МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждения высшего образования «Национальный исследовательский технологический университет «МИСиС»

ЛАБОРАТОРНАЯ РАБОТА № 3

«Моделирование различных форм резервуаров с жидкостью»

по дисциплине:

«Математическое моделирование»

Выполнил:	Проверил:
Емельященкова Е.А.	_Добриборщ Д.Э.
(Ф.И.О. студента)	(Ф.И.О преподавателя)
БПМ-19-4	
(№ группы)	(оценка)
21.12.2021г.	
(дата сдачи работы)	(дата проверки)

Цель работы: исследовать математические модели, полученные методом балансовых соотношений в пакете прикладных программ MATLAB/Simulink.

Ход работы:

1. Моделирование системы простого цилиндрического резервуара с жидкостью.

Обозначения:

V – объём жидкости;

S – площадь поверхности жидкости;

 Q_1, Q_2 (управляющее воздействие) — объёмные расходы жидкости;

F – площадь проходного отверстия сливной трубы;

v – скорость истечения жидкости из сливного отверстия;

 v_0 – скорость изменения уровня жидкости в резервуаре;

 $x - x_0$ – перепад высот жидкости в резервуаре;

р1, р2 – статические давления над жидкостью в резервуаре и за сливным отверстием;

 ρ — плотность жидкости;

g – ускорение свободного падения;

 $\frac{
ho*v_0^2}{2}$ - динамическое или скоростное давление;

 $\gamma = \rho^* g - y дельный вес.$

Уравнение материального баланса жидкости для *цилиндрического резервуара* имеет вид:

$$\Delta V + Q_1 * \Delta t = Q_{2*} \Delta t$$

Полагаем, что $\Delta t \to 0$ и $\Delta V \to 0$ и делим на Δt :

$$\dot{V} + Q_1 = Q_2$$

Мы можем выразить объём жидкости V через её уровень х:

$$V = S * x$$

Получаем, что:

$$\dot{V} = S * \dot{x} ; S \frac{dx}{dt} + Q_1 = Q_2$$

Зависимость между объёмным расходом Q1 и уровнем х вытекает из уравнения Бернулли:

$$\frac{\rho * v_0^2}{2} + \rho * g * x + P_1 = \frac{\rho * v^2}{2} + \rho * g * x_0 + p_2$$

Это уравнение можно переписать в виде:

$$\frac{v^2 - v_0^2}{2 * g} = \frac{p_1 - p_2}{\gamma} + (x - x_0)$$

Предполагаем, что v_0 много меньше $v_0 = 0$, $v_1 = v_2$, а скорость истечения жидкости будет определяться выражением v = 2*g*x.

Умножим левую и правую части данного выражения на площадь проходного сечения F, поэтому получаем:

$$F^*v = Q_1 = F^*\sqrt{2 * g * x}$$

Используя поправочного коэффициент µ может быть учтена форма и состояние поверхности сливного отверстия. Для данного резервуара получаем:

$$Q_1 = \mu * F * \sqrt{2 * g * x}$$

То есть получено искомое уравнение материального баланса для истечения жидкости в цилиндрическом резервуаре:

$$S*\dot{x} + \mu * F*\sqrt{2*g*x} = Q_2$$
 (ДУ данной системы)

$$\frac{dx}{dt} = \frac{Q_2}{S} - \frac{\mu F \sqrt{2gx}}{S}$$

Также при $\frac{dx}{dt}$ = 0 можно записать уравнение для стационарного режима данного резервуара:

$$\mu * F * \sqrt{2 * g * x} = Q_2$$

Для нашей задачи зададим параметры:

S =100
$$\text{m}^2$$
; Q_2 =1 m^3/c ; F =1 m^2 ; μ = 0.6; g = 9.8 m/c^2

Получаем схему моделирования:

Рисунок 1 – Схема моделирования простого цилиндрического резервуара с жидкостью

Результат моделирования:

Рисунок 2 – График зависимости высоты жидкости х от времени

2. Моделирование резервуара, имеющего форму усеченного конуса.

Дифференциальное уравнение данной системы имеет вид:

$$\frac{dx}{dt} = \frac{Q_2}{\pi(r^2 + 2r \operatorname{tg} \alpha x + \operatorname{tg}^2 \alpha x^2)} - \frac{\mu F \sqrt{2gx}}{\pi(r^2 + 2r \operatorname{tg} \alpha x + \operatorname{tg}^2 \alpha x^2)},$$

где коэффициент
$$S = S(x) = \pi(r^2 + 2 * R * \operatorname{tg} \alpha + (\operatorname{tg} \alpha)^2 * x^2).$$

Для нашей задачи зададим параметры:

$$r$$
 =1 м 2 ; Q_2 =1 м $^3/c$; F =1 м 2 ; μ = 0.6; g = 9.8 м/с 2

Получаем схему моделирования:

Рисунок 3 – Схема моделирования резервуара, имеющего форму усеченного конуса

Результат моделирования:

Рисунок 4 – График зависимости высоты жидкости х от времени

3. Моделирование резервуара сферической формы.

Дифференциальное уравнение данной системы имеет вид:

$$\frac{dx}{dt} = \frac{Q_2}{\pi(2rx-x^2)} - \frac{\mu F \sqrt{2gx}}{\pi(2rx-x^2)}$$
, где S = S(x) = $\pi(2*r*x-x^2)$

Для нашей задачи зададим параметры:

$$r$$
 =2 м²; Q_2 =4 м³/c; F =1 м²; μ = 0.6; g = 9.8 м/c²

Получаем схему моделирования:

Рисунок 5 – Схема моделирования резервуара сферической формы

Результат моделирования:

Рисунок 6 – График зависимости высоты жидкости х от времени

4. Моделирование флотационной машины.

Дифференциальное уравнение данной системы имеет вид:

$$S * \dot{x} + \left(0.465 + \frac{0.003}{x}\right) * b * \sqrt{(2 * g * x)^*} x = Q_2$$
 (ДУ)

$$\frac{dx}{dt} = \frac{Q_2}{S} - \frac{0.465bx\sqrt{2gx}}{S} - \frac{0.003b\sqrt{2gx}}{S}$$

Для нашей задачи зададим параметры:

$$Q_2 = 2 \text{ m}^3/c$$
; S = 10 m²; $b = 5 \text{ m}$; $g = 9.8 \text{ m/c}^2$

Получаем схему моделирования:

Рисунок 7 – Схема моделирования флотационной машины

Результат моделирования:

Рисунок 8– График зависимости высоты жидкости х от времени

Вывод: выполняя лабораторную работу №3, я исследовала модели, полученные методом балансовых соотношений в пакете прикладных программ MATLAB/Simulink.