Übungen Formale Grundlagen der Informatik II Blatt 5

Übungsaufgabe 5.3:

5.3.1:

 $f = \neg (\mathbf{E} \operatorname{True} \mathbf{U} \neg (\neg Error \vee \mathbf{E} (Error \mathbf{U} \neg Battery)) \vee \neg \mathbf{E} \mathbf{G} \neg Active)$ $g = \neg \mathbf{E} \operatorname{True} \mathbf{U} (\neg \mathbf{E} [\operatorname{True} \mathbf{U} Active])$

(a)

(Teil-) Formel: $g = \neg \mathbf{E}$ True $\mathbf{U}(\neg \mathbf{E}[\text{True}\,\mathbf{U}\,Active}])$

5.3.2:

- f: Auf allen Pfaden gilt immer, dass wenn Error gilt, Error dann so lange gilt, bis Battery nicht mehr gilt. Außerdem gilt auf nicht allen Pfaden irgendwann Active.
- g: Für alle Pfade gilt immer, dass es einen Pfad gibt, auf dem irgendwann einmal Active gilt.

5.3.3:

$$\operatorname{Sat}(\phi) = \operatorname{Sat}(f) = \operatorname{Sat}(g) = S$$

5.3.4:

Wie in 5.3.1 bewiesen, gilt $\forall c \in S(M) : M, c \models f$, somit gilt auch $M, c_0 \models f$.

Übungsaufgabe 5.4:

5.4.1:

5.4.2:

5.4.3:

$$\neg \phi = \neg (\mathbf{G} \neg (gr_1 \land gr_2)) = \mathbf{F}(gr_1 \land gr_2)$$

5.4.4:

$$ES(A_1 \otimes A_2) = (\{r_1, gr_2\} \cdot \{r_1, g_2\} \cdot \{rg_1, r_2\} \cdot \{gr_1, r_2\} \cdot \{g_1, r_2\} \cdot \{r_1, rg_2\})^{\omega}$$

5.4.5:

Hierbei wurden nicht erreichbare Zustände weggelassen.

 $L^{\omega}(A_1 \otimes A_2) \cap L^{\omega}(M_{\neg \phi}) = \emptyset$, da der Produkt-Büchi-Automat kein Wort akzeptiert, denn der Endzustand kann nicht unendlich oft durchlaufen werden.

5.4.6:

Da $L^{\omega}(A_1 \otimes A_2) \cap L^{\omega}(M_{\neg \phi}) = \emptyset$ gilt, erfüllt das System die Spezifikation ϕ .