# CMSC 473/673 Natural Language Processing

Instructor: Lara J. Martin (she/they)

TA: Duong Ta (he)

# Learning Objectives

Analyze code of a RNN language model

# Review: Neural Language Models

given some context...

create/use
"distributed
representations"...

combine these representations...

compute beliefs about what is likely...

predict the next word



# Review: A Neural N-Gram Model (N=3)

The fluffy gray cat meowed very loudly



Critical issue: the amount of information flow is fundamentally restricted!!!

#### Review:

# A Recurrent Neural Language Model

The fluffy gray cat meowed very loudly



Critical issue: the amount of information flow is fundamentally restricted!!!

Allowing signal to flow from one hidden state to another could help solve this!

# Review: A Classic View of Recurrent Neural Language Modeling



## Review: A *Simple* Recurrent Neural Network Cell



## Review: A *Simple* Recurrent Neural Network Cell



#### Review: A *Simple* Recurrent Neural Network Cell



#### Review: A Multi-Layer Simple Recurrent Neural Network Cell



# Review: Gradient Descent: Backpropagate the Error

Initialize model

Set t = 0

Pick a starting value  $\theta_t$ 

Until converged:

for example(s) sentence i:

- 1. Compute loss I on  $x_i \leftarrow I = model(x_i)$
- 2. Get gradient  $g_t = l'(x_i)$
- 3. Get scaling factor  $\rho_{t}$
- 4. Set  $\theta_{t+1} = \theta_t \rho_t * g_t$
- 5. Set t += 1

Core idea: Train the model to predict what the next word is via maximum likelihood (equivalently, minimizing crossentropy loss).

This **loss** is the sum of the pertoken cross-entropy loss

11

#### Review: Recurrent NN Loss

(then negate, average)

 $\log .2 + \log .12 + \log .2 + \log .19 + \log .3 + \log .2 + \log .2 + \log .2$ 

| word   | prob. | word   | prob. | word  | prob. | word   | prob. | word   | prob | word   | prob. | word   | prob | word   | prob. |
|--------|-------|--------|-------|-------|-------|--------|-------|--------|------|--------|-------|--------|------|--------|-------|
| The    | .2    | black  | .2    | black | .2    | dog    | .2    | meowed | .3   | very   | .2    | loudly | .2   | EOS    | .3    |
| gray   | .01   | wet    | .12   | gray  | .01   | cat    | .19   | purred | .2   | lots   | .1    | softly | .01  | and    | .1    |
| blue   | .001  | blue   | .001  | blue  | .001  | blue   | .001  | hissed | .1   | softly | . 1   | quiet  | .001 | blue   | .001  |
| fluffy | .0005 | fluffy | .0005 | bald  | .0005 | fluffy | .0005 | fluffy | .001 | fluffy | .0005 | fluffy | .001 | fluffy | .0005 |
| wet    | .0005 | gray   | .0005 | wet   | .0005 | wet    | .0005 | wet    | .001 | wet    | .0005 | wet    | .001 | wet    | .0005 |
|        |       |        |       |       |       |        |       |        |      |        |       |        |      |        |       |



12

# Review: Gradient Descent: Backpropagate the Error



# PyTorch RNN LMs

#### Pick Your Toolkit

PyTorch Keras

Deeplearning4j MxNet

TensorFlow Gluon

DyNet CNTK

Caffe ....

#### Comparisons:

https://en.wikipedia.org/wiki/Comparison of deep learning software

(Modified Very Slightly)

```
import torch.nn as nn
from torch.autograd import Variable
class RNN(nn.Module):
    def init (self, input size, hidden size, output size):
        super(RNN, self). init ()
        self.hidden size = hidden size
        self.i2h = nn.Linear(input size + hidden size, hidden size)
        self.i2o = nn.Linear(input size + hidden size, output size)
        self.softmax = nn.LogSoftmax()
    def forward(self, input, hidden):
                                                           W_{i+1}
        combined = torch.cat((input,
        hidden = self.i2h(combined)
        output = self.i2o(combined)
        output = self.softmax(output)
        return output, hidden
    def initHidden(self):
        return Variable(torch.zeros(1
n \text{ hidden} = 128
rnn = RNN(n letters, n hidden, nacategories)
```

