10 Polinoame

Ecuatii de grad < 410.1

P 1. Rezolvați următoarele ecuații de grad 3:

- a) $x^3 6x + 9 = 0$;
- b) $x^3 + 12x + 63 = 0$;
- c) $x^3 + 9x^2 + 18x + 28 = 0$;
- d) $x^3 + 6x^2 + 30x + 25 = 0$:
- e) $x^3 + 18x + 15 = 0$;
- f) $x^3 6x^2 + 57x 196 = 0$;
- g) $x^3 + 3x 2i = 0$;
- h) $x^3 6ix + 4(1-i) = 0$.
- **P 2.** Dacă x_1, x_2, x_3 sunt rădăcinile polinomului $X^3 + pX + q$, arătați că

$$(x_1 - x_2)^2 (x_1 - x_3)^2 (x_2 - x_3)^2 = -4p^3 - 27q^2.$$

- P 3. Rezolvați următoarele ecuații de grad 4:
- a) $x^4 2x^3 + 2x^2 + 4x 8 = 0$;
- b) $x^4 + 2x^3 2x^2 + 6x 15 = 0$;
- c) $x^4 x^3 x^2 + 2x 2 = 0$;
- d) $x^4 4x^3 + 3x^2 + 2x 1 = 0$;
- e) $x^4 6x^3 + 10x^2 2x 3 = 0$:
- f) $x^4 2x^3 + 4x^2 + 2x 5 = 0$;
- g) $x^4 4x^3 20x^2 8x + 4 = 0$;
- h) $x^4 x^3 + 2x 1 = 0$.
- **P** 4. Dacă x_1, x_2, x_3, x_4 sunt rădăcinile polinomului de grad $4 f = X^4 + aX^3 + bX^2 + cX + d \in \mathbb{C}[X]$, să se determine polinomul q de grad 3 monic, care are rădăcinile

$$y_1 = x_1x_2 + x_3x_4$$
, $y_2 = x_1x_3 + x_2x_4$, $y_3 = x_1x_4 + x_2x_3$.

10.2 Divizibilitate. Descompuneri în factori

- **P 5.** Determinati $a \in \mathbb{R}$ astfel încât 1 să fie rădăcină dublă a polinomului $P = X^n aX^{n-1} + aX 1$.
- P 6. Determinați cel mai mare divizor comun al polinoamelor:

- a) $X^4 + X^3 3X^2 4X 1$ şi $X^3 + X^2 X 1$; b) $X^5 + X^4 X^3 2X 1$ şi $3X^4 + 2X^3 + X^2 + 2x 2$; c) $X^6 + 2X^4 4X^3 3X^2 + 8X 5$ şi $X^5 + X^2 X + 1 = 0$.
- **P** 7. Determinati restul împărtirii polinomului $X^{2021} 1$ prin $(X^2 + 1)(X^2 + X + 1)$.
- **P 8.** Fie $a, b, u, v \in \mathbb{C}$, iar $P \in \mathbb{C}[X]$ cu proprietatea că P dă restul u la împărțirea prin X a, respectiv v la împărțirea prin X - b. Determinați restul împărțirii lui P prin (X - a)(X - b).
- P 9. Determinați polinomul de grad minim care
- a) dă restul 2X la împărțirea prin $(X-1)^2$ și 3X la împărțirea prin $(X-2)^3$; b) dă restul X^2+X+1 la împărțirea prin $X^4-2X^3-2X^2+10X-7$ și $2X^2-3$ la împărțirea prin $X^4-2X^3-3X^2+13X-10$.
- P 10. Determinați rădăcinile multiple ale polinoamelor:
- a) $X^6 6X^4 4X^3 + 9X^2 + 12X + 4$;
- b) $X^5 6X^4 + 16X^3 24X^2 + 20X 8$;
- c) $X^7 3X^6 + 5X^5 7X^4 + 7X^3 5X^2 + 3X 1$;
- d) $X^8 + 2X^7 + 5X^6 + 6X^5 + 8X^4 + 6X^3 + 5X^2 + 2X + 1$.
- **P 11.** Fie $f \in \mathbb{C}[X]$ un polinom, iar $a, b \in \mathbb{C}$ două rădăcini distincte ale lui. Dacă g și h sunt câturile împărțirii polinomului f prin X-a, respectiv X-b, arătați că orice rădăcină a lui f diferită de a și b este rădăcină a polinomului k = g - h.
- **P 12.** Determinați două rădăcini întregi ale polinomului $f = X^4 5X 6$, după care determinați toate rădăcinile lui f.

