Statistical Inference and Multivariate Analysis (MA324)

Lecture SLIDES
Lecture 25

Linear Regression

Indian Institute of Technology Guwahati

Jan-May 2023

Research Question: What is the impact of attending classes on students' final marks

Research Question: What is the impact of attending classes on students' final marks

Let's start with a real data from IITG which you can feel about it!!

Scatter plot of number of days attended and marks by the students in MTech Data Science course (MA589)

- We will do a regression analysis to the above data to find the answer. Is using regression appropriate here?
- Strong Advice: As a Data Scientist/Statistician, you have to spent a lot
 of your time and effort to pre-process/clean the raw data to make it
 analysis ready. It is part of your job to clean the data: so learn it quickly!!

Here is the output after fitting a regression line in R:

Fitting Regression line

Scatter plot of number of days attended and marks by the students in MTech Data Science course (MA589):

with fitted regression line

Residual Analysis

Linear Models: Simple and Multiple Linear Regressions

The regression framework can be characterized in the following way¹:

- We have one particular variable that we are interested in understanding or modeling, such as sales of a particular product, sale price of a home, or voting preference of a particular voter. This variable is called the target, response, or dependent variable, and is usually represented by y.
- We have a set of p other variables that we think might be useful in predicting or modeling the target variable (the price of the product, the competitor's price, and so on; or the lot size, number of bedrooms, number of bathrooms of the home, and so on; or the gender, age, income, party membership of the voter, and so on). These are called the predicting, or independent variables, and are usually represented by x_1, x_2, \cdots, x_p .

¹Handbook of Regression Analysis. By Samprit Chatterjee and Jeffrey S. Simonoff.

- Typically, a regression analysis is used for one (or more) of three purposes:
 - **1** modeling the relationship between x and y;
 - prediction of the target variable (forecasting);
 - and testing of hypotheses.

Importance of graphing data before analyzing it

Which one of the above do you think has highest correlation and ideal for linear regression?

²The graph is taken from the Wikipedia

- Which one of the above do you think has highest correlation and ideal for linear regression?
- In all the four graphs: mean of x = 9 (with variance 11); mean of y = 7.50 (with variance 4.1); correlation between x and y = 0.816
- Fitted linear regression in each cases: y = 3 + 0.5x
- In 1973, Anscombe demonstrated the importance of graphing data² before analyzing it and the effect of outliers on statistical properties

²The graph is taken from the Wikipedia

Linear Models: Meaning of Linearity and Transformation

What does "Linear" mean?

- A linear model is linear in the parameters β , but not necessarily in the x's, e.g.
 - * $y = \beta_0 + \beta_1 x + \beta_2 x^2$ is a **linear model**, because it is linear in β (even though not in x).
 - * $y = \beta_0 + \beta_1 x^{\beta_2}$ is a **non-linear model**, because it is not linear in β .

Transformation

• Clearly $y = f(x) = \beta_0 x^{\beta_1}$ is **not a linear model,** but

$$\ln f(x) = \ln \beta_0 + \beta_1 \ln x$$

If we let $f^* = \ln f, \beta_0^* = \ln \beta_0, \beta_1^* = \beta_1, x^* = \ln x$, we have

$$f^* = \beta_0^* + \beta_1^* x^*,$$

which is a linear model.

Transformation

- Thus, although linear models seem to be simple and restrictive, they can
 actually be quite flexible by transformation of the response and the
 predictors.
- Linear models are not just straight lines, they can be curved. Can you give an examples?

Transform the following non-linear models to linear models:

- $y = \frac{e^{\beta x}}{1 + e^{\beta x}}$, where $y \in (0, 1)$.
- $y = e^{e^{\beta x}} 1$, where y > 0.

