11-228228

Abstract

PROBLEM TO BE SOLVED: To obtain a piezoelectric ceramic composition consisting mainly of potassium sodium lithium ni obate, having such favorable properties as to be >=1,000 in d ielectric constant, >=25% in electromechanical coupling coeff icient Kp , and >200 deg.C in Curie point.

SOLUTION: This piezoelectric ceramic composition consists mainly of a composition of the formula: (1-n) (K1-x-y Nax Liy)m (Nb1-z Taz)O3 -nM1M2M3O3 (wherein, M1 is a trivalent metal atom such as Bi; M2 is a monovalent metal atom such as K, Na or Li; M3 is a tetravalent metal atom such as Ti, Zr, Sn or Hf; (x)>=0.1; (y)<=0.3; (x+y)< 0.75; 0<=(z)<=0.3; 0.98<= (m)<=1.0: 0<(n)<0.1).

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-228228

(43)公開日 平成11年(1999)8月24日

(51) Int.Cl.⁸

酸別記号

FΙ

C 0 4 B 35/00

J

C04B 35/495 H01L 41/187

H01L 41/18

101J

審査請求 未請求 請求項の数2 OL (全 4 頁)

(21)出願番号

特願平10-35716

(71)出顧人 000006231

株式会社村田製作所

京都府長阿京市天神二丁目26番10号

(22)出顧日 平成10年(1998) 2月18日

(72)発明者 木村 雅彦

京都府長岡京市天神二丁目26番10号 株式

会社村田製作所内

(72) 発明者 安藤 陽

京都府長岡京市天神二丁目26番10号 株式

会社村田製作所内

(74)代理人 弁理士 小柴 雅昭 (外1名)

(54) 【発明の名称】 圧電磁器組成物

(57) 【要約】

【課題】 ニオブ酸カリウムナトリウムリチウムを主成分とする圧電磁器組成物において、比誘電率が1000以上で、電気機械結合係数Kpが25%以上で、また、キュリー点が200℃を超えるといった良好な特性を与え得るようにする。

【解決手段】 一般式: (1-n) $(K_{l-x-y} \text{ Na}_x \text{ L} i_y)_{\text{II}}$ $(\text{Nb}_{l-z} \text{ Ta}_z)$ $O_3 - n \text{M1M2M3}O_3$ で表される組成物を主成分とする、圧電磁器組成物。ただし、M1は、Biのような3価の金属、M2は、K、Na、Liのような1価の金属、M3は、Ti、Zr、Sn、Hf等の1価の金属、0.1 \leq x、y \leq 0.3、x+y<0.75、0 \leq z \leq 0.3、0.98 \leq m \leq 1.0、0<n<0.1。

【特許請求の範囲】

【請求項1】 一般式: (1-n) $(K_{1-x-y} \text{ Na}_x \text{ L}_{i_y})_n$ $(\text{Nb}_{i-z}\text{Ta}_z)$ $O_3-n\text{M1M2M3O}_3$ で表される組成物を主成分とする、圧電磁器組成物。ただし、M1は3価の金属元素、M2は1価の金属元素、M3は4価の金属元素、

 $0. 1 \leq x$

 $y \le 0.3$

x+y<0.75

 $0 \le z \le 0$. 3

0. 98≤m≤1. 0

0 < n < 0.1.

【請求項2】 前記M1は、Bi、前記M2は、K、Na、およびLiからなる群から選ばれた少なくとも1種、前記M3は、Ti、Zr、Sn、およびHfからなる群から選ばれた少なくとも1種である、請求項1に記載の圧電磁器組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、圧電磁器組成物に関するもので、特に、圧電セラミックフィルタ、圧電セラミック発振子などの圧電セラミック素子のための材料として有用な圧電磁器組成物に関するものである。

[0002]

【従来の技術】圧電セラミックフィルタなどの圧電セラミック素子に用いられる圧電磁器組成物として、チタン酸ジルコン酸鉛($Pb(Ti_xZr_{l-x})O_3$)あるいはチタン酸鉛($PbTiO_3$)を主成分とする圧電磁器組成物が広く用いられている。このようなチタン酸ジルコン酸鉛あるいはチタン酸鉛を主成分とする圧電磁器組成物は、その製造過程において、一般的に鉛酸化物が用いられるのであるが、この鉛酸化物の蒸発のため、製品の均一性が低下する。

【0003】これに対して、組成式: (K_{l-x-y}) Na_x Li_y) NbO_3 等で表されるニオブ酸カリウムナトリウムリチウムを主成分とする圧電磁器組成物は、鉛酸化物を含有しないため、上述のような問題に遭遇しない。また、ニオブ酸カリウムナトリウムリチウムを主成分とする圧電磁器組成物の中には、電気機械結合係数 K_p が大きく、圧電セラミックフィルタおよび圧電セラミック発振子等の材料として有望であると考えられるものが存在する。

