Homework 8

Wouter Fransen w.fransen@students.uu.nl

April 4, 2025

Remark: Recall that a sheaf \mathcal{F} on a space X is flabby if for every $U \subseteq V$, the restriction $\mathcal{F}(V) \to \mathcal{F}(U)$ is surjective. (Or equivalently, every $\mathcal{F}(X) \to \mathcal{F}(U)$ is surjective)

Exercise 1: Suppose

$$0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{G} \longrightarrow \mathcal{H} \longrightarrow 0$$

is an exact sequence of sheaves.

1. Show that if \mathcal{F} is flabby, then

$$0 \longrightarrow \mathcal{F}(U) \longrightarrow \mathcal{G}(U) \longrightarrow \mathcal{H}(U) \longrightarrow 0$$

is exact for every $U \subseteq X$ open.

2. Show that if \mathcal{F} and \mathcal{G} are flabby, then \mathcal{H} is flabby.

Hint for 1: For surjectivity, fix $s \in \mathcal{H}(U)$ and consider the set of pairs (t, V) where $V \subseteq U$ open and t is mapped to $s|_V$ along the morphism $\mathcal{G}(U) \to \mathcal{H}(U)$. Then use Zorn's Lemma.