1 Topology

Definition 1.1. (Topology)

Let $X \neq \phi$. Let $\mathcal{T} \subset 2^X$. Further, Suppose the following.

- 1.) $\{X, \phi\} \subset \mathcal{T}$.
- 2.) $\{G_{\alpha}\}_{{\alpha}\in\mathscr{A}}\subset\mathcal{T}\implies\bigcup_{{\alpha}\in\mathscr{A}}G_{\alpha}\in\mathcal{T}$
- 3.) $\{G_i\}_{i=1}^n \subset \mathcal{T} \implies \bigcap_{i=1}^n G_i \in \mathcal{T}$

Then we call \mathcal{T} a Topology on X and we call the pair (X, \mathcal{T}) a topological space If $U \in \mathcal{T}$, we call U an Open Set.

Examples 1. $X = \{0, 1\}$

 $\mathcal{T}_1 = \{\emptyset, X\}$ is a topology for X, the **indiscrete topology**.

 $\mathcal{T}_2 = \{\emptyset, X, \{0\}, \{1\}\}\$ is a topology for X, the **discrete topology**.

 $\mathcal{T}_3 = \{\emptyset, X, \{0\}\}\$ is a topology for X, the **Sierpinski topology**.

Definition 1.2. (Neighborhood)

Let (X, \mathcal{T}) be a topological space. Let $x \in X$. A **neighborhood** of X is a set U_x such that $x \in U_x \in \mathcal{T}$.

Notation: A set U_x or V_y means $x \in U_x \in \mathcal{T}$ or $y \in V_y \in \mathcal{T}$ respectively.

The Purpose of Topology as a study is to determine what properties of spaces are preserved under continuous mappings. This motivates the following definition.

1.0.1 Open Set; Closed Set

Definition 1.3. (Closed set)

Let (X, \mathcal{T}) be a topological space. A set C is said to be a Closed set if $CC \in \tau$.

Proposition 1.1. (Closed Union/ Closed intersection)

Let (X,τ) $\{S_{\alpha}\}_{{\alpha}\in\mathscr{A}}$ be a collection of closed sets in X. Then the following hold

1.) $\bigcap_{\alpha \in \mathscr{A}} S_{\alpha}$ is closed 2.) Finite unions of elements of $\{S_{\alpha}\}_{\alpha \in \mathscr{A}}$ are closed.

Proof. De Morgan's Law

Proposition 1.2. Let (X, \mathcal{T}) be a topological space. Let $G \subset X$. Then

$$G \in \mathcal{T} \iff (\forall x \in G)(\exists U_x \subset G)$$

Proof. (\rightarrow) Obvious

Proof. \leftarrow . Write G as the union $\bigcup_{x \in G} U_x$. Easy peasy.

1.0.2 Interior; Closure

Definition 1.4. (Interior of a set)

Let (X, \mathcal{T}) be a topological space. Let $A \subset X$. We say that p is an interior point of A if

$$(\exists U_p \subset A)$$

We refer to the set of interior points of A as the interior of A, and denote it by int(A).

Definition 1.5. (Accumulation Point)

Let (X, \mathcal{T}) be a topological space. Let $A \subset X$. A point $x \in X$ is said to be an accumulation point of A if

$$(\forall U_x)(U_x \cap A \setminus \{x\} \neq \phi)$$

We denote the set of accumulation points of A with A'.

Theorem 1. (Closed characterization)

Let (X, \mathcal{T}) be a topological space. Let $A \subset X$. Then A is closed $\iff A' \subset A$.

Proof. (\rightarrow) . Let A be closed

Proof. (\leftarrow) Let $A' \subset A$

Definition 1.6. (Closure of a set)

Let (X, \mathcal{T}) be a topological space. Let $A \subset X$. We define the closure of A, denoted by \overline{A} , to be $\overline{A} = A \cup A'$.

Corollary 1.1. (Closed Characterization)

Let (X,τ) be a T.S., and let $A \subset X$. Then A is closed if and only if $A = \overline{A}$.

Proof. (\Longrightarrow) Suppose A is closed...

Proof. (\leftarrow) Suppose $A = \overline{A}$...

Proposition 1.3. Let X be a topological space and let $A \subset X$. Then \overline{A} is closed.

Theorem 2. (Closure Properties)

Let (X, \mathcal{T}) be a topological space. Let $A, B \subset X$. Then the following hold.

- 1.) $A \subset B \implies \overline{A} \subset \overline{B}$
- 2.) $\overline{A \cup B} = \overline{A} \cup \overline{B}$
- 3.) $\overline{A} = \bigcap \{f : f \text{ is closed and } A \subset f\}$

Proof. (1) Do it yourself

Proof. (2) Test your progress

Proof. (3) It is about proving the equality of two sets.

