

SCHWEIZERISCHE EIDGENOSSENSCHAFT
EIDGENÖSSISCHES AMT FÜR GEISTIGES EIGENTUM

S

Internationale Klassifikation:

B 01 f 11/00

F 16 h 35/00

Gesuchsnummer: 11617/68

Anmeldungsdatum: 3. August 1968, 18 Uhr

Patent erteilt: 15. Dezember 1970

Patentschrift veröffentlicht: 21. Dezember 1970

HAUPTPATENT
Paul Schatz, Dornach
Hilfsmittel zur Erzeugung einer taumelnden Bewegung

Paul Schatz, Dornach, ist als Erfinder genannt worden

Bibliothek
Bur. Ind. Eigendom
12 FEB. 1971

1
Die vorliegende Erfindung betrifft ein Hilfsmittel zur Erzeugung einer taumelnden Bewegung. Solche Hilfsmittel sind an sich, beispielsweise aus der schweizerischen Patentschrift Nr. 216 760, bekannt. Das Hilfsmittel nach der vorliegenden Erfindung hat nun gegenüber den vorbekannten Apparaten und Einrichtungen den nicht zu unterschätzenden Vorteil, daß es bedeutend einfacher in der Herstellung ist, so daß es wegen der bedeutenden Preisersparnis für sehr viele Anwendungsfälle, für welche die Anschaffung eines der bekannten Geräte zu teuer war, zur Anwendung gelangen wird.

Der Erfindungsgegenstand ist dadurch gekennzeichnet, daß er zwei in verschiedenen Ebenen liegende, starr miteinander verbundene, konvexe Kufen aufweist.

Zweckmäßige Ausführungsformen erhält man, wenn die beiden Kufen dieselbe konstante Krümmung aufweisen, der Abstand der beiden Kufenzentren gleich groß wie der Kufenradius ist und die Ebenen, in denen die beiden Kufen liegen, senkrecht aufeinander stehen. In jedem Fall lassen sich die beiden Kufen durch einen Hüllkörper mit abwickelbarer Oberfläche verbinden. Es können die Kanten eines solchen Hüllkörpers dann die Kufen des Hilfsmittels bilden.

Nachfolgend werden anhand einer Zeichnung Ausführungsbeispiele des Erfindungsgegenstandes beschrieben. In der Zeichnung zeigt

die Fig. 1 ein erstes Ausführungsbeispiel,

die Fig. 2 bis 5 ein zweites Ausführungsbeispiel, und zwar die Fig. 2 in der Seitenansicht,

die Fig. 3 in der Vorderansicht, also in Richtung des Pfeiles III der Fig. 2,

die Fig. 4 in einer Schrägangsicht, also in Richtung des Pfeiles IV der Fig. 3, und

die Fig. 5 in einer etwas flacheren Ansicht, nämlich ungefähr in Richtung des Pfeiles V der Fig. 3;

die Fig. 6 zeigt die Abwicklung der Oberfläche des in den Fig. 2 bis 5 dargestellten Körpers,

die Fig. 7 einen geöffneten Taumelkörper und

die Fig. 8 eine Möglichkeit des motorischen Taumelns.

2
Das in der Fig. 1 dargestellte Hilfsmittel zur Erzeugung einer taumelnden Bewegung weist zwei konvexe, ebene Kufen 1 und 2 auf, die hier beide dieselbe konstante Krümmung besitzen, also Kreisbogenstücke sind.

5 Ihre Zentren sind mit 11 beziehungsweise 12 bezeichnet. Der Abstand dieser beiden Zentren ist gleich groß wie der Kufenradius r. Die Ebene, in der die eine Kufe liegt, steht senkrecht auf der Ebene, in welcher die andere Kufe liegt. Die beiden Kufen sind starr mit dem Behälter 3 verbunden, der sich irgendwie öffnen läßt. Er kann beispielsweise in der Mitte bei 3d aus zwei Hälften 3a und 3b zusammengesetzt sein, die durch Verschlüsse 3c zusammengehalten werden, und von denen der eine mit der Kufe 1 und der andere mit der Kufe 2 durch 15 irgendwelche festen oder lösbarcn Mittel verbunden ist.

Das zu mischende oder zu schüttelnde Gut wird in den Behälter 3 gegeben, und dieser wird, nachdem er geschlossen worden ist, auf dem Boden weggewälzt oder gerollt. Dabei liegen nur die beiden Kufen 1 und 2, und

20 zwar jede stets nur mit einer punktförmigen Berührungsstelle, auf dem Boden auf; der Behälter macht eine taumelnde Bewegung, die der taumelnden Bewegung des Mischbehälters nach der Patentschrift Nr. 216 760 entspricht.

Wie aus den beiden Linien 13 und 14 ersichtlich ist, können die beiden Kufen 1 und 2 durch einen Hüllkörper miteinander verbunden sein, der eine zwar gekrümmte, aber developable Oberfläche besitzt. Diese beiden Linien sind Tangenten dieses Körpers. Die Fig. 2 bis 5 zeigen 25 einen solchen Körper, bei welchem die beiden Kanten, die die beiden Kufen bilden, je Kreisbogenform haben und sich über einen Bogen von 240° erstrecken. Ein solcher Körper läßt sich beispielsweise aus einem ebenen Blechstreifen, wie er in der Fig. 6 dargestellt ist, herstellen, indem der Streifen so gewölbt wird, daß die beiden Kanten a und a', b und b' sowie c und c' und endlich d und d' aufeinanderzuliegen kommen. Die Fig. 6 gibt

30 gleichzeitig die Fläche am Boden an, auf welcher der Körper beim Rollen von d' nach d aufliegt.

Man kann, wie das in der Fig. 7 dargestellt ist, den Körper auch aus zwei miteinander lösbar verbundenen Teilen 7 und 8 aufbauen, die dann zusammen direkt einen Hohlraum zur Aufnahme eines einer Taumelbewegung zu unterwerfenden Gegenstandes oder Gemisches begrenzen. Selbstverständlich läßt sich der Körper auch aus einem Stück anfertigen und mit einer Einfüllöffnung versehen.

Die Fig. 8 zeigt eine Möglichkeit für ein maschinelles Taumeln: Das als Ganzes mit 9 bezeichnete Hilfsmittel kann einem der vorstehend beschriebenen Ausführungsbeispiele entsprechen. Es liegt auf einem geneigten, endlosen Band 10, das durch den Motor 11 mit solcher Geschwindigkeit angetrieben wird, daß das Hilfsmittel 9 sozusagen stets am gleichen Ort bleibt und «an Ort» die Taumelbewegung macht.

PATENTANSPRUCH

Hilfsmittel zur Erzeugung einer taumelnden Bewegung, dadurch gekennzeichnet, daß es zwei in verschiedenen Ebenen liegende, starr miteinander verbundene, konvexe Kufen aufweist.

UNTERANSPRÜCHE

1. Hilfsmittel nach Patentanspruch, dadurch gekennzeichnet, daß die beiden konvexen Kufen dieselbe konstante Krümmung besitzen.

2. Hilfsmittel nach Patentanspruch, dadurch gekennzeichnet, daß die Ebenen, in denen die beiden Kufen liegen, senkrecht aufeinander stehen.

3. Hilfsmittel nach Unteransprüchen 1 und 2, dadurch gekennzeichnet, daß der Abstand der beiden Kufenzentren gleich groß ist wie der Kufenradius.

4. Hilfsmittel nach Patentanspruch oder einem der Unteransprüche 1 bis 3, dadurch gekennzeichnet, daß die beiden Kufen durch einen Hüllkörper, der eine developable Oberfläche aufweist, miteinander verbunden sind.

5. Hilfsmittel nach Unteranspruch 4, dadurch gekennzeichnet, daß die beiden Kanten (4, 5) des Hüllkörpers die Kufen bilden.

6. Hilfsmittel nach Patentanspruch, dadurch gekennzeichnet, daß es mindestens zwei miteinander lösbar verbundene Teile (1, 2; 7, 8) aufweist, die zusammen einen Hohlraum zur Aufnahme eines einer Taumelbewegung zu unterwerfenden Gegenstandes begrenzen.

Paul Schatz

Vertreter: Patentanwaltsbüro Eder & Cie., Basel

500 000 *

1 Blatt

Fig.1

Fig.2

Fig.3

Fig.4

Fig.5

Fig.6

Fig.7

Fig.8

Nr. 242218

Klasse 96g
EXAMINER'S

COPY

DIV.

12

SCHWEIZERISCHE EIDGENOSSENSCHAFT

EIDG. AMT FÜR GEISTIGES EIGENTUM

PATENTSCHRIFT

Veröffentlicht am 16. September 1946

Q-74

Gesuch eingereicht: 4. Juni 1942, 11 Uhr. — Patent eingetragen: 30. April 1946.

HAUPTPATENT

Paul Schatz, Dornach (Solothurn, Schweiz).

Mechanismus zur Erzeugung einer taumelnden und schwenkenden Bewegung.

Die Erfindung betrifft einen Mechanismus zur Erzeugung einer taumelnden und schwenkenden Bewegung, die dadurch gekennzeichnet ist, daß der bewegte Körper zu einem auf einem Kegelmantel bewegten Wellenstück und zu einer in der Kegelspitze auf der Kegelachse senkrechten Achse exzentrisch angeordnet und in bezug auf beide drehbar bzw. schwenkbar gelagert ist.

Die Erfindung bezweckt die Bewegung eines Körpers in Form einer Achterschleife. Die technische Bedeutung der Achterschleifenbewegung beruht vorzugsweise in der Umkehr des Drehsinnes beim Übergang der Bewegung von der einen zur andern Hälfte der Achterschleife. Dieser Richtungswechsel der Bewegung ist insbesondere wertvoll zur Erzielung bestimmter Wirkungen in Schüttelmaschinen bei chemischen und lebensmitteltechnischen Prozessen. Es eignet sich deshalb die Erfindung besonders für Schüttelmaschinen, von denen eine als Ausführungsbeispiel der Erfindung im folgenden beschrieben ist.

In einem Gestell 1 ist eine als Gelenkkette ausgebildete Antriebswelle gelagert, deren Stücke 2, 2', 4, 4' und 6 durch die Gelenke 3, 5, 5' und 3' untereinander verbunden sind. Die Antriebswelle könnte auch aus einem einzigen starren Stück bestehen. Die gelenkige Verbindung gestattet aber, den Ausschlag des auf einem Kegelmantel bewegten Mittelstückes 6 zu verändern. Das Mittelstück 6 rotiert in der zylindrischen Hülse 7, welche durch das Drehlager 8 an der Drehbewegung verhindert wird, indem dieses die Zapfen aufnimmt, die in der Kegelspitze senkrecht zur Hülse angeordnet sind.

