	HW2. Dre Fri 11:59 pm.
	OH: Thus Fri 7-8 pm
	fri 3-4 pm
21.4	Recall:
	ANB= {xIXEANXEB}
	AUB={xlx6AVx6B}
Sets.	
	Ex: proof: An (BUC) = (ANB) U (ANC).
	Venn d'agram
	B.
	equalituo sets has same elements.
	XE ANCBUC)
	277 XEA A XELBUC).
	277 REANLACED VAGE)
	i77 (REANRED) V LX GANREC)
	277 XG (ANB) V X L (ANC)
	277 x G (ANB) U (ANC).
	So ANCBUC) and (ANB) UCANC) are equal.
	Det: A is a subject of 13 of VxGA, xGB.
	written as ASB.
	7 4 11. 6 (2) (3)
	Exi Ø C NEQ CRCR.

	De7: A and B are disjoint if ANB=\$?.e. Ux6A, x613.
	Venn diagram:
	Venn () (·)
	diagram:
1.4.7	Theorn:
	(AUB) \BEA
	These proofs should be in
	Proof: suppose as (AUB) \B. one paragh.
	ZELAUB) B
	277 76 (AUB) 1 x & B.
	277 (MGAUNGB) NT NEB <= (pug) N79 = P
	Since we cannot have both xEB and x&B.
	So every element of (AVB) \B is an element of A.
	So every everyed of (AVIS) (13 is an element of 14.
	Ex: For any cers A, B, ANB and ALB are dissoint.
	Proof: suppose XGANB.
	~ GANB
	277 REAN REIS.
\$ 1.5	: Conditional
Londitions	
&	P Q P-1 Q 7 PUQ
Biconditiona	L F F T T
	F T T
	T P P F
	T T T T +me statement.
	Ex: 27 x 2s an integer, then 2 x 2s an integer.
	X=1: 1,2 .T->T T
	ス= ½: ½, 1 ドラT T

72/4 /4, /2 P > F T

Ta: if it rains, then I won't attend the class
R-> 7A.
to attain classes, you must be vouernated.
A > V (each person attend is vaccinated)
Equivelent Jorns:
P q 7 pug 7 (PAZG)
FFT
F T T
T F F F
1 T T
Thus, P-) Q could be replaced noith 7 puq.
Ex: A-> V
:77 7AVV. lither you get vaceinated or you don't
come to class.
:77 7 (A N 7 V). you can't come to class and no
vaccinated.
Contrapositive. P-> a :77 - a -> 7p
P Q P > Q T Q > P
P F T T T T
F T F T T
T F F T F F
TTTFIT
7 V > 7 A: the one who not vaccinated can't attend
the class.
Converse of P-1 Q 25 Q->P.
the converse has no relation with the origin statement.
Equivelent things: P->Q 7Q->7P
7PU9 7(PA79)
7 P then Q
Pimplies Q
Q A P
Ponty of Q
Pis a sufficient wonderson for Q.

Q's a necessary condition for P

,