Q-CAR - Dynamic obstacle collision avoidance using DDQN Lior Fuks and Markus Merklinger

Project goals

- Agent goal is to avoid collision with dynamic and static obstacles
- Simplified world simulation
- Model free control using reinforcement learning
- Generalization for changing environments

Input: History of local agent views

- Sampled occupancy grid as agent local view
- History of local views
- Adjustable grid size, length and offset in both axis

Environment Agent local view

Output: Discrete driving commands

- Agent model based on bicycle kinematics
- Agent can choose from a discrete predefined actions of speed and steering angles

Car dynamics: Bicycle kinematic model (2)

Training

- Training using a CNN network with DDQN
- Training in a dynamic environment with random moving agents and static walls
- Reward based on distance and collisions

Layer	No. of filters/Units	Kernel size	Stride	Activation function
Convolution 1	32	2x2	2	Relu
Convolution 2	64	3x3	1	Relu
Convolution 3	64	3x3	1	Relu
Fully connected 4	512			Relu
Fully connected 5	5			linear

Architecture

Results

- Agent avoids collision with obstacles
- Generalize to different environments
- Modular architecture

Dynamic agents avoidance

Static wall avoidance