6.1 Matrices as Transformations

Definition

- A function whose inputs and outputs are vectors is called a transformation.
- ▶ A transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ is called an operator on \mathbb{R}^n .

Example

Let T be the transformation that maps a vector $\mathbf{x}=(x_1,x_2)$ in \mathbb{R}^2 into the vector $2\mathbf{x}=(2x_1,2x_2)$ in \mathbb{R}^2 .

Transformation

Example

Consider the matrix
$$A = \begin{bmatrix} 1 & -1 \\ 2 & 5 \\ 3 & 4 \end{bmatrix}$$
 and let T_A be the transformation

which maps a 2 \times 1 column vector \boldsymbol{x} in \mathbb{R}^2 into the 3 \times 1 column vector $A\mathbf{x}$ in \mathbb{R}^3 .

Matrix transformations

Definition

If A is an $m \times n$ matrix, and if \mathbf{x} is a column vector in \mathbb{R}^n , then the product $A\mathbf{x}$ is a vector in \mathbb{R}^m . So, multiplying \mathbf{x} by A creates a transformation from \mathbb{R}^n to \mathbb{R}^m and this transformation is called the multiplication by A or the transformation A, and is denoted by T_A to emphasize the matrix A.

Matrix transformations

Example

Zero transformation

Identity operator

Matrix transformations

Example

Let
$$T_A$$
 be the matrix transformation where $A = \begin{bmatrix} 1 & -1 \\ 2 & 5 \\ 3 & 4 \end{bmatrix}$. Find a

vector in
$$\mathbb{R}^2$$
, if any, whose image under T_A is $\mathbf{b} = \begin{bmatrix} 7 \\ 0 \\ 7 \end{bmatrix}$.

Definition

A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is called a linear transformation from \mathbb{R}^n to \mathbb{R}^m if the following two properties hold for all vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n and for all scalars c:

- (i) $T(c\mathbf{u}) = cT(\mathbf{u})$ [Homogeniety Property]
- (ii) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ [Additivity Property]

In the special case where m = n, the linear transformation T is called a linear operator on \mathbb{R}^n .

Superposition principle

If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are vectors in \mathbb{R}^n and c_1, c_2, \dots, c_k are any scalars, then

$$T(c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_k\mathbf{v}_k)=c_1T(\mathbf{v}_1)+c_2T(\mathbf{v}_2)+\cdots+c_kT(\mathbf{v}_k).$$

Example

Show that a matrix transformation T_A is linear.

Example

Show that the transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$T(x_1, x_2, x_3) = (x_1^2, x_2^2, x_3^2)$$

is not linear.

Theorem

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then

- (a) T(0) = 0.
- (b) $T(-\mathbf{u}) = -T(\mathbf{u})$.
- (c) $T(\mathbf{u} \mathbf{v}) = T(\mathbf{u}) T(\mathbf{v})$.

Example

Show that the operator $T: \mathbb{R}^n \to \mathbb{R}^n$, defined by $T(\mathbf{x}) = \mathbf{x} + \mathbf{x}_0$ for some vector \mathbf{x}_0 in \mathbb{R}^n , is not linear

Theorem

All linear transformations are matrix transformations.

Theorem (Precise version)

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. If $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_n$ are standard unit vectors in \mathbb{R}^n , and if \mathbf{x} is any vector in \mathbb{R}^n , then $T(\mathbf{x})$ can be expressed as

$$T(\mathbf{x}) = A\mathbf{x}$$

where

$$A = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) & \cdots & T(\mathbf{e}_n) \end{bmatrix}$$

The matrix A is called the standard matrix for T and denoted by A = [T].

Example

Show that the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(x_1, x_2, x_3) = (x_1 + x_2, x_2 - x_3)$ is linear and find its standard matrix.

Rotations about the origin

The standard matrix for the rotation about the origin through an angle θ is

$$R_{\theta} = egin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) \end{bmatrix} = egin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Example

Find the image of $\mathbf{x} = (1, 1)$ under a rotation of $\pi/6$ about the origin.

Reflection about the line through the origin

The standard matrix for the reflection about the line through the origin that makes an angle θ with the positive x-axis is

$$H_{\theta} = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) \end{bmatrix} = \begin{bmatrix} \cos 2\theta & \cos(\frac{\pi}{2} - 2\theta) \\ \sin 2\theta & -\sin(\frac{\pi}{2} - 2\theta) \end{bmatrix} = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix}$$

Example

Find the image of $\mathbf{x} = (1,1)$ under a reflection about the line through the origin that makes an angle of $\pi/6$ with the positive x-axis.

Orthogonal projection

The standard matrix for the orthogonal projection onto the line through the origin that makes an angle θ with the positive x-axis is

$$P_{\theta} = \begin{bmatrix} \frac{1}{2}(1 + \cos 2\theta) & \frac{1}{2}\sin 2\theta \\ \frac{1}{2}\sin 2\theta & \frac{1}{2}(1 - \cos 2\theta) \end{bmatrix} = \begin{bmatrix} \cos^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{bmatrix}$$

Example

Find the orthogonal projection of $\mathbf{x} = (1, 1)$ on the line through the origin that makes an angle of $\pi/12$ with the x-axis.