CORRIGÉ DU DM N°3: CENTRALE PSI 2009

Partie I - Réorganisation des termes d'une série semi-convergente

I.A.

I.A.1. On suit la définition de l'énoncé.

```
suite:=proc(x,n)
local k,p,q,s,S,list;
p:=0;q:=0;S:=0;list:=[];
for k from 1 to n do
    if S>x then
        q:=q+1;s:=2*q-1
    else
        p:=p+1;s:=2*p
    fi;
    S:=S+(-1)^s/s;
    list:=[op(list),s]; # (1)
    od;
return(list); # (2)
end:
```

I.A.2. Pour obtenir le tracé de l'énoncé, il suffit de remplacer dans le programme ci-dessus :

- la ligne (1) par:list:=[op(list),[k,S]]
- la ligne (2) par:plot(list,style=point)

Pour x = -1 et n = 70, on obtient alors le dessin suivant :

Le fonctionnement de l'algorithme est le suivant : on choisit le premier indice pair s_n non utilisé si S est inférieur à x et on ajoute alors à S le terme positif u_{s_n} et le premier indice impair sinon et on ajoute alors un terme négatif. Les suites (p_n) et (q_n) permettent de savoir quel est le dernier indice pair ou impair utilisé $(2p_n$ ou $2q_n-1)$.

- **I.B.** On procède par récurrence sur n.
 - Initialement, on a $q_1 = s_1 = 1$, $S_1 = -1$ et $p_1 = 0$ (cas x < 0) ou $p_1 = 1$, $s_1 = 2$, $S_1 = 1/2$ et $q_1 = 0$ (cas $x \ge 0$). Dans les deux cas, on a la propriété voulue.
 - Supposons le résultat vrai jusqu'à un rang $n \ge 1$. On doit encore distinguer deux cas.
 - Si $S_n > x$ alors $q_{n+1} = 1 + q_n$, $p_{n+1} = p_n$, $s_{n+1} = 2q_{n+1} 1$ et $S_{n+1} = S_n + u_{s_{n+1}}$ et on a les relations voulues.
 - Si $S_n \le x$ alors $q_{n+1} = q_n$, $p_{n+1} = 1 + p_n$, $s_{n+1} = 2p_{n+1}$ et $S_{n+1} = S_n + u_{s_{n+1}}$ et on a les relations voulues.

On en déduit que

$$card{s(1),...,s(n)} = p_n + q_n = n$$

ce qui indique que les s(k) sont deux à deux distincts donc que s est injective.

I.C.

I.C.1. Soit (x_n) une suite d'entiers qui converge vers une limite ℓ . Par définition des limites (avec $\varepsilon = 1/2 > 0$)

$$\exists n_0 \text{ tq } \forall n \ge n_0, |x_n - \ell| < \frac{1}{2}$$

On a donc, pour $n \ge n_0$, $x_n \in \left] \ell - \frac{1}{2}, \ell + \frac{1}{2} \right[$; cet intervalle étant un intervalle ouvert de longueur 1, il ne peut contenir qu'un seul entier. La suite est donc constante à partir du rang n_0 .

I.C.2. a) La suite (p_n) est croissante (puisque p_{n+1} est égal à p_n ou à $1+p_n$). Si elle est majorée, elle converge. Etant composée d'entiers, elle est constante à partir d'un certain rang n_0 . Par définition, on a donc pour tout $n \ge n_0$, $S_n > x$ et $q_{n+1} = 1 + q_n$ ce qui donne (suite arithmétique) $q_n = n - n_0 + q_{n_0}$. De plus, pour $n \ge n_0$, $s_{n+1} = 2q_{n+1} - 1 = 2n - 2n_0 + 2q_{n_0} - 1$. Ainsi,

$$\forall n \ge n_0, S_n = S_{n_0} + \sum_{k=n_0+1}^n u_{s_k} = S_{n_0} - \sum_{k=n_0+1}^n \frac{1}{2k - 2n_0 + 2q_{n_0} - 1}$$

Le changement d'indice j = k - 1 donne la formule voulue.

