ZATISH KUMAR 1/5

Exercise 1 Given $\approx x = \frac{b}{a} = ba^{-1}$ det $a,b,x \in 0$ and $a \neq 0$ x = ba-1than multiply both sides by a a.x=(ba-1).a a.x=b.(a-'a) (F1) associativity a.x=b.(1) (Multiplicatione inverse) a.x=b (F3) Identity elements. Proved Exercise 2

Let $x,y \in Q$ and 0 < x < y $x < y = x^2 < y^2$ $x + y = x^2 < y^2$ $x + y = x^2 < y^2$ x + y = x

ZATISH KUMAR 2/5 Multiply both sides with (x+y) x.(x+y) < y.(x+y)x - x + x - y < y - x + y - y (f5) distribution $x \cdot x + x \cdot y < x \cdot y + y \cdot y$ (F2) Commutativity x.x+x.y < y.y+x.y (f2) Commutativity Add both sides (- xy) (x-c+x-y)+(-cy)<(y-y+c-y)+(-xy)(x.x+x.y)+(x.y) < (y.y+x.y)+(x.y) $x \cdot x + (x \cdot y - x \cdot y) < y \cdot y + (x \cdot y - x \cdot y)$ (F1) associativity x.x+(0) < y.y+(0) (f4) inverse element x.x < y.y (F3) Identific x2 y2 Peroved

SATISH KUMAR 3/5

Exercise 3

 $|x_1 + x_2 + - - - + x_n| \le |x_1| + |x_2| + - - - + |x_n|$ $m \in N$ and $x_1, \dots, x_n \in Q$

Base case n=1

than $|x_i| \leq |x_i|$ is true.

Induction hypothesis-

Zuppase

 $|x_1+x_2+\cdots+x_n| \leq |x_1|+|x_2|+\cdots+|x_n|$ for nEN and x, ... xn EQ

Induction step-

 $| (x_1 + x_2 + ---- + x_{n+1}) | \leq |x_1| + |x_2| + --+ |x_{n+1}|$

 $= \left| x_1 + x_2 + \dots + x_{n+1} \right|$

= 1x1+x2+ ---+ >cn+>cn+1

 $\leq |x_1 + x_2 + \cdots + |x_n| + |x_{n+1}|$ (triangle inequality)

 $\leq |x_1| + |x_2| + \dots + |x_n| + |x_{n+1}|$ (Induction by pothesis

< /2011+1201+ ---- + DCN+1) Proved.

Bonus Exercise

Fuppase a, b, CER

a+b=c

we prove

 $\frac{1}{a} + \frac{1}{b} = \frac{1}{c}$

 $\frac{b+a}{ab} = \frac{1}{c} = \frac{1}{ab} = \frac{1}{ab}$

We assume that $a \neq 0$, $b \neq 0$ and $c \neq 0$ because we that $a \neq 0$, $b \neq 0$ and then Value 1/0 is not defined.

Cb+ac=ab

b(a+b) + a(a+b) = ab

 $ba+b^2+a^2+ab=ab$

 $a^2 + b^2 + 2ab = ab$

 $a^2+b^2+2ab-ab=0$

 $a^2 + b^2 + ab = 0$

The only possible value for a sond b in ballowing equation is o

 $ba + a^{2} + b^{2} = 0$ $0.0 + 0^{2} + 0^{2} = 0$ 0 = 0

But this contradicts the fact that a, b, c must be different from o.