Тема 1.1.1. Функция и способы ее задания. Преобразования графиков функций. Свойства функции.

Пусть X,Y – множества произвольной природы

Определение. Если каждому элементу x из множества X по определённому правилу или закону f ставится в соответствие один элемент y из множества Y, то говорят, что **на множестве** X задана функция f.

Обозначение: f: или y = f(x). (где f – закон, осуществляющий соответствие)

Называют:

Х – область (множество) определения функции

x (x ∈ X) – аргумент (независимая переменная)

Y — область (множество) значений y ($y \in Y$) — зависимая переменная (функция)

Определение. Графиком функции y = f(x) называется геометрическое место точек плоскости с координатами (x; f(x)).

График функции y = f(x) будем также называть **«кривой у = f(x)»**

Способы задания функции:

- словесный
- аналитический
 - **•** а) явное задание (т.е. формулой y = f(x))
 - б) неявное задание (т.е. с помощью уравнения F(x,y)=0).
- табличный
- графический

Определение. Элементарной функцией называется функция, которая может быть задана одной формулой $\mathbf{y} = \mathbf{f}(\mathbf{x})$, где $\mathbf{f}(\mathbf{x})$ – выражение, составленное из основных элементарных функций и действительных чисел с помощью конечного числа операций сложения, вычитания, умножения, деления и взятия функции от функции.

Основные характеристики поведения функции:

- Четность функции (четная, нечетная, общего вида)
- Периодичность функции
- *Монотонность* функции (возрастающая, убывающая, неубывающая, невозрастающая)
- *Ограниченность* функции (ограниченная сверху, ограниченная снизу, ограниченная)

В) Преобразование графиков функций

	Пр	еобразование графика функ	ции $y = f(x)$
N ₂	Формула зависимости	Пример	Преобразование
1	2	3	4
1	y = -f(x)		Симметрия относительно оси <i>Ox</i>
2	y = f(-x)		Симметрия относительно оси <i>Oy</i>
3	y = f(x - a)	-3 y	Параллельный перенос графика функции $y = f(x)$ вдоль оси Ox на a единиц
4	y = f(x) + c		Параллельный перенос графика функции y = f(x) вдоль оси $Oyна c единиц$
5	y = kf(x) $(k > 0)$	2 - 1 0 1 x	Растяжение или сжатие вдоль оси Oy (при $k>1$ — растяжение, при $0 < k < 1$ — сжатие)
		$y \land y = \sqrt{2x}$	Растяжение или сжатие

Алгоритм исследования функции y = f(x):

- 1. Найти *область определения* функции D(y)
- 2. Найти (если это можно) *точки пересечения* графика с осями координат (при x=0 и при y=0)
- 3. Исследовать на **четность и нечетность** функции(y(-x) = y(x) -четность; y(-x)

=-y(x) —нечетность)

- 4. Найти асимптоты графика функции
- 5. Найти интервалы монотонности функции
- 6. Найти экстремумы функции
- 7. Найти *интервалы выпуклости* (вогнутости) и точки перегиба графика функции
 - 8. На основании проведенных исследований построить график функции

Графики и основные свойства элементарных функций

График линейной функции y = kx + b

График линейной функций представляет собой **прямую**. Для того, чтобы построить прямую достаточно знать две точки.

<u>Пример.</u> Построить график функции y = 2x+1.

Найдем две точки. В качестве одной из точек выгодно выбрать ноль.

Если x=0, то y=2*0+1=1

Берем еще какую-нибудь точку, например, 1.

Если x=1, то y=2*1+1=3

При оформлении заданий координаты точек обычно сводятся в таблицу:

х	0	1	A	сами	значения	рассчитываются	устно	или	на	черновике,
у	1	3	калы	сулятор	e.					

Две точки найдены, выполним чертеж:

При оформлении чертежа всегда подписываем графики.

Не лишним будет вспомнить частные случаи линейной функции:

- 1) Линейная функция вида y = kx ($a \ne 0$) называется **прямой пропорциональностью**. Например, $y = -\frac{x}{2}$. График прямой пропорциональности всегда проходит через начало координат. Таким образом, построение прямой упрощается достаточно найти всего одну точку.
- 2) Уравнение вид ky=b задает прямую, параллельную оси OX, в частности, сама ось OX задается уравнением y=0. График функции строится сразу, без нахождения всяких точек.

То есть, записьу - 4 следует понимать так: «игрек всегда равен -4, при любом значении икс».

3) Уравнение вида x=b задает прямую, параллельную оси ОY, в частности, сама ось ОY задается уравнением x=0. График функции также строится сразу. Запись x=1 следует понимать так: «икс всегда, при любом значении игрек, равен 1».

График квадратичной функции.

Парабола. График квадратичной функциис $\underline{y=ax}^2 + bx + c$ ($\underline{a\neq 0}$) представляет собой параболу.

<u>Пример.</u> *Рассмотрим знаменитый случай*: $y = x^2$

Вспоминаем некоторые свойства функции $y = x^2$.

<u>Область определения</u> – D(y) = R Область значений – $E(y) = [0; +\infty)$ Функция $y = x^2$ является **чётной.**

Если функция является чётной, то ее график симметричен относительно оси OY.

<u>Пример.</u> Построить график функции $f(x) = -x^2 + 2x$.

Сначала находим вершины параболы: $x_0 = -\frac{b}{2a} = -\frac{2}{2*(-1)} = 1$; $y_0 = -1^2 + 2*1 = -1 + 2 = 1$

Таким образом, вершина находится в точке (1;1).

Теперь находим другие точки, при этом пользуемся симметричностью параболы. Следует заметить, что функция $f(x) = -x^2 + 2x -$ **не является чётной**, но, тем не менее, симметричность параболы никто не отменял.

X	-1	0	1	2	3
у	-3	0	1	0	-3

Выполним чертеж:

Из рассмотренных графиков вспоминается еще один полезный признак:

Для квадратичной функции $y = ax^2 + bx + c$ ($a \ne 0$) справедливо следующее:

Если a > 0, то ветви параболы направлены вверх. Если a < 0, то ветви параболы направлены вниз.

Кубическая парабола

Кубическая парабола задается функцией $y = x^3$.

Перечислим основные свойства функции $y = x^3$ <u>Область определения</u> — любое действительное число: D(y)=R.

 $\underline{\text{Область значений}} - E(y) = R$ - любое действительное число.

Функция $y = x^3$ является **нечётной.**

							Если	функция	
	X	-2	-1	0	1	2	является	н нечётной, то	
ee	у	-8	-1	0	1	8	график	симметричен	
относительно начала координат.									

