

1

RECEIVED

JUL 11 2002

TECH CENTER 1600/2900

SEQUENCE LISTING

<110> Brunkow, Mary E.
Jeffery, Eric W.
Hjerrild, Kathryn A.
Ramsdell, Fred

(B)
<120> IDENTIFICATION OF THE GENE CAUSING THE
MOUSE SCURFY PHENOTYPE AND ITS HUMAN ORTHOLOG

<130> 240083.501D4

<140> US 09/697,340

<141> 2000-10-24

<160> 14

<170> FastSEQ for Windows Version 3.0

<210> 1

<211> 2160

<212> DNA

<213> Mus musculus

<400> 1

gctgatcccc	ctcttagcgt	ccacttcacc	aaggtagcg	agtgtccctg	ctctccccca	60
ccagacacag	ctctgctggc	gaaagtggca	gagaggtatt	gagggtgggt	gtcaggagcc	120
caccagtaca	gctggaaa	cccagccact	ccagctcccg	gcaacttctc	ctgactctgc	180
cttcagacga	gacttggaa	acagtcacat	ctcagcagct	cctctgcgtt	tatccagcct	240
gcctctgaca	agaacccaat	gcccaacccct	aggccagcca	agcctatggc	tccttccttg	300
gcccttggcc	catccccagg	agtcttgcca	agcttggaga	ctgcacccaa	gggctcagaa	360
cttcttaggaa	ccaggggctc	tgggggaccc	ttccaagggtc	gggacctgcg	aagtggggcc	420
cacaccttt	cttccttggaa	ccccctgcca	ccatcccagc	tgcagctgcc	tacagtggcc	480
ctagtcatgg	tggcaccgtc	tggggcccg	ctaggtccct	caccccacct	acaggccctt	540
ctccaggaca	gaccacactt	catgcatcag	ctctccactg	tggatgccc	tgcccagacc	600
cctgtgtccc	aagtgcgtcc	actggacaaac	ccagccatga	tcagcctccc	accaccttct	660
gctgccactg	gggtcttctc	cctcaaggcc	cggcctggcc	tgccacctgg	gatcaatgtg	720
gccagtctgg	aatgggtgtc	cagggagcca	gctctactct	gcaccttccc	acgctgggt	780
acacccagga	aagacagcaa	cctttggct	gcaccccaag	gatcctaccc	actgctggca	840
aatggagct	gcaagtggcc	tggttgttag	aaggcttgc	aggagccaga	agagtttctc	900
aagcaactgcc	aagcagatca	tctcctggat	gagaaaaggca	aggcccaagt	cctcctccag	960
agagaagttg	tgcagtctct	ggagcagcag	ctggagctgg	aaaaggagaa	gctgggagct	1020
atgcaggccc	acctggctgg	gaagatggcg	ctggccaagg	ctccatctgt	ggcctcaatg	1080
gacaagagct	cttgcgtcat	cgtageccacc	agtactcagg	gcagtgtgtc	cccgccctgg	1140
tctgtctccc	ggggggctcc	agacggccgc	ctgtttgcag	tgccggaggca	cctctgggg	1200
agccatggca	atagttcctt	cccagagttc	ttccacaaca	tggactactt	caagtaccac	1260
aatatgcac	cccctttcac	ctatgccacc	cttatccgt	ggccatccct	ggaagccccg	1320
gagaggcaga	ggacactcaa	tgaardtctac	cattggttta	ctcgcatgtt	cgctacttc	1380
agaaaccacc	ccgccaccc	gaagaatgcc	atccgccaca	acctgagct	gcacaagtgc	1440
tttgtgcgag	tggagagcga	gaaggggagca	gtgtggaccg	tagatgaatt	ttagtgcgc	1500
aagaagagga	gccaacgccc	caacaagtgc	tccaatccct	gcccctgacc	tcaaaaccaa	1560
aaaaaggtgg	gccccgggg	gggcaaaaac	catgagactg	aggctgtggg	ggaaggagg	1620
caagtccat	gtgtacctat	ggaaaccggg	cgatgatgt	cctgctatca	ggccctctgc	1680

tcccttatcta	gctgccctcc	tagatcatat	catctgcctt	acagctgaga	ggggtgccaa	1740
tcccagccta	gcccctagtt	ccaacctagc	cccaagatga	actttcoagt	caaagagccc	1800
tcacaaccag	ctatacatat	ctgccttggc	cactgccaag	cagaaagatg	acagacacca	1860
tcctaatatt	tactcaaccc	aaaccctaaa	acatgaagag	cctgccttgg	tacattcgta	1920
aacttcaaa	gttagtcatg	cagtcacaca	tgactgcagt	cctactgact	cacaccccaa	1980
agcactcacc	cacaacatct	ggaaccacgg	gcactatcac	acatagggt	atatacagac	2040
cttacacag	caacagcact	ggaaccttca	caattacatc	cccccaaacc	acacaggcat	2100
aactgatcat	acgcagcctc	aagcaatgcc	caaaatacaa	gtcagacaca	gcttgtcaga	2160

