

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 178 116 A9

(12)

CORRECTED EUROPEAN PATENT APPLICATION

Note: Bibliography reflects the latest situation

(15) Correction information:

Corrected version no 1 (W1 A1)

Corrections, see page(s) 37-98

(51) Int CI.7: **C12N 15/62**, C07K 14/18, C12N 5/10

(48) Corrigendum issued on: 10.04.2002 Bulletin 2002/15

(43) Date of publication: 06.02.2002 Bulletin 2002/06

(21) Application number: 00402225.7

(22) Date of filing: 03.08.2000

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE Designated Extension States: AL LT LV MK RO SI

(71) Applicant: Hybrigenics S.A. 75012 Paris (FR)

(72) Inventors:

 Legrain, Pierre 75015 Paris (FR) Whiteside, Simon 75012 Paris (FR)

 Wojcik, Jérôme 75011 Paris (FR)

 (74) Representative: Desaix, Anne et al Ernest Gutmann - Yves Plasseraud S.A.
 3, rue Chauveau-Lagarde
 75008 Paris (FR)

(54) Sid nucleic acids and polypeptides selected from a pathogenic strain of hepatitis C virus and applications thereof

(57) The present invention relates to nucleic acids encoding SID® polypeptides which bind selectively to a polypeptide encoded by a pathogenic strain of the hepatitis C virus, as well as to the SID® polypeptides which are encoded by said nucleic acids.

The invention also concerns vectors comprising a nucleic acid encoding a SID® polypeptide as well as host cells transformed with such vectors.

The invention is also directed to two-hybrid methods which make use of the nucleic acids encoding a SID® polypeptide selected from a pathogenic strain of the hepatitis C virus as well as to methods for selecting molecules which inhibit the binding between a SID® polypeptide and a polypeptide which specifically binds thereto.

Description

10

15

20

25

30

35

FIELD OF THE INVENTION

5 [0001] The present invention relates to nucleic acids encoding SID® polypeptides which bind selectively to a polypeptide encoded by a pathogenic strain of the hepatitis C virus, as well as to the SID® polypeptides which are encoded by said nucleic acids.

[0002] The invention also concerns vectors comprising a nucleic acid encoding a SID® polypeptide as well as host cells transformed with such vectors.

[0003] The invention is also directed to two-hybrid methods which make use of the nucleic acids encoding a SID® polypeptide selected from a pathogenic strain of the hepatitis C virus as well as to methods for selecting molecules which inhibit the binding between a SID® polypeptide and a polypeptide which specifically binds thereto.

[0004] The invention also pertains to marker compounds containing a SID® polypeptide as well as nucleic acids encoding such marker compounds and methods and kits using the same.

BACKGROUND OF THE INVENTION

[0005] The hepatitis C virus (HCV) causes several liver diseases, including liver cancer. The HCV genome is a plusstranded RNA that encodes the single polyprotein processed into at least 10 mature polypeptides.

[0006] The structural proteins are located in the amino terminal quarter of the polyprotein, and the non-structural (NS) polypeptides in the remainder (for a review, see HOUGHTON, 1996). The genome organisation resembles that of flaviviruses and pestiviruses and HCV is now considered to be a member of the *flaviviridae* family.

[0007] The gene products of HCV are, from the N-terminus to the C-terminus: core (p22), E1 (gp35), E2 (gp70), NS2 (p21), NS3 (p70), NS4a (p4), NS4b(p27), NS5a (p58), NS5b (p66), as disclosed in figure 1. Core, E1 and E2 are the structural proteins of the virus processed by the host signal peptidase(s). The core protein and the genomic RNA constitute the internal viral core and E1 and E2 together with lipid membrane constitute the viral envelop (DUBUISSON et al., 1994; GRAKOUI et al., 1993; HIGIKATA et al., 1993.).

[0008] The NS proteins are processed by the viral protein NS3 which has two functional domains: one (Cro-1), encompassing the NS2 region and the N-terminal portion of NS3, which cleaves autocatalytically between NS2 and NS3, and the other (Cro-2), located solely in the N-terminal portion of NS3, cleaves the other sites downstream NS3 (BARTENSCHLAGER et al; 1995; HIGIKATA et al;, 1993).

[0009] Various HCV protein-protein interactions have already been identified, notably by two hybrid methods. Noticeably, FLAJOLET et al; (2000) have shown interactions between NS3 and NS4A proteins as well as between NS4A and NS2 proteins. These authors have also shown core-core, NS3-E2, NS5A-E1, NS4A-NS3 and NS4A-NS2 interactions. Covalent as well as non-covalent interactions between E1 and E2 have been shown by PATEL et al; (1999). The protein interactions between NS3 and the HCV RNA helicase have also been described (MIN et al; 1999; GALLINARI et al., 1999) as well as interaction between NS3 and NS4A (URBANI et al., 1999; DI MARCO et al., 2000; BUTKIEWICZ et al., 2000).

[0010] However, the prior art methods allow the determination of interactions between full length proteins or large domains of proteins encoded by the genome of the hepatitis C virus which may contain more than one region of interaction with one or several HCV proteins. BUTKIEWICZ et al. (2000) discloses the interaction between the NS3 protease and a small peptide derived from NS4A. However, BUTKIEWICZ et al. (2000) discloses exclusively *in vitro* assays for interactions between the small peptides derived from NS4A and the NS3 protease from HCV which may not be of physiological relevance.

45 [0011] There is a need in the art for polypeptides that contain the minimal aminoacid sequence that is able to bind specifically with a naturally-occurring HCV protein in physiological conditions in order to design new tools for therapeutic and detection purposes related to HCV.

SUMMARY OF THE INVENTION

[0012] This invention provides nucleic acids encoding polypeptides, which are termed SID® polypeptides, wherein these polypeptides are the final products of a double selection method involving a first step of selection of HCV-derived polynucleotides through a two-hybrid system and a second selection step involving an alignment between the different polynucleotides selected at the first step.

[0013] The invention also pertains to the SID® polypeptides encoded by the SID® nucleic acids.

[0014] Another object of the invention are recombinant vectors containing a SID® nucleic acid as defined above as well as host cells transformed with such vectors or nucleic acids.

[0015] A further object of the invention consists of two-hybrid methods which make use of these SID® nucleic acids

as well as to methods for selecting molecules which inhibit the binding between a SID® polypeptide and a polypeptide that binds specifically thereto, as well as kits for performing these methods.

[0016] It is still a further object of the invention to provide for marker compounds which comprise a SID® polypeptide or which are encoded by a polynucleotide containing a SID® nucleic acid as defined above, as well as to methods and kits which make use of these marker compounds.

[0017] This invention also relates to pharmaceutical compositions as well as to methods for preventing or curing a HCV viral infection in a human or an animal that use a SID® polypeptide or a SID® nucleic acid as disclosed herein.
[0018] Throughout this application, various publications, patents and published patent applications are cited. The disclosures of these publications, patents and published patent specifications, referenced in this application are hereby incorporated by reference into the present disclosure to more fully describe the state of the art to which this invention pertains.

BRIEF DESCRIPTION OF THE FIGURES.

۵۱

10

20

30

35

45

50

[0019] Figure 1 consists of a general overview of HCV genome and its encoded polyprotein. The RNA coding strand is represented with a line for untranslated regions (NCR) and boxes for coding regions.

[0020] Positions and enzymes responsible for cleavage are indicated above. p7 is a secondary cleavage product of E2 (adapted from HOUGHTON, 1996).

[0021] Fig. 2 is a restriction map of the plasmid pAS2 $\Delta\Delta$ which may be used for producing a recombinant" Selected Interacting Domain (SID®)" polypeptide or a recombinant marker compound of the invention.

[0022] Fig. 3 is a restriction map of the plasmid pACTII which may be used for producing a recombinant " Selected Interacting Domain (SID®)".

[0023] Fig. 4 is a restriction map of the plasmid pUT18 which may be used for producing a recombinant " Selected Interacting Domain (SID®)".

25 [0024] Fig. 5 is a restriction map of the plasmid pUT18C which may be used for producing a recombinant " Selected Interacting Domain (SID®)".

[0025] Fig. 6 is a restriction map of the plasmid pT25 which may be used for producing a recombinant " Selected Interacting Domain (SID®)".

[0026] Fig. 7 is a restriction map of the plasmid pKT25 which may be used for producing a recombinant " Selected Interacting Domain (SID®)".

[0027] Fig.8 is an illustration of the first step of selecting a SID® nucleic acid of the invention, wherein it is performed a selection of different sets of overlapping nucleic acids primarily selected through a two-hybrid method, in order to define pre-SID nucleic acids. Three fragments frg1, frg2 and frg3 of lengths I1, I2 and I3 respectively. Fragment I1 and I2 are clustered together if the length of intersection, I, is greater than 30% of I1 and I2. Fragment frg3 is grouped with fragments frg1 and frg2 if the length of intersection between frg1 and frg3, I', is greater than 30% of I1 and I3 and if the length of intersection between frg 2 and frg 3, I », is greater than 30% of I2 and I3.

[0028] Fig.9 illustrates the selection of pre-SID® nucleic acid from a particular set of overlapping nucleic acids previously selected through a two-hybrid method. The pre-SID® is defined as the intersection of all the fragments (frg1-6) in a cluster.

[0029] Fig.10 illustrates the selection of a SID® nucleic acid from the overlapping regions between two pre-SID nucleic acids. A SID® is defined if the length of overlap between two pre-SID®s, I, is greater than 30 bp. Further SID®s are defined by non-overlapping areas if their length (I') represents more than 30% of the length of one of the fragments which contributes to the corresponding pre-SID® (frg1-6).

[0030] Fig.11 illustrates a further step of determining SID® nucleic acids after alignment of two overlapping SID nucleic acids identified according to figure 10. Fragments frg1' and frg2' contribute to both SID®1 and SID®2 (top panel). For each SID®, the number of fragments are counted and fragments are assigned to the SID® with the most fragments. The remaining fragments are re-analysed and a new SID® is defined as the region of intersection of these fragments (bottom panel, SID®2' - fragment 3' and fragment 4'.

[0031] Fig.12 illustrates a map of the vector pB5 which may be used in example 1.

[0032] Fig.13 illustrates a map of the vector pP6 which may be used in example 1.

DETAILED DESCRIPTION OF THE INVENTION

[0033] The present invention firstly provides for nucleic acids encoding SID® polypeptides.

[0034] As generally used herein, a « bait » nucleic acid encodes a « bait » polypeptide. A polypeptide is termed a « bait » polypeptide when this polypeptide is used to select a formerly unknown « prey » nucleic acid encoding a « prey » polypeptide which binds selectively with said « bait » polypeptide. Indeed, a « prey » nucleic acid which has been selected for binding to a given bait polypeptide may be used in another selection method or in another round of

the same selection method as a « bait » nucleic acid encoding a « bait » polypeptide for the purpose of selection of new prey nucleic acids, encoding prey polypeptides which bind selectively with said bait polypeptide, it being understood that the nucleic acid encoding said bait polypeptide was formerly selected from a population of prey nucleic acids.

SELECTED INTERACTING DOMAIN (SID®) POLYPEPTIDES AND METHODS FOR THEIR PREPARATION.

[0035] A selected interacting domain polypeptide that binds specifically to a polypeptide of interest is the result of a two-step screening procedure, wherein:

- 1) the first step consists of selecting and characterizing a collection of nucleic acids (prey nucleic acids) encoding polypeptides which bind specifically to a given bait polypeptide of interest; and
- 2) the second step of the two-step procedure consists of determining the nucleic acid sequences which encode for SID® polypeptides after having generated sets of polynucleotides from the collection of nucleic acids selected at step 1).

[0036] As a result of the original two-step screening procedure disclosed hereunder, every nucleic acid finally selected encodes a « Selected Interacting Domain (SID®)" polypeptide which binds with a high specificity with the bait polypeptide of interest.

Step 1) Selecting prey nucleic acids

[0037] The first step of selecting a collection of nucleic acids encoding polypeptides which binds specifically to the bait polypeptide is carried out through a yeast two-hybrid system. The yeast two-hybrid system is designed to study protein-protein interactions in vivo, and relies upon the fusion of a bait protein to the DNA binding domain of the yeast Gal4 protein.

[0038] According to the present invention, the first step of the procedure for selecting a Selected Interacting Domain (SID®) polynucleotide encoding a Selected Interacting Domain (SID®) polypeptide consists of the two-hybrid screening system described by Fromont-Racine et al. (1997) or the method described by FLAJOLET et al. (2000). The yeast two-hybrid system utilizes hybrid proteins to detect protein-protein interactions by means of direct activation of a reporter gene expression. In essence, the nucleic acids encoding the two putative protein partners, the bait polypeptide of interest and the prey polypeptide, are genetically fused to the DNA-binding domain of a transcription factor and to a transcriptional activation domain, respectively.

Construction of the prey HCV nucleic acids library.

[0039] Then, a genomic DNA library prepared from the genome of the pathogenic H77 strain of HCV (Yanagi et al., 1997), is constructed in the specially designed vector pP6 shown in figure 13 after ligation to suitable linkers, such that every genomic DNA insert is fused to a nucleotide sequence in the vector that encodes the transcription of domain of the Gal4 protein.

[0040] The polypeptides encoded by the nucleotide inserts of the genomic DNA library thus prepared are termed prey" polypeptides in the context of the presently described selection method of prey nucleic acids.

Construction of the bait nucleic acids library

[0041] The DNA fragments obtained after nebulization of the HCV genomic DNA are also inserted in plasmid pB5 shown in figure 12 wherein these DNA inserts are fused to a polynucleotide encoding the DNA binding domain of the Gal4 protein and the recombinant vectors are used to transform E. coli cells. The transformed E. coli cells are grown and plasmid DNA is extracted and sequenced.

[0042] These plasmids which code in frame fusion proteins are used as bait plasmids. Bait plasmids thus consist of a collection of recombinant pB5 plasmids each containing inserted therein a DNA fragment from the H77 strain HCV genome encoding a polypeptide consisting of all or part of a HCV protein or alternatively a polypeptide consisting of all or part of two HCV proteins encoded by contiguous nucleic acid sequences of the HCV genome.

[0043] The selected HCV bait nucleic acids of the invention are referred to as the nucleotide sequences SEQ ID N°114 to 150.

[0044] The selected HCV bait polypeptides encoded by the nucleic sequences SEQ ID N°114 to 150 consist respectively of the aminoacid sequences SEQ ID N°77 to 113.

[0045] Detectable marker genes are already present within the chromosomic yeast DNA and consist respectively of the His3 and LacZ genes, such as described by FROMONT-RACINE et al. (1997) or FLAJOLET et al. (2000).

15

10

20

25

[0046] Then, the collection of nucleic acid inserts contained in the collection of *E. Coli* cell clones containing the genomic DNA or HCV DNA library previously prepared are used to transform a first yeast strain, namely the Y187 *Saccharomyces cerevisiae* strain (phenotype:MATα, Gal4Δ, gal80Δ, ade2-101, His3, Leu2-3, -112 Trp1-901, Ura3-52, URA3::UASGAL1-LacZ Met).

[0047] The nucleic acid encoding the bait polypeptide of interest is inserted in the appropriate vector, said vector being used to transform a second yeast strain which may be the CG1945 (MATa Gal4-542 Gal180-538, Ade2-101, His3*200, Leu2-3, -112 Trp1-901 Ura3-52, Lys2-801, URA3::GAL4 17Mers (X3)-CyC1TATA-LacZ LYS2::GAL1 UAS-GAL1TATA-His3 CYH^R).

[0048] Then, the two yeast strains are mated to obtain a collection of mated cells.

10

20

25

30

35

40

45

55

[0049] The clones derived from the collection of mated cells above which are positive in an X-Gal overlay assay are those for which an interaction between the recombinant bait polypeptide and a polypeptide encoded by a nucleic acid insert originating from the HCV genomic library has occurred.

[0050] The clones derived from the collection of mated cells above may also be selected in the presence of histidine, and the positive clones are those for which an interaction between the recombinant bait polypeptide and a polypeptide encoded by a nucleic acid insert originating from the HCV genomic library has occurred.

[0051] In a further step, the prey nucleic acid inserts contained in the positively selected clones are amplified and sequenced.

Step 2:determination of the nucleic acid sequences encoding a Selected Interacting Domain (SID®) polypeptide which binds specifically to a bait polypeptide of interest.

[0052] This is the second step of the two step procedure defined above, which allows the precise selection of nucleic acids encoding the SID® nucleic acids of the present invention which are derived from the H77 strain HCV genome.

[0053] The SID® nucleic acid selection procedure, which is disclosed hereunder, has been specifically designed for the HCV genome which encodes for a single polyprotein and which thus comprises contiguous Open Reading Frames, said polyprotein being further processed to produce at least 10 mature structural and non-structural viral proteins.

[0054] Thus, the second selection step of the two-step procedure consists of a method for determining a polynucle-otide encoding a Selected Interacting Domain (SID®) of a prey polypeptide of interest derived from HCV, which prey polypeptide interacts with a bait polypeptide, wherein said method comprises the steps of:

- a) selecting, from the collection of prey polynucleotides obtained at the end of the first step of the two-step procedure described herein, all prey polynucleotides encoding a prey polypeptide capable of interacting with said bait polypeptide and containing a common nucleic acid fragment;
- b) aligning the nucleotide sequences of the prey polynucleotides selected at step a) and gathering in one set or in a plurality of sets of sequences those nucleotide sequences which have sequences that overlap for more than 30% of their respective nucleic acid length, wherein each common overlapping nucleotide sequence in one set of sequences defines a sequence encoding a pre-SID® polypeptide (see Figures 8 and 9); and
- c) aligning two sequences encoding two respective pre-SID® polypeptides (see Figure 10), and :
 - i) defining an overlapping nucleic acid sequence between the sequences encoding the two respective pre-SID® polypeptides as a sequence encoding a SID® polypeptide, provided that the overlapping sequence is of at least 30 nucleotides in length;
 - ii) defining a non-overlapping nucleic acid sequence between the sequences encoding the two respective pre-SID® polypeptides as a sequence encoding a SID® polypeptide, provided that (1) said non-overlapping sequence has more than 30 nucleotides in length and (2) said non-overlapping sequence represents at least 30% in length of any one of the polynucleotides contained in the set of prey polynucleotides used for defining the sequence encoding each pre-SID® polypeptide.
 - This method may further comprise the steps of:
- d) counting the number of overlapping prey polynucleotides contained in a first set of polynucleotides defining a sequence encoding a first SID® polypeptide;
 - e) counting the number of overlapping prey polynucleotides contained in a second set of polynucleotides defining a sequence encoding a second SID® polypeptide which overlaps with the sequence encoding the first SID® polypeptide;
 - f) determining which sequence among those encoding respectively the first SID® polypeptide and the second SID® polypeptide has been defined with the largest number of prey polynucleotides and selecting this set of prey sequences.
 - g) adding to the set of prey sequences selected at step f) those sequences that were contained in the set of prey

sequences used for defining the sequence encoding the SID® polypeptide with the smallest number of prey sequences and which overlap with the sequence encoding the SID® polypeptide with the largest number of prey sequences.;

- h) aligning the prey sequences added at step g) with the sequences already contained in the set of prey sequences which defined the sequence encoding the SID® polypeptide with the largest number of prey sequences;
- i) defining an overlapping sequence between the whole sequences which were aligned in step h), wherein said overlapping sequence consists of a sequence encoding a SID® polypeptide. (See Figure 11).

[0055] The method for selecting a SID® nucleic acid encoding a SID® polypeptide is an object of the present invention, as well as any SID® nucleic acid or any SID® polypeptide which may be obtained by this selection method.

SID® nucleic acids of the invention

4)

5

10

15

20

30

35

40

45

[0056] The SID® nucleic acids selected as described above starting from the genome of the H77 strain of HCV are the nucleic acid sequences of SEQ ID N°39 to 76 which encode the SID® polypeptides of SEQ ID N°1 to 38.

[0057] A first object of the invention consists of a nucleic acid which encodes a polypeptide selected from the group consisting of the aminoacid sequences SEQ ID N°1 to 38 or a variant thereof, and a sequence complementary thereto. [0058] For the purposes of the present invention, a first polynucleotide is considered as being « complementary » to a second polynucleotide when each base of the first polynucleotide is paired with the complementary base of the second polynucleotide whose orientation is reversed. The complementary bases are A and T(or A and U), or C and G. [0059] Preferably, any one of the nucleic acid or the polypeptides encompassed by the invention is under a purified or an isolated form.

[0060] The term "isolated" for the purposes of the present invention designates a biological material (nucleic acid or protein) which has been removed from its original environment (the environment in which it is naturally present).

[0061] For example, a polynucleotide present in the natural state in a plant or an animal is not isolated. The same polynucleotide separated from the adjacent nucleic acids in which it is naturally inserted in the genome of the plant or animal is considered as being "isolated".

[0062] Such a polynucleotide may be included in a vector and/or such a polynucleotide may be included in a composition and remains nevertheless in the isolated state because of the fact that the vector or the composition does not constitute its natural environment.

[0063] The term "purified" does not require the material to be present in a form exhibiting absolute purity, exclusive of the presence of other compounds. It is rather a relative definition.

[0064] A polynucleotide is in the "purified" state after purification of the starting material or of the natural material by at least one order of magnitude, preferably 2 or 3 and preferably 4 or 5 orders of magnitude.

[0065] "Isolated polypeptide" or "isolated protein" is a polypeptide or protein which is substantially free of those compounds that are normally associated therewith in its natural state (e.g., other proteins or polypeptides, nucleic acids, carbohydrates, lipids). "Isolated" is not meant to exclude artificial or synthetic mixtures with other compounds, or the presence of impurities which do not interfere with biological activity, and which may be present, for example, due to incomplete purification, addition of stabilisers, or compounding into a pharmaceutically acceptable preparation.

Variants of a selected interacting domain (SID®) polypeptide and nucleic acids encoding them.

[0066] As intended herein, a variant of a Selected Interacting Domain (SID®) polypeptide may be either a variant polypeptide of the Selected Interacting Domain (SID®) polypeptide or a polypeptide which is encoded by a nucleic acid variant of the polynucleotide encoding said Selected Interacting Domain (SID®) polypeptide.

[0067] Polynucleotides which encode a polypeptide variant of a Selected Interacting Domain (SID®) polypeptide, as the term is used herein, are polynucleotides that differ from the reference polynucleotide encoding the parent SID® polypeptide. A variant of a polynucleotide may be a naturally occurring variant such as a naturally occurring allelic variant, or it may be a variant that is not known to occur naturally. Such non-naturally occurring variants of the reference polynucleotide may be generated by mutagenesis techniques, including those applied to polynucleotides, cells or organisms well known to one skilled in the art.

[0068] Generally, differences are limited so that the nucleotide sequences of the reference and the variant are closely similar overall and, in many regions, identical.

[0069] Variants of polynucleotides according to the invention include, without being limited to, nucleotide sequences which are at least 95% identical after optimal alignment to the reference polynucleotide of SEQ ID N°39 to 76 encoding the reference Selected Interacting Domain (SID®) polypeptide, preferably at least 96%, 97%, 98% and most preferably at least 99% identical to the reference polynucleotide. Similarly, a variant of a SID® polypeptide of the invention consists of a polypeptide having at least 95% aminoacid identity with a polypeptide selected from the aminoacid sequences

SEQ ID N°1 to 38, and preferably at least 96%, 97%, 98% and most preferably at least 99% aminoacid identity with one of SEQ ID N°1 to 38.

[0070] Identity refers to sequence identity between two peptides or between two nucleic acid molecules. Identity between sequences can be determined by comparing a position in each of the sequences which may be aligned for purposes of comparison. When a position in the compared sequences is occupied by the same base or amino acid, then the sequences are identical at that position. A degree of identity between nucleic acid sequences is a function of the number of identical nucleotides at positions shared by these sequences. A degree of identity between amino acid sequences is a function of the number of identical aminoacids at positions shared by these sequences. Since two polynucleotides may each (1) comprise a sequence (i.e., a portion of the complete polynucleotide sequence) that is similar between the two polynucleotides, and (2) may further comprise a sequence that is divergent between the two polynucleotides, sequence comparisons between two (or more) polynucleotides are typically performed by comparing sequences of the two polynucleotides over a " comparison window " to identify and compare local regions of sequence similarity. A " comparison window", as used herein, refers to a conceptual segment of at least 20 contiguous nucleotide positions wherein a polynucleotide sequence may be compared to a reference sequence of at least 20 contiguous nucleotides and wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) of 20 percent or less as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. Optimal alignment of sequences for determining a comparison window may be conducted by the local homology algorithm of Smith and Waterman (1981), by the homology alignment algorithm of Needleman and Wunsch (1972), by the search for similarity method of Pearson and Lipman (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Solftware Package Release 7.0, Genetics Computer Group, 575, Science Dr. Madison, W1), or by inspection. The best alignment (i.e., resulting in the highest percentage of identity over the comparison window) generated by the various methods is selected. The term " sequence identity" means that two polynucleotide sequences are identical (i. e., on a nucleotide-by-nucleotide basis) over the window of comparison. The term " percentage of sequence identity" is calculated by comparing two optimally aligned sequences over the window of comparison, determining the number of positions at which the identical nucleic acid base (e.g. A, T, C, G, U or I) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity.

10

15

20

25

30

35

40

45

50

[0071] Most preferably, the percentage of nucleic acid or aminoacid identity between two nucleic acid or aminoacid sequences is calculated using the BLAST software (Version 2.06 of September 1998) with the default parameters.

[0072] Nucleotide changes present in a variant polynucleotide may be silent, which means that they do not alter the aminoacid encoded by the reference polynucleotide.

[0073] However, nucleotide changes may also result in aminoacid substitutions, additions, deletions, fusions and truncations in the Selected Interacting Domain (SD®) polypeptide encoded by the reference sequence.

[0074] The substitutions, deletions or additions may involve one or more nucleotides. Alterations may produce conservative or non-conservative aminoacid substitutions, deletions or additions.

[0075] Most preferably, the variant of a Selected Interacting Domain (SID®) polypeptide encoded by a variant polynucleotide possesses at least the same affinity of binding to its protein or polypeptide counterpart, against which it has been initially selected as described above.

[0076] The affinity of a given SID® polypeptide of the invention for a polypeptide into which it specifically binds is defined as the affinity constant Ka, wherein

Ka = [SID®/polypeptide complex] [free SID®] [free polypeptide]

with [free SID®], [free polypeptide] and [SID®/polypeptide complex] consist of the concentrations at equilibrium respectively of the free SID® polypeptide, of the free polypeptide onto which the SID® polypeptide specifically binds and of the complex formed between the SID® polypeptide and the polypeptide onto which said SID® polypeptide specifically binds.

[0077] Most preferably, the affinity of a SID® polypeptide of the invention or a variant thereof for its polypeptide counterpart (polypeptide partner) is assessed on a Biacore™ apparatus marketed by Amercham Pharmacia Biotech Company such as described by SZABO et al. (1995) and by Edwards and Leartherbarrow (1997).

[0078] As used herein, the expression « at least the same affinity» with reference to the affinity of binding between a SID® polypeptide of the invention to another polypeptide means that the Ka is identical or is of at least two-fold, preferably at least three-fold and most preferably at least five-fold greater than the Ka value of reference.

[0079] In another preferred embodiment, the variant of a Selected Interacting Domain (SID®) polypeptide which is encoded by a variant polynucleotide of the invention possesses a higher specificity of binding to its counterpart polypeptide or protein than the reference Selected Interacting Domain (SID®) polypeptide.

[0080] A variant of a Selected Interacting Domain (SID®) polypeptide according to the invention may be (1) one in which one or more, most preferably from one to three, of the aminoacid residues are substituted with a conserved or a non-conserved aminoacid residue and such substituted aminoacid residue may or may not be one encoded by the genetic code, or (2) one in which one or more of the aminoacid residues includes a substituent group.

[0081] In the case of an aminoacid substitution in the aminoacid sequence of a Selected Interacting Domain (SID®) polypeptide according to the invention, one or several-consecutive or nonconsecutive - aminoacids are replaced by "equivalent "aminoacids. The expression "equivalent" aminoacid is used herein to designate any aminoacid that may be substituted for one of the aminoacids belonging to the native Selected Interacting Domain (SID®) polypeptide structure without decreasing the binding properties of the corresponding peptides to their counterpart polypeptide or protein, as regards the reference Selected Interacting Domain (SID®) polypeptide.

[0082] These equivalent aminoacids may be determined either by their structural homology with the initial aminoacids to be replaced, by the similarity of their net charge or of their hydrophobicity.

[0083] By an equivalent aminoacid according to the present invention is also meant the replacement of a residue in the L-form by a residue in the D-form or the replacement of a glutamic acid residue by a pyroglutamic acid compound. The synthesis of peptides containing at least one residue in the D-form is, for example, described by KOCH (1977). A specific embodiment of a variant of a Selected Interacting Domain (SID®) polypeptide according to the invention includes, but is not limited to, a peptide molecule which is resistant to proteolysis, such as a peptide in which the -CONH-peptide bond is modified and replaced by a (-CH₂NH-) reduced bond, a (-NHCO-) retroinverso bond, a (-CH₂-O-) methylene-oxy bond, a (-CH₂-S-) thiomethylene bond, a (-CH₂CH₂-) carba bond, a (-CO-CH₂) hydroxyethylene bond, a (-N-N-) bond or also a -CH=CH bond.

[0084] As used herein, a variant of a SID® polypeptide of the invention also encompasses a polypeptide having an aminoacid sequence consisting of at least:

- 45 consecutive aminoacids of SEQ ID N°1;
- 25 30 consecutive aminoacidss of SEQ ID N°2;

10

15

20

30

35

40

45

50

- 65 consecutive aminoacids of SEQ ID N°3;
- 30 consecutive aminoacids of SEQ ID N°4;
- 130 consecutive aminoacids of SEQ ID N°5;
- 25 consecutive aminoacids of SEQ ID N°6;
- 23 consecutive aminoacids of SEQ ID N°7.
- 48 consecutive aminoacids of SEQ ID N°8;
- 36 consecutive aminoacids of SEQ ID N°9;
- 25 consecutive aminoacids of SEQ ID N°10;
- 24 consecutive aminoacids of SEQ ID N°11;
- 37 consecutive aminoacids of SEQ ID N°12;
- 25 consecutive aminoacids of SEQ ID N°13;
- 30 consecutive aminoacids of SEQ ID N°14;
- 27 consecutive aminoacids of SEQ ID N°15;
 69 consecutive aminoacids of SEQ ID N°16;
- 130 consecutive aminoacids of SEQ ID N°17;
- 33 consecutive aminoacids of SEQ ID N°18:
- 25 consecutive animoacids of SEQ ID N° 19;
 25 consecutive aminoacids of SEQ ID N° 19;
- 40 consecutive aminoacids of SEQ ID N°20;
- 78 consecutive aminoacids of SEQ ID N°21;
- 39 consecutive aminoacids of SEQ ID N°22;
 - 57 consecutive aminoacids of SEQ ID N°23;
 - 26 consecutive aminoacids of SEQ ID N°24;
 - 68 consecutive aminoacids of SEQ ID N°25;
 34 consecutive aminoacids of SEQ ID N°26;
 - 42 consecutive aminoacids of SEQ ID N°27;
 - 48 consecutive aminoacids of SEQ ID N°28.
 - 102 consecutive aminoacids of SEQ ID N°29:
 - 49 consecutive aminoacids of SEQ ID N°30:
 - 92 consecutive aminoacids of SEQ ID N° 31;
 - 49 consecutive aminoacids of SEQ ID N°30;
 92 consecutive aminoacids of SEQ ID N°31;
 - 92 consecutive animoaclds of SEQ ID N 31
 - 71 consecutive aminoacids of SEQ ID N°32;
 - 55 consecutive aminoacids of SEQ ID N°33;

- 69 consecutive aminoacids of SEQ ID N°34;
- 23 consecutive aminoacids of SEQ ID N°35;
- 33 consecutive aminoacids of SEQ ID N°36;
- 32 consecutive aminoacids of SEQ ID N°37;

and

...

5

10

20

30

35

40

45

50

22 consecutive aminoacids of SEQ ID N°38.

[0085] Without wishing to be bound by any particular theory, the inventors believe that polypeptides having an aminoacid length of about 10% lesser than the aminoacid length of anyone of the SID® polypeptides of SEQ ID N°1 to 39 of the invention have a high probability to retain the binding properties to a given (bait) polypeptide of the parent SID® polypeptide.

[0086] The invention also pertains to a nucleic acid encoding a SID® polypeptide which is selected from the group consisting of the sequences SEQ ID N°39 to 76, and a sequence complementary thereto.

[0087] The invention is also directed to a nucleic acid encoding a variant of SID® polypeptide selected from the group consisting of the sequences SEQ ID N°39 to 76, in reference to the definition of the SID® polypeptide variants above.

[0088] For example, a nucleic acid encoding a polypeptide having an aminoacid sequence consisting of at least 45 consecutive aminoacids of SEQ ID N°1 comprise at least 135 (45 x 3) consecutive nucleotides of the polynucleotide of SEQ ID N°39.

[0089] The same definition also apply for nucleic acids encoding variants of the SID® polypeptides of SEQ ID N°2 to 38, which are part of the invention.

[0090] The invention further relates to a nucleic acid encoding a polypeptide having an aminoacid sequence comprising from 1 to 3 substitutions, additions or deletions of one aminoacid as regards a polypeptide selected from the group consisting of the aminoacid sequences SEQ ID N°1 to 38 or a sequence complementary thereto.

[0091] Another object of the invention consists of a polypeptide selected from the group consisting of the aminoacid sequences SEQ ID N°39 to 76 or a variant thereof.

[0092] Are encompassed in the family of variants of a SID® polypeptide of the invention those polypeptides having an aminoacid sequence comprising from 1 to 3 substitutions, additions or deletions of one aminoacid as regards a polypeptide selected from the group consisting of the aminoacid sequences SEQ ID N°1 to 38.

[0093] The invention is also directed to an antibody directed against a a SID® polypeptide as defined above, or to a variant thereof.

[0094] The antibodies directed specifically against the Selected Interacting Domain (SID®) polypeptide or a variant thereof may be indifferently radioactively or non-radioactively labelled.

[0095] Monoclonal antibodies directed against a SID® polypeptide may be prepared from hybridomas according to the technique described by Kohler and Milstein in 1975. Polyclonal antibodies may be prepared by immunization of a mammal, especially a mouse or a rabbit, with the SID® polypeptide that is combined with an adjuvant of immunity, and then by purifying the specific antibodies contained in the serum of the immunized animal on a affinity chromatography column on which has previously been immobilized the polypeptide that has been used as the antigen.

[0096] Antibodies directed against a SID® polypeptide may also be produced by the trioma technique and by the human B-cell hybridoma technique (Kozbor et al., 1983).

[0097] Antibodies directed to a SID® polypeptide include chimeric single chain Fv antibody fragments (US Patent N° US 4,946,778; Martineau et al., 1998), antibody fragments obtained through phage display libraries (Ridder et al., 1995) and humanized antibodies (Reinmann et al., 1997; Leger et al., 1997). Also, transgenic mice, or other organisms such as other mammals, may be used to express antibodies, including for example, humanized antibodies directed against a SID® polypeptide of the invention, or a variant thereof.

VECTORS OF THE INVENTION

[0098] The nucleic acids coding for a Selected Interacting Domain (SID®) polypeptide or a variant thereof, which are defined in the section above, can be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for the transcription and translation of the inserted protein-coding sequence. Such transcription elements include a regulatory region and a promoter as defined previously. Thus, the nucleic acid encoding a marker compound of the invention is operably linked with a promoter in a expression vector, wherein said expression vector may include a replication origin.

[0099] The necessary transcriptional and translation of signals is most preferably provided by the recombinant expression vector.

Structure of the vectors encompassed by the invention

10

15

20

30

35

40

45

[0100] A wide variety of host/expression vector combinations may be employed in expressing the nucleic acids of this invention. Useful expression vectors, for example, may consist of segments of chromosomal, non-chromosomal and synthetic DNA sequences. Suitable vectors include derivatives of SV40 and known bacterial plasmids, e.g., Escherichia coli plasmids col E1, pCR1, pBR322, pMal-C2, pET, pGEX (Smith et al., 1988), pMB9 and their derivatives, plasmids such as RP4; phage DNAs, e.g., the numerous derivatives of phage I, e.g., NM989, and other phage DNA, e.g., M13 and filamentous single stranded phage DNA; yeast plasmids such as the 2m plasmid or derivatives thereof; vectors useful in eukaryotic cells, such as vectors useful in insect or mammalian cells; vectors derived from combinations of plasmids and phage DNAs, such as plasmids that have been modified to employ phage DNA or other expression control sequences; and the like.

[0101] For example, in a baculovirus expression system, both non-fusion transfer vectors, such as but not limited to pVL941 (BamH1 cloning site; Summers), pVL1393 (BamH1, Smal, Xbal, EcoR1, Notl, XmallI, Bg/lI, and Psfl cloning site; Invitrogen), pVL1392 (Bg/II, Psfl, Notl, XmalII, EcoRI, Xbal, Smal, and BamH1 cloning site; Summers and Invitrogen), and pBlueBacIII (BamH1, Bg/II, Psfl, Ncol, and HindIII cloning site, with blue/white recombinant screening possible; Invitrogen), and fusion transfer vectors, such as but not limited to pAc700 (BamH1 and KpnI cloning site, in which the BamH1 recognition site begins with the initiation codon; Summers), pAc701 and pAc702 (same as pAc700, with different reading frames), pAc360 (BamH1 cloning site 36 base pairs downstream of a polyhedrin initiation codon; Invitrogen(195)), and pBlueBacHisA, B, C (three different reading frames, with BamH1, Bg/II, Psfl, Ncol, and HindIII cloning site, an N-terminal peptide for ProBond purification, and blue/white recombinant screening of plaques; Invitrogen (220) can be used.

[0102] Mammalian expression vectors contemplated for use in the invention include vectors with inducible promoters, such as the dihydrofolate reductase (DHFR) promoter, e.g., any expression vector with a DHFR expression vector, or a DHFR/methotrexate co-amplification vector, such as pED (Pstl, Sall, Sbal, Smal, and EcoRI cloning site, with the vector expressing both the cloned gene and DHFR; Kaufman, 1991). Alternatively, a glutamine synthetase/methionine sulfoximine co-amplification vector, such as pEE14 (HindIII, Xbal, Smal, Sbal, EcoRI, and Bc/II cloning site, in which the vector expresses glutamine synthase and the cloned gene; Celltech). In another embodiment, a vector that directs episomal expression under control of Epstein Barr Virus (EBV) can be used, such as pREP4 (BamH1, Sfil, Xhol, Notl, Nhel, HindIII, Nhel, PvuII, and KpnI cloning site, constitutive RSV-LTR promoter, hygromycin selectable marker; Invitrogen), pCEP4 (BamH1, Sfil, Xhol, Notl, Nhel, HindIII, Nhel, PvuII, and Kpnl cloning site, constitutive hCMV immediate early gene, hygromycin selectable marker; Invitrogen), pMEP4 (Kpnl, Pvul, Nhel, HindIII, Notl, Xhol, Sfīl, BamH1 cloning site, inducible methallothionein IIa gene promoter, hygromycin selectable marker: Invitrogen), pREP8 (BamH1, Xhol, Noti, Hindlil, Nhel, and Kpnl cloning site, RSV-LTR promoter, histidinol selectable marker; Invitrogen), pREP9 (Kpnl, Nhel, HindIII, Notl, Xhol, Sfil, and BamHl cloning site, RSV-LTR promoter, G418 selectable marker; Invitrogen), and pEBVHis (RSV-LTR promoter, hygromycin selectable marker, N-terminal peptide purifiable via ProBond resin and cleaved by enterokinase; Invitrogen). Selectable mammalian expression vectors for use in the invention include pRc/ CMV (HindIII, BstXI, Notl, Sbal, and Apal cloning site, G418 selection; Invitrogen), pRc/RSV (HindIII, Spel, BstXI, Notl, Xbal cloning site, G418 selection; Invitrogen), and others. Vaccinia virus mammalian expression vectors (see, Kaufman, 1991, supra) for use according to the invention include but are not limited to pSC11 (Smal cloning site, TK- and b-gal selection), pMJ601 (Sall, Smal, Afll, Narl, BspMII, BamHI, Apal, Nhel, SacII, KpnI, and Hindlll cloning site; TK- and bgal selection), and pTKgptF1S (EcoRI, Pstl, Sall, Accl, Hindll, Sbal, BamHI, and Hpa cloning site, TK or XPRT selec-

[0103] Yeast expression systems can also be used according to the invention to express a Selected Interacting Domain (SID®) polypeptide or a variant thereof and also a marker compound as defined herein. For example, the nonfusion pYES2 vector (Xbal, Sphl, Shol, Notl, GstXI, EcoRI, BstXI, BamH1, SacI, Kpn1, and HindIII cloning sit; Invitrogen) or the fusion pYESHisA, B, C (Xbal, Sphl, Shot, Notl, BstXI, EcoRI, BamH1, SacI, Kpn1, and HindIII cloning site, N-terminal peptide purified with ProBond resin and cleaved with enterokinase; Invitrogen), to mention just two, can be employed according to the invention.

[0104] Once a suitable host system and growth conditions are established, recombinant expression vectors can be propagated and prepared in quantity. As previously explained, the expression vectors which can be used include, but are not limited to, the following vectors or their derivatives: human or animal viruses such as vaccinia virus or adenovirus; insect viruses such as baculovirus; yeast vectors; bacteriophage vectors (e.g., lambda), and plasmid and cosmid DNA vectors, to name but a few.

[0105] Vectors are introduced into the desired host cells by methods known in the art, e.g., transfection, electroporation, microinjection, transduction, cell fusion, DEAE dextran, calcium phosphate precipitation, lipofection (lysosome fusion), use of a gene gun, or a DNA vector transporter (see, e.g., Wu et al., 1992; Wu and Wu, 1988; Canadian Patent Application No. 2,012,311, filed March 15, 1990).

[0106] A cell has been "transfected" by exogenous or heterologous DNA when such DNA has been introduced inside

the cell. A cell has been "transformed" by exogenous or heterologous DNA when the transfected DNA effects a phenotypic change.

[0107] For introducing a vector in a cell host, explicit reference is made to research carried out by the group of E. Wagner, relating to gene delivery by means of plasmid-polylysine complexes (Curiel et al., 1991; and Curiel et al., 1992). The plasmid-polylysine complex investigated upon exposition to certain cell lines showed at least some expression of the gene. Further, it was found that the expression efficiency increased considerably due to the binding of transferrin to the plasmid-polylysine complex. Transferrin gives rise to close cell-complex contact with cells comprising transferrin receptors; it binds the entire complex to the transferrin receptor of cells. Subsequently, at least part of the entire complex was found to be incorporated in the cells investigated.

[0108] Several different approaches have been developed for gene transfer. These include the use of viral based vectors (e.g., retroviruses, adenoviruses, and adeno-associated viruses) (Drumm, M. L. et al., Rosenfeld, M. A. et al., 1992; and Muzyczka, 1992), charge associating the DNA with an asialorosomucoid/poly L-lysine complex (Wilson, J. M. et al. 1992), charge associating the DNA with cationic liposomes (Brigham, K. L. et al., 1993) and the use of cationic liposomes in association with a poly-L-lysine antibody complex (Trubetskoy, V. S. et al., 1993).

Compositions comprising vectors of the invention.

10

20

25

30

35

55

[0109] Although non-viral based transfection systems have not exhibited the efficiency of viral vectors, they have received significant attention, in both in vitro and in vivo research, because of their theoretical safety when compared to viral vectors. Synthetic cationic molecules, have been reported which reportedly "coat" the nucleic acid through the interaction of the cationic sites on the transfection agent and the anionic sites on the nucleic acid. The positively charged coating reportedly interacts with the negatively charged cell membrane to facilitate the passage of the nucleic acid through the cell membrane by non-specific endocytosis. (Schofield, 1995) These compounds have, however, exhibited considerable sensitivity to natural serum inhibition, which has probably limited their efficiency in vivo as gene transfection agents. (Behr 1994)

[0110] A number of attempts have been made to improve the efficiency of lipid-like cationic transfection agents, some involving the use of polycationic molecules. For example, several transfection agents have been developed that contain the polycationic compound spermine covalently attached to a lipid carrier. (Behr, 1994), discloses a lipopolyamine and shows it to be more efficient at transfecting cells than single charge molecules (albeit still less efficient than viral vectors). The agent reported by Behr was, however, toxic, and caused cell death.

[0111] A few such lipid delivery systems for transporting DNA, proteins, and other chemical materials across membrane boundaries have been synthesized by research groups and business entities. Most of the synthesis schemes are relatively complex and generate lipid based delivery systems having only limited transfection abilities. A need exists in the field of gene therapy for cationic lipid species that have a high biopolymer transport efficiency. It has been known for some time that a very limited number of certain quaternary ammonium derivatized (cationic) liposomes spontaneously associate with DNA, fuse with cell membranes, and deliver the DNA into the cytoplasm (as noted above, these species have been termed "cytofectins"). LIPOFECTIN TM. represents a first generation of cationic liposome formulation development. LIPOFECTIN TM is composed of a 1:1 formulation of the quaternary ammonium containing compound DOTMA and dioleoylphosphatidylethanolamine sonicated into small unilamellar vesicles in water. Problems associated with LIPOCFECTIN TM include non-metabolizable ether bonds, inhibition of protein kinase C activity, and direct cytotoxicity. In response to these problems, a number of other related compounds have been developed. The monoammonium compounds of the subject invention improve upon the capabilities of existing cationic liposomes and serve as a very efficient delivery system for biologically active chemicals.

45 Most preferred vectors of the invention.

[0112] Most preferred recombinant vectors according to the invention include pASΔΔ(figure 2), pACTllst (figure 3), pT18 (figure 4), pUT18C (figure 5), pT25 (figure 6), pKT25(figure 7), pB5 (Figure 12) and pP6 (Figure 13) containing inserted therein a nucleic acid encoding a Selected Interacting Domain (SID®) polypeptide or a variant thereof as defined above.

[0113] The present invention is also directed to a vector usable in a two-hybrid method which consists of the vector pP6 which is shown in figure 13. As disclosed in example 1, the vector pP6 has been successfully used for preparing a collection of recombinant plasmids consisting of a genomic DNA library from the pathogenic strain H77 of the hepatitis C virus.

[0114] The invention also pertains to a vector usable in two-hybrid method which consists of the vector pB5. As disclosed in example 1, the vector pB5 has been successfully used in a yeast two hybrid method as a bait plasmid.

RECOMBINANT CELL HOSTS

10

20

30

35

40

45

50

55

[0115] In one embodiment, a Selected Interacting Domain (SID®) polypeptide of the invention or a variant thereof is recombinantly produced in a desired host cell which has been transfected or transformed with a nucleic acid encoding said Selected Interacting Domain (SID®) polypeptide or with a recombinant vector as defined above within which a nucleic acid encoding a Selected Interacting Domain (SID®) polypeptide of the invention is inserted.

[0116] Recombinant cell hosts are another aspect of the present invention.

[0117] Such cell hosts generally comprise at least one copy of a nucleic acid encoding a Selected Interacting Domain (SID®) polypeptide of the invention or a variant thereof

[0118] Preferred cells for expression purposes will be selected in function of the objective which is sought. For example, in the embodiment wherein the production of a Selected Interacting Domain (SID®) polypeptide according to the invention in large quantities is sought, the nature of the host cell used for its production is relatively indifferent, provided that large amounts of Selected Interacting Domain (SID®) polypeptides of the invention are produced and that optional further purification steps may be carried out easily.

[0119] However, in the embodiment wherein the Selected Interacting Domain (SID®) polypeptide is recombinantly produced within a host organism for the purpose of interfering with a specific protein-protein interaction, then the host organism is selected among the host organisms which are suspected to produce naturally said polypeptide of interest.

[0120] Consequently, mammalian and typically human cells, as well as bacterial, yeast, fungal, insect, nematode and plant cells are cell hosts encompassed by the invention and which may be transfected either by a nucleic acid or a recombinant vector as defined above.

[0121] Examples of suitable recombinant host cells include VERO cells, HELA cells (e.g. ATCC N°CCL2), CHO cell-lines (e.g. ATCC N°CCL61) COS cells (e.g. COS-7 cells; COS cell referred to ATCC N°CRL1650), W138, BHK, HepG2, 3T3 (e.g. ATCC N°CRL6361), A549, PC12, K562 cells, 293 cells, Sf9 cells (e.g. ATCC N°CRL1711) and Cv1 cells (e.g. ATCC N°CCL70).

25 [0122] Other suitable host cells are usable according to the invention include prokaryotic host cells strains of Escherichia coli (e.g. strain DH5-α), of Bacillus subtilis, of Salmonella typhimurium, or strains of genera such as Pseudomonas, Streptomyces and Staphylococcus.

[0123] Further suitable host cells usable according to the invention include yeast cells such as those of Saccharomyces, typically Saccharomyces cerevisiae.

[0124] The invention also relates to a method for producing a SID® polypeptide as defined above, wherein said method comprises the steps of:

- a) cultivating a cell host which has been transformed with a SID® nucleic acid of the invention or with a vector containing a SID® nucleic acid in an appropriate culture medium;
- b) recovering the SID® recombinant polypeptide from the culture supernatant or from the cell lysate.

[0125] The SID® polypeptides or variant thereof thus recombinantly obtained may be purified, for example by high performance liquid chromatography, such as reverse phase and/or cationic exchange HPLC, as described by ROUGE-OT et al. (1994). The reason to prefer this kind of peptide or protein purification is the lack of by-products found in the elution samples which renders the resultant purified protein more suitable for a therapeutic use.

TWO-HYBRID METHODS OF THE INVENTION

a) Yeast two-hybrid methods

[0126] The invention also pertains to a yeast two-hybrid method for selecting a recombinant cell clone containing a vector comprising a nucleic acid insert encoding a prey polypeptide which binds with a SID® polypeptide of SEQ ID N°1 to 38 or a variant thereof, wherein said method comprises the steps of:

- a) mating at least one first recombinant yeast cell clone of a collection of recombinant yeast cell clones transformed with a plasmid containing the prey polynucleotide to be assayed with a second aploïd recombinant Saccharomyces cerevisiae cell clone transformed with a plasmid containing a bait polynucleotide encoding a SID® polypeptide of the invention or a variant thereof;
- b) cultivating diploid cells obtained in step a) on a selective medium; and
- c) selecting recombinant cell clones which grow on said selective medium.

The yeast two-hybrid method above may further comprise the step of:

d) characterizing the prey polynucleotide contained in each recombinant cell clone selected in step c).

[0127] Most preferably, such a yeast two-hybrid method may be performed by the one skilled in the art as it is disclosed in example 2 hereafter.

[0128] According to the yeast two-hybrid method above, a SID® polypeptide of the invention or a variant thereof is used as a bait polypeptide.

[0129] In a preferred embodiment of the yeast two-hybrid method described above, the prey polynucleotide is a DNA fragment from the genome of a pathogenic strain of the hepatitis C virus (HCV) ranging from about 150 to about 600 nucleotides in length and which is inserted in a vector which is contained in one recombinant clone of a collection of recombinant cell clones.

b) Bacterial two-hybrid method

10

20

25

30

35

45

50

55

[0130] A bacterial two-hybrid method of the invention may be performed by the one skilled in the art according to the teachings of KARIMOVA et al. (1998).

[0131] The first step of selecting a collection of nucleic acids encoding polypeptides which binds specifically to the bait polypeptide may also be carried out through a bacterial two-hybrid system.

[0132] According to such bacterial two-hybrid system, bacterial cell clones, preferably Escherichia coli cells, are transformed with a plasmid containing a bait polynucleotide encoding a bait polypeptide.

[0133] Then, plasmids containing a DNA insert are provided by rescuing the plasmids obtained from the collection of yeast clones containing the genomic DNA or cDNA library which are described in the previous section entitled " Yeast two-hybrid system". For example, the plasmid rescue may be carried out according to the following steps:

- (i) extracting plasmid DNA contained in the collection of yeast clones obtained as disclosed in the previous section, by using a conventional DNA extraction buffer and a phenol: chloroform: isoamyl alcohol (25:24:1) before centrifuging;
- (ii) transferring a desired volume of the supernatant obtained at the end of step (i) to a sterile Eppendorf tube and add a precipitation buffer (ethanol/NH₄Ac) before centrifuging and resuspending the pellet after washing in ethanol; (iii) transforming *Escherichia coli* cells (e.g. *Escherichia coli* cells of strain NC 1066) which have been rendered electrocompetent with a desired volume (e.g. 1 μl) of the yeast plasmid DNA extract obtained at step (ii) by electroporation;
- (iv) collecting the transformed Escherichia coli cells.

[0134] Alternatively, a collection of *Escherichia coli* cell clones containing a collection of HCV genomic DNA inserts may be obtained by constructing the DNA library directly in the bacterial cell, such as disclosed in Flajolet et al. (2000).

[0135] Then, the bacterial recombinant cells which have been transformed both with a plasmid containing a bait polynucleotide encoding a bait polypeptide and a plasmid containing a prey polynucleotide encoding a prey polynucleotide is cultivated on a selective medium.

[0136] Then, recombinant cell clones capable of growing on said selective medium are selected and the DNA inserts of the plasmids containing therein are sequenced.

[0137] By bacterial two-hybrid system is generally intended a method that usually makes use of at least one reporter gene, the transcription of which is activated when a prey polypeptide and a bait polypeptide produced by the recombinant cell due to the triggering of the transcription of said at least one reporter gene when both the specific domain contained in one prey polypeptide and the complementary domain contained in the bait polypeptide are binding one to the other.

[0138] The invention further pertains to a bacterial two-hybrid method for identifying a recombinant cell clone containing a prey polynucleotide encoding a prey polypeptide which binds with a SID® polypeptide of SEQ ID N°1 to 38 or a variant thereof, wherein said method comprises the steps of:

- a) transforming bacterial cell clones with a plasmid containing a SID® polynucleotide encoding a SID® polypeptide of the invention or a variant thereof;
- b) rescuing prey plasmids containing prey polynucleotides wherein each prey polynucleotide is a DNA fragment from the genome of a desired organism and wherein each prey plasmid is contained in one recombinant yeast cell clone of a collection of recombinant yeast cell clones;
- c) transforming the recombinant bacterial cell clones obtained in step a) with the plasmids rescued in step b);
- d) cultivating bacterial recombinant cells obtained in step c) on a selective medium;

and

e) selecting recombinant cell clones which grow on said selective medium.

[0139] The bacterial two-hybrid system described above may further comprise the step of f) characterizing the prey polynucleotide contained in each recombinant cell clone selected at step e).

[0140] In one preferred embodiment of the yeast or bacterial two-hybrid methods described above, the prey polypeptide is a human polypeptide expressed by a mammal which is infected by the Hepatitis C virus, like human and monkeys, typically chimpanzees.

[0141] Generally, the yeast two-hybrid method or the bacterial two-hybrid method as disclosed herein may be performed with prey polypeptides of any origin, either of viral, fungal, bacterial or mammal origin, i.e. either of prokaryotic or eukaryotic origin.

[0142] In a second preferred embodiment of the two-hybrid methods above, the prey polypeptide is an HCV polypep-

[0143] Most preferably, the prey polypeptide is encoded by a strain of the hepatitis C virus which is pathogenic for human, such as strain H77.

SETS OF NUCLEIC ACIDS AND SETS OF POLYPEPTIDES OF THE INVENTION

[0144] In yet another aspect, the present invention relates to a set of two nucleic acids consisting of:

i) a first nucleic acid encoding a SID® polypeptide of SEQ ID N° 1 to 39 of the invention or a variant thereof; and ii) a second nucleic acid encoding a prey polypeptide which binds specifically with a SID® polypeptide defined in i).

[0145] In still a further aspect, the invention is also directed to a set of two polypeptides consisting of:

i) a first polypeptide consisting of a SID® polypeptide of SEQ ID N°1 to 39 of the invention or a variant thereof; and ii) a second polypeptide which binds specifically with the first polypeptide.

[0146] The invention further relates to a complex formed between:

- i) a first polypeptide consisting of a SID® polypeptide of SEQ ID №1 to №38 of the invention; and
- ii) a second poplypeptide which binds specifically with the first polypeptide.

[0147] The invention also relates to a protein-protein interaction wherein the two interacting proteins consist of a set of two polypeptides as defined above.

[0148] In a preferred embodiment, the invention relates to the protein-protein interactions wherein the sets of two polypeptides consist of a SID® polypeptide of SEQ ID N°1 to 38 and an HCV polypeptide.

[0149] When several reiterations of the two-hybrid method are performed and thus common SID® polypeptide and prey polypeptides are selected, a map of all the interactions between these polypeptides may be designed, that take into account of the known and/or suspected biological function of each of the interacting polypeptides.

[0150] Table 1 illustrates protein-protein interaction between the SID® polypeptides of SEQ ID N°1 to 38 and polypeptides of SEQ ID N°77 to 113 which are encoded by the genome of strain H77 of the hepatitis C virus which is pathogenic for a mammal, like human or chimpanzee.

[0151] Thus, the data presented in table 1 disclose particular sets of nucleic acids as well as particular sets of polypeptides which are encompassed by the present invention.

[0152] For example, table 1 discloses that the nucleic acid of SEQ ID N°39 encodes the SID® polypeptide of SEQ ID N°1 which contains exclusively (100 %) an aminoacid sequence from the Core protein of HCV strain H77.

[0153] The nucleic acid of SEQ ID N°39 starts at the nucleotide in position 446 and ends at the nucleotide in position 600 of the HCV genome which is described by YANAGI et al. (1997).

 $\textbf{[0154]} \quad \textbf{Table 1 also discloses that the SID} \textbf{@ polypeptide of SEQ ID N} \textbf{o} \textbf{1 is part of a set of polypeptides of the invention}.$ wherein the second polypeptide of said set of polypeptides consists of the polypeptide of SEQ ID N°77 which is encoded by the nucleic acid sequence of SEQ ID N°114, which nucleic acid sequence has 87% of its sequence which is derived from the region of the H77 strain HCV DNA encoding the Core protein.

[0155] Thus, a particular set of polypeptides according to the invention consists of:

- i) the polypeptide of SEQ ID N°1; and
- ii) the polypeptide of SEQ ID N°77.

[0156] The same reasoning apply for every set of polypeptides disclosed in table 1, which are expressly part of the present invention.

[0157] Similarly, a particular set of nucleic acids according to the invention consists of:

14

10

15

20

25

30

- (i) the nucleic acid of SEQ ID N°39; and
- (ii) the nucleic acid of SEQ ID N°114.

5

10

15

20

25

30

35

45

[0158] The same reasoning apply for every set of nucleic acids disclosed in table 1, which are expressly part of the present invention.

[0159] Thus, particular sets of two polypeptides of the invention are respectively SEQ ID N°77/SEQ ID N°1; SEQ ID N°78/SEQ ID N°2; SEQ ID N°78/SEQ ID N°3; SEQ ID N°79/SEQ ID N°4; SEQ ID N°80/SEQ ID N°5; SEQ ID N°81/SEQ ID N°6; SEQ ID N°82/SEQ ID N°7; SEQ ID N°83/SEQ ID N°8; SEQ ID N°84/SEQ ID N°9; SEQ ID N°85/SEQ ID N°10; SEQ ID N°86/SEQ ID N°11; SEQ ID N°87/SEQ ID N°12; SEQ ID N°88/SEQ ID N°13; SEQ ID N°89/SEQ ID N°14; SEQ ID N°90/SEQ ID N°15; SEQ ID N°91/SEQ ID N°16; SEQ ID N°92/SEQ ID N°17; SEQ ID N°93/SEQ ID N°18; SEQ ID N°94/SEQ ID N°19; SEQ ID N°95/SEQ ID N°20; SEQ ID N°96/SEQ ID N°21; SEQ ID N°97/SEQ ID N°22; SEQ ID N°98/SEQ ID N°23; SEQ ID N°99/SEQ ID N°24; SEQ ID N°100/SEQ ID N°25. SEQ ID N°101/SEQ ID N°26. SEQ ID N°102/SEQ ID N°27; SEQ ID N°103/SEQ ID N°28. SEQ ID N°104/SEQ ID N°29; SEQ ID N°105/SEQ ID N°30; SEQ ID N°106/SEQ ID N°31; SEQ ID N°107/SEQ ID N°32; SEQ ID N°108/SEQ ID N°37; and SEQ ID N°109/SEQ ID N°34; SEQ ID N°110/SEQ ID N°35; SEQ ID N°111/SEQ ID N°36; SEQ ID N°112/SEQ ID N°37; and SEQ ID N°113/SEQ ID N°38

[0160] Similarly, particular sets of two nucleic acids according to the invention are respectively: SEQ ID N°114/SEQ ID N°39; SEQ ID N°115/SEQ ID N°40; SEQ ID N°115/SEQ ID N°41; SEQ ID N°116/SEQ ID N°42; SEQ ID N°117/SEQ ID N°43; SEQ ID N°118/SEQ ID N°44; SEQ ID N°119/SEQ ID N°45; SEQ ID N°120/SEQ ID N°46; SEQ ID N°121/SEQ ID N°47; SEQ ID N°122/SEQ ID N°48; SEQ ID N°123/SEQ ID N°49; SEQ ID N°124/SEQ ID N°50; SEQ ID N°125/SEQ ID N°51; SEQ ID N°52/SEQ ID N°52; SEQ ID N°127/SEQ ID N°53; SEQ ID N°54/SEQ ID N°54; SEQ ID N°129/SEQ ID N°55; SEQ ID N°130/SEQ ID N°56; SEQ ID N°131/SEQ ID N°57; SEQ ID N°58; SEQ ID N°58; SEQ ID N°133/SEQ ID N°59; SEQ ID N°134/SEQ ID N°60; SEQ ID N°135/SEQ ID N°61; SEQ ID N°136/SEQ ID N°62; SEQ ID N°137/SEQ ID N°63; SEQ ID N°138/SEQ ID N°64; SEQ ID N°139/SEQ ID N°65; SEQ ID N°140/SEQ ID N°66; SEQ ID N°141/SEQ ID N°67; SEQ ID N°142/SEQ ID N°68; SEQ ID N°145/SEQ ID N°71; SEQ ID N°146/SEQ ID N°72. SEQ ID N°147/SEQ ID N°73; SEQ ID N°148/SEQ ID N°74; SEQ ID N°149/SEQ ID N°75 and SEQ ID N°150/SEQ ID N°76.

[0161] The protein-protein interactions disclosed in table 1 allows the design of a map of interactions between various polypeptides encoded by the genome of the H77 strain of HCV.

[0162] In such a Protein Interaction Map (PIM®) wherein each SID® polypeptide is linked to the bait polypeptide onto which it specifically binds, for example by an arrow.

[0163] Such a Protein Interaction Map (PIM®) may help the one skilled in the art to decipher a whole metabolical and/or physiological pathway that is functionally active within a pathogenic strain of HCV. Protein Interaction Map and computable version of PIM® are part of the present invention.

[0164] Therefore, in still another aspect, the present invention is directed to a computable readable medium (such as floppy disk, CD-ROM and all electronic or magnetic format which can be read by a computer) having stored thereon protein-protein interactions according to the invention, preferably stored in a form of a Protein Interaction MAP, as shown, for example, in FROMONT-RACINE et al. (1997).

[0165] In a preferred embodiment, the invention comprises a computable readable medium as defined above, wherein the protein-protein interactions stored thereon are linked to annotated data base, for example through Internet.

[0166] In another preferred embodiment, the invention comprises a data bank containing the protein-protein interactions stored thereon, said data bank being available on a world-wide web site.

METHODS FOR SELECTING INHIBITORS OF PROTEIN-PROTEIN INTERACTIONS OF THE INVENTION

[0167] The transformed host cells as described above can also be used as models so as to study the interactions between a SID® polypeptide of the invention and its binding partner polypeptide, or between a SID® polypeptide of the invention and chemical or protein compounds which inhibit the binding between said SID® polypeptide and its binding partner polypeptide.

[0168] Example of a SID® polypeptide and its binding partner polypeptides are typically the sets of polypeptides of the invention which are described above.

[0169] In particular, the transformed host cells of the invention may be used for the selection of molecules which interact with a SID® polypeptide as described herein, as cofactor or as inhibitor, in particular a competitive inhibitor, or alternatively having an agonist or antagonist activity on the protein-protein interaction wherein said SID® polypeptide is involved. Preferably, the said transformed host cells will be used as a model allowing, in particular, the selection of products which make it possible to prevent and/or to treat pathologies induced by the hepatitis C virus.

[0170] Consequently, the invention also consists of a method for selecting a molecule which inhibits the protein-protein interaction of a set of two polypeptides as defined above, wherein said method comprises the steps of:

a) cultivating a recombinant host cell containing a reporter gene the expression of which is toxic for said recombinant host cell, said host cell being transformed with two vectors wherein:

- i) the first vector contains a nucleic acid comprising a polynucleotide encoding a first hybrid polypeptide containing one of said two-polypeptides and a DNA binding domain;
- ii) the second vector contains a nucleic acid comprising a polynucleotide encoding a second hybrid polypeptide containing the second of said two polypeptides and an activating domain capable of activating said toxic reporter gene when the first and the second hybrid polypeptides are interacting;
- on a selective medium containing the molecule to be ested and allowing the growth of said recombinant host cell when the toxic reporter gene is not activated; and
- b) selecting the molecule which inhibits the growth of the recombinant host cell defined in step a).
- [0171] The invention is also directed to a method for selecting a molecule which inhibits the protein-protein interaction of a set of two polypeptides as defined above, wherein said method comprises the steps of:
 - a) cultivating a recombinant host cell containing a reporter gene the expression of which is toxic for said recombinant host cell, said host cell being transformed with two vectors wherein:
 - i) the first vector contains a nucleic acid comprising a polynucleotide encoding a first hybrid polypeptide containing one of said two polypeptides and the first domain of an enzyme;
 - ii) the second vector contains a nucleic acid comprising a polynucleotide encoding a second hybrid polypeptide containing the second of said two polypeptides and the second part of said enzyme capable of activating said toxic reporter gene when the first and the second hybrid polypeptides are interacting, said interaction recovering the catalytic activity of the enzyme;
 - on a selective medium containing the molecule to be tested and allowing the growth of said recombinant host cell when the toxic gene is not activated; and
 - b) selecting the molecule which inhibits the growth of the recombinant host cell defined in step a).

[0172] In a preferred embodiment, said toxic reporter gene that can be used for negative selection is URA3, CYH1 or CYH2 gene.

[0173] For example, a method for the screening of a molecule which inhibits the interaction between a SID® polypeptide of the invention with its binding protein counterpart may comprise the following steps:

- transform a permeabilized yeast cell with two vectors, respectively a first vector containing a SID® nucleic acid of
 the invention and a second vector containing a prey nucleic acid as defined in the present specification;
- plate on top agar the transformed permeabilized yeast cells above on square boxes;
- apply by spotting the candidate inhibitor molecules to test on top agar as soon as it is solidified;
- incubates, for example, overnight at 30°C, and

5

10

15

20

25

30

35

40

45

50

- select the inhibitor compounds that allow the growth of the transformed yeast cells.
- [0174] The invention also provides for a kit for the screening of a molecule which inhibits the protein-protein interaction of a set of two polypeptides as defined above, wherein said kit comprises a recombinant host cell containing a reporter gene the expression of which is toxic for said recombinant host cell, said host cell being transformed with two vectors wherein:
 - i) the first vector contains a nucleic acid comprising a polynucleotide encoding a first hybrid polypeptide containing one of said two polypeptides and a DNA binding domain;
 - ii) the second vector contains a nucleic acid comprising a polynucleotide encoding a second hybrid polypeptide containing the second of said two polypeptides and an activating domain capable of activating said toxic reporter gene when the first and the second hybrid polypeptides are interacting.
- [0175] Another object of the invention consists of a kit for the screening of a molecule which inhibits the proteinprotein interaction of a set of two polypeptides as defined above, wherein said kit comprises a recombinant host cell containing a reporter gene the expression of which is toxic for said recombinant host cell, said host cell being transformed with two plasmids wherein:

- i) the first vector contains a nucleic acid comprising a polynucleotide encoding a first hybrid polypeptide containing one of said two polypeptides and the first domain of a protein;
- ii) the second vector contains a nucleic acid comprising a polynucleotide encoding a second hybrid polypeptide containing the second of said two polypeptides and the second part of said protein capable of activating said toxic reporter gene when the first and the second hybrid polypeptides are interacting, said interaction recovering the activity of the protein. In the selection methods above, the transcription or activating domain and the DNA-binding domain may be derived from Gal4 and LexA respectively.

[0176] In the embodiment wherein the first domain is a first part of an enzyme and a complementary domain is a second part of the same enzyme, and wherein the proximity of the two parts of the enzyme restores the enzyme activity and activates a reporter gene, the two parts of the enzymes are most preferably the T25 and T18 polypeptides that form the catalytic domain of the *Bordetella pertussis adenylate cyclase*.

[0177] As an illustrative embodiment, the reporter gene is chosen among the group consisting of a nutritional gene or also a gene the expression of which is visualised by colorimetry such as His3, LacZ or both LacZ and His3.

MARKER COMPOUNDS OF THE INVENTION

5

10

15

20

30

35

40

45

[0178] The Selected Interacting Domain (SID®) polypeptides of SEQ ID N°1 to 38 of the invention and variants thereof defined in the present specification, and which bind specifically to a polypeptide of interest (e.g. a bait polypeptide), are useful as reagents for detecting, labelling, targeting or purifying specifically a polypeptide of interest, typically a polypeptide encoded by HCV, within a sample, since the SID® polypeptides possess properties that have never been reached using conventional detection compounds, such as those of an antibody or an antibody fragment.

[0179] Firstly, the SID® polypeptides of the invention possess a high specificity of binding to the polypeptide of interest, since a SID® polypeptide consists of a portion of a larger polypeptide which binds in a highly specific manner to the polypeptide of interest in the natural environment within the eukaryotic cell infected by the Hepatitis C virus.

[0180] Secondly, the SID® polypeptide generally has a low molecular weight, generally from 3 kDa, and are thus easy to produce, on the one hand, and, on the other hand, can be easily introduced within a cell when the detection of the localisation or of the expression of the polypeptide of interest is sought. Moreover, the small size of a SID® polypeptide allows its passage through inner cell barriers such as the nucleus membrane, or the membranes surrounding the different cell organites.

[0181] Thus, a first object of the invention consists of a marker compound wherein said compound comprises:

- a) a Selected Interacting Domain (SID®) polypeptide of the invention or a variant thereof that binds specifically to the polypeptide of interest; and
- b) a detectable molecule bound thereto.

[0182] Such a marker compound is primarily useful for detecting, labelling or targeting a polypeptide of interest, for example a polypeptide of interest contained in a sample.

[0183] A detectable molecule according to the invention comprises, or alternatively consists of, any molecule which produces or can be induced to produce a signal. The detectable molecule can be a member of the signal producing system that includes the signal producing means .

[0184] The detectable molecule may be isotopic or non-isotopic. By way of example and not limitation, the detectable molecule can be part of a catalytic reaction system such as enzymes, enzyme fragments, enzyme substrates, enzyme inhibitors, co-enzymes, or catalysts. Part of a chromogen system such as fluorophores, dyes, chemiluminescers, luminescers, or sensitizers. A dispersible particle that can be nonmagnetic or magnetic, a solid support, a liposome, a ligand, a receptor, a hapten radioactive isotope, and soforth.

[0185] It must be generally understood that the whole embodiments disclosed in the present specification involving a Selected Interacting Domain (SID®) polypeptide is straightfully applied also to any variant thereof.

Fluorescent detectable molecules

[0186] In one aspect of the marker compound according to the invention, the detectable molecule consists of a fluorescent molecule. Fluorescent moieties which are frequently used as labels are for example those described by Ichinose et al. (1991). Other fluorescent detectable molecules are fluorescing isothiocyanate (FITC) such as described by Shattil et al. (1987) or by Goding et al. (1986). The fluorescent detectable molecule may also comprise a phycoerythrin as taught by Goding et al. (1986), and Shattil et al. (1985). Other examples of fluorescent detectable molecules suitable for use as labels of a marker compound according to the invention are rhodamine isothiocyanate, dansyl chloride and XRITC.

[0187] Another fluorescent detectable molecule consists of the green fluorescent protein (GFP) of the jelly fish *Aequorea victoria*, and their numerous fluorescent protein derivatives.

[0188] The one skilled in the art may advantageously refer to the articles of CHALFIE et al. (1994) and of HEIM et al. (1994) which discloses the uses of GFP for the study of gene expression and protein localisation. The one skilled in the art may also refer to the article of Rizzuto et al. (1995), which discusses the use of wild-type GFP as a tool for visualising subcellular organelles in cells, to the article of KAETHER and GERDES (1995), which reports the visualisation of protein transport along the secretary passway using wild-type GFP, the article of HU and CHENG (1995), which relates to the expression of GFP in plant cells and also to the article of Davis et al. (1995) which discloses the GFP expression in drosophilia embryos. For the use of several fluorescent variants of GFP, the one skilled in the art may refer to the article of Delagrave et al. (1995), as well as to the article of Heim et al. (1995). DNA encoding GFP is available commercially, for example from Clontech in Palo Alto, California, USA. The one skilled in the art may use also humanized GFP genes such as those described in the US Patent N°6,020,192 and also the GFP protein disclosed in the US Patent N°5,941,084.

[0189] Another fluorescent protein that may be used in a marker compound according to the invention consists of the yellow fluorescent protein (YFP).

[0190] A further suitable luminescent protein consists of the luciferase protein.

Detectable molecules exhibiting a catalytic activity

10

15

20

30

35

[0191] In another embodiment of a detectable molecule included in a marker compound according to the invention, said detectable molecule is endowed with a catalytic activity and may thus consists of enzymes and catalytically active enzyme fragments. Some enzymatic labels are described in US Patent N°3,654,090. Such enzymes may be for example horse radish peroxydase (HRP), alkaline phosphatase or glutathione peroxydase which are well known from the one skilled in the art.

[0192] Enzymes, enzyme fragments, enzyme inhibitors, enzyme substrates, and other components of enzyme reaction systems can be used as detectable molecules. Where any of these components is used as a detectable molecule, a chemical reaction involving one of the components is part of the signal producing system.

[0193] Coupled catalysts can also involve an enzyme with a non-enzymatic catalyst. The enzyme can produce a reactant, which undergoes a reaction catalysed by the non-enzymatic catalyst or the non-enzymatic catalyst may produce a substrate (including co-enzymes) for the enzyme. The one skilled in the art may advantageously refer to the US Patent N°4,160 645 which disclose a white variety of non enzymatic catalysts, which may be employed, the appropriate portions of which are incorporated therein by reference.

[0194] The enzyme or co-enzyme employed provides the desired amplification by producing a product, which absorbs light, e.g., a tye, or emits lights upon irradiation, e.g., a fluorescer. Alternatively, the catalytic reaction can lead to direct light emission, e.g., chemiluminescence. A large number of enzymes and co-enzymes for providing such products are described in the US Patents N°4,275,149, columns 19 to 23 and N°4,318,980, columns 10 to 14 which disclosures are incorporated herein by reference.

[0195] A number of enzyme combinations are set forth in US Patent N°4,275,149, columns 23 to 28 which disclosures are incorporated herein by reference.

[0196] When a single enzyme is used as the detectable molecule, or alternatively as comprised in the detectable molecule, such enzymes may find use are hydrolases, transferases, lyases, isomerases, ligases or synthetases and oxydoreductases.

[0197] Alternatively, luciferases may be used such as firefly luciferase and bacterial luciferase.

[0198] Primarily, the enzymes of choice, based on the I.U.B. classification are: (i) class 1. Oxydoreductases and (ii) class 3. Hydrolases. Most preferred oxydoreductases are (i) dehydrogenases of class 1.1, more particularly 1.1.1, 1.1.3, and 1.1.99 and (ii) peroxydases in class 1.11. of the hydrolases, particularly class 3.1, more particularly 3.1.3 and class 3.2, more particularly 3.2.1. are preferred.

[0199] Illustrative dehydrogenases include malate dehydrogenase, glucose-6-phosphate dehydrogenase and lactate dehydrogenase. Of the oxydases, glucose oxydases is exemplary. Of the peroxydases, horse radish peroxydase is illustrative. Of the hydrolases, alkaline phosphatases, β-glucosydase and lysozyme are illustrative.

Chemiluminescent detectable molecules

[0200] The detectable molecule comprised within the marker compound according to the invention may also consist in a chemiluminescent moiety. The chemiluminescent source involves a compound, which becomes electronically excited by a chemical reaction and may emit light which serves at as the detectable signal or donates energy to a fluorescent acceptor.

[0201] A diverse number of families of compounds have been found to provide chemiluminescent under a variety of

conditions. When family of compounds is 2,3-dihydro-1,4-phtalazinedinone. The most utilised compound is luminol, which is the 5-amino analogue of the compound above. Other members of the family include the 5-amino-6,7,8-trimethoxy-and the dimethylamine-[ca]benzo analogue. These compounds can be made to luminance with alkaline hydrogen peroxyde or calcium hypochlorite and base.

[0202] Another family of compounds is the 2,4,5-triphenylimidazoles, with lophine as the common name for the parent product. Chemiluminescent analogues include para-dimethylamino- and paramethoxy-substituents. Chemiluminescents may also be obtained with geridinium esters, dioxetanes and oxalates, usually oxalyl active esters, e.g., p-nitrophenyl and a peroxide, e.g., hydrogen peroxide, under basic conditions. Alternatively, luciferins may be used in conjunction with luciferase or lucigenins.

Radioactive detectable molecules

10

15

20

30

35

40

45

[0203] In a further embodiment of a detectable molecule comprised in a marker compound according to the invention, said detectable molecule is radio-actively labelled such as with [3H], [32P], [and [125]].

Colloïdal metal detectable molecules

[0204] In still a further embodiment, the detectable molecule comprised in a marker compound according to the invention may include a colloïdal metal particle. Colloïdal metals have been employed in immuno assays previously. Mostly, they consisted of either colloïdal iron or gold. The one skilled in the art may advantageously refer to the articles of Horisberger (1981) and Martin et al. (1990). In other case, the metals are chosen for their colour, i.e., their presence is determined by their colour or electron density under an electron microscope. Both the colour and electron density are directly proportional to the mass of the metal colloïd.

STRUCTURE OF THE MARKER COMPOUNDS OF THE INVENTION

[0205] In a first preferred embodiment of a marker compound of the invention, the detectable molecule is covalently bound to the Selected Interacting Domain (SID®) polypeptide of SEQ ID N°1 to SEQ ID N°38 or a variant thereof.

[0206] According to this specific embodiment, detectable molecules comprising fluorescent proteins such as GFP and YFP, enzymes or enzyme fragments such as alkaline phosphatase, glutathione peroxydase and horse radish peroxydase, chemiluminescent molecules, radioactive labels or colloidal metal particles will be preferred.

[0207] General methods that may be used by the one skilled in the art for covalently binding the detectable molecules to the Selected Interacting Domain (SID®) polypeptide are described in the numerous bibliographic references related to the preparation of the antibody conjugates used for carrying out immunoassays.

[0208] In a second preferred embodiment of a marker compound according to the invention, the detectable molecule is non-covalently bound to the Selected Interacting Domain (SID®) polypeptide or a variant thereof.

[0209] In a first preferred aspect of this second preferred embodiment, the detectable molecule consists of an antibody directed specifically against the Selected Interacting Domain (SID®) polypeptide or a variant thereof.

[0210] The antibodies directed specifically against the Selected Interacting Domain (SID®) polypeptide or a variant thereof may be indifferently radioactivity or non radioactivity labelled.

NUCLEIC ACIDS ENCODING A MARKER COMPOUND OF THE INVENTION.

[0211] The present invention also relates to a nucleic acid encoding a marker compound as defined above.

[0212] Most preferred nucleic acids encompassed by the invention include polynucleotides that encode a marker compound wherein the Selected Interacting Domain (SID®) polypeptide of SEQ ID N°1 to 38 or a variant thereof is covalently bound to the detectable molecule and wherein the detectable molecule consists itself of a polypeptide.

[0213] Most preferred nucleic acids are those of SEQ ID N°39 to 76.

