Some graph algorithms

Djikstra's algorithm

- This algorithm is used to find the shortest path between two points.
- Applications of this algorithm (or its variations):
 - Finding a route between two points on a map
 - Google maps likely uses some variation on this (A* algorithm? ... don't know)
 - Finding a route in networking (packet routing)
 - Etc.

Djikstra's algorithm

• It is a greedy algorithm (we will see this when we look at the steps)

• However, in spite of being greedy, it does give us the shortest path between two vertices.

- This algorithm finds the shortest path from a given vertex to *all* other vertices in the graph.
 - The graph is
 - a directed weighted graph,
 - with no negative weights
 - It can have cycles
- At a high level, the algorithm goes sort of like this:
 - 1. Pick ur starting vertex (we will pick A).
 - 2. In the table, initialize the distance from this vertex as 0 (obvious)
 - 3. And initialize distance of all other vertices to infinity

Vertex	Distance from starting vertex	Prev vertex
A	0	
В	inf	
С	inf	
D	inf	

- At a high level, the algorithm goes sort of like this:
 - 1. Pick ur starting vertex (we will pick A).
 - 2. In the table, initialize the distance from this vertex as 0 (obvious)
 - 3. And initialize distance of all other vertices to infinity.
 - 4. currentVertex = startingVertex.
 - 5. Add currentVertex to visited set. { A }
 - 6. Update distance entry of neighbors of currentVertex(A) with their distance to the starting vertex (if new distance is smaller).
 - For B, that is 2 and for C that is 5
 - 7. Now, find the *cheapest unvisited* vertex.
 - 8. This would be B. Make it the currentVertex.
 - 9. Loop back to step 5 (next steps with B as currentVertex in next slide)

Vertex	Distance from starting vertex	Prev vertex
A	0	
В	inf-2	Α
С	inf-5	Α
D	inf	

- At a high level, the algorithm goes sort of like this:
 - 1. Pick ur starting vertex (we will pick A).
 - 2. In the table, initialize the distance from this vertex as 0 (obvious)
 - 3. And initialize distance of all other vertices to infinity.
 - 4. currentVertex = startingVertex.
 - 5. Add currentVertex to visited set. { A, B}
 - 6. Update distance entry of neighbors of currentVertex (B) with their distance to the starting vertex (if new distance is smaller).
 - For B, that is 2 and for C that is 5
 - For C, that is 6 and for D that is 16
 - Don't update C's distance, as 6 > 5.
 - Update D's distance
 - 7. Now, find the *cheapest unvisited* vertex.
 - 8. This would be C. Make it the currentVertex.
 - 9. Loop back to step 5. (next steps with C as currentVertex in next slide)

Vertex	Distance from starting vertex	Prev vertex
А	0	
В	2	Α
С	5	Α
D	inf 16	В

- At a high level, the algorithm goes sort of like this:
 - 1. Pick ur starting vertex (we will pick A).
 - 2. In the table, initialize the distance from this vertex as 0 (obvious)
 - 3. And initialize distance of all other vertices to infinity.
 - 4. currentVertex = startingVertex.
 - 5. Add currentVertex to visited set. { A, B, C}
 - 6. Update distance entry of neighbors of currentVertex with their distance to the starting vertex (if new distance is smaller).
 - For B, that is 2 and for C that is 5
 - For C, that is 6 and for D that is 16
 - For B, that is 8
 - Dont update distance for B, as it currently has a smaller value (2)
 - 7. Now, find the *cheapest unvisited* vertex.
 - 8. This would be **D**. Make it the currentVertex.
 - 9. Loop back to step 5. (next steps with D as currentVertex in next slide)

Vertex	Distance from starting vertex	Prev vertex
Α	0	
В	2	Α
С	5	Α
D	inf 16	В

- At a high level, the algorithm goes sort of like this:
 - 1. Pick ur starting vertex (we will pick A).
 - 2. In the table, initialize the distance from this vertex as 0 (obvious)
 - 3. And initialize distance of all other vertices to infinity.
 - 4. currentVertex = startingVertex.
 - 5. Add currentVertex to visited set. { A, B, C, D}
 - 6. Update distance entry of neighbors of currentVertex with their distance to the starting vertex (if new distance is smaller).
 - For B, that is 2 and for C that is 5
 - For C, that is 6 and for D that is 16
 - For B, that is 8
 - For C, that is 23
 - Dont update distance for C, as it currently has a smaller value (5)
 - 7. Now, find the *cheapest unvisited* vertex.
 - 8. This would be no unvisited vertices left. We are done.

Vertex	Distance from starting vertex	Prev vertex
А	0	
В	2	Α
С	5	Α
D	inf 16	В

Another graph example

• A is the start vertex

Vertex	Distance from starting vertex	Prev vertex
А	0	
В	inf 2	Α
С	inf 4 3	A B
D	inf 16 6	B C
Е	inf 13	D
F	inf 5	С

Pseudocode

Lets look at some pseudocode corresponding to what we have seen so far:

visited: array representing if a vertex has been visited or not. So, vertex[v] true means visited, false means not visited.

dist: array of int representing distance from source vertex. So, dist [v] is distance of vertex v from source vertex s

prev: array containing previous vertex. So, prev[v] is the vertex we visited before coming to v, or predecessor of v.

Initialize: A function that

- Initializes dist array to infinity
- Initializes *prev* array to null or undefined

```
Dijkstra() {
Initialize();
currentVertex = source;
dist [source] = 0;
while (unvisited vertices are there)
           visited [ currentVertex ] = true;
           for each neighborVertex of currentVertex {
                       newDist = dist [ currentVertex ] + Length ( currentVertex, neighborVertex );
                       if ( newDist < dist [ neighborVertex ] )</pre>
                                   dist [ neighborVertex ] = newDist;
                                   prev [ neighborVertex ] = currentVertex;
            currentVertex = GetUnvisitedVertexWithSmallestDist();
```

- Complexity is $O(|E| + |V|^2)$
 - This is if we use a list or array for holding the vertices when looking for next vertex with minimum distance to source.
 - A better data structure to use for getting next vertex with minimum distance to source would be a ?
 - Complexity in this case would be

Dijkstra and BFS

• If we make all weights on a graph the same (say, 1), then BFS and Dijkstra will behave the same, because we essentially now have an unweighted graph.

Other algorithms

Floyd-Warshall

- Shortest path between all pairs of vertices in a graph
- Can detect a negative weight cycle.
- O(|V|³)

Bellman-Ford

- Alternative to Dijkstra if graph has negative edge weights.
- Can detect a negative weight cycle.
- O(|V| |E|)