QCM de mathématiques - correction

Réponse juste : 1 point, fausse : - 0.25 points. Une seule bonne réponse par question.

- 1. (1 point) Parmi les familles ci-dessous, laquelle est une base de \mathbb{R}^3 ?
 - A) $\mathcal{A} = ((1,1,2),(0,-1,1))$
 - B) $\mathcal{B} = ((1,1,2), (0,-1,1), (1,0,1))$
 - C) $\mathcal{C} = ((1,1,2),(0,1,1),(1,0,1))$
 - D) $\mathcal{D} = ((1,1,2), (0,-1,1), (1,0,1), (2,1,3))$

Solution : Déjà, pour qu'une famille soit une base de \mathbb{R}^3 il faut qu'elle possède 3 vecteurs. Ceci élimine \mathcal{A} qui a deux vecteurs et \mathcal{D} qui en a quatre. Ensuite, observons que la famille \mathcal{C} est liée : on peut former à l'aide de ses vecteurs la combinaison linéaire

$$(1,1,2) - (0,1,1) - (1,0,1) = (0,0,0).$$

Ainsi, \mathcal{C} n'est pas une base. Par élimination, **la réponse est B**. On peut aussi vérifier directement que la famille \mathcal{B} est une base, en prouvant qu'elle est libre. Pour cela il faut montrer que (x,y,z)=(0,0,0) est l'unique solution de l'équation x(1,1,2)+y(0,-1,1)+z(1,0,1)=0, c'est-à-dire résoudre le système suivant :

$$\begin{cases} x + z = 0 \\ x - y = 0 \\ 2x + y + z = 0 \end{cases} \iff \begin{cases} x + z = 0 & (L_1) \\ 2x - y + z = 0 & (L_2) \leftarrow (L_2) + (L_1) \\ 2x + y + z = 0 & (L_3) \end{cases}$$

$$\iff \begin{cases} x + z = 0 & (L_1) \\ 2x - y + z = 0 & (L_2) \\ 2y = 0 & (L_3) \leftarrow (L_3) - (L_2) \end{cases}$$

$$\iff y = 0 \text{ et } \begin{cases} 2x + 2z = 0 & (L_1) \leftarrow 2(L_1) \\ 2x + z = 0 & (L_2) \end{cases}$$

$$\iff y = 0 \text{ et } \begin{cases} z = 0 & (L_1) \leftarrow (L_1) - (L_2) \\ 2x + z = 0 & (L_2) \end{cases}$$

$$\iff (x, y, z) = (0, 0, 0)$$

Enfin, on peut aussi calculer le déterminant de la matrice formée des vecteurs de \mathcal{B} en colonnes exprimés dans la base canonique : en développant suivant la 1ère colonne,

$$\begin{vmatrix} 1 & 0 & 1 \\ 1 & -1 & 0 \\ 2 & 1 & 1 \end{vmatrix} = +1 \begin{vmatrix} -1 & 0 \\ 1 & 1 \end{vmatrix} - 1 \begin{vmatrix} 0 & 1 \\ 1 & 1 \end{vmatrix} + 2 \begin{vmatrix} 0 & 1 \\ -1 & 0 \end{vmatrix} = -1 - (-1) + 2 = 2 \neq 0,$$

donc \mathcal{B} est une base d'après le cours.

- 2. (1 point) Parmi les familles ci-dessous (mêmes familles que dans la question précédente), laquelle est une famille ni libre, ni génératrice de \mathbb{R}^3 ?
 - A) $\mathcal{A} = ((1,1,2),(0,-1,1))$
 - B) $\mathcal{B} = ((1,1,2), (0,-1,1), (1,0,1))$
 - C) $\mathcal{C} = ((1,1,2),(0,1,1),(1,0,1))$
 - D) $\mathcal{D} = ((1,1,2), (0,-1,1), (1,0,1), (2,1,3))$

Solution : Dans la question 1 nous avons montré que la famille \mathcal{C} est liée. Or l'espace vectoriel \mathbb{R}^3 est de dimension 3 et cette famille a 3 vecteurs ; si elle était génératrice ce serait une base d'après le cours, donc elle serait libre, ce qui n'est pas. On conclut que \mathcal{C} n'est ni libre, ni génératrice : **la réponse est C**.

