2024 年考研名校数分与高代真题

当你金榜题名时 你会发现一切的付出都是<u>值</u>得的!

微信公众号:八一考研数学竞赛/数考考研竞赛八一

2024年3月8日

目录	2	
目录		
1 中国科学院大学 2024 年数学分析试题真题	7	
2 华中科技大学 2024 年数学分析试题真题	9	
3 华中科技大学 2024 年高等代数试题真题	11	
4 吉林大学 2024 年数学分析试题真题	12	
5 吉林大学 2024 年高等代数试题真题	14	
6 天津大学 2024 年数学分析试题真题	15	
7 天津大学 2024 年高等代数试题真题	16	
8 哈尔滨工业大学 2024 年数学分析试题真题	18	
9 哈尔滨工业大学 2024 年高等代数试题真题	20	
10 西北工业大学 2024 年数学分析试题真题	22	
11 西北工业大学 2024 年高等代数试题真题	24	
12 北京师范大学 2024 年数学分析试题真题	26	
13 北京师范大学 2024 年高等代数试题真题	27	
14 厦门大学 2024 年数学分析试题真题	29	
15 同济大学 2024 年数学分析试题真题	30	
16 复旦大学 2024 年数分高代考研真题	32	
17 华东师范大学 2024 年数学分析试题真题	34	
18 华东师范大学 2024 年高等代数试题真题	36	
19 湖南大学 2024 年数学分析试题真题	38	
20 湖南大学 2024 年高等代数试题真题	40	
21 中国科学技术大学 2024 年数学分析试题真题	41	
22 中国科学技术大学 2024 年高等代数试题真题	42	
23 中国人民大学 2024 年数学分析试题真题	44	
24 中国人民大学 2024 年高等代数试题真题	46	
25 电子科技大学 2024 年数学分析试题真题	48	

目录	3
26 电子科技大学 2024 年线性代数试题真题	50
27 华中师范大学 2024 年数学分析试题真题	52
28 华中师范大学 2024 年高等代数试题真题	53
29 首都师范大学 2024 年数学分析考研真题	54
30 首都师范大学 2024 年高等代数考研真题	56
31 东南大学 2024 年数学分析试题真题	58
32 东南大学 2024 年高等代数试题真题	60
33 南开大学 2024 年数学分析试题真题	62
34 南开大学 2024 年高等代数试题真题	63
35 重庆大学 2024 年数学分析试题真题	64
36 重庆大学 2024 年高等代数试题真题	66
37 浙江大学 2024 年数学分析试题真题	69
38 浙江大学 2024 年高等代数试题真题	71
39 武汉大学 2024 年数学分析试题真题	73
40 武汉大学 2024 年高等代数试题真题	74
41 华南师范大学 2024 年数学分析试题真题	75
42 华南师范大学 2024 年高等代数试题真题	77
43 南昌大学 2024 年数学分析试题真题	79
44 南昌大学 2024 年高等代数试题真题	80
45 山东大学 2024 年数学分析试题真题	81
46 山东大学 2024 年高等代数试题真题	82
47 上海大学 2024 年数学分析试题真题	84
48 上海大学 2024 年高等代数试题真题	86
49 西安交通大学 2024 年数学分析试题真题	88
50 南京师范大学 2024 年数学分析试题真题	89
51 南京师范大学 2024 年高等代数试题真题	91

目录	4
52 湖南师范大学 2024 年数学分析试题真题	92
53 湖南师范大学 2024 年高等代数试题真题	94
54 苏州大学 2024 年数学分析试题真题	96
55 苏州大学 2024 年高等代数试题真题	98
56 华南理工大学 2024 年数学分析试题真题	99
57 华南理工大学 2024 年高等代数试题真题	101
58 安徽大学 2024 年数学分析试题真题	103
59 安徽大学 2024 年高等代数试题真题	105
60 湘潭大学 2024 年数学分析试题真题	107
61 新疆大学 2024 年数学分析试题真题	108
62 扬州大学 2024 年数学分析试题真题	109
63 扬州大学 2024 年高等代数试题真题	111
64 西南大学 2024 年数学分析试题真题	113
65 西南大学 2024 年高等代数试题真题	114
66 上海交通大学 2024 年高等代数试题真题	115
67 大连理工大学 2024 年数学分析试题真题	116
68 大连理工大学 2024 年高等代数试题真题	118
69 福州大学 2024 年数学分析试题真题	120
70 福州大学 2024 年高等代数试题真题	121
71 中国矿业大学 (徐州)2024 年数学分析试题真题	123
72 中国矿业大学 (徐州)2024 年高等代数试题真题	124
73 中国矿业大学 (北京)2024 年数学分析试题真题	126
74 中国矿业大学 (北京)2024 年高等代数试题真题	127
75 东北大学 2024 年数学分析试题真题	129
76 东北大学 2024 年高等代数试题真题	130
77 中国海洋大学 2024 年数学分析试题真题	132

目录	5
78 中国海洋大学 2024 年高等代数试题真题	134
79 湖南大学 2024 年数学分析试题真题	135
80 湖南大学 2024 年高等代数试题真题	137
81 中南大学 2024 年数学分析试题真题	138
82 中南大学 2024 年高等代数试题真题	140
83 云南大学 2024 年数学分析试题真题	142
84 云南大学 2024 年高等代数试题真题	144
85 东北师范大学 2024 年数学分析试题真题	146
86 东北师范大学 2024 年高等代数试题真题	148
87 郑州大学 2024 年数学分析试题真题	149
88 郑州大学 2024 年高等代数试题真题	151
89 合肥工业大学 2024 年数学分析试题真题	153
90 合肥工业大学 2024 年高等代数试题真题	154
91 南京理工大学 2024 年数学分析试题真题	156
92 南京理工大学 2024 年高等代数试题真题	158
93 南京航空航天大学 2024 年数学分析试题真题	160
94 南京航空航天大学 2024 年高等代数试题真题	162
95 河北工业大学 2024 年数学分析试题真题	164
96 河北工业大学 2024 年高等代数试题真题	166
97 哈尔滨工程大学 2024 年数学分析试题真题	168
98 哈尔滨工程大学 2024 年高等代数试题真题	170
99 太原理工大学 2024 年高等代数试题真题	172
100 西南交通大学 2024 年数学分析试题真题	174
101 西南交通大学 2024 年高等代数试题真题	175
102 华东理工大学 2024 年数学分析试题真题	177
103 华东理工大学 2024 年高等代数试题真题	178

目录	6
104 武汉理工大学 2024 年数学分析试题真题	180
105 武汉理工大学 2024 年高等代数试题真题	182
106 广西大学 2024 年数学分析试题真题	184
107 广西大学 2024 年高等代数试题真题	185
108 北京交通大学 2024 年数学分析试题真题	187
109 西北大学 2024 年数学分析试题真题	188
110 北京邮电大学 2024 年数学分析试题真题	190
111 北京邮电大学 2024 年高等代数试题真题	191
112 北京科技大学 2024 年数学分析试题真题	193
113 北京科技大学 2024 年高等代数试题真题	194
114 北京工业大学 2024 年数学分析试题真题	196
115 北京工业大学 2024 年高等代数试题真题	197
116 陕西师范大学 2024 年数学分析试题真题	199
117 陕西师范大学 2024 年高等代数试题真题	201
118 长安大学 2024 年数学分析试题真题	203
119 长安大学 2024 年高等代数试题真题	205
120 西安电子科技大学 2024 年数学分析试题真题	207
121 西安电子科技大学 2024 年高等代数试题真题	209

1 中国科学院大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- 1. (15 分) 解答题.
 - (1) 证明: $\left| e \left(1 + \frac{1}{n} \right)^n \right| < \frac{3}{n}, n \in \mathbb{N}^+.$
 - (2) 设非负数列 $\{a_n\}$ 满足 $a_{n+m} \leq a_n + a_m$, 证明: $\lim_{n \to \infty} \frac{a_n}{n} = \inf \left\{ \frac{a_n}{n} \right\}$.
 - (3) 求极限 $\lim_{x\to\infty} \frac{\left(\int_0^x e^{t^2} dt\right)^2}{\int_0^x e^{2t^2} dt}$.
- 2. (15 分) 设 f(x) 在 (a,b) 上连续, 证明以下条件等价:
 - (1) f(x) 在 (a,b) 上一致连续.
 - (2) f(x) 在端点 a 和 b 处极限存在.
 - (3) f(x) 可延拓成 [a,b] 上的连续函数.
- 3. (15 分) 设 f(x) 在 [a,b] 上二阶可导, 且 f'(a) = f'(b) = 0, 证明: 存在 $\xi \in (a,b)$, 使得

$$|f''(\xi)| \ge \frac{4}{(b-a)^2} |f(b) - f(a)|.$$

- 4. 设 f(x) 在 [0,1] 上连续, 求极限 $\lim_{n\to\infty}\int_0^1 f(\sqrt[n]{x})\mathrm{d}x$.
- 5. 设 f(x,y) 是 $\{(x,y)|x^2+y^2 \le 1\}$ 上二次连续可微函数,且 $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = x^2 y^2$,求重积分

$$\iint_{x^2+y^2\leq 1} \left(\frac{x}{\sqrt{x^2+y^2}} \frac{\partial f}{\partial x} + \frac{y}{\sqrt{x^2+y^2}} \frac{\partial f}{\partial y} \right) dx dy.$$

- 6. (15 分) 估计 ln 2 的近似值, 精确到 0.0001.
- 7. $(15 \, \text{分})$ 设 f 为 \mathbb{R} 上的凸函数, φ 为闭区间 E 上的连续函数, 证明:

$$f\left(\frac{1}{\mu\left(E\right)}\int_{E}\varphi\left(x\right)\mathrm{d}x\right)\leq\frac{1}{\mu\left(E\right)}\int_{E}f\circ\varphi\left(x\right)\mathrm{d}x.$$

其中 $\mu(E)$ 为 E 的长度.

8. (15 分) 设 $I = \iiint_V (x + y - z + 10) dV$, 其中 $V : x^2 + y^2 + z^2 \le 3$, 证明:

$$28\sqrt{3}\pi < I < 52\sqrt{3}\pi$$

9. (15 分) 计算曲线积分

$$I = \oint_L (y^2 - z^2) dx + (z^2 - x^2) dy + (x^2 - y^2) dz.$$

其中 L 是 $[0,a] \times [0,a] \times [0,a]$ 的表面与平面 $x+y+z=\frac{3}{2}a$ 的交线, 从上往下看取逆时针方向.

10. (15 分) 证明: 光滑曲线 y = f(x)(f(x) > 0) 绕 x 轴旋转一周所得旋转曲面面积为

$$S = 2\pi \int_{a}^{b} f(x) \sqrt{1 + (f'(x))^{2}} dx.$$

2 华中科技大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. 计算极限 $\lim_{x\to 0^+} \frac{1}{x} \arccos \frac{\sin x}{x}$.
- 2. 计算极限 $\lim_{n\to\infty} \left(1+\frac{1}{n}\right) \left(1+\frac{1}{2^3n}\right)^{2^3} \left(1+\frac{1}{3^3n}\right)^{3^3} \cdots \left(1+\frac{1}{n^3n}\right)^{n^3}$.
- 3. 已知 f 在 \mathbb{R} 上具有连续导数, L 是从 $A\left(3,\frac{2}{3}\right)$ 到 B(1,2) 的曲线段 $y=-\frac{5}{9}x^2+\frac{14}{9}x+1$, 求

$$I = \int_{L} \frac{1 + y^{2} f(xy)}{y} dx + \frac{x}{y^{2}} (y^{2} f(xy) - 1) dy.$$

- 4. 计算极限 $\lim_{n \to \infty} \frac{1}{n} \int_0^{n\pi} \frac{x}{1 + n^2 \cos^2 x} dx$.
- 5. 用下列两种方法求 $I = \iint_S h(x, y, z) dS$, 其中 $S: x^2 + y^2 + z^2 = 1$, $h(x, y, z) = x^4 + y^2 z^2$.
 - (1) 用球坐标变换.
 - (2) 用 Gauss 公式和齐次函数 Euler 公式

$$xf_x + yf_y + zf_z = nf.$$

其中 f 满足 $f(tx,ty,tz) = t^n f(x,y,z), n$ 为正整数.

- 6. 解答如下问题:
 - (1) 设 f 为 $[1, +\infty)$ 上的非负递减函数, 记 $x_n = \sum_{k=1}^n f(k) \int_1^n f(t) dt$, 证明 $\{x_n\}$ 收敛.

(2) 计算
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\ln n}{n}$$
.

- 7. 设正整数 n, k 满足 $n \ge k$, 记 $b(n, k) = \int_{\frac{1}{2}}^{1} C_n^k t^{k-1} (1-t)^{n-k} dt$, 其中 $C_n^k = \frac{n!}{k!(n-k)!}$
 - (1) 证明: $\lim_{n \to \infty} \sum_{k=1}^{n} b(n, k) = 2 \ln 2.$
 - (2) 求极限 $\lim_{n\to\infty} \frac{n4^n}{3^n} \left(2\ln 2 \sum_{k=1}^n b(n,k) \right).$
- 8. 设 $u_n(x)$, S(x) 均为 [a,b] 上的可积函数, 其中 $n=1,2,\cdots$,
 - (1) 证明: 对 $S_n(x) = \sum_{k=1}^n u_k(x)$ 有

$$\lim_{x \to \infty} \int_a^b |S_n(x) - S(x)| \, \mathrm{d}x = 0.$$

则逐项积分得到的级数 $\sum_{n=1}^{\infty} \int_{a}^{x} u_{n}(t) dt$ 在 [a,b] 上一致收敛于 $\int_{a}^{x} S(t) dt$.

(2) 说明函数项级数 $\sum_{n=0}^{\infty} x^n \sin(\pi x)$ 在 [0,1] 上不一致收敛, 用 (1) 证明

$$\sum_{n=0}^{\infty} \int_0^1 x^n \sin(\pi x) dx = \int_0^1 \frac{\sin(\pi x)}{x} dx$$

- 9. 设 $a_0 = 1, a_{n+1} = a_n e^{\frac{1}{a_n}}, p > 2$, 证明: 级数 $\sum_{n=2}^{\infty} \frac{a_n n}{n(\ln n)^p}$ 收敛.
- 10. 设不恒为 0 的函数 f(x) 在 [0,1] 上连续,且 $\int_0^1 f(x) dx = 0$. 证明: 存在 $c \in (0,1)$,使得

$$c^{2} f(c) = \int_{0}^{c} (\alpha x + x^{2}) f(x) dx, 0 < \alpha < \frac{4}{3}.$$

11. 设常数 $\beta \ge 1$, 证明对任意的 x > 0, 成立

$$\frac{x^{\beta}}{\sqrt{3}} \ge \frac{1}{x + \sqrt{3} - 1} + \frac{1 + \sqrt{3}\beta}{3} \ln x.$$

- 12. 解答如下问题:
 - (1) 证明二元函数 z = f(P) 在 $D \subset \mathbb{R}^2$ 上一致连续的充分必要条件是对 D 上任意两点列 $\{P_n\}, \{Q_n\},$ 只要距离 $d(P_n, Q_n) \to 0 (n \to \infty)$, 就有 $f(P_n) f(Q_n) \to 0 (n \to \infty)$.
 - (2) 判断函数

$$g(x,y) = \begin{cases} \frac{x^4 y^4}{x^4 + y^4}, & x^4 + y^4 \neq 0; \\ 0, & x^4 + y^4 = 0. \end{cases}$$

在 \mathbb{R}^2 上的一致连续性.

3 华中科技大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

1. 计算行列式

2. 给定线性方程组

$$\begin{cases} x_1 + ax_2 + a^2x_3 = a^3; \\ x_1 + bx_2 + b^2x_3 = b^3; \\ x_1 + cx_2 + c^2x_3 = c^3; \\ x_1 + dx_2 + d^2x_3 = d^3. \end{cases}$$

- (1) 证明: 当 a, b, c, d 互异时, 方程组无解.
- (2) 当 a = b = c = -d 且 $\xi = (1, 1, -1)'$ 为方程组的一个解时, 求方程组的全部解.
- 3. 设 A, B 均为 n 级实矩阵, 且 AB = BA, 证明 $\det (4A^2 + 4AB + 5B^2) \ge 0$.
- 4. 设 $A = \begin{pmatrix} X & B \\ C & D \end{pmatrix}$, 其中 B, C, D 为给定的 n 级矩阵, X 是任意 n 级矩阵, 当 X 变化时, 求 $\mathrm{rank}(A)$ 的最小值.
- 5. 设 V 是数域 \mathbb{F} 上的 2024 维线性空问, $\sigma_1, \sigma_2, \cdots, \sigma_{2024}$ 是 V 上两两不同的线性变换, 证明: 存在 V 的基 $\alpha_1, \alpha_2, \cdots, \alpha_{2024}$, 使得对任意的 $1 \le i \le 2024$, 都有 $\sigma_1(\alpha_i), \sigma_2(\alpha_i), \cdots, \sigma_{2024}(\alpha_i)$ 互不相同.
- 6. 已知 $A \neq n$ 级实对称正定矩阵, $B \neq n$ 级实对称矩阵. 证明: $B \neq n$ 经负定矩阵的充分必要条件是 AB 的特征值均为负实数.
- 7. 设 $A \in 3$ 级实矩阵, 满足对任意的 $\alpha \in \mathbb{R}^3$, α 与 $A\alpha$ 均正交. 证明: 存在向量 $\beta \in \mathbb{R}^3$, 使 得 $A\alpha = \alpha \times \beta$.
- 8. 已知 A, B 均为 3 级矩阵, 证明: $\det(AB BA) = \frac{1}{3} \operatorname{tr} \left((AB BA)^3 \right)$.

4 吉林大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

一. 求极限.

1.
$$\lim_{n \to \infty} \frac{1 + \frac{1}{2} + \dots + \frac{1}{n^2 - 1} + \frac{1}{n^2}}{n \ln n}$$
.

$$2. \lim_{n \to \infty} n^2 \left(n \sin \frac{1}{n} - 1 \right).$$

3.
$$\lim_{x \to 0} \frac{\sqrt[3]{1 + \tan^2 x} - \sqrt{\cos x}}{x \sin x}$$
.

4.
$$\lim_{n \to \infty} n \int_0^1 x^n \cos\left(1 + x^2\right) dx.$$

5.
$$\lim_{n \to \infty} \frac{1}{n} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{2n^2 - 1}} + \frac{1}{\sqrt{2n^2}} \right)$$

6. 设 u = u(x, y), v = v(x, y) 是由方程组

$$\begin{cases} xu - yv = 0 \\ yu + xv = 2 \end{cases}$$

在点 $(x_0, y_0, u_0, v_0) = (1, 1, 1, 1)$ 的某个邻域内定义的隐函数, 求

$$\frac{\partial u}{\partial x}(1,1), \frac{\partial u}{\partial y}(1,1), \frac{\partial v}{\partial x}(1,1), \frac{\partial v}{\partial y}(1,1)$$

- 7. 求曲面 $2z = x^2 + y^2$ 与 $z = \sqrt{x^2 + y^2}$ 围成区域的体积.
- 8. 求第二型曲线积分 $\int_{L} \frac{x dy y dx}{2x^2 + y^2}$, 其中 L 是圆周 $x^2 + y^2 = 1$, 方向为逆时针.
- 二. 求 $f(x,y) = 2x^2 + 4xy 2y^2$ 在闭区域 $D = \{(x,y) \mid x^2 + y^2 \le 5\}$ 上的最大值和最小值.

三. 求级数
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n2^n}$$
 的和.

四. 设
$$a_n = \left(1 - \frac{2\ln(\ln n)}{n}\right)^n$$
, $n = 1, 2, \dots$, 判断级数 $\sum_{n=1}^{\infty} a_n$ 的敛散性.

五. 证明:
$$\lim_{h\to 0^+} \int_0^1 \frac{h}{h^2 + x^2} \ln(x^2 + 2) dx = \frac{\pi}{2} \ln 2.$$

六. 设函数 f(x) 在 [0,2] 上二阶导数连续, 且 f(0) = f(2) = 0, 证明:

$$\int_0^2 f(x) dx \le \frac{2}{3} \max_{x \in [0,2]} \{ |f''(x)| \}.$$

七. 设 F 为定义在 \mathbb{R}^n 上的函数.

13 (1) 函数 F 不一致连续的充要必要条件是: 存在点列 $\left\{x^{(n)}\right\}$ 和 $\left\{y^{(n)}\right\}\subset\mathbb{R}^n$ 和常数 a, 其 中有 $\lim_{n\to\infty} ||x^{(n)} - y^{(n)}|| = 0$,但对 $n = 1, 2, \dots$,都有 $|F(x^{(n)}) - F(y^{(n)})| \ge a$. (2) 若 $F(x_1, x_2, \dots, x_n) = f(x_1^2 + x_2^2 + \dots + x_n^2)$, f 在 $[0, +\infty)$ 上连续可导, 同时 $\lim_{t \to +\infty} f'(t) =$ $b \neq 0$, 证明: $F \in \mathbb{R}^n$ 上不一致连续.

5 吉林大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- 1. 设 f,h 是数域 ℙ 上的首 1 多项式, $f^{27} \mid h^{29}$, 且 deg $h \le 13$, 证明: $f \mid h$.
- 2. 设 $V = \mathbb{P}^{n \times n}$ 是数域 \mathbb{P} 上所有 n 阶矩阵关于矩阵加法和数乘运算构成的向量空间, \mathcal{T} 满足

$$\mathscr{T}(A) = E_{12}AE_{23} + E_{11}AE_{32}, \forall A \in \mathbb{P}^{n \times n}.$$

- (1) 证明: \mathcal{T} 是 V 上的线性变换.
- (2) 求 $\mathcal{T}(V)$ 的维数.
- (3) 给出 罗 的一个特征值.
- 3. 设 A, B 均为实矩阵, 证明: $A^TA + B^TB$ 正定当且仅当 AX = 0 与 BX = 0 的公共解只有 0 解.
- 4. 设 V 为 n 维列向量空间, σ , τ 均为 V 上的线性变换, τ 为反称变换, 且 $\tau(V) = V$. 证明: σ 为对称变换当且仅当 $\tau\sigma\tau$ 为对称变换.
- 5. 解答如下问题:
 - (1) 证明: $E_{12} + E_{34} = E_{1,n-1} + E_{1n} + E_{2n}$ 相似.

$$(2) 记 A = = \begin{pmatrix} a & 1 \\ & a & \ddots \\ & & \ddots & 1 \\ & & a & 1 \\ & & & b \end{pmatrix}, 求 A 的 Jordan 标准型, 其中 $a \neq b$.$$

- 6. 证明: $(\beta, \gamma, \delta)\alpha (\delta, \alpha, \gamma)\beta + (\alpha, \beta, \delta)\gamma (\alpha, \beta, \gamma)\delta = 0$.
- 7. 设直线 $\frac{x-x_0}{k} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$ 在 yz, xz, xy 平面的投影直线记作 l_1, l_2, l_3 , 原点与三条投影直线的距离记作 d_1, d_2, d_3 , 原点与直线 $\frac{x-x_0}{k} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$ 的距离记作 d, 证明:

$$d_1^2 + d_2^2 + d_3^2 - d^2 = k^2 d_1^2 + m^2 d_2^2 + n^2 d_3^2.$$

8. 证明: 方程 $e^{2x+y+z} = x^2 + y^2 - 2x - 4y + 4$ 是一个旋转曲面, 并写出该旋转曲面的一条轴线.

6 天津大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. 构造一个二元函数滿足以下条件并证明.
 - (1) 在原点处连续且偏导数存在;
 - (2) 在原点处不可微.
- 2. 设 f(x) 在 [a,b] 上二阶可导, f(a) = f(b), 且 $|f''(x)| \le c$, 证明: $|f'(x)| \le \frac{1}{2}c(b-a)$.
- 3. 设 f(x) 在 $[a, +\infty)$ 上可导, f(a) > a, 且 f'(x) + f(x) > 1 + x, 证明: f(x) > x.
- 4. 设 f(x) 在 $[1, +\infty)$ 上一致连续, 证明: 存在 M > 0, 满足 $\frac{|f(x)|}{x} \le M, x \in [1, +\infty)$,
- 5. 设数列 $\{a_n\}$ 满足 $\lim_{n\to\infty}\frac{a_n}{n^{\alpha}}=1(\alpha>0)$, 求极限 $\lim_{n\to\infty}\frac{a_1+a_2+\cdots+a_n}{n^{1+\alpha}}$.
- 6. 设 f(x) 是以 2π 为周期且在 $[-\pi,\pi]$ 上可积的函数, a_{π},b_{n} 为 f(x) 的傅里叶级数.
 - (1) 求 f(x+1) 的傅里叶系数.
 - (2) 求 f(2x) 的傅里叶系数.
- 7. 设 f(x) 为 [a,b] 上的单调函数, g(x) 是周期为 T 的连续函数, 且 $\int_0^T g(x) dx = 0$, 证明:

$$\lim_{\lambda \to +\infty} \int_a^b f(x)g(\lambda x) dx = 0.$$

- 8. 已知数列 $\{x_n\}$, $\{y_n\}$ 满足 $x_{n+1}=y_n+\frac{1}{2}x_n$, 证明: $\{y_n\}$ 收敛的充要条件是 $\{x_n\}$ 收敛.
- 9. 记 $D_R = \{|x| \le R, |y| \le R, |z| \le R \mid R > 0\}$. 求极限

$$\lim_{R\to+\infty} \iiint_{D_R} (x+y+z)^2 e^{-(x^2+y^2+z^2)} dx dy dz.$$

- $10. 求积分 \int_0^{+\infty} \frac{\sin^2 x}{x^2} \mathrm{d}x.$
- 11. 设 L 为 $x^2 + y^2 + z^2 = 2Rx$ 与 $x^2 + y^2 = 2rx$ 的交线 (R > r > 0) 的上半部分 $(z \ge 0)$, 求曲线积分

$$\int_{L} (y^{2} + z^{2}) dx + (z^{2} + x^{2}) dy + (x^{2} + y^{2}) dz.$$

从 z 轴正向看, L 取逆时针方向.

12. 设 $\{f_n(x)\}\$ 为定义在 $[a,b]\setminus \{x_0\}$ 上的函数列, 且在 $[a,b]\setminus \{x_0\}$ 上一致收敛于 f(x), 同时

$$\lim_{x \to z_0} f_n(x) = c_n(n = 1, 2, \cdots).$$

- (1) 证明: $\lim_{n\to\infty} c_n$ 存在.
- (2) 证明: $\lim_{x \to x_0} f(x)$ 存在, 且 $\lim_{x \to x_0} f(x) = \lim_{n \to \infty} c_n$.

7 天津大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

1. (15 分) 设 f(x) 在复数域上无重根, 且

$$f(f(x)) = f^{n}(x) + a_{n-1}f^{n-1}(x) + \dots + a_{1}f(x) + a_{0}.$$

- (1) 证明: f(x) 的系数为整数.
- (2) 证明: 若 a_0, a_1, \dots, a_{n-1} 都是奇数, 则 f(x) 无整数根.
- 2. (20 分) 设 $a_1, a_2, \dots, a_n \neq 0$, 记 $m = \prod_{i=1}^n a_i$, 且

$$D_n(\lambda) = \det \begin{pmatrix} 1 & 1 & \cdots & 1 \\ a_1 & a_2 & \cdots & a_n \\ a_1^2 & a_2^2 & \cdots & a_n^2 \\ \vdots & \vdots & & \vdots \\ a_1^{n-2} & a_2^{n-2} & \cdots & a_n^{n-2} \\ a_1^n + \frac{\lambda m}{a_1} & a_2^n + \frac{\lambda m}{a_2} & \cdots & a_n^n + \frac{\lambda m}{a_n} \end{pmatrix}$$

(1) 求 $D_n(\lambda)$.

(2)
$$\[:] S = \sum_{i=1}^{n} a_i, D_s(\lambda) \neq 0, \] \[:]$$

$$D = \det \begin{pmatrix} x & a_2 & \cdots & a_n \\ a_1 & x & \cdots & a_n \\ \vdots & \vdots & & \vdots \\ a_1 & a_2 & \cdots & x \end{pmatrix} + (-1)^n (x+s).$$

3.
$$(15 分)$$
 设 $\alpha > 0, A = \begin{pmatrix} 1 & \frac{\alpha}{n} \\ \frac{\alpha}{n} & 1 \end{pmatrix}$.

