Rectas y planos

UNIDAD 2

Guía de Actividades

Álgebra A (62) Cátedra: Escayola

RECTAS Y PLANOS

Ejercicio 1. En cada uno de los siguientes casos, decidir gráfica y analíticamente cuáles de los puntos pertenecen a la recta L.

- a) $L = \{X \in \mathbb{R}^2 : X = \lambda(-2,3) + (2,2), \lambda \in \mathbb{R}\} \subset \mathbb{R}^2.$ $P_1 = (2,2), P_2 = (-2,3), P_3 = (0,0), P_4 = (12,-13), P_5 = (2,-1).$
- b) $L = \{X \in \mathbb{R}^3 : X = \lambda(-1, 1, 1) + (3, -3, -3), \lambda \in \mathbb{R}\} \subset \mathbb{R}^3.$ $P_1 = (3, -3, -3), P_2 = (0, 0, 0), P_3 = (-1, 1, 1), P_4 = (3, 4, 0), P_5 = (\frac{2}{3}, \frac{2}{3}, \frac{2}{3}).$

Ejercicio 2. Graficar y dar una ecuación vectorial para la recta que:

- a) pasa por P = (-1, 2) con vector director v = (3, 1).
- b) pasa por P = (1, -4) y Q = (-1, -3).
- c) es paralela a la recta $L=\{X\in\mathbb{R}^2\,:\,X=\lambda(-2,3)+(1,-1),\,\lambda\in\mathbb{R}\}$ y pasa por P=(1,-4).
- d) es perpendicular a la recta $L = \{X \in \mathbb{R}^2 : X = \lambda(2,3) + (5,7), \lambda \in \mathbb{R}\}$ y pasa por el origen.

Ejercicio 3.

a) Dar una ecuación vectorial para cada una de las rectas de \mathbb{R}^2 determinadas por las siguientes ecuaciones:

(i)
$$y = -2x + 1$$

(*ii*)
$$2x - 3y = 5$$

(iii)
$$y = -2$$

$$(iv)$$
 $x=3$

- b) Dar una ecuación implícita para cada una de las siguientes rectas en \mathbb{R}^2 :
 - (i) $L = \{X \in \mathbb{R}^2 : X = \lambda(3,2) + (1,1), \lambda \in \mathbb{R}\}.$
 - (ii) $L = \{X \in \mathbb{R}^2 : X = \lambda(2,0) + (-1,3), \lambda \in \mathbb{R}\}.$
 - (iii) $L = \{X \in \mathbb{R}^2 : X = \lambda(0, -1) + (2, 1), \lambda \in \mathbb{R}\}.$

Ejercicio 4. En cada uno de los siguientes casos, dar una ecuación vectorial para la recta que:

- a) está dirigida por v = (0, 1, 0) y pasa por P = (0, 2, 4).
- b) pasa por los puntos P = (-2, 3, 4) y Q = (-1, 3, 1).
- c) es paralela al eje z y pasa por P = (1, 2, 3).
- d) es perpendicular a la recta $L=\{X\in\mathbb{R}^3: X=\lambda(1,-2,1)+(3,5,7), \lambda\in\mathbb{R}\}$ y pasa por P=(1,9,-3). ¿Es única?

Ejercicio 5. En cada uno de los siguientes casos, decidir cuáles de los puntos pertenecen al plano Π .

- a) $\Pi = \{X \in \mathbb{R}^3 : X = \lambda(0,1,0) + \mu(1,0,0) + (0,0,1), \lambda, \mu \in \mathbb{R}\}\$ $P_1 = (1,1,1), P_2 = (1,1,0), P_3 = (0,1,1), P_4 = (a,b,0), P_5 = (a,b,1).$
- b) $\Pi = \{X \in \mathbb{R}^3 : X = \lambda(0,2,0) + \mu(1,1,0) + (-1,2,1), \ \lambda, \mu \in \mathbb{R}\}.$ $P_1 = (3,-3,1), \ P_2 = (0,0,0), \ P_3 = (0,5,1), \ P_4 = (-4,3,1), \ P_5 = (-\frac{1}{2},1,\frac{1}{2}).$

Ejercicio 6.

- a) Dar una ecuación implícita para el plano $\Pi=\{X\in\mathbb{R}^3:X=\lambda(1,1,0)+\mu(0,-1,2)+(-2,0,4),\,\lambda,\mu\in\mathbb{R}\}.$
- b) Dar una ecuación vectorial para el plano $\Pi = \{(x, y, z) \in \mathbb{R}^3 : -x + 3y + 2z = 1\}.$

Ejercicio 7. Dar una ecuación vectorial y una ecuación implícita para el plano que:

- a) pasa por los puntos (2,1,2), (1,1,1) y (3,2,7).
- b) pasa por el punto (1,2,1) y es paralelo al plano que contiene a los ejes $x \in y$.
- c) es paralelo a la recta $L = \{X \in \mathbb{R}^3 : X = \lambda(1,2,-4) + (1,2,1), \lambda \in \mathbb{R}\}$ y contiene a los puntos P = (2,2,1) y Q = (1,2,-3).

d) contiene al punto (-1,2,2) y es ortogonal a la recta $L=\{X\in\mathbb{R}^3:X=\lambda(1,1,-1)+(-1,2,2),\lambda\in\mathbb{R}\}.$

Ejercicio 8.

- a) Decidir si los puntos A = (1,1,1), B = (-2,0,1) y C = (3,0,2) son colineales (están sobre una misma recta) o no.
- b) Decidir si los puntos $A=(8,2,4),\ B=(4,2,8),\ C=(-2,0,1)$ y D=(1,-1,3) son coplanares (están sobre un mismo plano) o no.

Ejercicio 9. Dado el plano $\Pi = \{(x, y, z) \in \mathbb{R}^3 : 2x - 5y + 3z = 11\}$:

- a) Hallar **todos** los valores de $a \in \mathbb{R}$ para los cuales $(2a, a, 7) \in \Pi$.
- b) Decidir si existe algún valor de $a \in \mathbb{R}$ tal que $(1, 3a, 5a) \in \Pi$.

Ejercicio 10. Calcular el producto vectorial $\vec{u} = \vec{v} \times \vec{w}$ para los siguientes pares de vectores:

(a)
$$\vec{v} = (1, -2, -4); \quad \vec{w} = (1, -2, -4).$$

(c)
$$\vec{v} = (2, 1, -3); \quad \vec{w} = (1, -2, -4).$$

(b)
$$\vec{v} = (1, -2, -4); \quad \vec{w} = (2, 1, -3).$$

(d)
$$\vec{v} = (2, 0, 0); \quad \vec{w} = (0, 0, 3).$$

En cada caso, verificar que \vec{u} es ortogonal tanto a \vec{v} como a \vec{w} .

Ejercicio 11. Sean $\vec{u} = (1, 2, -3), \vec{v} = (-1, 5, 2), \vec{w} = (1, 2, 4) \text{ y } \vec{z} = (2, -4, 8).$ Hallar en \mathbb{R}^3 :

- a) un vector no nulo que sea, simultáneamente, ortogonal a \vec{u} y \vec{v} . ¿Es único?
- b) todos los vectores que son, simultáneamente, ortogonales a \vec{w} y \vec{z} .
- c) un vector de norma 2 que sea, simultáneamente, ortogonal a \vec{w} y \vec{z} . ¿Es único?

Ejercicio 12. Calcular nuevamente las ecuaciones implícitas de los planos del Ejercicio 7 por medio de su ecuación normal y utilizando el producto vectorial convenientemente para calcular los vectores normales de los mismos.

Intersección de rectas y planos

Ejercicio 13. Sean
$$\Pi = \{(x, y, z) \in \mathbb{R}^3 : 2x - y + 3z = 5\}, L = \{X \in \mathbb{R}^3 : X = \lambda(1, -1, -1) + (1, 0, -2), \lambda \in \mathbb{R}\}$$
 y $L' = \{X \in \mathbb{R}^3 : X = \mu(3, 5, 1) + (0, 1, 2), \mu \in \mathbb{R}\}$. Calcular $L \cap \Pi$ y $L' \cap \Pi$.

