

Lecture 2: Basic Artificial Neural Networks and MLP

Yujiao Shi SIST, ShanghaiTech Spring, 2024

- Artificial neuron
 - □ Perceptron algorithm
- Single layer neural networks
 - Network models
 - □ Example: Logistic Regression
- Multi-layer neural networks
 - □ Limitations of single layer networks
 - Networks with single hidden layer

Acknowledgement: Hugo Larochelle's, Mehryar Mohri@NYU's & Yingyu Liang@Princeton's course notes

Mathematical model of a neuron 上海科技大学

Single neuron as a linear classifier 上海科技大学

Binary classification

- Artificial neuron
 - □ Perceptron algorithm
- Single layer neural networks
 - Network models
 - □ Example: Logistic Regression
- Multi-layer neural networks
 - □ Limitations of single layer networks
 - Networks with single hidden layer

Acknowledgement: Hugo Larochelle's, Mehryar Mohri@NYU's & Yingyu Liang@Princeton's course notes

Single layer neural network

input

layer: parallelized weighted sum and non-linearity

one sum per weight vector
$$s_j = \mathbf{w}_j^\intercal \mathbf{x}$$
 ———— $\mathbf{s} = \mathbf{W}^\intercal \mathbf{x}$ from weight matrix

$$\mathbf{h} = \sigma(\mathbf{s})$$

Single layer neural network

What is the output?

- Element-wise nonlinear functions
 - □ Independent feature/attribute detectors

What is the output?

上海科技大学 ShanghaiTech University

- Nonlinear functions with vector input
 - □ Competition between neurons

What is the output?

- Nonlinear functions with vector input
 - □ Example: Winner-Take-All (WTA)

$$h_j = g(\mathbf{s}) = \begin{cases} 1 & \text{if } j = \arg \max_i \mathbf{w}_i^{\mathsf{T}} \mathbf{x} \\ 0 & \text{if otherwise} \end{cases}$$

.

A probabilistic perspective

Change the output nonlinearity

□ From WTA to Softmax function

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $egin{aligned} oldsymbol{s} = oldsymbol{f}(x_i;W) \end{aligned}$

Multiclass linear classifiers

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

The WTA prediction: one-hot encoding of its predicted label

$$y = 1 \Leftrightarrow y = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 $y = 2 \Leftrightarrow y = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ $y = 3 \Leftrightarrow y = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

Probabilistic outputs

Define a loss function and do minimization

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Find $y = f(x) \in \mathcal{H}$ that minimizes $\hat{L}(f) = \frac{1}{n} \sum_{i=1}^{n} l(f, x_i, y_i)$
- s.t. the expected loss is small

$$L(f) = \mathbb{E}_{(x,y) \sim D}[l(f,x,y)]$$

Empirical loss

Example: Logistic Regression

Learning loss: negative log likelihood

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $egin{aligned} oldsymbol{s} = oldsymbol{f}(oldsymbol{x}_i; oldsymbol{W}) \end{aligned}$

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$L_i = -\log P(Y=y_i|X=x_i)$$

上海科技大学 ShanghaiTech University

- Constraints on hypothesis space
 - □ Similar to Linear Regression

Data loss: Model predictions should match training data

Regularization: Model should be "simple", so it works on test data

Regularization terms

In common use:

L2 regularization $R(W) = \sum_k \sum_l W_{k,l}^2$ L1 regularization $R(W) = \sum_k \sum_l |W_{k,l}|$ Elastic net (L1 + L2) $R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$

Optimization: gradient descent

Gradient descent

```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```

Learning rate matters

Stochastic gradient descent

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$

$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

Full sum expensive when N is large!

Approximate sum using a minibatch of examples 32 / 64 / 128 common

