

Truth Tables

Topics on truth tables:

- Definition of the propositional operators
- Valuations, evaluating complex formulas
- Special kinds of formulas: satisfiable, unsatisfiable, tautology
- Using truth tables to decide if an inference is valid

Truth Tables: defining and, or, not

Truth tables define the semantics of the propositional operators

ϕ	$\neg \phi$
F	T
T	F

ϕ	ψ	$\phi \wedge \psi$
F	F	F
F	T	F
T	F	F
T	T	T

ϕ	ψ	$\phi \lor \psi$
F	F	F
F	T	T
T	F	T
T	T	T

- Invented by:
 - C.S. Peirce (1893), Ludwig Wittgenstein (1912), Emil Post (1920)
- If you prefer, use 0 for "false" and 1 for "true".

Truth Tables: compound propositions

Truth tables can also be used to *calculate the values* for compound propositions.

Example: write out the truth table for $(p \lor q) \land \neg (p \land q)$

р	q	(<i>p</i>	V	q)	^	_	(<i>p</i>	\wedge	q)	
0	0									
0	1									
1	0									
1	1									

Truth Tables: implication and equivalence

You may not have seen these ones before:

ϕ	ψ	$\phi \rightarrow \psi$
F	F	T
F	T	T
T	F	F
T	T	T

ϕ	ψ	$\phi \leftrightarrow \psi$
F	F	T
F	T	F
T	F	F
T	T	T

Truth Tables: all five propositional operators

$$egin{array}{c|c} \phi & \neg \phi \\ \hline 0 & 1 \\ 1 & 0 \\ \hline \end{array}$$

ϕ	ψ	$\phi \wedge \psi$	$\phi \lor \psi$	$\phi \to \psi$	$\phi \leftrightarrow \psi$
			0	1	1
0	1	0	1	1	0
1	0	0	1	0	0
1	1	0 1	1	1	1

One way of remembering these is to treat ϕ and ψ as numbers:

$$\neg \phi$$

$$\phi \lor \psi$$
 $max(\phi, \psi)$

$$\phi \to \psi$$

$$\phi \leftrightarrow \psi$$

$$\phi = \psi$$

Truth Tables: more complex propositions (again)

Example: write out the truth table for $(\neg(p \lor q) \to r)$

р	q	r	(¬	(p	V	q)	\rightarrow	r)	
0	0	0							
0	0	1							
0	1	0							
0	1	1							
1	0	0							
1	0	1							
1	1	0							
1	1	1							

Wason selection task

A test to see if you understand **implication**:

- Four cards
- Each card has a number on one side, and a patch of color on the other.

Which card(s) must be turned over to test the idea that if a card shows an even number on one face, then its opposite face is red?

Devised by Peter Cathcart Wason (1966). See: Wikipedia, or textbook §2.12

Valuations

- In propositional logic, a *valuation* corresponds to a single row in the truth table.
- Notation:
 - $V \models \varphi$ means "the proposition φ is *true* under the valuation V"
 - $V \not\models \varphi$ means "the proposition φ is *false* under the valuation V"

Valuations

- In propositional logic, a valuation corresponds to a single row in the truth table.
- Notation:
 - $V \models \varphi$ means "the proposition φ is *true* under the valuation V" $V \not\models \varphi$ means "the proposition φ is *false* under the valuation V"
- Example: Suppose we let V(p) = 0 and V(q) = 1Decide which of the following are correct **using their syntax trees**:
 - $V \models p \land q \lor p$
 - $V \models p \rightarrow (\neg p \rightarrow q)$
 - $V \models p \rightarrow (q \rightarrow p)$
 - $V \models p \lor \neg p$
 - $V \models p \leftrightarrow (p \lor q)$