Simulation and modeling of natural processes

Week 1: Introduction and general concepts

The team

Dr J.-L Falcone

Prof B. Chopard 2

1. Objectives and Background

- ▶ Learn how to describe natural phenomena
- ► Give an introduction to several modeling techniques.
- ► Show how these models can be simulate on a computer (in-silico laboratory, numerical experiments)
- ▶ Learn more about science through modeling

What natural processes are we interested in?

- ► Physics (<u>Fluid mechanics</u>), astrophysics, chemistry, climatology,...
- ► Environmental sciences (river modeling, Volcano plume)
- ► Biology: (<u>Tissue growth</u>), pattern on animal skins, cells, organs
- ► Ecosystems: competition between species, ant behavior, equilibrium between forest and savanna, propagation of epidemia,...
- ► Finance, social sciences, traffic, pedestrian motion,...

> ...

Movies Movie Movie Volcano: Tissue:

► This is not an apple just its graphical representation

Many possible definitions:

Many possible definitions:

► Simplified abstraction of reality, allowing us to better describe and understand it

Many possible definitions:

- ► Simplified abstraction of reality, allowing us to better describe and understand it
- ► An abstraction in which only the essential ingredients are retained, according to the question we ask about the system.

Many possible definitions:

- ► Simplified abstraction of reality, allowing us to better describe and understand it
- ► An abstraction in which only the essential ingredients are retained, according to the question we ask about the system.
- ► It is the respresentation of a phenomena in a mathematical or computer-based language,

Many skills are needed to build a new model, to run it and analyze its results.

Many skills are needed to build a new model, to run it and analyze its results.

► Computational Science is an emerging, multidisciplinary domain, based on the idea of "computational thinking".

Many skills are needed to build a new model, to run it and analyze its results.

- ► Computational Science is an emerging, multidisciplinary domain, based on the idea of "computational thinking".
- ▶ A computer-based description offers a new language, a new methodology to address scientific challenges, far beyond the scope of traditional numerical methods, and in fields where these classical approaches hardly apply.

▶ Modeling and simulation is a central part of computational sciences. It is a response to the new questions scientists want to solve, resulting from the avalanche of new experimental data, and the need to integrate many processes together rather than specializing in one single problem.

- ▶ Modeling and simulation is a central part of computational sciences. It is a response to the new questions scientists want to solve, resulting from the avalanche of new experimental data, and the need to integrate many processes together rather than specializing in one single problem.
- ► A computational scientists needs to be a physisict, a mathematician, a computer scientist, a biologist, an economists...

End of module

Objectives and backgroud

 $Coming \ next$

Modeling and Simulation

2. Modeling and Simulation

Why a model?

- ► Describe, classify, but mostly
- ► Understand
- ► Predict
- ► Control a phenomena

What is a good model?

It depends on the question. Several models may be necessary for studying different aspects of the same phenomena

Everything should be made as simple as possible but not simpler

A Einstein

Level of reality

The same system can be described at different scales, and different methods apply depending on the scale one is interested in:

- ▶ atoms, molecules, fluid elements, pressure field, climat
- ► cells, tissues, organs, living beings
- ► mechanical parts, cars, traffic

Level of reality

- ► One has to identify the important ingredients and their mutual interactions.
- ▶ Often, one defined a model at finer scale than the scale at which we ask a question.

Several models / different language of description

Partial differential equation for a fluid;

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{u}$$

 ${
m phenomena}
ightarrow {
m PDE}
ightarrow {
m discretisation}
ightarrow {
m numerical \ solution}$

...to a virtual model of reality

One considers a discrete universe as an abstraction of the real word

► Mesoscopic *Rule* describing the phenomena

Example of modeling method

- ▶ N-body systems, molecular dynamics
- ► Mathematical equations, ODE, PDE
- ► Monte-Carlo methods (equilibrium, dynamic, kinetic)
- ► Cellular Automata and Lattice Boltzmann methods
- ► Multi-agents systems
- ▶ Discrete Events simulation
- ► Complex networks

► Once a model is specified, one need to program it, to run it (many times) and to study the results.

