Assignment # 4

Marco Gonzalez

1.

Theorem. The function $f: A \to B$ is injective if and only if $C = f^{-1}(f(C))$ for all subsets $C \subseteq A$.

Proof. Assume $f:A\to B$ is injective. We show $C=f^{-1}(f(C))$ for all subsets $C\subseteq A$. Let $C\subseteq A$. Assume $x\in C$. We show $x\in f^{-1}(f(C))$. Since $x\in C$, by definition of image, $f(x)\in f(C)$. By definition of inverse image, $x\in f^{-1}(f(C))$. We assume $x\in f^{-1}(f(C))$. We show $x\in C$. Since $x\in f^{-1}(f(C))$, by definition of inverse image $f(x)\in f(C)$. By definition of image, f(x)=f(a) for $a\in C$. Since f is injective, by definition of injective, x=a. Therefore since $a\in C$, $x\in C$.

Assume $C = f^{-1}(f(C))$ for all subsets $C \subseteq A$. We show f is injective. Let $a_1 \in A$ and $a_2 \in A$. Assume $f(a_1) = f(a_2)$, we show $a_1 = a_2$. Let $C = \{a_1\}$. By definition of image $f(a_1) \in f(C)$. Since $f(a_1) = f(a_2)$, $f(a_2) \in f(C)$. Because $f(a_2) \in f(C)$, $a_2 \in f^{-1}(f(C))$. Since $C = f^{-1}(f(C))$, $f^{-1}(f(C)) = \{a_1\}$. Seeing that $a_2 \in f^{-1}(f(C))$ and $f^{-1}(f(C)) = \{a_1\}$, $a_1 = a_2$. Therefore f is injective.

2.

Theorem. The function $f: A \to B$ is surjective if and only if $D = f(f^{-1}(D))$ for all subsets $D \subseteq B$.

Proof. Assume $f:A\to B$ is surjective. Show $D=f(f^{-1}(D))$ for all subsets $D\subseteq B$. Let $D\subseteq B$. Assume $x\in D$. We show $x\in f(f^{-1}(D))$. Since $x\in D$ and f is surjective there exists some $a\in A$ such that f(a)=x. Furthermore, $f(a)\in D$. Therefore $a\in f^{-1}(D)$. Since $a\in f^{-1}(D)$, $f(a)\in f(f^{-1}(D))$. Consequently, $x\in f(f^{-1}(D))$.

Assume $x \in f(f^{-1}(D))$ for all subsets $D \subseteq B$. We show $x \in D$.

Because $x \in f(f^{-1}(D))$, by definition of image, f(a) = x for some $a \in f^{-1}(D)$. By definition of inverse image, $f(a) \in D$. Therefore $x \in D$.

Assume $D = f(f^{-1}(D))$ for all subsets $D \subseteq B$. We show f is surjective.

Let $b \in B$. We produce $a \in A$ such that f(a) = b and $D = \{b\}$. Because $D = f(f^{-1}(D))$, by definition of the inverse image there exists an $a \in C$ such that f(a) = b. Therefore f is surjective.