Useful Fluids Formulae

Data

- For water, at 20°C and 1 atm: $\rho = 998 \text{ kg/m}^3$, $\mu = 1.00 \cdot 10^{-3} \text{ N} \cdot \text{sec/m}^2$.
- For air:
 - At sea level & standard temperature (288.2 K): P=101.3 kPa, $\rho=1.225$ kg/m³, $\mu=1.8\cdot10^{-5}$ N·sec/m².
 - $-R = 287 \frac{m^2}{\text{sec}^2 \cdot \text{K}}$

Hydrostatics

- For constant density:
 - Pressure variation with depth (z measured downwards): $P P(z = 0) = \rho gz$
 - Force due to pressure: $F = P_c A$ where P_c is pressure at the centroid of the surface.
 - Location of line of action: $y_p y_c = \rho g \sin \theta \frac{I_{xx,c}}{F}$
- For variable density:
 - Pressure variation with depth (z measured downwards): $\frac{\partial P}{\partial z} = \rho g$
 - Force: $F = \iint PdA$. Moment: $M = \iint Pr dA$, where r is the moment arm for force exerted on dA.

FIGURE 3-28

The centroid and the centroidal moments of inertia for some common geometries.

- Buoyant force = weight of fluid displaced
- Fluid undergoing uniform acceleration \vec{a} is equivalent to new gravity vector $\vec{g} \vec{a}$.

Control Volume Analysis

- Amount of stuff in a system B (mass, momentum, energy, etc): $B_{sys} = \iiint_{sys} \beta \rho \, dV$ where β is the amount of stuff per unit mass.
- Reynolds transport theorem relates system conservation law to control volume conservation law:

$$\frac{DB_{sys}}{Dt} = \frac{\partial}{\partial t} \iiint_{CV} \beta \rho \, dV + \iint_{CS} \beta \rho \vec{U} \cdot n \, \hat{d}A$$

- Conservation of mass.
 - 1D: $\frac{\partial}{\partial t} m_{CV} = (\rho A U)_{in} (\rho A U)_{out}$
 - $3D \left(\vec{U} = u\hat{i} + v\hat{j} + w\hat{k} \right):$
 - * General:

$$0 = \frac{\partial}{\partial t} \iiint_{CV} \rho \, dV + \iint_{CS} \rho \vec{U} \cdot \hat{n} \, dA$$

- * Incompressible: $\iint_{CS} \vec{U} \cdot \hat{n} dA = 0$ or $\nabla \cdot \vec{U} = 0$.
- * Steady: $\iint_{CS} \rho \vec{U} \cdot \hat{n} dA = 0$
- Conservation of momentum.
 - 1D uniform flow at inlets and outlets:

$$\frac{\partial}{\partial t} \iiint_{CV} \rho \vec{U} \, dV + \sum_{\text{outlets}} \dot{m}_o \vec{U}_o - \sum_{\text{inlets}} \dot{m}_i \vec{U}_i = \sum \vec{F}$$

- General case:

$$\frac{\partial}{\partial t} \iiint_{CV} \rho \vec{U} \, dV + \iint_{CS} \rho \vec{U} \left(\vec{U} \cdot \hat{n} \right) \, dA = \sum \vec{F}$$

- Bernoulli's equation.
 - General version:

$$\int_{1}^{2} \frac{\partial U}{\partial t} ds + \int_{1}^{2} \frac{dP}{\rho} + \frac{1}{2} \left(U_{2}^{2} - U_{1}^{2} \right) + g \left(z_{2} - z_{1} \right) = 0$$

Steady, incompressible version:

$$\left[p + \frac{1}{2}\rho U^2 + \rho gz\right]_1 = \left[p + \frac{1}{2}\rho U^2 + \rho gz\right]_2 = \text{constant}$$

Common Dimensionless Numbers

$$\operatorname{Re} = \frac{\rho U L}{\mu}$$
 $\operatorname{Fr} = \frac{U}{\sqrt{q L}}$ $C_D = \frac{D}{\frac{1}{h} \rho U^2 L^2}$ $\operatorname{Pr} = \frac{c_p \mu}{k}$ $\operatorname{Nu} = \frac{h L}{k}$

Pipe Flow

Entrance length: $\frac{L}{D}\approx 0.06 {\rm Re}_D$ (laminar) $\frac{L}{D}\approx 4.4 {\rm Re}_D^{1/6}$ (turbulent)

 ${\rm Re}_D\approx 2300$ @ transition. Friction factor: $h_f=f\frac{L}{D}\frac{U^2}{2g}$ — Minor losses: $h_m=K_m\frac{U^2}{2g}$

