

Approved For Release 2000/08/08 : CIA-RDP96-00788R001800190001-3

CONTENTS (U)

LIST	OF II	LLUSTRATIONS	v
LIST	OF TA	ABLES	v
I	ОВЈЕС	CTIVE	1
II	INTRO	ODUCTION	3
III	PRESE	ENT STATUS	5
	A.	General	5
	В.	Literature Search	7
	C.	ELF Measurements	7
		1. Introduction	7
		2. Los Altos Site	8
		3. ELF Data Acquisition Systems	8
		a. Basic System Design	8
		b. FFT Program	10
		c. System Electronics	10
		d. ELF Electronics/Software Subtasks	
		(Status)	10
		e. ELF System Calibration	1.7
	D.	Satellite Downlink Geophysical Data-Acquisition	
		System	12
	10	Geophysical Data/RV Performance Correlation	
	Ε.	Analysis	14
		Allalysis	_
IV	SUMM	ARY	17
APPE	NDICE	s	
	A	FAST FOURIER TRANSFORM ROUTINE FOR ELF DATA	19
	В	ULF TREE POTENTIALS AND GEOMAGNETIC PULSATIONS	3
	С	FORMAT FOR SATELLITE BROADCAST OF SPACE ENVIRONMENT SERVICES	37
DEED	RENCE		47

THIS PAGE INTENTIONALLY LEFT BLANK

Approved For Release 2000/08/08 CIA RDP96-00788R001800190001-3

ILLUSTRATIONS (U)

1	ELF Data-Acquisition System
2	Real-Time Geophysical Data Acquisition Via Westar IV Downlink
3	Real-Time Geophysical Data-Acquisition System
4	Geophysical/Performance Data-Analysis System
	TABLES (U)
1	Geophysical Data Bases

THIS PAGE INTENTIONALLY LEFT BLANK

I OBJECTIVE (U)

The objective of this effort is to investigate the possible effects of ambient geophysical/low-frequency electromagnetic factors on remote viewing (RV)* performance

⁽U) RV (remote viewing) is the acquisition and description, by mental means, of information blocked from ordinary perception by distance or shielding.

Approved For Release 2000/08/08 : CIA-RDP96-00788R001800190001-3

II INTRODUCTION (U)

SRI International is tasked

(RV) performance and ambient geophysical/extremely-low-frequency electromagnetic (ELF) activity. The possibility of such correlation is indicated, for example, by studies showing psychophysiological effects^{1,3*} and behavioral changes^{3,4} associated with ELF electro-magnetic fields. The geophysical variables of interest include such factors as ELF intensity/fluctuations, ionospheric conditions, geomagnetic indices, sunspot number, and solar emissions (e.g., X rays and solar flares). The questions to be answered in this program are

- Do geophysical/performance correlations exist such that measurement of the ambient geophysical variables could be used as an indicator of expected performance?
- If so, can optimum performance windows be identified?
- (U) The structure of the program that will address the above issues consists of
 - A literature search.
 - Real-time ELF measurements
 - SRI (Menlo Park, California location)
 - Time Research Institute (Los Altos, California field station).
 - Real-time geophysical data acquisition via NOAA (National Oceanic and Atmospheric Administration)
 Westar IV satellite downlink.
 - Computer correlation studies of RV performance versus variables of interest.

⁽U) References are listed at the end of this report.

Approved For Release 2000/08/08 : CIA-RDP96-00788R001800190001-3

III PRESENT STATUS (U)

A. (U) General

- (U) In order to accomplish the goals set out in Section II, the program has been designed as a joint effort between SRI International and Time Research Institute of Los Altos, California, with SRI as the prime contractor. Time Research Institute is a research organization that specializes in temporal analysis of geophysical variables and their potential correlation with phenomena of interest, such as weather patterns, earthquakes, and so forth.
- (U) With regard to the present effort, Time Research Institute is responsible for establishing the appropriate hardware and software systems for collecting and analyzing data concerning environmental conditions and their correlation with RV performance. The purpose of the correlation study is to determine whether RV performance is enhanced or degraded by measurable changes occurring in the geophysical (including solar-terrestrial) environments. The specific data bases under consideration in this effort are given in Table 1.
- (U) Should correlations between geophysical variables and RV performance be found, the application potential of the effort is twofold:
 - (1) Time periods in which enhanced RV performance might be expected could be identified, resulting in increased quality and accuracy of information obtained through such channels; similarly, time periods in which degraded RV performance might be expected could be avoided. Thus, optimum performance windows would be identified.
 - (2) An increased understanding of the types of environmental changes that correlate with RV performance could provide clues as to the mechanisms involved in RV functioning. Such knowledge would lead to more focussed research on factors that could enhance RV performance, and would also provide information critical to the development of defensive countermeasures against RV.

Approved For Release 2000/08/08 515 FDP 00788R001800190001-3

Table 1

(U) GEOPHYSICAL DATA BASES

- Solar-Terrestrial
 - Geomagnetic

Ground-measured indices Ap, K, etc. Satellite-measured intensities

- Solar flux (MHz)

15,400	1,415
8,800	606
4,995	410
2,800	245
2,695	

- Sunspot number
- Solar flares
- Interplanetary magnetic field
- Solar wind (Pioneer XII)
- Protons
- Cosmic ray indices (neutron monitor)
- Ionospheric Measurements
 - Sudden ionospheric disturbances (SIDS)
 - Auroral electrojet
 - Radio propagation quality indices
- ULF/ELF
 - 30 frequencies (from 1 to 30 Hz)

UNCLASSIFIED

(U) The tasks listed in Section II (literature search, real-time ELF measurements, real-time geophysical data acquisition via satellite downlink, and correlation studies of RV performance versus geophysical variables of interest) have been prioritized with the goal of producing the longest possible ELF data base during the period of this contract. Therefore, while all of the tasks are being pursued in parallel, ELF-related tasks have been the focus of attention to date.

B. (U) Literature Search

(U) The purpose of the literature search is to acquire and integrate information from recent work done in the field of biological response to ELF and geophysical conditions. Approximately 30 keywords are in use as input to a computerized literature search. Forty manuscripts have been obtained to date and are in the process of being reviewed, plus additional sources of literature have been identified and will be retrieved as priorities permit.

C. (U) <u>ELF Measurements</u>

1. (U) Introduction

- (U) Although the ELF frequency range (3 to 300 Hz) has been studied in some detail, many unknowns remain. For example, although it is known that ELF frequencies generated by geophysical means (e.g., electrical storm activity) tend to distribute themselves globally, little information is available on the variation of the ELF environment from location to location. Therefore, local variations may exist that are caused by both manmade sources, and by the geological structure of the area. In the San Francisco Bay Area, manmade sources that generate ELF on a local scale include motors, telephone lines, power lines, and electrical subways [Bay Area Rapid Transit (BART)], and it needs to be determined whether the emission from such sources constitutes a significant contribution to the omnipresent global ELF field.
- (U) In order to address the above issue, two ELF monitoring stations are being set up--one at SRI Menlo Park (in the RV Laboratory), the other at the Time Research Institute field station, 17 km distant. It is anticipated that the SRI environment may be a "noisy" one due to the large amount of electronics known to be in the area. Data from the two sites, taking the field site as a reference, are to be compared in order to begin to differentiate the naturally-occurring ELF from the manmade noise occurring at the location where RV is being carried out.

Approved For Release 2000 6203: \$13 PT PP 00788R001800190001-3

2. (U) Los Altos Site

- (U) Since May 1982, Time Research Institute has been operating an ELF monitoring site in Los Altos, collecting data twice daily for the purpose of correlating ELF disturbances with various phenomena of interest. In this period, analysis techniques were developed that are directly applicable to the present task.
- (U) One of the first tasks was the upgrading of the Los Altos ELF monitoring site to provide coverage during power interrupts. Research was performed to determine the best power-interrupt system, including generators. The selection criteria chosen for the generator sought to optimize power output, cost effectiveness, and reputation for reliability, with the consideration that this system might serve as a model for additional sites in the client community. On this basis, a 3500-W Kubota generator was bought and installed at the site. A PTI Industries "Datashield" device was also purchased and installed, for use in conjunction with the generator (which must be started manually). This device powers the required electronics for a period of twenty minutes on its own while awaiting generator startup. Furthermore, an automatic alarm telephone dialing system dials up as many as four individuals should a power failure occur while no one is at the site. The two devices working together have protected the system on numerous occasions from power interruptions-including an 8-hr outage planned by Pacific Gas and Electric Company. Thus, since installation of the power-interrupt equipment, there has been no loss of data collection/storage.

3. (U) ELF Data Acquisition Systems

a. (U) Basic System Design

(U) With the requirement that two ELF monitoring sites be implemented for the program--one at SRI and one at Time Research Institute--it was decided that the two systems would be made identical. In this way, differences between the two systems would be minimized, thus reducing the opportunity for artifactual differences between the two system outputs.

Approved For Release 2000/08/08 SIS-REPRE-00788R001800190001-3

(U) Figure 1 is a block diagram of the basic ELF data acquisition system. The ELF signal is collected by an antenna, amplified, and then digitized by an analog-to-digital (A/D) converter so that the signal can be input into an IBM PC Jr. computer for the purpose of analysis by a fast-fourier-transform (FFT) program on at least an hourly basis. The recorded data are then transferred by floppy diskette to an IBM XT computer for further handling.

