What is claimed is:

1. An additive of following Formula 1 for a photoresist composition for a resist flow process.

Formula 1

wherein, A is H or -OR",

B is H or -OR", and

R, R', R" and R" are independently selected from the group consisting of C_1 - C_{10} alkyl, C_1 - C_{10} alkoxyalkyl, C_1 - C_{10} alkylcarbonyl, and C_1 - C_{10} alkyl containing at least one hydroxyl group (-OH).

2. The additive of claim 1 wherein the additive is selected from the group consisting of compounds of following Formulas 2 to 7:

Formula 2

15

5

Formula 4

Formula 5

5

Formula 6

3. A photoresist composition comprising:

a photoresist polymer, a photoacid generator, an additive of following Formula 1, and an organic solvent,

Formula 1

5

wherein, A is H or -OR",

B is H or -OR", and

R, R', R" and R" are independently selected from the group consisting of C_1 - C_{10} alkyl, C_1 - C_{10} alkoxyalkyl, C_1 - C_{10} alkylcarbonyl, and C_1 - C_{10} alkyl containing at least one hydroxyl group (-OH).

4. A method for forming a photoresist pattern on a substrate comprising forming a layer of the photoresist composition of claim 3 by a resist flow process.

5. The photoresist composition of claim 3 wherein the additive of Formula 1 is selected from the group consisting of compounds of following Formulas 2 to 7:

Formula 2

Formula 3

Formula 4

Formula 6

Formula 7

6. The photoresist composition of claim 3 wherein the photoresist polymer is a compound of following Formulas 8 or 9:

Formula 8

5 Formula 9

wherein, R₁ is and acid labile protecting group;

R₂ is hydrogen;

 R_3 is hydrogen, selected from the group consisting of C_1 - C_{10} alkyl, C_1 - C_{10} alkoxyalkyl, and C_1 - C_{10} alkyl containing at least one hydroxyl group (-OH);

n is an integer from 1 to 5; and

w, x, y and z individually denote the mole ratio of each monomer, preferably with proviso that w + x + y = 50mol%, and z is 50mol%.

7. The photoresist composition of claim 6 wherein the photoresist polymer is selected from the group consisting of compounds of following Formulas 10 to 13:

Formula 10

Formula 11

5

Formula 12

Formula 13

- 8. The photoresist composition of claim 3 wherein the additive is present in an amount ranging from about 1 to about 70% by weight of the photoresist polymer.
- 9. The photoresist composition of claim 3 wherein said photoacid

 5 generator is selected from the group consisting of diphenyl iodide
 hexafluorophosphate, diphenyl iodide hexafluoroarsenate, diphenyl iodide
 hexafluoroantimonate, diphenyl p-methoxyphenyl triflate, diphenyl p-toluenyl triflate,
 diphenyl p-isobutylphenyl triflate, diphenyl p-tert-butylphenyl triflate,
 triphenylsulfonium hexafluororphosphate, triphenylsulfonium hexafluoroarsenate,

 10 triphenylsulfonium hexafluoroantimonate, triphenylsulfonium triflate,
 dibutylnaphthylsulfonium triflate, and mixtures thereof.
 - 10. The photoresist composition of claim 3 wherein the photoacid generator is present in an amount ranging from about 0.01 to about 10% by weight of the photoresist polymer.
 - 11. The photoresist composition of claim 3 wherein the organic solvent is selected from the group consisting of propyleneglycol methyl ether acetate, ethyl lactate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate and cyclohexanone.
 - 12. The photoresist composition of claim 3 wherein the organic solvent is present in a range of from about 100 % to about 1000% by weight of the photoresist polymer.

20

- 13. A process for forming a photoresist pattern comprising the steps of:
- (a) forming a first photoresist pattern on a substrate using a photoresist composition comprising a photoresist polymer, a photo acid generator, an organic solvent, and an additive of following Formula 1:

wherein, A is H or -OR",

B is H or -OR", and

R, R', R" and R" are independently selected from the group consisting of C₁-C₁₀ alkyl, C₁-C₁₀ alkoxyalkyl, C₁-C₁₀ alkylcarbonyl, and C₁-C₁₀ alkyl containing at least one hydroxyl group (-OH),

and

(b) producing a second photoresist pattern from said first photoresist pattern using a resist flow process.

15

- 14. The process of claim 13 wherein said step (a) further comprises the steps of:
- (i) coating said photoresist composition on said substrate to form a photoresist film, wherein said substrate is a semiconductor devise; and
 - (ii) producing said first photoresist pattern using a lithography process.
- 15. The process of claim 13 wherein said first and second photoresist pattern comprises a contact hole pattern.

- 16. The process of claim 13 wherein said resist flow process comprises heating said first photoresist pattern to temperature in the range of from about 120 to about 190°C.
- 5 17. A semiconductor element manufactured in accordance with the process of claim 13.
 - 18. A semiconductor element manufactured in accordance with the process of claim 14.

- 19. A semiconductor element manufactured in accordance with the process of claim 15.
- 20. A semiconductor element manufactured in accordance with the process of claim 16.