

Emerging Antenna Array Technology: What do we need in practice?

Emil Björnson

Professor of Wireless Communication

Fellow of IEEE, Digital Futures, Wallenberg Academy

KTH Royal Institute of Technology, Sweden

Observation 1: Traffic Growth Around 30%

Observation 2: Most Active Users at the Cell Edge

Same services everywhere: Most active users at cell edge!

Example: Spectral Efficiency in Two Cellular Networks

CDF

0.4

0.2

Spectral efficiency [bit/s/Hz]

Similar spectral

efficiency statistics

10

400 cells, 1 antenna "Small cells"

MIMO = Multiple input multiple output

4 cells, 100 antennas

Solution: "Cell-Free Massive MIMO"

400 cells, 1 antenna

Two Long-Term Flavors of MIMO

1) Reconfigurable intelligent surface

2) Extremely large aperture arrays (ELAA)

Paradigm Shifts do Happen!

Analogy in wireless:

Saturation of spectrum bandwidth

Many spatial layers

Enabling technologies

- 1. Cell-free Massive MIMO
- 2. Extremely large aperture

More details on these MIMO technologies

https://www.youtube.com/wirelessfuture

Reinventing the Wireless Network Architecture Towards 6G

Cell-free Massive MIMO and Radio Stripes

Associate Professor Emil Björnson

Department of Electrical Engineering

Linköping Un

Emil Björnson

Professor, KTH Royal Institute of Technology, Sweden

Associate professor, Linköping University, Sweden

Reconfigurable Intelligent Surfaces:

A Signal Processing Perspective

