Министерство образования и науки Российской Федерации Иркутский национальный исследовательский технический университет

Институт кибернетики им. Е. И. Попова Кафедра автоматизированных систем

Задача оптимального распределения судов по регулярным линиям

Отчет по лабораторной работе №1

по дисциплине Методы системного анализа

Выполнил Студент группы ИСТм-16-1		Костылев Д. А.
Примат	подпись	Фамилия И. О.
Принял		Куцый Н. Н.
	подпись	Фамилия И. О.

Содержание

1	Постановка задачи	3
2	Математическая модель	3
	2.1 Индивидуальное задание	4
3	Решение	5
	3.1 Нахождение начального допустимого базисного решения.	
	Метод Данцига	5
	3.1.1 Шаг 1	5
	3.1.2 Шаг 2	7
	3.1.3 Шаг 3	9
	3.2 Переход от начального допустимого решения к первой	
	симплекс-таблице	11
	3.3 Решение методом полного исключения Гаусса	13
	3.3.1 Шаг 1	14
	3.3.2 Шаг 2	15
	3.3.3 Шаг 3	16
	3.3.4 Шаг 4	17
	3.3.5 Шаг 5	18
4	Заключение	19

1 Постановка задачи

Имеется N различных судов, которые могут осуществлять перевозку грузов по регулярным линиям. Суда различных типов при эксплуатации на той или иной линии имеют различные характеристики. В частности различные суда имеют различное число заходов в промежуточные порты для пополнения запасов пресной воды и топлива.

На некоторых линиях используется не полностью коммерческая грузоподъемность судов, а суда некоторых типов вообще не могут быть использованы на некоторых линиях.

Все эти причины приводят к тому, что эксплуатационные расходы, приходящиеся на каждых используемых на линии оказываются различными. Исходя из данных о себестоимости грузокилометров и коммерческой загрузки судов на каждой линии устанавливается:

- $-\ a_{ij}$ месячный объем перевозки одним судом j типа груза на i регулярной линии
- c_{ij} месячный эксплуатационный расход на одно судно j типа на i линии.

Предполагается, что известен требуемый месячный объем перевозки по каждой регулярной линии. Известно, также число судов j типа.

Требуется составить такой план распределения N судов по регулярным линиям, который обеспечивает минимум суммарных эксплуатационных расходов.

Решить поставленную задачу методом симплекс-таблиц, основанном на методе полного исключения Гаусса, применяя для нахождения начального допустимого базисного решения метод Данцига. При этом необходимо распределить весь парк N судов по регулярным линиям.

№ линии\№ судна	1	2	3	Минимальный объем перевозок
1	25/15	20/10	50/30	500
2	15/25	10/6	0/0	200
3	10/30	40/5	8/10	100
Кол-во кораблей	55	95	30	

Таблица 1.1 — Исходные данные

2 Математическая модель

Обозначим через x_{ij} — количество судов, перевозимого по линиям перевозки, $c_{i,j}$ — стоимость перевозки.

Целевая функция — $\min F(x_{ij}) = \min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} \cdot x_{ij}$.

Целевая функция отражает минимальные транспортные издержки, при которых запросы всех потребителей удовлетворены.

Требуется определить множество переменных $ij \geqslant 0$, удовлетворяющих следующим условия:

$$\sum_{j=1}^n x_{ij} \cdot a_{ij} \geqslant a_i$$
, где $(i=1,2,\ldots,m)$ $\sum_{i=1}^m x_{ij} = N_j$, где $(i=1,2,\ldots,m)$

В ограничениях a_i — минимальный объем перевозок на линии $i;\ N_j$ — количество судов вида j.

2.1 Индивидуальное задание

Обозначим через x_{ij} число судов типа j (j=1,2,3), которое планируется закрепить за регулярной линией i(i=1,2,3).

С учетом введенных обозначений математическая модель задачи: Целевая функция:

$$\min Z_{x_{ij}} = \min_{x_{ij}} \left(15x_{11} + 10x_{12} + 30x_{13} + 25x_{21} + 6x_{22} + 0x_{23} + 30x_{31} + 5x_{32} + 10x_{33} \right)$$

, при ограничениях:

$$\begin{cases} 25x_{11} + 20x_{12} + 50x_{13} & \geqslant 500 \\ 15x_{21} + 10x_{22} + 0x_{23} & \geqslant 200 \\ 10x_{31} + 40x_{32} + 8x_{33} & \geqslant 100 \\ x_{11} + x_{21} + x_{31} & = 55 \\ x_{12} + x_{22} + x_{32} & = 95 \\ x_{13} + x_{23} + x_{33} & = 30 \\ x_{ij} \geqslant 0, (i = 1(1)3), (j = 1(1)3) \end{cases}$$

Обратим внимание, что в целевой функции коэффициент при переменной равен 1000, что значительно больше любого из остальных коэффициентов целевой функции. Тем самым использование судов третьего типа на второй регулярной линии "заблокировано так как при $x_{32} \neq 0$ значение целевой функции резко возрастает, и алгоритм, сформированный на основе метода симплекс-таблиц, выведет переменную x_{32} из числа базисных переменных, т. е. определит значение равным нулю.

В системе ограничений вида неравенств коэффициент при равен нулю. Тем самым, отражено то, что на судах 3-го типа по 2-ой регулярной линии количество перевозимого груза может быть только равным нулю.

3 Решение

3.1 Нахождение начального допустимого базисного решения. Метод Данцига.

Приведем индексы матрицы ограничений к такому виду:

 x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 x_{10} x_{11} x_{12} -1-1-1

Таблица 3.1

Вводим в базис произвольные переменные: A_0 , A_1 , A_2 , A_3 , A_4 , A_5 .