```
# Vanilla Minibatch Gradient Descent

while True:
   data_batch = sample_training_data(data, 256) # sample 256 examples
   weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
   weights += - step_size * weights_grad # perform parameter update
```


Stochastic gradient descent

- the objective does not always decrease for each step
- comparing to GD, SGD needs more steps, but each step is cheaper
- mini-batch, say pick up 100 samples and do average, may accelerate the convergence

Interpreting network weights

What are those weights?

$$f(x,W) = Wx + b$$

Array of **32x32x3** numbers (3072 numbers total)

Outline

- Single layer neural networks
 - Network models
 - □ Example: Logistic Regression
- Multi-layer neural networks
 - ☐ Limitations of single layer networks
 - □ Networks with single hidden layer

Acknowledgement: Hugo Larochelle's, Mehryar Mohri@NYU's & Yingyu Liang@Princeton's course notes

- Binary classification
 - □ A neuron estimates

$$P(y=1|\mathbf{x}) = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

□ Its decision boundary is linear, determined by its weights

Can solve linearly separable problems

$$\mathcal{D} = \mathcal{D}^{+} \cup \mathcal{D}^{-}$$
$$\exists \mathbf{w}^{*}, \mathbf{w}^{*T}\mathbf{x} > 0, \ \forall \mathbf{x} \in \mathcal{D}^{+}$$
$$\mathbf{w}^{*T}\mathbf{x} < 0, \ \forall \mathbf{x} \in \mathcal{D}^{-}$$

Examples

Can't solve non linearly separable problems

Can we use multiple neurons to achieve this?

- Can't solve non linearly separable problems
- Unless the input is transformed in a better representation

Can't solve non linearly separable problems

Unless the input is transformed in a better representation

Adding one more layer

- Single hidden layer neural network
 - □ 2-layer neural network: ignoring input units

Figure: Two different visualizations of a 2-layer neural network. In this example: 3 input units, 4 hidden units and 2 output units

Q: What if using linear activation in hidden layer?

- Single hidden layer neural network
 - □ Partition the input space into regions

上海科技大学 ShanghaiTech University

- Single hidden layer neural network
 - ☐ Form a stump/delta function

Capacity of neural network

- Universal approximation
 - ☐ Theorem (Hornik, 1991)

A single hidden layer neural network with a linear output unit can approximate any continuous function arbitrarily well, given enough hidden units.

- □ The result applies for sigmoid, tanh and many other hidden layer activation functions
- Caveat: good result but not useful in practice
 - ☐ How many hidden units?
 - How to find the parameters by a learning algorithm?

General neural network

Multi-layer neural network

Figure: A 3-layer neural net with 3 input units, 4 hidden units in the first and second hidden layer and 1 output unit

- Naming conventions; a N-layer neural network:
 - N − 1 layers of hidden units
 - One output layer

Multilayer networks

network: sequence of parallelized weighted sums and non-linearities

define
$$\mathbf{x}^{(0)} \equiv \mathbf{x}$$
, $\mathbf{x}^{(1)} \equiv \mathbf{h}$, etc.

$$\mathbf{s}^{(1)} = \mathbf{W}^{(1)} \mathbf{T} \mathbf{x}^{(0)}$$
 $\mathbf{s}^{(2)} = \mathbf{W}^{(2)} \mathbf{T} \mathbf{x}^{(1)}$ $\mathbf{x}^{(1)} = \sigma(\mathbf{s}^{(1)})$ $\mathbf{x}^{(2)} = \sigma(\mathbf{s}^{(2)})$

Multilayer networks

Other network connectivity

sequential connectivity: information must flow through the entire sequence to reach the output

information may not be able to propagate easily

→ make shorter paths to output

