 + X_2 + X_3)$$

οù

$$X_1 = X - A \cdot D_{\alpha}, \quad X_2 = X - A \cdot D_{\beta}, \quad X_3 = X - A \cdot D_{\delta}$$

Calcul de X₁:

$$X_1 = X - A \cdot D_{\alpha} = [2, 1] - [0.5, -1.2] \cdot [5.0, 3.4]$$

 $X_1 = [2, 1] - [2.5, -4.08] = [-0.5, 5.08]$

Calcul de X2 :

$$X_2 = X - A \cdot D_{\beta} = [2, 1] - [0.5, -1.2] \cdot [2.2, 2.3]$$

$$X_2 = [2, 1] - [1.1, -2.76] = [0.9, 3.76]$$

Calcul de X₃:

$$X_3 = X - A \cdot D_{\delta} = [2, 1] - [0.5, -1.2] \cdot [0.6, 1.2]$$

$$X_3 = [2,1] - [0.3, -1.44] = [1.7, 2.44]$$

Nouvelle position $X_{(i+1)}$:

$$\begin{split} X_{(i+1)} &= \frac{1}{3} \left([-0.5, 5.08] + [0.9, 3.76] + [1.7, 2.44] \right) \\ X_{(i+1)} &= \frac{1}{2} [2.1, 11.28] = [0.7, 3.76] \end{split}$$

4. Vérification des bornes : Les nouvelles positions doivent être dans l'intervalle [0, 10]. Pour $X_{\text{nouveau}} = [0.7, 3.76]$, les valeurs sont dans [0, 10].

Position finale après cette itération :

Le loup considéré se déplace vers la nouvelle position :

$$X_{(i+1)} = [0.7, 3.76]$$

Cela conclut une itération de l'algorithme GWO.

- Simplicité et son efficacité en font une méthode incontournable.
- Développement de versions hybrides pour surmonter ses limites (ex. GWO-PSO)
- Applications futures dans des domaines comme l'optimisation multi-objectifs et le deep learning.
- L'algorithme GWO, en s'inspirant de la nature, nous enseigne que la collaboration et l'adaptation sont des clés pour résoudre les problèmes les plus complexes.

Anurag ARNAB et al. «Vivit: A video vision transformer». In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021, p. 6836-6846. Introduction L'état de l'art Principe de GWO Algorithme GWO Methodes similaires Exemple de démonstration Concl

Merci pour votre attention