I225E Statistical Signal Processing

12. Linear Model

MAWALIM and UNOKI

candylim@jaist.ac.jp and unoki@jaist.ac.jp

School of Information Science

Linear model

- Prediction and smoothing
- Non-causal and causal Wiener filter
- (Innovation filter and Laplace transform)
- Linear minimum mean squared error (LMMSE) prediction
- Extension to vector form

1. Signal Processing

Problem: Using stochastic process $X(\xi)$, $(a \le \xi \le b)$, estimate the value of stochastic process S(t) as

$$\hat{S}(t) = \int_{a}^{b} h(\alpha) X(\alpha) d\alpha$$

- **Smoothing**, in case estimation time t is within the data interval $(t \in [a, b])$.
- **Prediction**, in case estimation time t is outside of the data interval ($t \notin [a,b]$) and X(t) = S(t).
- **Smoothing and Filtering**, in case estimation time t is outside of the data interval ($t \notin [a,b]$) and $X(t) \neq S(t)$.

Example 1

S(t) is a stationary process.

Predict the future state $S(t + \tau)$ using the past state S(t) as

$$\hat{S}(t+\tau) = aS(t).$$

Find the optimal coefficient a.

By orthogonality principle,

$$E\{(S(t+\tau) - aS(t))S(t)\} = 0$$

$$E\{S(t+\tau)S(t)\} - aE\{S(t)S(t)\} = 0$$

$$R_{SS}(\tau) - aR_{SS}(0) = 0$$

Hence,

$$a = \frac{R_{SS}(\tau)}{R_{SS}(0)}$$

Corresponding mean square error is,

MSE =
$$E\{(S(t + \tau) - aS(t))S(t + \tau)\}\$$

= $E\{S(t + \tau)S(t + \tau)\} - aE\{S(t)S(t + \tau)\}\$
= $R_{SS}(0) - aR_{SS}(\tau)$
= $\frac{R_{SS}^2(0) - R_{SS}^2(\tau)}{R_{SS}(0)}$

Example 2

Smoothing the present state of S(t) using the present state of another process X(t) as

$$\hat{S}(t) = aX(t).$$

Find the optimal coefficient a.

By orthogonality principle,

$$E\{(S(t) - aX(t))X(t)\} = 0$$

$$E\{S(t)X(t)\} - aE\{X(t)X(t)\} = 0$$

$$R_{SX}(0) - aR_{XX}(0) = 0$$

Hence,

$$a = \frac{R_{SX}(0)}{R_{XX}(0)}$$

Corresponding mean square error is,

MSE =
$$E\{(S(t) - aX(t))S(t)\}$$

= $E\{S(t)S(t)\} - aE\{X(t)S(t)\}$
= $R_{SS}(0) - aR_{SX}(0)$
= $\frac{R_{SS}(0)R_{XX}(0) - R_{SX}^2(0)}{R_{XX}(0)}$

2. Smoothing

Problem

Using the entire interval $(t \in [-\infty, \infty])$ of the following process

$$X(t) = S(t) + v(t),$$

estimate the present state of S(t) as

$$\hat{S}(t) = \int_{-\infty}^{\infty} h(\alpha) X(t - \alpha) \, d\alpha.$$

Find the optimal filter $h(\alpha)$.

Solution

By orthogonality principle,

$$S(t) - \hat{S}(t) \perp X(\xi)$$
, for all $\xi \in [-\infty, \infty]$.

Denote
$$\xi = t - \tau$$
, For all τ

$$E\{[S(t) - \int_{-\infty}^{\infty} h(\alpha)X(t - \alpha)d\alpha]X(t - \tau)\} = 0$$

$$E\{S(t)X(t - \tau)\} - \int_{-\infty}^{\infty} h(\alpha)E\{X(t - \alpha)X(t - \tau)\}d\alpha$$

$$= 0$$

$$R_{SX}(\tau) - \int_{-\infty}^{\infty} h(\alpha)R_{XX}(\tau - \alpha)d\alpha = 0$$
(Wiener-Hopf equation)

Fourier transform of $R_{SX}(\tau) = h(\tau) * R_{XX}(\tau)$ gives

$$S_{SX}(\omega) = H(\omega)S_{XX}(\omega).$$

Hence,

$$H(\omega) = \frac{S_{SX}(\omega)}{S_{XX}(\omega)}.$$

This is called **Non-causal Wiener Filter**.

