*	Agenda and Recap
	* Homoscedosticity
	* Homoscedonticity
	* Auto-collinearity
*	Gradient Descent Vosciants
	Polynomial Regression
*	Generalization and Occam's Tazor
	Underglitting and overfitting

Assumption 3: Error are Normally distributed

Step1: Build Model

Step 2: Calculate Error

* Bion Variance Tradeoff

Step3: Plot Errora with Historgram

Polynomial Regression

* How Does this Look

D In ada

x	93
× "	ć
×a,	92
×3'	83
$\times_{\mathbf{q}_i}$	% प
Xmi	3~

Q		2	
9	1	ال	١

	χ²	×,	93
	X 2	×	95
>	72	×a,	92
	431 2	×3,	83
	11	×yı	<i>P &</i>
	ソカ	Xnı	35

f23J2 f(xf2

Je Job .

Sylvesnilles - Hart Locke to for &

x 32= xg, + B < Linear Relationship

1 J2 = Jx x J, Won Linear

Generalization and Occams Razor

Model 2

Overpritting

TrainSca

12-5cme= 0.90

Test-See

28.5c= 0.85

.

T2-5000 0.85

5 M3

Principks for picking the Best Model
Generalization

D Pick model which performs the best on Unseen Data Generalized

Occamis Razor

DIJ There are many Solutions Pick the Simplest Ore.

> (Carblex) (Simbk) MS N M3

* Higher the degree More Complex the

Bian and Variance Trade-off

(Jox Banance (Two types of Cooss)

Vivek in poetains Ger Olympic anchery Competition

DHIGH Biass The shots are
Bull's eye

DHIGH Variances Not Consisted

(all over the board)

Low Bias

High Variance

Case 3:

High Bias

Low Voniance (Consistent)

Case - 4

Low Biga Low Variance

* Conclusion :

> High bios leads to Righ Errors

D High Variance leads to Righ Errors