<210> 2
 <211> 429
 <212> PRT
 <213> Mus musculus

<400> 2					
Met	Pro	Asn	Pro	Arg	Pro Ala Lys Pro Met Ala Pro Ser Leu Ala Leu
1			5		10 15
Gly	Pro	Ser	Pro	Gly Val	Leu Pro Ser Trp Lys Thr Ala Pro Lys Gly
				20	25 30
Ser	Glu	Leu	Leu	Gly Thr Arg	Gly Ser Gly Gly Pro Phe Gln Gly Arg
	35			40	45
Asp	Leu	Arg	Ser	Gly Ala His	Thr Ser Ser Leu Asn Pro Leu Pro
	50			55	60
Pro	Ser	Gln	Leu	Gln Leu Pro	Thr Val Pro Leu Val Met Val Ala Pro
65			70		75 80
Ser	Gly	Ala	Arg	Leu Gly Pro	Ser Pro His Leu Gln Ala Leu Gln
	85			90	95
Asp	Arg	Pro	His	Phe Met His Gln	Leu Ser Thr Val Asp Ala His Ala
	100			105	110
Gln	Thr	Pro	Val	Leu Gln Val	Arg Pro Leu Asp Asn Pro Ala Met Ile
	115			120	125
Ser	Leu	Pro	Pro	Ser Ala Ala	Thr Gly Val Phe Ser Leu Lys Ala
	130			135	140
Arg	Pro	Gly	Leu	Pro Pro Gly Ile Asn Val	Ala Ser Leu Glu Trp Val
145			150		155 160
Ser	Arg	Glu	Pro	Ala Leu Leu Cys	Thr Phe Pro Arg Ser Gly Thr Pro
	165			170	175
Arg	Lys	Asp	Ser	Asn Leu Leu Ala Ala	Pro Gln Gly Ser Tyr Pro Leu
	180			185	190
Leu	Ala	Asn	Gly	Val Cys Lys	Trp Pro Gly Cys Glu Lys Val Phe Glu
	195			200	205
Glu	Pro	Glu	Glu	Phe Leu Lys His	Cys Gln Ala Asp His Leu Leu Asp
	210			215	220
Glu	Lys	Gly	Lys	Ala Gln Cys	Leu Leu Gln Arg Glu Val Val Gln Ser
225				230	235 240
Leu	Glu	Gln	Gln	Leu Glu Leu Glu Lys	Glu Lys Leu Gly Ala Met Gln
	245			250	255
Ala	His	Leu	Ala	Gly Lys Met	Ala Leu Ala Lys Ala Pro Ser Val Ala
	260			265	270
Ser	Met	Asp	Lys	Ser Ser Cys Cys	Ile Val Ala Thr Ser Thr Gln Gly
	275			280	285
Ser	Val	Leu	Pro	Ala Trp Ser	Ala Pro Arg Glu Ala Pro Asp Gly Gly
	290			295	300
Leu	Phe	Ala	Val	Arg Arg His	Leu Trp Gly Ser His Gly Asn Ser Ser
305				310	315 320
Phe	Pro	Glu	Phe	Phe His Asn Met	Asp Tyr Phe Lys Tyr His Asn Met
	325			330	335

Arg Pro Pro Phe Thr Tyr Ala Thr Leu Ile Arg Trp Ala Ile Leu Glu
 340 345 350
 Ala Pro Glu Arg Gln Arg Thr Leu Asn Glu Ile Tyr His Trp Phe Thr
 355 360 365
 Arg Met Phe Ala Tyr Phe Arg Asn His Pro Ala Thr Trp Lys Asn Ala
 370 375 380
 Ile Arg His Asn Leu Ser Leu His Lys Cys Phe Val Arg Val Glu Ser
 385 390 395 400
 Glu Lys Gly Ala Val Trp Thr Val Asp Glu Phe Glu Phe Arg Lys Lys
 405 410 415
 Arg Ser Gln Arg Pro Asn Lys Cys Ser Asn Pro Cys Pro
 420 425

