ESTIMATE THE CROP YIELD USING DATA ANALYTICS

1. INTRODUCTION:

Weather plays an important role in agriculture production. Thus there is no aspect of crop culture that is immune to impact of weather. Weather factor contribute to optimal crop growth, development and yield. For rainfall variability needs to be expressed in terms of percentage so that minimum assured rainfall amounts at a certain level of probability. For optimal productivity at a given location crops must be such that their weather requirements match the temporal match of relevant weather elements.. In India, majority of the population i.e., above 55% is dependent on agriculture as per the recent information. Agriculture is the fieldthat enables the farmers to grow ideal crops in accordance with the environmental balance. In India, wheatand rice are the major grown crops along with sugarcane, potatoes, oil seeds etc. Farmers also grow non-fooditems like rubber, cotton, iute etc. More than 70% of the household in the rural area depend on agriculture.. In the farm output, India ranks second considering the world wide scenario.. The estimation of production of crop helps these companies in planning supply chain decision like production scheduling. The industries such as fertilizers, seed, agrochemicals and agricultural machinery plan production and activities like marketing based on the estimates of crop yield. Farmers experience was the only way for prediction of crop yield in the past days. Technology penetration into agriculture field has led to automation of the activities

like yield estimation, crop health monitoring etc. Crop yield prediction has generated a lot interest in the research community and also This is helpful to government in framing policies related to crops such as crop insurance policies, supply chain operation policies. Agriculture sector is struggling to increase the productivity of crop in India. Monsoon rainfall is the main source of water for more than 60 percent of the crops

1.1 Project Overview:

Agriculture, since its invention and inception, be the prime and pre-eminent activity of every culture and civilization throughout the history of mankind. It is not only an enormous aspect of the growing economy, but it's essential for us to survive. It's also a crucial sector for Indian economy and also human future. It also contributes an outsized portion of employment. Because the time passes the requirement for production has been increased exponentially. So as to produce in mass quantity people are using technology in an exceedingly wrong way. New sorts of hybrid varieties are produced day by day. However, these varieties don't provide the essential contents as naturally produced crop. These unnatural techniques spoil the soil. It all ends up in further environmental harm. Most of these unnatural techniques are wont to avoid losses. Most devices nowadays are facilitated by models being analysed before deployment. The main concept is to increase the throughput of the agriculture sector with the Machine Learning models. Another factor that also affects the prediction is the amount of knowledge that's being given within the training period, as the number of parameters was higher comparatively.

1.2 Purpose:

Data mining is the computing process of discovering patterns in large data sets involving methods at the intersection of machine learning, statistics, and database systems. It is an interdisciplinary subfield of computer science. The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use. Data mining is the analysis step of the "knowledge discovery in databases" process, or KDD. Data mining (the analysis step of the "Knowledge Discovery in Databases" process, or KDD), a field at the intersection of computer science and statistics, is the process that attempts to discover patterns in large data sets. It utilizes methods at the intersection of artificial intelligence, machine learning, statistics, and systems. The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further.

2. LITERATURE SURVEY:

	TITTLE OF THE	AUTHORS/YEAR	OBSERVATION
	PAPER	OF	
		PUBLICATION	
1.	Rice Crop Yield	Dashain Patil,Dr.	Discussed various data mining
	Prediction using	M .S,	techniques utilized for prediction of
	Data Mining	Shirdhonkar/ 2017	rice crop yield for the state of
	Techniques: An		Maharashtra, India.
	Overview		WEKA tool was applied in dataset
			processing
2.	Survey on Crop	hivya B H, Manjula	esented a survey on the different
	ield Prediction based	Siva Bharathi S,	gorithms applied in the assessment and
	ı Agricultural Data	adhumathi R/ 2017	ediction of crop yield
			iscussed about the mechanism of
			lowledge the discovery in Agricultural
			ita mining
3	A Study on Various	Yogesh Gandge,	Discussed various data mining
	Data Mining	Sandhya/ 2017	techniques employed for predicting the
	Techniques for Crop		crop yield and signifies the importance
	Yield Prediction		of accurate data extraction methods of
			big data analytics.