Das Drehlager 8 stellt eine Gabel dar, in welcher die zylindrische Hülse 7 nach Art eines Waagebalkens auf- und abschwenkbar gelagert ist. Seinerseits sitzt das Drehlager selbst drehbar in dem Fuß des Gestelles 1. Die Hülse 7 nimmt also nur teil an der kegelförmig taumelnden, nicht aber an der rotierenden Bewegung der Antriebswelle. Mit der Hülse 7 fest verbunden ist der Träger 10,

der mit dem Rahmen 11 starr verbunden ist, in welchem sich das Gefäß 12 befindet, das zur Aufnahme des zu bearbeitenden Gutes dient. Für viele Zwecke ausreichend wäre es,
5 wenn auch das Gefäß 12 mit dem Rahmen 11 starr verbunden wäre, so daß also das System 7, 10, 11, 12 einen einzigen starren Körper darstellt. Gemäß der Zeichnung ist aber das Gefäß 12 in dem Rahmen 11 drehbar gelagert und erhält eine zu der Geschwindigkeit der Antriebswelle in einem bestimmten Verhältnis stehende Drehgeschwindigkeit, indem ein Kranz 15 auf dem Gefäß 12 mittels des Riemens 14 durch das Rad 13,
15 welches fest auf das Wellenstück 6 montiert ist, in Drehung versetzt wird.

Die Glieder 2, 3, 4 und 5 könnten unbeschadet der Funktion weggelassen werden. Für manche Anwendungszwecke ist es vor
20 teilhaft, die Schrägstellung der Welle 6, das heißt den Ausschlag des Gefäßes 12, verändern zu können, und zwar nicht nur beim Stillstand der Maschine, sondern auch während sie in Betrieb ist. Zu diesem Zweck
25 kann der Antrieb von der einen Seite her erfolgen und der Lagerfuß 9 des Drehlagers 8 auf einen Schlitten montiert werden, welcher mittels Spindel und Handrad axial in dem Gestell 1 verschoben werden kann.

30 Im Interesse eines ruhigen Ganges der Maschine bei hoher Drehzahl empfiehlt es sich, an der Hülse 7 noch einen Träger vorzusehen, der dem gezeichneten Träger 10 entgegengesetzt, also nach unten gerichtet ist
35 und ein Gegengewicht zum Massenausgleich trägt. Um den Durchgang des Gegengewichtes zu ermöglichen, müßte die Gabel des Drehlagers entsprechend nach unten erweitert sein. Die beiden Zinken der Dreh-
40 lagergabel könnten aber auch auseinandergerückt und nach oben verlängert sein, und das Gefäß 12 könnte sich zwischen den Gabelzinken bewegen. Dann könnten diese Ga-

belzinken oberhalb des Gefäßes 12 miteinander verbunden und in einer dem Lagerfuß 9 45 entsprechenden, durch einen Rahmen mit dem Gestell 1 verbundenen ortsfesten Hülse drehbar gelagert sein. Dann hätte das Drehlager 8 nicht nur die Funktion, sondern auch die Form eines Cardangelenkringes, in welchem 50 das Gefäß 12, dem die taumelnde und schwenkende Achterschleifenbewegung erteilt werden soll, sich nicht wie beim Kompaß im Zentrum des Cardans befindet, sondern exzentrisch gehalten ist.

55

PATENTANSPRUCH:

Mechanismus zur Erzeugung einer taumelnden und schwenkenden Bewegung, dadurch gekennzeichnet, daß der bewegte Körper zu einem auf einem Kegelmantel be- 60 wegten Wellenstück und zu einer bei der Kegelspitze auf der Kegelachse senkrechten Achse exzentrisch angeordnet und in bezug auf beide Achsen dreh- bzw. schwenkbar gelagert ist.

65

UNTERANSPRÜCHE:

1. Mechanismus nach Patentanspruch, dadurch gekennzeichnet, daß der Körper in einem im Maschinengestell angeordneten Drehlager gelagert ist.

70

2. Mechanismus nach Patentanspruch, dadurch gekennzeichnet, daß der bewegte Körper drehbar gelagert ist und ihm eine Drehbewegung um die eigene Achse erteilt wird.

3. Mechanismus nach Patentanspruch, da- 75 durch gekennzeichnet, daß die Ausschläge der taumelnden Körperbewegung während des Betriebes verstellbar sind.

4. Mechanismus nach Patentanspruch und Unteranspruch 3, dadurch gekennzeichnet, daß das kegelförmig bewegte Wellenstück einen Teil einer Gelenkkette darstellt, dessen Neigungswinkel während des Betriebes verstellbar ist.

Paul Schatz.

74
86

242218

Paul Schatz

Patent Nr. 242218
1 Blatt

✓

Fig. 1.

NOV 1980

56652 D/31 J02 P64 KZAG = 03.03.78
KAZAN AGRIC INST *SU -780-871
03.03.78-SU-586072 (25.11.80) B01f-09/02 B28c-05/18
Mixer for industrial building materials - has pair of drums mounted on
two pairs of crankshafts, one pair linked to drive shaft to give
complex three-dimensional motion

03.03.78 as 586072 (29GW)
The mixer comprises drums (1), connected to the base by pivot/bracket transmission linkages (3,4 and 7,8) made as pairs of crankshafts, one of which is connected to the drive. The quality of mixing is increased and the dynamic load on the drive is reduced by fitting the two drums side by side, each with its own crankshafts, one of which (3,7) is connected to the drive motor shaft (9). The rotational axes of the pairs of crankshafts fastened to one of the drums cross at an angle of 90 deg. The distance between the rotational axes of the pairs of crankshafts is determined by a formula expressed in terms of the cross-over angle of the geometrical axes of the bearings of one pair of crankshafts, the length of the shaft, and the angle of crossover of the geometrical axes of bearings of the other pair (and equals 10 deg., the first angle). Bul. 43/23.11.80. (3pp)

Details A belt transmission (5) is used to transmit rotation from the drive shaft (9) to the crankshafts (3,7), which are pivotally linked to the drums (1,6). Rotation is also provided to the drums by the crankshafts (4,8), the rotational axes of which are at 90 deg. to the axes of the first two. The arrangement produces a

J(2-A2B)

1168

complicated three-dimensional motion which improves the quality of mixing of the ingredients inside the drums.

Союз Советских
Социалистических
Республик

Государственный комитет
СССР
по делам изобретений
и открытий

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(11) 780871

(61) Дополнительное к авт. свид-ву -

(22) Заявлено 03.03.78 (21) 2586072/29-33

(51) М. Кл.³

с присоединением заявки № -

В 01 F 9/02
В 28 C 5/18

(23) Приоритет -

Опубликовано 23.11.80. Бюллетень № 43

(53) УДК 621.929
(088.8)

Дата опубликования описания 25.11.80

(72) Авторы
изобретения

П. Г. Мудров и А. Г. Мудров

(71) Заявитель

Казанский ордена "Знак Почета" сельскохозяйственный
институт им. М. Горького

(54) СМЕСИТЕЛЬ

1
Изобретение относится к промышленности строительных материалов, а именно к устройствам для перемешивания материалов.

Известны смесители, включающие барабан, установленный с возможностью сложного пространственного перемещения на взаимно перпендикулярных полуосях, смонтированных на рычагах, свободно установленных на взаимно перпендикулярных осях, одна из которых закреплена на выходном валу привода, а другая - на свободно вращающейся оси, параллельной оси выходного вала привода [1].

Наиболее близкий предлагаемому смесителю содержит барабан, соединенный со станиной шарнирно-рычажной передачей в виде пары кривошипов, один из которых соединен с приводом [2].

Общим недостатком указанных устройств является невысокое качество перемешивания компонентов и трудность уравновешивания движущихся частей.

2
Цель изобретения - повышение качества перемешивания и снижение динамических нагрузок на привод.

Указанныя цель достигается тем, что смеситель, содержащий барабан, соединенный со станиной шарнирно-рычажной передачей в виде пары кривошипов, один из которых соединен с приводом, снабжен дополнительными барабаном и кривошипами, один из которых закреплен на валу привода, причем оси вращения каждой пары кривошипов, закрепленных на одном барабане, скрещиваются под углом 90° , а расстояние между осями вращения каждой пары кривошипов определяется по формуле $L = \frac{b_1}{\sin \alpha_1}$, где α_1 - угол скрещивания геометрических осей шарниров одной пары кривошипов, b_1 - длина кривошипа, а угол скрещивания геометрических осей шарниров другой пары кривошипов $\alpha_2 = 180^\circ - \alpha_1$.

На фиг. 1 изображен смеситель, общий вид; на фиг. 2 - схема смесителя.

Смеситель включает барабан 1, соединенный со станиной 2 шарнирно-рычажной передачей в виде пары кривошипов 3 и 4, один из которых 3 соединен с приводом 5. Смеситель снабжен дополнительным барабаном 6 и кривошипами 7 и 8, один из которых закреплен на валу 9 привода 5, причем оси вращения каждой пары кривошипов, закрепленных на одном барабане, скрещиваются под углом 90° , а расстояние между осями вращения каждой пары кривошипов определяется по

$$\text{формуле } L = \frac{\ell_1}{\sin \alpha_1}, \text{ где } \alpha_1 - \text{угол}$$

скрещивания геометрических осей шарниров одной пары кривошипов; ℓ_1 — длина кривошипа, а угол α_1 скрещивания геометрических осей шарниров другой пары равен $180^\circ - \alpha_1$.

Смеситель работает следующим образом.

От привода через клиноременную передачу 5 вращение передается валу 9 кривошипов 3 и 7, которые шарнирно связаны с барабанами 1 и 6.

Барабаны 1 и 6 передают вращение кривошипам 4 и 8, оси вращения которых расположены под углом 90° к осям первых двух. При этом за счет расположения осей вращения кривошипов под прямым углом и за счет скрещивающихся под углом α_1 и α_2 осей шарниров парных кривошипов барабаны 1 и 6 получают сложное пространственное движение. Кроме того, кривошипы 4 и 8 вращаются с одинаковой переменной угловой скоростью навстречу друг другу.

Такое сложное движение барабанов совместно с неравномерной скоростью их вращения обеспечивает качественное перемешивание находящихся в барабанах смешиваемых компонентов.

Кроме того, неравномерное вращение кривошипов 4 и 8 навстречу друг другу с равными угловыми скоростями (и, следовательно, с одинаковыми угловыми ус-

корениями) создают равные, но противоположно направленные моменты, которые в результате уравновешивают друг друга, т. е. момент от неравномерного вращения кривошипов на станину смесителя действовать не будет.

Предложенное выполнение смесителя позволяет значительно увеличить производительность за счет увеличения частоты вращения барабанов, улучшить качество перемешивания за счет сложного неравномерного движения барабанов и динамические свойства смесителя и его КПД.

15

Ф о р м у л а и з о б р е т е н и я

Смеситель, содержащий барабан, соединенный со станиной шарнирно-рычажной передачей в виде пары кривошипов, один из которых соединен с приводом, отличающийся тем, что, с целью повышения качества перемешивания и снижения динамических нагрузок на привод, он снабжен дополнительным барабаном и кривошипами, один из которых закреплен на валу привода, причем оси вращения каждой пары кривошипов, закрепленных на одном барабане, скрещиваются под углом 90° , а расстояние между осями вращения каждой пары кривошипов определяется по формуле $L = \frac{\ell_1}{\sin \alpha_1}$, где α_1 — угол скрещивания геометрических осей шарниров одной пары кривошипов; ℓ_1 — длина кривошипа, а угол α_2 скрещивания геометрических осей шарниров другой пары равен $180^\circ - \alpha_1$.