 $(1) \, \, \, \, \, \, \, \, B = \lim_{n \to \infty} A^n$

(2) 设上一问的
$$B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, 问时

$$D = \left(\begin{array}{ccc} a & 1 & & \\ & a & \ddots & \\ & & \ddots & 1 \\ & & & a \end{array}\right)$$

求 $\det D$.

- 4. 设 A, B 都是正定的实对称 n 阶方阵, 证明:
 - (1) A + B 为正定的实对称方阵.
 - (2) 存在 t > 0, 满足 A tB 为正定的实对称矩阵.
- 5. 设 $M_n(\mathbb{R})$ 为实数域上所有 n 阶矩阵构成的线性空间, 记

$$V = \{ A \in M_n(\mathbb{R}) \mid \operatorname{tr}(A) = 0 \}.$$

- (1) 证明: V 为 $M_n(\mathbb{R})$ 的子空间.
- (2) 求 V 的基与维数.
- (3) 定义 $M_n(\mathbb{R})$ 上的内积为 $(A, B) = \operatorname{tr}(AB^T)$, 证明: $M_n(\mathbb{R})$ 按这个运算构成欧几里得空间, 并求子空间 V 的正交补空间.
- 6. 证明: 若 n 阶矩阵 A 的迹为 0, 则 A 相似于一个对角线元素都为 0 的矩阵.
- 7. 设存在实数 c_1, c_2, \dots, c_d , 其中 $c_d \neq 0$,

$$a_{k+d} = c_1 a_{k+d-1} + c_2 a_{k+d-2} + \dots + c_d a_k.$$

证明: 存在矩阵 A 满足 $V_{k+1} = AV_k$, 其中 $V_k = (a_k, a_{k+1}, \dots, a_{k+d-1})^T$ 的 d 维向量.

- (1) 求矩阵 A.
- (2) 求 A 的特征多项式.
- (3) A 的极小多项式为关于 $(x \lambda)^d$ 的多项式, 证明: 存在次数不超过 d 1 的多项式 f(x), 满足 $b_k = p(x)(x \lambda)^d$, 其中

$$b_{k+d} = c_1 b_{k+d-1} + c_2 b_{k+d-2} + \dots + c_d b_k.$$

8. 设 $\alpha_1, \alpha_2, \dots, \alpha_n$ 为欧氏空间 V 的一组基, $\beta_1, \beta_2, \dots, \beta_n \in V$ 满足

$$(\alpha_i, \beta_j) = \begin{cases} 1, & i = j \\ 0, & i \neq j. \end{cases}$$

- (1) 证明: 满足条件的 $\beta_1, \beta_2, \cdots, \beta_n$ 是存在且唯一的.
- (2) 证明: $\beta_1, \beta_2, \dots, \beta_r$ 为 V 的一组基.

8 哈尔滨工业大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- 1. 下面命题正确请说明理由, 错误请举出反列。
 - (1) 正数列 $\{a_n\}$, $\{b_n\}$ 发散, 则 $\{a_n + b_n\}$ 发散.
 - (2) 若 f(x) 在 (-1,1) 上可微, f'(0) > 0, 则存在 $\varepsilon > 0$ 满足 f(x) 在邻域 $O(0,\varepsilon) \subset (-1,1)$ 上单调.
 - (3) 若 $\int_{a}^{b} (f(x))^{2024} dx = 0$, 则 $f(x) \equiv 0, x \in [a, b]$.
 - (4) 设非负项级数 $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ 收敛, 则 $\sum_{n=1}^{\infty} \min \{a_n, b_n\}$ 收敛.
 - (5) 设 f(x, y) 沿任意方问趋于 (0,0) 的方向极限都存在且相等, 则重极限 $\lim_{(x,y)\to(0,0)} f(x,y)$ 一定存在.
- 3. 设 f(x) 是定义在 (a,b) 上的函数, 对于任意收敛数列 $\{x_n\} \subset (a,b), \{f(x_n)\}$ 收敛. 证明:
 - (1) $f(x) \in C(a,b)$.
 - (2) $\lim_{x \to a^+} f(x)$, $\lim_{x \to b^-} f(x)$ 存在.
 - (3) f(x) 在 (a,b) 上一致连续.
- 4. 设 f(x) 在 \mathbb{R} 上二阶可微, 对任意的 $x \in \mathbb{R}$, $|f(x)| \leq M_0$, $|f''(x)| \leq M_2$.
 - (1) 写出 $\forall x \in \mathbb{R}, \forall h > 0, f(x+h), f(x-h)$ 关于 h 带有 Lagrange 余项的 Taylor 公式.
 - (2) 证明: $\forall x \in \mathbb{R}, \forall h > 0, |f(x)| \le \frac{M_0}{h} + \frac{h}{2}M_2.$
 - (3) 证明: $\forall x \in \mathbb{R}, |f(x)| \leq \sqrt{2M_0M_2}$.
- 5. 解答如下问题:
 - (1) 证明: $\lim_{b \to 1^-} \int_0^b \frac{\cos x}{\sqrt{1 x^2}} dx$ 存在.
 - (2) 证明: $\lim_{b \to 1^-} \int_0^b \frac{\cos x}{\sqrt{1 x^2}} dx > 1$.
- 6. 设 $\{a_n\}$ 是单调递增的正数列, 证明:
 - (1) 若 $\{a_n\}$ 有界, 则 $\sum_{n=1}^{\infty} \left(1 \frac{a_n}{a_{n+1}}\right)$ 收敛.
 - (2) 若 $\{a_n\}$ 无界, 则 $\sum_{n=1}^{\infty} \left(1 \frac{a_n}{a_{n+1}}\right)$ 发散.

- - (1) 当 α 为何值时, $\{f_n(x)\}$ 在 [0,1] 上收敛.
 - (2) 当 α 为何值时, $\{f_n(x)\}$ 在 [0,1] 上一致收敛.
 - (3) 讨论 $\lim_{n\to\infty} \int_0^1 f_n(x) dx$ 和 $\int_0^1 \lim_{n\to\infty} f_n(x) dx$ 的关系.
- 8. 设 $\varphi(x, y)$ 在 (0, 0) 的某一邻域上连续, $f(x, y) = |x y| \varphi(x, y)$.
 - (1) 当 $\varphi(x,y)$ 满足什么条件时, $f'_x(0,0)$, $f'_y(0,0)$ 存在?
 - (2) 当 $\varphi(x, y)$ 满足什么条件时, f(x, y) 在 (0,0) 处可微?
- 9. 求 $\lim_{n\to\infty} \frac{1}{n^4} \iiint_{r \le n} [r] \mathrm{d}x \mathrm{d}y \mathrm{d}z$, 其中 $r = \sqrt{x^2 + y^2 + z^2}$.
- 10. 求 $\iint_S x^2 dy dz + y^2 dz dx + z^2 dx dy$, 其中 S 是 $z = x^2 + y^2$ 从 z = 0 到 z = 1 的部分, 取下侧.

9 哈尔滨工业大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. 解答如下问题:
 - (1) 证明: 每个次数 ≥ 3 的实系数多项式在实数域上一定可约.
 - (2) 证明: 三次实系数多项式在实数域上一定有根.
 - (3) 四次实系数多项式在实数域上一定有根吗? 说明理由.
- 2. 讨论 a,b 取何值时下列方程组有解,并求解.

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 1; \\ 3x_1 + 2x_2 + x_3 + x_4 + ax_5 = -3; \\ x_2 + 2x_3 + 2x_4 + 6x_5 = 3; \\ 5x_1 + 4x_2 + 3x_3 + 3x_4 - x_5 = b. \end{cases}$$

- 3. 设 η 是非齐次线性方程组 $AX = \beta(\beta \neq 0)$ 的一个解向量, $\xi_1, \xi_2, \dots, \xi_t$ 是对应齐次线性方程组 AX = 0 的一个基础解系, 证明:
 - (1) η, $ξ_1$, $ξ_2$, · · · , $ξ_t$ 线性无关.
 - (2) η , $\xi_1 + \eta$, $\xi_2 + \eta$, ..., $\xi_t + \eta$ 是 $AX = \beta$ 的线性无关的解向量.
 - (3) $AX = \beta$ 的任意解 Y 都可以表示成

$$Y = k_0 \eta + k_1 (\xi_1 + \eta) + k_2 (\xi_2 + \eta) + \dots + k_t (\xi_t + \eta).$$

其中 $k_0 + k_1 + \cdots + k_t = 1$.

- 4. $\mbox{if } V = \left\{ (x_1, x_2, x_3, x_4, x_5)^T \in \mathbb{R}^5 \mid x_1 + 7x_2 + 5x_3 4x_4 + 2x_5 = 0 \right\}.$
 - (1) 证明: $S = \{(-2,0,0,-1,-1)^T, (1,1,-2,-1,-1)^T, (-5,1,0,1,1)^T\}$ 是 V 的一个线性 无关的子集.
 - (2) 将 S 扩充为 V 的一组基底.
- 5. 设 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 是线性无关的n维列向量, $\beta_i=\sum_{j=1}^r a_{ij}\alpha_j,i=1,2,\cdots,r$,证明: $\beta_1,\beta_2,\cdots,\beta_r$ 线性相关的充要条件为

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1r} \\ a_{21} & a_{22} & \cdots & a_{2r} \\ \vdots & \vdots & & \vdots \\ a_{r1} & a_{r2} & \cdots & a_{rr} \end{vmatrix} = 0.$$

6. 设 A 为 n 阶方阵, λ_0 是 A 的几何重数为 m 的特征值, 证明: $(\lambda - \lambda_0)^m ||\lambda E_n - A|$.

- 7. 设 \mathbb{P}^n 是数域 \mathbb{P} 上的 n 维线性空间, $\alpha_1, \alpha_2, \dots, \alpha_s$ 和 $\beta_1, \beta_2, \dots, \beta_t$ 是 \mathbb{P}^n 中的两组向量.
 - (1) 给出并证明 $L(\alpha_1, \alpha_2, \dots, \alpha_s) \cup L(\beta_1, \beta_2, \dots, \beta_t)$ 是 \mathbb{P}^n 的子空间的充要条件.
 - (2) 给出并证明 $L(\alpha_1, \alpha_2, \dots, \alpha_s) \cup L(\beta_1, \beta_2, \dots, \beta_t) = \mathbb{P}^n$ 的充要条件.
- 8. 设 A 是实对称矩阵, $X = (x_1, x_2, x_3, x_4)^T \in \mathbb{R}^4$, $f(X) = X^T A X$ 是四元实二次型.
 - (1) $S = \{X \in \mathbb{R}^4 \mid f(X) = 0\}$ 是不是 \mathbb{R}^4 的子空间? 为什么?
 - (2) 若矩阵 A 的正负惯性指数都是 1 , 证明: 存在 \mathbb{R}^3 的 3 维子空间 W , 使得当 $X \in W$ 时, f(X) = 0.
- 9. 设 V 是 n 维复线性空间, \mathscr{A} , \mathscr{B} 是 V 的线性变换, $\mathscr{A}\mathscr{B}=\mathscr{B}\mathscr{A}$, f(t) 是一个复系数多项式. 证明:
 - (1) ℬ 的特征子空间与核空间的和是 ৶ 的不变子空间.
 - (2) $f(\mathscr{A})$ 和 $f(\mathscr{B})$ 有共同的特征向量.
- 10. 已知

$$A = \left(\begin{array}{ccccc} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array}\right).$$

求 A 的不变因子和 Jordan 标准形.

10 西北工业大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

一 计算题.

- (1) 求极限 $\lim_{n\to\infty} \sum_{i=1}^{n} \left(\frac{n+i}{n}\right) \sin\frac{i}{n^2}$.
- (2) 已知 $\lim_{x \to +\infty} \left(\frac{x-a}{x+a} \right)^x = \int_a^{+\infty} x e^{-2x} dx$, 求 a 的值.
- (3) 计算积分 $\int_0^{\frac{\pi}{2}} \frac{1}{1 + \tan^{2024} x} dx$.
- 二 证明 $f(x) = \sin x^2$ 在 $(-\infty, +\infty)$ 上不一致连续.
- 三 解答如下问题:
 - (1) 设正项级数 $\sum_{n=1}^{\infty} a_n$ 收敛, $\{a_n\}$ 是单调数列, 证明: $\lim_{n\to\infty} na_n = 0$.
 - (2) 已知 $A_n = \sum_{k=1}^n a_k$, 且 $\lim_{n \to \infty} A_n$ 存在, 证明: $\lim_{n \to \infty} \frac{a_1 + 2a_2 + \dots + na_n}{n} = 0$.
- 四 设 f(x) 在 [0,1] 上连续, 在 (0,1) 上可导, 且 f(0)=0, f(1)=1.
 - (1) 证明: 存在互异的 $\eta_1, \eta_2 \in (0, 1)$, 满足 $\frac{1}{f'(\eta_1)} + \frac{1}{f'(\eta_2)} = 2$.
 - (2) a, b 为任意正实数, 证明: 存在互异的 $\xi_1, \xi_2 \in (0, 1)$, 满足 $\frac{a}{f'(\xi_1)} + \frac{b}{f'(\xi_2)} = a + b$.
- 五 解答如下问题.
 - (1) 讨论级数 $\sum_{n=1}^{\infty} \frac{\sin n}{p^{\ln n}} (p > 0)$ 的敛散性.
 - (2) 求幂级数 $\sum_{n=1}^{\infty} \frac{n^2}{(n+1)!} x^n$ 的收敛域与和函数.
 - (3) 设 f 是以 2π 为周期且在 \mathbb{R} 二阶连续可导的函数, 证明: f 的傅里叶级数在 $(-\infty, +\infty)$ 上一致收敛于 f.

六 解答如下问题.

- (1) 讨论反常积分 $\int_0^{+\infty} \frac{\ln^m (1+x)}{1+x^n} \mathrm{d}x (n \ge 0)$ 的敛散性.
- (2) 求积分 $\int_0^{+\infty} \frac{\cos ax \cos bx}{x} dx$, 其中 0 < a < b.
- (3) 设 $F(z) = \iint_{x^2+y^2 \le z^2} f(x^2+y^2) dx dy$, f(0) = 1, 且 f 连续可导, 求 F''(0).

七 设 $f(x) \in C(-\infty, +\infty)$, 定义函数列

$$f_n(x) = \sum_{k=0}^{n-1} \frac{1}{n} f\left(x + \frac{k}{n}\right), n = 1, 2, \cdots$$

证明: 函数列 $\{f_n(x)\}$ 在 $(-\infty, +\infty)$ 上内闭一致收敛于 $\int_0^1 f(x+t) dt$.

11 西北工业大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. 设 A 是三阶复方阵, 且满足关于迹的等式 $\operatorname{tr}(A^i) = i(i = 1, 2, 3)$, 求行列式 $\det A$.
- 2. 设 $A \neq m \times n$ 矩阵, 且 $r(A) = r, B \neq m \times p$ 矩阵.
 - (1) 给出矩阵方程 AX = B 有解的充要条件.
 - (2) 若 X_0 是 AX = B 的一个特解, 试求出 AX = B 的通解.
- 3. 设 A, B 为数域 \mathbb{F} 上的 $m \times n, n \times s$ 矩阵, 记 $W = \{BX \mid X \in F^s, ABX = 0\}$ 是 n 元 (列) 空间 \mathbb{F}^n 的子空间, 证明: dim W = r(B) r(AB).
- 4. 求满足 $A^* = A$ 的所有 $n(n \ge 2)$ 阶复方阵 A, 其中 A^* 是 A 的伴随矩阵.

5. 设
$$J = \begin{pmatrix} 0 & 1 & & \\ & 0 & \ddots & \\ & & \ddots & 1 \\ & & & 0 \end{pmatrix}$$
 是 $n(n \ge 2)$ 阶 Jordan 块, 求 J^2 的 Jordan 标准形.

6. 求实二次型

$$f(x_1, x_2, \dots, x_n) = (x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_n - \bar{x})^2$$

的规范标准形, 其中 $\bar{x} = \frac{1}{n}(x_1 + x_2 + \dots + x_n)$.

- 7. 设 η 是n维 Euclid 空间V的一个单位向量.
 - (1) 证明: $\mathscr{A}: \alpha \mapsto \alpha 2(\eta, \alpha)\eta(\forall \alpha \in V)$ 是 V 上的正交变换 (也称镜面反射).
 - (2) 若 V 的正交变换 $\mathcal B$ 有特征值 1 , 且特征子空间 V_1 是 n-1 维的, 证明: $\mathcal B$ 是镜面反射.
- 8. 在 $\mathbb{F}^{n\times n}$ 中, 记

$$W_1 = \{A \in \mathbb{F}^{n \times n} \mid \operatorname{tr}(A) = 0\}, W_2 = \{\operatorname{diag}\{x_1, x_2, \cdots, x_n\} \mid x_1 = x_2 = \cdots = x_n \in \mathbb{F}\}.$$

- (1) 证明: W_1, W_2 为 $\mathbb{F}^{n \times n}$ 的子空间.
- (2) 求 W_1, W_2 的一个基和维数.
- (3) 证明: $\mathbb{F}^{n\times n}=W_1\oplus W_2$.
- 9. 设线性空间 V 上的线性变换 \mathscr{A} 在一组基 $\alpha_1, \alpha_2, \alpha_3$ 下满足

$$\mathscr{A}(\alpha_1, \alpha_2, \alpha_3) = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 3 & 4 & -5 \\ 6 & 3 & -4 \\ 6 & 4 & -6 \end{pmatrix}.$$

25(1) 求 Ø 的所有特征值和特征向量. (2) 求 $\mathscr{B} = \mathscr{A}^3 - 5\mathscr{A}$ 的一个非平凡不变子空间. 10. 设 A, C 为 n 阶正定实对称矩阵, 证明: AX + XA = C 存在唯一解 B, 且 B 也是正定矩 阵.

12 北京师范大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- 2. 设 f(x) 在 $[a, +\infty)$ 上连续,且当 $x \to +\infty$ 时有渐近线 y = bx + c,证明: f(x) 在 $[a, +\infty)$ 上一致连续.
- 3. 证明: 方程 $3^x + 7^x = 2 \cdot 5^x$ 的实根只有 0 和 1 .
- 4. 设 f(x) 在 [0,1] 上连续且恒正,证明:对任意的正整数 n,存在 $\xi_n \in (0,1)$,使得

$$\frac{1}{n} \int_0^1 f(x) dx = \int_0^{\xi_n} f(x) dx + \int_{1-\xi_n}^1 f(x) dx.$$

$$\mathbb{H} \lim_{n \to \infty} n \xi_n = \frac{\int_0^1 f(x) dx}{f(0) + f(1)}.$$

- 5. 设 f(x) 是以 2π 为周期的连续函数, 记 $f_n(x) = n \int_x^{x+\frac{1}{n}} f(t) dt$, 证明: { $f_n(x)$ } 为连续可微的 2π 为周期的函数列, 且在 ℝ 上一致收敛于 f(x).
- 6. 判断级数 $\sum_{n=2}^{\infty} \ln \left(1 + \frac{(-1)^n}{n^p} \right)$ 的敛散性, p > 0.
- 7. 计算极限 $\lim_{n\to\infty} \int_0^1 \frac{\sin^2 nx}{1+x^2} dx$.
- 8. 设 f(x, y, z) 有连续的偏导数,且满足 $-y\frac{\partial f}{\partial x} + x\frac{\partial f}{\partial y} + b\frac{\partial f}{\partial z} \ge c$, 其中 b, c 为正实数,证明: 当 (x, y, z) 沿着 $x = b\cos t$, $y = b\sin t$, z = bt, $t \in [0, +\infty)$ 趋于无穷时, $f(x, y, z) \to +\infty$.
- 9. 设 Ω 是 $z = x^2 + y^2$ 介于 z = 0 和 z = 2 之间的曲面, 求曲面积分

$$\iint_{\Sigma} (x^2 \cos \alpha + y^2 \cos \beta + z^2 \cos \gamma) \, dS.$$

其中 $(\cos \alpha, \cos \beta, \cos \gamma)$ 为 Σ 的单位外法向量.

10. 计算曲线积分

$$\oint_L (y^2 - z^2) dx + (z^2 - x^2) dy + (x^2 - y^2) dz.$$

其中 L 为 $x^2 + y^2 + z^2 = 4$ 与 $x^2 + y^2 = 4$ 的交线, 从 z 轴正向看为逆时针方向.

13 北京师范大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

1. (10分)设矩阵

$$A = \left(\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 1 & -3 \\ 0 & 2 & 1 \end{array}\right),$$

求矩阵 B 使得 A + B = BA.

2. (10 分) 已知欧氏空间 \mathbb{R}^3 中一个基为 $\alpha_1, \alpha_2, \alpha_3$, 其度量矩阵为

$$A = \left(\begin{array}{rrr} 1 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 3 \end{array}\right).$$

向量 $\beta = \alpha_1 + 2\alpha_2 + 3\alpha_3$, 求 β 长度.

- 3. (15 分) 假设 A 是一个 n 阶反对称矩阵, 其主对角线右上方元索全为 1 , 求 A 的秩和行列式.
- 4. (15分)设

$$\begin{cases} x_1 + x_2 = a_1 \\ x_3 + x_4 = a_2 \\ x_1 + x_3 = b_1; \\ x_2 + x_4 = b_2; \end{cases}$$

是数域 ℙ 上的线性方程组, 试给出该方程组有解的充分必要条件, 并在有解时求出其解.

- 5. (15 分) 解答如下问题:
 - (1) (7 分) 设 f(x) 是实系数多项式,且 a + bi 是 f(x) 的一个虚根,其中 a,b 是实数,证明 a bi 也是 f(x) 的一个虚根.
 - (2) (8 分) 已知 $\sqrt{2} + i$ 是方程 $x^6 3x^4 + 11x^2 9 = 0$ 的一个根, 求该方程的其余根.
- 6. (20 分) 设矩阵

$$A = \left(\begin{array}{rrr} -2 & 0 & 0 \\ 2 & a & 2 \\ 3 & 1 & 1 \end{array}\right).$$

且 -1 是 A 的一个特征值.

- (1) (4 分) 求 a 的值.
- (2) (8 分) 证明: A 可对角化, 并求可逆矩阵 T 使得 $T^{-1}AT$ 为对角阵.
- (3) (8 分) 设 B 是一个 3 阶矩阵且满足 AB = BA, 证明: B 也可对角化.

- 7. (20 分) 填空题.
 - (1) (5 分) 在 $\triangle ABC$ 的三边 AB,BC,CA 上分别取三点 E,F,G 使得 $AE:AB=\alpha,BF:BC=\beta,CG:CA=\gamma,$ 那么 $\triangle EFG$ 与 $\triangle ABC$ 的面积之比为_____.
 - (2) (5 分) 设曲线 $a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2b_1x + 2b_2y + c = 0$ 为双曲线, 则它的实轴和虚轴长度的平方和可以用二次曲线的不变量表达为_____.
 - (3) (5 分) 双曲线 $3x^2 2y^2 + 6x + 4y = 0$ 的渐近线为_____.
 - (4) (5 分) 过点 (2,3,-4) 且落在曲面 $\frac{x^2}{4} + \frac{y^2}{9} \frac{z^2}{16} = 1$ 上的直线的标准方程为_____.
- 8. (10 分) 求过点 (11,9,0) 与直线 $\frac{x-1}{2} = \frac{y+3}{4} = \frac{z-5}{3}$ 和直线 $\frac{x}{5} = \frac{y-2}{-1} = \frac{z+1}{2}$ 都相交的直线的标准方程.
- 9. (15 分) 已知直线 $l: \frac{x-1}{-3} = \frac{y+1}{1} = \frac{z-3}{-2}$, 平面 $\alpha: x-y+z-2=0$, 直线 l 在平面 α 上的投影直线记为 l_1 .
 - (1) (7 分) 试求直线 l₁ 的方程.
 - (2) (8 分) 求直线 l 绕直线 l_1 旋转所得的曲面方程.
- 10. (20 分) 把二次曲面方程 $x^2 + 2y^2 + z^2 2xy 2yz + 6x + 3y + 6z + 2 = 0$ 化简成标准 方程, 写出所用坐标变换, 并说明这是哪种二次曲面.

14 厦门大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. (15 分) 求极限 $\lim_{n\to\infty} \frac{1\cdot 1! + 2\cdot 2! + \dots + n\cdot n!}{(n+1)!}$.
- 2. (20 分) 若 f(x) 在 (0,1) 上二阶连续,且 f(0) = f(1) = 0,当 $x \in (0,1)$ 时 $f(x) \neq 0$,证明:

$$\int_{0}^{1} \left| \frac{f''(x)}{f(x)} \right| \mathrm{d}x \ge 4$$

- 3. (15 分) 设广义积分 $\int_a^{+\infty} f(x) dx$ 收敛, 且 f(x) 单调,则 $\lim_{x \to +\infty} x f(x) = 0$.
- 4. (20 分) 求二元函数 $f(x,y) = x^2 + y^2 4(3x 4y)$ 在 D 上最值,其中 $D = \{(x,y)|x^2 + y^2 \le 25\}$.
- 5. (20 分) 设 K 为 n 维欧氏空间 \mathbb{R}^n 上的开闭子集,且 $K \subseteq \bigcup_{k=1}^{\infty} u_k$, u_k 为一簇开集,证明:存在 $\varepsilon > 0$,能够在 K 中找到一个 u_k 使其以 ε 为半径、x 为圆心的 $B(x,\varepsilon)$ 的开球 \mathfrak{g} .
- 6. (20 分) 设函数 $f(x) = \begin{cases} -\frac{\pi}{4}, & x \in [-\pi, 0) \\ \frac{\pi}{4}, & x \in [0, \pi) \end{cases}$
 - (1) 求 f(x) 在 $[-\pi, \pi]$ 上的 Fourier 展开式, 并写出和函数;
 - (2) 计算 $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$.
- 7. (20 分) 设函数 f(x) 有连续导数, 且 f(0) = 0, 求

$$\lim_{t\to 0} \frac{\iiint_V f\left(\sqrt{x^2+y^2+z^2}\right) \mathrm{d}x\mathrm{d}y\mathrm{d}z}{\pi t^4}$$

其中 V 是由 $x^2 + y^2 + z^2 \le t^2$ 围成的区域.

8. (20分) 求曲线积分

$$\oint_C x \ln (x^2 + y^2 - 1) dx + y \ln (x^2 + y^2 - 1) dy$$

其中 C 是被积函数定义域内从 (2,0) 到 (0,2) 的逐段光滑曲线.

