Probability and Stochastic Processes (EL6303) NYU Tandon School of Engineering, Fall 2018 Instructor: *Dr. Elza Erkip* December 7, 2018

Name:		
Net ID:		

Quiz 4 Please write your name and net-id eg: Ojas Kanhere, ok
671 Do NOT write your N# number

Closed book/closed notes. No electronics, no calculators.

Total 20 points

Time: 40 minutes

- 1. (10 points) Let U(t) and V(t) be independent, WSS random processes with zero means and the same autocorrelation function $R(\tau) = R_U(\tau) = R_V(\tau)$. Let Z(t) be the random process defined by $Z(t) = U(t) \cos t + V(t) \sin t$.
 - (a) Find the mean of Z(t), E(Z(t)).
 - (b) Find the autocorrelation function of Z(t), $R_Z(t, t + \tau) = E(Z(t)Z(t + \tau))$.
 - (c) Is Z(t) is a WSS random process? Explain.
 - (d) Suppose U(t) and V(t) are independent SSS random processes. Is Z(t) a SSS random process? Explain.

Hint:

$$\sin(\theta \pm \phi) = \sin\theta\cos\phi \pm \cos\theta\sin\phi$$

$$\cos(\theta \pm \phi) = \cos\theta\cos\phi \mp \sin\theta\sin\phi$$

2. (10 points) Let N(t) be a Poisson process with rate $\lambda > 0$. Hence

$$P(N(t) = n) = \frac{(\lambda t)^n e^{-\lambda t}}{n!}, n = 0, 1, \dots$$

Let X_1 be the time of the first arrival, X_2 be the time of the second arrival. Suppose you are told that there is exactly one arrival in the interval $[0, t_0]$.

- (a) Show that the two events "there is exactly one arrival in the interval $[0, t_0]$ " and " $N(t_0) = 1$ " are the same.
- (b) Find the conditional pdf of X_1 given that there is exactly one arrival in the interval $[0, t_0]$.
- (c) Find the conditional pdf of X_2 given that there is exactly one arrival in the interval $[0, t_0]$.