 $\text{Laminar pipe flow: } f = 64/\text{Re}_D \quad \text{Turbulent pipe flow: } \frac{1}{\sqrt{f}} = -1.8\log_{10}\left[\frac{6.9}{\text{Re}_D} + \left(\frac{\epsilon/D}{3.7}\right)^{1.11}\right]$

Pressure loss along a pipe:

$$\left[p + \frac{1}{2}\rho U^2 + \rho gz\right]_1 = \left[p + \frac{1}{2}\rho U^2 + \rho gz\right]_2 + \rho g\left(h_f + h_m\right)$$

UBC MECH 222 MATH FORMULAS

VECTOR IDENTITIES _

For
$$\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$$
, $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$, $\mathbf{w} = w_1 \mathbf{i} + w_2 \mathbf{j} + w_3 \mathbf{k}$,

$$\mathbf{u} \bullet \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3 = |\mathbf{u}| |\mathbf{v}| \cos(\theta), \quad 0 \le \theta \le \pi$$

$$|\mathbf{u}| = \sqrt{\mathbf{u} \bullet \mathbf{u}} = \sqrt{u_1^2 + u_2^2 + u_3^2}$$

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_2 \end{vmatrix} = \langle u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1 \rangle$$

$$|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| \, |\mathbf{v}| \sin \theta$$

$$\mathbf{u} \bullet (\mathbf{v} \times \mathbf{w}) = \mathbf{v} \bullet (\mathbf{w} \times \mathbf{u}) = \mathbf{w} \bullet (\mathbf{u} \times \mathbf{v})$$

$$\mathbf{u}\times(\mathbf{v}\times\mathbf{w})=(\mathbf{u}\bullet\mathbf{w})\mathbf{v}-(\mathbf{u}\bullet\mathbf{v})\mathbf{w}$$

DISTANCES AND PROJECTIONS ___

From point
$$(x_0, y_0, z_0)$$
 to plane $Ax + By + Cz = D$:

$$s = \frac{|Ax_0 + By_0 + Cz_0 - D|}{\sqrt{A^2 + B^2 + C^2}}$$

$$\mathbf{F} = \mathbf{proj}_{\mathbf{u}}(\mathbf{F}) + \mathbf{orth}_{\mathbf{u}}(\mathbf{F})$$

$$\mathbf{proj}_{\mathbf{u}}(\mathbf{F}) = \left(\frac{\mathbf{F} \bullet \mathbf{u}}{\mathbf{u} \bullet \mathbf{u}}\right) \mathbf{u}$$

$$\nabla = \mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z} = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle$$

$${\bf F}(x,y,z) = P(x,y,z)\,{\bf i}\, +\, Q(x,y,z)\,{\bf j}\, +\, R(x,y,z)\,{\bf k}$$

$$\nabla \phi(x,y,z) = \mathbf{grad}\,\phi(x,y,z) = \frac{\partial \phi}{\partial x}\,\mathbf{i} + \frac{\partial \phi}{\partial y}\,\mathbf{j} + \frac{\partial \phi}{\partial z}\,\mathbf{k} \qquad \qquad \nabla \bullet \mathbf{F}(x,y,z) = \mathbf{div}\,\,\mathbf{F}(x,y,z) = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\,\mathbf{k} = \mathbf{F}(x,y,z)$$

$$\nabla \bullet \mathbf{F}(x, y, z) = \mathbf{div} \ \mathbf{F}(x, y, z) = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial P}{\partial z}$$

$$\nabla \times \mathbf{F}(x,y,z) = \mathbf{curl}\,\mathbf{F}(x,y,z) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & O & R \end{vmatrix} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)\mathbf{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right)\mathbf{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\mathbf{k}$$

$$\nabla(\phi\psi) = \phi\nabla\psi + \psi\nabla\phi$$

$$\nabla \bullet (\mathbf{F} \times \mathbf{G}) = (\nabla \times \mathbf{F}) \bullet \mathbf{G} - \mathbf{F} \bullet (\nabla \times \mathbf{G})$$

$$\nabla \bullet (\phi \mathbf{F}) = (\nabla \phi) \bullet \mathbf{F} + \phi (\nabla \bullet \mathbf{F})$$

$$\nabla \times (\mathbf{F} \times \mathbf{G}) = \mathbf{F}(\nabla \bullet \mathbf{G}) - \mathbf{G}(\nabla \bullet \mathbf{F}) - (\mathbf{F} \bullet \nabla)\mathbf{G} + (\mathbf{G} \bullet \nabla)\mathbf{F}$$

