CS5489- Machine Learning

Lecture 9a - Convolutional Neural Networks (CNNs)

Dr. Antoni B. Chan

Dept. of Computer Science, City University of Hong Kong

Outline

- Convolutional neural network (CNN)
- Regularization

Signals

- So far we have assumed the input \mathbf{x} is a vector
 - or have turned 2D images into vectors.
- What if the input has more structure?
- For example:
 - 1-D signal (time)

stereo audio (2 features)

2-D signal (space)

grayscale image (1 feature)

color image (3 features)

hyperspectral image (300 features)

• 3-D signal (space+time, volume)

color video (3 features)

3D CT scan (1 feature)

Assumed Properties of Signals

- Locality
 - at low-level, features from 1 region are independent (do not depend on)
 features from a far-away region.

- Translation
 - the same features can appear anywhere in the signal.

Using the standard MLP layer...

- Each feature z_i is computed from all the inputs, but we only want local features (locality).
- The pattern could appear anywhere, but weights are trained for each location z_i separately (translation).

 For image input, we transform the image into a vector, which is the input into the MLP.

- **Problem:** This ignores the spatial relationship between pixels in the image.
 - Images contain local structures
 - groups of neighboring pixels correspond to visual structures (edges, corners, texture).
 - pixels far from each other are typically not correlated.

- How to model the local structure of the signal?
 - local features, feature translation
- Answer: Use a local feature extractor in the signal.

Convolution

- Consider 1D signal in $\emph{discrete}$ time: x(t), $t \in \mathbb{Z}$
- Define the filter w(t)
 - ullet "flipped" filter: $ilde{w}(t)=w(-t)$

In [9]:

xfig

Out[9]:

- · Convolution is a filtering operation
 - $s(t) = x * w = \sum_a x(a)w(t-a)$
 - "*" is the symbol for convolution
- It's related to cross-correlation with the "flipped" filter.
 - $s(t) = \sum_a x(a)\tilde{w}(a-t)$
 - for a given t:
 - 1. shift $ilde{w}$ by t
 - 2. multiply shifted \tilde{w} with x
 - 3. sum to get s(t)
- $s(t) = \sum_a x(a)\tilde{w}(a-t)$
 - 1. shift $ilde{w}$ by t
 - 2. multiply shifted \tilde{w} with x
 - 3. sum to get s(t)

In [11]:

sfig

Out[11]:

- · Boundary conditions
 - It is assumed that the rest of the signal is all 0.
- The convolution result near the ends of the signal uses these "artificial" zeros.
 - the filtered signal is longer than the original signal
 - lacktriangledown length increases by P-1, where P is the non-zero extent of the filter.
- Three ways to handle this:
 - 1) use everything with *non-zero* response ('full' mode)
 - 2) keep the response the same length as the signal ('same' mode)
 - 3) keep only responses where the *entire* filter is on the signal ('valid' mode)

In [13]: cfig

Out[13]:

2D Convolution

- Straightforward to extend to multiple dimensions
- 2D discrete convolution

$$s(n,m) = x*w = \sum_a \sum_b x(a,b) w(n-a,m-b)$$

Two Interpretations of Convolution

- Interpretation 1:
 - w is a filter on the frequency spectrum of signal x.

• Example filters: low-pass, high-pass, band-pass, moving-average

- Analysis is in the frequency domain:
 - lacksquare Time domain $x(t) \Longleftrightarrow$ Frequency domain $X(\omega)$
- Discrete-time Fourier transform (DTFT)
 - represent data as sum of complex exponentials basis functions with different frequencies.

$$\circ \ e^{-i\omega t} = \cos(\omega t) - i\sin(\omega t)$$

 \circ Imaginary number: $i^2=-1$

$$ullet$$
 $X(\omega) = \sum_t x(t) e^{-i\omega t} \Longleftrightarrow x(t) = rac{1}{2\pi} \int X(\omega) e^{i\omega t} d\omega$

· Key results:

 convolution in the time domain is equivalent to multiplication in the frequency domain:

$$\circ \ s(t) = x(t) * w(t) \Longleftrightarrow S(\omega) = X(\omega)W(\omega)$$

 we can design and analyze filters in the frequency domain, and then obtain their time-domain representation.

