Let M be a matroid with lattice of flats $\mathcal{L}(M)$. The module $\mathcal{H}(M)$ is the free $\mathbb{Z}[x,x^{-1}]$ -module with a standard basis indexed by the flats of M. The elements of $\mathcal{H}(M)$ are formal sums of the form

$$\alpha = \sum_{F \in \mathcal{L}(\mathbf{M})} \alpha_F \cdot \mathbf{F}$$

where $\alpha_F \in \mathbb{Z}[x, x^{-1}]$.

There is a subgroup $\mathcal{H}_p(M)$ of $\mathcal{H}(M)$ consisting of all elements α such that for every flat $F \in \mathcal{L}(M)$:

- 1. $\alpha_F \in \mathbb{Z}[x]$
- 2. $\sum_{G \geq F} x^{\operatorname{rk}(F) \operatorname{rk}(G)} \alpha_G$ satisfies the palindromic condition: $f(x) = f(x^{-1})$.

We relax the first condition and define another subgroup $\mathcal{H}'_p(M)$ of $\mathcal{H}(M)$ consisting of all elements α that satisfy the second condition.

We define a new basis of $\mathcal{H}(M)$ given by

$$c^F = \sum_{G \le F} c_G^F \cdot G := \sum_{G \le F} \chi^{\operatorname{rk}(F) - \operatorname{rk}(G)} \underline{H}_{M_G^F}(\chi^{-2}) \cdot G$$

where $\underline{\boldsymbol{H}}_{\boldsymbol{M}}$ is the Chow polynomial of the matroid $\boldsymbol{M}.$

Let Pal(n) be the ring of Laurent polynomials that satisfy $f(x) = x^n f(x^{-1})$. We note that

$$c_F^F = 1 \in Pal(0)$$
, and $c_G^F \in Pal(2)$ for all $G < F$.

Let S(M) be the Pal(0)-module generated by the elements c^F .

Lemma 1. $c^F \in \mathcal{H}'_v(M)$ for all $F \in \mathcal{L}(M)$.

Lemma 2. $\mathcal{S}(M) \cong \mathcal{H}'_p(M)$ as Pal(0)-modules.

Lemma 3. Any Laurent polynomial f can be written as a sum $\alpha + \beta$ where $\alpha \in Pal(0)$ and $\beta \in Pal(2)$.