$$\nabla \times (\phi \mathbf{F}) = (\nabla \phi) \times \mathbf{F} + \phi (\nabla \times \mathbf{F})$$

$$\nabla (\mathbf{F} \bullet \mathbf{G}) = \mathbf{F} \times (\nabla \times \mathbf{G}) + \mathbf{G} \times (\nabla \times \mathbf{F}) + (\mathbf{F} \bullet \nabla) \mathbf{G} + (\mathbf{G} \bullet \nabla) \mathbf{F}$$

$$\nabla \times (\nabla \phi) = \mathbf{0}$$
 (curl grad = 0)

$$\nabla \bullet (\nabla \times \mathbf{F}) = 0 \qquad (\mathbf{div} \, \mathbf{curl} = 0)$$

$$\nabla^2\phi(x,y,z) = \nabla \bullet \nabla \phi(x,y,z) = \operatorname{\mathbf{div}}\operatorname{\mathbf{grad}}\phi = \frac{\partial^2\phi}{\partial x^2} + \frac{\partial^2\phi}{\partial y^2} + \frac{\partial^2\phi}{\partial z^2}$$

VECTOR-VALUED FUNCTIONS OF ONE VARIABLE

$$\frac{d}{dt} (\lambda(t)\mathbf{u}(t)) = \lambda'(t)\mathbf{u}(t) + \lambda(t)\mathbf{u}'(t)$$

$$\frac{d}{dt} (\mathbf{u}(t) \bullet \mathbf{v}(t)) = \mathbf{u}'(t) \bullet \mathbf{v}(t) + \mathbf{u}(t) \bullet \mathbf{v}'(t)$$

$$\frac{d}{dt}(\mathbf{u}(t) \times \mathbf{v}(t)) = \mathbf{u}'(t) \times \mathbf{v}(t) + \mathbf{u}(t) \times \mathbf{v}'(t)$$

$$\frac{d}{dt} |\mathbf{u}(t)| = \frac{\mathbf{u}(t) \bullet \mathbf{u}'(t)}{|\mathbf{u}(t)|}, \quad \mathbf{u}(t) \neq \mathbf{0}$$

$$\frac{d}{dt}\left(\mathbf{u}(\lambda(t))\right) = \lambda'(t)\mathbf{u}'(\lambda(t))$$

Position $\mathbf{r} = \mathbf{r}(t)$ gives velocity $\mathbf{v}(t) = \mathbf{r}'(t)$, speed $v(t) = |\mathbf{v}(t)|$, acceleration $\mathbf{a}(t) = \mathbf{v}'(t) = \mathbf{r}''(t)$. In this case,

$$d\mathbf{r} = \langle dx, \, dy, \, dz \rangle = \left\langle \frac{dx}{dt}, \, \frac{dy}{dt}, \, \frac{dz}{dt} \right\rangle \, dt = \frac{d\mathbf{r}}{dt} \, dt = \mathbf{v}(t) \, dt, \qquad ds = |d\mathbf{r}| = \left| \frac{d\mathbf{r}}{dt} \right| \, dt = |\mathbf{v}(t)| \, dt = v(t) \, dt.$$

LINEAR APPROXIMATIONS _

Differentiability test—function
$$f$$
, point \mathbf{a} :

$$0 = \lim_{\mathbf{x} \to \mathbf{a}} \frac{E(\mathbf{x})}{|\mathbf{x} - \mathbf{a}|}, \text{ where } E(\mathbf{x}) = f(\mathbf{x}) - f(\mathbf{a}) - \nabla f(\mathbf{a}) \bullet (\mathbf{x} - \mathbf{a})$$

Tangent Hyperplane for $G(\mathbf{x}) = 0$ at **a**:

$$0 = \nabla G(\mathbf{a}) \bullet (\mathbf{x} - \mathbf{a})$$

Linearization of f around \mathbf{a} :

$$L(\mathbf{x}) = f(\mathbf{a}) + (\mathbf{x} - \mathbf{a}) \bullet \nabla f(\mathbf{a})$$

Differentials for w = f(x, y, z):

$$dw = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz = \nabla f \bullet d\mathbf{r}$$

SURFACE NORMALS AND AREA ELEMENTS _

For any oriented surface normal
$$\mathbf{n} \neq \mathbf{0}$$
, $d\mathbf{S} = \hat{\mathbf{n}} \, dS = \frac{\mathbf{n}}{|\mathbf{n} \bullet \mathbf{k}|} \, dx \, dy = \frac{\mathbf{n}}{|\mathbf{n} \bullet \mathbf{j}|} \, dx \, dz = \frac{\mathbf{n}}{|\mathbf{n} \bullet \mathbf{i}|} \, dy \, dz$, $dS = |d\mathbf{S}| \, dz = \frac{\mathbf{n}}{|\mathbf{n} \bullet \mathbf{j}|} \, dz$

