Lecture 3: Model-Free Policy Evaluation: Policy Evaluation Without Knowing How the World Works¹

Emma Brunskill

CS234 Reinforcement Learning

Winter 2020

¹Material builds on structure from David SIlver's Lecture 4: Model-Free Prediction. Other resources: Sutton and Barto Jan 1 2018 draft Chapter/Sections: 5.1; 5.5; 6:1-6:3.

Refresh Your Knowledge 2 [Piazza Poll]

- What is the max number of iterations of policy iteration in a tabular MDP?
 - |A||S
 - $|S|^{|A|}$
 - (3) |A||S|
 - Unbounded
 - On the sure of the sure of
- In a tabular MDP asymptotically value iteration will always yield a policy with the same value as the policy returned by policy iteration
 - True.
 - Palse
 - On Not sure
- Can value iteration require more iterations than $|A|^{|S|}$ to compute the optimal value function? (Assume |A| and |S| are small enough that each round of value iteration can be done exactly).
 - True.
 - Palse
 - Not sure

Refresh Your Knowledge 2

- What is the max number of iterations of policy iteration in a tabular MDP? Answer: $|A|^{|S|}$: There are only $|A|^{|S|}$ policies in a tabular MDP and each policy can only be considered at most once, since policy improvement either results in a policy with a higher value or returns the same policy if the optimal policy has been found.
- Can value iteration require more iterations than $|A|^{|S|}$ to compute the optimal value function? (Assume |A| and |S| are small enough that each round of value iteration can be done exactly).
 - Answer. True. Both are guaranteed to converge to the optimal value function and a policy with an optimal value
- In a tabular MDP asymptotically value iteration will always yield a policy with the same value as the policy returned by policy iteration Answer: True. As an example, consider a single state, single action MDP where $r(s,a)=1,\ \gamma=.9$ and initialize $V_0(s)=0.\ V^*(s)=\frac{1}{1-\gamma}$ but after the first iteration of value iteration, $V_1(s)=1.$

Today's Plan

- Last Time:
 - Markov reward / decision processes
 - Policy evaluation & control when have true model (of how the world works)
- Today
 - Policy evaluation without known dynamics & reward models
- Next Time:
 - Control when don't have a model of how the world works

This Lecture: Policy Evaluation

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Dynamic programming
- Monte Carlo policy evaluation
 - Policy evaluation when don't have a model of how the world work
 - Given on-policy samples
- Temporal Difference (TD)
- Metrics to evaluate and compare algorithms

Recall

- Definition of Return, G_t (for a MRP)
 - Discounted sum of rewards from time step t to horizon

$$G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$$

- Definition of State Value Function, $V^{\pi}(s)$
 - ullet Expected return from starting in state s under policy π

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s] = \mathbb{E}_{\pi}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots |s_t = s]$$

- Definition of State-Action Value Function, $Q^{\pi}(s, a)$
 - \bullet Expected return from starting in state s, taking action a and then following policy π

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi}[G_t | s_t = s, a_t = a]$$

= $\mathbb{E}_{\pi}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots | s_t = s, a_t = a]$

◆ロト ◆母 ト ◆ 豊 ト ◆ 豊 ・ 夕 Q ②

Dynamic Programming for Evaluating Value of Policy π

- Initialize $V_0^{\pi}(s) = 0$ for all s
- For k = 1 until convergence
 - For all s in S

$$V_k^{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{s' \in S} p(s'|s, \pi(s)) V_{k-1}^{\pi}(s')$$

- ullet $V_k^\pi(s)$ is exact value of k-horizon value of state s under policy π
- ullet $V_k^\pi(s)$ is an estimate of infinite horizon value of state s under policy π

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s] \approx \mathbb{E}_{\pi}[r_t + \gamma V_{k-1}|s_t = s]$$

