Reading Quiz #12

① This is a preview of the published version of the quiz

Started: Nov 18 at 8:11p.m.

Quiz Instructions

Read this document on **amortized analysis** (https://www.students.cs.ubc.ca/~cs-320/2020W2/handouts/aa-nutshell-v2.pdf) posted on the course web site.

Question 1	1 pts
What is amortized analysis good for?	
O Designing a new algorithm.	
O Speeding up an existing algorithm.	
 Getting a good worst-case bound on a single operation. 	
 Getting a good worst-case bound on a sequence of operations. 	

Question 2	1 pts
Which one(s) of the following statements about a potential function $oldsymbol{\Phi}$ always true?	are
$\ \ \ \ \ \ \Phi \left(D_{i} ight) \geq 0$	
$\ \ \ \ \ \Phi\left(D_{i} ight) \geq \Phi\left(D_{i-1} ight)$	
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	t.
\square For any given sequence of operations on a data structure, there may be potential functions $\Phi\left(D_i ight)$ that will allow us to prove an optimal bound operations.	•

Question 3 1 pts
Which one(s) of the following statements about real and amortized costs hold?
\square We compute an upper bound on the sum of the real costs of the n operations in order to get an upper bound on the sum of their amortized costs.
\square We compute an upper bound on the sum of the amortized costs of the n operations in order to get an upper bound on the sum of their real costs.
□ The amortized cost of an operation can be smaller, the same or larger than its real cost.
☐ Ideally, the amortized cost of an operation should vary relatively little.

Question 4 1 pts

Which of the following relationships between real and amortized costs are desirable, in the sense that we might be able to use them to get a tight upper bound on the worst-case running time of a sequence of operations?

☐ Both the real cost and	the	amortized	cost a	are	constants.
--------------------------	-----	-----------	--------	-----	------------

The real cost is constant,	while the	amortized	cost varies	between a	constant
and <i>n</i> .					

	The amortized cost is \log_2	n while the real	cost varies	between 1 and n	\boldsymbol{n}
--	--------------------------------	------------------	-------------	-------------------	------------------

■ Both the real and	amortized costs v	ary between n and n^2
---------------------	-------------------	---------------------------