40

Источники информации
принятые во внимание при экспертизе

1. Проспект Швейцарии фирмы Вилли А. Баховен на смеситель "TURBULA", 1977.

2. Авторское свидетельство СССР № 651833, кл. В 01 F 9/02, 1976.

45

91-228679/31 J02 GUZA / 02.01.89
 GUZANOV VN *SU 1607-922-A
 02.01.89-SU-629797 (23.11.90) B01f-11
Mixer - has two magnetic couplings fixed on fork supports and drive shaft
 C91-099735

The driving shaft (3) and the freely rotating driven shaft (4) are parallel mounted on the bearings (2). The fork shaped supports (5,6) hold the joint mounted seat (7) inside which there is an exchangeable mixing drum (8). The fork support (5) is pivotally connected to the drive shaft (3) and the other support is joint connected to the driven shaft (4). Hermetically sealed screens (15) made of nonmagnetic material are fixed between the driven (9,14) and the driving (11,12) half couplings.

when the drive is in operation the driving magnetic half coupling (11) fixed on the drive shaft turns the half coupling (9) via its screen. The driven shaft (4) rotates in a non-uniform way accelerating and decelerating every 1/4 of a turn.

USE/ADVANTAGE - Device is used for mixing powders and liquids. Mixing process intensity is increased. Bul.43/23.11.90 (3pp)
 Dwg.No.1/1)

J(2-A2B)

© 1991 DERWENT PUBLICATIONS LTD.
 128, Theobalds Road, London WC1X 8RP, England
 US Office: Derwent Inc., 1313 Dolley Madison Boulevard,
 Suite 401, McLean, VA22101, USA
 Unauthorised copying of this abstract not permitted

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

(19) SU (11) 1607922 А 1

(51)5 B 01 F 11/00

ГОСУДАРСТВЕННЫЙ КОМИТЕТ
ПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМ
ПРИ ГНТ СССР

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

- (21) 4629797/23-26
(22) 02.01.89
(46) 23.11.90. Бюл. № 43
(72) В. Н. Гузанов
(53) 66.063(088.8)
(56) Авторское свидетельство СССР
№ 505430, кл. В-01-Ф-11/00, 1972
(54) СМЕСИТЕЛЬ
(57) Изобретение предназначено для смеши-
вания веществ (порошков, жидкостей, порош-

ков с жидкостями) и позволяет увеличить интенсивность смещивания за счет постоянного встряхивания смесительного барабана во время его сложного вращения. Устройство снабжено двумя магнитными муфтами, полумуфты одной из которых установлены на оси вильчатой опоры и приводном валу, а полумуфты другой — на оси другой вильчатой опоры и свободно вращающемся ведомом валу. 1 з.п.ф.-лы, 1 ил., 1 табл.

Изобретение относится к смещиванию веществ и может быть использовано для перемешивания порошков, жидкостей, порошков с жидкостями в химической, радиотехнической, пищевой и других отраслях.

Целью изобретения является повышение интенсивности процесса смещивания за счет постоянного встряхивания материала при надежной работе смесителя.

На чертеже представлен смеситель.

На основании 1 в подшипниковых узлах 2 установлены параллельно ведущий вал 3 и, свободно вращающийся ведомый вал 4. В вильчатых опорах 5 и 6 шарнирно закреплено гнездо 7, внутри которого установлен сменный смесительный барабан 8. Вильчатая опора 5 шарнирно соединена с ведущим валом 3, а другая — с ведомым валом 4. На ведущем валу 3 установлена ведомая магнитная полумуфта 9, соосно с ней на приводном валу 10 (привод вала не показан) — ведущая магнитная полумуфта 11. На ведомом валу 4 также установлена ведущая магнитная полумуфта 12 и соосно с ней на свободно вращающейся в своей подшипниковой опоре оси 13 — ведомая магнитная полумуфта 14. Между ведомыми 9 и 14 и ведущими 11 и 12 магнитными полумуфтами установлены герметичные экраны 15 из немагнитного материала, причем полумуфта 14 играет роль маховика. Гнездо 7 со смесительным барабаном 8, вильчатыми

опорами 5 и 6, валами 3 и 4, подшипниково-
ыми узлами 2 и магнитными полумуфтами 9 и 12 помещены в герметичный кор-
пус 16 через проем, закрываемый основа-
нием 1.

Смеситель работает следующим образом. При вращении привода ведущая магнитная полумуфта 11, установленная на приводном валу 10, через свой экран 15 вра-
щает ведомую магнитную полумуфту 9, устано-
вленную на ведущем валу 3, и виль-
чатую опору 5, а от нее гнездо 7 с
закрепленным в нем смесительным бараба-
ном 8. Другой конец гнезда 7, шарнирно соединенный с вильчатой опорой 6, вращает
ведомый вал 4 и установленную на нем
ведущую полумуфту 12 и через свой экран 15
ведомую магнитную полумуфту 14, играю-
щую роль маховика.

При вращении смесителя, основанного на принципе двойного карданного шарнира, имеет место неравномерность вращения ведомого вала 4, периодически получающего через 1/4 оборота ускоренное или замедленное вращение. Ведомая полумуфта 14, установленная на вращающейся оси 13 и получившая вращение от ведущей полумуфты 12, начинает препятствовать своей мас-
сой ускоренному или замедленному враще-
нию ведомого вала 4. Это усилие через вильчатые опоры 5 и 6 и гнездо 7 пере-
дается магнитной полумуфте 9. Магнит-

(19) SU (11) 1607922 А 1

ная полумуфта 9, проворачиваясь (в пределе, не превышающем угла срыва магнитных муфт) относительно магнитной полумуфты 11 в направлении вращения привода при ускоренном вращении или против направления вращения при замедленном вращении ведомого вала 4, возвращается под действием магнитных сил в исходное положение, а под действием сил инерции даже дальше в противоположном направлении. Встряхивающий эффект, возникающий при переходе от ускоренного вращения ведомого вала 4 к замедленному и наоборот благодаря нежесткой связи магнитных полумуфт 9, 11, 12 и 14, приобретает раскачивающий характер, при этом амплитуда этих колебаний значительно большая, нежели при жесткой связи привода с ведущим валом 3. Возникшие при встряхивании колебания в дальнейшем до следующего встряхивания не затухают, а поддерживаются магнитной связью полумуфт.

Таким образом, гнездо 7 со смесительным барабаном 8 совершает сложное пространственное движение в нескольких плоскостях при постоянном встряхивании, что значительно повышает интенсивность смещивания. Кроме того, герметичный корпус и ввод вращения к смесительному барабану от привода с помощью магнитных муфт через экраны, т. е. без уплотнения приводного вала, значительно улучшает условия труда при работе с токсичными материалами. Упругая магнитная связь смесительного барабана с приводом устраняет вредные жесткие ударные нагрузки на звенья смесителя, что создает условия для надежной долговечной работы смесителя.

Проводились сравнительные испытания известного и предлагаемого смесителей. Проводилось смещение золь-гель сфер двуокиси урана с твердым связующим — стеаратом цинка. Добавка стеарата цинка составляла 0,2% от массы золь-гель сфер.

Отбор проб проводился щелевым щупом в трех точках по высоте стакана после 10, 20, 30 и 40 мин смещения. Содержание стеарата в пробах по требованиям технологического процесса должно быть в пределах $0,2 \pm 0,05\%$.

Испытания проводились из десяти серий опытов для каждого смесителя.

В таблице приведены средние результаты для известного и предлагаемого смесителей.

Из таблицы видно, что допустимое содержание в пробах в пределах требуемых норм достигается в известном смесителе через 40 мин смещения, в предлагаемом смесителе — через 10 мин и не зависит от времени смещения.

Таким образом, предлагаемый смеситель имеет следующие технико-экономические преимущества по сравнению с известным:

Повышается интенсивность смещения за счет постоянного встряхивания материала в барабане в 4 раза.

Повышается надежность смесителя за счет упрощения конструкции, увеличивается межремонтный цикл ~ в 2 раза.

Улучшаются условия труда обслуживающего персонала за счет отдельного размещения приводной части и барабана.

Формула изобретения

- 15 1. Смеситель, содержащий смонтированный на основании закрытый барабан, шарнирно закрепленный с двух концов в вильчатых опорах, одна из которых шарнирно соединена с приводным валом, а другая — со свободно вращающимся ведомым валом, отличающийся тем, что, с целью повышения интенсивности процесса смещивания за счет постоянного встряхивания материала при надежной работе смесителя, устройство снабжено двумя магнитными муфтами, полумуфты одной из которых установлены на оси вильчатой опоры и приводном валу, а полумуфты второй — на оси другой вильчатой опоры и свободно вращающимся ведомом валу.
- 20 2. Смеситель по п. 1, отличающийся тем, что, с целью улучшения условий труда при работе с токсичными материалами, он снабжен двумя экранами, установленными между полумуфтами, и герметичным корпусом, в котором размещен барабан.
- 25

35	Время смещения, мин	Номер точки отбора проб	Содержание стеарата в пробах, %	
			Известный смеситель	Предлагаемый смеситель
40	10 ^t	1	0,28	0,21
		2	0,31	0,18
		3	0,41	0,23
	10 ^t	1	0,28	0,18
		2	0,51	0,16
		3	0,28	0,19
50	30 ^t	1	0,3	0,18
		2	0,3	0,18
		3	0,23	0,16
40 ^t	1	0,25	0,25	
	2	0,21	0,20	
	3	0,2	0,23	

Составитель Н. Федорова

Редактор В. Бугренкова
Заказ 3581Техред А. Кравчук
Тираж 506Корректор Л. Бескид
ПодписаноВИНИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР
113035, Москва, Ж-35, Раушская наб., д. 4/5
Производственно-издательский комбинат «Патент», г. Ужгород, ул. Гагарина, 101

KZAG = ★ P61 A6209 E/03 ★ SU -818-831
Component free abrasive finishing machine - has drum with axis
of one hinge consisting of ball foot, other axis linked to crank
mechanism

KAZAN AGRIC INST 15.05.79-SU-765978
(07.04.81) B24b-31/04

15.05.79 as 765978 Add to 643305 (822MI)

The device is based on Parent Cert. No. 643305, and comprises
drum (1), which is hinged on two supports, three-dimensional
cranks (2,3), bed (4), and ball foot (5) mounted in the hollow part (6)
of crank (3). The geometrical axis of the hollow part (6) is
perpendicular to the rotation axis of crank (3).

