

代数数论讲义

2021 春

作者: 李加宁

组织:中国科学技术大学,安徽省合肥市

目录

1	整数环以及理想		
	1.1	Kronecker-Weber 定理	1
	1.2	类域论介绍	2

第一章 整数环以及理想

1.1 Kronecker-Weber 定理

本节利用我们所学的内容给出如下著名定理的初等证明. 我将证明分割成众多习题. 随着课程的深入,这个定理有更简单的证明,特别的它是我们本学期将建立的类域论的直接推论. 但历史上,这个定理是类域论发展初期的重要结果,给后面的发展带来很多启发. K/\mathbb{Q} 是 abel 扩张指 K/\mathbb{Q} 是 Galois 扩张且 Galois 群是 abel 群.

定理 1.1. Kronecker-Weber 定理

◎的有限 abel 扩张均是分圆域的子域.

 \Diamond

练习 1.1 设 L/K 是数域的 Galois 扩张. \mathfrak{p} 是 K 的素理想, \mathfrak{P} 是 L 的 \mathfrak{p} 之上的素理想. $\pi \in \mathfrak{P} \setminus \mathfrak{P}^2$. 记 $I_{\mathfrak{P}}$ 是 \mathfrak{P} 的惯性群, $E = L^{I_{\mathfrak{P}}}$ 是惯性域. 对每个 $i \in \mathbb{Z}_{\geq 0}$ 定义 $I_{\mathfrak{P}}$ 的子群

$$V_i = \{ \sigma \in I_{\mathfrak{P}} : \sigma(x) \equiv x \bmod {\mathfrak{P}}^{i+1}, \forall x \in \mathcal{O}_L \}.$$

特别地 $V_0 = I_{\mathfrak{D}}$.

(1) 证明 $L = E(\pi)$, 从而对每个 i 有

$$V_i = \{ \sigma \in I_{\mathfrak{P}} : \sigma(\pi) \equiv \pi \bmod {\mathfrak{P}}^{i+1} \}.$$

- (2) 证明 $\cap_i V_i = \{1\}$.
- (3) 证明 $\sigma \mapsto \frac{\sigma(\pi)}{\pi} \mod \mathfrak{P} \not\equiv V_0 \mathfrak{P}(\mathcal{O}_L/\mathfrak{P})^{\times}$ 的群同态, 其核为 V_1 , 从而诱导了单射 $f: V_0/V_1 \hookrightarrow (\mathcal{O}_L/\mathfrak{P})^{\times}$.

证明映射 f 不依赖于 π 的选取. 如果分解群 $D_{\mathfrak{D}}$ 是 abel 群, 证明 f 的像落在 $(\mathcal{O}_K/\mathfrak{p})^{\times}$ 里.

(4) 设 $i \geq 1$. 证明对 $\sigma \mapsto \frac{\sigma(\pi) - \pi}{\pi^{i+1}} \mod \mathfrak{P}$ 是 V_i 到 $\mathcal{O}_L/\mathfrak{P}$ 的群同态, 其核为 V_{i+1} , 从而诱导了单射

$$V_i/V_{i+1} \hookrightarrow \mathcal{O}_L/\mathfrak{P}$$
.

(5) 证明 V_1 是 V_0 的正规 Sylow p-子群.

接下来的练习中 K/\mathbb{Q} 是有限 abel 扩张, p 是任意素数.

△ 练习 1.2 说明定理1.1可约化到如下结论: (提示: 利用 Galois 理论与有限 abel 群结构定理,)

若 $[K:\mathbb{Q}]=p^k$,则 K 是分圆域的子域.

▲ 练习1.3

设 $[K:\mathbb{Q}]$ 等于 p 的方幂. 本题目为证明下面的 (3) 和 (4).

(1) 设有素数 $q \neq p$ 也在 K 中分歧. 证明 q 在 K 中的分歧指数 $e_q(K/\mathbb{Q})$ 整除 q-1.

