东南大学网络空间安全学院 密码学与安全协议

第二讲 密码学的数学基础

黄 杰信息安全研究中心

内容的回顾

• 信息安全解决的本质安全问题是什么?

• 信息安全的基本需求(安全服务)

• 如何理解信息安全?

• 密码编码学分哪几个部分?

信息安全与密码学的关系

本讲内容

• 有限域

• 数论基础

知识点

1、有限域和无限域

2、多项式模运算

3、Euler定理

4、离散对数

有限域

群、环和域(Field)

群

- 群: 记为{G, •}, 一个二元运算集合
 - 封闭性: a, b ∈ G, 则 a•b ∈ G
 - 结合律: a, b, c ∈ G, 则 a•(b•c)= (a•b)•c
 - 单位元: e,a ∈ G,则 a•e = e•a =a
 - 逆元: a, a' ∈ G, 则 a•a' = a' •a =e

- 交換群 (Abelian Group)
 - 交换律: 任意 a, b ∈ G, 则 a•b = b•a

环

- 环: 记为{R, +, x}, 两个二元运算(加、乘)集合
 - 乘法封闭性: a, b ∈ R, 则 ab ∈ R
 - 乘法结合律: a, b, c ∈ R, 则 a(bc) = (ab) c
 - 分配律: a, b, c ∈ R , 则 a(b+c) = ab + ac
- 交換环(Commutative Ring)
 - 乘法交换律: 任意 a, b ∈ R, 则 ab = ba
- 整环(Integral Domain)
 - 乘法单位元: e, a ∈ R , 则 a e = e a = a
 - 无零因子: a, b ∈ R, 且 ab = 0, 则a=0 或 b=0

域 (Galois)

• 域: 记为{F, +, X}, 两个二元运算集合

- 乘法逆元: a∈F (0除外), 则a⁻¹∈ F,且
a a⁻¹ = (a⁻¹)a =1。

• 移位密码算法

- 数学描述: 设P,C,K={0,2,...,25},对k∈ K,定义 $e_k(x)=x+k \pmod{26}=y$ ∈C同时 $d_k(y)=y-k \pmod{26}$
- 注1: 26个英文字母与模26剩余类集合{0,....,25}建立一一对应:
- 2*.当k=3时,为Caesar密码,即
 abcdefghijklmnopqrstuvwxyz
 DEFGHIJKLMNOPQRSTUVWXYZABC
- 例子: cipher => FLSKHU
- 实际算法为: $\forall x \in P$ 有 $e_3(x) = x + 3 \pmod{26} = y$
- 同时有, d₃(y)=y-3 (mod 26)

乘数密码算法

- 加密函数取形式为 e_k(x)=kx (mod 26), k∈{1,2,...25},
 且gcd(k,26)=1
- 该算法的数学描述为: 设P=C= {1,2,...25} , K={k \in Z%26 | gcd(k,26)=1},对k \in K,定义e_k(x)=kx (mod 26)和d_k(y)=k⁻¹(y)(mod 26),x,y \in Z%26
- · 例子: k=9,

ABCDEFGHIJKLMNOPQRSTUVWXYZ AJSBKTCLUDMVENWFOXGPYHQZIR

• 加密操作:

cipher => SUFLKX

问题:

1、有理数、实数集合和整数集合是域吗?

2、在密码学中,为什么要以域为研究对象呢?

模运算

- 定义1: 整除
 - a=qn
 - n整除a,n称为a的一个因子,na
- 定义2:整数的唯一分解定理
 - $\quad a = qn + r, \quad 0 \le r < n$
- 剩余: r
- 模运算: a mod n
 - a除以n所得的余数

同余和剩余类

- 同余的概念: 若整数a和b有(a mod n)=(b mod n), 则称a与b在mod n下同余,记为a≡b mod n。
- 对于满足{r}={a|a=qn+r, q∈Z}的整数集称为同余 类。

• 剩余类

- 定义: 比n小的非负整数集合为Zn, Zn= {0,1,2,...,n-1}, 这个集合称为剩余类集合,或模n的剩余类。
- Zn中的每一个整数都代表一个剩余类
- 模n的k约化。

模算术(Modular Arithmatic)

- · 在mod n的n个剩余类集{0,1,2,...,n-1} 上可以定义模算术如下:
- 加法: [(a mod n) + (b mod n)] mod n= (a+b)
 mod n
- 減法: [(a mod n) (b mod n)] mod n= (a-b)
 mod n
- 乘法:[(a mod n) × (b mod n)] mod n= (a ×
 b) mod n

