

WHAT IS CLAIMED IS:

- 1 1. A multi-aperture high-fill-factor telescope comprising:
2 a plurality of sub-aperture telescopes, each sub-aperture telescope being
3 configured to collect electromagnetic radiation from a scene and including first, second,
4 third, and fourth powered mirrors;
5 a set of combiner optics configured to combine electromagnetic radiation
6 collected by the sub-aperture telescopes to form an image of the scene; and
7 a plurality of sets of relay optics, the sets of relay optics are respectively
8 associated with the sub-aperture telescopes and each set of relay optics includes a first flat
9 fold mirror, a trombone mirror pair, and a last flat fold mirror, wherein the last flat fold
10 mirrors are disposed within about a beam diameter of respective exit pupils of the sub-
11 aperture telescopes.

- 1 2. The multi-aperture high-fill-factor telescope of claim 1, wherein the
2 last flat fold mirrors are disposed substantially symmetrically about a central axis.

- 1 3. The multi-aperture high-fill-factor telescope of claim 1, wherein
2 each of the first and second powered mirrors of the sub-aperture telescopes form a first
3 Cassegrain telescope and each third and fourth powered mirrors of the sub-aperture
4 telescopes form a second Cassegrain telescope.

- 1 4. The multi-aperture high-fill-factor telescope of claim 1, wherein
2 each of the first and second powered mirrors of the sub-aperture telescopes forms a
3 Gregorian telescope and each third and fourth powered mirrors of the sub-aperture
4 telescopes form a Cassegrain telescope.

- 1 5. The multi-aperture high-fill-factor telescope of claim 1, wherein
2 each of the first and second powered mirrors of the sub-aperture telescopes form a
3 Cassegrain telescope and each third and fourth powered mirrors of the sub-aperture
4 telescopes form a Gregorian telescope.

- 1 6. The multi-aperture high-fill-factor telescope of claim 1, wherein the
2 set of combiner optics form a combiner telescope.

1 7. The multi-aperture high-fill-factor telescope of claim 6, wherein the
2 exit pupils are located about at an entrance pupil of the combiner telescope.

1 8. The multi-aperture high-fill-factor telescope of claim 1, wherein the
2 exit pupils are located about at the last flat fold mirrors.

1 9. The multi-aperture high-fill-factor telescope of claim 1, wherein the
2 first, second, third, and fourth powered mirrors of each telescope are configured to correct
3 for sine magnification errors.

1 10. A multi-aperture high-fill-factor telescope comprising:
2 a plurality of sub-aperture telescopes, each sub-aperture telescope including
3 at least first, second, third, and fourth powered mirrors and an exit pupil disposed optically
4 remote from an associated sub-aperture telescope;
5 a plurality of sets of relay optics disposed optically downstream from the
6 plurality of sub-aperture telescopes and each set of relay optics includes a first flat fold
7 mirror, a trombone mirror pair, and a last flat fold mirror, wherein each last flat fold mirror
8 is disposed within about a beam diameter of an associated exit pupil; and
9 a combiner telescope disposed optically downstream from the sets of relay
10 optics.