15 同济大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

1. (10 分) 证明: 存在可微函数 f(x), 满足 $\lim_{x\to+\infty} f'(x) = +\infty$, 且 $\lim_{n\to\infty} \sum_{k\in F_n} \frac{1}{\sqrt{k}}$ 存在, 其中

$$F_n = [f(n), f(n+1)] \cap \mathbb{Z}^+.$$

- 2. (15 分) 证明: 去 x_0 空心邻域内 $\lim_{x \to x_0^-} f(x)$ 存在的充要条件为对任意严格单调道增的数 列 $\{x_n\}$ 且 $\lim_{n \to \infty} x_n = x_0$,都有 $\lim_{n \to \infty} f(x_n)$ 存在.
- 3. (20 分) 设 f(x) 在 [a,b] 上上半连续, 证明:
 - (1) f(x) 在 [a,b] 上有上界.
 - (2) f(x) 在 [a,b] 上可取到上确界.
- 4. (15 分) 函数 f(x) 在 $[0, +\infty)$ 上二阶可微, 证明: 若 f, f'' 在 $[0, +\infty)$ 上有界, 则 f' 在 $[0, +\infty)$ 上有界.
- 5. (10 分) 写出 $\tan x$ 在 x = 0 处泰勒展开的前三个非零项, 并写出收敛半径.
- 6. (10 分) 判断 $\iint_{\mathbb{R}^2} \frac{\mathrm{d}x\mathrm{d}y}{\left(1+|x|^{\frac{1}{2}}\right)(1+|y|^2)}$ 的敛散性:
- 7. (10 分) 若 f(x) 有界, 且对任意的 $\varepsilon \in (0,1)$, 有 f(x) 在 $[\varepsilon,1]$ 上黎曼可积, 证明: f(x) 在 [0,1] 上黎曼可积.
- 9. (25 分) 设函数列 $f_n(x) = n^{\alpha} x e^{-nx}$, 求当 α 取何值时, 有:
 - (1) { $f_n(x)$ } 在 [0,1] 上一致收敛.
 - (2) $\left\{\frac{\mathrm{d}}{\mathrm{d}x}f_n(x)\right\}$ 在 [0,1] 上一致收敛.
 - (3) $\int_0^1 \lim_{n \to \infty} f_n(x) dx = \lim_{n \to \infty} \int_0^1 f_n(x) dx.$
 - (4) $\frac{\mathrm{d}}{\mathrm{d}x} \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{\mathrm{d}}{\mathrm{d}x} f_n(x).$
- 10. (20 分) 解答如下问题:
 - (1) 设

$$I = \int_{L} P \, \mathrm{d}x + Q \, \mathrm{d}y + R \, \mathrm{d}z.$$

证明: $|I| \le Ms$, 其中 $M = \max_{(x,y,z) \in L} \left\{ \left[P^2(x,y,z) + Q^2(x,y,z) + R^2(x,y,z) \right]^{\frac{1}{2}} \right\}$, s 为 L 的弧长.

$$\int_{L} (y-z) dx + (z-x) dy + (x-y) dz.$$

其中 L 为 $y=x\tan\alpha$ 与 $x^2+y^2+z^2=1$ 的交线, 其中 $\alpha\in\left(0,\frac{\pi}{2}\right)$. L 的方向从 x 轴 正向看为逆时针方向.

16 复旦大学 2024 年数分高代考研真题

(考试时间: 2023 年 12 月 24 日上午 8:30-下午 5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- 1. 填空题.
 - (1) 设数列 $\{a_n\}$ 满足 $a_{n+1}=a_n+\frac{2}{a_n}$, 且 $a_1=2024$, 则 $\lim_{n\to\infty}\frac{a_n}{\sqrt{n}}=$ _____.
 - (2) 若 a > 0, 求极限 $\lim_{n \to \infty} e^{n(\sqrt[n]{a}-1)} =$ _____
 - (3) 求函数项级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^n \sqrt{n}} \left[\frac{x}{2x+1} \right]^n$ 的收敛域为______
 - (4) 计算定积分 $\int_{\frac{\pi}{2}}^{\frac{\pi}{3}} \frac{\cos^2 x}{x(\pi x)} \mathrm{d}x = \underline{\qquad}.$
 - (5) 设 L 是从 (1,0) 沿着 $x^2 + y^2 = x$ 到 (0,0) 的曲线, 求曲线积分

$$\oint_L \left(-e^x \cos y - y^2 \right) dx + e^x \sin y dy = \underline{\qquad}.$$

2. 若 f(x) 在 (0,1) 上二阶连续,且 f(0) = f(1) = 0,当 $x \in (0,1)$ 时 $f(x) \neq 0$,证明:

$$\int_0^1 \left| \frac{f''(x)}{f(x)} \right| \mathrm{d}x \ge 4$$

- 3. 讨论函数项级数 $\sum_{n=1}^{\infty} x^a e^{-\sqrt{n}x}$ 关于 x 在 $[0, +\infty)$ 上的连续性.
- 4. (1) 设 A 的特征多项式为 $f(x) = x^m (x-2)^n$, 求 $\begin{vmatrix} A & I \\ I & A \end{vmatrix} =$ _____.
 - (2) 写出

$$A = \left[\begin{array}{cccc} 1 & b & a & c \\ 0 & 2 & c & a \\ 0 & 0 & 1 & b \\ 0 & 0 & 0 & 2 \end{array} \right]$$

可对角化的所有条件.

- (3) 设 n 阶方阵 A, B 满足 AB = 2A + B, 已知 B 的所有特征值为 $\lambda_1, \lambda_2, \cdots, \lambda_n$, 则 A 的所有特征值为_____.
- (4) 设 n 阶酉矩阵 A , 若 $\lim_{k\to\infty} A^k$ 存在, 则 $\lim_{k\to\infty} A^k =$ ____.
- 5. 设 n 维空间 V 的两个子空间 V_1V_2 的维数均为 m, 且 m < n, 求使得 $V = V_1 \oplus U = V_2 \oplus U$ 的 U 的最大维数 k, 并构造 U.
- 6. 设 \mathscr{A} 是 $M_{m \times n}(\mathbb{K})$ 到 $M_{p \times q}(\mathbb{K})$ 上的线性映射, 满足 A(X) = AXB, 其中 A, B, M 分别为 $p \times m, n \times q, m \times n$ 阶矩阵, 求 \mathscr{A} 是可逆线性变换的充要条件并求 \mathscr{A}^{-1} .

7. 设 A_1, A_2, \cdots, A_p 是 n 阶半正定实对称阵, 记

$$f(x_1, x_2, \dots, x_k) = \det(x_1 A_1 + x_2 A_2 + \dots + x_k A_k),$$

且复数 x_1, x_2, \dots, x_k 的虚部均大于零. 证明: 若存在这样的 x_1, x_2, \dots, x_k 使

$$f\left(x_1, x_2, \cdots, x_k\right) = 0$$

则 $f(x_1, x_2, \cdots, x_k) \equiv 0.$

8. 证明: n 阶复矩阵 A 与 A^k 相似的充要条件是 A 的特征多项式为 $f(x) = (x-1)^r x^{n-r}$, 其中 r = r(A).

17 华东师范大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. (10 分) 计算曲面 $z = e^{x^2 y^2} + x^2$ 与曲面 $z = e^{x^2 y^2} y^2 + 1$ 所围成的封闭区域的体积.
- 2. (10 分) 设 f(x) 是 \mathbb{R} 上以 2π 为周期的连续函数, 以 a_n, b_n 为其傅里叶级数的系数, 求

$$F(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) f(x+t) dt$$

的傅里叶系数 (用 a_n, b_n) 表示。

- 3. (15 分) 设 $\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = a(-\infty < a < +\infty).$
 - (1) 判断 $\lim_{n\to\infty} a_n$ 是否存在? 若存在请给出严格证明; 若不存在, 请举出反例并详细说明;
 - (2) 若 $\lim_{n\to\infty} n (a_n-a_{n-1})=0$ 或 $\{a_n\}$ 单调递增,判断 $\lim_{n\to\infty} a_n$ 是否存在? 若存在给出严格证明; 若不存在, 请举出反例并详细说明.
- 4. (15 分) 设 f(x) 在 [0,1] 上有连续的导数, f(0) = 0 或 $\int_0^1 f(x) dx = 0$, 判断不等式

$$\int_0^1 f^2(x) \mathrm{d}x \le \int_0^1 \left(f'(x) \right)^2 \mathrm{d}x$$

是否成立, 若成立, 给出严格证明; 若不成立, 请举出反例并详细说明.

- 5. $(15 \, f)$ 讨论 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(n+(-1)^{n-1})^p} (p>0)$ 的敛散性. (收敛时需指明是绝对收敛还是条件收敛).
- 6. (20 分)(1)证明: $\{u_n(x)\} = \{\left(1 + \frac{x}{n}\right)^n\}$ 在 $x \in [0, 1]$ 上一致收敛;
 - (2) 证明: $\{v_n(x)\} = \left\{ \frac{1}{e^{\frac{x}{n}} + \left(1 + \frac{x}{n}\right)^n} \right\}$ 在 $x \in [0, 1]$ 上一致收敛;
 - (3) 计算 $\lim_{n\to\infty} \int_0^1 \frac{\mathrm{d}x}{\mathrm{e}^{\frac{x}{n}} + \left(1 + \frac{x}{n}\right)^n}$.
- 7. $(25 \, \text{分})$ 设 f 是定义在 $(-\infty, +\infty)$ 上的非常数函数. 请判断下列说法是否正确, 若正确, 请给出严格证明; 若不正确, 请举出反例并详细说明.
 - (1) 若 f 是处处不连续的周期函数,则 f 必有最小正周期;
 - (2) 若 f 是处处不连续的周期函数,则 f 没有最小正周期;
 - (3) 若 f 是周期函数但没有最小正周期,则 f 必有一列趋于 0 的周期;
 - (4) 若 f 是连续的周期函数,则 f 必有最小正周期.

- 8. (20 分) 设 f 在 $(a, +\infty)$ 上有连续的导数,且 $\lim_{x \to +\infty} f(x) = A(-\infty < A < \infty)$.
 - (1) 请给出例子详细说明 $\lim_{x\to +\infty} f'(x)$ 未必存在;
 - (2) 若 $\lim_{x\to +\infty} f'(x)$ 存在, 求其值;
 - (3) 若 f(x) 是 n 阶可导函数,且 $\lim_{x\to +\infty} f(x)$ 与 $\lim_{x\to +\infty} f^{(n)}(x)$ 均存在,判断 $\forall k=1,2,\cdots,n-1,$ $\lim_{x\to +\infty} f^{(k)}(x)$ 是否存在? 若存在,请求出极限,若不存在请举例并详细说明.
- 9. (20 分) 设 $f: \mathbb{R}^2 \to \mathbb{R}$ 连续可微, f(0,0) = 0, 且 $f_y(0,0) \neq 0$, 考虑迭代:

$$y_0(x) = 0, y_{n+1}(x) = y_n(x) - (f_y(0,0))^{-1} f(x, y_n(x))$$

定义 $u_{n+1}(x) = y_{n+1}(x) - y_n(x), n \ge 0.$

(1) 证明: 对任何 $\varepsilon > 0$, 存在 $\delta > 0$, 当 $x \in (-\delta, \delta)$ 时, $|y_n(x)| < \varepsilon$ 对任何 $n \ge 0$ 成立, 进 而当 δ 充分小时, 存在 $0 使得对任意 <math>|x| < \delta$, 有

$$|u_{n+1}(x)| \le p |u_n(x)|.$$

(2) 证明: $y(x) = \sum_{n=1}^{\infty} u_n(x)$ 是 f(x, y) = 0 在 (0,0) 附近确定的一个连续隐函数.

18 华东师范大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- 一、(共10题, 每题5分, 共50分.)
 - (1) 设 $f(x) = x^3 + 3x + 1$, 满足同余方程 $v(x)f'(x) \equiv 1 \pmod{f(x)}$ 且次数最小的多项式 v(x) 为_____.
 - (2) 实系数多项式 $f(x) = 2x^3 5x^2 + 4x 1$ 及 $g(x) = 4x^3 8x^2 + 5x 1$ 的最大公因式为______.
 - (3) 使得实对称矩阵 $\begin{pmatrix} 3+t & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 3-t \end{pmatrix}$ 正定的实数 t 的范围为_____.
 - (4) 已知方阵 A 的初等因子为 $\lambda, \lambda^2, (\lambda+1)^3, (\lambda-1)^2, (\lambda-1)^2, 则 <math>A$ 的极小各项式 $m_A(\lambda)$ 为_____.
 - (5) 考虑标准欧氏空间 ℝ⁴ 中的向量

$$\alpha_1 = (1, 1, 1, -1), \alpha_2 = (1, 1, 1, 1), \alpha_3 = (-1, 1, 1, 1), \beta = (1, -1, 1, 1).$$

设 γ 与诸 α_i 均正交, 则 γ 与 β 的夹角的最小值为_____.

- (6) 设诸 α_i 同上一小題, 使得 $|\alpha_1 t\alpha_2|$ 达到最小的实数 t 为_____.
- (7) 已知线性映射 $\mathscr{A}: \mathbb{R}^4 \to \mathbb{R}^4$ 满足

$$\mathcal{A}(x, y, z, w) = (x + 3y + z + 6w, 2y + z + 4w, 2x - z, -x + 3y + 2z + 6w).$$

那么核空间 Ker A 的维数为 . .

(8) 置换 $\tau^{-1}\sigma\tau$ 等于_____, 这里

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix}, \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 4 & 2 & 7 & 5 & 3 & 1 \end{pmatrix}$$

- (9) 实对称矩阵 $A = \begin{pmatrix} 4 & -2 & 0 \\ -2 & 3 & -2 \\ 0 & -2 & 2 \end{pmatrix}$ 可通过正交相似变换化为对角阵_____.
- (10) $J_n(-1) + J_n(-1)^{-1}$ 的行列式值为_____.
- 二、(每题 20 分, 共 100 分.)
 - 1. 已知 $C(A) = \{X \in M_3(\mathbb{C}) \mid AX = XA\}$ 是 \mathbb{C} 上的线性空间, 这里

$$A = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

- (1) 求 C(A) 的维数.
- (2) 考虑线性映射

$$\mathscr{A}: C(A) \to C(A), X \mapsto AX.$$

求复合映射 \mathcal{A}^n 对应的表示矩阵的 Jordan 典范形 $(n \ge 1)$.

2. 设

$$A = \left(\begin{array}{cccc} -2 & -9 & 2 & -31 \\ 0 & -2 & 1 & -5 \\ 1 & 4 & 0 & 12 \\ 0 & 1 & -1 & 4 \end{array}\right).$$

- (1) 求 A 的特征值及相应的特征子空问.
- (2) 求 A^{2024} .
- 3. 设 $A, B \in M_n(\mathbb{K}), k \in \mathbb{K}$ 是非零常数.
- (1) 证明: 如果 $AB = kI_n$, 则 $BA = kI_n$.
- (2) 证明: 如果 AB = O, 则 $\operatorname{rank} A + \operatorname{rank} B \leq n$.
- 4. 设 $A \in M_n(\mathbb{K}), f(x) \in \mathbb{K}[x], \operatorname{Ker}(f(A)) = \{X \in \mathbb{K}^n \mid f(A)X = 0\}$ 是 f(A) 的核空间.
- (1) 设 $f(x), g(x) \in \mathbb{K}[x], d(x) = \gcd(f, g)$. 证明:

$$Ker(d(A)) = Ker(f(A)) \cap Ker(g(x)).$$

(2) 设 $\chi_A(x)$ 是 A 的特征多项式, 满足 $\chi_A(x) = f(x)g(x)$, gcd(f,g) = 1, 证明:

$$\mathbb{K}^n = \operatorname{Ker}(f(A)) \oplus \operatorname{Ker}(g(A)).$$

- 5. 设 $A \in M_n(\mathbb{R})$, $\text{Im}(A) = \{Y \in \mathbb{R}^n \mid \exists X \in \mathbb{R}^n \notin Y = AX\}$.
- (1) 证明: $\operatorname{Im}(AA^T) = \operatorname{Im}(A)$.
- (2) 证明: 若 $A^2 = O$, 那么

$$\mathbb{R}^n = \operatorname{Im}(A) \oplus \operatorname{Im}(A^T) \oplus \operatorname{Ker}(B).$$

其中 $B = A^T A + AA^T$, $Ker(B) = \{X \in \mathbb{R}^n \mid BX = 0\}$.

19 湖南大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

1. 解答如下问题:

- (1) 已知 $0 < x_1 < 1, x_{n+1} = x_n (1 x_n), n = 1, 2, \dots$, 证明: $\lim_{n \to \infty} nx_n = 1$.
- (2) 设 $0 证明: <math>\lim_{n \to \infty} nx_n = \frac{1}{p}$.
- 2. 设函数 f(x) 在点 $x = x_0$ 处可导.

(1)
$$i \exists x_n = f\left(x_0 + \frac{1}{n^2}\right) + f\left(x_0 + \frac{2}{n^2}\right) + \dots + f\left(x_0 + \frac{n}{n^2}\right) - nf(x_0), \text{ if } \text{if: } \lim_{n \to \infty} x_n = \frac{1}{2}f'(x_0).$$

(2) 求极限
$$\lim_{n\to\infty} \left(\sin\frac{1}{n^2} + \sin\frac{2}{n^2} + \dots + \sin\frac{n}{n^2}\right)$$
.

(3) 求极限
$$\lim_{n\to\infty} \left(1+\frac{1}{n^2}\right) \left(1+\frac{2}{n^2}\right) \cdots \left(1+\frac{n}{n^2}\right)$$
.

3. 解答如下问题:

(1) 设 f(x) 为三次多项式, $x \in [-1, 1]$. 证明:

$$\int_{-1}^{1} f(x) dx = \frac{1}{3} [f(1) + 4f(0) + f(-1)].$$

(2) 设 f(x) 为 [a,b] 上的三次多项式, 证明:

$$\int_{a}^{b} f(x) dx = \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right].$$

- 4. 设 f(x) 在 $[0, +\infty)$ 上一致连续对任意的 h > 0, 序列 $\{f(nh)\}$ 极限存在. 证明: $\lim_{x \to +\infty} f(x)$ 存在.
- 5. 设函数列 $\{f_n(x)\}$ 在 [a,b] 上连续, 且 $\{f_n(x)\}$ 在 [a,b] 上一致收敛于 f(x). 证明:
 - (1) 存在 M > 0, 对任意的正整数 $n \ \mathcal{D} \ x \in [a,b]$, 有 $|f_n(x)| \le M$, 且 $|f(x)| \le M$.
 - (2) 若 g(x) 在 $(-\infty, +\infty)$ 上连续, 那么 $\{g(f_n(x))\}$ 在 [a,b] 上一致收敛于 g(f(x)).
- 6. $\[\stackrel{\text{th}}{\not\sim} f(x) = \frac{1}{4}x(2\pi x), x \in [0, 2\pi]. \]$
 - (1) 将 f(x) 展开为 $[0, 2\pi]$ 上的 Fourier 级数, 并计算 $\sum_{n=1}^{\infty} \frac{1}{n^2}$.
 - (2) 通过将 f(x) 的 Fourier 级数逐项积分, 计算 $\sum_{n=1}^{\infty} \frac{1}{n^4}$.
- 7. 设 f(x), g(x) 在 (a,b) 上连续,什么情况下方程 f(x)y = g(x) 在 (a,b) 上确定了唯一的连续解?

- 8. 设 f(x) 在 $[0, +\infty)$ 上连续, 证明: 含参量积分 $\int_0^{+\infty} \mathrm{e}^{-\alpha x} f(x) \mathrm{d}x$ 在 $\alpha \in [0, +\infty)$ 上一致 收敛的充要条件为 $\int_0^{+\infty} f(x) \mathrm{d}x$ 收敛.
- 9. 计算曲面积分

$$\iint_{S} xyz \left(x^2y^2 + y^2z^2 + z^2x^2\right) dS$$

其中 S 为 $x^2 + y^2 + z^2 = a^2(a > 0)$ 在第一卦限的部分.

20 湖南大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- - (1) 求 f'(x).
 - (2) 求 f'(x) 的所有复数根及在复数域和实数上的不可约因式分解.
 - (3) 判断 f(x) 是否有重根, 并说明理由.
- 2. 判断题. 正确的请简要证明, 错误的请举出反例.
 - (1) 已知 $V = W_1 \oplus W_2$, 则对任意的 $\alpha \in V$, 有 $\alpha \in W_1$ 或 $\alpha \in W_2$.
 - (2) 多项式 p(x) 在数域 \mathbb{K} 上不可约, 则 $p(x^2)$ 在数域 \mathbb{K} 上也不可约.
 - (3) 若 n 为偶数, 则存在 $A, B \in M_{n \times n}(\mathbb{R})$, 满足对任意的 $0 \neq \alpha \in \mathbb{R}^n$, 都有 $A\alpha, B\alpha$ 线性 无关.

3. 设
$$n$$
 阶矩阵 $A == \begin{pmatrix} 1 & -1 & & & \\ & 1 & -1 & & & \\ & & \ddots & \ddots & & \\ & & & 1 & -1 & \\ & & & & 1 \end{pmatrix}, 求 A^{-1}.$

4. 记 $N(A) = \{\lambda \in \mathbb{C} \mid \lambda A$ 和 A 相似 $\}$.

- (2) A 不是幂零矩阵, 证明: N(A) 为有限集.
- 5. 已知 V 为有限维线性空间, \mathscr{A} 为 V 上的线性变换.
 - (1) 证明: $\dim V = \dim \operatorname{Ker} \mathscr{A} + \dim \operatorname{Im} \mathscr{A}$.
 - (2) 证明: ৶ 可逆的充要条件是 ৶ 为单射.
 - (3) 举例说明 V 为无限维线性空间时, (2) 不成立.
- 6. 设 A 是数域 \mathbb{K} 上的 n 阶矩阵, 证明 r(A) = r 的充要条件是: 存在两个线性无关的向量组

$$\alpha_1, \alpha_2, \cdots, \alpha_r \in \mathbb{K}^n, \beta_1, \beta_2, \cdots, \beta_r \in \mathbb{K}^n.$$

使得

$$A = \alpha_1 \beta_1^T + \alpha_2 \beta_2^T + \dots + \alpha_r \beta_r^T.$$

- 7. 设 A 为复数域上的 n 阶可逆矩阵, A^2 在复数域上可相似对角化, 证明: A 在复数域上可相似对角化.
- 8. 设 $A = (a_{ij})$ 为 3 阶实正定对称矩阵, 且 $a_{ij} \in \{-1, 0, 1\}$, 求矩阵 A, 并证明你的结论.

21 中国科学技术大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- 1. (15 分) 若 $z = f\left(x + y, xy, \frac{x}{y}\right)$, 其中 f(u, v, w) 具有二阶连续偏导数,试求 $\frac{\partial^2 z}{\partial x^2}$.
- 2. (15 分) 设摆线参数方程为 $\begin{cases} x = a (t \sin t) \\ y = a (1 \cos t) \end{cases} \quad a > 0, 0 \le t \le 2\pi, \text{ 求摆线的弧长.}$
- 3. (15 分) 计算曲面积分

$$\iint_{S} (x^{2} + y) dydz - ydzdx + (x^{2} + y^{2}) dxdy$$

其中 $S = \{(x, y, z) | z = x^2 + y^2, 0 \le z \le 1\}$, 方向向外.

4. (15 分) 计算极限

$$\lim_{n \to \infty} n \left(\frac{1}{n^2 + 1^2} + \frac{1}{n^2 + 2^2} + \dots + \frac{1}{n^2 + n^2} \right)$$

- 5. (15 分) 确定含参量积分 $I(\alpha) = \int_0^{+\infty} \frac{\ln(1+x^3)}{x^{\alpha}} dx$ 的定义域与连续性.
- 6. (15 分) 设 $a > 0, x_0 > 0, x_n = \frac{1}{2} \left(x_{n-1} + \frac{a}{x_{n-1}} \right), n \ge 1$, 证明: 数列 $\{x_n\}$ 是单调数列, 并求出 $\lim_{n \to \infty} x_n$.
- 7. (15 分) 设 $f: \mathbb{R}^2 \to \mathbb{R}$ 在 (0,0) 附近存在偏导数 $\frac{\partial f}{\partial x}$ 和 $\frac{\partial f}{\partial y}$. 设 $\frac{\partial f}{\partial x}$ 在 (0,0) 点是连续的. 求证: 对于任何 $u, v \in \mathbb{R}$, $\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} f(tu, tv) = u \frac{\partial f}{\partial x}(0,0) + v \frac{\partial f}{\partial y}(0,0)$.
- 8. (15 分) 设 f(x) 在 [-1,1] 上二阶可导,且 f(-1) = f(0) = 0, f(1) = 1, 证明:存在 $\xi \in (-1,1)$ 使得 $f''(\xi) = 1$.
- 9. (15 分) 设 $f(x) \in R[-\pi,\pi]$, 且是以 2π 为周期的函数, 其傅里叶级数

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

对 $\forall c, d \in [-\pi, \pi]$ 有

$$\int_{c}^{d} f(t)dt = \int_{c}^{d} \frac{a_0}{2}dt + \sum_{n=1}^{\infty} \int_{c}^{d} (a_n \cos nt + b_n \sin nt)dt$$

10. (15 分) 设 $S_n = \sum_{k=1}^n a_k, \sigma_n = \frac{1}{n} \sum_{k=1}^n S_k,$ 数列 $\{a_n\}$ 满足 $a_n = o\left(\frac{1}{n}\right)$, 若存在极限 $\lim_{n \to \infty} \sigma_n = \sigma$, 则 S_n 收敛于 σ .

22 中国科学技术大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

满分:_150_ 分 考试形式: 闭卷 考试时间: _180_ 分钟

- 一. 填空题 (每空 6 分, 共 60 分; 要求答案写成最简形式, 否则不得分).
 - 1. 在 \mathbb{R}^3 中, 已知点 $A = (1, -1, 2), B = (5, -6, 2), C = (1, 3, -1), 则 <math>\triangle ABC$ 的面积 S =AC 边上的高 $h = ____$
 - 2. 点 P = (3, 2, 17) 在平面 3x + 4y + 12z 52 = 0 上的垂足 Q =
 - 阶单位方阵.
 - 4. 已知方阵 A 满足 $I-2A-3A^2+4A^3+5A^4-6A^5=O$, 则 $(I-A)^{-1}=$

 - 5. 已知 λ -方阵 $A = \begin{pmatrix} 1 \lambda & \lambda^2 & \lambda \\ \lambda & \lambda & -\lambda \\ 1 + \lambda^2 & \lambda^2 & -\lambda^2 \end{pmatrix}$, 则 A 的初等因子组为为_____.

 6. 矩阵 $A = \begin{pmatrix} -2 & 0 & 0 \\ 2 & x & 2 \\ 3 & 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & y \end{pmatrix}$ 是同一个线性变换在两组不同基下的

- 7. \mathbb{R}^4 中向量组 (1,-1,1-1),(-1,1,5,-5),(-1,1,1,-1),(0,0,12,-12) 张成子空间 V 的 维数是 .
- 二. (20 分) 设 \mathbb{R}^3 上线性变换 \mathscr{A} 把 $\alpha_1 = (0,1,1)^T, \alpha_2 = (1,0,1)^T, \alpha_3 = (1,1,0)^T$ 分别映射 到 $\beta_1 = (2,1,1)^T$, $\beta_2 = (1,2,3)^T$, $\beta_3 = (1,1,2)^T$.
 - (1) 求 Ø 分别在基 $\{\alpha_1, \alpha_2, \alpha_3\}$ 和 $\{e_1, e_2, e_3\}$ 下的表示矩阵. 这里 $\{e_1, e_2, e_3\}$ 为 \mathbb{R}^3 的自 然基.
 - (2) 求 ৶ 的特征值和特征向量.
- 三. (18分)解答如下问题:
 - (1) 设矩阵 $A \in \mathbb{F}^{m \times n}$, $B \in \mathbb{F}^{n \times m}$, 证明: $\det(I_m + AB) = \det(I_n + BA)$.
 - (2) 已知矩阵 $A \in \mathbb{F}^{n \times n}$, 秩 r(A) = 1, 迹 $\operatorname{tr}(A) = \lambda$, 求 $\det(I + A)$.

$$(X,Y) = X^T \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} Y.$$

(1) 证明:上述定义给出了 ℝ3 上的一个内积.

- (2) 利用 Schmidt 正交化从基向量组 $\alpha_1 = (1,0,0)^T, \alpha_2 = (1,0,1)^T, \alpha_3 = (1,1,0)^T$ 构造一组标准正交基.
- 五. (16 分) 设二次型 $Q(x_1, x_2, x_3) = \lambda(x_1^2 + x_2^2 + x_3^2) + 3x_2^2 4x_1x_2 2x_1x_3 + 4x_2x_3$.
 - (1) 当 λ 取何值时, 二次型 $Q(x_1, x_2, x_3)$ 为正定二次型.
 - (2) 当 λ 取何值时, 二次型 $Q(x_1, x_2, x_3)$ 为实一次多项式的完全平方? 并求出该完全平方式.
- 六. (16 分) 设矩阵 A 为 n 阶 Hermite 矩阵, 其特征值满足 $\lambda_1(A) \ge \lambda_2(A) \ge \cdots \ge \lambda_n(A)$.
 - (1) 证明: $\lambda_n(A) \leq \frac{X^*AX}{X^*X} \leq \lambda_1(A)$ 对任意非零向量 $X \in \mathbb{C}^n$ 成立, 其中 X^* 表示向量 X 的共轨转置.
 - (2) 设 A, B 是 n 阶 Hermite 矩阵, 证明: $\lambda_1(A+B) \leq \lambda_1(A) + \lambda_1(B)$.

