Origami Numbers A Short Overview of the Lemmata and Theorems

Nora Depenheuer

Joachim Roscher

February 8, 2025

1 First some basic line stuff

- vec_well_defined: no 0 in a fraction denominator of a vector
- vec_ne_zero: $l.vec \neq 0 \forall l$ line
- vec_abs_one: $|l.vec| = 1 \forall l$ line
- diff_ne_zero: $l.z_2 l.z_1 \neq 0 \forall l$ line
- diff_ne_zero': $l.z_1 l.z_2 \neq 0 \forall l$ line
- z_1 _on_l: $l.z_1 \in l.points \forall l$ line
- z_2 -on_l: $l.z_2 \in l.points \forall l$ line
- line_eq_symm: $l_1.eql_2 \iff l_2.eql_1 \forall l_1, l_2$ lines
- line_eq_symm': $\neg l_1.eql_2 \iff \neg l_2.eql_1 \forall l_1, l_2$ lines
- line_eq_is_equivalence_relation: exactly the title
- line_eq_self: $l.eql \forall l$ line
- line_eq_if_switched_points: $l.eq < l.z_2, l.z_1 > foralll$ line
- line_eq_iff_both_points_lie_in_the_other: $l_1.eql_2 \iff l_1.z_1 \in l_2.points \land l_1.z_2 \in l_2.points \forall l_1, l_2$ lines
- line_eq_iff_both_points_lie_in_the_other': $l_1.eql_2 \iff l_2.z_1 \in l_1.points \land l_2.z_2 \in l_1.points \forall l_1, l_2$ lines
- line_eq_if_add_vec: $l.eq < l.z_1, k \cdot l.vec > \forall k \neq 0, l$ line
- line_ne_iff: $\exists x \in l_1.points \land x \notin l_2.points \iff \neg l_1.eql_2 \forall l_1, l_2 \text{ lines}$
- line_ne_iff': $\exists x \in l_2.points \land x \notin l_1.points \iff \neg l_1.eql_2 \forall l_1, l_2 \text{ lines}$
- Parallel_symm: $l_1 \parallel l_2 \iff l_2 \parallel l_1 \forall l_1, l_2 \text{ lines}$
- Not_parallel_if_parallel: $\neg l_1 \parallel l_2 \Rightarrow l_2 \parallel l_3 \Rightarrow \neg l_1 \parallel l_3$

2 Now some orgiami stuff

- $\mathbb{O}_n.points.inc: \mathbb{O}_n.points \ n \subseteq \mathbb{O}_n.points \ m \ \forall n \leq m$
- $\mathbb{O}_n.lines_inc: \mathbb{O}_n.lines \ n \subseteq \mathbb{O}_n.lines \ m \ \forall n \leq m$
- O4_not_parallel: $l \not \parallel (O4 z l)$
- O4_perpendicular: $l.vec \cdot (O4 z l).vec.re = 0$

