

ESL-TR-91-28

HAZARD RESPONSE MODELING UNCERTAINTY (A QUANTITATIVE METHOD) VOL II - EVALUATION OF COMMONLY USED HAZARDOUS GAS DISPERSION MODELS

S. R. HANNA, D. G. STRIMAITIS, J. C. CHANG

SIGMA RESEARCH CORPORATION 234 LITTLETON ROAD, SUITE 2E WESTFORD MA 01886

MARCH 1993

FINAL REPORT

APRIL 1989 - APRIL 1991

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

93-23011

ENVIRONICS DIVISION

Air Force Engineering & Services Center ENGINEERING & SERVICES LABORATORY Tyndall Air Force Base, Florida 32403

ELECTE 00T 04 1993

93 10 1 190

NOTICE

PLEASE DO NOT REQUEST COPIES OF THIS REPORT FROM HQ AFESC/RD (Engineering and Services Laboratory).

Additional copies may be purchased from:

NATIONAL TECHNICAL INFORMATION SERVICE 5285 PORT ROYAL ROAD Springfield, Virginia 22161

FEDERAL GOVERNMENT AGENCIES AND THEIR CONTRACTORS
REGISTERED WITH DEFENSE TECHNICAL INFORMATION CENTER
SHOULD DIRECT REQUESTS FOR COPIES OF THIS REPORT TO:

Defense Technical Information Center Cameron Station
ALEXANDRIA, VIRGINIA 22314

=	C 10: 2: C	*	~ .	7	7 7 6	,2 2
200	نزي د کار	٠.	~ •	QF *H	> ~~	U.E.

REPORT I	OCUMENTATIO	N PAGE			Form Approved OM8 No. 0704-0188
a. REPORT SECURITY CLASSIFICATION		16. RESTRICTIVE MARKINGS			
Unclassified					
a. SECURITY CLASSIFICATION AUTHORITY		ŧ ' "	AVAILABILITY OF		
b. DECLASSIFICATION / DOWNGRADING SCHEDU	LE		for Public Re lon Unlimited		
. PERFORMING ORGANIZATION REPORT NUMBE	R(S)	5. MONITORING ORGANIZATION REPORT NUMBER(S)			
		ESL-TR-	91-28		
a. NAME OF PERFORMING ORGANIZATION 66. OFFICE SYMBOL		78. NAME OF MO	ONITORING ORGANI	ZATION	
Sigma Research Corporation	(If applicable)	Air Force	Engineering	& Serv	vice Center
C ADDRESS (City, State, and ZIP Code)		7b. ADDRESS (Cit	y, State, and ZIP Co	de)	
234 Littleton Road, Suite 2E		H.Q. AFESO	:/RDVS		
Westford, MA 01886		•	r Force Base	, FL	32403
a. NAME OF FUNDING/SPONSORING	8b. OFFICE SYMBOL	9. PROCUREMENT	INSTRUMENT IDEN	TIFICATI	ON NUMBER
ORGANIZATION	(If applicable)				
		F08635-89-			
L ADDRESS (City, State, and ZIP Code)	•		UNDING NUMBERS		
		PROGRAM ELEMENT NO.		rask No.	WORK UNIT ACCESSION NO.
1. TITLE (Include Security Classification)					
Hazard Response Modeling Uncert				;	
Evaluation of Commonly-Used Haz	ardous Gas Disp	ersion Model	.s		
2. PERSONAL AUTHOR(S)	and Chann I C				
Hanna, S.R., Strimaitis, D.G. a 3a. TYPE OF REPORT 113b. TIME CO		A DATE OF REPO	PT (Year, Month, Da	v) [15	PAGE COUNT
Final FROM89	04 20 T O 91 04 20		h 1993	"	
6. SUPPLEMENTARY NOTATION					
7. COSATI CODES	18. SUBJECT TERMS (C	OPTIQUE OD PRICE	o of paceages and o	dentific b	w block gumber)
FIELD GROUP SUB-GROUP	Toxic Hazards		ertainty in		
	Dispersion Mo		Modeling		•
	Meteorology		luation of M	odels	
3. ABSTRACT (Continue on reverse if necessary					
There are currently available					odels for ertainties
alculating concentrations of has sociated with these models are					
nd compared using statistical					
ir Force has a need for an obje					
rovides a framework for perform					
This volume provides an exam					
group of 14 dispersion models.					
oth releases of dense gases and iewed, statistical procedures a					
Monte Carlo technique for asse				ize pe	errormance, and
tioned barro deciminade for about	Journe direct carr	, 15 40			
0. DISTRIBUTION/AVAILABILITY OF ABSTRACT		21 ABSTRACT FF	CURITY CLASSIFICAT	'ION'	
UNCLASSIFIED/UNLIMITED SAME AS R	PT DTIC USERS	Unclass		ION	
La. NAME OF RESPONSIBLE INDIVIDUAL	and one organi		nciude Area Code)	22c. OF	FICE SYMBOL
Captain Michael Moss		(904) 283-6	034	AFES	C/RDVS
D Form 1473, JUN 86	Previous editions are o	obsolete.	SECURITY CL	ASSIFICA	TION OF THIS PAGE

(The reverse of this page is blank.)

EXECUTIVE SUMMARY

A. OBJECTIVE

The overall objective of this project is to develop and test computer software containing a quantitative method for estimating the uncertainty in PC-based hazard response models. This software is to be used by planners and engineers in order to evaluate the predictions of hazard response models with field observations and determine the confidence intervals on these predictions. This particular volume (II) provides an example of the application of the software to 14 typical hazard response models and 8 sets of field data.

B. BACKGROUND

The U.S. Air Force and the American Petroleum Institute, among others, have increased emphasis on calculating toxic corridors due to releases of hazardous chemicals into the air. There are dozens of PC-based computer models recently developed in order to calculate these toxic corridors. However, the uncertainties in these models have not been adequately determined, partly due to the lack of a standardized quantitative method that could be applied to these models. Individual model developers generally present a limited evaluation of their own model, and the USEPA has published some partial evaluations, but a comprehensive study has not been completed.

C. SCOPE

The scope of the overall project has included acquisition and testing of databases and models, development and application of model evaluation software, and assessment of the components of uncertainty. The current volume (II) emphasizes an example application of the model to a reasonably comprehensive set of 14 hazard response models and 8 independent field experiments. Both proprietary and publicly-available models are considered, and the field data cover a wide variety of source scenarios and thermodynamic behavior.

D. METHODOLOGY

The statistical performance measures are tabulated and discussed for six publicly-available computer models (AFTOX, DEGADIS, HEGADAS, INPUFF, OB/DG, and SLAB) and six proprietary computer models (AIRTOX, CHARM, FOCUS, GASTAR, PHAST, and TRACE). In addition, results are presented for two simple analytical models—the Gaussian plume model (GPM) and the Britter and McQuaid model (B&M). These models were applied to data from eight field tests, where the source scenarios include continuous dense gas releases (Burro, Coyote, Desert Tortoise, Goldfish, Maplin Sands, and Thorney Island—C), instantaneous dense gas releases (Thorney Island—I), continuous passive gas releases (Prairie Grass and Hanford—C), and instantaneous passive gas releases (Hanford—I).

The report contains discussions of the following major topics:

- Creation of Modelers Data Archive (MDA)—Each field experiment is described in detail and the data from all experiments are combined in a consistent Modelers Data Archive (MDA) that can be used to initialize and evaluate all of the models. The MDA is listed in an Appendix to Volume II, and a floppy disk containing the MDA is available to all interested persons.
- Application of Models to MDA--The 14 models are reviewed and methods of applying them to the MDA are discussed. In many cases, preprocessor and postprocessor software had to be written so that all 14 models could begin from the same set of input data and could produce consistent output data.
- Statistical Model Evaluation—The model performance measures (mean bias, mean square error, correlation coefficient, fraction within a factor of two) and their confidence limits are calculated for each model and each data group and are presented in tables and figures. The primary mode of graphical presentation is a figure with mean square error on the vertical axis and mean bias on the horizontal axis, on which points are plotted for each model. Summary tables are provided.

- Residual Plots -- Many figures are given, in which ratios of prediction to observation are plotted versus input parameter (for example, wind speed or stability) for each model.
 Conclusions are given in summary tables.
- Sensitivity Study--The Monte Carlo sensitivity software is used to determine the sensitivity of the SLAB model to variations in input parameters.

E. CONCLUSIONS

- A few models can successfully predict concentrations with a
 mean bias of 20 percent or less, a relative scatter of 50
 percent or less, and little variability of the residual errors
 with input parameters.
- The four models (BM, GPM, SLAB, and HEGADAS) that produce the best "Factor of Two" agreement are on the list of six models (BM, GPM, SLAB, HEGADAS, CHARM, and PHAST) that produce the most consistent performance for the statistics describing the mean bias and the variance.
- The performance of any model is not related to its cost or complexity.
- In two of the three data groups, the "best" model is one which
 was not originally developed for that scenario (that is, GPM for
 continuous dense gas releases and SLAB for continuous passive
 gas releases).
- The BM, GPM, SLAB, and HEGADAS models demonstrate the most consistent performance for the "fraction within a factor of two" (FAC2) statistic.
- The results of the analyses in this section lead to the recommendation that the following simple, analytical formulas can be confidently used for screening purposes for sources over flat, open terrain:

BM (Britter and McQuaid) for continuous and instantaneous dense gas releases.

GPM (Gaussian Plume Model) for continuous passive gas releases.

There are insufficient field data to justify recommendations for instantaneous passive gas releases. However, the EPA's INPUFF model appears to perform reasonably well for the Hanford dataset in Figure 14b.

These screening models would not be appropriate for source scenarios and terrain types outside of those used in the model derivations. For example, because the screening models neglect variations in roughness length, they would be inappropriate for urban areas or heavily industrialized areas.

F. RECOMMENDATIONS

This evaluation exercise has been by no means independent, since all of the models have been previously tested by the developers with at least one of the datasets. Furthermore, some of the results may be fortuitous, since, in a few cases, certain models have been applied to source scenarios for which they were not criginally intended.

In the future, our model evaluation software should be used to evaluate models with new independent datasets. An attempt should be made to set up standards for models so that they all conform to certain scenarios and to certain input and output data requirements.

DTIC QUALITY INSPECTED &

Accesio	n For		
NTIS DTIC Ulassic Judatio	126. H. 183	y , □	
By Distribution (
A	งานโดเอสเฉร	Codys	
Dist	Average		
A-1	7	۲,1	

PREFACE

This report was prepared by Sigma Research Corporation, 234 Littleton Road, Suite 2E, Westford, Massachusetts 01886, under the Small Business Innovative Research (SBIR) Phase II program, Contract Number F08635-89-C-0136, for the Air Force Engineering and Service Center, Engineering and Services Laboratory (AFESC/RDVS), Tyndall Air Force Base, Florida 32403. The project has been cosponsored by the American Petroleum Institute, 1220 L Street Northwest, Washington DC 20005 under Project Number AQ-7-305-8-9.

This report summarizes work done between 20 April 1989 and 20 April 1991.

AFESC/RDVS project office was Captain Michael Moss and API project officer was Mr. Howard Feldman. This report has three volumes. Volume I is entitled User's Guide for Software for Evaluating Hazardous Gas Dispersion Models.

Volume II is entitled Evaluation of Commonly-Used Hazardous Gas Dispersion Models, and Volume III is entitled Components of Uncertainty in Hazardous Gas Dispersion Models.

Because this is an SBIR report, it is being published in the same format in which it was submitted.

This report has been reviewed by the Public Affairs (PA) Office and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nationals.

This technical report has been reviewed and is approved for publication.

MICHAEL T. MOSS, Maj, USAF

Mishe W

Chief, Environmental Compliance R&D

TEIL J. LAMB, Col, USAF, BSC

Chief, Environics Division

FRANK P. GALLAGHER IVI, Colonel, USAF Director, Air Force Civil Engineering

Laboratory

TABLE OF CONTENTS

Section	Title	Page
I	INTRODUCTION	1
	A. OBJECTIVES	1 3
	 EPA Model Evaluation Program	3 5 5
	Dispersion Models	6 7 8
	C. SCOPE	8
II	DATASETS	10
	A. CRITERIA FOR CHOOSING DATASETS B. DESCRIPTION OF INDIVIDUAL FIELD STUDIES	10 13
	1. Burro and Coyote	13 15 21 24 27 31
	C. CREATION OF A MODELERS' DATA ARCHIVE D. METHODS FOR CALCULATING REQUIRED VARIABLES	35 38
	1. Burro. 2. Coyote. 3. Desert Tortoise. 4. Goldfish. 5. Hanford Kr ⁸⁵ 6. Maplin Sands. 7. Prairie Grass. 8. Thorney Island.	39 40 40 41 42 45 46 47
	E. SUMMARY OF DATASETS	48
III	MODELS	51
	A. CRITERIA FOR CHOOSING MODELS B. DESCRIPTION OF MODELS EVALUATED	51 55
	1. AFTOX 3.1 (Air Force Toxic Chemical Dispersion Model)	56 58

TABLE OF CONTENTS (CONTINUED)

Section	Title	Page
	 Britter & McQuaid Model. CHARM 6.1 (Complex and Hazardous Air Release Model). DEGADIS 2.1 (DEnse Gas DISpersion Model). FOCUS 2.1. GASTAR 2.22 (GASeous Transport from Accidental Releases). GPM (Gaussian Plume Model). HEGADAS (NTIS). INPUFF 2.3. OB/DG (Ocean Breeze/Dry Gulch). PHAST 2.01 (Process Hazard Analysis Software Tool). SLAB (February, 1990). TRACE II. 	60 63 65 67 69 71 71 73 74 74 75
	C. APPLICATION OF MODELS TO DATASETS	77
	 MDA Interface Initializing Individual Models 	79 87
	D. SUMMARY OF MODELS	112
IV	STATISTICAL MODEL EVALUATION	116
	A. PERFORMANCE MEASURES AND CONFIDENCE LIMITS B. RESULTS OF EVALUATION	116 118
	 Evaluation of Concentration Predictions Cloud Widths (σ_y) 	122 138
V	SCIENTIFIC EVALUATION BY MEANS OF RESIDUAL PLOTS	141
	A PROCEDURES. B. RESULTS.	141 141
VI	SENSITIVITY ANALYSIS USING MONTE CARLO PROCEDURES	158
	A. OVERVIEW. B. CHOICE OF MODELS AND INPUT PARAMETERS. C. IMPLEMENTATION. D. RESULTS.	158 158 160 161
VII	SUMMARY OF EVALUATION	170
	A. CONCENTRATION PREDICTIONS B. WIDTHS C. SCREENING MODEL RECOMMENDATIONS	170 172 174
	REFERENCES	176

TABLE OF CONTENTS (CONTINUED)

Section Title	Page
APPENDIX	
A MODELERS DATA ARCHIVE FILES	179
B MODEL APPLICATION INFORMATION	197
C TABULATION OF THE OBSERVED AND PREDICTED	
CLOUD-WIDTHS AND CONCENTRATIONS	283
D TABULATION OF THE PERFORMANCE MEASURES AND THE	
RESULTS OF CONFIDENCE LIMITS ANALYSIS	303

LIST OF FIGURES

Title	Page
Instrumentation Array for the 1980 LNG Dispersion Tests at NWC,	
China Lake (Reference 14)	14
Instrumentation Array for the Coyote Series at NWC, China Lake.	•
"Old" Locations Mark those used in the Burro Series (Reference 15)	16
Sensor Array for the Desert Tortoise Series Experiments	19
Configuration of Meteorological Towers and Kr ⁸⁵ Detectors for the	
Hanford Kr ⁸⁵ Trials (Reference 18)	23
Initial Configuration of the Maplin Sands Site	26
Revised Configuration of the Maplin Sands Site (After Trail 35)	26
Configuration of Instrumentation Used for the Phase I Trials at	
Thorney Island (Reference 25)	33
Correlation for continuous releases from Britter and McQuaid	
(Reference 42)	62
Correlation for instantaneous release form Britter and	
McQuaid (Reference 42)	62
Model performance measures, Geometric Mean Bias MG = $\exp(\overline{\ln C_0 - \ln C_p})$	
and Geometric Variance VG = $\exp[(\ln C_0 - \ln C_p)^2]$ for concentration	
predictions and observations for the continuous dense gas group of	
datasets (Burro, Coyote, Desert Tortoise, Goldfish, Maplin Sands,	
Thorney Island). 95 percent confidence intervals on MG are	
indicated. The solid line is the "minimum VG" curve, from	
Equation (33). The dashed lines represent "factor of two"	
agreement between mean predictions and observations	124

LIST OF FIGURES (CONTINUED)

Figu e	Title	Page
11	Model performance measures, Geometric Mean Bias MG = $\exp(\overline{\ell_{\rm NC}} - \ell_{\rm NC})$	
	and Geometric Variance $VG = \exp[(\ln C_0 - \ln C_p)^2]$ for concentration	
	predictions and observations for the instantaneous dense gas data	
	from Thorney Island. 95 percent confidence intervals on MG are	
	indicated. The solid line is the "minimum VG" curve, from	
	Equation (33). The dashed lines represent "factor of two"	
	agreement between mean predictions and observations	127
17	Model performance measures, Geometric Mean Bias MG = $\exp(\overline{\ell_{\text{NC}}} - \ell_{\text{NC}})$	
	and Geometric Variance VG = $\exp[(\ln C_0 - \ln C_0)^2]$ for concentration	
	predictions and observations at distances greater than or equal to	
	200 m. a: Continuous dense gas group of datasets (Burro, Coyote,	
	Desert Tortoise, Goldfish, Maplin Sands, Thorney Island).	
	b: Instantaneous dense gas data from Thorney Island. 95 percent	
	confidence intervals on MG are indicated. The solid line is the	
	"minimum VG" curve, from Equation (33). The dashed lines represent	
	"factor of two" agreement between mean predictions and observations	129
13	Model performance measures, Geometric Mean Bias MG = $\exp(\overline{\ell nC_0} - \ell nC_p)$	
	and Geometric Variance VG = $\exp[(\ell_n C_0 - \ell_n C_p)^2]$ for concentration	
	predictions and observations at distances less than 200 m.	
	a: Continuous dense gas group of datasets (Burro, Coyote, Desert	
	Tortoise, Goldfish, Maplin Sands, Thorney Island). b:	
	Instantaneous dense gas data from Thorney Island. 95 percent	
	confidence intervals on MG are indicated. The solid line is the	
	"minimum VG" curve, from Equation (33). The dashed lines	
	represent "factor of two" agreement between mean predictions and	
	observations	132

LIST OF FIGURES (CONTINUED)

Figure	Title	Page
14	Model performance measures, Geometric Mean Bias MG = $\exp(\overline{\ell_{\rm H}C_{\rm O}} - \ell_{\rm H}C_{\rm D})$	•
	and Geometric Variance $VG = \exp[(\ln C_0 - \ln C_p)^2]$ for concentration	
	predictions and observations. a: Continuous passive gas group of	•
	datasets (Prairie Grass and Hanford-continuous). b: Instantaneous	
	passive gas dataset from Hanford. 95 percent confidence intervals	
	on MG are indicated. The solid line is the "minimum VG" curve,	
	from Equation (33). The dashed lines represent "factor of two"	
	agreement between mean predictions and observations	133
15	Model performance measures, Geometric Mean Bias $MG = \exp(\overline{\ell_{11}C_{0} - \ell_{11}C_{p}})$	
	and Geometric Variance $VG = \exp[(\ln C_0 - \ln C_p)^2]$ for concentration	
	predictions and observations at distances greater than or equal to	
	200 m for STABLE (class E, F) conditions. a: Continuous dense gas	
	group of datasets (Burro, Coyote, Desert Tortoise, Goldfish, Maplin	
	Sands, Thorney Island). b: Instantaneous dense gas data from	
	Thorney Island. 95 percent confidence intervals on MG are	
	indicated. The solid line is the "minimum VG" curve, from	
	Equation (33). The dashed lines represent "factor of two"	
	agreement between mean predictions and observations	137
16	Model performance measures, Geometric Mean Bias MG = $\exp(\overline{\ln C_o - \ln C_p})$	
	and Geometric Variance VG = $\exp[(\ln C_0 - \ln C_p)^2]$ for plume width	
	predictions and observations. a: Continuous dense gas group of	
	datasets (Burro, Coyote, Desert Tortoise, Goldfish). b:	
	Continuous passive gas group of datasets (Hanford, Prairie Grass).	
	95 percent confidence intervals on MG are indicated. There is no	
	significant difference in part a among the MG and VG values for	
	the three better models (GPM, AIRTOX, and SLAB). The solid line	
	is the "minimum VG" curve, from Equation (3e). The dashed lines	
	represent "factor of two" agreement between mean predictions and	
	observations	139

LIST OF FIGURES (CONCLUDED)

Figure	Title	Page
17	Distributions of C _p /C _o for the datasets containing continuous releases of dense-gas clouds (Burro ⁽¹⁾ , Coyote ⁽²⁾ , Desert Tortoise ⁽³⁾ , Goldfish ⁽⁴⁾ , Maplin Sands LNG ⁽⁷⁾ , Maplin Sands LPG ⁽⁸⁾ , Thorney Island ⁽¹⁰⁾ .	
	The "box plots" indicate the 2nd, 16th, 40th, 84th,	
	and 98th percentiles of the cumulative distribution	
	function of the N points in the class	142
18	Distributions of C_p/C_o for Thorney Island instantaneous releases of dense-gas clouds. The "box plots" indicate	
	the 2nd, 16th, 50th, 84th, and 98th percentiles of the	
	cumulative distribution function of the N points in the	
	class	148
19	Distributions of Cp/C for Prairie Grass continuous	
	releases of passive-gas clouds	153
20	The probability density functions (pdf) of the	
	concentrations and widths (sigma-y) at 200 and 800 m	
	downwind based on 500 Monte Carlo simulations of	
	the SLAB model for the Desert Tortoise 3 experiment	167

LIST OF TABLES

Table	Title	Page
1	LIST OF EXPERIMENTS THAT WERE CONSIDERED FOR THE MODEL EVALUATION DATA ARCHIVE	11
2	SUMMARY OF THE BURRO AND COYOTE TRIALS	17
3	SUMMARY OF DESERT TORTOISE AND GOLDFISH EXPERIMENTS	22
4	SUMMARY OF HANFORD KRYPTON-85 TRACER RELEASES	25
5	SUMMARY OF THE MAPLIN SANDS EXPERIMENT	28
6	SUMMARY OF SELECTED METEOROLOGICAL DATA FROM PRAIRIE GRASS TRIALS	30
7	SUMMARY DESCRIPTION OF PHASE I TRIALS AND CONTINUOUS RELEASE TRIALS	34
8	LIST OF INFORMATION CONTAINED IN AN MDA FILE	36
9	SUMMARY OF CHARACTERISTICS OF THE DATASETS	49
10	ATTRIBUTES OF MODELS	110
11	MATRIX OF MODELS AND DATASETS FOR WHICH LATERAL CLOUD WIDTHS ARE EVALUATED	116
12	MATRIX OF MODELS AND DATASETS FOR WHICH MAXIMUM CONCENTRATIONS ARE EVALUATED	117
13	SUMMARY OF FB AND NMSE RESULTS FOR PREDICTING PEAK CONCENTRATIONS, AT DISTANCES > 200 M	132

LIST OF TABLES (CONTINUED)

Table	Title	Page
14	PROBLEMS REVEALED BY RESIDUAL PLOTS FOR CONTINUOUS	
	RELEASES OF DENSE-GAS CLOUDS	147
15	PROBLEMS REVEALED BY RESIDUAL PLOTS FOR INSTANTANEOUS	
	DENSE-GAS CLOUDS (THORNEY ISLAND)	151
16	PROBLEMS REVEALED BY RESIDUAL PLOTS FOR CONTINUOUS	
	PASSIVE-GAS CLOUDS (PRAIRIE GRASS)	157
17	AN EXAMPLE OF THE OUTPUT FILE GENERATED BY THE MDAMC	
	PACKAGE, WHERE 20 MONTE CARLO SIMULATIONS OF THE SLAB	
	MODEL FOR THE DESERT TORTOISE 3 EXPERIMENT WERE	
	PERFORMED	162
18	MODEL UNCERTAINTIES FOR THE SLAB MODEL WHEN ALL SEVEN	
	PRIMARY INPUT PARAMETERS (SEE TEXT) WERE PERTURBED	
	SIMULTANEOUSLY IN 500 MONTE CARLO SIMULATIONS FOR THE	
	DESERT TORTOISE 3 EXPERIMENT. (S.D.: STANDARD DEVIATION	163
19	MODEL UNCERTAINTIES FOR THE SLAB MODEL WHEN ONLY THE	
	DOMAIN AVERAGED WIND SPEED WAS PERTURBED IN IN 500 MONTE	
	CARLO SIMULATIONS FOR THE DESERT TORTOISE 3 EXPERIMENT.	
	(S.D.: STANDARD DEVIATION	163
20	MODEL UNCERTAINTIES FOR THE SLAB MODEL WHEN ONLY THE	
	DIFFERENCE IN WIND SPEED BETWEEN DOMAIN-AVERAGE AND A TOWER	
	WAS PERTURBED IN 500 MONTE CARLO SIMULATIONS FOR THE DESERT	
	TORTOISE 3 EXPERIMENT. (S.D.: STANDARD DEVIATION)	164
21	MODEL UNCERTAINTIES FOR THE SLAB MODEL WHEN ONLY THE	
	DIFFERENCE IN TEMPERATURE BETWEEN TWO LEVELS ON A TOWER	
	WAS PERTURBED IN 500 MONTE CARLO SIMULATIONS FOR THE DESERT	
	TORTOISE 3 EXPERIMENT. (S.D.: STANDARD DEVIATION	164

LIST OF TABLES (CONTINUED)

Table	Title	Page
22	MODEL UNCERTAINTIES FOR THE SLAB MODEL WHEN ONLY THE	
	RELATIVE HUMIDITY WAS PERTURBED IN 500 MONTE CARLO	
	SIMULATIONS FOR THE DESERT TORTOISE 3 EXPERIMENT.	
	(S.D.: STANDARD DEVIATION	165
23	MODEL UNCERTAINTIES FOR THE SLAB MODEL WHEN ONLY THE	
	SURFACE ROUGHNESS WAS PERTURBED IN 500 MONTE CARLO	
	SIMULATIONS FOR THE DESERT TORTOISE 3 EXPERIMENT.	
	(S.D.: STANDARD DEVIATION)	165
24	MODEL UNCERTAINTIES FOR THE SLAB MODEL WHEN ONLY THE	
	SOURCE EMISSION RATE WAS PERTURBED IN 500 MONTE CARLO	
	SIMULATIONS FOR THE DESERT TORTOISE 3 EXPERIMENT.	
	(S.D.: STANDARD DEVIATION)	166
25	MODEL UNCERTAINTIES FOR THE SLAB MODEL WHEN ONLY THE	
	SOURCE DIAMETER WAS PERTURBED IN 500 MONTE CARLO	
	SIMULATIONS FOR THE DESERT TORTOISE 3 EXPERIMENT.	
	(S.D.: STANDARD DEVIATION)	166
26	RATIOS OF RELATIVE MODEL UNCERTAINTIES, σ_{c}/\bar{c} , AND σ_{u}/\bar{w} ,	
	TO THE RELATIVE INPUT DATA UNCERTAINTIES, $\sigma_1/\overline{1}$, FOR THE	
	SLAB MODEL WHEN THE SEVEN PRIMARY INPUT PARAMETERS WERE	
	PERTURBED ONE AT A TIME IN 500 MONTE CARLO SIMULATIONS	
	FOR THE DESERT TORTOISE 3 EXPERIMENT	168
27	RANKING OF MODELS ACCORDING TO FAC2 (FACTOR OF TWO)	
	STATISTIC, WHICH EQUALS THE FRACTION OF TIME THAT THE	
	PREDICTIONS ARE WITHIN A FACTOR OF TWO OF THE OBSERVATIONS.	171
28	SUMMARY OF PERFORMANCE EVALUATION BASED ON GEOMETRIC MEAN	
	BIAS MG AND GEOMETRIC VARIANCE VG FOR CONCENTRATIONS,	
	NEGLECTING INSTANTANEOUS PASSIVE DATASET. THE TERMS "OVER"	
	AND "UNDER" REFER TO THE BIAS IN THE MEAN PREDICTIONS	173

SECTION I INTRODUCTION

A. OBJECTIVES

This is Volume II of a three volume set describing the results of a project in which a quantitative method has been developed to determine the uncertainties in hazardous gas models. The first volume discusses the user's guide for this model evaluation method and the third volume discusses the three components of model uncertainty—data input errors, stochastic fluctuations, and model physics errors. The current volume provides an example of the application of the procedures.

The Phase II research has had the following eight technical objectives or tasks. The volume of the final report that deals with each of the following tasks is listed in parentheses at the end of the paragraphs.

- Task 1: Archival of Data Sets and Preparation of Modelers Data Bases. A computerized archive of field data sets has been prepared. This archive includes a broad range of source conditions, meteorological conditions, and averaging times. The information in the data base is sufficient to run any of the models. (Volume II)
- Task 2: Archival of Hazard Response Models, including Testing. A comprehensive archive of available microcomputer-based hazard response models has been prepared. This includes recently developed or modified publicly-available models such as SLAB and DEGADIS, as well as proprietary models that are in common use. (Volume II)
- Task 3: Application of Models to Test Data. Predictions from the models obtained under Task 2 were produced for the field tests obtained under Task 1. In some cases it was necessary to make additional calculations so that the input data are in the form acceptable by the model, or so that the model output data are in the form required by the model evaluation software. (Volume II)

- Task 4: Further Development of Model Evaluation Software. The statistical model evaluation software has been refined and further developed so that it is sufficiently general to take a wide variety of input data sets and calculate a complete set of possible performance measures. It is possible to calculate confidence intervals (that is, model uncertainties) from this procedure. (Volume I)
- Task 5: Application of Model Evaluation Software. The model evaluation software was applied to the model predictions and data sets in our archive. Estimates of typical confidence limits for certain classes of models and sizes of data set were made. (Volume II)
- Task 6: Assessment of Data Uncertainties. The contribution of data uncertainties to total model error were estimated. Part of this research involves investigation of Air Force meteorological instrumentation and quality control/quality assurance procedures, as well as field tests by NCAR scientists of instrument accuracy and representativeness. (Volume III)
- Task 7: Assessment of Stochastic Uncertainties. The contribution of stochastic or random uncertainties to total model error was further studied, and a quantitative procedure was developed for estimating this component as a function of receptor position, source type, sampling and averaging time, and meteorological conditions. The effect of these fluctuations on relations for toxic response were studied. (Volume III)
- Task 8: Assessment of Model Physics Errors. Dimensional analysis and various reduction procedures were applied to the complete archive of data sets and models in order to isolate the contribution of errors in model physics assumptions to the total model uncertainty. (Volume III)

B. BACKGROUND

The U.S. Air Force and the American Petroleum Institute, among others, have increased emphasis on calculating "toxic corridors" due to potential release of hazardous chemicals. The Ocean Breeze/Dry Gulch (OB/DG) model was originally used for calculating these corridors, and does contain an estimate of model uncertainty. However, the OB/DG model does not account for many important scientific phenomena, such as two-phase jets, evaporative emissions, and dense gas slumping. The new models mentioned above are more advanced scientifically, but do not include model uncertainty. The intent of this research is to fully develop quantitative model evaluation procedures, better estimate the components of the uncertainty (data input errors, stochastic uncertainties, and model physics errors), and test the procedures using a wide spectrum of field and laboratory experiments.

Several evaluations of dispersion models applicable to the release of toxic material to the atmosphere were reviewed in the Phase I report for this project. We repeat reviews of the more recent studies, and include an overview of a recent evaluation program sponsored by EPA.

1. EPA Model Evaluation Program

The EPA has been sponsoring a related dense gas model evaluation project being performed by TRC Environmental Consultants. We have exchanged ideas and information with the EPA scientists, and have reviewed a preliminary draft copy of their final report (Reference 1). The purpose of this section is to briefly compare the methods and results of the two studies.

The two studies are evaluating the models in the list below:

	EPA	USAF/API
Publicly Available	SLAB DEGADIS	SLAB DEGADIS GAUSSIAN PLUME MODEL INPUFF AFTOX HEGADAS OB/DG
		Britter & McQuaid

	EPA	USAF/API	
Proprietary	AIRTOX	AIRTOX	
	CHARM	CHARM	
	TRACE	TRACE	
	FOCUS	FOCUS	
	SAFEMODE	PHAST	
		GASTAR	

It is seen that the USAF/API study includes six more publicly-available models and one more proprietary model.

The following field data sets are used:

	EPA	USAF/API
Dense Gas	Burro	Burro
	Desert Tortoise	Desert Tortoise
	Goldfish	Goldfish
		Coyote
		Maplin Sands
		Thorney Island
	EPA	USAF/API
Passive Gas		Prairie Grass
		Hanford Kr85

The EPA study was deliberately restricted to data sets in which dense gases were continuously released for periods of three to ten minutes. The total numbers of individual field tests in the EPA and USAF/API studies are 9 and 118, respectively.

The EPA contractor permitted the model developers to advise them on how to run the models (for example, definitions of input conditions and choices of model options), whereas the models were run in a more independent manner in the USAF/API study. The developers were asked to comment on the way their models were set up in the USAF/API study, but the final decision was made by us.

The model performance measures used in the two studies are similar. Both considered maximum concentrations and plume widths on monitoring arcs. In any given field test, there were about two to seven monitoring arcs.

The results of the EPA study were inconclusive. The TRACE, CHARM, DEGADIS, and SLAB model performances were not significantly different, and "none demonstrated good performance consistently for all three experimental programs". In contrast, as will be shown below, the USAF/API results were more conclusive, perhaps because of the much larger set of data.

2. Model Sensitivity Studies

During 1986 and 1987, Professor Carney of Florida State University prepared several papers for the AFESC on the sensitivity of the AFTOX, CHARM, and PUFF models to uncertainties in input data (Reference 2). His 1987 paper applied the uncertainty formula suggested by Freeman et al. (Reference 3), which has also been applied by Hanna (Reference 4) to a simplified air quality model. If concentration, C, is an analytical function of the variables x_i (i = 1 to n), then the uncertainty or variance $V_c = \sigma_c^2$ is given by the equation

$$V_{c} = \sum_{i=1}^{n} \left(\frac{\partial C}{\partial x_{i}} \right)^{2} V_{xi} + \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\frac{\partial^{2} C}{\partial x_{i}} \frac{\partial x_{j}}{\partial x_{j}} \right)^{2} V_{xi} V_{xj}$$
 (1)

+ 0.5
$$\sum_{i=1}^{n} \left(\partial^2 C / \partial x_i^2 \right) v_{xi}^2$$

where V_{xi} is the uncertainty or variance in input variable x_i . This equation is a Taylor expansion and implicitly assumes that the individual uncertainties are much less than one. Carney (Reference 2) finds that the wind speed, u, contributes the most uncertainty to the concentration, C, predicted by the AFTOX model.

3. Summary of Field Data

Ermak et al. (Reference 5) has put together a comprehensive summary of 26 "bench mark" field experiments, including data from Burro (LNG), Coyote (LNG), Eagle (N_2O_4) , Desert Tortoise (NH_3) , Maplin Sands (LNG and LPG) and Thorney Island (Freon). This study (funded by AFESC) presents input data

required by models and includes observed peak concentrations, average centerline concentrations, and average height and width of the cloud as a function of downwind distance. These data are sufficiently complete for anyone to run and evaluate his model.

4. A Methodology for Evaluating Heavy Gas Dispersion Models

In another recent draft report prepared for AFESC, Ermak and Merry (Reference 6) review methods for evaluating heavy gas dispersion models. They first list several specific criteria of interest to the Air Force:

- The methodology is to be based on comparison of model predictions with field-scale experimental observations.
- The methods of comparison must be quantitative and statistical in nature.
- The methods must help identify limitations of the models and levels of confidence.
- The methodology must be compatible with atmospheric dispersion models of interest to the Air Force.

These criteria are similar to those for our present study.

The Ermak and Merry (Reference 6) report is a review of general evaluation methods and heavy gas model data sets, and does not contain examples of applications of any new evaluation methods with field data sets. They first review the general philosophy of model evaluation, pointing out that sometimes evaluations of model physics are just as important as quantitative statistical evaluations. Much of their philosophical discussion follows the points made in a review paper by Venkatram (Reference 7). For example, a model whose predictions agree with field data but which contains an irrational physical assumption (for example, dense gas plumes accelerate upward) is not a good model. Also, they recognize that most model predictions represent ensemble averages, whereas field experiments represent only a single realization of the countless data that make up an

ensemble. They emphasize that observed concentrations are strong functions of averaging time, and that most heavy gas dispersion models do not include the effects of averaging time.

Heavy gas dispersion models are distinguished from other dispersion models by three effects: reduced turbulent mixing, gravity spreading, and lingering. The main parameters of interest in evaluations of these models are the maximum concentration, the average concentration over the cloud, and the cloud width and height (all as a function of downwind distance, x). Ermak and Merry emphasize the ratio of predicted to observed variables and define several statistics, such as the mean and the variance. Methods of estimating confidence limits on these statistics are suggested, and the report closes with an example of the application of some of their suggested procedures to a concocted data set drawn from a Gaussian distribution.

5. Comprehensive Model Evaluation Studies

Mercer's (Reference 8) review emphasizes estimation of variability or uncertainty in model predictions, which he finds is typically an order of magnitude when outliers are considered. He includes the following quote from Lamb (Reference 9), which is also appropriate for our discussion.

"The predictions even of a perfect model cannot be expected to agree with observations at all locations. Consequently, the common goal of model validation should be one of determining whether observed concentrations fall within the interval indicated by the model with the frequency indicated, and if not, whether the failure is attributable to sampling fluctuations or is due to the failure of the hypotheses on which the model is based. From the standpoint of regulatory needs the utility of a model is measured partly by the width of the interval in which a majority of observations can be expected to fall. If the width of the interval is very large, the model may provide no more information than one could gather simply by guessing the expected concentration. In particular, when the width of the interval of probable concentration values exceeds the allowable error bounds on the model's predictions, the model is of no value in that particular application."

Mercer (Reference 8) then produces concentration predictions of ten different models for a dense gas source equivalent to that used in the Thorney Island experiments. This comparison shows that the 10 model predictions range over ar order of magnitude at any given downwind distance.

6. CMA Model Evaluation Program

The Chemical Manufacturers' Association (CMA) sponsored an evaluation of eight dense gas dispersion models and nine spill evaporation models (References 10 and 11). The authors ran some of the models themselves and requested the developers of proprietary models to run their own models using standard input data sets. Model uncertainty is typically a factor of two to five. The comparisons are clouded by the use of some data sets that had already been used to "tune" certain of the models tested.

C. SCOPE

This introductory section has provided an overview of the objectives of the entire project, which was initiated because there are no standard objective quantitative means of evaluating microcomputer-based hazard response models. There are dozens of such models including several sponsored wholly or in part by the U.S. Air Force and the American Petroleum Institute: ADAM, AFTOX, CHARM, DEGADIS, SLAB, and OB/DG. A few data sets exist for testing these models, but, up until now, the models have not been tested or intercompared with these data on the basis of standard statistical significance tests. The U.S. EPA recently sponsored a related model evaluation project (Reference 1), which had a more limited scope and considered fewer models and datasets.

In this volume, we focus on a demonstration of the system to evaluate the performance of micro-computer-based dispersion models that are applicable to releases of toxic chemicals into the atmosphere. The study includes a total of 14 models and 8 datasets. The datasets are described in Section II, and the models are described in Section III. Results of the statistical evaluations are presented in Section IV, and a scientific evaluation of the distribution of residuals is presented in Section V. One example of how Monte Carlo procedures described in Volume I can be used to investigate the

sensitivity of a model to uncertainties in the input data is discussed in Section VI. The overall results are presented in Section VII.

When reading about the evaluations presented in Section IV and V, it is important to remember that, in many cases, there can be more than one way to apply a given model to a given dataset. Our approach has been to retain a fair degree of "independence" from the developers of the models being tested. We assembled/developed the data required as input to the models, assembled/developed the data against which the models are compared, applied the models, and then requested comments on our approach from the developers of the models. We supplied each developer with a description of the datasets and the procedure used to apply the developer's model to each dataset. We also provided a list of the concentrations obtained from the model, and those concentrations against which the modeled concentrations are compared, but we did not provide any indication of model performance relative to other models used in the study. Comments solicited in this way resulted in changes to our evaluation only if errors in the application were discovered. In this way, we were able to maintain a uniform approach to all of the models, and we consider the results indicative of what would be obtained by modelers "in the field."

This approach did not, however, preclude earlier discussions with the model developers. Upon reading the user's manuals, clarifications were sometimes needed, and these were addressed by means of telephone conversations and/or letters. Some of the models in the study underwent revisions during the study, so that some interaction focused on implementing new versions of the models. Such new versions sometimes contained bugs that became obvious as we began to use them, and this information was immediately passed on to the developer, and generally resulted in a revision. We emphasize, however, that none of these interactions focused on model performance issues arising from work performed during this study. Section III B characterizes the nature of our interactions with each of the model developers.

SECTION II

DATASETS

A. CRITERIA FOR CHOOSING DATASETS

The hazard response models included in this study (see Section 3) possess widely varying capabilities, but the majority do have several traits that influence the choice of datasets for evaluating this group of models. Chief among these is a preference for treating near-surface releases. As a result, we have not included datasets in which an elevated (say, more than a meter or two above the surface) source is used. Beyond this restriction, our criteria for selecting the datasets include:

- 1. Concurrent meteorological data must be available, obtained from sensors located near the site of the trials.
- 2. Concentrations should be available at more than one distance downwind, with sufficient lateral resolution to document the spatial structure of the cloud.
- 3. Temporal resolution of the concentration measurements should be less than the smaller of the duration of the release or the time-of-travel from the point of release to the nearest monitor.
- 4. Datasets chosen should document dispersion over a wide range of meteorological dispersion regimes.
- 5. Datasets chosen should include passive or "tracer" gas releases as well as dense-gas releases.
- 6. Datasets chosen should include instantaneous releases and continuous releases.

Many field experiments have been conducted for the purpose of evaluating dispersion models. Draxler (Reference 12) reviews many carried out with positively or neutrally buoyant sources. Hanna and Drivas (Reference 13) review many carried out with negatively buoyant sources. A total of 16 datasets derived from these reviews were considered for inclusion in this

TABLE 1. LIST OF EXPERIMENTS THAT WERE CONSIDERED FOR THE MODEL EVALUATION DATA ARCHIVE.

Maria	Material	Dense	Type of Release		
Name	Released	Gas	Quasi-Continuous	Instantaneous	
Burro	LNG	√	√		
Coyote	LNG, LCH4	✓	✓		
Desert Tortoise	NH ₃	✓	✓		
*Eagle	N ₂ O ₄	√	✓		
*Falcon	LNG	✓	✓		
Goldfish	HF	√	✓		
*Porton Down	Freon-12	✓		✓	
Thorney Island	Freon-12(N ₂) √	✓	✓	
Maplin Sands	LNG, LP	✓	✓	√ ·	
Prairie Grass	so ₂		✓	·	
*Dry Gulch	FP		· ✓		
*Ocean Breeze	FP		· ✓		
*Green Glow	FP		· ✓		
Hanford Kr ⁸⁵	Kr ⁸⁵		✓	√	
*Sandstorm	Be		√	•	
Adobe	Ве		√		

^{*} Not included in the modeling data archive

project, and are listed in Table 1. Nine involve releases of denser-thanair gases, while seven involve the release of gases or suspended particles in amounts small enough to act as passive tracers.

Based on a review of the data and the documentation for these 16 experiments, a decision was made not to consider seven of them. Neither the ADOBE nor Sandstorm experiments were included in the study, since they were concerned with the transport and diffusion of buoyant exhaust clouds from rocket motors. Few of the models tested in this project can accommodate a buoyant cloud, and furthermore, there are not sufficient data on the exhaust characteristics of the rocket motors in the data reports to adequately define the temperature and volume flux of the jet. Data from the Falcon Experiments were excluded from the study for two reasons: only one of the trials was successful from the point of view of evaluating diffusion models, and a data report is not available. The Eagle tests were also excluded, since some of the tests involved the use of a barrier to the flow, which sets them apart from the remainder of the datasets used in the study, and there were instrument problems with the remaining tests.

Of the remaining 11 experiments, 5 are tracer experiments (that is, the chemical that is released behaves as an inert or passive non-buoyant substance as it disperses Jownwind). The Prairie Grass experiment provides high quality dispersion data over a wide range of turbulence regimes at an ideal site. The Dry Gulch, Ocean Breeze, and Green Glow data are not included because they are similar to the Prairie Grass data, yet cover a more limited range of stabilities. The Kr 85 tracer experiment conducted in Hanford, WA is included because it provides good data for puff releases as well as quasi-continuous releases of neutral-density or passive gases.

One of the remaining dense-gas dispersion datasets was recently dropped from consideration as well. The Porton Down dataset includes 42 trials in which mixtures of Freon-12 and air were released in the form of an instantaneous cloud. Those trials include variations in initial cloud density, wind speed, and surface roughness, but they lack an extensive array of monitors capable of providing continuous concentration measurements. The primary monitors provided only dosage measurements. These dosages can be used to estimate a mean concentration during the time over which the cloud passed through the monitoring array, but we found that these estimates contribute little to the goal of quantifying model performance. We expected

that the models would tend to produce estimates of peak concentration which would exceed the average concentrations estimated from the dosages—and all of the models did. No additional information could be obtained from the dataset. As a result, we have excluded the Porton Down trials from any further discussion in this report.

Hence, the performance evaluations are based on a total of 8 datasets. In the remainder of this section, we provide: a description of each of the field studies (Section II B); a description of the MDA containing data from each dataset (Section II C); a summary of the methods used to calculate information required by the MDA (Section II D); and an overall summary of the datasets (Section II E).

B. DESCRIPTION OF INDIVIDUAL FIELD STUDIES

1. Burro and Coyote

Both the Burro (Reference 14) and Coyote (Reference 15) series of trials were conducted at the Naval Weapons Center (NWC) at China Lake, California. Sponsored by the U.S. Dept. of Energy and the Gas Research Institute, the trials consisted of releases of LNG onto the surface of a 1 m deep pool of water, 58 m in diameter. In addition, the Coyote series expanded on the earlier Burro trials by studying the occurrence of rapid-phase-transitions (RPT), and included releases of liquefied methane and liquid nitrogen. The Burro series focused on the transport and diffusion of vapor from spills of LNG on water. The Coyote series focused on the characteristics of fires resulting from ignition of clouds from LNG spills, and the series also focused on the RPT explosions. In all, eight trials from the Burro series and four trials from the Coyote series are suitable for testing transport and diffusion models.

For the Burro series, twenty cup-and-vane anemometers were located at a height of 2 m at various positions within the test array in order to map the wind field. There were six 10 m tall turbulence stations, one upwind and five downwind, which had bivane anemometers at three levels and thermocouples at four levels. Humidities were measured close to the array centerline at eight stations, including the upwind turbulence station. Ground heat-flux sensors were mounted at seven downwind stations along with the humidity sensors. Figure 1 shows the configuration of the test site.

Figure 1. Instrumentation Array for the 1980 LNG Dispersion Tests at NWC, China Lake (Reference 14).

Concentrations were measured at heights of 1 m, 3 m, and 8 m at 25 gas-sampling stations and 5 turbulence stations arranged in arcs at distances of 57 m, 140 m, 400 m, and 800 m downwind from the spill point. The turbulence stations sample the data at a higher rate than the gas stations (3-5 Hz compared to 1 Hz). The lateral spacing between stations varied from 13 m at stations closer to the spill point, to 80 m at stations located 800 m downwind.

The Coyote series maintained a similar array of instrumentation. However, only two of the turbulence stations (one upwind, one at 300 m downwind of the spill site) were instrumented with bivane anemometers because of a concern that they might be damaged. Gas concentrations were measured at heights of 1 m, 3 m, and 8 m at 24 gas-sampling stations and 5 turbulence stations arranged in arcs at distances of 110 m, 140 m, 200 m, 300 m, 400 m and 500 m downwind from the spill point. Note that there were in fact only one and two gas sensors deployed at distances of 110 m and 500 m downwind, respectively. The lateral spacing between stations varied from 30 m at a distance of 140 m downwind to 60 m at a distance of 800 m downwind. Figure 2 shows the configuration of the test site.

Data from all eight Burro trials and three of the four Coyote trials are available on 9-track tape prepared by Lawrence Livermore National Laboratory (LLNL). Comparison data-reports (Burro, (Reference 14); Coyote, (Reference 15)) are also available, and proved very useful in preparing the data for use in the evaluations. The individual trials contained in these reports include

Burro: 2, 3, 4, 5, 6, 7, 8, 9

Coyote: 3, 5, 6

A brief summary of the characteristics of the source emissions and the meteorological conditions for the eight Burro trials and four Coyote trials is given in Table 2.

2. Desert Tortoise and Goldfish

These two series of field experiments were conducted at the Frenchman Flat area of the Nevada Test Site. The first in the series, Desert Tortoise (Reference 16) was designed to document the transport and

Figure 2. Instrumentation Array for the Coyote Series at NWC, China Lake. "Old" Locations Mark those used in the Burro Series (Reference 15).

TABLE 2. SUMMARY OF THE BURRO AND COYOTE TRIALS.

Test Name	Date	Material Spilled	Spill Volyme (m)		Averaged Wind Speed (m/s)	Averaged Wind Direction (degrees)	Atmospheric Stability Class
Burro 2	18 June	LNG	34.3	11.9	5.4	221	С
Burro 3	2 July	LNG	34.0	12.2	5.4	224	С
Burro 4	9 July	LNG	35.3	12.1	9.0	217	С
Burro 5	16 July	LNG	35 . ⊗	11.3	7.4	218	С
Burro 6	5 Aug.	LNG	27.5	12.8	9. 1	220	С
Burro 7	27 Aug.	LNG	39.4	13.6	8.4	208	C/D
Burro 8	3 Sept.	. LNG	28.4	16.0	1.8	235	E
Burro 9	17 Sept.	. LNG	24.2	18.4	5.7	232	D
Coyote 3	2 Sept.	LNG	14.6	13.5	6.0	205	С
Coyote 5	7 Oct.	LNG	28.0	17.1	9.7	229	С
Coyote 6	27 Oct.	LNG	22.8	16.6	4.6	220	D

diffusion of ammonia vapor resulting from a cryogenic release of liquid ammonia. For each of the four trials, pressurized liquid NH₃ was released from a spill pipe pointing downwind at a height of about 1 m above the ground. The liquid jet flashed as it exited the pipe and its pressure decreased, resulting in about 18 percent of the liquid changing phase to become a gas. The remaining 82 percent of the NH₃-jet remained as a liquid, which was broken up into an aerosol by the turbulence inside the jet. Very little, if any of the unflashed liquid was observed to form a pool on the ground. Dispersion of the vapor-aerosol cloud was dominated by the dynamics of the turbulent jet near the point of release, but the slumping and horizontal spreading of the cloud downwind of the jet zone indicated the dominance of dense-gas dynamics at later stages.

Figure 3 shows the configuration of instrumentation used during Desert Tortoise. Eleven cup-and-vane anemometers were located at a height of 2 m at various positions within the test array in order to define the wind field for the planning of field experiments and the subsequent calculation of plume trajectories. In addition, a 20 m tall meteorological tower was located just upwind of the spill area, with temperature measured at four levels and wind speed and turbulence at three levels. Ground heat fluxes were measured at that tower and at three locations just downwind of the spill.

NH₃ concentrations and temperatures were obtained at elevations of 1, 2.5, and 6 m on seven towers located along an arc at a distance of 100 m downwind of the source. In most cases, nearly all of the plume was below the 6 m level of the towers and within the lateral domain of the towers. Additional NH₃ concentration observations at elevations of 1, 3.5, and 8.5 m were taken on five monitoring towers at a distance of 800 m from the source, where the lateral spacing of the towers was 100 m. Finally there were two arcs with up to eight portable ground-level stations at distances of 1400 m or 2800 m, and on occasion at 5500 m downwind. No information on vertical distribution of NH₃ concentration was available from these more distance arcs.

The Goldfish trials are very similar to the Desert Tortoise NH_3 trials described above. Hydrogen fluoride (HF) was released using a similar release mechanism and some of the same sets of instruments. Note that

Figure 3. Sensor Array for the Desert Tortoise Series Experiments.

although six trials were conducted, the last three involved a study of the effectiveness of water sprays, and are not included in this evaluation demonstration. A portion of the liquid HF flashed upon release, creating a turbulent jet in which the unflashed liquid was broken up into an aerosol that remained in the jet-cloud. No pooling of the liquid was observed.

HF samplers were located on cross-wind lines at distance of 300, 1000, and 3000 m from the source. The closest line has 11 sampling locations, with instruments at heights of 1, 3, and 8 m at the inner 5 positions and instruments at a height of 1 m on the outer 6 positions. The 1000 m line has 13 sampling locations, with three levels of measurement on the inner 9 and only one level on the outer 4. The 3000 m line has 11 sampling locations, with a similar variation in sampler heights. In general the observed height of the HF cloud was less than the highest sampler level at the 300 m sampling line, but appeared to extend above the highest sample levels at the larger distances. The maximum ground level concentration and the cloud width could be accurately estimated in each test.

Data from the Desert Tortoise experiment are available on a 9-track tape from LLNL, and a companion report similar to the ones prepared for Burro and Coyote is also available (Reference 16). No such report is scheduled to be produced for the Goldfish experiment. Data for the 3 dispersion trials (not the three mitigation effectiveness trials) were obtained from Mr.

D. Blewitt of AMOCO (one of the sponsors of Goldfish), and much of the documentation for these trials may be found in a paper that appeared in the International Conference on Vapor Cloud Modeling (Reference 17). The individual trials contained in these reports include:

Desert Tortoise: 1, 2, 3, 4
Goldfish: 1, 2, 3

20

Table 3 provides an overview of these two field experiments. Most of the trials were performed during "neutral" stability conditions, with moderate wind speeds of 3 to 7 m/s. Although generally similar, note that Desert Tortoise trials differ from Goldfish trials in that the spill rates are about an order of magnitude greater.

3. Hanford Kr⁸⁵

The results from 13 dispersion trials conducted at the Atomic Energy Commission's Hanford reservation are reported by Nickola (Reference 18). Five of these trials involved the instantaneous release of small quantities of the inert radioactive gas krypton-85 (Kr^{85}), and the other eight involved short-period releases of Kr^{85} over periods of ten to twenty minutes.

Up to as many as 64 detectors were operated along arcs located 200 m and 800 m downwind of the point of release. This section of the Hanford field diffusion grid is nearly flat, and is covered with sagebrush and steppe grasses. Most of the detector locations consisted of one detector set at 1.5 m above the surface. However, each row also included three towers on which five detectors provided a vertical profile of the Kr clouds. The configuration is shown in Figure 4. Note that the uppermost detectors did not extend above the top of the diffusing clouds.

Meteorological data are reported for averaging periods of 1 minute, 5 minutes, and the period over which data were collected during a trial. These data are taken from the faster-response instruments mounted on the 25 m tower located near the source, when available. Otherwise, the data are reported from strip-charts recorded by instruments on the 122 m tower. Tabulations of time-series of meteorological and concentration data for both the instantaneous and continuous releases of Kr⁸⁵ are printed in the data report for the study (Reference 18). Wind speed, the standard deviation of wind speed and wind direction, and temperature are reported for consecutive 1-minute periods during each trial. Concentration data from the near-surface samplers (1.5 m above the ground) and the elevated sampling masts are reported at intervals of 38.4 seconds for the continuous release trials, and are reported at intervals of either 1.2, 2.4, or 4.8 seconds for the instantaneous release trials.

TABLE 3. SUMMARY OF DESERT TORTOISE AND GOLDFISH EXPERIMENTS.

Trial Name	Date	Duration (sec)	Spill Bate (m min)	Averaged Wind Speed (m/s)	Averaged Wind Direction (degrees)	Atmospheric Stability Class	•
DT 1	24 Aug.	126	7.0	7.4	224	D	
DT 2	29 Aug.	255	10.3	5.7	226	D	
DT 3	1 Sept.	166	11.7	7.4	219	D	
DT 4	6 Sept.	381	9.5	4.5	229	Ε	
GF 1	1 Aug.	125	1.78	5.6	-	D	
GF 2	14 Aug.	360	0.66	4.2	-	D	
GF 3	20 Aug.	360	0.65	5.4	-	D	

Figure 4. Configuration of Meteorological Towers and Kr⁸⁵ Detectors for the Hanford Kr⁸⁵ Trials (Reference 18).

As part of a project funded by the EPA, TRC Environmental Consultants, Inc. had entered the concentration data and meteorological data for six of the eight instantaneous release trials into computer files. The two trials dropped from use for this project were less desirable than the others because portions of the clouds drifted to the side of the array of detectors. We obtained these data and entered data for the five continuous-release trials into LOTUS 1-2-3 worksheets, preserving all of the information and structure of the original tables. The following trials comprise the data recorded on magnetic media:

Continuous-Release Trials: C1, C2, C3, C4, C5
Instantaneous Release Trials: P2, P3, P5, P6, P7, P8

A summary of the meteorological data for six of the eight instantaneousrelease trials and all five continuous-release trials is presented in Table 4.

4. Maplin Sands

The dispersion and combustion trials conducted at Maplin Sands in 1980 (Reference 19) involved the release of liquefied natural gas (LNG) and refrigerated liquid propane (LPG) onto the surface of the sea. Each liquid was released in both a continuous and an instantaneous mode. The size of a spill during each trial was approximately 20 $\rm m^3$.

Because the objective of the trials was to study the behavior of LNG and LPG vapor clouds over the sea, the site was located on the tidal flats of the Thames estuary. A shallow dike 300 m in diameter was constructed around the spill area to meet the requirement that the spill occur on the sea surface. Pontoons with either 4 m masts or 10 m masts were used to position meteorological instruments and sampling instruments along arcs downwind of the spill area. Figure 5 shows the pontoon configuration at the start of the series, and Figure 6 shows the revised configuration used after Trial 35. A

TABLE 4. SUMMARY OF HANFORD KRYPTON-85 TRACER RELEASES.

Trial		Start (PST)	End (PST)	Duration (min & sec)	Emitted	Rate	Wind Speed at 1.5 m (mps)	Qualitative Thermal Stability
P2	Sep 14			-	10.0		1.3	Very Stable
C1	Sep 15	0000:00	CO15: 28	15: 28	10.9	0.0117	1.3	Very Stable
Р3	Oct 17	0738:00	-	-	10.0	-	4. 2	Neutral
C2	Oct 17	0801:50	0801:50	15: 05	10.9	0.0120	3. 9	Unstable
P5	Oct 23	1052: 40	-	-	10.0	-	8.0	Unstable
C3	Oct 23	1101:25	1115:40	14: 15	23.8	0.0278	7.1	Unstable
P6	Oct 23	1130:00	-	-	10.0	-	7.3	Unstable
P7	Oct 24	1052: 30	_	_	10.0	_	4.6	Unstable
C4	Oct 24	1104: 30	1114:28	9: 58	22.8	0.0388	3.9	Unstable
C5	Nov 8	0512:22	0532: 13	19: 51	20.4	0.0171	2. 6	Stable
P8	Nov 8	0602:00	-	••	10.0	-	1.5	Stable

P: Denotes a puff (instantaneous) release

C: Denotes a continuous (short-period) release

Figure 5. Initial Configuration of the Maplin Sands Site.

Figure 6. Revised Configuration of the Maplin Sands Site (After Trial 35).

total of 360 sensors were deployed in these trials, 200 of which were gas concentration sensors. Other types of sensors included:

<u>Parameter</u>	<u>Instrument Type</u>	Number Of Sensors
Wind speed	Cup anemometer	6
Wind direction	Vane	5
Turbulence	Ultrasonic anemometer	6
Air temperature	Platinum resistance	8
Relative humidity	Humicap	2
Insolation	Solarimeter	2
Sea surface roughness	Conductivity probe	1
Sea current	Turbine	2
Sea temperature	Platinum resistance	2
Cloud temperature	Thermocouple	66

Table 5 summarizes features of each of the Maplin Sands trials. The combustion aspects of some of these trials removes the vapor cloud, so the dispersion data are available only up to the moment of ignition. Not all of these trials are used in the performance evaluations. None of the instantaneous trials are retained. Within the continuous propane trials, trial 45 is dropped due to unsteady winds, and trials 51 and 55 are dropped because the vapor-clouds largely "missed" the sampler array. Within the continuous LNG trials, trial 37 is dropped due to the buoyant nature of the cloud, trial 39 is dropped because the cloud was ignited within 1 minute of the release, and trial 56 is dropped because much of the cloud did not pass through the sensor array. Trials 9, 12, and 15 are also dropped from the study because much of the LNG evaporated in the air prior to reaching the water (Reference 20), thereby complicating the nature of the release (a simple evaporating pool description is not appropriate). Therefore, the trials actually used in the performance evaluation are:

LNG: 27, 29, 34, 35

LPG: 42, 43, 46, 47, 49, 50, 52, 54

5. Prairie Grass

Project Prairie Grass, designed by Air Force Cambridge Research Center personnel, was held in north central Nebraska near O'Neill in the summer of 1956 (Reference 21). Small amounts of SO₂ were released continuously over 10-minute periods from ground level in the 70 trials that

TABLE 5. SUMMARY OF THE MAPLIN SANDS EXPERIMENT.

Trial Number	Volume (m ³)	Rate (m /min)	Duration of steady flow (s)	Wind Speed (m/s)	Comments
Continuous Propane					
42		2.5	180	3.7	Underwater release
43		2.3	330	5.5	
*45		4.6	330	~2	Wind very unsteady
46		2.8	360	8. 1	
47		3.9	210	5.6	
49		2.0	90	6.2	Ignited
50		4.3	160	7.9	Ignited
*51		5.6	140	6.9	Ignited
					Plume center missed sensors
52		5.3	140	7.9	Underwater release
54		2.3	180	3.8	
*55		5.2	150	5.5	At edge of sensor array
Continuous	LNG				
* 9		1.6	300	8.9	
*12		0.7-1.1	340	1.5	
*15		2.9	285	3.6	
27		3.2	160	5.5	Ignited
29		4.1	225	7.4	
34		3.0	95	8.6	
35		3.8	135	9.8	
*37		4.1	230	4.7	Pipe end below water surface Buoyant plume
*39		4.7	60	4.1	Ignited
*56		2.5	80	5. 1	Plume only briefly over sensors
Instantaneo	us Propan	e			
*63	17.	•••	~	3.4	
Instantaneo	us LNG				
*22	12.	_	-	5. 5	Ignited

^{*} These trials are not included in the performance evaluation

comprised the project. Dosage measurements were made on arcs located at distances of 50, 100, 200, 400, and 800 meters downwind. About half of the trials were conducted during unstable daytime conditions and the rest were held at night with temperature inversions present. Meteorological measurements included wind speed, direction, and fluctuations in direction from cup anemometers and airfoil type wind vanes. Micrometeorological data, rawinsonde data, and aircraft soundings were also taken.

The site was located on virtually flat land covered with natural prairie grasses. The roughness length determined for the site by some of the researchers was 0.6 centimeters. Dosages were measured at a height of 1.5 meters along the arcs using midget impingers. The meteorological data were given as 10-minute averages.

Earlier, the Porton Down dataset was dropped because most of the data obtained in the monitoring array are in the form of dosages. Why, then, are the dosages obtained during Prairie Grass acceptable? The reason is that the duration of the Prairie Grass releases (10 minutes) is long enough to create a quasi-steady plume over the monitoring array. In the absence of meandering, the time series of concentrations that might have been measured would have a plateau-like appearance. The average concentration estimated from the dosage (assuming a time-scale equal to the duration of the release = 10 minutes) would then be a fair estimate of the peak concentration. Porton Down data, on the other hand, involve instantaneous releases, which would result in a time series of concentrations that might have been measured which would have a peak-like appearance. The mean concentration estimated from the dosage and the time it takes such a cloud to pass a monitor is a poor estimate of the peak concentration. Hence, the dosages from the Prairie Grass dataset are more useful for evaluating model performance. Note, however, that the average concentrations are still expected to be less than the peak concentrations.

Table 6 provides a summary of the meteorology for a subset of 44 trials that will be used on this project. These 44 represent the best of the program, and have been used extensively by other researchers (for example, Reference 22; Reference 23; Reference 24).

TABLE 6. SUMMARY OF SELECTED METEOROLOGICAL DATA FROM PRAIRIE GRASS TRIALS.

TRIAL	U (m/s)	STABILITY CLASS	TRIAL	U (m∕s)	STABILITY CLASS
7	4.2	B	37	4.6	D
8	4.9	С	38	4. 1	D
9	6.9	С	41	4.0	E
10	4.6	В	42	5.8	D
13	1.3	F	43	5.0	Ç
15	3.4	A	44	5.7	С
16	3.2	A	45	6. 1	D
17	3.3	D	46	5.2	D
18	3.5	E	48	8.0	D
19	5.8	С	49	6.3	D C
20	8.6	D	50	6.6	С
21	6.1	D	51	6.1	C D
22	6.4	D	53	2.5	F
23	5.9	D	54	4.0	D
24	6.2	D	55	5.4	D
25	2.8	A	56	4.3	D
28	2.6	Ē	57	6.7	ם
29	3.5	a	58	1.9	F
32	2.2	F	59	2.6	F
33	8.5	D	60	4.9	D
34	9.0	ם	61	8.0	D
36	1.9	F	62	5.2	Ċ

6. Thorney Island

The Heavy Gas Dispersion Trials project at Thorney Island (Reference 25) organized by the British Health and Safety Executive consists of the following five types of trials:

- (1) Phase I the instantaneous release of a preformed cloud of approximated 2000 m³ of dense gas over flat terrain. Sixteen trials were carried out.
- (2) Phase II Ten trials were carried out to study the effects of obstacles on Phase I-type releases.
- (3) Continuous release trials Three trials in which approximately 2000 m^3 of heavy gas was released at a rate of $5 \text{ m}^3/\text{sec}$ over flat terrain.
- (4) GRI trial A single Phase I-type of release.
- (5) Phase III- Six continuous release trials in which a fenced enclosure surrounded the gas container.

For this project, we are focusing on the Phase I trials (item #1) and the continuous-release trials (item #3). The instantaneous-release trials of Phase I are similar in design to those conducted earlier at Porton Down, but the size of the source is approximately fifty times larger, and continuous monitors were used to obtain concentration measurements.

A gas container with a volume of 2000 m³ was filled with a mixture of freon and nitrogen. For instantaneous release trials, the sides of the gas container collapsed to the ground upon release. For continuous release trials, the gas container simply served as a storage tank. The gas would then be ducted below the ground to the chosen release position. The release mechanism was designed to give a ground-level release with zero vertical momentum.

A 30 m tall meteorological tower was was located 150 m upwind from the release point. The instrumentation consisted of five cup anemometers, five temperature sensors, two sonic anemometers, and one sensor each for relative humidity, solar radiation and barometric pressure. Four trailer-mounted towers, with a total of eight sonic anemometers, were also deployed. Note that the 30 m tall tower was replaced by a 20 m tall tower for continuous release trials.

Thirty-eight towers were used to measure gas concentrations. Measurements were taken at four levels. The lowest gas sensor was positioned at a height of 0.4 m; and the highest at 4 m on towers close to the spill point, 10 m at most other towers, and 14.5 m at towers in the far field. The towers were placed on a rectangular grid with distances up to about 800 m from the release point. The four trailer-mounted towers mentioned previously also had gas sensors mounted at four different heights. The configuration of instrumentation at the site is shown in Figure 7.

Copies of the 9-track tapes containing data for the instantaneous release trials were obtained through the API, who had contributed to the experiments, and who are co-funding this model performance evaluation. We have averaged the 20-Hz data in blocks of 0.6 seconds each. Data for the continuous release trials were obtained from TRC Environmental Consultants, Inc., who had digitized plots of the data to produce data corresponding to 30-s averages. A total of 9 of the 16 continuous release trials and 2 of the 3 instantaneous release trials were retained for the evaluation. Trials 10, 11, and 46 were dropped because of wind-shifts during the trial; trial 4 was dropped because the cloud became elevated; trial 5 was dropped because the release mechanism malfunctioned, producing 2 clouds rather than 1; and trials 14, 15, and 16 were dropped because the density of the initial cloud appeared to be stratified. The trials included in this study are:

Instantaneous releases: 6, 7, 8, 9, 12, 13, 17, 18, 19 Continuous releases: 45, 47

A brief summary of the characteristics of the source emissions and the meteorological conditions for the Phase I and continuous release trials is given in Table 7.

Mest Code	Instrumentation
A	6 cup anemometers 2 sonic anemometers 5 thermometers 1 solarimeter 2 relative humidity sensors 1 wind vane
V	1 wind vane
P	4 gas sensors (1 Hz)
M1	1 sonic anemometer 4 gas sensors (1 Hz) 2 gas sensors (10 Hz)
M2 (a)	4 gas sensors (1 Hz) 2 sonic anemometers 2 gas sensors (10 Hz)
M2 (b)	4 gas sensors (1 Hz) 2 sonic anemometers 1 gas sensor (10 Hz)
м3	4 gas sensors (1 Hz) 3 sonic anemometers 3 gas sensors (10 Hz)
ם	4 gas sensors (1 Hz) 1 cup anemometer 1 wind vane 1 relative humidity sensor 1 thermometer

Figure 7. Configuration of Instrumentation Used for the Phase I Trials at Thorney Island (Reference 25).

TABLE 7. SUMMARY DESCRIPTION OF PHASE I TRIALS AND CONTINUOUS RELEASE TRIALS.

Trial Number	Date	Wind ¹ Speed m/s	Stability ² Class	Volume Released m	Initial Relative Density
Phase I					
006	8/4/82	2.6	D/E	1580	1.60
007	8/9/82	3.2	E	2000	1.75
800	9/9/82	2.4	D	2000	1.63
009	9/15/82	1.7	F	2000	1.60
012	10/15/82	2.6	E	1950	2.37
013	10/19/82	7.5	D	1950	2.00
017	6/9/83	5.0	D/E	1700	4.20
018	6/10/83	7.4	D	1700	1.87
019	6/10/83	6.4	D/E	2100	2.12
Continuo	us				
045	6/9/84	2.1	E/F	2000	2.0
047	6/15/84	1.5	F	2000	2.05

Wind speeds are at 10 m height on the 'A' mast averaged over the duration of each experiment.

Pasquill Stability Categories are assessed from observation, solar radiation, vertical temperature gradient, standard deviation of horizontal wind direction and Richardson number.

C. CREATION OF A MODELERS' DATA ARCHIVE

Application of 14 dissimilar models to 8 databases containing a total of 96 trials demands that the data be placed in a common format. Furthermore, this format must include enough information to satisfy the input requirements of all of the models. We have developed what may be called a Modelers' Data Archive (MDA) to perform this function. It certainly does not contain all of the data from each experiment; rather, it contains only that information that we have used in running the 14 models. As such, the MDA is a subset of the complete database. Table 8 lists the information contained in an MDA file. Most of the entries are self-explanatory.

At the beginning of the MDA, information is given that defines the experiment and trial, followed by a listing of several chemical properties of the released substance. Chemical properties include the molecular weight, normal boiling point, latent heat of evaporation, heat capacity of the vapor phase, heat capacity of the liquid phase, the density of the liquid, and the Antoine coefficients. The coefficients for the Antoine equation for calculating vapor pressure as a function of temperature are taken from the SLAB user's guide, since only SLAB requires these as input. Physical properties of the release are then given, which not only provide specific dimensions, but also information on the general type of the release (source type and source phase) so that appropriate information can be passed to each of the models. Meteorological data appear next. Temperatures at two specified heights and wind speed at one specified height are used to estimate the Monin-Obukhov length scale, L (although this may be specified directly). What is termed "domain average" values of wind speed and two measures of turbulence follow. This speed is the value actually used in the models, along with either the calculated value of L, or that observed. The earlier wind speed is used only in estimating L. If many near-surface measurements of wind speed are available, than a true "domain-average" speed can be used. However, if only one tower is available, then the speed measured near the surface (for near-surface releases) should be used as the "domain-average" speed. Site information includes the surface roughness length, soil (or water) temperature, and a soil moisture indicator. The Bowen ratio is a measure of the importance of the latent heat flux in computing the Monin-Obukhov length.

TABLE 8. LIST OF INFORMATION CONTAINED IN AN MDA FILE.

iquefied natural	natural gam							Methane is at least 91% in composition 3-char, abbreviation of chemical number of trials included in MDA
	803	104	803	906	1907	BUS	608	time cone designation trial ID
	۰.	r	7	•	8	.	e (and the second of the second o
. 0	. 2	. 2	00	. 2	00	, 0	00	. year
¥n ¢	15	74	7.0	910	10	19	10	hour
7.46	17.26	17.05	17.08	17.24	10.22	16.12	18.82	mol. weight (g/mole)
11.6	111.6	111.6	111.6	111.6	111.6	111.6	111.6	
11900.	511900.	511900.	00 1.	511900.	511900.	511900.	511900.	Jatent heat of evaporation (J/kg)
346.5	3348.5	3348.5	3340.	3348,5	3348.5	3348.5	3348.5	sepecific heat - liquid (J/kg-K)
34.1	432.7	431.2	431.4	432.3	438.8	430.5	443.4	density of liquid (kg/m**3)
. 6083	8.8083	8.6083	6.6083	6.6063	6,6083 98, 89	6.6083	60000	coefficient A for vapor prescure equation
99.89	40.00 - 90.00	-99.9	-99.9	199.99	-99.9	90.00	0 '00'	continuent b for wapor pressure equation : exit pressure (ats)
11.6	111.6	111.6	111.6	111.6	111.6	111.6	111.6	source temperature (K)
5.91	36.30	36.09	34.89	37.17	38.60	41.65	65.13	: Bource disserer (#)
۵.	និ	. A	, a	, <u>8</u> 1	, <u>2</u> 2	. 2	. 2	source type (IR, HJ, AS, EP)
	۱,	1 1		-a 8	,a e		7 4	source phase (L,C,G)
, ,	3.0	36 96	3.0 3.0 3.0 3.0	92.22	30.46	116.93	135.98	BOOKER CONTENTION CALEBOOK (B)
	167.	175.	190.	129.	174.	107.	79.	spill duration (s)
4980.	14712.	15221.	15444	11666.	17289	12453	10730.	total released (kg)
	1000000.	933	1000000.	.923	.928	.929	.926	i intial concentration (ppm)
	5.2	2.7	8.9	5.1	7.4	4.5	11.1	relative humidity (%)
11.27	307.75	309.05	314.27	312.67	306.96	306.02	308.52	:
.0	306.03	307.97	313.28	311.64	306.53	306.28	308.42	: measurement neight for temperature Fi (m) : amblent temperature #2-upper (K)
	.01	10.	10.	10.	10.	10.	10.	measurement height for temperature #2 (m)
6.66	-99.9	-99.9	99,9	99.9	-99.9	-99.9	6° 86 F	: soil tesperature (K) : soil soleture (1.475,0.sc)st.l.sater
. 59	. S.	9,35	7.79	9.35	6.75	1.94	5.94	Wind speed (5/8)
0	9.0	0.0	9.0	3.0	3.0	3.0	3.0	measurement height for wind speed (m)
- •	4.4	9.0	• [1.08	1.16	0.27	0.24	: domain-avg wind apage (#/s)
3.5	13.3	7.3	11.1	6.72	5.21	5.57	-	sigma-theta (deg)
۰.	2.0	2.0	2.0	2.0	2.0	2.0	2.0	: Bessurement ht for donain-avg wind data (B)
0005	.0002	.0002	.0002	.0002	.0002	.0002	.0002	: everaging time for domein-avg date (s); : roughness length 10 (s)
. 248	0.250	0.404	0,332	0.406	0,375	0.074	0.250	friction velocity u-star (m/s)
99.9	-99.9	-,0270	0392	-,95.9	-,0088	-,0606	-,0071	: Dowers Monto-Obushow length (1/m)
99.96	-99.9	6.66-	-99.9	6,99-	6.66-	-99.9	19.	cloud cover (*)
	mi	m :	9	m 3	-	50	-	Pasquill-Gifford stability class (A-1;D-4;F-6)
5.9	35.9	35.9	117.7	117.7	117.7	117.7	117.7	Intitude (deg)
:			7	-	1			averaging time for peak concentration
	100.		130.	.00	140.	0.00	.00	averaging time for averaged concentrat
• 00	100.				1.		1.	concentration of interest for modeling s suggested receptor helpht for modeling ().
	~	~	7	~	6	-	-	
÷.	57.	57.	57. 146.	37.	57.	57.	57.	distance downwind (a)
99.9	6.66-	-99.9	-99.9	-99.9	400.	400.	-00-	downwind
99.9	6.66-	-99.9	6.66-	-99.9	-99.9	800.	-000	
99.9	6.99-	-99.9	B. B.	-99.9	6.66-	v.ve-	-99.9	distance downwind (terminal record: -99.9)

It is the ratio of the sensible heat flux to the latent heat flux, and is generally estimated rather than calculated or measured. The last information in the file describes what specific information should be obtained from the model when applied to a particular experiment and trial: concentration averaging time, concentration of interest (for specifying the lateral extent of the cloud or signaling how far downwind the model calculations should extend), and receptor height and distances. Two averaging times are given. These correspond to the shortest averaging time contained in a dataset, and a longer averaging time that corresponds to the duration of the release (for quesi-continuous releases).

In many cases, not all of the entries are needed to characterize a trial. For example, no heat exchange or changes in phase occur in the Thorney Island trials, so the thermal properties of the gas are not used. Whenever this is the case, a value of "-99.9" may be contained in the MDA file.

The structure of the MDA file allows information describing a turbulent, two-phase jet-release to be specified within the same framework as a single-phase, evaporating pool-release. We have developed a set of programs to read the MDA files and produce tables of data needed to run each model. These tables provide all data in the units requested by the model. At the same time, the programs create all input files read by many of the models at the time of execution, so that these models are essentially driven directly from the MDA files. The goals satisfied in producing the MDA and software in this way are:

- To document assumptions used to initialize the models in a consistent way,
- 2. To automate the process of preparing model-runs to the maximum possible extent,
- 3. To develop a way to easily implement alternate methods of initialization, and
- 4. To develop a framework for investigating the influence of data uncertainty on assessing model performance.

In addition to an MDA file for each experiment, concentration files were also prepared for the distances and averaging times contained in the MDA.

Concentrations reported in these files represent the largest values measured

at each distance, for each averaging time. For some datasets, a measure of the scale of the lateral half-width of the concentration distribution is characterized as σ_y at each location downwind. Both the concentrations and the values of σ_y are compared to predicted values to produce measures of model performance as described in Section IV.

D. METHODS FOR CALCULATING REQUIRED VARIABLES

Much of the information required to complete the MDA for each dataset is readily obtained. However, some entries do require explanation. In the following sections, we discuss how the MDA for each of the datasets was prepared. The MDA for each dataset is listed in Appendix A.

Measures of the observed concentration field must also be derived from the datasets. The performance of the models is assessed by comparing modeled "centerline" or "peak" concentrations and crosswind cloud-widths (σ_y) with those derived from the measured concentrations. The method used to characterize the observed values is best illustrated by considering generic dataset in which time series of measured concentrations are available at several heights and locations along several monitoring arcs downwind of the point of release. For each arc, the peak concentrations and σ_y are obtained as follows:

A peak "instantaneous" concentration is found by selecting the single largest measured concentration from among all concentrations reported by all samplers at all heights, along the arc. No "instantaneous" $\sigma_{_{_{\! f V}}}$ is estimated. Next, a peak average concentration is found. To do this, we review the time series of concentrations along the arc, and define an averaging window that excludes the leading and trailing edges of the cloud. The length of this window is typically of the same order as the duration of the release for a quasi-continuous source. Concentrations are averaged over this window at each receptor, thereby producing a cross-section of average concentrations along the arc (across the cloud). The largest concentration in the cross-section is selected to represent the peak average concentration. Note that there is a likelihood that this method will slightly underestimate the peak, which may fall between receptors. A second-moment calculation involving the averaged concentrations at the lowest measurement-height along the arc then determines considered valid:

- There must be at least four monitors reporting non-zero values of average concentration.
- 2. The receptor showing the maximum concentration must not be located at either end of the arc.
- The lateral distribution must not exhibit a clear bi-modal pattern.

Departures from this treatment of a generic dataset are identified in the following discussions for each dataset.

1. Burro

The data report (Reference 14) contains summary sheets for the trials, which serve as the basis for most of the data placed in the MDA. The following comments should be noted:

- The mixture of methane, ethane, and propane that makes up the LNG is reported in the summary sheets. We use this information to calculate the molecular weight of the mixture, but all other properties in the MDA are for pure methane.
- The source diameter is calculated by assuming that the spill rate is equal to the total evaporation rate. Using an evaporation rate per unit area of $0.085 \text{ kg/m}^2/\text{s}$ for LNG on water, the diameter varies as a function of the rate of release.
- The source containment diameter is set equal to the diameter of the water test basin created for the series of experiments.
- The relative humidity is that termed "downwind humidity" in the summary sheets.
- The temperatures and wind speed used in calculating the Monin-Obukhov length are obtained from the "upwind vertical profile" data.

- The domain-averaged wind speed and turbulence data use the average values listed on the summary sheets.
- The Pasquill-Gifford stability class values are assigned on the basis of characterizations such as "neutral", slightly stable", etc.

The following correspondence was assumed:

unstable,	slightly	unstable C	•
neutral		D	į
slightly :	stable	E	,

Peak concentrations (both "instantaneous" and average), and the σ_y , for the average concentration distribution along each monitoring arc are found as described for the generic dataset. Cross-sections of concentrations along each arc, which are plotted in the data report, provided the means for defining the windows for averaging the concentrations.

2. Coyote

The structure and documentation for the Coyote dataset is nearly the same as that for Burro, so that the process of preparing the MDA is virtually the same. The only departure is in specifying the Pasquill-Gifford stability class. The data report for Coyote (Reference 15) does not provide the stability classification. However, a later summary of a dataset for dispersion modeling (Reference 26) does report the stability class for each of the three trials in the MDA.

3. Desert Tortoise

The information placed in the MDA for this experiment is taken from the data report (Reference 16). The following comments should be noted:

• The exit pressure is assumed to equal the pressure measured prior to the point of discharge. It is not the tank pressure that is listed.

- The wind speed and the temperatures used to calculate the Monin-Obukhov length are those measured at site GO1.
- The domain-averaged wind data are those reported as the average values at 2 m.
- The spill rate is the rate actually listed, with no adjustments for the results of the mass-flux estimates made from the data obtained along the arc at 100m downward of the point of release.
- Peak concentrations and values of of for the arcs at distances of 100 m and 800 m downwind of the point of release are obtained in the manner described for the generic dataset.

4. Goldfish

The MDA for the Goldfish experiment was prepared from information contained in Blewitt (Reference 17), and from information obtained directly from Mr. D. Blewitt of AMOCO, one of the sponsors of the experiment. The following points should be noted:

- Some chemical properties listed for HF vary among several references. The latent heat of vaporization listed in Perry's Handbook (Reference 27) is 7460 cal/mol, which is equivalent to 1.558x10⁶ J/kg. But Lange's Handbook of Chemistry (Reference 28) and a basic chemistry textbook (Reference 29) list the latent heat of vaporization as 1.8 Kcal/mol, which is equivalent to 3.76x10⁵ J/kg. Several of the models that are evaluated also list the physical properties of HF. PHAST uses 1.266x10⁶ J/kg at 293 K, and the user's guide for SLAB contains an example in which the latent heat of vaporization for HF is 3.732x10⁵ J/kg. These differences may be due to different assumptions by the references regarding the degree of polymerization of the HF. We have chosen the number used by SLAB for this property of HF, because personnel at LLNL have developed SLAB and have conducted the Goldfish tests.
- The diameter of the discharge orifice is not listed in any of the references for this experiment. The values used in the MDA were obtained from Mr. D. Blewitt of AMOCO.

Concentration measurements for short sampling times (of order 1s) are not available. Instead, averaging times are assumed to be either 66.6s, or 88.3s, depending on the sampler position. As a result, we only characterize the peak concentration for the averaging time associated with all samplers in a particular arc. A corresponding value of $\sigma_{\rm y}$ is calculated from the concentrations reported at monitors along the arc during the same period that contains the peak concentration. The methodology follows that for the generic case except no averaging is performed. Hence, the averaging time associated with $\sigma_{\rm v}$ is either 88.3 or 66.6s.

5. Hanford Kr⁸⁵

 ${\rm Kr}^{85}$ is a radioactive gas, and was released in very small quantities both as a continuous release and as an instantaneous release. The instantaneous releases were accomplished by sealing a small volume of the gas in a quartz vial, and then dropping a weight onto the container to crush it. The continuous releases were accomplished by adding a very small amount of ${\rm Kr}^{85}$ to a cylinder of compressed argon gas, and releasing the mixture at a controlled rate. In both cases, the ${\rm Kr}^{85}$ was quantified in terms of its disintegration rate: Ci/s for the continuous releases, and Ci for the instantaneous releases. Concentrations downwind of the release were measured as radiation counts, and converted to the equivalent Ci/m³ (actually expressed as $\mu{\rm Ci/m}^3$).

Using a half-life of 10.4 years, we calculate that there are $2x10^{-8}$ kg-moles of Kr⁸⁵ associated with 1 Ci. Because the instantaneous release made use of only 10 Ci, the mass and volume of the gas in the vial was very small. The continuous release rate did not exceed 0.0388 Ci/s of Kr⁸⁵, which amounts to approximately $7.8x10^{-10}$ kg-mole/s. However, because the Kr⁸⁵ was introduced into an argon carrier-gas at an unspecified mixing ratio, we do not know the initial dilution of Kr⁸⁵.

Based on these considerations, we have modeled the Hanford $\rm Kr^{85}$ trials with a neutral-density gas, released at a small rate. The gas is taken to be "dry air", which ensures that dense-gas effects will not be significant in the simulations. Emission rates (kg/s) or total mass released (kg) of the

"dry air" are established by arbitrarily assigning 1 kg of mass to 1 Ci, so that the instantaneous releases are modeled as if 10 kg (~ 1/3 kg-mole) of "dry air" were released, and the continuous releases are modeled as if 0.0388 kg/s (at most) of "dry air" were released.

Smaller amounts of "dry air" could have been modeled. For example, we could have assigned 1 g of mass to 1 Ci. This may alter model predictions. To gauge the effect of choosing 1 kg/Ci rather than 1 g/Ci in obtaining modeled normalized concentrations (that is, C/Q in μ s/m³ or μ /m³), we ran the SLAB model both ways. The results are:

SLAB

TRIAL	DIST	1 kg/Ci C(ppm)	_	RATIO/1000
HC1	200	110.3	0.1093	1.009
	800	13.21	0.0132	1.001
HC2	200	3.384	0.00338	1.001
	800	0. 255	0.000255	1.000
HC3	200	6. 121	0.00612	1.000
	800	0.467	0.000467	1.000
HC4	200	6.785	0.00679	0.999
	800	0.486	0.000486	1.000
HC5	200	15.44	0.0155	0. 996
	800	1.274	0.00127	1.003
HI2	200	1583	2. 489	0.636
	800	87.85	0.0995	0.883
HI3	200	430.5	0.5049	0.853
	800	14.61	0.01526	0. 957
HI5	200	388.2	0.4497	0.863
	800	14.31	0.01486	0.963
HI6	200	375.6	0.4346	0.864
	800	13.58	0.0141	0.963
HI7	200	328.8	0.3784	0.869
	800	10.88	0.01127	0.965
HI8	200	785.5	0. 979	0.802
	800	29.99	0.0318	0.943

These results indicate that the initial size of the source (within SLAB at least) has a minor influence on scaled concentrations predicted at distances of 200 and 800 m from the source for the continuous release trials (HC's), but can have a significant influence on the prediction of concentrations for the instantaneous release trials (HI's). Note that 10 kg of "dry air" at standard temperature and pressure occupies approximately 7.7 m³, which corresponds to a cube that is almost 2 m on a side.

Tables for INPUFF and GPM were also prepared to see to what extent the size of the source affects the scaled concentrations that are predicted. In applying both of these models, we specified an initial σ_y and σ_z to assure that the peak concentration at the source did not exceed the density of the gas at the source. Therefore, we expect to see at least a small effect of initial source volume on the predicted concentrations.

		INPUFF M		
		1 kg/Ci		
TRIAL	DIST	C(ppm)	C(ppm)	RATIO/1000
HC1	200		0.06942	
	800		0.007535	
HC2	200		0.002369	
	800		0.000193	
HC3	200		0.003058	
	800		0.000253	
HC4	200		0.007691	
	800		0.000625	
HC5	200		0.02173	
	800	2.281	0.002282	1.000
HI2	200	3408		0. 926
	800	110.2	0.1133	0.973
HI3	200	452		
	800	12.94	0.01305	0.992
HI5	200	111.3	0.1132	
	800	3.034	0.003048	0.995
HI6	200	113.7	0.1156	0. 984
	800		0.003044	
HI7	200	132. 1	0.1349	0. 979
	800	3	0.003016	0. 995
HI8	200	1059	1.136	0.932
	800	31.11	0.03167	0.982
	(GPM Model	L	
		1 kg/Ci	1 g/Ci	
TRIAL	DIST	C(ppm)	C(ppm)	RATIO/1000
HC1	200	86.62	0.08803	0.984
	800	7.661	0.007695	0.996
HC2	200	2. 139	0.002145	0.997
	800		0.000146	0. 999
HC3	200		0.003475	u. 997
	800	0.2373	0.000237	0.999
HC4	200	8.71	0.008758	0.995
	800	0.5978	0.000598	0.999
HC5	200		0.02386	i. 992
	800	1.875	0.001879	0.998

The continuous release trials show little influence, as was found for the SLAB runs. A greater effect is seen in the predictions at 200 m for the instantaneous releases, but it is not as large as the effect seen in the SLAB runs.

Because the trials are modeled as if "dry air" were released, the information on chemical properties in the MDA is taken from standard references. Release rates and meteorological data are taken from the data report (Reference 18). The following points should be noted:

- The source temperature is set equal to the ambient temperature measured at the lower instrument-height.
- The release rate of Kr⁸⁵ in Ci/s is numerically equal to the release rate of our surrogate in kg/s.
- No distinction is made between the "wind speed" entry, and the "domain-averaged wind speed."
- Concentrations reported in units of Ci/m^3 are converted to ppm by dividing by the factor $\rho \times 10^{-6}$, where ρ is the density of dry air at ambient temperature and pressure.
- For the instantaneous releases, only peak concentrations for an averaging time of 4.8s are available. No $\sigma_{_{\rm U}}$ values are calculated.
- For the continuous releases, short-term peak concentrations are obtained for an averaging time of 38.4s. Longer averages are calculated, and values of σ_y are calculated following the methodology of the generic dataset.

6. Maplin Sands

A series of data reports (Reference 30), one for each trial, contains information used to prepare the MDA for the LNG and the LPG trials. The following points should be noted:

 Molecular weights are calculated on the basis of the listed composition of the LNG or LPG for each trial. All other properties are those for methane (for LNG) or propane (for LPG).

- The temperature of the source is the boiling point temperature.
- The source diameter is calculated by assuming that the spill rate is equal to the total evaporation rate. We use an evaporation rate per unit area of 0.085 kg/m²/m for LNG on water, and a rate of 0.120 kg/m²/s for LPG on water.
- The duration of the spill is that listed as the period of steady discharge.
- Relative humidity for trials 29, 34, and 35 is not that listed in the data reports. Dr. J. Puttock informed us that the fetch for these three trials was over open water, rather than land. Relative humidities derived from measurements made at 1 m above the surface near the point of release are more representative than those listed in the data reports. We have placed the revised values in the MDA.
- Cloud cover is not reported, but photographs are included for each trial. We have estimated the cloud cover on the basis of these photographs.
- Concentration data are available in the form of plots, rather than on magnetic tape. We have obtained the peak concentration at a number of distances downwind of the release from plots of maximum concentration versus distance. Because the spacing of samplers along each arc was not small relative to the size of the vapor-clouds, reported concentrations cannot be considered good measures of the "true" peak concentrations, and no calculations of σ_V were attempted.

7. Prairie Grass

Data used to prepare the MDA for this dataset are derived from several sources. The 44 trials chosen for this evaluation are those deemed most useful by Briggs (Reference 22). Much of the meteorological data, and all source data and concentration data were obtained from Mr. B. Kunkel of AFGL, who had created data files from the original data report (Reference 21). Later analyses of the Prairie Grass data provided estimates of $\mathbf{u}_{\mathbf{a}}$ and L (Reference 24), and $\sigma_{\mathbf{v}}$ (Reference 23). The following points should be noted:

- SO₂ is the tracer-gas released, so all chemical properties are those for SO₂.
- Concentrations are derived from dosages, for releases of 10 min duration. Therefore, no short-term concentrations are available.
- Because the Prairie Grass data are frequently cited as having been used in the development of the Pasquill-Gifford (PG) dispersion curves, which are said to be applicable for a surface roughness of 0.03 m, the roughness length for the Prairie Grass site might be thought to be 0.03 m. This is not true. All values of $\sigma_{\rm Z}$ obtained from Prairie Grass had been "re-scaled" to be consistent with the roughness length 0.03 m when these data were used to develop the PG curves. The actual roughness for the site is 0.006 m.

8. Thorney Island

The data report (Reference 31) provided most of the information used to prepare the MDA. Additional analyses by Puttock (Reference 32) provided estimates of the roughness length for each trial (this varied by wind direction), and provided computed values of u_{*} and heat flux, from which the Monin-Obukhov length was calculated without requiring surrogate methods (as were employed for the other datasets). The following additional points should be noted:

- Molecular weight is calculated from the relative density of the cloud. The density of the air at ambient temperature and pressure is computed, and multiplied by the relative density. Knowing the molar volume of a perfect gas at ambient conditions, the molecular weight of the Freon/Nitrogen mixture is found. All other chemical properties listed in the MDA are those for pure Freon-12.
- The temperature of the cloud is set equal to the ambient temperature at "level 1."
- No distinction is made between the tower wind speed and the domain-averaged wind speed.

- Peak concentrations for the continuous releases are limited to averaging times of 30s, because these data were digitized from plots of the time series. No further averaging was applied, and no estimates of σ_y were attempted due to the nature of the monitoring array. The array is rectangular, but the orientation was generally not orthogonal to the wind direction, which means that sampling rows or arcs across the cloud could not be formed. However, it was still possible to determine peak concentrations at certain distances with reasonable accuracy.
- Peak concentrations for the instantaneous releases represent an averaging time of 0.6s, so these are considered "instantaneous" values. Because the release was not quasi-continuous, and because of the nature of the monitoring array, no values of σ were estimated.

E. SUMMARY OF DATASETS

An overview of the general characteristics of each of the experiments contained in the MDA is useful when interpreting the performance of the models that have been evaluated. Table 9 lists important characteristics of each dataset.

Three experiments document releases of LNG on water: Burro, Coyote, and Maplin Sands. A small pool of water was used in the 11 trials of Burro and Coyote, while the 4 Maplin Sands LNG trials were performed over shallow water at the coast. The duration of spills during these trials covers a similar range, but the total spilled during Maplin Sands trials was less than that at the other sites. The most significant difference between Maplin Sands and the Burro-Coyote trials is seen in the averaging times and the qualitative assessment of the lateral resolution of the sampling array. Concentrations from both Burro and Coyote were averaged over a period of "steady" release conditions, which correspond to periods when each sampler was within the vapor-cloud. With good spatial coverage along each sampling arc, the resulting concentrations are viewed as being representative of average, in-cloud concentrations (but not peak concentrations). Spatial coverage of the Maplin Sands vapor clouds was not good, and we have used the peak

TABLE 9. SUMMARY OF CHARACIERISTICS OF THE DATASETS.

	Burro	Coyote	Desert Tortoise	Goldfish	Hanford Kr 85 (Continuous)	Hanford Kr Hapill (Instantaneous) Sands	Mapiin Sands	Prairie Grass	Thorney Island (Instantaneous)	Thorney Island (Continuous)
Number of Irials	œ	c	*	e	v	y	8.			
Material	ראפ	LNG	MH.	눌	K ⁸⁵	_К 85	S I NC	: 8	ν τ 	7
Type of Release	Boiling	Boiling	2-Phase	2-Phase	Gas	Gas	Bolling	Gas Jet	Freen & N2	Freon & N2
Total Mass (ke)	1070-11300	probra	Jet	Jet			Liquid		a s o	s s
	0001-00101	17.00-17.00 6300-127.00 10000-36800	10000-36800	3500-3800	11-24•	10•	LNG: 2000-6600 23-63 LPG: 100-380	1 23-63	3150-8700	4800
Duration (s)	79-190	65-98	126-381	125-360	598-1191	(Instantaneous) 60-360	90-360	009	(Instantaneous)	450
Surface	Water	Vater	5011	Soli	Soll	Soll	Vater	Sec	Soil	100
Roughness (m)	. 0002	. 0002	. 003	. 003	. 83	8.	.0003	Š	200	3011
Stability Class	C-E	G-D	D-E	Q	3 -0	C-F		3 4	.003018	10.
Max. Distance (m)	140-800	300-400	**008	3000	DOR.			.	4-0	<u>د</u> د
Min. Averaging Time (s)	~		T.	66.6-88.3	78.4) (000-000	9	500-580	472
Averaging Time (s)	40-140	20-90	80-300	66.6-88.3	270-84K) ; ;	, ((Dosage)	0.06	30
Qualitative Assessment:						ç i	7	009	0.06	30
Lateral Resolution	Good	Good	poog	Poog	Good	Good	Maretnal	5		
Temporal Resolution	P009	poog	Good	Fair	Good		Poog	Fair		poog.

Curies, rather than kg, are used as a measure of the amount of this radioactive tracer released.

[.] Concentrations are measured beyond 800 m, but these are not well-instrumented measurement arcs.

3-second-average concentration data. Thus, we may have a good measure of peak, short-term concentrations at some distances during some trials, but not others. We would expect there to be greater scatter in the performance of models on the Maplin Sands trials than on the Burro and Coyote trials as a result of these differences. As a separate model comparison, short term peaks are also evaluated for the continuous dense gas data sets.

The Desert Tortoise and Goldfish experiments document two-phase turbulent jets. Although similar in many respects, the difference in the minimum averaging time of the concentrations is significant. This minimum averaging time is only 1 second in the Desert Tortoise experiments, but is 66.6 or 88.3 seconds (approximately half the duration of the releases), in the Goldfish experiments. Consequently it is difficult to assess whether or not reported concentrations in the Goldfish experiments represent in-cloud averages.

One experiment, Thorney Island, involves the release of mixtures of freon and nitrogen to simulate a generic dense gas release in which density differences are controlled only by dilution. Because the total <u>mixture</u> was sampled, rather than just the freon, these trials need not be modeled as releases of freon that are initially diluted.

Finally, two experiments involve the release of "trace" amounts of gases which are meant to document passive dispersion processes. Both are "continuous" releases of at least 10 minutes duration (the longest durations in the study). Because of the long duration, use of dosage data from Prairie Grass to infer average concentrations does not raise the same problems found in the Porton Down dataset. We have modeled the Kr releases as a neutral gas, with mass taken to be equivalent to its radioactive content (in Curies). The SO₂ released in the Frairie Grass trials is denser than air, but it is released in small quantity as a jet, so that it behaves as a neutral-density gas cloud. We have initialized each of the dense-gas models with the actual conditions of the release so that some dense-gas calculations may actually be performed for the initial stages of the dispersion, especially for those models that do not simulate the effects of entrainment of air into turbulent jets.

. To develop a framework for investigating the influence of data uncertainty on assessing model performance.

In addition to an MDA file for each experiment, concentration files were also prepared for the distances and averaging times contained in the MDA. Concentrations reported in these files represent the largest values measured

37

SECTION III MODELS

A. CRITERIA FOR CHOOSING MODELS

Several dispersion models that are either publicly available or proprietary were initially considered for inclusion in this demonstration of the system to evaluate the performance of micro-computer-based models applicable to releases of toxic chemicals into the atmosphere. The list of potential models was derived from the tabulation presented in the Phase I report for this project, and from the list of models of interest to the two sponsors of this project (USAF and API). Criteria considered in selecting the models for the demonstration included the following:

- 1. The model must be available in a version that runs on a "PC."
- If the model is proprietary, the developers must be willing to "loan" a copy for use on this project.
- 3. Models that obtain chemical properties from an internal database must either include all the chemicals required for the datasets included in the evaluation, or they must provide a mechanism for altering the chemical database.

Models that satisfy these criteria were also judged on the ease with which they can be applied to many trials. Those that are readily "automated" and for which a postprocessor can be prepared to extract specific information for each trial, were given preference over <u>similar</u> models that require far more user-involvement.

A total of 24 candidate models are listed below: 14 that have been included in this demonstration are marked with an asterisk:

ACTOR CADM •INPUFF
ADAM •CHARM LOMPUFF

*AFTOX	*DEGADIS	●OB/DG
*AIRTOX	*FOCUS (EAHAP)	•PHAST (SAFETI∕WHAZAN)
ALOHA	•GASTAR	•SLAB
ARCHIE	*GPM	•TRACE
*Britter & McQuaid	*HEGADAS	+TRACE

Three of the models not chosen are closely related to models that are included, and so are listed in parentheses. FOCUS is essentially a later version of EAHAP. SAFETI and WHAZAN, along with PHAST, are part of the family of models developed by Technica Ltd. for different computer systems. PHAST, the representative that we include in the evaluation, is the version specifically designed for use on micro-computers. Also, LOMPUFF, which requires a VAX computer rather than a micro-computer, uses the INPUFF dispersion model, which is included in the evaluation. Reasons for not including the remaining six models are:

ACTOR (Analysis of Consequences of Toxic Releases): This model was developed by the New Jersey Department of Environmental Protection (Reference 33). It operates within the framework of a LOTUS worksheet, and contains algorithms for treating negatively and neutrally buoyant vapors resulting from either continuous or instantaneous releases. This was submitted to us as a new model late in the program, so there was not sufficient time to incorporate ACTOR in our model evaluation software system.

ADAM (Air Force Dispersion Assessment Model): The ADAM model was originally developed for the U.S. Air Force by Raj and Morris (Reference 34) as an improvement to the OB/DG model, which does not account for dense gases or in-plume chemistry and thermodynamic effects. The model was recently modified to include the special chemical properties of HF and liquid fluorine (LF₂). With this change, ADAM can be applied to releases of nitrogen tetroxide (N₂O₄), phosgene (COCl₂), anhydrous ammonia (NH₃), chlorine (Cl₂), sulfur dioxide (SO₂), hydrogen sulfide (H₂S), fluorine (F₂), and hydrogen fluoride (HF). For these chemicals, it includes algorithms for chemical reactions, aerosols, and mixing processes for up to 16 types of releases. It was not included in this demonstration because several chemicals required for the datasets are not among those treated by ADAM, and no simple facility is provided to incorporate "new" chemicals in the database.

ALOHA (Areal Locations of Hazardous Atmospheres): The NOAA (National Oceanic and Atmospheric Administration) ALOHA air model is designed to provide atmospheric dispersion estimates based on the Gaussian equations. Version 4 of the ALOHA air model is equivalent to a simple Gaussian plume model with an averaging time of ten minutes, and does not consider effects of dense gases, chemical reactions, liquid-vapor mixtures, and liquid releases. model is the "air" part of the comprehensive NOAA CAMEO model (Reference 35), and is still under active development. For example, Version 5 has been under development during the past two years, and contains algorithms that approximate the dense gas dispersion model DEGADIS. It is intended for application to hazardous vapors released at ground-level. As implemented on Macintosh machines, ALOHA is straightforward and easy to use. We have not included ALOHA in our evaluation because (1) version 5 is designed to emulate the DEGADIS model, which is included in the evaluation, (2) version 4 is functionally equivalent to the simple Gaussian plume calculation coded as GPM in the evaluation, and (3) both versions are designed for the Macintosh computer environment, and are not compatible with the systems used for the rest of the models. We note that a windows-based DOS version is under development, but is unavailable for this effort.

ARCHIE (Automated Resources for Chemical Hazard Incident Evaluation): ARCHIE was developed for the Federal Emergency Management Agency (FEMA), the U.S. Department of Transportation (DOT), and the U.S. Environmental Protection Agency (EPA), and is described in a handbook that can be obtained from regional FEMA offices (Reference 36). The primary purpose of ARCHIE is to provide emergency preparedness personnel with several integrated estimation methods that may be used to assess the vapor dispersion, fire, and explosion impacts associated with episodic discharges of hazardous materials into the terrestrial (that is, land) environment. The program is also intended to facilitate a better understanding of the nature and sequence of events that may follow an accident and their resulting consequences.

The dispersion model within ARCHIE is essentially the Gaussian plume model for point-source releases, with correction terms for releases of finite-duration. No heat transfer, chemical effects, or dense-gas effects are simulated. We do not include ARCHIE in the evaluation because the Gaussian plume and puff calculations of GPM and INPUFF are representative of this class of dispersion modeling techniques.

CADM (Calm Air Dispersion Model): CADM was developed by and is available from SoftSkills, Inc. Moser (Reference 37) describes it as a generalized program for modeling the spreading and dispersion of dense-gas clouds during calm periods. We have not included CADM in this evaluation because the number of trials in which dense-gas clouds are released during calm or low-wind-speed meteorological conditions is small.

HGSYSTEM (Heavy Gas System): HGSYSTEM is a recently-developed revision to the HEGADAS model, designed especially for modeling releases of hydrogen fluoride (HF). The development of the model, first known as HFSYSTEM, focused on three areas (Reference 38): (1) the modeling of the complex thermodynamics of HF/H₂O/Air mixtures (including aerosol effects on cloud density); (2) the treatment of a wide range of surface roughness conditions (including possible multiple surface roughness conditions); and (3) jet flow and air entrainment for pressurized releases of HF, followed by transition to ground-based dense gas dispersion. First, the HEGADAS model was modified to meet these objectives. The HFPLUME model was developed and tested to simulate jet flows from pressurized releases, dispersing initially as an elevated HF plume. The touchdown and slumping of an initially-elevated dense HF plume were also modeled in HFPLUME, with a link into HEGADAS to complete the modeling of the transition from an elevated to grounded dense gas cloud. Later, a source estimation model, a pool evaporation model, and a far-field Gaussian model (linked to HFPLUME) were added to provide a more complete source and dispersion modeling package.

We have not included HGSYSTEM in this evaluation because the code was not received until late in the study and there was insufficient time to thoroughly test the program and correct the few "bugs" that were found during initial test runs. Furthermore, it was found that the formats of the outputs vary depending upon which of the major modules is used in a simulation, so that significant work still remains in being able to efficiently obtain results from the model when simulating the many trials used in the evaluation.

B. DESCRIPTION OF MODELS EVALUATED

14 models were evaluated—8 of these are publicly-available (AFTOX, Britter & McQuaid, DEGADIS, GPM, HEGADAS, INPUFF, OB/DG, and SLAB), and 6 are proprietary (AIRTOX, CHARM, FOCUS, GASTAR, PHAST, and !RACE). Those termed "publicly-available" can be obtained from published texts, from their developers, or from the EPA for the cost of reproduction. The source-code for these models is distributed along with the user's guides. Those termed "proprietary" are sold by individual companies, which typically provide technical support for the product and reference materials, but do not provide the source-code. Primary references for these 14 models are listed below:

AFTOX (3.1)	Kunkel (Reference 39)
AIRTOX	Heinold et al. (Reference 40),
	Mills (Reference 41)
BM	Britter & McQuaid (Reference 42)
CHARM (6.1)	Eltgroth (Reference 43)
DEGADIS (2.1)	Havens (Reference 44),
	Spicer and Havens (Reference 45)
FOCUS (2.1)	Quest Consultants (Reference 46)
GASTAR (2.22)	CERC (Reference 47)
GPM (Gaussian Plume Model)	Hanna et al. (Reference 48)
HEGADAS (NTIS)	Witlox (Reference 49)
INPUFF (2.3)	Peterson and Lavdas (Reference 50)
OB/DG	Nou (Reference 51)
PHAST (2.01)	Technica (Reference 52)
SLAB (Feb, 1990)	Ermak (Reference 53)
TRACE II	DuPont (Reference 54)

All of the developers of the proprietary models have provided us with copies of the software, with the stipulation that the models be used only for this one project. We have independently applied these proprietary models to the datasets, and have discussed the procedures for doing this with the model developers only when user's guides were unclear or when problems were encountered, much as any purchaser of the models would. Comments on our methods of applying all of the models were solicited from the developers only after the evaluations were completed, and responses were incorporated into revisions to the evaluation only when these were considered major. In this way, we believe that the results of this evaluation are consistent with "routine" use of the models.

1. AFTOX 3.1 (Air Force Toxic Chemical Dispersion Model)

The U.S. Air Force AFTOX model, version 3.1, was developed by Kunkel (Reference 39), and is based on the SPILLS model developed by the Shell Oil Company (Reference 55). AFTOX is intended to be an improvement over the Ocean Breeze/Dry Gulch (OB/DG) dispersion model, which is an empirical regression equation derived more than two decades ago from a series of diffusion experiments conducted by the Air Force at Cape Canaveral, Florida, Vandenberg AFB, California, and in Kansas. The data from over 200 diffusion tests were used to derive the OB/DG equation, and these same data have been used in the development and testing of the AFTOX model.

AFTOX is an interactive Gaussian puff/plume model. AFTOX does not consider dense gas effects, but does treat five different types of releases:

- Continuous gas
- Continuous liquid
- Instantaneous gas
- Instantaneous liquid
- Continuous buoyant gas released from a stack

The model determines whether the release is a gas or liquid based on whether the air temperature is above or below the boiling point temperature of the chemical. Gas releases are assumed to be point sources and liquid releases are assumed to be area sources. For the latter case, the geometry of the area source is assumed to have little affect on concentrations at most distances of interest.

AFTOX uses either one of two methods to determine stability:

- 1) wind speed and solar elevation angle (Reference 56), or
- 2) observed σ_{θ} (Reference 57)

Concentration estimates are adjusted for the effect of averaging time on the degree of lateral meandering. Default values of the concentration averaging time are assumed by the model for quasi-continuous releases. For

release durations equal to or greater than fifteen minutes, the default averaging time is fifteen minutes¹. For shorter releases, the default averaging time is equal to the actual duration of release. The user can override the default averaging times in the range from one to fifteen minutes. For instantaneous releases, the averaging time is one minute and the user does not have the option of choosing other values.

AFTOX does not accept a variable emission rate. For continuous releases, the release duration can be specified as either finite or infinite, and a duration of 10,000 minutes will be assumed internally by AFTOX for the latter case.

Because AFTOX runs only in the interactive mode, repeated runs become very time-consuming, and repeated runs are frequently needed because solutions are given as a function of time. The user must specify the elapsed time after the spill as an input parameter for the diffusion calculation. Multiple AFTOX runs, each one with a different elapsed time, are necessary in order to find the maximum concentration at a fixed distance downwind of the source. A more efficient way to find the maximum concentration at a given location is to run AFTOX using the assumption that the release duration is infinite, and specify a relatively long elapsed time, say 30 minutes. However, such a procedure is appropriate only if the source duration is longer than the averaging time.

The latest version of AFTOX was received in August, 1989. Among other changes, version 3.1 has remedied several problems encountered by Sigma in running version 2.1 and reported to the developer. Changing times and locations of interest is handled properly now, and the model now considers distances of travel greater than 1000 m during unstable meteorological regimes. However, another problem has been identified that affects concentrations calculated within 100 m downwind of an instantaneous release. We found that the time-series of such concentrations shows an abrupt (nearly instantaneous) rise from zero.

A previous version of AFTOX only lets the user specify the concentration averaging time if the release is equal to or greater than one hour duration. For shorter releases, the model assumes a default ten-minute averaging time.

This results in a distorted time-series of calculated concentration. At receptors further downwind, the calculated time-series of concentration agrees with that from a simple Gaussian puff model. Because AFTOX is based on the simple puff model, modeled concentrations near the source are considered suspicious. This apparent problem was reported to the developer, but has not been rectified.

2. AIRTOX

The AIRTOX modeling system was developed and is distributed by ENSR Consulting and Engineering. The system operates within a user-interface developed as a LOTUS 1-2-3 spreadsheet. ENSR provided Sigma with a configuration of AIRTOX that requires the user to specify the "release profile" (the information required to initialize the dispersion model). They point out that a number of auxiliary programs (spreadsheets) are available from ENSR for calculating release characteristics for a wide range of source types. However, because our model evaluation and comparison activities focus on simulating trials in which the characteristics of the release are known, the auxiliary programs are not required.

AIRTOX calculates concentrations of toxic or flammable chemical concentrations downwind of time dependent releases. The chemical releases can take the form of a liquid, gas, or a two-phase combination of liquid and gas. The model user must input the release rate and meteorological conditions as a function of time. For each release scenario, the user must specify whether the release is a "catastrophic" (non-jet) or an "engineered" (jet) release. A catastrophic release would occur in conjunction with a general failure of a containment vessel. Engineering releases would occur through specially designed orifices such as relief valves or rupture disks.

All emissions from a release, including those attributed to a liquid pool, are assumed to occur at ground level. Concentrations due to the directly-released gas, flashed gas, and suspended aerosol are calculated separately from the concentrations due to pool emissions. These component concentrations are later combined by the model in the calculation of the temporal and spatial concentration profiles.

Three different types of dispersion are treated in the AIRTOX model. For jet releases, the growth and dilution of the plume is controlled by the turbulence generated by the difference in velocity between the ambient air and the core of the jet. The effective gravitational acceleration felt by the jet is proportional to the relative density difference between the jet and the ambient air. Either one of two criteria are used to determine the transition of the jet to a buoyancy dominated plume. The first is the criterion that the jet velocity falls to a value equal to the ambient wind speed. The second criterion is that the upward or downward velocity, due solely to buoyancy effects, equals the jet velocity.

When it reaches the ground, whether from a catastrophic or jet release, a heavier-than-air plume will spread in the lateral direction due to gravitational slumping. The height and width of a jet release plume, which falls to the ground, are assumed to be the same. For catastrophic releases, the height is assumed to be equal to one-fourth of the width. The rate of air entrainment is modeled as a function of plume height, atmospheric stability, wind speed and surface roughness. The plume rate of spread in the lateral direction is slowed as more ambient air is entrained into the plume, thereby reducing its density with respect to air. An analytical expression is used to compute the height and width of the slumping plume as a function of downwind distance. When the lateral growth rate of the plume equals that which would occur under passive dispersion, then the concentrations downwind from that point are calculated by use of a conventional Gaussian plume model. The Gaussian model uses the Briggs dispersion coefficients for rural surroundings. The influence of building wakes upon the passive dispersion coefficients is modeled in a fashion similar to that used in the EPA Industrial Source Complex (ISC) model.

Prior to soliciting comments on our modeling approach, interaction between Sigma Research and the developer of AIRTOX was limited to clarifying aspects of the "snap shot" representation of the predicted concentrations. During the review, the developer noted an inappropriate specification of the cloud temperature within the model. This was corrected in the final statistics used in our evaluation, as noted in section III.C.2.

3. Britter & McQuaid Model

The Britter and McQuaid (B&M) model is given as a set of simple equations and nomograms in their Workbook on the Dispersion of Dense Gases (Reference 42). The authors collected the results of many laboratory and field studies of dense gas dispersion, plotted the data in dimensionless form, and drew curves that best fit the data. The model is best suited to instantaneous or continuous ground level area or volume sources of dense gases. Sigma has reduced the nomograms to electronic form to create the model referred to as "BM."

The following parameters are used in the model:

$$Q_{o}$$
 (m³) Initial cloud volume q_{o} (m³/s) Initial plume volume flux q_{o} (m/s) Wind speed at q_{o} = 10 m q_{o} Duration of release q_{o} (kg/m³) Initial gas density q_{o} (kg/m³) Ambient gas density q_{o} = q_{o} (q_{o} q_{o})/ q_{o} Initial buoyancy term q_{o} Characteristic source dimension q_{o} instantaneous release q_{o} q_{o} q_{o} (q_{o})/ q_{o} continuous release

Roughness length, averaging time, and atmospheric stability class are not included in this list because the available data do not show any strong influence of these parameters. It can be stated that the representative averaging time for the continuous plumes in these experiments is about 3 to 10 minutes, the representative roughness length is a few cm (that is, a flat grassy surface), and the representative stability class is about C or D (that is, neutral to slightly unstable).

The following criteria are used to decide whether the release should be considered to be instantaneous or continuous:

 $uT_o/x \ge 2.5 \rightarrow Continuous$ $uT_o/x \le 0.6 \rightarrow Instantaneous$ $0.6 \le uT_o/x \le 2.5 \rightarrow Calculate both ways, take minimum concentration.$

The following criteria are used to decide whether the release is sufficiently dense that dense gas formulas should be used:

$$(g_o'q_o/u^3D_c)^{1/3} \ge 0.15$$
 Continuous $(g_o'Q_o)^{1/2}/uD_i \ge 0.20$ Instantaneous

where $g_0' = g(\rho_0 - \rho_a)/\rho_a$ is the reduced buoyancy parameter, $D_c = (q_0/u)^{1/2}$ is the representative source dimension for the continuous case, and $D_i = Q_0^{-1/3}$ is that for the instantaneous case.

Computer software containing equations for the two nomograms presented in Figures 8 and 9 are then used to estimate the normalized downwind distance (x/D_i for an instantaneous release or x/D_c for a continuous release) that a given normalized concentration (C_m/C_o, where C_m is the maximum concentration in the cloud or plume and C_o is the initial concentration) occurs, as a function of the initial stability parameter ((g_o'Q_o^{1/3})^{1/2}/u for an instantaneous release or (g_o'² q_o)^{1/5}/u for a continuous release).

In order to assure that C_m/C_0 smoothly approaches 1 as x approaches 0.0, we include the following interpolation formulas at small x (that is, for $x \le 30 D_c$ or $x \le 3 D_i$):

$$C_{\rm m}/C_{\rm o} = \frac{306 (x/D_{\rm c})^{-2}}{1 + 306 (x/D_{\rm c})^{-2}}$$
 Continuous (2)

$$C_{\rm m}/C_{\rm o} = \frac{3.24 (x/D_{\rm i})^{-2}}{1 + 3.24 (x/D_{\rm i})^{-2}}$$
 Instantaneous (3)

Figure 8. Correlation for continuous releases from Britter and McQuaid (Reference 42).

Figure 9. Correlation for instantaneous release from Britter and McQuaid (Reference 42).

The B&M method is not really appropriate for the near-source region of jets or for two-phase plumes. However, the authors point out that the jet effect is usually minor at downwind distances beyond about 100 m. Furthermore, they suggest a method for accounting for the effects of a two-phase ammonia cloud. .or example, on page 73 of the Workbook they discuss the cloud initialization procedure for the Potchefstroom ammonia accident. They assume that enough ambient air is mixed into the ammonia plume to completely evaporate the unflashed liquid and that the initial density equals the air-ammonia mixture density at the normal boiling point of ammonia $(T = 240^{\circ} \text{K})$. After calculating this initial density, ρ_{0} , and volume, Q_{0} , they assume that there are no thermodynamic processes acting in the cloud (that is, $T_{\text{cloud}} = T_{0}$) in subsequent calculations. We have used this method for simulating the datasets that involve 2-phase clouds.

We emphasize that the B&M model is included in this analysis as a benchmark screening model. It should not be applied to scenarios outside of its range of derivation. For example, it would be inappropriate for application in urban areas.

4. CHARM 6.1 (Complex and Hazardous Air Release Model)

The CHARM model, developed by the Radian Corporation (Reference 43), is a Gaussian puff model. CHARM treats any release to be a series of puffs, each of which can be described by procedures reviewed below. The following four types of releases are considered by CHARM:

- Continuous liquid
- Continuous gas
- Instantaneous liquid
- Instantaneous gas

If the release is continuous, the user is asked to input the emission duration together with information on whether the emission rate is constant, decreasing linearly, or decreasing exponentially.

CHARM allows the puff characteristics of the source to be calculated from the input release data, or it accepts puff information directly from the user. For continuous or instantaneous liquid releases, CHARM calculates, if required by the user, the rate of emission of mass from the storage container. It then uses the Shell SPILLS (Reference 55) model to calculate the length of time required for the liquid to evaporate into the air, the size of the liquid pool which will form, and ultimately, the puff dimension. No water vapor or air is assumed to be mixed with the puff material during the source term calculation. However, the newly released version 6 does include an entrainment algorithm for jet-releases.

CHARM uses the conventional Pasquill-Gifford dispersion parameters to estimate the widths for elevated puffs (not in contact with the ground) or any puffs not heavier than air. CHARM ultimately reduces to a standard Gaussian model for neutrally buoyant material. On the other hand, CHARM uses the dispersion parameters in the Eidsvik (Reference 58) model to estimate the widths of heavier-than-air puffs on the ground. CHARM allows a variable concentration averaging time, but the effects of wind meandering are not simulated.

The CHARM model is operated by means of a sequence of menus or screens in an interactive process whereby the properties of a series of puffs are determined and meteorological data are entered. Results of the subsequent transport and dispersion calculations are presented in the form of on-screen graphics; centerline concentrations at (or near) specified distances downwind, and crosswind distance to a specific concentration are obtained from the plot of concentration contours on the screen. This process is feasible because a movable "cross-hair" can be invoked to define a position, and the concentration at this position is displayed at the bottom of the screen.

One particular refinement contained in Version 6 of the model has proven essential in applying CHARM to the datasets that include instantaneous releases and monitors placed within 100 m of the point of release. The new version can be implemented with a time-step of 1 second, rather than 1 minute. With a transport speed greater than 1.5 m/s, a puff would pass by all receptors located within 100 m by the end of the first 1-min time-step. With

the resolution afforded by the 1-s time-step, all trials can be modeled with adequate resolution.

Version 6 of CHARM was sent to Sigma Research for use in this study after efforts to apply version 5 to instantaneous release trials proved unsatisfactory. We notified the developer of our problem, and were told of the release of version 6. The first copy of version 6 sent to us would not load properly, and after discussing a problem found in its replacement, one other bug was identified and fixed by the developer. All other interactions with the developer were initiated in response to our request for comments on our methods for applying CHARM in this study. These discussions are summarized in Section III.C.2.

5. DEGADIS 2.1 (DEnse Gas DISpersion Model)

The DEGADIS model was first developed by Havens and Spicer (Reference 59) for the U.S. Coast Guard for application to LNG spills from tankers. It is an adaptation of the Shell HEGADAS model, designed to model the dispersion of dense gas (or aerosol) clouds released at ground-level with zero initial momentum, into an atmospheric boundary layer flow over flat, level terrain. More recently, an algorithm for the dispersion of vertical jets emitted perpendicular to the mean wind (Reference 60) has been included by Havens (Reference 44) as a "front end" to the DEGADIS 2.1 model. Note that this model does not include a "release model", so that the characteristics of the source must be provided by the user.

The DEGADIS model uses the concept of atmospheric take-up rate, or the rate at which source material can be taken up or absorbed by the atmosphere, to determine the possible formation of a so-called secondary source blanket. If the gas release rate does not exceed the potential atmospheric take-up rate, the model assumes that the gas is taken up directly by the atmospheric flow and is dispersed downwind. However, if the gas release rate exceeds the potential atmospheric take-up rate, the model assumes that a denser-than-air secondary source blanket is formed over the primary source. The blanket is represented as a cylindrical gas volume which spreads laterally as a density-driven flow with entrainment from the top of the source blanket by wind shear and air entrainment into the advancing front

edge. The blanket spreads laterally until the atmospheric take-up rate from the top is balanced by the air entrainment rate from the side and, if applicable, by the rate of gas addition from under the blanket. The blanket center is assumed stationary over the source. The atmospheric take-up rate is assumed to increase with increasing friction velocity and decreasing density excess of the gas (relative to the ambient air).

Once the secondary source blanket (if any) stops growing, DEGADIS proceeds to calculate the downwind dispersion. The model treats the dispersion of gas entrained from the secondary vapor cloud as if it were emitted from an area-source. Concentration profiles are assumed to have a horizontally homogeneous central core with Gaussian edges. Once enough air has been entrained to reduce the density of the cloud, entrainment rates (that is, dispersion rates) nearly conform to dispersion rates for passive (neutrally buoyant) clouds. The lateral length scale is consistent with the PG (Reference 61) σ_y -curves, but the vertical scale is not always consistent with the PG σ_z . The formulation for the vertical scale approaches the PG σ_z for neutral conditions in the far-field, and the values for stable conditions are similar to the corresponding PG σ_z values. But the vertical length scale in the far-field does not approach the PG σ_z values during convective conditions.

DEGADIS always requires the user to input the concentration averaging time, regardless of whether the simulation is steady or transient. DEGADIS assumes that the effects of averaging time on observed plume properties arise primarily as a result of horizontal plume meander. Spicer and Havens (Reference 45) state that for a concentration averaging time, t_a , other than 600 seconds, the σ_v contained in the model is scaled by:

$$(t_a/600s)^{0.2}$$
 (4)

The most recent version (2.1) of DEGADIS includes an algorithm for vertical momentum jets, based on the model of Ooms et al. (Reference 60). The "jet model" serves as a front-end for the DEGADIS model, and a "bridge" is used to initialize DEGADIS by means of the output from the jet model. However, we note that DEGADIS will not be invoked if the cloud that results from the jet

model is effectively passive (not dense relative to air). In this case, the jet model calculates concentrations using dispersion rates that match the PG rates for both σ_y and σ_z . Hence, if the complete DEGADIS (2.1) system were to be applied to trials from "tracer" experiments, the jet model would be used exclusively, and the results should be similar to those obtained with a simple Gaussian plume model.

DEGADIS 2.1 is supported through an electronic bulletin board run by the EPA. Several minor updates have been made to the model during the duration of this study, and we have kept our version current. The only interaction with the developer, which was specifically related to applying DEGADIS to the datasets used in this study, was a discussion related to initializing an instantaneous, dense-gas release. The model would not run properly if the height of the cloud were large compared to its radius. In fact, the initial cloud should more closely resemble a "pancake" than a top-hat. No other interactions specifically related to the application of DEGADIS in this study occurred between Sigma Research and the developer prior to our request for comments. Issues raised by the developer at that time are summarized in Section III.C.2.

6. FOCUS 2.1

The FOCUS model is being maintained and distributed by Quest Consultants, Inc., and is descended from the EAHAP model developed by Energy Analysts, Inc. A comprehensive hazards analysis software package, it includes the following release models:

- Instantaneous gas
- Instantaneous liquid
- Regulated gas (constant emission rate with finite duration)
- Regulated liquid (constant emission rate with finite duration)
- Transient gas
- Transient liquid
- Transient two-phase

If any of the above release models produces a liquid flow, a liquid pool vaporization model will be executed before the dispersion models are run.

Release of liquid onto water, soil, concrete, and ice is treated in this pool vaporization model.

FOCUS contains the following four vapor dispersion models to determine the transient (strict steady state dispersion is not considered by FOCUS) behavior of vapor introduced to the atmosphere: (1) Instantaneous lighter-than-air gas dispersion model, where a version of the Gaussian instantaneous area source model is included; (2) Transient heavier-than-air gas dispersion model, where a version of the algorithms used in DEGADIS is included; (3) Transient lighter-than-air gas dispersion model, where a version of the Gaussian transient area source model is included; (4) Momentum jet gas dispersion model, where a version of the Ooms momentum jet gas dispersion model is included, and the jet can have any orientation.

Having an extensive set of release models, FOCUS is designed to be run with only the basic information such as chemical species, release temperature and pressure, meteorological conditions, release rate and orifice size. Other information such as the exact type of release (for example, cryogenic pool spill and horizontal jet), jet speed, and aerosol fraction will all be determined within the model. FOCUS either accepts the release rate specified by the user for a regulated release, or for an unregulated release, calculates the release rate internally according to the geometry of the release. User-specified release rates were always used for this model evaluation exercise.

In addition to the vapor dispersion, FOCUS also has models that perform hazard analyses on explosion and fire radiation. FOCUS is the only model under evaluation that is able to calculate thermodynamic properties of a mixture of many (up to ten) chemical components.

FOCUS requires the user to specify a dispersion coefficient averaging time to account for plume meandering. There is a minimum of 1 minute and a maximum of 600 minutes for the averaging time. Different averaging times for concentration estimates only affect dispersion predictions in the far field, but not in the near field due to the dominating source effect.

FOCUS is designed mainly to be run in the interactive mode. FOCUS can also be run in the batch mode; but this requires a working knowledge of the model. The execution time of FOCUS is comparable to that of DEGADIS. Comprehensive graphics capabilities are also built into the model.

The developer of FOCUS provided a tutorial at Sigma Research in the use of the model. This was especially helpful in developing the procedure used to "automate" the process of applying the model. As stated above, driving the model in batch mode rather than in interactive mode requires a working knowledge of the model. Although this interaction with the developer is different from that associated with other models in this study, we must emphasize that the tutorial was directed towards the mechanics of the modeling system, rather than the specifics for modeling each of the trials in our study.

7. GASTAR 2.22 (GASeous Transport from Accidental Releases)

The GASTAR model, developed jointly by Cambridge Environmental Research Consultants (CERC) of England and EnviroTech Research Ltd. of Canada, is a system of computer programs written in FORTRAN for simulating the dispersion of dense and passive gases released into the atmosphere. The version that Sigma currently has is 2.22. GASTAR covers a wide spectrum of different release scenarios. The following three basic types of releases are considered by GASTAR:

- Isothermal
- Thermal
- Aerosol

and each type of release can be characterized as:

- Instantaneous
- Continuous (finite duration)
- Time-varying

As a result, releases such as cryogenic pool spill, catastrophic release, and two-phase jet can all be treated by the model.

For continuous or time-varying releases, a secondary source blanket forms as a result of the balance between the emission rate and the rate of uptake by the atmosphere. The jet module of GASTAR simulates a jet of arbitrary orientation. The aerosol fraction for an aerosol release is specified by the user, rather than calculated by the model. GASTAR also simulates a release in calm wind conditions.

The basic dispersion algorithm used in GASTAR is similar to that used in HEGADAS and DEGADIS. In brief, the similarity approach is used to reduce the basic equations of motion to a set of ordinary equations. These equations are then further written in a bulk (or box-model) form, and modified to re-introduce the assumed profiles. The horizontal concentration profiles used in the model are a uniform central core with error-function edges. The vertical concentration profiles are in the form of $\exp(-z^{1.5})$ for the passive plumes, and $\exp(-z)$ when the puffs or plumes are dense. Effects of atmospheric turbulence and cloud top entrainment on the dilution of the source cloud are included in the model.

GASTAR has an averaging time option available for plumes to account for meandering. There is a minimum of 20 seconds for the averaging time, consistent with the puff dispersion parameters. The usual 0.2-power law is used by GASTAR to modify the dispersion coefficients according to the averaging time.

GASTAR is highly modular in design. It has a simple I/O structure in that all the input files, interface files between modules, and the output file are very compact. The model runs very fast among the models under evaluation, even for transient releases. It also has built-in comprehensive graphics capabilities. The model can be run in either the batch or the interactive mode.

Several interactions with the developer of GASTAR occurred prior to our request for comments. The version of the model originally sent to us did not yet have a momentum jet algorithm. When first tested, we ran the model for several hypothetical scenarios. The use of a roughness length of 1 m in our scenario caused the model to crash. When the developer was informed of this, a revision was sent to us. Later, the jet module was finished, and the new

version was delivered by the developer. No other substantive interactions with the developer occurred prior to our request for comments.

8. GPM (Gaussian Plume Model)

Any evaluation of modeling techniques can benefit from comparisons with simple, well-known techniques. With this in mind, we have prepared a simple Gaussian plume model. This model follows the general practice explained in many applied air pollution modeling texts, such as Hanna et al. (Reference 48). It is designed for point-source releases with the added flexibility of accepting an initial value for the plume-spread parameters σ_y and σ_z . We use initial values to obtain peak "centerline" concentrations at the source that, when expressed in ppm, do not exceed an initial value for the concentration (most of the time, the initial concentration is one million ppm, which corresponds to a pure gas).

The curves for σ_y and σ_z are similar to the PG values, but are formulated as by Briggs (Reference 62) for open-country sites. No adjustments are made for surface roughness, density, aerosol chemistry, or wind speed measuring height, but an averaging time is included. This is done by multiplying the applicable value of σ_y by $(t/t_0)^{0.2}$, where t is the averaging time (min) and t_0 is equal to 10 min.

9. HEGADAS (NTIS)

HEGADAS, a model developed by Shell U.K., is designed to model the dispersion of a ground-level, area-source dense cloud released with zero initial momentum. The basic model was first described by Colenbrander (Reference 63) and a user's guide for the latest version is written by Witlox (Reference 49). The version obtained for this project (available from NTIS) does not treat aerosols. Heavy gas effects are due to either large molecular weight or low temperature. Heat and water vapor transfer are considered. No "source-modules" are contained in the model, so that all emission information must be provided by the user.

Because HEGADAS is written in ANSI FORTRAN, the program can be transported to other computer environments with ease. The model is run in

batch mode and it permits validation of the input parameters, so that the possibility of user input errors is reduced.

The algorithms in HEGADAS are similar to those in DEGADIS with regard to the area-source formulation, the secondary source blanket, and the dispersion formulation. As in DEGADIS, the lateral dispersion parameter is calculated by:

$$\sigma_{y} = \delta \cdot x^{\beta} \tag{5}$$

where δ and β are functions of the stability class, but these must be specified by the user (tables are provided). Furthermore, according to the user's guide, δ for continuous releases should be scaled based on the averaging time, t_{av} .

$$\delta = \delta_{10\min} (t_{av}/600s)^{0.2} \tag{6}$$

where t is in seconds, and $\delta_{10~min}$ are the tabulated values for an averaging time of ten minutes. In other words, HEGADAS does not accept the averaging time explicitly. Instead, it is the user's responsibility to specify a value of δ for a particular averaging time. The user's guide also tabulates values of $\delta_{\rm T}$, which are applicable to instantaneous releases. It is assumed that

$$\delta_{10\min} = 2 \cdot \delta_{I} \tag{7}$$

for all stability classes. Thus, a lower limit of 18.75s for the averaging time is implied. However, as just stated, HEGADAS does not accept the averaging time explicitly.

The user must also provide the Monin-Obukhov length, L, which is a measure of atmospheric stability. A figure containing the Monin-Obukhov length as a function of surface roughness is provided in the user's guide. However, the practical usefulness of such a figure is limited. Therefore, Sigma has developed the following empirical equations for different stability classes to approximate the curves in the figure:

Class A: $L = -11.43 * z_0^{0.103}$ (both L and z_0 are in meters) Class B: $L = -25.98 * z_0^{0.171}$ Class C: $L = -123.40 * z_0^{0.304}$ Class D: $L = \infty(9999 \text{ is actually input)}$ Class E: $L = 123.40 * z_0^{0.304}$ Class F: $L = 25.98 * z_0^{0.171}$

Finally, HEGADAS should not be applied to instantaneous releases. The developers note that the HEGABOX model would be needed for this class of releases. As a result, we have not applied HEGADAS to trials that involve instantaneous releases. This direction from the developer was obtained after we had requested comments on our approach. No interactions occurred before this.

10. INPUFF 2.3

INPUFF version 2.3 is the current version of EPA's Gaussian puff model that is applicable to multiple sources. The Gaussian puff diffusion equation is used to compute the contribution to the concentration of each puff at each receptor during each time step. Computations in INPUFF can be made for single or multiple point sources at up to 100 receptor locations. In the default mode, the model assumes a homogeneous wind field. However, the user has the option of specifying the wind field for each meteorological period at up to 100 user-defined grid locations. Three dispersion algorithms are utilized within INPUFF for dispersion downwind of the source. These include Pasquill's scheme as discussed by Turner (Reference 61) and a dispersion algorithm discussed by Irwin (Reference 64), which is a synthesis of Draxler's (Reference 65) and Cramer's (Reference 66) ideas. The third dispersion scheme is used for long travel times in which the growth of the puff becomes proportional to the square root of travel time. Optionally the user can incorporate his own subroutines for dispersion and plume rise. Removal is incorporated through deposition and gravitational settling algorithms (Reference 67). A software plotting package is provided to display

concentration versus time for a given receptor and the puff trajectories after each simulation time.

Because INPUFF contains no dense-gas algorithm, its use on this project will highlight the importance of dense-gas effects in the near-field of the release. Farther downwind, the lack of a dense-gas module may not be as important.

11. OB/DG (Ocean Breeze/Dry Gulch)

The Ocean Breeze/Dry Gulch (OB/DG) model (Reference 51) was developed for use in support of rocket fuel handling operations at Cape Canaveral and Vandenberg. Dispersion data were collected at those two sites (Cape Canaveral, Florida = Ocean Breeze; Vandenberg AFB, California = Dry Gulch) and at the Prairie Grass, Kansas, site during the 1950s and 1960s. These data were used to develop a purely empirical correlation known as the OB/DG model:

$$C_p/Q = 0.00211 \text{ x}^{-1.96} \sigma_{\theta}^{-0.506} (\Delta T + 10)^{4.33}$$
 (8)

or
$$C_p/Q = 0.000175 \times x^{-1.95} (\Delta T + 10)^{4.92}$$
 (9)

where the ratio of the concentration to the source strength C_p/Q is in s m^{-3} , the downwind distance x is in m, the standard deviation of wind direction fluctuations σ_θ is in deg, and ΔT is defined as the temperature difference (°F) between the 54 ft. and 6 ft. levels on a tower. Wind speed is absent because it is strongly correlated with ΔT . Equation (2), which is the version used in this evaluation, accounts for the strong correlation between σ_θ and ΔT . Stabilities ranged from neutral to unstable during most of these tests.

12. PHAST 2.01 (Process Hazard Analysis Software Tool)

PHAST is a PC-based model developed by Technica Ltd., who provided Sigma with version 2.01. The system includes modules for calculating the characteristics of a release, and for simulating initial mixing in turbulent jets, dense-cloud dispersion, and passive dispersion.

The release module includes emissions calculations for two-phase flow from an orifice in an infinite reservoir or from a pipe connected to a storage vessel. A flow rate calculated from the initial conditions is held constant in the subsequent analyses until all of the material has been released. The presence of aerosols in vapor released to the atmosphere is explicitly treated. The result of the calculation of droplet size in the cloud tends to produce "small" droplets that tend to remain suspended in the cloud. When liquid released to the atmosphere collects on the ground, PHAST uses a liquid spill model to estimate the vaporization rate.

Dense-gas dispersion is modeled after Cox and Carpenter (Reference 68). Concentrations within the cloud cross-section are uniform. Mixing occurs by means of entrainment across the top of the cloud and entrainment at the edges of the cloud. The former depends on the turbulence of the atmosphere and the Richardson number of the cloud. The latter depends on the rate at which the cloud is spreading due to gravity. This model is used until the rate of spreading by gravity becomes less than that due to passive dispersion, at which point a Gaussian model is used.

The developer of PHAST had been contacted a number of times prior to our request for comments. These earlier interactions centered on specific requests about the formulas used in the model. In particular, more guidance on the definition of the surface roughness parameter was requested, and a request was made for the equations used to model a cloud as if it were released from a virtual line-source. No other interactions occurred before comments on our methods for applying the model were requested.

13. SLAB (February, 1990)

The SLAB model was first developed at Lawrence Livermore National Laboratory (LLNL) for application to data from field experiments at their testing facility. The original SLAB model included only the transient mode and there was minimal documentation. The code has been further improved by Ermak (Reference 53) so that now both transient and steady modes are included.

To date, Sigma has received five versions of SLAB, dated 12/88, 1/89, 2/89, 11/89, and 2/90. A comprehensive user's guide was delivered with the 11/89 version. The latest version includes revisions to the plume rise formulas, the time-averaging formulas, and formulas for calculating maximum concentrations at receptors elevated above the surface. The 1989 version of the SLAB model is designed to consider the following source types:

- Continuous evaporating pool
- Horizontal jet
- Vertical jet
- Instantaneous or short duration evaporating pool

In the case of an evaporating pool release, the source is assumed to be all vapor. However, in the case of jet and instantaneous source releases, the source may be part vapor and part liquid droplets, and the user must specify the initial liquid mass fraction.

Transport and dispersion are calculated by solving the conservation equations of mass, momentum, energy, species, and half-width, with the cloud modeled as either a steady state plume, a transient puff, or a combination of both depending on the the duration of release. In the steady state plume mode, the crosswind-averaged conservation equations are solved, and all variables depend only on the downwind distance. In the transient puff mode, the volume-averaged conservation equations are solved, and all variables depend only on the downwind travel time of the puff center of mass. Time is related to downwind distance by the height-averaged ambient wind speed. The basic conservation equations are solved using the Runge-Kutta numerical integration scheme (in space or time).

The instantaneous ensemble averaged concentration is obtained as a solution to the basic conservation equations. The time-averaged concentration at any given location is then calculated using the instantaneous ensemble averaged concentration, the concentration averaging time, and the assumed profiles in the lateral and vertical directions. Calculation of the time-averaged volume concentration in SLAB includes the effects of lateral cloud meander and the finite length of the spill on the averaged value.

SLAB is not run in the interactive mode. The required input file is easily prepared and many simulations can be run in batch mode. Because SLAB is coded in ANSI FORTRAN, it can be transported to other computer environments with few problems.

In spite of the fact that five versions of SLAB were submitted during the course of this study, interactions with the developer were limited. The versions were not being developed in response to our use of the model in this study.

14. TRACE II

Version II of TRACE uses release and dispersion algorithms similar to those contained in Dupont's SAFER system. It is able to model instantaneous, steady-state, and transient releases of toxic chemicals. Dense, neutrally buoyant, and positively buoyant gas releases may be modeled as well as liquid pool evaporation, liquid release flashing, and aerosol formation. Physical properties for over 100 chemicals are available through a chemical data base that may be expanded by the user.

TRACE computes emission rates and the thermodynamic state of the emission from information on the chemical properties, environmental variables (atmospheric pressure and ambient temperature), tank specifications (length, breadth, height or diameter), rupture geometry (circular, rectangular, smooth or jagged edges) and the containment variables (pressure, temperature). Release scenarios are grouped into three categories:

- 1. Gas flow through a rupture
- 2. Two-phase flow-through rupture
- 3. Liquid flow-through rupture

Depending upon the initial containment variables, the release may undergo a flashing phenomena and TRACE will calculate the fraction of liquid that flashes to vapor, and the resultant temperature of the cloud. The aerosol content of this stream (liquid droplet fraction entrained) depends upon the flashing fraction, the liquid/vapor density ratio, the ratio of heat

transfer between the liquid and vapor phases, the velocity of the stream, and the surface tension. Depending upon the condition during the release, it is possible to have a flash, an aerosol, and a liquid pool fraction.

The initial vapor cloud, in general, consists of a flashed vapor and liquid droplets. An initial air entrainment formulation determines the quantity of air in the cloud.