Ejercicio 14. Determinar si las rectas L y L' resultan concurrentes, paralelas/coincidentes o alabeadas:

a)
$$L = \{X \in \mathbb{R}^3 : X = \lambda(1, 0, -1) + (-1, 1, 2), \lambda \in \mathbb{R}\}$$

 $L' = \{X \in \mathbb{R}^3 : X = \mu(-1, 1, 2) + (1, 0, -1), \mu \in \mathbb{R}\}$

b)
$$L = \{X \in \mathbb{R}^3 : X = \lambda(1, 1, -1) + (-1, 2, 2), \lambda \in \mathbb{R}\}\$$

 $L' = \{X \in \mathbb{R}^3 : X = \mu(2, 2, -2) + (1, 0, -1), \mu \in \mathbb{R}\}.$

c)
$$L = \{X \in \mathbb{R}^3 : X = \lambda(1, \frac{1}{2}, -1) + (-1, 1, 2), \lambda \in \mathbb{R}\}\$$

 $L' = \{X \in \mathbb{R}^3 : X = \mu(-2, -1, 2) + (3, 3, -2), \mu \in \mathbb{R}\}.$

$$d) \ L = \{X \in \mathbb{R}^3 \, : \, X = \lambda(1,2,-1) + (-1,-1,2), \lambda \in \mathbb{R}\}$$

$$L' = \{X \in \mathbb{R}^3 \, : \, X = \mu(-1,1,1) + (3,2,-1), \mu \in \mathbb{R}\}.$$

En cada caso determinar si existe un plano que contenga a L y L'. Si la respuesta es afirmativa, hallarlo.

Ejercicio 15. Determinar en qué casos los planos Π_1 y Π_2 se intersecan y hallar la intersección.

a)
$$\Pi_1 = \{(x, y, z) \in \mathbb{R}^3 : 4x + 2y - 3z = 1\}; \quad \Pi_2 = \{(x, y, z) \in \mathbb{R}^3 : 2x + y - \frac{3}{2}z = 1\}.$$

b)
$$\Pi_1 = \{(x, y, z) \in \mathbb{R}^3 : 3x - 2y - 1 = 0\}; \quad \Pi_2$$
 el plano dirigido por $(0, 0, 1), (2, 3, 3)$ que pasa por $(1, 1, 2)$.

c) Π_1 el plano que pasa por (-1,1,2) con vector normal (1,2,-1); Π_2 el plano que pasa por (1,1,1), (2,3,1) y (-1,-2,2).

Ejercicio 16. Hallar ecuaciones implícitas para cada una de las rectas siguientes (es decir, describirlas como intersección de dos planos dados por ecuaciones implícitas):

- a) L_1 es intersección del plano xy con el plano yz.
- b) $L_2 = \{X \in \mathbb{R}^3 : X = \lambda(1,0,-1) + (-1,1,2), \lambda \in \mathbb{R}\}.$
- c) L_3 pasa por los puntos (-5,3,7) y (2,-3,3).

Ejercicio 17. En cada uno de los siguientes casos, hallar la intersección de las rectas L y L':

- a) $L = \{X \in \mathbb{R}^3 : X = \lambda(1, 1, 0) + (0, -1, 2), \lambda \in \mathbb{R}\}$ $L' = \{(x, y, z) \in \mathbb{R}^3 : x - y + z = 3, -2x + y + z = -2\}.$
- b) $L = \{X \in \mathbb{R}^3 : X = \lambda(1,1,0) + (0,-1,2), \lambda \in \mathbb{R}\}$ $L' = \{(x,y,z) \in \mathbb{R}^3 : x - y + z = 3, -2x + 2y + z = 2\}.$

DISTANCIAS Y ÁNGULOS ENTRE RECTAS Y PLANOS

Ejercicio 18. Sean L_1 y L_2 las rectas de \mathbb{R}^2 , $L_1 = \{(x, y) \in \mathbb{R}^2 : x - y = 1\}$ y $L_2 = \{(x, y) \in \mathbb{R}^2 : x + y = 3\}$.

- a) Calcular el ángulo entre L_1 y L_2 .
- b) Hallar una recta L_3 tal que $\angle(L_1, L_3) = \angle(L_2, L_3)$ y $L_1 \cap L_2 \in L_3$.

Ejercicio 19. Sean $L_1 = \{X \in \mathbb{R}^3 : X = \lambda(1, -2, 1) + (0, 0, -2), \lambda \in \mathbb{R}\}$ y L_2 la recta que pasa por (1, 4, 2) y (0, 2, -1).

- a) Verificar que $L_1 \cap L_2 \neq \emptyset$.
- b) Hallar un plano que contenga a L_1 y L_2 y determinar el ángulo entre L_1 y L_2 .