Level Surface G(x, y, z) = 0:

normal
$$\mathbf{n} = \pm \nabla G(x, y, z)$$

Parametric Surface $\mathbf{r} = \mathbf{r}(u, v)$:

normal
$$\mathbf{n} = \pm \left(\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right)$$

POLAR AND CYLINDRICAL COORDINATES _

 $\mbox{Transformation:} \ x = r\cos\theta, \quad y = r\sin\theta, \quad z = z$

Volume element:
$$dV = r dr d\theta dz$$

Surface area element (on r = a): $dS = a d\theta dz$

Surface area element (on z = 0): $dS = r dr d\theta$

SPHERICAL COORDINATES __

Transformation: $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$

Volume element: $dV = \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$

Surface area element (on $\rho = a$): $dS = a^2 \sin \phi \, d\theta \, d\phi$

INTEGRATING DERIVATIVES: THE FUNDAMENTAL THEOREM OF CALCULUS $_$

1-variable FTC:

$$\int_{a}^{b} f'(t) dt = f(b) - f(a)$$

Let $\mathbf{F}(x, y, z) = P(x, y, z)\mathbf{i} + Q(x, y, z)\mathbf{j} + R(x, y, z)\mathbf{k}$,

$$C: \mathbf{r} = \mathbf{r}(t) \quad a < t < b$$

Work from Potential:

$$\int_{C} \nabla \phi \bullet d\mathbf{r} = \int_{C} \frac{\partial \phi}{\partial x} dx + \frac{\partial \phi}{\partial y} dy + \frac{\partial \phi}{\partial z} dz = \phi(\mathbf{r}(b)) - \phi(\mathbf{r}(a))$$

Green's Theorem:

$$\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA = \oint_{\partial D} \mathbf{F} \bullet d\mathbf{r} = \oint_{\partial D} P(x,y) \, dx \, + \, Q(x,y) \, dy$$

Stokes's Theorem:

$$\iint_{S} \nabla \times \mathbf{F} \bullet \widehat{\mathbf{n}} \, dS = \oint_{\partial S} \mathbf{F} \bullet d\mathbf{r} = \oint_{\partial S} P(x,y,z) \, dx + Q(x,y,z) \, dy + R(x,y,z) \, dz$$

Divergence Theorem:

$$\iiint_{E} \nabla \bullet \mathbf{F} \, dV = \oiint_{\widehat{\partial}E} \mathbf{F} \bullet \widehat{\mathbf{n}} \, dS$$

AVERAGE VALUES: f ON CURVE \mathcal{C}, g ON SURFACE \mathcal{S}, h ON SOLID E

$$\overline{f} = \frac{\int_{\mathcal{C}} f \, ds}{\int_{\mathcal{C}} 1 \, ds}$$

$$\overline{g} = \frac{\iint_{\mathcal{S}} g \, dS}{\iint_{\mathcal{S}} 1 \, dS}$$

$$\overline{h} = \frac{\iiint_E h(x, y, z) \, dV}{\iiint_E 1 \, dV}$$

DEFINITE INTEGRALS AND SPECIAL FUNCTIONS

$$\begin{split} \operatorname{erf}(x) &= \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \, dt & \int_0^\infty e^{-t^2} \, dt & = \frac{\sqrt{\pi}}{2} \\ \int_0^{\pi/2} \sin x \, dx &= \int_0^{\pi/2} \cos x \, dx = 1 & \int_0^{\pi/2} \sin^2 x \, dx = \int_0^{\pi/2} \cos^2 x \, dx = \frac{\pi}{4} \\ \int_0^{\pi/2} \sin^3 x \, dx &= \int_0^{\pi/2} \cos^3 x \, dx = \frac{2}{3} & \int_0^{\pi/2} \sin^4 x \, dx = \int_0^{\pi/2} \cos^4 x \, dx = \frac{3\pi}{16} \\ \int_0^{\pi/2} \sin^5 x \, dx &= \int_0^{\pi/2} \cos^5 x \, dx = \frac{8}{15} & \int_0^{\pi/2} \sin^6 x \, dx = \int_0^{\pi/2} \cos^6 x \, dx = \frac{5\pi}{32} \end{split}$$

