# CS/COE0447: Computer Organization and Assembly Language

#### **Chapter 3**

# modified by Bruce Childers original slides by Sangyeun Cho

Dept. of Computer Science University of Pittsburgh



#### **Binary arithmetic**

- (Sounds scary)
- So far we studied
  - Instruction set architecture basic
  - MIPS architecture & assembly language
- We will review binary arithmetic algorithms and their implementations
- Binary arithmetic will form the basis for CPU's datapath design



CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

### **Binary number representations**

- We looked at how to represent a number (in fact the value represented by a number) in binary
  - Unsigned numbers everything is positive
- We will deal with more complicated cases
  - · Negative numbers
  - Real numbers (a.k.a. floating-point numbers)

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

#### **Unsigned Binary Numbers**

- Limited number of binary numbers (patterns of 0s and 1s)
  - 8-bit number: 256 patterns, 00000000 to 11111111
  - in general, there are 2<sup>N</sup> bit patterns, where N is bit width

```
16 bit: 2^{16} = 65,536 bit patterns
32 bit: 2^{32} = 4,294,967,296 bit patterns
```

- Unsigned numbers use patterns for 0 and positive numbers
  - 8-bit number range [0..255] corresponds to

```
00000000 0
00000001 1
... ...
11111111 255
```

- 32-bit number range [0..4294,967,295]
- in general, the range is [0..2<sup>N</sup>-1]

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

5

#### **Unsigned Binary Numbers**

Binary addition

```
0 + 0 = 0, carry = 0 (no carry)
1 + 0 = 1, carry = 0
0 + 1 = 1, carry = 0
1 + 1 = 0, carry = 1
```

Binary subtraction

```
0 - 0 = 0, borrow = 0 (no borrow)
1 - 0 = 1, borrow = 0
0 - 1 = 1, borrow = 1
1 - 1 = 0, borrow = 0
```

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

#### **Unsigned Binary Numbers**

- Binary arithmetic is straightforward
- Addition: Just add numbers and carry as necessary
- Consider adding 8-bit numbers:



CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

#### **Unsigned Binary Numbers**

- Binary arithmetic is straightforward
- Subtraction: Just subtract and borrow as necessary
- Consider subtracting 8-bit numbers:



#### **Unsigned Binary to Decimal**

- How to convert binary number?
  - First, each digit is position i, numbered right to left
  - e.g., for 8-bit number:  $b_7b_6b_5b_4b_3b_2b_1b_0$
- Now, we just add up powers of 2

```
• b_0 \times 2^0 + b_1 \times 2^1 + b_2 \times 2^2 + ... + b_7 \times 2^7
```

An example

```
1011 0111
= 1 \times 2^{0} + 1 \times 2^{1} + 1 \times 2^{2} + 0 \times 2^{3} + 1 \times 2^{4} + 1 \times 2^{5} + 0 \times 2^{6} + 1 \times 2^{7}
= 1 + 2 + 4 + 0 + 16 + 32 + 0 + 128
= 183d
```

•  $v = \sum (b_i \times 2^i)$ , where  $0 \le i \le K-1$ , where K=# bits, i is bit posn

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

a

#### **Unsigned Binary Numbers in MIPS**

- MIPS instruction set provides support
  - addu \$1,\$2,\$3
     adds two unsigned numbers (\$2,\$3)
  - addiu \$1,\$2,10 adds unsigned number with signed immediate
  - subu \$1,\$2,\$3 subtracts two unsigned numbers
  - etc.
- Primary issue: The carry/borrow out is ignored
  - · Overflow is possible, but it is ignored
  - Signed versions take special action on overflow (we'll see shortly!)
- Unsigned memory accesses: Ibu, Ihu
  - · Loaded value is treated as unsigned number
  - Convert from smaller bit width (8 or 16) to a 32-bit number
  - Upper bits in the 32-bit destination register are set to 0s

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

#### **Important 7-bit Unsigned Numbers**

- American Standard Code for Information Interchange (ASCII)
  - · Developed in early 60s, rooted in telecomm
  - Maps 128 bit patterns (2<sup>7</sup>) into control, alphabet, numbers, graphics
  - Provides control values present in other important codes (at the time)
  - 8<sup>th</sup> bit might be present and used for error detection (parity)
- Control: Null (0), Bell (7), BS (8), LF (0A), CR (0D), DEL (7F)
- Numbers: (30-39)
- Alphabet: Uppercase (41-5A), Lowercase (61-7A)
- Other (punctuation, etc): 20-2F, 3A-40, 5E-60, 7B-7E
- Unicode: A larger (8,16,32 bit) encoding; backward compatible with ASCII

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

11

#### **Signed Numbers**

- How to represent positive and negative numbers?
- We still have a limited number of bit patterns
  - 8-bit: 256 bit patterns
  - 16 bit: 2<sup>16</sup> = 65,536 bit patterns
  - 32 bit:  $2^{32} = 4,294,967,296$  bit patterns
- Re-assign bit patterns differently
  - Some patterns are assigned to negative numbers, some to positive
- Three ways
  - · Sign magnitude, 1's complement, 2's complement

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

#### Method 1: sign-magnitude

- Same method we use for decimal numbers
- {sign bit, absolute value (magnitude)}
  - Sign bit (msb): 0 positive, 1 negative
  - Examples, assume 4-bit representation

```
    . 0000
    +0

    . 0011
    +3

    . 1001
    -1

    . 1111
    -7

    . 1000
    -0
```

- Properties
  - Two 0s a positive 0 and a negative 0?
  - Equal # of positive and negative numbers

(two 0's???)

