COMPLEX LAGRANGIAN EMBEDDINGS OF MODULI SPACES OF VECTOR BUNDLES

U. BRUZZO & F. PIOLI

Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Beirut 2-4, 34014 Trieste, Italy

ABSTRACT. By means of a Fourier-Mukai transform we embed moduli spaces $\mathcal{M}_C(r,d)$ of stable bundles on an algebraic curve C of genus $g(C) \geq 2$ as isotropic subvarieties of moduli spaces of μ -stable bundles on the Jacobian variety J(C). When g(C) = 2 this provides new examples of special Lagrangian submanifolds.

1. Introduction

Throughout this paper we shall fix \mathbb{C} as the ground field. Let C be a smooth algebraic curve of genus g > 1, and denote by J(C) its Jacobian variety and by $\Theta \in H^2(J(C), \mathbb{Z})$ the cohomology class corresponding to the theta divisor. Fix coprime positive integers r, d such that d > 2rg, and let $\mathcal{M}_C(r,d)$ be the moduli space of stable vector bundles on C of Chern character (r,d). We show that $\mathcal{M}_C(r,d)$ can be embedded as an isotropic holomorphic submanifold of the complex symplectic variety $\mathcal{M}^{\mu}_{J(C)}(r,d) = \mathcal{M}^{\mu}_{J(C)}(d+r(1-g),-r\Theta,0,\ldots,0)$ — the moduli space of μ -stable vector bundles on J(C) with Chern character $(d+r(1-g),-r\Theta,0,\ldots,0)$ (cf. Theorem 2.1 for a precise statement). When g(C)=2 one has dim $\mathcal{M}^{\mu}_{J(C)}(r,d)=2$ dim $\mathcal{M}_C(r,d)$, and by using the hyper-Kähler structure of $\mathcal{M}^{\mu}_{J(C)}(r,d)$, one can choose on this space a complex structure such that $\mathcal{M}_C(r,d)$ embeds as a special Lagrangian submanifold, thus providing new examples of such objects.

¹⁹⁹¹ Mathematics Subject Classification. 14D20, 14J60, 53C42.

Key words and phrases. Moduli spaces of stable bundles, Fourier-Mukai transform, Complex Lagrangian submanifolds.

E-Mail addresses: bruzzo@sissa.it, pioli@sissa.it.

We recall a few facts about the Fourier-Mukai transform in the context of Abelian varieties [8]. Let X be an Abelian variety and $\widehat{X} = \operatorname{Pic}^0(X)$ its dual variety. Let \mathcal{P} be the normalized Poincaré bundle on $X \times \widehat{X}$. The Mukai functor is defined as

$$\mathbf{R}\mathcal{S} \colon D(X) \to D(\widehat{X})$$
$$\mathbf{R}\mathcal{S}(-) = \mathbf{R}\pi_{\widehat{X},*}(\pi_X^*(-) \otimes \mathcal{P})$$

where D(X) and $D(\widehat{X})$ are the bounded derived categories of coherent sheaves on X and \widehat{X} , respectively. Mukai has shown that the functor $\mathbf{R}\mathcal{S}$ is invertibile and preserves families of sheaves (cf. [8, 10]). If E is a WIT_i sheaf on X, that is, a sheaf whose transform is concentrated in degree i, then the functor $\mathbf{R}\mathcal{S}$ preserves the Ext groups:

$$\operatorname{Ext}_X^j(E, E) \cong \operatorname{Ext}_{\widehat{X}}^j(\widehat{E}, \widehat{E})$$
 for every j ,

where \hat{E} indicates the transform of E.

Let C be a smooth projective curve of genus g > 1 and J(C) the Jacobian of C. If we fix a base point x_0 on C, and let $\alpha_{x_0} \colon C \to J(C)$ be the Abel-Jacobi embedding given by $\alpha_{x_0}(x) = \mathcal{O}_C(x - x_0)$, the normalized Poincaré bundle \mathcal{P}_C on $C \times J(C)$ is the pullback of the Poincaré bundle on $J(C) \times J(C)$, where we identify J(C) with $\widehat{J(C)}$ via the isomorphism $-\phi_{\Theta} \colon J(C) \to \widehat{J(C)}$. The Poincaré bundle on $C \times J(C)$ gives rise to a derived functor (which is not invertible):

$$\mathbf{R}\Phi_C \colon D(C) \to D(J(C))$$
$$\mathbf{R}\Phi_C(-) = \mathbf{R}\pi_{J(C),*}(\pi_C^*(-) \otimes \mathcal{P}_C) .$$

Since α_{x_0} is a closed immersion we have a natural isomorphism of functors

(1)
$$\mathbf{R}\Phi_C \cong \mathbf{R}\mathcal{S} \circ \alpha_{x_0,*}.$$

Thus the study of the transforms of bundles F on C with respect to $\mathbf{R}\Phi_C$ is equivalent to studying the transforms of sheaves of pure dimension 1 of the form $\alpha_{x_0,*}(F)$ with respect to $\mathbf{R}\mathcal{S}$. We recall the following fact which is proven in [6].