The model for the liquid stream that forms the pool consists of a system of coupled ordinary differential equations for the pool volume, pool radius, and mass evaporated. The amount of liquid evaporating from a pool is dependent upon the exposure area and the heat balance of the pool. In the case of multicomponent liquid spill, the model treats the spill as an ideal liquid solution. The mass transfer rate equation for evaporation is applied to each component, and the total evaporation rate is obtained by summing all compounds.

For dense gases, the model uses different modules for simulating behavior in the air and on the ground. When the cloud is in the air, the model solves conservation equations for mass, momentum (horizontal and vertical), and energy. On the ground, '' equations additionally include the simulation of gravity slumping and frictional drag/mixing due to surface roughness effects. The motion of the cloud on the ground is determined by the height-averaged wind speed within the cloud. The dense gas model has a transition into a Gaussian phase when the density difference between the cloud and the ambient air is less than a specified ratio and/or the rate of change of cloud dimension is comparable to the rate of change of the crosswind Gaussian dispersion coefficient.

Prior to requesting comments on our use of the model, interactions with the developer were limited to questions about specifying the depth of a liquid pool, and the implementation of averaging time in the model. After requesting comments, the developer made several suggestions, which are discussed in Section III.C.2.

C. APPLICATION OF MODELS TO DATASETS

All 14 models have been "interfaced" with the Modelers' Data Archive (MDA), and 12 have been "automated." The "interface" between a model and the MDA is a program designed to extract information from the MDA file, and to prepare a table of input parameters and data required for each model. These tables would allow an analyst to enter all data in the requested units while executing each of the models. Choices about methods of initialization are made in the program. "Automated" models do not require us to manually enter data from these tables. That is, programs have been developed to construct all necessary input files, so that the automated models can be run in batch mode.

1. MDA Interface

Initial Concentration

Missing data in the MDA files are denoted by the value "-99.9", and may be present because no measurements are available, or because particular data are not relevant to the type of release. The first step in processing the data in the MDA is to replace certain types of missing data with either default or calculated values. These are summarized here.

Ambient Pressure

1.0 atm

Exit Temperature ambient temperature (K) measured nearest the ground

Soil Temperature ambient temperature (K) as above

Normal Boiling Point ambient temperature (K) as above

Relative Humidity 80 percent if over water

50 percent if over wet soil 20 percent if over dry land

1.0E+06 ppm (no dilution)

Bowen Ratio 5 (essentially dry)

M-O Length, u_z, PG Class estimated

The last of the entries above indicate that the Monin-Obukhov length scale (L), the friction velocity (u_*) , and the Pasquill-Gifford stability class may be estimated. L and u_* are normally calculated from a pair of temperature measurements, a wind speed, the surface roughness length (z_0) , and the Bowen ratio. This is accomplished by solving the surface similarity profile

equations, and the calculated values usually replace any that may be reported in the MDA. This is done if values reported in the MDA were derived in a similar way (that is, from profile measurements of wind speed and temperature). A special case is the Thorney Island dataset. As pointed out in Section II, flux measurements were used to calculate the Monin-Obukhov length for these trials, rather than the profile method. Therefore, the interface program does <u>not</u> replace the values reported in the MDA for the Thorney Island trials. If the P-G stability class is missing, this is estimated from Golder's curves, making use of the calculated value of L, and the surface roughness.

If temperature measurements at two elevations near the surface are not available, either the reported values of L and u, are retained, or these are estimated from the reported P-G stability class by making use of Golder's curves once again. This clearly requires that some information on the stability or turbulence regime must be provided in the MDA.

Several consistency checks are also made. Of particular note is a check on whether the diameter of the release is provided. This must be provided for releases characterized as an evaporating pool, or as a horizontal jet. If it is missing for these types of releases, processing of the dataset is halted, and an error message is written to the screen.

In addition to supplying default values and providing estimates of missing data, the MDA interface programs also provide calculated properties of the release. These calculated properties are needed to initialize models that do not have extensive modules for estimating the source-term. The MDA contains primary data obtained from data files and reports for each of the experiments used in this program. However, the application of any one of the models typically forces the modeler to, at a minimum, convert some of the units of measure, or compute a volume flux from mass flux and density information. In some cases, such as the application of a model that does not treat aerosols at all to the Desert Tortoise trials, the user needs to do far more to initialize the model in such a way that aerosol effects are simulated to some degree.

Recognizing that data in the archive are not complete in this sense, the second step in processing the data in the MDA is to calculate a

number of quantities from the information provided in the MDA, which are needed to initialize one or more of the models to be evaluated. These quantities are discussed below.

Wind Speed at 1 and 10 m: Several models assume, either explicitly or implicitly, that the wind speed provided by the user is that measured at a height of 10m above the surface. Other models implicitly require a measure of the transport speed near the surface (which we take to be 1 m above the surface) in order to initialize them properly as discussed later in estimating the diameter of an area source. Many of the datasets include wind speed measured at some other height (u(z)). We have used the wind speed profile from surface similarity theory to calculate the speed at 10m from a knowledge of L, u(z), and z_0 :

$$ws(10) = u(z) \frac{\ln(10/z_0) - \Psi(10/L)}{\ln(z/z_0) - \Psi(z/L)}$$
(10)

The functions Ψ_{m} are quite complex, and are thoroughly described in equations (6) through (9) in Volume III. The wind speed at 1 m is calculated by means of the same equation, with the "10's" replaced with "1's."

The use of the symbol "u" for wind speed on the right-hand side of the equation has a specific purpose. Two wind speeds are entered into the MDA. The first is denoted as "ws", and is the speed measured on the same tower, and for the same averaging time, as the temperature measurements. This speed is used in concert with the temperature measurements to estimate the Monin-Obukhov length scale. The second is denoted as "u", and is the transport speed, which may represent an averaging time longer or shorter than "ws", or even an average of wind speed measurements from several locations. We use "u" rather than "ws" to estimate the wind speed at 1 and 10 m, because these estimates are related to transport. We assume that the Monin-Obukhov length calculated on the basis of "ws" applies to the entire duration and domain of the particular trial.

Boiling Point Temperature at Ambient Pressure: Several of the trials were performed at atmospheric pressures different from "1 atm", so the boiling point temperature is not equal to the normal boiling point

temperature. If the coefficients (A,B) for the vapor pressure equation are provided in the MDA, the actual boiling point temperature is calculated. This calculation uses the same formulation as the SLAB model:

$$T_{bp} = T_{nbp} + \frac{B \ln(P)}{A \left[A - \ln(P)\right]}$$
 (11)

where P is the ambient pressure in atmospheres.

<u>Volumes and Densities</u>: The ambient temperature, the temperature of the material at the point of release, and the boiling point temperature of the material can differ. Depending on the type of release, the properties of the release given to a model may be any one of these. Therefore, several volumes and densities are calculated for each of these temperatures, assuming ideal gas behavior. These include

Molar Volume,

Vapor Density,

Volume Flux, and

Total Volume Released.

<u>Properties of Moist Air</u>: Moisture in the air alters many of its properties. Those that are calculated are the molecular weight and density:

$$P_{\text{sat}} = .00603 \text{ e}^{5417.8(1/273.2 - 1/T)}$$
 (12)

$$r = \frac{RH}{100} \frac{MW(water)}{(-1 + P MW(dry air)/P_{sat})}$$
(13)

$$MW_{a} = \frac{MW(dry air) (1 + r)}{1 + r MW(dry air) / MW(water)}$$
(14)

$$\rho_{\rm a} = MW_{\rm a} / MV ({\rm ambient}) \tag{15}$$

where MW denotes molecular weight, MV denotes molar volume, and RH is the relative humidity in percent.

Treatment of Aerosols: For cryogenic releases, a portion of the liquid that is released flashes to vapor, and the remaining liquid is frequently broken up into fine aerosols which remain suspended in the cloud. The mass fraction that flashes to vapor is calculated from the relation for simple flashing:

$$f = c_{p\ell} (T_s - T_{bp}) / \Lambda$$
 (16)

where T_s is the storage temperature just before the liquid reaches the atmosphere (the exit temperature in the MDA), T_{bp} is the boiling-point temperature, Λ is the latent heat of vaporization, and $c_{p\ell}$ is the specific heat of the liquid. This mass fraction that is in the vapor state allows us to calculate the following properties of the <u>mixture at the boiling-point temperature</u>:

Density,
Effective Molecular Weight,
Volume Flux, and
Total Volume Released.

These properties could be used to initialize a model that does not treat two-phase vapor clouds if we assume that the aerosols evaporate so slowly that the simulation should not consider any heat exchanges due to evaporation. In this case, the cloud of suspended aerosols is treated as if it were a gas with an effective molecular weight that is adjusted so that the proper density is achieved.

A second method for initializing this type of model allows all of the liquid to evaporate, so that none of the aerosols survives. Because this requires heat from the ambient air, a substantial amount of air is mixed into the cloud, which possesses a temperature equal to the boiling-point temperature. This dilution assumption represents the extreme opposite to first method. Rather than never allowing the aerosol to evaporate, which emphasizes the importance of the initial density of the mixture, all of the aerosol is immediately evaporated, with much dilution, which emphasizes the importance of the mixing that takes place during the rapid phase changes.

The following properties are calculated for a <u>diluted vapor cloud at the boiling point temperature</u>:

Density,
Mole Fraction Vapor,
Contaminant Mass Fraction,
Total Volume Released, and
Volume Flux.

Models that are able to simulate the dispersion of a single-phase mixture of air and vapor can use these calculated properties of the diluted source cloud at the boiling-point temperature. Note that the molecular weight for these models is that of the chemical released. Models which cannot accept a diluted source directly must be given an effective molecular weight, as before, but this time the molecular weight is chosen to produce that density at ambient conditions which equals the density of the diluted cloud at the boiling point temperature. Several of the properties of the diluted cloud are computed as follows:

Initial mole fraction of vapor in the cloud (MFV):

MFV =
$$\frac{\text{kg-moles vapor}}{\text{kg-moles air} + \text{kg-moles vapor}} = \left(1 + \frac{\text{kg-moles air}}{\text{kg-moles vapor}}\right)^{-1}$$

$$= \left(1 + \left[\frac{\Lambda}{\text{dE}} \frac{\text{MW}}{\text{MW}_a} (1-f)\right]\right)^{-1}$$

Contaminant mass fraction (CMF):

CMF =
$$\frac{\text{mass contaminant}}{\text{mass contaminant} + \text{mass air}} = \left(1 + \frac{\text{mass air}}{\text{mass aerosol}} (1-f)\right)^{-1}$$
 (18)
= $\left(1 + \frac{\Lambda}{\text{dE}}(1-f)\right)^{-1}$

for
$$dE = c_p(air) \left[T(air) - T_{bp} \right]$$

Density of the cloud:

$$\rho = \frac{\text{MFV MW}_{V} + (1 - \text{MFV}) \text{ MW}_{a}}{\text{MV}_{bp}}$$
 (19)

where $MW_{_{_{\mbox{$V$}}}}$ is the molecular weight of the vapor, $MW_{_{\mbox{$a$}}}$ is the molecular weight of the air, f is the fraction of contaminant that flashes to vapor (initially), Λ is the latent heat of vaporization of the contaminant, and dE is the heat released in cooling the air to the boiling point temperature of the contaminant.

Specifying Source Dimensions: Not all models accept source dimensions that are explicitly provided in the MDA. A good example is DEGADIS, which must characterize a source as a ground-level area source, regardless of whether the source is a rapidly evaporating pool, or a turbulent horizontal jet. Also, the MDA for a cryogenic release may provide information on the physical dimensions of the point at which the material is released to the atmosphere, but the ensuing flashing process largely determines the initial character of the resulting two-phase jet, so that the initial properties of the source must be estimated. The following discussion outlines the assumptions made in estimating the dimension of the release for various types of releases, and for various types of models.

(1) Liquid Release Into an Evaporating Pool (EP)

This release is characterized as an area source in all of the models that require a source-dimension, and the diameter of the pool (either bounded or unbounded) must be provided in the MDA (a missing value indicator is not allowed). Therefore, the MDA values are used without alteration.

(2) Instantaneous Release (IR) of a Gas or a Cryogenic Liquid

This type of release is also characterized as an area source in all of the models that require a source-dimension. If the MDA should contain the diameter of the cloud resulting from the instantaneous release of a gas, as in the Thorney Island trials for example, that diameter is used without

alteration. However, if the diameter is not provided, or if the cloud results from a cryogenic release, the diameter is calculated for a volume shaped as a cylinder in which the radius of the base is equal to the height:

diameter = 2
$$\left(\text{volume }/\pi\right)^{1/3}$$
 (20)

The volume used depends on the temperature of the cloud, and in the case of cryogenic liquids, the method selected for the simulation of aerosol effects.

(3) Extended Release of a Gas as an Area Source (AS)

The diameter of the source region contained in the MDA is used when available. However, if the diameter of the source is missing from the MDA, it is estimated in the following way. The volume flux is known, having been calculated from other information contained in the MDA. When divided by a velocity scale, an area scale is obtained. Taking the transport wind speed at a height of 1 m as the velocity scale, we interpret the resulting scale as the area of the equivalent area source which produces the volume flux. Hence, the diameter of the source is estimated as:

diameter =
$$2\sqrt{\frac{\Omega}{\pi U}}$$
 (21)

where Q is the volume flux for the gas at the exit temperature. Note that the volume flux must contain any air which may be mixed with the gas before reaching the atmosphere.

(4) Extended Release as a Horizontal Jet (Either a Gas or Cryogenic Liquid)

Several of the models included in the evaluation can accept information that describes a jet, while others cannot. Methods used to specify the dimension of the source will first be described for those models that do accept a jet. For gases, the diameter contained in the MDA is used without modification. (Remember that this diameter must be provided in the MDA for sources characterized as horizontal jets.) For cryogenic liquids, the initial diameter of the jet must be consistent with the total volume flux, including the fraction of the liquid that flashes to vapor. Or if all

of the liquid is evaporated by mixing in air, the volume flux must include the air as well. We assume that the speed of the jet is equal to the speed of the liquid at the orifice, and that the cross-sectional area of the jet enlarges to accommodate the change in density. Denote the density of the jet as ρ_{j} , and the density of the liquid as ρ_{j} , then:

jet diameter = orifice diameter
$$\sqrt{\rho_1/\rho_j}$$
 (22)

For models that simulate aerosols, ρ_j equals the density of the vapor/aerosol mixture at the boiling point temperature. It is assumed that the droplets are small enough to remain airborne. For those that do not simulate aerosols, ρ_j would equal either the density of the vapor/aerosol mixture at the boiling point temperature if we assume that the aerosols never evaporate, or ρ_j equals the density of the vapor/air mixture of the diluted jet if we assume that all of the aerosols are evaporated at the source as a result of entraining a sufficient amount of air.

Models that do not accept a jet as a source are initialized as an area source. Equation 21 is described previously. Note that the treatment of aerosols influences the value of the volume flux used in this equation, as does the presence of air.

2. Initializing Individual Models

The final step in processing the data in the MDA is the preparation of files specifically designed for each of the models that are being evaluated. A subset of the MDA "interface" files is presented in Appendix B to illustrate how each model is applied to the different types of releases. As an overview of the procedures employed in initializing the models, the following sections address each model in turn, and summarize procedures for each type of release. This discussion is organized into several categories which cover aspects of specifying chemical properties, meteorological data, treatments of various types of sources, and our approach to extracting results for comparisons with observed data. The final category summarizes major comments received from the developer of each model.

AFTOX

AFTOX does not contain algorithms for simulating dense gas effects, aerosols, or initially dilute mixtures, but it does contain an evaporative emissions algorithm. Initialization procedures in this evaluation are limited to defining the meteorology, and specifying the mass emission rate (or total mass released if the spill is an instantaneous release) and pool area (if the spill is an evaporating liquid).

CHEMICAL DATABASE: A chemical database is contained in the model, primarily to provide information on slowly evaporating pools, and to convert between mass concentrations and volume concentrations. We modified AFTOX so that it always obtains the molecular weight of the vapor-cloud from the input file, rather than making use of the chemical database. This simplifies our evaluation, because the molecular weight is the only property required to model all of the trials, and is only used in converting concentrations from mass units to volume units.

WIND SPEED MEASUREMENT HEIGHT: AFTOX requests both a wind speed and the height at which the speed is measured. These are obtained from the MDA.

AVERAGING TIME ISSUES: Averaging time for the concentrations predicted by the model are supplied by the user, and this is used to approximate the effects of meanders in the flow. However, the minimum averaging time allowed is 60 s. No dosage-type averaging is done.

INITIAL CONCENTRATION: AFTOX dispersion calculations do not consider volumetric aspects of the initial vapor cloud, which can at times lead to near-field concentrations in excess of 1 part-per-part. In the case of source clouds that are diluted with air, we have specified an effective molecular weight for the vapor-air mixture (the model has been changed to allow the user to specify this molecular weight). AFTOX uses this molecular weight to convert from mass concentrations to volume concentrations. Near the source, we have applied an adjustment to all of the concentration predicted by AFTOX to force the results to values that do not exceed 1 part-per-part. The adjustment is given by:

C' = C/(1 + C) (23)

where C' and C are in parts-per-part.

EVAPORATING POOL SOURCES: This type of source is not explicitly contained in the trials used in this evaluation, because AFTOX treats a beiling pool as a gaseous release.

TWO-PHASE JET SOURCES: AFTOX does not treat aerosols or density effects, so the phase of the material release does not matter. The consequences of this neglect of density effects will be seen in the model evaluations with field data in Section IV. Note that AFTOX is basically a point-source model, so that the area of the jet is not needed.

VAPOR-JET SOURCES: This type of source is simply modeled as a point-source.

POSTPROCESSING: Concentrations and sigma-y values can be reported at distances specified by the user, so no further processing is needed to extract these.

ISSUES RAISED IN REVIEW: AFTOX computes a stability class from either σ_θ , or from the wind speed and solar elevation provided by the modeler. We have always provided a value for σ_θ . If σ_θ was not available within the MDA, we calculated a value for σ_θ that would produce the stability class listed in the MDA, or derived from other information in the MDA. This was accomplished by "inverting" the calculation contained in AFTOX. This method assures consistency in the evaluation in that all models that make use of a stability class are using the same value.

AIRTOX

The version of AIRTOX that is being evaluated does not contain a source-model, so that all emission rate, temperature, aerosol fraction, and jet velocity information is calculated from the MDA. The model will

explicitly account for initial dilution, aerosol evaporation, and entrainment for turbulent jets, which simplifies initialization procedures.

CHEMICAL DATABASE: AIRTOX has an extensive chemical database, which contains most of the chemicals used in these trials. Those that are not included are:

- (1) Freon-12 We have changed the molecular weight listed for Freon in the database to 121.39 g/mole, and have left all other properties unchanged.
- (2) Freon+N₂ The Thorney Island trials used a mixture of Freon-12 and Nitrogen as the vapor cloud. We simulate the density of these mixtures by creating a "chemical" for each of the trials. Using Freon as the base for all other properties, we change the molecular weight to reflect the mixture.
- (3) Kr⁸⁵ The Hanford trials used the radioactive properties of Krypton-85 to track the tracer-cloud. We model these trials as if an amount of "dry air" were released, equal in mass emission rate to the radiation rate. Chemical properties of "dry air" were obtained by starting with nitrogen (MW=30), and changing the molecular weight to 29.0. This procedure essentially results in a small amount of gas being released which is nearly equal to the density of the air.
 - (4) LPG LPG is modeled as pure propane.
 - (5) LNG LNG is modeled as pure methane.

Note that the cases in which Freon-12 or a mixture of Freon-12 and Nitrogen was released are isothermal; the temperature of the cloud and air are equal, and heat transfer from the ground is not important. This aspect allowed us to modify the molecular weight without regard for any of the other properties of the gas, because the transport and dispersion processes are not influenced by the thermodynamic calculations.

WIND SPEED MEASUREMENT HEIGHT: The model assumes that wind speeds

are equivalent to those measured at 10 m above the surface. We estimate winds at 10 m if the MDA contains winds measured at some other height.

AVERAGING TIME ISSUES: No averaging times can be specified.

AIRTOX does not adjust for meander effects, and does not produce dosage information, as the output is in terms of concentration "snapshots."

INITIAL CONCENTRATION: A dilution factor can be provided to simulate releases that are diluted, so that any initial concentration can be matched.

EVAPORATING POOL SOURCES: The emission rate, pool area, and pool temperature can be explicitly given to the model. A nominal pool depth of 0.01 m has been assumed for these simulations.

TWO-PHASE JET SOURCES: Aerosols and jets are explicitly treated, so that the properties of the jet calculated from the MDA can be accepted by the model. The only adjustment to the initial condition of the jet is that due to flashing. As described in subsection 3.3, the initial diameter of the jet is estimated from the diameter of the orifice, and the density of the mixture (see Equation 22).

VAPOR-JET SOURCES: Jets are explicitly treated, so that no other initialization procedures are required.

POSTPROCESSING: Concentrations and sigma-y values are reported at distances that are determined within the model. We obtain information at other distances in the following way. The files produced by AIRTOX report information in the form of "snapshote" at fixed intervals in time. We search through the time-history of concentrations at each distance to locate the maximum value at each distance. Concentrations and sigma-y values at the distances listed in the MDA are then found by interpolating linearly between these.

ISSUES RAISED IN REVIEW: Two changes were made to the way in which AIRTOX was applied to the trials.

(1) Releases of boiling liquids onto water had made use of values of thermal diffusivity and conductivity for wet soil, rather than those for water. This was done because no values for water were listed as options in AIRTOX. The developers have suggested, and we have used, the following values for water:

conductivity: 1.41 E-03 kcal/m-s-K

diffusivity: 1.41 E-06 m²/s

(2) The version of AIRTOX used in this study reports concentrations that are converted from mass units to volume units by assuming a cloud temperature equal to the ambient temperature. The actual cloud temperature should have been used, and this change has been implemented in later versions of AIRTOX. We have changed all concentrations from AIRTOX to account for the cloud temperature. The correction factor depends on the initial temperature of the cloud, the ambient temperature, the heat capacities of the cloud and air, and the concentration (mole fraction) originally reported by AIRTOX.

BRITTER & MCQUAID (BM)

BM is a "workbook" model applicable to either continuous or instantaneous releases of vapor clouds that are denser than air. The nomograms that form the basis of the model require only a limited amount of information.

CHEMICAL DATABASE: None.

WIND SPEED MEASUREMENT HEIGHT: The model implicitly assumes that a wind speed measured at 10 m will be provided. We estimate the speed at 10 m if the MDA contains winds measured at some other height.

AVERAGING TIME ISSUES: No averaging time is explicitly incorporated in the procedure.

INITIAL CONCENTRATION: The model requires an initial volume or volume flux, and an initial density, so that any initial concentration can be accomilated.

EVAPORATING POOL SURFACES: These are modeled as a continuous release of vapor; the size of the pool is not needed.

TWO-PHASE JET SOURCES: Aspects of the jet are not included, but aerosols are modeled by mixing enough air into the cloud to evaporate all aerosol.

VAPOR-JET SOURCES: Aspects of the jet are not modeled.

POSTPROCESSING: The model provides the ratio of the concentration at each distance to the initial concentration, so that concentration estimates in ppm are easily calculated without the need for interpolation. No estimate for $\sigma_{_{\rm V}}$ is made.

CHARM

CHARM is operated by means of a sequence of menus or screens in an interactive process whereby the properties of a series of puffs are determined and meteorological data are entered. Because the menu system makes use of the special cursor keys (those without standard ASCII equivalent codes), the model could not be "automated" for use during this project.

CHARM allows the source data to be calculated directly from primary release information (for example, tank pressure, hole size, etc.), or it accepts puff information specified by the user. We have used the "user-specified" release option in order to obtain source-parameters directly comparable to those used in the other models being evaluated. We note that this is Version 6.1 of the model, which has only recently been released. This version allows a minimum resolution of 1 second in simulating releases, rather than the 1 minute used in Version 5, when properly initialized. This is particularly important in obtaining concentrations at receptors near the source, because concentrations are only provided at distances equal to the product of the wind speed and the time-step.

CHEMICAL DATABASE: A chemical database is used by CHARM. As in the application of AIRTOX, most of the chemicals needed for the evaluation are provided. We note the following exceptions:

- (1) Freon+N₂ The Thorney Island trials used a mixture of Freon-12 and Nitrogen as the vapor cloud. We simulate the density of these mixtures by creating a "chemical" for each of the trials. Using Freon as the base for all other properties, we change the molecular weight to reflect the mixture.
- (2) Kr⁸⁵ The Hanford trials used the radioactive properties of Krypton-85 to track the tracer-cloud. We model these trials as if an amount of "dry air" were released, equal in mass emission rate to the radiation rate. The chemical properties of "dry air" were obtained by using the entry for oxygen, and changing the molecular weight to 29.0. This procedure essentially results in a small amount of gas being released which is nearly equal to the density of the air.
 - (3) LPG LPG is modeled as pure propane.
 - (4) LNG LNG is modeled as pure methane.

WIND SPEED MEASUREMENT HEIGHT: CHARM requests both a wind speed and the height at which the speed is measured. These are obtained from the MDA.

AVERAGING TIME ISSUES: We make no allowance for averaging time because meander effects are not explicitly included. CHARM 6.1 does provide average concentrations as an option, but this average is related to the predicted dose--it does not include averaging time effects on the dispersion process.

INITIAL CONCENTRATION: The initial fraction of air contained in the vapor cloud is specified by the user, so that any initial concentration can be modeled.

SOURCES: When operated in the "user-specified" mode, there is no difference in the types of data needed to initialize the different types of sources. For each type, CHARM needs characteristics to define each puff, including temperature, diameter, initial horizontal and vertical velocity, molar air fraction, and aerosol fraction.

POSTPROCESSING: No postprocessing is done in applying CHARM, because the concentration data are obtained "manually" by means of the screen options. Typically, a cursor is placed at the required distance, and time series of concentrations is generated for that distance. The peak value is read from the display. No information on the lateral scale of the cloud has been obtained. Note that all concentrations were estimated for receptors placed on the ground.

ISSUES RAISED IN REVIEW:

- (1) The application procedure for the Thorney Island trials was questioned, because rather than modifying the molecular weight of "Freon-12" to represent the mixture of Freon-12 and nitrogen, the nitrogen could have been treated as "air." That is, the release could have been considered a diluted release, and the simulated concentrations of Freon could have been adjusted later to represent the original cloud (Freon + "air"). This me had would be preferred if heat transfer were important. However, we have demonstrated that the methods are equivalent in this application to the Thorney Island trials.
- (2) The Hanford trials were originally modeled as if carbon monoxide (MW=28) were the gas released. Although CO is only slightly less dense than air, this cloud was predicted to rise. After this problem was diagnosed by the developer, we modeled the Hanford trials with all models by using gases with molecular weight set equal to 29.0. The developer also pointed out the inherent problem of using a surrogate gas for the tracer-releases that cannot preserve the actual volumetric aspects of the release (see the discussion of the Hanford dataset in Section II).
- (3) The size of the discharge orifice used during the Goldfish trials was questioned by the developer. Previous CHARM simulations of these

trials had used a larger value, which resulted in a flow speed of 1 to 3 m/s at the point of release, rather than a flow speed of about 20 m/s. However, the size of the orifice contained in our MDA is the reported value. The developer also suggested that the size of the jet be set equal to the size of the orifice, without allowing for the volume of the liquid that flashes to vapor. This latter suggestion is not consistent with methods used to initialize other models, and was not adopted for this study.

DEGADIS

Although DEGADIS 2.1 contains the Ooms jet model (JETPLUME) for vertical jets, none of the trials in this evaluation involve vertical jets. But because the two passive gas continuous source experiments (Prairie Grass and Hanford) involved releases of small volumes of tracer material from a horizontally-oriented orifice, it was possible to simulate them as vertically-oriented jets with insignificant change in the initial jet elevation. Consequently these two experiments were modeled with JETPLUME. The initializations of all other experiments were made compatible with the basic area source formulation of the dispersion model.

CHEMICAL DATABASE: Properties of a few chemicals are contained in the code, but allowance is made for modifying any of these properties when setting up individual runs. Therefore, no "database" information was relied upon in this series of evaluations.

WIND SPEED MEASUREMENT HEIGHT: DEGADIS requests both a wind speed and the height at which the speed is measured. These are obtained from the MDA.

AVERAGING TIME ISSUES: An adjustment for averaging time is made to the rate of growth of the "tails" of the lateral distribution of concentrations. The lower limit allowed varies by stability class, with the minimum value equal to approximately 18 s. No mechanism is provided to perform dosage calculations, even for the transient version of the model. Time-series of predicted concentrations could be averaged in this way, but this would require the development of additional code.

INITIAL CONCENTRATION: A chemical mass fraction can be specified by the user, so that any initial concentration can be simulated at the source.

EVAPORATING POOL SOURCES: The LNG and LPG trials involve rapidly boiling pools. These are readily simulated as an area source, with the cloud temperature and pool area specified from the MDA.

TWO-PHASE JET SOURCES: Aerosols are not treated explicitly in the model. When using the isothermal source option, a series of data describing the concentration-density relationship is supplied by the user, and this can simulate density effects resulting from evaporation of the aerosols. In these evaluations, we have used a simple form of this relationship: a series of points describing the density of the vapor-aerosol-air mixture and the mass concentration of the vapor-aerosol in the cloud (as a function of the mole fraction of vapor-aerosol in the cloud) obtained by assuming complete adiabatic mixing. That is, the heat released by cooling the air (which is entrained) to the boiling-point temperature of the vapor is used to evaporate a portion of the aerosol. Once sufficient air is entrained to evaporate all of the aerosol, additional air raises the temperature of the cloud of vapor and air. This is what a user would be able to do without access to supplementary aerosol calculations.

VAPOR-JET SOURCES: Being an area source formulation, jets must be represented as an "equivalent" area source. The approach is described in Section III.C.1.

POSTPROCESSING: Concentrations are obtained at the distances specified in the MDA by interpolating linearly between those concentrations listed in the output files. Widths are calculated from interpolated values of "half width" and "Sy", which describe the lateral distribution of concentrations. The width, measured as " σ_y ", is equivalent to the distance from the center of the cloud to the point at which the concentration drops to EXP(-0.5) times the concentration at the center of the cloud.

ISSUES RAISED IN REVIEW:

- (1) The developers noted initially that the area-source part of DEGADIS should <u>not</u> be applied to passive tracer releases. Consequently, we modified our test procedures and applied JETPLUME to those experiments.
- (2) We had originally treated aerosols by providing DEGADIS with initial conditions in which all aerosol had been evaporated by the entrainment of a sufficient amount of air. The developers recommended that the fuller treatment of the evaporation process be used. Because the adiabatic mixing relationships are readily implemented, we did change our method for treating aerosols. This method was described above.

FOCUS

FOCUS is operated by means of a sequence of menus or screens in an interactive process whereby the material properties, and characteristics of the weather, release, and terrain are entered. FOCUS can be run either in batch mode or in interactive mode once the input file is created. Our approach is to create one template input file for each of the datasets by running the input module of FOCUS. The MDA then creates the input file for each trial by updating the meteorological and release conditions in the corresponding template input file, so that all FOCUS runs can be run in batch mode. We note that because the Thorney Island trials use mixtures of Freon-12 and nitrogen, which affects the thermodynamic calculations of the input module, all input files for the Thorney Island dataset were created manually.

FOCUS allows the source data to be calculated directly from primary release information (for example, vessel volume, hole size, pipe length, etc.) or it accepts regulated release information specified by the user. We have used the regulated release option in order to obtain source-parameters directly comparable to those used in the other models being evaluated. FOCUS contains algorithms to treat aerosols, turbulent entrainment for jets, and evaporating pools. FOCUS has a dispersion algorithm similar to those of DEGADIS.

CHEMICAL DATABASE: A chemical database is used by FOCUS. All of the chemicals needed for the evaluation are provided. FOCUS is the only model in this study that deals with multi-component releases explicitly, like the Thorney Island trials. The model calculates the thermodynamic properties of the mixture internally. We note the following exceptions:

- (1) Kr⁸⁵ The Hanford trials used the radioactive properties of Krypton-85 to track the tracer-cloud. We model these trials as if an amount of Carbon Monoxide were released, equal in mass emission rate to the radiation rate. CO, with a molecular weight of 28, is slightly less dense than air. Because we cannot alter the chemical properties in the database, we decided to use a gas slightly less dense than air rather than a gas that is slightly heavier than air.
- (2) LPG LPG is modeled as pure propane, since its mole fraction is very close to unity.
- (3) LNG LNG is modeled as pure methane, since its mole fraction is very close to unity.

WIND SPEED MEASUREMENT HEIGHT: FOCUS assumes that the wind speeds are measured at 10 m. We estimate winds at 10 m if the MDA contains winds measured at some other height.

AVERAGING TIME ISSUES: Averaging time for the dispersion coefficients is specified by the user. No dosage-type averaging is done.

INITIAL CONCENTRATION: The initial fraction of air contained in the vapor cloud can be specified as additional components of the mixture being released, so that any initial concentration can be modeled.

SOURCES: The user can either specify the release as an unregulated release, where emission rate is calculated internally based on primary release information (for example, vessel volume, hole size, pipe length, etc.), or specify the release as a regulated release, where emission rate is input by the user. Other parameters such as aerosol fraction and jet velocity are all calculated internally by FOCUS.

SURFACE ROUGHNESS: FOCUS is one of only two models in this evaluation study (the other is AFTOX) that allows the user to specify the surface roughness both at the spill point and the surrounding area. Due to the uniform sites for our datasets, we use the same roughness for both.

GASTAR

GASTAR mainly is operated by means of a sequence of menus or screens in an interactive process whereby the material properties, and characteristics of the weather and release are entered. However, because of the simple I/O structure, GASTAR can also be easily run in batch mode.

GASTAR contains algorithms to treat aerosols, turbulent entrainment for jets, and evaporating pools. GASTAR has a dispersion algorithm similar in concept to those of HEGADAS and DEGADIS.

CHEMICAL DATABASE: GASTAR includes an extensive chemical database. Most of the chemicals included in this evaluation can be drawn directly from the database, but there are several exceptions:

- (1) Freon+N₂ The Thorney Island trials used a mixture of Freon-12 and Nitrogen as the vapor cloud. We simulate the density of these mixtures by creating a "chemical" for each of the trials. Using Freon as the base for all other properties, we change the molecular weight to reflect the mixture.
- (2) KR⁸⁵ The Hanford trials used the radioactive properties of Krypton-85 to track the tracer-cloud. We model these trials as if an amount of "dry air" were released, equal in mass emission rate to the radiation rate. One of the gases in the database is dry air, so modifications were not needed. This procedure essentially results in a small amount of gas being released which is nearly equal to the density of air.

- (3) LPG LPG is modeled as pure propane.
- (4) LNG LNG is modeled as pure methane.

WIND SPEED MEASUREMENT HEIGHT: The model assumes that the wind speeds are equivalent to those measured at 10 m above the surface. We estimate winds at 10 m if the MDA contains winds measured at some other height.

AVERAGING TIME ISSUES: Averaging times for the dispersion coefficients is specified by values in the MDA. No dosage-type averaging is done.

INITIAL CONCENTRATION: A dilution factor can be provided to simulate releases that are diluted, so that any initial concentration can be matched.

EVAPORATING POOL SOURCES: The emission rate, pool radius, and pool temperature can be explicitly given to the model.

TWO-PHASE JET SOURCES: Aerosols and jets are explicitly treated, so that the properties of the jet calculated from the MDA can be accepted by the model. The only adjustment to the initial condition of the jet is that due to flashing. As described in Section III.C.1, the initial diameter of the jet is estimated from the diameter of the orifice, and the density of the mixture.

VAPOR-JET SOURCES: Jets are explicitly treated, so that no other initialization procedures are required.

POSTPROCESSING: Concentrations and width parameters (from which sigma-y values can be derived) are reported at distances that are determined within the model. Concentrations and sigma-y values at the distances listed in the MDA are then found by interpolating linearly between these.

GAUSSIAN PLUME MODEL/INPUFF

These models are applied in this evaluation as point source models, and contain no algorithms to simulate aerosols or density effects.

CHEMICAL DATABASE: There is no chemical database.

WIND SPEED MEASUREMENT HEIGHT: No measurement height is required, as these models assume that a wind speed representative of the transport speed is supplied. We have used the "reported" wind speed from the MDA, regardless of the height at which it was measured. Note that this is seldom equal to the wind speed estimated at 10 m for these trials.

AVERAGING TIME ISSUES: The steady-state GPM does include an adjustment to the lateral spreading parameter which is meant to incorporate meander effects on mean concentration distributions. INPUFF does not. The lower limit allowed for this adjustment is 20 s.

INITIAL CONCENTRATION: The initial concentration produced by these models is controlled by the initial size of the plume or puff. Initial values of sigma-y and sigma-z are calculated to produce a peak mass concentration at x=0 which is equal to the density of the cloud at the source. This automatically provides the proper specification of the volume concentration at the source.

EVAPORATING POOL SOURCES: These are treated as sources of pure vapor emanating from a point.

TWO-PHASE JET SOURCES: Because aerosols are not treated by these models, we have initialized these sources by including enough air to evaporate all of the aerosols, as described in subsection 3.3. Aspects related to the jets themselves are ignored.

VAPOR-JET SOURCES: Aspects related to the jets are ignored. These sources are modeled as simple point sources.

POSTPROCESSING: Concentrations are provided in the output at the distances specified in the MDA. Widths (sigma-y) are also provided by GPM at these distances, but no information on the width is provided in the output from INPUFF.

ISSUES RAISED IN REVIEW: Three options are provided in INPUFF for specifying the puff coefficients σ_y and σ_z . We used the option that invokes the PG values of σ_y and σ_z that are typically employed in plume-models. This was done to be as consistent as possible with the GPM calculations, so that together, GPM and INPUFF represent a well-known benchmark against which the performance of other models may be compared.

HEGADAS (NTIS)

This version of HEGADAS is very similar in operation to DEGADIS. The basic formulation is that of an area source from which a dense gas emanates.

CHEMICAL DATABASE: No chemical database is incorporated in HEGADAS.

WIND SPEED MEASUREMENT HEIGHT: The height at which the wind is measured is a required input to the model, and is provided by the MDA.

AVERAGING TIME ISSUES: Averaging time is included by altering the parameters that determine the growth rate of the lateral tails of the horizontal distribution. The approach is equivalent to that contained in DEGADIS, except that the user must specify the parameters rather than the averaging time.

INITIAL CONCENTRATION: There is no provision for an initial concentration other than that of a pure gas. We must use an effective molecular weight for the air/chemical mixture in those trials that require an initially dilute cloud, and adjust predicted concentrations to reflect the concentration of the chemical in air. Isothermal conditions are imposed.

EVAPORATING POOL SOURCES: The rapidly boiling pools of LNG and LPG are treated as area sources, as in DEGADIS.

TWO-PHASE JET SOURCES: The inability to accept a diluted vapor cloud results in the need to use the "pseudo-gas" approach described in Section III.C.1. Aerosols are evaporated by adding air to the source, but the resultant "chemical" is characterized by a molecular weight that depends on the mixture of gas and air at the boiling point temperature of the gas. At the suggestion of the developers of HEGADAS, we employ a non-isothermal simulation for the dispersion of this "pseudo-gas." The initial temperature of the cloud is the boiling-point temperature, and the heat capacity is the mole-fraction-weighted mean of that for the vapor, and that for air.

VAPOR-JET SOURCES: The initialization described in Section III.C.1 that allows a jet to be characterized as an area source is followed in the application of HEGADAS. However, a lower limit to the size of the area source (8 m square) was imposed in order to obtain results at distances contained in the sampler arrays. The model provides concentration estimates at internally determined distances, which are based on the scale of the area source. We had explored the sensitivity of the predictions to changes in the size of the area source, and found that to be small for those trials in which the limit-values were required.

POSTPROCESSING: Concentrations are obtained at the distances specified in the MDA by interpolating linearly between those concentrations listed in the output files. Widths are calculated from interpolated values of "MIDP" and "Sy", which describe the lateral distribution of concentrations. Note that the definition of "Sy" in HEGADAS differs by a constant factor from the definition used in DEGADIS.

ISSUES RAISED IN REVIEW: In addition to the suggestion that the non-isothermal option be used in simulating aerosols, the following were raised:

(1) The surface transfer parameter for dispersion over water should be set to 4, not 3. We have reset this parameter to 4 for the Burro, Coyote, and Maplin Sands trials.

(2) The linear interpolation used to obtain concentrations at points between those provided by the mcdel can lead to significant underestimates of the predicted concentrations close to the source. The parameter XSTEP controls the spacing of points provided by HEGADAS. We revised the algorithm used to specify XSTEP (it depends on the length of the area-source) so that an absolute step-size of 5 m is always obtained. This minimized interpolation errors.

SLAB

SLAB explicitly allows the user to model horizontal jets, with or without aerosols, as well as evaporating pools. Therefore, much of the data contained in the MDA can go directly into the model.

CHEMICAL DATABASE: There is no chemical database. Chemical properties required by the model are listed for 14 substances in the users guide. We note that the following chemicals are not contained in the table, and must be constructed from outside sources of information:

- (1) Freon+N₂ The Thorney Island trials used a mixture of Freon-12 and Nitrogen as the vapor cloud. We simulate the density of these mixtures by taking properties of Freon as the base for all other properties, and we change the molecular weight to reflect the mixture. Isothermal conditions must be assumed, and are appropriate for these trials.
- (2) Kr⁸⁵ The Hanford trials used the radioactive properties of Krypton-85 to track the tracer-cloud. We model these trials as if a small amount of "dry air" (with molecular weight equal to 29 g/mole) were released, equal in mass emission rate to the radiation rate. This procedure essentially results in a small amount of gas being released which is nearly equal to the density of the air.
 - (3) LPG LPG is modeled as pure propane.
 - (4) LNG LNG is modeled as pure methane.

WIND SPEED MEASUREMENT HEIGHT: The height at which the wind is measured is a required input to the model, and is provided by the MDA.

AVERAGING TIME ISSUES: SLAB explicitly accounts for meandering effects and time-averaging of concentrations (such as for dose calculations) for the period specified by the user. None of the other models in this evaluation do both.

INITIAL CONCENTRATION: The model assumes that the material released is pure, being undiluted.

EVAPORATING POOL SOURCES: The emission rate, size of the pool, and temperature of the pool are explicitly accepted as input.

TWO-PHASE JET SOURCES: SLAB includes algorithms for the treatment of evaporation of aerosols, and entrainment due to turbulent jets. This type of source is characterized by the liquid mass fraction, temperature, and cross-sectional area of the jet. This area includes the fraction of the material that flashes to vapor, as discussed in Section III.C.1 (Equation 22). The velocity of the jet is determined internally by conservation of mass.

VAPOR-JET SOURCES: These sources are specified in the same way as the two-phase jets, except that the liquid mass fraction is zero, and the area of the release is simply the area of the orifice through which the gas is emitted.

POSTPROCESSING: Concentrations are obtained at the distances specified in the MDA by interpolating linearly between values contained in the output files. Linear interpolation is also used to estimate the lateral distance between the center of the distribution and the point at which the concentration equals C_0^* EXP(-0.5), which is our operational definition of sigma-y.

TRACE

TRACE contains algorithms to treat aerosols, and allows for sources that are initially diluted with air, but does not contain a turbulent entrainment algorithm for jets.

CHEMICAL DATABASE: TRACE includes an extensive chemical database. Most of the chemicals included in this evaluation can be drawn directly from the database, but there are several exceptions:

- (1) Freon+N₂ The Thorney Island trials used a mixture of Freon-12 and Nitrogen as the vapor cloud. We simulate the density of these mixtures by creating a "chemical" for each of the trials. Using Freon as the base for all other properties, we change the molecular weight to reflect the mixture.
- (2) Kr⁸⁵ The Hanford trials used the radioactive properties of Krypton-85 to track the tracer-cloud. We model these trials as if an amount of "dry air" were released, equal in mass emission rate to the radiation rate. The chemical properties of "dry air" are obtained by modifying the file for nitrogen. We change the molecular weight to 29.0. This procedure essentially results in a small amount of gas being released which is nearly equal to the density of the air.
 - (3) LPG LPG is modeled as pure propane.
 - (4) LNG is modeled as pure methane.

WIND SPEED MEASUREMENT HEIGHT: The height at which the wind is measured is a required input to the model, and is provided by the MDA.

AVERAGING TIME ISSUES: Averaging time is an input to the model, and is used to simulate the effects of meander for "longer" averaging times. However, the formulation produces insignificant adjustments to the predicted concentrations if the averaging time is less than 900 s, which is the case for most of the trials included in this evaluation.

INITIAL CONCENTRATION: The initial concentration is specified as an air/chemical mole ratio.

EVAPORATING POOL SOURCES: Evaporation from pools is characterized by the initial pool radius, pool temperature, and flow rate into the pool. These quantities are obtained from the MDA. In addition, a minimum pool depth, and an albedo is required, and we have used default values of 0.01 m for the minimum depth, and an albedo of 0.15. The emission rate for the vapor is calculated within the model.

TWO-PHASE JET SOURCES: The amount of liquid that flashes to vapor is computed by TRACE, but the amount of liquid that remains suspended as aerosol in the jet (rather than deposited on the ground) can be specified by the user in the form of an "aerosol/flash" mass ratio. The mass ratio chosen in this evaluation is 10000., which is large enough to force all of the liquid to remain in the cloud. A second option allows the user to specify how much air is entrained as some portion of the aerosol is evaporated. We have followed the recommendations contained in the manual, and selected the default mode for this option. This default mode mixes in sufficient air to evaporate all of the aerosol, but unlike the method described in Section III. C.1, the thermodynamic calculations allow the cloud to become supercooled. As a result, less air is required, and the resulting mixture is denser due to the lower temperature, and the smaller fraction of air.

VAPOR-JET SOURCES: No entrainment calculations are performed for turbulent jets, so this type of source is simply initialized as a release of gas from an area derived from the diameter of the release reported in the MDA.

POSTPROCESSING: Concentrations are predicted at up to 4 distances provided by the user. Therefore, trials that involved more than 4 distances were simulated several times in order to avoid the use of interpolations based on only 4 points. No information compatible with sigma-y is provided in the output from the model.

ISSUES RAISED IN REVIEW: The developers of TRACE suggested that linear interpolation not be used in obtaining concentrations at specific

distances. As a result, no interpolation was used, as noted above. A suggestion was also made that we perform off-centerline calculations for comparisons with the Thorney Island trials. We retain the centerline calculations because a clear trajectory for the observed cloud is not well-defined and we wish to apply all of the models in a similar way.

OB/DG

This regression formula requires distance, and Δt over a specified height interval. It provides concentration in mass units, divided by the emission rate. Therefore, to perform the OB/DG calculation, we obtain two temperatures and the heights at which they were measured, and the distance to each monitor from the MDA. Concentrations are converted to ppm (volume) by means of the emission rate, molar volume, and the molecular weight of the gas. Finally, we avoid predicting concentrations in excess of 1 part-per part by using the adjustment formula discussed for AFTOX. No estimates of σ_y can be obtained from OB/DG.

PHAST

PHAST requires a release scenario, rather than specific information on the rate of release, aerosol fraction, source-induced entrainment, etc. For example, liquids may be released from some sort of container, through a hole or release valve, and the user must specify the storage conditions and the size of the hole. With this type of information, PHAST calculates the properties of the release, including the emission rate. Because our aim is to reproduce controlled experiments in which the properties of the release are fairly well known, we must "engineer" the description of the release in order to obtain the stated properties of the release. This generally requires some iteration in which tank pressure or hole size is varied. As a result, the input data listed on the top portion of each page in Appendix B are not those actually used in reproducing the stated emission rates.

CHEMICAL DATABASE: PHAST has an extensive chemical database, which contains most of the chemicals used in these trials. Those that are not included are:

- (1) Freon+N₂ The Thorney Island trials used a mixture of Freon-12 and Nitrogen as the vapor cloud. We simulate the density of these mixtures by creating a "chemical" for each of the trials. Using Freon as the base for all other properties, we change the molecular weight to reflect the mixture.
- (2) Kr The Hanford trials used the radioactive properties of Krypton-85 to track the tracer-cloud. We model these trials as if an amount of "dry air" were released, equal in mass emission rate to the radiation rate. Chemical properties for the "dry air" are specified by taking the property-file for NO (MW=30), and changing the molecular weight to 29.0. This procedure essentially results in a small amount of gas begin released which is nearly equal to the density of the air.
 - (3) LPG LPG is modeled as pure propane.
 - (4) LNG is modeled as pure methane.

Note that the cases in which Freon-12 or a mixture of Freon-12 and Nitrogen were release are isothermal; the temperature of the cloud and air are equal, and heat transfer from the ground is not important. This aspect allowed us to modify the molecular weight without regard for any of the other properties of the gas, because the transport and dispersion processes are not influenced by the thermodynamic calculations.

WIND SPEED MEASUREMENT HEIGHT: The model assumes that wind speeds are equivalent to those measured at 10 m above the surface. We estimate winds at 10 m if the MDA contains winds measured at some other height. A related parameter is the Surface Roughness Parameter (SRP), which depends on the roughness length (z_0) , and the height at which the wind speed is assumed to be measured (10 m). The SRP is defined as SRP = 0.4/ln(10/z_0).

AVERAGING TIME ISSUES: No averaging times can be specified.

EVAPORATING POOL SOURCES: The emission rate, pool area, and pool temperature are provided in the MDA, but PHAST generally performs its own evaporation calculations, so it does not use these data. We found that the

evaporation rate and the size of the pool determined by PHAST results in a net emission rate that is less than that given to all of the other models. To circumvent this situation, the developer of PHAST indicated that something like a "user-specified" mode of release can be obtained by altering the chemical property database. If a chemical is listed as a "reactive liquid", PHAST allows the modeler to specify the area of the source, and the emission rate. We implemented this approach for all LNG and LPG spills.

TWO-PHASE JET SOURCES: Aerosols and jets are explicitly treated, so that the properties of the two-phase jet are calculated within PHAST on the basis of the storage conditions and exit circumstances. We use the liquid leak from a Padded Liquid Vessel scenario in which the temperature and pressure are obtained from the MDA, and the hole size is varied until the stated emission rate is obtained. Note that the chemical properties of HF (for the Goldfish trials) differ from those assumed in the MDA, and as a result, the fraction flashed is on the order of 1.5 percent, rather than the 15 percent used to initialize other models in this evaluation program.

VAPOR-JET SOURCES: Jets are explicitly treated, so the only initialization procedure required is specifying the release scenario. We use the Pressurized Gas Vessel scenario in which the vapor escapes from a hole in a short (1 m long) line or, for the Prairie Grass trials, from a hole in the vessel. The diameter of the hole is taken from the MDA, and the pressure is varied in order to obtain the stated emission rate.

POSTPROCESSING: Concentrations are reported at three fixed distances as well as at an extensive list of other distances that are determined within the model. These are tabulated manually. Measures related to σ_y are also listed at these distances. Recall that σ_y is defined as the lateral distance from the center of the cloud to the point at which the concentration equals EXP(-0.5) times the concentration at the center. A box model is used to simulate the initial development of the cloud when the material is denser than air. This produces an estimate of the mean concentration in the cloud, and its "radius." Because the box model employs a "top-hat" profile for the lateral distribution of concentration in the cloud, the distance from the center of the cloud to the point at which the concentration "equals" EXP(-0.5) times the concentration at the center of the

cloud, is equal to the reported "radius." Therefore, we use the reported "radius" as our measure of σ_y . Once a transition to "passive" dispersion is signaled in the model, a virtual line-source formulation is matched to the cloud and the lateral distribution of concentration is characterized in terms of the half-width of the virtual line-source, L, and a lateral "dispersion coefficient", S_y . From the equations describing a line-source, the condition that is given by:

$$EXP(-0.5) = \left\{ ERF \left(\frac{L - \sigma_y}{\sqrt{2} S_y} \right) + ERF \left(\frac{L + \sigma_y}{\sqrt{2} S_y} \right) \right\} / 2 ERF \left(\frac{L}{\sqrt{2} S_y} \right)$$
 (24)

where ERF is the error function. This implicit equation for σ_y as a function of L and S for a line-source is solved using an iterative method.

ISSUES RAISED IN REVIEW: The central issue raised by the developer was the use of the "reactive liquid" specification that allowed us to model the evaporating pools of LNG and LPG in a manner consistent with the other models. Also noted, was a difference between version 2.01 used here, and the current version—the new version accounts for upwind spread of the cloud during the slumping phase, which results in larger concentrations. This effect would be most noticeable for the Thorney Island trials.

D. SUMMARY OF MODELS

The models evaluated here have considerable variation in their capabilities and input requirements. Some models simulate all aspects of a complex release typified by the Desert Tortoise and Goldfish experiments, including aerosols, entrainment processes associated with momentum jets, variable averaging times, detailed meteorological data, and site roughness. Others contain no modules that explicitly simulate aerosols, or dense-gas effects for that matter. These attributes are summarized here in order to highlight differences among the models which influence how each is applied to the various datasets. In Section II.E, we summarized significant attributes of the datasets included in this evaluation. Table 10 summarizes the ability of each of the models to account for these and other attributes.

Table 10

that the Model does not Account for Variations in that Attribute. A Number indicates the Value Assumed by the Model. An Asterisk Attributes of Models. A Check (4) Indicates that the Model Accounts fro Variation in that Attributes. A Double Dash Indicates Indicates that we Accounted for this Attribute in our Model Initialization Assumptions.

	AFTOX	AIRTOX	蓋	CHARM	DEGADIS	FOCUS	GASTAR	H d5	HEGADAS	INPUFF	90/90	PHAST	SLAB	TRACE
Type of Release: Neutral Dense 2-phase	>::	***	; > *	>>>	>> 1	* * *	> > >	> ;;	>> 1	>::	>::	>>>	> > >	>>>
<u>Character of Release:</u> Non-jet Jet	> ;	~ ~	> ;	>>	> ;	> >	* *	~ ;	> ;	> ;	>;	> >	> >	> >
Duration of Release: Continuous Instantaneous	* *	> >	> >	> >	> >	> >	* *	> ;	> ;	* *	> ;	> >	> >	~ ~
Type of Surface (Heat Transfer): Soil Water	; ;	>>	; ;	: :	> >	~ ~	: :	: :	> >	: :	: : : :	* *	: :	~ ~
Surface Roughness:	>	~	;	~	~	>	>	(0.03m)	~	(0.03m)	:	>	>	~
Averaging Time: Meteorological Dosage	> ;	(10min) 	: :	(10min) -/	> ;	~ ;	~ ;	~ ;	~ ;	(10min) /	: :	(10min) 	~ ~	> ;
Receptor Height (m):	~	0	0	~	0	- -	0	~	0	~	1.5	0	>	~

The type of release (neutral, dense, 2-phase) has obvious implications for the dataset. The chief question that arises is: "How well do models perform in simulating dense-gas dispersion trials when no dense-gas algorithms are included?" Four models (AFTOX, GPM, INPUFF, and OB/DG) are designed for neutral releases only, and one (BM) is designed for dense-gas releases only. The character of the release indicates if entrainment and mixing induced by the turbulence associated with jet-like releases are included. Half of the models do not treat jets, which may influence their relative performance on the Desert Tortoise and Goldfish datasets. duration of the release identifies models that are not able to treat instantaneous releases. Three models (GPM, HEGADAS, and OB/DG) do not, and so these models are not applied to the datasets with instantaneous releases. Note that as we have defined the various releases, all that are not instantaneous are considered continuous, regardless of the actual duration. Furthermore, we use a constant emission rate for those releases, so that "transient release" modes available in some of the models are not evaluated.

The next two categories describe attributes of the surface beneath the cloud. Six models distinguish among several categories (for example, dry soil, wet soil, water) in order to better represent heat and water vapor exchanges between the cloud and the surface. The rest either ignore heat exchange altogether (these models do not treat dense-gas clouds) or request just the temperature of the surface. Most of the models do require the roughness of the surface in order to characterize the turbulent surface-layer of the atmosphere. The simple Gaussian models GPM and INPUFF do not require a roughness length, because the length of 0.03 m is implicit in the PG dispersion rates that they use. BM and OB/DG, on the other hand, do not consider the roughness of the surface.

The averaging time is broken down into a meteorological averaging time, and a dosage averaging time. The meteorological averaging time refers to the use of algorithms that recognize the effect of averaging time on the atmospheric motions which affect the dispersion process. For a continuous release, the meander of the plume over longer averaging times increases the lateral spread of the "average plume." Eight of the models allow this type of averaging to be specified, and four more implicitly fix this averaging

period to approximately 10 min by their use of PG dispersion rates in the passive limit, or the far-field. The dosage averaging time refers to the process whereby a time series of predicted concentrations are averaged over some specified period. This generally is relevant to instantaneous releases, or true transient releases. Two models, CHARM and INPUFF, allow the user to control the averaging period for this type of average, but do not alter the corresponding meteorological averaging period, so the result must be interpreted carefully. SLAB, on the other hand, incorporates both types of averaging, so that when an averaging period is specified, both aspects are treated consistently.

The last attribute in the table is the height at which concentrations are provided. This height cannot be adjusted in eight of the models (six of these place receptors at the surface, which is appropriate if peak concentration estimates are needed for surface-level releases). We note that all of the other models except CHARM were applied to the datasets with the actual height of the near-surface monitors specified. The height of the receptors used in a model can be very important when evaluating model performance against observed concentrations, especially with thin, dense-gas clouds. Monitors are usually placed above the surface. Measurements made near the point of release may not capture the largest concentrations if the depth of the cloud is less than the height of the sensor. Furthermore, the modeled cloud may be very shallow, so that a receptor placed at the height of the monitors may "miss" the modeled cloud. Depending on the formulation of the model, and the details of the trial, large underpredictions or overpredictions may result. Given this component of uncertainty in the evaluation, the results obtained at monitors/receptors placed near the point of release may not, in general, be "reliable."

SECTION IV STATISTICAL MODEL EVALUATION

A. PERFORMANCE MEASURES AND CONFIDENCE LIMITS

The statistical evaluation methods used in this study are those described in Volume I. The model evaluation software package, BOOT, is based on recommendations by Hanna (Reference 69), who has applied an earlier version of the software to several air quality modeling scenarios. The software package can calculate the model performance measures known as the fractional bias (FB), geometric mean bias (MG), normalized mean square error (NMSE), geometric mean variance (VG), correlation coefficient (R), and fraction within a factor of two (FA2), which are defined below:

$$FB = \frac{\overline{X_0} - \overline{X_p}}{0.5(\overline{X_0} + \overline{X_p})}$$
 (25)

$$MG = \exp(\overline{\ell n X_{o}} - \overline{\ell n X_{p}})$$
 (26)

$$NMSE = \frac{\overline{(X_o - X_p)^2}}{\overline{X_o X_p}}$$
 (27)

$$VG = \exp\left[\left(\ln X_{o} - \ln X_{p}\right)^{2}\right]$$
 (28)

$$R = \frac{\overline{(X_o - \overline{X_o})(X_p - \overline{X_p})}}{\sigma_{X_p} \sigma_{X_o}}$$
(29)

FAC2 = fraction of data for which
$$0.5 \le X_p/X_0 \le 2$$
. (30)

where $\mathbf{X}_{\mathbf{O}}$ is an observed quantity, and $\mathbf{X}_{\mathbf{p}}$ is the corresponding modeled quantity.

Because the logarithmic forms of the mean bias and the variance (equations 26 and 28) are more difficult to visualize than the absolute forms (equations 25 and 27), we prefer to use the absolute versions whenever possible. However, use of the absolute performance measures (FB and NMSE) is most justified only if X_0 and X_p are never very different (say, within a factor of two). For example, this situation would occur if all data were taken on a monitoring arc at a fixed distance downstream, if the source emission rate were constant over all experiments, and if meteorological conditions were similar. However, if a data set contains several pairs of data with X_0/X_p and X_p/X_0 equal to 10, 100, or more, then the logarithmic forms (MG and VG) are more appropriate. Since the observed concentrations vary over many orders of magnitude in the current study, due to the use of field data from a wide range of downwind distances, for a wide range of source emission rates, and from variable meteorological conditions, and also since C_0/C_p or C_p/C_0 are often large in our data sets, we use MG and VG in the following analyses.

Because of certain characteristics of the logarithm (that is, $(\ln X_0 - \ln X_D) = \ln(X_0/X_D)$), equations (26) and (28) can be rewritten:

$$MG = \exp\left[\frac{\ln(X_0/X_D)}{\ln(X_0/X_D)}\right] \tag{31}$$

$$VG = \exp\left[\overline{\left(\ln(X_o/X_p)\right)^2}\right]$$
 (32)

A "perfect" model would have both MG and VG equal to 1.0. Geometric mean bias (MG) values of 0.5 and 2.0 can be thought of as "factor of two" overpredictions and underpredictions in the mean, respectively. A geometric variance (VG) value of about 1.6 indicates a typical factor of two scatter between the individual pairs of observed and predicted values.

If there is only a mean bias in the predictions and no random scatter, then the following relation is valid:

$$\exp[(\ln VG)^{1/2}] = MG \tag{33}$$

The line representing this relation is drawn on the figures presented later in this section. At a given MG, the value of VG cannot be less than the values given by equation (33).

The values for the performance measures do not, alone, "tell the whole story." We would also like to know whether the mean bias for a particular model is <u>significantly</u> different from zero, for example. In addition, if model A has a geometric mean bias (MG) = 1.1, and model B has MG = 1.3, we may judge model A to have a "better" MG, but this conclusion may not be significant. Therefore, we also wish to know if MG (or any other measure) for model A is significantly different from that for model B. These questions require estimates of the 95 percent confidence intervals about the performance measure, and the differences between performance measures.

Our software employs bootstrap resampling methods to estimate the standard deviation, σ , of the variable in question. Then the 95 percent confidence intervals are calculated using the student-t procedure:

95% confidence limits = mean
$$\pm t_{95} \sigma(n/(n-1))^{1/2}$$
 (34)

where n is the number of data pairs. Tables in which the student-t parameter, t_{95} , is given as a function of degrees of freedom, n-1, can be found in most statistics textbooks (for example, for large n, $t_{95} \sim 2$). In the figures that follow, 95 percent confidence limits on the geometric mean bias, MG, are drawn as horizontal lines, and significant differences in MG or VG values between different models are discussed for the few models with the best performance.

B. RESULTS OF EVALUATION

Performance measures are calculated from modeled and observed concentrations, and modeled and observed cloud-widths. The individual observed values and the modeled values for each monitoring arc (distance) of each trial, for each model, are listed in Appendix C. Two groups of concentrations are presented for the continuous dense gas field trials. The first includes modeled and observed concentrations that represent the longest averaging period available for that particular field trial, up to the period over which the observed concentrations can be considered steady. The second

group represents the shortest averaging period available, but only for those four datasets that include both long and short averaging times. The data for the shorter averaging time are included because the predictions of some models are intended to represent short-term maximum concentrations. Matrices of the models and datasets included in Appendix C are presented in Tables 11 and 12.

Performance measures for concentrations can be evaluated for all 14 models and eight datasets, but there are several "holes." The holes arise because GPM, HEGADAS, and OB/DG are not applicable to instantaneous releases, and because modeled concentrations could not be obtained from DEGADIS and FOCUS when applied to the Hanford instantaneous releases. Furthermore, the Britter and McQuaid (BM) model is not appropriate for passive gas releases.

Performance measures for cloud-widths can be evaluated for eight models and six datasets (in some cases, the model is incapable of predicting cloud widths, and in other cases, the dataset is insufficient for estimating the observed cloud width).

Overall statistics could be calculated by combining results from all of the trials without regard for whether individual records were from a dataset containing instantaneous releases of a dense-gas cloud, or from a dataset of quasi-continuous releases of a passive tracer-gas. However, these datasets are sufficiently different that we wish to identify the performance of models for each type of dataset separately. To do this, we have identified four distinct groups of datasets, and have divided the continuous dense gas datasets into two separate groups--one for short averaging times (Group 1), and one for long averaging times (Group 2). The five groups are defined below:

- Group 1 All continuous-release dense-gas datasets, for short averaging times--that is, minimum time resolution in the data. (Burro, Coyote, Desert Tortoise, Goldfish, Maplin Sands, Thorney Island-Continuous)
- Group 2 Same as Group 1 but for longer averaging times approximately equal to the duration of release (several minutes)
- Group 3 All continuous-release, neutral-buoyancy passive-gas datasets (Prairie Grass and Hanford-Continuous)

TABLE 11. MATRIX OF MODELS AND DATASETS FOR WHICH LATERAL CLOUD WIDTHS ARE EVALUATED.

	Burro	Coyote	Desert Burro Coyote Tortoise	Goldfish	Hanford Continuous	Hanford Hanford Goldfish Continuous Instantaneous	Maplin Sands	Maplin Prairie Sands Grass	Thorney Island Continuous	Thorney Island Instantaneous
AFTOX	~	>	>	~	>	;	:	~	:	:
AIRTOX	~	>	~	~	>	:	;	~	:	:
***	•	:	:	:	:	:	:	:	;	:
CHARM	:	;	:	:	;	:	:	:	:	;
DEGADIS	~	>	`	~	>	:	:	~	:	:
Focus	:	;	:	:	:	:	:	;	;	:
GASTAR	~	¬	~	~	~	;	:	~	:	:
EPM GPM	~	,	`	~	~	:	;	~	:	.
HEGADAS	~	~	>	~	~	:	÷	~	:	:
INPUFF	:	;	;	* ,	:	;	;	;	;	;
0 8/ 00	;	;	;	;	:	:	;	:	:	:
PHAST	~	~	~	~	~	:	:	~	:	;
SLAB	•	`	`	`	~	:	i	`	ţ	:
TRACE	į	;	:	:	;	;	:	:	:	:

TABLE 12. MATRIX OF MODELS AND DATASETS FOR WHICH MAXIMUM CONCENTRATIONS ARE EVALUATED. ASTERISKS IDENTIFY DATASETS FOR WHICH BOTH SHORT AND LONG AVERAGING TIMES ARE EVALUATED.

	Burro*	Coyote*	Desert* Tortoise	Goldfish	Desert* . Hanford* Burro* Coyote* Tortoise Goldfish Continuous	Hanford Instantaneous		Maplin Prairie Sands Grass	Thorney Island Continuous	Thorney Island Instantaneous	
AFTOX	~	>	~	~	>	>	>	>	~	~	
AIRTOX	~	~	~	>	>	~	>	~	~	>	
Z.	>	>	~	>	~	~	>	~	~	>	
CHARM	~	~	~	~	~	>	~	~	~	>	
DEGAD IS	~	`	~	~	~	:	>	~	~	>	
FOCUS	~	~	~	>	~	;	>	>	~	>	
GASTAR	~	>	~	`	~	>	>	~	>	~	
E E	>	>	~	~	~	:	>	~	>	:	
HEGADAS	~	~	~	~	~	:	>	~	~	:	
INPUFF	~	~	~	~	~	>	>	~	~	~	
9Q/ 9 0	-	>	~	~	•	:	>	¬	~	:	
PHAST	>	~	~	~	~	~	>	>	~	*	
SLAB	>	>	~	~	~	~	>	~	>	~	
TRACE	~	>	~	`	>	~	>	~	``	~	

- Group 4 All instantaneous-release dense-gas datasets (Thorney Island-Instantaneous)
- Group 5 All instantaneous-release neutral-buoyancy passive-gas datasets (Hanford-Instantaneous)

Groups 1, 2, and 3 each include two or more experimental sites, but groups 4 and 5 each include a single experimental site. Obtaining performance measures for a group of several datasets brings up the difficult statistical problem of the best way of combining performance measures when several different types of field experiments are being analyzed. Hanna (Reference 69) recommends a method suggested by Tukey (Reference 70) in which, if the total dataset can be broken down into m datasets or blocks consisting of impoints each, then the mean statistical parameters are calculated for the entire group of data, and 95 percent confidence intervals are calculated by blocked bootstrap or jackknife resampling. These m groups or blocks of data are separated by some sort of difference in input variables or environmental parameters (for example, one block may be high-wind cases and another block may be low-wind cases). In this blocking procedure, the resampling is done within blocks so that there always are impoints resampled from a given block.

Predicted cloud widths are also evaluated. Because the monitoring network in several of the field tests (for example, Maplin Sands and Thorney Island) had insufficient resolution to define cloud widths, only two distinct groups of datasets are represented:

Group 2 above, minus Maplin Sands and Thorney Island-Continuous. Group 3 above.

- 1. Evaluation of Concentration Predictions
 - a. Group 1: Continuous Dense Gas Releases with Short Averaging Times, All Distances

Statistics calculated for Group 1 (continuous dense gas releases with short averaging times) are listed in Appendix D-1, and the overall geometric mean bias, MG, and geometric variance, VG, for each model

are shown in Figure 10a. A perfect model compared against perfect observations would be placed at the MG = 1 and VG = 1 point on this figure. A model that has no random scatter but suffers a mean bias would be placed somewhere along the parabolic curve that represents the minimum possible value of VG that corresponds to a particular MG (see Equation 33). Therefore, all of the points must lie "within" the parabola. Furthermore, the dotted lines on the figures mark the values of MG that correspond to "factor-of-two" differences in the means. Models that fall between the dotted lines produce estimates that are within a factor of two of observed values, on average.

The results illustrated in Figure 10a include all trials and all monitoring arcs for the datasets that involve short-term averages from quasi-continuous releases of dense-gas clouds (Burro, Coyote, Desert Tortoise, Goldfish, Maplin Sands, and Thorney Island (continuous)). The geometric mean bias MG values for all of the models except FOCUS, AIRTOX, INPUFF, and OBDG are within the dashed vertical lines, indicating that, on average, peak modeled concentrations are within a factor of two of peak observed concentrations. The tendencies of these models to overpredict or underpredict in Figure 10a can be summarized as follows:

Models that Overpredict by More Than a Factor of Two: FOCUS

Models that Overpredict by Less Than a Factor of Two: GASTAR, HEGADAS, PHAST, DEGADIS

Models with No Significant Overprediction or Underprediction: BM, AFTOX, TRACE

Models that Underpredict by Less Than a Factor of Two: SLAB, GPM, CHARM

Models that Underpredict by More Than a Factor of Two: AIRTOX, OBDG, INPUFF

The FOCUS, AIRTOX, OBDG, and INPUFF models have a relatively large geometric variance, VG. The other models are "bunched" within a VG range of about 1.4 to 2.6. GASTAR has the smallest VG, indicating a typical

CONCENTRATIONS CONTINUOUS DENSE GAS DATA WITH SHORT AVERAGING TIME (GROUP 1)

CONCENTRATIONS CONTINUOUS DENSE GAS DATA WITH LONGER AVERAGING TIME (GROUP 2)

- Shortest available averaging times b. Longest available averaging times

Figure 10. Model performance measures, Geometric Mean Bias $MG = \exp(\overline{lnC_0} - \overline{lnC_0})$ and Geometric Variance VG = $\exp[(\ln C_0 - \ln C_p)^2]$ for concentration predictions and observations for the continuous dense gas group of datasets (Burro, Coyote, Desert Tortoise, Goldfish, Maplin Sands, Thorney Island). 95 percent confidence intervals on MG are indicated. The solid line is the "minimum VG" curve, from Equation (33). The dashed lines represent "factor of two" agreement between mean predictions and observations.

scatter of slightly less than a factor of two. Note that the model (TRACE) with the best geometric mean does not have the smallest variance, and the model (GASTAR) with the smallest variance does not have the best geometric mean.

b. Group 2: Continuous Dense Gas Releases with Long Averaging Time, All Distances

Figure 10b shows the results for Group 2, for the same models and datasets as Group 1, but for concentrations associated with the "longest available" averaging times (approximately equal to the duration of the release). Actually, the only datasets that are altered by this distinction between Groups 1 and 2 are Burro, Coyote, and Desert Tortoise, which comprise approximately 1/3 of the data points in the combined set. Statistics tabulated for Group 2 that are plotted in Figure 10b are listed in Appendix D-2. Comparison of Figure 10b with Figure 10a shows, as expected, a shift of all models towards the left of the figure (that is, towards the overprediction side). The tendencies of the models to overpredict or underpredict in Figure 10b is summarized below.

Models that Overpredict by More Than a Factor of Two: FOCUS

Models that Overpredict by Less Than a Factor of Two: GASTAR, DEGADIS, TRACE, HEGADAS, PHAST

Models with No Significant Overprediction or Underprediction: BM, AFTOX

Models that Underpredict by Less Than a Factor of Two: CHARM, GPM, SLAB

Models that Underpredict by About a Factor of Two: AIRTOX, OBDG, INPUFF

Except for the FOCUS and AIRTOX models, which have a relatively large geometric variance (VG), all models have moderate values of VG, in the range from about 2 to 5. These values indicate that the random scatter is typically about two to four times the mean. Five models (GASTAR, SLAB, GPM, and BM) have the lowest values of VG. In this figure, it is interesting that the Gaussian plume model (GPM) has relatively low geometric mean b'as MG and geometric variance VG, which may be a fortuitous result, since that model is the simplest of all and does not include dense gas effects. However, another possibility is that the <u>centerline concentration</u> in a plume is not highly influenced by the plume density, since the changes in plume <u>width</u> are compensated by changes in plume <u>depth</u>.

c. Group 4: Instantaneous Dense Gas Releases, All Distances

In order to keep the discussions of the dense gas datasets together, we next consider Group 4, the Thorney Island (instantaneous release) trials. Figure 11 shows the results for Group 4 and the statistics are tabulated in Appendix D-3. These results are markedly different from those for the continuous releases of dense-gas clouds, since there is relatively little random scatter (except for the DEGADIS model) and the variance for all models tends to be dominated by the mean bias (that is, the points lie near the parabola marking minimum variance values, from Equation 33).

Analysis of the geometric mean bias, MG, in Figure 11 leads to the following conclusions:

Models That Overpredict by More Than a Factor of Two: INPUFF, AFTOX

Models that Overpredict by about a Factor of Two: TRACE, FOCUS

Models that Overpredict by Less Than a Factor of Two: BM, PHAST, DEGADIS

Models with No Significant Overprediction or Underprediction: AIRTOX

CONCENTRATIONS, INSTANTANEOUS DENSE GAS DATASET (GROUP 4) THORNEY ISLAND

Figure 11. Model performance measures, Geometric Mean Bias $MG = \exp(\overline{\ell n C_o} - \ell n C_p)$ and Geometric Variance $VG = \exp[(\overline{\ell n C_o} - \ell n C_p)^2]$ for concentration predictions and observations for the instantaneous dense gas data from Thorney Island. 95 percent confidence intervals on MG are indicated. The solid line is the "minimum VG" curve, from Equation (33). The dashed lines represent "factor of two" agreement between mean predictions and observations.

Models that Underpredict by Less Than a Factor of Two: GASTAR

Models that Underpredict by About a Factor of Two: SLAB, CHARM

There are two models (BM and AIRTOX) with relatively low geometric variance of about 1.4 in Figure 11 indicating a typical scatter less than the mean. The AIRTOX model has the best geometric mean and the second-best variance, while the BM model has the best variance and the second-best geometric mean. The AFTOX and DEGADIS models have large variances.

d. Groups 1 and 4 (Dense Gas Releases), Distances > 200 m

Each of these evaluations for the dense-gas datasets in Groups 1, 2, and 4 include monitored and modeled concentrations at all downwind monitoring arcs. However, comparisons of predicted and modeled concentrations near the source may be misleading. Peak concentrations at the ground surface in shallow clouds may not be adequately detected by monitors placed on short masts above the ground (even at heights of 1 to 2 m), because the cloud may lie nearer the surface. A bias could result from insufficient resolution in either the vertical or lateral array of samplers. Concentrations modeled at the surface may appear to be overestimates in such cases, and overall performance evaluations that include these data may lead to inappropriate conclusions. Therefore, we have reduced the number of data points in Groups 1 and 4 by removing monitoring data from arcs closer than 200 m to the release point. This criterion removes the closest monitoring arc in all of the dense-gas datasets. The resulting statistics for this reduced set of data are tabulated in Appendices D-4 and D-5, and are summarized for Groups 1 and 4 in Figures 12a and 12b, respectively. With fewer data points, the 95 percent confidence limits on the statistical measures increase, especially for Group 4 (Thorney Island--instantaneous), shown in Figure 12b.

After removal of the data from the closest monitoring arcs, many of the models show a shift toward either less overpredictions or more underpredictions (that is, the mean ratio $\overline{C_p}/\overline{C_o}$ has decreased). This would be

CONCENTRATIONS CONTINUOUS DENSE GAS DATA WITH SHORT AVERAGING TIME (GROUP 1) AND X ≥ 200 M

CONCENTRATIONS INSTANTANEOUS DENSE GAS DATA (GROUP 4) AND X ≥ 200 M

- a. Continuous dense groups of datasets b. Instantaneous dense gas (Burro, Coyote, Desert Tortoise, Goldfish, Maplin Sands, Thorney Island)
- from Thorney Land

Figure 12. Model performance measures, Geometric Mean Bias MG = $\exp(\overline{lnC_0 - lnC_0})$ and Geometric Variance VG = $\exp[(\ln C_0 - \ln C_p)^2]$ for concentration predictions and observations at distances greater than or equal to 200 m. a: Continuous dense gas group of datasets (Burro, Coyote, Desert Tortoise, Goldfish, Maplin Sands, Thorney Island). b: Instantaneous dense gas data from Thorney Island. 95 percent confidence intervals on MG are indicated. The solid line is the "minimum VG" curve, from Equation (33). The dashed lines represent "factor of two" agreement between mean predictions and observations.

consistent with removing an overprediction tendency on the monitoring arcs in the near-field, where the measured concentrations may not represent peak concentrations. Analysis of the fractional bias in Figures 12a and 12b leads to the following conclusions for the dense gas data sets with the closest monitoring arc excluded:

Models that Overpredict by More Than a Factor of Two:

Continuous Release Instantaneous Release

NONE INPUFF, AFTOX

Models that Overpredict by about a Factor of Two:

Continuous Release Instantaneous Release

NONE FOCUS, DEGADIS, TRACE, PHAST

Models that Overpredict by Less Than a Factor of Two:

Continuous Release Instantaneous Release

FOCUS, TRACE BM

Models with Insignificant Overprediction or Underprediction:

Continuous Release Instantaneous Release

DEGADIS, GASTAR AIRTOX

Models that Underpredict by Less Than a Factor of Two:

Continuous Release Instantaneous Release

PHAST, HEGADAS, BM, SLAB, AFTOX GASTAR

Models that Underpredict by about a Factor of Two:

Continuous Release Instantaneous Release

GPM, CHARM SLAB, CHARM

Models that Underpredict by More Than a Factor of Two:

Continuous Release Instantaneous Release

OB/DG, AIRTOX, INPUFF NONE

The results for the geometric variance in Figures 12a and 12b are similar to those in Figures 10a and 11, since the only difference is the

removal of the monitoring arcs with x < 200 m. With this change, most variances were reduced slightly. The largest variance in Group 1 is still given by the AIRTOX model, and the largest variance in Group 4 is still given by the AFTOX model. The GASTAR and BM models still show good performance for Group 4 (Thorney Island), although the AIRTOX model has "moved up" into one of the top three positions.

e. Groups 1 and 4 (Dense Gas Releases), Distances < 200 m

In order to assess the differences between model performance at far and near monitoring arcs, the data for x < 200 m are presented in Figure 13. Any dense gas effects will be amplified at these close distances. However, the observations may not indicate the true maximum concentration, because of inadequate horizontal and vertical resolution of the monitoring network.

Comparing Figures 12 and 13, it is seen that there indeed are more cases of model overprediction at close distances. Because of the shifts in the points, some of the models (for example, SLAB, GPM, TRACE, CHARM, AIRTOX) demonstrate improved performance at close distances for the continuous sources (parts a of the figures). Shifts also occur for the instantaneous sources (parts b of the figures), with the performance of some models (for, example, DEGADIS) deteriorating at the close distances, while the performance of other models (for example, PHAST) improves.

f. Groups 3 and 5: Passive Gas Releases

The statistics for the passive gas releases in Group 3 (continuous passive-gas releases) and Group 5 (instantaneous passive-gas releases) are tabulated in Appendices D-6 and D-7, and the plots of geometric mean bias MG versus geometric variance VG are shown in Figures 14a and 14b, respectively. Note that statistics for the continuous releases are dominated by the Prairie Grass dataset, while those for instantaneous releases are derived solely from the Hanford dataset.

The confidence limits on the geometric mean bias, MG, for the continuous releases of passive gases shown in Figure 14a are small, because

- a. Continuous dense gas group datasets (Burro, Coyote, Desert Tortoise,Goldfish, Maplin Sands, Thorney Island)
- b. Instantaneous dense gasdataset from Thorney Island

Figure 13. Model performance measures, Geometric Mean Bias MG = exp(\overline{lnC}_o - \overline{lnC}_p)
and Geometric Variance VG = exp[(\overline{lnC}_o - \overline{lnC}_p)^2] for concentration predictions and observations at distances less than 200 m.
a: Continuous dense gas group of datasets (Burro, Coyote, Desert Tortoise, Goldfish, Maplin Sands, Thorney Island). b:
Instantaneous dense gas data from Thorney Island. 95 percent confidence intervals on MG are indicated. The solid line is the "minimum VG" curve, from Equation (33). The dashed lines represent "factor of two" agreement between mean predictions and observations.

CONCENTRATION CONTINUOUS PASSIVE RELEASES (GROUP 3)

CONCENTRATION INSTANTANEOUS PASSIVE RELEASES (GROUP 5)

- datasets (Prairie Grass and Hanford-continuous)
- a. Continuous passive gas group of b. Instantaneous passive gas dataset from Hanford

Figure 14. Model performance measures, Geometric Mean Bias MG = $\exp(\overline{\ln C_0} - \ln C_D)$ and Geometric Variance VG = $\exp[(\ln C_0 - \ln C_D)^2]$ for concentration predictions and observations. a: Continuous passive gas group of datasets (Prairie Grass and Hanford-continuous). b: Instantaneous passive gas dataset from Hanford. 95 percent confidence intervals on MG are indicated. The solid line is the "minimum VG" curve, from Equation (33). The dashed lines represe t "factor of two" agreement between mean predictions and observations.

the Prairie Grass dataset provides many data-points. The GASTAR, TRACE, and CHARM models have relatively large variances. The geometric mean biases for Group 3 can be summarized as follows:

Models that Overpredict by about a Factor of Two: TRACE, GASTAR

Models that Overpredict by Less Than a Factor of Two: AFTOX, DEGADIS, HEGADAS, SLAB

Models with No Significant Overprediction or Underprediction: INPUFF, GPM, OBDG, PHAST, FOCUS, AIRTOX

The models with the lowest variance (VG ~ 1.5) for Group 3 are the HEGADAS and SLAB models. The magnitude of the scatter for these models is slightly less than the mean value. The good performance of the HEGADAS model is surprising and probably fortuitous since that model is being initialized assuming a small area source, whereas the actual release was a small point source. A group of other models (AIRTOX, DEGADIS, OBDG, FOCUS, GPM, INPUFF, PHAST, and AFTOX) have relatively low VG values in the range from about 1.6 to 2.2, indicating that their scatter is approximately equal to the mean.

The Hanford dataset (Group 5) in Figure 14b has few numbers, leading to a large span in 95 percent confidence limits for the geometric mean bias, MG. Even so, all of the models tend to overpredict the peak concentrations on average. The GASTAR, AIRTOX, PHAST, INPUFF, and CHARM models have the best performance, with mean overpredictions of about 10 to 50 percent and scatters approximately equal to the mean. The TRACE model is unique in its very large degree of overprediction.

g. Analysis of Differences among Models

Up to this point we have characterized the tendency of each model to either overpredict or underpredict peak concentrations, based on the statistical measure, but we have not selected a "best" model. One way to characterize a "best" group of models is to identify the models with the

smallest mean bias and the smallest scatter, and then ask the question: which other models have a bias or a scatter which is not significantly different from that of the "best" model? The answer provides one basis for defining the "best" group of models.

Appendix D-8 contains tabulations showing whether or not the difference in the geometric variance between pairs of models is significantly different from zero, at the 95 percent confidence level. Consider first the results for the continuous releases of dense gas shown in Figure 12a (Group 1, for distances greater than 200 m). GASTAR appears to have the best overall performance, but we see that its variance is not significantly different from the variance for HEGADAS. However, we see that the geometric mean bias MG found for GASTAR is significantly different from and closer to zero than the bias for the HEGADAS model, although there is no difference between the biases of the GASTAR and DEGADIS models. We conclude that, in general, this group of three models does a better job than the others of matching the peak observed concentrations at distances of 200 m or greater for continuous releases of dense gases.

A summary of model performance for the better performing models at distances greater than 200 m is given in Table 13 for Data Groups 1, 3, 4, and 5. There are no models that appear on the list of better models for all four data groups.

h. Analysis of Model Performance for Stable Ambient Conditions

Another facet of model performance that can be evaluated with these data is the question of how the models perform for the subset of the dense-gas data for which the atmospheric stability class is either E or F (that is, stable ambient conditions). Because "worst-case" dispersion conditions are usually found for these stabilities, many model applications focus on these stable ambient conditions. Figures 15a and 15b show the geometric mean bias (MG) and geometric variance (VG) results, and the statistics themselves are tabulated in Appendices D-9 and D-10 for the continuous and passive dense-gas releases, respectively.

TABLE 13. SUMMARY OF BIAS AND VARIANCE RESULTS FOR PREDICTING PEAK CONCENTRATIONS, AT DISTANCES > 200 M.

	Minimum* Geometric Mean Bias MG	Minimum* Geometric Variance VG			
			Grou	Group of Better Models	pdels
	exp(luc/c)	* exp(lnc /c) ²)	Overpredicts	Even	Underpredicts
Continuous Dense Gas (x ≥ 200 m) Fig. 12a	0.95 (i.e., 5% bias)	** **		GASTAR DEGADIS	HEGADAS SLAB BM AFTOX
Instantaneous Dense Gas (Thorney Island) (x ≥ 200 m) Fig. 12b	0.90 (i.e., 10% biss)	1.2	.	AIRTOX	GASTAR
Continuous Passive Gas	1.00 (i.e., no bias)	3	HEGADAS SLAB	GPH 1MPUFF 08DG PHAST FOCUS AIRTOX	
Instantaneous Passive Gas (Manford) (x = 800 m) Fig. 14b	0.95 (i.e., 5% bies)		CHARM INPUFF PHAST	AIRTOX	

* Minimum among the "better" performing group of models + A value of VG 7.6 indicates scatter equal to the mean

CONCENTRATIONS CONTINUOUS DENSE GAS DATA WITH SHORT AVERAGING TIME (GROUP 1) X ≥ 200 M, AND STABLE AMBIENT CONDITIONS

CONCENTRATIONS INSTANTANEOUS DENSE GAS DATA (GROUP 4) X ≥ 200 M, AND STABLE AMBIENT CONDITIONS

- Continuous dense gas group of datasets (Burro, Coyote, Desert Tortoise, Goldfish, Maplin Sands, Thorney Island)
- b. Instantaneous dense gas data from Thorney Island

Figure 15. Model performance measures, Geometric Mean Bias MG = exp(\overline{lnC}_0 - \overline{lnC}_p) and Geometric Variance VG = exp[(\overline{lnC}_0 - \overline{lnC}_p)^2] for concentration predictions and observations at distances greater than or equal to 200 m for STABLE (class E, F) conditions. a: Continuous dense gas group of datasets (Burro, Coyote, Desert Tortoise, Goldfish, Maplin Sands, Thorney Island). b: Instantaneous dense gas data from Thorney Island. 95 percent confidence intervals on MG are indicated. The solid line is the "minimum VG" curve, from Equation (33). The dashed lines represent "factor of two" agreement between mean predictions and observations.

Comparing Figure 15a with Figure 12a, which includes all ambient stabilities, the models tend more towards overpredictions of peak concentrations during stable ambient conditions. In fact, only the OB/DG model shows a significant underprediction in Figure 15a. Although confidence limits are large due to the smaller number of points, one group of models appears to provide better performance. This group includes BM, HEGADAS, SLAB, CHARM, GASTAR, AFTOX, and INPUFF. Note that when the unstable and neutral ambient conditions are eliminated, the FOCUS model performance greatly improves.

Comparing Figures 15b and 12b, which both apply to instantaneous releases of dense gases, it is seen that the models show a greater tendency towards underpredictions during stable conditions. As before, the variance is dominated by the mean bias for most models. However, all the 95 percent confidence limits on the mean bias are fairly broad, since this sample of the dataset contains few points. The performance of the AIRTOX, B&M, and TRACE models is fairly good, while the performance of the AFTOX, CHARM, DEGADIS, and INPUFF models is relatively poor.

2. Cloud Widths (σ_{v})

Another measure of model performance is the ability of the model to simulate cloud widths, which are very important for defining regions of toxic impacts. Figures 16a and 16b show the geometric mean bias MG and geometric variance VG results for predicting the width of the clouds for continuous dense-gas releases and continuous passive-gas releases, respectively. The corresponding statistics are tabulated in Appendices D-11 and D-12. These figures correspond to the performance measures for concentration predictions in Figures 10b and 14a. Comparing the figures, it is immediately evident that predictions of the widths are generally more successful, overall, than are the predictions of concentration. The largest values of variance are smaller, probably due to the smaller range of observed values of cloud widths. Furthermore, the variations in variance are largely due to variations in mean bias, as expressed by Equation (33).

WIDTHS CONTINUOUS DENSE GAS RELEASES (GROUP 2)

WIDTHS CONTINUOUS PASSIVE GAS RELEASES (GROUP 3)

- Continuous dense gas group of datasets B. Continuous passive gas group (Burro, Coyote, Desert Tortoise, Goldfish)
 - of datasets (Hanford, Prairie Grass)

Figure 16. Model performance measures, Geometric Mean Bias MG = $\exp(\overline{\ell_{\rm NC}} - \ell_{\rm NC})$ and Geometric Variance VG = $\exp[(\ln C_0 - \ln C_0)^2]$ for plume width predictions and observations. a: Continuous dense gas group of datasets (Burro, Coyote, Desert Tortoise, Goldfish). b: Continuous passive gas group of datasets (Hanford, Prairie Grass). 95 percent confidence intervals on MG are indicated. There is no significant difference in part a among the MG and VG values for the three better models (GPM, AIRTOX, and SLAB). The solid line is the "minimum VG" curve, from Equation (3e). The dashed lines represent "factor of two" agreement between mean predictions and observations.

For the dense-gas releases, models such as GPM and AFTOX that do not treat dense gases (and hence dense gas slumping) underpredict the width, as might be anticipated. The other models that do simulate dense gases tend to overpredict. AIRTOX, PHAST, and SLAB overpredict the width by less than about 30 percent, on the average. DEGADIS, GASTAR, and HEGADAS overpredict the width by a factor of two or more.

For the passive releases, only HEGADAS tends to overpredict the widths. The rest underpredict by a small amount. There is no distinction between the performance of the simple passive dispersion model, GPM, and the dense-gas models. Overall, it is interesting to note that the models tend to slightly underpredict the width, and overpredict the peak concentrations resulting from continuous releases of passive gases.

SECTION V

SCIENTIFIC EVALUATION BY MEANS OF RESIDUAL PLOTS

A. PROCEDURES

One way of evaluating the scientific credibility of a model is through the use of residual plots, where "residual" is defined in this application as the ratio of the predicted to the observed concentration (note that the logarithm of this ratio equals the difference between the logarithm of the two concentrations). In other applications, the residual could be defined as the arithmetic difference between the observed and predicted concentrations. Values of the residual can be plotted versus variables such as wind speed or stability. The residual of a good model (1) should not exhibit any trend with variables such as wind speed and stability class, and (2) should not exhibit large deviations from unity (implying a perfect match between the model and the observed). The SIGPLOT plotting package described in Volume I was used to generate the residual plots for this evaluation.

The residuals are grouped for plotting by means of "box plots."

Grouping is usually necessary because of the large number of data points.

The cumulative distribution function (cdf) of the residuals within each group is represented by the 2nd, 16th, 50th, 84th, and 98th percentiles. These five significant points in the cdf are then plotted in a "box" pattern. As mentioned above, the residual boxes should not exhibit any systematic dependence on primary variables. It is also desirable that the residual boxes should be compact and should not deviate too much from unity.

B. RESULTS

Residuals for the continuous dense-gas releases are shown in Figure 17, where four "variables" are used: downwind distance (X), ambient wind speed (U), ambient Pasquill-Gifford stability class (PG CLASS), and the number of the experiment (EXPERIMENT). The PG CLASS numbers follow the normal convention in which 1 = very unstable (A), 2 = unstable (B), 3 = slightly unstable (C), 4 = neutral (D), 5 = slightly stable (E), and 6 = stable (F). The number of the experiment is based on the following alphabetical ordering of the datasets:

LPG(8), Thorney Island (10). The "box plots" indicate the 2nd, Distributions of C/C for the datasets containing continuous , Maplin Sands LNG⁽⁷⁾, Maplin Sands releases of dense-gas clouds (Burro (1), Coyote (2), Desert 16th, 50th, 84th, and 98th percentiles of the cumulative distribution function of the N points in the class. Tortolse (3), Goldfish (4) Figure 17.

LPG(8), Thorney Island (10). The "box plots" indicate the 2nd, Distributions of C/C for the datasets containing continuous Tortoise (3), Goldfish (4), Maplin Sands LNG (7), Maplin Sands ', Desert 16th, 50th, 84th, and 98th percentiles of the cumulative distribution function of the N points in the class. releases of dense-gas clouds (Burro (1), Coyote (2) Figure 17.

LPG (8), Thorney Island (10). The "box plots" indicate the 2nd, Distributions of C /C for the datasets containing continuous releases of dense-gas clouds (Burro $^{(1)}$, Coyote $^{(2)}$, Desert Tortoise (3), Goldfish (4), Maplin Sands LNG (7), Maplin Sands 16th, 50th, 84th, and 98th percentiles of the cumulative distribution function of the N points in the class. Figure 17.

distribution function of the N points in the class (Concluded). releases of dense-gas clouds (Burro $^{(1)}$, Coyote $^{(2)}$, Desert Tortoise $^{(3)}$, Goldfish $^{(4)}$, Maplin Sands LNG $^{(7)}$, Maplin Sands LPG $^{(8)}$, Thorney Island $^{(10)}$. The "box plots" indicate the 2nd, Distributions of C_p/C_o for the datasets containing continuous 16th, 50th, 84th, and 98th percentiles of the cumulative Figure 17.

- 1. Burro
- 2. Coyote
- 3. Desert Tortoise
- 4. Goldfish
- 5. Hanford (continuous)
- 6. Hanford (instantaneous)
- 7. Maplin Sands (LNG)
- 8. Maplin Sands (LPG)
- 9. Prairie Grass
- 10. Thorney Island (continuous)
- 11. Thorney Island (instantaneous)

Plotting the distribution of residuals against the experiment identifies potential "problems" with individual experiments. A good example of this is the Goldfish experiment. All of the models tend to underpredict concentrations observed during Goldfish. Table 14 summarizes characteristics of the performance of each of the models that are revealed by the plots of residuals. The main "problem" for many of the models is not a problem for certain dispersion regimes or a problem with near-field or far-field receptors. It is a problem of uneven performance among the datasets. A model will tend to overestimate concentrations for one dataset, and underestimate those for another. This can lead to a low overall mean bias but a large variance. However, some models such as GASTAR and HEGADAS display less variability in performance across the datasets, which indicates that there is reason to believe the other models can be improved in this regard.

Figure 18 contains the residual plots for the instantaneous-release dense-gas dataset (Group 4). Because only the Thorney Island trials are included in this group, there is no reason to plot residuals as a function of dataset. Table 15 summarizes the characteristics revealed in Figure 18. The most common problem identified is the tendency of some dense-gas models to underpredict peak concentrations and of other models to overpredict these concentrations during low wind speed, stable conditions. Also, we see that the simple passive gas models tend to overpredict concentrations in general. The AIRTOX, BM, GASTAR, and SLAB models show the desirable trait of relatively small variability in their residual plots.

TABLE 14. PROBLEMS REVEALED BY RESIDUAL PLOTS FOR CONTINUOUS RELEASES OF DENSE-GAS CLOUDS. (SEE FIGURE 17).

AFTOX: Much of variability arises from uneven performance among

individual datasets.

AIRTOX: There is a large range in performance overall, with

particularly large underpredictions for Goldfish and Maplin Sands. Underpredicts for all wind speeds except very low wind

speed.

BM: Tendency to underpredict at greater distances.

CHARM: Much of variability is due to Desert Tortoise and Goldfish

trials (2-phase jets). Tendency to underpredict at greater

distances.

DEGADIS: Tendency to overpredict at shorter distances.

FOCUS: Large overpredictions during unstable conditions at shorter

distances.

GPM: Overpredictions for light wind speeds and stable conditions.

GASTAR: Few problems, since there is little variability of residuals.

HEGADAS: Few problems, since there is little variability of residuals.

INPUFF: Much of variability is due to underpredictions for the

Goldfish and Maplin Sands trials.

OB/DG: Tends to underpredict in general, with poorest performance

found for Goldfish, Maplin Sands, and Thorney Island trials.

PHAST: Overpredicts at short distances, underpredicts at greater

distances.

SLAB: Few problems, since there is little variability of residuals.

TRACE: Most variability arises from uneven performance among

individual datasets.

Distributions of C /C for Thorney Island instantaneous releases of dense-gas clouds. The "box plots" indicate the 2nd, 16th, 50th, 84th, and 98th percentiles of the cumulative distribution function of the N points in the class. Figure 18.

Distributions of C $_{
m p}$ $_{
m o}$ for Thorney Island instantaneous releases of dense-gas clouds. The "box plots" indicate the 2nd, 16th, 50th, 84th, and 98th percentiles of the cumulative distribution function of the N points in the class. Figure 18.

Distributions of $C_{
m p}/C_{
m o}$ for Thorney island instantaneous releases of dense-gas clouds. The "box plots" indicate the 2nd, 16th, 50th, 84th, ar. 98th percentiles of the cumulative distribution function of the N points in the class (Concluded). Figure 18.

TABLE 15. PROBLEMS REVEALED BY RESIDUAL PLOTS FOR INSTANTANEOUS DENSE-GAS CLOUDS (THORNEY ISLAND). (SEE FIGURE 18).

AFTOX: Large overpredictions; worse for light wind speed, stable

conditions

AIRTOX: Few problems, since there is little variability in residual

plots.

BM: Few problems, since there is little variability in residual

plots.

CHARM: Underpredicts during low wind speed, stable conditions, at

short distances.

DEGADIS: Underpredicts during low winds and overpredicts during high

winds.

FOCUS: Moderate overpredictions throughout, with little variability.

GASTAR: Few problems, since there is little variability in residual

plots.

INPUFF: General overpredictions throughout, with little variability.

PHAST: A few large overpredictions during high wind speed conditions.

SLAB: Few problems, since there is little variability in residual

plots.

TRACE: Underpredicts during low wind speed conditions and

overpredicts during high wind speed conditions.

Because there are few data-points in the dataset for instantaneous releases of passive-gas clouds (Hanford), we have not produced residual plots for this dataset (Group 5). The plots for continuous releases of passive-gas clouds (Prairie Grass - Group 3) are shown in Figure 19, and the results are summarized in Table 16. Among the models designed for dense-gas clouds, several tend to increasingly overpredict concentrations during increasingly unstable conditions or higher wind conditions. The CHARM, GPM, HEGADAS, INPUFF, and SLAB models have the desirable trait that there is relatively little variability in their residual plots for this group of data.

Distributions of C /C for Prairie Grass continuous releases of passive-gas clouds. Figure 19.

Distributions of C /C for Prairie Grass continuous releases of passive-gas clouds. Figure 19.

Distributions of C /C for Prairie Grass continuous releases of passive-gas clouds. Figure 19.

Distributions of C /C for Prairie Grass continuous releases of passive-gas clouds (Concluded). Figure 19.

TABLE 16. PROBLEMS REVEALED BY RESIDUAL PLOTS FOR CONTINUOUS PASSIVE-GAS CLOUDS (PRAIRIE GRASS). (SEE FIGURE 19).

AFTOX: Slightly underpredicts during light wind speed, stable

conditions.

AIRTOX: Trend towards underpredictions at greater distances, light

winds, and stable conditions.

CHARM: Few problems, since there is little variability in residual

plots.

DEGADIS: Overpredicts slightly in general, but with little variability

in residual plots.

FOCUS: Relative underpredictions at low wind speeds and

overpredictions at high wind speeds.

GPM: Few problems, since there is little variability in residual

plots.

GASTAR: Overpredicts at shorter distances and higher wind speeds.

HEGADAS: Few problems, since there is little variability in residual

plots.

INPUFF: Few problems, since there is little variability in residual

plots.

OB/DG: Underprediction tendency during light wind speeds.

PHAST: Overpredicts during high wind speed conditions.

SLAB: Few problems, since there is little variability in residual

plots.

TRACE: Overpredicts with increasingly higher winds and unstable

dispersion conditions

SECTION VI

SENSITIVITY ANALYSIS USING MONTE CARLO PROCEDURES

A. OVERVIEW

The Monte Carlo method is one way of estimating the magnitude of model uncertainties due to input data errors. The method involves running the model multiple times, with the input parameters slightly perturbed each time (see Volume I, Section IX). It is necessary to implement the Monte Carlo sensitivity analyses on a platform where the user can easily run the model repeatedly, efficiently extract the information of interest, and not be overwhelmed by the amount of the output generated. The MDA (Modeler Data Archive) software package previously described in this volume serves as an ideal choice for this platform in that the execution of most of the dispersion models has been automated, and in that the extraction of useful information from the outputs can be achieved by the post-processors that have already been developed. In the following, we shall call the software package that implements the Monte Carlo method MDAMC.

B. CHOICE OF MODELS AND INPUT PARAMETERS

There are some important criteria that should be heeded in choosing specific dispersion models for application of the Monte Carlo sensitivity analyses. First, it is desirable that the input, the execution and the post-processing of the model be fully automated. Second, it is desirable that the model can execute reasonably fast (say, less than 10 seconds for each run), since it is necessary to run the model hundreds to thousands of times. Last, as a somewhat less stringent requirement, the model should have a simple I/O structure, such as a small number of compact input and output files are involved. Based on these criteria, the SLAB model was chosen for testing of MDAMC. The AFTOX, DEGADIS, GASTAR and GPM models also satisfy these criteria, but were not used in the sensitivity study reported in this section.

The input parameters accepted by the models can be classified as primary and secondary. Secondary input parameters are derived from the primary input parameters. Wind and temperature measurements, and surface roughness are the examples of primary input parameters. Monin-Obukhov length and stability class are the examples of secondary input parameters. In the Monte Carlo study, only

variations in the primary input parameters are considered. The following seven primary input parameters are perturbed at each Monte Carlo simulation in our example:

- domain averaged wind speed (u),
- · difference in wind speed between the domain-average and a tower (du),
- · difference in temperature between two levels on a tower (dT),
- relative humidity (RH),
- surface roughness (z₀),
- source emission rate (Q), and
- source diameter (D).

The first four parameters are related to the meteorology, the fifth parameter is related to the site condition, and the last two parameters are related to the source condition. In this application, it is assumed that there is no correlation among the primary input parameters. Other secondary variables such as Monin-Obukhov length, friction velocity, and stability parameter are calculated from the above seven primary parameters.

Currently, the MDAMC package uses concentrations and cloud widths at certain downwind distances as indicators of model uncertainty due to input data errors.

Perhaps the most difficult problem encountered in Monte-Carlo sensitivity analyses is the specification of the distributions of the primary input parameters. The Gaussian distribution (for example, Reference 71) and the log-normal distribution (for example, Reference 72) are common choices for many ambient measurements. However, there is a lack of knowledge about the distributions for some parameters. Moreover, in the case of the surface roughness and the source emission rate, the need for a detailed description of their distributions becomes less clear. O'Neill et al. (Reference 73) found out the results of a Monte Carlo analysis of their stream ecosystem model were not sensitive to the choice of parameter distributions. Therefore, it was decided that a simple uniform distribution would be used for all parameters in this example. For a uniform distribution the probability of occurrence of the parameter is the same at all points within an upper and lower bound. Outside of these bounds, the probability of occurrence is zero.

The range of a parameter is the only information needed to fully define a uniform distribution. The ranges of uncertainties associated with meteorological observations depend on the kind of the instrument used, the averaging time, the orientation with the wind direction, and the atmospheric stability (see Volume III of this report). For simplicity, the MDAMC package assumes the following default values for the ranges of uncertainties for the input parameters; however, the user always has the option of specifying his own ranges.

wind speed (u and du): the mean \pm larger of 0.5 m/s and $\sigma_{\rm u}$ temperature difference (dT): the mean \pm 0.2°C relative humidity (RH): the mean \pm 10 percent surface roughness (z₀): the mean \pm 1/2 order of magnitude source emission rate (Q): the mean \pm 1/2 order of magnitude source diameter (D): the mean \pm 1/2 order of magnitude

For example, if the observed domain-averaged wind speed, u, is 5.6 m/s and the standard deviation, $\sigma_{\rm u}$, is 0.9 m/s, is the wind speed for each Monte Carlo simulation will be drawn randomly from the range between 4.7 and 6.5 m/s. If the reported surface roughness is 0.0316 m, the surface roughness for each Monte Carlo simulation will be drawn randomly from the range between 0.01 and 0.1 m.

C. IMPLEMENTATION

During the execution of MDAMC, the user has to specify: 1) a dispersion model whose uncertainty due to data input errors is to be investigated, 2) a trial from which perturbations on the primary input parameters will be created, 3) the number of Monte Carlo simulations to be made, and 4) the ranges for the primary input parameters, if the default values provided by the program were not desired.

The output file created by MDAMC echoes most of the user inputs just described previously. As an option, the file lists the values of the input and output parameters for each Monte Carlo simulation. Finally, the file includes the minimums, maximums, means and standard deviations for all the parameters

based on all the simulations, so that the user can analyze the relationship of input data errors to model uncertainty. An example of this output file is shown in Table 17.

D. RESULTS

In the following, the Desert Tortoise 3 experiment and the SLAB model are chosen to demonstrate the use of the MDAMC package. It takes roughly two hours to complete 500 simulations using the SLAB model on a PC with 80386 CPU and 80387 math co-processor, both running at 25MHz. The default uncertainties for the primary input parameters that were previously described were used. For the Desert Turtoise 3 experiment the following observed values were listed in the MDA: u = 7.4 m/s, du = 0.2 m/s, $dT = -0.02 ^{\circ}C$, RH = 14.8 percent, $z_{0} = 0.003 \text{ m}$, Q = 130.7 kg/s, D=0.0945 m, and u= 1.0 m/s. For a uniform distribution with the default ranges of uncertainties, the ratios of standard deviation to mean for u, du, dT, RH, z_0 , Q, and D are 0.078, 2.89, 5.77, 0.39, 0.47, 0.47, and 0.47, respectively. The MDAMC package was first run with all seven primary input parameters perturbed simultaneously. In order to isolate the influence of each parameter, MDAMC was run seven more times, each time varying only one of the primary input parameters. Table 18 summarizes the results when all seven parameters were perturbed, and the corresponding probability density functions (pdf) of the concentrations and widths are shown in Figure 20. Tables 19 through 25 summarize the results when only one of the parameters was perturbed. Model results using the original input data without any perturbation were also included in the tables and referred to as the "reference value."

Table 26 summarizes the ratio of the relative model uncertainties, $\bar{\sigma}_{\text{C}}/\bar{\text{C}}$ and $\sigma_{\text{W}}/\bar{\text{W}}$, to the relative input data uncertainties, $\sigma_{1}/\bar{\text{I}}$ (C = concentration, w = width, i = input parameter) for this particular example of Monte Carlo sensitivity analysis. Note that the relative sensitivities are less than unity for all variables and that the predictions are the most sensitive to variations in wind speed and source strength.

From Figure 20 it is clear that even though all the primary input parameters were given a uniform distribution, the distribution of the subsequent model results is far from being uniform. It is evident from Table

TABLE 17. AN EXAMPLE OF THE OUTPUT FILE GENERATED BY THE MDAMC PACKAGE, WHERE 20 MONTE CARLO SIMULATIONS OF THE SLAB MODEL FOR THE DESERT TORTOISE 3 EXPERIMENT WERE PERFORMED.

```
Trial name: dt3
No. of simulation: 20
Orig. value, l.b., u.b., mean, sigma, and sigma/mean for each variable:
Note that the means and sigmas here are based on the THEORETICAL UNIFORM distribution
u 7.40 6.40 8.40 7.40 0.577 0.780E=01
du 0.200 -0.800 1.20 0.200 0.577 2.89
dT -0.200E=01 -0.220 0.180 -0.200E=01 0.115 -5.77
dT -0.200E=01 -0.220 1.80 5.77 0.390
 Trial name: dt3
                                           14.8 4.80 24.8 14.8 5.77 0.390 0.300E-02 0.948E-03 0.948E-02 0.521E-02 0.246E-02 0.472
         RH
         z0
                                            131. 41.3 413.
0.945E-01 0.299E-01 0.299
                                                                                                                                                                   227.
0.164
                                                                                                                                                                                                               107.
                                                                                                                                                                                                           0.776E-01 0.472
         Rdiam
 AFTOX
 DEGADIS - n
 GASTAR = n
GPM = n
  SLAR
 SLAB - y
NDIST - 2
 And the downwind distances (m) are: 100. 800.
                                                                                        ďĨ
                                                                                                                                                                                                                                     Rdiam
                                                                                                                                                                                                                                                                         L
                                                                                                                                                                                                                                                                                                    PG conc (ppm)...
                                                                                                                                                                                                                                                                                                                                                                              sigy (m) ...
                                                    du
Following are the values of the parameters for each simulation:
 7.180E+00-4.577E-01 3.693E-02 2.218E+01 2.403E-03 2.990E+02 9.451E-02 4.433E+02 4 3.050E+05 2.010E+01 1.389E+01 1.06TE+02 6.864E+00 1.313E+00 4.853E-02 1.10TE+01 7.112E-03 4.092E+02 1.23E-01 7.99TE+02 4 3.399E+05 2.133E+00 4.485E+01 1.165E+02 7.804E+00 3.245E-01 1.086E-01 2.081E+01 6.710E-03 3.52TE+02 2.610E-01 6.275E+02 4 3.233E+05 1.732E+04 2.91TE+01 9.761E+01 7.811E+00-3.991E-01 1.369E-01 1.971E+01 4.210E-03 2.209E+02 2.541E-01 4.139E+02 4 2.351E+05 1.258E+04 2.892E+01 8.658E+01 7.35E+00-4.086E-01 3.886E-02 7.263E+00 3.628E-03 2.472E+02 2.541E-01 4.139E+02 4 2.631E+05 1.258E+04 2.892E+01 8.658E+01 7.250E+00-5.513E-02 3.835E-02 2.471E+01 9.208E-03 2.439E+02 2.611E-01 7.467E+02 4 2.472E+05 1.258E+04 2.892E+01 8.658E+01 7.371E+00 5.474E-01 1.230E+01 1.236E+01 8.630E-03 2.214E+02 1.248E-01-2.045E+03 4 2.703E+05 1.258E+04 2.007E+01 9.643E+01 7.371E+00 5.474E-01 1.230E+01 1.302E+01 1.084E-03 2.214E+02 1.248E-01-2.045E+03 4 2.703E+05 1.156E+04 2.007E+01 9.643E+01 7.080E+00 6.179E-01-3.019E-02 2.278E+01 1.084E-03 9.177E+01 1.313E-01 7.224E+02 4 1.722E+05 7.799E+03 1.942E+01 7.70E+01 8.364E+00-6.513E-01 5.882E-02 8.073E+00 1.5572E-03 1.757E+02 2.180E-01 4.656E+02 4 2.105E+05 1.152E+04 2.507E+01 7.962E+01 7.159E+00-3.657E-01 1.005E-01 1.489E+01 6.732E-03 3.555E+02 2.741E-01 4.581E+02 4 2.910E+05 1.5572E+04 2.703E+01 7.962E+01 7.159E+00-3.657E-01 1.005E-01 1.489E+01 6.732E-03 3.555E+02 2.741E-01 4.581E+02 4 2.910E+05 1.5572E+04 2.703E+01 7.902E+01 7.559E+00 1.063E+00-1.039E-01 1.489E+01 6.732E-03 3.555E+02 2.741E-01 4.581E+02 4 2.910E+05 1.5572E+04 2.504E+01 7.902E+01 7.559E+00 1.063E+00-1.039E-01 1.489E+01 6.732E-03 3.655E+02 1.75E+01 4.051E-03 2.577E+02 2.099E-01 1.063E+00-1 1.557E+04 2.703E+01 7.902E+01 7.559E+00 1.063E+00-1.039E-01 1.489E+01 6.732E-03 3.555E+02 2.741E-01 4.581E+02 4 3.266E+05 1.886E+04 3.254E+01 7.902E+01 7.559E+00 1.063E+00-1.039E-01 1.489E+01 6.732E-03 3.655E+02 2.732E-01 1.506E+03 4.366E+05 1.557E+04 2.703E+01 7.902E+01 7.500E+00 4.973E-01 1.349E-01 2.175E+01 4.051E-03 2.577E+02 2.055E-01 3.937E
   7.879E+00 5.178E-01-4.231E-03 2.049E+01 8.542E-03 2.229E+02 2.872E-01 1.263E+03 4 2.124E+05 1.050E+04 2.930E+01 8.343E+01 8.045E+00 7.909E-02 1.600E-01 1.108E+01 4.285E-03 2.455E+02 3.045E-02 4.606E+02 4 9.948E+04 1.062E+04 9.998E+00 9.029E+01
Following are the min., max., means and standard deviations of the parameters for all simulations:
                                                                                                                                                                                                                                                                                                               8.527E+04 2.506E+03 9.998E+00 6.115E+01
3.439E+05 2.292E+04 3.254E+01 1.204E+02
2.374E+05 1.309E+04 2.199E+01 9.180E+01
    6.433E+00-6.513E-01-2.172E-01 6.340E+00 1.084E-03 4.359E+01 3.045E-02-2.181E+03
   8.364E+00 1.131E+00 1.600E-01 2.471E+01 9.209E-03 4.092E+02 2.872E-01 3.937E+03 7.443E+00 1.405E-01 2.369E-02 1.545E+01 5.402E-03 2.358E+02 1.681E-01 5.705E+02 5.291E-01 5.764E-01 1.021E-01 5.561E+00 2.513E-03 9.319E+01 8.577E-02 1.180E+03
                                                                                                                                                                                                                                                                                                              7.503E+04 5.115E+03 7.150E+00 1.416E+01
```

TABLE 18. MODEL UNCERTAINTIES FOR THE SLAB MODEL WHEN ALL SEVEN PRIMARY INPUT
PARAMETERS (SEE TEXT) WERE PERTURBED SIMULTANEOUSLY IN 500 MONTE
CARLO SIMULATIONS FOR THE DESERT TORTOISES EXPERIMENT. (S.D.:
STANDARD DEVIATION)

	conc (ppm) @ 100m	conc (ppm) @ 800m	width (m) @ 100m	width (m) @ 800m
Reference value	210000	8545	16.8	81.3
minimum	66709	2074	9.4	57.6
maximum	424204	31130	38.5	127.7
mean	236500	13230	21.0	92.2
s.d.	87390	6032	6.7	15.1
s.d./mean	0.37	0.46	0.32	0.16

TABLE 19. MODEL UNCERTAINTIES FOR THE SLAB MODEL WHEN ONLY THE DOMAIN AVERAGED WIND SPEED WAS PERTURBED IN 500 MONTE CARLO SIMULATIONS FOR THE DESERT TORTOISE 3 EXPERIMENT. (S.D.: STANDARD DEVIATION)

	conc (ppm) @ 100m	conc (ppm) @ 800m	width (m) @ 100m	width (m) @ 800m
Reference value	210000	8545	16.8	81.3
minimum	203398	7593	15.4	74.0
maximum	215402	9595	18.6	90.4
mean	209600	8540	17.0	81.7
s.d.	3431	582	0.9	4.8
s.d./mean	0.016	0.068	0.053	0.059

TABLE 20. MODEL UNCERTAINTIES FOR THE SLAB MODEL WHEN ONLY THE DIFFERENCE IN
WIND SPEED BETWEEN DOMAIN-AVERAGE AND A TOWER WAS PERTURBED IN 500
MONTE CARLO SIMULATIONS FOR THE DESERT TORTOISE 3 EXPERIMENT. (S.D.:
STANDARD DEVIATION)

	conc (ppm) @ 100m	conc (ppm) @ 800m	width (m) @ 100m	width (m) @ 800m
Reference value	210000	8545	16.8	81.3
minimum	209700	8459	16 .8	81.0
maximum	209700	8541	16.8	81.2
mean	209700	8488	16.8	81.1
s.d.	0	21	0	0.06
s.d./mean	0	0.0025	0	0.0007

TABLE 21. MODEL UNCERTAINTIES FOR THE SLAB MODEL WHEN ONLY THE DIFFERENCE IN

TEMPERATURE BETWEEN TWO LEVELS ON A TOWER WAS PERTURBED IN 500 MONTE

CARLO SIMULATIONS FOR THE DESERT TORTOISE 3 EXPERIMENT. (S.D.:

STANDARD DEVIATION)

	conc (ppm) @ 100m	conc (ppm) @ 800m	width (m) @ 100m	width (m) @ 800m
Reference value	210000	8545	16.8	81.3
minimum	208698	8249	16.8	80.9
maximum	209702	8713	16.9	81.2
mean	209500	8494	16.9	81.1
s.d.	311	132	0.02	0.06
s.d./mean	0.0015	0.016	0.0012	0.0007

TABLE 22. MODEL UNCERTAINTIES FOR THE SLAB MODEL WHEN ONLY THE RELATIVE
HUMIDITY WAS PERTURBED IN 500 MONTE CARLO SIMULATIONS FOR THE DESERT
TORTOISE 3 EXPERIMENT. (S.D.: STANDARD DEVIATION)

	conc (ppm) @ 100m	conc (ppm) @ 800m	width (m) @ 100m	width (m) @ 800m
Reference value	210000	8545	16.8	81.3
minimum	207398	8368	16.8	81.0
maximum	211102	8641	17.0	81.2
mean	209400	8492	16.9	81.1
s.d.	1018	75	0.06	0.06
s.d./mean	0.0049	0.0088	0.0036	0.0007

TABLE 23. MODEL UNCERTAINTIES FOR THE SLAB MODEL WHEN ONLY THE SURFACE

ROUGHNESS WAS PERTURBED IN 500 MONTE CARLO SIMULATIONS FOR THE DESERT

TORTOISE 3 EXPERIMENT. (S.D.: STANDARD DEVIATION)

	conc (ppm) @ 100m	conc (ppm) @ 800m	width (m) @ 100m	width (m) @ 800m
Reference value	210000	8545	16.8	81.3
minimum	184698	6599	16.1	77.5
maximum	219102	1081 0	17.9	84.3
mean	200300	7827	17.2	79.8
s.d.	10240	1062	0.5	1.7
s.d./mean	0.05	0.14	0.029	0.021

TABLE 24. MODEL UNCERTAINTIES FOR THE SLAB MODEL WHEN ONLY THE SOURCE EMISSION RATE WAS PERTURBED IN 500 MONTE CARLO SIMULATIONS FOR THE DESERT TORTOISE 3 EXPERIMENT. (S.D.: STANDARD DEVIATION)

	conc (ppm) @ 100m	conc (ppm) @ 800m	width (m) @ 100m	width (m) @ 800m
Reference value	210000	8545	16.8	81.3
minimum	84789	2749	12.5	61.8
maximum	321303	23880	17.7	114.5
mean	257500	14450	15.0	94.5
s.d.	61460	6049	1.6	14.4
s.d./mean	0.24	0.42	0.11	0.15

TABLE 25. MODEL UNCERTAINTIES FOR THE SLAB MODEL WHEN ONLY THE SOURCE DIAMETER
WAS PERTURBED IN 500 MONTE CARLO SIMULATIONS FOR THE DESERT TORTOISE 3
EXPERIMENT. (S.D.: STANDARD DEVIATION)

	conc (ppm) @ 100m	conc (ppm) @ 800m	width (m) @ 100m	width (m) @ 800m
Reference value	210000	8545	16.8	81.3
minimum	99209	7475	11.6	79.0
maximum	210402	8504	28.4	86.2
mean	180200	8305	21.7	80.7
s.d.	23450	1955	5.3	2.1
s.d./mean	0.13	0.24	0.24	0.026

Figure 20. The probability density functions (pdf) of the concentrations and widths (sigma-y) at 200 and 800m downwind based on 500 Monte Carlo simulations of the SLAB model for the Desert Tortoise3 experiment.

TABLE 26. RATIOS OF RELATIVE MODEL UNCERTAINTIES, $\sigma_{\text{C}}/\overline{\text{C}}$ AND $\sigma_{\text{W}}/\overline{\text{W}}$, TO THE RELATIVE INPUT DATA UNCERTAINTIES, $\sigma_{\hat{1}}/\overline{i}$, FOR THE SLAB MODEL WHEN THE SEVEN PRIMARY INPUT PARAMETERS (SEE TEXT) WERE PERTURBED ONE AT A TIME IN 500 MONTE CARLO SIMULATIONS FOR THE DESERT TORTOISE 3 EXPERIMENT. (σ = STANDARD DEVIATION, OVERBAR = MEAN, C = CONCENTRATION, W = CLOUD-WIDTH, AND i = INPUT PARAMETER).

	Downwind Distance	u	du	dT	RH	^z 0	Q	D
$\sigma_{\mathbf{i}}/ \mathbf{i} $		0.078	2.89	5.77	0.30	0. 472	0.472	0.472
_ຼ ັ∖ <u>C</u>	200 m	0.21	0	0.0026	0.012	0.11	0.51	0.28
$\frac{\sqrt{C}}{\sqrt{ I }}$	800 m	0.87	0.00087	0.0027	0.023	0.29	0.89	0.050
w/W	200 m	0.71	0	0.00024	0.0085	0.058	0.23	0.52
$\frac{\sqrt{w}}{\sqrt{ \overline{1} }}$	800 m	0.75	0.00025	0.00012	0.0017	0.045	0.32	0.055

18 that large ranges of the model results due to input data uncertainties are observed. However, for the SLAB model and a horizontal aerosol jet release like Desert Tortoise 3, Table 26 shows that the large ranges in predictions are mainly attributed to uncertainties in the wind speed (u), the source emission rate (Q), and the source diameter (D). Uncertainties in the surface roughness (z_0) have a moderate influence. Uncertainties in the wind speed difference, (du), the temperature, (dT), and the relative humidity, (RH), are found to be relatively inconsequential. The results of this example point out the importance for a dispersion model to simulate the source term correctly for a horizontal aerosol jet release.

The calculated sensitivities could depend strongly on the model formulation and on the value of the original (reference) data. For example, if the uncertainty range of ΔT crosses a threshold where the PG class jumps from C to D, D to E, etc., then a large change in concentration or cloud width may result.

SECTION VII SUMMARY OF EVALUATION

The tables and figures in the previous sections provide quantitative estimates of the model performance measures for individual groups of experiments (for example, dense-gas continuous releases or neutrally-buoyant gas instantaneous releases). Emphasis was on the geometric mean bias, MG, and the geometric variance, VG, for each group. It is difficult to combine these results, since the problem often reduces to comparing "apples" to "oranges." For example, how can the BM model, which applies only to dense gas releases, be compared with the Gaussian plume model, which applies only to continuous releases of neutrally-buoyant gases?

In this section, the model evaluation exercise is generalized by combining the information from the different datasets in a qualitative manner. For this purpose, we use the following three groups of datasets:

- Group 1: Continuous dense gas releases, with short averaging times (several of the models state that they are most applicable to short rather than long averaging times)
- Group 3: Instantaneous dense gas releases (Thorney Island)
- Group 4: Continuous passive gas releases (mostly Prairie Grass)

The experiments with instantaneous passive gas releases are not included in this final summary since there were relatively few runs and all the models tended to overpredict.

A. CONCENTRATION PREDICTIONS

The evaluations discussed in Section IV emphasized use of the logarithm of concentration, which lessens the influence of outliers and which gives equal weight to over- or under-predictions. The FAC2 statistic is also a logarithmic measure, since it is the fraction of the predictions that are within a factor of two of observations. Ranking of models according to the FAC2 results is given in Table 27, where the ranges of FAC2 are arbitrarily

TABLE 27. RANKING OF MODELS ACCORDING TO FAC2 (FACTOR OF TWO) STATISTIC,
WHICH EQUALS THE FRACTION OF TIME THAT THE PREDICTIONS ARE WITHIN A
FACTOR OF TWO OF THE OBSERVATIONS.

Continuo Gas Re (Short Aver	leases	Instantaneo Dense Gas Relo		Continuous F Gas Relea	
FAC2 > 0.7	(GPM) BM HEGADAS	FAC2 > 0.8	BM AIRTOX™	FAC2 > 0.8	(SLAB) (HEGADAS)
0.6 < FAC2 < 0.1	SLAB	0.6 < FAC2 < 0.8	PHAST™ SLAB	0.7 < FAC2 < 0.8	GPM OBDG INPUFF
0.6 < FAC2 < 0.	CHARM™	0.5 < FAC2 < 0.6	GASTAR™ CHARM™		[AFTOX
0.4 < FAC2 < 0.0	TRACE [™] GASTAR [™] PHAST [™] FOCUS [™]	0.2 < FAC2 < 0.5	TRACE™ FOCUS™ DEGADIS	0.5 < FAC2 < 0.7	DEGADIS FOCUS™ TRACE™ AIRTOX™ CHARM™
FAC2 < 0.4	[(OBDG) (INPUFF) AIRTOX™	FAC2 < 0.2	(INPUFF) (AFTOX)	FAC2 < 0.5	GASTAR™

Notes: Parentheses indicate scenarios for which the model was \underline{not} originally developed.

The superscript m indicates a proprietary model.

The ranges in FAC2 were arbitrarily chosen so that the models were more or less equally divided into four or five distinct clusters.

chosen in each group such that the models are divided into four or five distinct clusters. Several conclusions can be made from this table:

- The FAC2 performance of any model is not related to its cost or complexity.
- In two of the three groups, the "best" model is one which was <u>not</u> originally developed for that scenario (that is, GPM for continuous dense gas releases and SLAB for continuous passive gas releases).
- The better models can have their predictions within a factor of two
 of the observations about 70 or 80 percent of the time.
- The BM, GPM, SLAB, and HEGADAS models demonstrate the most consistent performance for the FAC2 statistic.

Qualitative assessments based on the geometric mean bias, MG, and the geometric variance, VG, are given in Table 28. These results are sometimes slightly different from those from the "Factor of Two" analysis in Table 27. However, the four models (BM, GPM, SLAB, and HEGADAS) that produced the best "Factor of Two" agreement are on the list of six models (BM, GPM, SLAB, HEGADAS, CHARM, and PHAST) that produce the most consistent performance for the statistics MG and VG.

For safety purposes it may be better if a model overpredicts than underpredicts concentration. From this viewpoint, of the "top six" models, the SLAB and CHARM models may be less desirable because of their tendency to underpredict by a slight amount in Table 28.

B. WIDTHS

Figures 16a and 16b presented the geometric mean bias, MG, and the geometric variance, VG, for each model for the predicted and observed widths at the continuous release datasets. The better models for the dense gas releases were the AIRTOX, PHAST, and SLAB models. The AFTOX width predictions were about a factor of three low and the HEGADAS predictions were about a

TABLE 28. SUMMARY OF PERFORMANCE EVALUATION BASED ON GEOMETRIC MEAN BIAS MG
AND GEOMETRIC VARIANCE VG FOR CONCENTRATIONS, NEGLECTING
INSTANTANEOUS PASSIVE DATASET. THE TERMS "OVER" AND "UNDER" REFER
TO THE BIAS IN THE MEAN PREDICTIONS.

	Continuous Dense Gas Releases (Short Averaging Time)	Instantaneous Dense Gas Releases	Continuous Passive Gas Releases
AFTOX	(Good)	(Poor-Way Over)	Fair-Over
AIRTOX [™]	Poor-Under	+Good	+Fair
*BM	Good	+Good	
*CHARM™	Fair-Under	Fair-Under	+Fair-Under
DEGADIS	Good-Over	Poor	(Fair-Over)
F0CUS [™]	Poor-Over	Poor-Over	Good
GASTAR™	+Good	+Fair-Under	Poor-Over
*GPM	(Good-Under)		+Good
*HEGADAS	+Good		+(Good)
INPUFF	(Poor-Under)	(Poor-Over)	+Good
OB/DG	(Poor-Under)		Good
*PHAST™	Fair	Fair-Over	Good
SLAB	+Good-Under	+Fair-Under	+(Good)
TRACE™	Fair	Poor-Over	Poor-Over

Notes: Parentheses indicate scenarios for which the model was <u>not</u> originally developed.

The superscript m indicates a proprietary model.

The symbol * marks a "better" model.

The symbol + marks a model with minimal trend in its residual plots.

factor of three high, while the GPM width predictions were about 40 percent low and the GASTAR and DEGADIS predictions were about a factor of two high. For the passive gas releases, all models performed reasonably well, with little difference among the results. It is difficult to choose a "better" model from these data because of this lack of variation. As before, it is concluded that the ability of a model to accurately simulate plume widths is not a function of its cost or complexity.

C. SCREENING MODEL RECOMMENDATIONS

The results of the analyses in this section lead to the recommendation that the following simple, analytical formulas can be confidently used for screening purposes for sources over flat, open terrain:

BM (Britter and McQuaid) for continuous and instantaneous dense gas releases.

GPM (Ga asian Plume Model) for continuous passive gas releases.

There are insufficient field data to justify recommendations for instantaneous passive gas releases. However, the EPA's INPUFF model appears to perform reasonably well for the Hanford dataset in Figure 14b.

These screening models would not be appropriate for source scenarios and terrain types outside of those used in the model derivations. For example, because the screening models neglect variations in roughness length, they would be inappropriate for urban areas or heavily industrialized areas.

Acknowledgements:

The success of this project has depended upon the cooperation of dozens of model developers and experimenters, who have shared their models, data, and insights. We sincerely acknowledge the contributions of these scientists and engineers.

Captain Michael Moss of the U.S. Air Force and Mr. Howard Feldman of the American Petroleum Institute (API) have been the project monitors over the course of the study. Much useful guidance was received from the API Air Modeling Task Force (Chairman: Mr. Kenneth Steinberg of Exxon).

REFERENCES

- Zapert, J.G., Londergan, R.J., and Thistle, H., <u>Evaluation of Dense Gas Simulation Models</u> (draft), EPA Contract No. 68-02-4399(24), 1990.
- 2. Carney, T.A. A Comparative Study and Evaluation of Four Atmospheric Dispersion Models with Present or Potential Utility in Air Force Operations, and A Feasibility Study and Test Application of Uncertainty Estimates to an Atmospheric Dispersion Model, Final reports for AFESC Mini-Grant Program, Tyndall AFB, FL 32403-6001, 1986 and 1987.
- 3. Freeman, D.L., Egami, R.T., Robinson N.F. and Watson, J.G., "A Method for Propagating Measurement Uncertainties through Dispersion Models," J. Air Poll. Control Assoc., 36, pp. 246-253, 1986.
- 4. Hanna, S.R., "Air quality model evaluation and uncertainty," <u>J. Air Poll. Control Assoc.</u>, 38, pp. 406-412, 1988.
- 5. Ermak, D. L., Chapman, R., Goldwine, C., Goveia, J., and Rodean, H.C. <u>Heavy Gas Dispersion Test Summary Report</u>. ESL-TR-88-22. AFESC, Tyndall AFB, FL. June 1989.
- 6. Ermak, D.L. and Merry, M.H. A Methodology for Evaluating Heavy Gas Dispersion Models. ESL-TR-88-37. AFESC. Tyndall AFB, Florida, June 1989.
- 7. Venkatram, A., "Model Evaluation," in a <u>Short Course on Air Pollution Modeling</u>, AMS, Boston, 1986.
- 8. Mercer, A. "Methods of Validation of Heavy Gas Dispersion Models: A Review." <u>IMA Conf. on Stably Strat. Flows and Dense Gas Dispersion</u>, April 1986.
- 9. Lamb, R.G., "Air Pollution Models as Descriptions of Cause-Effect Relationships." <u>Atmos. Environ.</u>, <u>18</u>, pp 591-606, 1984.
- 10. McNaughton, J., Atwater, A., Bodner, M., and Worley, G. <u>Evaluation and Assessment of Models for Emergency Response Planning</u>. TRC report prepared for the Chemical Manufacturers Association, 229 pp. 1986.
- 11. McNaughton, D.J., Worley, G.G. and Bodner, P.M., "Evaluating Emergency Response Models for the Chemical Industry." Chem. Eng. Progress, pp. 46-51, January 1987.
- Draxler, R.R. "Diffusion and Transport Experiments." Chapter 9 in <u>Atmospheric Science and Power Production</u>. DOE/TIC-27601. USDOE, pp. 367-422, 1982.
- 13. Layland, D.E., McNaughton, D.J. and Bodner, P.M., "Assessing the Reliability of Dispersion Models for Hazardous Materials Releases." <u>Proc. 5th Joint Conf. on Applic. of Air Poll.</u> Meteorol. AMS, 1986.

- Koopman, R.P., Baker, J., Cederwall, R.T., Goldwin Jr., H.C., Hogan, W.J., Kamppinen, L.M., Kiefer, R.D., McClure, J.W., McRae, T.G., Morgan, D.L., Morris, L.K., Spann Jr., M.W. and Lind, C.D., <u>Burro series data</u> <u>report. LLNL/NWC 1980 LNG Spill Tests</u>, UCID-19075, Lawrence Livermore National Laboratory, Livermore, CA, 1982.
- 15. Goldwire, H.C. Jr., Rodean, H.C., Cederwall, R.T., Kansa, E.J., Koopman, R.P., McClure, J.W., McRae, T.G., Morris, L.K., Kamppinen, L., Kiefer, R.D., Urtiew P.A. and Lind, C.D., Coyote series data report, LLNL/NWC 1981 LNG Spill Tests: Dispersion, vapor burn, and rapid phase transition, UCID-199953, Lawrence Livermore National Laboratory, Livermore, CA, 1983.
- 16. Goldwire, H.C. Jr., McRae, T.G., Johnson, G.W., Hipple, D.L., Koopman, R.P. McClure, J.W., Morris L.K. and Cederwall, R.T., <u>Desert Tortoise</u> series data report: 1983 pressurized ammonia spills, UCID-20562, Lawrence Livermore National Laboratory, Livermore, CA, 1985.
- 17. Blewitt, D.N., Yohn, J.F., Koopman R.P. and Brown T.C., "Conduct of Anhydrous Hydrofluoric Acid Spill Experiments," <u>Proc. Int. Conf. On Vapor Cloud Modeling</u>, AIChE, New York, pp. 1-38, 1987.
- 18. Nickola, P.W., Ramsdell Jr., J.V. and Ludwick, J.D., <u>Detailed</u>
 <u>time-histories of concentrations resulting from puff and short-period</u>
 <u>releases of an inert radioactive gas: A volume of atmospheric diffusion</u>
 <u>data</u>, BNWL-1272, UC-53, Battelle Pacific Northwest Laboratories,
 Richland, WA 99352, 1970.
- 19. Puttock, J.S., Blackmore, D.R., Colenbrander, G.W., Davies, P.T., Evans, A., Homer, J.B., Redfearn, J.J., Van't Sant, W.C. and Wilson, R.P., Spill tests of LNG and refrigerated liquid propane on the sea, Maplin Sands, 1980: Experimental details of the dispersion tests, TNER.84.046, Shell Research Ltd., Thornton Research Centre, Combustion Division, 1984.
- 20. Colenbrander, G.W., and Puttock, J.S, "Dense Gas Dispersion Behaviour, Experimental Observations and Model Developments," <u>Proc. 4th International Symposium on Loss Prevention and Safety Promotion in the Process Industries</u>, Harrogate, 1983.
- Barad, M.L., <u>Project Prairie Grass</u>, A Field Program in Diffusion,
 Vol. I. AFCRC-TR-58-235 (I), AD 152572. AFGL, Hanscom AFB,
 MA 01731, 1958.
- 22. Briggs, G.A., "Similarity Forms for Ground-Source Surface-Layer Diffusion," <u>Boundary Layer Meteor.</u>, 23, pp. 489-502, 1982.
- 23. Nieuwstadt, F.T.M., "Application of mixed-layer similarity to the observed dispersion from a ground-level source," <u>J. Appl. Meteorol.</u>, 19, pp. 157-162, 1980.
- 24. van Ulden, A.P., "Simple estimates for vertical diffusion from sources near the ground," Atmos. Environ., 12, pp. 2125-2129, 1978.

- 25. McQuaid, J. (ed.), Heavy Gas Dispersion Trials at Thorney Island.
 Proceedings of Symposium at the University of Sheffield, Great Britian,
 3-5 April, 1984, Elsevier, Amsterdam, The Netherlands, 1985.
- 26. Ermak, D.L., Chapman, R., Goldwire, C., Goveia, J., and Rodean, H.C. Heavy Gas Dispersion Test Summary Report. Report for AFESC, 1988.
- 27. Perry, R.H. and Green, D., <u>Perry's Chemical Engineer's Handbook.</u> 6th edition. McGraw-Hill, New York, 1984.
- 28. Dean, J.A., <u>Lange's Handbook of Chemistry</u>, 13th edition, McGraw-Hill, New York, 1985.
- 29. Paul, M.A., King E.J. and Farinholt, L.H., <u>General Chemistry</u>. Harcourt, Brace, & World, Inc., New York, 1967.
- 30. Colenbrander, G.W., Evans, A., Puttock, J.S., Spill Tests of LNG and Refrigerated Liquid Propane on the Sea, Maplin Sands, 1980: Dispersion Data Digests, TNER. 83.063 through TNER. 83.073, and TNER. 84.025 through TNER. 84.043. Thornton Research Centre, Shell Research Ltd., 1984.
- 31. McQuaid, J. and Roebuck, B., <u>Large Scale Field Trials on Dense Gas Vapor Dispersion: Final Report to Sponsors on the Heavy Gas Dispersion Trials at Thorney Island 1982-84</u>, Health and Safety Executive, Safety Engineering Laboratory, Sheffield, England, 1985.
- 32. Puttock, J.S., "Comparisons of Thorney Island Data with Predictions of HEGABOX/HEGADAS." J. Haz. Mat., 16, pp 439-455, 1987.
- 33. Akuma, E., Costanza, P., and Hagen, G., "Consequence Analysis of Atmospherically Dispersed Toxic Chemical Releases: Modeling for Planning and Emergency Response," Proc. of the 7th Technical Seminar on Chemical Spills, sponsored by Environment Canada, Edmonton, Alberta, 1990.
- 34. Raj, P.K. and Morris, J.A., <u>Source Characterization and Heavy Gas Dispersion Models for Reactive Chemical</u>, AFGL-TR-88-0003(I). AFGL, Hanscom AFB, MA 01731, 1987.
- 35. Harris, L.A., ed. <u>The CAMEO Manual</u>. National Oceanic and Atmospheric Administration, Hazardous Materials Response Branch, Modeling and Simulation Studies, Seattle, WA, 218 pp. 1987.
- 36. <u>Handbook of Chemical Hazard Analysis Procedures</u>, FEMA, Publications Office, 500 C Street, S.W., Washington, D.C. 20472, 1989.
- 37. Moser, J.H., <u>CADM: A Computer Program for Modeling the Dispersion of Heavy Gas in Calm Air</u>, SoftSkills, Inc., P.O. Box 989, Cypress, TX 77429, 1989.
- 38. McFarlane, K., Prothero, A., Puttock, J.S., Roberts, P.T., and Witlox, H.W.M., <u>Development and Validation of Atmospheric Dispersion Models for Hydrogen Fluoride</u>, <u>Part I: Technical Reference Model</u>, TNER. 90. 015, Shell Research Ltd., Thornton Research Centre, Chester, England, 1990.

- 39. Kunkel, B.A., <u>User's Guide for the Air Force Toxic Chemical Dispersion Model (AFTOX)</u>, AFGL-TR-88-0009. AFGL, Hanscom AFB, MA 01731, 1988.
- 40. Heinold, D.W., Paine, R.J., Walker, K.C., and Smith D.G., "Evaluation of the AIRTOX dispersion algorithms using data from heavy gas field experiments." <u>Proc. 5th Conf. on Application of Air Poll. Meteorol.</u>, AMS, Boston, 1986.
- 41. Mills, M., "Techniques for Modeling Jet Releases for Emergency Prevention and Preparedness Applications," 1988 Hazardous Materials Spills Conference, co-sponsored by the American Institute of Chemical Engineers and the National Response Team, Chicago, IL, 1988.
- 42. Britter, R.E. and McQuaid, J., <u>Workbook on the Dispersion of Dense Gases</u>. HSE Contract Research Report No. 17/1988. Health and Safety Executive, Sheffield, UK, 129 pp, 1988.
- 43. Eltgroth, M., Complex Hazard Air Release Model (CHARM) Version 6.0 Technical Document, Radian Corporation, Austin, TX 78720, 1990.
- 44. Havens, J.A., <u>A Dispersion Model for Elevated Dense Gas Jet Chemical Releases</u>, Volumes I and II, EPA-450/4-88-006, U.S. Environmental Protection Agency, 1988.
- 45. Spicer, T.O., and Havens, J.A., <u>Development of Vapor Dispersion Models</u>
 <u>for Non-neutrally Buoyant Gas Mixtures -- Analysis of TFI/NH3 Test Data</u>,
 ESL-TR-87-72, AFESC, Tyndall Air Force Base, Florida, 1988.
- 46. <u>Focus Input and Reference Manuals</u>, Quest Consultants, Inc., Norman, OK, 1990.
- 47. GASTAR Dense Gas Dispersion Model Version 2.2 User Guide, Cambridge Environmental Research Consultants, Cambridge, England, 1990.
- 48. Hanna, S.R., Applications in air pollution modeling. Ch. 7 in Atmospheric Turbulence and Air Pollution Modeling. (F.T.M. Nieuwstadt and H. van Dop, eds.), D. Reidel, Dordrecht, Holland, pp. 275-310, 1982.
- 49. Witlox, H.W.M., <u>User's Guide for the HEGADAS Heavy Gas Dispersion</u>
 Program, Shell Research Ltd, 1988.
- 50. Petersen, W.B. and Lavdas, L.G. <u>INPUFF 2.0 A Multiple Source Gaussian Puff Dispersion Algorithm</u>. Users Guide, ASRL, USEPA, Research Triangle Park, NC, 1986.
- 51. Nou, J.V. <u>The Ocean Breeze and Dry Gulch Diffusion Programs</u>, AFCRL, Hanscom AFB, MA, 1963.
- 52. Phast Version 2.0 Theory Manual, Technica Ltd., London, England, 1989.
- 53. Ermak, D.L., <u>User's Manual for SLAB: An Atmospheric Dispersion Model for Denser-Than-Air Releases (Draft, November Version)</u>, Lawrence Livermore National Laboratory, Livermore, CA 94550, 1989.
- 54. <u>User's Manual for TRACE II</u>, E. I. Dupont DeNemours, 5700 Corsa Ave., Westlake Village, CA 91362, 1989.

