- 1. Consider the veracity or falsehood of each of the following statements. For bonus, argue for those that you believe are true while providing a counterexample for those that you believe are false.
 - 1 There is an integral domain with 6 elements.

Let k be a positive integer. Let $\overline{}: \mathbb{Z} \to \mathbb{Z}_k$ be the mod function. Thus, e.g., if k=7, then $\overline{25}=4$. This leads naturally to a homomorphism $\overline{}: \mathbb{Z}[x] \to \mathbb{Z}_k[x]$. Thus, e.g., if k=7, then $\overline{25x^2+12}=4x^2+5=-3x^2-2$. Consider the veracity or falsehood of each of the following statements. For those that are true give an argument, for those that are false, give a counterexample. Let $p(x) \in \mathbb{Z}[x]$ be monic.

- (2) If p(x) has a root in \mathbb{Z} , then $\overline{p}(x)$ has a root in \mathbb{Z}_k .
- (3) If $\overline{p}(x)$ has a root in \mathbb{Z}_k , then p(x) has a root in \mathbb{Z} .
- (4) If p(x) is irreducible, then so is $\overline{p}(x)$.
- (5) If $\overline{p}(x)$ is irreducible, then so is p(x).

Solution.

1 False.

Proof. Assume to the contrary that R is an integral domain with 6 elements. By Cauchy Theorem we must have an element of additive order 2 and an element of additive order 3. Since gcd(2,3) = 1, it follows that there exists an element y of additive order 6. Let n be the additive order of 1. Now we have that $6 \mid n$ because

$$0 = \underbrace{1 + \dots + 1}_{n \text{ times}} = y(\underbrace{1 + \dots + 1}_{n \text{ times}}) = \underbrace{y + \dots + y}_{n \text{ times}},$$

so that n = 6. Now 1 + 1 + 1 and 1 + 1 are nonzero, but

$$0 = 1 + 1 + 1 + 1 + 1 + 1 + 1 = (1 + 1 + 1)(1 + 1),$$

a contradiction since we assumed that R was an integral domain; thus no integral domain of 6 elements exists.

(2) True.

Proof. Let

$$p(x) = a_0 + a_1 x + \dots + x^n \in \mathbb{Z}[x].$$

Suppose that $c \in \mathbb{Z}$ is a root of p(x). It follows immediately that \overline{c} is also a root of $\overline{p}(x)$ because

$$\overline{p}(\overline{c}) = \overline{a_0} + \overline{a_1} \cdot \overline{c} + \dots + \overline{c}^n$$

$$= \overline{a_0 + a_1 c + \dots + c^n}$$

$$= \overline{p(c)} = \overline{0}.$$

(3) False.

Counterexample. Let $p(x) = x^2 + 1$. Then $\overline{p}(x)$ has a root, $\overline{1}$, in \mathbb{Z}_2 but p(x) has no root in \mathbb{Z} .

(4) False.

Counterexample. Let $p(x) = x^2 + 1$. Then p(x) is irreducible in $\mathbb{Z}[x]$ but $\overline{p}(x) = (x+1)^2$ is not irreducible in $\mathbb{Z}_2[x]$.

(5) True.

Proof. We shall prove the contrapositive:

$$p(x)$$
 is not irreducible $\Rightarrow \overline{p}(x)$ is not irreducible.

Suppose p(x) is not irreducible. It follows that there exists a nontrivial factorization p(x) = g(x)h(x) where g(x) and h(x) are non-constant monic polynomials. Since g(x) is a monic polynomial, it follows that the degree of g(x) equals the degree of $\overline{g}(x)$; similarly the degree of h(x) equals the degree of $\overline{h}(x)$. Thus $\overline{g}(x)$ and $\overline{h}(x)$ are not units, so that $\overline{p}(x) = \overline{g}(x)\overline{h}(x)$ is not irreducible.

- 2. Consider the integral domain $R = \mathbb{Z}[\sqrt{3}]$. Let $A = \begin{pmatrix} 5 & 3 \\ 9 & 5 \end{pmatrix}$.
 - (1) Find a nontrivial unit, and show it has infinite order.
 - ② Compute $\frac{A}{\begin{pmatrix} 20 & 6 \\ 18 & 20 \end{pmatrix}}$ and its reciprocal $\frac{\begin{pmatrix} 20 & 6 \\ 18 & 20 \end{pmatrix}}{A}$. These elements may not be

in the domain, but they are certainly in the field of quotients.

- 4 Is $\begin{pmatrix} 7789 & 4488 \\ 13464 & 7789 \end{pmatrix} \equiv \begin{pmatrix} 57 & 24 \\ 72 & 57 \end{pmatrix}$ mod A? Give reasons for your answer.

Solution.