 \Diamond

(练习1.1(3).)

(2) 设 $F \subset \mathbb{Q}(\zeta_q)$ 使得 $[F:\mathbb{Q}] = e_q$. 记 L = FK. 对任意数域 $T \subset L$, 记 $I(T/\mathbb{Q})$ 是 q 在 T/\mathbb{Q} 处的惯性群. 证明限制映射给出如下单同态

$$I(L/\mathbb{Q}) \hookrightarrow I(F/\mathbb{Q}) \times I(K/\mathbb{Q}).$$

证明 $I(L/\mathbb{Q}) \cong I(F/\mathbb{Q}) \cong I(K/\mathbb{Q})$ (利用练习1.1(3)) 以及 $KL^{I(L/\mathbb{Q})} = L$.

(3) 将定理1.1归化到如下情形:

若 K/\mathbb{Q} 在 p 以外的素数非分歧, 则 K 是分圆域的子域.

(4) 利用 Minkowski 的判别式定理: "对任何不等于 ℚ 的数域都存在素数在其中分歧", 证明:

若 K/\mathbb{Q} 中分歧的素数只有 p, 则 K 是分圆域的子域.

- **练习 1.4** (1) 证明 $\mathbb{Q}(\zeta_{2^{k+2}}) \cap \mathbb{R}$ 是 \mathbb{Q} 的 2^k 次循环扩张 (循环扩张即 Galois 群为循环群的扩张).
 - (2) 设 $p \neq 2$. 证明 $\mathbb{Q}(\zeta_{p^{k+1}})$ 有唯一的子域 F 使得 F/\mathbb{Q} 是 p^k 次循环扩张.
- **练习 1.5** 设 $[K:\mathbb{Q}] = 2^k$ 且在 K 中分歧的素数只有 2.
 - (1) 当 k=1 时, 证明 K 是 $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt{-1})$ 或者 $\mathbb{Q}(\sqrt{-2})$, 这三个域是 $\mathbb{Q}(\zeta_8)$ 的全部 非平凡子域.
 - (2) 当 k > 1 时,设 $F \subset \mathbb{Q}(\zeta_{2^{k+2}})$ 是练习1.4(1) 中的子域. 记 L = KF,令 $\sigma \in \operatorname{Gal}(L/\mathbb{Q})$ 使得 $\sigma|_F$ 是 $\operatorname{Gal}(F/\mathbb{Q})$ 的生成元. 设 E 为 L 被 σ 固定不动的域. 则证明 $E \cap F = \mathbb{Q}$,再证明 $E \cap \mathbb{R} = \mathbb{Q}$,以及 $E = \mathbb{Q}, \mathbb{Q}(\sqrt{-1})$ 或者 $\mathbb{Q}(\sqrt{-2})$. 利用这些证明 $K \subset \mathbb{Q}(\zeta_{2^{k+2}})$.
- **练习 1.6** 利用下面命题1.1的结论证明: 若 $p \neq 2$, $[K:\mathbb{Q}] = p^k$ 且在 K 中分歧的素数只有 p, 则 K 是分圆域的子域.

结合这些练习, Kronecker-Weber 定理的证明就差下面这个关键命题了.

命题 1.1

设p是奇素数, K/\mathbb{Q} 是p次 abel 扩张且p是在K中分歧的唯一素数.则 $K \subset \mathbb{Q}(\zeta_{p^2})$.

(题外话, 举例说明如果去掉 abel 的条件, 这个结论不对.)