Ejercicio 20. Sea L_1 la recta que tiene dirección (1, 2, -1) y pasa por (-1, 3, 1), y sea L_2 la recta que pasa por (-1, 1, 3) y por (1, 2, 7).

- a) Verificar que $L_1 \cap L_2 = \emptyset$.
- b) Determinar una recta L_3 paralela a L_1 que interseque a L_2 en el punto (-1,1,3) y hallar el ángulo entre L_3 y L_2 .

Ejercicio 21. Encontrar **todos** los puntos de la recta $L = \{X \in \mathbb{R}^3 : X = \lambda(1, -1, 0) + (2, 1, -1), \lambda \in \mathbb{R}\}$ que están a distancia 6 del punto P = (2, 1, -1).

Ejercicio 22. Calcular la distancia entre:

- a) la recta $L = \{X \in \mathbb{R}^2 : X = \lambda(1,1) + (3,0), \lambda \in \mathbb{R}\}$ y el punto P = (-1,1).
- b) la recta $L = \{X \in \mathbb{R}^3 \,:\, X = \lambda(2,-2,-3) + (0,2,2),\, \lambda \in \mathbb{R}\}$ y el punto P = (0,-2,-1).
- c) el plano Π que pasa por (1,2,1) y tiene vector normal (1,-1,2) y el punto P=(1,2,5).

Ejercicio 23. Consideren los planos $\Pi = \{X \in \mathbb{R}^3 : X = \lambda(-2, 1, 1) + \mu(0, -3, 4) + (5, -1, 0), \lambda, \mu \in \mathbb{R}\}$ y $\Pi' = \{(x, y, z) \in \mathbb{R}^3 : 7x + 8y + 6z = -2\}.$

- a) Verifiquen que Π y Π' son paralelos.
- b) Construyan una recta L perpendicular a ambos planos y calculen $P = L \cap \Pi$ y $Q = L \cap \Pi'$.
- c) Calculen d(P,Q). ¿Qué representa en este problema el número d(P,Q)?
- d) ¿Importa qué recta perpendicular a Π y Π' construyeron? Expliquen este hecho geométricamente.

Ejercicio 24. Se consideran las rectas $L_1 = \{(x, y, z) \in \mathbb{R}^3 : 2x - y - z = 4, 4x - y - 2z = 9\}$ y $L_2 = \{X \in \mathbb{R}^3 : X = \lambda(1, 0, 2) + (1, 2, -3), \lambda \in \mathbb{R}\}.$

- a) Probar que L_1 y L_2 son paralelas.
- b) Hallar un plano Π perpendicular a L_2 que pase por P=(1,2,-3) y determinar $Q=L_1\cap\Pi$.
- c) Calcular d(P,Q). ¿Qué representa el número d(P,Q) en este problema?

Ejercicio 25. Sean Π el plano de ecuación x+y+z=1 y L la recta $L=\{X\in\mathbb{R}^3:X=\lambda(-1,0,1)+(1,1,2),\,\lambda\in\mathbb{R}\}.$

- a) Probar que L es paralela a Π .
- b) Hallar una recta L' ortogonal a Π que pase por P = (1, 1, 2) y determinar $Q = L' \cap \Pi$.
- c) Calcular d(P,Q). ¿Qué representa el número d(P,Q) en este problema?

Ejercicio 26. Consideren el plano Π el plano de ecuación 7x - 7z = 1 y las rectas $L_1 = \{X \in \mathbb{R}^3 : X = \alpha \cdot (2,1,1) + (0,0,1)\}$ y $L_2 = \{X \in \mathbb{R}^3 : X = \beta \cdot (k^2,5k+2,1) + (1,0,-1)\}$. Encontrar todos los valores de $k \in \mathbb{R}$ tales que se cumpla que el ángulo que forman L_1 y L_2 sea de $\frac{\pi}{2}$ y la distancia entre L_2 y el plano sea cero.

Ejercicio 27. Consideren las rectas $L_1 = \{(x, y, z) \in \mathbb{R}^3 : x - y - z = 1, x - 2y + z = -2\}$ y $L_2 = \{X \in \mathbb{R}^3 : X = \lambda(2, -3, 0) + (0, 0, -1).$

- a) Prueben que L_1 y L_2 son alabeadas.
- b) Construyan dos planos paralelos Π_1 y Π_2 tales que Π_1 contenga a L_1 y Π_2 contenga a L_2 . Sugerencia: encuentren vectores directores para L_1 y L_2 y úsenlos como vectores directores de los plano Π_1 y Π_2 .
- c) Calculen $d(\Pi_1, \Pi_2)$ (como en el ejemplo de la teórica de planos paralelos). ¿Qué representa el número $d(\Pi_1, \Pi_2)$ en este problema?

