- Q.1 The error in measurement of radius of a sphere is 0.1% then error in its volume is -
 - (1) 0.3% (2) 0.4% (3) 0.5% (4) 0.6%
- **Q.2** A body starts falling from height 'h' and travels distance h/2 during last second of motion then time of flight is (In second) -
 - (1) $\sqrt{2} 1$
- (2) $2 + \sqrt{2}$
- (3) $\sqrt{2} + \sqrt{3}$
- (4) $\sqrt{3} + 2$
- The K.E. of a person is just half of K.E. of a boy **Q.3** whose mass is just half of that person. If person increases its speed by 1 m/s, then its K.E. equals to that of boy then initial speed of person was -

 - (1) $(\sqrt{2} + 1)$ m/s (2) $(2 + \sqrt{2})$ m/s
 - (3) $2(\sqrt{2} + 2)$ m/s (4) None
- **Q.4** Two particles separated at a horizontal distance X as shown in fig. they projected at the same line as shown in fig. with different initial speeds. The time after which the horizontal distance between them become zero -

- (4) None of these
- 0.5 For a particle displacement time relation is $t = \sqrt{x} + 3$. Its displacement when its velocity is zero -
 - (1) 2m
 - (2) 4m
 - (3)0
 - (4) None of these
- **Q.6** If 100N force is applied to 10 kg. block as shown in diagram then acceleration produced for slab -

- $(3) 1.2 \text{ m/s}^2$
- $(4) 0.25 \text{ m/s}^2$

Q.7 The current in 8Ω resistance is (See fig.)

- (1) 0.69 A
- (2) 0.92 A
- (3) 1.30 A
- (4) 1.6 A
- 0.8 The effective capacity of the network between terminals A and B is -

- (1) $6 \mu F$
- (2) $20 \mu F$
- (3) $3 \mu F$
- (4) $10 \mu F$
- Q.9 If the power dissipated in 5Ω is 20 W then power dissipated in 4Ω is -

- (1) 4 W
- (2) 6 W
- (3) 10 W
- (4) 20 W
- 0.10 The value of R for which power in it is maximum-

- $(1) 3\Omega$
- $(2) 6\Omega$
- $(3) 12\Omega$
- $(4) 9\Omega$
- Q.11 Initially plane of coil is parallel to the uniform magnetic field B. In time Δt it makes to perpendicular to the magnetic field, then charge flows in Δt depends on this time as -
 - $(1) \propto \Delta t$
- $(3) \propto (\Delta t)^0$
- $(4) \propto (\Delta t)^2$

- 0.12 A current carrying coil (I = 5A, R = 10 cm.) having 50 number of turns find field at its centre-
 - (1) 1.57 mT
- (2) 3.14 mT
- (3) 1 mT
- (4) 2 mT
- Eight equals charged tiny drops are combined to Q.13 form a big drop. If the potential on each drop is 10V then potential of big drop will be -
 - (1)40V
- (2) 10V
- (3) 30V
- (4) 20V
- Q.14 For a inductor coil L = 0.04 H, then workdone by source to establish a current of 5A in it is -
 - (1) 0.5 J
- (2) 1.00 J
- (3) 100 J
- (4) 20 J
- Q.15 The terminal potential difference of a cell is greater than its emf when -
 - (1) A battery of less emf is connected in its
 - (2) A battery of higher emf is connected in its series
 - (3) A battery of higher emf is connected in its parallel
 - (4) A battery of less emf is connected in its parallel
- Q.16 In millikan oil drop experiment a charged drop falls with a terminal velocity V. If an electric field E is applied vertically upwards it moves with terminal velocity 2V in upward direction. If electric field reduces to E/2 then its terminal velocity will be -

 - (1) $\frac{V}{2}$ (2) V (3) $\frac{3V}{2}$ (4) 2V
- 0.17 For a vibration magnetometer, the time period of suspended bar magnet can be reduced by -
 - (1) Moving it towards south pole
 - (2) Moving it towards north pole
 - (3) Moving it towards equator
 - (4) Anyone of them
- **O.18** The truth table for the following network is:

	A	В	Y
	0	0	0
(1)	0	1	0
	1	0	0
	1	1	1

	A	В	Y
	0	0	0
(2)	0	1	1
	1	0	1
	1	1	0

	A	В	Y
	0	0	1
(3)	0	1	0
	1	0	0
	1	1	1

- (4) None of the above
- Q.19 Zener diode is used as -
 - (1) Half wave rectifier
 - (2) Full wave rectifier
 - (3) A.C. voltage stablizer
 - (4) D.C. voltage stablizer
- Q.20 Depletion layer has (for an unbiased PN junction) -
 - (1) Electrons
- (2) Holes
- (3) Static ions
- (4) Neutral atoms
- Q.21 A cylindrical tube (L = 125 cm) is resonant with a tuning fork of frequency 330 Hz. If it is filling by water then to get resonance again, minimum length of water column is $(V_{air} = 330 \text{ m/s})$ -
 - (1) 50 cm (2) 60 cm (3) 25 cm (4) 20 cm
- Q.22 Initial pressure and volume of a gas are P and V respectively. First its volume is expanded to 4V by isothermal process and then again its volume makes to be V by adiabatic process then its final pressure is $(\gamma = 1.5)$ -
 - (1) 8P
- (2) 4P
- (3) P
- (4) 2P
- Q.23 A sphere maintained at temperature 600 K, has cooling rate R in an external environment of 200 K temp. If its temp. falls to 400 K then its colling rate will be -
 - $(1) \frac{3}{16} R$
- (3) $\frac{9}{27}$ R
- Q.24 A particle is projected with velocity 'u' makes an angle θ w.r.t. horizontal. Now it breaks in two identical parts at highest point of trajectory. If one part is retrace its path, then velocity of other part is -
 - (1) $3u \cos \theta$
- (2) $2u \cos \theta$
- (3) $u \cos \theta$
- (4) u