引理 1.1

记 $F = \mathbb{Q}(\zeta_p), \pi = 1 - \zeta_p, \text{则} \pi^{p-1} = p\mathcal{O}_F.$ 设 $\alpha \in \mathcal{O}_F$, 我们还有

- (1) 对任意 $m \in \mathbb{Z}_{>1}$, 存在 $a_i \in \mathbb{Z}$ 使得 $\alpha = a_0 + a_1\pi + \cdots + a_{m-1}\pi^{m-1}$.
- (2) 若 $\alpha \equiv 1 \mod \pi$, 则存在 $a \in \mathbb{Z}$ 使得 $\zeta_n^a \alpha \equiv 1 \mod \pi^2$.
- (3) 若 $\alpha = \gamma^p, \gamma \in \mathcal{O}_F$, 则 $\alpha \equiv 1 \mod \pi^p$.
- (4) 若 $\alpha \equiv 1 \mod \pi^p$, 则 $K(\sqrt[p]{\alpha})/K$ 在 π 处非分歧.

证明 引理的证明留作练习.

证明 [命题1.1的证明] 记 $F = \mathbb{Q}(\zeta)$, $(\zeta = \zeta_p)$. 我们来证明 $L := KF = \mathbb{Q}(\zeta_{p^2})$. 则由于 L/\mathbb{Q} 处是完全分歧,则 $\pi\mathcal{O}_F$ 在 L/F 中完全分歧,如同上面引理, $\pi = 1 - \zeta$.

根据 Kummer 理论, $L = F(\sqrt[p]{\alpha})$ 是 p 次根式扩张. 我们进一步断言可选取适当 α 是 π -单位, 即 $v_{(\pi)}(\alpha) = 0$. 利用 $[L:\mathbb{Q}] = p^-p$ 知限制映射诱导了同构

$$G := \operatorname{Gal}(L/\mathbb{Q}) \cong \operatorname{Gal}(K/\mathbb{Q}) \times \operatorname{Gal}(F/\mathbb{Q}).$$

设 $\sigma \in G$ 使得 $\sigma|_F = \mathrm{id}$, $\sigma|_K$ 上是 $\mathrm{Gal}(K/\mathbb{Q})$ 的生成元, 从而 $\sigma^p = 1$. 设 $\tau \in G$ 使得 $\sigma|_K = \mathrm{id}$, $\sigma|_F$ 上是 $\mathrm{Gal}(F/\mathbb{Q})$ 的生成元, 从而 $\sigma^{p-1} = 1$. 因为 $\sigma(\sqrt[p]{\alpha})^p = \sigma(\alpha) = \alpha$ 且 $\sqrt[p]{\alpha} \notin F$, 所以 $\sigma(\sqrt[p]{\alpha}) = \zeta\sqrt[p]{\alpha}$, $\zeta \neq 1$ 是 p 次单位根. 那么利用 $\sigma\tau = \tau\sigma$, 记

$$\theta = \frac{\sigma \tau(\sqrt[p]{\alpha})}{\sqrt[p]{\alpha}},$$

则

$$\theta = \frac{\tau(\zeta)\tau(\sqrt[p]{\alpha})}{\sqrt[p]{\alpha}}, \quad \sigma(\theta) = \frac{\tau(\zeta^2)\tau(\sqrt[p]{\alpha})}{\sqrt[p]{\alpha}}, \quad \theta^p = \frac{\sigma(\alpha)}{\alpha}.$$

由于 $\tau(\zeta)$ 显然不等于 1, 前两个等式说明了 $\theta \notin K$, 最后一个等式说明了 $L = K(\sqrt[p]{\frac{\sigma(\alpha)}{\alpha}})$. 但由于 p 在 L 中完全分歧, 故 $\sigma((\pi)) = (\pi)$, 则 $\frac{\sigma(\alpha)}{\alpha}$ 是 π 单位. 这就证明了断言.

