	Utech
Name :	
Roll No.:	
Invigilator's Signature :	• • • • • • • • • • • • • • • • • • • •

CS/B.TECH(CT-OLD)/SEM-4/CT-404/2012 2012 PROCESS CALCULATION

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Attempt any *five* questions. $5 \times 14 = 70$

- 1. A pure hydrocarbon gas is burnt in a furnace giving a flue gas containing 10·8% $\rm CO_2$, 3·8% $\rm O_2$ and rest $\rm N_2$ and inerts. Calculate :
 - a) The atomic ratio of H/C, and from this ratio, the formula of the fuel.
 - b) If the combustion gases leave the furnace at normal pressure and 430°C, calculate the volumetric ratio of flue gas/fuel gas.
 - c) If the furnace burns 90 kg of fuel/hr, calculate the volume of combustion gas in m³/min.
- 2. a) A furnace using a high grade petroleum fuel oil containing 5·4% sulphur. The flue gas is analyzed without prior removal of SO_2 which is therefore reported along with CO_2 , showing $13\cdot9$ % (CO_2+SO_2), $0\cdot4$ % CO, $0\cdot1$ % H_2 , $2\cdot4$ % O_2 and $83\cdot2$ % N_2 . What is the composition of the flue gas ?

4506(O) [Turn over

- b) A hydrocarbon gas on combustion gives out a flue gas of composition $CO_2-11\cdot6\%$, $CO-2\cdot0\%$, $H_2-1\cdot6\%$, $O_2-4\cdot2\%$ and rest N_2 . Calculate the % of excess air used. 8+6
- 3. a) An evaporator is fed with 14000 kg/hr of a solution containing 10% NaCl, 15% NaOH and rest water. During operation water is evaporated and NaCl is precipitated as crystals. The thick liquor leaving the evaporator contains 45% NaOH, 2% NaCl and rest water. Calculate:
 - (i) kg/hr water evaporated.
 - (ii) kg/hr salt precipitated.
 - (iii) kg/hr thick liquor produced.
 - b) Ethylene oxide is produced by oxidation of $\rm C_2H_4$.
 100 kg moles of $\rm C_2H_4$ are fed to a reactor and the product formed contains 80 kg mole ethylene oxide and 10 kg mole $\rm CO_2$. The reactions are as under :

$$C_2H_4 \to \frac{1}{2}O_2 \to C_2H_4O$$
(1)

$$C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O.....(2)$$

Calculate:

- (i) Conversion of C_2H_4 in percentage.
- (ii) Yield of oxide in percentage.

9 + 5

4506(O)

4. a) Calculate standard heat of formation of chloroform $\{CHCl_3(g)\}$ from its elements using Hess's law, given

$$H_2(g) + \frac{1}{2}O_2 \rightarrow H_2O(l) \dots \Delta H_2 = -68317 \text{ cals}$$

$$\frac{1}{2}\text{H}_2(g) + \frac{1}{2}\text{Cl}_2(g) \rightarrow \text{HCl } (aq) \dots \Delta H_3 = -40023 \text{ cals}$$

$$\mathrm{CHCl}_3(g) + \frac{1}{2}\mathrm{O}_2(g) + \mathrm{H}_2\mathrm{O}(l) \rightarrow$$

$$CO_2(g) + 3HCl (aq) \dots \Delta H_C = -121800 \text{ cals}$$

b) Calculate the heat of formation of ethane gas from the following reactions:

$$C(s) + O_2(g) \rightarrow CO_2(g) \dots \Delta H_1 = -94051$$
 cals

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)....\Delta H_2 = -68317 \text{ cals}$$

$$C_2H_6(g) + 3 \cdot 5O_2(g) \rightarrow 2CO_2(g) + 3H_2O(l)$$
.....

.....
$$\Delta H_C$$
 =-372820 cals

$$8 + 6$$

- 5. a) The feed containing 60 mole % A, 30 mol % B, and 10 mole % inerts enter a reactor. The product stream leaving the reactor is found to contain 2 mole % A. The reaction taking place is $2A + B \rightarrow C$. Find the % of original A getting converted to C.
 - b) A combustion reactor is fed with 50 kg mole of butane per hour and 2100 kg mole of air per hour. Calculate the % excess air.

The reaction is :
$$C_4H_{10} + \frac{13}{2}O_2 \rightarrow 4CO_2 + 5H_2O$$
.

$$7 + 7$$

CS/B.TECH(CT-OLD)/SEM-4/CT-404/2012

6. Calculate a glass batch to yield a glass of following composition:

 $SiO_2 - 68\%$, $Al_2O_3 - 2\%$, CaO - 13%, $Na_2O - 11\%$ and $K_2O - 6\%$

Using the following raw materials:

Sand (SiO $_2$ – 99%), Feldspar (SiO $_2$ – 65%, Al $_2$ O $_3$ – 19%, K $_2$ O – 16%); Limestone 98% pure and 2% SiO $_2$, K $_2$ CO $_3$ (K $_2$ O – 68%) and soda ash – 98% pure.

7. Calculate the batch composition of a glass with the oxide composition of ${\rm SiO_2}$ – 71%, ${\rm Na_2O}$ – 15%, ${\rm CaO}$ – 10%, ${\rm Al_2O_3}$ – 4% using the following raw materials :

Sand, feldspar, anhydrous soda ash and cullet (20%)

The cullet composition is $SiO_2 - 75\%$, $Na_2O - 15\%$, $CaO - 9 \cdot 5\%$ and $Al_2O_3 - 0 \cdot 5\%$.

8. The batch composition of a glaze is as follows in parts by weight:

Mill batch		Lead frit	Borax frit	
Lead frit	137·2 parts	PbO. 2SiO ₂	Borax	76·4 parts
Borax frit	131·2 parts		Whiting	20·0 parts
Whiting	10⋅0 parts		Feldspar	55·6 parts
China clay	51.6 parts		Flint	2·0 parts
Flint	36·0 parts			

Calculate the glaze formula.

14