- in_O_if_eq: $z \in \mathbb{O} \land z' = z \implies z' \in \mathbb{O}$
- in_O_lines_if_eq: $l \in O$.lines $\land l'$.eq $l \implies l' \in O$.lines
- in_O_lines_if_eqg: $l \in O$.lines $\land l' = l \implies l' \in O$.lines
- Olin_ \mathbb{O} : Ol $z_1 \ z_2 \in \mathbb{O}.lines$
- O2_in_ \mathbb{O} : O2 z_1 $z_2 \in \mathbb{O}$.lines
- O3_in_ \mathbb{O} : O3 l_1 $l_2 \in \mathbb{O}$.lines
- O3'_in_ \mathbb{O} : O3' $l_1 \ l_2 \in \mathbb{O}.lines$
- O4_in_ \mathbb{O} : O4 z $l \in \mathbb{O}$.lines
- O5_in_ \mathbb{O} : O5 z_1 z_2 $l \in \mathbb{O}.lines$
- O6_in_ \mathbb{O} : O6 z_1 z_2 l_1 $l_2 \in \mathbb{O}.lines$
- Isect_in_ \mathbb{O} : $l_1 \cap l_2 \in \mathbb{O}$
- $\mathbb{O}_{-}E1$: $E1 \ z \ l \ hz \ hl \in \mathbb{O}.lines$
- \mathbb{O}' -E1': $\exists l' \in \mathbb{O}, l'.z_1 = z \wedge l'.z_2 = z l.vec \forall z \in \mathbb{O}, l \in \mathbb{O}.lines$
- E1_parallel_l: (E1 z l) $\parallel l$
- O4_not_parallel_to_E1: \neg (O4 z l) \parallel (E1 z l hz hl)
- O3_on_O4_and_E1: (O3 (O4 z l) (E1 z l hz hl)). $z_1 = z \land$ (O3 (O4 z l) (E1 z l hz hl)). $z_2 = z + i \cdot l.vec l.vec \land$ (O3 (O4 z l) (E1 z l hz hl)). $vec = (i 1) \cdot l.vec / |i 1|$
- l_not_parallel_to_O3_on_O4_and_E1: $\neg l \parallel (O3 (O4 \ z \ l) (E1 \ z \ l \ hz \ hl))$
- O4_not_parallel_to_O4_on_O3_on_O4_and_E1: \neg (O4 z l) \parallel (O4 (l \cap (O3 (O4 z l) (E1 z l hz hl)) (O3 (O4 z l) (E1 z l hz hl)))
- O4_on_z1_and_l4: (O4 (l∩ (O3 (O4 z l) (E1 z l hz hl)) (O3 (O4 z l) (E1 z l hz hl))).vec = $-(i+1) \cdot l.vec/|i-1|$
- \mathbb{O}_{-} E2: E2 z l hz $hl \in \mathbb{O}$
- E2_ne_z: E2 $z l hz hl \neq z$
- zero_in_ \mathbb{O} : $0 \in \mathbb{O}$
- one_in_ \mathbb{O} : $1 \in \mathbb{O}$
- $\mathbb{O}_{\text{reAxis: reAxis}} \in \mathbb{O}.lines$
- $\mathbb{O}_{\text{-imAxis}}$: imAxis $\in \mathbb{O}$.lines
- \mathbb{O}_{-i} : $i \in \mathbb{O}$

3 Now the actual project goal

- $\mathbb{O}_{-\text{neg}}: -z \in \mathbb{O} \forall z \in \mathbb{O}$
- $\mathbb{O}_{\text{-double}}$: $2 \cdot z \in \mathbb{O}$
- \mathbb{O} -add_multiples: $z_1 + z_2 \in \mathbb{O} \forall z_1, z_2 \in \mathbb{O}, z_1 = k \cdot z_2$
- \mathbb{O}_{-} add: $z_1 + z_2 \in \mathbb{O} \forall z_1, z_2 \in \mathbb{O}$
- \mathbb{O}_{-re} : $z.re \in \mathbb{O} \forall z \in \mathbb{O}$