residual & highway connections

Deep residual learning for image recognition, He et al., 2016 Highway networks, Srivastava et al., 2015 dense (concatenated) connections

Densely connected convolutional networks, Huang et al., 2017

Modern MLP as Implicit Representation海科技大学

ShanghaiTech University

Generative Query Networks [Eslami et al. 2018]

[Flynn et al., 2016; Zhou et al., 2018b; Mildenhall et al. 2019]

RenderNet [Nguyen-Phuoc et al. 2018]

Voxel Grids + CNN decoder

Multiplane Images (MPIs)

DeepVoxels
[Sitzmann et al. 2019]

Neural Volumes [Lombardi et al. 2019]

Modern MLP in NeRF

- Color + Density
- Positional Encoding
- Volume Rendering

Representing Scenes as Neural Radiance Fields for View Synthesis, Mildenhall et al., ECCV 2020 Oral - Best Paper Honorable Mention

Outline

- Single layer neural networks
 - □ Network models; Example: Logistic Regression
- Multi-layer neural networks
 - ☐ Limitations of single layer networks
 - □ Neural networks with single hidden layer
 - □ Sequential network architecture and variants
- Inference and learning
 - □ Forward and Backpropagation
 - □ Examples: one-layer network
 - ☐ General BP algorithm

Computation in neural network

- We only need to know two algorithms
 - □ Inference/prediction: simply forward pass
 - □ Parameter learning: needs backward pass
- Basic fact:
 - ☐ A neural network is a function of composed operations

$$f_L(\mathbf{w}_L, f_{L-1}(\mathbf{w}_{L-1}, \dots f_1(\mathbf{w}_1, \mathbf{x}) \dots))$$

☐ All the f functions are linear + (simple) nonlinear (differentiable a.e.) operators

Inference example: Forward Pass 上海科技大学

What does the network compute?

Output of the network can be written as:

$$h_j(x) = f(v_{j0} + \sum_{i=1}^{D} x_i v_{ji})$$
 $o_k(x) = g(w_{k0} + \sum_{j=1}^{J} h_j(x) w_{kj})$

(*j* indexing hidden units, *k* indexing the output units, *D* number of inputs)

Forward Pass in Python

Example code for a forward pass for a 3-layer network in Python:

forward-pass of a 3-layer neural network:
f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)
x = np.random.randn(3, 1) # random input vector of three numbers (3x1)
h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1)
h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 # output neuron (1x1)

Can be implemented efficiently using matrix operations

Parameter learning: Backward Pass上海科技大学

- Supervised learning framework
 - Find weights:

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{n=1}^{N} \operatorname{loss}(\mathbf{o}^{(n)}, \mathbf{t}^{(n)})$$

where $\mathbf{o} = f(\mathbf{x}; \mathbf{w})$ is the output of a neural network

- Define a loss function, eg:
 - Squared loss: $\sum_{k} \frac{1}{2} (o_k^{(n)} t_k^{(n)})^2$
 - Cross-entropy loss: $-\sum_{k} t_{k}^{(n)} \log o_{k}^{(n)}$
- Gradient descent:

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \frac{\partial E}{\partial \mathbf{w}^t}$$

where η is the learning rate (and E is error/loss)

Gradient descent iteration

Forward pass

$$\mathbf{s}^{(1)} = \mathbf{W}^{(1)\intercal}\mathbf{x}^{(0)}$$
 $\mathbf{s}^{(2)} = \mathbf{W}^{(2)\intercal}\mathbf{x}^{(1)}$ $\mathbf{x}^{(1)} = \sigma(\mathbf{s}^{(1)})$ $\mathbf{x}^{(2)} = \sigma(\mathbf{s}^{(2)})$

Backward pass

calculate $\nabla_{W^{(1)}}\mathcal{L}, \nabla_{W^{(2)}}\mathcal{L}, \ldots$ let's start with the final layer: $\nabla_{W^{(L)}}\mathcal{L}$

to determine the chain rule ordering, we'll draw the dependency graph

Gradient descent iteration

Backward pass

note
$$\nabla_{\mathbf{W}^{(L)}}\mathcal{L}\equiv rac{\partial \mathcal{L}}{\partial \mathbf{W}^{(L)}}$$
