Algorithms of Information Security: PRNG cvičení

Olha Jurečková, Martin Jureček {jurecolh,jurecmar}@fit.cvut.cz

Faculty of Information Technology Czech Technical University in Prague

September 23, 2020

Golombovi postuláty náhodnosti

Pro posouzení náhodnosti požadovaných pseudonáhodných sekvencí existují Golombovi pseudohonáhodné postuláty.

Definition

Nechť $s=s_0,s_1,s_2,\ldots$ je nekonečná posloupnost. Podposloupnost, která obsahuje prvních n členů posloupnosti s značíme $s^n=s_0,s_1,s_2,\ldots,s_{n-1}$.

Příklad. Nechť $s=0,1,1,0,1,1,0,1,1,\ldots$ je nekonečná posloupnost, potom $s^1=0,\,s^2=0,1$ atd.

Řekneme, že posloupnost $s=s_0,s_1,s_2,\ldots$ je N-periodická, pokud $s_i=s_{i+N}$ pro všechna $i\geq 0$. Posloupnost s se nazývá periodická, pokud je N-periodická pro nějaké kladné celé N. Periodou posloupnosti s, je nejmenší kladné celé N, pro které je posloupnost s N-periodická. Pokud s je periodická posloupnost s periodou s0, potom s1, potom s3, posloupnosti s4, posloupnosti s5, posloupnosti s6, posloupnosti s7, potom s8, posloupnosti s8, posloupnosti s9.

Příklad. Nechť $s=0,1,1,0,1,1,0,1,1,\ldots$ Potom $s_i=s_{i+3}=0,1,1$. Tudíž, s je periodická posloupnost s periodou 3 a cyklus posloupnosti s je podposloupnost $s^3=0,1,1$.

Nechť s je posloupnost. Run posloupnosti s je podposloupnost s obsahující po sobě jdoucí (v řádě za sebou jdoucí) 0 nebo po sobě jdoucí 1, kterým ani nepředchází stejný symbol ani nenasleduje stejný symbol. Run 0 se nazývá mezera a run 1 se nazývá blok.

Příklad. Nechť $s=0,1,1,0,1,1,0,1,1,\ldots$ je posloupnost. Potom 0 je run délky 1 a nazývá se mezera, a 1,1 je run délky 2 a nazývá se blok.

Nechť $s=s_0,s_1,s_2,\ldots$ je periodická posloupnost s periodou N. Potom *autokorelační funkce* posloupnosti s je funkce C(t) definovana následujícím způsobem:

$$C(t) = \frac{1}{N} \sum_{i=0}^{N-1} (2s_i - 1)(2s_{i+t} - 1), \text{ for } 0 \le t \le N - 1.$$

Autokorelační funkce C(t) měří množství (počet) podobnosti mezi posloupnosti s a posunem posloupnosti s o t pozic.

 $P\check{r}iklad$. Nechť $s=0,1,1,0,1,1,0,1,1,\ldots$ je posloupnost. Najděte:

- periodu a cyklus dané posloupnosti
- mezeru a blok
- C(0), C(1), C(2) a C(3).

 \check{R} ešení. 1. $s=0,1,1,0,1,1,0,1,1,\ldots$ je daná posloupnost, potom $s_i=s_{i+3}=0,1,1$. Tudíž, s je periodická posloupnost s periodou 3 a cyklus posloupnosti s je podposloupnost $s^3=0,1,1$. 2.Nechť $s=0,1,1,0,1,1,0,1,1,\ldots$ je daná posloupnost, potom 0 je run délky $s=0,1,1,0,1,1,0,1,1,\ldots$ je run délky $s=0,1,1,0,1,1,0,1,1,\ldots$

3. Potom perioda N je 3, tj. N=3.

$$C(t) = \frac{1}{N} \sum_{i=0}^{N-1} (2s_i - 1)(2s_{i+t} - 1), \text{ for } 0 \le t \le N - 1.$$

