University of Chittagong

Department of Computer Science and Engineering

7th Semester B.Sc. (Engg.) Examination-2020

Course Code: CSE-717 Course Title: Information Security

Total marks: 52.5 Marks Time: 4.00 hours

[Answer any *three* questions from each of the *Group-A* and *Group-B*. A separate answer script must be used for Group-A and Group-B. Figures in the right-hand margin indicate full marks.]

Group-A

4.75

4.75

2+2

2 + 2.75

		M	F	Н.	I/J	K		
		U	N	O	P	Q		
		\mathbf{Z}	V	W	X	Y		
		E	L	Α	R	G		
		D	S	T	В	C		
	Encrypt this message	: "N	lust s	ее уо	u ove	er CU	playground. Coming now."	
b)	Using the Vigenère c	ipher	, enci	rypt tl	he wo	ord "	explanation" using the key cse.	4
· 1/	•		Charles and the					
2. a)	Solve the following congruences using the Chinese remainder theorem.							
	E				X	≡ 1 :	mod 3	
1					X	≡ 1 :	mod 4	
					X	= 1 :	mod 5	
					X	≡ 1 :	nod 7	
b)	(i) Calculating $3^{11} \mod 17 = X$ is easy, but calculating discrete logarithm $11 = 3^x \mod 17$							2+2
	17 is very difficult. Explain the above statement. In this aspect, what do you understand							
	by the cyclic gro	oup?					-	

- 3 a) Using the extended Euclidean algorithm, find the multiplicative inverse of 550 mod 1769.
 - b) (i) Using Fermat's theorem, find 3²⁰² mod 11.

(ii) Find out the distinct remainders for $b^x \mod 7$.

Using the following Playfair matrix:

- (ii) Use Euler's theorem to find a number a between 0 and 9 such that a is congruent to 7^{1000} modulo 10.
- 4. a) (i) The following questions are related to data encryption standards:

 If initial permutation (IP) is there, why do we need IP-1? What is the S₁-box representation of 37? [The value given at row 3 and col 2 at S₁ table is 08]
 - (ii) Draw the details of the F-function in DES.

- - (ii) How the concept of the finite field are used in cryptography?

Where x is the plain text that was the input to the DES encryption.

Group-B

- 5. a) (i) Draw a block diagram of 3-DES. Write down a simple equation to represent DES encryption for 3-DES.
 (ii) What do understand by the avalanche effect? Write down two families of attacks in DES.
 b) Draw the classical Feistel cipher structure for the symmetric block encryption algorithm.
 3
 c) What are the differences between a block cipher and a stream cipher?
 1
 6. a) Perform encryption and decryption using the RSA algorithm, for p = 3, q = 11, e = 7, and M = 2. (The value of n and cipher-text must be explicitly shown.)
 - (ii) In the RSA public-key encryption scheme, each user has a public key, e, and a private key, d. Suppose Bob leaks his private key. Rather than generating a new modulus, he decides to generate a new public and a new private key. Is this safe?

private key of this user?

(i) In an RSA system, the public key of a given user is e = 31, n = 3599. What is the

2+2

2.25

2

- 7. a) Draw the generic model of the digital signature process.

 4.75
- b) Find out the 8-bit word related to $x^5 + x^2 + x$. 2
 c) How would you test a number n = 29 is a prime or not using the Miller-Rabin algorithm? 2
- Show the steps clearly.
- 8. a) Determine the benefits of IPSec. What are the differences between transport mode and tunnel mode?
 - b) What are the general services defined by RFC4301 for IPSec? 2.25
 - c) Discuss the application areas of IPSec. Compare session state and connection state. 2.25
 - d) Explain the architecture of IPSec.