Best practices in the analysis of RNA-seq and ChIP-seq data

27th – 31st, July 2015 University of Cambridge, Cambridge, UK

The quality of a ChIP-seq data

Ines de Santiago

CRUK Cambridge Research Institute

Ines.desantiago@cruk.cam.ac.uk

Acknowledgments

- Tom Carroll
 - http://bioconductor.org/help/course-materials/
 2014/BioC2014/ChIPQC Presentation.pdf
 - https://github.com/bioinformatics-core-sharedtraining/ngs-in-bioc/blob/master/Lectures/
 Lect6b ChIP-Seq%20Data%20Analysis.pdf
- Shamith Samarajiwa
- Suraj Menon

"Typical" ChIP-Seq Analysis workflow

A good ChIP-seq dataset

What do we want:

- Good quality ChIP-seq enrichment over background

Narrow vs Broad peaks

What can go wrong?

- The specificity of the antibody
 - poor reactivity against the intended target
 - cross-reactivity with other DNA-associated proteins.
- degree of enrichment achieved in the affinity precipitation step.
- Biases in the selected fragments:
 - PCR amplification biases
 - Fragmentation biases

How to quantify ChIP-seq data quality?

 ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia.

(Landt et al – Genome Research 2012)

- ChIPQC Tom Carroll and Rory Stark (Diffbind)
- **ChIPQC** provides workflow to generate metrics per sample/experiment.
- package SPP (for UNIX/LINUX)

EVALUATING CHIP-SEQ DATA (QC)

What do we want:

- Good quality ChIP-seq enrichment over background

- Visualisation of coverage profiles
- Fraction of reads in peaks (FRIP)
- Relative enrichment in genomic intervals (REGI)
- Signal in blacklists (FRIBL)
- Dispersion of coverage
- Clustering of Watson/Crick reads.
- Other factors affecting site discovery:
 - Sequencing depth
 - Duplication rate / library complexity
 - Control sample

- Visualisation of coverage profiles
- Fraction of reads in peaks (FRIP)
- Relative enrichment in genomic intervals (REGI)
- Signal in blacklists (FRIBL)
- Dispersion of coverage
- Clustering of Watson/Crick reads.
- Other factors affecting site discovery:
 - Sequencing depth
 - Duplication rate / library complexity
 - Control sample

Visualisation of coverage profiles

- Visualisation of coverage profiles
- Fraction of reads in peaks (FRIP)
- Relative enrichment in genomic intervals (REGI)
- Signal in blacklists (FRIBL)
- Dispersion of coverage
- Clustering of Watson/Crick reads.
- Other factors affecting site discovery:
 - Sequencing depth
 - Duplication rate / library complexity
 - Control sample

Measuring global ChIP enrichment (FRiP)

 useful and simple first-cut metric for the success of the immunoprecipitation

Good quality TF > 5%

Example output from ChIPQ package:

- Visualisation of coverage profiles
- Fraction of reads in peaks (FRIP)
- Relative enrichment in genomic intervals (REGI)
- Signal in blacklists (FRIBL)
- Dispersion of coverage
- Clustering of Watson/Crick reads.
- Other factors affecting site discovery:
 - Sequencing depth
 - Duplication rate / library complexity
 - Control sample

Enrichment in genomic intervals

 Plot relative enrichment of reads in annotated regions.

Example output from ChIPQ package:

- Visualisation of coverage profiles
- Fraction of reads in peaks (FRIP)
- Relative enrichment in genomic intervals (REGI)
- Signal in blacklists (FRIBL)
- Dispersion of coverage
- Clustering of Watson/Crick reads.
- Other factors affecting site discovery:
 - Sequencing depth
 - Duplication rate / library complexity
 - Control sample

Signal in blacklists

- Encode empirically identified regions that showed anomalous and near-universal artefact signal
- Represent around 0.5% of genome.
 - Various reasons e.g. chromatin accessibility, repeats
- Can account for high proportion of total signal (> 10%)
 - Enriched for duplicate and multi-mapping reads
- Adversely affect fragment length calculations and in thus any analyses that require these e.g. peak calling

Example output from ChIPQ package:

Carroll et al., Front Genet. 2014 Apr 10;5:75.

- Visualisation of coverage profiles
- Fraction of reads in peaks (FRIP)
- Relative enrichment in genomic intervals (REGI)
- Signal in blacklists (FRIBL)
- Dispersion of coverage
- Clustering of Watson/Crick reads.
- Other factors affecting site discovery:
 - Sequencing depth
 - Duplication rate / library complexity
 - Control sample

Dispersion of coverage

- Depth of signal: number of fragments at a genomic location.
- Expectation is that for an enriched ChIP sample, depth should show inequality in dispersion across the genome
- Build global profile of signal depth
 - Measure number of base pairs with given depth of signals.
 - Normalise to total number of reads to compare samples

Depth	Base Pairs
1	3
2	4
3	3
5	3
6	4
7	3
8	26

Dispersion of coverage

- Global signal profile "histogram"
- Enriched (ChIP) libraries show higher number of bases at greater depths.
- Profile for inputs (no enrichment) drops off more quickly
- Gap between sample and input indicates enrichment

Metric for dispersion of coverage: SSD

SSD: Standardised Standard Deviation of coverage

 Metric for assessment of dispersion coverage developed in htseqtools package

 $SSD = \frac{SD}{\sqrt{n}}$

- Provides measure of pile-up across genome
 - High for samples with enriched regions (ChIP)
 - Low for samples with uniform coverage (input)

Distribution of Signal

- Visualisation of coverage profiles
- Fraction of reads in peaks (FRIP)
- Relative enrichment in genomic intervals (REGI)
- Signal in blacklists (FRIBL)
- Dispersion of coverage
- Clustering of Watson/Crick reads.

