Brenton Yiu byiu3 - 902601411

Project 1: Experiments

Taskgraph A

For these experiments, I started out by finding out how many processors each taskgraph used. This was as easy as creating a printf statement in my source code that outputted the amount of processors at the end of the program. I also calculated the amount of bytes total that would be used for each taskgraph and outputted it so that I could see if I met the total budget.

The first step I did was altered the amount of each context cache to meet the total budget of 54 kB. In order to do this I changed C which causes the most dramatic change in the total bytes.

The second step I did was see which replacement policy, NMRU-FIFO or LRU, caused the smallest AAT. Third, I modulated the storage policy, subblocking or blocking, and saw which caused the smallest AAT.

Fourth, I modulated the parameter S to see if increasing or decreasing it would cause a smaller AAT.

Finally, I modulated the parameter B to see if increasing or decreasing it would cause a smaller AAT.

The default parameter for taskgraph A was C=11, B=4, S=3, ST=Subblocking, and R=NMRU-FIFO. These parameters caused a total budget of 88704 bytes, which was greatly out of the 54 kB budget. I decreased C to be 10 and the new budge is 44928. Next, I tried LRU instead of NMRU-FIFO and found that the new AAT was 2.857586 compared to 2.857728. Third, I varied the S parameter between 2 and 4 and found that 3 is the best choice. Fourth, I varied the B parameter between 4 and 7 and found that 6 is the best choice. I then looked to see if the size of the cache met the budget and found that it was under-budget enough to increase the C from 10 to 11. This decreased the AAT again and I found that if I changed the B parameter to 7, I now get the lowest AAT possible.

Choice: C = 11

B = 7

S = 3

ST = Blocking

R = LRU

#	С	В	S	ST	R	Cache Size	AAT	Comments				
1	11	4	3	S	F	88704	2.855551	Default				
2	10	4	3	S	F	44928	2.85772	Decrease the C parameter to meet the budget				
3	10	4	3	S	L	48384	2.857586	Check the replacement policy				
4	10	4	2	В	ш	47232	14.722831	Check the storage policy				
5	10	4	3	В	L	47808	2.451593	Check above the S parameter				
6	10	4	4	В	L	48384	4.467932	Check above the S parameter again				
7	10	5	3	В	L	28512	2.249296	Check above the B parameter				
8	10	6	3	В	L	18864	2.149734	Check above the B parameter				
9	10	7	3	В	L	14040	4.349606	Check Above the B parameter				
10	11	6	3	В	L	37440	2.149174	Increase the C parameter to meet the budget				
11	11	7	3	В	L	27936	2.102622	Increase the B parameter for better AAT				
12	11	7	4	В	L	28080	4.105184	Try increasing the B parameter again, worse AAT				

Taskgraph B

Again, for this experiment, I changed the C parameter to get the total size below the budget. Then I checked to see which replacement policy

and storage policy would give the smallest AAT. Then I modulated the S parameter and found the smallest AAT and found that this value was when S is 3 and B is 5. Any other values that I tried would cause the cache size to be so big that it fell out of budget.

#	С	В	S	ST	R	Cache Size	AAT	Comments
1	8	6	2	S	L	4256	23.434765	Default
2	11	6	2	S	L	33280	23.095260	Increase C parameter to meet budget
3	11	6	2	S	F	31744	23.117628	Check replacement policy
4	11	6	2	В	L	33024	25.704069	Check storage policy
5	11	6	1	S	L	2048	23.109152	Check below the S parameter
6	11	6	2	S	L	33280	23.095260	Default
7								Check above the S parameter, need to
	11	5	3	S	L	50688	22.973923	change B=5 to keep validity
8	11	4	4	S	L	86016	24.990560	Decrease B and increase S and check
9	11	3	5	S	L	157696	28.792416	Keep decreasing B and increasing S
10	11	2	6	S	L	303104	37.145160	Keep decreasing B and increasing S
11								Going off of row 7, Decrease B with S=3 to
	11	4	3	S	L	153600	21.912915	see if we get a better AAT.

