15

WHAT IS CLAIMED IS:

- A method for determining the thickness of a wall of a 1 1. graphic model, comprising: 2 loading a graphic model; 3 4 generating a surface mesh on the faces of the model; generating an internal body topology of the graphic 5 6 model, corresponding to the surface mesh; 7 identifying a first element in a first wall side of 8 the graphic model 9 traversing the internal body topology to identify a 10 second element in a second wall side of the 11 graphic model; measuring the distance between the first element and 12 13 the second element; and 14 storing a wall thickness, the wall thickness
- The method of claim 1, wherein the internal body topology is a 3D volume meshing, tetrahedron-type topology.

corresponding to the measured distance.

- 1 3. The method of claim 1, wherein the internal body topology is a 3D grid mapping.
- 1 4. The method of claim 3, wherein the traversal direction 2 is along the normal vector of the mesh element using 3 the 3D grid mapping topology for efficient searching.

- The method of claim 3, wherein the traversal range is guided by the normal vector of the mesh element and is within a range of angles using the 3D grid mapping topology for efficient searching.
- 1 6. The method of claim 1, wherein the mesh points are projected onto the faces to achieve accurate results.
- 7. The method of claim 1, further comprising adding sampling points to the surface mesh for more accurate results.
- 1 8. The method of claim 3, wherein the internal body 2 topology is represented as cubes, and is maintained by 3 a tree structure to perform efficient searching.

normal direction.

3

1	9.	A method for determining the thickness of a wall of a
2		graphic model, comprising:
3		identifying a first element in a surface mesh of a
4		model;
5 .		projecting the first element onto a face of the model
6		to identify a first projected point;
7		determining a face normal direction at the projected
8		point;
9		searching for a second element in the surface mesh of
10		the model;
11		identifying the second element in the surface mesh of
12		the model;
13		projecting the second element onto a face of the model
14		to identify a second projected point; and
15		determining the distance between the first element and
16		the second element.
1	10.	The method of claim 9, wherein the searching is
2		performed from the first element and in the face

1	11.	A data processing system having at least a processor
2		and accessible memory, comprising:
3		means for loading a graphic model;
4		means for generating a surface mesh on the faces of
5		the model;
6		means for generating an internal body topology of the
7		graphic model, corresponding to the surface mesh;
8		means for identifying a first element in a first wall
9		side of the graphic model
10		means for traversing the internal body topology to
11		identify a second element in a second wall side
12		of the graphic model;
13		means for measuring the distance between the first
14		element and the second element; and
15		means for storing a wall thickness, the wall thickness
16		corresponding to the measured distance.

- 1 12. The data processing system of claim 11, wherein the 2 internal body topology is a 3D volume meshing, 3 tetrahedron-type topology.
- 1 13. The data processing system of claim II, wherein the internal body topology is a 3D grid mapping.
- 1 14. The data processing system of claim 13, wherein the
 2 traversal direction is along the normal vector of the
 3 mesh element using the 3D grid mapping topology for
 4 efficient searching.

- 1 15. The data processing system of claim 13, wherein the
 2 traversal range is guided by the normal vector of the
 3 mesh element and is within a range of angles using the
 4 3D grid mapping topology for efficient searching.
- 1 16. The data processing system of claim 11, wherein the
 2 mesh points are projected onto the faces to achieve
 3 accurate results.
- 1 17. The data processing system of claim 11, further
 2 comprising means for adding sampling points to the
 3 surface mesh for more accurate results.
- 1 18. The data processing system of claim 13, wherein the
 2 internal body topology is represented as cubes, and is
 3 maintained by a tree structure to perform efficient
 4 searching.

3

1	19.	A data processing system having at least a processor
	1).	
2		and accessible memory, comprising:
3		means for identifying a first element in a surface
4		mesh of a model;
5		means for projecting the first element onto a face of
6		the model to identify a first projected point;
7		means for determining a face normal direction at the
8		projected point;
9		means for searching for a second element in the
10		surface mesh of the model;
11		means for identifying the second element in the
12		surface mesh of the model;
13		means for projecting the second element onto a face of
14		the model to identify a second projected point;
15		and
16		means for determining the distance between the first
17		element and the second element.
1	20.	The data processing system of claim 19, wherein the
2		searching is performed from the first element and in

the face normal direction.

1	21.	A computer program product tangibly embodied in a
2		machine-readable medium, comprising:
3		instructions for loading a graphic model;
4		instructions for generating a surface mesh on the
5		faces of the model;
6		instructions for generating an internal body topology
7		of the graphic model, corresponding to the
8		surface mesh;
9		instructions for identifying a first element in a
10		first wall side of the graphic model
11		instructions for traversing the internal body topology
12		to identify a second element in a second wall
13		side of the graphic model;
14		instructions for measuring the distance between the
15		first element and the second element; and
16		instructions for storing a wall thickness, the wall
17		thickness corresponding to the measured distance.

- 1 22. The computer program product of claim 21, wherein the 2 internal body topology is a 3D volume meshing, 3 tetrahedron-type topology.
- 1 23. The computer program product of claim 21, wherein the internal body topology is a 3D grid mapping.
- The computer program product of claim 23, wherein the traversal direction is along the normal vector of the mesh element using the 3D grid mapping topology for efficient searching.

- The computer program product of claim 23, wherein the traversal range is guided by the normal vector of the mesh element and is within a range of angles using the 3D grid mapping topology for efficient searching.
- 1 26. The computer program product of claim 21, wherein the 2 mesh points are projected onto the faces to achieve 3 accurate results.
- The computer program product of claim 21, further
 comprising instructions for adding sampling points to
 the surface mesh for more accurate results.
- The computer program product of claim 23, wherein the internal body topology is represented as cubes, and is maintained by a tree structure to perform efficient searching.

2

3

1	29.	A computer program product tangibly embodied in a
2		machine-readable medium, comprising:
3		instructions for identifying a first element in a
4		surface mesh of a model;
5		instructions for projecting the first element onto a
6		face of the model to identify a first projected
7		point;
8		instructions for determining a face normal direction
9		at the projected point;
10		instructions for searching for a second element in the
11		surface mesh of the model;
12		instructions for identifying the second element in the
13		surface mesh of the model;
14		instructions for projecting the second element onto a
15		face of the model to identify a second projected
16		point; and
17		instructions for determining the distance between the
18		first element and the second element.
1	30.	The computer program product of claim 29, wherein the

30. The computer program product of claim 29, wherein the searching is performed from the first element and in the face normal direction.