Emma Brunskill (CS234 Reinforcement Learn Lecture 3: Model-Free Policy Evaluation: Po

$$V^{\pi}(s) \leftarrow \mathbb{E}_{\pi}[r_t + \gamma V_{k-1} | s_t = s]$$

$$V^{\pi}(s) \leftarrow \mathbb{E}_{\pi}[r_t + \gamma V_{k-1} | s_t = s]$$

$$V^{\pi}(s) \leftarrow \mathbb{E}_{\pi}[r_t + \gamma V_{k-1} | s_t = s]$$

$$V^{\pi}(s) \leftarrow \mathbb{E}_{\pi}[r_t + \gamma V_{k-1} | s_t = s]$$

$$V^{\pi}(s) \leftarrow \mathbb{E}_{\pi}[r_t + \gamma V_{k-1} | s_t = s]$$

= Expectation

ullet Bootstrapping: Update for V uses an estimate

▶ 4個 > 4 種 > 4 種 > ■ 9 Q C

$$V^{\pi}(s) \leftarrow \mathbb{E}_{\pi}[r_t + \gamma V_{k-1} | s_t = s]$$

ullet Bootstrapping: Update for V uses an estimate

> **↑** □ **> ↑** □ **> ↑** □ **> ↑** ○ **Q** (*)

Policy Evaluation: $V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s]$

- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$ in MDP M under policy π
- Dynamic Programming
 - $V^{\pi}(s) \approx \mathbb{E}_{\pi}[r_t + \gamma V_{k-1}|s_t = s]$
 - Requires model of MDP M
 - Bootstraps future return using value estimate
 - Requires Markov assumption: bootstrapping regardless of history
- What if don't know dynamics model P and/ or reward model R?
- Today: Policy evaluation without a model
 - Given data and/or ability to interact in the environment
 - \bullet Efficiently compute a good estimate of a policy π
- For example: Estimate expected total purchases during an online shopping session for a new automated product recommendation policy

This Lecture Overview: Policy Evaluation

- Dynamic Programming
- Evaluating the quality of an estimator
- Monte Carlo policy evaluation
 - Policy evaluation when don't know dynamics and/or reward model
 - Given on policy samples
- Temporal Difference (TD)
- Metrics to evaluate and compare algorithms

Monte Carlo (MC) Policy Evaluation

- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$ in MDP M under policy π
- $V^{\pi}(s) = \mathbb{E}_{T \sim \pi}[G_t | s_t = s]$
 - \bullet Expectation over trajectories T generated by following π
- Simple idea: Value = mean return
- If trajectories are all finite, sample set of trajectories & average returns

Monte Carlo (MC) Policy Evaluation

- If trajectories are all finite, sample set of trajectories & average returns
- Does not require MDP dynamics/rewards
- No bootstrapping
- Does not assume state is Markov
- Can only be applied to episodic MDPs
 - Averaging over returns from a complete episode
 - Requires each episode to terminate

Monte Carlo (MC) On Policy Evaluation

- Aim: estimate $V^{\pi}(s)$ given episodes generated under policy π
 - $s_1, a_1, r_1, s_2, a_2, r_2, \ldots$ where the actions are sampled from π
- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$ in MDP M under policy π
- $V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s]$
- MC computes empirical mean return
- Often do this in an incremental fashion
 - ullet After each episode, update estimate of V^π

First-Visit Monte Carlo (MC) On Policy Evaluation

Initialize
$$N(s) = 0$$
, $G(s) = 0 \ \forall s \in S$ Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots + \gamma^{T_i-1} r_{i,T_i}$ as return from time step t onwards in ith episode
- For each state s visited in episode i
 - For **first** time *t* that state *s* is visited in episode *i*
 - Increment counter of total first visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$