(Modified Very Slightly)

```
import torch.nn as nn
from torch.autograd import Variable
class RNN(nn.Module):
    def init (self, input size, hidden size, output size):
        super(RNN, self). init ()
        self.hidden size = hidden size
       self.i2h = nn.Linear(input size + hidden size, hidden size)
        self.i2o = nn.Linear(input size + hidden size, output size)
        self.softmax = nn.LogSoftmax()
    def forward(self, input, hidden):
                                                           W_{i+1}
        combined = torch.cat((input,
        hidden = self.i2h(combined)
        output = self.i2o(combined)
        output = self.softmax(output)
        return output, hidden
    def initHidden(self):
        return Variable(torch.zeros(1
n \text{ hidden} = 128
rnn = RNN(n letters, n hidden, n categories)
```

(Modified Very Slightly)

```
import torch.nn as nn
from torch.autograd import Variable
class RNN(nn.Module):
    def init (self, input size, hidden size, output size):
        super(RNN, self). init ()
        self.hidden size = hidden size
        self.i2h = nn.Linear(input size + hidden size, hidden size)
       self.i2o = nn.Linear(input size + hidden size, output size)
        self.softmax = nn.LogSoftmax()
    def forward(self, input, hidden):;
                                                           W_{i+1}
        combined = torch.cat((input,
        hidden = self.i2h(combined)
        output = self.i2o(combined)
        output = self.softmax(output)
        return output, hidden
    def initHidden(self):
        return Variable(torch.zeros(1
n \text{ hidden} = 128
rnn = RNN(n letters, n hidden, nacategories)
```

(Modified Very Slightly)



(Modified Very Slightly)

http://pytorch.org/tutorials/intermediate/char rnn classification tutorial.html

```
import torch.nn as nn
from torch.autograd import Variable
                                                     h<sub>i-2</sub>
class RNN(nn.Module):
    def init (self, input size, hidden size,
        super(RNN, self). init ()
        self.hidden size = hidden size
        self.i2h = nn.Linear(input size + hidden size, hidden size)
        self.i2o = nn.Linear(input size + hidden size, output size)
        self.softmax = nn.LogSoftmax()
    def forward(self, input, hidden):
        combined = torch.cat((input, hidden), 1)
                                                         encode
        hidden = self.i2h(combined)
        output = self.i2o(combined)
        output = self.softmax(output)
        return output, hidden
    def initHidden(self):
        return Variable(torch.zeros(1, self.hidden size))
n \text{ hidden} = 128
rnn = RNN(n letters, n hidden, in categories)
```

 $W_{i+1}$ 

(Modified Very Slightly)

http://pytorch.org/tutorials/intermediate/char rnn classification tutorial.html  $W_{i+1}$ import torch.nn as nn from torch.autograd import Variable class RNN(nn.Module): def init (self, input size, hidden size, super(RNN, self). init () self.hidden size = hidden size self.i2h = nn.Linear(input size + hidden size, hidden size) self.i2o = nn.Linear(input size + hidden size, output size) self.softmax = nn.LogSoftmax() def forward(self, input, hidden): combined = torch.cat((input, hidden), 1) hidden = self.i2h(combined) output = self.i2o(combined) decode (we'll talk about this)
output = self.softmax(output) return output, hidden def initHidden(self): return Variable(torch.zeros(1, self.hidden size)) n hidden = 128rnn = RNN(n letters, n hidden, in categories)

(Modified Very Slightly)

http://pytorch.org/tutorials/intermediate/char rnn classification tutorial.html

Negative loglikelihood

(we'll talk about this)

```
criterion = nn.NLLLoss()
learning rate = 0.005 # If you set this too high, it might explode. If too low, it might not learn
def train(category tensor, line tensor):
    hidden = rnn.initHidden()
    rnn.zero grad()
    for i in range(line tensor.size()[0]):
        output, hidden = rnn(line tensor[i], hidden)
    loss = criterion(output, category tensor)
    loss.backward()
    # Add parameters' gradients to their values, multiplied by learning rate
    for p in rnn.parameters():
        p.data.add (-learning rate, p.grad.data)
    return output, loss.data[0]
```

