Solutions cnoïdales de l'équation KdV

On regarde quelles sont les solutions autres que solitons de l'équation de Korteweg-de Vries (KdV) dans le cas général, sur l'axe réel et dans le cas des ondes se propageant vers la droite. On s'intéressera ensuite au cas du tore \mathbb{T}^1 , en cherchant les ondes cnoïdales ayant pour période spatiale $T^{\xi} = 2\pi/n$.

Rappels

Intégrales elliptiques E, F, K

On définit les intégrales elliptiques de 1^{re} et de 2^e espèce, incomplètes ou complètes comme

$$E(\phi|m) = \int_0^{\phi} \sqrt{1 - m\sin^2 x} \, dx, \qquad E(m) = \int_0^{\frac{\pi}{2}} \sqrt{1 - m\sin^2 x} \, dx, \qquad (1)$$

$$F(\phi|m) = \int_0^{\phi} \frac{dx}{\sqrt{1 - m\sin^2 x}}, K(m) = \int_0^{\frac{\pi}{2}} \frac{dx}{\sqrt{1 - m\sin^2 x}}. (2)$$

et l'on rappelle les développements limités ou asymptotiques suivants des intégrales complètes :

$$E(m) = \frac{\pi}{m \to 0^{+}} \frac{\pi}{2} - \frac{\pi}{8} m + \mathcal{O}(m^{2})$$
(3)

$$K(m) = \frac{\pi}{m \to 0^{+}} \frac{\pi}{2} + \frac{\pi}{8} m + \mathcal{O}(m^{2})$$
(4)

$$E(m = 1 - \mu) = 1 + \frac{\mu}{4} \left[-\log(\mu) - 1 + 4\log(2) \right] + \mathcal{O}\left(\mu^2\right)$$
 (5)

$$K(m = 1 - \mu) = \sum_{m \to 1^{-}} \left[2\log(2) - \frac{\log(\mu)}{2} \right] + \frac{\mu}{8} \left[-\log(\mu) - 2 + 4\log(2) \right] + \mathcal{O}\left(\mu^{2}\right)$$
 (6)

Fonctions cn, sn, dn, am

On fixe m. Si l'on a $u = F(\varphi|m)$ qui est une fonction \mathscr{C}^{∞} de φ , strictement croissante, alors on définit les fonctions elliptiques de Jacobi comme

$$am(u|m) \stackrel{\text{def}}{=} \varphi = F^{-1}(u|m), \tag{7}$$

$$\operatorname{cn}(u|m) \stackrel{\text{def}}{=} \cos \varphi = \cos[\operatorname{am}(u|m)], \tag{8}$$

$$\operatorname{sn}(u|m) \stackrel{\text{def}}{=} \sin \varphi = \sin[\operatorname{am}(u|m)], \tag{9}$$

$$dn(u|m) \stackrel{\text{def}}{=} \sqrt{1 - m\sin^2\varphi} = \sqrt{1 - m\sin^2[\text{am}(u|m)]}.$$
(10)

1 Propriétés de l'équation KdV en domaine infini (sur $\mathbb R$)

On part de l'équation de Korteweg–de Vries pour des ondes se propageant vers la droite, écrite sous la forme

$$\eta_t + c_0 \left[(1 + B\eta) \eta_x + D\eta_{xxx} \right] = 0. \tag{11}$$

En matière de dimension, on a $[B] = L^{-1}$ et $[D] = L^2$.

Régime linéaire : On a $\eta_t + c_0 [\eta_x + D\eta_{xxx}] = 0$. On pose $\eta(x,t) = \varepsilon \exp[i(kx - \omega t)]$ et l'on retrouve la relation de dispersion

$$\omega = c_0 \left[k - Dk^3 \right]. \tag{12}$$

Quand D est négatif, on est en régime capillaire (relation de dispersion convexe). Quand D est positif, on est en régime gravitaire (relation de dispersion non convexe).

Symétries : Pour $t \mapsto -t$ (renversement du temps), l'équation devient

$$\eta_t - c_0 \left[(1 + B\eta) \eta_x + D\eta_{xxx} \right] = 0. \tag{13}$$

et l'on s'occupe alors de solutions se propageant vers la gauche. Elles sont les mêmes que vers la droite sous la transformation $t \mapsto -t$ et $x \mapsto -x$.

2 Recherche des solutions cnoïdales

Les calculs suivants sont tirés du chapitre 5 (p. 529) de la thèse de M. W. Dingemans (1994) , plus spécifiquement de la section 5.4, *Periodic Waves*, p. 546.

