

Relatório do Trabalho Integrado PREVISÃO APLICADA A ENERGIA

Índice

Intro	dução	3
Variáveis em Estudo		4
1.	Previsão de Consumos	4
2.	Previsão de Produção Eólica	6
3.	Previsão de Produção Hídrica	8
4.	Previsão de Produção de Cogeração+Solar	10
5.	Previsão Térmica de Nuclear	12
6.	Previsão Térmica de Carvão	13
7.	Previsão Térmica de Ciclo Combinado	15
8.	Previsão de Exportação	16
8.	Previsão de Preços MIBEL	18
Concl	lusão	20

Introdução

Neste trabalho será considerado um conjunto de dados horários de produção, consumos e preços de mercado do sistema ibérico de eletricidade. Com base nestes dados horários, pretende-se criar modelos de previsão para o dia seguinte D+1. Pretende-se modelos de previsão que realizam previsões às 0h do dia D, prevendo para cada hora do dia D+1. Para estas previsões o estudante deverá partir do princípio que às 0h do dia D terá dados reais de produção e consumo até ao dia D-1 inclusive, consumo, preços MIBEL até dia D, inclusive e, previsões meteorológicas para o dia D+1, podendo estes dados ser usados como entrada dos modelos.

Variáveis em Estudo

Para cada previsão foram elaborados diferentes estudos em torno das diferentes variáveis disponibilizadas com o objetivo de encontrar o menor erro para assim obter a melhor rede neuronal possível que permitisse uma melhor previsão.

1. Previsão de Consumos

• Caso 1:

Variáveis em estudo: [Consumo(D-1), Consumo(D-6), Hora]

Erro obtido: 7,4%

• Caso 2:

Variáveis em estudo: [Consumo(D-6), Hora]

Erro obtido: 6,1%

• Caso 3:

Variáveis em estudo: [Consumo(D-6), Hora, Mês(D+1)]

Erro obtido: 5,89%

Como o menor erro foi obtido para o **caso 3**, as suas variáveis foram assim as escolhidas para prever os consumos.

Desta forma, o consumo futuro, ou seja, o consumo D+1 será fortemente influenciado pelo **consumo da semana anterior**, bem como pela **hora** e pelo **mês**. Para diferentes horas ao longo de um dia existem variações, isto é, momentos de maior consumo, por exemplo, na indústria o consumo é maioritariamente durante o dia logo para uma previsão futura será importante ter estes casos em consideração. Da mesma forma o mês é importante pois há meses em que o consumo é bastante maior como, por exemplo, nos meses do Inverno o aumento do consumo por parte dos aquecedores elétricos.

Regressão do consumo

Previsão real (preto) vs Previsão da rede (vermelho)

Como é possível verificar pelos gráficos acima, do lado esquerdo a regressão apresenta o comportamento esperado para um erro de aproximadamente 6%, isto é, os pontos obtidos que representam os valores obtidos para o consumo aproximam-se ligeiramente da linha

Universidade do Porto - Faculdade de Engenharia Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Técnicas para Previsão — 2019/20

ideal a azul. Do lado direito temos a sobreposição da previsão real,

representada a preto, e da previsão por parte da rede neuronal treinada,

a vermelho, onde é possível observar uma sobreposição considerável

entre ambas. Assim sendo, concluímos que a rede está bem treinada e

pronta para fazer a previsão futura.

2. Previsão de Produção Eólica

• Caso 1:

Variáveis em estudo: [Direção(D+1), Eólica (D-1), Vento(D+1)]

Erro obtido: 29,1%

• Caso 2:

Variáveis em estudo: [Eólica (D-1), Vento(D+1)]

Erro obtido: 31,1%

Relativamente à produção eólica sendo esta uma energia renovável

dependente da energia do vento seria de esperar que as variáveis que

melhor se enquadrariam na previsão estariam também fortemente

envolvidas com o vento.

Sendo assim, o caso 1 será o que origina um menor erro com as variáveis

da direção do vento, da energia eólica do dia anterior e a própria variável

do vento em si.

Regressão do Eólica

Previsão real (preto) vs Previsão da rede

Como é possível verificar pelos gráficos acima, do lado esquerdo a regressão apresenta o comportamento esperado para um erro obtido de cerca de 31%, isto é, os pontos obtidos que representam os valores obtidos para a eólica estão ligeiramente afastados da linha ideal a azul devido ao erro ser considerável. Do lado direito temos a sobreposição da previsão real, representada a preto, e da previsão por parte da rede neuronal treinada, a vermelho, onde é possível observar alguma sobreposição entre ambas, mas já com ligeiras diferenças novamente devido ao valor do erro. Assim sendo, concluímos que a rede está bem treinada e pronta para fazer a previsão futura da energia eólica.