 is notational convention

Gradient descent iteration

Backward pass

now let's go back one more layer...

again we'll draw the dependency graph:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{(L)}} = \frac{\partial \mathcal{L}}{\partial \mathbf{x}^{(L)}} \frac{\partial \mathbf{x}^{(L)}}{\partial \mathbf{s}^{(L)}} \frac{\partial \mathbf{s}^{(L)}}{\partial \mathbf{x}^{(L-1)}} \frac{\partial \mathbf{x}^{(L-1)}}{\partial \mathbf{s}^{(L-1)}} \frac{\partial \mathbf{s}^{(L-1)}}{\partial \mathbf{W}^{(L-1)}}$$

The order needs to be reversed for Jacobians!

• Let's take a single layer network

Example: Single Layer Network

• Let's take a single layer network and draw it a bit differently

Output of unit k

Output layer activation function

Net input to output unit k

Weight from input i to k

Input unit i

• Error gradients for single layer network:

$$\frac{\partial E}{\partial w_{ki}} =$$

Example: Single Layer Network 上海科技大学 ShanghaiTech University

• Error gradients for single layer network:

$$\frac{\partial E}{\partial w_{ki}} = \frac{\partial E}{\partial o_k} \frac{\partial o_k}{\partial z_k} \frac{\partial z_k}{\partial w_{ki}}$$

• Error gradient is computable for any continuous activation function g(), and any continuous error function

Outline

- Multi-layer neural networks
 - ☐ Limitations of single layer networks
 - □ Neural networks with single hidden layer
 - ☐ Sequential network architecture and variants
- Inference and learning
 - □ Forward and Backpropagation
 - □ Examples: one-layer network
 - ☐ General BP algorithm

Example: Univariate logistic least square model

$$s = wx + b$$
$$y = \sigma(s)$$
$$\mathcal{L} = \frac{1}{2}(y - t)^2$$

Univariate chain rule

- A structured way to implement it
 - ☐ The goal is to write a program that efficiently computes the derivatives

Computing the loss:

$$s = wx + b$$
$$y = \sigma(s)$$
$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

Computing the derivatives:

$$\frac{d\mathcal{L}}{dy} = y - t$$

$$\frac{d\mathcal{L}}{ds} = \frac{d\mathcal{L}}{dy}\sigma'(s)$$

$$\frac{d\mathcal{L}}{dw} = \frac{d\mathcal{L}}{ds}x$$

$$\frac{d\mathcal{L}}{db} = \frac{d\mathcal{L}}{ds}$$

- Represent the computations using a computation graph
 - □ Nodes: inputs & computed quantities
 - □ Edges: which nodes are computed directly as function of which other nodes

Univariate chain rule

- A shorthand notation
 - \square Use $\delta_y := d\mathcal{L}/dy$, called the error signal
 - □ Note that the error signals are values computed by the program

Computing the loss:

$$s = wx + b$$
$$y = \sigma(s)$$
$$\mathcal{L} = \frac{1}{2}(y - t)^2$$

Computing the derivatives:

$$\delta_y = y - t$$

$$\delta_s = \delta_y \sigma'(s)$$

$$\delta_w = \delta_s x$$

$$\delta_b = \delta_s$$

Multivariate chain rule

■ The computation graph has fan-out > 1

L₂-Regularized regression

$$z = wx + b$$
 $y = \sigma(z)$
 $\mathcal{L} = \frac{1}{2}(y - t)^2$
 $\mathcal{R} = \frac{1}{2}w^2$
 $\mathcal{L}_{reg} = \mathcal{L} + \lambda \mathcal{R}$

Multiclass logistic regression

$$z_{\ell} = \sum_{j} w_{\ell j} x_{j} + b_{\ell}$$
$$y_{k} = \frac{e^{z_{k}}}{\sum_{i} e^{z_{\ell}}}$$

$$\mathcal{L} = -\sum t_k \log y_k$$

Multivariable chain rule

Recall the distributed chain rule

The shorthand notation:

$$\delta_t = \delta_x \frac{dx}{dt} + \delta_y \frac{dy}{dt}$$

Example: univariate logistic least square regression

Forward pass:

$$z = wx + b$$

$$y = \sigma(z)$$

$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

