ALGEBRAIC GEOMETRY: PRACTICE QUESTIONS

You should be able to do all the questions on all the homeworks and all the workshop questions. In addition, here are more practice questions.

- (1) Let $X \subset \mathbb{A}^3$ be the union of the three coordinate axes. Find I(X).
- (2) Let $I, J \subset k[x_1, ..., x_n]$ be ideals. Denote by IJ the ideal generated by $\{fg \mid f \in I, g \in J\}$. Prove that $\sqrt{IJ} = \sqrt{I \cap J}$.
- (3) Describe explicitly all the maximal ideals of the ring $k[x, y]/(x^2 y^3)$.
- (4) Let $X \subset \mathbb{A}^n$ and $Y \subset \mathbb{A}^n$ be disjoint Zariski closed sets. Show that there exists a polynomial $f \in k[x_1, \ldots, x_n]$ such that the function $f|_X$ is identically 0 and $f|_Y$ is identically 1.
- (5) Give an example of a regular map $f: X \to Y$ that is a bijection, but the inverse map is not regular.
- (6) char $k \neq 2$. Construct an isomorphism between the affine variety defined by $x^2 + y^2 = 1$ in \mathbb{A}^2 and the affine variety defined by xy = 1 in \mathbb{A}^2 .
- (7) Construct an isomorphism from $\mathbb{A}^1 \setminus \{0, 1\}$ to a Zariski closed subspace of \mathbb{A}^n for some n.
- (8) As usual, think of $\mathbb{A}^3 \subset \mathbb{P}^3$ as the open subset where the last homogeneous coordinate is nonzero. Find the closure in \mathbb{P}^3 of $V(x-y^4,x-z^7)$.
- (9) Let m, n be positive integers, and let $f_1, \ldots, f_n \in k[x_1, \ldots, x_m]$. Consider the map $f: \mathbb{A}^m \to \mathbb{A}^n$ defined by

$$f(p) = (f_1(p), \ldots, f_n(p)).$$

Show that f is surjective if and only if for all $a_1, \ldots, a_n \in k$, the ideal $\langle f_1 - a_1, \ldots, f_n - a_n \rangle$ is not the unit ideal.

- (10) Let $U \subset \mathbb{P}^n$ be a quasi projective variety. When is a map $f \colon U \to \mathbb{P}^m$ called a regular map?
- (11) Let $X = V(y^2 x^3)$ and $U = X \setminus \{(0,0)\}$. Show that the function y/x on U does not extend to a regular function on X.
- (12) Prove that every regular map $\mathbb{P}^1 \to \mathbb{A}^1$ is a constant.
- (13) Prove that the hyperbola, defined by xy = 1 in \mathbb{A}^2 , and the line \mathbb{A}^1 are not isomorphic.
- (14) Prove that all isomorphisms $f: \mathbb{A}^1 \to \mathbb{A}^1$ are of the form f(x) = ax + b.
- (15) Prove that any two non-empty Zariski open subsets of \mathbb{P}^n have a non-empty intersection.
- (16) Prove that every affine variety is (isomorphic to) a quasi-projective variety.

- (17) Let $v: \mathbb{P}^2 \to \mathbb{P}^5$ be the degree 2 Veronese map. Describe the image under v of the line Z = 0 in \mathbb{P}^2 .
- (18) Let $v_m : \mathbb{P}^n \to \mathbb{P}^N$ be the degree m Veronese map. Prove that the linear span of $v_m(\mathbb{P}^n)$ is \mathbb{P}^N .
- (19) char $k \neq 2$. Construct an isomorphism from the quadric surface $X^2 + Y^2 + Z^2 + W^2 = 0$ in \mathbb{P}^3 to $\mathbb{P}^1 \times \mathbb{P}^1$.
- (20) Let $C \subset \mathbb{P}^2$ be the Fermat cubic curve

$$C = V(X^3 + Y^3 + Z^3).$$

- (a) Show that the linear projection $[X:Y:Z]\mapsto [X:Y]$ when restricted to C extends to a regular map $\phi\colon C\to \mathbb{P}^1$.
- (b) Describe the fibers of ϕ .