Лабораторная работа № 1

1. Для модели учебной ЭВМ разработать программу вычисления и вывода значения функции:

$$y = Fi(x)$$
, при $x \ge a$,
$$Fj(x)$$
, при $x < a$

Для вводимого из IR значения аргумента х. Функции и допустимые пределы изменения аргумента приведены в таблице 1, варианты заданий – в таблице 2.

Таблица 1. Функции.

k	Fk(x)
1	$(x+18)/(1-2*x); 3 \le x \le 15$
2	$(x+3)^2/2x$; $2 \le x \le 55$
3	2500/(3x+20); -53≤x≤-15
4	$(x+4)^3$; $-22 \le x \le 22$
5	$(x+2)^2/10$; $51 \le x \le 77$
6	$(2x^2+8)/3x$; $1 \le x \le 32$
7	$(x^2+2x)/5$; -53 \le x \le 53
8	$7744/x^2$; $1 \le x \le 88$

Результат операции деления – выводить только целое число.

Таблица 2. Варианты задания.

Номер варианта	i	j	A
1	2	1	12
2	4	3	-21
3	8	4	15
4	6	1	12
5	5	2	53
6	7	3	15
7	6	2	12
8	8	6	30
9	2	6	26
10	5	7	53
11	2	4	17
12	8	1	12
13	7	6	26
14	1	4	4

Исходя из допустимых пределов изменения аргумента функций (табл. 1) и значения параметра а для своего варианта задания (табл. 2) выделить на числовой оси Ох области, в которых функция у вычисляется по представленной в п. 1 формуле, и недопустимые

значения аргумента. На недопустимых значениях аргумента программа должна выдавать на OR максимальное отрицательное число: 199 999.

Для выбранного допустимого значения аргумента х наблюдать выполнение отлаженной программы в режиме «Шаг» и записать в форме таблицы содержимое регистров ЭВМ (РС, Acc, DR, MDR, MAR, CR) перед выполнением каждой команды.

Пример:

PC	Acc	DR	MDR	MAR	CR
000	0	0	0	0	0
001	20	0	211020	0	211020

Содержание отчета:

Отчет о лабораторной работе должен содержать следующие разделы:

- 1. Формулировка варианта задания.
- 2. Программа на ассемблере.
- 3. Последовательность состояний регистров ЭВМ при выполнении программы в режиме «Шаг» для одного из допустимых значений аргумента.
- 4. Объяснение назначения задействованных регистров ЭВМ.
- 5. Результаты выполнения программы для нескольких значений аргумента, выбранных самостоятельно.

Пример

В качестве примера (несколько упрощенного по сравнению с заданиями лабораторной работы) рассмотрим программу вычисления функции.

$$y = \begin{cases} (x + -11)^2 - 125, & \text{при } x \ge 16 \\ \frac{x^2 + 72x - 6400}{-168}, & \text{при } x < 16 \end{cases}$$

причем х вводится с устройства ввода IR, результат выводится на OR.

Граф-схема алгоритма решения задачи показана на рис. 1.

Рис. 1. Граф – схема алгоритма

В данной лабораторной работе используются двухсловные команды с непосредственной адресацией, позволяющее оперировать отрицательными числами и числами по модулю, превышающие 999, в качестве непосредственного операнда

Оценив размер программы примерно в 20-25 команд, отведем для области данных ячейки ОЗУ, начиная с адреса 030. Составленная программа с комментариями представлена в табл. 3

Таблица 3. Пример программ

Адрес	Команда		Примечание
	Мнемокод	Код	
000	IN	01 0 000	Ввод х
001	WR 30	22 0 030	Размещение <i>х</i> в ОЗУ (ОЗО)
002	SUB #16	24 1 016	Сравнение с границей – (х-16)
003	JS 010	13 0 010	Переход по отрицательной разности
004	RD 30	21 0 030	Вычисления по первой формуле
005	SUB #11	24 1 011	
006	WR 31	22 0 031	

007	MUL 31	25 0 031	
008	SUB #125	24 1 125	
009	JMP 020	10 0 020	Переход на вывод результата
010	RD 30	21 0 030	Вычисления по второй формуле
011	MUL 30	25 0 030	
012	WR 31	22 0 031	
013	RD 30	21 0 030	
014	MUL #72	25 1 072	
015	ADD 31	23 0 031	
016	ADI 106400	43 0 000	
017		106400	
018	DIVI 100168	46 0 000	
019		100168	
020	OUT	02 0 000	Вывод результата
021	HLT	09 0 000	Стоп