- ① The matrix $B = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$ is a unit in $\mathbb{Z}[\sqrt{3}]$ because $B^{-1} = \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix} \in \mathbb{Z}[\sqrt{3}]$. Let n be a positive integer. Observe that the integer in the first row and first column of B^n will never be less than 2 because all the entries in B are positive integers. Thus $B^n \neq I$, so that $|B| = \infty$.
- (2) We have

$$\frac{A}{\begin{pmatrix} 20 & 6 \\ 18 & 20 \end{pmatrix}} = \frac{1}{146} \begin{pmatrix} 23 & 15 \\ 45 & 23 \end{pmatrix} \text{ and } \frac{\begin{pmatrix} 20 & 6 \\ 18 & 20 \end{pmatrix}}{A} = \begin{pmatrix} -23 & 15 \\ 45 & -23 \end{pmatrix}.$$

(3)
$$A$$
 and $\begin{pmatrix} 19 & 11 \\ 33 & 19 \end{pmatrix}$ are associates if and only if there exists a unit $X = \begin{pmatrix} a & b \\ 3b & a \end{pmatrix} \in \mathbb{Z}[\sqrt{3}]$ such that

$$AX = \begin{pmatrix} 19 & 11 \\ 33 & 19 \end{pmatrix}.$$
 ating corresponding entries w

Multiplying A and X and equating corresponding entries will yield the equations 3a + 5b = 11 and 5a + 9b = 19, and whose solution is a = 2 and b = 1. Since $\det(X) = a^2 - 3b^2 = 1$, it follows that X is a unit. Thus A and $\begin{pmatrix} 19 & 11 \\ 33 & 19 \end{pmatrix}$ are associates.

(4) A quick computation will show us that

$$\begin{pmatrix} 7789 & 4488 \\ 13464 & 7789 \end{pmatrix} \equiv \begin{pmatrix} 57 & 24 \\ 72 & 57 \end{pmatrix} \mod A$$

because

$$\begin{pmatrix} 7789 & 4488 \\ 13464 & 7789 \end{pmatrix} - \begin{pmatrix} 57 & 24 \\ 72 & 57 \end{pmatrix} = \begin{pmatrix} 7732 & 4464 \\ 13392 & 7732 \end{pmatrix} = A \begin{pmatrix} 758 & 438 \\ 1314 & 758 \end{pmatrix}.$$

- 3. Consider the following element $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ of $GL(3, \mathbb{Z}_2)$.
 - (1) Compute all of its powers.
 - 2 How many elements would you have to add for this set of powers to be closed under addition?
 - (3) Find the characteristic polynomial of each of the powers.
 - (4) Find the lowest degree polynomial that all of the powers satify.
 - (5) Have you constructed a field?

Bonus. Show that every irreducible cubic over \mathbb{Z}_2 has a root among these powers.

Solution. Let
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

 \bigcirc The powers of A are:

$$A^{1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, A^{2} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}, A^{3} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, A^{4} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
$$A^{5} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, A^{6} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, A^{7} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- (2) We notice that the set of powers is closed under addition of two *distinct* matrices. However, since each matrix added to itself yields the zero matrix, we need to add only the zero matrix so that this set of powers is closed under addition.
- (3) If we let char(X) denote the characteristic polynomial of a matrix X, then it follows that $char(A^7) = x^3 + x^2 + x + 1$,

$$\operatorname{char}(A) = \operatorname{char}(A^2) = \operatorname{char}(A^4) = x^3 + x + 1, \text{ and}$$

 $\operatorname{char}(A^3) = \operatorname{char}(A^5) = \operatorname{char}(A^6) = x^3 + x^2 + 1.$

4 The lowest degree polynomial that A^7 satisfies is x + 1, while the lowest degree polynomial that the remaining powers satisfy is their respective characteristic polynomials. Thus the lowest degree polynomial that all the powers of A satisfy is

$$(x+1)(x^3+x+1)(x^3+x^2+1) = x^7+1.$$

(5) Yes. It is clear that the set of powers of A (including the 0 matrix) is a commutative ring; since each element in the set of powers of A is a unit, it follows that the set of powers union the 0 matrix is a field.

Bonus. The only cubics with nontrivial factorizations in $\mathbb{Z}_2[x]$ are:

$$\begin{array}{rcl} x^3 & = & (x)(x)(x) \\ x^3 + 1 & = & (x+1)(x^2 + x + 1) \\ x^3 + x & = & x(x+1)^2 \\ x^3 + x^2 & = & x^2(x+1) \\ x^3 + x^2 + x & = & x(x^2 + x + 1) \\ x^3 + x^2 + x + 1 & = & (x+1)^3, \end{array}$$

so that $x^3 + x + 1$ and $x^3 + x^2 + 1$ are irreducible in $\mathbb{Z}_2[x]$. But these irreducibles are the characteristic polynomials of A and A^3 , so it follows by the Cayley-Hamilton theorem that A is a root of $x^3 + x + 1$ and A^3 is a root of $x^3 + x^2 + 1$.