- 55. Fleischer, M.T. <u>SPILLS</u>, <u>An Evaporation/Air Dispersion Model for Chemical Spills on Land</u>. Shell Development Center, Westhollow Research Center, P.O. Box 1380, Houston, TX, 77001, 1980.
- 56. Golder, D., "Relations Between Stability Parameters in the surface layer.

 <u>Bound. Layer Meteorol.</u>, 3, pp. 46-68, 1972.
- 57. Mitchell, A.E., Jr., "A comparison of short-term dispersion estimates resulting from various atmospheric stability classification methods," Atmos. Environ., 16, pp. 765-773, 1982.
- 58. Eidsvik, K.J., "A Model for Heavy Gas Dispersion in the Atmosphere," Atmos. Environ., 14, pp. 69-77, 1980.
- 59. Havens, J.A. and Spicer, T.O., <u>Development of an Atmospheric Dispersion Model for Heavier-than-Air Gas Mixtures</u>, Final report to U.S. Coast Guard, CG-D-23-85, USCG HQ, Washington, DC, 1985.
- 60. Ooms, G., Mahieu A.P. and Zelis, F., The plume path of vent gases heavier than air. <u>Proc. First International Symposium on Loss Prevention and Safety Promotion in the Process Industries</u>, C.H. Buschman, Ed., Elsevier Press, 1974.
- 61. Turner, D.B., <u>Workbook of Atmospheric dispersion estimates</u>, Office of Air Programs Publication No. AP-26 (NITS PB 191-482). U.S. Environmental Protection Agency, Research Triangle Park, NC, 84 pp, 1970.
- 62. Briggs, G.A. <u>Diffusion Estimation for Small Emissions</u>. ATDL Contribution File No. 79, Atmospheric Turbulence and Diffusion Laboratory, 1973.
- 63. Colenbrander, G.W., "A Mathematical Model for the Transient Behaviour of Dense Gas Vapour Clouds," <u>Proc. Third International Symposium on Loss Prevention and Safety Promotion in the Process Industries</u>, Basle, 1980.
- 64. Irwin, J.S., Estimating plume disperison—A comparison of several sigma schemes. J. Climate Applied Meteorol., 22, pp. 92-114, 1983.
- 65. Draxler, R.R., "Determination of Atmospheric Diffusion Parameters," <a href="https://doi.org/10.1076/ncm.nc.nl
- 66. Cramer, H.E., "Improved Techniques for Modeling the Dispersion of Tall stack plume," In: <u>Proceedings of the Seventh International Technical Meeting on Air Pollution Modeling and its Application</u>, No. 51, NATO/CCMS, pp. 731-780, (NTIS PB 270-799), 1976.
- 67. Rao, K.S., <u>Analytical solutions of a gradient-transfer model for plume deposition and sedimentation</u>, NOAA Tech. Memo. ERL ARL-109, 75 pp., EPA-600/3-82-079, U.S. Environmental Protection Agency, Research Triangle Park, NC, (NTIS PB 82-215 153), 1982.
- 68. Cox, R.A. and Carpenter, R.J., "Further Development of a Dense Cloud Dispersion Model for Hazard Analysis," In F. Hartwig (ed.), <u>Heavy Gas and Risk Assessment</u>. D. Reidel, Dordrecht FRG, 1980.

- 69. Hanna, S.R., "Confidence limits for air quality model evaluations, as estimated by bootstrap and jackknife resampling methods," <a href="https://example.com/Atmos
- 70. Tukey, J.W., <u>Kinds of Bootstraps and Kinds of Jackknifes</u>, <u>Discussed in Terms of a Year of Weather-Related Data</u>, Tech. Report 292, Dept. of Statistics, Princeton University, 08544, 1987.
- 71. Lewellen, W.S. and Sykes, R.I., "Meteorological Data Needs for Modeling Air Quality Uncertainties," <u>J. Atmos. and Oceanic Tech.</u>, 6, pp. 759-768, 1989.
- 72. Irwin, J.S., Rao, S.T., Petersen, W.B. and Turner, D.B., "Relating Error Bounds for Maximum Concentration Estimates to Diffusion Meteorology Uncertainty," Atmos. Environ., 21, pp. 1927-1937, 1987.
- 73. O'Neill, R.V., Gardner, R.H. and Carney, J.H., "Parameter Constraints in a Stream Ecosystem Model: Incorporation of a Priori Information in Monte Carlo Error Analysis," <u>Ecological Modeling</u>, 16, pp. 51-65, 1982.

APPENDIX A

MODELERS DATA ARCHIVES FILES

Included in this Appendix are the listing of the Modelers Data Archives (MDA) files for the following experiments:

Burro
Coyote
Desert Tortoise
Goldfish
Hanford (continuous)
Hanford (instantaneous)
Maplin Sands (LNG)
Maplin Sands (LPG)
Prairie Grass
Thorney Island (continuous)

Thorney Island (instantaneous)

. Methane is at least 91% in composition . 3-char, abbreviation of chemical : number of trials included in MDA	trial ID month day year hour hour minute	mol. weight (g/mole) normal boiling point (K) specific heat - vapor (J/kg-K) specific heat - liquid (J/kg-K) density of liquid (J/kg-K) density of liquid (J/kg-K) density of liquid (J/kg-K) coefficient A for vapor pressure equation coefficient B for vapor pressure equation coefficient B for vapor pressure eath pressure (km) source temperature (K) source type (IR, HU, AS, EP) source type (IR, HU, AS, EP) source containment diameter (m) spill levaporation rate (kg/s) spill duration (spm) initial concentration (ppm) ambient pressure (stm) initial concentration (ppm) ambient pressure (stm) sabient temperature (li)	masurement height for temperature \$1 (m) masurement height for temperature \$1 amblent temperature \$2 - upper (%) measurement height for temperature \$2 (m) soil temperature (%) soil meisture (%) measurement height for wind speed (m) domain-avg wind speed (m/s) domain-avg sigma-theta (deg) domain-avg sigma-theta (deg) measurement ht for domain-avg wind data (m) domain-avg sigma-theta (deg) specially for wind speed (m) friction velocity u-star (m/s) bowen ratio estimate troughness length 20 (m) friction velocity u-star (m/s) bowen ratio estimate cloud cover (%) latitude (deg) latitude (deg) latitude (deg) latitude (deg) latitude (deg) latitude for averaged concentration (s) suggested receptor height for modeling (m) number of distances downwind (m) distance downwind (m)
	BU9 9 9 17 80 18	18.82 5111.6 5111.6 511300. 22338.5 443.4 443.4 45.1 111.6 6. 111.6 135.98 79.98 79.98 10730.	306. 306.
	8 3 9 EC 8	18.12 511900. 22380. 22380. 436.5 436.5 41.6 41.85 41.85 111.6 41.85 1000000. 306.02	13000000000000000000000000000000000000
	8 2 2 2 2 3 1 8 1 1 8 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	18.22 5113.6 5113.6 5238.6 5338.6 6.538.8 1111.6 6.54.6 117.8 117.8 117.8 1000000.	100.00
	B 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	17.24 511900. 2238. 3348.5 432.3 6.8083 983.89 111.6 37.17 129. 58 129. 129. 129. 129. 129. 129.	13.67 13.67 13.64 10.16 10.10 10.00 10
	BUS 16 36 20	17.06 51113.6 522300. 522300. 533400.5 633600. 633600. 63600. 63600. 63600. 63600. 63600. 63600. 63600. 63600.	11140. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	80 9 14 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0	17.05 511900. 22388.5 3348.5 3348.5 131.2 963.69 111.6 111.6 1175. 1521. 1522. 1000000.	00000000000000000000000000000000000000
Burro Liquefied natural gas LNG	BC 3	17.26 5111.6 5111.6 5210. 3348.5 432.7 8.32.7 983.89 111.6 10.00 10.30 167.98 167.98 167.98 167.98	3007.75 3007.7
Burro Liquefied	80.2 6 6 18 15 15 54	17.46 511900. 2238. 3348.5 3348.5 344.1 4.8083 983.89 -99.9 111.6 35.91 0 0 0 149.0 1000000.	111.27 110.22 110.22 110.22 110.22 113.5 113.

```
cloud cover (%)

Pasquill-Gifford stability class (A-1;D-4;F-6)

latitude (deg)

longitude (deg)

averaging time for peak concentration (s)

concentration of interest for modeling (pps)

suggested receptor height for modeling (m)

number of distances downwind

distance downwind (m)

distance downwind (m)
                                                                                                                                                                                                                                                                                                                                         cotal released (kg)
anbient pressure (atm)
anbient pressure (atm)
relative hundidity (%)
ambient temperature #1-lower (K)
measurement height for temperature #1 (m)
anbient temperature #2-upper (K)
anbient temperature #2-upper (K)
anbient temperature #2-upper (K)
soil temperature (K)
soil temperature ((%)
soil moisture (1:dry,2:moist,3:water)
wind apped (m)
soil moisture (1:dry,2:moist,3:water)
wind apped (m)
soil moisture (1:dry,2:moist,3:water)
mossurement height for wind speed (m)
domain-avg wind speed (m/s)
domain-avg sigma-u (m/s)
domain-avg sigma-theta (dg)
mossurement ht for domain-avg wind data (m)
sveraging time for domain-avg data (s)
roughness langth zo (m)
ifficion velocity u-mtar (m/s)
bowen ratio estimate
inverse Monit-obukhov langth (1/m)
                                                                                                                          moi. weight (g/mole)
normal boiling point (K)
special to evaporation (J/kg)
special heat - vapor (J/kg-K)
special heat - liquid (J/kg-K)
density of liquid (g/m+2)
coefficient A for vapor pressure equation
coefficient B for vapor pressure equation
coefficient B for vapor pressure equation
coefficient B for vapor pressure equation
source temperature (K)
source diameter (m)
source elevation (m)
source phase (IR,HJAS,EP)
source type (IR,HJAS,EP)
source containment diameter (m)
spill diameterion (s)
total released (Kg)
       Hethane is at least 86% in composition
3-char, abbreviation of chemical
number of trials included in MDA
time zone designation
trial ID
month
                                                                                                                  minute
                                                                                                                                                                                                                                                                                                                               10139.
1000000.
.930
22.8
297.26
                                                                                                                             119.09
1111.6
221390.
33348.5
3348.5
6.8083
6.8083
199.9
                                                                                                                                                                                                                                                                                                                                                                                              297.46
                                                                                                                                                                                                                                                                                                  56.
123.03
                                                                                                                                                                                                                                                                                                                                                                                                                   4.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          180.
.0002
.200
.0136
.0136
60.
4
35.9
117.7
                                                                                                                                                                                                                                                                                                                                                                                                                                                     ŏ
Coyota
Liquefied natural gas
LNG
                                                                                                                                                                                                                                                                                                                                12676.
1000000.
.927
                                                                                                                              20.19
111.6
511900.
52180.
33.48.5
33.48.5
983.89
983.89
1111.6
                                                                                                                                                                                                                                                                                                                                                                                               300.29
                                                                                                                                                                                                                                                                                                    58.
                                                                                                                                                                                                                                                                                                                                                                       22.1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     33.
5.33.
25.33.
180.
642.
-699.9
                                                                                                                                                                                                                                                                                                                                                                                                                             99.9
                                                                                                                                                                                                                                                                                                                                                                                                                                             10.47
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    35.9
117.7
1.
90.
                                                                                                                                                                                                                                                                                              58.
100.67
653.
1000000.
.924
11.3
                                                                                                                              19.51
1111.6
2211900.
2211900.
2211900.
333.683.
299.99
208.399.99
208.399.99
                                                                                                                                                                                                                                                                                                                                                                                                2.
310.38
4.
-99.9
                                                                                                                                                                                                                                                                                                                                                                                                                                              8
```

. 3-cher, abbreviation of chamical : number of trials included in MDA : time zone designation	: trial ID	: day	140X		: mol. weight (g/mole)	: normal bolling point (K) - latest heat of evaporation (1/kg)	* Dest Cabacity - Value (J/Kg-K)	: heat capacity - liquid (J/kg-K)	density of liquid (kg/m**3)	: coefficient A for vapor pressure equation : coefficient B for vapor pressure equation	: exit pressure (atm)	: source temperature (K)	: Bource diameter (B)	: source type (IR, HJ, AS, EP)	: source phase (I,C,G)	: source containment dismeter (B)	: Spiri/Sesponserion (ats (Ag/s)	: total released (kg)	: initial concentration (ppm)	: ambient pressure (atm) : relative humidity (4)	: ambient temperature #1-lower (K)	; measurement height for temperature (1 (m)	: BEDient temperature #2-upper (%)	•	: soll moisture (1:dry, 2:moist, 3:water)	: wind speed (m/s,	. domain and wind appead (a/a)	: domain-avg sigma-u (m/s)	. domain-evg elgma-theth (deg)	: averaging time for domain-avg data (s)	: roughness length 20 (m)	: Kriction Welching Care; (a/s)	: inverse Hanin-Obukhov length (1/m)	: Cloud cover (%) . Basen: 13.clfford erability rlass (Asl.) Did.Dif.	: Pasquitt-cirtord scapificy ciass (A-17D-477-5) : latitude (deg)	: longitude (deg)	: averaging time for peak concentration (s)	concentration of interest for modeling (ppm)	: suggested receptor height for modeling (m)	: distance downwind	: distance downwind (terminal record: -99.9)	THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF
	D14	. 😘		12	17.03	239.7	2190.0	4490.0	682.8	2132.52	11.64	297.3	0.0945		v	6.66-	, ee	6.66-	1.06+06	2):3	305.63	0.82	306.90	304.0		79.7		6.66-	o .c	180.	0.003	R . 66 1	-99.9	 	36.7	116.0	1.	100.		100.	800.	
	oT3	٠, ~	69 -	33	17.03	239.7	2190.0	4490.0	682.8	2112.52	11.23	295,3	0.0945	X CR	U	9.66	130.7	6.66·1	1.00+06	0.00	307.07	0.82	307.05	304.6	~	7.60	6	1.0	60 6	180.	0.003	N. 00 1	6.66-	70.0	36.7	116.0	1.	100.		100.	.000°	
se nonte	DT2	5 8	833	20	17.03	239.7	3190 0	4490.0	682.8	10.31499	11.02	293.3	0.0945	F. 5	٠	6.66-	111.5	6.66	1.04+06	0.838	303, 63	0.82	304,31	16.19		5.54	9. % 8. %		7.5	180	0.003	or 0	6.66-	4 .0	16.7	116.0	.,	100.		100.	800.	. 77° A
Desert Tortoise Anhydrous Ammonia NH3	110	24	63.	37	17.03	239.7	1,376+06	4490.0	682.8	10.31499	10.0	294.7	0.061	F	ں آ	6.66-	79.7	120	1.0a+06	0.897	13.2	0.62	303.31	16.19	3. 1. 1.	7.73	3.36		5.7	780	0.003	6.66-	.99.9	1.0	# *	116.0		100.		190	800.	- 47. X

```
maintenant boiling point (K)
latent heat of evaporation (J/kg)
latent heat of evaporation (J/kg-K)
specific heat - liquid (Kg/m**3)
coefficient A for vapor pressure equation
exit pressure (atm)
source temperature (K)
source elevation (m)
source elevation (m)
source elevation (m)
source containment diameter (m)
spill duration (M)
soulce phase (L,C,G)
source containment diameter (M)
soulce phase (L,C,G)
source containment diameter (M)
soulce containment diameter (M)
soulce phase (L,C,G)
source containment diameter (M)
soulce containment diameter (M)
soulce containment diameter (M)
soulce containment to (M)
soulce containment beight for temperature (R)
smeasurement height for wind speed (M)
domain-avg sigma-theis (de)
domain-avg sigma-theis (de)
soulce selective (m/s)
domain-avg sigma-theis (M)
soulce montain the for domain-avg data (s)
roughness length zo (m)
soulce won ratio estimate
inverse Month-Obukhov length (1/m)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             cloud cover (%)
Pasquill-Gifford stability class (A=1;D=4;F=6)
latitude (deg)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         iongitude (deg)
averaging time for peak concentration (s)
averaging time for averaged concentration (s)
concentration of increst for modeling (ppm)
suggested receptor height for modeling (p)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  number of distances downwind
distance downwind (m)
distance downwind (m)
distance downwind (m)
distance downwind (terminal record: -99.9)
                                                             3-char, abbreviation of chemical
number of trials included in MDA
time zone designation
trial ID
                                                                                                                                                                                                                                         minute
                                                                                                                                                                                                                                                           20.01
292.7
373000.
1450.
2528.
3104.51
3104.51
312.2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              -99.9
10.27
360.
1000000.
1894
17.7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  2.
308.96
16.6
-99.9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    2.
5.4
19.9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             .80
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                -99.9
10.46
346.
1000000.
.889
10.7
                                                                                                                                                                                                                                                             20.01
292.7
373000.
1450.
2528.
287.
11.06
311.2
311.2
Goldfish
Hydrogen fluoride
Hf
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     2.
309.41
16.6
-99.9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              29.9
27.67
125
3459.
1000000.
.49
                                                                                                                                                                                                                                                             20.01
292.7
373000.
1450.
2528.
2987.
311.06
5.8
313.2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  2.
310.93
16.6
-99.9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               55. 79

5. 79

5. 70

5. 70

5. 70

6. 70

6. 70

6. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7. 70

7
```

Krypton-es K85					. 3-char, abbreviation of chemical
. <u>.</u>					: number of trials included in MDA
_ [,,,,	177	7JR	, CH	TIME NOTE DESIGNATION
116	101	20	10	11	. storth
, wr	17	73	~	-	A 70
. 63	C9	29	29	67	IRBA I
90	90	==	==	90	: hour
2	05	10	10	12	
29.0	29.0	29.0	29.0	29.0	: Mol. weight (g/mole) (of air)
120.3	120.3	120.3	120.3	120.3	: normal boiling point (K)
15800.	115600.	115400.	115800.	115600.	: latent nest of evaporation (J/kg)
249.	249.	249.	249.	249.	" specific heat " vapor (J/kg-K)
6.66	6.66	20.00	5,00		: specific heat - liquid (J/kg-K)
B. 66	B. 65-	\$. T. T.	A 44	5. C.	sensity of liquid (kd/m=3)
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 d	N 5 5 5 5	A 60 1		. coefficient A for wappy pressure equation
	6.00.	- 99.9	6.66-	6.66	. Collectivides to the department of the collection of the collect
90.87	285.43	286.93	286.65	276.62	: source temperature (K)
6.66	6.66-	-99.9	-99.9	-99.9	: source diameter (m)
•	:		 	-:	: source elevation (m)
AS	AS	YS.	As	S é	: source type (IR, HJ, AS, EP)
	, G	9	9		: source prase (L/C/G)
P. V. V.	2000	0220	038.0	0171	. Bodroe concernment drawcer (m)
28	508	955	596.	1191.	: moill deretion (m)
10.9	10.9	23.6	22.8	₹0.4	: total released (kg)
.000000	10000001	10000001	1000000.	1000000.	: 1 itlal concentration (ppm)
6.66-	6.66-	ø, 66-	-96-	6.66-	: Ballient Dressure (atm)
B. 500	N. W. O.	. W	29.3	.33.3	: relative numically (4)
790.04	6		6.00	7 B . B . Y	. Measurement below for temperature 47 (8)
292.19	284.71	287.54	284.65	279.32	
6.1	15.	15.	15.	15.	: measurement height for temperature #2 (m)
6.66	6.66-	6.66-	£. £.	-99.9	
ŗ		-	•		: BOLL BOLKEING (1:GLY, 4:BOLKE, 3:KBKGFF; . 1/sc eread (8/s)
i srī			1.5	1.5	: measurement helpht for wind speed (s)
	3.0	7.1	3.9	2.6	
23	90	¥.,	1.02	. 58	: domain avg migma-u (m/s)
11.8					
2340			660	1480.	: mesturement no tot comain-avg wind gata (m)
0.03	0.03	0.03	0.03	0.03	
6.66	6.66-	- 99.9	-99.9	-99.9	: friction velocity u-star (m/s)
-99.9	-99.9	6.66-	-99.9	-99.9	: bowen ratio estimate
-99.9	6.66-	-99.9	-99.9	-99.9	: inverse Monin-Obukhov langth (1/m)
6 66	6.66-	6.66-	-99.9	-99.9	: cloud cover (4)
, e	7	, ,	, ,	, ,	: Pasquill-Gifford Brabilly class (Atl; D=4; F=6) . lestends (Atl; D=4; F=6)
119.5	119.5	119.5	119.5	119.5	. Jonditude (dep)
	38.4	38.4	38.4	36.4	: averaging time for peak concentration (m)
8.091	844.8	268.8	268,8	537.6	: averaging time for averaged concentration (s)
	0.1				
v	1.5 C	r.,	1,1	c. 2	: suggested receptor neight for sodeling (s)
200.	200.	200.	200.	200.	
800	800	800	800	-	Agent and

Hanford (1	Hanford (instantaneous)	=				•
Krypton-85		·				
						notation appropriate the comments of the comme
, i	нгэ	HTS	H16	HI7	H 78	· trime come designation
v 5	10	10	2	2	11	: Bonth
-	17	23	23	24	80	day
67	63	67	.	67	67	: year
23	, e	0.5	16	23	2 6	. nour
29.0	29.0	29.0	23.0	29.0	29.0	: mol. weight (g/mole) (of mir)
120.3	120.3	120.3	120.3	120.3	120.3	ing point
115800.	115800.	115800.	1.5800.	115800.	115800.	: latent heat of evaporation (J/kg)
249.	249.	249.	249.	249.	249.	: specific heat - vapor (3/kg-K)
-99.9	N . N . C	, d	W 00 0	n 6	N 40	: specific near - liquid (J/Kg-K)
6.66	n 0	V 40.	N 0 0 0 0	N. 00 1	N 00 1	: density of indust (kg/m=1)
6.00.1	6.66-	6.66-	-66.6	6.66-	6.66-	: coefficient B for vapor pressure equation
6.66-	6.66-	6.66-	-99.9	6.66-	6.66-	: exit pressure (atm)
291.54	285.09	288.71	288.26	265.59	277.76	: source temperature (K)
6.66-	6.66-	6.66-	6.66-	-99.9	6.66-	diameter (
ö	ö	o i	· i	· :	. 1	: source elevation (m)
& (د ر	# (= (ž (* 0	
و	901	a a a	9 1	9	9 0	. BOOKER Present (12,7,5)
	. 00.	4 4 4		0.001		
6,66	6.66-	O	-99.9	0.00-	6.66-	: spill duration (s)
10.0	10.0	0.74	10.0	10.0	10.0	total released (C1)
1000000.	10000001	10000001	1000000	1000000	1000000	: initial concentration (ppm)
6.66-	9.66-	0.00	6,66	99.0	e 66-	. bebient pressure (atm)
6.66	D. 200.		20.000	786.00	9.84-	: relative numidity (%)
1 5	60.03		1.5.1			. measurement heloht for temperature 41 (m)
293.21	284.65	287.32	207.43	284.21	278.43	:
6.1	15.	15.	6.1	15.	15.	: measurement height for temperature 62 (m)
6.66-	-99.9	-99.9	6.66-	-99.9	6.66-	
	, 4 ·	\ 1	,	,		: soll moisture (lidry, 2:moist, 3:water)
		a .	7.7	r	e .	: Wind speed (6/8)
 		9.6		1 47		. domain-ave wind about (8/8)
5	.76	1.58	1.19	.87	.29	: domain-avg sigma-u (m/s)
7.7	5.1	7.9	5.4	9.1	6.7	: domain-avg sigma-theta (deg)
1.5	1.5	1.5	n (2.5	1.5	domain-avg wind
1200.					. 6	: Averaging time to: domain-avg data (8)
6.00	6.66-	6.66-	6.66-	6.66-	6.66-	: friction velocity u-star (3/8)
-99.9	6.66-	6.66-	6.66-	-99.9	6.66-	: bowen ratio estimate
6.66-	-99.9	6,66-	-99.9	6.66-	-99.9	: inverse Monin-Obukhov length (1/m)
6.66-	-99.9	6.66-	6.66-	-99.9	6.66-	: cloud cover (%)
•	·	m ;	, ,	m ;	· ·	: Pasquill-Gifford stability class (A-1;D-4;F-6)
46.5	110 5	46.0	110.5		40.0	: Intitude (ded)
						. scarsolng time for near concentration (e)
E) 60	. .) 4 0	: averaging time for averaged concentration (s) : averaging time for averaged concentration (s)
0.1	0.1	0.1	0.1	0.1	0.1	: concentration of interest for modeling (ppm)
2.5	1.5	٠. د.	1.5	1.5	1.5	: suggested receptor height for modeling (m)
2	700	7,0	200	200	200	. number of distances downwing . Alerance Action and Ac
200. 3 00	7007	. 700 800	200	200.	800.	: Distance downwind (B)
-99.9	-99.9	6.66-	6.66-	-99.9	-99.9	

```
minute minute minute minute minute minute minute minute minute more about the deat of evaporation (J/kg-K) heat capacity - vapor (J/kg-K) heat capacity - vapor (J/kg-K) heat capacity - vapor (J/kg-K) heat capacity of liquid (Mg/m**3) coefficient A for vapor pressure equation coefficient B for vapor pressure equation cource diameter (m) source diameter (m) source containment diameter (m) source containment diameter (m) source containment diameter (m) source containment diameter (m) spill duration (s) cotal released (kg) initial concentration fam sablent temperature (a) cotal released (kg) initial concentration (s) sablent temperature (film) soil measurement height for temperature (ind) soil moisture (ind) domain-avg sigma-theight for vind speed (m) domain-avg sigma-theight for domain-avg diame-theight for domain-avg diame-theight for domain-avg diame-theight for domain-avg diame for domain-a
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   cloud cover (%)
Paquill-Gifford stability class (A-1;D-4;F-6)
latitude (deg)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   longitude (deg)

averaging time for peak concentration (s)

averaging time for averaged concentration (s)

concentration of interest for modeling (ppm)

suggested receptor height for modeling (m)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     (terminal record: -99.9)
                           3-char, abbreviation of chemical
number of trials included in MDA
time zone designation
trial ID
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                umber of distances downwind
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         distance downwind distance downwind distance downwind distance downwind distance downwind distance downwind distance downwind
                                                                                                                     Year
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            27.09
27.09
27.09
3657.7
1000000
1000000
289.30
288.81
288.81
288.81
289.8
                                                                                                                                                                                                                                                                                                                                                                            21.51
21.51
20.43.6
1000000
-99.9
-99.9
268.40
268.06
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0.0003
9.99-
9.99-
9.99-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             100.
0.9
                                                                                                                                                              16.66
1111.7
1111.7
2238.0
3348.0
430.2
597.84
Maplin Sands
Liquified Natural Gas
LNG
                                                                                      29.9
29.16
225
6561.3
1000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            100.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      71
289.30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1.9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               225
0.0003
-99.9
-99.9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  -99.9
                                                                                                                                                                               509880
2238.0
2238.0
3348.0
5.425.3
597.096
1111.7
                                                                                                                                                                                                                                                                                                                                                              23.21
23.21
160
3714.4
1000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               160
0.0003
-99.9
-99.9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             100.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         51.0
1.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   288.10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         287.7
```

olin Sai	plin sands quified Propane Gas	20.00					•••	
								. 3-char. abbreviation of chemical comber of trials included in MDA
0							• ••	time zone designation
MS42	MS43	MS46	MS47	MS49	HS20	MS52	HSS4	trial ID
o. 5	en e	9.	3-	2 4	2 *	9	0 4	
9 6	0 6	108	. 6	9	9	98		
22	11	15	16	10		7	•	hour
S	18	12	16	37	38	#	25	•
43.93	43.93	43.95	13.64	43.76	43,93	43.87	43.94	
231.1	231.1	231.1	231.1	231.1	231.1	231.1	231.1	: normal boiling point (K)
0 0 0 0 0 0 0 0 0	0 8/91	1678.0	1678.0	1678.0	1678.0	1678.0	1678.0	heat capacity - vapor (1/kg-K)
2520.0	2520.0	2520.0	2520.0	2520.0	2520.0	2520.0	2520,0	heat capacity - liquid (J/kg-K)
500.9	800.9	500.8	501.0	501.2	500.9	501.0	500.8	density of liquid (kg/m**3)
9.0927	9.0927	9.0927	9.0927	9.0927	9.0927	9.0927	9.0927	coefficient A for vapor pressure equation
872.46	1872.46	1872.46	1872.46	1872.46	1872.46	1872.46	1872.46	coefficient B for vapor pressure equation
6.66-	6.66	9.00.	1 10 C) W. C.	198.4	2. VV. V	199.9	exit pressure (atm)
1.16.	1.167	15.7	18.6	1. E.	19.5	21.7	14.3	BOCKICS CARPOING (B)
				•	0	0	0	source elevation (m)
, a,		E.P	63	EP	EP	괍	4	source type (IR, HJ, AS, EP)
	u	_1	H	ч	- 4			: storage phase (L-liq, C-cryo, G-gas)
-99.9	6.66-	6.66-	6.66-	6.66	6.66	6.66-	6.66-	source containment diameter (m)
20.87	19.20	23.37	32.57	16.71	35.69	44.25	19.20	: spill/evaporation rate (kg/s)
180	330	360	210	. מינ מיני	100	195	097	split duration (s)
4.4000	100000	10000001	1000000	1000000	1000000	1000000	1000000	fult(a) concentration (out)
9 6 6 7	66-	6.66-	-99.9	6.66-	8.66-	6.66-	6,66-	
6.66-	6.66-	11	78	8	79	63	88	
291.50	290.20	291.90	290,60	286,50	283.60	285,00	261,60	ambient temperature #1-lower (K)
1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.9	measurement helght for tempe
291.49	290.12	291.86	290.07	70.71	10.1	263.63	201.03	: ambient temperature #2-upper (K) : mesenrement helcht for temperature 40 (m)
20.1	292.1	290.5	290.3	286.2	263.1	285.1	282.6	:
	•	•		m	•	m	m	soll moisture (1:dry, 2:moist, 3:water)
3.7	5.3			6.2	6.	6.0	e ,	1
2	2,	2,	֚֚֚֝֟֞֓֓֓֓֟֓֓֓֓֓֓֓֓֓֓֟֓֓֓֟֓֓֓֓֓֟֓֓֓֟֓֓֓֟֓	2	9	2,	2,	The section of the last the second (a)
• •	9 4		9.0	9 6		. 0		Constant Address (a)
- 6	96-	6.66	66.	-99.9	-99.9	- 99.9	6.66	domain-avg signa-theta (deg)
10	10	10	10	10	10	10	01	measurement ht for domain-avg wind data (m)
180	340	480	300	8	250	180	180	data
0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	: roughness length 20 (m)
6.00	D 0	A 0	V 40 V	4 0 0 1	100.0	N 0		: Inicion velocity u-stat (m/s)
		N 00 1	0 0	0.00	661	6.66	000	Coverse Month-Obukhov length (1/6)
9	20	50	20	9	75		201	
-99.9	-99.9	6.66-	6.66-	6.66-	6.66-	6.66-	. 6.66-	
51.0	51.0	51.0	51.0	51.0	51.0		51.0	
	1.0	0.1	0.1	o. •	1.0		0.1	
m r	- 1 -		, L.	"	7 -	7 F	7 (*	s averaging time for subtaced concentration (s)
100	100	100.	100.	100	100.	100,	100	concentration of interest for modeling (Dom)
6.0	6.0	6.0	6.0	6.0	6.0	6.0	0.5	
7	•	7	•	9	• ;	• ;	-	: number of distances downwind
58	80	¥.	8	8	20	61	9.	
S	129	¥ .	2.5	77		y .	0.00	
2 5	667	7	787	200	707	248		
179	-39.9	250	321	322	-99.9	398	-99.9	
247	6.66-	322	400	00	-99.9	650	6.66-	
398	6.66-	401	9.00	99.9	6.66-	- 99.9	6.66	downwind
- 89.9	-99,9	B. 55-1	N	A A A	F. 20.	A AA	, W. W.	distance downwind (terminal record: -99.9)

. 3-char, abbreviation of chemical ; number of trials included in MDA	: time zone designation	triel to	tep:	. year	: minute	eight (g/mole)	: normal bolling point (K)	* Defent Hear of Geographical (2/Kg)	: specific heat - 11quid (J/kg-K)	: denaity of liquid (kg/m**3)	: coefficient A for vapor pressure equation	: coefficient B for vapor pressure equation : axit pressure (atm)	: source temperature (K)	: source dismeter (m)	: source elevation (m)	: source type (IR,HJ,AS,EP)		rate (kg/s	: spill duration (s)	: Colai released (Kg)	. =	: relative humidity (%)	1-lower (K)	: Measurement height for temperature #1 (m) : ambient temperature #2-ubber #81	: measurement height for temperature 42 (m)	. 1	: Soil Wolsture (1:0fy, 4:molst, 3:water) : wind sneed (w/s)	: measurement height for wind appead (m)	•	COMPLETE OF CONTRACT	: measurement ht for domain-avg wind data (m)	: averaging time for domain-avg data (s)	: Foughness length st (8) : friction velocity u-stay (8/6)	: bowen ratio estimate	: inverse Monin-Obukhov length (1/m)	: cloud cover (v) : Pascuill-Cifford stability class (A-1:0-4:5-6)	: latitude (deg)	: longitude (deg)	: Sveraging time for peak concentration (s) : sveraging time for averaged concentration (s)	: concentration of interest for modeling (ppm)	suggested receptor height for modeling (m)	: nighter of distances downwind	downwind	downwind	distance downwind (m)	downwind
	נוטפ	721	23	26	28	. 19	265.13	, 200 S	1331.	1462.	99.6	, oo	300.15	0.0508	.45	2 6	-99.9	0.0565	600.	1000000		6.66-	300.15	300,65	16.	6.66-	er; -4 er;		3.3	10 M	2.	600.	0.21	6.66-	0.0208	2 🕳	42.3	98.3	600-	1.	1.5	v č	100.	200.	600.	6.66-
	7.00	101	23	36	28	64.	263.13	622.6	1331.	1462.	9.00	7 O O	301.15	0.0508	.45	2 0	6.66-	0.093		100000	-99.9	-99.9	301.15	300.15	16.	6.66-	7		3.5	2	2.	600.	0.24	6.66-	-0.1923	-	42.3	96.3			1.5	u č	100.	200.	800.	6.66-
	21.00	7	23	90	. 8		263.13	622 6	1331.	1462.	99.0	A 0 0 1	295.15	0.0508	S	2 0	-99.9	0.0955	600.	1000000	-99.9	-99.9	295.15	294.05	16.	99.9	4	, ; ~	J. F	198.8		600.	0.23	-99.9	-0.1316	o ~	42.3	98.3	 000		1.5	u ę	100.	200.	800.	-99.9
	. (0)		22	26	18	64,	205.13	622.6	1331.	1462.	9.0	N. 00 1	293.15	0.0506	. ·	2 .	-99.9	0.0611	600.	1000000	-99.9	-99.9	293.15	295.05	16.	-99.9	e;		1.3		; ;	, 600.	0.09	-99.9	0.2941	₹.	42.3	98.3			1.5	709	800	9.66	-99.9	-99.9
	0120	22.	11	36	18	64.	201.13	622.6	1331.	1462.	e. 66-	n 0	304.15	0.0508	5.45	2 6	-99.9	0.0921		1000000	-99.9	-99.9	304.15	302.15	16.	6.66-	9 7		4.6	16.8		600.	0.32	-99.9	6060.0-	7 7 7	42.3	96.3	. 009		2.5	v č	100.	200.	600.	6.66-
	900	75	11	99.	90		263.13	532 G	1331.	1462.	29.9	N 60 0	301.15	0.0508	5.	2	-99.9	0.092	600.	55.2	-99.9	6.66-	301.15	299,55		-99.9	•	, .	6.9	199.8	2.	.000	0.46	6.66-	-0.0323	9 6	42.3	68.3			5,1	w č	100.	200.	800.	6,66-
cass, set l oxide	908	, c	01	56	200		263.13	346300.	1331.	1462.	6.66-	50 G	305.15	0.0508	.45	2	-99.9	0.0911	.009	100000	-99.9	6.66-	305.15	2. 303 45	16.	6.66-	• •• •		6.7	9.66	2.	600.	900.0	-99.9	-0.0556	O 14	42.3	98.3	900		1.5	w g	100.	200.	.000	6.66-
Prairie Grass, Sulfur dioxide SO2	9	Š.	10	90	15	64.	263.13	.000000	1331	62	6	6.66 6.66	305.15	0.0508	. 45	: :	6.99.9	0.0899	.009	53.9	-99.9	6.66-	305.15	303 55	16.	6.66	1	, , ,	4.2	9.66-	2.	.009	900	6.66-	-0.1020	۰ د	42.3	98.3	. 009		1.5	ın ü	100.	200.	. 00.	6.66-

. 3-char. abbreviation of chemical number of trials included in MDA triam zone designation trial ID month day year	siling polisate of evaluate of evaluate of superior of	: distance downwind (m) : distance downwind (terminal record: -99.9)
P 6025	28.5.13 28.5.13 28.5.5.0 29.5.0 29.5.0 20.5.0 20.5.0 20.0	1000. 2000. 1000. 1000.
7 7 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	263.13 26	100. 200. 400. 99.9
PG23 29 56 50	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	100. 200. 900. 900.
PG22 2 2 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	20 20 20 20 20 20 20 20 20 20 20 20 20 2	200. 400. 400.
PG21 2 2 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	200. 200. 960.
PG20 25 56 56	265.13 1133.16 1133.16 1133.16 1133.16 1135.19 1136.19	200. 200. 400. 99.9
ass, set 2 xide set 2 PG19 25 56	265.13 1133.16 1143.16	200. 200. 400. 99.9
Prairie Grass, Sulfur dioxide SO2 BC	265.13 2865.00	200. 200. 400. 800.

3-char, abbreviation of chemical number of trials included in MDA time zone designation month and y year hour included in month hour included in the second	نڌنن	amblent temperature \$1-lower (K) massurement height for temperature \$1 (m) amblent temperature \$2-upper (K) massurement height for temperature \$2 (m) aoii temperature \$(X) molsture \$(X) aoii molsture \$(X) aomain-avg signa-u \$(X) aomain-avg signa-that \$(40) averaging time for domain-avg data \$(8) averaging time for peak concentration \$(8) averaging time for averaged \$(8) averaging time \$(8) averaging time \$(8) averaging time \$(8) averaging t
7 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	264. 264. 264. 264. 264. 266. 266. 266.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PC37 18 5 5 5 12 12 13 15 15 15 15 15 15 15 15 15 15 15 15 15	26 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 000 000 000 000 000 000 000 000 000 0
66 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	263.13 2863.13 2863.13 1121.6 1122.6 1123.13 1129.9 1129.9 1129.9 1129.9 1129.9 129.9	
# # # # # # # # # # # # # # # # # # #	264. 264. 3885.13 3885.13 11462. 199.99 0.0508 0.0914 0.0914 190.99 190.99 190.99	15 15 15 15 15 15 15 15 15 15 15 15 15 1
7 6 5 3 3 5 6 5 9 3 5 6 5 9 5 6 9 5	264. 2843.13 2863.13 2863.13 1462. 199.9 199.9 199.9 199.9 199.9 199.9 199.9 199.9	2000.000.000.000.000.000.000.000.000.00
8 6 3 2 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	264. 265.13 265.13 1031. 109.9 109.9 109.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	64. 263.13 3663.13 622.66 1331. 1462. 199.9 199.9 199.9 199.9 190.0000. 199.9 199.9	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Prairie Grass, Sulfur dioxide SO2 6 6 6 7 8 8 8 8 8 8 5 5 5 5 5 5 6 5 6	64. 263.13 3865.03 622.6 622.6 1933.1 1462. -99.9 0.0417 600.0 1000000. -99.9 -99.9	299 15 299 15 299 299 299 299 299 299 299 299 299 29

. 3-char, abbreviation of chemical number of trials included in MDA time cone designation	sorth day	year	بر •	: mol. weight (g/mole) : normal bolling point (K)	: latent heat of evaporation (J/kg)	: specific heat - vapor (J/kg-K)	: density of liquid (kg/m**3)	coefficient A for vapor pressure equation	: coefficient B for Vapor pressure equation : exit pressure (atm)	: source temperature (K)	: Bource disaster (B)		: source phase (L, C, G)	: source containment diameter (m) : soill/evaporation rate (kg/s)	: spill duration (s)	. total released (RQ)	. Amblest Concentration (plus)	: relative humidity (%)	;	: amblent temperature \$2-upper (K)	: measurement height for temperature #2 (m)	<pre>: soll Cemperature (K) : soll moisture (lidry,2:moist,3:water)</pre>	: wind speed (m/s)	: measurement height for wind speed (m) : domain-avo wind speed (m/s)	: domain-avg signa-u (m/s)	: domain-avg signa-theta (deg)	:		. Dozen retio setimets	: Inverse Month-Obukhov length (1/m)	: Pasquill-Gifford stability class (A-1;D-4;F-6)	: latitude (deg) : longitude (deg)	: averaging time for peak concentration (s)	: averaging time for averaged concentration (s)	: concentration of interest for modeling (ppm) : suggested receptor height for modeling (m)	Dq.	downwind	downwind	downwind	: distance downwind (terminal record: -99.9)
9 9 0	2 8 2	36	80.	64. 263.13	386500.	622.6	1462.	6.60	6.66-	297.15	0.0508	HJ	ູ່	0.102	.009	1000000	-99.9	-99.9	297.15	295.35	16.	1,99.9	6.3	 	-99.9	21.9	600.	900.	6.66-	-0.0357) m	42.3 98.3	.009	.000	1.5	20 C	100.	200.	900	-99.9
8 70	8 21 21 21	10 e	. 6	64. 263.13	386500.	622.6	1462.	6.00	6 . 66 . 6 . 60 .	293,15	0.0508	E		0.1041	.009	1000000	-99-9	6.66-	293.15	291.95	16.	1 99.9	9.0	2. 9.0	6.66-	.	600	900.	6.66-	-0.0159	-	42.3	600.	.000.	1.5	en i	100.	200.		-99.9
9 4 4	15	36	£ 2	64. 263.13	386500.	622.6	1462.	-99.9	7 G 7 G 7 G	306.15	0.0508	. CX	ق	0.0997	.009	59.8	-99.9	6.66-	306.15	306.55	16.	1 39.9	5.2	5.2	6.66-	7.7	600.	900.	6.66-	0.0068	÷	42.3 6.89	600.	.000.	1.5	10	100.	200.	.00	6.66-
	15	36	· vo	64. 263.13	386500.	622.6	1462.	6.66	. 66. 60.	309.15	0.0508	H.	9	0,1008	600	100000	-99.9	-99.9	309.15	308.75	16.	198. 1	6.1	2.	6.66-	ø. c	.009	900.	6,66-	-0.0115	۲.	42.3	600.	.000,	1.5	รา	.00.	200. *		-99.9
3	15	26	8	263.13	386500.	622.6	1462.	Ø. 0	3 G. G.	310.15	0.0508	-		0.1007	009	100000	-99.9	6.66-	310.15	308.65	16.	1 48° 4	5.7	5.	6.66-	12.7	600.	900.	6.66-	-0.0400) m	42.3	600.	.000	1.5	เกร	.00.	, 50 50 60 70 70 70 70 70 70 70 70 70 70 70 70 70		6.66-
	15	36	8	64. 263.13	386500.	622.6	1462.	6.06-	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	308.15	0.0508	E		0.0986	.009	59.2	-99-9	-99.9	308.15	306.75	16.	1 99° 4	5.0	o, v	-99.9	12.2	600.	900.	6.66÷	-0.0625	200	42.3	600.	600.	1.5	ın i	100.	200.		6.66-
raus, set 4 oxide	14 0 14 14 14 14 14 14 14 14 14 14 14 14 14	. % ×	s vo	54.	366500.	622.6	1462.	6.66-	5 65 5 65 5 65 5 65 5 65 5 65 5 65 5 65	296.15	0.0508	E. E.	ق	-99.9 0.0564	600.	33.8	100000	6.66-	296.15	296.55	16.	199.9	5.8		6.66-	9.6	600.	900.	6.66-	0.0083	× · · · ·	42.3	600.	.009	1.5	'n	100.	200.		-99.9
Prairie Grass, Sulfur dloxide SO2 86 6		. % r	n vo	64.	386500.	622.6	1462.		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	94.1	0.0508	,	y	9.66	600.	23.9	1000000	6.66-	294.15	295.55	16.	e.ee-	4 .0		6.66-	0.0	600.	900	6.66	0.0286	5. yy. y	42.3	600.	.009	. s.	•	50. 100.	200.	. 00 800.	6.96.

3-char, abbreviation of chemical muber of trials included in MDA	time zone designation trial ID	month	-	Teak	minute	mol. weight (g/mole)	hormal boiling point (K)	tent neet of evaporation (2/kg) sciffe heat - vanor (3/kg-K)	specific heat ~ liquid (J/kg-K)	density of liquid (kg/m**3)	coefficient A for vapor pressure equation	coefficient B for vapor pressure equation	exit pressure (atm)		source elevation (#)		source phase (L,C,G)	Bource containment diameter (m)	spill/evaporation rate (kg/s)	apill duracion (#)	Contraction (Ag)		relative humidity (4)	amblent temperature #1-lower (K)	measurement height for temperature (1 (m)		modelication insign, to temperature (2) (m) soli temperature (K)	moisture (1:	wind speed (m/s)	measurement height for wind appead (m)	COMPANY NO WIND BEFORE (B/B)		measurement ht for domain-avg wind data (m)	averaging time for domain-avg data (s)	friction velocity u-ster (m/s)	bowen ratio estimate	inverse Monin-Chukhov length (1/m)	out coses (s) southling(ford stability class (Britishing)	Mariteds (dec)	longitude (deg)	averaging time for peak concentration (s)	averaging time for averaged concentration (s)	concentration of interest for modeling (ppm)	suggested receptor neight for modeling (B)			downwind		distance downwind (m) distance downwind (terminal record: -99.9)
		<u></u>	day:	2.2	- E		2.				8	 8	×					•		2 (E **	8	5 :		2	7		9 -	8	 2	2		8	= :		72	. 10		> ·	8	2 2		. d	# :	ਚ ਵ 	
	PG58		C 7	100	27	64.	263.13	622.6	1331.	1462.	-99.9	-99.9	99.9	7.39.13	45		9	-99.9	0.0405		100000	-99.9	-99.9	299.15	2.	305.05	6.66-	_	6.1		6.661	4.1	7.	000 000 000 000 000 000 000 000 000 0	0.11	-99.9	0.1563	۲ د	42.3	90.3	.009	00.		· ·	200.	400	600.	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-99.9
	PG57		C 4	11	28	£.	263.13	622.6	1331.	1462.	-99.9	6.66-	9.66	0000	45	2	· o	-99.9	0.1015		1000000	-99.9	6.66	309.15	2.	306.33	6.661	-	6.7	.,	6.66-	0.0	2.	2 00.	0.46	-99.9	-0.0052	. •	(2.3	96.3	.00	.000		n .	30.	100.	200.	100.	-99.9
	PG56	40 C	C 2	200	1	64.	263.13 386500	622.6	1331.	1462.	6.66-	6.66-	20.00	00.00	45	E .	9	-99.9	0.0459	27 c.	1000000	-99.9	6.66-	209.15	2.	16	6.66-		4.3		6 66 -	6.1	2.	. 600	0.29	6.66-	0.0132	, ••	(2.3	96.3	. 600	.000		, au	50.	100.	200.	1 00.	-99.9
	PGSS		0 %	30	26	64.	263.13	622.6	1331.	1462.	-99.9	6,66-	166.6	200.13	45	. T	9	-99.9	0.0453	, , ,	100000	- 66-	-99.9	290.15	2.	290.33	-99.9	-	5.4		6.66.	5.0	2.	.00	0.37	-99.9	0.0081		42.3	98.3		. 600.		n .	50.	100.	200.	#00. #000.	-99.9
	PG54	.	7 7	22	7	64.	263.13	622.6	1331.	1462.	-99.9	-99.9	20.66	677.73	45	£ 2	9	-99.9	0.0434		100000	-99.9	6.66-	292.15	2.	293.05	-99.9	_	o.		6.56	5.9	2.		0.24	-99.9	0,0250	. •	62.3	91.3	.009	.000		n •	20.	100.	200.	400. 800.	-99.9
	PG53	•	5 2	20 6	8	64.	263.13	622.6	1331.	1462.	6.66-	-99.9	. 99. s	290.13		- T	9	-99.6	0.0452	300	100000	-99.9	-99.9	290.15	2.	294.05	6,66-		2.5	2.	9 66-	3.9	2.	, ecc.	0.17	6.66-	0.1000	.	42.3	98.3	.000	. 600		r	.20	100.	200.	4 00.	-99.9
	PG51	æ :	7 7		29		263.13	622.6	1331.	1462.	-99.9	6.66-	-99.9	303.13	6.030g			6.66-	0,1024	.000	1000000	-99.9	-39.9	305.15	2.	303.75	6-66-		6.1	.,	7.01	10.8	.	600.	0.45	6.66-	-0.0250	2 -	42.3	98.3	.009	. 600.		.	50,	100.	200.	- - - - - - - - - - - - - - - - - - -	-99.9
~~	250		¥				63.13	22.6	331.	162.	99.9	6.66	9.9	04.15	. U.S.D.B	·		6.66	1028	•			6.66	04.15		2.65	6.0		. و		9	6.0		.00		6.6	0.0365		er -	e	.0			ņ	نے	. 0		9.5	9.9

```
mol. weight (g/mole)
mol. weight (g/mole)
mol. weight (g/mole)
latent heat of evaporation (J/kg)
latent heat of evaporation (J/kg)
specific heat - vapor (J/kg-K)
specific heat - liquid (J/kg-K)
specific heat - liquid (J/kg-K)
specific heat - liquid (J/kg-K)
density of liquid (kg/m*1)
coefficient K for vapor pressure equation
coefficient B for vapor pressure equation
source temperature (K)
source temperature (K)
source temperature (K)
source aleastin (m)
source ontainment dismater (m)
spill durtion (s)
source temperature (K)
source containment dismater (m)
spill durtion (s)
source containment dismater (m)
spill durtion (s)
source containment dismater (m)
spill durtion (s)
source the for temperature (R)
soul released (Kg)
initial concentration (pm)
sablent pressure (tm)
spill durtion (s)
soul respecture (R)
soul respecture (R)
soul durtion (s)
soul respecture (R)
soll molsture (I:dr, Z:molst, 3:water)
wind speed (m/s)
soll molsture (I:dr, Z:molst, 3:water)
wind speed (m/s)
soll molsture (I:dr, Z:molst, 3:water)
soll molsture (Gr (m)
soll molsture (Gr (m)
cloud cover (S)
source downind (m)
distance downwind (m)
                         3-char, abbreviation of chemical
number of trials included in MDA
time rone designation
trial ID
                                                                                                                                                                                                                                                        -99.9
0.1021
600.
61.3
1000000.
-99.9
105.15
                                                                                                                                                                                                                                                                                                                                                                                                                                           2.
600.
.006
0.34
-99.9
-0.0333
                                                                                                                         263.13
386500.
622.6
1331.
1462.
-99.9
-99.9
-0.53.8
-45.8
                                                                                                                                                                                                                                                                                                                                          2.
304.15
16.
-99.9
                                                                                                                                                                                                                                                                                                                                                                                                     42.3
6600.3
11.5
11.5
100.
199.9
                                                                                                                                                                                                                                                                                                                                                                                   ~
                                                                                                                                                                                                                                                         -99.9
0.1021
600.
61.3
1000000.
-99.9
-99.9
                                                                                                                                                                                                                                                                                                                                                                                                                                                 600.
.006
0.51
-99.9
30
                                                                                                                     64.
263.13
386500.
622.6
1331.
                                                                                                                                                                 305.35
                                                                                                                                                                                                                                                                                                                                                            -99.9
                                                                                                                                                                                                                                                                                                                                                                                                      2.
6.0
199.9
                                                                                                                                                                                                                                                                                                                                                                                    0,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     600.
600.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  . 5.
Prairie Grass, set 6
Sulfur dioxide
502
                                                                                                                                                                                                                                                         -99.9

0.0385

200.

10000

-99.9

2.99.9

2.99.9

2.99.9

-99.9

-99.9
                                                                                                                        263.13
386500.
622.6
1331.
                                                                                                                                                                   1462.
-99.9
-99.9
299.9
0.0508
                                                                                                                                                                                                                                                                                                                                                                                                                                            2.
600.
.006
0.28
-99.9
70
                                                                                                                                                                                                                                                                                                                                                                                                     2.99.9
199.9
                                                                                                                                                                                                                                                                                                                                                                                   6.
                                                                                                                                                                                                                                                         -99.9
0.0402
600.
24.1
1000000.
-99.9
                                                                                                                          263.13
386550.
622.6
1331.
-99.9
-99.9
-99.9
-99.9
-99.9
-99.9
-99.9
                                                                                                                                                                                                                                                                                                                                          2.
300.15
16.
-99.9
                                                                                                                                                                                                                                                                                                                                                                                   PG59
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                200.
200.
200.
400.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     42.3
600.
600.
```

```
cloud cover (%)
Pasquill-Gifford stability class (A-1;D-4;F-6)
latitude (deg)
longitude (deg)
laveraging time for peak concentration (%)
averaging time for averaged concentration (%)
concentration of interest for modeling (ppm)
suggested receptor height for modeling (m)
number of distance downwind (m)
distance downwind (m)
                                                                                                                                                                                                              mornal boiling point (K)
latent heat of evaporation (J/kg)
specific heat - laquid (J/kg-K)
specific heat - laquid (J/kg-K)
specific heat - laquid (J/kg-K)
density of liquid (kg/m*s)
coefficient B for vapor pressure equation
coefficient B for vapor pressure equation
coefficient B for vapor pressure equation
source temperature (K)
source temperature (K)
source temperature (K)
source shase (L,C,G)
source containment diameter (m)
source containment diameter (m)
spill/evaporation rate (kg/s)
spill/evaporation (S)
soulce containment diameter (R)
soulce containment diameter (R)
sublant temperature $1-lower (R)
smblant temperature $1-lower (R)
smblant temperature $2-lower (R)
smblant temperat
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 (terminal record: -99.9)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Inverse Monin-Obukhov length (1/m)
                                     3-char, abbreviation of chemical
number of trials included in MDA
time zone designation
trial ID
month
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Êŝ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               distance downwind (distance downwind distance downwind distance downwind distance downwind distance distance)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 distance downwind
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            distance downwind distance downwind
                                                                                                                                                              year
hour
minute
Thorney Island (continuous)
Mixture of Freon-12 and Witrogen
F12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     465.
4752.
1000000.
1.0
97.4
                                                                                                                                                                                                                        57.8
243.4
165000.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                -99.9
-99.9
-267.65
                                                                                                                                                                                                                                                                                                                                        -99.9
-99.9
-99.9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              -99.9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0.01
-99.9
-99.9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  2212
2222
2225
4725
199.99
199.99
                                                                                                                                                                                                                                                                                 610.
970.
1520.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            -99.9
10.67
4655.
1000000.
1.0
100.
                                                                                                                                                                                                                      -99.9
-99.9
285.95
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  40.
70.
70.
70.
70.
40.
99.
                                                                                                       1045
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 7.
20.
9.4
```

. 3-char, abbreviation of chemical : number of trials included in MDA : time rone designation	trial ID month day	· Yest: : hour : minute	: mol. weight (g/mole) : normal boiling point (%)		specific heat - liquid (J/kg-K)	: density of liquid (kg/m**3) : coefficient A for wapor pressure equation	coefficient B for vapor pressure equation	: exit pressure (atm) : source temperature (%)	source diameter (m)	: source elevation (m) : source type (IR,HJ,AS,EP)		<pre># source containment diameter (m) ## soill/evaporation rate (kg/s)</pre>	spill duration (s)	: cotal reseased (kg) : initial concentration (ppm)	atm)	: retarive numidiry (%) : amblent temperature ()-lower (%)	: measurement height for temperature #1 (m)	; ambient temperature 12-upper (R) ; measurement helpht for temperature 62 (m)		: soli molecure (lidiy, /:molec, 3:water) : wind speed (m/s)	measurement height for wind speed (m)	: domain-avg sigma-u (m/s)	4	: measurement int tor domain-avg wind data (m) : averaging time for domain-avg data (s)	: roughness length 20 (B)	: bowen ratio estimate	: inverse Monin-Obukhov length (1/m)	: Pasquill-Gifford stability class (A-1;D-4;F-6)	<pre>: latitude (deg) : long(tude (deg)</pre>	for	: averaging time for averaged concentration (s)	<pre>: concentration of interest for modeling (pps) : suddested receptor height for modeling (m)</pre>		: distance downwind (m)	downwind	: distance downwind (m)	downwind	: distance downwind (m) : distance downwind (m)	tance downwind	: distance downwind (m) : distance downwind (terminal record: -99.9)
	7119 10 19	123	61.27	165000.	970.	1520.	6.66	-99.9 286.47	7.	. H		2 60 2 60 2 60	6.66	1000000	. 993	286.47	2.	16.91	286.15	6.4	10.	. e.	5.27	.00	0.01	6.66-	0.003		51.	۳	و و	.4.0	٠,		.11.	224.	361.	-99.9	6,66-	6. 6. 6. 6. 6. 1
	1118 6 10 83	3 T S	54.04 243.4	165000.	970	1520.	6.66	-99.9 289.66	14.	ir.		9.66	6.66	1000000.	.994	269.66	2.	16.	297.45	7.4	10.	96.	7.68	.009	0,005	6.66-	023		51.	9	9.5	. •	25		5.6	100.	200.	300.	400.	98.6-
1		25 62	121.36 243.4	165000.	970.	1520.	6.66-	-99.9 269.21	•	. E	ا ي	2, GV	6.66-	1000000.	266.	289.21	2.	16.	291.02	3.0	10.	.62	9.05	600.	0.016	-99.9	005	•	51.	9	9.5	•••	-	20.	71.	160.	224.	-99.6	6.66-	6.66 6.00 7.00
	TI13 10 19	:: :::	57.60 243.4	165000.	970.	1520.	6.66	-99.9 286.88	7.	. H	. 19	3. G.	6.66-	1000000.	1.006	206.88	2.	16.	287.65	7.3	.01	.61	5.30	384.	0.01	6.66-	011	•	51.	•	ې پو	. •	ψí	100.	224.	361.	412.	5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 .	6.66-	6.66 6.66
	7112 10 15 83	: ::::::::::::::::::::::::::::::::::::	68.49 243.4	165000.	970.	1520.	6.66-	-99.9 283.29		; ai	9	3 G 3 G 3 G	6.66-	1000000	1.000	283.29	 	16.	265.15	2.5		.25	5.97	.009	0.018	-99.9	0.100		51.		9,5	0.4	ωŕ	150.	200.	500.	6.00-	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.66-	6.66-
;	11 90 11 12 50 12 9	189	46.24 243.4	165000.	970.	1520.	0.66	-99.9 291.45	14.	: #I	, g		6.66-	1000000.	1.006	291.45	2.	16.	6.66-	1.7	10.		-99.9	.009	0,008 -99,9	6.66-	0.650	.	51.	٠	9.0	0.4	~ ;	100.	141.	224.	316.	6.66-	6.66-	6.00 ·
ntaneous) nd Nitrogen	# * * * *	40.7	47.11	165000.	970.	1520.	6.66	290.9	14.	. ar	o d	5 GO	6.66	1000000.	1.009	290.68	2.	16.	291.55	 4.	10.	.34	3.68	.009	0.012	6.66-	110		51.	۰.	• 5	0.4.	-	100.	150.	364.	412.		6.66-	8.66 6.66 1
Thorney Island (instantaneous) Hixture of Freon-12 and Mitrogen 9	LI O O O	33 9 6	50.58 243.4	165000.	970.	1520.	6.66	199.9 290.46	14.	. a		5. 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 6	6.66	1000000	1.008	290.46	2.	290.47	290.65	 	10.	5. 4. 7. 4.	8.12	.009 600	0.016	6.66-	0.011		51.	· •.	٠٠٠	0.4.		100.	150.	224.	361.	.99.9	-99.9	6,66 6,66 6,66
Thorney II Mixture of F12 9	718 4 8 11	11	47.69	165000.	970.	1520.	9	-99.9	14.	. æ	9	5. 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 6	6.66	1000000	1.000	291.83	7.	291.04 16.	6.66-	1 2.6	.0.	.38	6.49	600.	0.018	-99.9	0.000	· •	51.	. 4.	٠,٠	. . .	์เกเ	141.	180.	424.	6.66-	ታ መ መ መ መ መ መ መ	6.66-	9.66- 6.06-

APPENDIX B

MODEL APPLICATION INFORMATION

Included in this Appendix are the tables containing the input parameters to each of the following models:

AFTOX

AIRTOX

Britter and McQuaid

CHARM

DEGADIS

FOCUS

GASTAR

GPM

HEGADAS

INPUFF

OBDG

PHAST

SLAB

TRACE

for each of the following experiments:

Burro

Coyote

Desert Tortoise

Goldfish

Hanford (continuous)

Hanford (instantaneous)

Maplin Sands (LNG)

Maplin Sands (LPG)

Prairie Grass

Thorney Island (continuous)

Thorney Island (instantaneous)

AFTOX INPUT DATA FOR	l:	Burro							
CHEMICAL RELEASED	:	Liquefie	ed natural o	j a#					
IS PRINTER ON?	: N								
STATION NO.?	: 3								
CHANGE DATE/TIME?	: Y								
	: ME	RIC							
TIME ZONE	: 8	1							
TRIAL	: BU2	90	J3 BU4	90	S BU 6	807	BUS	BU	۵
MONTH	:	6	7	7		8	8	9	9
DAY	:	18	2	9	16	š	27	á	17
YEAR	:	80	80	an	80	80	80	80	80
HOUR	:	15	15	14	16	16	18	.9	18
MINUTE	:	59	8	7	20	5	12	9	37
	:	1	1	1	1	i	1	í	i
	:	15	15	15	15	15	15	15	15
CHEMICAL NO.	:	56	56	56	56	56	56	56	56
MOLECULAR WEIGHT	:	17.460	17.260	17.050	17.080	17.240	18,220	18.120	18.820
	:	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
	:	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
AMB. TEMP. (C)	:	38.1	34.5	35.8	41.1	39.5	33.8	32.8	35.3
	:	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
WIND SPEED (m/s)	•		5.4	9.0	7.4	9.1	8.4	1.8	5.7
HAVE STDV. OF DIR?	:	Y	Y	Y	¥	Y	Y	Y	Y
STD. DEV. DIR. (deg)	:	13.5	13.3	7.3	11.1	6.7	5.2	5.6	4.4
AVERAGING TIME (min)	:	6.00	6.00	6.00	5.00	6.00	6.00	6.00	6.00
	:	0	0	0	0	٥	0	0	1
	:	2	2	2	2	2	2	2	2
	:	n	n	n	n	n	n	n	n
SITE ROUGHNESS (cm)		0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020
RELEASE HT (m) CONTINUOUS GAS RELEAS	:	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
EMIS. RATE (kg/min) : STILL LEAKING?			5278.8	5217.6	4875.0	5533.2	5967.6	7015.8	8158.8
ELAPSED TIME (min)		n o oo	n - To	n	n	n	n	n.	n
CONC. AVG TIME (min)		2.88	2.78	2.32	3.17	2.15	2.90	1.78	1.32
SPECIFIED CONC (ppm)		1.00	1.67	1.33	2.17	1.17	2.33	1.33	1.00
DOWNWIND DIST. (m)		100.	100.	100.	100.	100.	100.	100.	100.
		57.0	57.0	57.0	57.0	57.0	57.0	57.0	57.9
DOWNWIND DIST. (m)		0.2	0.2	0.1	0.1	0.1	0.1	0.4	0.1
		140.0	140.0	140.0	140.0	140.0	140.0	140.0	140.0
		0.4	0.4	0.2	0.3	0.2	0.2	0.9	0.3
TRAVEL TIME (min)		-99.9 0.0	-99.9	-99.9	-99.9	~99.9	400.0	400.0	400.0
DOWNWIND DIST. (m)		-99.9	0.0 -99.9	0.0	0.0	0.0	0.7	2.6	1.0
TRAVEL TIME (min)		0.0	0.0	-99.9	-99.9	-99.9	-99.9	800.0	800.0
SOLAR ANGLE (deg)		35.76	46.49	0.0 58.54	0.0	0.0	0.0	5.2	2.0
(may) .		33.70	70.77	J0.34	31.53	32.29	1.90	-11.25	-9.22

AFTOX INPUT DATA FOR:		Coyote		
CHEMICAL RELEASED :		Liquefied	natural o	14.5
IS PRINTER ON? :	N			
STATION NO.? :	3			
CHANGE DATE/TIME? :	Y			
UNIT SYSTEM? :	MET	RIC		
TIME ZONE :	8			
TRIAL :	CO3	CO5	coe	•
MONTH :		9	10	10
DAY :		3	7	27
YEAR :		81	81	81
HOUR :		15	12	16
MINUTE :		38	9	43
TYPE OF SPILL :		1	1	1
STATION NO. :		15	15	15
CHEMICAL NO. :		56	56	56
MOLECULAR WEIGHT :		19.510	20.190	19,090
CONC. OF INTEREST :		100.00	100.00	100.00
MEAS. HEIGHT (m) :		2.0	2.0	2.0
AMB. TEMP. (C) :		38.3	28.3	24.1
WIND DIR. (deg) :		0.0	0.0	0.0
WIND SPEED (m/s) :		6.0	9.7	4.6
HAVE STDV. OF DIR? :		Y	¥	Y
STD. DEV. DIR. (deg):		6.0	5.1	5.1
AVERAGING TIME (min):		3.00	3.00	3.00
CLOUD COV. (8ths) :		1	3	4
SOIL MOISTURE :		2	2	2
INVERSION? :		n	n	n
SITE ROUGHNESS (CB) :		0.020	0.020	0.020
RELEASE HT (m) :		0.00	0.00	0.00
CONTINUOUS GAS RELEAS	E			
EMIS. RATE (kg/min):		6040.2	7741.2	7381.8
STILL LEAKING? :		n	n	n
ELAPSED TIME (min) :		1.08	1.63	1.37
COMC. AVG TIME (min):		1.00	1.50	1.17
SPECIFIED CONC (ppm):		100.	100.	100.
DOWNWIND DIST. (m) :		140.0	140.0	140.0
TRAVEL TIME (min) :		0.3	0.2	0.4
DOWNWIND DIST. (R) :		200.0	200.0	200.0
TRAVEL TIME (min) :		0.5	0.3	0.6
DOWNWIND DIST. (m) :		300.0	300.0	300.0
TRAVEL TIME (min) :		0.7	0.5	0.9
DOMNNIND DIST. (m) :		-99.9	400.0	400.0
TRAVEL TIME (min) :		0.0	0.6	1.2
SOLAR ANGLE (deg) :		31.20	48.33	2.86
3.				

. Hethane is at least 86% in c

AFTOX IMPUT DATA FOR: Desert Tortoise CHEMICAL RELEASED : Anhydrous Ammonia IS PRINTER ON? STATION NO. ? : 3 : Y CHANGE DATE/TIME? UNIT SYSTEM? TIME ZONE : METRIC TRIAL. DT1 DT2 DT3 DT4 MONTH DAY 24 29 YEAR 83 16 83 HOUR 15 37 11 MINUTE 37 20 15 TYPE OF SPILL STATION NO. 1 1 12 1 12 13 1 12 CHEMICAL NO. 13 13 MOLECULAR WEIGHT 17.030 17.030 17.030 17.030 CONC. OF INTEREST 100.00 100.00 100.00 100.00 MEAS. HEIGHT (m) 2.0 2.0 2.0 2.0 AMB. TEMP. (C)
WIND DIR. (deg)
WIND SPEED (m/s)
HAVE STDV. OF DIR? 28.8 30.4 33.9 32.4 0.0 0.0 0.0 0.0 7.4 5.8 7.4 4.5 Y STD. DEV. DIR. (deg): AVERAGING TIME (min): 8.3 5.0 3.00 3.00 3,00 3.00 CLOUD COV. (8ths)
SOIL MOISTURE 0 0 2 2 1 INVERSION? SITE ROUGHNESS (cm) : 0.300 0.300 0.300 0.300 RELEASE HT (m) : CONTINUOUS GAS RELEASE 0.79 0.79 0.79 EMIS. RATE (kg/min) : 6690.0 4782.0 7842.0 5802.0 STILL LEAKING? n 2.77 n 6.35 n ELAPSED TIME (min) 2.10 4.25 CONC. AVG TIME (min): SPECIFIED CONC (ppm): 1.33 2.67 2.00 5.00 100. 100. 100. DOWNWIND DIST. (m) :

100.0

800.0

20.68

0.2

1.4

TRAVEL TIME (min)

DOWNWIND DIST. (m)

TRAVEL TIME (min)

SOLAR ANGLE (deg)

100.0

800.0

62.41

1.7

0.2

100.0

800.0

30.46

0.2

100,0

800.0

-2.43

0.3

AFTOX INPUT DATA FOR:	:	Goldfien		
CHEMICAL RELEASED	:	Hydrogen	fluoride	
IS PRINTER ON?	N			
STATION NO.?	3			
CHANGE DATE/TIME?	Y			
	MET	RIC		
	В			
	GF1	GF:	gr3	
MONTH		8 .	. 0.73	. 8
DAY		1	14	20
YEAR .		90	90	90
HOUR		18	18	
HINUTE		15	15	18 15
TYPE OF SPILL :		1	15	
STATION NO.		12	12	. 1
CHEMICAL NO.		48	48	12
MOLECULAR WEIGHT		20.010		48
CONC. OF INTEREST :		30.00	20.010	20.010
MEAS. HEIGHT (m)			30.00	30.00
AMB. TEMP. (C)		2.0	2.0	2.0
		37.2	36.2	34.4
WIND DIR. (deg) : WIND SPEED (m/s) :		0.0	0.0	0.0
HAVE STDV. OF DIR?		5.6	4.2	5.4
STD. DEV. DIR. (deg):		Y	Y	Y
AVERAGING TIME (min):		10.7	14.9	10.7
		15.00	15.00	15.00
		0	0	O
SOIL MOISTURE : INVERSION? :		1	1	1
		n	n	n
SITE ROUGHNESS (cm): RELEASE HT (m) :		0.300	0.300	0.300
	_	1.00	1.00	1.00
CONTINUOUS GAS RELEAS!	_			
EMIS. RATE (kg/min): STILL LEAKING? :		1660.2	627.6	616.2
		n	ħ	n
ELAPSED TIME (min) :		2.08	6.00	6.00
CONC. AVG TIME (min):		1.47	1,47	1.47
SPECIFIED CONC (ppm):		30.	30.	30.
DOWNWIND DIST. (m) :		300.0	300.0	300.0
TRAVEL TIME (min) :		0.7	0.9	0.7
DOWNWIND DIST. (m) :		1000.0	1000.0	1000.0
TRAVEL TIME (min) : DOWNWIND DIST, (m) :		2.3	3.1	2.2
DOWNWIND DIST, (m) :	:	3000.0	-99.9	3000.0
TRAVEL TIME (min) :		6.8	0.5	6.7
SOLAR ANGLE (deg) :		6.06	3,60	2.21

AFTOX INPUT DATA FOR	:	Hanford (continuous	3		
CHEMICAL RELEASED		Krypton-6		•		
			-			
IS PRINTER ON?	: N					
CERTAIN NO A						
CHANGE DATE/TIME?	Y					
CHANGE DATE/TIME? UNIT SYSTEM?	METR	ic				
	8	_				
	HCl	HC2	нсз	HC4	HCS	
MONTH		9	10	10	10	11
DAY		15	17	23	24	8
YEAR :		67	67	67	67	67
HOUR		0	8	11	11	5
MINUTE :		0	2	i		12
MINUTE TYPE OF SPILL STATION NO.		1	ī	ĩ	i	1
STATION NO.		16	16	16	16	16
CHEMICAL NO. :		78	78	78	78	78
STATION NO. CHEMICAL NO. MOLECULAR MEIGHT CONC. OF INTEREST MEAS. HEIGHT (m)		78 29.000	29.000	29.000		29.000
CONC. OF INTEREST :		0.10	0.10	0.10	0.10	0.10
MEAS. HEIGHT (m) :		1.5	1.5	1.5	1.5	1.5
AMB. TEMP. (C) :		17.7	12.2	15.7	13.4	5.6
AMB. TEMP. (C) WIND DIR. (deg) WIND SPEED (m/s) HAVE STDV. OF DIR?		0.0 1.3	0.0	0.0	0.0	0.0
WIND SPEED (m/s) :		1.3	3.9	7.1	3.9	2.6
HAVE STDV. OF DIR? :		Y	Y	Y	Y	Y
STD. DEV. DIR. (deg):		11.8	6.1	9.8	13.0	7.4
AVERAGING TIME (min):		39.00	14,17	14.00	11.00	24.67
CLOUD COV. (8ths) : SOIL MOISTURE :		0	0	0	0	0
SOIL MOISTURE :			1	1	1	1
INVERSION? :		n	n	n	n	n
SITE ROUGHNESS (cm) :		3.000	3.000	3.000	3.000	3.000
RELEASE HT (m) :		1.00	1.00	1.00	1.00	1.00
CONTINUOUS GAS RELEAS	E					
EMIS. RATE (kg/min) :		0.7	0.7	1.7	2.3	1.0
STILL LEAKING? :		n	a	n	n	
ELAPSED TIME (min) :		15.47	15.08		9.97	19.85
CONC. AVG TIME (min):		7.68	14.08	4.48	4.48	8.96
SPECIFIED CONC (ppm):		0.	٥.	0.	0.	0.
DOWNWIND DIST. (m) :		200.0	200.0	200.0	200.0	200.0
TRAVEL TIME (min) :		1.0	0.6	0.3	0.6	0.8
DOWNWIND DIST. (m) :		800.0	800.0	800.0	800.0	
TRAVEL TIME (min) : SOLAR ANGLE (deg) :		3.9	2.4	1.3	2.5	3.2
SOLAR ANGLE (deg) :	-	40.08	15.98	31.69	31.45	-16.85

AFTOX INPUT DATA FOR	.: H	anford (instantan	eous)			
CHEMICAL RELEASED		rypton-8					
		- • • • • • • • • • • • • • • • • • • •					
IS PRINTER ON?	: N						
STATION NO.?	: 3						
CHANGE DATE/TIME?	: Y						
UNIT SYSTEM?	: METRI	C					
	: 8						
TRIAL	: HI2	HI3	HI	S H16	HI7	HIS	
	:	9	10	10	10	10	11
DAY	:	14	17	23	23	24	8
	:	67	67	67	67	67	67
HOUR	:	23	7	10	11	- 10	6
MINUTE	:	0	38	53	30	53	2
TYPE OF SPILL		2	2	2	2	2	2
	:	16	16	16	16	16	16
CHEMICAL NO.	:	78	78	78	78	78	78
HOLECULAR WEIGHT	: 29	9.000	29.000	29.000	29.000	29,000	29.000
CONC. OF INTEREST	:	0.10	0.10	0.10	0.10	0.10	0.10
MEAS. HEIGHT (m)		1.5	1.5	1.5	1.5	1.5	1.5
	:	18.3	11.9	15.5	15.1	12.4	4.6
WIND DIR. (deg)	;	0.0	0.0	0.0	0.0	0.0	0.0
WIND SPEED (m/s) HAVE STDV. OF DIR? STD. DEV. DIR. (deg):	:	1.3	4.1	7.6	7.2	4.5	1.6
HAVE STDV. OF DIR?	:	Y	Y	Y	Y	Y	Y
STD. DEV. DIR. (deg);	:	4.4	5.1	6.4	5.4	9.1	8.7
AVERAGING TIME (F'n):	: 2	20.00	10.00	3.33	4.00	3.50	9.00
CLOUD COV. (8ths)	:	0	c	0	0	0	0
SOIL MOISTURE	}	1	1	1	1	1	1
	;	n	n	n	n	n	n
SITE ROUGHNESS (CE)					3.000	3.000	3.000
RELEASE HT (m)		0.00	0.00	0.00	0.00		0.00
INSTANTANEOUS GAS REI							-
TOTAL MASS (kg)	: 1	0.00	10.00		10.00	10.00	10.00
CONC. AVG TIME (min):		1.00	1.00	1.00	1.00	1.00	1.00
SPECIFIED CONC (ppm):	;	٥.	٥.	0.	0.	0.	٥.
DOMNWIND DIST. (m)	2	0.00	200.0	200.0	200.0	200.0	200.0
TRAVEL TIME (min)		0.9	0.6	0.3	0.3	0.5	1.1
DOWNWIND DIST. (m) :			800.0	800.0	800.0	800.0	800.0
TRAVEL TIME (min) :		3.7	2.2	1.2	1.3	2.1	4.6
SOLAR ANGLE (deg) :	-3	8.36	12.40	31.38	32.36	33 04	-B 40

AFTOX INPUT DATA FOR:	Maplin San	ds		•
CHEMICAL RELEASED :	Liquified	Natural Gas		•
	N			
	3			
CHANGE DATE/TIME? UNIT SYSTEM?	Y			
UNIT SYSTEM?	METRIC			
TIME ZONE	0		LS34 !	4\$35
CHANGE DATE/TIME? UNIT SYSTEM? TIME ZONE TRIAL MONTH DAY	MS27 1		9	
MONTH	9	_	17	
	9 80	_	80	80
	10	14	10	11
	41		9	
TYPE OF SPILL			í	i
STATION NO.	17	-	17	
			56	
CHEMICAL NO. MOLECULAR WEIGHT CONC. OF INTEREST MEAS. HEIGHT (m) AMB. TEMP. (C)	17 310	16.260		
CONC OF INTEREST	100 00	100.00	100.00	
MEAS WEIGHT (m)	10.0	10.0	10.0	10.0
AMB TEMP (C)	14.9	16.1	15.2	
WIND DIR. (dec)	0.0		0.0	
WIND SPEED (m/s)	0.0 5.6	7.4		
HAVE STOV. OF DIR?	Y	Y		¥
STD. DEV. DIR. (deg)	5.4		4.8	5.2
AVERAGING TIME (min)	5.4 2.67	5.7 3.75	1.50	
MEAS. HEIGHT (m) AMB. TEMP. (C) WIND DIR. (deg) WIND SPEED (m/s) HAVE STDV. OF DIR? STD. DEV. DIR. (deg): AVERAGING TIME (min): COUD COV. (8ths) SOIL MOISTURE	2.67 0	7	1	1
SOIL MOISTURE	2	2	2	2
INVERSION?	n	n		n
SITE ROUGHNESS (CE)			0.030	0.030
RELEASE HT (m)				0.00
CONTINUOUS GAS RELEAS				
EMIS. RATE (kg/min)	1392.6	1749.6	1290.6	1625.4
	n		n	n
ELAPSED TIME (min)	2.67	3.75	1.58	2.25
CONC. AVG TIME (min):	1.00	1.00	1.00	1.00
SPECIFIED CONC (ppm)	100.	100.	100.	100.
SPECIFIED CONC (ppm): DOWNWIND DIST, (m)	89.0	58.0	87.0	129.0
TRAVEL TIME (min)	0.3	0.1	0.2	
DOWNWIND DIST. (m)	131.0	90.0	179.0	250.0
TRAVEL TIME (min)	0.4		0.4	
DOWNWIND DIST. (m)	324.0			
TRAVEL TIME (min)	1.0		6.7	
DOWNWIND DIST. (m)	400.0	182.0		
	1.2		1.2	
	650.0		• -	
	1.9		0.0	
	-99.9		~99.9	
TRAVEL TIME (min)	. 0.0		0.0	
DOWNWIND DIST. (m)	-99.9		-99.9	
	0.0			
SOLAR ANGLE (deg)	41.35	36.77	36.12	40.12

IS PRINTER ON?	: N							
	: 3							
	Y							
	METRIC							
	. 0							
		MS43 1	4546)					
	. 11372 : 9							1354
	28						10	10
	80		1	1	-	-	9	15
HOUR		10	80	80			80	80
MINUTE	15 53 1	17	15	16			14	8
TYPE OF SPILL		18	12	16			34	25
STATION NO.		.1	1	1			1	1
CHEMICAL NO.	17 68	17		17		- '	17	17
MOLECULAR WEIGHT			68	68			68	68
			43.950	43,840			43.870	43.940
CONC. OF INTEREST : MEAS. HEIGHT (B) :	100.00	100.00	100.00	100.00	100.00		100.00	100.00
AMB. TEMP. (C)	10.0 18.3	10.0	10.0	10.0	10.0		10.0	10.0
WIND DIR. (deg)	18.3	17.0	18.7	17.4	13.3	10.4	11.8	8.4
WIND DIR. (deg) : WIND SPEED (m/a) :	0.0 4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
WIND SEED (M/S) :			8.1	6,2	5.5	7.9	7.4	3.7
HAVE STDV. OF DIR?	Y	Y	Y	¥	Y	Y	Y	Y
STD. DEV. DIR. (deg):	5.5 3.00	6.2	6.7	6.1	4.8	5,9	5.5	5.5
AVERAGING TIME (min):	3.00	5.67	8,00	5.00	1.50	4.17	3.00	3.00
CLOUD COV. (8ths) ;		4	1	4	3	6	1	0
SOIL MOISTURE :			2	2	2	2	2	2
INVERSION? :	n a		п	п	n	n	_	n
SITE ROUGHNESS (CE) :	0.030		0.030	0.030	0.030	0.030	0.030	0.030
RELEASE HT (m) :		0.00	0.00	0.00	0.00	0.00	0.00	0.00
CONTINUOUS GAS RELEAS						••••	*****	0.50
EMIS. RATE (kg/min) :		1152.0	1402.2	1954.2	1002.6	2153.4	2655.0	1152.0
STILL LEAKING? :	מ	n	n	п	n	n	n	n
ELAPSED TIME (min) :	3.00 1.00	5.50	6.00	3.50	1.50	2.67	2.33	3.00
CONC. AVG TIME (min):	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
SPECIFIED CONC (Ppm):	100.	100.	100.	100.	100.	100.	100.	100.
DOWNWIND DIST. (m) :		58.0	34.0	90.0	90.0	59.0	61.0	56.0
TRAVEL TIME (min) :	0.1 53.0	0.3	0.1	0.2	0.3	0.1	0.1	0.3
DOWNWIND DIST. (m) :	53.0	129.0	91.0	128.0	129.0	93.0	95.0	
TRAVEL TIME (min) :	0.2 83.0	0.4	0.2	0.3	0.4	0.2	0.2	85.0
DOMNWIND DIST. (m) :	83.0	249.0	130.0	182.0	180.0	182.0		0.4
TRAVEL TIME (min) :	0.3	0.7	0.3	0.5	0.5	0.4	178.0	178.0
DOWNWIND DIST. (m) :	123.0	400.0	182.0	250.0	250.0	400.0	0.4	0.8
TRAVEL TIME (min)	0.5	1.1	0.4	0.7	0.8		249.0	247.0
DOWNWIND DIST. (m) :	179.0	~99.9	250.0	321.0	322.0	0.8 -99.9	0.6	1.1
TRAVEL TIME (min) :	0.7	0.6	0.5	0.9	1.0	0.0	398.0	~99.9
DOWNWIND DIST. (m) :	247.0	-99.9	322.0	400.0	400.0	-99.9	0.9	0.0
TRAVEL TIME (min) :	1.0	0.7	0.7	1.1	1.2	0.0	650.0	-99.9
DOWNWIND DIST. (m) :	398.0	-99.9	401.0	-99.9	-99.9	-99.9	1.5	0.0
TRAVEL TIME (min) :	1.7	0.9	0.8	0.0	0.0		-99.9	-99.9
SOLAR ANGLE (deg)		4.04	21.24	12.38		0.0	0.0	0.0
				**.30	31.63	30,97	22.83	16.01

AFTOX INPUT DATA FOR CHEMICAL RELEASED		rie Grass, set ur dioxide	: 1					
STATION NO.7 CHANGE DATE/TIME? UNIT SYSTEM?	: N : 3 : Y : METRIC : 6							
	: PG7	PG8 PG	9 1	PG10	PG13	PG15 I	C16 F	G17
MONTH	:	7 7	7	7		7		
DAY	1		11	11	22	23	23	23
YEAR :	5		56	56			56	56
HOUR	1		16	12		_	10	20
MINUTE	1	5 0	0	0			0	O
TIPE OF SPILL		1	1	1	1	1	1	1
TYPE OF SPILL STATION NO. CHEMICAL NO. MOLECULAR WEIGHT	1:	9 19	19	19		19		19
MOTECUTAD NETCUT	64 00	1 71	71			71	71	71
CONC OF INTEREST	1 00	64.000	64.000		64.000			
MEAS. HETGHT (m)	2.00	1.00	1.00	1,00	1.00		1.00	1.00
AMR. TEMP. (C)	31 (31.9	27.9	2.0 30.9	2.0	2.0 21.9	2.0	2.0
WIND DIR. (deg)	0.0	0.0				21.9	27.9	26.9
WIND SPEED (m/s)	4	2 4.9	0.0 6.9	0.0 4.6		0.0 3.4	0.0 3.2	0.0
CONC. OF INTEREST MEAS. HEIGHT (m) AMB. TEMP. (C) WIND DIR. (deg) WIND SPEED (m/s) HAVE STDV. OF DIR?	•	Y Y	•					3.3
STD. DEV. DIR. (deg): AVERAGING TIME (min):	25.1	10.2 10.00	10 2	14 0		12.	Y	Y
AVERAGING TIME (min):	10.00	10.00	10.00	10.00	10.00	10.00	10.00	5.6
CLOUD COV. (8ths) :		2 0	2	2		10.00	10.00	10.00
		i	ī	ī	i		1	5 1
INVERSION? :	1	n n	n	n	n		n	, , , , , , , , , , , , , , , , , , ,
SITE ROUGHNESS (cm) : RELEASE HT (m) :	0,600	0.600	0.600	0.600	0.600	0.600		0.600
RELEASE HT (m) :	0.45	0.45	0.45	0.45	0.45	0.45		0.45
CONTINUOUS CAS OFFERS	r						****	4.43
EMIS. RATE (kg/min) :	5.4	5.5	5.5	5.5	3.7	5.7	5.6	3.4
STILL LEAKING? : ELAPSED TIME (min) :	17	n	n		3.7 a	n	n	n
ELAPSED TIME (min) :	10.00	10,00	10.00	10.00	10.00	10.00	10.00	10.00
CONC. AVG TIME (min):		10,00	10.00	10.00	10.00	10.00	10.00	10.00
SPECIFIED CONC (ppm):	1. 50.0	1.	1.	1.	1.	1.	1.	1.
DOWNWIND DIST. (m) :	50.0	50.0	30.0	50.0	400.0	50.0	50.0	50.0
TRAVEL TIME (min) :			0.1	0.2	2.4	0.2	0.2	0.2
DOWNWIND DIST. (m) :			100.0	100.0	800.0	100.0	100.0	100.0
TRAVEL TIME (min) : DOWNWIND DIST. (m) :	0.3 200.0	0.3	0.2	0.3	4.9	0.4	0.4	0.4
TRAVEL TIME (min)	200.0	200.0	200.0	200.0	-99.9	200.0	200.0	200.0
DOWNWIND DIST. (m)		0.6	0,4	0.6	0.5	0.8	0.9	0.7
TRAVEL TIME (min)	400.0	400.0	400.0	400.0	-99.9	400.0	400.0	400.0
DOWNWIND DIST. (m)	1.4 800.0	1.1	0.8	1.2	0.8	1.7	1.8	1.4
TRAVEL TIME (min) :			800.0	800.0	-99.9	800.0	800.0	800.0
SOLAR ANGLE (deg) :			1.6	2.5	1.0	3.3	3.6	2.9
MUGDE (nad) :	61.58	32.68	43.68	68.25	-0.30	28.00	49.80	-0 44

APPROVINGED DATA COR.	Thorney	Telend (continuous)
CUENTENT DETENCED	Michiga	Island (continuous) of Freon-12 and Nitrogen
CREMICAL RELEASED	MIALDIE	or Freeze-12 and arcrogen
TE BETWEEN ONE	· N	
IS PRINTER ON?	. 7	
SIAIION NO.:		
CHANGE DATE/TIME/	I I	
UNII SISIEM?	METRIC	
TIME ZONE	: U	- 4 7
TRIAL	TC45 T	547
MONTH	•	
DAY :	. 9	15
YEAR :	. 84	84
HOUR :	19	20
MINUTE :	59	8
TYPE OF SPILL :	. 1	1
STATION NO.	11	11
CHEMICAL NO. :	46	46
MOLECULAR WEIGHT :	57.800	57.800
CONC. OF INTEREST :	100.00	100.00
MEAS. HEIGHT (m)	10.0	10.0
AMB. TEMP. (C)	13.0	14.3
WIND DIR. (deg)	0.0	0.0
WIND SPEED (m/s) :	2.3	1.5
HAVE STOV. OF DIR?	Y	Y
STD. DEV. DIR. (deg)	4.4	2.0
AVERAGING TIME (min)	10.00	10.00
CLOUD COV (Sthel	1	0
SOTI MOISTURE	· ī	i
THUEBSTON?		n
CITE BONCUNESS (am)	1 000	1 000
DELEGE NA (=)	1.000	0.00
COMPANIONS CAR DETERM	*	0.00
THE PAGE (No. (P.S.)	E 640 2	412.2
EMIS. RATE (KG/min)	040.2	913.2
STILL LEAKING?	n	n n
ELAPSED TIME (min)	7.38	7.75
CONC. AVG TIME (min):	1.00	1.00
SPECIFIED CONC (ppm):	100.	100.
DOWNWIND DIST. (m)	40.0	50.0
TRAVEL TIME (min) :	0.3	0.6
DOWNWIND DIST. (m) :	53.0	90.0
TRAVEL TIME (min)	0.4	1.0
DOWNWIND DIST. (m)	72.0	212.0
TRAVEL TIME (min) :	0.5	2.4
DOWNWIND DIST. (m) :	90.0	250.0
TRAVEL TIME (min) :	0.7	2.8
DOWNWIND DIST. (m) :	112.0	335.0
TRAVEL TIME (min) :	0.6	3.7
IS PRINTER ON? STATION NO.? CHANGE DATE/TIME? UNIT SYSTEM? TIME ZONE TRIAL MONTH DAY YEAR HOUR MINUTE TYPE OF SPILL STATION NO. CHEMICAL NO. MOLECULAR WEIGHT CONC. OF INTEREST MEAS. HEIGHT (m) AMB. TEMP. (C) WIND DIR. (deg) WIND SPEED (m/s) HAVE STDV. OF DIR? STD. DEV. DIR. (deg): AVERAGING TIME (min): CLOUD COV. (8ths): SOIL MOISTURE INVERSION? SITE ROUGHNESS (cm): RELEASE HT (m) CONTINUOUS GAS RELEAS EMIS. RATE (kg/min): STILL LEARING? ELAPSED TIME (min): CONC. AVG TIME (min): SPECIFIED CONC (ppm): DOWNWIND DIST. (m): TRAVEL TIME (min): TRAVEL TIME (min): DOWNWIND DIST. (m): TRAVEL TIME (min):	158.0	472.0
TRAVEL TIME (min)	1.1	5.2
DOWNWIND DIST. (m)	250.0	-99.9
TRAVET, TIME (min)	1.4	0.9
DOMESTIND DIST	335.0	-99 9
TRAVET TIME (min)	222.0	0.0
COMMITTED DIET (mail)	472 0	-00 0
TORUST TIVE (-1-1)	7/2.0	~~ ~
IRAYED TIME (MIR)	J.4	0.0
SOTTON VERSET (GEG) :	1.25	v, 44

-4.70

~1.91

29.34

2.08

37.46

-3.75

6.33

SOLAR ANGLE (deg)

4.37

-9.27

*** SCENARIO DATA ***								
	: 802	BU3	BU4	BU 5	BU 6	BU7	BUS	BU 9
	1971	1971	1971	1971	1971	1971	1971	1971
RELEASE (JET-1, OTHER-0)		0	0	0	0	0	0	0
EMISSION RATE (kg/s)		87.980	86,960	81.250	92.220	99.460	116.930	135.980
· -	: 173.	167.	175.	190.	129.	174.	107.	79.
	: 100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
• AEROSOL	: 0.0	0.0		0.0	0.0	0.0		0.0
RELATIVE HUMIDITY (%)		5.2	2.7	5,9	5.1	7.4	4.5	14.4
SURFACE ROUGHNESS (m)		0.00020	0.00020			0.00020	0.00020	0.00020
BUILDING WIDTH (m)	: 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BUILDING HEIGHT (m)	. 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
FOR NON-JET RELEASES -	-							
DILUTION FACTOR	: 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
STORAGE TEMP. (K)	: 111.6	111.6	111.6	111.6	111.6	111.6	111.6	111.6
DIKE AREA (m^2)	2642.1	2642.1	2642.1	2642.1	2642.1	2642.1	2642.1	2642.1
POOL DEPTH (m)	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
SOIL COND. (kcal/msK)	: 0.141E-02	0.141E-02	0.141E-02	0.141E-02	0.141E-02	0.141E-02	0.141E-02	0.141E-02
SOIL THERM DIFF (m^2/s)	: 0.141E-05	0.141E-05	0.141E-05	0.141E-05	0.141E-05	0.141E-05	0.141E-05	0.141E-05
FOR JET RELEASES ONLY	-							
RELEASE TEMP. (K)	: 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
RELEASE HT. (m)	: 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ORIFICE AREA (m^2)	: 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
EXIT VEL. (m/s)	: 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ANGLE (deg from hor.)	: 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
*** USER DATA ***								
MODE (0=SNAP, 1=FOOT)	: 1		1			1	1	1
REPORTING TIMES (s)	: 80	80	80			80	50	30
	: 10	10	10			10	10	
FOOTPRT START TIME (s):	: 0	0	0	-	-	0	0	O
FOOTPRT STOP TIME (s)	: 160	160	160	180	120	160	400	150
*** PRINT OPTIONS ***	_	_	_	_	_	_	_	_
ECHO INPUTS (1-yes)			1			1	1	1
SNAPSHOT CONCS (1-yes)							1	1
MAX CONCS (1=yes)							1	
RECEPTOR CONCS (1-yes):		_					1	
HEIGHT & SIGNA (1=yes):	: 1	1	1	1	1	1	1	1
*** CONCENTRATION LEVE	TE (DTOT) **							
	: 0		0	٥	0	٥	0	٥
USER - HIGH LEV (ppm)		100.00	100-00	-		100.00	100.00	100.00
USER - MID LEV (ppm)		100.00	100.00			100.00	100.00	100.00
USER - LOW LEV (ppm)		100.00	100.00			100.00	100.00	100.00
		200.20	20000	200100		100.00	200.00	10000
*** METEOROLOGICAL DATA	A (5 min.) *	••						
WIND SPEED (m/s)	: 6.0	5.9	10.3	8.4	10.4	9.7	2.6	6.7
WIND DIR (deg)	. 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
STAB CLASS (A=1,F=6)	and the second s	3,	3.	3.		4.	5.	4.
TEMPERATURE (K)	311.3	307.8	309.0	314.3	312.7	307.0	306.0	308.5
*** RECEPTOR DATA ***								
	: 0.0	0.0		0.0	0.0	0.0	0.0	0.0
• • •	: 0.0 : -57.0	-57.0				-57.0	-57.0	-57.0
		-140.0				-140.0	-140.0	-140.0
		99.9				-400.0	-400.0	-140.0
	: 99.9 : 99.9	99.9				99.9	-600.0	-800.0
1-COUNDINAILD (四)	. 37.3	77,7	37.3	77.7	77.7	77.7	-000.0	-944.0

The residence of	•	ridiatia	d nacural	gas
*** SCENARIO DATA ***				
SCENARIO		CO3	05 1971 0	COS
DOT NUMBER RELEASE (JET-1, OTHER-O EMISSION RATE (kg/s) DURATION (s)	:	1971	1971	1971
RELEASE (JET-1, OTHER-0)):	0		0
EMISSION RATE (kg/s)	:	100.670	129.020	123.030
DURATION (s)	÷	65.	98,	82.
# FIGUID	:	100.0	100.0	100.0
* AEROSOL	:	0.0	0.0	0.0
RELATIVE HUMIDITY (%)	:	11.3	22.1	22.8
SURFACE ROUGHNESS (m)	;	0.00020	0.00020	0.00020
BUILDING WIDTH (m)	:	0.0	0.0	0.0
BUILDING HEIGHT (m)	:	0.0	0.0	0.0
FOR MON-JET RELEASES				
STORICS SELECTOR	:	0.0	0.0	0.0
DIVERSE TEMP. (K)	:	111.6	111.6	111.6
POOT DEPTH (m)	:	2642.1	2642.1	2642.1
SOTT. COND (Last/mark)	•	0.01	0.01	0.01
SOIL THERM DIFF (mag)		0.1415-02	0.1416-02	0.141E-02
EMISSION RATE (kg/s) DURATION (s) LIQUID AEROSOL RELATIVE HUMIDITY (L) SURFACE ROUGHNESS (M) BUILDING WIDTH (M) BUILDING WIDTH (M) FOR NON-JET RELEASES DILUTION FACTOR STORAGE TEMP. (K) DIKE AREA (M-2) POOL DEPTH (M) SOIL COND. (Lcal/msK) SOIL THERM DIFF (M-2/s) FOR JET RELEASES ONLY	<u> </u>	0.1416-03	0.1415-03	C.141E-02
RELEASE TEMP. (K)	•	0.0	0.0	
RELEASE HT. (m)	į	0.00	0.00	0.0
ORIFICE AREA (m^2)	:	0.0000	0.0000	0.000
EXIT VEL. (m/s)	:	0.00	0.00	0.00
FOR JET RELEASES ONLY RELEASE TEMP. (K) RELEASE HT. (m) ORIFICE AREA (m^2) EXIT VEL. (m/s) ANGLE (deg from hor.)	:	0.0	0.0	0.0
*** USER DATA *** MODE (0-SNAP, 1-FOOT) REPORTING TIMES (a) MODEL TIME STEP (a) FOOTPRT START TIME (a) FOOTPRT STOP TIME (a)				
MODE (0=SNAP, 1=FOOT)	:	1	1 40 10	1
REPORTING TIMES (a)	:	30	40	40
MODEL TIME STEP (8)	:	10	10	10
FUOTPRT START TIME (s)):	0 90	0	0
POOTPRE STOP TIME (2)	:	90	80	120
*** PRINT OPTIONS ***				
ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes) MAX CONCS (1-yes) RECEPTOR CONCS (1-yes)		1 1 1 1	,	•
SNAPSHOT CONCS () TVOS		1	•	1
MAX CONCS (1-ves)	:	1	1 1 1	1
RECEPTOR CONCS (1-yes)		ī	i	i
RECEPTOR CONCS (1-yes) HEIGHT & SIGMA (1-yes)		ī	ĩ	î
			-	_
*** CONCENTRATION LEVE USER-0, DATABASE-1 USER - HIGH LEV (PPM) USER - MID LEV (PPM) USER - LOW LEV (PPM)	I.S	(PLOT) ***		
USER-U, DATABASE-1	:	0	0	0
USER - HIGH LEV (DDM)	:	100.00	100.00	100.00
DEED - VON TON (DDM)	:	100.00	100.00	100.00
OSEN - TOM TEA (Dbm)	:	100.00	100.00	100.00
*** METEOROLOGICAL DAT	'A	(5 min) **:	•	
WIND SPEED (m/s)	,	(J M111.)		5.7
WIND DIR (deg)	:	0.0	11.0	0.0
STAB CLASS (A=1,F=6)	:	3.	3.	4.
WIND SPEED (m/s) WIND DIR (deg) STAB CLASS (A-1,F-6) TEMPERATURE (K)	•	311.5	0.0 3. 301.5	297.3
*** RECEPTOR DATA ***				
X-COORDINATE (m)	:	0.0	0.0	0.0
I-COORDINATES (m)	:	-140.0	-140.0	-140.0
I-COORDINATES (M)	:	-200.0	-200.0	~200.0
Y-COORDINATES (M)	:	-300.0	-300.0	-300.0
Y-COORDINATES (m) Y-COORDINATES (m) Y-COORDINATES (m) Y-COORDINATES (m) Y-COORDINATES (m)	:	99.9	-400.0	~400.0

*** ******				
SCENARIO DATA *** SCENARIO DOT NUMBER RELEASE (JET=1, OTHER=0) EMISSION RATE (kg/s) DURATION (s) \$ LIQUID \$ AEROSOL RELATIVE HUMIDITY (\$) SURFACE ROUGHNESS (m) BUILDING WIDTH (m) BUILDING HEIGHT (m) FOR NON-JET RELEASES DILUTION FACTOR STORAGE TEMP. (K) DIKE AREA (m^2) POOL DEPTH (m) SOIL COND. (kcal/msK) SOIL THERM DIFF (m^2/s):				
SCENKIO	: DT1	DTZ	DT3	DT4
DOI NUMBER	: 1005	1005	1005	1005
THIS TOWN THE CONTROL (NAME OF THE CONTROL OF THE C	: 1	1	1	1
DEDUCATION KAIL (KG/E)	79.700	111.500	130.700	96.700
DURATION (E)	: 126.	255.	166.	381,
* LIQUID	81.3	81.7	81.1	80.4
* ALKOSOL	100.0	100.0	100.0	100.0
RELATIVE HUMIDITY (%)	13.2	17.5	14.8	21.3
SURFACE ROUGHNESS (m)	0.00300	0.00300	0.00300	0.00300
DOILDING WIDIN (M)	0.0	0.0	0.0	0.0
BOILDING REIGHT (M)	0.0	0.0	0.0	0.0
DITUTTOU PACTOR				
DIDITOR FACTOR	0.0	0.0	0.0	0.0
STOROGE TEMP. (K)	0.0	0.0	0.0	0.0
DANG AREA (E.S)	0.0	0.0	0.0	0.0
COTT COUR (b)	0.00	0.00	0.00	0.00
SOID CORD. (RCEI/MER)	0.000E+00	0.00000	0.000E+00	0.000E+00
SOIL THERM DIFF (m^2/s): FOR JET RELEASES ONLY -	0.000E+00	0.000E+00	0.000E+00	0.000E+00
POR GET REMEASES UNLY	-			
DETERED UT (N)	237.5	237.6	237.5	237.4
CRIEFICE LOCA (MAC)	0.79	0.79	0.79	0.79
EVIT VET (_ (_ (_)	0.8445	1.1199	1.1647	1.2115
ANCIE (den from ber	22.65	23.28	27.29	20.19
RELEASE TEMP. (K) : RELEASE HT. (m) : ORIFICE AREA (m^2) : EXIT VEL. (m/s) ANGLE (deg from hor.) :	0.0	0.0	0.0	0.0
MODE (0-SNAP, 1-FOOT) :	1	1	1 80 10 0	1 190
REPORTING TIMES (a) :	60	120	•	180
MODEL TIME STEP (a)	10	10	10	130
FOOTPRT START TIME (a)		10	10	10 0
MODE (0-SNAP, 1-FOOT) : REPORTING TIMES (s) : MODEL TIME STEP (s) : FOOTPRI START TIME (s) : FOOTPRI STOP TIME (s) :	180	240	240	380
			240	300
*** PRINT OPTIONS ***				
ECHO INPUTS (1-yes) ;	1	1	1	1
SNAPSHOT CONCS (1=yes);	1	1	1	ĩ
MAX CONCS (1-yes) :	1	1	1	1
RECEPTOR CONCS (1=yes):	1	1	1	ĩ
ECHO INPUTS (1-yes) : SNAPSHOT CONCS (1-yes); MAX CONCS (1-yes) : RECEPTOR CONCS (1-yes): HEIGHT & SIGMA (1-yes);	1	1	1	i
CONCENTRATION LEVEL!	S (PLOT)	_		
USER-U, DATAMASE-1		0	0	0
USER - HIGH LEV (ppm) :	100.00	100.00	100.00	100.00
USER - MID LEV (ppm) :	100.00	100.00	100.00	100.00
USER - HIGH LEV (ppm): USER - HIGH LEV (ppm): USER - MID LEV (ppm): USER - LOW LEV (ppm):	100.00	100.00	100.00	100.00
*** METEOROLOGICAL DATA	(5 min.) **	•		
WIND SPEED (m/s) :	9.7	7.6	9.3	6.2
WIND DIR (deg)	0.0	0.0	0.0	0.2
STAB CLASS (A-1,F-6)	4.	4.	4	٧.٠
WIND DIR (deg) : STAB CLASS (A-1,F-6) : TEMPERATURE (K) :	302.0	303.6	307.1	305.6
*** ******		,		
*** RECEPTOR DATA ***	_			
X-COURDINATE (m)	0.0	0.0	0.0	0.0
I-COURDINATES (m)	-100.0	-100.0	-100.0	-100.0
*** RECEPTOR DATA *** X-COORDINATE (m) ; Y-COORDINATES (m) ; Y-COORDINATES (m) ;	-800.0	-800.0	-800.0	-800.0

AIRTOX DATA FOR : CHEMICAL RELEASED :	Goldfish	ı	
CHEMICAL RELEASED :	Hydrogen	fluoride	
SCENARIO DATA *** SCENARIO DOT NUMBER RELEASE (JET-1, OTHER-0): EMISSION RATE (kg/s): DURATION (s): 1 LIQUID 1 AEROSOL RELATIVE HUMIDITY (1): SURFACE ROUGHNESS (m): BUILDING WIDTH (m): BUILDING HEIGHT (m): FOR NON-JET RELEASES -DILUTION FACTOR STORAGE TEMP. (K): DIKE AREA (m^2): POOL DEPTH (m): SOIL COND. (kcal/msK): SOIL THERM DIFF (m^2/s): FOR JET RELEASES ONLY—			
SCENARIO	: GF1	GF2	GF3
DOT NUMBER	1052	1052	1052
RELEASE (JET-1, OTHER-0);	: 1	1	1
EMISSION RATE (kg/s)	27.670	10.460	10.270
DURATION (s)	125.	360.	360.
* LIQUID	84.0	85.3	84.7
A AEROSOL :	100.0	100.0	100.0
RELATIVE HUMIDITY (%) :	4.9	10.7	17.7
SURFACE ROUGHNESS (m) :	0.00300	0.00300	0.00300
BUILDING WIDTH (m) :	0.0	0.0	0.0
BUILDING HEIGHT (m) ;	0.0	0.0	0.0
FOR NON-JET RELEASES			
DILUTION FACTOR :	0.0	0.0	0.0
STORAGE TEMP. (K) :	0.0	0.0	0.0
DIKE AREA (m^2) ;	0.0	0.0	0.0
POOL DEPTH (m) :	0.00	0.00	0.00
SOIL COND. (kcal/msK) :	0.000E+00	0.000E+00	0.000£+00
SOIL THERM DIFF (m^2/s):	0.000£+00	0.000E+00	0.000E+00
FOR JET RELEASES ONLY -	-		
RELEASE TEMP. (K): RELEASE HT. (m): ORIFICE AREA (m^2): EXIT VEL. (m/s) ANGLE (deg from hor.):	289.6	289.5	289.6
RELEASE HT. (m) :	1.00	1.00	1.00
ORIFICE AREA (m^2) :	0.2906	0.0896	0.0926
EXIT VEL. (m/s) :	20.33	23.04	22.62
ANGLE (deg from hor.) :	0.0	0.0	0.0
*** USER DATA ***			
MODE (0-SNAP, 1-FOOT) :	1	1	1
REPORTING TIMES (#) :	60	180	180
MODEL TIME STEP (a) :	10	10	10
FOOTPRT START TIME (s):	0	0	0
MODE (0-SNAP, 1-FOOT) : REPORTING TIMES (a) : MODEL TIME STEP (a) : FOOTPRT START TIME (a) : FOOTPRT STOP TIME (x) :	480	540	720
*** PRINT OPTIONS ***			
ECHO INPUTS (1-yes) :	1	1	1
SNAPSHOT CONCS (1=yes):	1	1	ī
MAX CONCS (1=yes) :	1	1	ī
RECEPTOR CONCS (1 -yes):	1	1.	ī
*** PRINT OPTIONS *** ECHO INPUTS (1-yes) : SNAPSHOT CONCS (1-yes) : MAX CONCS (1-yes) : RECEPTOR CONCS (1-yes) : HEIGHT & SIGHA (1-yes) :	1	1	ī
USER - HIGH LEV (PPm) : USER - HIGH LEV (PPm) : USER - HID LEV (PPm) : USER - LON LEV (PPm) :		~	•
*** CONCENTRATION LEVELS	(PLOT) ***		
USER-O, DATABASE-1 :	0	0	۵
USER - HIGH LEV (ppm) :	30.00	30.00	30.00
USER - MID LEV (ppm) :	30.00	30.00	30.00
USER - LOW LEV (ppm):	30.00	30.00	30.00
*** METEOROLOGICAL DATA	(5 min.) ***	•	
WIND SPEED (m/s) :	7.3	5.4	7.5
WIND DIR (deg) :	0.0	0.0	0.0
STAB CLASS (A=1,F=6) :	4.	4.	4
WIND SPEED (m/s) : WIND DIR (deg) : STAB CLASS (A=1,F=6) : TEMPERATURE (K) :	310.4	309.4	307.6
*** RECEPTOR DATA ***			
X-COORDINATE (m) :	0.0	0.0	0.0
Y-COORDINATES (m)	-300.0	-300.0	-300 0
Y-COORDINATES (m)	-1000.0	-1000.0	-1000.0
*** RECEPTOR DATA *** X-COORDINATE (m) : Y-COORDINATES (m) : Y-COORDINATES (m) : Y-COORDINATES (m) :	-3000.0	39.9	-3000.0
• • •			

*** SCENARIO DATA ***					
SCENARIO :	HC1	HC2	HC3	HC4	HC5
DOT NUMBER (9999-N2 with m.w29.0 RELEASE(JET=1,OTHER=0): EMISSION RATE (kg/s): DURATION (s): \$ LIQUID \$ AEROSOL RELATIVE HUMIDITY (%): SURFACE ROUGHNESS (m): BUILDING WIDTH (m):	9999	9999	9999	9999	9999
(9999-NZ with m.w29.0)	}				
RELEASE (JET-1, OTHER-0):	٥	0	0	0	0 0.017 1191.
EMISSION RATE (kg/s) :	0.012	0.012	0.028	0.039	0.017
DURATION (s) :	928.	905.	855.		1191.
# LIQUID :	0.0	0.0	9.0		
A AEROSOL :	0.0	0.0	0.0		
RELATIVE HUMIDITY (4) :	20.0	20.0	20.0		
SURFACE ROUGHNESS (m) :	0.03000	0.03000	0.03000	0.03000	0.03000
BUILDING WIDTH (m) :	0.0	0.0	0.0	0.0	0.0
BUILDING WIDTH (m) : BUILDING HEIGHT (m) : FOR NON-JET RELEASES	0.0	0.0	0.0	0.0	0.0
FOR NON-JET RELEASES					
DILUTION FACTOR :	0.0	0.0 2 85.4	0.0	0.0	0.0 27 8.8
STORAGE TEMP. (K) ;	290,9	285.4	288.9	286.6	
DILUTION FACTOR : STORAGE TEMP. (K) : DIKE AREA (m^2) : POOL DEPTH (m) :	0.0	0.0	0.0	0.0	
POOL DEPTH (M)	0.01	0.01	0.01	0.01	0.01
SOIL COND. (kcal/msK) :	0.564E-04	0.564E-04	0.564E-04	0.564E-04	0.564E-04
SOIL THERM DIFF (m^2/s):			0.244E-06	0.244E-06	0.244E-06
FOR JET RELEASES ONLY — RELEASE TEMP. (K) ; RELEASE HT. (m) : ORIFICE AREA (m^2) : EXIT VEL. (m/s) : ANGLE (deg from hor.) ;	•				
RELEASE TEMP. (R) ;	0.0	0.0			
RELEASE NT. (M)	0.00	0.00	0.00	0.00	0.00
ORIFICE AREA (m^2) :	0.0000	0.0000	0.0000		
EXIT VEL. (M/S)	0.00	0.00			
AMGLE (deg from nor.) :	0.0	0.0	0.0	0.0	0.0
*** USER DATA ***					
MODE (Occurs 1-poors			_	_	
DEPONETHS MINES (-)	4.50	1	1	1	1
MODEL SING COCK (%)	100	450			
FOOTBOT CTART TIME (a)	10	10	10		10
MODE (0-SNAP, 1-FOOT): REPORTING TIMES (s): MODEL TIME STEP (s): FOOTPRT START TIME (s): FOOTPRT STOP TIME (s):	930	900	0	•	0
	740	300	840	580	1180
ECHO INPUTS (1-yes) : SMAPSHOT COMCS (1-yes) : MAX COMCS (1-yes) : RECEPTOR COMCS (1-yes) : HEIGHT & SIGMA (1-yes) :					
ECHO INPUTS (1-yes) :	1	1	1	1	1
SKAPSHOT CONCS (1=yes):	ī	ī		i	
MAX CONCS (1-yes) :	ì	ĩ	ī	i	i
RECEPTOR CONCS (1-yes):	i	ĩ	_	ī	i
HEIGHT & SIGMA (1-yes):	1	1	ĩ	ī	i
			-	•	•
*** CONCENTRATION LEVELS	(PLOT) ***				
USER-0, DATABASE-1 : USER - HIGH LEV (ppm) : USER - HIGH LEV (ppm) : USER - LOW LEV (ppm) :	0	0	0	0	0
USER - HIGH LEV (ppm) :	0.10	0.10	0.10	0,10	0.10
USER - MID LEV (ppm) :	0.10	0.10	0.10	0.10	0.10
USER - LOW LEV (ppm) :	0.10	0.10	0.10	0.10	9.10
*** METEOROLOGICAL DATA	(5 MID.) **	•			
MIND DID (400)	3.4	5.6	10.3	5.4	4,2
MARU UIK (QBQ)	0.0	0.0	0.0	0.0	0.0
SIAB CLASS (A=1,F=6) :	6.	3.	3.	3.	5.
WIND SPEED (m/s) : WIND DIR (deg) : STAB CLASS (A-1,F-6) : TEMPERATURE (K) :	290.9	285.4	288.9	286.6	278.8
*** RECEPTOR DATA *** X-COORDINATE (m) : Y-COORDINATES (m) : Y-COORDINATES (m) :	0.0				
Y-COORDINATES (m)	300 A	200	0.0	0.0	0.0
Y-COORDINATES (m)	-200.0	-200.0	-200.0	-200.0	-200.0
	-900.0	00.0	-600.0	-800.0	-600.0

*** SCENARIO DATA *** SCENARIO :		UT 3 1	HIS 1	HI6 I	HI7 :	HIS
	9999	9999		9999		-
(9999-N2 with m.w29.0	1		,,,,	,,,,	2377	,,,,
RELEASE (JET=1. OTHER=0):	໌	0	0	o	٥	٥
EMISSION RATE (kg/s) :	1.000	1,000	1.000	1.000	_	
DURATION (s)	10.	10.	10.		10.	10.
RELEASE (JET-1, OTHER-0): EMISSION RATE (kg/s): DURATION (s): % LIQUID :	0.0	0.0	0.0		0.0	0.0
		0.0	0.0	0.0	0.0	0.0
RELATIVE HUMIDITY (%) : SURFACE ROUGHNESS (m) :	20.0	20.0	20.0	20.0	20.0	20.0
SURFACE ROUGHNESS (m) :	0.03000	0.03000	0.03000	0.03000	0.03000	0.03000
BUILDING WIDTH (m) :	0.0	0.0	0.0	0.0	0.0	0.0
BUILDING HEIGHT (m) :		0.0	0.0	0.0	0.0	0.0
FOR NON-JET RELEASES						
DILUTION FACTOR :	0.0	0.0	0.0		0.0	
STORAGE TEMP. (K) :	291.5					277.8
DIRE AREA (m^2) : POOL DEPTH (m) :	0.0		0.0		0.0	0.0
POOL DEPTH (m) :	0.01	0.01	0.01		0.01	0.01
SOIL COND. (kcal/msK) :						
SOIL THERM DIFF (m^2/s):	0.244E-06	0.244E-06	0.244E-06	0.244E-06	0.244E-06	0.244E-06
FOR JET RELEASES ONLY -	-					
RELEASE TEMP. (K) :	0.0	0.0	0.0	0.0	0.0	0.0
RELEASE HT. (m) :	0.00	0.00				
ORIFICE AREA (m-Z) :	0.0000	0.0000				
EXIT VEL. (M/E) :	0.00	0.00	0.00		0.00	
ANGLE (deg from hor.) :	0.0	0.0	0.0	0.0	0.0	0.0
FOR JET RELEASES ONLY - RELEASE TEMP. (K) : RELEASE HT. (m) : ORIFICE AREA (m^2) : EXIT VEL. (m/s) : ANGLE (deg from hor.) :						
MODE (0-SNAP, 1-FOOT) :	•	1	1	1	1	•
REPORTING TIMES (s)	1 20	10	10		10	1 30
MODEL TIME STEP (s) :	10	10	10		10	10
FOOTPRT START TIME (s):	10	.0	10	10	10	.0
FOOTPRT STOP TIME (s) :	520	300	180	-	280	660
POOTEKT STOP TIME (B) .	1 20 10 0 520	300		100	200	750
ECHO INPUTS (1-ves) :	1	1	1	1	1	1
SNAPSHOT CONCS (1-ves):	ī	ī	1	ī	ī	ī
MAX CONCS (1-yes) :	1	1	1	ī	1	1
RECEPTOR CONCS (1-yes):	1	1	1	1	1	1
HEIGHT & SIGNA (1-yes):	1	1	1	1	1	1
ECHO INPUTS (1-yes): SNAPSHOT CONCS (1-yes): MAX CONCS (1-yes): RECEPTOR CONCS (1-yes): HEIGHT 6 SIGNA (1-yes):						
CONCENTRATION LEVEL	S (FLOT)					
USER-O, DATABASE-1 :	0	0		0	0	0
USER - HIGH LEV (ppm) :	0.10	0.10	0.10	0.10	0.10	0.10
USER - MID LEV (ppm) :	0.10	0.10	0.10	0.10	0.10	0.10
USER - HIGH LEV (ppm) : USER - MID LEV (ppm) : USER - LOW LEV (ppm) :	0.10	0.10	0.10	0.10	0.10	0.10
*** METEOROLOGICAL DATA						
WIND SPEED (m/s) : WIND DIR (deg) :	3.6	6.0	11.1	10.4	6.4	
WIND DIR (deg) : STAB CLASS (A=1,F=6) : TEMPERATURE (K) :	0.0	0.0	0.0		0.0	
STAB CLASS (A-1, f-6) :	201 5	4.	3.		3.	5.
IEMPERATURE (R)	131.2	285.1	288.7	288,3	285.6	277.8
*** RECEPTOR DATA ***						
Y_COODDINATE (m)	0.0	0.0	0.0	0.0	0.0	0.0
X-COORDINATE (m) : Y-COORDINATES (m) :	-200.0					
Y-COORDINATES (m) :			-800.0		-800.0	
		300.0	-300,0	300.0	-300.0	- 200.0

*** SCENARIO DATA ***				
SCENARIO DATA *** SCENARIO DOT NUMBER RELEASE (JET=1, OTHER=0) EMISSION RATE (kg/s) DURATION (s) % LIQUID % AEROSOL	: MS27	MS29	MS34 1	MS35
DOT NUMBER	1971	1971	1971	1971
RELEASE (JET=1, OTHER=0)		0	0	0
EMISSION RATE (kg/s)	23,210	29.160	21.510	27.090
DURATION (s)	160.	225.	95.	135.
* LIQUID	100.0	100.0	100.0	100.0
* AEROSOL	0.0	0.0	0.0	0.0
RELATIVE HUMIDITY (%)	53.0	71.0	90.0	77.0
SURFACE ROUGHNESS (m)	0.00030	0.00030	0.00030	0.00030
BUILDING WIDTH (m)	0.0	0.0	0.0	0.0
BUILDING HEIGHT (m)	0.0	0.0	0.0	0.0
FOR NON-JET RELEASES	•			
DILUTION FACTOR	0.0	0.0	0.0	0.0
* LIQUID * AEROSOL RELATIVE HUMIDITY (*) SURFACE ROUGHNESS (m) BUILDING MIDTH (m) BUILDING HEIGHT (m) FOR NON-JET RELEASES DILUTION FACTOR STORAGE TEMP. (K) DIKE AREA (m^2) POOL DEPTH (m) SOIL COND. (kcal/msk) SOIL THERM DIFF (m^2/s)	111.7	111.7	111.7	111.7
DIKE AREA (m^2)	0.0	0.0	0.0	0.0
POOL DEPTH (m)	0.01	0.01	0.01	0.31
SOIL COMD. (kcal/msK) :	0.141E-02	0.141E-02	0.141E-02	0.141E-02
SOIL THERM DIFF (m^2/s) :	0.141E-05	0.141E-05	0.141E-05	0.141E-05
FOR JET RELEASES ONLY -	-			
RELEASE TEMP. (K)	0.0	0.0	0.0	0.0
FOR JET RELEASES ONLY - RELEASE TEMP. (K) RELEASE HT. (m) ORIFICE AREA (m^2) EXIT VEL. (m/ɛ) ANGLE (deg from hor.)	0.00	0.00	0.0 0.00 0.0000	0.00
ORIFICE AREA (m^2)	0.0000	0.0000	0.0000	0.0000
EXIT VEL. (m/E)	0.00	0.00	0.00	0.00
ANGLE (deg from hor.) :	0.0	0.0	0.0	0.0
444 MAN DIN				
*** USER DATA ***	. 1	1	1	1
MODE (0-SNAP, 1-FOOT) REPORTING TIMES (a) MODEL TIME STEP (a) FOOTPRT START TIME (a)	-		_	_
MODEL SIMP CODD (-)	80			
FOOTDER CTARE SILE (6)	10	10		
FOOTPRE STOP TIME (a)	240	220	-	-
	240	220		120
*** PRINT OPTIONS *** ECHO INPUTS (1-yes): SNAPSHOT CONCS (1-yes): MAX CONCS (1-yes): RECEPTOR CONCS (1-yes):				
ECHO INPUTS (1-yes) ;	. 1	1	1	1
SNAPSHOT CONCS (1-yes);	1	1	1	1
MAX CONCS (1-yes)	1	1	1	1
RECEPTOR CONCS (1-yes):	1	1	1	1
HEIGHT 4 SIGMA (1=yes):	1	1	1	1
USER - MID LEV (ppm): USER - MID LEV (ppm): USER - MID LEV (ppm): USER - LOW LEV (ppm):	S (PLOT) ***	•	_	_
USERTU, DATABASETI	100.00	100.00	100.00	100.00
usek - nich her (ppm) :	100.00	100.00	100.00	100.00
HEED - YOM YEV (ppm) :	100.00	100.00	100.00	100.00
user - now her (ppm) :	100.00	100.00	100.00	100.50
*** METEOROLOGICAL DATA	(5 min.) **	••		
WIND SPEED (m/s)	5.6	7.4	8.5	9.6
WIND DIR (deg)	0.0	0.0	0.0	
STAB CLASS (A-1,F-6) :	4.	4.	4.	4.
WIND SPEED (m/s) WIND DIR (deg) STAB CLASS (A=1,F=6) TEMPERATURE (K)	288.1	289.3	288.4	289.3
*** RECEPTOR DATA *** X-COORDINATE (m) Y-COORDINATES (m)		^ ^		0.0
Y-COORDINATES (m)	_80.0	-58 n	0.0 -87.0 -179.0	-129.0
Y-COORDINATES (m)	-131 0	-90.0	-179.0	-250.0
Y-COORDINATES (m)	-324 A	-130.0		
Y-COORDINATES (m)	-400 0	-182.0		
Y-COORDINATES (m)	+650.0	-252.0	00.0	
Y-COORDINATES (m)	99.4	-324.0 -403.0	99.9	99.9
Y-COORDINATES (m)	99.9	-403.0	99.9 99.9	99.9

*** SCENARIO DATA ***								
	: MS42 !	4\$43	MS46	MS47	MS49	MS50	MS52	MS 54
	1978	1978	1978	1978	1978	1978	1978	1978
RELEASE (JET-1, OTHER-0)		0	0	0	. 0			0
EMISSION RATE (kg/s)		19.200		32.570	16.710	35.890	44.250	19.200
DURATION (s)	180.	330.		210.		160.	140.	180.
* LIQUID	100.0	100.0		100.0		100.0		100.0
- :	0.0	0.0		0.0				0.0
RELATIVE HUMIDITY (4)		80.0		78.0		79.0		65.0
SURFACE ROUGHNESS (m)		0.00030		0.00030				0.00030
	0.0	0.0		0.0		0.0		0.0
BUILDING HEIGHT (m)	0.0	0.0		0.0		0.0		0.0
FOR NON-JET RELEASES -		• • • • • • • • • • • • • • • • • • • •	***	•••	• • • • • • • • • • • • • • • • • • • •	•••		
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
STORAGE TEMP. (K)	231.1	231.1		231.1		231.1		231.1
DIKE AREA (m^2)		0.0		0.0		0.0		0.0
POOL DEPTH (m)	0.01	0.01		0.01		0.01		0.01
SOIL COND. (kcal/msK)			0.141E-02					
SOIL THERM DIFF (m^2/s):			0.141E-05					
FOR JET RELEASES ONLY		0.1417-03	0.1416-03	0.1415-02	4.1416-03	0.1416-03	0.1412-03	0.1412-03
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
RELEASE HT. (m)	0.00	0.00		0.00		0.00		0.00
- · · · · · · · · · · · · · · · · · · ·		0.0000		0.0000				0.0000
				0.00				0.00
	0.00	0.00		0.0				
ANGLE (deg from hor.)	0.0	0.0	0.0	0.0	4.0	0.0	0.0	0.0
*** USER DATA ***								
MODE (0=SNAP, 1=FOOT)	. 1	1	1	1	1	1	1	1
REPORTING TIMES (s)		160		100		80	70	90
MODEL TIME STEP (s)		10		10		10	10	10
FOOTPRT START TIME (8)		10		10		10		- 0
FOOTPRT STOP TIME (8)		320	-	200	_	160	-	180
FOOTPRE STOP LIME (8)	210	320	200	200	120	1.00	210	100
*** PRINT OPTIONS ***								
ECHO INPUTS (1-yes)	. 1	1	1	1	1	1	1	1
SMAPSHOT CONCS (1-yes);		1		1		1	ī	ī
MAX CONCS (1-yes)		ī	_	ĩ	_	ī	ī	ĩ
RECEPTOR CONCS (1-yes)		ī	_	ī	-	ĩ	ī	ī
HEIGHT & SIGNA (1-yes);		ī	_	ī	_	ī	ī	ī
	•	•	•	•	•	•	•	•
*** CONCENTRATION LEVEL	S (PLOT) ***	•						
USER-O, DATABASE-1 :		0	0	0	0	0	0	0
USER - HIGH LEV (ppm) :	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
USER - MID LEV (ppm) :		100.00	100,00	100.00	100,00	100.00	100,00	100.00
USER - LOW LEV (ppm) :	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
*** METEOROLOGICAL DATA								
WIND SPEED (m/s)		5.8		6.2		7.9	7.4	3.7
WIND DIR (deg)		0.0	0.0	0.0	0.0	0.0	0.0	0.0
STAB CLASS (A-1,F-6)	4.	4.	4.	4.	4.	4.	4.	4.
TEMPERATURE (K)	291.5	290.2	291.9	290.6	286.5	283.6	285.0	281.6
*** ********								
*** RECEPTOR DATA ***								
X-COORDINATE (m)		0.0		0.0		0.0	0.0	0.0
Y-COORDINATES (m)	-28.0	-88.0		-90.0		-59.0	-61.0	-56.0
Y-COORDINATES (m)		-129.0		-128.0		-93.0	-95.0	-85.0
Y-COORDINATES (m)		-249.0		-182.0		-182.0	-178.0	-178.0
Y-COORDINATES (m)		-400.0		-250.0		-400.0	-249.0	-247.0
Y-COORDINATES (m)		99.9		-321.0		99.9	-398.0	99.9
Y-COORDINATES (m)		99.9		-400.0		99.9		99.9
Y-COORDINATES (m)	-398.0	99.9	-401.0	99.9	99.9	99.9	99.9	99.9

*** SCENARIO DATA ***				2010	PG13	0015	2016	DG13
								PG17
DOT NUMBER	1079				1079			
RELEASE (JET=1, OTHER=0):		1	1		1	_	1	
EMISSION RATE (kg/m)		0.091	0.092					
	600.	600.	600.	600.	600.	600.	600.	600.
	0.0	0.0	0.0		0.0		0.0	0.0
• AEROSOL :	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
RELATIVE HUMIDITY (%)		20.0	20.0		20.0	20.0	20.0	20.0
SURFACE ROUGHNESS (m)		0.00600						
BUILDING WIDTH (m)		0.0	0.0		0.0			
BUILDING HEIGHT (m)		0.0	0.0	0.0	0.0	0.0	0.0	0.0
FOR NON-JET RELEASES								
DILUTION FACTOR :		0.0	0.0		0.0	0.0	0.0	
STORAGE TEMP. (K)		0.0	0.0		0.0		0.0	0.0
DIKE AREA (m^2)		0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SOIL COND. (kcal/msK) :								
SOIL THERM DIFF (m^2/s):		0.0002+00	0.000100	0.0002730	U.000E+00	0.000E+00	0.000E+00	0.0002+00
FOR JET RELEASES ONLY -				-04 *	293.1	295.1		300.1
RELEASE TEMP. (K) :	305.1	305.1	301.1	304.1 0.45	0.45	0.45	301.1	
RELEASE HT. (m) :		0.45 0.0020	0.45 0.0020	0.0020	0.0020	0.0020	0.45 0.0020	0.45 0.0020
	0.0020	17.57		17.71		17.82		10.72
	17.34	0.0	0.0	0.0	0.0	0.0		0.0
ANGLE (deg from hor.) :		0.0	0.0	0.0	0.0	0.0	0.0	0.0
*** USER DATA ***								
MODE (0-SNAP, 1-FOOT) :	1	1	1	1	1	1	1	1
REPORTING TIMES (a)	300	300	300	300	300	300	300	300
MODEL TIME STEP (a)	10	10	10	10	10	10	10	10
FOOTPRT START TIME (s);		- 0	-0	۵	0	0	ō	0
FOOTPRT STOP TIME (a) :		600	600	600	600	600	600	600
,,,,								
*** PRINT OPTIONS ***								
ECHO INPUTS (1-yes) :	1	1	1	1	1	1	1	1
SNAPSHOT CONCS (1-yes);	1	1	1	1	1	1	1	1
MAX CONCS (1-yes) :	1	1	1	1	1	1	1	1
RECEPTOR CONCS (1-yes):	1	1	1	1	1	1	1	1
HEIGHT & SIGMA (1-yes):	1	1	1	1	1	1	1	1
*** CONCENTRATION LEVEL			_	٥	_	_	_	_
USER-O, DATABASE-1 :		. 0	0	-	1 00	0	0	. 0
USER - HIGH LEV (ppm) :		1.00	1.00	1.00	1.00	1.00	1.00	1.00
USER - MID LEV (ppm) : USER - LOW LEV (ppm) :		1.00 1.00	1.00	1.00	1.00	1.00	1.00	1.00
OSER - LOW LLV (PPM) :	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
*** METEOROLOGICAL DATA	(5 min_) *1	•						
WIND SPEED (m/s) :		5.9	8.4	5.4	2.7	4.0	3.7	4.6
WIND DIR (deg)		0.0	0.0	0.0	0.0	0.0	0.0	0.0
STAB CLASS (A-1,F-6)		3.	3.	2.	6.	1.	1.	4.
TEMPERATURE (K)		305.1	301.1	304.1	293.1	295.1	301.1	300.1
•								
*** RECEPTOR DATA ***								
X-COORDINATE (m) :	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Y-COORDINATES (m) :	-50.0	-50.0	-50.0	-50.0	-400.0	-50.0	-50.0	-50.0
Y-COORDINATES (m) :	-100.0	-100.0	-100.0	-100.0	-800.0	-100.0	-100.0	-100.0
Y-COORDINATES (m) :	-200.0	-200.0	-200.0	-200.0	99.9	-200.0	-200.0	-200.0
Y-COORDINATES (m) :	-400.0	-400.0	-400.0	-400.0	99.9	-400.0	-400.0	-400.0
Y-COORDINATES (m) :	-800.0	~400.0	-800.0	-800.0	99.9	-800.0	-800.0	-800.0

AIRTOX DATA FOR : CHEMICAL RELEASED :	Thorney	Island (cont	inuous)
CHEMICAL RELEASED :	Mixture	of Freen-12	and Nitrogen
SCENARIO DATA			
SCENARIO :	TC45	TC47	
DOT NUMBER :	9913	9913	
RELEASE (JET=1, OTHER=0):	0	0	
EMISSION KATE (kg/s) :	10.670	10.220	
PARATION (E)	455.	465.	
* PLEUCUI	0.0	0.0	
DELATIVE SIMILATION (4)	10.0	0.0	
SURFACE BOUGHNESS (m)	100.0	97.4	
BUILDING WIDTH (m)	0.01000	0.01000	
BUILDING HEIGHT (m)	0.0	0.0	
FOR NON-JET RELEASES	•••	0.0	
DILUTION FACTOR :	0.0	0.0	
STORAGE TEMP. (K)	286.3	287.5	
DIKE AREA (m^2)	0.0	0.0	
POOL DEPTH (m) :	0.01	0.01	
SOIL COMD. (kcal/msK) :	0.564E-04	0.564E-04	
SCENARIO DATA SCENARIO DOT NUMBER RELEASE (JET-1, OTHER-0): EMISSION RATE (kg/s): SURFACE ROUGHNESS (m): BUILDING HEIGHT (m): BUILDING HEIGHT (m): FOR NON-JET RELEASES DILUTION FACTOR STORAGE TEMP. (K): DIKE AREA (m-2): POOL DEPTH (m): SOIL COMD. (kcal/msk): SOIL THERM DIFF (m-2/s): FOR JET RELEASES ONLY RELEASE TEMP. (K) RELEASE TEMP. (K): RELEASE TEMP. (M): RELEASE TEMP. (M): RELEASE TEMP. (M): RELEASE TEMP. (M): RELEASE (M-2): EXIT VEL. (m/s): ANGLE (deg from hor.):	0.244E-06	0.244E-06	
FUR JET RELEASES ONLY	-		
RELEASE TEMP. (K) :	0.0	0.0	
COTTOR ARE (E)	0.00	0.00	
ORIFICE AREA (E-2)	0.0000	0.0000	
ANGIE (des fees	0.00	0.00	
where (ded itom not.) :	0.0	0.0	
*** USER DATA ***			
MODE (OMENAR, IMPOOR)	•		
REPORTING TIMES (a)	330	120	
MODEL TIME STEP (8)	10	230	
FOOTPRT START TIME (a):	10	10	
MODE (0-SNAP, 1-FOOT): REPORTING TIMES (s): MODEL TIME STEP (s): FOOTPRT START TIME (s): FOOTPRT STOP TIME (s):	440	690	
	• • • •	730	
*** PRINT OPTIONS ***			
ECHO IMPUTS (1-yes) :	1	1	
SNAPSHOT CONCS (1-yes):	1	1	
MAX CONCS (1-yes) :	1	1	
RECEPTOR CONCS (1-yes):	1	1	
*** PRINT OPTIONS *** ECHO IMPUTS (1-yes) : SNAPSHOT CONCS (1-yes): MAX CONCS (1-yes) : RECEPTOR CONCS (1-yes): HEIGHT & SIGMA (1-yes):	1	1	
*** CONCENTRATION			
*** CONCENTRATION LEVELS USER-O, DATABASE-1 : USER - HIGH LEV (PPM) : USER - MID LEV (PPM) : USER - LOW LEV (PPM) :	(SPOL)	_	
USER - NICH IFV /	100.00	0	
USER - MID LEV (nom)	100.00	100.00	
USER - LOW LEV (DOM)	100.00	100.00	
(prpm/ :	100.00	100.00	
WIND SPEED (m/s) : WIND DIR (deg) : STAB CLASS (A=1,F=6) : TEMPERATURE (K) :	(5 min_) **	*	
WIND SPEED (m/s) :	2.3	1.5	
WIND DIR (deg)	0.0	0.0	
STAB CLASS (A=1,F=6) :	5.	6.	
TEMPERATURE (K) :	286.3	287.5	

KECEPTOR DATA ***			
A-COORDINATE (M)	0.0	0.0	
Y-COODDINATES (M)	-40.0	-50.0	
A-COUDDINAGE (-:	-53.0	-90.0	
Y-COORDINATES (E)	-72.0	-212.0	
Y-COORDINATES (m)	-90.0	-250.0 -335.0	
Y-COORDINATES (m)	-144.U	-JJ5.U	
Y-COORDINATES (m)	-240 O	96.0	
Y-COORDINATES (m)	-335.0	99.7	
Y-COORDINATES (m)	-472.0	99.9	
X-COORDINATES (m) : Y-COORDINATES (m) :			

the COPULBYO DIME ALL									
*** SCENARIO DATA *** SCENARIO	TI6	TI7	TIS		# *10				
									TI19
RELEASE (JET-1, OTHER-0)									
EMISSION RATE (kg/s)		-	-		•			_	
DURATION (a)									547.700 10.
* LIQUID									0.0
* AEROSOL			0.0						0.0
RELATIVE HUMIDITY (%)		80.7	87.6						94.8
SURFACE ROUGHNESS (m) :	0.01800	0.01800	0.01200		0.01800				
BUILDING WIDTH (m)		0.0	0.0	0.0	0.0	0.0	0.0		0.0
BUILDING HEIGHT (m) :		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
FOR NON-JET RELEASES									
DILUTION FACTOR : STORAGE TEMP, (K) :			0.0						0.0
		290.5	290.7						286.5
POOL DEPTH (m)		0.0 0.01	0.0	0.0 0.01	0.0 0.01	0.0	0.0		0.0
SOIL COND. (kcal/mak)	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
SOIL THERM DIFF (m^2/s):	0.2446-06	0.3642-06	0.3045-04	0.3646-04	0.3642-04	0.3842-04	0.3045-04	0.3645-04	0.564E-04
FOR JET RELEASES ONLY -	-	0.2112-00	0.411E-00	0.2116-00	0.2442-00	0.2446-06	0.2442-06	0.2442-06	U.244£-08
RELEASE TEMP. (K) :		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
RELEASE HT. (m)		0.00	0.00	0.00	0.00	9.00	0.00	0.00	0.00
ORIFICE AREA (m^2) :		0.0000	0.0000	0.0000	0,0000	0.0000	0.0000	0.0000	0.0000
EXIT VEL. (m/s) :		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ANGLE (deg from hor.) :	0.0	0.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0
								- • -	
*** USER DATA ***									
MODE (0-SNAP, 1-FOOT) : REPORTING TIMES (*) :		.1	.1	1	1	1	1	1	1
		10	10	20	10	10	10	10	10
MODEL TIME STEP (s) : FOOTPRT START TIME (s):		10 0	10 0	10 0	10 0	10 0	10	10	10
FOOTPRT STOP TIME (8) :		320	460	640	440	140	0 240	0	0
•				• • • • • • • • • • • • • • • • • • • •	110	140	240	160	220
*** PRINT OPTIONS ***									
ECHO IMPUTS (1-yes) :	1	1	1	1	1	1	1	1	1
SWAPSHOT CONCS (1-yes):		1	1	1	1	1	1	1	1
MAX CONCS (1-yes) : RECEPTOR CONCS (1-yes):		1	1	1	1	1	1	1	1
HEIGHT & SIGMA (1-yes):		1	1	1	1	1	1	1	1
menut a nemat (1-len):	•		1	1	1	1	1	1	1
*** CONCENTRATION LEVEL	S (PLOT) ***	•							
USER-O, DATABASE-1 :	0	0	0	0	0	0	0	0	٥
USER - HIGH LEV (ppm) :	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
USER - MID LEV (ppm) :	100.00	100.00	100.00	190.00	100.00	100,00	100.00	100.00	100.00
USER - LOW LEV (PPm) :	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
*** METEOROLOGICAL DATA	(5 min.) **	•							
	2.8	3.4	2.4	1.7	2.5				
WEND DER (deg)	0.0	0.0	0.0	0.0	0.0	7.3 0.0	5.0 0.0	7.4 0.0	6.4 0.0
STAD CLASS (A-1, F-6) ;		5.	4.	6.	5.	4.	1.	4.	4.
TEMPERATURE (K) :	291.8	290.5	290.7	291.5	283.3	286.9	289.2	289.7	286.5
*** RECEPTOR DATA ***									
X-COORDINATE (m)	0.0								
Y-COORDINATES (m)	-71.0	0.0 ~71.0	0.0 -71.0	0.0 -71.0	0.0	0.0	0.0	0.0	0.0
Y-COORDINATES (m)	-141.0	-100.0	-100.0	-100.0	-71.0 -150.0	-71.0 -100.0	-40.0 -50.0	-40.0	-40.0
Y-COORDINATES (m)	-180.0	-150.0	-150.0	-141.0	-200.0	-224.0	-50.0 -71.0	-60_0 -70_0	-60.0
Y-COORDINATES (m)	-283.0	-180.0	-200.0	-180.0	-361.0	-316.0	-100.0	-10.0	-71.0 -100.0
Y-COORDINATES (m) :	-424.0	-224.0	-364.0	-224.0	-500.0	-361.0	-141.0	-100.0	-100.0 -224.0
Y-COORDINATES (m) :	99.9	-361.0	-412.0	-316.0	99.9	-412.0	-224.0	-200.0	-361.0
Y-COORDINATES (m) :	99.9	-500.0	-510.0	-503.0	99.9	99.9	-500.0	-224.0	-583.0
Y-COORDINATES (m) :	99,9	99.9	99.9	99.9	99.9	99.9	99,9	-300.0	99.9
Y-COORDINATES (m) :	99.9	99.9	99.9	99.9	99.9	99.9	99.9	-490.0	99.9
Y-COORDINATES (m) ;	99.9	99.9	99.9	99.9	99.9	99.9	99.9	-510.0	99.9

84M INPUT DATA FOR CHEMICAL RELEASED	:	Burro Liquef	ied natura	l gas					
TRIAL	:	BU2	BU3 1	BU4	BU5	BU 6	807	BUS	BU 9
INITIAL CONC (ppp)	:	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
DENSE ENOUGH? (inst) :	Y	Y	Y	Y	Y	Y	Y	Y
DENSE ENOUGH? (cnst	:	Y	Y	Y	Y	Y	Y	Y	Y
MIN DIST INST (m)	:	1735.	1651.	2996.	2660.	2236.	2822.	458.	881.
COR. PARAM. (inst)	:	1.94	1,91	1.10	1.38	1.07	1.26	4.49	1.77
1/D1 (1/m)	:	0.491E-01	0.493E-01	0.485E-01	0.482E-01	0.527E-01	0.475E-01	0.529E-01	0.562E-01
MAX DIST CNST (m)	:	416.	396.	719.	638.	537.	677.	110.	211.
COR. PARAM. (cnst)	:	0,77	0.77	0.44	0.54	0.45	0.50	1.95	0,80
1/Dc (1/m)	:	0.352	0.345	0.453	0.423	0.443	0.425	0,201	0.306

B4M INPUT DATA FOR CHEMICAL RELEASED	: Coyote : Liquefied natural gas	. Methane is at least 86% in c
TRIAL INITIAL CONC (ppp)	: CO3	

DENSE ENOUGH? (inst): DENSE ENOUGH? (cnst): MIN DIST INST (m): 784. 723. COR. PARAM. (inst) 1.70 1.15 1.98 0.671E-01 0.544E-01 1/Di (1/m) MAX DIST CNST (m) 174. 431. 188. COR. PARAM. (cnst) 0.78 0.50 0.89 1/Dc (1/m) : 0.362 0.417 0.301

B4M INPUT DATA FOR : Desert Tortoise CHEMICAL RELEASED : Anhydrous Ammonia

TRIAL : DT1 DT2 DT3 DT4 : 0.089979 0.091419 0.096518 0.095455 INITIAL CONC (ppp) DENSE ENOUGH? (inst): DENSE ENOUGH? (cnst): MIN DIST INST (m) 2033. 3241. 2568. 3952. COR. PARAM. (inst) 1/Di (1/m) 1.11 1.69 1.35 0.192E-01 0.136E-01 0.152E-01 0.126E-01 MAX DIST CNST (m) COR. PARAM. (cnst) 1/Dc (1/m) 488. 778. 616. 949. 0,58 0.79 0.94 0.68 : 0.926E-01 0.701E-01 0.732E-01 0.692E-01

B4M IMPUT DATA FOR : Goldfish CHEMICAL RELEASED : Hydrogen fluoride

: GF1 GF2 GF3 : 0.088112 0.083367 0.076311 INITIAL CONC (ppp) DENSE ENOUGH? (inst): DENSE ENOUGH? (cnst): MIN DIST INST (m) : Y 1521. 3227. 4482. COR. PARAM. (Inst) 0.54 0.74 0.51 1/Di (1/m) 0.268E-01 0.255E-01 0.250E-01 MAX DIST CNST (m) 365. 774. 1076. COR. PARAM. (cnst) 0.32 0.36 0.25 1/Dc (1/m) : 0.132 0.179

B&M INPUT DATA FOR : Hanford (continuous) CHEMICAL RELEASED : Krypton-85

INITIAL CONC (ppp) 1.000000 1.000000 1.000000 1.000000 1.000000 DENSE ENOUGH? (inst): DENSE ENOUGH? (cnst): MIN DIST INST (m) : N N N 14691. COR. PARAM. (inst) 0.04 0.05 1/Di (1/m) 0.484 0.372 0.378 1283. 2029. MAX DIST CNST (m) 1262. 3526. 2010 COR. PARAM. (cnst) 1/Dc (1/m) 0.02 0.01 0.03 0.02 0.02 24.1 21.3 13.1 17.7

B4M INPUT DATA FOR : Hanford (instantaneous) CHEMICAL RELEASED : Krypton-85

HI 6 INITIAL CONC (ppp) 1.000000 1.000000 1.000000 1.000000 DENSE ENOUGH? (inst): DENSE ENOUGH? (cnst): MIN DIST INST (m) : N N N N N COR. PARAM. (inst) 0.06 0.03 0.02 0.02 0.03 0.06 1/D1 (1/m) ٥. MAX DIST CNST (m) ٥. ٥. ٥. 0. ٥. COR. PARAM. (cnst) 0.00 0.00 0.00 0.00 0.00 1/Dc (1/m) 0.100E+05 0.100E+05 0.100E+05 0.100E+05 0.100E+05 0.100E+05

BAM INPUT DATA FOR : Maplin Sands . CHEMICAL RELEASED : Liquified Natural Gas .