根据中国剩余定理存在 $a \in \mathcal{O}_F$ 且 $\pi \nmid a$, 使得 $a^p \alpha \in \mathcal{O}_F$. 由于 $F(\sqrt[p]{a^p \alpha}) = F(\sqrt[p]{\alpha})$, 所以我们不妨设 $\alpha \in \mathcal{O}_F$. 利用 $F(\sqrt[p]{\alpha}) = F(\sqrt[p]{\alpha^{p-1}})$, 将 α 换成 α^{p-1} , 这样我们可进一步假设 $\alpha \equiv 1 \mod \pi$. 根据上面引理, 取 $\alpha = \zeta_p^a \beta$ 且 $\beta \equiv 1 \mod \pi^2$. 则存在 $c \in \mathbb{Z}$, $p \nmid c$, m > 2 使得

$$\beta \equiv 1 + c\pi^m \bmod \pi^{m+1}.$$

利用上面引理中的 $\sigma(\pi) \equiv g\pi \mod \pi^2$, 知

$$\sigma(\beta) \equiv 1 + cg^m \pi^m \mod \pi^{m+1}$$
.

设 $\tau(\zeta) = \zeta^g$. 则 g 是模 p 的原根且

$$\sigma$$
作用 $\frac{\sigma\tau(\sqrt[p]{\alpha})}{(\sqrt[p]{\alpha})^g}$ 不动.

这说明了 $\frac{\tau(\beta)}{\beta^g} = \frac{\tau(\alpha)}{\alpha^g} \in (L^{\times})^p$. 根据上面引理,这推出了

$$\sigma(\beta) \equiv \beta^g \bmod \pi^p. \tag{1.1.1}$$

从而我们有

$$1 + gc\pi^m \equiv 1 + cg^m \pi^m \bmod \pi^{m+1}.$$

现在我们断言 $m \ge p$. 否则 $m+1 \le p$, 则(1.1.1)推出了 $\sigma(\beta) \equiv \beta^g \mod \pi^{m+1}$. 结合上面几个同余式得出

$$1 + cg^m \pi^m \equiv (1 + c\pi^m)^g \bmod \pi^{m+1}.$$

这会得出 $q^m \equiv q \mod \pi$, 利用 q 是模 p 的原根知 m > p, 矛盾. 这样就证明了

$$\beta \equiv 1 \mod \pi^p$$
.

由于 $L = K(\sqrt[p]{\beta\zeta^a})$, 所以只要能证明 $\beta \in (K^\times)^p$ 就能说明 $L \subset \mathbb{Q}(\zeta_{p^2})$ 了. 反证法, 如果不是, 则域扩张 L'/K 非平凡, 这里 $L' = K(\sqrt[p]{\beta})$. 显然 $LL' \subset L(\zeta_{p^2})$, 所以 L'/\mathbb{Q} 只在 p 处分歧. 根据上面引理, L'/K 在 (π) 处是非分歧的. 这样的话, L'/\mathbb{Q} 关于 p 的惯性域是非平凡的, 从而它的惯性域在每个素数处都非分歧. 这与 Minkowski 定理矛盾. 所以

L' = K.

1.2 类域论介绍

定义 1.1

设 K 是数域,设 $Hom(K,\mathbb{C})$ 是 K 到 \mathbb{C} 的所有嵌入的集合. $Gal(\mathbb{C}/\mathbb{R})$ 以显然的方式作用在 $Hom(K,\mathbb{C})$ 上, K 的一个无穷素位指这个作用的一个轨道. 若无穷素位由实嵌入代表, 称为实素位; 否则称为复素位.

也就是说, 如果 K 有 r_1 个实嵌入, $2r_2$ 个复嵌入. 则 K 有 r_1 个实素位, r_2 个复素 位.

设 L/K 是有限扩张. 设 $\sigma \in \text{Hom}(K,\mathbb{C})$. 称 $\tau \in \text{Hom}(L,\mathbb{C})$ 在 σ 之上是指 $\tau|_K = \sigma$, 此时也称 σ 在 τ 之下.

设 τ 是L的一个素位,若 τ 本身是复素位但 τ 之下的K的素位是实,则称 τ 在L/K中分歧,否则称 τ 在L/K中完全分裂.

设 $\sigma \in K$ 的一个素位, 若 σ 实, 且存在 σ 之上 L 的素位分歧, 则称 σ 在 L/K 中分歧. 其他情形均称 σ 在 L/K 中非分歧 (也称完全分裂).

