Lecture 5 - Intermediate Value Theorem

Teorema 1 (Valor medio). Si f(x) es una función continua en un intervalo cerrado [a,b], entonces para cada d tal que $f(a) \leq d \leq f(b)$ o $f(b) \leq d \leq f(b)$, existe $c \in [a,b]$ tal que f(c) = d.

Ejemplo 1. Sea f una función continua en el intervalo cerrado [3, -6]. Si f(-3) = -1 y f(6) = 3, entonces el teorema del valor medio garantiza que:

- 1. f(0) = 0
- 2. $f'(c) = \frac{4}{9}$ para algún c tal que $-3 \le c \le 6$
- 3. $-1 \le f(x) \le 3$ para todo x tal que $-3 \le x \le 6$
- 4. f(c) = 1 para algún c tal que $-3 \le c \le 6$.
- 5. f(c) = 0 para algún c tal que $-1 \le c \le 3$.

Ejemplo 2. Sea f una función diferenciable en el intervalo abierto (1,10). Si f(2) = -5, f(5) = 5 y f(9) = -5, determine la veracidad de las expresiones:

- 1. f tiene por lo menos 2 raíces.
- 2. El gráfico de f tiene por lo menos una asíntota horizontal.
- 3. Para algún c, 2 < c < 5, f(c) = 3.

Ejemplo 3. Un carro viaja en línea recta. En el intervalo $0 \le t \le 60$ segundos, la velocidad v y aceleración a del carro son funciones continuas. La tabla siguiente muestra los valores de estas funciones. Para 0 < t < 60, determine si existe t tal que v(t) = -5 o a(t) = 0.

Ejemplo 4. Cuál de las siguientes rectas es una asíntota horizontal para $f(x) = \frac{3x^3 - x^2 + x - 7}{2x^3 + 4x - 5}$

- 1. $y = \frac{3}{2}x$
- 2. y = 0
- 3. y = 2/3
- 4. y = 7/5
- 5. y = 3/2