Rotation is transmitted from the drive to crank (2), which,
through drum (1), transmits rotation to crank (3) which rotates in
a plane at an angle to the plane of rotation of crank (2), so that the
latter is rotated at constant angular velocity and crank (3) at
variable velocity. The drum contg. the components is thus
subjected to complex three dimensional non-uniform motion
which intensifies the abrasive machining process. Bul. 13/7.4.81.
(2pp Dwg.No.1)

Союз Советских
Социалистических
Республик

Государственный комитет
СССР
по делам изобретений
и открытий

О П И С А Н И Е ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(11) 818831

(61) Дополнительное к авт. свид-ву 643305

(22) Заявлено 15.05.79 (21) 2765978/25-08
с присоединением заявки № —

(51) М. Кл.³
В 24В 31/04

(23) Приоритет —

(43) Опубликовано 07.04.81. Бюллетень № 13

(52) УДК 621.924.7
(088.8)

(45) Дата опубликования описания 07.04.81

(72) Авторы
изобретения

П. Г. Мудров и А. Г. Мудров

(71) Заявитель Казанский ордена «Знак Почета» сельскохозяйственный институт
им. М. Горького

(54) УСТРОЙСТВО ДЛЯ ГАЛТОВКИ ДЕТАЛЕЙ

1

Изобретение относится к области обработки деталей свободным абразивом в галтовочных барабанах.

По основному авт. св. № 643305 известно устройство для галтовки деталей, содержащее галтовочный барабан, установленный на шарнирах, связанных с приводом движений барабана посредством опор, выполненных в виде вращающихся и установленных шарнирно кривошипов, при этом оси вращения опор кривошипов расположены под углом, равным углу наклона геометрических осей шарниров барабана, а расстояние между геометрическими осями шарниров кривошипа и барабана выбраны из условия пропорциональности углам наклона их геометрических осей [1].

Недостаток известного устройства заключается в том, что необходимо очень точно соблюдать линейные и угловые параметры устройства.

Цель изобретения — упрощение монтажа звеньев устройства.

Указанная цель достигается тем, что ось одного шарнира барабана выполнена в виде шаровой пяты, а кривошип выполнен полым с пазом, причем геометрическая ось полой части кривошипа перпендикулярна оси его вращения.

2

На чертеже схематично изображено предложенное устройство, общий вид.

Устройство для галтовки содержит барабан 1, шарнирно установленный на двух опорах — пространственных кривошипах 2 и 3. Кривошип 2 связан с приводом барабана (на чертеже не показан) посредством, например, клиноременной передачи, позволяющей получать различные скорости вращения барабана. Кривошип 3 свободно соединяется со станиной 4. Ось вращения кривошипа 2 расположена к оси вращения кривошипа 3 под углом α_1 ($30^\circ \leq \alpha_1 \leq 150^\circ$) и отстоит эти оси на расстоянии l_1 .

Геометрическая ось вала и подшипника кривошипа 2 скрещиваются под углом α_2 ($6^\circ \leq \alpha_2 \leq 28^\circ$) и отстоят эти оси на кратчайшем расстоянии.

Ось 5 шарнира барабана 1 выполнена в виде шаровой пяты, вставленной в полую часть 6 кривошипа 3. Геометрическая ось полой части 6 перпендикулярна оси вращения кривошипа 3.

Относительное расположение осей 5 шарниров барабана 1 то же, что и осей вращения кривошипов 2 и 3.

Расстояния между геометрическими осями шарниров кривошипов и барабана пропорциональны синусам углов наклона их геометрических осей, т. е. в зависимости от

типа обрабатываемых деталей можно выбрать нужную частоту вращения барабана заменой, например, шкивов или шкива 7 клиноременной передачи и временем обработки деталей.

Устройство работает следующим образом.

От привода вращение передается кривошипу 2, который через барабан 1 передает вращение кривошипу 3, который вращается в плоскости, расположенной под углом α_1 к плоскости вращения кривошипа 2, при этом кривошип 2 вращается с постоянной угловой скоростью, а кривошип 3 — с переменной. Барабан 1 с деталями получает сложное пространственное неравномерное движение, что интенсифицирует процесс обработки изделий.

Выполнение связи барабана 1 с кривошипом 3 посредством шаровой пяты, вставленной в полую часть 6, обеспечит работу устройства при значительных погрешностях угловых и линейных параметров звеньев

устройства, ибо шаровая пята может занимать в полой части любое угловое положение в пределах ширины паза полой части, а также занимать разные положения вдоль этого паза, чем и компенсируется неточность изготовления и монтажа звеньев.

Формула изобретения

10 Устройство для галтовки деталей по авт. св. № 643305, отличающееся тем, что, с целью упрощения монтажа звеньев устройства, ось одного шарнира барабана выполнена в виде шаровой пяты, а кривошип выполнен полым с пазом, причем геометрическая ось полой части кривошипа перпендикулярна оси его вращения.

Источники информации, принятые во внимание при экспертизе

20 1. Авторское свидетельство СССР № 643305, кл. В 24В 31/04, 1976 (прототип).

Составитель И. Карапеева

Редактор В. Большакова

Техред Л. Орлова

Корректор А. Галахова

Заказ 515/9

Изд. № 252

Тираж 915

Подписанное

НПО «Поник» Государственного комитета СССР по делам изобретений и открытий
113035, Москва, Ж-35, Раушская наб., д. 4/5

KZAG= *

P61

J9504B/42 ★SU-643-305

Industrial workpieces chamfering head - has centres of rotation of crankshaft bearings set at an angle with reduced number of revolving hinges

KAZAN AGRIC INST 17.12.76-SU-430894

(28.01.79) B24b-31/04

Chamfering head has drum (1) universally set on two bearing points (2-3) in the form of crank-shafts, one of which is coupled to the drive giving a different speed of rotation to drum (1). Crank-shaft (3) is freely coupled to bed (4).

The axle of rotation 'a-a' of crank (2) is set at angle ' α_1 ' to the axle of rotation 'b-b' of crank (3) ($30^\circ \leq \alpha_1 \leq 150^\circ$) and is set at a distance from it of l_1 . The distance between the geometric axle of hinges of the crank and drum (1) is proportional to the sine of the angles of incline of their geometric centre line.

In addition the geometric centre line of the shaft and bearing of each crank-shaft cross at an angle $\alpha_2 = 6 - 28^\circ$. Dependent on the type of work-piece the necessary frequency of drum turn

and work time can be selected. Mudrov P. G., Mudrov A. G., Beloborodov V. A. Bul. 3/25. 1. 79. 17. 12. 76 as 430894 (3pp118)

Союз Советских
Социалистических
Республик

Государственный комитет
СССР
по делам изобретений
и открытий

О П И С А Н И Е
ИЗОБРЕТЕНИЯ
к авторскому свидетельству

(11) 643305

(61) Дополнительное к авт. свид-ву -
(22) Заявлено 17.12.76 (21) 2430894/25-08
с присоединением заявки № -
(23) Приоритет -
Опубликовано 25.01.79 Бюллетень № 3
Дата опубликования описания 28.01.79

(51) М. Кл.²

В 24 В 31/04

(53) УДК 621.924.
.7 (088.8)

(72) Авторы
изобретения

П. Г. Мудров, А. Г. Мудров и В. А. Белобородов

(71) Заявитель

Казанский сельскохозяйственный институт им. М. Горького

(54) УСТРОЙСТВО ДЛЯ ГАЛТОВКИ ДЕТАЛЕЙ

Изобретение относится к области поверхности обработки деталей и может быть использовано в машиностроительной, литейной и других промышленностях.

Известны устройства для поверхностной обработки деталей, содержащие барабан, установленный на шарнирных, связанных с приводом движения барабана опорах, выполненных в виде вращающихся и установленных шарнирно кривошипов [1].

Цель изобретения - упрощение конструкции устройства за счет уменьшения количества вращающихся шарниров.

Это достигается тем, что оси вращения опор кривошипов расположены под углом, равным углу наклона геометрических осей шарниров барабана, а расстояния между геометрическими осями шарниров кривошипа и барабана выбра-

ны из условия пропорциональности углам наклона их геометрических осей.

На фиг. 1 схематически изображено предложение устройства; на фиг. 2 - кривошип.

Устройство для галтовки содержит барабан 1, шарнирно установленный на двух опорах - пространственных кривошипах 2 и 3, один из которых связан с приводом, позволяющим получать различные скорости вращения барабана, например, клиноременной передачей (на чертеже не показан). Кривошип 3 свободно соединяется со станиной 4. Ось вращения а-а кривошипа 2 расположена к оси вращения б-б кривошипа 3 под углом α_1 ($30^\circ \leq \alpha_1 \leq 150^\circ$) и отстоит от нее на определенном расстоянии l_1 . Относительное расположение геометрических осей цапф барабана 1 то же, что и указанных осей вращения кривошипов. Кратчайшие расстояния между геометрическими осями шарниров кривошипа и

барабана пропорциональны синусам углов наклона их геометрических осей,
т. е.

$$\frac{e_1}{\sin \alpha_1} = \frac{e_2}{\sin \alpha_2}$$

Кроме того, геометрическая ось вала и подшипника каждого из кривошипов скрещиваются под углом $\alpha_2 = 6 - 28^\circ$.

В зависимости от типа обрабатываемых деталей можно выбрать нужную частоту вращения барабана и время обработки, а также подобрать оптимальные размеры барабана, имеющего сменную внутреннюю емкость.

Устройство работает следующим образом.

От привода вращение передается любому из кривошипов, например, кривошипу 2, который через барабан 1 передает вращение кривошипу 3, при этом кривошип 2 вращается в плоскости, расположенной под углом к плоскости вращения кривошипа 3, с постоянной угловой скоростью, а кривошип 3 – с переменной. Барабан 1 с деталями получает сложное пространственное неравномерное движение, увеличивающее интенсивность обработки изделий.

Предлагаемое устройство позволит значительно сократить расходы по изготовлению установки, повысить эффектив-

ность обработки изделий. Испытания, проведенные на опытной установке, показали, что время обработки уменьшается в 3,5 раза по сравнению с галтовкой в барабане с равномерным вращением.

Ф о р м у л а и з о б р е т е н и я

- 10 Устройство для галтовки деталей, содержащее барабан, установленный на шарнирных, связанных с приводом движения барабана опорах, выполненных в виде вращающихся и установленных шарнирно кривошипов, отличающиеся тем, что, с целью упрощения конструкции за счет уменьшения количества вращающихся шарниров, оси вращения опор кривошипов расположены под углом, равным углу наклона геометрических осей шарниров барабана, а расстояния между геометрическими осями шарниров кривошипа и барабана выбраны из условия пропорциональности углам наклона их геометрических осей.
- 15
- 20
- 25

Источники информации, принятые во внимание при экспертизе

1. Проспект швейцарской фирмы
30 Базель "Вилли А. Бахофен", системы Шатц, тип T2a, 1972.

