Simple Linear Regression: A Closer Look at Assumptions

TRANSFORMATIONS

GOODNESS OF FIT AND LACK OF FIT TESTS

On November 7, 2000, the election between G.W. Bush and Al Gore came down to electoral votes from Florida

Gore was projected the winner.

Then Bush was projected the winner.

Gore conceded.

Bush's lead was cut to only 1,738 votes.

Gore retracts concession.

Automatic recount invoked.

Bush lead by less than 400 votes!

A strange phenomenon is discovered

In Palm Beach, Buchanan had a large number of votes

Also, there were a large number of ballots that where thrown out because two "chads" were punched out

How many of the votes for Buchanan were meant for Gore?

Residuals Plot

Residual Plot: A plot of $\hat{\mu}(Y|X) - Y$ versus X, can better reveal...

non-linearity

Log Transforms

	X	$\log(X)$
Y	Linear: $\mu\{Y X\} = \beta_0 + \beta_1 X$	Linear-log: $\mu\{Y \mid \log(X)\} = \beta_0 + \beta_1 \log(X)$
log(Y)	Log-linear: $\mu\{\log(Y) X\} = \beta_0 + \beta_1 X$	Log-log: $\mu\{\log(Y) \log(X)\} = \beta_0 + \beta_1\log(X)$

Log Transforms: Example

The Richter magnitude scale (also Richter scale) assigns a magnitude number to quantify the size of an earthquake

It is a "base-10" logarithmic scale

It computes the ratio of the maximum amplitude of the seismic wave to a baseline level

Comment on Transformations

Transformations are like medications, you should only be using them if you really need them and there are always side-effects

Example: Meat Processing and Acidity

A certain kind of meat processing may begin once the pH in postmortem muscle of a steer carcass decreases to 6.0

The pH at time of slaughter is around 7.0 to 7.2.

It is not practical to monitor the pH decline for each animal so an estimate is needed of the time after slaughter at which the pH reaches 6.0

To estimate this time, 10 steer carcasses were assigned to be measured for

pH at one of five times after slaughter

Linear-Linear

Means seem slightly curved: Try log transform of X

Linear-Log

Log Transforms: Linear-Log

$$\mu\{Y|\log(X)\} = \beta_0 + \beta_1 \log(X)$$

$$\mu\{Y|\log(2X)\} = \beta_0 + \beta_1 \log(2X)$$

$$\mu\{Y|\log(2X)\} - \mu\{Y|\log(X)\} = \beta_0 + \beta_1 \log(2X) - (\beta_0 + \beta_1 \log(X))$$

$$= \beta_1 (\log(2X) - \log(X))$$

$$= \beta_1 (\log(X) + \log(2) - \log(X))$$

$$= \beta_1 \log(2)$$

"a doubling of the explanatory variable is associated with a change of $\beta_1 \log(2)$ in the mean of the response"

Confidence intervals can be obtained by multiplying the end points by log(2)

Interpretation: Linear - Log

Parameter Estimates							
Variable	DF	Parameter Estimate		t Value	Pr > t		
Intercept	1	6.98363	0.04853	143.90	<.0001		
logtime	1	-0.72566	0.03443	-21.08	<.0001		

$$\hat{\mu}\{pH \mid log(Time)\} = 6.984 - 0.7257 log(Time)$$

There is evidence that each doubling of time is associated with a mean pH decrease of $(-0.72556)\log(2) = -0.503$

A 95% confidence interval is from $((-0.726 - 2.31*0.034)\log(2), (-0.726 + 2.31*0.034)\log(2)) = (-0.558, -0.448)$

Fit a SLR of Buchanan votes on Bush votes

Build a prediction interval at the observed number of Bush votes

With this, we can predict how many votes Buchanan should receive given the explanatory variable Bush votes

How many of the votes for Buchanan were meant for Gore?

Residual Plot: A plot of $\hat{\mu}(Y|X) - Y$ versus X, can better reveal

- non-linearity
- non constant variance
- outliers

Scatterplot: Buchanan vs. Bush

Root MSE	353.92221	R-Square	0.3889
Dependent Mean	258.46269	Adj R-Sq	0.3795
Coeff Var	136.93358		

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	
Intercept	1	45.28986	54.47942	0.83	0.4088	
bush	1	0.00492	0.00076444	6.43	<.0001	

Reminder: Correlation

The <u>sample correlation coefficient</u> describes the "degree of linear association between X and Y"

It is commonly denoted "r" and must be between -1 and 1

It is symmetric with respect to X and Y (unlike regression)

Often, we write $R^2 = r^2$ instead which is between 0 and 1

Root MSE	353.92221	R-Square	0.3889				
Dependent Mean	258.46269	Adj R-Sq	0.3795				
Coeff Var	136.93358						
Parameter Estimates							

