Iterated Dominance Solvability

 A game can be solved via iterated strict dominance (ISD) if only a single action profile survives the iterated elimination of dominated actions.

 A two-player game can be solved via ISD if both players have only one rationalizable action.

Can this game be solved via ISD?

a 3 0 0 0 0 b 1 1 2 0 0 0 C 0 1 4 0 0

Felix Brand

Iterated Dominance (ctd.)

- The set of actions that survive iterated dominance can be computed in polynomial time by solving a polynomial number of LPs.
 - The set of rationalizable actions of a two-player game can be found efficiently.
- How about weak dominance?
 - Action a_i is weakly dominated iff there is a strategy s_i such that the following LP has a solution with positive value.

$$\max \sum_{a_{-i} \in A_{-i}} \left(\left(\sum_{b_{i} \in A_{i}} s_{i}(b_{i}) u_{i}(b_{i}, a_{-i}) \right) - u_{i}(a_{i}, a_{-i}) \right)$$
s.t.
$$\sum_{b_{i} \in A_{i}} s_{i}(b_{i}) u_{i}(b_{i}, a_{-i}) \geq u_{i}(a_{i}, a_{-i}) \qquad \forall a_{-i} \in A_{-i}$$

$$s_{i}(b_{i}) \geq 0 \qquad \forall b_{i} \in A_{i}$$

$$\sum_{b_{i} \in A_{i}} s_{i}(b_{i}) = 1$$

Example

Can this game be solved via iterated weak dominance (IWD)?

IWD is order-dependent!

Iterated Weak Dominance

- Theorem: Deciding whether a game can be solved via IWD is NP-complete (Conitzer & Sandholm, 2005).
 - even when only considering dominance by pure strategies
 - even when there are only two different utility values (say, 0 and 1)
 - even with only three outcomes ((0,0), (1,0), and (0,1)) (B. et al., 2009)

also deciding whether a given action can be eliminated via IWD is

NP-complete

	P	P	Ч	Ψ.	,	.,	a	0	C	a
p	(1,0)	(0,1)	(0,1)	(0,1)	(0,1)	(0,1)	(1,0)	(0,1)	(0,0)	(0,0)
$\neg p$	(0,1)	(1,0)	(0, 1)	(0, 1)	(0, 1)	(0, 1)	(1, 0)	(0, 1)	(0,0)	(0,0)
$p\!\!\downarrow$	(1,0)	(1, 0)	(0,1)	(0,1)	(0,1)	(0,1)	(0,1)	(0, 1)	(0,0)	(0,1)
q	(0,1)	(0,1)	(1,0)	(0,1)	(0, 1)	(0,1)	(1,0)	(0,1)	(0,0)	(0,0)
$\neg q$	(0,1)	(0, 1)	(0, 1)	(1, 0)	(0, 1)	(0, 1)	(1, 0)	(0, 1)	(0,0)	(0,0)
$q \downarrow$	(0,1)	(0,1)	(1, 0)	(1, 0)	(0,1)	(0,1)	(0,1)	(0, 1)	(0,0)	(0,1)
r	(0,1)	(0,1)	(0,1)	(0,1)	(1,0)	(0,1)	(1,0)	(0,1)	(0,0)	(0,0)
$\neg r$	(0,1)	(0, 1)	(0, 1)	(0, 1)	(0, 1)	(1, 0)	(1, 0)	(0, 1)	(0,0)	(0,0)
$r \downarrow$	(0,1)	(0,1)	(0, 1)	(0,1)	(1, 0)	(1, 0)	(0,1)	(0, 1)	(0,0)	(0,1)
p	(1,0)	(0, 1)	(0, 1)	(0, 1)	(0, 1)	(0, 1)	(0, 1)	(0, 1)	(0,0)	(0,0)
q	(0,1)	(0, 1)	(1, 0)	(0, 1)	(0, 1)	(0, 1)	(0, 1)	(0, 1)	(0,0)	(0,0)
$\neg r$	(0,1)	(0, 1)	(0, 1)	(0, 1)	(0, 1)	(1, 0)	(0, 1)	(0, 1)	(0,0)	(0,0)
$0 \lor q \lor \neg r$	(0,1)	(0, 1)	(0, 1)	(0, 1)	(0, 1)	(0,1)	(1, 0)	(0, 1)	(0,0)	(0, 1)
$\neg p$	(0,1)	(1, 0)	(0, 1)	(0, 1)	(0, 1)	(0,1)	(0,1)	(0, 1)	(0,0)	(0,0)
q	(0,1)	(0, 1)	(1, 0)	(0, 1)	(0, 1)	(0, 1)	(0, 1)	(0, 1)	(0,0)	(0,0)
r	(0,1)	(0, 1)	(0, 1)	(0, 1)	(1, 0)	(0, 1)	(0, 1)	(0, 1)	(0,0)	(0,0)
$\neg p \lor q \lor r$	(0,1)	(0, 1)	(0, 1)	(0, 1)	(0, 1)	(0, 1)	(1, 0)	(0, 1)	(0,0)	(0, 1)
$\neg p$	(0,1)	(1, 0)	(0, 1)	(0,1)	(0,1)	(0,1)	(0,1)	(0, 1)	(0,0)	(0,0)
$\neg q$	(0,1)	(0, 1)	(0, 1)	(1, 0)	(0, 1)	(0, 1)	(0, 1)	(0, 1)	(0,0)	(0,0)
$\neg r$	(0,1)	(0, 1)	(0, 1)	(0, 1)	(0, 1)	(1, 0)	(0, 1)	(0, 1)	(0,0)	(0,0)
$\vee \neg q \vee \neg r$	(0,1)	(0, 1)	(0, 1)	(0, 1)	(0, 1)	(0, 1)	(1, 0)	(0, 1)	(0,0)	(0,1)
e	(1,0)	(1, 0)	(1, 0)	(1, 0)	(1, 0)	(1, 0)	(1, 0)	(0, 1)	(0,1)	(0,0)