3. Previsão de Produção Hídrica

• Caso 1:

Variáveis em estudo: [Hídrica(D-1), Hídrica(D-6), Pluviosidade]

Erro obtido: 41,2%

• Caso 2:

Variáveis em estudo: [Hídrica(D-1), Hídrica(D-6), Pluviosidade, Mês]

Erro obtido: 38,99%

Para o caso da produção de energia hídrica, uma energia obtida a partir da energia potencial de uma massa de água, será um fator importantíssimo o nível de pluviosidade bem como a energia hídrica da semana anterior e do dia anterior. O mês será também considerável pois, por exemplo, verificam-se meses com um índice de pluviosidade maior que corresponderão a uma maior massa de água e por sua vez a uma produção acrescida de energia hídrica.

Regressão do Hídrica

Previsão real (preto) vs Previsão da rede

Como é possível verificar pelos gráficos acima, do lado esquerdo a regressão apresenta o comportamento esperado para um erro de quase 40%, isto é, os pontos obtidos que representam os valores obtidos para a energia hídrica já se encontram consideravelmente afastados da linha ideal a azul devido ao alto valor do erro. Do lado direito temos a sobreposição da previsão real, representada a preto, e da previsão por parte da rede neuronal treinada, a vermelho, onde é possível observar alguma, mas pouca sobreposição entre ambas. Assim sendo, concluímos que a rede está bem treinada e pronta para fazer a previsão futura da energia hídrica.

4. Previsão de Produção de Cogeração+Solar

• Caso 1:

Variáveis em estudo: [Cogeração+Solar(D-1), Cogeração+Solar(D-6)]

Erro obtido: 12,19%

• Caso 2:

Variáveis em estudo: [Cogeração+Solar (D-1), Irradiância]

Erro obtido: 9,48%

• Caso 3:

Variáveis em estudo: [Cogeração+Solar (D-1), Cogeração+Solar (D-6),

Irradiância]

Erro obtido: 13,33%

A produção de Cogeração+Solar é sustentada pela energia do sol e pela utilização combinada de calor e eletricidade. Como tal será importante ter em conta a produção da mesma no dia anterior bem como da irradiância solar. O caso 2 apresenta o menor erro.

Regressão do Cogeração+Solar

Previsão real (preto) vs Previsão da rede

Como é possível verificar pelos gráficos acima, do lado esquerdo a regressão apresenta o comportamento esperado para um erro de cerca de 13%, isto é, os pontos obtidos que representam os valores obtidos para a energia de Cogeração+Solar que se aproximam da linha ideal a azul. Do lado direito temos a sobreposição da previsão real, representada a preto, e da previsão por parte da rede neuronal treinada, a vermelho, onde é possível observar uma sobreposição considerável entre ambas isto porque o erro obtido nem é muito alto nem muito baixo. Assim sendo, concluímos que a rede está bem treinada e pronta para fazer a previsão futura da energia de Cogeração+Solar.

5. Previsão Térmica de Nuclear

• Caso 1:

Variáveis em estudo: [Nuclear(D-1), Nuclear(D-6)]

Erro obtido: 2,5%

Para a previsão da térmica nuclear apenas consideramos um único caso devido ao baixo erro obtido. Neste caso a energia nuclear do dia anterior e da semana anterior.

Regressão do Nuclear

Previsão real (preto) vs Previsão da rede

Como é possível verificar pelos gráficos acima, do lado esquerdo a regressão apresenta o comportamento quase perfeito devido ao baixo erro de cerca de 2,5% onde vemos os pontos obtidos que representam os valores obtidos para a energia nuclear que se aproximam da linha ideal

a azul. Do lado direito temos a sobreposição da previsão real,

representada a preto, e da previsão por parte da rede neuronal treinada,

a vermelho, onde é possível observar uma quase sobreposição total entre

ambas. Assim sendo, concluímos que a rede está bem treinada e pronta

para fazer a previsão futura da energia de nuclear.

6. Previsão Térmica de Carvão

• Caso 1:

Variáveis em estudo: [Carvão(D-1), Carvão (D-6)]

Erro obtido: 27,34%

• Caso 2:

Variáveis em estudo: [Carvão(D-1), Carvão (D-6), Preço(D-6), Preço(D)]

Erro obtido: 23,25%

Inicialmente para a previsão do carvão tínhamos apenas usado as

variáveis do mesmo da semana e do dia anterior. Não ficamos satisfeitos

com o valor do erro então decidimos que o preço MIBEL iria ser também

um fator a ter em consideração.