On cherche des solutions en translation uniforme qui s'écrivent

$$\eta(x,t) = \eta(\xi(x,t)) \qquad \text{avec } \xi(x,t) = x - vc_0 t \tag{14}$$

et telles qu'elles soient spatialement périodiques si bien que (11) donne

$$c_0[(1-v+B\eta)\eta_{\xi}+D\eta_{\xi\xi\xi}]=0.$$
 (15)

ce qui donne, en intégrant sur ξ

$$c_0 \left[(1 - v)\eta + \frac{B}{2}\eta^2 + D\eta_{\xi\xi} \right] = -c_0 C_1.$$
 (16)

avec C_1 donné par les conditions aux limites d'intégration, donc donné intrinsèquement par les solutions à trouver elles-mêmes pour être auto-cohérent. On obtient alors une équation de Newton

$$\eta_{\xi\xi} = -\frac{1}{D} \left[C_1 + (1 - v)\eta + \frac{B}{2}\eta^2 \right] = -\frac{\mathrm{d}W}{\mathrm{d}\eta}.$$
(17)

avec le potentiel $W(\eta)$ qui s'écrit (à une constante près)

$$W(\eta) = \frac{1}{D} \left[C_1 \eta + \frac{1}{2} (1 - v) \eta^2 + \frac{B}{6} \eta^3 \right].$$
 (18)

On a donc, par quadrature, en multipliant par η_ξ puis en intégrant sur ξ

$$\frac{1}{2}\eta_{\xi}^{2} + W(\eta) = \mathcal{E}_{0} = \mathcal{H}(q, p). \tag{19}$$

avec \mathcal{H} le hamiltonien de variable conjuguées « cartésiennes » $(q,p) \equiv (\eta,\eta_{\xi})$ d'une particule de masse unité dans un potentiel $W(\eta)$. Comparé au cas soliton KdV, une partie linéaire a été ajoutée $(C_1 \neq 0)$, correspondant au fait qu'on ne cherche plus de solutions localisées, mais des solutions périodiques. Cela a pour conséquence que $\eta = 0$ ne sera plus racine double du problème $W(\eta) = \mathcal{E}_0$.

La question sera de savoir si en passant en coordonnée azimutale, on peut avoir des solutions périodiques avec une période spatiale $T^{\xi}=2\pi$ (sans qu'il s'agisse de « la » période, i.e. la plus petite des périodes).

Étude du potentiel W

C'est une fonction polynomiale cubique, elle sera soit monotone, soit possèdera un minimum local et un maximum local, que l'on notera η_{\pm} et qui vérifient l'équation $W'(\eta_{\pm})=0$, i.e.

$$C_1 + (1 - v)\eta_{\pm} + \frac{B}{2}\eta_{\pm}^2 = 0.$$
 (20)

On doit pour cela avoir un discriminant positif strictement, soit

$$\Delta = (1 - v)^2 - 2BC_1 > 0. \tag{21}$$

^{1.} M. W. DINGEMANS, Water wave propagation over uneven bottoms (1994), disponible à l'adresse : http://resolver.tudelft.nl/uuid:67580088-62af-4c6f-b32e-b3940584e5d2

Si la condition est satisfaite, on a alors

$$\eta_{\pm} = \frac{(v-1) \pm \sqrt{(v-1)^2 - 2BC_1}}{B}.$$
(22)

La convexité en ces points sera donnée par le signe de $W''(\eta_{\pm})$ et vaut

$$W''(\eta_{\pm}) = \frac{1}{D} \left[(1 - v) + B\eta_{\pm} \right] = \pm \frac{1}{D} \sqrt{(v - 1)^2 - 2BC_1}.$$
 (23)

Sachant que par hypothèse, le terme sous la racine carrée est positif, le fait d'être un maximum local en η_{max} (l'un des deux cas où $W''(\eta_{\pm}) < 0$) ou un minimum local en η_{min} (l'un des deux cas où $W''(\eta_{\pm}) > 0$) sera donné par le signe de D.

On notera $\mathcal{E}_{\min} = W(\eta_{\min})$ et $\mathcal{E}_{\max} = W(\eta_{\max})$. Vu l'allure du potentiel $W(\eta)$, on doit donc osciller en fond de potentiel, autour du minimum local η_{\min} .

Pour des excursions proches du minimum, on a des solutions très proches des sinusoïdes, celles pour qui $\mathcal{E}_0 \gtrsim \mathcal{E}_{\min}$. Pour $\mathcal{E} = \mathcal{E}_{\max}$, on est sur une séparatrice homocline et la période tend vers l'infini. Entre les deux, on aura des solutions spatialement périodiques. On passe des orbites sinusoïdales à des orbites de période « infinie ». L'ensemble de ces orbites correspondant aux ondes cnoïdales.

Question : Peut-on avoir une période qui soit de la forme $2\pi/n$?

Rappel: Pour un hamiltonien qui vaut

$$H(q,p) = \frac{1}{2}p^2 + \frac{1}{2}\Omega^2 q^2, \tag{24}$$

on a un oscillateur harmonique dont la pulsation vaut Ω^2 . Sa période vaut ainsi $T = 2\pi/\Omega$. Au voisinage de η_{\min} , la période spatiale vaut ainsi

$$T^{\xi} = \frac{2\pi}{\sqrt{W''(\eta_{\min})}} = \frac{2\pi|D|^{1/2}}{\left[(v-1)^2 - 2BC_1\right]^{1/4}} = \frac{2\pi|D|^{1/2}}{\left[\Delta\right]^{1/4}}.$$
 (25)

Cette quantité donne une borne inférieure de la période spatiale. Si elle est supérieure ou égale à 2π , cela interdit des solutions périodiques.

