

MDD1501

Single N-channel Trench MOSFET 30V, 67.4A, 5.6mΩ

General Description

The MDD1501 uses advanced MagnaChip's MOSFET Technology, which provides high performance in on-state resistance, fast switching performance and excellent quality. MDD1501 is suitable device for DC to DC converter and general purpose applications.

Features

- $^{\Box}$ $V_{DS} = 30V$
- $I_D = 67.4A @V_{GS} = 10V$
- R_{DS(ON) (MAX)}
 - $< 5.6 \text{m}\Omega$ @V_{GS} = 10V
 - $< 8.6 \text{m}\Omega @V_{GS} = 4.5 \text{V}$
- 100% UIL Tested
- 100% Rg Tested

Absolute Maximum Ratings (Ta = 25°C)

Characteristics	Symbol	Rating	Unit		
Drain-Source Voltage	V _{DSS}	30	V		
Gate-Source Voltage		V _{GSS}	±20	V	
Continuous Drain Current (1)	T _C =25°C		67.4	A	
	T _C =70°C		53.9		
	T _A =25°C	— I _D	25.1 ⁽³⁾		
	T _A =70°C		20.2 ⁽³⁾		
Pulsed Drain Current	<u>.</u>	I _{DM}	270	Α	
Power Dissipation	T _C =25°C		44.6		
	T _C =70°C		28.5	W	
	T _A =25°C	P _D	6.2 ⁽³⁾		
	T _A =70°C		4.0 ⁽³⁾		
Single Pulse Avalanche Energy (2)		E _{AS}	94	mJ	
Junction and Storage Temperature Range		T _J , T _{stg}	-55~150	°C	

Thermal Characteristics

Characteristics		Rating	Unit	
Thermal Resistance, Junction-to-Ambient (1)	R _{BJA} 20.0 °C/W			
Thermal Resistance, Junction-to-Case	R _{eJC}	2.8	C/VV	

1

Ordering Information

Part Number	Temp. Range	Package	Packing	Quantity	Rohs Status
MDD1501RH	-55~150°C	D-PAK	Tape & Reel	3000 units	Halogen Free

Electrical Characteristics (T_J =25°C)

Characteristics	Symbol	Test Condition	n	Min	Тур	Max	Unit
Static Characteristics	•					•	
Drain-Source Breakdown Voltage	BV _{DSS}	$I_D = 250 \mu A, V_{GS} = 0 V$		30	-	-	V
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	250μΑ		1.95	2.7	
Drain Cut-Off Current	I _{DSS}	V _{DS} = 30V, V _{GS} = 0V		-	-	1	μA
			T _J =55°C	-	-	5	
Gate Leakage Current	I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$		-	-	±0.1	
Drain-Source ON Resistance	R _{DS(ON)}	$V_{GS} = 10V, I_D = 20A$		-	4.9	5.6	mΩ
			T _J =125°C	-	7.1	8.1	
		V _{GS} = 4.5V, I _D = 16A	16A		7.2	8.6	
Forward Transconductance	g _{fs}	$V_{DS} = 5V, I_{D} = 10A$		-	35	-	S
Dynamic Characteristics							-
Total Gate Charge	Q _{g(10V)}	$V_{DS} = 15.0V, I_{D} = 20A,$ $V_{GS} = 10V$		15.5	20.7	25.9	nC
Total Gate Charge	Q _{g(4.5V)}			7.6	10.1	12.6	
Gate-Source Charge	Q_{gs}			-	3.7	-	
Gate-Drain Charge	Q_{gd}			-	2.9	-	
Input Capacitance	C _{iss}	V _{DS} = 15.0V, V _{GS} = 0V, f = 1.0MHz		1013	1350	1688	pF
Reverse Transfer Capacitance	C_{rss}			99	132	165	
Output Capacitance	Coss			195	261	326	
Turn-On Delay Time	t _{d(on)}			-	8.8	-	
Rise Time	t _r	$V_{GS} = 10V, V_{DS} = 15.0V,$ $I_D = 20A, R_G = 3.0\Omega$		=	12.2	-	ns
Turn-Off Delay Time	t _{d(off)}			=	29.5	-	
Fall Time	t _f			-	8.6	-	
Gate Resistance	Rg	f=1 MHz		=	1.5	2.5	Ω
Drain-Source Body Diode Characteristics							
Source-Drain Diode Forward Voltage	V_{SD}	I _S = 20A, V _{GS} = 0V		ı	0.8	1.1	V
Body Diode Reverse Recovery Time	t _{rr}	I _F = 20A, dl/dt = 100A/μs		П	22.4	33.6	ns
Body Diode Reverse Recovery Charge	Q _{rr}			-	14.0	21.0	nC

Note:

- 1. Surface mounted FR-4 board by JEDEC (jesd51-7)
- 2. E_{AS} is tested at starting Tj = 25 °C, L = 0.1mH, I_{AS} = 24.0A, V_{DD} = 27V, V_{GS} = 10V. 3. T < 10sec.

Fig.1 On-Region Characteristics

Fig.3 On-Resistance Variation with Temperature

Fig.5 Transfer Characteristics

Fig.2 On-Resistance Variation with Drain Current and Gate Voltage

Fig.4 On-Resistance Variation with Gate to Source Voltage

Fig.6 Body Diode Forward Voltage Variation with Source Current and Temperature

Fig.7 Gate Charge Characteristics

Fig.9 Maximum Safe Operating Area

Fig.11 Transient Thermal Response Curve

Fig.8 Capacitance Characteristics

Fig.10 Maximum Drain Current vs. Case Temperature

Package Dimension

D-PAK (TO-252)

Dimensions are in millimeters, unless otherwise specified

Symbol Min

6,35 1,40

Nom.

1,52 2,74 REF 0,508 BCS

Max.

6,73 1,78

1,27 1,02 1,52 6,22 10,41

0,89

5,46

2,39 0,13

0,61 0,89

10,00