	MΊ		9		

- 0.25 The amplitude of a S.H.O. reduces to 1/3 in first 20 secs. then in first 40 sec. its amplitude becomes -
 - $(1) \frac{1}{3}$
- (2) $\frac{1}{9}$
- $(3) \frac{1}{27}$
- $(4) \frac{1}{\sqrt{3}}$
- Q.26 Two springs A and B $(K_A = 2 K_B)$ are stretched by same suspended weights then ratio of workdone in stretching is -
 - (1)1:2
- (2) 2:1
- (3)1:1
- (4) 1 : 4
- Q.27 A spring elongated by length 'L' when a mass 'M' is suspended to it. Now a tiny mass 'm' is attached and then released, its time period of
 - $(1) 2\pi \sqrt{\frac{(M+m)\ell}{Mg}} \qquad (2) 2\pi \sqrt{\frac{m\ell}{Mg}}$
 - $(3) \ 2\pi \, \sqrt{L/g}$
- $(4) 2\pi \sqrt{\frac{M\ell}{(m+M)g}}$
- **O.28** Frequency of simple pendulum in a free falling lift is -
 - (1) Zero
- (2) Infinite
- (3) Can't be say
- (4) Finite
- Q.29 The energy and capacity of a charged parallel plate capacitor are E and C respectively. Now a dielective slab of $\in_r = 6$ is inserted in it then energy and capacity becomes (Assuming charge on plates remains constant)
 - (1) 6E, 6C
- (2) E, C
- (3) $\frac{E}{6}$,6C
- (4) E, 6C
- Q.30 The current conduction in a discharge tube is due
 - (1) Electrons only
 - (2) +ve ions and -ve ions
 - (3) –ve ions and electrons
 - (4) +ve ions, and electrons
- Q.31 A light of amplitude A and wavelength λ is incident on a metallic surface, then saturation current flows is proportional to (assume cut off wave length = λ_0) -
 - (1) A^2 , if $\lambda > \lambda_0$ (2) A^2 , if $\lambda < \lambda_0$
 - (3) A, if $\lambda > \lambda_0$
- (4) A, if $\lambda < \lambda_0$

- Light of wavelength 3000 Å in Photoelectric 0.32 effect gives electron of max. K.E. 0.5 eV. If wavelength change to 2000 Å then max. K.E. of emitted electrons will be:
 - (1) Less than 0.5 eV
 - (2) 0.5 eV
 - (3) Greater than 0.5 eV
 - (4) PEE does not occurs
- Q.33 The K.E. of electron and photon is same then relation between their De-Broglie wavelength:
 - (1) $\lambda_{\rm p} < \lambda_{\rm e}$
- (2) $\lambda_p = \lambda_e$
- (3) $\lambda_p > \lambda_e$
- (4) $\lambda_p = 2\lambda_e$
- Q.34 The total energy of an electron is 3.555 MeV, then its Kinetic energy is:
 - (1) 3.545 MeV
- (2) 3.045 MeV
- (3) 3.5 MeV
- (4) None
- Q.35 Two identically charged particles A and B initially at rest, are accelerated by a common potential difference V. They enters into a transverse uniform magnetic field B. They describe a circular path of radii r₁ and r₂ respectively then their mass ratio is:

 - $(1) \left(\frac{\mathbf{r}_1}{\mathbf{r}_2}\right)^2 \qquad (2) \left(\frac{\mathbf{r}_2}{\mathbf{r}_1}\right)^2$
 - $(3) \left(\frac{\mathbf{r}_1}{\mathbf{r}_2}\right) \qquad \qquad (4) \left(\frac{\mathbf{r}_2}{\mathbf{r}_1}\right)$
- Q.36 A radio-active elements emits one α and β particles then mass no. of daughter element is:
 - (1) Decreased by 4
- (2) Increased by 4
- (3) Decreased by 2
- (4) Increased by 2
- Q.37 The half life of a radio nuclide is 77 days then its decay constant is:
 - (1) 0.003/day
- (2) 0.006/day
- (3) 0.009/day
- (4) 0.012/day
- Q.38 For a prism its refractive index is cot A/2 then minimum angle of deviation is:
 - (1) 180 A
- (2) 180 2A
- (3) 90 A
- (4) A/2
- Q.39 Two conducting slabs of heat conductivity K_1 and K₂ are joined as shown in fig. The temp. at ends of the slabs are θ_1 and θ_2 ($\theta_1 > \theta_2$) the, final temp. (θ_m) of junction is:

- $(1) \ \frac{K_1\theta_1 + K_2\theta_2}{K_1 + K_2}$
- (2) $\frac{K_1\theta_2 + K_2\theta_1}{K_1 + K_2}$
- (3) $\frac{K_1\theta_2 K_2\theta_1}{K_1 + K_2}$
- (4) None
- Q.40 A particle starts from rest with constant acceleration. The ratio of space-average velocity to the time average velocity is:

- $(1) \frac{1}{2}$ $(2) \frac{3}{4}$ $(3) \frac{4}{3}$ $(4) \frac{3}{2}$
- If radius of earth shrinks by 1% then for Q.41 acceleration due to gravity:
 - (1) No change at poles
 - (2) No change at equator
 - (3) Max. change at equator
 - (4) Equal change at all locations
- Q.42 Rohini satellite is at a height of 500 km. and Insat-B is at a height of 3600 km. from surface of earth then relation between their orbital velocity (V_R,V_I) is:
 - (1) $V_R > V_1$
- (2) $V_R < V_1$
- (3) $V_R = V_1$
- (4) No relation
- Q.43 For moon, its mass is 1/81 of earth mass and its diameter is 1/3.7 of earth dia. If acceleration due to gravity at earth surface is 9.8 m/s² then at moon its value is:
 - $(1) 2.86 \text{ m/s}^2$
- (2) 1.65 m/s^2
- $(3) 8.65 \text{ m/s}^2$
- $(4) 5.16 \text{ m/s}^2$
- Q.44 When a spring is subjected to 4N force its length is a metre and if 5N is applied length is b metre. If 9N is applied its length is:
 - (1) 4b 3a
- (2) 5b a
- (3) 5b 4a
- (4) 5b 2a
- For a body angular velocity $\overset{\rightarrow}{\omega} = \hat{i} 2\hat{j} + 3\hat{k}$ Q.45 and radius vector is $\vec{r} = \hat{i} + \hat{j} + \hat{k}$ then its velocity is:
 - $(1) 5\hat{i} + 2\hat{i} + 3\hat{k}$ $(2) 5\hat{i} + 2\hat{i} 3\hat{k}$
 - $(3) 5\hat{i} 2\hat{j} + 3\hat{k}$ $(4) 5\hat{i} 2\hat{j} 3\hat{k}$

When a stick is released (as shown in fig.). Its 0.46 free end velocity when it strikes the ground is:

- (1) 4.2 m/s
- (2) 1.4 m/s
- (3) 2.8 m/s
- (4) $\sqrt{6}$ m/s
- Q.47 Frequency of an E.M. waves is 10 MHz then its wavelength is:
 - (1) 30 m
- (2) 300 m
- (3) 3 m
- (4) None of the above
- Q.48 Two particles are projected with same initial velocity one makes angle θ with horizontal while other makes an angle θ with vertical. If their common range is R then product of their time of flight is directly proportional to:
 - (1) R
- (2) R^2 (3) $\frac{1}{R}$ (4) R^0
- Q.49 In compound microscope the magnification is 95, and the distance of object from objective lens 1/3.8 cm and focal length of objective is 1/4 cm. What is the magnification of eye pieces when final image is formed at least distance of distinct vision:
 - (1)5
- (2) 10
- (3) 100
- (4) None
- Q.50 On the basis of unit cell concept a crystal has:
 - (1) 7 systems
- (2) 14 systems
- (3) 230 systems
- (4) 32 systems
- Phenyl acetylene reacts with dil. H₂SO₄ in Q.51 presence of HgSO₄ gives:

$$(4) \bigcirc CH_2 - C - OI$$

- Q.52 According to hardy Schultze law the order of coagulation power of cations will be:
 - (1) $Na^+ > Ba^{+2} > Al^{+3}$ (2) $Al^{+3} > Ba^{+2} > Na^+$
 - (3) $Ba^{+2} > Al^{+3} > Na^{+}$ (4) $Al^{+3} > Na^{+} > Ba^{+2}$
- Which of the following compound gives p-Q.53 cresol with p-methyl diazonium chloride:
 - $(1) H_2O$
- (2) H₃PO₂
- (3) HCOOH
- $(4) C_6H_5OH$

