Технически университет - София

Факултет по електронна техника и технологии катедра "Електронна техника"

Полупроводникови елементи

Време за работа: 1:00 ч., Въпроси: 10, Макс. точки.: 36., Вариант: 4

- 1. (3 т.) В обща координатна система, сравнете волт-амперните характеристики на изправителен шотки диод и изправителен силициев диод в права и обратна посока. Посочете типични стойности на напрежителния пад в права посока и причината за разликата в обратния топлинен ток I_S .
- 2. За приложените диоди, i) BAT85, ii) B360, iii) BYV26A:
 - (а) (2 т.) Сравнете следните параметри максимално обратното напрежение, максимален пад на напрежението в права посока, времето за възстановяване на обратното напрежение, обратния ток;
 - (б) (2 т.) За приложената схема напрежението U_1 е периодичен правоъгълен сигнал с период T= $2 \, \mu s$, максимална стойност $U_1 = 10 \, V$, минимална стойност $U_1 = -10 \,\mathrm{V}$. Изберете целесъобразния диод, който ще осигури правилно функциониране на схемата, пояснете чрез изчиления.

- 3. Даден е PNP биполярен транзистор:
 - (а) (1 т.) Начертайте опростената еквивалентна схема в активен режим.
 - (б) (2 т.) Начертайте семейството изходни статични характеристики в схема общ емитер, посочете областите насищане, отсечка и нормален активен режим. Посочете примерни стойности на интегралния коефициент за усилване по ток β
 - (в) (2 т.) Означете областта на безопасна работа и дефинирайте максимално допустимите параметри на работа на транзистора.
- 4. (3 т.) Определете липсващите величини.

$$I_B$$
 I_C I_E $\bar{\alpha}$ $\bar{\beta}$ $100 \,\mu\text{A}$... $10.1 \,\text{mA}$

5. (3 т.) На фигурата е показана схема на усилвател. Транзисторът е силициев и има коефициент на усилване по ток $\beta = 300$. Стойностите на останалите елементи са: $U_2 = 10 \,\mathrm{V}, \; R_B = 10 \,\mathrm{k}\Omega , \; R_C = 100 \,\Omega. \; \mathrm{Om}$ ределете U_{BE} , I_B , U_{CE} и I_C ?

- при $U_1 = 300 \,\mathrm{mV}$
- при $U_1 = 1.7 \text{V}$ при $U_1 = 4 \text{V}$
- 6. За MOS транзистор с *Н вграден* канал,
 - (а) (1 т.) Скипирайте символа на транзистора и означете поляритета на напреженията и посоките на токовете.
 - (б) (1 т.) Скицирайте преходните характеристики, означете линейната, областта на насищане и дефинирайте стръмността на характеристиката.

- (в) (1 т.) Напишете условията за работа на МОS транзистор в линеен режим и в режим на насищане. Посочете израз за $U_{DS_{SAT}}$.
- 7. На фигурата е показана схема на усилвател с MOS транзистор. Транзисторът има специфична стръмност $K=0.25\,\mathrm{mA/V^2}$ и прагово напрежение $U_{TH}=2\,\mathrm{V}$. Стойностите на останалите елементи са: $U_2=12\,\mathrm{V}$, $R_1=1\,\mathrm{M}\Omega$, $R_2=12\,\mathrm{k}\Omega$.
 - (a) (2 т.) Начертайте опростената конструкция на транзистора и пояснете.
 - (б) (2 т.) Определете режима на работа на транзистора, U_{DS} и I_D при $U_1=2\,\mathrm{V}..$
 - (в) (2 т.) Определете U_{DS} и I_{D} при $U_{1}=5\,{
 m V}.$

8. Даден е фотодиод:

- (а) (1 т.) Скицирайте схема на свързване във фотогенераторен режим.
- (б) (1 т.) Скицирайте семейство волт-амперни характеристики при различни стойности на осветеността. Начертайте товарните прави за две различни стойност на товарното съпротивление $R_1 > R_2$.
- (в) (1 т.) Опишете едно типично приложение на фотодиод работещ във фотогенераторен режим.

- (а) (1 т.) Посочете принцип на действие
- (б) (1 т.) Скицирайте характеристиките му
- (в) (1 т.) Опишете типични технически параметри.

- (а) (1 т.) Скицирайте схема на свързване на светодиод и оразмерете схемата, така че през диода да протича ток $40 \, \mathrm{mA}$, когато напрежението на източника е $U = 7.1 \, \mathrm{V}$.
- (б) (1 т.) Изчислете мощността^а, която се отделя върху светодиода и мощността отделена върху резистора.
- (в) (1 т.) Изчислете мощността в източника.

 $[^]a$ За постояннен ток P = U.I