

Our moture: Maximize useiance because me will select that feature which has higher spread. Another factor we can use is Standard Demalion Transance - Projection Unit rector To cal culate projection at any -> used in PCA Peopletton of mean Point, xm = v. xm. u. xi = u. xi. we calculate: $[u^{\intercal}\cdot \chi_1], [u^{\intercal}\cdot \chi_2]$ $\int u^T \cdot \chi_{\Omega}$ all points (ut. x; - ut. xm) Vasiance is to increase Variance. moltwe Variance doesn't tell direction of data points We need Covagiance Covariance $(-1 \times 1) + 0 +$ 1 X -(010)

The Eigen values are the Principal Components
The Eigen value with highest value is called
-> PC2 and so on.
_ → Covasiance matrix indicates disection & speed of data.
=> Largest eigen vector always points to the largest spread of the data and its magnitude sepsesents the Eigen Value
Eg:- X, X ₂ target
8 4
13 5
7 14
O Calculate Mean
$X_1 = 4+8+13+7 = 8$
4
$\overline{X}_2 = 11 + 4 + 5 + 14 = 8.5$
4
2) Find Covariance Matrix
The state of the s
X_1 X_2 X_1 X_2 X_3 X_4 X_4 X_5 X_5
$X_1 Cov(X_1,X_1) Cov(X_1,X_2)$
X_2 Cov (X_2, X_1) Cov (X_2, X_2)
Mul de la maria

10 - 17.5 -5.5 Matrin: Covariance

(23-1) $\lambda^2 - 37 \lambda + 201$ will have greater impact on data $\lambda_1 = 30.38$ PCI 661 > PC2 14- 1, UI 1/2 0.5574 e,= -0.8303 14-12 UI >Normalize the 0.8303 0.5574 eigen vectors Take Transpose of en: 0.5574 X11 - X1 - 0.8303 0.5574 -0.8303 0.5574 -0.8303 = -4.30535 :. new feature corresponding to (= -4.30535 X11 , X21)

KL (PIIQ) = \(\sum_{j|i} \log \frac{Pji}{2j-i} \) Loss function should be minimum Ogistic Regression: we have to find the line that clarify : Perception data into 2. Ax + By + C = 0 Ax+y+C=0 Az, +Bx2 + Cx3 + Dxy + Ex5 +f= 0 N, X, + W2 X, + W3 X3+ W4 X4 + W5 X5 + NO = 0 W, w2, W3, W4 > give the strength Wnew = Wo - 1/x coordinates y - 2 Win, Kn

(N) Hidden Markov Model
Forward Algorithm for Likelihood Calculation
$HMM, \Lambda = (A, B)$
$HMM, \Lambda = (A, B)$ $O = \{0_1, O_2, O_3\}$
$P(0 \lambda)$
P(01,02,03/)
Three sleps:
1. Initialization
Signification $\alpha(j) = aoj \cdot b_j \cdot (o_i)$ for $j=1$ to N
N
2. Recursion $\alpha_t(j) = \sum_{i=1}^{N} \alpha_{t-i}(i) \cdot \alpha_{ij} b_j(o_t)$
3. Jesmination N $P(0 \lambda) = \alpha T(q_f) = \sum_{i=1}^{N} \alpha_T(i) \cdot \alpha_{if}$
$P(0 \lambda) = \alpha T(q_f) = \sum \alpha_T(i) \cdot a_{if}$
1=1
aii = transition pob.
ajj = transition prob. bj (OE) = observation probability of observation OF given state j.
Or given state i