Proposition 1.1. If E is a stable bundle on C of rank r and degree d such that d > 2rg, then E is WIT₀, and the transformed sheaf $\hat{E} =$

 $\mathbf{R}^0\Phi_C(E)$ is locally free and μ -stable with respect to the theta divisor on J(C).

2. Complex Lagrangian embeddings

If we consider the moduli space $\mathcal{M}_C(r,d)$ of stable bundles of rank r and degree d on a projective smooth curve of genus g > 1 such that d > 2rg and r, d are coprime, the functor $\mathbf{R}\Phi_C$ gives rise to an injective morphism

$$\tilde{\jmath} \colon \mathcal{M}_C(r,d) \to \mathcal{M}^{\mu}_{J(C)}(r,d) = \mathcal{M}^{\mu}_{J(C)}(d+r(1-g), -r\Theta, 0, \dots, 0)$$

where the sheaves in $\mathcal{M}^{\mu}_{J(C)}(r,d)$ are stable with respect to the polarization Θ .

Before studying the morphism $\tilde{\jmath}$ we need to recall some elementary facts about the Yoneda product of Ext groups. Let \mathcal{A} be an abelian category with enough injectives. The elements of $\operatorname{Ext}^1_{\mathcal{A}}(E,E)$ are identified with equivalence classes of exact sequences $0 \to E \to F \to E \to 0$ with respect to the usual relation. This can be generalized to the groups $\operatorname{Ext}^2_{\mathcal{A}}(E,E)$ as follows. We refer to [2] for proofs and details.

Consider the following commutative diagram with exact rows:

(2)
$$E: \quad 0 \longrightarrow B \longrightarrow G_1 \longrightarrow G_2 \longrightarrow A \longrightarrow 0$$

$$\downarrow^{\operatorname{Id}_B} \qquad \downarrow \qquad \downarrow^{\operatorname{Id}_A}$$

$$E': \quad 0 \longrightarrow B \longrightarrow G'_1 \longrightarrow G'_2 \longrightarrow A \longrightarrow 0.$$

We write E woheadrightarrow E' when such a diagram holds. The relation woheadrightarrow is not symmetric, but it generates the following equivalence relation: $E \sim E'$ if and only if there exists a chain of sequences E_0, E_1, \ldots, E_k such that

$$E = E_0 \twoheadrightarrow E_1 \twoheadleftarrow E_2 \twoheadrightarrow \cdots \twoheadleftarrow E_k = E'.$$

Let $\operatorname{Yext}^2_{\mathcal{A}}(-,-)$ the set of such equivalence classes.

There is an isomorphism

$$\operatorname{Yext}^2_{\mathcal{A}}(-,-) \cong \operatorname{Ext}^2_{\mathcal{A}}(-,-).$$

From now on we shall identify the above groups. Observe that the identity of $\operatorname{Ext}_{\mathcal{A}}^2(A,B)$ is given by the class of the sequence

$$0 \longrightarrow B \xrightarrow{\operatorname{Id}_B} B \xrightarrow{0} A \xrightarrow{\operatorname{Id}_A} A \longrightarrow 0.$$

Moreover the Yoneda product

$$\operatorname{Ext}_{\mathcal{A}}^{1}(B,A) \times \operatorname{Ext}_{\mathcal{A}}^{1}(A,C) \to \operatorname{Ext}_{\mathcal{A}}^{2}(B,C)$$

is obtained in the following way: let E and E' be two elements of $\operatorname{Ext}^1_{\mathcal{A}}(B,A)$ and $\operatorname{Ext}^1_{\mathcal{A}}(A,C)$ represented respectively by the sequences

$$E: 0 \longrightarrow A \xrightarrow{\nu} F \xrightarrow{p} B \longrightarrow 0$$

$$E': 0 \longrightarrow C \stackrel{i}{\longrightarrow} G \stackrel{\lambda}{\longrightarrow} A \longrightarrow 0.$$

Then the class of the exact sequence

$$0 \longrightarrow C \xrightarrow{i} G \xrightarrow{\nu \circ \lambda} F \xrightarrow{p} B \longrightarrow 0$$

in $\operatorname{Ext}_{\mathcal{A}}^2(B,C)$ is the image of E,E' with respect to the Yoneda product.

