

Prediction Model of Electoral Results in Mexico:

A Case Study using PREP, INEGI and INE Data.

Data Science Intensive Capstone Project, August 3rd, 2024

By Javier Jorge Pérez Ontiveros

Mentor

Executive Summary:

This project uses the PREP, INEGI and INE databases, this provides detailed data on previous elections, including voter demographics, polling station information, economic variables, etc. Analyzing this data helps identify hidden patterns and trends, which can enhance campaign strategies, policymaking, and voter engagement efforts.

The goal is to understand why the winning party (MORENA) achieved a 59% acceptance rate, while the opposition (PAN-PRI-PRD) secured only 28% of the votes.

Objectives:

- To generate a Model that predicts votes for MORENA
- **2) To provide actionable insights** to support the Opposition Party in developing a strategy to improve their results in the 2030 elections.

Results:

- Geographic heatmap and interesting insights
- 2 Main Voters Profiles were discovered with unsupervised learning (k-Means Clustering).
- A final Machine Learning Model with 98% accuracy was developed.

Methodology

- Data Engineering
- Data Wrangling
- Exploratory Analysis (EDA) and Visualization
- Feature Engineering and Clusterization
- Predictive Modeling

Reporting

Data Sources

Data Engineering and Data Wrangling: Acquiring, Cleaning and Merging

PREP

2024 and 2018 election results exported from database to CSV file.

55,976,881 votes 170,944 polling stations 1,580 municipalities 32 states

INEGI

Socioeconomic inputs for the 32 states in csv:

Hospitals, Schooling Years, vehicles purchased, catholic believers, murders per year, population ages, Poberty ratios, Average Income, etc.

INE

Performance and Behavior of Parties per state in csv:

