Отчет по лабораторной работе № 2 «Применение многослойной нейронной сети для аппроксимации функций»

студента Баранова Алекса	<u>андра</u> группы_	Б22-534 .	Дата сдачи: <u>21.04.2025</u>
Ведущий преподаватель:	Трофимов А.	Г оценка:	подпись:

Вариант №9

Цель работы: изучение математической модели многослойной нейронной сети и решение с её помощью задачи аппроксимации функций.

1. Подготовка данных

Аппроксимируемая функция	Число	Число	Диапазон изменения
	входов	выходов	аргументов
$e^{-x^2} \cdot \cos 10x$	1	1	[-3;3]

Формирование обучающей, валидационной и тестовой выборок:

	Обучающая	Валидационная	Тестовая	Всего
%	60	30	10	100
Объём выборки	120	60	20	200

График аппроксимируемой функции:

Весенний семестр 2022/2023. Лабораторный практикум по курсу «Нейронные сети»

Предобработка данных:

	Метод	Параметры метода	Формула расчёта
Предобработка входов	Масштабирование на [-1; 1]	x_{min}, x_{max}	$x' = 2\frac{x - x_{min}}{x_{max} - x_{min}} - 1$
Предобработка выходов	Масштабирование на [-1; 1]	y_{min}, y_{max}	$y' = 2\frac{y - y_{min}}{y_{max} - y_{min}} - 1$

2. Обучение и тестирование нейронной сети с одним скрытым слоем

Параметры архитектуры сети:

Число входов	Число выходов	Число нейронов в скрытом слое	Функция активации нейронов скрытого слоя	Функция активации выходного нейрона
1	1	5		Linear $y = h$

Схема нейронной сети:

Весенний семестр 2022/2023. Лабораторный практикум по курсу «Нейронные сети»

Параметры обучения:

Метод обучения	Скорость обучения α	Режим обучения	Функция потерь
GD	0.001	Stochastic	Quadratic loss

Метод инициализации сети: Xavier normal

Критерий обучения: E(w): MSE Критерий останова: Early Stopping

Зависимость выхода y(x) сети от входа сети (изобразить три графика: до обучения, после обучения и график аппроксимируемой функции):

Зависимость выходов $y_k(x)$ нейронов скрытого слоя от входа сети (изобразить на одном графике:

Зависимость ошибки сети $E(\tau)$ на обучающей, валидационной и тестовой выборках от времени обучения:

Отметить на графике начало переобучения (если наблюдается)

Зависимость синаптических коэффициентов сети $w(\tau)$ от времени обучения: Показатели качества обученной нейросетевой модели:

	Обучающая	Валидационная	Тестовая
Макс. абс. ошибка	0.95	0.93	0.66
С.к.о. ошибки	0.10	0.08	0.07
RMSE	0.32	0.28	0.27

Обученная нейросетевая модель обладает / не обладает способностью к генерализации данных. Для улучшения качества аппроксимации требуется использовать сеть с большим числом нейронов / сеть с меньшим числом нейронов / продолжить обучение имеющейся сети / изменить параметры метода обучения / изменить критерий останова / изменить режим обучения / обучить сеть заново из другой начальной точки.

Весенний семестр 2022/2023. Лабораторный практикум по курсу «Нейронные сети»

3. Улучшение качества аппроксимации

Параметры архитектуры сети:

Число входов	Число выходов	Число нейронов в скрытом слое	Функция активации нейронов скрытого слоя	Функция активации выходного нейрона
1	1	5	$ \begin{array}{c} \text{Tanh} \\ y = \tanh(x) \end{array} $	Linear $y = h$

Параметры обучения:

Метод обучения	Скорость обучения α	Режим обучения	Функция потерь
GD	0.01	Batch	Quadratic loss

Метод инициализации сети: Xavier normal Критерий останова: Early Stopping

Показатели качества обученной нейросетевой модели:

	Обучающая	Валидационная	Тестовая
Макс. абс. ошибка	0.95	0.93	0.65
С.к.о. ошибок	0.10	0.08	0.07
RMSE	0.32	0.28	0.27

Выводы:

- 1. Архитектура нейронной сети прямого распространения с одним скрытым слоем не может качественно аппроксимировать функцию $f(x) = e^{-x^2} \cdot \cos 10x$
- 2. Объема выборки недостаточно для качественного обучения модели.