3.1.1 Шаг 1

$$A_6 = 0 = 500x_{0-6} + 25x_{1-6} + 0x_{2-6} + 0x_{3-6} + 20x_{4-6} + 0x_{5-6}$$

$$A_6 = 0 = 200x_{0-6} + 0x_{1-6} + 15x_{2-6} + 0x_{3-6} + 0x_{4-6} + 10x_{5-6}$$

$$A_6 = 40 = 100x_{0-6} + 0x_{1-6} + 0x_{2-6} + 10x_{3-6} + 0x_{4-6} + 0x_{5-6}$$

$$A_6 = 0 = 55x_{0-6} + 1x_{1-6} + 0x_{2-6} + 0x_{3-6} + 1x_{4-6} + 0x_{5-6}$$

$$A_6 = 0 = 95x_{0-6} + 0x_{1-6} + 1x_{2-6} + 0x_{3-6} + 0x_{4-6} + 1x_{5-6}$$

$$A_6 = 1 = 30x_{0-6} + 0x_{1-6} + 0x_{2-6} + 1x_{3-6} + 0x_{4-6} + 0x_{5-6}$$

$$\begin{split} A_7 &= 50 = 500x_{0-7} + 25x_{1-7} + 0x_{2-7} + 0x_{3-7} + 20x_{4-7} + 0x_{5-7} \\ A_7 &= 0 = 200x_{0-7} + 0x_{1-7} + 15x_{2-7} + 0x_{3-7} + 0x_{4-7} + 10x_{5-7} \\ A_7 &= 0 = 100x_{0-7} + 0x_{1-7} + 0x_{2-7} + 10x_{3-7} + 0x_{4-7} + 0x_{5-7} \\ A_7 &= 1 = 55x_{0-7} + 1x_{1-7} + 0x_{2-7} + 0x_{3-7} + 1x_{4-7} + 0x_{5-7} \\ A_7 &= 0 = 95x_{0-7} + 0x_{1-7} + 1x_{2-7} + 0x_{3-7} + 0x_{4-7} + 1x_{5-7} \\ A_7 &= 0 = 30x_{0-7} + 0x_{1-7} + 0x_{2-7} + 1x_{3-7} + 0x_{4-7} + 0x_{5-7} \end{split}$$

$$A_8 = 0 = 500x_{0-8} + 25x_{1-8} + 0x_{2-8} + 0x_{3-8} + 20x_{4-8} + 0x_{5-8}$$

$$A_8 = 0 = 200x_{0-8} + 0x_{1-8} + 15x_{2-8} + 0x_{3-8} + 0x_{4-8} + 10x_{5-8}$$

$$A_8 = 0 = 100x_{0-8} + 0x_{1-8} + 0x_{2-8} + 10x_{3-8} + 0x_{4-8} + 0x_{5-8}$$

$$A_8 = 0 = 55x_{0-8} + 1x_{1-8} + 0x_{2-8} + 0x_{3-8} + 1x_{4-8} + 0x_{5-8}$$

$$A_8 = 1 = 95x_{0-8} + 0x_{1-8} + 1x_{2-8} + 0x_{3-8} + 0x_{4-8} + 1x_{5-8}$$

$$A_8 = 0 = 30x_{0-8} + 0x_{1-8} + 0x_{2-8} + 1x_{3-8} + 0x_{4-8} + 1x_{5-8}$$

$$A_9 = 0 = 500x_{0-9} + 25x_{1-9} + 0x_{2-9} + 0x_{3-9} + 20x_{4-9} + 0x_{5-9}$$

$$A_9 = 0 = 200x_{0-9} + 0x_{1-9} + 15x_{2-9} + 0x_{3-9} + 0x_{4-9} + 10x_{5-9}$$

$$A_9 = 8 = 100x_{0-9} + 0x_{1-9} + 0x_{2-9} + 10x_{3-9} + 0x_{4-9} + 0x_{5-9}$$

$$A_9 = 0 = 55x_{0-9} + 1x_{1-9} + 0x_{2-9} + 0x_{3-9} + 0x_{4-9} + 0x_{5-9}$$

$$A_9 = 0 = 95x_{0-9} + 0x_{1-9} + 1x_{2-9} + 0x_{3-9} + 0x_{4-9} + 1x_{5-9}$$

$$A_9 = 1 = 30x_{0-9} + 0x_{1-9} + 0x_{2-9} + 1x_{3-9} + 0x_{4-9} + 1x_{5-9}$$

$$A_9 = 1 = 30x_{0-1} + 0x_{1-1} + 15x_{2-1} + 0x_{3-1} + 20x_{4-1} + 0x_{5-10}$$

$$A_{10} = 0 = 200x_{0-10} + 25x_{1-10} + 0x_{2-10} + 0x_{3-10} + 20x_{4-10} + 0x_{5-10}$$

$$A_{10} = 0 = 100x_{0-10} + 0x_{1-10} + 1x_{2-10} + 0x_{3-10} + 0x_{4-10} + 0x_{5-10}$$

$$A_{10} = 0 = 55x_{0-10} + 1x_{1-10} + 0x_{2-10} + 0x_{3-10} + 0x_{4-10} + 0x_{5-10}$$

$$A_{10} = 0 = 55x_{0-10} + 0x_{1-10} + 1x_{2-10} + 0x_{3-10} + 0x_{4-10} + 1x_{5-10}$$

$$A_{10} = 0 = 55x_{0-10} + 0x_{1-10} + 1x_{2-10} + 0x_{3-10} + 0x_{4-10} + 0x_{5-10}$$

$$A_{10} = 0 = 55x_{0-10} + 0x_{1-10} + 1x_{2-10} + 0x_{3-10} + 0x_{4-10} + 0x_{5-10}$$

$$A_{11} = 0 = 55x_{0-11} + 0x_{1-10} + 1x_{2-10} + 0x_{3-10} + 0x_{4-10} + 0x_{5-10}$$

$$A_{11} = 0 = 500x_{0-11} + 25x_{1-11} + 0x_{2-11} + 0x_{3-11} + 0x_{4-10} + 0x_{5-11}$$

$$A_{11} = 0 = 500x_{0-11} + 25x_{1-11} + 0x_{2-11} + 0x_{3-11} + 0x_{4-10} + 0x_{5-11}$$

$$A_{11} = 0 = 500x_{0-11} + 25x_{1-11} + 0x_{2-11} + 0x_{3-11} + 0x_{4-11} + 0x_{5-11}$$

$$A_{11} = 0 = 500x_{0-11} + 0x_{1-11} + 1x_{2-11} + 0x_{3-11} + 0x_{4-11} + 0x_{5-11}$$

$$A_{11} = 0 = 500x_{0-11} + 0x_{1-11} + 1x_{2-11} + 0x_{3-11} + 0x_{$$

Решения уравнений:

 $A_{12} = 0 = 30x_{0-12} + 0x_{1-12} + 0x_{2-12} + 1x_{3-12} + 0x_{4-12} + 0x_{5-12}$

Таблица 3.2 — Решения уравнений в виде таблицы

	x_0	x_1	x_2	x_3	x_4	x_5
A_6	-0.15	-18.0	-22.5	5.5	26.25	36.75
A_7	0.0	6.0	0.0	-0.0	-5.0	-0.0
A_8	0.0	-0.0	-2.0	-0.0	0.0	3.0
$\overline{A_9}$	0.01	1.2	1.5	0.7	-1.75	-2.45
$\overline{A_{10}}$	0.0	-0.2	-0.0	0.0	0.2	0.0
$\overline{A_{11}}$	-0.0	-0.0	-0.2	-0.0	0.0	0.2
A_{12}	0.005	0.6	0.75	-0.15	-0.875	-1.225

Сравнивая решения при x_0 :

$$x_{06} = -0.15; \ x_{07} = 0.0; \ x_{08} = 0.0; \ x_{09} = 0.01$$

 $x_{010} = 0.0; \ x_{011} = -0.0; \ x_{012} = 0.005$

Минимальный элемент: $x_{0-12} = 0.005$.

Вводим в базис вектор A_{12} и запишем для него уравнение:

$$A_{12} = 0.005x_{12-0} + 0.6x_{12-1} + 0.75x_{12-2} - 0.15x_{12-3} - 0.875x_{12-4} - 1.225x_{12-5}$$

Введем вспомогательный вектор со случайными значениями:

$$\rho_0 = 6; \ \omega_1 = 5; \ \omega_2 = 6; \ \omega_3 = 5; \ \omega_4 = 9; \ \omega_5 = 4$$

Выводим из базиса вектор A_1 , т.к. $\theta_0 = \frac{6}{0.005} = 1200.0$

3.1.2 Шаг 2

$$\begin{split} A_0 &= 500 = 25x_{1-0} + 0x_{2-0} + 0x_{3-0} + 20x_{4-0} + 0x_{5-0} + 0x_{12-0} \\ A_0 &= 200 = 0x_{1-0} + 15x_{2-0} + 0x_{3-0} + 0x_{4-0} + 10x_{5-0} + 0x_{12-0} \\ A_0 &= 100 = 0x_{1-0} + 0x_{2-0} + 10x_{3-0} + 0x_{4-0} + 0x_{5-0} + -1x_{12-0} \\ A_0 &= 55 = 1x_{1-0} + 0x_{2-0} + 0x_{3-0} + 1x_{4-0} + 0x_{5-0} + 0x_{12-0} \\ A_0 &= 95 = 0x_{1-0} + 1x_{2-0} + 0x_{3-0} + 0x_{4-0} + 1x_{5-0} + 0x_{12-0} \\ A_0 &= 30 = 0x_{1-0} + 0x_{2-0} + 1x_{3-0} + 0x_{4-0} + 0x_{5-0} + 0x_{12-0} \end{split}$$

$$\begin{split} A_6 &= 0 = 25x_{1-6} + 0x_{2-6} + 0x_{3-6} + 20x_{4-6} + 0x_{5-6} + 0x_{12-6} \\ A_6 &= 0 = 0x_{1-6} + 15x_{2-6} + 0x_{3-6} + 0x_{4-6} + 10x_{5-6} + 0x_{12-6} \\ A_6 &= 40 = 0x_{1-6} + 0x_{2-6} + 10x_{3-6} + 0x_{4-6} + 0x_{5-6} + -1x_{12-6} \\ A_6 &= 0 = 1x_{1-6} + 0x_{2-6} + 0x_{3-6} + 1x_{4-6} + 0x_{5-6} + 0x_{12-6} \\ A_6 &= 0 = 0x_{1-6} + 1x_{2-6} + 0x_{3-6} + 0x_{4-6} + 1x_{5-6} + 0x_{12-6} \\ A_6 &= 1 = 0x_{1-6} + 0x_{2-6} + 1x_{3-6} + 0x_{4-6} + 0x_{5-6} + 0x_{12-6} \end{split}$$

$$A_7 = 50 = 25x_{1-7} + 0x_{2-7} + 0x_{3-7} + 20x_{4-7} + 0x_{5-7} + 0x_{12-7}$$

