Électromagnétisme S19 Induction Électromagnétique

Iannis Aliferis

Université Nice Sophia Antipolis

Induction électromagnétique	2
Expériences de Faraday	3
Loi de Faraday, forme intégrale	4
Circuit en mouvement	5
Aimant en mouvement	
Champ magnétique variable	
Loi de Faraday, forme intégrale	8
Loi de Faraday, forme locale	9
Loi de Faraday (forme locale)	10
Le champ électrique induit	11
Le champ électrique induit	12
Loi du flux magnétique	13
La loi du flux magnétique	
Opposition fem / variation flux magnétique dans un circuit en mouvement	15
La fem s'oppose aux variations du flux magnétique	16
La fem crée une force magnétique d'opposition	17
Loi de Lenz	18
La loi de Lenz	19

Induction électromagnétique

Expériences de Faraday

- ▼ Michael Faraday (1831)
- ▼ « Puisque I crée \vec{B} ...[loi Biot Savart] [loi Ampère] est-ce que \vec{B} crée I? »

- **▼** Conclusion : ce n'est pas \vec{B} qui crée I... mais les *changements* de \vec{B} !
- ▼ (Courant = électrons en mouvement)
- lacktriangle La variation de $ec{B}$ crée un champ $ec{E}$!!!
- ▼ « Champ électrique *induit* »

3

Loi de Faraday, forme intégrale

4

[fem circuit mouvement]

$$\mathsf{fem}_1 = -\frac{\mathrm{d}\Phi_B}{\mathrm{d}t}$$

- ▼ fem due au *mouvement*
- $lacktriangledown\ ec{f}$: force magnétique par charge
- ▼ (aucun nouveau phénomène)

Aimant en mouvement

$$\begin{split} \text{fem}_2 &= -\frac{\mathrm{d}\Phi_B}{\mathrm{d}t} \\ \text{fem}_2 &= \text{fem}_1 \end{split}$$

- ▼ Circuit au repos
- ▼ Pas de force magnétique!
- ▼ Quelle force sur les charges?

6

Champ magnétique variable

$$\begin{split} \mathsf{fem}_3 &= -\frac{\mathrm{d}\Phi_B}{\mathrm{d}t} \\ \mathsf{fem}_3 &= \mathsf{fem}_2 = \mathsf{fem}_1 \end{split}$$

- ▼ Circuit au repos
- ▼ Pas de force magnétique!
- ▼ Quelle force sur les charges?

Loi de Faraday, forme intégrale

▼ Cas de champ magnétique variable dans le temps

$$\begin{split} \mathsf{fem} &= -\frac{\mathrm{d}\Phi_B}{\mathrm{d}t} \\ \oint_{\Gamma} \vec{\boldsymbol{f}} \cdot \hat{\boldsymbol{t}} \, \mathrm{d}l &= -\int_{S} \frac{\partial \vec{\boldsymbol{B}}}{\partial t} \cdot \hat{\boldsymbol{n}} \, \mathrm{d}S \end{split}$$

- ▼ fem due à l'[induction]
- ▼ Force par charge : le champ électrique induit

$$\oint_{\Gamma} \vec{E} \cdot \hat{t} \, dl = -\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot \hat{n} \, dS$$
(1)

- $\mathbf{v} \oint_{\Gamma} \vec{\mathbf{E}} \cdot \hat{\mathbf{t}} \, \mathrm{d}l \neq 0!!!$
- ▼ On ne peut plus définir un [potentiel électrostatique]
- ▼ [champ électrique induit] : non conservatif
- ▼ fem due au mouvement + induction : [loi flux magnétique]

c

9

Loi de Faraday, forme locale

Loi de Faraday (forme locale)

▼ [Loi Faraday intégrale] :

$$\oint_{\Gamma} \vec{E}(\vec{r}, t) \cdot \hat{t} \, dl = -\int_{S} \frac{\partial \vec{B}(\vec{r}, t)}{\partial t} \cdot \hat{n} \, dS$$

▼ Appliquer théorème de Stokes [théorème rotationnel] :

$$\int_{S} \overrightarrow{\mathbf{rot}} \, \vec{E}(\vec{r}, t) \cdot \hat{\boldsymbol{n}} \, dS = -\int_{S} \frac{\partial \vec{B}(\vec{r}, t)}{\partial t} \cdot \hat{\boldsymbol{n}} \, dS$$

pour toute surface ouverte S

▼ Loi de Faraday (forme locale) :

$$\overrightarrow{\mathbf{rot}}\,\vec{E}(\vec{r},t) = -\frac{\partial \vec{B}(\vec{r},t)}{\partial t}$$
 (2)

 ▼ Le champ \vec{E} « tourne » autour de $-\partial \vec{B}/\partial t$

 [visualisation rotationnel]

 [pourquoi rotationnel]

 [champ électrique induit]

Le champ électrique induit

Le champ électrique induit

- lacktriangle [loi Faraday locale] Les variations de $ec{B}$ créent un champ $ec{E}$ induit
- **▼** Dans une région neutre $(\rho = 0)$:

$$\vec{m \nabla} \cdot \vec{m E} = rac{
ho}{\epsilon_0} = 0 \quad {
m et} \quad \vec{m \nabla} \wedge \vec{m E} = -rac{\partial \vec{m B}}{\partial t}$$

lacktriangle Analogie avec le champ $ec{B}$ en magnétostatique :

$$ec{m{
abla}}\cdotec{m{B}}=0$$
 et $ec{m{
abla}}\wedgeec{m{B}}=\mu_0ec{m{J}}$

- lacktriangle Les lignes du champ $ec{m{E}}$ induit sont des boucles!
- ▼ Équivalences :

