Movimiento Browniano

Ejercicios entregables - Semana 2

Lucio Santi lsanti@dc.uba.ar

23 de abril de 2017

Ejercicio. Sea (X_n, \mathcal{F}_n) una martingala. Considerar $\mathcal{U}_n = \sigma(X_1, \dots, X_n)$. Probar que (X_n, \mathcal{U}_n) es una martingala.

Resolución. Veamos que $(X_n, \mathcal{U}_n)_{n\geq 1}$ satisface las tres propiedades que debe poseer para ser una martingala.

- X_n debe ser \mathcal{U}_n -medible Por definición de $\mathcal{U}_n = \sigma(X_1, \dots, X_n)$ se tiene que \mathcal{U}_n es la menor σ -álgebra para la que X_1, \dots, X_n son medibles. En particular, X_n es \mathcal{U}_n -medible.
- $\mathrm{E}\left[|X_n|\right] < \infty$ Esto sigue inmediatamente por ser (X_n, \mathcal{F}_n) una martingala.
- $\bullet E[X_{n+1} | \mathcal{U}_n] = X_n$

En primer lugar, observemos que $\mathcal{U}_n \subseteq \mathcal{F}_n$. Sabemos que X_1, \ldots, X_n son \mathcal{F}_n -medibles por ser cada X_i , $1 \le i \le n$, \mathcal{F}_i -medible y ser \mathcal{F} una filtración (i.e., $\mathcal{F}_i \subseteq \mathcal{F}_n$). Además, como ya se dijo, \mathcal{U}_n es la menor σ -álgebra para la que X_1, \ldots, X_n son medibles, de manera que $\mathcal{U}_n \subseteq \mathcal{F}_n$, que es lo que se pretendía observar. Luego,

$$E\left[X_{n+1} \mid \mathcal{U}_{n}\right] \stackrel{\text{(Torres)}}{=} E\left[E\left[X_{n+1} \mid \mathcal{F}_{n}\right] \mid \mathcal{U}_{n}\right]$$

$$\stackrel{((X_{n},\mathcal{F}_{n}) \text{ martingala})}{=} E\left[X_{n} \mid \mathcal{U}_{n}\right]$$

$$\stackrel{(X_{n} \mathcal{U}_{n}-\text{medible})}{=} X_{n}$$

Ejercicio. Sea $(X_n, \mathcal{F}_n)_{n\geq 1}$ una martingala e $\{Y_n\}_{n\geq 1}$ un proceso tal que $|Y_n|\leq C_n$ e Y_n es \mathcal{F}_{n-1} -medible. Sea $X_0=0$ y consideremos

$$M_n = \sum_{k=1}^{n} Y_k (X_k - X_{k-1})$$

Probar que (M_n, \mathcal{F}_n) es una martingala.

Resolución.