Фиг. 1

Составитель Л. Карелина
 Редактор Т. Клюкина Техред И. Асталош Корректор П. Макаревич

Заказ 7905/13 Тираж 1011 Подписанное

ЦНИИПИ Государственного комитета СССР

по делам изобретений и открытий

113035, Москва, Ж-35, Раушская наб., д. 4/5

Филиал ППП "Патент", г. Ужгород, ул. Проектная, 4

73379 D/40 KAZAN AGRIC INST 26.03.79-SU-741488 (18.01.81) B01f-09/06 B28c-05/18	J02 P64 *SU -795-958	KZAG = 26.03.79 J(2-A2B)	174
Mixer for building materials - has drum mounted on pivoted forks by half spindles and on further spindles, one connected to drive shaft and other in a trunnion			
<p>26.03.79 as 741488 (29WD) Mixer, e.g. for building materials, consists of drum (1) mounted on a stand (9) so that it can move in three-dimensional space on mutually-perpendicular half spindles, disposed in forks (3), which in turn are mounted on spindles, one of which (4) is connected to a drive shaft and the other is placed in a trunnion (6).</p> <p>The technological possibilities are increased by providing supporting rods (7), one end of each of which is connected to the trunnion and the other to the stand (9) via a connector (8). The distance between the half-spindles of the drum exceeds the distance between the geometrical axes of the hinged forks; the shortest distance between the axes of the drive shaft and the connectors for the supporting rods is determined by the stated equation. Bul.2/15.1.81. (3pp Dwg.No.1)</p> <p>Details An electric motor is used to drive a vee belt and a reduction gear and clutch to rotate the drive shaft (4). This causes the fork (3) to move and with it the drum (1), the other fork (3) and, through the shaft (5), the movable support (7). As a result of the drum (1)</p>			

Союз Советских
Социалистических
Республик

Государственный комитет
СССР
по делам изобретений
и открытий

О П И С А Н И Е ИЗОБРЕТЕНИЯ

(11) 795958

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид-ву -

(22) Заявлено 26.03.79 (21) 2741488/29-33

(51) М. Кл.³

с присоединением заявки № -

В 28 С 5/18
В 01 F 9/06

(23) Приоритет -

Опубликовано 15.01.81. Бюллетень № 2

Дата опубликования описания 18.01.81

(53) УДК 621.929.6
(088.8)

(72) Авторы
изобретения

П.Г. Мудров, А.Г. Мудров и Б.К. Хуснутдинов

(71) Заявитель

Казанский ордена "Знак Почета" сельскохозяйственный
институт им. М. Горького

(54) СМЕСИТЕЛЬ

Изобретение относится к промышленности строительных материалов, а именно к устройствам для перемешивания.

Известен смеситель, барабан которого совершает сложное пространственное движение и шарнирно закреплен в вильчатых опорах [1].

Наиболее близкий к предлагаемому смеситель, содержащий барабан, установленный на станине с возможностью пространственного перемещения на взаимно перпендикулярных полуосях, размещенных в вилках, смонтированных на осиах, одна из которых соединена с валом привода, а другая размещена в цапфе [2].

Недостатком указанных устройств является необходимость соблюдения высокой точности изготовления.

Цель изобретения - повышение технологичности.

Указанная цель достигается тем, что смеситель, содержащий барабан, установленный на станине с возможностью пространственного перемещения на взаимно перпендикулярных полуосях, размещенных в вилках, смонтированных на осиах, одна из которых соединена с валом привода, а другая размещена в цапфе, снабжен стойкой, один конец

которой соединен с цапфой, а другой посредством пальца - со станиной, причем расстояние между полуосами барабана превышает расстояние между геометрическими осями шарниров вилок, а кратчайшее расстояние между осями вала привода и пальца определяется по формуле

$$\ell = \sqrt{\ell_d^2 + 2\ell_o \ell_p + \ell_o^2},$$

где ℓ_d - расстояние между полуосами барабана;

ℓ_p - расстояние между осью вала привода и геометрической осью шарниров вилки;

ℓ_o - высота стойки.

На фиг. 1 схематически изображено устройство, общий вид; на фиг. 2 - разрез А-А на фиг. 1; на фиг. 3 - разрез Б-Б на фиг. 1; на фиг. 4 - кинематическая схема устройства.

Смеситель содержит барабан 1, установленный с возможностью пространственного перемещения на взаимно перпендикулярных полуосях 2, размещенных в вилках 3, смонтированных на осиах, одна из которых 4 соединена с валом привода, а другая 5 размещена в цапфе 6.

Смеситель снабжен стойкой 7, один конец которой соединен с цапфой 6, а другой посредством пальца 8 – со станиной 9, причем расстояние между полуосами 2 барабана превышает расстояние между геометрическими осями шарниров вилок 3, а кратчайшее расстояние между осями 4 вала привода и пальца 8 определяется по формуле.

$$\ell = \sqrt{\ell_d^2 + 2\ell_o\ell_p + \ell_o^2},$$

где ℓ_d – расстояние между полуосями барабана;

ℓ_p – расстояние между осью вала привода и геометрической осью шарниров вилки;

ℓ_o – высота стойки.

Вилки 3 смонтированы на осях 4 и 5 посредством пальцев 10. Ось 4 может быть соединена через муфту 11 с приводным валом редуктора 12, который через клиновременную передачу 13 связан с электродвигателем 14.

В барабане 1 полуоси 2 размещаются друг от друга на расстоянии ℓ_d , выбираемом конструктивно в зависимости от производственных нужд, т.е. от объема перемешиваемой массы компонентов. Высота стойки 7 выбирается произвольно.

Устройство работает следующим образом.

От электродвигателя 14 через клиновременную передачу 13, редуктор 12 и муфту 11 вращение передается оси 4, которая передает движение вилке 3, барабану 1, другой вилке 3 и через ось 5 подвижной опоре 7. Барабан 1 в результате получает сложное пространственное перемещение, поворачиваясь в разные стороны вокруг полуосей 2 и одновременно совершая качания относительно вилок 3.

За счет подвижной опоры 7 барабан 1 дополнительно совершает сильное встрахивающее движение при крайних ее положениях.

Силу встрахивающего воздействия можно регулировать высотой подвижной

опоры 7, при большой высоте опоры сила встрахивания барабана больше. При увеличенной высоте опоры смеситель можно рекомендовать для смещивания наиболее вязких и трудносмешиваемых компонентов.

Предлагаемое выполнение смесителя позволяет значительно интенсифицировать процесс перемешивания смеси и повысить ее качество.

10

Формула изобретения

Смеситель, содержащий барабан, установленный на станине с возможностью пространственного перемещения на взаимно перпендикулярных полуосях, размещенных в вилках, смонтированных на осях, одна из которых соединена с валом привода, а другая размещена в цапфе, отличающийся тем, что, с целью повышения технологичности, он снабжен стойкой, один конец которой соединен с цапфой, а другой посредством пальца – со станиной, причем расстояние между полуосями барабана превышает расстояние между геометрическими осями шарниров вилок, а кратчайшее расстояние между осями вала привода и пальца определяется по формуле

$$\ell = \sqrt{\ell_d^2 + 2\ell_o\ell_p + \ell_o^2},$$

где ℓ_d – расстояние между полуосями барабана;

ℓ_p – расстояние между осью вала привода и геометрической осью шарниров вилки;

ℓ_o – высота стойки.

Источники информации, принятые во внимание при экспертизе

1. Авторское свидетельство СССР № 505430, кл. В 28 С 5/04, 1972.

2. Авторское свидетельство СССР № 292797, кл. В 28 С 5/18, 1969.

Фиг.1

Фиг.3

Фиг.4

Составитель Н. Ширинкина

Редактор Е. Кинив

Техред С. Мигунова

Корректор Г. Назарова

Заказ 9565/22

Тираж 638

Подписьное

ВНИИПИ Государственного комитета СССР
по делам изобретений и открытий

113035, Москва, Ж-35, Раушская наб., д. 4/5

SIEI ★

P61

D4457C/16 ★DT 2842-110

Quartz resonator platelet finishing system - using tumbling in rotary barrel-shaped vessel which is swivelled during rotation

SIEMENS AG 27.09.78-DT-842110
(10.04.80) B24b-31/06

Quartz resonator plates for use in oscillator circuits are finished by tumbling the platelets in a container (1) together with a grinding agent. The container has a round cross-section and its length is no more than five times its diameter.

The container has a double-conical (barrel) shape and its centre line, which in the rest position is horizontal, is swivelled about the centre of the container whilst it rotates about its centre line.

27.9.78. as 842110 (10pp1190)

⑯
⑰
⑱
⑲

Offenlegungsschrift 28 42 110

Aktenzeichen: P 28 42 110.5-14
 Anmeldetag: 27. 9. 78
 Offenlegungstag: 10. 4. 80

⑳

Unionspriorität:

㉑ ㉒ ㉓ ㉔

㉕

Bezeichnung:

Verfahren zum Abgleichen der Schwingfrequenz von im wesentlichen plattenförmigen Resonatoren

㉖

Anmelder:

Siemens AG, 1000 Berlin und 8000 München

㉗

Erfinder:

Seiffert, Heinz; Wimmer, Alfred; 8000 München

Prüfungsantrag gem. § 28b PatG ist gestellt

Patentanspruch

Verfahren zum Abgleichen der Schwingfrequenz von im wesentlichen plattenförmigen Resonatoren; wobei diese 5 in einem Behälter zusammen mit Schleifmitteln einer Umläufigbewegung ausgesetzt werden, daß durch gekennzeichnet, daß ein zumindest innenseitig einen runden Querschnitt aufweisender Behälter (1) mit einem Verhältnis von Länge zu Durchmesser von unter 5:1 10 verwendet wird und daß dieser Behälter (1) zugleich einer Taumelbewegung um seine im Ruhezustand horizontal gerichtete Längsachse mit etwa der Behältermitte als Drehpunkt, wobei die Behälterlängsachse im wesentlichen den Mantel eines Doppelkegels überstreicht und einer 15 Rotationsbewegung um seine Längsachse ausgesetzt wird.

- 2 -

SIEMENS AKTIENGESELLSCHAFT
Berlin und München

Unser Zeichen
VPA
78 P 6746 BRD

5 Verfahren zum Abgleichen der Schwingfrequenz von im
wesentlichen plattenförmigen Resonatoren

Die Erfindung bezieht sich auf ein Verfahren zum Ab-
gleichen der Schwingfrequenz von im wesentlichen plat-
tenförmigen Resonatoren, wobei diese in einem Behälter
zusammen mit Schleifmitteln einer Umwälzbewegung aus-
gesetzt werden.

Vor allem bei Quarzresonatoren, die als Dickenscherungs-
schwinger zur Stabilisierung der Schwingfrequenz von
Oszillatorschaltungen verwendet werden, ist die Dicke
des Resonators, also der Abstand zwischen seinen
großen Oberflächen, die frequenzbestimmende Größe. Der
Abgleich eines solchen Resonators auf eine bestimmte
Resonanzfrequenz erfolgt daher im allgemeinen durch
eine Verminderung der Dicke des Resonators in einem
Feinbearbeitungsgang nachdem der Resonator in einem
Grobearbeitungsgang zunächst als Platte mit größerer
Dicke als der vorgesehenen hergestellt worden ist.

Rt 1 Sse - 27.9.1978

030015/0180

Der Materialabtrag von den Resonatoren kann vorteilhaft dadurch vorgenommen werden, daß eine Mehrzahl von diesen zusammen mit Schleifmitteln in einem abgeschlossenen Behälter einer Umwälzbewegung ausgesetzt wird.