FIGURE 1 (U) ELF DATA-ACQUISITION SYSTEM

(U) As indicated in the above system description, an integral part of the data acquisition system is computerized record keeping, using IBM systems--both the IBM PC Jr. and the IBM XT. The software is written and compiled on the XT, used as a master system, and then run on the PC Jr. (the PC Jr. is not itself large enough to run a compiler, nor are there compilers written for it). Beyond this, however, in spite of the much publicized "compatibility" between the various

Approved For Release 2000/08/08 CIA-RDP96-00788R001800190001-3

IBM PC systems, some development time had to be expended to ensure that programs compiled on the XT (that were concerned with communication with external devices) could be run on the PC Jr.--because they handle the addressing of communication ports differently.

b. (U) FFT Program

(U) A consultant was hired from the Radioscience Laboratory at Stanford University to critique the ELF system at Time Research Institute as it stood at program start. As part of that critique, he recommended changes in the FFT software to increase its accuracy and running speed. As a result, new FFT software was written in compiled BASIC and then debugged. The program description is given in Appendix A. This task was completed in mid-April.

c. (U) System Electronics

(U) The prototype system of Figure 1 was assembled and installed for our purposes at the Los Altos site. Early tests indicated that modification of the existing electronics was required because (1) the system was sensitive to ground-loop problems, thus the preamplifier had to be redesigned to include an isolation amplifier, and (2) when the new system was installed in mid-June, it was found that a slowly-varying dc level was superimposed on the incoming ELF signal, resulting in excursions that exceeded the limits of the A/D converter at amplification levels required for good signal analysis. Therefore, new circuitry was designed to eliminate the dc problem. With these changes, the ELF detection system is scheduled for completion of testing, debugging, and calibration at the Los Altos site in August, before its sister system is installed at SRI.

d. (U) ELF Electronics/Software Subtasks (Status)

(U) The status of the ELF electronics/software subtasks is as follows:

(U)

- Subject to the requirement that the basic microprocessor units to be used in the program would (1) be able to communicate with an IBM XT, (2) have at least 64K of memory, (3) possess diskette storage capability, and (4) be cost effective, the IBM PC Jr. was selected from among the various alternatives, and two units were purchased.
- Preamplifiers, low bandpass filters, and amplifiers have been designed, and one complete prototype system has been assembled. Amplifiers and filters have been assembled for the second system to be installed at SRI.
- Design specifications have been completed for the ELF antenna. Assembly of this antenna is pending the results of a calibration task (described in Section III.D.3.e).
- A survey of A/D converters that would be compatible with the other system components was completed, and the selected units were purchased.
- Communication between the IBM PC Jr. and the A/D converter has been established, enabling the computer to read the incoming signal.
- Software has been developed and debugged that: (1) reads the communications RS 232 port of the PC Jr. input from the A/D converter, (2) performs FFT analysis of the signal, and then (3) writes half-hourly averages of 19 different frequencies (from 1 to 29 Hz) to a computer diskette. Further software refinements will continue to be made, such as determining daily maximum values for each frequency. This software has been implemented and debugged. The system is ready to begin data acquisition upon implementation of the dc-level-controlling hardware. Minor enhancements of the software will continue.
- The Los Altos system is now in operation and is being tested. It is anticipated that the SRI system will be implemented in August.

e. (U) ELF System Calibration

(U) System calibration is proceeding. The Stanford University consultant mentioned earlier is an expert in the areas of ELF and VLF measurement, antenna design, and spectral analysis. His calibration program is being carried out at the present Los Altos site using specialized, sophisticated instruments from the Stanford Radioscience Laboratory.

Approved For Release 2000108/28/25/3-APPE-00788R001800190001-3

- (U) As part of the calibration process, certain powerline and power-supply "noise" sources were identified that could have produced artifacts in the historical and ongoing data. Therefore, increased electronic-filtering measures are being incorporated into the system, including software changes to recalibrate past data already in storage.
- (U) Finally, as part of the calibration process, three systems are to be monitored simultaneously: (1) the original unmodified Los Altos system on which the historical ELF data have been acquired; (2) a new system (described in this report) using an ELF wire-coil antenna designed by and on loan from the Radioscience Laboratory at Stanford University; (3) the new system, but with a bioantenna (oak tree) as an antenna, which is a procedure recommended by Stanford (see Nature reprint, Appendix B). The results from the calibration tests will be used to calibrate the historical data base, and to fix the final antenna design.

D. (U) Satellite Downlink Geophysical Data-Acquisition System

- (U) A near real-time satellite downlink system for solar-terrestrial data has recently become available from NOAA (National Oceanic and Atmospheric Administration). With this unit, it is possible to provide immediate feedback and/or analysis in conjunction with RV sessions. (Normally, there are long delays in procuring solar-terrestrial data; without the downlink, delays of 10 days to 6 months are standard.) The downlink system provides for accumulation of a detailed data base directly on computer diskettes. (See Appendix C for an item-by-item description.)
- (U) A satellite controller and a dish antenna for the downlink system were ordered and installed at the Los Altos site early in the project (see Figure 2). At the time of this writing, specifications for data-acquisition software for the IBM PC Jr. have been completed, and first-order software has been written that captures the data to computer diskettes. Because of the large volume of data transmitted each minute, a double-density, double-sided diskette fills in about 21 hours. Disk-

Approved For Release 2000/08/08A SIS-REPE6-00788R001800190001-3

FIGURE 2 (U) REAL-TIME GEOPHYSICAL DATA
ACQUISITION VIA WESTAR IV
DOWNLINK

(U)

ettes have been changed on an almost daily basis since early April in order to begin to acquire a long-term data base.

- (U) To increase the amount of data that can be stored on a diskette, it is necessary to separate numerical data of interest. The necessary software is now being written that will be able to identify the various data types as they are transmitted, so that only the data of interest will be transferred to an appropriate data file on the diskette. Statistical analysis can then be done on the data in this form.
- (U) Other data bases are continuing to be maintained for this project by Time Research Institute. Files of 2800-MHz solar flux, the planetary magnetic activity index (Ap), the Anchorage magnetic index,

Approved For Release 2000 08/08: SIA FEDE 00788R001800190001-3

(U)

and the Stanford mean solar magnetic field are updated on a weekly or monthly basis as the data are available. ELF data from the "old" system are recorded twice daily; ELF data from the "new" system are being recorded at the following intervals: half-hourly averages (48 times a day), and two sets of half-daily averages (twice a day) at 00:00 and 12:00 UT, and at 04:30 and 16:30 UT. Whole-day averages are also being recorded.

- (U) To summarize the status of the satellite-downlink dataacquisition system:
 - The downlink-geophysical system is in place and in operation at the Los Altos site.
 - · Partial data acquisition from the downlink is in place.
 - Software for the final data-acquisition system will be completed and implemented in August.

E. (U) Geophysical Data/RV Performance Correlation Analysis

- (U) Data for RV sessions are to be analyzed for statistical correlation with respect to the battery of geophysical data sets listed in Table 1, and those acquired by Time Research Institute via measurement (Figure 3). Recording of RV and geophysical data is now in progress. The overall system for data acquisition and analysis of RV performance/ geophysical data is depicted in Figure 4. When enough data have been collected toward the end of the contract period, analysis will be performed. The tasks described in earlier sections are in preparation for this task, and therefore have received the bulk of the effort. Certain subtasks in the analysis task, which require a longer leadtime, have, however, already been completed in preparation for the analysis.
- (U) The primary statistical program that will be used to scan the data for possible relationships is called EPOCH ANALYSIS. This program reads two files simultaneously. The first file is an event file, the second a data file. The program first reads an event, then scans the data temporally backward and forward in time around the event. This information is stored, a second event is read, and so forth. When all

Approved For Release 2000 08/08: CIARDP96-00788R001800190001-3

FIGURE 3 (U) REAL-TIME GEOPHYSICAL DATA-ACQUISITION SYSTEM

(U)

the events and surrounding data have been read, a printout is created that lists appropriate cross-correlation statistics between event and data elements.

(U) Preliminary scans of data generated during an approximate 100-site series with one remote viewer have been carried out. The session quality was graded on a scale of 0 to 3⁺, and correlations between solar magnetic field and solar sunspot number were investigated. Some correlation between RV performance and solar sunspot number was found, which, if substantiated by further data, would indicate the possibility that performance might improve immediately after a peak in the sunspot number, and would deteriorate just before the sunspot number peaks in its 27-to-29-day cycle. This result is based on data points that are too small in number to be taken seriously at the point, however, and is mentioned only to give an example of the types of correlations that will be sought out and examined during the course of study.

FIGURE 4 (U) GEOPHYSICAL/PERFORMANCE DATA-ANALYSIS SYSTEM

IV SUMMARY (U)

- (U) Approximately 80 percent of the project's data-acquisition tasks have been completed, and all of the equipment and hardware have been purchased and delivered.
- (U) System calibration should be completed in the near future, and ELF and downlink-data acquisition will have begun in their final formats.
- (U) At the above point, the focus of effort will turn to analysis of past and present geophysical and ELF data, soon to be followed by the initiation of correlation studies of these data against RV performance.

THIS PAGE INTENTIONALLY LEFT BLANK

Appendix A

FAST FOURIER TRANSFORM ROUTINE FOR ELF DATA (U)

THIS PAGE INTENTIONALLY LEFT BLANK

Appendix A

FAST FOURIER ROUTINE FOR ELF DATA (U)

PROGRAM DESCRIPTION

THIS PROGRAM USES THE FAST FOURIER TRANSFORM (FFT) ALGORITHM TO CALCULATE THE SPECTRAL MAGNITUDES OF AN ARRAY OF CLOSE-PACKED REAL INPUT DATA POINTS. THE PROGRAM IS ORGANIZED AS FOLLOWS:

- 1. AT THE START, DATA POINTS ARE STORED IN THE REAL ARRAY X(1), WHERE 1 RUNS FROM \emptyset TO NX-1. NX MUST BE AN INTEGRAL POWER OF 2, OF THE FORM NX = 2^MX (IE, MX = LOG2(NX)). SUCCESSIVE ELEMENTS OF X REPRESENT SUCCESSIVE SAMPLES OF AN INPUT SIGNAL, SAMPLED AT REGULAR INTERVALS OF TIME DT.
- 2. THE REAL ARRAY X(1) IS TREATED FOR THE FFT AS A COMPLEX ARRAY OF NX/2 PAIRS OF REAL AND IMAGINARY ELEMENTS. THAT IS, THE REAL ELEMENTS OF THE ARRAY ARE THE EVEN-NUMBERED INPUT SAMPLES, AND THE IMAGINARY ELEMENTS OF THE ARRAY ARE THE ODD-NUMBERED INPUT SAMPLES. AFTER THE FFT IS CALCULATED, AN ADDITIONAL STEP IS USED TO EXTRACT THE SPECTRUM OF THE REAL INPUT DATA. TRANSFORMING CLOSE-PACKED DATA IN THIS WAY, EVEN THOUGH IT REQUIRES AN ADDITIONAL STEP FOR THE REAL TRANSFORM EXTRACTION, IS FASTER THAN TRANSFORMING A COMPLEX ARRAY OF NX REAL-IMAGINARY PAIRS (2*NX ELEMENTS), WHERE ALL OF THE INITIAL IMAGINARY VALUES ARE ZERO.
- 3. THE FFT IS CALCULATED AS FOLLOWS:
 - A. THE INPUT PAIRS IN $\boldsymbol{\mathsf{X}}$ ARE REARRANGED IN BIT-REVERSED ORDER.
 - B. THE FFT IS CALCULATED USING DECIMATION IN TIME, WITH ANGLE ARGUMENTS IN EACH SUB-DFT APPEARING IN NATURAL (IE, INCREASING) ORDER.
 - C. AFTER THE LAST PASS THROUGH THE FFT ALGORITHM, THE ARRAY X CONTAINS SPECTRAL VALUES IN NORMAL ORDER, WITH EACH EVEN POINT A REAL VALUE AND EACH SUBSEQUENT ODD POINT THE CORRESPONDING IMAGINARY VALUE.
- 4. FOLLOWING THE FFT THE REAL TRANSFORM IS EXTRACTED. NOTE THAT IF THE SAMPLING INTERVAL (THE TIME BETWEEN SUCCESSIVE SAMPLES) IS DT, THEN THE TOTAL SIGNAL INTERVAL PROCESSED IS NX*DT (THE FFT ASSUMES THAT THE MISSING RIGHT END POINT IS THE SAME AS THE FIRST POINT). THE FFT GENERATES A SPECTRUM CONTAINING VALUES AT INCREMENTS OF DF IN FREQUENCY, WHERE DF = 1/(NX*DT). IF WE WERE TO TRANSFORM AN ARRAY OF NX COMPLEX DATA POINTS (WHOSE IMAGINARY VALUES WERE ZERO, SINCE WE ARE CONCERNED WITH A REAL SIGNAL) WE WOULD GENERATE NX COMPLEX SPECTRAL POINTS RANGING IN FREQUENCY FROM Ø TO (NX-1)*DF Hz. HOWEVER, THE POINTS FROM (NX/2+1)*DF Hz TO (NX-1)*DF Hz ARE MERELY THE COMPLEX CONJUGATES OF THE LOWER POINTS, AND CONTAIN NO ADDITIONAL INFORMATION. THIS IS BECAUSE THE NYQUIST RATE, OR THE HIGHEST UNALIASED FREQUENCY THAT CAN BE SAMPLED, IS 1/2*NX*DF. WHEN WE TRANSFORM NX REAL CLOSE-PACKED POINTS AND THEN EXTRACT THE REAL TRANSFORM, WE GET ONLY THE LOWER NX/2 COMPLEX SPECTRAL VALUES, WHICH ARE ALL THAT ARE NEEDED.

Approved For Release 2000/08/08 : CIA-RDP96-00788R001800190001-3

- 5. NEXT, THE SPECTRUM IS CONVOLVED WITH A SHORT WINDOW FUNCTION. THE REAL AND IMAGINARY (EVEN AND ODD) POINTS ARE CONVOLVED SEPARATELY, SINCE THE WINDOW FUNCTION IS A SEQUENCE OF REAL NUMBERS. WINDOWING IS NECESSARY IF THE SIGNAL FILTERS WE ARE EFFECTIVELY SYNTHESIZING ARE TO HAVE A USEFUL SHAPE. WITHOUT WINDOWING WE WOULD FIND THAT EACH SPECTRAL FILTER WOULD HAVE A NARROW PASSBAND BUT SIGNIFICANT SIDELOBE RESPONSES. THAT IS, THE MAGNITUDE OF A SPECTRAL LINE X(1) WOULD DEPEND NOT ONLY ON SIGNAL COMPONENTS NEAR 1*DF IN FREQUENCY, BUT ALSO SIGNIFICANTLY ON COMPONENTS AT OTHER FREQUENCIES AS WELL. WINDOWING BROADENS THE SHAPE OF THE PASSBAND OF EACH SPECTRAL FILTER BUT DECREASES THE SIDELOBE RESPONSES. THE AMOUNT OF BROADENING AND SUPPRESSION OF SIDELOBES DEPENDS ON THE WINDOW ORDER, OR THE LENGTH OF THE WINDOW FUNCTION WHICH IS CONVOLVED WITH THE RAW SPECTRUM.
- 6. FINALLY, THE MAGNITUDE OF THE SIGNAL AT EACH SPECTRAL FREQUENCY IS CALCULATED AS THE ROOT SUM OF THE SQUARES OF THE REAL AND IMAGINARY SPECTRAL COMPONENTS (IE, THE VECTOR MAGNITUDE OF EACH COMPLEX SPECTRAL POINT) AND SCALED TO MAKE THE PROCESSING GAIN INDEPENDENT OF THE SIZE OF THE BLOCK LENGTH NX. WE COULD ALSO CALCULATE THE PHASE OF THE SPECTRAL POINTS BUT THIS INFORMATION ISN'T TOO VALUABLE FOR OUR USE. NOTE THAT THE HIGHEST MEANINGFUL SPECTRAL FREQUENCY DEPENDS ON THE ANTI-ALIASING LOW-PASS FILTER THAT IS USED WHEN THE SIGNAL IS SAMPLED. THERE IS NOT MUCH MEANING TO SPECTRAL POINTS ABOVE THE FILTER CUTOFF FREQUENCY, WHERE SIGNALS ARE ATTENUATED AND FREQUENCY ALIASING BECOMES A PROBLEM. THUS, IN THIS PROGRAM WE DO NOT CALCULATE SPECTRAL COMPONENTS ABOVE ABOUT 30 Hz (THE NOMINAL CUTOFF FREQUENCY OF THE LOW-PASS FILTER).

THIS PROGRAM IS WRITTEN IN BASIC FOR THE IBM PC COMPUTER. HOWEVER, IT IS EASILY ADAPTED TO OTHER MACHINES. FOUR THINGS TO WATCH OUT FOR WHEN TRANSFERRING THE PROGRAM TO ANOTHER VERSION OF BASIC ARE:

- 1. ALL ARRAYS START WITH INDEX Ø. THAT IS, THE ARRAY X(NX) RUNS FROM X(Ø) TO X(NX-1). ARRAY REFERENCES WILL NEED TO BE CHANGED IF THE PROGRAM IS TO BE USED ON MACHINES WHERE THE FIRST ELEMENT OF ARRAYS HAS INDEX 1.
- 2. ALL VARIABLES WHOSE NAMES START WITH THE LETTERS "I" THROUGH "N" ARE IMPLICITLY INTEGERS (DEFINT I-N STATEMENT). THESE VARIABLES MAY NEED TO BE RENAMED. IT IS IMPORTANT THAT LOOP COUNTERS AND ARRAY INDEX VARIABLES BE INTEGERS BECAUSE INTEGER ARITHMETIC (WHERE AVAILABLE) IS FASTER THAN FLOATING-POINT ARITHMETIC.
- 3. THIS PROGRAM USES THE INTEGER DIVISION OPERATOR "\". THIS MAY BE CHANGED TO "/" IN OTHER VERSIONS OF BASIC.
- 4. THIS PROGRAM USES LOGICAL OPERATORS ("NOT", "AND", "OR") ON INTEGER VARIABLES (NOT LOGICAL VARIABLES) IN THE BIT-REVERSAL ROUTINE. IF THESE OPERATORS ARE NOT AVAILABLE THE ALTERNATE VERSION OF STATEMENTS 3000-3190 USING ONLY INTEGER ARITHMETIC MUST BE SUBSTITUTED.

CHOICE OF SAMPLING TIME AND BLOCK SIZE

THE SAMPLING TIME DT AND THE BLOCK SIZE NX TOGETHER DETERMINE THE NUMBER OF SPECTRAL POINTS CALCULATED AND THEIR SPACING IN FREQUENCY. THE CHOICE OF SAMPLING TIME ALSO AFFECTS THE FREQUENCIES AT WHICH POWER-LINE HARMONIC INTERFERENCE THAT IS PASSED BY THE ANTI-ALIASING LOW-PASS FILTER WILL APPEAR IN THE SPECTRUM. THE FOLLOWING DISCUSSION ASSUMES THAT THE 30 Hz LOW-PASS FILTER WILL BE USED TO ATTENUATE HIGH FREQUENCY SIGNAL COMPONENTS BEFORE SAMPLING.

FIF THE INPUT SIGNAL THAT IS SAMPLED CONTAINED ONLY FREQUENCIES BELOW THE PROBLEM TO SAMPLE AT THE NYQUIST RATE OF 60 SAMPLES PER SECOND. HOWEVER, SINCE THE FILTER DOES NOT HAVE INFINITE TATTENUATION ABOVE 30 Hz IT IS NECESSARY TO SAMPLE AT A SOMEWHAT HIGHER RATE, AND THEN DISCARD THOSE SPECTRAL POINTS REPRESENTING SIGNALS ABOVE 30 Hz.

- 1. ONE CONSIDERATION IN CHOOSING THE SAMPLING RATE IS THE ACTUAL RATE AVAILABLE WITH A GIVEN A/D CONVERTER. WITH THE CMC BUSSTER DI6 A/D CONVERTER, SAMPLING TIMES CAN BE AS SMALL AS Ø.0005 s. HOWEVER, IF MORE THAN ONE SIGNAL IS TO BE DIGITIZED AT ONE TIME, THE MINIMUM SAMPLING TIME IS Ø.01 s PER CHANNEL, OR A SAMPLING RATE OF 100 SAMPLES/SECOND. THIS SEEMS LIKE A REASONABLE CHOICE.
- 2. A SECOND CONSIDERATION IS THE EFFECT OF THE SAMPLING RATE ON THE FREQUENCIES OF ALIASED POWER LINE HARMONICS. ONLY HARMONICS AT 60 AND 120 Hz ARE LIKELY TO BE A PROBLEM. WITH DT = 0.01 S. THE NYQUIST RATE IS 50 Hz, SO THE SPECTRUM WILL CONTAIN POINTS AT FREQUENCIES FROM 0 TO 50 Hz. ANY 60 Hz SIGNAL THAT IS DIGITIZED WILL APPEAR IN THE SPECTRUM AT 40 Hz, WHICH POINT WILL BE THROWN OUT, SO 60 Hz INTERFERENCE WON'T BE A PROBLEM. HOWEVER, INTERFERENCE AT 120 Hz WILL APPEAR AT 20 Hz IN THE SPECTRUM, AND THIS FACT MUST BE KEPT IN MIND WHEN ANALYZING THE DATA. (HIGHER HARMONICS APPEAR AS: 180 AT 20 Hz, 240 AT 40 Hz, 300 AT 0 Hz, 360 AT 40 Hz, AND SO ON.)