- ► Once a model is specified, one need to program it, to run it (many times) and to study the results.
- ► It is a numerical experiment in **computer based virtual** universe

- ► Once a model is specified, one need to program it, to run it (many times) and to study the results.
- ► It is a numerical experiment in **computer based virtual** universe
- ▶ One need to understand computer programs, software engineering, algorithms, data-structures, hardware (parallel machines, GPUs), code optimization, data-analysis.

► The program needs to be verified (did we really implemented the model?)

- ► The program needs to be verified (did we really implemented the model?)
- ► The model should be validated (run benchmarks with known results).

- ► The program needs to be verified (did we really implemented the model?)
- ► The model should be validated (run benchmarks with known results).
- ▶ One need enough knowledge of the phenomena to judge if its predictions are acceptable in new situations.

From a model to a simulation: illustration

End of module Modeling and Simulation

Coming next

Modeling Space and Time

3. Modeling Space and Time

Space and time

► Natural processes occurs in space and evolve over time (spatially extended dynamical systems).

- ► Natural processes occurs in space and evolve over time (spatially extended dynamical systems).
- ► For instance the atmospheric temperature is different from one place to another, and changes over time.

- ► Natural processes occurs in space and evolve over time (spatially extended dynamical systems).
- ► For instance the atmospheric temperature is different from one place to another, and changes over time.
- ▶ Also, a car on a road changes position as time goes on.

- ► Natural processes occurs in space and evolve over time (spatially extended dynamical systems).
- ► For instance the atmospheric temperature is different from one place to another, and changes over time.
- ▶ Also, a car on a road changes position as time goes on.
- ► Sometime one is only interested in the time evolution of a quantity, regardless of the spatial location (e.g the number of individuals) in a population

- ► Natural processes occurs in space and evolve over time (spatially extended dynamical systems).
- ► For instance the atmospheric temperature is different from one place to another, and changes over time.
- ▶ Also, a car on a road changes position as time goes on.
- ► Sometime one is only interested in the time evolution of a quantity, regardless of the spatial location (e.g the number of individuals) in a population
- ► Sometime, a process is stationary (no time evolution). Then only the spatial variations are of interest (e.g temperature in a room, in the middle or near the windows).

40

► To capture the temporal dimensions in a model, there are several ways:

- ► To capture the temporal dimensions in a model, there are several ways:
- ► Time takes any real values (as physics suggests). Only mathematical models can deal with this approach (differential equations)

- ► To capture the temporal dimensions in a model, there are several ways:
- ► Time takes any real values (as physics suggests). Only mathematical models can deal with this approach (differential equations)
- ▶ Otherwise, the duration of the process is broken up in small time intervals Δt and one describes the state of the system at each of these **time-step** $t_0 = 0, t_1 = \Delta t, \ldots, t_n = n\Delta t \ldots$

- ► To capture the temporal dimensions in a model, there are several ways:
- ► Time takes any real values (as physics suggests). Only mathematical models can deal with this approach (differential equations)
- ▶ Otherwise, the duration of the process is broken up in small time intervals Δt and one describes the state of the system at each of these **time-step** $t_0 = 0, t_1 = \Delta t, \ldots, t_n = n\Delta t \ldots$
- ► The time is discretized, but the process is followed **continuously** over its duration.

► Alternatively, we can only focus on the interesting moments of a process

- ► Alternatively, we can only focus on the interesting moments of a process
- ▶ In a queue in front of a post office booth, one can simply consider the time at which a remarkable event occurs. For instance a new customer enters, or a previous one is done.

- ► Alternatively, we can only focus on the interesting moments of a process
- ▶ In a queue in front of a post office booth, one can simply consider the time at which a remarkable event occurs. For instance a new customer enters, or a previous one is done.
- \blacktriangleright The time t at which an event occurs can be any real value.