TRIAL. MS29 MS34 MS35 INITIAL CONC (ppp) 1.000000 1.000000 1.000000 1.000000 DENSE ENOUGH? (inst): DENSE ENOUGH? (cnst): MIN DIST INST (m) 1493. 2775. 2160. COR. PARAM. (inst) 0.80 1/D1 (1/m) 0.795E-01 0.647E-01 0.962E-01 0.788E-01 358. MAX DIST CNST (m) 666. 323. 518. COR. PARAM. (cnst) 1/Dc (1/m) 0.57 0.43 0.36 0.33 0.671 0.671 0.848

B&M INPUT DATA FOR : Maplin Sands CHEMICAL RELEASED : Liquified Propane Gas

TRIAL MS 43 MS46 MS47 **K549** MS 50 MS 52 INITIAL CONC (ppp) : 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 DENSE ENOUGH? (inst): DENSE ENOUGH? (cnst): MIN DIST INST (m) 1200. 3190. 4860. 2170. 825. 2107. 1727. COR, PARAM. (inst) 2.58 1.93 1.46 1.83 1.57 1.36 0.851E-01 0.715E-01 0.651E-01 0.697E-01 0.115 1/D1 (1/m) 0.739E-01 0.720E-01 0. 875E-01 MAX DIST CHST (m) 288. 521. 0.66 766. 1166. 198. 506. 414. 266. COR. PARAM. (cnst) 1/Dc (1/m) 0.94 0.63 0.47 0.64 0.52 0.58 0.714

B&M INPUT DATA FOR : Prairie Grass, set 1 CHEMICAL RELEASED : Sulfur dioxide

TRIAL	:	PG7	2G8	PG9	PG10	PG13	PG15	PG16	PG17
INITIAL CONC (ppp)	:	1.000000	1.000000	1,000000	1,000000	1.000000	1.000000	1.000000	1,000000
DENSE ENOUGH? (inst):	:	Y	Y	Y	Y	Y	Y	Y	Y
DENSE ENOUGH? (CDSt):	:	Y	Y	Y	Y	Y	Y	Y	Y
MIN DIST INST (m)	:	4926,	5880.	8385.	5383.	2737.	3982.	3749.	4625.
COR. PARAM. (inst) ;	:	1.17	0.96	0.69	1.07	1.95	1.45	1.54	1.14
1/Di (1/m) :	:	0.362	0.360	0.361	0.359	0.417	0.359	0.359	0.425
MAX DIST CNST (m)	:	1182.	1411.	2012.	1292.	657.	956.	900.	1110.
COR. PARAM. (cnst)	:	0.28	0.24	0.16	0.26	0.46	0.35	0.37	0.27
1/Dc /1/m)		11 8	12 R	15 4	12.2	10.9	10.5	10.2	14.6

BAN INPUT DATA FOR : Thorney Island (continuous)
CHEMICAL RELEASED : Mixture of Freon-12 and Nitrogen

TRIAL C45 TC47 1.000000 1.000000 : TC45 INITIAL CONC (ppp) DENSE ENOUGH? (inst): DENSE ENOUGH? (cnst): MIN DIST INST (m) : 1163. COR. PARAM. (inst)
1/Di (1/m)
MAX DIST CNST (m)
COR. PARAM. (cnst) 4.84 7.40 0.798E-01 0.802E-01 419. 1.46 279. 2.22 1/Dc (1/m) 0.729 0.600

BEM INPUT DATA FOR : Thorney Island (instantaneous)
CHEMICAL RELEASED : Mixture of Freon-12 and Nitrogen

TI6 TI7 TI8 TI9 TI12 TI13 TI17 TI18 TI19 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 INITIAL CONC (ppp) :
DENSE ENOUGH? (inst):
DENSE ENOUGH? (cnst):
MIN DIST INST (m) : Y N Y N N N N ٥. 0. ٥. 0. ٥. ٥. ٥. ٥. COR. PARAM. (inst) 1/Di (1/m) 3.09 3.69 5.09 2.84 3.88 0.859E-01 0.796E-01 0.796E-01 0.796E-01 0.801E-01 0.802E-01 0.836E-01 0.835E-01 0.779E-MAX DIST CNST (m) ٥. 0. 0. 0. ٥. 0. 0. 0. 0.00 0.00 0.00 0.00 0.00 COR. PARAM. (cnst) 0.00 0.00 0.00 0.00 0.100E+05 0.100E+05 0.100E+05 0.100E+05 0.100E+05 0.100E+05 0.100E+05 0.100E+05 1/Dc (1/m)

CHARM INPUT DATA FOR: Burro
CHEMICAL RELEASED : Methane
MODE : PLANNING - USER SPECIFIED RELEASE PARAMETERS, NO BUILDINGS

TRIAL	-		IU3 BU4	80		807			79
CONC. SPEC. (ppm)	:		100.0	100.0	100.0	100.0		100.0	
REL HUMID. (4)	:	7.1	5.2	2.7	5.9	5.1	7.4	4.5	14.4
AIR TEMP. (C)	:	38.1	34.5	35.8	41.1	39.5	33.8	32.8	35.3
AIR PRESSURE (atm)	:	0.927	0.936	0.933	0.929	0.923	0.928	0.929	0.928
WIND SPEED (m/s)	:	5.4	5.4	9.0	7.4	9.1	8.4	1.0	5.7
ROUGHNESS LENGTH (m)	:	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
MEASUREMENT HT (m)	:	2.0	2.0	2,0	2.0	2.0	2.0	2.0	2.0
STAB. CLASS	:	C	С	C	c	С	D	E	D
RELEASE HEIGHT (m)	:	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00
RELEASE LOC - (0,0)	:								
GAS TEMP (C)	:	-162.6	-162.6	-162.6	-162.6	-162.6	-162.6	-162.6	-162.6
DIAMETER (m)	:	35.91	36.30	36.09	34.89	37.17	38.60	41.85	45.13
HOR. SPEED (m/s)	:	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FRACTION DROPLETS	:	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MOLAR WATER FRACT.	:	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MOLAR AIR FRACT.	:	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000
IF CONTINUOUS, USE	201								
EMIS. RATE (q/s)	:	86100.	87980.	86960.	81250.	92220.	99460.	116930.	135980.
RELEASE DUR. (min)	:	2.88	2.78	2.92	3.17	2.15	2.90	1.78	1.32
IF INSTANTANEOUS, US	SĚ								
MASS RELEASED (kg)	:		0.	a.	٥.	٥.	٥.	٥.	٥.
RECEPTOR DIST, (m)	:	57.0	57.0	57.0	57.0	57.0	57.0	57.0	57.0
RECEPTOR DIST. (m)	:		140.0	140.0	140.0	140.0	140.0	140.0	140.0
RECEPTOR DIST. (m)	•	-99.9	-99.9	-99.9	-99.9	-99.9	400.0	400.0	400.0
RECEPTOR DIST. (m)	:	-99.9	-99.9	-99.9	-99.9	-99.9	-99.9	800.0	800.0
	•	-22.5							

	Methane	USER SPECI	FIED RELEASE	. Methane is at least parameters, No BUILDINGS	86% in c
TRIAL :	CO3 (:05 C	06		
CONC. SPEC. (ppm) REL HUMID. (%) AIR TEMP. (C)	100.0		100.0		
REL HUMID. (4) :	11.3	22.1	22.8		
AIR TEMP. (C) :	38.3	28.3	24.1		
AIR PRESSURE (atm) :	0.924	0.927	0.930		
WIND SPEED (m/s) :	6.0	9.7	4.6		
ROUGHNESS LENGTH (m):	0.0002	0.0002	0.0002		
MEASUREMENT HT (m) :	2.0	2.0	2.0		
STAB. CLASS :		C	D		
RELEASE HEIGHT (m) ;	0.00	0.00	0.00		
RELEASE LOC - (0,0) :					
GAS TEMP (C) :	-162.6	-162,6	-162.6		
DIAMETER (m) : HOR. SPEED (m/s) :	38.83	43.96	42.93		
	0.00				
FRACTION DROPLETS :		0.000	0.000		
MOLAR WATER FRACT. :	0.000	0.000	0.000		
MOLAR AIR FRACT. :	0.000	0.000	0.000		
IF CONTINUOUS, USE CO					
EMIS. RATE (g/z) :		129020.	123030.		
RELEASE DUR. (min) :	1.08	1.63	1.37		
IF INSTANTANEOUS, USE					
MASS RELEASED (kg) :		0.	0.		
RECEPTOR DIST. (m) :			140.0		
RECEPTOR DIST. (m) :			200.0		
RECEPTOR DIST. (m) :			300.0		
RECEPTOR DIST. (m) :	-99.9	400.0	400.0		

CHARM INPUT DATA FOR: Desert Tortoise

MASS RELEASED (kg) :
RECEPTOR DIST. (m) :
RECEPTOR DIST. (m) :
RECEPTOR DIST. (m) :

CHEMICAL RELEASED : Anhydrous Ammonia

HODE : PLANNING - USER SPECIFIED RELEASE PARAMETERS, NO BUILDINGS

	- 0.001	200		- 4
TRIAL	: DT1		T3 D1	
CONC. SPEC. (ppm)	: 100.0	100.0		
REL HUMID. (%)	: 13.2	17.5	14.8	21.3
AIR TEMP. (C)	: 28.6	30.4	33.9	32.4
AIR PRESSURE (atm)	: 0.897	0.898	0.895	0.891
WIND SPEED (m/s)	: 7.4	5.8	7.4	4.5
ROUGHNESS LENGTH (m)	: 0.0030	0.0030	0.0030	0.0030
MEASUREMENT HT (m)	: 2.0	2.0	2.0	2.0
STAB, CLASS	: 0	D .	D	E
RELEASE HEIGHT (m)	: 0.79	0.79	0.79	0.79
RELEASE LOC = (0,0)				
GAS TEMP (C)	: -35.7	-35.7	-35.7	-35.7
DIAMETER (m)	: 1.04	1.19	1.22	
HOR. SPEED (m/s)	: 22.65	23,28	27.29	20.19
FRACTION DROPLETS				0.804
MOLAR WATER FRACT.	: 0.000	0.000	0.000	0.000
MOLAR AIR FRACT.				
IF CONTINUOUS, USE C				
EMIS. RATE (g/s)		111500.	130700.	96700.
RELEASE DUR. (min)				
IF INSTANTANEOUS, US				
MASS RELEASED (kg)			0.	٥.
RECEPTOR DIST. (m)				100.0
RECEPTOR DIST. (m)	800.0	800.0	800.0	800.0
(w)		300.0		

CHARM INPUT DATA FOR: Goldfish CHEMICAL RELEASED : Hydrogen fluoride : PLANNING - USER SPECIFIED RELEASE PARAMETERS, NO BUILDINGS TRIAL : GF1 GF2 GF3 CONC. SPEC. (ppm)
REL HUMID. (%)
AIR TEMP. (C)
AIR PRESSURE (atm) 30.0 30.0 17.7 30.0 4.9 37.2 0.893 10.7 36.2 0.889 34.4 WIND SPEED (m/s) : ROUGHNESS LENGTH (m): 5.6 4.2 5.4 0.0030 0.0030 0.0030 2.0 MEASUREMENT HT (m) : 2.0 2.0 STAB. CLASS : RELEASE HEIGHT (m) : RELEASE LOC = (0,0) : D D D 1.00 1.00 1.00 GAS TEMP (C) DIAMETER (m) 16.4 16.4 0.34 16.4 0.61 0.34 HOR. SPEED (m/s) FRACTION DROPLETS 20.33 23.04 0.840 0.853 0.847 MOLAR WATER FRACT.: 0.000 0.000
MOLAR AIR FRACT.: 0.000 0.000
IF CONTINUOUS, USE CONSTANT EMISSION RATE:
EMIS. RATE (g/s): 27670. 10460. 0.000 0.000 0.000 EMIS. RATE (g/s): 27670. 10460. RELEASE DUR. (min): 2.08 6.00 IF INSTANTANEOUS, USE TOTAL MASS RELEASED: 10270. 6.00

0.

300.0

-99.9

1000.0

٥.

300.0

1000.0

3000.0

٥.

300.0

1000.0

3000.0

CHARM INPUT DATA FOR:	Hanford (co	ontinuous)			
CHEMICAL RELEASED	: ("Air"-oxvgen v	with m.w	29.01		
MODE	PLANNING - USE	R SPECIFIE	D RELEASE	PARAMETERS	. NO BUILDINGS
TRIAL CONC. SPEC. (ppm) REL HUNID. (%) AIR TEMP. (C) AIR PRESSURE (atm) WIND SPEED (m/s) ROUGHNESS LENGTH (m) HEASUREMENT (m)	HC1 HC2	HC3	HC4	HCS	
CONC. SPEC. (ppm) :	0.1	0.1	0.1	0.1	0.1
REL HUMID. (%)	. 20.C	20.0	20.0	20.0	20.0
AIR TEMP. (C)	17.7	17.2	15.7	13.4	5.6
AIR PRESSURE (atm) :	1.000	1.000	1.000	1.000	1,000
WIND SPEED (m/s) :	1.3	3.9	7.1	3.9	2.6
ROUGHNESS LENGTH (m):	0.0300	.0300 (0.0300	0.0300	0.0300
MEASUREMENT HT (m) : STAB. CLASS RELEASE HEIGHT (m) :	1.5	1.5	1.5	1.5	1.5
STAB. CLASS :	F	C	C	С	E
RELEASE HEIGHT (m) :	1.00	1.00	1.00	1.00	1.00
GAS TEMP (C) :	17.7	12.2	15.7	13.4	5.6
DIAMETER (m) :	0.11	0.06	0.07	0.11	0.09
GAS TEMP (C) : DIAMETER (m) : HOR. SPEED (m/s) : FRACTION DROPLETS MOLAR MATER SPACT	0.00	0.00	0.00	0.00	0.00
FRACTION DROPLETS :	0.000	0.000	0.000	0.000	0.000
MOLAR WATER FRACT.	0.000	0.000	0.000	0.000	0.000
MOLAR AIR FRACT. :	0.000	0.000	0.000	0.000	0.000
IF CONTINUOUS, USE CO	NSTANT EMISSION	RATE:			
EMIS. RATE (g/s) :	12.	12.	28.	39.	17.
RELEASE DUR. (min) :	15,47	15.08	14.25	9.97	19.85
IF INSTANTANEOUS, USE	TOTAL MASS RELE	ASED:			
MASS RELEASED (kg) :	0.	0.	0.	0.	0.
RECEPTOR DIST. (m) :	200.0	200_0	200.0	200.0	200.0
RECEPTOR DIST. (m) :	800.0	800.0	800.0	800.0	800 0
,, -					000.0

CHARM INPUT DATA FOR:	Hanford (in	stantane	ous)			
CHEMICAL RELEASED :	("Alr"-oxygen w	ith m.w.	-29.0)			
MODE :	PLANNING - USER			PARAMETER:	S, NO BUIL	Dings
	HI2 HI3	HIS	HI6	HI7	HIB	
COMC. SPEC. (ppm) :	0.1	0.1	0.1	0.1	0.1	0.1
REL HUMID. (4) :	20.0	20.0		20.0	20.0	20.0
AIR TEMP. (C) :	18.3	11.9	15.5		12.4	4.6
AIR PRESSURE (atm) :		1.000			1.000	1.000
WIND SPEED (m/s) :	1.3		7.6	7.2	4.5	1.6
ROUGHNESS LENGTH (m):		.0300	0.0300	0.0300	0.0300	0.0300
MEASUREMENT HT (m) :	1.5	1.5	1.5	1.5	1.5	1.5
STAB. CLASS :	£	ם	c	-ic	Č	E
RELEASE HEIGHT (m) :	0.00	0.00	0.00	0.00	0.00	0.00
RELEASE LOC - (0,0) :			*****	*****		0.00
GAS TEMP (C) ;	18.3	11.9	15.5	15.1	12.4	4.6
DIAMETER (m) :	2,76		2.75		2.74	2.71
HOR. SPEED (m/s) ;	0.00		0.00	0.00	0.00	0.00
FRACTION DROPLETS :	0.000	0.000	0.000		0.000	
MOLAR WATER FRACT. :	0.000	0.000	0.000		0.000	0.000
HOLAR AIR FRACT. :	0.000	0.000	0.000		0.000	
IF CONTINUOUS, USE CON	START EMISSION	RATE:				
DOES. RATE (g/s) :	0.	0.	٥.	0.	0.	0.
RELEASE DUR. (min) :	0.00	0.00	0.00	0.00	0.00	0.00
IF INSTANTANEOUS, USE	TOTAL MASS RELE	ASED:				
MASS RELEASED (kg) :		10.	10.	10.	10.	10.
RECEPTOR DIST. (m) :		200.0	200.0		200.0	200.0
RECEPTOR DIST. (m) :	600.0	800.0	800.0	800.0	800.0	800.0

CHARM INPUT DATA FOR: Maplin Sands
CHEMICAL RELEASED : Methane
MODE : PLANNING - USER SPECIFIED RELEASE PARAMETERS, NO BUILT

TRIAL CONC. SPEC. (ppm) REL HUMID. (%) AIR TEMP. (C) AIR PRESSURE (acm) WIND SPEED (m/s) ROUGHNESS LENGTH (m) MEASUREMENT HT (m)	: N	IS 27 I	MS29	MS34	MS35	
CONC. SPEC. (Dom)	:	100.0	100.0	100.0	100.0	
REL HUMID. (%)	:	53.0	71.0	90.0	77.0	
AIR TEMP. (C)	:	14.9	16.1	15.2	16.1	
AIR PRESSURE (atm)	:	1.000	1.000	1.000	1.000	
WIND SPEED (m/s)	:	5.6	7.4	8.5	9.6	
ROUGHNESS LENGTH (m)	:	0.0003	0.0003	0.0003	0.0003	
MEASUREMENT HT (m)	:	10.0	10.0	10.0	10.0	
STAB. CLASS	:	D	٥		ם	
MEASUREMENT HT (m) STAB. CLASS RELEASE HEIGHT (m)	:	0.00	0.00	0.00	0.00	
RELEASE LOC - (0,0) GAS TEMP (C) DIAMETER (m) KOR. SPEED (m/m) FRACTION DROPLETS MOLAR WATER FRACT.	:					
GAS TEMP (C)	:	-161.5	-161.5	-161.5	-161.5	
DIAMETER (m)	:	18.60	20,90	18.00	20,10	
HOR. SPEED (m/a)	:	0.00	0.00	0.00	0.00	
FRACTION DROPLETS	:	0.000	0.000	0.000	0.000	
MOLAR WATER FRACT.	:	0.000	0.000	0.000	0.000	
MULAN AIR PRACT.	:	0.000	0.000	0,000	0.000	
IF CONTINUOUS, USE C	ONS	TANT EMIS:	SION RATE:			
EMIS. RATE (g/s)	:	23210.	29160.	21510.	27090.	
RELEASE DUR. (min)	:	2.67	3.75	1.56	2.25	
IF INSTANTANEOUS, US	E T	OTAL MASS	RELEASED:			
MASS RELEASED (kg) RECEPTOR DIST. (m) RECEPTOR DIST. (m)	:	٥.	c.	0.	0.	
RECEPTOR DIST. (m)	:	89.0	58.0	87.0	129.0	
RECEPTOR DIST. (m)	:	131.0	90.0	179.0	250.0	
RECEPTOR DIST. (m)	:	324.0	130.0	-99.9	406.0	
RECEPTOR DIST. (m)	:	400.0	182.0	-99.9	-99.9	
RECEPTOR DIST. (m)	:	650.0	252.0	-99.9	-99.9	
RECEPTOR DIST. (m)						
RECEPTOR DIST. (m)	:	-99.9	403.0	-99.9	-99,9	

CHARM INPUT DATA FOR: Maplin Sands
CHEMICAL RELEASED : Propane
HODE : PLANNING - USER SPECIFIED RELEASE PARAMETERS, NO BUILDINGS

TRIAL	: MS42	MS43 MS	46 MS	47 H	S49	MS50 M	S52 M	SS4
	: 100.0		100.0	100.0	100.0	100.0	100.0	100.0
REL HUMID. (%)	: 80.0	80.0	71.0	78.0	85.0		63.0	85.0
AÎR TEMP. (C)	: 18.3	17.0	18.7	17.4	13.3		11.8	8,4
AIR PRESSURE (atm)	: 1.000	1.000	1.000	1.000	1.000		1.000	1.000
WIND SPEED (m/s)	: 4.0		8.1	6.2	5.5		7.4	3.7
ROUGHNESS LENGTH (m)	: 0.0003	0.0003	0.0003	0.0003	0.0003		0.0003	0.0003
MEASUREMENT HT (m)	: 10.0	10.0	10.0	10.0	10.0		10.0	10.0
STAB. CLASS	: D		D	D	מ		D	0
RELEASE HEIGHT (m)	: 0.00	0.00	0.00	0.00	U_00	0.00	_	0.00
RELEASE LOC - (0,0)	:					•		
CAS TIME (C)	: -42.1	-42.1	-42.1	-42.1	-42.1	-42.1	-42.1	-42.1
DIMETER (m)	: 14.90	14.30	15.70	18.60	13,30	19.50	21.70	14.30
HORL SPEED (m/s)	: 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FRACTION DROPLETS	: 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MOLAR WATER FRACT.	: 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MOLAR AIR FRACT.	: 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
IF CONTINUTES, USE C	ONSTANT EMIS	SION RATE:						
EMIS. RATE (g/s)	: 20870.	19200.	23370.	32570.	16710.	35#90.	44250.	19200.
RELEASE DUR. (min)	: 3.00	5.50	6.00	3.50	1.50	2,67	2.33	3.00
IF INSTATIANEOUS, US								
Mass released (kg)	: 0.		0.	0.	0.	Q.	٥,	o.
RECEPTOR DIST. (m)	: 79.0		34.9	90.0	90.0	59.0	61.0	56,0
RECEPTOR DIST. (m)	: 53.0		91.0	128.0	129.0	93.0	95.0	85.0
RECEPTOR DIST. (m)	: 83.0		130.0	182.0	180.0		178.0	178.0
RECEPTOR DIST. (m)	: 123.0		182.0	250.0	250.0		249.0	247.0
RECEPTOR DIST. (m)	: 179.0		250.0	321.0	322.0	• •	398.0	-99.9
RECEPTOR DIST. (m)	: 247.0		322.0	400.0	400.0		650.0	-99.9
RECEPTOR DIST. (m)	: 398.0	~99.9	401.0	-99.9	-99.9	-99.9	-99.9	~99.9

CHARM INPUT DATA FOR: Prairie Grass, set 1 CHEMICAL RELEASED : : Sulfur dioxide : PLANNING - USER SPECIFIED RELEASE PARAMETERS, NO BUILDINGS

27.9 0.05 17.70 0.000 0.000 26.9 0.05 10.72 0.000 0.000 IF CONTINUOUS, USE CONSTANT EMISSION RATE: EMIS. RATE (g/s) : RELEASE DUR. (min) : 1 61. 92. 92. 96. 93. 90. 91. 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 IF INSTANTANEOUS, USE TOTAL MASS RELEASED: ٥. IF INSTANTANEOUS, USE TOTAL MASS
MASS RELEASED (kg): 0.
RECEPTOR DIST. (m): 50.0
RECEPTOR DIST. (m): 100.0
RECEPTOR DIST. (m): 200.0
RECEPTOR DIST. (m): 400.0
RECEPTOR DIST. (m): 800.0 50.0 100.0 200.0 400.0 800.0 ٥. ٥. 0. ٥. ٥. 400.0 50.0 50.0 50.0 50.0 50.0 400.0 800.0 100.0 100.0 200.0 200.0 400.0 400.0 800.0 800.0 100.0 100.0 100.0 -99.9 200.0 200.0 200.0 400.0 400.0 400.0 800.0 400,0 -99.9 400.0

-99.9

800.0

800.0

200.0

CHARM INPUT DATA FOR: Thorney Island (continuous) CHEMICAL RELEASED : Use TRIAL-SPECIFIC name for Thorney Is. .

MODE : PLANNING - USER SPECIFIED RELEASE PARAMETERS, NO BUILDINGS

CONC. SPEC. (ppm) : 100.0
REL HUMID. (%) : 100.0
AIR TEMP. (C) : 13.0
AIR PRESENCE TC47 100.0 AIR TEMP. (C) : 13.0
AIR PRESSURE (atm) : 1.000
WIND SPEED (m/s) : 2.3
ROUGHNESS LENGTH (m) : 0.0100
MEASUREMENT HT (m) : 10.0
STAB. CLASS : E
RELEASE HEIGHT (m) : 0.00
RELEASE LOC = (0.0) 97.4 14.3 0.0100 10.0 F 0.00 14.3 2.00 0.00 0.000 GAS TEMP (C) : 13.0
DIAMETER (m) : 2.00
HOR. SPEED (m/s) : 0.00
FRACTION DROPLETS : 0.000
MOLAR WATER FRACT : 0.000
MOLAR AIR FRACT : 0.000 GAS TEMP (C) 13.0 0.000 MOLAR AIR FRACT. 0.000 0.000 : IF CONTINUOUS, USE CONSTANT EMISSION RATE: EMIS. RATE (q/s) : 10670. RELEASE DUR. (min) : 7.58 10220. IF INSTANTANEOUS, USE TOTAL MASS RELEASED: IF INSTANTANEOUS, USE TOTAL MASS
MASS RELEASED (kg) : 0.
RECEPTOR DIST. (m) : 40.0
RECEPTOR DIST. (m) : 53.0
RECEPTOR DIST. (m) : 72.0
RECEPTOR DIST. (m) : 90.0
RECEPTOR DIST. (m) : 112.0
RECEPTOR DIST. (m) : 158.0
RECEPTOR DIST. (m) : 250.0
RECEPTOR DIST. (m) : 335.0
RECEPTOR DIST. (m) : 472.0 ٥. 50.0 90.0 212.0 250.0 335.0 472.0 ~99.9 ~99.9 ~99.9

CHARM INPUT DATA FOR: Thorney Island (instantaneous)
CHEMICAL RELEASED : Use TRIAL-SPECIFIC name for Thorney Is.
MODE : PLANNING - USER SPECIFIED RELEASE PARAMETERS, NO BUILDINGS 100.0 TI12 17 TI18 TRIAL TI7 TI17 TILS 100.0 80.7 17.3 100.0 CONC. SPEC. (ppm) REL HUMID. (%) AIR TEMP. (C) 100.0 100.0 100.0 100.0 100.0 87.6 17.5 87.3 94.0 74.8 66,2 74.1 13.7 81.3 94.8 18.3 16.5 18.6 10.1 16.0 AIR PRESSURE (atm) : 1.000 1.008 1.009 1.006 1.000 1.006 0.995 0.994 0.993 WIND SPEED (m/s) : ROUGHNESS LENGTH (m): 2.8 3.4 2.4 1.7 2.5 7.3 5.0 7.4 6.4 0.0180 0.0180 0.0120 0.0080 0.0180 0.0100 0.0180 0.0050 0.0100 10.0 10.0 10.0 MEASUREMENT HT (m) ; 10.0 10.0 10.0 10.0 10.0 STAB. CLASS D D E RELEASE HEIGHT (m) : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 RELEASE LOC - (0,0) : GAS TEMP (C) DIAMETER (m) HOR. SPEED (m/s) 14.6 17.3 17.5 18.3 10.1 13.7 16.0 16.5 13.3 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 0.00 0.00 FRACTION DROPLETS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 MOLAR WATER FRACT. : 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 MOLAR AIR FRACT. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 IF CONTINUOUS, USE CONSTANT EMISSION RATE: EMIS. RATE (g/s) : 0. 0. RELEASE DUR. (min) : 0.00 0.00 IF INSTANTANEOUS, USE TOTAL MASS RELEASED: ٥. Ö. 0. ٥. ٥. 0. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 MASS RELEASED (kg) : RECEPTOR DIST. (m) : 3147. 3958. 3866. 5736. 4806. 8711. 3881. 5477. 4249. 71.0 71.0 71.0 71.0 71.0 71.0 40.0 40.0 40.0 RECEPTOR DIST. (m) 141.0 100.0 100.0 100.0 150.0 100.0 50.0 60.0 60.0 RECEPTOR DIST. (m) : 180.0 150.0 150.0 141.0 200.0 224.0 71.0 70.0 71.0 RECEPTOR DIST. (m) : 283.0 180.0 200.0 180.0 361.0 316.0 100.0 80.0 100.0 RECEPTOR DIST. (m) : 364.0 224.0 424.0 224.0 500.0 361.0 141.0 100.0 224.0 RECEPTOR DIST. (m) : -99.9 361.0 412.0 316.0 -99.9 412.0 224.0 200.0 361.0 RECEPTOR DIST. (m) : 503.0 -99.9 500.0 510.0 -99.9 -99.9 500.0 224.0 583.0 RECEPTOR DIST. (m) : -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 300.0 -99.9 RECEPTOR DIST. (m) : -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 400.0

-99.9

-99.9

-99.9

-99.9

510.0

-99.9

RECEPTOR DIST. (m) :

-99.9

-99.9

-99.9

DEG. INPUT DATA FOR :	Burro							
CHEMICAL RELEASED :	Liquefie	d natural (gas					
TRIAL	: BU2	BU3 1	BU4 1	3U 5	BU 6	BU7 E	ius i	9 DE
UO (m/s) MEAS. HEIGHT (m)	5.4	5.4	9.0	7.4	9.1	8.4	1.8	5.7
MEAS. HEIGHT (m)	2.0	2.0	2.0		2.0			2.0
ROUGHNESS LENGTH (m)	: 0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	
PG STAB CLASS AVERAGING TIME (a)	: 3	3	3	3	3	4	5	4
AVERAGING TIME (a) :	40.0	100.0	80.0	130.0				
MONIN-OBUHKOV LEN (m) :	-12.9	-5.8	-49.3	-35.6	-53.4	-148.6	15.5	-2288,3
AMB. TEMP. (K) ;	311.3	307.8	309.0	314.3	312.7	307.0	306.0	308.5
AMB. PRESS. (atm) : REL. HUMID. (%) :	0.927	0,936	0.933	0.929				
REL. HUMID. (%)	7.1	5.2	2.7	5.9	5.1	7.4	4.5	14.4
AIR DENSITY (kg/m^3) :	1.050	1.073	1.066	1.042	1.041	1.066		
ISOTHERMAL? 1=YES : SURFACE TEMP (K) :	. 0	0	0			0	G	
		307.8	309.0	314.3	312.7	307.0	306.0	308.5
HEAT TRNS 0-no ; 1-std :		1	1	1	1	1	1	1
H20 TRNS 0-no ;1-std :	1	1	1	1	1	1	1	1
MOL. WT. (kg/kg-mol) :			17.05	17.08	17.24			
GAS TEMP. (K) :	111.6	111.6	111.6		111.6		111.6	111.6
GAS DEMSITY (kg/m^3) :			1.738		1.739		1.840	1.909
HEAT CAP CONST :	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HEAT CAP POWER :	5.000	5.000	5.000	5.000	5,000	5.000	5,000	5.000
UPPER CONC. (mol frac):		0.000100	0.000100	0.000100	0.000100	0.000100	0.000100	0.000100
LOWER CONC. (mol frac):			0.000100	0.000100	0.000100	0.000100	0.000100	0.000100
RECEPTOR HT. (m) :			0.0	0.0	0.0	0.0	0.0	0.0
CHEMICAL MASS FRACTION:				1.00000		1.00000		
STEADY-STATE? T-TRUE :	T	T	T	T	ī	T	T	T
EVOLUTION RATE (kg/s) :	86.10	87.98	86.96	81.25	92.22	99.46	116.93	135.98
SOURCE RADIUS (m) :	17.955	18.150	18.045	17.445	18.585	19.300		
TOTAL MASS (kg) :	14980.00	14712.00	15221.00	15444.00	11888.00	17289.00	12453.00	10730.00

DEG. INPUT DATA FOR :		Coyote		*	•
CHEMICAL RELEASED :		Liquefie	d natural	gas	. Methane is at least 864 in
TRIAL	:	C03	CO5	C06	
U0 (m/s)		6.0		7 4.6	
MEAS. HEIGHT (m)	:	2.0	2.1		
ROUGHNESS LENGTH (m)	:	0.00020	0.0002	0.00020	
PG STAB CLASS	•	3		3 4	
PG STAB CLASS AVERAGING TIME (s)	:	50.0	90.0	70.0	
MONIN-OBUHKOV LEN (m)	:	-12.2	-31.	7 56.1	
AMD TEMP (M)	_	911 6	201		
AMB. PRESS. (atm)	:	0.924	0.92	7 0.930	
AMB. PERS. (atm) REL. HUMID. (4) AIR DENSITY (kg/m^3) ISOTHERMAL? 1-YES SURFACE TEMP (K)	:	11.3	22.3	22.8	
AIR DENSITY (kg/m^3)	:	1.045	1.08	2 1.102	
ISOTHERMAL? 1-YES	:	0		0	
SURFACE TEMP (K)	:	311.5	301.5	5 297.3	
HEAT TRNS 0-no /1-std	:	1	:	1	
HEAT TRNS 0-no /1-std H2O TRNS 0-no /1-std	:	1	1	1	
MOL. WT. (kg/kg-mol)	:	19.51	20.1	19.09	
GAS TEMP. (K) GAS DENSITY (kg/m^3)	:	111.6	111.0	5 111.6	
GAS DENSITY (kg/m^3)	:	1.970	2.04	1.940	
HEAT CAP CONST HEAT CAP POWER	;	0.0	0.0	0.0	
HEAT CAP POWER	:	5,000	5.000	5.000	
UPPER CONC. (mol frac)	:	0.000100	0.00010		
LOWER CONC. (mol frac)	:	0.000100	0.00010	0.000100	
RECEPTOR HT. (m)	:	0.0	0.0	0.0	
CHEMICAL MASS FRACTION	i:	1,00000	1.00000	1.00000	
STEADY-STATE? T-TRUE EVOLUTION RATE (kg/s)	:	Ť	•	T	
EVOLUTION RATE (kg/s)	:	100.67	129.0	123.03	
SOURCE RADIUS (m)	:	19.415	21.980	21.465	
TOTAL MASS (kg)	:	6532.00	12676.00	10139.00	

DEG. INFUT DATA FOR : Desert Tortoise CHEMICAL RELEASED : Anhydrous Ammonia ARROSOL MODELED WITH MIXTURE FILE

TRIAL	:	DT1 I	DT2 C	T3 D	T4
U0 (m/s)	:	7.4	5.8	7.4	4.5
MEAS. HEIGHT (m)	:	2.0	2.0	2.0	2.0
ROUGHNESS LENGTH (m)	:	0.00300	0.00300	0.00300	0.00300
PG STAB CLASS	:	4	4	4	5
AVERAGING TIME (s)	:	80.0	160.0	120.0	300.0
MONIN-OBUHKOV LEN (m)	:	93.2	84.3	847.3	41.0
AMB. TEMP. (K)	:	302.0	303.6	307.1	305.6
AMB. PRESS. (atm)	:	0.897	0.898	0.895	0.891
REL. HUMID. (%)	:	13.2	17.5	14.8	21.3
AIR DEMSITY (kg/m^3)	:	1.047	1.041	1.026	1.025
REL. HUMID. (t) AIR DENSITY (kg/m^3) ISOTHERMAL? 1-YES	:	1	1	1	1
SURFACE TEMP (K)	:	302.0	303.6	307.1	305.6
HEAT TRNS 0-no ;1-std	:	0	0	0	0
H2O TRNS 0-no /1-std	:	0	0	0	0
MOL, WT. (kg/kg-mol)	:	17.03	17.03	17.03	17.03
GAS TEMP. (K)	:	302.0	303.6	307.1	305.6
GAS DENSITY (kg/m^3)	:	4.166	4.276	4.112	3,953
	•	0.0	0.0	0.0	0.0
HEAT CAP POWER	:	0.000	0.000	0.000	0.000
UPPER CONC. (mol frac)	:				0.000100
LOWER CONC. (mol frac)		0.000100	0.000100	0.000100	0.000100
RECEPTOR HT. (m)	:	0.0	0.0	0.0	0.0
CHEMICAL MASS FRACTION	:		1.00000		1.00000
STEADY-STATE? T-TRUE	•	T	T	T	T
EVOLUTION RATE (kg/s)		79.70	111.50	130.70	96.70
SOURCE RADIUS (m)			1.271		
TOTAL MASS (kg)	:	10042.20			36842.70

DEG. INPUT DATA FOR : Goldfish
CHEMICAL RELEASED : Hydrogen fluoride
AEROSOL MODELED WITH MIXTURE FILE

TRIAL :	GF1 (F2 G	F3
UO (m/s)	5.6	4.2	5.4
MEAS. HEIGHT (m)	2.0	2.0	2.0
ROUGHNESS LENGTH (m) :	0.00300	0.00300	0.00300
PG STAB CLASS	4	4	4
AVERAGING TIME (s) :	88.3	98.3	88.3
MOMIN-OBUHKOV LEN (m) :	101.3	173.1	40.9
AMB. TEMP. (K)	310.4	309.4	307.6
AMB. PRESS. (atm) :	0.893	0.889	0.894
REL. HUMID. (%) :	4.9	10.7	17.7
AIR DENSITY (kg/m^3) :	1.015	1.012	1.023
ISOTHERMAL? 1-YES :	1	1	1
SURFACE TEMP (K) :	310.4	309.4	307.6
HEAT TRNS 0-no ;1-std :	. 0	G	0
H20 TRMS 0-no ;1-std :	. 0	0	0
MOL. WT. (kg/kg-mol) :		20.01	20.01
GAS TEMP. (R) GAS DENSITY (kg/m^3) HEAT CAP CONST	310.4	309.4	307.6
GAS DENSITY (kg/m^3) :	4.683	5.065	4.900
HEAT CAP CONST	0.0	0.0	0.0
HEAT CAP POWER :	0.000	0.000	0.000
UPPER CONC. (mol frac):	0.000030	0.000030	0.000030
LOWER CONC. (mol frac):	0.000030	0.000030	0.000030
RECEPTOR HT. (m)	0.0	0.0	0.0
CHEMICAL MASS FRACTION:	1.00000	1.00000	1.00000
STEADY-STATE? T-TRUE :	T .	T	T
EVOLUTION RATE (kg/s) :		10.46	10.27
SOURCE RADIUS (m)	0.615	0.419	0.375
TOTAL MASS (kg) :	3459.00	3766.00	3697.00
FILE OF ORDERED TRIPLES	: dggf.mix		

CHEMICAL RELEASED :	Krypton-8	5			
TRIAL :	HC1 H		C3 F		ic5
UQ (m/s) :	1.3	3.9	7.1	3.9	2,6
MEAS. HEIGHT (m) :	1.5	1.5	1.5	1.5	1.5
ROUGHNESS LENGTH (m) :	0.03000	0.03000	0.03000	0.03000	0.03000
PG STAB CLASS :	6	3	3	3	5
AVERAGING TIME (s) :	460.8	844.8	268.8	268.8	537.6
MONIN-OBUHKOV LEN (m) :	6.9	-111.8	-186.1	-26.7	70.2
	290.9	285.4	288.9	286.6	278.8
AMB, PRESS. (atm) :	1.000	1.000	1.000	1.000	1.000
REL. HUMID. (%) :	20.0	20.0	20.0	20.0	20.0
REL. HUMID. (%) : AIR DENSITY (kg/m^3) :	1.213	1.236	1.221	1.231	1.266
ISOTHERMAL? 1-YES :	290.9	1	1	1	1
SURFACE TEMP (K) :	290.9	285.4	200.9	286.6	278.8
HEAT TRNS 0-no ;1-std :	a	Q	0	0	0
H2O TRNS 0-no ;1-std :	0	C C	0	0	0
HOL. WT. (kg/kg-mol) :					
GAS TEMP. (K) :	290.9	285.4			
GAS TEMP. (R) : GAS DENSITY (kg/m^3) :	1.216	1.239	1.224	1.234	1.269
HEAT CAP CONST :	-26079.0	-26079.0			
HEAT CAP POWER :	1.000				
UPPER CONC. (mol frac):			0.00000		
LOWER CONC. (mol frac):	0.000000	0.000000			
RECEPTOR HT. (m) :	0.0				0.0
CHEMICAL MASS FRACTION:		1.00000	1.00000	1.00000	
STEADY-STATE? T-TRUE :		Ŧ	T	T	Ī
EVOLUTION RATE (kg/s) :					
SOURCE RADIUS (m) :	0.053			0.053	
TOTAL MASS (kg) :	10.90	10.90	23.50	22.80	20.40

Hanford (continuous)

DEG. INPUT DATA FOR :

DEG. INPUT DATA FOR : CHEMICAL RELEASED :	Hanford Krypton-	(instantano 15	lous)			
TRIAL :	HI2 I	1 13	IZ5 H	16 H	I7 H	II 8
UO (m/s) :	1.3	4.1	7.6	7.2	4.5	1.6
MEAS. HEIGHT (m) :				1.5		
ROUGHNESS LENGTH (m) :	0.03000	0.03000	0.03000	0.03000	0.03000	0.03000
PG STAB CLASS :	6	4	3	3	3	5
AVERAGING TIME (s) :	4.8	4.8		4.8	4.8	4.8
MONIN-OBUHKOV LEN (m) :	5.7	-262.9	-216.5	-155.3	-63.6	27.3
AMB. TEMP. (K) :	291.5	285.1	288.7			277.8
AMB. PRESS. (atm) :	1.000	1.000	1.000	1.000	1.000	1.000
RZL, HUMID. (4) :	20.0		20.0			
AIR DENSITY (kg/m^3) :	1.210	1.238	1,222	1.224	1.236	1.271
ISOTHERMAL? 1+YES :	1	1	1	1	1	1
SURFACE TEMP (K) :	291.5	285.1	288.7	288.3	285.6	277.8
HEAT TRNS 0=no ;1=std :	0	0	0	0	0	0
H2O TRNS 0-no ;1-std:	0		•	0	0	0
MOL. WT. (kg/kg-mol) :	29.00	29.00				
GAS TEMP. (K) :	291.5	285.1		288.3		
GAS DENSITY (kg/m^3) :	1.213					
HEAT CAP CONST :	-26079.0	-26079.0	-26079.0			
HEAT CAP POWER :	1.000					
UPPER COMC. (mol frac):		0.000000				
LOWER CONC. (mol frac):			0.000000			
	0.0	0.0	0.0	0.0	0.0	
CHEMICAL MASS FRACTION:		1.00000	1.00000	1.00000	1.00000	1.00000
STEADY-STATE? T=TRUE :	F	F	F	F	F	F
EVOLUTION RATE (kg/s) :						
SOURCE RADIUS (m) :		1.369		1.374		
TOTAL MASS (kg) :	10.00	10.00	10.00	10.00	10.00	10.00

DEG. IMPUT DATA FOR : Maplin Sands CHEMICAL RELEASED : Liquified Natural Gas

TRIAL	:	MS27	MS29	MS34	MS35
UO (m/s)	:	5.6	7.4	0.5	9.6
MEAS. HEIGHT (m)	:	10.0	10.0	10.0	10.0
ROUGHNESS LENGTH (m)	:	0.00030	0.00030	0.00030	0.00030
PG STAB CLASS	:	4	4	4	4
AVERAGING TIME (a)	:	3.0	3.0	3.0	3.0
MONIN-OBUHKOV LEN (m)	:	-37.0		-102.7	-01.6
AMB. TEMP. (K)	:	288.1	289.3	288.4	289.3
AMB. PRESS. (atm)	:	1.000	1.000	1.000	1.000
REL, HUMID. (%)	:	53.0	71.0	90.0	77.0
AIR DENSITY (kg/m^3)	:	1.222		1.216	1.215
REL. HUMID. (%) AIR DENSITY (kg/m^3) ISOTHERMAL? 1-YES	:	0) (0
SURFACE TEMP (K)	:	288.8	290,0	289.0	289.6
HEAT TRNS 0-no ;1-std	:	1	. 1	. 3	1
H2O TRNS 0-no ;1-std	:	1	. 1	. 1	1
HOL. WT. (kg/kg-mol)	:	17.11	16.26	16,66	16.39
GAS TEMP. (K)	:	111.7	111.7	111.7	111.7
GAS DENSITY (kg/m^3)	:	1.868	1.775	1.819	1.790
HEAT CAP CONST	:	0.0	0.0	0.0	0.0
HEAT CAP POWER	:	5.000	5.000	5.000	5.000
UPPER CONC. (mol frac)	:	0.000100			0.000100
LOWER CONC. (mol frac)	:	0.000100	0.000100	0.000100	0.000100
RECEPTOR HT. (m)	:	0.0	0.0	0.0	0.0
CHEMICAL MASS FRACTION	:	1.00000	1.00000	1.00000	1.00000
STEADY-STATE? T-TRUE	:	T	1		T
EVOLUTION RATE (kg/s)	:	23.21	29.16	21.51	27,09
SOURCE RADIUS (m)	:	9.300	10.450	9.000	10.050
TOTAL MASS (kg)	:	3714.40	6561.30	2043.60	3657.70

DEG. IMPUT DATA FOR : Maplin Sands CHEMICAL RELEASED : Liquified Propane Gas

TRIAL	:	MS42)	4543	MS46	1	4547		MS49	н	S50		MS 52		IS54
UO (m/s) MEAS. HEIGHT (m)	:	4.0 10.0	10.	Č.	10.0		10.0		10.0	1	10.0		10.0	10.0
ROUGHNESS LENGTH (m)	:	0.00030	0.0003	0 0	.00030					0.00			00030	
PG STAB CLASS	:	4		4	4		4		4		4		4	4
AVERAGING TIME (s)	:	3.0	3.	Ô	3.0		3.0		3.0		3.0		3.0	3.0
MONIN-OBUHKOV LEN (m)	:	99.7	9999.		750.2		294.2		69.6		8.7			67.8
AMB. TEMP. (K)	:	291.5	290.	2	291.9		290.6	2	86.5	21	13.6		285.0	281.6
AMB, PRESS, (atm)	:	1.000	1.00		1,000		1.000		.000		000		1.000	1.000
REL. HUMID. (%)	:	80.0	80.	0	71.0		78.0		88.0	7	9.0		63.0	85.0
AIR DENSITY (kg/m^3)	:	1.204	1.21	0	1.203		1.209	1	.227	1.	241	:	1.236	1.250
ISOTHERMAL? 1-YES	:	0		0	0		0		0		0		0	0
SURFACE TEMP (K)	:	1.204 0 291.7	292.	1	290.5		290.3	2	86.2	28	3.1		285.1	282.6
HEAT TRNS 0-no ;1-std	:	1		1	1		1		1		1		1	1
H2O TRNS 0=no ;1=std	:	1		1	1		1		1		1		1	1
MOL. WT. (kg/kg-mol)	:	43.93	43.9	3	43.95		43,84	4	3.76	43	. 93		43.87	43.94
GAS TEMP. (K)			231.	1	231.1		231.1	2	31.1	23	1.1		231.1	231.1
GAS DENSITY (kg/m^3)	:	2,318	2.31	B	2,319		2.314	2	.309	2.	318	:	2.315	2,319
HEAT CAP CONST	:	15.4	15.	4	15.4		15.4		15.4	1	5.4		15.4	15.4
HEAT CAP POWER	:	2,250	2.25	0	2,250		2.250	2	.250	2.	250	:	2,250	2.250
UPPER CONC. (mol frac)	:	0.000100	0.00010	0 0.1	00100	0.0	00100	0.00	0100	0.000	100	0.0	00100	0.000100
LOWER CONC. (mol frac)	:	0.000100	0.00010	0.0	00100	0.1	00100	0.00	0100	0.000	100	0.0	00100	0.000100
RECEPTOR HT. (m)	:	0.0	0.	0	0.0		0.0		0.0		0.0			0.0
CHEMICAL MASS FRACTION		1.00000					,00000			1.00			00000	
STEADY-STATE? T-TRUE EVOLUTION RATE (kg/s)	:	T		Ť	Ī		T	1	T		Ī		T	Ť
SOURCE RADIUS (m)	:	7.450		0			9.300			9.				
TOTAL MASS (kg)	:	3756.60	6336.0	0 8	113.20	6	39.70	150	3.90	5742	.40	61	95.00	3456.00

DEG. INPUT	DATA FOR	:	Prairie Grass, set 1	
CHEMICAL R	ELEASED	:	Sulfur dioxide	

TRIAL	: 1	?G7 P	C8	PG9	PG10	PG13	PG15	PG16	PG17
UO (m/s)	:	4,2	4.9	6.5	4.0	1.3	3.4	3.2	3.3
MEAS. HEIGHT (m)	:	2.0	2.0	2.0	2,0	2.0	2.0	2.0	2.0
ROUGHNESS LENGTH (m)	:	0.00600	0.00600	0.0060	0.00600	0.00600	0.00600	0.00600	0.00600
PG STAB CLASS	:	2	3		3 :	? 6	3	1	4
AVERAGING TIME (s)	:	600.0	600.0	600.					600.0
MONIN-OBUHKOV LEN (m)	:	-8.2	-20.6	-34.	-7.5	6.0	-7.7	7 -7.8	49.8
AMB. TEMP. (K)	:	305.1	305.1	301.	304.	293.1	295.1	301.1	300.1
AMB. PRESS. (atm)	:	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
REL. HUMID. (%)	:	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
AIR DENSITY (kg/m^3)	:	1.154	1,154	1.17	1.150	1.203	1.19	1.170	1.174
ISOTHERMAL? 1-YES	:	1	1		1	. 1	1	1	1
SURFACE TEMP (K)	:	305.1	305.1	301.	304.1	293.1	295.1	301.1	300.1
HEAT TRNS 0=no ;1=std :	:	0	0	. () (0	C	0	0
H20 TRNS 0-no ;1-std :	:	0	Q) (0	(0	0
MOL. WT. (kg/kg-mol)	:	64.00	64.00	64.00	64.00	64.00	64.00	64.00	64.00
GAS TEMP. (K)	:	305.1	305.1	301.	304.3	293.1	295.1	301.1	300.1
GAS DENSITY (kg/m^3)	:	2.558	2.558	2.59	2.560	2.663	2.649	2.592	2.601
HEAT CAP CONST	:	6546.4	6546.4	6546.4	6546.4	6546.4	6546.4	6546.4	6546.4
HEAT CAP POWER	:	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
UPPER CONC. (mol frac):	:	0.000001	0.000001	0.00000	0.000001	0.000001	0.000001	0.000001	0.000001
LOWER CONC. (mol frac):	:	0.000001	0.000001	0.00000	0.000001			0.000001	0.000001
RECEPTOR HT. (m)	:	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CHEMICAL MASS FRACTION:	:	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1,00000
STEADY-STATE? T-TRUE	:	I	Ŧ	' '	. 1	: т	1	T	7
EVOLUTION RATE (kg/s)	:	0.09	0.09	0.09	0.09	0.06	0.10	0.09	0.06
SOURCE RADIUS (m)	:	0.054	0.051	0.043	0.052	0.084	0.061	0.063	0.049
TOTAL MASS (kg)	:	53.90	54.70	55.20	55.30	36.70	57.30	55.80	33.90

CHEMICAL RELEASED	:	Mixture			Nitrogen
TRIAL	:	TC45	TC47		
UG (m/s)	:	2.3	1	1.5	
MEAS. HEIGHT (m)	:	10.0)	10.0	
ROUGHNESS LENGTH (m)	:	0.01000	0.	01000	
PG STAB CLASS	•	•	i	6	

		,
UC (m/s)	2.3	1.5
MEAS. HEIGHT (m)	10.0	10.0
ROUGHNESS LENGTH (m) :	0.01000	0.01000
PG STAB CLASS	5	6
AVERAGING TIME (s)	30.0	30.0
MONIN-OBUHKOV LEN (m) :	21.7	10.8
AMB. TEMP. (K)	286.3	287.5
AMB. PRESS. (atm)	1.000	1.000
REL. HUMID. (%)	100.0	97.4
AIR DEMSITY (kg/m^3)	1.227	1.222
ISOTHERMAL? 1-YES :		1
SURFACE TEMP (K)	286.3	287.5
HEAT TRNS 0-no ;1-std :	. 0	0
H20 TRNS 0=no ;1=std :	. 0	0
MOL. WT. (kg/kg-mol) :	57.80	57.80
GAS TEMP. (K)	286.3	287.5
GAS DENSITY (kg/m^3) :	2.463	2.452
GAS DENSITY (kg/m^3) : HEAT CAP CONST	1958.0	1958.0
HEAT CAP POWER :	1.000	1.000
UPPER CONC. (mol frac):	0.000100	0.000100
LOWER CONC. (mol frac) :	0.000100	0.000100
RECEPTOR HT. (m)	0.0	0.0
CHEMICAL MASS FRACTION:	1.00000	1.00000
STEADY-STATE? T-TRUE		T
EVOLUTION RATE (kg/s)		10.22
SOURCE RADIUS (m)		1.000
TOTAL MASS (kg)		

CHEMICAL RELEASED :	Mixture	of Freon-12	and Nitro	ogen					
TRIAL :	TI6	TI7 T	18 :		112			TI18	TI19
UQ (m/s) :	2.8	3.4	2.4	1.7	2.5	7.3	5.0	7.4	6.4
MEAS. HEIGHT (m) :	10.0	10.0	10.0		10.0				
ROUGHNESS LENGTH (m) :	0.01800	0.01800	0.01200	0.00800	0.01800	0.01800	0.01800	0.00500	0.01000
PG STAB CLASS :	4	5	4	6	\$. 4	•	•	i •
AVERAGING TIME (a) :	0.6		0.6	0.6	0.6				
MONIN-OBUHKOV LEN (m) :	9999.0		-9.1	1.5	10.0				
MMB. TEMP. (K) :	291.8	290.5	290.7	291.5	283.3	286.9			
VMB. PRESS. (atm) ;	1.000	1.008	1.009	1.006	1.000				
REL. HUMID. (%) :	74,8	80.7	87.6	87.3	66.2				
AIR DENSITY (kg/m^3) :	1.203	1.219	1.218	1.211	1.243	1.234	1.20	1.205	1.218
ISOTHERMAL? 1-YES :	1	1	1	1	0	1			-
SURFACE TEMP (K) :	291.8	290.5	290.7	291.5	285.1	286.9	291.0	297.5	286.5
EAT TRNS 0-no ;1-std :	0	0	0	0	1	. 0	1	. 1	. 0
20 TRNS 0-no ;1-std :	0	Q	0	C	0	ı a	•	, ,	, 0
OL. WT. (kg/kg-mol) :	47.69	50.58	47.11	46.24	68.49	57.80	121.36	54.04	61.27
EAS TEMP. (K) ;	291.8	290.5	290.7	291.5	283.3	286.9	289.2	289.7	286.5
LAS DENSITY (kg/m^3) :	1.993	2.141	1.994	1.947	2.949	2.472	5.093	2.262	2.590
HEAT CAP CONST :	-4209.1	-2446.2	-4562.9	-5093.6	8478,9	1958.0	40741.6	-335.€	4074.7
EAT CAP POWER :	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
JPPER CONC. (mol frac):	0.000100	0.000100	0.000100	0.000100	0.000100	0.000100	0.000100	0.000100	0.000100
LOWER CONC. (mol frac):	0.000100	0.000100	0.000100	0.000100	0.000100	0.000100	0.000100	0.000100	0.000100
RECEPTOR HT. (m) :	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HEMICAL MASS FRACTION:	1.00000	1.00000	1.00000	1.00000	1.00000	1,00000	1.00000	1.00000	1.00000
TEADY-STATE? T-TRUE :	F	F	F	£	F	٠ .			' F
EVOLUTION RATE (kg/s) :	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SOURCE RADIUS (m) :	7.000	7.000	7.000	7.000	7.000	7.000	7.000	7.000	7.000
TOTAL MASS (kg) :	3147.00		3958.00	3866.00	5736.00			3881.00	

FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN:	: Burro : Liquef	led natural	gas					
TRIAL NAME TYPE OF UNITS	: bu2 : Metric unit		ou4 b	u5 b	946	ou7 i	ou s t	ou 9
MATERIAL SCREEN: PRIMARY CHEMICAL NO.	: 1	1	1	1	1	1	1	1
MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa)	: 1.00000 : -162.55 : 93.9	1.00000 -162.55 94.8	1.00000 -162.55 94.5	1.00000 -162.55 94.1	1.00000 -162.55 93.5	1.00000 -162.55 94.0	1.00000 -162.55 94.1	1.00000 -162.55 94.0
WEATHER SCREEN: WIND SPEED 6 10M (m/s)	: 6,02	5.93	10.27	8.40	10.40	9.73	2.57	6,69
REL. HOMIDITY (%) AMBIENT TEMP. (C)	; 7.10 ; 38.12	5.20 34.60	2.70 35.90	5.90 41.12	5.10 39.52	7.40 33.81	4.50 32.87	14.40 35.37
P-G CLASS	: c	С	c	С	С	D	E	D
RELEASE SCREEN: CONTINUOUS RELEASE								
RELEASE DURATION (min) PIPE DIAMETER (m)	: 2.883 : 0.15000	2.7 8 3 0.15000	2.917 0.15000	3.167 0.15000	2.150 0.1 500 0	2.900 0.15000	1.783	1.317 0.15000
EXIT AREA (m2) FLOW RATE (kg/s)	: 0.01767 : 86.1000	0.01767 87.9800	0.01767 86.9600	0.01767 81.2500	0.01767 92.2200	0.01767 99.4600	0.01767 116.9300	0.01767 135.9800
RELEASE HEIGHT (m)	: 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ANGLE FROM HORIZON TO EXIT REGULATED RELEASE	: 270.0	270.0	270.0	270.0	270.0	270.0	270.0	270.0
TERRAIN SCREEN: SURFACE ROUGHNESS (m)	: 0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020
CALM OPEN SEA SURFACE TEMP, (C)	: 38.12	34,60	35.90	41,12	39.52	33.81	32.87	35.37
DIKING SCREEN: UNCONFINED							•	
VD/VE SCREEN:								
TRACK ONE COMPONENT EXPRESS CONCENTRATION IN P.	PM							
LOWEST CONC. LIMIT, PPM MIDDLE CONC. LIMIT, PPM	: 100.000 : 200.000	100.000	100.000	100.000 200.000	100.000	100.000	100.000	100.000
HIGHEST CONC. LIMIT, PPM	: 400.000	400.000	400.000	400.000	400.000	400.000	400.000	400.000
DISP. COEFF. AVG. TIME (mi: USE DEFAULT TIME STEP POSI		1.667	1.333	2.167	1.167	2.333	1.333	0.833
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN:	: Coyote : Liquefi	ed matural	gas	:	Methane :	is at least	864 in c	
CHEMICAL RELEASED	: Liquefi	::o\$ c	gas o6	:	Methane :	is at least	. 86% in c	
CHEMICAL RELEASED TITLE SCREEN; TRIAL NAME TYPE OF UNITS MATERIAL SCREEN;	: Liquefi	::o\$ c		:	Hethane :	is at least	. 86% in c	
CHEMICAL RELEASED TITLE SCREEN; TRIAL NAME TYPE OF UNITS MATERIAL SCREEN; PRIMARY CHEMICAL NO.	: Liquefi : co3 : : Metric unit	205 c	06	:	Hethane	is at least	: 86% in c	
CHEMICAL RELEASED TITLE SCREEN; TRIAL NAME TYPE OF UNITS MATERIAL SCREEN;	: Liquefi : co3 c : Metric unit	205 c :a	o6	:	Hethane	s at least	. 86% in c	
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C)	: Liquefi : co3	1.00000 -162.55 93.9	1 1.00000 -162.55	:	Hethane :	s at least	. 86% in c	
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PETMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: MIND SPEED & 10M (m/s) REL. HUMIDITY (%)	: Liquefi : co3	255 c 28 1.00000 -162.55 93.9 10.99 22.10	1 1.00000 -162.55 94.2 5.74 22.80	:	Hethane :	s at least	. 86% in c	
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. NOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPa) MEATHER SCREEN: WIND SPEED 6 10M (m/s)	: Liquefi : co3	255 c 28 1.00000 -162.55 93.9 10.99 22.10	1 1.00000 -162.55 94.2 5.74 22.80 24.11	:	Hethane :	s at least	. 86% in c	
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPa) MEATHER SCREEN: WIND SPEED @ 10M (m/s) REL. HUMIDITY (8) AMBIENT TEMP. (C)	: Liquefi : co3	1.00000 -162.55 93.9	1 1.00000 -162.55 94.2 5.74 22.80 24.11	:	Hethane :	s at least	. 86% in c	
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: MIND SPEED & 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE	: Liquefi : co3	1.00000 -162.55 93.9 10.99 22.10 28.34	1.00000 -162.55 94.2 5.74 22.80 24.11 D	:	Nethane :	is at least	. 86% in c	
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: MIND SPEED & 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT ABEA (m2)	: Liquefi : co3	1.00000 -162.55 93.9 10.99 22.10 28.34 C	1.00000 -162.55 94.2 5.74 22.80 24.11 D	:	Hethane :	s at least	. 864 in c	
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: MIND SPEED & 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT ABEA (m2)	: Liquefi : co3	1.00000 -162.55 93.9 10.99 22.10 28.34 C	1.00000 -162.55 94.2 5.74 22.80 24.11 D	:	Hethane :	s at least	. 86% in c	
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPa) MEATHER SCREEN: WIND SPEED @ 10M (m/s) REL. HUMIDITY (b) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (Kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT	: Liquefi : co3	1.00000 -162.55 93.9 10.99 22.10 28.34 C	1.00000 -162.55 94.2 5.74 22.80 24.11 D		Hethane :	s at least	. 86% in c	
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: MIND SPEED & 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2)	: Liquefi : co3	1.00000 -162.55 93.9 10.99 22.10 28.34 C	1.00000 -162.55 94.2 5.74 22.80 24.11 D		Hethane :	s at least	. 86% in c	
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL TEMPERATURE (KPa) WEATHER SCREEN: MIND SPEED @ 10M (m/s) REL. HUMIDITY (®) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (Kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE TERRAIN SCREEN:	: Liquefi : co3	1.00000 -162.55 -93.9 10.99 22.10 28.34 C	1.00000 -162.55 -94.2 5.74 -22.80 -24.11 		Hethane :	is at least	. 864 in c	
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PETMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) MEATHER SCREEN: WIND SPEED & 10M (m/s) REL. HUMIDITY (b) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT RECULATED RELEASE TERRAIN SCREEN: SURFACE ROUGHNESS (m) CALM OPEN SEA	: Liquefi : co3	1.00000 -162.55 93.9 10.99 22.10 28.34 C	1.00000 -162.55 94.2 5.74 22.80 24.11 D		Hethane :	s at least	. 86% in c	
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PETMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) MEATHER SCREEN: WIND SPEED & 10M (m/s) REL. HUMIDITY (b) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT RECULATED RELEASE TERRAIN SCREEN: SURFACE ROUGHNESS (m) CALM OPEN SEA	: Liquefi : co3	1.00000 -162.55 93.9 10.99 22.10 28.34 C	1.00000 -162.55 94.2 5.74 22.80 24.11 D		Hethane :	is at least	. 86% in c	
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL TEMPERATURE (C) MATERIAL TEMPERATURE (KPa) WEATHER SCREEN: MIND SPEED 0 10M (m/s) REL. HUMIDITY (0) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE TERRAIN SCREEN: SURFACE ROUGHNESS (m) CALM OPEN SEA SURFACE TEMP. (C) DIKING SCREEN: UNCONFINED VD/VE SCREEN:	: Liquefi : co3	1.00000 -162.55 93.9 10.99 22.10 28.34 C	1.00000 -162.55 94.2 5.74 22.80 24.11 D		Hethane :	s at least	. 86% in c	
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPa) WEATHER SCREEN: MIND SPEED & 10M (m/s) REL. HUMIDITY (b) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FILOW RATE (kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE TERRAIN SCREEN: SURFACE ROUGHNESS (m) CALM OPEN SEA SURFACE TEMP. (C) DIKING SCREEN: UNCONFINED VD/VE SCREEN: TRACK ONE COMPONENT EXPRESS CONCENTRATION IN P	: Liquefi : co3	1.00000 -162.55 93.9 10.99 22.10 28.34 C	1.00000 -162.55 94.2 5.74 22.80 24.11 D		Hethane :	s at least	. 86% in c	
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: MIND SPEED & 10M (m/s) REL. HUMIDITY (b) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE TERRAIN SCREEN: SURFACE ROUGHNESS (m) CALM OPEN SEA SURFACE TEMP. (C) DIKING SCREEN: UNCONFINED VD/VE SCREEN: TRACK ONE COMPONENT EXPRESS CONCENTRATION IN P LOWEST CONC. LIMIT, PPM	: Liquefi : co3	1.00000 -162.55 -93.9 22.10 28.34 C	1.00000 -162.55 -94.2 5.74 22.80 24.11 D		Nethane :	is at least	. 86% in c	
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PETMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) MEATHER SCREEN: MIND SPEED & 10M (m/s) REL. HUMIDITY (b) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE TERRAIN SCREEN: SURFACE ROUGHNESS (m) CALM OPEN SEA SURFACE TEMP. (C) DIKING SCREEN: UNCONFINED VD/VE SCREEN: TRACK ONE COMPONENT EXPRESS CONCENTRATION IN P LOWEST CONC. LIMIT, PPM MIDDLE CONC. LIMIT, PPM	: Liquefi : co3	1.00000 -162.55 93.9 10.99 22.10 28.34 C	1.00000 -162.55 -94.2 -5.74 -22.80 -24.11 -1.367 -0.15000 -0.01767 -123.0300 -0.000 -270.0 -0.00020 -24.11		Nethane :	is at least	. 86% in c	
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL TEMPERATURE (C) MATERIAL TEMPERATURE (KPa) WEATHER SCREEN: MIND SPEED @ 10M (m/s) REL. HUMIDITY (B) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (Kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE TERRAIN SCREEN: SURFACE ROUGHNESS (m) CALM OPEN SEA SURFACE TEMP. (C) DIRING SCREEN: UNCONFINED VD/VE SCREEN: TRACK ONE COMPONENT EXPRESS CONCENTRATION IN P LOMEST CONC. LIMIT, PPM MIDDLE CONC. LIMIT, PPM	: Liquefi : co3	1.00000 -162.55 93.9 10.99 22.10 28.34 C	1.00000 -162.55 -94.2 5.74 -22.80 -24.11 D 1.367 0.15000 0.01767 123.0300 0.01767 123.0300 0.00020 -270.0		Hethane :	is at least	. 86% in c	

FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME	:	: Deser : Anhyd	t To	rtoise Ammonis		
TRIAL NAME TYPE OF UNITS		: dtl : Metri		gt 2	dt3	dt 4
MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kpa)	:	: 1.	5: 0000	3 5 0 1.0000	3 5: 0 1.0000	3 53 3 1_00000
Material temperature (C) Material pressure (kpa)	:	1	21.5 013.	5 20.1 3 1116.	5 22.1! 6 1137.	24.15
WEATURD SCOPEN.						
WIND SPEED @ 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS	:		13.20	17.5 30.4	9.20 0 14.80 8 33.92	6.22 21.30 32.48
RELEASE SCREEN:						
CONTINUOUS RELEASE RELEASE DURATION (min)	:	2	.100	4.25	2.767	6.350
FIPE DIAMETER (m) EXIT AREA (m2)	:	0.0	8100	0.0945	0.09450	0.09450
FLOW RATE (kg/a) RELEASE HEIGHT (m)	:	79.	7000	111.5000	130.7000	96.7000
CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE	:		0.0	0.790	0.790	0.790
TERRAIN SCREEN: SURFACE ROUGHNESS (m) MUD FLATS	:	0.0	0300	0.00300	0.00300	0.00300
	:	3	1.65	30.65	31.65	30.85
DIKING SCREEN: UNCONFINED						
VD/VE SCREEN: TRACK ONE COMPONENT EXPRESS CONCENTRATION IN PP						
LONEST CONC. LIMIT, PPM MIDDLE CONC. LIMIT, PPM HIGHEST CONC. LIMIT, PPM DISP. COEFF. AVG. TIME (min USE DEFAULT THE SEPERATOR)	:	100	.000	100.000	100.000	100.000
HIGHEST CONC. LIMIT, PPM	:	400	.000	200.000 400.000	200.000 400.000	200.000 400.000
USE DEFAULT TIME STEP POSIT): ION	is 1	.333	2.667	2.000	5.000
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEM:			iroge	n fluorid		:
TITLE SCREEM: TRIAL NAME TYPE OF UNITS	:	gfl Metric	uni	;£2 :\$	g£3	
Widonster against						
MOLE FRACTION	:	1.0	2000	1.00000	50 1,00000	
PATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa)	:	46 68	9.05 9.0	38.05 744.7	39.05 757.9	
WEATHER SCREEN: WIND SPEED @ 10M (m/s)			.30		7.47	
	:		. 25			
P-G CLASS	:		D			
RELEASE SCREEN: CONTINUOUS RELEASE						
RELEASE DURATION (min) PIPE DIAMETER (m)	:	2.	083	6.000 0.02420	6.000	
PYTE ADEA (-4)			138	0.02420	0.02420 0.00046 10.2700	
FLOW RATE (kg/s) RELEASE HEIGHT (m)	:	1.	000	1.000	10.2700	
ANGLE FROM HORIZON TO EXIT REGULATED RELEASE	:		0.0	0.0	0.0	
TERRAIN SCREEN: SURFACE ROUGHNESS (m)		0.00	300	0 00300	0.00300	
MUD FLATS			.25			
DIKING SCREEN: UNCONFINED		7.			31.40	
VD/VE SCREEN; TRACK ONE COMPONENT						
EXPRESS CONCENTRATION IN PPM LOWEST CONC. LIMIT, PPM	:	30.	000	30.000	30.000	
MIDDLE CONC. LIMIT, PPM HIGHEST CONC. LIMIT, PPM	:	60. 120	990 990	60.000 120.000 1.472	60.000 120.000	
DISP. COEFF. AVG. TIME (min) USE DEFAULT TIME STEP POSITI	:	1.	472	1.472	1.472	

FOCUS INPUT DATA FOR CHEMICAL RELEASED	:	Hanford Krypton-	(continu	ous)			
TITLE SCREEN:				hc3	hc4	hc5	
TYPE OF UNITS	:	Metric units					
MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa)		62	69	62	41		
MOLE FRACTION	:	1.00000	1.00000	1.00000	1.00000	1.00000	
MATERIAL TEMPERATURE (C)	:	17.72	12.28	15.78	13.50	5.67	
MATERIAL PRESSURE (RPA)	:	101.3	101.3	101.3	101.3	101.3	
METARDS CUDEEN.							
REL HUMIDITY (4)	:	3.40 20.00	20.00	20.00	20.00	20.00	
WIND SPEED 8 10M (m/s) REL. HUNIDITY (%) AMBIENT TEMP. (C) P-G CLASS	:	17.72	12.28	15.78	13.50	4.22 20.00 5.67	
P-G CLASS	:	F	С	c	C	r	
RELEASE SCREEN:							
RELEASE SCREER: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT	:	15.467	15.083	14.250	9.967	19.850	
PIPE DIAMETER (m)	:	0.10553	0.03930	0.06734	0.10649	0.08611	
EXIT AREA (m2)	:	0.00875	0.00276	0.00356	0.00891	0.00582	
RELEASE HEIGHT (m)	•	1.000	1.000	1.000	1.000	1.000	
	:	0.0	0.0	0.0	0.0	0.0	
REGULATED RELEASE							
TERRAIN SCREEN:							
SURFACE ROUGHNESS (m) TALL GRASS	:	0.03000	0.03000	0.03000	0.03000	0.03000	
SURFACE TEMP. (C)	:	17.72	12,28	15.78	13.50	5.67	
DIKING SCREEN: UNCONFINED							
VD/VE SCREEN:							
TRACK ONE COMPONENT							
EXPRESS CONCENTRATION IN PP	M.	0 100	0 100	0 100	0 100	0.100	
MIDDLE CONC. LIMIT, PPM	:	0.200	0.200	0.200	0.200	0.200	
EXPRESS CONCENTRATION IN PP LONEST CONC. LIMIT, PPM MIDDLE CONC. LIMIT, PPM HIGHEST CONC. LIMIT, PPM DISP. COEFF. AVG. TIME (min	:	0.400	0.400	0.400	0.400	0.400	
DISP. COEFF. AVG. TIME {min	1):	7,680	14.080	4.480	4.480	8.960	
USE DEFAULT TIME STEP POSIT	'IO	NS					
USE DEFAULT TIME STEP POSIT	:IO	NS					
USE DEFAULT TIME STEP POSIT	:IO	NS					
FOCUS INPUT DATA FOR CHEMICAL RELEASED	:IO	NS Hanford Krypton-					
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN:	:	Hanford Erypton-	(instant: 85	ineous)			
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN:	:	NS	(instant: 85	ineous)			ni•
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS	::	Hanford Krypton- hi2 hi Metric units	(instanta 85 3)	ineous)			ni#
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS	::	Hanford Krypton- hi2 hi Metric units	(instanta 85 3)	aneous)	h16	hi7 l	
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS	::	Hanford Krypton- hi2 hi Metric units	(instanta 85 3)	62 1.00000	hi6 62 1.00000	hi7 t 62 1.00000	62 1.00000
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS	::	Hanford Krypton- hi2 hi Metric units	(instanta 85 3)	1.00000 15.56	hi6 62 1.00000 15.11	62 1.00000 12.44	62 1.00000 4.61
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL HAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa)	::	Hanford Krypton- hi2 hi Metric units	(instanta 85 3)	1.00000 15.56	hi6 62 1.00000 15.11	62 1.00000 12.44	62 1.00000 4.61
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: FRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN:	:: :: :: :: :: :: :: :: :: :: :: :: ::	Hanford Rrypton— hi2 hi Metric units 62 1.00000 18.39 101.3	(instant: 85 3 i 62 1.00000 11.94 101.3	62 1.00000 15.56	62 1.00000 15.11 101.3	62 1.00000 12.44 101.3	62 1.00000 4.61 101.3
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEM: TRIAL NAME TYPE OF UNITS MATERIAL SCREEM: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPA) WEATHER SCREEN: WIND SPEED & 10M (B/S)	:: :: :: :: :: :: :: :: :: :: :: :: ::	Hanford Erypton- hi2 hi Metric units 62 1.00000 18.39 101.3	(instanta 85 3 i 62 1.00000 11.94 101.3	62 1.00000 15.56 101.3	62 1.00000 15.11 101.3	62 1.00000 12.44 101.3	62 1.00000 4.61 101.3
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL HAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED @ 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C)	:: :: :: :: :: :: :: :: :: :: :: :: ::	Hanford Erypton- hi2 hi Hetric units 62 1.00000 18.39 101.3 3.62 20.00 18.39	(instanta 85 3 62 1.00000 11.94 101.3 5.99 20.00	62 1.00000 15.56 101.3 11.06 20.00	62 1.00000 15.11 101.3 10.42 20.00	62 1.00000 12.44 101.3 6.37 20.00	62 1.00000 4.61 101.3 2.92 20.00 4.61
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL HAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED @ 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C)	:: :: :: :: :: :: :: :: :: :: :: :: ::	Hanford Erypton- hi2 hi Hetric units 62 1.00000 18.39 101.3 3.62 20.00 18.39	(instanta 85 3 i 62 1.00000 11.94 101.3	1.00000 15.56 101.3	62 1.00000 15.11 101.3 10.42 20.00	62 1.00000 12.44 101.3 6.37 20.00	62 1.00000 4.61 101.3 2.92 20.00 4.61
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEM: TRIAL NAME TYPE OF UNITS MATERIAL SCREEM: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED @ 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN:	:: :: :: :: :: :: :: :: :: :: :: :: ::	Hanford Erypton- hi2 hi Hetric units 62 1.00000 18.39 101.3 3.62 20.00 18.39	(instanta 85 3 62 1.00000 11.94 101.3 5.99 20.00	62 1.00000 15.56 101.3 11.06 20.00	62 1.00000 15.11 101.3 10.42 20.00	62 1.00000 12.44 101.3 6.37 20.00	62 1.00000 4.61 101.3 2.92 20.00 4.61
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL HAME TYPE OF UNITS MATERIAL SCREEN: FRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED @ 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: INSTANTANEOUS PELEASE	:: : : : : : : : : : : : : : : : : : : :	Hanford Rrypton-hi2 hi Metric units 62 1.00000 18.39 101.3 3.62 20.00 18.39 F	(instant: 85 3 62 1.00000 11.94 101.3 5.99 20.00	62 1.00000 15.56 101.3 11.06 20.00	62 1.00000 15.11 101.3 10.42 20.00 15.11	62 1.00000 12.44 101.3 6.37 20.00 12.44	62 1.00000 4.61 101.3 2.92 20.00 4.61 E
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL HAME TYPE OF UNITS MATERIAL SCREEN: FRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED @ 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: INSTANTANEOUS PELEASE	:: : : : : : : : : : : : : : : : : : : :	Hanford Erypton- hi2 hi Hetric units 62 1.00000 18.39 101.3 3.62 20.00 18.39	(instant: 85 3 62 1.00000 11.94 101.3 5.99 20.00	62 1.00000 15.56 101.3 11.06 20.00	62 1.00000 15.11 101.3 10.42 20.00 15.11	62 1.00000 12.44 101.3 6.37 20.00 12.44	62 1.00000 4.61 101.3 2.92 20.00 4.61 E
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEM: TRIAL NAME TYPE OF UNITS MATERIAL SCREEM: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED @ 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEM: INSTANTANEOUS RELEASE MASS SPILLED (kg) TERRAIN SCREEM:	: : : : : : : : : : : : : : : : : : : :	Hanford Erypton- hi2 hi Metric units 62 1.00000 18.39 101.3 3.62 20.00 18.39 F	(instant. 85 3 62 1.00000 11.94 101.3 5.99 20.00 11.94 D	1.00000 15.56 101.3 11.06 20.00 15.56 C	1.00000 15.11 101.3 10.42 20.00 15.11 C	62 1.00000 12.44 101.3 6.37 20.00 12.44 C	62 1.00000 4.61 101.3 2.92 20.00 4.61 E
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. NOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED @ 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: INSTANTANEOUS RELEASE MASS SPILLED (kg)	: : : : : : : : : : : : : : : : : : : :	Hanford Erypton- hi2 hi Metric units 62 1.00000 18.39 101.3 3.62 20.00 18.39 F	(instant. 85 3 62 1.00000 11.94 101.3 5.99 20.00 11.94 D	1.00000 15.56 101.3 11.06 20.00 15.56 C	1.00000 15.11 101.3 10.42 20.00 15.11 C	62 1.00000 12.44 101.3 6.37 20.00 12.44	62 1.00000 4.61 101.3 2.92 20.00 4.61 E
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED @ 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: INSTANTANEOUS RELEASE MASS SPILLED (kg) TERRAIN SCREEN: SURFACE ROUGHNESS (m) TALL GRASS		Hanford Erypton- hi2 hi Metric units 62 1.00000 18.39 101.3 3.62 20.00 18.39 F	(instant.es) 3	1.00000 15.56 101.3 11.06 20.00 15.56 C	1.00000 15.11 101.3 10.42 20.00 15.11 C	62 1.00000 12.44 101.3 6.37 20.00 12.44 C	62 1.00000 4.61 101.3 2.92 20.00 4.61 E
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED @ 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: INSTANTANEOUS RELEASE MASS SPILLED (kg) TERRAIN SCREEN: SURFACE ROUGHNESS (m) TALL GRASS		Hanford Rrypton-hi2 hi Matric units 62 1.00000 18.39 101.3 3.62 20.00 18.39 F	(instant.es) 3	1.00000 15.56 101.3 11.06 20.00 15.56 C	1.00000 15.11 101.3 10.42 20.00 15.11 C	62 1.00000 12.44 101.3 6.37 20.00 12.44 C	62 1.00000 4.61 101.3 2.92 20.00 4.61 E
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEM: TRIAL NAME TYPE OF UNITS MATERIAL SCREEM: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL TEMPERATURE (KPA) WEATHER SCREEN: WIND SPEED @ 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: INSTANTANEOUS RELEASE MASS SPILLED (kg) TERRAIN SCREEM: SURFACE ROUGHNESS (m) TALL GRASS SURFACE TEMP. (C) DIKING SCREEM: UNCONFINED		Hanford Rrypton-hi2 hi Matric units 62 1.00000 18.39 101.3 3.62 20.00 18.39 F	(instant.es) 3	1.00000 15.56 101.3 11.06 20.00 15.56 C	1.00000 15.11 101.3 10.42 20.00 15.11 C	62 1.00000 12.44 101.3 6.37 20.00 12.44 C	62 1.00000 4.61 101.3 2.92 20.00 4.61 E
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEM: TRIAL HAME TYPE OF UNITS MATERIAL SCREEM: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL TEMPERATURE (KPA) WEATHER SCREEM: WIND SPEED @ 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEM: INSTANTANEOUS RELEASE MASS SPILLED (kg) TERRAIN SCREEM: SURFACE ROUGHNESS (M) TALL GRASS SURFACE TEMP. (C) DIKING SCREEM:		Hanford Rrypton-hi2 hi Matric units 62 1.00000 18.39 101.3 3.62 20.00 18.39 F	(instant.es) 3	1.00000 15.56 101.3 11.06 20.00 15.56 C	1.00000 15.11 101.3 10.42 20.00 15.11 C	62 1.00000 12.44 101.3 6.37 20.00 12.44 C	62 1.00000 4.61 101.3 2.92 20.00 4.61 E
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED @ 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: INSTANTANEOUS RELEASE MASS SPILLED (kg) TERRAIN SCREEN: SURFACE ROUGHNESS (M) TALL GRASS SURFACE TEMP. (C) DIKING SCREEN: UNCOMPINED VD/VE SCREEN: TRACK ONE COMPONENT EXPRESS CONCENTRATION IN PE		Hanford Rrypton-hi2 hi Matric units 62 1.00000 18.39 101.3 3.62 20.00 18.39 F	(instant.es) 3	1.00000 15.56 101.3 11.06 20.00 15.56 C	1.00000 15.11 101.3 10.42 20.00 15.11 C	62 1.00000 12.44 101.3 6.37 20.00 12.44 C	62 1.00000 4.61 101.3 2.92 20.00 4.61 E
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEM: TRIAL NAME TYPE OF UNITS MATERIAL SCREEM: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL TEMPERATURE (KPA) WEATHER SCREEN: WIND SPEED @ 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: INSTANTANEOUS RELEASE MASS SPILLED (kg) TERRAIN SCREEM: SURFACE ROUGHNESS (M) TALL GRASS SURFACE TEMP. (C) DIKING SCREEN: UNCONFINED VD/VE SCREEN: TRACK ONE COMPONENT EXPRESS CONCENTRATION IN PP LOMEST CONC. LIMIT, PPM		Hanford Erypton— hi2 hi Metric units 62 1.00000 18.39 101.3 3.62 20.00 18.39 F	(instant.es) 3	1.00000 15.56 101.3 11.06 20.00 15.56 C	1.00000 15.11 101.3 10.42 20.00 15.11 C	62 1.00000 12.44 101.3 6.37 20.00 12.44 C	62 1.00000 4.61 101.3 2.92 20.00 4.61 E 10.00 0.03000 4.61
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEM: TRIAL NAME TYPE OF UNITS MATERIAL SCREEM: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEM: WIND SPEED @ 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEM: INSTANTANEOUS RELEASE MASS SPILLED (kg) TERRAIN SCREEM: SURFACE TEMP. (C) DIKING SCREEM: UNCONFINED VD/VE SCREEM: TRACK ONE COMPONENT EXPRESS CONCENTRATION IN PP HIGHEST CONC. LIMIT, PPM HIGHEST CONC. LIMIT, PPM HIGHEST CONC. LIMIT, PPM	TO :: : : : : : : : : : : : : : : : : :	Hanford Rrypton-hi2 hi Matric units 62 1.00000 18.39 101.3 3.62 20.00 18.39 F 10.00 0.03000 18.39	(instant.es) 3	1.00000 15.56 101.3 11.06 20.00 15.56 0.000 0.03000 15.56	1.00000 15.11 101.3 10.42 20.00 15.11 C	62 1.00000 12.44 101.3 6.37 20.00 12.44 C	62 1.00000 4.61 101.3 2.92 20.00 4.61 E 10.00 0.03000 4.61
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEM: TRIAL NAME TYPE OF UNITS MATERIAL SCREEM: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL TEMPERATURE (KPA) WEATHER SCREEN: WIND SPEED @ 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: INSTANTANEOUS RELEASE MASS SPILLED (kg) TERRAIN SCREEM: SURFACE ROUGHNESS (M) TALL GRASS SURFACE TEMP. (C) DIKING SCREEN: UNCONFINED VD/VE SCREEN: TRACK ONE COMPONENT EXPRESS CONCENTRATION IN PP LOMEST CONC. LIMIT, PPM		Hanford Erypton- hi2 hi Matric units 62 1.00000 18.39 101.3 3.62 20.00 18.39 F 10.00 0.03000 18.39	(instant. 85 3 i 1.00000 11.94 101.3 5.99 20.00 11.94 D	1.00000 15.56 101.3 11.06 20.00 15.56 C	1.00000 15.11 101.3 10.42 20.00 15.11 C	6.37 20.00 12.44 101.3 6.37 20.00 12.44 C	62 1.00000 4.61 101.3 2.92 20.00 4.61 E 10.00 0.03000 4.61

FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN:	: 1	Maplin Sand Liquified H			•				
TRIAL NAME TYPE OF UNITS		m 27 m Metric unit	±29 m ≇	e34 m	a 35				
MATERIAL SCREEN: PRIMARY CHEMICAL NO.	:	1	1	1	1				
PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C)	:	1.00000 -162.45	1.00000 -162.45	1.00000 -162.45	1.00000 -162.45				
MATERIAL PRESSURE (kPa)	:	101.3	101.3	101.3	101.3				
WEATHER SCREEN: WIND SPEED # 10M (m/s)		5.60	7.40	a.50	9. 60				
REL. HUMIDITY (%)	i	53.00	71.00	90.00	77.00				
WIND SPEED & 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS	:	14.95 D	16.15 D	15.23 D	16.13				
RELEASE SCREEN:									
CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT	:	2,667	3.750	1.563	2.250				
PIPE DIAMETER (m)	:	0.15000	0.15000	0.15000	0.15000				
EXIT AREA (M2) FLOW RATE (kg/s)	:	0.01767 23.2100	0.01767 29.1600	0.01767 21.5100	0.01767 27.0900				
RELEASE HEIGHT (m)	•	0.000	0.000	0.000	0.000				
ANGLE FROM HORIZON TO EXIT REGULATED RELEASE	:	270.0	270.0	270.0	270.0				
TERRAIN SCREEN:									
SURFACE ROUGHNESS (m)	:	0.00030	0.00030	0.00030	0.00030				
CAIM OPEN SEA SURFACE TEMP. (C)	:	15.65	16.85	15.85	16.65				
DIKING SCREEN: UNCONFINED									
VD/VE SCREEN: TRACK ONE COMPONENT									
EXPRESS CONCENTRATION IN PI	PM								
LOWEST CONC. LIMIT, PPM MIDDLE CONC. LIMIT, PPM HIGHEST CONC. LIMIT, PPM	:	100.000	100.000	100.000	100.000				
HIGHEST CONC. LIMIT, PPM	:	400.000	400.000	400.000	400.000				
DISP. COEFF. AVG. TIME (minuse DEFAULT TIME STEP POSIT	1):	0.050	0.050	0.050	0.050				
THE PERMANENT LINE CLASS (441)	11000								
		aplin Sanda							
CHEMICAL RELEASED TITLE SCREEN:	: L	iquified Pr	ropane Gas						
CHEMICAL RELEASED TITLE SCREEN:	: L	iquified Pr	ropane Gas 143 m	:46 B	s47 m	=49 <u>=</u>	=50 m	#52 n .	#54
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS	: L : m : M	iquified Pr s42 m etric unita	ropane Gas 143 m 1						
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS	: L : m : M	iquified Pr s42 m etric unita	ropane Gas 143 m 1						
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS	: L : m : M	iquified Pr s42 m etric unita	ropane Gas 143 m 1						
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS	: L : m : M	iquified Pr s42 m etric unit	ropane Gas 143 m 1						
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN:	: L : m : M	iquified Pr s42 ma etric unita 3 1.00000 -43.05 101.3	3 1.00000 -43.05 101.3	3 1.00000 -43.05 101.3	3 1.00000 -43.05 101.3	3 1.00000 ~43.05 101.3	3 1.00000 -43.05 101.3	3 1.00000 -43.05 101.3	3 1.00000 -43.05 101.3
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED @ 10M (m/s) REL. HUMIDITY (%)	: L	iquified Pr 842 ma etric unit; 3 1.00000 -43.05 101.3 4.00 80.00	3 1.00000 -43.05 101.3 5.80 80.00	3 1.00000 -43.05 101.3 8.10 71.00	3 1.00000 -43.05 101.3 6.20 78.00	3 1.00000 ~43.05 101.3 5.50	3 1.00000 -43.05 101.3 7.90 79.00	3 1.00000 -43.05 101.3 7.40 63.00	3 1.00000 -43.05 101.3 3.70 85.00
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED 8 10M (m/s)	: L	iquified Pr s42 ma etric units 3 1.00000 -43.05 101.3	ropane Gas 843 ms 8 1.00000 -43.05 101.3 5.80	3 1.00000 -43.05 101.3	3 1.00000 -43.05 101.3	3 1.00000 ~43.05 101.3	3 1.00000 -43.05 101.3	3 1.00000 -43.05 101.3 7.40 63.00 11.85	3 1.00000 -43.05 101.3 3.70 85.00 8.45
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED & 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS	: L	iquified Pr 842 m etric unit; 3 1.00000 -43.05 101.3 4.00 80.00 18.35	3 1.00000 -43.05 101.3 5.80 80.00 17.05	3 1.00000 -43.05 101.3 8.10 71.00 18.75	3 1.00000 -43.05 101.3 6.20 78.00 17.45	3 1.00000 -43.05 101.3 5.50 88.00 13.35	7.90 79.00 101.3	3 1.00000 -43.05 101.3 7.40 63.00	3 1.00000 -43.05 101.3 3.70 85.00
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED @ 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE	: L	iquified Pr 842 matric unit; 3 1.00000 -43.05 101.3 4.00 80.00 18.35 D	3 1.00000 -43.05 101.3 5.80 80.00 17.05	3 1.00000 -43.05 101.3 8.10 71.00 18.75	3 1.00000 -43.05 101.3 6.20 78.00 17.45	3 1.00000 -43.05 101.3 5.50 88.00 13.35	7.90 79.00 101.3	3 1.00000 -43.05 101.3 7.40 63.00 11.85	3 1.00000 -43.05 101.3 3.70 85.00 8.45
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPa) WEATHER SCREEN: WIND SPEED & 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min)	: L	iquified Pr #42 ma #42 ma 1.00000 -43.05 101.3 4.00 80.00 18.35 D	1.00000 -43.05 101.3 5.80 80.00 17.05 D	3 1.00000 -43.05 101.3 8.10 71.00 18.75 D	3 1.00000 -43.05 101.3 6.20 78.00 17.45 D	3 1.00000 -43.05 101.3 5.50 88.00 13.35 D	3 1.00000 -43.05 101.3 7.90 79.00 10.45 D	3 1.00000 -43.05 101.3 7.40 63.00 11.85 D	3 1.00000 -43.05 101.3 3.70 85.00 8.45 p
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED & 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m)	: L	iquified Pr 842 ma etric units 1.00000 -43.05 101.3 4.00 80.00 18.35 D	1.00000 -43.05 101.3 5.80 80.00 17.05 D	3 1.00000 -43.05 101.3 8.10 71.00 18.75 D	3 1.00000 -43.05 101.3 6.20 78.00 17.45 D	3 1.00000 -43.05 101.3 5.50 88.00 13.35	3 1.00000 -43.05 101.3 7.90 79.00 10.45 D	3 1.00000 -43.05 101.3 7.40 63.00 11.85 D	3 1.00000 -43.05 101.3 3.70 85.00 8.45 p
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED & 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (kg/s)	: L : m	1quified Pr 842 ma etric unit; 3 1.00000 -43.05 101.3 4.00 80.00 18.35 D 3.000 0.15000 0.01767 20.8700	1.00000 -43.05 101.3 5.80 80.00 17.05 D	3 1.00000 -43.05 101.3 8.10 71.00 18.75 D	3 1.00000 -43.05 101.3 6.20 78.00 17.45 D	3 1.00000 -43.05 101.3 5.50 88.00 13.35 D	1.00000 -43.05 101.3 7.90 79.00 10.45 D	3 1.00000 -43.05 101.3 7.40 63.00 11.85 D	3 1.00000 -43.05 101.3 3.70 85.00 8.45 p
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPa) WEATHER SCREEN: WIND SPEED & 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (Kg/s) RELEASE HEIGHT (m)	: L : m : : : : : : : : : : : : : : : :	iquified Pr ### ### ### ### #### ################	1.00000 -43.05 101.3 5.80 80.00 17.05 D	3 1.00000 -43.05 101.3 8.10 71.00 18.75 D	3 1.00000 -43.05 101.3 6.20 78.00 17.45 D	3 1.00000 -43.05 101.3 5.50 88.00 13.35 D	3 1.00000 -43.05 101.3 7.90 79.00 10.45 D	3 1.00000 -43.05 101.3 7.40 63.00 11.85 D	3.000 -43.05 101.3 3.70 85.00 8.45 p
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED & 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (kg/s)	: L : m : : : : : : : : : : : : : : : :	1quified Pr 842 ma etric unit; 3 1.00000 -43.05 101.3 4.00 80.00 18.35 D 3.000 0.15000 0.01767 20.8700	1.00000 -43.05 101.3 5.80 80.00 17.05 D	3 1.00000 -43.05 101.3 8.10 71.00 18.75 D	3 1.00000 -43.05 101.3 6.20 78.00 17.45 D	3 1.00000 -43.05 101.3 5.50 88.00 13.35 D	1.00000 -43.05 101.3 7.90 79.00 10.45 D	3 1.00000 -43.05 101.3 7.40 63.00 11.85 D	3 1.00000 -43.05 101.3 3.70 85.00 8.45 p
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPa) WEATHER SCREEN: WIND SPEED & 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (Kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE TERRAIN SCREEN:	E L mM	iquified Pr ###################################	1.00000 -43.05 101.3 5.80 80.00 17.05 D	3 1.00000 -43.05 101.3 8.10 71.00 18.75 D 6.000 0.15000 0.01767 23.3700 0.000 270.0	3 1.00000 -43.05 101.3 6.20 78.00 17.45 D 3.500 0.15000 0.01767 32.5700 0.000 270.0	3 1.00000 -43.05 101.3 5.50 88.00 13.35 D 1.500 0.15000 0.01767 16.7100 0.000 270.0	1.00000 -43.05 101.3 7.90 79.00 10.45 D	3 1.00000 -43.05 101.3 7,40 63.00 11.85 D	3.000 -43.05 101.3 3.70 85.00 8.45 p
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED & 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE	: L : m : : : : : : : : : : : : : : : :	iquified Pr ### ### ### ### #### ################	1.00000 -43.05 101.3 5.80 80.00 17.05 D	3 1.00000 -43.05 101.3 8.10 71.00 18.75 D	3 1.00000 -43.05 101.3 6.20 78.00 17.45 D	3 1.00000 -43.05 101.3 5.50 88.00 13.35 D	3 1.00000 -43.05 101.3 7.90 79.00 10.45 D	3 1.00000 -43.05 101.3 7.40 63.00 11.85 D	3.000 -43.05 101.3 3.70 85.00 8.45 p
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED & 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE TERRAIN SCREEN: SURFACE ROUGHNESS (m)	E L mM	1quified Pr 842 matric unit; 3 1.00000 -43.05 101.3 4.00 80.00 18.35 D 3.000 0.15000 0.01767 20.8700 0.000 270.0	1.00000 -43.05 101.3 5.80 80.00 17.05 D	3 1.00000 -43.05 101.3 8.10 71.00 18.75 D 6.000 0.15000 0.01767 23.3700 0.000 270.0	3 1.00000 -43.05 101.3 6.20 78.00 17.45 D 3.500 0.15000 0.01767 32.5700 0.000 270.0	3 1.00000 -43.05 101.3 5.50 88.00 13.35 D 1.500 0.15000 0.01767 16.7100 0.000 270.0	1.00000 -43.05 101.3 7.90 79.00 10.45 D	3 1.00000 -43.05 101.3 7,40 63.00 11.85 D	3.000 -43.05 101.3 3.70 85.00 8.45 p
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED @ 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE TERRAIN SCREEN: SURFACE ROUGHNESS (m) CALM OPEN SEA		1quified Pr 842 matric unit; 3 1.00000 -43.05 101.3 4.00 80.00 18.35 D 3.000 0.15000 0.01767 20.8700 0.000 270.0	5.80 0.015000 0.00030	3 1.00000 -43.05 101.3 8.10 71.00 18.75 D 6.000 0.15000 0.01767 23.3700 0.000 270.0	3 1.00000 -43.05 101.3 6.20 78.00 17.45 D 3.500 0.15000 0.01767 32.5700 0.000 270.0	1.00000 -43.05 101.3 5.50 88.00 13.35 D	3 1.00000 -43.05 101.3 7.90 79.00 10.45 D 2.667 0.15000 0.01767 35.8900 0.000 270.0	3 1.00000 -43.05 101.3 7.40 63.00 11.85 D	3.000 -41.05 101.3 3.70 85.00 8.45 p
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPa) WEATHER SCREEN: WIND SPEED & 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (Kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE TERRAIN SCREEN: SURFACE ROUGHNESS (m) CALM OPEN SEA SURFACE TEMP. (C) DIKING SCREEN: UNCONFINED		1quified Pr 842 matric unit; 3 1.00000 -43.05 101.3 4.00 80.00 18.35 D 3.000 0.15000 0.01767 20.8700 0.000 270.0	5.80 0.015000 0.00030	3 1.00000 -43.05 101.3 8.10 71.00 18.75 D 6.000 0.15000 0.01767 23.3700 0.000 270.0	3 1.00000 -43.05 101.3 6.20 78.00 17.45 D 3.500 0.15000 0.01767 32.5700 0.000 270.0	1.00000 -43.05 101.3 5.50 88.00 13.35 D	3 1.00000 -43.05 101.3 7.90 79.00 10.45 D 2.667 0.15000 0.01767 35.8900 0.000 270.0	3 1.00000 -43.05 101.3 7.40 63.00 11.85 D	3.000 -41.05 101.3 3.70 85.00 8.45 p
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPa) WEATHER SCREEN: WIND SPEED & 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (Kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE TERRAIN SCREEN: SURFACE ROUGHNESS (m) CALM OPEN SEA SURFACE TEMP. (C) DIKING SCREEN: UNCONFINED		1quified Pr 842 matric unit; 3 1.00000 -43.05 101.3 4.00 80.00 18.35 D 3.000 0.15000 0.01767 20.8700 0.000 270.0	5.80 0.015000 0.00030	3 1.00000 -43.05 101.3 8.10 71.00 18.75 D 6.000 0.15000 0.01767 23.3700 0.000 270.0	3 1.00000 -43.05 101.3 6.20 78.00 17.45 D 3.500 0.15000 0.01767 32.5700 0.000 270.0	1.00000 -43.05 101.3 5.50 88.00 13.35 D	3 1.00000 -43.05 101.3 7.90 79.00 10.45 D 2.667 0.15000 0.01767 35.8900 0.000 270.0	3 1.00000 -43.05 101.3 7.40 63.00 11.85 D	3.000 -41.05 101.3 3.70 85.00 8.45 p
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPa) WEATHER SCREEN: WIND SPEED & 10M (m/s) REL. HUNIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (Kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE TERRAIN SCREEN: SURFACE ROUGHNESS (m) CALM OPEN SEA SURFACE TEMP. (C) DIKING SCREEN: UNCONFINED VD/VE SCREEN: TRACK ONE COMPONENT EXPRESS CONCENTRATION IN PI LOWEST CONC. LIMIT, PPM	L L MM	iquified Pr 842 matric unit; 3 1.00000 -43.05 101.3 4.00 80.00 18.35 D 3.000 0.15000 0.01767 20.8700 0.000 270.0 0.00030 18.55	1.00000 -43.05 101.3 5.80 81.00 17.05 D 5.500 0.15000 0.01767 19.2000 0.000 270.0	3 1.00000 -43.05 101.3 8.10 71.00 18.75 D 6.000 0.015000 0.01767 23.3700 0.000 270.0	3 1.00000 -43.05 101.3 6.20 78.00 17.45 D 3.500 0.15000 0.01767 32.5700 0.000 270.0	3 1.00000 -43.05 101.3 5.50 88.00 13.35 D 1.500 0.15000 0.01767 16.7100 0.000 270.0	3 1.00000 -43.05 101.3 7.90 79.00 10.45 D 2.667 0.15000 0.01767 35.8900 0.000 270.0	3 1.00000 -43.05 101.3 7.40 63.00 11.85 D 2.333 0.15000 0.01767 44.2500 0.000 270.0	3 1.00000 -43.05 101.3 3.70 85.00 8.45 p 3.000 0.15000 0.01767 19.2000 0.000 270.0
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPa) WEATHER SCREEN: WIND SPEED & 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (Kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE TERRAIN SCREEN: SURFACE ROUGHNESS (m) CALM OPEN SEA SURFACE TEMP. (C) DIKING SCREEN: UNCONFINED VD/VE SCREEN: TRACK ONE COMPONENT EXPRESS CONCENTRATION IN PI LOWEST CONC. LIMIT, PPM MIDDLE CONC. LIMIT, PPM MIDDLE CONC. LIMIT, PPM	L mm	iquified Pr 842 m etric unit; 1.00000 -43.05 101.3 4.00 80.00 18.35 D 3.000 0.15000 0.01767 20.8700 0.000 270.0 0.00030 18.55	3 1.00000 -43.05 101.3 5.80 80.00 17.05 D 5.500 0.15000 0.01767 19.2000 0.000 270.0	3 1.00000 -43.05 101.3 8.10 71.00 18.75 D 6.000 0.15000 0.01767 23.3700 0.000 270.0	3.00000 -43.05 101.3 6.20 78.00 17.45 D 3.500 0.15000 0.01767 32.5700 0.000 270.0	1.00000 -43.05 101.3 5.50 88.00 13.35 D 1.500 0.15000 0.01767 16.7100 0.000 270.0	1.00000 -43.05 101.3 7.90 79.00 10.45 D 2.667 0.15000 0.01767 35.8900 0.000 270.0	3 1.00000 -43.05 101.3 7.40 63.00 11.85 D 2.333 0.15000 0.01767 44.2500 0.000 270.0	3.000 -43.05 101.3 3.70 85.00 8.45 p 3.000 0.15000 0.01767 19.2000 0.000 270.0
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPa) WEATHER SCREEN: WIND SPEED & 10M (m/s) REL. HUNIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (Kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE TERRAIN SCREEN: SURFACE ROUGHNESS (m) CALM OPEN SEA SURFACE TEMP. (C) DIKING SCREEN: UNCONFINED VD/VE SCREEN: TRACK ONE COMPONENT EXPRESS CONCENTRATION IN PI LOWEST CONC. LIMIT, PPM	L L MM	1quified Pr 842 matric unit; 3 1.00000 -43.05 101.3 4.00 80.00 18.35 D 3.000 0.15000 0.01767 20.8700 0.000 270.0 0.00030 18.55	1.00000 -43.05 101.3 5.80 81.00 17.05 D 5.500 0.15000 0.01767 19.2000 0.000 270.0	3 1.00000 -43.05 101.3 8.10 71.00 18.75 D 6.000 0.015000 0.01767 23.3700 0.000 270.0	3 1.00000 -43.05 101.3 6.20 78.00 17.45 D 3.500 0.15000 0.01767 32.5700 0.000 270.0	3 1.00000 -43.05 101.3 5.50 88.00 13.35 D 1.500 0.15000 0.01767 16.7100 0.000 270.0	3 1.00000 -43.05 101.3 7.90 79.00 10.45 D 2.667 0.15000 0.01767 35.8900 0.000 270.0	3 1.00000 -43.05 101.3 7.40 63.00 11.85 D 2.333 0.15000 0.01767 44.2500 0.000 270.0	3 1.00000 -43.05 101.3 3.70 85.00 8.45 p 3.000 0.15000 0.01767 19.2000 0.000 270.0

FOCUS INPUT DATA FOR CHEMICAL RELEASED	: :		Grass, se dioxide	t 1					
TITLE SCREEN: TRIAL NAME TYPE OF UNITS	: 5	ng7 p Metric unit	98 p	g9 p	g10 p	913 1	pg15 g	жg16 р	g 17
MATERIAL SCREEN:									44
PRIMARY CHEMICAL NO. MOLE FRACTION	:	1.00000	1,00000	1.00000	1.00000	1.00000	1.00000	1.00000	1,00000
MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kpa)	:	32.00 101.3	32.00 101.3	28.00 101.3	31.00 101.3	20.00 101.3		28.00 101.3	27.00 101.3
1.000 CITE #40 N N 1 .									
WIND SPEED @ 10M (m/s)	:	4.93	5.88	8.38	5.38	2.74			4.62
REL. HUMIDITY (%) AMBIENT TEMP. (C)	:	20.00 32.00	20.00 32.00	20.00 28.00	20.00 31.00	20.00 20.00		28.00	20.00 27.00
WEATHER SCREEN: WIND SPEED 6 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G TLASS	:	8	С	c	B	£	λ.	λ	Ð
RELEASE SCREEN: CONTINUOUS RELEASE									
RELEASE DURATION (min)	:	10.000 0.05080	10.000 0.05080	10.000	10.000	10.000		10.000 0.050#0	10.000 0.05060
PIPE DIAMETER (m) EXIT AREA (m2)	:	0.05080	0.00203	0.00203	0.00203	0.00203	0.00203	0.00203	0.00203
EXIT AREA (m2) FLOW RATE (kg/s) RELEASE HEIGHT (m)	:	0.0899	0.0911 0.450	0.0920 0.450	0.0921 0.450	0.0611 0.450		0.0930 0.450	0.0565 0.450
ANGLE FROM HORIZON TO EXIT REGULATED RELEASE	:	0.0	0.0	0.0	0.0	0.0		0.0	0.0
TERRAIN SCREEN: SURFACE ROUGHNESS (m)	:	0.00600	0.00600	0.00600	0.00600	0.00600	0.00600	0.00600	0.00600
CUT GRASS SURFACE TEMP. (C)	:	32.00	32.00	28.00	31.00	20.00	22.00	28.00	17.00
DIKING SCREEN: UNCONFINED									
VD/VE SCREEN: TRACK ONE COMPONENT									
EXPRESS CONCENTRATION IN P	PM								
LOWEST CONC. LIMIT, PPM MIDDLE CONC. LIMIT, PPM HIGHEST CONC. LIMIT, PPM DISP. COEFF. AVG. TIME (#1	:	1,000 2,000	1.000	1.000 2.000	1.000 2.000	1.000 2.000			1.000 2.000
HIGHEST CONC. LIMIT, PPM		4.000	4.000 10.000	4.000	4,000	4.000	4.000	1.000	4.000
USE DEFAULT TIME STEP POSI	TIONS	10.000	10.000	10.000	10.000	10.000	10.000	10.000	10.000
****** ***** **** ***									
CHEMICAL RELEASED	:		of Freon-		rogen .				
CHEMICAL RELEASED TITLE SCREEN:		Mixture			rogen .				
CHEMICAL RELEASED TITLE SCREEN; TRIAL MAME TYPE OF UNITS	: : t	Mixture .c45 to letric unit:	of Freen-		rogen .				
CHEMICAL RELEASED TITLE SCREEN; TRIAL MAME TYPE OF UNITS	: : t	Mixture .c45 to letric unit:	of Freon- c47 s		rogen .				
CHEMICAL RELEASED TITLE SCREEN; TRIAL MAME TYPE OF UNITS	: : t	Mixture .c45 to letric unit:	of Freon- c47 8 56 0.32043 16		rogan .				
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION SECONDARY CHEMICAL NO. MOLE FRACTION	: t	Mixture .c45 t letric unit: 	of Freon- 247 8 56 0.32043 16 0.67957		rogen .				
CHEMICAL RELEASED TITLE SCREEN; TRIAL MAME TYPE OF UNITS	: t	Mixture .c45 t letric unit: 	of Freon- c47 8 56 0.32043 16		rogen .				
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPa) WEATHER SCREEN:	: :	Mixture c45 to letric units 56 0.32043 16 0.67957 13.10 101.3	of Freen- c47 8 0.32043 16 0.67957 14.30 101.3		rogen				
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPa) WEATHER SCREEN:	: :	Mixture c45 to letric units 56 0.32043 16 0.67957 13.10 101.3	of Freen- c47 8 0.32043 16 0.67957 14.30 101.3		rogen				
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPa) WEATHER SCREEN:	: :	Mixture c45 to letric units 56 0.32043 16 0.67957 13.10 101.3	of Freen- c47 8 0.32043 16 0.67957 14.30 101.3		rogets .				
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION SECONDARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: MIND SPEED @ 10M (m/s) REL. HUNIDITY (4) AMBIENT TEMP. (C) P-G CLASS	: :	Mixture c45 to letric units 56 0.32043 16 0.67957 13.10 101.3	of Freen- c47 8 0.32043 16 0.67957 14.30 101.3		rogen				
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION SECONDARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL TEMPERATURE (kpa) WEATHER SCREEN: MIND SPEED 8 10M (m/s) REL. HUMIDITY (4) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN:	: t	Mixture .c45 tc45 tc45 tc45 1c45 0.32043 .c60.32043 .c67.957 .c	of Freen-1 247 8 0.32043 16 0.67957 14.30 1.50 97.40 14.30 F		rogen				
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION SECONDARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL TEMPERATURE (kpa) WEATHER SCREEN: MIND SPEED 8 10M (m/s) REL. HUMIDITY (4) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN:	: t	Mixture .c45 tc45 tc45 tc45 1c45 0.32043 .c60.32043 .c67.957 .c	of Freen-1 247 8 0.32043 16 0.67957 14.30 1.50 97.40 14.30 F		rogea .				
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION SECONDARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL TEMPERATURE (kpa) WEATHER SCREEN: MIND SPEED 8 10M (m/s) REL. HUMIDITY (4) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN:	: t	Mixture .c45 tc45 tc45 tc45 1c45 0.32043 .c60.32043 .c67.957 .c	of Freen-1 247 8 0.32043 16 0.67957 14.30 1.50 97.40 14.30 F		rogeta .				
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION SECONDARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL TEMPERATURE (kpa) WEATHER SCREEN: MIND SPEED 8 10M (m/s) REL. HUMIDITY (4) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN:	: t	Mixture .c45 tc45 tc45 tc45 1c45 0.32043 .c60.32043 .c67.957 .c	of Freen-1 247 8 0.32043 16 0.67957 14.30 1.50 97.40 14.30 F		rogets				
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION SECONDARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL TEMPERATURE (kpa) WEATHER SCREEN: MIND SPEED 8 10M (m/s) REL. HUMIDITY (4) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN:	: t	Mixture .c45 tc45 tc45 tc45 1c45 0.32043 .c60.32043 .c67.957 .c	of Freen-1 247 8 0.32043 16 0.67957 14.30 1.50 97.40 14.30 F		rogea .				
CHEMICAL RELEASED TITLE SCREEN: TRIAL MAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL MO. MOLE FRACTION SECONDARY CHEMICAL MO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) MEATHER SCREEN: MIMD SPEED & 10M (m/s) REL. HUMIDITY (4) ANBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE TERRAIN SCREEN:		Mixture .c45 t. ietric unit: .56 0.32043 16 0.67957 13.10 101.3 2.30 100.00 13.10 E 7.583 2.00000 3.14159 10.6700 0.000 0.0	of Freon-1 247 8 0.32043 16 0.67957 14.30 101.3 1.50 97.40 14.30 F		rogeta				
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION SECONDARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL TEMPERATURE (KPa) WEATHER SCREEN: WIND SPEED @ 10M (m/s) REL. HUNIDITY (4) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE TERRAIN SCREEN: SURFACE ROUGHNESS (m) COT GRASS		Mixture c45 tric unit: 56 0.32043 16 0.67957 13.10 101.3 2.30 100.00 13.10 E 7.583 2.00000 3.14159 10.6700 0.000 0.000 0.01000	of Freen-1 247 8 356 0.32043 16 0.67957 14.30 101.3 1.50 97.40 14.30 F 7.750 2.02020 3.14159 10.2200 0.000 0.0		rogets				
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION SECONDARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL TEMPERATURE (KPA) WEATHER SCREEN: MIND SPEED & 10M (m/s) REL. HUMIDITY (0) ANBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (KG/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE TERRAIN SCREEN: SURFACE ROUGHNESS (m)	: : : : : : : : : : : : : : : : : : : :	Mixture c45 tric unit: 56 0.32043 16 0.67957 13.10 101.3 2.30 100.00 13.10 E 7.583 2.00000 3.14159 10.6700 0.000 0.000 0.01000	of Freen-1 247 8 356 0.32043 16 0.67957 14.30 101.3 1.50 97.40 14.30 F 7.750 2.02020 3.14159 10.2200 0.000 0.0		rogea				
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION SECONDARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL TEMPERATURE (KPa) WEATHER SCREEN: WIND SPEED @ 10M (m/s) REL. HUNIDITY (4) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE TERRAIN SCREEN: SURFACE ROUGHNESS (m) COT GRASS	: : : : : : : : : : : : : : : : : : : :	Mixture c45 tric unit: 56 0.32043 16 0.67957 13.10 101.3 2.30 100.00 13.10 E 7.583 2.00000 3.14159 10.6700 0.000 0.000 0.01000	of Freen-1 247 8 356 0.32043 16 0.67957 14.30 101.3 1.50 97.40 14.30 F 7.750 2.02020 3.14159 10.2200 0.000 0.0		rogeta				
CHEMICAL RELEASED TITLE SCREEN: TRIAL MAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL MO. MOLE FRACTION SECONDARY CHEMICAL MO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL TEMPERATURE (KPA) WEATHER SCREEN: WIND SPEED & 10M (m/s) REL. HUMIDITY (4) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE TERRAIN SCREEN: SURFACE ROUGHNESS (m) COT GRASS SURFACE TEMP. (C) DIKING SCREEN: UNCONFINED	: : : : : : : : : : : : : : : : : : : :	Mixture c45 tric unit: 56 0.32043 16 0.67957 13.10 101.3 2.30 100.00 13.10 E 7.583 2.00000 3.14159 10.6700 0.000 0.000 0.01000	of Freen-1 247 8 356 0.32043 16 0.67957 14.30 101.3 1.50 97.40 14.30 F 7.750 2.02020 3.14159 10.2200 0.000 0.0		rogets				
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION SECONDARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL TEMPERATURE (KPA) WEATHER SCREEN: WIND SPEED @ 10M (M/s) REL. HUNIDITY (4) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE TERRAIN SCREEN: SURFACE ROUGHNESS (m) COT GRASS SURFACE TEMP. (C) DIKING SCREEN: UNCONFINED VD/VE SCREEN: TRACK ONE COMPONENT EXPRESS CONCENTRATION IN P	: t t : t : t : t : t : t : t : t : t :	Mixture c45 to the tric unit:	of Freen-1 247 8 356 0.32043 16 0.67957 14.30 101.3 1.50 97.40 14.30 2.02020 3.14159 10.2200 0.000 0.0		rogets				
CHEMICAL RELEASED TITLE SCREEN: TRIAL MAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL MO. MOLE FRACTION SECONDARY CHEMICAL MO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL TEMPERATURE (KPA) WEATHER SCREEN: MIND SPEED & 10M (m/s) REL. HUMIDITY (4) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (KG/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE TERRAIN SCREEN: SURFACE ROUGHNESS (m) COT GRASS SURFACE TEMP. (C) DIKING SCREEN: UNCONFINED VD/VE SCREEN: TRACK ONE COMPONENT EXPRESS CONCENTRATION IN P LOWEST CONC. LIMIT. PPM	: t : h	Mixture .c45 tc45 tc45 tc45 tc45 tc45 tc45 tc46 0.32043 .c6 0.32043 .c6 0.67957 .c13.10 .c101.3 .c2.30 .c00.00 .c3.14.59 .c6700 .c000 .c000 .c000 .c000 .c000 .c000 .c0000 .c0000 .c00000000	of Freen-1 247 8 0.32043 16 0.67957 14.30 101.3 1.50 97.40 14.30 F 7.750 2.20000 3.14159 10.2200 0.000 0.00 0.01000 14.50		rogea				
CHEMICAL RELEASED TITLE SCREEN: TRIAL MAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL MO. MOLE FRACTION SECONDARY CHEMICAL MO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL TEMPERATURE (KPA) WEATHER SCREEN: MIND SPEED & 10M (m/s) REL. HUMIDITY (4) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (KG/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE TERRAIN SCREEN: SURFACE ROUGHNESS (m) COT GRASS SURFACE TEMP. (C) DIKING SCREEN: UNCONFINED VD/VE SCREEN: TRACK ONE COMPONENT EXPRESS CONCENTRATION IN P LOWEST CONC. LIMIT. PPM	: t : h	Mixture .c45 tc45 tc45 tc45 tc45 tc45 tc45 tc46 0.32043 .c6 0.32043 .c6 0.67957 .c13.10 .c101.3 .c2.30 .c00.00 .c3.14.59 .c6700 .c000 .c000 .c000 .c000 .c000 .c000 .c0000 .c0000 .c00000000	of Freen-1 247 8 0.32043 16 0.67957 14.30 101.3 1.50 97.40 14.30 F 7.750 2.20000 3.14159 10.2200 0.000 0.00 0.01000 14.50		rogen				
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION SECONDARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL TEMPERATURE (KPA) WEATHER SCREEN: WIND SPEED @ 10M (M/s) REL. HUNIDITY (4) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE TERRAIN SCREEN: SURFACE ROUGHNESS (m) COT GRASS SURFACE TEMP. (C) DIKING SCREEN: UNCONFINED VD/VE SCREEN: TRACK ONE COMPONENT EXPRESS CONCENTRATION IN P	: t t : : : : : : : : : : : : : : : : :	Mixture .45 thetric unit: .56 0.32043 .16 0.67957 .13.10 .101.3 2.30 .100.00 .13.10 E 7.583 2.00000 3.14159 10.6700 0.000 0.00 0.000 12.80	of Freen-1 247 8 0.32043 16 0.67957 14.30 101.3 1.50 97.40 14.30 F 7.750 2.20000 3.14159 10.2200 0.000 0.00 0.01000 14.50		rogeta				

FOCUS INPUT DATA FOR : Thorney Island (instantaneous)
CHEMICAL RELEASED : Mixture of Freon-12 and Nitrogen

	:16 t Matric unit		18 t.	19 t	112 t	112 t	117 t	118 t	119
MATERIAL SCREEN:								.,	56
PRIMARY CHEMICAL NO. :	56 0.21172	56 0.24280	56 0.20548	56 0.19613	56 0.43538	56 0.32043	56 1.00000	56 0.28000	0.35774
MOLE FRACTION : SECONDARY CHEMICAL NO. :	16	15	16	16	15	16	1.00000	16	16
MOLE FRACTION :	0.78828	0.75720	0.79452	0.80387	0.56462	0.67957	0.00000	0.72000	0.64226
MATERIAL TEMPERATURE (C) :	18.68	17.31	17.53	18.30	10.14	13.73	16.06	16.51	13.32
MATERIAL PRESSURE (kPa) :	101.3	102.1	102.2	101.9	101.3	101.9	100.8	100.7	100.6
.academ companie (vie)						2			
WEATHER SCREEN:									
WIND SPEED & 10M (m/s) :	2.80	3.40	2.40	1.70	2.50	7.30	5.00	7.40	6.40
REL. HUMIDITY (%) ;	74.80	80,70	87.60	87.30	66.20	74.10	94.00	81.30	94.80
AMBIENT TEMP. (C) :	18.68	17.31	17.53	18.30	10.14	13.73	16.06	16.51	13.32
P-G CLASS :	D	Ε	D	£	E	Đ	D	Q	D
RELEASE SCREEN: INSTANTANEOUS RELEASE MASS SPILLED (kg) :	3147.00	4249.00	3958,00	3866. 00	5736.00	4800.00	8711.00	3881.00	5477.00
TERRAIN SCREEN:									
SURFACE ROUGHNESS (m) :	0.01800	0.01800	0.01200	0.00800	0.01800	0.01000	0.01800	0.00500	0.01000
CUT GRASS									
SURFACE TEMP. (C) :	18.68	17.70	18.40	18.30	12.00	14.70	17,90	24.30	13.00
DIRING SCREEN: UNCONFINED									
VD/VE SCREEN: TRACK MIXTURE EXPRESS CONCENTRATION IN PPM									
LOWEST CONC. LIMIT, PPM :	100,000	100.000	100.000	100,000	100.000	100.000	100.000	100.000	100.000
MIDDLE CONC. LIMIT, PPM :	200.000	200.000	200.000	200.000	200.000	200.000	200.000	200.000	200.000
HIGHEST CONC. LIMIT, PPM :	400.000	400.000	400.000	400.000	400.000	400.000	400.000	400.000	400.000
DISP. COEFF. AVG. TIME (min): USE DEFAULT TIME STEP POSITIONS	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010

GASTAR INPUT DATA FOR CHEMICAL RELEASED	: Burro : Liquef	ied natura	l gas					
TRIAL NAME	: BU2	803	804 E	3U5 B	W 6 P	מ לת	ut# i	en e
CHEMICAL NO.	: 9	9	9	9	9	9	9	,,,
MINU SPEED & LOM (m/s)	: 6.02	5.93	10.27	8,40	10,40	9.73	2.57	۴ (
P-G CLASS (m)	: 0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	0.0002
M-O LENGTH (m)	-12 947	-5 014	-48 710	C	C	0	E	
AIR TEMP. (K)	311.27	307.75	309.05	314.27	312 67	706 94	15.478	-2288,32
ATM. PRESSURE (mb)	: 939.28	948.40	945.36	941.31	935.23	940.30	941 31	308.3
SFC. TEMP. (K)	: 311.27	307.75	309.05	314.27	12.67	306.96	306.02	308.5
REL. HUMIDITY (%)	: 7.10	5.20	2,70	5.90	5.10	7.40	4.50	14.4
KEL. TYPE: 1-INSTANTANEOUS	, C and A-CONT	INCOUS, T-1	time-varyin	iG				
REL. TYPE: 1-ISOTHERMAL, To	: C -Thermal, A-Ae:	ROSOL	С	¢	С	С	c	
INTE CLOUD DENE (La cas)	: T			T	T	Ť	Ŧ	
PHYSICAL SOURCE WINUT (m)	: 1./09	1.766	1,738	1.734	1.739	1.848	1.840	1,90
INIT. FLOW RATE (m^3/=)	. 48 4758	36.300	30.090	34.890	37.170	38.600	41.850	45.13
INIT. CONCENTRATION (mol)	1.0000	1 0000	1 0000	10.8345	53.0295	53.8249	63.5599	71.242
NIT. TEMPERATURE (K)	: 111.60	111 60	111 60	110000	1.0000	1.0000	1.0000	1.000
SIMULATION DURATION (a)	: 125.93	125 93	115 56	111.00	111.80	111.60	111.60	111.6
VERAGING TIME (s)	: 40.00	100.00	80.00	130.00	113.38	147.62	544.44	240.3
CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. WIND SPEED @ 10M (m/s) SURFACE ROUGHNESS (m) P-G CLASS M-O LENGTH (m) AIR TEMP. (K) ATM. PRESSURE (mb) SFC. TEMP. (K) REL. HUMIDITY (%) REL. TYPE: I-INSTANTANEOUS REL. TYPE: I-INSTANTANEOUS REL. TYPE: I-ISOTHERMAL, TO INIT. CLOUD DENS. (kg/m^3) PMYSICAL SOURCE WIDHT (m) INIT. FLOW RATE (m^3/s) INIT. CONCENTRATION (mol) INIT. TEMPERATURE (K) SIMULATION DURATION (s) AVERAGING TIME (s)								
ASTAR INPUT DATA FOR HEMICAL RELEASED	: Coyote : Liquefi	ed natural	ga#	:	Methane is	at least	864 in c	
TRIAL NAME HEMICAL NO. IND SPEED & 10M (m/a) URFACE ROUGHNESS (m) -G CLASS -O LENGTH (m) IR TEMP. (K) TM. FRESSURE (mb) FC. TEMP. (K) EL. HUMIDITY (4) EL. TYPE: I=INSTANTANEOUS,	: 03 0	:05 C	06					
MEMICAL NO.	: 9	. 9	9					
IND SPEED @ 10M (m/s)	: 6,68	10.99	5.74					
URFACE ROUGHNESS (m)	: 0.00020	0.00020	0.00020					
-G CLASS	: C	C	D					
TO DENGTH (B)	: -12.197	-31,665	56,085					
AN INTERFERENCE (mm)	; 311,45	301.49	297.26					
en. erlosukl (MD) FC TPMP (Y)	936.24	939.28	942.32					
EL. HUMTDITY (A)	311.45	301.49	297.26					
EL. TYPE: I-INSTANTANEOUS,	11.30	22.10	22.80					
	: C	RUUUS, 1=1. C	C THE-VARIING	•				
EL. TYPE: I-INSTANTANEOUS, EL. TYPE: I-ISOTHERMAL, T- NIT. CLOUD DENS. (kg/m^3) HYSICAL SOURCE WIDHT (m) NIT. FLOW RATE (m^3/s) NIT. CONCENTRATION (mol) HIT. TEMPERATURE (K) IMULATION DURATION (s) VERAGING TIME (s)	THERMAL, A-AER	osor						
NIT. CLOUD DENS. (kg/m^3)	: 1.970	2 045	1 940					
HYSICAL SOURCE WIDHT (m)	38 830	43 960	42 930					
NIT. FLOW RATE (m^3/s)	: 51.0978	63.0772	63.4094					
NIT. CONCENTRATION (mol)	: 1.0000	1.0000	1.0000					
WIT. TEMPERATURE (K)	: 111.60	111.60	111.60					
IMULATION DURATION (s)	: 150.00	141.24	186.96					
VERAGING TIME (a)	: 50.00	90.00	70.00					
ASTAR INPUT DATA FOR	: Desert Torto	oise						
ASTAR INPUT DATA FOR	: Desert Torto	oise	pg					
ASTAR INPUT DATA FOR	: Desert Torto	oise	r3 pr	4 ,				
STAR INPUT DATA FOR	: Desert Torto	oise	r3 DT 1 9.28	4 1 6-27				
ASTAR INPUT DATA FOR	: Desert Torto	oise	73 DT 1 9.28 0.00300	4 6.22 0.003nn				
ASTAR INPUT DATA FOR	: Desert Torto	oise	r3 DT 1 9.28 0.00300 D	4 6.22 0.00300 E				
ASTAR INPUT DATA FOR	: Desert Torto	oise	r3 DT 1 9.28 0.00300 D 847.250	4 1 6.22 0.00300 E 41.002				
ASTAR INPUT DATA FOR	: Desert Torto	oise	0.00300 0.00300 0847.250 307.07	4 6.22 0.00300 E 41.002 305.63				
ASTAR INPUT DATA FOR	: Desert Torto	oise	73 DT 9.28 0.00300 D 847.250 307.07 906.86	4 1 6.22 0.00300 E 41.002 305.63 902.81				
ASTAR INPUT DATA FOR	: Desert Torto	oise	73 DT 9,28 0.00300 D 847.250 307.07 906.86 304.80	4 1 6.22 0.00300 E 41.002 305.63 902.81 304.00				
ASTAR INPUT DATA FOR	: Desert Torto	oise	73 DT 9.28 0.00300 D 847.250 307.07 906.86 304.80 14.80	4 1 6.22 0.00300 E 41.002 305.63 902.81 304.00 21.30				
ASTAR INPUT DATA FOR	: Desert Torto	oise	9.28 9.28 0.00300 0.00300 847.250 307.07 906.86 304.80 14.80 ME-VARYING	4 6.22 0.00300 E 41.002 305.63 902.81 304.00 21.30				
ASTAR INPUT DATA FOR	: Desert Torto	oise	9.28 0.00300 D 847.250 307.07 906.86 304.80 14.80 ME-VARYING C	4 1 6.22 0.00300 E 41.002 305.63 902.81 304.00 21.30 C				
ASTAR INPUT DATA FOR	: Desert Torto	oise	9.28 9.28 0.00300 0.00300 847.250 307.07 906.86 304.80 14.80 ME-VARYING C	4 1 6.22 0.00300 E 41.002 305.63 902.81 304.00 21.30 C				
ASTAR INPUT DATA FOR	: Desert Torto	oise	13 DT 1 9.28 0.00300 0 847.250 307.07 906.86 304.80 14.80 14.80 CC A 130.7	4 1 6.22 0.00300 E 41.002 305.63 902.81 304.00 21.30 C A 96.7 1 222				
ASTAR INPUT DATA FOR	: Desert Torto	oise	9.28 0.00300 D 847.250 307.07 906.86 304.80 14.80 ME-VARYING C A 130.7 1.218	4 6.22 0.00300 E 41.002 305.63 902.81 304.00 21.30 C				
ASTAR INPUT DATA FOR	: Desert Torto	oise	9.28 0.00300 D 847.250 307.07 906.86 304.80 14.80 ME-VARYING C A 130.7 1.218 4.112	4 6.22 0.00300 E 41.002 305.63 902.81 304.00 21.30 C A 96.7 1.242 3.953				
ASTAR INPUT DATA FOR	: Desert Torto	oise	9.28 0.00300 0.00300 847.250 307.07 906.86 304.80 14.80 ME-VARYING C 130.7 1.218 4.112 1.0000 237.50	4 6.22 0.00300 E 41.002 305.63 902.81 304.00 21.30 C A 96.7 1.242 3.953 1.0000 237.41				
ASTAR INPUT DATA FOR	: Desert Torto	oise	9.28 0.00300 0.00300 0.00300 0.00300 0.00300 0.00300 0.00300 0.00300 0.00300 0.00300 0.00300 0.00300 0.00300 0.00300 0.00300 0.00300	4 1 6.22 0.00300 E 41.002 305.63 902.81 304.00 21.30 C A 96.7 1.242 3.953 1.0000 237.41 0.864				
ASTAR INPUT DATA FOR	: Desert Torto	oise	9.28 0.00300 D 847.250 307.07 906.86 304.80 14.80 ME-VARYING C A 130.7 1.218 4.112 1,0000 237.50 0.811 0.79	4 1 6.22 0.00300 E 41.002 305.63 902.81 304.00 21.30 C A 96.7 1.242 37.41 0.804 0.79				
ASTAR INPUT DATA FOR	: Desert Torto	oise	9.28 0.00300 D 847.250 307.07 906.86 304.80 14.80 ME-VARYING C A 130.7 1.218 4.112 1.0000 237.50 0.811 0.79	4 6.22 0.00300 E 41.002 305.63 902.81 304.00 21.30 C A 96.7 1.242 3.953 1.0000 237.41 0.804 0.79				
ASTAR INPUT DATA FOR	: Desert Torto	oise	9.28 0.00300 0.00300 847.250 307.07 906.86 304.80 14.80 ME-VARYING C 1.218 4.112 1.0000 237.50 0.811 0.79	4 1 6.22 0.00300 E 41.002 305.63 902.81 304.00 21.30 C A 96.7 1.242 3.953 1.0000 237.41 0.804 0.79 0 0				
ASTAR INPUT DATA FOR	: Desert Torto	oise	13 DT 1 9.28 0.00300 D 847.250 307.07 906.86 304.80 14.80 14.80 C A 130.7 1.218 4.112 1.0000 237.50 0.811 0.79 0 500	4 1 6.22 0.00300 E 41.002 305.63 902.81 304.00 21.30 C A 96.7 1.242 3.953 1.0000 237.41 0.804 0.79 0 0 500				
ASTAR INPUT DATA FOR	: Desert Torto	oise	19.28 0.00300 D 847.250 307.07 906.86 304.80 14.80 14.80 ME-VARYING C A 130.7 1.218 4.112 1,0000 237.50 0.811 0.79 0	4 6.22 0.00300 E 41.002 305.63 902.81 304.00 21.30 C A 96.7 1.242 3.953 1.0000 237.41 0.804 0.79 0 0 500 277.78				