$$A_7 = 0 = 0x_{1-7} + 15x_{2-7} + 0x_{3-7} + 0x_{4-7} + 10x_{5-7} + 0x_{12-7}$$

$$A_7 = 0 = 0x_{1-7} + 0x_{2-7} + 10x_{3-7} + 0x_{4-7} + 0x_{5-7} + 0x_{12-7}$$

$$A_7 = 1 = 1x_{1-7} + 0x_{2-7} + 0x_{3-7} + 1x_{4-7} + 0x_{5-7} + 0x_{12-7}$$

$$A_7 = 0 = 0x_{1-7} + 1x_{2-7} + 0x_{3-7} + 0x_{4-7} + 1x_{5-7} + 0x_{12-7}$$

$$A_7 = 0 = 0x_{1-7} + 0x_{2-7} + 1x_{3-7} + 0x_{4-7} + 1x_{5-7} + 0x_{12-7}$$

$$A_7 = 0 = 0x_{1-7} + 0x_{2-7} + 1x_{3-7} + 0x_{4-7} + 0x_{5-7} + 0x_{12-7}$$

$$A_8 = 0 = 25x_{1-8} + 0x_{2-8} + 0x_{3-8} + 20x_{4-8} + 0x_{5-8} + 0x_{12-8}$$

$$A_8 = 0 = 0x_{1-8} + 15x_{2-8} + 0x_{3-8} + 20x_{4-8} + 0x_{5-8} + 0x_{12-8}$$

$$A_8 = 0 = 0x_{1-8} + 0x_{2-8} + 10x_{3-8} + 0x_{4-8} + 10x_{5-8} + 0x_{12-8}$$

$$A_8 = 0 = 1x_{1-8} + 0x_{2-8} + 10x_{3-8} + 0x_{4-8} + 1x_{5-8} + 0x_{12-8}$$

$$A_8 = 0 = 1x_{1-8} + 0x_{2-8} + 1x_{3-8} + 0x_{4-8} + 1x_{5-8} + 0x_{12-8}$$

$$A_8 = 0 = 0x_{1-8} + 0x_{2-8} + 1x_{3-8} + 0x_{4-8} + 1x_{5-8} + 0x_{12-8}$$

$$A_9 = 0 = 25x_{1-9} + 0x_{2-9} + 0x_{3-9} + 20x_{4-9} + 0x_{5-9} + 0x_{12-9}$$

$$A_9 = 0 = 0x_{1-9} + 15x_{2-9} + 0x_{3-9} + 0x_{4-9} + 0x_{5-9} + 0x_{12-9}$$

$$A_9 = 0 = 1x_{1-9} + 0x_{2-9} + 0x_{3-9} + 1x_{4-9} + 0x_{5-9} + 0x_{12-9}$$

$$A_9 = 0 = 1x_{1-9} + 0x_{2-9} + 0x_{3-9} + 1x_{4-9} + 0x_{5-9} + 0x_{12-9}$$

$$A_9 = 0 = 0x_{1-9} + 1x_{2-9} + 0x_{3-9} + 0x_{4-9} + 1x_{5-9} + 0x_{12-9}$$

$$A_9 = 1 = 0x_{1-9} + 1x_{2-9} + 0x_{3-9} + 0x_{4-9} + 1x_{5-9} + 0x_{12-9}$$

$$A_9 = 0 = 1x_{1-9} + 0x_{2-9} + 1x_{3-9} + 0x_{4-9} + 0x_{5-9} + 0x_{12-9}$$

$$A_9 = 0 = 1x_{1-9} + 0x_{2-9} + 1x_{3-9} + 0x_{4-9} + 0x_{5-9} + 0x_{12-9}$$

$$A_10 = 0 = 0x_{1-10} + 15x_{2-10} + 0x_{3-10} + 20x_{4-10} + 0x_{5-10} + 0x_{12-10}$$

$$A_{10} = 0 = 0x_{1-10} + 0x_{2-10} + 0x_{3-10} + 20x_{4-10} + 0x_{5-10} + 0x_{12-10}$$

$$A_{10} = 0 = 0x_{1-10} + 0x_{2-10} + 0x_{3-10} + 0x_{4-10} + 10x_{5-10} + 0x_{12-10}$$

$$A_{10} = 0 = 0x_{1-10} + 0x_{2-10} + 1x_{3-10} + 0x_{4-10} + 0x_{5-10} + 0x_{12-10}$$

$$A_{11} = 0 = 0x_{1-10} + 1x_{2-10} + 0x_{3-10} + 0x_{4-10} + 0x_{$$

Решения уравнений:

 $A_{11} = 0 = 0x_{1-11} + 1x_{2-11} + 0x_{3-11} + 0x_{4-11} + 1x_{5-11} + 0x_{12-11}$ $A_{11} = 0 = 0x_{1-11} + 0x_{2-11} + 1x_{3-11} + 0x_{4-11} + 0x_{5-11} + 0x_{12-11}$

Таблица 3.3 — Решения уравнений в виде таблицы

	x_1	x_2	x_3	x_4	x_5	x_{12}
A_0	-120.0	-150.0	30.0	175.0	245.0	200.0
A_6	0.0	0.0	1.0	0.0	0.0	-30.0
A_7	6.0	0.0	0.0	-5.0	0.0	0.0
A_8	0.0	-2.0	0.0	0.0	3.0	0.0
A_9	0.0	0.0	1.0	0.0	0.0	2.0
A_{10}	-0.2	0.0	0.0	0.2	0.0	0.0
A_{11}	0.0	-0.2	0.0	0.0	0.2	0.0

Сравнивая решения при x_0 :

$$x_{00} = -120.0; \ x_{06} = 0.0; \ x_{07} = 6.0; \ x_{08} = 0.0$$

 $x_{09} = 0.0; \ x_{010} = -0.2; \ x_{011} = 0.0$

Минимальный элемент: $x_{0-7} = 6.0$.

Вводим в базис вектор A_7 и запишем для него уравнение:

$$A_7 = 6.0x_{7-1}0.0x_{7-2}0.0x_{7-3} - 5.0x_{7-4}0.0x_{7-5}0.0x_{7-12}$$

Вспомогательный вектор на этом шаге:

$$ho_0=12.0;\;\omega_1=725.0;\;\omega_2=906.0;\;\omega_3=-175.0;\;\omega_4=-1041.0;\;\omega_5=-1466.0$$
 Выводим из базиса вектор A_2 , т.к. $\theta_0=\frac{12.0}{6.0}=2.0$

3.1.3 Шаг 3

$$A_{0} = 500 = 0x_{2-0} + 0x_{3-0} + 20x_{4-0} + 0x_{5-0} + 50x_{7-0} + 0x_{12-0}$$

$$A_{0} = 200 = 15x_{2-0} + 0x_{3-0} + 0x_{4-0} + 10x_{5-0} + 0x_{7-0} + 0x_{12-0}$$

$$A_{0} = 100 = 0x_{2-0} + 10x_{3-0} + 0x_{4-0} + 0x_{5-0} + 0x_{7-0} + -1x_{12-0}$$

$$A_{0} = 55 = 0x_{2-0} + 0x_{3-0} + 1x_{4-0} + 0x_{5-0} + 1x_{7-0} + 0x_{12-0}$$

$$A_{0} = 95 = 1x_{2-0} + 0x_{3-0} + 0x_{4-0} + 1x_{5-0} + 0x_{7-0} + 0x_{12-0}$$

$$A_{0} = 30 = 0x_{2-0} + 1x_{3-0} + 0x_{4-0} + 0x_{5-0} + 0x_{7-0} + 0x_{12-0}$$