Remarque : D peut être petit, mais Δ aussi. En revanche, Δ peut être arbitrairement grand pourvu que l'on ait $-BC_1 \gg 1$, donc dans le cas B > 0, pourvu que l'on ait $C_1 \ll -1/B$.

Contraintes sur les solutions : dans la mesure où notre supposée équation de KdV périodique concerne des perturbations de la surface libre, il faudra s'assurer que sur une période T^{ξ} , les variations d'élévation ont pour valeur moyenne zéro, i.e.

$$\int_0^{T^{\xi}} \eta(x) \, \mathrm{d}x = 0. \tag{26}$$

Cela implique implicitement que l'on oscille entre les valeurs $\eta_1 \leq \eta(\xi) \leq \eta_2$ avec $\eta_1 < 0$ et $\eta_2 > 0$, sachant que ces deux valeurs vérifient $W(\eta_1) = W(\eta_2) = \mathcal{E}_0$, les creux ou bosses marqués des cnoïdales correspondant à η_{\min} . On sera proche de l'homocline et l'on passera donc beaucoup de « temps » ξ près de η_{\max} .

2.1 Cas standard (B > 0, D > 0) et élévations (a priori supersoniques)

On suppose le cas KdV standard où (B > 0, D > 0) et pour lequel, on a v > 1 pour les solitons en élévation (supersoniques).

Cas à éliminer (a priori) : $C_1 > 0$ Dans le cas où $C_1 > 0$, on a

$$\eta_{\text{max}} = \eta_{-} > 0, \tag{27}$$

$$\eta_{\min} = \eta_{+} > \eta_{-} > 0.$$
(28)

On oscillera donc entre des valeurs de η positives (cf. Fig. 1 (a)). Ce n'est pas ce que nous recherchons comme solution. On a écrit en tête de paragraphe qu'on éliminait ce cas a priori. En fait, on pourra le garder dans le cas v-1<0 (cf. conclusions).

FIGURE 1 – Notations et allure des potentiels dans le cas D > 0 et B > 0, pour (a) $C_1 > 0$ et (b) $C_1 < 0$.

On va donc supposer dorénavant que $C_1 < 0$. Sous ces conditions, on a

$$\eta_{\text{max}} = \eta_{-} < 0, \tag{29}$$

$$\eta_{\min} = \eta_{+} > 0. \tag{30}$$

On va choisir \mathcal{E}_0 dans l'intervalle $]\mathcal{E}_{\min}, \mathcal{E}_{\max}[$. L'équation $W(\eta) = \mathcal{E}_0$ possède trois solutions $\eta_3 < \eta_1 < \eta_2$ et l'orbite recherchée sera telle que $\eta \in [\eta_1, \eta_2]$. L'un des présupposés concernant η_1 sera tel que $\eta_1 < 0$ (cf. Fig. 1 (b)). Sachant que W(0) = 0, cela implique donc $0 < \mathcal{E}_0 < \mathcal{E}_{\max}$. On doit maintenant résoudre l'équation

$$\frac{1}{2} \left(\frac{\mathrm{d}\eta}{\mathrm{d}\xi} \right)^2 = \mathcal{E}_0 - W(\eta) \equiv -\frac{B}{6D} (\eta - \eta_1)(\eta - \eta_2)(\eta - \eta_3). \tag{31}$$

Notons qu'en tant que polynome d'ordre 3, on a, par identification du terme de degré 2

$$+\frac{B}{6D}(\eta_1 + \eta_2 + \eta_3) = \frac{1}{2D}(1-v) \tag{32}$$

soit la relation sur la vitesse

$$v = 1 + \frac{B}{3}(\eta_1 + \eta_2 + \eta_3). \tag{33}$$

De plus, on a

$$\lim_{\mathcal{E}_0 \to \mathcal{E}^-} \eta_1 = \eta_{\text{max}},\tag{34}$$

$$\lim_{\mathcal{E}_0 \to \mathcal{E}_{\text{max}}^-} \eta_3 = \eta_{\text{max}}. \tag{35}$$

et de manière symétrique (mais ce cas sera à exclure, car η_1 doit rester négatif)

$$\lim_{\mathcal{E}_0 \to \mathcal{E}_{\min}^+} \eta_1 = \eta_{\min},\tag{36}$$

$$\lim_{\mathcal{E}_0 \to \mathcal{E}_{\min}^+} \eta_2 = \eta_{\min}. \tag{37}$$

Par la suite, nous poserons

$$\eta(\xi) = \eta_2 \cos^2 \Psi(\xi) + \eta_1 \sin^2 \Psi(\xi) \qquad (= \eta_2 + (\eta_1 - \eta_2) \sin^2 \Psi = \eta_1 + (\eta_2 - \eta_1) \cos^2 \Psi), \tag{38}$$

et l'on a alors

$$\eta(\xi) - \eta_1 = (\eta_2 - \eta_1)\cos^2 \Psi(\xi),\tag{39}$$

$$\eta(\xi) - \eta_2 = (\eta_1 - \eta_2)\sin^2 \Psi(\xi),\tag{40}$$

$$\eta(\xi) - \eta_3 = (\eta_2 - \eta_3) - (\eta_2 - \eta_1)\sin^2 \Psi(\xi). \tag{41}$$