Potom

Form
$$C(0) = \frac{1}{3} \sum_{i=0}^{2} (2s_i - 1)(2s_{i+0} - 1) =$$

$$= \frac{1}{3} ((2s_0 - 1)(2s_0 - 1) + (2s_1 - 1)(2s_1 - 1) + (2s_2 - 1)(2s_2 - 1)).$$

$$C(0) = \frac{1}{3}((2\cdot 0 - 1)(2\cdot 0 - 1) + (2\cdot 1 - 1)(2\cdot 1 - 1) + (2\cdot 1 - 1)(2\cdot 1 - 1)) = \frac{1}{3}((2\cdot 0 - 1)(2\cdot 0 - 1) + (2\cdot 1 - 1)(2\cdot 1 - 1) + (2\cdot 1 - 1)(2\cdot 1 - 1)) = \frac{1}{3}((2\cdot 0 - 1)(2\cdot 0 - 1) + (2\cdot 1 - 1)(2\cdot 1 - 1) + (2\cdot 1 - 1)(2\cdot 1 - 1)) = \frac{1}{3}((2\cdot 0 - 1)(2\cdot 0 - 1)(2\cdot 0 - 1) + (2\cdot 1 - 1)(2\cdot 1 - 1) + (2\cdot 1 - 1)(2\cdot 1 - 1)) = \frac{1}{3}((2\cdot 0 - 1)(2\cdot 0 - 1)(2\cdot 0 - 1) + (2\cdot 1 - 1)(2\cdot 1 - 1) + (2\cdot 1 - 1)(2\cdot 1 - 1)) = \frac{1}{3}((2\cdot 0 - 1)(2\cdot 0 - 1)(2\cdot 0 - 1) + (2\cdot 1 - 1)(2\cdot 1 - 1) + (2\cdot 1 - 1)(2\cdot 1 - 1)) = \frac{1}{3}((2\cdot 0 - 1)(2\cdot 0 - 1)(2\cdot 0 - 1) + (2\cdot 1 - 1)(2\cdot 1 - 1) + (2\cdot 1 - 1)(2\cdot 1 - 1)) = \frac{1}{3}((2\cdot 0 - 1)(2\cdot 0 - 1)(2\cdot 0 - 1) + (2\cdot 1 - 1)(2\cdot 1 - 1)) = \frac{1}{3}((2\cdot 0 - 1)(2\cdot 0 - 1)(2\cdot 0 - 1)(2\cdot 0 - 1) + (2\cdot 1 - 1)(2\cdot 1 - 1)) = \frac{1}{3}((2\cdot 0 - 1)(2\cdot 0 - 1)(2\cdot 0 - 1)(2\cdot 0 - 1) + (2\cdot 1 - 1)(2\cdot 0 -$$

$$= \frac{1}{3}(1+1+1) = 1.$$

$$C(1) = \frac{1}{3}((2\cdot 0 - 1)(2\cdot 1 - 1) + (2\cdot 1 - 1)(2\cdot 1 - 1) + (2\cdot 1 - 1)(2\cdot 0 - 1)) =$$

$$= \frac{1}{3}(-1 + 1 - 1) = \frac{1}{3}.$$

$$\begin{split} C(2) &= \frac{1}{3}((2\cdot 0 - 1)(2\cdot 1 - 1) + (2\cdot 1 - 1)(2\cdot 0 - 1) + (2\cdot 1 - 1)(2\cdot 1 - 1)) = \\ &= \frac{1}{3}(-1 - 1 + 1) = -\frac{1}{3}. \\ C(3) &= \frac{1}{3}((2\cdot 0 - 1)(2\cdot 0 - 1) + (2\cdot 1 - 1)(2\cdot 1 - 1) + (2\cdot 1 - 1)(2\cdot 1 - 1)) = \\ &= \frac{1}{3}(1 + 1 + 1) = 1. \end{split}$$

Nechť s je periodická posloupnost s periodou N. Golombovi postuláty náhodnosti jsou následující:

- R1: V cyklu s^N posloupnosti s, počet 1 liší se od počtu 0 maximálně o 1.
- R2: V cyklu s^N , aspoň $\frac{1}{2}$ runů má délku 1, aspoň $\frac{1}{4}$ má délku 2, aspoň $\frac{1}{8}$ má délku 3, etc., tak dlouho, pokud počet runů dané délky je alespoň 1. Navíc, pro každou z těchto délek existuje (teměř) stejně mnoho mezer a bloků.
- R3: Autokorelační fukce C(t) má 2 hodnoty. Pro nějaké celé K,

$$N \cdot C(t) = \sum_{i=0}^{N-1} (2s_i - 1)(2s_{i+t} - 1) = \left\{ \begin{array}{l} N, \text{ if } t = 0, \\ K, \text{ if } 1 \leq t \leq N-1 \end{array} \right.$$

 $\mbox{\it P\'r\'iklad}.$ Nechť s je periodická posloupnost s periodou N=15 a cyklem

$$s^{15} = 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1.$$

Ověřte Golombovi postuláty náhodnosti.

Řešení.

- R1: Počet 0 je 7 a počet 1 je 8. Rozdil mezi počtem 0 a 1 je 8-7=1. Tudiž R1 je splněna.
- R2: s^{15} má 8 runů. Máme 4 runy délky 1 (2 mezery a 2 bloky): s_0,s_5,s_{13},s_{14} . Počet mezer je 2 (s_0,s_{14}) a počet bloků je taky 2 (s_5,s_{13}) .
 - Počet runů délky 2 je 2 (s_1s_2, s_3s_4) . Počet mezer je 1 (s_3s_4) a počet bloků je taky 1 (s_1s_2) .
 - Počet runů délky 3 je 1 $(s_6s_7s_8)$. Počet mezer je 1 $(s_6s_7s_8)$ a počet bloků je 0.
 - Počet runů délky 4 je 1 $(s_9s_{10}s_{11}s_{12})$. Počet mezer je 0 a počet bloků je $(s_9s_{10}s_{11}s_{12})$.
 - Celkový počet runů je 4+2+1+1=8. $\frac{1}{2}$ runů je délky 1, $\frac{1}{4}$ runů je délky 2 a $\frac{1}{8}$ runů je délky 3. Potom R2 je splněno.

R3: Spočteme C(0).

$$C(0) = \frac{1}{15}(1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1) = 1.$$

$$C(1) = \frac{1}{15}(-1+1-1+1-1-1+1+1-1+1+1+1-1-1-1) = -\frac{1}{15}.$$

$$C(1) = C(2) = \dots = C(14) = -\frac{1}{15}$$

$$15.C(t) = \begin{cases} 15, & t = 0 \text{ nebo } t = 15 \\ -1, & \text{pro } 1 \le t \le 14 \end{cases}$$

Potom R3 je splněno.

χ^2 test dobré shody

Test dobré shody testuje shodu *empirických četností* (skutečné četnosti) X_1, \ldots, X_n jevů A_1, \ldots, A_n se středními hodnotami těchto četností (tzv. *očekávané četnosti*) mp_1, \ldots, mp_n , kde pravděpodobnosti p_1, \ldots, p_n jsou určeny z platnosti nějakého pravděpodobnostního modelu.

Nulová hypotéza říká, že pravděpodobnosti jevů A_1,\ldots,A_n jsou po řadě rovny p_1,\ldots,p_n a testová statistika má tvar:

$$X^{2} = \sum_{i=1}^{n} \frac{(X_{i} - mp_{i})^{2}}{mp_{i}}.$$

Náhodná veličina X^2 má přibližně χ^2 -rozdělení o n-1 stupních volnosti. Nulovou hypotézu zamítáme na hladině významnosti α , jestliže $X^2 > \chi^2_{1-\alpha;\;n-1}$, kde hodnota $\chi^2_{1-\alpha;\;n-1}$ je kvantil χ^2 -rozdělení o n-1 stupních volnosti. Z toho potom můžeme odvodit, že naše statistika nemá χ^2 -rozdělení a pravděpodobnosti jevů jsou různé od pravděpodobností p_1,\ldots,p_n .

Poznamenejme, že χ^2 test dobré shody je asymptotický, a proto ho možno doporučit jen při dostatečně velkém rozsahu výběru m. V literatuře se obvykle uvádí, že musí platit $mp_i \geq 5$ pro každé $i=1,\ldots,n$.

Chi-Square Goodness-of-Fit Test

Příklad. Máme hrací kostku a chceme ověřit, jestli je kostka pravidelná. Hodíme kostkou 48krát a získáme následující četnosti hodů:

Hodnota	1	2	3	4	5	6
Četnost	10	6	14	2	4	12

Zjistěte, zda daná kostka je homogenní?

Řešení. Nejprve si definujme nulovou a alternativní hypotézu:

 H_0 : kostka je pravidelná

 H_A : kostka není pravidelná

Jestli je kostka pravidelná, potom pravděpodobnost každé hodnoty je $\frac{1}{6}$. Tedy očekávané četnosti jednotlivých hodnot jsou stejné a rovné 8. Naměřené četnosti jsou

 $(X_1, X_2, X_3, X_4, X_5, X_6) = (10, 6, 14, 2, 4, 12)$. Dále aplikujeme test dobré shody a spočteme hodnotu:

$$X^{2} = \sum_{i=1}^{n} \frac{(X_{i} - mp_{i})^{2}}{mp_{i}} = \sum_{i=1}^{6} \frac{(X_{i} - 8)^{2}}{8} =$$

$$= \frac{(10 - 8)^{2}}{8} + \frac{(6 - 8)^{2}}{8} + \frac{(14 - 8)^{2}}{8} + \frac{(2 - 8)^{2}}{8} + \frac{(4 - 8)^{2}}{8} + \frac{(12 - 8)^{2}}{8} =$$

$$= 14.$$

Pracujeme na hladině významnosti $\alpha=0,05$ a uvažujeme n-1=5 stupňů volnosti. Kvantil $\chi^2_{1-\alpha;\;n-1}$ najdeme v příslušné statistické tabulce a je rovný $\chi^2_{0,95;\;5}=11,071$. Máme $X^2>11,071$, proto nulovou hypotézu H_0 můžeme zamítnout na dané hladině významnosti.

 $\mathit{P\check{r}iklad}$. Pomocí χ^2 testu dobré shody odovďte statistiku pro Serial test.

 $\check{R}e\check{s}eni$. Předpokládejme, že máme posloupnost bitů délky n. Nejprve si označme:

- n₀ počet 0 v dané posloupnosti
- n₁ počet 1 v dané posloupnosti
- n₀₀ počet podposloupností 00 v dané posloupnosti
- n_{01} počet podposloupností 01 v dané posloupnosti
- n_{10} počet podposloupností 10 v dané posloupnosti
- n₁₁ počet podposloupností 11 v dané posloupnosti

Chceme odovodit následující statistiku

$$X^{2} = \frac{4}{(n-1)}(n_{00}^{2} + n_{01}^{2} + n_{10}^{2} + n_{11}^{2}) - \frac{2}{n}(n_{00}^{2} + n_{11}^{2}) + 1$$

Potřebujeme zjistit jaké jsou očekávané počty podposloupnosti v posloupnosti délky n.

- $\frac{n}{2}$ je očekávaný počet 0 v dané posloupnosti
- ullet je očekávaný počet 1 v dané posloupnosti
- $\frac{n-1}{4}$ je očekávaný počet podposloupností 00 v dané posloupnosti
- $\frac{n-1}{4}$ je očekávaný počet podposloupností 01 v dané posloupnosti
- $\frac{n-1}{4}$ je očekávaný počet podposloupností 10 v dané posloupnosti
- $\frac{n-1}{4}$ je očekávaný počet podposloupností 11 v dané posloupnosti

Potom

$$X^{2} = \frac{\left(n_{0} - \frac{n}{2}\right)^{2}}{\frac{n}{2}} + \frac{\left(n_{1} - \frac{n}{2}\right)^{2}}{\frac{n}{2}} + \frac{\left(n_{00} - \frac{n-1}{4}\right)^{2}}{\frac{n-1}{4}} + \frac{\left(n_{00} - \frac{n-1}{4}\right)^{2}}{\frac{n-1}{4}} + \frac{\left(n_{10} - \frac{n-1}{4}\right)^{2}}{\frac{n-1}{4}} + \frac{\left(n_{10} - \frac{n-1}{4}\right)^{2}}{\frac{n-1}{4}}$$