3Ø Hz

GIVEN A SAMPLING TIME DT = $\emptyset.01$ s, WE CAN CALCULATE THE SPECTRAL SPACING FOR DIFFERENT CHOICES OF BLOCK SIZE NX, AND WE FIND THE FOLLOWING:

	NX	DF	NUMBER OF POINTS <=
2 5 1 £	64 128 256 512 024	1.5625 Hz Ø.7813 Hz Ø.39Ø6 Hz Ø.1953 Hz Ø.Ø977 Hz Ø.Ø488 Hz	19 38 76 153 307 614

WINDOWING

AFTER THE SPECTRUM OF THE INPUT SIGNAL HAS BEEN FOUND, IT IS CONVOLVED WITH A SHORT WINDOW SEQUENCE TO IMPROVE THE SHAPE OF THE SYNTHESIZED FILTERS. THOUGH THE SPECTRAL VALUES ARE COMPLEX, THE WINDOW SEQUENCE IS A SEQUENCE OF REAL NUMBERS, SO THE CONVOLUTION IS DONE SEPARATELY FOR THE REAL AND IMAGINARY SEQUENCES IN THE SPECTRUM. THE CONVOLUTION IS OF THE FORM

 $X(j) \leftarrow W3*[X(j-3)+X(j+3)] + W2*[X(j-2)+X(j+2)] + W1*[X(j-1)+X(j+1)] + WØ*X(j)$

; *

; *

WHERE X(J) IS THE REAL OR IMAGINARY SUBSEQUENCE OF THE SPECTRUM, AND THE CONVOLUTION IS ILLUSTRATED FOR A 4TH ORDER WINDOW SEQUENCE. NOTE THAT IF THE CONVOLUTION IS TO BE DONE IN-PLACE, A SMALL ARRAY MUST BE USED TO HOLD THE PREVIOUS VALUES OF X(J-3), X(J-2), X(J-1), and X(J) FOR USE IN SUBSEQUENT CONVOLUTIONS.

THE VALUES TO USE FOR DATA POINTS BEYOND THE ENDS OF THE SPECTRUM ARE THE COMPLEX CONJUGATES OF THE POINTS REFLECTED ABOUT THE ENDS, SO THE AUXILLIARY ARRAY OF PREVIOUS VALUES MUST BE INITIALIZED AS FOLLOWS:

Re(-3) = Re(3) Im(-3) = -Im(3) Re(-2) = Re(2) Im(-2) = -Im(2)Re(-1) = Re(1) Im(-1) = -Im(1)

POINTS AFTER THE FAR END OF THE SPECTRUM ARE REFLECTED IN THE SAME WAY, BUT SINCE WE WON'T CALCULATE SPECTRAL POINTS ABOVE 30 Hz THERE IS NO NEED TO WINDOW POINTS THERE.

THE FOLLOWING WINDOW SEQUENCES ARE THE MOST IMPORTANT FOR OUR USE. THESE ARE ALL MINIMUM-SIDELOBE WINDOWS WHICH SUPPRESS SIDELOBE RESPONSES AS MUCH AS POSSIBLE FOR A GIVEN WINDOW ORDER, AND HAVE BEEN NORMALIZED FOR UNITY GAIN. NOTE THAT THE ORDER-1 WINDOW CORRESPONDS TO NO WINDOW AT ALL. THE ORDER-2 WINDOW IS SIMILAR TO THE HAMMING FUNCTION.

ORDER	1	2	3	4
WØ W1 W2 W3	1.00000 0 0 0 0	1.00000 -0.42875 0	1.00000000 -0.5895613 0.0922278	1.00000000 -0.6727198 0.1878524 -0.0146337
HIGHEST Sidelobe	-13 dB	-43 dB	-72 dB	-98 dB
3-dB WIDTH	Ø.89 DF	1.3Ø DF	1.61 DF	1.86 DF
6-48 WINTH	1.2Ø DF	1.81 DF	2.25 DF	2.62 DF

FOR OUR USE, I THINK THE 3RD-ORDER WINDOW IS THE MOST APPROPRIATE, AND THE PROGRAM USES THIS WINDOW FUNCTION. SINCE W3 = 8 IN THIS CASE, THE ACTUAL CONVOLUTION CONTAINS ONLY 3 TERMS. SINCE W8 = 1, THE LAST TERM IS JUST X(1), WITHOUT A MULTIPLICATION. THUS THE WINDOWING OF EACH POINT INCLUDES 5 ADDITIONS AND 2 MULTIPLICATIONS FOR EACH OF THE REAL AND IMAGINARY COMPONENTS. IF ONLY VERY SHORT BLOCKS (SAY NX = 64) ARE TO BE PROCESSED, THE 2ND-ORDER WINDOW MIGHT BE MORE APPROPRIATE SINCE THE FILTERS ARE A BIT NARROWER IN THAT CASE.

```
*
 ; *
                                                 PROGRAM
 ; *
 :DEFINITIONS:
 1000
             DEFINT I-N
                                                 'VARIABLES STARTING "I"-"N" ARE INTEGERS
             NX = 1024
NXM1 = NX-1
 1010
                                                'DATA BLOCK SIZE
 1020
                                                'INPUT DATA ARRAY X(1), 1 = Ø, ..., NX-1
'INPUT SAMPLE TIME IN SECONDS
'SPECTRAL LINE SPACING IN Hz
 1030
             DIM X(NX)
 1848
             DT = \emptyset.\emptyset1
 1050
             DF = 1./(DT*NX)
             NMAX = 3Ø./DF
 1060
                                                 'NUMBER OF HIGHEST SPECTRAL LINE <= 30 Hz
 1100
             NF = NX \setminus 2
                                                 'FFT SIZE (NR OF COMPLEX POINTS)
             MF = LOG(NF)/LOG(2.)
 1110
                                                 'NF = 2^MF
             NFD2 = NF\2
 1120
 1138
             NFM1 = NF-1
 1140
             DIM CA(NF)
                                                 'COSINE AND SINE ARRAYS,
 115Ø
             DIM SA(NF)
                                                    ANGLES FROM Ø TO 18Ø*(NX-1)/NX
 1160
            PI2 = 6.2831853
 1200
            W1 = -\emptyset.5859613
                                                 'WINDOW COEFFICIENTS
            W2 = \emptyset.\emptyset922278
 1210
 ; CALCULATE SINE AND COSINE ARRAYS:
THIS NEED BE DONE ONLY ONCE. NOTE THAT THE FFT ROUTINE USED SINES AND COSINES FROM Ø TO <\!18\emptyset DEGREES IN STEPS OF 36Ø/NF DEGREES, AND THE REAL
TRANSFORM EXTRACTION ROUTINE USES SINES AND COSINES UP TO <90 DEGREES IN STEPS OF 360/NX DEGREES. THUS THE ODD NUMBERED POINTS IN THESE ARRAYS
STEPS OF 360/NX DEGREES. THUS THE ODD NUMBERED POINTS IN THESE ARRAYS FOR ANGLES ABOVE 90 DEGREES ARE NOT USED. IF MEMORY SPACE IS A PROBLEM, THE ARRAYS CAN BE CONDENSED AND ONLY POINTS FROM 0 TO <180 DEGREES IN STEPS OF 360/NF CALCULATED FOR USE BY THE FFT. IN THIS CASE, THE VALUES USED BY THE REAL TRANSFORM EXTRACTION WILL HAVE TO BE CALCULATED AS NEEDED. IT IS ALSO POSSIBLE TO USE A TABLE CONTAINING VALUES FOR ANGLES ONLY FROM 0 TO 45 DEGREES, BUT THIS MAKES THE LOOKUP PROCEDURE SOMEWHAT MORE COMPLICATED, INVOLVING A POSSIBLE CHANGE OF SIGN OR EXCHANGE OF SIN AND COS VALUES DEPENDING ON THE SEMICULARDANT OF THE ANGLE
AND COS VALUES DEPENDING ON THE SEMIQUADRANT OF THE ANGLE.
1500
            DA = PI2/NX
                                                'ANGLE INCREMENT
1510
            FOR J = Ø TO NFM1
                                                'CALCULATE SINES AND COSINES
152Ø
               A = DA*J
               CA(J) = COS(A)
1530
               SA(J) = SIN(A)
154Ø
155Ø
            NEXT J
; SAMPLE INPUT DATA INTO ARRAY X:
THIS CODE MUST BE WRITTEN TO SAMPLE THE INPUT SIGNAL EVERY $.$1 SECOND AND STUFF SUCCESSIVE VALUES INTO X. ONLY NX VALUES NEED BE TAKEN.
ENTER HERE TO START PROCESSING A NEW BLOCK OF DATA.
: 2000
           CODE YET TO BE WRITTEN
```

```
BIT REVERSAL:
THE REAL COMPACT SAMPLES IN X ARE NOW TREATED AS A COMPLEX ARRAY OF NF
(REAL, IMAGINARY) PAIRS. PAIRS AT BIT-REVERSED ADDRESSES ARE NOW SWAPPED
;PRIOR TO THE FFT ROUTINE.
THE FOLLOWING ROUTINE USES LOGICAL OPERATORS.
                                'INITIAL BIT-REVERSED ADDRESS
3000
        K = 1
                                 SCAN ALL ADDRESSES EXCEPT THE FIRST
        FOR J = 1 TO NFM1
3Ø1Ø
          L = NFD2
                                'INITIAL BIT MASK
3Ø2Ø
          IF NOT(K AND L) GOTO 3070 'THIS BIT SET?
3030
                                   YES - CLEAR IT.
            K = K AND NOT L
3Ø4Ø
                                   SHIFT MASK RIGHT,
            L = L\2
3Ø5Ø
                                   AND CONTINUE
            GOTO 3Ø3Ø
3Ø6Ø
                                'BIT WAS CLEAR, SET IT
'SKIP IF ADDRESS SAME OR ALREADY DONE
          K = K OR L
3Ø7Ø
          IF K <= J GOTO 3198
3Ø8Ø
                                'ARRAY ADDRESS OF LOWER REAL COMPONENT
          J2 = J+J
3Ø9Ø
                                 ARRAY ADDRESS OF UPPER REAL COMPONENT
          K2 = K+K
3100
                                 SWAP REALS
          T = X(J2)
3110
          X(J2) = X(K2)
3120
          X(K2) = T
3130
                                 'SWAP IMAGINARIES
          T = X(J2+1)
3140
          X(J2+1) = X(K2+1)
315Ø
          X(K2+1) = T
3180
319Ø
        NEXT J
THE FOLLOWING VERSION USES ONLY INTEGER ARITHMETIC BUT IS A BIT LESS
:EFFICIENT.
                                 'SCAN ALL ADDRESSES EXCEPT THE FIRST
;3000
        FOR J = 1 TO NFM1
                                 'INITIALIZE DIVISOR
;3Ø1Ø
          K1 = J
                                 'INITIALIZE BIT-REVERSED ADDRESS
          K = Ø
;3020
                                 BIT-REVERSE ALL MF BITS
          FOR I = 1 TO MF
;3Ø3Ø
            K2 = K1 \setminus 2
:3040
            K = (K-K2)*2+K1
;3050
            K1 = K2
:3060
;3Ø7Ø
          NEXT I
                                 'SKIP IF ADDRESS SAME OR ALREADY DONE
          IF K <= J GOTO 3198
:3080
                                 'ARRAY ADDRESS OF LOWER REAL COMPONENT
          J2 = J+J
;3090
                                 ARRAY ADDRESS OF UPPER REAL COMPONENT
          K2 = K+K
:3100
          T = X(J2)
                                 SWAP REALS
;3110
          X(J2) = X(K2)
;3120
          X(K2) = T
;313Ø
          T = X(J2+1)
                                 'SWAP IMAGINARIES
;3140
;315Ø
          X(J2+1) = X(K2+1)
          X(K2+1) = T
;3180
:3190
        NEXT J
```

:FFT ROUTINE:

THIS ROUTINE USED DECIMATION IN TIME. THE COMPLEX DATA INPUT IS IN BIT-

- 1. THE OUTER LOOP MAKES MF PASSES THROUGH THE DATA. THE INITIAL NUMBER OF SUB-DFT'S IS 1, AND DOUBLES ON EACH PASS. THE INITIAL INCREMENT IN ANGLE BETWEEN SUB-DFT'S IS 180 DEGREES, AND HALVES ON EACH PASS.
- 2. THE MIDDLE LOOP PROCESSES THE SUB-DFT'S. AT EACH SUB-DFT ANGLES INCREASE IN NATURAL ORDER AS Ø (I=1); Ø, 9Ø (I=2); Ø, 45, 9Ø, 135 (I=3); Ø, 22.5, 45, ... (I=4); AND SO ON.
- 3. THE INNER LOOP CALCULATES THE BUTTERFLIES FOR A GIVEN ANGLE IN EACH SUB-DFT. EACH DECIMATION-IN-TIME BUTTERFLY HAS THE FORM

```
Re(j) <- Re(j)+[Re(k)*C+Im(k)*S]
Im(j) <- Im(j)+[Im(k)*C-Re(k)*S]
Re(k) <- Re(j)-[Re(k)*C+Im(k)*S]
Im(k) <- Im(j)-[Im(k)*C-Re(k)*S]
```

WHERE C AND S ARE THE COSINE AND SINE OF THE ANGLE.

```
32ØØ
        LM = 1
                                   'INITIAL NUMBER OF SUB-DFT'S = 1
        LM2 = LM+LM
3218
322Ø
        IDA = NF
                                   'INITIAL ANGLE INCREMENT = 180 DEG
         FOR I = 1 TO MF
                                   'OUTER LOOP
3230
3240
           IA = 2
                                   'INITIAL SUB-DFT ANGLE = Ø DEGREES
325Ø
           FOR L = 1 TO LM
                                   'MIDDLE LOOP
                                   'LOOK UP COS AND SIN FOR THIS ANGLE
             C = CA(IA)
3260
327Ø
             S = SA(IA)
             FOR J=L-1 TO NFM1 STEP LM2 ; INNER LOOP
3280
                                   'ARRAY ADDRESS OF LOWER REAL COMPONENT 'ARRAY ADDRESS OF LOWER IMAG COMPONENT
329Ø
               JR = J+J
3300
               JI = JR+1
                                   'ARRAY ADDRESS OF UPPER REAL COMPONENT
331Ø
               KR = JR + LM2
332Ø
               KI = KR+1
                                   'ARRAY ADDRESS OF UPPER IMAG COMPONENT
333Ø
               TR = X(KR)*C+X(KI)*S 'BUTTERFLY
               TI = X(KI)*C-X(KR)*S
3340
335Ø
               X(KR) = X(JR)-TR
               X(KI) = X(JI)-TI
336Ø
               X(JR) = X(JR) + TR
337Ø
3380
               X(JI) = X(JI) + TI
339Ø
             NEXT J
                                   'END OF INNER LOOP
                                   'BUMP ANGLE
3400
             IA = IA+IDA
3410
           NEXT L
                                   'END OF MIDDLE LOOP
           LM = LM2
                                   'DOUBLE NUMBER OF SUB-DFT'S
3340
3430
           LM2 = LM2 + LM2
           IDA = IDA\2
344Ø
                                   'HALVE ANGLE INCREMENT
345Ø
        NEXT I
                                   'BOTTOM OF OUTER LOOP
```

```
:EXTRACT CLOSE-PACKED REAL DATA TRANSFORM:
NOW WE MUST EXTRACT THE SPECTRUM OF THE INPUT DATA AS IF IT HAD BEEN
CALCULATED FROM A SEQUENCE OF NX COMPLEX INPUT VALUES ALL OF WHOSE
; IMAGINARY COMPENENTS WERE ZERO. THE ALGORITHM FOR THIS IS AS FOLLOWS:
             FOR POINTS j = 1, 2, ..., NF/2-1 CALCULATE
                            Re(x)+Re(k)-[Re(x)-Re(k)]*S+[Im(x)+Im(k)]*C
                             Im(j)-Im(k)-[Re(j)-Re(k)]*C-[Im(j)+Im(k)]*S
                  Im(j) <-
                            Re(j)+Re(k)+[Re(j)-Re(k)]*S-[Im(j)+Im(k)]*C
                 Re(k) <-
                  Im(k) \leftarrow -Im(j)+Im(k)-IRe(j)-Re(k)J*C-IIm(j)+Im(k)J*S
        WHERE k = NF - J, A = J*36Ø/NX DEGREES, <math>C = COS(A), AND
        S = SIN(A).
        WE ALSO HAVE THE SPECIAL POINTS:
                  Re(Ø) <-
                             [Re(\emptyset)+Im(\emptyset)]
                  Im(Ø) <-
                            Ø
                  Re(NF/2) \leftarrow Re(NF/2)*2
                  Im(NF/2) \leftarrow -Im(NF/2)*2
        AND (THOUGH THESE VALUES ARE NOT CALCULATED):
                  Re(NF) \leftarrow [Re(\emptyset)-Im(\emptyset)]*2
                  Im(NF) IS UNKNOWN
35ØØ
        X(\emptyset) = X(\emptyset)*2.
                                    'SPECIAL CASE FOR X(Ø)
        X(1) = \emptyset.
351Ø
        FOR J = 1 TO NFD2-1
                                    'LOOP FOR GENERAL CASE
352Ø
                                    'ARRAY ADDRESS OF LOWER REAL COMPONENT
           JR = J+J
353Ø
3540
           JI = JR+1
                                    'ARRAY ADDRESS OF LOWER IMAG COMPONENT
                                    'ARRAY ADDRESS OF UPPER REAL COMPONENT 'ARRAY ADDRESS OF UPPER IMAG COMPONENT
           KR = NX-JR
355Ø
356Ø
           KI = KR+1
                                    'LOOK UP COS AND SIN FOR THIS ANGLE
           C = CA(J)
357Ø
           S
            = SA(J)
3580
           RS = X(JR) + X(KR)
                                    'REAL SUM
359Ø
3600
           RD = X(JR) - X(KR)
                                    'REAL DIFF
                                    'IMAG SUM
361Ø
           QS
             = X(JI)+X(KI)
                                    'IMAG DIFF
3620
           QD = X(JI) - X(KI)
                                    'TERM FOR REALS
363Ø
           TR = QS*C-RD*S
           TI = RD*C+QS*S
                                    'TERM FOR IMAGS
364Ø
365Ø
           X(JR) = RS+TR
           X(JI) = QS-TI
3668
           X(KR) = RS-TR
367Ø
           X(KI) = -QS-TI
368Ø
        NEXT J
                                    'BOTTOM OF LOOP
369Ø
        X(NF) = X(NF)*2.
                                    'SPECIAL CASE FOR X(NF/2)
3700
371Ø
         X(NF+1) = X(NF+1)*2.
```

