

McGill University

Department of Engineering

MECH530 Mechanics of Composite Materials

Assignment 6

Student name: Arnaud Guzman-Annès

Student ID: 260882529 Due date: November 23rd

Contents

DESIGN 1	3
GEOMETRIC PROPERTIES OF THE LAYUP	3
R factors	4
DESIGN 2	
10 LAYERS	5
Geometric properties of the layup	
D11, D22 and K factor	5
9 LAYERS	
Geometric properties of the layup	6
D11, D22 and K factor	6
CONCLUSION	6
DESIGN 3	7
GEOMETRIC PROPERTIES OF THE LAYUP	
R FACTOR	8
MASS OF THE LAMINATE REGION	10

Design 1

Geometric properties of the layup

For this design, a $[\pm 54_3]_S$ layup of AS4/PEEK (12 layers in total) is used. The Figure 1 Shows the geometric properties of the material. The Figure 2 shows the A, a, D and d matrices and the Figure 3 the loads applied.

Material		Properties	aphite/thermoplas	itic	Geometry		
Graphi	te/epoxy	Ex	134	GPa			
(T300/N5208)		Ey	8,9	GPa	RU	N	
Fiberglass (E-		Es	5,1	GPa			
	epoxy)	vx	0,28	-	N	12	-
-		Xt	2130	MPa			
	r/epoxy	Xc	1100	MPa	Half-core thickness	0,0	m
(Kev4s	Э/ероху)	Yt	80	MPa			
	te/epoxy	Yc	200	MPa	М	1,005	-
(AS/F	13501)	Sc	160	MPa			
Graphite/th	Graphite/thermoplastic (AS4/PEEK)		0,125	mm	Thickness of all plys	0,0015	m
(AS4/			0,0186	-	h*	2,81E-10	m
		vy		'			
Layer	O. Angle	m	n	On-axis [S] m	natrice [1/GPa]		
Layer 1	O. Angle 54	m 0,588	n 0,809	On-axis [S] m	natrice [1/GPa] σx	σу	σs
						σу -0,0021	σs -
1	54	0,588	0,809	[S]	σх		
1 2	54 -54	0,588 0,588	0,809 -0,809	[S] EX	σx 0,007	-0,0021	-
1 2 3	54 -54 54	0,588 0,588 0,588	0,809 -0,809 0,809	[S] ex ey es	σx 0,007	-0,0021 0,1124	-
1 2 3 4	54 -54 54 -54	0,588 0,588 0,588 0,588	0,809 -0,809 0,809 -0,809	[S] ex ey es	σx 0,007 -0,002	-0,0021 0,1124	-
1 2 3 4 5	54 -54 54 -54 54	0,588 0,588 0,588 0,588 0,588	0,809 -0,809 0,809 -0,809	[S] EX EY ES On-axis [Q] n	0x 0,007 -0,002 - natrice [GPa]	-0,0021 0,1124 -	- - 0,1961
1 2 3 4 5	54 -54 54 -54 54 -54	0,588 0,588 0,588 0,588 0,588 0,588	0,809 -0,809 0,809 -0,809 -0,809	[S]	σχ 0,007 -0,002 - natrice [GPa] εχ	-0,0021 0,1124 - εγ	- - 0,1961 εs
1 2 3 4 5 6 7	54 -54 54 -54 54 -54	0,588 0,588 0,588 0,588 0,588 0,588 0,588	0,809 -0,809 -0,809 -0,809 -0,809 -0,809	[S]	0x 0,007 -0,002 - natrice [GPa] ex 134,701	-0,0021 0,1124 - - - - - - 2,505	0,1961 es
1 2 3 4 5 6 7 8	54 -54 54 -54 -54 -54 -54	0,588 0,588 0,588 0,588 0,588 0,588 0,588	0,809 -0,809 0,809 -0,809 0,809 -0,809 0,809	[S] EX EY ES On-axis [Q] n [Q] OX OY	σχ 0,007 -0,002 - natrice [GPa] εχ 134,701 2,505	-0,0021 0,1124 - Ey 2,505 8,947	0,1961 es
1 2 3 4 5 6 7 8	54 -54 54 -54 -54 -54 -54	0,588 0,588 0,588 0,588 0,588 0,588 0,588 0,588	0,809 -0,809 0,809 -0,809 -0,809 -0,809 -0,809 -0,809	[S] EX EY ES On-axis [Q] n [Q] OX OY	σχ 0,007 -0,002 - natrice [GPa] εχ 134,701 2,505	-0,0021 0,1124 - Ey 2,505 8,947	0,1961 es

