

CÉSAR VALLEJO

CÉSAR VALLEJO

LÓGICA PROPOSICIONAL

4*CADEMIA*

TABLA DE VERDAD

RESOLUCIÓN DE PROBLEMAS DE CONECTIVOS LÓGICOS

APLICACIONES DE LEYES

ACADEMIA

OBJETIVO:

Comprender y aplicar correctamente las tablas de verdad de los operadores lógicos así como también las leyes de la lógica proposicional en diversos problemas.

р	q	٨	V	→:	↔	Δ	~ p
V	. V	V	ν	γ	V	F	: F
V	F	F	٧	F	F	٧	F
; F	V	F :	٧	٧	F	٧٠٠٠	V
F	F	F :	F	٧	V.	F	· V

TABLA DE VERDAD

Es una tabla que muestra el valor de verdad de una proposición para cada combinación de valores de verdad que se puede asignar a sus componentes.

Proposición Lógica

Es aquel enunciado que asume un único valor de verdad sin ambigüedad, es decir, es verdadero o es falso.

PRINCIPALES CONECTIVOS LÓGICOS

NEGACIÓN (∼)

Es aquel conectivo que cambia el valor de verdad de la proposición.

р	~ p
V	F
F	V

CONJUNCIÓN (A)

Enlaza dos proposiciones mediante el conectivo lógico (y).

р	q	p A q
V	٧	V
V	F	F
F	V	F
F	F	F

DISYUNCIÓN (V)

Enlaza dos proposiciones mediante el conectivo lógico (o).

р	q	p ∨ q
V	V	V
V	F	V
F	V	V
F	F	F

CONDICIONAL (\rightarrow)

Permite enlazar proposiciones mediante el conectivo lógico:

Si p, entonces q.

BICONDICIONAL (\leftrightarrow)

Permite enlazar proposiciones mediante el conectivo lógico:

p si y solo si q

р	q p	\leftrightarrow q
V	V	V
V	F	F
F	V	F
F	F	V

DISYUNCIÓN FUERTE (\triangle)

Enlaza dos proposiciones mediante el conectivo lógico:

Opoq.

р	q	р∆q
V	V	F
V	F	V
F	V	V
F	F	F

RESUMEN

р	q	٨	V	\rightarrow	\longleftrightarrow	Δ	~ p
V	V	V	V	V	V	F	F
V	F	F	V	F	F	V	F
F	V	F	V	V	F	V	V
F	F	F	F	V	V	F	V

RESOLUCIÓN DE PROBLEMAS DE CONECTIVOS LÓGICOS

APLICACIÓN 1

Si la proposición es verdadera $\sim \{(p \rightarrow q) \lor [\sim p \land (\sim q \land r)]\}$

Indique la secuencia correcta después de determinar si las proposiciones son verdaderas (V) o falsas (F).

I.
$$(p \Delta q) \vee r$$

$$\text{II.}(p \leftrightarrow q)_{\Lambda} \text{ r}$$

III.
$$(p \lor q) \land (r \rightarrow q)$$

- VFF
- B) FVF
- D) FVV

RESOLUCIÓN:

Nos piden : La secuencia correcta de verdad o falsedad de cada proposición Del enunciado, la proposición es verdadera

$$\sim \left\{ (p \to q) \vee \left[\sim p \Delta \left(\sim q \wedge r \right) \right] \right\} \equiv \mathbf{V}$$

$$\bigvee_{\mathbf{F}} \mathbf{F} \Delta \qquad \mathbf{F}$$

Entonces

$$p \equiv V$$

$$q \equiv F$$

$$r \equiv F$$

Reemplazamos

I.
$$(p \triangle q) \lor r \equiv V$$

$$(V \triangle F) \lor F$$

$$V \lor F$$

III.
$$(p \lor q) \land (r \rightarrow q) \equiv \mathbf{V}$$

$$(\mathbf{V} \lor \mathbf{F}) \land (\mathbf{F} \rightarrow \mathbf{F})$$

.. La secuencia correcta es VFV

APLICACIÓN 2

verdaderos:

Al desarrollar la tabla de verdad de. $\sim p \ v \ [q \leftrightarrow \sim (p \rightarrow \sim q)]$ Halle la matriz principal y de como respuesta la cantidad de valores

- A) 2
- B) 3
- **E** 4
- D) 1
- E) C

RESOLUCIÓN:

Nos piden: El resultado de la matriz principal.

De los datos, elaboramos una tabla de verdad para la proposición dada

	p	q	~ p	~ q	p → ~ q	~p	V	[q	\leftrightarrow	~ ((p→~ q)]
	<	<	F	F	F	<u> </u>	V	٧	V	٧	F
Ī	V	F	F	٧	V	F	V	F	V	F	V
	F	V	٧	F	V	٧	٧	٧	F	F	٧
	F	F	٧	V	V	٧	V	F	V	F	V

Matriz principal

La cantidad de valores verdaderos es 4

APLCACIONES DE LAS LEYES

1. Conmutativa

$$p \wedge q \equiv q \wedge p$$
$$p \wedge q \equiv q \wedge p$$
$$p \Delta q \equiv q \wedge p$$

2. Asociativa

$$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$$

 $p \vee (q \vee r) \equiv (p \vee q) \vee r$

3. Distributiva

$$\underline{p \wedge (q \vee r) \equiv (\underline{p \wedge q}) \vee (\underline{p \wedge r})}$$

$$\underline{p \vee (q \wedge r)} \equiv (\underline{p \vee q}) \wedge (\underline{p \vee r})$$

4. Involutiva o doble negación

$$\sim (\sim p) \equiv p$$

$$\sim (\not - (\not - p)) \equiv \sim p$$

5. De D'Morgan

$$\sim (p \land q) \equiv \sim p \lor \sim q$$

La negación de una conjunción es una disyunción con sus elementos negados

$$\sim (p \lor q) \equiv \sim p \land \sim q$$

La negación de una disyunción es una conjunción con sus elementos negados

6. De la condicional

$$p \rightarrow q \equiv \sim p \lor q$$
$$p \rightarrow q \equiv \sim q \rightarrow \sim p$$

Obs:

$$p \rightarrow q \not\equiv q \rightarrow p$$

7. De absorción

$$p \land (p \lor q) \equiv p$$

 $p \lor (p \land q) \equiv p$
 $p \land (\sim p \lor q) \equiv p \land q$
 $p \lor (\sim p \land q) \equiv p \lor q$

8. De la bicondicional

$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\sim p \land \sim q)$$

$$p \leftrightarrow q \equiv \sim (p \Delta q)$$

APLICACIÓN 3

¿Qué alternativa es equivalente a la siguiente proposición?

$$(p \rightarrow q) \rightarrow [(p \lor (q \land r)) \longleftrightarrow (q \land (p \lor r))]$$

- A) p
- B) $p \rightarrow r$
- C) $q \leftrightarrow r$
- D) p ∧ ~p
- **/**q V ~q

RESOLUCIÓN:

Nos piden : la alternativa equivalente a la proposición

Asignaremos valores de verdad convenientes

Si
$$p \equiv F$$
 $(p \rightarrow q) \rightarrow [(p \lor (q \land r)) \leftrightarrow (q \land (p \lor r))]$ $(F \rightarrow q) \rightarrow [(F \lor (q \land r)) \leftrightarrow (q \land (F \lor r))]$ $V \rightarrow [(q \land r) \leftrightarrow (q \land r)]$ IGUALES

Si
$$p \equiv V$$
 $(p \rightarrow q) \rightarrow [(p \lor (q \land r)) \leftrightarrow (q \land (p \lor r))]$ $(\begin{tabular}{c} \begin{tabular}{c} (\begin{tabular}{c} \begin{tabular}{c} \begin{tabular}{c} \begin{tabular}{c} \begin{tabular}{c} (\begin{tabular}{c} \begin{tabular}{c} \begin{ta$

Observamos que la expresión es siempre verdadera

UNI 2023 II

∴ La alternativa que es verdadera es q V ~q

- ACADEMIA -CÉSAR VALLEJO

GRACIAS

academiacesarvallejo.edu.pe