1.

As for every vertex ,the degree is n-1. According to ore's theorem, there is a Hamiltonian path in K_n . No matter a) or b), I will just consider a Hamiltonian path in K_n will stop by n vertices(think as n stops for a road trip). So the choices all permutation of these stops is $n!(K'_n s)$ property, every vertices connecting all remaining vertices). Besides, there are n-1 edges since there are n vertices for a Hamiltonian path.

Now we add another limitation, which requires a monochromatic path. We have that

$$E(X) = Pr(X = Red)1 + Pr(X = Blue)0 = Pr(X = Red) = \frac{1}{2^{n-1}}$$

This is like an linear expectation problem: n! * $\frac{1}{2^{n-1}}$ turns out to be the expectation of this question which is * $\frac{n!}{2^{n-1}}$, this proves for a) and b) since it is an expectation number.

4. Think this combinatorically:

We can consider this as a random coloring of K_n with each edge colored red or blue with probability 1/2. The probability from any groups of n vertices that has all edges on that clique(every two edges adjacent to each other) of same color is $2^{1-C(n,2)}$. The number of such group is C(r,n). Hence the probability that there is at least one monochromatic clique is at most:

$$C(r,n) * 2^{1-C(n,2)}$$

,we know => $C(r, n) * 2^{1-C(n,2)} < 1$

And we are given the two estimation:

$$\frac{2r^n}{n! * 2^{\frac{n*(n-1)}{2}}}$$

in order to estimate this, i assume $r=2^{\frac{n}{2}}$, plug in and discard some constants:

$$\frac{2^{1+\frac{n}{2}}}{n!} < 1$$

Hence, $r = 2^{\frac{n}{2}}$ satisfy this condition.

And since r = O(L), $L = 2^n$