(Modified Very Slightly)



(Modified Very Slightly)

```
Negative log-
               likelihood
criterion = nn.NLLLoss()
learning rate = 0.005 # If you set this too high, it might explode. If too low, it might not learn
def train(category tensor, line tensor):
    hidden = rnn.initHidden()
                                                                                                  L^{\text{xent}}(\hat{y}, y) = -\sum_{k} \hat{y}[k] \log p(y = k|x)
    rnn.zero grad()
                                                                                                              Set t = 0
    for i in range(line tensor.size()[0]):
                                                                     get predictions
                                                                                                              Pick a starting value \theta.
         output, hidden = rnn(line tensor[i], hidden)
                                                                                                              Until converged:
                                                                                                               for example(s) sentence i:
                                                                     eval predictions
    loss = criterion(output, category tensor)
                                                                                                                1. Compute loss I on x<sub>i</sub>
    loss.backward()
                                                                                                                 2. Get gradient g_+ = I'(x_i)
                                                                                                                 3. Get scaling factor ρ<sub>+</sub>
    # Add parameters' gradients to their values, multiplied by learning rate
                                                                                                                 4. Set \theta_{t+1} = \theta_t - \rho_t * g_t
    for p in rnn.parameters():
                                                                                                                 5. Set t += 1
         p.data.add (-learning rate, p.grad.data)
    return output, loss.data[0]
```

(Modified Very Slightly)

http://pytorch.org/tutorials/intermediate/char rnn classification tutorial.html

Negative loglikelihood criterion = nn.NLLLoss() learning rate = 0.005 # If you set this too high, it might explode. If too low, it might not learn def train(category tensor, line tensor): hidden = rnn.initHidden() rnn.zero grad() Set t = 0for i in range(line tensor.size()[0]): get predictions Pick a starting value  $\theta$ . output, hidden = rnn(line tensor[i], hidden) Until converged: for example(s) sentence i: eval predictions loss = criterion(output, category tensor) 1. Compute loss I on x loss.backward() compute gradient 2. Get gradient  $g_+ = l'(x_i)$ 3. Get scaling factor ρ, # Add parameters' gradients to their values, multiplied by learning rate 4. Set  $\theta_{t+1} = \theta_t - \rho_t * g_t$ for p in rnn.parameters(): 5. Set t += 1p.data.add (-learning rate, p.grad.data) return output, loss.data[0]

25

(Modified Very Slightly)

http://pytorch.org/tutorials/intermediate/char rnn classification tutorial.html

Negative loglikelihood criterion = nn.NLLLoss() learning rate = 0.005 # If you set this too high, it might explode. If too low, it might not learn def train(category tensor, line tensor): hidden = rnn.initHidden() rnn.zero grad() Set t = 0for i in range(line tensor.size()[0]): get predictions Pick a starting value  $\theta$ . output, hidden = rnn(line tensor[i], hidden) Until converged: for example(s) sentence i: eval predictions loss = criterion(output, category tensor) 1. Compute loss I on x<sub>i</sub> loss.backward() compute gradient 2. Get gradient  $g_{+} = l'(x_{i})$ 3. Get scaling factor ρ. # Add parameters' gradients to their values. multiplied by learning rat 4. Set  $\theta_{t+1} = \theta_t - \rho_t * g_t$ for p in rnn.parameters(): perform SGD 5. Set t += 1p.data.add (-learning rate, p.grad.data) return output, loss.data[0]

