

Review der CO₂-Datenbank von Eaternity

1 EINLEITUNG

Im Zeitraum Januar 2014 bis März 2015 wurde vom Institut für Umwelt und Natürliche Ressourcen (IUNR) der ZHAW, der Universität Zürich und Eaternity das von der Gebert Rüf Stiftung und der ZHAW unterstützte Forschungsprojekt "CarbonFoodPrint - Klimafreundliche Ernährung in der Gastronomie" umgesetzt. Ein integraler Bestandteil der Arbeiten an der ZHAW waren die Begutachtung (Review) der bestehenden umfassenden CO₂-Datenbank von Eaternity sowie die Schliessung der wichtigsten Lücken dieser Datenbank durch die Modellierung fehlender Datensätze. Die wichtigsten Ergebnisse dieser Begutachtung werden in diesem Kurzbericht beschrieben. Im Rahmen des Projekts wurden zudem für mehr als 100 Lebensmittel neue umfassende Treibhausgasbilanzen erstellt

2 METHODIK

Zum Zeitpunkt der Begutachtung umfasste die CO₂-Datenbank von Eaternity Daten zu den Treibhausgasemissionen aus der Herstellungskette von 550 Lebensmitteln. Um die Datenqualität bzw. die Unsicherheit dieser Einträge zu beurteilen, wurde der Pedigree-Ansatz von Frischknecht et al. (2007)¹ gewählt, welcher auch in der weltweiten ecoinvent Datenbank verwendet wird. Dieser Ansatz erlaubt es, basierend auf qualitativen Informationen, die Datenqualität von Ökobilanzdaten abzuschätzen. Dabei werden folgende Indikatoren beurteilt:

- Reliabilität
- Vollständigkeit
- Zeitliche Korrelation
- Geografische Korrelation
- Technologische Korrelation
- Stichprobengrösse

In einem zweiten Ansatz wurde die Datenqualität, gemäss den folgenden mit Eaternity vereinbarten Kategorien, zugeteilt:

- 1. Detaillierte, eigene oder fremde peer-reviewed LCA-Studie für betreffendes Produkt.
- 2. Detaillierte, eigene oder fremde peer-reviewed LCA-Studie für sehr ähnliches Produkt.

¹ Frischknecht, R., Jungbluth, N., Althaus, H. -., Doka, G., Dones, R., Heck, T., Hellweg, S., Hischier, R., Nemecek, T., Rebitzer, G., & Spielmann, M. (2007). Overview and Methodology.CD-ROM No. ecoinvent report No. 1, v2.0 Dübendorf, CH: Swiss Centre for Life Cycle Inventories.

- 3. Grobe eigene "Modellierung"
- 4. Non-peer reviewed externe Quelle
- 5. Rasche, grobe Schätzung
- 6. Relevante Unklarheiten vorhanden, welche dringend bearbeitet werden müssen.

3 REVIEW-ERGEBNISSE

Die nachfolgende Tabelle beschreibt die Datenqualität der wichtigsten Produktgruppen in der CO_2 -Datenbank von Eaternity.

Tabelle 1: Beurteilung der Datenqualität verschiedener Produktgruppen in der CO₂-Datenbank von Eaternity

C1	Dis Picturia and Institute Configuration of Parishburgation in the Parish Detail 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gemüse und	Die Einträge zu den meisten Gemüse- und Früchtensorten in der Eaternity-Datenbank sind von hoher
Früchte	Datenqualität und stammen aus der ecoinvent Datenbank. Für wichtige Gemüsearten verwendet die
	Datenbank Ergebnisse aus dem ZHAW-Gewächshaustool, welche unterschiedliche
	Produktionsbedingungen in Abhängigkeit von Anbauland und Jahreszeit berücksichtigt. Für einzelne
	Gemüsesorten sind keine CO ₂ -Werte aus der Literatur verfügbar. Aufgrund der tiefen CO ₂ -Werte bei den
	meisten Gemüsesorten ist es akzeptabel hierzu Annahmen basierend auf anderen Gemüsesorten zu treffen.
Fleisch-	Zum Zeitpunkt des Reviews waren die Daten zu Rind-, Kalb-, Pferde-, Schweine-, Lamm- und
erzeugnisse	Hühnerfleischerzeugnisse von mittlerer Qualität, obwohl diese Lebensmittel mit relativ hohen
	Treibhausgasemissionen verbunden sind. Daher wurden im Rahmen des CarbonFoodPrint-Projekts neue
	schweizspezifische Modelle für Rind-, Kalb- und Pferdefleisch erarbeitet. Die Werte zu Schwein-, Lamm-
	und Hühnerfleisch wurden auf eine aktuellere Datengrundlage gebracht. Die Einträge zu den
	Fleischerzeugnissen entsprechen daher nun einer guten Datenqualität.
Milch-	Im Rahmen des CarbonFoodPrint-Projekts wurde ein neues Modell für Milchprodukte aus Schweizer
produkte	Produktion erarbeitet, sodass die Einträge nun konsistent modelliert und von guter Datenqualität sind.
Fisch und	Die Einträge zu verschiedenen Fischarten und Meeresfrüchten basieren auf unterschiedlichen
Meeres-	Literaturquellen mit unterschiedlicher Datenqualität. Hier liegt ein Schwerpunkt für zukünftige
früchte	Verbesserungen und Harmonisierung der CO ₂ -Modelle.
Gewürze	Zu den meisten Gewürzen liegen nur grobe Abschätzungen zum CO ₂ -Wert vor und die Datenunsicherheit
	ist dementsprechend gross. Aufgrund der geringen verwendeten Mengen ist es jedoch akzeptabel mit
	ungenauen Werten zu arbeiten.
Verarbeitete	Zu den verarbeiteten Lebensmitteln wie Gebäck, Convenience Food, Pasta, Saucen, Getränke etc. lagen zum
Produkte	Zeitpunkt des Reviews nur lückenhafte Daten vor. Zum Teil konnte der CO ₂ -Wert basierend auf der
	Produktzusammensetzung berechnet werden. Verarbeitete Produkte stellen daher ein Schwerpunkt für die
	Verbesserung der Datenqualität dar und neue Modelle sind für 2015/2016 geplant. Für Gebäck, Schokolade
	und Bouillon wurde dies bereits umgesetzt.
Pflanzenöle	Zum Zeitpunkt des Reviews waren die Einträge zu Pflanzenölen von geringer bis mittlerer Qualität. Für
	Olivenöle wurden daher neue Modelle erarbeitet und für andere Pflanzenöle konnte aus der ecoinvent
	Datenbank eine bessere Datenquelle gefunden werden. Zu Nüssen und Nussölen sollte die Datenqualität
	jedoch verbessert werden.

Die nachfolgende Abbildung zeigt, dass die CO₂-Werte der Lebensmittel logarithmisch verteilt sind und vor allem Fleisch- und Milchprodukte besonders hohe Emissionen aufweisen.

Abbildung 1: Treibhausgasemissionen von Lebensmittel in der CO₂-Datenbank von Eaternity (Stand Sept. 2014)

Das Institut für Umwelt und Natürliche Ressourcen der ZHAW begleitet die kontinuierliche Aktualisierung und Optimierung der CO₂-Datenbank von Eaternity als Forschungspartner. Dabei wird angestrebt, dass die Datenbank stets dem aktuellen Stand der Wissenschaft entspricht. Die Datengrundlage von Eaternity bietet nach dem derzeitigen wissenschaftlichen Wissenstand eine geeignete und umfassende Grundlage zur Berechnung des CO₂-Fussabdrucks in der Ernährung.

Zürich, Juni 2015

M. Stucki

Matthias Stucki

Leiter Fachgruppe Ökobilanzierung ZHAW Institut für Umwelt und Natürliche Ressourcen