La série $\sum_{k \ge n_0} \frac{1}{2k - 2n_0 + 2q_{n_0} + 1}$ est divergente à termes positifs (par comparaison à la série harmonique)

donc ses sommes partielles tendent vers $+\infty$. L'égalité ci-dessus donne alors $S_n \to -\infty$ ce qui contredit $S_n > x$ pour tout $n \ge n_0$.

- **b)** La suite (p_n) étant croissante et non majorée, le théorème de limite monotone indique que $p_n \to +\infty$.
- **I.C.3.** Le raisonnement est identique pour montrer que (q_n) est de limite infinie : c'est une suite croissante ; si elle est majorée alors elle converge donc est constante à partir d'un rang n_0 ; pour $n \ge n_0$, on a $S_n \le x$ et $S_n \to +\infty$ ce qui est incompatible.
- **I.C.4.** Comme $0 \le p_{n+1} p_n \le 1$ et $p_n \to +\infty$, les p_n décrivent tout \mathbb{N} . Il en est de même des q_n . Avec l'identité ensembliste de I.B, on en déduit que tout entier non nul est atteint par s (et pour un entier non nul car s(0) = 0). s est donc surjective de \mathbb{N}^* dans lui même. On a aussi vu l'injectivité et on a donc la bijectivité.

I.D.

- I.D.1. On distingue deux cas.
 - Si $S_n > x$ alors $u_{s_{n+1}} < 0$ car $s_{n+1} = 2q_{n+1} 1$ est impair et

$$u_{s_{n+1}} \leq \underbrace{S_{n+1} - x}_{=S_n + u_{s_{n+1}} - x} \leq S_n - x.$$

- Si $S_n \le x$ alors $u_{s_{n+1}} \ge 0$ car $s_{n+1} = 2p_{n+1}$ est pair et

$$S_n - x \leqslant \underbrace{S_{n+1} - x}_{=S_n + u_{s_{n+1}} - x} \leqslant u_{s_{n+1}}.$$

 $a \le b \le c$ entraînant $|b| \le \max(|a|,|c|)$, on a donc dans tous les cas

$$|S_{n+1} - x| \le \max(|S_n - x|, |u_{S_{n+1}}|)$$

ce qui correspond à l'alternative demandée.

I.D.2. Raisonnons par l'absurde. La négation de la propriété proposée s'écrit :

$$\exists \mathbf{N} \in \mathbb{N} \ \ \mathrm{tq} \ \ \forall n > \mathbf{N} \ , \ |S_{n+1} - x| > \left| u_{s_{n+1}} \right| \quad (*).$$

Soit alors n > N. Si $S_n > x$ on a $u_{s_{n+1}} < 0$ et $u_{s_{n+1}} < S_{n+1} - x$ donc l'inégalité (*) impose $S_{n+1} - x > 0$. On aurait alors par récurrence, pour tout $p \ge n$, $S_p > x$ ce qui est exclu d'après **I.C.2**.

On aboutit à une contradiction semblable si l'on suppose $S_n \le x$, en utilisant **I.C.3**. Ainsi l'hypothèse (*) est fausse, ce qui démontre le résultat voulu.

I.D.3. Comme $\lim_{n \to +\infty} p_n = +\infty$, en écrivant la définition de la limite, on obtient qu'il existe $n_1 \in \mathbb{N}$ tel que $p_n \ge 1$ pour $n \ge n_1$. De même, il existe $n_2 \in \mathbb{N}$ tel que $q_n \ge 1$ pour $n \ge n_2$. Donc

$$\forall n \ge \max(n_1, n_2), p_n \ge 1 \text{ et } q_n \ge 1.$$

I.D.4. Comme s_{n+1} vaut soit $2p_{n+1}$ soit $2q_{n+1}-1$, la question **I.D.1** montre que

$$|S_{n+1} - x| \le \max(|S_n - x|, |u_{s_{n+1}}|) \le \max(|S_n - x|, |u_{2p_{n+1}}|, |u_{2q_{n+1}-1}|) = v_n$$

De plus, la croissance de (p_n) et (q_n) ainsi que la décroissance de $(|u_n|)$ donnent

$$|u_{2p_{n+2}}| \le |u_{2p_{n+1}}| \le v_n$$
 et $|u_{2q_{n+2}-1}| \le |u_{2q_{n+1}-1}| \le v_n$.