#### Suggested Implementation Changes

```
import torch.nn as nn
from torch.autograd import Variable
class RNN(pn.Module):
    def init (self, input size, hidden size, output size):
                                                                                           current Pytorch refers
        super(RNN, self). init ()
                                                                                           to this a "cell"
        self.hidden size = hidden size
        self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
        self.i2o = nn.Linear(input size + hidden size, output size)
        self.softmax = nn.LogSoftmax()
    def forward(self, input, hidden):
        combined = torch.cat((input, hidden), 1)
        hidden = self.i2h(combined)
        output = self.i2o(combined)
      output = self.softmax(output)
        return output, hidden
    def initHidden(self):
        return Variable(torch.zeros
                                                                nn.CrossEntropyLoss()
                                     criterion = nn.NLLLoss(
n \text{ hidden} = 128
rnn = RNN(n_letters, n_hidden, n_ca learning_rate = 0.005 # If you set this too high, it might explode. If too low, it might not learning_rate
                                     def train(category tensor, line tensor):
                                        hidden = rnn.initHidden()
                                        rnn.zero grad()
                                        for i in range(line tensor.size()[0]):
                                            output, hidden = rnn(line tensor[i], hidden)
                                        loss = criterion(output, category_tensor)
                                        loss.backward()
                                        # Add parameters' gradients to their values, multiplied by learning rate
                                        for p in rnn.parameters():
                                            p.data.add (-learning rate, p.grad.data)
                                        return output, loss.data[0]
```

# Another Solution: LSTMs/GRUs

LSTM: Long Short-Term Memory (Hochreiter & Schmidhuber, 1997)



# Gated Recurrent Unit

# Sequence-to-Sequence

https://en.wikipedia.org/wiki/Gated\_recurrent\_unit#/media/File:Gated\_Recurrent\_Unit,\_base\_type.svg



Note that this still has hidden layers!

# Seq2Seq Tutorial

https://pytorch.org/tutorials/intermediate/seq2seq\_translation\_tutorial.html

#### Encoder



```
class EncoderRNN(nn.Module):
    def __init__(self, input_size, hidden_size, dropout_p=0.1):
        super(EncoderRNN, self).__init__()
        self.hidden_size = hidden_size

        self.embedding = nn.Embedding(input_size, hidden_size)
        self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True)
        self.dropout = nn.Dropout(dropout_p)

def forward(self, input):
    embedded = self.dropout(self.embedding(input))
    output, hidden = self.gru(embedded)
    return output, hidden
```

https://pytorch.org/tutorials/intermediate/seq2seq translation tutorial.html

#### Decoder



https://pytorch.org/tutorials/intermediate/seq2seq translation tutorial.html

```
class DecoderRNN(nn.Module):
   def __init__(self, hidden_size, output_size):
        super(DecoderRNN, self).__init__()
        self.embedding = nn.Embedding(output_size, hidden_size)
       self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True)
        self.out = nn.Linear(hidden_size, output_size)
   def forward(self, encoder_outputs, encoder_hidden, target_tensor=None):
        batch_size = encoder_outputs.size(0)
        decoder_input = torch.empty(batch_size, 1, dtype=torch.long,
device=device).fill_(SOS_token)
        decoder_hidden = encoder_hidden
        decoder_outputs = []
       for i in range(MAX_LENGTH):
            decoder_output, decoder_hidden = self.forward_step(decoder_input, decoder_hidden)
            decoder_outputs.append(decoder_output)
           if target_tensor is not None:
                # Teacher forcing: Feed the target as the next input
               decoder_input = target_tensor[:, i].unsqueeze(1) # Teacher forcing
            else:
                # Without teacher forcing: use its own predictions as the next input
               _, topi = decoder_output.topk(1)
               decoder_input = topi.squeeze(-1).detach() # detach from history as input
        decoder_outputs = torch.cat(decoder_outputs, dim=1)
       decoder_outputs = F.log_softmax(decoder_outputs, dim=-1)
        return decoder_outputs, decoder_hidden, None # We return 'None' for consistency in the
training loop
   def forward_step(self, input, hidden):
        output = self.embedding(input)
       output = F.relu(output)
       output, hidden = self.gru(output, hidden)
       output = self.out(output)
       return output, hidden
```