Ćwiczenie 7. Układy równań liniowych – metody iteracyjne.

1. Informacje techniczne

Zadanie zostało wykonane w języku Python3 na komputerze z systemem Windows 11, procesorem Intel i7-11800H, 2x8GB pamięci RAM o szybkości 3200MHz.

- Wykorzystane biblioteki w zadaniu: import matplotlib.pyplot as plt
 - import numpy as np
 - import pandas as pd
 - import time
 - import seaborn as sns

2. Opis problemu

Mamy dany układ równań liniowych Ax = b. Wartości w naszej macierzy A są zadane następującym wzorem:

$$\begin{cases}
a_{i,i} = k \\
a_{ij} = (-1)^j * \frac{m}{j} & dla j > i \\
a_{i,i-1} = \frac{m}{i} \\
a_{i,j} = 0 & dla j < i-1
\end{cases} \quad i,j = 1,2,...,n$$

Przez n oznaczymy liczbę równań (wymiary macierzy A). Za wektor x mieliśmy przyjąć dowolną n-elementową permutację ze zbioru {1, -1}, a następnie obliczyć wektor b. W naszym przypadku za wektor x będziemy przyjmowali:

$$x = \underbrace{[1, -1, 1, \dots]}_{n}$$

Czyli nasze wektory to ciągi o długości n naprzemiennie występujących cyfr 1 i -1. Mając już obliczoną macierz A oraz wektor b miał zostać wyznaczony wektor \hat{x} , będący wyliczonym za pomocą metody iteracyjnej Jacobiego, rozwiązaniem układu. Dla tej metody przyjmowaliśmy dwa różne kryteria stopu:

1.
$$||x^{(i+1)} - x^{(i)}|| < \rho$$
 (2.1)

2.
$$||Ax^{(i)} - b|| < \rho$$
 (2.2)

gdzie $x^{(i)}$ – wartość wektora obliczonego w i-tej iteracji, ρ – dokładność Obliczana jest norma euklidesowa obliczana z wzoru:

 $||x|| = \left| \sum_{i=1}^{n} x_i^2 \right|$

Obliczony wektor \hat{x} porównywany był z wybranym wcześniej wektorem x. Dla różnych wartości n, ρ oraz podanych warunków stopu, obliczane i porównywane były błędy, liczby iteracji oraz czasy rozwiązywania układów.

W zadaniu 2 mieliśmy dowolną metodą znaleźć promień spektralny macierzy iteracji, dla takich samych rozmiarów macierzy jak w poprzednim zadaniu i sprawdzić, czy spełnione są założenia o zbieżności metody dla zadanego układu, a także opisać metodę znajdowania promienia spektralnego.

3. Realizacja ćwiczenia

3.1. Metoda postępowania

Zgodnie z opisem problemu w podpunkcie $\mathbf{2}$, na początku wybieramy nasz wektor x, będący n-elementową permutacją ze zbioru $\{1, -1\}$. Następnie dla różnej liczby równań n z przedziału <2,200>, tworzymy macierz A i obliczamy wektor b. Mając wektor b, obliczamy metodą Jacobiego wektor \hat{x} i porównujemy go z wybranym wcześniej wektorem x, poprzez obliczenie błędu opisanego w podpunkcie 3.2. Zapisujemy również liczbę iteracji. W przypadku zadania 2 obliczamy dla tych samych n, promień spektralny macierzy iteracji. Metoda jego znajdowania jest opisana w podpunkcie 3.3. W celu zbadania, czy spełnione są założenia o zbieżności metody dla zadanego układu, sprawdzaliśmy czy spełniony jest poniższy warunek:

$$p(M) < 1 \tag{3.1.1}$$

Warunek (3.1.1) jest warunkiem koniecznym i wystarczającym zbieżności metody.

Za wektor początkowy przyjęty został wektor o wszystkich współrzędnych równych 0:

$$v_0 = \underbrace{[0, \dots, 0]}_n$$

W podpunkcie 4.4. sprawdzaliśmy wyniki dla różnych wektorów początkowych.

3.2. Obliczanie błędów

W celu wyznaczenia dokładności otrzymywanych wyników porównywane były wektory \hat{x} obliczony z x zadanym. Jako błędy obliczaliśmy normę maksimum w następujący sposób:

$$\max_{i=1,\dots,n} |x_i - \widehat{x}_i|$$

gdzie x_i – i ta współrzędna wektora x

3.3. Metoda znajdowania promienia spektralnego macierzy iteracji

Promień spektralny jest miarą największej wartości bezwzględnej wartości własnych macierzy. Macierz iteracji wyznaczamy w następujący sposób. Rozkładamy macierz A:

$$A = B + R$$

gdzie B – macierz, dla której łatwo stworzyć B^{-1} , R – pozostałość

Następnie przekształcamy układ równań Ax = b do

$$x = -B^{-1}(A - B)x + B^{-1}b$$
 (3.3.1)