<210> 3
 <211> 1869
 <212> DNA
 <213> Homo sapien

<400> 3

gcacacac	atcgaaaaaa	atttggatta	ttagaagaga	gagggtctgcg	gcttccacac	60
cgtacagcgt	ggttttctt	ctcggtataa	aagcaaagtt	gtttttgata	cgtgacagtt	120
tcccacaagc	caggctgate	cttttctgtc	agtccacttc	accaagcctg	cccttggaca	180
aggaccgc	gcccaacccc	aggcctggca	agccctcgcc	cccttccttg	gccctggcc	240
catccccagg	agcctcgccc	agctggaggg	ctgcacccaa	agcctcagac	ctgtctgggg	300
cccgcccccc	aggggaaacc	ttccaggggcc	gagatcttcg	aggcggggcc	catgcctcct	360
cttcttcctt	gaaccccatg	ccaccatcgc	agctgcagct	gcccacactg	ccccctagtca	420
ttgtggcacc	ctccgggca	cggctggcc	ccttgc	tttacaggca	ctccctccagg	480
acaggccaca	tttcatgcac	cagctctcaa	cggtggatgc	ccacgcccgg	accctgtgc	540
tgcaggtgca	ccccctggag	agcccagcca	tgatcagct	cacaccaccc	accacccgcca	600
ctggggtctt	ctccctcaag	gcccggctg	gcctcccacc	tggatcaac	gtggccagcc	660
ttgaatgggt	gtccaggag	ccggcactgc	tctgcacctt	cccaaatccc	agtgcaccca	720
gaaaggacag	cacccttcg	gctgtgcccc	agagtccta	cccaactgctg	gcaaattggtg	780
tctgcaagt	gcccggatgt	gagaaggct	togaagagcc	agaggacttc	ctcaagact	840
gccaggcgg	ccatcttctg	gatgagaagg	gcagggcaca	atgtctcctc	cagagagaga	900
ttgtacagtc	tctggagcag	cagctggtc	tggagaagga	gaagctgagt	gcatgcagg	960
cccacctg	ttggaaaatg	gactgacca	aggcttcattc	tgtggatca	tccgacaaagg	1020
gctcctgct	catctgatct	gctggcagcc	aaggccctgt	cgtcccgagcc	tggctggcc	1080
cccgggag	ccctgacagc	ctgttgcgt	tccggaggca	cctgtgggt	agccatggaa	1140
acagcacatt	cccagagttc	ctccacaaca	tggactactt	caagttcac	aatatgcac	1200
ccccttac	ctacgcccac	ctcatccgt	ggccatcct	ggaggctcca	gagaagcago	1260
ggacactcaa	tgagatctac	caactggtca	cacgcattt	tgccttcttc	agaaaccatc	1320
ctgccacct	gaagaacg	atccgcaca	acctgagtt	gcacaagtgc	tttgtgcggg	1380
ttggagagc	gaaggggct	gtgtggaccg	tggatgagct	ggagttccgc	aagaaacgga	1440
gccagaggc	cagcagggt	tccaacccta	cacctggccc	ctgacctcaa	gatcaaggaa	1500
aggaggatgg	acgaacaggg	gccaaactgg	tggaggcag	aggtgggtgg	ggcaggatg	1560
ataggccct	gatgtgccc	cagggacc	gaagtggat	ttccactgtc	ttgcctgcca	1620
ggggccctgt	tcccccgt	gcagccaccc	cctcccccatt	cataatcc	gccccaaaggc	1680
tgctcagagg	ggccccggc	ctggcccccag	cccccacctc	cgcggccagac	acacccccc	1740
gtcgagccct	gcagccaaac	agacgcctca	caaccagcca	cacagac	gcctcagct	1800
ctcgcacaga	ttacttcagg	gctggaaaag	tcacacagac	acacaaaatg	tcacaatcc	1860
gtccctcac						1869

