

Cuaderno de trabajo: Búsqueda en coste uniforme Algoritmo de Dijkstra¹

Albert Sanchis

Departamento de Sistemas Informáticos y Computación

¹Para una correcta visualización, se requiere Acrobat Reader v. 7.0 o superior

Objetivos formativos

- Caracterizar la búsqueda convencional en un grafo de estados.
- Describir búsqueda en coste uniforme (o algoritmo de Dijkstra).
- Construir el árbol de búsqueda en coste uniforme.
- Aplicar búsqueda en coste uniforme a un problema clásico.
- Analizar la calidad de búsqueda en coste uniforme.

Problema: La ruta más corta entre dos puntos

Búsqueda de una ruta más corta desde Arad a Bucarest [1]:

Acciones(Arad) = {Ir(Sibiu), Ir(Timisoara), Ir(Zerind)}.

Coste uniforme o algoritmo de Dijkstra [1, 2, 3]

```
UCS(G, s') // Uniform-cost search; G grafo ponderado, s' start
 O = IniCola(s', g_{s'} \triangleq 0)
                                        // Open: cola de prioridad g
 C = \emptyset
                                         // Closed: nodos explorados
 mientras no ColaVacia(O):
                                    // 1ro el mejor: s = \arg\min_{n \in O} g_n
                                    // desempates a favor de objetivo
   s = Desencola(O)
                                                // solución encontrada!
   si Objetivo(s) retorna s
   C = C \cup \{s\}
                                                          //s explorado
   para toda (s,n) \in Adyacentes(G,s): // generación: n hijo de s
    x = g_s + w(s, n) // coste del camino de s' a n pasando por s
                    n \notin C \cup O: Encola(O, n, g_n \triangleq x)
    Si
    si no si n \in O y x < g_n: Modcola(O, n, g_n \triangleq x)
  retorna NULL
                                       // ninguna solución encontrada
```

Cuestión 1: Haz una traza del algoritmo Coste Uniforme aplicado al problema de búsqueda de una ruta más corta desde Arad a Bucarest.

O	C	S
{Arad (c=0)}	{}	_
{Zerind (c=75), Timisoara (c=118), Sibiu	{Arad (c=0)}	Arad (c=0)
(c=140)		
{Timisoara (c=118), Sibiu (c=140), Oradea	{Arad (c=0), Zerind (c=75)}	Zerind (c=75)
(c=146)		
{Sibiu (c=140), Oradea (c=146), Lugoj	{Arad (c=0), Zerind (c=75), Timisoara	Timisoara (c=118)
(c=229)}	(c=118)}	
{Oradea (c=146), Rimnicu (c=220), Lugoj	{Arad (c=0), Zerind (c=75), Timisoara	Sibiu (c=140)
(c=229), Fagaras (c=239)}	(c=118), Sibiu (c=140)}	
{Rimnicu (c=220), Lugoj (c=229), Fagaras	{Arad (c=0), Zerind (c=75), Timisoara	Oradea (c=146)
(c=239)}	(c=118), Sibiu (c=140), Oradea (c=146)}	
{Lugoj (c=229), Fagaras (c=239), Pitesti	{Arad (c=0), Zerind (c=75), Timisoara	Rimnicu (c=220)
(c=317), Craiova (c=366)}	(c=118), Sibiu (c=140), Oradea (c=146),	
	Rimnicu (c=220)}	
{Fagaras (c=239), Mehadia (c=299), Pi-	{Arad (c=0), Zerind (c=75), Timisoara	Lugoj (c=229)
testi (c=317), Craiova (c=366)}	(c=118), Sibiu (c=140), Oradea (c=146),	
	Rimnicu (c=220), Lugoj (c=229)}	
{Mehadia (c=299), Pitesti (c=317), Craio-	{Arad (c=0), Zerind (c=75), Timisoara	Fagaras (c=239)
va (c=366), Bucharest (c=450)}	(c=118), Sibiu (c=140), Oradea (c=146),	
	Rimnicu (c=220), Lugoj (c=229), Faga-	
	ras (c=239)}	

O	C	S
{Pitesti (c=317), Craiova (c=366), Dobreta	{Arad (c=0), Zerind (c=75), Timisoara	Mehadia (c=299)
(c=374), Bucharest (c=450)}	(c=118), Sibiu (c=140), Oradea (c=146),	
	Rimnicu (c=220), Lugoj (c=229), Faga-	
	ras (c=239), Mehadia (c=299)}	
{Craiova (c=366), Dobreta (c=374), Bu-	{Arad (c=0), Zerind (c=75), Timisoara	Pitesti (c=317)
charest (c=418)}	(c=118), Sibiu (c=140), Oradea (c=146),	
	Rimnicu (c=220), Lugoj (c=229), Faga-	
	ras (c=239), Mehadia (c=299), Pitesti	
	(c=317)}	
{Dobreta (c=374), Bucharest (c=418)}	{Arad (c=0), Zerind (c=75), Timisoara	Craiova (c=366)
	(c=118), Sibiu (c=140), Oradea (c=146),	
	Rimnicu (c=220), Lugoj (c=229), Faga-	
	ras (c=239), Mehadia (c=299), Pitesti	
	(c=317), Craiova (c=366)}	
{Bucharest (c=418)}	{Arad (c=0), Zerind (c=75), Timisoara	Dobreta (c=374)
	(c=118), Sibiu (c=140), Oradea (c=146),	
	Rimnicu (c=220), Lugoj (c=229), Faga-	
	ras (c=239), Mehadia (c=299), Pites-	
	ti (c=317), Craiova (c=366), Dobreta	
	(c=374)}	
{}	{Arad (c=0), Zerind (c=75), Timisoara	Bucharest (c=418)
	(c=118), Sibiu (c=140), Oradea (c=146),	
	Rimnicu (c=220), Lugoj (c=229), Faga-	
	ras (c=239), Mehadia (c=299), Pites-	
	ti (c=317), Craiova (c=366), Dobreta	
	(c=374)	

Cuestión 2: Construye el árbol de búsqueda resultante de aplicar el algoritmo Coste Uniforme al problema de búsqueda de una ruta más corta desde Arad a Bucarest.

- Cuestión 3: ¿El algoritmo encuentra solución? Sí
- Cuestión 4: Si la respuesta es "Sí":
 - ¿Cuál ha sido la solución encontrada? El camino solución encontrado ha sido: Arad, Sibiu, Rimnicu, Pitesti, Bucharest

 - ¿Se trata de la solución óptima? Sí
 - ¿Qué tipo de solución encuentra el algoritmo BFS? Soluciones óptimas si los costos de las acciones son positivos

Referencias

- [1] S. Russell and P. Norvig. *Artificial Intelligence: A Modern Approach*. Pearson, third edition, 2010.
- [2] E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. *Numerische Mathematik*, 1959.
- [3] Bernhard Korte and Jens Vygen. *Combinatorial Optimization: Theory and Algorithms*. Springer, 2018.