 \mathcal{O}_K 的非零素理想也被称作 K 的有限素位 (或有限素点).

例 1.1 无穷素位的例子:

- $\mathbb{Q}(\sqrt[3]{2})$ 有一个由 $\sqrt[3]{2} \mapsto \sqrt[3]{2} \in \mathbb{R}$ 决定的实素位,一个复素位 = 一对共轭的复嵌入 (由 $\sqrt[3]{2} \mapsto \zeta_3 \sqrt[3]{2}$ 或 $\overline{\zeta}_3 \sqrt[3]{2}$ 决定.) 所以 \mathbb{Q} 的唯一的无穷素位在 $\mathbb{Q}(\sqrt[3]{2})$ 中分歧.
- 在 $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ 中, \mathbb{Q} 的无穷素位不分歧.
- 在 $\mathbb{Q}(\sqrt{-1})/\mathbb{Q}$ 中, \mathbb{Q} 的无穷素位分歧.
- 练习: 在 $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}(\sqrt{2})$ 中, 哪些 $\mathbb{Q}(\sqrt{2})$ 的无穷素位分歧?
- 练习: 若 L/K 是 Galois 扩张, 则 K 的实素位 σ 之上的 L 的素位要么全是实的, 要 么全是复的.

例 1.2 无穷素位的分歧对于素理想分解影响的两个例子:

- $p\mathbb{Z}$ 在 $\mathbb{Q}(\sqrt{2})$ 中分裂当且仅当 $p \equiv \pm 1 \mod 8$,即当且仅当 $p\mathbb{Z}$ 中存在一个生成元 $\equiv 1 \mod 8$.
- $p\mathbb{Z}$ 在 $\mathbb{Q}(\sqrt{-1})$ 中分裂当且仅当 $p \equiv 1 \mod 4$ 当且仅当 $p\mathbb{Z}$ 中存在一个正生成元 $\equiv 1 \mod 4$.

以上两个例子将纳入一般的类域论现象.

定义 1.2

K的一个 modulus 是指" 形式乘积" $\mathfrak{m}_o\mathfrak{m}_\infty$, 其中 \mathfrak{m}_o 是 K 的整理想, \mathfrak{m}_∞ 是 K 的一些不同的实素位的" 形式乘积". 给定两个 modulus \mathfrak{m}_1 , \mathfrak{m}_2 , 我们说 \mathfrak{m}_1 整除 \mathfrak{m}_2 (记作 $\mathfrak{m}_1 \mid \mathfrak{m}_2$) 是指存在 modulus \mathfrak{m}_3 使得 $\mathfrak{m}_2 = \mathfrak{m}_1\mathfrak{m}_3$.

比如在 $K = \mathbb{Q}(\sqrt{2})$, 记 ∞_1, ∞_2 是 K 的实素位. 则 $\mathfrak{m}_1 = (3 + \sqrt{2}) \infty_1$, $\mathfrak{m}_2 = (7) \infty_1 \infty_2$ 就是一些 modulus 的例子, 其中 $\mathfrak{m}_1 \mid \mathfrak{m}_2$.

对 $\alpha \in K$, 符号 $\alpha \equiv 1 \mod + \mathfrak{m}$ 指

$$v_{\mathfrak{p}}(\alpha - 1) \geq v_{\mathfrak{p}}(\mathfrak{m}_o) \quad \forall \mathfrak{p} \mid \mathfrak{m}_o, \quad \mathbb{L}\sigma(\alpha) > 0 \quad \forall \sigma \mid \mathfrak{m}_{\infty}.$$

这里 \mathfrak{p} 是 K 的素理想, $v_{\mathfrak{p}}(\mathfrak{m}_o)$ 指 \mathfrak{m}_o 做素理想分解后 \mathfrak{p} 出现的指数, $v_{\mathfrak{p}}(\alpha) = v_{\mathfrak{p}}((\alpha))$.