- ► Alternatively, we can only focus on the interesting moments of a process
- ▶ In a queue in front of a post office booth, one can simply consider the time at which a remarkable event occurs. For instance a new customer enters, or a previous one is done.
- \blacktriangleright The time t at which an event occurs can be any real value.
- ► The time is not discretized but the evolution of the system is broken up according to events.

- ► Alternatively, we can only focus on the interesting moments of a process
- ▶ In a queue in front of a post office booth, one can simply consider the time at which a remarkable event occurs. For instance a new customer enters, or a previous one is done.
- \blacktriangleright The time t at which an event occurs can be any real value.
- ► The time is not discretized but the evolution of the system is broken up according to events.
- ► This is the so-called Discrete-Event-Simulation (DES) approach

t=0

To include the spatial dimensions in a model, there are also different ways.

• One can take the point of view of an observer who sits at a fixed position \vec{x} in space and records what he sees.

- ▶ One can take the point of view of an observer who sits at a fixed position \vec{x} in space and records what he sees.
- For instance the local atmospheric pressure $p(\vec{x}, t)$.

- ▶ One can take the point of view of an observer who sits at a fixed position \vec{x} in space and records what he sees.
- For instance the local atmospheric pressure $p(\vec{x}, t)$.
- ► Or the number of cars that passed by every minute.

- ▶ One can take the point of view of an observer who sits at a fixed position \vec{x} in space and records what he sees.
- For instance the local atmospheric pressure $p(\vec{x}, t)$.
- ► Or the number of cars that passed by every minute.
- ► This is the so-called **Eulerian** approach: attach a property of the system at each spatial locations.

- One can take the point of view of an observer who sits at a fixed position \vec{x} in space and records what he sees.
- For instance the local atmospheric pressure $p(\vec{x}, t)$.
- ▶ Or the number of cars that passed by every minute.
- ► This is the so-called **Eulerian** approach: attach a property of the system at each spatial locations.
- ► Space can be continuous (mathematical models) or discretized in cells, forming a mesh covering the region of interest.

► Alternatively, one can give the position of all the objects of interest, as a function of time.

- ► Alternatively, one can give the position of all the objects of interest, as a function of time.
- ▶ For instance the movement of the Moon is described by its trajectory $\vec{x}(t)$, where \vec{x} is a continuous variable.

- ► Alternatively, one can give the position of all the objects of interest, as a function of time.
- ▶ For instance the movement of the Moon is described by its trajectory $\vec{x}(t)$, where \vec{x} is a continuous variable.
- ▶ In a traffic model, one can give the positions over time of all the cars.

- ► Alternatively, one can give the position of all the objects of interest, as a function of time.
- ▶ For instance the movement of the Moon is described by its trajectory $\vec{x}(t)$, where \vec{x} is a continuous variable.
- ► In a traffic model, one can give the positions over time of all the cars.
- ► This is the so-called **Lagrangian** approach: the observer take the point of view of the moving objects.

Modeling space

Eulerian point of view

Lagrangian point of view

► In many systems, it is not so much the exact spatial positions of the components of a system that matters

- ▶ In many systems, it is not so much the exact spatial positions of the components of a system that matters
- ▶ It is rather whether these components see each others, or can interact.

- ▶ In many systems, it is not so much the exact spatial positions of the components of a system that matters
- ► It is rather whether these components see each others, or can interact.
- ► This is typically the case in social systems. Two persons can be very far away but still interact a lot by phone or other means

► For instance, the agent in an economical model can be represented as a **graph** (or a complex network): an edge connects pairs of agents that exchange information, money, goods,..

- ► For instance, the agent in an economical model can be represented as a **graph** (or a complex network): an edge connects pairs of agents that exchange information, money, goods,..
- ▶ Obviously, such a graph can be dynamical: creation of new links or destruction of old ones.

