

Experimental techniques in research Groningen, 29-10-2019

Basic statistics

Maaike de Vries, PhD

m.de.vries04@umcg.nl
Department of Epidemiology
UMCG

Statistics

Aim: statements about population, groups

Hypotheses

Comparing 2 groups:

 H_0 : no difference between groups:

X1 mean = X2 mean; X1 mean - X2 mean = 0

H₁: difference between groups:

X1 mean ≠ X2 mean; X1 mean − X2 mean ≠ 0

P-value: Chance to observe H₁ if H₀ is true

P < 0.05 Chance to observe H_1 if H_0 is true < 0.05 (5%)

95% CI 95% chance that the *real* difference between 2 groups falls within the interval

Choice for type of test depends upon:

1) Type and distribution of variable

2) (In)dependence of obervations

Choice for type of test depends upon:

1) Type and distribution of variable

2) (In)dependence of obervations

Type of variable

Variable: a quantity with more than 1 value

Numerical - continous: blood pressure, height

- discrete: number of children,

number of deaths

Categorical - ordinal: better/the same/ worse

- nominal: gender, yes/no,

blood groups O/A/B/AB

place of birth

Distribution of variable

Numerical variables: Normal (Gaussian)

Distribution of variable

Group I: (11, 12, 13, 13, 14, 15)

Group II: (11, 12, 13, 13, 14, 30)

mean = 13

median = 13

mean = 15.5

median = 13

Group 1

Distribution of variable

Mean: Influenced by extreme value,

very sensitive to ouliers

Parametric tests are based on mean values

- Data normally distributed?
 - Parametric test
- Data not normally distributed?
 - Non-parametric test

Non-parametric tests

Advantages:

- Less assumptions (regarding distibution)
- Use of ordinal variables
- Not sensitive for outliers

Disadvantages:

- Less power
- Test only significance wiht p-values, no Cl's
- No means, but medians

Choice for type of test depends upon:

1) Type and distribution of variable

2) (In)dependence of obervations

(In)dependence of observations

Independent, two different cats

Dependent (paired) the same cat

(In)dependence of observations

Independent: males/females

two treatment groups

Dependent: repeated measures over time

What about: fathers and sons

inhabitants different neighbourhoods

matched cases

Dataset

Eur Respir J. 2002 Aug;20(2):383-90.

Perinatal predictors of respiratory symptoms and lung function at a young adult age.

Boezen HM1, Vonk JM, van Aalderen WM, Brand PL, Gerritsen J, Schouten JP, Boersma ER.

To study the relationship between perinatal factors and the development of respiratory symptoms at young adult age

- Babies born between 1975-1978 in the UMCG
- After ~20 years, a questionnaire was send to mothers and children
 - Random sample of responders was invited for lung function testing

Type of variable

Variable: a quantity with more than 1 value

Numerical - continous: blood pressure, height

- discrete: number of children,

number of deaths

Categorical - ordinal: better/the same/ worse

- nominal: gender, yes/no,

blood groups O/A/B/AB

place of birth

Chi-square test

Gestation age < 38 weeks and maternal smoking

	Non-smoking mother	Smoking mother	Total
Total	1388	1701	3089

 H_0 : no difference in gestation age < 38 week and maternal smoking

 H_1 : difference in gestation age < 38 week and maternal smoking

Chi-square test

Gestation age < 38 weeks and maternal smoking Observed numbers

Gestation < 38 week	Non-smoking mother	Smoking mother	Total
No	1258	1488	2746
Yes	130	213	343
Total	1388	1701	3089

Chi-square test

Gestation age < 38 weeks and maternal smoking Expected numbers

Gestation < 38 week	Non-smoking mother	Smoking mother	Total
No	1233.9 (2746*1388/3089)	1512.1 (2746*1701/3089)	2746
Yes	154.1 (343*1388/3089)	188.9 (343*1701/3089)	343
Total	1388	1701	3089

Chi-square test

Gestation age < 38 weeks and maternal smoking Expected and Observed numbers

Gestation < 38 week	Non-smoking mother	Smoking mother	Total
No	O = 1258 E = 1233.9	O = 1488 E = 1512.1	2746
Yes	O = 130 E = 154.1	O = 213 E = 188.9	343
Total	1388	1701	3089

Chi-square test

Gestation age < 38 weeks and maternal smoking

$$\chi^2 = \sum \frac{(O - E)^2}{E}$$

$$= \frac{(130-154.1)^2}{154.1} + \frac{(213-188.9)^2}{188.9} + \frac{(1258-1233.9)^2}{1233.9} + \frac{(1701-1512.1)^2}{1512.1}$$

