Goodness-of-fit Measures to Compare Observed and Simulated Values with hydroGOF

Mauricio Zambrano-Bigiarini

Aug 2011

1 Installation

Installing hydroGOF:

> install.packages("hydroGOF")

2 Setting Up the Environment

- 1. Loading the hydroGOF library, which contains data and functions used in this analysis.
 - > library(hydroGOF)
- 2. Loading observed streamflows of the Ega River (Spain), with daily data from 1961-Jan-01 up to 1970-Dec-31
 - > require(zoo)
 > data(EgaEnEstellaQts)
 > obs <- EgaEnEstellaQts</pre>
- 3. Generating a simulated daily time series, initially equal to the observed values (simulated values are usually read from the output files of the hydrological model)
 - > sim <- obs
- 4. Computing the numeric goodness-of-fit measures for the "best" (unattainable) case
 - > gof(sim=sim, obs=obs)

		[,1]
ME		0
MAE		0
MSE		0
RMSE		0
${\tt NRMSE}$	%	0
PBIAS	%	0

RSR	0
rSD	1
NSE	1
mNSE	1
rNSE	1
d	1
md	1
rd	1
ср	1
r	1
R2	1
bR2	1
KGE	1
VE	1

5. Randomly changing the first 2000 elements of 'sim', by using a normal distribution with mean 10 and standard deviation equal to 1 (default of 'rnorm').

```
> sim[1:2000] <- obs[1:2000] + rnorm(2000, mean=10)
```

6. Plotting the graphical comparison of 'obs' against 'sim', along with the numeric goodness-of-fit measures for the daily and monthly time series

> ggof(sim=sim, obs=obs, ftype="dm", FUN=mean)

3 Removing Warm-up Period

1. Using the first two years (1961-1962) as warm-up period, and removing the corresponding observed and simulated values from the computation of the goodness-of-fit measures:

> ggof(sim=sim, obs=obs, ftype="dm", FUN=mean, cal.ini="1963-01-01")

2. Verification of the goodness-of-fit measures for the daily values after removing the warm-up period:

```
> sim <- window(sim, start=as.Date("1963-01-01"))
> obs <- window(obs, start=as.Date("1963-01-01"))
> gof(sim, obs)
```

		[,1]
ME		4.37
MAE		4.37
MSE		44.36
RMSE		6.66
NRMSE	%	36.60
PBIAS	%	29.40
RSR		0.37
rSD		1.04
NSE		0.87
mNSE		0.63
rNSE		-0.51
d		0.97
md		0.81
rd		0.64
ср		0.44
r		0.96
R2		0.93
bR2		0.83
KGE		0.70
VE		0.71

4 Analysis of the Residuals

1. Computing the daily residuals (even if this is a dummy example, it is enough for illustrating the capability)

```
> r <- sim-obs
```

- 2. Summarizing and plotting the residuals (it requires the hydroTSM package):
 - > library(hydroTSM)
 - > smry(r)

	Index	r
Min.	1963-01-01	0.0000
1st Qu.	1964-12-31	0.0000
Median	1966-12-31	0.0000
Mean	1966-12-31	4.3700
3rd Qu.	1968-12-30	9.8360
Max.	1970-12-31	13.9200
IQR	<na></na>	9.8358
sd	<na></na>	5.0273
cv	<na></na>	1.1505
Skewness	<na></na>	0.3144
Kurtosis	<na></na>	-1.8344
NA's	<na></na>	2.0000
n	<na></na>	2922.0000

> # daily, monthly and annual plots, boxplots and histograms
> hydroplot(r, FUN=mean)

- 3. Seasonal plots and boxplots
 - > # daily, monthly and annual plots, boxplots and histograms
 - > hydroplot(r, FUN=mean, pfreq="seasonal")

This tutorial was built under:

- [1] "x86_64-redhat-linux-gnu (64-bit)"
- [1] "R version 3.0.0 (2013-04-03)"
- [1] "hydroGOF 0.3-7"