Exemple

A model of opinion propagation in a social network

(Lino Velasquez, UNIGE)

Complex networks

- ► Dynamical systems on complex networks is a fast developing field
- ► Graph topology imposes a rich "spatial" structure which constrains the dynamics
- ▶ Many quantities characterize the graph topology and can be related to some global properties of the system: degree distribution, clustering coefficient, centrality measures, assortativity, etc.

End of module Modeling Space and Time

|Coming| next|

Example of bio-medical Modeling

4. Example of bio-medical Modeling

Thrombosis in cerebral aneurysms

The evolution of aneurysms is driven by bloodflow, biomechanics and biology

How to treat them: Stents/flow diverter

- ► The flow-diverter reduces bloodflow in the aneurysm
- Clotting is induced in the aneurysm

72

Example of a thrombus in a segmented aneurysms

 $\frac{\text{movie}}{\text{(Image processing: Guy Courbebaisse, INSA-Lyon)}}$

Micro-model (University of Amsterdam)

- ► Red Blood Cells and platelets are modeled as
- ► deformable objects
- ▶ in suspension in the plasma fluid

- ▶ Platelets and RBC in a 2D shear
- ► 3D suspension model
- (L. Mountrakis, E. Lorenz and A.G. Hoekstra)

Macroscopic flow simulation in an aneurysm

Numerical Model of Clotting

Under proper flow conditions and depending on the vessel wall biological response, a clot develops: a solidification of the blood from the wall

Numerical Model of Clotting

 $\underline{\text{Pulsatile}} \text{ versus } \underline{\text{steady}} \text{ flow}$

Qualitative validation

As observed in giant aneurysms, the simulation shows

- ▶ Partial or total aneurysm thrombosis,
- ► Spontaneous stop and start of the clot

Blue: patient Red: simulation movie

End of module

Bio-medical Modeling

 $[Coming \ next]$

Monte-Carlo methods

5. Monte-Carlo methods I

Background

- ► The goal of Monte-Carlo methods is the sampling of a process in order to determine some statistical properties
- ► For instance, we toss a coin 4 times. What is the probability to obtain 3 tail and 1 head?
- ▶ Mathematics gives us the solution:

$$P(3 \text{ head}) = {4 \choose 3} \left(\frac{1}{2}\right)^3 \left(1 - \frac{1}{2}\right)^1 = \frac{1}{4}$$

▶ But we could also do a simulation

A Monte-Carlo computer simulation

```
from random import randint
success=0
attempts=10000
for i in range(attempts):
    if randint(0,1)+randint(0,1)+randint(0,1)+randint(0,1)==3:
        success+=1
print "Number of attempts=", attempts
print "Number of success=", success
```

We get for instance:

More difficult problems

▶ For the coin tossing problem, no need for a simulation

More difficult problems

- ▶ For the coin tossing problem, no need for a simulation
- ► But we can think of other problems for which probability theory could hardly be applied

More difficult problems

- ▶ For the coin tossing problem, no need for a simulation
- ► But we can think of other problems for which probability theory could hardly be applied
- ► For instance: what is the average duration of the card game called "war" (or battle)?

The war card game with 52 cards

Historical note

- ► The method was name in the 1940s by John von Neumann, Stanislaw Ulam and Nicholas Metropolis after the name of the *Monte-Carlo casino*, where Ulam's uncle used to gamble ...and loose his money
- ► The motivation was to find out the probability that a Canfield solitaire will finish successfully.
- ▶ Ulam found it easier to play many Canfield solitaires and estimate the number of successes, rather than trying to apply combinatorics and probability theory.
- ► Then the Monte-Carlo methods was successfully applied to the *Manhattan project* (nuclear weapon) in the Los Alamos National Laboratory.

End of module

Monte-Carlo Methods I

Coming next

Monte-Carlo Methods II

6. Monte-Carlo Methods II

▶ We consider a stochastic process whose goal is to explore the state space of a system of interest.