【0004】しかしながら、このようなニオブ酸カリウムナトリウムリチウムを主成分とする圧電磁器組成物は、チタン酸ジルコン酸鉛あるいはチタン酸鉛に比べて、比誘電率が小さいため、圧電セラミックフィルタあるいは圧電セラミック発振子等の材料として用いる場合、これら圧電セラミックフィルタあるいは圧電セラミック発振子等を備える回路とのインピーダンスマッチングが良好でなく、回路設計の困難を伴う場合がある。

[0005]

【発明が解決しようとする課題】この発明は、二オブ酸カリウムナトリウムリチウムを主成分とする圧電磁器組成物が遭遇する上記課題を解決するためになされたもので、比誘電率を1000以上に増大させ、鉛を含有せず、かつ、実用上十分な電気機械結合係数Kp(25%以上)を示す、圧電磁器組成物を提供しようとすることを目的としている。

[0006]

 $0.1 \leq x$

 $y \le 0.3$

x+y<0.75

 $0 \le z \le 0$. 3.

0.98≦m≦1.0、および

0 < n < 0.1

の条件を満たすことを特徴としている。

【0007】上述したx、y、z、m、およびnの各範 囲の限定理由は、次のとおりである。xおよびyに関して、それぞれ、0. $1 \le x$ および $y \le 0$. 3と限定するのは、これらの範囲を外れると、良好な焼結体を得ることができないためである。また、x+y < 0. $75 \ge t$ るのは、0. $75 \le x+y$ では、電気機械結合係数 K_p が25%より小さくなり、圧電セラミックフィルタ、圧電セラミック発振子などの材料としての利用が困難となるためである。

【0008】また、z に関して、 $0 \le z \le 0$. 3とするのは、この範囲を外れると、キュリー点が200℃以下に低下し、当該圧電磁器組成物をもって構成された素子の温度安定性の点で問題が生じるためである。また、m に関して、0. $98 \le m \le 1$. 0とするのは、この範囲を外れると、分極処理が困難になるためである。

【0009】また、nに関して、0<n<<0. 1とするのは、nが0. 1以上の場合には、電気機械結合係数 K_p が25%より小さくなり、圧電セラミックフィルタ、圧電セラミック発振子などの材料としての利用が困難となるためである。この発明において、好ましくは、上記一般式中のM1は、Biからなり、M2は、K、Na、およびLiからなる群から選ばれた少なくとも1種からなり、また、M3は、Ti、Zr、Sn、およびHfからなる群から選ばれた少なくとも1

[0010]

【実施例】まず、出発原料として、K₂CO₃、Na₂

【0011】次に、粒度調整された粉体を1000kg /cm²の圧力で直径12mm、厚さ1.2mmの円板 に成形した後、1050 \mathbb{C} ~1300 \mathbb{C} 0 \mathbb{Z} 0 \mathbb{C} 0 \mathbb{Z} 0 \mathbb{C} 0 \mathbb{Z} 0 \mathbb{C} 0 \mathbb{Z} 0 \mathbb{C} 0 \mathbb{C} 0 \mathbb{Z} 0 \mathbb{C} 0

【0012】次いで、各試料について、比誘電率、電気機械結合係数 K_p 、およびキュリー点を測定した。その結果も表1に示されている。

[0013]