Na podstawie wzoru (3.3.1), po wymnożeniu przez $-\mathbf{B}^{-1}$ zapisujemy wzór iteracyjny:

$$x^{(t+1)} = \underbrace{I - B^{-1}A}_{m \text{ accierz iteracji}} x^{(t)} + B^{-1}b$$
(3.3.1)

Zatem nasza macierz iteracji ma postać: $I - B^{-1}A$. Za macierz B przyjmowaliśmy macierz diagonalną stworzoną z elementów na przekątnej macierzy A. Macierz odwrotna do macierzy B była obliczana przy pomocy funkcji np.linialg.inv z numpy. Mając wyznaczoną macierz iteracji M, jej wartości własne były obliczane wykorzystując funkcję np.linialg.eigvals z numpy, a następnie wybieraliśmy z nich największą wartość bezwzględną, będącą szukanym promieniem spektralnym.

4. Wyniki

4.1. Liczba iteracji

• Zestawienie liczby iteracji w zależności od n i ρ dla warunku stopu (2.1)

n 10 ⁻¹ 10 ⁻² 10 ⁻³ 10 ⁻⁵ 10 ⁻⁸ 10 ⁻¹¹ 2 5 9 12 19 29 39 3 6 9 11 17 26 35 4 6 9 11 17 25 34 5 6 9 11 17 25 34 5 6 9 12 17 25 34 6 6 9 12 17 26 34 7 6 9 12 17 26 34 8 6 9 12 17 26 34 9 6 9 12 17 26 34 10 6 9 12 17 26 34 11 6 9 12 18 26 34 12 6 9 12 18 26 34 </th <th></th> <th></th> <th></th> <th>ſ</th> <th>)</th> <th></th> <th></th>				ſ)		
3 6 9 11 17 26 35 4 6 9 11 17 25 34 5 6 9 11 17 25 34 6 6 9 12 17 25 34 7 6 9 12 17 26 34 8 6 9 12 17 26 34 9 6 9 12 17 26 34 10 6 9 12 17 26 34 11 6 9 12 17 26 34 11 6 9 12 17 26 34 12 6 9 12 18 26 34 13 6 9 12 18 26 34 14 6 9 12 18 26 34	n	10^{-1}	10^{-2}	10^{-3}	10^{-5}	10^{-8}	10^{-11}
4 6 9 11 17 25 34 5 6 9 11 17 25 33 6 6 9 12 17 25 34 7 6 9 12 17 26 34 8 6 9 12 17 26 34 9 6 9 12 17 26 34 10 6 9 12 17 26 34 11 6 9 12 17 26 34 11 6 9 12 17 26 34 12 6 9 12 18 26 34 13 6 9 12 18 26 34 14 6 9 12 18 26 34 15 6 9 12 18 26 34	2	5	9	12	19	29	39
5 6 9 11 17 25 33 6 6 9 12 17 25 34 7 6 9 12 17 26 34 8 6 9 12 17 26 34 9 6 9 12 17 26 34 10 6 9 12 17 26 34 11 6 9 12 17 26 34 12 6 9 12 18 26 34 13 6 9 12 18 26 34 14 6 9 12 18 26 34 15 6 9 12 18 26 34 16 7 9 12 18 26 34 17 7 10 12 18 26 34 <tr< th=""><th>3</th><th>6</th><th>9</th><th>11</th><th>17</th><th>26</th><th>35</th></tr<>	3	6	9	11	17	26	35
6 6 9 12 17 25 34 7 6 9 12 17 26 34 8 6 9 12 17 26 34 9 6 9 12 17 26 34 10 6 9 12 17 26 34 11 6 9 12 17 26 34 12 6 9 12 18 26 34 13 6 9 12 18 26 34 14 6 9 12 18 26 34 15 6 9 12 18 26 34 15 6 9 12 18 26 34 16 7 9 12 18 26 34 17 7 10 12 18 26 34 <t< th=""><th>4</th><th>6</th><th>9</th><th>11</th><th>17</th><th>25</th><th>34</th></t<>	4	6	9	11	17	25	34
7 6 9 12 17 26 34 8 6 9 12 17 26 34 9 6 9 12 17 26 34 10 6 9 12 17 26 34 11 6 9 12 17 26 34 12 6 9 12 18 26 34 13 6 9 12 18 26 34 14 6 9 12 18 26 34 15 6 9 12 18 26 34 15 6 9 12 18 26 34 16 7 9 12 18 26 34 17 7 10 12 18 26 34 18 7 10 12 18 26 34	5	6	9	11	17	25	33
8 6 9 12 17 26 34 9 6 9 12 17 26 34 10 6 9 12 17 26 34 11 6 9 12 17 26 34 12 6 9 12 18 26 34 13 6 9 12 18 26 34 14 6 9 12 18 26 34 15 6 9 12 18 26 34 15 6 9 12 18 26 34 16 7 9 12 18 26 34 17 7 10 12 18 26 34 18 7 10 12 18 26 34 19 7 10 12 18 26 34 20 7 10 13 18 26 34 30	6	6	9	12	17	25	34
9 6 9 12 17 26 34 10 6 9 12 17 26 34 11 6 9 12 17 26 34 12 6 9 12 18 26 34 13 6 9 12 18 26 34 14 6 9 12 18 26 34 15 6 9 12 18 26 34 16 7 9 12 18 26 34 17 7 10 12 18 26 34 18 7 10 12 18 26 34 19 7 10 12 18 26 34 20 7 10 12 18 26 34 20 7 10 13 18 26 35 50 7 10 13 18 26 35 75	7	6	9	12	17	26	34
