Line of Best Fit (Least Square Method)

A line of best fit is a straight line that is the best approximation of the given set of data.

It is used to study the nature of the relation between two variables.

A line of best fit can be roughly determined using an eyeball method by drawing a straight line on a scatter plot so that the number of points above the line and below the line is about equal (and the line passes through as many points as possible).

A more accurate way of finding the line of best fit is the least square method.

Use the following steps to find the equation of line of best fit for a set of ordered pairs.

- Step 1: Calculate the mean of the *x*-values and the mean of the *y*-values.
- Step 2: Compute the sum of the squares of the *x*-values.
- Step 3: Compute the sum of each x-value multiplied by its corresponding y-value.
- Step 4: Calculate the slope of the line using the formula:

$$m = \frac{\sum xy - \frac{(\sum x)(\sum y)}{n}}{\sum x^2 - \frac{(\sum x)^2}{n}}$$

Where n is the total number of data points.

Step 5: Compute the *y*-intercept of the line by using the formula:

$$b = \overline{y} - m\overline{x}$$

Where \overline{y} and \overline{x} are the mean of the x- and y-coordinates of the data points respectively.

Step 6: Use the slope and the y -intercept to form the equation of the line.

Example:

Use the least square method to determine the equation of line of best fit for the data. Then plot the line.

		2								ı
У	3	10	3	6	8	12	1	4	9	14

Solution:

Plot the points on a coordinate plane.

Calculate the means of the *x*-values and the *y*-values, the sum of squares of the *x*-values, and the sum of each *x*-value multiplied by its corresponding *y*-value.

х	У	xy	x^2	
8	3	24	64	
2	10	20	4	
11	3	33	121	
6	6	36	36	
5	8	40	25	
4	12	48	16	
12	1	12	144	
9	4	36	81	
6	9	54	36	
1	14	14	1	
$\sum x = 64$	$\Sigma y = 70$	$\sum xy = 317$	$\sum x^2 = 528$	

Calculate the slope.

$$m = \frac{\sum xy - \frac{(\sum x)(\sum y)}{n}}{\sum x^2 - \frac{(\sum x)^2}{n}}$$
$$= \frac{317 - \frac{(64)(70)}{10}}{528 - \frac{(64)^2}{10}}$$
$$\approx -1.1$$

Calculate the *y*-intercept.

First, calculate the mean of the *x*-values and that of the *y*-values.

$$\overline{x} = \frac{\sum x}{n}$$

$$\overline{y} = \frac{\sum y}{n}$$

$$= \frac{64}{10}$$

$$= 6.4$$

$$= \frac{70}{10}$$

$$= 7.0$$

Use the formula to compute the *y*-intercept.

$$b = \overline{y} - m\overline{x}$$

= 7.0 - (-1.1×6.4)
= 7.0 + 7.04
\approx 14.0

Use the slope and y-intercept to form the equation of the line of best fit.

The slope of the line is -1.1 and the y-intercept is 14.0.

Therefore, the equation is y = -1.1 x + 14.0.

Draw the line on the scatter plot.