GASTAR INPUT DATA FOR CHENICAL RELEASED	· Manlin San							
CUPATRAL DEFELORS	. Timpidiad	ds Marura) 620		•				
CHEMICAL RELEASED	: midairian	Macuial was		•				
TRIAL NAME CHEMICAL NO. WIND SPEED @ 10M (m/s) SURFACE ROUGHNESS (m) P-G CLASS M-O LENGTH (m) AIR TEMP. (K) AIM. PRESSURE (mb) SFC. TEMP. (K) REL. HUMIDITY (%) REL. TYPE: I-INSTANTANEOUS.	: MS27	M\$29 H	534 M	535				
CHEMICAL NO.	: 9		9	9				
WIND SPEED @ 10M (m/s)	5.50	7.40	8.50	9.60				
SURFACE ROUGHNESS (M)	. 0.00030	0.00030	0.00030	0.00030				
M-O LENGTH (m)	-36.953	1220.632	-102.720	-61.578				
AIR TEMP. (K)	288.10	289.30	288,40	289.30				
ATM. PRESSURE (mb)	: 1013.25	1013.25	1013.25	1013.25				
SFC. TEMP. (K)	: 288.80	290.00	289.00	289.80				
REL. HUMIDITY (%)	: 53.00	71.00	90.00	77.00				
REL. TYPE: I-INSTANTANEOUS,	C and A-CONT	INUOUS, T-T	ime-varyin	· _				
REL. TYPE: I-INSTANTANEOUS, REL. TYPE: I-ISOTHERMAL, T- INIT. CLOUD DENS. (kg/m^3) PHYSICAL SOURCE WIDHT (m) INIT. FLOW RATE (m^3/s) INIT. CONCENTRATION (mol) INIT. TEMPERATURE (K) SIMULATION DURATION (s) AVERAGING TIME (s)	: C	nnent	C	Ç				
RED. 11FE: 1-1501RERMAL, 1-	· T	T	Ψ.	•				
INIT, CLOUD DENS, (kg/m^3)	1.868	1.775	1.819	1.790				
PHYSICAL SOURCE WIDHT (m)	: 18.600	20.900	18,000	20.100				
INIT. FLOW RATE (m^3/s)	: 12.4235	16,4243	11.8246	15.1374				
INIT. CONCENTRATION (mol)	: 1.0000	1.0000	1.0000	1.0000				
INIT. TEMPERATURE (K)	: 111.70	111.70	111.70	111.70				
SIMULATION DURATION (s)	: 216.07	154.46	121.06	142.29				
AVERAGING TIME (2)	: 3.00	3.00	3.00	3.00				
GASTAR INPUT DATA FOR	: Maplin San	ds						
CHEMICAL RELEASED	: Liquified	Propane Gas						
TRIAL NAME	: KS42	MS43 M	546 N	547 N	549 . X	350 N	S52 M	\$54
CHEMICAL NO.	: 12	5 90	12	5 20	12	7 00	7 40	12
MIND SEED 6 IOM (M/B)	. 0.0030	0.00030	0.0030	0.20	0.000	0.0030	0.0000	0.00000
P-G CTASS	. 0.00030	0.00030	0.00030	0.00030	0.00000	0.00030	0.000.0	0.00030
M-O LENGTH (m)	99.735	9999.000	750.151	294.223	69.596	208.744	224.903	67.837
AIR TEMP. (K)	: 291.50	290.20	291.90	290,60	286.50	283.60	285.00	281.60
ATM. PRESSURE (mb)	: 1013.25	1013.25	1013.25	1013,25	1013.25	1013.25	1013.25	1013.25
SFC. TEMP. (K)	: 291.70	292.10	290.50	290,30	286.20	283.10	285.10	282.60
REL. HUMIDITY (%)	: 80.00	80.00	71.00	78.00	88.00	79.00	63.00	85.00
REL. TYPE: I-INSTANTANEOUS,	C and A-CONT	INUOUS, T=T	ime-Varyino	•	_	_	_	_
BPI TWBP. I_ICOTUPOWS; #_	: C	DOEOT C	e	C	C	C	C	C
REL. TIPE: 1-ISOTHERME, I-	ineman, a-ae	KOSOL +	*	-		•	•	-
INIT. CLOUD DENS. (kg/m^3)	2.318	2.318	2.319	2.314	2.309	2.318	2.315	2.319
PHYSICAL SOURCE WIDHT (m)	: 14.900	14.300	15.700	18,600	13.300	19.500	21.700	14.300
INIT, FLOW RATE (m^3/s)	: 9.0018	8.2815	10.0755	14.0771	7,2355	15.4803	19.1123	8.2796
INIT. CONCENTRATION (mol)	: 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
init. Temperature (K)	: 231.10	231.10	231.10	221 10	231.10	221 10		
SIMULATION DURATION (s)				231.10		431.TO	231.10	231,10
	: 199.50	168.97	149.51	164.52	172.73	150.63	231.10 187.84	231.10 166.76
AVERAGING TIME (s)	: 199.50 : 3.00	168.97 3.00	149.51 3.00	164.52	172.73 3.00	150.63	231.10 187.84 3.00	231.10 166.76 3.60
AVERAGING TIME (8)	: 199.50 : 3.00	168.97 3.00	149.51 3.00	164.52	172.73 3.00	150.63	231.10 187.84 3.00	231.10 166.76 3.00
CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. WIND SPEED & 10M (m/s) SURFACE ROUGHNESS (m) P-G CLASS M-O LENGTH (m) AIR TEMP. (K) ATM. PRESSURE (mb) SFC. TEMP. (K) REL. HUMIDITY (4) REL. TYPE: I-INSTANTANEOUS, REL. TYPE: I-ISOTHERMAL, T- INIT. CLOUD DENS. (kg/m^3) PHYSICAL SOURCE WIDHT (m) INIT. FLOW RATE (m^3/s) INIT. CONCENTRATION (mol) INIT. TEMPERATURE (K) SIMULATION DURATION (s) AVERAGING TIME (s)	: 199.50 : 3.00	168.97	149.51 3.00	164.52 3.00	172.73 3.00	150.63	231.10 187.84 3.00	231.10 166.76 3.00
AVERAGING TIME (S)	: 199.50 : 3.00	168.97	149.51 3.00	164.52 3.00	172.73 3.00	150.63	231.10 187.84 3.00	231.10 166.76 3.00
				164.52 3.00	172.73 3.00	150.63	231.10 187.84 3.00	231.10 166.76 3.00
				164.52	172.73 3.00	150.63	231.10 187,84 3.00	231.10 166.76 3.00
GASTAR INPUT DATA FOR CHEMICAL RELEASED				164.52	172.73 3.00	150.63	231.10 187.84 3.00	231.10 166.76 3.00
	: Prairi : Sulfur : PG7	e Grass, set dioxide PGS P(: 1					231.10 166.76 3.00
GASTAR INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO.	: Prairi : Sulfur : PG7	e Grass, se dioxíde PGS PG	t 1 G9 PC	;10 P	G13 P(;15 P	G16 PC	317 13
GASTAR INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO.	: Prairi : Sulfur : PG7	e Grass, se dioxíde PGS PG	t 1 G9 PC	710 P 13 5,38	G13 P 13 2.74	715 P 13 3,98	G16 P(13 3.75	317 13 4,62
GASTAR INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. WIND SPEED @ 10M (m/s) SURFACE ROUGHNESS (m)	: Prairi : Sulfur : PG7 : 13 : 4.93 : 0.00600	e Grass, set dioxide PGS P(13 5.88 0.00600	59 PC 13 8.38 0.00600	710 P 13 5.38 0.00600	G13 P(13 2.74 0.00600	715 P 13 3.98 0.00600	G16 P(13 3.75 0.00600	217 13 4,62 0,00600
GASTAR INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. WIND SPEED @ 10M (m/s) SURFACE ROUGHNESS (m)	: Prairi : Sulfur : PG7 : 13 : 4.93 : 0.00600	e Grass, set dioxide PGS P(13 5.88 0.00600	59 PC 13 8.38 0.00600	510 P 13 5.38 0.00600 B	G13 P 13 2.74 0.00600 F	315 P 13 3.98 0.00600	G16 PC 13 3.75 0.00600 A	217 13 4,62 0,00600 D
GASTAR INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. WIND SPEED @ 10M (m/s) SURFACE ROUGHNESS (m) P-G CLASS M-O LEMGTH (m)	: Prairi : Sulfur : PG7 : 13 : 4.93 : 0.00600 : -8.178	e Grass, set dioxide PGS P(13 5.88 0.00600 C -20.611	G9 PC 13 8,38 0.00600 C -34,123	510 P 13 5.38 0.00600 B -7.452	G13 PC 13 2.74 0.00600 F 6.014	715 P 13 3.98 0.00600 A -7.736	G16 P(13 3.75 0.00600 A -7.834	317 13 4,62 0,00600 D 49.806
GASTAR INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. WIND SPEED @ 10M (m/s) SURFACE ROUGHNESS (m) P-G CLASS M-O LEMGTH (m)	: Prairi : Sulfur : PG7 : 13 : 4.93 : 0.00600 : -8.178	e Grass, set dioxide PGS P(13 5.88 0.00600 C -20.611	G9 P(13 8,38 0.00600 C -34.123 301.15	710 P 13 5,38 0.00600 B -7,452 304,15	G13 P. 13 2.74 0.00600 F 6.014 293.15	715 P 13 3.98 0.00600 A -7.736 295.15	G16 P(13 3.75 0.00600 A -7.834 301.15	217 13 4.62 0.00600 49.806 300.15
GASTAR INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. WIND SPEED @ 10M (m/s) SURFACE ROUGHNESS (m) P-G CLASS M-O LENGTH (m) AIR TEMP. (K) ATM. PRESSURE (mb)	: Prairi : Sulfur : PG7 : 13 : 4.93 : 0.00600 : 8 : -8.178 : 305.15 : 1013.25	e Grass, set dioxide PGS P(13 5.88 0.00600 C -20.611 305.15 1013.25	G9 P0 13 8.38 0.00600 C -34.123 301.15 1013.25	710 P 13 5.38 0.00600 B -7.452 304.15 1013.25	G13 P(13 2.74 0.00600 F 6.014 293.15 1013.25	715 P 13 3.98 0.00600 A -7.736 295.15 1013.25	G16 P(13 3.75 0.00600 A -7.834 301.15 1013.25	13 4.62 0.00600 D 49.806 300.15 1013.25
GASTAR INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. WIND SPEED @ 10M (m/s) SURFACE ROUGHNESS (m) P-G CLASS M-O LENGTH (m) AIR TEMP. (K) ATM. PRESSURE (mb) SFC. TEMP. (K) REL. HUMIDITY (%)	: Prairi : Sulfur : PG7 : 4.93 : 0.00600 : 8 : -8.178 : 305.15 : 1013.25 : 305.25	e Grass, set dioxide PGS 13 5.88 0.00600 C -20.611 305.15 1013.25 305.15 20.00	39 P(1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	710 P 13 5.38 0.00600 -7.452 304.15 1013.25 304.15 20.00	G13 P. 13 2.74 0.00600 F 6.014 293.15	715 P 13 3.98 0.00600 A -7.736 295.15	G16 P(13 3.75 0.00600 A -7.834 301.15	217 13 4.62 0.00600 49.806 300.15
GASTAR INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. WIND SPEED @ 10M (m/s) SURFACE ROUGHNESS (m) P-G CLASS M-O LENGTH (m) AIR TEMP. (K) ATM. PRESSURE (mb) SFC. TEMP. (K)	: Prairi : Sulfur : PG7 : 4.93 : 0.00600 : 8 : -8.178 : 305.15 : 1013.25 : 305.25	e Grass, set dioxide PGS 13 5.88 0.00600 C -20.611 305.15 1013.25 305.15 20.00	39 P(1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	710 P 13 5.38 0.00600 -7.452 304.15 1013.25 304.15 20.00	G13 P(13 2.74 0.00600 F 6.014 293.15 1013.25 293.15	715 P 13 3.98 0.00600 A -7.736 295.15 1013.25 295.15	G16 P6 13 3.75 0.00600 ~7.834 301.15 1013.25 301.15	13 4.62 0.00600 D 49.806 300.15
GASTAR INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. WIND SPEED @ 10M (m/s) SURFACE ROUGHNESS (m) P-G CLASS M-O LENGTH (m) AIR TEMP. (K) ATM. PRESSURE (mb) SFC. TEMP. (K) REL. HUMIDITY (%) REL. TYPE: I-INSTANTANEOUS,	: Prairi : Sulfur : PG7 : 4.93 : 0.00600 : 8 : -8.178 : 305.15 : 1013.25 : 305.15 : 20.00 C and A-CONT	e Grass, set dioxide PG8 P(39 P(1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	710 P 13 5.38 0.00600 8 -7.452 304.15 1013.25 304.15 20.00	G13 P 2.74 0.00600 F 6.014 293.15 1013.25 293.15 20.00	715 P 13 3.98 0.00600 A -7.736 295.15 1013.25 295.15	G16 P6 13 3.75 0.00600 ~7.834 301.15 1013.25 301.15	13 4.62 0.00600 D 49.806 300.15
GASTAR INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. WIND SPEED @ 10M (m/s) SURFACE ROUGHNESS (m) P-G CLASS M-O LENGTH (m) AIR TEMP. (K) ATM. PRESSURE (mb) SFC. TEMP. (K) REL. HUMIDITY (%)	: Prairi : Sulfur : PG7 : 13 : 4.93 : 0.00600 : 8 : -8.178 : 305.15 : 1013.25 : 305.15 : 20.00 C and A-CONT : CTHERMAL, A-AE	e Grass, set dioxide PG8 P(3 5.88 0.00600 C -20.611 305.15 1013.25 305.15 20.00 INUOUS, T-T.	G9 P(13 8.38 0.00600 C -34.123 301.15 1013.25 301.15 20.00 IME-VARYING	710 P 13 5.38 0.00600 B -7.452 304.15 1013.25 304.15 20.00	G13 PC 13 2.74 0.00600 F 6.014 293.15 1013.25 293.15 20.00	715 P 13 3.98 0.00600 A -7.736 295.15 1013.25 295.15 20.00	G16 P6 13 3.75 0.00600 A-7.834 301.15 1013.25 301.15 20.00	4.62 0.00600 D 49.806 300.15 1013.25 300.15 20.00
GASTAR INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. WIND SPEED @ 10M (m/s) SURFACE ROUGHNESS (m) P-G CLASS M-O LENGTH (m) AIR TEMP. (K) ATM. PRESSURE (mb) SFC. TEMP. (K) REL. HUMIDITY (%) REL. TYPE: I-INSTANTANEOUS, REL. TYPE: I-ISOTHERMAL, T-	: Prairi : Sulfur : PG7 : 13 : 4.93 : 0.00600 : 8 : -8.178 : 305.15 : 1013.25 : 305.15 : 20.00 C and A-CONT : C THERMAL, A-AE	e Grass, set dioxide PGS P. 13 5.88 0.00600 C -20.611 305.15 1013.25 305.15 20.00 INUOUS, T-T. C	G9 20 8.38 0.00600 C -34.123 301.15 1013.25 301.15 20.00 IME-VARYING	710 P 13 5.38 0.00600 B -7.452 304.15 1013.25 304.15 20.00 C	G13 P 2.74 0.00600 F 6.014 293.15 1013.25 293.15 20.00	715 P 13 3.98 0.00600 A -7.736 295.15 1013.25 295.15 20.00	G16 PI 13 3.75 0.00600 A -7.834 301.15 1013.25 301.15 20.00	13 4.62 0.00600 D 49.806 300.15 1013.25 300.15 20.00
GASTAR INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. WIND SPEED @ 10M (m/s) SURFACE ROUGHNESS (m) P-G CLASS M-O LENGTH (m) AIR TEMP. (K) ATM. PRESSURE (mb) SFC. TEMP. (K) REL. HUMIDITY (%) REL. TYPE: I-INSTANTANEOUS, REL. TYPE: I-ISOTHERMAL, T- INIT. CLOUD DENS. (kg/m^3)	: Prairi : Sulfur : PG7 : 4.93 : 0.00600 : 88 : -8.178 : 305.15 : 1013.25 : 20.00 C and A-CONT : C THERMAL, A-AE : 2.558	e Grass, set dioxide PG8 PF 13 5.88 0.00600 C -20.611 305.15 1013.25 305.15 20.00 INUOUS, T-T. CROSOL I 2.558	G9 P(G 13 8.38 0.00600 C -34.13 301.15 1013.25 301.15 C C I 2.592	710 P 13 5.38 0.00600 B -7.452 304.15 1013.25 304.15 20.00 C	G13 P 13 2.74 0.00600 F 6.014 293.15 1013.25 293.15 20.00 C	715 P 13 3.98 0.00600 A -7.73 295.15 1013.25 295.15 20.00 C	G16 P(13 3.75 0.00600 A -7.834 301.15 1013.25 301.15 20.00 C	217 4.62 0.00600 D 49.806 300.15 1013.25 300.15 20.00
GASTAR INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. WIND SPEED @ 10M (m/s) SURFACE ROUGHNESS (m) P-G CLASS M-O LENGTH (m) AIR TEMP. (K) ATM. PRESSURE (mb) SFC. TEMP. (K) REL. HUMIDITY (%) REL. TYPE: I-INSTANTANEOUS, REL. TYPE: I-ISOTHERMAL, T- INIT. CLOUD DENS. (kg/m^3) PHYSICAL SOURCE WIDHT (m)	: Prairi : Sulfur : PG7 : 13 : 4.93 : 0.00600 : 8 : -8.178 : 305.15 : 20.00 C and A=CONT : C THERMAL, A=AE : 2.558 : 0.051	e Grass, set dioxide PG8 PF 13 5.88 0.00600 C -20.611 305.15 1013.25 305.15 20.00 INUOUS, T-T CROSOL 2.558 0.051	G9 P(38.38 0.00600 C -34.123 301.15 1013.25 301.15 20.00 IME-VARYING C	710 P 13 5.38 0.00600 8 -7.452 304.15 1013.25 304.15 20.00 C	G13 P(13 2.74 0.00600 F 6.014 293.15 1013.25 293.15 20.00 C I 2.663 0.051	715 P 13 3.98 0.00600 A -7.736 295.15 1013.25 295.15 20.00 C I 2.645 0.051	G16 P(13 3.75 0.00600 A -7.834 301.15 1013.25 301.15 20.00 C I 2.592 0.051	717 13 4.62 0.00600 D 49.806 300.15 1013.25 300.15 20.00 C
GASTAR INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. WIND SPEED @ 10M (m/s) SURFACE ROUGHNESS (m) P-G CLASS M-O LENGTH (m) AIR TEMP. (K) ATM. FRESSURE (mb) SFC. TEMP. (K) REL. HUMIDITY (%) REL. TYPE: I-INSTANTANEOUS, REL. TYPE: I-ISOTHERMAL, T- INIT. CLOUD DENS. (kg/m^3) PHYSICAL SOURCE WIDHT (m) INIT. FLOW RATE (m^3/s)	: Prairi : Sulfur : PG7 : 13 : 4.93 : 0.00600 : 8 : -8.178 : 305.15 : 1013.25 : 20.00 C and A-CONT : CTHERMAL, A-AE : 1 2.558 : 0.051 : 0.0351	e Grass, set dioxide PG8 P(G9 P(13 8.38 0.00600 C -34.123 301.15 20.00 Z0.00	710 P 13 5.38 0.00600 B -7.452 304.15 1013.25 304.15 20.00 C I 2.566 0.051 0.0359	G13 P(13 2.74 0.00600 F 6.014 293.15 1013.25 293.15 20.00 C I 2.663 0.051 0.0229	715 P 13 3.98 0.00600 A -7.736 295.15 1013.25 295.15 20.00 C 1 2.645 0.051 0.0361	G16 P6 13 3.75 0.00600 A -7.834 301.15 1013.25 301.15 20.00 C I 2.592 0.051 0.0359	317 4.62 0.00600 D 49.806 300.15 1013.25 300.15 20.00 C
GASTAR INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. WIND SPEED @ 10M (m/s) SURFACE ROUGHNESS (m) P-G CLASS M-O LENGTH (m) AIR TEMP. (K) ATM. PRESSURE (mb) SFC. TEMP. (K) REL. HUMIDITY (%) REL. HUMIDITY (%) REL. TYPE: I-INSTANTANEOUS, REL. TYPE: I-ISOTHERMAL, T- INIT. CLOUD DENS. (kg/m^3) PHYSICAL SOURCE WIDHT (m) INIT. FLOW RATE (m^3/*) INIT. CONCENTRATION (mo1)	: Prairi : Sulfur : PG7 : 13 : 4.93 : 0.00600 : 8 : -8.178 : 305.15 : 1013.25 : 20.00 C and A-CONT : C THERMAL, A-AE : 2.558 : 0.051 : 0.0331 : 1.0000	e Grass, set dioxide PGS P. 13 5.88 0.00600 C20.611 305.15 1013.25 305.15 20.00 INUOUS, T-T. C. ROSOL I 2.558 0.051 0.0356 1.0000	G9 20 8.38 0.00600 C -34.123 301.15 1013.25 301.15 20.00 IME-VARYING C	710 P 13 5.38 0.00600 8 -7.452 304.15 1013.25 304.15 20.00 C I 2.566 0.051 0.0359 1.0000	G13 P(13 2.74 0.00600 F 6.014 293.15 1013.25 293.15 20.00 C I 2.663 0.051	715 P 13 3.98 0.00600 A -7.736 295.15 1013.25 295.15 20.00 C I 2.645 0.051	G16 P(13 3.75 0.00600 A -7.834 301.15 1013.25 301.15 20.00 C I 2.592 0.051	717 13 4.62 0.00600 D 49.806 300.15 1013.25 300.15 20.00 C
GASTAR INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. WIND SPEED @ 10M (m/s) SURFACE ROUGHNESS (m) P-G CLASS M-O LENGTH (m) AIR TEMP. (K) ATM. PRESSURE (mb) SFC. TEMP. (K) REL. HUMIDITY (%) REL. TYPE: I-INSTANTANEOUS, REL. TYPE: I-ISOTHERMAL, T- INIT. CLOUD DENS. (kg/m^3) PHYSICAL SOURCE WIDHT (m) INIT. FLOW RATE (m^3/s) INIT. CONCENTRATION (mol) SIMULATION DURATION (8)	: Prairi : Sulfur : PG7 : 13 : 4.93 : 0.00600 : 8 : -8.178 : 305.15 : 1013.25 : 20.00 C and A-CONT : C THERMAL, A-AE : 2.558 : 0.051 : 0.0331 : 1.0000	e Grass, set dioxide PG8 P(G9 P(13 8.38 0.00600 C -34.123 301.15 20.00 Z0.00	710 P 13 5.38 0.00600 B -7.452 304.15 1013.25 304.15 20.00 C I 2.566 0.051 0.0359	G13 P 13 2.74 0.00600 6.014 293.15 1013.25 293.15 20.00 C I 2.663 0.051 0.0229 1.0000	715 P 13 3.98 0.00600 A -7.736 295.15 1013.25 295.15 20.00 C	G16 P(13 3.75 0.00600 A -7.834 301.15 1013.25 301.15 20.00 C I 2.592 0.051 0.0359 1.0000 350.00	13 4.62 0.00600 D 49.806 300.15 1013.25 300.15 20.00 C

CREMICAL RELEASED : Hydrogan fluorids TRIAL NAME : GT1	GASTAR INPUT DATA FOR CHEMICAL RELEASED	: Goldfi:	sh an fluoride	•			
REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-ARROSOL INIT. CLOUT DENS. (kg/m-3)	TRIAL NAME	: GF1 (SF2	GF3			
REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-ARROSOL INIT. CLOUT DENS. (kg/m-3)	CHEMICAL NO.	: 14	14	14			
REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-ARROSOL INIT. CLOUT DENS. (kg/m-3)	WIND SPEED @ 10M (m/#)	7.30	5.38	7.47			
REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-ARROSOL INIT. CLOUT DENS. (kg/m-3)	SURFACE ROUGHNESS (M)	: 0.00300	0.00300	0.00300			
REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-ARROSOL INIT. CLOUT DENS. (kg/m-3)	M-O LENGTH (m)	101.293	173.142	40.927			
REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-ARROSOL INIT. CLOUT DENS. (kg/m-3)	AIR TEMP. (K)	: 310.40	309.38	307.61			
REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-ARROSOL INIT. CLOUT DENS. (kg/m-3)	ATM. PRESSURE (mb)	: 904.83	900.78	905.85			
REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-ARROSOL INIT. CLOUT DENS. (kg/m-3)	SFC. TEMP. (K)	: 310.40	309.38	307.61			
REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-ARROSOL INIT. CLOUT DENS. (kg/m-3)	REL. HUMIDITI (%)	: 4.90 C and A-COUT!	ייים זוייים ייים אונטוניו	I/,/U TTWE_UADVIN	ic.		
CASTAR INPUT DATA FOR : Hanford (continuous) CHEMICAL RELEASED : Krypton=85 TRIAL NAME : HC1 HC2 HC3 HC4 HC5 CHEMICAL NO. : 5 5 5 5 5 5 5 MIND SPEED & 10M (m/s) : 3.40 5.60 10.31 5.36 4.22 SUBFACE ROUGENESS (m) : 0.03000 0.03000 0.03000 0.03000 0.03000 P-G CLASS : F C C C C C C C C C C C C C C C C C C	REG. 11FE: 1-1851ARIAREOUS;	: C	C	C			
CASTAR INPUT DATA FOR : Hanford (continuous) CHEMICAL RELEASED : Krypton=85 TRIAL NAME : HC1 HC2 HC3 HC4 HC5 CHEMICAL NO. : 5 5 5 5 5 5 5 MIND SPEED & 10M (m/s) : 3.40 5.60 10.31 5.36 4.22 SUBFACE ROUGENESS (m) : 0.03000 0.03000 0.03000 0.03000 0.03000 P-G CLASS : F C C C C C C C C C C C C C C C C C C	REL. TYPE: I-ISOTHERMAL, T-T	HERMAL, A-AEF	ROSOL	_			
CASTAR INPUT DATA FOR : Hanford (continuous) CHEMICAL RELEASED : Krypton=85 TRIAL NAME : HC1 HC2 HC3 HC4 HC5 CHEMICAL NO. : 5 5 5 5 5 5 5 MIND SPEED & 10M (m/s) : 3.40 5.60 10.31 5.36 4.22 SUBFACE ROUGENESS (m) : 0.03000 0.03000 0.03000 0.03000 0.03000 P-G CLASS : F C C C C C C C C C C C C C C C C C C		: A	λ	A.			
CASTAR INPUT DATA FOR : Hanford (continuous) CHEMICAL RELEASED : Krypton=85 TRIAL NAME : HC1 HC2 HC3 HC4 HC5 CHEMICAL NO. : 5 5 5 5 5 5 5 MIND SPEED & 10M (m/s) : 3.40 5.60 10.31 5.36 4.22 SUBFACE ROUGENESS (m) : 0.03000 0.03000 0.03000 0.03000 0.03000 P-G CLASS : F C C C C C C C C C C C C C C C C C C	INIT. CLOUP DENS. (kg/m^3)	4.683	5.065	4.900			
CASTAR INPUT DATA FOR : Hanford (continuous) CHEMICAL RELEASED : Krypton=85 TRIAL NAME : HC1 HC2 HC3 HC4 HC5 CHEMICAL NO. : 5 5 5 5 5 5 5 MIND SPEED & 10M (m/s) : 3.40 5.60 10.31 5.36 4.22 SUBFACE ROUGENESS (m) : 0.03000 0.03000 0.03000 0.03000 0.03000 P-G CLASS : F C C C C C C C C C C C C C C C C C C	INIT FIRM DATE (meg(m)	. 5 9087	2 0653	2.0957			
CASTAR INPUT DATA FOR : Hanford (continuous) CHEMICAL RELEASED : Krypton=85 TRIAL NAME : HC1 HC2 HC3 HC4 HC5 CHEMICAL NO. : 5 5 5 5 5 5 5 MIND SPEED & 10M (m/s) : 3.40 5.60 10.31 5.36 4.22 SUBFACE ROUGENESS (m) : 0.03000 0.03000 0.03000 0.03000 0.03000 P-G CLASS : F C C C C C C C C C C C C C C C C C C	INIT_ CONCENTRATION (mol)	1.0000	1.0000	1.0000			
CASTAR INPUT DATA FOR : Hanford (continuous) CHEMICAL RELEASED : Krypton=85 TRIAL NAME : HC1 HC2 HC3 HC4 HC5 CHEMICAL NO. : 5 5 5 5 5 5 5 MIND SPEED & 10M (m/s) : 3.40 5.60 10.31 5.36 4.22 SUBFACE ROUGENESS (m) : 0.03000 0.03000 0.03000 0.03000 0.03000 P-G CLASS : F C C C C C C C C C C C C C C C C C C	INIT. TEMPERATURE (K)	: 289.58	289.46	289.61			
CASTAR INPUT DATA FOR : Hanford (continuous) CHEMICAL RELEASED : Krypton=85 TRIAL NAME : HC1 HC2 HC3 HC4 HC5 CHEMICAL NO. : 5 5 5 5 5 5 5 MIND SPEED & 10M (m/s) : 3.40 5.60 10.31 5.36 4.22 SUBFACE ROUGENESS (m) : 0.03000 0.03000 0.03000 0.03000 0.03000 P-G CLASS : F C C C C C C C C C C C C C C C C C C	INIT. AEROSOL FRACTION	: 0.840	0.853	0.847			
CASTAR INPUT DATA FOR : Hanford (continuous) CHEMICAL RELEASED : Krypton=85 TRIAL NAME : HC1 HC2 HC3 HC4 HC5 CHEMICAL NO. : 5 5 5 5 5 5 5 MIND SPEED & 10M (m/s) : 3.40 5.60 10.31 5.36 4.22 SUBFACE ROUGENESS (m) : 0.03000 0.03000 0.03000 0.03000 0.03000 P-G CLASS : F C C C C C C C C C C C C C C C C C C	SIMULATION DURATION (s)	: 635.71	338.10	655.56			
CASTAR INPUT DATA FOR : Hanford (continuous) CHEMICAL RELEASED : Krypton=85 TRIAL NAME : HC1 HC2 HC3 HC4 HC5 CHEMICAL NO. : 5 5 5 5 5 5 5 MIND SPEED & 10M (m/s) : 3.40 5.60 10.31 5.36 4.22 SUBFACE ROUGENESS (m) : 0.03000 0.03000 0.03000 0.03000 0.03000 P-G CLASS : F C C C C C C C C C C C C C C C C C C	AVERAGING TIME (s)	: 66.30	88.30	68.30			
TRIAL NAME CHEMICAL NO. CHEM							
TRIAL NAME CHEMICAL NO. CHEM	-						
TRIAL NAME CHEMICAL NO. CHEM	GASTAR INPUT DATA FOR CHEMICAL RELEASED	: Hanford : Krypton	l (continue 1-85	ous)			
REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL I I I I I I I I I I I I I I I I I I I	TRIAL NAME	: HCl H	iC2	HC3 H	IC4 H	C5	
REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL I I I I I I I I I I I I I I I I I I I	CHEMICAL NO.	: 5	5	5	5	5	
REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL I I I I I I I I I I I I I I I I I I I	WIND SPEED # 10M (m/a)	3.40	5.60	10.31	5.36	4.22	
REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL I I I I I I I I I I I I I I I I I I I	SURFACE ROUGHNESS (m)	: 0.03000	0.03000	0.03000	0.03000	0.03000	
REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL I I I I I I I I I I I I I I I I I I I	P-G CLASS	: F	С	c	C	E	
REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL I I I I I I I I I I I I I I I I I I I	M-U LENGTH (M)	. 9.5/5	-111.825	-156.121	-20.003	70.243	
REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL I I I I I I I I I I I I I I I I I I I	ATM. PRESSURE (mb)	1013.25	1013.25	1013.25	1013.25	1013.25	
REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL I I I I I I I I I I I I I I I I I I I	SFC. TEMP. (K)	290.87	285.43	288.93	286.65	278.82	
REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL I I I I I I I I I I I I I I I I I I I	REL. HUMIDITY (%)	20.00	20.00	20.00	20.00	20.00	
GASTAR INPUT DATA FOR : Hanford (instantaneous) CHEMICAL RELEASED : Rrypton-85 TRIAL NAME : HI2 HI3 HI5 HI6 HI7 HI8 CHEMICAL NO. : 5 5 5 5 5 5 5 WIMD SPEED @ 10M (m/s) : 3.62 5.99 11.06 10.42 6.37 2.92 SURFACE ROUGHNESS (m) : 0.03000 0.03000 0.03000 0.03000 0.03000 P-G CLASS : F D C C C E M-O LENGTH (m) : 5.742 -262.928 -216.547 -155.306 -63.594 27.267 AIR TEMP. (K) : 291.54 285.09 288.71 288.26 285.59 277.76 ATM. PRESSURE (mb) : 1013.25 1013.25 1013.25 1013.25 1013.25 SFC. TEMP. (K) : 291.54 285.09 288.71 288.26 285.59 277.76 REL. HUMIDITY (4) : 20.00 26.00 20.00 20.00 20.00 20.00 REL. TYPE: I-INSTANTANEOUS, C and A-CONTINUOUS, T-TIME-VARYING REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL INIT. CLOUD DENS. (kg/m^3) : 1.213 1.241 1.225 1.27 1.238 1.273 INIT. CLOUD RAD. (m) : 1.3792 1.3690 1.3748 1.3740 1.3698 1.3572 INIT. CLOUD VOL. (m^3) : 8.243 8.060 8.163 8.150 8.074 7.853 INIT. CONCENTRATION (mol) : 1.0000 1.0000 1.0000 1.0000 1.0000	REL. TYPE: I-INSTANTANEOUS,	C and A-CONTI	NUOUS, T=1	rime-Varyin	G		
GASTAR INPUT DATA FOR : Hanford (instantaneous) CHEMICAL RELEASED : Rrypton-85 TRIAL NAME : HI2 HI3 HI5 HI6 HI7 HI8 CHEMICAL NO. : 5 5 5 5 5 5 5 WIMD SPEED @ 10M (m/s) : 3.62 5.99 11.06 10.42 6.37 2.92 SURFACE ROUGHNESS (m) : 0.03000 0.03000 0.03000 0.03000 0.03000 P-G CLASS : F D C C C E M-O LENGTH (m) : 5.742 -262.928 -216.547 -155.306 -63.594 27.267 AIR TEMP. (K) : 291.54 285.09 288.71 288.26 285.59 277.76 ATM. PRESSURE (mb) : 1013.25 1013.25 1013.25 1013.25 1013.25 SFC. TEMP. (K) : 291.54 285.09 288.71 288.26 285.59 277.76 REL. HUMIDITY (4) : 20.00 26.00 20.00 20.00 20.00 20.00 REL. TYPE: I-INSTANTANEOUS, C and A-CONTINUOUS, T-TIME-VARYING REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL INIT. CLOUD DENS. (kg/m^3) : 1.213 1.241 1.225 1.27 1.238 1.273 INIT. CLOUD RAD. (m) : 1.3792 1.3690 1.3748 1.3740 1.3698 1.3572 INIT. CLOUD VOL. (m^3) : 8.243 8.060 8.163 8.150 8.074 7.853 INIT. CONCENTRATION (mol) : 1.0000 1.0000 1.0000 1.0000 1.0000	DET. TYPE: I=TENTUEDMET. T=T	: C Wegnat amaed	Ç HOSOT	С	С	С	
GASTAR INPUT DATA FOR : Hanford (instantaneous) CHEMICAL RELEASED : Rrypton-85 TRIAL NAME : HI2 HI3 HI5 HI6 HI7 HI8 CHEMICAL NO. : 5 5 5 5 5 5 5 WIMD SPEED @ 10M (m/s) : 3.62 5.99 11.06 10.42 6.37 2.92 SURFACE ROUGHNESS (m) : 0.03000 0.03000 0.03000 0.03000 0.03000 P-G CLASS : F D C C C E M-O LENGTH (m) : 5.742 -262.928 -216.547 -155.306 -63.594 27.267 AIR TEMP. (K) : 291.54 285.09 288.71 288.26 285.59 277.76 ATM. PRESSURE (mb) : 1013.25 1013.25 1013.25 1013.25 1013.25 SFC. TEMP. (K) : 291.54 285.09 288.71 288.26 285.59 277.76 REL. HUMIDITY (4) : 20.00 26.00 20.00 20.00 20.00 20.00 REL. TYPE: I-INSTANTANEOUS, C and A-CONTINUOUS, T-TIME-VARYING REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL INIT. CLOUD DENS. (kg/m^3) : 1.213 1.241 1.225 1.27 1.238 1.273 INIT. CLOUD RAD. (m) : 1.3792 1.3690 1.3748 1.3740 1.3698 1.3572 INIT. CLOUD VOL. (m^3) : 8.243 8.060 8.163 8.150 8.074 7.853 INIT. CONCENTRATION (mol) : 1.0000 1.0000 1.0000 1.0000 1.0000	RED. 11FE: 1-130INERPRI, 1-1	nemmu, n-nem : I	USUL I	1	r	ī	
GASTAR INPUT DATA FOR : Hanford (instantaneous) CHEMICAL RELEASED : Rrypton-85 TRIAL NAME : HI2 HI3 HI5 HI6 HI7 HI8 CHEMICAL NO. : 5 5 5 5 5 5 5 WIMD SPEED @ 10M (m/s) : 3.62 5.99 11.06 10.42 6.37 2.92 SURFACE ROUGHNESS (m) : 0.03000 0.03000 0.03000 0.03000 0.03000 P-G CLASS : F D C C C E M-O LENGTH (m) : 5.742 -262.928 -216.547 -155.306 -63.594 27.267 AIR TEMP. (K) : 291.54 285.09 288.71 288.26 285.59 277.76 ATM. PRESSURE (mb) : 1013.25 1013.25 1013.25 1013.25 1013.25 SFC. TEMP. (K) : 291.54 285.09 288.71 288.26 285.59 277.76 REL. HUMIDITY (4) : 20.00 26.00 20.00 20.00 20.00 20.00 REL. TYPE: I-INSTANTANEOUS, C and A-CONTINUOUS, T-TIME-VARYING REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL INIT. CLOUD DENS. (kg/m^3) : 1.213 1.241 1.225 1.27 1.238 1.273 INIT. CLOUD RAD. (m) : 1.3792 1.3690 1.3748 1.3740 1.3698 1.3572 INIT. CLOUD VOL. (m^3) : 8.243 8.060 8.163 8.150 8.074 7.853 INIT. CONCENTRATION (mol) : 1.0000 1.0000 1.0000 1.0000 1.0000	INIT. CLOUD DENS. (kg/m^3)	1.216	1.239	1.224	1.234	1.269	
GASTAR INPUT DATA FOR : Hanford (instantaneous) CHEMICAL RELEASED : Rrypton-85 TRIAL NAME : HI2 HI3 HI5 HI6 HI7 HI8 CHEMICAL NO. : 5 5 5 5 5 5 5 WIMD SPEED @ 10M (m/s) : 3.62 5.99 11.06 10.42 6.37 2.92 SURFACE ROUGHNESS (m) : 0.03000 0.03000 0.03000 0.03000 0.03000 P-G CLASS : F D C C C E M-O LENGTH (m) : 5.742 -262.928 -216.547 -155.306 -63.594 27.267 AIR TEMP. (K) : 291.54 285.09 288.71 288.26 285.59 277.76 ATM. PRESSURE (mb) : 1013.25 1013.25 1013.25 1013.25 1013.25 SFC. TEMP. (K) : 291.54 285.09 288.71 288.26 285.59 277.76 REL. HUMIDITY (4) : 20.00 26.00 20.00 20.00 20.00 20.00 REL. TYPE: I-INSTANTANEOUS, C and A-CONTINUOUS, T-TIME-VARYING REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL INIT. CLOUD DENS. (kg/m^3) : 1.213 1.241 1.225 1.27 1.238 1.273 INIT. CLOUD RAD. (m) : 1.3792 1.3690 1.3748 1.3740 1.3698 1.3572 INIT. CLOUD VOL. (m^3) : 8.243 8.060 8.163 8.150 8.074 7.853 INIT. CONCENTRATION (mol) : 1.0000 1.0000 1.0000 1.0000 1.0000	PHYSICAL SOURCE WIDHT (m)	0.106	0.059	0.067	0,106	0.086	
GASTAR INPUT DATA FOR : Hanford (instantaneous) CHEMICAL RELEASED : Rrypton-85 TRIAL NAME : HI2 HI3 HI5 HI6 HI7 HI8 CHEMICAL NO. : 5 5 5 5 5 5 5 WIMD SPEED @ 10M (m/s) : 3.62 5.99 11.06 10.42 6.37 2.92 SURFACE ROUGHNESS (m) : 0.03000 0.03000 0.03000 0.03000 0.03000 P-G CLASS : F D C C C E M-O LENGTH (m) : 5.742 -262.928 -216.547 -155.306 -63.594 27.267 AIR TEMP. (K) : 291.54 285.09 288.71 288.26 285.59 277.76 ATM. PRESSURE (mb) : 1013.25 1013.25 1013.25 1013.25 1013.25 SFC. TEMP. (K) : 291.54 285.09 288.71 288.26 285.59 277.76 REL. HUMIDITY (4) : 20.00 26.00 20.00 20.00 20.00 20.00 REL. TYPE: I-INSTANTANEOUS, C and A-CONTINUOUS, T-TIME-VARYING REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL INIT. CLOUD DENS. (kg/m^3) : 1.213 1.241 1.225 1.27 1.238 1.273 INIT. CLOUD RAD. (m) : 1.3792 1.3690 1.3748 1.3740 1.3698 1.3572 INIT. CLOUD VOL. (m^3) : 8.243 8.060 8.163 8.150 8.074 7.853 INIT. CONCENTRATION (mol) : 1.0000 1.0000 1.0000 1.0000 1.0000	INIT. FLOW RATE (m^3/s)	. 0.0096	0.0097	0.0227	0.0314	0.0135	
GASTAR INPUT DATA FOR : Hanford (instantaneous) CHEMICAL RELEASED : Rrypton-85 TRIAL NAME : HI2 HI3 HI5 HI6 HI7 HI8 CHEMICAL NO. : 5 5 5 5 5 5 5 WIMD SPEED @ 10M (m/s) : 3.62 5.99 11.06 10.42 6.37 2.92 SURFACE ROUGHNESS (m) : 0.03000 0.03000 0.03000 0.03000 0.03000 P-G CLASS : F D C C C E M-O LENGTH (m) : 5.742 -262.928 -216.547 -155.306 -63.594 27.267 AIR TEMP. (K) : 291.54 285.09 288.71 288.26 285.59 277.76 ATM. PRESSURE (mb) : 1013.25 1013.25 1013.25 1013.25 1013.25 SFC. TEMP. (K) : 291.54 285.09 288.71 288.26 285.59 277.76 REL. HUMIDITY (4) : 20.00 26.00 20.00 20.00 20.00 20.00 REL. TYPE: I-INSTANTANEOUS, C and A-CONTINUOUS, T-TIME-VARYING REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL INIT. CLOUD DENS. (kg/m^3) : 1.213 1.241 1.225 1.27 1.238 1.273 INIT. CLOUD RAD. (m) : 1.3792 1.3690 1.3748 1.3740 1.3698 1.3572 INIT. CLOUD VOL. (m^3) : 8.243 8.060 8.163 8.150 8.074 7.853 INIT. CONCENTRATION (mol) : 1.0000 1.0000 1.0000 1.0000 1.0000	INIT. CONCENTRATION (mol)	: 1.0000	1.0000	1,0000	1.0000	1.0000	
GASTAR INPUT DATA FOR : Hanford (instantaneous) CHEMICAL RELEASED : Rrypton-85 TRIAL NAME : HI2 HI3 HI5 HI6 HI7 HI8 CHEMICAL NO. : 5 5 5 5 5 5 5 WIMD SPEED @ 10M (m/s) : 3.62 5.99 11.06 10.42 6.37 2.92 SURFACE ROUGHNESS (m) : 0.03000 0.03000 0.03000 0.03000 0.03000 P-G CLASS : F D C C C E M-O LENGTH (m) : 5.742 -262.928 -216.547 -155.306 -63.594 27.267 AIR TEMP. (K) : 291.54 285.09 288.71 288.26 285.59 277.76 ATM. PRESSURE (mb) : 1013.25 1013.25 1013.25 1013.25 1013.25 SFC. TEMP. (K) : 291.54 285.09 288.71 288.26 285.59 277.76 REL. HUMIDITY (4) : 20.00 26.00 20.00 20.00 20.00 20.00 REL. TYPE: I-INSTANTANEOUS, C and A-CONTINUOUS, T-TIME-VARYING REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL INIT. CLOUD DENS. (kg/m^3) : 1.213 1.241 1.225 1.27 1.238 1.273 INIT. CLOUD RAD. (m) : 1.3792 1.3690 1.3748 1.3740 1.3698 1.3572 INIT. CLOUD VOL. (m^3) : 8.243 8.060 8.163 8.150 8.074 7.853 INIT. CONCENTRATION (mol) : 1.0000 1.0000 1.0000 1.0000 1.0000	SIMULATION DURATION (s)	: 715.38	305.13	212.68	305.13	407.69	
GASTAR INPUT DATA FOR : Hanford (instantaneous) CHEMICAL RELEASED : Rrypton-85 TRIAL NAME : HI2 HI3 HI5 HI6 HI7 HI8 CHEMICAL NO. : 5 5 5 5 5 5 5 WIMD SPEED @ 10M (m/s) : 3.62 5.99 11.06 10.42 6.37 2.92 SURFACE ROUGHNESS (m) : 0.03000 0.03000 0.03000 0.03000 0.03000 P-G CLASS : F D C C C E M-O LENGTH (m) : 5.742 -262.928 -216.547 -155.306 -63.594 27.267 AIR TEMP. (K) : 291.54 285.09 288.71 288.26 285.59 277.76 ATM. PRESSURE (mb) : 1013.25 1013.25 1013.25 1013.25 1013.25 SFC. TEMP. (K) : 291.54 285.09 288.71 288.26 285.59 277.76 REL. HUMIDITY (4) : 20.00 26.00 20.00 20.00 20.00 20.00 REL. TYPE: I-INSTANTANEOUS, C and A-CONTINUOUS, T-TIME-VARYING REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL INIT. CLOUD DENS. (kg/m^3) : 1.213 1.241 1.225 1.27 1.238 1.273 INIT. CLOUD RAD. (m) : 1.3792 1.3690 1.3748 1.3740 1.3698 1.3572 INIT. CLOUD VOL. (m^3) : 8.243 8.060 8.163 8.150 8.074 7.853 INIT. CONCENTRATION (mol) : 1.0000 1.0000 1.0000 1.0000 1.0000	AVERAGING TIME (8)	: 460.80	844.80	268.80	265.80	537.60	
TRIAL NAME : HI2 HI3 HI5 HI6 HI7 HI8 CHEMICAL NO. : 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5							
TRIAL NAME : HI2 HI3 HI5 HI6 HI7 HI8 CHEMICAL NO. : 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	GASTAR INPUT DATA FOR	: Hanford	(instanta	rueone)			
TRIAL NAME : HI2 HI3 HI5 HI6 HI7 HI8 CHEMICAL NO. : 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	CHEMICAL RELEASED	: Krypton	1-85				
WIMD SPEED 6 10M (m/s) : 3.62 5.99 11.06 10.42 6.37 2.92 SURFACE ROUGHNESS (m) : 0.03000 0.03000 0.03000 0.03000 0.03000 0.03000 P-G CLASS : F D C C C E M-O LENGTH (m) : 5.742 -262.928 -216.547 -155.306 -63.594 27.267 AIR TEMP. (K) : 291.54 285.09 288.71 288.26 285.59 277.76 ATM. PRESSURE (mb) : 1013.25 1013.25 1013.25 1013.25 1013.25 1013.25 SFC. TEMP. (K) : 291.54 285.09 288.71 288.26 285.59 277.76 REL. HUMIDITY (4) : 20.00 26.00 20.00 20.00 20.00 20.00 20.00 REL. TYPE: I-INSTANTANEOUS, C and A-CONTINUOUS, T-TIME-VARYING : I I I I I I I I I I I I I I I I I I					** "	77 0	
WIMD SPEED 6 10M (m/s) : 3.62 5.99 11.06 10.42 6.37 2.92 SURFACE ROUGHNESS (m) : 0.03000 0.03000 0.03000 0.03000 0.03000 0.03000 P-G CLASS : F D C C C E M-O LENGTH (m) : 5.742 -262.928 -216.547 -155.306 -63.594 27.267 AIR TEMP. (K) : 291.54 285.09 288.71 288.26 285.59 277.76 ATM. PRESSURE (mb) : 1013.25 1013.25 1013.25 1013.25 1013.25 1013.25 SFC. TEMP. (K) : 291.54 285.09 288.71 288.26 285.59 277.76 REL. HUMIDITY (4) : 20.00 26.00 20.00 20.00 20.00 20.00 20.00 REL. TYPE: I-INSTANTANEOUS, C and A-CONTINUOUS, T-TIME-VARYING : I I I I I I I I I I I I I I I I I I	CHEMICAL NO.	. mag . 1	ا حد		- H		5
H-O LENGTH (M) : 5.742 -262.928 -216.54 -155.306 -43.594 27.267 AIR TEMP. (K) : 291.54 285.09 288.71 288.26 285.59 277.76 ATM. PRESSURE (mb) : 1013.25 1013.25 1013.25 1013.25 1013.25 1013.25 SFC. TEMP. (K) : 291.54 285.09 288.71 288.26 285.59 277.76 REL. HUMIDITY (%) : 20.00 20.00 20.00 20.00 20.00 20.00 REL. TYPE: I-INSTANTANEOUS, C and A-CONTINUOUS, T-TIME-VARYING : I I I I I I REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL : I I I I I I I INIT. CLOUD DEMS. (kg/m^3) : 1.213 1.241 1.225 1.227 1.238 1.273 INIT. CLOUD VOL. (m^3) : 1.3792 1.3690 1.3748 1.3740 1.3698 1.3572 INIT. CONCENTRATION (mol) : 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	WIND SPEED # 10M (m/s)	3.62	5.99	11.06	10.42	6.37	2.92
H-O LENGTH (M) : 5.742 -262.928 -216.54 -155.306 -43.594 27.267 AIR TEMP. (K) : 291.54 285.09 288.71 288.26 285.59 277.76 ATM. PRESSURE (mb) : 1013.25 1013.25 1013.25 1013.25 1013.25 1013.25 SFC. TEMP. (K) : 291.54 285.09 288.71 288.26 285.59 277.76 REL. HUMIDITY (%) : 20.00 20.00 20.00 20.00 20.00 20.00 REL. TYPE: I-INSTANTANEOUS, C and A-CONTINUOUS, T-TIME-VARYING : I I I I I I REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL : I I I I I I I INIT. CLOUD DEMS. (kg/m^3) : 1.213 1.241 1.225 1.227 1.238 1.273 INIT. CLOUD VOL. (m^3) : 1.3792 1.3690 1.3748 1.3740 1.3698 1.3572 INIT. CONCENTRATION (mol) : 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	SURFACE ROUGHNESS (m)	: 0.03000	0.03000	0.03000	0.03000	0.03000	0.03000
H-O LENGTH (M) : 5.742 -262.928 -216.54 -155.306 -43.594 27.267 AIR TEMP. (K) : 291.54 285.09 288.71 288.26 285.59 277.76 ATM. PRESSURE (mb) : 1013.25 1013.25 1013.25 1013.25 1013.25 1013.25 SFC. TEMP. (K) : 291.54 285.09 288.71 288.26 285.59 277.76 REL. HUMIDITY (%) : 20.00 20.00 20.00 20.00 20.00 20.00 REL. TYPE: I-INSTANTANEOUS, C and A-CONTINUOUS, T-TIME-VARYING : I I I I I I REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL : I I I I I I I INIT. CLOUD DEMS. (kg/m^3) : 1.213 1.241 1.225 1.227 1.238 1.273 INIT. CLOUD VOL. (m^3) : 1.3792 1.3690 1.3748 1.3740 1.3698 1.3572 INIT. CONCENTRATION (mol) : 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	P-G CLASS	: F	D	С	c	c	E
REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL INIT. CLOUD DEMS. (kg/m^3): 1.213 1.241 1.225 1.227 1.238 1.273 INIT. CLOUD RAD. (m): 1.3792 1.3690 1.3748 1.3740 1.3698 1.3572 INIT. CLOUD VOL. (m^3): 8.243 8.060 8.163 8.150 8.074 7.853 INIT. CONCENTRATION (mol): 1.0000 1.0000 1.0000 1.0000 1.0000 INITE MOMENTUM MIXING, A. METIL MIXED, B. OTUPRHISE	H-O LENGTH (m)	5.742	-262,928	-216.547	-155.306	-63.594	27.267
REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL INIT. CLOUD DEMS. (kg/m^3): 1.213 1.241 1.225 1.227 1.238 1.273 INIT. CLOUD RAD. (m): 1.3792 1.3690 1.3748 1.3740 1.3698 1.3572 INIT. CLOUD VOL. (m^3): 8.243 8.060 8.163 8.150 8.074 7.853 INIT. CONCENTRATION (mol): 1.0000 1.0000 1.0000 1.0000 1.0000 INITE MOMENTUM MIXING, A. METIL MIXED, B. OTUPRHISE	AIR TEMP. (K)	291.54	285.09	288.71	288.26	285.59	277.76
REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL INIT. CLOUD DEMS. (kg/m^3): 1.213 1.241 1.225 1.227 1.238 1.273 INIT. CLOUD RAD. (m): 1.3792 1.3690 1.3748 1.3740 1.3698 1.3572 INIT. CLOUD VOL. (m^3): 8.243 8.060 8.163 8.150 8.074 7.853 INIT. CONCENTRATION (mol): 1.0000 1.0000 1.0000 1.0000 1.0000 INITE MOMENTUM MIXING, A. METIL MIXED, B. OTUPRHISE	ALM, PRESSURE (MD)	1013.25	1013.25	1013.25	1013.25	1013,25 206 60	1013.23 277 74
REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL INIT. CLOUD DEMS. (kg/m^3): 1.213 1.241 1.225 1.227 1.238 1.273 INIT. CLOUD RAD. (m): 1.3792 1.3690 1.3748 1.3740 1.3698 1.3572 INIT. CLOUD VOL. (m^3): 8.243 8.060 8.163 8.150 8.074 7.853 INIT. CONCENTRATION (mol): 1.0000 1.0000 1.0000 1.0000 1.0000 INITE MOMENTUM MIXING, A. METIL MIXED, B. OTUPRHISE	REL. HUMIDITY (4)	. 271.34	20.00	20.00	20.00	20.00	20.00
REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL INIT. CLOUD DEMS. (kg/m^3): 1.213 1.241 1.225 1.227 1.238 1.273 INIT. CLOUD RAD. (m): 1.3792 1.3690 1.3748 1.3740 1.3698 1.3572 INIT. CLOUD VOL. (m^3): 8.243 8.060 8.163 8.150 8.074 7.853 INIT. CONCENTRATION (mol): 1.0000 1.0000 1.0000 1.0000 1.0000 INITE MOMENTUM MIXING, A. METIL MIXED, B. OTUPRHISE	REL. TYPE: I-INSTANTANEOUS.	C and A-CONTI	NUOUS, T-1	TIME-VARYIN	G	-4.00	
: I I I I I I I I I I I I I I I I I I I		• •	•	•	•	•	•
		: I	I	I	I	I	ı
	INIT. CLOUD DENS. (kg/m^3)	: 1.213	1.241	1.225	1.227	1.238	1.273
	INIT. CLOUD RAD. (m)	1.3792	1.3690	1.3746	1.3740	1.3698	1.3572
	INIT, CLOUD VOL. (M-3)	8.243	8.060	8.163	9.150	8.074	1 0000
SIMULATION DURATION (s) : 715.38 295.12 205.26 211.11 277.78 600.00	anasa community: Clanady, Ai HE	B	B	В	3	В	В
	SIMULATION DURATION (s)	715.38	295.12	205.26	211.11	277.78	600.00

GASTAR INPUT DATA FOR	:	Thorney	Island (ontinuous)						
CHEMICAL RELEASED	:	Mixture	of Freen-	-12 and Nit	rogen	•				
TRIAL NAME CHEMICAL NO. WIND SPEED # 10M (m/s) SURFACE ROUGHNESS (m) P-G CLASS M-O LENGTH (m) AIR TEMP. (K) ATM. PRESSURE (mb) SFC. TEMP. (K) REL. HUMIDITY (*)		TC45 7	C47							
CHEMICAL NO	•	1043	26					•		
WIND EDEED & LOW (-/-)	•	2 20	1.50							
MIND SLEED & TOW (M/S)	•	0.01000	0.01000							
SORFACE KOUGHNESS (M)	•	0.01000	0.01000 F							
P-G CLASS	•	21 620	10.835							
M-U LENGTH (E)	•	21.070	10.833							
AIR TEMP. (R)	:	286.23	287.45							
ATM. PRESSURE (MD)	:	1013.25	1013.25							
SEC. TEMP. (K)	:	285.95	287.65							
REL. HUMIDITY (%)	:	100.00	97.40							
WED' TILE: I THOTWHINNERAR'	•	THE W-CORT	MOOO3, 1-1	TIME-VARYIN	G					
		c	С							
REL. TYPE: I-ISOTHERMAL, T-	THE									
	:	I	I							
INIT. CLOUD DENS. (kg/m^3)	:	2.463	2.452							
PHYSICAL SOURCE WIDHT (m)	:	2.000	2.000							
INIT. FLOW RATE (m^3/s)	:	4.3326	4.1673							
INIT. CONCENTRATION (mol)	:	1.0000	1.0000							
PHYSICAL SOURCE WIDHT (m) INIT. FLOW RATE (m^3/s) INIT. CONCENTRATION (mol) SIMULATION DURATION (s) AVERAGING TIME (s)	:	305.22	414.67							
AVERAGING TIME (m)	:	30.00	30.00							
GASTAR INPUT DATA FOR CHEMICAL RELEASED	:	Mixture	of Freon-	nstantaneo	us) rogen					
TRIAL NAME CHEMICAL NO. WIND SPEED @ 10M (m/a) SURFACE ROUGHNESS (m) P-G CLASS M-O LENGTH (m) AIR TEMP. (K) ATM. PRESSURE (mb) SFC. TEMP. (K) REL. HUMIDITY (%) REL. HUMIDITY (%)										
TRIAL NAME	:	TI6 T	1/							7119
CHEMICAL NO.	:	16	17						23	24
WIND SPEED & 10M (m/s)	:	2.80	3.40							6.40
SURFACE ROUGHNESS (M)	:	0.01800	0.01800							0.01000
P-G CLASS	:		Ε	_	F					D
M-O LENGTH (M)	:	9999.000	90.909	-9.091	1.538					333.333
AIR TEMP. (K)	:	291.83	290.46	290.68	291,45				289.66	286.47
ATM. PRESSURE (mb)	:	1013.25	1021.36	1022.37					1007.17	1006.16
SFC. TEMP. (K)	:	291.83	290.85	291.55	291.45			291.05		286.15
REL. HUMIDITY (%)	:	74.80	80.70	87.60		66.20	74.10	94.00	81.30	94.80
unne tres maturement	-	and wardens	WOOGG! Y-1							
		I		I	I	1	ı	I	I	I
REL. TYPE: I-ISOTHERMAL, T-	THE									
		I		I	I				I	I
INIT. CLOUD DENS. (kg/m^3)	:	1.993	2.141	1.994	1.947	2.949	2.472	5.093	2.262	2.590
INIT. CLOUD RAD. (m)	:	7.0000	7.0000	7,0000	7.0000	7,0000				7.0000
INIT. CLOUD RAD. (m) INIT. CLOUD VOL. (m^3)	:	1578.944	1984.728	1984.513	1985.991	1945.273	1941.704	1710.324	1715.923	2114.424
INIT. CONCENTRATION (mol)	:	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
INIT. MOMENTUM MIXING: A: W	ELL	MIXED, B:								
		В	B	' в	-	•	8	В	В	В

300.00

B 156.44 200.00

B 191.09

B 168.92

B 247.06

312.50

395.88

251.43

SIMULATION DURATION (E)

GPM INPUT DATA FOR	:	Burro							
CHEMICAL RELEASED	:	Liquefie	d natural	gas					
TRIAL	:	BU 2 BU	з в		BU S				309
EMIS. RATE (g/s)	:	86100.	87980.	86960.	61250	. 9 2220,	99460,	116930.	135980.
WIND SPEED (m/s)	:	5.4	5.4	9.0	7.	9,1	8.4	1.8	5.7
STAB. CLASS	:	С	Ç	C			ם :	3	D
AVG. TIME (min)	:	0.67	1.67	1.33	2.1	7 1.17	2.33	1.33	0.83
INITIAL SIGNA-Y (m)	:	2.82892	2.84606	2.21339	2.3823	2.27966	2.36857	5.55167	3.31640
INITIAL SIGMA-Z (m)	:	2.82892	2.84606	2.21339	2.3823	1 2.27966	2.36857	5.55167	3.31640
PLUME HEIGHT (m)	:	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
REC. HT. (m)	:	1.	1.	1.	1.	. 1.	1.	1.	1.
1:RURAL 2:URBAN	:	1	1	1		1	. 1	1	1
CONC. SPEC. (ppm)	:	100.	100.	100.	100	. 100.	100.	100.	100.
MOLEC. WT. (g/mol)	:	17,46	17.26	17.05	17.0	17,24			18.82
AIR TEMP. (K)	:	311.3	307.8	309.0	314.	3 312.7	307.0	306.0	308.5

MOTE: initial sigmas are used to be consistent with the initial concentration at the source

GPM INPUT DATA FOR	:	Coyote			•							
CHEMICAL RELEASED	:	Liquefie	d natural	gas	•	Methane	18 4	at	least	864	in	C
TRIAL	:	CO3 CO	5 (:06								
EMIS. RATE (g/s)	:	100670.	129020.	123030.								
WIND SPEED (m/s)	:	6.0	9.7	4.6								
STAB. CLASS	:	С	С	D								
AVG. TIME (min)	:	0.63	1.50	1.17								
INITIAL SIGMA-Y (m)	:	2.75051	2.36472	3.41869								
INITIAL SIGNA-2 (m)		2.75051	2.36472	3.41869								
PLUME HEIGHT (m)	:	0.0	0.0	0.0								
REC. HT. (m)	:	1.	1.	1.								
1: RURAL 2: URBAN	:	1	ī	1								
CONC. SPEC. (ppm)	:	100.	100.	100.								
MOLEC. WT. (g/mol)	•	19.51	20.19	19.09								
AIR TEMP. (K)	:	311.5	301.5	297.3								

NOTE: initial sigmas are used to be consistent with the initial concentration at the source

GPM INPUT	DATA FOR	:	Desert	To	rtoise
CHEMICAL !	RELEASED	1	Anhydro	apc	Ammonia

TRIAL	: DT	ם ו	T2 D	r3 D7	74
EMIS. RATE (g/s)	:	79700.	111500.	130700.	96700.
WIND SPEED (m/s)	:	7.4	5.8	7.4	4.5
STAB. CLASS	:	D	D	D	3
AVG. TIME (min)	:	1.33	2.67	2.00	5.00
INITIAL SIGMA-Y (m)	:	1.63536	2,18545	2.10040	2.32223
INITIAL SIGMA-Z (m)	:	1.63536	2.18545	2.10040	2.32223
PLUME HEIGHT (m)	:	0.8	0.8	0.8	0.8
REC. HT. (m)	:	1.	1.	1.	1.
1:RURAL 2:URBAN	:	1	1	1	1
CONC. SPEC. (ppm)	:	100.	100.	100.	100.
MOLEC. WT. (g/mol)	÷	17.03	17.03	17,03	17.03
AIR TEMP. (K)	:	302.0	303.6	307.1	305.6

NOTE: initial sigmas are used to be consistent with the initial concentration at the source

GPM INPUT DATA FOR CHEMICAL RELEASED	:	Goldfist Hydroger	n fluoride	
TRIAL	:	GF1 GI	°2 G	F3
EMIS. RATE (g/s)	:	27670.	10460.	10270.
WIND SPEED (m/s)	:	5.6	4.2	5.4
STAB. CLASS	:	D	۵	D
AVG. TIME (min)	:	1.47	1.47	1.47
INITIAL SIGMA-Y (主)	:	1.21901	0.86714	
INITIAL SIGNA-2 (m)	:	1.21901	0.86714	
PLUME HEIGHT (m)	:	1.0	1.0	
REC. HT. (m)	:	1.	1.	i.
1:RURAL 2:URBAN	:	i	-i	ï
CONC. SPEC. (ppm)	:	30.	30.	30.
MOLEC. WT. (g/mol)		20.01		
AIR TEMP. (K)	:	310.4	309.4	307.6

NOTE: initial sigmas are used to be consistent with the initial concentration at the source

GPM INPUT DATA FOR	:		(continu	ous)		
CHEMICAL RELEASED	:	Krypton	-65			
TRIAL	:	нсі н	C2	нсз	HC4 8	ics
EMIS. RATE (g/s;	:	12.	12.			17.
WIND SPEED (m/s)	:	1.3	3.9	7.1		2.6
STAB. CLASS	:	F	c			E
AVG. TIME (min)	:	7.68	14.08		-	8.96
INITIAL SIGNA-Y (m)	:	0.04854	0.02811	0.03191	• • • •	0.04062
INITIAL SIGNA-Z (m)	:	0.04854	0.02811			0.04062
PLUME HEIGHT (#)	:	1.0	1.0			1.0
REC. HT. (m)	:	2.	2.	2.	2.	2.
1:RURAL 2:URBAN	:	i	ī	i	i	•;
CONC. SPEC. (ppm)	:	0.	0.	0.	٥.	٥.
MOLEC. WT. (g/mol)	:	29.00	29.00	29.00		29.00
AIR TEMP. (K)	:	290.9	285.4	288.9		278.8

NOTE: initial sigmas are used to be consistent with the initial concentration at the source

:	Maplin San	ds		
:	Liquified	Natural Ga	ıs	÷
:	MS27	MS29	MS34	MS35
:	23210.			
:	5.6	7.4		
:	D			
:	0.05	-	-	•
:	1.34958			
:	1.34958			
:	0.0			
:				1.
:	1		*;	i
•	100.	100	100	-
:	288.1			
		: Liquified : MS27 : 23210. : 5.6 : 0.05 : 1.34958 : 0.00 : 1.34958 : 0.00 : 1. : 100.	: MS27 MS29 : 23210. 29160. : 5.6 7.4 : D D : 0.05 0.05 : 1.34958 1.35270 : 1.34958 1.35270 : 0.0 0.0 : 1. 1. 1. : 1 1 : 100. 100.	: Liquified Natural Gas : MS27

NOTE: initial sigmas are used to be consistent with the initial concentration at the source

GPM INPUT DATA FOR : Maplin Sands CHEMICAL RELEASED : Liquified Propane Gas

TRIAL	:	MS 42	MS43		MS46	MS47		MS49	MSSO	MS 52		MS 54
EMIS. RATE (g/s)	:	20870.	. 1	9200.	23370		32570.	16710	3589		44250.	
WIND SPEED (m/s)	:	4.0)	5.8	8.	1	6,2	5.		. 9	7.4	
STAB. CLASS	:	1)	D)	D)	D	מ	D	
AVG. TIME (min)	:	0.0	j	0.05	0.0	5	0.05	0.0	5 0.	05	0.05	0.05
INITIAL SICMA-Y (m)	:	0.95056	i 0.	75546	0.7071	9 0	. 95331	0.7205	1 0.874	89 1.	.00690	0.93163
INITIAL SIGMA-Z (m)	:	0.95056	0.	75546	0.7071	9 0	. 95331	0.7205	1 0.874	89 1.	00690	0.93163
PLUME HEIGHT (m)	:	0.0)	0.0	0.0)	0.0	0.	٥ ٥	.0	0.0	0.0
REC. HT. (m)	:	1,		1.	1,		1.	1	•	1.	1.	1.
1:RURAL 2:URBAN	:	1		1	1	L	1		1	1	1	1
CONC. SPEC. (ppm)	:	100.		100.	100.		100.	100	. 10	0.	100.	100.
MOLEC. WI. (g/mol)	:	43.93	l	43.93	43.9	5	43.84	43.7	6 43.	93	43.87	
AIR TEMP. (K)	:	291.5	i	290.2	291.9	•	290.6	286.	5 283	. 6	285.0	

NOTE: initial sigmas are used to be consistent with the initial concentration at the source

GPM INPUT DATA FOR CHEMICAL RELEASED	:		Grass, ac dioxide	t 1					
TRIAL	: P	G7 P	G8 P1	G9 1	PG10	PG13 1	PG15	PG16 P	G17
EMIS. RATE (g/s)	:	90.	91.	92.	92.	61.	96.		57.
WIND SPEED (m/s)	:	4.2	4.9	6.9	4.6		3.4		3.3
STAB. CLASS	:	В	C	c	B				a
AVG. TIME (min)	•	10.00	10.00	10.00	10.00	-	10.00		10.00
INITIAL SIGNA-Y (m)		0.05161	0.04810	0.04046	0.04983		0.05814		0.04578
INITIAL SIGNA-2 (m)	-	0.05161	0.04810	0.04046	0.04983		0.05814		0.04578
PLUME HEIGHT (m)	•	0.4	0.4	0.4	0.4		0.4		0.4
REC. HT. (m)	•	2.	2.	2	2.	2.	2.		
1:RURAL 2:URBAN		- 1	7	•;	• • • • • • • • • • • • • • • • • • • •	4,	-:	2;	2;
COMC. SPEC. (ppm)	•	1.	1.	1.	1.	1.	.*	•	
MOLEC. WT. (q/mol)	:	64.00	64.00	64.00	64.00	64.00	1.	1.	1.
AIR TEMP. (K)	:	305.1	305.1	301.1	304.1		64.00 2 9 5.1	64.00 301.1	64.00 300.1

NOTE: initial sigmas are used to be consistent with the initial concentration at the source

GPM INPUT DATA FOR			Island (continuous)	
CHEMICAL RELEASED	:	Mixture	of Freqn-12 and Nitrogen	
TRIAL	:	TC45 T	C47	
EMIS, RATE (g/s)	:	10670.	10220.	
WIND SPEED (m/s)	:	2.3	1.5	
STAB, CLASS	:	E	F	
AVG. TIME (min)	:	0.50	0.50	
INITIAL SIGNA-Y (m)	:	0.77435	0.94039	
INITIAL SIGNA-2 (m)	:	0.77435	0.94039	
PLUME HEIGHT (m)	:	0.0	0.0	
REC. HT. (m)	:	0.	o.	
1:RURAL 2:URBAN	:	1	i	
CONC. SPEC. (ppm)	:	100.	100.	
MOLEC. WT. (g/mol)	:	57.80		
AIR TEMP. (K)	:	286.3		

NOTE: initial sigmas are used to be consistent with the initial concentration at the source

HEG. INPUT DATA FOR CHEMICAL RELEASED		Burro Liquefie	d natural (gas					
TRIAL	:								8U 9
ICNT ISURF	:	0		-		•	-		
POOL DATA									
PLL (m) PLHW (m)	:	35.910 17.955							
AMBIENT CONDITIONS									
ZO (m) UO (m/s)	;	2.00 5.40		2.00 9.00					
AIRTEMP (C)	:	38.07	34.55	35.85	41.07	39.47	33.76	32.82	35.32
RH TGROUND (C)	:	0.071 38.07	0.052 34.55	0.027 35.85					
DISP	•								
ROUGH (m)	:	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020
MONIN (m)	:	-12.95		-49.31					
CROSSW DELTA CROSSW BETA	:	0.122 0.897	0.146 0.897	0.140 0.897					
CE	:	1.150	1.150	1.150	1.150	1.150	1.150	1.150	1.150
CLOUD									
XSTEP		0.139	0.138	0.139	0.143	0.135	0.130	0.119	0.111
XMAX (m)	:	17.8	17.6	17.7	18.3	17.2	23.3	31.1	28.8
CAMIN (kg/m**3)		1.000E-07 1.769E-04							
CU (kg/m**3) CL (kg/m**3)		8.844E-05							
SOURCE									
FLUX (kg/m**2/s)	:	6.677E-02	6.677E-02	6.676E-02	6.675E-02	6.675E-02	6.675E-02	6.676E-02	6.676E-02
TEMPGAS (C)	:	-161.60	-161,60	-161.60					
CPGAS (J/mol/K) MNGAS (kg/kmol)	:	39.08 17.46	38.63 17.26	38.16 17.05					
WATGAS HEATGR	:	0.00 24		0.00					0.00
CHEMICAL RELEASED TRIAL ICHT				006		Methane is	at least	864 in c	
ISURF	:	4	-	ă					
POOL DATA			•						
PLL (m) PLHW (m)	:	38.830 19.415	43.960 21.980	42.930 21.465					
AMBIENT CONDITIONS									
20 (m)	:								
00 (m/s) Airtemp (C)	:								
RH	:								
TGROUND (C)	:	38,25	28.29	24.06					
DISP									
ROUGH (m)	:	0.00020							
MONIN (m) CROSSW DELTA	:								
	:	0.897	0.897	0.905					
CE	:	1.150	1.150	1.150					
CLOUD									
XSTEP	:	0.129	0.114	0.116					
XMAX (m)	:	20.6	20.5	21.0					
CAMIN (kg/m**3) CU (kg/m**3)		1.000E-07 1.970E-04							
CL (kg/m**3)	:	9.851E-05							
SOURCE									
FLUX (kg/m**2/s)		6.677E-02							
TEMPGAS (C) CPGAS (J/mol/K)	:	-161.60 43.66		-161.60 42.72					
MWGAS (kg/kmol)	:	19,51	20.19	19.09					
WATGAS HEATGR	:								
HEN YAL	•	29	29	24					

HEG. INPUT DATA FOR CHEMICAL RELEASED PSEUDO-GAS APPROACH	: An	hydrous Am	monia		
TRIAL	:	DT1	DT2 1	OT3 I	OT4
ICNT ISURF	:	0 2	0 2	0	0
POOL DATA					
PLL (m) PLHW (m)	:	14.801 7.400	19.615 9.807		
AMBIENT CONDITIONS					
20 (m) UO (m/s)	:				
AIRTEMP (C) RH	:	28.83	30.43	33.87	32.43
TGROUND (C)	:	31,60	30.60	31.60	30.80
DISP					
ROUGH (m) MONIN (m)	:	93.20		847.25	41.00
CROSSW DELTA CROSSW BETA	:	0.905	0.905	0.905	0.902
CTORD CE	:	1.150	1.130	1.130	1.150
XSTEP	:	0.338	0.255	0.274	0.244
XMAX (m) CAMIN (kg/m**3)	:		66.3	71.2	63.6
CU (kg/m++3) CL (kg/m++3)	:	1.425E-03 7.123E-04	1.401E-03	1.320E-03	1.329E-03
SOURCE					
FLUX (kg/m**2/s)		6.608E+00			
TEMPGAS (C) CPGAS (J/mol/K)	:	29.81	29.80	29.84	29.80
MNGAS (kg/kmol) WATGAS	:	27.83 0.00	0.00	0.00	0.00
Heatgr	:	24	24	24	24
HEG. INPUT DATA FOR CHEMICAL RELEASED PSEUDO-GAS APPROACH	:	Goldfish Hydrogen LATING AIR.	fluoride /VAPOR MIX		:
CHEMICAL RELEASED	: SIMU	Hydrogen LATING AIR.	VAPOR HIX F2 (IF3	:
CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL	: SIMU :	Hydrogen LATING AIR GF1	VAPOR MIX F2 (_	•
CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICMT ISURF POOL DATA	: SIMO :	Rydrogen LATING AIR. GF1 0 2	VAPOR MIX IF2 0 2	0 2	:
CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICMT ISURF POOL DATA PLL (m) PLHM (m)	: SIMO :	Hydrogen LATING AIR GF1 0	VAPOR MIX IF2 0 2	0	:
CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICMT ISURF POOL DATA PLL (m)	SIMO	Rydrogen LATING AIR. GF1 0 2	/VAPOR MIX 3F2 (0 2 8.000	8.000	:
CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICMT ISURF POOL DATA PLL (m) PLHM (m) AMBIENT CONDITIONS 20 (m)	SIMO	Rydrogen LATING AIR. GF1 0 2	VAPOR MIX 0 0 2 8.000 4.000	8.000 4.000	:
CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICMT ISURF POOL DATA PLL (m) PLHM (m) AMBIENT CONDITIONS	SIMO	Hydrogen LATING AIR, GF1 0 2 10.339 5.170	7VAPOR MIX 2F2 0 2 8.000 4.000 4.20 36.18	8.000 4.000 2.00 5.40 34.41	:
CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICMT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS ZO (m) UO (m/s) AIRTEMP (C)	SIMO	Hydrogen LATING AIR. GF1 0 2 10.339 5.170 2.00 5.60 37.20	**************************************	8.000 4.000 2.00 5.40 34.41 0.177	:
CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICNT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS ZO (m) UO (m/s) AIRTEMP (C) RH TGROUND (C)	: SIMO : : :	Hydrogen LATING AIR. GF1 0 2 10.339 5.170 2.00 5.60 37.20 0.049 37.20	**************************************	8.000 4.000 2.00 5.40 34.41 0.177 34.41	:
CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICMT ISURF POOL DATA PLL (m) PLHM (m) AMBIENT CONDITIONS 20 (m) U0 (m/s) AIRTEMP (C) RH TGROUND (C) C C C C C C C C C C C C	: SIMO	Hydrogen LATING AIR. GF1 0 2 10.339 5.170 2.00 5.60 37.20 0.049 37.20	**************************************	8.000 4.000 2.00 5.40 34.41 0.177 34.41	
CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICMT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS ZO (m) UO (m/s) AIRTEMP (C) RH TGROUND (C) DISP ROUGH (m) MONIN (m) CROSSW DELTA CROSSW BETA	SINO	Hydrogen LATING AIR. GF1 0 2 10.339 5.170 2.00 5.60 37.20 0.049 37.20 0.049 101.29 0.087 0.905	VAPOR MIX 2F2 0 2 0 2 0 8.000 4.000 4.20 36.18 0.107 36.18	8.000 4.000 2.00 5.40 34.41 0.177 34.41 0.00300 40.93 0.087 0.905	
CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICMT ISURF POOL DATA PLL (m) PLHM (m) AMBIENT CONDITIONS ZO (m) UO (m/s) AIRTEMP (C) RH TROUND (C) COURT (m) MONIN (m) CROSSW DELTA CROSSW BETA CE	: SIMO	Hydrogen LATING AIR. GF1 0 2 10.339 5.170 2.00 5.60 37.20 0.049 37.20	VAPOR MIX 2F2 0 2 0 2 0 8.000 4.000 4.20 36.18 0.107 36.18	8.000 4.000 2.00 5.40 34.41 0.177 34.41 0.00300 40.93 0.087 0.905	
CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICNT ISURF PCOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS ZO (m) UO (m/s) AIRTEMP (C) RH TGROUND (C) POISP ROUGH (m) MONIN (m) CROSSW BETA CE CLOUD	: SIMO	Hydrogen LATING AIR. GF1 0 2 10.339 5.170 2.00 5.60 37.20 0.049 37.20 0.00300 101.29 0.087 0.905	VAPOR MIX 2F2 0 2 0 2 0 4.000 4.000 2.00 4.20 36.18 0.107 36.18	8.000 4.000 2.00 5.40 34.41 0.177 34.41 0.00300 40.933 0.087 0.905 1.150	
CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICMT ISURF POOL DATA PLL (m) PLHM (m) AMBIENT CONDITIONS 20 (m) U0 (m/s) AIRTEMP (C) RH TGROUND (C) COUD CROSSW DELTA CROSSW BETA CC CLOUD XSTEP XMAX (m)	: SIMO	Hydrogen LATING AIR. GF1 0 2 10.339 5.170 2.00 5.60 37.20 0.049 37.20 0.049 0.087 0.905 1.150	**************************************	8.000 4.000 2.00 5.40 34.41 0.177 34.41 0.00300 40.93 0.087 0.905 1.150	
CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICNT ISURF POOL DATA PLL (m) PLHN (m) AMBIENT CONDITIONS ZO (m) UO (m/s) AIRTEMP (C) RH TGROUND (C) DISP ROUGH (m) MONIN (m) CROSSW BETA CE CLOUD XSTEP XMAX (m) CAMIN (kg/m**3) CU (kg/m**3)	: SIMO	Hydrogen LATING AIR. GF1 0 2 10.339 5.170 2.00 5.60 37.20 0.0489 37.20 0.087 0.905 1.150 0.484 338.5 1.000E-07 3.604E-04	VAPOR MIX IF2 0 2 8.000 4.000 2.00 4.20 36.18 0.107 36.18 0.107 0.905 1.150 0.625 1.000E-07 3.794E-04	0.00300 4.900 2.00 5.40 34.41 0.177 34.41 0.00300 40.93 0.087 0.905 1.150	
CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICMT ISURF POOL DATA PLL (m) PLHM (m) AMBIENT CONDITIONS 20 (m) U0 (m/s) AIRTEMP (C) RH TGROUND (C) COUD CROSSW DELTA CROSSW BETA CROSSW BETA CE CLOUD XSTEP XMAX (m) CAMIN (kg/m**3) CU (kg/m**3) CU (kg/m**3) CL (kg/m**3)	: SIMO	Hydrogen LATING AIR. GF1 0 2 10.339 5.170 2.00 5.60 37.20 0.049 37.20 0.087 0.905 1.150 0.484 338.5	VAPOR MIX IF2 0 2 8.000 4.000 2.00 4.20 36.18 0.107 36.18 0.107 0.905 1.150 0.625 1.000E-07 3.794E-04	0.00300 4.900 2.00 5.40 34.41 0.177 34.41 0.00300 40.93 0.087 0.905 1.150	
CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICNT ISURF POOL DATA PLL (m) PLHM (m) AMBIENT CONDITIONS ZO (m) UO (m/s) AIRTEMP (C) RH TGROUND (C) COUD ROUGH (m) MONIN (m) CROSSW BETA CE CLOUD XSTEP XMAX (m) CAMIN (kg/m**3) CU (kg/m**3) CL (kg/m**3) CL (kg/m**3) SOURCE	: SIMO	Hydrogen LATING AIR. GF1 0 2 10.339 5.170 2.00 5.60 37.20 0.049 37.20 0.049 101.29 0.087 0.905 1.150 0.484 338.5 1.000E-07 3.604E-04	VAPOR MIX 2F2 0 2 8.000 4.000 2.00 4.20 36.18 0.107 36.18 0.107 0.905 1.150 0.625 1.73.794E-04 1.897E-04	0.00300 4.900 2.00 5.40 34.41 0.177 34.41 0.00300 40.93 0.087 0.905 1.150 0.625 437.5 1.000E-07 4.170E-04	
CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICMT ISURF POOL DATA PLL (m) PLHM (m) AMBIENT CONDITIONS ZO (m) UO (m/s) AIRTEMP (C) RH TROUND (C) COUD XSTEP XMAX (m) CAMIN (kg/m**3) CU (kg/m**3) CL (kg/m**3) CL (kg/m**3) CL (kg/m**2/s) TEMPGAS (C)	: SIMO	Hydrogen LATING AIR. GF1 0 2 10.339 5.170 2.00 5.60 37.20 0.049 37.20 0.087 0.905 1.150 0.484 338.5 1.000E-07 3.604E-04 1.802E-04	**************************************	8.000 4.000 2.00 5.40 34.41 0.177 34.41 0.00300 40.93 0.087 0.905 1.150 0.625 437.5 1.000E-07 4.170E-04 2.985E-04	
CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICNT ISURF POOL DATA PLL (m) PLHM (m) AMBIENT CONDITIONS ZO (m) UO (m/s) AIRTEMP (C) RH TGROUND (C) COUD ROUGH (m) MONIN (m) CROSSW BETA CE CLOUD XSTEP XMAX (m) CAMIN (kg/m**3) CU (kg/m**3) CU (kg/m**3) CU (kg/m**3) SOURCE FLUX (kg/m**2/s)	: SIMO	Hydrogen LATING AIR. GF1 0 2 10.339 5.170 2.00 5.60 37.20 0.049 37.20 0.049 37.20 0.087 0.905 1.150 0.484 338.5 1.000E-07 3.604E-04 1.802E-04	VAPOR MIX IF2 0 2 8.000 4.000 2.00 4.20 36.18 0.107 36.18 0.107 0.905 1.150 0.625 187.5 1.000E-07 3.794E-04 1.897E-04	0.00300 4.000 5.40 34.41 0.177 34.41 0.00300 40.93 0.087 0.905 1.150 0.625 437.5 1.000E-07 4.170E-04 2.085E-04	

HEG. INPUT DATA FOR : Desert Tortoise

HEG. INPUT DATA FOR CHEMICAL RELEASED			(continuou 85	= }		
TRIAL						HC5
ICNT ISURF	:		_	-	-	-
POOL DATA						
PLL (m) PLHW (m)	:					8.000 4.000
AMBIENT CONDITIONS						
ZO (m)	:					
UO (m/s) Airtemp (C)	:					5.62
RH TGROUND (C)	:					
DISP						
ROUGH (m)	:	0.03000	0.03000	0.03000	0.03000	0.03000
MONIN (m) CROSSW DELTA	:	6.87			-26.65 0.178	70.24
CROSSW BETA	:	0.902	0.897	0.897	0.897	0.902
CE	:	1.150	1.150	1.150	1.150	1.150
CLOUD						
XSTEP XMAX (m)	:	162.5	162.5	162.5	162.5	0.625 162.5
CAMIN (kg/m**3) CU (kg/m**3)	:	1.000E-07 1.216E-07	1.000E-07	1.000E-07	1.000E-07	1.000E-07
CL (kg/m**3)	:	1.000E-07	1.000E-07	1.000E-07	1.000E-07	1.000E-07
SOURCE						
* FLUX (kg/m**2/s)	:	1.828E-04	1.875E-04	4.344E-04	6.063E-04	2.672E-04
TEMPGAS (C) CPGAS (J/mol/K)	:					5.62 7.22
MMGAS (kg/kmol)	:	29.00	29.00	29.00	29.00	29.00
Watgas Heatgr	:	0.00 24		0.00 24	0.00 24	0.00 24
HEG. INPUT DATA FOR : CHEMICAL RELEASED :		uplin Sands Lquified Na	tural Gas		•	
CHEMICAL RELEASED :	: L:	iquified Nat MS27	MS29 1	4\$34 I	: MS35	
CHEMICAL RELEASED : TRIAL ICNT ISURF	L	iquified Na	MS29 1			
CHEMICAL RELEASED : TRIAL ICNT	: L:	iquified Nat MS27 0	MS29 1	4534 1	0	
CHEMICAL RELEASED : TRIAL ICNT ISURF POOL DATA	: L:	iquified Nat MS27 0	MS29 1 0 4 20.900	HS34 I 0 4	0	
CHEMICAL RELEASED : TRIAL ICNT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS	: L:	MS27 0 4	MS29 1 0 4 20.900	4\$34 ! 0 4	20.100	
TRIAL ICNT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS 20 (m)	: L:	MS27 1 0 0 4 4 18.600 9.300	20.900 10.450	18.000 9.000	20.100 10.050	
CHEMICAL RELEASED : TRIAL ICNT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS 20 (m) U0 (m/s)	: 1.:	MS27 0 4 18.600 9.300	20.900 10.450	18.34 P	20.100 10.050	
CHEMICAL RELEASED TRIAL ICNT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS ZO (m) UO (m/s) AIRTEMP (C) RH	: 12	MS27 0 0 4 4 18.600 9.300 10.00 5.60 14.90 0.530	20.900 10.450 10.00 7.40 16.10 0.710	18.000 9.000 10.00 8.50 15.20 0.900	20.100 10.050 10.00 9.60 16.10 0.770	
CHEMICAL RELEASED TRIAL ICNT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS ZO (m) UO (m/s) AIRTEMP (C) RH TGROUND (C)	: Li	MS27 0 0 4 4 18.600 9.300 10.00 5.60 14.90 0.530	20.900 10.450 10.00 7.40 16.10 0.710	18.000 9.000 10.00 8.50 15.20 0.900	20.100 10.050 10.00 9.60 16.10 0.770	
TRIAL ICNT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS ZO (m) UO (m/s) AIRTEMP (C) RH TGROUND (C)	: L	18.600 9.300 10.00 5.60 14.90 0.530 15.60	20.900 10.450 10.00 7.40 16.10 0.710 16.80	18.000 9.000 10.00 8.50 15.20 0.900 15.80	20.100 10.050 10.00 9.60 16.10 0.770 16.60	
CHEMICAL RELEASED TRIAL ICNT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS ZO (m) UO (m/s) AIRTEMP (C) RH TGROUND (C) RH TROUGH (m) MONIN (m)	: 12	18.600 9.300 10.00 5.60 14.90 0.530 15.60	20.900 10.450 10.00 7.40 16.10 0.710 16.80	18.000 9.000 10.00 8.50 15.20 0.900 15.80	20.100 10.050 10.00 9.60 16.10 0.770 16.60	
TRIAL ICNT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS ZO (m) UO (m/s) AIRTEMP (C) RH TGROUND (C) ROUGH (m)	: IL	18.600 9.300 10.00 5.60 14.90 0.530 15.60	20.900 10.450 10.00 7.40 16.10 0.710 16.80	18.000 9.000 10.00 8.50 15.20 0.900 15.80	20.100 10.050 10.00 9.60 16.10 0.770 16.60	
CHEMICAL RELEASED TRIAL ICNT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS ZO (m) UO (m/s) AIRTEMP (C) RH TGROUND (C) ROUGH (m) MONIN (m) CROSSW DELTA	: IL	18.600 9.300 10.00 5.60 14.90 0.530 15.60	20.900 10.450 10.00 7.40 16.10 0.710 16.80 0.00030 1220.63 0.064 0.905	18.000 9.000 10.00 8.50 15.20 0.900 15.80 0.00030 -102.72 0.064 0.905	20.100 10.050 10.00 9.60 16.10 0.770 16.60	
CHEMICAL RELEASED TRIAL ICNT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS ZO (m) UO (m/s) AIRTEMP (C) RH TGROUND (C) ROUGH (m) MONIN (m) CROSSW DELTA CROSSW BETA CE	: IL	18.600 9.300 10.00 5.60 14.90 0.530 15.60 0.00030 -36.95 0.064 0.905	20.900 10.450 10.00 7.40 16.10 0.710 16.80 0.00030 1220.63 0.064 0.905	18.000 9.000 10.00 8.50 15.20 0.900 15.80 0.00030 -102.72 0.064 0.905	20.100 10.050 10.00 9.60 16.10 0.770 16.60 0.00030 -81.58 0.064 0.905	
TRIAL ICNT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS ZO (m) UO (m/s) AIRTEMP (C) RH TGROUND (C) ROUGH (m) MONIN (m) CROSSW DELTA CRE CLOUD XSTEP	: III	18.600 9.300 10.00 5.60 14.90 0.530 15.60 0.00030 -36.95 0.064 0.905	20.900 10.450 10.00 7.40 16.10 0.710 16.80 0.00030 1220.63 0.064 0.905 1.150	18.000 9.000 10.00 5.50 15.20 0.900 15.80 0.00030 -102.72 0.064 0.905 1.150	0.00030 -81.58 0.249	
CHEMICAL RELEASED TRIAL ICNT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS ZO (m) UO (m/s) AIRTEMP (C) RH TGROUND (C) ROUGH (m) MONIN (m) CROSSW DELTA CE CLOUD		18.600 9.300 10.00 5.60 14.90 0.530 15.60 0.00030 -36.95 0.064 0.905 1.150 0.269 61.8	20.900 10.450 10.00 7.40 16.10 0.710 16.80 0.00030 1220.63 0.064 0.905 1.150	18.000 9.000 10.00 8.50 15.20 0.900 15.80 0.00030 -102.72 0.064 0.905 1.150	0 4 20.100 10.050 10.00 9.60 16.10 0.770 16.60 0.00030 -81.58 0.064 0.905 1.150	
TRIAL ICNT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS ZO (m) UO (m/s) AIRTEMP (C) RH TGROUND (C) CROSSW DELTA CROSSW BETA CE CLOUD XSTEP XMAX (m) CAMIN (kg/m**3) CU (kg/m**3)		18.600 9.300 10.00 5.60 14.90 0.530 15.60 0.00030 -36.95 0.064 0.905 1.150	20.900 10.450 10.00 7.40 16.10 0.710 16.80 0.00030 1220.63 0.064 0.905 1.150 0.239 43.2 1.000E-07	18.000 9.000 10.00 8.50 15.20 0.900 15.80 0.00030 -102.72 0.064 0.905 1.150 0.278 37.7	20.100 10.050 10.00 9.60 16.10 0.770 16.60 0.00030 -81.58 0.064 0.905 1.150	
CHEMICAL RELEASED TRIAL ICNT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS ZO (m) UO (m/#) AIRTEMP (C) RH TGROUND (C) TOUSP ROUGH (m) MONIN (m) CROSSW DELTA CROSSW BETA CE CLOUD XSTEP XMAX (m) CAMIN (kg/m**3) CU (kg/m**3) CU (kg/m**3) CU (kg/m**3)		18.600 9.300 10.00 5.60 14.90 0.530 15.60 0.00030 -36.95 0.064 0.905 1.150 0.269 61.8	20.900 10.450 10.00 7.40 16.10 0.710 16.80 0.00030 1220.63 0.064 0.905 1.150 0.239 43.2 1.000E-07	18.000 9.000 10.00 8.50 15.20 0.900 15.80 0.00030 -102.72 0.064 0.905 1.150 0.278 37.7	20.100 10.050 10.00 9.60 16.10 0.770 16.60 0.00030 -81.58 0.064 0.905 1.150	
TRIAL ICNT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS ZO (m) UO (m/s) AIRTEMP (C) RH TGROUND (C) TGROUND (C) COUD COUSSW DELTA CROSSW DELTA CROSSW BETA CE CLOUD XSTEP XMAX (m) CAMIN (kg/m**3) CU (kg/m**3) CU (kg/m**3) CU (kg/m**3) SOURCE		18.600 9.300 10.00 5.60 14.90 0.530 15.60 0.0030 -36.95 0.064 0.905 1.150 0.269 61.87 1.006E-04 9.341E-05	20.900 10.450 10.00 7.40 16.10 0.710 16.80 0.00030 1220.63 0.064 0.905 1.150 0.239 43.2 1.000E-07 1.775E-04 8.877E-05	18.000 9.000 10.00 8.50 0.900 15.20 0.900 15.80 0.00030 -102.72 0.064 0.905 1.150 0.278 37.7 1.000E-07 1.819E-04	0 4 20.100 10.050 10.00 9.60 16.10 0.770 16.60 0.00030 -81.58 0.064 0.905 1.150 0.249 45.1 1.000E-07 1.790E-04 8.948E-05	
CHEMICAL RELEASED TRIAL ICNT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS ZO (m) UO (m/#) AIRTEMP (C) RH TGROUND (C) TOUSP ROUGH (m) MONIN (m) CROSSW DELTA CROSSW BETA CE CLOUD XSTEP XMAX (m) CAMIN (kg/m**3) CU (kg/m**3) CU (kg/m**3) CU (kg/m**3)		18.600 9.300 10.00 5.60 14.90 0.530 15.60 0.0030 -36.95 0.064 0.905 1.150 0.269 61.8 1.000E-07 1.868E-04 9.341E-05	20.900 10.450 10.00 7.40 16.10 0.710 16.80 0.00030 1220.63 0.064 0.905 1.150 0.239 43.2 1.000E-07 1.775E-04 8.877E-05	18.000 9.000 10.00 8.50 15.20 0.900 15.80 0.00030 -102.72 0.064 0.905 1.150 0.278 37.7 1.000E-07 1.819E-04 9.095E-05	0 4 20.100 10.050 10.00 9.60 16.10 0.770 16.60 0.00030 -81.38 0.064 0.905 1.150 0.249 45.1 1.000E-07 1.790E-04 8.948E-05	
TRIAL ICNT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS ZO (m) UO (m/s) AIRTEMP (C) RH TGROUND (C) ROUGH (m) MONIN (m) CROSSW DELTA CROSSW BETA CE CLOUD XSTEP XMAX (m) CAMIN (kg/m**3) CU (kg/m**3) CL (kg/m**3) SOURCE FLUX (kg/m**2/s)		18.600 9.300 10.00 5.60 14.90 0.530 15.60 0.0030 -36.95 0.064 0.905 1.150 0.269 61.8 1.000E-07 1.868E-04 9.341E-05	20.900 10.450 10.00 7.40 16.10 0.710 16.80 0.00030 1220.63 0.064 0.905 1.150 0.239 43.2 1.000E-07 1.775E-04 8.877E-05	18.000 9.000 10.00 8.50 15.20 0.900 15.80 0.00030 -102.72 0.064 0.905 1.150 0.278 37.7 1.000E-07 1.819E-04 9.095E-05	20.100 10.050 10.00 9.60 16.10 0.770 16.60 0.00030 -81.58 0.064 0.905 1.150 0.249 45.1 1.000E-07 1.790E-04 8.948E-05	

HEG. INPUT DATA FOR : Maplin Sands
CHEMICAL RELEASED : Liquified Propane Gas

CHEMICAL RELEASED	: Liqu	ified Pro	opane Gas						
TRIAL	: MS	42	MS43 1	MS46	MS47	MS49 1	MS50	MS52	MS 54
ICNT ISURF	:	0 4	0 4	0 4		_	0		0 4
POOL DATA									
PLL (m) PLHW (m)	:	14.900 7.450	14.300 7.150				19.500 9.750		14.300 7.150
AMBIENT CONDITIONS									
20 (m)	:	10.00							
UO (m/s) AIRTEMP (C)	:	4.00 18.30	5.80 17.00	8.10 18.70		5.50 13.30	7.90 10.40		
RH	:	0.800	0.500	0.710	0.780	0.880	0.790	0.630	0.850
TGROUND (C)	:	18.50	18.90	17.30	17.10	13.00	9.90	11.90	9.40
DISP PROUGH (m)		0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
MONIN (m)	:	99.73	9999.00	750.15	294.22	69.60	208.74		67.84
CROSSW DELTA	:	0.064	0.064	0.064	0.064	0.064	0.064		0.064
CROSSW BETA CE	:	0.905 1.150	0,905 1,150	0.905 1.150	0.905 1.150	0.905 1.150	0.905 1.150		0.905 1.150
CLOUD	•	2,230			4.000				2.200
* Veren		0 225	0.350		A 260	A 176	0.356	0.230	
XSTEP XMAX (m)	:	0.336 60.3	0.350 62.9	0.318 57.4	0.269 48.4		0.256 46.2	53.0	0.350 52.2
CAMIN (kg/m**3)	: 1	.000E-07	1.000E-07	1.000E-07	1.000E-07	1.000E-07	1.000E-07	1.000E-07	1.000E-07
CU (kg/m**3)						2.309E-04 1.155E-04			
CL (kg/m**3) * SOURCE	: 1	*13AE-04	1.1396-04	1.1608-04	1,13/6-04	1.1338-04	1.133F+n4	1.1385-04	1.1536-04
•		440							
FLUX (kg/m**2/s) TEMPGAS (C)	: 9	-42.10	9.389E-02 -42.10	9.481E-02 -42.10	9.414E-02 -42.10	9.447E-02 -42.10	9.439E-02 -42.10	9.397E-02 -42.10	9.389E-02 -42.10
CPGAS (J/mol/K)	:	73.71	73.71	73.75	73.56	73.43	73.71	73.61	73.73
MMGAS (kg/kmol)	:	43.93	43.93	43.95	43.84	43.76	43,93	43.87	43.94
WATGAS HEATGR	:	0.00 24	0.00 24	0.00 24	0.00 24	0.00 24	0.00 24	0.00 24	0.00 24
	•			••	•••			•••	
UPC TWOIN DIEL DOD		D==1=1= /	irass, set						
HEG. INPUT DATA FOR CHEMICAL RELEASED		Sulfur di		•					
		Sulfur di	loxide		PG10 1	PG13 1	PG15 1	PG16 1	PG17
CHEMICAL RELEASED TRIAL ICHT ISURF	:	Sulfur di	loxide	PG9 1		PG13 1 0 3	PG15 1 0 3	PG16 1	PG17 0 3
CHEMICAL RELEASED TRIAL ICHT	: : PG :	Sulfur di 7 i 0	Loxide PGS 1	PG9 1	0	0	0	0	0
CHEMICAL RELEASED TRIAL ICHT ISURF	: : PG :	Sulfur di 7 i 0	Loxide PGS 1	PG9 1	0	0	0	0	0
CHEMICAL RELEASED TRIAL ICHT ISURF POOL DATA	: : PG :	Sulfur di 7 I 0 3	loxide PGS : 0 3	PG9 1 0 3	3	0 3	3	3	0 3
CHEMICAL RELEASED TRIAL ICHT ISURF POOL DATA PLL (m)	: : PG :	Sulfur di 7 1 0 3	loxide PGS : 0 3	8.000 4.000	8.000 4.000	8.000	8.000	8.000	0 3 8.000
TRIAL ICHT ISURF FOOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS 20 (m)	: PG	Sulfur di 7 1 0 3 8.000 4.000	Roxide PGS : 0 3 3 8.000 4.000	8.000 4.000	8.000 4.000	8.000 4.000	8.000 4.000	8.000 4.000	8.000 4.000
TRIAL ICHT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS 20 (m) U0 (m/s)	: PG	8.000 4.000 4.200	PGS : 0 3 3 8.000 4.000 4.90	8.000 4.000 2.00 6.90	8.000 4.000 2.00	8.000 4.000 2.00	8.000 4.000 2.00	8.000 4.000 2.00	8.000 4.000 2.00 3.30
TRIAL ICHT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS 20 (m) U0 (m/s) AIRTEMP (C) RH	: PG	8.000 4.000 4.200 4.200 31.95 0.200	RGS 1 0 3 3 8.000 4.000 4.000 31.95 0.200	8.000 4.000 2.00 6.90 27.95	8.000 4.000 2.00 4.60 30.95	8.000 4.000 2.00 1.50 19.95 0.200	8.000 4.000 2.00 3.40 21.95 0.200	8.000 4.000 2.00 3.20 27.95 0.200	8.000 4.000 2.00 3.30 26.95 0.200
TRIAL ICHT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS 20 (m) UO (m/s) AIRTEMP (C) RH TGROUND (C)	: PG	8.000 4.000 2.00 4.20 31.95	RGS 1 0 3 3 8.000 4.000 4.90 31.95	8.000 4.000 2.00 6.90 27.95	8.000 4.000 2.00 4.60 30.95	8.000 4.000 2.00 1.50 19.95 0.200	8.000 4.000 2.00 3.40 21.95 0.200	8.000 4.000 2.00 3.20 27.95 0.200	8.000 4.000 2.00 3.30 26.95
TRIAL ICHT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS 20 (m) U0 (m/s) AIRTEMP (C) RH	: PG	8.000 4.000 4.200 4.200 31.95 0.200	RGS 1 0 3 3 8.000 4.000 4.000 31.95 0.200	8.000 4.000 2.00 6.90 27.95	8.000 4.000 2.00 4.60 30.95	8.000 4.000 2.00 1.50 19.95 0.200	8.000 4.000 2.00 3.40 21.95 0.200	8.000 4.000 2.00 3.20 27.95 0.200	8.000 4.000 2.00 3.30 26.95 0.200
TRIAL ICHT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS 20 (m) U0 (m/s) AIRTEMP (C) RH TGROUND (C)	: PG	8.000 4.000 4.200 4.200 31.95 0.200	RGS 1 0 3 3 8.000 4.000 4.000 31.95 0.200	8.000 4.000 2.00 6.90 27.95 0.200 27.95	8.000 4.000 2.00 4.60 30.95 0.200 30.95	8.000 4.000 2.00 1.50 19.95 0.200	8.000 4.000 2.00 3.40 21.95 0.200 21.95	8.000 4.000 2.00 3.20 27.95 0.200 27.95	8.000 4.000 2.00 3.30 26.95 0.200
TRIAL ICHT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS 20 (m) U0 (m/s) AIRTEMP (C) RH TGROUND (C) * PROUGH (m) MONIN (m)	: PG	8.000 3 8.000 4.000 2.00 4.20 31.95 0.200 31.95	PGS : 0	8.000 4.000 2.00 6.90 27.95 0.200 27.95	8.000 4.000 2.00 4.60 30.95 0.200 30.95	8.000 4.000 2.00 1.50 19.95 0.200 19.95	0 3 8,000 4,000 2,00 3,40 21,95 0,200 21,95	8.000 4.000 2.00 3.20 27.95 0.200 27.95	8.000 4.000 2.00 3.30 26.95 0.200 26.95
TRIAL ICHT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS 20 (m) U0 (m/s) AIRTEMP (C) RH TGROUND (C) * ROUGH (m) MONIN (m) CROSSW DELTA	: PG	8.000 4.000 4.000 2.00 4.20 31.95 0.200 31.95	RGS 1 0 0 3 3 8 .000 4 .000 4 .000 31 .95 0 .200 31 .95 0 .200 6 1 0 .209	8.000 4.000 2.00 6.90 27.95 0.200 27.95	8.000 4.000 2.00 4.60 30.95 0.200 30.95	8.000 4.000 2.00 1.50 19.95 0.200 19.95	8.000 4.000 2.00 3.40 21.95 0.200 21.95	8.000 4.000 2.00 3.20 27.95 0.200 27.95	8.000 4.000 2.00 3.30 26.95 0.200 26.95
TRIAL ICHT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS 20 (m) U0 (m/s) AIRTEMP (C) RH TGROUND (C) * PROUGH (m) MONIN (m)	: PG	8.000 3 8.000 4.000 2.00 4.20 31.95 0.200 31.95	PGS : 0	8.000 4.000 2.00 6.90 27.95 0.200 27.95	8.000 4.000 2.00 4.60 30.95 0.200 30.95 0.00600 -7.45 0.371	8.000 4.000 2.00 1.50 19.95 0.200 19.95	0.00600 -7.74 0.527 0.865	8.000 4.000 2.00 3.20 27.95 0.200 27.95	8.000 4.000 2.00 3.30 26.95 0.200 26.95
TRIAL ICHT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS 20 (m) UO (m/s) AIRTEMP (C) RH TGROUND (C) TRIAL ROUGH (m) MONIN (m) CROSSW BETA	: PG	8.000 4.000 2.00 4.20 31.95 0.200 31.95	8.000 4.000 2.00 4.90 31.95 0.200 31.95 0.200 -20.61 0.209 0.897	8.000 4.000 2.00 6.90 27.95 0.200 27.95	0 3 3 8.000 4.000 2.00 4.60 30.95 0.200 30.95	8.000 4.000 2.00 1.50 19.95 0.200 19.95	0.00600 -7.74 0.527 0.865	8.000 4.000 2.00 3.20 27.95 0.200 27.95	8.000 4.000 2.00 3.30 26.95 0.200 26.95
TRIAL ICHT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS ZO (m) UO (m/s) AIRTEMP (C) RH TGROUND (C) ROUGH (m) MONIN (m) CROSSW DELTA CROSSW BETA CE CLOUD	: PG	8.000 4.000 2.00 4.000 31.95 0.200 31.95 0.200 31.95 0.310 0.366 1.150	8.000 4.000 2.00 4.90 31.95 0.200 31.95 0.200 7.00600 -20.61 0.209 0.897	8.000 4.000 2.00 6.90 27.95 0.200 27.95 0.200 -34.12 0.209 0.897 1.150	0 3 8.000 4.000 2.00 4.60 30.95 0.200 30.95 0.301 0.371 0.866 1.150	0.00600 6.01 0.065 0.902	0.00600 -7.74 0.527 0.865 1.150	0.00600 -7.83 0.527 0.865	0 3 8.000 4.000 2.00 3.30 26.95 0.200 26.95 0.00600 49.81 0.128 0.905 1.150
TRIAL ICHT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS ZO (m) UO (m/s) AIRTEMP (C) RH TGROUND (C) TGROUND (C) ROSSW DELTA CROSSW BETA CE * CLOUD * XSTEP	: PG	8.000 4.000 4.000 31.95 0.200 31.95 0.200 31.95 0.371 0.866 1.150	PGS : 0 3 3 8.000 4.000 4.000 31.95 0.200 31.95 0.200 0.897 1.150 0.625	8.000 4.000 2.00 6.90 27.95 0.200 27.95 0.200 27.95	0 3 3 8.000 4.000 4.000 4.60 30.95 0.200 30.95 0.371 0.866 1.150 0.625	0.00600 6.01 0.065 0.902	0 3 3 8.000 4.000 4.000 21.95 0.200 21.95 0.205 0.7.74 0.527 0.865 1.150 0.623	0.00600 -7.83 0.527 0.865 1.150	0 3 8.000 4.000 2.00 3.30 26.95 0.200 26.95 0.00600 49.81 0.128 0.905 1.150
TRIAL ICHT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS 20 (m) U0 (m/s) AIRTEMP (C) RH TGROUND (C) DISP ROUGH (m) MONIN (m) CROSSW DELTA CROSSW BETA CE CLOUD XSTEP XMAX (m) CAMIN (kg/m**3)	: PG	8.000 4.000 2.00 4.000 31.95 0.200 31.95 0.200 31.95 0.371 0.866 1.150	RGS 1 0 0 3 3 8 .000 4 .000 4 .000 31.95 0 .200 31.95 0 .200 1 .150 0 .625 162.5 1 .000E-07	8.000 4.000 2.00 6.90 27.95 0.200 27.95 0.200 -34.12 0.209 0.897 1.150	0 3 8.000 4.000 2.00 4.60 30.95 0.200 30.95 0.371 0.866 1.150 0.625 162.5	0.000 4.000 2.00 1.50 19.95 0.00600 6.01 0.065 0.902 1.150	0.000 4.000 2.00 3.40 21.95 0.200 21.95 0.00600 -7.74 0.527 0.865 1.150	0 3 8.000 4.000 2.00 3.20 27.95 0.200 27.95 0.00600 -7.83 0.527 0.865 1.150	0 3 8.000 4.000 2.00 3.30 26.95 0.200 26.95 0.150 0.0600 49.81 0.128 0.905 1.150 0.625 1.62.5 1.000E-07
TRIAL ICHT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS 20 (m) U0 (m/s) AIRTEMP (C) RH TGROUND (C) DISP ROUGH (m) MONIN (m) CROSSW DELTA CROSSW BETA CE CLOUD XSTEP XMAX (m) CAMIN (kg/m**3) CU (kg/m**3)	: PG	8.000 4.000 4.000 2.00 4.20 31.95 0.200 31.95 0.371 0.866 1.150 0.625 1.62.5 .000E-07	PGS : 0 0 3 3 8.000 4.000 4.000 31.95 0.200 0.200 0.20.61 0.20.9 7 1.150 0.625 1.000E-07 2.558E-06	2.00 4.000 2.00 6.90 27.95 0.200 27.95 0.00600 -34.12 0.209 0.897 1.150	0.000 4.000 2.00 4.60 30.95 0.200 30.95 0.371 0.866 1.150 0.625 162.5 1.000E-07	0.000 4.000 2.00 1.50 19.95 0.200 0.95 0.065 0.902 1.150 0.625 162.5 1.000E-07 2.663E-06	0.000 4.000 2.00 3.40 21.95 0.200 21.95 0.00600 -7.74 0.527 0.865 1.150	0.00600 -7.83 0.527 0.865 1.150	0 3 8.000 4.000 2.00 3.30 26.95 0.200 26.95 0.150 0.625 1.150 0.625 1.000E-07 2.601E-06
TRIAL ICNT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS 20 (m) U0 (m/s) AIRTEMP (C) RH TGROUND (C) * DISP * ROUGH (m) MONIN (m) CROSSW DELTA CROSSW BETA CE * CLOUD * XSTEP XMAX (m) CAMIN (kg/m**3) CU (kg/m**3) CL (kg/m**3) *	: PG	8.000 4.000 4.000 2.00 4.20 31.95 0.200 31.95 0.371 0.866 1.150 0.625 1.62.5 .000E-07	PGS : 0 0 3 3 8.000 4.000 4.000 31.95 0.200 0.200 0.20.61 0.20.9 7 1.150 0.625 1.000E-07 2.558E-06	2.00 4.000 2.00 6.90 27.95 0.200 27.95 0.00600 -34.12 0.209 0.897 1.150	0.000 4.000 2.00 4.60 30.95 0.200 30.95 0.371 0.866 1.150 0.625 162.5 1.000E-07	0.000 4.000 2.00 1.50 19.95 0.200 0.95 0.065 0.902 1.150 0.625 162.5 1.000E-07 2.663E-06	0.000 4.000 2.00 3.40 21.95 0.200 21.95 0.00600 -7.74 0.527 0.865 1.150	0.00600 -7.83 0.527 0.865 1.150	0 3 8.000 4.000 2.00 3.30 26.95 0.200 26.95 0.150 0.0600 49.81 0.128 0.905 1.150 0.625 1.62.5 1.000E-07
TRIAL ICHT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS ZO (m) UO (m/s) AIRTEMP (C) RH TGROUND (C) TGROUND (C) CROSSW DELTA CROSSW BETA CE CLOUD XSTEP XMAX (m) CAMIN (kg/m**3) CU (kg/m**3) CU (kg/m**3) SOURCE	: PG :: : : : : : : : : : : : : : : : :	8.000 4.000 2.00 4.20 31.95 0.200 31.95 0.200 0.866 1.150 0.625 162.5 .000E-07 .558E-06	0.00600 -20.61 0.200 0.897 1.150 0.625 1.000E-07 2.558E-06	8.000 4.000 2.00 6.90 27.95 0.200 27.95 0.200 -34.12 0.209 0.897 1.150 0.625 162.5 1.000E-07 2.592E-06	0 3 8.000 4.000 2.00 4.60 30.95 0.200 -7.45 0.371 0.866 1.150 0.625 162.5 1.000E-07 2.566E-06	0.00600 6.01 0.065 0.902 1.150 0.625 1.250 0.625 1.250	0 3 3 8.000 4.000 2.00 3.40 21.95 0.200 21.95 0.527 0.527 0.525 1.150 0.625 1.2.5 1.000E-07 2.645E-06 1.322E-06	0.00000 2.00 3.20 27.95 0.200 27.95 0.200 -7.83 0.527 0.865 1.150 0.625 1.200E-07 2.592E-06	0 3 8.000 4.000 2.00 3.30 26.95 0.200 26.95 0.0600 49.81 0.128 0.905 1.150 0.625 162.5 1.000E-07 2.601E-06 1.300E-06
TRIAL ICHT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS 20 (m) UO (m/s) AIRTEMP (C) RH TGROUND (C) POISP ROUGH (m) MONIN (m) CROSSW DELTA CROSSW BETA CE CLOUD XSTEP XMAX (m) CAMIN (kg/m**3) CU (kg/m**3) CL (kg/m**3) SOURCE FLUX (kg/m**2/s)	: PG :: : : : : : : : : : : : : : : : :	8.000 4.000 2.00 4.20 31.95 0.200 31.95 0.200 31.95 0.200 1.150 0.625 162.5 162.5 162.5 162.5	PGS : 0 3 3 8.000 4.000 4.000 31.95 0.200 31.95 0.200 9.897 1.150 0.625 1.62.5 1.000E-07 2.558E-06 1.279E-06	8.000 4.000 2.00 6.90 27.95 0.200 27.95 0.200 -34.12 0.209 0.897 1.150 0.625 162.5 1.000E-07 2.592E-06	0 3 3 8.000 4.000 2.00 4.60 30.95 0.200 30.95 0.371 0.866 1.150 0.625 1.62.5 1.000E-07 2.566E-06 1.283E-06	0.00600 6.01 0.065 0.902 1.150 0.625 1.250 0.625 1.250 0.625 1.331E-06	0.00600 -7.74 0.527 0.865 1.150 0.625 1.000E-07 1.322E-06	0.00600 -7.83 0.527 0.865 1.150 0.625 1.296E-06	0.000 4.000 2.00 3.30 26.95 0.200 26.95 0.00600 49.81 0.128 0.905 1.150 0.625 1.62.5 1.000E-07 2.601E-06
TRIAL ICNT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS 20 (m) U0 (m/s) AIRTEMP (C) RH TGROUND (C) * CROSSW DELTA CROSSW BETA CE * CLOUD * XSTEP XMAX (m) CAMIN (kg/m**3) CU (kg/m**3) CU (kg/m**3) CL (kg/m**3) * SOURCE * FLUX (kg/m**2/s) TEMPGAS (C) CPGAS (J/mol/K)	: PG :: : : : : : : : : : : : : : : : :	8.000 4.000 2.00 4.000 2.00 31.95 0.200 31.95 0.371 0.866 1.150 0.625 162.5 .000E-07 .558E-06 .279E-06	PGS : 0 0 3 3 8.000 4.000 4.000 2.00 31.95 0.200 31.95 0.200 9.897 1.150 0.625 1.62.5 1.000E-07 2.558E-06 1.279E-06 1.423E-03 31.95 39.85	8.000 4.000 2.00 6.90 27.95 0.200 27.95 0.200 -34.12 0.209 0.897 1.150 0.625 162.5 1.000E-07 2.592E-06 1.296E-06	0 3 3 8.000 4.000 2.00 4.60 30.95 0.200 30.95 0.371 0.866 1.150 0.625 1.62.5 1.000E-07 2.566E-06 1.283E-06	0 3 8.000 4.000 2.00 1.50 19.95 0.00600 6.01 0.065 0.902 1.150 0.625 162.5 1.000E-07 2.663E-06 1.331E-06	0 3 3 8.000 4.000 2.00 3.40 21.95 0.200 21.95 0.00600 -7.74 0.527 0.865 1.150 0.625 162.5 1.000E-07 2.645E-06 1.322E-06	0 3 8.000 4.000 2.00 3.20 27.95 0.200 27.95 0.00600 -7.83 0.527 0.865 1.150 0.625 1.255 1.000E-07 2.592E-06	0 3 8.000 4.000 2.00 3.30 26.95 0.200 26.95 0.00600 49.81 0.128 0.905 1.150 0.625 162.5 1.000E-07 2.601E-06 1.300E-06
TRIAL ICHT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS ZO (m) UO (m/s) AIRTEMP (C) RH TGROUND (C) TGROUND (C) CROSSW DELTA CROSSW BETA CE CLOUD XSTEP XMAX (m) CAMIN (kg/m**3) CU (kg/m**3) CU (kg/m**3) CU (kg/m**3) SOURCE FLUX (kg/m**2/s) TEMPGAS (C) CPGAS (J/mol/K) HNGAS (kg/kmol)	: PG :: : : : : : : : : : : : : : : : :	8.000 4.000 2.00 4.20 31.95 0.200 31.95 0.200 0.866 1.150 0.625 162.5 0.00E-07 558E-06 .279E-06	PGS	8.000 4.000 2.00 6.90 27.95 0.200 0.27.95 0.200 0.897 1.150 0.625 1.62.5 1.000E-07 2.597E-06 1.296E-06	0 3 3 8.000 4.000 2.00 4.60 30.95 0.200 30.95 0.371 0.866 1.150 0.625 162.5 1.000E-07 2.566E-06 1.283E-06 1.439E-03 30.95 39.85 64.00	0.000 4.000 2.00 1.50 19.95 0.200 0.95 0.00600 6.01 0.065 0.902 1.150 0.625 1.000E-07 2.663E-06 1.331E-06	0.000 4.000 2.00 3.40 21.95 0.200 21.95 0.865 1.150 0.625 1.2.5 1.000E-07 2.645E-06 1.322E-06	0.00000 2.00 3.20 27.95 0.200 27.95 0.200 -7.83 0.527 0.865 1.150 0.625 1.296E-06	0 3 3 8.000 4.000 2.00 3.30 26.95 0.200 26.95 0.200 26.95 0.150 0.625 1.150 0.625 1.000 0.000 0.625 1.000 0.000 0.625 1.000 0.
TRIAL ICNT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS 20 (m) U0 (m/s) AIRTEMP (C) RH TGROUND (C) * CROSSW DELTA CROSSW BETA CE * CLOUD * XSTEP XMAX (m) CAMIN (kg/m**3) CU (kg/m**3) CU (kg/m**3) CL (kg/m**3) * SOURCE * FLUX (kg/m**2/s) TEMPGAS (C) CPGAS (J/mol/K)	: PG :: : : : : : : : : : : : : : : : :	8.000 4.000 2.00 4.000 2.00 31.95 0.200 31.95 0.371 0.866 1.150 0.625 162.5 .000E-07 .558E-06 .279E-06	PGS	8.000 3.3 8.000 4.000 2.00 6.90 27.95 0.200 27.95 0.200 0.897 1.150 0.625 162.5 1.000E-07 2.592E-06 1.296E-06	0 3 3 8.000 4.000 4.000 4.000 4.60 30.95 0.200 30.95 0.371 0.866 1.150 0.625 1.62.5 1.000E-07 2.566E-06 1.283E-06 1.439E-03 30.95 33.85 64.00 0.00	0.000 4.000 2.00 1.50 19.95 0.200 19.95 0.00600 6.01 0.065 0.902 1.150 0.625 1.62.5 1.000E-07 2.663E-06 1.331E-06	0 3 3 8.000 4.000 2.00 3.40 21.95 0.200 21.95 0.200 21.95 1.150 0.625 1.150 0.625 1.22E-06 1.322E-06 1.322E-06	0 3 8.000 4.000 2.00 3.20 27.95 0.200 27.95 0.527 0.865 1.150 0.625 1.62.5 1.000E-07 2.592E-06 1.296E-06	0.000 4.000 2.00 3.30 26.95 0.200 26.95 0.00600 49.81 0.128 0.905 1.150 0.625 1.62.5 1.000E-07 2.601E-06 1.300E-06

HEG. INPUT DATA FOR CHEMICAL RELEASED		Thorney Mixture	Island (cons of Freon-12	tinuous) and Hitrogen
TRIAL	:	TC45	TC47	
ICNT	:	(0	
ISURF	:	3	3	
POOL DATA				
POOL DATA				
PLL (m)	:	8.000	8,000	
PLHW (m)	:	4.000		
•	•	1,000	1.500	
AMBIENT CONDITIONS				
•				
ZO (m)	:	10.00		
UO (m/s) AIRTEMP (C)	:	2.30		
RH	:	13.05		
TGROUND (C)	:	1.000		
*	•	12.73	14.45	
DISP				
•				
ROUGH (m)	:	0.01000	0.01000	
MONIN (m)	:	21,67		
CROSSW DELTA	:	0.054	0.036	
CROSSW BETA	:	0.902	0.902	
CE	:	1.150	1.150	
CTOND				
+				
XSTEP		0 695	0.625	
XMAX (m)	:			
CAMIN (kg/m**3)		1.000E-07		
CU (kg/m**3)		2.463E-04		
CL (kg/m**3)	:			
•				
SOURCE				
FLUX (kg/m**2/s)	:	1.667E-01	1.597E-01	
TEMPGAS (C)	:	13.05	14.25	
CPGAS (J/mol/K)	:	35.26	35.26	
MNGAS (kg/kmol)	:	57.80	57.80	
WATGAS	:	0.00	0.00	
HEATGR	:	24	24	

INPUFF INPUT DATA		Burro		_					
CHEMICAL RELEASED	:	Liquefi	ed natura	l gas					
TRIAL NAME		BU2 B	03 1	B J4	BU5	BU6	BU7	BUB	BU9
IW LADT	:	6 F							
LP22	:	F							
KEYDSP	:	i							
SYMAX (m)	:	1000.0							
LPCC	:	F							
LPIC	:								
XGRDSW (km)	:	0.00							
YGRDSW (km)	:	-4.00							
XSIZE (km) YSIZE (km)	:	8.00 8.00							
NTIME	:	1							
ITIME (s)	:		680	720	760	650	680	1100	800
NSOURC	:	1							
NREC	:	2	2	2	2				4
XREC (loss)	:	0.057	0.057	0.057	0.057	0.057	0.057	0.057	0.057
YREC (km)	:	0.000	1 000	1.000	1.000	1 000	1.000	1.000	1,000
ZREC (m) XREC (km)	:	1.000 0.140	1.000 0.140						
YREC (km)	:	0.140	0.140	0,140	0.140	0.140	0.140	0.140	0.140
ZREC (m)	:		1.000	1.000	1.000	1.000	1.000	1.000	1.000
XREC (km)	:		-0.100						
YREC (km)	:	0.000							
ZREC (m)	:	1.000	1.000			1.000	1.000		
XREC (km)	:	-0.100	-0.100	-0.100	-0.100	-0.100	-0.100	0.800	0.800
YREC (km)	:	0.000	1.000	1.000	1.000	1 000	1.000	1.000	1.000
ZREC (m) LDWSH	:	1.000 F	1.000	1.000	1.000	1.000	1.000	1.000	1.000
LBID	:	F							
LDEPS	:	F							
LUPLRS	:	F							
LCMBPF	:	T							
ISTEP (s)	:	-1							_
ISAMPL (s)	:	5	10	10	10	10	10	10	5
ISTRTC (s) SDCHEN	:	. 0							
ANHGT (m)	:		2.00	2.00	2.00	2.00	2.00	2.00	2.00
MDIR (deg)	:	270.0					2000		
WSPD (m/s)	:		5.40	9.00	7.40	9.10	8.40	1.80	5.70
HL (m)	:	9999.							
KST	:	3	3	3	3	3	4	6	5
SGPH (rad)	:	-9.900							
SGTH (rad)	:	-9.900 -9.900 311.27	202 26	300.05	224 42	33.0 43	205 05	306 03	200 52
TEMP (K) CDIS (km)	:	0.057	307.75 0.057	309.05 0.057		312.67 0.057			
XSORC (km)	:	*****	0.037	0.007	0.037	0.037	0.00.	0.05.	4.037
YSCRC (km)	:	0.000							
MERCOS	:		4	4	4		4	10	10
IMMOT (s)	:	170	170	180	190	130	170	110	80
DV (42/1)	:	0.00							
SVV (cm/s)	:	0.00 0.861E+05		A 9705.AE	A 4128+A6	A 02281AE	0 0050+05	0 1178406	0 1360.06
QP (g/s)			0.00		0.00	0.9226+05	0.00		
HPP (m) TSP (K)	:	300.00	V.00	0.00	4.00	0.00	0.00	5.00	0.00
DP (m)	:	1.00							
VSP (m/s)	:	0.00							
VTP (a**3/s)	:								
SYOP (m)	:		2.85	2.21	2.38		2.37		
SZOP (R)	:		2.85	2.21	2.38	2.28	2.37	5.55	3.32
SDIR (deg)	:	270. 0.00							
SSPD (m/s) ALL FOLLOWING SOUR			OS HAUP !	LERO FMTCC	ION RATE				
0220 0008.									

INPUFF INPUT DATA FO		Desert To:			
TRIAL NAME	:	DT1	DT2	DT3	DT4
IW	:	611		UIS	014
LADT	i	F			
LP22	:	£			
KEYDSP	:	1			
SYMAX (m)	:	1000,0	1		
LPCC	:	F			
LPIC	:	7			
XGRDSW (km)	:	0.00			
YGROSW (km) XSIZE (km)	:	-4.00 8,00			
YSIZE (km)	:	8.00			
NTIME	:	1			
ITIME (s)	:	780		850	1140
NSOURC	:	1			2240
NREC	:	2		2	2
XREC (km)	:	0.100	0.100	0.100	
YREC (km)	:	0.000			
ZREC (m)	:	1.000		1.000	1.000
XREC ()cm)	:	0,800	0.800	0.800	0.800
YREC (km)	:	0.000			
ZREC (m) LDWSH	:	1.000	1.000	1.000	1.000
LBID	:	F			
LDEPS	:	F			
LUPLRS	:	r			
LCMBPF	:	Ť			
ISTEP (s)	:	-î			
ISAMPL (s)	:	10	10	10	10
ISTRTC (s)	:	ō			
SDOMBN	:	1,00			
Anhgi (m)	:	2,00	2.00	2.00	2.00
WDIR (deg)	:	270.0			
WSPD (m/s)	:	7.40	5.80	7.40	4.50
HL (m)	:	9999.			
KST	:	4	4	4	6
SGPH (rad) SGTH (rad)	:	-9.900			
TEMP (K)	:	-9.900	303 65		***
CDIS (km)	:	302.03 0.100	303.63 0.100	307.07	305.63
XSORC (km)	:	0.000	0.100	0.100	0.100
YSORC (km)	:	0.000			
NSRCDS	:	6	3	5	3
ISUPDT (s)	:	130	260	170	380
DV (cm./s)	:	0.00			
SVV (cas/s)	:	0.00			
	:		0.111E+06	0.131E+06	0.967E+05
HPP (m)	:	0.79	0.79	0.79	0.79
TSP (R)	:	300.00			
DP (m)	:	1.00			
VSP (m/s) VFP (m**3/s)	:	0.00			
SYOP (m)	:	0.00	9 10	2 10	2
SZOP (m)	:	1.64 1.64	2.19 2.19	2.10	2.32
SDIR (deg)	:	270.	2.19	2.10	2.32
SSPD (m/s)	:	0.00			
ALL FOLLOWING SOURCE			RDS HAVE 1	ERO EMISSI	ON RATE

INPUFF INPUT DATA FO CHEMICAL RELEASED	R: :	Goldfi Hydrog	sh en fluorid	e.	
TRIAL NAME IW	: GF1 :	6		GF3	
LADT	:	F			
LP22	:	F			
KEYDSP	:	i			
SYMAX (m)	:	1000.0			
	:	F			
LPIC	:	Ī			
XGRDSW (km) YGRDSW (km) XSIZE (km) YSIZE (km)	:	0.00			
YGRDSW (km) XSIZE (km)	•	-4.00 8.00			
YSIZE (km)	:	8.00			
	:	1			
	:	1170		1440	
	:	1			
NREC	:	3	2	3	
XREC (km)	:	0.300	0.300	0.300	
	:	0.000			
		1.000			
		1.000		1.000	
YREC (km) ZREC (m)	:	0.000			
XREC (km)	:	1,000	1.000 -0.100	1.000 3.000	
YREC (km)		0.000	-0.100	3.000	
ZREC (m)	-	1.000		1.000	
	•	F		2.000	
LBID	:	F			
	:	F			
	:	F			
LCMBPF	:	T			
ISTEP (s) ISTEP (s) ISTETC (s) SDCMEN ANHGT (m) WDIR (deg) WSPD (m/s) HL (m)	:	-1			
ISAMPL (s) ISTRTC (s)	•	10	10	10	
SDCMBN	:	1.00			
ANHGT (m)	•	2.00		2.00	
WDIR (deg)	:	270.0			
WSPD (m/s)	:	5.60		5.40	
	:	9999.			
KST	:	4	4	4	
SGPH (rad)		9.900			
SGTH (rad)	: -	9.900			
TEMP (K) CDIS (km)	: 3	0.300	309.38	307.61	
		0.000	0.300	0.300	
Venna /h-1		0.000			
	:	9	3	4	
ISUPDT (=)	:	130			
DV (com/s)	:	0.00			
SVV (cm/s)	:	0.00			
QP (g/s)	: 0.27	7E+05	0.105E+05	0.103E+05	
HPP (m) TSP (K)	:	1.00	0.105E+05 1.00	1.00	
DP (m)	: 3	3.00			
VSP (m/s)		1.00			
VFP (m**3/s)	: :	0.00			
SYOP (m)	:	1.22	^ 67	0.76	
SZOP (m)	:	1.22	0.87	0.76	
	:	270.			
SSPD (m/s)	:	0.00			
ALL FOLLOWING SOURCE	emissio	N RECO	RDS HAVE 2	ERO EMISSIO	N RATE

INPUFF INPUT DATA CHEMICAL RELEASED	FOR:	Henfor Krypto	d (continu n-85	ous)		
TRIAL NAME	:	HC1	HC2	нсз	HC4	HC5
IW	:	6			.,.,	1100
LADT	:	F				
LP22	:	F				
KEYDSP	:	1				
SYMAX (m) LPCC	:	1000.0				
TAIC	:	F				
XGRDSW (km)	:	_				
YGRDSW (km)	;	-4.00				
XSIZE (km)	:	8.00				
YSIZE (km)	:	8.00				
NTIME	:	1				
ITIME (a)	:	1860		2580	1200	3570
nsourc Nrec	:	1				
XREC (km)	;	2			-	_
YREC (km)	:	0.200	0.200	0.200	0.200	0.200
ZRLC (m)	:	0.000 1.500	1.500			
XREC (km)	:	0.800	0.800	1.500 0.800		
YREC (km)	:	0.000	0.000	0.800	0.800	0.800
ZREC (m)	•	1.500	1.500	1.500	1.500	3 500
LDWSH	:	F		3,000	-1000	1,500
LBID	:	£				
LUEPS	:	F				
LUPLRS LCMBPF	:	F				
ISTEP (a)	:	Ţ				
ISAMPL (s)	:	-1 10	10			
ISTRIC (s)	:	0	10	10	10	10
SDCMBN	:	1.00				
ANHGT (m)	:	1.50	1.50	1.50	1.50	1.50
MDIR (deg)	:	270.0			2.50	1.50
WSPD (m/s)	:	1.30	3.90	7.10	3.90	2.60
HL (m)	:	9999.			••••	
KST	:	7	3	3	3	6
SGPH (rad) SGTH (rad)	:	-9.900				
TEMP (K)	:	-9.900 290.87	224			_
CDIS (km)	:	0.200	285.43 0.200			278.82
XSORC (km)	:	0.000	0.200	V. 200	0.200	0.200
YSORC (km)	:	0.000				
NSRCDS	•	2	3	3	2	3
ISUPDT (s)	:	930	910	860	600	
DV (cas/s)	:	0.00				
SVV (cm/s) QP (q/s)	:	0.00				
HES (W)	:	0.00 11.7 1.00	12.0	27.8		17.1
TSP (K)	:	1.00	1.00	1.00	1.00	1.00
DP (m)	:	1.00				
VSP (m/s)	:	0.00				
VFP (m**3/s)	:	0.00				
SYOP (m)	:	0.05	0.03	0.03	0.05	0.04
SZOP (m)	:	0.05	0.03			0.04
SDIR (deg)	:	270.				
SSPD (m/s)	. :	0.00				
ALL FOLLOWING SOURCE	e emi	PPION MECOI	OS HAVE 21	ERO EMISSI	ON RATE	

INPUFF INPUT DATA CHEMICAL RELEASED		Hanford Krypto	d (instant n-85	an co us)			
TRIAL NAME	:			KIS I	HI6 I	HI7 E	118
IW	:	6					
LADT	:	F					
LP22	:	F					
KEYDSP	:	1					
SYMAX (m)	:	1000.0					
TACC	:	F					
LPIC	:	T					
XGRDSW (km)	:	0.00					
YGRDSW (km)	:	-4.00					
XSIZE (km)	:	8.00					
YSIZE (km)	:	8.00					
ntime	:	1					
ITIME (=)	:	1200	800	700	700	\$00	1100
NSOURC	:	1					
NREC	:	2	2	2	2	2	2
XREC (km)	:	0.200	0.200	0.200	0.200	0.200	0.200
YREC (km)	:	0.000					
ZREC (m)	:	1.500	1.500	1.500	1.500	1.500	1.500
XREC (km)	:	0.800	0.800	0.800	0.800	0.800	0.800
YREC (km)	:	0.000					
ZREC (m)	:	1,500	1.500	1.500	1.500	1.500	1.500
LDWSH	:	F					
LBID	:	F					
LDEPS	:	F					
LUPLRS	:	F					
LCMBPF	:	T					
ISTEP (s)	:	-1					
ISAMPL (s)	:	1	1	1	1	1	1
ISTRIC (m)	:	0					
SDCMBN	:	1.00					
ANHGT (m)	:	1.50	1.50	1.50	1.50	1.50	1.50
WDIR (deg)	:	270.0					
WSPD (m/s)	:	1.30	4.10	7.60	7.20	4.50	1.60
KL (m)	ı	9999.					
rst	:	7	4	3	3	3	6
SGPH (rad)	:	-9.900					
SGTH (rad)	:	-9.900					
TEMP (K)	:	291.54	285.09	288.71	288.26	285.59	277.76
CDIS (km)	:	0.200	0,200	0.200	0.200	0.200	0.200
XSORC (km)	:	0.000					
YSORC (km)	:	0.000					
NSRCDS	:	100	100	100	100		100
ISUPDT (s)	:	12	8	7	7	8	11
DV (ca/s)	:	0.00					
SVV (cm/s)	:	0.00					
QP (g/s)	:	833.				0.125E+04	
HPP (m)	:	0.00 300.00	0.00	0.00	0.00	0.00	0.00
TSP (K)	:						
DP (m)	:	1.00					
VSP (m/s)	:	0.00					
VFP (m**3/s)	:	0.00					
SYOP (m)	:	0.41	0.28	0.22		0.27	0.38
SZOP (m)	:	0.41	0.28	0.22	0.23	0.27	0.38
SDIR (deg)	:	270.					
SSPD (m/s)	:	0.00					
ALL FOLLOWING SOUR	CE EN	ISSION RECO	ORDS HAVE	ZERO EMISS	ON RATE		

INPUFF INPUT D CHEMICAL RELEA	ATA FOR: SED :	Maplin Sa Liquified	nds Natural Ga	1.0	:
TRIAL NAME	:			MS34	MS35
IW LADT	:		6 F		
LP22	:		ř		
KEYDSP	:		1		
SYMAX (m) LPCC	:	1000.	0 F		
LPIC	:		, T		
XGRDSW (km)	:	0.00			
YGRDSW (km) XSIZE (km)	:	-4.00			
YSIZE (km)	:	8.00			
NTIME	:	;	l		
ITIME (#) NSOURC	:	800		700	700
NREC	:	1		2	3
XREC (km)	:	0.089		0.087	0.129
YREC (km) ZREC (m)	:	0.000			
XREC (km)	:	0,900		0.900 0.179	0.900
YREC (km)	:	0.000		0.479	0.250
ZREC (m) XREC (km)	:	0.900		0.900	0.900
XREC (km) YREC (km)	:	0.324 0.000		-0.100	0.406
ZREC (m)	:	0.900		0.900	0.900
XREC (km)	:	0.400	0.182	-0.100	-0.100
YREC (km) ZREC (m)	:	0.000			
XREC (km)	:	0.900 0.650		0.900 -0.100	0.900 -0.100
YREC (km)	:	0.000	*****	-0.100	-0.100
ZREC (m) XREC (km)	:	0.900		0.900	0.900
YREC (km)	:	-0.100 0.000	0.324	-0.100	-0.100
ZREC (m)	:	0.900	0.900	0.900	0.900
XCREC (km)	:	-0.100	0.403	-0.100	-0.100
YREC (km) ZREC (m)	:	0.000	0.000		
LDWSH	:	0.900 F	0.900	0.900	0.900
LBID	:	F			
LDEPS LUPLES	:	Ē			
LCKBPF	:	F			
ISTEP (s)	:	-1			
ISAMPL (a) ISTRIC (a)	:	1	1	1	1
SDOMEN	:	0 1.00			
ANHGT (m)	•	10.00	10.00	10.00	10.00
WDIR (deg) WSPD (m/a)	:	270.0			
HT (m)	:	5.60 9999.	7.40	8.50	9.60
KST	:	4	4	4	4
SGPH (rad)	:	-9.900			•
SGTH (rad) TEMP (K)	:	-9.900 288.10	289.30		
CDIS (km)	:	0.089	0.058	288.40 0.087	289.30 0.129
XSORC (km)	:	0.000			٧,
YSORC (km) MSRCDS	:	0.000	_	_	
ISUPDT (a)	:	5 160	3 230	7 100	5 140
DV (cm/s)	:	0.00	200		140
SVV (cm/s) QP (q/s)	:	0.00			
HPP (m)	: '	0.00	0.292E+05 0 0.00	0.215E+05 (0.00	
TSP (K)	:	300.00	3.00	9.00	0.00
DP (m)	:	1.00			
VSP (m/s) VFP (m**3/s)	:	0.00			
SYOP (m)	:	1.35	1.35	1.07	1.14
SZOP (m)	:	1.35	1.35	1.07	1.14
SDIR (deg) S\$PD (m/m)	:	270.			- • - •
ALL FOLLOWING SO	URCE EMI	0.00 SION RECO	ens wave to	20 EMTERTA	W 719-
			curt V & &E	ELITABIC	M KATE

CHEMICAL RELEASED	: Liquified	Propane Ga	18					
TRIAL NAME IW	: HS42	MS43	MS46 1	MS47	MS49	K\$50 1	MS52	MS54
LADT	•	-						
LP22	: 1							
KEYDSP								
SYMAX (m)	1000.0							
LPCC	:							
LPIC								
XGRDSW (km)	: 0.00)						
YGRDSW (km)	: -4.00	3						
XSIZE (km)	: 8.00)						
YSIZE (km)	: 8.00)						
HTIME	: 1							
ITIME (a)	: 720		720	840	720	800	700	720
NSOURC			-	_				
NREC				0.000		4	6	0.056
YREC (km)	: 0.026		0.034	0.090	0.090	0.059	0.061	0.034
ZREC (m)	: 0.900		0.900	0.900	0.900	0.900	0.900	0.500
XREC (km)	: 0.900			0.128	0.129	0.093	0.095	0.085
YREC (km)	: 0.000		0,071	*****	*****	0.000	0.025	******
ZREC (m)	: 0.900		0.900	0.900	0.900	0.900	0,900	0.500
XREC (km)	: 0.083			0.182		0.182		0,178
YREC (km)	: 0.000							
ZREC (m)	0.900		0.900	0.900	0.900	0.900	0.900	0.500
XREC (km)	: 0.123			0.250	0.250	0.400	0.249	0.247
YREC (km)	: 0.000							
ZREC (m)	: 0.900	0.900	0.900	0.900	0.900	0.900	0.900	0,500
XREC (km)	: 0.179	-0.100	0.250	0.321	0.322	-0.100	0.398	-0.100
YREC (km)	: 0.000							
ZREC (m)	: 0.900			0.900		0.900	0.900	0.500
XREC (km)	: 0.247		0.322	0.400	0.400	-0.100	0.650	-0,100
YREC (km)	: 0.000							
ZREC (m)	: 0.900			0.900		0.900	0.900	0,500
XREC (km)	: 0.398		0.401	-0.100	-0.100	-0.100	-0.100	-0,100
YREC (km)	: 0.000							
ZREC (m)	0.900		0.900	0.900	0.900	0.900	0.900	0,500
LDWSH LBID	: F							
LDEPS	-							
LUPLAS	: F							
LCMBPF	: 1							
ISTEP (s)	: -1							
ISAMPL (s)	. 1		1	1	1	1	1	1
ISTRTC (s)			_	_	_	_	_	_
SDOMBN	1.00							
ANHGT (m)	: 10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
WDIR (deg)	: 270.0)						
WEFD (m/+)	: 4.00	5.80	8,10	6,20	5.50	7.90	7.40	3.70
EL (m)	: 9999.							
KST	: 4		4	4	4	4	4	4
SGPH (rad)	: -9.900							
SGTH (rad)	; ~9.900							
TEMP (K)	: 291.50			290.60	286.50	283,60	285,00	281.60
CDIS (km)	: 0.026		0.034	0.090	0.090	0.059	0.061	0.056
XSORC (km)	: 0.000							
YSORC (km)	: 0.000				_	-	-	
NSRCDS	: 180	-				5	5	
ISUPOT (s)	-		360	210	90	160	140	180
DV (cm/s)	-							
SVV (cm/s) QP (q/s)			0.234E+05	0 3368408	0 1675405	U 3205TUE	0 4435105	0 1025405
HPP (m)						0.00	0.00	0.00
TSP (K)	: 300.00		5.50	0.00	0.00	0.00	0.50	0.00
DP (m)	: 1.00							
VSP (m/s)	: 0.00							
VFP (m**3/s)	. 0.00							
SYOP (m)	: 0.95		0.71	0.95	0.72	0.87	1.01	0,93
	, 4.74							
	. 0.45	0.76	0.71	0.95	0.77	0.87	1.01	0.93
SZOP (m)	: 0.95		0.71	0.95	0.72	0.87	1.01	0.93
	: 0.95 : 270.		0.71	0.95	0.72	0.87	1.01	0.93

TRIAL NAME : PG7 PG8 PG9 PG10 PG13 PG15 PG16 PG17 IN : 6 LADT : F LP22 : F KEYDSP : 1 LPCC : F LPIC : T XGRDSN (km) : 0.00 YGRDSN (km) : 8.00 NTIME : 1 ITIME (s) : 1200 1200 1200 1200 1200 1200 1200 12
LADT : F LP22 : F KEYDSP : 1 SYMAX (m) : 1000,0 LPCC : F LP1C : T XGRDSW (km) : 0.00 YGRDSW (km) : 0.00 YGREC (km) : 0.00 YGREC (km) : 0.00 YGREC (km) : 0.000 YGREC (km) : 0.050 0.0
LP22
KEYDSP : 1 SYMAX (m) : 1000,0 LPCC : F LPIC : T XGRDSW (km) : 0.00 YGRDSW (km) : 0.00 YSIZE (km) : 8.00 YSIZE (km) : 8.00 NTIME : 1 ITINE (s) : 1200 1200 1200 1800 1200 1200 1200 NSOURC : 1 <td< td=""></td<>
SYMAX (m) : 1000.0 LPCC : F LPIC : T XGRDSW (km) : 0.00 YGRDSW (km) : 0.00 XSIZE (km) : 8.00 NTIME : 1 ITHE (s) : 1200 1200 1200 1200 1800 1200 1200 1200
LPCC : F LPIC : T XGRDSW (km) : 0.00 YGRDSW (km) : -4.00 XSIZE (km) : 8.00 YSIZE (km) : 8.00 NTIME : 1 ITIME (s) : 1200 1200 1200 1200 1800 1200 1200 1200
LPIC : T XGRDSW (km) : 0.00 YGRDSW (km) : -4.00 XSIZE (km) : 8.00 YSIZE (km) : 8.00 NTIME : 1 ITIME (s) : 1200 1200 1200 1200 1800 1200 1200 1200
XGRDSW (km) : 0.00 YGRDSW (km) : -4.00 XSIZE (km) : 8.00 YSIZE (km) : 8.00 MTIME : 1 ITIME (s) : 1200 1200 1200 1200 1800 1200 1200 1200
YGRDSW (km) : -4.00 XSIZE (km) : 8.00 YSIZE (km) : 8.00 HTIME : 1 ITIME (s) : 1200 1200 1200 1200 1800 1200 1200 1200
XSIZE (km) : 8.00 YSIZE (km) : 8.00 HTIME : 1 ITIME (s) : 1200 1200 1200 1200 1800 1200 1200 1200
YSIZE (km) : 8.00 NTIME : 1 ITINE (s) : 1200 1200 1200 1200 1200 1800 1200 1200
NTIME : 1 ITIME (s) : 1200 1200 1200 1200 1800 1200 1200 1200
ITINE (s) : 1200 1200 1200 1200 1200 1800 1200 1200
NSOURC : 1 NREC : 5 \$ \$ 5 \$ 2 \$ 5 \$ 5 XREC (km) : 0.050 0.050 0.050 0.050 0.400 0.050 0.050 0.050 YREC (km) : 0.000 ZREC (m) : 1.500 1.500 1.500 1.500 1.500 1.500 1.500 0.100 0.100 XREC (km) : 0.100 0.100 0.100 0.100 0.800 0.100 0.100 0.100 YREC (km) : 0.000 ZREC (m) : 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 XREC (km) : 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 YREC (km) : 0.000 ZREC (m) : 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 XREC (km) : 0.000 ZREC (km) : 0.400 0.400 0.400 0.400 -0.100 0.400 0.400 0.400 YREC (km) : 0.000 ZREC (km) : 0.000 ZREC (km) : 0.100 0.100 0.400 0.400 0.400 1.50
NREC : 5 \$ \$ 5 \$ 5 \$ 2 \$ 5 \$ 5 \$ 2 \$ 7 \$ 5 \$ 2 \$ 7 \$ 5 \$ 5 \$ 2 \$ 7 \$ 5 \$ 5 \$ 2 \$ 7 \$ 5 \$ 5 \$ 2 \$ 7 \$ 5 \$ 5 \$ 2 \$ 7 \$ 5 \$ 7 \$ 2 \$ 7 \$ 7 \$ 5 \$ 7 \$ 7 \$ 7 \$ 7 \$ 7 \$ 7 \$ 7
XREC (km) : 0.050 0.050 0.050 0.050 0.400 0.050 0.050 0.050 YREC (km) : 0.000 2 0.050 0.05
YREC (km) : 0.000 ZREC (m) : 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 XREC (km) : 0.100 0.100 0.100 0.100 0.800 0.100 0.100 0.100 ZREC (km) : 0.000 ZREC (km) : 0.200 0.200 1.500 1.500 1.500 1.500 1.500 1.500 XREC (km) : 0.000 ZREC (km) : 0.000 ZREC (km) : 0.000 ZREC (km) : 0.000 ZREC (km) : 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 XREC (km) : 0.000 ZREC (km) : 0.400 0.400 0.400 0.400 -0.100 0.400 0.400 0.400 XREC (km) : 0.000 ZREC (km) : 0.000
ZREC (m) : 1.500 1
XREC (km) : 0.100 0.100 0.100 0.100 0.800 0.100 0.100 0.100 1.500
YREC (km) : 0.000 ZREC (m) : 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 XREC (km) : 0.200 0.200 0.200 0.200 -0.100 0.200 0.200 0.200 YREC (km) : 0.000 ZREC (m) : 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 XREC (km) : 0.400 0.400 0.400 0.400 -0.100 0.400 0.400 0.400 YREC (km) : 0.000 ZREC (m) : 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500
ZREC (m) : 1.500 1
YREC (km) : 0.000 ZREC (m) : 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 ZREC (km) : 0.400 0.400 0.400 -0.100 0.400 0.400 0.400 YREC (km) : 0.000 ZREC (m) : 1.500 1.500 1.500 1.500 1.500 1.500 1.500
ZREC (m) : 1.500 1
XREC (km) : 0.400 0.400 0.400 0.400 -0.100 0.400 0.400 0.400 YREC (km) : 0.000 ZREC (m) : 1.500 1.500 1.500 1.500 1.500 1.500 1.500
YREC (km) : 0.000 ZREC (m) : 1.500 1.500 1.500 1.500 1.500 1.500 1.500
ZREC (m) : 1.500 1.500 1.500 1.500 1.500 1.500 1.500
- YDDA (1) - A BAA
XREC (km) : 0.800 0.800 0.800 -0.100 0.800 0.800 0.800
YREC (km) : 0.000
ZREC (m) : 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500
IDMSH : F
LBID : F
LDEPS : F
LUPLRS : F
LCMRPF : T
ISTEP (s) : -1
ISAMPL (#) : 10 10 10 10 10 10 10 10 10
ISTRTC (s) : 0 SDCMBN : 1.00
WDIR (deg) : 270.0 WSPD (m/s) : 4.20 4.90 6.90 4.60 1.30 3.40 3.20 3.30
HL (m) : 9999.
KST : 2 3 3 2 7 1 1
SGPH (rad) : -9.900
SGTH (rad) : -9.900
TEMP (K) : 305.15 305.15 301.15 304.15 293.15 295.15 301.15 300.15
CDIS (km) : 0.050 0.050 0.050 0.050 0.400 0.050 0.050 0.050
XSORC (km) : 0.000
YSORC (km) : 0.000
NSRCDS : 2 2 2 2 3 2 2
ISUPDT (s) : 600 600 600 600 600 600 600
DV (cm/s) : 0.00
SVV (cm/s) : 0.00
QP (q/s) : 89.9 91.1 92.0 92.1 61.1 95.5 93.0 56.5
HPP (m) : 0.45 0.45 0.45 0.45 0.45 0.45 0.45
TSP (K) : 300.00
DP (m) : 1.00
(a) (a) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
VFP (m+3/s) : 0.00
2106 (m) 1 0.62 0.92 0.94 0.92 0.04 0.02
S2OP (m) : 0.05 0.05 0.04 0.05 0.07 0.06 0.05 0.05
SDIR (deg) : 270.
SSPD (m/s) : 0.00
ALL FOLLOWING SOURCE EMISSION RECORDS HAVE ZERO EMISSION RATE

		•	
INPUFF INPUT DATA F	OR:	Thorney	Island (continuous) of Freon-12 and Nitrogen
			of treou-is and mittadeu
TRIAL NAME IW			247
LADT	:	6 F	
LP22	:	F	
KEYDSP SYMAX (m)	:	1 2000 0	
TACC	:	1000.0 F	
LPIC	:	Ť	
XGRDSW (km) YGRDSW (km)	:	0.00 -4.00	
XSIZE (km)	:	-4.00 8.00	
YSIZE (km)	:	8.00	
NTIME ITIME (s)	:	1 920	
NSOURC	:	1	940
NREC	:	9	6
XREC (km) YREC (km)	:	0.040	0.050
ZREC (m)	:	0.000 0.400	0.400
XREC (km)	:	0.053	0.090
YREC (km) ZREC (m)	:	0.000	
XREC (km)	:	0.400 0.072	0.400 0.212
YREC (km)	:	0.000	V.222
ZREC (m)	:	0.400	0.400
XREC (km) YREC (km)	:	0.090	0.250
ZREC (m)	:	0.400	0.400
XREC (km)	:	0.112	0.335
YREC (km) ZREC (m)	:	0.000	
XREC (km)	:	0.400 0.158	0.400 0.472
YREC (km)	:	0.000	
ZREC (m) XREC (km)	:	0.400	0.400
YREC (km)	:	0.250 0.000	-0.100
ZREC (m)	:	0.400	0.400
XREC (km) YREC (km)	:	0.335	-0.100
ZREC (m)	:	0.000 0.400	0.400
XREC (km)	:	0.472	-0.100
YREC (km) 2REC (m)	:	0.000	
LDWSH	:	0.400 F	0.400
LBID	:	F	
LDEPS LUPLES	\$	r	
LCMBPF	:	F T	
ISTEP (s)	:	-1	
ISAMPL (s)	:	5	5
ISTRIC (s) SDCMBM	:	0 1.00	
ANHGT (m)	:	10.00	10.00
WDIR (deg)	:	270.0	
WSPD (m/s) HL (m)	:	2.30 9999,	1.50
KST	:	6	7
SGPH (rad)	:	-9.900	
SGTH (rad) TEMP (K)	:	-9.900 286.25	207 45
CDIS (km)	:	0.040	287,45 0.050
XSORC (km)	:	0.000	
YSORC (km) HSRCDS	:	0.000	•
ISUPDT (a)	:	2 460	2 470
DV (cm/s)	:	0.00	
SVV (cm/s) QP (g/s)	: (0.00 0.107E+05 0.	1095+06
HPP (m)	:	0.00	0.00
TSP (K)	:	300.00	- • • •
DP (m)	:	1.00	
VSP (m/s) VFP (m**3/s)	:	0.00	
SYOP (m)	:	0.77	0.94
SZOP (m)	:	0.77	0.94
SDIR (deg) SSPD (m/s)	:	270.	
	: EMI:	0.00 SSION RECORD	S HAVE ZERO EMISSION RATE
			sund mildsion Kail

TRIAL NAME :	TIG	T17 T	:I8 T	19	TI12	TI13	TI17	TILE	TI19
IN :	6		.10		1114	1113	111,	1110	****
LADT :									
LP22	_								
KEYDSP : SYMAX (m) :									
LPCC :	· _								
LPIC									
XGRDSW (km) :									
YGRDSW (km) :									
XSIZE (km) :									
YSIZE (km) :	8.00								
NTIME :			800	900	800	700	700	700	700
NSOURC :				-					
NREC :			7	7	_	6			7
XREC (km) :		0.071	0.071	0.071	0.071	0.071	0.040	0.040	0.040
YREC (km) :		0.400		0.400	0 400	0 400	0 400	0 400	0.400
ZREC (m) : XREC (km) :		0.400 0.100	0.400 0.100	0.100		0.400 0.100		0.400	
YREC (km)	0.000	0.100	0.100	71.100	0.130	0.100	0.000	4.000	0.000
ZREC (m)		0.400	0.400	0.400	0.400	0.400	0.400	0.400	0.400
XREC (km) :	0.180	0.150	0.150	0.141	0.200	0.224	0.071	0.070	0.071
YREC (km) :				.					- د د
ZREC (m) :			0.400	0.400		0.400		0.400	
XREC (km) : YREC (km) :			0.200	0.180	0.361	0.316	0.100	0.080	0.100
ZREC (m)			0.400	0.400	0.400	0.400	0.400	0.400	0.400
XREC (km) :		0.224	0.364	0.224		0.361		0.100	
YREC (km) :									
ZREC (m) :			0.400	0.400				0.400	
XREC (km) :			0.412	0.316	-0.100	0.412	0.224	0.200	0.361
YREC (km) : ZREC (m) :			0.400	0.400	0.400	0.400	0.400	0.400	0.400
XREC (km) :			0.510	0.503				0.224	
YREC (km) :	0.000								
ZREC (m) :			0.400	0.400				0.400	
XREC (km) ;			-0.100	-0.100	-0.100	-0.100	-0.100	0.300	-0.100
YREC (km) : ZREC (m) :			0.400	0.400	0.400	0.400	0.400	0.400	0.400
XREC (km) :			-0.100	-0.100				0.400	
YREC (km) :	0.000								
ZREC (m) :			0.400	0.400		0.400		0.400	
XREC (km) :			-0.100	-0.100	-0.100	-0.100	-0.100	0.510	-0.100
YREC (km) : ZREC (m) :		0.400	0.400	0.400	0.400	0.400	0.400	0.400	0.400
IDWSH :			0.100	0.400	0.400	0,400	4.400	0.450	0.400
LBID :									
LDEPS :									
LUPLRS :									
LCMBPF : ISTEP (s) :									
ISTEP (s) : ISAMPL (s) :	_		1	1	1	1	1	1	1
ISTRIC (s)			-	-	-	-	-	-	-
SDCMBN :	1.00								
ANHGT (m) :			10.00	10.00	10.00	10.00	10.00	10.00	10.00
WDIR (deg) :									
WSPD (m/s) : HL (m) :			2.40	1.70	2.50	7.30	5,00	7.40	6.40
KST :	_		4	7	6	4	4	4	5
SGPH (rad) :			•	•	•	•	•	•	•
SGTH (rad) :	-9.900								
TEMP (K) :			290.68						
CDIS (km) :			0.071	0.071	0.071	0.071	0.040	0.040	0.040
XSORC (km) : YSORC (km) :									
NSRCDS :			100	100	100	100	100	100	100
ISUPDT (s) :	8	7	8	9					
DV (cm/s) :				-					
SVV (cm/s) :									
		0.607E+06							
HPP (m) : TSP (K) :			0.00	0.00	0.00	0.00	0.00	0.00	0.00
DP (m) :									
VSP (m/s) :									
VFP (m**3/s) ;	0.00								
SYOP (m) :									
SZOP (m) :	4,74		5.74	6.43	5.56	3.48	3.94	3.25	3.80
AAAA									
SDIR (deg) : SSPD (m/s) :									

OB/DG INPUT DATA FOR CHEMICAL RELEASED		: Burro							
CHEMICAL RELEASED		: Liquef	(ad narura)	1					
		. hadaar	ten Herman	7 988					
MEASURED TEMPERATURE (K)	1	311.27	307.75	309.05	314 27	***			
MEASUREMENT HEIGHT (m)		1.0	1.0	1 0	1 0	315.61	306.96	306.02	308,52
MEASURED TEMPERATURE (K)		310.22	306.03	307 97	312 20	222	1.0	1.0	1.0
MEASUREMENT HEIGHT (m)		10.0	10.0	10.0	323.46	311.04	306.53	306.28	308,42
16-2m TEMP DIFFERENCE (F)		-1.48	-2.28	-1.67	-1 47	-1 56	10.0	10.0	10.0
EMISSION RATE (KG/S)		86.1000	87 - 9800	86.9600	81 2500	-1.36	-0.76	0.55	-0.27
MEASURED TEMPERATURE (K) MEASUREMENT HEIGHT (m) MEASURED TEMPERATURE (K) MEASUREMENT HEIGHT (m) 16-2m TEMP DIFFERENCE (F) EMISSION RATE (KG/S)					01,1300	72.2200	39.4600	116.9300	135.9800
AD INC. THORSE BARE HA									
OB/DG INPUT DATA FOR CHEMICAL RELEASED	:	Coyote							
CHEMICAL RELEASED	:	Liquefi	ed natural	gas	•	Methane is	at least	864 in c	
Westman amount									
MEASURED TEMPERATURE (K)	:	311,45	301.49	297.26					
MERCURER SELECT (E)	:	1.0	1.0	1.0					
MEASURED TEMPERATURE (K)	:	310.38	300.29	297.46					
MEASUREMENT HEIGHT (R)	:	4.0	4.0	4.0					
TOTAL TEMP DIFFERENCE (F)	:	-2.13	-2.55	0.58					
MEASURED TEMPERATURE (K) MEASUREMENT HEIGHT (m) MEASURED TEMPERATURE (K) MEASUREMENT HEIGHT (m) 16-2m TEMP DIFFERENCE (F) EMISSION RATE (KG/S)	:	100.6700	129.0200	123.0300					
OB/DG INPUT DATA FOR		Desert Torr							
CHEMICAL RELEASED	:	Anhydrous A	0184						
MEASURED TEMPERATURE (F)		302.02	202 62	202 00					
MEASUREMENT HEIGHT (m)	:	202.03	303.63	307.07	305.63				
MEASURED TEMPERATURE (K)	:	202 21	704 73	0.8	0.8				
MEASUREMENT HEIGHT (m)	:	16.2	304.31	307.05	306,90				
16-2m TEMP DIFFERENCE (E)	:	1 67	10.2	16.2	16.2				
EMISSION RATE (KG/S)	:	20 2000	111 5000	-0.08	1.75				
MEASURED TEMPERATURE (K) MEASUREMENT HEIGHT (m) MEASURED TEMPERATURE (K) MEASUREMENT HEIGHT (m) 16-2m TEMP DIFFERENCE (F) EMISSION RATE (KG/S)	•	79.7000	111.3000	130.7000	96.7000				
OB/DG INPUT DATA FOR	:	Goldfis	h.						
OB/DG INPUT DATA FOR CHEMICAL RELEASED	:	Hydrogen	fluoride		•				
		• •			•				
MEASURED TEMPERATURE (K) MEASUREMENT HEIGHT (m) MEASURED TEMPERATURE (K) MEASUREMENT HEIGHT (m) 16-2m TEMP DIFFERENCE (F) EMISSION RATE (KG/S)	:	310.40	309_38	307 - 61					
MEASUREMENT HEIGHT (m)	:	2.0	2.0	2.0					
MEASURED TEMPERATURE (K)	:	310.93	309.41	308.96					
MEASUREMENT HEIGHT (m)	:	16.6	16.6	16.6					
15-2m TEMP DIFFERENCE (F)	:	0.94	0.06	2.36					
emission rate (KG/S)	:	27,6700	10.4600	10.2700					
OR OR TWOMP DATE OF									
CUENTED DATA FOR	:	Hanford	(continuou	s)					
OB/DG INPUT DATA FOR CHEMICAL RELEASED	:	Krypton-	85					•	
WPACIDON TOWNS								•	
MERCHANIA CONTROL (K)	:	290.87	285.43	288.93	286.65	278.62			
MENERAL MELGHT (E)	:	1.5	0.9	0.9	0.9	0.9			
MEASURED TEMPERATURE (K)	:	292.19	284.71	287.54	284.65	279.32			
MEASURED TEMPERATURE (K) MEASUREMENT HEIGHT (m) MEASURED TEMPERATURE (K) MEASUREMENT HEIGHT (m) 16-2m TEMP DIFFERENCE (F) EMISSION RATE (KG/S)	:	6.1	15.0	15.0	15.0	15.0			
10-2m TEMP DIFFERENCE (F)	:	6.10	-0.97	-1.83	-2.38	0.68			
EMISSION RATE (KG/S)	:	0.0117	0.0120	0.0278	0.0388	0.0171			

OB/DG INPUT DATA FOR CHEMICAL RELEASED	: Maplin Sand : Liquified ?			•				
MEASURED TEMPERATURE (K)	: 288.10	289.30	268.40	289,30				
MEASUREMENT HEIGHT (m)	: 1.9	1.9	1.9	1.9				
MEASURED TEMPERATURE (K)	: 287.78	289.24	288.06	288.81				
MEASUREMENT HEIGHT (m)	: 30.1	10.1	10.1	10.1				
16-2m TEMP DIFFERENCE (F)	: -0.74	-0.20		-1.11				
EMISSION RATE (KG/S)	: 23.2100	29.1600	21.5100	27,0900				
OB/DG INPUT DATA FOR	: Maplin Sano							
CHEMICAL RELEASED	: Liquified F	Propane Gas						
MEASURED TEMPERATURE (K)	: 291.50	290.20	291.90	290.60	286.50	283.60	285.00	281.60
MEASUREMENT HEIGHT (m)	1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.9
MEASURED TEMPERATURE (K)		290.12	291.86	290.57	286.71	283.66	285.05	281.63
MEASUREMENT HEIGHT (m)				10.1	10.1	10.1	10.1	10.1
16-2m TEMP DIFFERENCE (F)		-0.25	-0.16	-0.13	0.47		0.06	0.02
emission rate (KG/S)	: 20.8700	19.2000	23.3700	32.5700	16.7100	35.8900	44.2500	19.2000
OB/DG INPUT DATA FOR CHEMICAL RELEASED		Grass, sei dioxide	: 1					
MEASURED TEMPERATURE (K)		305.15	301.15	304.15	293.15	295.15	301.15	300.15
MEASUREMENT HEIGHT (m)	: 2.0	2.0	2.0 2 99.5 5	2.0	2.0	2.0	2.0	2.0
MEASURED TEMPERATURE (K) MEASUREMENT HEIGHT (m)	: 303.55 : 16.0	303.95 16.0	299.33 16.0	302.15 16.0	295.05 16.0	294.05 16.0	300.15 16.0	300.65 16.0
	: -2.88	-2.16		-3.60	3,42		-1.80	
16-2m TEMP DIFFERENCE (F) EMISSION RATE (KG/S)	: 0.0899	0.0911		0.0921			0.0930	0.0565
OB/DG INPUT DATA FOR	: Thorney	Island (co	ontinuous)	_				
CHEMICAL RELEASED		of Freon-		rogen .				
MEASURED TEMPERATURE (K)	: 286.25	287,45						
MEASUREMENT HEIGHT (m)	: 2.0	2.0						
MEASURED TEMPERATURE (K)		-99.90						
MEASUREMENT HEIGHT (m)	: -99.9	-99.9						
16-2m TEMP DIFFERENCE (F)	: 0.54	0.45						
EMISSION RATE (KG/S)	: 10.6700	10.2200						

PHAST DATA FOR	:	Burro							
CHEMICAL RELEASED	:	Liquefied	natural	gas					
*** STUDY DATA (METR	IC 1	UNITS) ***							
WIND SPEED @ 10m (m/	s) :	6.0	5.9	10.3	8.4	10.4	9.7	2.6	6.7
STAB CLASS (A-1,F-6)	:	3,	3.	3.	3.	3.	4.	5.	4.
TEMPERATURE (K)	:	311.3	307.8	309.0	314.3	312.7	307.0	306.0	308.5
PRESSURE (N/m^2)	:	93928.	94840.	94536.	94131.	93523.	94030.	94131.	94030.
SURFACE TEMP (K)	:	311.3	307.8	309.0	314.3	312.7	307.0	306.0	308.5
RELATIVE HUMIDITY	:	0.071	0.052	0.027	0.059	0.051	0.074	0.045	0.144
SURFACE ROUGHNESS PA	R :	0.03697	0.03697	0.03697	0.03697	0.03697	0.03697	0.03697	0.03697
*** CASE DATA ***									
TRIAL DESCRIPTION	:	BU2 BI	T 3	BU4	805	BU6 :	807	BUS B	U9
REC. DISTANCE (m)	:	57.0	57.0	57.0	57.0	57.0	57.0	57.0	57.0
REC. DISTANCE (m)	:	140.0	140.0	140.0	140.0	140.0	140.0	140.0	140.0
REC. DISTANCE (m)	:	-99.9	-99.9	-99.9	-99.9	-99.9	400.0	400.0	400.0
REC. DISTANCE (m)	:	-99.9	-99.9	-99.9	-99.9	-99.9	-99.9	800.0	0.008
CONC OF INTEREST (ppr	n):	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
MATERIAL NUMBER	:	32	32	32	32	32	32	32	32
INVENTORY (kg)	:	14980.0	14712.0	15221.0	15444.0	11886.0	17289.0	12453.0	10730.0
*** RELEASE DATA ***									
Use Reactive Liquid Me	etho	od (specify o	evap rate)					
STORAGE TEMP. (K)	:	111.6	111.6	111.6	111.6	111.6	111.6	111.6	111.6
EMISSION RATE (kg/s)	:	86.10	87.98	86.96	81.25	92.22	99.46	116.93	135.98
EMIS RATE (kg/s/m^2)	:	0.0850	0.0850	0.0850	0.0850	0.0850	0.0850	0.0850	0.0850
DURATION (s)		173.00	167.00	175.00	190.00	129.00	174,00	107.00	79.00
POOL AREA (m^2)	:	1012.79	1034.91	1022.97	956.07	1085.11	1170.21	1375.56	1599.63

PHAST DATA FOR	:	Coyote				
CHEMICAL RELEASED	:	Liquefied	natural g	2.5	. Methane	is at least 86% i
*** STUDY DATA (MES	RIC U	NITS) ***				
WIND SPEED & 10m (s	/#1:	6.7	11.0	5.7		
STAB CLASS (A-1,F-) TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K)	5) :	3.	3.	4.		
TEMPERATURE (K)	•	311.5	301.5	297.3		
PRESSURE (N/m^2)	:	93624.	93928.	94232		
SURFACE TEMP (K)	:	311.5	301.5	297.3		
RELATIVE HUMIDITY		0.113	0.221	0.228		
SURFACE ROUGHNESS I	AR :	0.03697	0.03697	0.03697		
*** CASE DATA ***						
TRIAL DESCRIPTION	: 1	CO3 C	:05 C	06		
REC. DISTANCE (m)	:	140.0	140.0	140.0		
REC. DISTANCE (m)	:	200.0	200.0	200.0		
REC. DISTANCE (m)	:	300.0	300.0	300.0		
REC. DISTANCE (m)	:	-99.9	400.0	400.0		
CONC OF INTEREST () (a cc	100.00	100.00	100.00		
MATERIAL NUMBER		32	32	32		
MATERIAL NUMBER INVENTORY (kg)	:	6532.0	12676.0	10139.0		
*** RELEASE DATA **	*					
se Reactive Liquid	Met ho	d (specify	evap rate)			
STORAGE TEMP. (K)	:	111.6	111.6	111.6		
EMISSION RATE (kg/s	: (:	100.67	129.02	123.03		
EMIS RATE (kg/s/m^2	2) :	0.0850	0.0850	0.0850		
EMIS RATE (kg/s/m^2) DURATION (s)	:	65.00	98.00	82,00		
POOL AREA (m^2)	:	1184.20	1517.77	1447.48		

*** STUDY DATA (METRIC	UNITS) ***				
WIND SPEED 6 10m (m/s)	: 9.7	7.6	9.3	6.2	
STAB CLASS (A-1.F-6)	: 4.	4.	4.	5.	
TEMPERATURE (K)	: 302.0	303.6	307.1	305.6	
PRESSURE (N/m^2)	: 90889.	90990.	90686.	90281.	
SURFACE TEMP (K)	: 304.8	303.8	304.8	304.0	
RELATIVE HUMIDITY	: 0.132	0.175	0.148	0.213	
WIND SPEED 8 10m (m/s) STAB CLASS (A-1,F-6) TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS PAR	: 0.04931	0.04931	0.04931	0.04931	
*** CASE DATA ***					
TRIAL DESCRIPTION	: DT1)T2 D	T3 D1	r4	
REC. DISTANCE (m)	: 100.0	100.0	100.0	100.0	
REC. DISTANCE (m)	: 800.0	800.0	800.0	900.0	
CONC OF INTEREST (ppm)	: 100.00	100.00	100.00	100.00	
MATERIAL NUMBER	: 5	5	5	5	
REC. DISTANCE (m) REC. DISTANCE (m) CONC OF INTEREST (ppm) MATERIAL NUMBER INVENTORY (kg)	: 10042.2	28432.5	21696.2	36842.7	
*** RELEASE DATA ***					
se Padded Liquid Vesse		41			
and Liquid Leak (no	. 304 J	203 3	106 1	207 2	
STORAGE TEMP. (K) STORAGE PRESS. (bar-g)	. 10 00000	11 02000	11 22000	11 64000	
SIORAGE PRESS. (DEF#G)	10.00000	11.02000	11.23000	11.64000	
1	. 0.0	0.9	0.0	0.0	
T-ABC'S-GIA' 4-ASCSI		^-	~**	~~2	
DIRE AREA (m^2) 1-wet, 2-dry, 4-water HOLE DIAMETER (mm) RELEASE HT. (m) DIRECTION (Up/Hor.)	. 81.	73,	, ya.	73.	
REDEASE HT. (M)	: 0.79	0.79	u. /9	0.79	
DIRECTION (UP/HOT.)	: н	н	н	н	
Vary the storage press	**- *-				 at e

PHAST DATA FOR	_	Goldfish			
CHEMICAL RELEASED	:				
CHEMICAL RELEASED	:	нудгодел	fluoride		
*** STUDY DATA (MET	RIC S	UNITS) ***			
WIND SPEED # 10m (m			5.4	7.5	
STAB CLASS (A-1, F-6	:	4.	4.	4.	
TEMPERATURE (K)	•	310.4	309 4	307.6	
PRESSURE (N/m^2)		90483.	90078.	90585	
PRESSURE (N/m^2) SURFACE TEMP (K)	:	310.4	309.4	307.6	
RELATIVE HUMIDITY	:	0.049			
SURFACE ROUGHNESS P.	AR :				
		_			
*** CASE DATA ***					
TRIAL DESCRIPTION	:	GF1 (≆F2 G	F3	
REC. DISTANCE (m)	:	300.0	300.0	300.0	
REC. DISTANCE (m)	:	1000.0	1000.0	1000.0	
REC. DISTANCE (m)	:	3000.0	-99.9	3000.0	
COMC OF INTEREST (P					
MATERIAL NUMBER	:	27	27	27	
MATERIAL NUMBER INVENTORY (kg)	:	3459.0	3766.0	3697.0	
*** RELEASE DATA ***					
Use Padded Liquid Ve					
and Liquid Leak					
STORAGE TEMP. (K)				312.2	
STORAGE PRESS. (bar	-g) :			7.48000	
DIKE AREA (m^2)	:	0.0	0.0	0.0	
1-wet, 2-dry, 4-water	:	2	2	2	
1-wet, 2-dry, 4-water HOLE DIAMETER (mm) RELEASE HT. (m)	:	42.	24.		
RELEASE HT. (m)	:	1.00	1.00	1.00	
DIRECTION (Up/Hor.)	:	H	8	Ħ	

Vary the storage pressure or the hole diameter to obtain the actual emission rate: EMISSION RATE (kg/s): 27.67 10.46 10.27

PHAST DATA FOR : CHEMICAL RELEASED :	Hanford	(continuous	=)			
CHEMICAL RELEASED :	Krypton-	85				
*** STUDY DATA (METRIC	********					
wind speed @ lom (m/s) stab class (A=1,F=6) temperature (K) pressure (n/m^2) surface temp (K) relative humidity surface roughness par	. 3.4	5.6	10.3	5.4	4.2	
STAR CLASS (A=1.F=6)	: 6.	3.	3.	3.	5.	
TEMPERATURE (K)	290.9	285.4	238.9	286.6	278.8	
PRESSURE (N/m^2)	: 101325.	101325.	101325.	101325.	101325.	
SURFACE TEMP (K)	290.9	285.4	286.9	286.6	278.8	
RELATIVE HUMIDITY	: 0.200	0.200	0.200	0.200	0.200	
SURFACE ROUGHNESS PAR	: 0.06886	0.06886	0.06886	0.06886	0.06886	
*** CASE DATA ***						
TRIAL DESCRIPTION	: HCl	HC2	HC3	HC4	iC5	
REC. DISTANCE (m)	200.0	200.0	200.0	200.0	200.0	
REC. DISTANCE (E)	. 400.0	800.0	800.0	0.10	0.10	
MATCHEST (PPM)	. 0.10	0.10	0.10	0.10	0.10	
TRIAL DESCRIPTION REC. DISTANCE (m) REC. DISTANCE (m) CONC OF INTEREST (ppm) MATERIAL NUMBER (65-NO with m.w29.0) INVENTORY (kg)	. 00	90	00	00	00	
INVENTORY (kg)	10.9	10.9	23.R	22 . 8	20.4	
3.12212011 (14)		4412				
*** RELEASE DATA ***						
Use Pressurized Gas Ves	sel					
and Vapor Leak (sho	rt line)					
STORAGE TEMP. (K)	: 290.9	285.4	288.9	286.6	278.8	
STORAGE PRESS. (bar-g)	: -99.90000	-99.90000	-99.90000	-99.90000	-99.90000	
DIKE AREA (m^2)	: 0.0	0.0	0.0	0.0	0.0	
1=wet, 2=dry, 4=water	: 2	2	2	2	2	
HOLE DIAMETER (mm)	: 106.	59.	67.	106.	86.	
DIRE AREA (m^2) 1-wet,2-dry,4-water HOLE DIAMETER (mm) RELEASE HT. (m) DIRECTION (Up/Hor.)	1.00	1.00	1.00	1.00	1.00	
DIRECTION (UD/HOT.)	; п	n	н	n	н	
Vary the storage press						n rate:
EMISSION RATE (kg/s)						
		****	****	****	****	
PHAST DATA FOR :	Hanford	(instantane	ous)			
PHAST DATA FOR : CHEMICAL RELEASED :	Hanford Krypton-((instantane	ous)			
CHEMICAL RELEASED :	Krypton-	15				
CHEMICAL RELEASED :	Krypton-	15				
CHEMICAL RELEASED :	Krypton-	15		10,4	6. ~	2.9
CHEMICAL RELEASED :	Krypton-	15		10.4	6.⊹ 3.	2.9
CHEMICAL RELEASED :	Krypton-	15		10.4 3. 288.5	6 3. 285.6	2.9 5. 277.8
CHEMICAL RELEASED :	Krypton-	15		10.4 3. 288.3 101325.	6 3. 285.6 101325.	2.9 5. 277.8 101325.
CHEMICAL RELEASED :	Krypton-	15		10.4 3. 288.3 101325. 288.3	6 3. 285.6 101325. 285.6	2.9 5. 277.8 101325. 277.8
CHEMICAL RELEASED :	Krypton-	15		10.4 3. 288.3 101325. 288.3 0.200	6 3. 285.6 101325. 285.6 0.200 0.06886	2.9 5. 277.8 101325. 277.8 0.200
CHEMICAL RELEASED :	Krypton-	15		10.4 3. 288.3 101325. 288.3 0.200	6 33. 285.6 101325. 285.6 0.200	2.9 5. 277.8 101325. 277.8 0.200
CHEMICAL RELEASED: *** STUDY DATA (METRIC WIND SPEED @ 10m (m/s) STAB CLASS (A-1,F=6) TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS PAR *** CASE DATA ***	Krypton-4 UNITS	6.0 4. 285.1 101325. 285.1 0.200	11.1 3. 288.7 101325. 288.7 0.200			
CHEMICAL RELEASED: *** STUDY DATA (METRIC MIND SPEED @ 10m (m/s) STAB CLASS (A-1,F=6) TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS PAR *** CASE DATA ***	Krypton-6 UNITS) *** : 3.6 : 6. : 291.5 : 101325. : 291.5 : 0.200 : 0.06886	6.0 4. 285.1 101325. 285.1 0.200 0.06886	11.1 3. 288.7 101325. 288.7 0.200 0.06886			***
CHEMICAL RELEASED: *** STUDY DATA (METRIC MIND SPEED @ 10m (m/s) STAB CLASS (A-1,F=6) TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS PAR *** CASE DATA ***	Krypton-6 UNITS) *** : 3.6 : 6. : 291.5 : 101325. : 291.5 : 0.200 : 0.06886	6.0 4. 285.1 101325. 285.1 0.200 0.06886	11.1 3. 288.7 101325. 288.7 0.200 0.06886			***
CHEMICAL RELEASED: *** STUDY DATA (METRIC MIND SPEED @ 10m (m/s) STAB CLASS (A-1,F=6) TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS PAR *** CASE DATA ***	Krypton-6 UNITS) *** : 3.6 : 6. : 291.5 : 101325. : 291.5 : 0.200 : 0.06886	6.0 4. 285.1 101325. 285.1 0.200 0.06886	11.1 3. 288.7 101325. 288.7 0.200 0.06886			***
CHEMICAL RELEASED: *** STUDY DATA (METRIC MIND SPEED @ 10m (m/s) STAB CLASS (A-1,F=6) TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS PAR *** CASE DATA ***	Krypton-6 UNITS) *** : 3.6 : 6. : 291.5 : 101325. : 291.5 : 0.200 : 0.06886	6.0 4. 285.1 101325. 285.1 0.200 0.06886	11.1 3. 288.7 101325. 288.7 0.200 0.06886			***
CHEMICAL RELEASED: *** STUDY DATA (METRIC MIND SPEED @ 10m (m/s) STAB CLASS (A-1,F=6) TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS PAR *** CASE DATA ***	Krypton-6 UNITS) *** : 3.6 : 6. : 291.5 : 101325. : 291.5 : 0.200 : 0.06886	6.0 4. 285.1 101325. 285.1 0.200 0.06886	11.1 3. 288.7 101325. 288.7 0.200 0.06886			***
CHEMICAL RELEASED: *** STUDY DATA (METRIC MIND SPEED @ 10m (m/s) STAB CLASS (A-1,F=6) TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS PAR *** CASE DATA ***	Krypton-6 UNITS) *** : 3.6 : 6. : 291.5 : 101325. : 291.5 : 0.200 : 0.06886	6.0 4. 285.1 101325. 285.1 0.200 0.06886	11.1 3. 288.7 101325. 288.7 0.200 0.06886			***
CHEMICAL RELEASED: *** STUDY DATA (METRIC MIND SPEED @ 10m (m/s) STAB CLASS (A-1,F=6) TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS PAR *** CASE DATA ***	Krypton-6 UNITS) *** : 3.6 : 6. : 291.5 : 101325. : 291.5 : 0.200 : 0.06886	6.0 4. 285.1 101325. 285.1 0.200 0.06886	11.1 3. 288.7 101325. 288.7 0.200 0.06886			***
CHEMICAL RELEASED: *** STUDY DATA (METRIC MIND SPEED @ 10m (m/s) STAB CLASS (A-1,F=6) TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS PAR *** CASE DATA *** TRIAL DESCRIPTION REC. DISTANCE (m) REC. DISTANCE (m) CONC OF INTEREST (ppm) MATERIAL NUMBER (66-NO with m.w.=29.0) INVENTORY (kg)	Krypton-6 UNITS) *** : 3.6 : 6. : 291.5 : 101325. : 291.5 : 0.200 : 0.06886	6.0 4. 285.1 101325. 285.1 0.200 0.06886	11.1 3. 288.7 101325. 288.7 0.200 0.06886			***
CHEMICAL RELEASED: *** STUDY DATA (METRIC MIND SPEED @ 10m (m/s) STAB CLASS (A-1,F=6) TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS PAR *** CASE DATA *** TRIAL DESCRIPTION REC. DISTANCE (m) *** RELEASE DATA ***	Krypton-4 UNITS	6.0 4. 285.1 101325. 285.1 0.200 0.06886	11.1 3. 288.7 101325. 288.7 0.200 0.06886			***
CHEMICAL RELEASED: *** STUDY DATA (METRIC WIND SPEED @ 10m (m/s) STAB CLASS (A-1,F=6) TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS PAR *** CASE DATA *** TRIAL DESCRIPTION REC. DISTANCE (m) REC. DISTANCE (m) CONC OF INTEREST (DPM) MATERIAL NUMBER (66-NO with m.w.=29.0) INVENTORY (kg) *** RELEASE DATA *** Use Pressurized Gas Ves	Krypton-6 UNITS	6.0 4. 285.1 101325. 285.1 0.200 0.06886	11.1 3. 288.7 101325. 288.7 0.200 0.06886			***
CHEMICAL RELEASED: *** STUDY DATA (METRIC MIND SPEED @ 10m (m/s) STAB CLASS (A-1,F=6) TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS PAR *** CASE DATA *** TRIAL DESCRIPTION REC. DISTANCE (m) REC. DISTANCE (m) CONC OF INTEREST (ppm) MATERIAL NUMBER (66-NO with m.w.=29.0) INVENTORY (kg) *** RELEASE DATA *** Use Pressurized Gas Ves and Catastrophic Ru	Krypton-6 UNITS	6.0 4. 285.1 101325. 285.1 0.200 0.06886 HI3 200.0 800.0 0.10 66	11.1 3. 288.7 101325. 288.7 0.200 0.06886 415 200.0 0.10 66	HI6 200.0 800.0 0.10 66	200.0 800.0 0.10 66	200.0 800.0 0.10 66
CHEMICAL RELEASED: *** STUDY DATA (METRIC MIND SPEED @ 10m (m/s) STAB CLASS (A-1,F=6) TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS PAR *** CASE DATA *** TRIAL DESCRIPTION REC. DISTANCE (m) REC. DISTANCE (m) CONC OF INTEREST (ppm) MATERIAL NUMBER (66-NO with m.w.=29.0) INVENTORY (kg) *** RELEASE DATA *** Use Pressurized Gas Ves and Catastrophic Ru STORAGE TEMP. (K)	Krypton-4 UNITS) *** : 3.6 : 291.5 : 101325. : 291.5 : 0.200 : 0.06886 : HI2 : 200.0 : 800.0 : 0.10 : 66 : 10.0	6.0 4. 285.1 101325. 285.1 0.200 0.06886 HI3 1 200.0 800.0 0.10 66	11.1 3. 288.7 101325. 288.7 0.200 0.06886 815 200.0 800.0 0.10 66	HI6 200.0 800.0 0.10 66 10.0	200.0 800.0 0.10 66 10.0	200.0 800.0 0.10 66 10.0
CHEMICAL RELEASED: *** STUDY DATA (METRIC WIND SPEED @ 10m (m/s) STAB CLASS (A-1,F=6) TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS PAR *** CASE DATA *** TRIAL DESCRIPTION REC. DISTANCE (m) REC. DISTANCE (m) CONC OF INTEREST (ppm) MATERIAL NUMBER (66-NO with m.w29.0) INVENTORY (kg) *** RELEASE DATA *** Use Pressurized Gas Ves and Catastrophic Ru STORAGE TEMP. (K) STORAGE PRESS. (bar-g)	Krypton-6 UNITS) *** : 3.6 : 6. : 291.5 : 101325. : 291.5 : 0.200 : 0.06886 : HI2 : 200.0 : 800.0 : 0.10 : 66 : 10.0 mel prure : 291.5 : -99.90000	6.0 4. 285.1 101325. 285.1 0.200 0.06886 HI3 1 200.0 800.0 0.10 66	11.1 3. 288.7 101325. 208.7 0.200 0.06886 415 200.0 800.0 0.10 66 10.0	HI6 200.0 0.10 66 10.0 288.3 -99.9000	200.0 800.0 0.10 66 10.0	200.0 800.0 0.10 66 10.0
CHEMICAL RELEASED: *** STUDY DATA (METRIC WIND SPEED @ 10m (m/s) STAB CLASS (A-1,F=6) TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS PAR *** CASE DATA *** TRIAL DESCRIPTION REC. DISTANCE (m) REC. DISTANCE (m) CONC OF INTEREST (PPM) MATERIAL NUMBER (66-NO with m.w29.0) INVENTORY (kg) *** RELEASE DATA *** Use Pressurized Gas Ves and Catastrophic Ru STORAGE TEMP. (K) STORAGE PRESS. (bar-g) DIKE AREA (m^2)	Krypton-6 UNITS	6.0 4. 285.1 101325. 285.1 0.200 0.06886 HI3 200.0 800.0 0.10 66 10.0	11.1 3.288.7 101325.288.7 0.200 0.06886 415 200.0 0.10 66 10.0	200.0 800.0 0.10 66 10.0	200.0 800.0 0.10 66 10.0 285.6 -99.90000	200.0 800.0 0.10 66 10.0 277.8 -99.90000 0.0
CHEMICAL RELEASED: *** STUDY DATA (METRIC MIND SPEED @ 10m (m/s) STAB CLASS (A-1,F=6) TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS PAR *** CASE DATA *** TRIAL DESCRIPTION REC. DISTANCE (m) REC. DISTANCE (m) CONC OF INTEREST (ppm) MATERIAL NUMBER (66-NO with m.w.=29.0) INVENTORY (kg) *** RELEASE DATA *** Use Pressurized Gas Ves and Catastrophic Ru STORAGE TEMP. (K)	Krypton-6 UNITS	6.0 4. 285.1 101325. 285.1 0.200 0.06886 HI3 200.0 800.0 0.10 66 10.0	11.1 3. 288.7 101325. 288.7 0.200 0.06886 415 200.0 0.10 66 10.0	HI6 200.0 800.0 0.10 66 10.0 288.3 -99.90000 0.0 2	200.0 800.0 0.10 666 10.0 285.6 -99.90000	200.0 800.0 0.10 66 10.0 277.8 -99.90000
CHEMICAL RELEASED: *** STUDY DATA (METRIC MIND SPEED @ 10m (m/s) STAB CLASS (A-1,F=6) TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS PAR *** CASE DATA *** TRIAL DESCRIPTION REC. DISTANCE (m) REC. DISTANCE (m) CONC OF INTEREST (ppm) MATERIAL NUMBER (66-NO with m.w.=29.0) INVENTORY (kg) *** RELEASE DATA *** Use Pressurized Gas Ves and Catastrophic Ru STORAGE TEMP. (K) STORAGE PRESS. (bar-g) DIKE AREA (m^2) 1-wet,2-dry,4-water HOLE DIAMETER (mm)	Krypton-6 UNITS	6.0 4. 285.1 101325. 285.1 0.200 0.06886 HI3 200.0 800.0 0.10 66 10.0	11.1 3. 288.7 101325. 288.7 0.200 0.06886 300.0 0.10 66 10.0	200.0 800.0 0.10 66 10.0 288.3 -99.90000 0.0 2 2748.	200.0 800.0 0.10 66 10.0 285.6 -99.90000	200.0 800.0 0.10 66 10.0 277.8 -99.90000 0.0
CHEMICAL RELEASED: *** STUDY DATA (METRIC MIND SPEED @ 10m (m/s) STAB CLASS (A-1,F=6) TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS PAR *** CASE DATA *** TRIAL DESCRIPTION REC. DISTANCE (m) REC. DISTANCE (m) CONC OF INTEREST (ppm) MATERIAL NUMBER (66-NO with m.w29.0) INVENTORY (kg) *** RELEASE DATA *** Use Pressurized Gas Ves and Catastrophic Ru STORAGE TEMP. (K) STORAGE TEMP. (K) STORAGE FESS. (bar-g) DIKE AREA (m^2) 1-wet, 2-dry, 4-water HOLE DIAMETER (mm)	Krypton-6 UNITS) *** : 3.6 : 6. : 291.5 : 101325. : 291.5 : 0.200 : 0.06886 : H12 ! : 200.0 : 800.0 : 0.10 : 66 : 10.0 mel pture : 291.5 : -99.90000 : 0.0 : 0.0 : 0.0 : 0.0 : 0.0 : 0.0 : 0.0 : 0.0 : 0.0 : 0.0 : 0.0 : 0.0 : 0.0 : 0.0 : 0.0	6.0 4. 285.1 101325. 285.1 0.200 0.06886 HI3 200.0 800.0 0.10 66 10.0	11.1 3. 288.7 101325. 288.7 0.200 0.06886 415 200.0 800.0 0.10 66 10.0	200.0 800.0 0.10 66 10.0 288.3 -99.90000 0.0 2748.	200.0 800.0 0.10 66 10.0 285.6 -99.90000 0.0 2	200.0 800.0 0.10 66 10.0 277.8 -99.90000 0.0 22714.

Vary the storage pressure or the hole diameter to obtain the actual emission rate: EMISSION RATE (kg/s) : 0.00 0.00 0.00 0.00 0.00 0.00

PHAST DATA FOR	: Map	lin Sands							
CHEMICAL RELEASED	: Ma	ruified Wat	ural Gas						
*** STUDY DATA (ME	TRIC UN	ITS) ***							
wind speed @ 10m (STAB CLASS (A=1,F= TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS	m/a):	5.6	7.4	8.5	9.6				
STAB CLASS (A=1,F=	6) :	4.	4.	4.	4.				
TEMPERATURE (K)	:	288.1	289.3	288.4	289.3				
PRESSURE (N/m^2)	:	101325.	101325.	101325.	101325.				
SURFACE TEMP (K)	:	288.8	290.0	289.0	289.8				
RELATIVE HUMIDITY	:	0.530	0.710	0.900	0.770				
SURFACE ROUGHNESS	PAR :	0.03841	0.03841	0.03841	0,03841				
TRIAL DESCRIPTION REC. DISTANCE (m)									
TRIAL DESCRIPTION	; M	IS 27 H	1529 M	IS34 M	IS35				
REC. DISTANCE (m)	:	89.0	58.0	87.0	129.0				
REC. DISTANCE (m)	:	131.0	90.0	179.0	250.0				
REC. DISTANCE (m)	:	324.0	130.0	-99.9	406.0				
REC. DISTANCE (m)	:	400.0	182.0	-99.9	-99.9				
REC. DISTANCE (m)	:	650.0	252.0	-99.9	-99.9				
REC. DISTANCE (m)	:	-99.9	324.0	-99.9	-99.9				
REC. DISTANCE (m)	:	-99.9	403.0	-99.9	~99.9				
CONC OF INTEREST (ppm):	100.00	100.00	100.00	100.00				
MATERIAL NUMBER	:	32	32	32	32				
INVENTORY (kg)	:	3714.4	6561.3	2043.6	3657.7				
*** RELEASE DATA **									
Use Reactive Liquid	Method	(specify	evap rate)						
STORAGE TEMP. (K)	:	111.7	111.7	111.7	111.7				
EMISSION RATE (kg/s	B) ;	23.21	29.16	21.51	27.09				
EMIS RATE (kg/s/m^:	2) :	0.0854	0.0850	0.0845	0.0854				
STORAGE TEMP. (K) EMISSION RATE (kg/s EMIS RATE (kg/s/m^: DURATION (s) POOL AREA (m^2)		160.00	225.00	95.00	135.00				
POOL AREA (m^2)	:	271.72	343.07	254.47	317.31				
PHAST DATA FOR CHEMICAL RELEASED	: Map	lin Sands uifled Pro	pane Gas						
CHEMICAL RELEASED	ः प्रका	uified Prop							
CHEMICAL RELEASED	ः प्रका	uified Prop							
CHEMICAL RELEASED	ः प्रका	uified Prop		8.1	6.2	5.5	7.9	7.4	3.7
CHEMICAL RELEASED	ः प्रका	uified Prop		8.1	6.2 4.	5.5 4.	7.9 4.	7.4 4.	3.7 4.
CHEMICAL RELEASED	ः प्रका	uified Prop		8.1 4. 291.9	6.2 4. 290.6	5.5 4. 286.5	7.9 4. 283.6	7.4 4. 285.0	3.7 4. 281.6
CHEMICAL RELEASED	ः प्रका	uified Prop		8.1 4. 291.9 101325.	6.2 4. 290.6 101325.	5.5 4. 286.5 101325.	7.9 4. 283.6 101325.	7.4 4. 285.0 101325.	3.7 4. 281.6 101325.
CHEMICAL RELEASED	ः प्रका	uified Prop		8.1 4. 291.9 101325. 290.5	6.2 4. 290.6 101325. 290.3	5.5 4. 286.5 101325. 286.2	7.9 4. 283.6 101325. 283.1	7.4 4. 285.0 101325. 285.1	3.7 4. 281.6 101325. 282.6
CHEMICAL RELEASED	ः प्रका	uified Prop		8.1 4. 291.9 101325. 290.5 0.710	6.2 4. 290.6 101325. 290.3 0.780	5.5 4. 286.5 101325. 286.2 0.8#0	7.9 4. 283.6 101325. 283.1 0.790	7.4 4- 285.0 101325. 285.1 0.630	3.7 4. 281.6 101325. 282.6 0.850
CHEMICAL RELEASED	ः प्रका	uified Prop		8.1 4. 291.9 101325. 290.5 0.710	6.2 4. 290.6 101325. 290.3 0.780	5.5 4. 286.5 101325. 286.2 0.880	7.9 4. 283.6 101325. 283.1 0.790	7.4 4. 285.0 101325. 285.1 0.630	3.7 4. 281.6 101325. 282.6 0.850
CHEMICAL RELEASED	ः प्रका	uified Prop		8.1 4. 291.9 101325. 290.5 0.710	6.2 4. 290.6 101325. 290.3 0.780	5.5 4. 286.5 101325. 286.2 0.880	7.9 4. 283.6 101325. 283.1 0.790	7.4 4. 285.0 101325. 285.1 0.630	3.7 4. 201.6 101325. 202.6 0.850 0.03841
CHEMICAL RELEASED *** STUDY DATA (MET MIND SPEED @ 10m (n STAB CLASS (A-1,F-(TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS E	: Liqueric uni	uified Pro 1TS) *** 4.0 4. 291.5 101325. 291.7 0.800 0.03841	5.8 4. 290.2 101325. 292.1 0.800 0.03841						
CHEMICAL RELEASED *** STUDY DATA (MET MIND SPEED @ 10m (n STAB CLASS (A-1,F-(TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS E	: Liqueric uni	uified Pro 1TS) *** 4.0 4. 291.5 101325. 291.7 0.800 0.03841	5.8 4. 290.2 101325. 292.1 0.800 0.03841						
CHEMICAL RELEASED *** STUDY DATA (MET MIND SPEED @ 10m (n STAB CLASS (A-1,F-(TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS E	: Liqueric uni	uified Pro 1TS) *** 4.0 4. 291.5 101325. 291.7 0.800 0.03841	5.8 4. 290.2 101325. 292.1 0.800 0.03841						
CHEMICAL RELEASED *** STUDY DATA (MET MIND SPEED @ 10m (n STAB CLASS (A-1,F-(TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS E	: Liqueric uni	uified Pro 1TS) *** 4.0 4. 291.5 101325. 291.7 0.800 0.03841	5.8 4. 290.2 101325. 292.1 0.800 0.03841						
CHEMICAL RELEASED *** STUDY DATA (MET MIND SPEED @ 10m (n STAB CLASS (A-1,F-(TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS E	: Liqueric uni	uified Pro 1TS) *** 4.0 4. 291.5 101325. 291.7 0.800 0.03841	5.8 4. 290.2 101325. 292.1 0.800 0.03841						
CHEMICAL RELEASED *** STUDY DATA (MET MIND SPEED @ 10m (n STAB CLASS (A-1,F-(TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS E	: Liqueric uni	uified Pro 1TS) *** 4.0 4. 291.5 101325. 291.7 0.800 0.03841	5.8 4. 290.2 101325. 292.1 0.800 0.03841						
CHEMICAL RELEASED *** STUDY DATA (MET MIND SPEED @ 10m (n STAB CLASS (A-1,F-(TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS E	: Liqueric uni	uified Pro 1TS) *** 4.0 4. 291.5 101325. 291.7 0.800 0.03841	5.8 4. 290.2 101325. 292.1 0.800 0.03841						
CHEMICAL RELEASED *** STUDY DATA (MET MIND SPEED @ 10m (n STAB CLASS (A-1,F-(TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS E	: Liqueric uni	uified Pro 1TS) *** 4.0 4. 291.5 101325. 291.7 0.800 0.03841	5.8 4. 290.2 101325. 292.1 0.800 0.03841						
CHEMICAL RELEASED *** STUDY DATA (MET MIND SPEED @ 10m (n STAB CLASS (A-1,F-(TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS E	: Liqueric uni	uified Pro 1TS) *** 4.0 4. 291.5 101325. 291.7 0.800 0.03841	5.8 4. 290.2 101325. 292.1 0.800 0.03841						
CHEMICAL RELEASED *** STUDY DATA (MET MIND SPEED @ 10m (n STAB CLASS (A-1,F-(TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS E	: Liqueric uni	uified Pro 1TS) *** 4.0 4. 291.5 101325. 291.7 0.800 0.03841	5.8 4. 290.2 101325. 292.1 0.800 0.03841						
CHEMICAL RELEASED *** STUDY DATA (MET WIND SPEED @ 10m (n STAB CLASS (A-1,F-(TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS E *** CASE DATA *** TRIAL DESCRIPTION REC. DISTANCE (m) COBC OF INTEREST (p)	: Liquer und properties and properties and properties are also properties and properties are also properti	### A.0 4.0 4.0 291.5 101325. 291.7 0.800 0.03841 \$42 28.0 \$3.0 123.0 179.0 247.0 398.0 100.00	5.8 4. 290.2 101325. 292.1 0.800 0.03841 88.0 129.0 249.0 400.0 -99.9 -99.9 100.00	34.0 91.0 130.0 182.0 250.0 322.0 401.0	90.0 128.0 182.0 250.0 321.0 400.0 -99.9 100.00	90.0 129.0 180.0 250.0 322.0 400.0 -99.9 100.00	\$50 % \$9.0 93.0 182.0 400.0 -99.9 -99.9	61.0 95.0 178.0 249.0 398.0 650.0 ~99.9	56.0 85.0 178.0 247.0 -99.9 -99.9
CHEMICAL RELEASED *** STUDY DATA (MET WIND SPEED # 10m (B STAB CLASS (A-1,F=(TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS # *** CASE DATA *** TRIAL DESCRIPTION REC. DISTANCE (m) COMC OF INTEREST (F MATERIAL NUMBER	: Liquer und properties and properties and properties are also properties and properties are also properti	ITS) *** 4.0 4. 291.5 101325. 291.7 0.800 0.03841 S42 28.0 53.0 83.0 123.0 179.0 247.0 398.0 100.00	5.8 4. 290.2 101325. 292.1 0.800 0.03841 \$88.0 129.0 2490.0 400.0 -99.9 -99.9 100.00 45	34.0 91.0 130.0 182.0 250.0 322.0 401.0 100.00	90.0 128.0 182.0 250.0 321.0 400.0 -99.9 100.00	90.0 129.0 180.0 250.0 322.0 400.0 -99.0 100.00	\$50 M \$9.0 93.0 182.0 400.0 -99.9 -99.9 -99.9 100.00	61.0 95.0 178.0 249.0 398.0 650.0 -99.9 100.00	56.0 85.0 178.0 247.0 -99.9 -99.9 100.00
CHEMICAL RELEASED *** STUDY DATA (MET WIND SPEED @ 10m (n STAB CLASS (A-1,F-(TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS E *** CASE DATA *** TRIAL DESCRIPTION REC. DISTANCE (m) COBC OF INTEREST (p)	: Liquer und properties and properties and properties are also properties and properties are also properti	### A.0 4.0 4.0 291.5 101325. 291.7 0.800 0.03841 \$42 28.0 \$3.0 123.0 179.0 247.0 398.0 100.00	5.8 4. 290.2 101325. 292.1 0.800 0.03841 \$88.0 129.0 249.0 400.0 -99.9 -99.9 100.00	34.0 91.0 130.0 182.0 250.0 322.0 401.0 100.00	90.0 128.0 182.0 250.0 321.0 400.0 -99.9 100.00	90.0 129.0 180.0 250.0 322.0 400.0 -99.0 100.00	\$50 M \$9.0 93.0 182.0 400.0 -99.9 -99.9 -99.9 100.00	61.0 95.0 178.0 249.0 398.0 650.0 -99.9 100.00	56.0 85.0 178.0 247.0 -99.9 -99.9 100.00
CHEMICAL RELEASED *** STUDY DATA (MET WIND SPEED @ 10m (0 STAB CLASS (A-1,F-0 TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS E *** CASE DATA *** TRIAL DESCRIPTION REC. DISTANCE (m) REC. D	: Liquer und Ada): 5) : : : : : : : : : : : : :	ITS) *** 4.0 4. 291.5 101325. 291.7 0.800 0.03841 S42 28.0 53.0 83.0 123.0 179.0 247.0 398.0 100.00	5.8 4. 290.2 101325. 292.1 0.800 0.03841 \$88.0 129.0 2490.0 400.0 -99.9 -99.9 100.00 45	34.0 91.0 130.0 182.0 250.0 322.0 401.0 100.00	90.0 128.0 182.0 250.0 321.0 400.0 -99.9 100.00	90.0 129.0 180.0 250.0 322.0 400.0 -99.0 100.00	\$50 M \$9.0 93.0 182.0 400.0 -99.9 -99.9 -99.9 100.00	61.0 95.0 178.0 249.0 398.0 650.0 -99.9 100.00	56.0 85.0 178.0 247.0 -99.9 -99.9 100.00
CHEMICAL RELEASED *** STUDY DATA (MET WIND SPEED @ 10m (n STAB CLASS (A-1,F-(TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS R *** CASE DATA *** TRIAL DESCRIPTION REC. DISTANCE (m) REC. D	: Liquer under the control of the co	291.5 101325. 291.7 0.800 0.03841 842 28.0 53.0 123.0 179.0 247.0 398.0 100.00 45	5.8 4. 290.2 101325. 292.1 0.800 0.03841 88.0 129.0 400.0 -99.9 -99.9 100.00 45 6336.0	34.0 91.0 130.0 182.0 250.0 322.0 401.0 100.00	90.0 128.0 182.0 250.0 321.0 400.0 -99.9 100.00	90.0 129.0 180.0 250.0 322.0 400.0 -99.0 100.00	\$50 M \$9.0 93.0 182.0 400.0 -99.9 -99.9 -99.9 100.00	61.0 95.0 178.0 249.0 398.0 650.0 -99.9 100.00	56.0 85.0 178.0 247.0 -99.9 -99.9 100.00
CHEMICAL RELEASED *** STUDY DATA (MET WIND SPEED @ 10m (0 STAB CLASS (A-1,F-0 TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS E *** CASE DATA *** TRIAL DESCRIPTION REC. DISTANCE (m) COUC OF INTEREST (F MATERIAL NUMBER INVENTORY (kg) *** RELEASE DATA ** USE RESCLIVE LIQUID STORAGE TEMP. (K)	: Liquer (International Control Contro	### ATT ### AT	5.8 4. 290.2 101325. 292.1 0.800 0.03841 S43 88.0 129.0 249.0 400.0 -99.9 -99.9 100.00 45 6336.0	34.0 91.0 91.0 130.0 182.0 250.0 322.0 401.0 100.00 45 8413.2	90.0 128.0 128.0 250.0 321.0 400.0 -99.9 100.00 45 6839.7	90.0 129.0 180.0 250.0 322.0 400.0 -99.9 100.00 45	\$50 M \$9.0 93.0 182.0 400.0 -99.9 -99.9 100.00 45 5742.4	61.0 95.0 178.0 249.0 398.0 650.0 -99.9 100.00 45 6195.0	56.0 85.0 178.0 247.0 -99.9 -99.9 100.00 45 3456.0
CHEMICAL RELEASED *** STUDY DATA (MET WIND SPEED # 10m (B STAB CLASS (A-1,F=(TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS # *** CASE DATA *** TRIAL DESCRIPTION REC. DISTANCE (m) REC. D	Liquer (Marie 1988)	uified Property 4.0 4.0 4.291.5 101325. 291.7 0.800 0.03841 S42 28.0 53.0 83.0 179.0 247.0 398.0 100.00 45 3756.6	5.8 4. 290.2 101325. 292.1 0.800 0.03841 88.0 129.0 400.0 -99.9 -99.9 100.00 45 6336.0	34.0 91.0 130.0 182.0 250.0 322.0 401.0 100.00 8413.2	90.0 128.0 122.0 250.0 321.0 400.0 -99.9 100.00 45 6839.7	90.0 129.0 180.0 250.0 322.0 400.0 -99.9 100.00 45 1503.9	\$50 M \$93.0 182.0 400.0 -99.9 -99.9 100.00 45 \$742.4	61.0 95.0 178.0 249.0 398.0 650.0 -99.9 100.00 45 6195.0	56.0 85.0 178.0 247.0 -99.9 -99.9 -99.9 3456.0
CHEMICAL RELEASED *** STUDY DATA (MET WIND SPEED # 10m (B STAB CLASS (A-1,F=(TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS # *** CASE DATA *** TRIAL DESCRIPTION REC. DISTANCE (m) REC. D	Liquer (Marie 1988)	uified Property 4.0 4.0 4.291.5 101325. 291.7 0.800 0.03841 S42 28.0 53.0 83.0 179.0 247.0 398.0 100.00 45 3756.6	5.8 4. 290.2 101325. 292.1 0.800 0.03841 88.0 129.0 400.0 -99.9 -99.9 100.00 45 6336.0	34.0 91.0 91.0 130.0 182.0 250.0 322.0 401.0 100.00 45 8413.2	\$47 M 90.0 128.0 128.0 250.0 321.0 400.0 -99.9 100.00 45 6839.7	90.0 129.0 129.0 250.0 322.0 400.0 -99.9 100.00 45 1503.9	\$50 M \$9.0 93.0 182.0 400.0 -99.9 -99.9 100.00 45 \$742.4	#52 #61.0 95.0 178.0 249.0 339.0 650.0 -99.9 100.00 45 6195.0	56.0 85.0 178.0 247.0 -99.9 -99.9 100.00 45 3456.0
CHEMICAL RELEASED *** STUDY DATA (MET WIND SPEED # 10m (B STAB CLASS (A-1,F=(TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS # *** CASE DATA *** TRIAL DESCRIPTION REC. DISTANCE (m) REC. D	Liquer (Marie 1988)	uified Property 4.0 4.0 4.291.5 101325. 291.7 0.800 0.03841 S42 28.0 53.0 83.0 179.0 247.0 398.0 100.00 45 3756.6	5.8 4. 290.2 101325. 292.1 0.800 0.03841 88.0 129.0 400.0 -99.9 -99.9 100.00 45 6336.0	34.0 91.0 91.0 130.0 182.0 250.0 322.0 401.0 100.00 45 8413.2	90.0 128.0 128.0 250.0 321.0 400.0 -99.9 100.00 45 6839.7	90.0 129.0 129.0 250.0 322.0 400.0 -99.9 100.00 45 1503.9	59.0 59.0 93.0 182.0 400.0 -99.9 -99.9 100.00 45 5742.4 231.1 35.89 0.1202	61.0 95.0 178.0 249.0 398.0 650.0 -99.9 100.00 45 6195.0	56.0 85.0 178.0 247.0 -99.9 -99.9 100.00 45 3456.0
CHEMICAL RELEASED *** STUDY DATA (MET WIND SPEED @ 10m (0 STAB CLASS (A-1,F-0 TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS E *** CASE DATA *** TRIAL DESCRIPTION REC. DISTANCE (m) COUC OF INTEREST (F MATERIAL NUMBER INVENTORY (kg) *** RELEASE DATA ** USE RESCLIVE LIQUID STORAGE TEMP. (K)	Liquer (Marie 1988)	uified Property 4.0 4.0 4.291.5 101325. 291.7 0.800 0.03841 S42 28.0 53.0 83.0 179.0 247.0 398.0 100.00 45 3756.6	5.8 4. 290.2 101325. 292.1 0.800 0.03841 88.0 129.0 400.0 -99.9 -99.9 100.00 45 6336.0	34.0 91.0 91.0 130.0 182.0 250.0 322.0 401.0 100.00 45 8413.2	\$47 M 90.0 128.0 128.0 250.0 321.0 400.0 -99.9 100.00 45 6839.7	90.0 129.0 129.0 250.0 322.0 400.0 -99.9 100.00 45 1503.9	\$50 M \$9.0 93.0 182.0 400.0 -99.9 -99.9 100.00 45 \$742.4	61.0 95.0 178.0 249.0 398.0 650.0 -99.9 100.00 45 6195.0	56.0 85.0 178.0 247.0 -99.9 -99.9 100.00 45 3456.0

PHAST DATA FOR :			1					
CHEMICAL RELEASED :	Sulfur d	loxide						
*** ***********************************								
WIND SPEED @ 10m (m/s):	UNITS)	5.0		5.4		4 0		
STAB CLASS (A-1,F-6) :			3.			1.		
TEMPERATURE (K)	305 1	205 1				295.1		
PRESSURE (N/m^2)	101375	101375	101325.				101325.	
SURFACE TEMP (K)	305 1	305 1	301.1			295.1		
RELATIVE HUMIDITY	0 200	0 200	0 200			0 200	301.1	0.200
SURFACE ROUGHNESS PAR :	0.05392	0.5392	0.05392	0.05392	0.200	0.200	0.200	
THE NEW MOVEMENT OF THE S.	0,000,1	0.00052	0.000,2	0.03032	4.43372	0.03332	0.03332	0.03372
*** CASE DATA ***								
TRIAL DESCRIPTION :	PG7	PG8 P	G9 P	G10 I	PG13	PG15	PG16	PG17
DEC DISTANCE (m)	50.0	50.0	50.0	50.0	400.0	50.0	50.0	
REC. DISTANCE (m) :	100.0	100.0	100.0	100.0	800.0	100.0	100.0	100.0
REC. DISTANCE (m) : REC. DISTANCE (m) : REC. DISTANCE (m) :	200.0	200.0	200.0	200.0	-99.9			200.0
REC. DISTANCE (m) :	400.0 800.0	400.0	400.0	400.0	-99.9	400.0	400.0	400.0
REC. DISTANCE (m) :	800.0	800.0	800.0	800.0	-99.9	800.0	800.0	800.0
CONC OF INTEREST (DDM):	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MATERIAL NUMBER :	49	49	49	49	49	49	49	49
MATERIAL NUMBER : INVENTORY (kg) :	53.9	54.7	55.2	55.3	36.7	57.3	55.8	33.9
*** RELEASE DATA ***								
Use Pressurized Gas Vesse	1							
and Vapor Leak (short	line)							
STORAGE TEMP. (K) :	305.1	305.1	301.1	304.1	293.1	295.1	301.1	300.1
STORAGE PRESS. (bar-g):	-99.90000	-99.90000	-99.90000	-99,90000	-99.90000	-99.90000		-00 00000
DIKE AREA (m^2) :	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1=wet, 2=dry, 4=water :	2	2	2	2	2	2	2	2
HOLE DIAMETER (mm) :	51.	51.	51.	51.	51.	51.	51.	51.
RELEASE HT. (m) :	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
DIKE AREA (m^2): 1-wet, 2-dry, 4-water: HOLE DIAMETER (mm): RELEASE HT. (m): DIRECTION (Up/Hor.):	H	н	н	H	H	н	н	н
Vary the storage pressur								
EMISSION RATE (kg/s) :					0.06			0.06

PHAST DATA FOR PHAST DATA FOR : CHEMICAL RELEASED : Thorney Island (continuous) Mixture of Freon-12 and Nitrogen *** STUDY DATA (METRIC UNITS) *** 2.3 WIND SPEED & 10m (m/s): 1.5 STAB CLASS (A-1, F-6) : 6. TEMPERATURE (K) 286.3 287.5 PRESSURE (N/m^2) SURFACE TEMP (K) 101325. 101325. 286.0 287.6 RELATIVE HUMIDITY 1.000 0.974 SURFACE ROUGHNESS PAR : 0.05791 0.05791 *** CASE DATA *** TRIAL DESCRIPTION : TC45 TC47 40.0 53.0 REC. DISTANCE (m)
REC. DISTANCE (m) 50.0 : 90.0 REC. DISTANCE (m)
REC. DISTANCE (m) 72.0 212.0 90.0 250.0 REC. DISTANCE (m) 112.0 335.0 REC. DISTANCE (m) 158.0 472.0 REC. DISTANCE (m) 250.0 -99.9 REC. DISTANCE (m) 335.0 -99.9 REC. DISTANCE (m) : CONC OF INTEREST (ppm): MATERIAL NUMBER : 472.0 -99.9 100.00 100.00 62 62 4855.0 INVENTORY (kg) 4752.0 *** RELEASE DATA *** Use Pressurized Gas Vessel and Vapor Lear (minute 1...)

STORAGE TEMP. (R): 286.3 287.5

STORAGE PRESS. (bar-q): -99.90000 -99.90000

DIKE AREA (m^2): 0.0 0.0 and Vapor Leak (short line) HOLE DIAMETER (mm) 2000. 2000. RELEASE HT. (m) 0.00 0.00 DIRECTION (Up/Hor.)

Vary the storage pressure or the hole diameter to obtain the actual emission rate: EMISSION RATE (kg/s) : 10.67 10.22

PHAST DATA FOR :	Thorney	Island (ir	stantaneo						
CHEMICAL RELEASED :	Mixture	of Freen-	2 and Nit:	rogen					

*** STUDY DATA (METRIC D									
WIND SPEED 6 10m (m/s):	2.8	3.4	2.	1.7	7 2.5	5 7.:	3 5.4	7.4	6,4
STAB CLASS (A=1,F=6) :	4.	5.	4.						
TEMPERATURE (K) :	291.8	290.5	290.1						
PRESSURE (N/m^2) :	101325.	102136.							
SURFACE TEMP (K) :	291.8	290.9							
RELATIVE HUMIDITY :	0.748	0.807							
SURFACE ROUGHNESS PAR :	0.06329	0.06329							
*** CASE DATA ***									
	TI6 7	17	TIS	TI9	m*10				
REC. DISTANCE (m)	71.0	71.0							TILS
REC. DISTANCE (m)	141.0	100.0							
REC. DISTANCE (m)	180.0	150.0							
REC. DISTANCE (m)	283.0	180.0							71.0
REC. DISTANCE (E)	424.0	224.0	200.0						
REC. DISTANCE (m)	-99.9		364.0		,-			100.0	224.0
REC. DISTANCE (m)	-99.9	361.0	412.0					200.0	361.0
REC. DISTANCE (m)		500.0	510.0		• -			224.0	583.0
REC. DISTANCE (m)	-99.9	-99.9	-99.9					300.0	-99.9
REC. DISTANCE (m)	-99.9	-99.9					-99.9	400.0	-99.9
CONC OF INTEREST (ppm):	-99.9	-99.9	-99.9					510.0	
MATERIAL NUMBER :	100.00	100.00	100.00		100.00	100.00	100.00	100.00	
The state of the s	57	58	59			62	63		
INVENTORY (kg) ;	3147.0	4249.0	3958.0	3866.0	5736.0	4800.0			
*** RELEASE DATA ***									
Use Pressurized Gas Vessel	l								
and Catastrophic Ruptu	Te								
STORAGE TEMP. (K) :	291.8	290.5	290.7	291.5	283.3	286.9	250.5	444 4	
STORAGE PRESS. (bar-g):	-99.90000	-99.90000	-99.90000	-99.90000	-99 90000	-88 90000	289.2	289.7	286.5
	0.0	0.0	0.0	0.0	0.0	0.0	-99.90000	-99.90000	
1-wet, 2-dry, 4-water :	2	2	2		2		0.0	0.0	0.0
HOLE DIAMETER (mm) :	14000.	14000.	14000.	14000	14000.	14000.			2
RELEASE HT. (m)	0.00	0.00	0.00	0.00	0.00				14000.
DIRECTION (Up/Hor.) :	a	ū	0.00		0.00	0.00	0.00		0.00
	-	_	_	•	•	a	Ū	Ū	a
Vary the storage pressure	or the hol	le diamete	r to obtain	in the ger:					
EMISSION RATE (kg/s) :	0.00	0.00	0.00	0.00	0.00	O.OO	0		
			2.00	5.00	0.00	0.00	0.00	0.00	0.00

SLAB INPUT DATA FOR : Burro

CHEMICAL RELEASED : Liquefied natural gas
THE SPILL ID CODE (IDSPL) HAS THE FOLICHING KEY:

1: EVAPORATING POOL
2: HORIZONTAL JET

3: VERTICAL JET

4: INSTANTANEOUS OR SHORT DURATION

TRIAL	:	BU2 B	ช3	BU4	805	BU 6	807	BUS	809
IDSPL	:	1	1		1	1 1	. 1	1	,
NCALC (sub-step mult.);	1	1		1 :	i	. 1		1
MOL. WT. (kg/mol)	:	0.01746	0.01726	0.0170	0.0170	0.01724	0.01822	0.01812	0.01882
Cp-gas (J/kg-K)	:	2238.0	2238.0	2238.	2238.0				2238.0
NORMAL BOILING PT (K)	:	111.6	111.6	111.	111.				111.6
LIQ MASS FRACTION	:	1.000	1.000	1.000					1.000
HEAT OF VAP. (J/kg)	:	511900.	\$11900.	511900					511900.
LIQ HEAT CAP (J/kg-K)	ş	3348.5	3348.5	3348.5	3348.				3348.5
LIQ DENSITY (kg/m^3)	:	434,1	432.7	431.3					443.4
B VAP PRESS CONST	:	983.89	983,69	983.89	983.89				983.89
C VAP PRESS CONST	:	0.10	0.10						0.10
GAS TEMPERATURE (K)	:	111.6	111.6						111.6
MASS EMIS RATE (kg/s)	:	86.10	87,98						135.98
SOURCE AREA (m^2)	:	1012.79	1034.91						1599.63
SOURCE DURATION (s)	:	173.	167.				174.		79.
TOTAL MASS (kg)	:	14980.0	14712.0						•
SOURCE HEIGHT (m)		0.00	0.00				0.00		10730.0
CONC AVG TIME (8)	:	40.	100.				140.		0.00
MAX DIST (m)	:	640.	640.				900.		50.
REC HEIGHT (m)	:	1.0	1.0				1.0		1300.
REC HEIGHT (m)	:	0.0	0.0	0.0			0.0		1.0
REC HEIGHT (m)	:	0.0	0.0	0.0					0.0
REC HEIGHT (m)	•	9.0	0.0				3.0		0.0
ROUGHNESS LENGTH (m)	:	0.00020	0.00020				0.00020		0.0
MET SENSOR HT (m)	:	2.0	2.0	2.0					0.00020
WIND SPEED (m/s)	:	5.4	5.4	9.0			2.0		2.0
TEMPERATURE (K)	:	311.3	307.8	309.0			8.4	1.8	5.7
REL HUMID (4)	:	7,1	5.2	2.7			307.0		308.5
SPECIFIC CONC (ppm)	:	100.	100.	100.	100.	•	7.4	4.5	14.4
STAB CLASS (A-1, F-6)	:	o.	0.	0.			100.	100.	100.
1/MONIN-OBURHOV (1/m)	:	-0.0772	~0.1720	-0.0203	0.		0.	0.	٥.
ENDING RECORD	:	-1.	-1.	-0.0203			-0.0067		-0.0004
	•		-1.	-1.	-1.	-1.	-1.	-1.	-1.

SLAB INPUT DATA FOR: Coyote
CHEMICAL RELEASED: Liquefied natural gas
THE SPILL ID CODE (IDSPL) HAS THE FOLLOWING KEY:

1: EVAPORATING FOOL
2: HORIZONTAL JET
3: VERTICAL JET
4: INSTANTANEOUS OR SHORT DURATION

TRIAL : CO3 C06 IDSPL 1 NCALC (sub-step mult.): MOL. WT. (kg/mol) 0.01951 0.02019 0.01909 Cp-gas (J/kg-K) : NORMAL BOILING PT (K) : 2238.0 2238.0 2238.0 111.6 111.6 111.6 LIQ MASS FRACTION 1.000 1.000 1.000 HEAT OF VAP. (J/kg) : LIQ HEAT CAP (J/kg-K) : 511900. 511900. 511900, 3348.5 3348.5 3348.5 LIQ DENSITY (kg/m^3) : B VAP PRESS CONST : 447,4 983.89 452.7 444.7 983.89 983.89 C VAP PRESS CONST 0.10 0.10 0.10 111.6 GAS TEMPERATURE (K) 111.6 111.6 MASS EMIS RATE (kg/s) : 100.67 129.02 123.03 SOURCE AREA (M^2)
SOURCE DURATION (M) 1184.20 1517.77 1447.48 98. 65. 82. TOTAL MASS (kg) 6532.0 12676.0 10139.0 SOURCE HEIGHT (m) 0.00 90. 0.00 70. CONC AVG TIME (#) 50. MAX DIST (m) 800. 900. 900. REC HEIGHT (m)
REC HEIGHT (m)
REC HEIGHT (m)
REC HEIGHT (m) 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ROUGHNESS LENGTH (m) : 0.00020 0.00020 0.00020 2.0 MET SENSOR HT (m) 2.0 2.0 WIND SPEED (m/s) 6.0 9.7 4.6 TEMPERATURE (K) 311.5 301.5 297.3 REL HUMID (%) 11.3 22.1 SPECIFIC CONC (ppm) 100. 100. 100. STAB CLASS (A=1,F=6) : 1/MONIN-OBURHOV (1/m) : ٥. 0. -0.0820 -0.0316 0.0178 ENDING RECORD -1. -1.

. Methane is at least 86% in c

SLAB INPUT DATA FOR : Desert Tortoise
CHEMICAL RELEASED : Anhydrous Ammonia
THE SPILL ID CODE (IDSPL) HAS THE FOLLOWING KEY:

1: EVAPORATING FOOL
2: HORIZONTAL JET
3: VERTICAL JET
4: INSTANTANEOUS OR SHORT DURATION

TRIAL	;	DT1	DT2	DT3 D	T4
IDSPL	:	2	2	2	2
NCALC (sub-step mult.)	÷	1	1	. 1	1
MOL. WT. (kg/mol)	:	0.01703	0.01703	0.01703	0.01703
Cp-gas (J/kg-K)	:	2190.0	2190.0	2190.0	2190.0
NORMAL BOILING PT (K)	:	239.7	239.7	239.7	239,7
LIQ MASS FRACTION	:	0,813	0.817	0.811	0.804
HEAT OF VAP, (J/kg)	:	1370000.	1370000.	1370000.	1370000.
LIQ HEAT CAP (J/kg-K)	:	4490.0	4490.0	4490.0	4490.0
LIQ DENSITY (kg/m^3)	:	682.8	682.8	682.8	682.8
B VAP PRESS CONST	:	2132.52	2132.52	2132.52	2132.52
C VAP PRESS CONST	:	~32.96	-32.96	-32,96	-32.96
GAS TEMPERATURE (K)	:	294.7	293.3	295.3	297.3
MASS EMIS RATE (kg/s)	:	79.70	111.50	130.70	96.70
SOURCE AREA (m^2)	:	0.84	1.12	1.16	1.21
SOURCE DURATION (s)	:	126.	255.	166.	381.
TOTAL MASS (kg)	:	10042.2	28432.5	21696.2	36842.7
SOURCE HEIGHT (m)	:	0.79	0.79	0.79	0.79
CONC AVG TIME (s)	:	80.	160.	120.	300.
MAX DIST (m)	:	1300.	1300.	1300.	1300.
REC HEIGHT (m)	:	1.0	1.0	1.0	1.0
REC HEIGHT (m)	:	0.0	0.0	0.0	0.0
REC HEIGHT (m)	:	0.0	0.0	0.0	0.0
REC HEIGHT (m)	:	0.0	0.0	0.0	0.0
ROUGHNESS LENGTH (m)	:	0.00300	0.00300	0.00300	0.00300
MET SENSOR HT (本)	:	2.0	2.0	2.0	2.0
WIND SPEED (m/s)	:	7.4	5.8	7.4	4.5
TEMPERATURE (K)	:	302.0	303.6	307.1	305.6
REL HUMID (4)	:	13.2	17.5	14.8	21.3
SPECIFIC CONC (ppm)	:	100.	100.	120.	100.
STAB CLASS (A=1,F=6)	:	0.	٥.	٥.	0.
1/MONIN-OBURHOV (1/m)	:	0.0107	0.0119	0.0012	0.0244
ENDING RECORD	:	-1.	-1.	-1.	-1.

SLAB INPUT DATA FOR: Goldfish
CHEMICAL RELEASED: Hydrogen fluoride
THE SPILL ID CODE (IDSPL) HAS THE FOLLOWING REY:

1: EVAPORATING POOL,
2: HORIZONTAL JET
3: VERTICAL JET
4: INSTANTANEOUS OR SHORT DURATION

TRIAL :	GF1	GF2	GF3	
IDSPL		2	2	2
NCALC (sub-step mult.):		î	î	î
MOL. WT. (kg/mol)	0.020	-	_	2001
Cp-gas (J/kg-K)	1450			150.0
NORMAL BOILING PT (K) :				292.7
LIQ MASS FRACTION :				.847
HEAT OF VAP. (J/kg)	37300			1000.
LIQ HEAT CAP (J/kg-K) :	2520			28.0
LIQ DENSITY (kg/m^3) :				87.0
B VAP PRESS CONST :	3404			4.51
C VAP PRESS CONST :				5.12
GAS TEMPERATURE (K)				12.2
MASS EMIS RATE (kg/s) :				0.27
SOURCE AREA (m^2) :			.09	0.09
SOURCE DURATION (s) :			60.	360.
TOTAL MASS (kg)	3459			97.0
SOURCE HEIGHT (m) :			.00	1.00
CONC AVG TIME (a)			88.	88.
MAX DIST (m) :	350			500.
REC HEIGHT (m) :	1	1.0	1.0	1.0
REC HEIGHT (m) :			0.0	0.0
REC HEIGHT (m) :	Č		0.0	0.0
REC HEIGHT (m) :			0.0	0.0
ROUGHNESS LENGTH (m) :	0.003			0300
MET SENSOR HT (m) :		2.0	2.0	2.0
WIND SPEED (m/m) :			4.2	5.4
TEMPERATURE (K) :	310	3.4 30	9.4 3	07.6
REL HUMID (%)			0.7	17.7
SPECIFIC CONC (ppm) :			30.	30.
STAB CLASS (A-1,F-6) :	_	0.	0.	o.
1/MONIN-OBURHOV (1/m) :	0.00	- +	-	0244
ENDING RECORD :			-1.	-1.

SLAB INPUT DATA FOR : Hanford (continuous) CHEMICAL RELEASED : Krypton-65
THE SPILL ID CODE (IDSPL) HAS THE FOLLOWING KEY:

EVAPORATING POOL 1:

HORIZONTAL JET

VERTICAL JET

4: INSTANTANEOUS OR SHORT DURATION

TRIAL	: HC1	HC2	HC3	HC4 I	IC5
IDSPL	:	2	2 2	2	2
NCALC (sub-step mult.)	;	1 1	1	1	1
MOL. WT. (kg/mol)	: 0.0290	0.02900	0.02900	0.02900	0.02908
Cp-gas (J/kg-K)	: 249.	0 249.0	249.0	249.0	249.0
NORMAL BOILING PT (K)	: 120.	3 120.3	120.3	120.3	120.3
LIQ MASS FRACTION	: 0.00	0.000	0.000	0.000	0.000
HEAT OF VAP. (J/kg)	: 115800	. 115800.	115800.	115800.	115800.
LIQ HEAT CAP (J/kg-K)	: -99.	9 -99.9	-99.9	-99.9	-99.9
LIQ DENSITY (kg/m^3)	-99.	9 -99,9	-99.9	-99.9	-99.9
B VAP PRESS CONST	: -1.0	0 -1.00	-1.00	-1.00	-1.00
C VAP PRESS CONST	. 0.0	0.00	0.00	0.00	0.00
GAS TEMPERATURE (K)	290.	9 285.4	288.9	286.6	278.8
MASS EMIS RATE (kg/s)	0.0	1 0.01	0.03	0.04	0.02
SOURCE AREA (m^2)	: 0.0	0.00	0.00	0.01	0.01
SOURCE DURATION (2)	: 928	905,	855.	598.	1191.
TOTAL MASS (kg)	: 10.	9 10.9	23.8	22.8	20.4
SOURCE HEIGHT (m)	: 1.0	0 1,00	1.00	1.00	1.00
CONC AVG TIME (s)	: 463	. 845,	269.	269.	538.
MAX DIST (m)	1300	1300.	1300.	1300.	1300.
REC HEIGHT (m)	1.	5 1.5	1.5	1.5	1.5
REC HEIGHT (m)	0.	0 0.0	0.0	0.0	0.0
REC HEIGHT (m)	: О.	0 0.0	0.0	0.0	0.0
REC HEIGHT (m)	. 0.	0 0.0	0.0	0.0	0.0
ROUGHNESS LENGTH (m)	0.0300	0.03000	0.03000	0.03000	0.03000
MET SENSOR HT (m)	: 1.	5 1.5	1.5	1.5	1.5
WIND SPEED (m/s)	1.	3 3,9	7.1	3.9	2.6
TEMPERATURE (K)	290.	9 285.4	288.9	286.6	278.8
REL HUMID (%)	20.	0 20.0	20.0	20.0	20.0
SPECIFIC CONC (ppm)	: 0	. 0.	0.	0.	٥.
STAB CLASS (A=1,F=6)	: 0	. 0.	. 0.	0.	٥.
1/MONIN-OBURKOV (1/m)	0.145	5 -0.0089	-0.0054	-0.0375	0.0142
ENDING RECORD	-1	1.	-1.	-1.	-1.

SLAB INPUT DATA FOR : Hanford (instantaneous) Krypton-85 CHEMICAL RELEASED

THE SPILL ID CODE (IDSPL) HAS THE FOLLOWING KEY:

EVAPORATING POOL 2: HORIZONTAL JET 3: VERTICAL JET

TRIAL

IDSPL

REL HUMID (4)

ENDING RECORD

SPECIFIC CONC (ppm)

STAB CLASS (A=1,F=6) : 1/MONIN-OBUKHOV (1/m) :

4: INSTANTANEOUS OR SHORT DURATION : HI2

NCALC (sub-step mult.): MOL. WT. (kg/mol) 0.02900 0.02900 0.02900 0.02900 0.02900 0.02900 Cp-gas (J/kg-K) : NORMAL BOILING PT (K) : 249.0 249.0 249.0 249.0 249.0 249.0 120.3 120.3 120.3 120.3 120.3 120.3 LIQ MASS FRACTION 0.000 0.000 : 0.000 0.000 0.000 0.000 HEAT OF VAP. (J/kg) LIQ HEAT CAP (J/kg-K) 115800. 115800. 115800. 115800. 115800. 115800. -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 LIQ DENSITY (kg/m^3) -99.9 -99.9 -99.9 -99.9 -99.9 B VAP PRESS CONST -1.00 -1.00 -1.00 -1,00 -1.00 C VAP PRESS CONST 0.00 0.00 0.00 0.00 0.00 0.00 GAS TEMPERATURE (K) 291.5 285.1 288.7 288.3 285.6 277.8 MASS EMIS RATE (kg/s) SOURCE AREA (m^2) 0.00 0.00 0.00 0.00 0.00 0.00 5.89 5.93 5.98 5.94 5.89 5.79 SOURCE DURATION (s) 0. ٥. ٥. 0. ٥. ٥. TOTAL MASS (kg) 10.0 10.0 10.0 10.0 10.0 10.0 SOURCE HEIGHT (m) 0.00 0.00 0.00 0.00 0.00 0.00 CONC AVG TIME (#) 5. 5. 5. 5. 5. 5. MAX DIST (m) 1300. 1300. 1300. 1300. 1300. 1300. REC HEIGHT (m) 1.5 1.5 1.5 1.5 1.5 1.5 0.0 0.0 0.0 REC HEIGHT (m) 0.0 0.0 a.a REC HEIGHT (#) 0.0 0.0 0.0 0.0 0.0 0.0 REC HEIGHT (m) 0.0 0.0 0.0 0.0 0.0 0.0 ROUGHNESS LENGTH (m) 0.03000 0.03000 0.03000 0.03000 0.03000 0.03000 1.5 1.5 MET SENSOR HT (m) 1.5 1.5 1.5 1.5 WIND SPEED (m/s) 4.1 4.5 285.1 277.8 TEMPERATURE (K) 291.5 288.7 288.3 285.6

20.0

-0.0038

٥.

n

-1.

20.0

-0.0046

٥.

Δ.

-1.

HI5

HI3

4

20.0

0.1742

٥.

٥

-1.

HI6

4

HI7

4

HIB

20.0

-0.0064

٥.

٥.

-1.

20.0

-0.0157

٥.

Ω.

-1.

20.0

0.0367

٥.

n

-1.

SLAB INPUT DATA FOR: Maplin Sands
CHEMICAL RELEASED: Liquified Natural Gas
THE SPILL ID CODE (IDSPL) HAS THE FOLLOWING KEY:
1: EVAPORATING POOL
2: HORIZONTAL JET
3: VERTICAL JET
4: INSTANTANEOUS OR SHORT DURATION

TRIAL :	MS27	MS29	MS34	MS35
IDSPL :	1	. 1	. 1	. 1
NCALC (sub-step mult.):	1	. 1	. 1	. 1
MOL. WT. (kg/mol) :	0,01711	0.01626	0.01666	0.01639
Cp-qas (J/kg-K) :	2238.0	2238.0	2238.0	2238.0
NORMAL BOILING PT (K) :	111.7	111.7	111.7	111.7
LIQ MASS FRACTION :	1.000	1.000	1.000	1.000
HEAT OF VAP. (J/kg) :	509880.	509880.	509880.	509880.
LIQ HEAT CAP (J/kg-K) :	3348.5	3348.5	3348.5	3348.5
LIQ DENSITY (kg/m^3) :	435.3	426,8	430.2	427.8
B VAP PRESS CONST :	597.84	597.84	597.84	597.84
C VAP PRESS CONST :	-7.20	-7.20	-7.20	-7.20
GAS TEMPERATURE (K) :	111.7	111.7	111.7	111.7
MASS EMIS RATE (kg/s) :	23.21	29.16	21.51	27.09
SOURCE AREA (m^2) :	271.72	343.07	254.47	317.31
SOURCE DURATION (s) :	160.	225.	95.	135.
TOTAL MASS (kg) :	3714.4	6561.3	2043.6	3657.7
SOURCE HEIGHT (m) :	0.00	0.00	0.00	0.00
CONC AVG TIME (#) :	3.	3.	3.	3,
MAX DIST (m) :	1150.	903.	679.	906.
REC HEIGHT (m) :	0.9	0.9	0.9	0.9
REC HEIGHT (m) :	0.0	0.0	0.0	0.0
REC HEIGHT (m) :	0.0	0.0	0.0	0.0
REC HEIGHT (m) :	0.0	0.0	0.0	0.0
ROUGHNESS LENGTH (m) :	0.00030	0.00030	0.00030	0.00030
MET SENSOR HT (m) :	10.0	10.0	10.0	10.0
WIND SPEED (m/s) :	5.6	7.4	8.5	9.6
TEMPERATURE (K) :	288.1	289.3	288.4	289.3
REL HUMID (%) :	53.0	71.0	90.0	77.0
SPECIFIC CONC (ppm) :	100.	100.	100.	100.
STAB CLASS (A-1,F-6) :	0.	0.	0.	0.
1/MONIN-OBUKHOV (1/m) :	-0.0271	0.0008	-0.0097	-0.0123
ENDING RECORD :	-1.	-1.	-1.	-1.

SLAB INPUT DATA FOR: Maplin Sands
CHEMICAL RELEASED: Liquified Propane Gas
THE SPILL ID CODE (IDSPL) HAS THE FOLLOWING KEY:

1: EVAPORATING POOL
2: HORIZONTAL JET
3: VERTICAL JET
4: INSTANTAMEOUS OR SHORT DURATION

TRIAL	:	MS42 M	S43 N	1546 Y	IS47	MS49	MS50	MS52	MS54
IDSPL	:	1	1	1	1	. 1	:	1	1
NCALC (sub-step mult.)	: (1	1	1	1	. 1		1	1
MOL. WT. (kg/mol)	:	0.04393	0.04393	0.04395	0.04384	0.04376	0.04393	0.04387	0.04394
Cp-gas (J/kg-K)	:	1678.0	1678.0	1678.0	1678.0	1678.0	1678.0	1678.0	1678.0
NORMAL BOILING PT (K)	:	231.1	231.1	231.1	231.1	231.1	231.	231.1	231.1
LIQ MASS FRACTION	:	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
HEAT OF VAP. (J/kg)	:	425740.	425740.	425740.	425740.	425740.	425740	. 425740.	425740.
LIQ HEAT CAP (J/kg-K)	:	2520.0	2520.0	2520.0	2320.0	2520.0	2520.0	2520.0	2520.0
LIQ DENSITY (kg/m^3)	:	500.9	500.9	500.8	501.0			501.0	500.8
B VAP PRESS CONST	:	1872.46	1872.46	1872.46	1872.46	1872.46	1872,4	5 1872.46	1872.46
C VAP PRESS CONST	:	-25.17	-25.17	-25.17	-25.17	-25.17	-25.1	7 -25.17	-25,17
GAS TEMPERATURE (K)	:	231.1	231.1	231.1	231.1	231.1	231.	231.1	231.1
MASS EMIS RATE (kg/s)	:	20.87	19.20	23.37	32.57	16.71	35.89	44,25	19.20
SOURCE AREA (m^2)	:	174.37	160.61	193.59	271.72	138.93	298.6	369,84	160.61
SOURCE DURATION (#)	:	180.	330.	360.	210.			. 140.	180.
TOTAL MASS (kg)	:	3756.6	6336.0	8413.2	6839.7	1503.9	5742.4	6195.0	3456.0
SOURCE HEIGHT (m)	:	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CONC AVG TIME (s)	:	3.	3.	3.	3.	. 3.	3.	. 3.	3.
MAX DIST (m)	:	898.	900.	901.	900.	900.	900.	. 1150.	747.
REC HEIGHT (m)	:	0.9	0.9	0.9	0.9			0.9	0.5
REC HEIGHT (m)	:	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
REC HEIGHT (m)	:	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
REC HEIGHT (m)	:	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ROUGHNESS LENGTH (m)	:	0.00030	0.00030	0.00030	0.00030				
MET SENSOR HT (m)	:	10.0	10.0	10.0	10.0	10.0	10.	10.0	10.0
WIND SPEED (m/s)	1	4.0	5.8	8.1	6.2	3.5	7,	7.4	3.7
TEMPERATURE (K)	:	291.5	290.2	291.9	290.6	286.5	283.	6 285.0	281.6
REL HUMID (4)	:	80.0	80.0	71.0	78.0	88.0	79.	63.0	85.0
SPECIFIC CONC (ppm)	:	100.	100.	100.	100.	100.	100	. 100.	100.
STAB CLASS (A=1,F=6)	:	0.	0.	٥.	٥.	0.	. 0.	. 0.	٥.
1/MONIN-OBURHOV (1/m)	:	0.0100	0.0000	0.0013	0.0034	0.0144	0.004	0.0044	0.0147
ENDING RECORD	:	-1.	-1.	-1.	-1.	-1.	-1	1.	-1.

SLAS INPUT DATA FOR: Prairie Grass, set 1
CHEMICAL RELEASED: Sulfur dioxide
THE SPILL ID CODE (IDSPL) HAS THE FOLLOWING KEY:

1: EVAPORATING POOL
2: HORIZONTAL JET

3: VERTICAL JET
4: INSTANTANEOUS OR SHORT DURATION

TRIAL	:	PG7 P	G8 .	PG9	9G10		PG13	PG15		PG16	PG17
IDSPL	:	2	2		2	2		2	2	2	2
NCALC (sub-stap mult.)	:	1	1		1	1		1	1		. 1
MOL. WT. (kg/mol)	:	0.06400	0.06400	0.0640	0 0.	06400	0.0640	0.0	6400	0.06400	0.06400
Cp-gas (J/kg-K)	:	622.6	622.6	622.	6	622.6	622.	6 6	\$22.6	622.6	622.6
NORMAL BOILING PT (K)	:	263.1	263.1	263.	1	263.1	263.	1 7	263.1	263.1	
LIQ MASS FRACTION	:	0.000	0.000	0.00	0	0.000	0.00	0 0	.000	0.000	0.000
HEAT OF VAP. (J/kg)	:	386500.	386500.	386500	. 38	6500.	386500	. 386	5500.	386500.	3#6500.
LIQ HEAT CAP (J/kg-K)	:	1331.0	1331.0	1331.	0 1	331.0	1331.	0 13	331.0	1331.0	1331.0
LIQ DENSITY (kg/m^3)	:	1462.0	1462.0	1462.	0 1	462.0	1462.	0 14	162.0	1462.0	1462.0
B VAP PRESS CONST	:	-1.00	-1.00	-1.0	0	-1.00	-1.0	0 -	-1.00	-1.00	-1.00
C VAP PRESS CONST	:	0.00	0.00	9.0	0	0.00	0.0	0	0.00	0.00	0.00
GAS TEMPERATURE (K)	:	305.1	305.1	301.	1	304.1	293.	1 2	95.1	301.1	300,1
MASS EMIS RATE (kg/s)	:	0.09	0.09	0.0	9	0.09	0.0	6	0.10	0.09	0.06
SOURCE AREA (m^2)	:	0.00	0.00	0.0	0	0.00	0.0	0	0.00	0.00	0.00
SOURCE DURATION (s)	:	600.	600.	600	•	600.	600	•	600.	600.	600.
TOTAL MASS (kg)	:	53.9	54.7	55	2	55.3	36.	7	57.3	55.8	33.9
SOURCE HEIGHT (m)	:	0.45	0.45	0.4	5	0.45	0.4	5	0.45	0.45	0.45
CONC AVG TIME (s)	:	600.	600.	600		600.	600		600.	600.	600.
MAX DIST (m)	:	1300.	1300.	1300		1300.	1300	. 1	300.	1300.	1300.
REC HEIGHT (m)	:	1.5	1.5	1.	5	1.5	1.	5	1.5	1.5	1.5
REC HEIGHT (m)	:	0.0	0.0	0.	0	0.0	٥.	0	0.0	0.0	0.0
REC HEIGHT (m)	:	0.0	0.0	0.	0	0.0	0.	0	0.0	0.0	0.0
REC HEIGHT (m)	:	0.0	0.0	0.:	0	0.0	0.	0	0.0	0.0	0.0
ROUGHNESS LENGTH (m)	:	0.00600	0.00600	0.0060	0.	00600	0.0060	0.0	0600	0.00600	0.00600
MET SENSOR HT (m)	:	2.0	2.0	2.	0	2.0	2.	0	2.0	2.0	2.0
WIND SPEED (m/s)	:	4.2	4.9	6.	9	4.6	1.	3	3.4	3.2	3.3
TEMPERATURE (K)	:	305.1	305.1	301.	1	304.1	293.	1 2	295,1	301.1	300.1
REL HUMID (%)	:	20.0	20.0	20.	0	20.0	20.	0	20.0	20.0	20.0
SPECIFIC CONC (ppm)	:	1.	1.	1		1.	1	•	1.	1.	1.
STAB CLASS (A-1,F-6)	:	0.	0.	0		٥.	0		٥.	0.	0.
1/MONIN-OBURHOV (1/m)	:	-0.1223	-0.0485	-0.029	3 -0	.1342	0.166	3 -0.	1293	-0.1277	0.0201
ENDING RECORD	:	-1.	-1.	-1		-1.	-1		-1.	-1.	-1.

SLAB INPUT DATA FOR: Thorney Island (continuous)
CHEMICAL RELEASED: Mixture of Freon-12 and Nitrogen
THE SPILL ID CODE (IDSPL) HAS THE FOLLOWING KEY:

1: EVAPORATING FOOL
2: HORIZONTAL JET
3: VERTICAL JET
4: INSTANTANEOUS OR SHORT DURATION

TRIAL	TC45	TC47
IDSPL	:	2 2
NCALC (sub-step mult.)	;	1 1
MOL. WT. (kg/mol)	0.0578	0.05780
Cp-gas (J/kg-K)	: 610.	0 610.0
NORMAL BOILING PT (K)	: 243.	4 243.4
LIQ MASS FRACTION	0.00	0.000
	165000	. 165000.
	970.	0 970.0
	1520.	0 1520.0
	-1.0	0 -1.00
	0.0	
	286.	3 287,5
	10.6	7 10.22
SOURCE AREA (m^2)	3.1	4 3.14
SOURCE DURATION (a)	: 455 : 4855.:	. 465.
		0 4752.0
SOURCE HEIGHT (m)	. 0.0	0.00
	30	
MAX DIST (m)	972	
	. 0.	4 0.4
REC HEIGHT (m)	: 0.: : 0.:	0.0
		0_0
REC HEIGHT (m)	: 0.	0.0
	: 0.0100	0.01000
	: 10.	0 10.0
WIND SPEED (m/s)	: 2.	3 1.5
TEMPERATURE (K)	: 286.	3 287.5
REL HUMID (%)	100.	0 97,4
SPECIFIC CONC (ppm)	: 100	. 100.
STAB CLASS (A-1,F-6)	: 0	. 0.
1/MONIN-OBUKHOV (1/m)	: 0.046	1 0.0923
ENDING RECORD	: -1	-1.

SLAB INPUT DATA FOR: Thorney Island (instantaneous)
CHEMICAL RELEASED: Mixture of Freon-12 and Nitrogen
THE SPILL ID CODE (IDSPL) HAS THE FOLLOWING KEY:

1: EVAPORATING POOL
2: HORIZONTAL JET
3: VERTICAL JET
4: INSTANTANEOUS OR SHORT DURATION

TRIAL	:	TI6 T	:17 1	18 1	19 :	r112 1	TI13	TI17	TI18 :	TI19
IDSPL	:	4	4	4	4	4	4	4	4	4
NCALC (sub-step mult.):	1	1	1	1	1	1	1	. 1	i
MOL. WT. (kg/mol)	:	0.04769	0.05058	0.04711	0.04624	0.06849	0.05780	0.12138	0.05404	0.06127
Cp-gas (J/kg-K)	:	610.0	610.0	610.0	610.0	610.0	610.0	610.0		610.0
NORMAL BOILING PT (K)	:	243.4	243.4	243.4	243.4	243.4	243.4	243.4		243.4
LIQ MASS FRACTION	:	0.000	0.000	0.000	0.000	0.000	0.000			0.000
HEAT OF VAP. (J/kg)	:	165000.	165000.	165000.	165000.	165000.	165000.	165000.		165000.
LIQ HEAT CAP (J/kg-K)	:	970.0	970.0	970.0	970.0	970.0	970.0			970.0
LIQ DENSITY (kg/m^3)	:	1520.0	1520.0	1520.0	1520.0	1520.0	1520.0	1520.0		1520.0
B VAP PRESS CONST	:	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00		-1.00
C VAP PRESS CONST	:	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00
GAS TEMPERATURE (K)	:	291.8	290.5	290.7	291.5	283.3	286.9	289.2		286.5
MASS EMIS RATE (kg/s)	:	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00
SOURCE AREA (m^2)	:	153.94	153.94	153.94	153.94	153.94	153.94	153.94		153.94
SOURCE DURATION (a)	:	0.	٥.	0.	0.	0.	0.	0.		0.
TOTAL MASS (kg)	:	3147.0	4249.0	3958.0	3866.0	5736.0	4800.0	8711.0	3881.0	5477.0
SOURCE HEIGHT (m)	:	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CONC AVG TIME (s)	:	1.	1.	1.	1.	1.	1.	1.		1.
MAX DIST (m)	:	924.	1000.	1010.	1003.	1000.	912.	1000.		1083.
REC HEIGHT (m)	:	0.4	0.4	8.4	0.4	0.4	0.4	0.4		0.4
REC HEIGHT (m)	:	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0
REC HEIGHT (m)	:	0.0	0.0	0.0	0.0	0.0	0.0	9.0		0.0
REC HEIGHT (m)	:	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0
ROUGHNESS LENGTH (m)	:	0.01800	0.01800	0.01200	0.00800	0.01800	0.01000	0.01800		0.01000
MET SENSOR HT (m)	:	10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0
WIND SPEED (m/s)	:	2.8	3.4	2.4	1.7	2.5	7.3	5.0	7.4	6.4
TEMPERATURE (K)	:	291.8	290.5	290.7	291.5	283.3	286.9	289.2		286.5
REL HUMID (4)	:	74.8	80.7	87.6	87.3	66.2	74.1	94.0	81.3	94.8
SPECIFIC CONC (ppm)	:	100.	100.	100.	100.	100.	100.	100.	100.	100.
STAB CLASS (A-1,F-6)	:	0.	٥.	0.	0.	Ō.	0.	0.	ā.	0.
1/MONIN-OBURHOV (1/m)	:	0.0000	0.0110	-0.1100	0.6500	0.1000	-0.0110	-0.0050		0.0030
ENDING RECORD	:	-1.	-1.	-1.	-1.	-1.	-1.	-1.	-1.	-1.

TRACE INPUT DATA FOR	: Burro							
CHEMICAL RELEASED	: Liquefi	ed natural	gas					
CHEMICAL RELEASED TRIAL NAME CHEMICAL NO.	: BU2 E	EU3 E	IU4 B					309
CHEMICAL NO. (999=N2 with m.w29.0)	: 61	61	61	61	61	61	61	61
RELEASE TYPE: 1-CONT., 2-IN:	T. 3-TRANS.							
	: 1		1	1	1	1	1	1
PHASE OF CHEMICAL: 1-LIQUID,			•					
RELEASE RATE (kg/s)	: 86.1000	87.9800	86.9600	81,2500	92.2200	99.4600	116,9300	135.9800
RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m; VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m)	: 173.00	167.00	175.00	190.00	129.00		107.00	
TEMP. OF CHEMICAL (K)	: 111.60	111.60	111.60	111.60	111.60	111.60	111.60	
RELEASE ELEVATION (m)	: 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HORIZONAL VELO. (m/s)	: 0.00							
INIT. RADIUS (m)	: 17.9550	18.1500	18.0450	17.4450	18.5850	19.3000	20.9250	22.5650
WINCHEMICAL MODE MALIO (IN)	TIME DIFFITTON	1)		0.000	0.000	0.000	0.000	0.000
MRY DOOT ADEA (-A1)	: 0.000							
	0.010							
WHENCON OF FOOD								
AEROSOL FORMATION: 1-MANUAL,	2-DEFAULT	2	2	2	2	2	2	2
AEROSOL/FLASH MASS RATIO	0.0000	0.0000	0.0000	0.000	0.0000			-
AEROSOL AIR ENTRAINMENT: 1→	ianual, 2-defa	ULT						
AIR/CHEMICAL MASS RATIO	: 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
				0.0000	0.0000	0,0000	0.0000	0.0000
	: 0	0	0	0	0	0	0	0
SUBSTRATE TEMP. (K)	: 311.27	307.75	309.05	314.27	312.67		306.02	
SUBSTRATE: 0-W, 1-C, 2-Asoll SUBSTRATE TEMP. (K) WIND SPEED (m/s) HORZ. STAB. VERT. STAB. TEMP. (K) HUMIDITY (FRACTION) SOLAR RAD. (w/m^2) SURFACE ROUGHNESS (m) M-O LENGTH (m) WIND MEAS. HT. (m) CEILING HT. (m) UPPER LEVEL STAB. SIMULATION TIME (s). TIV HT. (m) MAX. DOSAGE DISTANCE (m) CONC. AVG. TIME (s)	5.40	5.40	9.00 3	7.40 3	9.10 3	8.40 4	1.80	5.70 4
VERT. STAB.	: 3	3	3	3				
TEMP. (K)	: 311.27	307.75	309.05	314.27				
HUMIDITY (FRACTION)	: 0.07	0.05	0.03	0.06	0.05	0.07	0.05	0.14
SURFACE ROUGHNESS (m)	. 0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020
M-O LENGTH (m)	: -12.947	-5.814	-49,310	-35,634	-53.393			-2288.323
WIND MEAS. HT. (m)	: 2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
CEILING HT. (M)	: 10000.	3	3	3	3	4	5	4
SIMULATION TIME (s) .	625.93	625,93	615.56	618.92	615.38	647.62		
TLV HT. (m)	: 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MAX. DOSAGE DISTANCE (m)	: 140.	140.	140. 80.00	140. 130.00	148. 70.00	400. 140.00	800. 80.00	800.
CONC. R44, 11712 (8)	. 10.00	100.00	80.00	130.00	70.00	140.00	80.00	50.00
				•	Mathana i	1	966 (= =	
				•	Methane i	s at least	864 in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL RAME CHEMICAL NO.				•	Methane i	s at least	86% in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL RAME CHEMICAL NO. (999-N2 with m.w29.0)	: Coyote : Liquefi : CO3 C : 61			:	Methane i	s at least	86% in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS	: Coyote : Liquefi : CO3 : 61 : 61	ed natural DS C 61	gas Q6 61	:	Methane i	s at least	86% in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS	: Coyote : Liquefi : CO3 C : 61 T., 3-TRANS.	ed natural D5 C 61		:	Methane i	s at least	86% in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID,	: Coyote : Liquefi : CO3 C : 61 :T., 3-TRANS. : 1	ed natural	gas 06 61	:	Methane i	s at least	86% in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID,	: Coyote : Liquefi : CO3 C : 61 :T., 3-TRANS. : 1	ed natural	gas 06 61	:	Methane i	s at least	86% in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-A2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE DURATION (s) TEMPORE OF CHEMICAL: (E)	: Coyote : Liquefi : CO3 C : 61 T., 3-TRANS. : 1 2-GAS : : 100.6700 : 65.00	ed natural 05 61 1 129.0200 98.00	Gas Q6 61 1 123,0300 82,00	:	Nethane i	s at least	864 in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-A2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE DURATION (s) TEMPORE OF CHEMICAL: (E)	: Coyote : Liquefi : CO3 C : 61 T., 3-TRANS. : 1 2-GAS : : 100.6700 : 65.00	ed natural 05 61 1 129.0200 98.00	Gas Q6 61 1 123,0300 82,00	:	Nethane i	s at least	864 in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-A2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE DURATION (s) TEMPORE OF CHEMICAL: (E)	: Coyote : Liquefi : CO3 C : 61 T., 3-TRANS. : 1 2-GAS : : 100.6700 : 65.00	ed natural 05 61 1 129.0200 98.00	Gas Q6 61 1 123,0300 82,00	:	Nethane i	s at least	864 in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-A2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE DURATION (s) TEMPORE OF CHEMICAL: (E)	: Coyote : Liquefi : CO3 C : 61 T., 3-TRANS. : 1 2-GAS : : 100.6700 : 65.00	ed natural 05 61 1 129.0200 98.00	Gas Q6 61 1 123,0300 82,00	:	Nethane i	s at least	864 in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INSTANCE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m)	: Coyote : Liquefi : CO3 C : 61 T., 3-TRANS. : 1 2-GAS : 1 : 100.6700 : 65.00 : 111.60 : 0.00 : 0.00 : 19.4150N	ed natural 05	Gas 06 61 1 123.0300 82.00 111.60 0.00 21.4650	:	Nethane i	s at least	86% in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INSTANCE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m)	: Coyote : Liquefi : CO3 C : 61 T., 3-TRANS. : 1 2-GAS : 1 : 100.6700 : 65.00 : 111.60 : 0.00 : 0.00 : 19.4150N	ed natural 05	Gas 06 61 1 123.0300 82.00 111.60 0.00 21.4650	:	Nethane i	s at least	86% in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INSTANCE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m)	: Coyote : Liquefi : CO3 C : 61 T., 3-TRANS. : 1 2-GAS : 1 : 100.6700 : 65.00 : 111.60 : 0.00 : 0.00 : 19.4150N	ed natural 05	Gas 06 61 1 123.0300 82.00 111.60 0.00 21.4650	:	Nethane i	s at least	86% in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE DURATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIMAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL	: Coyote : Liquefi : CO3 61 : T., 3-TRANS. : 1 2-GAS : 1 : 100.6700 : 65.00 : 111.60 : 0.00 : 0.00 : 0.00 : 19.4150 TIAL DILUTION : 0.000 : 2642.080 : 0.150	ed natural 05	Gas 06 61 1 123.0300 82.00 111.60 0.00 21.4650	:	Nethane i	s at least	86% in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL BEROSCY FORMATION. 1-MANUAL	: Coyote : Liquefi : CO3 61 : T., 3-TRANS. : 1 2-GAS : 1 : 100.6700 : 65.00 : 111.60 : 0.00 : 0.00 : 0.00 : 19.4150 TIAL DILUTION : 0.00 : 2642.080 : 0.150	ed natural 05 61 1 129.0200 98.00 111.60 0.00 21.9800 0) 0.000 2642.080	988 96 61 1 123.0300 82.00 111.60 0.00 21.4650 0.000 2642.080	:	Nethane i	s at least	86% in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE DURATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIMAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AFROSOL/FLASH MASS RATIO	: Coyote : Liquefi : CO3	ed natural 05	948 96 61 1 1 123.0300 82.00 111.60 0.00 21.4650 0.000 2642.080	:	Nethane i	s at least	86% in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE DURATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIMAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AFROSOL/FLASH MASS RATIO	: Coyote : Liquefi : CO3	ed natural 05	948 96 61 1 1 123.0300 82.00 111.60 0.00 21.4650 0.000 2642.080	:	Nethane i	s at least	86% in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INSTANCE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-	: Coyote : Liquefi : CO3	ed natural 05 61 1 129.0200 98.00 111.60 0.00 21.9800 0.000 2642.080	Gas 06 61 1 123.0300 62.00 111.60 0.00 21.4650 0.000 2642.080		Nethane i	s at least	86% in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INSTANCE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-	: Coyote : Liquefi : CO3	ed natural 05 61 1 129.0200 98.00 111.60 0.00 21.9800 0.000 2642.080	Gas 06 61 1 123.0300 62.00 111.60 0.00 21.4650 0.000 2642.080		Nethane i	s at least	86% in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INSTANCE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-	: Coyote : Liquefi : CO3	ed natural 05 61 1 129.0200 98.00 111.60 0.00 21.9800 0.000 2642.080	Gas 06 61 1 123.0300 62.00 111.60 0.00 21.4650 0.000 2642.080		Methane i	s at least	86% in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INSTANCE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-	: Coyote : Liquefi : CO3	ed natural 05 61 1 129.0200 98.00 111.60 0.00 21.9800 0.000 2642.080	Gas 06 61 1 123.0300 62.00 111.60 0.00 21.4650 0.000 2642.080		Methane i	s at least	86% in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INSTANCE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-	: Coyote : Liquefi : CO3	ed natural 05 61 1 129.0200 98.00 111.60 0.00 21.9800 0.000 2642.080	Gas 06 61 1 123.0300 62.00 111.60 0.00 21.4650 0.000 2642.080		Methane i	s at least	86% in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INSTANCE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-	: Coyote : Liquefi : CO3	ed natural 05 61 1 129.0200 98.00 111.60 0.00 21.9800 0.000 2642.080	Gas 06 61 1 123.0300 62.00 111.60 0.00 21.4650 0.000 2642.080		Methane i	s at least	86% in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INSTANCE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-	: Coyote : Liquefi : CO3	ed natural 05 61 1 129.0200 98.00 111.60 0.00 21.9800 0.000 2642.080	Gas 06 61 1 123.0300 62.00 111.60 0.00 21.4650 0.000 2642.080		Methane i	s at least	86% in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INSTANCE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-	: Coyote : Liquefi : CO3	ed natural 05 61 1 129.0200 98.00 111.60 0.00 21.9800 0.000 2642.080	Gas 06 61 1 123.0300 62.00 111.60 0.00 21.4650 0.000 2642.080		Methane i	s at least	86% in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INSTANCE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-	: Coyote : Liquefi : CO3	ed natural 05 61 1 129.0200 98.00 111.60 0.00 21.9800 0.000 2642.080	Gas 06 61 1 123.0300 62.00 111.60 0.00 21.4650 0.000 2642.080		Methane i	s at least	86% in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INSTANCE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-	: Coyote : Liquefi : CO3	ed natural 05 61 1 129.0200 98.00 111.60 0.00 21.9800 0.000 2642.080	Gas 06 61 1 123.0300 62.00 111.60 0.00 21.4650 0.000 2642.080		Methane i	s at least	86% in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INSTANCE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-	: Coyote : Liquefi : CO3	ed natural 05 61 1 129.0200 98.00 111.60 0.00 21.9800 0.000 2642.080	Gas 06 61 1 123.0300 62.00 111.60 0.00 21.4650 0.000 2642.080		Methane i	s at least	86% in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INSTANCE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-	: Coyote : Liquefi : CO3	ed natural 05 61 1 129.0200 98.00 111.60 0.00 21.9800 0.000 2642.080	Gas 06 61 1 123.0300 62.00 111.60 0.00 21.4650 0.000 2642.080		Methane i	s at least	86% in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INSTANCE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-	: Coyote : Liquefi : CO3	ed natural 05 61 1 129.0200 98.00 111.60 0.00 21.9800 0.000 2642.080	Gas 06 61 1 123.0300 62.00 111.60 0.00 21.4650 0.000 2642.080		Methane i	s at least	86% in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INSTANCE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-	: Coyote : Liquefi : CO3	ed natural 05 61 1 129.0200 98.00 111.60 0.00 21.9800 0.000 2642.080	Gas 06 61 1 123.0300 62.00 111.60 0.00 21.4650 0.000 2642.080		Methane i	s at least	86% in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INSTANCE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-	: Coyote : Liquefi : CO3	ed natural 05 61 1 129.0200 98.00 111.60 0.00 21.9800 0.000 2642.080	Gas 06 61 1 123.0300 62.00 111.60 0.00 21.4650 0.000 2642.080		Methane i	s at least	86% in c	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE DURATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIMAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AFROSOL/FLASH MASS RATIO	: Coyote : Liquefi : CO3	ed natural 05 61 1 129.0200 98.00 111.60 0.00 21.9800 0.000 2642.080	Gas 06 61 1 123.0300 62.00 111.60 0.00 21.4650 0.000 2642.080		Methane i	s at least	86% in c	

TRACE INPUT DATA FOR	· Desert for			
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0)	: Anhydrous	Ammonia		
TRIAL NAME	: DT1	DT2	DT3 į	314
CHEMICAL NO.	: 22	22	22	22
RELEASE TYPE: 1+CONT 2+INS	T. 3-TRANS			
(999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kq/m) RELEASE DURATION (s) TEMP. OF CHEMICAL (k' RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIJS (m) AIR/CHEHICAL MOLE RATIO (INI	: 1	1	1	1
PHASE OF CHEMICAL: 1-LIQUID,	: Kas	-	_	_
	: 1	1 1 1 1 1 1 1	1	1
RELEASE RATE (kg/s)	: 79.7000 - 126.00	111.5000	130.7000	96.7000
TEMP. OF CHEMICAL (K)	. 294.70	293.00	295.30	297.30
RELEASE ELEVATION (m)	0.79	0.79	0.79	0.79
VERTICAL VELO. (E/s)	: 0.00			
HORIZONAL VELO. (m/s)	: 0.00			
INIT. RADIJS (M)	: 0.5185	0.5971	0.6089	0.6210
AIN CREATCAL MODE RATTO (IRI	. 0.000	0.000	0.000	0.000
MAX, POOL AREA (m^2)	10000.000	10000.000	10000.000	10000,000
M.N. POOL DEPTH (m)	0.010			
ALBEDO OF POOL	: 0.150			
INIT. RADIJS (m) AIR/CREHICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) M.N. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AFROSOL/FIASH MASS BATTO	3-DELYGTI	•	,	,
AEROSOL/FLASH MASS RATIO	: 10000.0000	10000-0000	10000,0000	10000-0000
AEROSOL AIR ENTRAINMENT: 1-M	ANUAL, 2-DEF	MULT		
	; 2	2	2	2
AIR/CHEMICAL HASS RATIO	0.0000	0.0000	0.0000	0.0000
SUBSTRATE: 0-W, 1-C, 2-Asoll	, 3=SD8011,	4-SMsoll		•
AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M. AIR/CHEMICAL MASS RATIO SUBSTRATE: 0-M. 1-C, 2-Asoil SUBSTRATE TEMP. (K) WIND SPEED (m/s) HORZ. STAB. VERT. STAB. TEMP. (K) HUMIDITY (FRACTION) SOLAR RAD. (w/m^2) SURFACE ROUGHNESS (m) M-O LENGTH (m) WIND MEAS. HT. (m) CEILING HT. (m) UPPER LEVEL STAB. SIMULATION TIME (s) TLV HT. (m) MAX. DOSAGE DISTANCE (m) COMC. AVG. TIME (s)	. 304.AD	303.40	304.80	304.00
WIND SPEED (m/s)	7.40	5.80	7.40	4.50
HORZ. STAB.	: 4	4	4	5
VERT. STAB.	: 4	4	4	5
TEMP. (K)	302.03	303.63	307.07	305.63
SOLAR RAD (w/mc2)	. 300.00	0.17	0.15	0.21
SURFACE ROUGHNESS (m)	0.00300	0.00300	0.00300	0.00300
M-O LENGTH (m)	93.201	84.333	847.250	41.002
WIND MEAS. HT, (m)	2.00	2.00	2.00	2.00
CEILING HT. (m)	10000.			_
STMILATION TIME (a)	708 11	717 93	708 11	2 277 70
TLV HT. (m)	1.00	1.00	1.00	1.00
MAX. DOSAGE DISTANCE (m)	800.	800.	800.	800.
CONC. AVG. TIME (s)	: 80.00	160.00	120.00	300.00
TRACE INPUT DATA FOR	Galdfle	eh.		
TRACE INPUT DATA FOR CHEMICAL RELEASED	Goldfi	sh en fluoride	•	•
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME	Goldfin	sh en fluoride EF2 () IF3	•
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO.	Goldfin Hydrog GF1 (sh en fluoride GF2 () 3 7 3	:
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0)	Goldfi: Hydrog	sh en fluoride GF2 () 3 7 3	:
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS	Goldfing Hydrogon GF1 (17)	sh en fluoride GF2 () 3 7 3	:
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INST PHASE OF CHEMICAL: 1-LIQUID,	Goldfi: Hydrog GF1 17 T., 3-TRAHS.	sh en fluoride GF2 () 3 7 3	:
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS: PHASE OF CHEMICAL: 1-LIQUID,	Goldfi: Hydrog: GF1 17 F., 3-TRAHS.: 1 2-GAS: 1	sh en fluoride GF2 () 3 7 3	:
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-COHT., 2-INST PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (KG/*)	Goldfin Hydrogon (17)	sh en fluoride GF2 () 3 7 3	:
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-COHT., 2-INS: PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) THEM OF CHEMICAL: (K)	Goldfin Hydrogon (17)	sh en fluoride GF2 () 3 7 3	:
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-COHT., 2-INS: PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m)	Goldfi: Hydrogo: GF1 (17) F., 3-TRAHS. 2-GAS: 1 27.6700 125.00 313.20 1.00	sh en fluoride GF2 () 3 7 3	:
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-COHT., 2-INS: PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s)	Goldfin Hydrogo GF1	sh en fluoride GF2 () 3 7 3	:
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS: PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TIMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s)	Goldfin Hydrogo GF1	sh en fluoride GF2 () 3 7 3	:
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-COHT., 2-INS: PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TIME. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m)	Goldfin Hydrogo GF1 17 T., 3-TRAMS. 1 2-GAS 1 27.6700 125.00 313.20 1.00 0.00 0.00 0.3041	sh en fluoride GF2 () 3 7 3	:
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w.=29.0) RELEASE TYPE: 1-CONT., 2-INS: PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TIMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT	Goldfin Hydrogon (Control of the Control of the Con	sh en fluoride GF2 () 3 7 3	:
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS: PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT. MAK. POOL AREA (m^2)	Goldfin Hydrogon Hydr	sh en fluoride GF2 () 3 7 3	:
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-COHT., 2-INS: PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (s) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) HUM. POOL DEPTH (m)	Goldfin Hydrogon (17) (17) (17) (17) (17) (17) (17) (17)	sh en fluoride GF2 () 3 7 3	:
PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) NIM. POOL DEPTH (m) ALBEDO OF POOL	2-GAS 1 27.6700 1 125.00 1 125.00 1 1313.20 1 1.00 1 0.00 1 0.3041 FIAL DILUTION 1 0.000 1 0.000 1 0.000 1 0.010 1 0.150	th sn fluoride F2 (7) 17 10.4600 360.00 311.20 1.00 0.1689	17 10.2700 360.00 312.20 1.00 0.1717 0.000 10000.000	•
PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) NIM. POOL DEPTH (m) ALBEDO OF POOL	2-GAS 1 27.6700 1 125.00 1 125.00 1 1313.20 1 1.00 1 0.00 1 0.3041 FIAL DILUTION 1 0.000 1 0.000 1 0.000 1 0.010 1 0.150	th sn fluoride F2 (7) 17 10.4600 360.00 311.20 1.00 0.1689	17 10.2700 360.00 312.20 1.00 0.1717 0.000 10000.000	•
PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) HITT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI: MAX. POOL AREA (m ² 2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL/FIACH MASS BATIO	2-GAS 1 27.6700 1 125.00 1 125.00 1 135.00 1 0.00 1 0.00 1 0.000 1 0.000 1 0.000 1 0.000 2 0.010 2 0.150 2-DEFAULT 1 10000.0000	th en fluoride F2 17 17 1 10.4600 360.00 1.00 0.1689	1 10.2700 360.00 312.20 1.00 0.1717 0.000 10000.000	•
PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) HITT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI: MAX. POOL AREA (m ² 2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL/FIACH MASS BATIO	2-GAS 1 27.6700 1 125.00 1 125.00 1 135.00 1 0.00 1 0.00 1 0.000 1 0.000 1 0.000 1 0.000 2 0.010 2 0.150 2-DEFAULT 1 10000.0000	th en fluoride F2 17 17 1 10.4600 360.00 1.00 0.1689	1 10.2700 360.00 312.20 1.00 0.1717 0.000 10000.000	•
PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAK. POOL AREA (m^2) NIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MA	2-GAS 1 27.6700 125.00 125.00 1313.20 1.00 0.00 0.3041 FIAL DILUTION 0.000 10000.000 0.100 2-DEFAULT 110000.0000 MUVAL, 2-DEF	sh sh fluoride IF2 (7 17 1 10.4600 360.00 311.20 0.1689 (1) 0.000 10000.0000 MULT 2	17 10.2700 360.00 312.20 1.00 0.1717 0.000 10000.000	
PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAK. POOL AREA (m^2) NIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MA	2-GAS 1 27.6700 125.00 125.00 1313.20 1.00 0.00 0.3041 FIAL DILUTION 0.000 10000.000 0.100 2-DEFAULT 110000.0000 MUVAL, 2-DEF	sh sh fluoride IF2 (7 17 1 10.4600 360.00 311.20 0.1689 (1) 0.000 10000.0000 MULT 2	17 10.2700 360.00 312.20 1.00 0.1717 0.000 10000.000	
PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAK. POOL AREA (m^2) NIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MA	2-GAS 1 27.6700 125.00 125.00 1313.20 1.00 0.00 0.3041 FIAL DILUTION 0.000 10000.000 0.100 2-DEFAULT 110000.0000 MUVAL, 2-DEF	sh sh fluoride IF2 (7 17 1 10.4600 360.00 311.20 0.1689 (1) 0.000 10000.0000 MULT 2	17 10.2700 360.00 312.20 1.00 0.1717 0.000 10000.000	
PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAK. POOL AREA (m^2) NIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MA	2-GAS 1 27.6700 125.00 125.00 1313.20 1.00 0.00 0.3041 FIAL DILUTION 0.000 10000.000 0.100 2-DEFAULT 110000.0000 MUVAL, 2-DEF	sh sh fluoride IF2 (7 17 1 10.4600 360.00 311.20 0.1689 (1) 0.000 10000.0000 MULT 2	17 10.2700 360.00 312.20 1.00 0.1717 0.000 10000.000	
PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAK. POOL AREA (m^2) NIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MA	2-GAS 1 27.6700 125.00 125.00 1313.20 1.00 0.00 0.3041 FIAL DILUTION 0.000 10000.000 0.100 2-DEFAULT 110000.0000 MUVAL, 2-DEF	sh sh fluoride IF2 (7 17 1 10.4600 360.00 311.20 0.1689 (1) 0.000 10000.0000 MULT 2	17 10.2700 360.00 312.20 1.00 0.1717 0.000 10000.000	
PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAK. POOL AREA (m^2) NIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MA	2-GAS 1 27.6700 125.00 125.00 1313.20 1.00 0.00 0.3041 FIAL DILUTION 0.000 10000.000 0.100 2-DEFAULT 110000.0000 MUVAL, 2-DEF	sh sh fluoride IF2 (7 17 1 10.4600 360.00 311.20 0.1689 (1) 0.000 10000.0000 MULT 2	17 10.2700 360.00 312.20 1.00 0.1717 0.000 10000.000	
PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAK. POOL AREA (m^2) NIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MA	2-GAS 1 27.6700 125.00 125.00 1313.20 1.00 0.00 0.3041 FIAL DILUTION 0.000 10000.000 0.100 2-DEFAULT 110000.0000 MUVAL, 2-DEF	sh sh fluoride IF2 (7 17 1 10.4600 360.00 311.20 0.1689 (1) 0.000 10000.0000 MULT 2	17 10.2700 360.00 312.20 1.00 0.1717 0.000 10000.000	
PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAK. POOL AREA (m^2) NIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MA	2-GAS 1 27.6700 125.00 125.00 1313.20 1.00 0.00 0.3041 FIAL DILUTION 0.000 10000.000 0.100 2-DEFAULT 110000.0000 MUVAL, 2-DEF	sh sh fluoride IF2 (7 17 1 10.4600 360.00 311.20 0.1689 (1) 0.000 10000.0000 MULT 2	17 10.2700 360.00 312.20 1.00 0.1717 0.000 10000.000	
PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAK. POOL AREA (m^2) NIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MA	2-GAS 1 27.6700 125.00 125.00 1313.20 1.00 0.00 0.3041 FIAL DILUTION 0.000 10000.000 0.100 2-DEFAULT 110000.0000 MUVAL, 2-DEF	sh sh fluoride IF2 (7 17 1 10.4600 360.00 311.20 0.1689 (1) 0.000 10000.0000 MULT 2	17 10.2700 360.00 312.20 1.00 0.1717 0.000 10000.000	
PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAK. POOL AREA (m^2) NIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MA	2-GAS 1 27.6700 125.00 125.00 1313.20 1.00 0.00 0.3041 FIAL DILUTION 0.000 10000.000 0.100 2-DEFAULT 110000.0000 MUVAL, 2-DEF	sh sh fluoride IF2 (7 17 1 10.4600 360.00 311.20 0.1689 (1) 0.000 10000.0000 MULT 2	17 10.2700 360.00 312.20 1.00 0.1717 0.000 10000.000	
PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAK. POOL AREA (m^2) NIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MA	2-GAS 1 27.6700 125.00 125.00 1313.20 1.00 0.00 0.3041 FIAL DILUTION 0.000 10000.000 0.100 2-DEFAULT 110000.0000 MUVAL, 2-DEF	sh sh fluoride IF2 (7 17 1 10.4600 360.00 311.20 0.1689 (1) 0.000 10000.0000 MULT 2	17 10.2700 360.00 312.20 1.00 0.1717 0.000 10000.000	
PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAK. POOL AREA (m^2) NIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MA	2-GAS 1 27.6700 125.00 125.00 1313.20 1.00 0.00 0.3041 FIAL DILUTION 0.000 10000.000 0.100 2-DEFAULT 110000.0000 MUVAL, 2-DEF	sh sh fluoride IF2 (7 17 1 10.4600 360.00 311.20 0.1689 (1) 0.000 10000.0000 MULT 2	17 10.2700 360.00 312.20 1.00 0.1717 0.000 10000.000	
PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAK. POOL AREA (m^2) NIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MA	2-GAS 1 27.6700 125.00 125.00 1313.20 1.00 0.00 0.3041 FIAL DILUTION 0.000 10000.000 0.100 2-DEFAULT 110000.0000 MUVAL, 2-DEF	sh sh fluoride IF2 (7 17 1 10.4600 360.00 311.20 0.1689 (1) 0.000 10000.0000 MULT 2	17 10.2700 360.00 312.20 1.00 0.1717 0.000 10000.000	
PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAK. POOL AREA (m^2) NIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MA	2-GAS 1 27.6700 125.00 125.00 1313.20 1.00 0.00 0.3041 FIAL DILUTION 0.000 10000.000 0.100 2-DEFAULT 110000.0000 MUVAL, 2-DEF	sh sh fluoride IF2 (7 17 1 10.4600 360.00 311.20 0.1689 (1) 0.000 10000.0000 MULT 2	17 10.2700 360.00 312.20 1.00 0.1717 0.000 10000.000	
PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAK. POOL AREA (m^2) NIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MA	2-GAS 1 27.6700 125.00 125.00 1313.20 1.00 0.00 0.3041 FIAL DILUTION 0.000 10000.000 0.100 2-DEFAULT 110000.0000 MUVAL, 2-DEF	sh sh fluoride IF2 (7 17 1 10.4600 360.00 311.20 0.1689 (1) 0.000 10000.0000 MULT 2	17 10.2700 360.00 312.20 1.00 0.1717 0.000 10000.000	
PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAK. POOL AREA (m^2) NIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MA	2-GAS 1 27.6700 125.00 125.00 1313.20 1.00 0.00 0.3041 FIAL DILUTION 0.000 10000.000 0.100 2-DEFAULT 110000.0000 MUVAL, 2-DEF	sh sh fluoride IF2 (7 17 1 10.4600 360.00 311.20 0.1689 (1) 0.000 10000.0000 MULT 2	17 10.2700 360.00 312.20 1.00 0.1717 0.000 10000.000	
PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) HITT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI: MAX. POOL AREA (m ² 2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL/FIACH MASS BATIO	2-GAS 1 27.6700 125.00 125.00 1313.20 1.00 0.00 0.3041 FIAL DILUTION 0.000 10000.000 0.100 2-DEFAULT 110000.0000 MUVAL, 2-DEF	sh sh fluoride IF2 (7 17 1 10.4600 360.00 311.20 0.1689 (1) 0.000 10000.0000 MULT 2	17 10.2700 360.00 312.20 1.00 0.1717 0.000 10000.000	