Corresponding mean square error is

$$Bmse = E\{\left(S(t) - \int_{-\infty}^{\infty} h(\alpha)X(t - \alpha)d\alpha\right)S(t)\}$$

$$= E\{S(t)S(t)\} - \int_{-\infty}^{\infty} h(\alpha)E\{X(t - \alpha)S(t)\}d\alpha$$

$$= R_{SS}(0) - \int_{-\infty}^{\infty} h(\alpha)R_{XS}(-\alpha)d\alpha$$

$$= R_{SS}(\tau) - \int_{-\infty}^{\infty} h(\alpha)R_{XS}(\tau - \alpha)d\alpha|_{\tau=0}$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} [S_{SS}(\omega) - H(\omega)S_{XS}(\omega)]e^{i\omega\tau}d\omega|_{\tau=0}$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{S_{SS}(\omega)S_{XX}(\omega) - S_{SX}^{2}(\omega)}{S_{XX}(\omega)}d\omega$$

In case that process S(t) is orthogonal to noise v(t).

$$R_{S\nu}(\tau)=0.$$

This leads to

$$R_{SX}(\tau) = R_{SS}(\tau) + R_{S\nu}(\tau)$$

$$= R_{SS}(\tau),$$

$$R_{XX}(\tau) = R_{SX}(\tau) + R_{\nu X}(\tau)$$

$$= R_{SX}(\tau) + R_{\nu S}(\tau) + R_{\nu \nu}(\tau)$$

$$= R_{SX}(\tau) + R_{\nu \nu}(\tau).$$

Therefore,

$$S_{SX}(\omega) = S_{SS}(\omega),$$

$$S_{XX}(\omega) = S_{SS}(\omega) + S_{\nu\nu}(\omega).$$

By substituting the above equations,

$$H(\omega) = \frac{S_{SS}(\omega)}{S_{SS}(\omega) + S_{\nu\nu}(\omega)},$$

$$MSE = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{S_{SS}(\omega) S_{\nu\nu}(\omega)}{S_{SS}(\omega) + S_{\nu\nu}(\omega)} d\omega.$$

3. Prediction by Innovation Filter

■ Problem:

Using past state of $S(t - \tau)$, $\tau \in [0, \infty]$, estimate the future state of $S(t + \lambda)$ as

$$\hat{S}(t+\lambda) = \int_0^\infty h(\alpha)S(t-\alpha)d\alpha$$

Find the optimal filter $h(\alpha)$.

■ Solution:

By orthogonality principle,

$$S(t + \lambda) - \hat{S}(t + \lambda) \perp S(\xi)$$
 for all $\xi \in [-\infty, 0]$

Denote
$$\xi = t - \tau$$
. For positive value of τ ($\tau \ge 0$),
$$E\{[S(t + \lambda) - \int_0^\infty h(\alpha)S(t - \alpha)d\alpha]S(t - \tau)\} = 0$$

$$E\{S(t + \lambda)S(t - \tau)\}$$

$$- \int_0^\infty h(\alpha)E\{S(t - \alpha)S(t - \tau)\}d\alpha = 0$$

$$R_{SS}(\tau + \lambda) - \int_0^\infty h(\alpha)R_{SS}(\tau - \alpha)d\alpha = 0$$

Solution $h(\alpha)$ of Wiener-Hopf integral equation gives Causal Wiener Filter.

Because the integration range of τ is one-sided, transformation is not straightforward.

Solution by Innovation Filter

If stochastic process S(t) is regular, it can be represented as output of innovation filter L(s), to which white noise I(t) is applied as input.

$$S(t+\lambda) = \int_0^\infty l(\alpha)I(t+\lambda-\alpha)d\alpha$$

Removing range $[0, \lambda]$, integration from past provides the optimal prediction.

$$\hat{S}(t+\lambda) = \int_{\lambda}^{\infty} l(\alpha)I(t+\lambda-\alpha)d\alpha$$
$$= \int_{0}^{\infty} l(\beta+\lambda)I(t-\beta)d\beta.$$

Proof

Prediction error

$$S(t + \lambda) - \hat{S}(t + \lambda) = \int_0^{\lambda} l(\alpha)I(t + \lambda - \alpha)d\alpha$$

depends only upon interval $t \in (t, t + \lambda)$. They are orthogonal to past I(t) or past S(t).

Construction

Prediction $\hat{S}(t + \lambda)$ is a response of the following filter with white noise input I(t):

$$h_i(t) = l(t + \lambda)U(t),$$

$$H_i(s) = \int_0^\infty h_i(t)e^{-st}dt.$$

Therefore, for input S(t), corresponding filter is given by $H(s) = \frac{H_i(s)}{L(s)}$

Procedure

- 1. Factorization: $S_{SS}(s) = L(s)L(-s)$
- 2. Find l(t) by inverse Laplace transform of L(s), and construct $h_i(t) = l(t + \lambda)U(t)$.
- 3. Find $H_i(s)$ by Laplace transform of $h_i(t)$, and determine $H(s) = H_i(s)/L(s)$.

Error

MSE =
$$E\left\{ \left| \int_0^{\lambda} l(\alpha) I(t + \lambda - \alpha) d\alpha \right|^2 \right\}$$

= $\int_0^{\lambda} l^2(\alpha) d\alpha$

Example

Suppose autocorrelation function of S(t) is given by $R_{SS}(\tau) = 2\alpha e^{-\alpha|\tau|}$. Construct its prediction filter H(s).

- 1. Spectrum of S(t) is $S_{SS}(s) = \frac{1}{\alpha^2 s^2}$. By factorization, innovation filter is $L(s) = \frac{1}{\alpha + s}$.
- 2. By inverse Laplace transform, $l(t) = e^{-\alpha t}U(t)$. This leads to $h_i(t) = l(t + \lambda) = e^{-\alpha \lambda}e^{-\alpha t}U(t)$.
- 3. By Laplace transform, $H_i(s) = \frac{e^{-\alpha t}}{\alpha + s}$.

Hence,

$$H(s) = \frac{H_i(s)}{L(s)} = e^{-\alpha \lambda}.$$

By inverse Laplace transform, $h(t) = e^{-\alpha \lambda} \delta(t)$; this leads to $\hat{S}(t + \lambda) = e^{-\alpha \lambda} S(t)$.

 \rightarrow For prediction, only present state S(t) is important; past state has no influence.

4. Linear Prediction

■ **Problem** Given time series of $X[0], X[1], \dots, X[N-1]$, predict one-step future state X[N] as

$$\hat{X}[N] = -\sum_{n=0}^{N-1} a_n X[n].$$

Find the optimal coefficients a.

Solution Error

$$\epsilon = X[N] - \hat{X}[N] = X[N] + \sum_{n=0}^{N-1} a_n X[n]$$

$$= a_0 X[0] + a_1 X[1] + \dots + a_{N-1} X[N-1] + X[N]$$

$$= \sum_{n=0}^{N} a_n X[n] \quad \text{(where } a_N = 1\text{)}$$

is orthogonal to data

$$E\{\epsilon X^*[k]\} = \sum_{n=0}^{N} a_n E\{X[n]X^*[k]\} = 0$$

$$(k = 0, 1, \dots, N - 1)$$

Supposing X[n] is stationary,

$$E\{X[n]X^*[k]\} = R(n-k) = r_{n-k} = r_{k-n}^*$$

Therefore,

$$E\{\epsilon X^*[k]\} = \sum_{n=0}^{N} a_n r_{n-k} = 0,$$

$$a_N = 1, k = 0, 1, \dots, N-1.$$

$$a_0 r_0 + a_1 r_1 + a_2 r_2 + \dots + a_{N-1} r_{N-1} + r_N = 0$$

 $a_0 r_1^* + a_1 r_0 + a_2 r_1 + \dots + a_{N-1} r_{N-2} + r_{N-1} = 0$
 \vdots

$$a_0 r_{N-1}^* + a_1 r_{N-2}^* + a_2 r_{N-3}^* + \dots + a_{N-1} r_0 + r_1 = 0$$

Minimum squared error is

$$\sigma^{2} = E\{|\epsilon|^{2}\}\$$

$$= E\{\epsilon(X^{*}[N] + \sum_{n=0}^{N-1} a_{n}^{*}X^{*}[n])\}\$$

$$= E\{\epsilon X^{*}[N]\} + \sum_{n=0}^{N-1} a_{n}^{*}E\{\epsilon X^{*}[n]\}\$$

$$= E\{\epsilon X^{*}[N]\}\$$

$$= E\{(\sum_{n=0}^{N} a_{n}X[n])X^{*}[N]\}\$$

$$= \sum_{n=0}^{N} a_{n}E\{X[n]X^{*}[N]\}\$$

$$= \sum_{n=0}^{N} a_{n}r_{N-n}^{*}$$

$$= a_{0}r_{N}^{*} + a_{1}r_{N-1}^{*} + a_{2}r_{N-2}^{*} + \dots + a_{N-1}r_{1}^{*} + r_{0}$$

In matrix representation,

$$\begin{bmatrix} r_0 & r_1 & r_2 & \cdots & r_N \\ r_1^* & r_0 & r_1 & \cdots & r_{N-1} \\ r_2^* & r_1^* & r_0 & \cdots & r_{N-2} \\ \vdots & & \vdots & & \\ r_{N-1}^* & r_{N-2}^* & \cdots & r_1^* & r_0 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{N-1} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ \sigma^2 \end{bmatrix}$$

 $(N + 1) \times (N + 1)$ matrix on the left-hand side is called **Toeplitz** matrix.