	a_{2}^{1}		a_2^m	c	d^*	f	g^*	x_{2}^{1}		y_2^4	z_{2}^{1}	z_{2}^{2}	z_2^3
a_1^1											(0, 1)	(0, 1)	(0, 1)
:	:	·	:	:	:	:	:	:	·	:	:	:	:
a_1^n											(0, 1)	(0, 1)	(0, 1)
e				(0,1)	(0, 0)	(0,1)	(0, 0)				(0, 1)	(0, 1)	(0, 1)
x_1^1											(0, 1)	(0, 1)	(0, 1)
:	:	·	:	:	:	:	:	:	·	:	:	:	:
y_1^4											(0,1)	(0, 1)	(0, 1)
z_1^1	(0,0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0,0)	(0, 1)	(1, 0)	(1,0)
z_1^2	(0,1)	(0, 1)	(0, 1)	(0,1)	(1, 0)	(0, 1)	(0, 1)	(0,1)	(0, 1)	(0, 1)	(0, 1)	(0, 1)	(1,0)
z_1^3	(0,1)	(0, 1)	(0,1)	(0,1)	(1, 0)	(0, 1)	(0, 1)	(0,1)	(0, 1)	(0, 1)	(0, 0)	(1, 0)	(0, 1)
z_1^4	(0,1)	(0, 1)	(0, 1)	(0, 1)	(0, 1)	(0, 1)	(1, 0)	(0, 1)	(0, 1)	(0, 1)	(0, 0)	(0, 1)	(1,0)

Solution Concepts

- A solution concept identifies reasonable, desirable, or otherwise significant strategy profiles of a game.
 - In order to be meaningful, solution concepts should be invariant under positive affine transformations.
- Important properties of solution concepts:
 - Existence
 - Games may not be solvable via ISD or IWD.
 - Uniqueness
 - If a game is solvable via ISD, the resulting action profile is unique.
 - If a game is solvable via IWD, there may be different resulting action profiles.
 - Efficient computability
 - It can be decided in polynomial time whether a game can be solved via ISD.
 - Whether a game can be solved via IWD cannot be decided in polynomial time unless P=NP.

Standard Examples

"Penalty Shootout" or "Matching Pennies"

"Chicken" or "Hawks and Doves"

"Battle of the Sexes" or "Bach or Stravinsky"

- All these games are neither solvable via ISD nor via IWD.
 - Every action is rationalizable.

Maximin and Security Level

- In face of uncertainty, a player may maximize his worst-case utility.
 - "Worst-case" refers to the choice of strategy of the opponents, not the outcome of the randomization.
- The set of *maximin strategies* of player *i* is given by arg max min $u_i(s_i,s_{-i})$.
- The security level of player i is max min $u_i(s_i, s_{-i})$.
 - The security level is the minimal utility that the player can enforce.
 - Independent of the opponents' rationality.
 - Again, it suffices to consider pure strategies of the opponents.

Maximin (Linear Program)

• Any solution s_i of the following LP is a maximin strategy.

max
$$U_i^*$$
s.t. $\sum_{b_i \in A_i} s_i(b_i) u_i(b_i, a_{-i}) \geq U_i^* \quad \forall a_{-i} \in A_{-i}$
 $s_i(b_i) \geq 0 \quad \forall b_i \in A_i$
 $\sum_{b_i \in A_i} s_i(b_i) = 1$

- The value of the LP (U_i^*) is the security level of player i.
- Maximin strategies (and security levels) can be computed in polynomial time.
- The set of maximin strategies is convex, i.e., a mixture of maximin strategies is again a maximin strategy.

Standard Examples Revisited

"Penalty Shootout" or "Matching Pennies"

"Chicken" or "Hawks and Doves"

"Battle of the Sexes" or "Bach or Stravinsky"

- Maximin strategies
 - Penalty Shootout: [1/2: left, 1/2: right], security level 1/2
 - Chicken: [1: yield], security level 1
 - Battle of the Sexes: [1/3: boxing, 2/3: ballet] for player 1 and [2/3: boxing, 1/3: ballet] for player 2, security level 2/3

Preliminary Summary

	existence	uniqueness	efficient computability
dominant strategy	_	√	√ (has to be pure)
weakly dominant strategy	_	✓	(has to be pure)
ISD-solvability	-	✓	√
IWD-solvability	_	-	-
maximin	✓	(security level)	✓

Example

Maximin strategies always exist, but often they do not permit significant statements about games because a lot of the structure is ignored.

- Which strategies should the players play?
 - all strategies are maximin strategies, security level 0 for both players
 - *all* actions are rationalizable, no action is dominated (not even weakly)

Nash Equilibrium

John Nash

- A strategy profile $s = (s_1, ..., s_n)$ is a Nash equilibrium if for all players i and all strategies $t_i \neq s_i$, $u_i(s_i, s_{-i}) \geq u_i(t_i, s_{-i})$.
 - No player can increase his payoff by deviating unilaterally.
 - Nash equilibrium is perhaps the most widely known solution concept in game theory.
 - A pure Nash equilibrium is a Nash equilibrium in pure strategies.
- A Nash equilibrium is a steady state of mutual best responses.
 - Every strategy is a best response to the strategies of the others: $s_i \in B_i(s_{-i})$ for all $i \in \mathbb{N}$
- (defect, defect) is the only Nash equilibrium in the prisoner's dilemma.