Chi-square test

Gestation age < 38 weeks and maternal smoking

<u>df</u>	0.1	0.05	0.02	0.01	0.005	0.001
1	2.71	3.84	5.41	6.64	7.88	10.83
2	4.61	5.99	7.82	9.21	10.60	13.82
3	6.25	7.82	9.84	11.35	12.84	16.27
4	7.78	9.49	11.67	13.28	14.86	18.47
5	9.24	11.07	13.39	15.09	16.75	20.52
6	10.65	12.59	15.03	16.81	18.55	22.46
7	12.02	14.07	16.62	18.48	20.28	24.32
8	13.36	15.51	18.17	20.09	21.96	26.12
9	14.68	16.92	19.68	21.67	23.59	27.88
10	15.99	18.31	21.16	23.21	25.19	29.59

 $6.64 < X^2 \text{ of } 7.713 < 7.88 \implies 0.01 < p < 0.005 \text{ Reject H}_0$

There is a difference in gestation age < 38 week and maternal smoking

Type of variable

Variable: a quantity with more than 1 value

Numerical - continous: blood pressure, height

- discrete: number of children,

number of deaths

Categorical - ordinal: better/the same/ worse

- nominal: gender, yes/no,

blood groups O/A/B/AB

place of birth

Which test for which aim?

Non-parametric	Purpose	Parametric
Mann-Whitney U test	Test differences between 2 groups (unpaired observations)	Two sample t-test (unpaired t-test)
Kruskall Wallis	Test differences between >2 groups (unpaired observations)	One-way analysis of variance
Wilcoxon signed rank test	Test differences within 1 group (paired observations)	Paired t-test

Which test for which aim?

Non-parametric	Purpose	Parametric
Mann-Whitney U test	Test differences between 2 groups (unpaired observations)	Two sample t-test (unpaired t-test)
Kruskall Wallis	Test differences between >2 groups (unpaired observations)	One-way analysis of variance
Wilcoxon signed rank test	Test differences within 1 group (paired observations)	Paired t-test

Two-sample t-test

Birth weight of children and smoking mothers

Group 1 = Non smokers		Group	2 = Heavy sr	mokers	
3.99	4.08	3.54	3.18	2.84	2.90
3.79	3.61	3.51	3.27	3.85	3.52
3.60	3.83	2.71	3.23	2.76	3.60
3.73	3.31	3.26	3.75	3.59	3.63
3.21	4.13	3.60	2.38	2.34	

 H_0 : no difference in birth weight between the groups

 H_1 : difference in birth weight between the groups

Two-sample t-test

Birth weight of children and smoking mothers

Gro	up 1 = Non smokers	Grou	p 2 = Heavy smokers
X1 _{mean}	3.5933	X1 _{mean}	3.2029
S1	0.3707	S1	0.4927
N1	15	N1	14

$$t = \frac{\bar{X}_1 - \bar{X}_2}{S_{X_1 X_2} \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \qquad S_{X_1 X_2} = \sqrt{\frac{(n_1 - 1)S_{X_1}^2 + (n_2 - 1)S_{X_2}^2}{n_1 + n_2 - 2}}.$$

$$t = \frac{(3.5933 - 3.2029)}{(3.5933 - 3.2029)} = 2.42$$
 $df = 27$ $(df = N1 + N2 - 2)$

Two-sample t-test

Birth weight of children and smoking mothers

The *t* distribution

df	0.1	0.05	0.02	0.01	0.005	0.001
1	6.314	12.706	31.82	63.657	127.321	636.619
5	2.015	2.571	3.365	4.032	4.773	6.869
10	1.812	2.228	2.764	3.169	3.581	4.587
15	1.753	2.131	2.602	2.947	3.286	4.073
20	1.725	2.086	2.528	2.845	3.153	3.85
25	1.708	2.06	2.485	2.787	3.078	3.725
26	1.706	2.056	2.479	2.779	3.067	3.707
27	1.703	2.052	2.473	2.771	3.057	3.69
28	1.701	2.048	2.467	2.763	3.047	3.674
29	1.699	2.045	2.462	2.756	3.038	3.659
30	1.697	2.042	2.457	2.75	3.03	3.646

2.052 < t of 2.42 < 2.473 => 0.01

Reject H₀

There is a difference in birth weight between the groups

Which test for which aim?