$$A_{1} = 25 = 0x_{2-1} + 0x_{3-1} + 20x_{4-1} + 0x_{5-1} + 50x_{7-1} + 0x_{12-1}$$

$$A_{1} = 0 = 15x_{2-1} + 0x_{3-1} + 0x_{4-1} + 10x_{5-1} + 0x_{7-1} + 0x_{12-1}$$

$$A_{1} = 1 = 0x_{2-1} + 10x_{3-1} + 0x_{4-1} + 0x_{5-1} + 0x_{7-1} + 0x_{12-1}$$

$$A_{1} = 0 = 1x_{2-1} + 0x_{3-1} + 1x_{4-1} + 0x_{5-1} + 1x_{7-1} + 0x_{12-1}$$

$$A_{1} = 0 = 0x_{2-1} + 1x_{3-1} + 0x_{4-1} + 1x_{5-1} + 0x_{7-1} + 0x_{12-1}$$

$$A_{1} = 0 = 0x_{2-1} + 1x_{3-1} + 0x_{4-1} + 1x_{5-1} + 0x_{7-1} + 0x_{12-1}$$

$$A_{1} = 0 = 0x_{2-1} + 1x_{3-1} + 0x_{4-1} + 0x_{5-1} + 0x_{7-1} + 0x_{12-1}$$

$$A_{6} = 0 = 0x_{2-6} + 0x_{3-6} + 20x_{4-6} + 0x_{5-6} + 50x_{7-6} + 0x_{12-6}$$

$$A_{6} = 0 = 15x_{2-6} + 0x_{3-6} + 0x_{4-6} + 10x_{5-6} + 0x_{7-6} + 0x_{12-6}$$

$$A_{6} = 40 = 0x_{2-6} + 10x_{3-6} + 0x_{4-6} + 0x_{5-6} + 0x_{7-6} + 0x_{12-6}$$

$$A_{6} = 0 = 0x_{2-6} + 0x_{3-6} + 1x_{4-6} + 0x_{5-6} + 1x_{7-6} + 0x_{12-6}$$

$$A_{6} = 0 = 1x_{2-6} + 0x_{3-6} + 0x_{4-6} + 1x_{5-6} + 0x_{7-6} + 0x_{12-6}$$

$$A_{6} = 0 = 1x_{2-6} + 1x_{3-6} + 0x_{4-6} + 1x_{5-6} + 0x_{7-6} + 0x_{12-6}$$

$$A_{6} = 1 = 0x_{2-6} + 1x_{3-6} + 0x_{4-6} + 0x_{5-6} + 0x_{7-6} + 0x_{12-6}$$

$$A_{8} = 0 = 0x_{2-8} + 0x_{3-8} + 20x_{4-8} + 0x_{5-8} + 50x_{7-8} + 0x_{12-8}$$

$$A_{8} = 0 = 15x_{2-8} + 0x_{3-8} + 0x_{4-8} + 10x_{5-8} + 0x_{7-8} + 0x_{12-8}$$

$$A_{8} = 0 = 0x_{2-8} + 10x_{3-8} + 0x_{4-8} + 10x_{5-8} + 0x_{7-8} + 0x_{12-8}$$

$$A_{8} = 0 = 0x_{2-8} + 0x_{3-8} + 1x_{4-8} + 0x_{5-8} + 1x_{7-8} + 0x_{12-8}$$

$$A_{8} = 1 = 1x_{2-8} + 0x_{3-8} + 0x_{4-8} + 1x_{5-8} + 0x_{7-8} + 0x_{12-8}$$

$$A_{8} = 0 = 0x_{2-8} + 1x_{3-8} + 0x_{4-8} + 1x_{5-8} + 0x_{7-8} + 0x_{12-8}$$

$$A_{9} = 0 = 0x_{2-9} + 0x_{3-9} + 20x_{4-9} + 0x_{5-9} + 50x_{7-9} + 0x_{12-9}$$

$$A_{9} = 0 = 15x_{2-9} + 0x_{3-9} + 20x_{4-9} + 0x_{5-9} + 50x_{7-9} + 0x_{12-9}$$

$$A_{9} = 0 = 15x_{2-9} + 0x_{3-9} + 1x_{4-9} + 0x_{5-9} + 0x_{7-9} + 0x_{12-9}$$

$$A_{9} = 0 = 1x_{2-9} + 0x_{3-9} + 1x_{4-9} + 0x_{5-9} + 0x_{7-9} + 0x_{12-9}$$

$$A_{9} = 0 = 1x_{2-9} + 0x_{3-9} + 1x_{4-9} + 0x_{5-9} + 0x_{7-9} + 0x_{12-9}$$

$$A_{9} = 0 = 1x_{2-9} + 0x_{3-9} + 0x_{4-9} + 1x_{5-9} + 0x_{7-9} + 0x_{12-9}$$

$$A_{9} = 0 = 1x_{2-9} + 0x_{3-9} + 0x_{4-9} + 1x_{5-9} + 0x_{7-9} + 0x_{12-9}$$

$$A_{9} = 0 = 1x_{2-9} + 0x_{3-9} + 0x_{4-9} + 0x_{5-9} + 0x_{7-9} + 0x_{12-9}$$

$$A_{9} = 0 = 1x_{2-9} + 0x_{3-9} + 0x_{4-9} + 0x_{5-9} + 0x_{7-9} + 0x_{12-9}$$

$$A_{10} = 0 = 1x_{2-10} + 0x_{3-10} + 20x_{4-10} + 0x_{5-10} + 50x_{7-10} + 0x_{12-10}$$

$$A_{10} = 0 = 0x_{2-10} + 10x_{3-10} + 0x_{4-10} + 0x_{5-10} + 0x_{7-10} + 0x_{12-10}$$

$$A_{10} = 0 = 0x_{2-10} + 1x_{3-10} + 0x_{4-10} + 1x_{5-10} + 0x_{7-10} + 0x_{12-10}$$

$$A_{10} = 0 = 0x_{2-10} + 1x$$

$$A_{11} = 0 = 0x_{2-11} + 0x_{3-11} + 20x_{4-11} + 0x_{5-11} + 50x_{7-11} + 0x_{12-11}$$

