

兰州大学信息科学与工程学院实验报告

年级专业: 2018级计算机基地班

指导老师: 斯天玉

实验课程:	数字逻辑实验

实验题目: ______ALU_____

一、实验目的

1. ALU 74LS181 的原理、设计和应用。

二、实验原理

1. 算术逻辑运算单元

算术逻辑运算单元(ALU)74LS181是一种功能较强的组合逻辑电路,它能进行多种算术运算和逻辑运算。它的基本逻辑结构是超前进位加法器。其全部功能可查阅有关手册(如果对补码不熟悉,就看不懂功能表的算术运算部分)。这里仅对要用到的加以介绍,采用正逻辑介绍。

 $S_3 \sim S_0$: 工作方式选择。

M: 当M=H时,进行逻辑运算;M=L时,进行算术运算。取M=L。

 $A = A_3 \sim A_0$, $B = B_3 \sim B_0$: 参加运算的两个数(注脚3表示最高位)。

 $F_3 \sim F_0$: 运算结果。

CN: 最低位进位输入,CN=H时,表示无进位输入;CN=L时,有进位输入。取CN=H。

CN+4: 最高位进位输出,低电平有效。

A = B: 当 $F_3 \sim F_0$ 全为高电平时为 1, 否则为 0.

G 称为进位发生输出,P 称为进位传送输出。它们是为了便于实现多芯片 ALU 之间的超前进位用的,在实验中不用。

74LS181 的引脚如 Error! Reference source not found.所示。正逻辑操作数方式时,输入、输出信号的极性和 Error! Reference source not found.中所标的正好相反,和上面所说的一致。当 $S_3 \sim S_0 = \text{HLLH}$ (即= 1001),M = 0,CN = 1 时,其功能是 F = A 加 B(算术加,包括进位位)。

算术逻辑运算单元 ALU 74LS81 功能表如下图所示:

操作方式选择 \$3\$2\$1\$0	逻辑运算 M=1	算术运算 M=0, $\overline{C_N}$ =1
0000	F=A	F=A
0001	F=A+B	F=A+B
0010	F≡AB	F=A+B
0011	F=0	F=减 1
0100	$F=\overline{A}B$	F=A 加 A B
0101	F=B	F= (A+B) 加 AB
0110	$F{=}A\oplus B$	F=A 减 B 减 1
0111	F=AB	F=AB 減 1
1000	F=\overline{A}+B	F=A 加 A B
1001	$F = \overline{A \oplus B}$	F=A 加 В
1010	F=B	F= (A+B) 加 AB
1011	F=AB	F=AB 減 1
1100	F=1	F=A*
1101	F=A + B	F= (A+B) 加 A
1110	F=A+B	F= (A+ B) 加 A
1111	F=A	F=A 減 1

三、实验器件

算术逻辑运算单元 ALU 74LS181,导线。

四、实验内容

1. 熟悉 74LS181 的功能,测试逻辑运算功能、算数运算功能,74LS181 的输入包括: S3-S0, M, A3-A0, B3-B0, CN, 输出信号包括: F3-F0, CN+4, G, P。

连接电路图:

(1): 算术运算

输入信号				输出信号	
控制信号1	控制信号2	加数	被加数	低位进位	F3-F0,CN+4=0 表示有进位
S3-S0	M	A3-A0	B3-B0	CN=0 有进位	
		0000	1100	0	11011
		0010	1100	0	11111
	0	0011	1100	0	00000
1001		1000	1100	0	01000
		0011	1100	1	11111
		0011	1101	0	00010
		0000	0011	1(红色是部 分余 3 码)	00111
		0001	0011	1	01001
		0010	0011	1	01011
		0011	0011	1	01101
		0100	0011	1	01111

功能为 F=A+B

(2): 逻辑运算

输入信号				输出信号	
控制信号1	控制信号 2			低位进位	F3-F0
S3-S0	M	A3-A0	B3-B0	CN=0 有进位	
1110		0000	0000		0000
	1	0001	0000		0001
		0000	0001		0001
		0001	0001		0001

功能为 Fn=An 或 Bn

2. 利用 74LS181 设计一个电路, 功能是将 8421 码转换为余 3 码。

余三码(余3码)是由8421BCD码加上0011形成的一种无权码,由于它的每个字符编码比相应的8421码多3,故称为余三码。BCD码的一种。余3码的特点:当两个十进制数的和是9时,相应的二进制编码正好是15,于是可自动产生进位信号,而不需修正。0和9,1和8,…..5和4的余3码互为反码,这在求对于10的补码很方便。

转换表:

Decimal	8421BCD	余3码
0	0000	0011
1	0001	0100
2	0010	0101
3	0011	0110
4	0100	0111
5	0101	1000
6	0110	1001
7	0111	1010
8	1000	1011
9	1001	1100

即置 M 控制信号为 0, S3-S1 为 1001 表示加法运算, B3-B0 为 0011 表示+3, CN 为 1 表示无进位, 输入端 A3-A0 为 8421BCD 码, 输出端 F3-F0 为余三码。

电路图:

