Deep Learning for various CV tasks

Computer Vision (SJK02)

Universitat Jaume I

Part A:

Classification
Segmentation
Object detection
(Image-based) biometrics

Part B:

Sequence processing
Optical flow
Action Recognition
Self-supervised learning
Transformers

Sequence processing: RNNs, LSTMs

Recurrent Neural Networks

Unrolling

Flexible input/output sizes

Match problems to models

Frame-wise video classification

Image captioning

Sentiment analysis

Image classification

Machine translation

The Unreasonable Effectiveness of Recurrent Neural Networks (http://karpathy.github.io/2015/05/21/rnn-effectiveness)

Backpropagation through time (BTT)

$$\mathbf{L} = \sum_{i} \mathcal{L}_{i}\left(\hat{y}_{t}, y_{t}
ight)$$

Forward Pass:

$$h_t, \hat{y}_t, \mathcal{L}_t, \mathbf{L}$$

 $egin{aligned} extbf{Backward Pass:} \ rac{\partial \mathbf{L}}{\partial U}, rac{\partial \mathbf{L}}{\partial V}, rac{\partial \mathbf{L}}{\partial W}, rac{\partial \mathbf{L}}{\partial b_h}, rac{\partial \mathbf{L}}{\partial b_y} \end{aligned}$

Exploding/vanishing gradients

$$\frac{\partial \mathbf{L}}{\partial W} \propto \sum_{i=0}^{T} \left(\prod_{i=k+1}^{y} \frac{\partial h_{i}}{\partial h_{i-1}} \right) \frac{\partial h_{k}}{\partial W}$$

$$\left\| \frac{\partial h_i}{\partial h_{i-1}} \right\|_2 < 1$$

2. Exploding gradient
$$\left\| rac{\partial h_{i-1}}{\partial h_{i-1}}
ight\|_2 > 1$$

Dealing with this problem

- Skip connections (like ResNets)
- Remove 1-length connections
- Leaky recurrent units (regulate how much passed by α)
- Gated RN (learnable α)
- LSTMs

Long short-term memory (LSTM)

LSTM

Cell

ht

$$X_t = input$$
 $C_t = cell state ("memory")$
 $C_t = hidden state (= output)$

Unrolling

Cell **state** can go unchanged **Gates** regulate how much it is changed

Forget gate

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

$$\sigma(x) = rac{1}{1 + e^{-x}} = rac{e^x}{1 + e^x} = 1 - \sigma(-x).$$

How much, between 0 (nothing) and 1 (all), each element in C_{t-1} is kept

Input gate

New information and how much of it to add to C_{t-1}

Update state

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Update C_{t-1} to get C_t

Update output

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Update h_{t-1} to get h_t, a filtered version of the cell state C_t

Backpropagation through time (BTT)

A Beginner's Guide on Recurrent Neural Networks with PyTorch

Further possibilities

Bidirectional LSTMsStacked LSTMsConvLSTMs Attention Transformers

LSTMs with PyTorch

lstm_layer = nn.LSTM(input_dim, hidden_dim, n_layers)

What about the sequence length?

Long Short-Term Memory: From Zero to Hero with PyTorch

Example: egocentric gesture recognition

Results (video)

Head and Eye Egocentric Gesture Recognition for Human-Robot Interaction Using Eyewear Cameras (IEEE Rob. & Aut. Letters, 2022)

Optical flow: FlowNet, SpyNet, LikeNet

FlowNet (ICCV2015)

Can optic flow estimation be *learned*?

FlowNet: Learning Optical Flow with Convolutional Networks (ICCV 2015)

Supervised learning: what about the *labelled* data?

FlyingChairs

FlyingThings3D

Sintel

FlowNetSimple

Correlation layer

$$c(\mathbf{x}_1, \mathbf{x}_2) = \sum_{\mathbf{o} \in [-k, k] \times [-k, k]} \langle \mathbf{f}_1(\mathbf{x}_1 + \mathbf{o}), \mathbf{f}_2(\mathbf{x}_2 + \mathbf{o}) \rangle$$

Like convolution between feature maps (no learnable weights)

Refinement

Upsampling

Findings

It is **possible to learn** to estimate optic flow

Training data need **not** be **realistic**

FlowNetSimple vs FlowNetCorr? --> Depends on dataset

FlowNetCorr:

- slighlty overfits the training data
- has some problems with large displacements

Why do you think authors relate the limitation of FlowNetCorr with large displacements with the correlation layer?

Some results

Find where FlowNetS is better than EpicFlow (CVPR 2015) Find where FlowNetC is better than FlowNetS

Loss

FlowNet 2.0 (CVPR 2017)

FlowNet 2.0 vs FlowNet (ICCV 2015)

- schedule of presenting data
- stacked architecture with warping
- subnetwork specializing on small motions

Data presentation is important

- Training only on Things3D (more realistic) --> worse results
- Best results: training on FlyingChairs first, then on Things3D

What would be a "take-home lesson" for other problems?

A form of curriculum learning?

Does iteration and warping help?

Stacking may help; stacking+warping *always* help

Final net

Some results on Sintel

Some results on real data

Conclusions

- FlowNet 2.0 is marginally slower than FlowNet
- Estimation error reduced by more than 50%
- Performs on par with state-of-the-art methods
- Runs at interactive frame rates
- Faster variants run up to 140fps

SPyNet (CVPR 2017)

- Each G_i trained independently (previous G_i already trained)
- Since each G_i assumes small motion (simpler task), less overall parameters are required

LikeNet (BMVC 2018)

- Motion as dense classification problem
- Unsupervised (no ground truth required!)
- Siamese architecture

Loss function?

We don't have ground truth to compare with!

$$C(I;\theta) = \sum_{i} \sum_{\mathbf{m}_k \in M} P(L_i = \mathbf{m}_k | I, \theta) D(i, \mathbf{m}_k)$$

$$D(i,\mathbf{m}_k) = JSD(\mathbf{F}(x_i + \mathbf{m}_k, t + dt) || \mathbf{F}(x_i, t))$$

D(·) could be a function of image **values**, but with **features** works better. Any idea **why**?

Motion should be quantised!

How many branches would be required for 50 values in t_x and t_y each?

Multiscale approach: # branches: 121, 169, 49, 9, 9

More branches at lowest resolution

Comparison

Method	Number of learned parameters
FlowNetS	32,070,472
FlowNetC	32,561,032
SpyNet	1,200,250
LikeNet	697,028

- performs better than the other unsupervised methods
- generalizes well to unknown datasets (without finetunning)