10 6 9 12 17 26 34 11 6 9 12 17 26 34 12 6 9 12 18 26 34 13 6 9 12 18 26 34 14 6 9 12 18 26 34 15 6 9 12 18 26 34 16 7 9 12 18 26 34 17 7 10 12 18 26 34 18 7 10 12 18 26 34 19 7 10 12 18 26 34 20 7 10 12 18 26 34 30 7 10 13 18 26 35 50 7 10 13 18 26 35 <th>8</th> <th>6</th> <th>9</th> <th>12</th> <th>17</th> <th>26</th> <th>34</th>	8	6	9	12	17	26	34
11 6 9 12 17 26 34 12 6 9 12 18 26 34 13 6 9 12 18 26 34 14 6 9 12 18 26 34 15 6 9 12 18 26 34 16 7 9 12 18 26 34 17 7 10 12 18 26 34 18 7 10 12 18 26 34 19 7 10 12 18 26 34 20 7 10 12 18 26 34 30 7 10 13 18 26 35 50 7 10 13 18 26 35 75 7 10 13 18 26 35 100 7 10 13 18 26 35	9	6	9	12	17	26	34
12 6 9 12 18 26 34 13 6 9 12 18 26 34 14 6 9 12 18 26 34 15 6 9 12 18 26 34 16 7 9 12 18 26 34 17 7 10 12 18 26 34 18 7 10 12 18 26 34 19 7 10 12 18 26 34 20 7 10 12 18 26 34 30 7 10 13 18 26 35 50 7 10 13 18 26 35 75 7 10 13 18 26 35 100 7 10 13 18 26 35 100 7 10 13 18 26 35	10	6	9	12	17	26	34
13 6 9 12 18 26 34 14 6 9 12 18 26 34 15 6 9 12 18 26 34 16 7 9 12 18 26 34 17 7 10 12 18 26 34 18 7 10 12 18 26 34 19 7 10 12 18 26 34 20 7 10 12 18 26 34 30 7 10 13 18 26 35 50 7 10 13 18 26 35 75 7 10 13 18 26 35 100 7 10 13 18 26 35 100 7 10 13 18 26 35	11	6	9	12	17	26	34
14 6 9 12 18 26 34 15 6 9 12 18 26 34 16 7 9 12 18 26 34 17 7 10 12 18 26 34 18 7 10 12 18 26 34 19 7 10 12 18 26 34 20 7 10 12 18 26 34 30 7 10 13 18 26 35 50 7 10 13 18 26 35 75 7 10 13 18 26 35 100 7 10 13 18 26 35 100 7 10 13 18 26 35 100 7 10 13 18 26 35	12	6	9	12	18	26	34
15 6 9 12 18 26 34 16 7 9 12 18 26 34 17 7 10 12 18 26 34 18 7 10 12 18 26 34 19 7 10 12 18 26 34 20 7 10 12 18 26 34 30 7 10 13 18 26 35 50 7 10 13 18 26 35 75 7 10 13 18 26 35 100 7 10 13 18 26 35	13	6	9	12	18	26	34
16 7 9 12 18 26 34 17 7 10 12 18 26 34 18 7 10 12 18 26 34 19 7 10 12 18 26 34 20 7 10 12 18 26 34 30 7 10 13 18 26 35 50 7 10 13 18 26 35 75 7 10 13 18 26 35 100 7 10 13 18 26 35	14	6	9	12	18	26	34
17 7 10 12 18 26 34 18 7 10 12 18 26 34 19 7 10 12 18 26 34 20 7 10 12 18 26 34 30 7 10 13 18 26 35 50 7 10 13 18 26 35 75 7 10 13 18 26 35 100 7 10 13 18 26 35 100 7 10 13 18 27 35	15	6	9	12	18	26	34
18 7 10 12 18 26 34 19 7 10 12 18 26 34 20 7 10 12 18 26 34 30 7 10 13 18 26 35 50 7 10 13 18 26 35 75 7 10 13 18 26 35 100 7 10 13 18 27 35	16	7	9	12	18	26	34
19 7 10 12 18 26 34 20 7 10 12 18 26 34 30 7 10 13 18 26 35 50 7 10 13 18 26 35 75 7 10 13 18 26 35 100 7 10 13 18 27 35	17	7	10	12	18	26	34
20 7 10 12 18 26 34 30 7 10 13 18 26 35 50 7 10 13 18 26 35 75 7 10 13 18 26 35 100 7 10 13 18 27 35	18	7	10	12	18	26	34
30 7 10 13 18 26 35 50 7 10 13 18 26 35 75 7 10 13 18 26 35 100 7 10 13 18 27 35	19	7	10	12	18	26	34
50 7 10 13 18 26 35 75 7 10 13 18 26 35 100 7 10 13 18 27 35	20	7	10	12	18	26	34
75 7 10 13 18 26 35 100 7 10 13 18 27 35	30	7	10	13	18	26	35
100 7 10 13 18 27 35	50	7	10	13	18	26	35
	75	7	10	13	18	26	35
10 10 17 27 25	100	7	10	13	18	27	35
150 8 10 13 19 27 35	150	8	10	13	19	27	35
200 8 10 13 19 27 35	200	8	10	13	19	27	35

