6.S085 Statistics for Research Projects

IAP 2014

Lecture 7: January 29

Lecturer: Ramesh Sridharan and George Chen

Notes by: William Li

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

7.1 Experimental Design

Simple random sampling (SRS): randomly choose subset of individuals from a population (N people) without replacement

Sample n individuals: any subset of n individuals is equally likely

Blocking/controlling for confounding variables: dealing with Simpson's paradox

Randomization: need this often to get independent samples and to meet assumptions for stat. tests

Replication: good experiments should be reproducible! Replacing experiment should yield similar reuslts

Control/baseline comparison: to measure effect of treatment, need ref to compare against.

7.2 Stratified Random Sampling

Block things out, and do simple random sampling (SRS) in each block

For a stratum: how large of a simple random sampling?

Definition 7.1 (Proportional Allocation) Number of individuals in a stratum matches stratum's relative size in population

Definition 7.2 (Neyman Allocation) Combines proportional allocation with looking at variances within a strata

 $Higher\ variances \rightarrow larger\ SRS\ (higher\ relative\ size\ of\ stratum\ in\ population)$

Definition 7.3 (Cluster sampling) Previous methods require sampling from whole population or every stratum

Idea: partition population into "natural" groups (each group well-represents the population)

Cluster Sampling:

- 1. Randomly sample a few groups
- 2. For each chosen group, obtain SRS

Example: Polling a city

- 1. Divide city into blocks
- 2. Randomly choose a few blocks
- 3. Within each chosen block, get SRS

7.3 Problem Set Discussion

$$\log y = \beta_1 \log x + \beta_0 + \epsilon$$

$$y \propto \exp beta_0 x^{\beta_1}$$

Higher residuals