Approved For Release 2000/08/08 : CIA-RDP96-00788R001800190001-3

```
:WINDOW SPECTRAL DATA TO IMPROVE FILTER SHAPE:
 SEE THE DISCUSSION OF WINDOWING ABOVE. THIS ROUTINE IS FOR A 3RD-ORDER
 :WINDOW FUNCTION.
 3800
           R2 = X(4)
                                       'INITIALIZE PREVIOUS VALUE ARRAY, Re(2)
 381Ø
           R1 = X(2)
                                           Re(1)
 382Ø
           RØ = X(Ø)
                                           Re(Ø)
 383Ø
           Q2 = -X(5)
                                           Im(2)
 384Ø
           Q1 = -X(3)
                                           Im(1)
          QØ = -X(1)
 385Ø
          FOR JØ = Ø TO NMAX*2 STEP 2 'WINDOW POINTS <= 3Ø Hz

J1 = JØ+1 'ADDRESS OF IMAG COMPONENT
 386Ø
 387Ø
            X(J\emptyset) = (R2+X(J\emptyset+4))*W2+(R1+X(J\emptyset+2))*W1+R\emptyset 'REAL COMPONENT X(J1) = (Q2+X(J1+4))*W2+(Q1+X(J1+2))*W1+Q\emptyset 'IMAG COMPONENT
 3880
 389Ø
 3900
             R2 = R1
                                       'SHIFT PREVIOUS ARRAY
 391Ø
             R1 = RØ
 392Ø
             RØ = X(JØ+2)
                                       ' AND INSERT NEW VALUE
 393Ø
            Q2 = Q1
 394Ø
             Q1 = QØ
 395Ø
            QØ = X(J1+2)
 396Ø
          NEXT J
                                       'END OF LOOP
 ; CALCULATE MAGNITUDES:
 THE MAGNITUDE OF EACH SPECTRAL VECTOR IS CALCULATED AS
          \mathsf{MAGNITUDE}(\mathtt{J}) = \mathsf{SQRTIRe}(\mathtt{J}) * \mathsf{Re}(\mathtt{J}) + \mathsf{Im}(\mathtt{J}) * \mathsf{Im}(\mathtt{J}) \mathsf{J} * \mathsf{SF}
; WHERE SF = 1/NX IS A SCALING FACTOR, USED FOR 2 REASONS:
              THE SCALING FACTOR SETS THE PROCESSING GAIN.
         THE GAIN FOR A SINGLE-COMPONENT SIGNAL IS 1. THAT IS, IF THE INPUT SIGNAL IS A SINE-WAVE AT FREQUENCY n*DF WITH PEAK AMPLITUDE
         1.0, THE SPECTRUM AT FREQUENCY n*DF WILL ALSO BE 1.0.
              THE SCALING FACTOR MAKES THE PROCESSING GAIN INDEPENDENT OF
         THE BLOCK SIZE NX, SO THE SAME SIGNAL CAN BE PROCESSED WITH DIFFERENT BLOCK SIZES IN ORDER TO GENERATE DIFFERENT SPECTRA WITH VARYING FREQUENCY RESOLUTION, BUT THE MAGNITUDE OF A NARROW-BAND
         SIGNAL COMPONENT WILL BE THE SAME IN EACH SPECTRUM.
NOTE THAT MAGNITUDES ARE ONLY CALCULATED FOR SPECTRAL POINTS <= 30 Hz.
MAGNITUDES ARE STORED AT THE BOTTOM OF THE ARRAY X, IN THE FIRST NMAX
POINTS.
THIS ROUTINE CAN BE INCLUDED IN THE WINDOWING ROUTINE ABOVE WITH A SMALL
INCREASE IN PROGRAM EFFICIENCY, BUT IT IS SHOWN SEPARATELY HERE FOR
; CLARITY.
AGGG
         SF = 1./NX
                                      'SCALE FACTOR
         FOR J = Ø TO NMAX
4010
                                     'PROCESS POINTS <= 30 Hz
4020
           J2 = J+J
                                     'ADDRESS OF REAL COMPONENT
           K2 = J2+1
4Ø3Ø
                                     'ADDRESS OF IMAG COMPONENT
           X(J) = SQRT(X(J2)*X(J2)+X(K2)*X(K2))*SF 'CALCULATE MAGNITUDE
4040
4050
         NEXT J
                                     'BOTTOM OF LOOP
; END OF PROGRAM.
```

.

	***************************************	*
	* TESTING THE PROGRAM	*
;	*	*****
;	THE BEST WAY TO TEST THE PROGRAM IS TO GENERATE A SYNTHETIC	INPUT ARRAY
	OF DATA POINTS CONTAINING SIGNALS AT KNOWN TREET. TO GENERAL AND CHECK THAT THE RESULTING SPECTRUM IS CORRECT. TO GENERAL ARRAY WHICH CONTAINS A SIGNAL AT A FREQUENCY Q*DF USE THE FC	
;	BEFORE THE BIT-REVERSAL ROUTINE:	
2	ggg Q = 'FREQUENCY IN UNITS OF DF	·
2	PREGUENCY PER SAMPLE PRIME DP = PI2*Q/NX PHASE INCREMENT PER SAMPLE PATA GENERATION LOOP CALCULATE A DATA POINT CALCULATE A DATA POINT	
2	2030 X(I) = SIN(DP*I) CALCULATE A DATA POINT	
2	2040 NEXT I LOOP	
ţ	Q IS A REAL NUMBER, AND SHOULD BE CHOSEN SO THAT Ø <= Q <= 1 THAT THE ARRAY X WILL CONTAIN Q CYCLES OF A SINEWAVE SIGNAL	NX/2. NOTE
•		
	AFTER PROCESSING, THE SPECTRUM SHOULD CONTAIN ONLY COMPONENT FREQUENCY Q*DF. THAT IS, SPECTRAL LINES X(J) SHOULD BE SMAN	LL
	· ~ •= ~ •A	טורה בים ע
	; J NEAR Q. IF Q IS AN INTEGER, THE STEER 1E-6, DEPENDING ON ; ALL THE OTHERS SHOULD BE Ø (OR OF ORDER 1E-6, DEPENDING ON ; ERRORS IN THE PROCESSING). USING NON-INTEGER VALUES OF Q W	
	A SPECTRUM WITH A CLUSTER OF RESPONSES NEAR X INTEGOR OF THE SPE	CTRUM AS ONE
		WE 33 OI 1116
	MOVES AWAY FROM THE LINE ACTIVITY OF THE SYNTHESIZED FILTER REPLOTTED BY USING VARIOUS VALUES OF Q.	SPUNSE CAN BE
	•	THE UPPER
	NOTE THAT IF NMAX < Q <= NX/2, THE SIGNAL GENERATED LIES IN PART OF THE SPECTRUM, WHICH IS THROWN AWAY (DON'T EXAMINE S	L COINME PINES
	; PART OF THE SPECTROM, WHICH IS THEY HAVEN'T BEEN CALCULATED). ALS ;X(J) WHERE J > NMAX, AS THEY HAVEN'T BEEN CALCULATED). ALS	U, IF

Appendix B

ULF TREE POTENTIALS AND GEOMAGNETIC PULSATIONS (U)

Approved For Release 2000/08/08 : CIA-RDP96-00788R001800190001-3 UNCLASSIFIED

THIS PAGE INTENTIONALLY LEFT BLANK

Approved For Release 2000/08/08 : CIA-RDP96-00788R001800190001-3

REFERENCES (U)

- 1. Persinger, M. A., H. W. Ludwig, and H. P. Ossenkopp, "Psychophysiological Effects of ELF Electromagnetic Fields: A Review," Perceptual and Motor Skills, Vol. 36, pp. 1131-1159 (1973).
- Weber, R., "Human Circadian Rhythms under the Influence of Weak Electric Fields and the Different Aspects of These Studies," <u>Int'l. Jour. Biometeorology</u>, Vol. 17, No. 3, pp. 227-232 (1974).
- 3. Friedman, H., R. Becker, and C. Bachman, "Effect of Magnetic Fields on Reaction-Time Performance," <u>Nature</u>, pp. 949-950 (4 March 1967).
- 4. Konig, H. L., "Behavioral Changes in Human Subjects Associated with ELF Electrical Fields," <u>ELF and VLF Electromagnetic Field Effects</u>, M. A. Persinger (ed.), Plenum Press, New York, pp. 81-99 (1974).

Approved For Release 2000/08/08 : CIA-RDP96-00788R001800190001-3 UNCLASSIFIED

(the numbers are transmitted with the alerts)

9.XRAY >= M5 10.XRAY >= X111.A INDEX >= 20 (BOU) (forecast or observed) 12.A INDEX >= 30 **!!** !! (BOU) 13.A INDEX >= 50 (BOU) ** 14.K INDEX >= 4 (BOU) (fcst, obsvd,or in progress) 15.K INDEX >= 5 11 11 (BOU) 11 11 16.K INDEX >= 6 (BOU) 11 11 11 11 11 17.K INDEX >= 5-5 (BOU)11 11 18.SUDDEN STORM COMMENCEMENT (forecast or observed) 19.STRATWARM 20.SST ALERT: RADIATION >= 10 MILLIREMS (forecast or observed)

LINE SEVEN...MESSAGES

1111111111...

where |||||...= unformatted message with up to 60 characters will sometimes be broadcast in this line. Messages that will take more than one line will be broadcast sequentially over several minutes. These sequential messages will start with MMMM at the beginning of the first line. NNNN at the beginning of a line will indicate that the message is complete.

> In the future routine products will be transmitted using this line at preselected times. A tentative schedule of these products follows:

PRODUCT	TIME
Current message schedule	0 0Z
SMM (Solar Maximum Mission) Observing Plan	01Z,07Z,13Z,19Z
Region Report (body of 0030Z report)	02Z,08Z,14Z,20Z
27 Day Forecast	03Z,09Z,15Z,21Z
SGAS (Solar Geophysical Activity Summary) (body of 0245Z report)	04Z,10Z,16Z,22Z
SDF (Report of Solar and Geophysical Activityformerly Space Disturbance Forecast) (text portion of 2200Z report)	05Z,11Z,17Z,23Z
GEOALERT (body of 0330Z GEOALERT)	06Z,12Z,18Z

Approved For Release 2000/08/08 SIFIED 00788R001800190001-3

LINE FIVE FORECASTS AND WARNINGS (continued) Minute 4 1111111111111... SOLQUIET where IIIII...= Description of forecast solar activity This will usually be: which indicates only sporadic weak solar activity, SOLQUIET (class C or smaller flares) M Class flares, or an SOLALERT JJ/KK increase in M level activity from days JJ to KK MAJOR FLARE ALERT JJ/KK QXXYY region located at QXXYY (see minute 3) has a 15% or greater prob of X class flares from days JJ to KK end of active period or begining SOLNIL of period of very low activity (used to end alerts) LINE SIX....ALERTS (rotates through all activated alerts) : ALERT NIL where IIIII...= descriptive text of alert conditions that are met These are The current alerts O.ALERT NIL (when no alerts are turned on) 1.245 MHZ BURST > 100 SFU 2.245 MHZ RADIO NOISE STORM > 5 TIMES BKGND 3.10 CM FLARE > 100% ABOVE BKGND 4.TYPE II RADIO BURST 5.TYPE IV RADIO BURST 6.SUSPECTED PROTON FLARE 7.PROTON EVENT 10 PART/CM2*SEC*STER > 10 MEV

8 PROTON EVENT 100 PART/CM2*SEC*STER > 100 MEV

Approved For Release 2000/28/08:55-RPED-00788R001800190001-3

MAGALERT JJ/KK or MAGALERT MINOR JJ/KK increase in or continued high magnetic activity (JJ/KK are the first and last calendar days of activity)

MAGNIL

end of active period or beginning of period of very low activity

(used to end alerts)

Minute 3

PROTONNIL

where IIII...= Description of forecast proton activity `This will usually be: which indicates:

PROTONQUIET

no proton enhancements measured in, or forecast for the near earth environment.