模算术的性质

- 模运算有下述性质:
 - 若n|(a-b),则a=b mod n
 - a≡b mod n等价于b≡a mod n
 - 若a=b mod n且b=c mod n , 则a=c mod n

例: 模8加法和乘法

+	0	1	2	3	4	5	6	7
0	R	1	2	3	4	5	6	7
1	1	X	3	4	5	6	7	0
2	2	3	X	5	6	7	0	1
3	3	4	5	X	7	0	1	2
4	4	5	6	7	K	1	2	3
5	5	6	7	0	1	R	3	4
6	6	7	0	1	2	3	X	5
7	7	0	1	2	3	4	5	K

X	0	1	2	3	4	5	6	7
0	8	0	0	0	0	0	0	0
1	0	X	2	3	4	5	6	7
2	0	2	A	6	0	2	4	6
3	0	3	6	X	4	7	2	5
4	0	4	0	4	8	4	0	4
5	0	5	2	7	4	X	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	X

模算术的性质

Property	Expression
Commutative laws	$(w+x) \bmod n = (x+w) \bmod n$
Commutative laws	$(w \times x) \bmod n = (x \times w) \bmod n$
A	$[(w+x)+y] \bmod n = [w+(x+y)] \bmod n$
Associative laws	$[(w \times x) \times y] \bmod n = [w \times (x \times y)] \bmod n$
The state of	$[w \times (x + y)] \bmod n = [(w \times x) + (w \times y)] \bmod n$
Distributive laws	$[w + (x \times y)] \mod n = [(w + x) \times (w + y)] \mod n$
Identities	$(0+w) \bmod n = w \bmod n$
Identities	$(1 \times w) \bmod n = w \bmod n$
Additive inverse (-w)	For each $w \in \mathbb{Z}_n$, there exists a z such that $w + z \equiv 0 \mod n$

Euclid算法计算最大公因子

- 最大公因子gcd(a,b)=max[k,其中k|a且k|b]。
- 整数a和b互素,如果gcd(a,b)=1。
- 定理:对于任意正整数a和b,有: gcd(a,b)=gcd(b, a mod b).
- Euclid算法:
 - 1.A←a: B←b
 - 2.若B=0,则返回A=gcd(A,B)
 - 3.R=A mod B
 - 4.A ←B
 - 5.B←R
 - 6.转到2

有限域GF(pn)

- 无限域:例如有理数集合、实数集合、复数集合。在其上可以定义加法、减法、乘法、除法,这些运算满足封闭性。加法和乘法满足交换律、结合律,分配律。
- ·元素个数为pn的有限域一般记为GF(pn)。 有限域在密码编码学中具有重要的地位。
- · GF代表Galois Field,以第一位研究有限域的数学家的名字命名。
- GF(pⁿ)的两种特殊情形: GF(p)和GF(2ⁿ)。

最简单的有限域GF(2)

+	0	1
0	0	1
1	1	0

*	0	1
0	0	0
1	0	1

W	-W	W ⁻¹
0	0	_
1	1	1

加法等价于"异或"运算,乘法等价于逻辑"与"运算。

GF(7)和GF(8)的代数运算

+	0	1	2	3	4	5	6
0	B	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	H	5	6	0	1
3	3	4	5	Ø	0	1	2
4	4	5	6	0	f	2	3
5	5	6	0	1	2	g	4
6	6	0	1	2	3	4	5/

(a) Addition modulo 7

×	0	1	2	3	4	5	6
0	Q	0	0	0	0	0	0
1	0	X	2	3	4	5	6
2	0	2	f	6	1	3	5
3	0	3	6	þ	5	1	4
4	0	4	1	5	þ	6	3
5	0	5	3	1	6	f	2
6	0	6	5	4	3	2	7

(b) Multiplication modulo 7

−W	W^{-1}
0	_
6	1
5	4
4	5
3	2
2	3
1	6
	0 6 5 4 3

(c) Additive and multiplicative inverses modulo 7

×	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

(b) Multiplication modulo 8

多项式运算

●设集合S由域Zn上次数不大于n-1的所有多项式组成,每一个多项式具有如下形式:

$$f(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_1x + a_0 = \sum_{i=0}^{n-1} a_ix^i$$