【表1】

試料	М1	M2	мз	х	У	z	m	n	比房電率	電気機械結合	キュリー点
番号				mol	mol	mol	mol	mol		係數K。(%)	(%)
*1	Bi	Na	Ti	0.7	0.1	0	1	0.05	930	21.0	440
* 2	_	_	-	0.6	0.1	0	1	0	580	36.5	400
3	Bi	Na	Ti	0.6	0.1	0	1	0.05	1130	31.0	380
4	Bi	Na	Ti	0.6	0.1	0	1	0.09	1380	26.5	340
* 5	Bi	Na	Ti	0.6	0.1	0	1	0.1	1350	22.5	270
* 6	—	—	-	0.4	0.1	0	1	0	650	35.5	370
7	Bi	Na	Ti '	0.4	0.1	0	1	0.05	1210	29.5	290
8	Bi	Na	Ti	0.4	0.1	0	1	0.09	1340	26.5	225
* 9	Bi	Na	Ti	0.4	0.1	0	1	0.1	1420	23.0	205
* 10	_	_	_	0.1	0.1	0	1	0	350	28.0	405
- 11	Bi	Na	Ti	0.1	0.1	0	1	0.05	1015	26.0	345
12	Bi	Na	Ti	0.1	D.1	0	1	0.09	1265	25:0	280 255
* 13	Bi	Na	Ti	0.1	0.1	0	1	0.1	1350	20.5	255
* 14	Bi	Na	Ti ,	0.05	0.1	0	1	0.05		烧結不良	
* 15	Bi	Na	Ti	0.4	0.4	0	1	0.05		烧結不良	
* 16	_	_	_	0.4	0.3	0	1	0	470	27.5	380
17	Bi	Na	Ţi	0.4	0.3	0	1	0.05	1200	26.0	320
18	Bi	Na	Ti	0.4	0.3	0	1	0.09	1270	25.0	235
* 19	Bi	Na	Ti	0.4	0.3	0	1	0.1	1345	21.0	215
* 20		J	_	0.4	0	0	1	0	420	37.0	375
21	Bi	Na	Ţi	0.4	0	0	1	0.05	1120	30.0	300
* 23	Bi	Na	Ti	0.4	0	0	1	0.09	1290	27.5	265
* 23	Bi	Na	Ti	0.4	0	0	1	0.1	1400	23.0	250
* 24		_	=	0.4	0	0.1	1	0	505	39.0	365
25	Bi	Na	Ţi	0.4	0	0.1	1	0.05	1200	32.5	305
26 * 27	Bi Bi	Na	Ţi	0.4	0	0.1	1	0.09	1275	26.5	265
* 28	В,	Na	Ti	0.4	0	0.1	1	0.1	1330	23.5	250
29	Bi	Na	Ti	0.4 0.4	0	0.3	1	0	570	36.0	315
30	Bi	Na	Ťi	0.4	0	0.3 0.3	1	0.05	1210 1270	30.5 25.0	255 235
* 31	Bi	Na	Ti	0.4	ŏ	0.3	1	0.09	1320	25.0 21.5	235
* 32	Bi	Na	Ti	0.4	ŏ	0.3	1	0.05	1570	31.0	180
* 33	ы	IVa	- 11	0.4					1070	40.5	380
34	Bi	Na	Ti	0.4	0	0	0.98	0	425 1020	36.5	305
35	Bi	Na	+	0.4	0	0	0.98 0.98	0.05		36.5 28.5	
* 36	Bi	Na	Ti	0.4		Ö		0.09	1240	23.5	285 265
* 37	Bi	Na	+		0		0.98		1290		205
38	Bi	Na Li	Ti	0.4 0.4	0	0	0.97	0.05	1000	分極不可	200
39	Bi		Ti				1.	0.05	1030	29.0	300 265
* 40	Bi	<u> </u>		0.4	0	0	1	0.09	1190	26.0	200
41	Bi	L) Na	Ti	0.4	0	0	1	0.1	1305	21.5	250 295
42	Bi	Na	Zr Zr	0.4	0	0	1	0.05	1150 1315	28.5 27.0	
* 43		Na Na		0.4	0	0	1	0.09		27.0	260 245
= 43	Bi	Na	Zr	0.4	0	U		0.1	1430	22.0	245

【0014】表1において、試料番号に*を付したものは、この発明の範囲外のものである。表1において、 $0.1 \le x, y \le 0.3, x+y < 0.75, 0 \le z \le 0.3, 0.98 \le m \le 1.0, 0 < n < 0.1 の各条件をすべて満たす試料、すなわち試料番号に*が付され$

ていないこの発明の実施例にかかる試料については、すべて、比誘電率が1000以上であり、また、電気機械結合係数 K_p が25%以上であり、さらに、キュリー点が200%を超える、というように良好な特性を示している。

【0015】これに対して、0.1 \leq xまたはy \leq 0.3の条件を満足しない試料14および15では、焼結不良が生じている。また、上述の0.1 \leq xまたはy \leq 0.3の条件を満足するが、x+y<0.75を満足しない試料1 では、電気機械結合係数K $_p$ が21.0%となり、25%以上の電気機械結合係数K $_p$ を達成し得ない。また、この試料1 では、比誘電率が930となり、1000以上の比誘電率を達成していない。

【0017】以上、この発明を実施例に関連して説明し

たが、この発明の範囲内にある圧電磁器組成物は、このような実施例に限定されるものではなく、この発明の趣旨を逸脱しない範囲で、種々に組成を変えることができる。たとえば、上述した実施例では、M1として、Biが用いられ、M2として、NaまたはLiが用いられ、M3として、TiまたはZrが用いられたが、M2については、その他、Kが用いられても、また、M3については、Snおよび/またはHfが用いられても、同等の効果が得られることが確認されている。また、M1については、その他の3価の金属元素が用いられ、M2については、その他の1価の金属元素が用いられ、M3については、その他の4価の金属元素が用いられてもよい。【0018】

【発明の効果】以上のように、この発明によれば、比誘電率が1000以上で、電気機械結合係数Kpが25%以上で、また、キュリー点が200℃を超えるといった良好な特性を示す、圧電磁器組成物を得ることができ、この圧電磁器組成物を用いて、圧電セラミックフィルタ、圧電セラミック発振子などの圧電セラミック素子を有利に作製することができる。