Non-parametric	Purpose	Parametric
Mann-Whitney U test	Test differences between 2 groups (unpaired observations)	Two sample t-test (unpaired t-test)
Kruskall Wallis	Test differences between >2 groups (unpaired observations)	One-way analysis of variance
Wilcoxon signed rank test	Test differences within 1 group (paired observations)	Paired t-test

Mann-Whitney U test

APGAR score and gender of the children

Mann-Whitney U test

H₀: no difference in APGAR score between boys and girls

H₁: difference in APGAR score between boys and girls

- 1. Rank observations of both groups together from low to high
- 2. Assign rank-scores (in case of equal rank give mean rank)
- 3. Sum the ranks for each group
- 4. Compare these with critical ranges a.k.a. Wilcoxon rank sum test

gender	apgar1m
1	7
1	8
1	6
1	6
1	10
1	6
1	9
1	9
1	9 9 9 9
1	9
1 2	9
2	8
2 2	8
2	9
2	9
2	
2 2 2 2	8 9
2	4
2 2 2	9
2	10

1. Rank observations from low to high

Gender	APGAR 1m
2	4
1	6
1	6
1	6
1	7
1	8
2	8
2	8
2	8
1	9
1	9
1	9
1	9
2	9
2	9
	9
2 2 2	9
2	9
1	10
2	10

2. Assign rank scores (equal rank = mean rank)

Gender	APGARI 1m	Rank
2	4	<u> </u>
1	6	-
1	6	-
1	6	-
1	7	-
1	8	-
2	8	-
2	8	-
2	8	
1	9	
1	9	
1	9	
1	9	
2	9	
2	9	
2	9	
2	9	
2	9	
1	10	
2	10	

3. Sum the ranks for each group

			•	•
Gender	APGARI 1m	Rank	Males	Females
2	4	1		1
1	6	3	3	
1	6	3	3	
1	6	3	3	
1	7	5	5	
1	8	7.5	7.5	
2	8	7.5		7.5
2	8	7.5		7.5
2	8	7.5		7.5
1	9	14	14	
1	9	14	14	
1	9	14	14	
1	9	14	14	
2	9	14		14
2	9	14		14
2	9	14		14
2	9	14		14
2	9	14		14
1	10	19.5	19.5	
2	10	19.5		19.5
	<u>. </u>		SUM	SUM

97

113

4. Compare with critical ranges (Wilcoxon rank sum test)

Use T-statistics of Mann-Whitney-Wilcoxon test

Take the sum ranks in the smaller group
 (either group can be taken if the sample size is equal)

The Mann-Whitney test (Wilcoxon two sample test)

N1	N2	0.1	0.05	0.02	0.01	0.001
5	10	26-54	23-57	21-59	19-61	15-65
6	10	35-67	32-70	29-73	27-75	23-79
7	10	45-81	42-84	39-87	37-89	31-95
8	10	56-96	53-99	49-103	47-105	41-111
9	10	69-111	65-115	61-119	58-122	52-128
10	10	82-128	78-132	74-136	71-139	63-147

$$t = 97 \text{ or } 113 => p > 0.1 => Retain H_0$$

Which test for which aim?

Non-parametric	Purpose	Parametric
Mann-Whitney U test	Test differences between 2 groups (unpaired observations)	Two sample t-test (unpaired t-test)
Kruskall Wallis	Test differences between >2 groups (unpaired observations)	One-way analysis of variance
Wilcoxon signed rank test	Test differences within 1 group (paired observations)	Paired t-test

Paired t-test

Lung function levels (FEV₁) after provocation test

 H_0 : no difference in lung function levels after provocation test

 H_1 : difference in lung function levels after provocation test

Paired t-test

ID	FEV_basal	FEV_prov
1	5.50	5.18
2	5.07	5.34
3	5.30	4.65
4	5.53	5.32
5	6.10	5.92
6	3.76	4.03
7	6.71	4.68
8	5.50	5.25
9	6.68	5.73
10	6.22	5.72
11	6.05	6.01
12	5.15	5.19
13	5.21	5.03
14	5.65	5.77
15	5.61	5.55
16	4.30	3.92
17	6.22	5.94
18	5.13	4.56
19	4.93	4.91
20	5.06	4.84

Calculate individual difference between basal and provocation: mean difference = Xmeandiff = 0.31

