

MOSFET - Power, Single N-Channel, Source Down DualCool 33, WDFN9

80 V, 4 mΩ, 102 A

Product Preview

NTTFSSCH4D0N08XL

Features

- Excellent Thermal Conduction by Advanced Source–Down Center Gate Dual–Cooling Package Technology (3.3x3.3mm)
- Ultra Low R_{DS(on)} to Improve System Efficiency
- Low Q_G and Capacitance to Minimize Driving and Switching Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- High Switching Frequency DC-DC Conversion
- Synchronous Rectifier

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Value	Unit	
Drain-to-Source Voltage		V _{DSS}	80	V
Gate-to-Source Voltage		V _{GS}	±20	V
Continuous Drain Current			102	Α
(Note 1)	T _C = 100°C		72	
Power Dissipation (Notes 1, 2)	T _C = 25°C	P_{D}	102	W
Pulsed Drain Current			668	Α
Pulsed Source Current (Body Diode)	t _p = 10 μs	I _{SM}	668	
Operating Junction and Storage T Range	T _J , T _{stg}	-55 to +175	°C	
Source Current (Body Diode)	I _S	155	Α	
Single Pulse Avalanche Energy (I _{PK} = TBD A)		E _{AS}	TBD	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- The entire application environment impacts the thermal resistance values shown, they are not constants and are valid for the particular conditions noted.
- 2. Surface-mounted on FR4 board using a 1 in² pad size, 1 oz Cu pad.

This document contains information on a product under development. **onsemi** reserves the right to change or discontinue this product without notice.

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
80 V	4 mΩ @ 10 V	102 A
00 V	6 mΩ @ 4.5 V	102 A

N-CHANNEL MOSFET

WDFN9 CASE 511BX

MARKING DIAGRAM

XXXX = Specific Device Code
A = Assembly Location

Y = Year W = Work Week

ORDERING INFORMATION

See detailed ordering and shipping information on page 3 of this data sheet

NTTFSSCH4D0N08XL

THERMAL CHARACTERISTICS

Parameter		Max	Unit
Thermal Resistance, Junction-to-Case (Bottom)		1.47	°C/W
Thermal Resistance, Junction-to-Case (Top)		1.24	
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	60	

ELECTRICAL CHARACTERISTICS (T₁ = 25°C unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•			•		•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 1 mA, T_J = 25°C	80			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	ΔV _{(BR)DSS} / ΔT _J	I _D = 1 mA, Referenced to 25°C		31		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 80 V, T _J = 25°C			10	μΑ
		V _{DS} = 80 V, T _J = 125°C			250	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = 20 \text{ V}$			100	nA
ON CHARACTERISTICS						
Drain-to-Source On Resistance	R _{DS(ON)}	$V_{GS} = 10 \text{ V}, I_D = 23 \text{ A}$		3.3	4 mΩ	
		V _{GS} = 4.5 V, I _D = 18 A		4.8	6	
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 115 \mu A, T_J = 25^{\circ}C$	1.5		2.1	V
Gate Threshold Voltage Temperature Coefficient	ΔV _{GS(TH)} / ΔT _J	$V_{GS} = V_{DS}$, $I_D = 115 \mu A$		-6.3		mV/°C
Forward Transconductance	9FS	$V_{DS} = 5 \text{ V}, I_{D} = 23 \text{ A}$		120		S
CHARGES, CAPACITANCES & GATE RE	SISTANCE					
Input Capacitance	C _{ISS}			3420		pF
Output Capacitance	C _{OSS}	V 0VV 40V5 4 MU-		550		
Reverse Transfer Capacitance	C _{RSS}	V _{GS} = 0 V, V _{DS} = 40 V, f = 1 MHz		18		
Output Charge	Q _{OSS}			45		nC
otal Gate Charge $Q_{G(TOT)}$ $V_{GS} = 4.5 \text{ V}, V_{DD} = 40 \text{ V}; I_D = 40 \text{ V}$		$V_{GS} = 4.5 \text{ V}, V_{DD} = 40 \text{ V}; I_D = 23 \text{ A}$		22		
				47		
Threshold Gate Charge	Q _{G(TH)}			7		
Gate-to-Source Charge	Q _{GS}	$V_{GS} = 10 \text{ V}, V_{DD} = 40 \text{ V}; I_D = 23 \text{ A}$		11		
Gate-to-Drain Charge	Q_{GD}			5		
Gate Plateau Voltage	V _{GP}			3.2		V
Gate Resistance	R_{G}	f = 1 MHz		0.4		Ω
SWITCHING CHARACTERISTICS						
Turn-On Delay Time	t _{d(ON)}			18		ns
Rise Time	t _r	Resistive Load,		7		
Turn-Off Delay Time	t _{d(OFF)}	$V_{GS} = 0/10 \text{ V}, V_{DD} = 40 \text{ V},$ $I_D = 23 \text{ A}, R_G = 2.5 \Omega$		40		
Fall Time	t _f			5		1
SOURCE-TO-DRAIN DIODE CHARACTE	ERISTICS			•	•	•
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 \text{ V}, I_S = 23 \text{ A}, T_J = 25^{\circ}\text{C}$		0.82		V
		V _{GS} = 0 V, I _S = 23 A, T _J = 125°C		0.66		1

NTTFSSCH4D0N08XL

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
SOURCE-TO-DRAIN DIODE CHARACTERISTICS						
Reverse Recovery Time	t _{RR}			19		ns
Charge Time	t _a	V _{GS} = 0 V, I _S = 23 A,		11		
Discharge Time	t _b	V _{GS} = 0 V, I _S = 23 A, dI/dt = 1000 A/μs, V _{DD} = 40 V		8		
Reverse Recovery Charge	Q_{RR}			116		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NTTFSSCH4D0N08XLTWG	TBD	WDFN9 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NTTFSSCH4D0N08XL

PACKAGE DIMENSIONS

WDFN9 3.3x3.3, 0.65P

CASE 511BX **ISSUE A**

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009. CONTROLLING DIMENSION: MILLIMETERS COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE
- TERMINALS.
- DIMENSIONS D1, D2, E1 AND E2 DO NOT INCLUDE MOLD FLASH. SEATING PLANE IS DEFINED BY THE TERMINALS.
 "A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

LAND PATTERN RECOMMENDATION

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

UNIT IN MILLIMETER				
DIM	MIN	NOM	MAX	
Α	0.48	0.58	0.68	
A1	0.00		0.05	
A3	(0.20 RE	F	
Ь	0.25	0.30	0.35	
b1	0.37	0.42	0.47	
b2	0.37	0.42	0.47	
D	3.20	3.30	3.40	
D1	2.31	2.41	2.51	
D2	1.58	1.68	1.78	
D3	0.35	0.45	0.55	
D4	0.25	0.35	0.45	
D5	2.10	2.20	2.30	
D6	-	0.55 RE	F	
П	3.20	3.30	3.40	
E1	1.50	1.60	1.70	
E2	0.84	0.94	1.04	
E3	0.35	0.45	0.55	
E4	0.20	0.25	0.30	
E5	2.15	2.20	2.35	
E6	0.60 REF			
E7	0.25	0.35		
е	0.65 BSC			
k	0.75 REF			
k1	0.45 REF			
L	0.73		0.93	
L1	0.10	0.20	0.30	
L4	0.40	0.50	0.60	

onsemi. On Semi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries. LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales