3HB07 Arduino "ADC and LCD"

Arduino "ADC and LCD"

วัตถุประสงค์

- แนะนำให้รู้จักการใช้งาน Board Ardunio ในการออกแบบพัฒนา วงจรรวม
- สามารถประยุกต์ใช้งาน Board Ardunio ในการแสดงผลสัญญาณ ต่าง ๆ ได้

อุปกรณ์

- LCD ขนาด 16x2 (16 charactors 2 lines)
- Arduino board รุ่น Atmega 32
- Variable Resistor (VR) 20K

ภาพวงจรรวม Arduino Atmga 32

ภาพวงจรรวมของ LCD

• Vo ใช้ในการปรับความสว่างของ LCD

ขาสัญญาณต่างๆของ LCD

Pin	Symbol	Function
2	VDD	Power supply (+5V) for Logic
1	VSS	GND (oV)
3	Vo	Power supply (+5V) for LCD drive [
4	Rs	Register Selection H: Data Register L: Instruction Register
5	R/W	Read/Write Selection H:Read L:Write
6	E	Enable Signal for LCM
7-14	DBo-DB7	Data bus Line
A	LEDA	Power supply (+5V) for Backlight
K	LEDK	Power supply (oV) for Backlight

ต่อวงจรของ Arduino กับ LCD ดังนี้

LCD	Ardunio
RS	digital pin 12
Enable	digital pin 11
D4	digital pin 5
D5	digital pin 4
D6	digital pin 3
D7	digital pin 2

การกำหนดขาในโปรแกรม

- const int RS = 12;
- const int Enable = 11;
- const int analogInput = 0;

//ขา RS ต่อกับขา 12

//ขา Enable ต่อกับขา 11

//ขา analogInput ต่อกับขา 0

การกำหนดชนิดการทำงานของขาสัญญาณ

- pinMode(RS,OUTPUT)
- pintMode(D4,OUTPUT)

โปรแกรมกำหนดให้ LCD ทำงานแบบ 4 Bit communication chart

โปรแกรมกำหนดให้ LCD ทำงานแบบ 4 Bit communication chart

BF can be checked after the following instructions. When BF is not checked, the waiting time between instructions is longer than the execution instruction time. (See Table 6.)

Function set (Set interface to be 4 bits long.) Interface is 8 bits in length.

Function set (Interface is 4 bits long. Specify the number of display lines and character font.)

The number of display lines and character font cannot be changed after this point.

Display off

Display clear

Entry mode set

Writing Data and Commands

4-Bit Write Sequence

Make Sure "EN" is 0 or low

Set "R/S" to 0 for a command, or 1 for data/characters

Put the HIGH BYTE of the data/command on D7-4

Set "EN" (EN= 1 or High)

Wait At Least 450 ns!!!

Clear "EN" (EN= 0 or Low)

Wait 5ms for command writes, and 200us for data writes.

Put the LOW BYTE of the data/command on D7-4

Wait At Least 450 ns!!!

Clear "EN" (EN= 0 or Low)

Wait 5ms for command writes, and 200us for data writes.

Initialization

	General Initialization	Example Initialization	
1	Wait 20ms for LCD to power up		
2	Write D7-4 = 3	hex, with RS = 0	
3	Wait	t 5ms	
4	Write D7-4 = 3 hex, with RS = 0, again		
5	Wait 200us		
6	Write D7-4 = 3 hex, with RS = 0, one more time		
7	Wait 200us		
8	Write D7-4 = 2 hex, to enable four-bit mode		
9	Wait 5ms		
10	Write Command "Set Interface"	Write 28 hex (4-Bits, 2-lines)	
	Write Command "Enable	Write 08 hex (don't shift display, hide	
11	Display/Cursor"	cursor)	
12	Write Command "Clear and Home"	Write 01 hex (clear and home display)	
	Write Command "Set Cursor Move		
13	Direction"	Write 06 hex (move cursor right)	
14		Write 0C hex (turn on display)	
Display is ready to accept data.			

การส่งข้อมูลตัวอักษรไปแสดงผลที่ LCD

- ส่งที่ละ 4 bit
- ต้องแยกข้อมูล 8 bit ออกเป็น 2 ชุด
- ตัวอักษรแต่ละตัวแทนด้วยรหัส Ascii
- ขั้นตอนตาม slide ก่อนหน้า

ตัวอย่างการส่งข้อมูลตัวอักษรไปแสดงผลที่ LCD

- ต้องการแสดงข้อความ yossawee
- ชุดตัวอักษรคือ 'y' 'o' 's' 's' 'a' 'w' 'e' 'e'

 \bigcirc

• ชุดข้อมูล

ตัวอักษร	ค่า Ascii (HEX)	Byte H	Byte L
У	79	0111 (7)	1001(9)
O	6F	0110 (6)	1111 (F)
S	73	0111 (7)	0011 (3)
S	73	0111 (7)	0011 (3)
_a	61	0110 (6)	0001 (1)
W	77	0111 (7)	0111 (7)
e	65	0110 (6)	0101 (5)
e	65	0110 (6)	0101 (5)

การส่งข้อมูลตัวเลขไปแสดงผลที่ LCD

- ตัวเลขแต่ละตัวแทนด้วยรหัส Ascii
- แยกตัวเลขที่ต้องการออกเป็นตัวย่อย เช่น 100 => '1' '0' '0'

ตัวอักษร	ค่า Ascii (HEX)	Byte H	Byte L
O	30	0011(3)	0000(0)
1	31	0011(3)	0001(1)
2	32	0011(3)	0010(2)
3	33	0011(3)	0011(3)
4	34	0011(3)	0100(4)
5	35	0011(3)	0101(5)
6	36	0011(3)	0110(6)
7	37	0011(3)	0111(7)
8	38	0011(3)	1000(8)
9	39	0011(3)	1001(9)

ตัวอย่างการส่งข้อมูลตัวเลขไปแสดงผลที่ LCD

- ต้องการแสดงตัวเลข 125
- ชุดตัวอักษรคือ
 - [□] 125/100 = '1'
 - □ (125 mod 100)/10 = '2'
 - □ (125 mod 100) mod 10 = '5'
- ชุดข้อมูล

ตัวเลข	ค่า Ascii (HEX)	Byte H	Byte L
1	31	0011(3)	0001(1)
2	32	0011(3)	0010(2)
5	35	0011(3)	0101(5)

analogRead()

- เป็นฟังก์ชั่นในการอ่านค่าสัญญาณ Analog อินพุต
- ขั้นตอนการใช้งานรวมกับLCD
 - □ int analoginput = 0;
 - □ int adcValue = 0;

 - adcValue = analogRead(analogInput);
- แสดงผล adcValue (ตัวเลข) ไปที่ LCD 🖸

การทดลอง

- เขียนโปรแกรมเพื่อแสดงรหัสนักศึกษาแสดงบน LCD ในบรรทัดที่ 1 และ ชื่อ ใน บรรทัดที่ 2
- เขียนโปรแกรมติดต่อ ADC ขา 0 โดยแสดงบนผลหน้าจอLCD

Sensor: xxxx

Voltage: y.yy