

DIGITAL COMMUNICATION

Dr. Sanjeev G.

Department of Electronics and Communication Engg

QUANTIZATION

Quantization Error Signal-To-Quantization Noise Ratio (SQNR)

Dr. Sanjeev G.

Department of Electronics and Communication Engineering

QUANTIZATION: AN EXAMPLE

Recall

Let the sequence of samples from the output of a sampler be given as

0.35, 0.51, 0.65, 0.28, -0.06, -0.43, -0.71. Design a uniform quantizer with L=4, in [-1,1]

Quantization:				
x(n)	yon	Bit Encoding		
0.35	0.25	10		
0.51	0.75	1.1		
0.66	0.75	1 1		
0.28	0.25	10		
-0.06	-0.25	01		
-0-43	-0.25	01		
15.0-	-0.75	00.		
' ,	1 :			

$\chi(n)$	gens.	q(n) = y(n)-x(n)
0.38	0.25	- 0.13
0.51	0.75	0.24
;	2	;
•		, 1
	(4)	

QUANTIZATION ERROR

Basic Formulation

- The quantization error Is defined as q(n) = y(n) x(n)
- This is the error between the actual value and approximated value
- Quantization error cannot be removed/corrected
- Since x(n) is random, q(n) is also random
- The PDF of x(n), $f_X(x)$ can be general and quantization should be characterized for all $f_X(x)$
- If $L=2^N$ is large, then $\Delta={}^{2A}/_{2^N}$ is small, hence we can assume the PDF of q(n) is uniform distribution between $(-\Delta/_2,\Delta/_2)$, that is $Q\sim U(-\Delta/_2,\Delta/_2)$
- Recall that if $X \sim U(a, b)$, then
- $\mathbb{E}(X) = \frac{b-a}{2}$, and $var(X) = \frac{(b-a)^2}{12}$
- Therefore, $\mathbb{E}(Q) = 0$, and $var(Q) = \frac{\Delta^2}{12}$

QUANTIZATION ERROR

Derivation of Variance

$$\frac{d^{n}}{dx^{2}} = E[X^{2}] - H_{X}^{2}.$$

$$E[X^{2}] = \int_{-\infty}^{\infty} x^{2} f_{x}(x) dx$$

$$= \int_{a}^{b} x^{2} \frac{1}{(b-a)} dx$$

$$= \frac{x^{3}}{2(b-a)} = \frac{x^{3}}{b}.$$

$$F(x^{2}) = \frac{b^{3} - a^{3}}{3(b-a)}$$

$$\sigma_{x}^{2} = \frac{b^{2} + ab + a^{2}}{3} - \frac{(a+b)^{2}}{4}$$

$$= \frac{4b^{2} + 4ab + 4a^{2} - 3a^{2} - 6ab - 3b^{2}}{12}$$

$$= \frac{b^{2} - 2ab + a^{2}}{12}$$

$$\sigma_{x}^{2} = \frac{(b-a)^{2}}{12}$$

SIGNAL-TO-QUANTIZATION NOISE RATIO

Also Called as Signal-To-Noise Ratio

 A measure of the performance of a quantizer is the signal-to-quantization noise ratio, which is defined as

$$SQNR = \frac{Average Signal Power}{Average Quantization Noise Power}$$

- The signal x(n) is usually assumed to have zero mean and average signal power (or variance) σ_x^2
- Recall that the variance of quantization noise is $\Delta^2/12$. Hence, the SQNR is

$$SQNR = \frac{12 \sigma_{\chi}^2}{\Delta^2}$$

• Sometimes, SQNR is also called as the signal-to-noise ratio (SNR); however, this should be avoided for reasons that we will see later

THANK YOU

Dr. Sanjeev G.

Department of Electronics and Communication Engineering

sanjeevg@pes.edu

+91 80 2672 1983 Extn 838