Лабораторная - 2. Задачи

4 марта 2022 г.

- 1) Мы отправим первый пакет, он дойдет до пункта назначения за $\frac{NL}{R}$. Когда первый дойдет до конца, второй остановится на N-1-ом маршрутизаторе, третий на N-2-ом, P-ый на N-(P-1)-ом. Тогда нам останется протащить последний пакет через P-1 маршрутизатор за $\frac{(P-1)L}{R}$. Итого общая задержка в пути составит $\frac{NL}{R} + \frac{(P-1)L}{R}$.
- 2) Здесь работает "принцип горлышка": минимальная скорость передачи данных среди каналов соединения составляет 200 Кбит/с, именно ее мы принимаем за скорость передачи данных по всей сети, поэтому время передачи данных составит $\frac{5\cdot1000\cdot8}{200}=200$ секунд.
- 3) Решим с использованием схемы Бернулли, применяя формулу $C_n^k \cdot \mathfrak{p}^k \cdot (1-\mathfrak{p})^{(n-k)}$ фиксируем k пользователей, находим вероятность того, что именно эти пользователи сейчас передают данные, а оставшиеся не передают ничего, и умножаем на количество способов выбрать k пользователей из n. Тогда вероятность одновременной передачи данных 12 и более пользователями составляет $C_{60}^{12} \cdot (0.2)^{12} \cdot (0.8)^{48} + C_{60}^{13} \cdot (0.2)^{13} \cdot (0.8)^{47} + ... + C_{60}^{60} \cdot (0.2)^{60} \cdot (0.8)^{6}$.
- 4) Воспользуемся формулой для вычисления задержки, выведенной в первой задаче, и найдем минимум получившейся функции по S, приравняв к 0 ее производную

 $P=\frac{X}{S}$ - количество пакетов, которые мы будем передавать L=S+80

$$L = \tilde{S} + 80$$

$$N = 3$$

Тогда:
$$\frac{(\frac{X}{S}-1)\cdot(S+80)}{R} + \frac{(S+80)\cdot 3}{R} = \frac{(S+80)\cdot(\frac{X}{S}+2)}{R} = \frac{X}{R} + \frac{2S}{R} + \frac{80X}{SR} + \frac{160}{R}$$
.

Производная:

$$\frac{2}{R} - \frac{80X}{RS^2} = 0$$
 $\frac{80X}{S^2} = 2$
 $S^2 = 40X$

$$\frac{80X}{2} = 2$$

$$s^2 - 40$$

$$S = \sqrt{40X}$$
.

Ответ: минимальные задержки будут при $S = \sqrt{40X}$

- 5) а) Как мы знаем, задержка передачи $=\frac{L}{R}$. Тогда общая задержка $d=\frac{L}{R}+\frac{IL}{R(1-I)}=\frac{LR-LRI+RIL}{R(1-I)}=\frac{L}{I-I}$ б) $d=\frac{L}{1-\frac{L}{\alpha}}$. Пусть $\frac{L}{R}>\frac{1}{\alpha}$, тогда $\frac{L\alpha}{R}>1$ \Longrightarrow задержка ожидания стремится к бесконечности \Longrightarrow общая задержка стремится к бесконечности. Если $\frac{L}{R}\leqslant \frac{1}{\alpha},$ но при этом $\frac{L}{R}$ не $\approx 0,$ то $\frac{L\alpha}{R}<=1$ \Longrightarrow задержка ожидания существенна и общая задержка существенна. Если же $\frac{L}{R} \approx 0$, то задержка ожидания мала и общая задержка приравнивается к задержке передачи.