

NIALM using Prior Models of General Appliance Types

07.05.2012

Oliver Parson, Siddhartha Ghosh, Mark Weal, Alex Rogers
University of Southampton, UK
op106@soton.ac.uk

Hardware requirements for NIALM

Requirements: Solutions:

- Monitor
 household
 electricity
 consumption
- Smart meters
 - All houses by 2020(in UK)

 Provide feedback to household occupants

- In-home displays
 - Connected to smart meters
 - All houses by 2020 (in UK)

NIALM using smart meter data is a hard problem

- No training (sub-metered) data
 - Financially expensive
 - Time consuming
 - Invasive

- Unknown appliance types
 - Hard to learn models for all appliances from aggregate data

- Low sampling rate
 - Power measurements at 5 second intervals max (UK)

Our approach uses existing smart meters and no training data

- Model appliances as hidden Markov models
- 2. Use prior knowledge of how common appliances behave
- 3. Tune to specific appliance instances using aggregate data
- 4. Use to disaggregate single appliances from aggregate load

Our approach performs comparably to using sub-metered training data

	Error		
Appliance	Prior with no tuning	Prior tuned with aggregate data	Prior tuned with sub- metered data
Refrigerator	38%	21%	55%
Microwave	63%	53%	38%
Clothes dryer	3469%	55%	71%
Air conditioning	57%	77%	65%

Our approach

Data set – Reference Energy Disaggregation Data set (REDD)