Bias, Variance and MSE

- Consider a statistical model that is parameterized by θ and that determines a probability distribution over observed data $P(x|\theta)$
- Consider a statistic $\hat{\theta}$ that provides an estimate of θ and is a function of observed data x
 - E.g. for a Gaussian distribution with known variance, the average of a set of i.i.d data points is an estimate of the mean of the Gaussian
- Definition: the bias of an estimator $\hat{\theta}$ is:

$$\mathit{Bias}_{ heta}(\hat{ heta}) = \mathbb{E}_{\mathsf{x}| heta}[\hat{ heta}] - heta$$

• Definition: the variance of an estimator $\hat{\theta}$ is:

$$Var(\hat{\theta}) = \mathbb{E}_{x|\theta}[(\hat{\theta} - \mathbb{E}[\hat{\theta}])^2]$$

 \bullet Definition: mean squared error (MSE) of an estimator $\hat{\theta}$ is:

$$MSE(\hat{\theta}) = Var(\hat{\theta}) + Bias_{\theta}(\hat{\theta})^{2}$$

First-Visit Monte Carlo (MC) On Policy Evaluation

Initialize
$$N(s) = 0$$
, $G(s) = 0 \ \forall s \in S$
Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots + \gamma^{T_i-1} r_{i,T_i}$ as return from time step t onwards in ith episode
- For each state s visited in episode i
 - For **first** time *t* that state *s* is visited in episode *i*
 - Increment counter of total first visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$

Properties:

- ullet V^{π} estimator is an unbiased estimator of true $\mathbb{E}_{\pi}[G_t|s_t=s]$
- ullet By law of large numbers, as $N(s) o \infty$, $V^\pi(s) o \mathbb{E}_\pi[G_t|s_t=s]$

Every-Visit Monte Carlo (MC) On Policy Evaluation

Initialize
$$N(s)=0$$
, $G(s)=0$ $\forall s\in S$ Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots + \gamma^{T_i-1} r_{i,T_i}$ as return from time step t onwards in ith episode
- For each state s visited in episode i
 - For **every** time t that state s is visited in episode i
 - Increment counter of total first visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$

Every-Visit Monte Carlo (MC) On Policy Evaluation

Initialize
$$N(s)=0$$
, $G(s)=0$ $\forall s\in S$ Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots + \gamma^{T_i-1} r_{i,T_i}$ as return from time step t onwards in ith episode
- For each state s visited in episode i
 - For **every** time t that state s is visited in episode i
 - Increment counter of total first visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$

Properties:

- ullet V^{π} every-visit MC estimator is a **biased** estimator of V^{π}
- But consistent estimator and often has better MSE

Worked Example First Visit MC On Policy Evaluation

Initialize N(s)=0, G(s)=0 $\forall s\in S$ Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i-1} r_{i,T_i}$
- For each state *s* visited in episode *i*
 - For first time t that state s is visited in episode i
 - N(s) = N(s) + 1, $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$
- Mars rover: $R = [1 \ 0 \ 0 \ 0 \ 0 \ +10]$ for any action
- $\pi(s) = a_1 \ \forall s, \ \gamma = 1$. any action from s_1 and s_7 terminates episode
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, terminal)$

Worked Example MC On Policy Evaluation

Initialize N(s)=0, G(s)=0 $\forall s\in S$ Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i-1} r_{i,T_i}$
- For each state s visited in episode i
 - For first or every time t that state s is visited in episode i
 - N(s) = N(s) + 1, $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$
- Mars rover: R = [100001 + 10] for any action
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, terminal)$
- Let $\gamma = 1$. First visit MC estimate of V of each state? $V = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$
- Now let $\gamma = 0.9$. Compare the first visit & every visit MC estimates of s_2 . First visit: $V^{MC}(s_2) = \gamma^2$, Every visit: $V^{MC}(s_2) = \frac{\gamma^2 + \gamma}{2}$