4. On $\mathbb{Z}_2[x]$. Consider the ring of polynomials $\mathbb{Z}_2[x]$ with coefficients in \mathbb{Z}_2 ,

$$p(x) = a_0 + a_1 x + \dots + a_n x^n$$
.

- 1 How many polynomials of degree n are there? **Hint.** Consider $n = 1, 2, 3, \ldots$
- (2) Consider the function $E: \mathbb{Z}_2[x] \to \mathbb{Z}_2$ that sends any polynomial p(x) to p(1). Decide if it is a (ring) homomorphism or not. Decide if it is one-to-one and onto. Argue your case.
- (3) Consider the function $S: \mathbb{Z}_2[x] \to \mathbb{Z}_2[x]$ that sends any polynomial p(x) to $p^2(x)$, it square. Decide if it is a (ring) homomorphism or not. Decide if it is one-to-one and onto. Argue your case.
- (4) Count the number of irreducible quadratics in $\mathbb{Z}_2[x]$.
- (5) Count the number of irreducible cubics in $\mathbb{Z}_2[x]$.

(6) Count the number of irreducible quartics in $\mathbb{Z}_2[x]$.

Solution.

- 1 The coefficient of the x^n term must be 1. We now have two choices for each of the remaining n coefficients. Thus there are 2^n polynomials of degree n.
- (2) It is clear that E is onto since E(0) = 0 and E(1) = 1. However E is not injective because E(x) = E(1) = 1 but $x \neq 1$. Now we claim that E is a homomorphism of rings.

Proof. Consider two elements $q(x), r(x) \in \mathbb{Z}_2[x]$ where

$$q(x) = q_0 + q_1 x + \dots + q_n x^n$$
 and $r(x) = r_0 + r_1 x + \dots + r_n x^n$.

We have that

$$E(q(x) + r(x)) = E((q_0 + r_0) + (q_1 + r_1)x + \dots + (q_n + r_n)x^n)$$

$$= (q_0 + r_0) + (q_1 + r_1) + \dots + (q_n + r_n)$$

$$= (q_0 + q_1 + \dots + q_n) + (r_0 + r_1 + \dots + r_n)$$

$$= E(q(x)) + E(r(x)) \text{ and}$$

$$E(q(x)r(x)) = E\left(q_0r_0 + (q_0r_1 + q_1r_0)x + \dots + \left(\sum_{i=0}^n q_ir_{n-i}\right)x^n\right)$$

$$= q_0r_0 + (q_0r_1 + q_1r_0) + \dots + \left(\sum_{i=0}^n q_ir_{n-i}\right)$$

$$= q(1)r(1) = E(q(x))E(r(x)),$$

so that E is a surjective ring homomorphism.

(3) Claim that S is an injective homomorphism of rings.

Proof. Consider two elements $q(x), r(x) \in \mathbb{Z}_2[x]$ where

$$q(x) = q_0 + q_1 x + \dots + q_n x^n$$
 and $r(x) = r_0 + r_1 x + \dots + r_n x^n$.

Thus

$$S(q(x) + r(x)) = (q(x) + r(x))^{2}$$

$$= q(x)^{2} + r(x)^{2} + 2q(x)r(x)$$

$$= q(x)^{2} + r(x)^{2}$$

$$= S(q(x)) + S(r(x)) \text{ and}$$

$$S(q(x)r(x)) = (q(x)r(x))^{2}$$

$$= q(x)^{2}r(x)^{2}$$

$$= S(q(x))S(r(x)),$$

so that S is a ring homomorphism. Now suppose that S(q(x)) = S(r(x)); then we have that $q(x)^2 = r(x)^2$, so that (q(x) - r(x))(q(x) + r(x)) = 0. Since we are in

 $\mathbb{Z}_2[x]$, notice that the additive inverse of every polynomial is itself. Thus we must have that (q(x) - r(x))(q(x) - r(x)) = (q(x) - r(x))(q(x) + r(x)) = 0. And since $\mathbb{Z}_2[x]$ is an integral domain, it follows that q(x) - r(x) = 0; i.e., q(x) = r(x) so that S is injective. Clearly S is not surjective since the polynomial x + 1 has no preimage under S.

- (4) The only irreducible quadratic in $\mathbb{Z}_2[x]$ is $x^2 + x + 1$.
- (5) We know from the Bonus part of Problem 3 that there are two irreducible cubics in $\mathbb{Z}_2[x]$ and they are:

 $x^3 + x + 1$ and $x^3 + x^2 + 1$.

6 There are three irreducible quartics in $\mathbb{Z}_2[x]$ and they are:

 $x^4 + x + 1, x^4 + x^3 + 1$, and $x^4 + x^3 + x^2 + x + 1$.