PROTON FLARE ALERT JJ/KK QXXYY

Protons expected near earth because the solar region located in quadrant Q (1=NE, 2=SE, 3=SW, 4=NW), Central meridian distance XX, latitude YY, has a 15% or greater probabilty of a proton flare from days JJ to KK

PROTON ARRIVAL ALERT PP/FF HHmm

Protons expected near earth on day PP from flare which occurred on day FF at HHmm

PROTONALERT JJ/KK

Protons expected to meet the SESC alert criteria (see line 6 ALERTS) in the near earth environment from days JJ to KK

PROTONNIL

end of active period or begining of period of very low activity

(used to end alerts)

Approved For Release 2000/08/08 : CIA-RDP96-00788R001800190001-3

LINE FIVE....FORECASTS AND WARNINGS

Minute 0

doy-doy Mnn/nn/nn Xnn/nn/nn Pnn/nn/nn 10CMrrr/rrr/rrr/rrr 348-350 M01/01/01 X01/01/01 P01/01/01 10CM102/100/098/***

where doy-doy = day of year, first and last days of the forecast

nn/nn/nn = percent probability for occurrence of activity on the first, second, and last day of the forecast.

These apply to M flares, X flares, or Proton events

as indicated. Example 01/01/01

rrr/rrr/rrr = forecast 10 CM solar radio flux for the 3 forecast days, such as 102/100/098/*** The last group of rrr is for the last doy plus one and will be ***

until approx 18z on the first doy. At this time

values will be added.

Minute 1

doy-doy AFaaa/aaa/aaa APaaa/aaa/aaa Kkkkk kkkk kkkk kkkk 348-350 AF018/015/015 AP020/020/020 K**** **33 3444 3333

where doy-doy = day of year, first and last days of the forecast

aaa/aaa/aaa = forecast A values for the forecast period, either AF, or AP as indicated. Example 018/015/015, or

20/20/20

The first of these 16 consecutive K values is for 00Z through 03Z on the first doy listed. Once a forecast K value has been measured it will appear in line two and the forecast value in this line will be replaced by an *. Example **** ***3 3444 3334. At approximately 18Z the remaining

values will be updated with a new forecast.

Minute 2

MAGALERT MINOR

where IIII...= Description of forecast magnetic activity
This will usually be: which indicates:

MAGQUIET

only sporadic weak geomagnetic activity

Approved For Release 2000 408 ASS-RPF-000788R001800190001-3

```
Minute 3
doy 10CM rrr 90 DAY MEAN mmm SSN sss XRAY BGD Ix.x
346 10CM 104 90 DAY MEAN 110 SSN 090 XRAY BGD B2.5
      where
              doy = day of year (yesterday), Such as 346
              rrr = 10 CM solar radio flux in Solar Flux Units,
                      for 1700Z on doy indicated, such as 104
              mmm = 90 day mean of the 10 CM Solar radio flux
                      through yesterday, such as 110
              sss = Sun Spot Number for yesterday, such as 090
             Ix.x = Xray Background level for yesterday expressed on
                     the B,C,M,X scale, where B = 10^{-7} watts / meter<sup>2</sup> C = 10^{-6}, M = 10^{-5}, and X = 10^{-4}. In the example, B2.5 = 2.5 \times 10^{-7} watts / meter<sup>2</sup>.
  Minute 4
doy GOES5 (WO75) FLUENCE 1MEV f.fE+f 10 MEV f.fE+f
346 GOES5 (WO75) FLUENCE 1MEV 2.8E+4 10 MEV 5.2E+3
     where
              doy = day of year (yesterday), such as 346
          f.fE+f = daily total fluence (protons / (cm<sup>2</sup>*day*ster))
                     greater than 1MEV or 10MEV (as indicated) expressed
                     as an exponential number, such as 2.8E+4, or 5.2E+3
LINE FOUR....HOURLY IONOSPHERIC DATA
     Each 24 hour set of data will take 3 minutes to transmit
     (8 hours of data per line). EMPTY indicates that no data
     is being transmitted.
sss ddddd doy hh nn.n nn.n nn.n nn.n nn.n nn.n nn.n
          347 16 09.5 14.0 20.3 22.8 22.3 22.8 **** ****
     where
              sss = station identifier such as BOU:
            ddddd = data identifier, such as TEC (Total Electron
                     Count), FOF2 (Critical Frequency of the F2 Layer),
                     M3000 (Optimum Frequency for a Single Hop 3000 KM
                     Transmission), FMIN (Minimum Usable Frequency),
                     or FOES (Critical Frequency of the Sporadic
                     E Layer).
               hh = hour of first data group, such as 16
             nn.n = data group. There are eight consecutive data
                     groups. Missing data, or data not yet
```

determined will have ****. Data for TEC is in units of 10+16 electrons / meter2, for the others it is MHZ. Example 09.5

Approved For Release 2000/08/08 - CIA-RDP96-00788R001800190001-3

Minute 1

doy hh-hh K k/ggg BO Knnnn nnnn PL Knnnn nnnn 10CM rrr 347 18-21 K 3/033 BO K3334 333* PL K4334 433* 10CM 104

where doy = day of year (current day), such as 347

hh-hh = beginning and ending hours (in Universal Time or Z) for the 3 hr period of the K

index to follow, such as 18-21

k/ggg = Boulder K value / Gammas of deflection from the

quiet day curve, such as 3/033

nnnn nnnn = K indices determined so far for this day (Boulder or planetary). The first value is for 00Z-03Z, and each index is for the 3 Hr period following the K index preceding it. Missing values will have an *. Example 3324 333* or 4334 433*

Minute 2

doy BO Aaaa Knnnn nnnn PL Aaaa Knnnn nnnn TED+++
346 BO A017 K3334 4323 PL A024 K4333 4434 TED***

where doy = day of year (yesterday), such as 346

aaa = A index (Boulder or Planetary) for yesterday, such as 017. or 024

nnnn nnnn = K indices (Boulder or Planetary) for yesterday, (starting at 00-03Z) missing values will contain *.

Example 3334 4323 or 4333 4434

ttt = Total Energy Deposition, an estimate of the total power being dissipated in one hemisphere's auroral atmosphere by precipitating particles. The units are gigawatts. This is a daily average for the doy indicated. Estimates are made using particle data from Tiros satellites. Daily averages vary from near 005 on a quiet day up to about 100 on a very active day. If this data is unavailable *** will be used. Example ***

Approved For Release 2000/08/08: CIA-RDP96-00788R001800190001-3

LINE TWO....GOES GEOSYNCHRONOUS MAGNETIC DATA (1 minute values broadcast each minute)

GOES5 HPsgggg HEsgggg HNsgggg GOES6 HPsgggg HEsgggg HNsgggg : GOES5 HP+0123 HE-0023 HN+0033 GOES6 HP+0123 HE-0023 HN+0033

where sgggg = sign (+ for positive, - for negative) and value (in gammas) of the magnetic field components at geosynchronous altitudes (approximately 22,000 miles). These are measured by the GOES 5 (W075) and GOES 6 (W135) satellites. These components are HP (parallel to the Earth's rotation axis,+ is north), HE (directed earthward, + is down) and HN (perpendicular to the other two, ie east or west, + is west). Example +0123.

LINE THREE....INDICES

Minute 0

1MEV p.pE+p 10MEV p.pE+p 100MEV p.pE+p PCA aa.aDB NTRN nnnn: 1MEV 3.1E+0 10MEV 2.5E+0 100MEV 1.2E+0 PCA 00.0DB NTRN 0451

where p.pEp = number of protons / (sec*cm²*ster) at greater than 1MEV, 10MEV, or 100MEV energies (5 min avg), such as 3.1E+0

aa.a = DB of polar cap absorption at 30 MHZ as measured at Thule, (15 Min value), such as 00.0

nnnn = Thule neutron monitor data in millivolts (15 min value). The background level is 460 to 470 mv.

Significant deviations are + or - 10% or less than 410 mv and greater than 510 mv. A sharp increase that lasts for a few tens of minutes to hours is a Ground Level Event that is caused by relativistic particles associated with solar flares. A significant decrease that lasts for several hours to several days is a Forbush Decrease. This decrease is the scattering of background cosmic rays due to plasma density enhancements and associated magnetic field enhancements in the near earth solar wind. These enhancements may or may not be solar flare related.

Approved For Release 2000/08/08 : CIA-RDP96-00788R001800190001-3

Appendix C

FORMAT FOR SATELLITE BROADCAST OF SPACE ENVIRONMENT SERVICES (U) (15 February 1984)

There are seven sixty character lines. Each is followed by a carriage return and a line feed. 1234567890123456789012345678901234567890

In the examples of lines, CAPITAL letters are caption information that appears as it does in the broadcast. Small letters represent data that are explained below. The : indicates the 61st space (: is not broadcast). Any data not available for broadcast will be replaced by ***.

LINE ONE - GOES X-RAY AND TOTAL MAGNETIC FIELD (1 min values broadcast each minute)

doy hhmm GOES6 Ix.x GOES5 Ix.x BOU TF ggggg GAMMAS 347 2153 GOES6 B2.0 GOES5 B2.0 BOU TF 55397 GAMMAS

where doy = day of year, such as 347

hhmm = hours and minutes, such as 2153

Ix.x = x-ray level,(1 min avg), expressed with the B,C,M,X
 scale, where B = 10^{-7} watts / meter2, C = 10^{-6} M = 10^{-5} and X = 10^{-4} .
 X-rays are measured in a 1-8 angstrom channel on the GOES geosynchronous satellites. An increase in X-ray levels indicates solar flare activity.
 In the example B2.0 = 2.0×10^{-7} watts / meter2.

THIS PAGE INTENTIONALLY LEFT BLANK

Approved For Release 2000/08/08 : CIA-RDP96-00788R001800190001-3 **UNCLASSIFIED**

Appendix C

FORMAT FOR SATELLITE BROADCAST OF SPACE ENVIRONMENT SERVICES (U)

Approved For Release 2000 2503:551 FPE 6-00788 R001800190001-3

THIS PAGE INTENTIONALLY LEFT BLANK

CPYRGHT

desirable, because the tree ring data could provide a unique record of past ULF and higher-frequency geomagnetic activity.

I thank D. B. Coates for technical assistance. This work was supported in part by the Advanced Research Projects Agency of the US Department of Defence and in part by the US Office of Naval Research.

A. C. Fraser-Smith

Radioscience Laboratory, Stanford Electronics Laboratories, Stanford University, Stanford, California 94305

Received 16 August; accepted 15 December 1977.

- Jacobs, J. A. Geomagnetic Micropulsations 15 (Springer, New York, 1970).
 Campbell, W. H. Proc. IEEE 51, 1337-1342 (1963).
 Tepley, L. R. J. geophys. Res. 66, 1651-1658 (1961).
 Lokken, J. E. Shand, J. A. & Wright, C. S. J. geophys. Res. 68, 789-794 (1963).
 Lokken, J. E. in Natural Electromagnetic Phenomena Below 30 Kels (ed. Bleil D. F.) 373-428 (Plenum, New York 1964).
 Buxton, J. L. & Fraser-Smith, A. C. IEEE Trans. Geosci. Elec. GE-12 109-11 (1974).
 Troitskaya, V. A. J. geophys. Res. 66, 5-18 (1961).
 Heacock, R. R. & Hessier, V. P. J. geophys. Res. 67, 3985-3995 (1962).
 Fraser-Smith, A. C. J. geophys. Res. 75, 4735-4745 (1970); J. geophys. Res. 77 4209-4220 (1972).
 Fraser-Smith, A. C. & Coates, D. B. Radio Sci. (submitted).
 Burr, H. S. Yale J. Biol. Med. 17, 727-734 (1945); Yale J. Biol. Med. 19, 311-31 (1947); Science 124, 1204-1205 (1956).
 Presman, A. S. Electromagnetic Fields and Lite (transl. Sinclair, F. L., ed Brown, F. A. Jr) 155 (Plenum, New York, 1970).
 LaMarche, Jr, V. C. & Fritts, H. C. Tree-Ring Bull. 32, 19-33 (1972).

CPYRGHT

characteristics. Figure 1, for example, shows spectrograms of a sequence of four Pc 1 pulsation events that occurred during the interval 1200 to 1500 ut on 17 January 1976, and which were received by the tree 'antenna' (a) and the conventional north-south solenoid antenna (b). With the exception of a lower signal-to-noise ratio for the tree measurements, the two Pc 1 pulsation records are closely alike. It will also be noticed that the lower frequency Pc 2/Pc 3 geomagnetic activity (frequencies in the range 0.02 to 0.2 Hz) is recorded similarly by both systems. The amplitude of the ULF pulsations in the tree potentials is very small. For the Pc 1 pulsations shown in Fig. 1, the maximum amplitude of the potential fluctuations was about 0.1 mV.

The nearly identical occurrence and spectral characteristics of ULF events measured by the tree electrodes and by the conventional ULF equipment indicated that the tree potentials were largely induced by ULF time variations of the geomagnetic field. To investigate this possibility, a portable planar search coil powered by a 1 Hz signal generator was moved around the tree near the electrodes. It was found that a 1 Hz oscillation of the potential difference between the tree electrodes was produced only when the search coil was orientated with its moment vector in the north-south direction. When the two electrodes were moved to the north face of the tree, a response from the electrodes could be obtained only when the search coil moment vector was orientated in the east-west direction. These results, and the observations of natural Pc 1 pulsations, can possibly be best understood by considering the tree/electrode pair combination to form a collection of conducting loop antennas in which e.m.fs may be induced by magnetic field fluctuations in the appropriate direction. The conducting paths are provided by the conducting material of the tree (and the cambium in particular11), and, for field fluctuations in a particular direction, the area of the relevant loop antenna is defined by the intersection of the tree with a vertical plane perpendicular to the particular field direction and passing through the two electrodes. Thus, in the measurements reported here, the Pc 1 pulsation events observed in the tree potentials were produced by Pc 1 pulsations of the north-south component of the geomagnetic field.

Further tests showed that the tree potentials could only be detected in a living tree. Thus, when a tree dies, the potentials gradually disappear as the wood dries and loses its conductivity.

In conclusion, measurements with tree electrodes show that trees may be used as 'antennas' to detect ULF geomagnetic pulsations. The measurements also show that ULF tree potentials are largely produced by ULF fluctuations of the geomagnetic field (the remaining component of the potentials is probably thermal noise). Presman¹² noted that electromagnetic fields usually have an adverse effect on living processes. If the ULF geomagnetic pulsations have any adverse effect on the growth of trees (and, as we have seen, they must induce electric currents in the living material) these effects could possibly be observed in tree ring data. Pc 1 geomagnetic pulsation occurrences vary markedly over a solar cycle and thus, if these particular pulsations effect tree growth, a solar cycle in tree ring data could occur. LaMarche and Fritts13 searched unsuccessfully for a relation between tree ring data and sunspot numbers. The phase of the Pc I pulsation solar cycle, however, differs by several years from the sunspot cycle and, assuming the two cycles affect tree ring data, they may tend to obscure each other's effects. Furthermore, other geomagnetic pulsations and higher-frequency electromagnetic signals have their own cycles of occurrence, and their effects on tree ring formation, if any, could add further to the complexity of the tree ring data. Studies of these possible effects are

Fig. 1 Spectrograms of a series of Pc I geomagnetic pulsation events recorded at Stanford, California, using tree potentials (a) and a conventional solenoid antenna (b). Short intervals of a 1 Hz calibration signal appear at the start of each hour. The vertical lines in the upper spectrogram are caused either by local electromagnetic transients or by natural sferies; similar lines occur in the lower spectrogram, but they are not as obvious because the background noise is comparatively suppressed.

Approved For Release 2000 (CP) ACCES PPEG-00788R001800190001-3

Appendix B

CPYRGHT

ULF TREE POTENTIALS AND GEOMAGNETIC PULSATIONS

HIGH-SENSITIVITY measurements of ultra-low-frequency (ULF; frequencies less than 5 Hz) geomagnetic pulsations' usually require elaborate receiving antennas ranging from large air-cored coils2 through multi-turn steel, or mumetalcored solenoids3-8 to small superconducting loops immersed in liquid helium". Pairs of electrodes inserted in the ground have also been used as antennas^{7,8}. The need for a large spacing between the electrodes (varying from hundreds to thousands of metres) and the difficulty of calibrating the measurements absolutely have resulted in the almost universal use of the more compact and easily calibrated coil-type antennas in recent years. I describe here a new method for measuring ULF geomagnetic pulsations, which requires a minimum of elaborate equipment. The method is based on the use of trees, or, more specifically, on the use of pairs of electrodes inserted into trees, as ULF receiving antennas.

There are several reasons that this new method of measurement may be of interest. The equipment is simple and thus the method could lead to more widespread observations of ULF geomagnetic pulsation phenomena. The method of measurement also provides new information about tree potentials, that is, it shows that some, and perhaps all, of the ULF components of these potentials are induced by ULF geomagnetic field fluctuations and do not originate in the trees themselves. Finally, although it is not clear at present what effect induced ULF electric fields may have on the growth and other vital processes in a tree, the link between these ULF electric fields and geomagnetic field fluctuations suggests that some environment-related changes in trees could also be influenced by changes in geomagnetic activity. These changes may have a natural origin (for example, the changes that occur during a solar cycle") or they may be caused by a variety of human activities (by modern d.c.-powered mass transit systems, which can produce large amplitude ULF electromagnetic fields10).

The ULF measurements reported here were stimulated by the work of Burr on relatively steady-state tree potentials11. Burr recorded these potentials for more than a decade using a pair of specially-designed non-polarisable electrodes inserted in the cambium of an unspecified tree (which was probably a maple). The electrodes were about a metre apart along the long axis of the tree and Burr observed diurnal, 27-d, and seasonal variations, as well as a suggestion of a correlation with sunspot activity, in their potential difference.

Most of Burr's observations were at frequencies far below the frequency range for ULF geomagnetic pulsations. One series of measurement obtained, however, during an

electrical storm suggested that ULF variations of tree potentials might occur on occasion. I therefore began a search for variations with frequencies predominantly in the Pc 1 geomagnetic pulsation range (0.2-5 Hz). These frequencies correspond approximately to the delta regime for human brain waves.

The measurements were made using a large native oak, Quercus lobata, that was located near conventional ULF recording equipment at a site on the Stanford University campus. This latter equipment uses 20,000 turn steel-cored solenoids as ULF antennas and it operated continuously throughout the interval during which the tree measurements were made. Thus, simultaneous measurements of ULF geomagnetic pulsations using both conventional loop antennas and a tree 'antenna' were obtained at the one location.

Two steel nails were used as electrodes. Following Burr's configuration, they were inserted about 0.05 m into the tree along the long axis, with a spacing of 0.76 m. The lower electrode was approximately I m above the ground, and the two electrodes faced toward the geomagnetic west. Because the tree was not completely vertical, a line joining the two electrodes would have been inclined approximately 20° toward the geomagnetic east. The diameter of the tree midway between the two electrodes was 0.65 m.

A resistance of about $5 k\Omega$ was typically observed between the electrodes, increasing to about $10 \text{ k}\Omega$ if polarisation was allowed to occur. A d.c. potential difference was also observed that varied from day to day but whose absolute value was usually in the range 10 to 100 mV, with the upper electrode positive. The electrodes were connected to a lowfrequency high-gain amplifier through an RC filter (R=22 M Ω , $C=50 \mu F$). The amplifier was usually set for 50 db gain, and its output was filtered (0.02-7 Hz) before being recorded, generally without additional amplification, on a chart record and on analog magnetic tape.

The ULF signals measured by this system were undoubtedly induced in the tree 'antenna' and not in the shielded cabling between the electrodes and the recording system: when the electrodes were disconnected from the tree and connected to an equivalent 5 kΩ resistor, without any other change in the wiring or configuration of the system, only a steady low level of white noise (typical resistor

thermal noise) was observed.

Similarities between the ULF signals recorded conventionally and with the tree 'antenna' were immediately apparent on the chart records. More detailed analysis confirmed that Pc I pulsation events recorded by the two systems were very nearly identical in all their important

Reprinted from Nature, Vol. 271, No. 5646, pp. 641-642, February 16, 1978) O Macmillan Journals Ltd., 1978