- 3. (1 point) Soit E un espace vectoriel de dimension 4, et $\mathcal{B}=(e_1,e_2,e_3,e_4)$ une base de E. Parmi les familles ci-dessous, laquelle est une base de E?
 - A) $\mathcal{A} = (e_1, e_2, e_3 + e_4)$
 - B) $\mathcal{B}' = (e_1 + e_2, e_2 + e_3, e_3 + e_4, e_4 + e_1)$
 - C) $\mathcal{C} = (e_1 + e_2, e_2 + e_3 e_1, e_1 e_2, e_3 + e_4, e_3 e_4)$
 - D) $\mathcal{D} = (e_1 + e_2 + e_3, e_1 + e_2 e_3, e_1 e_2, e_4)$

Solution : Déjà, ce ne peuvent être \mathcal{A} et \mathcal{C} qui ont respectivement 3 et 5 vecteurs, donc pas autant que la dimension de l'espace. En jouant avec \mathcal{B}' , observons que

$$\begin{aligned} (e_1+e_2)-(e_2+e_3)+(e_3+e_4)-(e_4+e_1) &= e_1+e_2-e_2+e_3-e_3+e_4-e_4-e_1\\ &= e_1-e_1=0. \end{aligned}$$

Donc \mathcal{B}' est liée, et par élimination, **la réponse est D**. On peut aussi montrer directement que \mathcal{D} est génératrice (donc une base, ayant 4 vecteurs et d'après le cours); il suffit pour cela de vérifier que tous les vecteurs de la base \mathcal{B} sont des combinaisons linéaires des vecteurs de \mathcal{D} , ce qui est relativement facile pour e_4 et e_3 , puis, de là, pour e_1 et e_2 . En revanche, montrer directement que \mathcal{D} est libre est plutôt long (bien que toujours faisable).

- 4. (1 point) Mêmes hypothèses et familles que dans la question précédente : soit E un espace vectoriel de dimension 4, et $\mathcal{B}=(e_1,e_2,e_3,e_4)$ une base de E. Parmi les familles ci-dessous, laquelle n'est ni libre, ni génératrice?
 - A) $\mathcal{A} = (e_1, e_2, e_3 + e_4)$
 - B) $\mathcal{B}' = (e_1 + e_2, e_2 + e_3, e_3 + e_4, e_4 + e_1)$
 - C) $\mathcal{C} = (e_1 + e_2, e_2 + e_3 e_1, e_1 e_2, e_3 + e_4, e_3 e_4)$
 - D) $\mathcal{D} = (e_1 + e_2 + e_3, e_1 + e_2 e_3, e_1 e_2, e_4)$

Solution : Dans la question 3, nous avons montré que \mathcal{B}' n'est pas libre. Puisqu'elle possède 4 vecteurs, ce qui est autant que la dimension de E, le même raisonnement que dans la question 2 nous informe que \mathcal{B}' n'est pas non plus génératrice : la réponse est B.

5. (1 point) Soit $\mathcal{B} = ((1,1),(1,-1))$ une base de \mathbb{R}^2 . Quelles sont les coordonnées du vecteur (5,-3) dans \mathcal{B} ?

Solution : Le plus rapide est peut-être d'essayer les réponses une à une. Si l'on procède dans l'ordre alphabétique, alors on est chanceux, parce que

$$4(1,1) + 1(1,-1) = (5,3),$$

de sorte que **la réponse est A**. Mais bien sûr, on peut aussi chercher à décomposer (5,-3) dans \mathcal{B} ; ceci revient à rechercher les coordonnées x et y telles que x(1,1)+y(1,-1)=(5,3), ce qui nous ramène au système

$$\begin{cases} x + y = 5 \\ x - y = 3 \end{cases},$$

qui donne 2x = 8 et 2y = 2, soit (x, y) = (4, 1) ce qui permet de retrouver la bonne réponse en pas beaucoup plus longtemps.

6. (1 point) On considère l'application linéaire f définie de \mathbb{R}^3 dans \mathbb{R}^2 par

$$f(x, y, z) = (2x + y + 8z, 3x - y).$$

Quelle est la matrice de f dans les bases canonique de \mathbb{R}^3 et de \mathbb{R}^2 ?