23 中国人民大学 2024 年数学分析试题真题

,

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. (15 分) 计算极限 $\lim_{n\to\infty} \sum_{i=1}^{n} \frac{\sin\frac{i\pi}{n}}{n+\frac{i}{n}}$.
- 2. (15 分) 设函数 f(x) 在 f(x) 在 $[0, +\infty)$ 上有定义且一致连续,已知 $\lim_{n \to \infty} f(x+n) = 0$ (n 为自然数) 对 $\forall x > 0$ 成立. 证明: $\lim_{x \to +\infty} f(x) = 0$.
- 3. (15 分) 设函数 f(x) 在 [0,2] 上存在二阶导数, 且满足

$$|f(x)| \le 1, |f''(x)| \le 1. \forall x \in [0, 2]$$

对任意 $x \in [0, 2]$, 试证: $|f'(x)| \le 2$.

4. (15 分) 设函数 $f(x) = \int_1^x e^{t^2} dt$, 证明: 存在 $\xi \in (1, 2), \eta \in (1, 2)$, 使得

$$f(\xi) = (2 - \xi)e^{\xi^2}, f(2) = \eta e^{\eta^2} \ln 2$$

5. (15 分) 求函数 f(x, y, z) = xyz 在条件

$$x^{2} + y^{2} + z^{2} = 1, x + y + z = 0$$

下的极值.

6. (15 分) 设函数 f(x), g(x) 在区间 [a,b] 连续, 且 f(x) 严格递增, $0 \le g(x) \le 1$. 证明:

$$\int_{a}^{a+\int_{a}^{b}g(t)\mathrm{d}t}f(x)\mathrm{d}x \leq \int_{a}^{b}f(x)g(x)\mathrm{d}x$$

7. (15 分) 设函数 f(x,y) 有连续偏导数,对任意光滑曲线 L, 曲线积分 $\int_L 2xy dx + f(x,y) dy$ 与路径无关. 求 f(x,y) 满足对 $\forall t$ 都有

$$\int_{(0,0)}^{(t,1)} 2xy dx + f(x,y) dy = \int_{(0,0)}^{(1,t)} 2xy dx + f(x,y) dy$$

8. (15 分) 计算三重积分

$$\iiint_V x e^{y+z} dx dy dz$$

其中 V 是由曲面 $y = x^2 (x \ge 0)$ 和平面 y = x, x + y + z = 2 及 z = 0 围成的区域.

9. (15 分) 证明: 函数项级数 $\sum_{n=1}^{+\infty} \frac{x^n}{1-x^{2n}} (1-x) \sin nx$ 在 $\left(\frac{1}{2},1\right)$ 上一致收敛.

10. (15 分) 设 n 为正整数, 且函数

$$f_n(x) = \frac{a_0}{2} + \sum_{k=1}^{n} (\alpha_k \cos kx + \beta_k \sin kx)$$

其中 $\alpha_0, \alpha_k, \beta_k$ 为常数, $1 \le k \le n$. 证明:

$$\max_{-\pi \le x \le \pi} \left| f_n'(x) \right| \le n^2 \max_{-\pi \le x \le \pi} |f_n(x)|$$

24 中国人民大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

1. (25 分) 计算以下行列式

$$(1)(5 \ \%) \left| \begin{array}{cccccc} 1 & 0 & 0 & 0 & 0 \\ 2 & 3 & 0 & 0 & 0 \\ 4 & 5 & 6 & 0 & 0 \\ 7 & 8 & 9 & 1 & -2 \\ 10 & 11 & 12 & 3 & 4 \end{array} \right| = \underline{\qquad}.$$

$$(2) (10 \%) \begin{vmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \\ 0 & 0 & 0 & \cdots & n-1 \\ n & 0 & 0 & \cdots & 0 \end{vmatrix} = \underline{ \qquad } . (3) (10 \%) \begin{vmatrix} 1 & 1 & 1 & 1 \\ a & b & c & d \\ a^2 & b^2 & c^2 & d^2 \\ a^4 & b^4 & c^4 & d^4 \end{vmatrix} = \underline{ \qquad } .$$

- 2. (15 分) 设 A 是 n 阶矩阵, 若有正整数 k, 使得 $r(A^k) = r(A^{k+1})$, 则 $r(A^k) = r(A^{k+j})$ ($j = 1, 2, 3, \cdots$).
- 3. (15 分) 证明: 秩为 r 的矩阵 A 可分解为 A = BC, 其中 B, C 分别为行, 列满秩矩阵, 秩均为 r. 若有两种这样的分解 $A = BC = B_1C_1$, 则存在可逆矩阵 P, 使 $BP = B_1$, $P^{-1}C = C_1$.
- 4. (15 分) 设 A, B 为 $m \times n, n \times q$ 矩阵, 则有

$$r(A) + r(B) \le r(AB) + n$$

- 5. (25 分) 设 V 是 \mathbb{R} 上的向量空间, $\alpha_1, \alpha_2, \dots, \alpha_n$ 是其一组基, 由 $\mathscr{A}(\alpha_i) = \alpha_{i+1}(i = 1, \dots, n-1), \mathscr{A}(\alpha_n) = 0$, 定义 V 上的线性映射.
 - (1) (5 分) 写出 \mathcal{A} 在 $\alpha_1, \dots, \alpha_n$ 下的矩阵表示;
 - (2) (5 分) 证明: $\mathscr{A}^n = 0, \mathscr{A}^{n-1} \neq 0$;
 - (3) (10 分) 假设 \mathcal{B} 是 V 上的线性映射, 满足 $\mathcal{B}^n = 0$, $\mathcal{B}^{n-1} \neq 0$, 则存在 V 的一组基使 得 \mathcal{B} 的矩阵表示与 \mathcal{A} 在第 (1) 问中的矩阵表示相同;
 - (4) (5 分) 证明: 若 n 阶实方阵 M, N 满足 $M^n = N^n = 0, M^{n-1} \neq 0 \neq N^{n-1}, 则 <math>M$ 与 N 相似.
- 6. (30 分) 设向量空间 V 的线性变换 \mathscr{A} 满足 $\mathscr{A}^2 = \mathscr{A}$, 则称 \mathscr{A} 为投影映射. 证明:
 - (1) (5 分) V 中向量 β 属于 \mathscr{A} 的像集当且仅当 $\mathscr{A}\beta = \beta$;
 - (2) (10 分) $V = \mathscr{A}V \oplus \operatorname{Ker} \mathscr{A}$, 且 V 中任何一个向量可以直和分解为

$$\alpha = \mathscr{A}\alpha + (\alpha - \mathscr{A}\alpha)$$

- (3) (10 分) 对任意直和分解 $V=V_1\oplus V_2$, 存在唯一的投影映射 $\mathscr B$ 使得 $V_1=\operatorname{Ker}\mathscr B, V_2=\mathscr BV$
- (4) (5 分) 每个投影映射都有矩阵表示.
- 7. (25 分) 设 A 是 n 阶复方阵, 求所有与 A 可交换的复方阵, 写出详细过程.

25 电子科技大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

一、填空题 (每题 5 分, 共 30 分)

- 1. 求极限 $\lim_{x\to 0} \frac{1-(\cos x)^{\sin x}}{\sqrt{1+x^3-1}} = \underline{\hspace{1cm}}$
- 2. 若 u = xyz, 则 $d^3u = ____$.
- 3. 求曲线积分 $\oint_L (2x^2 + y^2 + z) dS = ______,$ 其中 $L: x^2 + y^2 + z^2 = 1$ 与 x + y + z = 0 相交所围成的曲线.
- 4. 已知曲面 z = xy, 在曲面上找一点使得该点的法线与平面 x + 3y + z + 9 = 0 垂直, 求该点的坐标为_____.
- 5. 求幂级数 $\sum_{n=1}^{\infty} \frac{1}{n \cdot 2^n} =$ _____.

二、计算题 (每题 10 分, 共 60 分)

1. 讨论方程组

$$\begin{cases} xy + y + y^2z = 0\\ x^y + yz - z^2 + 5 = 0 \end{cases}$$

在 P(1,-2,1) 的附近能否确定形如 x = f(z), y = g(z) 的隐函数组?

2. 计算曲线积分

$$\oint_{I} \frac{(x-y)\mathrm{d}x + (x+4y)\mathrm{d}y}{x^2 + 4y^2}$$

其中 $L: x^2 + y^2 = 1$, 方向为逆时针.

- 3. 求 x + 2y = 1 与 $x^2 + 2y^2 + z^2 = 1$ 相交曲线上的点到原点距离最小的点.
- 4. 判断数项级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\sin^2 n}{n}$ 的敛散性, 若收敛需要判断是条件收敛还是绝对收敛
- 5. 计算积分 $I(y) = \int_0^{+\infty} e^{-x^2} \cos 2xy dx$, 其中 $y \in \mathbb{R}$.
- 6. 计算二重积分

$$\iint_D \sqrt{x^2 + y^2} + y \mathrm{d}x \mathrm{d}y$$

其中 $D: x^2 + y^2 = 4$ 与 $(x+1)^2 + y^2 = 1$ 所围成的区域.

三、证明题 (每题 10 分, 共 30 分)

1. 已知数列 {x_n} 满足:

$$x_n = \sin 1 + \frac{\sin 2}{2!} + \frac{\sin 3}{3!} + \dots + \frac{\sin n}{n!}$$

证明: (1) 数列 {x_n} 有界, 但不单调; (2) 数列 {x_n} 收敛.

- 2. 证明: 函数项级数 $\sum_{n=1}^{\infty} \frac{x^2}{(1+x^2)^n}$ 在 $(-\infty, +\infty)$ 上非一致收敛.
- 3. 证明: 反常积分 $\int_0^{+\infty} \frac{x}{1 + x^5 \sin^2 x} dx$ 收敛.

四、综合题 (每题 15 分, 共 30 分)

1. 设 $\alpha \in (0,1)$, 已知 $\{a_n\}$ 为正项数列, 且满足

$$\liminf_{n \to \infty} n^{\alpha} \left(\frac{a_n}{a_{n+1}} - 1 \right) = \lambda \in (0, +\infty)$$

证明: 对 $\forall k > 0$, 有 $\lim_{n \to \infty} n^k a_n = 0$.

2. 设函数 f(x) 在 [0,1] 上二阶连续, 且满足 $f(0)f(1) \ge 0$, 证明:

$$\int_0^1 \left| f'(x) \right| \mathrm{d} x \le 2 \int_0^1 |f(x)| \mathrm{d} x + \int_0^1 \left| f''(x) \right| \mathrm{d} x.$$

26 电子科技大学 2024 年线性代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

一、填空题

- 1. 若矩阵 $A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$, $B = \frac{\sqrt{3}}{2}A$, 则 $\begin{pmatrix} A & \\ & B \end{pmatrix}^8 = \underline{\qquad}$.
- 2. 设矩阵 $B = (\alpha_1, \alpha_2, \alpha_3)$ 为正交矩阵, 则矩阵 $A = 2\alpha_2\alpha_2^T + \alpha_3\alpha_3^T + \alpha_4\alpha_4^T$ 的最小多项式为_____.
- 3. 若矩阵 A 满足 $A^4 = O$, 则 A 按照相抵分类一共可以分为 类.
- 4. 若矩阵 A 为 $m \times n$ 矩阵, 且 r(A) = r < n, 则 AX = b 的解中线性无关的向量的个数最多为______ 个.
- 5. 设 A 为 4 阶实对称矩阵,三个特征值为 $\lambda_1 = 1, \lambda_2 = 3, \lambda_3 = 4$,且 |A| = -12,其中 V_1, V_2, V_3 分别为 $\lambda_1, \lambda_2, \lambda_3$ 特征子空间,则 $\dim \left((V_1 \oplus V_2 \oplus V_3)^{\perp} \right) =$ _____.
- 6. 设 \mathscr{A} 是 $\operatorname{End}_F(V)$ 上的线性变换, 且多项式 f(x) 无重根, 则 $\operatorname{Im} f(\mathscr{A}) + \operatorname{Im} f'(\mathscr{A}) = __$

二、计算 & 证明题

1. 已知矩阵

$$A = \begin{pmatrix} 0 & 1 & & & \\ & 0 & 1 & & & \\ & & 0 & \ddots & & \\ & & & \ddots & 1 \\ 32 & & & & 0 \end{pmatrix}$$

计算 f(x) = |xI - A|, 并求 $Tr((xI - A)^*) - f'(x)$.

2. 设 4 阶正交矩阵 A 无实特征值, 证明: 存在正交矩阵 Q, 使得

$$Q^{T}AQ = \begin{pmatrix} \cos \theta_{1} & \sin \theta_{1} \\ -\sin \theta_{1} & \cos \theta_{1} \\ & \cos \theta_{2} & -\sin \theta_{2} \\ & \sin \theta_{2} & \cos \theta_{2} \end{pmatrix}, \theta_{i} \neq k\alpha(i = 1, 2)$$

- 3. 设 $V \neq n$ 维线性空间, $\sigma \neq \operatorname{End}_F(V)$ 上的线性变换, $f(x) \neq \sigma$ 的最小多项式.
 - (1) 证明: σ 可对角化的充要条件是 f(x) 可分解为互素一次因式的乘积.
 - (2) 若 $A^5 = I$, $A \in \mathbb{Q}^{n \times n}$, 当 $F = \mathbb{Q}$ 或 $F = \mathbb{C}$ 时, A 是否可以对角化? 请说明理由.
- 4. 设矩阵 $A = P \begin{pmatrix} 2 & 3 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{pmatrix} P^{-1}$, 且 $C(A) = \{X \in \mathbb{R}^{3 \times 3} \mid AX = XA\}$.
 - (1) 证明: C(A) 是 $\mathbb{R}^{3\times3}$ 的子空间;
 - (2) 求 C(A) 的维数和基.

5. 若矩阵 $A^T = A, B^T = -B, AB = BA 且 A 可逆, C = A^{-1}B.$

(1) 证明: C 为反对称矩阵;

(2) 设 V 为 n 维欧氏空间, 记线性变换 $\mathscr A$ 满足

$$\mathscr{A}: \alpha \to C\alpha, \forall \alpha \in V$$

证明: $\mathscr{A}(\alpha) \perp \alpha, \forall \alpha \in V$.

(3) 证明: C² 非负定.

6. 已知 V 为 n 维欧氏空间, 且 \mathcal{A} , $\mathcal{B} \in \text{End}_F(V)$. 证明:

$$\dim(\operatorname{Ker} \mathscr{A}\mathscr{B}) \leq \dim(\operatorname{Ker} \mathscr{A}) + \dim(\operatorname{Ker} \mathscr{B})$$

并证明 $R(AB) \ge R(A) + R(B) - n, \forall A, B \in \mathbb{R}^{n \times n}$.

7. 若二次型

$$f(x_1, x_2, x_3) = (x_1, x_2, x_3) \begin{pmatrix} 1 & 4 & -1 \\ 0 & 2 & -3 \\ 1 & -1 & 3 \end{pmatrix} (x_1, x_2, x_3)^T$$

将二次型 f 化为标准形.

27 华中师范大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

1. 计算题

- (1) 计算极限 $\lim_{x \to +\infty} \left[\left(x^3 x^2 + \frac{x}{2} \right) e^{\frac{1}{x}} \sqrt{x^6 + 1} \right].$
- (2) 将 $f(x) = \sin x, x \in [0, \pi]$ 展开成余弦级数.
- (3) 计算曲线 $\oint_L \frac{(x+y)\mathrm{d}x (x-y)\mathrm{d}y}{x^2 + y^2}$, 其中 $L: x^2 + y^2 = a^2(a > 0)$
- (4) 计算二重积分 $\iint e^{\frac{y}{x+y}} dxdy$ 其中 D 为 x=0,y=0,x+y=1 所围区域.
- (5) 计算曲面积分 $\iint_S x dy dz + y dz dx + z dx dy$, 其中 $S: x^2 + y^2 + z^2 = a^2$, 方向外侧.
- 2. 已知 $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$, 证明:

$$\lim_{n\to\infty} \frac{a_1b_n + a_2b_{n-1} + \dots + a_nb_1}{n} = ab$$

3. 设 f(x) 在 $[0, +\infty)$ 上二阶连续可导且 $M_0 = \sup\{|f(x)|x \in (0, +\infty)\}$ 以及

$$M_1 = \sup\{|f'(x)|x \in (0, +\infty)\}, M_2 = \sup\{|f''(x)|x \in (0, +\infty)\}$$

均为有限数,证明: $M_1 \leq 2\sqrt{M_0M_2}$.

- 4. 设 $\{x_n\}$ 为 (0,1) 上各项互异的数列,试讨论函数项级数 $\sum_{n=1}^{\infty} \frac{\text{sgn}(x-x_n)}{2^n}$ 在 (0,1) 上的一致收敛性及极限函数的连续性.
- 5. 设 f(x) 在 \mathbb{R} 上连续,且 $g(x) = f(x) \int_0^x f(t) dt$ 单调递减,证明: $f(x) \equiv 0$.
- 6. 讨论 $f(x) = \int_0^{+\infty} x e^{-xy} dy$ 在 $(0, +\infty)$ 上的一致收敛性.
- 7. 证明: 函数 f(x) 在有界区间上一致连续的充分必要条件是当 $\{a_n\}$ 是 I 上的任意柯西数列时, $\{f(a_n)\}$ 也是柯西数列.
- 8. 设级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 且 $\sum_{n=1}^{\infty} (b_{n+1} b_n)$ 绝对收敛.
 - (1) 叙述阿贝尔变换, 并求 $\sum_{n=1}^{\infty} a_n b_n$ 的部分和;
 - (2) 证明:数列 $\{b_n\}$ 收敛;
 - (3) 证明: $\sum_{n=1}^{\infty} a_n b_n$ 收敛.

28 华中师范大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

1. 填空题

(1) 若 A, B 均为 3 阶矩阵, 且 AB = O 且 rank(A) = 1, 则 B 的秩最大为_____.

(2) 已知矩阵
$$A = \begin{pmatrix} 2 & * & * \\ 0 & 4 & * \\ 0 & 0 & 6 \end{pmatrix}$$
,则 $tr(A^2) = \underline{\qquad}$

(3) 若
$$A = \begin{pmatrix} 0 & -1 \\ 2 & 3 \end{pmatrix}$$
,则 $A^{2023} =$ _____.

(4) 设
$$(g(\lambda), f(\lambda) = 1$$
,且 f, g 均为首一多项式,则 $\begin{pmatrix} g(\lambda) & 0 \\ 0 & f(\lambda) \end{pmatrix} = \underline{\qquad}$

(5) 求
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
 的 Jordan 标准型_____.

(6) 子空间
$$\{(x_1, x_2, x_3)|x_1 + x_2 + x_3 = 0\}$$
 的维数_____.

2. (1) 证明: $x^3 - 2$ 为有理不可约多项式;

(2) 求有理数
$$a,b,c$$
 使得 $\sqrt[3]{4}a + \sqrt[3]{2}b + c = \frac{1}{\sqrt[3]{4} + \sqrt[3]{2} + 2}$

3. 实二次型 $g(x_1, x_2, x_3) = x_1^2 + 2ax_1x_2 + 2(a+1)x_1x_3 + 2x_2^2 + x_3^2$ 为正定二次型,求 a 范围.

4. 计算行列式
$$\begin{vmatrix} a & 0 & b & 0 \\ 0 & c & 0 & d \\ -b & 0 & -a & 0 \\ 0 & -d & 0 & -c \end{vmatrix}$$
.

- 5. 实矩阵 A 的前 r 列是 A 列向量的极大无关组当且仅当 A'A 的前 r 列是 A'A 的极大线性 无关组.
- 6. 设 \mathscr{A} 为不可逆线性变换,证明:存在线性变换 $\mathscr{B} \neq 0$ 满足 $\mathscr{A}\mathscr{B} = \mathscr{B}\mathscr{A} = 0$.
- 7. 若 $Q \in M_n(\mathbb{C}), Q\overline{Q'} = E_{n \times n}$, 证明: Q 特征值模长为 1. 举例说明 $\exists P \in M_2(\mathbb{C})$ 的特征值模长为 1,但 $P\bar{P'} \neq E_{2 \times 2}$.

29 首都师范大学 2024 年数学分析考研真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. (每题 8 分共 24 分) 求下列极限
 - $(1) \lim_{x \to 0^+} (\cos \sqrt{x})^{\frac{1}{x}}$
 - (2) 若 $\lim_{n\to\infty} a_n = a, a > 0$, 求 $\lim_{n\to\infty} \sqrt[n]{a_n}$
 - (3) $\lim_{x\to 0} \frac{(1+\tan x)^{\frac{1}{4}}+(1-\sin x)^{\frac{1}{4}}-2}{x^2}$
- 2. (10 分) 讨论函数 $f(x,y) = \left(1 + \frac{2}{x^2}\right)^{\frac{x^4}{x^2 + y^2}}$ 在点 (0,0) 处的累次极限和重极限存在性, 若存在求其值.
- 3. (10 分) 证明: $f(x) = \ln x$ 在 $(1, +\infty)$ 上一致连续,但在 (0, 1) 上不一致连续.
- 4. (10 分) 设函数 f(x) 在 [a,b] 上可导,满足

$$f(a) = f(b) = 0, f'_{+}(a)f'_{-}(b) = 0$$

证明: 至少存在不同的两点 $\xi, \eta \in [a, b]$ 使得 $f'(\xi) = f'(\eta) = 0$

- 5. (12 分) 证明: 二元函数 $f(x,y) = x^3 4x^2 + 2xy y^2$ 在 \mathbb{R}^2 上有唯一的极值点,且该极值点是极大值点但不是最大值点
- 6. (14 分) 求 $\iint_{\Omega} 2\sqrt{x^2 + y^2} dx dy dz$, 其中 Ω 为柱面 $y = \sqrt{2x x^2}$ 及平面 z = 0, z = a(a > 0) 和 y = 0 所围成的区域.
- 7. (20分) 定义函数

$$f(x) = \begin{cases} \frac{1}{x} e^{-\frac{1}{x^2}} &, x \neq 0 \\ 0 &, x = 0 \end{cases}$$

- (1) 证明: f(x) 在点 x = 0 连续且可导;
- (2) 证明: f'(x) 在 \mathbb{R} 上连续;
- (3) 求 f(x) 的单调区间、最大值点、最小值点.
- 8. (15 分) 设函数项级数 $\sum_{n=2}^{\infty} \frac{xe^{-nx}}{\ln n}$.
 - (1) 求函数项级数的收敛区间;
 - (2) 设 a > 0 , 证明: 函数项级数在 $[a, +\infty)$ 上一致收敛.

9. (15 分) 设函数 $f_1(x)$ 在区间 [a,b] 上可积, A 是一个给定实数.

$$f_{n+1}(x) = A + \int_{a}^{x} f_n(t) dt$$

其中 $x \in [a,b], n = 1,2....$

- (1) 证明:函数列 $\{f_n(x)\}$ 在 [a,b] 上一致收敛;
- (2) 记 $\{f_n(x)\}$ 极限函数为 f(x), 证明: f(x) 在 [a,b] 可微.
- 10. (15 分) 求曲线积分

$$\oint_C x \ln (x^2 + y^2 - 1) dx + y \ln (x^2 + y^2 - 1) dy$$

其中 C 是被积函数定义域内从 (2,0) 到 (0,2) 的逐段光滑曲线.

11. (10 分) 设 f(x) 为区间 [a,b] 上定义的连续且黎曼可积函数,证明:

$$\lim_{\lambda \to \infty} \int_a^b f(x) \sin \lambda x dx = 0$$

30 首都师范大学 2024 年高等代数考研真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

1. 设n为正整数,计算n阶行列式

$$\begin{vmatrix} 1+x_1 & x_1 & \cdots & x_1 \\ x_2 & 1+x_2 & \cdots & x_2 \\ \cdots & \cdots & \cdots \\ x_n & x_n & \cdots & 1+x_n \end{vmatrix}$$

2. 判定下列多项式是否为有理数域上的不可约多项式,并说时理由:

(1)
$$x^8 + x^4 + 1$$
; (2) $x^5 + 5x + 11$

3. 设某向量空间中的五个向量 $\alpha_1, \alpha_2, \cdots, \alpha_5$ 满足

$$\alpha_3 = \alpha_1 - \alpha_2 - \alpha_5, \alpha_4 = \alpha_1 - \alpha_3 + \alpha_5$$

且这组向量的秩 $r(\alpha_1,\alpha_2,\cdots,\alpha_5)=3$,求方程组 $x_1\alpha_1+x_2\alpha_2+\cdots+x_5\alpha_5=0$ 的一般 解.

- 4. 证明: 不存在复数域上的方阵 A,使得 $A^2 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.
- 5. 设 $\alpha_1 = (1, 1, 1, 1), \alpha_2 = (3, 2, 1, 1), \alpha_3 = (0, 2, 2, 2)$ 为欧氏空间 \mathbb{R}^4 中的向量
 - (1) 令 $V = L(\alpha_1, \alpha_2, \alpha_3)$ 由向量 $\alpha_1, \alpha_2, \alpha_3$ 生成的子空间,求 V 的正交补 V^{\perp} ;
 - (2) 今 $\beta = (1,0,2,0)$,求 β 在 V 中的正交投影以及 β 在 V^{\perp} 中的正交投影.
- 6. 证明: 奇数维欧氏空间的任一正交变换的全部实特征值之和必为奇数.
- 8. 设 \mathbb{C} 为复数域,n 为大于 1 的整数, $V = \left\{ \sum_{0 \le i < n} C_i x^i | C_i \in \mathbb{C} \right\}$ 为多项式环 $\mathbb{C}[x]$ 的一个子集,定义映射

$$\mathscr{A}: V \longrightarrow V$$

$$\sum_{0 \le i < n} C_i x^i \longmapsto \sum_{0 \le i < n} i C_i x^{i-1}$$

- (1) 证明: $V \in \mathbb{C}$ 上的一个线性空间, $\mathcal{A} \in V$ 上的一个线性变换;
- (2) 求 Ø 的极多项式和特征多项式;
- (3) 求 Ø 的所有不变子空间.

9. 设 n 为正整数,M(n,R) 为实数域 \mathbb{R} 上所有 n 阶方阵构成的线性空间,给定两个方阵 $A,B\in M(n,R)$,定义映射

$$\mathscr{A}: M(n,R) \to M(n,R)$$

$$X \longmapsto A \times B$$

- (1) 证明: Ø 为线性变换;
- (2) 设 $a=\mathrm{Tr}(A),b=\mathrm{Tr}(B)$ 分别为矩阵 A,B 的迹,求 $\mathrm{Tr}(\varphi)$;
- (3) 设 |A|, |B| 分别为 A, B 的行列式, 求 $\mathscr A$ 的行列式.
- 10. 利用正交变换将下面的实二次型化为标准形:

$$7x_1^2 + 7x_2^2 - 5x_3^2 + 32x_1x_2 - 16x_1x_3 - 16x_2x_3$$

31 东南大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 一. 计算题与解答题. 每题 9 分, 共 90 分.
 - 1. 设 y = y(x) 是由方程

$$\arcsin(xy) + y^2 - ye^{xy} = 2$$

所确定的隐函数, 求曲线 y = y(x) 在点 (0,2) 处的切线方程.

- 2. 求极限 $\lim_{n\to\infty} \left(\sqrt[n]{n^2+1} 1 \right) \sin \frac{n\pi}{2}$.
- 3. 计算不定积分 $\int \frac{\arccos x}{x^2} dx$.
- 4. 计算定积分 $\int_{-1}^{1} \frac{x+2}{e^x + e^{-x}} dx$.
- 5. 求幂级数 $\sum_{n=1}^{\infty} \frac{n+1}{n!2^n} (x-2)^n$ 的收敛域与和函数.
- 6. 计算二重积分 $\iint_D \frac{\sin y \cos y}{y} dx dy$, 其中 D 为直线 y = x 与抛物线 $x = y^2$ 所围成的 区域.
- 7. 设 $f(x,y) = \begin{cases} \frac{x^2y}{\sqrt{x^2 + y^2}}, & x^2 + y^2 \neq 0; \\ 0, & x^2 + y^2 = 0. \end{cases}$ 求二阶混合偏导数 f_{xy} .
- 8. $\% f(x) = \pi x, x \in [0, \pi].$
- (1) 将 f(x) 展开为余弦级数, 并在 $[-\pi, \pi]$ 上写出和函数的表达式.
- (2) 判断该级数在 [0, π] 内是否一致收敛, 并说明原因.
- 9. 计算曲线积分

$$\int_{L} y^2 \mathrm{d}x + z^2 \mathrm{d}y + x^2 \mathrm{d}z$$

其中 L 为球面 $x^2 + y^2 + z^2 = a^2 (z \ge 0, a > 0)$ 与柱面 $x^2 + y^2 - ax = 0$ 的交线, 从 z 轴 正向看去取逆时针方向.