$$\mathcal{R} = \frac{1}{2}w^{2}$$

$$\mathcal{L}_{reg} = \mathcal{L} + \lambda \mathcal{R}$$

Backward pass:

$$\delta_{\mathcal{L}_{reg}} = 1$$

$$\delta_{\mathcal{R}} = \delta_{\mathcal{L}_{reg}} \frac{d\mathcal{L}_{reg}}{d\mathcal{R}}$$

$$= \delta_{\mathcal{L}_{reg}} \lambda$$

$$\delta_{\mathcal{L}} = \delta_{\mathcal{L}_{reg}} \frac{d\mathcal{L}_{reg}}{d\mathcal{L}}$$

$$= \delta_{\mathcal{L}_{reg}} \frac{d\mathcal{L}_{reg}}{d\mathcal{L}}$$

$$= \delta_{\mathcal{L}_{reg}} \frac{d\mathcal{L}_{reg}}{d\mathcal{L}}$$

$$\delta_{w} = \delta_{z} \frac{dz}{dw} + \delta_{\mathcal{R}} \frac{d\mathcal{R}}{dw}$$

$$= \delta_{z}x + \delta_{\mathcal{R}}w$$

$$\delta_{b} = \delta_{z} \frac{dz}{db}$$

$$= \delta_{\mathcal{L}}(y - t)$$

$$\delta_{b} = \delta_{z} \frac{dz}{db}$$

$$= \delta_{z}$$

General Backpropagation

Example: Multilayer Perceptron (multiple outputs)

Forward pass:

$$z_i = \sum_j w_{ij}^{(1)} x_j + b_i^{(1)}$$
 $h_i = \sigma(z_i)$
 $y_k = \sum_i w_{ki}^{(2)} h_i + b_k^{(2)}$
 $\mathcal{L} = \frac{1}{2} \sum_i (y_k - t_k)^2$

Backward pass:

$$egin{aligned} \overline{\mathcal{L}} &= 1 \ \overline{y_k} &= \overline{\mathcal{L}} \left(y_k - t_k
ight) \ \overline{w_{ki}^{(2)}} &= \overline{y_k} \ h_i \ \overline{b_k^{(2)}} &= \overline{y_k} \ \overline{h_i} &= \sum_k \overline{y_k} w_{ki}^{(2)} \ \overline{z_i} &= \overline{h_i} \ \sigma'(z_i) \ \overline{w_{ij}^{(1)}} &= \overline{z_i} \ x_j \ \overline{b_i^{(1)}} &= \overline{z_i} \end{aligned}$$

General Backpropagation

Backprop as message passing:

- Each node receives a set of messages from its children, which are aggregated into its error signal, then it passes messages to its parents
- Modularity: each node only has to know how to compute derivatives w.r.t. its arguments local computation in the graph

.

Patterns in backward flow

Multiplicative node

$$rac{\partial L}{\partial y_j^{(k-1)}} = rac{\partial L}{\partial o_i^{(k)}} rac{\partial o_i^{(k)}}{\partial y_j^{(k-1)}} = y_l^{(k-1)} rac{\partial L}{\partial o_i^{(k)}}$$

Patterns in backward flow

Max node

- Vector equivalent of subgradient
 - 1 w.r.t. the largest incoming input
 - Incremental changes in this input will change the output
 - 0 for the rest
 - Incremental changes to these inputs will not change the output

Training

Differentiation Quiz

Differentiation Quiz #1:

Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the function below? Round your answer to the nearest integer.

$$y = \exp(xz) + \frac{xz}{\log(x)} + \frac{\sin(\log(x))}{xz}$$

Answer: Answers below are in the form [dy/dx, dy/dz]

Algorithm

BACKPROPAGATION FOR BINARY LOGISTIC REGRESSION

Derivative of a Sigmoid

First suppose that

$$s = \frac{1}{1 + \exp(-b)} \tag{1}$$

To obtain the simplified form of the derivative of a sigmoid.

$$\frac{ds}{db} = \frac{\exp(-b)}{(\exp(-b) + 1)^2} \tag{2}$$

$$= \frac{\exp(-b) + 1 - 1}{(\exp(-b) + 1 + 1 - 1)^2} \tag{3}$$

$$=\frac{\exp(-b)+1-1}{(\exp(-b)+1)^2}$$
 (4)

$$= \frac{\exp(-b) + 1}{(\exp(-b) + 1)^2} - \frac{1}{(\exp(-b) + 1)^2}$$

$$= \frac{1}{(\exp(-b) + 1)} - \frac{1}{(\exp(-b) + 1)^2}$$
(6)

$$= \frac{1}{(\exp(-b)+1)} - \frac{1}{(\exp(-b)+1)^2} \tag{6}$$

$$= \frac{1}{(\exp(-b)+1)} - \left(\frac{1}{(\exp(-b)+1)} \frac{1}{(\exp(-b)+1)}\right)$$
 (7)

$$= \frac{1}{(\exp(-b)+1)} \left(1 - \frac{1}{(\exp(-b)+1)}\right) \tag{8}$$

$$=s(1-s) \tag{9}$$

Training

Backpropagation

Case 1: Logistic Regression

Question: How do we compute this? **Answer:**

Computation Graph

Forward

$$J = y^* \log y + (1 - y^*) \log(1 - y)$$

$$y = \frac{1}{1 + \exp(-a)}$$