- 0.54 Mole ratio of H₂ and O₂ gas is 8:1 what will be the ratio of wt.:
 - (1) 1 : 1
- (2) 2 : 1
- (3)4:1
- (4) 1:2
- Ionization energy of second orbit of Li⁺² will be: Q.55
 - (1) 122.4 eV
- (2) 40.8 eV
- (3) 30.6 eV
- (4) 13.6 eV
- Q.56 Which of the following electronic configuration will have maximum I.P. difference between II and III I.P.:

 - (1) $1s^2 2s^2 2p^6 3s^1$ (2) $1s^2 2s^2 2p^6 3s^2$ (3) $1s^2 2s^2 2p^6$ (4) $1s^2 2s^2 2p^5$
- The concentration of a solution is changed from Q.57 0.2 to 0.4, then what will be rate and rate constant. The reaction is of first order and rate constant is $K = 1 \times 10^{-6}$:
 - (1) 2×10^{-7} ; 1×10^{-6} (2) 1×10^{-7} ; 1×10^{6}
 - (3) 4×10^{-7} ; 1×10^{-6} (4) 2×10^{-3} ; 1×10^{-3}
- Half life of a radioactive sample is 4 days. After Q.58 16 days how much quantity of matter remain undecayed:

- $(1) \frac{1}{4}$ $(2) \frac{1}{8}$ $(3) \frac{1}{16}$ $(4) \frac{1}{32}$
- 0.59 Structure of trans 2-hexanal is:

- (4) None of the above
- **Q.60** Which of the following gives ethyl benzene with phenyl methyl ketone:
 - (1) Zn-Hg+HCl
- (2) LiAlH₄
- (3) KMnO₄
- (4) None of the above
- Q.61 Acetaldehyde reacts with semicarbazide product will be:
 - (1) $CH_3CH = NNH-CO-NH_2$
 - (2) $CH_3CH = NCONHNH_2$
 - (3) $CH_3CH = NHNH_2$

$$\begin{matrix} O \\ \parallel \\ (4) \ CH_3-C-NH-CONH_2 \end{matrix}$$

- Cynohydrin of the following compound on Q.62 hydrolysis gives optically active product:
 - (1) HCHO
- (2) CH₃CHO
- (3) CH₃COCH₃
- (4) All of the above

- Which of the following is a chiral compound: Q.63
 - (1) 2-methyl pentanoic acid
 - (2) 3-methyl pentanoic acid
 - (3) 4-methyl pentanoic acid
 - (4) None of these
- Q.64 Compound 'A' on chlorination gives compound 'B'. 'B' reacts with alc. KOH gives gas 'C', which decolourises Baeyer reagent and ozonolysis of compound 'C' gives only HCHO compound 'A' is:
 - $(1) C_2H_6$
- $(2) C_2H_4$
- $(3) C_4H_{10}$
- (4) C₂H₅Cl
- Q.65 Monomer of natural rubber is:

(1)
$$CH_3 - C = CH - CH_3$$

 CH_3

- (2) CH₃-CH=CH-CH₃
- (3) $CH_2 = C CH = CH_2$ ĊH,

(4)
$$CH_2 = C - C = CH_2$$

 $CH_3 CH_3$

- Q.66 Which of the following compound contain zero oxidation state of Fe:
 - (1) $[Fe(CN)_6]^{-4}$
 - (2) $[Fe(CN)_6]^{-3}$
 - (3) Fe(CO)₅
 - (4) All the above
- A compound contain C, H and O. If C = 40%0.67 and H = 6.67% then empirical formula of compound will be:
 - (1) CH₂O
- (2) CH₄O
- (3) CH₄O₂
- (4) CHO
- 0.68 [Cu(NH₃)₄]⁺² reacts with HNO₃ in excess of water gives:
 - $(1) Cu(OH)_2$
- (2) $Cu(NO_3)_2$
- (3) $Cu(H_2O)^{-2}$
- (4) None of the above
- 0.69 Cr in [Cr(NH₃)₆] Br₃ has number of unpaired electron:
 - (1)4
- (2) 3
- (3) 1
- (4)2
- Q.70Sucrose on hydrolysis gives:
 - (1) L(+) Glucose + D(+) Fructose
 - (2) L(-) Glucose + L(-) Fructose
 - (3) D(+) Glucose + D(-) Fructose
 - (4) D(+) Glucose + L(-) Fructose

Q.71 Order of acidic strength of the following compound will be:

(B) C_6H_5OH

- (1) C > D > B > A
- (2) D > C > B > A
- (3) A > B > C > D
- (4) B > A > C > D
- Q.72 Which of the following comp. is coloured and has unpaired electron:
 - (1) CuF₂
- $(2) K_2Cr_2O_7$
- (3) KMnO₄
- (4) $K_4[Fe(CN)_6]$
- Q.73 Which of the following does not reduce Fehling solution:
 - (1) Glucose
- (2) Fructose
- (3) Sucrose
- (4) Maltose
- **Q.74** O.N. of P in pyrophosphoric acid is:
 - (1) + 5
- (2) + 2
- (3) + 3
- (4) + 4
- Q.75 Which of the following example behave as a lewis acid BF₃, SnCl₂, SnCl₄:
 - (1) Stenus chloride, stenic chloride
 - (2) BF₃, stenus chloride
 - (3) Only BF₃
 - (4) BF₃, stenus chloride, stenic chloride
- **Q.76** In which of the following comp. H atom is directly linked with phosphorus:
 - (1) H₃PO₂
- (2) H₃PO₃
- $(3) H_3PO_4$
- $(4) H_4 P_2 O_7$
- Q.77 a Zn + b NO₃⁻ + cH + \rightarrow d NH₄⁺ + e H₂O
 - $+ f Zn^{+2}$ a, b, c, d, e and f are:

	a	b	c	d	e	f
(1)	2	4	6	8	4	2
(2)	1	4	10	3	1	4
(3)	4	1	10	1	3	4
(4)	10	4	1	3	4	2

Q.78 Determine the value of E^0 cell for the following reaction:

$$Cu^{+2} + Sn^{+2} \rightarrow Cu + Sn^{+4}$$

Equilibrium constant is 10⁶

$$Cu^{++} + Sn^{++} \rightarrow Cu + Sn^{+4}$$

- (1) 0.1773
- (2) 0.01773
- (3) 0.2153
- (4) 1.773
- **Q.79** What will be the H⁺ con when 4 gm NaOH dissolved in 1000 ml. of water:
 - $(1)\ 10^{-1}$
- $(2) 10^{-13}$
- $(3)\ 10^{-4}$
- $(4)\ 10^{-10}$
- **Q.80** What is true for a cyclic process:
 - (1) W = 0
- $(2) \Delta E = 0$
- (3) $\Delta H = 0$
- (4) $\Delta E \neq 0$
- **Q.81** Increasing order of bond length is:
 - $(1) NO^{-} < NO < NO^{+} < O_{2}^{-}$
 - (2) $O_2^- < NO < NO^- < NO^+$
 - (3) $O_2^- < NO^- < NO < NO^+$
 - (4) $NO^+ < NO < NO^- < O_2^-$
- **Q.82** A system is expanded under adiabatic process :
 - (1) Temp. increase
- (2) ΔE decreases
- (3) ΔE increases
- (4) None of these
- Q.83 Which of the following is true for a reaction in which all the reactant & product are liquids:
 - (1) $\Delta H = \Delta E$
 - (2) $\Delta H = \Delta W$
 - (3) $\Delta H > \Delta E$
 - (4) None of the above
- **Q.84** Clemenson's reaction is:

$$\begin{array}{ccc}
O \\
C - CH_3 & CH_2CH_3 \\
\hline
\end{array}$$

$$\begin{array}{ccc}
& & & & & & & & \\
& & & & & & & \\
\end{array}$$

$$\begin{array}{cccc}
& & & & & & & & \\
& & & & & & & \\
\end{array}$$

(2) C_6H_5 -COCH₃ + $NH_2NH_2 \rightarrow$

$$\xrightarrow{C_2H_5ON} C_6H_5CH_2CH_3$$

- (3) $CH_3COCH_3 + 4HI \xrightarrow{Red. P} CH_3CH_2CH_3$
- (4) All the above
- **Q.85** Which of the following reaction gives by isocyanide:
 - (1) Rimer Tieman reaction
 - (2) Carbyl amine reaction
 - (3) Hoffmann bromamide reaction
 - (4) None of the above

	•	re which of NO ₂ , CO ₂ and	Q.98	The hombarment o	C
	N_0O gases have same		Q.70		f α -particle on $_7N^{14}$, emits
	=	e rate of diffusion :		proton then new ator	
	(1) NO ₂ , CO ₂	$(2) CO_2, N_2O$		$(1)_{8}O^{17}$	$(2)_{8}O^{16}$
	(3) NO2, N2O	(4) All		$(3)_{6}C^{14}$	(4) Ne
	-	oidic medium does not give NH ₄ OH medium gives a ppt	Q.99	Half life of a substant constant will be:	nce is 77 days then its decay
	comp. 'A' is:			(1) 0.9	(2) 0.09
	(1) FeCl ₃	(2) AlCl ₃		(3) 0.009	(4) 0.013
	$(3) ZnCl_2$	(4) SnCl ₂	Q.101	Number of base pair	rs in human chromosomes:
Q.88	FeCr ₂ O ₇ reacts with	Na ₂ CO ₃ gives the product :		$(1) 3 \times 10^9$	$(2) 3 \times 10^7$
	$(1) Na_2CrO_4$	(2) Na2Cr2O7		$(3) 6 \times 10^8$	$(4) 6 \times 10^7$
	$(3) \operatorname{Fe}_3 O_4$	(4) FeO	Q.102	Total amount of CO	2 fixed annually by plants:
	A compound BA ₂ has of this comp. will be	as $K_{sp} = 4 \times 10^{-12}$ solubility :		(1) 7×10^{23} ton (3) 7×10^{10} ton	
	$(1) 10^{-3} (2) 10^{-4}$	$(3) 10^{-5} \qquad (4) 10^{-6}$	Q.103	Most stable pesticide	* *
Q.90	H ₂ O ₂ on oxidation gi	ves:	Q.100		es (2) Organochlorines
	$(1) O^{-2}$ $(2) OH^{-}$	$(3) O_2^- $ $(4) O_2$		(3) Bordeaux mixtur	` ' •
	What is false for mol	` ' - ' -	Q.104		ethod to harvest the solar
_		$(2) - 2 \le x \le 2$	Q.101	energy:	and to harvest the solar
	(1) x < 1			(1) Solar cell	
	` '	(4) Always non-negative		(2) Energy plantation	on
	-	similar structure. In MgO unded by how many oxygen			sugar cane then energy
	(1) 2 (2) 4	(3) 6 (4) 1		(4) Solar cooker	
	General behaviour of	` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	Q.105	` '	disturbance of biological
		O_3 is . (2) Gives O_2	Q.1300	diversity:	unovariounios or oronogrous
	` '	(4) Accept electrons		(1) Green house effe	ect
		l be formed by oxidation of		(2) Hunting	
	1 mole glucose :	oc formed by oxidation of		(3) Soil erosion	
	(1) 36	(2) 40		(4) Destruction of na	atural habitats
	(3) 24	(4) 32	Q.106	Best method to pre	eserve the wild relatives of
		orr and 666.6 ml gas at 600		plants :	
	-	iner of 3 litre then the total		(1) By growing then	n in natural habitats
	pressure of mixture:			(2) Gene library	
	(1) 200 torr	(2) 400 torr		(3) By storing seeds	
	(3) 600 torr	(4) 50 torr		(4) Cryopreservation	1
Q.96	Which of the followi	ng is steroid harmones:	Q.107	Practical purpose of	taxonomy or classification :
	(1) Progesterone	(2) Cholesterole		(1) Facilitate the species	identification of unknown
	(3) ACTH	(4) Adrenaline		•	gin of organisms
		of compound AB is 10.92 D and CD is 12.45 D. The bond		(3) To know the ev	olutionary history
		0 and that of CD is 2.56 A 0		(4) Identification of	
	_	und true statement is :	Q.108	Koch's postulates no	=
	(1) More ionic nature			(1) Mycobacterium	
	(2) More ionic nature			(2) Tuberculosis	•
	(3) Equal in both			(3) Pneumonia	
	(4) Not predicted			(4) Cholera	
	•			• •	7

