Medical Insurance Cost Analysis

Tanya Arya, Mia Saavedra, Jisoo Park, Amolika Kondapalli

Table of contents

O1. Introduction

O4. Results

O2. Data Description

05. Conclusion

03. Methodology

Problem:

What factors influence medical expenses the most?

Factors include: age, sex, BMI, smoking status, number of children, and region.

Hypothesis

Groups with the highest charges:

Older Adults

Smokers

More Children

Women

High BMI

Introduction to Dataset

Steps

1.

Origin

Dataset "Medical Insurance Cost Prediction" from Kaggle.com .

Pre-processing

2a

Cleaning

Deleted duplicates and null values

2b

Transformation

Convert data to dataframe in Jupyter Notebook

Introduction to Dataset

Project Goal

Analyze the factors that influence medical expenses such as age, sex, BMI, smoking status, number of children, and region.

Audience

The audience would be stakeholders interested in healthcare analytics, insurance companies, government officials

Purpose

expenses.

The project aims to gain insights into how different factors influence medical

Context

Perform statistical tests, such as linear regression, correlation analysis, t-test, and ANOVA

Data Description

Variable	Data Type	Description
Age	Integer	Range 18-64
Sex	Object	Male, Female
Body Mass Index (BMI)	Float	Range 15.96 - 53.13
Children	Integer	Treated as categorical
Smoker	Object	Yes, No
Region	Object	NE, NW, SE, SW
Charges	Float	Range \$1,121 - \$63,770

Methodology

Steps

1.

EDA

Exploratory Data Analysis

2.

Statistical Tests

Correlation, T-test, ANOVA, linear regression

3.

Data Visualization

Box plots between variables and charges

Descriptive Stats-Age

Count	1337.00
Mean	39.22
Standard Deviation	14.04
Min	18.00
Median	39.00
Max	64.00

Descriptive Stats-BMI

Count	1337.00
Mean	30.66
Standard Deviation	6.10
Min	15.96
Median	30.40
Max	53.13

Descriptive Stats- Charges

Count	1337.00
Mean	13279.12
Standard Deviation	12110.36
Min	1121.87
Median	9386.16
Max	63770.43

Descriptive Stats- Sex

Count	1337.00

Descriptive Stats- Smoker

Count	1337.00

Descriptive Stats- Region

Count	1337.00

Results

Correlations

Testing each variable against the insurance charges to find strongest correlation using the Pearson Coefficient

 $R^2 = 0.888$ 8.88% of the variability in charges is attributed to age

BMI:

r = 0.198

$$R^2 = 0.0392$$

3.92% of the variability in charges is attributed to
BMI

Correlation Matrix

T-Test Hypotheses

Sex:

Null:

The mean charges of the male and female groups are the same.

Alternate:

The mean charges of the male and female groups are not the same.

Smoker:

Null:

The mean charges of the smoker and non-smoker groups are the same.

Alternate:

The mean charges of the smoker and non-smoker are not the same.

T-Tests

Sex:

T-Statistic: 2.124

P-Value: 0.0338

Reject the null hypothesis.

There is a significant difference between the two groups (male, female)

Smoker:

T-Statistic: 46.645

P-Value: 1.407e-282

Reject the null hypothesis.

There is a significant difference between the two groups (non-smoker, smoker)

ANOVA Hypotheses

Region:

Null:

The mean charges for NE, NW, SE, and SW are the same.

Alternate:

The mean charges for NE, NW, SE, and SW are not the same.

Number of Children:

Null:

The mean charges for 0, 1, 2, 3, 4, and 5 children are the same.

Alternate:

The mean charges for 0, 1, 2, 3, 4, and 5 children are the same.

ANOVA

Region:

F-Statistic: 2.926

P-Value: 0.03276

Reject the null hypothesis.
There is a significant difference in charges among different regions.

Number of Children:

F-Statistic: 3.268

P-Value: 0.0061

Reject the null hypothesis.
There is a significant difference in charges based on the number of children.

Coefficient: 242.26

Intercept: 3532.09

Charges = 242.26(Age) + 3532.09

Mean Squared Error: 166,275,348.23

 $R^2 = 0.095$

Coefficient: 345.17

Intercept: 2488.57

Charges = 345.17(BMI) + 2488.57

Mean Squared Error: 174,251,720.52

 $R^2 = 0.0517$

Slight positive trend between Age and Charges

Smokers had higher medical insurance charges overall compared to non-smokers

Slight differences between region groups, SE generally had higher charges

Small differences between # Children and Charges, Similar median values

Similar median values, but upper 50% of males had higher charges than females

Conclusion

Age

Moderately Weak Positive Correlation

Smoker

Significant difference in charges between smoker and non-smoker

Region

Significant difference in charges among regions

BMI

Weak Positive Significant Correlation

Children

Significant difference in charges based on number of children

Sex

Significant difference between male and female

Implications

Healthcare Providers

Tailor services to better meet the needs of different patient demographics.

Insurance Companies

Develop more accurate pricing models and risk assessments

Policy Makers

Make better decisions to address disparities in healthcare access

Research

Contribute to researchers of healthcare economics and public health

Public

Transparency about medical costs can help the public make smarter lifestyle and insurance choices

Further Research

Analyze further variables related to insurance charges:

- Disabilities
- Health Conditions
- Diet

Thank you!