Incremental Monte Carlo (MC) On Policy Evaluation

After each episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots$

- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots$ as return from time step t onwards in ith episode
- For state s visited at time step t in episode i
 - Increment counter of total first visits: N(s) = N(s) + 1
 - Update estimate

$$V^{\pi}(s) = V^{\pi}(s) \frac{N(s) - 1}{N(s)} + \frac{G_{i,t}}{N(s)} = V^{\pi}(s) + \frac{1}{N(s)} (G_{i,t} - V^{\pi}(s))$$

Check Your Understanding: Piazza Poll Incremental MC

First or Every Visit MC

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i-1} r_{i,T_i}$
 - For all s, for **first or every** time t that state s is visited in episode i
 - N(s) = N(s) + 1, $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$

Incremental MC

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i-1} r_{i,T_i}$
- for i = 1 : H
 - $V^{\pi}(s_i) = V^{\pi}(s_i) + \alpha(G_{i,t} V^{\pi}(s_i))$
- **1** Incremental MC with $\alpha = 1$ is the same as first visit MC
- ② Incremental MC with $\alpha = \frac{1}{N(s)}$ is the same as first visit MC
- **3** Incremental MC with $\alpha = \frac{1}{N(s)}$ is the same as every visit MC
- Incremental MC with $\alpha > \frac{1}{N(s)}$ could be helpful in non-stationary domains

Check Your Understanding: Piazza Poll Incremental MC

First or Every Visit MC

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i-1} r_{i,T_i}$
 - For all s, for **first or every** time t that state s is visited in episode i
 - N(s) = N(s) + 1, $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$

Incremental MC

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i-1} r_{i,T_i}$
- for i = 1 : H
 - $V^{\pi}(s_i) = V^{\pi}(s_i) + \alpha(G_{i,t} V^{\pi}(s_i))$

Correct answers: Incremental MC with $\alpha=\frac{1}{N(s)}$ is the same as every visit MC. Incremental MC with $\alpha>\frac{1}{N(s)}$ could be helpful in non-stationary domains, because it weighs more recent data more heavily than past data

MC Policy Evaluation

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(G_{i,t} - V^{\pi}(s))$$

= Expectation

□ = Terminal state

MC Policy Evaluation

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(G_{i,t} - V^{\pi}(s))$$

MC updates the value estimate using a **sample** of the return to approximate an expectation

= Expectation

□ = Terminal state

Monte Carlo (MC) Policy Evaluation Key Limitations

- Generally high variance estimator
 - Reducing variance can require a lot of data
 - In cases where data is very hard or expensive to acquire, or the stakes are high, MC may be impractical
- Requires episodic settings
 - ullet Episode must end before data from episode can be used to update V

Monte Carlo (MC) Policy Evaluation Summary

- ullet Aim: estimate $V^\pi(s)$ given episodes generated under policy π
 - $s_1, a_1, r_1, s_2, a_2, r_2, \ldots$ where the actions are sampled from π
- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$ under policy π
- $V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s]$
- Simple: Estimates expectation by empirical average (given episodes sampled from policy of interest)
- ullet Updates V estimate using **sample** of return to approximate the expectation
- No bootstrapping
- Does not assume Markov process
- Converges to true value under some (generally mild) assumptions

This Lecture: Policy Evaluation

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Dynamic programming
- Monte Carlo policy evaluation
 - Policy evaluation when don't have a model of how the world work
 - Given on-policy samples
- Temporal Difference (TD)
- Metrics to evaluate and compare algorithms

Temporal Difference Learning

- "If one had to identify one idea as central and novel to reinforcement learning, it would undoubtedly be temporal-difference (TD) learning." – Sutton and Barto 2017
- Combination of Monte Carlo & dynamic programming methods
- Model-free
- Bootstraps and samples
- Can be used in episodic or infinite-horizon non-episodic settings
- Immediately updates estimate of V after each (s, a, r, s') tuple

