

Trusted Computing Technology and Client-Side Access Control Architecture

ISA 767, Secure Electronic Commerce Iliano Cervesato, icervasa@gmu.edu George Mason University Spring 2006

Acknowledgement: Some slides and diagrams are adapted from TCG Architecture Overview, Intel IDF Fall 03, and Boot Camp's TCG 101 Presentation

Outline

- Trusted Computing
 - TCPA/TCG Trusted Platform Module
 - Intel LaGrande Technology
 - Microsoft NGSCB
- Client-side Access Control Architecture and Protocols using TC
 - Motivations
 - Architecture and Protocols
 - Applications

Terminology

Trust

- "An entity can be trusted if it always behaves in the expected manner for the intended purpose."
 - Is the system what it claims to be?
 - Has the system been modified or compromised?
 - Is the system securely storing secrets such that they are protected from adversaries?

Entity

- A platform, or an application or service running on a platform.
- A platform can be a personal computer, PDA, smart phone, etc.
- A client is a computing platform that can initiate communication with other clients to transfer or share data and resources

2

Trusted Computing

- Traditional Client/Server Architecture
 - Trust is on the server side.
 - Trust is obtained with multi layer protection mechanisms.
 - Access control
 - Firewall
 - Intrusion detection/prevention system
 - There is little trust on client side.
 - Clients are generally lightly protected.
 - Attacks outpacing today's protection models
 - Attack tools readily available
- Information on the client susceptible to software-based attacks.
 - Malicious device drivers and kernels, misconfigured software, virus, Trojan horse, worms, spyware
 - Mismatch between security and high value of data in client platforms

Trusted Computing

Evolution of TC

Software alone cannot provide an adequate foundation

- Multics system
- Capability-based computers
- Trust with security kernel based on military-style security labels
- Trust in application
 - Totally depends on application
 - With privileged kernel

- Basic functions:
 - Integrity measurement, storage, and reporting
 - Ensure that computer reports its configuration parameters in trustworthy manner
 - Cryptographic functions:
 - Random number generation, RSA key generation and public key algorithm, etc.
 - Hardware-based protection of secrets
 - Store root security key inside TPM and never release it
 - Sealed Storage
 - Remote attestation

8

- trusted to work properly without additional oversight
- Trust in these components is derived from good engineering practices, manufacturing process and industry review

Functional TPM Diagram

- Root of Trust for Reporting (RTR)
 - Provides cryptographic mechanism to digitally sign TPM state and information held by RTS
- Root of Trust for Storage (RTS)
 - Provides cryptographic mechanism to protect information held outside of the TPM
 - Maintain accurate summary of TPM state
- Root of Trust for Measurement (RTM)
 - Provided by platform to measure platform state
 - Defined by platform specification
- Interaction between RTR and RTS is important TPM capability

10

RTM

TPM Credentials:

- Endorsement credential
 - The EK is a 2048-bit RSA key
 - One per platform
 - Issued by TPM manufacturer
 - Provides attestation that this is a "genuine" TPM
 - Identifies the TPM
 - Provides public key to encrypt the AIKs
- The EK only participates in two operations
 - Taking TPM ownership
 - Creation of Attestation Identity Keys
- There are mechanisms to change the EK

- Attestation Identity Key (AIK) credentials
 - Many per platform
 - Issued by Privacy CAs (or TPM using EK)
 - Identifies AIKs
 - Provides alias of the platform
 - Provides platform authentication and attestation
- TPM Conformance credential
- Platform credential
- Creation and distribution mechanism is not specified by TCG

Persistent Keys

- Endorsement Key (EK)
 - Not part of the key hierarchy
- Storage Root Key (SRK)
 - All keys are protected by this key
 - Except EK and AIKs
 - Root of Key Hierarchy
 - Changed on new owner

14

- Non-Migratable Keys: Permanently bound to specific TPM, platform
 - EK, AIK
- Migratable Keys: Can be exchanged between platforms, follow user
 - Validation key of hardware or software component

- Trusted Boot
 - Each boot step is measured and stored
 - Each measurement event consists of:
 - Measured values: integrity, configuration, state, code, etc.
 - Value digests: Hash of measured values
 - Stored Measurement Log (SML): sequences of measured values
 - Value digests are stored in PCRs:-

Configuration Registers

- PCR[new]=SHA1 {PCR[old] || measured value}
- TPM v1.2 requires 24 PCRs
- Verification requires all SML entries and signed PCRs by an AIK

16

- Trust boundary is extended to include measured code.
- the target code is first measured before execution control is transferred.