- 10. 解答如下问题:
- (1) 求极限 $\lim_{x\to 0^+} \frac{1-\cos x}{\int_0^x \frac{\ln(1+xy)}{y} dy}$.
- (2) 计算含参量反常积分 $\int_0^{+\infty} \frac{\sin xy}{ye^y} dy$.
- 二. 证明题. 每题 10 分, 共 50 分.
 - 11. 设 f(x) 在 [0,1] 上连续, 在 (0,1) 内可导,

$$f(0) = f(1) = 0, f\left(\frac{1}{2}\right) = 1.$$

证明: 存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 1$.

12. 设 $D = \{(x, y) \mid 0 < x < 1, 0 < y < +\infty\}$, 证明: 对任意的 $(x, y) \in D$, 成立不等式

$$yx^y(1-x) < e^{-1}$$
.

- 13. 设 $f_n(x) = n^{\alpha} x e^{-nx}$.
- (1) 当 α 取何值时, $\lim_{n\to\infty}\int_0^1 f_n(x)\mathrm{d}x = \int_0^1 \lim_{n\to\infty} f_n(x)\mathrm{d}x$?
- (2) 当 α 取何值时, $\{f_n(x)\}$ 在 [0,1] 上一致收敛?
- 14. 设正项级数 $\sum_{n=1}^{\infty} a_n$ 发散, 以 S_n 表示前 n 项的和. 证明:
- (1) $\sum_{n=1}^{\infty} \frac{a_n}{S_n}$ 发散; (2) $\sum_{n=1}^{\infty} \frac{a_n}{S_n^2}$ 收敛.
- 15. 设 f(x,y) 在区域 $D:(0,1)\times(0,1)$ 内分别对自变量 x 和 y 连续, 并且对固定的 x, f(x,y) 关于 y 是单调的. 证明: f(x,y) 在区域 D 内为二元连续函数.
- 16. 解答如下问题:
- (1) 叙述 \mathbb{R}^n 上的有限覆盖定理.
- (2) 设对任意的 $x_0 \in [a,b]$, 有 $\lim_{x \to x_0} f(x) = 0$. 证明: $f(x) \in R[a,b]$ 且 $\int_a^b f(x) dx = 0$.

32 东南大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

1. (20 分) 设 V 为数域 \mathbb{P} 上的全体 4 维列向量构成的向量空间.

$$\alpha_{1} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \alpha_{2} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \alpha_{3} = \begin{pmatrix} 2 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \beta_{1} = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \beta_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ a \end{pmatrix}.$$

若 V 的子空间

 $V_1 = \{k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 \mid k_1, k_2, k_3 \in P\}, V_2 = \{l_1\beta_1 + l_2\beta_2 \mid l_1, l_2 \in P\}$

- (1) 参数 a 满足什么条件时, $V_1 + V_2$ 为直和?
- (2) 若 $V_1 + V_2$ 不是直和, 分别求 $V_1 + V_2$ 与 $V_1 \cap V_2$ 的一组基.

2. (20 分) 设二次型
$$f(x_1, x_2, x_3) = (BX)^T(BX)$$
, 其中 $B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & a \end{pmatrix}$, a 为实数,

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
. 已知 $f(x_1, x_2, x_3)$ 经过可逆线性变换化为标准形 $y_1^2 + y_2^2 + 0y_3^2$. 求 a 的

值, 并求一个正交矩阵 O, 使得 $f(x_1, x_2, x_3)$ 经过正交变换 X = OY 化为标准形.

- 3. (20 分) 设 A 为 3 阶方阵, E 为 3 阶单位阵.
- 4. (20 分) 设 A 为 m×n 矩阵, b 为 m 维列向量.
 - (1) 若存在 $n \times m$ 矩阵 B, 使得 BA = E, 则对于线性方程组 Ax = b 有何结论? 并说明 理由.
 - (2) 若存在 $n \times m$ 矩阵 B, 使得 AB = E, 则对于线性方程组 Ax = b 有何结论? 并说明 理由.
- 5. (15分)设矩阵

$$A = \begin{pmatrix} 1 - a & a & 0 \\ -a & 1 + a & b \\ 0 & 0 & 1 \end{pmatrix}$$

针对参数 a,b 的不同取值, 分别求 A 的不变因子及初等因子.

- 6. (10 分) 设非零矩阵 $A = (a_{ij})_{n \times n}$, a_{ij} 不全为零, A_{ij} 表示其代数余子式, 且满足 $a_{ij} + A_{ij} = 0$ ($i, j = 1, 2, \cdots$). 证明: A 可逆.
- 7. (15 分) 设 $\alpha_1, \alpha_2, \dots, \alpha_n$ 为欧氏空间 V 的一组基, $\beta_1, \beta_2, \dots, \beta_n$ 为 V 中的一个正交向量组, $\gamma_1, \gamma_2, \dots, \gamma_n$ 为 V 中的另一个正交向量组, 已知对于任意的 $i = 1, 2, \dots, n, \alpha_1, \alpha_2, \dots, \alpha_i$ 能由 $\beta_1, \beta_2, \dots, \beta_i$ 线性表出, 也能由 $\gamma_1, \gamma_2, \dots, \gamma_i$ 线性表出. 证明: 存在数 k_1, k_2, \dots, k_n ,使得

$$\beta_1 = k_1 \gamma_1, \beta_2 = k_2 \gamma_2, \cdots, \beta_n = k_n \gamma_n.$$

8. (10 分) 设 f(x), g(x) 为多项式, A 为 n 阶矩阵, 证明:

$$r\left(\begin{array}{c}f(A)\\g(A)\end{array}\right) = r(f(A),g(A))$$

- 9. $(10 \, \text{分})$ 设 V 是数域 \mathbb{P} 上的 n 维线性空间,其中 n 为正整数,I 为 V 上的恒等变换,即 $I(\alpha) = \alpha, \alpha \in V$,且 \mathcal{A} , \mathcal{B} 为 V 上的线性变换,若 V_1 为 $I \mathcal{A}\mathcal{B}$ 的值域, V_2 为 $I \mathcal{B}\mathcal{A}$ 的值域,证明: $\dim V_1 = \dim V_2$.
- 10. (10 分) 已知 A, B 均为 n 阶实对称矩阵, 且 A 为正定矩阵, AB 的特征值全为 1 , 证明: 存在次数小于 n 的多项式 f(x), 使得 B = f(A).

33 南开大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. (20 分) 求极限 $\lim_{x\to 0} \left(\frac{e^x}{\ln(1+x)} \frac{1}{x}\right)$.
- 2. (20 分) 设 z 是由方程 $2x^3z 3x^2y^2 2xyz^2 4y^3z + 4 = 0$ 确定的 x, y 的隐函数, 求在 x = 2, y = 1, z = 2 处的全微分 dz.
- 3. (20 分) 判断广义积分 $\int_0^{+\infty} \frac{x \ln x}{x^3 + 1} dx$ 敛散性.
- 4. (25 分) 计算曲线积分

$$\oint_{L} (x^{3}y + e^{y}) dx + (xy^{3} + 5x^{3}y^{2} + xe^{y}) dy.$$

其中 L 为逆时针方向椭圆 $4x^2 + 9y^2 = 36$.

- 5. $(25 \, \mathcal{G})$ 求函数项级数 $\sum_{n=1}^{\infty} n(n+1) \left(\frac{x-1}{x}\right)^n$ 的收敛域及和函数.
- 6. (15 分) 设 f(x) 在 [0.1] 上单调递增, f(0) = 0, f(1) = 1,若 n 为正整数, $\xi_k \in \left[\frac{k-1}{n}, \frac{k}{n}\right]$, $k = 1, 2, \dots, n$,证明

$$\left| \int_0^1 f(x) \mathrm{d}x - \frac{1}{n} \sum_{n=1}^n f(\xi_k) \right| \le \frac{1}{n}.$$

- 7. (15 分) 设 f(x) 在 [a.b] 上连续, f(a) < f(b), 证明: 存在 $[c.d] \subseteq [a.b]$, 使得 f(x) 在 [c.d] 上最小值为 f(a), 最大值为 f(b).
- 8. (10 分) 设 $\sum_{n=1}^{\infty} a_n$ 是一个收敛的正项级数, 令 $f(x) = \sum_{n=1}^{\infty} a_n |\sin nx|$, 已知 f(x) 在 \mathbb{R} 上满 足利普希兹条件, 即存在常数 L > 0, 使得对任意实数 $x, y \in \mathbb{R}$, 都有

$$|f(x) - f(y) \le L|x - y|$$

证明: 级数 $\sum_{n=1}^{\infty} na_n$ 收敛.

34 南开大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. (30 分) 若 $f(x) = x^5 x^3 x 1$, $g(x) = x^4 + 2x^2 + 5x + 2$, 计算 f(x) 与 g(x) 的首项系数为 1 的最大公因式 (f(x), g(x)).
- 2. (20 分) 计算行列式

$$\begin{vmatrix} 1+x & x & 0 & 0 \\ x & x+x^2 & x^2 & 0 \\ 0 & x^2 & x^2+x^3 & x^3 \\ 0 & 0 & x^3 & x^3+x^4 \end{vmatrix}.$$

3. (20 分) 若四阶方阵 A 的伴随矩阵

$$A^* = \begin{pmatrix} -1 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

求 A^3 .

4. $(20\ \mathcal{H})$ 设 $V=\mathbb{R}[x]_4$ 为次数小于 4 的实系数多项式构成的实线性空间, 定义线性变换 $\mathscr{A}:V\to V$ 如下

$$\mathcal{A}(f(x)) = \left(1 - x^2\right) f''(x) - 2xf'(x). \quad \forall f(x) \in V.$$

求 V 的一组基, 使得 \mathscr{A} 在这组基下的矩阵为对角矩阵.

5. (20分) 求矩阵

$$A = \begin{pmatrix} 1 & 1 & 0 & 2 \\ 0 & 2 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 1 \end{pmatrix}.$$

的 Jordan 标准型.

- 6. (20 分) 设 \tilde{A} , $\tilde{B} \in \mathbb{R}^{m \times (n+1)}$ 分别是两个线性方程组的增广矩阵, 若这两个线性方程组都有解且解集相同, 则 \tilde{A} , \tilde{B} 的行向量组等价.
- 7. $(10 分) 若 A, B \in \mathbb{R}^{n \times n}$ 且 A 为正定矩阵, B 为半正定矩阵, 则 |A + B| > |A|.
- 8. (10 分) 设 $V=\mathbb{C}^{n\times n}$ 为 n 阶复方阵构成的复线性空间, $A\in V$, 线性变换 $\mathscr{A}:V\to V$ 定义为

$$\mathcal{A}(X) = AX - XA' \quad \forall X \in V.$$

若 \mathscr{A} 有 n 个互不相等的特征值, 求证: $V = \mathscr{A}^{-1}(0) \oplus \mathscr{A}V$.

35 重庆大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

1. 计算数列极限

$$\lim_{n\to\infty}\left(\frac{1}{\ln(1+n)-\ln n}-n\right).$$

- 2. 计算第一类曲面积分 $\iint_S (x^2 + y^2) dS$, 其中 S 是立体 $\sqrt{x^2 + y^2} \le z \le 1$ 的边界.
- 3. 求级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n(2n-1)}$ 的和.
- 4. 计算第二类曲线积分

$$\int_{I} (y^{2} - z^{2}) dx + (2z^{2} - x^{2}) dy + (3x^{2} - y^{2}) dz.$$

其中 L 是平面 x+y+z=2 与柱面 |x|+|y|=1 的交线, 从 z 轴正方向往下看去, L 是顺时针方向.

- 5. 已知三元函数 f(x,y,z) 在 \mathbb{R}^3 上具有连续的二阶偏导数, 设 \mathbb{R}^3 中光滑简单封闭曲面的 全体为 Σ , 对于 $S \in \Sigma$, 用 n 表示 S 的外法线单位方向向量, $\frac{\partial f}{\partial n}$ 表示 f 沿 n 的方向导数.
 - (1) 证明: f 在 ℝ³ 上满足

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0 \; (即 f \; 为 \mathbb{R}^3 \; 上的调和函数)$$

当且仅当 $\iint_{S} \frac{\partial f}{\partial n} dS = 0 (\forall S \in \Sigma).$

(2) 设 f(x, y, z) 为 \mathbb{R}^3 上的调和函数, $S \in \Sigma$, 且 S 围成的有界闭区域记作 V, 证明:

$$f(x_0, y_0, z_0) = \frac{1}{4\pi} \iint_{S} \left(f \frac{\cos(r, n)}{|r|^2} + \frac{1}{|r|} \frac{\partial f}{\partial n} \right) dS.$$

其中 (x_0, y_0, z_0) 为 V 内部的一个定点, $r = (x - x_0, y - y_0, z - z_0)$, (r, n) 表示两向量的夹角, |r| 表示向量 r 的模长.

(3) 若函数 f 和 $g \in C[0,1]$ 在单位球 $\Omega = \left\{ (x,y,z) \mid x^2 + y^2 + z^2 \leq 1 \right\}$ 上满足

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = g\left(x^2 + y^2 + z^2\right).$$

证明: $\iiint_{\Omega} \left(x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} + z \frac{\partial f}{\partial z} \right) \mathrm{d}x \mathrm{d}y \mathrm{d}z = \pi \int_{0}^{1} \sqrt{t} (t-1) g(t) \mathrm{d}t.$

- 6. 判断下列四个命题的正误. 正确的, 请给出证明; 错误的, 需举出反例.
 - (1) 若正项级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 则 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$.
 - (2) 若函数 f(x) 在 \mathbb{R} 上连续且有界, 则 f(x) 在 \mathbb{R} 上一致连续.
 - (3) 若二元函数 f(x, y) 在 (0,0) 点关于 x 和 y 都不存在偏导数,则 f(x, y) 在点 (0,0) 沿 x 轴的方向导数必不存在.
 - (4) 若函数 f(x) 在闭区间 [a,b] 上有界且只存在有限个不连续点,则函数 f(x) 在 [a,b] 上 Riemann 可积.
- 7. 设参数 $\alpha > 0$, 讨论广义积分 $\int_0^{+\infty} \frac{\mathrm{e}^{\sin x} \sin(2x)}{x^x} \mathrm{d}x$ 的收敛性 (包括条件收敛和绝对收敛).
- 8. 若级数 f(x) 和 g(x) 在闭区回 [a,b] 上连续, 在 (a,b) 上二阶可导, 并且它们在 (a,b) 内有相等的最大值, f(a) = g(a), f(b) = g(b), 求证: 存在 $\xi \in (a,b)$, 使得 $f''(\xi) = g''(\xi)$.
- 9. 若函数列 $\{f_n(x)\}_{n=1}^{\infty}$ 在团区问 [a,b] 上逐点收敛于 f(x).
 - (1) 假设每个 $f_n(x)$ 都在 [a,b] 上连续, 并且 $\{f_n(x)\}_{n=1}^{\infty}$ 一致收敛, 证明: f(x) 在 [a,b] 上连续.
 - (2) 假设每个 $f_n(x)$ 都在 [a,b] 上 Riemann 可积, 并且 $\{f_n(x)\}_{n=1}^{\infty}$ 一致收敛, 证明: f(x) 在 [a,b] 上 Riemann 可积.
 - (3) 假设每个 $\{f_n(x)\}$ 都在 [a,b] 上可微, 存在常数 M > 0, 对任意的 x 和正整数 n, 都有 $|f_n'(x)| \leq M$. 证明: $\{f_n(x)\}_{n=1}^{\infty}$ 在 [a,b] 上一致收敛.

36 重庆大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. 计算题. 每题 8 分, 共 40 分.
 - (1) 当 a,b 满足什么条件时, 实系数多项式 $f(x) = x^3 + 3ax + b$ 有重因式.
 - (2) 计算 n 阶行列式

$$D_n = \begin{vmatrix} 1+a_1 & 1 & 1 & \cdots & 1 \\ 1 & 1+a_2 & 1 & \cdots & 1 \\ 1 & 1 & 1+a_3 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 1+a_n \end{vmatrix}.$$

其中 $a_i \neq 0 (i = 1, 2, \dots, n)$.

(3) 设线性方程组

$$\begin{cases} kx_1 + x_2 + x_3 = k - 3\\ x_1 + kx_2 + x_3 = -2\\ x_1 + x_2 + kx_3 = -2 \end{cases}$$

- (i) k 为何值时, 方程组无解?
- (ii) k 为何值时, 方程组存在唯一解?
- (ii) k 为何值时, 方程组存在无穷多解? 并求出通解.
- (4) 在线性空间 \mathbb{P}^3 中, 已知 $\alpha_1 = (1, 1, 0), \alpha_2 = (0, 1, 1), \alpha_3 = (0, 0, 1),$ 线性变换定义如下:

$$\mathcal{A}\alpha_1 = (2, 1, 1), \mathcal{A}\alpha_2 = (1, 0, 1), \mathcal{A}\alpha_3 = (1, 1, 2).$$

求 \mathcal{A} 在 $\beta_1 = (1,0,0), \beta_2 = (-1,1,0), \beta_3 = (0,-1,1)$ 下的矩阵.

- 2. (10 分) 解答如下问题:
 - (1) 设不可约多项式 p(x) 是多项式 f(x) 的 $k(k \ge 2)$ 重因式. 证明: p(x) 是 f'(x) 的 k-1 重因式. 并用反例说明反之不成立.
 - (2) 求一个三次多项式 f(x), 使得 f(x) + 1 能被 $(x-1)^2$ 整除, f(x) 1 能被 $(x+1)^2$ 整除.

- 3. (15 分) 设矩阵 $A = (\alpha_1, \alpha_2, \alpha_3)$, $B = (\alpha_1, \alpha_2, \alpha_3, \beta + \alpha_3)$, 其中 $\alpha_1, \alpha_2, \alpha_3, \beta$ 为 4 维列向量, 方程组 $AX = \beta$ 的通解为 $X = \xi_0 + k\xi$, 其中 k 为任意常数, $\xi = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\xi_0 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.
 - (1) 求矩阵 A, B 的秩.
 - (2) 求方程组 $BY = \alpha_1 \alpha_2$ 的通解.
- 4. (15 分) 设 A, B 为 n 阶矩阵, $C = \begin{pmatrix} A & O \\ O & B \end{pmatrix}$.
 - (1) 当 A, B 可逆时, 求 C 的逆矩阵和伴随矩阵.
 - (2) 当 A, B 中至少一个不可逆时, 证明 C 也不可逆.
 - (3) 当 A, B 中至少一个不可逆时, 求 C 的伴随矩阵.
- 5. $(15 \, \mathcal{G})$ 设 $A \in \mathbb{R}$ 阶实对称矩阵, 证明: A 可逆当且仅当存在实矩阵 B, 使得 AB + B'A 正定, 其中 $B' \in \mathbb{R}$ 的转置矩阵.
- 6. (10 分) 设 V 为 n 维线性空间, $1 \le r < n$, 证明: V 有无穷多个 r 维的子空间.
- 7. (15 分) 设向量 $\alpha = (a_1, a_2, \dots, a_n), \beta = (b_1, b_2, \dots, b_n), 令$

$$c = \beta \alpha' = a_1 b_1 + a_2 b_2 + \dots + a_n b_n, A = \alpha' \beta$$

其中 α' 是 α 的转置.

- (1) 证明: 当 $c \neq 0$ 时, A 可对角化.
- (2) 当 c=0 时, A 是否可对角化? 并说明理由.
- 8. (15 分) 设数域 \mathbb{P} 上的 n 阶方阵 A 是指数为 k 的幂零矩阵, 即 $A^{k-1} \neq O$, $A^k = O$. 其若尔当标准形为

$$J = \begin{pmatrix} J_1 & & & & \\ & J_2 & & & \\ & & \ddots & \\ & & & J_s \end{pmatrix},$$
其中 $J_i = \begin{pmatrix} 0 & 1 & & \\ & 0 & \ddots & \\ & & \ddots & 1 \\ & & & 0 \end{pmatrix}_{n_i \times n_i}$

- (1) 证明: s = n r(A).
- (2) 证明: $k = \max\{n_1, n_2, \dots, n_s\}$.
- (3) 利用 (1) 和 (2) 的结论求矩阵 $A = \begin{pmatrix} 3 & 6 & -15 \\ 1 & 2 & -5 \\ 1 & 2 & -5 \end{pmatrix}$ 的若尔当标准形.
- 9. (15 分) 设二次型 $f(x_1, x_2, x_3)$ 的矩阵为 A, 其在正交变换 X = QY 下的标准形为 $y_1^2 + y_2^2$,

其中
$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
, $Y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$, 且 Q 的第三列为 $\begin{pmatrix} \frac{\sqrt{2}}{2} \\ 0 \\ \frac{\sqrt{2}}{2} \end{pmatrix}$

(2) 证明 A + E 为正定矩阵, 其中 E 为 3 阶单位矩阵.	(1) 求 A.	V V		w/.	
	(2) 证明 $A+E$	为正定矩阵, 其中 1	E 为 3 阶单位矩	阵.	

37 浙江大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. 计算题.
 - (1) 求极限 $\lim_{n\to\infty} \sqrt[n]{\cos\frac{\pi}{2n}\cos\frac{3\pi}{2n}\cdots\cos\frac{2k-1}{2n}\pi}$.
 - (2) 求二重积分 $\iint_{D} |3x + 4y| dx dy$, 其中 $D: \{(x, y)|x^2 + y^2 \le 1\}$.
 - (3) 求极限 $\lim_{x\to 0} \left(\frac{1}{\ln(1+x)} \frac{1}{\ln(x+\sqrt{1+x^2})} \right)$.
 - (4) 求极限 $\lim_{x\to +\infty} \frac{1}{x} \int_0^x |\sin t| dt$.
- 2. 回答下述两个问题.
 - (1) 叙述确界原理;
 - (2) 利用闭区间套定理证明确界原理.
- 3. 已知数列 $\{x_n\}$ 满足 $x_1 = \frac{\sqrt{2}}{2}, x_{n+1} = \sqrt{\frac{2x_n^2}{x_n^2 + 2}}.$
 - (1) 证明: $\lim_{n\to\infty} x_n = 0$.
 - (2) $\Re \lim_{n \to \infty} n (x_n \ln (1 + x_n)).$
- 4. 已知函数 K(x,y) 在 $[0,1] \times [0,1]$ 连续, 定义在 [0,1] 上的函数列 $\{f_n(x)\}$ 满足 $f_1(x)$ 连续, 且

 $f_n(x) = \int_0^x K(x, y) f_{n-1}(y) \mathrm{d}y$

证明: 函数列 $f_n(x)$ 在 [0,1] 上一致收敛于 0.

- 5. 设 f(x) 和 g(x) 均在 [0,1] 连续, 数列 $\{x_n\} \in [0,1]$, 满足 $f(x_n) = g(x_{n+1})$. 证明: 存在 $\xi \in [0,1]$, 使得 $f(\xi) = g(\xi)$.
- 6. 已知函数 $f:[a,b] \mapsto \mathbb{R}$ 的图像 $G_f := \{(x, f(x)) : x \in [a,b]\}$ 为有界闭集,证明: f 在 [a,b] 上连续.
- 7. 设 f(x) 是 $(0,1] \to \mathbb{R}$ 上的无界单调函数, 且 $\int_0^1 f(x) dx$ 收敛, 证明:

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) dx = \int_{0}^{1} f(x) dx$$

8. 设 f(x) 在 \mathbb{R} 上可微, 若 $\lim_{x\to+\infty} f'(x) = 1$,且满足

$$f(x+1) - f(x) = f'(x), \forall x \in \mathbb{R}$$

证明: f(x) = x + C.

9. 设 f 在 [0,1] 上连续, 定义

$$g(t) = \int_0^1 \frac{t}{x^2 + t^2} f(x) dx, t \in \mathbb{R}$$

证明: 函数 g 在 t=0 处连续当且仅当 f(0)=0.

38 浙江大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- 1. 若 $\frac{5}{11}$ 是整系数多项式 f(x) 的根, 证明: $f(\sqrt{-1})f(-\sqrt{-1})$ 是正整数, 且是 146 的倍数.
- 2. 求线性方程组

$$\begin{cases} x_1 - 2x_2 + 3x_3 - x_4 = 0 \\ 3x_1 + x_2 + x_3 - 3x_4 = 0 \\ x_1 + 5x_2 - 5x_3 - x_4 = 0 \end{cases}$$

的基础解系, 若该方程组的解和另外一个解为 k_1 $\begin{pmatrix} 3 \\ -4 \\ -3 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} 0 \\ 2 \\ 2 \\ 1 \end{pmatrix}$ 的方程组有公共解,

求出所有公共解.

3. 设 $X = (x_1, x_2, x_3, x_4), X^T$ 是 X 的转置, 问是否存在一次多项式

$$u_i(x) = a_i x_1 + b_i x_2 + c_i x_3 + d_i x_4 (i = 1, 2, 3, 4)$$

满足

$$X \begin{pmatrix} 2 & 0 & 2 & 4 \\ 0 & 2 & 4 & 2 \\ 2 & 4 & 2 & 0 \\ 4 & 2 & 0 & 2 \end{pmatrix} X = \begin{vmatrix} u_1(x) & u_2(x) \\ u_3(x) & u_4(x) \end{vmatrix}$$

并说明理由.

- 4. 设 \mathbb{R} 是实数域,实向量空间 \mathbb{R}^3 两组向量分别为 $\alpha_1 = (-1,1,0), \alpha_2 = (2,-1,2), \alpha_3 = (0,1,b)$ 和 $\beta_1 = (1,0,-1), \beta_2 = (-1,1,1), \beta_3 = (1,1,c).$
 - (1) 当 b,c 取何值时,不存在 \mathbb{R}^3 上的线性变换 \mathcal{T} ,满足 $\mathcal{T}(\alpha_i) = \beta_i, i = 1,2,3$.
 - (2) 当 b,c 取何值时, 至少存在两个 \mathbb{R}^3 上的线性变换 \mathcal{T} 满足 $\mathcal{T}(\alpha_i) = \beta_i, i = 1,2,3$.
 - (3) 当 b,c 取何值时, 存在 \mathbb{R}^3 上唯一的线性变换 \mathcal{T} , 满足 $\mathcal{T}(\alpha_i) = \beta_i, i = 1,2,3$. 这样的线性变换是正交变换吗? 为什么?
- 5. 设 A 是 2024 阶方阵, 主对角线上全是偶数, 其余的都是奇数. 证明该矩阵为可逆矩阵.
- 6. 求 $f(x) = x^4 + 2x^3 x^2 4x 2$, $g(x) = x^4 + x^3 x^2 2x 2$ 的最大公因式 d(x) 以及 多项式 u(x), v(x) 满足 d(x) = u(x) f(x) + v(x) g(x).
- 7. 已知矩阵

$$A = \left(\begin{array}{ccc} 3 & a & 6 \\ -5 & -7 & -1 \\ b & -6 & -7 \end{array}\right)$$

的特征值 λ 对应的特征向量 $\alpha = \begin{pmatrix} -2 \\ 1 \\ 2 \end{pmatrix}$, 求该矩阵的若当 (Jordan) 标准型.

- 8. 设 $A \neq n$ 阶非幂零矩阵, S 是使得 $\lambda A = \lambda$ 相似的复数 λ 的集合, 证明: S 是一个有限 集.
- 9. 设 α, β, γ 是有理数域上线性空间 V 中的向量, 其中 $\alpha \neq 0$, 假如存在 V 上线性变换 \mathcal{T} , 使得

$$\mathscr{T}\alpha = \beta, \mathscr{T}\beta = -\gamma, \mathscr{T}\gamma = \alpha - \beta.$$

证明: α , β , γ 在 V 中线性无关.

