How to choose the state relevance weight in the approximate linear programming approach for dynamic programming?

Yann Le Tallec and Theophane Weber

Finite Markov chain framework

- Finite state space X
- For all x in X, finite control space U(x)
- Bounded expected immediate cost g_u(x) of control u in state x
- Transition probability matrix under control u: P_u
- **Proposition:** Any finite Markov chain can be transformed in an equivalent finite Markov chain with $g_u(x)=g(x)$ for all u in U(x).

Linear programming

- Let T be the DP operator for α -discounted problem: TJ=min_u g + α P_uJ.
- By monotonicity of T, $J \le TJ \Rightarrow J \le TJ \le T^kJ \le J^*$.
- Linear programming approach to DP:

For all c>0, J* unique optimal solution of

(LP): max c^Tx s.t. $J(x) \le g(x) + \alpha P_u(x,y)J(y)$, $\forall (x,u)$

Approximate linear program

- Curse of dimensionality. Approximate: $J^*(x) \approx \Phi(x)r, r \in \mathbb{R}^m, m \ll |X|$
- Approximate linear program, c>0, (ALP): $\max_{r} c^{T}x$ s.t. $\Phi r \leq T \Phi r$.
- Unlike (LP), c matters: $r^*=r^*(c)$.
- $\Phi r \leq T \Phi r \Rightarrow \Phi r \leq T \Phi r \leq J^*$

General performance bound

• Proposition:

For all J in $\mathbb{R}^{|X|}$,

$$E[|J_{u_{J}}(x) - J^{*}(x)|; x \sim v] = ||J_{u_{J}} - J^{*}||_{1,v} \leq ||J - J^{*}||_{1,\mu_{v,u_{J}}}$$
where $\mu_{v,u} = (1 - \alpha)v^{T}(I - \alpha P_{u})^{-1}$

• In practice, v is given by the application.

ALP approximation bound

• Proposition:

Let r* be an optimal solution of (ALP). Then for all v s.t. Φv is a positive Lyapunov function,

$$\|J^* - \Phi r^*\|_{1,c} \le \frac{2c^T \Phi v}{1 - \beta_{\Phi v}} \min_{r} \|J^* - \Phi r\|_{\infty, 1/\Phi v}$$

Compare with

$$\|J_{u_{\Phi r^*}} - J^*\|_{1,\nu} \le \|\Phi r^* - J^*\|_{1,\mu_{\nu,u_J}}$$

ALP approximation bound

• Proposition:

Let r* be an optimal solution of (ALP). Then for all v s.t. Φv is a positive Lyapunov function,

$$\|J^* - \Phi r^*\|_{1,c} \le \frac{2c^T \Phi v}{1 - \beta_{\Phi v}} \min_{r} \|J^* - \Phi r\|_{\infty, 1/\Phi v}$$

Compare with

$$\left\| J_{u_{\Phi r^*}} - J^* \right\|_{1,\nu} \le \left\| \Phi r^* - J^* \right\|_{1,\mu_{\nu,u_J}}$$

Choose c>0 to relate the 2 bounds in an efficient way

Simple bounds

- We want $\|J^* \Phi r^*\|_{1,\mu_{v,u_{\Phi r}^*}} \le K \|J^* \Phi r^*\|_{1,c}, K > 0$ to yield $\|J^* J_{u_{\Phi r}^*}\|_{1,v} \le K \frac{2c^T \Phi v}{1 \beta_{\Phi v}} \min_r \|J^* \Phi r\|_{\infty,1/\Phi v}$ This relation follows from $\mu_{v,u_{\Phi r}^*} \le Kc$
- But r* depends implicitly on c via (ALP)
- Trivially, c:=1. But poor bound for large state space
- Algorithm using $r^*(c)=r^*(Kc)$ for any K>0.
 - Solve (ALP) for any c>0.
 - 2. Compute $\mu_{v,\Phi r^*}$
 - If possible, find the smallest K>0 such that $\mu_{v,\Phi r^*} \leq Kc$

Find pmf $c=\mu_{\nu,\Phi r^*}$

- If $c=\mu_{v,\Phi r^*}>0$, c cannot be big and we have K=1
- Naïve algorithm: $c^k \xrightarrow[ALP]{} r^k \xrightarrow[greedy]{} u_{\Phi r_k} \to \mu_{\nu,u_{\Phi rk}} = c^{k+1}$.
- Fixed point? Convergence?

Theoretical algorithm

Relies on Brower's fixed point theorem of continuous function in convex compact set of $\mathbb{R}^{|X|}$

- r^k not well defined for multiple optima
- r^k not continuous in c => randomized c by Gaussian noise N(0,vI), v>0
- greedy not continuous in $r^k => \delta$ -greedy: $P(u) \propto \exp(-\delta^{-1}.(g + P_u \Phi r^k))$

For all v and δ , there is a fixed point to the naïve algorithm

Reinforced ALP

• Would like to solve (ALP) with the additional constraint

$$c^T = \mu_{v,u_{\Phi r^*}}^T = (1-\alpha)v^T (I-\alpha P_{u_{\Phi r^*}})^{-1}$$
• Recall that $P_{u_{\Phi r^*}}$ is greedy w.r.t Φr^* , i.e.

- - $P_{u_{\Phi r}} \Phi r^* \le P_u \Phi r^*$ for all u.
- Hence,

$$\underbrace{(1-\alpha)\,\nu^T(I-\alpha\,P_{u\,\Phi r})^{-1}(I-\alpha\,P_u)\,\Phi r^* \leq (1-\alpha)\nu^T\Phi r^*,\,\forall u}_{C^T}$$

Add the necessary linear constraints to (ALP) $c^{T}(I-\alpha P_{u}) \Phi r^{*} \leq (1-\alpha) v^{T} \Phi r^{*}, \forall u$

Conclusions

- Some simple bounds on the (ALP) policy but not necessarily tight.
- Theoretical algorithm to find c as a probability distribution.
- Some insight in the role of c in (ALP)
- Need practical algorithms depending on ν and the Markov chain.