- Sealed Storage:
 - Use one or more PCR values in encryption
 - PCR(s) are part of the sealed message
 - Allows software to explicitly state the environment that can Unseal
 - Sealed Data is inaccessible to any other environment
- Sealed Signing:
 - Signing message with a set of PCR values
 - The platform that signs a message meets specific configuration.
 - Signature is verified by
 - Integrity of the message
 - Trusted PCR values when the signature was generated.

Unsealing Data

- Load sealed blob into TPM
 - Send in authorization values to use storage key
- TPM decrypts blob
- After decryption TPM validates that current PCR values match requested PCR values in sealed blob
- Data only returned on match

22

TPM

- Integrity reporting: Attestation
 - A challenge-response protocol
 - a platform (challenger) sends attestation challenge message to another platform (attestor)
 - Request PCR values
 - One or more PCR values are signed with an AIK protected by the TPM of the attestor and provided to the challenger
 - SML entries are attached.
 - AIK credential is attached.
 - The challenger verifies this attestation
 - Re-generate the hash with values in SML
 - Evaluate credential
 - Compare the signed values with expected values
- Attestation = authentication + integrity

Privacy Models

- Don't tell anyone anything
 - Works locally; no distributed trust
- Identity Service Provider (privacy CA)
 - Use a third-party for proof of identity
- Direct Proof
 - Prove identity directly without revealing unique information
- User decides which of these to use and when
 - can use all or some in combination

Identity Service Provider

- A Web-based service that validates identity
 - It gives you a key you can show to third parties to attest to an identity
 - Which identity depends on the service and needs
- Using the ISP model, the MS nexus will:
 - Only release HW key/cert (EK) to certified/trusted parties
 - Privacy CA
 - These parties issue second-level keys
 - Attestation Identity Keys

26

Direct Proof

- Zero Knowledge Proof (ZK)
 - Prove that the system has knowledge of an important something
 - Doesn't reveal the actual piece of knowledge
- Direct Proof (DP)
 - A ZK proof that proves the association between an hardware and AIK
 - Does not reveal the identity of the specific hardware

Direct Proof Process

- In DP the platform attests to its identity by proving that it has unique "knowledge" which only it can "know"
 - Can be used in a P2P model
 - Two platforms validate each other
 - This would establish a session which uses an identity
 - Which identity depends on the service and needs
- Using the DP model the MS nexus will never release HW key/cert to anyone

LaGrande Technology

- Extended CPU
 - Enable domain separation
 - Multiple OSs
 - Set policy for protected memory
- Chipset
 - Protected graphics and memory management
- Protected I/O:
 - Trusted channel between keyboard/mouse and trusted software
- TCG TPM v1.2
 - Protect keys
 - Provide platform authentication and attestation

30

LT High-level Functions

- Protected execution environments
 - Separation of processes, memory pages, and devices
 - Enforced by hardware
- Attestation: Prove platform properties
 - Hardware nature of the platform
 - Current running state and configurations
 - Provided by TPM
- Sealed storage
 - Provided by TPM
- Trusted channels and trusted paths
 - Secure channel between two applications
 - Secure path between application and human
 - between keyboard and keyboard manager
 - between mouse and mouse manager
 - between graphics manager and display adaptor

Related Work

- Secure Boot:
 - Arbaugh et al., Oakland97
 - Boot only signed and verified software
- Secure coprocessors
 - IBM 4758 crypto coprocessor
 - Closed system to run certified and signed software
- Behavior-based attestation
 - Haldar et al. USENIX'04.
 - Trusted language-based VM
- Trusted operating systems
 - SELinux, Trusted Solaris, TrustedBSD
 - Security-enhanced kernel

34

Peer-to-Peer Access Control Architecture Using Trusted Computing Technology

Ravi Sandhu and Xinwen Zhang George Mason University

SACMAT05, June 1--3, 2005, Stockholm, Sweden

Contributions

- Leverage access control architectures and mechanisms between platforms and users with TC
- Integrate user attributes into TC architecture
- Support a user's ability to roam between platforms by migrating subject identities and attribute certificates.

