____ (R)
/__ / ___/ / ___/
__/ / ___/
Statistics/Data Analysis

1 . do "C:\Users\lutib\AppData\Local\Temp\STD1880_000000.tmp"

2 . 3 . // EXERCICE 1 4 . 5 . // Q1

7 . /*
> This affirmation is true:

> The distribution of incomes of the group 2 is similar to that of the first group,

> except that incomes are multiplied by a scale of 3. Since the relative inequality indices, as the Gini > index,

> obey to the scale invariance principle, the inequality of the two groups will be the same.

> */ 8 . clear

6 . //a

9 . input group incl inc2 inc3

group incl inc2 inc3

1. 1 1 8 2

2. 1 2 8 4

3.19818

4. 2 3 24 2 5. 2 6 24 4

6. 2 27 24 18

7. end

10 .

11 . igini incl , hg(group)

Index : Gini index
Group variable : group

	Group	Estimate	STE	LB	UB
1: 1 2: 2		0.44444 0.44444	0.100411 0.100411	0.186331 0.186331	0.702558 0.702558
Population		0.534722	0.080462	0.327888	0.741557

```
12 .
13 . //b
```

14 . /*

> This affirmation is false:

> When the averages of $% \left(1\right) =\left(1\right)$ incomes of the two groups are different,

> we also must consider the contribution of the between group inequality to the total inequality.

> */ 15 .

16 . //c

17 . /*

> This affirmation is true:

> - With the inc1, the between group inequality is the inequality of the distribution: D1: (4,4,4,12,12,

> 12)

> - With the inc2, the between group inequality is the inequality of the distribution: D2: (8,8,8,24,24,

> 24)

> Based on the scale invariance principle (the distribution D2 is simply that of the double of the inc > omes of D1),

> The between group inequality in incl is similar to that of inc2.

> *

18 . dentropyg incl, hg(group)

Decomposition of the Generalised Entropy Index by Groups

Group variable : group Parameter theta : 0.00

Group	Entropy index	Population (m	u_k/mu)^theta	Absolute contribution	Relative contribution
1: Group_1	0.422837	0.500000	1.00000	0.2114	19 0.373084
	0.114650	0.223607	0.00000	0.110570	0.211759
2: Group_2	0.422837	0.500000	1.000000	0.2114	19 0.373084
	0.114650	0.223607	0.000000	0.110570	0.237621
Within				0.42283	37 0.746168
				0.21483	9
Between				0.14384	41 0.253832
				0.02205	0
Population	0.566678	1.000000		0.5666	78 1.000000
_	0.215967	0.00000		0.21596	7 0.000000

19 . dentropyg inc2, hg(group)

Decomposition of the Generalised Entropy Index by Groups

Group variable : group Parameter theta : 0.00

Group	Entropy index	Population (share	mu_k/mu)^theta	Absolute contribution	Relative contribution
1: Group_1	-0.00000 0.000000	0.50000 0.223607	0 1.000000 0.000000	-0.00000	-0.00000 0.000000
2: Group_2	-0.00000 0.000000	0.50000 0.223607	0 1.000000 0.000000	-0.00000 0.000000	-0.000000
Within				-0.00000 0.000000	
Between				0.14384 0.022050	
Population	0.143841 0.022050	1.00000 0.000000	0	0.14384 0.022050	

20 .

21 . // Q2 22 . clear

23 . input group incl inc2 inc3

group inc1 inc2 inc3

1. 1 1 8 2

2. 1 2 8 4 3. 1 9 8 18

4. 2 3 24 2

5. 2 6 24 4

6. 2 27 24 18

7. end

24 .

25 . dentropyg incl, hg(group) theta(0)

Decomposition of the Generalised Entropy Index by Groups

Group variable : group Parameter theta : 0.00

Group	Entropy index	Population (mu share	u_k/mu)^theta	Absolute contribution	Relative contribution
1: Group_1	0.422837	0.500000	1.000000	0.21141	9 0.373084
	0.114650	0.223607	0.000000	0.110570	0.211759
2: Group_2	0.422837	0.500000	1.000000	0.21141	9 0.373084
	0.114650	0.223607	0.000000	0.110570	0.237621
Within				0.42283	7 0.746168
				0.214839	
Between				0.14384	1 0.253832
				0.022050	
Population	0.566678	1.000000		0.56667	8 1.000000
	0.215967	0.000000		0.215967	0.00000

