CS 601 Spring 2020: Problem Set 3.

Problem 1. (10 points) Show that every infinite TM-recognizable language has an infinite decidable subset.

Problem 2. (10 points) A *queue automaton* is like a push-down automaton except that the stack is replaced by a queue. A *queue* is a tape allowing symbols to be written only on the left-hand end and read only at the right-hand end. Each write operation (we'll call it a *push*) adds a symbol to the left-hand end of the queue and each read operation (we'll call it a *pull*) reads and removes a symbol at the right-hand end. As with a PDA, the input is placed on a separate read-only input tape, and the head on the input tape can move only from left to right. The input tape contains a cell with a blank symbol following the input, so that the end of the input can be detected. A queue automaton accepts its input by entering a special accept state at any time. Show that a language can be recognized by a deterministic queue automaton if and only if the language is Turing-recognizable.

Problem 3. (10 points) Prove that the language $A \setminus B = \{w : wx \in A, x \in B\}$, where A is a CFL and B is regular is a CFL.

Problem 4. (10 points) We have seen several examples of undecidable languages of the form

 $\mathcal{L} = \{\langle M \rangle: M \text{ is a } TM \text{ whose language } L(M) \text{ satisfies property } P\}$

Examples of P include: $L(M) = \phi$, $|L(M)| \ge 2$.

Notice that in each example two conditions are satisfied:

- a) If $L(M_1) = L(M_2)$ then $\langle M_1 \rangle$ and $\langle M_2 \rangle$ are both in \mathcal{L} or are both not in \mathcal{L} , and
- b) There are TMs in \mathcal{L} and TMs that are not in \mathcal{L} .

Use the recursion theorem to prove a more general result: If P is any property that satisfies conditions a and b, then $\mathcal L$ is undecidable. In other words, every interesting property of TMs that depends on the language of the TM is undecidable.

Hint: To begin, let Assume that \mathcal{L} is decidable and let TM \mathcal{D} decide \mathcal{L} . Furthermore, since condition b is satisfied by P, let $\langle M \rangle \in \mathcal{L}$ and $\langle N \rangle \notin \mathcal{L}$.

Problem 5. (10 points) Language A is mapping-reducible to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \to \Sigma^*$ such that $\forall w \in \Sigma^*$: $w \in A$ if and only if $f(w) \in B$.

- a) (5 points) Show that \leq_m is a transitive relation.
- b) (5 points) Show that if A is TM-recognizable and $A \leq_m \bar{A}$, then A is decidable. (Hint: first argue that $A \leq_m \bar{A}$ implies that $\bar{A} \leq_m A$.)