36

Motivations

- Trust on client platform is needed in modern systems and emerging applications
 - Distributed dissemination control (DCON)
 - Health records of a patient may be transmitted from a primary physician to a consultant who can access them for some limited period of time and cannot transmit them to anyone else
 - P2P VOIP application
 - Realtime protection of audio data in a platform
 - conversation is not eavesdropped or illegally recorded.
 - Forward control of audio object (e.g., voice mail)
 - Control the platform and user to forward
 - M-commerce
 - electronic currency between peer platforms
 - payment systems for p2p e-commerce (e.g., micropayment, mobile-payment)

Motivations

- Need new security model and architecture:
 - Change of trust relation between client and server
 - No centralized and strongly protected server
 - Data located in general client platforms
 - Location of policy enforcement changed:
 - Client-side policy enforcement needs trust
 - Trust of platform and application
 - Dynamic environment
 - Software-based attacks
 - Trusted user authentication and authorization in client platform
 - Trusted path from user to applications and vice versa.
 - Spoofing and ``man-in-the-middle" eavesdropping or modification attacks
 - Trusted input from user to application
 - Trusted output from application to monitor

38

Architecture

- Platform with trusted reference monitor (TRM)
- Assumptions:
 - Tamper resistent hardware
 - A homogeneous environment
 - Each platform is equipped uniformly with necessary TC hardware.

Available Credentials

- TPM AIK pair (PK_{TPM,AIK}, SK_{TPM,AIK})
 - private key is protected by a TPM with Storage Root Key
 - Public key is certified by a privacy CA.
- TRM key pair (PK_{TRM}, SK_{TRM})
 - The private key is protected by the TPM.
 - The public key is certified by AIK.
- Application key pair (PK_{APP}, SK_{APP})
 - Similar to TRM key pair
- TPM storage key(s)
 - Either the SRK of a TPM, or a key protected by the SRK
 - Protect TRM's credential
 - Protect secrets and policies

40

Functions of TRM

- TRM.Seal(H(TRM),x):
 - seals data x by TRM with integrity measurement of H(TRM).
 - x can only be unsealed under this TRM when the corresponding PCR value is H(TRM).
 - In practical a set of PCRs may be included.
- TRM.GenerateKey(k)
 - generates a secret key k
- TRM.Attest(H(TRM), PK_{TRM})
 - Return {H(TRM) || PK_{TRM}} _{SK TPM,AIK}
 - Attestation response signed by AIK of TPM

Revocation

- Revocation because of
 - Trust revocation of a requesting application
 - Trust revocation of a TRM
 - Trust revocation of a platform
- Two approaches:
 - Push: Object owner sends updated policy to client side
 - Pull: client side check policy update from object owner
 - Both may have delayed revocation
 - Instant revocation needs centralized policy server

Support User Attribute

- Binding of identity and role certificates
 - tightly-coupled binding: by signature
 - loosely-coupled binding: by other components

Support User Attribute

- Role-based policy enforcement:
 - TRM sends attestation challenge message to the UA.
 - UA responds with attestation information.
 - If the TRM trusts the running UA, it sends requesting message for role information of the user.
 - The UA sends back the role certificate of the user.
 - UA may submit the proof-of-possession for the corresponding private key of the identity public key
 - Mutual attestation may be needed
 - UA needs to ensure that TRM does not release role information.
 - Role certificate is private information of a user.

47

Support User Attribute

- Migration of User Credentials
 - Identity credential and role credential are migratable.
 - Not bounded to specific platform
 - Can be moved or copied between platforms
 - Destination platforms determined by identity owner (user)

Applications

- Secure VOIP:
 - Realtime Protection of Conversation
 - Secure channel between VOIP software and device driver
 - Attestation between TRM and VOIP software
 - Attestation between TRM and UA
 - Attestation between TRM and device driver
 - Secure Storage and Forward of Voice Mail
 - A policy specifying authorized platform and user attribute
 - Similar to DCON

Related Work

- Attestation-based policy enforcement
 - Sailer et al. CCS04
 - Controlled access from client to server by attesting client platform
- P2P content distribution
 - Schecheter et al. 03
 - Admission control by verifying platform and P2P software