DISTILLATION COLUMN DESIGN PROJECT BY GROUP - 1

MEMBERS

- Diya Singhal (190320)
- Dhananjay Gupta (190280)

SMU 291: Distillation Column Design

DISTILLATION

- Distillation refers to the selective boiling and subsequent condensation of a component in a liquid mixture. The process of distillation exploits the difference in the boiling points of the components in the liquid mixture by forcing one of them into a gaseous state.
- It is an energy intensive process but high purity can be obtained by it
- Applications in Industry

A wide range of Petroleum Products can be obtained like:

Gasoline, Diesel fuel, Lubricating oil, Fuel oil, paraffin wax, petrochemicals

SMU 291: Distillation Column Design

- a vertical shell where the separation of liquid components is carried
- column internals such as trays/plates and/or packings which are used to enhance component separations
- a reboiler to provide the necessary vaporization for the distillation
- a condenser to cool and condense the vapor leaving the top of the column
- a reflux drum to hold the condensed vapor from the top of the column liquid (reflux) can be recycled back to the column

The liquid mixture that is to be processed is known as the feed and this is introduced usually somewhere near the middle of the column to a tray known as the feed tray. The feed tray divides the column into a top (enriching or rectification) section and a bottom (stripping) section.

The liquid removed from the reboiler is known as the bottoms product or simply, bottoms.

The condensed liquid that is removed from the system is known as the distillate or top product.

SMU 291: Distillation Column Design

SYSTEM CHOSEN – (ACETONE & BUTANOL)

- The system chosen is Acetone-Butanol because it is non-ideal and non-Azeotropic.
- Since it is non-azeotropic one can achieve high purity int terms of separating Acetone and Butanol (up to 99%)
- There is a large difference in the boiling point of both compounds (Acetone 56 deg Celsius and Butanol 118 deg Celsius) thus there is a large difference in the volatility of two compounds making it a suitable choice for Distillation process.
- The acetone is the light key component as it is more volatile and Butanol is heavy key component
- Acetone will be obtained as a top product in distillate while the Butanol will be obtained as a bottom product

VAPOUR LIQUID EQUILIBRIUM OF ACETONE-BUTANOL

• The **xy equilibrium plot** for the acetone butanol mixture was obtained by solving the modified Raoult's Law by using WILSON for obtaining the activity coefficients and Soave-Redlich Kwong (SRK) equation of state for calculating the fugacity coefficient and ANTOINE'S parameters for calculating the saturation vapor pressure for each component.

$$y_i P = x_i \gamma_i P_i^{sat}$$
The entire analysis was done at T=380 K in

Points were considered between 0 and 1 to get accurate results.

- At each point the activity and fugacity coefficients were calculated and applied in the modified Raoult's law equation to get the mole fraction in vapor phase for acetone and plot the curve.
- By Gibbs Phase rule F=C-P+2. Here C=2, P=2 thus we need to define only two independent intensive variables to define the whole system.

SMU 291: Distillation Column Design

MCCABE THIELE PROCESS SIMULATION

Department of Chemical Engineering Indian Institute of Technology, Kanpur

- The manual values of **feed composition** (xf=0.5), **distillate composition** (xd=0.99), **bottoms composition** (xv=0.01) and (q=0.6) value of the feed were used. All these are the compositions for acetone (more volatile component)
- Then, draw the **q line** using the equation

$$y = -\frac{q}{(1-q)}x + \frac{z_{F}}{1-q}$$

- To get the **reflux ratio**, we found the **minimum reflux ratio** first. Reflux ratio is minimum when top section line intersects the equilibrium curve
- We found the **intersection of q line with equilibrium curve** and passed a line from that intersection point and (**xd**, **xd**). The y intercept of line is **xd**/(**Rmin**+1)
- By getting R min we got reflux ratio as **R=1.4** * **Rmin**

After getting Reflux ratio, plot the top section line using the equation

$$y_{n+1} = \frac{R}{R+1} x_n + \frac{x_D}{R+1}$$

- Then find the intersection point of the top line and the q-line and name it as (x_intersect, y_intersect)
- After that to calculate the top section stages, run a for loop till x coordinate is greater than the x_intersect as at x_intersect, the feed tray will be inserted. Keep on drawing horizontal lines and look for intersection point with curve and then drop a vertical line and so on. This gives us the number of trays required for top section
- Similarly to draw the bottom line use two points (xv, xv) and (x_intersect, y_intersect) and find the number of stages for bottom section as well