10. 已知 \mathscr{A} , \mathscr{B} , \mathscr{C} 是有限维线性空间上的三个线性变换, 证明: $\mathscr{A} + \mathscr{B} - \mathscr{A}\mathscr{C}\mathscr{B}$ 和 $\mathscr{A} + \mathscr{B} - \mathscr{B}\mathscr{C}\mathscr{A}$ 核空间是同构的.

39 武汉大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

一. 求导数或极限.

- 1. $\lim_{x\to 0} \frac{\sin x \arctan x}{\tan x \arcsin x}$.
- 3. $\lim_{n \to \infty} \sum_{k=1}^{n} \sin \frac{k}{n} \cdot \sin \frac{k}{n^2}.$

二. 求积分.

- 1. 以 x = ty 参数化曲线 $x^2 + y^3 = xy$, 求曲线所围区域的面积.
- 2. 求曲面积分

$$\iint_{S} (xy + yz + zx) \mathrm{d}S.$$

其中 $S \neq z = \sqrt{x^2 + y^2}$ 被 $x^2 + y^2 = 2ay$ 截掉的部分.

3. 用含参量积分求 $\int_0^1 \frac{\arctan x}{x\sqrt{1-x^2}} dx$.

三. 证明题.

1. 证明:

$$\frac{2n}{2n+1} \le \frac{\left(1+\frac{1}{n}\right)^n}{e} \le \frac{2n+1}{2n+2} (n \ge 1).$$

2. 设 f(x) 在 $(0, +\infty)$ 上三次可导,且 $\lim_{x\to +\infty} f(x)$ 与 $\lim_{x\to +\infty} f'''(x)$ 均存在,证明:

$$\lim_{x \to +\infty} f'(x) = \lim_{x \to +\infty} f''(x) = \lim_{x \to +\infty} f'''(x) = 0.$$

3. 设 f(x) 是 [-1,1] 上的连续函数, 证明:

$$\lim_{\varepsilon \to 0^+} \int_{-1}^1 \frac{\varepsilon f(x)}{\varepsilon^2 + x^2} \mathrm{d}x = \pi f(0).$$

4. 设 x > 0, y > 0, 证明: $xy - e^{x-1} \le y \ln y$.

5. 证明:
$$\int_0^1 (x \ln x)^n dx = \frac{(-1)^n n!}{(n+1)^{n+1}}$$
, 并利用此结论证明: $\int_0^1 x^{-x} dx = \sum_{n=1}^\infty \frac{1}{n^n}$.

6. 设 $\{f_n(x)\}$ 是区间 [a,b] 上一致收敛于 f(x) 的可积函数列. 证明: f(x) 在 [a,b] 上可积,日.

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) dx.$$

40 武汉大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- 1. 设数域 \mathbb{K} 上的 n 维矩阵 A 的第 i 行第 j 列的元素是 $a_i b_j$.
 - (1) 求 |A|;
 - (2) 当 n > 2, $a_1 \neq a_2$, $b_1 \neq b_2$ 时,求 Ax = 0 的解空间的维数和一个基.
- 2. 设 n 阶实方阵 A 的特征值全为实数,且 A 的所有一阶主子式和二阶主子式之和都是零,证明: $A^n = 0$.
- 3. 设 n 维欧氏空间 V 上的线性变换 \mathscr{A} 满足 $\mathscr{A}^3 + \mathscr{A} = 0$, 证明: \mathscr{A} 的迹等于 0.
- 4. 设 $A, B \neq n$ 阶实矩阵, 且 $A^2 + B^2 = AB$, 若 AB BA 是可逆矩阵, 则 $n \neq 3$ 的倍数.
- 5. 设 $A, B \neq n$ 阶复矩阵, 若 AB = BA, 则存在 n 阶可逆复矩阵 P, 使得 $P^{-1}AP, P^{-1}BP$ 都是上三角矩阵.
- 6. 设方阵 A 的特征值 1, 证明: 对每一个自然数 s, 有 A^s 与 A 相似.
- 7. 设 $f_1(x), f_2(x), \dots, f_n(x)$ 为多项式 $(n \ge 2)$, 且满足

$$x^{n-1} + x^{n-2} + \cdots + x + 1 | f_1(x^n) + x f_2(x^n) + \cdots + x^{n-1} f_n(x^n)$$

证明: 存在常数 c 使得 $(x-1)^n | \prod_{i=1}^n (f_i(x)-c)$.

8. 设 f(x), g(x) 是数域 \mathbb{K} 上互素多项式,A 是数域 \mathbb{K} 上 n 阶矩阵,证明:f(A)g(A) = 0 的充分必要条件是 r(f(A)) + r(g(A)) = n.

41 华南师范大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. 求极限 (每题 10 分, 共 50 分)

 - (1) $\lim_{x\to 0} \frac{\sqrt{1+\tan x} \sqrt{1-\tan x}}{\sin x}$. (2) $\lim_{x\to 1} \left(\frac{m}{1-x^m} \frac{n}{1-x^n}\right), m, n$ 是任意正整数.
 - (3) $\lim_{n \to \infty} \left[\cos \left(\pi \sqrt{n^2 + 1} \right) \right]^2$.
 - (4) $\lim_{n\to\infty} \frac{n}{\sqrt[n]{n!}}$.
 - $(5) \lim_{\substack{x \to +\infty \\ x \to +\infty}} \left(\frac{xy}{x^2 + y^2} \right)^{x^2}.$
- 2. 计算题 (每题 10 分, 共 40 分)
 - (1) 设 f(x) 在 x = 0 存在二阶导数,且 $\lim_{x \to 0} \left(\frac{\sin x}{x^3} + \frac{f(x)}{x^2} \right) = 0$,求 f'(0), f''(0).
 - (2) 计算定积分 $\int_{2}^{-\sqrt{2}} \frac{dx}{r\sqrt{x^2-1}}$.
 - (3) 求三重积分 $\iint_{\Omega} x dx dy dz$, 其中 Ω 为平面 x + 2y + z = 1, x = 0, y = 0, z = 0 围成
 - (4) 已知 u 是关于 x,y 的函数,且满足 u = f(x,y,z,t)g(y,z,t) = 0, h(z,t) = 0,求 $\partial u \partial u$
- 3. $(10 \, \text{分})$ 设 f(x) 是 $(0, +\infty)$ 的单调增加函数,且存在极限 $\lim_{n \to \infty} a_n = +\infty$, $\lim_{n \to \infty} f(a_n) = 0$ A, 证明: $\lim_{x \to +\infty} f(x) = A$.
- 4. (10 分) 设 f(x) 在 [a,b] 上连续单调增加,证明

$$\int_{a}^{b} x f(x) dx \ge \frac{a+b}{2} \int_{a}^{b} f(x) dx.$$

- 5. (10 分) 证明: 函数项级数 $\sum_{n=1}^{\infty} \frac{nx}{1 + n^5 x^2}$ 在 $[0, +\infty)$ 一致收敛.
- 6. (10 分) 设 f(x) 在 $[0, +\infty)$ 连续,广义积分 $\int_{a}^{+\infty} f(x) dx$ 收敛,证明

$$\lim_{\lambda \to 0^+} \int_0^{+\infty} e^{-\lambda x} f(x) dx = \int_0^{+\infty} f(x) dx.$$

7. (20分)设

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0) \end{cases}$$

证明: (1) f(x,y) 在 (0,0) 连续;

- (2) f(x, y) 在 (0,0) 存在偏导数;
- (3) f(x, y) 在 (0,0) 的偏导数不连续;
- (4) f(x,y) 在 (0,0) 可微.

42 华南师范大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

1. (20分)设

$$f(x) = 2x^3 - 3x + 4, g(x) = x^2 - 2x + 3$$

- (1) 求 (f(x), g(x));
- (2) 求 u(x), v(x) 使得 u(x) f(x) + v(x) g(x) = (f(x), g(x)).
- 2. (15 分) 计算行列式

$$\begin{vmatrix} a_1 & a_2 & a_3 & \cdots & a_n & x \\ a_1 & a_2 & a_3 & \cdots & x & a_n \\ a_1 & a_2 & a_3 & \cdots & a_{n-1} & a_n \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_1 & x & a_3 & \cdots & a_{n-1} & a_n \\ x & a_2 & a_3 & \cdots & a_{n-1} & a_n \end{vmatrix}$$

3. $(20 \, \text{分})$ 设有五个未知量的矩阵方程 AX = b , 其系数矩阵秩为 3 , 且

$$\eta_1 = (1, 1, 1, 1, 1), \eta_2 = (1, 2, 3, 4, 5), \eta_3 = (1, 0, -3, -2, -3)$$

为方程组的解,

- (1) 说明 b 不是零向量.
- (2) 检验 $\eta_1 + \eta_2 + \eta_3$, $\frac{\eta_1 + \eta_2 + \eta_3}{3}$ 是否为 AX = b 的解.
- (3) 求方程组的通解.
- 4. (15分)设

$$\alpha_1 = (2, 1, -3), \alpha_2 = (3, 2, -5), \alpha_3 = (1, -1, 1)$$

 $\beta_1 = (2, 0, -1), \beta_2 = (0, 0, 1), \beta_3 = (-1, 0, 0)$

且 \mathscr{A} 是 \mathbb{R}^3 上的线性变换,满足 $\mathscr{A}(\alpha_i) = \beta_i, i = 1, 2, 3.$

- (1) 求 \mathscr{A} 在基 $\{\alpha_1,\alpha_2,\alpha_3\}$ 下的矩阵;
- (2) 记 $\xi = (2, -1, 1)$, 求 ξ , $\mathscr{A}(\xi)$ 在基 $\{\alpha_1, \alpha_2, \alpha_3\}$ 下的坐标.
- 5. $(20 \, f)$ 设 $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$, 求正交矩阵 Q 和对角线元素均为正数的上三角矩阵 R 使得 A = QR.
- 6. (10) 设 $\alpha_1,\alpha_2,\alpha_3$ 为三维向量空间 \mathbb{R}^3 的一组规范正交基,记

$$A = 3\alpha_1\alpha^T + \alpha_2\alpha^T - 6\alpha_3\alpha_2^T$$

求 A 的特征值和特征向量。

- 7. 问答题 (50 分, 前两题各 15 分, 第三题 20 分)
 - (1) 设 f(x) 为整系数多项式, α 为整数, 证明: $(\alpha-1) \mid f(1)$ 当且仅当 $(\alpha-1) \mid f(\alpha)$.
 - (2) 设 $A \in \mathbb{F}^{n \times n}$ 上的矩阵, 其中 \mathbb{F} 是数域, 且 $A^2 = A$, 证明
 - (i) $x \in \mathbb{F}^n$ 属于 A 的列向量构成子空间当且仅当 Ax = x.
 - (ii) $\exists \mathbb{C} W_1 = \{x \in \mathbb{F}^n \mid Ax = 0\}, W_2 = \{x \in \mathbb{F}^n \mid Ax = x\}, \ \emptyset \ \mathbb{F}^n = W_1 \oplus W_2;$
 - (3) 设 $\mathbb{R}^{n \times m}$ 为实数域上的 $n \times m$ 矩阵空间,A, B 分别是 $n \times n, m \times m$ 实矩阵 $(A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{m \times m})$,且 σ 为 $\mathbb{R}^{n \times m}$ 上的变换,满足 $\sigma(x) = Ax + xB$, $\forall x \in \mathbb{R}^{n \times m}$,证明:
 - (i) σ 是 $\mathbb{R}^{n \times m}$ 的线性变换;
 - (ii) B, B^T 有相同的特征值;
 - (iii) 若 λ , μ 分别为 A, B 的特征值, 则 $\lambda + \mu$ 是 σ 的特征值.

43 南昌大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- 1. 计算极限 $\lim_{n\to\infty} \frac{\sqrt[n]{2024} \left(1-\cos\frac{1}{n^2}\right) n^3}{\sqrt{1+n^2}-n}$.
- 2. 计算定积分 $\int_0^\pi \cos^2 x e^x dx$.
- 3. 计算曲线积分

$$\oint_C \frac{y}{\sqrt{1+x^2}} dx + \left(4x + \ln\left(x + \sqrt{1+x^2}\right)\right) dy$$

其中曲线 C 为 A(1,0) 到 B(-1,0) 的上半圆周, 方向为逆时针.

4. 设 f(x) 在 [a,b] 上连续, 在 (a,b) 上二阶可导, 证明: 存在 $\xi \in (a,b)$ 使得

$$f(a) + f(b) - 2f\left(\frac{a+b}{2}\right) = \frac{(b-a)^2}{4}f''(\xi)$$

- 5. 已知 $f(x,y) = \begin{cases} \frac{x^3 y^3}{x^3 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0 \end{cases}$, 求 f(x,y) 的偏导数, 并讨论在 (0,0) 处的可微性.
- 6. 求幂级数 $\sum_{n=0}^{\infty} \frac{x^{4n+1}}{4n+1}$ 的和.
- 7. 讨论级数 $\sum_{n=0}^{\infty} \frac{(-1)^n}{n^{\alpha+\frac{1}{n}}} (\alpha > 0)$ 的敛散性.
- 8. 设数列 $\{x_n\}$ 满足 $x_n = \sin x_{n-1}, n = 1, 2 \cdots$,且 $0 < x_0 < \frac{\pi}{2}$,证明:(1) 数列 $\{x_n\}$ 收敛且极限为 0; (2) 试求极限 $\lim_{n \to \infty} \sqrt{\frac{n}{3}} x_n = 1$.
- 9. 计算 $\int_0^{+\infty} \frac{e^{-x^2} e^{-2x^2}}{x} dx$.
- 10. 设 f(x) 在 $[a, +\infty)$ 连续,在 $[a, +\infty)$ 上可导,且 $\lim_{x \to +\infty} f(x)$ 存在, $\lim_{x \to +\infty} f'(x)$ 存在,证明: $\lim_{x \to +\infty} f'(x) = 0$.
- 11. 设 f(x) 在 $[a, +\infty)$ 上一致连续,g(x) 在 $[a, +\infty)$ 连续,且 $\lim_{x \to +\infty} [f(x) g(x)] = 0$,证明:g(x) 在 $[a, +\infty)$ 上一致连续.

44 南昌大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. $\exists \exists f(x) = 1 + x + x^2 + \dots + x^{n-1}, \ \exists \exists \exists f(x) | [f(x) + x^n]^2 x^n.$
- 2. 计算 n 阶行列式

$$D_n = \begin{vmatrix} x_1^2 - 2 & x_1 x_2 & \cdots & x_1 x_n \\ x_2 x_1 & x_2^2 - 2 & \cdots & x_2 x_n \\ \vdots & \vdots & \cdots & \vdots \\ x_n x_1 & x_1 x_2 & \cdots & x_n^2 - 2 \end{vmatrix}$$

3. 设 $\alpha_i = (a_{i1}, a_{i2}, \dots, a_{in})(i = 1, 2, \dots, s)$, 且方程组满足

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \vdots \\ a_{s1}x_1 + a_{s2}x_2 + \dots + a_{sn}x_n = 0 \end{cases}$$

的解满足 $b_1x_1 + b_2x_2 + \cdots + b_nx_n = 0$ 的解,记 $\beta = (b_1, b_2, \cdots, b_n)$,证明: β 可由 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性表出.

- 4. 已知 $A = (a_{ij})_{n \times n}$ 是 n 级正定矩阵,证明:
 - (1) $a_{ii} > 0 (i = 1, 2, \dots, n)$
 - (2) $2|a_{ij}| < a_{ii} + a_{jj}, (i \neq j).$
 - (3) A 的所有元素中绝对值最大的元素一定在主对角线上.
- 5. 若 $A \in n$ 阶方阵, 证明: (1) $A^n = 0$ 当且仅当 A 的特征值全为 0; (2) 若 $A^n = 0$, 则 |A + E| = 1.
- 6. 设 $A = (a_{ij})_{n \times n}, n \ge 2$ 的矩阵, A^* 为 A 的伴随矩阵, 证明: $(A^*)^* = |A|^{n-2}A$.
- 7. 设二次型 $f(x_1x_2, x_3) = 2x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + tx_2x_3$, 问:
 - (1) 当 t 为何值时, 二次型 $f(x_1, x_2, x_3)$ 正定;
 - (2) 当 t = 1 时, 二次型 $f(x_1, x_2, x_3)$ 对应矩阵 A 的最小多项式 $m_A(\lambda)$.
- 8. $\exists A = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}, \ \ \vec{x} \ A^{100}.$
- 9. 设矩阵 A 的特征多项式 $f(\lambda) = (\lambda + 1)^3 (\lambda 2)^2 (\lambda + 3)$,最小多项式 $m(\lambda) = (\lambda + 1)^2 (\lambda 2)(\lambda + 3)$,求: (1) A 的所有不变因子; (2) A 的若尔当标准型.
- 10. 设 A 为 n 阶非零实矩阵, $n \ge 3$,且 $A^T = A^*$,证明: (1) |A| > 0; (2) A 为正交矩阵.

45 山东大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

一、(60分) 计算题

- 1. 讨论函数项级数 $\sum_{n=1}^{\infty} \frac{x + (-1)^n \cdot n}{x^2 + n^2}$ 的条件收敛域、绝对收敛域、一致收敛域.
- 2. 计算第一类曲面积分

$$\iint_{\Sigma} (x+y+z) \mathrm{d}S$$

其中曲面 Σ 是左半球面 $x^2 + y^2 + z^2 = 1, y \le 0.$

- 3. 比较下列无穷大量
 - (1) $x = (\ln x)^{100} (x → +∞)$
 - (2) $(\ln x)^{100} = e^{(\ln x)^{\frac{1}{100}}} (x \to +\infty)$
- 4. 计算含参积分 $I(a) = \int_0^{+\infty} \frac{\arctan ax}{x(1+x^2)} \mathrm{d}x (a>0).$

二、(60 分) 证明题

- 1. 设函数列 $f_n(x) = \sum_{k=1}^n \frac{1}{k^x}$ 在 (1,4) 内闭一致收敛, 证明: $f_n(x)$ 在 (1,+ ∞) 上一致收敛.
- 2. (1) 证明: 不等式成立 $\frac{x}{1+x} < \ln(1+x) < x$
 - (2) 证明: 数列 $\{a_n\}$ 极限存在, 其中 $a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \ln n$
- 3. 若 f(x) 在 [0,1] 上连续, 证明: $\int_0^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_0^{\pi} f(\sin x) dx$, 并求

$$\int_0^\pi \frac{x \sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} \mathrm{d}x$$

三、(30分)证明及分析题

- 1. 设函数 z = z(x, y) 满足方程 $F\left(x + \frac{z}{y}, y + \frac{z}{x}\right) = 0$, 求 $z x\frac{\partial z}{\partial x} y\frac{\partial z}{\partial y}$.
- 2. 设二元连续可微函数 F 在直角坐标下可写为 F(x,y) = g(y)f(x),在极坐标系中可写为 $F(r\cos\theta,r\sin\theta) = h(r)$,若 F(x,y) 无零点,求 F(x,y).

46 山东大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

一. 线性代数.

1. (15 分) 考虑齐次线性方程组

$$\begin{cases} ax_1 + bx_2 + bx_3 + \dots + bx_n = 0; \\ bx_1 + ax_2 + bx_3 + \dots + bx_n = 0; \\ \dots \\ bx_1 + bx_2 + bx_3 + \dots + ax_n = 0. \end{cases}$$

其中 $a \neq 0, b \neq 0, n \geq 2$. 试讨论 a, b 取何值时, 方程组仅有零解? 有无穷多解? 并在有无穷多解时, 用基础解系给出其通解.

- 2. (15 分) 设 A, B, C 分别为 $m \times n, n \times t, s \times m$ 阶矩阵.
- (1) 若矩阵 A 的秩 r(A) = r, 证明: 存在可逆阵 P, Q, 使得 PA 的后 m-r 行全为零, AQ 的后 n-r 列全为零.
- (2) 利用 (1) 证明: 若 r(A) = n, 则 r(AB) = r(B); 若 r(A) = m, 则 r(CA) = r(C).
- 3. (10 分) 设 A 为 n 阶正定矩阵, α 为 n 维实的列向量, 证明: A^{-1} 与 $A + \alpha \alpha^T$ 均为正定矩阵, 其中 A^{-1} 为 A 的逆矩阵, α^T 为 α 的转置.

4. (15 分) 设
$$A = \begin{pmatrix} 0 & b & -c \\ -b & 0 & a \\ c & -a & 0 \end{pmatrix}$$
 为实矩阵, 令 $B = A^2 + qA + E$, 其中 $q = A^2 + qA + E$, 其中 $Q = A^2 + qA + E$, 其中

 $a^2 + b^2 + c^2$, E 为三阶单位阵. 试问: 当且仅当 q 为何值时, 矩阵 B 是正交矩阵?

5. $(15 \, \text{分})$ 设 A, B 为 3 阶复方阵, 且都只有一个特征值 λ_0 . 证明: A 与 B 相似的充要条件是

$$\dim (V_{\lambda_0}(A)) = \dim (V_{\lambda_0}(B)).$$

- 6. (20 分) 设 V 是 n 维欧氏空间, W_1, W_2 是 V 的子空间, 且 $\dim W_1 = s < \dim W_2 = t$, 证明:
- (1) 存在 $\beta \in W_2, \beta \neq 0$, 而 $(\beta, W_1) = 0$, 且 dim $(W_1^{\perp} \cap W_2) \geq t s$.
- (2) dim $(W_1 + W_2^{\perp}) \le n t + s$.

二. 常微分方程.

- 1. (10 分) 求方程 $(y + x^3y + 2x^2) dx + (x + 4xy^4 + 8y^3) dy = 0$ 的通解.
- 2. (10 分) 求方程 $(y')^3 + y^3 3yy' = 0$ 的通解.
- 3. (10 分) 试证: 若 $y = \varphi(x)$ 是方程 $\frac{\mathrm{d}y}{\mathrm{d}x} = p(x)\sin y$ 的满足初试条件 $\varphi(0) = 0$ 的解,则 $\varphi(x) \equiv 0$,其中 p(x) 在 $(-\infty, +\infty)$ 上连续.

4. (20 分) 设 t > 0, x, y 是关于 t 的函数, 解方程组

$$\begin{cases} tx' - x - y = 0 \\ ty' + x - y = 0 \end{cases}$$

5. (10 分) 是否存在 \mathbb{R} 上连续函数 p,q, 使得微分方程 $y''+p(x)y'+q(x)y=0,x\in\mathbb{R}$ 有两个解 $\phi(x)=\sin x,\psi(x)=x\mathrm{e}^x,x\in\mathbb{R}$?

47 上海大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. $(10 \ eta)$ 叙述函数极限 $\lim_{x \to x_0^-} f(x) = A \in \mathbb{R}$ 的 $\varepsilon \delta$ 定义. 利用函数极限的定义来证明 $\lim_{x \to 2^-} \frac{x^2 4}{x} = 0$.
- 2. (10 分) 若数列 $\{a_n\}$ 满足 $\lim_{n\to\infty} \left| \frac{a_n}{a_{n+1}} \right| = \lambda > 1$. 证明: $\lim_{n\to\infty} a_n = 0$.
- 3. (10 分) 求极限 $\lim_{n\to\infty} \left(\cos\frac{1}{\sqrt{n}}\right)^n$ 与 $\lim_{x\to 0} \frac{\sqrt{1+\tan x}-\sqrt{1+\sin x}}{x\ln(1+x)-x^2}$.
- 4. (10 分) 讨论函数 $y = \sin(\sin x)$ 与 $y = x \cos x$ 在 $[0, +\infty)$ 上的一致连续性并给出证明.
- 5. (10 分) 设函数 f(x) 在 [0,1] 上连续,且 $4\int_0^1 f(t)dt = 1$,证明: 存在 $\xi \in [0,1]$,使得 $f(\xi) = \xi^3$.
- 6. (10 分) 求幂级数 $\sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n+1}$ 的收敛半径, 收敛域与和函数, 并求如下级数和

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{(n+1)2^n}$$

- 7. (10 分) 求空间曲线 $\begin{cases} x^2 + y^2 = 2z; \\ x^2 + y^2 + xy = 1. \end{cases}$ 上的点到 xOy 平面的最大与最小距离.
- 8. (10 分) 设 A, B 为有界数集且 $A \cap B \neq \emptyset$, 证明: $\sup(A \cap B) \leq \min\{\sup A, \sup B\}$, 并给出等号不成立的例子.
- 9. (10 分) 设 $f(x) \ge 0$ 在 $[0, +\infty)$ 上可微, f(0) = 0, $|f'(x)| \le f(x)$. 证明: 在 $[0, +\infty)$ 上 $f(x) \equiv 0$.
- 10. (10 分) 讨论函数 $z = f(x, y) = \begin{cases} \frac{xy^3}{x^2 + y^4}, & x^2 + y^2 \neq 0; \\ 0, & x^2 + y^2 = 0. \end{cases}$ 在原点 (0,0) 的连续性, 可偏导性及可微性, 并给出证明.
- 11. (10 分) 讨论反常积分 $\int_2^{+\infty} \frac{1}{x \ln^2 x} dx$ 与 $\int_1^{+\infty} \frac{1}{x^2 \sqrt{\ln x}} dx$ 的敛散性并给出证明.
- 12. (10 分) 将函数 $f(x) = 1 x^2 (0 \le x \le \pi)$ 展开成余弦级数, 并求级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$ 的和.
- 13. (10 分) 求第二类曲面积分

$$\iint_{S} x^2 \mathrm{d}y \mathrm{d}z + y^2 \mathrm{d}z \mathrm{d}x + z^2 \mathrm{d}x \mathrm{d}y$$

其中 S 是球面 $(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2$, 并取外侧.

14. (10 分) 计算曲线积分

$$I = \int_{L} (e^{x} \sin y - 2x - 2y) dx + (e^{x} \cos y - x) dy.$$

其中 L 为从 A(0,0) 沿曲线 $y = \sqrt{2x - x^2}$ 到 B(2,0) 的一段有向弧.

15. (10 分) 设
$$f(x)$$
 在 $(-\infty, -1]$ 上连续且 $\int_{-\infty}^{-1} f(x) dx$ 收敛, 证明:

$$\exists \left\{ x_n \right\} \subset (-\infty, -1], \text{s.t.} \lim_{n \to \infty} x_n = -\infty, \lim_{n \to \infty} f\left(x_n\right) = 0$$

若函数 $g(x): (0, +\infty) \to (0, +\infty)$ 可导, 证明: 存在趋于正无穷大的正数列 $\{x_n\}$, 使得 $g'(x_n) < g(2x_n), n = 1, 2, \cdots$.

48 上海大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

一、填空题.

- 1. 设 α 为 n 维单位实列向量, I 为单位矩阵, 则 $|2I \alpha \alpha^T| = _____.$
- 2. 设非零矩阵 A 的秩 r(A) = p, 且 $A^2 = A$, 则 $r(A I) + r(A + I) = _____.$
- 3. 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关, 且

$$\beta_1 = \alpha_1 + 2\alpha_2 + 3\alpha_3, \beta_2 = 2\alpha_1 + 2\alpha_2 + 3\alpha_3, \beta_3 = 3\alpha_1 + 2\alpha_2 + 3\alpha_3.$$

则 $\beta_1, \beta_2, \beta_3$ 的极大线性无关组为 .