[0214] In a first preferred embodiment of a nucleic acid according to the invention, said nucleic acid encodes for a Selected Interacting Domain (SID®) polypeptide which is fused to a fluorescent protein, such as GFP and YFP.

[0215] In a second preferred embodiment of a nucleic acid according to the invention, said nucleic acid encodes for a Selected Interacting Domain (SID®) polypeptide which is fused to a polypeptide endowed with a catalytic activity, such as an enzyme or an enzymatically active enzyme fragment, like alkaline phosphatase, glutathione peroxydase and horse radish peroxydase.

[0216] In a preferred embodiment, a nucleic acid encoding a marker compound of the invention comprises a DNA coding sequence which is transcribed and translated into said marker compound in a cell in vitro or in vivo when placed under the control of appropriate regulatory sequences. The boundaries of the coding sequence are determined by a start codon and a translation stop codon. A coding sequence can include, but is not limited to:

- prokaryotic sequences, for example when the Selected Interacting Domain (SID®) nucleic acid and the nucleic acid fused thereto which encodes the detectable molecule are of prokaryotic origin;
- prokaryotic and eukaryotic sequences, for example the nucleic acid encoding the detectable molecule originates from an eukaryotic host organism.

[0217] If the coding sequence is intended for expression in an eukaryotic cell, a polyadenylation signal and transcription termination sequence will usually be located 3' to the coding sequence.

[0218] In a most preferred embodiment of a nucleic acid sequence according to the invention, said nucleic acid sequence include a regulatory region which is functional in the host organism within which the expression of said nucleic acid sequence is sought, wherein said regulatory region comprises a promoter sequence.

[0219] "Regulatory region" means a nucleic acid sequence which regulates the expression of a nucleic acid. A regulatory region may include sequences which are naturally responsible for expressing a particular nucleic acid (a homologous region), or may include sequences of a different origin (responsible for expressing different proteins or even synthetic proteins). In particular, the sequences can be sequences of eukaryotic or viral genes or derived sequences which stimulate or repress transcription of a gene in a specific or non-specific manner and in an inducible or non-inducible manner. Regulatory regions include origins of replication, RNA splice sites, enhancers, transcriptional termination sequences, signal sequences which direct the polypeptide into the secretary pathways of the target cell, and promoters.

[0220] A "promoter sequence" is a DNA regulatory region capable of binding RNA polymerase in a cell and initiating transcription of a downstream (3' direction) coding sequence. For purposes of defining the present invention, the promoter sequence is bounded at its 3' terminus by the transcription initiation site and extends upstream (5' direction) to include the minimum number of bases or elements necessary to initiate transcription at levels detectable above background. Within the promoter sequence will be found a transcription initiation site (conveniently defined for example, by mapping with nuclease S1), as well as protein binding domains (consensus sequences) responsible for the binding of RNA polymerase.

[0221] A coding sequence is "under the control" of transcriptional and translational control sequences in a cell when RNA polymerase transcribes the coding sequence into mRNA, which is then trans-RNA spliced and translated into the protein encoded by the coding sequence.

Most preferred vectors for the expression of a marker compound of the invention.

[0222] Most preferred recombinant vectors for expressing a marker compound of the invention include pAS∆∆ (figure 2), pACTIIst (figure 3), pT18 (figure 4), pUT18C (figure 5), pT25 (figure 6), pKT25 (figure 7), pB5 (Figure 12) and pP6 (Figure 13) containing inserted therein a nucleic acid encoding a Selected Interacting Domain (SID®) polypeptide as defined above or a variant thereof.

[0223] The invention also pertains to recombinant host cells transformed with a vector expressing a marker compound as defined above, more particularly a vector comprising inserted therein a nucleic acid encoding said marker compound, which is operably linked to suitable regulation signals which are functional in the host cell wherein its expression is sought.

[0224] Preferred cells for expression purposes will be selected in function of the objective which is sought. For example, in the embodiment wherein the production of a marker compound according to the invention in large quantities is sought, the nature of the cell host used for its production is relatively indifferent, provided that large amounts of Selected Interacting Domain (SID®) polypeptides or marker compounds of the invention are produced and that optional further purification steps may be carried out easily.

[0225] However, in the embodiment wherein the marker compound is recombinantly produced within a host organism for the purpose of qualitative or quantitative analysis of the polypeptide of interest onto which said marker compound specifically binds, then the host organism is selected among the host organisms which are suspected to produce naturally said polypeptide of interest.

[0226] Consequently, mammalian and human cells, as well as bacterial, yeast, fungal, insect, nematode and plant cells are cell host encompassed by the invention and which may be transfected either by a nucleic acid or a recombinant vector as defined above.

DETECTION METHODS OF THE INVENTION

5

25

35

40

[0227] The present invention further relates to the use of a Selected Interacting (SID®) polypeptide of SEQ ID N°1 to 38 or a variant thereof as well as a nucleic acid encoding it for detection purposes such as nucleic acids of SEQ ID N°39 to 76. It is herein reminded that a Selected Interacting Domain (SID®) polypeptide is determined according to the ability of such a (SID®) polypeptide to bind in a highly specific manner to a given (e.g. bait) polypeptide of interest,

since the aminoacid sequence of a SID® polypeptide is encoded by a nucleic acid, the nucleotide sequence of which consists of the polynucleotide sequence which is common to a collection of nucleic acid sequences encoding prey polypeptides that have been selected for their specific binding properties to a (bait) polypeptide of interest, such as explained above in the section entitled " SELECTED INTERACTING DOMAIN (SID®) POLYPEPTIDES".

[0228] The specific properties of a Selected Interacting Domain (SID®) polypeptide for binding to a given polypeptide of interest, either a viral, yeast, fungal, bacterial, insect, plant or mammal polypeptide, including a polypeptide of human origin, allow its use as a specific ligand for said polypeptide of interest of which the detection is sought.

[0229] Therefore, the use of a Selected Interacting Domain (SID®) in any detection method known in the art and which makes use of the ability of a detection ligand to bind specifically to a molecule of interest, most preferably a polypeptide of interest, fall under the scope of the present invention.

[0230] Detection methods that make use of the recognition of a molecule of interest, most preferably a polypeptide of interest, by a detection ligand are well known in the art and are primarily illustrated by the abundant literature that relate to immunoassays, which is incorporated herein by reference in its entirety.

[0231] The one skilled in the art may particularly refer to the book of Maggio (1980) (Heterogeneous assays), the US Patent N°3,817,837 (homogeneous Immunoassays), US Patent N° 3,993,345 (Immunofluorescense methods), US Patent N°4,233,402 (enzyme channelling techniques), US Patent N°3,817,837 (Enzyme multiplied immunoassay technique), US Patent N°4,366,241 and European Patent Application N°EP-A 0 143 574 (Migration type assays), US Patent N°5,202,006, US Patent N°5,120,413 and US Patent N°5,145,567 (Immunofixation electrophoresis, mmunoelectrophoresis), the article of Aguzzi et al. (1977), the article of White et al. (1986), the article of Merlini et al. (1983), the US Patent n°5,228,960 (Immunosubstraction electrophoresis), the articles of Chen et al. (1991), Nielsen et al. (1991) and the US Patent n° 5,120,413 (Capillary electrophoresis).

Acellular detection method of the invention.

20

25

30

35

45

- 50

[0232] A first detection method of the invention consists of a method for detecting a polypeptide of interest within a sample, wherein said method comprises the steps of:

- a) contacting a marker compound or a plurality of marker compounds according to the invention with the sample which is suspected to contain the polypeptide of interest the detection of which is sought;
- b) detecting the complexes formed between said marker compound or said plurality of marker compounds and said polypeptide of interest.

[0233] The sample which is assayed for the presence of the polypeptide of interest the detection of which is sought may be of any nature, including every sample that may be used for carrying out an immunoassay.

[0234] In a first aspect, the sample may be any biological fluid, such as blood or blood separation products (e.g. serum, plasma, buffy coat), urine, saliva, tears.

[0235] In a second aspect, the sample may be any isolated biological tissue sample, including tissue sections previously fixed for purposes of histological studies.

[0236] In a third aspect, the sample may be a culture supernatant of a cell culture and a cell lysate of cultured cells.

[0237] In a first preferred embodiment of the first detection method of the invention described above, the detection step b) consists of the measure of the fluorescence signal intrinsically emitted by the detectable molecule. It may for exampole be taken the advantage of SID® polypeptides or variants thereof having in their aminoacid sequence one

or several tryptophan aminoacid residues.

[0238] In a second preferred embodiment of the first detection method of the invention detailed above, the detection step b) consists of submitting the detectable molecule to a source of energy at the excitation wavelength of said detectable molecule, and measuring the light emitted at the emission wavelength of said detectable molecule.

[0239] An illustrative example of this second embodiment above is when the marker compound used consists of a Selected Interacting Domain (SID®) which is bound to a fluorescent molecule, such as the fluorescent proteins GFP or YFP.

[0240] For example, in the embodiment wherein the detectable molecule of the marker compound of the invention which is used according to the first detection method above comprises, or alternatively consists of, a GFP protein, the detection step c) includes illuminating the sample tested at an emission wavelength substantially equal to 490 nm, and measuring the light emitted by the marker compound which is bound to the polypeptide of interest within the sample at an emission wavelength substantially equal to 510 nm.

[0241] Preferably, the marker compounds which are not bound to the polypeptide of interest the detection of which is sought within the sample are removed before carrying out the detection step.

[0242] In a third preferred embodiment, the detection step c) of the first detection method of the invention consists of measuring the catalytic activity of the detectable molecule. In this specific embodiment, the marker compound used

in the detection method comprises a detectable molecule which comprises, or alternatively which consists of, an enzyme or a catalytically active enzyme fragment, such as already detailed in the section entitled " Marker compounds of the invention ".

[0243] In a fourth preferred embodiment, the detection step b) consists of measuring the radioactivity emitted by the detectable molecule.

[0244] The present invention further relates to a kit for detecting a polypeptide of interest within a sample, wherein said kit comprises a marker compound according to the invention.

[0245] Optionally, said detection kit further comprises the reagents necessary for carrying out the detection step b), such as a suitable substrate for the particular enzyme or a catalytically active enzyme fragment used, as well as suitable buffer solutions, which may be identical to those conventionally used for performing immunoassays.

Cellular detection assay using a recombinantly produced marker compound of the invention.

[0246] As already described above, any marker compound according to the invention may be produced according to genetic engineering techniques. Particularly, nucleic acid encoding a particular marker compound which binds specifically to a polypeptide of interest the detection of which is sought may be inserted in a vector, wherein said vector may be used to transfect or transform a host organism, either a prokaryotic or an eukaryotic cell host such as defined above.

[0247] In this specific embodiment, the production of a recombinant marker compound of the invention is allowed within such a transfected or transformed host cell. Once the host cell of interest is transfected or transformed with such a recombinant vector and once the recombinant marker compound is produced within the cell host of interest, then the Selected Interacting Domain (SID®) polypeptide portion of said marker compound will be able to bind specifically to its specific target polypeptide within the cell host. In this situation, the recombinantly produced marker compound of the invention will predominantly be localised at cell sites wherein the targeted polypeptide of interest is present.

[0248] This is the purpose of the second detection method of the invention which is detailed below.

[0249] A further object of the invention consists of a method for detecting a polypeptide of interest within a prokaryotic or an eukaryotic cell host, wherein said method comprises the steps of:

a) providing a cell host to be assayed;

10

20

25

30

35

40

45

50

- b) transfecting said cell host with a nucleic acid encoding a marker compound of the invention, or with a recombinant vector encoding a marker compound of the invention;
- c) detecting the complexes formed between the marker compound expressed by the transfected cell host and the polypeptide of interest.

[0250] Because the Selected Interacting Domain (SID®) polypeptide which is part of a marker compound of the invention specifically binds to a polypeptide which is suspected to be naturally produced by the targeted cell host, the second detection method of the invention defined above allows a qualitative as well as a quantitative detection of this targeted polypeptide which is suspected to be naturally produced by the transfected target cell host under assay.

[0251] For example, in the embodiment within which the procedure for selecting the Selected Interacting Domain (SID®) polypeptide which is part of a marker compound of the invention includes a first step wherein a collection of clones containing nucleic acid inserts derived from a H77 strain HCV genomic DNA library is prepared, the transfection of a mammalian cell, preferably a human cell, with a vector encoding such a marker compound of the invention will allow to detect the expression of a human polypeptide naturally expressed within said mammalian host cell and which naturally interacts with the HCV viral protein from which is derived the Selected Interacting Domain (SID®) polypeptide.

[0252] The second detection method of the invention defined above firstly allows the qualitative detection of the targeted polypeptide of interest which binds specifically with the recombinantly produced marker compound of the invention, and thus permits to know in which environmental conditions or at which differentiation stage the targeted polypeptide of interest is naturally produced within the cell host transfected with a vector expressing a marker compound of the invention.

[0253] Secondly, this second detection method of the invention allows the localisation of the targeted polypeptide of interest within the interior of the cell, including localisation in the plasma membrane, cytosol, nucleus and any organelle such as ribosomes, Golgi apparatus, lysosomes, phagosomes, endoplasmic reticulum and chloroplasts.

[0254] The localisation of a targeted polypeptide of interest which is expressed within the cell host under assay according to the second detection method of the invention may be carried out by any means well known in the art, including using a confocal microscope.

[0255] Thirdly, the second detection method of the invention allows also a quantitative analysis of the expression of the targeted polypeptide of interest within the cell host under assay, since the level of the detection signal produced by the detectable molecule which is part of the marker compound will be proportional to the number of complexes

formed between the cell host under assay between the targeted polypeptide of interest and the recombinantly produced marker compound of the invention.

[0256] Essentially, the one skilled in the art may refer to the section entitled "Acellular detection method of the invention" above to find the teachings necessary for performing the detection step c) of the second detection method described herein.

[0257] In a first embodiment of said second detection method of the invention, the detection step c) consists of the measure of the fluorescence signal intrinsically emitted by the detectable molecule comprised in the recombinantly expressed marker compound of the invention.

[0258] In a second preferred embodiment of the second detection method above, the detection step c) consists of submitting the detectable molecule to a source of energy at the excitation wavelength of said detectable molecule and measuring the light emitted at the emission wavelength of said detectable molecule.

[0259] In still a further embodiment of the second detection method of the invention, the detection step c) consists of measuring the catalytic activity of the detectable molecule.

[0260] In another embodiment, the detection step c) consists of measuring the radioactivity emitted by the detectable molecule.

[0261] In yet a further embodiment of the second detection method of the invention, the detection step c) allows the location of the complexes formed between the recombinantly produced marker compound and the targeted polypeptide of interest within the transfected cell host.

[0262] A further object of the invention consists of a kit for detecting a polypeptide of interest within a prokaryotic or an eukaryotic cell host, wherein said kit comprises a nucleic acid encoding a marker compound as defined herein, or a recombinant vector containing inserted therein a nucleic acid encoding a marker compound of the invention.

[0263] Optionally, the detection kit above may further comprise the reagents necessary to carry out the detection step c).

Cellular detection method of the invention using a marker compound which is introduced within a cell host.

[0264] There is a third detection method according to the invention wherein the marker compound comprising a Selected Interacting Domain (SID®) polypeptide OF SEQ ID N°1 to 38 or a variant thereof is previously produced by any means and subsequently introduced into a target cell host for the purpose of detecting a targeted polypeptide of interest which binds specifically with said Selected Interacting Domain (SID®) polypeptide.

[0265] Thus, the invention further relates to a method for detecting a polypeptide of interest within a prokaryotic or an eukaryotic cell host, wherein said method comprises the step of:

- a) providing a cell host to be assayed;
- b) introducing a marker compound as defined herein within said cell host;

and

10

20

25

30

35

40

45

55

c) detecting the complexes formed between the marker compound and the polypeptide of interest within the cell host

[0266] Taking into account the low molecular weight of the Selected Interacting Domain (SID®) polypeptide selected from SEQ ID N°1 to 38 which is part of a marker compound of the invention, when compared with conventional specific detection molecules such as antibodies or antibody fragments, it results that the introduction of a marker compound of the invention into the interior of a target cell host will be much more easier to perform, as compared with the introduction within a cell host of a conventional marker like a labelled antibody or a labelled antibody fragment.

[0267] According to the third detection method of the invention defined above, step b) of introducing the marker compound within the target cell host may be performed by any technique well known in the art, including electroporation, and the use of molecules that will facilitate the passage of the marker compound of the invention through the cell membranes, and typically the plasma membrane.

[0268] Such molecules that facilitate the passage of a marker compound of the invention through cell membranes include, but are not limited to, penetratin, like penetratin 1.RTM (Encor, Gaithersburg, Md), Antenna Pediae protein, cationic lipids and cationic polyacrylates.

[0269] Permeation enhancers which may be employed include bile salts such as sodium glycocholate and other molecules such as β -cyclodextrin. Bile salts are known to increase the absorption of macromolecules across membranes (Pontiroli et al., 1987).

[0270] As already detailed for the second detection method of the invention described in the previous section, the third detection method of the invention allows also the localisation of the targeted polypeptide of interest which is

expressed by the cell host under assay, as well as the qualitative and quantitative analysis of the expression of said target polypeptide of interest.

[0271] The detection step c) according to the third detection method of the invention described above may be carried out in the same way than the detection step c) of anyone of the first detection method and the second detection method detailed in the previous sections herein.

[0272] In a first embodiment of the third detection method above, the detection step c) consists of the measure of the fluorescence signal intrinsically emitted by the detectable molecule.

[0273] In a second embodiment, the detection step c) consists of submitting the detectable molecule to a source of energy at the excitation wavelength of said detectable molecule and measuring the light emitted at the emission wavelength of said detectable molecule.

[0274] In a third embodiment, the detection step c) consists of measuring the catalytic activity of the detectable molecule.

[0275] In a fourth embodiment, the detection step c) consists of measuring the radioactivity emitted by the detectable molecule.

[0276] In a fifth embodiment of the third detection method of the invention, the detection step c) allows the location of the complexes formed between the marker compound and the polypeptide of interest within the target cell host under assay.

A further object of the invention consists of a kit for detecting a polypeptide of interest within a prokaryotic or [0277] an eukaryotic cell host, wherein said kit comprises a marker compound as defined herein.

[0278] The detection kit above may further comprise the reagents necessary to carry out the detection step c).

The detection kit above may also further comprise the reagents necessary to facilitate the introduction of the [0279] marker compound within the target cell host under assay.

SOLID PHASE DETECTION METHOD USING A SELECTED INTERACTING DOMAIN (SID®) POLYPEPTIDE.

[0280] In a further aspect of the invention, the use of a Selected Interacting Domain (SID®) polypeptide of SEQ ID N°1 to 38or a variant thereof for detection purpose include a step wherein said Selected Interacting Domain (SID®) polypeptide is immobilised on a suitable substrate before bringing a sample to be assayed in contact with the substrate onto which said Selected Interacting Domain (SID®) polypeptide has been previously immobilised.

[0281] A subsequent step will consist in detecting the complexes formed between the Selected Interacting Domain (SID®) polypeptide immobilised on the substrate and the targeted polypeptide of interest the presence of which is suspected in the sample assayed.

[0282] Thus, the invention also pertains to a fourth detection method which consists of a method for detecting a polypeptide or a plurality of polypeptides of interest within a sample, wherein said method comprises the steps of:

a) providing a substrate onto which a Selected Interacting Domain (SID®) polypeptide or a plurality of Selected Interacting Domain (SID®) polypeptides is (are) immobilised;

b) bringing into contact the substrate defined in a) with the sample to be assayed;

c) detecting the complexes formed between the Selected Interacting Domain (SID®) polypeptide or the plurality of Selected Interacting Domain (SID®) polypeptides and the target polypeptide or the plurality of target polypeptides contained in the sample.

[0283] Substrates, supports or surfaces for immobilising protein molecules are well known in the art, and a lot of them have been described for performing solid phase immunoassays.

[0284] Preferably, a plurality of Selected Interacting Domain (SID®) polypeptides of different aminoacid sequences choosen among the sequences SEQ ID N°1 to 38 are immobilised on the substrate used according to the fourth detection method of the invention.

[0285] For example, a complete collection of Selected Interacting Domain (SID®) polypeptides which have been determined according to the methods described in the section entitled " Selected Interacting Domain (SID®) polypeptides" above, using nucleic acids derived from the H77 strain HCV genomic DNA as starting material, may be used for being immobilised on a suitable substrate.

[0286] According to this embodiment, the collection of Selected Interacting Domain (SID®) polypeptides of SEQ ID N°1 to 38 are immobilised on the substrate in another manner, thus forming an ordered area of SID® polypeptides immobilised at known locations of the surface of said substrate.

[0287] The substrate, support or surface may be a porous or a nonporous water insoluble material. The support can be hydrophilic or capable of being rendered hydrophilic and includes inorganic powders such as silica, magnesium sulphate, and alumina; natural polymeric materials, particularly cellulosic materials and materials derived from cellulose, such as fiber containing papers; synthetic or modified naturally occurring polymers, such as nitro-cellulose, cel-

24

25

20

10

35

40

30

45

lulose acetate, poly(vinyl chloride), polyacrylamide, cross-linked dextran, agarose, polyacrylate, polyethylene, polypropylene, poly(4-methylbutene), polystyrene, polymethacrylate, poly(ethylene terephtalate), nylon, poly(vinyl butyrate), said materials being used by themselves or in conjunction with other materials; glass available as Bioglass, ceramic metals and the like.

[0288] An ordered area onto which a plurality of Selected Interacting Domain (SID®) polypeptides are immobilised may be manufactured according to the techniques disclosed in the US Patent N°5,143,854 or the PCT Application n°WO 92/10092, incorporated herein by reference for all purposes. The combination of photolithographic and fabrication techniques may, for example, enable each Selected Interacting Domain (SID®) polypeptide to occupy a very small area (" site ") on the support. In some embodiments, the site may be as small as few microns or even a single Selected Interacting Domain (SID®) polypeptide.

[0289] In a first embodiment of the fourth detection method detailed above, the plurality of Selected Interacting Domain (SID®) polypeptides are immobilized on the substrate in an order manner.

[0290] In a second embodiment of Selected Interacting Domain (SID®), the Selected Interacting Domain (SID®) polypeptide or the plurality of Selected Interacting Domain (SID®) polypeptides are covalently bound to the substrate. [0291] In a third embodiment of said method, the Selected Interacting Domain (SID®) polypeptide or the plurality of Selected Interacting Domain (SID®) polypeptides are non-covalently bound to the substrate. According to this specific embodiment, the Selected Interacting Domain (SID®) polypeptide or the plurality of Selected Interacting Domain (SID®) polypeptides are covalently bound to a first ligand molecule and the substrate is coated with a second ligand molecule, wherein said second ligand molecule specifically binds to the first ligand molecule. According to such a specific embodiment, the first ligand may be biotin in which case the second ligand is most preferably streptavidin.

[0292] In still a further embodiment of the fourth detection method according to the invention, the Selected Interacting Domain (SID®) polypeptide or the plurality of Selected Interacting Domain (SID®) polypeptides are covalently linked to a spacer, which spacer is itself also covalently bound to the substrate in order to immobilise the Selected Interacting Domain (SID®) polypeptide or the plurality of Selected Interacting Domain (SID®) polypeptides onto said substrate. Such a spacer may be a peptide polymer such as a poly-alanine or a poly-lysine peptide of 10 to 15 amino acids in length.

[0293] In still a further embodiment of the fourth detection method above, the detection step c) consists of detecting changes in the optical characteristics of the substrate onto which the Selected Interacting Domain (SID®) polypeptide or the plurality of Selected Interacting Domain (SID®) polypeptides are bound.

[0294] In yet a further embodiment of the fourth detection method of the invention, the detection step c) consists of bringing into contact the substrate wherein complexes are formed between the targeted polypeptide molecule contained in the sample assayed and the Selected Interacting Domain (SID®) polypeptide or the plurality of Selected Interacting Domain (SID®) polypeptides bound to said support, with a detectable molecule having the ability to bind to such complexes.

[0295] A further object of the invention consists of a device or an apparatus for the detection of a polypeptide or a plurality of polypeptides of interest within a sample, wherein said device or apparatus comprises a substrate onto which a Selected Interacting Domain (SID®) polypeptide (or a plurality of Selected Interacting Domain (SID®) polypeptides) is (are) immobilised.

[0296] Such a device or apparatus of the invention above may comprise or consist of a suitable substrate onto which the plurality of Selected Interacting Domain (SID®) polypeptides are arranged in an ordered manner, thus forming an area such as described above.

PHARMACEUTICAL COMPOSITIONS CONTAINING A SELECTED INTERACTING DOMAIN (SID®) POLYPEPTIDE.

[0297] It results from the method according to which a Selected Interacting Domain (SID®) polypeptide of SEQ ID N°1 to 38 has been selected and characterized that such a Selected Interacting Domain (SID®) polypeptide or a variant thereof is both:

(i) endowed with highly specific binding properties to a (bait) polypeptide of interest;

and

10

20

30

35

40

50

55

(ii) devoided of the biological activity of the naturally occurring protein from which this Selected Interacting Domain (SID®) polypeptide or a variant thereof is derived.

[0298] These original properties of a Selected Interacting Domain (SID®) polypeptide of SEQ ID N°1 to 38 or a variant thereof allow its use for interfering with a naturally occurring interaction between a first protein and a second protein within the cell of an organism by the binding of said Selected Interacting Domain (SID®) polypeptide specifically

either to said first polypeptide or said second polypeptide.

10

15

20

25

30

35

40

45

50

55

[0299] The (SID®) polypeptides of the invention or variants thereof are capable of interfering with the *in vivo* protein-protein interactions between HCV proteins or between a HCV protein and a protein from the organism which has been infected with the Hepatitis C virus.

[0300] For example the SID® polypeptide of SEQ ID N°2 interferes with the naturally occurring interaction between the core and the NS3 protein HCV. Similarly, the SID® polypeptide of SEQ ID N°17 interferes with the interaction between the NS4A and the NS4B proteins (see table 1).

[0301] Thus, another object of the invention consists of a pharmaceutical composition comprising a pharmaceutically effective amount of a Selected Interacting Domain (SID®) polypeptide or a variant thereof.

[0302] The invention also relates to a pharmaceutical composition comprising a pharmaceutically effective amount of a nucleic acid comprising a polynucleotide encoding a Selected Interacting Domain (SID®) polypeptide of SEQ ID N°1 to 38 or a variant thereof which polynucleotide is placed under the control of an appropriate regulatory sequence.

[0303] Preferred nucleic acids are the nucleotide sequences SEQ ID N°39 to 76.

[0304] The invention also pertains to a pharmaceutical composition comprising a pharmaceutically effective amount of a recombinant expression vector comprising a polynucleotide encoding the Selected Interacting Domain (SID®) polypeptide or a variant thereof.

[0305] The invention also pertains to a method for preventing or curing a viral infection by a hepatitis C virus in a human or an animal, wherein said method comprises a step of administering to the human or animal body a pharmaceutically effective amount of a Selected Interacting Domain (SID®) polypeptide of SEQ ID N°1 to 38 or a variant thereof which binds to a targeted viral or mammal, typically- human protein.

[0306] A pharmaceutical composition as described above, wherein said composition is administered by any route, such as intravenous route, intramuscular route, oral route, or mucosal route with an acceptable physiological carrier and/or adjuvant, also forms part of the invention.

[0307] The Selected Interacting Domain (SID®) polypeptide or a variant thereof as a medicament for the prevention and/or treatment of pathologies induced by HCV are the most preferred.

[0308] The Selected Interacting Domain (SID®) polypeptides of SEQ ID N°1 to 38 as active ingredients of a pharmaceutical composition will be preferably in a soluble form combined with a pharmaceutically acceptable vehicle.

[0309] Such compounds which can be used in a pharmaceutical composition offer a new approach for preventing and/or treating pathologies linked to infection by HCV. Preferably, these compounds will be administered by the systemic route, in particular by the intravenous route, by the intramuscular or intradermal route or by the oral route.

[0310] Their modes of administration, optimum dosages and galenic forms can be determined according to the criteria generally taken into account in establishing a treatment suited to a patient, such as for example the age or body weight of the patient, the seriousness of his general condition, the tolerance to treatment and the side effects observed, and the like.

[0311] The identified compound can be administered to a mammal, including a human patient, alone or in pharmaceutical compositions where they are mixed with suitable carriers or excipients at therapeutically effective doses to treat disorders associated with prokaryotic micro-organism infection. Techniques for formulation and administration of the compounds of the invention may be found in "Remington's Pharmaceutical Sciences" Mack Publication Co., Easton, PA, latest edition.

[0312] For any Selected Interacting Domain (SID®) polypeptide or any variant thereof used according to the invention, the therapeutically effective dose can be estimated initially from cell culture assays. For example, a dose can be formulated in animal models to achieve a circulating concentration range that includes or encompasses a concentration point or range shown the desired effect in an *in vitro* system. Such information can be used to more accurately determine useful doses in humans.

[0313] A therapeutically effective dose refers to that amount of the compound that results in amelioration of symptoms in a patient. Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g. for determining the LD50, (the dose lethal to 50% of the test population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio between LD50 and ED50 Compounds which exhibit high therapeutic indices are preferred.

[0314] The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in human. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50, with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilised. The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. (See, e.g. Fingl et al. 1975, in " The Pharmacological Basis of Therapeutics", CH.I).

[0315] Dosage amount and interval may be adjusted individually to provide plasma levels of the active compound which are sufficient to maintain the modulating effects. Dosages necessary to achieve the modulating effect will depend

on individual characteristics and route of administration.

[0316] The amount of composition administered will, of course, be dependent on the subject being treated, on the subject's weight, the severity of the affliction, the manner of administration and the judgement of the prescribing physician.

- [0317] The invention also pertains to a method for preventing or curing a viral in a human or an animal, wherein said method comprises the step of administering to the human or animal body a pharmaceutically effective amount of a nucleic acid comprising a polynucleotide encoding a Selected Interacting Domain (SD®) polypeptide of SEQ ID N°1 to 38, or a variant thereof, and wherein said polynucleotide is placed under the control of a regulatory sequence which is functional in said human or said animal.
- 10 [0318] Preferred polynucleotides are the nucleic acids of SEQ ID N°39 to 76.
 - [0319] The invention also relates to a method for preventing or curing a viral or in a human or an animal, wherein said method comprises the step of administering to the human or animal body a pharmaceutically effective amount of a recombinant expression vector comprising a polynucleotide encoding a Selected Interacting Domain (SD®) polypeptide which binds to a viral or bacterial protein.
- [0320] Other characteristics and advantages of the invention appear in the remainder of the description with the examples below, without linking the invention in any manner.

EXAMPLES:

25

30

55

20 Preparation of a HCV genomic collection.

1.A. Collection preparation and transformation in Escherichia coli

1.A.1 Fragmentation of genomic DNA preparation.

[0321] The genomic DNA of the infectious HCV strain H77 (Yanagi et al., P.N.A.S. 1997, 94, 8738-43) is fragmented in a nebulizer (GATC) for 2 minutes at a pressure of 2 bars, precipitated and resuspended in water.

[0322] The obtained nubilized genomic DNA is successively treated with Mung Bean Nuclease (Biolabs) (30 minutes at 30°C), T4 DNA polymerase (Biolabs) (10 minutes at 37°C) and Klenow enzyme (Pharmacia) (10 minutes at room temperature and 1 hour at 16°C).

[0323] DNA is then extracted, precipitated and resuspended in water.

1.A.2. Ligation of linkers to blunt-ended genomic DNA

- 35 [0324] Oligonucleotide HGX931 (5' end phosphorylated) 1 μg/μl and HGX932 1μg/μl.
 - [0325] Sequence of the oligo HGX931: 5'-GGGCCACGAA-3' (SEQ ID N°151).
 - [0326] Sequence of the oligo HGX932: 5'-TTCGTGGCCCCTG-3'(SEQ ID N°152).
 - [0327] Linkers were preincubated (5 minutes at 95°C, 10 minutes at 68°C, 15 minutes at 42°C) then cooled down at room temperature and ligated with genomic DNA inserts at 16°C overnight.
- 40 [0328] Linkers were further removed on a separation column (Chromaspin TE 400, Clontech), according to the manufacturer's protocol.

1.A.3. Vector preparation

- 45 [0329] Plasmid pP6 (see figure 13) was prepared by replacing the Spe1/Xho1 fragment of pGAD3S2X with the double-stranded oligonucleotide:

[0330] The pP6 vector is successively digested with Sfi1 and BamHI restriction enzymes (Biolabs) for 1 hour at 37°C, extracted, precipitated and resuspended in water. Digested plasmid vector backbones are purified on a separation column (Chromaspin TE 400, Clontech), according to the manufacturer's protocol.

1.A.4 Ligation between vector and insert of genomic DNA

[0331] The prepared vector is ligated overnight at 15°C with the genomic blunt-ended DNA described in section 2 using T4 DNA ligase (Biolabs). The DNA is then precipitated and resuspended in water.

1.A.5. Library transformation in Escherichia coli.

5

10

15

20

25

30

35

40

45

55

[0332] Transform DNA from section 1.A.4. into Electromax DH10B electrocompetent ells (Gibco BRL) with Cell Porator apparatus (Gibco BRL). Add 1 ml SOC medium and incubate transformed cells at 37°C for 1 hour. Add 9 ml volume of SOC medium per tube and plate on LB+ampicillin medium. Scrape colonies with liquid LB medium. Aliquot and freeze at -80°C.

[0333] The obtained collection of recombinant cell clones is named HGXBHCV1.

1.B. Collection transformation in Saccharomyces cerevisiae

[0334] The Saccharomyces cerevisiae strain (Y187 (MAT α Gal4 Δ Ga180 Δ ade2-101 His3 Leu2-3, -112 Trp1-901 Ura3-52 URA3::UASGAL1-LacZ Met) transformed with the HGXBHCV1 HCV genomic DNA library.

[0335] The plasmid DNA contained in E. coli are extracted (Qiagen) from aliquoted E. coli frozen cells (1.A.5.).

[0336] Grow Saccharomyces cerevisiae yeast Y187 in YPGlu.

[0337] Yeast transformation is performed according to standard protocol (GIEST et al. Yeast, 11, 355-360, 1995) using yeast carrier DNA (Clontech). This experiment leads to 10⁴ to 5.10⁴ cells/µg DNA. Spread 2.10⁴ cells on DO-Leu medium per plates. Aliquot and freeze at -80°C. The obtained collection of recombinant cell clones is named HGXYHCV1.

1.C. Construction of bait plasmids

[0338] Plasmid pB5 (see figure 12) is prepared by replacing the Ncol/Sall polylinker fragment with the double-stranded oligonucleotide.

[0339] The linkered genomic DNA described in section 2 is ligated into pB5 that has been digested with Sfi1 restriction enzyme and DNA transformed into competent *E. coli*. Cells are grown and plasmid DNA extracted and sequenced. Those plasmids which code in-frame fusion proteins are used as bait plasmids.

EXAMPLE 2: Screening the collection with the two-hybrid in yeast system.

2.A. The mating protocol.

[0340] We have chosen the mating two-hybrid in yeast system (firstly described by FROMONT-RACINE et al., Nature Genetics, 1997, vol. 16, 277-282, Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens) for its advantages but we could also screen the HCV collection in classical two-hybrid system as described in Fields et al. or in a yeast reverse two-hybrid system.

[0341] The mating procedure allows a direct selection on selective plates because the two fusion proteins are already produced in the parental cells. No replica plating is required. This protocol is written for the use of the library transformed into the Y187 strain.

[0342] Before mating, transform *S. cerevisiae* (CG 1945 strain (MATa Ga14-542 Ga1180-538 ade2-101 His3*200 Leu2-3, -112 Trp1-901 Ura3-52 Lys2-801 URA::GAL4 17 mers (X3)- CyC1TATA-LacZ LYS2:: GAL1UAS-GAL1TATA-HIS3 CYH^R)) according to step 1.B. and spread on DO-Trp medium.

Day 1, morning: preculture

[0343] Preculture of Y187 cells carrying the bait plasmid obtained at step 1.C. in 20 ml DO-Trp medium. Grow at

30°C with vigorous agitation.

Day 1, late afternoon: culture

[0344] Measure OD_{600nm} of the DO-Trp pre-culture of Y187 cells carrying the bait plasmid preculture. The OD_{600nm} must lie between 0.1 and 0.5 in order to correspond to a linear measurement. Inoculate 50 ml DO-Trp at OD_{600nm} 0.006/ml, grow overnight at 30°C with vigorous agitation.

Day 2: mating

medium and plates

[0345]

10

15

20

35

1 YPGlu 15 cm plate
50 ml tube with 13 ml DO-Leu-Trp-His
100 ml flask with 5 ml of YPGlu
8 DO-Leu-Trp-His plates
2 DO-Leu plates
2 DO-Trp plates
2 DO-Leu-Trp plates

Measure $\mathsf{OD}_{\mathsf{600nm}}$ of the DO-Trp culture. It should be around 1.

[0346] For the mating, you must use twice as many bait cells as library cells. To get a good mating efficiency, you must collect the cells at 10⁸ cells per cm².

[0347] Estimate the amount of bait culture (in ml) that makes up 30 OD_{600nm} units for the mating with the prey library. [0348] Thaw a vial containing the HGXYHCV1 library slowly on ice. Add the 0.5 ml of the vial to 5 ml YPGlu. Let those cells recover at 30°C, under gentle agitation for 10 minutes.

30 Mating

[0349] Put the 30 OD_{600nm} units of bait culture into a 50 ml flacon tube.

[0350] Add the HGXYHCV1 library culture to the bait culture. Centrifuge, discard the supernatant and resuspend in 0.8 ml YPGIu medium.

[0351] Distribute the cells onto a YPGlu plate with glass beads. Spread cells by shaking the plates.

[0352] Incubate the plate cells-up at 30°C for 4 h 30 min.

Collection of mated cells

40 [0353] Wash and rinse the plate with 6 ml and 7 ml consecutively of DO-Leu-Trp-His.

[0354] Perform two parallel serial ten-fold dilutions in 500 μ l DO-Leu-Trp-His up to 1/10,000. Spread out 50 μ l of each 1/10000 dilution onto DO-Leu and DO-trp plates and 50 μ l of each 1/1000 dilution onto DO-Leu-Trp plates.

[0355] Spread 3.2 ml of collected cells in 400 µl aliquots on DO-Leu-Trp-His+Tet plates.

45 DAY 4

[0356] Selection of clones able to grow on DO-Leu-Trp-His+Tetracyclin: this medium allows us to isolate diploid clones presenting an interaction.

[0357] Count the Trp+Leu+ colonies on control plates and the total number of His+ colonies on the DO-Leu-Trp-His+Tetracyclin plates.

[0358] The number of His+ cell clones will define which protocol is to be processed: Upon 2.106 Trp+Leu+ colonies:

- if number of His+cell clones < 95: then process luminometry protocol on all colonies;
- if number of His+ cell clones > 95 and <5000: then process luminometry protocol on 95 colonies;
- if number of His+ cell clones >500: repeat screen using DO-Leu-Trp-His+Tetracyclin plates containing 3-aminot-

2.B The luminometry assay

[0359] Grow His+ colonies overnight at 30°C in microtiter plates containing DO-Leu-Trp-His-Tetracyclin medium with shaking. The day after, dilute 15 times overnight culture into a new microtiter plate containing the same medium. Incubate 5 hours at 30°C with shaking. Dilute samples 5 times and read OD_{600nm}. Dilute again to obtain between 10 000 and 75 000 yeast cells/well in 100 μl final volume.

[0360] Per well, add 76 μl of One Step Yeast Lysis Buffer (Tropix), 20 μl Sapphirell Enhancer (Tropix), 4 μl Galacton Star (Tropix), incubate 40 minutes at 30°C.

[0361] Measure the β -Gal read-out (L) using a Luminometer (Trilux, Wallach).

[0362] Calculate value of OD_{600nm}xL and selected interacting preys having highest values.

[0363] At this step of the protocol, we have isolated diploid cell clones presenting interaction. The next step is now to identify polypeptides involved in the selected interactions.