Figure 1: Geometric properties

A matrix [GN/m]			a matrix [m/GN]	l	
0,0385	0,0439	0,0000	53,7485	-24,3610	0,0000
0,0439	0,0968	0,0000	-24,3610	21,3745	0,0000
0,0000	0,0000	0,0478	0,000	0,0000	20,9401
D matrix [kNm]			d matrix [1/l	(Nm]	
0,0072	0,0082	0,0015	287,3190	-128,9087	-8,7993
0,0082	0,0181	0,0027	-128,9087	115,5616	-13,5434
0,0015	0,0027	0,0090	-8,7993	-13,5434	117,2502

Figure 2: A, a, D and d matrices ([B]=0)

N		
N 1	5,40E+04	N/m
N 2	1,08E+05	N/m
N 6	0.00F+00	N/m

Figure 3: Loads applied ([M]=0)

R factors
The Figure 4 shows the security factor for all the 3 failure criteria. For this layup, the lowest R factor is 5.6 (Tsai Wu^+) and it cannot be maximised.

P	ly	Angle	σx [GPa]	σy [GPa]	σs [GPa]	FT (X)	FC (X')	MT (Y)	MC (Y')	S (S)	(+)	(-)	FT	FC	MT	MC
T	1	54	1,01E-01	6,52E-03	3,50E-03	20,910	N/A	12,210	N/A	45,710	5,600	-25,000	19,000	N/A	11,800	N/A
В	1	54	1,01E-01	6,52E-03	3,50E-03	20,910	N/A	12,210	N/A	45,710	5,600	-25,000	19,000	N/A	11,800	N/A
T	2	-54	1,01E-01	6,52E-03	-3,50E-03	20,910	N/A	12,210	N/A	45,710	5,600	-25,000	19,000	N/A	11,800	N/A
В	2	-54	1,01E-01	6,52E-03	-3,50E-03	20,910	N/A	12,210	N/A	45,710	5,600	-25,000	19,000	N/A	11,800	N/A
T	3	54	1,01E-01	6,52E-03	3,50E-03	20,910	N/A	12,210	N/A	45,710	5,600	-25,000	19,000	N/A	11,800	N/A
В	3	54	1,01E-01	6,52E-03	3,50E-03	20,910	N/A	12,210	N/A	45,710	5,600	-25,000	19,000	N/A	11,800	N/A
T	4	-54	1,01E-01	6,52E-03	-3,50E-03	20,910	N/A	12,210	N/A	45,710	5,600	-25,000	19,000	N/A	11,800	N/A
В	4	-54	1,01E-01	6,52E-03	-3,50E-03	20,910	N/A	12,210	N/A	45,710	5,600	-25,000	19,000	N/A	11,800	N/A
T	5	54	1,01E-01	6,52E-03	3,50E-03	20,910	N/A	12,210	N/A	45,710	5,600	-25,000	19,000	N/A	11,800	N/A
В	5	54	1,01E-01	6,52E-03	3,50E-03	20,910	N/A	12,210	N/A	45,710	5,600	-25,000	19,000	N/A	11,800	N/A
T	6	-54	1,01E-01	6,52E-03	-3,50E-03	20,910	N/A	12,210	N/A	45,710	5,600	-25,000	19,000	N/A	11,800	N/A
В	6	-54	1,01E-01	6,52E-03	-3,50E-03	20,910	N/A	12,210	N/A	45,710	5,600	-25,000	19,000	N/A	11,800	N/A
T	7	-54	1,01E-01	6,52E-03	-3,50E-03	20,910	N/A	12,210	N/A	45,710	5,600	-25,000	19,000	N/A	11,800	N/A
В	7	-54	1,01E-01	6,52E-03	-3,50E-03	20,910	N/A	12,210	N/A	45,710	5,600	-25,000	19,000	N/A	11,800	N/A
T	8	54	1,01E-01	6,52E-03	3,50E-03	20,910	N/A	12,210	N/A	45,710	5,600	-25,000	19,000	N/A	11,800	N/A
