Лекция №14

Формализация понятия иерархии >≯∈∉ →⇒

 $x_i, x_i \in H$;

 $x_{i} > x_{j} - x_{i}$ выше x_{j}, x_{j} непосредственно связан с x_{i}

> → H²

Для каждого $x_i \in H$ могут быть определены 2 множества: x_i^- и x_i^+

 x_{i^-} — это те элементы системы, которые являются иерархически подчинёнными рассматриваемому элементу x_{i}

 $x_i^-\!=\!\{x_j\in H\mid x_i>x_j\}$

 x_{i}^{+} — это те элементы системы, которым рассматриваемый элемент x_{i} является иерархически подчиненным

 $x_{i}^{+} = \{x_j \in H \mid x_j > x_i\}$

В соответствии с введённым понятием иерархической подчиненности понятие иерархии может быть определено как:

Н – это множество элементов, образующих систему. Множество Н является частично упорядоченными (элементы на одном уровне являются эквивалентными).

Цель > Подцельі, где i=1...n₂

Подцель₁ ~ Подцель₂ и так далее

Подцельі > Действиеі; j=1...n₃

Действие₁ ~ Действие₂ и так далее

Действие_і > Исход_к; k=1...n₄

 $Исход_1 \sim Исход_2$ и так далее

Множество H может быть разделено на подмножества Lk эквивалентных элементов следующим образом:

- 1. $L_1 = \{x_1\}$, где x_1 цель т.е. множество H является ограниченным
- 2. Если $x_i \in L_k \Rightarrow x_i^- \subset L_{k+1}$

Примечание: $x_1^- = L_2$

Понятие степени влияния

Для элементов x^j входящих в x_i^- должна быть определена функция $w_{xi}(x_j)$, характеризующая степень влияния x_j на x_i . $w_{xi}(x_j)$ способ отображения x_i^- на интервал [0; 1] $w_{xi}(x_i)$: $x_i^- \to (0;1]$. Условие по SUM[i]($w_{xi}(x_i)$) = 1

Таким образом определяет степень влияния x_i на x_i , стоящий на уровне выше.

Упрощённый вид иерархии элементов

Способ определения степеней влияния

 $w_{xi}(x_j)$ определяется для тех элементов x_j , которые $x_j \in L_{k-1}$; $x_i > x_j$ ($x_j \in x_i$ -)

Парные сравнения будут определять важность одних элементов по сравнению с другими

Алгоритм определения $w_{xi}(x_j)$:

- 1. Выполняется попарное сравнение элементов нижестоящего уровня по степени их влияния на k-й элемент i-го уровня.
- 2. Формируется матрица парных сравнений влияния на элемент $x_i \in L_k$ элементов $x_j \in L_{k+1}$
- 3. Определяется собственный вектор w_i степеней влияния нижестоящих элементов на i-й вышестоящий элемент

Вектор wi — это собственный вектор матрицы парных сравнений степеней влияния элементов $x_i \in x_i^-$ на элемент x_i

Вид вектора:

 $W_i = (W_{1i}, W_{2i}, ..., W_{Li});$

Если $w_{ji} > w_{li}$, то влияние x_j больше влияния x_l на x_i

Степень влияния w_{ij} определяет важность элемента x_j для элемента x_i , тогда элемент a_{pj} матрицы парных сравнений определяет насколько элемент x_p является для элемента x_i более важным чем элемент x_i .

Сформированные оценки парных сравнений для различных компонент системы должны быть хорошо согласуемыми (коэффициент согласованности матрицы → 1).

Пример хорошей согласованности оценок

Результатом определения степеней влияния элементов x_1 - x_3 на элемент x_i является вектор вида: wi = ()

Определение оценок каждой из альтернатив при принятии решений методом анализа иерархии