A)
$$\begin{pmatrix} 2 & 3 & 0 \\ 1 & -1 & 0 \\ 8 & 0 & 0 \end{pmatrix}$$
 B) $\begin{pmatrix} 2 & 3 \\ 1 & -1 \\ 8 & 0 \end{pmatrix}$ C) $\begin{pmatrix} 2 & 1 & 8 \\ 3 & -1 & 0 \end{pmatrix}$ D) $\begin{pmatrix} 2 & 3 \\ 3 & -1 \end{pmatrix}$

Solution : En fait il suffit de regarder la taille des matrices proposés, parce que la matrice d'une application linéaire de \mathbb{R}^3 vers \mathbb{R}^2 a forcément 2 lignes et 3 colonnes, ce qui nous permet d'affirmer que la bonne réponse est \mathbf{C} .

- 7. (1 point) Parmi les espaces suivants, lequel n'est pas un sous-espace vectoriel de $\mathbb{R}_2[X]$?
 - A) L'ensemble A des polynômes P tels que P(2) = 0.
 - B) L'ensemble B des polynômes P tels que P' = 0.
 - C) L'ensemble C des polynômes P tels que $P(3)^2 = 1$.

D) L'ensemble D des polynômes P de la forme $P = aX^2 + bX + c$ avec a + b + c = 0.

Solution : L'ensemble C ne contient pas le polynôme nul $0_{\mathbb{R}_2[X]}$ donc il ne peut pas être un sous-espace vectoriel : la réponse est C. On peut aussi si l'on veut mettre en défaut directement

- la stabilité par somme : les polynômes P=X/3 et Q=X-2 de $\mathbb{R}_2[X]$ sont tous les deux tels que $P(3)^2=Q(3)^2=1$, donc dans l'ensemble C, mais $((P+Q)(3))^2=2^2=4\neq 1$ donc $P+Q\notin C$.
- la stabilité par multiplication par un nombre réel : si P = X 2, 3P = 3X 6 donc $((3P)(3))^2 = 9$, donc $3P \notin C$.

Enfin, il est également possible (bien que plus long) de vérifier que A, B et D sont des sous-espaces vectoriels de $\mathbb{R}_2[X]$. Pour cela, on peut observer qu'ils sont tous définis comme des noyaux d'applications linéaires.

- 8. (1 point) Parmi les applications définies ci-dessous, laquelle n'est pas linéaire??
 - A) $f_A(x,y) = (x+y, x-2y, 3y),$
 - B) $f_B(x, y, z) = (x + 2y, z, x y + z,$
 - C) $f_C(x,y) = (xy, y x),$
 - D) $f_D(x) = (x, 5x)$.

Solution : Nous allons montrer que f_C n'est pas linéaire. Pour cela remarquons préalablement que g(x,y)=(0,x-y) est linéaire, ainsi que le montre le rapide calcul, pour tous $(x_1,y_1),(x_2,y_2)\in\mathbb{R}^2$ et $a\in\mathbb{R}$,

$$\begin{split} g(x_1+x_2,y_1+y_2) &= (0,x_1+x_2-y_1-y_2) \\ &= (0,x_1-y_1+x_2-y_2) \\ &= (0,x-1-y_1) + (0,x_2-y_2) = g(x_1,y_1) + g(x_2,y_2) \\ g\left(a(x_1,y_1)\right) &= (0,ax_1-ay_1) \\ &= a(0,x_1,y_1) = ag(x_1,y_1). \end{split}$$

Or, toute combinaison linéaire de deux applications linéaires définies sur le même espace vectoriel et à valeurs dans le même espace vectoriel, est encore linéaire. Il s'ensuit que si f_D était linéaire, ce serait encore le cas de $g-f_D$, c'est-à-dire de l'application

$$p(x,y) = (xy,0).$$

Pour vérifier que p n'est pas linéaire, observons par exemple que $p((1,1)+(1,1))=(2\times 2,0)=(4,0)$ alors que $p(1,1)+p(1,1)=(1\times 1,0)+(1\times 1,0)=(2,0)$, mais $4\neq 2$. Conclusion, **la réponse est C**.

9. (1 point) Quelle est la valeur du déterminant

$$d = \begin{vmatrix} 1 & -1 & 0 \\ 2 & 3 & 1 \\ -1 & 2 & 1 \end{vmatrix}$$
?