On en déduit finalement que

$$v_{n+1} = \max(|S_{n+1} - x|, |u_{2p_{n+2}}|, |u_{2q_{n+2}-1}|) \le v_n$$
.

La suite (v_n) est décroissante et minorée (par 0) et donc converge. D'après **I.D.2**,

$$\forall N, \exists n_N > N \text{ tq } 0 \leq \nu_{n_N} \leq |u_{s(n_N+1)}|.$$

Quand $N \to +\infty$, $n_N \to +\infty$ et on peut passer à la limite ci-dessus (les termes admettent une limite) et on obtient

$$\lim_{n\to+\infty} \nu_n = 0$$

I.D.5. Puisque $0 \le |S_n - x| \le \nu_n$ on en déduit $\lim_{n \to +\infty} S_n = x$.

On a donc bien trouvé une permutation s de \mathbb{N} telle que $\sum_{n=1}^{\infty} u_{s(n)} = x$).

I.E.

I.E.1. Ce résultat est une conséquence directe du théorème de comparaison série-intégrale, **dont il faut savoir refaire la démonstration**.

Une autre démonstration possible, **tout aussi importante à retenir**, est la suivante :

Soit
$$u_n = \sum_{k=1}^n \frac{1}{k} - \ln(n)$$
. On a

$$u_{n+1} - u_n = \frac{1}{n+1} + \ln\left(1 - \frac{1}{n+1}\right) \sum_{n \to +\infty} -\frac{1}{2(n+1)^2}$$
 (après un petit D.L.)

 $\sum (u_{n+1}-u_n)$ est ainsi absolument convergente et donc aussi convergente. Comme

$$\sum_{k=1}^{n-1} (u_{k+1} - u_k) = u_n - u_1$$

on en déduit que (u_n) converge. En notant γ sa limite, on a alors

$$\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1).$$

I.E.2. On a alors

$$\sum_{k=1}^{n} \frac{1}{2k-1} = \sum_{k=1}^{2n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{2k} = \ln(2n) - \frac{1}{2}\ln(n) + \frac{\gamma}{2} + o(1) = \frac{1}{2}\ln(n) + \ln(2) + \frac{\gamma}{2} + o(1).$$

I.E.3.

- a) On procède par récurrence sur n.
 - Comme en B, le résultat est initialement vrai que x > 0 ou $x \le 0$.
 - Supposons le résultat vrai jusqu'à un rang $n \ge 1$. Si $S_n > x$ alors on ajoute $u_{2q_{n+1}-1} = -\frac{1}{2q_{n+1}-1}$ et $p_{n+1} = p_n$. Sinon, on ajoute $u_{2p_{n+1}} = \frac{1}{2p_{n+1}}$ et $q_{n+1} = q_n$. La formule reste donc toujours vraie au rang n+1.
- **b)** Comme p_n et q_n tendent vers $+\infty$, on a

$$\begin{split} \mathbf{S}_n &= \frac{1}{2} \Big(\ln(p_n) + \gamma + o(1) \Big) - \left(\frac{1}{2} \ln(q_n) + \ln(2) + \frac{\gamma}{2} + o(1) \right) \\ &= \frac{1}{2} \ln\left(\frac{p_n}{q_n} \right) - \ln(2) + o(1) \\ &= \frac{1}{2} \ln\left(\frac{p_n}{n - p_n} \right) - \ln(2) + o(1). \end{split}$$

c) Comme $S_n \to x$, on a (continuité de exp) $\frac{p_n}{n-p_n} \to 4e^{2x}$ c'est à dire $\frac{n}{p_n} \to \frac{e^{-2x}}{4} + 1$ ou encore

$$p_n \sim \frac{4n}{e^{-2x} + 4}$$

et de la même façon (en remplaçant p_n par $n-q_n$ dans la formule de la question précédente)

$$q_n \sim \frac{n}{1 + 4e^{2x}} \,.$$

d) On prouve comme en a) que

$$\sum_{k=1}^{n} |u_{s_n}| = \sum_{k=1}^{p_n} \frac{1}{2k} + \sum_{k=1}^{q_n} \frac{1}{2k-1}$$

et, comme en b), on obtient alors

$$\sum_{k=1}^{n} |u_{s_n}| = \frac{1}{2} \ln(p_n q_n) + \gamma + \ln(2) + o(1) \sim \frac{1}{2} \ln(p_n q_n).$$