This table above shows the different parameters I tried to get the smallest AAT. We see that the smallest AAT that falls within budget is at row 7 when C=11, B=5, S=3, Subblocking, and LRU parameters are used.

Choice: C = 11

B = 5

S = 3

ST = Subblocking

R = LRU

Taskgraph C

For taskgraph C, I started out changing the C parameter to meet the required budget. I then checked to see which replacement policy and storage policy caused the smallest AAT. It was found to start with that C=10,

blocking caused the smallest AAT. LRU and FIFO showed the same AAT when I tried to test them so I had to change the parameters, specifically S=2, to show that LRU is the better option. Next, I tried to vary the S parameter and found that S=2 is the best option. I then varied the B parameter and found that B=6 gives the best AAT, but the cache size became really small. I increased the C parameter to increase the cache size and found that C=13 gave the best value.

Choice: C = 13

B = 6

S = 2

ST = Blocking

R = LRU

#	С	В	S	ST	R	Cache Size	AAT	Comments
1	6	2	1	В	L	2144	11.354116	Default
2	10	2	1	В	F	32256	1.830024	Get the biggest size but still in the budget
3	10	2	1	В	L	35328	1.830024	Check the replacement policy
								Since the AAT was the same when checking
								the replacement policy before, increase S and
4	10	2	2	В	F	32768	1.865255	check the replacement policy.
5	10	2	2	В	L	35840	1.811989	Check the replacement policy
6	10	2	3	В	L	36352	2.790413	Check above the S parameter
7	10	1	2	В	L	69632	2.134100	Check below the B parameter
8	10	3	2	В	L	18944	1.624123	Check above the B parameter
9	10	4	2	В	L	10496	1.531448	Keep checking above the B parameter
10	10	5	2	В	L	6272	1.772822	Keep checking above the B parameter
								B = 4 gives smallest AAT but has very small
11	12	4	2	В	L	40960	1.237333	size so increase C.
12	12	5	2	В	L	24576	1.189874	Increase B again to check for better AAT
13	12	6	2	В	L	16384	1.177252	Keep checking above the B parameter
14	12	7	2	В	L	12288	1.211547	Keep checking above the B parameter
								Increase the C parameter again to get biggest
15	13	6	2	В	L	32512	1.121050	size below the budget
16	13	7	2	В	L	24448	1.122510	Check B = 7, doesn't work.

Taskgraph D

Again, I decreased the C parameter until the total budget was satisfied. I then ran tests to figure out which replacement policy and storage policy caused smaller AAT values. I found that Blocking and LRU gave the smallest AAT. Next, I tested different values for the S parameter and found that the default S=2 gave the best AAT. I then changed the B parameter and ran tests and found that B=5 gives the best AAT. I did find that B=4 gave a smaller AAT than B=4 but the total size was out of budget. I tried decreasing the C parameter and running the test with B=4 again and found that the AAT was much greater than the smallest AAT value I found.

Choice: C = 11

B = 5

S = 2

ST = Blocking

R = LRU

#	С	В	S	ST	R	Cache Size	AAT	Comments
1	14	6	2	В	L	258048	1.015756	Default Choices
2	11	6	2	В	L	33024	1.962724	Get within the size budget
3	11	6	2	В	F	31488	2.047673	Check if NMRU-FIFO gives a better AAT
4	11	6	2	SB	L	33280	2.106137	Check if Subblocking is better
5	11	6	1	В	L	32768	2.489031	Check below the S parameter
6	11	6	3	В	L	33280	2.873982	Check above the S parameter
7	11	6	4	В	L	33536	4.853658	Keep checking above the S parameter
8	11	5	2	В	L	49664	1.741225	Check below the B parameter
9	11	6	2	В	L	33024	1.962724	Default
10	11	7	2	В	L	24704	2.622110	Check above the B parameter
11	11	4	2	В	L	82944	1.534330	Keep checking below the B parameter
12	11	5	3	В	L	50176	2.651807	With B=5, check above the S parameter
13	11	5	1	В	L	49152	2.196176	With B=5, check below the S parameter
								Check if decreasing the cache size gives a
								better AAT with B = 4 since it is small in row
14	10	4	2	В	L	41984	2.364243	11.