В	8	54	1,01E-01	6,52E-03	3,50E-03	20,910	N/A	12,210	N/A	45,710	5,600	-25,000	19,000	N/A	11,800	N/A
T	9	-54	1,01E-01	6,52E-03	-3,50E-03	20,910	N/A	12,210	N/A	45,710	5,600	-25,000	19,000	N/A	11,800	N/A
В	9	-54	1,01E-01	6,52E-03	-3,50E-03	20,910	N/A	12,210	N/A	45,710	5,600	-25,000	19,000	N/A	11,800	N/A
T	10	54	1,01E-01	6,52E-03	3,50E-03	20,910	N/A	12,210	N/A	45,710	5,600	-25,000	19,000	N/A	11,800	N/A
В	10	54	1,01E-01	6,52E-03	3,50E-03	20,910	N/A	12,210	N/A	45,710	5,600	-25,000	19,000	N/A	11,800	N/A
Т	11	-54	1,01E-01	6,52E-03	-3,50E-03	20,910	N/A	12,210	N/A	45,710	5,600	-25,000	19,000	N/A	11,800	N/A
В	11	-54	1,01E-01	6,52E-03	-3,50E-03	20,910	N/A	12,210	N/A	45,710	5,600	-25,000	19,000	N/A	11,800	N/A
Т	12	54	1,01E-01	6,52E-03	3,50E-03	20,910	N/A	12,210	N/A	45,710	5,600	-25,000	19,000	N/A	11,800	N/A
В	12	54	1,01E-01	6,52E-03	3,50E-03	20,910	N/A	12,210	N/A	45,710	5,600	-25,000	19,000	N/A	11,800	N/A

Figure 4: R factor for each layer pf the ply under the applied load. R=5.6 is the lowest R factor (Tsai-Wu⁺)

Design 2

10 layers

Geometric properties of the layup

For this exercise, several iterations are tested for 5 symmetric layers (10 layers in total). The best K factor obtained is with the following layup arrangement:

• [-5/0/60/15/80]_s (10 layers in total).

Figure 5 shows the geometrical properties of the layup.

Material		Properties	Fiberglass		Geometry		
Graphit	e/epoxy	Ex	38,6	GPa			
	N5208)	Ey	8,27	GPa			
Eiboro	lass (E-	Es	4,14	GPa			
_	epoxy)	VX	0,26	-	N	10	-
		Xt	1062	MPa			
	/epoxy	Xc	610	MPa	Half-core thickness	0	m
	/epoxy)	Yt	31	MPa			
Graphite/epoxy		Yc	118	MPa	M	1,015	-
(AS/H	13501)	Sc	72	MPa			
Graphite/thermoplastic		Thickness	0,125	mm	Thickness of all plys	0,00125	m
(AS4/	PEEK)	vy	0,0557	-	h* 1,63E-10		m
Layer	O. Angle	m	n	On-axis [S] m	atrice [1/GPa]		
1	-5	0,996	-0,087	[S]	ах	σy	σs
2	0	1,000	0,000	EX.	0,026	-0,0067	-
3	60	0,500	0,866	εγ	-0,007	0,1209	-
4	15	0,966	0,259	ES	-		0,2415
5	80	0,174	0,985	On-axis [Q] m	natrice [GPa]		
6	80	0,174	0,985	[Q]	εx	εγ	ES
7	15	0,966	0,259	σx	39,167	2,182	-
8	60	0,500	0,866	σy	2,182	8,392	-
9	0	1,000	0,000	σs	-		4,140
10	-5	0.996	-0,087				

Figure 5: Geometrical properties

D11, D22 and K factor

Table 1 present D11, D22 and the K factor.