TRIGONOMETRIC IDENTITIES

$$\begin{aligned} \sin^2 x + \cos^2 x &= 1 & \sin(-x) &= -\sin x & \cos(-x) &= \cos x \\ \sec^2 x &= 1 + \tan^2 x & \csc^2 x &= 1 + \cot^2 x & \tan(x \pm y) &= \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y} \\ \sin(x \pm y) &= \sin x \cos y \pm \cos x \sin y & \cos(x \pm y) &= \cos x \cos y \mp \sin x \sin y & \sin\left(\frac{\pi}{2}\right) &= 1 = \cos(0) \\ \sin^2 x &= \frac{1 - \cos 2x}{2} & \sin\left(\frac{\pi}{4}\right) &= \frac{\sqrt{2}}{2} &= \cos\left(\frac{\pi}{4}\right) \\ \sin(0) &= 0 &= \cos\left(\frac{\pi}{2}\right) & \sin\left(\frac{\pi}{6}\right) &= \frac{1}{2} &= \cos\left(\frac{\pi}{3}\right) & \sin\left(\frac{\pi}{3}\right) &= \frac{\sqrt{3}}{2} &= \cos\left(\frac{\pi}{6}\right) \end{aligned}$$

INDEFINITE INTEGRALS

$$\int x \sin(bx) \, dx = \frac{\sin(bx)}{b^2} - \frac{x \cos(bx)}{b}$$

$$\int x \cos(bx) \, dx = \frac{\cos(bx)}{b^2} + \frac{x \sin(bx)}{b}$$

$$\int x \cos(bx) \, dx = \frac{\cos(bx)}{b^2} + \frac{x \sin(bx)}{b}$$

$$\int \tan x \, dx = \ln|\sec x|$$

$$\int e^{ax} \sin(bx) \, dx = \frac{e^{ax} (a \sin bx - b \cos bx)}{a^2 + b^2}$$

$$\int \sin^2 x \, dx = \frac{x}{2} - \frac{1}{4} \sin 2x$$

$$\int \sec^2 x \, dx = \tan x$$

$$\int \sin^3 x \, dx = \frac{1}{3} \cos^3 x - \cos x$$

$$\int \cos^3 x \, dx = \sin x - \frac{1}{3} \sin^3 x$$

$$\int (a^2 - x^2)^{3/2} \, dx = \frac{x}{8} (5a^2 - 2x^2) \sqrt{a^2 - x^2} + \frac{3a^4}{8} \sin^{-1} \frac{x}{a}$$

$$\int (x^2 \pm a^2)^{3/2} \, dx = \frac{x}{8} (2x^2 \pm 5a^2) \sqrt{x^2 \pm a^2} + \frac{3a^4}{8} \ln|x + \sqrt{x^2 \pm a^2}|$$

$$\int \frac{dx}{a^2 - x^2} \, dx = \frac{1}{2a} \ln|\frac{x + a}{x - a}| \quad (a > 0)$$

$$\int \frac{dx}{a^2 - x^2} = \sin^{-1} \left(\frac{x}{a}\right) \quad (a > 0)$$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \sin^{-1} \left(\frac{x}{a}\right) \quad (a > 0)$$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \sin^{-1} \left(\frac{x}{a}\right) \quad (a > 0)$$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \sin^{-1} \left(\frac{x}{a}\right) \quad (a > 0)$$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \sin^{-1} \left(\frac{x}{a}\right) \quad (a > 0)$$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \sin^{-1} \left(\frac{x}{a}\right) \quad (a > 0)$$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \sin^{-1} \left(\frac{x}{a}\right) \quad (a > 0)$$