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t		
Intercept	1	45.28986	54.47942	0.83	0.4088		
bush	1	0.00492	0.00076444	6.43	<.0001		

Root MSE	112.45299	R-Square	0.7518
Dependent Mean	210.75758	Adj R-Sq	0.7479
Coeff Var	53.35656		

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	
Intercept	1	65.57350	17.33043	3.78	0.0003	
bush	1	0.00348	0.00025009	13.92	<.0001	

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t		
Intercept	1	4.14172	0.11566	35.81	<.0001		
bush	1	0.00001541	0.00000167	9.23	<.0001		

Log-linear model:

 $\mu\{\log (Buchanan)|Bush\} = \beta_0 + \beta_1 Bush$

Parameter Estimates								
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t			
Intercept	1	-1031.98962	107.96330	-9.56	<.0001			
logbush	1	127.48075	10.95651	11.64	<.0001			

Linear-log model:

 μ {Buchanan| log (Bush)} = $\beta_0 + \beta_1 \log(Bush)$

Parameter Estimates							
Variable	DF	Parameter Estimate		t Value	Pr > t		
Intercept	1	-2.34149	0.35442	-6.61	<.0001		
logbush	1	0.73096	0.03597	20.32	<.0001		

Log-log model:

 $\mu\{\log(\text{Buchanan})|\log(\text{Bush})\} = \beta_0 + \beta_1 \log(\text{Bush})$

Log Transforms: Log-Linear

$$\mu\{\log(Y)|X\} = \beta_0 + \beta_1 X$$

Suppose the distribution of log(Y) is symmetric, then:

$$Median(Y|X) = e^{\beta_0}e^{\beta_1 X}$$

Median(Y|X + 1)/ Median(Y|X) =
$$e^{\beta_0} e^{\beta_1(X+1)}/e^{\beta_0}e^{\beta_1(X)}$$

= $e^{\beta_1(X+1)}/e^{\beta_1(X)}$
= $e^{\beta_1(X)}e^{\beta_1}/e^{\beta_1(X)}$
= e^{β_1}

"a 1 unit increase in X is associated with a multiplicative change of e^{β_1} in Median(Y|X)"

Confidence intervals can be obtained by exponentiating the end points

Log-log model:

 $\mu\{\log(\text{Buchanan})|\log(\text{Bush})\} = \beta_0 + \beta_1 \log(\text{Bush})$

Parameter Estimates						
Variable	DF	Parameter Estimate		t Value	Pr > t	
Intercept	1	-2.34149	0.35442	-6.61	<.0001	
logbush	1	0.73096	0.03597	20.32	<.0001	

 $Median(Buchanan|Bush) = e^{\beta_0}Bush^{\beta_1}$

A doubling of the votes for Bush is associated with a multiplicative change of $2^{0.731}$ = 1.66 in the (estimated) median of the number of Buchanan votes

In other words, a doubling of votes for Bush is associated with a 66% increase in the estimated median of Buchanan's votes

A 95% confidence interval for β_1 is:

(0.731 - 2*0.036, 0.731 + 2*0.036) = (0.659, 0.803)

Therefore a 95% confidence interval for the median increase after a doubling of Bush votes is $(2^{0.659}, 2^{0.803}) = (1.58, 1.74)$.

Parameter Estimates										
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t					
Intercept	1	-2.34149	0.35442	-6.61	<.0001					
logbush	1	0.73096	0.03597	20.32	<.0001					

```
\hat{\mu}\{\log(\text{Buchanan}) | \log(\text{Bush})\}\
= \hat{\beta}_0 + \hat{\beta}_1 \log(\text{Bush})

= -2.34 + 0.731(\log(\text{Bush}))

= -2.34 + 0.731(11.93) (log(152846) = 11.93)

= 6.38
```

Therefore: Buchanan = $e^{6.38}$ = 589.93 votes

95% Prediction Interval for Buchanan Votes at Bush Votes = 152,846 is (251,1399)

- The actual vote count for Buchanan: 3407 votes
- Prediction: at least (3407 1399 = 2008) votes were not meant for Buchanan
- If at least 400 would have been cast for Gore, the world could be very different

Insulation and Voltage Data 4

Time	Voltage	:
5.7	9	26
1579.5	2	26
2323.	7	26
68.8	5	28
108.2	9	28
110.2	9	28
426.0	7	28
1067.	6	28
7.7	4	30
17.0	5	30
20.4	6	30
21.0	2	30
22.6	6	30
43.	4	30
47.	3	30
139.0	7	30
144.1	2	30
175.8	8	30
194.	9	30