Tableau 1: D11, D22 and K factor for [-5/0/60/15/80]_s layup

D11	5,5719E-03
D22	1,8574E-03
K ₁₀	2,99989103060751

Now, let's see if it's possible to obtain an acceptable K with 9 layers.

9 layers

Geometric properties of the layup

The best K factor obtained is with the following layup arrangement:

• $[-15/-5/60/0/-60/0/60/-5/-15]_T$ or $[-15/-5/60/0/-60]_S$ (9 layers in total)

Figure 6 shows the geometrical properties of the layup.

Material		Properties	Fiberglass		Geometry		
Graphit	te/epoxy	Ex	38,6	GPa			
	N5208)	Ey	8,27	GPa			
Eibora	lass (E-	Es	4,14	GPa			
	epoxy)	VX	0,26	-	N	9	
		Xt	1062	MPa			
	r/epoxy	Xc	610	MPa	Half-core thickness		m
(Nev49	epoxy)	Yt	31	MPa			
	te/epoxy	Yc	118	MPa	М	1,015	-
(AS/H	13501)	Sc	72	MPa			
Graphite/th	ermoplastic	Thickness	0,125	mm	Thickness of all plys	0,001125	m
(AS4/	PEEK)	vy	0,0557	-	h*	1,1865E-10	m
Layer	O. Angle	m	n	On-axis [S] m	atrice [1/GPa]		
1	-15	0,966	-0,259	[S]	σχ	σγ	σs
2	-5	0,996	-0,087	εx	0,026	-0,0067	-
3	60	0,500	0,866	εγ	-0,007	0,1209	-
4	0	1,000	0,000	εs	-	-	0,2415
5	-60	0,500	-0,866	On-axis [Q] m	natrice [GPa]		
6	0	1,000	0,000	[Q]	εx	εγ	ES
7	60	0,500	0,866	σχ	39,167	2,182	-
8	-5	0,996	-0,087	σу	2,182	8,392	-
9	-15	0,966	-0,259	σs		-	4,140

Figure 6: Geometric properties

D11, D22 and K factor

Table 2 present D11, D22 and the K factor.

Tableau 2: D11, D22 and K factor for $[-15/-5/60/0/-60/0/60/-5/-15]_T$ layup

D11	3,9454E-09
D22	1,3132E-09
K ₉	3,00431835974843

Conclusion

- $|3.00 K_{10}| < |3.00 K_9|$ but,
- 9 layers < 10 layers

Design 3

Geometric properties of the layup

For this design exercise, a layup $[5/0_2/\pm 20/40/\pm 40]_S$ of T300/N5208 is used (16 layers in total). Figure 7 shows the geometric properties of the layup. Figure 8 shows A, a, D and d matrices. Figure 9 shows the 2 cases of load applied on the top of the violin.

