数理经济学 (变分原理和应用)

王鸣晖 wangmh@swufe.edu.cn 西南财经大学

2023 年 2 月 28 日

从一个例子谈起

模型假设

- 企业接到一个到时刻 T 交割 B 单位产品的订单;
- 设 x(t) 代表 t 时刻为止的企业积累存货量,则有:

$$x(0) = 0, \quad x(T) = B;$$

- 存货量 x(t) 的变化率为: $x'(t) = \frac{dx(t)}{dt}$;
- 企业在 t 时刻的生产成本为:

$$C(t) = c_1[x'(t)]^2 + c_2x(t),$$

这里, $c_1 > 0$ 和 $c_2 > 0$ 是两个常数。第一项总生产成本,即单位生产成本和生产水平的乘积,第二项是持有存货的库存成本。

从一个例子谈起 (接上)

模型目标

企业寻求最小化总成本并可以在规定时间内完成生产任务,即:

$$\begin{split} \min \int_0^T C(t) dt &= \min \int_0^T c_1 [x'(t)]^2 + c_2 x(t) dt, \\ s.t. \quad x(0) &= 0, \quad x(T) = B. \end{split}$$

上述问题本质上是寻找一个函数 $\mathbf{x}(t)$ 使得目标成立,即找到每个时刻的最优累积存货量。

最简变分问题

上述问题本质上可以看做如下最简变分问题:

最简变分问题

$$\begin{split} \max \, \overrightarrow{\boldsymbol{x}} \, \min \quad J(x) &= \int_{t_0}^{t_1} f(t, x(t), \dot{x}(t)) \mathrm{d}t, \\ \mathrm{s.t.} \quad x(t_0) &= A, \qquad x(t_1) = Z. \end{split} \tag{1}$$

其中, $t_0 < t_1 < +\infty$ 分别表示开始时刻和结束时刻。A 和 Z 为给定常数。

其中, x(t) 为一个 $\mathbb{R} \to \mathbb{R}$ 的函数, 且 $\dot{x}(t) = \frac{dx(t)}{dt}$, 表示导数。在后续内容中,问题(1) 都表示求解最小值问题。

最简变分问题的基本特点

- 初始点 (initial point) 和终止点 (terminal point);
- 初始点到终止点的一组可行路径 (admissible paths);
- 初始路径对应的一组路径值 (path values); 表示着业绩指标 (如:成本,利润);
- 一个既定目标,选择最优路径 (optimal path),使的路径值 最大或者最小。

泛函

问题(1)中,把 J(x) 称为泛函 (functional)。但本质上,J(x) 表示的是 J(x(t)),省略了 t 这部分。这种写法是强调了路径值 J 的变化是由整个路径 x 的位置变化导致的 (p) 路径 x 的变分),而不是由 t 的变化导致的。并没有把 J(x(t)) 看成 t 的函数,即 t 的复合函数。

可变终点

在问题(1)中,初始点 t_0 和终止点 t_1 是固定的,且初始值 A 和终止值 Z 也是给定的。而实际的经济学问题中,很多问题是只知道初始点的情况,不知道终止点的情况。这类问题被叫做可变端点问题。 一般有如下三类:

- 固定时间问题(垂直终止线问题);
- 水平终止线问题 (最优时间问题);
- 终止曲线问题。

横截条件

由于上述可变终止问题都具有一个共同特征:可变终点最简变分问题比固定终点问题多了一个需要求解的问题,即投资者拥有的自由度比固定终止问题多了一个。为了确定最优路径,所以需要加一个条件:将最优路径和其它路径区分开,即加入横截条件(transversality condition)。

问题(1)解的定义

定义(问题(1)解的定义)

假设 $t_0 < t_1$, 且 $A, Z \in \mathbb{R}$ 为给定值。则称集合:

$$A(t_0,t_1)=\{x(t):[t_0,t_1] o\mathbb{R}|x(t)$$
连续且分段连续可微,
$$x(t_0)=A,\quad x(t_1)=Z\},$$

为可行解集或容许解集。集合 $A(t_0,t_1)$ 中元素称为原问题(1)的可行解或容许解。

乘积泛函的定义

定义(乘积泛函)

若 $X(\cdot) \in A(t_0, t_1)$, 则称

$$I[X(\cdot)] = \int_{t_0}^{t_1} L(t,X(t),\dot{X}(t)) dt$$

为乘积泛函。其中:

$$L: [t_0, t_1] \times R \times R \rightarrow R,$$

为一个连续函数。

由此可知,问题(1)中的 J(x) 为一个乘积泛函。

最简变分问题的主要任务

变分问题的主要任务是:

主要任务

找到最优的路径 X(t), 使得乘积泛函 $I[X(\cdot)]$ 取到最小值,即:

$$I[X^*(\cdot)] = \min_{X(\cdot) \in A(t_0, t_1)} I[X(\cdot)]$$
 (2)

主要目标如下:

- X*(·) 的存在性问题;
- X*(⋅) 的数学性质;
- X*(·) 的经济学意义及性质。

Euler-Lagrange 方程

Euler-Lagrange 方程是上述变分问题 (2) 的一个必要条件,其本质上是把求最优的 $X^*(\cdot)$ 转化成求解一个常微分方程 (ODE)。

定理

假设 $X^*(t) \in A(t_o, t_1)$ 是问题(2)的解,且 $X^*(t)$ 二阶连续可微。则 $X^*(t)$ 是如下非线性 ODE 的解:

$$-\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\partial L(t, X^*(t), \dot{X}^*(t))}{\partial z}\right) + \frac{\partial L(t, X^*(t), \dot{X}^*(t))}{\partial y} = 0.$$
 (3)

这里, $t_0 < t < t_1$ 。

定义

上述方程(3)被称为 Euler-Lagrange 方程 (下称为 E-L 方程)。

注

Euler-Lagrange 方程(3)也可写为如下形式:

$$\left(\frac{\partial L(t,X^*(t),\dot{X}^*(t))}{\partial z}\right)' = \frac{\partial L(t,X^*(t),\dot{X}^*(t))}{\partial y}.$$

例 1

设:

$$I[X(\cdot)] = \int_a^b \frac{\dot{X}^2(t)}{2} - f(t) \cdot X(t) dt$$

这里, $f(t):[a,b]\to R$ 是一个给定函数。求最小的 I。

解:

此时, $L(x,y,z)=\frac{z^2}{2}-f(x)y; \frac{\partial L}{\partial y}=-f(x); \frac{\partial L}{\partial z}=z$ 。则带入 E-L 方程,可得:

$$X''(t) = -f(t).$$

Null Lagrangians

设 L(x,y,z) = A(y)z, $A(\cdot)$ 为一个二阶连续可微函数,则:

$$I[X(t)] = \int_a^b A(X(t)) \dot{X}(t) dt.$$

解:

此时,对应的 E-L 方程为:

$$-\frac{dA(X(t))}{dt} + A'(X(t))\dot{X}(t) = 0$$

此时,对任意的 $X(t):[a,b]\to R$,上述方程恒成立。

故称 L(x,y,z) = A(y)z 为 Null Lagrangians, 其在解决复杂的变分问题时,可作为一个重要工具。

对于一般的变分问题,求其对应的 E-L 方程,主要依靠如下三个步骤:

Step 1

对给定的 L = L(x, y, z), 求:

$$\frac{\partial L(x,y,z)}{\partial y} \boldsymbol{\not} \boldsymbol{\Pi} \frac{\partial L(x,y,z)}{\partial z}.$$

Step 2

将
$$x=t,\,y=X(t),\,z=\dot{X}(t)$$
 带入上式,可得:

$$\frac{\partial L(t,X(t),\dot{X}(t))}{\partial y} \text{A} \text{I} \frac{\partial L(t,X(t),\dot{X}(t))}{\partial z}.$$

Step 3

得到 E-L 方程:

$$-\frac{d}{dt}\left(\frac{\partial L(t,X^*(t),\dot{X}^*(t))}{\partial z}\right) + \frac{\partial L(t,X^*(t),\dot{X}^*(t))}{\partial y} = 0.$$

最后求解上述 ODE, 再结合初始条件可以得到原变分问题的解。

- 一阶变分的原理,主要分为如下三步来阐述:
 - 构建扰动 (perturbing) 曲线;
 - 求导得到必要条件;
 - 构建 E-L 方程;

例 1

给定泛函:

$$V[y] = \int_0^2 (12ty + (y')^2) dt$$

其边界条件 y(0) = 0 及 y(2) = 8, 求极值路径。

例 2

给定泛函:

$$V[y] = \int_{1}^{5} (3t + \sqrt{y'}) dt$$

其边界条件 y(1) = 3 及 y(5) = 7, 求极值路径。

例 3

给定泛函:

$$V[y] = \int_0^5 (t + y^2 + 3y') dt$$

其边界条件 y(0) = 0 及 y(5) = 3, 求极值路径。

例 4

给定泛函:

$$V[y] = \int_0^T y' dt$$

其边界条件 $y(0) = \alpha$ 及 $y(T) = \beta$, 求极值路径。