Для реализации алгоритма потребуется дополнительная реализация операций над векторами, включая псевдоскалярное произведение.

Алгоритм 1 (Алгоритм Скала отсечения относительно прямоугольной области).

Bход: $[(x_1, y_1), (x_2, y_2)]$ — отсекаемый отрезок, $(x_{\min}, y_{\min}), (x_{\max}, y_{\max})$ — координаты левого нижнего и правого верхнего углов окна отсечения соответственно

Выход: false, если заданный отрезок полностью невидим, true, если у отрезка есть видимая часть, в этом случае в $[(x_1, y_1), (x_2, y_2)]$ будут содержаться координаты начала и конца видимой части отрезка

- 1. $\bar{p} = (x_2 x_1, y_2 y_1), \ \bar{p}_1 = (x_1, y_1), \ i = 1, \ k = 0, \ \xi = \bar{p} \times ((x_{\text{max}}, y_{\text{min}}) \bar{p}_1), \ special_case = \texttt{true};$
- 2. Если i > 4 или k = 2, перейти к шагу 7, а иначе к шагу 3;
- 3. $\eta = \bar{p} \times \bar{s}_i$, где
 - (a) Если i = 1, $\bar{s}_i = (x_{\min}, y_{\min}) \bar{p}_1$;
 - (b) Если i = 2, $\bar{s}_i = (x_{\min}, y_{\max}) \bar{p}_1$;
 - (c) Если i = 3, $\bar{s}_i = (x_{\text{max}}, y_{\text{max}}) \bar{p}_1$;
 - (d) Если i = 4, $\bar{s}_i = (x_{\text{max}}, y_{\text{min}}) \bar{p}_1$;
- 4. Если $\xi \cdot \eta < 0$ или $(\xi \cdot \eta = 0$ и $\xi \neq 0)$ или $(\xi \cdot \eta = 0$ и $\eta \neq 0$ и $special_case)$

$$k = k+1,$$

$$t_k = \frac{\bar{s}_i \times \bar{q}_i}{\bar{p} \times \bar{q}_i},$$

где

- (a) Если i = 1, $\bar{q}_i = \bar{s}_4 \bar{s}_1$;
- (b) Если $i = 2, \, \bar{q}_i = \bar{s}_1 \bar{s}_2;$
- (c) Если i = 3, $\bar{q}_i = \bar{s}_2 \bar{s}_3$;
- (d) Если i = 4, $\bar{q}_i = \bar{s}_3 \bar{s}_4$;
- 5. Если $\xi=0$ и $\eta=0$

$$special_case = \texttt{true},$$

иначе

$$special_case = {\tt false}.$$

6. $\xi = \eta, \, i = i+1$ и переход к шагу 2;

- 7. Если k < 2, то отрезок полностью невидим: выдать false и закончить алгоритм.
- 8. Если $t_1 < 0$ и $t_2 < 0$ или $t_1 > 1$ и $t_2 > 1$, то отрезок полностью невидим: выдать false и закончить алгоритм.
- 9. Если $t_1 > t_2$, то меняем их значения местами.
- 10. Сохраним старые значения

$$x'_1 = x_1, \quad y'_1 = y_1, x'_2 = x_2, \quad y'_2 = y_2;$$

11. Если $t_1 > 0$,

$$x_1 = x'_1 + (x'_2 - x'_1)t_1,$$

 $y_1 = y'_1 + (y'_2 - y'_1)t_1;$

12. Если $t_2 < 1$,

$$x_2 = x'_1 + (x'_2 - x'_1)t_2,$$

 $y_2 = y'_1 + (y'_2 - y'_1)t_2;$

13. Выдать true и закончить алгоритм.