$$A_{11} = -1 = 15x_{2-11} + 0x_{3-11} + 0x_{4-11} + 10x_{5-11} + 0x_{7-11} + 0x_{12-11}$$

$$A_{11} = 0 = 0x_{2-11} + 10x_{3-11} + 0x_{4-11} + 0x_{5-11} + 0x_{7-11} + -1x_{12-11}$$

$$A_{11} = 0 = 0x_{2-11} + 0x_{3-11} + 1x_{4-11} + 0x_{5-11} + 1x_{7-11} + 0x_{12-11}$$

$$A_{11} = 0 = 1x_{2-11} + 0x_{3-11} + 0x_{4-11} + 1x_{5-11} + 0x_{7-11} + 0x_{12-11}$$

$$A_{11} = 0 = 0x_{2-11} + 1x_{3-11} + 0x_{4-11} + 0x_{5-11} + 0x_{7-11} + 0x_{12-11}$$

Решения уравнений:

Таблица 3.4 — Решения уравнений в виде таблицы

	x_2	x_3	x_4	x_5	x_7	x_{12}
A_0	-150.0	30.0	75.0	245.0	-20.0	200.0
A_1	0.0	0.0	0.8333	0.0	0.1667	0.0
A_6	0.0	1.0	0.0	0.0	-0.0	-30.0
A_8	-2.0	0.0	0.0	3.0	-0.0	0.0
A_9	0.0	1.0	0.0	0.0	-0.0	2.0
A_{10}	0.0	0.0	0.0333	0.0	-0.0333	0.0
A_{11}	-0.2	0.0	0.0	0.2	-0.0	0.0

Сравнивая решения при x_0 :

$$x_{00} = -150.0; \ x_{01} = 0.0; \ x_{06} = 0.0; \ x_{08} = -2.0$$

 $x_{09} = 0.0; \ x_{010} = 0.0; \ x_{011} = -0.2$

Нет положительных коэффициентов, соответственно допустимое базисное решение:

$$x_{0-2} = -150.0, \ x_{0-3} = 30.0, \ x_{0-4} = 75.0, \ x_{0-5} = 245.0$$
 $x_{0-7} = -20.0, \ x_{0-12} = 200.0$

3.2 Переход от начального допустимого решения к первой симплекс-таблице

Разложим небазисные векторы по найденному методом Данцига базису:

$$500 = 0x_{2-0} + 0x_{3-0} + 20x_{4-0} + 0x_{5-0} + 50x_{7-0} + 0x_{12-0}$$

$$200 = 15x_{2-0} + 0x_{3-0} + 0x_{4-0} + 10x_{5-0} + 0x_{7-0} + 0x_{12-0}$$

$$100 = 0x_{2-0} + 10x_{3-0} + 0x_{4-0} + 0x_{5-0} + 0x_{7-0} - 1x_{12-0}$$

$$55 = 0x_{2-0} + 0x_{3-0} + 1x_{4-0} + 0x_{5-0} + 1x_{7-0} + 0x_{12-0}$$

$$95 = 1x_{2-0} + 0x_{3-0} + 0x_{4-0} + 1x_{5-0} + 0x_{7-0} + 0x_{12-0}$$

$$30 = 0x_{2-0} + 1x_{3-0} + 0x_{4-0} + 0x_{5-0} + 0x_{7-0} + 0x_{12-0}$$

$$\begin{aligned} 25 &= 0x_{2-1} + 0x_{3-1} + 20x_{4-1} + 0x_{5-1} + 50x_{7-1} + 0x_{12-1} \\ 0 &= 15x_{2-1} + 0x_{3-1} + 0x_{4-1} + 10x_{5-1} + 0x_{7-1} + 0x_{12-1} \\ 0 &= 0x_{2-1} + 10x_{3-1} + 0x_{4-1} + 0x_{5-1} + 0x_{7-1} - 1x_{12-1} \\ 1 &= 0x_{2-1} + 0x_{3-1} + 1x_{4-1} + 0x_{5-1} + 1x_{7-1} + 0x_{12-1} \\ 0 &= 1x_{2-1} + 0x_{3-1} + 0x_{4-1} + 1x_{5-1} + 0x_{7-1} + 0x_{12-1} \\ 0 &= 0x_{2-1} + 1x_{3-1} + 0x_{4-1} + 0x_{5-1} + 0x_{7-1} + 0x_{12-1} \end{aligned}$$