Material		Properties	nite/epoxy (T300/	N5208)	Geometry		
Graphit	e/epoxy	Ex	181	GPa			•
	N5208)	Ey	10,3	GPa			
Fiberglass (E-		Es	7,17	GPa			
	epoxy)	VX	0,28	-	N	16	-
		Xt	1500	MPa			
	/epoxy /epoxy)	Xc	1500	MPa	Half-core thickness	0,00075	m
,	-, - ,,	Yt	40	MPa			
	e/epoxy	Yc	246	MPa	М	1,004	-
(AS/H	3501)	Sc	68	MPa			
	ermoplastic	Thickness	0,125	mm	Thickness of all plys	0,002	m
(AS4/F	PEEK)	vy	0,0159	-	h*	3,2917E-09	m
			•	•	_		
Layer	O. Angle	m	n	On-axis [S] ma	trice [1/GPa]		
1	5	0,996	0,087	[S]	σх	σу	σs
2	0	1,000	0,000	εx	0,006	-0,0015	-
3	0	1,000	0,000	εγ	-0,002	0,0971	-
4	20	0,940	0,342	εs		-	0,1395
5	-20	0,940	-0,342	On-axis [Q] ma	itrice [GPa]		
6	40	0,766	0,643	[Q]	εx	εγ	εs
7	40	0,766	0,643	σχ	181,811	2,897	-
8	-40	0,766	-0,643	σу	2,897	10,346	-
9	-40	0,766	-0,643	σs		-	7,170
10	40	0,766	0,643				
11	40	0,766	0,643	Off-axis [S] ma	trice [1/GPa]		
12	-20	0,940	-0,342	layer number:	1		
13	20	0,940	0,342	0,0065	-0,0018	-0,0108	
14	0	1,000	0,000	-0,0018	0,0966	-0,0051	
15	0	1,000	0,000	-0,0108	-0,0051	0,1385	
16	5	0,996	0,0872				

Figure 7: Geometric properties

A matrix [GN/r	m]		a matrix [m/Gl	N]	
0,2630	0,0429	0,0158	4,4892	-3,9619	-0,6808
0,0429	0,0471	0,0090	-3,9619	25,4863	-3,2641
0,0158	0,0090	0,0515	-0,6808	-3,2641	20,2170
D matrix [kNn	n]		d matrix [1/	kNm]	
0,4953	0,0487	0,0303	2,2284	-1,6816	-0,7243
0,0487	0,0589	0,0131	-1,6816	19,0809	-3,1716
0,0303	0,0131	0,0628	-0,7243	-3,1716	16,9471

Figure 8: A, a, D, and d matrices

			Load case 1		
N			M		
N 1	-22,40	N/m	M 1	-990,00	Nm/m
N 2	-3,000	N/m	M 2	-99,000	Nm/m
N 6	-2,00	N/m	M 6	-100,00	Nm/m
			Load case 2		
N			M		
N 1	-20,80	N/m	M 1	-950,00	Nm/m
N 2	-2,800	N/m	M 2	-96,000	Nm/m
N 6	-2,20	N/m	M 6	-110,00	Nm/m

Figure 9: Case 1 and 2 applied in the top of the violin

R factor
The Figure 10 and 11 shows the security factor for all the 3 failure criteria for both load cases. For this layup 2,0 and 2,1 are the lowest R factor for case load 1 and 2 respectively. Thus, the design is safe.

	Ply	Angle	σx [GPa]	σy [GPa]	σs [GPa]	FT (X)	FC (X')	MT (Y)	MC (Y')	S (S)	(+)	(-)	FT	FC	MT	MC
Т	1	5	-6,39E-01	-7,74E-03	-3,71E-03	N/A	2,310	N/A	31,710	18,310	3,000	-2,100	N/A	2,300	N/A	19,600
В	1	5	-5,93E-01	-7,19E-03	-3,45E-03	N/A	2,510	N/A	34,210	19,710	3,300	-2,300	N/A	2,500	N/A	21,100
Т	2	0	-5,81E-01	-7,70E-03	-7,73E-03	N/A	2,510	N/A	31,910	8,710	3,300	-2,200	N/A	2,500	N/A	10,300
В	2	0	-5,36E-01	-7,11E-03	-7,14E-03	N/A	2,710	N/A	34,610	9,510	3,600	-2,400	N/A	2,700	N/A	11,200
Т	3	0	-5,36E-01	-7,11E-03	-7,14E-03	N/A	2,710	N/A	34,610	9,510	3,600	-2,400	N/A	2,700	N/A	11,200
В	3	0	-4,91E-01	-6,51E-03	-6,54E-03	N/A	3,010	N/A	37,710	10,310	3,900	-2,600	N/A	3,000	N/A	12,200
Т	4	20	-4,85E-01	-6,80E-03	8,04E-03	N/A	3,010	N/A	36,110	8,410	3,900	-2,600	N/A	3,000	N/A	9,900
В	4	20	-4,41E-01	-6,18E-03	7,31E-03	N/A	3,310	N/A	39,710	9,210	4,300	-2,800	N/A	3,400	N/A	10,900
Т	5	-20	-3,45E-01	-1,02E-02	-1,64E-02	N/A	4,310	N/A	24,210	4,110	4,400	-2,300	N/A	4,300	N/A	4,700
В	5	-20	-3,11E-01	-9,14E-03	-1,48E-02	N/A	4,810	N/A	26,910	4,510	4,900	-2,600	N/A	4,800	N/A	5,200
Т	6	40	-2,97E-01	-9,72E-03	1,54E-02	N/A	5,010	N/A	25,210	4,310	4,900	-2,500	N/A	5,000	N/A	5,000
В	6	40	-2,64E-01	-8,64E-03	1,37E-02	N/A	5,610	N/A	28,410	4,910	5,600	-2,800	N/A	5,600	N/A	5,700
Т	7	40	-2,64E-01	-8,64E-03	1,37E-02	N/A	5,610	N/A	28,410	4,910	5,600	-2,800	N/A	5,600	N/A	5,700
В	7	40	-2,31E-01	-7,56E-03	1,20E-02	N/A	6,410	N/A	32,510	5,610	6,400	-3,200	N/A	6,500	N/A	6,500
Т	8	-40	-1,28E-01	-1,18E-02	-1,35E-02	N/A	11,610	N/A	20,710	5,010	7,500	-2,700	N/A	11,600	N/A	5,900
В	8	-40	-1,10E-01	-1,01E-02	-1,15E-02	N/A	13,610	N/A	24,210	5,810	8,700	-3,100	N/A	13,600	N/A	6,900
Т	9	-40	1,10E-01	1,01E-02	1,15E-02	13,610	N/A	3,910	N/A	5,810	3,000	-8,800	5,400	N/A	3,200	N/A
В	9	-40	1,28E-01	1,18E-02	1,35E-02	11,610	N/A	3,310	N/A	5,010	2,600	-7,600	4,600	N/A	2,800	N/A
Т	10	40	2,31E-01	7,56E-03	-1,20E-02	6,410	N/A	5,210	N/A	5,610	3,100	-6,500	4,200	N/A	3,800	N/A
В	10	40	2,64E-01	8,64E-03	-1,37E-02	5,610	N/A	4,610	N/A	4,910	2,700	-5,700	3,700	N/A	3,300	N/A
T	11	40	2,64E-01	8,64E-03	-1,37E-02	5,610	N/A	4,610	N/A	4,910	2,700	-5,700	3,700	N/A	3,300	N/A
В	11	40	2,97E-01	9,72E-03	-1,54E-02	5,010	N/A	4,110	N/A	4,310	2,400	-5,000	3,300	N/A	3,000	N/A
Т	12	-20	3,11E-01	9,14E-03	1,48E-02	4,810	N/A	4,310	N/A	4,510	2,500	-5,000	3,300	N/A	3,100	N/A
В	12	-20	3,45E-01	1,02E-02	1,64E-02	4,310	N/A	3,910	N/A	4,110	2,200	-4,500	2,900	N/A	2,800	N/A
Т	13	20	4,41E-01	6,18E-03	-7,31E-03	3,310	N/A	6,410	N/A	9,210	2,700	-4,400	3,100	N/A	5,300	N/A
В	13	20	4,85E-01	6,80E-03	-8,04E-03	3,010	N/A	5,810	N/A	8,410	2,500	-4,000	2,900	N/A	4,800	N/A
Т	14	0	4,91E-01	6,51E-03	6,54E-03	3,010	N/A	6,110	N/A	10,310	2,500	-4,000	2,900	N/A	5,200	N/A
В	14	0	5,36E-01	7,11E-03	7,14E-03	2,710	N/A	5,610	N/A	9,510	2,300	-3,700	2,600	N/A	4,800	N/A
Т	15	0	5,36E-01	7,11E-03	7,14E-03	2,710	N/A	5,610	N/A	9,510	2,300	-3,700	2,600	N/A	4,800	N/A
В	15	0	5,81E-01	7,70E-03	7,73E-03	2,510	N/A	5,110	N/A	8,710	2,100	-3,400	2,400	N/A	4,400	N/A
Т	16	5	5,93E-01	7,19E-03	3,45E-03	2,510	N/A	5,510	N/A	19,710	2,200	-3,400	2,500	N/A	5,300	N/A
В	16	5	6,39E-01	7,74E-03	3,71E-03	2,310	N/A	5,110	N/A	18,310	2,000	-3,100	2,300	N/A	4,900	N/A

