When the cat goes: the paper is ready.

Understanding the effect of selfish behaviour in a series of two queues.

Jason Young, Vincent Knight December 31, 2013

Abstract

Hierarchical queues in HC; PoA; Simulation model; Heuristics developed to obtain optimal policies;

1 Introduction

- Hierarchy in real life queues;
- Review of papers in BQT;
- PoA;
- Discussion of situation being modelled in this paper.

Queues arise in a variety of settings: road traffic, data transfer and healthcare are just a few examples. A large quantity of literature has investigated strategic decision making (for example: whether or not to join a queue) with regards to queues stemming from []. When leaving one queue; customers (which we will refer to as players) often join a second queue and this is what is referred to as a hierarchical queueing system (as shown in Figure 1).

There is a wide range of literature evidencing the negative effect of selfish actions in queueing systems []. The following is a general conclusion of a majority of the literature:

Selfish users make busier systems.

- Naor;
- VK+PH;
- RS;
- Bell Stidham;

- Hassani book;
- Rouhgharden;

The effect of selfish behaviour when compared to optimal behaviour can be quantified as the Price of Anarchy (PoA). This is defined as the ratio of the selfish (\tilde{C}) and optimal (C^*) costs:

$$PoA = \frac{\tilde{C}}{C^*}$$

Figure 1: Diagram of n stations in series

2 Model

- Parameters;
- Optimal behaviour;
- Selfish behaviour.
- Cost (how to verify that cost is correct?).

3 Heuristic Optimal Policies

- Heuristic 1: basic search;
- Heuristic 2: based on assumption of Markovian arrival rate at second queue;
- Heuristic 3: Based on Naor which applies only for single server systems.

Figure 2: Flow chart describing the simulation model

Figure 3: Run time

Figure 4: Trials

Figure 5: Warm up

Figure 6: Comparing basic search

Figure 7: Comparing Heuristic 1 and 2 $\,$

Figure 8: Comparing all heuristics

Figure 9: PoA for varying lambda

Figure 10: PoA for varying exit prob

Figure 11: Another set of scenarios

- 4 Results
 - Scenarios...
- 5 Conclusions and Further work