<210> 4
 <211> 431
 <212> PRT
 <213> Homo sapien

<400> 4
 Met Pro Asn Pro Arg Pro Gly Lys Pro Ser Ala Pro Ser Leu Ala Leu
 1 5 10 15
 Gly Pro Ser Pro Gly Ala Ser Pro Ser Trp Arg Ala Ala Pro Lys Ala
 20 25 30
 Ser Asp Leu Leu Gly Ala Arg Gly Pro Gly Gly Thr Phe Gln Gly Arg
 35 40 45
 Asp Leu Arg Gly Gly Ala His Ala Ser Ser Ser Leu Asn Pro Met
 50 55 60
 Pro Pro Ser Gln Leu Gln Leu Pro Thr Leu Pro Leu Val Met Val Ala
 65 70 75 80
 Pro Ser Gly Ala Arg Leu Gly Pro Leu Pro His Leu Gln Ala Leu Leu
 85 90 95
 Gln Asp Arg Pro His Phe Met His Gln Leu Ser Thr Val Asp Ala His
 100 105 110
 Ala Arg Thr Pro Val Leu Gln Val His Pro Leu Glu Ser Pro Ala Met
 115 120 125
 Ile Ser Leu Thr Pro Pro Thr Thr Ala Thr Gly Val Phe Ser Leu Lys
 130 135 140
 Ala Arg Pro Gly Leu Pro Pro Gly Ile Asn Val Ala Ser Leu Glu Trp
 145 150 155 160
 Val Ser Arg Glu Pro Ala Leu Leu Cys Thr Phe Pro Asn Pro Ser Ala
 165 170 175
 Pro Arg Lys Asp Ser Thr Leu Ser Ala Val Pro Gln Ser Ser Tyr Pro
 180 185 190
 Leu Leu Ala Asn Gly Val Cys Lys Trp Pro Gly Cys Glu Lys Val Phe
 195 200 205
 Glu Glu Pro Glu Asp Phe Leu Lys His Cys Gln Ala Asp His Leu Leu
 210 215 220
 Asp Glu Lys Gly Arg Ala Gln Cys Leu Leu Gln Arg Glu Met Val Gln
 225 230 235 240
 Ser Leu Glu Gln Leu Val Leu Glu Lys Glu Lys Leu Ser Ala Met
 245 250 255
 Gln Ala His Leu Ala Gly Lys Met Ala Leu Thr Lys Ala Ser Ser Val
 260 265 270
 Ala Ser Ser Asp Lys Gly Ser Cys Cys Ile Val Ala Ala Gly Ser Gln
 275 280 285
 Gly Pro Val Val Pro Ala Trp Ser Gly Pro Arg Glu Ala Pro Asp Ser
 290 295 300
 Leu Phe Ala Val Arg Arg His Leu Trp Gly Ser His Gly Asn Ser Thr
 305 310 315 320
 Phe Pro Glu Phe Leu His Asn Met Asp Tyr Phe Lys Phe His Asn Met
 325 330 335
 Arg Pro Pro Phe Thr Tyr Ala Thr Leu Ile Arg Trp Ala Ile Leu Glu
 340 345 350
 Ala Pro Glu Lys Gln Arg Thr Leu Asn Glu Ile Tyr His Trp Phe Thr
 355 360 365
 Arg Met Phe Ala Phe Phe Arg Asn His Pro Ala Thr Trp Lys Asn Ala
 370 375 380
 Ile Arg His Asn Leu Ser Leu His Lys Cys Phe Val Arg Val Glu Ser
 385 390 395 400
 Glu Lys Gly Ala Val Trp Thr Val Asp Glu Leu Glu Phe Arg Lys Lys
 405 410 415
 Arg Ser Gln Arg Pro Ser Arg Cys Ser Asn Pro Thr Pro Gly Pro
 420 425 430

<211> 23
<212> DNA
<213> Artificial Sequence

(B) cont'd
<220>
<223> Primer for generation of mouse Fkh cDNA

<400> 5
gcagatctcc tgactctgcc ttc 23

<210> 6
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for generation of mouse Fkh cDNA

<400> 6
gcagatctga caagctgtgt ctg 23

<210> 7
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for generation of human Fkh cDNA

<400> 7
agcctgccct tggacaagga c 21

<210> 8
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for generation of human Fkh cDNA

<400> 8
gcaagacagt ggaaacctca c 21

<210> 9
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for PCR amplification of mouse Fkh cDNA

<400> 9
ctaccctactg ctggcaaattg 20

<210> 10
<211> 23
<212> DNA

<213> Artificial Sequence
 <220>
 <223> Primer for PCR amplification of mouse Fkh cDNA
 <400> 10
 gaaggaacta ttgccatggc ttc 23

<210> 11
 <211> 28
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Oligonucleotide for hybridization reaction
 <400> 11
 atgcagcaag agctcttgc cattgagg 28

/
*B1
cont*
 <210> 12
 <211> 28
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Oligonucleotide for hybridization reaction
 <400> 12
 gcagcaagag ctctttgtc cattgagg 28

<210> 13
 <211> 22
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Primer for amplification of Fkh cDNA
 <221> modified_base
 <222> (7)...(7)
 <223> I
 <400> 13
 catcggnag atgctaagat gg 22

<210> 14
 <211> 28
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Primer for amplification of Fkh cDNA
 <400> 14
 gaaaccagat tagtaagtat cttcgatt 28