Denoting the Toeplitz matrix as T and its inverse as

$$\boldsymbol{T}^{-1} = \begin{bmatrix} T_{0,0}^{-1} & T_{0,1}^{-1} & \cdots & T_{0,N}^{-1} \\ T_{1,0}^{-1} & T_{1,1}^{-1} & \cdots & T_{1,N}^{-1} \\ \vdots & \vdots & \vdots & \vdots \\ T_{N,0}^{-1} & T_{N,1}^{-1} & \cdots & T_{N,N}^{-1} \end{bmatrix}$$

then

$$\begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{N-1} \\ 1 \end{bmatrix} = \mathbf{T}^{-1} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ \sigma^2 \end{bmatrix} = \sigma^2 \begin{bmatrix} T_{0,N}^{-1} \\ T_{1,N}^{-1} \\ \vdots \\ T_{N-1,N}^{-1} \\ T_{N,N}^{-1} \end{bmatrix}$$

Therefore, coefficients a_i and minimum mean square error are given by

$$\begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{N-1} \end{bmatrix} = \frac{1}{T_{N,N}^{-1}} \begin{bmatrix} T_{0,N}^{-1} \\ T_{1,N}^{-1} \\ \vdots \\ T_{N-1,N}^{-1} \end{bmatrix},$$

$$\sigma^2 = \frac{1}{T_{N,N}^{-1}}$$

5. Extension of LMMSE to Vector Form

Each element of random vector $\theta = \{\theta_1, \theta_2, \dots, \theta_p\}$ is estimated from N data $X[0], X[1], \dots, X[N-1]$ as

$$\theta_i = \sum_{n=0}^{N-1} a_{in} X[n] + a_{iN} \ (i = 1, 2, \dots, p).$$

From the scalar version of LMMSE,

$$\hat{\theta}_i = E(\theta_i) + C_{\theta_i X} C_{XX}^{-1} (X - E(X)),$$

$$Bmse(\hat{\theta}_i) = C_{\theta_i \theta_i} - C_{\theta_i X} C_{XX}^{-1} C_{X\theta_i}.$$

In vector representation,

$$\hat{\theta} = \begin{bmatrix} E(\theta_1) \\ E(\theta_2) \\ \vdots \\ E(\theta_p) \end{bmatrix} + \begin{bmatrix} C_{\theta_1 X} \\ C_{\theta_2 X} \\ \vdots \\ C_{\theta_p X} \end{bmatrix} C_{XX}^{-1} (X - E(X))$$

$$= E(\theta) + C_{\theta X} C_{XX}^{-1} (X - E(X)).$$

Error matrix:
$$M_{\widehat{\theta}} = E\left((\theta - \hat{\theta})(\theta - \hat{\theta})^T\right)$$

 $= C_{\theta\theta} - C_{\theta X}C_{XX}^{-1}C_{X\theta},$
MMSE: $Bmse(\hat{\theta}_i) = [M_{\widehat{\theta}}]_{ii}$

6. Sequential LMMSE Estimation

From N-1 random data $X[1], X[2], \dots, X[N-1]$, we estimate random vector θ via LMMSE estimation, where the estimate and the error matrix are given by

$$\hat{\theta}[N-1],$$

$$M[N-1] = E \left[(\theta - \hat{\theta}[N-1]) (\theta - \hat{\theta}[N-1])^T \right].$$

Suppose now that Nth data X[N] is newly observed, where observation matrix is decomposed as

$$H[N] = \begin{bmatrix} H[N-1] \\ h^T[N] \end{bmatrix} = \begin{bmatrix} (N-1) \times p \\ 1 \times p \end{bmatrix}.$$

Then, the estimate and the error matrix can be updated as follows.

$$\hat{\theta}[n] = \hat{\theta}[n-1]K[n](x[n] - h^{T}[n]\hat{\theta}[n-1]),$$

$$K[n] = \frac{M[n-1]h[n]}{\sigma_{n}^{2} + h^{T}[n]M[n-1]h[n]},$$

$$M[n] = (I - K[n]h^{T}[n])M[n-1].$$

Here, we supposed that the errors $\theta - \hat{\theta}[n]$ are independent and their covariance matrix has diagonal elements of diag $(\sigma_0^2, \sigma_1^2, \dots, \sigma_n^2)$.