- ▶ We consider a stochastic process whose goal is to explore the state space of a system of interest.
- ▶ Let x be a point in this state space. Let us asssume that this point moves across the space by jumping randomly to another point x'.

- ▶ We consider a stochastic process whose goal is to explore the state space of a system of interest.
- ▶ Let x be a point in this state space. Let us asssume that this point moves across the space by jumping randomly to another point x'.
- ▶ The jump from location x to location x' takes place with probability $W_{x\to x'}$. This advanced the system time from t to t+1 (Markov chain)

- We want this process to sample a prescribed probability $\rho(t, x)$. This stochastic process should be at point x at time t with a probability $\rho(t, x)$.
- ▶ How do we choose $W_{x\to x'}$?

$$\rho \propto \exp(-E(x)/k_BT)$$

The probability that our random exportation is at location x at time t is

$$p(t+1,x) = \sum_{x'} p(t,x') W_{x' \to x}$$

The probability that our random exportation is at location x at time t is

$$p(t+1,x) = \sum_{x'} p(t,x') W_{x'\to x}$$

▶ Let us consider a 1D discrete space: $x \in \mathbf{Z}$.

The probability that our random exportation is at location x at time t is

$$p(t+1,x) = \sum_{x'} p(t,x') W_{x'\to x}$$

- ▶ Let us consider a 1D discrete space: $x \in \mathbf{Z}$.
- ▶ where one can move to the right with probability W_+ , to the left with probability W_- and stay still with probability W_0 .

The probability that our random exportation is at location x at time t is

$$p(t+1,x) = \sum_{x'} p(t,x') W_{x'\to x}$$

- ▶ Let us consider a 1D discrete space: $x \in \mathbf{Z}$.
- ▶ where one can move to the right with probability W_+ , to the left with probability W_- and stay still with probability W_0 .
- ▶ The equation for p(t, x) simplifies to

$$p(t+1,x) = p(t,x-1)W_{+} + p(t,x)W_{0} + p(t,x+1)W_{-}$$

▶ The diffusion equation is $\partial_t \rho = D\partial_x^2 \rho$

- ▶ The diffusion equation is $\partial_t \rho = D \partial_x^2 \rho$
- ▶ Which can be discretized as (see week 3)

$$\rho(t + \Delta t, x) = \rho(t, x) + \frac{\Delta tD}{\Delta x^2} \left(\rho(t, x - 1) - 2\rho(t, x) + \rho(t, x + 1) \right)$$

- ▶ The diffusion equation is $\partial_t \rho = D \partial_x^2 \rho$
- ▶ Which can be discretized as (see week 3)

$$\rho(t + \Delta t, x) = \rho(t, x) + \frac{\Delta tD}{\Delta x^2} \left(\rho(t, x - 1) - 2\rho(t, x) + \rho(t, x + 1) \right)$$

▶ to be compared with

$$p(t+1,x) = p(t,x-1)W_{+} + p(t,x)W_{0} + p(t,x+1)W_{-}$$

- ▶ The diffusion equation is $\partial_t \rho = D \partial_x^2 \rho$
- ▶ Which can be discretized as (see week 3)

$$\rho(t + \Delta t, x) = \rho(t, x) + \frac{\Delta t D}{\Delta x^2} \left(\rho(t, x - 1) - 2\rho(t, x) + \rho(t, x + 1) \right)$$

▶ to be compared with

$$p(t+1,x) = p(t,x-1)W_{+} + p(t,x)W_{0} + p(t,x+1)W_{-}$$

▶ In order to have $p = \rho$, one need $W_+ = W_- = \Delta t D/(\Delta x)^2$ and $W_0 = 1 - 2\Delta t D/(\Delta x)^2 = 1 - W_+ - W_-$, and thus $\Delta t D/(\Delta x)^2 \le 1/2$

Monte-Carlo simulation of Diffusion

▶ Therefore a random walk is a way to sample a density ρ that obeys the diffusion equation.