	$ec{B}$	$ec{m{E}}$ induit
rotationnel circulation	$\mu_0 ec{m{J}} \ \mu_0 I_{enlac\'e}$	$-\partial \vec{\boldsymbol{B}}/\partial t \\ -\operatorname{d}\Phi_B/\operatorname{d}t$
	conducteur cylindrique	bobine $ec{m{B}}(t)$

12

13

11

Loi du flux magnétique

La loi du flux magnétique

- ▼ [fem mouvement flux magnétique] fem due au mouvement
- ▼ [loi Faraday intégrale] fem due à l'induction
- ▼ Deux phénomènes *différents** dans la même équation

fem
$$= -\frac{\mathrm{d}\Phi_B}{\mathrm{d}t}$$
 loi $\partial H / \mathcal{H} \partial A / \mathcal{H}$ du flux magnétique (3)

$$\begin{split} \text{fem}(t_0) &= -\frac{\,\mathrm{d}\Phi_B}{\,\mathrm{d}t} \bigg|_{t_0} = -\frac{\,\mathrm{d}}{\,\mathrm{d}t} \left(\int_{S(t)} \vec{\boldsymbol{B}}(t) \cdot \hat{\boldsymbol{n}} \,\,\mathrm{d}S \right) \bigg|_{t_0} \\ & \overset{\text{sans démo}}{=} - \int_{S(t_0)} \frac{\,\partial \vec{\boldsymbol{B}}(t)}{\,\partial t} \bigg|_{t_0} \cdot \hat{\boldsymbol{n}} \,\,\mathrm{d}S - \frac{\,\partial}{\,\partial t} \left(\int_{S(t)} \vec{\boldsymbol{B}}(t_0) \cdot \hat{\boldsymbol{n}} \,\,\mathrm{d}S \right) \bigg|_{t_0} \\ & \overset{\text{sans démo}}{=} \underbrace{- \int_{S(t_0)} \frac{\,\partial \vec{\boldsymbol{B}}(t)}{\,\partial t} \bigg|_{t_0} \cdot \hat{\boldsymbol{n}} \,\,\mathrm{d}S}_{t_0} + \underbrace{\oint_{\Gamma(t_0)} \left(\vec{\boldsymbol{v}} \wedge \vec{\boldsymbol{B}}(t_0) \right) \cdot \hat{\boldsymbol{t}} \,\,\mathrm{d}l}_{t_0} \\ & \overset{\text{fem induction } (\vec{\boldsymbol{f}} = \vec{\boldsymbol{E}}_{\text{ind}})}{\end{split}} \end{split}$$

▼ * la Relativité Spéciale commence ici!

Opposition fem / variation flux magnétique dans un circuit en mouvement

La fem s'oppose aux variations du flux magnétique

- ▼ En dehors du champ magnétique : pas de flux
- lacktriangle Phase d'entrée : fem crée courant I

I crée champ magnétique secondaire \vec{B}' [boucle de courant]

$$\Phi_{B'} = \int_{S} \vec{B}'(\vec{r}) \cdot \hat{n} \, dS < 0$$
 $\Phi_{B} = \int_{S} \vec{B} \cdot \hat{n} \, dS = Blx \, (>0) \nearrow$

- lacktriangledown Entièrement dans le champ magnétique : Φ_B constant, pas de variations
- lacktriangle Phase de sortie : fem crée courant I

I crée champ magnétique secondaire $\vec{B}^{\,\prime}$ [boucle de courant]

$$\Phi_{B'} = \int_{S} \vec{B}'(\vec{r}) \cdot \hat{n} \, dS > 0$$
 $\Phi_{B} = \int_{S} \vec{B} \cdot \hat{n} \, dS = Bl(L - x) \, (> 0) \setminus \Delta$

La fem crée une force magnétique d'opposition

▼ Phase d'entrée

I sens horaire

Force magnétique sur AB:

sur un électron : $\vec{F}_m = |q_e|vB\hat{e}_y - |q_e|v_eB\hat{e}_x$ [fem circuit simple]

sur $I: \vec{F}_{\sf m \; sur \; courant} = I \int {
m d} \vec{l} \wedge \vec{B} = -IlB \hat{e}_{m{x}}$ [force magnétique courant]

▼ Phase de sortie

I sens anti-horaire

Force magnétique sur ${\cal D}{\cal E}$:

sur un électron : $\vec{F}_m = |q_e|vB\hat{e}_y - |q_e|v_eB\hat{e}_x$ [fem circuit simple]

sur $I: \vec{F}_{\mathsf{m} \; \mathsf{sur} \; \mathsf{courant}} = I \int \mathrm{d} \vec{l} \wedge \vec{B} = -I l B \hat{e}_{m{x}}$ [force magnétique courant]

[loi Lenz]

Loi de Lenz

La loi de Lenz

- ▼ [fem mouvement flux magnétique] fem due au mouvement
- ▼ [loi Faraday intégrale] fem due à l'induction
- ▼ [loi flux magnétique] les deux phénomènes dans une équation

$$fem = -\frac{\mathrm{d}\Phi_B}{\mathrm{d}t}$$

- ▼ Quelle polarité pour la fem?
- ▼ Loi de Lenz : le signe —
- lacktriangledown Variations de $\Phi_B \longrightarrow \mathsf{fem} \longrightarrow I$
- 1. $I \longrightarrow \vec{B}' \longrightarrow \Phi_{B'}$ s'oppose aux variations de Φ_B
- 2. $I \longrightarrow \vec{F}_{m \text{ sur courant}}$ s'oppose *au mouvement* qui crée les variations de Φ_B (p.ex. freinage) [opposition fem variation flux]
- 2'. $I \longrightarrow \vec{F}_{m \text{ sur courant}}$ crée le mouvement pour s'opposer aux variations de Φ_B (p.ex. lévitation)