				AIPMT - 1999
Q.109	Amount of cellular	DNA increases during:	Q.121	Ornithophilly takes place in :
	(1) Cytokinesis	(2) Fertilisation		(1) Yellow flower having nectaries
	(3) Mutation	(4) Respiration		(2) Scented flower
Q.110	Initiation codon in	eukaryotes :		(3) Flower with charming colour
	(1) UGA	(2) CCA		(4) Modified corolla tube
	(3) AGA	(4) AUG	Q.122	Bhopal gas tragedy is related with:
Q.111		ch bundles of root to endarch		(1) Methane
	bundles of stem occ			(2) Carban mono oxide
	(1) Epicotyl	(2) Hypocotyl		(3) Methyl Iso cyanate (MIC)
	(3) Apical bud	(4) Coleoptile		(4) SO ₂
Q.112		he development of corpus	Q.123	Concentration of DDT is highest in:
	Luteum:	(2) (2)		(1) Primary consumer
	(1) LH	(2) Oestrogen		(2) Producers
0.112	(3) FSH	(4) LTH		(3) Top consumer
Q.113	Plant pathogenic ba	· ·		(4) Decomposers
	(1) Gram + Non sp	•	Q.124	Percentage energy transferred to higher tropic
	(2) Gram – Non spe	=		level in food chain is :
	(3) Gram + spore for	=		(1) 1% (2) 10% (3) 90% (4) 100%
0.114	(4) Gram (–) spore		Q.125	What change occurs by changing one base in
Q.114	First transgenic pla			DNA:
	(1) Potato	(2) Tomato		(1) Always a change of one amino acid in protein
0.115	(3) Tobacco	(4) Maize		(2) Change in complex sequence of amino acid
Q.115	Dolly sheep was of	•		(3) Always a change in property of protein
	with unnucleat	dder cell (somatic cell) fused		(4) Does not necessarily change the phenotype
	(2) Cloning of gar		Q.126	HIV infects:
	(3) Tissue culture	nees	Q.120	(1) RBC (2) T – helper cells
	(4) None			(3) B - cells (4) Basophils
Q.116	CCK and secretin s	ecreted by	Q.127	Which of the following statement is true for
2,110	(1) Stomach	(2) Ileum	Q.12.	bryophyta -
	(3) Duodenum	` '		(1) Along with water absorption roots also
Q.117	Suspensory ligame			provide anchorment to plants
C 1221	(1) Brain	(2) Eyes		(2) Sporophyte is dominant
	(3) Liver	(4) Pancrease		(3) Gametophyte is dominant and sporophyte
Q.118	Life span of worke	` '		is mostly parasitic
_	(1) 30 days	(2) 15 days		(4) Gametophyte is parasitic
	(3) 90 days	(4) 10 days	Q.128	Lichens can be used as:
Q.119	Para thormone defi	•		(1) Bio-indicator for water and air pollution
_	(1) Decrease of Ca	•		(2) Initial vegetation for waste lands
	(2) Increase of Ca ⁺²			(3) Source of wood
	(3) Osteoporosis			(4) To check the air pollution
	(4) Hypercalemia		Q.129	Biotic and abiotic components form:
Q.120	Gene composed of	:		(1) Community (2) Society
_	(1) Amino acids	(2) Polynucleotide	0.120	(3) Population (4) Species
	(3) Fatty acid	(4) Nitrogen bases	Q.130	Endosperm in Gymnosperm is:
	•	. , .		(1) Polyploid (2) Diploid (3) Triploid (4) Haploid
				(3) Triploid (4) Haploid 8

(4) E.R.

				AIPMT - 1999
Q.151	Which arrangement is in correct ascending order:	Q.161	Which pair is of inse	
2.101	(1) Species < genus < order < family		(1) Drosera and Val	lisneria
	(2) Genus < species < family < order		(2) Utricularia and I	Hydrilla
	(3) Order < family < genus < species		(3) Allobandra and	Utricularia
	(4) Species < genus < family < order		(4) Rafflesia and Di	onea
Q.152	In stomach after physical and chemical digestion food is called:	Q.162	What shall be the vicell absorbing water	vater potential of a root hair from the soil:
	(1) Chyme (2) Chyle		(1) Zero	(2) Less than zero
	(3) Amino acid (4) Bolus		(3) More than zero	(4) Infinite
Q.153	Exchange of bicarbonates and chloride ions	Q.163	Deficiency of oxyge	
	between RBC and plasma is called:		(1) Brain	(2) Skin
	(1) Chloride shift		(3) Kidney	(4) Intestine
	(2) Bohr's effect	Q.164	Maximum DDT in b	pirds feeding on :
	(3) Haldane's effect		(1) Fishes	(2) Meat
	(4) Intra cellular respiration		(3) Insects	(4) Seeds
Q.154	Which gland decreases in size with increasing	Q.165	Fully digested food	
	age:		(1) Hepatic portal ve	ein (2) Hepatic artery
	(1) Thyroid (2) Adrenal		(3) Hepatic vein	(4) All the above
	(3) Thymus (4) Pituitory	Q.166		baby is haemophilic while
Q.155	Which of following occurs in maximum concentration in blood plasma (ECF):		true:	rmal then which statement is
	(1) K^+ (2) Mg^{+2}		(1) Baby is male	
	(3) Ca^{+2} (4) Na^{+}		(2) Baby is female	
Q.156	Large scale death of fishes occur in:		(3) Mother is hetero	
	(1) Saline lake (2) Oligotrophic lake		(4) Mother is homoz	
	(3) Eutrophic lake (4) Shallow lake	Q.167		sociated with occupational
Q.157	A normal human being requires how much		hazard is:	(2) P : :
	calories per day :		(1) Flurosis	(2) Pneumoconieosis
	(1) 2500 k. cal (2) 4000 k. cal	0.170	(3) Silicosis	(4) Asthma
	(3) 5000 k. cal (4) 686 k. cal	Q.168	Azolla is used in the	
Q.158	Which of the following yield maximum energy:		(1) Maize	(2) Sorghum
	(1) By glycolysis in a sprinter	0.100	(3) Wheat	(4) Rice
	(2) Aerobic respiration in germinating seeds	Q.169	gobar (Dung) in gob	e gas by decomposing the
	(3) Fermentation by yeast		(1) Fungus	ai gas .
	(4) Anaerobic respiration		(2) Virus	
2 150	Main manage of material language fallons and		(3) Methanogenic ba	acteria
Q.159	Main reason of water bloom in rivers, lakes, sea etc. is:		(4) Algae	
	(1) Brown algae and green algae	Q.170	· / •	Biotin associated with:
	(2) Cyanobacteria and dinoflagellates	ו110	(1) Vitamin D	(2) Vitamin B complex
	(3) Eicchornia		(3) Vitamin K	(4) Vitamin E

(4) Fishes

deficient in:

(1) Mg

(3) P

Q.160 Insectivorous plants grow in the soil which is

(2) Ca

(4) N

Q.171 Which one is wrong pair:

(1) Scurvy - Vitamin C

(2) Rickets - Vitamin D

(4) Beriberi – Vitamin K

(3) Night blindness (Xerophthalmia) – Vitamin A

			AIPMT - 1999	
Q.172	Maximum photosynthesis takes place by :	Q.182	Industrial melanism is example of:	_
	(1) Phytoplankton (2) Zooplankton		(1) Natural selection (2) Mutation	
	(3) Marsh plants (4) Woody plants		(3) Racial difference (4) Predation	
Q.173	Reptiles like mammals originated in :	Q.183	Casparian bands are found in:	
	(1) Jurassic (2) Triassic		(1) Endodermis (2) Pericycle	
	(3) Cretaseus (4) Permian		(3) Periderm (4) Cortex	
Q.174	Dental formula of adolescent human being	g Q.184	Funaria's male gametes are :	
	before seventeen year :		(1) Poly flagellate (2) Mono flagellate	
	$(1) \frac{2122}{2122} \qquad (2) \frac{2123}{2123}$		(3) Biflagellate (4) Tetra flagellate	
	2122 (2) 2123	Q.185	E. coli are used in production of:	
	$(3) \frac{2102}{2102} \qquad \qquad (4) \frac{2023}{1023}$		(1) Rifampicin (2) LH	
	$(3) \frac{102}{2102}$ $(4) \frac{1023}{1023}$		(3) Ecdyson (4) Interferon	
Q.175	Molecular weight of DNA in yeast is:	Q.186	Which one is obtained by S. Miller in h	nis
	(1) 2.56×10^9 (2) 0.5×10^9		experiments on origin of life before 1953 :	
	$(3) 7 \times 10^7 \qquad \qquad (4) 6 \times 10^6$		(1) Simple sugars (2) Amino acids	
Q.176	Minute quantity of hormones & steroid ar		(3) Nucleotide (4) Peptides	
	detected by:	Q.187	Which protein found in maximum amount:	
	(1) Electrophoresis		(1) Catalase	
	(2) Radio immunoassay		(2) Zinc carbonic anhydrase	
	(3) Electro encephalogram		(3) Transferase	
	(4) Fractional analysis		(4) RUBISCO	
Q.177	Hybridoma is :	Q.188	After ovulation follicles converted into:	
	(1) Collection of DNA from DNA		(1) Corpus luteum (2) Corpus albicans	
	(2) Collection of RNA from DNA		(3) Corpus cavernosa (4) Corpus calosum	
	(3) A fusion of tumour sex cell with non tumour	Q.189	Minor change in gene's structure is called:	
	sex cell		(1) Reversible mutation	
	(4) A fusion of tumour somatic cell with no	n	(2) Point mutation	
0.450	tumour somatic cell		(3) Forward mutation	
Q.178	Which substance can be used as mal		(4) Back ward mutation	
	contraceptive in future : (1) FSH (2) LH	Q.190	Green house effect is:	
	(3) Testosterone (4) Progesterone		(1) Gardening outside the house	
Q.179	Genetic material of prokaryotic cell :		(2) Global cooling	
Q.179	(1) Non historic double stranded DNA		(3) Global warming	
	(2) Historic double stranded DNA		(4) Green colour house	
	(3) Histone & DNA both are absent	Q.191	What will be happen if the number of organis	sm
	(4) Histone without DNA		increased at a place :	
Q.180	Ligament consist of :		(1) Inter species competition	
Q.100	(1) Yellow fibres + Elastic fibres		(2) Intra species competition	
	(2) Yellow fibres + Collagen (white) fibres		(3) Both	
	(3) Yellow fibres + Muscle fibres	0.405	(4) None	
	(4) White fibres + Muscle fibres	Q.192	What is vaccine:	
Q.181	Tendon consist of:		(1) Treated bacteria, virus & protein	
	(1) Non Elastic connective tissue		(2) Treated algae	
	(2) White Elastic tissue		(3) Treated fungi	
	(3) Collagen (white) fibres + Muscle fibres		(4) Treated plasmodium	
	(4) Only collagen fibres			

	(1) Ca ATPase(3) Calmodulin	(2) Mg ATPase(4) None
Q.194	Agglutination occurs tube. This indicate: (1) Antibodies are pres (2) Antigens are pres (3) Antigens are pres (4) Antibodies are pres	ent on R.B.C. ent in plasma
Q.195		of protein, which is attached lining the pores of cell (2) β-Strand (4) Random
Q.196	Recently extinct anim (1) Acinonyx (2) Rhinoceros unicon (3) Panthera leo (4) Panthera tigris	
Q.197	Simplest reflex action (1) Mono synaptic (3) Tri synaptic	(2) Bi synaptic
Q.198	In inducible operon, r (1) Promoter (3) Repressor	egulatory gene synthesize: (2) Operator (4) Aporepressor
Q.199	Neuroglial cells assoc (1) Heart (3) Brain	ciated with : (2) Kidney (4) Eyes
Q.200		on dioxide at

Shell of egg in bird becomes thin (not properly formed) due to the pollution of pesticides. This is due to interference in the activity of:

Q.193

ANSWER KEY (AIPMT-1999)

Ques.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans	1	2	1	1	3	2	1	1	1	2	3	1	1	2	3	1	3	2	4	3
Ques.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans	1	4	1	1	2	1	1	1	3	4	2	3	3	2	1	1	3	2	1	3
Ques.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans	4	1	2	3	1	1	1	1	1	1	1	2	1	4	3	2	3	3	2	1
Ques.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans	1	2	1, 2	1	3	3	1	2	2	3	1	1	3	1	4	1, 2	3	1	2	2, 3
Ques.	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans	4	2	1	1	2	2	3	1	2	4	2	3	2	1	1	1	2	1	3	
Ques.	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans	1	4	2	2	4	1	1	1	2	4	2	1	2	3	1	3	2	3	1	2
Ques.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
Ans	1	3	3	2	4	2	3	1	1	4	3	2	4	2	1	1	2	1	1	1
Ques.	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
Ans	2	1	1	2	1	2	1	1	3	4	4	1	1	3	4	3	1	2	2	4
Ques.	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
Ans	3	2	1	1	1	3	2	4	3	2	4	1	2	1	1	2	4	4	1	2
Ques.	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
Ans	4	1	1	3	4	2	4	1	2	3	3	1	3	2	1	1	1	3	3	2

HINTS & SOLUTIONS

1.
$$V = \frac{4}{3} \pi R^3 ; \frac{\Delta V}{V} = \frac{3\Delta R}{R}$$

% change in volume = $3 \times 0.1 = 0.3$ %

2.
$$h = \frac{1}{2} gt^2$$
 (i)

$$\frac{h}{2} = \frac{1}{2} g(t-1)^2$$
 (ii)

$$\frac{1}{4} gt^2 = \frac{1}{2} g(t-1)^2$$

$$\frac{t}{\sqrt{2}} = t - 1$$

$$t(1-\frac{1}{\sqrt{2}})=1$$

$$t = \frac{\sqrt{2}}{\sqrt{2}-1} \times \frac{\sqrt{2}+1}{\sqrt{2}+1}$$

$$t = \sqrt{2} (\sqrt{2} + 1)$$

$$t = 2 + \sqrt{2}$$

3. Let initial speed of man of mass m be u then

$$KE_{man} = \frac{1}{2} mu^2 \& KE_{boy} = 2 \times \frac{1}{2} mu^2 = mu^2$$

Now if man increases his speed by 1 m/s⁻¹ then

$$KE_{man} = \frac{1}{2} m (u + 1)^2 = KE'_{boy} = mu^2$$

$$\Rightarrow \frac{u+1}{u} = \sqrt{2}$$

$$\Rightarrow$$
 $u = \frac{1}{\sqrt{2} - 1} \times \frac{\sqrt{2} + 1}{\sqrt{2} + 1} = (\sqrt{2} + 1) \text{ ms}^{-1}.$

