

Structural Breaks in Inflation Dynamics within the European Monetary Union

Thomas Windberger, Achim Zeileis

http://glogis.R-Forge.R-project.org/

Overview

- Introduction
- Data
- Model
- Example
- Results
- Conclusion

Introduction

- Did EMU change inflation dynamics ?
- Economic Reasons
 - Former COMECON countries
 - Ex–Jugoslavia
 - Southern European countries
 - Central European countries

Data

- 21 Monthly HICP series, unadjusted
- Source: OECD Statistics
- 3 groups
 - EURO countries
 - EU members withouth ERM II
 - Others

Model

- Actually some alternatives
 - ARIMA
 - GARCH
- Our model

Generalized Logistic Distribution (GL)

For series $y = 100 \cdot log(HICP_t/HICP_{t-1})$ we assume a GL–distribution given by:

$$f(y|\theta,\sigma,\delta) = \frac{\frac{\delta}{\sigma} \cdot \exp^{-\frac{y-\theta}{\sigma}}}{(1+\exp^{-\frac{y-\theta}{\sigma}})^{(\delta+1)}}$$

with location (θ) , scale (σ) and shape (δ) . Moments:

$$E(y) = \theta + \sigma(\psi(\delta) - \psi(1))$$

$$VAR(y) = \sigma^{2}(\psi'(1) + \psi'(\delta))$$

$$SKEW(y) = \frac{\psi''(\delta) - \psi''(1)}{(\psi'(1) + \psi'(\delta))^{\frac{3}{2}}}$$

Framework

For the 3–dimensional parameter $\phi = (\theta, \sigma, \delta)$ we test:

$$H_0: \phi_i = \phi_0 \ (i = 1, ..., n)$$
 $\underset{\phi \in \Phi}{argmin} \sum_{t=1}^n \log f(y_t | \phi) = \hat{\phi},$
 $\sum_{t=1}^n s(y_t | \hat{\phi}) = 0$

To examine changes we employ the empirical scores $s(y_t|\hat{\phi})$

Scores

3 components, $s() = (s_{\theta}, s_{\sigma}, s_{\delta})$:

$$s_{\theta}(y|\theta,\sigma,\delta) = \frac{\delta \log f(y|\theta,\sigma,\delta)}{\delta \theta}$$

$$= \frac{1}{\sigma} - (\delta+1) \cdot \frac{\frac{1}{\sigma} \exp^{-\frac{y-\theta}{\sigma}}}{(1+\exp^{-\frac{y-\theta}{\sigma}})}$$

$$s_{\sigma}(y|\theta,\sigma,\delta) = \frac{\delta \log f(y|\theta,\sigma,\delta)}{\delta \sigma}$$

$$= -\frac{1}{\sigma} + \frac{1}{\sigma^{2}}(y-\theta) - (\delta+1)$$

$$\times \frac{\frac{1}{\sigma^{2}}(y-\theta) \exp^{-\frac{y-\theta}{\sigma}}}{(1+\exp^{-\frac{y-\theta}{\sigma}})}$$

$$s_{\delta}(y|\theta,\sigma,\delta) = \frac{\delta \log f(y|\theta,\sigma,\delta)}{\delta \delta}$$

$$= \frac{1}{\delta} - \log(1+\exp^{-\frac{y-\theta}{\sigma}})$$

Empirical Fluctuation Process

The empirical fluctuation process $efp(\cdot)$ is given by:

$$\begin{split} \textit{efp}(t) &= \hat{V}^{-1/2} n^{-1/2} \sum_{i=1}^{\lfloor nt \rfloor} s(y_t | \hat{\theta}, \hat{\sigma}, \hat{\delta}) \ (0 \leq t \leq 1), \\ &\textit{efp}(\cdot) \overset{\textit{d}}{\rightarrow} \textit{W}^0(\cdot) \end{split}$$

We can employ a Functional Central Limit Theorem (FCLT) on $\mathit{efp}(\cdot)$

Test

We use Supremum of LM statistics:

$$\sup_{t \in [0.1, 0.9]} \frac{\|efp(t)\|_2^2}{t(1-t)}$$

p-values can be computed from:

$$\sup_{t \in [0.1, 0.9]} \frac{\|W^0(t)\|_2^2}{t(1-t)}$$

Breakpoint Estimation

• If instability detected, estimate $B \in [1, 6]$ breakpoints $\tau_1, ..., \tau_B$ via maximization of full segmented likelihood:

$$\sum_{b=1}^{B} \sum_{t=\tau_{b-1}+1}^{\tau_b} loglik(y_t | \theta^{(b)}, \sigma^{(b)}, \delta^{(b)})$$

 Estimate models with B=1,...,6 breakpoints; select via modified BIC

Slovenia

Slovenia

Test

Moment changes

Breakpoint Selection

LWZ and Negative Log-Likelihood

Slovenia-Fitted Model

Economic Interpretation:

- had to reach Maastricht criteria
 - low inflation rate (< 1.5 percentage points higher than average of 3 best performing)
 - deficit no higher than 3% of GDP
 - gross government debt < 60% of GDP
 - no devaluation in ERM II
- most reforms regarding financial sector introduced in 2003
- strong contraction in money supply (M1) starting in 2003
- from 2003 onwards much lower mean, but higher variance
- entered ERM II in June 2004; declared ready to join by ECB in May 2006

Results

Some countries exhibit very similar patterns

- Eastern countries: Czech Republic, Estonia, Hungary, Poland, Slovakia and Slovenia
- Belgium and Luxembourg
- Italy and Spain
- Ireland
- No change countries: Finland, Greece, Netherlands
- Further results

Belgium and Luxembourg

Belgium and Luxembourg

Country	Segment	Mean	Variance	Skewness	ERM	ERM II	EURO
Belgium	Feb 1991-Dez 1999	0.146	0.064	-0.037	Mär 1979	-	Jän 1999
	Jän 2000–Mär 2010	0.177	0.954	0.504			
Luxembourg	Feb 1995-Dez 1998	0.088	0.013	0.261	Mär 1979	-	Jän 1999
	Jän 1999–Mär 2010	0.224	0.531	-0.484			

Italy and Spain

Italy and Spain

Country	Segment	Mean	Variance	Skewness	ERM	ERM II	EURO
Italy	Feb 1990-Mai 1996	0.414	0.041	0.963	Mär 1979	-	Jän 1999
	Jun 1996-Dez 2000	0.168	0.020	0.726			
	Jän 2001–Mär 2010	0.182	0.321	-0.261			
Spain	Feb 1992-Mai 1996	0.372	0.070	1.139	Jun 1986	-	Jän 1999
	Jun 1996-Dez 2000	0.200	0.040	0.019			
	Jän 2001–Mär 2010	0.223	0.342	-0.362			

Ireland

Country	Segment	Mean	Variance	Skewness	ERM	ERM II	EURO
Ireland	Feb 1995-Mär 2008	0.255	0.205	-0.696	Mär 1979	-	Jän 1999
	Apr 2008-Mär 2010	-0.131	0.184	-0.995			

Ireland

No change countries

No change countries

Country	Segment	Mean	Variance	Skewness	ERM	ERM II	EURO
Greece	Feb 1995-Mär 2010	0.323	1.480	0.431	Mär 1998	Jän 1999	Jän 2001
Netherlands	Feb 1990-Mär 2010	0.185	0.293	0.598	Mär 1979	-	Jän 1999
Finland	Feb 1990-Mär 2010	0.165	0.132	0.280	Okt 1996	-	Jän 1999

Conclusion

- Stabilizing Effect of EURO
- Overall lowering in mean inflation rates
- Overall increase in volatility

HICP

First step: local sub–index of a specific price collected item R_{iv}^t :

$$R_{iy}^t = \frac{(\prod_{j=1}^n p_{iyj}^t)^{1/n}}{(\prod_{j=1}^n p_{iyj}^0)^{1/n}}$$

Second step: sub–index for whole country R_i^t :

$$R_i^t = \sum_{y=1}^m R_{iy}^t G_y$$

$$R_h^{t,T} = R_h^{12,T-1} \left| \frac{\sum_{i=1}^q w_i^T R_i^t / R_i^{12,T-1}}{\sum_{i=1}^q w_i^T} \right|$$

Third step: weighted average of all included individual subindices:

$$HICP_t = \sum_{i=1}^{n} \gamma_i R_h^{t,T}$$