- 5 Eine solche Maßnahme ist z.B. aus der US-PS 2 387 135 bekannt.

Bei diesem bekannten Verfahren werden die zu bearbeitenden Resonatoren zusammen mit einem Schleifmittel in Behälter mit im Querschnitt rechteckiger Innenkontur eingebracht und sodann der Behälter um seine horizontal gerichtete Längsachse gedreht. Da der Behälter nicht vollständig gefüllt ist, kann das Resonator-Schleifmittelgemisch, das in einer bestimmten Drehposition des Behälters eine Ecke des Behälters ausfüllt, beim Weiterdrehen des Behälters über eine Behälter-Seitenwand hinabgleiten, wobei das Resonator-Schleifmittelgemisch umgewälzt wird.

20 Hierbei findet ein sich gleichmäßig über die gesamte Oberfläche des Resonators erstreckender Materialabtrag statt, wobei jedoch ein bestimmter Behälterdrehzahlbereich eingehalten werden muß.

25 Soll ein solcher Materialabtrag bei plankonvexen Resonatoren vorgenommen werden, dann ist diese Methode weniger gut geeignet, da es dann bei diesen Resonatoren zu einem stärkeren unerwünschten zentralen Materialabtrag kommen kann.

30

Aufgabe vorliegender Erfindung ist es daher, ein Verfahren der eingangs genannten Art so weiterzubilden, daß der Frequenzabgleich von Dickenscherungsschwingern durch Materialabtrag wesentlich gleichmäßiger gestaltet

35 werden kann.

Erfindungsgemäß ergibt sich die Lösung dieser Aufgabe dadurch, daß ein zumindest innenseitig einen runden Querschnitt aufweisender Behälter mit einem Verhältnis von Länge zu Durchmesser von unter 5:1 verwendet wird 5 und daß dieser Behälter zugleich einer Taumelbewegung um seine im Ruhezustand horizontal gerichtete Längsachse mit etwa der Behältermitte als Drehpunkt, wobei die Behälterlängsachse im wesentlichen den Mantel eines Doppelkegels überstreicht und einer Rotationsbewegung 10 um seine Längsachse ausgesetzt wird.

Zwar ist schon aus der US-PS 2 837 136 eine Vorrichtung bekannt, bei der mehrere röhrenförmige Behälter zugleich eine Taumelbewegung und eine Rotationsbewegung 15 ausführen. Die Taumelbewegung ist hierbei aber entweder nur eine Wippbewegung in einer Ebene oder hat ihren Drehpunkt am Ende der Behälter. Das Längendurchmesser-Verhältnis bei diesem Behälter ist darüberhinaus größer als 10:1, so daß im wesentlichen nur Gleitbewegungen der Resonatoren in den Behältern stattfinden. 20 Infolgedessen ist diese Vorrichtung zum gleichmäßig sich über die gesamte Oberfläche des Resonators erstreckenden Materialabtrag ungeeignet.

25 Die Erfindung geht dabei von der Erkenntnis aus, daß eine solche Bewegungsform des Behälters, die ursprüngliche z.B. plankonvexe Kontur der Resonatoren nahezu vollständig ungeändert läßt und ein nahezu zeitproportionaler Materialabtrag erzielt werden kann.

30

Als besonders geeignete Antriebsvorrichtung zur Durchführung des Verfahrens nach der Erfindung hat sich eine aus der CH-PS 216 760 bekannte Vorrichtung zur Erzeugung einer zugleich taumelnden und rotierenden 35 Behälterbewegung erwiesen.

Bei den relativ geringen Drehzahlen dieses Antriebes treten überraschenderweise keinerlei Beschädigungen der relativ sehr dünnen Resonatoren auf und es wird ein sehr gleichmäßig über die ganze Oberfläche der Resonatoren sich erstreckender und vor allem ein zeitproportionaler und relativ langsam vor sich gehender Materialabtrag erhalten. Wegen der Zeitproportionalität und des relativ langsam Abtrages ist es unkompliziert möglich, die Bearbeitungszeit so zu wählen, bzw. zu begrenzen, daß ohne weitere Frequenzzwischenmessungen die angestrebte Resonatordicke erhalten wird. Zwar dauert infolge des relativ langsam vor sich gehenden Materialabtrages der Bearbeitungsvorgang relativ lang. Dies wird jedoch dadurch ausgeglichen, daß etwa 2000 Resonatoren zugleich in einem Behälter von ca. 1-2 l Inhalt bearbeitet werden können.

Ein abschließender Poliervorgang für die Resonatoren, wobei unter Verwendung eines Poliermittels anstelle des Schleifmittels dasselbe Verfahren wie zum Materialabtrag eingesetzt wird, kann weggelassen werden, wenn die durch das Polieren der Resonatoroberflächen erzielbaren hohen Gütwerte für die Resonatoren nicht erforderlich sind.

25

Anhand einer Figur wird ein Ausführungsbeispiel des erfundungsgemäßen Verfahrens noch näher erläutert.

Die Figur zeigt eine Vorrichtung 9 zur Erzeugung einer zugleich taumelnden und rotierenden Bewegung für einen Behälter 1 z.B. aus Kunststoff, der einen kohlzyllrischen Innenraum hat, mit einem Verhältnis von Länge zu Durchmesser von etwa 3:1, und durch einen Deckel 2 verschlossen werden kann.

Eine zunächst einem Grobbearbeitungsvorgang unterworfene Mehrzahl von Resonatoren wird auf ihre Istfrequenz hin gemessen und danach in Mengen aufgeteilt, wobei jede dieser Mengen nur jeweils die Resonatoren 5 umfasst, die mit ihren Istfrequenzen in einem bestimmten Istfrequenzbereich liegen. Die Größe der Istfrequenzbereiche ist so gewählt, daß sie etwa dem Toleranzfeld entspricht, das vor dem Bedampfen der Resonatoren mit Elektrodenmaterial hinsichtlich der Sollfrequenz 10 zugelassen werden kann.

Die Resonatoren der Menge des von der Sollfrequenz am weitesten abliegenden Frequenzbereiches werden dann als erste in den Behälter 1 gebracht. Der Behälter muß 15 außerdem mit einem geeigneten Schleifmittel und z.B. mit Wasser beaufschlagt werden. Anschließend wird der Behälter 1 mit dem Deckel 2 verschlossen und in dem mit dem Antriebsteil 3 verbundenen Käfig 4 befestigt. Der Käfig 4 wird über zwei U-förmige Bügel 5 und 6, sowie 20 Antriebswellen 7, 8 bewegt, wobei die Wellen 7, 8 zu einander gegenläufig angetrieben werden. Sowohl die Wellen 7, 8 sind mit den Bügel 5, 6, als auch die Bügel 5, 6 mit dem Käfig 4 über Drehgelenke verbunden. Die Verbindungsachsen 10, 11 der Bügel 5, 6 mit dem 25 Käfig 4 sind zudem gegeneinander um 90° verdreht. Infolgedessen führt der Behälter 1 mit seiner Längsachse beim Betrieb der Vorrichtung 9 eine Bewegung aus, die in etwa dem Mantel eines Doppelkegels folgt. Zugleich dreht sich der Behälter 1 um seine Längsachse.

30 Weitere Einzelheiten einer solchen Vorrichtung ergeben sich aus der CH-PS 216 760.

Hält man die Vorrichtung über eine bestimmte, durch 35 Erfahrung ermittelte Zeitspanne in Betrieb, so sind die

Resonanzfrequenzen der in dem Behälter 1 befindlichen Resonatoren durch den bewirkten Materialabtrag in einen Bereich verschoben worden, der mit dem Frequenzbereich der nächsten Resonatormenge übereinstimmt. Nach Stillsetzung der Vorrichtung kann daher nun die nächste Resonatormenge zu den in dem Behälter 1 befindlichen Resonatoren hinzugefügt werden. Danach wird die Vorrichtung wiederum in Betrieb genommen. Dieser Vorgang wird so lange wiederholt, bis sich sämtliche Resonatoren, die 10 den verschiedenen Frequenzbereichen zugeordnet worden sind in dem Behälter 1 befinden. Die Resonanzfrequenzen dieser Resonatoren befinden sich dann alle in einem bestimmten relativ kleinen Frequenzbereich, dessen Größe einem der Teilstufenbereiche entspricht. Die Vorrichtung wird nun wiederum so lange in Betrieb gesetzt, bis eine durch Erfahrung gewonnene Zeitspanne verstrichen ist. Dadurch wird der relativ kleine Frequenzbereich, in dem nun sämtliche Resonatoren mit ihren Resonanzfrequenzen liegen in die Nähe der Sollfrequenz dieser Resonatoren gebracht. Die Resonatoren können nun dem Behälter 1 entnommen werden. Nachdem die Resonatoren vom Schleifschlamm gereinigt worden sind, können sie z.B. nochmals in einen Behälter 1 eingebracht werden, der mit einem geeigneten Poliermittel beaufschlagt ist. 25 Die Inbetriebnahme der Vorrichtung 9 zusammen mit diesem Behälter führt dann dazu, daß die Oberflächen der Resonatoren poliert werden, wobei nur noch ein ganz geringfügiger Materialabtrag stattfindet. Die anschließend dem Behälter 1 entnommenen und gereinigten 30 Resonatoren brauchen dann nur noch mit Elektroden versehen werden, wobei durch die Elektrodenmasse ein Resonanzfrequenzfeinstabgleich möglich ist.

1 Patentanspruch

35 1 Figur

Zusammenfassung

Verfahren zum Abgleichen der Schwingfrequenz von im
wesentlichen plattenförmigen Resonatoren

5

Bei dem erfindungsgemäßen Verfahren werden eine Vielzahl von Resonatoren zugleich zusammen mit einem Schleifmittel und Wasser in einen Behälter (1) eingebracht und sodann der Behälter einer zugleich taumelnden und rotierenden Bewegung um seine im Ruhezustand horizontal gerichtete Längsachse ausgesetzt, wobei die Behälterlängsachse im wesentlichen den Mantel eines Doppelkegels überstreicht. Hierdurch wird ein sich auch bei plankonvexen oder bikonvexen gleichmäßig über die Oberfläche der Resonatoren erstreckender Materialabtrag erhalten, der die ursprüngliche Resonatorform unverändert lässt und nahezu genau zeitproportional vor sich geht.

Int. Cl.²:
Anmeldetag:
Offenlegungstag:

B 24 B 31/06
2 September 1978
10. April 1980

2842 110

- 9 -

78 P 6746 BRD

1/1

030015/0180

75366 D/41 J02 P64 KZAG= 12.03.79
 KAZAN AGRIC INST *SU-797-878
 12.03.79-SU-736311 (25.01.81) B01f-09/06 B28c-05/18
 Building material charge mixer - has complex vibratory motion based on balancer adapted to drive crank and drum journals

12.03.79 as 736311 (132VE)
 The mixer comprises a drive drum (1) supported by two cranks (2,3) with their hinge geometric axes and rotation axes intersecting at an angle of 25.65 and 145.178 deg. respectively, the ratio between the crank length and the multiple of the distance between their rotation axes being equal to that of the sines of the geometric axis intersection angles.