Puisque p_n et q_n tendent vers $+\infty$ on a alors, en utilisant les équivalents trouvés en c):

$$\ln(p_n q_n) \sim \ln\left(\frac{4n^2}{(4 + e^{-2x})(1 + 4e^{2x})}\right) \sim 2\ln(n)$$

et donc

$$\lim_{n \to +\infty} \frac{|u_{s_1}| + \dots + |u_{s_n}|}{|u_1| + \dots + |u_n|} = 1$$

(numérateur et dénominateur sont tous deux équivalents à ln(n)).

Partie II - Suites vérifiant (P_1) **et** (P_2)

II.A. Soit (u_n) une suite bornée et M un majorant des $|u_n|$. On a

$$\forall n \in \mathbb{N}, |a_n u_n| \leq |a_n|$$

La convergence absolue de la série $\sum a_n$ entraı̂ne celle de $\sum a_n u_n$ d'après le théorème de comparaison pour les séries à termes positifs, et (P_1) est vérifiée.

II.B. Cette question consiste à démontrer la règle d'Abel, cf. DM n°2...

II.B.1. Comme $\mathbb C$ est complet, la convergence de la série $\sum |a_{n+1}-a_n|$ entraı̂ne celle de $\sum (a_{n+1}-a_n)$ ce qui, en revenant aux sommes partielles et grâce à un telescopage, équivaut à la convergence de la suite (a_n) .

II.B.2. En posant $U_{-1} = 0$, on a

$$\sum_{n=0}^{N} a_n u_n = \sum_{n=0}^{N} a_n (U_n - U_{n-1}) = \sum_{n=0}^{N} a_n U_n - \sum_{n=0}^{N} a_n U_{n-1}.$$

On effectue le changement d'indice k = n - 1 dans la seconde somme et on regroupe les termes de même indice pour obtenir

$$\sum_{n=0}^{N} a_n u_n = a_N U_N + \sum_{k=0}^{N-1} (a_k - a_{k+1}) U_k + a_0 U_{-1} = a_N U_N + \sum_{k=0}^{N-1} (a_k - a_{k+1}) U_k.$$

(il s'agit de la transformation d'Abel).

Supposons que la série $\sum u_n$ converge. La suite (U_n) converge donc. Comme elle est bornée et que $\sum (a_n-a_{n+1})$ converge absolument, la question **H.A** indique que la série $\sum (a_n-a_{n+1})U_n$ converge. De plus, (a_nU_n) est une suite convergente (produit de telles suites). L'égalité prouvée ci-dessus implique alors que la série $\sum a_nu_0$ converge (la suite des sommes partielles admet une limite). On a donc prouvé la propriété (P_2) pour la suite (a_n) .

II.C. Posons $u_n = \frac{\overline{a_n}}{|a_n|}$ si $a_n \neq 0$ et $u_n = 1$ sinon. On a alors, $a_n u_n = |a_n|$ (on le vérifie dans les deux cas). Ainsi, $\sum a_n u_n$ diverge et on a (u_n) qui est bornée puisque formée d'éléments de module 1. La suite (a_n) ne vérifie donc pas (P_1) .

Finalement, les suites vérifiant (P_1) sont exactement celle dont la série associée converge absolument.

II.D.

II.D.1. On applique les définitions de l'énoncé.

```
exemple:=proc(n)
local k,p,e,A,list;
p:=0;e:=1;A:=9/4;list:=[[0,p,e,A]];
for k from 1 to n do
   if A>=p then
       p:=1+p;e:=e/2
   fi;
   A:=A+e*9/(4*(k+1));
   list:=[op(list),[k,p,e,A]]
   od :
list
end:
```

Les six premiers termes trouvés sont

$$[0,0,1,\frac{9}{4}],[1,1,\frac{1}{2},\frac{45}{16}],[2,2,\frac{1}{4},3],[3,3,\frac{1}{8},\frac{393}{128}],[4,4,\frac{1}{16},\frac{1983}{640}],[5,4,\frac{1}{16},\frac{999}{320}]$$

II.D.2.

