Определение 1. Пусть L/K — расширение полей (т. е. K — подполе поля L). Тогда L можно рассматривать как векторное пространство над K. Размерность [L:K] этого пространства называется cmenehoo расширения. Расширение, имеющее конечную степень, называется konevenum.

Задача 1. Чему равна **a)** степень $[\mathbb{C}:\mathbb{R}];$ **б)** степень $[\mathbb{F}_4:\mathbb{F}_2]?$

Задача 2. а) Если поле из p элементов вложено в поле из q элементов, то число q — степень числа p. 6) Количество элементов конечного поля — степень простого числа.

Задача 3. а) Расширение $K(\sqrt{d})/K$ имеет степень 2.

б) Если P — неприводимый многочлен степени n, то [K[x]/(P):K]=n.

Задача 4. а) Если есть башня из трех полей $F \subset K \subset L$, то $[L:F] = [L:K] \cdot [K:F]$.

б) Если L/F — расширение полей степени n, то степень любого промежуточного расширения K/F делит число n.

Задача 5. Найдите **a)** $[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}(\sqrt{3})];$ **б)** $[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}];$ **в)** $[\mathbb{Q}(\sqrt{2}+\sqrt{3}):\mathbb{Q}].$

Определение 2. Пусть на плоскости введена система координат. Будем сопоставлять каждому набору $\mathcal K$ точек подполе K действительных чисел, порожденное всеми координатами этих точек.

Задача 6. Коэффициенты уравнения

- **a)** прямой, проходящей через пару точек из \mathcal{K} ;
- **б)** окружности с центром в точке из $\mathcal K$ и проходящей через точку из $\mathcal K$ лежат в K.

3адача 7. Пусть $\mathcal L$ получается из $\mathcal K$ добавлением точки пересечения

- а) двух прямых; б) прямой и окружности; в) двух окружностей с коэффициентами из K. Чему может равняться степень расширения L/K?
- **Задача 8.** Если число α можно получить из элементов поля $K \subset \mathbb{R}$ при помощи циркуля и линейки, то $[K(\alpha):K]$ степень двойки.

Задача 9. Циркулем и линейкой нельзя построить отрезок в $\sqrt[3]{2}$ длиннее данного (то есть задача об удвоении куба не имеет решения).

Задача 10. Найдите минимальный многочлен числа **a)** $\cos \frac{\pi}{9}$; **b)** $\cos \frac{\pi}{5}$; **в)*** $\cos \frac{\pi}{7}$. Указание. Используйте равенства вида $\cos n\varphi = \cos m\varphi$.

Задача 11. Задача о трисекции угла не имеет решения.

Задача 12. а) Конечное расширение алгебраично¹. (Верно ли обратное?)

б) Если расширение порождено (как поле) конечным набором алгебраических элементов, то оно конечно и его степень не превосходит произведения степеней этих элементов.

Задача 13. Если L/K — произвольное расширение, то множество его элементов, алгебраичных над K, образует поле (в частности, алгебраические числа образуют поле).

$\begin{bmatrix} 1 \\ a \end{bmatrix}$	1 6	2 a	2 6	3 a	3	4 a	4 6	5 a	5 6	5 B	6 a	6	7 a	7 б	7 B	8	9	10 a	10 б	10 B	11	12 a	12 6	13

 $^{^{1}}$ Определение можно найти в листке «Расширения полей I».