$$\int \frac{dx}{(x^2 \pm a^2)^{3/2}} = \frac{\pm x}{a^2 \sqrt{x^2 \pm a^2}}$$

	Manager 2 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			9.	
Pressure definition		$P = \frac{F}{A}$ (mathematical limit for small A)		MECH 222	
Sp	ecific volume	$v = \frac{V}{m}$	48 - 897	-	
De	ensity	$\rho = \frac{m}{V}$	· ·	Thermodynamics	
Static pressure variation		$\Delta P = \rho g H = -\int \rho g \mathrm{d}h$		Formula Sheets	
At	osolute temperature	$T[K] = T[^{\circ}C] + 273.15$		(12016"	
**		T[R] = T[F] + 459.67			
Sp	ecific total energy	$e = u + \frac{1}{2}V^2 + gz$			
	oncepts from Physics ———— ewton's law of motion	F = ma		1	
		$a = \frac{d^2x}{dt^2} = \frac{d\mathbf{V}}{dt}$		1	
Ac	celeration		9		
Ve	locity	$V = \frac{dx}{dt}$	~	Lane e	
Quality	$x = m_{\rm vap}/m (va)$		Universal gas constant		
Average specific		(liquid mass fraction) $ v_g $ (only two-phase mixture)	Gas constant	$R = \overline{R}/M \qquad \text{kJ/kg K}$	
Equilibrium surf		s or equation of state	Compressibility factor	Z Pv = ZRT	
Ideal gas law	Pv = RT PV	$Y = mRT = n\overline{R}T$	Reduced properties	$P_r = \frac{P}{P}$ $T_r = \frac{T}{T}$	
an portan	The state of the s	1	- ·· · · · · ·	- · ·	
Total energy	20	$E = mu + \frac{1}{2}mV^2 + mgZ$		€	
Kinetic energy	$KE = \frac{1}{2}mV^2$	5.			
Potential energy	.				
Specific energy	$e = u + \frac{1}{2}\mathbf{V}^2 + g.$	Z			
Enthalpy	$h \equiv u + Pv$		201		
Two-phase mass avera					
	$h = h_f + x h_{fg} = (1 - x)$	- ·	£		
Specific heat, heat car	pacity $C_v = \left(\frac{\partial u}{\partial T}\right)_v$; $C_p = \left(\frac{\partial u}{\partial T}\right)_v$	$\left(\frac{1}{2T}\right)_{p}$			
Solids and liquids	Incompressible, so $v = 0$ $C = C_v = C_p$	constant $\cong v_f$ (or v_i) and v small		348	
	$u_2 - u_1 = C(T_2 - T_1)$			*	
		$P_2 - P_1$) (Often the second term is small.)			
Ideal gas	$h = h_f + v_f (P - P_{\text{sat}});$ h = u + Pv = u + RT	$u \cong u_f$ (saturated at same T) (only functions of T)	·		
ideal gas	$C_{v} = \frac{du}{dT}; C_{p} = \frac{dh}{dT} =$	· · · · ·	a		
	$u_2 - u_1 = \int C_v dT \cong 0$	$C_{v}(T_2-T_1)$			

 $h_2-h_1=\int C_p\,dT\cong C_p(T_2-T_1)$

Page 1/4

 $\dot{E} = \dot{Q} - \dot{W}$ (rate = +in - out) Energy equation rate form $E_2 - E_1 = {}_1Q_2 - {}_1W_2$ (change = +in - out) Energy equation integrated $m(e_2 - e_1) = m(u_2 - u_1) + \frac{1}{2}m(\mathbf{V}_2^2 - \mathbf{V}_1^2) + mg(Z_2 - Z_1)$ $E = m_A e_A + m_B e_B + m_C e_C + \cdots$ Multiple masses, states Energy in transfer: mechanical, electrical, and chemical Work Energy in transfer caused by ΔT Heat $W = \int_1^2 F \, dx = \int_1^2 P \, dV = \int_1^2 \mathcal{G} \, dA = \int_1^2 T \, d\theta$ Displacement work (work per unit mass) w = W/mSpecific work $(\dot{V}$ displacement rate) $\dot{W} = F \mathbf{V} = P \dot{V} = T \omega$ Power, rate of work Velocity $\mathbf{V} = r\omega$, torque T = Fr, angular velocity $= \omega$ $PV^n = \text{constant}$ or $Pv^n = \text{constant}$ Polytropic process $_{1}W_{2} = \frac{1}{1-n}(P_{2}V_{2} - P_{1}V_{1}) \quad (\text{if } n \neq 1)$ Polytropic process work $_{1}W_{2} = P_{1}V_{1} \ln \frac{V_{2}}{V_{1}}$ (if n = 1) $\dot{Q} = -kA\frac{dT}{dr} \simeq kA\frac{\Delta T}{T}$ Conduction heat transfer k (W/m K) Conductivity $\dot{O} = hA \Delta T$ Convection heat transfer $h (W/m^2 K)$ Convection coefficient $Q = \varepsilon \sigma A (T_s^4 - T_{amb}^4)$ $(\sigma = 5.67 \times 10^{-8} \text{ W/m}^2 \text{ K}^4)$ Radiation heat transfer (net to ambient) $_{1}Q_{2}=\int \dot{Q}\,dt\approx \dot{Q}_{\mathrm{avg}}\,\Delta t$ Rate integration (using average velocity) $\dot{V} = \int \mathbf{V} \, dA = A\mathbf{V}$ Volume flow rate $\dot{m} = \int \rho \mathbf{V} dA = \rho A \mathbf{V} = A \mathbf{V}/v$ (using average values) Mass flow rate $\dot{W}_{flow} = P\dot{V} = \dot{m}Pv$ Flow work rate From higher P to lower P unless significant KE or PE exists Flow direction Instantaneous Process - $\dot{m}_{\rm C.V.} = \sum_i \dot{m}_i - \sum_i \dot{m}_e$ Continuity equation $\dot{E}_{\mathrm{C.V.}} = \dot{\vec{Q}}_{\mathrm{C.V.}} - \dot{\vec{W}}_{\mathrm{C.V.}} + \sum \dot{m}_i h_{\mathrm{tot}\,i} - \sum \dot{m}_e h_{\mathrm{tot}\,e}$ Energy equation $h_{\text{tot}} = h + \frac{1}{2}\mathbf{V}^2 + gZ = h_{\text{stagnation}} + gZ$ Total enthalpy Steady State No storage: $\dot{m}_{\text{C.V.}} = 0$; $\dot{E}_{\text{C.V.}} = 0$ $\sum \dot{m}_i = \sum \dot{m}_e$ (in = out) Continuity equation $\dot{Q}_{\text{C.V.}} + \sum \dot{m}_i h_{\text{tot }i} = \dot{W}_{\text{C.V.}} + \sum \dot{m}_e h_{\text{tot }e}$ Energy equation $q = \dot{Q}_{\text{C.V.}}/\dot{m}$ (steady state only) Specific heat transfer $w = W_{\text{C.V.}}/\dot{m}$ (steady state only) Specific work Steady-state, single-flow $q + h_{\text{tot } i} = w + h_{\text{tot } e}$ (in = out) energy equation Transient Process $m_2 - m_1 = \sum m_i - \sum m_e$ Continuity equation $E_2 - E_1 = {}_1Q_2 - {}_1W_2 + \sum m_i h_{\text{tot }i} - \sum m_e h_{\text{tot }e}$ Energy equation $E_2 - E_1 = m_2 \left(u_2 + \frac{1}{2} \mathbf{V}_2^2 + g Z_2 \right) - m_1 \left(u_1 + \frac{1}{2} \mathbf{V}_1^2 + g Z_1 \right)$