26 . dentropyg inc2, hg(group) theta(0)

Decomposition of the Generalised Entropy Index by Groups

Group variable : group Parameter theta : 0.00

Group	Entropy index	Population (m	mu_k/mu)^theta	Absolute contribution	Relative contribution
1: Group_1	-0.000000	0.500000 0.223607	1.000000 0.000000	-0.00000	-0.00000 0.00000
2: Group_2	-0.000000 0.000000	0.50000 0.223607		-0.00000 0.000000	
Within				-0.00000 0.000000	
Between				0.14384 0.022050	
Population	0.143841 0.022050	1.000000) 	0.14384 0.022050	

27 . dentropyg inc3, hg(group) theta(0)

Decomposition of the Generalised Entropy Index by Groups

Group variable : group Parameter theta : 0.00

Group	Entropy index	Population (mu_k/mu)^theta	Absolute contribution	Relative contribution
1: Group_1	0.422837	0.50000	0 1.00000	0 0.2114	19 0.500000
_	0.114650	0.223607	0.00000	0.110570	0.243290
2: Group_2	0.422837	0.50000	0 1.00000	0 0.2114	19 0.500000
_	0.114650	0.223607	0.000000	0.110570	0.243290
Within				0.4228	1.00000
				0.08107	70
Between				-0.0000	-0.00000

Wednesday February 27 16:09:46 2019 Page 4

			 0.000000	
Population	0.422837 0.081070	1.00000 0.000000	 0.422837 0.081070	1.000000 0.000000

28 .

29 . // Q3

30 . igini incl inc2 inc3

Index : Gini index

	Variable	Estimate	STE	LB	UB
1: GINI_inc1		0.534722	0.080462	0.327888	0.741557
2: GINI_inc2		0.250000	0.055902	0.106300	0.393700
3: GINI_inc3		0.44444	0.071001	0.261930	0.626958

```
31 .
32 .
33 .
34 . // EXERCICE 2
35 .
36 . // Q1
37 . clear
38 . input identifier pre_tax_income hhsize nchild
        identif~r pre_tax~e hhsize
                                         nchild
    1. 1 240 4 2
    2. 2 600 5 3
    3. 3 230 3 2
    4. 4 1250 3 1
5. 5 1900 4 1
    6.628042
    7. 7 620 3 1
    8.8880 43
    9. end
40 . /* Scenario A */
41 . gen pcincatA = pre_tax_income * (1.00-0.10)/hhsize
42 .
43 . scalar un_revenu_A = 6000*0.06/30
44 . scalar child_all_A = 6000*0.04/15
45 . gen pcuincA = hhsize*un_revenu_A/hhsize
46 . gen pcallowA = nchild*child_all_A/hhsize
```

47 . gen dpcincA= pcincatA+ pcuincA+ pcallowA

48 .

49 . /* Scenario B */

50 . gen pcincatB = pre_tax_income * (1.00-0.10)/hhsize

51 . scalar un_revenu_B = 0

52 . scalar child_all_B = 6000*0.10/15

53 . gen pcuincB = hhsize*un_revenu_B/hhsize

54 . gen pcallowB = nchild*child_all_B/hhsize

55 . gen dpcincB= pcincatB+ pcuincB+ pcallowB

56 .

57 . 58 . // Q2

59 . igini dpcincA dpcincB , hsize(hhsize)

: Gini index Household size : hhsize

Variable	Estimate	STE	LB	UB
1: GINI_dpcincA 2: GINI_dpcincB	0.353067	0.042274	0.253105	0.453028
	0.348667	0.042336	0.248557	0.448776

60 .

