

BU931 BU931P

HIGH VOLTAGE IGNITION COIL DRIVER NPN POWER DARLINGTON

- VERY RUGGED BIPOLAR TECHNOLOGY
- HIGH OPERATING JUNCTION TEMPERATURE
- WIDE RANGE OF PACKAGES

APPLICATIONS

HIGH RUGGEDNESS ELECTRONIC IGNITIONS

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Va	Unit	
		BU931	BU931P	
V _{CES}	Collector-Emitter Voltage (V _{BE} = 0)	50	00	V
V_{CEO}	Collector-Emitter Voltage (I _B = 0)	40	00	V
Vево	Emitter-Base Voltage (Ic = 0)		5	V
Ic	Collector Current	1	Α	
I _{CM}	Collector Peak Current	3	Α	
I _B	Base Current		Α	
I _{BM}	Base Peak Current	5		Α
P _{tot}	Total Dissipation at T _c = 25 °C	175 135		W
T _{stg}	Storage Temperature	-65 to 200 -65 to 175		°C
Tj	Max. Operating Junction Temperature	200 175		°C

September 1999

THERMAL DATA

		TO-3	TO-218	
R _{thj-case}	Thermal Resistance Junction-case Max	1	1.1	°C/W

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

Symbol	Parameter	Test	Conditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector Cut-off Current (V _{BE} = 0)	V _{CE} = 500 V V _{CE} = 500 V	T _j = 125 °C			100 0.5	μA mA
I _{CEO}	Collector Cut-off Current (I _B = 0)	V _{CE} = 450 V V _{CE} = 450 V	T _j = 125 °C			100 0.5	μA mA
I _{EBO}	Emitter Cut-off Current (I _C = 0)	V _{EB} = 5 V				20	mA
V _{CEO(sus)} *	Collector-Emitter Sustaining Voltage (I _B = 0)	$I_C = 100 \text{ mA}$ $V_{Clamp} = 400 \text{ V}$ (See Fig.4)		400			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	I _C = 7 A I _C = 8 A I _C = 10 A	$I_B = 70 \text{ mA}$ $I_B = 100 \text{ mA}$ $I_B = 250 \text{ mA}$			1.6 1.8 1.8	V V V
V _{BE(sat)*}	Base-Emitter Saturation Voltage	I _C = 7 A I _C = 8 A I _C = 10 A	I _B = 70 mA I _B = 100 mA I _B = 250 mA			2.2 2.4 2.5	V V V
h _{FE} *	DC Current Gain	I _C = 5 A	V _{CE} = 10 V	300			
VF	Diode Forward Voltage	I _F = 10 A				2.5	V
	Functional Test (see fig. 1)	V _{CC} = 24 V L = 7 mH	V _{clamp} = 400 V	8			Α
t _s t _f	INDUCTIVE LOAD Storage Time Fall Time (see fig. 3)	$V_{BE} = 0$	$V_{clamp} = 300 \text{ V}$ $I_B = 70 \text{ mA}$ $R_{BE} = 47 \Omega$		15 0.5		μs μs

^{*} Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

Safe Operating Area

DC Current Gain

47/

Collector Emitter Saturation Voltage

Collector Emitter Saturation Voltage

Base Emitter Saturation Voltage

Collector Emitter Saturation Voltage

Base Emitter Saturation Voltage

Switching Time Inductive Load

FIGURE 1: Functional Test Circuit

FIGURE 3: Switching Time Test Circuit

FIGURE 2: Functional Test Waveforms

FIGURE 4: Sustaining Voltage Test Circuit

TO-3 MECHANICAL DATA

DIM.	mm			inch			
2	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	11.00		13.10	0.433		0.516	
В	0.97		1.15	0.038		0.045	
С	1.50		1.65	0.059		0.065	
D	8.32		8.92	0.327		0.351	
E	19.00		20.00	0.748		0.787	
G	10.70		11.10	0.421		0.437	
N	16.50		17.20	0.649		0.677	
Р	25.00		26.00	0.984		1.023	
R	4.00		4.09	0.157		0.161	
U	38.50		39.30	1.515		1.547	
V	30.00		30.30	1.187		1.193	

TO-218 (SOT-93) MECHANICAL DATA

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	4.7		4.9	0.185		0.193	
С	1.17		1.37	0.046		0.054	
D		2.5			0.098		
E	0.5		0.78	0.019		0.030	
F	1.1		1.3	0.043		0.051	
G	10.8		11.1	0.425		0.437	
Н	14.7		15.2	0.578		0.598	
L2	_		16.2	_		0.637	
L3		18			0.708		
L5	3.95		4.15	0.155		0.163	
L6		31			1.220		
R	_		12.2	-		0.480	
Ø	4		4.1	0.157		0.161	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 1999 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