Figure 10: Failure criteria analysis for case load 1. The lowest R is R=2.0.

	Ply	Angle	σx [GPa]	σy [GPa]	σs [GPa]	FT (X)	FC (X')	MT (Y)	MC (Y')	S (S)	(+)	(-)	FT	FC	MT	MC
Т	1	5	-6,15E-01	-6,65E-03	-6,43E-03	N/A	2,410	N/A	37,010	10,510	3,000	-2,200	N/A	2,400	N/A	12,400
В	1	5	-5,71E-01	-6,17E-03	-5,97E-03	N/A	2,610	N/A	39,810	11,310	3,200	-2,400	N/A	2,600	N/A	13,400
Т	2	0	-5,54E-01	-6,90E-03	-1,02E-02	N/A	2,610	N/A	35,610	6,610	3,200	-2,300	N/A	2,700	N/A	7,700
В	2	0	-5,11E-01	-6,37E-03	-9,37E-03	N/A	2,910	N/A	38,510	7,210	3,500	-2,500	N/A	2,900	N/A	8,300
Т	3	0	-5,11E-01	-6,37E-03	-9,37E-03	N/A	2,910	N/A	38,510	7,210	3,500	-2,500	N/A	2,900	N/A	8,300
В	3	0	-4,69E-01	-5,84E-03	-8,59E-03	N/A	3,110	N/A	42,110	7,910	3,800	-2,700	N/A	3,200	N/A	9,100
Т	4	20	-4,80E-01	-5,36E-03	6,03E-03	N/A	3,110	N/A	45,910	11,210	3,800	-2,700	N/A	3,100	N/A	13,200
В	4	20	-4,36E-01	-4,87E-03	5,48E-03	N/A	3,410	N/A	50,510	12,310	4,200	-3,000	N/A	3,400	N/A	14,500
Т	5	-20	-3,11E-01	-1,01E-02	-1,75E-02	N/A	4,810	N/A	24,310	3,810	4,400	-2,300	N/A	4,800	N/A	4,400
В	5	-20	-2,80E-01	-9,08E-03	-1,57E-02	N/A	5,310	N/A	27,010	4,310	4,900	-2,600	N/A	5,300	N/A	4,900
Т	6	40	-3,04E-01	-8,08E-03	1,46E-02	N/A	4,910	N/A	30,410	4,610	4,800	-2,700	N/A	4,900	N/A	5,300
В	6	40	-2,70E-01	-7,18E-03	1,30E-02	N/A	5,510	N/A	34,210	5,210	5,400	-3,100	N/A	5,500	N/A	5,900
Т	7	40	-2,70E-01	-7,18E-03	1,30E-02	N/A	5,510	N/A	34,210	5,210	5,400	-3,100	N/A	5,500	N/A	5,900
В	7	40	-2,37E-01	-6,28E-03	1,13E-02	N/A	6,310	N/A	39,110	5,910	6,200	-3,500	N/A	6,300	N/A	6,800
Т	8	-40	-1,02E-01	-1,19E-02	-1,32E-02	N/A	14,610	N/A	20,710	5,110	7,700	-2,700	N/A	14,600	N/A	6,000
В	8	-40	-8,76E-02	-1,02E-02	-1,14E-02	N/A	17,110	N/A	24,110	5,910	9,000	-3,100	N/A	17,100	N/A	7,000
Т	9	-40	8,76E-02	1,02E-02	1,14E-02	17,110	N/A	3,910	N/A	5,910	3,000	-9,100	5,600	N/A	3,200	N/A
