Übungen zur Einführung in die Geometrie und Topologie - Blatt 1

Uni Bonn, SS 2023

Aufgabe 1. Sei (X, d) ein metrischer Raum. Beweise oder widerlege, dass die Abbildung $X \to \mathbb{R}, x \mapsto d(x, y)$ für alle $y \in X$ stetig ist.

Aufgabe 2. Sei (X, d) ein metrischer Raum. Beweise oder widerlege, dass es eine Metrik \overline{d} auf X derart gibt, dass $\overline{d}(x, y) \leq 1$ für alle $x, y \in X$ gilt und (X, d) und (X, \overline{d}) homöomorph sind.

Aufgabe 3. Beweise oder widerlege, dass für jede Teilmenge A eines jeden topologischen Raumes X gilt:

(a)
$$\overline{\operatorname{int}(\overline{A})} = \overline{A}$$
,

(b)
$$\operatorname{int}(\overline{\operatorname{int}(\overline{A})}) = \operatorname{int}(\overline{A}),$$

(c)
$$int(\overline{int(A)}) = int(A),$$

(d)
$$\overline{\operatorname{int}(\overline{\operatorname{int}(A)})} = \overline{\operatorname{int}(A)},$$

wobei $\operatorname{int}(A) = A^{\circ}$ das Innere und \overline{A} den Abschluss von A in X bezeichnen.

Aufgabe 4. Sei A eine Teilmenge des topologischen Raums X. Der Rand ∂A ist die Menge der Punkte x in X, für die jede offene Menge U von X mit $x \in U$ sowohl mit A als auch mit $X \setminus A$ einen nicht-leeren Schnitt haben. Beweise oder widerlege:

- (a) ∂A ist abgeschlossen,
- (b) $\overline{A} = A \cup \partial A$,
- (c) $\partial A = \overline{A} \cap \overline{X \setminus A}$,
- (d) A abgeschlossen $\iff \partial A = \emptyset$.