Tabela 4.1.1 Liczba iteracji w zależności od n i ρ dla kryterium stopu 2.1

• Zestawienie liczby iteracji w zależności od n i ρ dla warunku stopu (2.2)

			f)		
n	10^{-1}	10^{-2}	10^{-3}	10^{-5}	10^{-8}	10 ⁻¹¹
2	8	11	15	21	31	41
3	8	11	14	20	29	37
4	8	11	13	19	27	36
5	8	11	13	19	27	36
6	8	11	14	19	28	36
7	8	11	14	20	28	36
8	8	11	14	20	28	36
9	8	11	14	20	28	36
10	9	11	14	20	28	36
11	9	11	14	20	28	36
12	9	11	14	20	28	36
13	9	11	14	20	28	36
14	9	11	14	20	28	36
15	9	11	14	20	28	36
16	9	12	14	20	28	36
17	9	12	15	20	28	36
18	9	12	15	20	28	36
19	9	12	15	20	28	36
20	9	12	15	20	28	36
30	9	12	15	20	28	37
50	9	12	15	20	29	37
75	9	12	15	20	29	37
100	10	12	15	20	29	37
150	10	12	15	21	29	37
200	10	12	15	21	29	37

Tabela 4.1.2 Liczba iteracji w zależności od n i ρ dla kryterium stopu 2.2

Jak możemy zobaczyć w obu tabelach 4.1.1 oraz 4.1.2, wraz z rosnącą dokładnością, zwiększa się również ilość iteracji, którą trzeba wykonać dla obu warunków stopu. Co ciekawe, dla różnych wartości n, wartości iteracji pozostają praktycznie bez zmian lub nieznacznie się zwiększają.

W przypadku kryterium stopu 2.1 liczba iteracji jest tylko nieznacznie mniejsza – około 2,3 iteracje mniej.

4.2. Błędy rozwiązań

• Zestawienie błędów w zależności od n i ρ dla warunku stopu (2.1)

			1	0		
n	10^{-1}	10^{-2}	10^{-3}	10^{-5}	10^{-8}	10^{-11}
2	0.088388	0.005524	0.000691	0.000005	5.268356e-09	5.144879e-12
3	0.043443	0.005198	0.001023	0.000008	7.111877e-09	6.312525e-12
4	0.048902	0.005065	0.000884	0.000006	9.223644e-09	5.185696e-12
5	0.057357	0.005890	0.001016	0.000006	9.157761e-09	8.839116e-12
6	0.063905	0.006585	0.000501	0.000007	1.050748e-08	5.649523e-12
7	0.069895	0.007203	0.000546	0.000007	3.981147e-09	6.248720e-12
8	0.074956	0.007712	0.000578	0.000008	4.223578e-09	6.683963e-12
9	0.079618	0.008188	0.000611	0.000008	4.463956e-09	7.092627e-12
10	0.083709	0.008595	0.000637	0.000008	4.659048e-09	7.442881e-12
11	0.087523	0.008980	0.000662	0.000009	4.852283e-09	7.774995e-12
12	0.090951	0.009319	0.000684	0.000005	5.015565e-09	8.066007e-12
13	0.094178	0.009643	0.000705	0.000005	5.177023e-09	8.344788e-12
14	0.097127	0.009933	0.000724	0.000005	5.317444e-09	8.593967e-12
15	0.099924	0.010212	0.000742	0.000006	5.456241e-09	8.833781e-12
16	0.056050	0.010465	0.000758	0.000006	5.579467e-09	9.051257e-12
17	0.057311	0.003713	0.000774	0.000006	5.701267e-09	9.261764e-12
18	0.058458	0.003783	0.000788	0.000006	5.811083e-09	9.455134e-12
19	0.059580	0.003852	0.000802	0.000006	5.919654e-09	9.642148e-12
20	0.060611	0.003915	0.000815	0.000006	6.018717e-09	9.816231e-12
30	0.068888	0.004423	0.000398	0.000007	6.822191e-09	3.788417e-12
50	0.079306	0.005068	0.000465	0.000008	7.845036e-09	4.344167e-12
75	0.087579	0.005583	0.000519	0.000009	8.665102e-09	4.789273e-12
100	0.093450	0.005951	0.000557	0.000010	5.211245e-09	5.106359e-12
150	0.034191	0.006472	0.000611	0.000004	5.698155e-09	5.556618e-12
200	0.036277	0.006844	0.000649	0.000004	6.044159e-09	5.877680e-12