To increase the mix quality, one of the cranks has a balancer (4), the length and angle between the hinge geometric axes of which equal the multiple distance and angle between the geometric axis of the balancer and the axis of rotation of the drive crank, while the multiple distance and the angle between the geometric axes of the drum journals is twice the value of the corresponding angle and distance of the balancer, the ratio of the crank length to the distance between the journals equalling that of the sines of the angles of intersection of their geometric axes.
 Bul.3/23.1.81 (3pp Dwg.No.1)

Example

With drive (7), V-belt (6) and counterweights, the drum describes both a complex three-dimensional non-uniform and

J(2-A2B)

186

vibrating motion. The mixing regime can be adjusted by altering the crank rotation frequency and also the crank and balancer parameters.

Союз Советских
Социалистических
Республик

Государственный комитет
СССР
по делам изобретений
и открытий

О П И С А Н И Е ИЗОБРЕТЕНИЯ

(11) 797878

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид-ву —

(22) Заявлено 12.03.79 (21) 2736311/29-33

с присоединением заявки № —

(23) Приоритет —

Опубликовано 23.01.81. Бюллетень № 3

Дата опубликования описания 25.01.81

(51) М. Кл.³
В 28 С 5/18
В 01 F 9/06

(53) УДК 621.929.
.6(088.8)

(72) Авторы
изобретения

П. Г. Мудров, А. Г. Мудров и А. П. Мудров

(71) Заявитель

Казанский ордена "Знак Почета" сельскохозяйственный
институт им. М. Горького

(54) СМЕСИТЕЛЬ

Изобретение относится к промышленности строительных материалов, в частности к устройствам для перемешивания материалов.

Известен смеситель, содержащий привод и барабан с цапфами, закрепленный с возможностью вращения на неподвижных опорах перпендикулярно продольной оси барабана [1].

Наиболее близким к предлагаемому является смеситель, содержащий приводной барабан с цапфами, закрепленный на опорах, выполненных в виде двух пространственных кривошипов со скрещивающимися под углом 25-65° геометрическими осями шарниров и скрещивающимися под углом 145-178° осями их вращения, отношение длины кривошипов которых к кратчайшему расстоянию между осями их вращения равно отношению синусов углов скрещивания их геометрических осей шарниров, одна из опор выполнена с балансиром, длина и угол между геометрическими осями шарниров которого равны кратчайшему расстоянию и углу между геометрической осью балансира и осью вращения ведущего кривошипа, а кратчайшее расстояние и угол между геометрическими

2
Указанные устройства не обеспечивают требуемое качество приготавливаемой смеси.
Цель изобретения — повышение качества смеси.
Указанные цель достигается тем, что в смесителе, содержащем приводной барабан с цапфами, закрепленный на опорах, выполненных в виде двух пространственных кривошипов со скрещивающимися под углом 25-65° геометрическими осями шарниров и скрещивающимися под углом 145-178° осями их вращения, отношение длины кривошипов которых к кратчайшему расстоянию между осями их вращения равно отношению синусов углов скрещивания их геометрических осей шарниров, одна из опор выполнена с балансиром, длина и угол между геометрическими осями шарниров которого равны кратчайшему расстоянию и углу между геометрической осью балансира и осью вращения ведущего кривошипа, а кратчайшее расстояние и угол между геометрическими

кими осями цапф барабана равно удвоенному значению соответствующих углов и расстояния балансира, причем отношение длины кривошипов к расстоянию между цапфами барабана равно отношению синусов углов скрещивания их геометрических осей.

На чертеже представлено предлагаемое устройство, общий вид.

Смеситель содержит барабан 1 с цапфами, закрепленный на опорах, выполненных в виде двух пространственных кривошипов 2 и 3 со скрещивающимися под углом $\alpha = 25-65^\circ$ геометрическими осями шарниров и скрещивающимися под углом

$\beta = 145-178^\circ$ осями их вращения, отношение длины кривошипов которых к кратчайшему расстоянию между осями их вращения равно отношению синусов углов скрещивания их геометрических осей шарниров, т. е. $\ell/\ell_1 = \sin\alpha/\sin\beta$. Одна из опор выполнена с балансиром 4, длина ℓ_4 и угол β между геометрическими осями шарниров которого равны кратчайшему расстоянию и углу между геометрической осью балансира 4 и осью вращения ведущего кривошипа 2, а кратчайшее расстояние и угол между геометрическими осями цапф барабана равно удвоенному значению соответствующих углов 2β и расстояния $2\ell_1$ балансира, причем отношение длины кривошипов к расстоянию между цапфами барабана равно отношению синусов углов скрещивания их геометрических осей, т. е.

$$\frac{\ell}{2\ell_1} = \frac{\sin\alpha}{\sin 2\beta} \text{ или } \frac{\ell}{\ell_1} = \frac{\sin\alpha}{\sin\beta}$$

На кривошипах 2 и 3 и балансире 4 установлены противовесы 5, служащие для уравновешивания барабана 1. Кривошип 2 связан, например, через клиноременную передачу 6 с приводом 7. Устройство смонтировано на станине 8. Шарнирные узлы могут быть выполнены на подшипниках качения или на подшипниках скольжения.

Устройство работает следующим образом.

Ведущий кривошип 2 получает вращение от привода 7 через клиноременную передачу 6. Барабан 1 передает вращение другому кривошипу 3 и балансиру 4. За счет расположения скрещивающихся под разными углами осей шарниров кривошипов, барабана и балансира и взаимосвязи расстояний между ними барабан 1 получает сложное пространственное неравномерное движение. За счет шарнирного со-

единения ведомого кривошипа 3 с балансиром 4 барабан 1 дополнительно получает встряхивающее движение.

Сложное пространственное движение барабана 1 и находящихся в нем компонентов и дополнительно встряхивающее его движение от возвратно-вращательного движения балансира 4 обеспечивает качественное перемешивание компонентов.

Режим перемешивания компонентов можно регулировать частотой вращения кривошипов, а также параметрами кривошипов и балансира.

Предлагаемое выполнение устройства позволяет значительно интенсифицировать процесс перемешивания компонентов и повысить качество смеси.

Ф о р м у л а и з о б р е т е н и я

Смеситель, содержащий приводной барабан с цапфами, закрепленный на опорах, выполненных в виде двух пространственных кривошипов со скрещивающимися под углом $25-65^\circ$ геометрическими осями шарниров и скрещивающимися под углом $145-178^\circ$ осями их вращения, отношение длины кривошипов которых к кратчайшему расстоянию между осями их вращения равно отношению синусов углов скрещивания их геометрических осей шарниров, отличаясь тем, что, с целью повышения качества смеси, одна из опор выполнена с балансиром, длина и угол между геометрическими осями шарниров которого равны кратчайшему расстоянию и углу между геометрической осью балансира и осью вращения ведущего кривошипа, а кратчайшее расстояние и угол между геометрическими осями цапф барабана равно удвоенному значению соответствующих углов и расстояния балансира, причем отношение длины кривошипов к расстоянию между цапфами барабана равно отношению синусов углов скрещивания их геометрических осей.

Источники информации, принятые во внимание при экспертизе

1. Макаров Ю. И. Аппараты для смешения сыпучих материалов. М., "Машностроение", 1973, с. 98, рис. 30б, г.

2. Авторское свидетельство СССР по заявке № 2634797/29-33, кл. В 28 С 5/18, 1978.

KZAG = * P61 C2513 D/11 ★ SU -730-548
Component barrel finishing device - has frame hinged between drum
and cranks

KAZAN AGRIC INST 08.06.78-SU-625542
(30.04.80) B24b-31/04

08.06.78 as 625542 Add to 643305 (2pp822)

The device is based on Parent Cert. No. 643305, and comprises a drum (1) hinged to a frame (2), which is hinged to two cranks (3 and 4), crank (4) being connected to belt drive (5), whereas crank (3) is freely connected to the bed (6), and to the drum through bevel gears (7 and 8).

The components in the drum are given a complex three dimensional movement and also additional movement from the rotation of the drum relative to its longitudinal axis, thus increasing finishing efficiency. The device is useful in the engineering and other sectors of industry. Bul.16/30.4.80

Союз Советских
Социалистических
Республик

Государственный комитет
СССР
по делам изобретений
и открытий

О П И С А Н И Е ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(11) 730548

(61) Дополнительное к авт. свид-ву 643305

(22) Заявлено 08.06.78 (21) 2625542/25-08

(51) М. Кл.²
В 24В 31/04

с присоединением заявки № —

(23) Приоритет —

(43) Опубликовано 30.04.80. Бюллетень № 16

(53) УДК 621.924.7
(088.8)

(45) Дата опубликования описания 30.04.80

(72) Авторы
изобретения

П. Г. Мудров и А. Г. Мудров

(71) Заявитель Казанский сельскохозяйственный институт им. М. Горького

(54) УСТРОЙСТВО ДЛЯ ГАЛТОВКИ ДЕТАЛЕЙ

1

Изобретение относится к области поверхностной обработки деталей, может быть использовано в машиностроительной и других промышленностях.

По основному авт. св. № 643305 известно устройство, которое содержит барабан, шарниро установленный на двух опорах — пространственных кривошипах, один из которых связан с приводом, другой кривошип свободно соединяется со станиной. Ось вращения одного кривошипа расположена под углом к оси вращения другого и отстоит на определенном расстоянии. Кроме того, геометрическая ось вала и подшипника каждого из кривошипов перекрещиваются под углом, и кратчайшие расстояния между геометрическими осями шарниров кривошипа и барабана пропорциональны синусам углов наклона их геометрических осей.

Недостаток этого устройства заключается в том, что при обработке деталей на небольших оборотах кривошипов, нижние слои деталей имеют малое перемещение, следовательно, мало подвергаются обработке. Увеличение же числа оборотов кривошипов с целью интенсификации обработки влечет увеличение момента, возникающего отнеравномерного вращения ведомого кривошипа с отнесенной к нему массой барабана. Этот момент будет вызывать ко-

2

лебания рамы устройства, ухудшая работу и требуя установки его на фундамент с большой массой.

Целью изобретения является увеличение интенсификации обработки деталей.

Для этого устройство снабжено рамой, установленной между барабаном и кривошинами и связанный с ними шарнирно, причем один из кривошипов связан с барабаном через введенную в устройство коническую зубчатую передачу.

На фиг. 1 схематично изображено устройство; на фиг. 2 — кинематическая схема устройства.

Устройство для галтовки деталей содержит барабан 1, шарниро установленный на раме 2, например, посредством подшипников скольжения или подшипников качения. Рама 2 связана шарнирно с двумя пространственными кривошипами 3 и 4, один из которых 4 связан с приводом, например клиноременной передачей 5. Кривошип 3 свободно соединяется со станиной 6. На оси ведомого кривошипа 3 жестко закреплено коническое колесо 7, а на валу барабана 1 — коническое колесо 8, находящееся в зацеплении с колесом 7. Коническая передача от ведомого кривошипа к барабану может выполняться с разным пе-

редаточным числом, выбираемым в зависимости от вида обрабатываемых деталей.