4.	Big Data for weed	F K Van Evert, S	Critically discussed about the challenges
	control and crop	Fountas, D	faced and the profound opportunities lies
	protection	Jakovetic, V	in the Big Data analytics in agriculture:
		Crnojevic, I Travlos	Outlined Big Data analytics models with
		& C Kempenaar/	numerical algorithms applied Represent
		2017	the importance of reforming the mined
			data in the form of understandable
			information to the farmers.
5.	The Impact of Data	Swarupa Rani A/	uzzy logic designs in optimization of the
	Analytics in Crop	2017	crop yield, artificial neural networks in
	Management based		validation studies, genetic algorithms
	on Weather		designs in accessing the fitness of the
	Conditions		model applied, decision trees, and
			support vector machines to study soil,
			climate conditions and water regimes
			related to crop growth and pest
			management in agriculture.
6.	A Study on Crop	R.Sujatha,	Discuss the importance of comparing
	Yield Forecasting	Dr.P.Isakki Devi/	previous agricultural data with present to
	Using Classification	2016	identify optimum condition favour
	Techniques		enhanced crop yield.

2.1 Existing Problem:

The environmental factors affecting crop yields can be classified into abiotic vertebrate pests) and anthropogenic evolution. References: [1] Dhivya B H, Manjula R, Siva Bharathi S, Madhumathi R. A Survey on Crop Yield Prediction based on Agricultural Data, International Journal of Innovative Research in Science, Engineering and Technology. 2017. [2] Jharna Majumdar, Sneha Naraseeyappa, Shilpa Ankalaki. Analysis of agriculture data using datamining techniques: application of big data. Journal of Big data. 2017. and biotic constraints. Actually, these factors are more intensified with global warming which leads to climate change. Abiotic stresses adversely affect growth, productivity and trigger a series of morphological, physiological, biochemical and molecular changes in plants. The abiotic constraints include soil properties (soil components, pH, physicochemical and biological properties), and climatic stresses (drought, cold, flood, heat stress, etc.). On the other hand, biotic factors include beneficial organisms (pollinators, decomposers and natural enemies), pests (arthropods, pathogens, weeds vertebrate pests) and anthropogenic evolution.

2.2 References:

- 1. K.H. Anantha, Impact of best management practices on sustainable crop production and climate resilience in smallholder farming systems of South Asia,2021.
- 2. Kodimalar Palanivel, an approach for prediction of crop Yield using machine learning and big Data techniques, 2020.
- 3. Subhadra Mishra, Adaptive boosting of weak regressors for forecasting of crop production considering climatic variability: An empirical assessment, 2020.

- 4. Tanha Talaviya, Implementation of artificial intelligence in agriculture for optimisation irrigation and application of pesticides and herbicides, 2020.
- 5. Vaishali Pandith, Performance Evaluation of Machine Learning Techniques for Mustard Crop Yield Prediction from Soil Analysis, 2020.
- F K Van Evert, S Fountas, D Jakovetic, V Crnojevic, I Travlos, C Kempenaar. Big Data for weed control and crop protection. John Wiley & Sons Ltd on behalf of European Weed Research Society, 2017.
- 7. Wu Fan, Chen Chong, Guo Xiaoling, Yu Hua. Prediction of crop yield using Big Data. 8th International Symposium on Computational Intelligence and Design. 2015.
- 8. Dakshayini Patil, M.S, Shirdhonkar. Rice Crop Yield Prediction using Data Mining Techniques: An Overview. International Journal of Advanced Research in Computer Science and Software Engineering, 2017.
- 9. Dhivya B H, Manjula R, Siva Bharathi S, Madhumathi R. A Survey on Crop Yield Prediction based on Agricultural Data, International Journal of Innovative Research in Science, Engineering and Technology. 2017.
- **10.** Yield Prediction, International Conference on Electrical, Communication, Computer and Optimization Techniques, IEEE, 2017
- 11. R. Sujatha, P.Isakki Devi. A Study on Crop Yield Forecasting Using Classification Techniques, IEEE, 2016.
- 12. V. Sellam and E. Poovammal. Prediction of Crop Yield using Regression Analysis Indian journalofScienceandTechnology,2016.

- 13. Patricio Grassinia, Lenny G.J. van Bussel, Justin Van Warta, Joost Wolf, Lieven Claessens, d, Haishun Yanga, Hendrik Boogaarde, Hugo de Groote, Martin K. van Ittersumb, Kenneth G. Cassman. How good is good enough, Data requirements for reliable crop yield simulations and yield-gap analysis. Field Crops Research. 2015;.
- 14. David B. Lobell, The use of satellite data for crop yield gap analysis, Field Crops Research-143, 2013.
- 15. Martin K. van Ittersuma, Kenneth G. Cassmanb, Patricio Grassinib, Joost Wolfa, Pablo Tittonell, Zvi Hochmand. Yield gap analysis with local to global relevance.