Tabela 4.2.1 Wartości błędów w zależności od n i ρ dla kryterium stopu 2.1

• Zestawienie błędów w zależności od n i ρ dla warunku stopu (2.2)

				ρ		
n	10^{-1}	10^{-2}	10^{-3}	10 ⁻⁵	10^{-8}	10^{-11}
2	0.011049	0.001381	0.000086	1.348699e-06	1.317089e-09	1.286220e-12
3	0.009201	0.001023	0.000105	9.266973e-07	8.372509e-10	1.345548e-12
4	0.009235	0.000884	0.000153	1.248478e-06	1.598710e-09	8.925716e-13
5	0.010720	0.001016	0.000172	1.218047e-06	1.602883e-09	8.298732e-13
6	0.011831	0.001149	0.000101	1.346072e-06	7.540986e-10	9.910341e-13
7	0.012894	0.001259	0.000111	6.674583e-07	8.284101e-10	1.098517e-12
8	0.013729	0.001353	0.000118	7.171674e-07	8.774257e-10	1.178788e-12
9	0.014541	0.001438	0.000125	7.627980e-07	9.264317e-10	1.252952e-12
10	0.008595	0.001514	0.000130	8.030134e-07	9.654336e-10	1.318523e-12
11	0.008980	0.001584	0.000136	8.403992e-07	1.004498e-09	1.379112e-12
12	0.009319	0.001646	0.000140	8.739947e-07	1.036918e-09	1.433532e-12
13	0.009643	0.001705	0.000145	9.055951e-07	1.069330e-09	1.484683e-12
14	0.009933	0.001759	0.000149	9.344267e-07	1.097066e-09	1.530989e-12
15	0.010212	0.001810	0.000152	9.617811e-07	1.124771e-09	1.575947e-12
16	0.010465	0.000758	0.000156	9.870275e-07	1.149013e-09	1.616439e-12
17	0.010710	0.000774	0.000056	1.011138e-06	1.173214e-09	1.655427e-12
18	0.010934	0.000788	0.000057	1.033591e-06	1.194747e-09	1.691641e-12
19	0.011152	0.000802	0.000058	1.055143e-06	1.216238e-09	1.727011e-12
20	0.011355	0.000815	0.000059	1.075359e-06	1.235611e-09	1.759296e-12
30	0.012973	0.000919	0.000068	1.236945e-06	1.392716e-09	7.840471e-13
50	0.015016	0.001049	0.000079	1.441995e-06	7.660791e-10	8.959839e-13
75	0.016640	0.001153	0.000088	1.605637e-06	8.537020e-10	9.837420e-13
100	0.005951	0.001226	0.000095	1.722099e-06	9.160998e-10	1.046754e-12
150	0.006472	0.001331	0.000104	7.494030e-07	1.004319e-09	1.135434e-12
200	0.006844	0.001405	0.000110	7.910833e-07	1.067073e-09	1.198905e-12

Tabela 4.2.2 Wartości błędów w zależności od n i ρ dla kryterium stopu 2.2

W przypadku błędów, wartości w obu tabelach 4.2.1 oraz 4.2.2 są praktycznie takie same. Niezależnie od n, dla tych samych dokładności dostajemy podobne wyniki. Wraz z wzrostem dokładności, błędy są co raz mniejsze. Wyniki są podobne dla obu warunków stopu, niewiele lepsze kryterium 2.2.