De fait, on a les deux expressions suivantes :

$$\frac{\mathrm{d}\eta}{\mathrm{d}\xi} = 2(\eta_2 - \eta_1)\cos\Psi\sin\Psi\frac{\mathrm{d}\Psi}{\mathrm{d}\xi},\tag{42}$$

$$-\frac{B}{6D}(\eta - \eta_1)(\eta - \eta_2)(\eta - \eta_3) = \frac{B}{6D}(\eta_2 - \eta_1)^2 \cos^2 \Psi \sin^2 \Psi \left[(\eta_2 - \eta_3) - (\eta_2 - \eta_1) \sin^2 \Psi \right], \tag{43}$$

et (31) donne ainsi

$$2\left\{ (\eta_2 - \eta_1)^2 \cos^2 \Psi \sin^2 \Psi \right\} \left(\frac{d\Psi}{d\xi} \right)^2 = \frac{B(\eta_2 - \eta_3)}{6D} \left\{ \cos^2 \Psi \sin^2 \Psi (\eta_2 - \eta_1)^2 \right\} \left[1 - m \sin^2 \Psi \right]$$
(44)

avec

$$m = \frac{\eta_2 - \eta_1}{\eta_2 - \eta_3} = \frac{H}{\eta_2 - \eta_3} \in]0, 1[], \tag{45}$$

ce qui donne après simplification

$$2\left(\frac{\mathrm{d}\Psi}{\mathrm{d}\xi}\right)^2 = \frac{B(\eta_2 - \eta_3)}{6D} \left[1 - m\sin^2\Psi\right],\tag{46}$$

soit

$$d\xi = \sqrt{\frac{12D}{B(\eta_2 - \eta_3)}} \times \frac{d\Psi}{\sqrt{1 - m\sin^2\Psi}},\tag{47}$$

soit

$$\xi(\Psi) = \sqrt{\frac{12D}{B(\eta_2 - \eta_3)}} \int_0^{\Psi} \frac{d\psi}{\sqrt{1 - m\sin^2\psi}} = \sqrt{\frac{12D}{B(\eta_2 - \eta_3)}} F(\Psi|m), \tag{48}$$

avec F la fonction elliptique incomplète de première espèce. Les fonction cnoïdales se définissent alors comme

$$\cos \Psi(\xi) = \operatorname{cn}\left(\frac{\xi}{\Lambda}\middle| m\right), \qquad \sin \Psi(\xi) = \operatorname{sn}\left(\frac{\xi}{\Lambda}\middle| m\right).$$
 (49)

avec

$$\Lambda = 2\sqrt{\frac{3D}{B(\eta_2 - \eta_3)}}. (50)$$

On obtient in fine

$$\eta(\xi) = \eta_1 + (\eta_2 - \eta_1) \operatorname{cn}^2 \left(\frac{\xi}{\Lambda} \middle| m \right).$$
 (51)

Période spatiale : La période spatiale T^{ξ} est telle que

$$T^{\xi} = 2\Lambda F\left(\Psi = \frac{\pi}{2} \middle| m\right) = 2\Lambda K(m) = 4\sqrt{\frac{3D}{B(\eta_2 - \eta_3)}} K(m), \tag{52}$$

où K(m) désigne la fonction elliptique complète de première espèce. Pour mémoire, on a

$$K(m = 1 - \mu) = 2 \log 2 - \frac{1}{2} \log \mu + \mathcal{O}(\mu). \tag{53}$$

Enfin, la condition (26) de moyenne nulle s'écrit (par symétrie)

$$0 = \int_0^{\frac{1}{2}T^{\xi}} \left[\eta_1 + (\eta_2 - \eta_1) \operatorname{cn}^2 \left(\frac{\xi}{\Lambda} \middle| m \right) \right] d\xi = \int_0^{\frac{\pi}{2}} \left[\eta_1 + (\eta_2 - \eta_1) \cos^2 \Psi \right] \left(\frac{d\xi}{d\Psi} \right) d\Psi$$
 (54)

$$= \Lambda \int_0^{\frac{\pi}{2}} \frac{\eta_1 + (\eta_2 - \eta_1) \cos^2 \Psi}{\sqrt{1 - m \sin^2 \Psi}} d\Psi$$
 (55)

Enfin, on a

$$\eta_1 + (\eta_2 - \eta_1)\cos^2 \Psi = \eta_2 - (\eta_2 - \eta_1)\sin^2 \Psi = \eta_2 + (\eta_2 - \eta_3)(1 - m\sin^2 \Psi - 1)$$
(56)

$$= \eta_3 + (\eta_2 - \eta_3)(1 - m\sin^2\Psi) = \eta_3 + \frac{\eta_2 - \eta_1}{m}(1 - m\sin^2\Psi)$$
 (57)

d'où la condition (26) de moyenne nulle qui devient

$$0 = \Lambda \int_0^{\frac{\pi}{2}} \frac{\eta_3 + \frac{\eta_2 - \eta_1}{m} (1 - m \sin^2 \Psi)}{\sqrt{1 - m \sin^2 \Psi}} d\Psi$$
 (58)

soit la relation

$$\frac{\eta_2 - \eta_1}{m} E(m) = -\eta_3 K(m),$$
 (59)

ce qui est cohérent dans la mesure où par hypothèse, on a : $\eta_2 - \eta_1 > 0$ et $\eta_3 < 0$.

2.1.1 Relations entre paramètres

Comme pour la solution soliton de KdV, nous allons regarder les relations entre les paramètre physiques que sont

- la hauteur $H = \eta_2 \eta_1$;
- la période T^{ξ} ;
- la vitesse v;

et les autres paramètres introduits dans le problème (B, D, m, Λ) .

Pour rappel, on a les relations suivantes, données respectivement par (33, 45, 50, 52, 59)

$$v = 1 + \frac{B}{3}(\eta_1 + \eta_2 + \eta_3) \tag{60}$$

$$m = \frac{H}{\eta_2 - \eta_3} \tag{61}$$

$$\Lambda = 2\sqrt{\frac{3Dm}{BH}}\tag{62}$$

$$T^{\xi} = 4\sqrt{\frac{3Dm}{BH}} \,\mathrm{K}(m) \tag{63}$$

$$\eta_3 = -\frac{H}{m} \frac{\mathcal{E}(m)}{\mathcal{K}(m)} \tag{64}$$

$$H = \eta_2 - \eta_1 \tag{65}$$

De (61) et (64), on tire les expressions suivantes

$$\eta_2 = \eta_3 + \frac{H}{m} = \frac{H}{m} \left[1 - \frac{E(m)}{K(m)} \right],$$
(66)

$$\eta_1 = \eta_2 - H = \frac{H}{m} \left[1 - m - \frac{E(m)}{K(m)} \right].$$
(67)

Sur la figure 2 sont tracées les allures de η_1 et η_2 en fonction du paramètre m, ainsi que la vitesse v sous la forme de la quantité 3m(v-1)/(2BH). On voit qu'on peut être subsonique pour de petits m.

FIGURE 2 – En fonction de m, allure de $\eta_1(m)$ et $\eta_2(m)$ adimensionnés ainsi avec (a) en échelle linéaire et (b) en échelle log–lin en fonction de $\mu = 1 - m$, allure de 3m(v-1)/(2BH).

2.1.2 Synthèse D>0

En pratique, on mesure la hauteur H et la période T^{ξ} ce qui nous permet d'en déduire un certain paramètre m et l'on a alors les relations suivantes

$$T^{\xi} = 4\sqrt{\frac{3Dm}{BH}} \,\mathrm{K}(m),\tag{68}$$

$$v = 1 + \frac{2BH}{3m} \left[1 - \frac{m}{2} - \frac{3}{2} \frac{E(m)}{K(m)} \right].$$
 (69)

et le signal est donné par

$$\eta(\xi) = \eta_1 + H \operatorname{cn}^2\left(\frac{\xi}{\Lambda} \middle| m\right),\tag{70}$$

$$H = \eta_2 - \eta_1 > 0, (71)$$

$$\eta_1 = \frac{H}{m} \left[1 - m - \frac{\mathbf{E}(m)}{\mathbf{K}(m)} \right],\tag{72}$$

$$\eta_2 = \frac{H}{m} \left[1 - \frac{\mathbf{E}(m)}{\mathbf{K}(m)} \right],\tag{73}$$

$$\eta_3 = -\frac{H}{m} \frac{\mathcal{E}(m)}{\mathcal{K}(m)},\tag{74}$$

$$\Lambda = 2\sqrt{\frac{3Dm}{BH}}. (75)$$

Le système autorise bien des solutions subsoniques, pour de petits m. On voit en fait en matière de potentiel effectif W que l'on peut bien avoir des solutions de type cnoïdales dans le cas (1-v) < 0, il suffit de prendre $C_1 > 0$ proche de zéro pour s'en convaincre graphiquement.

2.2 Dispersion négative $(B>0,\ D<0)$ (dépressions a priori subsoniques)

On se place désormais dans le cas (B > 0, D < 0) pour lequel on a v < 1 pour les solitons en dépression (subsoniques).

Ls choses sont en fait symétriques, on a juste pris l'opposé du cas précédent à cause du signe de D qui devient négatif. Les extrêma locaux sont donc inversés et l'on a

Cas $C_1 > 0$ à éliminer a priori : On doit avoir $0 < C_1 < \frac{(v-1)^2}{2B}$ et l'on a

$$\eta_{\text{max}} = \eta_{+} < 0, \tag{76}$$

$$\eta_{\min} = \eta_{-} < \eta_{+} < 0. \tag{77}$$

On pourra osciller entre des valeurs négatives (cf. Fig. 3 (a)). Ce n'est pas ce que nous recherchons comme solution. En fait ce cas pourra se traiter pour v-1>0 (cf. conclusions)

FIGURE 3 – Notations et allure des potentiels dans le cas D < 0 et B > 0, pour (a) $C_1 > 0$ et (b) $C_1 < 0$.