EXAMPLE 3: Identification of positive clones

3.A. PCR on yeast colonies

Introduction

15

20

25

35

40

45

50

55

[0364] PCR amplification of fragments of plasmid DNA directly on yeast colonies is a quick and efficient procedure to identify sequences cloned into this plasmid. It is directly derived from a published protocol (Wang H. et al., Analytical Biochemistry, 237, 145-146, 1996). However, it is not a standardized protocol: in our hands it varies from strain to strain, and is dependent on experimental conditions (number of cells, Taq polymerase source, etc). This protocol should be optimized to specific local conditions.

MATERIALS

[0365]

30 - For 1 well, PCR mix composition is:

32.5 µl water,

5 μl 10X PCR buffer (Pharmacia),

1 μl dNTP 10 mM,

0,5 μl Taq polymerase (85μ/μl -Pharmacia),

0,5 μl oligonucleotide ABS1 10 pmole/μl:5'-GCGTTTGGAATCACTACAGG-3',

0,5 μl oligonucleotide ABS2 10 pmole/μl:5'-CACGATGCACGTTGAAGTG-3'.

1N NaOH.

Experiment

[0366] Grow positive colonies overnight at 30°C on a 96 well cell culture cluster (Costar), containing 150 μ l DO-Leu-Trp-His+Tetracyclin with shaking. Resuspend culture and transfer immediately 100 μ l on a Thermowell 96 (Costar).

[0367] Centrifuge 5 minutes at 4000 rpm at room temperature.

[0368] Remove supernatant. Dispense 5 µl NaOH in each well, shake 1 minute.

[0369] Place the Thermowell in the thermocycler (GeneAmp 9700, Perkin Elmer) 5 minutes at 99,9°C and then 10 minutes at 4°C.

[0370] In each well, add PCR mix, shake well.

Set up the PCR program as followed:

94°C 3 minutes

94°C 30 seconds

53°C 1 minute 30 seconds x 35 cycles

72°C 3 miutes

72°C 5 minutes

15°C ∞

[0371] Check the quality, the quantity and the length of the PCR fragment on agarose gel.

[0372] The length of the cloned fragment is the estimated length of the PCR fragment minus 300 base pairs that correspond to the amplified flanking plasmid sequences.

5 3.B Plasmids rescue from yeast by electroporation

Introduction

[0373] The previous protocol of PCR on yeast cell may not be successful, in such a case, we rescue plasmids from yeast by electroporation. This experiment allows the recovery of prey plasmids from yeast cells by transformation of *E.coli* with a yeast cellular extract. We can then amplify the prey plasmid and sequence the cloned fragment.

Material

15 Plasmid rescue

[0374] Glass beads 425-600 µm (Sigma)

[0375] Phenol/chloroform (1/1) premixed with isoamyl alcohol (Amresco)

[0376] Extraction buffer: 2% Triton X100, 1% SDS, 100 mM NaCl, 10 mM TrisHCl pH 8,0, 1 mM EDTA pH 8.0.

[0377] Mix ethanol/NH₄Ac: 6 volumes ethanol with 7.5 M NH₄ Acetate, 70% Ethanol and yeast cells in patches on plates.

Electroporation

25 [0378]

20

30

35

SOC medium

M9 medium

Selective plates: M9-Leu+Ampicillin

2 mm electroporation cuvettes (Eurogentec)

Experiment

Plasmid rescue

.

[0379] Prepare cell patch on DO-Leu-Trp-His with cell culture of section 2.C.

[0380] Scrape the cell of each patch in Eppendorf tube, add 300 µl of glass beads in each tube, then add 200 µl extraction buffer and add 200µl phenol: chloroform:isoamyl alcohol (25:24:1).

Centrifuge tubes 10 minutes at 15000 rpm.

40 Transfer 180 μl supernatant to a sterile Eppendorf tube and add to each 500 μl ethanol/NH₄Ac, vortex.

Centrifuge tubes 15 minutes, 15000 rmp at 4°C.

Wash pellet with 200 μ l 70% ethanol, remove ethanol and dry pellet,

Resuspend pellet in 10 μI water. Store extracts at -20°C.

45 Electroporation

[0381] Material: Electrocompetent MC1066 cells prepared according to standard protocols (Maniatis).

Add 1 µl of yeast plasmid DNA-extract to pre-chilled Eppendorf tube, and keep on ice.

Mix 1 μ l plasmid yeast DNA-extract sample, add 20 μ l electrocompetent cells and transfer in a cold electroporation cuvette.

Set the Biorad electroporator on 200 ohms resistance, $25\,\mu\text{F}$ capacity; $2.5\,\text{kV}$. Place cuvette in the cuvette holder and electroporate.

Add 1 ml SOC into the cuvette and transfer the cell-mix into sterile Eppendorf tube.

Let cells recover for 30 minutes at 37°C, spin the cells down 1 minute, 4000x g and pour off supernatant. Keep about 100 µl medium and use it to resuspend the cells and spread them on selective plates (e.g. M9-Leu plates). Incubate plates for 36 hours at 37°C.

Grow one colony and extract plasmids. Check presence and size of insert through enzymatic digestion and agarose gel. Sequence insert.

EXAMPLE 4: Protein-protein interaction.

[0382] For each bait, the previously protocol leads to the identification of prey polynucleotide sequences. Using a suitable software program (eg Blastwun, available on the Internel site of the University of Washington: http://bioweb.pasteur.fr/seqanal/interfaces/blastwu.html) the region of the HCV genome is encoded by the prey fragment may be determined and whether the fusion proteins encoded are in the same open reading frame of translation as the HCV polyprotein or not.

EXAMPLE 5: Identification of SID®

10

20

25

30

35

40

45

50

55

[0383] The presence of contiguous polypeptides in the HCV genome and the high complexity of the prey library used prevents the determination of SID®s by previous means since prey fragments can overlap multiple polypeptides. The high complexity of the prey library used relative to the small genome size also prevented such a simple analysis since prey fragments can overlap multiple interacting domains. It was also necessary to overcome the problems caused by protein preys encoded by out-of-frame fusions of regions of the HCV genome.

[0384] In order to determine the SID®s for a particular bait protein, it was therefore necessary to devise a suitable algorithm which would take into account all these problems:

[0385] 5.1. The prey fragments are initially sorted according to which reading frame of the polypeptide sequence they correspond to. This enables the separation of physiologically relevant prey protein from out-of-frame fusions which bind in the two-hybrid assay.

[0386] 5.2. Each prey fragment is compared pairwise with other prey fragments and two fragments are clustered together if they overlap by more than 30% of their lengths (see fig. 8). Further fragments are assigned to the cluster if, and only if, overlap all the fragments in the cluster by more than 30% of their length.

[0387] 5.3 For each cluster of fragments thus produced, a pre-SID is defined as the intersection of all the fragments present in the cluster defined in 5.2 (figure 9).

[0388] 5.4. The pre-SIDs defined in 5.3 are then analysed pairwise and if the region of intersection between two pre-SIDs is greater than 30 bp then a SID® is defined as this region of intersection. If the non-intersecting region of a pre-SID is of more than 30 bp in length and this non-intersecting region represents more than 30% of the length of one of the fragments that comprises this region, then this non-intersecting region is also defined as a SID®s (figure 10).

[0389] 5.5 The number of fragments contributing to each SID defined in 5.4 is counted. In the case of overlapping SIDs®, the SID® which contains the most fragments is identified, and all the fragments which contribute to this SID® are removed from overlapping SIDs®. The inspection of the fragments which remain in these overlapping SIDs® determines the final sequence of the SID® (figure 11).

TABLE 1

Summar	Summary of the protein-proptein interactions between the SID polypeptides of the invention and H77 strain HCV polypeptides											
Bait	SEQ ID N°(1)	begin (2)	end(2)	SEQ ID N°(3)	SID	SEQ ID N° (4)	begin (2)	end (2)	SEQ ID N° (5)			
Core (87%)	114	302	614	77	Core (100%)	39	446	600	1			
Core (100%)	115	342	683	78	NS3 (100%)	40	4814	4922	2			
Core (100%)	115	342	683	78	Core (100%)	41	380	616	3			
E1 (100%)	116	995	1342	79	E2 (100%)	42	1871	1987	4			

(1) Nucleic acid sequence encoding the polypeptide from the H77 strain of HCV which binds to the SID polypeptide (4) described in the same line.

(2) 5'-end and 3'-end nucleotide positions of the sequence SEQ ID (1) in reference to the nomendature disclosed by Yanagi et al. (1997)

(3) Aminoacid sequence of the polypeptide from the H77 strain of HCV which binds to the SID polypeptide (4) described in the same line.

(4) Nucleic acid sequence encoding the SID polypeptide which binds to the polypeptide of the aminoacid sequence (3) described in the same line.

(5) Aminoacid sequence of the SID polypeptide which binds to the polypeptide of the aminoacid sequence (3) described in the same line.

TABLE 1 (continued)

Summary of the protein-proptein interactions between the SID polypeptides of the invention and H77 str. HCV polypeptides										
Bait	SEQ ID N°(1)	begin (2)	end(2)	SEQ ID N°(3)	SID	SEQ ID N° (4)	begin (2)	end (2)	SEC N°	
E1 (4%) /E2(95 %)	117	1478	1756	80	NS3 (100%)	43	4787	5242	5	
E2 (100%)	118	1745	2278	81	E2 (100%)	44	1871	1958	6	
E2 (100%)	119	1799	2090	82	E2 (100%)	45	1808	1890	8	
NS2 (12%)/ NS3 (87%)	120	3312	4150	83	NS4A (59%)/ NS4B (40%)	46	5375	5542	g	
NS3 (100%)	121	3767	4244	84	NS3 (100%)	47	4676	4801	10	
NS3 (100%)	122	3779	4571	85	NS3 (100%)	48	4856	4945	1	
NS3 (100%)	123	3974	4559	86	NS3 (100%)	49	4817	4903	1:	
NS3 (100%)	124	4238	4857	87	N356 (100%)	50	7979	8109	1:	
NS3 (100%)	125	4298	4859	88	NS3 (100%)	51	4031	4118	14	
NS3 (100%)	126	4691	5168	89	E2 (100%)	52	1784	1888	1:	
NS3 (100%)	127	4838	5230	90	E2 (100%)	53	1871	1968	10	
NS3 (1%)/ NS4 A (98%)	128	5310	5467	91	NS4B (100%)	54	5918	6154	1	
NS4A (100%)	129	5342	5400	92	NS3 (100%)	55	3512	3956	1	
NS4B (86%)/ N S5A (13%)	130	5717	6344	93	NS4B (53%)/ NS5A (46%)	56	6197	6310	1	
NS4B (70%)/ N S5A (29%)	131	5819	6444	.94	E2 (100%)	57	1844	1933	2	

⁽¹⁾ Nucleic acid sequence encoding the polypeptide from the H77 strain of HCV which binds to the SID polypeptide (4) described in the same line.

^{(2) 5&#}x27;-end and 3'-end nucleotide positions of the sequence SEQ ID (1) in reference to the nomenclature disclosed by Yanagi et al. (1997)

⁽³⁾ Aminoacid sequence of the polypeptide from the H77 strain of HCV which binds to the SID polypeptide (4) described in the same line.

⁽⁴⁾ Nucleic acid sequence encoding the SID polypeptide which binds to the polypeptide of the aminoacid sequence (3) described in the same line.

⁽⁵⁾ Aminoacid sequence of the SID polypeptide which binds to the polypeptide of the aminoacid sequence (3) described in the same line.

TABLE 1 (continued)

Summary of the protein-proptein interactions between the SID polypeptides of the invention and H77 strands HCV polypeptides										
Bait	SEQ ID N°(1)	begin (2)	end(2)	SEQ ID N°(3)	SID	SEQ ID N° (4)	begin (2)	end (2)	SEQ I N° (5	
NS4B (55%)/ N S5A (44%)	132	5882	6562	95	NS5B (100%)	58	9083	9222	21	
NS4B (82%)/ N S5A (17%)	133	5897	6335	96	NS4B (100%)	59	5819	6080	22	
NS4B (100%)	134	6011	6177	97	E2 (100%)	60	1823	1955	23	
NS4B (30%)/ N S5A (69%)	135	6107	6605	98	NS4B (100%)	61	5879	6072	24	
NS4B (12%)/ N S5A (87%)	136	6141	7069	99	E2 (100%)	62	1784	1875	25	
NS4B (8%)/ NS 5A (91%)	137	6182	7034	100	E1 (100%)	63	1226	1458	26	
NS4B (9%)/ NS 5A (90%)	138	6188	6939	101	NS4B (70%)/ NS5A (28%)	64	6176	6291	27	
NS5A (100%)	139	6317	6576	102	NS3 (100%)	65	4784	4928	28	
NS5A (100%)	140	6440	6727	103	NS5A (100%)	66	6557	6721	29	
NS5A (100%)	141	7019	7249	104	NS3 (100%)	67	4451	4790	30	
NS5A (100%)	142	7274	7549	105	NS4B (100%)	68	6029	6194	31	
NS5B (100%)	143	7613	8027	106	NS5B (100%)	69	8354	8665	32	
NS5B (100%)	144	7838	8743	107	NS5B (100%)	70	7769	8011	33	
NS5B (100%)	145	7856	8458	108	NS3 (100%)	71	4715	4901	34	

⁽¹⁾ Nucleic acid sequence encoding the polypeptide from the H77 strain of HCV which binds to the SID polypeptide (4) described in the same line.

^{(2) 5&#}x27;-end and 3'-end nucleotide positions of the sequence SEQ ID (1) in reference to the nomenclature disclosed by Yanagi et al. (1997)

⁽³⁾ Aminoacid sequence of the polypeptide from the H77 strain of HCV which binds to the SID polypeptide (4) described in the same line.

⁽⁴⁾ Nucleic acid sequence encoding the SID polypeptide which binds to the polypeptide of the aminoacid sequence (3) described in the same line.

⁽⁵⁾ Aminoacid sequence of the SID polypeptide which binds to the polypeptide of the aminoacid sequence (3) described in the same line.

TABLE 1 (continued)

Summar	y of the pro	tein-propt	ein interact		en the SID Hypeptides		es of the inv	ention and	H77 strai
Bait	SEQ ID N°(1)	begin (2)	end(2)	SEQ ID N°(3)	SID	SEQ ID N° (4)	begin (2)	end (2)	SEQ II N° (5)
NS5B (100%)	146	7976	8759	109	NS5B (100%)	72	7775	8011	35
NS5B (100%)	147	8564	8948	110	E2 (100%)	73	1805	1887	36
NS5B (100%)	148	8708	8978	111	E2 (100%)	74	1751	1865	37
NS5B (100%)	149	8996	9220	112	NS4B (57%)/ NS5A (41%)	75	6194	6303	38
NS58 (100%)	150	9032	9226	113	NS4B (63%)/ NS5A (35%)	76	6206	6286	39

- (1) Nucleic acid sequence encoding the polypeptide from the H77 strain of HCV which binds to the SID polypeptide (4) described in the same line.
- (2) 5'-end and 3'-end nucleotide positions of the sequence SEQ ID (1) in reference to the nomenclature disclosed by Yanagi et al. (1997)
- (3) Aminoacid sequence of the polypeptide from the H77 strain of HCV which binds to the SID polypeptide (4) described in the same line.
- (4) Nucleic acid sequence encoding the SID polypeptide which binds to the polypeptide of the aminoacid sequence (3) described in the same line.
- (5) Aminoacid sequence of the SID polypeptide which binds to the polypeptide of the aminoacid sequence (3) described in the same line.

REFERENCES

[0390]

25

30

35

40

45

50

- Aguzzi F et al., Estratto Dal. Boll. 1 st Sieroter; Milanese, 1977, vol.56: 212-216.
- Brigham KL et al., 1993, Am. J. Respir Cell Mol. Biol.8(2):209-213
- BARTENSCHLAGER R. et al., 1995, J. Virol., 69 (12): 7519-7528.
- Curiel et al. Gene Transfer to Respiratory Epithelial Cells via the Receptor Mediated Endocytosis Pathway, Am.
 J. Respir. Cell Mol. Biol. 6 (1992) 247-252
- Curiel et al. Adenovirus Enhancement of Transferrin-Polylysine-Mediated Gene Delivery, Proc. Natl. Acad. Sci. 88 (1991) 8850-8854
- Chalfie et al., (1994), Science, vol. 263: 802-805.
- Chen F-T.A. et al., 1991, Clin. Chem., vol.77: 14-19.
- Davis et al., (1995), Development Biology, vol.170: 726-729
- Delagrave et al., (1995), Biotechnology, vol.13: 151-154
- DI MARCO et al., 2000, The Journal of Biological Chemistry, vol.275 (10):7152-7157
- DUBUISSON J., 1994, J.Viral. vol.68:6147-6160
- Drumm, M. L. et al., Cell 62:1227-1233 (1990).
- Fromont-Racine M et al. (1997), Nature Genetics, vol.16 (3):277-282.
- FLAJOLET M. et al., 2000 Gene, vol.242:369-379.
- EDWARDS and LEARTHERBARROW, 1997, Analytical Biochemistry, 246:1-6.
- Goding et al. J.W., (1986), In: Monoclonal antibodies: Principles and practice-production and application of monoclonal antibodies in cell biology, biochemistry and immunology, Acad. Press, London, pages 255-280.
- GALLINARY P et al., 1999, Biochemistry, vol.38:5620-5632
- GRAKOUI A., 1993, J.Viral., vol.67:1385-1395.
- · HOUGHTON, M (1996), Hepatitis C virus, fields editors.
- HIGIKATA M., 1993, J.Viral., vol.67:4665-4675
- Heim et al., (1994), Proc. Natl. Acad. Sci., volume 91: 12501-12.504.

- Hu and Cheng, (1995), Febs. Letters, vol.369: 331-334.
- Ichinose N et al.; (1991), In: Fluorometric analysis in biomedical chemistry, vol.10, page 110, Chemical analysis,
 Winefordner JD et al. Eds., John Wiley and Sons, New York.
- KARIMOVA et al., 1998, Proc. Natl. Acad. Sci., USA, 95:5752-5756.
- Keegan et al. (1986), Science, vol.231 (4739): 699-704.
 - KOCH Y, 1977, Biochem. Biophys. Res. Commun, vol.74:488-491
 - Kohler and Milstein, 1975, Nature, 256: 495
 - Kozbor et al., 1983, Hybridoma, 2(1):7-16.
 - KEEGAN et al., 1986, Science, Vol.231:689-407
- Kaether and Gerdes, (1995), Febs. Letters, vol.369:267-271.
 - Leger et al., 1997, Hum. Antibodies, 8(1):3-16
 - Martineau et al., 1998, J. Mol. Biol., 280(1): 117-127
 - Muzyczka, N., Curr. Top. Micro. Immuno. 158:97-129 (1992)
 - Mertini G et al., 1983, J. Clin. Chem. Biochem., vol.21: 841-844,
- Maggio ET, "Enzyme-immuno assay", 1980, CRC Press Incorporated, Boca Raton, Fla.
 - MA and PATSHNE, 1987, Cell, vol. 48: 847-853
 - MIN et al., 1999, virus genes, vol.19 (1):33-43
 - Nielsen et al., 1991, J. Chromatogr., vol.539: 177
 - PATEL J. et al. 1999, Journal of General Virology, vol.80:1681-1690.
- Pontiroli et al., 1987, Diabet. Metab., vol.13:441-443.
 - Ridder et al., 1995, Biotechnology (NY), 13(3):255-260
 - Reinmann et al., 1997, AIDS Res. Hum. Retroviruses, 13(11): 933-943
 - Rosenfeld, M. A. et al., Cell 68:143-155 (1992)
 - Rizzuto et al., (1995), Current Biology, vol.5: 635-142.
- e ROUGEOT C et al., 1994, Eur. J. Biochem., vol.219(3):765-773
 - Shattil SJ et al., (1987), Blood, vol.70: 307.
 - Shattil et al. SJ(1985), J. Biol. Chem., vol.260:11.107.
 - Smith et al., 1988, Gene 67:31-40.

30

40

45

50

55

- Schofield, Brit. Microencapsulated. Bull., 51(1):56-71 (1995) Behr, Bioconjugate Chem., 5, 382-389 (1994)
- SZABO A. et al., 1995, Curr. Opin. Struct. Biol., 5(5): 699-705.
 - Trubetskoy, V. S. et al., Biochem. Biophys. Acta 1131:311-313 (1993))
 - UTKIEWICZ NJ et al., 2000, vol. 267: 278-282
 - URBANI A et al., 1999, Biochemistry, vol.38:5206-5215
 - Wu et al., 1992, J. Biol. Chem. 267:963-967.
- Wu and Wu, 1988, J. Biol. Chem. 263:14621-14624.
 - Wilson, J. M. et al., 1992, Endocrinology, 130(5):2947-2954
 - White Wa et al., 1986, Biochem. Clin. vol.10:571-574.
 - Yanagi et al., Proc. Nat. Acad. Sci USA, 1997, 94:8738-8743

SEQUENCE LISTING

5	<110> HYBRIGENICS S.A.	
	<120> SID nucleic acids and polypeptides selected from a pathogenic strain of the hepatitis C virus and applications	
10	<130> Hybrigenics - SID HCV	
	<140>	
	<141>	
15	<160> 156	
	<170> PatentIn Ver. 2.1	
	<210> 1	
20	<211> 50	
	<212> PRT <213> Hepatitis C virus	
	CZIS/ Repacticis C VIIus	
	<400> 1	
25	Leu Leu Pro Arg Arg Gly Pro Arg Leu Gly Val Arg Ala Thr Arg Lys 1 10 15	
	1 1 1	
	Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln Pro Ile Pro Lys	
	20 25 30	
30	Ala Arg Arg Pro Glu Gly Arg Thr Trp Ala Gln Pro Gly Tyr Pro Trp	
	35 40 45	
	Pro Leu 50	
35		
	010. 0	
	<210> 2 <211> 35	
40	<211> 33 <212> PRT	
	<213> Hepatitis C virus	
	<400> 2 Gly Arg Gly Lys Pro Gly Ile Tyr Arg Phe Val Ala Pro Gly Glu Arg	
45	1 5 10 15	
	Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu Cys Tyr Asp Ala 20 25 30	
	20 23	
50	Gly Cys Ala	
	35	

55

5	<21 <21	0> 3 1> 7° 2> PI 3> He	RT	tis	C vi	rus										
10	<40	0> 3 Thr	<u>.</u>				Gln	Asp	Val	Lys 10	Phe	Pro	Gly	Gly	Gly 15	Gln
	Ile	Val	Gly	Gly 20	Val	Tyr	Leu	Leu	Pro 25	Arg	Arg	Gly	Pro	Arg 30	Leu	Gly
15	Val	Arg	Ala 35	Thr	Arg	Lys	Thr	Ser 40	Glu	Arg	Ser	Gln	Pro 45	Arg	Gly	Arg
20	Arg	Gln 50	Pro	Ile	Pro	Lys	Ala 55	Arg	Arg	Pro	Glu	Gly 60	Arg	Thr	Trp	Ala
	Gln 65	Pro	Gly	Tyr	Pro	Trp 70	Pro	Leu	Tyr	Gly	Asn 75	Glu	Gly			
25	<213	0> 4 1> 37 2> PF 3> He	T	ltis	C vi	rus										
30	<40	0> 4 Ser	_				Gly	Thr	Thr	Asp 10	Arg	Ser	Gly	Ala	Pro 15	Thr
35	Tyr	Ser	Trp	Gly 20	Ala	Asn	Asp	Thr	Asp 25	Val	Phe	Val	Leu	Asn 30	Asn	Thr
	Arg	Pro	Pro 35	Leu	Gly										•	
40		0> 5 1> 15	50													
45		2> PI 3> He		itis	C V	irus										
		0> 5 Arg	Thr	Gln	Arg 5	Arg	Gly	Arg	Thr	Gly 10	Arg	Gly	Lys	Pro	Gly 15	Ile
50	Tyr	Arg	Phe	Val 20	Ala	Pro	Gly	Glu	Arg 25	Pro	Ser	Gly	Met	Phe 30	Asp	Ser
56	Ser	Val	Leu 35	Сув	Glu	Сув	Tyr	Asp 40	Ala	Gly	Суѕ	Ala	Trp 45	Tyr	Glu	Leu

5	Thr	Pro 50	Ala	GLU	rnr	Thr	55	Arg	ren	Arg	Ата	for	met	ASI	Tnr	Pro
	Gly 65	Leu	Pro	Val	Cys	Gln 70	Asp	His	Leu	Glu	Phe 75	Trp	Glu	Gly	Val	Phe 80
10	Thr	Gly	Leu	Thr	His 85	Ile	Asp	Ala	His	Phe 90	Leu	Ser	Gln	Thr	Lys 95	Gln
15	Ser	Gly		Asn 100	Phe	Pro	Tyr	Leu	Val 105	Ala	Tyr	Gln	Ala	Thr 110	Val	Cys
	Ala	Arg	Ala 115	Gln	Ala	Pro	Pro	Pro 120	Ser	Trp	Asp	Gln	Met 125	Trp	Lys	Сув
20	Leu	Ile 130	Arg	Leu	Lys	Pro	Thr 135	Leu	His	Gly	Pro	Thr 140	Pro	Leu	Leu	Tyr
	Arg 145	Leu	Gly	Ala	Val	Gln 150										
25																
30	<212	L> 28 2> PI		itis	C v	irus										
	<400		_			7	~1	5 72		1	3		a z	17.	P	(T) b so
	1	ser	PIO	vaı	va1 5	Val	GLY	THE	Thr	10	Arg	Set	Gry	Αια	15	1111
35	Tyr	Ser	Trp	Gly 20	Ala	Asn	Asp	Thr	Asp 25	Val	Phe	Val				
40	<213	0> 7 1> 26 2> PI 3> He		itis	C v:	irus							•			
45		0> 7 Pro	Arg	Pro	Cys 5	Gly	Ile	Val	Pro	Ala 10	Lys	Ser	Val	Cys	Gly 15	Pro
50	Val	Tyr	Cys	Phe 20	Thr	Pro	Ser	Pro	Val 25	Val						
		0> 8 1> 5	4													
55		_	-													

5	<212> PRT <213> Hepatitis C virus	
10	<400> 8 Cys Val Val Ile Val Gly Arg Ile Val Leu Ser Gly Lys Pro Ala Il	e
	Ile Pro Asp Arg Glu Val Leu Tyr Gln Glu Phe Asp Glu Met Glu Gl 20 25 30	u
15	Cys Ser Gln His Leu Pro Tyr Ile Glu Gln Gly Met Met Leu Ala Gl 35 40 45	u
	Gln Phe Lys Gln Lys Ala 50	
20		
25	<210> 9 <211> 40 <212> PRT <213> Hepatitis C virus	
	<400> 9	
	Gly Asp Phe Asp Ser Val Ile Asp Cys Asn Thr Cys Val Thr Gln Th 1 5 10 15	r
30	Val Asp Phe Ser Leu Asp Pro Thr Phe Thr Ile Glu Thr Thr Thr Le	u
35	Pro Gln Asp Ala Val Ser Arg Thr 35 40	
	<210> 10 <211> 28	
40	<212> PRT <213> Hepatitis C virus	
	<400> 10	_
45	Glu Arg Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu Cys Ty 1 5 10 15	_
	Asp Ala Gly Cys Ala Trp Tyr Glu Leu Thr Pro Ala 20 25	
50		
	<210> 11 <211> 27 <212> PRT	
55	<213> Hepatitis C virus	

	<400:	> 11														
5	Arg (Зlу	Lys	Pro	Gly 5	Ile	Tyr	Arg	Phe	Val 10	Ala	Pro	Gly	Glu	Arg 15	Pro
10	Ser (3ly :	Met	Phe 20	Asp	Ser	Ser	Val	Leu 25	Сув	Glu					
15	<210: <211: <212: <213:	> 42 > PR	T .	tis.	C v	lrus										
20	<400: Leu (Asp	Ser	Val 5	Thr	Pro	Ile	Asp	Thr 10	Thr	Ile	Met	Ala	Lys 15	Asn
	Glu Y	Val	Phe	Суs 20	Val	Gln	Pro	Glu	25 25	Gly	Gly	Arg	Lys	Pro 30	Ala	Arg
25	Leu :	Ile	Val 35	Phe	Pro	Asp	Leu	Gly 40	Val	Arg						
30	<210: <211: <212: <213:	> 28 > PR	T	tis.	C v:	irus										
35	<400: Pro :			Ser	Gly 5	Lys	Ser	Thr	Lys	Val 10	Pro	Ala	Ala	туг	Ala 15	Ala
40	Gln	Gly	Tyr	Lys 20	Val	Leu	Val	Leu	Asn 25	Pro	Ser	Val				
45	<210: <211: <212: <213:	> 33 > PR	T	Ltis	C v	irus										
50	<400 Glu .			Тут	Cys 5		His	туr	Pro	Pro 10	Arg	Pro	Cys	Gly	Ile 15	Val
	Pro .	Ala	Lys	Ser 20		Cys	Gly	Pro	Val 25		Суз	Phe	Thr	Pro 30		Pro
55	Val															

	\Z10>														
5	<211>	31													
	<212>	PRT													
			-:-	a											
	<213>	Hepati	.CIS	C V.	LLus										
	<400>	15													
10	Pro S	er Pro	Val	Val	Val	Glv	Thr	Thr	Asp	Ara	Ser	Glv	Ala	Pro	Thr
				5		1			10	3		2			
	1			3					10					15	
	Tyr S	er Trp	Gly	Ala	Asn	Asp	Thr	Asp	Val	Phe	Val	Leu	Asn	Asn	
	-	-	20			_		25					30		
15															
	<210>	16													
	<211>														
20															
20	<212>	PRT													
	<213>	Hepati	tis	C vi	irus										
	<400>	. 16													
			-	**- *		DL -	T	77 -	34-4		a 1	~ 3	T7-1	D	a
	Ala G	ly Ala	Leu	vaı	ALA	Pne	гåг	TTE		ser	GIY	GLU	val		ser
25	1			5					10					15	
	Thr G	lu Asp	T.e.11	Val	Aen	T.e.1	Len	Pro	Δla	Tle	Len	Ser	Pro	Glv	Δla
	1111 0	Iu Asp		V (4.1							200	501		C-3	
			20					25					30		
												•			
30	Leu V	al Val	Gly	Val	Val	Cys	Ala	Ala	Ile	Leu	Arg	Arg	His	Val	Gly
		35	-			-	40				_	45			-
		33													
					-		_		_	_	_				
	Pro G	ly Glu	Gly	Ala	Val	Gln	Trp	Met	Asn	Arg	Leu	Ile	Ala	Phe	Ala
		50				55					60				
35															
	Com 3	Cl	2	T7.	17-1	C	מאמ	The	wi.a	The sea	17-7	Dvo			
		rg Gly	ASII	HIS		Ser	210	THE	ura	_	Val	PLO			
	65				70					75					
40															
	<210>	17													
	<211>	147													
	<212>	ידיאס													
				a:											
45	<2T2>	Hepati	CIS	C V1	Lrus										
45															
	<400>	17													
		al Gln	Tle	V=1	Ser	Thr	a l a	Thr	Gln	ጥኮተ	Phe	T ₁ e11	Al=	ጥኮተ	Cva
		G111			ـ ت										-75
	1			5					10					15	
50	Ile A	sn Gly	Val	Cys	Tro	Thr	Val	Tyr	His	Gly	Ala	Gly	Thr	Arq	Thr
		1	20	2 -	- 1			25		- 4			30	_	
			20										20		
		_			_		_	_							
	Ile A	la Ser	Pro	Lys	Gly	Pro	Val	Ile	Gln	Met	Tyr	Thr	Asn	Val	Asp
		35					40					45	*		
55															

5	Gln A	sp Leu 50	Val	Gly	Trp	Pro 55	Ala	Pro	Gln	Gly	Ser 60	Arg	Ser	Leu	Thr
	Pro Cy 65	ys Thr	Cys	Gly	Ser 70	Ser	Asp	Leu	Tyr	Leu 75	Val	Thr	Arg	His	Ala 80
10	Asp Va	al Ile	Pro	Va1 85	Arg	Arg	Arg	Gly	Asp 90	Ser	Arg	Gly	Ser	Leu 95	Leu
15	Ser Pr	co Arg	Pro 100	Ile	Ser	Tyr	Leu	Lys 105	Gly	Ser	Ser	Gly	Gly 110	Pro	Leu
	Leu Cy	rs Pro 115	Ala	Gly	His	Ala	Val 120	Gly	Leu	Phe	Arg	Ala 125	Ala	Val	Cys
20	Thr Ai		Val	Ala	Lys	Ala 135	Val	Asp	Phe	Ile	Pro 140	Val	Glu	Asn	Leu
	Gly Th	ir Thr													
25															
	<210>														
30	<212> <213>	PRT	itis	C vi	irus										
30	<212>	PRT Hepat	itis	C vi	irus										
30 35	<212> <213>	PRT Hepat 18				Arg	Leu	His	Gln 10	Trp	Ile	Ser	Ser	Glu 15	Cys
	<212><213> 400 Val The contract of the con	PRT Hepat 18 ur Gln	Leu	Leu 5	Arg				10					15	
	<212> <213> <400> Val Th	PRT Hepat 18 ur Gln ur Pro	Leu Cys 20	Leu 5	Arg			Leu	10				Asp	15	
35	<212> <213> <400> Val Th 1 Thr Th Cys Gl <210> <211> <212>	PRT Hepat 18 or Gln or Pro .u Val 35	Leu Cys 20 Leu	Leu 5 Ser	Arg			Leu	10				Asp	15	
35 40	<212> <213> <400> Val Th 1 Thr Th Cys Gl <210> <211> <212>	PRT Hepat 18 ar Gln ar Pro .u Val 35 19 28 PRT Hepat	Leu Cys 20 Leu	Leu 5 Ser	Arg Gly irus	Ser	Trp	Leu 25	10 Arg	Aap	Ile	Trp	Asp 30	15 Trp	Ile

o	C2107 20	•													
	<211> 45	;													
	<212> PR														
•				_											
	<213> He	pati	tis	C V:	Lrus										
40	<400> 20)													
10			8	77-	m~~	7. ~~	wie.	3	Ala	7	80~	17-1	n.r.	7.7.5	71200
	Pro Pro	Leu	Arg		TTD	wrg	птэ	AL 9		ML 9	361	Val	M. 3		AL 9
	1			5					10					15	
	Leu Leu	Co-	7	G1 1/	Glaz	Ara	Δla	Δla	Tle	Cva	Giv	Tara	Tyr	T.e.11	Dhe
	ned red	set		GLY	GLY	T.A	ALG			C,S	01,	_,,			1110
15			20					25					30		
•	Asn Trp	Ala	Val	Arg	Thr	Lvs	Leu	Lys	Leu	Thr	Pro	Ile			
							40	-				45			
		35										4.5			
20															
	-2105 21														
	<210> 21														
	<211> 86	i													
	<212> PR	T													
	<213> He		tis	C 375	27115										
05	(213) 110	.pac_		~											
25															
	<400> 21														
	Thr Ala	Phe	Val	Gly	Ala	Gly	Leu	Ala	Gly	Ala	Ala	Ile	Gly	Ser	Val
	1			5		_			10					15	
	-			_											
							_		_	_ •		_			
30	Gly Leu	Gly	Lys	Val	Leu	Val	Asp	Ile	Leu	Ala	Gly	Tyr	GIA	Ala	GTA
00			20					25					30		
	1 17	~1	- -		**- 7	w 7 _	Db	T	710	Mot	e ~ ~	61	@1 ···	37-3	Dwa
	Val Ala		ALA	Leu	vai	ALA		rya	TIE	Mec	ser		GILL	val	PIO
		35					40					45			
35	Ser Thr	G1	Nen	t.on	17a]	Acn	T.611	T.e.1	Pro	Ala	Tle	T.en	Ser	Pro	Glv
		GIU	ASD	пец	Val		пеп	пец	FLO	n_u					U J
	50					55					60				
	Ala Leu	Val	Val	Glv	Val	Val	Cys	Ala	Ala	Ile	Leu	Arg	Arg	His	Val
	65				70		-			75		_	_		80
40					70					, ,					-
40															
	Gly Pro	Gly	Glu	Gly	Ala										
	_	_		85											
				•••											
45															
,-	<210> 22	,													
,															
	<211> 43	3													
	<212> PF	2T													
	<213> He	_	tie	CV	irus										
	MC				~~										
50															
	<400> 22	3													
	Gly Ile	Val	Pro	Ala	Lys	Ser	Val	Cys	Gly	Pro	Val	Tyr	Cys	Phe	Thr
	1	-		5	•			-	10			-	-	15	
	-			3											
												_	_		
r.c	Pro Ser	Pro	Val	Val	Val	Gly	Thr	Thr	Asp	Arg	Ser	Gly	Ala	Pro	Thr
55															

20 30 Tyr Ser Trp Gly Ala Asn Asp Thr Asp Val Phe 35 10 <210> 23 <211> 63 <212> PRT <213> Hepatitis C virus 15 <400> 23 Val Leu Val Asp Ile Leu Ala Gly Tyr Gly Ala Gly Val Ala Gly Ala Leu Val Ala Phe Lys Ile Met Ser Gly Glu Val Pro Ser Thr Glu Asp 20 Leu Val Asn Leu Leu Pro Ala Ile Leu Ser Pro Gly Ala Leu Val Val 45 Gly Val Val Cys Ala Ala Ile Leu Arg Arg His Val Gly Pro Gly 25 50 55 <210> 24 30 <211> 29 <212> PRT <213> Hepatitis C virus <400> 24 35 Glu Arg Pro Tyr Cys Trp His Tyr Pro Pro Arg Pro Cys Gly Ile Val Pro Ala Lys Ser Val Cys Gly Pro Val Tyr Cys Phe Thr 25 20 40 <210> 25 <211> 76 45 <212> PRT <213> Hepatitis C virus <400> 25 Arg Arg His Trp Thr Thr Gln Asp Cys Asn Cys Ser Ile Tyr Pro Gly 50 His Ile Thr Gly His Arg Met Ala Trp Asp Met Met Asn Trp Ser Pro Thr Ala Ala Leu Val Val Ala Gln Leu Leu Arg Ile Pro Gln Ala 55

			35					40					45			
5	Ile	Met 50	Asp	Met	Ile	Ala	Gly 55	Ala	His	Trp	Gly	Val 60	Leu	Ala	Gly	Ile
10	Ala 65	Tyr	Phe	Ser	Met	Val 70	Gly	Asn	Trp	Ala	Lys 75	Val				
15	<210 <211 <212 <213	.> 37 !> PF	7	tis.	C vi	irus										
20	<400 Ala 1			Ser	Ser 5	Leu	Thr	Val	Thr	Gln 10	Leu	Leu	Arg	Arg	Leu 15	His
	Gln	Trp	Ile	Ser 20	Ser	Glu	Cys	Thr	Thr 25	Pro	Cys	Ser	Gly	Ser 30	Trp	Leu
25	Arg	Asp	Ile 35	Trp	Asp											. •
30	<210 <211 <212 <213	> 47 > PR	r e t	tis.	C vi	lrus										
35	<400 Val 1			Thr	Gln 5	Arg	Arg	Gly	Arg	Thr 10	Gly	Arg	Gly	Lys	Pro	Gly
40	Ile Ser			20					25					30		Asp
45			32							•						
45	<210 <211 <212 <213	.> 53 !> PF	3	itis	C v	irus										
50	<400 Leu 1			Pro	Asn 5	Tyr	Lys	Phe	Ala	Leu .10	Trp	Arg	Val	Ser	Ala 15	Glu
55	Glu	Tyr	Val	Glu	Ile	Arg	Arg	Val	Gly	Asp	Phe	His	Tyr	Val	Ser	Gly