We shall also need to introduce a moduli space of stable sheaves in Simpson's sense [13]. For simplicity we denote the Abel-Jacobi map as $j: C \to J(C)$. Observe that if E is a stable bundle on C then $j_*(E)$ is a stable sheaf of pure dimension 1 on J(C) with respect to the polarization Θ . Let $\mathcal{M}_{J(C)}^{\text{pure}}(r,d)$ be the moduli space of all stable pure sheaves on J(C) with Chern character $(0,\ldots,0,r\Theta,d+r(1-g))$. If \mathcal{E} is a flat family of vector bundles on C parametrized by a Noetherian scheme S, then $j_{S,*}(\mathcal{E})$ is a flat family of sheaves on $J(C) \times S$ over S, where $j_S: C \times S \to J(C) \times S$ is the embedding $j \times \text{Id}_S$. Therefore one has a morphism of moduli spaces

(3)
$$j_*: \mathcal{M}(r,d) \to \mathcal{M}_{J(C)}^{\text{pure}}(r,d)$$
.

Lemma 2.1. The morphism $\tilde{\jmath} \colon \mathcal{M}_C(r,d) \to M^{\mu}_{J(C)}(r,d)$ is an immersion (i.e., its tangent map is injective).

Proof. From the isomorphism given by Eq. (1) and recalling that the transform $\mathbf{R}\mathcal{S}$ preserves the Ext groups of WIT sheaves, it is enough to show that the same claim holds for the morphism (3). By the very

definition of the Kodaira-Spencer map, the tangent map to j_* may be identified with the map

$$\operatorname{Ext}^1_C(E,E) \stackrel{\phi}{\hookrightarrow} \operatorname{Ext}^1_{J(C)}(j_*(E),j_*(E))$$

obtained in the following way. Let

$$(4) A: 0 \longrightarrow E \longrightarrow F \longrightarrow E \longrightarrow 0$$

be a sequence representing an element of $\operatorname{Ext}^1_C(E, E)$. If we apply the functor j_* to the above sequence we obtain the exact sequence

(5)
$$B: 0 \longrightarrow j_*(E) \longrightarrow j_*(F) \longrightarrow j_*(E) \longrightarrow 0.$$

One checks immediately that the map $\phi([A]) = [B]$ is well defined. If $\phi([A]) = 0$ then $\phi([A])$ is represented by the extension

$$(6) 0 \longrightarrow j_*(E) \longrightarrow j_*(E) \oplus j_*(E) \longrightarrow j_*(E) \longrightarrow 0.$$

Now applying the functor j^* to the above sequence and noting that $j^*(j_*(H)) \cong H$ for every vector bundle H on C we obtain the split exact sequence

$$0 \longrightarrow E \longrightarrow E \oplus E \longrightarrow E \longrightarrow 0.$$

Therefore
$$\phi([A]) = 0$$
 implies $[A] = 0$ and ϕ is injective.

Mukai proved that the moduli space of simple sheaves on an abelian surface X is symplectic; more precisely, the Yoneda pairing

$$v \colon \operatorname{Ext}^1_X(E, E) \times \operatorname{Ext}^1_X(E, E) \to \operatorname{Ext}^2_X(E, E) \cong \mathbb{C}$$

defines a holomorphic symplectic form on the moduli of simple sheaves on X (cf. [9, 11]). When $\dim X = 2n > 2$ to define a symplectic form on the smooth locus of the moduli space one needs to choose a symplectic form ω on X. The symplectic form is then defined by the compositions (cf. [5])

$$\operatorname{Ext}_{X}^{1}(E, E) \times \operatorname{Ext}_{X}^{1}(E, E) \longrightarrow \operatorname{Ext}_{X}^{2}(E, E) \xrightarrow{\operatorname{tr}} H^{2}(X, \mathcal{O}_{X})$$

$$\stackrel{\sim}{\to} H^{0,2}(X, \mathbb{C}) \xrightarrow{\lambda} H^{n,n}(X, \mathbb{C}) \cong \mathbb{C}$$

where tr is the trace morphisms and the map λ is obtained by wedging by $\omega^n \wedge \bar{\omega}^{n-1}$.