Ось вращения кривошипа 4 расположена к оси вращения кривошипа 3 под углом α_1 ($30^\circ \leq \alpha_1 \leq 150^\circ$) и отстоит на определенном расстоянии l_1 . Относительное расположение геометрических осей шарниров рамы 2 то же, что и указанных осей вращения кривошипов 3 и 4. Геометрическая ось вала и шарнира каждого из кривошипов скрещиваются под углом $\alpha_2 = 6-28^\circ$ и отстоят на расстоянии l_2 . Кратчайшие расстояния между геометрическими осями шарниров кривошипов и рамы пропорциональны синусам углов наклона их геометрических осей, т. е.

$$\frac{l_1}{\sin \alpha_4} = \frac{l_2}{\sin \alpha_2}.$$

В зависимости от типа обрабатываемых деталей выбирают нужную частоту вращения кривошипов, а подбором передаточного отношения конических шестерен — дополнительное вращение барабана вокруг своей продольной оси.

Устройство работает следующим образом.

От привода вращение передается любому из кривошипов, например 4, который через раму 2 передает вращение кривошипу 3, который вращается в плоскости, расположенной под углом α_1 к плоскости вращения кривошипа 4. При этом кривошип 4 вращается с постоянной угловой скоростью, а кривошип 3 — с переменной. Рама 2 вме-

сте с барабаном 1 получает сложное пространственное неравномерное движение. При вращении кривошипов, их оси вращаются относительно рамы 2, следовательно ось кривошипа 3 вместе с жестко закрепленной шестерней 7 вращается относительно рамы 2. При вращении шестерни 7, находящаяся в зацеплении с ней шестерня 8 также будет вращаться, но в противоположном направлении, вместе с ней будет вращаться и барабан 1.

Таким образом, детали, находящиеся в барабане, будут кроме сложного пространственного перемещения, совершать еще дополнительное перемещение от вращения барабана относительно его продольной оси, увеличивая тем самым интенсивность обработки деталей.

Технико-экономическая эффективность изобретения выражается в том, что увеличивается интенсификация обработки деталей, отпадает необходимость в установке фундамента для установки.

Формула изобретения

Устройство для галтовки деталей по авт. св. № 643305, отличающееся тем, что, с целью увеличения интенсификации обработки, устройство снабжено рамой, установленной между барабаном и кривошипами и связанный с ними шарнирно, причем один из кривошипов связан с барабаном через введенную в устройство коническую зубчатую передачу.

Фиг. 1

Фиг. 2

35781 D/20 L02 P64 KZAG = 27.06.78
 KAZAN AGRIC INST *SU -755-577
 27.06.78-SU-634797 (25.08.80) B01f-09/06 B28c-05/18
 Mixer for friable building materials - has drum describing variable complex three-dimensional motion to intensify operation

27.06.78 as 634797 (4pp132)
 The mixer comprises a drive and a drum (2) with journals and rotating on stationary bearings perpendicular to the main drum axis. To improve performance, the bearings are made as two spatial cranks (3,4) whose hinge and rotation axes intersect at an angle of 25-65 and 145-178 degrees respectively, while the ratio of the crank length to the shortest distance between the rotation axes equals the ratio of the sines of the intersection angles of their hinge axes.

The drive crank (4) actuates the driven crank (3), the drum describing a variable complex three-dimensional motion to exclude stagnation of the material. The crank parameters and rotation frequency can also be varied as desired. Bul. 30/15.8.80.

L(2-A2)

228

Союз Советских
Социалистических
Республик

Государственный комитет
СССР
по делам изобретений
и открытий

О П И С А Н И Е ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(11) 755577

(61) Дополнительное к авт. свид-ву —

(22) Заявлено 27.06.78 (21) 2634797/29-33

с присоединением заявки № —

(23) Приоритет —

Опубликовано 15.08.80. Бюллетень № 30

Дата опубликования описания 25.08.80

(51) М. Кл.³
В 28 С 5/18
В 01 F9/06

(53) УДК 621.929.
.6(088.8)

(72) Авторы
изобретения

П. Г. Мудров, А. Г. Мудров и А. П. Мудров

(71) Заявитель

Казанский ордена «Знак Почета» сельскохозяйственный институт
имени М. Горького

(54) СМЕСИТЕЛЬ

1
Изобретение относится к области про-
мышленности строительных материалов, в
частности, к устройствам для перемешива-
ния сыпучих материалов.

Известен смеситель, содержащий при-
вод и барабан с цапфами и опоры [1].

Наиболее близким по технической сущ-
ности и достигаемому результату к пред-
ложенному является смеситель, содержа-
щий привод и барабан с цапфами, закреп-
ленный с возможностью вращения на не-
подвижных опорах перпендикулярно про-
дольной оси барабана [2].

Однако известные смесители имеют не-
достаток, заключающийся в малом воздей-
ствии барабана на перемешиваемые компо-
ненты. Перемешивание здесь осуществля-
ется за счет гравитационных сил, т. е. наб-
людается только поверхностное движение
материала, в результате чего и происходит
его перемешивание. Внутренняя масса ком-
понентов практически не участвует в дви-
жении, поэтому смесители не производитель-
ны и не обеспечивают высокого качества
однородности перемешиваемой смеси.

2
Цель изобретения — интенсификация про-
цесса перемешивания и повышение одно-
родности смеси.

Поставленная цель достигается тем, что
смеситель, содержащий привод и барабан
с цапфами, закрепленный с возможностью
вращения на неподвижных опорах перпенди-
кулярно продольной оси барабана, имеет
опоры, выполненные в виде двух простран-
ственных кривошипов со скрещивающимися
под углом 25—65° геометрическими осями
шарниров и скрещивающимися под углом 145—178° осями их вращения, а отношение
длины кривошипов к кратчайшему расстоя-
нию между осями их вращения равно от-
ношению синусов углов скрещивания их
геометрических осей шарниров.

На фиг. 1 представлена схема смесителя;
на фиг. 2 — схема смесителя упрощенной
конструкции.

Смеситель состоит из привода 1 и ба-
рабана 2, закрепленного с возможностью
вращения на неподвижных опорах перпен-
дикулярно продольной оси барабана. Опоры
выполнены в виде двух пространственных

к правошипов 3 и 4. Барабан 2 связан посредством к правошипов 3 и 4 со станиной 5.

На фиг. 2 представлена упрощенная конструкция смесителя за счет устранения шарнирной опоры, связывающей ведущий к правошип 4 и станину 5. В этом случае ведущий к правошип 4 закреплен непосредственно на валу привода 1.

Геометрические оси шарниров к правошипов скрещиваются (не параллельны и не пересекаются) под углом α , лежащим в пределах от 25 до 65°. Оси шарниров каждого из правошипов расположены друг от друга на кратчайшем расстоянии ℓ (длина правошипа).

Оси вращения правошипов 2 и 3 скрещиваются под углом β , лежащим в пределах от 145 до 178°, и отстоят на кратчайшем расстоянии ℓ_1 . При этом длина правошипов ℓ должна быть больше кратчайшего расстояния ℓ_1 между осями их вращения, т. е. должно соблюдаться неравенство $\ell > \ell_1$. Относительное расположение цапф барабана 2 такое же, как и осей вращения правошипов 3 и 4.

Углы скрещивания осей шарниров и расстояния между ними связаны зависимостью $\frac{\ell}{\ell_1} = \sin \alpha \sin \beta$, (1)

т. е. отношение длины правошипов к кратчайшему расстоянию между осями их вращения равно отношению синусов углов скрещивания их геометрических осей.

Значения углов α и β могут находиться в пределах, указанных выше, при этом значения длин ℓ и ℓ_1 находятся в непосредственной зависимости от значения углов.

Пример. При конструировании смесителя некоторые из параметров задаются, исходя из конструктивных и эксплуатационных соображений. Зададимся, например, значениями углов $\alpha = 26^\circ$ и $\beta = 160^\circ$ и кратчайшим расстоянием между осями вращения правошипов $\ell_1 = 85$ мм, тогда недостающий параметр ℓ определяется из выражения (1), т. е. $\ell = \ell_1 \sin \alpha / \sin \beta = 85 \cdot \sin 26^\circ (\sin 160^\circ = 85 \cdot 0,438) 0,344 = 108,5$ мм. Если принять $\ell_1 = 100$ мм, $\ell = 150$ мм, $\alpha = 28^\circ$, то параметр β определится из того же выражения (1), т. е. $\sin \beta = (\ell/\ell_1) \sin \alpha = (100/150) \sin 28^\circ = 100 \cdot 0,469/150 = 0,312$ и $\beta = 161^\circ 50'$.

Таким образом можно конструировать смеситель при любых значениях углов α и β , лежащих соответственно в пределах от 25 до 65° и от 145 до 178°, задав одну из длины ℓ или ℓ_1 и определив другую из выражения (1).

Все шарнирные узлы выполняются либо на подшипниках скольжения, либо на подшипниках качения. Вращение барабана может осуществляться через любой из правошипов, например 4, от привода 1.

Смеситель работает следующим образом.

Ведущий правошип 4 получает вращение от привода 1 (мотор-редуктор и ременная передача) и передает его через барабан 2 ведомому правошипу 3. Так как оси вращения правошипов располагаются в разных плоскостях, то барабан получает сложное пространственное неравномерное движение. В результате этого находящиеся в барабане компоненты также получают сложное пространственное неравномерное перемещение, причем «мертвая зона» здесь отсутствует и компоненты тщательно перемешиваются.

Закон движения барабана можно регулировать путем изменения параметров правошипов (длина и угол между осями шарниров) и частоты вращения правошипов.

В предлагаемом смесителе увеличится производительность процесса перемешивания за счет сложного пространственного движения барабана и увеличения частоты вращения его и однородность приготовляемой смеси.

Формула изобретения

Смеситель, содержащий привод и барабан с цапфами, закрепленный с возможностью вращения на неподвижных опорах перпендикулярно продольной оси барабана, отличающийся тем, что, с целью интенсификации процесса перемешивания и повышения однородности смеси, опоры выполнены в виде двух пространственных правошипов со скрещивающимися под углом 25—65° геометрическими осями шарниров и скрещивающимися под углом 145—178° осями их вращения, причем отношение длины правошипов к кратчайшему расстоянию между осями их вращения равно отношению синусов углов скрещивания их геометрических осей шарниров.

Источники информации, принятые во внимание при экспертизе
1. Патент США № 3851862, кл. 259—177, опублик. 1974.

2. Макаров Ю. И. Аппараты для смешения сыпучих материалов. «Машиностроение», М., 1973, с. 98, р. 30 б. г.

 $\phi_{u2.1}$

Редактор Г. Шибаева
Заказ 5295/17

Составитель И. Кузнецова
Техред К. Шуфрич
Тираж 635

Корректор В. Бутяга
Подписьное

ЦНИИПИ Государственного комитета СССР
по делам изобретений и открытий
113035, Москва, Ж-35, Раушская наб., д. 4/5
Филиал ППП «Патент», г. Ужгород, ул. Проектная, 4