定义 1.3. 射线理想类群

设 m 是 K 的一个 modulus. 令 I_K 表示 K 的分式理想群. 记

$$I_K^{\mathfrak{m}} = \{ \mathfrak{a} \in I_K : v_{\mathfrak{p}}(\mathfrak{a}) = 0 \quad \forall \mathfrak{p} \mid \mathfrak{m}_0 \}.$$

换言之, I_K^m 是由与 m_o 互素的素理想生成的 I_K 的子群. 记

$$K_{\mathfrak{m},1} = \{ \alpha \in K : \alpha \equiv 1 \bmod^+ \mathfrak{m} \}.$$

我们记 $i: K^{\times} \to I_K, \alpha \mapsto (\alpha)$. 关于 modulus m 的射线理想类群 Cl(K, m) 为

$$\mathrm{Cl}(K,\mathfrak{m}) := I_K^{\mathfrak{m}}/i(K_{\mathfrak{m},1}).$$

特别的, Cl(K,(1)) 就是理想类群 Cl(K);

例 1.3 (1) $K = \mathbb{Q}$. $\mathfrak{m} = N\infty$. 则 $(\mathbb{Z}/N\mathbb{Z})^{\times} \cong \mathrm{Cl}(K,\mathfrak{m})$. 同构映射由 $a \bmod N \mapsto a\mathbb{Z}$ 诱导. (细节留作练习, 或者见下面一般情形.)

(2) 设 m 为所有实素位的乘积. $I_K^{\mathfrak{m}} = I_K$, $K_{\mathfrak{m},1} = K^+ := \{\alpha \in K : \sigma(\alpha) > 0$, 对每个实嵌入 σ }, K^+ 中的元素称作在 K 中全正. (如果 K 没有实素位, 则称 $K = K_{\mathfrak{m},1}$ 中元素都是全正的, 比如 -1 在 $\mathbb{Q}(\sqrt{-1})$ 中是全正的.) 则 $\mathrm{Cl}(K,\mathfrak{m}) = I_K/i(K^+)$.

命题 1.2

 $Cl(K, \mathfrak{m})$ 是有限的.

证明 证明是通过考察 $Cl(K, \mathfrak{m}) \to Cl(K)$ 的自然映射得到的. 留作练习. 我们后面讲完局部理论时会对这个事实有更清楚的了解.

定义 1.4. Artin 映射

设 L/K 是 abel 扩张, 设 S 是 K 的素理想的有限集且包含所有分歧的素理想. 若 K 的素理想 $p \notin S$, 我们有 $Frob_p = Frob_{p,L/K} \in G$. 所谓 Artin 映射就是将 Frobenieus 映射延拓为如下群同态:

$$\psi_{L/K}: I_K^S \to \operatorname{Gal}(L/K), \quad \prod_{\mathfrak{p}} \mathfrak{p}^{a_{\mathfrak{p}}} \mapsto \prod_{\mathfrak{p}} (\operatorname{Frob}_{\mathfrak{p}})^{a_{\mathfrak{p}}}.$$

这里 I_K^S 是由 K 中不属于 S 的素理想生成的 I_K 的子群.

在陈述类域论主定理之前,我们先总结下分圆域的性质.

• 在 $\mathbb{Q}(\zeta)/\mathbb{Q}$, $\mathbb{Q}(\zeta + \zeta^{-1})/\mathbb{Q}$, $\zeta = \zeta_N$ 的情形, 有如下交换图:

- 设 $v = p\mathbb{Z}$ 或者 ∞ , 则 $v \nmid N \infty$ 时, v 在 $\mathbb{Q}(\zeta_N)$ 中非分歧; $v \nmid N$ 时, v 在 $\mathbb{Q}(\zeta_N + \zeta_N^{-1})$ 中非分歧.
- 特别的, $p\mathbb{Z}$ 在 $\mathbb{Q}(\zeta)$ 中完全分裂当且仅当 $p\mathbb{Z} \in i(\mathbb{Q}_{(N)\infty,1})$, 即 $p \equiv 1 \bmod N$;
- $p\mathbb{Z}$ 在 $\mathbb{Q}(\zeta + \zeta^{-1})$ 中完全分裂当且仅当 $p\mathbb{Z} \in i(\mathbb{Q}_{(N),1})$, 即 $p \equiv \pm 1 \mod N$;
- 根据 Kroncker-Weber 定理, 若 F/\mathbb{Q} 是有限 abel 扩张, 且 ∞ 在 F 中分歧, 则 $F \subset \mathbb{Q}(\zeta_N)$ 对某个 N;
- 若 F/\mathbb{Q} 是有限 abel 扩张, 且 ∞ 在 F 中非分歧, 即 $F \subset \mathbb{R}$, 则 $F \subset \mathbb{Q}(\zeta_N + \zeta_N^{-1})$ 对某个 N.
- $\not\equiv M \mid N, \not \supseteq \mathbb{Q}(\zeta_M) \subset \mathbb{Q}(\zeta_N), \mathbb{Q}(\zeta_M + \zeta_M^{-1}) \subset \mathbb{Q}(\zeta_N + \zeta_N^{-1}).$

下面用理想语言来陈述类域论的主要结论. 本课程的一大目的是理解好类域论的陈述和应用.

定理 1.2. 类域论

对任何 K 的 modulus \mathfrak{m} , 存在唯一的有限 abel 扩张 $K(\mathfrak{m})/K$ 使得

- (1) 对任何 $\mathfrak{p} \nmid \mathfrak{m}, \mathfrak{p}$ 在 $K(\mathfrak{m})/K$ 中不分歧;
- (2) $\psi_{K(\mathfrak{m})/K}$ 诱导了同构 $\mathrm{Cl}(K,\mathfrak{m})\cong\mathrm{Gal}(L/K)$.

而且

- (3) 给定两个 modulus $\mathfrak{m}_1, \mathfrak{m}_2,$ 若 $\mathfrak{m}_1 \mid \mathfrak{m}_2$ 则 $K(\mathfrak{m}_1) \subset K(\mathfrak{m}_2)$.
- (4) 设 $L \in K$ 的有限 abel 扩张,则存在 m 使得 $L \subset K(\mathfrak{m})$. 而且,存在 m 使得 $L \subset K(\mathfrak{m})$ 且若 $L \subset K(\mathfrak{m}')$,则 m | m';此时,K 的素位 v(有限或无限) 在 L 中分歧 当且仅当 v | m. (这个 m 称作 L/K 的导子.)

例 1.4 在 $K = \mathbb{Q}$ 的情形, 说明 $\mathbb{Q}((N)\infty) = \mathbb{Q}(\zeta_N)$, $\mathbb{Q}((N)) = \mathbb{Q}(\zeta_N + \zeta_N^{-1})$.

命题 1.3

设 K 是二次域, $d = |d_K|$. 则 $\mathbb{Q}(\zeta_d)$ 是包含 K 的最小分圆域. 这推出了 K 是实二次域时, K 的导子是 (d_K) ; 当 K 是虚二次域时, K 的导子是 $(d_K)\infty$.

这个证明留作练习.

1.2.1 Hilbert 类域

当 K 的 modulus 为 (1) 时, 则 $\operatorname{Cl}(K,\mathfrak{m})=\operatorname{Cl}(K)$. 根据类域论, 记 K(1):=K((1)) 为 其对应的射线类域, 由于历史的原因, 也称作 K 的 Hilbert 类域.

推论 1.1

- (1) K(1) 是 K 的极大 abel 且在每个素位 (包括无穷素位) 都非分歧的扩张;
- (2) Artin 映射诱导了同构 $Cl(K) \cong Gal(K(1)/K)$.

 \Diamond

证明 (1) 由定理1.2(4), (2) 是定理1.2(2) 特殊情形.