MOS SANATRANA DE SOCIATIONS	THE PARTY OF THE PROPERTY OF T			
Heat engine Will =	$Q_H - Q_L$: $\eta_{HE} = \frac{W_{HE}}{Q_H} = 1 - \frac{Q_L}{Q_H}$	Real heat engine	$\eta_{\rm HE} = \frac{W_{\rm HE}}{Q_H} \le \eta_{\rm Carr}$	$_{\text{not HE}} = 1 - \frac{T_L}{T_H}$
Heat pump $W_{HP} =$	$Q_H - Q_L$: $\beta_{HP} = \frac{Q_H}{W_{HP}} = \frac{Q_H}{Q_H - Q_L}$	Real heat pump	$\beta_{\rm HP} = \frac{Q_H}{W_{\rm HP}} \le \beta_{\rm Carr}$	-11 2
Refrigerator WREF =	$Q_H - Q_L$: $\beta_{REF} = \frac{Q_L}{W_{REF}} = \frac{Q_L}{Q_H - Q_L}$	Real refrigerator	$\beta_{\text{REF}} = \frac{Q_L}{W_{\text{REF}}} \le \beta_C$	$T_{\text{armot REF}} = \frac{T_L}{T_H - T_L}$
Clausius inequality	$\int \frac{dQ}{T} \le 0$			
Entropy	$ds = \frac{dq}{T} + ds_{\text{gen}}; \qquad ds_{\text{gen}} \ge 0$			
Rate equation for entropy	$\dot{S_{\text{c.m.}}} = \sum rac{\dot{Q_{\text{c.m.}}}}{T} + \dot{S_{\text{gen}}}$.9	
Entropy equation	$m(s_2 - s_1) = \int_1^2 \frac{\delta Q}{T} + {}_1S_{2 \text{ gen}}; {}_1S_{2 \text{ gen}} \ge$	≥ 0	•	
Total entropy change	$\Delta S_{\text{net}} = \Delta S_{\text{cm}} + \Delta S_{\text{surr}} = S_{\text{gen}} \ge 0$			
Lost work	$W_{\mathrm{lost}} = \int T dS_{\mathrm{gen}}$		•	
Actual boundary work	$_{1}W_{2}=\int PdV-W_{\mathrm{lost}}$	 - - -		
Gibbs relations	T ds = du + P dv			(*)
Solids, Liquids ———	T ds = dh - v dP			
	v = constant, dv = 0			20.
Change in s	$s_2 - s_1 = \int \frac{du}{T} = \int C \frac{dT}{T} \approx C \ln \frac{T_2}{T_1}$			
Ideal Gas				
Standard entropy	$s_T^0 = \int_{T_0}^T \frac{C_{p0}}{T} dT$	N 14		
Change in s	$s_2 - s_1 = s_{T2}^0 - s_{T1}^0 - R \ln \frac{P_2}{P_1}$			
	$s_2 - s_1 = C_{p0} \ln \frac{T_2}{T_1} - R \ln \frac{P_2}{P_1}$ (For const	$\operatorname{cant} C_p, C_v)$		
	$s_2 - s_1 = C_{v0} \ln \frac{T_2}{T_1} + R \ln \frac{v_2}{v_1}$ (For const	$\operatorname{rant} C_p, C_v$		
Ratio of specific heats	$k = C_{p0}/C_{v0}$		50) 903/05	
Polytropic processes	$Pv^n = \text{constant}; \qquad PV^n = \text{constant}$			T-1
	$\frac{P_2}{P_1} = \left(\frac{V_1}{V_2}\right)^n = \left(\frac{v_1}{v_2}\right)^n = \left(\frac{T_2}{T_1}\right)^{\frac{n}{n-1}}$	n = 0; $n = 1;$	P = constant; $T = constant;$	Isobaric Isothermal
	41 (12) (12)	n=k;	s = constant;	Isentropic
a a	$\frac{T_2}{T_1} = \left(\frac{\nu_1}{\nu_2}\right)^{n-1} = \left(\frac{P_2}{P_1}\right)^{\frac{n-1}{n}}$	$n=\pm\infty;$	v = constant;	Isochoric or isometric
5.	$\frac{v_2}{v_1} = \left(\frac{P_1}{P_2}\right)^{\frac{1}{n}} = \left(\frac{T_1}{T_2}\right)^{\frac{1}{n-1}}$	1		20
Specific work	$_{1}w_{2}=\frac{1}{1-n}\left(P_{2}v_{2}-P_{1}v_{1}\right)=\frac{R}{1-n}\left(T_{2}-T_{1}v_{1}\right)$	$n \neq 1$	•	
	$_{1}w_{2} = P_{1}v_{1} \ln \frac{v_{2}}{v_{1}} = RT_{1} \ln \frac{v_{2}}{v_{1}} = RT_{1} \ln \frac{P_{1}}{P_{2}}$	n=1	*	
	The work is moving boundary work $w = \int P$	dv	- ·	