2.3 Problem Statement Definition:

Agriculture is the backbone of Indian Economy. In India, majorty of the farmers are not getting the expected crop yield due to several reasons. The agricultural yield is primarily depends on weather conditions. Rainfall conditions also influences the rice cultivation. In this context, the farmers necessarily requires a timely advice to predict the future crop productivity and an analysis is to be made in order to help the farmers to maximize the crop production in their crops. People of India are practicing Agriculture for years but the results are never satisfying due to various factors that affect the crop yield. To fulfill the needs of around 1.2 billion people, it is very important to have a good yield of crop. Due to factors like soil type, precipitation, seed quality, lack of technical facilities etc the crop yield is directly influenced. Agricultural researches determine their subject of research without knowing the exact problems of farmers, thus the results of research do not have their clients. extension people do not have a good connection to the results of research that has been conducted.

3.1 Empathy Map Canvas:

Extensive personal experience is essential for estimating yields at early stages of growth. As crops near maturity, it becomes easier to estimate yields with greater accuracy. Accurate, early estimations of grain yield and crop loss are important skills in grain production.

Farmers require accurate estimates for:

- crop insurance purposes
- forward marketing and delivery planning
- planning harvest and storage requirements
- cash-flow budgeting

3.2 Ideation & Brainstorming:

Brainstorming is a group <u>creativity technique</u> by which efforts are made to find a conclusion for a specific problem by gathering a list of ideas spontaneously contributed by its members.

In other words, brainstorming is a situation where a group of people meet to generate new ideas and solutions around a specific domain of interest by removing inhibitions. People are able to think more freely and they suggest as many spontaneous new ideas as possible. All the ideas are noted down without criticism and after the brainstorming session the ideas evaluated.

In this each 4 members in the team gave their ideas as each 4 idea and the best 4 idea's among those ideas is selected and taken as the idea to be implemented in the project.

3.3 Proposed Solution:

S.NO	PROBLEM	SOLUTION

1	Problem Statement	A farmer should predict
	(problem to be solved)	climatic conditions, decide
		what to grow & when to
		grow,should know the
		overall crop yield inspite of
		environmental & other
		parameters
2	Idea/solution description	Data analytics are the better
		choices for this purpose.
		Different Data techniques
		are used and evaluated in
		agriculture for estimating the
		future
		year's crop production.
3	Novelty/Uniqueness	Improve operational
		efficiency and increase
		productivity and
		profitability.
		Draw analytical insights on
		expenses, inventory and
		crop growth

4	Social Impact/Customer	It has to be available to all	
	Satisfaction	the farmers who need help	
		that can be solved from this	
		application and it has to be	
		simple and understandable	
		by the end user.	
5	Business Model (Revenue	This agriculture software for	
	Model)	field and crop monitoring are	
		dedicated to provide	
		professional growers, food	
		producers and agro	
		consultants with precise	
		field data using data	
		analytics.	

3.4 Problem Solution fit

The Problem-Solution Fit simply means that you have found a problem with your customer and that the solution you have realized for it actually solves the customer's problem.

CUSTOMER SEGMENT(S) Farmers and cultivators. C5		Prediction by means of traditional aspects. Farming prediction by experienced farmers.		
PR	Pesticides Unpredictable climate change Crop strength Conditions of soil.	Taking non natural methods for quicker cultivation. Consider multiple ideas from various agricultural experts.	ВЕ	
TR EM	An interactive and visualization dashboard can be formed indicates the predictions about the needs and give accurate info about increasing of crop yield by considering previous crop yield database. It is single	B. CHANNELS of BEHAVIOR OHLINE Searching for various ideas in online for better cultivation of crops results in confusion. OFFLINE Usage of pesticides in unnatural	СН	
	PR.	1. Lack of knowledge 2. Monetary problems. 3. Lack of awarness 9. PROBLEM ROOT / CAUSE • Pesticides • Unpredictable climate change • Crop strength • Conditions of soil. IR 10. YOUR SOLUTION An interactive and visualization dashboard can be formed indicates the predictions about the needs and give accurate info about increasing of crop yield by considering previous	1. Lack of knowledge 2. Monetary problems. 3. Lack of awarness PROBLEM ROOT / CAUSE Pesticides Pesticides Unpredictable climate change Crop strength Conditions of soil. 10. YOUR SOLUTION An interactive and visualization dashboard can be formed indicates the predictions about the needs and give accurate info about increasing of crop yield by considering previous crop yield database. It is single Prediction by means of traditional aspects. Farming prediction by experienced farmers. Taking non natural methods for quicker cultivation. Consider multiple ideas from various agricultural experts. Searching for various ideas in online for better cultivation of crops results in confusion. ONLINE Searching for various ideas in online for better cultivation of crops results in confusion.	