of Campaign events, Marketing Budget, Federal Welfare,

Final DataFrame

														MOR		Av	g_			Extreme	,											
			Non_Ur									Federal S					ho															
	Morena	Urban_F	ban_Po	ll								ocial_Wel	Welfare_	ENA	Xoch M	ayn ol	ng			Pobert	Poberty	Private_	Public_Ho									
	Votes	olling_S	t ing_Star	AMLO_2	GDP_19	GDP_19	GDP_20	GDP_20	GDP_20	GDP_20	GDP_20	fare_Budg	Recipent	_Eve	itl_Ev e	z_E _Y	ea Avg	Inc A	Avg_Exp	_habita	_Habita	Hospital	spital_Use	Total_Ve	Catholic_	Murders	Median_					
ENTIDAD	2024	ations	ions	018	88	94	00	06	12	18	24	et	s	nts	ents v	ents rs	ome	Yr e	ense_Yr	nts	nts	_Users	rs	hicles	Believers	_Yr	Age	Children	Teenagers	Adults	Elders	Total_Population
AGUASCALIENTES	270389	1279	9 56	3 190820	86482	121684	15830	200318	242758	327926	316500	495079	51394	3	3	4	10 313	3152	181260	26	326	34968	1153954	721372	1159832	. 88	3 27	256986	261684	761561	145376	142560
BAJA CALIFORNIA	862661	467	1 70	3 675810	417816	548270	79064	772687	726418	878817	929459	604660	61194	5	1	1	10 35	5648	201252	50	461	176457	2783913	2208801	2187369	2925	5 30	574174	627987	2187557	379302	376902
BAJA CALIFORNIA SUR	175755	82	7 28	7 136806	62347	75145	9518	126685	147270	184618	177421	472056	46686	2	4	3	10 36	5668	192796	6	106	14851	666840	587090	544008	90	29	133230	133134	456475	75608	79844
CAMPECHE	240693	734	4 49	6 171328	588026	713799	82627	959641	691262	564591	473101	536081	55722	5	4	7	10 229	9832	143104	92	337	10355	721266	372668	515526	110	29	165244	156308	504195	102616	92836
CHIAPAS	2E+06	2519	9 435	4 1E+06	230322	281577	30979	321114	370237	353600	368789	826240	83773	8	4	2	8 159	9380	103772	1608	2231	64941	3677747	6368520	2704411	503	3 24	1053437	1259351	5405537	1491619	920994
CHIHUAHUA	744823	460	1 116	0 441965	326595	417237	58126	4 635598	711481	853323	919617	386882	38358	6	11	2	10 32	7716	160384	80	589	247512	2975346	1127781	2514110	2157	7 29	562295	537428	1698511	348537	314677
CIUDAD DE MEXICO	3E+06	1316	6 26	5 3E+06	1897079	2448263	2903709	3134225	3332209	3694575	3640388	2551158	276864	398	78	29	11 35	7240	235592	159	2071	537244	6352039	397307	6634532	747	7 35	114318	121464	404052	91557	73139
COAHUILA	813432	330	7 83	6 515518	387781	479740	65549	798549	870635	966055	922287	1235326	132323	7	4	1	10 30	0504	176020	59	538	113714	2487607	1136170	2157764	170	29	1214788	1109709	2711574	507757	554382
COLIMA	182063	66	7 36	2 178123	74614	90021	11055	1 114844					924361	2	3		10 27			9				1931820		887		616247		2045753		374186
DURANGO	402566	153	108	B 247076	149136	181317	208654	4 241373	286058	308981	296963	1509159	158018	4	3	2	10 22	3880	142532	118	523	22732	1366822	694906	1383653	127	7 27	346808	333261	943103	209478	183265
GUANAJUATO	1E+06	504	4 310	608766	410583	515054	65360	769496	892379	1120603	1128686	3228960	336389	9	4	3	9 24	0400	145836	203	1870	119487	4805125	2271471	5107664	4329	9 28	1098440	1101393	3285727	681374	616693
GUERRERO	1E+06	230	4 280	844065	210191	244535	256194	4 280083	294551	317845	306831	3142321	340995	5	7	1	8 16	7016	122084	801	1373	23333	2632011	1447351	2576502	1404	4 27	700885	675033	1721233	443534	354068
HIDALGO	1E+06	151	3 269	2 744219	235180	297707	33733	1 349080	379811	418630	426819	2108249	214434	5	4	1	9 21	2936	136344	214	1080	46182	2130675	695875	2285681	390	30	510948	556182	1632036	383675	308284
JALISCO	2E+06	778	2 308	1 1E+06	843957	1031967	1259070	1340006	1488617	1754180	1783505	4558279	467720	13	9	14	10 28	6976	178776	181	1676	305198		4369650		1863	3 29	1440134	1431165	4477767	999085	834815
MEXICO	5E+06	1652	7 445	2 4E+06	1005116	1239028	1560109	1710986	1911402	2243798	2184863	18896673	1934530	20	17	6	10 22	3932	154596	1032	6395	565431	10827568	9421189	12369271	3257	7 30	2665745	2941214	9466005	1919454	1699241
MICHOACAN	1E+06	349	4 293	6 820449	304548	364985	451793	485162	531827	633757	646901	2934380	308141	9	5	2	9 22	7836	160544	372	1691	61986	2930541	1950503	3837269	2329	9 28	874985	834612	2437550	601699	474884
MORELOS	578230	1956	62	1 521571	144824	176585	20650	7 232044	248100	273245	256740	1681672	179369	10	6	3	10 22	3956	152036	118	708	31301	1405667	1195466	1298610	1175	5 30	305322	330831	1061464	273903	197152
NAYARIT	306423	1110	70	6 240273	87659	112713	115656	135897	142898	155758	161869	1466501	149317	3	1	1	10 26	1304	155448	81	289	18508	967852	542623	944500	196	3 29	218711	217591	641759	157395	123545
NUEVO LEON	1E+06	627	7 116	4 551927	694488	916740	121218	1 1469584	1621930	1909026	1945060	730338	73990	15	8	16	11 34	1072	193584	65	907	417040	4413414	2686334	4152646	1410	30	936860	934616	3258916	654050	578444
OAXACA	1E+06	223	2 368	7 1E+06	268785	344896	35573	1 380271	386538	383160	407238	2006353	215982	7	3	1	8 17	3372	106388	860	1624	30777	2918560	1005139	2855785	808	5 28	758000	757070	2066501	550577	413214
PUEBLA	2E+06	507	324	3 1E+06	344990	425378	563689	650293	747712	849556	820790	2460353	270154	7	3	4	9 19	7536	136108	766	2861	131689	4572862	1263461	5057571	1089	9 28	1183000	1210575	3444284	745419	658327
OUERETARO	585662	177	3 136	350246	189848	266658	36856	1 427147	526761	611368	592139	841132	87247	4	3	1	10 299	9824	194912	43	494	97490	1821860	820112	1861516	192	2 29	391686	396742	1339817	240222	236846
QUINTANA ROO	536134	193	B 55	8 334458	102517	140495	18022	234333	280381	377341	357539	503768	49611	4	2	0	10 287	7608	184580	80	437	41972	1341934	988280	942844	647	7 28	324141	301830	1100962	131052	185798
SAN LUIS POTOSI	773086	203	1 187	5 413328	201731	264259	31046	377360	437595	557796	537933	1876774	201188	7	1	2	10 24	0576	154280	213	807	75626	2300947	1357909	2218856	759	9 29	475600	506577	1478479	361599	282225
SINALOA	782221	353	162	1 632646	283923	344144	39156	7 411251	466782	527714	516711	1174206	121748	5	2	2	10 287	7552	171644	56	612	60854	2448164	1341447	2196411	. 587	7 30	488957	521753	1622714	393519	302694
SONORA	674746	298	3 91	6 462120	329333	446593	59156	4 605739	681379	782098	804668	756531	77435	6	6	2	10 30	1080	169672	51	599	100270	2352956	1552856	2094915	1759	9 30	467781	514507	1604148	358404	294484
TABASCO	811270	153	1 158	766515	306786	375022	42590	7 478125	595176	471565	635465	935361	98415	5	2	3	10 20	3380	128100	273	863	87994	1576238	737187	1372585	354	4 29	431811	431358	1281904	257525	240259
TAMAULIPAS	910332	379		7 607278									89313	7	8	1			158012	103	860			1434974		482				1929367	426227	352773
TLAXCALA	486946	128				87365						1222596	127898	1	2	1			131812	93					1045600	155		249123		707043		134297
VERACRUZ	2E+06	579		9 2E+06	676136				1084723		1032889		253349	17	9	2	9 17		117224	1078				2319548		787		1278905			1157892	806257
YUCATAN	696450	219										819399	89747	15	5	1			152308	133	787					55				1280439		232089
ZACATECAS	369235	1111		2 307197								1574047	169039	3	1	3			139452	84	642		2110001	639134		1459		309307		820489		162213