On va donc dorénavant supposer $C_1 < 0$. Sous ces conditions, on a

$$\eta_{\text{max}} = \eta_{+} > 0, \tag{78}$$

$$\eta_{\min} = \eta_{-} < 0. \tag{79}$$

On va choisir \mathcal{E}_0 dans l'intervalle $]\mathcal{E}_{\min}, \mathcal{E}_{\max}[$. L'équation $W(\eta) = \mathcal{E}_0$ possède trois solutions $\eta_1 < \eta_2 < \eta_3$ et l'orbite recherchée sera telle que $\eta \in [\eta_1, \eta_2]$. On doit résoudre l'équation donnée par la quadrature :

$$\frac{1}{2} \left(\frac{\mathrm{d}\eta}{\mathrm{d}\mathcal{E}} \right)^2 = \mathcal{E}_0 - W(\eta) \equiv -\frac{B}{6D} (\eta - \eta_1)(\eta - \eta_2)(\eta - \eta_3). \tag{80}$$

Par la suite, nous poserons $H = \eta_2 - \eta_1$ et le paramétrage elliptique

$$\eta(\xi) = \eta_1 \cos^2 \Psi(\xi) + \eta_2 \sin^2 \Psi(\xi) \qquad (= \eta_2 - H \cos^2 \Psi = \eta_1 + H \sin^2 \Psi),$$
(81)

si bien que l'on a (80) qui devient

$$2H^{2}\sin^{2}\Psi\cos^{2}\Psi\left(\frac{d\Psi}{d\xi}\right)^{2} = +\frac{B}{6D}H^{2}\cos^{2}\Psi\sin^{2}\Psi(\eta_{3} - \eta_{1} - H\sin^{2}\Psi). \tag{82}$$

qui se simplifie en

$$\left(\frac{\mathrm{d}\Psi}{\mathrm{d}\xi}\right)^2 = -\frac{B}{12D}(\eta_3 - \eta_1)(1 - m\sin^2\Psi),\tag{83}$$

en posant

$$m = \frac{H}{\eta_3 - \eta_1} = \frac{\eta_2 - \eta_1}{\eta_3 - \eta_1} \quad \in]0, 1[]. \tag{84}$$

ce qui donne

$$\xi(\Psi) = \sqrt{\frac{12D}{B(\eta_1 - \eta_3)}} \int_0^{\Psi} \frac{d\psi}{\sqrt{1 - m\sin^2 \psi}} = \sqrt{\frac{12D}{B(\eta_1 - \eta_3)}} F(\Psi|m), \tag{85}$$

avec F la fonction elliptique incomplète de première espèce. Les fonction cnoïdales se définissent alors comme

$$\cos \Psi(\xi) = \operatorname{cn}\left(\frac{\xi}{\Lambda} \middle| m\right), \qquad \sin \Psi(\xi) = \operatorname{sn}\left(\frac{\xi}{\Lambda} \middle| m\right).$$
 (86)

avec

$$\Lambda = 2\sqrt{\frac{3D}{B(\eta_1 - \eta_3)}}. (87)$$

On obtient in fine

$$\eta(\xi) = \eta_2 - H \operatorname{cn}^2 \left(\frac{\xi}{\Lambda} \middle| m \right). \tag{88}$$

Période spatiale : La période spatiale T^{ξ} est telle que

$$T^{\xi} = 2\Lambda F\left(\Psi = \frac{\pi}{2} \middle| m\right) = 2\Lambda K(m) = 4\sqrt{\frac{3D}{B(\eta_1 - \eta_3)}} K(m), \tag{89}$$

où K(m) désigne la fonction elliptique complète de première espèce.

Condition de moyenne nulle : On doit avoir encore (sur une demi-période par symétrie)

$$\int_0^{\frac{1}{2}T^{\xi}} \eta(\xi) d\xi = 0 = \int_0^{\frac{1}{2}T^{\xi}} \left[\eta_2 - H \operatorname{cn}^2 \left(\frac{\xi}{\Lambda} \middle| m \right) \right] d\xi = \int_0^{\pi/2} \left[\eta_2 - H \cos^2 \Psi \right] \left(\frac{d\xi}{d\Psi} \right) d\Psi \tag{90}$$

$$= \int_0^{\pi/2} \left[\frac{\eta_3 - \frac{H}{m} (1 - m \sin^2 \Psi)}{\sqrt{1 - m \sin^2 \Psi}} \right) d\Psi = \eta_3 K(m) - \frac{H}{m} E(m).$$
 (91)

Synthèse D < 0

$$\eta_3 = \frac{H}{m} \frac{\mathcal{E}(m)}{\mathcal{K}(m)},\tag{92}$$

$$\eta_1 = \eta_3 - \frac{H}{m} = \frac{H}{m} \left[\frac{\mathbf{E}(m)}{\mathbf{K}(m)} - 1 \right],\tag{93}$$

$$\eta_2 = H + \eta_1 = \frac{H}{m} \left[m - 1 + \frac{E(m)}{K(m)} \right].$$
(94)

et l'on a donc

$$T^{\xi} = 4\sqrt{\frac{-3Dm}{BH}} K(m), \tag{95}$$

$$v = 1 - \frac{2BH}{3m} \left[1 - \frac{m}{2} - \frac{3}{2} \frac{E(m)}{K(m)} \right], \tag{96}$$

$$\Lambda = 2\sqrt{\frac{3|D|m}{BH}}\tag{97}$$

$$\eta(\xi) = \eta_2 - H \operatorname{cn}^2\left(\frac{\xi}{\Lambda} \middle| m\right). \tag{98}$$

Ces relations sont analogues au cas D > 0, à ceci près que le rapport 3m(v-1)/(2BH) est de signe opposé. On a bien des dépressions subsoniques pour $m \to 1$, en revanche, pour m petit, on peut avoir des dépressions supersoniques (cf. Fig. 4)

Enfin, en figure 5, on montre une solution sur 2 périodes spatiales Λ .

FIGURE 4 – En fonction de m ou $\mu = 1 - m$, allure de 3m(v-1)/(2BH): (a) en échelle linéaire et (b) en échelle log-lin.

FIGURE 5 – Allures de solutions cnoidales pour différents $\mu = 1 - m$ et des D positifs ou négatifs, sur 2 périodes Λ . [Attention, ici ξ vaut ξ/Λ !]

3 Cas périodique, équation KdV en angle θ

Dans le cas périodique, dans le tore $\mathbb{T}^1 = \mathbb{R}/2\pi\mathbb{Z}$, l'équation de Korteweg-de Vries pour des ondes se propageant dans le sens direct, sera écrite sous la forme, en variable azimutale

$$\eta_t + \Omega_0 \left[(1 + B\eta) \eta_\theta + D\eta_{\theta\theta\theta} \right] = 0. \tag{99}$$

En matière de dimension, on a $[B] = L^{-1}$ et [D] = 1, D ici est donc sans dimension. La période T^{θ} devra donc valoir $2\pi/N$ avec $N \in \mathbb{N}^*$.

Pour une solution à 1 onde solitaire de hauteur H > 0 (que ce soit en élévation ou en dépression),

on a alors

$$T^{\theta} = \frac{2\pi}{N_{\theta}} = 4\sqrt{\frac{3|D|m}{BH}} K(m), \quad \text{avec } N_{\theta} = 1$$

$$(100)$$

$$v = 1 + \text{sign}(D) \frac{2BH}{3m} \left[1 - \frac{m}{2} - \frac{3}{2} \frac{E(m)}{K(m)} \right],$$
 (101)

où v désigne ici une pulsation angulaire renormalisée par Ω_0 .

Question: Que doivent valoir BH et m pour avoir la relation (100) dans nos expériences? À D donné, on doit avoir BH « pas trop petit » et $\sqrt{m} K(m)$ « pas trop grand », sachant que la quantité $\sqrt{m} K(m)$ diverge lorsque $m \to 1$ et dont l'allure est donnée en figure 6.

FIGURE 6 – Allure de la fonction \sqrt{m} K(m).

Pour rappel, nous avons dans le cas en V, la relation de dispersion suivante

$$\omega^{2}(k) = \left[g_{\text{eff}} \frac{k}{R} + \frac{\sigma_{\text{eff}}}{\rho R^{3}} k^{3} \right] \Psi [Ak]$$
(102)

avec $A = WR/(2R_c)$, ce qui donne à l'ordre k^4

$$\omega^{2}(k) = \Omega_{0}^{2} k^{2} \left[1 + \left(\frac{\sigma_{\text{eff}}}{\rho g_{\text{eff}} R^{2}} - \frac{|\Psi'''(0)| A^{2}}{6} \right) k^{2} \right] + \mathcal{O}(k^{6}).$$
(103)

avec $\Omega_0^2 = g_{\text{eff}}A/R$. On va maintenant s'intéresser à l'équation KdV en θ suivante

$$0 = \partial_t \eta + \Omega_0 \left[(1 + B\eta_\theta) \eta_\theta + D\eta_{\theta\theta\theta} \right]. \tag{104}$$

avec

$$D = -\frac{1}{2} \left(\frac{\sigma_{\text{eff}}}{\rho g_{\text{eff}} R^2} - \frac{|\Psi'''(0)|}{6} A^2 \right). \tag{105}$$

et l'on posera $B = \lambda/W$ (W est la longueur naturelle à utiliser ici, et $[B] = L^{-1}$).

Ordres de grandeur : $g_{\rm eff} = 9.81 \times \sin(4.5^{\circ}) \simeq 0.77$, $R_c = 0.075$, $\sigma_{\rm eff} \simeq 0.055$, $R = R_c + W/2$. On considère $\Psi \equiv \tanh$ et donc $|\psi'''(0)| = 2$. Pour W = 0.02, on a $D \simeq -2.1 \times 10^{-3}$ et pour W = 0.03, on a $D \simeq +2.8 \times 10^{-3}$.

3.1 Exemple de mode 1

On va commencer par $T^{\xi}=2\pi$. On va choisir m proche de 1 pour être certain d'avoir quelque chose de très creusé. On va considérer qu'on est dans une configuration anti-flaque et que D<0. Une illustration est donnée en figure 7.

FIGURE 7 – Pour $N_{\theta} = 1$, tracé de la cnoïdale et représentation dans l'espace physique. La solution sinusoïdale (à droite) est montrée à titre de comparaison.

3.2 Exemple de mode polygonal

On va maintenant prendre N>1 et considérer $T^\xi=2\pi/N.$ Une illustration est donnée en figure 8 pour N=5.

FIGURE 8 – Pour $N_{\theta}=5$, tracé de la cnoïdale et représentation dans l'espace physique. La solution sinusoïdale (à droite) est montrée à titre de comparaison.

3.3 Commentaires sur les vitesses obtenues

On obtient alors (cf. fichier Octave associé : des vitesses qui peuvent être très variables, positives et négatives prefacteur_vitesse.m et abaques_vitesses.m). Pour cela, on part de D et B donnés, on fait varier m. On en déduit H et 1-v via (100) et (101) 2 .

Une illustration de cela se trouve en figure 9. On voit que pour D>0, on peut avoir des solutions supersonique en élévation (m petit) mais aussi des solutions subsoniques en élévation ($\mu=1-m$ petit, i.e. m proche de 1). On aura l'inverse pour D>0.

^{2.} Remarque: Il faudra reprendre les calculs de Ludu [A. Ludu, A. Raghavendra, Appl. Num. Math., 141, 167-184 (2019)] et estimer les coefficients B pour voir si l'on peut ou non avoir de telles solutions.

FIGURE 9 – (haut) Pour $D=+1/6, B=2, N_{\theta}=1$, tracé de la hauteur H et de $\Delta v=v-1$. (bas) Pour $D=-1/6, B=2, N_{\theta}=1$, idem, en changeant le signe de la dispersion D. Concernant $\Delta v=v-1$, le fait de changer le signe de la dispersion D reviendra à changer le signe de $\Delta v=v-1$.

3.4 Comparaisons avec les expériences

Pour un système physique donné (i.e. une plaque donnée et un volume de liquide donné), on se retrouve avec certaines valeurs de D et B donnés.

Ce qu'il faut faire, c'est : pour une série de solitons, mesurer H ainsi que leur profil et leur vitesse qui doivent vérifier

$$\eta(\theta) = \text{sign}(D)H \operatorname{cn}^2\left(\sqrt{\frac{BH}{12Dm}}\theta \,\middle|\, m\right) + \text{constante},$$
(106)

$$v \equiv \frac{\Omega}{\Omega_0} = 1 + \text{sign}(D) \frac{2BH}{3m} \left[1 - \frac{m}{2} - \frac{3}{2} \frac{E(m)}{K(m)} \right], \tag{107}$$

$$2\pi = 4\sqrt{\frac{3|D|m}{BH}} K(m), \tag{108}$$

sachant que Ω_0 et D sont directement donnés par la relation de dispersion azimutale des ondes variqueuses. De (108), on déduit la relation

$$BH = \frac{12}{\pi^2} |D| m \left[K(m) \right]^2,$$
 (109)

ce qui entraîne, via (107), que

$$\Delta v(m) \equiv v - 1 = \text{sign}(D) \frac{2}{3m} \frac{12}{\pi^2} |D| m \, K^2(m) \left[1 - \frac{m}{2} - \frac{3}{2} \frac{E(m)}{K(m)} \right]$$
 (110)

$$= \frac{8D}{\pi^2} K^2(m) \left[1 - \frac{m}{2} - \frac{3}{2} \frac{E(m)}{K(m)} \right] \equiv \frac{8D}{\pi^2} \Phi(m).$$
 (111)

La figure 10 donne l'allure de la fonction $\Phi(m)$ qui est une fonction monotone donc bijective.

FIGURE 10 – Allure de la fonction $\Phi(m)$ en échelle (a) lin–lin (avec m en abscisse) et (b) log–lin (avec, ici, $\mu = 1 - m$ en abscisse).

À comparer maintenant aux expériences :

Méthodologiquement, a priori, ce qu'on doit faire est la chose suivante :

- 1. Mesurer les rapports de vitesse $v=\Omega/\Omega_0$ et en déduire expérimentalement les valeurs de m via (111) correspondantes.
- 2. Mesurer les hauteurs H[v(m)] correspondantes (en prenant le maximum moins le minimum des profils reconstruits) et en déduire le coefficient B, via (109).
- 3. Bien s'assurer que B est constant pour un tore donné.

Table des matières

1	Propriétés de l'équation KdV en domaine infini (sur \mathbb{R})	1
2	Recherche des solutions cnoïdales	2
	2.1 Cas standard $(B > 0, D > 0)$ et élévations (a priori supersoniques)	6 7
_	2.2 Dispersion négative $(B > 0, D < 0)$ (dépressions a priori subsoniques)	
3	Cas périodique, équation KdV en angle θ	10
	3.1 Exemple de mode 1	12
	3.2 Exemple de mode polygonal	12
	3.3 Commentaires sur les vitesses obtenues	12
	3.4 Comparaisons avec les expériences	13