PROYECCIONES Y SIMETRÍAS.

Ejercicio 28. Encontrar el simétrico de

- a) (2,1) con respecto a (0,0).
- b) (2, -4) con respecto a (-1, 1).
- c) (3,-1,0) con respecto a (0,-1,2).
- d) (0,-1,0) con respecto a (1,1,1).

Ejercicio 29. Encontrar, si es posible, un punto Q tal que

- a) el simétrico de (4,1) con respecto a Q es (-2,3).
- b) el simétrico de (3, -1, 1) con respecto a Q es (0, 0, 0).

Ejercicio 30. Hallar el simétrico de

- a) (2,-1) con respecto al eje x
- b) (2,0) con respecto al eje y.
- c) (3,-1) con respecto a la recta y=2x-4.

Ejercicio 31. En cada caso, hallar, si es posible, una recta de modo que los puntos dados sean simétricos respecto de ella.

- a) (1,3),(3,1)
- b) (-3,4), (5,0)
- c) (3,-4), (0,5)

Ejercicio 32. Hallar el simétrico de

a) (1,0,-4) con respecto al punto (2,-1,0).

- b) (0,0,0) con respecto a la recta $L = \{X \in \mathbb{R}^3 : \lambda(0,-1,2) + (1,1,0), \lambda \in \mathbb{R}\}.$
- c) (-1,1,2) con respecto al plano $\Pi = \{(x,y,z) \in \mathbb{R}^3 : 2x + y 3z = 2\}.$

Ejercicio 33. Dados P = (-1, 0, 3) y Q = (2, -1, 0), hallar:

- a) un punto R de modo que P y Q sean simétricos respecto de R.
- b) una recta L de modo que P y Q sean simétricos respecto de L.
- $c)\,$ un plano Π de modo que P y Q sean simétricos respecto de $\Pi.$

¿En qué casos el resultado es único?

Ejercicio 34. Hallar la proyección ortogonal de

- a) (5, -3) sobre el eje de las x y sobre el eje de las y.
- b) (5,-3) sobre la recta $L = \{X \in \mathbb{R}^2 : X = \lambda(1,1), \lambda \in \mathbb{R}\}.$
- c) (1,0,2) sobre la recta $L = \{X \in \mathbb{R}^3 : X = \lambda(2,-1,0), \lambda \in \mathbb{R}\}.$
- d) (-1,1,0) sobre el plano $\Pi = \{(x,y,z) \in \mathbb{R}^3 : 2x 3z = 0\}.$

Ejercicio 35.

- a) Determinar todos los $P \in \mathbb{R}^2$ tales que su proyección ortogonal sobre la recta $L = \{X \in \mathbb{R}^2 : X = \lambda(1,1), \lambda \in \mathbb{R}\}$ sea (2,2).
- b) Calcular, si es posible, un vector \vec{w} de norma 1 tal que la proyección ortogonal del punto (2,3,1) sobre la recta $L=\{X\in\mathbb{R}^3:X=\lambda\vec{w},\lambda\in\mathbb{R}\}$ sea el extremo de $3\vec{w}$.

Ejercicio 36. Sean los puntos P=(1,-5,3), Q=(0,-3,1) y un plano Π . Si se sabe que Q es la proyección ortogonal de P sobre Π y, R es el punto simétrico de P respecto a Π . Dar la ecuación de un plano Π' paralelo al plano Π y que pasa por R.

Ejercicio 37. Dados los vectores $\vec{v}=(3,1,0), \ \vec{w}=(4,2,-1) \ y \ \vec{u}=(2,1,-2),$ hallar todos los vectores $\vec{z}\in\mathbb{R}^3$ tales que \vec{z} es ortogonal a \vec{v} y \vec{w} simultáneamente y el vector cuyo extremo es la proyección ortogonal del extremo de \vec{z} sobre la recta $L=\{X\in\mathbb{R}^3: X=\lambda\vec{u},\lambda\in\mathbb{R}\}$ tenga norma 2.