Monte-Carlo simulation of Diffusion

- ▶ Therefore a random walk is a way to sample a density ρ that obeys the diffusion equation.
- ▶ With a random walk, it is easy to add obstacles, or aggregation processes, hard to include in the differential equation.

More general case: Master equation

The probability to find the random exploration at location x at time t is p(t,x) given by

$$p(t+1,x) = \sum_{x'} p(t,x') W_{x'\to x}$$

$$= \sum_{x'\neq x} p(t,x') W_{x'\to x} + p(t,x) W_{x\to x}$$

$$= \sum_{x'\neq x} p(t,x') W_{x'\to x} + p(t,x) (1 - \sum_{x'\neq x} W_{x\to x'})$$

$$= p(t,x) + \sum_{x'\neq x} [p(t,x') W_{x'\to x} - p(t,x) W_{x\to x'}]$$

104

Detailed balance

In a steady state, the condition $p(x) = \rho(x)$ requires that

$$\sum_{x' \neq x} \left[\rho(x') W_{x' \to x} - \rho(x) W_{x \to x'} \right] = 0$$

We can then choose $W_{x\to x'}$ according to the **detailed balance** condition

$$\rho(x')W_{x'\to x} - \rho(x)W_{x\to x'} = 0$$

Metropolis Rule

Let us consider a physical system at equilibrium whose probability to be in state x is given by the Maxwell-Boltzmann distribution

$$\rho(x) = \Gamma \exp(-E(x)/kT)$$

We can sample this distribution with a stochastic process by choosing $W_{x\to x'}$ according to the **Metropolis rule**:

$$W_{x \to x'} = \begin{cases} 1 & \text{si } E' < E \\ \exp[-(E' - E)/kT] & \text{si } E' > E \end{cases}$$

The Metropolis Rule in practice

- ▶ In a gas, one selects one particle at random.
- \blacktriangleright One moves it by an amount Δx .
- ightharpoonup One computes the energy E' of the gas with this new position.
- ▶ One accepts this change if

$$rand(0,1) < min(1, exp[-(E'-E)/kT])$$

▶ By sampling ρ with $W_{x\to x'}$, one can compute average physical properties, such as for instance the pressure in the gas.

The Metropolis obeys the detailed balance

Let us assume that E' > E. Detailed balance is obeyed because

$$\rho(x)W_{x\to x'} = \Gamma \exp(-E/kT) \exp[-(E'-E)/kT]$$

$$= \Gamma \exp(-E'/kT)$$

$$= \rho(x') \times 1$$

$$= \rho(x')W_{x'\to x}$$

And similarly if $E' \leq E$

Glauber Rule

This is an alternative to the Metropolis rule. $W_{x\to x'}$ is given by

$$W_{x \to x'} = \frac{\rho(x')}{\rho(x) + \rho(x')}$$

which also clearly obeys detailed balance With $a = \Gamma \exp(-E(r)/kT)$ one obtains

With
$$\rho = \Gamma \exp(-E(x)/kT)$$
, one obtains

$$W_{x \to x'} = \frac{\exp(-E'/kT)}{\exp(-E/kT) + \exp(-E'/kT)}$$

End of module

Monte-Carlo Methods II

 $[Coming \ next]$

Monte-Carlo Methods III

7. Monte-Carlo Methods III

Kinetic / Dynamic Monte-Carlo

Let us consider the chemical equations

$$A \stackrel{k_1}{\to} B \qquad B \stackrel{k_2}{\to} A$$

They can be written as an ordinary equation

$$\frac{d}{dt} \left(\begin{array}{c} A \\ B \end{array} \right) = \left(\begin{array}{cc} -k_1 & k_2 \\ k_1 & -k_2 \end{array} \right) \left(\begin{array}{c} A \\ B \end{array} \right)$$

Analytical solution

$$A(t) = \frac{k_2}{k_1 + k_2} (A_0 + B_0) + \frac{A_0 k_1 - B_0 k_2}{k_1 + k_2} e^{-(k_1 + k_2)t}$$

$$B(t) = \frac{k_1}{k_1 + k_2} (A_0 + B_0) - \frac{A_0 k_1 - B_0 k_2}{k_1 + k_2} e^{-(k_1 + k_2)t}$$

where A_0 and B_0 are the initial concentration of A and B.