A)
$$d = 3$$
 B) $d = 2$ C) $d = 0$ D) $d = 4$

Solution : On calcule d en développant suivant la 1ère colonne :

$$d = \begin{vmatrix} 1 & -1 & 0 \\ 2 & 3 & 1 \\ -1 & 2 & 1 \end{vmatrix}$$

$$= 1 \begin{vmatrix} 3 & 1 \\ 2 & 1 \end{vmatrix} - 2 \begin{vmatrix} -1 & 0 \\ 2 & 1 \end{vmatrix} - 1 \begin{vmatrix} -1 & 0 \\ 3 & 1 \end{vmatrix} = 1 - 2 \times (-1) - 1 \times (-1) = 1 + 2 + 1 = 4.$$

Ainsi, la réponse est D.

- 10. (1 point) Soient E, F et G des espaces vectoriels de bases respectives $\mathcal{B}_1, \mathcal{B}_2$ et \mathcal{B}_3 . On considère les applications linéaires $g: E \to F$ et $f: F \to G$. Soit M la matrice de l'application g dans les bases \mathcal{B}_1 et \mathcal{B}_2 et soit N la matrice de l'application f dans les bases \mathcal{B}_2 et \mathcal{B}_3 . Alors la matrice de l'application $f \circ g$ dans les bases \mathcal{B}_1 et \mathcal{B}_3 est
 - A) MN
 - B) *NM*
 - C) La matrice identité
 - D) M+N.

Solution : Il s'agit d'une question de cours, mais il y a une coquille dans le cours : dans l'encadré en bas de la page ${\bf 9}$, il faut lire « La matrice BA (et non AB) est la matrice de l'application linéaire $f\circ g$ dans les bases \mathcal{B}_1 et \mathcal{B}_3 ». Ici donc, **la réponse correcte est B**. En voici une preuve (instructive, mais il suffit de retenir le résultat) : écrivons

$$\begin{split} \mathcal{B}_1 &= (\mathbf{e}_1, \dots \mathbf{e}_n) = (\mathbf{e}_i)_{1 \leqslant i \leqslant n} \\ \mathcal{B}_2 &= (\mathbf{f}_1, \dots \mathbf{f}_m) = (\mathbf{f}_j)_{1 \leqslant j \leqslant m} \\ \mathcal{B}_3 &= (\mathbf{g}_1, \dots \mathbf{g}_l) = (\mathbf{g}_k)_{1 \leqslant k \leqslant l}, \end{split}$$

avec $n=\dim E,\ m=\dim F$ et $l=\dim G$ (attention à ne pas confondre les \mathbf{f}_j avec f). Ensuite, désignons par $m_{j,i}$ le coefficient en j-ième ligne et i-ième colonne de la

matrice M, tandis que $n_{k,j}$ désigne le coefficient en k-ième ligne et j-ième colonne de N. Alors par <u>définition</u> des matrices M et N,

$$f(\mathbf{f}_j) = \sum_{k=1}^l n_{k,j} \mathbf{g}_k$$
 et $g(\mathbf{e}_i) = \sum_{j=1}^m m_{j,i} \mathbf{f}_j$.

Donc, en utilisant la linéarité de f,

$$\begin{split} f \circ g(\mathbf{e}_i) &= f\left(\sum_{j=1}^m m_{j,i}\mathbf{f}_j\right) = \sum_{j=1}^m m_{j,i}f(\mathbf{f}_j) = \sum_{j=1}^m \sum_{k=1}^l m_{j,i}n_{k,j}\mathbf{g}_k \\ &= \sum_{k=1}^l \left(\sum_{j=1}^m m_{j,i}n_{k,j}\right)\mathbf{g}_k \\ &= \sum_{k=1}^l \left(\sum_{j=1}^m n_{k,j}m_{j,i}\right)\mathbf{g}_k. \end{split}$$

Mais par définition du produit matriciel, $\sum_{j=1}^m n_{k,j} m_{j,i}$ est le coefficient en k-ième ligne et i-ième colonne dans la matrice NM. Ceci nous dit que NM est la matrice de $f \circ g$ dans les bases \mathcal{B}_1 au départ et \mathcal{B}_3 à l'arrivée.