Kesetimbangan Kimia

Kesetimbangan kimia terjadi pada reaksi kimia yang reversibel. Reaksi reversibel adalah reaksi yang di mana produk reaksi dapat bereaksi balik membentuk reaktan. Kesetimbangan kimia tercapai ketika laju reaksi maju sama dengan laju reaksi balik dan konsentrasi dari reaktan-reaktan dan produk-produk tidak berubah lagi.

📝 Reaksi bolak-balik

a) Reaksi tidak dapat balik (ireversible)

Contoh: perkaratan & pembakaran

b) Reaksi dapat balik (reversible)

Contoh: reaksi yang terjadi: $N_2 + 3H_2 \rightleftharpoons NH_3$

🌠 Keadaan kesetimbangan

- a) Ditandai oleh zat pereaksi & hasil reaksi seolah-olah reaksi sudah berhenti, tetapi secara mikroskopik reaksi masih berjalan dan pada saat setimbang jumlah zat sudah tidak berubah.
- b) Kesetimbangan kimia terjadi saat laju reaksi maju = laju reaksi balik $V_1 = V_2$
- c) Kesetimbangan kimia bersifat dinamis (secara mikroskopis berjalan terus)

Kesetimbangan Homogen & Heterogen

a) Homogen : $N_{2(g)} + 3H_{2(g)} \Leftrightarrow 2NH_{3(g)}$

b) Heterogen : $CaCO_{3(s)} \leftrightharpoons CaO_{(s)} + CO_{2(g)}$

Kesetimbangan disosiasi

- a) Adalah peruraian zat menjadi lebih sederhana
- b) Yang berakhir dalam sistem terttup berakhir dengan kesetimbangan disosiasi

$$a = \frac{\text{Jumlah mol terdisosiasi}}{\text{jumlah mol mula-mula}}$$

a = derajat disosiasi

Tetapan Kesetimbangan

$$\circ$$
 sA + rB \rightleftharpoons pC + qD

$$K_{C} = \frac{[C]^{p} \cdot [D]^{q}}{[A]^{s} \cdot [B]^{r}}$$

$$K_C = \frac{(M_{produk})^{koef}}{(M_{reaktan})^{koef}}$$

 K_c = Konstanta kesetimbangan pada suhu tetap

(A,B,C,D) = konsentrasi zat (p,q,r,s) = Koefisien reaksi

Mproduk = Konsentrasi produk Mreaktan = Konsentrasi produk

* Kc hanya untuk gas dan larutan

$$K_c \neq K_p$$

$$K_{p} = \frac{(P_{C})^{p} \cdot [P_{D}]^{q}}{[P_{A}]^{s} \cdot [P_{B}]^{r}}$$

$$K_{p} = \frac{(P_{C})^{p} \cdot [P_{D}]^{q}}{[P_{A}]^{s} \cdot [P_{B}]^{r}}$$

$$K_p = Kc(RT)^{\Delta_n}$$

= Konstanta kesetimbangan pada tekanan tetap

 (P_C, P_D, P_B) = Tekanan parsial masing-masing zat

(p,q,r,) = Koefisien reaksi

= 0,082 L.atm/mol.K

= Suhu (K)

Δn = Jumlah koefisien zat produk – Jumlah

koefisien zat reaktan

* Kp hanya untuk gas

$$\circ$$
 A + B \rightleftharpoons C

 $P_{total} = P_A + P_B + P_C$; $P_{total} = tekanan total disistem$

=> Saat setimbang В mol saat setimbang : x mol y mol z mol

$$P_{A} = \frac{x}{x+y+z}$$
 . P_{total}

$$P_{A} = \frac{x}{x+y+z} \cdot P_{total}$$
 $P_{B} = \frac{y}{x+y+z} \cdot P_{total}$ $P_{C} = \frac{z}{x+y+z}$

$$P_{C} = \frac{z}{x+y+z}$$
 . P_{total}

$$P_n = \frac{\text{mol n saat setimbang}}{\text{Jumlah mol gas saat setimbang}} \, \boldsymbol{.} \, P_{\text{total}}$$

🌃 Mengubah nilai Kc

- Reaksi dibalik \rightarrow K_C' = $\frac{1}{K_C}$
- Reaksi dikali n \rightarrow $K_C' = K_C^n$
- Reaksi dijumlah \rightarrow $K_C' = K_{C1}, K_{C2},..., K_{Cn}$

Meramal arah reaksi

Rumus $Q_C = K_C$, tetapi Q_C menggunakan konsentrasi mula-mula zat

Jika $Q_C < K_C$, reaksi berlangsung kekanan sampai setimbang

Jika Q_C = K_C, reaksi campuran setimbang

Jika Q_C > K_C, reaksi berlangsung ke kiri sampai setimbang

Pergeseran Kesetimbangan

Faktor	Pergeseran
Konsentrasi ditambah	Ke arah berlawanan
Konsentrasi dikurang	Ke arah dikurangi
Suhu dinaikkan	Ke arah Endoterm $\Delta H = (+)$
7.	→ Mengubah nilai K _C & K _P
Suhu diturunkan	Ke arah Eksoterm $\Delta H = ()$
Volume diperbesar =	
tekanan diperkecil	Ke koefisien gas yang besar —
	jika tidak ada gas, pakai
	koefisien larutan
Volume diperkecil =	Ke koefisien gas yang kecil —
tekanan diperbesar	
Katalis	Tidak menggeser kesetimbangan, hanya mempercepat
	mencapai kesetimbangan

📝 Efek Pergeseran Kesetimbangan

- Kesetimbangan geser ke kanan → produk ↑; reaktan ↓
- Kesetimbangan geser ke kiri → produk ↓; reaktan ↑

Ket : ↑ = naik || ↓ = turun

🌃 Kesetimbangan dalam Industri

1) Pembuatan Amonia menurut proses Harber – Bosch

$$N_{2(g)} + 3H_{2(g)} \leftrightharpoons 2NH_{3(g)}$$

$$\Delta H = -92 \text{ KJ}$$

Kondisi produk optimal : (T = 500°C; P = 150 - 300 atm)

- konsentrasi N₂ & H₂ ↑
- konsentrasi NH₃↓ →

caranya dengan segera memisahkan amonia yang terbentuk kemudian didinginkan sehingga amonia menjadi cair

- Tekanan ↑
- suhu rendah → membuat reaksi berjalan sangat lambat sehingga perlu ditambahkan katalis berupa Fe dicampur Al₂O₃

- 2) Pembuatan Asam sulfat menurut proses kontak reaksi yang terjadi :
 - 1) $S_{(S)} + O_{2(g)} \longrightarrow SO_{2(g)}$
 - 2) $2SO_{2(g)} + O_{2(g)} \leftrightharpoons 2SO_{3(g)}$
 - 3) $H_2SO_{4(aq)} + SO_{3(g)} \longrightarrow H_2SO_{7(l)}$
 - 4) $H_2SO_{7(I)} + H_2O_{(I)} \longrightarrow H_2SO_{4(aq)}$
 - hanya reaksi (2) yang reversible sehingga yang dapat digeser kesetimbangannya hanya reaksi (2)

Kondisi produk optimal: (T = 500°C; P = 1 atm)

- Konsentrasi SO₂ & O₂ ↑
- Tekanan ↑ →

akan tetapi, pada tekanan 1 atm produknya sudah baik sehingga pada proses ini tekanan yang digunakan 1 atm

— Suhu rendah → berjalan lambat, diperlukan katalis V₂O₅