$$0 = 0x_{2-6} + 0x_{3-6} + 20x_{4-6} + 0x_{5-6} + 50x_{7-6} + 0x_{12-6}$$

$$0 = 15x_{2-6} + 0x_{3-6} + 0x_{4-6} + 10x_{5-6} + 0x_{7-6} + 0x_{12-6}$$

$$40 = 0x_{2-6} + 10x_{3-6} + 0x_{4-6} + 0x_{5-6} + 0x_{7-6} - 1x_{12-6}$$

$$0 = 0x_{2-6} + 0x_{3-6} + 1x_{4-6} + 0x_{5-6} + 1x_{7-6} + 0x_{12-6}$$

$$0 = 1x_{2-6} + 0x_{3-6} + 0x_{4-6} + 1x_{5-6} + 0x_{7-6} + 0x_{12-6}$$

$$1 = 0x_{2-6} + 1x_{3-6} + 0x_{4-6} + 0x_{5-6} + 0x_{7-6} + 0x_{12-6}$$

$$0 = 0x_{2-8} + 0x_{3-8} + 20x_{4-8} + 0x_{5-8} + 50x_{7-8} + 0x_{12-8}$$

$$0 = 15x_{2-8} + 0x_{3-8} + 0x_{4-8} + 10x_{5-8} + 0x_{7-8} + 0x_{12-8}$$

$$0 = 0x_{2-8} + 10x_{3-8} + 0x_{4-8} + 0x_{5-8} + 0x_{7-8} - 1x_{12-8}$$

$$0 = 0x_{2-8} + 0x_{3-8} + 1x_{4-8} + 0x_{5-8} + 1x_{7-8} + 0x_{12-8}$$

$$1 = 1x_{2-8} + 0x_{3-8} + 0x_{4-8} + 1x_{5-8} + 0x_{7-8} + 0x_{12-8}$$

$$0 = 0x_{2-8} + 1x_{3-8} + 0x_{4-8} + 0x_{5-8} + 0x_{7-8} + 0x_{12-8}$$

$$0 = 0x_{2-9} + 0x_{3-9} + 20x_{4-9} + 0x_{5-9} + 50x_{7-9} + 0x_{12-9}$$

$$0 = 15x_{2-9} + 0x_{3-9} + 0x_{4-9} + 10x_{5-9} + 0x_{7-9} + 0x_{12-9}$$

$$8 = 0x_{2-9} + 10x_{3-9} + 0x_{4-9} + 0x_{5-9} + 0x_{7-9} - 1x_{12-9}$$

$$0 = 0x_{2-9} + 0x_{3-9} + 1x_{4-9} + 0x_{5-9} + 1x_{7-9} + 0x_{12-9}$$

$$0 = 1x_{2-9} + 0x_{3-9} + 0x_{4-9} + 1x_{5-9} + 0x_{7-9} + 0x_{12-9}$$

$$1 = 0x_{2-9} + 1x_{3-9} + 0x_{4-9} + 0x_{5-9} + 0x_{7-9} + 0x_{12-9}$$

$$\begin{aligned} -1 &= 0x_{2-10} + 0x_{3-10} + 20x_{4-10} + 0x_{5-10} + 50x_{7-10} + 0x_{12-10} \\ 0 &= 15x_{2-10} + 0x_{3-10} + 0x_{4-10} + 10x_{5-10} + 0x_{7-10} + 0x_{12-10} \\ 0 &= 0x_{2-10} + 10x_{3-10} + 0x_{4-10} + 0x_{5-10} + 0x_{7-10} - 1x_{12-10} \\ 0 &= 0x_{2-10} + 0x_{3-10} + 1x_{4-10} + 0x_{5-10} + 1x_{7-10} + 0x_{12-10} \\ 0 &= 1x_{2-10} + 0x_{3-10} + 0x_{4-10} + 1x_{5-10} + 0x_{7-10} + 0x_{12-10} \\ 0 &= 0x_{2-10} + 1x_{3-10} + 0x_{4-10} + 0x_{5-10} + 0x_{7-10} + 0x_{12-10} \end{aligned}$$

$$0 = 0x_{2-11} + 0x_{3-11} + 20x_{4-11} + 0x_{5-11} + 50x_{7-11} + 0x_{12-11}$$

$$-1 = 15x_{2-11} + 0x_{3-11} + 0x_{4-11} + 10x_{5-11} + 0x_{7-11} + 0x_{12-11}$$

$$0 = 0x_{2-11} + 10x_{3-11} + 0x_{4-11} + 0x_{5-11} + 0x_{7-11} - 1x_{12-11}$$

$$0 = 0x_{2-11} + 0x_{3-11} + 1x_{4-11} + 0x_{5-11} + 1x_{7-11} + 0x_{12-11}$$

$$0 = 1x_{2-11} + 0x_{3-11} + 0x_{4-11} + 1x_{5-11} + 0x_{7-11} + 0x_{12-11}$$

$$0 = 0x_{2-11} + 1x_{3-11} + 0x_{4-11} + 0x_{5-11} + 0x_{7-11} + 0x_{12-11}$$

Решая каждую из систем уравнений, получим:

```
x_{2-0} = -150.0, \quad x_{3-0} = 30.0,
                                        x_{4-0} = 75.0,
                                                            x_{5-0} = 245.0,
                                                                                x_{7-0} = -20.0,
                                                                                                      x_{12-0} = 200.0
  x_{2-1} = 0.0,
                     x_{3-1} = 0.0,
                                      x_{4-1} = 0.8333,
                                                             x_{5-1} = 0.0,
                                                                                x_{7-1} = 0.1667,
                                                                                                       x_{12-1} = 0.0
  x_{2-6} = 0.0,
                     x_{3-6} = 1.0,
                                        x_{4-6} = 0.0,
                                                             x_{5-6} = 0.0,
                                                                                 x_{7-6} = -0.0,
                                                                                                      x_{12-6} = -30.0
 x_{2-8} = -2.0,
                     x_{3-8} = 0.0,
                                        x_{4-8} = 0.0,
                                                             x_{5-8} = 3.0,
                                                                                 x_{7-8} = -0.0,
                                                                                                        x_{12-8} = 0.0
                                                                                                        x_{12-9} = 2.0
 x_{2-9} = 0.0,
                     x_{3-9} = 1.0,
                                        x_{4-9} = 0.0,
                                                             x_{5-9} = 0.0,
                                                                                 x_{7-9} = -0.0,
 x_{2-10} = 0.0,
                     x_{3-10} = 0.0,
                                     x_{4-10} = 0.0333,
                                                            x_{5-10} = 0.0,
                                                                               x_{7-10} = -0.0333,
                                                                                                       x_{12-10} = 0.0
x_{2-11} = -0.2, \quad x_{3-11} = 0.0,
                                                            x_{5-11} = 0.2,
                                        x_{4-11} = 0.0,
                                                                                x_{7-11} = -0.0,
                                                                                                       x_{12-11} = 0.0
```

3.3 Решение методом полного исключения Гаусса

3.3.1 Шаг 1

Таблица 3.5

c			15.0	10.0	30.0	25.0	6.0	0.0	30.0	5.0	10.0	0.0	0.0	0.0
	B_x	a_{i0}	$\mathbf{A_1}$	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9	A_{10}	A_{11}	A_{12}
10.0	x_2	-150.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	-2.0	0.0	0.0	-0.2	0.0
30.0	x_3	30.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0
25.0	x_4	75.0	0.8333	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0333	0.0	0.0
6.0	x_5	245.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	3.0	0.0	0.0	0.2	0.0
30.0	$\mathbf{x_7}$	-20.0	0.1667	0.0	0.0	0.0	0.0	-0.0	1.0	-0.0	-0.0	-0.0333	-0.0	0.0
0.0	x_{12}	200.0	0.0	0.0	0.0	0.0	0.0	-30.0	0.0	0.0	2.0	0.0	0.0	1.0
	Δ	2145.0	15.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0	10.0	0.0	0.0	0.0