由于类群是有限的, 所以这个结论告诉我们 K 的极大 abel 非分歧扩张是 K 的有限扩张, 定理1.2还推出

K 的素理想 \mathfrak{p} 是主理想 ⇔ \mathfrak{p} 在K(1) 中完全分裂.

练习: 若 K/\mathbb{Q} 是 Galois 扩张, 则 $K(1)/\mathbb{Q}$ 也是.

例 1.5

- $K = \mathbb{Q}(\sqrt{-5})$, $Cl(K) \cong \mathbb{Z}/2\mathbb{Z}$, $K(1) = K(\sqrt{5}) = \mathbb{Q}(\sqrt{-5}, \sqrt{-1})$;
- $K = \mathbb{Q}(\sqrt{-14})$, $Cl(K) \cong \mathbb{Z}/4\mathbb{Z}$, shift $K(1) = K(\sqrt{2\sqrt{2}-1})$;
- $K = \mathbb{Q}(\sqrt{-23})$, $Cl(K) \cong \mathbb{Z}/3\mathbb{Z}$, \mathfrak{M} if $K(1) = K(\alpha)$, $\alpha \not\in T^3 T 1$ 的一个根.

给定 $d \in \mathbb{Z}$, 历史上, 人们关心什么样的素数 p 可表示为 $x^2 + dy^2$, $x, y \in \mathbb{Z}$. 这个问题可由类域论描述, 我们讲一个容易叙述的情形.

命题 1.4. 设

数 $d \equiv 2,3 \mod 4$ 且无平方因子, $K = \mathbb{Q}(\sqrt{d})$. 设素数 $p \nmid 2d$. 下面等价:

- (1) 存在 $x, y \in \mathbb{Z}$ 使得 $\pm p = x^2 dy^2$;
- (2) $p\mathbb{Z}$ 在 K 中分裂为两个主理想相乘;
- (3) $p\mathbb{Z}$ 在 K(1) 中完全分裂.

证明 (1) 和 (2) 等价是显然的. (2) 和 (3) 等价是由 Hilbert 类域的性质.

如果 K(1) 恰好也是 $\mathbb Q$ 的 abel 扩张时,则上面等价条件中的 (3) 可进一步用 $p \equiv a \bmod N$ 这样的同余条件描述.

例 1.6

• $p = x^2 + 5y^2$ 当且仅当 p 在 $K(1) = \mathbb{Q}(\sqrt{-5}, \sqrt{-1})$ 中分裂, 这里 $K = \mathbb{Q}(\sqrt{-5})$. 此 时由于 $K(1) \subset \mathbb{Q}(\zeta_{20})$. 在同构 $Gal(\mathbb{Q}(\zeta_{20})/\mathbb{Q}) \cong (\mathbb{Z}/20\mathbb{Z})^{\times}$ 下, 有

$$Gal(\mathbb{Q}(\zeta_{20})/K(1)) \cong \{1 \mod 20, 9 \mod 20\}.$$

所以 p 在 K(1) 中完全分裂当且仅当 $\operatorname{Frob}_{p,\mathbb{Q}(\zeta_{20})/\mathbb{Q}} \in \operatorname{Gal}(\mathbb{Q}(\zeta_{20})/K(1))$ 当且仅当 $p \equiv 1,9 \mod 20$. (也可以利用 p 在 $K(1) = \mathbb{Q}(\sqrt{5},\sqrt{-1})$ 中完全分裂当且仅当 p 同 时在 $\mathbb{Q}(\sqrt{5})$ 和 $\mathbb{Q}(\sqrt{-1})$ 中完全分裂这个事实来得到 $p \equiv 1,9 \mod 20$.)

• 由于 $K=\mathbb{Q}(\sqrt{-14})$ 时, $K(1)/\mathbb{Q}$ 不是 abel 的, 我们将在后面的课程中证明 p 在 K(1) 中完全分裂将不能由形如 $p\equiv a \bmod N$ 之类的同余条件刻画, 从而 $p=x^2+14y^2$ 也不能由这样的同余条件刻画.

参考文献