In an industrial laboratory, under uniform conditions, batches of electrical insulating fluid were subjected to constant voltages until the insulating property of the fluids broke down. Seven different voltage levels, spaced 2 kilovolts apart from 26 to 38 kV were studied. The measured responses were the times in minutes, until breakdown.

$$\mu\{Y|X\} = \beta_0 + \beta_1 X \rightarrow \mu\{\text{Time}|\text{Voltage}\} = \beta_0 + \beta_1 \text{Voltage}$$

(identifying *Y* and *X* is an important part of the analysis)

$$n = 76$$

A Linear-Linear Model

A Log-Linear Model

 $\mu\{\log(\text{Time})|\text{Voltage}\} = \beta_0 + \beta_1 \text{Voltage}$

Parameter Estimates										
Variable	DF	Parameter Estimate		t Value	Pr > t					
Intercept	1	18.95546	1.91002	9.92	<.0001					
voltage	1	-0.50736	0.05740	-8.84	<.0001					

Interpretation: Log – Linear

Parameter Estimates										
Variable	DF	Parameter Estimate		t Value	Pr > t					
Intercept	1	18.95546	1.91002	9.92	<.0001					
voltage	1	-0.50736	0.05740	-8.84	<.0001					

"We estimate that a 1 kV increase in voltage leads to a multiplicative change in median time to insulation breakdown of e^{-0.507} = 0.602"

(That is, a 40% decrease. The causal language is due to randomization)

A 95% confidence interval for β_1 is (-0.621, -0.393). Therefore a 95% confidence interval for e^{β_1} is (0.537, 0.675)

Regression ANOVA table

We can consider three different models for the mean relationship between X and Y

$$\mu\{Y|X\} = \mu_X \qquad \text{(separate means model)} \qquad \text{(Treats voltage as nominal)}$$

$$\mu\{Y|X\} = \beta_0 + \beta_1 X \qquad \text{(simple linear regression, SLR)}$$

$$\mu\{Y|X\} = \mu \qquad \text{(equal means model)}$$

Reminder: We can construct a classic ANOVA table comparing

ESS = RSS(reduced) - RSS(full) = RSS(equal means) - RSS(separate means)

Also, we can construct an ANOVA table for SLR by comparing:

ESS = RSS(reduced) - RSS(full) = RSS(equal means) - RSS(SLR)

Regression ANOVA table

(Variance Estimate: $\hat{\sigma}_{SM}^2$)

```
(Display 8.8 in book)
     DATA voltage;
           SET voltage;
           logTime = log(time);
     RUN:
                                                  (Equal means model vs. separate means)
(Treats voltage as nominal)
                                                          DF
                                                              Sum of Squares
                                                                           Mean Square
                                                                                      F Value
                                                                                             Pr > F
     PROC GLM DATA = voltage;
                                              Source
                                                                             32,7462344
                                                                 196.4774066
          CLASS voltage;
                                              Model
                                                                                        13.00
                                                                                             <.0001
                                                           6
          MODEL logTime = voltage;
                                              Error
                                                           69
                                                                 173.7489206
                                                                             2.5181003
     RUN;
                                                                 370.2263272
                                              Corrected Total
                                                           75
```

(Treats voltage as interval)

Voltage

-0.50736

0.05740

-8.84

<.0001

(Variance Estimate: $\hat{\sigma}^2$)

<pre>PROC REG DATA = voltage;</pre>						Analysis of Variance						
<pre>MODEL logTime = voltage;</pre>						_		Sum of	Mean	/_		
RUN;					Source	DF	Squares	Square	F Value	Pr > F		
Parameter Estimates					Model	1	190.15149	190.15149	78.14	<.0001		
		Parameter	Standard			Error	74	180.07484	2.43344			
Variable	DF	Estimate	Error	t Value	Pr > t	Corrected Total	75	370.22633				
Intercept	1	18.95546	1.91002	9.92	<.0001							

(Equal means model vs. SLR model)

Checking the SLR Assumption Using Replication

We can consider three different models for the mean relationship between X and Y (note: in the voltage example, we have $Y = \log(\text{Time})$)

```
\mu\{Y|X\} = \mu_X \qquad \text{(separate means model)} \mu\{Y|X\} = \beta_0 + \beta_1 X \qquad \text{(simple linear regression, SLR)} \mu\{Y|X\} = \mu \qquad \text{(equal means model)}
```

We can construct an ANOVA table comparing

```
ESS = RSS(reduced) - RSS(full) = RSS(equal means) - RSS(separate means)
```

ESS = RSS(reduced) – RSS(full) = RSS(SLR) – RSS(separate means)

