Mathematics for Economists Kapitel 3 – Statisk Optimering

Eric Hillebrand

Institut for Økonomi og CREATES Aarhus University

Disposition Kapitel 3

- Ekstremumspunkter (3.1)
- Lokale ekstremumspunkter (3.2)
- Bibetingelser givet ved ligheder (3.3)
- Bibetingelser givet ved uligheder (3.5)
- Tilstrækkelige betingelser (3.6)

Definition

Lad $f: S \to \mathbb{R}$, $S \subset \mathbb{R}^n$. Punktet x^* er et **lokalt maksimumspunkt** for f i S, hvis der findes en åben omegn $B(x^*, r) \subset S$ så at

$$f(x^*) \ge f(y)$$

for hvert $y \in B$, $x \neq y$.

Analogt definerer vi lokale minimumspunkter og strenge lokale extremumspunkter.

Thm. 3.1.1 gælder: Et lokalt extremumspunkt er altid et kritisk punkt.

Definition

Et kritisk punkt der ikke er et lokalt ekstremumspunkt hedder sadelpunkt.

Figure 1 P is a maximum, Q is a local maximum, and R is a saddle point.

Teorem 3.2.1 i \mathbb{R}^2

Hvis f(x,y) er en C^2 funktion med (x^*,y^*) et indre kritisk punkt, så gælder: Hess $f(x^*,y^*)$ positivt definit \implies lokalt minimum i (x^*,y^*) , Hess $f(x^*,y^*)$ negativt definit \implies lokalt maksimum i (x^*,y^*) , Hess $f(x^*,y^*)$ indefinit \implies (x^*,y^*) er et sadelpunkt.

Ved Hurwitz-kriteriummet gælder

$$\left| \begin{array}{c} f_{11}''(x^*,y^*) > 0 \; \& \; \left| \begin{array}{c} f_{11}''(x^*,y^*) & f_{12}''(x^*,y^*) \\ f_{21}''(x^*,y^*) & f_{22}''(x^*,y^*) \end{array} \right| > 0 \Longrightarrow \; \text{lokalt min. i } (x^*,y^*) \\ f_{11}''(x^*,y^*) < 0 \; \& \; \left| \begin{array}{c} f_{11}''(x^*,y^*) & f_{12}''(x^*,y^*) \\ f_{21}''(x^*,y^*) & f_{22}''(x^*,y^*) \end{array} \right| > 0 \Longrightarrow \; \text{lokalt maks. i } (x^*,y^*) \\ \left| \begin{array}{c} f_{11}''(x^*,y^*) & f_{12}''(x^*,y^*) \\ f_{21}''(x^*,y^*) & f_{22}''(x^*,y^*) \end{array} \right| < 0 \Longrightarrow (x^*,y^*) \; \text{er et sadelpunkt}$$

Teorem (3.2.1, Tilstrækkelige Lokale Anden-Ordens Betingelser)

Antag at $f(x)=f(x_1,\ldots,x_n)$ er defineret på en mængde S i \mathbb{R}^n og at x^* er et indre kritisk punkt. Antag derudover at f er C^2 i en åben kugle med centrum x^* . Der gælder, at

- (a) Hess $f(x^*)$ positivt definit $\Longrightarrow x^*$ er et lokalt minimumspunkt.
- (b) $\operatorname{Hess} f(x^*)$ negativt definit $\Longrightarrow x^*$ er et lokalt maksimumspunkt.
- (c) Hess $f(x^*)$ indefinit $\Longrightarrow x^*$ er et sadelpunkt.

Ved Hurwitz-kriteriummet gælder: Lad $D_k(x)$ være de ledende underdeterminanter af orden k af Hesse-matricen:

- (a) $D_k(x^*) > 0$, k = 1, ..., n $\implies x^*$ er et lokalt minimumspunkt.
- (b) $(-1)^k D_k(x^*) > 0$, $k = 1, ..., n \implies x^*$ er et lokalt maksimumspunkt.
- (c) $D_n(x^*) \neq 0$ og hverken (a) eller (b) er opfyldt $\Longrightarrow x^*$ er et sadelpunkt.

Eksempel

① Betragt funktionen $f(x, y) = c + x^2 + y^2$, hvor c > 0 og $x, y \in \mathbb{R}$. I punktet (0, 0) har vi

$$\operatorname{grad} f(0, 0) = [0, 0]^T$$

og

$$\operatorname{Hess} f(0, 0) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \succ 0,$$

hvor symbolet " \succ 0" betegner positiv definithed. Funktionen f har derfor et lokalt minimum i (0, 0).

2 Betragt funktionen $f(x, y) = c + x^2 - y^2$, hvor c > 0 og $x, y \in \mathbb{R}$. I punktet (0, 0) har vi

grad
$$f(0, 0) = [0, 0]^T$$

og

$$\operatorname{Hess} f(0, 0) = \left[\begin{array}{cc} 2 & 0 \\ 0 & -2 \end{array} \right].$$

Punktet (0, 0) er et sadelpunkt. I x-retningen viser grafen for f positiv krumning; i y-retningen viser den negativ krumning.

Eksempel

Betragt $f: \mathbb{R}^3 \to \mathbb{R}$ givet ved

$$f(x, y, z) = x^3 + 3xy + 3xz + y^3 + 3yz + z^3.$$

Tjek at $(0,0,0)^T$ og $(-2,-2,-2)^T$ er kritiske punkter. Hesse-matricen er

Hess
$$f(x, y, z) = \begin{bmatrix} 6x & 3 & 3 \\ 3 & 6y & 3 \\ 3 & 3 & 6z \end{bmatrix}$$
.

I (x, y, z) = (-2, -2, -2) er de ledende underdeterminanter

-12, det
$$\begin{vmatrix} -12 & 3 \\ 3 & -12 \end{vmatrix}$$
 = 135, det Hess $f(-2, -2, -2) = -1350$.

Derfor er $\operatorname{Hess} f(-2,-2,-2)$ negativt definit og (x,y,z)=(-2,-2,-2) er et lokalt maksimumspunkt.

Modeksempel

Betragt funktionen $f(x, y) = x^2 + y^4$. I punktet (0, 0) har vi

grad
$$f(0, 0) = [0, 0]^T$$

og

Hess
$$f(0, 0) = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$
.

Funktionen har alligevel et lokalt minimum i (0, 0).

Hvis Hesse-matricen er semi-definit i et kritisk punkt, så kan vi ikke konkludere noget om punktets kvalitet.

Teorem (3.2.2, Nødvendige Lokale Anden-Ordens Betingelser)

Antag at $f(x) = f(x_1, ..., x_n)$ er defineret på en mængde S i \mathbb{R}^n og at x^* er et indre kritisk punkt. Antag derudover at f er C^2 i en åben kugle med centrum x^* . Der gælder, at

- (a) x^* er et lokalt minimumspunkt \implies Hess $f(x^*)$ positivt semidefinit.
- (b) x^* er et lokalt maksimumspunkt \implies Hess $f(x^*)$ negativt semidefinit.