

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Física

Ciclo 2016-2

FÍSICA GENERAL I

Laboratorio N°3: Segunda Ley de Newton

Integrantes	22-09-2561
Apellidos y nombres Aznaván Laos Carlos Alons Apellidos y nombres Avendaño Velasques Jenka	código 20/627200
Apellidos y nombres Avendaño Velasquez Jankal Apellidos y nombres	Grithel código 20160778

1 Datos experimentales

1.1 "m "constante

Coloque en la canastilla una pesa de plomo de aproximadamente 100 gr (sin olvidarse de registrar exactamente esta masa) y haciendo funcionar el chispero, suelte el disco. Repita este proceso cuatro veces, incrementando cada vez la masa del puck en 200 gr aproximadadmente.

1.
$$M = 875,39$$

Tabla 1.1

$\Delta x (cm)$	Δt (s)	$V_i ({ m cm/s})$	t_i (s)

2. M = 1077g

Tabla 2.1

$\Delta x (cm)$	Δt (s)	$V_i ({ m cm/s})$	t_i (s)

3. M = 1271,6 g

Tabla 3.1

Δt (s)	$V_i ({ m cm/s})$	t_i (s)

4. M = 1467,1 g

Tabla 4.1

1.1			
$\Delta x (cm)$	Δt (s)	$V_i ({ m cm/s})$	t_i (s)

• Grafique en un papel milimetrado (4 curvas) la velocidad versus tiempo y mediante un ajuste lineal obtenga los valores de la aceleración en cada curva.

	Tabla	
$M\left(\mathrm{gr}\right) $	$a\left(cm/s^{2}\right)$	$\frac{mg}{a}$
		a
	 	

• Grafique en un papel milimetrado $\frac{mg}{a}$ vs M y realice el ajuste lineal.

1.2 "M" constante

Retirando las masas del puck, varíe las pesas de la canastilla.

Tabla 5.1

$\Delta x (cm)$	Δt (s)	$V_i ({ m cm/s})$	t_i (s)
	-		

Tabla 6.1

$\Delta x (cm)$	Δt (s)	$V_i ({ m cm/s})$	t_i (s)

Tabla 7.1

$\Delta x (cm)$	Δt (s)	$V_i ({ m cm/s})$	t_i (s)
		18 7	

Tabla 8.1

$\Delta x (cm)$	Δt (s)	$V_i ({ m cm/s})$	t_i (s)

• Grafique en un papel milimetrado la velocidad versus tiempo y mediante un ajuste lineal obtenga los valores de la aceleración en cada curva.

()	Tabla	772.0
m (gr)	$a\left(cm/s^2\right)$	$\frac{mg}{m+M}$
	-	

• Grafique en un papel milimetrado $\frac{mg}{m+M} {\rm vs}$ m y realice el ajuste lineal.