When $t \to \infty$,

$$A \to A_{\infty} = \frac{k_2}{k_1 + k_2} (A_0 + B_0)$$
 $B \to B_{\infty} = \frac{k_1}{k_1 + k_2} (A_0 + B_0)$

1 One defines a time step Δt , small enough so that $k_1 \Delta t$ et $k_2 \Delta t$ are smaller than 1. They are the **probabilities** that, during Δt , one A particle get transformed into one B particle, or conversely.

- 1 One defines a time step Δt , small enough so that $k_1 \Delta t$ et $k_2 \Delta t$ are smaller than 1. They are the **probabilities** that, during Δt , one A particle get transformed into one B particle, or conversely.
- 2 One chooses randomly a particle among the N = A(t) + B(t) = const of them. (In practice one chooses a A particle rand(0,1) < A/(A+B), and a B particle otherwise.

- 1 One defines a time step Δt , small enough so that $k_1 \Delta t$ et $k_2 \Delta t$ are smaller than 1. They are the **probabilities** that, during Δt , one A particle get transformed into one B particle, or conversely.
- 2 One chooses randomly a particle among the N = A(t) + B(t) = const of them. (In practice one chooses a A particle rand(0,1) < A/(A+B), and a B particle otherwise.
- 3a If a A particle was chosen, it is transformed into a B particle provided $\operatorname{rand}(0,1) < k_1 \Delta t$. Then A = A 1, B = B + 1.

- 1 One defines a time step Δt , small enough so that $k_1 \Delta t$ et $k_2 \Delta t$ are smaller than 1. They are the **probabilities** that, during Δt , one A particle get transformed into one B particle, or conversely.
- 2 One chooses randomly a particle among the N = A(t) + B(t) = const of them. (In practice one chooses a A particle rand(0,1) < A/(A+B), and a B particle otherwise.
- 3a If a A particle was chosen, it is transformed into a B particle provided $\operatorname{rand}(0,1) < k_1 \Delta t$. Then A = A 1, B = B + 1.
- 3b If a B particle was chosen, it is transformed into a A particle, provided $\operatorname{rand}(0,1) < k_2 \Delta t$. Then A = A + 1, B = B 1.

- 1 One defines a time step Δt , small enough so that $k_1 \Delta t$ et $k_2 \Delta t$ are smaller than 1. They are the **probabilities** that, during Δt , one A particle get transformed into one B particle, or conversely.
- 2 One chooses randomly a particle among the N = A(t) + B(t) = const of them. (In practice one chooses a A particle rand(0,1) < A/(A+B), and a B particle otherwise.
- 3a If a A particle was chosen, it is transformed into a B particle provided $\operatorname{rand}(0,1) < k_1 \Delta t$. Then A = A 1, B = B + 1.
- 3b If a B particle was chosen, it is transformed into a A particle, provided $\operatorname{rand}(0,1) < k_2 \Delta t$. Then A = A + 1, B = B 1.
 - 4 (2) and (3) are repeated N times and the physical time t is incremented by Δt : $t = t + \Delta t$

