GTI Uebungsblatt 3

Max Springenberg, 177792

3.1

1.

Das entfernen aller Zustände von A, die nicht von s aus erreichbar sind resultiert in dem Entfernen von 7 und 8.

2.

Die daraus resultierende Relation N(A) und die jewiligen Zustandspaare lassen sich aus folgender Tabelle ablesen.

	1	2	3	4	5	6
1	-	x^0	x^2	x^2	x^0	
2	-	-	x^1	x^0	x^1	x^0
3	-	-	-	x^0	x^1	x^2
4	-	-	-	-	x^1	x^2
5	-	-	-	-	-	x^0
6	-	-	-	-	-	-
0						

3.

Das Verschmelzen der nicht markierten Zustände liefert den Folgenden Automaten.

- 3.2 Sei $L = \{w \in \{a,b\} | |w| > 1 \text{ und der vorletzte Buchstabe in } \mathbf{w} \text{ ist ein } \mathbf{b} \}$
- 3.2.1 Geben Sie fur jede Aquivalenzklasse der Nerode-Relation \sim_L einen Reprasentanten an. Geben Sie auerdem fur je zwei verschiedene dieser Reprasentanten x_i und x_j ein Wort z_{ij} an, das bezeugt, dass x_i und x_j verschiedene Aquivalenzklassen reprasentieren. Es soll also gelten $x_iz_{ij} \in L \Leftrightarrow x_jz_{ij} \in L$ fur alle Reprasentanten x_i, x_j mit $x_i \neq x_j$.

Mögliche Representationen für die Äquivalenzklassen sind $x_1 = aa, x_2 = ab, x_3 = ba, x_4 = bb$ mit:

 $aa \not\sim_L ab \text{ mit } z = a$

 $ba \not\sim_L ab$ mit $z = \epsilon$

 $ba \not\sim_L aa \text{ mit } z = \epsilon$

 $bb \not\sim_L aa \text{ mit } z = \epsilon$

 $bb \not\sim_L ab \text{ mit } z = \epsilon$

 $bb \not\sim_L ba \text{ mit } z = a$

Da dies vier Representationen, zu je einer Äquivalenzklasse angegeben wurden und nach Aufgabenstellung nur 4 Äquivalenzklassen existieren, wurde zu jeder Äquivalenzklasse eine Representation angegeben.

3.2.2 Geben Sie einen minimalen DFA A an, so dass L(A) = L gilt. Begründen Sie sowohl, dass A die Sprache L entscheidet, als auch, dass A minimal ist.

$$L(A) = L$$
:

$$L(A) \subseteq L$$
:

Annahme $L(A) \not\subseteq L$, dann $\exists w \in L(A) : w \not\in L$

Alle Wörter $w \in L(A)$ sind länger als 1, da es mindestens 2 Transitionen bedarf um in einen akzeptierenden Zustand zu wechseln. Des weiteren gilt, dass alle Wörter genau dann akzeptiert werden, wenn die vorletzte Transition nach einlesen aller Zeichen, durch ein b erfolgte.

1. Fall $|w| \leq 1$:

 $w \not\in L(A) \land w \not\in L$

2. Fall $w = va\sigma, v \in \{a, b\}^*, \sigma \in \{a, b\}$:

 $w \not\in L(A) \land w \not\in L$

 \nleq es muss gelten $L(A) \subseteq L$

$L \subseteq L(A)$:

Annahme $L \not\subseteq L(A)$, dann $\exists w \in L : w \not\in L(A)$

Alle Wörter aus L sind definiert als länger als 1 und mit einem b als vorletztes Zeichen.

1. Fall |w| < 1:

Wörter aus L(A) muessen länger als 1 sein, da es mindestens zwei Transitionen bedarf um in einen akzeptierenden Zustand zu wechseln.

 $w \not\in L \land w \not\in L(A)$

2. Fall $w = va\sigma, v \in \{a, b\}^*, \sigma \in \{a, b\}$:

Es wird nur in einen akzeptierenden Zustand gewechselt, wenn die Vorletzte Transition durch ein b erfolgte.

 $w \not\in L(A) \land w \not\in L$

 \not es muss gelten $L \subseteq L(A)$

Damit muss dann auch gelten L(A) = L

Ein minimaler DFA hat soviele Zustände, wie Äquivalenzklassen zu der Nerode Relation, der durch diesen entschiedene Sprache existieren. A hat vier Zustände und es wurde gezeigt, dass L(A) = L

gilt und dass L
 vier Äquivalenzklassen enthaelt. Damit ist ${\cal A}$ minimal.

- 3.3
- 3.3.1
- 3.3.2
- 3.3.3
- 3.3.4
- 3.4
- •••
- 3.4.1
- 3.4.2