Homework Assignment 3

Rushabh Ashok Dharia CSCI-B555 Machine Learning

April 6, 2019

Note: Homework was discussed with Bhushan Malgaonkar

Ans 1. *a*).

$$f(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-1}{2}(\frac{y-Xw}{\sigma})^2}$$

b).

$$f(w,y) = f(y/w).f(w)$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-1}{2}(\frac{y-Xw}{\sigma})^2} \frac{1}{\sqrt{2\pi\rho^2}} e^{\frac{-1}{2}(\frac{w}{\rho})^2}$$

$$= \frac{1}{2\pi\sigma\rho} e^{\frac{-1}{2}[(\frac{y-Xw}{\sigma})^2 + (\frac{w}{\rho})^2]}$$

c).

$$\begin{split} \hat{w}_{MAP} &= argmax \big(\frac{1}{2\pi\sigma\rho}e^{\frac{-1}{2}[(\frac{y-Xw}{\sigma})^2+(\frac{w}{\rho})^2]}\big) \\ &\text{taking log} \\ &= argmax \big(-log(2\pi\sigma\rho) - \frac{1}{2}[(\frac{y-Xw}{\sigma})^2+(\frac{w}{\rho})^2]\big) \\ &= argmin \big(log(2\pi\sigma\rho) + \frac{1}{2}[(\frac{y-Xw}{\sigma})^2+(\frac{w}{\rho})^2]\big) \\ &log(2\pi\sigma\rho) \text{ is constant so we can neglect it} \\ &= argmin \big(\frac{1}{2}[(\frac{y-Xw}{\sigma})^2+(\frac{w}{\rho})^2]\big) \\ &\text{We can neglect } \frac{1}{2} \text{ as well} \\ &= argmin \big(\frac{y-Xw}{\sigma}\big)^2+(\frac{w}{\rho}\big)^2\big) \\ &= argmin \big(\frac{(y-Xw)^T(y-Xw)}{\sigma^2}+\frac{(w)^T(w)}{\rho^2} \\ &||x|| = \sqrt{x^Tx}. \text{ Therefore, } ||x||^2 = x^Tx \\ &= argmin \big(\frac{||y-Xw||^2}{\sigma^2}\big)+(\frac{||w||^2}{\rho^2}\big)\big) \end{split}$$

Ans 2.

$$\begin{split} y &= Xw + e \\ &= \mathcal{N}(Xw + \mu, \sigma^2) \\ \hat{y}_{MLE} &= argmax (\Pi \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-1}{2}[(\frac{y - Xw - \mu}{\sigma})^2} \\ &\text{taking log} \\ &= \sum_{} -\frac{1}{2}log(2\pi\sigma^2) - \frac{1}{2}[(\frac{y - Xw - \mu}{\sigma})^2 \\ &\text{taking derivative w.r.t } \mu \\ 0 &= 0 + \frac{1}{2}\sum_{} [(\frac{y - Xw - \mu}{\sigma^2}) \\ &\mu n = \sum_{} y + w \sum_{} X \\ \hat{\mu}_{MLE} &= \frac{\sum_{} y + w \sum_{} X}{n} \end{split}$$

Ans 3. See attached jupyter notebook

Ans 4.

The Network is an Adder. It has 2 XOR, 1 AND and 1 OR gate. h1-h2-h3 represent XOR gate 1.

 ${\bf h4}$ represents an AND gate

h5 represents an OR gate

h6-h7-h8 represent XOR gate 2.

let
$$\sigma(x) = 1, x \ge 1$$

 $= 0x < 1$
 $h1 = \sigma(2u + 2w - 1)$
 $h2 = \sigma(-2u - 2w + 3)$
 $h3 = \sigma(2h1 + 2h2 - 3)$
 $h4 = \sigma(v + x - 1)$
 $h5 = \sigma(h3 + h4)$
 $h6 = \sigma(2v + 2x - 1)$
 $h7 = \sigma(-2v - 2x + 3)$
 $h8 = \sigma(2h6 + 2h7 - 3)$

Ans 5. *a*).

b).

Let C1 be denoted by -1 and C2 by 1 $\,$

Steps Used:

1. Take dot product of W and X to find y

2. If dot product \geq 0 then y=1 else y=-1

$$3.W_{new} = W + \eta(d - y)X^{T}$$

W	X	d	у	d-y
[0,0,0]	[0,0,1]	-1	1	-2
[0,0,-1]	[0,1,1]	-1	-1	0
[0,0,-1]	[1,0,1]	1	-1	2
[1,0,0]	[1,1,1]	1	1	0
[1,0,0]	[0,0,1]	-1	1	-2
[1,0,-1]	[0,1,1]	-1	-1	0
[1,0,-1]	[1,0,1]	1	1	0
[1,0,-1]	[1,1,1]	1	1	0
[1,0,-1]	[0,0,1]	-1	-1	0

Since, there is no change in the last 4 steps we stop

c).

Decision Boundary is, x - 1 = 0

or x = 1

Let C1 be denoted by 1 and C2 by -1

W	X	d	У	d-y
[0,0,0]	[0,0,1]	-1	1	-2
[0,0,-1]	[0,1,1]	1	-1	2
[0,1,0]	[1,0,1]	1	1	0
[0,1,0]	[1,1,1]	-1	1	-2
[-1,0,-1]	[0,0,1]	-1	1	0
[-1,0,-1]	[0,1,1]	1	-1	2
[-1,1,0]	[1,0,1]	1	-1	2
[0,1,1]	[1,1,1]	-1	1	-2
[-1,0,0]	[0,0,1]	-1	1	-2
[-1,0,-1]	[0,1,1]	1	-1	2
[-1,1,0]	[1,0,1]	1	-1	2
[0,1,1]	[1,1,1]	-1	1	-2
[-1,0,0]	[0,0,1]	-1	1	-2

As we can see that the weights are repeating we can say that Perceptron will not converge.

Therefore, we cannot find a decision boundary for XOR