Calculate standard deviation (sd) of the differences:

$$sd = 0.49 => se = 0.49/\sqrt{20} = 0.11$$

$$t = X_{meandiff}/se => 0.31 / 0.11$$

 $t = 2.818$ $df = n-1 = 19$

Compare with critical ranges

Paired t-test

The *t* distribution

df	0.1	0.05	0.02	0.01	0.001
1	6.314	12.706	31.82	63.657	636.619
2	2.92	4.303	6.965	9.925	31.599
3	2.353	3.182	4.541	5.841	12.924
4	2.132	2.776	3.747	4.604	8.61
5	2.015	2.571	3.365	4.032	6.869
10	1.812	2.228	2.764	3.169	4.587
15	1.753	2.131	2.602	2.947	4.073
16	1.746	2.120	2.583	2.921	4.015
17	1.740	2.110	2.567	2.898	3.965
18	1.734	2.101	2.552	2.878	3.922
19	1.729	2.093	2.537	2.861	3.883
20	1.725	2.086	2.528	2.845	3.850

2.537 < t of 2.818 < 2.861 => 0.02Reject H₀

There is a difference in lung function after provocation

Which test for which aim?

Non-parametric	Purpose	Parametric
Mann-Whitney U test	Test differences between 2 groups (unpaired observations)	Two sample t-test (unpaired t-test)
Kruskall Wallis	Test differences between >2 groups (unpaired observations)	One-way analysis of variance
Wilcoxon signed rank test	Test differences within 1 group (paired observations)	Paired t-test

Wilcoxon signed rank test

Lung function levels (PEF) after provocation test

 H_0 : no difference in lung function levels after provocation test

 H_1 : difference in lung function levels after provocation test

Wilcoxon signed rank test

ID	PEF_basal	PEF_prov
1	12.51	10.80
2	13.83	14.02
3	11.52	8.98
4	11.45	11.62
5	13.25	11.05
6	11.93	10.67
7	11.65	8.69
8	14.12	12.27
9	10.37	9.90
10	13.43	13.35
11	14.97	15.20
12	10.48	11.46
13	10.87	9.50
14	14.71	11.67
15	16.94	15.25
16	10.30	9.52
17	12.61	12.73
18	11.26	9.95
19	11.55	10.58
20	11.75	11.04

- 1. Calculate difference per individual (exclude "zero" differences)
- Rank the differences in increasing sequence in size
 (ignore the sign)
 Give mean value in case of equal rank
- 3. Sum up positive ranks (T+) and the negative ranks (T-)
- 4. Compare with critical values

Wilcoxon signed rank test

ID	PEF_bas	PEF_prov		Sign	Abs diff	Rank		Neg	Pos
10	13.43	13.35	+		0.08	1			1
17	12.61	12.73	-		0.12	2		2	
4	11.44	11.62			0.18	3.5		3.5	
2	13.83	14.02	-		0.18	3.5		3.5	
11	14.97	15.20	-		0.23	5		5	
9	10.37	9.90	+		0.47	6			6
20	11.75	11.04	+		0.71	7			7
16	10.30	9.52	+		0.79	8			8
19	11.55	10.58	+		0.97	9			9
12	10.48	11.46			0.98	10		10	
6	11.98	10.67	+		1.31	11.5			11.5
18	11.26	9.95	-		1.31	11.5		11.5	
13	10.87	9.50	+		1.38	13			13
15	16.94	15.25	+		1.70	14			14
1	12.51	10.80	+		1.71	15			15
8	14.12	12.27	+		1.85	16			16
5	13.25	11.05	+		2.20	17			17
3	11.52	8.98	+		2.54	18			18
7	11.65	8.69	+		2.96	19			19
14	14.71	11.67	+		3.04	20			20
							- 1	CLINA	CLINA

SUM SUM 35.5 174.5

Wilcoxon signed rank test

Wilcoxon one sample (or matched pairs) test

N	0.1	0.05	0.02	0.01	0.001	
15	30-90	25-95	19-101	15-105	6-114	
16	35-101	29-107	23-113	19-117	9-127	
17	41-112	34-119	28-125	23-130	11-142	
18	47-124	40-131	32-139	27-144	14-157	
19	53-137	46-144	37-153	32-158	18-172	
20	60-150	52-158	43-167	37-173	21-189	

 $T = 35.5 \text{ or } 174.5 \implies 0.01$

Reject H₀

There is a difference in lung function after provocation

Which test for which aim?

Non-parametric	Purpose	Parametric	
Mann-Whitney U test	Test differences between 2 groups (unpaired observations)	Two sample t-test (unpaired t-test)	ables
Kruskall Wallis	Test differences between >2 groups (unpaired observations)	One-way analysis of variance	Numerical variables
Wilcoxon signed rank test	Test differences within 1 group (paired observations)	Paired t-test	Nume
	Test differences between 2 categorical variables	Chi-square (or Fisher's exact)	

