Projet 4: pre-labo 1

Groupe 7

March 4, 2015

1 Calcul de la différence de temps

Afin d'observer les répliques, une configuration a été pensée (Figure 1 et 2). d est la distance Tx et Rx alors que x est la distance minimale entre Rx (ou Tx) et la plaque. Le temps que met l'onde pour passer de Rx à Tx est donné par l'équation 1. L'équation 2 donne le temps du trajet de l'onde réfléchie sur la plaque. c est la vitesse de la lumière.

$$t_1 = \frac{d}{c} \tag{1}$$

$$t_2 = \sqrt{(\frac{d}{2})^2 + x^2} * \frac{2}{c} \tag{2}$$

Le première situation sera réalisée pour obtenir un grand Δt alors que la seconde pour en obtenir un plus petit.

$$\Delta t = t_2 - t_1 = \left(2\sqrt{\left(\frac{d}{2}\right)^2 + x^2} - d\right) * \frac{1}{c}$$
(3)

Figure 1: Première configuration

Figure 2: Deuxième configuration

2 Détermination des paramètres géométriques

Afin de ne pas avoir de recouvrement entre deux répliques d'une impulsion, il faut que Δt soit plus grand que le temps d'une impulsion (1ns). De plus lors du labo il y aura des contraintes d'espace. Pour calculer les set-up les Δt et les d sont fixés. Le paramètre x se trouve alors grâce aux deux précédents (Equation 4). Les différents set-up qui seront testés se trouvent à la Figure 3.

$$x = \sqrt{\left(\frac{\Delta tc}{2}\right)^2 + \frac{dc\Delta t}{2}}\tag{4}$$

configuration	$\Delta t[ns]$	d[m]	x[m]	Rx	Tx	Plaque
0	1.5	2	0.7073	(0,0)	(2,0)	(1, 0.7073)
1	3	2	1.0496	(0,0)	(2,0)	(1, 1.0496)
2	4	2	1.2485	(0,0)	(2,0)	(1, 1.2485)
3	6	1	1.3070	(0,0)	(1,0)	(0.5, 1.3070)
4	8	0.5	1.4274	(0,0)	(0.5, 0)	(0.25, 1.4274)
5	10	0.5	1.7310	(0,0)	(0.5, 0)	(0.25, 1.7310)

Figure 3: Set-up pour le premier labo

3 Échantillonnage

Afin de respecter le théorème de Shannon-Nyquist, nous allons échantillonner à 20GHz. On enregistre un sample toutes les 50ps. De plus nous comptons enregistrer de 100 périodes (de 106.6ns) afin de pouvoir mieux traiter le phénomène à observer. Cela nous fait donc 213200 échantillons.