O caso 2 foi então o que registou um menor erro e, portanto, foi o modelo

escolhido.

Regressão do Carvão

Previsão real (preto) vs Previsão da rede

Como é possível verificar pelos gráficos acima, do lado esquerdo a regressão apresenta o comportamento esperado, isto é, os pontos obtidos que representam os valores obtidos para a energia térmica do carvão que se aproximam da linha ideal a azul. Do lado direito temos a sobreposição da previsão real, representada a preto, e da previsão por parte da rede neuronal treinada, a vermelho, onde é possível observar uma quase sobreposição total entre ambas. Assim sendo, concluímos que a rede está bem treinada e pronta para fazer a previsão futura da energia térmica do carvão.

7. Previsão Térmica de Ciclo Combinado

• Caso 1:

Variáveis em estudo: [GásNatural(D-1), GásNatural (D-6)]

Erro obtido: 38,13%

• Caso 2:

Variáveis em estudo: [GásNatural (D-1), GásNatural (D-6),

DiadaSemana(D), Consumo(D-6)]

Erro obtido: 34,20%

Relativamente ao gás natural as variáveis que minimizaram o erro foram os valores para o gás natural do dia e da semana anterior, o dia da semana e o consumo da semana anterior.

Regressão do Gás Natural

Previsão real (preto) vs Previsão da rede (vermelho)

Como é possível verificar pelos gráficos acima, do lado esquerdo a regressão apresenta o comportamento esperado para um erro de quase 35% onde temos pontos a representar os valores obtidos para a energia térmica de ciclo combinado que se distanciam um pouco da linha ideal a azul. Do lado direito temos a sobreposição da previsão real, representada a preto, e da previsão por parte da rede neuronal treinada, a vermelho, onde é possível observar uma boa sobreposição entre ambas e um comportamento semelhante. Assim sendo, concluímos que a rede está bem treinada e pronta para fazer a previsão futura da energia térmica de ciclo combinado.

8. Previsão de Exportação

• Caso 1:

Variáveis em estudo: [Exportação(D-1), prod_total-Consumo(D-1)];

Erro obtido: 109,75%

Regressão do Exportação

Previsão real (preto) vs Previsão da rede

Para a previsão da variável "Exportação" seguimos um método diferente das outras variáveis calculadas anteriormente que consistiu na criação de uma nova variável "prod_total" que soma todas as variáveis que produzem energia. De seguida calculamos a exportação simplesmente fazendo a subtração da nova variável (energia produzida total) pelos valores do consumo total.

Como é possível verificar pelos gráficos acima, do lado esquerdo a regressão apresenta o comportamento esperado para, neste caso, um erro elevado acima dos 100% em que os pontos obtidos que representam os valores obtidos para **a exportação** se encontram consideravelmente distanciados da linha ideal a azul.

O mesmo se verifica para o gráfico da direita em que vemos uma diferença considerável e uma menor sobreposição entre a previsão real a preto e a previsão da nossa rede neuronal a vermelho.

8. Previsão de Preços MIBEL

• Caso 1:

Variáveis em estudo: [Preço(D-1), Hora]

Erro obtido: 29,19%

• Caso 2:

Variáveis em estudo: [Preço (D-6), Hora, Consumo(D-6)]

Erro obtido: 21,0033%

Em relação à variável do preço MIBEL, esta está relacionada com o consumo energético e considerando que a diferentes consumos correspondem diferentes horários será considerado para a previsão o caso 2.

Regressão do Preço Mibel

Previsão real (preto) vs Previsão da rede

Como é possível verificar pelos gráficos acima, do lado esquerdo a regressão apresenta o comportamento esperado para um erro de cerca de 30% em que já se nota alguma distancia entre os pontos obtidos que representam os valores obtidos para os preços MIBEL que se distanciam ligeiramente da linha ideal a azul. Do lado direito temos a sobreposição da previsão real, representada a preto, e da previsão por parte da rede neuronal treinada, a vermelho, onde é possível observar sobreposição entre ambas, mas já com alguns picos onde não se verifica sobreposição. Assim sendo, concluímos que a rede está bem treinada e pronta para fazer a previsão futura dos preços MIBEL.

Conclusão

Em suma, os objetivos pretendidos foram atingidos com sucesso. Os valores obtidos para os erros encontram-se todos dentro do que era espectável o que é facilmente comprovado pelos gráficos apresentados para cada variável onde se verifica a variação de cada erro em função do valor real que era previsto.

Consideramos este trabalho bastante importante para uma melhor aprendizagem ao nível das redes neuronais em ambiente MATLAB o que poderá ser bastante útil para a nossa restante formação futura.