

# Housekeeping

• DataFest groups!

# **Testing**

We are now entering into second branch of inference-related tasks: testing.

- We have some "claim"/question about the target population, and we use sampled data to provide evidence for or against the claim
  - Especially important in medicine
- We will use the *hypothesis testing framework* to formalize the process of making decisions about research claims.
  - Because the claim is about target population, we will almost always formulate claims in terms of population parameters
  - Then we use sampled data to provide the evidence for/against

# Hypothesis testing framework

Four stages (we will step through each one):

- 1. Define your hypotheses
- 2. Collect data, set a significance level
- 3. Determine strength of evidence (null distribution, p-value)
- 4. Make decision and conclusion in context

# **Step 1: Define hypotheses**

A **hypothesis test** is a statistical technique used to evaluate competing claims using data

- We define hypotheses to translate our research question/claim into statistical notation
- We always define two hypotheses *in context*: a null hypothesis and an alternative hypothesis
- Null hypothesis  $H_0$ : hypothesis that represents "business as usual"/status quo/nothing unusual or noteworthy
- Alternative hypothesis  $H_A$ : claim the researchers want to demonstrate

It will not always be obvious what the hypotheses should be, but you will develop intuition for this over time!

# Defining hypotheses in context

Research question: do the minority of Middlebury students drink coffee regularly?

- ullet Define p as the true proportion of Middlebury students who drink coffee regularly
- Try to write down our null and alternative hypotheses in terms of p!
  - $H_0$ : p = 0.5 versus  $H_A$ : p < 0.5

# Step 2: Collect and summarize data

Our sample is the convenience sample I took of our class: 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, where 1 = "yes" and 0 = "no".

- Point estimate:  $\hat{p}_{obs} = 0.35$
- Are we prepared to answer our research question based on this evidence?
- NO! Due to variability, we should ask: do the data provide *convincing evidence* that the minority of Middlebury students drink coffee regularly?

# Step 3: Determine if we have "convincing evidence"

"Convincing evidence" for us means that it would be <u>highly unlikely</u> to observe the data we did (or data even more extreme) if  $H_0$  were true!

- We will calculate a **p-value**: the probability of observing data as or more extreme than we did, assuming  $H_0$  true
  - Note: p in "p-value" is not the same as parameter p!
  - lacktriangle This is a conditional probability: we condition on  $H_0$  true
- <u>Highly unlikely</u> is vague and needs to defined by the researcher, ideally before seeing data.
  - If we want to provide a yes/no answer to the research question, we need some threshold to compare the p-value to. This is called a **significance level**  $\alpha$
  - Common choices are  $\alpha = 0.05$ ,  $\alpha = 0.01$  (more on this later)!
- For our example, we will choose  $\alpha = 0.05$

# How to obtain p-value?

- How to obtain this probability?
- Need access to a distribution that corresponds to a world where  $H_0$  is true (i.e. the **null distribution**)
  - Option 1: if we have assumptions about how our data behave, we can obtain this distribution using theory/math (next week)
  - Option 2: if we don't want to make assumptions, why not simulate?
    - $\circ$  We will call this option "simulating under  $H_0$ "
- This is the step that requires the most "work", and what exactly you do will depend on the type of data and the research question/claim you have

# Simulating under $H_0$ (step 3 cont.)

- We have to simulate our data under the assumption that  $H_0$  is true (recall  $H_0$ : p=0.5)
- Imagine a big bag filled with many slips of pink and purple slips of paper
  - Pink = coffee-drinkers
  - Purple = non-coffee-drinkers
  - To simulate under  $H_0$ , what proportion of the slips in the bag should be pink vs purple?
- To simulate under  $H_0: p = 0.50$ , half of the slips should be pink!

# Simulating under $H_0$ (step 3 cont.)

- To simulate under  $H_0$ , we replicate our original sample, this time sampling from this "null world" bag of paper slips
  - Repeatedly take samples from this null distribution using original sample size n=20
  - For each sample, calculate the simulated proportion of pink slips
- Live code?

#### Null distribution of statistic

We can visualize the distribution of  $\hat{p}$  assuming  $H_0$  true:

# Null distribution 7502500.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Sample proportion drink coffee

- This is called the **null distribution** of the sample statistic, which is the distribution of the statistic  $\hat{p}$  assuming  $H_0$  is true
- Where is this null distribution of  $\hat{p}$  centered? Why does that "make sense"?

# Comparing null to observed

Let's return to our original goal of Step 3! We need to find the **p-value**: the probability of observing data as or more extreme as ours, assuming  $H_0$  were true.

- Our observed point estimate was  $\hat{p}_{obs} =$  0.35
- $H_0: p = 0.5$  and  $H_A: p < 0.5$
- What does "as or more extreme" mean in this context?

How can we use the null distribution to obtain this probability?



# Obtain p-value (step 3 cont.)

We can directly estimate the p-value using our null distribution and our observed  $\hat{p}$ !

#### Null distribution



- Out of 5000 replications, we saw 643 instances of  $\hat{p} \leq \hat{p}_{obs}$
- p-value is  $\frac{643}{5000} \approx 0.13$

# Step 4: Interpret p-value and make decision

- 1. Interpret the p-value 0.1286 in context
  - Assuming  $H_0$  true, the probability of observing a sample proportion as or more extreme as our 0.35 is approximately 0.13
- 2. Make a decision about research claim/question by comparing p-value to significance level  $\alpha$ 
  - If p-value  $< \alpha$ , we reject  $H_0$  (it was highly unlikely to observe our data given  $H_0$  and our selected threshold)
  - If p-value  $\geq \alpha$ , we fail to reject  $H_0$  (not have enough evidence against the null)
    - Note: we never "accept  $H_A$ "!
  - Since our p value is greater than  $\alpha = 0.05$ , we fail to reject  $H_0$ . The data do not provide sufficient evidence to suggest that the minority of Middlebury students drink coffee regularly.

# Summary of testing framework

Four steps for hypothesis test:

- 1. Define null and alternative hypotheses  $H_0$  and  $H_A$  in context
- 2. Collect data and set significance level lpha
- 3. Obtain the null distribution of the statistic and use it to obtain/estimate p-value
  - We did this using by simulating
- 4. Interpret p-value and make a decision in context

#### **Errors in decision**

- In Step 4, we make a decision but it could be wrong! (Unfortunately, we will never know)
- We always fall into one of the following four scenarios:

|          |                       | State of world |             |  |
|----------|-----------------------|----------------|-------------|--|
|          |                       | $H_0$ true     | $H_0$ false |  |
| Decision | Fail to reject $H_0$  |                |             |  |
|          | Reject H <sub>0</sub> |                |             |  |

Identify which cells are good scenarios, and which are bad

#### **Errors in decision**

|          |                       | State of world |               |  |
|----------|-----------------------|----------------|---------------|--|
|          |                       | $H_0$ true     | $H_0$ false   |  |
| Decision | Fail to reject $H_0$  | Correct        | Type II error |  |
|          | Reject H <sub>0</sub> | Type I error   | Correct       |  |

- What kind of error could we have made in our example?
- It is important to weight the consequences of making each type of error!
  - We have some control in this how? Through  $\alpha$ !

# **Comprehension questions**

- What are the similarities/differences between the bootstrap distribution of a sample statistic and the simulated null distribution?
- Do you understand what a p-value represents, and how we obtain it from the null distribution?
- What role does  $\alpha$  play? Why is it important to set  $\alpha$  early on?