				20					25					30		
5	Met	Thr	Thr 35	Asp	Asn	Leu	Lys	Cys 40	Pro	Cys	Gln	Ile	Pro 45	Ser	Pro	Glu
10	Phe	Phe 50	Thr	Glu	Leu											
15	<211 <212	0> 29 L> 11 2> PF B> He	.2 {T	itis	C vi	irus										
20		0> 29 Glu		Pro	Phe 5	Туг	Gly	Lys	Ala	Ile 10	Pro	Leu	Glu	Val	Ile 15	Lys
	Gly	Gly	Arg	His 20	Leu	Ile	Phe	Сув	His 25	Ser	Lys	Lys	Lys	Cys 30	Asp	Glu
25	Leu	Ala	Ala 35	Lys	Leu	Val	Ala	Leu 40	Gly	Ile	Asn	Ala	Val 45	Ala	Tyr	Tyr
	Arg	Gly 50	Leu	Asp	Val	Ser	Val 55	Ile	Pro	Thr	Ser	Gly 60	Asp	Val	Val	Val
30	Val 65	Ser	Thr	Asp	Ala	Leu 70	Met	Thr	Gly	Phe	Thr 75	Gly	Asp	Phe	Asp	Ser 80
35	Val	Ile	qaA	Cys	Asn 85	Thr	Cys	Val	Thr	Gln 90	Thr	Val	Asp	Phe	Ser 95	Leu
	Asp	Pro	Thr	Phe 100	Thr	Ile	Glu	Thr	Thr 105	Thr	Leu	Pro	Gln	Asp 110	Ala	Val
40															:	
4 5	<211 <212	0> 3(L> 54 2> PI 3> He	ł RT	itis	C vi	irus										
50		0> 30 Cys		Ala	Ile 5	Leu	Arg	Arg	His	Val 10	Gly	Pro	Gly	Glu	Gly 15	Ala
55	Val	Gln	Trp	Met 20	Asn	Arg	Leu	Ile	Ala 25	Phe	Ala	Ser	Arg	Gly 30	Asn	His

5	Val Ser Pro Thr His Tyr Val Pro Glu Ser Asp Ala Ala Ala Arg Val 35 40 45	
	Thr Ala Ile Leu Ser Ser 50	
10		
15	<210> 31 <211> 102 <212> PRT <213> Hepatitis C virus	
	<400> 31 Ala Ile Lys Ser Leu Thr Glu Arg Leu Tyr Val Gly Gly Pro Leu Thr 1 5 10 15	
20	Asn Ser Arg Gly Glu Asn Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly 20 25 30	
25	Val Leu Thr Thr Ser Cys Gly Asn Thr Leu Thr Cys Tyr Ile Lys Ala 35 40 45	
	Arg Ala Ala Cys Arg Ala Ala Gly Leu Gln Asp Cys Thr Met Leu Val 50 55 60	
30	Cys Gly Asp Asp Leu Val Val Ile Cys Glu Ser Ala Gly Val Gln Glu 65 70 75 80	
	Asp Ala Ala Ser Leu Arg Ala Phe Thr Glu Ala Met Thr Arg Tyr Ser 85 90 95	
35	Ala Pro Pro Gly Asp Pro 100	
40	<210> 32 <211> 79 <212> PRT <213> Hepatitis C virus	
45	<400> 32 Leu Gln Val Leu Asp Ser His Tyr Gln Asp Val Leu Lys Glu Val Lys 1 5 10 15	
50	Ala Ala Ala Ser Lys Val Lys Ala Asn Leu Leu Ser Val Glu Glu Ala 20 25 30	
	Cys Ser Leu Thr Pro Pro His Ser Ala Lys Ser Lys Phe Gly Tyr Gly 35 40 45	
55	Ala Lys Asp Val Arg Cys His Ala Arg Lys Ala Val Ala His Ile Asn 50 55 60	

5	Ser Val Trp Lys Asp Leu Leu Glu Asp Ser Val Thr Pro lie As 65 70 75	P
10	<210> 33 <211> 61 <212> PRT <213> Hepatitis C virus	
15	<400> 33 Thr Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr Ile Gl 1 5 10 1	
20	Thr Thr Leu Pro Gln Asp Ala Val Ser Arg Thr Gln Arg Arg Gl 20 25 30	y Arg
	Thr Gly Arg Gly Lys Pro Gly Ile Tyr Arg Phe Val Ala Pro Gl 35 40 45	y Glu
25	Arg Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu 50 55 60	
	<210> 34	:
30	<211> 77 <212> PRT <213> Hepatitis C virus	
35	<pre><400> 34 Val Leu Asp Ser His Tyr Gln Asp Val Leu Lys Glu Val Lys Al 1 5 10 1</pre>	
	Ala Ser Lys Val Lys Ala Asn Leu Leu Ser Val Glu Glu Ala Cy 20 25 30	s Ser
40	Leu Thr Pro Pro His Ser Ala Lys Ser Lys Phe Gly Tyr Gly Al 35 40 45	a Lys
45	Asp Val Arg Cys His Ala Arg Lys Ala Val Ala His Ile Asn Se 50 55 60	r Val
	Trp Lys Asp Leu Leu Glu Asp Ser Val Thr Pro Ile Asp 65 70 75	
50		
	<210> 35 <211> 26 <212> PRT	•
55	<213> Hepatitis C virus	

```
Tyr Pro Pro Arg Pro Cys Gly Ile Val Pro Ala Lys Ser Val Cys Gly
                          5
          Pro Val Tyr Cys Phe Thr Pro Ser Pro Val
                      20
 10
          <210> 36
          <211> 37
15
          <212> PRT
          <213> Hepatitis C virus
          <400> 36
          Pro Ile Ser Tyr Ala Asn Gly Ser Gly Leu Asp Glu Arg Pro Tyr Cys
 20
                                              10
          Trp His Tyr Pro Pro Arg Pro Cys Gly Ile Val Pro Ala Lys Ser Val
                                  25
          Cys Gly Pro Val Tyr
 25
                  35
          <210> 37
 30
          <211> 35
          <212> PRT
          <213> Hepatitis C virus
          <400> 37
          Thr Val Thr Gln Leu Leu Arg Arg Leu His Gln Trp Ile Ser Ser Glu
 35
                                   10
           Cys Thr Thr Pro Cys Ser Gly Ser Trp Leu Arg Asp Ile Trp Asp Trp
                                       25
 40
           Ile Cys Glu
                   35
 45
           <210> 38
           <211> 25
           <212> PRT
           <213> Hepatitis C virus
 50
           <400> 38
           Leu Leu Arg Arg Leu His Gln Trp Ile Ser Ser Glu Cys Thr Thr Pro
           Cys Ser Gly Ser Trp Leu Arg Asp Ile
                       20
 55
```

<400> 35

5

```
<210> 39
5
       <211> 152
       <212> DNA
       <213> Hepatitis C virus
       <400> 39
10
       cttgttgccg cgcaggggcc ctagattggg tgtgcgcgcg acgaggaaga cttccgagcg 60
       gtcgcaacct cgaggtagac gtcagcctat ccccaaggca cgtcggcccg agggcaggac 120
       ctgggctcag cccgggtacc cttggcccct ct
15
       <210> 40
       <211> 106
       <212> DNA
       <213> Hepatitis C virus
20
       <400> 40
       tggcaggggg aagccaggca tctatagatt tgtggcaccg ggggagcgcc cctccggcat 60
       gttcgactcg tccgtcctct gtgagtgcta tgacgcgggc tgtgct
25
      <210> 41
       <211> 234
       <212> DNA
       <213> Hepatitis C virus
30
       <400> 41
       taacaccaac cgtcgcccac aggacgtcaa gttcccgggt ggcggtcaga tcgttggtgg 60
       agtttacttg ttgccgcgca ggggccctag attgggtgtg cgcgcgacga ggaagacttc 120
       cgagcggtcg caacctcgag gtagacgtca gcctatcccc aaggcacgtc ggcccgaggg 180
       caggacotgg gotcagocog ggtacocttg goodctotat ggcaatgagg gttg
35
       <210> 42
       <211> 114
       <212> DNA
40
       <213> Hepatitis C virus
       <400> 42
       teccageece gtggtggtgg gaacgaeega caggteggge gegeetaeet acagetgggg 60
       tgcaaatgat acggatgtct tcgtccttaa caacaccagg ccaccgctgg gcaa
45
       <210> 43
       <211> 453
       <212> DNA
50
       <213> Hepatitis C virus
       <400> 43
       ctccaggact caacgccggg gcaggactgg cagggggaag ccaggcatct atagatttgt 60
       ggcacegggg gagegeeet ceggeatgtt egactegtee gteetetgtg agtgetatga 120
55
```

```
cgcgggctgt gcttggtatg agctcacgcc cgccgagact acagttaggc tacgagcgta 180
         catgaacacc ccggggcttc ccgtgtgcca ggaccatctt gaattttggg agggcgtctt 240
         tacgggcctc actcatatag atgcccactt tttatcccag acaaagcaga gtggggagaa 300
         ettteettae etggtagegt accaagecae egtgtgeget agggetcaag eccetecece 360
         atcgtgggac cagatgtgga agtgtttgat ccgccttaaa cccaccctcc atgggccaac 420
         accortgeta tacagactgg gegetgttca gaa
10
         <210> 44
         <211> 85
         <212> DNA
15
         <213> Hepatitis C virus
         <400> 44
         teccageece gtggtggtgg gaacgaccga caggteggge gegeetacet acagetgggg 60
         tgcaaatgat acggatgtct tcgtc
20
         <210> 45
         <211> 80
         <212> DNA
         <213> Hepatitis C virus
25
         <400> 45
         ccctccaaga ccttgtggca ttgtgcccgc aaagagcgtg tgtggcccgg tatattgctt 60
         cactcccage cccgtggtgg
30
         <210> 46
         <211> 165
         <212> DNA
         <213> Repatitis C virus
35
         <400> 46
         ctgcgtggtc atagtgggca ggatcgtctt gtccgggaag ccggcaatta tacctgacag 60
         ggaggttete taccaggagt tegatgagat ggaagagtge teteageact taccgtacat 120
         cgagcaaggg atgatgeteg etgagcagtt caagcagaag geeet
                                                                             165
40
         <210> 47
         <211> 123
         <212> DNA
         <213> Hepatitis C virus
45
         <400> 47
         cggcgacttc gactctgtga tagactgcaa cacgtgtgtc actcagacag tcgatttcag 60
         cettgaccet acetttacca ttgagacaac cacgetecce caggatgetg tetecaggae 120
         tca
                                                                             123
50
         <210> 48
         <211> 87
         <212> DNA
         <213> Hepatitis C virus
55
```

	<41U3 48	
5	ggagggcccc tccggcatgt tcgactcgtc cgtcctctgt gagtgctatg acgcgggctg 60 tgcttggtat gagctcacgc ccgccga 87	
	<210> 49	
10	<211> 84	
	<212> DNA	
	<213> Hepatitis C virus	
	<400> 49	
15	cagggggaag ccaggcatct atagatttgt ggcaccgggg gagcgcccct ccggcatgtt 60	
	cgactcgtcc gtcctctgtg agtg 84	
	<210> 50	
20	<211> 128	
20	<212> DNA	
	<213> Hepatitis C virus	
	<400> 50	
05	totggaagac agtgtaacac caatagacac taccatcatg gccaagaacg aggttttctg 60	
25	egtteageet gagaaggggg gtegtaagee agetegtete ategtgttee eegacetggg 120	
	cgtgcgcg 128	
	<210> 51	
30	<211> 85	
	<212> DNA	
	<213> Hepatitis C virus	
	<400> 51	
35	teccacegge ageggtaaga geaccaaggt eeeggetgeg tacgeagece agggetacaa 60	
	ggtgttggtg ctcaacccct ctgtt 85	
	<210> 52	
40	<211> 102	
40	<212> DNA	
	<213> Hepatitis C virus	
	<400> 52	
45	cgaacgcccc tactgctggc actaccctcc aagaccttgt ggcattgtgc ccgcaaagag 60	
70	egtgtgtgge ceggtatatt getteaetee eageecegtg gt 102	
	<210> 53	
	<211> 95	
50	<212> DNA	
	<213> Hepatitis C virus	
	<400> 53	
	teccageece gtggtggtgg gaacgacega caggteggge gegeetaeet acagetgggg 60	
55		

5	tgcaaatgat acggatgtct tcgtccttaa caaca	95
10	<210> 54 <211> 234 <212> DNA <213> Hepatitis C virus	
15	<pre><400> 54 ggcgggagct cttgtagcat tcaagatcat gagcggtgag gtcccctcca cggaggacct ggtcaatctg ctgcccgcca tcctctcgcc tggagccctt gtagtcggtg tggtctgcgc agcaatactg cgccggcacg ttggcccggg cgaggggca gtgcaatgga tgaaccggct aatagccttc gcctcccggg ggaaccatgt ttcccccacg cactacgtgc cgga</pre>	120
20	<210> 55 <211> 442 <212> DNA <213> Hepatitis C virus	
25	<pre><400> 55 tgaggtccag atcgtgtcaa ctgctaccca aaccttcctg gcaacgtgca tcaatggggt atgctggact gtctaccacg gggccggaac gaggaccatc gcatcaccca agggtcctgt catccagatg tataccaatg tggaccaaga ccttgtgggc tggcccgctc ctcaaggttc ccgctcattg acaccctgta cctgcggctc ctcggacctt tacctggtca cgaggcacgc cgatgtcatt cccgtgcgcc ggcgaggtga tagcagggt agcctgctt cgcccggcc</pre>	120 180 240
30	cattteetae ttgaaagget egeggggg teegetgttg tgeccegegg gacaegeegt gggcetatte agggeegeg tgtgcaceeg tggagtgget aaageggtgg actttateee tgtggagaac etagggacaa ee	360
35	<210> 56 <211> 111 <212> DNA <213> Hepatitis C virus	
40	<400> 56 tgtaacccag ctcctgaggc gactgcatca gtggataagc tcggagtgta ccactccatg ctccggttcc tggctaaggg acatctggga ctggatatgc gaggtgctga g	60 111
45	<210> 57 <211> 87 <212> DNA <213> Hepatitis C virus	
50	<400> 57 cgtgtgtggc ccggtatatt gcttcactcc cagecccgtg gtggtgggaa cgaccgacag gtcgggcgcg cctacctaca gctgggg	60 87
55	<210> 58 <211> 137 <212> DNA	

5	<213> Hepatitis C virus
10	<400> 58 cccgcccttg cgagcttgga gacaccgggc ccggagcgtc cgcgctaggc ttctgtccag 60 aggaggcagg gctgccatat gtggcaagta cctcttcaac tgggcagtaa gaacaaagct 120 caaactcact ccaatag 137
15	<210> 59 <211> 259 <212> DNA <213> Hepatitis C virus
	<400> 59 tactgccttt gtgggtgctg gcctagctgg cgccgccatc ggcagcgttg gactggggaa 60 ggtcctcgtg gacattettg cagggtatgg cgcgggcgtg gcgggagetc ttgtagcatt 120
20	caagatcatg ageggtgagg teceeteeae ggaggaeetg gteaatetge tgeeegeeat 180 octotegeet ggageeettg tagteggtgt ggtetgegea geaataetge geeggeaegt 240 tggeeeggge gagggggea 255
25	<210> 60 <211> 130 <212> DNA <213> Hepatitis C virus
30	<pre><400> 60 tggcattgtg cccgcaaaga gcgtgtgtgg cccggtatat tgcttcactc ccagccccgt 60 ggtggtggga acgaccgaca ggtcgggcgc gcctacctac agctggggtg caaatgatac 120 ggatgtcttc</pre>
35	<210> 61 <211> 191 <212> DNA <213> Hepatitis C virus
40	<pre><400> 61 ggtcctcgtg gacattcttg cagggtatgg cgcgggcgtg gcgggagctc ttgtagcatt 60 caagatcatg agcggtgagg tcccctccac ggaggacctg gtcaatctgc tgcccgccat 120 cctctcgcct ggagcccttg tagtcggtgt ggtctgcgca gcaatactgc gccggcacgt 180 tggcccgggc g</pre>
45	
50	<210> 62 <211> 89 <212> DNA <213> Hepatitis C virus
	<400> 62 cgaacgcccc tactgetggc actaccetce aagacettgt ggcattgtgc ccgcaaagag 60 cgtgtgtggc ccggtatatt gcttcactc 89

```
<210> 63
5
          <211> 230
          <212> DNA
          <213> Hepatitis C virus
          <400> 63
10
          caggegecae tggaegaege aagaetgeaa ttgttetate tateeeggee atataaeggg 60
          teategeatg geatgggata tgatgatgaa etggteecet aeggeagegt tggtggtage 120
          teagetgete eggateceae aagecateat ggacatgate getggtgete actggggagt 180
         cctggcgggc atagcgtatt tctccatggt ggggaactgg gcgaaggtcc
15
          <210> 64
          <211> 113
          <212> DNA
          <213> Hepatitis C virus
20
          tgccatactc agcagcctca ctgtaaccca gctcctgagg cgactgcatc agtggataag 60
         ctoggagtgt accaetecat geteoggtte etggetaagg gacatetggg act
25
          <210> 65
          <211> 142
          <212> DNA
         <213> Hepatitis C virus
         <400> 65
30
         tgtctccagg actcaacgcc ggggcaggac tggcagggg aagccaggca tctatagatt 60
         tgtggcaccg ggggagcgcc cctccggcat gttcgactcg tccgtcctct gtgagtgcta 120
         tgacgcgggc tgtgcttggt at
35
          <210> 66
         <211> 162
          <212> DNA
          <213> Hepatitis C virus
40
         <400> 66
          cettectgeg eegaactata agttegeget gtggagggtg tetgeagagg aataegtgga 60
          gataaggegg gtgggggact tecaetaegt ategggtatg actaetgaea atettaaatg 120
         cccgtgccag atcccatcgc ccgaattttt cacagaattg ga
45
          <210> 67
          <211> 337
          <212> DNA
          <213> Hepatitis C virus
          <400> 67
          cggagagatc cccttttacg gcaaggctat ccccttcgag gtgatcaagg ggggaagaca 60
          teteatette tgecaeteaa agaagaagtg egacgagete geegegaage tggtegeatt 120
         gggcatcaat gccgtqqcct actaccgcgg tcttgacgtg tctgtcatcc cgaccagcgg 180
          egatgttgte gtegtgtega eegatgetet catgactgge tttaceggeg acttegacte 240
55
```

```
tgtgatagac tgcaacacgt gtgtcactca gacagtcgat ttcagccttg accctacctt 300
5
          taccattgag acaaccacge tececeagga tgetgte
          <210> 68
          <211> 163
          <212> DNA
10
          <213> Hepatitis C virus
          <400> 68
          ggtetgegea geaataetge geeggeacgt tggeeeggge gagggggeag tgcaatggat 60
          gaaceggeta atageetteg cetecegggg gaaceatgtt tececeaege actaegtgee 120
15
          ggagagcgat gcagccgccc gcgtcactgc catactcagc agc
          <210> 69
          <211> 309
20
          <212> DNA
          <213> Hepatitis C virus
          <400> 69
          ggccatcaag teceteactg agaggettta tgttggggge cetettacca attcaagggg 60
          ggaaaactgc ggctaccgca ggtgccgcgc gagcggcgta ctgacaacta gctgtggtaa 120
          cacceteact tgetacatea aggeeeggge ageetgtega geegeaggge tecaggactg 180
          caccatgete gigtgtgggg acgaettagt egttatetgt gaaagtgegg gggteeagga 240
          ggacgcggcg agcctgagag ccttcacgga ggctatgacc aggtactccg ccccccccgg 300
                                                                          309
          ggacccccc
30
          <210> 70
          <211> 240
          <212> DNA
          <213> Hepatitis C virus
35
          <400> 70
          actgcaagtt ctggacagcc attaccagga cgtgctcaag gaggtcaaag cagcggcgtc 60
          aaaagtgaag getaacttge tateegtaga ggaagettge ageetgaege eeccacatte 120
          40
          ageceacate aacteegtgt ggaaagacet tetggaagae agtgtaacac caatagacac 240
          <210> 71
          <211> 184
          <212> DNA
45
          <213> Hepatitis C virus
          <400> 71
          cactcagaca gtcgatttca gccttgaccc tacctttacc attgagacaa ccacgctccc 60
          ccaggatgct gtctccagga ctcaacgccg gggcaggact ggcaggggga agccaggcat 120
          ctatagattt gtggcacegg gggagegece etceggcatg ttegactegt cegteetetg 180
          tgag
           <210> 72
55
```

```
<211> 234
5
         <212> DNA
         <213> Repatitis C virus
         agttctggac agccattacc aggacgtgct caaggaggtc aaagcagcgg cgtcaaaagt 60
10
         gaaggetaac ttgctatecg tagaggaage ttgcagectg acgeeccae attcagecaa 120
         atccaagttt ggctatgggg caaaagacgt ccgttgccat gccagaaagg ccgtagccca 180
         catcaactcc gtgtggaaag accttctgga agacagtgta acaccaatag acac
         <210> 73
15
         <211> 80
         <212> DNA
         <213> Hepatitis C virus
         <400> 73
20
         ctaccctcca agaccttgtg gcattgtgcc cgcaaagagc gtgtgtggcc cggtatattg 60
         ettcactccc agccccgtgg
        <210> 74
25
         <211> 112
         <212> DNA
         <213> Hepatitis C virus
         <400> 74
30
         tectateagt tatgecaacg gaageggeet egacgaacge ecetactget ggeactacee 60
         tocaagacot tgtggcattg tgcccgcaaa gagcgtgtgt ggcccggtat at
         <210> 75
         <211> 107
35
         <212> DNA
         <213> Hepatitis C virus
         <400> 75
         cactgtaacc cageteetga ggegaetgea teagtggata ageteggagt gtaccaetee 60
40
         atgeteeggt teetggetaa gggaeatetg ggaetggata tgegagg
         <210> 76
         <211> 78
45
         <212> DNA
         <213> Hepatitis C virus
         <400> 76
         geteetgagg egactgeate agtggataag eteggagtgt accaetecat geteeggtte 60
50
         ctggctaagg gacatctg
         <210> 77
         <211> 103
         <212> PRT
55
```

5	<213	> He	pati	ltis	C vi	rus										
	<400 Ala 1			Cys	Pro 5	Gly	Arg	Ser	Arg	Arg 10	Pro	Cys	Thr	Met	Ser 15	Thr
10	Asn :	Pro	Lys	Pro 20	Gln	Arg	Lys	Thr	Lys 25	Arg	Asn	Thr	Asn	Arg 30	Arg	Pro
45	Gln :	Asp	Val 35	Lys	Phe	Pro	Gly	Gly 40	Gly	Gln	Ile	Val	Gly 45	Gly	Val	Tyr
15	Leu :	Leu 50	Pro	Arg	Arg	Gly	Pro 55	Arg	Leu	Gly	Val	Arg 60	Ala	Thr	Arg	Lys
20	Thr 65	Ser	Glu	Arg	Ser	Gln 70	Pro	Arg	Gly	Arg	Arg 75	Gln	Pro	Ile	Pro	80 Fys
	Ala	Arg	Arg	Pro	Glu 85	Gly	Arg	Thr	Trp	Ala 90	Gln	Pro	Gly	Tyr	Pro 95	Trp
25	Pro :	Leu	Tyr	Gly 100	Asn	Glu	Gly									
30	<210 <211 <212	> 11	.3													
	<213			tis	C vi	.rus			•							
. 35		> He > 78	pati				Pro	Gln	Arg	Lys 10	Thr	Lys	Arg	Asn	Thr 15	Asn
. 35	<213	> He > 78 Ser	pati Thr	Asn	Pro 5	Lys				10					15	
. 35	<213: <400: Met :	> He > 78 Ser Arg	pati Thr Pro	Asn Gln 20	Pro 5 Asp	Lys Val	Lys	Phe	Pro 25	10 Gly	Gly	Gly	Gln	Ile 30	15 Val	Gly
40	<213 <400 Met : 1 Arg :	> He > 78 Ser Arg	Thr Pro Tyr 35	Asn Gln 20 Leu	Pro 5 Asp Leu	Lys Val Pro	Lys Arg	Phe Arg 40	Pro 25 Gly	10 Gly Pro	Gly Arg	Gly Leu	Gln Gly 45	Ile 30 Val	15 Val Arg	Gly Ala
	<213 <400 Met : 1 Arg :	> He > 78 Ser Arg Val Arg 50	Thr Pro Tyr 35	Asn Gln 20 Leu Thr	Pro 5 Asp Leu Ser	Lys Val Pro Glu	Lys Arg Arg 55	Phe Arg 40 Ser	Pro 25 Gly	Gly Pro	Gly Arg Arg	Gly Leu Gly 60	Gln Gly 45 Arg	Ile 30 Val Arg	Val Arg	Gly Ala Pro
40	<213 <400 Met 1 Arg Gly Thr Ile	> He > 78 Ser Arg Val Arg 50	Thr Pro Tyr 35 Lys	Asn Gln 20 Leu Thr	Pro 5 Asp Leu Ser	Lys Val Pro Glu Arg 70	Lys Arg Arg 55 Pro	Phe Arg 40 Ser	Pro 25 Gly Gln	Gly Pro Pro	Gly Arg Arg Thr	Gly Leu Gly 60 Trp	Gln Gly 45 Arg	Ile 30 Val Arg	Val Arg Gln Pro	Gly Ala Pro Gly 80
40 45	<213 <400 Met : 1 Arg : Gly : Thr : Ile 65	> He > 78 Ser Arg Val Arg 50 Pro	Thr Pro Tyr 35 Lys Lys	Asn Gln 20 Leu Thr Ala	Pro 5 Asp Leu Ser Arg	Lys Val Pro Glu Arg 70 Tyr	Lys Arg Arg 55 Pro	Phe Arg 40 Ser Glu Asn	Pro 25 Gly Gln Gly	Gly Pro Pro Arg Gly 90	Gly Arg Arg Thr 75	Gly Leu Gly 60 Trp	Gln Gly 45 Arg Ala Trp	Ile 30 Val Arg Gin	Val Arg Gln Pro Gly 95	Gly Ala Pro Gly 80 Trp

5	<211 <212	0> 79 L> 13 2> PF 3> He	.4 et	tis	C v	irus										
10		0> 79 Ile		His	Thr 5	Pro	Gly	Cys	Val	Pro 10	Cys	Val	Arg	Glu	Gly 15	Asn
15	Ala	Ser	Arg	Cys 20	Trp	Val	Ala	Val	Thr 25	Pro	Thr	Val	Ala	Thr 30	Arg	Asp
	Gly	Lys	Leu 35	Pro	Thr	Thr	Gln	Leu 40	Arg	Arg	His	Ile	Asp 45	Leu	Leu	Val
20	Gly	Ser 50	Ala	Thr	Leu	Cys	Ser 55	Ala	Leu	Tyr	Val	Gly 60	Asp	Leu	Cys	Gly
25	Ser 65	Val	Phe	Leu	Val	Gly 70	Gln	Leu	Phe	Thr	Phe 75	Ser	Pro	Arg	Arg	His 80
	Trp	Thr	Thr	Gln	Asp 85	Cys	Asn	Cys	Ser	Ile 90	Tyr	Pro	Gly	His	Ile 95	Thr
30	Gly	His	Arg	Met 100	Ala	Trp	qaA	Met	Met 105	Met	Asn	Trp	Ser	Pro 110	Thr	Ala
	Ala	Leu														
35																
40	<211 <212	0> 80 L> 91 2> PF 3> He	lT	itis	C vi	irus										
		0> 80 Val		Ala	Glu 5	Thr	His	Val	Thr	Gly 10	Gly	Asn	Ala	Gly	Arg 15	Thr
45	Thr	Ala	Gly	Leu 20	Val	Gly	Leu	Leu	Thr 25	Pro	Gly	Ala	ГÅз	Gln 30	Asn	Ile
50	Gln	Leu	Ile 35	Asn	Thr	Asn	Gly	Ser 40	Trp	His	Ile	Asn	Ser 45	Thr	Ala	Leu
	Asn	Су з 50	Asn	Glu	Ser	Leu	Asn 55	Thr	Gly	Trp	Leu	Ala 60	Gly	Leu	Phe	Tyr

5	Gln 65	His	Lys	Phe	Asn	Ser 70	Ser	.Gly	Cys	Pro	Glu 75	Arg	Leu	Ala	Ser	Cys 80
	Arg	Arg	Leu	Thr	Asp 85	Phe	Ala	Gln	Gly	Trp 90	Gly					
10																
15	<21:	0 > 8: l > 1' 2 > PI 3 > He	76	itis	C v:	irus										
20		3> 81 Gly	l Pro	Ile	Ser 5	Tyr	Ala	Asn	Gly	Ser 10	Gly	Leu	Asp	Glu	Arg 15	Pro
20	Tyr	Сув	Trp	His 20	Tyr	Pro	Pro	Arg	Pro 25	Cys	Gly	Ile	Val	Pro 30	Ala	Lys
25	Ser	Val	Cys 35	Gly	Pro	Val	Tyr	Cys 40	Phe	Thr	Pro	Ser	Pro 45	Val	Val	Val
	Gly	Thr 50	Thr	Asp	Arg	Ser	Gly 55	Ala	Pro	Thr	Tyr	Ser 60	Trp	Gly	Ala	Asn
30	Asp 65	Thr	Asp	Val	Phe	Val 70	Leu	Asn	Asn	Thr	Arg 75	Pro	Pro	Leu	Gly	Asn 80
	Trp	Phe	Gly	Cys	Thr 85	Trp	Met	Asn	Ser	Thr 90	Gly	Phe	Thr	Lys	Val 95	Cys
35	Gly	Ala	Pro	Pro 100	Cys	Val	Ile	Gly	Gly 105	Val	Gly	Asn	Asn	Thr 110	Leu	Leu
	Сув	Pro	Thr 115	Asp	Cys	Phe	Arg	Lys 120	His	Pro	Glu	Ala	Thr 125	Tyr	Ser	Arg
40	Сув	Gly 130	Ser	Gly	Pro	Trp	Ile 135	Thr	Pro	Arg	Cys	Met 140	Val	Asp	Tyr	Pro
45	Tyr 145	Arg	Leu	Trp	His	Tyr 150	Pro	Cys	Thr	Ile	Asn 155	Tyr	Thr	Ile	Phe	Lys 160
43	Val	Arg	Met	Tyr	Val 165	Gly	Gly	Val	Glu	His 170	Arg	Leu	Glu	Ala	Ala 175	Сув
50																
		0> 8; 1> 9;														
55		,	-													

	<212	2> PF	YT.													
5	<213	3> Ee	epati	itis	C vi	irus										
)> 82 His		Pro	Pro 5	Arg	Pro	Суз	Gly	Ile 10	Val	Pro	Ala	Lys	Ser 15	Val
10	Cys	Gly	Pro	Val 20	Tyr	Cys	Phe	Thr	Pro 25	Ser	Pro	Val	Val	Val 30	Gly	Thr
15	Thr	Asp	Arg 35	Ser	Gly	Ala	Pro	Thr 40	Tyr	Ser	Trp	Gly	Ala 45	Asn	Asp	Thr
	Asp	Val 50	Phe	Val	Leu	Asn	Asn 55	Thr	Arg	Pro	Pro	Leu 60	Gly	Asn	Trp	Phe
20	Gly 65	Cys	Thr	Trp	Met	Asn 70	Ser	Thr	Gly	Phe	Thr 75	Lys	Val	Cys	Gly	Ala 80
	Pro	Pro	Cys	Val	Ile 85	Gly	Gly	Val	Gly	Asn 90	Asn	Thr	Leu	Leu	Суз 95	Pro
25																
30	<211 <212)> 83 L> 27 2> PF 3> He	78 ?T	itis	C v	irus										
	-100)> 83)													
35				Gly	Asp 5	Ile	Ile	Asn	Gly	Leu 10	Pro	Val	Ser	Ala	Arg 15	Arg
40	Gly	Gln	Glu	Ile 20	Leu	Leu	Gly	Pro	Ala 25	Asp	Gly	Met	Val	Ser 30	Lys	Gly
-	Trp	Arg	Leu 35	Leu	Ala	Pro	Ile	Thr 40	Ala	Tyr	Ala	Gln	Gln 45	Thr	Arg	Gly
45	Leu	Leu 50	Gly	Cys	Ile	Ile	Thr 55	Ser	Leu	Thr	Gly	Arg 60	Asp	Lys	Asn	Gln
	Val 65	Glu	Gly	Glu	Val	Gln 70	Ile	Val	Ser	Thr	Ala 75	Thr	Gln	Thr	Phe	Leu 80
50	Ala	Thr	Сув	Ile	Asn 85	Gly	Val	Суз	Trp	Thr 90	Val	Tyr	His	Gly	Ala 95	Gly
	Thr	Arg	Thr	Ile 100		Ser	Pro	Lys	Gly 105		Val	Ile	Gln	Met 110	Tyr	Thr
EE																

5	Asn	Val	Asp 115	Gln	Asp	Leu	Val	Gly 120	Trp	Pro	Ala	Pro	Gln 125	Gly	Ser	Arg
	Ser	Leu 130	Thr	Pro	Cys	Thr	Cys 135	Gly	Ser	Ser	Asp	Leu 140	Tyr	Leu	Val	Thr
10	Arg 145	His	Ala	Asp	Val	Ile 150	Pro	Val	Arg	Arg	Arg 155	Gly	Asp	Ser	Arg	Gly 160
15	Ser	Leu	Leu	Ser	Pro 165	Arg	Pro	Ile	Ser	Tyr 170	Leu	Lys	Gly	Ser	Ser 175	Gly
7.5	Gly	Pro	Leu	Leu 180	Cys	Pro	Ala	Gly	His 185	Ala	Val	Gly	Leu	Phe 190	Arg	Ala
20	Ala	Val	Сув 195	Thr	Arg	Gly	Val	Ala 200	Lys	Ala	Val	Asp	Phe 205	Ile	Pro	Val
	Glu	Asn 210	Leu	Gly	Thr	Thr	Met 215	Arg	Ser	Pro	Val	Phe 220	Thr	Asp	Asn	Ser
25	Ser 225	Pro	Pro	Ala	Val	Pro 230	Gln	Ser	Phe	Gln	Val 235	Ala	His	Leu	His	Ala 240
	Pro	Thr	Gly	Ser	Gly 245	Lys	Ser	Thr	Lys	Val 250	Pro	Ala	Ala	Tyr	Ala 255	Ala
30	Gln	Gly	Tyr	Lys 260	Val	Leu	Val	Leu	Asn 265	Pro	Ser	Val	Ala	Ala 270	Thr	Leu
35	Gly	Phe	Gly 275	Ala	Tyr	Met										
)> B4														
40	<212	l> 15 2> PF 3> He		itis	C vi	irus										
		0> 84 A rg	Arg	Gly	Asp 5	Ser	Arg	Gly	Ser	Leu 10	Leu	Ser	Pro	Arg	Pro 15	Ile
45		Tyr	Leu	Lys 20	Gly				Gly 25	Pro						Gly
	His	Ala	Val												Val	Ala
50	Lys	Ala 50	Val	Asp	Phe	Ile	Pro 55		Glu	Asn	Leu	Gly 60		Thr	Met	Arg
55	Ser		Val	Phe	Thr	Asp		Ser	Ser	Pro	Pro	_	Val	Pro	Gln	Ser

5	65		70			75		80
J	Phe Gln	Val Ala	His Leu 85	His Ala	Pro Thr 90	Gly Ser Gly	Lys Ser 95	Thr
10	Lys Val	Pro Ala 100	Ala Tyr	Ala Ala	Gln Gly 1	Tyr Lys Val	Leu Val	Leu
	Asn Pro	Ser Val	Ala Ala	Thr Leu 120	Gly Phe	Gly Ala Tyr 125		Lys
15	Ala His 130	_	Asp Pro	Asn Ile 135	Arg Thr	Gly Val Arg 140	Thr Ile	Thr
•	Thr Gly	Ser Pro	Ile Thr 150	Tyr Ser		Gly Lys Phe 155	Leu	
20								
	<210> 8. <211> 2. <212> P.	63						
25	<213> H	epatitis	C virus	•				
	<400> 8		Ser Leu	Leu Ser	Pro Arg 1	Pro Ile Ser	Tvr Leu	Lvs
	1		5		10		15	-
30	Gly Ser	Ser Gly 20	Gly Pro	Leu Leu	Cys Pro 2	Ala Gly His	Ala Val	Gly
35	Leu Phe	Arg Ala 35	Ala Val	Cys Thr 40	Arg Gly V	Val Ala Lys 45		Asp
	Phe Ile 50		Glu Asn	Leu Gly 55	Thr Thr	Met Arg Ser 60	Pro Val	Phe
40	Thr Asp 65	Asn Ser	Ser Pro 70	Pro Ala	Val Pro (Gln Ser Phe 75	Gln Val	Ala 80
	His Leu	His Ala	Pro Thr 85	Gly Ser	Gly Lys :	Ser Thr Lys	Val Pro 95	Ala
45	Ala Tyr	Ala Ala 100		Tyr Lys	Val Leu 1	Val Leu Asr	Pro Ser	Val
	Ala Ala	Thr Leu	Gly Phe	Gly Ala 120	Tyr Met	Ser Lys Ala 125		Val
50	Asp Pro		Arg Thr	Gly Val 135	Arg Thr	Ile Thr Thr 140	Gly Ser	Pro
55	Ile Thr 145	Tyr Ser	Thr Tyr 150			Ala Asp Gly 155	Gly Cys	Ser 160

5	Gly	Gly	Ala	Tyr	Asp 165	Ile	Ile	Ile	Сув	Asp 170	Glu	Cys	His	Ser	Thr 175	Asp
	Ala '	Thr	Ser	Ile 180	Leu	Gly	Ile	Gly	Thr 185	Val	Leu	Asp	Gln	Ala 190	Glu	Thr
10	Ala	Gly	Ala 195	Arg	Leu	Val	Val	Leu 200	Ala	Thr	Ala	Thr	Pro 205	Pro	Gly	Ser
15	Val :	Thr 210	Val	Ser	His	Pro	Asn 215	Ile	Glu	Glu	Val	Ala 220	Leu	Ser	Thr	Thr
	Gly (225	Glu	Ile	Pro	Phe	Tyr 230	Gly	Lys	Ala	Ile	Pro 235	Leu	Glu	Val	Ile	Lys 240
20	Gly	Gly	Arg	His	Leu 245	Ile	Phe	Cys	His	Ser 250	Lys	Lys	Lys	Cys	Asp 255	Glu
	Leu i	Ala	Ala	Lys 260	Leu	Val	Ala									
25																
	<210: <211: <212:	> 19 > PR)4 2T													
	~つ13.	N H€	mati	tie	Cvi	77715										
30			_	tis	Cvi	irus								•		
30	<213: <400: Asp 1	> 86	- i				Ala	Val	Pro	Gln 10	Ser	Phe	Gln	Val	Ala 15	His
30 35	<400: Asp 1	> 86 Asn	Ser	Ser	Pro 5	Pro				10			٠		15	
	<400: Asp 1	> 86 Asn His	Ser	Ser Pro 20	Pro 5 Thr	Pro Gly	Ser	Gly	Lys 25	10 Ser	Thr	Lys	Val	Pro 30	15 Ala	Ala
35	<400: Asp i 1 Leu i	> 86 Asn His	Ser Ala Ala 35	Ser Pro 20 Gln	Pro 5 Thr Gly	Pro Gly Tyr	Ser Lys	Gly Val 40	Lys 25 Leu	10 Ser Val	Thr Leu	Lys Asn	Val Pro 45	Pro 30 Ser	15 Ala Val	Ala Ala
35	<400: Asp i 1 Leu i	> 86 Asn His Ala Thr	Ser Ala Ala 35 Leu	Pro 20 Gln	Pro 5 Thr Gly Phe	Pro Gly Tyr Gly	Ser Lys Ala 55	Gly Val 40 Tyr	Lys 25 Leu Met	10 Ser Val Ser	Thr Leu Lys	Lys Asn Ala 60	Val Pro 45 His	Pro 30 Ser Gly	15 Ala Val Val	Ala Ala Asp
35 40	<400: Asp i 1 Leu I Tyr i Ala :	> 86 Asn His Ala Thr 50	Ser Ala Ala 35 Leu Ile	Ser Pro 20 Gln Gly	Pro 5 Thr Gly Phe Thr	Pro Gly Tyr Gly Gly 70	Ser Lys Ala 55 Val	Gly Val 40 Tyr Arg	Lys 25 Leu Met	10 Ser Val Ser Ile	Thr Leu Lys Thr	Lys Asn Ala 60 Thr	Val Pro 45 His	Pro 30 Ser Gly Ser	15 Ala Val Val Pro	Ala Ala Asp Ile 80
35 40	<400: Asp 1 Leu 1 Tyr 2 Ala :	> 86 Asn His Ala Thr 50 Asn	Ser Ala Ala 35 Leu Ile Ser	Ser Pro 20 Gln Gly Arg	Pro 5 Thr Gly Phe Thr	Pro Gly Tyr Gly Gly 70	Ser Lys Ala 55 Val	Gly Val 40 Tyr Arg	Lys 25 Leu Met Thr	10 Ser Val Ser Ile Ala 90	Thr Leu Lys Thr 75 Asp	Lys Asn Ala 60 Thr	Val Pro 45 His Gly	Pro 30 Ser Gly Ser Cys	15 Ala Val Val Pro Ser 95	Ala Asp Ile 80

