rapaisys H.F. Mpeden pynkynu 1) Mpunep grynnym, ne u mon user modern в шуго и бескомога. $f(x) = \sin \frac{1}{x} + \sin x$ nm $x \rightarrow 0$ $\sin \frac{1}{x} \in [-1:1]$ $\sin x = 0$ np $x \rightarrow \infty$ $\sin \frac{1}{x} = 0$ $\sin x \in [-1:1]$ 2.) Trumer gegnagun, see une wiger gredens l'otro no orgadere. $f(x) = Agn(x) \begin{cases} -1, & 0 = x < 0 \\ 0, & 0 = x = 0 \\ 1, & 0 = x > 0 \end{cases}$ medera creba a capabi respobus mexoy cober $\frac{d}{dt} \frac{dom(t) = 0}{dom(t) = R}$ 3.) Ucche dola to Syricum & x = x 3 - x 2: a) $dom(f) = \mathbb{R}$, $tan(f) = \mathbb{R}$ b) nym gymen $tan(f) = \mathbb{R}$ $x^3 - x^2 = 0 \implies x^2(x-1) \implies tan(f)$ $= \begin{cases} x_{1,2} = 0 & -\left(70 \cdot e^{\frac{1}{2}} R_{parnoca} = 2\right) \\ x_{3} = 1 & \left(R_{parnoca} = 1\right) \end{cases}$ C) O T pezion zu aico no cho su cha(-0:0) - Bopuyarenbuar (0:1) - Oppresateren un (-) - nonoxuñensucul

(1:+) - ke nonoxuñensucul (1: 10) - nonoxurent aca

6)
$$(-\infty; 0)$$
 - bogga (7π ways)

 $(0: \frac{2}{3})$ - 98060 ways

 $(2: \infty)$ - 80300 coard ways

 $(2: \infty)$ - 8000 coard ways

 $(2: \infty)$ - 9000 coard w

$$\lim_{x\to\infty} \left(\frac{x+3}{x}\right)^{4x+1} = \lim_{x\to\infty} \left(1+\frac{3}{x}\right)^{\frac{4x}{x}+\frac{3}{x}} = \frac{3}{x}$$

$$= \lim_{x\to\infty} \left(1+\frac{3}{3y}\right)^{\frac{4x}{3}} \cdot \left(1+\frac{3}{3y}\right) = \frac{3}{x}$$

$$\lim_{x\to\infty} \left(1+\frac{3}{3y}\right)^{\frac{4x}{3}} \cdot \left(1+\frac{3}{3y}\right) = \frac{3}{x}$$

$$\lim_{x\to\infty} \left(1+\frac{3}{3y}\right)^{\frac{4x}{3}} \cdot \left(1+\frac{3}{3y}\right) = \frac{1}{x}$$

$$\lim_{x\to\infty} \left(1+\frac{3}{3y}\right)^{\frac{4x}{3}} \cdot \left(1+\frac{3}{3y}\right)^{\frac{4x}{3}} \cdot \left(1+\frac{3}{3y}\right)$$

$$\lim_{x\to\infty} \left(1+\frac{3}{3y}\right)^{\frac{4x}{3}} \cdot \left(1+\frac{3}{3y}\right)$$

$$\frac{1}{x - 3} = \frac{1}{(4x + \frac{3}{3})} = \frac{1}{(4x - \frac{3}{3})} = \frac{1}{$$

 $\lim_{x\to 0} \frac{\sin x + \ln x}{x} = \lim_{x\to 0} \frac{\sin x}{x} + \lim_{x\to 0} \frac{\ln x}{x}$ $\lim_{x\to 0} \frac{\sin x + \ln x}{x} = \lim_{x\to 0} \frac{\sin x}{x} + \lim_{x\to 0} \frac{\ln x}{x}$ $\lim_{x\to 0} \frac{\sin x}{x} + \lim_{x\to 0} \frac{\ln x}{x} = \lim_{x\to 0} \frac{\ln x}{x}$ $\lim_{x\to 0} \frac{\sin x}{x} + \lim_{x\to 0} \frac{\ln x}{x} = \lim_{x\to 0} \frac{\ln x}{x}$ $\lim_{x\to 0} \frac{\sin x}{x} + \lim_{x\to 0} \frac{\ln x}{x} = \lim_{x\to 0} \frac{\ln x}{x}$ $\lim_{x\to 0} \frac{\sin x}{x} + \lim_{x\to 0} \frac{\ln x}{x} = \lim_{x\to 0} \frac{\ln x}{x}$ $\lim_{x\to 0} \frac{\sin x}{x} + \lim_{x\to 0} \frac{\ln x}{x} = \lim_{x\to 0} \frac{\ln x}{x}$ $\lim_{x\to 0} \frac{\ln x}{x} + \lim_{x\to 0} \frac{\ln x}{x} = \lim_{x\to 0} \frac{\ln x}{x}$ $\lim_{x\to 0} \frac{\ln x}{x} + \lim_{x\to 0} \frac{\ln x}{x} = \lim_{x\to 0} \frac{\ln x}{x}$ $\lim_{x\to 0} \frac{\ln x}{x} + \lim_{x\to 0} \frac{\ln x}{x} = \lim_{x\to 0} \frac{\ln x}{x}$