Reinforcement learning and robot navigation using MDPs

Charles Dufour

March 25, 2018

Introduction

The problem

- Framework : the Disopt robot which can follow lines
- The problem : the robot should adapt its speed with respect to traffic lights
- How: using Markov Decision Process (MDP)

MDPs

Definition

A Markov Decision Process (MDP) is a discrete time stochastic control process, used in situations where outcomes are and random and partly under the control of a decision maker.

MDPs

Definition (suite)

- A set of states $S = \{s_0, s_1, s_2, \ldots\}$
- A set of actions $A = \{a_1, a_2, a_3, \ldots\}$
- A transition function $T(a, s, s', r) = \mathbb{P}[s', r \mid a, s]$
- A reward function $R: \mathcal{S} \mapsto \mathbb{R}$
- A discount factor γ

Markov Property

The transitions only depends on the current state and the current action.

to be told

Particularly, at each time step, our process is in some state s.

Then our learning agent decides which action to execute from the set *A* which is doable from state *s*.

Then the process moves randomly to a new state s' following T and gives the agent a reward R(s').

The purpose of our agent is to maximise the cumulative reward it gets in the long run.

MDP example

MDP's can be easily represented by graphs:

MDP example

MDP's can be easily represented by graphs:

The constraints are $\sum_{i} p_{i,j} = 1 \quad orall i \in \mathcal{S}$

how to pick actions

Definition

A policy π is a probabilistic mapping from the set of states to the set of actions :

$$\pi: \mathcal{S} \mapsto \mathcal{A}$$

Issue

How to?

How to asses the goodness of policies so we can find the best one ? What is the best policy ?

Discounted return

$$G_t = \sum_{k=0}^{\infty} \gamma^k * R_{t+k+1}$$

Discounted return

$$G_t = \sum_{k=0}^{\infty} \gamma^k * R_{t+k+1}$$

action value while in a state s under π

$$q_{\pi}(s,a) = \mathbb{E}[G_t \mid S_t = s, A_t = a] \tag{1}$$

Discounted return

$$G_t = \sum_{k=0}^{\infty} \gamma^k * R_{t+k+1}$$

action value while in a state s under π

$$q_{\pi}(s,a) = \mathbb{E}[G_t \mid S_t = s, A_t = a] \tag{1}$$

state value under policy π

$$v_{\pi}(s) = \mathbb{E}[G_t \mid S_t = s] = \sum_{a} \pi(a \mid s) \sum_{r,s'} p(s', r \mid s, a) [r + \gamma v_{\pi}(s')]$$
 (2)

how to compare two policies

$$\pi \leq \pi' \iff \pi(s) \leq \pi'(s) \quad \forall s \in \mathcal{S}$$

how to compare two policies

$$\pi \leq \pi' \iff \pi(s) \leq \pi'(s) \quad \forall s \in \mathcal{S}$$

Optimal policy

$$\pi_*$$
 s.t. $\forall \pi : \pi_* > \pi$

Bellman optimality equations

The optimal policy π_* has value functions : v_* and q_*

$$v_*(s) = \max_{a} \sum_{s',r} p(s',r \mid s,a)[r + \gamma v_*(s')]$$
 (3)

$$q_*(s,a) = \sum_{s',r} p(s',r \mid s,a)[r + \gamma \max_{a'} q_*(s',a')]$$
 (4)

Intuitively these equations say that the value of a state under the optimal policy must equal the expected return for the best action from that state. For finite MDPs these equations have a unique solution.

Another issue

computational issue

If we wanted to solve these equations directly, it would cost a lot of computational power to know exactly the value functions first and then to solve. So how do we do it ?

Another issue

computational issue

If we wanted to solve these equations directly, it would cost a lot of computational power to know exactly the value functions first and then to solve. So how do we do it?

Approximation of value function

solving MDPs using dynamic programming

policy iteration

update rule:

$$v_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a \mid s) \sum_{s',r} p(s',r \mid s,a)(r + \gamma v_k(s'))$$

solving MDPs using dynamic programming

policy iteration

update rule:

$$v_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a \mid s) \sum_{s',r} p(s',r \mid s,a)(r + \gamma v_k(s'))$$

Policy Improvement

 π/π' : old/new policy.

$$\pi'(s) = argmax_{a \in \mathcal{A}} q_{\pi}(s, a)$$

what have we done so far

States

States

• position {0,1,2,...,L, Lava }

States

- position {0,1,2,...,L, Lava }
- speed {low, medium, high }

States

- position {0,1,2,...,L, Lava }
- speed {low, medium, high }

Actions

States

- position {0,1,2,...,L, Lava }
- speed {low, medium, high }

Actions

decelerating

States

- position {0,1,2,...,L, Lava }
- speed {low, medium, high }

Actions

- decelerating
- maintaining speed

States

- position {0,1,2,...,L, Lava }
- speed {low, medium, high }

Actions

- decelerating
- maintaining speed
- accelerating

accelerating graph

red: high speed

yellow: medium speed

green: low speed

keeping the same speed graph

decelerating

Results

What's next?

already working on

Other ideas