4 .REQUIREMENT ANALYSIS

4.1 Functional requirement

No.	Functional Requirement	Sub Requirement (Sub-Task)	
	(Epic)		
	User Registration	Registration through forms	
		Registration through Gmail	
		Registration through IBM Cognos	
2	User Confirmation	Confirmation via Email	
		Confirmation via OTP through	
		SMS. Confirmation via	

3	User Profile	User Details Farm Details
4	Required Data	The past crop yield data and data of the Farmer to analyze their yield.
5	Analysis	Analyze the data by means of set of past data of the multiple users which is farmers.
6	Estimation	Creating the perfect data module, visuals using IBM Cognos to increase the estimation of the crop yield

4.2 Non-Functional requirement:

FR No.	Non-Functional	Description
	Requirement	

1	Usability	The data report is created
		according to the past data
		yield. By considering
		these recommendation the
		sowing of crops will be
		decided.
2	Security	IBM Cognos have a high-
		secure user information.
3	Reliability	The interactive data
		visuals of the dashboard
		can make easy to
		understand by the farmers.
4	Performance	Interaction makes better
		performance between all
		user and the visuals
		through visualization.
5	Availability	Actively available to all
		source like smart phones,
		laptops, systems etc.

6	Scalability	The flexibility to
		implement the proposed
		solution is very easy that
		results in increasing of the
		estimation of crop yield
		compared to farms for
		different user.

5. PROJECT DESIGN

5.1 Data Flow Diagrams

A data flow diagram shows the way information flows through a process or system. It includes data inputs and outputs, data stores, and the various subprocesses the data moves through. DFDs are built using standardized symbols and notation to describe various entities and their relationships. Data flow diagrams are used to graphically represent the flow of data in a business information system. DFD describes the processes that are involved in a system to transfer data from the input to the file storage and reports generation

5.2 Solution & Technical Architecture

Technical Architecture (TA) is a form of IT architecture that is used to design computer systems. It involves the development of a technical blueprint with regard to the

arrangement, interaction, and interdependence of all elements so that system-relevant requirements

5.3 User Stories

Farmers must meet the changing needs of our planet and the expectations of regulators, consumers, and food processors and retailers. There are increasing pressures from climate change, soil erosion and biodiversity loss and from consumers' changing tastes in food and concerns about how it is produced. And the natural world that farming works with – plants, pests and diseases – continue to pose their own challenge

User Type	Functional Requirement (Epic)	User Story Number	User Story/Task	Acceptance criteria	Priority	Release
Customer (Mobile user and Laptop users)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account/ dashboard	High	Sprint-1
		USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1
		USN-3	As a user, I can register for the application through Face book	I can register & access the dashboard with Face book Login	Low	Sprint-2
		USN-4	As a user, I can register for the application through Gmail		Medium	Sprint-1
	Login	USN-5	As a user, I can log into the application by entering email & password		High	Sprint-1
	Dashboard	USN-6	Can use the methods provided in the dashboard		Medium	Sprint-1
	Invest	USN-7	With help of desired results obtained from application, making profit or loss	Gain or Loss	High	Sprint-2
Administrator	Updating data		Collecting the data and storing it	Checking and updating dataset	High	Sprint-1
Customer (Web User)	Accessing the resources	USN-8	Using my own credentials for accessing the data	These resources cannot be accessed by others but only me	High	Sprint-1
	Satellite Visioning	USN -9	Having a view with geographic data		Medium	Sprint-2
Customertools	Tools	USN -10	Analysis is performed by tools like cognos analytics	Ease of accessing the tools	High	Sprint2

6.PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Spri nt	Functional Requiremet (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Member s
			As a user, I can			
Spri	Registration	USN-1	register for the	2	High	Srisowmiy
nt1			application by			a, Sona
			entering my			
			email,			
			password, and			
			confirming my			
			password.			