In [17]:

Out[17]:

- Relationships between time and frequency spectrum
 - short-duration signal ⇔ large frequency spectrum
 - long-duration signal ⇔ small frequency spectrum
- · For filters...
 - short (small) filter only captures short-range correlations (high frequencies).

- long (large) filter can capture long-range correlations (low frequencies).
- Interpretation 2:
 - \tilde{w} is a pattern (template); try to find this pattern.
 - the maximum correlation occurs when pattern \tilde{w} matches the local x.
 - $\circ~$ for a fixed energy $||x||^2=1$, $x=\frac{\tilde{w}}{||\tilde{w}||}$ has the maximum correlation with (response to) $\tilde{w}.$

100

Convolution as a layer

50 -

- output layer is the convolution of input with filter (kernel) ${f w}$.
 - $\mathbf{z} = \mathbf{x} * \mathbf{w}.$
- filter w acts locally on input x.
 - w also called a kernel.

- ullet Equivalent to a linear transformation where A has a particular form.
 - ullet For example, if ${f w}=[w_1,w_2,w_3]$ and using "same" mode,

$$z = x * w$$

$$\mathbf{A}^T\mathbf{x} = egin{bmatrix} w_2 & w_3 & 0 & 0 & 0 & 0 & \cdots \ w_1 & w_2 & w_3 & 0 & 0 & 0 & \cdots \ 0 & w_1 & w_2 & w_3 & 0 & 0 & \cdots \ 0 & 0 & w_1 & w_2 & w_3 & 0 & \cdots \ \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \ dots \ x_N \end{bmatrix}$$

• Note: \mathbf{A} has size $|\mathbf{x}||\mathbf{z}|$, but only $|\mathbf{w}|$ parameters.

Translation equivariance

- Shifting x also shifts the response s.
- if s = x * w.
 - then s(t-a) = x(t-a) * w(t)
- We can find the pattern everywhere in x using the same filter.

In [22]: cfig pattern \tilde{w} response s=x*w Out[22]: 0 0 25 -50 -75 -100 0 -0 0 25 -50 -50 75 100

Convolutional Neural Network (CNN)

- series of convolutional layers, sub-sampling layers, and MLP classifier.
 - convolutional and subsampling layers extract image features.
 - MLP uses extracted features for classification.

2D Convolution

- Use the spatial structure of the image
- 2D convolution filter
 - the weights W form a 2D filter template
 - ullet filter response: $h=f(\sum_{x,y}W_{x,y}P_{x,y})$
 - \circ **P** is an image patch with the same size as **W**.
- Convolution feature map
 - pass a sliding window over the image, and apply filter to get a *feature map*.

- · Convolution modes
 - "valid" mode only compute feature where convolution filter has valid image values.
 - size of feature map is reduced.

- · Convolution modes
 - "same" mode zero-pad the border of the image
 - feature map is the same size as the input image.

• Usually "same" is better since it looks at structures around border.

 position information is implicitly encoded in the CNN features based on the zero-padding border.

2D Convolutional layer

- Input: HxW image with C channels
 - For example, in the first layer, C=3 for RGB channels.
 - defines a 3D volume: C x H x W (or H x W x C)
- Features: apply F convolution filters to get F feature maps.
 - Each feature map uses a 3D convolution filter (CxKxK) on the input
 - K is the spatial extent of the filter; total FCKK parameters
- Activation:
 - an activation function can be applied before output
- Output: a feature map with F channels
 - defines a 3D volume: F x H' x W'
 - H' and W' depend on various factors.

Combining Convolutional Layers

- Concatenate several convolutional layers.
 - From layer to layer
 - spatial resolution decreases
 - number of feature maps increases

Can extract high-level features in the final layers

• Feature map representation:

Spatial sub-sampling

- reduce the feature map size by subsampling feature maps between convolutional layers
 - stride for convolution filter step size when moving the windows across the image.

- Spatial sub-sampling
 - max-pooling layer use the maximum over a pooling window
 - gathers features together, summarizes features in local region.