4.3. Czasy rozwiązań

• Zestawienie czasów rozwiązań podane w [s] w zależności od n i ρ dla warunku stopu (2.1)

			1	ρ		
n	10^{-1}	10^{-2}	10^{-3}	10^{-5}	10^{-8}	10^{-11}
2	0.000134	0.000050	0.000058	0.000116	0.000193	0.000254
3	0.000062	0.000077	0.000081	0.000118	0.000160	0.000176
4	0.000036	0.000046	0.000052	0.000075	0.000108	0.000141
5	0.000035	0.000045	0.000052	0.000076	0.000107	0.000138
6	0.000035	0.000045	0.000057	0.000076	0.000114	0.000143
7	0.000036	0.000047	0.000057	0.000076	0.000111	0.000141
8	0.000036	0.000046	0.000056	0.000075	0.000115	0.000172
9	0.000052	0.000071	0.000090	0.000173	0.000114	0.000144
10	0.000038	0.000048	0.000058	0.000078	0.000112	0.000144
11	0.000036	0.000047	0.000073	0.000079	0.000111	0.000263
12	0.000066	0.000054	0.000058	0.000082	0.000113	0.000142
13	0.000037	0.000048	0.000067	0.000085	0.000122	0.000145
14	0.000038	0.000047	0.000059	0.000082	0.000114	0.000145
15	0.000038	0.000048	0.000058	0.000082	0.000113	0.000145
16	0.000043	0.000047	0.000060	0.000084	0.000113	0.000151
17	0.000042	0.000054	0.000062	0.000085	0.000120	0.000146
18	0.000045	0.000053	0.000060	0.000086	0.000115	0.000146
19	0.000041	0.000052	0.000060	0.000083	0.000116	0.000147
20	0.000044	0.000053	0.000059	0.000082	0.000113	0.000144
30	0.000146	0.000066	0.000067	0.000086	0.000117	0.000154
50	0.000055	0.000059	0.000074	0.000094	0.000127	0.000166
75	0.000065	0.000068	0.000081	0.000104	0.000142	0.000185
100	0.002586	0.001168	0.001463	0.002017	0.003035	0.003894
150	0.001003	0.001168	0.001476	0.002143	0.003074	0.003991
200	0.001195	0.001233	0.001575	0.002221	0.003189	0.004120

Tabela 4.3.1 Czasy obliczeń w [s] w zależności od n i ρ dla kryterium stopu 2.1

• Zestawienie czasów rozwiązań podane w [s] w zależności od n i ρ dla warunku stopu (2.2)

				ρ		
n	10^{-1}	10^{-2}	10^{-3}	10^{-5}	10^{-8}	10^{-11}
2	0.000847	0.000077	0.000090	0.000118	0.000169	0.000218
3	0.000055	0.000067	0.000082	0.000112	0.000157	0.000197
4	0.000054	0.000067	0.000077	0.000106	0.000148	0.000192
5	0.000053	0.000067	0.000077	0.000107	0.000148	0.000195
6	0.000055	0.000069	0.000084	0.000109	0.000155	0.000196
7	0.000055	0.000068	0.000083	0.000113	0.000156	0.000195
8	0.000055	0.000069	0.000083	0.000113	0.000155	0.000194
9	0.000057	0.000070	0.000085	0.000117	0.000158	0.000198
10	0.000061	0.000069	0.000084	0.000115	0.000155	0.000195
11	0.000061	0.000069	0.000084	0.000115	0.000156	0.000198
12	0.000062	0.000068	0.000084	0.000115	0.000155	0.000196
13	0.000060	0.000071	0.000084	0.000115	0.000157	0.000199
14	0.000062	0.000068	0.000084	0.000119	0.000155	0.000197
15	0.000060	0.000070	0.000085	0.000116	0.000157	0.000198
16	0.000060	0.000074	0.000083	0.000114	0.000156	0.000199
17	0.000062	0.000075	0.000091	0.000116	0.000158	0.000197
18	0.000062	0.000074	0.000089	0.000114	0.000156	0.000196
19	0.000063	0.000075	0.000089	0.000114	0.000155	0.000195
20	0.000059	0.000073	0.000087	0.000112	0.000151	0.000191
30	0.000064	0.000075	0.000089	0.000114	0.000155	0.000233
50	0.000074	0.000114	0.000117	0.000137	0.000176	0.000221
75	0.000085	0.000096	0.000113	0.000145	0.000201	0.000252
100	0.005653	0.002728	0.003428	0.004530	0.006512	0.008505
150	0.002451	0.002733	0.003418	0.004740	0.006561	0.008394
200	0.002699	0.003113	0.003697	0.004839	0.006626	0.008502

Tabela 4.3.2 Czasy obliczeń w [s] w zależności od n i ρ dla kryterium stopu 2.1

Czasy zwiększają się wraz z wzrostem n oraz zmniejszaniem ρ . Co ciekawe, gwałtowny wzrost czasów występuje od około n=96, co dobrze widać na wykresie 4.3.3. W obu tabelach 4.3.1 oraz 4.3.2 wyniki są do siebie bardzo zbliżone.