5	Gly	Ala 130	Arg	Leu	Val	Val	Leu 135	Ala	Thr	Ala	Thr	Pro 140	Pro	Gly	Ser	Val
	Thr 145	Val	Ser	His	Pro	Asn 150	Ile	Glu	Glu	Val	Ala 155	Leu	Ser	Thr	Thr	Gly 160
10	Glu	Ile	Pro	Phe	Tyr 165	Gly	Lys	Ala	Ile	Pro 170	Leu	Glu	Val	Ile	Lys 175	Gly
15	Gly	Arg	His	Leu 180	Ile	Phe	Cys	His	Ser 185	Lys	Lys	Lys	Суз	Asp 190	Glu	Leu
	Ala	Ala														
20	<212 <212	0> 87 L> 20 2> PF B> Re)5 ?T	tis.	C vi	irus										
25		0> 87 Ala		Gly	Gly 5	Cys	Ser	Gly	Gly	Ala 10	Tyr	Asp	Ile	Ile	Ile 15	Cys
30	Asp	Glu	Суз	His 20	Ser	Thr	Asp	Ala	Thr 25	Ser	Ile	Leu	Gly	Ile 30	Gly	Thr
	Val	Leu	Asp 35	Gln	Ala	Glu	Thr	Ala 40	Gly	Ala	Arg	Leu	Val 45	Val	Leu	Ala
35	Thr	Ala 50	Thr	Pro	Pro	Gly	Ser 55	Val	Thr	Val	Ser	His 60	Pro	Asn	Ile	Glu
	Glu 65	Val	Ala	Leu	Ser	Thr 70	Thr	Gly	Glu	Ile	Pro 75	Phe	Tyr	Gly	Lys	Ala 80
40 .	Ile	Pro	Leu	Glu	Val 85	Ile	Lys	Gly	Gly	Arg 90	His	Leu	Ile	Phe	eys 2e	His
45	Ser	Lys	Lys	Lys 100	Cys	Asp	Glu	Leu	Ala 105	Ala	Lys	Leu	Val	Ala 110	Leu	Gly
45	Ile	Asn	Ala 115	Val	Ala	Tyr	Tyr	_	Gly		_		Ser 125	Val	Ile	Pro
50	Thr	Ser 130	Gly	Asp	Val	Val	Val 135	Val	Ser	Thr	Asp	Ala 140	Leu	Met	Thr	Gly
	Phe 145	Thr	Gly	Asp	Phe	Asp 150	Ser	Val	Ile	Asp	Cys 155	Asn	Thr	Сув	Val	Thr 160
55	Gln	Thr	Val	Asp	Phe	Ser	Leu	Asp	Pro	Thr	Phe	Thr	Ile	Glu	Thr	Thr

					165					170					175	
5	Thr	Leu	Pro	Gln 180	Asp	Ala	Val	Ser	Arg 185	Thr	Gln	Arg	Arg	Gly 190	Arg	Thr
10	Gly	Arg	Gly 195	Lys	Pro	Gly	Ile	Tyr 200	Arg	Phe	Val	Ala	Pro 205			
15	<212 <212	0> 86 1> 18 2> PF 3> He	6 {T	tis	C vi	rus										
20		0> 88 Thr		Ala	Thr 5	Ser	Ile	Leu	Gly	Ile 10	Gly	Thr	Val	Leu	Asp 15	Gln
	Ala	Glu	Thr	Ala 20	Gly	Ala	Arg	Leu	Val 25	Val	Leu	Ala	Thr	Ala 30	Thr	Pro
25	Pro	Gly	Ser 35	Val	Thr	Val	Ser	His 40	Pro	Asn	Ile	Glu	Glu 45	Val	Ala	Leu
20	Ser	Thr 50	Thr	Gly	Glu	Ile	Pro 55	Phe	Tyr	Gly	Lys	Ala 60	Ile	Pro	Leu	Glu
30	Val 65	Ile	Lys	Gly	Gly	Arg 70	His	Leu	Ile	Phe	Cys 75	His	Ser	Lys	Lys	Lys 80
35	Cys	Asp	Glu	Leu	Ala 85	Ala	Lys	Leu	Val	Ala 90	Leu	Gly	Ile	Asn	Ala 95	Val
	Ala	Tyr	Tyr	Arg 100	Gly	Leu	Asp	Val	Ser 105	Val	Ile	Pro	Thr	Ser 110	Gly	Asp
40	Val	Val	Val 115	Val	Ser	Thr	Asp	Ala 120	Leu	Met	Thr	Gly	Phe 125	Thr	Gly	Asp
	Phe	Asp 130	Ser	Val	Ile	Asp	Cys 135	Asn	Thr	Cys	Val	Thr 140	Gln	Thr	Val	Asp
45	Phe 145	Ser	Leu	Asp	Pro	Thr 150	Phe	Thr	Ile	Glu	Thr 155	Thr	Thr	Leu	Pro	Gln 160
50	Asp	Ala	Val	Ser	Arg 165	Thr	Gln	Arg	Arg	Gly 170	Arg	Thr	Gly	Arg	Gly 175	Lys
	Pro	Gly	Ile	Тут 180	Arg	Phe	Val	Ala	Pro 185	Gly						
55																

67

5	<210> 89 <211> 158 <212> PRT <213> Hepatitis C virus
10	<pre><400> 89 Val Ile Asp Cys Asn Thr Cys Val Thr Gln Thr Val Asp Phe Ser Leu 1 5 10 15</pre>
	Asp Pro Thr Phe Thr Ile Glu Thr Thr Thr Leu Pro Gln Asp Ala Val 20 25 30
15	Ser Arg Thr Gln Arg Arg Gly Arg Thr Gly Arg Gly Lys Pro Gly Ile 35 40 45
	Tyr Arg Phe Val Ala Pro Gly Glu Arg Pro Ser Gly Met Phe Asp Ser 50 55 60
20	Ser Val Leu Cys Glu Cys Tyr Asp Ala Gly Cys Ala Trp Tyr Glu Leu 65 70 75 80
25	Thr Pro Ala Glu Thr Thr Val Arg Leu Arg Ala Tyr Met Asn Thr Pro 85 90 95
	Gly Leu Pro Val Cys Gln Asp His Leu Glu Phe Trp Glu Gly Val Phe 100 105 110
30	Thr Gly Leu Thr His Ile Asp Ala His Phe Leu Ser Gln Thr Lys Gln 115 120 125
	Ser Gly Glu Asn Phe Pro Tyr Leu Val Ala Tyr Gln Ala Thr Val Cys 130 135 140
35	Ala Arg Ala Gln Ala Pro Pro Pro Ser Trp Asp Gln Met Trp 145 150 155
40	<210> 90 <211> 129 <212> PRT <213> Hepatitis C virus
45	<pre><400> 90 Arg Phe Val Ala Pro Gly Glu Arg Pro Ser Gly Met Phe Asp Ser Ser 1</pre>
50	Val Leu Cys Glu Cys Tyr Asp Ala Gly Cys Ala Trp Tyr Glu Leu Thr 20 25 30
50	Pro Ala Glu Thr Thr Val Arg Leu Arg Ala Tyr Met Asn Thr Pro Gly 35 40 45
55	Leu Pro Val Cys Gln Asp His Leu Glu Phe Trp Glu Gly Val Phe Thr

	٠.	J				55									
5	Gly Le	ı Thr	His	Ile	Asp 70	Ala	His	Phe	Leu	Ser 75	Gln	Thr	Lys	Gln	Ser 80
10	Gly Gl	ı Asn	Phe	Pro 85	Tyr	Leu	Val	Ala	Tyr 90	Gln	Ala	Thr	Val	Сув 95	Ala
	Arg Ala	a Gln	Ala 100	Pro	Pro	Pro	Ser	Trp 105	Asp	Gln	Met	Trp	Lys 110	Сув	Leu
15	Ile Arg	Leu 115	Lys	Pro	Thr	Leu	His 120	Gly	Pro	Thr	Pro	Leu 125	Leu	Tyr	Arg
	Leu														
20															
25	<210> 9 <211> 9 <212> 1 <213> 1	51 PRT	itis	C vi	irus										
	<400> ! Thr Sei		Trp	Val 5	Leu	Val	Gly	Gly	Val 10	Leu	Ala	Ala	Leu	Ala 15	Ala
30	Tyr Cyr	s Leu	Ser 20	Thr	Gly	Cys	Val	Val 25	Ile	Val	Gly	Arg	Ile 30	Val	Leu
35	Ser Gly	y Lys 35	Pro	Ala	Ile	Ile	Pro 40	Asp	Arg	Glu	Val	Leu 45	Tyr	Gln	Glu
	Phe Asy														
40	<210> !														
45	<211> : <212> ! <213> !	PRT	itis	C v	irus										
45	<400> ! Ala Al		Ala	Ala 5	Tyr	Cys	Leu	Ser	Thr	Gly	Cys	Val	Val	Ile 15	Val
50	Gly Ar	3											-		
55	<210>	93													

5	<21	1> 20 2> PI 3> He	RT	itis	C v	irus										
10		0> 9: Thr		Ala	Val 5	Thr	Ser	Pro	Leu	Thr 10	Thr	Gly	Gln	Thr	Leu 15	Leu
	Phe	Asn	Ile	Leu 20	Gly	Gly	Trp	Val	Ala 25	Ala	Gln	Leu	Ala	Ala 30	Pro	Gly
15	Ala	Ala	Thr 35	Ala	Phe	Va1	Gly	Ala 40	Gly	Leu	Ala	Gly	Ala 45	Ala	Ile	Gly
	Ser	Val 50	Gly	Leu	Gly	Lys	Val 55	Leu	Val	Asp	Ile	Leu 60	Ala	Gly	Tyr	Gly
20	Ala 65	Gly	Val	Ala	Gly	Ala 70	Leu	Val	Ala	Phe	Lys 75	Ile	Met	Ser	Gly	Glu 80
	Val	Pro	Ser	Thr	Glu 85	Asp	Leu	Val	Asn	Leu 90	Leu	Pro	Ala	Ile	Leu 95	Ser
25	Pro	Gly	Ala	Leu 100	Val	Val	Gly	Val	Val 105	Cys	Ala	Ala	Ile	Leu 110	Arg	Arg
30	His	Val	Gly 115	Pro	Gly	Glu	Gly	Ala 120	Val	Gln	Trp	Met	Asn 125	Arg	Leu	Ile
	Ala	Phe 130	Ala	Ser	Arg	Gly	Asn 135	His	Val	Ser	Pro	Thr 140	His	Tyr	Val	Pro
35	Glu 145	Ser	Asp	Ala	Ala	Ala 150	Arg	Val	Thr	Ala	Ile 155	Leu	Ser	Ser	Leu	Thr 160
	Val	Thr	Gln	Leu	Leu 165	Arg	Arg	Leu	His	Gln 170	Trp	Ile	Ser	Ser	Glu 175	Суз
40	Thr	Thr	Pro	Cys 180	Ser	Gly	Ser	Trp	Leu 185	Arg	Asp	Ile	Trp	Asp 190	Trp	Ile
45	Cys	Glu	Val 195	Leu	Ser	Asp	Phe	Lys 200	Thr	Trp	Leu	Lys	Ala 205	Lys	Leu	Met
50																
	<211 <212	0> 94 L> 20 2> PI	7 R T											•		
	<213	3> He	epat:	itis	C v	irus										

5	< 44.0	ひろっつ	*													
3		Ala		Val	Gly 5	Ala	Gly	Leu	Ala	Gly 10	Ala	Ala	Ile	Gly	Ser 15	Val
10	Gly	Leu	Gly	Lys 20	Val	Leu	Val	Asp	Ile 25	Leu	Ala	Gly	Tyr	Gly 30	Ala	Gly
	Val	Ala	Gly 35	Ala	Leu	Val	Ala	Phe 40	Lys	Ile	Met	Ser	Gly 45	Glu	Val	Pro
15	Ser	Thr 50	Glu	qaA	Leu	Val	Asn 55	Leu	Leu	Pro	Ala	Ile 60	Leu	Ser	Pro	Gly
	Ala 65	Leu	Val	Val	Gly	Val 70	Val	Cys	Ala	Ala	Ile 75	Leu	Arg	Arg	His	Val 80
20	Gly	Pro	Gly	Glu	Gly 85	Ala	Val	Gln	Trp	Met 90	Asn	Arg	Leų	Ile	Ala 95	Phe
25	Ala	Ser	Arg	Gly 100	Asn	His	Val	Ser	Pro 105	Thr	His	Tyr	Val	Pro 110	Glu	Ser
25	Ąsp	Ala	Ala 115	Ala	Arg	Val	Thr	Ala 120	Ile	Leu	Ser	Ser	Leu 125	Thr	Val	Thr
30	Gln	Leu 130	Leu	Arg	Arg	Leu	His 135	Gln	Trp	Ile	Ser	Ser 140	Glu	Сув	Thr	Thr
•	Pro 145	Сув	Ser	Gly	Ser	Trp 150	Leu	Arg	qaA	Ile	Trp 155	qaA	Trp	Ile	Сув	Glu 160
35	Val	Leu	Ser	Asp	Phe 165	Lys	Thr	Trp	Leu	Lys 170	Ala	Lys	Leu	Met	Pro 175	Gln
	Leu	Pro	Gly	Ile 180	Pro	Phe	Val	Ser	Cys 185	Gln	Arg	Gly	Tyr	Arg 190	Gly	Val
40	Trp	Arg	Gly 195	Asp	Gly	Ile	Met	His 200	Thr	Arg	Сув	His	Сув 205	Gly	Ala	
45	<211 <212	0> 95 L> 22 2> PE	25 RT	i+ie	Crri	me										
			_													*
50		0> 95 Val		Ile	Leu 5	Ala	Gly	Tyr	Gly	Ala 10	Gly	Val	Ala	Gly	Ala 15	Leu
	Val	Ala	Phe	Lys 20	Ile	Met	Ser	Gly	Glu 25	Val	Pro	Ser	Thr	Glu 30	Asp	Leu

5	Val	Asn	Leu 35	Leu	Pro	Aia	Ile	Leu 40	Ser	Pro	GTÅ	Ala	ьец 45	Val	Val	GTĀ
	Val	Val 50	Cys	Ala	Ala	Ile	Leu 55	Arg	Arg	His	Val	Gly 60	Pro	Gly	Glu	Gly
10	Ala 65	Val	Gln	Trp	Met	Asn 70	Arg	Leu	Ile	Ala	Phe 75	Ala	Ser	Arg	Gly	Asn 80
45	His	Val	Ser	Pro	Thr 85	His	Tyr	Val	Pro	Glu 90	Ser	Asp	Ala	Ala	Ala 95	Arg
15	Val	Thr	Ala	Ile 100	Leu	Ser	Ser	Leu	Thr 105	Val	Thr	Gln	Leu	Leu 110	Arg	Arg
20	Leu	His	Gln 115	Trp	Ile	Ser	Ser	Glu 120	Cys	Thr	Thr	Pro	Cys 125	Ser	Gly	Ser
	Trp	Leu 130	Arg	Asp	Ile	Trp	Asp 135	Trp	Ile	Cys	Glu	Val 140	Leu	Ser	Asp	Phe
25	Lys 145	Thr	Trp	Leu	Lys	Ala 150	Lys	Leu	Met	Pro	Gln 155	Leu	Pro	Gly	Ile	Pro 160
				Сув	165		•	•		170					175	
30				Thr 180	_	_		-	185					190		
35			195	Thr				200					205			
33	_	210	GIÀ	Thr	Phe	Pro	11e 215	Asn	Ala	Tyr	Thr	220	GIĀ	Pro	Cys	Thr
40	Pro 225															
45	<213 <212)> 96 L> 14 P> PE B> He	15 RT	itis	C vi	irus										
50)> 96 Gly		Gly	Ala 5	Gly	Val	Ala	Gly	Ala 10	Leu	Val	Ala	Phe	Lys 15	Ile
	Met	Ser	Gly	Glu 20	Val	Pro	Ser	Thr	Glu 25	Asp	Leu	Val	Asn	Leu 30	Leu	Pro
	Ala	Ile	Leu	Ser	Pro	Gly	Ala	Leu	Val	Val	Gly	Val	Va1	Сув	Ala	Ala

			35					40					45			
5	Ile	Leu 50	Arg	Arg	His	Val	Gly 55	Pro	Gly	Glu	Gly	Ala 60	Val	Gln	Trp	Met
10	Asn 65	Arg	Leu	Ile	Ala	Phe 70	Ala	Ser	Arg	Gly	Asn 75	His	Val	Ser	Pro	Thr 80
· ·	His	Tyr	Val		Glu 85	Ser	Asp	Ala	Ala	Ala 90	Arg	Val	Thr	Ala	Ile 95	Leu
15	Ser	Ser	Leu	Thr 100	Val	Thr	Gln	Leu	Leu 105	Arg	Arg	Leu	His	Gln 110	Trp	Ile
	Ser	Ser	Glu 115	Суз	Thr	Thr	Pro	Cys. 120	Ser	Gly	Ser	Trp	Leu 125	Arg	Asp	Ile
20	Trp	Asp 130	Trp	Ile	Cys	Glu	Val 135	Leu	Ser	Asp	Phe	Lys 140	Thr	Trp	Leu	Lys
25	Ala 145										•					. ·
30	<211 <212	0> 97 l> 54 2> PF	l RT													
	<213	3> He	epati	tis	C A1	Lrus										
		3> He 3> 97	_	.tis	C VI	Lrus										
35	<400)> 97	_				Val	Cys	Ala	Ala 10	Ile	Leu	Arg	Arg	His 15	Val
35	<400 Ala 1)> 97 Leu	7	Val	Gly 5	Val		-		10					15	
35	<400 Ala 1 Gly)> 97 Leu Pro	7 Val	Val Glu 20	Gly 5 Gly	Val Ala	Val	Gln	Trp 25	10 Met	Asn	Arg	Leu	Ile 30	15 Ala	Phe
	<400 Ala 1 Gly	D> 97 Leu Pro Ser	Val Gly	Val Glu 20 Gly	Gly 5 Gly Asn	Val Ala His	Val	Gln Ser	Trp 25	10 Met	Asn	Arg	Leu Val	Ile 30	15 Ala	Phe
	<400 Ala 1 Gly	D> 97 Leu Pro Ser	Val Gly Arg 35	Val Glu 20 Gly	Gly 5 Gly Asn	Val Ala His	Val	Gln Ser	Trp 25	10 Met	Asn	Arg	Leu Val	Ile 30	15 Ala	Phe
40	<400 Ala 1 Gly Ala Asp	0> 97 Leu Pro Ser Ala 50 0> 98	Val Gly Arg 35 Ala	Val Glu 20 Gly	Gly 5 Gly Asn	Val Ala His	Val	Gln Ser	Trp 25	10 Met	Asn	Arg	Leu Val	Ile 30	15 Ala	Phe
40	<400 Ala 1 Gly Ala Asp <210 <211	D> 97 Leu Pro Ser Ala 50 D> 98 b> 16 2> Pi	Val Gly Arg 35 Ala	Val Glu 20 Gly Ala	Gly 5 Gly Asn Arg	Val Ala His Val	Val	Gln Ser	Trp 25	10 Met	Asn	Arg	Leu Val	Ile 30	15 Ala	Phe
40 45	<400 Ala 1 Gly Ala Asp <210 <211 <211	D> 97 Leu Pro Ser Ala 50 D> 98 L> 16 2> PI 3> H6	Val Gly Arg 35 Ala 655 RT	Val Glu 20 Gly Ala	Gly 5 Gly Asn Arg	Val Ala His Val	Val	Gln Ser	Trp 25	10 Met	Asn	Arg	Leu Val	Ile 30	15 Ala	Phe
40 45	<400 Ala 1 Gly Ala Asp <210 <211 <211 <211 <211 <211 <211 <211	Pro Ser Ala 50 0> 98 1> 16 2> PR 3> H6	Val Gly Arg 35 Ala 655 RT	Val Glu 20 Gly Ala	Gly Sly Asn Arg	Val Ala His Val	Val Val	Gln Ser 40	Trp 25 Pro	10 Met	Asn	Arg	Leu Val 45	Ile 30 Pro	15 Ala Glu	Phe

5	Asp	Ala	Ala	Ala 20	Arg	Val	Thr	Ala	Ile 25	Leu	Ser	Ser	Leu	Thr 30	Val	Thr
	Gln	Leu	Leu 35	Arg	Arg	Leu	His	Gln 40	Trp	Ile	Ser	Ser	Glu 45	Cys	Thr	Thr
10	Pro	Cys 50	Ser	Gly	Ser	Trp	Leu 55	Arg	Asp	Ile	Trp	Asp 60	Trp	Ile	Cys	Glu
	Val 65	Leu	Ser	Asp	Phe	Lys 70	Thr	Trp	Leu	Lys	Ala 75	Lys	Leu	Met	Pro	Gln 80
15	Leu	Pro	Gly	Ile	Pro 85	Phe	Val	Ser	Cys	Gln 90	Arg	Gly	Tyr	Arg	Gly 95	Val
20	Trp	Arg	Gly	Asp 100	Gly	Ile	Met	His	Thr 105	Arg	Cys	His	Сув	Gly 110	Ala	Glu
	Ile	Thr	Gly 115	His	Val	Lys	Asn	Gly 120	Thr	Met	Arg	Ile	Val 125	Gly	Pro	Arg
25	Thr	Cys 130	Arg	Asn	Met	Trp	Ser 135	Gly	Thr	Phe	Pro	Ile 140	Asn	Ala	Tyr	Thr
	Thr 145	Gly	Pro	Сув	Thr	Pro 150	Leu	Pro	Ala	Pro	Asn 155	Tyr	Lys	Phe	Ala	Leu 160
30	Trp	Arg	Val	Ser	Ala 165											
35	<21:	0> 99 1> 30 2> PI 3> He	80	itis	C v	irus										
40		0> 99 Val	Pro	Glu	Ser 5	Asp	Ala	Ala	Ala	Arg 10	Val	Thr	Ala	Ile	Leu 15	Ser
45	Ser	Leu	Thr	Val 20	Thr	Gln	Leu	Leu	Arg 25	Arg	Leu	His	Gln	Trp 30	Ile	Ser
45	Ser	Glu	Cys 35	Thr	Thr	Pro	Cys	Ser 40	Gly	Ser	Trp	Leu	Arg 45	Asp	Ile	Trp
50	Asp	Trp 50	Ile	Сув	Glu	Val	Leu 55	Ser	Asp	Phe	Lys	Thr 60	Trp	Leu	Lys	Ala
	Lys 65	Leu	Met	Pro	Gln	Leu 70	Pro	Gly	Ile	Pro	Phe 75	Val	Ser	Cys	Gln	Arg 80
55	Gly	Tyr	Arg	Gly	Val	Trp	Arg	Gly	Asp	Gly	Ile	Met	His	Thr	Arg	Суз

					85					90					95	
5	His	Сув	Gly	Ala 100	Glu	Ile	Thr	Gly	His 105	Val	Lys	Asn	Gly	Thr 110	Met	Arg
10	Ile	Val	Gly 115	Pro	Arg	Thr	Cys	Arg 120	Asn	Met	Trp	Ser	Gly 125	Thr	Phe	Pro
	Ile	Asn 130	Ala	Tyr	Thr	Thr	Gly 135	Pro	Cys	Thr	Pro	Leu 140	Pro	Ala	Pro	Asn
15	Tyr 145	Lys	Phe	Ala	Leu	Trp 150	Arg	Val	Ser	Ala	Glu 155	Glu	Tyr	Val	Glu	Ile 160
	Arg	Arg	Val	Gly	Asp 165	Phe	His	Tyr	Val	Ser 170	Gly	Met	Thr	Thr	Asp 175	Asn
20	Leu	Lys	Cys	Pro 180	Cys	Gln	Ile	Pro	Ser 185	Pro	Glu	Phe	Phe	Thr 190	Glu	Leu
25	Asp	Gly	V al 195	Arg	Leu	His	Arg	Phe 200	Ala	Pro	Pro	Сув	Lys 205	Pro	Leu	Leu
25	Arg	Glu 210	Glu	Val	Ser	Phe	Arg 215	Val	Gly	Leu	His	Glu 220	Tyr	Pro	Val	Gly
30 .	225				Cys	230				_	235					240
				_	Pro 245					250				_	255.	_
35				260	Ser				265					270		
			275		Ser		-	280		-			285			
40		290			Leu	Ile	Glu 295	Ala	Asn	Leu	Leu	300	Arg	Gln	Glu	Met
45	Gly 305	Gly	Asn	Ile												
		_														
50	<211 <212	0> 10 L> 28 2> PE B> He	33 R T	itis	C v	irus										
	Leu	0> 10 Ser		Leu	Thr	Val	Thr	Gln	Leu	Leu 10	Arg	Arg	Leu	His	Gln 15	Trp
55	1				5					10						

5	Ile	Ser	Ser	Glu 20	Cys	Thr	Thr	Pro	Сув 25	Ser	Gly	Ser	Trp	Leu 30	Arg	Asp
10	Ile	Trp	Asp 35	Trp	Ile	Cys	Glu	Val 40	Leu	Ser	qaA	Phe	Lys 45	Thr	Trp	Leu
10	Lys	Ala 50	Lys	Leu	Met	Pro	Gln 55	Leu	Pro	Gly	Ile	Pro 60	Phe	Val	ser	Cys
15	Gln 65	Arg	Gly	Tyr	Arg	Gly 70	Val	Trp	Arg	Gly	Asp 75	Gly	Ile	Met	His	Thr 80
	Arg	Cys	His	Cys	Gly 85	Ala	Glu	Ile	Thr	Gly 90	His	Val	Lys	Asn	Gly 95	Thr
20	Met	Arg	Ile	Val 100	Gly	Pro	Arg	Thr	Cys 105	Arg	Asn	Met	Trp	Ser 110	Gly	Thr
	Phe	Pro	Ile 115	Asn	Ala	Tyr	Thr	Thr 120	Gly	Pro	Cys	Thr	Pro 125	Leu	Pro	Ala
25	Pro	Asn 130	Tyr	Lys	Phe	Ala	Leu 135	Trp	Arg	Val	Ser	Ala 140	Glu	Glu	Tyr	Val
30	Glu 145	Ile	Arg	Arg	Val	Gly 150	Asp	Phe	His	Tyr	Val 155	Ser	Gly	Met	Thr	Thr 160
	Ąsp	Asn	Leu	Lys	Cys 165	Pro	Cys	Gln	Ile	Pro 170	Ser	Pro	Glu	Phe	Phe 175	Thr
35	Glu	Leu	Asp	Gly 180	Val	Arg	Leu	His	Arg 185	Phe	Ala	Pro	Pro	Суs 190	Lys	Pro
	Leu	Leu	Arg 195	Glu	Glu	Val	Ser	Phe 200	Arg	Val	Gly	Leu	His 205	Glu	Tyr	Pro
40	Val	Gly 210	Ser	Gln	Leu	Pro	Cys 215	Glu	Pro	Glu	Pro	Asp 220	Val	Ala	Val	Leu
45	Thr 225	Ser	Met	Leu	Thr	Asp 230	Pro	Ser	His	Ile	Thr 235	Ala	Glu	Ala	Ala	Gly 240
	Arg	Arg	Leu	Ala	Arg 245	Gly	Ser	Pro	Pro	Ser 250	Met	Ala	Ser	Ser	Ser 255	Ala
50	Ser	Gln	Leu	Ser 260	Ala	Pro	Ser	Leu	Lys 265	Ala	Thr	Cys	Thr	Ala 270	Asn	His
55	Asp	Ser	Pro 275	Asp	Ala	Glu	Leu	Ile 280	Glu	Ala	Asn					

.	<210> 101 <211> 249 <212> PRT <213> Hepatitis C virus
10	<pre><400> 101 Ser Leu Thr Val Thr Gln Leu Leu Arg Arg Leu His Gln Trp Ile Ser</pre>
15	Ser Glu Cys Thr Thr Pro Cys Ser Gly Ser Trp Leu Arg Asp Ile Trp 20 25 30
	Asp Trp Ile Cys Glu Val Leu Ser Asp Phe Lys Thr Trp Leu Lys Ala 35 40 45
20	Lys Leu Met Pro Gln Leu Pro Gly Ile Pro Phe Val Ser Cys Gln Arg 50 55 60
	Gly Tyr Arg Gly Val Trp Arg Gly Asp Gly Ile Met His Thr Arg Cys 65 70 75 80
25	His Cys Gly Ala Glu Ile Thr Gly His Val Lys Asn Gly Thr Met Arg 85 90 95
20	Ile Val Gly Pro Arg Thr Cys Arg Asn Met Trp Ser Gly Thr Phe Pro 100 105 110
30	Ile Asn Ala Tyr Thr Thr Gly Pro Cys Thr Pro Leu Pro Ala Pro Asn 115 120 125
35	Tyr Lys Phe Ala Leu Trp Arg Val Ser Ala Glu Glu Tyr Val Glu Ile 130 135 140
	Arg Arg Val Gly Asp Phe His Tyr Val Ser Gly Met Thr Thr Asp Asn 145 150 155 160
40	Leu Lys Cys Pro Cys Gln Ile Pro Ser Pro Glu Phe Phe Thr Glu Leu 165 170 175
	Asp Gly Val Arg Leu His Arg Phe Ala Pro Pro Cys Lys Pro Leu Leu 180 185 190
45	Arg Glu Glu Val Ser Phe Arg Val Gly Leu His Glu Tyr Pro Val Gly \(\) 195 200 205
50	Ser Gln Leu Pro Cys Glu Pro Glu Pro Asp Val Ala Val Leu Thr Ser 210 215 220
50	Met Leu Thr Asp Pro Ser His Ile Thr Ala Glu Ala Ala Gly Arg Arg 225 230 235 240
55	Leu Ala Arg Gly Ser Pro Pro Ser Met 245

5	<210> 102 <211> 85 <212> PRT <213> Hepatitis C virus	
10	<pre><400> 102 Thr Trp Leu Lys Ala Lys Leu Met !</pre>	Pro Gln Leu Pro Gly Ile Pro Phe
15	Val Ser Cys Gln Arg Gly Tyr Arg 0 20	Gly Val Trp Arg Gly Asp Gly Ile 25 30
	Met His Thr Arg Cys His Cys Gly 2 35 40	Ala Glu Ile Thr Gly His Val Lys 45
20	Asn Gly Thr Met Arg Ile Val Gly 1 50 55	Pro Arg Thr Cys Arg Asn Met Trp 60
	Ser Gly Thr Phe Pro Ile Asn Ala : 65 70	Tyr Thr Thr Gly Pro Cys Thr Pro 75 80
25	Leu Pro Ala Pro Asn 85	
30	<210> 103 <211> 94 <212> PRT <213> Hepatitis C virus	
35	<400> 103 Glu Ile Thr Gly His Val Lys Asn (1 5	Gly Thr Met Arg Ile Val Gly Pro 10 15
40	Arg Thr Cys Arg Asn Met Trp Ser (Gly Thr Phe Pro Ile Asn Ala Tyr 25 30
	Thr Thr Gly Pro Cys Thr Pro Leu 1 35 40	Pro Ala Pro Asn Tyr Lys Phe Ala 45
45	Leu Trp Arg Val Ser Ala Glu Glu 5 50 55	Tyr Val Glu Ile Arg Arg Val Gly 60
	Asp Phe His Tyr Val Ser Gly Met 6	Thr Thr Asp Asn Leu Lys Cys Pro 75 80
50	Cys Gln Ile Pro Ser Pro Glu Phe 3	Phe Thr Glu Leu Asp Gly 90

	<21	0> 10	04													•
5	<21	1> 7	5													
	<21	2> PI	RT.													
	<21	3 > He	epat:	Ltis	C v	irus										
)> 10														
10	Ile	Glu	Ala	Asn	Leu	Leu	Trp	Arg	Gln	Glu	Met	Gly	Gly	Asn	Ile	Thr
	1				5					10					15	
	Arg	Val	Glu	Ser	Glu	Asn	Lys	Val	Val	Ile	Leu	Asp	Ser	Phe	Asp	Pro
				20					25					30		
15																
	Leu	Val	Ala	Glu	Glu	Asp	${\tt Glu}$	Arg	Glu	Val	ser	Val	Pro	Ala	Glu	Ile
			35					40					45			
	Leu	Arg	Lys	Ser	Arg	Arg	Phe	Ala	Arg	Ala	Leu	Pro	Val	\mathtt{Trp}	Ala	Arg
20		50					55					60				
											,					
	Pro	Asp	Tyr	Asn	Pro	Pro	Leu	Val	Glu	Thr	Trp					
	65					70					75					
25																
•	<210	2> 10)5													
	<21	L> 90)													
	<21:	2 > PF	2T													
30	<213	3 > He	epati	itis	C vi	irus										
30				•												
)> 10									_	_	_	_	_	_
	His	Gly	Cys	Pro	Leu	Pro	Pro	Pro	Arg		Pro	Pro	Val	Pro		Pro
	1				5					10					15	
35							_		_					_		
33	Arg	Lys	Lys	Arg	Thr	Val	Val	Leu		Glu	Ser	Thr	Leu		Thr	Ala
				20					25					30		
		_					_	_			_	_	_		_	
	Leu	Ala		Leu	Ala	Thr	Lys		Phe	Gly	Ser	Ser		Thr	ser	Gly
40			35					40					45			
40	_	_	_						_	_		_		_	_	
	Ile		Gly	Asp	Asn	Thr		Thr	Ser	Ser	Glu		Ala	Pro	ser	Gly
		50					55					60				
									_	_	_	_		_		_
	-	Pro	Pro	Asp	Ser		Val	GIU	ser	Tyr		ser	met	Pro	Pro	Leu
45	65					70					75					80
				_		_	_	_	_	_						
	Glu	Gly	Glu	Pro	-	Asp	Pro	Asp	Leu							
					85					90						
50																
	_	_														
		0> 10														
		1> 1:														
		2> PI														
55	<21	3> He	epat.	itis	CV	ırus										

5	<400>	106													
	Ser T	rp Thr	Gly	Ala 5	Leu	Val	Thr	Pro	10	Ala	Ala	Glu	Glu	Gln 15	Lys
10	Leu P	ro Ile	Asn 20	Ala	Leu	Ser	Asn	Ser 25	Leu	Leu	Arg	His	His 30	Asn	Leu
	Val T	r Ser 35	Thr	Thr	Ser	Arg	Ser 40	Ala	Суз	Gln	Arg	Gln 45	Lys	Lys	Val
15		ne Asp	Arg	Leu	Gln	Val 55	Leu	Asp	Ser	His	Tyr 60	Gln	Asp	Val	Leu
٠.	Lys G1 65	lu Val	Lys	Ala	Ala 70	Ala	Ser	Lys	Val	Lys 75	Ala	Asn	Leu	Leu	Ser 80
20	Val G	lu Gl u	Ala	Cys 85	Ser	Leu	Thr	Pro	Pro 90	His	Ser	Ala	Lys	Ser 95	ГЛа
25	Phe G	y Tyr	Gly 100	Ala	Lys	Asp	Val	Arg 105	Cys	His	Ala	Arg	Lys 110	Ala	Val
23	Ala H	is Ile 115	Asn	Ser	Val	Trp	Lys 120	Asp	Leu	Leu	Glu	Asp 125	Ser	Val	Thr
30		le Asp	Thr	Thr	Ile	Met 135	Ala	Lys							
35	<210><211><211><212><213>	300	itis	C vi	irus										•
40	<400> Ala As		Leu	Ser 5	Val	Glu	Glu _,	Ala	Cys 10	Ser	Leu	Thr	Pro	Pro 15	His
	Ser A	la Lys	Ser 20	Lys	Phe	Gly	Tyr	Gly 25	Ala	Lys	Asp	Val	Arg 30	Cys	His
45	Ala A	g Lya 35	Ala	Val	Ala	His	Ile 40	Asn	ser	Val	Trp	Lys 45	Asp	Leu	Leu
		sp Ser 50	Val	Thr	Pro	Ile 55	Asp	Thr	Thr	Ile	Met 60	Ala	Lys	Asn	Glu
50	Val Pl	ie Cys	Val	Gln	Pro 70	Glu	Lys	Gly	Gly	Arg 75	Lys	Prc	Ala	Arg	Leu 80
55	Ile V	al Phe	Pro	Asp 85	Leu	Gly	Val	Arg	Val 90	Cys	Glu	Lys	Met	Ala 95	Leu

5	Tyr	qaA	Val	Val 100	Ser	Lys	Leu	Pro	Leu 105	Ala	Val	Met	Gly	Ser 110	Ser	Tyr
	Gly	Phe	Gln 115	Tyr	Ser	Pro	Gly	Gln 120	Arg	Val	Glu	Phe	Leu 125	Val	Gln	Ala
10	Trp	Lys 130	Ser	Lys	Lys	Thr	Pro 135	Met	Gly	Phe	Ser	Tyr 140	Asp	Thr	Arg	.Cys
	Phe 145	Asp	Ser	Thr	Val	Thr 150	Glu	Ser	Asp	Ile	Arg 155	Thr	Glu	Glu	Ala	Ile 160
15	Tyr	Gln	Cys	Cys	Asp 165	Leu	Asp	Pro	Gln	Ala 170	Arg	Val	Ala	Ile	Lys 175	Ser
20	Leu	Thr	Glu	Arg 180	Leu	Tyr	Val	Gly	Gly. 185	Pro	Leu	Thr	Asn	Ser 190	Arg	Gl y
	Glu	Asn	Cys 195	Gly	Tyr	Arg	Arg	Cys 200	Arg	Ala	Ser	Gly	Val 205	Leu	Thr	Thr
25	Ser	Cys 210	Gly	Asn	Thr	Leu	Thr 215	_	Tyr	Ile	Lys	Ala 220	Arg	Ala	Ala	Сув
	Arg 225	Ala	Ala	Gly	Leu	Gln 230	Asp	Cys	Thr	Met	Leu 235	Val	Cys	Gly	Asp	Asp 240
30	Leu	Val	Val	Ile	Cys 245	Glu	Ser	Ala	Gly	Val 250	Gln	Glu	Asp	Ala	Ala 255	Ser
	Leu	Arg	Ala	Phe 260	Thr	Glu	Ala	Met	Thr 265	Arg	Tyr	Ser	Ala	Pro 270	Pro	Gly
35	Asp	Pro	Pro 275	Gln	Pro	Glu	TYT	Asp 280	Leu	Glu	Leu	Ile	Thr 285	Ser	Cys	Ser
40	Ser	Asn 290	Val	Ser	Val	Ala	His 295	Asp	Gly	Ala	Gly	Lys 300				
40																
	<21	0> 10 1> 1	9													
45		2> PI 3> He	RT epati	itis	C v	irus										
	_	0> 10 Glu	08 Ala	Cys	Ser 5	Leu	Thr	Pro	Pro	His 10	Ser	Ala	Lys	Ser	Lys 15	Phe
50	Gly	Tyr	Gly	Ala 20	Lys	Asp	Val	Arg	Cys 25	His	Ala	Arg	Lys	Ala 30	Val	Ala
55	His	Ile	Asn	Ser	Val	Trp	Lys	Asp	Leu	Leu	Glu	Asp	Ser	Val	Thr	Pro

