Ejercicios de Cálculo II Relación 1: Límite funcional

- 1. Sea $A \subset \mathbb{R}$ y $\alpha \in A'$.
 - a) Prueba que existe una sucesión estrictamente monótona de puntos de A que converge a α.
 - *b*) Comprueba también que para todo $\delta > 0$, el conjunto $]\alpha \delta, \alpha + \delta[\cap A]$ es infinito.
- 2. Determina el conjunto de puntos de acumulación de cada uno de los siguientes conjuntos:

$$\mathbb{Z}, \ \mathbb{Q}, \ \left\{x \in \mathbb{R} : 0 < |x| < 1\right\}, \ \left\{\frac{1}{n} : n \in \mathbb{N}\right\}, \ \left\{\frac{1}{n} + \frac{1}{m} : n, m \in \mathbb{N}\right\}$$

- 3. (*) Sea $f \colon A \to \mathbb{R}$ una función y $\alpha \in A'$. Supongamos que se verifica que: para cada $\varepsilon > 0$ existe $\delta > 0$ tal que, para $x, y \in A$ con $0 < |x \alpha| < \delta$ y $0 < |y \alpha| < \delta$, se tiene que $|f(x) f(y)| < \varepsilon$. Prueba que f tiene límite en el punto α .
- 4. Sea $a \in \mathbb{R} \cup \{+\infty, -\infty\}$. Prueba que

$$\lim_{x \to a} |f(x)| = +\infty \iff \lim_{x \to a} \frac{1}{|f(x)|} = 0$$

Particulariza este resultado para los casos en que f solamente toma valores positivos o negativos.

5. Sea $L \in \mathbb{R} \cup \{+\infty, -\infty\}$. Prueba que

a)
$$\lim_{x \to 0^+} f(x) = L \iff \lim_{x \to +\infty} f\left(\frac{1}{x}\right) = L$$

b)
$$\lim_{x \to 0^{-}} f(x) = L \iff \lim_{x \to -\infty} f\left(\frac{1}{x}\right) = L$$

6. Sea $c \in \mathbb{R}$ una constante y se considera $f:]-1,1[\to \mathbb{R}$ definida como sigue:

$$f(x) = \begin{cases} (1+x)^{-1} & \text{si } -1 < x < 0 \\ c & \text{si } x = 0 \\ 1+x^2 & \text{si } 0 < x < 1 \end{cases}$$

Estudia la existencia de límite y la continuidad de f en 0. ¿Puede extenderse f para obtener una función continua en el intervalo]-1,1] o incluso en el intervalo [-1,1]?

7. Sea $f: [0,1] \to \mathbb{R}$ la función dada por:

$$f(x) = \frac{2}{x} + \frac{1}{x(x-1)}$$

Prueba que $\lim_{x\to 0} f(x) = +\infty$ y que $\lim_{x\to 1} f(x) = -\infty$. Deduce que la imagen de f es todo $\mathbb R$.

8. Sean $f, g : \mathbb{R} \to \mathbb{R}$ las funciones definidas por

$$f(x) = \begin{cases} \frac{1}{1 + e^{1/x}}, & \text{si } x \neq 0 \\ 0, & \text{si } x = 0 \end{cases} \qquad g(x) = \begin{cases} \frac{e^x}{x}, & \text{si } x < 0 \\ x, & \text{si } 0 \le x < 1 \\ \sqrt[5]{x}, & \text{si } x \ge 1 \end{cases}$$

Estudiar la continuidad de f y g en todo punto de \mathbb{R} y la existencia de límites de f y g en $+\infty$ y en $-\infty$.

9. (*) Sea $f: \mathbb{R} \to \mathbb{R}$ una función continua no nula tal que $\lim_{x \to -\infty} f(x) = 0$ y $\lim_{x \to +\infty} f(x) = 0$. Prueba que si f toma algún valor positivo, entonces f alcanza el máximo absoluto en \mathbb{R} .

10. Estudia la continuidad de las siguientes funciones:

a)
$$f: \mathbb{R}^+ \to \mathbb{R}$$
, dada por $f(x) = x^{\frac{1}{x^2-1}}$, y $f(1) = \sqrt{e}$.

b)
$$f:]-1/2, +\infty[\to \mathbb{R}, \text{ dada por } f(x) = (x+e^x)^{1/x}, \text{ y } f(0) = e^2.$$

c)
$$f: [0, +\infty[\to \mathbb{R}, \text{dada por } f(x) = (1 + x \log(x))^{1/x} \ \forall x > 0, y \ f(0) = 0.$$

d)
$$f \colon \mathbb{R} \to \mathbb{R}$$
, dada por $f(x) = x \operatorname{sen}\left(\frac{1}{x}\right)$, $\forall x \neq 0$ y $f(0) = 0$.

11. Sea $f: \left[0, \frac{\pi}{2}\right] \to \mathbb{R}$ la función definida por $f(x) = \left(\frac{1}{\tan(x)}\right)^{\sin(x)}$. Prueba que f tiene límite en los puntos 0 y $\frac{\pi}{2}$ y calcula dichos límites.

12. Sea $f: \]0, \frac{\pi}{2} \ [\to \mathbb{R}$ la función definida por $f(x) = (1 + \sin(x))^{\cot(x)}$. Estudia la continuidad de f y su comportamiento en 0 y $\pi/2$.

13. (*) Sean $a, b \in \mathbb{R}$ con a > 0 > b. Estudia el comportamiento en cero de las funciones $f, g \colon \mathbb{R}^* \to \mathbb{R}$ definidas por

$$f(x) = \arctan\left(\frac{a}{x}\right) - \arctan\left(\frac{b}{x}\right), \quad g(x) = xf(x).$$