Actual Number of Stages = Top Section Stages + Bottom Section Stages

SMU 291: Distillation Column Design

ACTUAL NUMBER OF STAGES & MINIMUM NUMBER OF STAGES

Minimum stages are calculated by intersecting the horizontal and vertical lines with y=x line as at minimum stages Reflux ratio is infinite so operating lines coincide with the y=x line

Minimum number of stages are 4.706

Actual number of stages are 9.3427

SMU 291: Distillation Column Design

DWSIM SIMULATIONS TO VALIDATE THE RESULTS

By performing the simulations on DWSIM software using Shortcut Column, the results matched with MATLAB code results which proves the accuracy of the code and method

MATLAB CODE RESULTS	DWSIM RESULTS	ERROR
The actual number of stages - 9.3472	9.89	5%
The minimum number of stages - 4.706	5.01	6.4%
Minimum Reflux Ratio - 0.43575	0.411	5.67%

In all 3 cases the error is around 5-6% which is acceptable

Ethanol & Water

- The azeotropic composition is found when the
 mole fraction (X)-Ethanol = mole fraction (Y)-Ethanol
- This happens at x=0.86 for Ethanol & Water mixture

Shortcut Column

 By simulating a shortcut column, the necessary parameters like actual number of stages, feed tray optimal position, reflux ratio gets known.

Feed		C-duty	
	sc	Distillate	
		R-duty	,
	Distillation-Column	Bottoms	

Property	Value	Units
Minimum Reflux Ratio	0.99867	
Minimum Number of Stages	1.97078	
Actual Number of Stages	10.3448	
Optimal Feed Stage	5.17238	
Stripping Liquid	56.1765	kmol/h
Rectify Liquid	56.1765	kmol/h
Stripping Vapor	0	kmol/h
Rectify Vapor	112.353	kmol/h
Condenser Duty	1253.31	kW
Reboiler Duty	-78.8039	kW

SMU 291: Distillation Column Design

Mentor: Ashish Kumar

SimuTech, Chemineers

Ethanol & Water

By putting the same parameters in Chem-Sep column as obtained from Shortcut column simulation one can achieve separation of Ethanol and Water with Ethanol being obtained as a top product (72%) and water as the bottom product (99%)

Stream	Feed1	V.Feed1	Тор	Botton
Stage Pressure (N/m2) Vapour fraction (-) Temperature (K) Enthalpy (J/kmol)	50662.5 1.00000 351.150 2.7343E+06	101325 1.00000 351.150	1 101325 0.000000 351.340 -3.567E+07	101325 0.000000 369.900 -3.835E+07
Entropy (J/kmol/K)	19874.6		-67515.3	-91694.7
Total molar flow (kmol/s) Total mass flow (kg/s) Vapour std.vol.flow (m3/s)	0.0312092 0.999989 0.739352	0.0312092 0.999989 0.739352	0.0215585 0.823424	0.00965071
Liquid std.vol.flow (m3/s) Mole flows (kmol/s)			0.00100729	1.7814E-04
Ethanol Water	0.0156046 0.0156046	0.0156046 0.0156046	0.0155081 0.00605038	9.6507E-05 0.00955421
Mole fractions (-) Ethanol Water	0.500000	0.500000 0.500000	0.719350 0.280650	0.01000000

McCabe-Thiele Diagram

Stream Results

SMU 291: Distillation Column Design

Composition of Ethanol & Water at each stage in Chem-Sep Column

Chem-Sep Column Design

SMU 291: Distillation Column Design

Butanol & Water

- The azeotropic composition is found when the
 mole fraction (X)-Butanol = mole fraction (Y)-Butanol
- This happens at x=0.21618 for Butanol & Water mixture

Shortcut Column

• By simulating a shortcut column, the necessary parameters like actual number of stages, feed tray optimal position, reflux ratio gets known.