61 . // Q3

62 . diginis pcincatA pcuincA pcallowA, hsize(hhsize)

Decomposition of the Gini Index by Incomes Sources: Rao's (1969) Approach. Household size : hhsize

Sources Income Share		Concentration Index	Absolute Contribution	Relative Contribution	
1: pcincatA	0.900000 0.028478	0.395556	0.35600 0	1.008308 0.006154	
2: pcuincA	0.060000 0.015088	0.00000 0.000000	0.00000		
3: pcallowA	0.040000 0.013684	-0.073333 0.077784	-0.002933 0.002248	-0.008308 0.006154	
Total	1.000000 0.000000		0.35306 7	7 1.000000 0.000000	

63 . diginis pcincatB pcuincB pcallowB, hsize(hhsize)

Decomposition of the Gini Index by Incomes Sources: Rao's (1969) Approach. Household size : hhsize

Sources Income (Concentration Index	Absolute Contribution	Relative Contribution	
1: pcincatB	0.90000 0.033607	0.395556	0.35600 0.044140	0 1.021032 0.015775	
2: pcuincB	0.00000 0.000000	0.000000	0.00000 0.000000		
3: pcallowB	0.100000 0.100000	-0.073333 0.077784	-0.00733 0.005663		
Total	1.00000 0.000000		0.34866 0.042336		

```
64 .
65 . // Q4
66 . /*

    The scenario B is with the highest reduction in inequality in disposable incomes.
    This is because, this programme targets well the deprived or poor households, which are characterized by a large number of children.
    */
67 .
68 . // Q5
69 . // generating the per capita income without applying any program
70 . gen pcinc = pre_tax_income/hhsize
71 . difgt dpcincB pcinc, hsizel(hhsize) hsize2(hhsize) plinel(100) pline2(100) alpha(0)
```

Variable	Estimate	Std. Err.	t	P> t	[95% Conf. int	erval] Pov.	line
dpcincB pcinc	.3666667 .3666667	.1835415 .1835415	1.99773 1.99773	0.0859 0.0859	06734 06734	.8006734 .8006734	100 100
diff.	0	0	•	•	0	0	

```
72 .
73 . // Q6
74 . difgt dpcincB pcinc, hsize1(hhsize) hsize2(hhsize) pline1(100) pline2(100) alpha(1)
```

Variable	Estimate	Std. Err.	t	P> t	[95% Conf. int	terval] Pov.	line
dpcincB pcinc	.0616667 .1166667	.0374656 .061366	1.64596 1.90116	0.1438 0.0990	0269254 0284408	.1502588 .2617742	100 100
diff.	.055	.027522	1.9984	0.0858	0100792	.1200792	

```
75 . /*

> The households that receive child allowances have some improvement in well-being, but this improvement

> is not enough to make them escape poverty.

> This is what explains the unchanged level of headcount. In the inverse, the poverty gap index is sensi

> tive to any improvement in the well-being of the poor, and this explains the reduction of this index.

> */

76 .

end of do-file

78 . do "C:\Users\lutib\AppData\Local\Temp\STD1880_00000.tmp"

79 .

80 .
```

```
81 . // EXERCICE 3
82 .
83 . //Stata code for the Practical exercise 3 - BLOC3
84 .
85 . // Q1
86 . clear
```

Wednesday February 27 16:09:47 2019 Page 7

87 . end of do-file

88 . use "C:\Users\lutib\Dropbox\PEP_distance_Poverty Course (Exercises)\2019\weaks_semaines 4-5-6\version\ > data_1.dta"

89 . do "C:\Users\lutib\AppData\Local\Temp\STD1880_000000.tmp"

90 . svyset psu [pweight=sweight], strata(strata)

pweight: sweight
 VCE: linearized
Single unit: missing
 Strata 1: strata
 SU 1: psu
 FPC 1: <zero>

91 . 92 . 93 . // Q2

94 . ifgt ae_exp, pline(21000) hs(hsize)

Poverty index : FGT index Household size : hsize Sampling weight : sweight Parameter alpha : 0.00

Variable	Estimate	STE	LB	UB	Pov. line
ae_exp	0.332727	0.014759	0.303761	0.361694	21000.00

95 .

96 . // Q3

97 . ifgt ae_exp, pline(21000) hs(hsize) hgroup(sex)

Poverty index : FGT index
Household size : hsize
Sampling weight : sweight
Group variable : sex
Parameter alpha : 0.00

Group	Estimate	STE	LB	UB	Pov. line
1: Male 2: Female	0.321482 0.371593	0.014029 0.035153	0.293949 0.302603	0.349014 0.440583	21000.00 21000.00
Population	0.332727	0.014759	0.303761	0.361694	21000.00

98 . end of do-file

99 .