Klausur zur Theoretischen Physik 3: QUANTENMECHANIK

Harald Friedrich, T.U. München

Montag, 11.07.2005

Hörsaal 1

9:10 - 10:40

- 1. Operatoren im Hilbertraum:
 - (a) Sei $|\psi_1\rangle$, $|\psi_2\rangle$, ..., $|\psi_n\rangle$... eine vollständige orthonormale Basis des Hilbertraums \mathcal{H} . Mit \hat{P}_k bezeichnen wir den Projektionsoperator auf den vom Zustand $|\psi_k\rangle$ aufgespannten eindimensionalen Unterraum von \mathcal{H} : $\hat{P}_k = |\psi_k\rangle\langle\psi_k|$.

Zeigen Sie, dass \hat{P}_k gerade zwei Eigenwerte, 0 und 1, besitzt.

Zeigen Sie: $(\hat{P}_k)^m = \hat{P}_k$ für

für alle natürlichen Zahlen m.

Zeigen Sie: $\sum_{k=1}^{\infty} \hat{P}_k = \mathbf{1}$.

(3P)

(b) Welche der folgenden Operatoren sind Hermitesch (ohne Beweis!),

$$\hat{x}$$
, $\frac{\partial}{\partial x}$, \hat{p} , \hat{L}_x , \hat{S}_y , $\hat{S}_+ = \hat{S}_x + i\hat{S}_y$? (3P)

- 2. Vertauschungsrelationen:
 - (a) \hat{A} und \hat{B} seien zwei Hermitesche Operatoren deren Kommutator verschwindet, $[\hat{A}, \hat{B}] = 0$. Die Eigenwerte von \hat{B} mögen nicht entartet sein. Zeigen Sie, dass \hat{A} und \hat{B} eine gemeinsame Basis von Eigenzuständen besitzen. (3P)
 - (b) Zeigen Sie: $[\hat{p}, \hat{x}^n] = \frac{\hbar}{i} n \hat{x}^{n-1}$ und berechnen Sie $[\hat{p}^n, \hat{x}]$. (3P)
- 3. Wellenpaket:
 - $|n\rangle$, $n=0, 1, 2, \ldots$ seien die auf Eins normierten Eigenzustände des

 $\text{Hamiltonoperators} \qquad \hat{H} = \frac{\hat{p}^2}{2\mu} + \frac{\mu}{2}\omega^2 \hat{x}^2 = \hbar\omega \left(\hat{b}^\dagger \hat{b} + \frac{1}{2}\right)$

für ein Teilchen der Masse μ in einem harmonischen Potenzial. Dabei sind \hat{b}^{\dagger} und \hat{b} die Auf- und Absteigeoperatoren,

$$\hat{b}^{\dagger} = \frac{1}{\sqrt{2}} \left(\frac{\hat{x}}{\beta} + i \frac{\beta \hat{p}}{\hbar} \right) , \quad \hat{b} = \frac{1}{\sqrt{2}} \left(\frac{\hat{x}}{\beta} - i \frac{\beta \hat{p}}{\hbar} \right) , \quad \beta = \sqrt{\frac{\hbar}{\mu \omega}} ,$$

mit den Eigenschaften $\hat{b}^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle$ und $\hat{b}|n\rangle = \sqrt{n}|n-1\rangle$; ihr Kommutator ist $[\hat{b},\hat{b}^{\dagger}]=1$. Für eine gegebene komplexe Zahl z ist der "kohärente Zustand" $|z\rangle$ ein Wellenpaket definiert durch:

$$|z\rangle = e^{-|z|^2/2} \sum_{n=0}^{\infty} \frac{(z^*)^n}{\sqrt{n!}} |n\rangle$$
.

- (a) Zeigen Sie: $\langle z|z\rangle = 1$. (2P)
- (b) Zeigen Sie: $\hat{b}|z\rangle=z^*|z\rangle$; berechnen Sie $\langle z|\hat{b}^\dagger\hat{b}|z\rangle$ und $\langle z|\hat{b}\hat{b}^\dagger|z\rangle$. (3P)
- (c) Zeigen Sie, dass im Zustand $|z\rangle$ der Mittewert des Ortes gegeben ist durch $\langle \hat{x} \rangle = (z+z^*)\beta/\sqrt{2} = \beta\sqrt{2}\,\Re(z)$. Berechnen Sie den Mittelwert $\langle \hat{p} \rangle$ des Impulses und die Unschärfen Δx , Δp . (4P)
- (d) Zum Zeitpunkt t=0 befinde sich das System im kohärenten Zustand $|z_0\rangle$, wobei z_0 reell ist, $|\psi(t=0)\rangle = |z_0\rangle$. Zeigen Sie, dass die Zeitentwicklung des Systems gegeben ist durch

$$|\psi(t)\rangle = e^{-i\omega t/2}|z\rangle$$
 mit $z = z_0 e^{i\omega t}$

und berechnen Sie $\langle \hat{x} \rangle$ für $t = \frac{\pi}{2\omega}$, $t = \frac{\pi}{\omega}$ und $t = \frac{2\pi}{\omega}$. Vergleichen Sie die Ergebnisse mit Periode und Amplitude der entsprechenen klassischen Schwingung. (6P)

4. Spin-Bahn-Kopplung beim radialsymmetrischen Oszillator:

Ein Teilchen mit Spin $\frac{1}{2}$ und Masse μ bewege sich unter dem Einfluss des radialsymmetrischen harmonischen Potenzials $V(r) = \frac{1}{2}\mu\omega^2r^2$.

Die Energieeigenwerte hängen ab von der Bahndrehimpulsquantenzahl $l=0,\ 1,\ 2,\ldots$ und der Radialquantenzahl $n=0,\ 1,\ 2,\ldots$:

 $E_{n,l} = (2n + l + 3/2)\hbar\omega$. Die Oszillatorenergie $\hbar\omega$ sei klein im Vergleich zur Ruheenergie μc^2 des Teilchens.

Berechnen Sie die Energieverschiebungen, welche durch die Spin-Bahn-Kopplung

$$\hat{V}_{LS} = \frac{1}{2\mu^2 c^2} \frac{1}{r} \frac{\mathrm{d}V}{\mathrm{d}r} \,\hat{\vec{L}} \cdot \hat{\vec{S}}$$

hervorgerufen werden. Diskutieren Sie die Aufspaltung der Energieniveaus bis zur Hauptquantenzahl 2n+l=2 und geben Sie die Entartung der Energieeigenwerte mit und ohne Spin-Bahn-Kopplung an. (10P)