Universidade de Aveiro

Departamento de Matemática

Classificação

ALGA — Agrupamento IV (ECT, EET, EI)

Exame Recurso

26 de janeiro de 2017 — Duração: **2h30**

Valores

Nome					N.° Mec.				
α					N.° Folhas suplementares				
[Declaro que desisto (assinat									
Questão	1	2	3	4	5	6	7	total	
Cotação	15	20	25	25	25	60	30	200	
Classif.									

1. Calcula os valores próprios da matriz
$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 3 & 0 \\ 1 & 0 & 0 & 4 \end{bmatrix}$$
.

Na matriz D considera as suas colunas como sendo os vetores X_1 , X_2 e X_3 de \mathbb{R}^3 , ou seja $D=[X_1\ X_2\ X_3]$ com $X_1=(1,1,-2), X_2=(1,1,1)$ e $X_3=(2,2,-1)$. A matriz E é uma forma escalonada por linhas da matriz D.

(a) Indica:
$$car(D) = \boxed{ }$$
 $nul(D) = \boxed{ }$ $nul(E) = \boxed{ }$

(b) Qual a dimensão do espaço vetorial $S=< X_1, X_2, X_3>$? Indica uma base para S:

3. Considera as matrizes $A =$	$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$	1 1 0	$\begin{bmatrix} 4\\2\\1 \end{bmatrix}$	$B = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix}$	e	$C = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	1 1 0	$\begin{array}{c} 4 \\ 2 \\ -1 \end{array}$	$\begin{bmatrix} 0 \\ 1 \\ 4 \end{bmatrix}$.	A matriz C é uma forma
escalonada por linhas da ma	triz	amp	liada [A B].		_			_	

- (a) Indica: $\operatorname{car}(A) = \boxed{\qquad} \operatorname{nul}(A) = \boxed{\qquad} \operatorname{nul}(C) = \boxed{\qquad} \operatorname{nul}(C) = \boxed{\qquad}$
- (b) Verifica se o vetor B pertence a C(A), o espaço das colunas de A.

(c) A matriz A é invertível? $\boxed{\mathbb{S}}$ $\boxed{\mathbb{N}}$ Justifica a tua resposta.

- 4. Considera em \mathbb{R}^3 as retas concorrentes \mathcal{R}_1 de equação vetorial $(x,y,z)=(1,0,1)+\alpha(3,0,-1), \alpha\in\mathbb{R}$, e \mathcal{R}_2 de equação vetorial $(x,y,z)=(1,0,1)+\alpha(0,2,-1), \alpha\in\mathbb{R}$.
 - (a) Determina, se possível, a equação vetorial de uma reta ortogonal a ambas as retas \mathcal{R}_1 e \mathcal{R}_2 e que contém o ponto (1,0,1) de interseção de \mathcal{R}_1 com \mathcal{R}_2 .
 - (b) Determina, se possível, a equação geral do plano que contém ambas as retas \mathcal{R}_1 e \mathcal{R}_2 .

- 5. Considera a matriz $F=\begin{bmatrix}1&0&2&0\\0&3&0&4\end{bmatrix}$ e a transformação linear $\phi:\mathbb{R}^4\to\mathbb{R}^2$ dada por $\phi(X)=FX$ para todo o $X\in\mathbb{R}^4$.
 - (a) Indica:

$$car(F) =$$

$$nul(F) =$$

(b) Determina a imagem de ϕ , $im(\phi)$, e uma sua base.

- (c) ϕ é injetiva? Justifica.
- (d) Encontra a matriz G representativa da transformação ϕ relativamente às bases $\mathbb{S}=\left((0,0,0,1), (0,0,1,1), (0,1,1,1), (1,1,1,1)\right)$ e \mathcal{C} , canónica de \mathbb{R}^2 .