- 4. 设 $A = \begin{pmatrix} 1 & 3 & a \\ 2 & 2 & b \\ 0 & 0 & 5 \end{pmatrix}$, 其中 a, b 为常数. 设线性空间 $V = \{B \in \mathbb{C}^{3 \times 3} \mid AB = BA\}$, 则 V 的维数为
- 5. 设 A, B 为 n 阶实可逆矩阵, 且 A 为对称矩阵, 则实对称矩阵 $\begin{pmatrix} A & B \\ B^T & O \end{pmatrix}$ 的正负惯性指数差为_____.
- 二、是非题. 若错误, 请举出反例; 若正确, 请给出相应理由.
 - 1. 多项式 $x^4 + x^3 + x^2 + x + 1$ 在有理数域上不可约.
 - 2. 设 $A \in n$ 阶矩阵, 齐次线性方程组 AX = 0 有唯一解的充分必要条件是 |A| = 0.
 - 3. 设 A, B, C, D 为 n 阶矩阵, 则 $\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |AD CB|$.
 - 4. 欧氏空间上对称变换在任意一组基下的矩阵为实对称矩阵.
 - 5. 设四阶矩阵

$$A = \left(\begin{array}{rrrr} 1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ -2 & -2 & 2 & 1 \\ 1 & 1 & -1 & 0 \end{array}\right)$$

则 A 的初等因子为 $\lambda, \lambda, (\lambda - 1)^2$.

三、解答题.

1. 设
$$A = \begin{pmatrix} 3 & 0 & 0 & 0 \\ 2 & 3 & 0 & 0 \\ 2 & 2 & 3 & 0 \\ 2 & 2 & 2 & 3 \end{pmatrix}$$
, 且 $AB = B + I$, 求矩阵 B^n , 其中 n 为整数.

2. 设 n(n > 1) 阶矩阵

$$A = \left(\begin{array}{cccc} 0 & 1 & 1 & \cdots & 1 \\ 1 & 0 & 1 & \cdots & 1 \\ 1 & 1 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 1 & 1 & \cdots & 0 \end{array}\right).$$

求 A^{-1} .

3. 求解线性方程组

$$\begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 = 1 \\ x_1 + 3x_2 - x_3 - x_4 = 0 \\ 3x_1 + 8x_2 + (a^2 - 5a + 7)x_3 + ax_4 = 1. \end{cases}$$

其中 a 为常数.

4. 设 a 为整数, 且二次型

$$f(x_1, x_2, x_3) = 2x_1^2 + 2x_2^2 + ax_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_3x_3$$

有三个不同整数特征值,用正交变换将此二次型化为标准形 (需要写出正交变换及标准形).

- 5. 设 A 为数域 $\mathbb F$ 上的 n 阶矩阵, p(x) 为 $\mathbb F$ 上首 1 不可约多项式. 若存在正整数 r 使得 A 在 $\mathbb F$ 上最小多项式为 $p^r(x)$, 求矩阵 $P=\left(egin{array}{c}A&I\\O&A\end{array}\right)$ 的最小多项式.
- 6. 设 V 是有限维复空间, \mathscr{A} , \mathscr{B} 是 V 上的两个线性变换,满足 $\mathscr{A}\mathscr{B}-\mathscr{B}\mathscr{A}=\mathscr{A}^2-\mathscr{A}$. 对于任意复数 μ ,定义 V 的子空间 V_μ 如下:

$$V_{\mu} = \{ \alpha \in V \mid \exists m \in \mathbb{N}^*, \text{s.t.} (\mathscr{A} - \mu I)^m \alpha = 0 \}.$$

其中 I 为恒等变换.

- (1) 求证: V_{μ} 是 \mathscr{B} 的不变子空间;
- (2) 若 $V_{\mu} \neq \{0\}$, 求证 $\mu = 0$ 或者 1.

49 西安交通大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分:_150_ 分

一、填空题 (每题 6 分, 共 60 分).

- 1. 求极限 $\lim_{x\to 0} \frac{e^x \sin x x(1+x)}{x^3} = _____.$ 2. 求 $\lim_{n\to \infty} (\ln n [\ln n]) = ____.$
- 3. 若 $f(x) = x + \ln x$, g(x) 是 f(x) 的反函数, 求 $g''(x) = _____.$
- $4. 求级数 \sum_{n=1}^{\infty} \frac{\sin nx}{n!} = \underline{\hspace{1cm}}$
- 6. $\ddot{x} f(x) = \begin{cases} \frac{x^3}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases},$ \ddot{x} \ddot{x} (0,0) \dot{y} $(\cos \alpha, \sin \alpha)'$ \dot{y} \dot{y} \dot{y} \dot{y} \dot{y} \dot{y} \dot{y} \dot{y} \dot{y}
- 7. 求不定积分 $\int \sin(\ln x) dx =$ _____
- 8. 求 $x^2 + y^2 = 2az$ 和 $x^2 + xy + y^2 = a^2$ 交线的最大值为 .
- 9. 若 D 是由 (0,0,1),(0,1,1),(1,1,1),(0,0,2),(0,2,2),(2,2,2) 组成的 \mathbb{R}^3 的一个棱台, 则 $\iint_{\mathbb{R}} \frac{1}{v^2 + z^2} \mathrm{d}y \mathrm{d}z = \underline{\qquad}.$
- 10. 计算曲面积分 $\iint_{S} x dy dz + y dx dz + z dx dy = _____,$ 其中 $S: \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$, 方向外侧.

二、解答题 (每题 15 分, 共 90 分).

- 设数列 $\{x_n\}$ 满足 $x_{mn} \leq x_m + x_n, x_n > 0$, 证明: $\lim_{n \to \infty} \sqrt[n]{x_n}$ 存在.
- 2. 证明: $\lim_{h \to 0^+, \atop h \to 0^+} \frac{f(x_0 + h) f(x_0 k)}{k + h}$ 存在的充要条件为 f 在 x_0 处可导.
- 3. 设级数 $\sum_{n=1}^{\infty} a_n$ 绝对收敛, $\sum_{n=1}^{\infty} b_n$ 收敛, 且 $\sum_{n=1}^{\infty} a_n = A$, $\sum_{n=1}^{\infty} b_n = B$, 则 $\sum_{n=1}^{\infty} c_n = AB$, 其 $+ c_n = a_1b_n + a_2b_{n-1} + \dots + a_nb_1 = \sum_{k=0}^{n} a_kb_{n-k+1}.$
- 若 $f: \mathbb{R}^n \to \mathbb{R}^m$ 是一个 C^1 类映射, 且满足 xf'(x) = 0, 证明: f 为常值映射.
- 若 f 在 [a,b] 上连续, 则 f 在 [a,b] 上有界.
- 证明: 6.

$$\frac{1}{T} \int_0^T \frac{\sin at \cos bt}{t} dt = \begin{cases} 1 + o\left(\frac{1}{T(a-b)}\right) & a > b \\ o\left(\frac{1}{T(a-b)}\right) & a < b. \end{cases}$$

50 南京师范大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- 1. (20分,每小题5分)
 - (1) 计算 $\lim_{n\to\infty} \tan^n \left(\frac{\pi}{4} + \frac{1}{n}\right)$.
 - (2) 已知 $\lim_{x \to -\infty} (f(x) f'(x)) = 2023$,求 $\lim_{x \to -\infty} f(x)$.
 - (3) 计算 $\int_0^a x^2 \sqrt{\frac{a-x}{a+x}} dx$.
 - (4) 将 $\int_{\frac{1}{2}}^{\frac{1}{\sqrt{2}}} dx \int_{\frac{1}{2}}^{x} f(x, y) dy + \int_{\frac{1}{\sqrt{2}}}^{1} dx \int_{x^{2}}^{x} f(x, y) dy$ 转换成先对 x 积分再对 y 积分.
- 2. (15 分) 已知级数 $\sum_{n=1}^{\infty} a_n$ 收敛于 a, 则
 - (1) $\not \stackrel{1}{x} \lim_{n \to +\infty} \frac{na_1 + (n-1)a_2 + \dots + a_n}{n};$
 - (2) 证明: $\lim_{n \to +\infty} \frac{a_1 + 2a_2 + \dots + na_n}{n} = 0.$
- 3. (15 分) 已知 f(x) 在 x = 0 处连续, 且对 $\forall x, y \in \mathbb{R}$ 满足函数方程 f(x+y) = f(x) + f(y), 证明: f(x) 在 \mathbb{R} 上连续, 且 f(x) = f(1)x.
- 4. 若 f(x) 二阶可微,且 $f\left(\frac{a+b}{2}\right) = 0, x \in [a,b]$,证明

$$|f''(\xi)| \ge \frac{4}{(b-a)^2} |f(b) - f(a)|$$

5. (20 分)(1) 证明柯西不等式, 若 f(x), g(x) 在 [a,b] 上可积, 则有

$$\left(\int_a^b f(x)g(x)\mathrm{d}x\right)^2 \le \int_a^b f^2(x)\mathrm{d}x \int_a^b g^2(x)\mathrm{d}x.$$

(2) 若 f(x) 在 [0,1] 上有连续导数,且 f(0) = 0.证明:

$$\int_{0}^{1} f^{2}(x) dx \le \frac{1}{2} \int_{0}^{1} \left| f'(x) \right|^{2} dx$$

- 6. (15 分) 已知 f(x) 单调递减,且 f(x) > 0,证明: $\int_{a}^{+\infty} f(x) dx$ 与 $\int_{a}^{+\infty} f(x) \sin^{2} x dx$ 同敛散.
- 7. (25 分)(1) 若 f(x,y) 在(0,0) 附近有定义且

$$\lim_{(x,y)\to(0,0)} \frac{f(x,y) - xy^2}{1 - \cos\sqrt{x^2 + y^2}} = 1$$

判断 f(0,0) 是否是 f(x,y) 的极值,并请说明是极大值还是极小值,若不是极值请说明理由.

(2) 设
$$u = u(x, y, z)$$
, 令

$$x = r \sin \varphi \cos \theta, y = r \sin \varphi \sin \theta, z = r \cos \varphi$$

且 $xu'_x + yu'_y + zu'_z = 0$, 证明: u 仅为 φ 和 θ 的函数.

- 8. $(15\ \mathcal{G})$ 讨论级数 $\sum_{n=1}^{\infty} \frac{(-\alpha)^n n!}{n^n}$, $\alpha > 0$ 的敛散性;若收敛说明是条件收敛还是绝对收敛.
- 9. (15 分) 计算第一型曲面积分

$$\iint_{S} (x^{2} \cos \alpha + y^{2} \cos \beta + z^{2} \cos \gamma) dS$$

其中 S 为 $x^2 + y^2 = z^2 (0 \le z \le h)$ 外法向与 z 轴正方向夹角为锐角.

10. (10 分) 证明:
$$\int_0^{+\infty} \frac{\cos x^2}{x^y} dx$$
 在 (-1,1) 上内闭一致收敛.

51 南京师范大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- 1. 设 f(x) 是一个整系数多项式, $\frac{p}{q}$ 是 f(x) 的有理根且 (p,q) = 1, 证明: 存在任意整数 m, 使得 $pm q \mid f(m)$.
- 2. 叙述并证明艾森斯坦判别法.

3. 计算行列式
$$D_n = \begin{vmatrix} a + x_1 & a + x_1^2 & \cdots & a + x_1^n \\ a + x_2 & a + x_2^2 & \cdots & a + x_2^n \\ \vdots & \vdots & & \\ a + x_n & a + x_n^2 & \cdots & a + x_n^n \end{vmatrix}$$
.

- 4. 设非齐次线性方程组 $\begin{cases} x_1 + x_2 + x_3 + x_4 = -1 \\ 4x_1 + 3x_2 + 5x_3 x_4 = -1 \end{cases}$ 有三个线性天关的解. $ax_1 + x_2 + 3x_3 + bx_4 = 1$
 - (1) 证明: 该方程组的系数矩阵 A 的秩 r(A) = 2
 - (2) 求 a,b 的值并求方程组的通解.
- 5. 若 A 为 n 阶方阵, A + E 可逆, 且有 $f(A) = (E A)(E + A)^{-1}$, 证明:
 - (1) (E + f(A))(E + A) = 2E;
 - (2) f(f(A)) = A.
- 6. 设 A 为实对称矩阵,E 为单位矩阵, 求证: 存在一个极小数 ε , 使得 $E + \varepsilon A$ 为正定阵.
- 7. 若 W, W_1, W_2 是线性空间 V 的子空间, $W_1 \subseteq W, V = W_1 \oplus W_2$, 证明:

$$\dim W = \dim W_1 + \dim (W_2 \cap W)$$

- 8. 设 V 是全体次数不超过 n 的实系数多项式, 再添上零多项式组成的实数域上的线性空间, 定义 V 上的线性变换 \mathscr{A} , 任给 $f(x) \in V$, 有 $\mathscr{A}(f(x)) = xf'(x) f(x)$.
 - (1) 求 \mathscr{A} 的核 $\mathscr{A}^{-1}(0)$ 和值域 $\mathscr{A}V$;
 - (2) 证明: $V = \mathcal{A}^{-1}(0) \oplus \mathcal{A}V$.

52 湖南师范大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 一、填空题 (每题 6 分, 共 60 分)
 - 1. 求极限 $\lim_{n\to\infty} \frac{1}{n} \left(\sin\left(\frac{n+1}{n}\pi\right) + \sin\left(\frac{n+2}{n}\pi\right) + \dots + \sin\pi \right) = \underline{\qquad}$
 - 2. 求极限 $\lim_{x\to 0} \frac{\int_0^x t \sin t \, \mathrm{d}t}{\sin x \tan x} = \underline{\qquad}$
 - 3. $\% f(x) = \frac{1}{x^2 3x + 2}, \ \text{M} f^{(n)}(0) = \underline{\hspace{1cm}}$
 - 4. 不定积分 $\int |x| \mathrm{d}x =$ _____.

 - 6. 求幂级数 $\sum_{n=0}^{\infty} (n+1)^2 x^n$ 的和函数为 _____.
 - 7. 若 $xyze^{x+y+z} = 1$, 则 $\frac{\partial^2 z}{\partial x \partial y} =$ ______.
 - 8. 若广义积分 $\int_0^{+\infty} \frac{\sin(x^2)}{x^p} dx$ 绝对收敛, 则 p 的取值范围为 _____.
 - 9. 设 [x] 表示不超过 x 的最大整数,则二重积分 $\iint_D [x+y] dx dy = ______,$ 其中区域 $D = \{(x,y) \mid 0 \le x \le 3, 0 \le y \le 3\}.$
 - 10. 求曲面积分 $\iint_S (x + y + z) dS = _____,$ 其中 S 是球面 $x^2 + y^2 + z^2 = a^2, z \ge 0.$
- 二、计算题 (每题 15 分, 共 60 分)
 - 1. 函数 f(x) 在 x = 1 附近有定义, 且在 x = 1 处可导, 已知 f(1) = 0, f'(1) = 2, 求极限 $\lim_{x \to 0} \frac{f\left(\sin^2 x + \cos x\right)}{e^{x^2} 1}.$
 - 2. 设 $D = \{(x, y) : x^2 + y^2 \le 1\}$, 计算二重积分 $\iint_{D} \frac{\mathrm{d}x\mathrm{d}y}{\sqrt{(1-x)^2 + y^2}}$.
 - 3. 求曲线积分

$$I = \int_{L} (e^{x} + 1) \cos y dx - [(e^{x} + x) \sin y - x] dy$$

其中 L 为点 A(2,0) 沿着曲线 $y = \sqrt{4-x^2}$ 到点 B(-2,0) 的有向曲线段.

- 4. 将函数 $f(x) = \arctan \frac{1-x}{1+x}$ 展开成 x 的幂级数, 并求级数 $\sum_{x=0}^{\infty} \frac{(-1)^n}{2n+1}$ 的和.
- 三、证明题 (每题 10 分, 共 30 分)
 - 1. 若函数 f(x) 在 [0,1] 上连续, $\int_0^1 f(x) dx = 0$. 求证

$$\left[\int_0^1 x f(x) \mathrm{d}x\right]^2 \le \frac{1}{12} \int_0^1 f^2(x) \mathrm{d}x$$

- 2. 证明: 函数 $f(x) = \sqrt{x} \ln x$ 在 $(0, +\infty)$ 上一致连续.
- 3. 设函数 f(x) 在 [a,b] 上连续,且 f(x) > 0,记 $F(x) = \int_a^b f(t)|x-t| dt$. 证明: F(x) 在 [a,b] 上有唯一的极小值点.

53 湖南师范大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 一. 简答題. 敏题 6 分, 共 30 分.
 - 1. 对于素数 p, 零次多项式 f(x) = p 是本原多形式吗? 为什么?
 - 2. 是否存在含无穷个 n 维向量的集合, 从中任取 n 个向量都是线性无关的? 为什么?
 - 3. 如果 \mathbb{R}^3 上的线性变换 \mathscr{A} 有三个互相正交的一维不变子空间, 则 \mathscr{A} 一定是对称变换吗? 为什么?
 - 4. 设 \mathscr{A} 是线性空间 V 的线性变换, 且 \mathscr{A} 是单射, 那么 \mathscr{A} 一定是满射吗? 为什么?
 - 5. 设 n 阶矩阵 A, 是否存在正整数 m, 使得 $\operatorname{rank}(A^{2m}) = \operatorname{rank}(A^{m})$? 为什么?
- 二. 计算题. 每题 15 分, 共 60 分.
 - 1. 将多项式 $f(x) = x^{12} 1$ 在有理数域上分解为首项系数等于 1 的不可约多项式的乘积.
 - 2. 计算 4 阶行列式 D, 其中

$$D = \begin{vmatrix} 0.25 & 0.5 & 1 & 2 \\ 0.16 & 0.4 & 1 & 2.5 \\ 2 & 1 & 0.5 & 0.25 \\ -1 & 1 & -1 & 1 \end{vmatrix}$$

3. 设整数 $a_1, a_2, a_3, \dots, a_{2024}$, 给出实二次型

$$f = (x_1 + a_2 x_2)^2 + (x_2 + a_3 x_3)^2 + \dots + (x_{2023} + a_{2024} x_{2024})^2 + (x_{2024} + a_1 x_1)^2$$

不是正定二次型的充分必要条件.

- 4. 设 $\lambda_1, \lambda_2, \lambda_3$ 为 $x^3 + x^2 + x + 2 = 0$ 的三个根, $g(x) = x^2 + 2x + 3$, 求三阶整数矩阵
- A, 使得 A 的特征值为 $g(\lambda_1)$, $g(\lambda_2)$, $g(\lambda_3)$.
- 三. 证明题. 敏题 15 分, 共 60 分.
 - 1. 证明:
 - (1) 任何 Jordan 块一定与它自己的转置相似.
 - (2) 复数域上任何方阵一定与自己的转置相似.
 - 2. 设 $\mathscr{A} \in L(V)$, 用 Im \mathscr{A} 表示线性变换 \mathscr{A} 的值域. 若多项式 f(x) = g(x)h(x), 且 (g(x), h(x)) = 1, 证明: Im $f(\mathscr{A}) = \operatorname{Im} g(\mathscr{A}) \cap \operatorname{Im} h(\mathscr{A})$.

3. 设
$$a,b,c$$
 都是整数, 且 $abc = 15$, 多项式 $f(x) = \begin{vmatrix} 0 & x & a & b \\ -x & 0 & x & c \\ -a & -x & 0 & x \\ -b & -c & -x & 0 \end{vmatrix}$. 证明:

- (1) f(x) 在有理数域上可约.
- (2) f(x) 没有奇数根.
- 4. 在欧氏空间里, 称 $\alpha-\beta$ 的长度 $|\alpha-\beta|$ 为向量 α 到 β 的距离. 已知欧氏空间 $V_{\mathbb{R}}$ 中有 n+1 个向量 $\alpha_0,\alpha_1,\cdots,\alpha_n$, 两两之间的距离都是 2 .
- (1) $(\beta_i, \beta_j) = 2$, $\sharp + \beta_i = \alpha_i \alpha_0, i = 1, 2, \dots, n; i \neq j$.
- (2) $\beta_1,\beta_2,\cdots,\beta_n$ 线性无关.

54 苏州大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 一. 计算题. 每题 10 分, 共 20 分.
 - 1. 求极限 $\lim_{x\to 0} \frac{\sin x \arctan x}{x^3}$.
- 二. (15 分) 设 $a_1 = 1$, 且当 $n \ge 2$ 时, $a_n = \frac{1}{2} \left(a_{n-1} + \frac{5}{a_{n-1}} \right)$. 证明: $\{a_n\}$ 收敛, 并求极限.
- 三. (15 分) 设 $f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0; \\ 1, & x = 0. \end{cases}$ 证明: 函数 f(x) 在 $(-\infty, +\infty)$ 上一致连续.
- 四. (15 分) 计算三重积分

$$\iiint\limits_{\Omega} (x+y+z)^2 \mathrm{d}x \mathrm{d}y \mathrm{d}z$$

其中 $\Omega = \{(x, y, z) \in \mathbb{R}^3 | |x| + |y| + |z| \le 1\}.$

五. (15 分) 设 u = f(x, y, z) 的所有二阶偏导数都连续, v = f(x(s, t, r), y(s, t, r), z(s, t, r)), 其中

$$\begin{cases} x(s,t,r) = \frac{1}{9}(ax + 4t + 8r) \\ y(s,t,r) = \frac{1}{9}(4s + bt - 4r) \\ z(s,t,r) = \frac{1}{9}(8s - 4t + cr). \end{cases}$$

试讨论是否存在常数 a,b,c, 使得当 x = x(s,t,r), y = y(s,t,r), z = z(s,t,r) 时, 总成立

$$(u_{xx} + u_{yy} + u_{zz})|_{(x,y,z)} = (v_{ss} + v_{tt} + v_{rr})|_{s,t,r}$$

若存在, 求 a,b,c 的值.

- 六. (10 分) 设 $u(x, y, z) = \frac{x^2}{2} + \frac{y^2}{3} + \frac{z^2}{4}$, 求在原点处函数 u 增长最快的方向.
- 七. (10 分) 证明不等式: $\int_0^{\frac{\pi}{2}} \frac{\sin x}{1+x^2} dx < \int_0^{\frac{\pi}{2}} \frac{\cos x}{1+x^2} dx.$
- 八. (10 分) 设函数 f 在 [0,1] 上二阶可导, f(0) = 0, f(1) = 1, 并存在 $c \in (0,1)$, 使得 $f(c) > c^2$. 证明: 至少存在 $\xi \in (0,1)$, 使得 $f''(\xi) < 2$.
- 九. $(10 \, \text{分})$ 设 f 是 $[0, +\infty)$ 上无界的连续函数. 问: $\int_0^{+\infty} f(x) dx$ 是否发散? 给出证明或反例.
- 十. (10 分) 设 $\{f_n(x)\}$ 是 [a,b] 上黎曼可积的函数列, 且 $\{f_n(x)\}$ 在 [a,b] 上一致收敛于 f. 证明:

- (1) f 在 [a,b] 上可积.
- (2) $\{F_n(x)\}$ 在 [a,b] 上一致收敛于 F(x), 其中 $F_n(x) = \int_a^x f_n(t) dt$, $F(x) = \int_0^x f(t) dt$.
- 十一. (10 分) 设 u 是平面开区域 D 上的二元函数,且所有的偏导数连续. 证明: u 是 D 上的调和函数,即在 D 上 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \equiv 0 \iff$ 对 D 内任意圆周 L,有 $\oint_L \frac{\partial u}{\partial n} = 0$,其中 $\frac{\partial u}{\partial n}$ 表示 u 在 L 上的外法向导数.
- 十二. (10 分) 证明: 存在 $\xi \in (0,\pi)$, 使得 $\sum_{n=1}^{\infty} \frac{\cos n\xi}{n \ln^2(n+2)} = 0$.

55 苏州大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- 1. 求三阶矩阵 $A = \begin{pmatrix} 1 & 1 & -1 \\ -3 & -3 & 3 \\ -2 & -2 & 2 \end{pmatrix}$ 的 Jordan 标准型, 并计算 $C(A) = \{B : AB = BA\}$ 的维数.
- 2. 证明: $\operatorname{rank} A = \max_{1 \le i \le n} \{\operatorname{rank} A_i\}$ 的充要条件是 $Ax = \beta$ 有解, 其中 $\beta \ne 0$, A_i 是 A 的第 i 列替换为 β 后的矩阵.
- 3. 已知 B 是二阶可逆矩阵, 若矩阵 A 满足 AB = -BA, 则 A^2 是纯量矩阵.
- 4. 设 \mathscr{A} , \mathscr{B} 为 n 维欧氏空间 \mathbb{R}^n 上的线性变换,且 \mathscr{A} 有特征值 μ ,满足

$$(\mathscr{A}(\alpha), \mathscr{B}(\beta)) = (\mathscr{A}(\alpha), \beta) + (\alpha, \mathscr{B}(\beta)), \forall \alpha, \beta \in \mathbb{R}^n$$

证明: $\mu \neq 1$ 且 \mathcal{B} 有特征值 $\frac{\mu}{\mu - 1}$.

5. 设 Q 为 n 阶对称正定阵, x 为 n 维实列向量. 证明:

$$0 \le x^{\mathrm{T}} (Q + xx^{\mathrm{T}})^{-1} x < 1.$$

- 6. (1) 求 $\begin{pmatrix} \cos \alpha & 1 & & & \\ 1 & 2\cos \alpha & 1 & & \\ & 1 & 2\cos \alpha & \ddots & \\ & & \ddots & \ddots & 1 \\ & & & 1 & 2\cos \alpha \end{pmatrix}$ 的行列式.
 - (2) 证明: $n \ge 3$ 时, $\frac{1}{\pi} \arccos \frac{1}{\sqrt{n}}$ 是无理数.
- 7. 设 V 为数域 \mathbb{F} 上的 n 维线性空间, \mathcal{A} 为 V 中的线性变换.
 - (1) 证明: 存在 V 中的线性变换 \mathscr{B} 使得, $\ker \mathscr{B} = \operatorname{Im} \mathscr{A}$, $\operatorname{Im} \mathscr{B} = \ker \mathscr{A}$.
 - (2) 在 (1) 的条件下, 证明: $\mathscr{A}^2 = \mathscr{A} \Leftrightarrow \mathscr{B}^2 = \mathscr{B}$.

56 华南理工大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

1.
$$(13 分)$$
 已知 $a, b > 0$, 且 $c = \lim_{x \to 0} \left(\frac{4}{\ln(1+x)} - \frac{4}{x} \right)$, 定义函数

$$f(x) = \begin{cases} \frac{\sin(ax)}{x}, & x < 0; \\ c, & x = 0; \\ (1 + bx)^{\frac{1}{x}}, & x > 0. \end{cases}$$

若 f(x) 在 $(-\infty, +\infty)$ 内处处连续, 求常数 a, b 和 c.

2. (13 分) 设 f(x) 在 [a,b] 上连续, 在 (a,b) 内可导. 证明: 存在 $\xi \in (a,b)$, 使得

$$f(\xi) + f'(\xi) = \frac{e^b f(b) - e^a f(a)}{e^b - e^a}.$$

3. (13分)证明函数

$$f(x,y) = \begin{cases} xy\cos\frac{1}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0); \\ 0, & (x,y) = (0,0). \end{cases}$$

在点 (0,0) 连续且偏导数存在, 但是偏导数在点 (0,0) 不连续, 而 f(x,y) 在点 (0,0) 可微.

4. (13 分) 将方程
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$$
 变换为极坐标形式.

5. (14 分) 计算曲线积分
$$\int_L y dx + z dy + x dz$$
, 其中 L 是曲线

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, \frac{x}{a} + \frac{z}{c} = 1, x \ge 0, y \ge 0, z \ge 0, a > 0, b > 0, c > 0$$

从点 (a,0,0) 到 (0,0,c).

6. (14 分) 证明: 黎曼 zeta 函数
$$\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$$
 在 $(1, +\infty)$ 上连续且无穷次可微.

- 7. (14 分) 解答如下问题:
 - (1) 用定义证明 $\lim_{n\to\infty} \sin n$ 不存在.
 - (2) 证明: 数列 {x_n} 极限存在, 其中

$$x_n = \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{(n+1)^2}\right) = \prod_{k=1}^n \left(1 - \frac{1}{(k+1)^2}\right), n = 1, 2, \cdots$$

并求极限 $\lim_{n\to\infty} x_n$.