Other factors affecting site discovery:

- Sequencing depth
- Duplication rate / library complexity
- Control sample

Clustering of Watson/Crick reads

http://www.nature.com/nmeth/journal/v6/n4/images/nmeth.f.247-F2.jpg http://www.bloodjournal.org/content/ 124/25/3719

How to make a cross-correlation plot:

Clustering of Watson/Crick reads

- Fragment length can be estimated from data:
 - Cross-correlations Correlation of reads on positive and negative strand after successive read shifts
 - Cross-coverage Coverage
 of reads on both strand after
 successive shifts of reads on
 one strand. Total area
 covered by reads will be
 reduced after shifting
- These provide useful QC metrics

How to make a cross-correlation plot:

Clustering of Watson/Crick reads

- Cross-correlation/Crosscoverage score plots are useful for QC
- Blacklisted regions strongly contribute to read length crosscoverage peak
 - Small to non-existent peaks are seen in failed ChIPs and inputs
- ChIPQC metrics:
 - FragCC = CC_{fragmentlength}.
 - ReICC = FragCC/ CC_{readlength}

- Visualisation of coverage profiles
- Fraction of reads in peaks (FRIP)
- Relative enrichment in genomic intervals (REGI)
- Signal in blacklists (FRIBL)
- Dispersion of coverage
- Clustering of Watson/Crick reads.
- Other factors affecting site discovery:
 - Sequencing depth
 - Duplication rate / library complexity
 - Control sample

Sequencing Depth

Peak counts depend on sequencing depth.

Sequencing Depth: guidelines

Sharp peaks (TFs)
10M reads
2M worms and flies

Broad Peaks (Histones)
20M reads mammalian genomes
5M worms and flies

- Visualisation of coverage profiles
- Fraction of reads in peaks (FRIP)
- Relative enrichment in genomic intervals (REGI)
- Signal in blacklists (FRIBL)
- Dispersion of coverage
- Clustering of Watson/Crick reads.
- Other factors affecting site discovery:
 - Sequencing depth
 - Duplication rate / library complexity
 - Control sample

- Duplicates can be artefacts
- PCR bias: certain genomic regions are preferentially amplified
- Low initial starting material
 - Overamplification -> artificially enriched regions
 - Compounded by PCR bias

- Duplicates can also be 'legitimate'
 - In highly efficient enrichments
 - In deeply sequenced ChIPs
 (Duplication rate increases with sequencing depth)
- Removing these duplicates limits the dynamic range of ChIP signal
 - Max signal for a base is (2*read length)-1

- So what to do about duplicates?
- Keep in mind enrichment efficiency and read depth
- Thumb-rules
 - Remove duplicates prior to peak calling (some peak callers do this by default)
 - Keep duplicates for differential binding analysis
- A more objective approach:
 - htSeqTools package
 - Estimate duplicate numbers expected for sequencing depth using negative binomial model and attempt to identify significantly anomalous duplicate numbers.

- Duplication rates are a useful QC metric
 - (Duplicate reads/Total Mapped Reads) *100
 - Expected to be low (<~ 1%) for inputs
- Non-Redundant Fraction (NRF)
 - Unique Reads/Total Mapped Reads
 - ENCODE guidelines:

```
NRF \ge 0.8 for 10M reads
```

- Visualisation of coverage profiles
- Fraction of reads in peaks (FRIP)
- Relative enrichment in genomic intervals (REGI)
- Signal in blacklists (FRIBL)
- Dispersion of coverage
- Clustering of Watson/Crick reads.
- Other factors affecting site discovery:
 - Sequencing depth
 - Duplication rate / library complexity
 - Control sample

Control sample

- Use of controls highly recommended
- Input DNA
 - popularly used
 - controls for CNVs, sequencing biases, fragmentation and shearing biases
- IgG
 - as with input but also controls for non-specific binding
 - but introduces new biases
- Controls required for
 - different types of samples (e.g. Cell lines, mice, patients)
 - different treatment groups / experimental conditions

Control sample

Fig. S1

PEAK CALLING

Peak Calling: Which Peak Caller to Use?

- Transcription factor peaks: MACS is very popular
- For histone marks with spanning longer regions,
 Sicer is recommended
 - MACS can be used by tweaking parameters
- Several peak callers in R/Bioconductor
 - e.g SPP, TPIC, BayesPeak
 - Not really considered gold-standard (other than SPP)
 - Often impractical: memory hungry and slow

Peak Calling: MACS

- Sliding window run across genome
- Peak height in window compared to that in windows of surrounding regions in control

- Statistical significance of peak estimated by using Poisson distribution
 - log10(pvalue) reported as peak score
- FDR calculated by calling peaks in control over sample

Peak Calling: Post-peak QC

Peak profile plots

- Mean read density at positions relative to peak summits
- Input profiles should be flat
- Fraction of Reads in Peaks (FRIP)
 - Reads in peaks/Total mapped reads
 - Analogous to signal to noise ratio

Example output from ChIPQ package:

ChIP-Seq Practical

Working with ChIP-Seq Data in R/Bioconductor

chipqc_sweave.pdf