rate of change = +in - out + generationRate equation for entropy $\dot{S}_{\text{c.v.}} = \sum \dot{m}_i s_i - \sum \dot{m}_e s_e + \sum \frac{Q_{\text{c.v.}}}{T} + \dot{S}_{\text{gen}}$ Steady-state single flow $s_e = s_i + \int_{1}^{e} \frac{\delta q}{T} + s_{gen}$ $\dot{w} = -\int_{c}^{e} v \, dP + \frac{1}{2} \, \mathbf{V}_{i}^{2} - \frac{1}{2} \, \mathbf{V}_{e}^{2} + g Z_{i} - g Z_{e}$ Reversible shaft work $q = \int_{i}^{e} T \, ds = h_{e} - h_{i} - \int_{i}^{e} v \, dP \quad \text{(from the Gibbs relation)}$ Reversible heat transfer $v(P_i - P_e) + \frac{1}{2} \mathbf{V}_i^2 - \frac{1}{2} \mathbf{V}_e^2 + gZ_i - gZ_e = 0$ (v = constant) Bernoulli equation $w = -\frac{n}{n-1} (P_e v_e - P_i v_i) = -\frac{nR}{n-1} (T_e - T_i)$ Polytropic process work $w = -P_i v_i \ln \frac{P_e}{P_i} = -RT_i \ln \frac{P_e}{P_i} = RT_i \ln \frac{v_e}{v_i} \qquad n = 1$ The work is shaft work $w = -\int_{1}^{e} v \, dP$ and for ideal gas Isentropic efficiencies $\eta_{\text{turbine}} = w_{Tac}/w_{Ts}$ (Turbine work is out) $\eta_{\text{compressor}} = w_{Cs}/w_{Cac}$ (Compressor work is in) $\eta_{\text{pump}} = w_{Ps}/w_{Pac}$ (Pump work is in) $\eta_{\text{nozzle}} = \frac{1}{2} \mathbf{V}_{ac}^2 / \frac{1}{2} \mathbf{V}_s^2$ (Kinetic energy is out)