- A + (-A) does not give zero!
- Consider sign during arithmetic

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

13

#### Sign-magnitude

- Let's check A + (-A) is not zero
- Consider N = 5 bits number. Zero is 00000 or 10000.
- Try this: -4 + 4 = ?????

```
-4 is 10100

4 is 00100

so, let's add them together:

10100 -4d

+ 00100 4d

----- ---

11000 -8d YIKES!
```

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

#### Method 2: one's complement

- Negation of +X is  $((2^N 1) X)$ , where N is number of bits
  - $A + (-A) = 2^{N} 1$  (i.e., -0)
  - Given a number A, it's negation is done by (1111...1111 A)
  - In fact, simple bit-by-bit inversion will give the same-magnitude number with a different sign
  - Examples, assume 4-bit representation
    - 0000 ^
    - 0011
    - 1001 --
    - 1111 -∪ • 1000 .
- Properties
  - There are two 0s
  - There are equal # of positive and negative numbers
  - A+(-A) = 0 (whew!) but... A+0=A only works for +0 (try it with -0!)
  - 2 step process for subtraction (accounts for "carry out")

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

15

#### **One's Complement**

- Negation of  $X(2^N 1) X$ ), positive are usual value
- Consider N=4

| Binary | <u>One's</u> | Binary | One's |
|--------|--------------|--------|-------|
| 0000   | 0            | 1000   | -7    |
| 0001   | 1            | 1001   | -6    |
| 0010   | 2            | 1010   | -5    |
| 0011   | 3            | 1011   | -4    |
| 0100   | 4            | 1100   | -3    |
| 0101   | 5            | 1101   | -2    |
| 0110   | 6            | 1110   | -1    |
| 0111   | 7            | 1111   | -0    |

notice how the counting works: 1111 is -0... then -1... -2... etc.

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

#### **One's Complement**

- Let's check the "0 property": A + (-A) = 0
- Suppose A = 5

```
5 is 0101 negation of 5 is (2^4-1)-5 = (16-1) - 5 = 15 - 5 = 10 10 (unsigned) is 1010 check the table: 1010 is -5 in 1's complement now, let's try 5 + (-5) in 1's complement
```

| 0101   | 5  | 1010        |  |
|--------|----|-------------|--|
| + 1010 | -5 | + 0000 (+0) |  |
|        |    |             |  |
| 1111   | -0 | 1010 (-5)   |  |



CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

17

#### Method 3: two's complement

- Negation is (2<sup>N</sup> X)
  - $A + (-A) = 2^N$
  - Given a number A, it's negation is done by (1111...1111 A) + 1
  - In fact, simple bit-by-bit inversion followed by adding 1 will give the same-magnitude number with a different sign
  - Examples, assume 4-bit representation
    - 0000
    - 0011
    - 1001
    - 1111
    - 1000
- Properties
  - There is a single 0
  - There are unequal # of positive and negative numbers
  - Subtraction is simplified one step based on addition (we'll see! ©)

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

#### **Two's Complement**

- Negation of X (2<sup>N</sup> X), positive are usual value
- Consider N=4

| Binary | One's | Binary | One's |
|--------|-------|--------|-------|
| 0000   | 0     | 1000   | -8    |
| 0001   | 1     | 1001   | -7    |
| 0010   | 2     | 1010   | -6    |
| 0011   | 3     | 1011   | -5    |
| 0100   | 4     | 1100   | -4    |
| 0101   | 5     | 1101   | -3    |
| 0110   | 6     | 1110   | -2    |
| 0111   | 7     | 1111   | -1    |

notice how the counting works: 1000 is -8... 1001 is -7... etc.

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

19

#### **Two's Complement**

- Let's check the "0 property": A + (-A) = 0
- Suppose A = 5

```
5 is 0101 negation of 5 is 2^4 - 5 = 16 - 5 = 11 11(unsigned) is 1011 check the table: 1011 is -5 in 2's complement now, let's try 5 + (-5) in 2's complement
```

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

#### **Two's Complement**

- Negation: (2<sup>8</sup> X) vs. (111111111 X) + 1
- Note 28 needs 9 bits:
  - 28 is 256, from earlier conversion process: 1 0000 0000 = 1 \* 28
- Whereas the other form has only 8 bits. Let's try it!
  - Consider X = 10 and we want to find -10



CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

21

#### **Two's Complement**

- How to convert binary 2's complement number?
  - Same as before, except most significant bit is "sign"
- Consider an 8-bit 2's complement number
  - $b_0 \times 2^0 + b_1 \times 2^1 + b_2 \times 2^2 + ... + b_7 \times (-2^7)$
- An example

```
1011 0111
= 1 \times 2^{0} + 1 \times 2^{1} + 1 \times 2^{2} + 0 \times 2^{3} + 1 \times 2^{4} + 1 \times 2^{5} + 0 \times 2^{6} + 1 \times (-2^{7})
= 1 + 2 + 4 + 0 + 16 + 32 + 0 + (-128)
= -73d
```

- What is 73d in 2's complement binary number?
- $v = (\sum (b_i \times 2^i)) + b_{K-1} \times -2^{K-1}$ , where  $0 \le i < K-1$ , where K=# bits, i is bit posn

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

## **Summary**

| Code | Sign-Magnitude | 1's Complement | 2's Complement |
|------|----------------|----------------|----------------|
| 000  | +0             | +0             | +0             |
| 001  | +1             | +1             | +1             |
| 010  | +2             | +2             | +2             |
| 011  | +3             | +3             | +3             |
| 100  | -0             | -3             | -4             |
| 101  | -1             | -2             | -3             |
| 110  | -2             | -1             | -2             |
| 111  | -3             | -0             | -1             |

- Issues
  - # of zeros
  - Balance
  - Arithmetic algorithm implementation

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh