JEFFREY CONDITIONING AND EXTERNAL BAYESIANITY

CARL WAGNER
MATHEMATICS DEPT.
UNIVERSITY OF
TENNESSEE

FEW 2008 - MADISON

1. Combining Probability Distributions

 Ω = countable set of possible states of the world

p: $\Omega \rightarrow [0,1]$ is a probability mass function

(henceforth, pmf) iff
$$\sum_{\omega \in \Omega} p(\omega) = 1$$

Each pmf p on Ω induces a *probability* measure (also denoted by p) on 2^{Ω} by

$$p(E) := \sum_{\omega \in E} p(\omega)$$

 Δ : = set of all pmfs on Ω ; Δ ⁿ : = the n-fold Cartesian product of Δ .

$$\Delta^{n+} := \{ (p_1, ..., p_n) \in \Delta^n : \cap_i \operatorname{Supp}(p_i) \neq \emptyset \},$$

where Supp
$$(p_i)$$
: = { $\omega \in \Omega$: $p_i(\omega) > 0$ }

A pooling operator is any map $T: \Delta^{n+} \to \Delta$. In what follows, we think of $T(p_1,..., p_n)$ as a compromise between n individuals who have assessed pmfs $p_1,..., p_n$ over Ω . Several other interpretations are possible.

2. Pooling and (strict) conditioning

Given n individuals with priors p_1, \ldots, p_n , suppose each individual discovers that the true state of the world belongs to the subset E of Ω , but learns nothing that would change the prior odds between any two states in E. Their goal is a compromise pmf that takes this discovery into account .

Should they

1. update their individual priors p_i to posteriors q_i by conditioning on E, then pool the q_i using pooling operator T; or

2. pool their priors to a compromise prior using T, and then update the result by conditioning on E?

If either procedure always results in the same final distribution, we say T *commutes* with conditioning (CC). Formally expressed,

CC: For all subsets E of Ω and all $(p_1,...,p_n) \in \Delta^{n+}$ such that $p_i(E) > 0$ for all i, and $(p_1(.|E),...,p_n(.|E)) \in \Delta^{n+}$, it is the case that

(2.1)
$$T(p_1,...,p_n)(E) > 0$$
, and

(2.2)
$$T(p_1(.|E),..., p_n(.|E)) = T(p_1,..., p_n)(.|E)$$

"Update-then-pool = pool-then-update"

Remark: Dictatorial pooling (for some fixed i, and all $(p_1,...,p_n) \in \Delta^{n+}$, $T(p_1,...,p_n) = p_i$) satisfies CC, but weighted arithmetic means do not in general furnish pooling operators that commute with conditioning.

3. External Bayesianity

• A function $\lambda: \Omega \to \mathbb{R}^+$ is a *likelihood for* a given $(p_1, ..., p_n) \in \Delta^{n+}$ iff, for all i,

(3.1)
$$0 < \sum_{\omega \in \Omega} \lambda(\omega) p_i(\omega) < infinity$$

and $(q_1,...,q_n) \in \Delta^{n+}$, where

(3.2)
$$q_i(\omega) := \lambda(\omega)p_i(\omega) / \sum_{\omega \in \Omega} \lambda(\omega)p_i(\omega)$$

Example: If $p_i(E) > 0$ for all i, then $\lambda(\omega) = [\omega \in E]$, the indicator function of E, is a likelihood for $(p_1, ..., p_n)$, with $q_i(\omega) = p_i(\omega|E)$, since $\sum_{\omega \in \Omega} \lambda(\omega)p_i(\omega) = p_i(E)$.

• T: $\Delta^{n+} \rightarrow \Delta$ is externally Bayesian

(Madansky 1964, Genest, McConway, Schervish 1986) iff the following condition holds:

EB: If $(p_1,..., p_n) \in \Delta^{n+}$ and λ is a likelihood for $(p_1,..., p_n)$, then

(3.3)
$$0 < \sum_{\omega \in \Omega} \lambda(\omega) T(p_1, ..., p_n)(\omega) < infinity$$

and the following commutativity property holds:

(3.4)
$$T(\lambda p_1 / \sum_{\omega \in \Omega} \lambda(\omega) p_1(\omega),...,$$

$$\lambda p_n / \sum_{\omega \in \Omega} \lambda(\omega) p_n(\omega)$$

=
$$\lambda T(p_1,..., p_n) / \sum_{\omega \in \Omega} \lambda(\omega) T(p_1,..., p_n)(\omega)$$

"Update-then-pool = pool-then-update"

Theorem 1. (Hammond) Let w(1),...,w(n) be a sequence of nonnegative real numbers summing to 1. Define $T: \Delta^{n+} \to \Delta$ by

(3.5)
$$T(p_1,..., p_n)(\omega) :=$$

$$\prod_{1 \leq i \leq n} p_i(\omega)^{w(i)} / \sum_{\omega \in \Omega} \prod_{1 \leq i \leq n} p_i(\omega)^{w(i)}$$

where 0^0 : = 1. Then T is EB.

A complete characterization of EB pooling operators is given in Genest, et al (1986).

Theorem 2. EB implies CC.

Beweis: klar (let $\lambda(\omega) = [\omega \in E]$).

Question: Do EB pooling operators commute with probability revision by Jeffrey conditioning? It depends....

