

Charts

CPS 563 – Data Visualization

Dr. Tam Nguyen

tamnguyen@udayton.edu

Outline

- Data Visualization Process
- Some basic charts
- Stacked charts

Data Visualization Process

Data Layer

 Locating, obtaining data and importing data in proper format

We talked about the data in the previous lecture.

Mapping Layer

 Associating appropriate geometry with corresponding data channels

Graphics Layer

 Conversion of geometry into displayable image

Mapping Quantitative Values

- Position
- Length
- Angle/Slope
- Area
- Volume

Mapping Quantitative Values

Data Types

	Discrete (no between values)	Continuous (values between)
Ordered (values are comparable)		
Unordered (values not comparable)		

Bar Chart

Benefits from both position (top of bar) and length (size of bar)

Line Chart

Benefits from position but not length

Example

Scatter Plot

Relies mostly on position, but clusters also yield density

Example

Hours of study vs. Test scores

Gantt Chart

Benefits from both position and length

Henry Laurence Gantt

Example

Table

Example

Χ	1	2	3	4	5	6	7	8	9	10
1	1	2	ო	4	5	6	7	8	9	10
2	2	4	6	8	10	12	14	16	18	20
3	თ	6	9	12	15	18	21	24	27	30
4	4	8	12	16	20	24	28	32	36	40
5	5	10	15	20	25	30	35	40	45	50
6	6	12	18	24	30	36	42	48	54	60
7	7	14	21	28	35	42	49	56	63	70
8	8	16	24	32	40	48	56	64	72	80
9	9	18	27	36	45	54	63	72	81	90
10	10	20	30	40	50	60	70	80	90	100

Example

When to use?

	Quantitative Continuous	Bar	Line	
Dependent	Quantitative Discrete	Bar	Bar	
	Quantitative Continuous	Gantt	Scatter	
Independent	Nominal or Q. Discrete	Table	Gantt	
		Nominal or Q. Discrete	Quantitative Continuous	
		Independent		

Stacked Chart: Bar Chart Revisit

Benefits from both position (top of bar) and length (size of bar)

Stacked Bar Chart

Central limit theorem

→ as more bars are
added, sums will vary
less

Example

Relative Stacked Bar Chart

Pie Chart

- Used to indicate relative portions of a quantitative dependent variable of a single dimension
- Maps percentage of total to angle of wedge arc

Relative Stacked Bar Chart

Two variables: Position and Length

Stacking Order Matters

Two variables: Position > Length

Variance of lower stack elements influences perception of upper stack elements

Diverging Stacked Bar Charts

- Benefits from pos. & length
- Only works for two variables
- Negative connotation for lower bars

- Only indicates length
- Works for many variables

Stacked Bar Charts vs. Stacked Line Charts

Appropriate for continuous data over a continuous independent variable Can smooth regions using curves instead of line segments

Stacked Line Charts: Example

Beware of Pie Chart

Pie Chart of monthly export

Bar Chart of monthly export

Which tools can we use to plot charts?

Next class

• Please install Excel – Microsoft Office

Q&A