INF283 Introduction to machine learning Fall 2018

Exam

3.12.2018

This exam has 6 tasks on 5 pages. You can get at most 50 points. No aids permitted.

1 Basic concepts (10 p.)

1.1 Overfitting

Give short answers to the following questions:

- a) What is overfitting?
- b) Why is it a problem?
- c) How can overfitting be detected?
- d) How can overfitting be avoided? (list at least three ways)

1.2 Model selection and evaluation

Suppose we have performed polynomial regression with different degrees of a polynomial. Our goal is to find a model that predicts well labels of unseen objects. We have measured the performance of the learned models by computing the mean squared error on the training set and on a separate validation set. The errors for varying degree polynomials can be seen in the table below.

Degree	Training error	Validation error
1	10	12
2	5	6
3	3	4
4	2	2.5
5	1.3	1.8
6	1.2	2.1
7	1.1	2.4
8	1.02	2.8
9	0.95	3.5
10	0.9	5

Give short answers to the following questions:

- e) Which polynomial would you choose? Why?
- f) Given the information that we have, can we get an unbiased estimate of the mean squared error of the chosen model on unseen data? Why/why not?

2 Neural networks (8 p.)

Consider the following simple neural network:

We have a one-dimensional input $x \in \mathbb{R}$ and a one-dimensional output $y \in \mathbb{R}$. Furthermore, we have one hidden layer consisting of one neuron and ReLU activation function. The output layer is linear.

That is, we have $z = w_1 x$, h = f(z) where $f(z) = \max(0, z)$ and $\hat{y} = w_2 h$. We consider squared loss $L(y, \hat{y}) = \frac{1}{2}(y - \hat{y})^2$.

Suppose that initial weights have values $w_1 = 2$ and $w_2 = 3$. We have observed one data point with x = 1 and y = 5. Perform one update of parameters w_1 and w_2 using gradient descent with learning rate $\gamma = 0.1$. Show intermediate steps.

3 K-means clustering (8 p.)

You are given a data set $D = \{0, 1, 3, 7, 9\}$ consisting of 5 one-dimensional points. Find a 2-means clustering of D by simulating Lloyd's algorithm with initial cluster centers 3 and 7. Show intermediate steps.

4 PCA (8 p.)

Explain what principal component analysis (PCA) does. What is the goal? What is the interpretation of the output? (Feel free to use illustrations to clarify your point; no need to describe the algorithm)

5 Independencies in Bayesian networks (8 p.)

Consider the following DAG:

List all pairs of variables that are d-separated by some set of variables in the DAG; for each pair of d-separated variables, give one set that d-separates those variables.

6 Kernelized regression (8 p.)

Many linear regression and classification methods can be transformed to handle non-linear data. Recall that in linear regression we model the label $y_i \in \mathbb{R}$ using a linear function of the input vector $\mathbf{x}_i \in \mathbb{R}^d$:

$$y_i = \mathbf{w}^T \mathbf{x}_i + \epsilon_i,$$

where $\mathbf{w} \in \mathbb{R}^d$ is the weight vector and $\epsilon_i \sim N(0, \sigma^2)$ is a noise term.

Typically, one tries to find parameters **w** that minimize a quadratic loss function. Assuming that our data consists of n pairs (\mathbf{x}_i, y_i) and L_2 -regularization, we get the following loss function:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \frac{1}{2} \lambda ||\mathbf{w}||^2,$$

where λ is a hyperparameter determining the strength of regularization. In other words, the goal is to find a parameter vector \mathbf{w} such that the loss is minimized, that is, we want to minimize the sum of the squared errors of the predictions and a complexity penalty.

We represent the data with a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ where row i consists of a data vector \mathbf{x}_i^T . Furthermore, class labels are stored in a vector $\mathbf{y} \in \mathbb{R}^n$ where ith element is y_i .

The optimal value for \mathbf{w} can be found with the following formula:

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}_d)^{-1} \mathbf{X}^T \mathbf{y},$$

where \mathbf{I}_d is a $d \times d$ identity matrix.

Linear methods can be made non-linear by transforming data to some higher dimensional space using a non-linear transformation and learning a linear model in that space. That is, for each data point \mathbf{x}_i , we compute $\phi(\mathbf{x}_i) \in \mathbb{R}^{d'}$ that transforms the point into a d'-dimensional space. We use $\mathbf{\Phi} \in \mathbb{R}^{n \times d'}$ to denote the data matrix of the transformed data. In other words, the *i*th row of $\mathbf{\Phi}$ is $\phi(\mathbf{x}_i)^T$.

Solving the linear regression problem in the new space, gives us the following weight vector:

$$\mathbf{w} = (\mathbf{\Phi}^T \mathbf{\Phi} + \lambda \mathbf{1}_{d'})^{-1} \mathbf{\Phi}^T \mathbf{y}.$$

Note that now **w** is d'-dimensional.

Sometimes it is useful the write the solution in a different form. Using a result called matrix inversion lemma (You can check the proof after the exam from here: https://danieltakeshi.github.io/2016/08/05/

 ${\tt a-useful-matrix-inverse-equality-for-ridge-regression/}),$ we note that

$$(\mathbf{\Phi}^T \mathbf{\Phi} + \lambda \mathbf{1}_{d'})^{-1} \mathbf{\Phi}^T = \mathbf{\Phi}^T (\mathbf{\Phi} \mathbf{\Phi}^T + \lambda \mathbf{I}_n)^{-1}.$$

Let us denote $\mathbf{H} = \mathbf{\Phi}\mathbf{\Phi}^T$. We note that \mathbf{H} is an $n \times n$ matrix and $\mathbf{H}_{ij} = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$. Now we can write the optimal weight vector in a form

$$\mathbf{w} = \mathbf{\Phi}^T (\mathbf{H} + \lambda \mathbf{I}_n)^{-1} \mathbf{y}.$$

Further, denoting $\boldsymbol{\alpha} = (\mathbf{H} + \lambda \mathbf{I}_n)^{-1} \mathbf{y}$, we can write $\mathbf{w} = \sum_{i=1}^n \alpha_i \phi(\mathbf{x}_i)$, where α_i is the *i*th element of $\boldsymbol{\alpha}$.

Consider a new data point \mathbf{x} . Now the prediction for y is

$$y^* = \mathbf{w}^T \phi(\mathbf{x}).$$

Answer the following questions:

- a) What is a kernel?
- b) Consider the formulation of non-linear regression above. We are interested in predicting y given \mathbf{x} but not interested in \mathbf{w} . Modify the formulation to create a kernelized version of the non-linear regression.
- c) What is the benefit of using the kernelized version of non-linear regression that you created in b) compared to the formulation presented above?