2倍角、3倍角の公式の導出

 $\sin 2\alpha = 2 \sin \alpha \cos \alpha$

 $\cos 2\alpha = 1 - 2\sin^2 \alpha = 2\cos^2 - 1$

 $an 2lpha = rac{2 an lpha}{1- an^2lpha}$

 $\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha$ $\cos 3\alpha = -3\cos \alpha + 4\sin^3 \alpha$

tan の加法定理の導出 ^{・・} 基本

$$\tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

$$1 - \tan \alpha \tan \beta$$

$$\tan (\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 - \tan \alpha}$$

 $1 + \tan \alpha \tan \beta$

sin,cos の加法定理の導出 墨木

$$\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$$
$$\sin(\alpha - \beta) = \sin\alpha\cos\beta - \cos\alpha\sin\beta$$

 $\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$

 $\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$

三角関数の性質 全パターン導出
$$\frac{1}{4}$$
 $\frac{1}{4}$ $\frac{1}{4$

$$\begin{cases} \cos(\theta + 2n\pi) = \cos\theta \\ \tan(\theta + 2n\pi) = \tan\theta \end{cases} \begin{cases} \cos(-\theta) = \cos\theta \\ \tan(-\theta) = -\tan\theta \end{cases}$$
$$\begin{cases} \sin(\theta + \frac{\pi}{2}) = \cos\theta \\ \cos(\theta + \frac{\pi}{2}) = -\sin\theta \end{cases} \begin{cases} \sin(\frac{\pi}{2} - \theta) = \sin\theta \end{cases}$$

 $\begin{cases} \cos\left(\theta + \frac{1}{2}\right) = -\sin\theta \\ \tan\left(\theta + \frac{\pi}{2}\right) = -\frac{1}{\tan\theta} \end{cases} \begin{cases} \cos\left(\frac{1}{2} - \theta\right) = \sin\theta \\ \tan\left(\frac{\pi}{2} - \theta\right) = \sin\theta \\ \cos\left(\theta + \pi\right) = -\cos\theta \\ \tan\left(\theta + \pi\right) = \tan\theta \end{cases} \begin{cases} \sin\left(\pi - \theta\right) = \sin\theta \\ \cos\left(\pi - \theta\right) = -\cos\theta \\ \tan\left(\pi - \theta\right) = -\tan\theta \end{cases}$

三角関数の定義 問. 下の各角 θ に対して、

 $\cos \theta$, $\sin \theta$, $\tan \theta$

の値を求めよ. $(1) \frac{5}{6}\pi (2) \frac{5}{4}\pi (3) - \frac{\pi}{3} (4) 3\pi (5) - \frac{11}{6}\pi$

弧度法とは?

基本

間、半径がr,中心角が θ の扇形の

弧の長さを
$$l$$
,面積を S とすると, $l=r heta,\ S=rac{1}{2}r^2 heta$

一般角,動径とは? 問. 動径 OP と始線 OX のなす角の1つ

 e^{α} とすると、動径 OP の表す一般角は、

 $\overline{lpha+3}$ 60 $^{\circ} imes n$ (nは整数)

と表せる。