1. Evaluate the following indefinite integrals using partial fractions:

(a)
$$\int \frac{x}{x^2 - 9} \, dx$$

(c)
$$\int \frac{2x+1}{x^3-4x^2+4x} \, dx$$

(b)
$$\int \frac{x+2}{x^2-4x+3} dx$$

(d)
$$\int \frac{3x-7}{x(x^2+4x+7)} dx$$

2. Evaluate the following indefinite integrals by integration by parts:

(a)
$$\int x^2 e^x dx$$

(d)
$$\int x \sin x \, dx$$

(b)
$$\int x \ln x \, dx$$

(e)
$$\int e^x \sin x \, dx$$

(c)
$$\int x^2 \cos x \, dx$$

(f)
$$\int \ln x \, dx$$

3. Evaluate the following definite integrals:

(a)
$$\int_{-2}^{2} \frac{1}{x+3} \, dx$$

(e)
$$\int_0^{\sqrt{\pi}} x \cos\left(x^2 - \frac{\pi}{2}\right) dx$$

(b)
$$\int_0^2 (x^4 + 3x^2 + 2) dx$$
 (f) $\int_0^\pi x \sin x dx$

(f)
$$\int_0^\pi x \sin x \, dx$$

(c)
$$\int_{-\pi}^{\pi} (5\sin x - 7\cos x) dx$$
 (g) $\int_{0}^{1} \frac{1}{x^2 - 4} dx$

(g)
$$\int_0^1 \frac{1}{x^2 - 4} dx$$

(d)
$$\int_{-3}^{2} 2x \, e^{(x^2+1)} \, dx$$

(h)
$$\int_0^2 \frac{1}{x^2 + 4} \, dx$$

- 4. Find the following areas:
 - (a) Find the area of the region bounded by the curve $y = \sin x$ and the x-axis between $x = -\pi$ and $x = \pi$.
 - (b) Find the area of the region bounded by the curve $y = \cos x$ and the x-axis between $x = -\frac{\pi}{2}$ and $x = \frac{3\pi}{2}$
 - (c) Find the area of the region bounded by the curve $y = x^3$, the straight line y = 8 and the y-axis.