TRACE INPUT DATA FOR	: Hanfor	d (continue	ou s)			
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0)	: Krypto	n-85				
CHEMICAL NO.	: NCI 999	999	999	999	999 NC3	
(999-N2 with m.w29.0)	,					
RELEASE TYPE: 1-CONT., 2-INS	I., 3-TRANS.		_		٠	
(999-N2 with m,w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INT	2=GAS	1	1	7	1	
or comments	: 2	2	2	2	2	
RELEASE RATE (kg/s)	0.0117	0.0120	0.0278	0.0388	0.0171	
RELEASE DURATION (s)	928.00	905.00	855.00	598.00	1191.00	
TEMP. OF CHEMICAL (K)	290.87	285.43	200.93 1 00	1 00	1 00	
VERTICAL VELO. (m/s)	0.00	2.00	1.00	2.00	2.00	
HORIZONAL VELO. (m/s)	0.00					
INIT. RADIUS (m)	0.0528	0.0296	0.0337	0.0532	0.0431	
122 1122 1122 1222 1222	0.000	0.000	0.000	0.000	0.000	
MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL	10000.000	10000.000	10000.000	10000.000	10000.000	
MIN. POOL DEPTH (m)	0.010			-		
ALBEDO OF POOL	0.150					
AEROSOL FORMATION: 1-MANUAL,	2-DEFAULT	3	•	,	•	
ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MAIR/CHEMICAL MASS RATIO SUBSTRATE: 0-M, 1-C, 2-Asoil	0.0000	0.0000	0.0000	0,0000	0.0000	
AEROSOL AIR ENTRAINMENT: 1-M	NUAL, 2-DEF	AULT				
110/0000001011 1414	: 2	2	2	2	2	
AIR/CHEMICAL MASS RATIO	0.0000	0.0000	0.0000	0.0000	0.0000	
30931RAIE: U-M, 1-C, 2-ABGII,	, <u>J-SUBUII</u> , .	,-sn#011 2	2	2	2	
SUBSTRATE TEMP. (K)	290.87	285.43	286.93	286.65	278.82	
WIND SPEED (m/s)	1.30	3.90	7.10	3.90	2.60	
AIR/CHEMICAL MASS RATIO SUBSTRATE: 0-W, 1-C, 2-Asoil, SUBSTRATE TEMP. (K) WIND SPEED (m/s) HORZ. STAB. VERT. STAB. TEMP. (K) HUNIDITY (FRACTION) SOLAR RAD. (w/m^2) SURFACE ROUGHNESS (m) M-O LENGTH (m) WIND MEAS. HT. (m) CEILING HT. (m) UPPER LEVEL STAB. SIMULATION TIME (s) TILV HT. (m) MAX. DOSAGE DISTANCE (m) CONC. AVG. TIME (s)	6	3	3	3	5	
TEMP (E)	290 97	285 43	3 200 93	184 45	278 #2	
HUMIDITY (FRACTION)	0.20	0.20	0.20	0.20	0.20	
SOLAR RAD. (w/m^2)	300.00					
SURFACE ROUGHNESS (m)	0.03000	0.03000	0.03000	0.03000	0.03000	
M-O LENGTH (m)	6.875	-111.826	-186.121	-26.653	70.243	
CEILING HT. (m)	10000.	1.30	1.50	1.30	1.50	
UPPER LEVEL STAP.	6	3	3	3	5	
SIMULATION TIME (a)	1215.38	805.13	712.68	805.13	907.69	
TLV HT. (m)	1.50	1.50	1.50	1.50	1.50	
CONC. AVG. TIME (a)	460.80	844 80	268.80	268.80	537.60	
11.01	100.00	044.00	150.00	200.00	337.00	
TRACE INPUT DATA FOR	Hanford	i (instanta	(zvoeni			
TRACE INPUT DATA FOR CHEMICAL RELEASED	Hanford Krypton	i (instanta n-85	ineous)		u*9 i	WT &
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO.	Hanford Krypton HI2 1	i (instanta n-85 HI3 i 999	ineous) ii čiii ige	116 1 999	HI7	HI8 999
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO.	Hanford: Krypton HI2 I 999	1 (instant: n-85 HI3 i 999	ineous) iI5 ; 999	i16 1	HI7 999	HI8 999
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO.	Hanford: Krypton HI2 I 999	1 (instant: n-85 HI3 i 999	ineous) iI5 ; 999	i16 1	HI7 999	HI8 999
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO.	Hanford: Krypton HI2 I 999	1 (instant: n-85 HI3 i 999	ineous) iI5 ; 999	i16 1	HI7 999	HI8 999
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO.	Hanford: Krypton HI2 I 999	1 (instant: n-85 HI3 i 999	ineous) iI5 ; 999	i16 1	HI7 999	HI8 999
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO.	Hanford: Krypton HI2 I 999	1 (instant: n-85 HI3 i 999	ineous) iI5 ; 999	i16 1	HI7 999	HI8 999
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO.	Hanford: Krypton HI2 I 999	1 (instant: n-85 HI3 i 999	ineous) iI5 ; 999	i16 1	HI7 999	HI8 999
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS: PHASE OF CHEMICAL: 1-LIQUID, TOTAL MASS RELEASED (kg) RELEASE DURATION (s) TEMP. OF CHEMICAL (K)	Hanford Krypton Krypto	i (instanta n-85 HI3 i 999 2 10.00 0.00	2 10.00 0.00	2 2 10.00 0.00	999 2 2 10.00 0.00	999 2 2 10.00 0.00
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS: PHASE OF CHEMICAL: 1-LIQUID, TOTAL MASS RELEASED (kg) RELEASE DURATION (s) TEMP. OF CHEMICAL (K)	Hanford Krypton Krypto	i (instanta n-85 HI3 i 999 2 10.00 0.00	2 10.00 0.00	2 2 10.00 0.00	999 2 2 10.00 0.00	999 2 2 10.00 0.00
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS: PHASE OF CHEMICAL: 1-LIQUID, TOTAL MASS RELEASED (kg) RELEASE DURATION (s) TEMP. OF CHEMICAL (K)	Hanford Krypton Krypto	i (instanta n-85 HI3 i 999 2 10.00 0.00	2 10.00 0.00	2 2 10.00 0.00	999 2 2 10.00 0.00	999 2 2 10.00 0.00
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INST PHASE OF CHEMICAL: 1-LIQUID, TOTAL MASS RELEASED (kg) RELEASE DURATION (m) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INTT. RADIUS (m)	Hanford Krypton Krypto	i (instant: n-85 ii3 i 999 2 2 10.00 0.00 205.09 0.00	2 2 10.00 0.00 288.71 0.00 1.3748	2 2 10.00 0.00 0.00 0.00 1.3740	999 2 2 10.00 0.00 285.59 0.00	999 2 2 10.00 0.00 277.76 0.00
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INST PHASE OF CHEMICAL: 1-LIQUID, TOTAL MASS RELEASED (kg) RELEASE DURATION (m) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INTT. RADIUS (m)	Hanford Krypton Krypto	i (instant: n-85 ii3 i 999 2 2 10.00 0.00 205.09 0.00	2 2 10.00 0.00 288.71 0.00 1.3748	2 2 10.00 0.00 0.00 0.00 1.3740	999 2 2 10.00 0.00 285.59 0.00	999 2 2 10.00 0.00 277.76 0.00
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INST PHASE OF CHEMICAL: 1-LIQUID, TOTAL MASS RELEASED (kg) RELEASE DURATION (m) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INTT. RADIUS (m)	Hanford Krypton Krypto	i (instant: n-85 ii3 i 999 2 2 10.00 0.00 205.09 0.00	2 2 10.00 0.00 288.71 0.00 1.3748	2 2 10.00 0.00 0.00 0.00 1.3740	999 2 2 10.00 0.00 285.59 0.00	999 2 2 10.00 0.00 277.76 0.00
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INST PHASE OF CHEMICAL: 1-LIQUID, TOTAL MASS RELEASED (kg) RELEASE DURATION (m) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INTT. RADIUS (m)	Hanford Krypton Krypto	i (instant: n-85 ii3 i 999 2 2 10.00 0.00 205.09 0.00	2 2 10.00 0.00 288.71 0.00 1.3748	2 2 10.00 0.00 0.00 0.00 1.3740	999 2 2 10.00 0.00 285.59 0.00	999 2 2 10.00 0.00 277.76 0.00
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS: PHASE OF CHEMICAL: 1-LIQUID, TOTAL MASS RELEASED (kg) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) ALEXCHEMICAL MOLE RATIO (INIT. MAX. POOL AREA (m-2) MIM. POOL DEPTH (m) ALBEDO OF POOL	Hanford Krypton Krypto	i (instant: n-85 HI3 i 999 2 10.00 0.00 285.09 0.00 1.3690 i) 0.000 10000,000	2 2 10.00 0.00 288.71 0.00 1.3748	2 2 10.00 0.00 0.00 0.00 1.3740	999 2 2 10.00 0.00 285.59 0.00	999 2 2 10.00 0.00 277.76 0.00
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS: PHASE OF CHEMICAL: 1-LIQUID, TOTAL MASS RELEASED (kg) RELEASE DURATION (m) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VENTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI: MAX. POOL AREA (m^2) MIM. POOL DEPTH (m) ALBEDO OF POOL	Hanford Rrypton Rrypto	i (instant: n-85 iI3 i 999 2 10.00 0.00 285.09 0.00 1.3690 10000.000	2 2 10.00 0.000 100000.000	9999 2 10.00 0.00 288.26 0.00 1.3740 0.000	999 2 10.00 0.00 295.59 0.00 1.3698 0.000	999 2 10.00 0.00 277.76 0.00 1.3572 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS: PHASE OF CHEMICAL: 1-LIQUID, TOTAL MASS RELEASED (kg) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m-2) MIM. POOL DEPTH (m) ALBEDO OF POOL AREOSOL FORMATION: 1-MANUAL, AREOGOL/SIASE MASS SATIO	Hanford Krypton Hanford Krypton HIZ 9999 T., 3-TRANS. 2 2-GAS 10.00 0.00 291.54 0.00 0.00 0.00 1.3792 TIAL DILUTION 0.000 10000.000 0.000 0.000 10000.000 0.010 2-DEFAULT	i (instant: n-85 HI3	2 2 10.00 0.00 288.71 0.00 1.3748 0.000 10000.000	2 2 10.00 0.00 288.26 0.00 1.3740 0.000 10000.000	999 2 2 10.00 0.00 285.59 0.00 1.3698 0.000	999 2 10.00 0.00 277.76 0.00 1.3572 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS: PHASE OF CHEMICAL: 1-LIQUID, TOTAL MASS RELEASED (kg) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m-2) MIM. POOL DEPTH (m) ALBEDO OF POOL AREOSOL FORMATION: 1-MANUAL, AREOGOL/SIASE MASS SATIO	Hanford Krypton Hanford Krypton HIZ 9999 T., 3-TRANS. 2 2-GAS 10.00 0.00 291.54 0.00 0.00 0.00 1.3792 TIAL DILUTION 0.000 10000.000 0.000 0.000 10000.000 0.010 2-DEFAULT	i (instant: n-85 HI3	2 2 10.00 0.00 288.71 0.00 1.3748 0.000 10000.000	2 2 10.00 0.00 288.26 0.00 1.3740 0.000 10000.000	999 2 2 10.00 0.00 285.59 0.00 1.3698 0.000	999 2 10.00 0.00 277.76 0.00 1.3572 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS: PHASE OF CHEMICAL: 1-LIQUID, TOTAL MASS RELEASED (kg) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m-2) MIM. POOL DEPTH (m) ALBEDO OF POOL AREOSOL FORMATION: 1-MANUAL, AREOGOL/SIASE MASS SATIO	Hanford Krypton Hanford Krypton HIZ 9999 T., 3-TRANS. 2 2-GAS 10.00 0.00 0.00 0.00 0.00 1.3792 TIAL DILUTION 0.000 10000.000 0.000 0.000 10000.000 0.150 2-DEFAULT	i (instant: n-85 HI3	2 2 10.00 0.00 288.71 0.00 1.3748 0.000 10000.000	2 2 10.00 0.00 288.26 0.00 1.3740 0.000 10000.000	999 2 2 10.00 0.00 285.59 0.00 1.3698 0.000	999 2 10.00 0.00 277.76 0.00 1.3572 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INST PHASE OF CHEMICAL: 1-LIQUID, TOTAL MASS RELEASED (kg) RELEASE DURATION (m) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF FOOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MANUAL	Hanford Krypton HI2 999 I., 3-TRANS. 22-GAS 10.00 0.00 291.54 0.00 0.00 1.3792 FIAL DILUTION 0.000 1.000 0.01 0.010 0.010 0.015 2-DEFAULT 0.000 NUAL, 2-DEFI	(instant) 1-85 113	2 2 10.00 0.00 288.71 0.00 1.3748 0.000 10000.000	2 2 10.00 0.00 0.00 1.3740 0.000 10000.000 2 2 0.0000	999 2 2 10.00 0.00 285.59 0.00 1.3698 0.000 10000.000	999 2 10.00 0.00 277.76 0.00 1.3572 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INST PHASE OF CHEMICAL: 1-LIQUID, TOTAL MASS RELEASED (kg) RELEASE DURATION (m) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF FOOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MANUAL	Hanford Krypton HI2 999 I., 3-TRANS. 22-GAS 10.00 0.00 291.54 0.00 0.00 1.3792 FIAL DILUTION 0.000 1.000 0.01 0.010 0.010 0.015 2-DEFAULT 0.000 NUAL, 2-DEFI	(instant) 1-85 113	2 2 10.00 0.00 288.71 0.00 1.3748 0.000 10000.000	2 2 10.00 0.00 0.00 1.3740 0.000 10000.000 2 2 0.0000	999 2 2 10.00 0.00 285.59 0.00 1.3698 0.000 10000.000	999 2 10.00 0.00 277.76 0.00 1.3572 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INST PHASE OF CHEMICAL: 1-LIQUID, TOTAL MASS RELEASED (kg) RELEASE DURATION (m) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF FOOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MANUAL	Hanford Krypton HI2 999 I., 3-TRANS. 22-GAS 10.00 0.00 291.54 0.00 0.00 1.3792 FIAL DILUTION 0.000 1.000 0.01 0.010 0.010 0.015 2-DEFAULT 0.000 NUAL, 2-DEFI	(instant) 1-85 113	2 2 10.00 0.00 288.71 0.00 1.3748 0.000 10000.000	2 2 10.00 0.00 0.00 1.3740 0.000 10000.000 2 2 0.0000	999 2 2 10.00 0.00 285.59 0.00 1.3698 0.000 10000.000	999 2 10.00 0.00 277.76 0.00 1.3572 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INST PHASE OF CHEMICAL: 1-LIQUID, TOTAL MASS RELEASED (kg) RELEASE DURATION (m) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF FOOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MANUAL	Hanford Krypton HI2 999 I., 3-TRANS. 22-GAS 10.00 0.00 291.54 0.00 0.00 1.3792 FIAL DILUTION 0.000 1.000 0.01 0.010 0.010 0.015 2-DEFAULT 0.000 NUAL, 2-DEFI	(instant) 1-85 113	2 2 10.00 0.00 288.71 0.00 1.3748 0.000 10000.000	2 2 10.00 0.00 0.00 1.3740 0.000 10000.000 2 2 0.0000	999 2 2 10.00 0.00 285.59 0.00 1.3698 0.000 10000.000	999 2 10.00 0.00 277.76 0.00 1.3572 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INST PHASE OF CHEMICAL: 1-LIQUID, TOTAL MASS RELEASED (kg) RELEASE DURATION (m) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF FOOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MANUAL	Hanford Krypton HI2 999 I., 3-TRANS. 22-GAS 10.00 0.00 291.54 0.00 0.00 1.3792 FIAL DILUTION 0.000 1.000 0.01 0.010 0.010 0.015 2-DEFAULT 0.000 NUAL, 2-DEFI	(instant) 1-85 113	2 2 10.00 0.00 288.71 0.00 1.3748 0.000 10000.000	2 2 10.00 0.00 0.00 1.3740 0.000 10000.000 2 2 0.0000	999 2 2 10.00 0.00 285.59 0.00 1.3698 0.000 10000.000	999 2 10.00 0.00 277.76 0.00 1.3572 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INST PHASE OF CHEMICAL: 1-LIQUID, TOTAL MASS RELEASED (kg) RELEASE DURATION (m) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF FOOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MANUAL	Hanford Krypton HI2 999 I., 3-TRANS. 22-GAS 10.00 0.00 291.54 0.00 0.00 1.3792 FIAL DILUTION 0.000 1.000 0.01 0.010 0.010 0.015 2-DEFAULT 0.000 NUAL, 2-DEFI	(instant) 1-85 113	2 2 10.00 0.00 288.71 0.00 1.3748 0.000 10000.000	2 2 10.00 0.00 0.00 1.3740 0.000 10000.000 2 2 0.0000	999 2 2 10.00 0.00 285.59 0.00 1.3698 0.000 10000.000	999 2 10.00 0.00 277.76 0.00 1.3572 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INST PHASE OF CHEMICAL: 1-LIQUID, TOTAL MASS RELEASED (kg) RELEASE DURATION (m) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF FOOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MANUAL	Hanford Krypton HI2 999 I., 3-TRANS. 22-GAS 10.00 0.00 291.54 0.00 0.00 1.3792 FIAL DILUTION 0.000 1.000 0.01 0.010 0.010 0.015 2-DEFAULT 0.000 NUAL, 2-DEFI	(instant) 1-85 113	2 2 10.00 0.00 288.71 0.00 1.3748 0.000 10000.000	2 2 10.00 0.00 0.00 1.3740 0.000 10000.000 2 2 0.0000	999 2 2 10.00 0.00 285.59 0.00 1.3698 0.000 10000.000	999 2 10.00 0.00 277.76 0.00 1.3572 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INST PHASE OF CHEMICAL: 1-LIQUID, TOTAL MASS RELEASED (kg) RELEASE DURATION (m) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF FOOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MANUAL	Hanford Krypton HI2 999 I., 3-TRANS. 22-GAS 10.00 0.00 291.54 0.00 0.00 1.3792 FIAL DILUTION 0.000 1.000 0.01 0.010 0.010 0.015 2-DEFAULT 0.000 NUAL, 2-DEFI	(instant) 1-85 113	2 2 10.00 0.00 288.71 0.00 1.3748 0.000 10000.000	2 2 10.00 0.00 0.00 1.3740 0.000 10000.000 2 2 0.0000	999 2 2 10.00 0.00 285.59 0.00 1.3698 0.000 10000.000	999 2 10.00 0.00 277.76 0.00 1.3572 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INST PHASE OF CHEMICAL: 1-LIQUID, TOTAL MASS RELEASED (kg) RELEASE DURATION (m) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF FOOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MANUAL	Hanford Krypton HI2 999 I., 3-TRANS. 22-GAS 10.00 0.00 291.54 0.00 0.00 1.3792 FIAL DILUTION 0.000 1.000 0.01 0.010 0.010 0.015 2-DEFAULT 0.000 NUAL, 2-DEFA	(instant) 1-85 113	2 2 10.00 0.00 288.71 0.00 1.3748 0.000 10000.000	2 2 10.00 0.00 0.00 1.3740 0.000 10000.000 2 2 0.0000	999 2 2 10.00 0.00 285.59 0.00 1.3698 0.000 10000.000	999 2 10.00 0.00 277.76 0.00 1.3572 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INST PHASE OF CHEMICAL: 1-LIQUID, TOTAL MASS RELEASED (kg) RELEASE DURATION (m) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF FOOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MANUAL	Hanford Krypton HI2 999 I., 3-TRANS. 22-GAS 10.00 0.00 291.54 0.00 0.00 1.3792 FIAL DILUTION 0.000 1.000 0.01 0.010 0.010 0.015 2-DEFAULT 0.000 NUAL, 2-DEFA	(instant) 1-85 113	2 2 10.00 0.00 288.71 0.00 1.3748 0.000 10000.000	2 2 10.00 0.00 0.00 1.3740 0.000 10000.000 2 2 0.0000	999 2 2 10.00 0.00 285.59 0.00 1.3698 0.000 10000.000	999 2 10.00 0.00 277.76 0.00 1.3572 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INST PHASE OF CHEMICAL: 1-LIQUID, TOTAL MASS RELEASED (kg) RELEASE DURATION (m) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF FOOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MANUAL	Hanford Krypton HI2 999 I., 3-TRANS. 22-GAS 10.00 0.00 291.54 0.00 0.00 1.3792 FIAL DILUTION 0.000 1.000 0.01 0.010 0.010 0.015 2-DEFAULT 0.000 NUAL, 2-DEFA	(instant) 1-85 113	2 2 10.00 0.00 288.71 0.00 1.3748 0.000 10000.000	2 2 10.00 0.00 0.00 1.3740 0.000 10000.000 2 2 0.0000	999 2 2 10.00 0.00 285.59 0.00 1.3698 0.000 10000.000	999 2 10.00 0.00 277.76 0.00 1.3572 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INST PHASE OF CHEMICAL: 1-LIQUID, TOTAL MASS RELEASED (kg) RELEASE DURATION (m) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF FOOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MANUAL	Hanford Krypton HI2 999 I., 3-TRANS. 22-GAS 10.00 0.00 291.54 0.00 0.00 1.3792 FIAL DILUTION 0.000 1.000 0.01 0.010 0.010 0.015 2-DEFAULT 0.000 NUAL, 2-DEFA	(instant) 1-85 113	2 2 10.00 0.00 288.71 0.00 1.3748 0.000 10000.000	2 2 10.00 0.00 0.00 1.3740 0.000 10000.000 2 2 0.0000	999 2 2 10.00 0.00 285.59 0.00 1.3698 0.000 10000.000	999 2 10.00 0.00 277.76 0.00 1.3572 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INST PHASE OF CHEMICAL: 1-LIQUID, TOTAL MASS RELEASED (kg) RELEASE DURATION (m) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF FOOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MANUAL	Hanford Krypton HI2 999 I., 3-TRANS. 22-GAS 10.00 0.00 291.54 0.00 0.00 1.3792 FIAL DILUTION 0.000 1.000 0.01 0.010 0.010 0.015 2-DEFAULT 0.000 NUAL, 2-DEFA	(instant) 1-85 113	2 2 10.00 0.00 288.71 0.00 1.3748 0.000 10000.000	2 2 10.00 0.00 0.00 1.3740 0.000 10000.000 2 2 0.0000	999 2 2 10.00 0.00 285.59 0.00 1.3698 0.000 10000.000	999 2 10.00 0.00 277.76 0.00 1.3572 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INST PHASE OF CHEMICAL: 1-LIQUID, TOTAL MASS RELEASED (kg) RELEASE DURATION (m) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF FOOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MANUAL	Hanford Krypton HI2 999 I., 3-TRANS. 22-GAS 10.00 0.00 291.54 0.00 0.00 1.3792 FIAL DILUTION 0.000 1.000 0.01 0.010 0.010 0.015 2-DEFAULT 0.000 NUAL, 2-DEFA	(instant) 1-85 113	2 2 10.00 0.00 288.71 0.00 1.3748 0.000 10000.000	2 2 10.00 0.00 0.00 1.3740 0.000 10000.000 2 2 0.0000	999 2 2 10.00 0.00 285.59 0.00 1.3698 0.000 10000.000	999 2 10.00 0.00 277.76 0.00 1.3572 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS: PHASE OF CHEMICAL: 1-LIQUID, TOTAL MASS RELEASED (kg) RELEASE DURATION (m) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI: MAX. POOL AREA (m^2) MIM. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MAIR/CHEMICAL MASS RATIO	Hanford Krypton HI2 999 I., 3-TRANS. 22-GAS 10.00 0.00 291.54 0.00 0.00 1.3792 FIAL DILUTION 0.000 1.000 0.01 0.010 0.010 0.015 2-DEFAULT 0.000 NUAL, 2-DEFA	(instant) 1-85 113	2 2 10.00 0.00 288.71 0.00 1.3748 0.000 10000.000	2 2 10.00 0.00 0.00 1.3740 0.000 10000.000 2 2 0.0000	999 2 2 10.00 0.00 285.59 0.00 1.3698 0.000 10000.000	999 2 10.00 0.00 277.76 0.00 1.3572 0.000 10000.000

TRACE INPUT DATA FOR	: Maplin Sand	ia						
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT 2-INS	: Liquified b	latural Ga		•				
TRIAL NAME	: MS27 1	(829	H534	M\$35				
CHEMICAL NO.	: 61	97	•1	61				
(999-M2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m/s) AIR/CHEMICAL MOLE RATIO (INI	T., 3-TRANS.							
	; 1	1	1	1				
PHASE OF CHEMICAL: 1-LIQUID,	2-GAS	_	_	_				
DRYPHAR DAMP (be/o)	: 22 2100	20 1600	41 5100	1				
RELEASE RATE (RG/#)	160.00	27.1600	95.00	135.00				
TEMP. OF CHEMICAL (K)	: 111.70	111.70	111.70	111.70				
RELEASE ELEVATION (m)	. 0.00	0.00	0.00	0.00				
VERTICAL VELO. (m/s)	: 0.00							
HORIZONAL VELO. (m/s)	: 0.00							
INIT. RADIUS (m)	: 9.3000	10.4500	9.0000	10.0500				
AIR/CHEMICAL HOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL	· 0 000	0.000	6 000	0.000				
MAY, POOT, AREA (me2)	10000.000	10000.000	10000-000	10000.000				
MIN. POOL DEPTH (m)	: 0.010							
ALBEDO OF POOL	: 0.150							
AEROSOL FORMATION: 1-MANUAL,	2-Depault							
AEROSOL/FLASH MASS RATIO	: 2	2	2	2				
AFPORAT ATD ENTRATEMENT . 1-M	: 0.0000 amuri 2-0864	nt.T	0.0000	0.0000				
AEROSOL AIR ENTRAINMENT: 1-M AIR/CHEMICAL MASS RATIO	. 2 - 2	2	2	2				
AIR/CHEMICAL MASS RATIO	: 0.0000	0.0000	0.0000	0.0000				
SUBSTRATE: 0-W, 1-C, 2-Asoil	, 3-SDscil, 4	-SMsoil						
AIR/CHEMICAL MASS RATIO SUBSTRATE: 0-W, 1-C, 2-Asoll SUBSTRATE TEMP. (K) WIND SPEED (m/s) HORZ. STAB. VERI. STAB. TEMP. (K) HUMIDITY (FRACTION) SOLAR RAD. (W/m^2) SURFACE ROUGHNESS (m) M-O LENGTH (m) MIND MEAS. HT. (m) CEILING HT. (m) UPPER LEVEL STAB. SIMULATION TIME (s) TIV HT. (m) MAX. DOSAGE DISTANCE (m) CONC. AVG. TIME (s)	: 0	. 0	0	0				
SUBSTRATE TEMP. (K)	288.80	290.00	289.00	289.80				
WIND SPEED (m/s)	5,60	7.40	8.50	9,60				
NURA, STAB. VERT STAR	: 1	•	5	2				
TEMP. (K)	. 4 288.10	289.30	288.40	289.30				
HUMIDITY (FRACTION)	: 0.53	0.71	0.90	0.77				
SOLAR RAD. (W/m^2)	: 300.00							
SURFACE ROUGHNESS (m)	: 0.00030	0.00030	0.00030	0.00030				
M-O LENGTH (m)	: -36.953	1220.632	-102.720	-81.578				
WIED MEAS. HT. (m)	: 10.00	10.00	10.00	10.00				
TEDES TEUST. CTAS	. 10000.	4	4	4				
SIMULATION TIME (a)	216.07	654.46	621.06	642.29				
TLV HT. (m)	: 0.90	0.90	0.90	0.90				
MAX. DOSAGE DISTANCE (m)	: 650.	403.	179.	406.				
CONC. AVG. TIME (m)	: 3.00	3.00	3.00	3.00				
TRACE INPUT DATA FOR	: Maplin Sand							
TRACE INPUT DATA FOR CHEMICAL RELEASED	: Maplin Sand : Liquified P							
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME	: Maplin Sand : Liquified P : MS42 M					45 50)	ISS2 1	(\$ 54
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO.	: Maplin Sand : Liquified P : MS42 M : 132					4550 P	(552) 132	(554
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0)	: Maplin Sand : Liquified P : MS42 M : 132	s ropane Gas S43 I 132	; (846) 132	1547 P	(549 132	KS 50 P	1 552 I 132	(554 132
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL MAME CHEMICAL NO. (999-M2 with m.w29.0) RELEASE TYPE: 1-COMT., 2-INS	: Maplin Sand : Liquified P : MS42 M : 132	s ropane Gas S43 I 132	; (846) 132	1547 P	(549 132	4550 P	1352) 132	t\$54
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL MAME. CHEMICAL NO. (999-M2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS	: Maplin Sand : Liquified P : MS42 M : 132 T., 3-TRANS.	s ropane Gas S43 I 132	; (846) 132	1547 P	(549 132	4550 P 132	132 132	132
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL MAME CHEMICAL NO. (999-M2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID,	: Maplin Sand : Liquified P : MS42 M : 132 T., 3-TRANS. : 1 2-GAS	s ropane Gas S43 I 132	; (846) 132	1547 P	(549 132	132	132 132	t554 132 1
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL MAME CHEMICAL NO. (999-M2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s)	: Maplin Sand : Liquified P : MS42 M : 132 T., 3-TRANS. : 1 2-GAS : 20.8700	s ropane Gas S43 I 132	; (846) 132	1547 P	(549 132	4550 132 132 1 35.8900	132 132 1 1 44.2500	132 132 1 1 19,2000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL MAME CHEMICAL NO. (999-M2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s)	: Maplin Sand : Liquified P : MS42	s ropane Gas S43 I 132	; (846) 132	1547 P	(549 132	132 132 1 1 35.8900 160.00	132 132 1 1 44.2500 140.00	132 1 1 19,2000 180.00
RELEASE TYPE: 1-COPT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K)	T., 3-TRANS. : 1 2-GAS: : 20.8700 : 180.00 : 231.10	ropane Ga: \$43	132 132 1 1 23.3700 360.00 231.10	132 132 1 1 32.5700 210.00 231.10	132 132 1 1 16.7100 90.00 231.10	35.8900 160.00 231.10	1 44.2500 140.00 231.10	1 19.2000 180.00 231.10
PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m)	T., 3-TRANS.: 1 2-GAS : 1: 20.8700 : 180.00 : 231.10 : 0.00	2 ropane Gas 243 132 1 19.2000 330.00 231.10 0.00	132 132 1 1 23.3700 360.00 231.10 0.00	132 132 1 1 32.5700 210.00 231.10 0.00	1349 I 132 1 1 16.7100 90.00 231.10 0.00	35.8900 160.00 231.10	1 44.2500 140.00 231.10	1 19.2000 180.00 231.10
PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m)	T., 3-TRANS.: 1 2-GAS : 1: 20.8700 : 180.00 : 231.10 : 0.00	2 ropane Gas 243 132 1 19.2000 330.00 231.10 0.00	132 132 1 1 23.3700 360.00 231.10 0.00	132 132 1 1 32.5700 210.00 231.10 0.00	1349 I 132 1 1 16.7100 90.00 231.10 0.00	35.8900 160.00 231.10	1 44.2500 140.00 231.10	1 19.2000 180.00 231.10
PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m)	T., 3-TRANS.: 1 2-GAS : 1: 20.8700 : 180.00 : 231.10 : 0.00	2 ropane Gas 243 132 1 19.2000 330.00 231.10 0.00	132 132 1 1 23.3700 360.00 231.10 0.00	132 132 1 1 32.5700 210.00 231.10 0.00	1349 I 132 1 1 16.7100 90.00 231.10 0.00	35.8900 160.00 231.10	1 44.2500 140.00 231.10	1 19.2000 180.00 231.10
PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) AIR/CHEMICAL MOLE RATIO (INI AIR/CHEMICAL MOLE RATIO (INI	T., 3-TRANS. 2-GAS 1 20.8700 1 80.00 231.10 0.00 0.00 7.4500 TIAL DILUTION	# ropane Gai #843 132 132 1 1 1 1 1 1 1 1 1 1	132 132 1 1 23.3700 360.00 231.10 0.00	132.5700 210.00 231.10 0.00	132 132 1 16.7100 90.00 231.10 0.00	1 35.8900 160.00 231.10 0.00	1 44.2500 140.00 231.10 0.00	1 19,2000 180,00 231,10 0,00
PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI	T., 3-TRANS. 2-GAS 1 20.8700 1 80.00 231.10 0.00 0.00 7.4500 TIAL DILUTION 0.000	ropane Gai \$43 132 1 19,2000 330.00 231.10 0.00 7.1500	132 132 1 23.3700 360.00 231.10 0.00 7.8500	132 132 1 32.5700 210.00 231.10 0.00 9.3000	132 132 1 16.7100 90.00 231.10 0.00	1 35.8900 160.00 231.10 0.00 9.7500	1 44.2500 140.00 231.10 0.00	1 19.2000 180.00 231.10 0.00 7.1500
RELEASE TYPE: 1-COPT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2)	T., 3-TRANS.: 2-GAS : 1: 20.8700 : 180.00 : 231.10 : 0.00 : 0.00 : 0.00 : 7.4500 TIAL DILUTION : 10000.000	ropane Gai \$43 132 1 19,2000 330.00 231.10 0.00 7.1500	132 132 1 23.3700 360.00 231.10 0.00 7.8500	132 132 1 32.5700 210.00 231.10 0.00 9.3000	132 132 1 16.7100 90.00 231.10 0.00	1 35.8900 160.00 231.10 0.00 9.7500	1 44.2500 140.00 231.10 0.00	1 19.2000 180.00 231.10 0.00 7.1500
RELEASE TYPE: 1-COPT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2)	T., 3-TRANS.: 2-GAS : 1: 20.8700 : 180.00 : 231.10 : 0.00 : 0.00 : 0.00 : 7.4500 TIAL DILUTION : 10000.000	ropane Gai \$43 132 1 19,2000 330.00 231.10 0.00 7.1500	132 132 1 23.3700 360.00 231.10 0.00 7.8500	132 132 1 32.5700 210.00 231.10 0.00 9.3000	132 132 1 16.7100 90.00 231.10 0.00	1 35.8900 160.00 231.10 0.00 9.7500	1 44.2500 140.00 231.10 0.00	1 19.2000 180.00 231.10 0.00 7.1500
PRELEASE TYPE: 1-COPT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL	T., 3-TRANS.: 2-GAS : 1: 20.8700 : 180.00 : 231.10 : 0.00 : 0.00 : 0.00 : 7.4500 TIAL DILUTION : 0.000 : 10000.000 : 10000.000 : 0.150	19.2000 330.000 7.1500 0 0.000	132 132 1 23.3700 360.00 231.10 0.00 7.8500 0.000	132 132 1 32.5700 210.00 231.10 0.00 9.3000 0.000	1 16.7100 90.00 231.10 0.000 0.000	35.8900 160.00 231.10 0.00 9.7500 0.000	1 44.2500 140.00 231.10 0.00 10.8500 0.000	1 19.2000 180.00 231.10 0.00 7.1500 0.000 16000.000
PRELEASE TYPE: 1-COPT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL	T., 3-TRANS.: 2-GAS : 1: 20.8700 : 180.00 : 231.10 : 0.00 : 0.00 : 0.00 : 7.4500 TIAL DILUTION : 0.000 : 10000.000 : 10000.000 : 0.150	19.2000 330.000 7.1500 0 0.000	132 132 1 23.3700 360.00 231.10 0.00 7.8500 0.000	132 132 1 32.5700 210.00 231.10 0.00 9.3000 0.000	1 16.7100 90.00 231.10 0.000 0.000	35.8900 160.00 231.10 0.00 9.7500 0.000	1 44.2500 140.00 231.10 0.00 10.8500 0.000	1 19.2000 180.00 231.10 0.00 7.1500 0.000 16000.000
PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) HINTI. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL/FLASH MASS RATIO	T., 3-TRANS. 2-GAS 1 20.8700 1 80.00 2 31.10 0 .00 7.4500 TIAL DILUTION 1 0.000 1 0.000 2 0.000 1 0.000 2 0.150 2-DEFAULT 2 0.000	ropane Gai \$43 132 1 1 1 1 1 1 1 1 1	132 132 1 23.3700 360.00 231.10 0.00 7.8500 0.000 10000.000	132.5700 210.00 231.10 0.00 9.3000 0.000 10000.000	132 1 16.7100 90.00 231.10 0.00 6.6500 0.000	1 35.8900 160.00 231.10 0.00 9.7500 0.000 10000.000	1 44.2500 140.00 231.10 0.00 10.8500 0.000 10000.000	1 19.2000 180.00 231.10 0.00 7.1500 0.000 16000.000
PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) HINTI. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL/FLASH MASS RATIO	T., 3-TRANS. 2-GAS 1 20.8700 1 80.00 2 31.10 0 .00 7.4500 TIAL DILUTION 1 0.000 1 0.000 2 0.000 1 0.000 2 0.150 2-DEFAULT 2 0.000	ropane Gai \$43 132 1 1 1 1 1 1 1 1 1	132 132 1 23.3700 360.00 231.10 0.00 7.8500 0.000 10000.000	132.5700 210.00 231.10 0.00 9.3000 0.000 10000.000	132 1 16.7100 90.00 231.10 0.00 6.6500 0.000	1 35.8900 160.00 231.10 0.00 9.7500 0.000 10000.000	1 44.2500 140.00 231.10 0.00 10.8500 0.000 10000.000	1 19.2000 180.00 231.10 0.00 7.1500 0.000 16000.000
RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZOUAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M	T., 3-TRANS. 2-GAS 1 20.8700 1 20.00 2 31.10 0.00 0.00 7.4500 TIAL DILUTION 1 0.000 1 0.000 2 0.150 2-DEFAULT 2 0.0000 AMUAL, 2-DEFA	ropane Gas \$43 132 1 1 1 1 1 1 1 1 1	132 1 23.3700 350.00 231.10 0.00 7.8500 0.000 10000.000	132.5700 210.00 231.10 0.00 9.3000 0.000 10000.000	132 132 1 16.7100 90.00 231.10 0.00 6.6500 0.000 10000.000	1 35.8900 160.00 231.10 0.00 9.7500 0.000 10000.000	1 44.2500 140.00 231.10 0.00 10.8500 0.000 10000.000	1 19.2000 180.00 231.10 0.00 7.1500 0.000 16000.000
RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZOUAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M	T., 3-TRANS. 2-GAS 1 20.8700 1 20.00 2 31.10 0.00 0.00 7.4500 TIAL DILUTION 1 0.000 1 0.000 2 0.150 2-DEFAULT 2 0.0000 AMUAL, 2-DEFA	ropane Gas \$43 132 1 1 1 1 1 1 1 1 1	132 1 23.3700 350.00 231.10 0.00 7.8500 0.000 10000.000	132.5700 210.00 231.10 0.00 9.3000 0.000 10000.000	132 132 1 16.7100 90.00 231.10 0.00 6.6500 0.000 10000.000	1 35.8900 160.00 231.10 0.00 9.7500 0.000 10000.000	1 44.2500 140.00 231.10 0.00 10.8500 0.000 10000.000	1 19.2000 180.00 231.10 0.00 7.1500 0.000 16000.000
RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZOUAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M	T., 3-TRANS. 2-GAS 1 20.8700 1 20.00 2 31.10 0.00 0.00 7.4500 TIAL DILUTION 1 0.000 1 0.000 2 0.150 2-DEFAULT 2 0.0000 AMUAL, 2-DEFA	ropane Gas \$43 132 1 1 1 1 1 1 1 1 1	132 1 23.3700 350.00 231.10 0.00 7.8500 0.000 10000.000	132.5700 210.00 231.10 0.00 9.3000 0.000 10000.000	132 132 1 16.7100 90.00 231.10 0.00 6.6500 0.000 10000.000	1 35.8900 160.00 231.10 0.00 9.7500 0.000 10000.000	1 44.2500 140.00 231.10 0.00 10.8500 0.000 10000.000	1 19.2000 180.00 231.10 0.00 7.1500 0.000 16000.000
RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZOUAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M	T., 3-TRANS. 2-GAS 1 20.8700 1 20.00 2 31.10 0.00 0.00 7.4500 TIAL DILUTION 1 0.000 1 0.000 2 0.150 2-DEFAULT 2 0.0000 AMUAL, 2-DEFA	ropane Gas \$43 132 1 1 1 1 1 1 1 1 1	132 1 23.3700 350.00 231.10 0.00 7.8500 0.000 10000.000	132.5700 210.00 231.10 0.00 9.3000 0.000 10000.000	132 132 1 16.7100 90.00 231.10 0.00 6.6500 0.000 10000.000	1 35.8900 160.00 231.10 0.00 9.7500 0.000 10000.000	1 44.2500 140.00 231.10 0.00 10.8500 0.000 10000.000	1 19.2000 180.00 231.10 0.00 7.1500 0.000 16000.000
RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZOUAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M	T., 3-TRANS. 2-GAS 1 20.8700 1 20.00 2 31.10 0.00 0.00 7.4500 TIAL DILUTION 1 0.000 1 0.000 2 0.150 2-DEFAULT 2 0.0000 AMUAL, 2-DEFA	ropane Gas \$43 132 1 1 1 1 1 1 1 1 1	132 1 23.3700 350.00 231.10 0.00 7.8500 0.000 10000.000	132.5700 210.00 231.10 0.00 9.3000 0.000 10000.000	132 132 1 16.7100 90.00 231.10 0.00 6.6500 0.000 10000.000	1 35.8900 160.00 231.10 0.00 9.7500 0.000 10000.000	1 44.2500 140.00 231.10 0.00 10.8500 0.000 10000.000	1 19.2000 180.00 231.10 0.00 7.1500 0.000 16000.000
RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZOUAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M	T., 3-TRANS. 2-GAS 1 20.8700 1 20.00 2 31.10 0.00 0.00 7.4500 TIAL DILUTION 1 0.000 1 0.000 2 0.150 2-DEFAULT 2 0.0000 AMUAL, 2-DEFA	ropane Gas \$43 132 1 1 1 1 1 1 1 1 1	132 1 23.3700 350.00 231.10 0.00 7.8500 0.000 10000.000	132.5700 210.00 231.10 0.00 9.3000 0.000 10000.000	132 132 1 16.7100 90.00 231.10 0.00 6.6500 0.000 10000.000	1 35.8900 160.00 231.10 0.00 9.7500 0.000 10000.000	1 44.2500 140.00 231.10 0.00 10.8500 0.000 10000.000	1 19.2000 180.00 231.10 0.00 7.1500 0.000 16000.000
RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZOUAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M	T., 3-TRANS. 2-GAS 1 20.8700 1 20.00 2 31.10 0.00 0.00 7.4500 TIAL DILUTION 1 0.000 1 0.000 2 0.150 2-DEFAULT 2 0.0000 AMUAL, 2-DEFA	ropane Gas \$43 132 1 1 1 1 1 1 1 1 1	132 1 23.3700 350.00 231.10 0.00 7.8500 0.000 10000.000	132.5700 210.00 231.10 0.00 9.3000 0.000 10000.000	132 132 1 16.7100 90.00 231.10 0.00 6.6500 0.000 10000.000	1 35.8900 160.00 231.10 0.00 9.7500 0.000 10000.000	1 44.2500 140.00 231.10 0.00 10.8500 0.000 10000.000	1 19.2000 180.00 231.10 0.00 7.1500 0.000 16000.000
RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZOUAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M	T., 3-TRANS. 2-GAS 1 20.8700 1 20.00 2 31.10 0.00 0.00 7.4500 TIAL DILUTION 1 0.000 1 0.000 2 0.150 2-DEFAULT 2 0.0000 AMUAL, 2-DEFA	ropane Gas \$43 132 1 1 1 1 1 1 1 1 1	132 1 23.3700 350.00 231.10 0.00 7.8500 0.000 10000.000	132.5700 210.00 231.10 0.00 9.3000 0.000 10000.000	132 132 1 16.7100 90.00 231.10 0.00 6.6500 0.000 10000.000	1 35.8900 160.00 231.10 0.00 9.7500 0.000 10000.000	1 44.2500 140.00 231.10 0.00 10.8500 0.000 10000.000	1 19.2000 180.00 231.10 0.00 7.1500 0.000 16000.000
RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZOUAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M	T., 3-TRANS. 2-GAS 1 20.8700 1 20.00 2 31.10 0.00 0.00 7.4500 TIAL DILUTION 1 0.000 1 0.000 2 0.150 2-DEFAULT 2 0.0000 AMUAL, 2-DEFA	ropane Gas \$43 132 1 1 1 1 1 1 1 1 1	132 1 23.3700 350.00 231.10 0.00 7.8500 0.000 10000.000	132.5700 210.00 231.10 0.00 9.3000 0.000 10000.000	132 132 1 16.7100 90.00 231.10 0.00 6.6500 0.000 10000.000	1 35.8900 160.00 231.10 0.00 9.7500 0.000 10000.000	1 44.2500 140.00 231.10 0.00 10.8500 0.000 10000.000	1 19.2000 180.00 231.10 0.00 7.1500 0.000 16000.000
RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZOUAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M	T., 3-TRANS. 2-GAS 1 20.8700 1 20.00 2 31.10 0.00 0.00 7.4500 TIAL DILUTION 1 0.000 1 0.000 2 0.150 2-DEFAULT 2 0.0000 AMUAL, 2-DEFA	ropane Gas \$43 132 1 1 1 1 1 1 1 1 1	132 1 23.3700 350.00 231.10 0.00 7.8500 0.000 10000.000	132.5700 210.00 231.10 0.00 9.3000 0.000 10000.000	132 132 1 16.7100 90.00 231.10 0.00 6.6500 0.000 10000.000	1 35.8900 160.00 231.10 0.00 9.7500 0.000 10000.000	1 44.2500 140.00 231.10 0.00 10.8500 0.000 10000.000	1 19.2000 180.00 231.10 0.00 7.1500 0.000 16000.000
RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZOUAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M	T., 3-TRANS. 2-GAS 1 20.8700 1 20.00 2 31.10 0.00 0.00 7.4500 TIAL DILUTION 1 0.000 1 0.000 2 0.150 2-DEFAULT 2 0.0000 AMUAL, 2-DEFA	ropane Gas \$43 132 1 1 1 1 1 1 1 1 1	132 1 23.3700 350.00 231.10 0.00 7.8500 0.000 10000.000	132.5700 210.00 231.10 0.00 9.3000 0.000 10000.000	132 132 1 16.7100 90.00 231.10 0.00 6.6500 0.000 10000.000	1 35.8900 160.00 231.10 0.00 9.7500 0.000 10000.000	1 44.2500 140.00 231.10 0.00 10.8500 0.000 10000.000	1 19.2000 180.00 231.10 0.00 7.1500 0.000 16000.000
RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZOUAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M	T., 3-TRANS. 2-GAS 1 20.8700 1 20.00 2 31.10 0.00 0.00 7.4500 TIAL DILUTION 1 0.000 1 0.000 2 0.150 2-DEFAULT 2 0.0000 AMUAL, 2-DEFA	ropane Gas \$43 132 1 1 1 1 1 1 1 1 1	132 1 23.3700 350.00 231.10 0.00 7.8500 0.000 10000.000	132.5700 210.00 231.10 0.00 9.3000 0.000 10000.000	132 132 1 16.7100 90.00 231.10 0.00 6.6500 0.000 10000.000	1 35.8900 160.00 231.10 0.00 9.7500 0.000 10000.000	1 44.2500 140.00 231.10 0.00 10.8500 0.000 10000.000	1 19.2000 180.00 231.10 0.00 7.1500 0.000 16000.000
RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZOUAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M	T., 3-TRANS. 2-GAS 1 20.8700 1 20.00 2 31.10 0.00 0.00 7.4500 TIAL DILUTION 1 0.000 1 0.000 2 0.150 2-DEFAULT 2 0.0000 AMUAL, 2-DEFA	ropane Gas \$43 132 1 1 1 1 1 1 1 1 1	132 1 23.3700 350.00 231.10 0.00 7.8500 0.000 10000.000	132.5700 210.00 231.10 0.00 9.3000 0.000 10000.000	132 132 1 16.7100 90.00 231.10 0.00 6.6500 0.000 10000.000	1 35.8900 160.00 231.10 0.00 9.7500 0.000 10000.000	1 44.2500 140.00 231.10 0.00 10.8500 0.000 10000.000	1 19.2000 180.00 231.10 0.00 7.1500 0.000 16000.000
RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZOUAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M	T., 3-TRANS. 2-GAS 1 20.8700 1 20.00 2 31.10 0.00 0.00 7.4500 TIAL DILUTION 1 0.000 1 0.000 2 0.150 2-DEFAULT 2 0.0000 AMUAL, 2-DEFA	ropane Gas \$43 132 1 1 1 1 1 1 1 1 1	132 1 23.3700 350.00 231.10 0.00 7.8500 0.000 10000.000	132.5700 210.00 231.10 0.00 9.3000 0.000 10000.000	132 132 1 16.7100 90.00 231.10 0.00 6.6500 0.000 10000.000	1 35.8900 160.00 231.10 0.00 9.7500 0.000 10000.000	1 44.2500 140.00 231.10 0.00 10.8500 0.000 10000.000	1 19.2000 180.00 231.10 0.00 7.1500 0.000 16000.000
RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZOUAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M	T., 3-TRANS. 2-GAS 1 20.8700 1 20.00 2 31.10 0.00 0.00 7.4500 TIAL DILUTION 1 0.000 1 0.000 2 0.150 2-DEFAULT 2 0.0000 AMUAL, 2-DEFA	ropane Gas \$43 132 1 1 1 1 1 1 1 1 1	132 1 23.3700 350.00 231.10 0.00 7.8500 0.000 10000.000	132.5700 210.00 231.10 0.00 9.3000 0.000 10000.000	132 132 1 16.7100 90.00 231.10 0.00 6.6500 0.000 10000.000	1 35.8900 160.00 231.10 0.00 9.7500 0.000 10000.000	1 44.2500 140.00 231.10 0.00 10.8500 0.000 10000.000	1 19.2000 180.00 231.10 0.00 7.1500 0.000 16000.000
RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZOUAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M	T., 3-TRANS. 2-GAS 1 20.8700 1 20.00 2 31.10 0.00 0.00 7.4500 TIAL DILUTION 1 0.000 1 0.000 2 0.150 2-DEFAULT 2 0.0000 AMUAL, 2-DEFA	ropane Gas \$43 132 1 1 1 1 1 1 1 1 1	132 1 23.3700 350.00 231.10 0.00 7.8500 0.000 10000.000	132.5700 210.00 231.10 0.00 9.3000 0.000 10000.000	132 132 1 16.7100 90.00 231.10 0.00 6.6500 0.000 10000.000	1 35.8900 160.00 231.10 0.00 9.7500 0.000 10000.000	1 44.2500 140.00 231.10 0.00 10.8500 0.000 10000.000	1 19.2000 180.00 231.10 0.00 7.1500 0.000 16000.000
RELEASE TYPE: 1-COPT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIW. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MAMUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-MAIR/CHEMICAL MASS RATIO	T., 3-TRANS. 2-GAS 1 20.8700 1 20.00 2 31.10 0.00 0.00 7.4500 TIAL DILUTION 1 0.000 1 0.000 2 0.150 2-DEFAULT 2 0.0000 AMUAL, 2-DEFA	ropane Gas \$43 132 1 1 1 1 1 1 1 1 1	132 1 23.3700 350.00 231.10 0.00 7.8500 0.000 10000.000	132.5700 210.00 231.10 0.00 9.3000 0.000 10000.000	132 132 1 16.7100 90.00 231.10 0.00 6.6500 0.000 10000.000	1 35.8900 160.00 231.10 0.00 9.7500 0.000 10000.000	1 44.2500 140.00 231.10 0.00 10.8500 0.000 10000.000	1 19.2000 180.00 231.10 0.00 7.1500 0.000 16000.000

```
: Prairie Grass, set 1
: Sulfur dioxide
: PG7 PG8 PG9
TRACE INPUT DATA FOR
CHEMICAL RELEASED
                                   PG8 PC
                                                             PG10
TRIAL NAME
                                                                       PG13
                                                                                 PG15
                                                                                            PG16
                                                                                                      PG17
CHEMICAL NO.
                                                           33
                                                                     33
                                                                              33
                                                                                          33
                                                                                                    33
(999-N2 with m.w.-29.0)
RELEASE TYPE: 1-CONT., 2-INST., 3-TRANS.
                                                1
                                                           1
                                                                     1
                                                                                                     1
                                                                                                               1
                                                                                1
                                                                                           1
PHASE OF CHEMICAL: 1-LIQUID, 2-GAS
                                                                           0.0611
RELEASE RATE (kg/s)
                                   0.0899 0.0911
600.00 600.00
305.15 305.15
                                                                                                0.0930
                                  0.0899
                                                       0.0920
                                                       0.0920
                                                                 0.0921
                                                                                      0.0955
                                                                                                          0.0565
RELEASE DURATION (=)
TEMP. OF CHEMICAL (K)
RELEASE ELEVATION (m)
                                                                 600.00
                                                                                      600.00
                                                                                                600.00
                                                                                                          600.00
                                                                                                          300.15
                                  305.15
                                                       301.15
                                                                 304.15
                                                                            293.15
                                                                                      295.15
                                                                                                301.15
                                    0.45
                                               0.45
                                                         0.45
                                                                   0.45
                                                                             0.45
                                                                                        0.45
                                                                                                  0.45
                                                                                                            0.45
VERTICAL VELO. (m/s)
HORIZONAL VELO. (m/s)
                                    0.00
                            :
                           0.00
INIT. RADIUS (m) : 0.0254
AIR/CHEMICAL MOLE RATIO (INITIAL DILUTION)
0.000 0.000
                                                      0.0254 0.0254
                                                                           0.0254
                                           0.0254
                                                                                      0.0254
                                                                                                0.0254
                                                                                                          0.0254
                    : 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 10000.000 10000.000 10000.000 10000.000 10000.000
MAX, POOL AREA (m^2)
MIN. POOL DEPTH (m)
                            : 0.010
ALBEDO OF POOL
                                   0.150
AEROSOL FORMATION: 1-MANUAL, 2-DEFAULT
AEROSOL/FLASH MASS RATIO
                                  0,0000
                                            0.0000
                                                       0.0000
                                                                 0.0000
                                                                           0.0000
                                                                                      0.0000
                                                                                                0.0000
                                                                                                          0.0000
AEROSOL AIR ENTRAINMENT: 1-MANUAL, 2-DEFAULT
                           :
                                                                0.0000
                                                                           0.0000
                                  0.0000
                                                                                      0.0000
                                                                                                0.0000
AIR/CHEMICAL MASS RATIO
                                            0.0000
                                                       0.0000
                                                                                                          0.0000
SUBSTRATE: 0-W, 1-C, 2-Asoil, 3-SDsoil, 4-SMsoil
                           :
                                             305.15
SUBSTRATE TEMP, (K)
                                  305.15
                                                       301.15
                                                                 304.15
                                                                           293.15
                                                                                      295.15
                                                                                                301.15
                                                                                                          300.15
WIND SPEED (m/s)
                                                       6.90
                                                                                                 3.20
                                   4.20
                                              4.90
                                                                   4.60
                                                                            1.30
                                                                                       3.40
                                                                                                            3.30
HORZ, STAB,
VERT. STAB.
TEMP. (K)
                                305.15
                                          305.15
                                                       301.15
                                                                 304.15
                                                                           293.15
                                                                                      295.15
                                                                                                301.15
                                                                                                          300.15
HUMIDITY (FRACTION)
                                   0.20
                                            0.20
                                                       0.20
                                                                  0.20
                                                                            0.20
                                                                                       0.20
                                                                                                 0.20
                                                                                                           0.20
SOLAR RAD. (w/m^2)
                                  300.00
                            :
SURFACE ROUGHNESS (m)
                                                     0.00600 0.00600 0.00600
                                 0.00600
                                          0.00600
                                                                                               0.00600
                                                                                                         2.00600
                            :
                                                                 -7.452
M-O LENGTH (m)
                                  -8,178
                                          -20.611
                                                      -34.123
                                                       2.00
                                                                            6.014
                                                                                     -7.736
                                                                                                -7.834
                                                                                                          49.806
WIND MEAS. HT. (m)
                                                                 2.00
                                                                                      2.00
                                    2.00
                                            2.00
                                                                             2.00
                                                                                                2.00
                                                                                                           2.00
CEILING HT. (m)
                                  10000.
UPPER LEVEL STAB.
                                                      715.94 773.91 1215.38
1.50 1.50 1.50
800. 800. 800.
                                         763.27
1.50
800.
SIMULATION TIME (8)
                                                                                     835.29
                                  790.48
                                                                                                850.00
                                                                                                          842.42
                                                                                                          1.50
                                                                                               1.50
TLV HT. (m)
MAX. DOSAGE DISTANCE (m)
                                  1.50
800.
                                                                                     1.50
                                                                                                            500.
                                                                                                  600.
CONC. AVG. TIME (s)
                                  600.00
                                            600.00
                                                       600.00
                                                                600.00
                                                                            600.00
                                                                                      600.00
                                                                                                600.00
                                                                                                          600.00
TRACE INPUT DATA FOR
                          : Thorney Island (continuous)
: Mixture of Freon-12 and Nitrogen
CHEMICAL RELEASED
                            : TC45
                                     TC47
945
TRIAL NAME
CHEMICAL NO.
                                               947
                            :
(999-N2 with m.w.-29.0)
RELEASE TYPE: 1-CONT., 2-INST., 3-TRANS.
PHASE OF CHEMICAL: 1-LIQUID, 2-GAS
                                 10.6700 10.2200
455.00 465.00
286.25 287.45
RELEASE RATE (kg/s)
RELEASE DURATION (s)
TEMP. OF CHEMICAL (K)
RELEASE ELEVATION (m)
                                  286.25
                                  0.00
                                             0.00
                            :
VERTICAL VELO. (m/s)
                                    0.00
                           :
HORIZONAL VELO. (m/s)
                                    0.00
INIT. RADIUS (m)
                                  1.0000
                                           1.0000
AIR/CHEMICAL MOLE RATIO (INITIAL DILUTION)
: 0.000 0.000 MAX. POOL AREA (m^2) : 10000.000 10000.000
MIN. POOL DEPTH (m)
                            : 0.010
ALBEDO OF POOL
                                   0.150
AEROSOL FORMATION: 1-MANUAL, 2-DEFAULT
                          :
AEROSOL/FLASH MASS RATIO
                                  0.0000
AEROSOL AIR ENTRAINMENT: 1-HAMUAL, 2-DEFAULT
                          :
AIR/CHEMICAL MASS RATIO
                                  0.0000
SUBSTRATE: 0-W, 1-C, 2-Asoil, 3-SDsoil, 4-SMsoil
                           :
SUBSTRATE TEMP. (K)
                                   285.95
                                             287.65
WIND SPEED (m/s)
                                   2.39
                                             1.50
HORZ. STAB.
VERT. STAB.
                                       5
TEMP. (K)
                                  286.25
                                          287.45
HUMIDITY (FRACTION)
                                    1.00
                                              0.97
                                  300.00
SOLAR RAD. (w/m^2)
                            :
                                          0.01000
SURFACE ROUGHNESS (m)
                                  0.01000
M-O LENGTH (m)
                                  21.670
                                           10.835
WIND MEAS. HT. (m)
                                    10.00
                                             10.00
CEILING HT. (m)
                                  10000.
UPPER LEVEL STAB.
SIMULATION TIME (8)
                                   805.22 914.67
                                  0.40
                                            0.40
TLV HT. (m)
```

472.

30.00

472.

30.00

MAX. DOSAGE DISTANCE (m)

CONC. AVG. TIME (#)

TRACE INPUT DATA FOR	: Thorney	/ Island {	instantane	Dus)					
CHENICAL RELEASED	: Mixtur	of Freen	-12 and Ni	trogen					
TRIAL NAME	: TI6 :	rx7	TIS :	719	TII2	TI13	T117	TILO	TI19
CHEMICAL NO.	: 906	907	908	909	912	913	917	916	919
(999-N2 with m.w29.0)									
RELEASE TYPE: 1-CONT., 2-INS	T., 3-TRANS.								
	; 2	2	2	2	2	2	2	2	2
PHASE C' MEMICAL: 1-LIQUID,	2-GAS								
	: 2	2	2	2	2	2	2	2	2
TOTAL MASS RELEASED (kg)	: 3147.00	4249.00	3958.00	3866.00	5736.00	4800.00	8711.00	3681.00	5477.00
RELEASE DURATION (a)	: 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TEMP. OF CHEMICAL (K)	: 291.83	290.46	290.68	291.45	283,29	286.88	289,21	289.66	286.47
RELEASE ELEVATION (m)	: 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
VERTICAL VELO. (m/s)	: 0.00								
RELEASE DURATION (8) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORISONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI	: 0.00								
INIT. RADIUS (m)	: 7.0000	7.0000	7.0000	7.0000	7.0000	7.0000	7.0000	7.0000	7.0000
AIR/CHEMICAL MOLE RATIO (INI	TIAL DILUTION	()							
	: 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MAX. POOL AREA (m^2)		10000.000	10000.000	10000.000	10000.000	10000.000	10000.000	10000.000	10000.000
MIN. POOL DEPTH (m)	: 0.010								
ALBEDO OF POOL	: 0.150								
AEROSOL FORMATION: 1-MANUAL,	2-DEFAULT								
	: 2	2	2	2	2	2	2	2	2
AEROSOL/FLASH MASS RATIO	: 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
AEROSOL AIR ENTRAINMENT: 1-M	ANUAL, 2-DEFA	WLT							
	: 2	2	2	2	2	2	2	2	2
AIR/CHEMICAL MASS RATIO	: 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0,0000	0.0000	0.0000
SUBSTRATE: 0-W, 1-C, 2-Asoil	, 3-SDsoil, 4	-SMsoil							
	: 2	2	2	2	2	2	2	2	2
SUBSTRATE TEMP. (K)	: 291.83	290.85	291.55	291.45	285.15	287.85	291.05		
WIND SPEED (m/s)	: 2.80	3.40	2.40	1.70	2.50	7.30	5.00	7.40	6.40
HORZ. STAB.	: 4	5	4	6	5	4	4	4	4
VERT. STAB.	: 4	5	4	6	5	4	4	4	4
TEMP. (K)	: 291.83	290.46	290.68	291.45	283.29	286,88	289.21	289.66	286.47
HUMIDITY (FRACTION)	: 0.75	0.81	0.88	0.87	0.66	0.74	0.94	0.81	0.95
SCLAR RAD. (w/m^2)	: 300.00								
SURFACE ROUGHNESS (m)	: 0.01800	0.01800	0.01200	0.00800	0.01800	0.01000	0.01800	0.00500	0.01000
M-O LENGTH (m)	9999,000	90,909	-9.091	1.538	10.000	-90.909	-200.000	-43.478	333.333
WIND MEAS. HT. (m)	: 10.00	10.00	10.00	10,00	10,00	10.00	10.00	10.00	10.00
CEILING HT. (m)	: 10000.								
UPPER LEVEL STAB.	: 4	5	4	6	5	4	4	4	4
SIMULATION TIME (s)	: 751.43	747.06		895.88	800.00			668.92	691.09
TLV HT. (m)	: 0.40	0.40	0.40	0.40					0.40
MAX. DOSAGE DISTANCE (m)	: 424.	500.	510.	503.	500.	412.	500.	510.	583.
CONC. AVG. TIME (s)	: 0.60	0.60	0.60	0.60	0.60	0.60		0.60	0.60

APPENDIX C

TABULATION OF THE OBSERVED AND PREDICTED CLOUD-WIDTHS AND CONCENTRATIONS

APPENDIX C-1

THE OBSERVED AND PREDICTED MAXIMUM CONCENTRATION (PPM) FOR THE LONGEST AVAILABLE AVERAGING TIME

TRACE	155400	96360 .11600	134400	190200 115900	225500 120000	170800 111200 48150	344200 200800 101000 41620	413600 214300 125900 33770	188700 170200 131200	386300 312900 234800 171800	171600 160400 151900	59020 6816	11080
SLAB T	52400 1 02300 1	80400 32850 1	162800 1 70190 1	198500 1 84290 1	169500 2 74920 1	196300 1 94440 1 20960	230600 117700 42030 14900	323300 181600 48010 14470	96880 1 52230 1 21670 1	68040 3 42830 3 22690 2 13560 1	179100 126600 75140 48960	51100 6134	198700
	13.6	-		-	-			e				~	
PHAST	441000	440000	428000 56400	452000	525000 65900	467000 257000 29800	387000 291000 62000 27100	469000 320000 109000 16000	292000 98100 35600	78600 35000 15000 8360	309000 242000 160000 111000	48100 8480	\$1100 12100
OBDC	252700 55390	174300	241000 52180	248300 54170	261100 57720	355500 87290 12200	554000 177200 27050 7145	486100 140900 20730 5450	40030 20380 9347	36560 18580 8512 4675	175100 95760 45830 2680	335800 8690	334000
INPUFF	114100 33740	115200 33560	83790 21730	91400	85930 22810	164900 55310 11480	492300 256500 82440 30300	239600 88320 20210 6962	31790 18150 9786	24540 13760 7046 4382	96210 60340 34060 22420	101300 3771	157300 6676
HEGADAS	500200 123300	406500	371500 124000	372800 131700	376000 132000	472600 160500 32150	1000000 734200 136600 40540	769400 245200 67500 18550	134700 59970 16690	129200 68700 26500 12940	296200 162300 112000 77880	71590 6 235	9930
GASTAR	274800 179600	266500 173400	165600	204600 129700	167300	176900 119600 40430	258900 123200 63510 42300	341700 234800 69390 21780	171100 122600 75800	97650 75360 50950 35830	270500 188800 108200 68660	170300 9958	138500
GPM	155400	142000	105400 27840	108600 28900	110300 29560	162600 50570 9850	515300 261300 89410 34530	261700 97200 21640 7395	42280 23870 12010	30260 16730 8262 4940	97130 60070 33370 21590	100600 3519	141900
FOCUS	972300 554900	975500 685400	979400 789300	979600 503900	976300 707700	869800 479700 76040	959300 731900 163100 31730	949300 361500 71040 17930	391000 200700 104200	927000 927000 927000 600200	351700 170900 27880 67730	133400	139700 9559
DEGADIS	649800 251000	625200 242700	399900 167800	486300 195700	410800 175800	449400 189800 41980	806900 374400 138200 25430	751900 323000 67380 21500	248200 149200 77310	176200 113300 64230 41620	325700 197200 110600 69290	205300 7421	14240
CHARM	299000 112000	296000 107000	291000 125000	264000 113000	303000 134000	302000 124000 14200	504000 240000 74000	317000 113000 28400 7100	99100 56100 27200	150000 85800 42600 22200	124000 82600 46100 29100	20900	27300 3260
BEM	432400 112100	441700	314500	344500 100000	324500 100000	342500 100000 22940	700000 100000 14300 3624	500800 142600 16260 5561	106700 40520 18450	100000 76450 42890 24120	147100 54100 28080 16610	70290 2084	78780 5099
AIRTOX	310900 181400	311300 182600	193100 103000	229600 129500	212000	212700 129500 22590	581200 551000 241100 71520	401800 299100 81410 26060	239600 160000 74100	86730 36240 11830 8700	251300 240300 98810 76960	308900 2725	312500
AFTOX	289300 76090	279000 72830	362800 118900	266300 72150	379100 126500	367900 120800 22360	874000 540500 176500 63650	730200 433600 124700 42830	204000 106800 57180	145700 105800 39400 24970	247300 152500 82500 51940	190400	270700
obs.	86956 30013	79053 63731	85519 40292	68925 49913	127460 36656	144140 44183 23467	294660 162250 29160 20896	34205 65218 22920 11006	54229 23253 6959	32808 24713 7201 6341	82544 45342 21935 17277	49943 8843	83203 10804
×	57 140	57	57 140	57 140	57 140	57 140 400	57 140 400 800	57 140 400 800	140 200 300	140 200 300 400	140 200 300 400	100	100
TRIAL	BU2	B U3	804	805	806	B07	808	608	6 83	\$00	900	DT1	DT2

SLAB TRACE	210000 80730 8545 10630	192500 84800 11890 12800	13020 12520 1678 2009 207.9 276.0	6208 6716 811 988	6808 5708 942 835 152.2 118.3	110.30 51.83 13.210 4.072	3.38 3.53 0.2550 0.2680		6.78 15.45 0.486 1.176	15.44 21.44	1583 7095 87.8 290.8	430.5 2793.0 14.61 114.00	386 :354 14.31 61.03	376 1382 13.58 61.05	329 1723 10.88 64.57	786 2704
PHAST	56300 ;	10900	31700 1950 92.0	16000	9800 541 54.0	32.40	1.83		7.55	22.60	3900	429.0 11.20	141	162 3.42	3,39	1100
OBDC	275400 6545	392500	13000 1257 147.7	3290 315	8773 845 99.3	47.49	2.79	3.99	3.92	0.592		* * * * * * * * * *		* * * * * * * * * * * * * * * * * * * *	• • • • • • • • • • • • • • • • • • • •	*****
INPUFF	152100 6261	256600	7855 1063 150.4	4141	3106 411 61.0	69.21	2.37	3.05	7,68	21.69	3400	452.0	3.03	114	132	4 2 6 8
HEGADAS	07870 8631	95000	12860 2685 670.3	7065 1285	7319 1707 322.2	97.96 12.320	2.34	4.19	5.30	21,78	* * * * * * * * * * * * * * * * * * * *		* * * * * * * * * * * * * * * * * * * *	• • • • • • • • • • • • • • • • • • • •		•
GASTAR	136600	167000	25190 2830 372.2	12500	12760 1096 129.2	252.10 29.280	3.62	7.04	7.75	41.85	866 41.9	198.8 8.06	130	128	129	15.2
W450	140400	255100 11360	7284 978 179.7	3192	2913 378 68.8	86.66	2.14	3.46	8,71 0,598	23.65	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* *	* * * * * * * * * * * * *	******
FOCUS	151900	138400	35330 2474 174.0	17350	18860 714 59.3	52.37 3.017	1.49	3.13	8.11 0.506	17.47	***	***	***	***	***	*******
DEGADIS	408800 12520	540000	16270 2222 396.5	8126 1132	7260 1077 130.2	51.00	3.97	6.45	15.85	19.19	**	* * * * * * * * * * * * * * * * * * * *	***	***	***	*******
CHARM	30100	55900 8110	3210 812 188.0	1380 322	1060 224 62.0	351.00 10.400	26.60 0.6190	56.20 1.380	56.20 1,330	197,00	3100	428.0 12.00	118	122	122	968
B.	82120 4111	82540 9546	14340 657 149.4	8337 728	6891 729 76.2	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	****	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	******
AIRTOX	331000 6103	401000	7683 623 99.8	3766	1994 202 34.7	38.42 2.833	1.63	2,46	5.64	15,45	2622 90.8	440.8	493	405	269	723
AFTOX	227000 7989	379500	13750 1728 319.4	2951 338	5251 655 120.8	0.750	3.10	5.00	7.30	12.50	5100 166.7	798.2	800 22.30	789	575 15.00	1044
oes.	76881 7087	57300 16678	25473 3098 411.0	19396 2392	18596 2492 224.0	33.04	2.33	4.54	6.68	6.33	363	90.5	172	189 5.54	173	153
×	100	100	300 1000 3000	300	300 1000 3000	200	200	200	200	200	200	200	200 800	200 800	200	200
TRIAL	DT3	DT4	GF 1	GF 2	GF 3	нс1	HC2	HC3	HC4	HC5	н12	HI3	HI5	HI6	HI7	ec 13

TRACE	141000 133100 130800 112800 51880	196300 152300 139100 129200 89520 58630	212900 158400 120700	45540 18000	3209 7497 12330 17440 16580 12870 7043	19520 20240 12360 6585	115000 27750 21910 16570 11600 8217	28300 27380 21630 115400 11130
SLAB	61550 33250 6348 4350 1808	135400 92640 62530 40470 25470 17230	44070 16990 25330	9575	4952 26060 36800 31690 22500 15160 8024	36940 23670 8772 4015	71090 34740 22130 13490 8172 5430	52590 37150 23420 14730 9940
PHAST	168000 71600 9640 6240 2360	301030 128C00 58G00 27000 13500 8050 5270	66600 15200 32500	8690 3450	242000 180000 130000 90900 58000 33400 13700	101000 59300 17800 3790	241006 88000 50000 17300 7160 3690 2220	128000 87000 51200 28700 17000
OBDC	48030 23190 4045 2686 1044	169500 79720 40570 21470 11500 7076 4635	46550 11820 23960	6710	193300 64590 27990 13200 6393 3422 1353	21170 10160 2838 1128	150400 25290 12780 6671 3603 2203	35990 18440 9368 5066 3118 2032
INPUFF	42780 24460 5881 4106 1858	73930 42740 24710 14870 8871 5914	29340 9796 18600	2926	101900 48380 25950 14400 7785 4735	15990 8796 2968 1354	49800 13070 7488 4391 2623 1724 1184	23100 13620 7892 4653 3119 2136
HEGADAS	94160 56800 10290 6486 2200	188200 104200 69730 51830 39870 31900 24780	83140 28800 56060	18100	691000 336100 167200 83910 42100 22840	92220 47800 14270 5935	302000 75100 41780 23500 13560 8760 6006	135100 75060 40730 23030 14700
GASTAR	144500 92470 25060 18510 8437	169300 124600 88210 60420 39600 27100 19660	98160 45480 68750	31640	376800 255200 248400 86290 44610 25020	75080 44750 15280 7199	112900 55710 36700 22120 15020 9992 6895	91120 60000 38520 23740 15310 11060
WdS	76470 44040 10620 7531 3412	132800 15570 44710 26790 16000 10660	55710 18370 34310	11950	192600 92600 49730 27320 14940 8769	31480 17070 5663 2525	107800 26760 15020 8543 4973 3224	44320 25780 14610 8639 5685 3430
FOCUS	552600 244100 27280 21670 12750	773900 447300 454100 415200 363000 363000	370000 876500 288100	81650 35810	1000000 843600 337900 91230 40580 13270 5315	69550 205100 88210 6939	2461 6586 9408 13170 11040 9562	207800 230400 192200 25550 12190 7968
DECADIS	161600 96580 25480 18510 7669	278000 164300 103400 66900 42290 29120 21010	121500 52470 84340	36350	613800 355400 193300 89900 42700 22220	93060 48280 13360 5618	287900 71850 40570 22450 13180 8490 5805	144900 78920 39400 21760 13610 9112
CHARM	118000 73000 12500 6580 2180	214000 145000 96800 59900 32100 23400 12600	163000 35600 123000	22100	161000 85000 52700 32200 18200 7410	61400 39100 15000 4090	175000 71400 50500 33100 20900 14500 7560	71000 47000 29800 17700 8720 4400
E S	100000 74270 15620 8652	168000 100000 68640 41170 19880 14000	79370 21630 46080	13090 5226	467600 196900 100000 67080 34820 17820 8588	92350 55870 16610 7979	247700 77290 46510 24680 14300 9171 6488	100000 79260 46520 24760 15970 11060
AIRTOX	140900 89840 6963 5059 1608	28700 14830 4873 2520 1448 941 645	11770 2513 8155	1688	82210 60750 41560 20720 5638 2644 1149	22580 13990 2481 866	29480 13600 4795 2895 1576 966	28550 20830 13010 6404 2618 1446
AFTOX	123200 68990 15570 10870 4720	219300 122800 70800 41380 24170 15820 10920	83920 29260 51990	17520	270400 136800 72870 39510 21380 12450 5516	43330 23510 7822 3475	139900 36010 20270 11580 6767 4390	64620 37140 20840 12220 7987 5478
OBS.	123100 94900 35600 29100 5700	141500 114300 61900 54300 20400 16500	118100 45500	30700	113200 110900 66700 41500 21700 21800 10500	56500 35100 18900 7500	91600 57200 37600 26100 18500 16700	80900 40200 31300 15500 14400 9500
×	89 131 324 400 650	4 3 2 2 2 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0	87 179 129	250 406	2.58 8.33 17.33 3.98 3.98	88 129 249 400	34 91 130 182 250 322 401	90 128 182 250 321 400
TRIAL	MS27	MS 2.9	MS34 MS34		MS42	MS43	MS 46	MS 4.7

TRACE	151000 98900 63250 38590 25290 16980	58190 40240 20040 7357	26620 29700 21810 15290 7992 4217	37750 41100 23720 15090	113.5 44.47 14.24 4.165 1,1680	162.0 63.1 19.76 5.71	106.1 44.18 13.54 3.865 1.068	109.7 43.56 13.80 4.011	42.5 12.93
SLAB	33970 24990 17220 11270 6081 5838	72020 49560 21620 6342	81700 58640 27800 16800 8115	80460 60500 26100 16900	52.3 11.86 2.76 0.698 0.1761	106.1 26.9 6.66 1.74 0.458	97.8 25.96 6.64 1.761	43.0 9.64 2.22 0.551	78.2
PHAST	91800 54600 32000 16100 7040	178000 110000 40000 4320	192000 121000 55900 29900 6560 2050	166000 121000 55100 32900	71.2 18.07 4.68 1.240	123.4 31.5 8.30 2.30 0.620	88.3 22.27 5.85 1.580 0.440	66.9 16.96 4.39 1.170 0.3200	12.68
OBDG	24640 12370 6496 3434 2099 1376	91970 40030 11140 2419	104200 46760 14210 7438 2994 1152	54790 25050 6042 3199	46.8 12.11 3.13 0.811	76.2 19.7 5.10 1.32 0.342	47.3 12.23 3.16 0.819 0.212	28.3 7.32 1.89 0.490	3.10
INPUFF	14040 7993 4683 2708 1785	36090 18700 6564 1817	43040 23790 8975 5181 2400 1043	44960 24750 7766 4628	43.1 12.69 3.66 1.002 0.2595	77.9 23.9 7.05 2.04 0.575	55.9 17.02 4.98 1.402 0.414	40.0 11.65 3.41 0.931	54.9
HEGADAS	85680 45890 25360 14300 9200 6410	215200 108400 35320 9120	258200 134000 47120 26100 11450	312000 158900 40970 21990	65.1 12.82 2.34 0.408 0.0691	129.0 28.8 5.71 1.05	105.4 25.08 5.34 1.028 0.186	57.3 11.18 2.03 0.352 0.0596	92.9
GASTAR	69180 42970 25620 14930 9215 6869	94080 67540 31140 10090	107200 78220 37780 25150 12040 5346	245700 149300 42150 23050	251.2 39.09 5.08 0.710	319.0 71.4 12.36 1.93 0.278	385.3 81.81 10.72 1.869 0.295	204.1 29.72 4.22 0.609	60.1
Мар	28100 15720 9005 5149 3340 2306	71250 36750 12550 3340	63470 443470 16690 9609 4394 1945	85150 46930 14590 8465	53.0 13.72 3.48 0.882	96.3 25.9 6.70 1.74 0.459	68.4 18.37 4.75 1.228 0.325	49.4 12.80 3.25 0.822 0.2098	59.5 17.36
FOCUS	106200 68520 24830 10690 7338	73280 53530 28950 6337	243700 91990 57260 27800 7155	514400 473000 340100 241500	68.5 13.94 3.18 0.773 0.1962	141.5 27.3 6.09 1.46 0.368	108.7 19.96 4.36 1.036 0.260	65.7 13.18 2.99 0.725 0.1836	29.7 7.58
DEGADIS	87900 44650 23920 12740 8108 5500	205100 111700 32880 8302	272400 138200 45250 24220 10420	326700 179500 42410 21330	76.1 18.66 4.61 1.210 0.3139	34.4 34.4 9.12 2.58 0.730	90.0 24.38 6.88 1.935 0.546	66.8 17.47 4.42 1.143 0.2953	39.7 13.72
CHARM	46300 31100 11700 4350 2290 1430	127000 80500 32900 3760	123000 76700 31700 18900 8050 1530	73000 47400 16400 5980	40.4 7.38 2.01 0.788 0.2520	46.1 3.24 1.45 0.466	44.7 8.32 2.10 0.883 0.342	40.3 7.23 1.75 0.771 0.2130	54.3
ВЕЖ	86490 51980 20570 9959 7363	146900 97700 41470 9834	175200 100000 53290 29450 12810	179200 100000 33940 17390					* * * * * * * * * * * * * * * * * * * *
AIRTOK	6416 3326 1943 945 557	27420 16120 3796 717	34910 24740 8323 3525 1120 471	50410 31830 3939 1978	203.9 17.37 3.39 0.790		79.8 33.65 4.31 1.040 0.268	167.7 16.08 3.14 0.737 0.1928	30.2
AFTOX	58360 21230 12410 6997 4539 3126	101900 52090 17540 4596	125600 66110 24150 13760 6229 2674	130500 69900 20950 12030	60.0 13.10 2.50 0.500	160.1 58.3 18.50 5.60	112.4 40.90 12.90 3.900 1.100	74.8 22.20 6.20 1.700 0.4600	43.5
OBS.	72100 46700 43500 25000 14800	103300 57100 30800 11900	56300 33800 26000 11200 11800	226900 120000 53400 49500	36.3 8.50 1.60 0.30J	154.9 41.8 9.30 1.50 0.260	71.7 20.30 5.00 1.000 0.190	66.2 15.80 4.10 1.000	37.07
×	90 129 180 250 322 400	59 93 182 400	61 95 178 249 398 650	56 85 178 247	50 100 200 400 800	50 100 200 400 800	50 100 200 400 800	50 100 200 400 800	#00 800
TRIAL	MSA 9	MS 50	MS 52	#S54	PG7	80 C	6 9 8	PG10	PG13

TRACE	100.7 39.00 7.52 3.643 1.0080	107.7 40.81 13.05 3.789 1.0470	241.3 93.6 29.85 8.67 2.412	213 89.8 31.5 9.78 2.83	141.9 56.5 17.31 4.949 1.368	130.1 68.37 22.64 6.568 1.8290	110.2 47.13 14.93 4.34 1.208	98.7 42.77 13.55 3.93	90.3 36.17 12.08 3.508 0.977
SLAB	63.6 14.12 3.23 0.802 0.2039	68.8 15.25 3.49 0.864	272.0 98.6 29.62 8.59	296 119.4 38.3 11.57	121.2 31.5 7.97 2.105 0.559	90.9 24.40 6.28 1.676 0.496	117.7 36.87 10.29 2.88 0.798	104.5 32.78 9.14 2.56 0.709	94.2 29.39 8.20 2.295 0.635
PHAST	47.1 12.16 2.98 0.750	46.6 12.00 2.94 0.750	203.3 50.8 13.61 3.75	366 94.2 25.7 7.18	114.7 29.3 7.73 2.090 0.580	160.4 40.60 10.93 3.620 0.8600	108.1 26.60 7.14 1.96 0.560	69.0 20.40 6.14 1.69 0.490	83.7 21.32 5.76 1.590 0.450
ОВОС	86.3 22.35 5.78 1.497 0.3874	95,7 24,77 6,41 1,659 0,4294	235.0 60.8 15.74 4.07	539 139.6 36.1 9.35	75.2 19.5 5.03 1.303 0.337	20.3 5.26 1.36 0.352	180.7 46.77 12.10 3.13 0.811	170.7 44.17 11.43 2.96 0.766	130.7 33.84 8.76 2.267 0.587
INPUFF	31.2 8.81 2.30 0.529 0.0782	32,2 9,35 2,45 0,567 0,0818	149.0 50.3 15.69 4.80 1.436	217 81.1 26.6 8.53	75.6 22.2 6.53 1.882 0.540	100.3 35.80 11.40 3.524 1.0570	73.4 24.69 7.64 2.33 0.725	67.0 22.25 6.91 2.09 0.645	59.0 20.21 6.20 1.889 0.584
HEGADAS	58.7 11.28 2.04 0.351 0.0595	62.7 12.10 2.17 0.375 0.0634	370.2 117.0 37.00 11.84	485 169.8 55.8 18.48 6.16	133.8 31.3 6.50 1.228 0.219	139.6 34.96 7.69 1.510	141.0 44.28 13.52 4.14 1.284	126.4 39.50 12.02 3.67	114.0 35.44 10.80 3.274 1.012
GASTAR	312.5 33.25 4.84 0.679 0.0892	308.0 43.83 5.66 0.772	571.8 137.7 28.72 7.24 2.088	1076 250.9 71.8 23.41	326.3 71.4 13.51 2.318 0.363	880.3 104.10 23.58 6.671 1.5020	470.8 60.51 17.11 3.73 1.072	523.2 59.06 15.01 3.56 0.997	437.0 54.94 12.67 3.538
МФ	30.1 7.66 1.93 0.489	31.8 8.08 2.04 0.516 0.1316	153.9 44.7 12.35 3.50 1.049	265 97.8 28.3 7.78	90.1 24.2 6.27 1.622 0.429	108.6 31.50 8.70 2.461 0.7378	76.0 22.01 6.07 1.72 0.515	68.5 19.83 1.55 0.463	62.0 17.94 4.95 1.399 0.419
Focus	41.5 8.85 2.06 0.504 0.1207	44.3 9.39 2.18 0.535 0.1363	264.0 54.2 12.34 2.99 0.757	571 101.7 23.4 5.55	139.0 26.1 5.73 1.366 0.344	298.3 50.59 10.66 2.491 0.6196	180.1 31.94 6.84 1.61	161.4 28.75 6.16 1.45 0.362	139 25.49 5.53 1.310 0.328
DECADIS	80.9 22.75 5.77 1.504 0.3892	96.3 23.45 6.15 1.591 0.4094	235.0 73.9 21.60 6.59 2.070	335 120.2 37.7 11.65	114.6 32.1 8.61 2.438 0.690	151.1 53.23 15.53 4.744 1.4890	133.5 39.84 12.17 3.68 1.153	126.0 37.29 11.34 3.44 1.079	110.3 35.68 10.57 3.249 1.022
CHARM	28.6 5.15 1.48 0.325	28.7 5.24 1.74 0.347	62.5 14.1 8.07 3.30 1.030	128 50.6 21.1 8.93 2.79	49.3 10.3 2.59 1.300	76.0 14.60 2.78 1,220 0.6050	49.0 9.69 2.31 1.13	46.4 9.16 2.02 1.12 0.414	42.0 8.36 2.11 0.868 0.430
E.			# # # # # # # # # # # # # # # # # # #	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		* * * * * * * * * * * * * * * * * * *
AIRTOX	96.4 7.46 1.81 0.431	85.6 8.16 1.88 0.456	517.9 47.6 9.91 2.61	1018 109.4 22.2 5.48	278.1 47.7 6.36 1.443	97.2 57.14 8.55 2.106 0.6135	93.1 35.45 4.70 1.35 0.395	78.9 33.51 4.60 1.21 0.357	79.9 27.31 3.94 1.101 0.326
AFTOX	160.3 52.20 15.50 4.500 1.3000	94.1 27.20 7.40 2.000 0.5400	244.7 110.3 39.80 13.10	233 107.5 39.1 12.90 4.10	120.7 40.9 12.40 3.600	110.0 41.70 13.50 4.100	108.6 46.20 16.20 5.20	107.1 47.60 17.10 5.60 1.800	80.7 33.30 11.40 3.600 1.100
. 088	147.0 38.80 7.80 1.700	67.4 12.70 2.30 0.200	235.4 98.2 30.80 9.50	231 94.8 35.1 11.70 5.17	78.4 19.7 4.70 0.700	61.9 19.10 5.60 1.200	104.2 36.20 10.80 3.30	85.2 30.80 10.10 3.20	63.4 22.00 6.90 2.200 0.740
×	50 200 400 800	50 100 200 400 800	50 200 400 800	50 200 400 800	50 200 400 800	200 200 400 800	100 200 400 800	50 200 400 800	50 200 400 800
TRIAL	PG15	PG16	PG17	PG18	PG19	PG20	PG21	PG22	PG23

TRACE	85.8 36.78 11.64 3.381 0.942	132.9 52.40 17.00 4.965 1.3740	222 92.2 32.0 9.82 2.82	167.3 64.7 20.70 6.03 1.682	69,7 21,2 6.01	122.7 63.8 21.05 6.11 1.700	113.4 62.0 20.76 6.02 1.676	537 230 77.9 23.12 6.45	118.4 49.06 15.91 4.67
SLAB	89.3 27.83 7.74 2.165 0.599	112.9 25.72 5.97 1.496 0.3832	274 117.8 39.5 12.27	201.3 74.4 22.73 6.70 1.921	94.4 37.1 12.06	119.0 34.1 9.10 2.48 0.674	116.2 33.4 8.91 2.43 0.660	317 190 80.8 29.59	129.4 42.10 11.94 3.39 0.945
PHAST	82.8 20.75 5.56 1.530	56.3 14.61 3.59 0.900	371 92.6 24.9 6.91 1.99	136.2 34.0 9.10 2.51 0.710	56.5 16.6 5.02	147.3 37.1 9.97 2.75 0.780	144.1 36.3 9.74 2.69	1300 280 73.4 20.94 6.26	108.2 26.83 7.15 1.97 0.560
OBDG	131.2 33.97 8.79 2.276 0.589	141.3 36.59 9.47 2.451 0.6343	254 65.7 17.0 4.40	234.9 60.8 15.74 4.07	124.6 32.3 8.35	97.8 25.3 6.55 1.70	90.7 23.5 6.08 1.57	423 110 28.3 7.34 1.90	151.4 39.18 10.14 2.62 0.679
Inpuff	57.5 19.20 5.94 1.796 0.560	39,1 11,58 3.06 0.684	206 78.4 26.2 8.36	98.6 34.7 10.82 3.31 0.999	64.8 21.5 6.93	94.1 33.3 10.61 3.29 0.993	94.4 32.9 10.38 3.19	480 201 72.7 24.56 8.05	74.8 25.57 7.87 2.38 0.730
HEGADAS	107.8 33.60 10.18 3.082 0.946	90.2 17.54 3.19 0.556	465 182.2 58.0 18.98 6.33	257.0 83.9 27.22 8.86	146.8 62.8 19.64	156.0 43.6 10.92 2.48 0.515	152.8 42.6 10.72 2.44 0.506	671 295 129.8 57.86 18.54	156.4 49.86 15.64 4.94 1.574
GASTAR	378.8 47.10 13.39 2.978 0.835	555.1 79.60 9.56 1.287	883 257.1 75.0 23.50 7.86	395.3 88.3 21.34 4.80 1.403	130.7 56.9 21.63	530.5 81.2 23.64 5.71 1.453	527.0 90.3 22.60 5.50 1.516	1124 393 105.4 45.54 18.61	418.6 81.61 15.33 4.33 0.968
₩.	59.2 17.14 4.73 1.336 0.400	39.2 9.96 2.52 0.637	258 95.3 27.5 7.59 2.16	106.3 30.8 8.51 2.41 0.722	81.7 24.1 7.01	101.2 29.4 8.10 2.29 0.687	99.0 28.7 7.92 2.24 0.672	383 250 90.7 26.79	77.7 22.50 6.21 1.75 0.526
FOCUS	134.0 24.45 5.29 1.249 0.313	53.1 11.39 2.67 0.655 0.1671	508 99.8 22.1 5.27 1.33	184.9 37.1 8.36 2.01 0.508	55.7 13.2 3.31	274.8 46.4 9.75 2.28 0.566	274.9 45.8 9.54 2.22 0.551	1374 295 66.7 16.00 4.03	150.1 29.43 6.57 1.58 0.396
DEGADIS	112.4 36.64 10.58 3.202 1.004	112.2 27.48 7.25 1.898 0.4918	539 192.8 46.8 11.01 2.77	170.4 55.8 16.02 4.85 1.523	85.5 21.0 5.20	162.1 50.8 14.57 4.50 1.416	144.2 49.9 14.64 4.44 1.393	850 253 82.9 24.25 5.86	125.5 41.02 12.18 3.74 1.177
CHARM	41.5 8.24 1.92 0.959	32.9 6.04 2.74 0.583	247 24.9 24.8 2.53	48.9 10.0 5.78 2.55 0.796	30.0 30.3 8.00	71.8 13.8 2.64 1.17 0.581	72.4 13.8 2.65 1.07 0.526	730 298 114.0 33.60	43.3 8.73 3.27 1.40 0.624
N 9 C					* * * * * * * * * * * * * * * * * * * *	4		* * * * * * * * * * * * * * * * * * * *	
AIRTOX	71.8 28.09 3.76 1.055	41.7 10.27 2.29 0.557	82.3 20.6 5.22 1.44	186.2 26.9 6.26 1.70		86.7 51.6 7.74 1.90		1043 259 61.9 15.98	125.8 18.80 5.00 1.31
AFTOX	79.0 32.90 11.30 3.600	99.9 22.40 4.50 0.890 0.1700	186 79.8 28.1 9.10 2.90	122.9 49.3 16.50 5.20 1.600	54.9 18.6 5.90	89.7 32.0 10.00 3.00	99.9 37.9 12.20 3.70	253 135 52.1 17.50 5.60	104.5 43.60 15.00 4.80
OBS.	56.1 18.20 6.00 2.000 0.680	109.4 14.70 2.30 0.500	184 73.0 22.0 7.90 3.19	86.6 32.8 10.20 3.40	100.1 42.1 20.59	75.3 23.1 6.90 1.40 0.270	72.8 24.9 6.90 1.80	299 195 72.4 22.80 13.91	83.5 29.10 8.40 2.70
*	50 100 200 400 800	50 100 200 400 800	50 100 200 400	50 100 200 400 800	200 400 800	100 200 400 800	100 100 400 800	200 200 800 800	200 200 400 800
TRIAL	PG24	PG25	PG28	PG29	PG32	PG33	PG34	PG36	PG37

TRACE	133,7 54,88 18,44 5,56	193.3 73.3 23.0 6.62 1.837	126.5 53.4 16.90 4.91	164.5 62.9 19.27 5,508	146.8 59.2 17.83 5.10	221.4 95.4 30.26 8.79 2.449	222.5 93.9 31.32 9.41 2.673	147.0 72.6 23.63 6.86 1.910	127.9 52.08 15.95 4.558
SLAB	158.0 51.47 14.55 4.10	174.5 64.5 19.7 5.85	138.7 43.9 12.32 3.46 0.959	100.2 24.8 6.10 1.586 0.416	108.8 27.9 6.94 1.82 0.481	201.5 59.1 15.81 4.32	290.2 93.6 26.30 7.37	122.7 34.4 9.06 2.45	90.6 23.14 5.78 1.516 0.401
PHAST	139.8 34.36 9.12 2.50 0.690	232.9 59.1 16.0 4.47 1.290	84.6 28.0 7.62 2.15 0.620	132.1 33.9 8.96 2.430 0.670	118.8 30.3 8.02 2.17 0.600	213.1 54.8 14.85 4.12 1.170	229.7 59.3 16.11 4.47 1.270	166.3 42.2 11.36 3.14 0.940	105.4 26.78 7.06 1.910 0.530
OBDG	144.1 37.31 9.66 2.50	321.5 83.2 21.5 5.58 1.443	213.2 55.2 14.29 3.70	66.1 17.1 4.42 1.145 0.296	60.2 15.6 4.03 1.04	195.7 50.7 13.11 3.39	389.6 100.9 26.11 6.76 1.749	83.6 21.6 5.60 1.45 0.375	40.0 10.36 2.68 0.694 0.180
INPUFF	95.0 31.90 9.89 3.01	130.1 49.0 16.2 5.16 1.648	82.7 28.4 8.70 2.66 0.810	81.7 25.6 7.54 2.189 0.615	78.2 22.9 6.74 1.93	146.9 50.5 16.09 4.96 1.530	168.4 59.8 18.79 5.75	111.4 37.7 12.01 3.69	64.3 20.20 5.92 1.720 0.486
HEGADAS	197.0 61.80 19.16 5.97	269.0 90.7 30.1 10.00	165.8 52.4 16.24 5.02 1.574	129.0 28.1 5.47 0.985	128.6 29.1 5.85 1.08 0.189	255.6 72.6 19.08 4.63	355.6 111.0 34.30 10.64 3.358	168.6 45.3 10.82 2.33 0.455	109.8 24.68 4.94 0.910
GASTAR	317.9 79.41 20.66 5.51 1.219	655.5 143.5 40.5 13.75	634.7 67.5 19.36 4.31	328.3 73.7 11.72 1.878 0.270	317.2 65.8 12.35 1.99 0.311	539.7 136.4 33.73 8.76 2.301	702.3 143.3 34.85 9.93 2.290	948.1 108.1 24.69 6.70 1.736	624.3 61.21 10.38 1.588 0.245
Web	98.0 28.41 7.84 2.22 0.665	159.6 58.9 17.0 4.68 1.332	86.7 25.1 6.93 1.96 0.588	103.1 27.7 7.18 1.858 0.492	93.1 25.0 6.47 1.68	153.0 44.4 12.28 3.48 1.043	175.5 51.0 14.11 3.99 1.198	114.6 33.2 9.18 2.60 0.779	81.8 21.99 5.68 1.471 0.389
FOCUS	182.7 36.77 8.30 2.00	383.1 69.3 14.8 3.48 0.863	185.4 34.6 7.61 1.81 0.453	153.7 29.5 6.57 1.573 0.396	250.4 27.5 6.01 1.43	366.2 66.2 3.38 0.845	363.6 69.3 15.29 3.65 0.915	275.8 50.3 10.88 2.56	124.4 23.62 5.22 1.248 0.314
DECADIS	159.9 48.48 14.76 4.47 1.403	215.3 81.3 24.5 7.61	147.4 44.1 13.36 4.06 1.272	124.9 35.9 9.74 2.738 0.773	109.9 32.8 9.06 2.52 0.710	221.3 68.1 20.64 6.38 2.012	238.9 80.3 23.68 7.27 2.287	167.7 53.8 16.39 4.99 1.567	106.2 28.12 7.91 2.238 0.633
CHARM	48.3 9.78 4.39 1.94 0.676	82.8 32.7 15.8 5.90	52.0 10.3 2.66 1.16 0.584	49.7 11.4 3.36 1.530 0.493	50.1 10.5 2.68 1.33 0.417	82.0 16.1 3.81 2.02 0.913	84.4 16.7 5.18 2.46 1.200	76.1 14.6 2.81 1.39 0.694	48.3 9.52 2.40 1.160 0.423
W 36		* * * * * * * * * * * * * * * * * * *					* * * * * * * * * * * * * * * * * * *		* * * * * * * * * * * * * * * * * * *
AIRTOX	177.5 26.06 6.11 1.68 0.501	710.0 67.5 67.5 9.9 9.48	111.5 37.5 5.47 1.53	365.9 32.7 7.03 1.655 0.426	28.4 3.5 1.5 2.5 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3	426,4 126,5 11,54 3,01 0,854	511.7 79.1 13.00 3.23 0.922	110.0 60.9 6.98 2.20 0.638	236.8 64.81 5.65 1.339 0.336
AFTOX	167.4 78.89 28.90 9.60	146.9 69.3 25.4 8.40	122.9 52.3 18.30 5.90 1.800	125.2 41.5 12.50 3.600 1.000	105.7 34.5 10.30 3.00	155.1 58.8 19.00 5.80	177.3 67.2 21.30 6.70	115.8 43.9 14.20 4.30	104.2 34.90 10.50 3.100 0.900
OBS.	132.8 57.00 19.00 6.90 2.380	164.4 69.0 24.5 8.90 3.580	100.4 36.8 11.50 2.90	89.4 20.7 5.80 0.900 0.190	69.0 18.2 5.20 1.10	131.8 41.5 14.40 3.10	203.3 72.2 21.90 7.50	80.7 23.6 6.10 1.70	77.1 24.10 6.70 1.200 0.210
×	50 100 200 400 800	50 200 400 800	50 200 400 800	50 100 200 400 800	50 200 400 900	50 200 200 400 800	50 100 200 400 800	50 100 200 400 800	200 200 400 800
TRIAL	PG38	PG41	PG42	PC43	PG44	PG 4 S	PG46	9048	6 9 9 0

X 085. A	50 87.0 100 27.90 200 6.60 400 1.40 800 0.210 50 100.1 100 26.3 200 6.70 800 0.160		8.10 3.450 77.3 30.30 9.70 2.80	50 112.9 100 39.90 200 13.20 4.60 800 1.70 50 101.6 100 29.2 200 10.40 800 0.310	
AFTOX AIRTOX	119.3 215.7 41.70 73.59 12.90 5.36 1.80 1.32 1.100 0.331 1.11.0 461.1 46.1 114.6 14.30 12.24 4.20 3.09	256 1666 135 250 151.9 53.0 117.4 13.3 25.0 183.6 159.0 23.45 25.7 7.5 5.45		137.6 153.7 60.10 22.83 21.40 1.59 2.20 0.458 2.20 0.458 142.1 358.6 13.40 11.59 17.40 11.59	
	35 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				
CHARM	9.44 9.44 1.38 1.08 0.417 81.6 16.0 2.01	582 264 103.0 30.9 7.59 46.9	1.42 1.68 0.68 6.96 2.61 1.06 0.521	9.69 9.69 4.04 1.77 0.63 1.30 1.5.7 1.5.7 1.5.7	118 19 19 19 19 19 19 19 19 19 19 19 19 19
DEGADIS	100.6 20.12 7.95 2.22 0.628 200.7 20.7 20.81 6.36	964 283 19.6 4.89 4.89 164.1 48.1 164.1	14.38 1.388 127.2 41.42 11.84 1.129	160.6 47.00 13.91 4.28 1.349 202.3 63.5 19.30 5.53	64.7 25.0 6.05 88.2 261 72.9 17.9
FOCUS	130.5 23.69 5.14 1.22 0.305 66.7 14.66 13.49	1250 255 56.0 13.3 3.33 173.0	7.84 1.84 0.463 152.6 28.94 6.37 1.51	173.6 34.3.6 7.69 0.465 355.9 62.4 13.30	56.5 13.4 3.33 1249 245 53.0 12.4 3.10
СРМ	80.6 21.65 5.60 1.45 0.383 153.4 44.6 12.32 3.49	325 213 77.2 22.8 6.63 95.4 27.65	2.15 0.647 2.125 5.86 1.66	92,9 26,92 7,43 7,43 0,630 140,4 40,8 11,26	93.7 27.7 8.05 284 187 67.7 67.7 8.80
CASTAR	600.4 98.39 12.58 2.27 0.348 542.1 134.1 37.65 8.64	1545 411 157.6 55.5 19.88 298.2 66.59	15.09 5.01 1.142 324.1 100.80 15.95 3.76	329.9 95.75 20.21 4.34 1.259 1077.0 185.8 33.41	131.4 34.5 9.01 1086 407 134.0 44.2
HEGADAS	124.2 29.56 6.27 1.21 0.213 190.0 46.2 9.81 1.88	648 304 139.8 49.4 16.14 15.14 71.30	23.08 7.47 2.446 142.0 45.10 14.02 4.38	198.0 64.00 20.38 6.53 2.114 225.4 63.1 16.06	171.0 77.1 30.26 256 118.8 37.5
INPUFF	61.2 19.92 5.79 1.66 0.480 147.3 50.6 16.14 4.98	406 172 62.2 20.6 6.71 93.5	2.93 0.905 70.9 24.08 7.49 0.687	30.25 30.25 9.38 0.38 0.88 13.8 46.4 14.60	24.3 24.3 3.4.6 3.57 3.57 54.6 5.91
оврс	60.3 15.60 4.04 1.04 0.271 67.9 17.6 4.55 1.18	1626 421 109,1 28.2 7,31 240.7 62.30	16.13 1.080 167.8 43.44 11.24 2.91 0.753	199.4 51.60 13.36 0.895 162.2 42.0 10.87	258.9 67.0 17.35 906 235 60.7 15.7
PHAST	102.8 26.10 6.88 1.86 0.520 220.7 56.8 15.42 4.28	850 203 56.8 16.7 5.06 31.25.5	8.35 2.30 0.650 71.9 23.65 6.43 1.01	124.8 31.07 8.30 2.28 0.650 198.1 50.7 13.72	58.2 17.0 5.13 776 187 52.7
SLAB	115.7 30.58 7.79 2.07 0.553 118.5 31.1 7.89 2.09	317 187 79.2 28.9 9.59 177.8 62.99	18.75 1.552 11.552 37.84 37.84 30.67	163.0 55.17 16.02 4.57 1.285 174.9 50.3 13.39	125.8 57.5 19.47 290 152 290.5 20.5
TRACE	125.4 51.70 15.84 4.53 1.251 222.0 95.7 30.34 8.81	412 177 16.6 18.6 5.36 130.3	17.68 5.38 1.530 108.0 44.55 14.09 1.140	126.6 52.22 17.60 5.32 1.513 200.6 88.7 28.17	23.9 23.9 6.68 357 153 16.5

TRACE	107.9 45.22 14.68 4.31	151.0 74.6 24.28 7.047 1.963	19.15 5.47 1.513	56680 50880 47650 4760 35710 22650 10100 5675 3409	37490 24380 24380 23650 17980	191000 61210 36850 13330 5509	241000 154800 75620 50800 31270 10690 5317	211600 135700 70580 38120 9915 7448
SLAB	122.1 40.47 11.65 3.32 0.930	106.4 28.8 7.44 1.995 0.535	9.79 2.59 0.691	77400 59590 43580 33870 26140 16910 9297 6456	73340 44290 14160 10960 6924 3958	43060 17800 12530 6306 3255	47670 32160 19430 15310 11320 5657	14050 1765 4008 2496 898 716 481
PHAST	91.9 23.46 6.35 1.76 0.500	172.5 43.8 11.82 3.270 0.980	8.69 2.35 0.650	371000 320000 246000 211000 153000 86700 30700 15000 5840	101000 70000 39800 34500 23000 15200	89500 48700 38700 16753 6880	100000 78900 78900 55600 44576 33000 14800	89100 69900 49365 35274 13200 10200 6230
OBDC	187.3 48.48 12.55 3.25 0.840	41.4 10.7 2.78 0.718 0.186	7.13 1.85 0.478	57960 34320 19180 12500 8195 4206 1723 975	35320 11550 2184 1595 896 460			
INPUFF	68.0 23.35 7.23 2.18 0.672	114.5 38.8 12.34 3.790 1.153	7.42 2.14 0.606	74020 32380 34550 25050 118570 11090 5226 3304	129900 68180 21120 16580 10550 6243	226200 89210 56540 22570 9217	361300 250400 157600 117900 81180 32750 16630	246300 156100 82360 49340 14770 11270
HECADAS	146.0 47.12 15.02 4.78 1.542	157.4 40.3 9.02 1.810 0.333	7.88	311000 174200 81720 48100 29220 14150 5865 3498	553500 106100 12060 8479 4719 2504		* * * * * * * * * * * * * * * * * * *	
GASTAR	409.8 89.55 14.66 3.67	840.1 108.1 28.04 6.556 1.842	16.36 2.94 0.452	233000 144500 84230 55050 37620 18990 8510 2701	141700 69360 18610 14910 9162 5167	35730 15150 10420 5102 2430	38760 26450 15900 12150 8692 4045 2283	36960 26070 16080 10710 3871 3195 2168
Wd5	70.9 20.53 5.66 1.60	117.7 34.2 9.43 2.669 0.800	7.08 1.83 0.485	144900 101500 65340 47580 33820 19280 8804 5281	248900 130900 39570 30620 19160			
FOCUS	140 27,28 6.00 1.43 0.359	312.3 54.0 11.45 2.681 0.667	6.38 1.53 0.384	302700 219200 144400 102000 70190 36570 15020 9007	240300 121600 32640 24150 16020 10520	163300 87590 65460 28950 11280	90130 86030 73050 62180 42680 15520	178800 119800 92850 61970 18020 14700 6890
DEGADIS	130.4 38.54 11.56 3.53	13-00-13 15-	9.67 2.72 0.769	272400 219200 140600 92310 52460 23350 7331 3770 1858	145000 145000 67210 41660 16290 5747	161000 70650 46820 21230 9604	164000 123000 68380 50830 36360 15440 8102	147000 121000 72870 44000 15780 12400
CHARM	42.7 8.59 2.91 1.21 0.557	77.7 14.9 2.87 1.420 0.710	3.16	26500 19600 16200 113500 11000 8280 4260 3010	52800 30200 13200 11200 8170 5820	34400 17200 13100 6520 2850	255000 17600 11500 9380 7300 3910 2570	29300 20900 13700 9990 3620 2950 2010
B & K				264800 170300 93100 65230 65230 43630 21540 11540 3859	253800 60700 13340 9869 6882 3253	100000 46570 29940 13980 6615	100000 100000 48290 36200 21700 11310 5567	100000 100000 45860 25110 9359 7372
AIRTOX	104.6 15.92 4.56 1.20 0.356	116.4 63,5 9,34 2,286 0,658	7.09	11040 10880 10540 10150 9617 8290 4544 1689	377400 102300 14230 11210 7539	05740 24530 13180 5410 2903	136800 79590 36880 28560 20490 4769	100700 54270 19610 9829 3689 3091
AFTOX	109.4 48.30 17.30 5.70 1.800	96.7 33.6 10.40 3.100 0.910	22.60	123300 81280 50300 35030 24400 13680 6249 2088	125700 50840 12180 9192 5561 3077	495700 214800 141800 57740 23420	441400 295600 156400 111600 71960 25020 11530	573400 428200 259000 163200 49850 37940 23330
OBS.	109.9 42.50 15.50 5.30 2.160	70.3 20.1 6.00 1.500 0.340	11.50 2.80 0.720	200000 129000 89000 62000 37900 26200 7600 5600	159000 74000 14700 6700 4800 2400	90400 36700 26200 9760 5290	13,7000 5,1200 33,800 25,400 19,800 11,900 60,20	92500 61100 40300 28100 10800 6920 4260
×	50 200 400 800	\$0 100 200 400 800	200 8 00	40 53 72 1112 1152 250 335 472	50 212 250 335 472	71 141 180 283 424	71 100 150 180 224 361 500	71 100 150 200 364 412 510
TRIAL	PG 60	PG61		1045 2	7647	년 연	L11	#118

TRACE	31110 31110 30760 22200 15080 5950	104500 38520 23150 4996 2490	391800 233400 49850 24740 18640 14050	493800 391600 241500 144600 73010 27240 4092	560400 477000 398300 338500 258200 74350 58620 31490 17210	575000 461800 373600 230100 49980 17500
SLAB	58480 39020 25300 18200 13430 8155	28760 13510 9723 4627 3002	56910 35500 10540 5985 4747 3783	60200 47750 32170 21190 13470 6974 1932	121900 66690 52820 43020 30450 10440 8662 5353 3274	108400 70480 58480 39020 13490 6665
PHAST	78800 63600 51900 43200 35900 25900 12500	73200 42300 31700 13100 6760	122000 90000 33500 18000 14000	103000 90700 72500 54900 39079 20900 4330	181000 144000 128000 118000 97600 44400 22400 12600	163000 129000 115000 89000 34200 14000 5060
0800				* * * * * * * * * * * * * * * * * * *		
INPUFF	418700 321400 230600 174500 131600 79420	344600 140700 89230 30380 15620	221100 146000 46110 22720 18510 13540	394100 322800 230100 153200 96970 44880	332200 231100 204000 178500 133400 49550 49550 13160	379100 270800 232300 158800 47640 18350
HEGADAS	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *				
CASTAR	22350 18650 15250 12890 1779 4279	27600 13560 9422 3646 2043	56620 39290 13600 8219 6573 5419	58870 49420 35580 24270 15600 7490	100200 74230 62650 55780 44240 115610 10050 6406 4385	81510 60660 51750 36580 12580 6169
WdD	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *				
FOCUS	194000 93490 66280 50960 36620 15470	159500 80650 50250 14310 7342	170200 126300 48170 24900 19160 15960	284500 212300 170000 108400 87870 46410	391400 168600 152800 152800 57860 57860 15790 15790	668800 404500 316500 105100 46380 19490
DEGADIS	805 770 808 893 1085 1516	10830 14200 15130 7156 3782	325000 191000 51470 28810 22640 17970	50690 51870 59130 93270 63550 6058	618000 433000 346000 289000 19500 62140 52050 31960 19120	477000 361000 313000 187000 50740 22280
CHARM	14000 8890 5820 4340 3710 2900 1960	17000 7180 5160 2360 1550	62200 42300 17300 11000 8240 6170	71200 51600 30600 18600 12900 7810	124000 82000 69400 60200 47400 21900 13900 7290	105000 65300 53400 35300 14500 8350
X. 9	100000 100000 47270 27520 17200 9699	100000 41470 19460 7531 3709	100000 87680 20150 12440 9772	224600 156400 100000 100000 46240 17810	225000 114300 100000 100000 79930 22410 22410 11900 8005	250100 129100 100000 96970 26250 11670
AIRTOX	159400 71780 38010 26490 20030 13270 7889	111400 32180 16520 5351 3330	130300 85370 20740 10160 8179 6437	152600 123200 75580 44790 24710 11630	284800 196900 144000 125100 92810 21480 111120 6414	267300 156500 132800 77810 19370 7100
AFTOX	833600 766800 671500 585100 496900 355300 179700	545000 252400 162400 53050 26160	196400 218100 136400 70020 52960 39760	264800 218100 310700 229300 135000 56920	301200 213700 104100 160400 157800 128700 72480 23920	397400 305400 268700 526800 215580 94790 35380
. 985	123000 70600 35800 26500 20700 11400 5450	116000 31700 18500 9990 3680	73300 64600 25400 12500 9260 7290	127000 85100 47600 31900 14900 6520	242000 86100 62700 52500 40800 11000 8060 8060	184000 82400 72200 53900 13600 6770
*	100 140 141 224 315 503	71 200 200 361 500	71 100 224 316 361	50 100 140 141 500 500	6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	60 100 224 881 881
TRIAL	911	1112	£1113	T117	T118	7119

APPENDIX C-2

THE OBSERVED AND PREDICTED MAXIMUM CONCENTRATION (PPM) FOR THE SHORTEST AVERAGING TIME AVAILABLE FOR BURRO, COYOTE, DESERT TORTOISE, AND HANFORD (CONTINUOUS)

TRIAL X	. \$80	AFTOX	AIRTOX	I G	CHARM	DEGAD IS	FOCUS	MdD	GASTAR	HEGADAS	Inpure	OBDG	PHAST	\$ LAB	TRACE
140	152540	289300 76090	310900	432400	299000 112000	649400 245800	972300 554900	220200 76110	269000 175900	500200 123300	120400 35070	252700	441000	256400	155400
57	224380	299200 79920	311300	441700	107000	624000 239800	975500 685400	223700 77510	270500	406500	121500	174300	440000	192400 37230	96360
57 140	177030	375400	193100	314500 98400	291000 125000	397900 166000	979400 789300	170700	156200	371500 124000	83230 23050	241000	428000 56400	166800	134400
140	190410	296100	229600 129500	100000	264000	192000	\$79600 507400	184300 59570	195500	372800 131700	93050 26030	248300	152000	204500	190200 115900
140	178690	385900 129900	212000	324500	303000 134000	410200	976300 477600	174500	158000	376000 132000	23460	261100	525000 65900	172500	225500 120000
57 140 400	179390 71320 38560	405600 139500 26340	212700 129500 22590	342500 100000 22940	302000 124000 14200	448400 189800 41770	958000 622500 76140	258400 99170 23030	176900 119700 41520	472600 160500 32150	166700 57060 11970	355500 87290 12200	467000 257000 29800	200300 100300 24160	170800 111200 48150
57 140 400	558740 164110 35810 21160	883700 556100 184900 67140	581200 551000 241100 71520	700000 100000 14300 3624	504000 240000 74000 19100	606700 369800 137600 24930	959300 731900 163190	621200 398700 158400 69070	195900 108500 56820 40950	1000000 734200 136600 40540	521400 269600 85290 31600	554000' 177200 27650 7145	387000 291000 62000 27100	230600 118900 43420 15410	344200 200800 101000 41620
57 140 400	72000 105560 39640 13950	730200 433600 124700 42830	401800 299100 81410 26060	500800 142600 16260 5561	317000 113000 28400 7100	750300 322000 67140 21540	949300 397200 71080	347800 153300 40450 14840	341706 234800 69380 21930	769400 245200 67500 18550	249100 94330 20860 6926	486100 140900 20730 5450	469000 320000 109000 16000	325300 183600 51170 16760	413800 214300 125900 33770
140 200 300	106820 48620 19050	204000 106800 57180	239600 160000 74100	106700 40520 18450	99100 56100 27200	249200 146800 77130	391000 200700 \$8180	72920 43470 23010	167000 120300 74570	134700 59970 16690	33090 18400 9665	40030 20380 9347	292000 98100 35600	100800 55100 24020	166700 176200 131200
200 300 400	115330 80920 31740 23040	139600 125900 42540 27050	86730 36240 11830 8700	100000 76450 42890 24120	150000 85800 42600 22200	174800 112200 63865 41510	920900 \$14800 \$04700 \$50300	58800 34390 17880 11000	92690 71950 49580 35730	129200 68760 26500 12940	25420 14300 7329 4484	36560 18580 8512 4875	78600 35000 15000	72160 46510 25390 15610	386300 312900 234800 171800
140 200 300 400	126980 85000 41830 32910	252900 156400 84830 53470	251300 240300 98810 76960	147100 54100 28080 16610	124000 82600 46100 29100	322000 196400 109600 69100	369000 171000 52130 67730	159400 105700 63050 42590	270700 189000 108000 68650	296200 182300 112000 77880	101500 62450 36310 23130	175100 95760 45830 26680	309000 242000 160000 111000	132800 132800 84640 57800	171800 160400 151900 103100
100	63260	199000	306900	10290	20900	285300	133460	182100	170300	71590	103200	335600	48100	152500	59020
100	109580	309600	312500	78780 5099	27300	14240	139700	13950	138500	0000	165700	33(000	51100	199700	17200

TRACE	80730 10630	84800 12600	51.8	3.53	6.33	15.45	21.44
SLAB	211000	192500 12390	171.9	6.16	0.686	9.89	25.65
PHAST	56300	10900	32.4	1.83	4.10	7.55	22.60
OBDC	275400	392500	47.5 3.10	2.79	3.99	3.92	6.83
Inpurp	154700	269900	70.6	2.46	3.10	7.99	22.63
HEGNDAS	87870 8631	95000	147.0	4.18	6.03	7.63	34.48
GASTAR	136600	167000	225.4	4.09	5.99	15.36	9.139
M G G	256600	482900 32080	141.9	3.97	5.11	12.84	40.00
POCUS	151900	138400	136.2	5.10	6.78	17.53	49.47
DEGADIS	407900 12500	17890	5.09	7.35	9.51	23.29	32.33
CHARM	30100	55900 8110	351.0	26.60 0.6190	\$6.20 1.300	56.20	197.00 5.780
BLM	62120 4111	82540 9546	****	*****	* * * * * * * * * * * * * * * * * * * *	****	
AIRTOX	331000	401000					
AFTOX	251400	454100	11.9	5.20	6.70	9.40	2.000
. 880	97250 15630	84260 20910	3.39	4.90	7.24	14.03	13.81
×	100	100 \$ 00	200 2 00	200	200 800	200	200 800
TRIAL	£10	11 0	HC1	HC2	нсэ	HC4	HC5

APPENDIX C-3

THE OBSERVED AND PREDICTED CLOUD-WIDTHS (σ_y) (M)

TRIAL	x	oss.	AFTOX	AIRTOX	DEGADIS	GASTAR	GPM	HEGADAS	PHAST	SLAB
виз	57	20.0	4.7	20.3	23.7	30.2	7.2	34.1	17.5	19.5
BU4	57	14.9	3.0	15.9	18.5	23.0	6.4	23.6	7.2	14.5
BU5	57	13.2	4.1	17.0	19.7	24.6	7.0	20.5		
	140	10.1	9.0	24.0	28.6	31.9	13.6	26.5 36.2	12.1 14.9	15.0 21.4
									14.7	21.4
BU6	140	20.3	6.3	20.4	26.6	29.1	12.2	32.3	15.0	19.5
BU7	140	20.9	7.2	23.1	30.2	33.8	10.6	35.2	21.0	21.2
BU8	57	27.1	2.1	35.7	41.7	33,1	7.8	112.6	44.0	81.2
	400	84.2	11.4	120.4	139.9	190.5	21.1	185.6	112.0	134.2
BU9										
507	57 140	22.1	1.8	19.1	28.3	33.7	6.1	42.5	17.7	21.8
	400	26.7 44.6	3.7	29.4	42.3	52.6	10.0	53.6	33.4	31.3
	800	57.1	9.3	52.8	67.9	77.8	22.3	89.0	62.3	51.7
	000	21.1	17.1	76.7	87.1	84.5	40.5	118.7	66.3	73.5
CO3	140	23.5	6.1	24.8	38.3	45.0	12.0	48.1	30.4	28.0
C06	140	15.4	6.3	30.6	46.1	55.7	10.6	64.0	37.0	39.0
	200	17.1	8.6	36.4	53.7	64.8	13.7	71.7	43.9	45.1
DT1	100	11.8	4.8	14.4	41.3	27.6		-		
	800	61.8	30.5	52.7	169.9	27.5 167.5	6.9	74.2	12.0	16.6
				32.1	107.3	10/.3	42.7	202.2	89.2	69.1
DT2	100	14.7	5.5	22.1	57.3	26.5	8.3	97.2	13.9	20.7
	800	88.2	35.0	76.3	255.4	213.5	49.3	288.8	116.8	93.6
DT3	100	15.2	5.7	18.9	46.8	23.5	7.8	86.8	10.0	
	800	73.4	36.1	57.4	202.4	175.2	46.6	236.4	12.7 103.3	16.8
					3		40.0	230.4	103.3	81.3
DT4	100	15.7	4.4	26.3	70.8	32.5	7.5	110.9	14.8	25.5
	800	86.0	28.0	103.8	335.9	327.5	42.4	353.1	132.4	112.0
GF1	300	25.1	12.0							
0	1000	63.0	13.2	20.1	57.6	55.5	17.3	69.8	41.0	25.0
	3000	113.9	38.8 104.1	70.1	96.5	96.6	53.1	124.0	88.3	57.0
	2220	110.9	104.1	204.6	153.6	174.0	144.4	219.7	160.4	128.2
GF2	300	29.9	18.4	20.0	55.9	59.2	17.0	65.0	42.5	24.6
	1000	54.7	54.2	70.0	93.6	98.4	52.8	117.8	81.3	\$7.6
GF3	300	25.1	13.2	21.5	41.0	25 1	16.5			
-	1000	49.8	38.8	74.0	68.2	35.1 66.1	16.9	52.6	32.2	20.5
	3000	75.2	104.1	208.5	138.8	150.6	52.7 144.1	95.0	54.2	48.9
					130.0	170.0	144-1	195.1	170.2	112.8
HC1	200	15.6	15.9	7.9	7.6	7.5	7.6	11.9	6.1	6.3
	800	70.7	54.9	30.8	26.2	29.1	29.3	37.6	19.0	23.4

TRIAL	x	OBS.	AFTOX	AIRTOX	DEGADIS	GASTAR	GPM	HEGADAS	PHAST	SLAB
HC2	200	15.1	20.1	21.8	26.5	23.3	23.4	37.4	20.0	17.4
	800	36.2	69.7	84.7	92.1	90.7	90.7	127.8	70.0	65.4
HC3	200	13.7	16.0	21.8	21.0	18.5	18.6	30.1	20.0	13.3
	800	38.7	55.5	84.7	73.6	72.1	72.1	102.0	70.0	50.3
HC4	200	19.6	19.9	21.8	21.1	18.6	18.6	30.1	20.0	17.8
	800	55.2	69.1	84.7	73.1	72.1	72.2	102.0	70.0	67.2
HC5	200	15.5	12.2	11.9	11.8	11.6	11.7	17.4	9.4	12 7
	800	37.8	42.3	46.2	40.9	45.2	45.2	57.5	32.4	12.7 47.7
PG7	50	6.2	10.2	6.8	10.6	8.0	8.0	15.9	0.3	
	100	12.0	18.9	14.7	19.7	15.9	16.0	28.6	9.3	7.9
	200	22.0	35.2	30.5	37.0	31.7	31.7	51.9	18.3	15.9
	400	39.0	65.5	61.6	68.8	62.8	62.8	94.3	35.5	31.8
	800	71.0	122.2	122.0	128.7	123.2	123.2	171.6	67.9 128.2	62.7 120.6
								272.0	120.2	120.6
PG8	50	6.6	4.3	4.5	7.1	5.5	5.5	10.9	6.0	5.3
	100	12.0	7.8	9.9	13.2	11.0	11.0	19.4	11.9	10.7
	200	21.0	14.4	20.8	24.7	21.8	21.8	35.2	23.2	21.4
	400	41.0	26.8	42.2	46.1	43.2	43.2	64.6	44.7	42.2
	800	86.0	49.8	83.7	86.1	84.7	84.7	119.6	85.1	81.2
PG9	50	9.0	4.3	5.5	7.1					
	100	18.0	7.8	10.9	13.3	5.5	5.5	10.9	6.0	4.6
	200	33.0	14.4	21.8	24.8	10.9	11.0	19.3	11.9	9.3
	400	63.0	26.8	43.1	46.1	21.8	21.8	35.1	23.2	18.6
	800	116.0	49.8	84.7	86.1	43.1 84.6	43.2	64.6	44.6	36.8
				V	00.1	01.0	84.7	119.5	85.1	70.8
PG10	50	12.3	7.0	6.6	10.6	8.0	8.0	15.9	9.3	8.3
	100	20.0	12.9	14.6	19.7	15.9	16.0	28.6	18.3	16.8
	200	35.0	23.9	30.4	36.8	31.7	31.7	51.9	35.5	33.4
	400	61.0	44.5	61.5	68.8	62.8	62.8	94.3	67.9	66.0
	800	97.0	83.0	121.9	128.5	123.2	123.2	171.6	128.2	127.4
PG15	50	8.6	5.3	9.7	10.6	11.0	11.0	21.0	13.4	8.1
	100	16.0	9.8	20.6	19.7	21.9	22.0	39.9	26.1	16.5
	200	26.0	18.1	42.3	36.9	43.6	43.6	72.8	49.7	32.9
	400	45.0	33.6	85.1	68.8	86.3	86.3	132.6	93.3	64.6
	800	92.0	62.6	168.2	128.1	169.4	169.4	241.7	173.6	124.6
PG16	50	13.7	7.7	9.8	10.6	11.0	11.0	21.8	12.6	
	100	26.0	14.2	20.7	19.7	21.9	22.0	39.9	13.5	8.1
	200	49.0	26.4	42.4	36.8	43.6	43.6		26.1	16.4
	400	72.0	49.1	85.1	68.7	86.3	86.3	72.8 132.7	49.7	32.7
	800	116.0	91.5	168.2	128.2	169.3	169.4	241.7	93.4 173.6	64.4
BC10	r							4741	1/3.6	124.0
PG19	50 100	8.7	4.8	4.2	7.1	5.5	5.5	10.9	6.0	4.8
	100 200	16.0	8.8	9.7	13.3	11.0	11.0	19.4	11.9	9.7
		32.0	16.4	20.5	24.7	21.8	21.8	35.2	23.2	19.4
	400	55.0	30.4	41.9	46.2	43.2	43.2	64.6	44.6	38.1
	800	85.0	56.6	83.5	86.1	84.6	84.7	119.5	85.1	73.8

TRIAL	x	OBS.	AFTOX	AIRTOX	DEGADIS	GASTAR	GPM	HEGADAS	PHAST	SLAB
PG20	50	7.9	4.0	4.0	4.6	4.0	4.0	7.6	3.9	4.5
	100	14.0	7.4	7.9	8.6	8.0	8.0	13.0	7.7	9.2
	200	27.0	13.7	15.8	16.0	15.9	15.9	23.1	15.1	18.3
	400	49.0	25.4	31.4	29.8	31.4	31.4	42.1	29.2	36.0
	800	90.0	47.2	61.6	55.7	61.6	61.6	77.8	55.8	69.5
PG25	50	16.2	10.0	10.0	10.6	11.1	11.0	21.8	13.5	7.2
	100	36.0	18.5	20.9	19.7	22.0	22.0	39.9	26.1	14.6
	200	72.0	34.3	42.6	36.9	43.6	43.6	72.8	49.7	29.1
	400	134.0	64.0	85.3	68.9	86.3	86.3	132.7	93.4	57.3
	800	214.0	119.3	168.4	128.7	169.3	169.4	241.7	173.7	110.3
PG43	50	10.5	5.1	4.5	7.1	5.5	5.5	10.9	6.0	5.6
	100	21.0	9.3	9.9	13.3	11.0	11.0	19.4	11.9	11.4
	200	40.0	17.2	20.8	24.7	21.8	21.8	35.2	23.2	22.7
	400	89.0	32.0	42.1	46.1	43.1	43.2	64.6	44.7	44.6
	800	200.0	59.6	83.7	86.1	84.7	84.7	119.6	85.1	86.4
PG44	50	11.4	5.3	4.3	7.1	5.5	5.5	10.9	6.0	5.1
	100	22.0	9.7	9.7	13.2	11.0	11.0	19.4	11.9	10.4
	200	43.0	17.9	20.6	24.7	21.8	21.8	35.2	23.2	20.7
	400	73.0	33.3	42.0	46.1	43.2	43.2	64.6	44.7	40.6
	800	126.0	62.1	83.6	86.0	84.7	84.7	119.5	85.1	78.8
PG49	50	8.9	4.9	4.1	7.1	5.5	5.5	10.9	6.0	5.2
	100	17.0	9.1	9.6	13.2	10.9	11.0	19.3	11.9	10.5
	200	35.0	16.8	20.4	24.7	21.8	21.8	35.1	23.2	21.0
	400	72.0	31.2	41.8	46.1	43.2	43.2	64.6	44.7	41.4
	800	118.0	58.1	83.4	86.1	84.7	84.7	119.5	85.1	80.0
PG50	50	8.2	4.5	4.0	7.1	5.5	5.5	10.9	6.0	4.6
	100	15.0	8.3	9.5	13.3	10.9	11.0	19.3	11.9	9.4
	200	28.0	15.4	20.4	24.8	21.8	21.8	35.1	23.2	18.7
	400	55.0	28.6	41.7	46.1	43.1	43.2	64.6	44.7	36.9
	800	115.0	53.2	83.3	86.2	84.7	84.7	119.5	85.1	71.3
PG51	50	9.6	4.5	3.0	4.6	4.0	4.0	7.7	3.9	4.8
	100	18.0	8.2	7.0	8.6	8.0	8.0	13.1	7.7	9.6
	200	32.0	15.2	14.9	16.0	15.9	15.9	23.2	15.1	19.2
	400	60.0	28.3	30.5	29.8	31.4	31.4	42.2	29.2	37.7
	800	77.0	52.7	60.7	55.8	61.5	61.6	77.9	55.8	73.0
PG61	50	10.4	4.6	4.0	4.6	4.0	4.0	7.6	3.9	4.4
	100	19.0	8.4	8.0	8.6	8.0	8.0	13.0	7.7	8.9
	200	35.0	15.5	15.8	16.0	15.9	15.9	23.1	15.1	17.8
	400	65.0	28.8	31.4	29.9	31.4	31.4	42.2	29.2	34.9
	800	109.0	53.7	61.6	55.8	61.5	61.6	77.8	55.8	67.3

APPENDIX D

TABULATION OF THE PERFORMANCE MEASURES AND THE RESULTS OF CONFIDENCE LIMITS ANALYSIS

APPENDIX D-1

THE PERFORMANCE MEASURES FOR THE PREDICTED CONCENTRATIONS FOR THE CONTINUOUS DENSE GAS RELEASES (BURRO, COYOTE, DESERT TORTOISE, GOLDFISH, MAPLIN SANDS, AND THORNEY ISLAND), INCLUDING ALL DOWNWIND DISTANCES. THE SHORTEST AVAILABLE AVERAGING TIME WAS USED.