Spri		USN-2	As a user, I will	1	High	Pranavi,
nt-1			receive			Suriyaraja
			confirmation			
			email once I			
			have registered			
			for the			
			application			
Spri		USN-3	As a user, I can	2	Low	Srisowmiy
nt-2			register for the			a,
			application			Suriyaraja
			through			
			Google			
Spri		USN-4	As a user, I can	2	Low	Sona,
nt-1			register for the			Pranavi
			application			
			through Gmail			
Spri		USN-5	As a user, I can	1	High	Srisowmiy
nt-1	Login		log into the			a,Pranavi
	Logiii		application by			
			entering email			
			& password			
Spri	Dashboard	USN-6	As a user, I can	2	High	Sona,
nt- 3			freely use my			Pranavi

			dashboard and			
			explore the			
			features			
Spri		USN-7	As a user, I can	2	High	Srisowmiy
nt- 2			use the			a, Sona
			credentials to			
			access the			
			resources of			
			my application			
Spri		USN-8	Performance of	1	High	Pranavi,
nt- 3			Data			Suriyaraja
			manipulations			
			on the			
			application			
Spri	Visualizations	USN-9	I can create	2	High	Srisowmiy
nt- 3			dashboards			a, Pranavi
			with particular			
			datasets			
Spri		USN-10	Predictive	1	High	Suriyaraja,
nt- 4			analysis can be			Srisowmiy
			done			a

Spri	USN-11	I can	create	2	High	Pranavi,
nt- 3		stories	with			Sona
		particula	r			
		datasets				
Spri	USN-12	I can	deliver	2	High	Pranavi,
nt- 4		and	export			Sona
		reports				
		accordin	g to			
		the dash	boards			
		and	stories			
		created				

6.2 Sprint Delivery Schedule:

Sprint	Total	Duration	Sprint	Sprint End	Story Points	Sprin
	Story		Start	Date	Completed	t
	Points		Date	(Planned)	(as on	Relea
					Planned	se
					End Date)	Date
						(Actu
						al)

Sprint-	20	6 Days	24 Oct	29	Oct	20	29
1			2022	2022			Oct
							2022
Sprint-	20	6 Days	31 Oct	05	Nov	20	05
2			2022	2022			Nov
							2022
Sprint-	20	6 Days	07 Nov	12	Nov	20	12
3			2022	2022			Nov
							2022
Sprint-	20	6 Days	14 Nov	19	Nov	20	19
4			2022	2022			Nov
							2022

6.3 Report from JIRA:

All sprints:

Burnup report:

Cumulative flow diagram:

Road Map:

7.CODING & SOLUTIONING (Explain the features added in the project along with code)

7.1 Feature 1:

7.2.Feature 2:

7.3 Database Schema

8. WORKING WITH THE DATASET & DATA VISUALISATION

Registration:

- The registration to the IBM cogons analytics web page for the student user.
- Register with validly Email ID.
- Enter the user name and password through the register pages.
- Enter Next button.
- Enter the Additional Information through the IBM cogons analytics.
- Finally verify the Email.
- Thus the IBM cogons account is registered.

Login page:

- After complete the registration process and click login page.
- Enter the registration email ID on the login page and then click continue.

• Enter the password and click continue.

Home page:

• After complete and then click launch button. Then the particular page

will be display.

Working with dataset:

This project is based on a understanding the crop production of India .Download the dataset from the below link. It has 2,46,092 data points (rows) and 6 features (columns) describing each crop production related details.

Dataset Link: Dataset

Let's understand the data we're working with and give a brief overview of what each feature represents or should represent

- State Name All the Indian State names.
- District Name -Different District names.
- Crop Year- contains the crop years.
- Season Different seasons for crop production.
- Area- Total number of areas covered.
- Production- production of crops.

Downloading the dataset:

- Click on the given dataset.
- Thus opens the below dataset window.
- Scroll on the bottom of the window and click on the download option provided.

Thus the dataset is downloaded.

Loading the Dataset:

Before we can build a view and analyze our data, we must first connect the data to IBM Cognos. Cognos supports connecting to a wide variety of data, stored in a variety of places. The data might be stored on our computer in a spreadsheet or a text file, or in a big data, relational, or cube (multidimensional) database on a server in our enterprise.