Temporal Difference Learning for Estimating V

- Aim: estimate $V^{\pi}(s)$ given episodes generated under policy π
- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$ in MDP M under policy π
- $V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s]$
- Recall Bellman operator (if know MDP models)

$$B^{\pi}V(s) = r(s,\pi(s)) + \gamma \sum_{s' \in S} p(s'|s,\pi(s))V(s')$$

• In incremental every-visit MC, update estimate using 1 sample of return (for the current *i*th episode)

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(G_{i,t} - V^{\pi}(s))$$

• Insight: have an estimate of V^{π} , use to estimate expected return

$$V^{\pi}(s) = V^{\pi}(s) + \alpha([r_t + \gamma V^{\pi}(s_{t+1})] - V^{\pi}(s))$$

Temporal Difference [TD(0)] Learning

- Aim: estimate $V^{\pi}(s)$ given episodes generated under policy π
 - $s_1, a_1, r_1, s_2, a_2, r_2, \dots$ where the actions are sampled from π
- Simplest TD learning: update value towards estimated value

$$V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} - V^{\pi}(s_t))$$

TD error:

$$\delta_t = r_t + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t)$$

- Can immediately update value estimate after (s, a, r, s') tuple
- Don't need episodic setting

Temporal Difference [TD(0)] Learning Algorithm

Input:
$$\alpha$$

Initialize $V^{\pi}(s)=0$, $\forall s \in S$
Loop

- Sample **tuple** (s_t, a_t, r_t, s_{t+1})
- $V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} V^{\pi}(s_t))$

Worked Example TD Learning

Input: α Initialize $V^{\pi}(s)=0$, $\forall s\in S$ Loop

- Sample **tuple** (s_t, a_t, r_t, s_{t+1})
- $V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} V^{\pi}(s_t))$

Example:

- \bullet Mars rover: R = [1 0 0 0 0 0 +10] for any action
- $\pi(s) = a_1 \ \forall s, \ \gamma = 1$. any action from s_1 and s_7 terminates episode
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, terminal)$
- First visit MC estimate of V of each state? [1 1 1 0 0 0 0]
- TD estimate of all states (init at 0) with $\alpha = 1$? V = [1 0 0 0 0 0 0 0]

Check Your Understanding: Piazza Poll Temporal Difference [TD(0)] Learning Algorithm

Input: α Initialize $V^{\pi}(s) = 0$, $\forall s \in S$ Loop

- Sample **tuple** (s_t, a_t, r_t, s_{t+1})
- $V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} V^{\pi}(s_t))$

Select all that are true [clarified "recent experience" to "current TD target"]

- **1** If $\alpha = 0$ TD will value the current TD target more
- 2 If $\alpha = 1$ TD will value the current TD target exclusively
- § If $\alpha=1$ TD in MDPs where the policy goes through states with multiple possible next states, V may always oscillate
- **4** There exist deterministic MDPs where $\alpha = 1$ TD will converge

Check Your Understanding: Piazza Poll Temporal Difference [TD(0)] Learning Algorithm

Input: α Initialize $V^{\pi}(s) = 0$, $\forall s \in S$ Loop

- Sample **tuple** (s_t, a_t, r_t, s_{t+1})
- $V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} V^{\pi}(s_t))$

Answers. If $\alpha=1$ TD will value the current TD target exclusively. If $\alpha=1$ TD in MDPs where the policy goes through states with multiple possible next states, V may always oscillate. There exist deterministic MDPs where $\alpha=1$ TD will converge.

Temporal Difference Policy Evaluation

$$V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha([r_t + \gamma V^{\pi}(s_{t+1})] - V^{\pi}(s_t))$$

= Expectation

□ = Terminal state

This Lecture: Policy Evaluation

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Dynamic programming
- Monte Carlo policy evaluation
 - Policy evaluation when don't have a model of how the world work
 - Given on-policy samples
 - Given off-policy samples
- Temporal Difference (TD)
- Metrics to evaluate and compare algorithms

Check Your Understanding: Properties of Algorithms for Evaluation.