$$a = \sum_{j=0}^{D} \theta_j x_j$$

Backward

$$g_y = \frac{y^*}{y} + \frac{(1-y^*)}{y-1}$$

$$g_a = g_y \frac{\partial y}{\partial a}, \frac{\partial y}{\partial a} = \frac{\exp(-a)}{(\exp(-a) + 1)^2}$$

$$g_{\theta_j} =$$

$$g_{x_j} =$$

65

Case 2: Neural Network

Backpropagation

	Forward	Backward
Loss	$J = y^* \log y + (1 - y^*) \log(1 - y)$	$\frac{dJ}{dy} = \frac{y^*}{y} + \frac{(1-y^*)}{y-1}$
Sigmoid	$y = \frac{1}{1 + \exp(-b)}$	$\frac{dJ}{db} = \frac{dJ}{dy}\frac{dy}{db}, \ \frac{dy}{db} = \frac{\exp(-b)}{(\exp(-b) + 1)^2}$
Linear	$b = \sum_{j=0}^{D} \beta_j z_j$	$\frac{dJ}{d\beta_j} = \frac{dJ}{db} \frac{db}{d\beta_j}, \frac{db}{d\beta_j} = z_j$ $\frac{dJ}{dz_j} = \frac{dJ}{db} \frac{db}{dz_j}, \frac{db}{dz_j} = \beta_j$
Sigmoid	$z_j = \frac{1}{1 + \exp(-a_j)}$	$\frac{dJ}{da_j} = \frac{dJ}{dz_j} \frac{dz_j}{da_j}, \frac{dz_j}{da_j} = \frac{\exp(-a_j)}{(\exp(-a_j) + 1)^2}$
Linear	$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$	$\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_{j}} \frac{da_{j}}{d\alpha_{ji}}, \frac{da_{j}}{d\alpha_{ji}} = x_{i}$ $\frac{dJ}{dx_{i}} = \sum_{i=0}^{D} \frac{dJ}{da_{j}} \frac{da_{j}}{dx_{i}}, \frac{da_{j}}{dx_{i}} = \alpha_{ji}$
		J=0

MATRIX CALCULUS

Numerator

Let $y, x \in \mathbb{R}$ be scalars, $\mathbf{y} \in \mathbb{R}^M$ and $\mathbf{x} \in \mathbb{R}^P$ be vectors, and $\mathbf{Y} \in \mathbb{R}^{M \times N}$ and $\mathbf{X} \in \mathbb{R}^{P \times Q}$ be matrices

Denominator

Types of Derivatives	scalar	vector	matrix
scalar	$\frac{\partial y}{\partial x}$	$\frac{\partial \mathbf{y}}{\partial x}$	$\frac{\partial \mathbf{Y}}{\partial x}$
vector	$\frac{\partial y}{\partial \mathbf{x}}$	$rac{\partial \mathbf{y}}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{Y}}{\partial \mathbf{x}}$
matrix	$rac{\partial y}{\partial \mathbf{X}}$	$rac{\partial \mathbf{y}}{\partial \mathbf{X}}$	$\frac{\partial \mathbf{Y}}{\partial \mathbf{X}}$

Types of Derivatives	scalar
scalar	$\frac{\partial y}{\partial x} = \left[\frac{\partial y}{\partial x}\right]$
vector	$\frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x_P} \end{bmatrix}$
matrix	$\frac{\partial y}{\partial \mathbf{X}} = \begin{bmatrix} \frac{\partial y}{\partial X_{11}} & \frac{\partial y}{\partial X_{12}} & \cdots & \frac{\partial y}{\partial X_{1Q}} \\ \frac{\partial y}{\partial X_{21}} & \frac{\partial y}{\partial X_{22}} & \cdots & \frac{\partial y}{\partial X_{2Q}} \\ \vdots & & \vdots \\ \frac{\partial y}{\partial X_{P1}} & \frac{\partial y}{\partial X_{P2}} & \cdots & \frac{\partial y}{\partial X_{PQ}} \end{bmatrix}$

Matrix Calculus

Types of Derivatives	scalar	vector
scalar	$\frac{\partial y}{\partial x} = \left[\frac{\partial y}{\partial x}\right]$	$\frac{\partial \mathbf{y}}{\partial x} = \begin{bmatrix} \frac{\partial y_1}{\partial x} & \frac{\partial y_2}{\partial x} & \cdots & \frac{\partial y_N}{\partial x} \end{bmatrix}$
vector	$\frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x_P} \end{bmatrix}$	$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_2}{\partial x_1} & \cdots & \frac{\partial y_N}{\partial x_1} \\ \frac{\partial y_1}{\partial x_2} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_N}{\partial x_2} \\ \vdots & & & & \\ \frac{\partial y_1}{\partial x_P} & \frac{\partial y_2}{\partial x_P} & \cdots & \frac{\partial y_N}{\partial x_P} \end{bmatrix}$

Whenever you read about matrix calculus, you'll be confronted with two layout conventions:

Let $y, x \in \mathbb{R}$ be scalars, $\mathbf{y} \in \mathbb{R}^M$ and $\mathbf{x} \in \mathbb{R}^P$ be vectors.

