Elliptic Curve Criptography

Paolo Bettelini

Contents

1	Elliptic Curves	2
	1.1 Definition	
	1.2 Addition	
	1.3 Scalar Multiplication	•
2	Finite field	
	Diffie Hellman	•
	3.1 Definition	•
	3.2 Using elliptic curves	

1 Elliptic Curves

1.1 Definition

An elliptic curve E is a set of points such that

$$E = \{(x,y) | y^2 = x^3 + ax + b\} \cup \{O\}, \quad 4a^3 + 27b^2 \neq 0$$

Where O is a point at infinity.

The elliptic curve is symmetrical about the x-axis.

The opposite of a point P is its reflection -P.

The coefficients a, b be part of

- \mathbb{R} Real numbers
- Q Rational numbers
- C Complex numbers
- $\mathbb{Z}/p\mathbb{Z}$ Finite field

1.2 Addition

Given two points $P, Q \in E$ we can describe a unique third point.

We take the line that intersects P and Q, the opposite of the third intersection with the curve is out point.

$$P+Q=-R$$

If P = Q, the intersection line will be given by the tangent at that point.

If
$$P = -Q$$
, $P + Q = O$.

If P = -P (inflection point, the concavity of the curve changes) R = P, P + P = -P = P.

We consider -O to be O.

The intersection line mx + q is given by

$$m = \frac{P_y - Q_y}{P_y - Q_x}$$

and

$$q = P_y - mP_x$$

1.3 Scalar Multiplication

Given a point $P \in E$, multiplying kP where $k \in \mathbb{Z}$ is equivalent to adding P to itself k times. Computing 2P is the equivalent of P + P which can be calculated as P + Q = -R.

2 Finite field

3 Diffie Hellman

3.1 Definition

Diffie–Hellman key exchange is a method of securely exchanging cryptographic keys over a public channel. [...]

3.2 Using elliptic curves

[...] TODO