Направляющий столбец: 1 Направляющая строка: 5 Разрешающий элемент: 0.1667

3.3.2 Шаг 2

Таблица 3.6

c			15.0	10.0	30.0	25.0	6.0	0.0	30.0	5.0	10.0	0.0	0.0	0.0
	B_x	a_{i0}	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	$\mathbf{A_9}$	A_{10}	A_{11}	A_{12}
10.0	x_2	-150.0	0	1.0	0.0	0.0	0.0	0.0	0.0	-2.0	0.0	0.0	-0.2	0.0
30.0	$\mathbf{x_3}$	30.0	0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0
25.0	x_4	174.976	0	0.0	0.0	1.0	0.0	0.0	-4.9988	0.0	0.0	0.1998	0.0	0.0
6.0	x_5	245.0	0	0.0	0.0	0.0	1.0	0.0	0.0	3.0	0.0	0.0	0.2	0.0
15.0	x_1	-119.976	1.0	0.0	0.0	0.0	0.0	-0.0	5.9988	-0.0	-0.0	-0.1998	-0.0	0.0
0.0	x_{12}	200.0	0	0.0	0.0	0.0	0.0	-30.0	0.0	0.0	2.0	0.0	0.0	1.0
	Δ	3444.7599999999998	0	0.0	0.0	0.0	0.0	0.0	-89.982	5.0	10.0	2.9964	0.0	0.0

Направляющий столбец: 9 Направляющая строка: 2 Разрешающий элемент: 1.0

3.3.3 Шаг 3

Таблица 3.7

c			15.0	10.0	30.0	25.0	6.0	0.0	30.0	5.0	10.0	0.0	0.0	0.0
	B_x	a_{i0}	A_1	A_2	A_3	A_4	A_5	A_6	A_7	$\mathbf{A_8}$	A_9	A_{10}	A_{11}	A_{12}
10.0	x_2	-150.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	-2.0	0	0.0	-0.2	0.0
10.0	x_9	30.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0
25.0	x_4	174.976	0.0	0.0	0.0	1.0	0.0	0.0	-4.9988	0.0	0	0.1998	0.0	0.0
6.0	$\mathbf{x_5}$	245.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	3.0	0	0.0	0.2	0.0
15.0	x_1	-119.976	1.0	0.0	0.0	0.0	0.0	0.0	5.9988	0.0	0	-0.1998	0.0	0.0
0.0	x_{12}	140.0	0.0	0.0	-2.0	0.0	0.0	-32.0	0.0	0.0	0	0.0	0.0	1.0
	Δ	2844.7599999999998	0.0	0.0	-10.0	0.0	0.0	-10.0	-89.982	5.0	0	2.9964	0.0	0.0

Направляющий столбец: 8 Направляющая строка: 4 Разрешающий элемент: 3.0

3.3.4 Шаг 4

Таблица 3.8

c			15.0	10.0	30.0	25.0	6.0	0.0	30.0	5.0	10.0	0.0	0.0	0.0
	B_x	a_{i0}	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9	\mathbf{A}_{10}	A_{11}	A_{12}
10.0	x_2	13.3333	0.0	1.0	0.0	0.0	0.6667	0.0	0.0	0	0.0	0.0	-0.0667	0.0
10.0	x_9	30.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0	1.0	0.0	0.0	0.0
25.0	$\mathbf{x_4}$	174.976	0.0	0.0	0.0	1.0	0.0	0.0	-4.9988	0	0.0	0.1998	0.0	0.0
5.0	x_8	81.6667	0.0	0.0	0.0	0.0	0.3333	0.0	0.0	1.0	0.0	0.0	0.0667	0.0
15.0	x_1	-119.976	1.0	0.0	0.0	0.0	0.0	0.0	5.9988	0	0.0	-0.1998	0.0	0.0
0.0	x_{12}	140.0	0.0	0.0	-2.0	0.0	0.0	-32.0	0.0	0	0.0	0.0	0.0	1.0
	Δ	3416.426499999999	0.0	0.0	-10.0	0.0	-1.6667	-10.0	-89.982	0	0.0	2.9964	-0.3333	0.0

Направляющий столбец: 10

Направляющая строка: 3 Разрешающий элемент: 0.1998

3.3.5 Шаг 5

Таблица 3.9

c			15.0	10.0	30.0	25.0	6.0	0.0	30.0	5.0	10.0	0.0	0.0	0.0
	B_x	a_{i0}	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9	A_{10}	A_{11}	A_{12}
10.0	x_2	13.3333	0.0	1.0	0.0	0.0	0.6667	0.0	0.0	0.0	0.0	0	-0.0667	0.0
10.0	x_9	30.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0	0.0	0.0
0.0	x_{10}	875.7558	0.0	0.0	0.0	5.005	0.0	0.0	-25.019	0.0	0.0	1.0	0.0	0.0
5.0	x_8	81.6667	0.0	0.0	0.0	0.0	0.3333	0.0	0.0	1.0	0.0	0	0.0667	0.0
15.0	x_1	55.0	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0	0.0	0.0
0.0	x_{12}	140.0	0.0	0.0	-2.0	0.0	0.0	-32.0	0.0	0.0	0.0	0	0.0	1.0
	Δ	1666.6665	0.0	0.0	-10.0	-14.997	-1.6667	-10.0	-15.015	0.0	0.0	0	-0.3333	0.0

4 Заключение

Так как индексная строка состоит из отрицательных элементов (задача минимизации), то мы нашли оптимальное решение:

- на первую линию необходимо отправить 55 судов первого типа;
- на вторую линию необходимо отправить 13 судов второго типа;
- на третью линию необходимо отправить 81 судов второго типа;
- на третью линию необходимо отправить 30 судов третьего типа;

При данных значениях целевая функция достигает следующего значения:

$$\min F(x_{ij}) = 1666$$
 единиц.