Theorem 2.1. If g(C) is even, and the map $\tilde{\jmath}$ embeds $\mathcal{M}(r,d)$ into the smooth locus $\mathcal{M}_{J(C)}^0(r,d)$ of $\mathcal{M}_{J(C)}^{\mu}(r,d)$, then the subvarieties $\mathcal{M}_C(r,d)$ are isotropic with respect to any of the symplectic forms defined by equation (8). In particular, when g(C) = 2 the subvarieties $\mathcal{M}_C(r,d)$ are Lagrangian with respect to the Mukai form of $\mathcal{M}_{J(C)}^{\mu}(r,d)$.

Proof. Since $\mathcal{M}_{J(C)}^0(r,d)$ is smooth, and $\tilde{\jmath} \colon \mathcal{M}(r,d) \to \mathcal{M}_{J(C)}^0(r,d)$ is injective and is an immersion, it is also an embedding. Now, let $E \in \mathcal{M}_C(r,d)$. It is enough to show that the Yoneda product

$$\operatorname{Ext}_{J(C)}^{1}(j_{*}(E), j_{*}(E)) \times \operatorname{Ext}_{J(C)}^{1}(j_{*}(E), j_{*}(E))$$

$$\longrightarrow \operatorname{Ext}_{J(C)}^{2}(j_{*}(E), j_{*}(E))$$

vanishes when applied to pairs ([A], [B]) of elements in $\operatorname{Ext}_{J(C)}^1(j_*(E), j_*(E))$ where [A] and [B] are represented, respectively, by the sequences

$$A: 0 \longrightarrow j_*(E) \stackrel{\nu}{\longrightarrow} j_*(F) \stackrel{p}{\longrightarrow} j_*(E) \longrightarrow 0$$

$$B: 0 \longrightarrow j_*(E) \stackrel{i}{\longrightarrow} j_*(G) \stackrel{\lambda}{\longrightarrow} j_*(E) \longrightarrow 0$$

with $F, G \in \mathcal{M}_C(r, d)$. It is enough to remark that the product of the classes of the sequences of sheaves on C

$$0 \to E \to F \to E \to 0$$
, $0 \to E \to G \to E \to 0$

is zero for dimensional reasons, and apply the functor j_* .

In the case g(C) = 2 the moduli space is smooth by the results in [9]; moreover,

$$\dim \mathcal{M}^{\mu}_{J(C)}(r,d) = 2(r^2+1) = 2\dim \mathcal{M}_C(r,d).$$

Remark 3. If we consider the moduli space $\mathcal{M}_C(r,\xi)$ of stable bundles on C of rank r and fixed determinant isomorphic to ξ , then the result is trivial: the variety $\mathcal{M}_C(r,\xi)$ is Fano, so that it carries no holomorphic forms.

4. The case
$$g(C) = 2$$

In this section we elaborate on the case g(C) = 2. One can characterize situations where the moduli space $\mathcal{M}^{\mu}_{J(C)}(r,d)$ is compact. This happens for instance in the following case.

Proposition 4.1. Assume g(C) = 2, d > 4r and that $\rho = d - r$ is a prime number. Then every Gieseker-semistable sheaf on J(C) with Chern character $(d - r, -r\Theta, 0)$ is μ -stable. Moreover, if $d > r^2 + r$, every such sheaf is locally free (this always happens when r = 1, 2, 3).

Proof. Since d-r is prime, every sheaf in $\mathcal{M}_{J(C)}(r,d)$ is properly stable. Let $[F] \in \mathcal{M}_{J(C)}(r,d)$ and assume that the subsheaf G destabilizes F. Let $\mathrm{ch}(G) = (\sigma, \xi, s)$. Standard computations show that if F is not μ -stable then

$$\frac{\xi \cdot \Theta}{\sigma} = -\frac{2r}{\rho}$$
 and $s < 0$.

Setting $n = \xi \cdot \Theta$ we have $|n| = 2r\sigma/\rho$, with $\sigma < \rho$ and $\rho > 3r$. This is impossible whenever ρ is prime.

