- find a mle estimate for probability parameter from just
- find a MLE estimate for probability parameter from joint
- and a MLL estimate for probability parameter from Joint sample X_1, \dots, X_{p_2} let the parameter n for binomial distribution be n=100, you observed $n_1=100$ binomial trials with $\sum_{j=1}^{n} x_j=1008$, then you observed $n_2=100$ geometric trials with $\sum_{j=1}^{n} y_j=1247$. Use likelihood ratio test to decide whether the value of a probability parameter changed. Use $\alpha=5\%$

$$\begin{array}{l}
\lambda_{i} = \sum_{i=1}^{N} \left(\frac{\pi_{i}}{\pi_{i}} \right) & \pi_{i} = \sum_{i=1}^{N} \left(\frac{\pi_{i}}{x_{i}} \right) \pi^{K_{i}} \left(1 - \pi_{i} \right)^{\frac{N}{2}} & \pi_{i} \left(1 - \pi_{i} \right)^{\frac{N}{2}} \\
\lambda_{i} = \sum_{i=1}^{N} \left(\frac{\pi_{i}}{\pi_{i}} \right) + \sum_{i=1}^{N} \left(\frac{\pi_{i}}{x_{i}} \right) + \sum_{i=1}^{N} \left(\frac{\pi_{i}}{x_{i}} \right) + \sum_{i=1}^{N} \left(\frac{\pi_{i}}{\pi_{i}} \right) +$$

Let $X_1, ..., X_9$ be IID distributed Bernoulli trials.

- Identify a distribution of $\sum_{i=1}^{n} x_i$
- If $\sum_{i=1}^9 x_i = 3$ test a hypothesis $H_0: \pi = 1/2$ against $H_1: \pi < 1/2$ for $\alpha = 0, 15$
- \blacksquare Estimate β and power, if the critical value of π to detect is

S x: ~ B; (9;π)

Assume that the observations 11,5;6,7;7,8;7,1;10,3;12,2;11,4;12,6;9,8;10,9 follow a normal distribution with unknown parameters μ, σ

- Compute 95% CI's for both μ and σ .
- Using $\alpha=5\%$ test a hypothesis that $H_0: \mu=11$ against $H_1: \mu\neq 11$.
 Derive a test for $H_0: \sigma^2=\sigma_0^2$.
- Test $H_0: \sigma^2 = 2$ against $H_1: \sigma^2 \neq 2$ using $\alpha = 1\%$

$$\bar{x} = 10,05$$
 $s^{2}(x) = 4,542$

$$S(x) = \sqrt{\frac{2}{n-1}} = 2,131$$

$$Cu \in \langle 8,505;11,555 \rangle$$

$$C^{2} \in \langle 2,149;15,140 \rangle$$

$$C \in \langle 1,466;3,191 \rangle$$