- ●其中 a_i 在集合 $\{0, 1, ..., p-1\}$ 上取值。S中共有 p^n 个不同的多项式。
- ●例如p=2, n=3时,集合中共有23=8个多项式。
- ulletGF(2ⁿ)中的元素可以表示为一个n位的二进制整数,即域 Z_2 上一个次数小于n-1的多项式,其中的系数取值为0或1。

多项式模运算

- 定义运算:
 - 该运算遵循基本代数规则中的普通多项式运算 规则
 - 系数运算以p为模
 - 如果乘法的结果是次数大于n-1的多项式,那 么必须将其除以某个次数为n的既约多项式m(x) 并取余式。
- · 在以上运算基础上的集合S为有限域。

乘法逆元的求法

```
EXTENDED EUCLID (m, b)
1. (A1, A2, A3) = (1, 0, m);
  (B1, B2, B3) = (0, 1, b)
2. if B3 = 0
  return A3 = gcd(m, b); no inverse
3. if B3 = 1
  return B3 = gcd(m, b); B2 = b^{-1} mod m
4. Q = A3 \, div \, B3
5. (T1, T2, T3) = (A1 - Q B1, A2 - Q B2, A3 - Q
  B3)
6. (A1, A2, A3) = (B1, B2, B3)
7. (B1, B2, B3) = (T1, T2, T3)
8. goto 2
```


有限域GF(2ⁿ)

- 动机
 - 构造的整数集合必须是一个域。
 - -加密运算要求将整数集平均地映射到自身。
 - -Z₈无法做到:

非零元素 123 4 567

出现次数 4 8 4 12 4 8 4

- 原因: 以8为模

×	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

(b) Multiplication modulo 8

有限域GF(2ⁿ)

- 以下运算可以做到:
- 非零元素 1 2 3 4 5 6 7
- 出现次数7777777
- 原因: 既约多项式为m(x)= x³+x+1

x	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

×	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	3	1	7	5
3	0	3	6	5	7	4	1	2
4	0	4	3	7	6	2	5	1
5	0	5	1	4	2	7	3	6
6	0	6	7	1	5	3	2	4
7	0	7	5	2	1	6	4	3

(b) Multiplication

GF(23)上的加法和乘法表

Table 4.6 Polynomial Arithmetic Modulo $(x^3 + x + 1)$

	+	000	001 1	010 x	$011 \\ x + 1$	$\frac{100}{x^2}$	101 $x^2 + 1$	$\frac{110}{x^2 + x}$	$x^2 + x + 1$
000	0	0	1	X	x+1	x^2	$x^2 + 1$	$x^{2} + x$	$x^2 + x + 1$
001	1	1	O	x + 1	X	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$
010	X	X	x + 1	0	1	$x^{2} + x$	$x^2 + x + 1$	x^2	$x^2 + 1$
011	x + 1	x + 1	х	1	0	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2
100	x^2	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	Х	x + 1
101	$x^2 + 1$	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$	1	Ö	x + 1	X
110	$x^{2} + x$	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$	x	x+1	0	1
111	$x^2 + x + 1$	$x^2 + x + 1$	$x^{2} + x$	$x^2 + 1$	x^2	x + 1	х	1	0

(a) Addition

		000	001	010	011	100	101	110	111
	×	0	1	X	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
000	0	0	O	0	0	0	0	0	0
001	1	0	1	X	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
010	X	0	х	x ²	$x^{2} + x$	x + 1	1	$x^2 + x + 1$	$x^2 + 1$
011	x + 1	0	x + 1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	x^2	1	Х
100	x^2	0	x^2	x + 1	$x^2 + x + 1$	$x^2 + x$	х	$x^2 + 1$	1
101	$x^2 + 1$	0	$x^2 + 1$	1	x^2	X	$x^2 + x + 1$	x + 1	$x^2 + x$
110	$x^{2} + x$	0	$x^2 + x$	$x^2 + x + 1$	1	$x^2 + 1$	x + 1	Х	χ^2
111	$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + 1$	Х	1	$x^{2} + x$	χ^2	x + 1

(b) Multiplication

问题

1、密码算法为什么采用有限域而不是无限域?

2、密码学为什么采用模运算?

3、为什么密码学采用GF(2ⁿ)形式的有限域,而不采用GF(p)形式的有限域?