Feed		C-duty	
	sc	Distillate	
		R-duty	
	Distillation-Column	P	
		Bottoms	

Property	Value	Units
Minimum Reflux Ratio	1.1749	
Minimum Number of Stages	3.82449	
Actual Number of Stages	6.89824	
Optimal Feed Stage	3.44912	
Stripping Liquid	78.1446	kmol/h
Rectify Liquid	78.1446	kmol/h
Stripping Vapor	39.0723	kmol/h
Rectify Vapor	117.217	kmol/h
Condenser Duty	1304.24	kW
Reboiler Duty	922.628	kW

SMU 291: Distillation Column Design

Mentor: Ashish Kumar

SimuTech, Chemineers

Butanol & Water

By putting the same parameters in Chem-Sep column as obtained from Shortcut column simulation one can achieve separation of Butanol and Water with Water being obtained as a top product (76%) and butanol as the

bottom product (99%)

Composition at each tray

Stream	Feed1	V.Feed1	L.Feed1	Тор	Botton
Stage	4	4	4	1	7
Pressure (N/m2)	50662.5	101325	101325	101325	101325
/apour fraction (-)	0.461653	1,00000	0.000000	0.000000	0.000000
Temperature (K)	351,150	367.046	367.046	366.318	389.149
Enthalpy (J/kmol)	-1.992E+07	20,1010	30,1010	-3.765E+07	-3.214E+0
entropy (J/kmol/K)	-24217.8			-71163.5	-43427.
Total molar flow (kmol/s)	0.00119316	4.7966E-04	7.1349E-04	7.7658E-04	4.1657E-04
Total mass flow (kg/s) Vapour std.vol.flow (m3/s)	0.0549669	0.0220972	0.0328697	0.0243232	0.030643
iquid std.vol.flow (m3/s)	3.5657E-05	0.0113034	3.8950E-05	2.7481E-05	3.7654E-0
Mole flows (kmol/s)					
L-butanol	5.9657E-04	2.3983E-04	3.5674E-04	1.8416E-04	4.1241E-0
Vater	5.9657E-04	2.3983E-04	3.5674E-04	5.9241E-04	4.1657E-0
Mole fractions (-)					
L-butanol	0.500000	0.500000	0.500000	0.237152	0.99000
Vater	0.500000	0.500000	0.500000	0.762848	0.0100000
Mass flows (kg/s)					
L-butanol	0.0442196	0.0177767	0.0264429	0.0136509	0.030568
Vater	0.0107474	0.00432053	0.00642682	0.0106723	7.5046E-0
Mass fractions (-)					
L-butanol	0.804476	0.804476	0.804476	0.561229	0.99755
Vater	0.195524	0.195524	0.195524	0.438771	0.0024489
Combined feed and product f					
Total molar	1.00000	1.00000	1.00000	0.650862	0.34913
Total mass	1.00000	1.00000	1.00000	0.442506	0.55749
Component molar	1 00000	0 403000	0 507004	0 200707	0 60130
L-butanol	1.00000	0.402009	0.597991	0.308707	0.69129
Vater	1.00000	0.402009	0.597991	0.993017	0.0069827

SMU 291: Distillation Column Design

Mentor: Ashish Kumar

SimuTech, Chemineers

WORK CONTRIBUTION OF GROUP MEMBERS

DIYA SINGHAL (190320)	DHANANJAY GUPTA (190280)
Wrote the MATLAB code for plotting vapor – liquid equilibrium curve of Acetone-Butanol mixture	Looked out for videos and resources for McCabe Thiele process simulation in MATLAB
Wrote the MATLAB code for getting the actual number of stages, Reflux ratio, Minimum Reflux Ratio	Wrote the MATLAB code for getting the minimum number of stages
Simulated the Shortcut column in DWSIM for acetone-butanol mixture and compiled all the results in a report	Simulated the xy - Equilibrium plot for azeotropic mixtures in DWSIM for Ethanol-Water and Butanol-Water mixture
Simulated the azeotropic mixtures in DWSIM using both Chemsep and Shortcut column for Ethanol-Water and Butanol-Water mixture	Simulated the azeotropic mixtures in DWSIM using only Shortcut column for Ethanol-Water and Butanol-Water mixture

