Medical images are very interesting as input for AI. But what types of medical images exist? A short introduction!

- Why do we want to do deep learning on medical images?
- Introduction to the different types of Medical Images
- Challenges related to applying AI to medical images.

Why do we want to do deep learning on medical images

- Deep learning can sometimes do better than a human
- Deep learning is a second opinion
- To save human resources, i.e. time.
 - Amount of available images can be large, difficult to see the total picture
 - Some tasks are very labor intensive, for example drawing brain regions in 3D image volume.

- Mammography interpretation
 - A lot of these, radiologists could use some help!
- Chest x-rays
 - A vast number of chest x-rays are taken, but radiologists are too few
- Cancer detection in histological tissue sections (Prostate)
- Detect neurological diseases (Alzheimers) in MR images
- Detect fractures in x-rays
- Segmentation of brains into anatomical brain regions
 - Very time consuming task!

X-ray

- First technique for imaging of the interior of a body
- X-rays are sent through the body and the rays coming through are detected
- Images tissue density
 - ->Bone and air cavities stand out
- 2D imaging techique
- Anatomical images
- Uses ionizing radiation

Fluoroscopy

 Same as x-ray, but uses a constant input of x-rays to produce live images

X-ray Computed tomography (CT)

 X-rays from many angles are combined to form 3D image volume

CT continued

• Can produce images with very high resolution (0.5 mm)

Reconstruction can give 2D slices in arbitrary directions

Contrast

CT continued

- Many applications
 - Head/neck infarction, tumours, calcifications, bone trauma MR is usually better, but may not be available or takes too long in emergency situations
 - Lungs
 - Angiography imaging of arteries and veins
 - Heart
 - Skeleton
 - Abdomen
- Higher radiation doses than x-ray

Magnetic resonance imaging (MR or MRI or NMR)

• Different settings in MR-machine gives different images! Many imaging machines in one!

 Excellent for soft tissue imaging high contrast

No radiation dose

Super short intro to MR theory

Hydrogen nuclei have spins

We add an external magnetic field

Radiowaves are applied

Nuclei emits radiowaves...

A signal is detected...

Images are formed!

MRI can image different tissue properties

• T1 and T2

Perfusion weighted

and many more!

Anatomical vs functional imaging

fMRI

DTI

Anatomical

MR continued

- Different image series are acquired in one imaging session
 - The combined information brings out more information
- Hazards
 - Noise: Mechanical stress in coils produces high noise
 - Radiowaves may heat tissue like in a microwave oven
- MRI is so exciting that Paul Lauterbur and Peter Mansfield received the nobel prize in medicine 2003 for their work in Magnetic Resonance Imaging

Nuclear medicine

Radioactive isotopes are used for imaging

- Mainly three different techniques
 - Single photon emission computed tomography (SPECT) 3D
 - Positron emission tomography (PET) 3D
 - Scintigraphy 2D

Images some sort of function

We image where the isotopes aggregate

- Attaching the isotopes to different molecules enables imaging of different types of kinetics
 - Iodine mark the activity of thyroid gland hyper- or hypoactivity or cancer
 - Technetium-99m mark activity in bone
 - Kidney function
 - F18-deoksyglukose marks tumor activity
 - .

PET vs. SPECT

- PET: nucleus decays by positron emission
 - Positron annihilates when it hits an electron and produces TWO gamma photons going in opposite directions

• SPECT: nucleus decays by some process producing a gamma photon

Some nuclear medicine images

Image formats in medical imaging

- DICOM (Digital Imaging and Communications in Medicine)
 - Used by all vendors of medical equipment
 - Used by image archive systems, Picture archiving and communication systems (PACS)

NIFTI (mostly used in neurological science)

Challenges

- Sufficient amounts of labelled data
- Going from 2D to 3D: huge amounts of data
- Lack of standardization of image acquisition
- Coregistration of different images series
- Geometrical distortions (MR)