The statement about local freeness follows from the Bogomolov inequality. \Box

In the case g(C) = 2 the complex Lagrangian embedding $\tilde{\jmath} \colon \mathcal{M}_C(r,d) \to \mathcal{M}^{\mu}_{J(C)}(r,d)$ provides new examples of special Lagrangian submanifolds. We refer to [1, 7] for the definition and the main properties of these objects. Now, if X is a hyper-Kähler manifold of complex dimension 2n, let I, J, K be three complex structures compatible with the hyper-Kähler metric, and such that IJ = K. Let $\omega_I, \omega_J, \omega_K$ be the corresponding Kähler forms. Then the 2-form $\Omega = \omega_I + i\omega_J$ is a holomorphic symplectic form in the complex structure K. It is easy to check that a K-complex n-dimensional submanifold which is Lagrangian with respect to Ω is special Lagrangian in the structure J [3].

One should notice that via the Hitchin-Kobayashi correspondence (which identifies μ -stable bundles on a Kähler manifold with irreducible Einstein-Hermite bundles, cf. [5]), the space $\mathcal{M}^{\mu}_{J(C)}(r,d)$ acquires a hyper-Kähler structure, compatible with a Kähler form provided by the Weil-Petersson metric, and with a holomorphic symplectic form which may be identified with the Mukai form [4].

Therefore we obtain the following result.

Proposition 4.2. The space $\mathcal{M}^{\mu}_{J(C)}(r,d)$ has a complex structure such that $\tilde{\jmath} \colon \mathcal{M}_C(r,d) \to \mathcal{M}^{\mu}_{J(C)}(r,d)$ is a special Lagrangian submanifold.

The elements of the Jacobian variety J(C) act on the embedding $j: C \to J(C)$ by translation, so that for every $x \in J(C)$ we have a special Lagrangian submanifold $\tilde{\jmath}_x \colon \mathcal{M}_C(r,d) \to \mathcal{M}^{\mu}_{J(C)}(r,d)$. This provides a family of deformations of $\tilde{\jmath}(\mathcal{M}_C(r,d))$ through special Lagrangian submanifolds. As one easily shows, this embeds J(C) into the moduli space \mathcal{M}_{SL} of special Lagrangian deformations of $\tilde{\jmath}(\mathcal{M}_C(r,d))$ (notice that $\dim_{\mathbb{R}} \mathcal{M}_{SL} = b_1(\mathcal{M}_C(r,d)) = 4 = \dim_{\mathbb{R}}(J(C))$) [12]. The case r = 1 is somehow trivial because $\mathcal{M}^{\mu}_{J(C)}(1,d) \simeq J(C) \times J(C)$ by a result of Mukai [8].

Acknowledgements. We thank A. Maciocia and M.S. Narasimhan for useful suggestions or remarks.

References

- [1] Harvey, R., and Lawson Jr., H.B., Calibrated geometries, Acta Math. 148 (1982), 47–157.
- [2] Hilton P. J., and Stammbach U., A Course in Homological Algebra, Grad. Texts Math. 4, Springer-Verlag, Berlin-Heidelberg-New York (1971).
- [3] Hitchin, N., The moduli space of complex Lagrangian submanifolds, math/9901069.
- [4] Itoh, M., Quaternion structure of the moduli space of Yang-Mills connections, Math. Ann. 276 (1987), 581–593.
- [5] Kobayashi, S., Differential Geometry of Complex Vector Bundles, Princeton University Press, Princeton 1987.
- [6] Li, Y., Spectral curves, theta divisors and Picard bundles, Int. J. Math. 2 (1991), 525-550.
- [7] McLean, R., Deformations of calibrated submanifolds, Comm. Anal. Geom. 6 (1998), 705–747.
- [8] Mukai, S., Duality between D(X) and $D(\hat{X})$ with its application to Picard sheaves, Nagoya Math. J. 81 (1981), 153–175.
- [9] ——, Symplectic structure of the moduli space of sheaves on an abelian or K3 surface, Inv. Math. 77 (1984), 101-116.
- [10] ——, Fourier functor and its applications to the moduli of bundles on an abelian variety, Adv. Pure Math. 10 (1987), 515-550.
- [11] ——, Moduli of vector bundles on K3 surfaces, and symplectic manifolds, Sugaku Expositions, 1, No. 2 (1988), 139-174.
- [12] Newstead, P.E., Topological properties of some spaces of stable bundles, Topology 6 (1967), 241–262.
- [13] Simpson, C.T., Moduli of representations of the fundamental group of a smooth projective variety I, Publ. Math. IHES **79** (1994), 47–129.