		35			40		45	
5	Ile Asp		: Ile Me	t Ala I 55	Lys Asn	Glu Val	Phe Cys 60	Val Gln Pro
10	Glu Lys 65	Gly Gly	Arg Ly		Ala Arg	Leu Ile 75	Val Phe	Pro Asp Leu 80
	Gly Val	Arg Val	. Cys Gla 85	u Lys M	Met Ala	Leu Tyr 90	Asp Val	Val Ser Lys 95
15	Leu Pro	Leu Ala 100		t Gly S	Ser Ser 105	Tyr Gly	Phe Gln	Tyr Ser Pro 110
	Gly Gln	Arg Val	Glu Pho		/al Gln L20	Ala Trp	Lys Ser 125	Lys Lys Thr
20	130			135			140	Thr Val Thr
25	145		15	0		155		Cys Asp Leu 160
23	_		165	•		170		Arg Leu Tyr 175
30	Val Gly	Gly Pro		r Asn S	Ser Arg 185	Gly Glu	Asn Cys	Gly Tyr Arg 190
	Arg Cys	Arg Ala	Ser Gl	y Val				
		•						
35	<210> 1 <211> 2 <212> P	60	ı C vimi	8				
40		_						
	<400> 1 Leu Leu 1		Ser Va 5	l Thr F	Pro Ile	Asp Thr 10	Thr Ile	Met Ala Lys 15
45	Asn Glu	Val Phe	_	l Gln E	Pro Glu 25	Lys Gly	Gly Arg	Lys Pro Ala 30
	Arg Leu	lle Val	l Phe Pr	o Asp I	Leu Gly 40	Val Arg	Val Cys 45	Glu Lys Met
50	Ala Let		o Val Va	l Ser I 55	Lys Leu	Pro Leu	Ala Val 60	Met Gly Ser
55	Ser Tyı 65	Gly Pho		r Ser 1	Pro Gly	Gln Arg 75		Phe Leu Val 80

5	Gln	Ala	Trp	Lys	Ser 85	Lys	Lys	Thr	Pro	Met 90	Gly	Phe	Ser	Tyr	Asp 95	Thr
	Arg	Cys	Phe	Asp 100	Ser	Thr	Val	Thr	Glu 105	Ser	Asp	Ile	Arg	Thr 110	Glu	Glu
10	Ala	Ile	Tyr 115	Gln	Cys	Cys	Asp	Leu 120	Asp	Pro	Gln	Ala	Arg 125	Val	Ala	Ile
	Lys	Ser 130	Leu	Thr	Glu	Arg	Leu 135	Tyr	Val	Gly	Gly	Pro 140	Leu	Thr	Asn	Ser
15	Arg 145	Gly	Glu	Asn	Cys	Gly 150	Tyr	Arg	Arg	Сув	Arg 155	Ala	Ser	Gly	Val	Leu 160
20	Thr	Thr	Ser	Cys	Gly 165	Asn	Thr	Leu	Thr	Cys 170	Тух	Ile	Lys	Ala	Arg 175	Ala
	Ala	Cys	Arg	Ala 180	Ala	Gly	Leu	Gln	Asp 185	Cys	Thr	Met	Leu	Val 190	Cys	Gly
25	Asp	Asp	Leu 195	Val	Val	Ile	Cys	Glu 200	Ser	Ala	Gly	Val	Gln 205	Glu	Asp	Ala
	Ala	Ser 210	Leu	Arg	Ala	Phe	Thr 215	Glu	Ala	Met	Thr	Arg 220	Tyr	Ser	Ala	Pro
30	Pro 225	Gly	Asp	Pro	Pro	Gln 230	Pro	Glu	Tyr	Asp	Leu 235	Glu	Leu	Ile	Thr	Ser 240
35	Cys	Ser	Ser	Asn	Val 245	Ser	Val	Ala	His	Asp 250	Gly	Ala	Gly	Lys	Arg 255	Val
	Tyr	Tyr	Leu	Thr 260												
40																
•	<213 <213	0> 13 1> 13 2> PI 3> He	27 RT	itis	C V:	irus			•							
45	<40	0> 1:	10													
				Glu	Ser 5	Ala	Gly	Val	Gln	Glu 10	Asp	Ala	Ala	Ser	Leu 15	Arg
50	Ala	Phe	Thr	Glu 20	Ala	Met	Thr	Arg	Tyr 25	Ser	Ala	Pro	Pro	Gly 30	Asp	Pro
	Pro	Gln	Pro 35	Glu	Tyr	Asp	Leu	Glu 40	Leu	Ile	Thr	Ser	Cys 45	Ser	Ser	Asn

5	Val	Ser 50	Val	Ala	His	Asp	Gly 55	Ala	Gly	Lys	Arg	Val 60	Туг	Tyr	Leu	Thr
	Arg 65	Asp	Pro	Thr	Thr	Pro 70	Leu	Ala	Arg	Ala	Ala 75	Trp	Glu	Thr	Ala	Arg 80
10	His	Thr	Pro	Val	Asn 85	Ser	Trp	Leu	Gly	Asn 90	Ile	Ile	Met	Phe	Ala 95	Pro
	Thr	Leu	Trp	Ala 100	Arg	Met	Ile	Leu	Met 105	Thr	His	Phe	Phe	Ser 110	Val	Leu
15	Ile	Ala	Arg 115	qaA	Gln	Leu	Glu	Gln 120	Ala	Leu	Asn	Cys	Glu 125	Ile	Tyr	•
20	<211 <212)> 11 L> 85 2> PF B> He	e P	ltis	C vi	.rus	•									
25)> 11 Ser		Ala	His 5	Asp	Gly	Ala	Gly	Lys 10	Arg	Val	Tyr	Tyr	Leu 15	Thr
30	Arg	Asp	Pro	Thr 20	Thr	Pro	Leu	Ala	Arg 25	Ala	Ala	Trp	Glu	Thr 30	Ala	Arg
	His	Thr	Pro 35	Val	Asn	Ser	Trp	Leu 40	Gly	Asn	Ile	Ile	Met 45	Phe	Ala	Pro
35	Thr	Leu 50	Trp	Ala	Arg	Met	Ile 55	Leu	Met	Thr	His	Phe 60	Phe	Ser	Val	Leu
	Ile 65	Ala	Arg	Asp	Gln	Leu 70	Glu	Gln	Ala	Leu	Asn 75	Cys	Glu	Ile	Tyr	Gly 80
40	Ala	Cys	Tyr	Ser	Ile 85	Glu	Pro	Leu	Asp							
45	<211 <212	0> 11 L> 73 2> PE 3> He	3 RT	itis	C v	irus										
50		0> 1: His		Leu	Ser	Ala	Phe	Ser	Leu	His	Ser	Tyr	Ser	Pro	Gly	Glu
	1				5					10					15	
55	116	ASI	wrd	Val 20	WIG	ALG	Cys	ned	25	PÅS	nen	GLY	AGT	30	FLU	Ded

5	Arg Al	a Trp 35	Arg	His A	rg F	ла	Arg 40	ser	vaı	Arg	ATA	Arg 45	ren	ren	ser	
	Arg G1	-	Arg	Ala A	la 1	lle 55	Cys	Gly	ГУв	Tyr	Leu 60	Phe	Asn	Trp	Ala	
10	Val Ar 65	g Thr	Lys	Leu I	ys I 70	Leu	Thr	Pro						-		
15	<210> <211> <212> <213>	63 PRT	itis	C vir	us											
20	<400> Ser Pr		Glu	Ile A	sn A	\rg	Val	Ala	Ala 10	Сув	Leu	Arg	Lys	Leu 15	Gly	
25	Val Pr	o Pro	Leu 20	Arg A	la T	rp	Arg	His 25	Arg	Ala	Arg	Ser	Val 30	Arg	Ala	
	Arg Le	u Leu 35	Ser	Arg G	ly G	Sly .	Arg 40	Ala	Ala	Ile	Cys	Gly 45	Lys	Tyr	Leu	
30	Phe As		Ala	Val A	rg 1	55	Lys	Leu	Lys	Leu	Thr €0	Pro	Ile	Ala		
35	<210><211><212><212><213>	310 DNA	itis	C vir	us											
4 0 4 5	<400> tgcttg tcaaag cggtca cgcgac ggcacg caatga	cgag aaaa gatc gagg tcgg	accaa gttgg aagac	acgta ytggag ettecg	aca ttt ago	acca act eggt	acce tgtt cgca	g tog good a aco	geeca etega	acag cagg aggt	gace ggce agae	stcas ctas cgtcs	agt i gat i	teeeg tgggt ctate	ggtgg gtgcg cccaa	120 180 240
50	<210> <211> <212> <213>	339 DNA	itis	C vir	aus											
	<400> atgago gaogto	acga	atect teeç	taaaco	tc: ; cg:	aaag gtca	gaaa agato	a ace	caaad	egta ggag	acad	ccaa actt	ccg t	tege:	ccacag	60 120
55																

```
ggccctagat tgggtgtgcg cgcgacgagg aagacttccg agcggtcgca acctcgaggt 180
5
         agaegteage etateceeaa ggeaegtegg eeegagggea ggaeetggge teageeeggg 240
         taccettggc ccctctatgg caatgagggt tgcgggtggg cgggatggct cctgtctccc 300
         egtggetete ggeetagetg gggeeecaca gaecceegg
10
         <210> 116
         <211> 345
         <212> DNA
         <213> Hepatitis C virus
         <400> 116
15
         tgccatcctg cacactccgg ggtgtgtccc ttgcgttcgc gagggtaacg cctcgaggtg 60
         ttgggtggcg gtgaccccca cggtggccac cagggacggc aaactcccca caacgcagct 120
         tegaegteat ategatetge ttgtegggag egecaecete tgeteggeee tetaegtggg 180
         ggacctgtgc gggtctgtct ttcttgttgg tcaactgttt accttctctc ccaggegcca 240
         ctggacgacg caagactgca attgttctat ctatcccggc catataacgg gtcatcgcat 300
20
         ggcatgggat atgatgatga actggtcccc tacggcagcg ttggt
                                                                             345
         <210> 117
         <211> 276
25
         <212> DNA
         <213> Hepatitis C virus
         <400> 117
         cggcgtcgac gcggaaaccc acgtcaccgg gggaaatgcc ggccgcacca cggctgggct 60
         tgttggtctc cttacaccag gcgccaagca gaacatccaa ctgatcaaca ccaacggcag 120
30
         ttggcacatc aatagcacgg ccttgaattg caatgaaagc cttaacaccg gctggttagc 180
         aggetette tateaacaca aatteaacte tteaggetgt cetgagaggt tggccagetg 240
         ccgacgcctt accgattttg cccagggctg gggtcc
35
         <210> 118
         <211> 531
         <212> DNA
         <213> Hepatitis C virus
40
         <400> 11B
         ctggggtcct atcagttatg ccaacggaag cggcctcgac gaacgcccct actgctggca 60
         ctacceteca agacettgtg geattgtgee egeaaagage gtgtgtggee eggtatattg 120
         cttcactccc agccccgtgg tggtgggaac gaccgacagg tcgggcgcgc ctacctacag 180
         ctggggtgca aatgatacgg atgtcttcgt ccttaacaac accaggccac cgctgggcaa 240
         ttggttcggt tgtacctgga tgaactcaac tggattcacc aaagtgtgcg gagcgccccc 300
45
         ttgtgtcatc ggaggggtgg gcaacaacac cttgctctgc cccactgatt gcttccgcaa 360
         acateeggaa gecacataet eteggtgegg eteeggteee tggattacae deaggtgeat 420
         ggtcgactac ccgtataggc tttggcacta tccttgtacc atcaattaca ccatattcaa 480
         agtcaggatg tacgtgggag gggtcgagca caggctggaa gcggcctgca a
50
         <210> 119
         <211> 289
         <212> DNA
         <213> Hepatitis C virus
55
```

```
<400> 119
        ctggcactac cctccaagac cttgtggcat tgtgcccgca aagagcgtgt gtggcccggt 60
        atattgette acteccagee eegtggtggt gggaacgace gacaggtegg gegegeetae 120
        ctacagetgg ggtgcaaatg atacggatgt ettegteett aacaacacca ggecaccget 180
        gggcaattgg ttcggttgta cctggatgaa ctcaactgga ttcaccaaag tgtgcggagc 240
        gccccttgt gtcatcggag gggtgggcaa caacaccttg ctctgcccc
10
        <210> 120
        <211> 836
        <212> DNA
15
        <213> Hepatitis C virus
        <400> 120
        gccgcgtgcg gtgacatcat caacggcttg cccgtctctg cccgtagggg ccaggagata 60
        ctgcttgggc cagccgacgg aatggtctcc aaggggtgga ggttgctggc gcccatcacg 120
        gcgtacgccc agcagacgag aggcctccta gggtgtataa toaccagcct gactggccgg 180
20
        gacaaaaacc aagtggaggg tgaggtccag atcgtgtcaa ctgctaccca aaccttcctg 240
        gcaacgtgca tcaatggggt atgctggact gtctaccacg gggccggaac gaggaccatc 300
        gcatcaccca agggtcctgt catccagatg tataccaatg tggaccaaga ccttgtgggc 360
        tggcccgctc ctcaaggttc ccgctcattg acaccctgta cctgcggctc ctcggacctt 420
        tacctggtca cgaggcacge cgatgtcatt cccgtgcgcc ggcgaggtga tagcaggggt 480
        agestgettt egeseegges catttestas ttgaaagget cetegggggg teegetgttg 540
        tgccccgcgg gacacgccgt gggcctattc agggccgcgg tgtgcacccg tggagtggct 600
        aaagcggtgg actttatccc tgtggagaac ctagggacaa ccatgagatc cccggtgttc 660
        acggacaact cctctccacc agcagtgccc cagagettec aggtggccca cctgcatget 720
        cccaccggca gcggtaagag caccaaggtc ccggctgcgt acgcagccca gggctacaag 780
30
        gtgttggtgc tcaacccctc tgttgctgca acgctgggct ttggtgctta catgtc
        <210> 121
        <211> 475
35
        <212> DNA
        <213> Hepatitis C virus
        <400> 121
        gcgccggcga ggtgatagca ggggtagcct gctttcgccc cggcccattt cctacttgaa 60
        aggetecteg gggggteege tgttgtgeee egegggaeae geegtgggee tatteaggge 120
40
        cgcggtgtgc acccgtggag tggctaaagc ggtggacttt atccctgtgg agaacctagg 180
        gacaaccatg agateceegg tgttcaegga caacteetet ceaecageag tgeeceagag 240
        cttccaggtg gcccacctgc atgctcccac cggcagcggt aagagcacca aggtcccggc 300
        tgcgtacgca gcccagggct acaaggtgtt ggtgctcaac ccctctgttg ctgcaacgct 360
        gggetttggt gettacatgt ecaaggeeea tggggttgat ectaatatea ggaeeggggt 420
45
        qaqaacaatt accactqqca gccccatcac gtactccacc tacqqcaagt tcctt
        <210> 122
        <211> 790
        <212> DNA
        <213> Hepatitis C virus
        <400> 122
        tgatagcagg ggtagcctgc tttcgccccg gcccatttcc tacttgaaag gctcctcggg 60
55
```

```
gggtccgctg ttgtgccccg cgggacacgc cgtgggccta ttcagggccg cggtgtgcac 120
5
         cegtggagtg gctaaagegg tggactttat ceetgtggag aacctaggga caaccatgag 180
         ateceeggtg tteaeggaca acteetetee accageagtg ecceagaget teeaggtgge 240
         ccacctgcat gctcccaccg gcagcggtaa gagcaccaag gtcccggctg cgtacgcagc 300
         ccagggetac aaggtgttgg tgctcaaccc ctctgttgct gcaacgctgg gctttggtgc 360
         ttacatgtcc aaggcccatg gggttgatcc taatatcagg accggggtga gaacaattac 420
         cactggcage cocateacgt actecaceta eggcaagtte ettgeegaeg gegggtgete 480
10
         aggaggtgct tatgacataa taatttgtga cgagtgccac tccacggatg ccacatccat 540
         cttgggcatc ggcactgtcc ttgaccaagc agagactgcg ggggcgagac tggttgtgct 600
         cgccactgct acccctccgg gctccgtcac tgtgtcccat cctaacatcg aggaggttgc 660
         tetgtecace accggagaga teccetttta eggeaagget atcccceteg aggtgateaa 720
         ggggggaaga catctcatct tctgccactc aaagaagaag tgcgacgagc tcgccgcgaa 780
         actaatcaca
          <210> 123
          <211> 583
20
          <212> DNA
          <213> Hepatitis C virus
          <400> 123
         ggacaactcc totocaccag cagtgeecca gagettecag gtggeecace tgcatgetee 60
25
         caceggeage ggtaagagea ceaaggteee ggetgegtae geageceagg getacaaggt 120
         gttggtgctc aacccctctg ttgctgcaac gctgggcttt ggtgcttaca tgtccaaggc 180
         ccatggggtt gatcctaata tcaggaccgg ggtgagaaca attaccactg gcagccccat 240
         cacytactcc acctacygca agtteettgc cgacggoggg tgctcaggag gtgcttatga 300
         cataataatt tgtgacgagt gccactccac ggatgccaca tccatcttgg gcatcggcac 360
         tgtccttgac caagcagaga ctgcggggc gagactggtt gtgctcgcca ctgctacccc 420
30
         teegggetee gteactgtgt eccatectaa categaggag gttgetetgt ecaecacegg 480
         agagatecee ttttaeggea aggetatece eetegaggtg ateaaggggg gaagacatet 540
         catcttctgc cactcaaaga agaagtgcga cgagctcgcc gcg
35
          <210> 124
          <211> 617
          <212> DNA
         <213> Hepatitis C virus
40
         <400> 124
         ccttgccgac ggcgggtgct caggaggtgc ttatgacata ataatttgtg acgagtgcca 60
         ctccacggat gccacatcca tcttgggcat cggcactgtc cttgaccaag cagagactgc 120
         gggggcgaga ctggttgtgc tcgccactgc tacccctccg ggctccgtca ctgtgtccca 180
         tectaacate gaggaggttg etetgtecac caceggagag ateccetttt acggcaagge 240
45
         tatececete gaggtgatea aggggggaag acateteate ttetgecaet caaagaagaa 300
         gtgcgacgag ctcgccgcga agctggtcgc attgggcatc aatgccgtgg cctactaccg 360
         cggtcttgac gtgtctgtca tcccgaccag cggcgatgtt gtcgtcgtgt cgaccgatgc 420
         teteatgact ggetttaceg gegaettega etetgtgata gaetgeaaca egtgtgteae 480
         tcagacagtc gatttcagcc ttgaccctac ctttaccatt gagacaacca cgctccccca 540
         ggatgetgte tecaggaete aacgeegggg caggaetgge agggggaage caggeateta 600
50
          tagatttgtg gcaccgg
          <210> 125
          <211> 559
55
```

```
<212> DNA
         <213> Hepatitis C virus
         <400> 125
         ctccacggat gccacatcca tcttgggcat cggcactgtc cttgaccaag cagagactgc 60
         gggggcgaga ctggttgtgc tcgccactgc tacccctccg ggctccgtca ctgtgtccca 120
10
         tectaacate gaggaggttg etetgteeac caceggagag ateceetttt acggcaagge 180
         tatocccctc gaggtgatca aggggggaag acatetoatc ttotgccact caaagaagaa 240
         gtgogacgag ctcgccgcga agctggtcgc attgggcatc aatgccgtgg cctactaccg 300
         eggtettgae gtgtetgtea teeegaeeag eggegatgtt gtegtegtgt egaeegatge 360
         teteatgaet ggetttaeeg gegaettega etetgtgata gaetgeaaca egtgtgteae 420
15
         teagacagte gattteagee ttgacectae etttaceatt gagacaacca egeteececa 480
         ggatgCtgtc tccaggactc aacgccgggg caggactggc agggggaagc caggcatcta 540
         tagatttgtg gcaccgggg
         <210> 126
20
         <211> 475
         <212> DNA
         <213> Hepatitis C virus
25
         tgtgatagac tgcaacacgt gtgtcactca gacagtcgat ttcagccttg accctacctt 60
         taccattgag acaaccacgo toccocagga tgctgtctcc aggactcaac gccggggcag 120
         gactggcagg gggaagccag gcatctatag atttgtggca cogggggagc gccctccgg 180
         catgttcgac tcgtccgtcc tctgtgagtg ctatgacgcg ggctgtgctt ggtatgagct 240
         cacgcccgcc gagactacag ttaggctacg agegtacatg aacaccccgg ggcttcccgt 300
30
         gtgccaggac catcttgaat tttgggaggg cgtctttacg ggcctcactc atatagatgc 360
         ccacttttta tcccagacaa agcagagtgg ggagaacttt ccttacctgg tagcgtacca 420
         agccaccgtg tgcgctaggg ctcaagcccc tcccccatcg tgggaccaga tgtgg
         <210> 127
35
         <211> 390
         <212> DNA
         <213> Hepatitis C virus
         <400> 127
40
         tagatttgtg gcaccggggg agcgccctc cggcatgttc gactcgtccg tcctctgtga 60
         gtgctatgac gcgggctgtg cttggtatga gctcacgccc gccgagacta cagttaggct 120
         acgagogtac atgaacacco eggggettee egtgtgeeag gaccatettg aattttggga 180
         gggcgtcttt acgggcctca ctcatataga tgcccacttt ttatcccaga caaagcagag 240
         tggggagaac tttccttacc tggtagcgta ccaagccacc gtgtgcgcta gggctcaagc 300
45
         ccctcccca tcgtgggacc agatgtggaa gtgtttgatc cgccttaaac ccaccctcca 360
         tgggccaaca cccctgctat acagactggg
         <210> 128
50
         <211> 155
         <212> DNA
         <213> Hepatitis C virus
         <400> 128
         acgageaect gggtgetegt tggeggegte etggetgete tggeegegta ttgeetgtea 60
55
```

```
acaggetgeg tggteatagt gggcaggate gtettgteeg ggaageegge aattatacet 120
          gacagggagg ttctctacca ggagttcgat gagat
          <210> 129
          <211> 56
10
          <212> DNA
          <213> Hepatitis C virus
          <400> 129
          ggetgetetg geegegtatt geetgteaac aggetgegtg gteatagtgg geagga
15
          <210> 130
          <211> 625
          <212> DNA
          <213> Hepatitis C virus
20
          <400> 130
          tittacaget geogteacea geocactaac caetggecaa accetectet teaacatatt 60
          gggggggtgg gtggetgece agetegeege ceeeggtgee getactgeet ttgtgggtge 120
          tggcctagct ggcgccgcca tcggcagcgt tggactgggg aaggtcctcg tggacattct 180
25
          tgcagggtat ggcgcggcg tggcgggagc tcttgtagca ttcaagatca tgagcggtga 240
          ggtcccctcc acggaggacc tggtcaatct gctgcccgcc atcctctcgc ctggagccct 300
          tgtagteggt gtggtetgeg cagcaatact gegeeggeac gttggeeegg gegaggggge 360
          agtgcaatgg atgaaccggc taatagcctt cgcctcccgg gggaaccatg tttcccccac 420
          geactacgtg coggagagog atgeagocgc cogogteact gocatactea geagocteae 480
30
          tgtaacccag ctcctgaggc gactgcatca gtggataagc tcggagtgta ccactccatg 540
          ctccggttcc tggctaaggg acatctggga ctggatatgc gaggtgctga gcgactttaa 600
          gacctggctg aaagccaagc tcatg
          <210> 131
35
          <211> 623
          <212> DNA
          <213> Hepatitis C virus
          <400> 131
40
          tactgeettt gtgggtgetg geetagetgg egeegeeate ggeagegttg gaetggggaa 60
          ggtcctcgtg gacattcttg cagggtatgg cgcgggcgtg gcgggagctc ttgtagcatt 120
          caagatcatg agcggtgagg tcccctccac ggaggacctg gtcaatctgc tgcccgccat 180
          cetetegeet ggagecettg tagteggtgt ggtetgegea gcaatactge geeggeaegt 240
          tggcccgggc gagggggcag tgcaatggat gaaccggcta atagccttcg cctcccgggg 300
          gaaccatgtt teceecaege actaegtgce ggagagegat geageegeec gegteaetge 360
45
          catactcage agectcactg taacccaget cetgaggega etgeatcagt ggataagete 420
          ggagtgtacc actccatgct ccggttcctg gctaagggac atctgggact ggatatgcga 480
          ggtgctgagc gactttaaga cetggctgaa agccaagete atgccacaac tgcctgggat 540
          tecetttgtg teetgeeage gegggtatag gggggtetgg egaggagaeg geattatgea 600
          cactogotgo cactgtggag ctg
          <210> 132
          <211> 678
          <212> DNA
55
```

```
<213> Hepatitis C virus
5
          cctcgtggac attcttgcag ggtatggcgc gggcgtggcg ggagctcttg tagcattcaa 60
          gatcatgagc ggtgaggtcc cctccacgga ggacctggtc aatctgctgc ccgccatcct 120
          ctcqcctqqa qcccttgtag tcggtgtgt ctgcgcagca atactgcgcc ggcacgttgg 180
          ccegggegag ggggeagtge aatggatgaa ceggetaata geettegeet ceegggggaa 240
10
          ccatgtttcc cccacgcact acgtgccgga gagcgatgca gccgcccgcg tcactgccat 300
          actcagcage etcactgtaa eccageteet gaggegactg catcagtgga taagetegga 360
          gtgtaccact ccatgctccg gttcctggct aagggacatc tgggactgga tatgcgaggt 420
          getgagegae tttaagacet ggetgaaage caageteatg ceacaactge etgggattee 480
          ctttgtgtec tgccagegeg ggtatagggg ggtetggega ggagaeggea ttatgcacac 540
15
          tegetgecae tgtggagetg agateaetgg acatgteaaa aacgggaega tgaggategt 600
          cggtcctagg acctgcagga acatgtggag tgggacgttc cccattaacg cctacaccac 660
          gggccctgt actccct
20
          <210> 133
          <211> 436
          <212> DNA
          <213> Hepatitis C virus
          <400> 133
          tgcagggtat ggcgcgggcg tggcgggagc tcttgtagca ttcaagatca tgagcggtga 60
          ggtcccctcc acggaggace tggtcaatet getgcccgcc atcctctcgc ctggagccct 120
          tgtagteggt gtggtetgeg eageaataet gegeeggeae gttggeeegg gegaggggge 180
          agtgcaatgg atgaaccggc taatagcett cgcctcccgg gggaaccatg tttcccccac 240
          gcactacgtg ccggagagcg atgcagccgc ccgcgtcact gccatactca gcagcctcac 300
30
          tqtaacccaq ctcctqaggc gactgcatca gtggataagc tcggagtgta ccactccatg 360
          ctccggttcc tggctaaggg acatctggga ctggatatge gaggtgctga gcgactttaa 420
          gacctggctg aaagcc
35
          <210> 134
          <211> 164
          <212> DNA
          <213> Hepatitis C virus
40
          <400> 134
          agocottgta gtoggtgtgg totgcgcago aatactgcgc cggcacgttg gcccgggcga 60
          gggggcagtg caatggatga accggctaat agccttcgcc tcccggggga accatgtttc 120
          ceccaegeae taegtgeegg agagegatge ageegeeege gtca
45
          <210> 135
          <211> 496
          <212> DNA
          <213> Hepatitis C virus
50
          <400> 135
          cgcctcccgg gggaaccatg tttcccccac gcactacgtg ccggagagcg atgcagccgc 60
          cogogteact gecatactea geagecteac tgtaacceag etectgagge gactgeatea 120
          gtggataage teggagtgta ceaetecatg eteeggttee tggetaaggg acatetggga 180
          ctggatatgc gaggtgctga gcgactttaa gaectggctg aaagccaagc tcatgccaca 240
55
```

```
actgcctggg attccctttg tgtcctgcca gcgcgggtat aggggggtct ggcgaggaga 300
          eggeattatg cacacteget gecactgtgg agetgagate actggacatg teaaaaaegg 360
5
          gacgatgagg atcgtcggtc ctaggacctg caggaacatg tggagtggga cgttccccat 420
          taacgcctac accacgggcc cctgtactcc ccttcctgcg ccgaactata agttcgcgct 480
          gtggagggtg tctgca
10
          <210> 136
          <211> 926
          <212> DNA
          <213> Hepatitis C virus
15
          <400> 136
          tacgtgccgg agagcgatgc agccgcccgc gtcactgcca tactcagcag cctcactgta 60
          accoagetce tgaggegact geateagtgg ataagetegg agtgtaceae tecatgetee 120
          ggttcctggc taagggacat ctgggactgg atatgcgagg tgctgagcga ctttaagacc 180
          tggctgaaag ccaageteat gceacaactg cetgggatte cetttgtgte etgecagege 240
          qqqtataqqq qqqtctggcg aggaqacggc attatgcaca ctcgctgcca ctgtggagct 300
20
          gagatcactg gacatgtcaa aaacgggacg atgaggatcg tcggtcctag gacctgcagg 360
          aacatgtgga gtgggacgtt ccccattaac gcctacacca cgggcccctg tactcccctt 420
          cctqcqccga actataagtt cgcgctgtgg agggtgtctg cagaggaata cgtggagata 480
          aggogggtgg gggacttcca ctacgtatcg ggtatgacta ctgacaatct taaatgcccg 540
          tgccagatcc categocoga atttttcaca gaattggacg gggtgcgcct acacaggttt 600
25
          gegeeeett geaageeett getgegggag gaggtateat teagagtagg acteeaegag 660
          taccoggtgg ggtcgcaatt accttgcgag cccgaaccgg acgtagccgt gttgacgtcc 720
          atgctcactg atccctccca tataacagca gaggoggccg ggagaaggtt ggcgagaggg 780
          teaccectt ctatggeeag etcetegget ageeagetgt eegeteeate teteaaggea 840
          acttgcaccg ccaaccatga ctcccctgac gccgagctca tagaggctaa cctcctgtgg 900
30
          aggcaggaga tgggcggcaa catcac
          <210> 137
          <211> 850
          <212> DNA
35
          <213> Hepatitis C virus
          <400> 137
          actcagcage etcactgtaa eccageteet gaggegactg catcagtgga taagetegga 60
          gtgtaccact ccatgctccg gttcctggct aagggacatc tgggactgga tatgcgaggt 120
40
          getgagegae tttaagaeet ggetgaaage caageteatg ceacaactge etgggattee 180
          ctttgtgtcc tgccagcgcg ggtatagggg ggtctggcga ggagacggca ttatgcacac 240
          tegetgecae tgtggagetg agateaetgg acatgteaaa aacgggacga tgaggategt 300
          cggtcctagg acctgcagga acatgtggag tgggacgttc cccattaacg cctacaccac 360
          gggcccctgt actocccttc ctgcgccgaa ctataagttc gcgctgtgga gggtgtctgc 420
          agaggaatac gtggagataa ggcgggtggg ggacttccac tacgtatcgg gtatgactac 480
45
          tgacaatctt aaatgeeegt gecagateec ategeeegaa tttttcacag aattggaegg 540
          ggtgcgccta cacaggtttg cgcccccttg caagcccttg ctgcgggagg aggtatcatt 600
          cagagtagga ctccacgagt acceggtggg gtcgcaatta ccttgcgagc ccgaaccgga 660
          cgtagccgtg ttgacgtcca tgctcactga tccctcccat ataacagcag aggcggccgg 720
          gagaaggttg gegagagggt caccecette tatggecage teeteggeta gecagetgte 780
          cgctccatct ctcaaggcaa cttgcaccgc caaccatgac tcccctgacg ccgagctcat 840
          agaggctaac
```

```
<210> 138
        <211> 749
        <212> DNA
        <213> Hepatitis C virus
        <400> 138
10
        cagecteact gtaacccage teetgaggeg actgeateag tggataaget eggagtgtac 60
        cactecatge teeggtteet ggetaaggga catetgggae tggatatgeg aggtgetgag 120
        egactttaag acetggetga aagecaaget catgecacaa etgeetggga tteeetttgt 180
        gteetgeeag egegggtata ggggggtetg gegaggagae ggeattatge acaetegetg 240
        ccactgtgga gctgagatca ctggacatgt caaaaacggg acgatgagga tcgtcggtcc 300
        taggacetge aggaacatgt ggagtgggae gttececatt aacgeetaca ecaegggece 360
15
        ctgtactccc cttcctgcgc cgaactataa gttcgcgctg tggagggtgt ctgcagagga 420
        atacgtggag ataaggcggg tgggggactt ccactacgta tcgggtatga ctactgacaa 480
        tettaaatge eegtgeeaga teecategee egaattttte acagaattgg acggggtgeg 540
        cctacacagg tttgcgcccc cttgcaagcc cttgctgcgg gaggaggtat cattcagagt 600
        aggaetecae gagtaeeegg tggggtegea attacettge gageeegaae eggaegtage 660
20
        cgtgttgacg tccatgctca ctgatccctc ccatataaca gcagaggggg ccgggagaag 720
        gttggcgaga gggtcacccc cttctatgg
        <210> 139
25
        <211> 257
        <212> DNA
        <213> Hepatitis C virus
        <400> 139
30
        gacctggctg aaagccaagc tcatgccaca actgcctggg attccctttg tgtcctgcca 60
        gegegggtat aggggggtet ggegaggaga eggcattatg cacacteget gecaetgtgg 120
        agetgagate actggacatg teaaaaaegg gaegatgagg ategteggte etaggacetg 180
        caggaacatg tggagtggga cgttccccat taacgcctac accacgggcc cctgtactcc 240
        ccttcctgcg ccgaact
35
        <210> 140
        <211> 285
        <212> DNA
        <213> Hepatitis C virus
40
        <400> 140
        tgagatcact ggacatgtca aaaacgggac gatgaggatc gtcggtccta ggacctgcag 60
        gaacatgtgg agtgggacgt tececattaa egectacace aegggeeect gtaeteeect 120
        teetgegeeg aactataagt tegegetgtg gagggtgtet geagaggaat aegtggagat 180
45
        aaggegggtg ggggaettee actaegtate gggtatgaet actgaeaate ttaaatgeee 240
        gtgccagatc ccatcgcccg aatttttcac agaattggac ggggt
        <210> 141
50
        <211> 228
        <212> DNA
        <213> Hepatitis C virus
        <400> 141
        catagagget aaceteetgt ggaggeagga gatgggegge aacateacea gggttgagte 60
55
```

```
agagaacaaa gtggtgattc tggactcctt cgatccgctt gtggcagagg aggatgagcg 120
5
          ggaggtetec gtacetgeag aaattetgeg gaagtetegg agattegeee gggeeetgee 180
          cgtctgggcg cggccggact acaacccccc gctagtagag acgtggaa
          <210> 142
10
          <211> 273
          <212> DNA
          <213> Hepatitis C virus
          <400> 142
          ccatggetge cegetaceae etecaeggte eceteetgtg ceteegeete ggaaaaageg 60
15
          tacggtggtc ctcaccgaat caaccctatc tactgccttg gccgagcttg ccaccaaaag 120
          ttttggcagc tcctcaactt ccggcattac gggcgacaat acgacaacat cctctgagcc 180
          egeceettet ggetgeeece eegacteega egttgagtee tattetteea tgeceecet 240
          ggaggggag cctggggatc cggatctcag cga
20
          <210> 143
          <211> 412
          <212> DNA
          <213> Hepatitis C virus
25
          <400> 143
          ttcctggaca ggcgcactcg tcaccccgtg cgctgcggaa gaacaaaaac tgcccatcaa 60
          cgcactgagc aactcgttgc tacgccatca caatctggtg tattccacca cttcacgcag 120
          tgcttgccaa aggcagaaga aagtcacatt tgacagactg caagttctgg acagccatta 180
          ccaggacgtg ctcaaggagg tcaaagcagc ggcgtcaaaa gtgaaggcta acttgctatc 240
30
          cgtagaggaa gcttgcagcc tgacgccccc acattcagcc aaatccaagt ttggctatgg 300
          ggcaaaagac gtccgttgcc atgccagaaa ggccgtagcc cacatcaact ccgtgtggaa 360
          agacettetg gaagacagtg taacaccaat agacactace atcatggeca ag
          <210> 144
          <211> 903
          <212> DNA
          <213> Hepatitis C virus
          <400> 144
40
          ggctaacttg ctatccgtag aggaagcttg cagcctgacg cccccacatt cagccaaatc 60
          caagtttggc tatggggcaa aagacgtccg ttgccatgcc agaaaggccg tagcccacat 120
          caactccgtg tggaaagacc ttctggaaga cagtgtaaca ccaatagaca ctaccatcat 180
          ggccaagaac gaggttttct gcgttcagcc tgagaagggg ggtcgtaagc cagctcgtct 240
          categtgttc cccgacctgg gcgtgcgcgt gtgcgagaag atggccctgt acgacgtggt 300
45
          tagcaagete cecetggeeg tgatgggaag etectaegga ttecaataet caccaggaea 360
          gegggttgaa tteetegtge aagegtggaa gteeaagaag acceegatgg ggttetegta 420
          tgataccege tgttttgact ccacagtcac tgagagegac atccgtacgg aggaggcaat 480
          ttaccaatgt tgtgacctgg acccccaagc ccgcgtggcc atcaagtccc tcactgagag 540
          gctttatgtt gggggccctc ttaccaattc aaggggggaa aactgcggct accgcaggtg 600
50
          ccgcgcgage ggcgtactga caactagetg tggtaacacc ctcacttgct acatcaaggc 660
          cegggeagec tgtcgagecg cagggeteca ggactgcacc atgetegtgt gtggcgaega 720
          cttagtcgtt atctgtgaaa gtgcgggggt ccaggaggac gcggcgagcc tgagagcctt 780
          cacggagget atgaccaggt actecgeece ecceggggac eccecacaac cagaatacga 840
          cttggagett ataacateat geteetecaa egtgteagte geecaegaeg gegetggaaa 900
55
```

```
903
         gag
         <210> 145
         <211> 600
         <212> DNA
         <213> Hepatitis C virus
10
         <400> 145
         agaggaaget tgeageetga egececeaca tteageeaaa teeaagtttg getatgggge 60
         aaaaqacqtc cqttqccatg ccagaaaggc cgtagcccac atcaactccg tgtggaaaga 120
         ccttctggaa gacagtgtaa caccaataga cactaccatc atggccaaga acgaggtttt 180
15
         ctgcgttcag cctgagaagg ggggtcgtaa gccagctcgt ctcatcgtgt tccccgacct 240
         gggcgtgcgc gtgtgcgaga agatggccct gtacgacgtg gttagcaagc tccccctggc 300
         cgtgatggga agctcctacg gattccaata ctcaccagga cagcgggttg aattcctcgt 360
         gcaagegtgg aagtecaaga agaceeegat ggggtteteg tatgatacee getgttttga 420
         ctccacagtc actgagagcg acatccgtac ggaggaggca atttaccaat gttgtgacct 480
         ggacccccaa gecegegtgg ccatcaagte ceteaetgag aggetttatg ttgggggeec 540
20
         tettaccaat teaagggggg aaaactgegg etacegeagg tgeegegga geggegtaet 600
         <210> 146
          <211> 781
25
          <212> DNA
         <213> Hepatitis C virus
         <400> 146
         cottotggaa gacagtgtaa caccaataga cactaccatc atggccaaga acgaggtttt 60
30
         ctgcgttcag cctgagaagg ggggtcgtaa gccagctcgt ctcatcgtgt tccccgacct 120
         gggcgtgcgc gtgtgcgaga agatggccct gtacgacgtg gttagcaagc tccccctggc 180
         cgtgatggga agctcctacg gattccaata ctcaccagga cagcgggttg aattcctcgt 240
         gcaagcgtgg aagtccaaga agaccccgat ggggttctcg tatgataccc gctgttttga 300
         ctccacagtc actgagagcg acatccgtac ggaggaggca atttaccaat gttgtgacct 360
         ggacccccaa gcccgcgtgg ccatcaagtc cctcactgag aggctttatg ttgggggccc 420
35
          tottaccaat tcaagggggg aaaactgcgg ctaccgcagg tgccgcgcga gcggcgtact 480
         gacaactage tgtggtaaca eceteacttg ctacateaag geeegggeag cetgtegage 540
         cgcagggetc caggactgca ccatgctcgt gtgtggcgac gacttagtcg ttatctgtga 600
         aagtgegggg gtecaggagg acgeggegag cetgagagee tteaeggagg etatgaeeag 660
         gtactecgec cccccgggg accccccaca accagaatac gacttggage ttataacate 720
40
         atgetectee aaegtgteag tegeceaega eggegetgga aagagggtet actacettae 780
          <210> 147
45
          <211> 382
          <212> DNA
          <213> Hepatitis C virus
          <400> 147
          cgttatctgt gaaagtgcgg gggtccagga ggacgcggcg agcctgagag ccttcacgga 60
50
          ggctatgacc aggtactccg cccccccgg ggacccccca caaccagaat acgacttgga 120
          gettataaca teatgeteet ecaacgtgte agtegeecac gaeggegetg gaaagagggt 180
          ctactacett accegtgace ctacaacece cetegegaga geegegtggg agacageaag 240
          acacacteca gteaatteet ggetaggeaa cataateatg tttgeececa caetgtggge 300
```