	DP	MC	TD
Can use w/no models of domain		Χ	Χ
Handles continuing (non-episodic) setting	Χ		Χ
Assumes Markov process	Χ		Χ
Converges to true value in limit ¹	Χ	Χ	Χ
Unbiased estimate of value		Χ	

 DP = Dynamic Programming, MC = Monte Carlo, TD = Temporal Difference

¹For tabular representations of value function. More on this in later lectures

Some Important Properties to Evaluate Model-free Policy Evaluation Algorithms

- Bias/variance characteristics
- Data efficiency
- Computational efficiency

Bias/Variance of Model-free Policy Evaluation Algorithms

- Return G_t is an unbiased estimate of $V^{\pi}(s_t)$
- TD target $[r_t + \gamma V^{\pi}(s_{t+1})]$ is a biased estimate of $V^{\pi}(s_t)$
- But often much lower variance than a single return G_t
- Return function of multi-step sequence of random actions, states & rewards
- TD target only has one random action, reward and next state
- MC
 - Unbiased (for first visit)
 - High variance
 - Consistent (converges to true) even with function approximation
- TD
 - Some bias
 - Lower variance
 - TD(0) converges to true value with tabular representation
 - TD(0) does not always converge with function approximation

s_1	<i>S</i> ₂	s_3	S_4	s_5	s ₆	S ₇
$R(s_1) = +1$ Okay $Field\ Site$	$R(s_2) = 0$	$R(s_3)=0$	$R(s_4) = 0$	$R(s_5)=0$		$R(s_7) = +10$ Fantastic Field Site

- Mars rover: R = [100000+10] for any action
- $\pi(s) = a_1 \ \forall s, \ \gamma = 1$. any action from s_1 and s_7 terminates episode
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, terminal)$
- First visit MC estimate of V of each state? [1 1 1 0 0 0 0]
- TD estimate of all states (init at 0) with $\alpha = 1$ is $[1\ 0\ 0\ 0\ 0\ 0]$
- TD(0) only uses a data point (s, a, r, s') once
- Monte Carlo takes entire return from s to end of episode

Batch MC and TD

- Batch (Offline) solution for finite dataset
 - Given set of K episodes
 - Repeatedly sample an episode from K
 - Apply MC or TD(0) to the sampled episode
- What do MC and TD(0) converge to?

AB Example: (Ex. 6.4, Sutton & Barto, 2018)

- Two states A, B with $\gamma = 1$
- Given 8 episodes of experience:
 - A, 0, B, 0
 - B,1 (observed 6 times)
 - B, 0
- Imagine run TD updates over data infinite number of times
- V(B) = 0.75 by TD or MC (first visit or every visit)

AB Example: (Ex. 6.4, Sutton & Barto, 2018)

• TD Update:
$$V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} - V^{\pi}(s_t))$$

- Two states A, B with $\gamma = 1$
- Given 8 episodes of experience:
 - A, 0, B, 0
 - *B*,1 (observed 6 times)
 - B, 0
- Imagine run TD updates over data infinite number of times
- V(B) = 0.75 by TD or MC
- What about V(A)? $V^{MC}(A) = 0 \ V^{TD}(A) = .75$

Batch MC and TD: Converges

- Monte Carlo in batch setting converges to min MSE (mean squared error)
 - Minimize loss with respect to observed returns
 - In AB example, V(A) = 0
- TD(0) converges to DP policy V^{π} for the MDP with the maximum likelihood model estimates
 - Maximum likelihood Markov decision process model

$$\hat{P}(s'|s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{L_k-1} \mathbb{1}(s_{k,t} = s, a_{k,t} = a, s_{k,t+1} = s')$$

$$\hat{r}(s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{L_k-1} \mathbb{1}(s_{k,t} = s, a_{k,t} = a) r_{t,k}$$