Wykres 4.3.3 Czasy obliczeń w [s] w zależności od n i ρ dla kryterium stopu 2.1

4.4. Wpływ wektora początkowego na wyniki obliczeń

W tym podpunkcie przyjmiemy stałe n=100 i dla różnych wektorów początkowych (w tym dla sprawdzanego wcześniej wektora zerowego), ponownie sprawdzimy otrzymywane wyniki. Będziemy przyjmować wektory początkowe postaci:

$$v_0 = \underbrace{[a,a,\dots,a]}_{100}$$

dla wybranych wartości a.

• Zestawienie liczby iteracji w zależności od α i ρ dla warunku stopu (2.1)

				ρ		
а	10^{-1}	10^{-2}	10^{-3}	10 ⁻⁵	10^{-8}	10 ⁻¹¹
0	7	10	13	18	27	35
10 ¹	8	11	14	19	28	36
10 ²	11	14	16	22	30	39
10 ³	14	16	19	25	33	41
10 ⁴	16	19	22	27	36	44
10 ⁵	19	22	25	30	39	47
10 ⁸	27	30	33	39	47	55
10 ¹⁰	33	36	39	44	52	61
10^{15}	47	50	52	58	66	74

Tabela 4.4.1 Liczba iteracji w zależności od n i α dla kryterium stopu 2.1

• Zestawienie liczby iteracji w zależności od α i ρ dla warunku stopu (2.2)

				ρ		
а	10^{-1}	10^{-2}	10^{-3}	10 ⁻⁵	10 ⁻⁸	10 ⁻¹¹
0	10	12	15	20	29	37
10 ¹	10	13	16	21	30	38
10 ²	13	16	18	24	32	41
10 ³	16	18	21	27	35	43
10 ⁴	18	21	24	30	38	46
10^{5}	21	24	27	32	41	49
10 ⁸	30	32	35	41	49	57
10 ¹⁰	35	38	41	46	54	63
10 ¹⁵	49	52	54	60	68	77

Tabela 4.4.2 Liczba iteracji w zależności od n i α dla kryterium stopu 2.2

Jak możemy zaobserwować w tabelach 4.4.1 oraz 4.4.2, im wartości współrzędnych wektora początkowego v_0 są dalej oddalone na osi od wartości wybranego wektora x, tym więcej iteracji potrzebujemy, aby znaleźć rozwiązanie o zadanej dokładności.

• Zestawienie błędów w zależności od a i ρ dla warunku stopu (2.1)

				ρ		
а	10 ⁻¹	10^{-2}	10^{-3}	10 ⁻⁵	10-8	10 ⁻¹¹
0	0.093450	0.005951	0.000557	0.000010	5.211245e-09	5.106359e-12
10 ¹	0.087867	0.006570	0.000455	8000000	4.314133e-09	5.611139e-12
10 ²	0.053293	0.004555	0.000786	0.000006	7.515048e-09	3.973536e-12
10 ³	0.046184	0.007929	0.000821	0.000004	6.950430e-09	6.893043e-12
10 ⁴	0.079371	0.008213	0.000618	8000000	4.511407e-09	7.118999e-12
10 ⁵	0.082135	0.006178	0.000426	8000000	4.036575e-09	5.276503e-12
10 ⁸	0.080972	0.007631	0.000695	0.000004	5.276212e-09	6.654626e-12
10 ¹⁰	0.069488	0.004511	0.000404	0.000007	6.948317e-09	3.861461e-12
1015	0.052762	0.003695	0.000695	0.000006	6.004519e-09	9.242633e-12

Tabela 4.4.1 Wartości błędów w zależności od α i ρ dla kryterium stopu 2.1

• Zestawienie błędów w zależności od α i ρ dla warunku stopu (2.2)

				ρ		
а	10^{-1}	10^{-2}	10^{-3}	10 ⁻⁵	10^{-8}	10 ⁻¹¹
0	0.005951	0.001226	0.000095	1.722099e-06	9.160998e-10	1.046754e-12
10 ¹	0.015385	0.001338	0.000086	1.385554e-06	7.370449e-10	1.148047e-12
10^{2}	0.011123	0.000786	0.000147	1.263163e-06	1.279627e-09	6.828206e-13
10^{3}	0.007929	0.001465	0.000144	8.101531e-07	1.316477e-09	1.259960e-12
10 ⁴	0.014644	0.001440	0.000126	7.629303e-07	9.377566e-10	1.254566e-12
10^{5}	0.014397	0.001257	0.000081	1.296811e-06	6.901177e-10	1.077605e-12
10 ⁸	0.007631	0.001297	0.000132	6.901259e-07	1.077992e-09	1.130009e-12
10 ¹⁰	0.013172	0.000938	0.000069	1.254370e-06	1.421017e-09	8.000540e-13
10 ¹⁵	0.010780	0.000695	0.000142	1.139056e-06	1.085977e-09	5.968603e-13

Tabela 4.4.2 Wartości błędów w zależności od α i ρ dla kryterium stopu 2.2

W tabelach 4.4.1 oraz 4.4.2 nie obserwujemy znaczących zmian wartości obliczonych błędów. Błędy są do wyrównywane przez zwiększoną liczbę iteracji, która pozwala nam uzyskiwać dokładniejsze wyniki.