A 40 columns x 32 rows Dataframe was created to predict the votes for MORENA Entity This Dataframe was further modified and expanded with the use of some ratios and feature engineering.

Insight #1: GDP has stagnated since 2018

Since AMLO president won elections in 2018, the economy in Mexico has slowed down.

In comparisson, USA and China have a very positive trend (even after Covid)

In the other hand, with Opposition parties had a 10%-20% growth in GDP average from 1988 to 2018.

Economy stagnation per State from 2018 to 2024

GDP Growtth from 2018 to 2024 was only 0.18%.

Votes per Entity

Orange Color represents the votes for Maynez, Higher influence of Maynez (as a vote divider) can be observed in Nuevo Leon and Jalisco

Geographical Heatmap Distribution

The map shows a significant trend where the highest resistance (blue color) is observed in the Bajío region, known for its industrial and economic strength. While the stronger MORENA states are in the South-East Region (Less Industrial and Economical development)

This is interesting as votes for MORENA,, correlate highly with poverty ratios.

Opposition Party MUST focus on helping the less priviledged population from 2024-2030 if they want to have a chance of winning.

Features vs Response Heatmap

These variables showed a positive correlation with MORENA votes:

- Preference for AMLO in 2018
- Federal Warefare budget
- Poberty Habitants
- Public Hospitals
- Catholic Beliefs
- Adults Amount

Linear Correlations

Linear correlations show that the votes for MORENA increase when these variables increase:

- Poberty Habitants
- Catholic Believers
- Adults 40-50 yrs old
- AMLO followers since 2018
- Public Hospital Users
- Federal Wellfare Budget

Clustering (PCA)

2 Componenets explain 67% of the Total Variation

3 Components explain 87% of Total Variation

Clustering

Cluster #1 (PCA 1) has a LESS preference for MORENA. This cluster has the following characteristics: High GDP, High Urbanization Ratio, Higher Healthcare demand and Higher Income per Capita.

Behavior of the 2 clusters identified (Morena and Opposition)

The graph shows the normalized Average of different characteristics of both clusters.

- Cluster #0 (BLUE) has a higher preference for MORENA
- Cluster #1 (ORANGE) has a lower voting preference for MORENA.