a) Supposons que la suite (p_n) est constante à partir d'un certain rang N. On a alors (ε_n) qui reste constante à partir de ce même rang et donc

$$\forall n \ge N, A_n = A_N + \varepsilon_N \sum_{k=N+1}^n a_k$$

Comme $\sum a_n$ est une série divergente, les sommes partielles de cette série tendent vers $+\infty$. Comme $\varepsilon_N>0$ (tous les ε_k sont >0 par récurrence), l'identité ci-dessus indique que $A_n\to +\infty$. Il existe donc $k\geqslant N$ tel que $A_k\geqslant p_k=p_N$ et alors $p_{k+1}=1+p_k\neq p_N$ ce qui est une contradiction.

On a donc prouvé par l'absurde qu'il existe n > N tel que $p_n \neq p_{n-1}$ et donc tel que $p_n = 1 + p_{n-1}$.

On peut alors montrer par récurrence que la suite (n_k) de l'énoncé est bien définie puisque si n_k est connu alors $\{n \in \mathbb{N} \text{ tq } n > n_k \text{ et } p_n = 1 + p_{n-1}\}$ est un ensemble non vide d'entiers et qu'il contient donc un minimum.

b) Pour $k \ge 1$, on a $n_k = \min\{n \in \mathbb{N} \text{ tq } n > n_{k-1} \text{ et } p_n = 1 + p_{n-1}\}$ et donc

$$p_{n_{k-1}} = p_{n_{k-1}+1} = \dots = p_{n_k-1}$$
 et $p_{n_k} = 1 + p_{n_{k-1}}$

d'où l'on déduit que

$$\varepsilon_{n_{k-1}} = \varepsilon_{n_{k-1}+1} = \dots = \varepsilon_{n_k-1} \text{ et } \varepsilon_{n_k} = \frac{1}{2} \varepsilon_{n_{k-1}}.$$

Comme $p_{n_0}=p_0=0$ et $\varepsilon_{n_0}=\varepsilon_0=1$, on en déduit par récurrence que

$$\forall k, \ p_{n_k} = k \ \text{ et } \ \epsilon_{n_k} = \frac{1}{2^k}.$$

 (ε_n) est décroissante et minorée par 0 donc convergente. De plus, $(\varepsilon_{n_k})_k$ est une extraite de $(\varepsilon_n)_n$ (la suite des n_k croît strictement) et est de limite nulle. Ainsi, on a

$$\lim_{n\to+\infty}\varepsilon_n=0.$$

De façon similaire, la suite (A_n) des sommes partielles de la série $\sum a_n \varepsilon_n$ est croissante et on en a une suite extraite qui tend vers $+\infty$ $(A_{n_k-1} \geqslant p_{n_k-1} = p_{n_{k-1}} = k-1 \to +\infty)$. On a donc $A_n \to +\infty$ et la série $\sum a_n \varepsilon_n$ diverge.

c) Au vu des termes calculés en II.D.1, pour la suite envisagée ici, on a

$$n_1 = 1$$
, $n_2 = 2$, $n_3 = 3$

puisque $p_1 = 1$, $p_2 = 2$ et $p_3 = 3$.

II.D.3.

a) On gère un indice m tel que le dernier élément ajouté à la liste est $[m, u_{n_m}]$. Par rapport à la fonction exemple, on doit gérer l'évolution de m (et la liste construite n'est pas la même).

```
indexer:=proc(n)
local k,p,e,A,list,m;
p:=0;e:=1.0;
# on force à faire les calculs en flottant sinon Maple fait tous les calculs dans le corp
# Q des rationnels et cela prend un temps fou!
A:=1;list:=[[0,0]];m:=0;
for k from 1 to n do
    if A>=p then
        p:=1+p;e:=e/2;
        m:=m+1;
        list:=[op(list),[m,k]]
fi;
A:=A+e/(k+1)
    od :
list
end:
```

b) On a vu plus haut que

$$A_{n_{\nu}-1} \ge p_{n_{\nu}-1} = p_{n_{\nu}} = k-1$$
.