All obs	servations,		(Nm. 124)			
model	mean	sigma	(N= 124) bias	۷g	fa2	73.00
OBS.	10.44	1.25	0.00	1.00	1.000	mg 1.000
AFTOX	10.35	1.70	0.10	1.78	0.661	1.100
AIRTOX	9.48	2.13	0.96	17.68	0.242	2.623
Bem	10.36	1.62	0.08	1.53	0.742	1.087
CHARM	10.05	1.71	0.40	2.49	0.613	1.485
DEGADIS FOCUS		1.66	-0.39	1.84	0.629	0.677
GPM	11.19 10.07	1.99	-0.75	6.51	0.419	0.474
GASTAR	10.60	1.64 1.41	0.37 - 0.16	2.14	0.524	1.450
HEGADAS		1.60	-0.15	1.28 1.58	0.815 0.742	0.856 0.862
INPUFF	9.47	1.58	0.97	4.63	0.242	2.628
OBDG	9.54	1.82	0.90	4.98	0.290	2.468
PHAST	10.58	1.72	-0.13	2.14	0.492	0.874
SLAB	10.10	1.41	0.34	1.68	0.702	1.408
TRACE	10.47	1.47	-0.03	2.35	0.581	0.973
Block	1: BURRO		(N= 21)			
model	mean	sigma	(N= 21) bias		6-3	
OBS.	11.38	0.85	0.00	1.00	fa2 1.000	mg 1.000
AFTOX	12.13	0.93	-0.75	2.56	0.476	0.471
AIRTOX	12.02	0.83	-0.64	2.08	0.571	0.530
Bem	11.53	1.47	-0.15	1.95	0.667	0.857
CHARM	11.68	1.12	-0.30	1.44	0.762	0.744
DEGADIS		1.03	-0.91	2.91	0.238	0.401
FOCUS	12.90	1.22	-1.52	15.81	0.238	0.219
gpm Gastar	11.64	0.92	-0.26	1.47	0.810	0.771
HEGADAS	11.72 12.11	0.69	-0.34	1.49	0.810	0.712
INPUFF	11.01	1.09 1.06	-0.73 0.37	2.41	0.476	0.481
OBDG	11.30	1.32	0.08	1.77 1.61	0.476 0.762	1.451
PHAST	12.06	1.08	-0.68	2.31	0.476	1.081
SLAB	11.45	0.88	-0.07	1.31	0.857	0.931
TRACE	11.75	0.60	-0.37	1.59	0.667	0.689
Dlack	1 . covos					
DIOCK	z: COTOTE		/NG 11\			
Block model	2: COYOTE	sioma	(N= 11) bias	Va	fa?	-
model OBS.		sigma 0.64	(N= 11) bias 0.00	vg 1.00	fa2	mg 1.000
model OBS. AFTOX	mean 10.89 11.44	sigma 0.64 0.66	bias	Vg 1.00 1.46	1.000	1.000
model OBS. AFTOX AIRTOX	mean 10.89 11.44 11.23	0.64 0.66 1.10	bias 0.00	1.00		mg 1.000 0.574 0.712
model OBS. AFTOX AIRTOX B&M	mean 10.89 11.44 11.23 10.75	0.64 0.66 1.10 0.71	bias 0.00 -0.56 -0.34 0.13	1.00 1.46 2.39 1.10	1.000 0.727 0.182 1.000	1.000 0.574
model OBS. AFTOX AIRTOX BEM CHARM	mean 10.89 11.44 11.23 10.75 10.97	0.64 0.66 1.10 0.71 0.62	bias 0.00 -0.56 -0.34 0.13 -0.08	1.00 1.46 2.39 1.10 1.03	1.000 0.727 0.182 1.000 1.000	1.000 0.574 0.712 1.141 0.919
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS	mean 10.89 11.44 11.23 10.75 10.97 11.69	0.64 0.66 1.10 0.71 0.62 0.60	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80	1.00 1.46 2.39 1.10 1.03 2.08	1.000 0.727 0.182 1.000 1.000	1.000 0.574 0.712 1.141 0.919 0.447
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS	mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54	0.64 0.66 1.10 0.71 0.62 0.60 1.02	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66	1.00 1.46 2.39 1.10 1.03 2.08 42.16	1.000 0.727 0.182 1.000 1.000 0.273 0.091	1.000 0.574 0.712 1.141 0.919 0.447 0.190
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS	mean 10.89 11.44 11.23 10.75 10.97 11.69	0.64 0.66 1.10 0.71 0.62 0.60 1.02	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18	1.00 1.46 2.39 1.10 1.03 2.08 42.16 1.27	1.000 0.727 0.182 1.000 1.000 0.273 0.091 0.818	1.000 0.574 0.712 1.141 0.919 0.447 0.190 1.203
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM	mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70	0.64 0.66 1.10 0.71 0.62 0.60 1.02	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59	1.00 1.46 2.39 1.10 1.03 2.08 42.16 1.27 1.72	1.000 0.727 0.182 1.000 1.000 0.273 0.091 0.818 0.455	1.000 0.574 0.712 1.141 0.919 0.447 0.190 1.203 0.554
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF	mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18	1.00 1.46 2.39 1.10 1.03 2.08 42.16 1.27 1.72 1.38	1.000 0.727 0.182 1.000 1.000 0.273 0.091 0.818 0.455 0.636	1.000 0.574 0.712 1.141 0.919 0.447 0.190 1.203 0.554 0.764
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG	mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.95	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27	1.00 1.46 2.39 1.10 1.03 2.08 42.16 1.27 1.72	1.000 0.727 0.182 1.000 1.000 0.273 0.091 0.818 0.455 0.455	1.000 0.574 0.712 1.141 0.919 0.447 0.190 1.203 0.554 0.764 2.527
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST	mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18 11.23	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.57 0.95 0.988 1.01	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27 0.93 0.70 -0.35	1.00 1.46 2.39 1.10 1.03 2.08 42.16 1.77 1.72 1.38 3.32	1.000 0.727 0.182 1.000 1.000 0.273 0.091 0.818 0.455 0.636	1.000 0.574 0.712 1.141 0.919 0.447 0.190 1.203 0.554 0.764
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB	mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18 11.23 10.95	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.57 0.98 1.15	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27 0.93 0.70 -0.35 -0.07	1.00 1.46 2.39 1.10 2.08 42.16 1.27 1.72 1.38 3.32 2.49 2.37 1.19	1.000 0.727 0.182 1.000 1.000 0.273 0.091 0.818 0.455 0.636 0.455 0.364 0.364	1.000 0.574 0.712 1.141 0.919 0.447 0.190 1.203 0.554 0.764 2.527 20.705 0.936
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST	mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18 11.23	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.57 0.95 0.988 1.01	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27 0.93 0.70 -0.35	1.00 1.46 2.39 1.10 1.03 2.08 42.16 1.27 1.72 1.38 3.32 2.49 2.37	1.000 0.727 0.182 1.000 1.000 0.273 0.091 0.818 0.455 0.636 0.455 0.364 0.182	1.000 0.574 0.712 1.141 0.447 0.190 1.203 0.554 0.764 2.527 2.019 0.705
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE	10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18 11.23 10.95 12.13	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.95 0.88 1.01 1.15 0.72	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27 0.93 0.70 -0.35 -0.07 -1.24	1.00 1.46 2.39 1.10 2.08 42.16 1.27 1.72 1.38 3.32 2.49 2.37 1.19	1.000 0.727 0.182 1.000 1.000 0.273 0.091 0.818 0.455 0.636 0.455 0.364 0.364	1.000 0.574 0.712 1.141 0.919 0.447 0.190 1.203 0.554 0.764 2.527 20.705 0.936
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB	mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18 11.23 10.95 12.13	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.57 0.95 0.88 1.01 1.15 0.72 0.36	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27 0.93 0.70 -0.35 -0.07 -1.24 (N=8)	1.00 1.46 2.39 1.10 1.03 2.08 42.16 1.27 1.72 1.38 3.32 2.49 2.37 1.19 6.40	1.000 0.727 0.182 1.000 0.273 0.091 0.818 0.455 0.636 0.455 0.364 0.182 0.909 0.273	1.000 0.574 0.712 1.141 0.191 0.447 0.190 1.203 0.554 0.554 2.527 2.019 0.705 0.936 0.288
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block	mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18 11.23 10.95 12.13 3: DESERT mean	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.57 0.95 0.88 1.01 1.15 0.72 0.36 TORTOISE sigma	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27 0.93 0.70 -0.35 -0.07 -1.24 (N=8)	1.00 1.46 2.39 1.10 1.03 2.08 42.16 1.27 1.72 1.38 3.32 2.49 2.37 1.19 6.40	1.000 0.727 0.182 1.000 0.273 0.091 0.818 0.455 0.636 0.455 0.364 0.182 0.909 0.273	1.000 0.574 0.712 1.141 0.447 0.190 1.203 0.554 0.554 2.527 2.019 0.705 0.936 0.288
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model	mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18 11.23 10.95 12.13	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.57 0.95 0.88 1.01 1.15 0.72 0.36 TORTOISE sigma 0.87	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27 0.93 0.70 -0.35 -0.07 -1.24 (N=8) bias 0.00	1.00 1.46 2.39 1.10 1.03 2.08 42.16 1.27 1.72 1.33 2.49 2.37 1.19 6.40	1.000 0.727 0.182 1.000 1.000 0.273 0.091 0.818 0.455 0.455 0.455 0.455 0.455 0.273	1.000 0.574 0.712 1.141 0.447 0.190 1.203 0.554 0.705 0.936 0.288
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX	mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18 11.23 10.95 12.13 3: DESERT mean 10.53 11.01 10.83	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.57 0.95 0.88 1.01 1.15 0.72 0.36 TORTOISE sigma	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27 0.93 0.70 -0.35 -0.07 -1.24 (N=8)	1.00 1.46 2.39 1.10 1.03 2.08 42.16 1.27 1.72 1.38 3.32 2.49 2.37 1.19 6.40	1.000 0.727 0.182 1.000 0.273 0.091 0.818 0.455 0.455 0.364 0.182 0.273 fa2 1.000 0.500	1.000 0.574 0.712 1.141 0.919 0.447 0.190 1.203 0.554 0.764 2.527 2.019 0.705 0.288
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM	10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18 11.23 10.95 12.13 3: DESERT mean 10.53 11.01 10.83 9.84	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.95 0.88 1.01 1.15 0.72 0.36 TORTOISE sigma 0.87 1.62 1.97 1.48	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27 0.93 0.70 -0.35 -0.07 -1.24 (N=8) bias 0.00 -0.48	1.00 1.46 2.39 1.10 2.08 42.16 1.27 1.38 3.32 2.49 2.37 16.40	1.000 0.727 0.182 1.000 1.000 0.273 0.091 0.818 0.455 0.455 0.455 0.455 0.455 0.273	1.000 0.574 0.712 1.141 0.447 0.190 1.203 0.554 0.705 0.936 0.288
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM CHARM	10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18 11.23 10.95 12.13 3: DESERT mean 10.53 11.01 10.83 9.84 9.30	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.95 0.88 1.01 1.15 0.72 0.36 TORTOISE sigma 0.87 1.62 1.97 1.48 1.13	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27 0.93 0.70 -0.35 -0.07 -1.24 (N=8) bias 0.00 -0.48 -0.30 0.69 1.23	1.00 1.46 2.39 1.103 2.08 42.16 1.27 1.73 1.73 2.49 2.37 1.19 6.40 vg 0 2.34 3.32 2.39 5.34	1.000 0.727 0.182 1.000 0.273 0.091 0.818 0.455 0.455 0.364 0.182 0.909 0.273 fa2 1.000 0.500 0.500 0.125	1.000 0.574 0.712 1.141 0.919 0.447 0.190 1.203 0.564 2.527 2.019 0.705 0.288 1.000 0.619 0.743
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM CHARM DEGADIS	10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18 11.23 10.95 12.13 3: DESERT mean 10.53 11.01 10.83 9.84 9.30 11.17	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.95 0.88 1.01 1.15 0.72 0.36 TORTOISE sigma 0.87 1.62 1.97 1.48 1.13	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27 0.93 0.70 -0.35 -0.07 -1.24 (N=8) bias 0.00 -0.48 -0.30 0.69 1.23 -0.65	1.00 1.46 2.39 1.103 2.08 42.16 1.27 1.73 3.32 2.49 2.37 1.19 6.40 vg 1.00 2.34 2.39 3.31 2.39 3.31	1.000 0.727 0.182 1.000 0.273 0.091 0.818 0.455 0.455 0.364 0.182 0.909 0.273 fa2 1.000 0.125 0.125 0.500	1.000 0.574 0.712 1.141 0.447 0.190 1.203 0.554 2.527 2.019 0.705 0.288 1.000 0.619 0.743 1.985 3.429 0.524
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS	mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18 11.23 10.95 12.13 3: DESERT mean 10.53 11.01 10.83 9.84 9.30 11.17 10.63	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.95 0.88 1.01 1.15 0.36 TORTOISE sigma 0.87 1.62 1.97 1.48 1.13 1.77 1.23	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27 0.93 0.70 -0.35 -0.07 -1.24 (N= 8) bias 0.00 -0.48 -0.30 0.69 1.23 -0.65 -0.10	1.00 1.46 2.30 1.03 2.08 42.16 1.72 1.38 3.32 2.49 7.16 40 90 12.34 2.39 12.39	1.000 0.727 0.182 1.000 0.273 0.091 0.818 0.455 0.455 0.364 0.182 0.273 fa2 1.000 0.125 0.500 0.125 0.500 0.125 0.500	1.000 0.574 0.712 1.141 0.919 0.447 0.190 1.2554 0.764 2.527 2.019 0.705 0.288 1.000 0.619 0.743 1.985 1.985 0.524 0.902
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM	mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18 11.23 10.95 12.13 3: DESERT mean 10.53 11.01 10.83 9.84 9.30 11.17 10.63 11.07	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.95 0.88 1.01 1.15 0.72 0.36 TORTOISE sigma 0.87 1.62 1.97 1.48 1.13 1.77 1.23 1.53	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27 0.93 0.70 -0.35 -0.07 -1.24 (N= 8) bias 0.00 -0.48 -0.30 0.69 1.23 -0.65 -0.10 -0.54	1.00 1.46 2.39 1.103 2.08 42.16 1.32 2.49 1.38 2.49 2.37 1.40 900 2.34 2.39 42.39 42.31 2.39 42.31 43.31 43.	1.000 0.727 0.182 1.000 0.273 0.091 0.818 0.455 0.455 0.364 0.182 0.273 1.000 0.125 0.500 0.125 0.500 0.125 0.500	1.000 0.574 0.712 1.141 0.919 0.447 0.1203 0.764 2.527 2.019 0.705 0.288 1.000 0.743 1.985 3.429 0.524 0.523
model OBS. AFTOX AIRTOX BEM CHARM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR	mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18 11.23 10.95 12.13 3: DESERT mean 10.53 11.01 10.83 9.84 9.30 11.17 10.63 11.07 10.59	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.95 0.88 1.01 1.15 0.72 0.36 TORTOISE sigma 0.87 1.62 1.97 1.48 1.13 1.77 1.23 1.53 1.35	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27 0.93 0.70 -0.35 -0.07 -1.24 (N= 8) bias 0.00 -0.48 -0.30 0.69 1.23 -0.65 -0.10 -0.54 -0.07	1.00 1.46 2.39 1.103 2.08 42.16 1.27 1.38 2.49 2.37 1.40 90 2.39 1.20 2.39 1.20 2.39	1.000 0.727 0.182 1.000 0.273 0.091 0.818 0.455 0.455 0.364 0.182 0.909 0.273 fa2 1.000 0.125 0.500 0.125 0.500 0.125 0.500 0.750	1.000 0.574 0.712 1.141 0.447 0.190 1.203 0.564 2.527 2.019 0.705 0.288 1.000 0.743 1.985 3.429 0.583 0.936
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM	10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18 11.23 10.95 12.13 3: DESERT mean 10.53 11.01 10.83 9.84 9.30 11.17 10.63 11.07 10.59 10.22	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.95 0.88 1.01 1.15 0.72 0.36 TORTOISE sigma 0.87 1.62 1.97 1.48 1.13 1.77 1.23 1.53 1.35	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27 0.93 0.70 -0.35 -0.07 -1.24 (N= 8) bias 0.00 -0.48 -0.30 0.69 1.23 -0.65 -0.10 -0.54 -0.07 0.30	1.00 1.46 2.39 1.103 2.08 42.16 1.27 1.38 2.49 2.37 1.19 0 2.39 1.20 2.39 1.20 2.39 1.20 2.39	1.000 0.727 0.182 1.000 0.273 0.091 0.818 0.455 0.364 0.182 0.909 0.273 fa2 1.000 0.502 0.500 0.125 0.500 0.125 0.500 0.750 1.000	1.000 0.574 0.712 1.141 0.447 0.190 1.203 0.554 0.527 2.019 0.705 0.288 1.000 0.6143 1.985 3.429 0.524 0.983 3.429 0.583 0.583 0.583 0.583 0.583 0.583 0.583 0.583 0.683
model OBS. AFTOX AIRTOX BEM CHARM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS	10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18 11.23 10.95 12.13 3: DESERT mean 10.53 11.01 10.83 9.84 9.30 11.17 10.63 11.07 10.59 10.22 10.43	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.95 0.88 1.01 1.15 0.72 0.36 TORTOISE sigma 0.87 1.62 1.97 1.48 1.13 1.77 1.23 1.53 1.53 1.35 1.14 1.63	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27 0.93 0.70 -0.35 -0.07 -1.24 (N= 8) bias 0.00 -0.48 -0.30 0.69 1.23 -0.65 -0.10 -0.54 -0.07 0.30 0.30 0.10	1.00 1.46 2.39 1.103 2.08 42.16 1.27 1.73 8.33 2.49 2.37 1.19 6.40 90 2.34 2.39 1.20 2.39 1.20 2.39 1.20 2.39 1.20 2.39 1.20 2.39 1.20 2.39 1.20 2.39 1.20 2.39 1.20 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39	1.000 0.727 0.182 1.000 0.273 0.091 0.818 0.455 0.364 0.182 0.909 0.273 fa2 1.000 0.500 0.500 0.125 0.500 0.125 0.500 0.750 0.750 0.750 0.500	1.000 0.574 0.712 1.141 0.447 0.190 1.203 0.554 0.554 0.288 1.000 0.619 1.985 0.936 0.935 0.935 1.102
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF	10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18 11.23 10.95 12.13 3: DESERT mean 10.53 11.01 10.83 9.84 9.30 11.17 10.63 11.07 10.59 10.22	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.95 0.88 1.01 1.15 0.72 0.36 TORTOISE sigma 0.87 1.62 1.97 1.48 1.13 1.77 1.23 1.53 1.35 1.14 1.63 1.83	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27 0.93 0.70 -0.35 -0.07 -1.24 (N= 8) bias 0.00 -0.48 -0.30 0.69 1.23 -0.65 -0.10 -0.54 -0.07 0.30 0.10 -0.36	1.00 1.46 2.39 1.03 42.16 1.72 1.38 42.16 1.32 2.43 7 1.32 2.43 7 1.33 2.43 7 1.33 2.34 7 1.33 2.34 7 1.33 2.34 7 1.33 2.34 7 1.23 2.34 7 1.23 2.34 7 1.23 2.34 7 1.23 2.34 7 1.23 1.23 7 1.23 1 1.23 1 1.23 1 1.23 1 1.23 1 1.23 1 1.23	1.000 0.727 0.182 1.000 0.273 0.091 0.818 0.636 0.455 0.364 0.182 0.273 fa2 0.500 0.125 0.500 0.125 0.500 0.125 0.500 0.125 0.500 0.250	1.000 0.574 0.712 1.141 0.919 0.447 0.190 0.764 2.527 0.936 0.288 1.000 0.619 0.743 1.982 0.583
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB	mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18 11.23 10.95 12.13 3: DESERT mean 10.53 11.01 10.83 9.84 9.30 11.17 10.63 11.07 10.59 10.22 10.43 10.89 10.65	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.95 0.88 1.01 1.15 0.36 TORTOISE sigma 0.87 1.62 1.97 1.48 1.13 1.77 1.23 1.53 1.35 1.14 1.63 1.83 0.77	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27 0.93 0.70 -0.35 -0.07 -1.24 (N- 8) bias 0.00 -1.65 -0.10 -0.54 -0.07 0.36 0.10 -0.36 0.47	1.00 1.46 2.39 1.038 42.16 1.32 2.43 1.33 2.43 1.33 2.43 1.33 2.43 1.33 2.33 2.33 2.33 2.33 2.33 2.33 2.3	1.000 0.727 0.182 1.000 0.273 0.091 0.818 0.455 0.455 0.364 0.1829 0.273 1.000 0.125 0.500 0.125 0.500 0.125 0.500 0.750 0.500 0.750 0.250	1.000 0.574 0.712 1.141 0.919 0.447 0.190 0.764 2.527 2.019 0.764 2.527 0.7936 0.288 mg00 0.619 0.743 1.985 0.524
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM CHARM CH	10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18 11.23 10.95 12.13 3: DESERT mean 10.53 11.01 10.83 9.84 9.30 11.17 10.63 11.07 10.59 10.22 10.43 10.89 10.06	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.95 0.88 1.01 1.15 0.72 0.36 TORTOISE sigma 0.87 1.62 1.97 1.48 1.13 1.77 1.23 1.53 1.35 1.14 1.63 1.83	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27 0.93 0.70 -0.35 -0.07 -1.24 (N= 8) bias 0.00 -0.48 -0.30 0.69 1.23 -0.65 -0.10 -0.54 -0.07 0.30 0.10 -0.36	1.00 1.46 2.39 1.03 42.16 1.72 1.38 42.16 1.32 2.43 7 10.34 1.20 9.34 1.20 9.34 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	1.000 0.727 0.182 1.000 0.273 0.091 0.818 0.636 0.455 0.364 0.182 0.273 fa2 0.500 0.125 0.500 0.125 0.500 0.125 0.500 0.125 0.500 0.250	1.000 0.574 0.712 1.141 0.919 0.447 0.190 0.764 2.527 0.936 0.288 1.000 0.619 0.743 1.982 0.583

Block	4: GOLDFIS	SH	(N= 8)			
model	mean	sigma	bias	VQ	fa2	mg
OBS.	8.11	1.66	0.00	1.00		1.000
AFTOX					1.000	
	7.05	1.50	1.06	4.44	0.500	2.897
AIRTOX	6.30	1.74	1.81	31.25	0.000	6.112
Bem	7.06	1.79	1.06	3.30	0.125	2.884
CHARM	6.19	1.20	1.92	64.75	0.000	6.855
DEGADIS	7.52	1.53	0.59	1.55	0.500	1.812
FOCUS	7.56	2.18	0.56	1.95		
GPM	6.70		0.36		0.500	1.750
		1.50	1.42	8.48	0.000	4.135
GASTAR	7.75	1.73	0.37	1.23	0.875	1.447
HEGADAS	7.75	1.19	0.36	1.51	0.750	1.440
INPUFF	6.72	1.58	1.40	7.65	0.000	4.044
OBDG	6.98	1.70	1.13	4.46	0.125	3.097
PHAST	7.31	2.20	0.81	2.77		
SLAB	7.30	1.53			0.500	2.239
			0.82	2.08	0.500	2.268
TRACE	7.31	1.52	0.80	2.05	0.375	2.226
Block	5: MAPLIN	SANDS, LNG	(N=17)			
model	mean	sigma	bias	٧g	fa2	mg
OBS.	10.66	0.88	0.00	1.00	1.000	1.000
AFTOX	10.37	1.06				
			0.29	1.27	0.824	1.331
AIRTOX	8.53	1.54	2.13	244.60	0.118	8.396
Bem	10.22	1.09	0.44	1.47	0.706	1.554
CHARM	10.49	1.29	0.17	1.51	0.765	1.185
DEGADIS	10.86	0.94	-0.21	1.16	0.941	0.814
FOCUS	12.13	1.29	-1.47	22.67	0.176	
GPM	9.96	1.02				0.230
			0.70	1.89	0.471	2.021
GASTAR	10.73	0.85	-0.07	1.11	1.000	0.929
HEGADAS	10.35	1.14	0.30	1.67	0.765	1.357
INPUFF	9.36	1.02	1.30	6.30	0.059	3,677
OBDG	9.50	1.33	1.16	6.05	0.235	3.198
PHAST	9.99	1.39	0.67	2.43	0.353	1.950
SLAB	9.90	1.16	0.75			
TRACE				2.72	0.412	2.126
Trusco	11.48	0.64	-0.82	2.79	0.471	0.441
71	C. 1000000					
Block		SANDS, LPG	(N= 44)			
model	6: MAPLIN	SANDS, LPG sigma	(N- 44) bias	Va	fa2	ma
	mean	sigma	bias	v g 1.00	fa2	mg 1 000
model OBS.	mean 10.34	sigma 0.87	bias 0.00	1.00	1.000	1.000
model OBS. AFTOX	mean 10.34 9.89	sigma 0.87 1.21	bias 0.00 0.45	1.00 1.66	1.000	1.000 1.575
model OBS. AFTOX AIRTOX	mean 10.34 9.89 8.58	sigma 0.87 1.21 1.49	bias 0.00 0.45 1.76	1.00 1.66 48.56	1.000 0.614 0.136	1.000 1.575 5.825
model OBS. AFTOX AIRTOX B&M	mean 10.34 9.89 8.58 10.49	sigma 0.87 1.21 1.49 1.15	bias 0.00 0.45 1.76 -0.15	1.00 1.66 48.56 1.36	1.000 0.614 0.136 0.795	1.000 1.575
model OBS. AFTOX AIRTOX BEM CHARM	mean 10.34 9.89 8.58 10.49 9.96	sigma 0.87 1.21 1.49 1.15 1.28	bias 0.00 0.45 1.76	1.00 1.66 48.56	1.000 0.614 0.136 0.795 0.659	1.000 1.575 5.825
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS	mean 10.34 9.89 8.58 10.49 9.96 10.56	sigma 0.87 1.21 1.49 1.15	bias 0.00 0.45 1.76 -0.15	1.00 1.66 48.56 1.36	1.000 0.614 0.136 0.795 0.659	1.000 1.575 5.825 0.857 1.460
model OBS. AFTOX AIRTOX BEM CHARM	mean 10.34 9.89 8.58 10.49 9.96	sigma 0.87 1.21 1.49 1.15 1.28	bias 0.00 0.45 1.76 -0.15 0.38 -0.22	1.00 1.66 48.56 1.36 2.02 1.54	1.000 0.614 0.136 0.795 0.659 0.795	1.000 1.575 5.825 0.857 1.460 0.806
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59	sigma 0.87 1.21 1.49 1.15 1.28 1.31	bias 0.00 0.45 1.76 -0.15 0.38 -0.22	1.00 1.66 48.56 1.36 2.02 1.54 4.34	1.000 0.614 0.136 0.795 0.659 0.795 0.477	1.000 1.575 5.825 0.857 1.460 0.806 0.780
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.54	1.000 0.614 0.136 0.795 0.659 0.795 0.477 0.364	1.000 1.575 5.825 0.857 1.460 0.806 0.780 2.233
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.54	1.000 0.614 0.136 0.795 0.659 0.795 0.477 0.364 0.818	1.000 1.575 5.825 0.857 1.460 0.806 0.780 2.233 0.892
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.54 1.50	1.000 0.614 0.136 0.795 0.659 0.795 0.477 0.364 0.818 0.773	1.000 1.575 5.825 0.857 1.460 0.806 0.780 2.233 0.892 0.785
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.58 8.89	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06 1.27	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45	1.00 1.66 48.56 2.02 1.54 4.34 2.54 1.50 10.72	1.000 0.614 0.136 0.795 0.659 0.795 0.477 0.364 0.773 0.091	1.000 1.575 5.825 0.857 1.460 0.806 0.780 2.233 0.785 4.254
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.58 8.89 9.15	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06 1.27 1.17	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.54 1.50	1.000 0.614 0.136 0.795 0.659 0.795 0.477 0.364 0.818 0.773	1.000 1.575 5.825 0.857 1.460 0.806 0.780 2.233 0.892 0.785
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.58 8.89 9.15 10.46	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06 1.27	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45	1.00 1.66 48.56 2.02 1.54 4.34 2.54 1.50 10.72	1.000 0.614 0.136 0.795 0.795 0.477 0.364 0.818 0.791	1.000 1.575 5.825 0.857 1.460 0.806 0.780 2.233 0.892 0.785 4.254 3.297
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.58 8.89 9.15	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06 1.27 1.17	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.54 1.21 1.50 10.72 7.30	1.000 0.614 0.136 0.795 0.659 0.795 0.477 0.364 0.818 0.773 0.091 0.205 0.636	1.000 1.575 5.825 0.857 1.460 0.806 0.780 2.233 0.892 0.785 4.254 3.297 0.888
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.58 8.89 9.15 10.46 9.82	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.06 1.27 1.17 1.38 1.35 0.88	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.54 1.50 10.72 7.30 1.64	1.000 0.614 0.136 0.795 0.659 0.795 0.477 0.364 0.818 0.773 0.091 0.205 0.636 0.727	1.000 1.575 5.825 0.857 1.460 0.780 2.233 0.892 0.785 4.254 3.297 0.888 1.688
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.58 8.89 9.15 10.46	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06 1.27 1.17	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.54 1.21 1.50 10.72 7.30	1.000 0.614 0.136 0.795 0.659 0.795 0.477 0.364 0.818 0.773 0.091 0.205 0.636	1.000 1.575 5.825 0.857 1.460 0.806 0.780 2.233 0.892 0.785 4.254 3.297 0.888
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM HEGADAS INPUFF OBDG PHAST SLAB TRACE	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.58 8.89 9.15 10.46 9.82 9.84	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06 1.27 1.17 1.38 1.35 0.88	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.50	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.54 1.50 10.72 7.30 1.64	1.000 0.614 0.136 0.795 0.659 0.795 0.477 0.364 0.818 0.773 0.091 0.205 0.636 0.727	1.000 1.575 5.825 0.857 1.460 0.780 2.233 0.892 0.785 4.254 3.297 0.888 1.688
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.58 8.89 9.15 10.46 9.82 9.84	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06 1.27 1.17 1.38 1.35 0.88 0.83	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.50 (N= 15)	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.54 1.50 10.72 7.30 1.64	1.000 0.614 0.136 0.795 0.795 0.477 0.364 0.818 0.091 0.205 0.636 0.727 0.636	1.000 1.575 5.825 0.857 1.460 0.780 2.233 0.892 0.785 4.254 3.297 0.888 1.688
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.45 10.45 10.45 9.82 9.84 7: THORNEY	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06 1.27 1.17 1.38 1.35 0.88 0.83 ISLAND sigma	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.50	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.54 1.50 10.72 7.30 1.64	1.000 0.614 0.136 0.795 0.659 0.795 0.477 0.364 0.818 0.773 0.091 0.205 0.636 0.727	1.000 1.575 5.825 0.857 1.460 0.780 2.233 0.892 0.795 4.254 3.297 0.888 1.688 1.651
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS.	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.45 10.46 9.82 9.82 9.84 7: THORNEY mean 10.04	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06 1.27 1.17 1.38 1.35 0.88 0.83	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.50 (N= 15) bias	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.54 1.21 7.30 10.72 7.30 1.80 2.47	1.000 0.614 0.136 0.795 0.659 0.795 0.477 0.364 0.818 0.791 0.205 0.636 0.727 0.636	1.000 1.575 5.825 0.857 1.460 0.806 0.780 2.233 0.892 0.785 4.254 3.297 0.888 1.688 1.651
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.45 10.46 9.82 9.82 9.84 7: THORNEY mean 10.04	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06 1.27 1.17 1.38 0.88 0.83 ISLAND sigma 1.46	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.50 (N= 15) bias 0.00	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.54 1.21 1.50 10.72 7.30 1.64 1.80 2.47	1.000 0.614 0.136 0.795 0.795 0.477 0.364 0.818 0.773 0.091 0.205 0.636 0.727 0.636	1.000 1.575 5.825 0.857 1.460 0.806 0.780 2.233 0.892 0.785 4.254 3.297 0.888 1.651
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.58 8.89 9.15 10.46 9.82 9.84 7: THORNEY mean 10.04 9.76	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06 1.27 1.17 1.38 1.35 0.88 0.83 ISLAND sigma 1.46 1.31	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.52 0.50 (N= 15) bias 0.00 0.29	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.54 1.50 10.72 7.30 1.64 1.80 2.47	1.000 0.614 0.136 0.795 0.659 0.795 0.477 0.364 0.773 0.091 0.205 0.636 0.727 0.636	1.000 1.575 5.825 0.857 1.460 0.806 0.780 2.233 0.785 4.254 3.297 0.888 1.651
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.58 8.89 9.15 10.46 9.82 9.82 9.84 7: THORNEY mean 10.04 9.76 9.32	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06 1.27 1.17 1.38 1.35 0.88 0.88 0.83 ISLAND sigma 1.46 1.31 1.28	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.52 0.50 (N= 15) bias 0.029 0.72	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.54 1.50 10.72 7.30 1.64 1.80 2.47	1.000 0.614 0.136 0.795 0.659 0.795 0.477 0.364 0.818 0.091 0.205 0.636 0.727 0.636	1.000 1.575 5.825 0.857 1.460 0.806 0.780 2.233 0.785 4.254 3.297 0.888 1.651
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.56 10.58 8.89 9.15 10.46 9.82 9.84 7: THORNEY mean 10.04 9.76 9.32 10.21	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06 1.27 1.17 1.38 1.35 0.88 0.83 ISLAND sigma 1.46 1.31 1.28 1.41	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.50 (N= 15) bias 0.00 0.29 0.72 -0.17	1.00 1.66 48.56 2.02 1.54 4.34 2.54 1.21 1.50 10.72 7.30 1.64 1.80 2.47	1.000 0.614 0.136 0.795 0.795 0.477 0.364 0.818 0.773 0.091 0.205 0.636 0.727 0.636	1.000 1.575 5.825 0.857 1.460 0.780 2.233 0.892 0.785 4.254 3.297 0.888 1.651 mg 1.000 1.331 2.360 0.843
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM CHARM	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.45 10.46 9.82 9.84 7: THORNEY mean 10.04 9.76 9.32 10.21 9.28	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06 1.27 1.17 1.38 1.35 0.83 ISLAND sigma 1.46 1.31 1.28 1.31	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.50 (N= 15) bias 0.00 0.29 0.72 -0.17 0.76	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.54 1.25 7.30 1.64 1.80 2.47	1.000 0.614 0.136 0.795 0.795 0.477 0.364 0.818 0.091 0.205 0.636 0.727 0.636	1.000 1.575 5.825 0.857 1.460 0.806 0.780 2.233 0.785 4.254 3.297 0.888 1.651
model OBS. AFTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM CHARM DEGADIS	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.45 10.46 9.82 9.84 7: THORNEY mean 10.04 9.76 9.32 10.21 9.28 10.50	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06 1.27 1.17 1.38 0.88 0.83 ISLAND sigma 1.46 1.31 1.28 1.44 0.85 1.53	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.50 (N= 15) bias 0.00 0.29 0.72 -0.17	1.00 1.66 48.56 2.02 1.54 4.34 2.54 1.21 1.50 10.72 7.30 1.64 1.80 2.47	1.000 0.614 0.136 0.795 0.795 0.477 0.364 0.818 0.773 0.091 0.205 0.636 0.727 0.636	1.000 1.575 5.825 0.857 1.460 0.780 2.233 0.892 0.785 4.254 3.297 0.888 1.688 1.651
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM CHARM	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.45 10.46 9.82 9.84 7: THORNEY mean 10.04 9.76 9.32 10.21 9.28	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06 1.27 1.17 1.38 1.35 0.83 ISLAND sigma 1.46 1.31 1.28 1.31	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.50 (N= 15) bias 0.00 0.29 0.72 -0.17 0.76	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.54 1.21 7.30 1.80 2.47	1.000 0.614 0.136 0.795 0.795 0.477 0.364 0.818 0.791 0.205 0.636 0.727 0.636 1.000 0.467 1.000 0.400 0.733	1.000 1.575 5.825 0.857 10.806 0.780 2.233 0.892 0.785 4.254 3.297 0.888 1.651 1.000 1.331 2.060 0.843 2.137 0.629
model OBS. AFTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM CHARM DEGADIS	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.58 8.89 9.15 10.46 9.82 9.84 7: THORNEY mean 10.04 9.76 9.32 10.21 9.28 10.50 10.72	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.06 1.27 1.17 1.38 1.35 0.88 0.83 ISLAND sigma 1.46 1.31 1.28 1.46 1.31 1.28 1.31	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.52 0.50 (N= 15) bias 0.00 0.29 0.72 -0.17 0.76 -0.46 -0.67	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.54 1.50 10.72 7.30 1.64 1.07 2.47	1.000 0.614 0.136 0.795 0.795 0.477 0.364 0.773 0.091 0.205 0.636 0.727 0.636 fa2 1.000 0.467 1.000 0.467 1.000 0.733 0.733	1.000 1.575 5.825 0.857 1.460 0.806 0.780 2.233 0.785 4.254 3.297 0.888 1.651 mg 1.000 1.331 2.060 0.843 2.137 0.509
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.58 8.89 9.15 10.46 9.82 9.84 7: THORNEY mean 10.04 9.76 9.32 10.21 9.28 10.50 10.72 10.37	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.106 1.27 1.17 1.38 1.35 0.88 0.83 ISLAND sigma 1.46 1.31 1.28 1.44 0.85 1.53 1.28 1.44 0.85	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.52 0.50 (N= 15) bias 0.00 0.29 0.72 -0.17 0.76 -0.46 -0.67 -0.32	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.54 1.50 10.72 7.30 1.64 1.80 2.47	1.000 0.614 0.136 0.795 0.795 0.477 0.364 0.773 0.091 0.205 0.636 0.636 1.000 0.467 1.000 0.733 0.733 0.733	1.000 1.575 5.825 0.857 1.460 0.806 0.780 2.233 0.785 4.254 3.297 0.888 1.651 1.651
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.58 8.89 9.15 10.46 9.82 9.84 7: THORNEY mean 10.04 9.76 9.32 10.21 9.28 10.50 10.72 10.37 10.16	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.17 1.38 1.35 0.88 0.88 1.35	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.50 (N= 15) bias 0.00 0.29 0.72 -0.17 0.76 -0.46 -0.46 -0.32 -0.12	1.00 1.66 48.56 2.32 1.54 4.34 2.54 1.21 1.27 7.30 1.64 1.87 1.08 1.92 1.78 1.76 1.77 1.14	1.000 0.614 0.136 0.795 0.659 0.795 0.477 0.364 0.818 0.773 0.091 0.205 0.636 0.727 0.636 fa2 1.000 0.467 1.000 0.467 1.000 0.733 0.733 0.733 0.867	1.000 1.575 5.825 0.857 1.460 0.780 2.233 0.785 4.254 3.297 0.888 1.651 mg 1.000 1.3060 0.843 2.137 0.629 0.509 0.509 0.723 0.884
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.45 10.46 9.82 9.84 7: THORNEY mean 10.04 9.76 9.32 10.21 9.28 10.50 10.72 10.37 10.16 10.04	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06 1.27 1.17 1.38 1.35 0.83 ISLAND sigma 1.46 1.31 1.28 1.44 0.85 1.28 1.44 0.85 1.28 1.28 1.31	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.50 (N= 15) bias 0.00 0.29 0.72 -0.17 0.76 -0.46 -0.67 -0.32 -0.12 0.00	1.00 1.66 48.56 2.02 1.54 4.34 2.54 1.21 1.50 10.72 7.30 1.64 1.80 2.47 1.08 6.68 1.07 3.80 1.78 1.76 1.72	1.000 0.614 0.136 0.795 0.659 0.795 0.477 0.364 0.818 0.091 0.205 0.636 0.727 0.636 fa2 1.000 0.400 0.733 0.733 0.733 0.733 0.867 0.933	1.000 1.575 5.825 0.857 1.460 0.780 2.233 0.892 0.785 4.254 3.297 0.888 1.651 mg 1.000 1.3360 0.843 2.137 0.629 0.509 0.509 0.723 0.884 1.001
model OBS. AFTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.58 8.89 9.15 10.46 9.82 9.84 7: THORNEY mean 10.04 9.76 9.32 10.21 9.28 10.50 10.72 10.37 10.16 10.04 9.77	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.06 1.27 1.38 0.88 0.83 ISLAND sigma 1.46 1.31 1.24 0.85 1.28 1.44 0.85 1.28 1.45 1.31	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.50 (N= 15) bias 0.00 0.29 0.72 -0.17 0.76 -0.46 -0.67 -0.32 -0.00 0.27	1.00 1.66 48.56 1.32 1.54 4.34 2.54 1.20 10.72 7.30 1.80 1.18 1.78 1.78 1.78 1.78 1.78	1.000 0.614 0.136 0.795 0.659 0.795 0.477 0.364 0.818 0.773 0.091 0.205 0.636 0.727 0.636 fa2 1.000 0.467 1.000 0.467 1.000 0.733 0.733 0.733 0.867	1.000 1.575 5.825 0.857 1.460 0.780 2.233 0.785 4.254 3.297 0.888 1.651 mg 1.000 1.3060 0.843 2.137 0.629 0.509 0.509 0.723 0.884
model OBS. AFTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG	mean 10.34 9.89 9.96 10.56 10.59 9.54 10.45 10.58 8.89 9.15 10.46 9.82 9.84 7: THORNEY mean 10.04 9.76 9.32 10.21 9.28 10.50 10.72 10.37 10.16 10.04 9.77 8.43	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.06 1.27 1.138 1.35 0.88 0.83 ISLAND sigma 1.46 1.31 1.28 1.44 0.85 1.28 1.28 1.28 1.31	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.50 (N= 15) bias 0.00 0.29 0.72 -0.17 0.76 -0.46 -0.67 -0.32 -0.12 0.00	1.00 1.66 48.56 2.02 1.54 4.34 2.54 1.21 1.50 10.72 7.30 1.64 1.80 2.47 1.08 6.68 1.07 3.80 1.78 1.76 1.72	1.000 0.614 0.136 0.795 0.659 0.795 0.477 0.364 0.818 0.091 0.205 0.636 0.727 0.636 fa2 1.000 0.400 0.733 0.733 0.733 0.733 0.867 0.933	1.000 1.575 5.825 0.857 1.460 0.780 2.233 0.892 0.785 4.254 3.297 0.888 1.688 1.651 mg 1.000 1.331 2.0629 0.509 0.723 0.843 2.137 0.629 0.723 0.843 1.001 1.306
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.58 8.89 9.15 10.46 9.82 9.84 7: THORNEY mean 10.04 9.76 9.32 10.21 9.28 10.50 10.72 10.37 10.16 10.04 9.77	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.06 1.27 1.38 0.88 0.83 ISLAND sigma 1.46 1.31 1.24 0.85 1.28 1.44 0.85 1.28 1.45 1.31	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.50 (N= 15) bias 0.00 0.29 0.72 -0.17 0.76 -0.46 -0.67 -0.32 -0.00 0.27	1.00 1.66 48.56 1.36 2.02 1.54 4.34 1.50 10.72 7.30 1.64 1.18 6.68 1.07 3.80 1.78 1.76 1.123 1.70 14.07	1.000 0.614 0.136 0.795 0.795 0.477 0.364 0.773 0.091 0.205 0.636 0.727 0.636 1.000 0.467 1.000 0.467 1.000 0.733 0.733 0.733 0.733 0.733 0.933 0.933 0.900	1.000 1.575 5.825 0.857 1.460 0.806 0.233 0.785 4.254 3.297 0.888 1.651 mg 1.000 1.331 2.060 0.843 2.1629 0.723 0.884 1.0000 1.0000 1.00
model OBS. AFTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG	mean 10.34 9.89 9.96 10.56 10.59 9.54 10.45 10.58 8.89 9.15 10.46 9.82 9.84 7: THORNEY mean 10.04 9.76 9.32 10.21 9.28 10.50 10.72 10.37 10.16 10.04 9.77 8.43	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.06 1.27 1.17 1.38 1.35 0.83 ISLAND sigma 1.44 0.85 1.28 1.44 0.85 1.28 1.44 1.28 1.44 1.53 1.28 1.44 1.53 1.28 1.28 1.31 1.28 1.31 1.28 1.31 1.28 1.31 1.28 1.31 1.28 1.31 1.28 1.31 1.28 1.31 1.28 1.31 1.28 1.31 1.28 1.31 1.28 1.31 1.28 1.31 1.28 1.31 1.31 1.28 1.31 1.31 1.32 1.31 1.32 1.33 1.34 1.35 1.36 1.31 1.31 1.32 1.34 1.35 1.36 1.36 1.37 1.37 1.38	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.52 0.50 (N= 15) bias 0.00 0.29 0.72 -0.17 0.76 -0.46 -0.67 -0.32 -0.12 0.00 0.27 1.61 -0.99	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.54 1.50 10.72 7.30 1.64 1.00 1.18 6.68 1.07 3.80 1.76 1.76 1.76 1.77 1.70	1.000 0.614 0.136 0.795 0.795 0.477 0.3648 0.773 0.091 0.205 0.636 0.636 1.000 0.467 1.000 0.733 0.733 0.733 0.733 0.933	1.000 1.575 5.825 71.460 0.806 0.780 2.233 0.785 4.254 3.297 0.888 1.651 1.031 2.060 0.843 2.137 0.629 0.723 0.844 1.001 1.301 0.843 2.137 0.843
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST	mean 10.34 9.89 9.96 10.56 10.59 9.54 10.45 10.58 8.89 9.15 10.46 9.82 9.84 7: THORNEY mean 10.04 9.76 9.32 10.21 9.28 10.50 10.72 10.37 10.16 10.04 9.77 8.43 11.03	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.06 1.27 1.138 1.35 0.88 0.83 ISLAND sigma 1.46 1.31 1.28 1.44 0.85 1.28 1.28 1.28 1.31	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.50 (N= 15) bias 0.00 0.29 0.72 -0.17 0.76 -0.46 -0.67 -0.32 -0.12 0.00 0.27 1.61	1.00 1.66 48.56 1.36 2.02 1.54 4.34 1.50 10.72 7.30 1.64 1.18 6.68 1.07 3.80 1.78 1.76 1.123 1.70 14.07	1.000 0.614 0.136 0.795 0.795 0.477 0.364 0.773 0.091 0.205 0.636 0.727 0.636 1.000 0.467 1.000 0.467 1.000 0.733 0.733 0.733 0.733 0.733 0.933 0.933 0.900	1.000 1.575 5.825 0.857 1.460 0.806 0.233 0.785 4.254 3.297 0.888 1.651 mg 1.000 1.331 2.060 0.843 2.1629 0.723 0.884 1.0000 1.0000 1.00

THE PERFORMANCE MEASURES FOR THE PREDICTED CONCENTRATIONS FOR THE CONTINUOUS DENSE GAS RELEASES (BURRO, COYOTE, DESERT TORTOISE, GOLDFISH, MAPLIN SANDS, AND THORNEY ISLAND), INCLUDING ALL DOWNWIND DISTANCES. THE LONGEST AVAILABLE AVERAGING TIME WAS USED.

311 abaa	rvations.		(N= 124)			
wrr opse	mean	sigma	bìas	44	£a2	mg
obs.	10.25	1.20	0.00	1.00	1,000	1.000
AFTOX	10.32	1.69	-0.07	2.44	0.540	0.931
AIRTOX	9.48	2.13	0.78	22.77	0.202	2.172
BAM	10.36	1.62	-0.10	1.81	0.645	0.900
CHARM DEGADIS	10.05 10.83	1.71	0.21 -0.58	2.93 2.92	0.492 0.589	1.230 0.560
FOCUS	11.18	1.66 1.99	-0.93	13.60	0.387	0.396
GPM	9.87	1.55	0.38	2.11	0.556	1.464
GASTAR	10.61	1.41	-0.35	1.72	0.694	0.703
HEGADAS	10.59	1.60	-0.34	2.07	0.637	0.714
INPUFF	9.46	1.57	0.79	4.08	0.355	2.201
OBDG	9.54	1.82	0.71	5.04	0.298 0.476	2.044 0.724
PHAST SLAB	10.58 10.08	1.72 1.41	~0.32 0.17	2.78 1.93	0.581	1.187
TRACE	10.00	1.47	-0.22	3.53	0.516	0.806
200.00	20.5.		V-12	*****		
Block	1: BURRO		(N= 21)			
model	mean	sigma	bias	٧g	fa2	mg
OBS.	10.88	0.77	0.00	1.00	1.000	1.000
AFTOX AIRTOX	12.08 12.02	0.95 0.83	-1.20 -1.13	6.27 4.86	0.143	0.322
BAM	11.53	1.47	-0.65	4.06	0.238	0.521
CHARM	11.68	1.12	-0.79	2.80	0.381	0.452
DEGADIS	12.30	1.03	-1.42	10.92	0.143	0.242
FOCUS	12.90	1.20	-2.02	111.47	0.095	0.133
GPM	11.10	1.07	-0.22	1.55	0.857	0.802
GASTAR	11.76	0.70	~0.88	2.98	0.333	0.416
HEGADAS INPUFF	12.11 10.97	1.09 1.06	-1.23 -0.09	6.89 1.49	0.190 0.810	0.292 0.914
OBDG	11.30	1.32	-0.42	2.29	0.524	0.657
PHAST	12.06	1.08	~1.18	6.58	0.333	0.307
SLAB	11.40	0.91	-0.52	1.97	0.571	0.594
			^ ^=			A 41A
TRACE	11.75	0.60	~0.87	2.89	0.429	0.418
		0.60			0.429	0.418
Block	2: COYOTE		(N= 11)	•		
		0.60 sigma 0.82			fa2	mg 1.000
Block model OBS. AFTOX	2: COYOTE mean 9.98 11.41	sigma 0.82 0.68	(N= 11) blas 0.00 -1.43	vg 1.00 8.29	fa2 1.000 0.000	mg 1.000 0.240
Block model OBS. AFTOX AIRTOX	2: COYOTE mean 9.98 11.41 11.23	sigma 0.82 0.68 1.10	(N= 11) bias 0.00 -1.43 -1.25	vg 1.00 8.29 7.05	fa2 1.000 0.000 0.273	mg 1.000 0.240 0.287
Block model OBS. AFTOX AIRTOX B&M	2: COYOTE mean 9.98 11.41 11.23 10.75	sigma 0.82 0.68 1.10 0.71	(N= 11) bias 0.00 -1.43 -1.25 -0.78	vg 1.00 8.29 7.05 2.40	fa2 1.000 0.000 0.273 0.545	mg 1.000 0.240 0.287 0.460
Block model OBS. AFTOX AIRTOX B&M CHARM	2: COYOTE mean 9.98 11.41 11.23 10.75 10.97	sigma 0.82 0.68 1.10 0.71 0.62	(N= 11) bias 0.00 -1.43 -1.25 -0.78 -0.99	vg 1.00 8.29 7.05 2.40 3.24	fa2 1.000 0.000 0.273 0.545 0.364	mg 1.000 0.240 0.287 0.460 0.371
Block model OBS. AFTOX AIRTOX B&M CHARM DEGADIS	2: COYOTE mean 9.98 11.41 11.23 10.75 10.97 11.70	sigma 0.82 0.68 1.10 0.71 0.62 0.60	(N= 11) bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72	1.00 8.29 7.05 2.40 3.24 21.27	fa2 1.000 0.000 0.273 0.545 0.364 0.000	mg 1.000 0.240 0.287 0.460 0.371 0.179
Block model OBS. AFTOX AIRTOX B&M CHARM	2: COYOTE mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49	sigma 0.82 0.68 1.10 0.71 0.62 0.60 1.12	(N= 11) bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51	vg 1.00 8.29 7.05 2.40 3.24	fa2 1.000 0.000 0.273 0.545 0.364	mg 1.000 0.240 0.287 0.460 0.371
Block model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS	2: COYOTE mean 9.98 11.41 11.23 10.75 10.97 11.70	sigma 0.82 0.68 1.10 0.71 0.62 0.60	(N= 11) bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72	1.00 8.29 7.05 2.40 3.24 21.27 3661.70 1.09	fa2 1.000 0.000 0.273 0.545 0.364 0.000 0.091 1.000 0.000	mg 1.000 0.240 0.287 0.460 0.371 0.179 0.081 0.928 0.219
Block model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM	2: COYOTE mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15	sigma 0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95	(N= 11) blas 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18	1.00 8.29 7.05 2.40 3.24 21.27 3661.70 1.09 11.58 4.33	fa2 1.000 0.000 0.273 0.545 0.364 0.000 0.091 1.000 0.000	mg 1.000 0.240 0.287 0.460 0.371 0.179 0.081 0.928 0.219 0.308
Block model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF	2: COYOTE mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93	sigma 0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87	(N= 11) blas 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05	1.00 8.29 7.05 2.40 3.24 21.27 3661.70 1.09 11.58 4.33	fa2 1.000 0.000 0.273 0.545 0.364 0.000 0.091 1.000 0.000 0.000	mg 1.000 0.240 0.287 0.460 0.371 0.179 0.081 0.928 0.219 0.219 1.053
Block model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG	2: COYOTE mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18	sigma 0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95	(N= 11) blas 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21	1.00 8.29 7.05 2.40 3.24 21.27 3661.70 1.09 11.58 4.33 1.14	fa2 1.000 0.000 0.273 0.545 0.364 0.080 0.091 1.000 0.000 0.000	mg 1.000 0.240 0.287 0.460 0.371 0.179 0.081 0.928 0.219 0.308 1.053 0.814
Block model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST	2: COYOTE mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23	sigma 0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01	(N= 11) blas 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26	1.00 8.29 7.05 2.40 3.24 21.27 3661.70 1.09 11.58 4.33 1.14 1.23 6.76	fa2 1.000 0.000 0.273 0.545 0.364 0.000 0.091 1.000 0.000 0.000 0.727 0.182	mg 1.000 0.240 0.287 0.460 0.371 0.179 0.928 0.219 0.308 1.053 0.814 0.284
Block model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB	2: COYOTE mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23 10.87	sigma 0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01 1.15 0.75	(N= 11) bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26 -0.89	1.00 8-29 7.05 2.40 3.24 21.27 3661.70 1.58 4.33 1.14 1.23 6.76 2.32	fa2 1.000 0.000 0.273 0.545 0.364 0.000 1.000 0.000 1.000 0.727 0.182	mg 1.000 0.240 0.287 0.460 0.371 0.179 0.928 0.219 0.308 1.053 0.814 0.284 0.411
Block model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE	2: COYOTE mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23 10.87 12.13	sigma 0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01 1.15 0.75	(N= 11) blas 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26 -0.89 -2.15	1.00 8.29 7.05 2.40 3.24 21.27 3661.70 1.09 11.58 4.33 1.14 1.23 6.76 2.32 208.97	fa2 1.000 0.000 0.273 0.545 0.364 0.000 0.091 1.000 0.000 0.000 0.727 0.182	mg 1.000 0.240 0.287 0.460 0.371 0.179 0.928 0.219 0.308 1.053 0.814 0.284
Block model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE	2: COYOTE mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23 10.87 12.13 3: DESERT	sigma 0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01 1.15 0.75 0.36	(N= 11) blas 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26 -0.89 -2.15	1.00 8.29 7.05 2.40 3.24 21.27 3661.70 1.09 11.58 4.33 1.14 1.23 6.76 2.32 208.97	fa2 1.000 0.000 0.273 0.545 0.364 0.000 0.091 1.000 0.000 0.727 0.182 0.000	mg 1.000 0.240 0.287 0.460 0.371 0.179 0.081 0.928 0.219 0.308 1.053 0.814 0.284 0.411 0.116
Block model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model	2: COYOTE mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23 10.87 12.13 3: DESERT	sigma 0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01 1.15 0.75 0.36 TORTOISE sigma	(N= 11) blas 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26 -0.89 -2.15 (N= 8) bias	1.00 8.29 7.05 2.40 3.24 21.27 3661.70 1.09 11.58 4.33 1.14 1.23 6.76 2.32 208.97	fa2 1.000 0.000 0.273 0.545 0.364 0.000 0.091 1.000 0.000 0.727 0.182 0.182 0.000	mg 1.000 0.240 0.287 0.460 0.371 0.179 0.928 0.219 0.308 1.053 0.814 0.284 0.411 0.116
Block model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS.	2: COYOTE mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23 10.87 12.13 3: DESERT mean 10.16	sigma 0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01 1.15 0.75 0.36 TORTOISE sigma 0.96	(N= 11) bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26 -0.89 -2.15 (N= 8) bias 0.00	1.00 8.29 7.05 2.40 3.24 21.27 3661.70 1.09 11.58 4.33 1.14 1.23 6.76 2.32 208.97	fa2 1.000 0.000 0.273 0.545 0.364 0.000 0.000 0.000 0.727 0.182 0.182 0.000	mg 1.000 0.240 0.287 0.460 0.371 0.179 0.928 0.219 0.308 1.053 0.814 0.411 0.116
Block model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX	2: COYOTE mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23 10.87 12.13 3: DESERT mean 10.16 10.86	sigma 0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01 1.15 0.75 0.36 TORTOISE sigma 0.96 1.64	(N= 11) bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26 -0.89 -2.15 (N= 8) bias 0.00 -0.70	1.00 8.29 7.05 2.40 3.24 21.27 3661.70 11.58 4.33 1.14 1.23 6.76 2.32 208.97	fa2 1.000 0.000 0.273 0.545 0.364 0.000 0.000 1.000 0.727 0.182 0.182 0.000	mg 1.000 0.240 0.287 0.460 0.371 0.179 0.928 0.219 0.308 1.053 0.814 0.284 0.411 0.116
Block model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX	2: COYOTE mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23 10.87 12.13 3: DESERT mean 10.16 10.86 10.83	sigma 0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01 1.15 0.75 0.36 TORTOISE sigma 0.96	(N= 11) bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26 -0.89 -2.15 (N= 8) bias 0.00	1.00 8.29 7.05 2.40 3.24 21.27 3661.70 1.09 11.58 4.33 1.14 1.23 6.76 2.32 208.97	fa2 1.000 0.000 0.273 0.545 0.364 0.000 0.000 0.000 0.727 0.182 0.182 0.000	mg 1.000 0.240 0.287 0.460 0.371 0.179 0.928 0.219 0.308 1.053 0.814 0.411 0.116
Block model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX	2: COYOTE mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23 10.87 12.13 3: DESERT mean 10.16 10.86	sigma 0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01 1.15 0.75 0.36 TORTOISE sigma 0.96 1.64 1.97	(N= 11) bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26 -0.89 -2.15 (N= 8) bias 0.00 -0.70 -0.66	1.00 8-29 7.05 2.40 3.24 21.27 3661.70 1.58 4.33 1.14 1.23 6.76 2.78 208.97	fa2 1.000 0.000 0.273 0.545 0.364 0.000 0.091 1.000 0.000 0.727 0.182 0.000 fa2 1.000 0.375 0.750 0.125	mg 1.000 0.240 0.287 0.460 0.371 0.179 0.928 0.219 0.308 1.053 0.814 0.284 0.284 0.216
Block model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX B4M	2: COYOTE mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23 10.87 12.13 3: DESERT mean 10.16 10.86 10.83 9.84 9.30 11.17	sigma 0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01 1.15 0.75 0.36 TORTOISE sigma 0.96 1.64 1.97 1.48 1.13 1.77	(N= 11) blas 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26 -0.89 -2.15 (N= 8) blas 0.00 -0.70 -0.66 0.32 0.87 -1.01	1.00 8.29 7.05 2.40 3.24 21.27 3661.70 11.58 4.33 1.14 2.32 208.97 1.00 4.77 1.55 2.86	fa2 1.000 0.000 0.273 0.545 0.364 0.000 0.000 0.000 0.727 0.182 0.000 fa2 1.000 0.500 0.375 0.750 0.125	mg 1.000 0.240 0.287 0.460 0.371 0.179 0.928 0.219 0.308 1.053 0.284 0.411 0.116 mg 1.000 0.497 0.517 1.381 2.384 0.364
Block model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS	2: COYOTE mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23 10.87 12.13 3: DESERT mean 10.16 10.86 10.83 9.84 9.30 11.17 10.60	sigma 0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01 1.15 0.75 0.36 TORTOISE sigma 0.96 1.64 1.97 1.48 1.13 1.77 1.27	(N= 11) blas 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26 -0.89 -2.15 (N= 8) blas 0.00 -0.70 -0.66 0.32 0.87 -1.01 -0.43	1.00 8.29 7.05 2.40 3.24 21.27 3661.70 11.58 4.33 1.14 1.23 6.76 2.32 208.97 1.00 1.55 2.74 4.77 1.55 2.74 4.75 1.55	fa2 1.000 0.000 0.273 0.545 0.364 0.000 1.000 0.000 1.000 0.727 0.182 0.000 fa2 1.000 0.500 0.375 0.750 0.500 0.750	mg 1.000 0.240 0.287 0.460 0.371 0.179 0.928 0.219 0.308 1.053 0.814 0.411 0.116 mg 1.000 0.497 0.517 1.381 2.384 0.364 0.649
Block model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM	2: COYOTE mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23 10.87 12.13 3: DESERT mean 10.16 10.86 10.83 9.84 9.30 11.17 10.60 10.30	sigma 0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01 1.15 0.75 0.36 TORTOISE sigma 0.96 1.64 1.97 1.48 1.13 1.77 1.48 1.13 1.77 1.67	(N= 11) bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26 -0.89 -2.15 (N= 8) bias 0.00 -0.70 -0.66 0.32 0.87 -1.01 -0.43 -0.13	1.00 8.29 7.05 2.40 3.24 21.27 3661.70 11.58 4.33 1.123 6.32 208.97 1.55 2.74 4.77 1.55 5.86 1.42 1.85	fa2 1.000 0.273 0.545 0.364 0.000 0.091 1.000 0.000 1.000 0.727 0.182 0.000 fa2 1.000 0.500 0.375 0.750 0.125 0.750 0.625	1.000 0.240 0.287 0.460 0.371 0.179 0.928 0.219 0.308 1.053 0.814 0.284 0.411 0.116
Block model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM GASTAR	2: COYOTE mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23 10.87 12.13 3: DESERT mean 10.16 10.86 10.83 9.84 9.30 11.17 10.60 10.30 10.59	sigma 0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01 1.15 0.75 0.36 TORTOISE sigma 0.96 1.64 1.97 1.48 1.13 1.77 1.27 1.67 1.35	(N= 11) blas 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26 -0.89 -2.15 (N= 8) blas 0.00 -0.70 -0.66 0.32 0.87 -1.01 -0.43 -0.43	1.00 8.29 7.05 2.40 3.24 21.70 1.59 11.58 4.33 1.14 1.23 6.76 2.32 208.97 1.00 2.74 4.77 1.55 2.45 5.86 1.45 1.85	fa2 1.000 0.273 0.545 0.364 0.090 0.000 0.000 0.727 0.182 0.182 0.000 fa22 1.000 0.375 0.750 0.125 0.750 0.625 0.750	1.000 0.240 0.287 0.460 0.371 0.081 0.928 0.219 0.308 1.053 0.814 0.411 0.116 mg 1.000 0.497 0.517 1.381 2.384 0.3649 0.649 0.651
Block model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM CHARM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS	2: COYOTE mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23 10.87 12.13 3: DESERT mean 10.16 10.83 9.84 9.30 11.17 10.60 10.30 10.59 10.22	sigma 0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01 1.15 0.75 0.36 TORTOISE sigma 0.96 1.64 1.97 1.48 1.13 1.77 1.27 1.67 1.35 1.14	(N= 11) blas 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26 -0.89 -2.15 (N= 8) blas 0.00 -0.70 -0.66 0.32 0.87 -1.01 -0.43 -0.43 -0.06	1.00 8.29 7.05 2.40 31.27 3661.70 11.58 4.33 11.14 11.23 6.76 2.32 208.97 1.75 1.55 1.45 1.45 1.85 1.09	fa2 1.000 0.000 0.273 0.545 0.364 0.000 0.091 1.000 0.000 0.727 0.182 0.182 0.000 fa2 1.000 0.375 0.125 0.500 0.750 0.125 0.750 0.750 0.750 1.000	1.000 0.240 0.287 0.460 0.371 0.179 0.308 1.053 0.814 0.411 0.116 1.000 0.497 0.517 1.381 2.384 0.364 0.649 0.877 0.651
Block model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF	2: COYOTE mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23 10.87 12.13 3: DESERT mean 10.16 10.86 10.83 9.84 9.30 11.17 10.60 10.30 10.59 10.22 10.40	sigma 0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01 1.15 0.75 0.36 TORTOISE sigma 0.96 1.64 1.97 1.48 1.13 1.77 1.27 1.62	(N= 11) blas 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26 -0.89 -2.15 (N= 8) blas 0.00 -0.70 -0.66 0.32 0.87 -1.01 -0.43 -0.13 -0.43 -0.06 -0.24	1.00 8.29 7.05 2.40 3.24 21.27 3661.27 31.123 6.76 2.32 208.97 1.00 4.77 1.55 2.86 1.42 1.85 1.59 1.78	fa2 1.000 0.000 0.273 0.545 0.364 0.000 0.000 0.000 0.727 0.182 0.000 fa2 1.000 0.375 0.750 0.750 0.750 0.625 0.625	1.000 0.240 0.287 0.460 0.371 0.179 0.928 0.219 0.308 1.053 0.814 0.411 0.116 1.000 0.497 0.517 1.384 0.364 0.649 0.877 0.942 0.788
Block model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM CHARM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS	2: COYOTE mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23 10.87 12.13 3: DESERT mean 10.16 10.83 9.84 9.30 11.17 10.60 10.30 10.59 10.22	sigma 0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01 1.15 0.75 0.36 TORTOISE sigma 0.96 1.64 1.97 1.48 1.13 1.77 1.27 1.67 1.35 1.14	(N= 11) blas 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26 -0.89 -2.15 (N= 8) blas 0.00 -0.70 -0.66 0.32 0.87 -1.01 -0.43 -0.43 -0.06	1.00 8.29 7.05 2.40 31.27 3661.70 11.58 4.33 11.14 11.23 6.76 2.32 208.97 1.75 1.55 1.45 1.45 1.85 1.09	fa2 1.000 0.000 0.273 0.545 0.364 0.000 0.091 1.000 0.000 0.727 0.182 0.182 0.000 fa2 1.000 0.375 0.125 0.500 0.750 0.125 0.750 0.750 0.750 1.000	1.000 0.240 0.287 0.460 0.371 0.179 0.308 1.053 0.814 0.411 0.116 1.000 0.497 0.517 1.381 2.384 0.364 0.649 0.877 0.651
Block model OBS. AFTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG	2: COYOTE mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23 10.87 12.13 3: DESERT mean 10.16 10.86 10.83 9.84 9.30 11.17 10.60 10.30 10.59 10.22 10.40 10.89	sigma 0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01 1.15 0.75 0.36 TORTOISE sigma 0.96 1.64 1.97 1.48 1.17 1.27 1.67 1.35 1.14 1.62 1.83	(N= 11) blas 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26 -0.89 -2.15 (N= 8) blas 0.00 -0.70 -0.66 0.32 0.87 -1.01 -0.43 -0.13 -0.43 -0.24 -0.72	1.00 87.05 2.40 31.27 3661.27 3661.27 31.123 6.33 1.123 6.32 208.97 1.755 2.897 1.755 1.078 1.078 1.078 1.078 1.078	fa2 1.000 0.000 0.273 0.545 0.364 0.000 0.000 0.000 0.727 0.182 0.000 0.727 0.182 0.000 0.727 0.182 0.000 0.750 0.750 0.750 0.750 0.625 0.750 0.625	1.000 0.240 0.287 0.460 0.371 0.179 0.928 0.219 0.308 1.053 0.814 0.411 0.116 mg 1.000 0.497 0.517 1.384 0.364 0.649 0.657 0.651 0.788 0.788

Block	4: GOLDFI		(N- 8)	•		
model OBS.	mean 8.11	sigma 1.66	bias	, vg	fa2	mg
AFTOX	7.05	1.50	0.00 1.06	1.00	1.000	1.000
AIRTOX	6.30	1.74	1.81	31.25	0.000	6.112
Bem	7.06	1.79	1.06	3.30	0.125	2.884
CHARM	6.19	1.20	1.92	64.75	0.000	6.855
DEGADIS		1.53	0.59	1.55	0.500	1.812
Focus GPM	7.56 6.70	2.18	0.56	1.95	0.500	1.750
GASTAR	7.75	1.50 1.73	1.42 0.37	8.48	0.000	4.135
HEGADAS	7.75	1.19	0.36	1.23	0.875	1.447
INPUFF	6.72	1.58	1.40	7.65	0.000	4.044
OBDG	6.98	1.70	1.13	4.46	0.125	3.097
PHAST	7.31	2.20	0.81	2.77	0.500	2.239
SLAB TRACE	7.30	1.53	0.82	2.08	0.500	2.268
1100CE	7.31	1.52	0.80	2.05	0.375	2.226
Block	5: MAPLIN	SANDS, LNG	(N= 17)			
model	mean	sigma	bias	٧g	fa2	mg
OBS.	10.66	0.88	0.00	1.00	1.000	1.000
AFTOX	10.37	1.06	0.29	1.27	0.824	1.331
AIRTOX B&M	8.53	1.54	2.13	244.60	0.118	8.396
CHARM	10.22 10.49	1.09 1.29	0.44 0.17	1.47	0.706	1.554
DEGADIS	10.86	0.94	-0.21	1.51	0.765 0.941	1.185 0.814
FOCUS	12.13	1.29	-1.47	22.67	0.176	0.230
GPM	9.96	1.02	0.70	1.89	0.471	2.021
GASTAR	10.73	0.85	-0.07	1.11	1.000	0.929
HEGADAS	10.35	1.14	0.30	1.67	0.765	1.357
INPUFF OBDG	9.36 9.50	1.02	1.30	6.30	0.059	3.677
PHAST	9.99	1.33 1.39	1.16 0.67	6.05	0.235	3.198
SLAB	9.90	1.16	0.75	2.43 2.72	0.353 0.412	1.950 2.126
TRACE	11.48	0.64	-0.82	2,79	0.471	0.441
B 3	6. MOTT 711					
Block		SANDS, LPG	(N= 44)		4-0	
model	mean	sigma	bias	. vg	fa2	mg
		sigma 0.87	bias 0.00	1.00	1.000	1.000
model OBS. AFTOX AIRTOX	mean 10.34	sigma	bias	1.00 1.66	1.000	1.000
model OBS. AFTOX AIRTOX B&M	mean 10.34 9.89 8.58 10.49	sigma 0.87 1.21 1.49 1.15	bias 0.00 0.45 1.76 -0.15	1.00	1.000	1.000
model OBS. AFTOX AIRTOX B&M CHARM	mean 10.34 9.89 8.58 10.49 9.96	sigma 0.87 1.21 1.49 1.15 1.28	bias 0.00 0.45 1.76 -0.15 0.38	1.00 1.66 48.56 1.36 2.02	1.000 0.614 0.136 0.795 0.659	1.000 1.575 5.825 0.857 1.460
model OBS. AFTOX AIRTOX B4M CHARM DEGADIS	mean 10.34 9.89 8.58 10.49 9.96 10.56	sigma 0.87 1.21 1.49 1.15 1.28 1.31	bias 0.00 0.45 1.76 -0.15 0.38 -0.22	1.00 1.66 48.56 1.36 2.02 1.54	1.000 0.614 0.136 0.795 0.659 0.795	1.000 1.575 5.825 0.857 1.460 0.806
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS	mean 10.34 9.89 8.58 10.49 9.96 10.56	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25	1.00 1.66 48.56 1.36 2.02 1.54 4.34	1.000 0.614 0.136 0.795 0.659 0.795 0.477	1.000 1.575 5.825 0.857 1.460 0.806 0.780
model OBS. AFTOX AIRTOX B4M CHARM DEGADIS	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.54	1.000 0.614 0.136 0.795 0.659 0.795 0.477 0.364	1.000 1.575 5.825 0.857 1.460 0.806 0.780 2.233
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS	mean 10.34 9.89 8.58 10.49 9.96 10.56	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.54 1.21	1.000 0.614 0.136 0.795 0.659 0.795 0.477 0.364 0.818	1.000 1.575 5.825 0.857 1.460 0.806 0.780 2.233 0.892
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.58 8.89	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06 1.27	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.54 1.21	1.000 0.614 0.136 0.795 0.659 0.795 0.477 0.364	1.000 1.575 5.825 0.857 1.460 0.806 0.780 2.233
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.58 8.89 9.15	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06 1.27 1.17	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.54 1.21 1.50 10.72 7.30	1.000 0.614 0.136 0.795 0.659 0.795 0.477 0.364 0.818 0.773 0.091	1.000 1.575 5.825 0.857 1.460 0.780 2.233 0.892 0.785 4.254 3.297
model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.45	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06 1.27 1.17 1.38 1.35	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.54 1.21 1.50 10.72 7.30 1.64	1.000 0.614 0.136 0.795 0.795 0.477 0.364 0.818 0.773 0.091 0.205 0.636	1.000 1.575 5.825 0.857 1.460 0.780 2.233 0.892 0.785 4.254 3.297 0.888
model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.58 8.89 9.15 10.46 9.82	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06 1.27 1.17 1.38 1.35 0.88	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52	1.00 1.66 48.56 2.02 1.54 4.34 2.54 1.21 1.50 10.72 7.30 1.64 1.80	1.000 0.614 0.136 0.795 0.659 0.795 0.477 0.364 0.818 0.773 0.091 0.205 0.636 0.727	1.000 1.575 5.825 0.857 1.460 0.780 2.233 0.892 0.785 4.254 3.297 0.888 1.688
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GFM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.58 8.89 9.15 10.46 9.82	3.1 ma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06 1.27 1.17 1.38 1.35 0.88 0.83	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.54 1.21 1.50 10.72 7.30 1.64	1.000 0.614 0.136 0.795 0.795 0.477 0.364 0.818 0.773 0.091 0.205 0.636	1.000 1.575 5.825 0.857 1.460 0.780 2.233 0.892 0.785 4.254 3.297 0.888
model OBS. AFTOX AIRTOX BAM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.58 8.89 9.15 10.46 9.82 9.84 7: THORNEY	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06 1.27 1.17 1.38 1.35 0.88	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52	1.00 1.66 48.56 2.02 1.54 4.34 2.54 1.21 1.50 10.72 7.30 1.64 1.80	1.000 0.614 0.136 0.795 0.659 0.795 0.477 0.364 0.818 0.773 0.091 0.205 0.636 0.727	1.000 1.575 5.825 0.857 1.460 0.780 2.233 0.892 0.785 4.254 3.297 0.888 1.688
model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.58 8.89 9.15 10.46 9.82 9.84 7: THORNEY	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06 1.27 1.17 1.38 1.35 0.88 0.83	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.50 (N= 15) bias	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.54 1.21 1.50 10.72 7.30 1.64 1.80 2.47	1.000 0.614 0.136 0.795 0.795 0.477 0.364 0.818 0.773 0.091 0.205 0.636 0.727 0.636	1.000 1.575 5.825 0.857 1.460 0.780 2.233 0.892 0.785 4.254 3.297 0.888 1.688
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS.	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.58 8.89 9.15 10.46 9.82 9.84 7: THORNEY mean 10.04	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06 1.27 1.17 1.38 0.88 0.83 ISLAND sigma 1.46	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.50 (N= 15) bias 0.00	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.54 1.21 1.50 10.72 7.30 1.64 1.80 2.47	1.000 0.614 0.136 0.795 0.795 0.477 0.364 0.818 0.773 0.091 0.205 0.636 0.727 0.636	1.000 1.575 5.825 0.857 1.460 0.780 2.233 0.892 0.785 4.254 4.254 4.254 1.688 1.651
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.58 8.89 9.15 10.46 9.82 9.84 7: THORNEY mean 10.04 9.76	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06 1.27 1.17 1.38 1.35 0.88 0.83 ISLAND sigma 1.46 1.31	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.50 (N= 15) bias 0.00 0.29	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.54 1.50 10.72 7.30 1.64 1.80 2.47	1.000 0.614 0.136 0.795 0.795 0.477 0.364 0.818 0.091 0.205 0.636 0.636	1.000 1.575 5.857 1.460 0.806 0.780 0.892 0.785 4.254 3.297 0.888 1.651
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.58 8.89 9.15 10.46 9.82 9.84 7: THORNEY mean 10.04 9.76 9.32	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06 1.27 1.17 1.38 1.35 0.83 ISLAND sigma 1.46 1.31 1.28	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.50 (N= 15) bias 0.00 0.29 0.72	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.54 1.50 10.72 7.30 1.64 1.80 2.47	1.000 0.614 0.136 0.795 0.477 0.364 0.818 0.091 0.205 0.636 0.727 0.636	1.000 1.575 5.857 1.460 0.806 0.780 2.233 0.892 0.785 4.254 3.297 0.888 1.651
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.58 8.89 9.15 10.46 9.82 9.84 7: THORNEY mean 10.04 9.76	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06 1.27 1.17 1.38 1.35 0.83 ISLAND sigma 1.46 1.31 1.46 1.31	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.50 (N= 15) bias 0.00 0.29 0.72 -0.17	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.54 1.50 10.72 7.30 1.64 1.80 2.47	1.000 0.614 0.136 0.795 0.659 0.795 0.477 0.364 0.818 0.091 0.205 0.636 0.727 0.636	1.000 1.575 5.825 0.857 1.460 0.780 2.233 0.892 4.254 3.297 0.888 1.651 mg 1.000 1.331 2.3360 0.843
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX B&M	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.58 8.89 9.15 10.46 9.82 9.84 7: THORNEY mean 10.04 9.76 9.32 10.21	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06 1.27 1.17 1.38 1.35 0.83 ISLAND sigma 1.46 1.31 1.28	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.50 (N= 15) bias 0.00 0.29 0.72	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.54 1.21 10.72 7.30 1.64 1.80 2.47	1.000 0.614 0.136 0.795 0.795 0.477 0.364 0.818 0.791 0.205 0.636 0.727 0.636	1.000 1.575 5.825 0.857 1.460 0.780 2.233 0.892 0.785 4.254 3.297 0.888 1.651 mg 1.000 1.331 2.000 1.331 2.000 1.331 2.000 1.331
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.58 8.89 9.15 10.46 9.82 9.84 7: THORNEY mean 10.04 9.76 9.32 10.21 9.28 10.50 10.72	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.106 1.27 1.17 1.38 1.35 0.88 0.83 ISLAND sigma 1.44 0.85 1.28 1.44 0.85 1.28	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.50 (N= 15) bias 0.00 0.29 0.72 -0.17 0.76	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.52 1.50 10.72 7.30 1.68 1.07 3.80 2.47	1.000 0.614 0.136 0.795 0.659 0.795 0.477 0.364 0.818 0.091 0.205 0.636 0.727 0.636	1.000 1.575 5.825 0.857 1.460 0.780 2.233 0.892 4.254 3.297 0.888 1.651 mg 1.000 1.331 2.3360 0.843
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.58 8.89 9.15 10.46 9.82 9.84 7: THORNEY mean 10.04 9.76 9.32 10.21 9.28 10.50 10.72 10.37	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06 1.27 1.17 1.38 1.35 0.88 0.83 ISLAND sigma 1.46 1.31 1.28 1.44 0.85 1.53 1.28 1.44 1.28	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.50 (N= 15) bias 0.00 0.29 0.72 -0.46 -0.67 -0.32	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.51 1.50 10.72 7.30 1.64 1.80 2.47 Vg 1.08 1.08 1.07 3.80 1.78	1.000 0.614 0.136 0.795 0.477 0.364 0.818 0.091 0.205 0.636 0.727 0.636 £m2 1.000 0.467 1.000 0.467 1.000 0.733 0.733	1.000 1.575 5.825 0.857 1.460 0.780 2.233 0.892 0.785 4.254 3.297 0.888 1.651 mg 1.000 1.331 2.060 0.843 2.137 0.629
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.58 8.89 9.15 10.46 9.82 9.84 7: THORNEY mean 10.04 9.76 9.32 10.21 9.28 10.50 10.72 10.37 10.16	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06 1.27 1.17 1.38 1.35 0.83 ISLAND sigma 1.46 1.31 1.28 1.44 0.85 1.53 1.28 1.44 0.85 1.53	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.50 (N= 15) bias 0.00 0.29 0.72 -0.17 0.76 -0.46 -0.67 -0.32 -0.12	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.51 1.50 10.72 7.30 1.64 1.80 2.47 90 1.18 1.07 3.80 1.76 1.76 1.76	1.000 0.614 0.136 0.795 0.659 0.795 0.477 0.364 0.818 0.773 0.091 0.205 0.636 0.727 0.636 fa2 1.000 0.467 1.000 0.733 0.733 0.733 0.867	1.000 1.575 5.825 0.857 1.460 0.780 2.233 0.892 4.254 3.297 0.888 1.651 1.000 1.3060 0.843 2.137 0.629 0.723 0.884
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.58 8.89 9.15 10.46 9.82 9.84 7: THORNEY mean 10.04 9.76 9.32 10.21 9.28 10.50 10.72 10.37 10.16 10.04	sigma 0.87 1.21 1.49 1.31 1.65 1.19 1.067 1.17 1.38 1.35 0.83 ISLAND sigma 1.46 1.31 1.28 1.44 0.85 1.53 1.28 1.44 1.28 1.44 1.28 1.44	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.50 (N= 15) bias 0.00 0.29 0.72 -0.17 0.76 -0.46 -0.67 -0.32 -0.12 0.00	1.00 1.66 48.56 1.36 21.54 4.34 2.54 1.50 10.72 7.30 1.64 1.80 2.47 90 1.18 1.07 1.18 1.78 1.78 1.78 1.78 1.78	1.000 0.614 0.136 0.795 0.659 0.795 0.477 0.364 0.818 0.091 0.205 0.636 0.727 0.636 0.727 0.636	1.000 1.575 5.825 0.857 1.460 0.780 2.233 0.892 4.254 3.297 0.888 1.651 mg 1.000 1.3360 0.843 2.137 0.629 0.509 0.788 4.001
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF	10.34 9.89 8.58 10.49 9.96 10.59 9.54 10.45 10.58 8.89 9.15 10.46 9.82 9.84 7: THORNEY mean 10.04 9.76 9.32 10.21 9.28 10.50 10.72 10.37 10.16 10.04 9.77	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.106 1.27 1.17 1.38 0.88 0.83 ISLAND sigma 1.46 1.28 1.44 0.85 1.28 1.44 0.85 1.28 1.44 1.53 1.28 1.44 1.53 1.28 1.44 1.53 1.28 1.44 1.53 1.28 1.44 1.53 1.28 1.44 1.53 1.28 1.44 1.53 1.53 1.16 1.28 1.17 1.31 1.28 1.44 1.53 1.16 1.28 1.17	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.52 0.50 (N= 15) bias 0.00 0.29 0.72 -0.17 0.76 -0.46 -0.67 -0.32 -0.12 0.00 0.27	1.00 1.66 48.56 1.36 21.54 4.34 2.54 1.50 10.72 7.30 1.64 1.80 2.47 99 1.18 1.78 1.78 1.78 1.74 1.23 1.70	1.000 0.614 0.136 0.795 0.795 0.477 0.364 0.818 0.791 0.205 0.636 0.727 0.636 1.000 0.400 0.733 0.733 0.733 0.733 0.867	1.000 1.575 5.825 0.856 0.780 2.233 0.892 0.785 4.254 3.297 0.888 1.651 1.000 1.336 0.843 2.137 0.629 0.728 0.843 2.137 0.843
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS	10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.58 8.89 9.15 10.46 9.82 9.84 7: THORNEY mean 10.04 9.76 9.32 10.21 9.28 10.50 10.72 10.37 10.16 10.04 9.77 8.43	sigma 0.87 1.21 1.49 1.31 1.65 1.106 1.27 1.17 1.38 1.38 0.83 ISLAND sigma 1.44 0.85 1.28 1.28 1.28 1.28 1.28 1.28 1.31 1.28 1.31 1.35 1.35 1.37 1.37 1.38 1.31 1.35 1.37 1.38 1.31 1.35 1.37 1.38 1.31 1.32 1.33 1.34 1.35 1.35 1.35 1.35 1.36 1.37 1.38 1.38 1.31 1.32 1.33 1.31 1.32 1.33 1.34 1.35 1.31 1.32 1.33 1.31 1.32 1.33 1.34 1.31 1.32 1.33 1.34 1.35 1.36 1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.31 1.32 1.33 1.34 1.35 1.35 1.36 1.37 1.37 1.38 1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.37 1.38 1.38 1.31 1.32 1.34 1.35 1.36 1.37 1.37 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.37 1.37 1.38 1.37 1.38 1.37 1.38 1.38 1.37	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.50 (N= 15) bias 0.00 0.29 0.72 -0.17 0.76 -0.46 -0.67 -0.32 -0.12 0.00 0.27 1.61	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.52 1.50 10.72 7.30 1.68 1.07 3.80 1.18 6.68 1.07 3.80 1.76 1.14 1.23 1.70 1.14	1.000 0.614 0.136 0.795 0.795 0.477 0.364 0.818 0.091 0.205 0.636 0.636 2 1.000 0.467 1.000 0.467 1.000 0.733 0.73	1.000 1.575 5.857 1.460 0.806 0.783 0.785 4.254 3.297 0.888 1.651 1.331 2.060 0.843 2.137 0.509 0.723 0.884 1.006 5.019
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG	10.34 9.89 8.58 10.49 9.96 10.59 9.54 10.45 10.58 8.89 9.15 10.46 9.82 9.84 7: THORNEY mean 10.04 9.76 9.32 10.21 9.28 10.50 10.72 10.37 10.16 10.04 9.77	sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.27 1.17 1.38 1.38 0.83 ISLAND sigma 1.44 0.85 1.28 1.44 0.85 1.28 1.44 1.28 1.44 1.55 1.17 1.28 1.44 1.55 1.17 1.28 1.44 1.55 1.17 1.28 1.44 1.55 1.17 1.28 1.44 1.55 1.17 1.17 1.28 1.44 1.55 1.17 1.28 1.44 1.55 1.17 1.17 1.28 1.44 1.55 1.17 1.17 1.28 1.44 1.55 1.17	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.50 (N= 15) bias 0.00 0.29 0.72 -0.17 0.76 -0.46 -0.67 -0.32 -0.12 0.00 0.27 1.61 -0.99	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.52 1.50 10.72 7.30 1.64 1.80 2.47 Vg00 1.18 6.68 1.07 3.80 1.76 1.14 1.23 1.70 1.38 1.70 1.38	1.000 0.614 0.136 0.795 0.477 0.364 0.818 0.091 0.205 0.636 1.000 0.467 1.000 0.467 1.000 0.733 0.733 0.733 0.867 0.933 0.	1.000 1.575 5.857 1.460 0.806 0.780 0.892 0.785 4.254 3.297 0.888 1.651 1.000 0.843 2.1329 0.723 0.843 2.1329 0.723 0.884 1.001 1.3060 0.723 0.884 1.001 0.843 0.723
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX B&M CHARM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST	mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.58 8.89 9.15 10.46 9.82 9.84 7: THORNEY mean 10.04 9.76 9.32 10.21 9.28 10.50 10.72 10.37 10.16 10.04 9.77 8.43 11.03	sigma 0.87 1.21 1.49 1.31 1.65 1.106 1.27 1.17 1.38 1.38 0.83 ISLAND sigma 1.44 0.85 1.28 1.28 1.28 1.28 1.28 1.28 1.31 1.28 1.31 1.35 1.35 1.37 1.37 1.38 1.31 1.35 1.37 1.38 1.31 1.35 1.37 1.38 1.31 1.32 1.33 1.34 1.35 1.35 1.35 1.35 1.36 1.37 1.38 1.38 1.31 1.32 1.33 1.31 1.32 1.33 1.34 1.35 1.31 1.32 1.33 1.31 1.32 1.33 1.34 1.31 1.32 1.33 1.34 1.35 1.36 1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.31 1.32 1.33 1.34 1.35 1.35 1.36 1.37 1.37 1.38 1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.37 1.38 1.38 1.31 1.32 1.34 1.35 1.36 1.37 1.37 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.37 1.37 1.38 1.37 1.38 1.37 1.38 1.38 1.37	bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.50 (N= 15) bias 0.00 0.29 0.72 -0.17 0.76 -0.46 -0.67 -0.32 -0.12 0.00 0.27 1.61	1.00 1.66 48.56 1.36 2.02 1.54 4.34 2.52 1.50 10.72 7.30 1.68 1.07 3.80 1.18 6.68 1.07 3.80 1.76 1.14 1.23 1.70 1.14	1.000 0.614 0.136 0.795 0.795 0.477 0.364 0.818 0.091 0.205 0.636 0.636 2 1.000 0.467 1.000 0.467 1.000 0.733 0.73	1.000 1.575 5.857 1.460 0.806 0.783 0.785 4.254 3.297 0.888 1.651 1.331 2.060 0.843 2.137 0.509 0.723 0.884 1.006 5.019

THE PERFORMANCE MEASURES FOR THE PREDICTED CONCENTRATIONS FOR THE INSTANTANEOUS DENSE GAS RELEASE (THORNEY ISLAND), INCLUDING ALL DOWNWIND DISTANCES.

THORNEY	ISLAND		(N= 61)			
model	mean	sigma	bias	VŒ	fa2	mg
OBS.	10.08	1.14	0.00	1.00	1.000	1.000
AFTOX	11.86	1.08	-1.78	36.83	0.033	0.169
AIRTOX	10.14	1.37	-0.06	1.23	0.869	0.944
Bem	10.34	1.20	-0.26	1.20	0.934	0.772
CHARM	9.42	1.13	0.67	2.45	0.541	
DEGADIS	10.34	1.75	-0.26	11.22		1.948
FOCUS	10.89	1.19	-0.81		0.344	0.771
GASTAR	9.53	1.06		2.29	0.410	0.445
INPUFF	11.20		0.55	1.66	0.557	1.736
		1.24	-1.12	4.16	0.180	0.327
PHAST	10.53	0.97	-0.45	1.58	0.770	0.637
SLAB	9.40	1.26	0.68	2.33	0.689	1.979
TRACE	10.77	1.53	-0.69	2.92	0.459	0 502

THE PERFORMANCE MEASURES FOR THE PREDICTED CONCENTRATIONS FOR THE CONTINUOUS DENSE GAS RELEASES (BURRO, COYOTE, DESERT TORTOISE, GOLDFISH, MAPLIN SANDS, AND THORNEY ISLAND), FOR DOWNWIND DISTANCES ≥ 200M ONLY. THE SHORTEST AVAILABLE AVERAGING TIME WAS USED.

-	
_	7

All obs			/N 501			
model	ervations, mean	sigma	(N= 58) bias	1000	4-2	
OBS.	9.48	1.08	0.00	1.00	fa2	1.000
AFTOX	9.16	1.48	0.33	2.03	0.569	1.389
AIRTOX	8.22	1.92	1.26	36.35	0.155	3.543
BeM	9.02	1.24	0.46	1.79	0.603	1.591
CHARM	8.78	1.50	0.70	3.70	0.517	2.013
DEGADIS		1.39	-0.08	1.57	0.690	0.924
FOCUS GPM	9.93 8.92	1.85	-0.45	4.38	0.534	0.640
GASTAR	9.56	1.44 1.29	0.56	3.01	0.379	1.752
HEGADAS		1.22	-0.07 0.15	1.29 1.45	0.810	0.929
INPUFF	8.37	1.30	1.11	6.85	0.190	1.162 3.047
OBDG	8.16	1.31	1.32	8.52	0.172	3.744
PHAST	9.30	1.53	0.19	2.52	0.431	1.208
SLAB	9.09	1.23	0.39	1.65	0.724	1.483
TRACE	9.78	1.60	-0.30	2.49	0.534	0.743
Block	1: BURRO		(N= 5)			
model	mean	sigma	bias	Ad	fa2	
OBS.	10.23	0.41	0.00	1.00	1.000	mg 1.000
AFTOX	11.16	0.70	-0.94	3.85	0.200	0.392
AIRTOX	11.01	0.86	-0.79	3.54	0.400	0.455
B&M	9.22	0.70	1.00	3.23	0.200	2.725
CHARM	9.95	0.78	0.28	1.52	0.600	1.319
DEGADIS		0.68	-0.51	1.59	0.800	0.600
FOCUS	10.89	0.81	-0.66	1.93	0.800	0.518
GPM GASTAR	10.67	0.83	-0.45	2.17	0.600	0.639
HEGADAS	10.68 10.75	0.40 0.68	-0.45	1.27	1.000	0.639
INPUFF	9.98	0.86	-0.52 0.25	1.69 1.89	0.800	0.592
OBDG	9.41	0.61	0.82	2.18	0.400	1.282 2.273
PHAST	10.56	0.67	-0.34	1.34	0.800	0.714
SLAB	10.20	0.49	0.03	1.10	1.000	1.031
TRACE	11.02	0.52	-0.80	2.10	0.400	0.452
Block	2: COYOTE		(N= 8)			
model	mean	sigma	bias	۷g	fa2	mq
OBS.	10.59	0.51	0.00	1.00	1.000	1.000
AFTOX	11.17	0.56	-0.57	1.50	0.625	0.564
AIRTOX	10.91	1.11	-0.32	2.85	0.000	0.729
Bem	10.41	0.50	0.18	1.13	1.000	1.200
CHARM	10.69	0.47	-0.10	1.03	1.000	0.909
DEGADIS FOCUS	11.43 12.32	0.47	-0.83	2.20	0.250	0.435
GPM	10.44	1.08 0.67	-1.73	70.27	0.125	0.178
GASTAR	11.28	0.49	0.15 -0.69	1.27 1.91	0.750	1.163
HEGADAS	10.81	0.87	-0.22	1.41	0.375 0.625	0.502 0.802
INPUFF	9.68	0.80	0.91	3.27	0.500	2.487
OBDG	9.85	0.90	0.74	2.60	0.375	2.096
PHAST	10.89	1.11	-0.29	2.57	0.125	0.747
SLAB	10.71	0.66	-0.11	1.22	0.875	0.893
TRACE	12.05	0.32	-1.45	10.14	0.125	0.234
Block	3: DESERT	TORTOISE	(N= 4)			
model	mean	sigma	bias	٧g	fa2	mg
OBS.	9.68	0.24	0.00	1.00	1.000	1.000
AFTOX	9.44	0.52	0.24	1.18	1.000	1.276
AIRTOX	8.92	0.74	0.76	2.32	0.250	2.138
BeM	8.42	0.54	1.27	5.51	0.000	3.554
CHARM	8.24	0.46	1.44	8.80	0.000	4.239
DEGADIS FOCUS	9.43	0.32	0.26	1.08	1.000	1.295
GPM	9.41 9.60	0.16	0.28	1.11	1.000	1.319
GASTAR	9.25	0.50 0.26	0.09 0.43	1.10	1.000	1.091
HEGADAS	9.09	0.23	0.43	1.29 1.42	0.750	1.538
INPUFF	8.86	0.47	0.83	2.13	1.000	1.803 2.286
OBDG	9.06	0.19	0.63	1.57	0.500	1.871
						/
PHAST	9.30	0.16	0.39	1.20	1.000	
	9.30 9.15 9.22	0.16 0.23 0.24	0.39 0.53 0.47	1.20 1.32 1.25	1.000	1.471

Block	4: GOLDFI	en	/N 0			
model	Wear		(N= 8)	•	4-5	
OBS.	8.11	sigma 1.66	bi as 0.00	1 A.Q.	fa2	mg
AFTOX	7.05	1.50	1.06	1.00	1.000	1.000
AIRTOX	6.30	1.74	1.81	31.25	0.500	2.897 6.112
BEM	7.06	1.79	1.06	3.30	0.125	2.884
CHARM	6.19	1.20	1.92	64.75	0.000	6.855
DEGADIS		1.53	0.59	1.55	0.500	1.812
FOCUS	7.56	2.18	0.56	1.95	0.500	1.750
GPM	6.70	1.50	1.42	8.48	0.000	4.135
GASTAR	7.75	1.73	0.37	1.23	0.875	1.447
HEGADAS	7.75	1.19	0.36	1.51	0.750	1.440
INPUFF	6.72	1.58	1.40	7.65	0.000	4.044
OBDG	6.98	1.70	1.13	4.46	0.125	3.097
PHAST	7.31	2.20	0.81	2.77	0.500	2.239
SLAB	7.30	1.53	0.82	2.08	0.500	2.268
TRACE	7.31	1.52	0.80	2.05	0.375	2.226
Block	5: MAPLIN	CANDO THE	/N_ 01			
model	mean	SANDS, LNG sigma	(N= 8)			
OBS.	9.86	0.55	bias	, vg	fa2	mg
AFTOX	9.40	0.48	0.00	1.00	1.000	1.000
AIRTOX	7.42	0.81	0.47 2.44	1.50	0.625	1.595
Bem	9.21	0.51	0.66	673.47	0.000	11.515
CHARM	9.33	0.82		1.94	0.500	1.928
DEGADIS	10.01	0.49	0.54 -0.15	2.16 1.21	0.500	1.715
FOCUS	11.12	1.19	-1.25	23.55	0.875	0.862
GPM	9.02	0.46	0.84	23.35		0.286
GASTAR	9.95	0.46	-0.09	1.21	0.500	2.321
HEGADAS	9.42	0.92	0.44	2.65	0.500	0.917 1.556
INPUFF	8.42	0.46	1.44	9.60	0.000	4.222
OBDG	8.31	0.70	1.55	16.60	0.125	4.728
PHAST	8.75	0.53	1.12	4.25	0.125	3.061
SLAB	8.93	0.80	0.93	4.53	0.375	2.539
TRACE	10.97	0.60	-1.11	5.47	0.250	0.330
Block	6. MADT.TM	SANDS IDS	(3) 10)			
Block model		SANDS, LPG	(N= 18)		4-0	
model	mean	sicma	bias	. ∀ g	fa2	ng .
model OBS.	mean 9.52	sigma 0.49	bias 0.00	1.00	1.000	1.000
model	mean 9.52 8.71	sigma 0.49 0.50	bias 0.00 0.81	1.00 2.25	1.000	1.000 2.253
model OBS. AFTOX	mean 9.52	sigma 0.49 0.50 0.73	bias 0.00 0.81 2.36	1.00 2.25 417.75	1.000 0.389 0.000	1.000 2.253 10.644
model OBS. AFTOX AIRTOX	mean 9.52 8.71 7.15	sigma 0.49 0.50 0.73 0.49	bias 0.00 0.81 2.36 0.19	1.00 2.25 417.75 1.29	1.000 0.389 0.000 0.778	1.000 2.253 10.644 1.203
model OBS. AFTOX AIRTOX B&M	mean 9.52 8.71 7.15 9.33	sigma 0.49 0.50 0.73 0.49 0.83	bias 0.00 0.81 2.36 0.19 0.81	1.00 2.25 417.75 1.29 3.58	1.000 0.389 0.000 0.778 0.500	1.000 2.253 10.644 1.203 2.248
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS	mean 9.52 8.71 7.15 9.33 8.71 9.27 9.41	sigma 0.49 0.50 0.73 0.49	bias 0.00 0.81 2.36 0.19 0.81 0.25	1.00 2.25 417.75 1.29 3.58 1.22	1.000 0.389 0.000 0.778 0.500 0.889	1.000 2.253 10.644 1.203 2.248 1.283
model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM	mean 9.52 8.71 7.15 9.33 8.71 9.27 9.41 8.38	sigma 0.49 0.50 0.73 0.49 0.83 0.51	bias 0.00 0.81 2.36 0.19 0.81	1.00 2.25 417.75 1.29 3.58	1.000 0.389 0.000 0.778 0.500 0.889 0.667	1.000 2.253 10.644 1.203 2.248 1.283 1.114
model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM GASTAR	mean 9.52 8.71 7.15 9.33 8.71 9.27 9.41 8.38 9.42	sigma 0.49 0.50 0.73 0.49 0.83 0.51 1.06 0.49	bias 0.00 0.81 2.36 0.19 0.81 0.25 0.11	1.00 2.25 417.75 1.29 3.58 1.22 1.80	1.000 0.389 0.000 0.778 0.500 0.889	1.000 2.253 10.644 1.203 2.248 1.283 1.114 3.124
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS	mean 9.52 8.71 7.15 9.33 8.71 9.27 9.41 8.38 9.34	sigma 0.49 0.50 0.73 0.49 0.83 0.51 1.06 0.49	bias 0.00 0.81 2.36 0.19 0.81 0.25 0.11 1.14 0.10	1.00 2.25 417.75 1.29 3.58 1.22 1.80 4.22	1.000 0.389 0.000 0.778 0.500 0.889 0.667 0.111	1.000 2.253 10.644 1.203 2.248 1.283 1.114 3.124 1.105
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF	mean 9.52 8.71 7.15 9.33 8.71 9.27 9.41 8.38 9.42 9.34 7.76	sigma 0.49 0.50 0.73 0.49 0.83 0.51 1.06 0.49 0.46 0.49	bias 0.00 0.81 2.36 0.19 0.81 0.25 0.11 1.14 0.10	1.00 2.25 417.75 1.29 3.58 1.22 1.80 4.22 1.15	1.000 0.389 0.000 0.778 0.500 0.889 0.667 0.111 0.889	1.000 2.253 10.644 1.203 2.248 1.283 1.114 3.124
model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG	mean 9.52 8.71 7.15 9.33 8.71 9.27 9.41 8.38 9.42 9.34 7.76 7.81	sigma 0.49 0.50 0.73 0.49 0.83 0.51 1.06 0.49 0.46 0.49 0.49	bias 0.00 0.81 2.36 0.19 0.81 0.25 0.11 1.14 0.10 0.17 1.76 1.71	1.00 2.25 417.75 1.29 3.58 1.22 1.80 4.22 1.15	1.000 0.389 0.000 0.778 0.500 0.889 0.667 0.111 0.889 0.889	1.000 2.253 10.644 1.203 2.248 1.283 1.114 3.124 1.105 1.190
model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST	mean 9.52 8.71 7.15 9.33 8.71 9.27 9.41 8.38 9.42 9.34 7.76 7.81 9.13	sigma 0.49 0.50 0.73 0.49 0.83 0.51 1.06 0.49 0.46 0.49 0.49	bias 0.00 0.81 2.36 0.19 0.81 0.25 0.11 1.14 0.10 0.17 1.76 1.71 0.39	1.00 2.25 417.75 1.29 3.58 1.22 1.80 4.22 1.15 1.18 25.66 22.99 1.87	1.000 0.389 0.000 0.778 0.500 0.889 0.667 0.111 0.889 0.000 0.056 0.556	1.000 2.253 10.644 1.203 2.248 1.283 1.114 3.124 1.105 1.190 5.816
model OBS. AFTOX BAM CHARM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB	mean 9.52 8.71 7.15 9.33 8.71 9.27 9.41 8.38 9.42 9.34 7.76 7.81 8.99	sigma 0.49 0.50 0.73 0.49 0.83 0.51 1.06 0.49 0.46 0.49 0.50	bias 0.00 0.81 2.36 0.19 0.81 0.25 0.11 1.14 0.10 0.17 1.76 1.71 0.39 0.52	1.00 2.25 417.75 1.29 3.58 1.22 1.80 4.22 1.15 1.18 25.66 22.99 1.87	1.000 0.389 0.000 0.778 0.500 0.889 0.667 0.111 0.889 0.000 0.056 0.556	1.000 2.253 10.644 1.203 2.248 1.114 3.124 1.105 1.190 5.816 5.532 1.686
model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST	mean 9.52 8.71 7.15 9.33 8.71 9.27 9.41 8.38 9.42 9.34 7.76 7.81 9.13	sigma 0.49 0.50 0.73 0.49 0.83 0.51 1.06 0.49 0.46 0.49 0.49	bias 0.00 0.81 2.36 0.19 0.81 0.25 0.11 1.14 0.10 0.17 1.76 1.71 0.39	1.00 2.25 417.75 1.29 3.58 1.22 1.80 4.22 1.15 1.18 25.66 22.99 1.87	1.000 0.389 0.000 0.778 0.500 0.889 0.667 0.111 0.889 0.000 0.056 0.556	1.000 2.253 10.644 1.203 2.248 1.283 1.114 3.124 1.105 1.190 5.532 1.480
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block	9.52 8.71 7.15 9.33 8.71 9.27 9.41 8.38 9.42 9.34 7.76 7.81 9.13 8.99 9.31	sigma 0.49 0.50 0.73 0.49 0.83 0.51 1.06 0.49 0.46 0.49 0.49 0.50 0.91 0.47	bias 0.00 0.81 2.36 0.19 0.81 0.25 0.11 1.14 0.10 0.17 1.76 1.71 0.39 0.52 0.21	1.00 2.25 417.75 1.29 3.58 1.22 1.80 4.22 1.15 1.18 25.66 22.99 1.87	1.000 0.389 0.000 0.778 0.500 0.889 0.667 0.111 0.889 0.000 0.056 0.556	1.000 2.253 10.644 1.203 2.248 1.114 3.124 1.105 1.190 5.816 5.532 1.686
model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model	9.52 8.71 7.15 9.33 8.71 9.27 9.41 8.38 9.42 9.34 7.76 7.81 9.13 8.99 9.31 7: THORNEY	sigma 0.49 0.50 0.73 0.49 0.83 0.51 1.06 0.49 0.46 0.49 0.49 0.50 0.91 0.47	bias 0.00 0.81 2.36 0.19 0.81 0.25 0.11 1.14 0.10 0.17 1.76 1.71 0.39 0.52 0.21	1.00 2.25 417.75 1.29 3.58 1.22 1.80 4.22 1.15 25.66 22.99 1.87 1.49	1.000 0.389 0.000 0.778 0.500 0.889 0.667 0.111 0.889 0.000 0.056 0.556 0.667 0.833	1.000 2.253 10.644 1.203 2.248 1.283 1.114 3.124 1.105 5.816 5.532 1.480 1.686 1.234
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS.	9.52 8.71 7.15 9.33 8.71 9.27 9.41 8.38 9.42 9.34 7.76 7.81 9.13 8.99 9.31	sigma 0.49 0.50 0.73 0.49 0.83 0.51 1.06 0.49 0.46 0.49 0.49 0.50 0.91 0.47 0.53	bias 0.00 0.81 2.36 0.19 0.81 0.25 0.11 1.14 0.10 0.17 1.76 1.71 0.39 0.52 0.21	1.00 2.25 417.75 1.29 3.58 1.22 1.80 4.22 1.15 25.66 22.99 1.87 1.49 1.31	1.000 0.389 0.000 0.778 0.500 0.889 0.667 0.111 0.889 0.000 0.056 0.556 0.667 0.833	1.000 2.253 10.644 1.203 2.248 1.283 1.114 3.124 1.105 1.190 5.816 5.532 1.480 1.686 1.234
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX	9.52 8.71 7.15 9.33 8.71 9.27 9.41 8.38 9.42 9.34 7.76 7.81 9.13 8.99 9.31 7: THORNEY	sigma 0.49 0.50 0.73 0.49 0.83 0.51 1.06 0.49 0.46 0.49 0.46 0.49 0.50 0.91 0.47 0.53	bias 0.00 0.81 2.36 0.19 0.81 0.25 0.11 1.14 0.10 0.17 1.76 1.71 0.39 0.52 0.21 (N=7) bias 0.00	1.00 2.25 417.75 1.29 3.58 1.22 1.80 4.22 1.15 25.66 22.99 1.87 1.49	1.000 0.389 0.000 0.778 0.500 0.889 0.667 0.111 0.889 0.000 0.056 0.556 0.667 0.833	1.000 2.253 10.644 1.203 2.248 1.283 1.114 3.124 1.105 5.532 1.480 1.686 1.234
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX	9.52 8.71 7.15 9.33 8.71 9.27 9.41 8.38 9.42 9.34 7.76 7.81 9.13 8.99 9.31 7: THORNEY mean 8.62 8.54 8.59	sigma 0.49 0.50 0.73 0.49 0.83 0.51 1.06 0.49 0.46 0.49 0.49 0.50 0.91 0.53 (ISLAND sigma 0.57 0.69	bias 0.00 0.81 2.36 0.19 0.81 0.25 0.11 1.14 0.10 0.17 1.76 1.71 0.39 0.52 0.21 (N=7) bias	1.00 2.25 417.75 1.29 3.58 1.22 1.80 4.22 1.15 25.66 22.99 1.87 1.49 1.31	1.000 0.389 0.000 0.778 0.500 0.889 0.667 0.111 0.889 0.000 0.056 0.556 0.667 0.833	1.000 2.253 10.644 1.203 2.248 1.283 1.114 3.124 1.105 5.532 1.480 1.686 1.234
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SIAB TRACE Block model OBS. AFTOX AIRTOX B&M	9.52 8.71 7.15 9.33 8.71 9.27 9.41 8.38 9.42 9.34 7.76 7.81 9.13 8.99 9.31 7: THORNEY mean 8.62 8.54 8.59 8.86	sigma 0.49 0.50 0.73 0.49 0.83 0.51 1.06 0.49 0.49 0.49 0.50 0.91 0.50 0.53 (ISLAND sigma 0.54 0.57 0.69 0.48	bias 0.00 0.81 2.36 0.19 0.81 0.25 0.11 1.14 0.10 0.17 1.76 1.71 0.39 0.52 0.21 (N=7) bias 0.00 0.07 0.03 -0.24	1.00 2.25 417.75 1.29 3.58 1.22 1.80 4.22 1.15 1.18 25.66 22.99 1.87 1.31	1.000 0.389 0.000 0.778 0.500 0.889 0.667 0.111 0.889 0.000 0.056 0.556 0.833 fa2 1.000 1.000	1.000 2.253 10.644 1.203 2.248 1.283 1.114 3.124 1.105 5.532 1.480 1.686 1.234
model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX B4M CHARM	9.52 8.71 7.15 9.33 8.71 9.27 9.41 8.38 9.42 9.34 7.76 7.81 9.13 8.99 9.31 7: THORNEY mean 8.62 8.54 8.59 8.86 8.63	sigma 0.49 0.50 0.73 0.49 0.83 0.51 1.06 0.49 0.46 0.49 0.50 0.91 0.47 0.53 (ISLAND sigma 0.54 0.57 0.65	bias 0.00 0.81 2.36 0.19 0.81 0.25 0.11 1.14 0.10 0.17 1.76 1.71 0.39 0.52 0.21 (N=7) bias 0.00 0.07 0.03 -0.24 -0.02	1.00 2.25 417.75 1.29 3.58 1.22 1.80 4.22 1.15 25.66 22.99 1.87 1.49 1.31	1.000 0.389 0.000 0.778 0.889 0.667 0.111 0.889 0.000 0.056 0.556 0.667 0.833 fa2 1.000 0.857	1.000 2.253 10.644 1.203 2.248 1.283 1.114 3.124 1.105 1.190 5.816 5.532 1.480 1.686 1.234
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX B&M CHARM DEGADIS	9.52 8.71 7.15 9.33 8.71 9.27 9.41 8.38 9.42 9.34 7.76 7.81 9.33 8.99 9.31 7: THORNEY mean 8.54 8.54 8.54 8.54 8.54 8.54	sigma 0.49 0.50 0.73 0.49 0.83 0.51 1.06 0.49 0.49 0.50 0.47 0.53 (ISLAND sigma 0.54 0.57 0.69 0.48 0.57 0.69 0.48 0.57	bias 0.00 0.81 2.36 0.19 0.81 0.25 0.11 1.14 0.10 0.17 1.76 1.71 0.39 0.52 0.21 (N=7) bias 0.00 0.07 0.03 -0.24 -0.02 -0.64	1.00 2.25 417.75 1.29 3.58 1.22 1.80 4.22 1.15 25.66 22.99 1.87 1.49 1.31	1.000 0.389 0.000 0.778 0.500 0.889 0.667 0.111 0.889 0.000 0.056 0.556 0.667 0.833 fa2 1.000 1.000 0.857 0.857	1.000 2.253 10.644 1.203 2.248 1.283 1.114 3.124 1.105 1.90 5.816 5.532 1.480 1.686 1.234
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS	9.52 8.71 7.15 9.33 8.71 9.27 9.41 8.38 9.42 9.34 7.76 7.81 9.33 8.99 9.31 7: THORNEY mean 8.62 8.54 8.59 8.86 8.63 9.25 9.52	sigma 0.49 0.50 0.73 0.49 0.83 0.51 1.06 0.49 0.49 0.49 0.50 0.91 0.53 Sigma 0.57 0.69 0.48 0.57 0.69 0.48 0.65 1.20 0.59	bias 0.00 0.81 2.36 0.19 0.81 0.25 0.11 1.14 0.10 0.17 1.76 1.71 0.39 0.52 0.21 (N= 7) bias 0.00 0.07 0.03 -0.24 -0.02 -0.64 -0.90	1.00 2.25 417.75 1.29 3.58 1.22 1.80 4.22 1.15 1.18 25.66 22.99 1.87 1.31	1.000 0.389 0.000 0.778 0.500 0.889 0.667 0.111 0.889 0.000 0.056 0.556 0.833 fa2 1.000 0.857 1.000 0.857 1.000 0.857	1.000 2.253 10.644 1.203 2.248 1.283 1.114 3.124 1.105 1.90 5.816 5.532 1.480 1.686 1.234 1.000 1.074 1.074 1.074 1.074 1.074
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM	9.52 8.71 7.15 9.33 8.71 9.27 9.41 8.38 9.42 9.34 7.76 7.81 9.13 8.59 9.31 7: THORNEY mean 8.54 8.59 8.54 8.59 8.63 9.25 9.39	sigma 0.49 0.50 0.73 0.49 0.83 0.51 1.06 0.49 0.46 0.49 0.50 0.91 0.53 (ISLAND sigma 0.57 0.69 0.48 0.65 1.20 0.87	bias 0.00 0.81 2.36 0.19 0.81 0.25 0.11 1.14 0.10 0.17 1.76 1.71 0.39 0.52 0.21 (N= 7) bias 0.00 0.07 0.03 -0.24 -0.02 -0.64 -0.90 -0.77	1.00 2.25 417.79 3.58 1.22 1.80 4.22 1.15 1.18 25.66 22.99 1.87 1.31	1.000 0.389 0.000 0.778 0.500 0.889 0.000 0.056 0.556 0.667 0.833 fa2 1.000 0.857 1.000 0.857 0.429 0.429	1.000 2.253 10.644 1.203 2.248 1.283 1.114 3.124 1.105 5.816 5.532 1.480 1.686 1.234 1.000 1.028 0.787 0.982 0.529 0.463
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR	9.52 8.71 7.15 9.33 8.71 9.27 9.41 8.38 9.34 7.76 7.81 9.13 8.99 9.31 7: THORNEY mean 8.62 8.54 8.59 8.59 8.59 8.59	sigma 0.49 0.50 0.73 0.49 0.83 0.51 1.06 0.49 0.49 0.49 0.50 0.91 0.47 0.53 Sigma 0.54 0.57 0.65 1.20 0.59 0.48	bias 0.00 0.81 2.36 0.19 0.81 0.25 0.11 1.14 0.10 0.17 1.76 1.71 0.39 0.52 0.21 (N= 7) bias 0.00 0.07 0.03 -0.24 -0.02 -0.64 -0.90 -0.77 -0.32	1.00 2.25 417.75 1.29 3.58 1.22 1.80 4.22 1.15 1.18 25.66 22.99 1.87 1.49 1.00 1.09 1.35 1.09 1.39 3.33 2.65 2.95 1.29	1.000 0.389 0.000 0.778 0.500 0.889 0.667 0.111 0.889 0.000 0.056 0.556 0.667 0.833 fa2 1.000 0.857 0.429 0.429 0.714	1.000 2.253 10.644 1.203 2.248 1.283 1.114 3.124 1.105 5.816 5.532 1.480 1.686 1.234 1.000 1.074
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SIAB TRACE Block model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS	9.52 8.71 7.15 9.33 8.71 9.27 9.41 8.38 9.34 7.76 7.81 9.13 8.99 9.31 7: THORNEY mean 8.62 8.54 8.63 9.25 9.35 9.35 8.63 9.25 9.39 8.45	sigma 0.49 0.50 0.73 0.49 0.83 0.51 1.06 0.49 0.49 0.49 0.50 0.91 0.53 (SLAND sigma 0.54 0.57 0.65 1.20 0.87 0.62 0.60	bias 0.00 0.81 2.36 0.19 0.81 0.25 0.11 1.14 0.10 0.17 1.76 1.71 0.39 0.52 0.21 (N= 7) bias 0.00 0.07 0.03 -0.24 -0.02 -0.64 -0.90 -0.77 -0.32 0.16	1.00 2.25 417.75 1.29 3.58 1.22 1.80 4.22 1.15 25.66 22.99 1.87 1.49 1.31	1.000 0.389 0.000 0.778 0.889 0.667 0.111 0.889 0.000 0.056 0.556 0.667 0.833 fa2 1.000 0.857 0.429 0.429 0.429 0.429	1.000 2.253 10.644 1.203 2.248 1.283 1.114 3.124 1.105 5.816 5.532 1.480 1.686 1.234 1.000 1.074
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX B&M DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF	7: THORNEY mean 9.52 8.71 7.33 8.71 9.27 9.41 8.38 9.42 9.34 7.76 7.81 9.13 8.99 9.31 7: THORNEY mean 8.62 8.54 8.59 8.62 8.54 8.59 8.62 8.54 8.59 8.62 8.54 8.59 8.62 8.63	sigma 0.49 0.50 0.73 0.49 0.83 0.51 1.06 0.49 0.49 0.50 0.91 0.47 0.53 (ISLAND sigma 0.54 0.57 0.69 0.48 0.57 0.69 0.48 0.57 0.69 0.89 0	bias 0.00 0.81 2.36 0.19 0.81 0.25 0.11 1.14 0.10 0.17 1.76 1.71 0.39 0.52 0.21 (N= 7) bias 0.00 0.07 0.03 -0.02 -0.64 -0.90 -0.77 -0.32 0.16 -0.23	1.00 2.25 417.75 1.29 3.58 1.22 1.80 4.22 1.15 25.66 22.99 1.87 1.09 1.39 2.65 1.39 2.65 1.20 1.58	1.000 0.389 0.000 0.778 0.889 0.667 0.111 0.889 0.005 0.056 0.556 0.667 0.833 fa2 1.000 0.857 0.429 0.429 0.429 0.429 0.571	1.000 2.253 10.644 1.203 2.248 1.283 1.114 3.124 1.105 5.532 1.480 1.686 1.234 1.000 1.074
model OBS. AFTOX BIM CHARM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BIM CHARM CHA	7: THORNEY 7: THORNEY 7: THORNEY 7: THORNEY 10: 13: 13: 13: 13: 13: 13: 13: 13: 13: 13	sigma 0.49 0.50 0.73 0.49 0.83 0.51 1.06 0.49 0.49 0.49 0.50 0.53 ISLAND sigma 0.57 0.69 0.48 0.65 1.20 0.87 0.62 0.62 0.60 0.80 0.56	bias 0.00 0.81 2.36 0.19 0.81 0.25 0.11 1.14 0.10 0.17 1.76 1.71 0.39 0.52 0.21 (N= 7) bias 0.00 0.07 0.03 -0.24 -0.02 -0.64 -0.90 -0.77 -0.32 0.16 -0.23 1.68	1.00 2.25 417.75 1.28 1.22 1.80 4.22 1.18 25.66 22.99 1.87 1.31 25.66 22.99 1.35 1.09 1.35 1.09 1.35 1.09 1.35 1.20 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35	1.000 0.389 0.000 0.778 0.500 0.889 0.000 0.056 0.556 0.833 fa2 1.000 0.857 1.000 0.857 1.000 0.429 0.429 0.714 1.000 0.571	1.000 2.253 10.640 1.203 2.248 1.283 1.114 3.124 1.190 5.816 5.532 1.480 1.000 1.074 1.028 0.787 0.982 0.783 0.723 1.178 0.723 1.178 0.723 1.178 0.723
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX B&M CHARM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST	9.52 8.71 7.15 9.33 8.71 9.41 8.42 9.44 7.76 7.81 9.13 8.54 8.59 8.54 8.54 8.59 8.63 9.25 9.31 7: THORNEY mean 8.54 8.54 8.59 8.63 9.25 9.39 8.45 8.45 8.45 9.39	sigma 0.49 0.50 0.73 0.49 0.83 0.51 1.06 0.49 0.49 0.49 0.50 0.91 0.53 Sigma 0.57 0.69 0.48 0.57 0.69 0.48 0.65 1.06 0.65 0.65 1.06 0.65 1.06 0.65 1.06 0.65 1.06 0.65 1.06 0.65 1.06 0.65 1.06 0.65 1.06 0.65 1.06 0.65 1.06 0.65 1.06 0.65	bias 0.00 0.81 2.36 0.19 0.81 0.25 0.11 1.14 0.10 0.17 1.76 1.71 0.39 0.52 0.21 (N= 7) bias 0.00 0.07 0.03 -0.24 -0.02 -0.02 -0.04 -0.02 -0.16 -0.23 1.68 -1.29	1.00 2.25 417.79 3.58 1.22 1.80 4.22 1.18 25.66 22.99 1.87 1.09 1.35 1.09 1.35 1.09 1.35 1.29 1.35 1.36 1.37 1.38	1.000 0.389 0.000 0.778 0.500 0.889 0.000 0.056 0.556 0.833 fa2 1.000 0.857 1.000 0.857 1.000 0.429 0.429 0.714 1.000 0.571 0.571 0.571 0.571 0.571 0.571	1.000 2.253 10.644 1.203 2.248 1.283 1.114 3.124 1.105 1.190 5.816 5.532 1.480 1.028 0.787 0.982 0.787 0.982 0.787 0.463 0.723 1.178 0.723 1.178 0.723 1.178 0.723
model OBS. AFTOX BIM CHARM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BIM CHARM CHA	7: THORNEY 7: THORNEY 7: THORNEY 7: THORNEY 10: 13: 13: 13: 13: 13: 13: 13: 13: 13: 13	sigma 0.49 0.50 0.73 0.49 0.83 0.51 1.06 0.49 0.49 0.49 0.50 0.53 ISLAND sigma 0.57 0.69 0.48 0.65 1.20 0.87 0.62 0.62 0.60 0.80 0.56	bias 0.00 0.81 2.36 0.19 0.81 0.25 0.11 1.14 0.10 0.17 1.76 1.71 0.39 0.52 0.21 (N= 7) bias 0.00 0.07 0.03 -0.24 -0.02 -0.64 -0.90 -0.77 -0.32 0.16 -0.23 1.68	1.00 2.25 417.75 1.28 1.22 1.80 4.22 1.18 25.66 22.99 1.87 1.31 25.66 22.99 1.35 1.09 1.35 1.09 1.35 1.09 1.35 1.20 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35	1.000 0.389 0.000 0.778 0.500 0.889 0.000 0.056 0.556 0.833 fa2 1.000 0.857 1.000 0.857 1.000 0.429 0.429 0.714 1.000 0.571	1.000 2.253 10.640 1.203 2.248 1.283 1.114 3.124 1.190 5.816 5.532 1.480 1.000 1.074 1.028 0.787 0.982 0.783 0.723 1.178 0.723 1.178 0.723 1.178 0.723

THE PERFORMANCE MEASURES FOR THE PREDICTED CONCENTRATIONS FOR THE INSTANTANEOUS DENSE GAS RELEASE (THORNEY ISLAND), FOR DOWNWIND DISTANCES ≥ 200M ONLY.

THORNEY	ISLAND		(N= 29)			
model	mean	sigma	bias	AG.	fa2	mg
OBS.	9.07	0.61	0.00	1.00	1.000	1.000
AFTOX	11.05	0.95	-1.98	79.07	0.034	0.138
AIRTOX	8.95	0.73	0.13	1.25	0.897	1.134
Bam	9.23	0.59	-0.16	1.14	0.966	
CHARM	8.59	0.74	0.49	1.91		0.853
DEGADIS	9.53	1.10	-0.46		0.552	1.626
FOCUS	9.86	0.76		3.87	0.414	0.630
GASTAR	8.64		-0.79	2.24	0.414	0.452
		0.64	0.43	1.45	0.724	1.538
INPUFF	10.10	0.82	-1.03	3.60	0.345	0.357
PHAST	9.72	0.71	-0.65	2.07	0.655	0.523
SLAB	8.37	0.83	0.70	2.66	0.724	4.012
TRACE	9.52	0.91	-0.45	1.91	0.655	0.640

THE PERFORMANCE MEASURES FOR THE PREDICTED CONCENTRATIONS FOR THE CONTINUOUS PASSIVE RELEASES (HANFORD, AND PRAIRIE GRASS), INCLUDING ALL DOWNWIND DISTANCES.

All obs	0 TU	ations		(N= 222)			
mode1	er v	mean					
OBS.			sigma	bias	vg	fa2	mg
		2.19	2.06	0.00	1.00	1.000	1.000
AFTOX		2.60	1.72	-0.40	1.77	0.716	0.667
AIRTOX		2.13	2.27	0.06	2.04	0.545	1.061
CHARM		1.78	1.91	0.41	2.57	0.505	1.507
DEGADIS		2.60	1.85	-0.41	1.79	0.671	0.666
FOCUS		2.16	2.22	0.04	1.85	0.626	1.036
GASTAR		3.00	2.37	-0.81	3.30	0.432	0.447
GPM		2.10	1.95	0.09	1.49	0.757	1.097
HEGADAS		2.47	2.22	-0.27	1.32	0.824	0.761
INPUFF		2.20	1.85	0.00	1.48	0.752	0.997
CBDG		2.15	2.10	0.05	1.59	0.757	1.047
PHAST		2.25	1.97	-0.06	1.64		
SLAB		2.39	1.95			0.698	0.945
TRACE		2.83		-0.20	1.30	0.860	0.821
TRACE		2.63	1.67	-0.63	3.00	0.568	0.531
Block	1:	HANFORD		(N=10)			
model		mean	sigma	bias	vg	fa2	mg
OBS.		0.67	1.55	0.00	1.00	1.000	1.000
AFTOX		0.67	1.29	0.00	1.62	0.800	1.000
AIRTOX		0.55	1.80	0.11	1.23	0.900	1.121
CHARM		2.67	2.08	-2.00	87.68	0.000	0.135
DEGADIS		1.26	1.59	-0.59	1.53	0.700	
FOCUS		0.70	1.87	-0.03	1.26		0.554
GASTAR		1.39	2.40			0.800	0.972
GPM		1.06	1.90	-0.72	5.43	0.500	0.486
HEGADAS		0.97		-0.39	1.58	0.700	0.677
INPUFF			2.08	-0.30	1.98	0.500	0.743
		1.07	1.78	-0.40	1.53	0.600	0.670
OBDG		0.61	1.70	0.06	1.12	1.000	1.060
PHAST		0.89	1.66	-0.22	1.28	0.900	0.805
SLAB		1.23	1.80	-0.57	1.75	0.700	0.568
TRACE		1.29	1.59	-0.62	1.59	0.700	0.539
Block	2:	PRAIRIE	GRASS	(N= 212)			
model		mean	sigma	bias	***	fa2	
OBS.		2.26	2.06	0.00	vg		mg
AFTOX		2.69	1.68	-0.42	1.00	1.000	1.000
AIRTOX		2.21	2.26		1.77	0.712	0.655
CHARM		1.74	1.00	0.06	2.09	0.528	1.058
DEGADIS		2.66	1.89	0.52	2.18	0.528	1.689
FOCUS			1.84	-0.40	1.80	0.670	0.672
		2.23	2.22	0.04	1.88	0.618	1.039
GASTAR		3.07	2.34	-0.81	3.23	0.429	0.445
GPM		2.15	1.94	0.12	1.48	0.759	1.123
HEGADAS		2.54	2.20	-0.27	1.30	0.840	0.761
INPUFF		2.25	1.83	0.02	1.47	0.759	1.016
OBDG		2.22	2.09	0.05	1.61	0.745	1.046
PHAST		2.31	1.96	-0.05	1.66	0.689	0.952
SLAB		2.45	1.94	-0.18	1.28	0.868	0.835
TRACE		2.90	1.64	-0.63	3.09	0.561	0.530
							

THE PERFORMANCE MEASURES FOR THE PREDICTED CONCENTRATIONS FOR THE INSTANTANEOUS PASSIVE RELEASE (HANFORD), AT 800M DOWNWIND ONLY.

THE CONFIDENCE LIMITS ANALYSIS FOR THE PERFORMANCE MEASURES LISTED IN APPENDICES D-4, D-5, AND D-6.

PERFORMANCE MEASURES FOR CONCENTRATIONS FOR CONTINUOUS DENSE GAS RELEASES (BURRO, COYOTE, DESERT TORTOISE, GOLDFISH, MAPLIN SANDS, THORNEY ISLAND), SHORT AVERAGING TIME, $X \ge 200M$.

SUMMARY OF CONFIDENCE LIMITS ANALYSES

D (log (vg)) a:	mong	mode	1s:	an ')	(' i	ndic	ates	sig	nifi	cant]	ly d	iffe	rent	from	n zero
	A F T O X	A I R T O X	В & М	C H A R M	D E G A D I S	FOCUS	G P M	G A S T A R	H E G A D A S	I P U F F	OBDG	P H A S T	S L A B	T R A C E		
AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB		x	x	X X X	x x x	x x x	x x x	X X X X X X	X X X X X	x x x x x x	X X X X X X X	X X X X X X	X X X X X X X	x x x x x x x	-	
D(log(mg))) a: A	mong A	mode B	ls: C	an 'X D	(' i.	ndica G	tes G	sign H	nifi I	cantl O	yd. P	iffe: S	rent T	from	zero
	r o x	R T O X	é M	H A R M	E G A D I S	0000	P M	A S T A R	E G A D A	N P U F F	B D G	H A S T	L A B	R A C E		
AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB		x	X X	X X X	X X X X	X X X X	X X X X	X X X X	X X X X X X	X X X X X X X	X X X X X X X	X X X X X X	x x x x x x x x	X X X X X X X X	•	
log(vg)	for	each	mode	1: a	n 'X'	in	dicat	tes	sign:	ific	antly	di:	ffere	ent :	Erom	zero
	A F T O X			C H A R M	D E G A D I S	FOCUS	G P M	G A S T A R	H E G A D A S	I N P U F	O B D G	P H A S T	S L A B	T R A C E		
	x	X	x	x	х	x	X	х	X	X	x	х	х	Х	-	
log(mg)	for	each	mode	l: a	n 'X'	in	dica	tes	sign:	ific	antly	di:	ffere	ent :	Erom	zero
	A F T O X	T		C H A R M	D E G A D I S	F O C U S	G F M	G A S T A R	H G A D A	I N P U F	O B D G	P H A S T	S L A B	T R A C E		

x x x x x x x x x x x x x

	A F T O X	A I R T O X	B £ M	C H A R M	D E G A D I S	FOCUS	G A S T A R	I N P U F	P H A S T	S L A B	T R A C E
AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GASTAR INPUFF PHAST SLAB		x	x	X X X	X X X	X X X	X X X X X	X X X X	x	X X X	X X X

D(log(mg)) among models: an 'X' indicates significantly different from zero

	F T O X	A I R T O X	B £ M	C H A R M	D E G A D I S	F O C U S	G A S T A R	I P U F	P H A S T	S L A B	T R A C E
AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GASTAR INPUFF PHAST SLAB		x	X	X X X	X X	X X X X	X X X X	X X X X	X X X X	X X X X X	X X X X X

log(vg) for each model: an 'X' indicates significantly different from zero

A F T O X	A I R T O X	B & M	C H A R M	D E G A D I S	F O C U S	G A S T A R	I P U F	P H A S T	S L A B	T R A C E	
X	X	x	X	X		х	X	X	X		_

log(mg) for each model: an 'X' indicates significantly different from zero

A F T O X	A R T O X	B & M	C H A R M	D G A D I S	FOCUS	G A S T A R	I N P U F	P H A S T	S L A B	T R A C E	
x		x	X	X	×	x		X	X		_

D (log (v g))	a mo	ong	mode.	ls:	an 'X	(′ i	ndic	at.es	sig:	nífi	cantl	ly d	iffere	it fro	m zero
		A F T O X	A I R T O X	C H A R M	D E G A D I S	F O C U S	G A S T A R	G P M	H G A D A	I N P U F F	O B D G	P H A S T	S L A B	T R A C E		
AFTOX AIRTOX CHARM DEGADIS FOCUS GASTAR GPM HEGADAS INPUFF OBDG PHAST SLAB	-			X X	X X	X X	X X X	X X X X X	X X X X X X	X X X X X X	X X X X	x x x x x x x	x x x x x x x	x x x x x x x x x		
D(log(mg)) }	amo	ng		ls:	an 'X	' i	ndica	ites	sig	nifi	cantl	y d	ifferer	t from	n zero
		A T O X	A I R T O X	C H A R M	D E G A D I S	F O C U S	G A S T A R	G P M	H G A D A	I P U F F	OBDG	P H A S T	S L A B	T R A C E		
AFTOX AIRTOX CHARM DEGADIS FOCUS GASTAR GPM HEGADAS INPUFF OBDG PHAST SLAB	-		x	X X	x x	x x x	X X X X X	x x x	X X X X X	X X X X X	x x x x	X X X X X X X X	X X X X X X X X	x x x x x x x x x x x x x x x x x x x		
log(vg)	for	. e a	ch	mode]	l: a	n 'X'	in	dicat	es	signi	ifica	antly	di:	fferent	from	zero
		A F T O X	A R T O X	C H A R M	D E G A D I S	F O C U S	G A S T A R	G P M	H E G A D A S	I N P U F	O B D G	P H A S T	S L A B	T R A C E		
	-	x	X	х	x	x	x	×	х	x	x	x	x	x		
log(mg)	for	ea	ch	mode	l: a	n 'X'	in	dicat	.es	sign	ifica	antly	di	fferent	from	zero
		A F T O X	A I R T O X	C H A R M	D E G A D I S	F O C U S	G A S T A R	G P M	H E A D A	I N P U F F	OBDG	P H A S T	S L A B	T R A C E		
	-	x		Х	Х		x	x	x				х	X		

THE PERFORMANCE MEASURES FOR THE PREDICTED CONCENTRATIONS FOR THE CONTINUOUS DENSE GAS RELEASES (BURRO, COYOTE, DESERT TORTOISE, GOLDFISH, MAPLIN SANDS, AND THORNEY ISLAND), FOR DOWNWIND DISTANCES ≥ 200M AND STABLE CONDITIONS ONLY. THE SHORTEST AVAILABLE AVERAGING TIME WAS USED.

	servations,		(N- 10)			
model	mean	sigma	bias	vg	fa2	mg
OBS. AFTOX	9.07 9.33	0.84 1.36	0.00	1.00	1.000	1.000
AIRTOX	9.37	1.43	-0.26 -0.30	1.61 2.06	0.800	0.770
BEM	8.89	0.51	0.18	1.68	0.700	0.744 1.196
CHARM	9.05	0.97	0.02	1.45	0.700	1.020
DEGADIS FOCUS	9.65 9.87	1.27	-0.58	2.80	0.500	0.559
GPM	9.87	0.90 1.15	~0.80 ~0.85	2.55	0.500	0.451
GASTAR	9.39	0.91	-0.85 -0.32	3.12 1.29	0.400	0.428 0.728
HEGADAS	9.10	1.23	-0.03	1.38	0.900	0.973
INPUFF	9.32	1.06	-0.25	1.53	0.600	0.780
obdg Phast	7.69 9.99	1.29	1.38	8.75	0.200	3.964
SLAB	9.20	0.66 0.67	-0.92 -0.13	3.94	0.400	0.400
TRACE	9.67	0.93	~0.60	1.12 2.09	1.000	0.881 0.547
				0,	0.000	0.547
Block model	1: BURRO		(N= 2)			
OBS.	mean 10.22	sigma 0.26	bias 0.00	٧g	fa2	mg
AFTOX	11.62	0.51	0.00 -1.40	1.00 7.49	1.000	1.000
AIRTOX	11.79	0.61	-1.56	12.93	0.000	0.247
BEM	8.88	0.69	1.34	7.23	0.000	3.824
CHARM DEGADIS	10.53	0.68	-0.31	1.31	0.500	0.732
FOCUS	10.98 11.18	0.85 0.82	-0.76 -0.06	2.51	0.500	0.470
GPM	11.56	0.42	-0.96 -1.33	3.43 6.08	0.500	0.383
Gastar	10.80	0.18	-0.58	1.41	1.000	0.263 0.561
HEGADAS		0.61	-0.99	3.03	0.500	0.370
Inpuff OBDG	10.86	0.50	-0.63	1.58	0.500	0.530
PHAST	9.54 10.62	0.67 0.41	0.68	1.88	0 - 500	1.980
SLAB	10.16	0.52	~0.40 0.06	1.20 1.07	1.000	0.672
TRACE	11.08	0.44	-0.86	2.15	0.500	1.064
51 6	2. 55655					
Block model	2: DESERT	TORTOISE	(N= 1)			
Block model OBS.	2: DESERT mean 9.95	sigma	bias	. ∀g 1 Ån	fa2	mg 1 000
model OBS. AFTOX	mean 9.95 10.26		· · · · · · · · · · · · · · · · · · ·	Vg 1.00 1.10	1.000	1.000
model OBS. AFTOX AIRTOX	mean 9.95 10.26 9.98	#igma 0.00 0.00 0.00	bias 0.00 -0.32 -0.03	1.10 1.00		
model OBS. AFTOX AIRTOX B&M	mean 9.95 10.26 9.98 9.16	sigma 0.00 0.00 0.00 0.00	bias 0.00 ~0.32 ~0.03 0.78	1.10 1.00 1.85	1.000 1.000 1.000 0.000	1.000 0.730 0.969 2.190
model OBS. AFTOX AIRTOX	mean 9.95 10.26 9.98 9.16 9.00	sigma 0.00 0.00 0.00 0.00 0.00	bias 0.00 ~0.32 ~0.03 0.78 0.95	1.10 1.00 1.85 2.45	1.000 1.000 1.000 0.000	1.000 0.730 0.969 2.190 2.578
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS	mean 9.95 10.26 9.98 9.16	sigma 0.00 0.00 0.00 0.00	bias 0.00 ~0.32 ~0.03 0.78 0.95 0.16	1.10 1.00 1.85 2.45 1.02	1.000 1.000 0.000 0.000 1.000	1.000 0.730 0.969 2.190 2.578 1.169
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM	mean 9.95 10.26 9.98 9.16 9.00 9.79 9.65 10.38	sigma 0.00 0.00 0.00 0.00 0.00 0.00	bias 0.00 -0.32 -0.03 0.78 0.95 0.16 0.30	1.10 1.00 1.85 2.45	1.000 1.000 0.000 0.000 1.000	1.000 0.730 0.969 2.190 2.578 1.169 1.346
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR	mean 9.95 10.26 9.98 9.16 9.00 9.79 9.65 10.38 9.69	sigma 0.00 0.00 0.00 0.00 0.00 0.00 0.00	bias 0.00 -0.32 -0.03 0.78 0.95 0.16 0.30 -0.43 0.26	1.10 1.00 1.85 2.45 1.02 1.09 1.20	1.000 1.000 0.000 0.000 1.000 1.000 1.000	1.000 0.730 0.969 2.190 2.578 1.169 1.346 0.652 1.296
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS	mean 9.95 10.26 9.98 9.16 9.00 9.79 9.65 10.38 9.69	sigma 0.00 0.00 0.00 0.00 0.00 0.00 0.00	bias 0.00 ~0.32 ~0.03 0.78 0.95 0.16 0.30 ~0.43 0.26 0.57	1.10 1.00 1.85 2.45 1.02 1.09 1.20 1.07	1.000 1.000 0.000 0.000 1.000 1.000 1.000	1.000 0.730 0.969 2.190 2.578 1.169 1.346 0.652 1.296
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR	mean 9.95 10.26 9.98 9.16 9.00 9.79 9.65 10.38 9.69 9.37	sigma 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	bias 0.00 -0.32 -0.03 -0.78 0.95 0.16 0.30 -0.43 0.26 0.57	1.10 1.00 1.85 2.45 1.02 1.09 1.20 1.07 1.39	1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000	1.000 0.730 0.969 2.190 2.578 1.169 1.346 0.52 1.296 1.777 1.459
model OBS. AFTOX AIRTOX B6M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST	mean 9.95 10.26 9.98 9.16 9.00 9.79 9.65 10.38 9.69	sigma 0.00 0.00 0.00 0.00 0.00 0.00 0.00	bias 0.00 -0.32 -0.03 0.78 0.95 0.16 0.30 -0.43 0.26 0.57 0.38 0.64	1.10 1.00 1.85 2.45 1.02 1.09 1.20 1.39 1.15	1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000	1.000 0.730 0.969 2.190 2.578 1.169 1.346 0.652 1.296 1.296 1.459 1.887
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB	mean 9.95 10.26 9.98 9.16 9.00 9.79 9.65 10.38 9.69 9.37 9.57 9.31 9.30 9.42	sigma 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	bias 0.00 -0.32 -0.03 -0.78 0.95 0.16 0.30 -0.43 0.26 0.57	1.10 1.00 1.85 2.45 1.02 1.09 1.20 1.39 1.15 1.50	1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000	1.000 0.730 0.969 2.190 2.578 1.169 1.346 0.652 1.296 1.777 1.459 1.887
model OBS. AFTOX AIRTOX B6M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST	mean 9.95 10.26 9.98 9.16 9.00 9.79 9.65 10.38 9.69 9.37 9.37	sigma 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	bias 0.00 -0.32 -0.03 0.78 0.95 0.16 0.30 -0.43 0.26 0.57 0.38 0.64	1.10 1.00 1.85 2.45 1.02 1.09 1.20 1.39 1.15	1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000	1.000 0.730 0.969 2.190 2.578 1.169 1.346 0.652 1.296 1.296 1.459 1.887
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE	mean 9.95 10.26 9.98 9.16 9.00 9.79 9.65 10.38 9.69 9.37 9.31 9.30 9.42	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	bias 0.00 -0.32 -0.03 0.78 0.95 0.16 0.30 -0.43 0.26 0.57 0.38 0.64 0.65	1.10 1.00 1.85 2.45 1.02 1.09 1.20 1.39 1.15 1.50	1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000	1.000 0.730 0.969 2.190 2.190 1.346 0.652 1.296 1.777 1.459 1.887 1.918 1.688
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model	mean 9.95 10.26 9.98 9.16 9.00 9.79 9.65 10.38 9.69 9.37 9.31 9.30 9.42	sigma 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	bias 0.00 -0.32 -0.03 0.78 0.95 0.16 0.30 -0.43 0.26 0.57 0.38 0.64 0.65	1.10 1.00 1.85 2.45 1.02 1.09 1.20 1.07 1.39 1.15 1.50	1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 0.730 0.969 2.190 2.578 1.169 1.346 0.652 1.296 1.777 1.459 1.887 1.918 1.688 1.634
model OBS. AFTOX BEM CHARM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS.	mean 9.95 10.26 9.98 9.16 9.00 9.79 9.65 10.38 9.69 9.37 9.37 9.37 9.31 9.30 9.42 9.46 3: THORNEY mean 8.62	*igma 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	bias 0.00 ~0.32 ~0.03 0.78 0.95 0.16 0.30 ~0.43 0.26 0.57 0.38 0.64 0.65 0.52 0.49	1.10 1.00 1.85 2.45 1.02 1.09 1.20 1.39 1.15 1.50 1.53 1.32 1.27	1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000	1.000 0.730 0.969 2.190 2.578 1.169 1.346 0.652 1.296 1.777 1.459 1.887 1.688 1.634
model OBS. AFTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX	mean 9.95 10.26 9.98 9.16 9.00 9.79 9.65 10.38 9.69 9.37 9.37 9.31 9.30 9.42 9.46 3: THORNEY mean 8.62 8.54	sigma 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	bias 0.00 ~0.32 ~0.03 0.78 0.95 0.16 0.30 ~0.43 0.26 0.57 0.38 0.64 0.65 0.52 0.49 (N= 7) bias 0.00 0.07	1.10 1.00 1.85 2.45 1.02 1.09 1.20 1.39 1.15 1.53 1.32 1.27	1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 0.730 0.969 2.190 2.578 1.169 1.346 0.652 1.296 1.777 1.459 1.887 1.918 1.688 1.634
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX	mean 9.95 10.26 9.98 9.16 9.00 9.79 9.65 10.38 9.69 9.37 9.31 9.31 9.31 9.42 9.46 3: THORNEY mean 8.62 8.54 8.59	sigma 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	bias 0.00 -0.32 -0.03 -0.78 0.95 0.16 0.30 -0.43 0.26 0.57 0.38 0.64 0.65 0.52 0.49 (N= 7) bias 0.00 0.07 0.03	1.10 1.00 1.85 2.45 1.02 1.09 1.20 1.39 1.15 1.50 1.53 1.32 1.27	1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 0.730 0.969 2.190 2.578 1.169 1.346 0.652 1.296 1.777 1.459 1.887 1.918 1.688 1.634
model OBS. AFTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX	mean 9.95 10.26 9.98 9.16 9.00 9.79 9.65 10.38 9.69 9.37 9.57 9.31 9.30 9.42 9.46 3: THORNEY mean 8.62 8.54	*igma 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	bias 0.00 -0.32 -0.03 0.78 0.95 0.16 0.30 -0.43 0.26 0.57 0.38 0.64 0.65 0.52 0.49 (N= 7) bias 0.00 0.07 0.03 -0.24	1.10 1.00 1.85 2.45 1.02 1.09 1.20 1.39 1.50 1.53 1.32 1.27	1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 0.730 0.969 2.190 2.578 1.169 1.346 0.652 1.296 1.777 1.459 1.887 1.918 1.688 1.634
model OBS. AFTOX BEM CHARM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM CHARM DEGADIS	mean 9.95 10.26 9.98 9.16 9.00 9.79 9.65 10.38 9.69 9.37 9.37 9.31 9.30 9.42 9.46 3: THORNEY mean 8.62 8.54 8.59 8.86 8.63 9.25	sigma 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	bias 0.00 ~0.32 ~0.03 0.78 0.95 0.16 0.30 ~0.43 0.26 0.57 0.38 0.65 0.52 0.49 (N= 7) bias 0.00 0.07 0.03 ~0.02	1.10 1.00 1.85 2.45 1.02 1.09 1.20 1.39 1.50 1.53 1.32 1.27	1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 0.730 0.969 2.190 2.578 1.169 1.346 0.652 1.296 1.459 1.688 1.688 1.634 mg 1.000 1.074 1.074 1.078 0.787 0.982
model OBS. AFTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS	mean 9.95 10.26 9.98 9.16 9.00 9.79 9.65 10.38 9.69 9.37 9.37 9.31 9.30 9.42 9.46 3: THORNEY mean 8.62 8.54 8.59 8.86 8.63 9.25 9.52	sigma 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	bias 0.00 ~0.32 ~0.03 ~0.78 0.95 0.16 0.30 ~0.43 0.26 0.57 0.38 0.64 0.65 0.52 0.49 (N= 7) bias 0.00 0.07 0.03 ~0.24 ~0.00 0.07 0.03	1.10 1.00 1.85 2.45 1.02 1.09 1.20 1.39 1.35 1.32 1.32 1.09 1.35 1.09 1.35 1.39 1.35	1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 0.730 0.969 2.190 2.578 1.169 1.346 0.652 1.296 1.777 1.459 1.887 1.918 1.688 1.634
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM	mean 9.95 10.26 9.98 9.16 9.00 9.79 9.65 10.38 9.69 9.37 9.37 9.31 9.30 9.42 9.46 3: THORNEY mean 8.62 8.54 8.59 8.86 8.63 9.25 9.52 9.39	sigma 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	bias 0.00 -0.32 -0.03 0.78 0.95 0.16 0.30 -0.43 0.26 0.57 0.38 0.64 0.65 0.52 0.49 (N= 7) bias 0.00 0.07 0.03 -0.24 -0.02 -0.03 -0.24 -0.07	1.10 1.00 1.85 2.45 1.02 1.09 1.20 1.39 1.35 1.32 1.32 1.32 1.32 1.32 1.33 1.32 1.33 2.65 2.95	1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.857 1.000 0.857 0.429 0.429	1.000 0.730 0.969 2.190 2.578 1.169 1.346 0.652 1.296 1.777 1.459 1.688 1.634 mg 1.000 1.074 1.028 0.787 0.982 0.529
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR	mean 9.95 10.26 9.98 9.16 9.00 9.79 9.65 10.38 9.69 9.37 9.31 9.30 9.42 9.46 3: THORNEY mean 8.62 8.54 8.59 8.86 8.63 9.25 9.39 9.39 8.94	*igma 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	bias 0.00 ~0.32 ~0.03 0.78 0.95 0.16 0.30 ~0.43 0.26 0.57 0.38 0.64 0.65 0.52 0.49 (N= 7) bias 0.07 0.03 ~0.24 ~0.02 ~0.03 ~0.24 ~0.03	1.10 1.00 1.85 2.45 1.02 1.09 1.20 1.39 1.50 1.53 1.32 1.27	1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 0.730 0.969 2.190 2.190 2.190 1.346 0.652 1.296 1.459 1.887 1.918 1.688 1.634 1.000 1.074 1.072 1.072 1.074 1.072 1.074 1.072 1.072 1.074
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM	mean 9.95 10.26 9.98 9.16 9.00 9.79 9.65 10.38 9.69 9.37 9.37 9.31 9.30 9.42 9.46 3: THORNEY mean 8.62 8.54 8.59 8.86 8.63 9.25 9.52 9.39	#igma 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	bias 0.00 -0.32 -0.03 0.78 0.95 0.16 0.30 -0.43 0.26 0.57 0.38 0.64 0.65 0.52 0.49 (N= 7) bias 0.00 0.07 0.03 -0.24 -0.02 -0.64 -0.95 -0.02 -0.02 -0.03 -0.24 -0.02 -0.03 -0.03 -0.03 -0.03 -0.03 -0.04 -0.05 -0.0	1.10 1.00 1.85 2.45 1.02 1.09 1.20 1.39 1.50 1.53 1.32 1.27	1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 0.730 0.969 2.190 2.578 1.169 1.346 0.652 1.296 1.459 1.887 1.688 1.634 1.634 1.020 1.074 1.072 0.787 0.982 0.787 0.982 0.463 0.723 1.178
model OBS. AFTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG	mean 9.95 10.26 9.98 9.16 9.00 9.79 9.65 10.38 9.69 9.37 9.37 9.31 9.30 9.42 9.46 3: THORNEY mean 8.54 8.54 8.59 8.86 8.63 9.25 9.39 8.94 8.45 8.84 6.93	*igma 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	bias 0.00 ~0.32 ~0.03 ~0.78 0.95 0.16 0.30 ~0.43 0.26 0.57 0.38 0.64 0.65 0.52 0.49 (N= 7) bias 0.00 0.07 0.03 ~0.24 ~0.02 ~0.04 ~0.02 ~0.03 ~0.24 ~0.03 ~0.24 ~0.02 ~0.03 ~0.03 ~0.03 ~0.03 ~0.03 ~0.03 ~0.04 ~0.05 ~0.	1.10 1.00 1.85 2.45 1.02 1.09 1.20 1.39 1.50 1.53 1.32 1.27	1.000 1.000	1.000 0.730 0.969 2.190 2.578 1.169 1.346 1.659 1.777 1.459 1.887 1.918 1.634 1.028 0.782 0.782 0.529 0.405 0.405 0.403 0.728 0.728 0.728
model OBS. AFTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM CHARM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST	mean 9.95 10.26 9.98 9.16 9.00 9.79 9.65 10.38 9.57 9.37 9.37 9.31 9.30 9.42 9.46 3: THORNEY mean 8.62 8.54 8.59 8.86 8.63 9.52 9.39 8.45 8.45 8.93 9.90	*igma 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	bias 0.00 -0.32 -0.03 0.78 0.95 0.16 0.30 -0.43 0.26 0.57 0.38 0.64 0.65 0.52 0.49 (N= 7) bias 0.00 0.07 0.03 -0.24 -0.02 -0.64 -0.02 -0.03 -0.03 -0.03 -0.03 -0.07 0.03 -0.03 -0.03 -0.04 -0.05 0.07 0.03 -0.03 -0.03 -0.04 -0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.07 0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.04 -0.05 -0.	1.10 1.00 1.85 2.45 1.02 1.09 1.20 1.39 1.50 1.53 1.32 1.27	1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 0.730 0.969 2.178 1.169 1.346 0.6596 1.777 1.459 1.887 1.634 1.007 1.074 1.028 0.787 0.982 0.463 0.723 0.723 0.723 0.723 0.723 0.723 0.723 0.723
model OBS. AFTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG	mean 9.95 10.26 9.98 9.16 9.00 9.79 9.65 10.38 9.69 9.37 9.37 9.31 9.30 9.42 9.46 3: THORNEY mean 8.54 8.54 8.59 8.86 8.63 9.25 9.39 8.94 8.45 8.84 6.93	*igma 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	bias 0.00 ~0.32 ~0.03 ~0.78 0.95 0.16 0.30 ~0.43 0.26 0.57 0.38 0.64 0.65 0.52 0.49 (N= 7) bias 0.00 0.07 0.03 ~0.24 ~0.02 ~0.04 ~0.02 ~0.03 ~0.24 ~0.03 ~0.24 ~0.02 ~0.03 ~0.03 ~0.03 ~0.03 ~0.03 ~0.03 ~0.04 ~0.05 ~0.	1.10 1.00 1.85 2.45 1.09 1.20 1.07 1.39 1.50 1.53 1.32 1.27 Vg 1.00 1.09 1.35 1.39 1.39 1.39 1.39 1.39 1.39 1.49	1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.857 1.000 0.857 0.429 0.429 0.429 0.714 1.000	1.000 0.730 0.969 2.190 2.578 1.169 1.346 1.659 1.777 1.459 1.887 1.918 1.634 1.028 0.782 0.782 0.529 0.405 0.405 0.403 0.728 0.728 0.728

THE PERFORMANCE MEASURES FOR THE PREDICTED CONCENTRATIONS FOR THE INSTANTANEOUS DENSE GAS RELEASE (THORNEY ISLAND), FOR DOWNWIND DISTANCES ≥ 200M AND STABLE CONDITIONS ONLY.

THORNEY	ISLAND		(N=	9)		
model	mean	sigma	bias	Vg	fa2	mg
OBS.	9.23	0.58	0.00	1.00	1.000	1.000
AFTOX	11.30	1.21	-2.07	208.19	0.111	0.127
AIRTOX	9.13	0.63	0.10	1.09	1.000	1.110
Bem	9.13	0.64	0.11	1.03	1.000	1.115
CHARM	8.05	0.46	1.18	4.38	0.000	3.268
DEGADIS	8.56	1.23	0.67	7.15	0.667	1.959
FOCUS	9.68	0.80	-0.44	1.36	0.778	0.641
Gastar	8.52	0.59	0.71	1.79	0.556	2.039
inpuff	10.71	0.72	-1.47	9.94	0.000	0.229
PHAST	9.73	0.60	-0.50	1.35	0.778	0.606
SLAB	8.72	0.52	0.51	1.34	0.778	1.665
TRACE	9.00	0.82	0.23	1.20	1.000	1.259

THE PERFORMANCE MEASURES FOR THE PREDICTED CLOUD-WIDTHS FOR THE CONTINUOUS DENSE GAS RELEASES (BURRO, COYOTE, DESERT TORTOISE, GOLDFISH, MAPLIN SANDS, AND THORNEY ISLAND), FOR DOWNWIND DISTANCES ≥ 200M ONLY.

All observ	ration =		(N= 31)			
model	mean	sigma	bias	****	4-2	
OBS.	3.43	0.70		vg 1.00	fa2	mg
AFTOX	2.42	1.07	0.00		1.000	1.000
AIRTOX	3.63		1.01	4.32	0.323	2.737
		0.74	-0.21	1.17	0.903	0.813
DEGADIS	4.12	0.74	-0.69	1.89	0.613	0.500
GASTAR	4.10	0.76	-0.67	1.71	0.613	0.513
gPM	2.92	0.90	0.51	1.58	0.742	1.666
HEGADAS	4.43	0.71	-1.00	3.33	0.290	0.366
PHAST	3.64	0.88	-0.22	1.18	0.871	0.806
SLAB	3.65	0.70	-0.22	1.17	0.871	0.802
			***		0.0.2	J. 552
Block 1:	BURRO		(N=12)			
model	mean	sigma	bias	44	fa2	ma
OBS.	3.22	0.59	0.00	1.00	1.000	1.000
AFTOX	1.68	0.66	1.54	16.13	0.083	4.643
AIRTOX	3.41	0.61	-0.20	1.10	0.917	
DEGADIS	3.63	0.60	-0.41			0.822
GASTAR	3.76			1.24	0.917	0.662
		0.60	-0.54	1.42	0.833	0.580
GPM	2.44	0.56	0.78	2.24	0.500	2.178
HEGADAS	3.96	0.65	-0.75	1.90	0.500	0.474
PHAST	3.25	0.78	-0.03	1.12	0.917	0.967
SLAB	3.46	0.71	-0.24	1.19	0.833	0.785
21						
	COYOTE	•	(N= 3)			
model	mean	sigma	bias	vg	fa2	mg
OBS.	2.91	0.18	0.00	1.00	1.000	1.000
AFTOX	1.94	0.16	0.97	2.79	0.333	2.649
AIRTOX	3.41	0.16	-0.50	1.42	0.667	0.607
DEGADIS	3.82	0.14	-0.91	2.50	0.333	0.403
Gastar	4.00	0.15	-1.09	3.61	0.333	0.336
GPM	2.49	0.10	0.42	1.24	1.000	1.526
HEGADAS	4.10	0.17	-1.19	4.63	0.000	0.304
PHAST	3.60	0.15	-0.69	1.78	0.333	0.500
SLAB	3.60	0.20	-0.69	1.84	0.333	0.501
			0.03	2.01	0.555	0.501
Block 3:	DESERT TO	RTOISE	(N= 8)			
model	mean	sigma	bias	V Q	fa2	mg
OBS.	3.50	0.85	0.00	1.00	1.000	1.000
AFTOX	2.55	0.93	0.95	2.54	0.000	2.581
AIRTOX	3.62	0.67	-0.12	1.09	1.000	
DEGADIS	4.71	0.78	-1.21	4.47	0.000	0.885
GASTAR	4.33	1.05	-0.84			0.298
GPM	2.92	0.89		2.15	0.250	0.433
HEGADAS			0.58	1.41	0.750	1.781
PHAST	5.05	0.56	-1.55	12.15	0.000	0.213
	3.64	1.06	-0.14	1.07	1.000	0.867
SLAB	3.72	0.77	-0.23	1.07	1.000	0.798
Block 4:	GOLDFISH		/37 A1			
			(N= 8)			
model	mean	sigma	bias	√g	fa2	mg .
OBS.	3.87	0.51	0.00	1.00	1.000	1.000
AFTOX	3.58	0.78	0.29	1.20	1.000	1.330
AIRTOX	4.07	0.91	-0.20	1.26	0.875	0.821
DEGADIS	4.39	0.43	-0.52	1.34	0.875	0.596
GASTAR	4.40	0.50	-0.53	1.36	0.750	0.589
GPM	3.79	0.84	0.07	1.15	1.000	1.078
HEGADAS	4.65	0.48	-0.78	1.87	0.375	0.458
PHAST	4.25	0.59	-0.38	1.20	0.875	0.682
SLAB	3.88	0.65	-0.01	1.03	1.000	0.993
			~. ~.		1.500	4.233

THE PERFORMANCE MEASURES FOR THE PREDICTED CLOUD-WIDTHS FOR THE CONTINUOUS PASSIVE RELEASES (HANFORD, AND PRAIRIE GRASS), INCLUDING ALL DOWNWIND DISTANCES.

All observed model OBS. AFTOX AIRTOX DEGADIS GASTAR GPM HEGADAS PHAST SLAB	mean 3.47 2.99 3.17 3.27 3.22 3.22 3.69 3.14	sigma 0.88 0.91 1.05 0.92 1.00 1.00 0.90 0.99	(N= 85) bias 0.00 0.48 0.30 0.20 0.25 0.25 -0.22 0.22 0.34	vg 1.00 1.48 1.34 1.28 1.28 1.26 1.29	fa2 1.000 0.647 0.765 0.871 0.847 0.824 0.824	mg 1.000 1.617 1.346 1.223 1.282 0.801 1.248 1.398
Block 1: model OBS. AFTOX AIRTOX DEGADIS GASTAR GPM HEGADAS PHAST SLAB	HANFORD mean 3.29 3.43 3.44 3.37 3.37 3.75 3.22 3.20	sigma 0.57 0.65 0.80 0.77 0.79 0.79 0.74 0.80 0.76	(N= 10) bias 0.00 -0.13 -0.14 -0.10 -0.08 -0.08 -0.46 0.07 0.09	Vg 1.00 1.09 1.37 1.41 1.35 1.35 1.68 1.48	fa2 1.000 1.000 0.700 0.700 0.700 0.600 0.800 0.800	mg 1.000 0.875 0.867 0.903 0.927 0.924 0.631 1.077
Block 2: model OBS. AFTOX AIRTOX DEGADIS GASTAR GPM HEGADAS PHAST SLAB	PRAIRIE mean 3.50 2.93 3.14 3.25 3.20 3.20 3.69 3.25 3.13	GRASS sigma 0.91 0.92 1.08 0.93 1.03 1.02 0.92 1.01 0.99	(N= 75) bias 0.00 0.56 0.36 0.24 0.29 0.29 -0.19 0.24 0.37	vg 1.00 1.54 1.34 1.22 1.27 1.27 1.21 1.27	fa2 1.000 0.600 0.773 0.893 0.867 0.853 0.853	mg 1.000 1.755 1.428 1.274 1.341 1.339 0.827 1.273

THE CONFIDENCE LIMITS ANALYSIS FOR THE PERFORMANCE MEASURES LISTED IN APPENDICES D-11, and D-12.

D(log(vg)) among models: an 'X' indicates significantly different from zero

	A F T O X	A I R T O X	D E G A D I S	G A S T A R	G P M	H E G A D A	P H A S T	S L A B	
AFTOX AIRTOX DEGADIS GASTAR GPM HEGADAS PHAST	-	x	X	X	X X	X X X X	X X X X	X X X X	-

D(log(mg)) among models: an 'X' indicates significantly different from zero

	A F T O X	A I R T O X	D E G A D I S	G A S T A R	G P M	H E G A D A	P H A S T	S L A B
AFTOX AIRTOX DEGADIS GASTAR GPM HEGADAS PHAST		x	X	X	X X X X	X X X X X	X X X X	X X X X

log(vg) for each model: an 'X' indicates significantly different from zero

A F T O X	A I R T O X	D E G A D I S	G A S T A R	G P M	H E G A D A	P H A S T	S L A B	
Y	Y	Y	Y	Y		·	<u>-</u> -	

log(mg) for each model: an 'X' indicates significantly different from zero

A F T O X	A I R T O X	D E G A D I S	G A S T A R	G P M	H E G A D A	P H A S T	S L A B	
X	X	X	X	X	X	X	X	

D(log(vg)) among models: an 'X' indicates significantly different from zero

	A F T O X	A I R T O X	D E G A D I S	G A S T A R	G P M	H G A D A S	P H A S T	S L A B	
AFTOX AIRTOX		x	X X	X	X X	x	X X	x	-
DEGADIS GASTAR GPM				Х	X		Х	Х	
HEGADAS									

D(log(mg)) among models: an 'X' indicates significantly different from zero

	A F T O X	A I R T O X	D E G A D I S	G A S T A R	G P M	H G A D A S	P H A S T	S L A B
AFTOX AIRTOX DEGADIS GASTAR GPM HEGADAS PHAST		x	X	X X X	X X X	X X X X	X X X X	X X X X X

log(vg) for each model: an 'X' indicates significantly different from zero

A F T O X	A I R T O X	DE GADIS	G A S T A R	G P M	H E G A D A S	P H A S T	S L A B	
X	X	X	X	Х	X	Х	X	

log(mg) for each model: en 'X' indicates significantly different from zero

A F T O X	A I R T O X	D E G A D I S	G A S T A R	G P M	H E G A D A S	P H A S T	S L A B	
x	х	X	 Х	X	X	X	x	