- ullet Compute V^π using this model
- In AB example, V(A) = 0.75

Some Important Properties to Evaluate Model-free Policy Evaluation Algorithms

- Data efficiency & Computational efficiency
- In simplest TD, use (s, a, r, s') once to update V(s)
 - O(1) operation per update
 - In an episode of length L, O(L)
- In MC have to wait till episode finishes, then also O(L)
- MC can be more data efficient than simple TD
- But TD exploits Markov structure
 - If in Markov domain, leveraging this is helpful

Alternative: Certainty Equivalence V^{π} MLE MDP Model Estimates

- Model-based option for policy evaluation without true models
- After each (s, a, r, s') tuple
 - Recompute maximum likelihood MDP model for (s, a)

$$\hat{P}(s'|s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{L_k-1} \mathbb{1}(s_{k,t} = s, a_{k,t} = a, s_{k,t+1} = s')$$

$$\hat{r}(s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{L_k-1} \mathbb{1}(s_{k,t} = s, a_{k,t} = a) r_{t,k}$$

ullet Compute V^π using MLE MDP 2 (e.g. see method from lecture 2)

 $^{^{2}}$ Requires initializing for all (s, a) pairs

Alternative: Certainty Equivalence V^{π} MLE MDP Model Estimates

- Model-based option for policy evaluation without true models
- After each (s, a, r, s') tuple
 - Recompute maximum likelihood MDP model for (s, a)

$$\hat{P}(s'|s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{L_k-1} 1(s_{k,t} = s, a_{k,t} = a, s_{k,t+1} = s')$$

$$\hat{r}(s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{L_k-1} 1(s_{k,t} = s, a_{k,t} = a) r_{t,k}$$

- Compute V^{π} using MLE MDP
- Cost: Updating MLE model and MDP planning at each update $(O(|S|^3))$ for analytic matrix solution, $O(|S|^2|A|)$ for iterative methods)
- Very data efficient and very computationally expensive
- Consistent
- Can also easily be used for off-policy evaluation

s_1	s_2	s_3	S_4	s_5	s ₆	S ₇
$R(s_1) = +1$ Okay $Field\ Site$	$R(s_2) = 0$	$R(s_3)=0$	$R(s_4) = 0$	$R(s_5)=0$	$R(s_6)=0$	$R(s_7) = +10$ Fantastic Field Site

- Mars rover: $R = [1 \ 0 \ 0 \ 0 \ 0 \ +10]$ for any action
- $\pi(s) = a_1 \ \forall s, \ \gamma = 1$. any action from s_1 and s_7 terminates episode
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, terminal)$
- First visit MC estimate of V of each state? [1 1 1 0 0 0 0]
- Every visit MC estimate of V of s_2 ? 1
- TD estimate of all states (init at 0) with $\alpha = 1$ is $\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
- What is the certainty equivalent estimate?

$$\hat{r} = [1 \ 0 \ 0 \ 0 \ 0 \ 0], \ \hat{p}(terminate|s_1, a_1) = \hat{p}(s_1|s_2, a_1) = \hat{p}(s_2|s_3, a_1) = 1, \ V = [1 \ 1 \ 1 \ 0 \ 0 \ 0]$$

40 40 40 40 40 10 000

Summary: Policy Evaluation

Estimating the expected return of a particular policy if don't have access to true MDP models. Ex. evaluating average purchases per session of new product recommendation system

- Dynamic Programming
- Monte Carlo policy evaluation
 - Policy evaluation when we don't have a model of how the world works
 - Given on policy samples
 - Given off policy samples
- Temporal Difference (TD)
- Metrics to evaluate and compare algorithms
 - Robustness to Markov assumption
 - Bias/variance characteristics
 - Data efficiency
 - Computational efficiency

Today's Plan

- Last Time:
 - Markov reward / decision processes
 - Policy evaluation & control when have true model (of how the world works)
- Today
 - Policy evaluation without known dynamics & reward models
- Next Time:
 - Control when don't have a model of how the world works