- \mathbb{O}_{i_mul} : $i \cdot z \in \mathbb{O} \forall z \in \mathbb{O}$
- \mathbb{O} _real_mul_real: $a \cdot b \in \mathbb{O} \forall a, b \in \mathbb{O} \cap \mathbb{R}$
- \mathbb{O} _real_mul_cmpl: $a \cdot z \in \mathbb{O} \forall a \in \mathbb{O} \cap \mathbb{R}, z \in \mathbb{O} \setminus \mathbb{R}$
- \mathbb{O}_{-im} : $z.im \in \mathbb{O} \forall z \in \mathbb{O}$
- \mathbb{O} _mul: $z_1 \cdot z_2 \in \mathbb{O} \forall z_1, z_2 \in \mathbb{O}$
- \mathbb{O}_{pow_n} at: $z^n \in \mathbb{O} \ \forall z \in \mathbb{O}, \ n \in \mathbb{N}$
- $\mathbb{O}_{\text{real_inv_cmpl}}$: $z/a \in bO \forall z \in \mathbb{O} \setminus \mathbb{R}, a \in \mathbb{O} \cap \mathbb{R}$
- \mathbb{O} _real_inv_real: $a/b \in \mathbb{O} \forall a, b \in \mathbb{O} \cap \mathbb{R}$
- $\mathbb{O}_{\text{-inv}}$: $\exists z' \in \mathbb{O} : z \cdot z' = 1 \forall z \in \mathbb{O}$
- $\mathbb{O}_{\text{-}}$ div: $z_1/z_2 \in \mathbb{O} \forall z_1, z_2 \in \mathbb{O}$
- $\mathbb{O}_{\text{-pow_int}}$: $z^n \in \mathbb{O} \ \forall z \in \mathbb{O}, \ n \in \mathbb{Z}$
- $\mathbb{O}_{\text{-isField}}$: $\mathbb{O}Field$ is a field with $+, \cdot$ from \mathbb{C}
- $\mathbb{O}_{\text{square_roots_nonneg_real}}$: $\sqrt{z} \in \mathbb{O} \ \forall z \in \mathbb{O}, z \in \mathbb{R}_{>0}$
- \mathbb{O}_{abs} : Complex.abs $(z) \in \mathbb{O} \ \forall z \in \mathbb{O}$
- $\mathbb{O}_{\text{-}}\text{vec}$: l.vec $\in \mathbb{O} \ \forall l \in \mathbb{O}$.lines
- \mathbb{O}_{\sin} arg: Complex.sin (z.arg) $\in \mathbb{O} \ \forall z \in \mathbb{O}$
- $\mathbb{O}_{\text{cos_arg}}$: Complex.cos (z.arg) $\in \mathbb{O} \ \forall z \in \mathbb{O}$
- $\mathbb{O}_{\text{sin_arg_div_two:}}$ Complex.sin (z.arg / 2) $\in \mathbb{O} \ \forall z \in \mathbb{O}$
- $\mathbb{O}_{\text{sin_arg_div_three}}$: Complex.sin (z.arg / 3) $\in \mathbb{O} \ \forall z \in \mathbb{O}$
- $\mathbb{O}_{\text{half_angle:}} e^{i \cdot z \cdot arg/2} \in \mathbb{O} \ \forall z \in \mathbb{O}$
- $\mathbb{O}_{\text{square_root}}: \exists z' \in \mathbb{O}: z' \cdot z' = z \forall z \in \mathbb{O}$
- \mathbb{O} _square_roots: $z^2 \in \mathbb{O} \implies z \in \mathbb{O} \ \forall z$
- \mathbb{O} _square_roots': Polynomial.nthRoots 2 $z \subseteq \mathbb{O} \ \forall z \in \mathbb{O}$
- $\mathbb{O}_{\text{slope: l.vec.im/l.vec.re}} \in \mathbb{O} \ \forall l \in \mathbb{O}.$ lines
- \mathbb{O}_{-} cubics: The roots of a cubic with coefficients in $\mathbb{O} \cap \mathbb{R}$ lie in \mathbb{O}
- $\mathbb{O}_{\text{trisect_angle:}} e^{i \cdot z \cdot arg/3} \in \mathbb{O} \ \forall z \in \mathbb{O}$
- $\mathbb{O}_{\text{cube_roots_real}}: z^3 \in \mathbb{O} \implies z \in \mathbb{O} \ \forall z \in \mathbb{R}$
- $\mathbb{O}_{\text{cube_root}}$: $\exists z' \in \mathbb{O} : z' \cdot z' \cdot z' \cdot z' = z \forall z \in \mathbb{O}$
- $\mathbb{O}_{\text{cube_roots_of_unity:}} 1, e^{i2\pi/3}, e^{i4\pi/3} \in \mathbb{O}$
- $\mathbb{O}_{\text{cube_roots}}: z^3 \in \mathbb{O} \implies z \in \mathbb{O} \ \forall z$
- $\mathbb{O}_{\text{cube_roots'}}$: Polynomial.nthRoots $3 \ z \subseteq \mathbb{O} \ \forall z \in \mathbb{O}$