• Zestawienie czasów rozwiązań podane w [s] w zależności od α i ρ dla warunku stopu (2.1)

Wykres 4.4.3 Czasy obliczeń w [s] w zależności od α i ρ dla kryterium stopu 2.1

• Zestawienie czasów rozwiązań podane w [s] w zależności od a i ρ dla warunku stopu (2.2)

Wykres 4.4.4 Czasy obliczeń w [s] w zależności od α i ρ dla kryterium stopu 2.2

Na wykresach 4.4.3 oraz 4.4.4 obserwujemy, że tak samo jak w przypadku liczby iteracji, im wartości współrzędnych wektora początkowego v_0 są dalej oddalone na osi od wartości wybranego wektora x, tym czas trwania jest większy. Również wraz z zmniejszaniem się ρ , obliczenia zajmują więcej czasu.

Porównując oba warunki stopu, dla kryterium 2.2 czas trwania, podobnie jak liczba iteracji, jest większy niż dla kryterium 2.1.

4.4. Zadanie 2 – obliczanie promienia spektralnego

Promień spektralny obliczamy zgodnie z opisem w podpunkcie 3.3.

Zestawienie wartości promieniów radialnych

n	Wartość	Czy warunek zbieżności			
Tt.	promienia	spełniony			
2	0.500000	Prawda			
3	0.457937	Prawda			
4	0.438318	Prawda			
5	0.433127	Prawda			
6	0.433739	Prawda			
7	0.433957	Prawda			
8	0.433954	Prawda			
9	0.433949	Prawda			
10	0.433949	Prawda			
11	0.433949	Prawda			
12	0.433949	Prawda			
13	0.433949	Prawda			
14	0.433949	Prawda			
15	0.433949	Prawda			
16	0.433949	Prawda			
17	0.433949	Prawda			
18	0.433949	Prawda			
19	0.433949	Prawda			
20	0.433949	Prawda			
30	0.433949	Prawda			
50	0.433949	Prawda			
75	0.433949	Prawda			
100	0.433949	Prawda			
150	0.433949	Prawda			
200	0.433949	Prawda			

Tabela 4.4.1 Wartości promieni radialnych

A zatem widzimy, że dla wszystkich badanych wartości n, warunek zbieżności metody jest spełniony. Promień spektralny zmienia się bardzo mało w zależności od n. W tabeli 4.4.1 od n=8 jest on taki sam do 6 miejsc po przecinku.

5. Wnioski

- Liczba iteracji bardzo nieznacznie się zwiększa wraz z rosnącym rozmiarem macierzy n. Duża bardziej zależy ona od ρ im jest ono mniejsze, tym liczba iteracji większa.
- W przypadku kryterium stopu 2.1 liczba iteracji jest tylko nieznacznie mniejsza od warunku 2.2 około 2 czy 3 iteracje mniej.
- Otrzymywane błędy, podobnie jak liczba iteracji, nie zależą praktycznie od n, lecz maleją wraz z zmniejszaniem ρ . Dla kryterium 2.1 otrzymywane błędy są nieznacznie większe niż dla kryterium 2.2 co ma związek z mniejszą liczbą iteracji.

- Dla obu warunków stopu, czasy trwania algorytmu są do siebie bardzo zbliżone, nieznaczne większe dla kryterium 2.2. Rosną one wraz z zwiększającym się n i zmniejszającym się ρ . Co ciekawe, gwałtowny wzrost czasów występuje od około n=96,
- Im wartości współrzędnych wektora początkowego v_0 są dalej oddalone na osi od wartości wybranego wektora x, tym więcej iteracji oraz czasu potrzebujemy, aby znaleźć rozwiązanie o zadanej dokładności. Nie ma to jednak przełożenia na wartości obliczonych błędów. Dzięki większej liczbie iteracji, możemy uzyskać wyniki o dokładnościach tego samego rzędu, niezależnie od wektora początkowego.
- Dla zadanego układu warunek zbieżności metody iteracji jest spełniony. Promień spektralny pozostaje praktycznie bez zmian niezależnie od wartości *n*.

6. Bibliografia

- Wykłady dr Katarzyny Rycerz: Metody Obliczeniowe w Nauce i Technice, Department of Computer Science, AGH University of Science and Technology
- Metoda Jacobiego: http://sendzimir.metal.agh.edu.pl/~im4/metnum/dyd/pm/iteracyjne.htm