1. In numerator layout:

$$\frac{\partial y}{\partial \mathbf{x}} \text{ is a } 1 \times P \text{ matrix, i.e. a row vector}$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} \text{ is an } M \times P \text{ matrix}$$

2. In denominator layout:

In this course, we use denominator layout.

Why? This ensures that our gradients of the objective function with respect to some subset of parameters are the same shape as those parameters.

Vector Derivatives

Scalar Derivatives

Suppose $x \in \mathbb{R}$ and $f : \mathbb{R} \to \mathbb{R}$

f(x)	$\frac{\partial f(x)}{\partial x}$
bx	b
xb	b
x^2	2x
bx^2	2bx

Vector Derivatives

Suppose $x \in \mathbb{R}^m$, $b \in \mathbb{R}^m$, $B \in \mathbb{R}^{m \times n}$, $Q \in \mathbb{R}^{m \times m}$ and Q is symmetric.

$f(\mathbf{x})$	$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}$	type of f
$b^T x$	b	$f: \mathbb{R}^m \to \mathbb{R}$
$\mathbf{x}^T\mathbf{b}$	b	$f: \mathbf{R}^m \to \mathbf{R}$
$\mathbf{x}^T\mathbf{B}$	В	$f: \mathbb{R}^m \to \mathbb{R}^n$
$\mathbf{B}^{\mathcal{T}}\mathbf{x}$	В	$f: \mathbf{R}^m \to \mathbf{R}^n$
$\mathbf{x}^{T}\mathbf{x}$	2x	$f: \mathbf{R}^m \to \mathbf{R}$
$\mathbf{x}^{T}\mathbf{Q}\mathbf{x}$	2Qx	$f: \mathbf{R}^m \to \mathbf{R}$

Vector Derivatives

Scalar Derivatives

Suppose $\mathbf{x} \in \mathbf{R}^m$ and we have constants $a \in \mathbf{R}$, $b \in \mathbf{R}$

f(x)	$\frac{\partial f(x)}{\partial x}$
g(x) + h(x) $ag(x)$ $g(x)b$	$ \frac{\partial g(x)}{\partial x} + \frac{\partial h(x)}{\partial x} \\ a \frac{\partial g(x)}{\partial x} \\ \frac{\partial g(x)}{\partial x} b $

Vector Derivatives

Suppose $x \in \mathbb{R}^m$ and we have constants $a \in \mathbb{R}$, $b \in \mathbb{R}^n$

f(x)	$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}$
g(x)+h(x) ag(x) g(x)b	$ \frac{\partial g(x)}{\partial x} + \frac{\partial h(x)}{\partial x} \\ a \frac{\partial g(x)}{\partial x} \\ b^{T} \\ \frac{\partial g(x)}{\partial x} $

Matrix Calculus

Question:

Suppose y = g(u) and u = h(x)

Which of the following is the correct definition of the chain rule?

Recall: _r $\frac{\frac{\partial y}{\partial x_1}}{\frac{\partial y}{\partial x_2}}$ $\frac{\frac{\partial y_2}{\partial x_1}}{\frac{\partial y_2}{\partial x_2}}$ $\left\lfloor rac{\partial y}{\partial x_P} ight floor$

Answer:

$$\frac{\partial y}{\partial \mathbf{x}} = \dots$$

A.
$$\frac{\partial y}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$$

B.
$$\frac{\partial y}{\partial \mathbf{u}}^T \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$$

$$\mathsf{C.} \ \, \frac{\partial y}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}^T$$

D.
$$\frac{\partial y}{\partial \mathbf{u}}^T \frac{\partial \mathbf{u}}{\partial \mathbf{x}}^T$$

E.
$$\left(\frac{\partial y}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}\right)^T$$

F. None of the above

Gradient Descent for Neural Network Training

- Initialize all weights $W_{(0)}^{(1)}, ..., W_{(0)}^{(L)}$ to small, random numbers and set t=0 (???)
- While TERMINATION CRITERION is not satisfied (???)
 - For l = 1, ..., L
 - Compute $G^{(l)} = \nabla_{W^{(l)}} \ell_{\mathcal{D}} \left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)} \right)$ (???)
 - Update $W^{(l)}$: $W^{(l)}_{(t+1)} = W^{(l)}_{(t)} \eta_0 G^{(l)}$
 - Increment t: t = t + 1
- Output: $W_{(t)}^{(1)}, ..., W_{(t)}^{(L)}$

$$\ell_{\mathcal{D}}\left(W_{(t)}^{(1)},...,W_{(t)}^{(L)}\right) = \sum_{n=1}^{N} \ell^{(n)}\left(W_{(t)}^{(1)},...,W_{(t)}^{(L)}\right)$$
 上海科技大学 Shanghai Tech University