We can construct an ANOVA table out of SLR by comparing:

ESS = RSS(reduced) - RSS(full) = RSS(equal means) - RSS(SLR)

Checking the SLR Assumption Using Replication (Variance Estimate: $\hat{\sigma}_{SM}^2$)

$$F_{lof} = \frac{\frac{\partial \mathcal{L}}{\partial f_{SLR} - df_{SM}}}{\hat{\sigma}_{SM}^2}$$

$$F_{lof} = \frac{\frac{(180.07 - 173.75)}{(74 - 69)}}{2.52}$$

(Under H_0 , F_{lof} has $F_{lof} = 0.502$ a F-distribution w/ & _deg. of freedom)

USING REPIICALI	(variance i	stimate	(σ_{SM})			
			. 11 m	odell		
Test: is SLR "almost" as good as separa	ate means?	٠i٢	nate from full.			
H_0 : The SLR model is adequate	avariance	estii				
H_A : The SLR model is inadequate (SSR _{SLR} -SSR _{SM})/(df _{SLR} -df _{SM})	(Equal	me	nate from full m	vs. separ	ate me	eans)
E_{1} c =	Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
$\widehat{\sigma}_{SM}^2$	Model	6	196.4774066	32.7462344	13.00	<.0001
(180.07-173.75)/(74-69)	Error	69	173.7489206	2.5181003		
$F_{lof} = \frac{\frac{7(74-69)}{2.52}}{2.52}$	Corrected Total	75	370.2263272			

Analysis of Variance										
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F					
Model	1	190.15149	190.15149	78.14	<.0001					
Error	74	180.07484	2.43344							
Corrected Total	75	370.22633								

(Equal means model vs. SLR model)

Checking the SLR Assumption Using Replication: Goodness of Fit

Test: is SLR "almost" as good as separate means?

 H_0 : The SLR model is adequate

$$H_A$$
: The SLR model is inadequate $F_{lof} = \frac{\frac{(SSR_{SLR} - SSR_{SM})}{(df_{SLR} - df_{SM})}}{\widehat{\sigma}_{SM}^2}$

$$F_{lof} = \frac{{}^{(180.07-173.75)}/{}_{(74-69)}}{2.52}$$

$$F_{lof} = 0.502$$
 (Under H_0 , F_{lof} has a F-distribution w/ _ & _ deg. of freedom)

Caveat: We need multiple Response values to occur at each explanatory variable value for this to be meaningful

```
DATA pvalue;
    pvalue = 1-CDF('F', 0.502, 5, 69);
RUN;
PROC PRINT DATA=pvalue;
RUN;
```

Obs	pvalue
1	0.77372

"There is no evidence that the simple linear regression model of log(time) onto voltage is inadequate for this data"

R^2 : Proportion of Variation Explained

The \mathbb{R}^2 is the percentage of total variation in the response explained by

the model

For the voltage example, this would be interpreted as "51% of the variation in (log) breakdown time is explained by the SLR on voltage"

Analysis of Variance										
Source Sum of Mean Squares Square F Value Pr										
Model	1	190.15149	190.15149	78.14	<.0001					
Error	74	180.07484	2.43344							
Corrected Total	75	370.22633								

Root MSE	1.55995	R-Square	0.5136
Dependent Mean	2.14566	Adj R-Sq	0.5070
Coeff Var	72.70267		

Parameter Estimates										
Variable	t Value	Pr > t								
Intercept	1	18.95546	1.91002	9.92	<.0001					
Voltage	1	-0.50736	0.05740	-8.84	<.0001					

Getting Confidence and Prediction Intervals: SAS

```
DATA prediction;
   INPUT voltage time logTime;
   DATALINES;
   ANDEL logTime = voltage / CLB CLI CLM;
   RUN;
   MODEL logTime = voltage / CLB CLI CLM;
   RUN;
```

	Output Statistics												
Obs	Dependent Variable	Predicted Value	Std Error Mean Predict	95% CI	_ Mean	95% CL	Predict	Residual					
1		2.2124	0.1791	1.8556	2.5693	-0.9163	5.3411						
2	1.7561	5.7640	0.4467	4.8738	6.6541	2.5308	8.9972	-4.0078					
3	7.3649	5.7640	0.4467	4.8738	6.6541	2.5308	8.9972	1.6009					
4	7 7509	5 7640	0.4467	4.8	i								

"We predict the median time to breakdown at 33 kV is between 6.39 and 13.05 sec."

	Parameter Estimates							
	Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	95% Confidence Limits	
	Intercept	1	18.95546	1.91002	9.92	<.0001	15.14966	22.76125
	voltage	1	-0.50736	0.05740	-8.84	<.0001	-0.62173	-0.39300