4. Time = $\frac{\text{Relative horizontal distance}}{\text{Relative horizontal velocity}}$

$$=\frac{x}{u\cos 60^{\circ}+\frac{u}{\sqrt{3}}\cos 30^{\circ}}=\frac{x}{u}$$

5.
$$t = \sqrt{x} + 3$$

$$x = (t-3)^2$$

$$v = \frac{dx}{dt} = 2(t-3) = 0$$

at
$$t = 3$$
, $x = (3 - 3)^2 = 0$

6.

Let the net acceleration of the slab be a limiting friction

$$F_S = \mu mg = 0.6 \times 10 \times 9.8 = 58.8 \text{ N}$$

i.e. slab will accelerate with different acceleration.

f = 40a

$$0.4 \times 10 \times 9.8 = 40a \Rightarrow a = 0.98 \text{ m/s}^2$$

7. Method-I

$$-8(I_1 + I_2) - 4I_1 + 8 = 0$$
 ... (i)

$$-8(I_1 + I_2) - 6I_2 + 6 = 0$$
 ... (ii)

Solving eqⁿ. (i) and (ii), we get

$$I_1 = \frac{8}{13}, I_2 = \frac{1}{13}$$

Current in $8\Omega = I_1 + I_2 = 0.69A$

Method-II

Given circuit can be reduced to

$$E_{net} = \frac{\frac{8}{4} + \frac{6}{6}}{\frac{1}{4} + \frac{1}{6}} = 7.2 \text{ volt}$$

$$\frac{1}{R_{\text{net}}} = \frac{1}{4} + \frac{1}{6} = \frac{10}{24} \implies R_{\text{net}} = 2.4\Omega$$

$$\Rightarrow I = \frac{7.2}{10.4} = 0.69 \text{ A}$$

8. Here bridge is balanced then $20\mu F$ becomes ineffective.

Therefore $C_{AB} = 6\mu F$

9.
$$P = VI = V^2/R$$
, voltage constant

then power in 10Ω will be 10W when I constant then

$$P = I^2 R$$

$$P \propto R$$

$$\frac{P'}{10} = \frac{4}{10} \Rightarrow P' = 4W$$

10. For maximum power consumption –

$$R = r = 6\Omega$$

12. Magnetic field at the centre of coil B = $\frac{\mu_0 iN}{2a}$

$$=\frac{4\pi\times10^{-7}\times5\times50}{2\times10/100}=1.57\times10^{-3}\ T$$

$$= 1.57 \text{ mT}.$$

13. Given:

$$8V_{tiny} = V_{big}$$

$$8\frac{4}{3}\pi r^3 = \frac{4}{3}\pi R^3$$

$$2r = R$$

$$V_{\text{tiny}} = \frac{Kq}{r}$$

$$V_{big} = \frac{K \times 8q}{R}$$

$$V_{\text{big}} = \frac{8Kq}{2r}$$

$$V_{\text{big}} = 4V_{\text{tiny}}$$

$$V_{big} = 4 \times 10 \implies 40 \text{ V}$$

14. Work done by source

$$= E \times q = E \left(\frac{\Delta \varphi}{R} \right) = E \ \frac{L I_0}{R}$$

$$=\left(\frac{E}{R}\right)LI_{0}=(I_{0})LI_{0}=LI_{0}^{2}$$

$$= 0.04 \times (5)^2 = 1.0 \text{ J}$$

16.
$$V = \frac{Q \times E \times t}{m}$$

$$V \propto E$$

So Ans.
$$\frac{V}{2}$$

17.
$$T = 2\pi \sqrt{I/MB_H}$$
; $B_H = 0$ at poles

$$B_H = \max \text{ at equator}$$

$$B_H \uparrow \Rightarrow T \downarrow$$

18.
$$Y = \overline{A}B + A\overline{B} = A \oplus B$$

Α	В	A+B	$A \oplus B$
0	0	0	0
1	0	1	1
0	1	1	1
1	1	1	0

- 19. Zener diode \rightarrow DC voltage stabilizer.
- 20. Unbiased PN junction

Deplation layer → static ions

21.
$$f = \frac{(2n-1)v}{4\ell}$$

$$\ell = \frac{(2n-1)v}{4f} = \frac{(2n-1)\times 330}{4\times 330} = \frac{(2n-1)}{4}$$

$$\ell = \frac{1}{4} \,\text{m}, \ \frac{3}{4} \,\text{m} = 25 \,\text{cm}, 75 \,\text{cm}.$$

:. Minimum height of water column = 125 - 75 = 50 cm

22. For isothermal process

$$P_A V_A = P_B V_B$$

$$PV = P_B(4V)$$

$$P_B = \frac{P}{4}$$

for adiabatic process

$$P_B V_B^{\gamma} = P_C V_C^{\gamma}$$

$$P_c = \frac{P}{4} \left(\frac{4V}{V} \right)^{1.5} = \frac{P}{4} \times 8 = 2P$$

23. According to stefan's law –

$$\frac{R'}{R} = \frac{(400)^4 - (200)^4}{(600)^4 - (200)^4} = \frac{4^4 - 2^4}{6^4 - 2^4}$$

$$=\frac{(4^2+2^2)(4^2-2^2)}{(6^2+2^2)(6^2-2^2)}=\frac{20\times12}{40\times32}$$

$$R' = \frac{3}{16} R$$

$$mu\cos\theta = -\frac{mu}{2}\cos\theta + \frac{m}{2}v'$$

$$v' = 3u\cos\theta$$

Amplitude of damped oscillation at time t $x = x_0e^{-\lambda t}$ Where λ is a constant after 20 sec

$$\frac{x_0}{3} = x_0 e^{-\lambda(20)} \implies e^{-\lambda(20)} = \frac{1}{3}$$
 (1)

After 40 sec

$$x' = x_0 e^{-\lambda(40)} \implies x_0 e^{-\lambda(2 \times 20)}$$

from (1)

$$x' = x_0 \left(\frac{1}{3}\right)^2 = \frac{x_0}{9}$$

26.
$$W = \frac{1}{2} Kx^2$$
, $F = -Kx$

$$W = \frac{1}{2} K \cdot \frac{F^2}{K^2} = \frac{F^2}{2K}$$

$$W \, \propto \, \frac{1}{K} \quad \Rightarrow \, \frac{W_A}{W_B} = \frac{K_B}{K_A} = \frac{K_B}{2K_B} = \frac{1}{2}$$

27.
$$: T = 2\pi \sqrt{\frac{M}{K}} : Mg = K\ell$$

Therefore
$$T = 2\pi \sqrt{\frac{(M+m)\ell}{Mg}}$$

$$28. n = \frac{1}{2\pi} \sqrt{\frac{g_{eff.}}{\ell}}$$

In a freely falling lift $g_{eff} = g - g = 0$ then n = 0

29.
$$C_{PPC} = \frac{\epsilon_0 \epsilon_r A}{d} \implies C' = 6C$$

$$E_{PPC} = \frac{q}{\epsilon_0 \epsilon_r A} \implies E' = \frac{E}{6}$$

32. K.E._{max.} =
$$\frac{hc}{\lambda} - \phi$$

Then K.E. will be greater than 0.5 eV

33.
$$(K.E.)_e = E_{ph}$$

$$\frac{1}{2} \text{ mv}^2 = \frac{\text{hc}}{\lambda \text{ph}} \implies \frac{1}{2} \left(\frac{\text{h}}{\lambda_{\text{e}} \text{v}} \right) \text{v}^2 = \frac{\text{hc}}{\lambda \text{ph}}$$

$$\frac{\lambda_e}{\lambda ph} = \frac{v}{2c} \qquad c > v$$

$$\lambda ph > \lambda_e$$

= K.E. + Rest Mass energy
K.E. =
$$3.555 - 0.51 = 3.045 \text{ MeV}$$

35.
$$r = \frac{\sqrt{2mqV_{acce}}}{qB}$$

$$r \propto \sqrt{m}$$

$$\frac{\mathbf{m}_1}{\mathbf{m}_2} = \left(\frac{\mathbf{r}_1}{\mathbf{r}_2}\right)^2$$

37. decay constant =
$$\frac{0.693}{T_{1/2}} = \frac{0.693}{77}$$

$$= 0.009/day$$

38.
$$\mu = \frac{\cos\frac{A}{2}}{\sin\frac{A}{2}} = \frac{\sin\frac{A+\delta_m}{2}}{\sin\frac{A}{2}}$$

$$\frac{\pi}{2}-\frac{A}{2}=\frac{A}{2}+\frac{\delta_m}{2}$$

$$\Rightarrow \delta_{\rm m} = 180 - 2A$$

$$\Rightarrow \delta_{m} = 180 - 2A$$

$$Q = \frac{K_{1}A(\theta_{1} - \theta)t}{d} = \frac{K_{2}A(\theta - \theta_{2})t}{d}$$

Or
$$K_1\theta_1 - K_1\theta = K_2\theta - K_2\theta_2$$

 $K_1\theta_1 + K_2\theta_2 = K_1\theta + K_2\theta$

$$\theta = \frac{K_1 \theta_1 + K_2 \theta_2}{K_1 + K_2}$$

40.
$$\langle v \rangle_{\text{time}} = \frac{\int v dt}{\int dt} = \frac{\int_{0}^{T} at dt}{\int_{0}^{T} dt} = \frac{aT}{2}$$

$$_{space} = \frac{\int v ds}{\int ds} = \frac{\int v \frac{ds}{dt} dt}{\int \frac{ds}{dt} dt}$$

$$= \int_{0}^{T} v^{2} dt = \int_{0}^{T} a^{2} t^{2} dt = \frac{2}{3} aT$$

$$\int_{0}^{T} v dt = \int_{0}^{T} at dt$$

$$\frac{\langle v \rangle_{\text{space}}}{\langle v \rangle_{\text{time}}} = \frac{2aT/3}{aT/2} = \frac{4}{3}$$

42.
$$V_0 = \sqrt{\frac{GM}{r}}$$
; $M = \text{mass of earth}$

$$V_0 \propto \frac{1}{\sqrt{r}}$$
 then $V_R > V_1$

43.
$$g = \frac{GM}{R^2}$$
 or $g \propto \frac{M}{R^2}$

$$g_{\rm M} = \frac{M_{\rm M}}{M_{\rm E}} \times \left(\frac{R_{\rm E}}{R_{\rm M}}\right)^2 \times g_{\rm E}$$

$$= \frac{1}{81} \times (3.7)^2 \times 9.8 = \frac{9.8}{6} = 1.65 \text{ m/s}^2$$

44. Let natural length of spring be λ_0 then according to question

$$4 = K (a - \ell_0)$$

$$5 = K (b - \ell_0)$$

$$\Rightarrow \ell_0 = 5a - 4b$$
; $k = \frac{1}{b-a}$

Now if we apply 9 N force then

$$9 = k(\ell - \ell_0) \implies 9 = \frac{1}{(b-a)} [\ell - 5a + 4b]$$

$$\Rightarrow \ell = 5b - 4a$$

$$\mathbf{45.} \qquad \stackrel{\rightarrow}{\mathbf{v}} = \stackrel{\rightarrow}{\mathbf{w}} \times \stackrel{\rightarrow}{\mathbf{r}}$$

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 3 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \hat{i}(-2-3) - \hat{j}(1-3) + \hat{k}(1+2)$$

$$= -5\hat{i} + 2\hat{j} + 3\hat{k}$$

46. The centre of mass of the stick fall through 0.3 m. According to law of conservation of energy

$$\frac{1}{2}$$
 I ω^2 = mgh

$$\frac{1}{2} \frac{\mathrm{m}\ell^2}{3} \frac{\mathrm{V}^2}{\ell^2} = \mathrm{mgh} \qquad (\because \ \mathrm{v} = \omega \ell)$$

Here
$$h = \ell/2 = 0.3 m$$

$$V = \sqrt{6gh} = \sqrt{6 \times 9.8 \times 0.3} = 4.2 \text{ m/s}$$

47.
$$\lambda = \frac{c}{v} = \frac{3 \times 10^8}{10 \times 10^6} = 30 \text{ meter}$$

48.
$$R = \frac{u^2 \sin 2\theta}{g}, \quad t_1 = \frac{2u \sin \theta}{g}$$

$$t_2 = \frac{2u\sin(90^{\circ} - \theta)}{g} = \frac{2u\cos\theta}{g}$$

$$\therefore t_1 t_2 = \frac{4u^2 \sin \theta \cos \theta}{g} = \frac{2R}{g}$$

or
$$t_1t_2 \propto R$$

Compound microscope $M = m_0 \times m_e$ 49.

$$M = \frac{F_0}{u + F_0} \times m_e$$

$$\Rightarrow$$
 95 = $\frac{1/4}{-1/3.8 + 1/4}$ m_e

$$\Rightarrow 95 = \frac{1/4}{-1/3.8 + 1/4} m_e$$

$$\Rightarrow 95 = 19 m_e \Rightarrow m_e = \frac{95}{19} = 5$$