UNIVERSITÉ PARIS 8 Master Informatique 2023/24

Probabilités, Statistiques et Théorie de l'information

Contrôle final Travail à rendre le 20 décembre 2023

1 TP

Pour chacune des données ci-dessous,

- 1. Décrivez la population étudiée, son effectif total, l'unité statistique, les caractères étudiés, le type des variables et leurs valeurs ou modalités.
- 2. Calculer les caractéristiques de tendance centrale : moyenne, médiane, mode.
- 3. Calculer les caractéristiques de dispersion : étendu, écart inter-quartile, variance et écart-type.
- 4. Tracer l'histogramme, le densité et la boite à moustache.

Il est conseillé de faire les calculs sur python ou R.

Données.

1. Une enquête réalisée dans un village porte sur le nombre d'enfants à charge par famille.donne les résultats suivants :

nombres d'enfants	0	1	2	3	4	5	6
effectifs	18	32	66	41	32	9	2

2. On veut étudier le nombre d'erreurs commises par un effectif de candidats à l'examen du code de la route. On observe les résultats suivants :

nombres d'erreurs	0	1	2	3	4	5
effectif	101	140	92	42	18	3

3. Le gérant d'un magasin vendant des articles de consommation courante a relevé pour un article particulier le nombre d'articles vendus par jour sur 52 jours de vente. Le relevé des observations se présente comme suit :

```
7\ 13\ 8\ 10\ 9\ 12\ 10\ 8\ 9\ 10\ 6\ 14\ 7\ 15\ 9\ 11\ 12\ 11\ 12\ 5\ 14\ 11\ 8\ 10\ 14\ 12\ 8\ 5\ 7\ 13\ 12\ 16\ 11\\ 9\ 11\ 11\ 12\ 12\ 15\ 14\ 5\ 14\ 9\ 9\ 14\ 13\ 11\ 10\ 11\ 12\ 9\ 15.
```

4. Au poste de péage, on compte le nombre de voitures se présentant sur une période de 5 min. Sur 100 observations de 5 min, on obtient les résultats suivants :

nombre de voitures	1	2	3	4	5	6	7	8	9	10	11	12
nombre d'observations	2	8	14	20	19	15	9	6	2	3	1	1

5. Chez un fabriquant de tubes de plastiques, on a prélevé un échantillon de 100 tubes dont on a mesuré le diamètre en décimètre. On a regroupé les résultats par intervalles dans le tableau suivant :

diamètre	[1.9, 2.0[[2.0, 2.1[[2.1, 2.2[[2.2, 2.3[[2.3, 2.4[[2.4, 2.5[[2.5, 2.6[
effectif	3	9	18	29	25	10	6

2 Exercices.

Exercice 1. Soit X une variable aléatoire continue de loi uniforme sur l'intervalle [0,1].

- 1. Déterminer la fonction de répartition de X.
- 2. On pose $Y = -\ln X$. Quel est l'ensemble des valeurs de Y?
- 3. Déterminer la fonction de répartion de Y puis sa densité.
- 4. Calculer E(Y) et V(Y).

Exercice 2. Une hotline reçoit 400 appels par jour, on estime que 90% des appels accédent à la plateforme en moyenne. On note X le nombre d'appels accédant à la plateforme un jour donné

- 1. Quelle loi suit X? Calculer $\mu = E(X)$ et $\sigma^2 = V(X)$.
- 2. En approximant par la loi normale, calculer $P(X \ge 300)$.

Exercice 3. On considère l'échantillon statistique (1, 3, 2, 3, 2, 2, 0, 2, 3, 1) réalisation d'une variable X de loi inconnue.

- 1. Donner une estimation non biaisée de $\mu = E(X)$ et $\sigma^2 = V(X)$.
- 2. On suppose que X suit une loi binomiale de paramètre n=3 et p inconnu. Donner une estimation de p.

Exercice 4. Une étude faite sur le poids d'un groupe d'individus a donné les résultats suivants sur un échantillon de 18 individus :

On modélise les valeurs de cet échantillon par une variable aléatoire de loi normale $\mathcal{N}(\mu, \sigma^2)$, où μ et σ^2 sont deux paramètres inconnus.

- 1. Donner une estimation non biaisée de la moyenne et la variance de cet échantillon.
- 2. Déterminer un intervalle de confiance de niveau 95% de μ et σ^2 .
- 3. On suppose σ^2 connu de valeur $\sigma^2=26.$ Que devient l'intervalle de confiance pour $\mu\,?$

Exercice 5. On se propose d'étudier la loi du temps T (exprimé en minutes) consacré à un client par un opérateur d'une hotline. Sur un échantillon de 200 clients, on a relevé les résultats suivants regroupées par intervalles de temps :

Temps
$$[0;2[$$
 $[2;4[$ $[4;6[$ $[6;8[$ $[8;10[$ $[10;12[$ $[12;14[$ $[14;16[$ 16 et plus score 68 45 29 15 15 7 9 6 6

Avec un risque de 5%, que donne le test d'hypothèse H_0 : "T suit une loi exponentielle de paramètre $\lambda = 0, 2 \, \text{min}^{-1}$ " contre " H_1 : X suit une autre loi"?