- introduces translation invariance
 - it doesn't matter where the maximal feature is located locally, it is passed to the next layer.
 - increases robustness to small changes in configuration of features

Receptive field size

- Stacking convolutional layers increases the effective size of the pattern filter
 - called **receptive field** what pixels in the input affect a particular node.
 - larger receptive fields can see larger patterns.
 - Example: 2 convolutional layers

$$|\mathbf{w_1}|=5, |\mathbf{w_2}|=3$$
, receptive field size = $|\mathbf{w_1}|+|\mathbf{w_2}|-1=7$

Advantages of Convolution Layers

- The convolutional filters extract the same features throughout the image.
 - Useful because the object can appear in different locations of the image (global translation equivarience).
- Pooling makes it robust to changes in feature configuration (local translation invariance).
- The number of parameters is small compared to Dense (Fully-connected) layer
 - Example: input is C x H x W, and output is F x H x W
 - Number of MLP parameters: (CHW+1) x (FHW)
 - Number of CNN parameters: F x (CKK+1)

Fully-connected layers (MLP)

- after several convolutional layers, input the feature map into an MLP to get the final classification.
- also called "fully-connected" (FC) layers.

Example: Object classification CNN

- Each layer shows its feature maps for the example image.
 - early layers extract low-level (visual) features

- o e.g., corners, edges
- middle layers extract mid-level (part) features
 - e.g., object parts
- later layers extract *high-level* (semantic) features.
 - o e.g., object

- The number of feature channels increases with each layer
 - combining low-level parts together to get more higher-level parts
 - e.g., {edges, corners} -> {wheel, door, window}
 - trading off spatial resolution for semantic specificity
 - e.g., 512x512x3 RGB image -> 8x8x512 semantic features
- the spatial resolution decreases with each layer
 - increase the window size (receptive field) on the object
 - high-level semantic correspond to large regions.

CNN on MNIST

```
In [23]:
```

Example images
plt.figure(figsize=(8,4))
show imgs(trainimg[0:50])

4D tensor format

- There are two common formats for the 4-D tensor:
 - "NCHW" batch, channel, height, width called 'channels_first'
 - "NHWC" batch, height, width, channel called 'channels_last'
- NHWC is required for CPU version of Tensorflow 2.

```
In [24]: # use keras backend (K) to force channels-last ordering (for CPU compatability)
    K.set_image_data_format('channels_last')
```

Example on MNIST

- Pre-processing
 - scale to [0,1]
 - 4-D tensor: (sample, height, width, channel)
 - channel = 1 (grayscale)
 - create training/validation sets

```
In [25]: # scale to 0-1
    trainI = (trainimg.reshape((6000,28,28,1)) / 255.0)
    testI = (testimg.reshape((10000,28,28,1)) / 255.0)
    print(trainI.shape)
    print(testI.shape)

(6000, 28, 28, 1)
    (10000, 28, 28, 1)
```

· Generate fixed training and validation sets

```
In [26]: # generate fixed validation set of 10% of the training set
vtrainI, validI, vtrainYb, validYb = \
    model_selection.train_test_split(trainI, trainYb,
    train_size=0.9, test_size=0.1, random_state=4487)

validsetI = (validI, validYb)
```

Shallow CNN Architecture

- 1 Convolution layer
 - 5x5x1 kernel, 10 features, stride = 2 (step-size between sliding windows)
 - No pooling here since the image input is small (28x28)
 - Input: 28x28x1 (grayscale image) -> Output: 14x14x10
- 1 fully-connected layer (MLP), 50 nodes
 - Input: 14x14x10=1960 -> Output: 50
- · Classification output node

```
In [28]: # initialize random seed
            K.clear session(); random.seed(4487); tf.random.set seed(4487)
            # build the network
            nn = Sequential()
            nn.add(Conv2D(10, (5,5), strides=(2,2), # channel, kernel size, stride
                          activation='relu', padding='same', # activation, convolution padding
                          input shape=(28,28,1)))
            nn.add(Flatten()) # flatten the feature map into a vector to apply Dense layers
            nn.add(Dense(units=50, activation='relu'))
            nn.add(Dense(units=10, activation='softmax'))
            # compile and fit the network
            nn.compile(loss=keras.losses.categorical crossentropy,
                       optimizer=keras.optimizers.SGD(lr=0.02, momentum=0.9, nesterov=True),
                       metrics=['accuracy'])
            history = nn.fit(vtrainI, vtrainYb, epochs=100, batch size=50,
                             callbacks=callbacks list,
                             validation data=validsetI, verbose=False)
```

