Equidistributed

The content is from [1, Chapter 4, Section 2].

Definition 1. A sequence of number $\{\xi_n\}_{n\in\mathbb{N}}\subset[0,1)$ is said to be equidistributed if for any interval $(a,b)\subset[0,1)$,

$$\lim_{N\to\infty}\frac{\#\{1\leq n\leq N:\,\xi_n\in(a,b)\}}{N}=b-a.$$

where the #A denotes the cardinality of the finite set A.

Definition 2. Let [x] denote the greatest integer less than or equal to x and call [x] the integer part of x. Let $\langle x \rangle := x - [x]$ and call $\langle x \rangle$ the fractional part of x.

Theorem 1 (Weyl's criterion). A sequence of number $\{\xi_n\}_{n\in\mathbb{N}}\subset [0,1)$ is equidistributed if and only if for any $k\in\mathbb{Z}\setminus\{0\}$,

$$\frac{1}{N} \sum_{n=1}^{N} e^{2\pi i k \xi_n} \to 0, \quad as \ N \to \infty.$$

From Weyl's criterion, we have following corollaries.

Corollary 1. Let $P(n) := c_n x^n + \cdots + c_0$, for any $k \in \{0, \dots, n\}$, $c_n \in \mathbb{R}$ and one of them is irrational number. Then $\{\langle P(n) \rangle\}_{n \in \mathbb{N}} \subset [0, 1)$ is equidistributed.

Corollary 2. $\{\sin n\}_{n\in\mathbb{N}}$ is dense in [0,1].

References

[1] E. M. Stein and R. Shakarchi, Fourier Analysis: An Introduction, Princeton University Press, 2011.