P 13. Arătați că dacă rădăcinile unui polinom f sunt simple, atunci f divide un polinom g dacă și numai dacă pentru orice $\alpha \in Z(f)$ are loc $g(\alpha) = 0$.

P 14. Determinați valorile parametrilor naturali m, n, p astfel încât

- a) $(X^2 + X + 1)|(X^{3m} + X^{3n+1} + X^{3p+2});$ b) $(X^2 X + 1)|(X^{3m} X^{3n+1} + X^{3p+2});$ c) $(X^4 + X^2 + 1)|(X^{3m} + X^{3n+1} + X^{3p+2});$
- d) $(X^2 + X + 1) | ((X + 1)^m + X^m) |$

 $\begin{array}{llll} \textbf{P 15.} \ \ \textbf{Descompuneți următoarele expresii raționale în fracții simple:} \\ \textbf{a)} \ \ \frac{x^2}{(x-1)(x+2)(x+3)}; & \textbf{b)} \ \frac{3+x}{(x-1)(x^2+1)} & \textbf{c)} \ \frac{x^2}{x^4-16}; & \textbf{d)} \ \frac{x^2}{x^6+27}; & \textbf{e)} \ \frac{n!}{(x-1)(x-2)...(x-n)}; \\ \textbf{f)} \ \ \frac{x}{(x^2-1)^2}; & \textbf{g)} \ \frac{x}{(x+1)(x^2+1)}; & \textbf{h)} \ \frac{5x^2+6x-23}{(x-1)^3(x+1)^3(x-2)}; & \textbf{i)} \ \frac{2x-1}{x(x+1)^2(x^2+x+1)^2}; & \textbf{j)} \ \frac{1}{x(x^2+1)(x^2+4)...(x^2+n^2)}. \end{array}$

P 16. Fie $f(t) = (t - x_1)(t - x_2) \dots (t - x_n)$. Exprimați următoarele sume în funcție de f(t):

a)
$$\sum_{i=1}^{n} \frac{1}{t-x_i}$$
; b) $\sum_{i=1}^{n} \frac{x_i}{t-x_i}$; c) $\sum_{i=1}^{n} \frac{1}{(t-x_i)^2}$.

- $\begin{array}{l} \textbf{P 17.} \ \ \text{Calculați următoarele sume, ştiind că} \ x_1, \ x_2, \ x_3 \ \text{sunt rădăcinile polinomului} \ f : \\ \textbf{a)} \ \ \frac{1}{2-x_1} + \frac{1}{2-x_2} + \frac{1}{2-x_3}, \ \text{unde} \ f = X^3 3X 1; \\ \textbf{b)} \ \ \frac{1}{x_1^2 3x_1 + 2} + \frac{1}{x_2^2 3x_2 + 2} + \frac{1}{x_3^2 3x_3 + 2}, \ \text{unde} \ f = X^3 + X^2 4X + 1; \\ \textbf{c)} \ \ \frac{1}{x_1^2 2x_1 + 1} + \frac{1}{x_2^2 2x_2 + 1} + \frac{1}{x_3^2 2x_3 + 1}, \ \text{unde} \ f = X^3 + X^2 1. \end{array}$

P 18. Fie A_1, A_2, \ldots, A_n vârfurile unui poligon regulat cu centrul în punctul A_0 . Fie, de asemenea z_0, z_1, \ldots, z_n afixele punctelor A_0, A_1, \ldots, A_n . Arătați că dacă f este o funcție polinomială de grad cel mult n-1, atunci

$$f(z_1) + f(z_2) + \dots + f(z_n) = n \cdot f(z_0).$$

P 19. Rezolvați ecuația

$$z^{3} - (3+2i)z^{2} + (5+7i)z - 6(1+i) = 0,$$

știind că admite o rădăcină reală.

Polinoame cu coeficienți întregi

P 20. Fie $f = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0 \in \mathbb{Z}[X]$. Arătați că dacă $k \in \mathbb{Z}$ esteo rădăcină a lui f, atunci $k|a_0$.

P 21. Fie $f = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0 \in \mathbb{Z}[X]$. Arătaţi că $r = \frac{p}{q} \in \mathbb{Q}$ este o rădăcină a lui f dacă şi numai

$$a_n p^n + a_{n-1} p^{n-1} q + \dots + a_{n-k} p^{n-k} q^k + \dots + a_1 p q^{n-1} + a_0 q^n = 0.$$

Deduceți că dacă $p \in \mathbb{Z}$, $q \in \mathbb{N}^*$ și (p,q) = 1, atunci $p|a_0$ și $q|a_n$. În particular, dacă polinomul f este monic(i.e., $a_n = 1$), atunci orice rădăcină rațională a sa este întreagă.

P 22. Fie $f=a_nX^n+a_{n-1}X^{n-1}+\cdots+a_1X+a_0\in\mathbb{Z}[X]$. Arătați că dacă $r=\frac{p}{q}\in\mathbb{Q}$ este o rădăcină a lui f, cu $p, q \in \mathbb{Z}^*, (p, q) = 1)$, atunci

$$(kq-p)|f(k)$$
, $(\forall)k \in \mathbb{Z}$.

P 23. Determinați rădăcinile raționale ale polinoamelor:

- a) $5X^3 4X^2 + 3X + 2$;
- b) $6X^3 + 13X^2 22X 8$;
- c) $3X^4 + 5X^3 + 2X^2 6X 4$;
- d) $X^4 X^3 32X^2 62X 56$;
- e) $4X^3 22X^2 + 7X + 15$;
- f) $40X^3 + 25X^2 + 9X 9$;
- g) $8X^3 + 20X^2 18X 45$;
- h) $6X^4 + X^3 66X^2 + 30X + 56$.

P 24. Fie $f = a_n X^n + a_{n-1} X^{n-1} + \cdots + a_1 X + a_0 \in \mathbb{Z}[X]$. Dacă există un număr prim p cu proprietatea că $p \not | a_n$, $p|a_k, (\forall) k = \overline{0, n-1}, p^2 / a_0$, arătați că f este ireductibil în $\mathbb{Z}[X]$.

- **P 25.** Dacă p este un număr prim, arătați că polinomul $X^{p-1} + X^{p-2} + \cdots + X^2 + X + 1$ este ireductibil în $\mathbb{Z}[X]$.
- **P 26.** Fie $f=a_nX^n+a_{n-1}X^{n-1}+\cdots+a_1X+a_0\in\mathbb{Z}[X]$ cu proprietatea că pentru un număr prim p polinomul $\hat{f} = \hat{a_n}X^n + \hat{a_{n-1}}X^{n-1} + \dots + \hat{a_1}X + \hat{a_0} \in \mathbb{Z}_p[X]$ are acelaşi grad ca f şi este ireductibil în $\mathbb{Z}_p[X]$. Arătaţi că f este ireductibil în $\mathbb{Z}[X]$.
- **P 27.** Determinați toate polinoamele monice ireductibile de grade 2 și 3 din $\mathbb{Z}_2[X]$, $\mathbb{Z}_3[X]$ și $\mathbb{Z}_5[X]$.
- **P 28.** Pentru orice polinom $f \in \mathbb{Z}[X]$ notăm cu c(f) cel mai mare divizor comun al coeficienților săi. Arătați că pentru orice două polinoame $f, g \in \mathbb{Z}[X]$ are loc egalitatea

$$c(f \cdot g) = c(f) \cdot c(g).$$

P 29. Arătați că un polinom $f \in \mathbb{Z}[X]$ ireductibil peste $\mathbb{Z}[X]$ este ireductibil și peste $\mathbb{Q}[X]$.

Polinoame cu coeficienti rationali

- **P 30.** Fie $a, b, d \in \mathbb{Q}$, cu $\sqrt{d} \notin \mathbb{Q}$, iar $f \in \mathbb{Q}[X]$ un polinom având rădăcina $\alpha = a + b\sqrt{d}$ cu multiplicitatea m. Arătați că $\beta = a - b\sqrt{d}$ este de asemenea o rădăcină cu multiplicitatea m a polinomului f.
- **P 31.** Arătați că pentru orice $n \in \mathbb{N}^*$ există un polinom ireductibil $f \in \mathbb{Q}[X]$ de grad n.
- **P 32.** Arătați că dacă un polinom $f \in \mathbb{Q}[X]$ are rădăcina $\sqrt[3]{2}$, atunci $X^3 2|f$.

Polinoame cu coeficienți reali 10.5

- **P 33.** Fie $f \in \mathbb{R}[X]$ un polinom și $z \in \mathbb{C}$ o rădăcină a sa cu multiplicitatea m. Arătați că \overline{z} este de asemenea o rădăcină a polinomului f cu multiplicitatea m.
- **P 34.** Dacă $f: \mathbb{R} \longrightarrow \mathbb{R}$ este o funcție polinomială de grad ≤ 3 , arătați că pentru orice $a, b \in \mathbb{R}$ are loc egalitatea

$$\int_{a}^{b} f(x) dx = \frac{b-a}{6} \cdot \left(f(a) + 4 \cdot f\left(\frac{a+b}{2}\right) + f(b) \right).$$

- **P 35.** a) Arătați că polinomul $P \in \mathbb{R}[X]$, $P = X^4 + 4X^3 1$ are exact două rădăcini reale a și b.
- b) Arătați că produsul ab al celor două rădăcini reale ale polinomului P este soluție a ecuației $x^6 + x^4 + 16x^3 x^2 1 = 0$.
- c) Determinați produsul ab și scrieți polinomul P ca produs de două polinoame de grad 2 cu coeficienți reali.

10.6 Polinoame simetrice

- P 36. Exprimați următoarele polinoame simetrice în funcție de polinoamele simetrice fundamentale:
- a) $X_1^3 + X_2^3 + X_3^3 3X_1X_2X_3$; b) $\sum_{i=1}^{n} X_i^2 X_j$;
- c) $X_1^4 + X_2^4 + X_3^4 2X_1^2X_2^2 2X_1^2X_3^2 2X_2^2X_3^2;$ d) $\sum_{i=1}^{n} X_i^2X_jX_k;$
- e) $\sum_{sym}^{sym} X_i^2 X_j^2 X_k;$

- f) $\sum_{sym}^{sym} X_i^3 X_j X_k;$ g) $\sum_{sym} X_i^3 X_j^2 X_k;$ h) $\sum_{sym} X_i^4 X_j^2 X_k;$
- i) $X_1X_2 + X_3X_4$) $(X_1X_3 + X_2X_4)(X_1X_4 + X_2X_3)$.
- **P 37.** Dacă x_1, x_2, x_3 sunt rădăcinile polinomului $a_3X^3 + a_2X^2 + a_1X + a_0$, unde $a_3 \neq 0$, scrieți următoarele expresii în funcție de coeficienții polinomului:
- a) $a_3^4(x_1-x_2)^2(x_1-x_3)^2(x_2-x_3)^2$; b) $a_3^4(x_1^2-x_2x_3)(x_2^2-x_1x_3)(x_3^2-x_1x_2)$;
- c) $a_3^4(x_1^2 + x_1x_2 + x_2^2)(x_1^2 + x_1x_3 + x_3^2)(x_2^2 + x_2x_3 + x_3^2);$ d) $\frac{(x_1 x_2)^2}{x_1x_2} + \frac{(x_1 x_3)^2}{x_1x_3} + \frac{(x_2 x_3)^2}{x_2x_3}.$