数论入门

素数

• 任意正整数可由素数的乘积来表示。

$$a = \prod_{p \in P} p^{a_p}, a_p \ge 0$$

- 整数12可用{a₂=2, a₃=1}来表示
- 整数18可用{a₂=1, a₃=2}来表示
- 两数相乘。 > 对应指数相加。
- 整除的表示。 > 对应指数比较大小。
- 最大公因子的计算。 > 对应指数取最小值。
 - K=gcd(a,b)-->对所有的p, kp=min(ap,bp)

Fermat定理

· Fermat定理: 若p是素数,a是正整数且不能被p整除,则

$$a^{p-1} \equiv 1 \bmod p$$

· Fermat定理的另一种有用表示: 若p是素数, a是任意正整数,则

$$a^p \equiv a \bmod p$$

Euler函数

- · Euler函数Φ(n),指小于n且与n互素的正整数的 个数。
- · 对于素数p有:

$\Phi(p)=p-1$

- · 例如,P=7,小于7且与7互素的正整数有:
 - 1, 2, 3, 4, 5, 6, 所以Φ(7)=6
- 如果p=15, Φ(15)=??
- $\Phi(15)=8$
- 对于两个素数p和q, p≠q, 那么对n=pq, 有:
 Φ(n)= Φ (pq)= Φ (p) ×Φ (q)=(p-1) × (q-1)

Euler定理

• Euler定理:对于任意互素的a和n,有:

$$a^{\phi(n)} \equiv 1 \mod n$$

• Euler定理的另一种有用表示:

$$a^{\phi(n)+1} \equiv a \mod n$$

• 推论: 给定两个素数p和q,整数n=pq,对于小于n的任意正整数a(0<m<n),有以下关系式成立:

$$a^{\phi(n)+1} \equiv a^{(p-1)(q-1)+1} \equiv a \mod n$$

• 推论的另一种表达形式:

$$a^{k\phi(n)+1} \equiv a \bmod n$$

离散对数

- 作用?
- 使得a^m≡1 (mod n)成立的最小正幂为m。
 此时,称m为:
 - -a模n的阶
 - -a所产生的周期长
 - -a所属的模n的指数
- 本原根
 - 若a是n的本原根,则a的1到Φ(n)次幂的模n各 不相同的,且均与n互素。
- · 当p为素数时,若a是n的本原根,则a的1到 (p-1)次幂的模p各不相同的。

模19的整数幂

a	a ²	a^3	a ⁴	a ⁵	a6	a ⁷	a8	a ⁹	a ¹⁰	a ¹¹	a ¹²	a ¹³	a ¹⁴	a ¹⁵	a ¹⁶	a17	a ¹⁸
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	4	8	16	13	7	14	9	18	17	15	11	3	6	12	5	10	1
3	9	8	5	15	7	2	6	18	16	10	11	14	4	12	17	13	1
4	16	7	9	17	11	6	5	1	4	16	7	9	17	11	6	5	1
5	6	11	17	9	7	16	4	1	5	6	11	17	9	7	16	4	1
6	17	7	4	5	11	9	16	1	6	17	7	4	5	11	9	16	1
7	11	1	7	11	1	7	11	1	7	11	1	7	11	1	7	11	1
8	7	18	11	12	1	8	7	18	11	12	1	8	7	18	11	12	1
9	5	7	6	16	11	4	17	1	9	5	7	6	16	11	4	17	1
10	5	12	6	3	11	15	17	18	9	14	7	13	16	8	4	2	1
11	7	1	11	7	1	11	7	1	11	7	1	11	7	1	11	7	1
12	11	18	7	8	1	12	11	18	7	8	1	12	11	18	7	8	1
13	17	12	4	14	11	10	16	18	6	2	7	15	5	8	9	3	1
14	6	8	17	10	7	3	4	18	5	13	-11	2	9	12	16	15	1
15	16	12	9	2	11	13	5	18	4	3	7	10	17	8	6	14	1
16	9	11	5	4	7	17	6	1	16	9	11	5	4	7	17	6	1
17	4	11	16	6	7	5	9	1	17	4	11	16	6	7	5	9	1
18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1

离散对数

- 离散对数的定义
 - 对于某素数p, p的本原根为a;
 - 对于任何整数b, $b \equiv r \mod p$;
 - 存在唯一的整数i, $0 \le i \le (p-1)$, 使得 $b \equiv a^i \mod p$
 - i称为以a为底b的指标 $ind_{a,p}(b)$ 也记为离散对数,记为 $dlog_{a,p}(b)$
- 离散对数的性质
- 离散对数的计算

y≡g^x mod p 已知g,x,p,计算y是容易的 已知y,g,p,计算x是困难的

问题

1、Euler定理NP问题是什么?

2、离散对数中,为什么要采用本原根?

