| Seat No.: | Enrolment No. |
|-----------|---------------|
|-----------|---------------|

## **GUJARAT TECHNOLOGICAL UNIVERSITY**

**BE - SEMESTER-III(NEW) EXAMINATION - SUMMER 2023** 

Subject Code:3134201 Date:26-07-2023

**Subject Name:Data Structures and Algorithms** 

Time:02:30 PM TO 05:00 PM Total Marks:70

## **Instructions:**

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

|            |            |                                                                                                                     | MARKS    |
|------------|------------|---------------------------------------------------------------------------------------------------------------------|----------|
| Q.1        | (a)        | What is an algorithm? Give characteristics of any algorithm in brief.                                               | 03       |
|            | <b>(b)</b> | Differentiate between arrays and linked lists.                                                                      | 04       |
|            | <b>(c)</b> | Write down the precondition and algorithm of the binary search                                                      | 07       |
|            |            | method.                                                                                                             |          |
| Q.2        | (a)        | What is Collison in Hashing? List the qualities of a Good Hash function.                                            | 03       |
|            | <b>(b)</b> | Give the recursive algorithm to find the Fibonacci sequence.                                                        | 04       |
|            | ` '        | Comment on the complexity of the algorithm.                                                                         |          |
|            | <b>(c)</b> | 1. Discuss various asymptotic notations.                                                                            | 07       |
|            |            | 2. Discuss best case, worst case and average case time                                                              |          |
|            |            | complexity with an example of any algorithm.                                                                        |          |
|            |            | OR                                                                                                                  |          |
|            | <b>(c)</b> | Convert the following infix expression into prefix format showing                                                   | 07       |
|            |            | stack status after every step in tabular form.                                                                      |          |
| 0.2        | (2)        | (A + B) * C - D ^ E ^ (F * G)                                                                                       | 03       |
| Q.3        | (a)<br>(b) | What are the different types of Queues? Discuss in brief. Write a pseudo-code for PUSH and POP operations of stack. | 03<br>04 |
|            | (c)        | Apply the merge sort algorithm for the following data and show the                                                  | 07       |
|            | (C)        | steps.                                                                                                              | 07       |
|            |            | 66, 33, 40, 22, 55, 88, 11, 80, 20, 50, 44, 77                                                                      |          |
| OR         |            |                                                                                                                     |          |
| Q.3        | (a)        | Discuss three steps for Divide and Conquer approach using proper                                                    | 03       |
|            |            | example.                                                                                                            |          |
|            | <b>(b)</b> | Write an algorithm which performs an insertion at the end of a linked                                               | 04       |
|            |            | linear list.                                                                                                        |          |
|            | <b>(c)</b> | Explain how multiplication of large integers can be done efficiently                                                | 07       |
|            |            | by using divide and conquer technique? Also, multiply 2345 with 678                                                 |          |
| 0.4        | (2)        | using the same approach.                                                                                            | 02       |
| Q.4        | (a)        | Define following with reference to the Tree data structure.  - Degree of a node                                     | 03       |
|            |            | - Siblings of a node                                                                                                |          |
|            |            | - Height of a tree                                                                                                  |          |
|            | <b>(b)</b> | Discuss and differentiate BFS and DFS.                                                                              | 04       |
|            | (c)        | What is a binary search tree? Create a binary search tree for the                                                   | 07       |
|            | (-)        | following data. 14, 10, 17, 12, 10, 11, 20, 12, 18, 25, 20, 8, 22, 11, 23.                                          |          |
|            |            | Explain deleting node 20 in the resultant binary search tree.                                                       |          |
| OR         |            |                                                                                                                     |          |
| <b>Q.4</b> | (a)        | Discuss binary tree traversals with example.                                                                        | 03       |
|            | <b>(b)</b> | Write a short note on AVL Tree.                                                                                     | 04       |
|            |            |                                                                                                                     |          |

(c) Discuss various Graph representation techniques. Represent the following graph with Adjacency list representation and Adjacency matrix representation.



**Q.5** (a) What is Knapsack problem? Differentiate Fractional knapsack and 0/1 knapsack problem.

03

(b) Solve a Making Change problem using Dynamic Programming. Give your answer for making change of Rs. 9. (Denominations: d1=1, d2=4, d3=6).

04

07

(c) Find a Minimum Spanning Tree for the given graph using Kruskal's approach.

07



**Q.5** (a) What is Traveling Salesman Problem?

03

**(b)** Discuss four queen problem and its solution using backtracking approach.

04

(c) For the given set of matrices, find out optimal sequence for matrix multiplication using Dynamic Programming approach.

**07** 

$$A1 - 5x4$$
,  $A2 - 4x6$ ,  $A3 - 6x2$ ,  $A4 - 2x7$ 

\*\*\*\*\*