Proposition 1.4. (Interior Closure complement)

Let X be a topological space. Let $F \subset X$. Then $\overline{\mathbb{C}F} = int(\overline{\mathbb{C}F})$.

Proof. \Box

Definition 1.7. (Boundary of a set)

Let (X, τ) be a topological space. Let $A \subset X$. We define the **Boundary** of A, denoted by ∂A , to be the set

$$\partial A = \overline{A} \cap \overline{\mathsf{C}A}$$

An Intuitive Approach to Topology

2 Topology and Metric Spaces

Definition 2.1. (Metric Space). Let $X \neq \emptyset$ and let $d: X \times X \to \mathbb{R}$. We say that d is a metric for X and the pair (X, d) is a metric space if

- 1. $d(x,y) \ge 0$, and that $d(x,y) = 0 \Leftrightarrow x = y$
- 2. d(x,y) = d(y,x)
- 3. $d(x,y) \le d(x,z) + d(z,y)$ 2

Theorem 3. Every metric space induces a topology.

Proof. Proof here. \Box

Example 2.1. (Euclidean Topology).

In \mathbb{R}^n , $\mathcal{E} = \{G : G \text{ is open}\} \cup \{\emptyset\}$, where G is open is equivalent to say that $(\forall x \in \mathbb{R}^n)(\exists B(x;\epsilon))(B(x;\epsilon) \subseteq G)$. $(\mathbb{R}^n,\mathcal{E})$ is called the **Euclidean topology**. In this topology, we have defined a metric, $d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \ldots + (x_n - y_n)^2}$. This leads to the definition of an open ball using the metric: $B(x,\epsilon) = \{y \in \mathbb{R}^n : d(x,y) < \epsilon\}$

3 Closure and Interior Points

Theorem 4. Let (X, \mathcal{T}) be a topological space and let $A \subseteq X$, then

$$A \text{ is closed} \Leftrightarrow A' \subseteq A$$

Proof. Proof here.

Definition 3.1. (Closure of a Set). The closure of a set A is defined as the union between the accumulation points of A and A.

$$cl(A) = \overline{A} = A \cup A'$$

Theorem 5. \overline{A} is a closed set.

Proof. Proof here. \Box

Theorem 6. $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

Proof. Proof here. \Box

Theorem 7. $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$

Proof. Proof here. \Box

Definition 3.2. (Boundary Points). Let (X, \mathcal{T}) be a topological space. Let $A \subseteq X$. Then the boundary of the set A is the intersection between the closure of A and the closure of the complement of A.

$$\partial(A)=\overline{A}\cap\overline{\mathbb{C}A}$$

Definition 3.3. (Interior Points). Let (X, \mathcal{T}) be a topological space. Let $A \subseteq X$. Then the interior of the set A is the set of all points x such that there exists a neighborhood of x such that $U(x) \subseteq A$.

$$int(A) = \dot{A} = \{x \in A : (\exists U(x))(U(x) \subseteq G)\}$$

Theorem 8. $int(A) \subseteq A \subseteq \overline{A}$

Proof. Proof here. \Box

Theorem 9. $\overline{A} = int(A) \cup \partial A$ *Proof.* Proof here. **Theorem 10.** G is open $\Leftrightarrow int(G) = G$. *Proof.* Proof here. vspace11pt **Theorem 11.** $\mathbb{C}\overline{A} = int(\mathbb{C}A) \Leftrightarrow \overline{A} = \mathbb{C}(int(\mathbb{C}A))$ Proof. Proof here. **Theorem 12.** $x \in \overline{A} \Leftrightarrow (\forall U(x))(U(x) \cap A \neq \emptyset)$ Proof. Proof here. Theorem 13. $A \subseteq B \Rightarrow \overline{A} \subseteq \overline{B}$ Proof. Proof here. **Theorem 14.** $A \subseteq B \Rightarrow int(A) \subseteq int(B)$ Proof. Proof here. **Theorem 15.** $\overline{A} = \bigcap \{F : F \text{ is closed and } A \subseteq F\}$ Proof. Proof here. **Theorem 16.** $int(A) = \bigcup \{G : G \text{ is open and } G \subseteq A\}$ Proof. Proof here. Theorem 17. $\mathbb{C}(int(A)) = \overline{\mathbb{C}A}$ Proof. Proof here.

Theorem 18. $\partial A = \partial(\mathbb{C}A)$

Proof. Proof here.