В	9	-40	1,02E-01	1,19E-02	1,32E-02	14,610	N/A	3,310	N/A	5,110	2,600	-7,800	4,800	N/A	2,800	N/A
Т	10	40	2,37E-01	6,28E-03	-1,13E-02	6,310	N/A	6,310	N/A	5,910	3,400	-6,300	4,300	N/A	4,300	N/A
В	10	40	2,70E-01	7,18E-03	-1,30E-02	5,510	N/A	5,510	N/A	5,210	3,000	-5,500	3,800	N/A	3,800	N/A
Т	11	40	2,70E-01	7,18E-03	-1,30E-02	5,510	N/A	5,510	N/A	5,210	3,000	-5,500	3,800	N/A	3,800	N/A
В	11	40	3,04E-01	8,07E-03	-1,46E-02	4,910	N/A	4,910	N/A	4,610	2,600	-4,900	3,300	N/A	3,300	N/A
Т	12	-20	2,80E-01	9,08E-03	1,57E-02	5,310	N/A	4,310	N/A	4,310	2,500	-5,000	3,300	N/A	3,000	N/A
В	12	-20	3,11E-01	1,01E-02	1,75E-02	4,810	N/A	3,910	N/A	3,810	2,200	-4,500	3,000	N/A	2,700	N/A
T	13	20	4,36E-01	4,87E-03	-5,48E-03	3,410	N/A	8,210	N/A	12,310	2,900	-4,300	3,300	N/A	6,800	N/A
В	13	20	4,80E-01	5,36E-03	-6,03E-03	3,110	N/A	7,410	N/A	11,210	2,600	-3,900	3,000	N/A	6,200	N/A
Т	14	0	4,68E-01	5,84E-03	8,59E-03	3,110	N/A	6,810	N/A	7,910	2,600	-3,900	2,900	N/A	5,100	N/A
В	14	0	5,11E-01	6,37E-03	9,37E-03	2,910	N/A	6,210	N/A	7,210	2,400	-3,600	2,700	N/A	4,700	N/A
Т	15	0	5,11E-01	6,37E-03	9,37E-03	2,910	N/A	6,210	N/A	7,210	2,400	-3,600	2,700	N/A	4,700	N/A
В	15	0	5,54E-01	6,90E-03	1,02E-02	2,610	N/A	5,710	N/A	6,610	2,200	-3,300	2,500	N/A	4,300	N/A
Т	16	5	5,71E-01	6,17E-03	5,97E-03	2,610	N/A	6,410	N/A	11,310	2,300	-3,300	2,500	N/A	5,600	N/A
В	16	5	6,15E-01	6,65E-03	6,43E-03	2,410	N/A	6,010	N/A	10,510	2,100	-3,100	2,300	N/A	5,200	N/A

Figure 11:Failure criteria analysis for case load 2. The lowest R is R=2.1.

Mass of the laminate region

For this section, the mass is calculated with equation 1. The mass of the laminate region is 64 g.

Tableau 3: Properties of the layup

ρ _{T300/N5208}	1,60e-3 g/mm ³					
N	16 layers					
h_0	0,125 mm					
WL	20 000 mm ²					

$$Mass = \rho \cdot N \cdot h_0 \cdot WB = 64 g \tag{1}$$