

Public key encryption from Diffie-Hellman

The ElGamal Public-key System

Recap: public key encryption: (Gen, E, D)

Recap: public-key encryption applications

Key exchange (e.g. in HTTPS)

Encryption in non-interactive settings:

- Secure Email: Bob has Alice's pub-key and sends her an email
- Encrypted File Systems

Recap: public-key encryption applications

Key exchange (e.g. in HTTPS)

Encryption in non-interactive settings:

- Secure Email: Bob has Alice's pub-key and sends her an email
- Encrypted File Systems

Constructions

This week: two families of public-key encryption schemes

- Previous lecture: based on trapdoor functions (such as RSA)
 - Schemes: ISO standard, OAEP+, ...
- This lecture: based on the Diffie-Hellman protocol
 - Schemes: ElGamal encryption and variants (e.g. used in GPG)

Security goals: chosen ciphertext security

Review: the Diffie-Hellman protocol (1977)

```
Fix a finite cyclic group G (e.g G = (Z_p)^*) of order n
Fix a generator g in G (i.e. G = \{1, g, g^2, g^3, ..., g^{n-1}\})
```

Alice

Bob

choose random **a** in {1,...,n}

choose random **b** in {1,...,n}

$$A = g^{a}$$

$$B = g^{a}$$

$$B^a = (g^b)^a =$$

$$k_{AB} = g^{ab}$$
 = $(g^a)^b$ = A^b

ElGamal: converting to pub-key enc. (1984)

Fix a finite cyclic group G (e.g $G = (Z_p)^*$) of order n Fix a generator g in G (i.e. $G = \{1, g, g^2, g^3, ..., g^{n-1}\}$)

Alice

choose random **a** in {1,...,n}

 $A = g^a$

Treat as a public key

<u>Bob</u>

ndom **b** in {1,...,n}

compute
$$g^{ab} = A^b$$
,
derive symmetric key k,
encrypt message m with k

ElGamal: converting to pub-key enc. (1984)

Fix a finite cyclic group G (e.g $G = (Z_p)^*$) of order n Fix a generator g in G (i.e. $G = \{1, g, g^2, g^3, ..., g^{n-1}\}$)

Alice

choose random **a** in {1,...,n}

$$A = g^a$$

Treat as a public key

compute $g^{ab} = A^b$.

<u>Bob</u>

ndom **b** in {1,...,n}

To decrypt: $ct = \begin{bmatrix} B = g^b \end{bmatrix}$, derive symmetric key k, encrypt message m with k derive k, and decrypt

Dan Boneh

The ElGamal system (a modern view)

- G: finite cyclic group of order n
- (E_s, D_s) : symmetric auth. encryption defined over (K,M,C)
- H: $G^2 \rightarrow K$ a hash function

We construct a pub-key enc. system (Gen, E, D):

- Key generation Gen:
 - choose random generator g in G and random a in Z_n
 - output sk = a, $pk = (g, h=g^a)$

The ElGamal system (a modern view)

- G: finite cyclic group of order n
- (E_s, D_s): symmetric auth. encryption defined over (K,M,C)
- H: $G^2 \rightarrow K$ a hash function

```
\begin{split} \underline{\textbf{E( pk=(g,h), m)}}: \\ b &\stackrel{R}{\leftarrow} Z_n, \ u \leftarrow g^b, \ v \leftarrow h^b \\ k \leftarrow H(u,v), \ c \leftarrow E_s(k,m) \\ output \ (u,c) \end{split}
```

```
\frac{D(sk=a,(u,c))}{v \leftarrow u^{a}}
k \leftarrow D_{s}(k,c)
output m
```

ElGamal performance

```
E( pk=(g,h), m):

b \leftarrow Z_n, u \leftarrow g^b, v \leftarrow h^b
```

```
<u>D( sk=a, (u,c) )</u>:
v ← u<sup>a</sup></u>
```

Encryption: 2 exp. (fixed basis)

- Can pre-compute $[g^{(2^{i})}, h^{(2^{i})}]$ for $i=1,...,log_{2}$ n
- 3x speed-up (or more)

Decryption: 1 exp. (variable basis)

Next step: why is this system chosen ciphertext secure? under what assumptions?

End of Segment