External Quantum Efficiency,
$$EQE = \frac{Number\ of\ Photons\ emitted\ from\ the\ surface\ of\ the\ device}{Number\ of\ electron\ injected\ into\ the\ device}$$
(1)

We have optical power,
$$P = \frac{I_{photo}}{R_{det}}$$
(2)

Where, I_{photo} is the photo current

R_{det}, responsivity of the photodiode given by the expression

$$R\det = \frac{\int I_{EL}(\lambda)R(\lambda)d\lambda}{\int I_{EL}(\lambda)d\lambda} (A/W)$$

 I_{EL} is the emission spectra of the OLED

R is the response of the photodiode at a given wavelength

Number of photons,
$$Nphoto = \frac{P}{Ephoto}$$
(3)

Where, E_{photo}, the average photon energy

$$Ephoto = \frac{\int E(\lambda) I_{EL}(\lambda) d\lambda}{\int I_{EL}(\lambda) d\lambda}$$

Responsivity of the eye, $\Phi = \frac{\int I_{EL}(\lambda)P(\lambda)d\lambda}{\int I_{EL}(\lambda)d\lambda}$ (lm/W), where P(\lambda) (lm/W) is the photopic response.

Brightness,
$$B = \left(\frac{\Phi}{R_{det}}\right) I_{photo}$$
 lm

Where,
$$R_{det} = \frac{\int I_{EL}(\lambda)R(\lambda)d\lambda}{\int I_{EL}(\lambda)d\lambda}$$
 A/W

 $I_{EL}(\lambda)$ is the EL spectrum and R (λ) is taken from the calibration curve (A/W) of the Si detector as supplied by the manufacturer.

Number of electrons injected,
$$n_e = \frac{i_d}{q}$$
(4)

where, i_d -Current through the device at a given voltage V q-charge of the carrier

Using eqns. 1,2,3 & 4,

External quantum efficiency, $EQE = \frac{q \ Iphoto_{\Re} \lambda \ IEL(\lambda) d\lambda hc \ idIEL\lambda \ Rdet\lambda \ d\lambda}{\times 100}$

where, I_{photo} – Photocurrent at given voltage V I_{EL} – Spectral emission of the device at a given voltage V R_{det} – Photodiode responsivity λ – Wavelength