Atribuem-se	6 pontos por cada resposta correta, 0 pontos por cada resposta em branco e -2 pontos por cada resposta errada.	E\C 0 1 2 3 4 5 6 7 8 9 10 0 00 06 12 18 24 30 36 42 48 54 60 1 -02 04 10 16 22 28 34 40 46 52 2 -04 02 08 14 20 26 32 38 44 3 -06 00 06 12 18 24 30 36 4 -08 -02 04 10 16 22 28 5 -10 -04 02 08 14 20 6 -12 -06 00 06 12 7 -14 -08 -02 04 8 -16 -10 -04 9 -18 -12 10 -20 (Reservado à cotação)
Cada alínea	tem uma só opção correta que deve a	assinalar com uma \times no \square correspondente.
um	cilindro elíptico.	$2x^2 - 2y^2 - 2z^2 + 2yz = -1$ constitui
	hiperbolóide de uma folha. hiperbolóide de duas folhas.	
	onjunto vazio.	
0 00	onjunto vazio.	
	era a matriz $A_{3 imes 3}$, um vetor $B\in\mathbb{R}^3$ enatriz A é invertível.	e o sistema $AX = B$ possível e indeterminado.
O v	vetor $B \notin \mathcal{C}(A)$.	
<u> </u>	(A) = 0.	
dim	$n \mathcal{N}(A) = 0.$	
	era as retas \mathcal{R}_1 e \mathcal{R}_2 de equações $x=$ $\in \mathbb{R}$, respectivamente.	$y + z = 1 e(x, y, z) = (2, -1, 0) + \alpha(0, 1, 1),$
O p	ponto $(2, -1, 0)$ pertence a ambas as r	retas \mathcal{R}_1 e \mathcal{R}_2 .
As	retas \mathcal{R}_1 e \mathcal{R}_2 intersetam-se num por	nto.
Op	ponto $(1,0,1)$ pertence a ambas as ret	tas \mathcal{R}_1 e \mathcal{R}_2 .
As	retas \mathcal{R}_1 e \mathcal{R}_2 são ortogonais.	
(d) O núcle	eo de uma aplicação linear sobrejetiva	a $\phi: \mathbb{R}^3 o \mathbb{R}^2$ tem dimensão
	era o espaço vetorial real $S = \{(x, y, \text{ subespaço vetorial de } \mathbb{R}^2.$	$0): x, y \in \mathbb{R}\}.$
S c	ontém o vetor $(-1, 2, -1)$.	
	gerado pelo vetor $(1, 1, 0)$.	
	ontém o vetor $(-1, 1, 0)$.	

6. Esta questão é constituída por 10 alíneas de escolha múltipla.

(f) Considera a matriz $A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 3 & 0 \\ 3 & 2 & -2 \end{bmatrix}$ de equação característica $(-2-\lambda)(1-\lambda)(3-\lambda) = 0$.

Os valores próprios de A são 2, -1 e -3.

O sistema $(A - I_3)X = 0_{\mathbb{R}^3}$ é possível e indeterminado.

O conjunto dos vetores próprios de A associados ao valor próprio $-3 \, é < (1,0,2), (0,1,0) >$.

O espaço nulo de A, $\mathcal{N}(A)$, é subespaço próprio de A.

(g) Quaisquer que sejam as matrizes $n \times n$ invertíveis A e B temos

 $(AB + A)^T = (B^T + I_n)A^T.$

 $(A - B)^2 = A^2 - 2AB + B^2.$

 $(AB + A)^{-1} = A^{-1}(B^{-1} + I_n).$

 $adj(AB)^T = (adj B)^T (adj A)^T.$

(h) Considera a reta \mathcal{R} de \mathbb{R}^3 gerada pelo vetor (-1, 1, 0).

A projeção ortogonal do vetor (-1,0,1) sobre a reta \mathcal{R} é (-1,1,0).

A projeção ortogonal do vetor (-1,0,1) sobre a reta \mathcal{R} é $(-\frac{1}{2},\frac{1}{2},0)$.

O vetor $\left(-\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}\right)$ é ortogonal a (-1, 1, 0) e a (-1, 0, 1).

A projeção ortogonal do vetor (-1,0,1) sobre a reta \mathcal{R} é (-1,0,1).

(i) Considera a matriz $A_{5\times 3}$ tal que car(A) = 3. O sistema AX = B

tem solução única se car([A|B]) < 3.

não tem solução se car([A|B]) > 3.

tem uma infinidade de soluções.

(j) A matriz $A=\begin{bmatrix}1&0\\2&1\\-1&-2\end{bmatrix}$ é a matriz representativa da aplicação linear $\phi:\mathbb{R}^2\to\mathbb{R}^3$ rela-

tivamente às bases S = ((1,1),(1,-1)) e T = ((1,0,1),(0,1,0),(0,1,-1)). Nas bases canónicas teremos

 $\phi(x,y) = \left(\frac{x+y}{2}, y, 2x\right).$

 $\phi(x,y) = (x, 2x + y, -x - 2y).$

 $\phi(x,y) = (x, x - y, 2x + 2y).$ $\phi(x,y) = (\frac{x+y}{2}, \frac{3x+y}{2}, \frac{-3x+y}{2}).$

- 7. Considera a matriz $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ com equação característica $\lambda(1-\lambda)(1+\lambda) = 0$.
 - (a) Indica o subespaço próprio associado ao valor próprio 0:
 - (b) Indica o conjunto de **vetores próprios** associados ao valor próprio 1:
 - (c) Justifica que o vetor (1, -1, 1) é vetor próprio de A.
 - (d) Indica matrizes P e D, P diagonalizante de A e D diagonal, tais que $P^{-1}AP = D$.