On a $k-1=p_{n_{k-1}}=\cdots=p_{n_k-1}$ et $\frac{1}{2^{k-1}}=\varepsilon_{n_{k-1}}=\cdots=\varepsilon_{n_k-1}$. Si on suppose que $n_k-2>n_{k-1}$ alors $p_{n_k-1}=p_{n_k-2}$, $\varepsilon_{n_k-1}=\varepsilon_{n_k-2}$. Ainsi $A_{n_k-2}\leqslant p_{n_k-1}$ (sinon l'indice p aurait augmenté) et

$$\mathbf{A}_{n_k-1} = \mathbf{A}_{n_k-2} + a_{n_k-1} \mathbf{\varepsilon}_{n_k-1} = \mathbf{A}_{n_k-2} + \frac{1}{n_k} \frac{1}{2^{k-1}} \leq (k-1) + \frac{1}{n_k 2^{k-1}}.$$

On en déduit que

$$\mathbf{A}_{n_k} = \mathbf{A}_{n_k-1} + a_{n_k} \mathbf{\varepsilon}_{n_k} \le (k-1) + \frac{1}{n_k 2^{k-1}} + \frac{1}{(1+n_k)2^k}$$

Comme $n_k \ge k$ et $k \ge 3$, on en déduit que

$$A_{n_k} \le k - 1 + \frac{1}{k2^{k-1}} + \frac{1}{(1+k)2^k} \le k - 1 + \frac{1}{6} + \frac{1}{32} < k = p_{n_k}$$

et on a donc $p_{1+n_k} = p_{n_k}$ et $\varepsilon_{1+n_k} = \varepsilon_{n_k}$ puis

$$A_{1+n_k} = A_{n_k} + a_{1+n_k} \varepsilon_{1+n_k} = A_{n_k} + \frac{1}{(2+n_k)2^{n_k}} \le k - 1 + \frac{1}{6} + \frac{1}{32} + \frac{1}{40} < k = p_{1+n_k}$$

ce qui donne $p_{2+n_k} = p_{1+n_k} = p_{n_k}$ et $n_{k+1} > 2 + n_k$.

c) Par définition,

$$A_{n_{k+1}-1} = A_{n_k-1} + \sum_{j=n_k}^{n_{k+1}-1} a_j \varepsilon_j.$$

Par définition de n_k et n_{k+1} , les ε_j ci-dessus valent tous $\varepsilon_{n_k}=1/2^k$ et donc

$$\mathbf{A}_{n_{k+1}-1} - \mathbf{A}_{n_k-1} = \frac{1}{2^k} \sum_{j=n_k}^{n_{k+1}-1} \frac{1}{1+j}.$$

Une comparaison série-intégrale (avec la fonction décroissante $t \mapsto 1/t$) donne

$$\ln\left(\frac{1+n_{k+1}}{1+n_k}\right) = \int_{1+n_k}^{1+n_{k+1}} \frac{\mathrm{d}\,t}{t} \leqslant \sum_{j=n_k}^{n_{k+1}-1} \frac{1}{1+j} \leqslant \int_{n_k}^{n_{k+1}} \frac{\mathrm{d}\,t}{t} = \ln\left(\frac{n_{k+1}}{n_k}\right)$$

et on a donc

$$\frac{1}{2^k} \ln \! \left(\frac{1 + n_{k+1}}{1 + n_k} \right) \! \leq \! A_{n_{k+1} - 1} - A_{n_k - 1} \! \leq \! \frac{1}{2^k} \ln \! \left(\frac{n_{k+1}}{n_k} \right).$$

d) Comme $n_3 - 2 = 49 > 2 = n_2$, on montre avec **II.D.3.b** et une récurrence que

$$\forall k \ge 3, \ n_k - 2 > n_{k-1}$$

et on a ainsi

$$\forall k \ge 3, \ k-1 \le A_{n_k-1} \le (k-1) + \frac{1}{n_k 2^{k-1}}.$$

De l'inégalité de droite, et comme $A_{n_{k+1}-1} \ge k$, on déduit que

$$\mathbf{A}_{n_k-1} \leq \frac{1}{2^{k-1} n_k} + \mathbf{A}_{n_{k+1}-1} - 1$$

ce que l'on peut écrire

$$A_{n_{k+1}-1} - A_{n_k-1} \ge 1 - \frac{1}{2^{k-1} n_k}.$$

Avec la question précédente, on a alors

$$\ln\left(\frac{n_{k+1}}{n_k}\right) \ge 2^k (A_{n_{k+1}-1} - A_{n_k-1}) \ge 2^k - \frac{2}{n_k}.$$