5	gaggatgata ctgatgaccc atttetttag cgteeteata gecagggate agettgaaca ggetettaac tgtgagatet ac	360 382
	<210> 148	
10	<211> 268 <212> DNA	
	<213> Hepatitis C virus	
	•	
	<400> 148	
15	cgtgtcagtc gcccacgacg gcgctggaaa gagggtctac taccttaccc gtgaccctac	
	aaccccctc gcgagagccg cgtgggagac agcaagacac actccagtca attcctggct	
	aggeacata atcatgtttg cececacaet gtgggegagg atgataetga tgacceattt etttagegte etcatageca gggateaget tgaacagget ettaactgtg agatetaegg	
	agootgotae tocatagaac caetggat	268
20		
20	<210> 149	
	<211> 222	
	<2113 222 <212> DNA	
	<213> Hepatitis C virus	
25	•	
	<400> 149	
	actocatggo otoagogoat titcactoca cagitactot coaggigaaa toaatagggi	
	ggccgcatgc ctcagaaaac ttggggtccc gcccttgcga gcttggagac accgggcccg	
	gagcgtccgc gctaggcttc tgtccagagg aggcagggct gccatatgtg gcaagtacct	
30	cttcaactgg gcagtaagaa caaagctcaa actcactcca at	222
	<210> 150	·
	<211> 192	
35	<212> DNA	
55	<213> Hepatitis C virus	
	<400> 150	
	ctctccaggt gaaatcaata gggtggccgc atgcctcaga aaacttgggg tcccgccctt	60
	gegagettgg agacaceggg eceggagegt eegegetagg ettetgteea gaggaggeag	120
40	ggetgecata tgtggeaagt acetetteaa etgggeagta agaacaaage teaaacteae	
	tecaatageg ge	192
45	<210> 151	
40	<211> 10 <212> DNA	
	<212> DNA <213> Artificial Sequence	
	/213/ WICTITOTAL SEGRETICE	
	<220>	
50	<223> Description of Artificial Sequence: linker sequence	
	<400> 151	
	gggcacgaa	10

```
<210> 152
        <211> 13
        <212> DNA
        <213> Artificial Sequence
        <223> Description of Artificial Sequence: linker
10
              sequence
        <400> 152
        ttcgtggccc ctg
                                                                             13
15
        <210> 153
        <211> 138
        <212> DNA
        <213> Artificial Sequence
20
        <220>
        <223> Description of Artificial Sequence: pP6 vector
              sequence
25
        <400> 153
        ctagccatgg ccgcaggggc cgcggccgca ctagtgggga tccttaatta aagggccact 60
        ggggccccc gtaccggcgt ccccggcgc ggcgtgatca cccctaggaa ttaatttccc 120
        ggtgaccccg ggggagct
                                                                            138
30
        <210> 154
        <211> 128
        <212> DNA
        <213> Artificial Sequence
35
        <220>
        <223> Description of Artificial Sequence: pB5 vector
              sequence
        <400> 154
40
        catggccgca ggggccgcgg ccgcactagt ggggatcctt aattaaaggg ccactggggc 60
        cccccggcgt ccccggcgcc ggcgtgatca cccctaggaa ttaatttccc ggtgaccccg 120
        ggggagct
                                                                            12B
45
        <210> 155
        <211> 20
        <212> DNA
        <213> Artificial Sequence
50
        <223> Description of Artificial Sequence: primer
        <400> 155
                                                                            20
        gcgtttggaa tcactacagg
55
```

```
<210> 156
          <211> 19
          <212> DNA
          <213> Artificial Sequence
          <220>
10
          <223> Description of Artificial Sequence: primer
          <400> 156
          cacgatgcac gttgaagtg
                                                                                                   19
15
      Claims
20
          1. A nucleic acid which encodes a polypeptide selected from the group consisting of the amino acid sequences
          SEQ ID N° 1 to 38 or a variant thereof, and a sequence complementary thereto.
          2. A nucleic acid according to claim 1 which encodes a polypeptide having at least 95% aminoacid identity with a
25
          polypeptide selected from the group consisting of the aminoacid sequences SEQ ID N°1 to 38, and a sequence
          complementary thereto.
          3. A nucleic acid according to claim 1 which is selected from the group consisting of the sequences SEQ ID N°39
          to 76 or a sequence complementary thereto.
30
         4. A nucleic acid according to claim 1 which possesses at least 95% nucleic acid identity with a nucleic acid selected
          from the group consisting of the sequences SEQ ID N°39 to 76.
          5. A nucleic acid according to claim 1 encoding a polypeptide having an aminoacid sequence selected from the
35
          group consisting of the sequences consisting of at least:
              45 consecutive aminoacids of SEQ ID N°1;
              30 consecutive aminoacidss of SEQ ID N°2;
              65 consecutive aminoacids of SEQ ID N°3;
40
             30 consecutive aminoacids of SEQ ID N°4;
              130 consecutive aminoacids of SEQ ID N°5;
             25 consecutive aminoacids of SEQ ID N°6;
             23 consecutive aminoacids of SEQ ID N°7.
             48 consecutive aminoacids of SEQ ID N°8;
45
              36 consecutive aminoacids of SEQ ID N°9;
             25 consecutive aminoacids of SEQ ID N°10:
             24 consecutive aminoacids of SEQ ID N°11;
              37 consecutive aminoacids of SEQ ID N°12;
              25 consecutive aminoacids of SEQ ID N°13;
50
              30 consecutive aminoacids of SEQ ID N°14;
              27 consecutive aminoacids of SEQ ID N°15;
              69 consecutive aminoacids of SEQ ID N°16;
              130 consecutive aminoacids of SEQ ID N°17;
              33 consecutive aminoacids of SEQ ID N°18;
55
              25 consecutive aminoacids of SEQ ID N°19;
```

40 consecutive aminoacids of SEQ ID №20; 78 consecutive aminoacids of SEQ ID №21; 39 consecutive aminoacids of SEQ ID №22;

26 consecutive aminoacids of SEQ ID N°24; 68 consecutive aminoacids of SEQ ID N°25; 34 consecutive aminoacids of SEQ ID N°26; 5 42 consecutive aminoacids of SEQ ID N°27; 48 consecutive aminoacids of SEQ ID N°28. 102 consecutive aminoacids of SEQ ID N°29: 49 consecutive aminoacids of SEQ ID N°30: 92 consecutive aminoacids of SEQ ID N° 31: 10 49 consecutive aminoacids of SEQ ID N°30; 92 consecutive aminoacids of SEQ ID N°31; 71 consecutive aminoacids of SEQ ID N°32; 55 consecutive aminoacids of SEQ ID N°33; 69 consecutive aminoacids of SEQ ID N°34; 15 23 consecutive aminoacids of SEQ ID N°35; 33 consecutive aminoacids of SEQ ID N°36; 32 consecutive aminoacids of SEQ ID N°37; and 20 22 consecutive aminoacids of SEQ ID N°38. 6. A nucleic acid according to claim 1 encoding a polypeptide having an amino acid sequence comprising from one to three substitutions, additions or deletions of one amino acid as regards a polypeptide selected from the 25 group consisting of the amino acid sequences SEQ ID N°1 to 38 or as regards a polypeptide according to claim 5 and a sequence complementary thereto. 7. A polypeptide selected from the group consisting of the amino acid sequences SEQ ID N°1 to 38 or a variant thereof. 30 8. A polypeptide according to claim 7 having at least 95% aminoacid identity with a polypeptide selected from the group consisting of the aminoacid sequences SEQ ID N°1 to 38. 9. A polypeptide according to claim 7 having an aminoacid sequence selected from the group consisting of the 35 sequences consisting of at least: 45 consecutive aminoacids of SEQ ID N°1: 30 consecutive aminoacidss of SEQ ID N°2: 65 consecutive aminoacids of SEQ ID N°3; 40 30 consecutive aminoacids of SEQ ID N°4; 130 consecutive aminoacids of SEQ ID N°5; 25 consecutive aminoacids of SEQ ID N°6; 23 consecutive aminoacids of SEQ ID N°7. 48 consecutive aminoacids of SEQ ID N°8; 45 36 consecutive aminoacids of SEQ ID N°9; 25 consecutive aminoacids of SEQ ID N°10; 24 consecutive aminoacids of SEQ ID N°11; 37 consecutive aminoacids of SEQ ID N°12; 25 consecutive aminoacids of SEQ ID N°13; 50 30 consecutive aminoacids of SEQ ID N°14; 27 consecutive aminoacids of SEQ ID N°15; 69 consecutive aminoacids of SEQ ID N°16; 130 consecutive aminoacids of SEQ ID N°17; 33 consecutive aminoacids of SEQ ID N°18; 55 25 consecutive aminoacids of SEQ ID N°19; 40 consecutive aminoacids of SEQ ID N°20; 78 consecutive aminoacids of SEQ ID N°21; 39 consecutive aminoacids of SEQ ID N°22;

57 consecutive aminoacids of SEQ ID N°23;

- 57 consecutive aminoacids of SEQ ID N°23;
- 26 consecutive aminoacids of SEQ ID N°24;
- 68 consecutive aminoacids of SEQ ID N°25;
- 34 consecutive aminoacids of SEQ ID N°26;
- 42 consecutive aminoacids of SEQ ID N°27;
- 48 consecutive aminoacids of SEQ ID N°28.
- 102 consecutive aminoacids of SEQ ID N°29:
- 49 consecutive aminoacids of SEQ ID N°30:
- 92 consecutive aminoacids of SEQ ID N° 31;
- 49 consecutive aminoacids of SEQ ID N°30;
- 92 consecutive aminoacids of SEQ ID N°31;
- 71 consecutive aminoacids of SEQ ID N°32;
- 55 consecutive aminoacids of SEQ ID N°33;
- 69 consecutive aminoacids of SEQ ID N°34;
- 23 consecutive aminoacids of SEQ ID N°35;
- 33 consecutive aminoacids of SEQ ID N°36;
- 32 consecutive aminoacids of SEQ ID N°37;

and

20

25

30

35

40

45

50

55

5

10

- 22 consecutive aminoacids of SEQ ID N°38.
- 10. A polypeptide according to claim 7 having an amino acid sequence comprising from one to three substitutions, additions or deletions of one amino acid as regards a polypeptide selected from the group consisting of the amino acid sequences SEQ ID N°1 to 38 or as regards a polypeptide according to claim 9.
 - 11. An antibody directed against a polypeptide according to any one of claims 7 to 10.
 - 12. A recombinant vector containing inserted therein a nucleic acid according to any one of claims 1 to 5.
 - 13. The recombinant vector according to claim 12 which is selected from the group consisting of the plasmids pACTIIst and pAS2 $\Delta\Delta$.
- **14.** The recombinant vector according to claim 12 which is selected from the group consisting of pT25, pKT25, pUT18 and pUT18C.
 - 15. The recombinant vector according to claim 12 which is selected from the group consisting of pP6 and pB5.
 - 16. A cell host transformed with a vector according to any one of claims 12 to 15 or with a nucleic acid according to anyone of claims 1 to 5.
 - 17. A method for producing a polypeptide according to any one of claims 7 to 10, wherein said method comprises the step of :
 - a) cultivating a cell host according to claim 18 in an appropriate culture medium;
 - b) recovering the recombinant polypeptide from the culture supernatant or from the cell lysate.
 - **18.** A yeast two-hybrid system method for selecting a recombinant cell clone containing a vector comprising a nucleic acid insert encoding a prey polypeptide which binds with a SID® polypeptide, wherein said method comprises the steps of :
 - a) mating at least one first recombinant yeast cell clone of a collection of recombinant yeast cell clones transformed with a plasmid containing the prey polynucleotide to be assayed with a second haploid recombinant Saccharomyces cerevisiae cell clone transformed with a plasmid containing a bait polynucleotide encoding a SID® polypeptide according to any one of claims 7 to 10;
 - b) cultivating diploid cells obtained in step a) on a selective medium; and
 - c) selecting recombinant cell clones which grow on said selective medium.

- 19. The yeast two-hybrid method of claim 18 which further comprises the step of:
 - d) characterizing the prey polynucleotide contained in each recombinant cell clone selected in step c).
- 20. A bacterial two-hybrid method for identifying a recombinant cell clone containing a prey polynucleotide encoding a prey polypeptide which binds with a SID® polypeptide, wherein said method comprises the steps of:
 - a) transforming bacterial cell clones with a plasmid containing a SID® polynucleotide encoding a SID® polypeptide according to any one of claims 7 to 10;
 - b) rescuing prey plasmids containing prey polynucleotides wherein each prey polynucleotide is a DNA fragment from the genome of a desired organism and wherein each prey plasmid is contained in one recombinant yeast cell clone of a collection of recombinant yeast cell clones;
 - c) transforming the recombinant bacterial cell clones obtained in step a) with the plasmids rescued in step b);
 - d) cultivating bacterial recombinant cells obtained in step c) on a selective medium; and
 - e) selecting recombinant cell clones which grow on said selective medium.
 - 21. The bacterial two-hybrid method of claim 20, wherein said method further comprises the step of f) characterising the prey polynucleotide contained in each recombinant cell clone selected at step e).
- 22. The method according to any one of claims 18 to 21, wherein the prey polypeptide is a human polypeptide.
 - 23. The method according to any one of claims 18 to 21, wherein the prey polypeptide is an HCV polypeptide.
- 24. The method of claim 23, wherein the prey polypeptide is encoded by a strain of HCV which is pathogenic for human.
- 25. A set of two nucleic acids consisting of:

5

10

15

20

25

30

35

40

50

- i) a first nucleic acid encoding a SID® polypeptide according to any one of claims 7 to 10; and ii) a second nucleic acid encoding a prey polypeptide which binds specifically with the SID® polypeptide defined
- in a second nucleic acid encoding a prey polypeptide which binds specifically with the SID® polypeptide defined in i).
- 26. A set of two nucleic acids which is selected from the group consisting of the following sets:
- SEQ ID N°77/SEQ ID N°1; SEQ ID N°78/SEQ ID N°2; SEQ ID N°78/SEQ ID N°3; SEQ ID N°79/SEQ ID N°4; SEQ ID N°80/SEQ ID N°5; SEQ ID N°81/SEQ ID N°6; SEQ ID N°82/SEQ ID N°7; SEQ ID N°83/SEQ ID N°8; SEQ ID N°84/SEQ ID N°9; SEQ ID N°85/SEQ ID N°10; SEQ ID N°86/SEQ ID N°11; SEQ ID N°87/SEQ ID N°12; SEQ ID N°88/SEQ ID N°13; SEQ ID N°89/SEQ ID N°14; SEQ ID N°90/SEQ ID N°15; SEQ ID N°91/SEQ ID N°16; SEQ ID N°92/SEQ ID N°17; SEQ ID N°93/SEQ ID N°18; SEQ ID N°94/SEQ ID N°19; SEQ ID N°95/SEQ ID N°20; SEQ ID N°96/SEQ ID N°21; SEQ ID N°97/SEQ ID N°22; SEQ ID N°98/SEQ ID N°23; SEQ ID N°99/SEQ ID N°24; SEQ ID N°100/SEQ ID N°25. SEQ ID N°101/SEQ ID N°26. SEQ ID N°102/SEQ ID N°27; SEQ ID N°103/SEQ ID N°28. SEQ ID N°104/SEQ ID N°29; SEQ ID N°105/SEQ ID N°30; SEQ ID N°106/SEQ ID N°31; SEQ ID N°107/SEQ ID N°32; SEQ ID N°108/SEQ ID N°33; SEQ ID N°109/SEQ ID N°34; SEQ ID N°110/SEQ ID N°35; SEQ ID N°111/SEQ ID N°36; SEQ ID N°112/SEQ ID N°37; and SEQ ID N°113/SEQ ID N°38.
- 45 27. A set of two polypeptides consisting of :
 - i) a first polypeptide consisting of a SID® polypeptide according to any one of claims 7 to 10; and
 - ii) a second polypeptide, also termed prey polypeptide, which binds specifically with the first polypeptide.
 - 28. A set of two polypeptides which is selected from the group consisting of the following sets:
 - SEQ ID N°114/SEQ ID N°39; SEQ ID N°115/SEQ ID N°40; SEQ ID N°115/SEQ ID N°41; SEQ ID N°116/SEQ ID N°42; SEQ ID N°117/SEQ ID N°43; SEQ ID N°118/SEQ ID N°44; SEQ ID N°119/SEQ ID N°45; SEQ ID N°120/SEQ ID N°46; SEQ ID N°121/SEQ ID N°47; SEQ ID N°122/SEQ ID N°48; SEQ ID N°123/SEQ ID N°49; SEQ ID N°124/SEQ ID N°50; SEQ ID N°125/SEQ ID N°51; SEQ ID N°126/SEQ ID N°52; SEQ ID N°127/SEQ ID N°53; SEQ ID N°128/SEQ ID N°54; SEQ ID N°129/SEQ ID N°55; SEQ ID N°130/SEQ ID N°56; SEQ ID N°131/SEQ ID N°57; SEQ ID N°132/SEQ ID N°58; SEQ ID N°133/SEQ ID N°59; SEQ ID N°134/SEQ ID N°60; SEQ ID N°135/SEQ ID N°61; SEQ ID N°136/SEQ ID N°66; SEQ ID N°137/SEQ ID N°67; SEQ ID N°138/SEQ ID N°64; SEQ ID N°139/SEQ ID N°65; SEQ ID N°140/SEQ ID N°66; SEQ ID N°141/SEQ ID N°67; SEQ ID N°142/SEQ ID

N°68; SEQ ID N°143/SEQ ID N°69; SEQ ID N°144/SEQ ID N°70. SEQ ID N°145/SEQ ID N°71; SEQ ID N°146/SEQ ID N°72. SEQ ID N°147/SEQ ID N°73; SEQ ID N°148/SEQ ID N°74; SEQ ID N°149/SEQ ID N°75 and SEQ ID N°150/SEQ ID N°76.

296. A complex formed between the two polypeptides of claim 29 or 30.

5

10

15

20

25

30

35

40

45

. 50

55

- **30.** A method for selecting a molecule which inhibits the binding between a set of two polypeptides according to claim 27 or 28, wherein said method comprises the steps of :
 - a) cultivating a recombinant host cell containing a reporter gene the expression of which is toxic for said recombinant host cell, said host cell being transformed with two vectors wherein:
 - i) the first vector contains a nucleic acid comprising a polynucleotide encoding a first hybrid polypeptide containing one of said two polypeptides and a DNA binding domain;
 - ii) the second vector contains a nucleic acid comprising a polynucleotide encoding a second hybrid polypeptide containing the second of said two polypeptides and an activating domain capable of activating said toxic reporter gene when the first and the second hybrid polypeptides are interacting; on a selective medium containing the molecule to be tested and allowing the growth of said recombinant

host cell when the toxic reporter gene is not activated; and

- b) selecting the molecule which inhibits the growth of the recombinant host cell defined in step a).
- 31. A method for selecting a molecule which inhibits the protein-protein interaction of a set of two polypeptides according to claim 29 or 30, wherein said method comprises the steps of:
 - a) cultivating a recombinant host cell containing a reporter gene the expression of which is toxic for said recombinant host cell, said host cell being transformed with two vectors wherein:
 - i) the first vector contains a nucleic acid comprising a polynucleotide encoding a first hybrid polypeptide containing one of said set of two polypeptides and the first domain of an enzyme;
 - ii) the second vector contains a nucleic acid comprising a polynucleotide encoding a second hybrid polypeptide containing the second of said two polypeptides and the second part of said enzyme capable of activating said toxic reporter gene when the first and the second hybrid polypeptides are interacting, said interaction recovering the catalytic activity of the enzyme;
 - on a selective medium containing the molecule to be tested and allowing the growth of said recombinant host cell when the toxic gene is not activated; and
 - b) selecting the molecule which inhibits the growth of the recombinant host cell defined in step a).
- 32. A kit for the screening of a molecule which inhibits the protein-protein interaction of a set of two polypeptides according to claim 27 or 28, wherein said kit comprises a recombinant cell host containing a reporter gene the expression of which is toxic for said recombinant cell host, said cell host being transformed with two vectors wherein:
 - i) the first vector contains a nucleic acid comprising a polynucleotide encoding a first hybrid polypeptide containing one of said two polypeptides and a DNA binding domain;
 - ii) the second vector contains a nucleic acid comprising a polynucleotide encoding a second hybrid polypeptide containing the second of said two polypeptides and an activating domain capable of activating said toxic reporter gene when the first and the second hybrid polypeptides are interacting
- 33. A kit for the screening of a molecule which inhibits the protein-protein interaction of a set of two polypeptides according to claim 27 or 28, wherein said kit comprises a recombinant host cell containing a reporter gene the expression of which is toxic for said recombinant host cell, said host cell being transformed with two plasmids wherein:
 - i) the first vector contains a nucleic acid comprising a polynucleotide encoding a first hybrid polypeptide containing one of said two polypeptides and the first domain of an enzyme;
 - ii) the second plasmid contains a nucleic acid comprising a polynucleotide encoding a second hybrid polypep-

tide containing the second of said two polypeptides and the second part of said enzyme capable of activating said toxic reporter gene when the first and the second hybrid polypeptides are interacting, said interaction recovering the catalytic activity of the enzyme.

- 34. A marker compound wherein said compound comprises:
 - a) a Selected Interacting Domain (SID®) polypeptide according to any one of claims 7 to 10 or a variant thereof; and
 - b) a detectable molecule bound thereto.

5

10

15

20

30

35

40

- 35. The marker compound of claim 34, wherein the detectable molecule consists of a fluorescent protein.
- **36.** The marker compound of claim 35, wherein the detectable protein is selected from the group consisting of GFP and YFP.
- 37. The marker compound of claim 35, wherein the detectable molecule is endowed with a catalytic activity.
- **38.** The marker compound of claim 37, wherein the detectable molecule is selected from the group consisting of a hydrolase, a transferase, a lyase, an isomerase, a ligase, a synthetase and a oxidoreductase.
- 39. The marker compound of claim 34, wherein the detectable molecule is radioactive.
- 40. The marker compound of claim 34, wherein the detectable molecule is chemiluminescent.
- 41. The marker compound according to any one of claims 34 to 40, wherein the detectable molecule is covalently bound to the Selected Interacting Domain (SID®) polypeptide or a variant thereof.
 - **42.** The marker compound according to any one of claims 34 to 40, wherein the detectable molecule is non covalently bound to the Selected Interacting Domain (SID®) polypeptide or a variant thereof.
 - **43.** The marker compound of claim 42, wherein the detectable molecule is an antibody directed specifically against the Selected Interacting Domain (SID®) polypeptide.
 - 44. The marker compound of claim 43, wherein said antibody is labelled radioactively or non radioactively.
 - 45. The marker compound according to claim 34, wherein:
 - a) the Selected Interacting Domain (SID®) polypeptide or a variant thereof is covalently bound to a first ligand.; and
 - b) the detectable molecule comprises a second ligand which binds specifically to the first ligand.
 - **46.** The marker compound according to claim 45, wherein the first ligand is biotin and the second ligand is streptavidin.
- 45 47. A nucleic acid encoding a marker compound according to any one of claims 34 to 41.
 - **48.** A nucleic acid encoding the Selected Interacting Domain (SID®) polypeptide or a variant thereof onto which is covalently bound a first ligand defined in claims 45 and 46.
- 496. A recombinant vector comprising inserted therein a nucleic acid according to any one of claims 47 and 48.
 - **50**. The recombinant vector according to claim 48, which is selected from the group consisting of pACTIIst, pASΔΔ, pT25, pKT25, pUT18, pUT18C, pP6 and pB5..
 - **51.** A recombinant host cell which has been transfected with a nucleic acid according to any one of claims 47 and 48 or a recombinant vector according to any one of claims 43 and 44.
 - 52. The recombinant host cell according to claim 51 which is of prokaryotic origin.

- 53. The recombinant host cell according to claim 51 which is of eukaryotic origin.
- 54. The recombinant host cell according to claim 52 which is a mammalian host cell.
- 53. A method for detecting a polypeptide of interest within a sample, which comprises the steps of:
 - a) contacting a marker compound or a plurality of marker compounds according to any one of claims 34 to 46 with the sample;
 - b) detecting the complexes formed between said marker compound or said plurality of marker compounds and said polypeptide of interest.
 - **56.** A kit for detecting a polypeptide of interest within a sample, which comprises a marker compound according to any one of claims 34 to 46.
- 57. A method for detecting a polypeptide of interest within a prokaryotic or an eukaryotic host cell, said method comprising the steps of:
 - a) providing a cell host to be assayed;

5

10

15

20

25

30

35

40

45

50

- b) transfecting said host cell with a nucleic acid according to any one of claims 41 and 42 or with a recombinant vector according to any one of claims 496 and 50;
- c) detecting the complexes formed between the marker compound expressed by the transfected cell host and the polypeptide of interest.
- **58.** A kit for detecting a polypeptide of interest within a prokaryotic or an eukaryotic host cell which comprises a nucleic acid according to any one of claims 47 and 48 or a recombinant vector according to any one of claims 496 and 50.
- **59**. A method for detecting a polypeptide of interest within a prokaryotic or eukaryotic host cell, said method comprising the steps of :
 - a) providing a cell host to be assayed;
 - b) introducing a marker compound according to any one of claims 36 to 48 within said cell host;
 - c) detecting the complexes formed between the marker compound and the polypeptide of interest within the
- **60.** A kit for detecting a polypeptide of interest within a prokaryotic or eukaryotic host cell comprising a marker compound according to any one of claims 34 to 46.
- **61.** A method for detecting a polypeptide or a plurality of polypeptides of interest within a sample, wherein said method comprises the steps of :
 - a) providing a substrate onto which a Selected Interacting Domain (SID®) polypeptide according to any one of claims 7 to 10 or a variant thereof, or a plurality of Selected Interacting Domain (SID®) polypeptides according to any one of claims 7 to 10 or variants thereof is (are) immobilised;
 - b) bringing into contact the substrate defined in a) with the sample to be assayed;
 - c) detecting the complexes formed between the Selected Interacting Domain (SID®) polypeptides or variants thereof or a variant thereof, or the plurality of Selected Interacting Domain (SID®) polypeptide and a molecule or a plurality of molecules initially contained in the sample;
- **62.** The method of claim 61, wherein a plurality of Selected Interacting Domain (SID®) polypeptides or variants thereof are immobilised on the substrate in an ordered manner.
- 63. The method of claim 61, wherein the Selected Interacting Domain (SID®) polypeptide or a variant thereof, or the plurality of Selected Interacting Domain (SID®) polypeptides or variants thereof are covalently bound to the substrate.
- **64**. The method of claim 61, wherein the Selected Interacting Domain (SID®) polypeptide or a variant thereof, or the plurality of Selected Interacting Domain (SID®) polypeptides or a variant thereof are non-covalently bound to

the substrate.

5

20

25

30

35

40

45

- **65.** The method of claim 61, wherein the Selected Interacting Domain (SID®) polypeptide or a variant thereof, or the plurality of Selected Interacting Domain (SID®) polypeptides or variants thereof are covalently bound to a first ligand and wherein the substrate is coated with a second ligand which specifically binds to the first ligand.
- 66. The method of claim 61, wherein the first ligand is biotin and the second ligand is streptavidin.
- 67. The method according to any one of claims 61 to 66, wherein the Selected Interacting Domain (SID®) polypeptide or a variant thereof, or the plurality of Selected Interacting Domain (SID®) polypeptides or variants thereof
 are covalently linked to a spacer and wherein said spacer is covalently bound to the substrate in order to immobilise
 the Selected Interacting Domain (SID®) polypeptide, or a variant thereof or the plurality of Selected Interacting
 Domain (SID®) polypeptides.
- 68. The method according to any one of claims 61 to 66 wherein the detection step c) consists of detecting changes in optical characteristics of the substrate.
 - **69.** A device for the detection of a polypeptide or a plurality of polypeptides of interest within a sample, wherein said device comprises a substrate onto which a Selected Interacting Domain (SID®) polypeptide according to any one of claims 7 to 10 or a variant thereof or a plurality of Selected Interacting Domain (SID®) polypeptides according to any one of claims 7 to 10 or variants thereof is (are) immobilised.
 - **70.** A pharmaceutical composition comprising a pharmaceutically effective amount of a nucleic acid comprising a polynucleotide encoding a Selected Interacting Domain (SID®) polypeptide according to any one of claims 7 to 10 or a variant thereof.
 - 71. A method for preventing or curing a viral infection by a Hepatitis C virus in a human or an animal, wherein said method comprises a step of administering to the human or animal body a pharmaceutically effective amount of a Selected Interacting Domain (SID®) polypeptide according to any ine of claims 7 to 10.
 - 72. A method for preventing or curing a viral infection by a Hepatitis C virus in a human or an animal, wherein said method comprises a step of administering to the human or animal body a pharmaceutically effective amount of a nucleic acid comprising a polynucleotide encoding a Selected Interacting Domain (SID®) polypeptide according to any one of claims 7 to 10, and wherein said polynucleotide is placed under the control of regulatory sequence which is functional in said human or said animal.
 - 73. A method for preventing or curing a viral or a bacterial infection in a human or an animal, wherein said method comprises a step of administering to the human or animal body a pharmaceutically effective amount of a recombinant expression vector comprising a polynucleotide encoding a Selected Interacting Domain (SID®) polypeptide according to any one of claims 7 to 10.
 - 74. A method for selecting a SID® polypeptide comprising the steps of :
 - 1) Selecting a collection of nucleic acids (prey nucleic acids) which bind specifically to a given bait polypeptide of interest; and
 - 2) determining the nucleic acid sequences which encode for SID® polypeptides after having generated sets of polynucleotides from the collection of nucleic acids selected at step 1).
- 75. The method of claim 74, wherein step 1) consists of a yeast two-hybrid method or a bacterial two-hybrid method.
 - 76. The method of claim 74, wherein step 2) comprises the following steps of:
 - a) selecting from the collection of prey polynucleotides obtained at the end of step 1) all prey polynucleotides encoding a prey polypeptide capable of interacting with said bait polypeptide and containing a common nucleic acid fragment;
 - b) aligning the nucleotide sequences of the prey polynucleotides selected at step a) and gathering in one set or in a plurality of sets of sequences those nucleotide sequences which have sequences that overlap for more

than 30% of their respective nucleic acid length, wherein each common overlapping nucleotide sequence in one set of sequences defines a sequence encoding a pre-SID® polypeptide; and

- c) aligning two sequences encoding two respective pre-SID® polypeptides, and:
 - (i) defining an overlapping nucleic acid sequence between the sequences encoding the two respective pre-SID® polypeptides as a sequence encoding a SID® polypeptide, provided that the overlapping sequence is of at least 30 nucleotides in length;
 - ii) defining a non-overlapping nucleic acid sequence between the sequences encoding the two respective pre-SID® polypeptides as a sequence encoding a SID® polypeptide, provided that (1) said non-overlapping sequence has more than 30 nucleotides in length and (2) said non-overlapping sequence represents at least 30% in length of any one of the polynucleotides contained in the set of prey polynucleotides used for defining the sequence encoding each pre-SID® polypeptide.
- 77. The method of claim 76 wherein step 2) further comprises the steps of :

5

10

15

20

25

30

35

40

50

- d) counting the number of overlapping prey polynucleotides contained in a first set of polynucleotides defining a sequence encoding a first SID® polypeptide;
- e) counting the number of overlapping prey polynucleotides contained in a second set of polynucleotides defining a sequence encoding a second SID® polypeptide which overlaps with the sequence encoding the first SID® polypeptide;
- f) determining which sequence among those encoding respectively the first SID® polypeptide and the second SID® polypeptide has been defined with the largest number of prey polynucleotides and selecting this set of prey sequences;
- g) adding to the set of prey sequences selected at step f) those sequences that were contained in the set of prey sequences used for defining the sequence encoding the SID® polypeptide with the smallest number of prey sequences and which overlap with the sequence encoding the SID® polypeptide with the largest number of prey sequences;
- h) aligning the prey sequences added at step g) with the sequences already contained in the set of prey sequences which defined the sequence encoding the SID® polypeptide with the largest number of prey sequences;
- i) defining an overlapping sequence between the whole sequences which were aligned in step h), wherein said overlapping sequence consists of a sequence encoding a SID® polypeptide.
- **78.** The method according to any one of claims 74 to 76, wherein the collection of prey nucleic acids is prepared starting from the genomic DNA of an organism containing contiguous Open Reading Frames.
- 79. The method according to claim 78, wherein said organism is a virus.
- 80. The method according to claim 79, wherein the virus consists of the Hepatitis C virus.
- 81. The method according to claim 80, wherein the Hepatitis C virus is pathogenic for a mammal, including human.
- 82. A SID® nucleic acid selected according to the method of any one of claims 74 to 81.
- **83.** A SID® polypeptide encoded by a nucleic acid according to claim 82.

FIGURE 1

FIGURE 2

FIGURE 3

FIGURE 8

FIGURE 9

FIGURE 10

FIGURE 11

FIGURE 12

FIGURE 13

PARTIAL EUROPEAN SEARCH REPORT

Application Number

which under Rule 45 of the European Patent Convention EP 00 40 2225 shall be considered, for the purposes of subsequent proceedings, as the European search report

Category	Citation of document with of relevant pas	Indication, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CL7)	
	FLAJOLET M, ROTOND BERGAMETTI F, INCH	O G, DAVIET L, AUSPE G, TIOLLAIS P, P: "A genomic approach virus generates a n map." 000-01-25), pages	74-83	C12N15/62 C07K14/18 C12N5/19	
x	EP 1 018 558 A (GEI 12 July 2000 (2000- * the whole documen	NELABS TECH INC) -07-12) nt *	4,5,7,8		
A	WO 96 05315 A (US A 22 February 1996 (1 * the whole documen	HEALTH) 1996-02-22) nt *	1,4		
				TECHNICAL FIELDS SEARCHED (Int.CL7)	
				C07K	
INCOM	PLETE SEARCH		L		
The Search not comply be carried o Claims sear	Division considers that the present with the EPC to such an extent that with or can only be carried out partial rched completely:	application, or one or more of its claims, does a meaningful search into the state of the art or ly, for these claims.	dio nnot		
	the limitation of the search: Sheet C				
				·	
	Place of search THE HAGUE	Date of completion of the search 14 February 2001	CHAN	Examiner 1BONNET, F	
CAT X : particu	EGORY OF CITED DOCUMENTS starty relevant if taken atoms (arry relevant if oombined with anoth	T : theory or principle E : earlier patent doct after the filling date or D : document ched in	T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filling date D: document ched in the application L: document ched for other reasons		

118

INCOMPLETE SEARCH SHEET C

Application Number EP 00 40 2225

Although claims 71 to 73 are directed to a method of treatment of the human/animal body (Article 52(4) EPC), the search has been carried out and based on the alleged effects of the compound/composition.

Claim(s) searched incompletely: 26, 28

Reason for the limitation of the search:

The numerotation of the pairing sets of respectively nucleic acids and polypeptides given in the claims 26 and 28 are only corresponding for the six first sets to the data of the description given in table 1. Therefore a meaningful exhaustive formulation of the inventions 7 to 38 was not possible. It could be supposed that the number 7 is missing in the last column of this table 1, leading to a last aminoacid sequence SEQ ID 39 corresponding in fact to the nucleic acid sequence encoding SID peptide SEQ ID NO 1 following the sequence listing.

The right numerotation of claim 296 seemed obviously been claim 29 and the search report and supplemental sheet B were written taking into account this correction.

Comparatively, claims 57 and 58 were read as referring to claim 49 instead of the oviuosly wrong 496.

Application Number

EP 00 40 2225

CLAIMS INCURRING FEES
The present European patent application comprised at the time of filing more than ten claims.
Only part of the claims have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims and for those claims for which claims fees have been paid, namely claim(s):
No claims fees have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims.
LACK OF UNITY OF INVENTION
The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:
see sheet B
All further search fees have been paid within the fixed time limit. The present European search report has been drawn up for all claims.
As all searchable claims could be searched without effort justifying an additional fee, the Search Division did not invite payment of any additional fee.
Only part of the further search fees have been pald within the fixed time fimit. The present European search report has been drawn up for those parts of the European patent application which relate to the inventions in respect of which search fees have been paid, namely claims:
·
None of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the invention first mentioned in the claims, namely claims:
see sheet B invention group 1.

LACK OF UNITY OF INVENTION SHEET B

Application Number EP 00 40 2225

The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:

1. Claims: Invention 1: Partially 1-83

Invention 1: A nucleic acid which encodes a so named SID polypeptide of amino acid sequence SEQ ID No 1 or a variant thereof, or a fragment of at least 45 aminoacids, or consisting of the sequence SEQ ID No 39; a SID polypeptide of the amino acid sequence SEQ ID No 1 or a variant thereof, or a fragment of at least 45 aminoacids; an antibody directed against said polypeptide; a recombinant vector containing such a nucleic acid; a cell host transformed with said vector; a method of producing said polypeptide by cultivating said cell host; a yeast two-hybrid system method for selecting a recombinant cell clone containing a vector comprising a nucleic acid insert encoding a prey polypeptide which binds with said SID polypeptide; a bacterial two-hybrid system method for identifying a recombinant cell clone containing a prey polynucleotide encoding a prey polypeptide which binds with said SID polypeptide; a set of two nucleic acids consisting of i) a first nucleic acid encoding the SID polypeptide of SEQ ID No 1 or a variant or a fragment of at least 45 amino acids thereof ii) a second nucleic acid encoding a prey polypeptide which binds specifically to said SID polypeptide, particularly SEQ ID No 77; a set of two polypeptides consisting of i) said SID polypeptide of SEQ ID No 1 or a variant or a fragment of at least 45 amino acids thereof ii) a second prey polypeptide which binds specifically to said SID polypeptide, particuliarly SEQ ID No. 114; a method for selecting a molecule which inhibits the binding between said set of two polypeptides; a kit for the screening of a molecule which inhibits the protein-protein interaction of said set of two polypeptides; a marker compound comprising a) said SID polypeptide and b) a detectable molecule bound thereto; a nucleic acid encoding said marker compound, a vector or a host cell comprising it; a method, a kit or a device for detecting at least a polypeptide of interest using said marker compound; a pharmaceutical composition comprising a nucleic acid comprising a polynucleotide encoding said SID polypeptide; a method for preventing or curing an infection using said nucleic acid; a method for selecting a SID polypeptide comprising the steps of 1) selecting a collection of nucleic acids (prey nucleic acids) which binds specifically to a given bait polypeptide of interest; and 2) determining the nucleic acid sequences which encode said SID polypeptides.

2. Claims: Inventions 2 to 38 : Partially 1-83

Inventions 2 to 38:

EP 1 178 116 A9 (W1A1)

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 00 40 2225

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

14-02-2001

FP	ed in search rep	t iort	Publication date		Patent family member(s)		Publication date
	1018558	Α	12-07-2000	AT	194844	Ť	15-08-20
		• • •		ÄÜ	660925	-	13-07-19
				AU	7743491		30-10-19
				CA	2079912		07-10-19
				DE	69132332		24-08-20
				DE	69132332		30-11-20
				EP	0527815		24-02-19
				ΪĒ	911173		09-10-19
				ŔŔ	217483		01-09-19
				NZ	237740		25-09-19
				WO	9115516		17-10-19
				ÜS	5538865		23-07-199
			•	US	5843636		01-12-199
				US	5843639	• •	01-12-199
				US	5443965		22-08-199
				US	543631B		25-07-199
				ZA	9102581		24-12-199
				PT	9102381		31-01-199
					7/420	М, Б	21-01-13
WO	9605315	A	22-02-1996	US	5882852		16-03-199
				AU	712385	В	04-11-199
				AU	3406595		07-03-199
				CA	2197569		22-02-199
				, EP	0779924	Α	25-06-199

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82