Poznamenejme, že platí:

$$n_{00} + n_{01} + n_{10} + n_{11} = (n-1).$$

Potom

$$X^{2} = \frac{4}{n-1} \left(n_{00}^{2} + n_{01}^{2} + n_{10}^{2} + n_{11}^{2} - 2n_{00} \frac{n-1}{4} - \dots - 2n_{11} \frac{n-1}{4} + 4(\frac{n-1}{4})^{2} \right) + \frac{2}{n} \left(n_{0}^{2} - n_{0}n + \frac{n^{2}}{4} + n_{1}^{2} - n_{1}n + \frac{n^{2}}{4} \right)$$

Poznamenejme, že platí:

$$n_1 = n - n_0.$$

Nakonec získáváme

$$X = \frac{4}{(n-1)}(n_{00}^2 + n_{01}^2 + n_{10}^2 + n_{11}^2) - \frac{2}{n}(n_{00}^2 + n_{11}^2) + 1.$$

 $\it P\~riklad$. Nechť je dana posloupnost s délky n=160, která obsahuje 4krát opakující se následující podposloupnost:

Aplikujte frekvenční (monobit) a serial test.

Řešení.

Frekvenční test.

Definujme si nulovou hypotézu H_0 a alternativní hypotézu H_A :

- ullet H_0 : počet jedniček se rovná $rac{n}{2}$
- H_A : počet jedniček se nerovná $\frac{n}{2}$.

Použijeme následující statistiku:

$$X^{2} = \frac{(n_{0} - \frac{n}{2})^{2}}{\frac{n}{2}} + \frac{(n_{1} - \frac{n}{2})^{2}}{\frac{n}{2}} = \frac{(n_{0} - n_{1})^{2}}{n}.$$

Potřebujeme spočitat počet nul a jedniček v dané posloupnosti. $n_0=84$ a $n_1=76$. Potom

$$X^{2} = \frac{(84 - 80)^{2}}{80} + \frac{(76 - 80)^{2}}{80} = 0, 4.$$

Pracujeme na hladině významnosti $\alpha=0,05$ a uvažujeme 1 stupeň volnosti. Kvantil $\chi^2_{0,95;\;1}$ najdeme v příslušné statistické tabulce a je rovný $\chi^2_{0,95;\;1}=3,8415$. Máme $X^2<3,8415$, proto testována posloupnost prošla Frekvenčním monobit testem.

Serial test.

Nápověda. Máme $n_0=84$ a $n_1=76$. Dále $n_{00}=44, n_{01}=40, n_{10}=40$ a $n_{11}=35$. Spočteme X^2 a dostaneme $X^2=0,6252$.

Pracujeme na hladině významnosti $\alpha=0,05$ a uvažujeme 2 stupně volnosti. Kvantil $\chi^2_{0.95:~2}=5,9915$.

Daná posloupnost prošla i Serial testem.

Příklad.

Nechť $s=1,0,1,1,0,1,1,0,1,\ldots$ je posloupnost. Najděte:

- periodu a cyklus dané posloupnosti
- C(0), C(1), C(2) a C(3).

Příklad.

Máme hrací kostku a chceme ověřit, jestli je kostka pravidelná. Hodíme kostkou 300krát a získáme následující četnosti hodů:

Hodnota	1	2	3	4	5	6
Četnost	40	55	51	49	46	59

Zjistěte, zda daná kostka je homogenní?

Příklad.

Nechť máme nějaký generátor pseudonáhodných bitů, který vyprodukoval následující posloupnost x=(1110100111101100). Otestujte tento generátor pomocí Frekvenčního monobit testu.

Linear congruential(LCG) PRBG

Algorithm 1 Algorithm LCG PRBG

Input: N-length generated sequence

Output: $x_1, x_2, \dots, x_N \in \mathbb{Z}_2$ a pseudorandom bit sequence

- 1: select a random integer x_0 (the seed) and select parameters a,c,m, where a,c are in the interval [1,m]
- 2: for i = 1 to l do
- 3: $x_i = ax_{i-1} + c \mod m$
- 4: end for
- 5: **return** the output sequence x_1, x_2, \ldots, x_l

LCG. Naprogramujte LCG s následujícími parametry:

- $x_0 = 20170705$ je semínko angl.seed
- a = 742938285 činitel
- e = 31
- $m=2^e-1$ modulus

Pomocí daného LCG vygenerujte posloupnost délky N=100000. Dále naprogramujte Frekvenční (monobit) test a ověřte pomocí něj vygenerovanou posloupnost.