- Click on the menu icon in the left corner of the window.
- Therefore opens the menu.
- Click on the upload option from the menu.

• Upload the dataset from the file

• Thus the dataset inialized to uploaded. After initialization completed the dataset is uploaded successfully.

Data Visualization:

- Using the Crop production in Indian dataset, create various graphs and chartsto highlight the insights and visualizations.
- Build a Visualization to showcase . Login to IBM Cognos then in open click
- Select a template for our dashboard and click create.
- Then select the dataset crop_production.csv dataset under my content tab and click add In Add a source.
- Rename the tab title with suitable name.
- Select the visualizations chart whatever we want.
- Average Crop Production by Season: We can select the bar chart for visualization the average crop production by season.
- Place the season in bar.
- Place the production in length.
- In color we place the seasons.

Year usage of Area in Crop Production:

- First we can create the area by production.
- We can choose the line and column chart for visualization.
- In x-axis we put crop_year.
- In y-axis we put area.
- Second we can create the production by crop_year.
- We can choose the line chart for visualization.
- In x-axis we put crop_year.
- In y-axis we put production.

State with crop production:

- We choose the map chart visualization.
- In location we place the state_name.
- In color we place the state_name.
- We place crop production in filters.
- It will be able to see the production of India.

State with the crop production along with season:

- We choose the table chart In column we place the state_name.
- We use filters Then create another table for the season.
- Place season in column.

9. Creating Dashboard and visualization:

Creating Dashboard:

- A dashboard is a way of displaying various types of visual data in one place.
 Usually, a dashboard is intended to convey different, but related information in an easy-to-digest form.
- Login to IBM Cognos.
- Open to IBM cognos account.

• Click on the menu and select new option.

• Select Dashboard option

- Thus the dashboard is created.
- Click on the select source option.

• Select the content option and select the dataset

Thus the dataset is uploaded successfully.

10. ADVANTAGES & DISADVANTAGES:

Advantages:

- One can easily analyse and understand trends in croppping pattern, seasonal behaviour of land in various areas with the created dashboard.
- With no prior skills and knowledge about the tools that we use for analysis, anyone
 (literate or illiterate)can easily infer the knowledge that we represent in various charts or graphs or maps.
- So that it would be helpful to farmers to make appropriate decisions in the future.

Disadvantages:

Not all factors influencing the crop yield are being considered for the analysis as we
have only taken visible factors into account for the analysis.

11. CONCLUSION:

The productivity of agriculture has slightly increased as a result of technology's introduction. New ideas like digital agriculture, smart farming, precision agriculture, etc. have been made possible by the innovations. From the analysis dashboard, it has been noted that analyses of agricultural productivity and the detection of hidden patterns utilising data sets related to seasons and crop yields have been conducted. Using IBM Cognos, we have observed and conducted analysis on various crops grown, area, and productions in various states and Seasons with average productions. We learn from these analytics which districts, including seasons have higher average production and which have lower production. Production split up per crop year. We learn from this study which years have high and low production. Districtbased production. With the help of these analytics, we may identify the states and districts that Production by area. This will allow us to estimate the yield and farm the chosen crops. determine how much land needs to be planted. After creating the dashboard, study was done to determine which state, which year, and how much crop area will be produced.

12. FUTURE SCOPE:

Farming is the means of survival as humans require food that is obtained only through farming directly or indirectly. With the growing human population, it is critical to analyse the production in farming every year. So, that we can know the right time, right place and right crop to be cultivated considering all the factors that influence the crop production. It can be

concluded that the research in the field of agriculture with reference to using IT trends like data

analytics is in its infancy. As the food is the basic need of humans, the requirement of getting

the maximum yields using optimal resource will become the necessity in near future as a result

of growing population. The survey outcomes indicate the need for improved techniques in crop

yield analytics. There exists a lot of research scope in this research area

13. APPENDIX:

Cognos link:

https://us1.ca.analytics.ibm.com/bi/?perspective=dashboard&pathRef=.my_folders%2FNew%

2Bdashboard1&action=view&mode=dashboard&subView=model0000018468661750 000000

03

Project Demo link:

https://drive.google.com/file/d/1u_Ppd9YVRLJ4gi_A2Jr6RDZLI1uizPR4/view?usp=drivesdk

Git hub link:IBM-EPBL / IBM-Project-629-1658311816