Modeling

```
# Initialize models
models = {
                                                                                                                 Model
                                                                                                                                      Lasso
    'Random Forest': RandomForestRegressor(random_state=42),
                                                                                                                Train MSE
                                                                                                                                  0.014998
    'Lasso': Lasso(alpha=0.1),
    'Linear Regression': LinearRegression(),
                                                                                                                Train R2
                                                                                                                                  0.986565
   'Ridge': Ridge(alpha=1.0),
                                                                                                                 Test MSE
                                                                                                                                  0.010197
   'Decision Tree': DecisionTreeRegressor(random_state=42)
                                                                                                                 Test R<sup>2</sup>
                                                                                                                                    0.97997
                                                                                                                Model
                                                                                                                                      Ridge
# Train and evaluate models
                                                                                                                Train MSE
                                                                                                                                  0.002201
conclusions = []
                                                                                                                Train R2
                                                                                                                                  0.998029
for name, model in models.items():
                                                                                                                                  0.047715
                                                                                                                Test MSE
   model.fit(X_train_scaled, y_train)
   y_train_pred = model.predict(X_train_scaled)
                                                                                                                                  0.906278
                                                                                                                Test R<sup>2</sup>
   y_test_pred = model.predict(X_test_scaled)
                                                                                                                Model
                                                                                                                                  Linear Regression
   mse_train = mean_squared error(y train, y train pred)
                                                                                                                Train MSE
                                                                                                                                                      0.0
   r2_train = r2_score(y_train, y_train_pred)
                                                                                                                                                      1.0
                                                                                                                Train R<sup>2</sup>
   mse_test = mean_squared_error(y_test, y_test_pred)
                                                                                                                Test MSE
                                                                                                                                               0.054846
   r2_test = r2_score(y_test, y_test_pred)
                                                                                                                Test R<sup>2</sup>
                                                                                                                                               0.892273
   conclusions.append({
                                                                                                                Model
                                                                                                                                  Random Forest
        'Model': name,
       'Train MSE': mse train,
                                                                                                                Train MSE
                                                                                                                                         0.100472
       'Train R2': r2 train,
                                                                                                                Train R<sup>2</sup>
                                                                                                                                         0.910003
       'Test MSE': mse test,
        'Test R2': r2_test
                                                                                                                                         0.067189
                                                                                                                Test MSE
   })
                                                                                                                Test R<sup>2</sup>
                                                                                                                                         0.868028
# Convert conclusions to DataFrame
                                                                                                                                  Decision Tree
                                                                                                                Model
conclusions df = pd.DataFrame(results)
                                                                                                                                                0.0
                                                                                                                Train MSE
                                                                                                                Train R<sup>2</sup>
                                                                                                                                                1.0
# Print the results:
                                                                                                                                         0.127489
                                                                                                                 Test MSE
# Sort the results by Test R2 in descending order
                                                                                                                 Test R2
                                                                                                                                         0.749587
conclusions df = conclusions df.sort values(by='Test R2', ascending=False)
```

5 Models where developed: Decission Tree, Random Forest, Linear Regression, Ridge and Lasso. The last model had the best performance (98% accuracy in testing and training)

Results

0.567453

0.202205

0.209553

Lasso Equation ML Model developed had a great performance that can be graphically seen in the above equation.

Conclusion: Key Insights

- Target Population: MORENA focuses on impoverished populations, which are their major voters.
 However, these voters do not necessarily contribute to GDP growth or industrial/economic development, presenting an opportunity for the opposition to highlight long-term benefits.
- Campaign Efforts: MORENA held significantly more public events (617) compared to the opposition (223), despite spending 3x less on campaign budgets. The opposition should focus on engaging directly with impoverished populations rather than spending excessively on propaganda.
- **Key Demographics:** The opposition should prioritize engaging with populations that have a strong preference for AMLO, federal welfare recipients, impoverished communities, Catholic believers, and adults.
- Socioeconomic Clusters: There are two distinct clusters: one with a high socioeconomic profile (less likely to vote for MORENA) and another with a low socioeconomic profile (MORENA followers).
- **Political Polarization:** AMLO has polarized these clusters with rhetoric of "Fifis vs Chairos." This polarization should be addressed as all Mexicans are equal, and unity should be emphasized.
- **Future Projects:** For future projects, incorporating demographic, economic, and social information per city could help create a more robust model that generalizes the data better.

Thank You!

https://www.linkedin.com/in/jjpo/

javierjorge77@gmail.com

https://github.com/javierjorge77/Springboard/tree/main/Capstones/Capstone2

(+521) 8711777903