$$\nabla_{W^{(l)}}\ell_{\mathcal{D}}\left(W_{(t)}^{(1)},...,W_{(t)}^{(L)}\right)$$

Computing Gradients

$$=\begin{bmatrix} \frac{\partial \ell_{\mathcal{D}}}{\partial w_{1,0}^{(l)}} & \frac{\partial \ell_{\mathcal{D}}}{\partial w_{1,1}^{(l)}} & \dots & \frac{\partial \ell_{\mathcal{D}}}{\partial w_{1,d}^{(l)-1)}} \\ \frac{\partial \ell_{\mathcal{D}}}{\partial w_{2,0}^{(l)}} & \frac{\partial \ell_{\mathcal{D}}}{\partial w_{2,1}^{(l)}} & \dots & \frac{\partial \ell_{\mathcal{D}}}{\partial w_{2,d^{(l-1)}}^{(l)}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \ell_{\mathcal{D}}}{\partial w_{d^{(l)},0}^{(l)}} & \frac{\partial \ell_{\mathcal{D}}}{\partial w_{d^{(l)},1}^{(l)}} & \dots & \frac{\partial \ell_{\mathcal{D}}}{\partial w_{d^{(l)},d^{(l-1)}}} \end{bmatrix}$$

$$\sum_{N} \partial \ell^{(n)} \left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)} \right)$$

$$\frac{\partial \ell_{\mathcal{D}}}{\partial w_{b,a}^{(l)}} = \sum_{n=1}^{N} \frac{\partial \ell^{(n)} \left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)} \right)}{\partial w_{b,a}^{(l)}}$$

Finite Difference Method

The centered finite difference approximation is:

$$\frac{\partial}{\partial \theta_i} J(\boldsymbol{\theta}) \approx \frac{(J(\boldsymbol{\theta} + \epsilon \cdot \boldsymbol{d}_i) - J(\boldsymbol{\theta} - \epsilon \cdot \boldsymbol{d}_i))}{2\epsilon} \tag{1}$$

where d_i is a 1-hot vector consisting of all zeros except for the ith

entry of d_i , which has value 1.

Notes:

- Suffers from issues of floating point precision, in practice
- Typically only appropriate to use on small examples with an appropriately chosen epsilon

Summary

1. Neural Networks...

- provide a way of learning features
- are highly nonlinear prediction functions
- (can be) a highly parallel network of logistic regression classifiers
- discover useful hidden representations of the input

2. Backpropagation...

- Backprop is used to train the majority of neural nets
- Even generative network learning, or advanced optimization algorithms (second-order) use backprop to compute the update of weights

Summary

1. Neural Networks...

- provide a way of learning features
- are highly nonlinear prediction functions
- (can be) a highly parallel network of logistic regression classifiers
- discover useful hidden representations of the input

2. Backpropagation...

- However, backprop seems biologically implausible
- No evidence for biological signals analogous to error derivatives
- All the existing biologically plausible alternatives learn much more slowly on computers.

Backprop Objectives

- You should be able to...
- Differentiate between a neural network diagram and a computation graph
- Construct a computation graph for a function as specified by an algorithm
- Carry out the backpropagation on an arbitrary computation graph
- Construct a computation graph for a neural network, identifying all the given and intermediate quantities that are relevant
- Instantiate the backpropagation algorithm for a neural network
- Instantiate an optimization method (e.g. SGD) and a regularizer (e.g. L2) when the parameters of a model are comprised of several matrices corresponding to different layers of a neural network
- Apply the empirical risk minimization framework to learn a neural network
- Use the finite difference method to evaluate the gradient of a function
- Identify when the gradient of a function can be computed at all and when it can be computed efficiently
- Employ basic matrix calculus to compute vector/matrix/tensor derivatives.