- 1 One defines a time step Δt , small enough so that $k_1 \Delta t$ et $k_2 \Delta t$ are smaller than 1. They are the **probabilities** that, during Δt , one A particle get transformed into one B particle, or conversely.
- 2 One chooses randomly a particle among the N = A(t) + B(t) = const of them. (In practice one chooses a A particle rand(0,1) < A/(A+B), and a B particle otherwise.
- 3a If a A particle was chosen, it is transformed into a B particle provided $\operatorname{rand}(0,1) < k_1 \Delta t$. Then A = A 1, B = B + 1.
- 3b If a B particle was chosen, it is transformed into a A particle, provided $\operatorname{rand}(0,1) < k_2 \Delta t$. Then A = A + 1, B = B 1.
 - 4 (2) and (3) are repeated N times and the physical time t is incremented by Δt : $t = t + \Delta t$
 - 5 One repeats (2)-(4) until $t = t_{max}$

 $\Delta t = 0.02$ and $k_1 = 0.5$, $k_2 = 0.8$.

The Monte-Carlo simulation fluctuate around analytic solution.

We should average over several runs

▶ Let r_i be the rate at which the possible events occur in the system. i = 1, ... n.

- ▶ Let r_i be the rate at which the possible events occur in the system. i = 1, ..., n.
- ▶ For instance, $r_i = kAB$ for a reaction $A + B \rightarrow C$

- ▶ Let r_i be the rate at which the possible events occur in the system. i = 1, ..., n.
- ▶ For instance, $r_i = kAB$ for a reaction $A + B \rightarrow C$
- ▶ Let $R_i = \sum_{j=1}^i r_i$ be the cumulative rates.

- Let r_i be the rate at which the possible events occur in the system. $i = 1, \ldots, n$.
- ▶ For instance, $r_i = kAB$ for a reaction $A + B \rightarrow C$
- ▶ Let $R_i = \sum_{i=1}^i r_i$ be the cumulative rates.
- ▶ Choose one event k at random by picking a random number s = rand(0, 1): One chooses the k which verifies $R_{k-1} < sR_n < R_{k+1}$ (probability proportional to rate).

- Let r_i be the rate at which the possible events occur in the system. $i = 1, \ldots, n$.
- ▶ For instance, $r_i = kAB$ for a reaction $A + B \rightarrow C$
- ▶ Let $R_i = \sum_{i=1}^i r_i$ be the cumulative rates.
- ▶ Choose one event k at random by picking a random number s = rand(0, 1): One chooses the k which verifies $R_{k-1} < sR_n < R_{k+1}$ (probability proportional to rate).

- Let r_i be the rate at which the possible events occur in the system. $i = 1, \ldots n$.
- ▶ For instance, $r_i = kAB$ for a reaction $A + B \rightarrow C$
- ▶ Let $R_i = \sum_{i=1}^i r_i$ be the cumulative rates.
- ▶ Choose one event k at random by picking a random number s = rand(0, 1): One chooses the k which verifies $R_{k-1} < sR_n < R_{k+1}$ (probability proportional to rate).

 \blacktriangleright Execute the selected event (for instance a molecule A and molecule B disappear to produce a new molecule C).

- \blacktriangleright Execute the selected event (for instance a molecule A and molecule B disappear to produce a new molecule C).
- Advance time as $\Delta t = \ln(1/s')R_n^{-1}$, with s' = rand(0, 1).

- \blacktriangleright Execute the selected event (for instance a molecule A and molecule B disappear to produce a new molecule C).
- Advance time as $\Delta t = \ln(1/s')R_n^{-1}$, with s' = rand(0, 1).
- ▶ Note that here Δt is calculated according to a decreasing exponential distribution. It gives the average time of occurrence of the next event.

- \blacktriangleright Execute the selected event (for instance a molecule A and molecule B disappear to produce a new molecule C).
- Advance time as $\Delta t = \ln(1/s')R_n^{-1}$, with s' = rand(0,1).
- ▶ Note that here Δt is calculated according to a decreasing exponential distribution. It gives the average time of occurrence of the next event.
- ▶ Only one event takes place during the time interval Δt .

End of module

Monte-Carlo method III

End of Week 1

Thank you for your attention!