4. Jeffrey Conditioning (JC)

- p, q : pmfs on countable set Ω
- E = { E_k}: a family of nonempty, pairwise disjoint subsets of Ω, with p(E_k) > 0 for all k
- q comes from p by Jeffrey conditioning on E iff there exists a sequence (e_k) of positive real numbers summing to 1 such that, for every ω є Ω,

(4.1)
$$q(\omega) = \sum_{k} e_{k} p(\omega | E_{k})$$
$$= \sum_{k} e_{k} p(\omega) [\omega \in E_{k}] / p(E_{k}).$$

q is the appropriate revision of p in the light of new evidence
 iff

- (1) based on the total evidence, old as well as new, you judge that, for each k, the posterior probability q(E_k) should take the value e_k; and
- (2) for each k, you judge that nothing in the new evidence should alter the odds between any two states of the world in E_k.

Remark. When $E = \{E\}$, JC reduces to ordinary conditioning.

Remark. If p and q are *any* pmfs on the countable set Ω such that $q(\omega) > 0 \Rightarrow p(\omega) > 0$, then q comes from p by JC on $\mathbf{E} = \{\{\omega\} : q(\omega) > 0\}$, i.e., JC includes the case of total reassessment of a discrete distribution, as long as "zeros are not raised."

5. Alternative Parameterizations of JC

• Recall: If q is a revision of the probability measure p, and A and B are events, the *relevance quotient* $\rho_{q,p}(A)$ is the ratio

(5.1)
$$\rho_{q,p}(A) := q(A) / p(A)$$

of new to old probabilities, and the *Bayes* factor $\beta_{q,p}$ (A:B) is the ratio

(5.2)
$$\beta_{q,p}(A:B) := q(A)/q(B) / p(A)/p(B)$$

of new to old odds.

Remark: $\beta_{q,p}(A:B) = \rho_{q,p}(A) / \rho_{q,p}(B)$

Remark: When q = p(.|E), then

 $\beta_{q,p}$ (A:B) = p(E|A)/p(E|B) (likelihood ratio).

Theorem 3. Suppose that q comes from p by JC on **E**. Then

$$(5.3) \ q(\omega) = \sum_{k} e_{k} p(\omega|E_{k}) \quad (e_{k} = q(E_{k}))$$

$$(5.4) = \sum_{k} r_{k} p(\omega)[\omega \in E_{k}]$$

$$(r_{k} = \rho_{q,p}(E_{k}))$$

$$(5.5) = \sum_{k} b_{k} p(\omega)[\omega \in E_{k}] / \sum_{k} b_{k} p(E_{k})$$

$$(b_{k} = \beta_{q,p}(E_{k}; E_{1})).$$

Question: Which parameterization is the most promising candidate to make JC commute with externally Bayesian pooling?

Strategy: Suppose P \neq p is another pmf for which P(E_k) > 0 for all k. How should P be revised in light of new learning identical to that which prompted the revision of p to q?

Answer: Revise P to, call it Q, by the analogue of (5.5), i.e., let

$$Q(\omega) = \sum_{k} b_{k} P(\omega) [\omega \in E_{k}] / \sum_{k} b_{k} P(E_{k}),$$
 with $b_{k} = \beta_{q,p} (E_{k}: E_{1})$

Justification: Only the Bayes factors b_k capture what is learned from new evidence alone. The quantities e_k and r_k fail to efface all traces of the prior.

 A pooling operator T commutes with Jeffrey conditioning (CJC) iff the following condition holds: CJC: For all families $\mathbf{E} = \{ E_k \}$ of nonempty, pairwise disjoint subsets of Ω , all $(p_1, ..., p_n) \in \Delta^{n+}$ such that $p_i(E_k) > 0$ for all i and all k, and all sequences (b_k) of positive real numbers such that $b_1 = 1$ and

(5.6)
$$\sum_{k} b_{k} p_{i}(E_{k}) < infinity, i = 1,...,n$$

and such that $(q_1,..., q_n) \in \Delta^{n+}$, where

$$(5.7) q_i(\omega) =$$

$$\sum_{k} b_{k} p_{i}(\omega) [\omega \in E_{k}] / \sum_{k} b_{k} p_{i}(E_{k}),$$

it is the case that

(5.8)
$$0 < \sum_{k} b_{k} T(p_{1},..., p_{n})(E_{k}) < infinity$$
 and

(5.9)
$$T(q_1,..., q_n)(\omega) =$$

$$\sum_{k} b_{k} T(p_{1},...,p_{n}) [\omega \in E_{k}]$$

$$\sum_k b_k T(p_1,...,p_n)(E_k)$$

"Update-then-pool = pool-then-update"

Theorem 4. A pooling operator T: $\Delta^{n+} \rightarrow \Delta$ is externally Bayesian if and only if it commutes with Jeffrey conditioning in the sense of CJC.

Proof. Necessity. Take

$$\lambda(\omega) = \sum_{k} b_{k} [\omega \in E_{k}].$$

Sufficiency. Let $(\omega_1, \omega_2,...)$ be a list of all those $\omega \in \Omega$ with $\lambda(\omega) > 0$, let $\mathbf{E} = \{ \{\omega_1\}, \{\omega_2\}, ... \}$ and let $b_k = \lambda(\omega_k) / \lambda(\omega_1)$

Conclusion: Theorem 4 provides

- a salient reformulation of external Bayesianity in terms of Jeffrey conditionalization, a probability revision method familiar to philosophers; and
- (2) further support for the thesis that identical new learning should be reflected in identical Bayes factors.

(see also "Probability Kinematics and Commutativity," *Philosophy of Science* **69**(2002), 266-278.