On peut écrire par ailleurs que

$$\ln\!\left(\frac{n_{k+1}}{n_k}\right) = \ln\!\left(\frac{1+n_{k+1}}{1+n_k}\right) - \ln\!\left(1+\frac{1}{n_{k+1}}\right) + \ln\!\left(1+\frac{1}{n_k}\right)$$

ce qui nous donne, avec la question précédente,

$$\ln\left(\frac{n_{k+1}}{n_k}\right) \le 2^k (\mathbf{A}_{n_{k+1}-1} - \mathbf{A}_{n_k-1}) - \ln\left(1 + \frac{1}{n_{k+1}}\right) + \ln\left(1 + \frac{1}{n_k}\right).$$

On utilise alors la question **b**) et $k-1 \le A_{n_k-1}$ pour obtenir

$$A_{n_{k+1}-1} \le k + \frac{1}{2^k n_{k+1}} \le A_{n_{k-1}} + 1 + \frac{1}{2^k n_{k+1}}$$

et on combine les deux dernière inégalités pour en déduire

$$\ln\left(\frac{n_{k+1}}{n_k}\right) \leq 2^k + \frac{1}{n_{k+1}} + \ln\left(1 + \frac{1}{n_k}\right) - \ln\left(1 + \frac{1}{n_{k+1}}\right).$$

e) La nature de la suite de terme général $w_k = \ln(n_k) - 2^k$ est la même que celle de la série de terme général

$$w_{k+1}-w_k=\ln\left(\frac{n_{k+1}}{n_k}\right)-2^k.$$

La question précédente donne

$$-\frac{2}{n_k} \le w_{k+1} - w_k \le \frac{1}{n_{k+1}} + \ln\left(1 + \frac{1}{n_k}\right) - \ln\left(1 + \frac{1}{n_{k+1}}\right)$$

ce qui entraîne

$$|w_{k+1} - w_k| \leq \frac{2}{n_k} + \ln\left(1 + \frac{1}{n_k}\right) - \ln\left(1 + \frac{1}{n_{k+1}}\right)$$

 $\ln\left(1+\frac{1}{n_k}\right)-\ln\left(1+\frac{1}{n_{k+1}}\right)$ est le terme général d'une série convergente car la suite de terme général $\ln\left(1+\frac{1}{n_k}\right)$ converge (elle est de limite nulle puisque $n_k\to +\infty$). Ainsi, pour prouver que $\sum w_{k+1}-w_k$ converge absolument, il suffit de montrer que la série $\sum \frac{1}{n_k}$ converge. Or, on a évidemment

$$A_n = \sum_{k=0}^{n} a_k \varepsilon_k \le \sum_{k=0}^{n} a_k = \sum_{k=1}^{n+1} \frac{1}{k} = \ln(n) + \gamma + o(1)$$

et donc, pour k suffisamment grand, $k-1 \le A_{n_k-1} \le \frac{1}{2} \ln(n_k)$ ou encore

$$\frac{1}{n_k} \leqslant e^{-2(k-1)}$$

ce qui montre que $\sum \frac{1}{n_k}$ est une série à termes positifs convergente.

Finalement, (w_k) est une suite convergente.

En notant ℓ la limite de la suite (w_k) , la continuité de l'exponentielle donne $e^{w_k} = n_k e^{-2^k} \to e^{\ell}$ et donc (comme $e^{\ell} \neq 0$)

$$n_k \sim Ce^{2^k}$$
 avec $C = e^{\ell}$.

On sait que si $x_n \sim y_n \to +\infty$ alors $\ln(x_n) \sim \ln(y_n)$, on en déduit ici (en utilisant deux fois ce résultat) que

$$\ln(n_k) \sim 2^k$$
 et $\ln(\ln(n_k)) \sim k \ln(2)$.

