Copen Digital Power

Table of content

- OwnTech Values
- Power Electronics Ergonomics
- OwnTech solution Overview
- Development philosophy

Our Values

Democratize access to power electronics

Democratize access to power electronics

Power Electronics User Experience

Ergonomics: Integrate the experience

Vision

Ergonomics: Know your community

General User

Beginner developer

Experienced developer

Advanced developer

Software defined power converters

Beginner developer

Advanced developer

Key Features

Easy-to-use

Fully safety-focused

Reprogrammable

Stackable

Stackable and reprogrammable power hardware

Beginner developer

Advanced developer

Values

Vision

Ftr. Work

Solution

Key Features

Easy-to-use

Fully safety-focused

Reprogrammable

Stackable

Ultra wide V-I range Software defined power converter

Vision

Values

Key Features

OwnTech converter operates in one of the mode above.

This conversion mode can be from

High side to Low side, Low side to High side Low side to Low side⁽¹⁾ High side to High side⁽¹⁾

(1) Except for 3Φ to 3Φ

Low-Side Synchronous Buck

PV MPPT

Battery charge/discharge

Droop control

DC-power micro-grid

Variable	Value
P _{Rated}	300W
F _{switch}	200kHz
I _{I_Low} max	16A
V _{I_Low1/2} range	12 to 80V
V _{I_High} range	60 to 90V

Low-Side Synchronous Buck DC-DC interleaved boost case

Battery charge/discharge

Stand-alone PV system

DC-power micro-grid

Variable	Value
T_{N_GND}	ON
Function	Interleaved Boost
Vin	24V
Vout	V_{I_High}
Vref	50V

Low-Side Synchronous Buck DC-DC interleaved buck case

Battery charge/discharge

Stand-alone PV system

DC-power micro-grid

Variable	Value
T_{N_GND}	ON
Function	Interleaved Buck
Vin	50V
Vout	V_{I_Low1} and/or V_{I_Low2}
Vref	24V

Low-Side Synchronous Buck DC-AC buck inverter case

Small mobility (1 of 3 phases)

Control system prototyping

Variable	Value
T_{N_GND}	OFF
Function	Buck 1phase inverter
Vin	110V
Vout	V _{I_Low1} - V _{I_Low2}
Vref _{PK}	55V
Vref _{RMS}	38.9V 15

Low-Side Synchronous Buck DC-AC buck inverter case

Small mobility (3 phases)

Control system prototyping

Motion control

Variable	Value
T_{N_GND}	OFF
Function	Buck 3phase inverter
Vin	110V
Vout	V _{I_Low1} - V _{I_Low2}
Vphase _{RMS}	38.9V
Vline _{RMS}	67.4V 16

Dual Active Bridge

Galvanic isolation

MVDC bus

Variable	Value
P _{Rated}	300W
F _{switch}	200kHz
V _{I_High} range	60 to 90V
V _{II_High} range	350 to 450V

High-Side Synchronous Buck

PV MPPT

1-phase AC

3-phase motor control

DC-power micro-grid

Variable	Value
P _{Rated}	300W
F _{switch}	200kHz
V _{II_Low1/2} range	350 to 450V
V _{II_High} range	80 to 320V

Solid-State Transformer Power architecture

Operating ranges for a single block

Variable	Value
P _{Rated}	300W
F _{switch}	200kHz
I _{I_Low} max	16A

Variable	Value
V _{I_Low1/2} range	12 to 80V
V _{I_High} range	60 to 90V
V _{II_High} range	350 to 450V
V _{II_Low1/2} range	80 to 320V

STM32 based digital architecture

Key features

Digital architecture easy to control and reprogram

Develop your own power application with ease

Thought with longevity and expansion in mind

STM32 based digital architecture Open source solution

Ftr. Work

Solution

Values

Vision

Simplified GUI for standard libraries Back-End

Beginner developer

OwnTech IDE

Key features

STM32-based digital architecture

Simplified front-end for moduleoriented development

Powerful Open-Source RTOS on back-end to simplify maintenance and provide community support

Other IDEs

Key features

Matlab based experience

Interface directly with STM32

User interface summary

Key features

There are three possible interfaces

Two are totally open source

The third one is more compatible to current academic and industrial uses

Simple and open data monitoring

Front-End

Experienced developer

Back-End

Advanced developer

Key features

A highly intuitive FrontEnd

Easy to observe data and create dashboards

An open-source back end where advanced developers can collaborate

Advanced funcitons as pay-asyou-go and predictive maintenance

General

User

Project status - Community

25%

50%

- WordPress website recently created, ready to deploy communication material and documentation
- GitLab with design files, manufacturing files already online

- Engaged with researchers, developers, ready to give a hand as soon as the prototype is available
- Engaged with Zephyr-OS developers

Project status

Accessible: Make it durable

Accessible: Long-term support

Accessible: Decentralized growth

Accessible: Open-source is the key

Accessible: Our open-source licenses

- ✓ Design files are published
- ✓ Assembly instructions are published
- ✓ A bill of materials is published
- ✓ A contribution guide is published
- ✓ The published CAD files are in editable format
- ✓ The published assembly instructions are in editable format
- ✓ The published bill of materials is in editable format
- ✓ All this information is published under a license allowing commercial reuse

CopyLefted - Hosted by CNRS

Accessibility: Open Solutions Library

Open Solutions Library

Practical and Experimental

- ✓ Industrial collaboration
- ✓ Maker community inclusion

CopyLefted - Hosted by CNRS

Theory and methods

- ✓ Academic community inclusion
- Engage into collaborative and citizen Science

OwnTech future: Foundation and SME

Holds the PI for the Tool
Caretaker for the
community
Hosts the shared data
from the community

Creates new solutions on demand
Enables industry transition towards open-source hardware

37

Ftr. Work

Open CANVERTER project

ERIGRID Transnational Access call

- ✓ EU funded project
- ✓ Open calls for access to micro-grid infrastructure in Europe
- ✓ The team has successfully participated in 3 previous TAs (Evalloggers, Spearhead and H2AI)

Factsheet

- √ 2 to 3 weeks access
- ✓ National Technical University of Athens
- ✓ Late July to early August
- √ 4 participants
 - ✓ Guillermo Catuogno Argentina
 - ✓ Martin Jager Germany
 - ✓ Jean Alinei France
 - ✓ Luiz Villa Brazil/Portugal

Objective

√ To test the use of ThingSet in order to coordinate power conversion for the three main functions of teh low side synchronous buck converter

Low Side Synchronous Buck functions

DC to 1Φ AC

Values

Vision

Solution

Ftr. Work

Open CANVERTER project

Experiment 1

- ✓ DC-DC power conversion
- ✓ 2 to 10 power converters connected in parallel

Experiment 3

- ✓ DC-DC and DC-AC single phase power conversion connected to the same DC bus
- ✓ 2 to 5 power converters connected in parallel for each function
- ✓ Data acquisition and communication between the micro-grid and the RTDS system

Experiment 2

- ✓ DC-AC single phase power conversion
- ✓ 2 to 10 power converters connected in parallel

Values

Vision

Solution

Ftr. Work

General Open CANVERTER test setup

Test setup description

- Converters connected in parallel to the same load
- ✓ Tests performed with an RTDS system simulating a power source
- ✓ A communication between ThingsBoard and the industrial RTDS system is currently under study

Open CANVERTER Team

Thank you!

Any questions?