Epoch 00012: early stopping

In [29]:

nn.summary()

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 14, 14, 10)	260
flatten (Flatten)	(None, 1960)	0
dense (Dense)	(None, 50)	98050
dense_1 (Dense)	(None, 10)	510
Total params: 98,820 Trainable params: 98,820 Non trainable params: 0		

Non-trainable params: 0

```
In [30]:
```

```
# visualize the network
tf.keras.utils.plot model(nn, to file='tmp model.png', show shapes=True)
```

Out[30]:

- · test results
 - for comparison, the best MLP from Lecture 8 was 0.9499 accuracy
 - 3 layer MLP: (500, 500, 10) with 648,010 parameters

```
In [31]: plot_history(history)

predY = argmax(nn.predict(testI, verbose=False), axis=-1)
acc = metrics.accuracy_score(testY, predY)
print("test accuracy:", acc)
```

test accuracy: 0.9487

- Visualize the convolutional filters
 - filters are looking for local stroke features
 - o corners, edges, lines

```
In [32]: W = nn.get_layer(index=0).get_weights()[0]
    print(W.shape)
    flist = [squeeze(W[:,:,:,c]) for c in range(10)]
    show_imgs(flist)
```

(5, 5, 1, 10)

Deep CNN Architecture

- 3 Convolutional layers
 - 5x5x1 kernel, stride 2, 10 features (output 14x14x10)
 - 5x5x10 kernel, stride 2, 40 features (output 7x7x40)
 - 5x5x40 kernel, stride 1, 80 features (output 7x7x80)
 - set stride as 1 to avoid reducing the feature map too much)
- 1 fully-connected layer (7x7x80=3920 -> 50)
- · Classification output node

```
In [33]:
            # initialize random seed
            random.seed(4487); tf.random.set_seed(4487)
            # build the network
            nn = Sequential()
            nn.add(Conv2D(10, (5,5), strides=(2,2), activation='relu',
                          padding='same', input shape=(28,28,1)))
            nn.add(Conv2D(40, (5,5), strides=(2,2), activation='relu', padding='same'))
            nn.add(Conv2D(80, (5,5), strides=(1,1), activation='relu', padding='same'))
            nn.add(Flatten())
            nn.add(Dense(units=50, activation='relu'))
            nn.add(Dense(units=10, activation='softmax'))
            # compile and fit the network
            nn.compile(loss=keras.losses.categorical_crossentropy,
                       optimizer=keras.optimizers.SGD(lr=0.02, momentum=0.9, nesterov=True),
                      metrics=['accuracy'])
            history = nn.fit(vtrainI, vtrainYb, epochs=100, batch_size=50,
                             callbacks_callbacks_list,
                             validation_data=validsetI, verbose=False)
```

Epoch 00010: early stopping

```
In [34]: nn.summary()
```

Model: "sequential_1"

Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	14, 14, 10)	260
conv2d_2 (Conv2D)	(None,	7, 7, 40)	10040
conv2d_3 (Conv2D)	(None,	7, 7, 80)	80080
flatten_1 (Flatten)	(None,	3920)	0
dense_2 (Dense)	(None,	50)	196050

dense_3 (Dense) (None, 10) 510

Total params: 286,940 Trainable params: 286,940 Non-trainable params: 0

```
In [35]: plot_history(history)

predY = argmax(nn.predict(testI, verbose=False), axis=-1)
acc = metrics.accuracy_score(testY, predY)
print("test accuracy: ", acc)
```

test accuracy: 0.9667

Summary

- Convolution operation
 - looks at the local structure of the signal (1D, 2D, 3D, etc).
 - two intepretations: filtering, pattern matching
- Convolutional neural network (CNN)
 - convolutional layer use convolution instead of dense connections
 - learns to extract image features, and learns classifier.