La question **b**) donne alors (on a vu que l'inégalité de cette question est valable pour tout $k \ge 3$)

$$A_{n_k-1} \sim k - 1 \sim k \sim \frac{\ln(\ln(n_k))}{\ln(2)}.$$

Soit n un entier. Il existe un entier k tel que $n_k-1 \le n \le n_{k+1}-1$. On remarque que n_k est de limite infinie quand $n \to +\infty$ (k dépend de n et est de limite infinie quand $n \to +\infty$ lui aussi). $\ln(\ln(n_k-1)) \le \ln(\ln(n)) \le \ln(\ln(n_{k+1}))$ et majorant et minorant équivalent tous deux à $\ln(\ln(n_k))$ (et aussi à $k \ln(2)$). Ainsi $\ln(\ln(n_k)) \sim \ln(\ln(n))$. De plus on a l'encadrement $A_{n_k-1} \le A_n \le A_{n_{k+1}-1}$. Majorant et minorant sont tous deux équivalents à k c'est à dire à $\frac{\ln(\ln(n_k))}{\ln(2)}$ c'est à dire à $\frac{\ln(\ln(n))}{\ln(2)}$. On a prouvé que

$$A_n \sim \frac{\ln(\ln(n))}{2}$$

Étant donnée la rapidité de croissance de la suite (n_k) et la lenteur de la croissance de la suite (A_n) , la fonction indexer ne nous donnera beaucoup d'éléments de cette suite!

Par exemple, indexer (10000000) renvoie après quelques minutes de calcul:

II.E.

- **II.E.1.** Soit (ε_n) une suite de limite nulle. On pose $\varepsilon_n' = \text{signe}(a_n)\varepsilon_n$. (ε_n') est une suite de limite nulle et donc $\sum a_n\varepsilon_n = \sum \varepsilon_n |a_n|$ converge.
- **II.E.2.** Si $\sum |a_n|$ divergeait (par l'absurde), la question **II.D** donnerait une suite (ε_n) de limite nulle telle que $\sum |a_n|\varepsilon_n$ diverge et on obtiendrait une contradiction. Ainsi, $\sum |a_n|$ converge.

II.E.

II.F.1. Supposons, par l'absurde, que (a_n) n'est pas bornée. Pour tout M et tout N, il existe un entier $n \ge N$ tel que $|a_n| \ge M$ (sinon, la suite $(a_n)_{n \ge N}$ est bornée et (a_n) l'est donc aussi). On peut ainsi construire par récurrence une suite n_k telle que $|a_{n_0}| \ge 1$ et

$$\forall k \ge 0, \ n_{k+1} = \min\{n > n_k / |a_n| \ge 2^{k+1}\}\$$

Soit alors (x_n) telle que

$$\forall k, \ x_{n_k} = \frac{1}{2^k}$$

les autres x_n étant nuls. La série $\sum x_n$ converge (la suite des sommes partielles est croissante et majorée par

$$\sum_{k=0}^{\infty} \frac{1}{2^k} = 2$$
) et

$$\forall k, |x_{n_k}a_{n_k}| \ge 1$$

ce qui montre que $(x_n a_n)$ n'est pas de limite nulle et entraîne la divergence de $\sum x_n a_n$ en donnant une contradiction.

II.F.2. Par le même calcul qu'en II.B.2 on a

$$(*): \sum_{k=0}^{n} \varepsilon_{k}(a_{k+1} - a_{k}) = \sum_{k=1}^{n} (\varepsilon_{k-1} - \varepsilon_{k}) a_{k} + \varepsilon_{n} a_{n+1} - \varepsilon_{0} a_{0}.$$

 $\varepsilon_{k-1} - \varepsilon_k$ est le terme général d'une série convergente (puisque la suite (ε_k) converge) et donc $\sum (\varepsilon_{k-1} - \varepsilon_k) a_k$ converge. De plus $\varepsilon_n a_{n+1} \to 0$ (produit d'une suite bornée et d'une suite de limite nulle). (*) montre alors que la série $\sum \varepsilon_n (a_{n+1} - a_n)$ converge (la suite des sommes partielles admet une limite).

- **II.F.3.** La question **II.E** montre alors que la série $\sum |a_{n+1} a_n|$ converge.
- **II.F.4.** On a finalement prouvé que les suites vérifiant (P_2) sont exactement les suites (a_n) telles que $\sum |a_{n+1}-a_n|$ converge (une telle suite est dite à *variations bornées*).