8. (14 分) 设函数 f(x) 在 $(x_0 - r, x_0 + r)$ 上无穷次可导 (其中 $r \in (0, +\infty)$), 且存在常数 M > 0, 使得

$$\left| f^{(n)}(x) \right| \le M \frac{n!}{r^n}, \forall x \in (x_0 - r, x_0 + r), \forall n = 0, 1, 2, \cdots.$$

- (1) 证明: f(x) 在 x_0 点的 Taylor 级数 $\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x x_0)^n$ 在 $(x_0 r, x_0 + r)$ 上逐点收敛于 f(x).
- (2) 证明: $\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x x_0)^n$ 在 $(x_0 r, x_0 + r)$ 上内闭一致收敛于 f(x).
- 9. (14 分) 设 f(x) 在 [a,b] 上黎曼可积, 证明:

$$\lim_{\lambda \to +\infty} \int_a^b f(x) \cos(\lambda x) \mathrm{d}x = 0.$$

- 10. (14 分) 证明 $\int_0^{+\infty} \frac{\sin xy}{x} dx$ 关于 y 在 $[y_0, +\infty)$ $(y_0 > 0)$ 上一致收敛, 但在 $(0, +\infty)$ 上非一致收敛.
- 11. (14 分) 设 f(x) 在 [a,b] 上分段连续,即存在 [a,b] 的一个有限分割 $a = x_0 < x_1 < x_2 < \cdots < x_n = b$ (其中 n 为固定整数),使得 f(x) 在每个区间 (x_{i-1}, x_i) 上连续且分点 x_i 处都存在左右极限. 证明: f(x) 在 [a,b] 上黎曼可积.

57 华南理工大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. $(20 \, \text{分})$ 设 (f(x), g(x)) = 1, 证明: $f^2(x) + g^2(x)$ 的重根必是 $[f'(x)]^2 + [g'(x)]^2$ 的根.
- 2. (15 分) 计算 n 阶行列式

$$D_{n} = \begin{vmatrix} a & a+b & \cdots & a+b & a+b \\ a-b & a & \cdots & a+b & a+b \\ \vdots & \vdots & & \vdots & \vdots \\ a-b & a-b & \cdots & a & a+b \\ a-b & a-b & \cdots & a-b & a \end{vmatrix}.$$

3. $(20 \, \text{分})$ 若 A 为 $m \times n$ 矩阵, β 为 n 维列向量. 考虑下列两个线性方程组

(a)
$$AX = \beta$$
; (b) $\begin{pmatrix} A' \\ \beta' \end{pmatrix} X = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$.

- (1) 当 (a) 有解时, (b) 有解吗? 证明你的结论.
- (2) 当 (a) 无解时, (b) 有解吗? 证明你的结论.
- 4. (20 分) 设矩阵 A, B, C 满足 AC = CB, 证明: A, B 均为方阵. 若 r(C) = r, 证明: A, B 的特征多项式有 r 次公因式.
- 5. (20 分) 解答如下问题:
 - (1) 设二次型 $f(x_1, x_2, x_3, x_4) = X/AX$, 其中

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \end{pmatrix}, X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}.$$

将 $f(x_1, x_2, x_3, x_4)$ 化为一次因式的乘积.

(2) 根据 (1) 的结果, 将 n 元二次型 f(X) = X'AX 化为一次因式的乘积, 其中

$$A = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 2 & 3 & 4 & \cdots & n+1 \\ 3 & 4 & 5 & \cdots & n+2 \\ \vdots & \vdots & \vdots & & \vdots \\ n & n+1 & n+2 & \cdots & 2n-1 \end{pmatrix}.$$

6. (20分)设矩阵

$$A = \left(\begin{array}{cccc} 1 & 2 & 0 & -a-1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & a+2 \\ 0 & 0 & 1 & 1 \end{array}\right)$$

在复数域上不可对角化.

- (1) 求 a 的值;
- (2) 对每个 a, 求出 A 的若尔当标准型.
- 7. $(20 \, \mathcal{G})$ 设 $\mathcal{A}_1, \mathcal{A}_2, \cdots, \mathcal{A}_m$ 为 n 维线性空间 V 上的 m 个线性变换, 且满足:
 - (1) $\mathscr{A}_{i}^{2} = \mathscr{A}_{i}, i = 1, 2, \cdots, m.$
 - (2) $\mathscr{A}_i \mathscr{A}_j = \mathscr{O}, \forall i \neq j.$
 - (3) $\mathscr{A}_1^{-1}(0) \cap \mathscr{A}_2^{-1}(0) \cap \dots \cap \mathscr{A}_m^{-1}(0) = \{0\}.$

证明: $V = \mathcal{A}_1(V) \oplus \mathcal{A}_2(V) \oplus \cdots \oplus \mathcal{A}_m(V)$.

8. (15 分) 定义在 $\mathbb{R}^{n \times n}$ 上的内积 (,) 满足

$$(AC, B) = (A, CB), \forall A, B, C \in \mathbb{R}^{n \times n}$$

证明: 存在常数 c > 0, 使得 $(A, B) = c \operatorname{tr}(AB)$.

58 安徽大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- 1. (15分)计算极限.
 - (1) $(7 \ \%) \lim_{n \to \infty} n \left[\frac{1^2 + 3^2 + \dots + (2n+1)^2}{n^3} \frac{4}{3} \right].$
 - (2) $(8 \ \text{$\cancel{\triangle}$}) \lim_{x \to \infty} \left[\frac{1}{e} \left(1 + \frac{1}{x} \right)^x \right]^x.$
- 2. (15分)设数列 $\{x_n\}$ 有界, 且 $\lim_{n\to\infty} (x_{n+1}-x_n)=0$. 令

$$m = \underline{\lim}_{n \to \infty} x_n, M = \overline{\lim}_{n \to \infty} x_n, m < M$$

证明: 在区间 (m, M) 上任意一个数都是此数列的一个子列的极限.

3. (20 分) 设函数 f(x) 在区间 I 上有定义, 令

$$\omega_f(\delta) = \sup_{\substack{x,y \in I \\ |x-y| < \delta}} |f(x) - f(y)|$$

证明:

- (1) $\lim_{\delta \to 0^+} \omega_f(\delta)$ 存在.
- (2) f(x) 在区间 I 上一致连续等价于 $\lim_{\delta \to 0^+} \omega_f(\delta) = 0$.
- 4. (20 分) 设函数 f(x) 为 (a,b) 上的凸函数, 即对 $\forall x_1, x_2 \in (a,b)$ 以及 $\lambda \in (0,1)$, 有

$$f(\lambda x_1 + (1 - \lambda)x_2) < \lambda f(x_1) + (1 - \lambda) f(x_2)$$
.

证明:

- (1) 对 $\forall x \in (a,b)$, 左右导数 $f'_{-}(x)$, $f'_{+}(x)$ 均存在, 且 $f'_{-}(x) \leq f'_{+}(x)$.
- (2) $f'_{-}(x)$, $f'_{+}(x)$ 均在 (a,b) 上单调递增.
- 5. $(20 \, f)$ 设 $f(n) = a_0 + \sum_{k=1}^{\infty} \frac{a_k}{n^k}$, 且满足 $|a_k| \leq M$, 这里 n, k 均为正整数. 试证: 数项级数 $\sum_{k=1}^{\infty} f(n)$ 收敛的充要条件为 $a_0 = a_1 = 0$.
- 6. (20 分) 给定方程 $x^2 + y + \sin(xy) = 0$.
 - (1) 说明在点 (0,0) 的充分小的邻域内, 此方程确定唯一的可导的函数 y = y(x), 使得 y(0) = 0, 并求出 y = y(x) 的导函数表达式.
 - (2) 判断在点 (0,0) 的充分小的邻域内, 此方程是否确定唯一的函数 x = x(y), 使得 x(0) = 0, 说明理由.

- 7. (20~%) 计算 Gauss 曲面积分 $I=\iint_S \frac{\cos(\widehat{n,r})}{r^2}\mathrm{d}S$, 其中 S 为光滑封闭曲面,原点不在 S 上,r 为 S 上动点至原点的距离, $(\widehat{n,r})$ 为动点处外法向量 n 与径向 r 的夹角.
- 8. (20 分) 求含参积分 $I(y) = \int_0^{+\infty} e^{-x^2} \cos(2xy) dx$.

59 安徽大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- 一. 填空题 (本大题共六小题, 每小题 5 分, 共 30 分).
 - 1. 设

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}, C = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 2 \end{pmatrix}.$$

若矩阵满足 AXB = C, 则 X = .

- 2. 设 $A = (a_{ij})$ 为 2 阶复方阵, 满足 $\operatorname{tr} \left(A^k \right) = k(k=1,2,)$, 其中 $\operatorname{tr} (A) = a_{11} + a_{22}$ 为 矩阵 A 的迹, 则行列式 $|A| = _____.$
- 3. 设矩阵 $A = \begin{pmatrix} -2 & 1 & 1 & 1 \\ -1 & -1 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ -1 & 1 & 1 & 0 \end{pmatrix}$, 则 A 的最小多项式为_____.
- 4. 设 n 阶矩阵 A 的各行元素之和均为 3, E 为单位阵, 则矩阵 A^2-2A+E 的各行元素 之和为_____.
- 5. 设 \mathbb{R}^3 为带标准内积的 3 维欧氏空间, 对 \mathbb{R}^3 的基 $\alpha_1 = (-1, 1, 1), \alpha_2 = (0, -1, 1), \alpha_3 = (0, 0, 1)$ 所 Schmidt 正交化得 \mathbb{R}^3 的标准正交基 $\beta_1, \beta_2, \beta_3,$ 则 $\beta_3 = _____.$
- 6. 设 λ-矩阵

$$A(\lambda) = \begin{pmatrix} (\lambda - 1)^3 \\ (\lambda + 1)^2 \\ (\lambda - 1)^2 (\lambda + 1)^4 \end{pmatrix}.$$

则 $A(\lambda)$ 的所有不变因子为 ...

- 二 . 辨析題 (本大題共四小题, 每小题 5 分, 共 20 分. 先判断对错, 再简要说明).
 - 7. 设 f(x) 为实系数多项式, 且次数为奇数, 则 f(x) 必有实根.
 - 8. 设 A, B 都为 4 阶复方阵, 则 A 与 B 相似当且仅当 A 与 B 有相同的特征多项式, 且 每个特征值的几何重数 (即对应特征子空间的维数) 也相同.
 - 9. 设 \mathscr{A} 是 n 维复线性空间 V 上的线性变换, n > 1, 若 $\mathscr{A}^n = 0$ 且 $\mathscr{A}^{n-1} \neq 0$, 则存在两个 \mathscr{A} 的非平凡子空间 U 和 W, 使得 $V = U \oplus W$.
 - 10. 设 $A(\lambda)$, $B(\lambda)$ 都是数域 \mathbb{P} 上 $m \times n$ 的 λ 矩阵, 则 $A(\lambda)$, $B(\lambda)$ 等价的充要条件为 $A(\lambda)$ 与 $B(\lambda)$ 有相同的初等因子组.
- 三 . 计算题 (本大題共五小题, 每小题 10 分, 共 50 分).
 - 11. 设 $A = (a_{ij})$, 其中 $a_{ij} = \frac{1 x_i^n y_j^n}{1 x_i y_j}$, $x_i y_j \neq 1$, $i, j = 1, 2, \dots, n$, 求行列式 |A|.

12. 设多项式

$$f(x) = 2x^4 + 2x^3 - 5x^2 - 13x - 2, g(x) = x^3 + x^2 - 3x - 6.$$

求 f(x) 与 g(x) 的首一最大公因式 (f(x),g(x)) 以及多项式 u(x) 与 v(x), 使得

$$u(x) f(x) + v(x)g(x) = (f(x), g(x)).$$

13. 设 A 是 5×4 矩阵, 且 r(A) = 3, β 为 5 维非零列向量. 已知 $\gamma_1, \gamma_2, \gamma_3$ 为方程组 $AX = \beta$ 的 3 个不同的解, 且 $\gamma_1 + \gamma_2 = (2, 2, 0, 2)^T, \gamma_1 + \gamma_3 = (0, 0, 2, 0)^T$. 求 $AX = \beta$ 的通解.

14. 设复二次型

$$f(x_1, x_2, x_3) = 2x_1^2 + x_2^2 - 4x_1x_2 - 4x_2x_3$$

求非退化线性替换 X = CY, 将二次型 $f(x_1, x_2, x_3)$ 化为规范形, 其中 $X = (x_1, x_2, x_3)^T$, $Y = (y_1, y_2, y_3)^T$, 并写出规范形.

15. 设实矩阵

$$A = \left(\begin{array}{rrr} -1 & 1 & 2 \\ -1 & 1 & 1 \\ -2 & 1 & 3 \end{array}\right)$$

- (1) 求 A 的若尔当标准形 J.
- (2) 求可逆矩阵 P, 使得 $P^{-1}AP = J$.

四. 证明题 (本大题共四小题, 第 16,17 题每题 10 分, 第 18,19 题每题 15 分, 共 50 分).

16. 设多项式 $f(x) = x^p + px + p - 1$, 其中 p 为奇素数. 证明: f(x) 在有理数域上不可约.

17. 设
$$n$$
 元实二次型 $f(x_1, x_2, \dots, x_n) = l_1^2 + \dots + l_s^2 - l_{s+1}^2 - \dots - l_{s+t}^2$, 其中

$$l_i = a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n, a_{ij} \in \mathbb{R}, i = 1, 2, \dots, s + t, j = 1, 2, \dots, n.$$

证明: $f(x_1, x_2, \dots, x_n)$ 的正惯性指数 $p \leq s$.

18. 设 🗹 为 n 维欧氏空间 V 上的线性变换, 在基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 下的矩阵为 A. 证明: $\mathscr A$ 为对称变换的充要条件是 $A^TG = GA$, 其中 $G = (\alpha_i, \alpha_j)$ 为基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 的度量矩阵.

19. 设 A 为 n 阶复方阵, 0 为 A 的最小多项式 $m(\lambda)$ 的 r 重根, $r \ge 2$ 为正整数. 证明:

- (1) 对任意的正整数 $k \ge r$, $r(A^k) = r(A^r)$.
- (2) $r(A^r) < r(A^{r-1})$.

60 湘潭大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. (15 分) (30 分) 计算下列极限:
 - (1) $\lim_{x\to 0} \frac{\tan x \sin x}{x^3}$; (2) $\lim_{n\to\infty} \int_0^1 \frac{x^n}{1+x} dx$; (3) $\lim_{x\to +\infty} x^{\frac{1}{x}}$.
- 2. (20 分)(1) 设 $y = \frac{\sqrt{1+x^2}}{x}$, 求 d^2y ;

(2)
$$\[\mathcal{U} \] I(y) = \int_{y}^{y^2} \frac{\cos xy}{x} dx, \ \ \ \ \ \ \ I'(y). \]$$

- 3. (15 分) 计算 $I = \iiint_{\Omega} (x+y+z)^2 dx dy dz = 0$, 其中 Ω 是 $x^2 + y^2 + z^2 = 3$ 与 $2z = x^2 + y^2$ 围成的区域.
- 4. (15 分) 若 S 为光滑封闭曲面,l 是任意常向量,证明: $I = \iint_S \cos(n, l) d\sigma$,其中 n 是曲面 S 的外法线向量.
- 5. (20 分) 讨论下列含参变量反常积分的一致收敛性: $\int_0^{+\infty} e^{-\alpha x} \sin x dx$, 在 (i) $\alpha \ge \alpha_0 > 0$; (ii) $\alpha > 0$.
- 6. (15 分) 叙述 $\lim_{x \to x_0^+} f(x)$ 存在且有限的柯西收敛准则并证明.
- 7. (15 分) 将 $f(x) = x^2$ 在 $[0, 2\pi]$ 上傅里叶级数展开.
- 8. (20分)设

$$\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}, E(x) = \prod_{n=1}^{\infty} \frac{p_n^x}{p_n^x - 1}, x > 1$$

其中 $p_n(n=1,2,\cdots)$ 为素数序列. 试证明: (1) $\zeta(x)$, E(x) 均收敛;(2) $\zeta(x) = E(x)$.

61 新疆大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. (1) (5 分) 叙述 inf D 的定义;
 - (2) (10 分) 设 f,g 非负, 证明 $\inf f \cdot \inf g \leq \inf (fg)$.
- 2. 求极限
 - (1) $(7 \ \ \%) \lim_{x \to +\infty} (\pi 2 \arctan x) \ln x;$
 - (2) $(8 \ \%) \lim_{x \to 0} \frac{\tan x x}{x \sin x}$.
- 3. 计算积分 (1) (7 分) $\int \frac{1}{1+\sqrt{x}} dx$;
 - (2) $(8 \%) \int_0^{\frac{\pi}{2}} e^x \sin x dx$.
- 4. (1) (5 分) 叙述 f 在 E 上一致连续的定义;
 - (2) (10 分) 证明有界闭区问上的连续函数必定一致连续.
- 5. (1)(5分)叙述 f(x)在[a,b]上黎曼可积的定义;
 - (2) (10 分) 若函数 f(x) 在 [a,b] 上黎曼可积, 证明 f 在 [a,b] 上有界.
- 6. (15 分) 设 f(x) 为 n 阶可导函数, 若方程 f(x) = 0 有 n+1 个实根, 证明方程 $f^{(n)}(x) = 0$ 至少有一个实根。
- 7. (15 分) 求幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n(n+1)}$ 的收敛半径与和函数。
- 8. (1) (5 分) 求二元函数 f(x, y) 在 (1, 1) 处带皮亚若余项的二阶泰勒公式;
 - (2) (10 分) 求二元函数 $f(x,y) = \frac{x}{v}$ 在 (1,1) 处带皮亚诺余项的二阶泰勒公式.
- 9. (15 分) 设 $a,b,c \neq 0$, 求 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 在点 $\left(\frac{a}{\sqrt{3}}, \frac{b}{\sqrt{3}}, \frac{c}{\sqrt{3}}\right)$ 处的切平面及法线方程.
- 10. (15 分) 求第二型曲面积分

$$\iint_{S} y(x-z) dydz + x^{2}dzdx + (y^{2} + xy) dxdy$$

其中 S 是边长为 a 的立方体外側, $0 \le x, y, z \le a$.

62 扬州大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 一. 、计算题 (共 60 分, 每小题 10 分, 要求有计算过程)
 - 1. 求极限 (1) $\lim_{n\to\infty} \sum_{k=n^2}^{(n+1)^2} \frac{1}{\sqrt{k}}$; (2) $\lim_{n\to\infty} \frac{1}{n^2} \sum_{k=1}^{n-1} \sqrt{n^2 k^2}$.
 - 2. $\not \stackrel{\text{dim}}{=} \frac{\int_0^{x^2} \sin t^2 dt}{x \int_0^x \ln (1+t^4) dt}$.
 - 3. 设 f(x) 在 x = 0 某邻域内二阶可导,且 $\lim_{x \to 0} \left(1 + x + \frac{f(x)}{x} \right)^{\frac{1}{x}} = e^3$,计算 f(0), f'(0) .
 - 4. 设 y = f(x y), 其中 f(u) 具有二阶导数, 其中一阶导数不等于 -1 , 求 $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}$.
 - 5. 求积分 $\int_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx + \int_{-1}^1 \frac{1 + x \sin^2 x + \cos x}{1 + \cos x} dx$.
 - 6. 求幂级数 $\sum_{n=1}^{\infty} n^2 x^n$ 的收敛域和和函数, 并由此计算 $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$.
- 二. 论述题 (共 30 分, 每题 6 分, 要求先判断, 然后正确的给出证明, 错误的给出反例)
 - 1. 若数列 $\{x_n\}$ 有界, 且 $\lim_{n\to\infty} (x_n x_{n-1}) = 0$, 则数列 $\{x_n\}$ 收敛.
 - 2. 若 f(x) 在有限区间 (a,b) 内一致连续,则 f(x) 在 (a,b) 上有界.
 - 3. 若 f(x) 在 [a,b] 上连续,且对 [a,b] 上任意连续函数 g(x) 均有 $\int_a^b f(x)g(x)dx = 0$ 成立,则 $f(x) \equiv 0$.
 - 4. 若两个瑕积分 $\int_a^b f(x) dx$ 与 $\int_a^b g(x) dx$ 都收敛, 则 $\int_a^b f(x)g(x) dx$ 也收敛.
 - 5. 设函数列 $\{f_n(x)\}$ 在 [a,b] 上一致收敛, 且 g(x) 在 [a,b] 上可积, 则 $\{f_n(x)g(x)\}$ 在 [a,b] 上一致收敛.
- 三. 综合题 (共 60 分, 每题 10 分, 要求有过程)
 - 1. 用 $\varepsilon \delta$ 定义验证 $\lim_{x \to 1} \sqrt{x} = 1$.
 - 2. 证明: 数列 $x_1 = 1, x_{n+1} = \sqrt{2x_n}, n = 1, 2, \cdots$ 收敛, 并求其极限.
 - 3. 设 f(x) 在 [a,b] 上连续,且 $\left| f(x) \frac{a+b}{2} \right| \le \frac{b-a}{2}, \forall x \in [a,b]$,证明: 方程 f(f(x)) = x 在 [a,b] 上至少存在一个根.
 - 4. 设 f(x) 在 [a,b] 上二阶可导, 且 $f''(x) \ge 0$, 证明:

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(x) \mathrm{d}x \le \frac{f(a)+f(b)}{2}.$$

5. 设正项级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 且数列 $\{a_n\}$ 单调, 证明: $\lim_{n\to\infty} na_n = 0$, 并由此证明级数

$$\sum_{n=1}^{\infty} n \left(a_n - a_{n+1} \right) \, \, \psi \, \underline{\diamondsuit} \, .$$

6. 设 f(x) 在 [a,b] 上可导且 f(a) > 0, f(b) > 0, $\int_a^b f(x) dx = 0$.

证明: (1). f(x) 在 [a,b] 上至少有两个零点.

(2). 对每一个 $\lambda > 0$, 至少存在一点 $\xi \in (a,b)$ 使得 $f'(\xi) = \lambda f^3(\xi)$.

63 扬州大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. (15 分) 设矩阵 $A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, A^* 是 A 的伴随矩阵, 若矩阵 B 满足 $ABA^* = 2BA^* + E$, 求 B 及其行列式 |B|.
- 2. (15 分) 计算 n 阶行列式

$$\begin{vmatrix} 2 & 1 & \cdots & 1 & 1 \\ 1 & 3 & & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & \cdots & n & 1 \\ 1 & 1 & \cdots & 1 & n+1 \end{vmatrix}$$

- 3. (15 分) 设多项式 $f(x) = x^5 + 2x^4 2x^3 8x^2 7x + 2$.
 - (1) 判断 f(x) 是否有重因式, 并说明理由;
 - (2) 求 f(x) 的标准分解.

4. (15 分) 设
$$A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ 0 & -4 & -2 \end{pmatrix}$$
, $\eta_1 = \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}$

- (1) 求满足 $A\eta_2 = \eta_1, A^2\eta_3 = \eta_1$ 的所有向量 η_2, η_3 ;
- (2) 对于 (1) 中的任意向量 η_2, η_3 , 证明 η_1, η_2, η_3 线性无关.
- 5. (15 分) 已知 $\alpha_1 = (7, -10, 1, 1, 1)^T$, $\alpha_2 = (6, -8, -2, 3, 1)^T$, $\alpha_3 = (5, -6, -5, 5, 1)^T$ 都是齐 次线性方程组 $\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 0 \\ 3x_1 + 2x_2 + x_3 + x_4 + x_5 = 0 \end{cases}$ 的解向量. $5x_1 + 4x_2 + 3x_3 + 3x_4 x_5 = 0$
 - (1) 试判断该方程组的解是否都可以用 $\alpha_1, \alpha_2, \alpha_3$ 线性表示, 并说明理由;
 - (2) 请给出方程组的一个基础解系, 其中尽可能多地含 $\alpha_1,\alpha_2,\alpha_3$ 中的解向量.
- 6. (15 分) 设 A, B 是 n 阶矩阵
 - (1) 若 AB = 0, 证明: $r(A) + r(B) \le n$, 其中 r(A) 表示矩阵 A 的秩.
 - (2) 若 $r(A) + r(B) \le n$, 证明: 存在 n 阶可逆矩阵 C, 使得 ACB = 0.
- 7. $(20 \, f)$ 设 $\lambda_1 = 2$ 为实数矩阵 $B = \begin{pmatrix} 2 & 2 & 2 & -2 \\ a & 0 & b & c \\ d & e & 0 & f \\ g & h & k & 4 \end{pmatrix}$ 的特征值,且 $\lambda_1 = 2$ 的几何重数 为 3.

- (1) B 是否可以相似于对角矩阵, 并说明理由;
- (2) 若二次型 $f(x_1, x_2, x_3, x_4) = f(X) = X^T B X$, 求二次型的矩阵 A;
- (3) 求 $f(x_1, x_2, x_3, x_4)$ 在正交变换 X = QY 下的标准型;
- (4) 在约束条件 $X^T X = 1$ 下, 求 $f(x_1, x_2, x_3, x_4)$ 的最大值和最小值.
- 8. (10 分) 设 V 是 n 维欧氏空间, G 为基 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 的度量矩阵, 正交变换 σ 在 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 下的矩阵为 A, 证明:
 - $(1) \sigma(\alpha_1), \sigma(\alpha_2), \cdots \sigma(\alpha_n)$ 为 V 的一组基;
 - $(2) A^T G A = G.$
- 9. (15 分) 设矩阵 $A = \begin{pmatrix} 3 & -4 & 0 & 2 \\ 4 & -5 & -2 & 4 \\ 0 & 0 & 3 & -2 \\ 0 & 0 & 2 & -1 \end{pmatrix}$
 - (1) 求矩阵 A 的特征多项式 $f_A(\lambda)$;
 - (2) 求可逆变换矩阵 P, 使得 $P^{-1}AP = J$, 其中 J 是若尔当标准型矩阵.
- 10. (15 分) 设 V 是数域 P 上的 4 维线性空间, σ 是 V 上的线性变换, σ 在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ 下

的矩阵
$$A = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 3 & 1 & 0 \\ 0 & 4 & 2 & 1 \end{pmatrix}$$

- (1) 求核空间 $\sigma^{-1}(0)$;
- (2) 求 σ 的包含 ε_1 的最小不变子空间 W;
- (3) 记 τ 为 σ 在 W 上的限制的线性变换, 是否存在 W 的一组基, 使得 τ 在这组基下的矩阵为对角矩阵?请说明理由.

64 西南大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. 叙述题. 每题 5 分, 共 15 分.
 - (1) 函数极限的柯西收敛准则.
 - (2) 函数 f(x) 在区间 I 上不一致连续的定义.
 - (3) 函数极限 $\lim_{x \to +\infty} f(x)$ 的归结原则.
- 2. 计算题. 每题 5 分, 共 15 分.
 - (1) 求不定积分 $\int \sin(\ln x) dx$.
 - (2) 求极限 $\lim_{x\to+\infty} \left[\frac{(1+x)^{\frac{1}{x}}}{e} \right]^{\frac{1}{x}}$.
 - (3) 设 f 具有二阶连续的偏导数, 且 $z = f(x^2y^2, xy)$, 求 z_{xy} .
- 3. (15 分) 设有界函数 f(x) 在 [a,b] 上的不连续点的全体为 $\{x_n \mid n = 1, 2, \cdots\}$, 且 $\lim_{n \to \infty} x_n = a$, 证明: f(x) 在 [a,b] 上可积.
- 4. (15 分) 设数列 $\{a_n\}$ 严格递减,且 $a_n>0$. 证明: $\lim_{n\to\infty}a_n=0$ 的充要条件是级数 $\sum_{n=1}^{\infty}\left(1-\frac{a_{n+1}}{a_n}\right)$ 发散.
- 5. (15 分) 已知 f(x) 在 $(-\infty, +\infty)$ 上二阶可导,且 $f''(x) \le 0$, $\lim_{x \to 0} \frac{f(x)}{2x} = 2$,证明: $f(x) \le 4x$.
- 6. (15分)利用闭区间套定理证明确界原理.
- 7. (15 分) 设函数 f(x) 在 $[1, +\infty)$ 上连续, 恒正且单调递减, 记

$$a_n = \sum_{k=1}^n f(k) - \int_1^n f(x) dx$$

证明:数列 $\{a_n\}$ 收敛.

- 8. (15 分) 设 f(x) 在 $[a, +\infty)$ 上一致连续, g(x) 在 $[a, +\infty)$ 上连续, 且 $\lim_{x \to +\infty} [f(x) g(x)] = 0$, 证明: g(x) 在 $[a, +\infty)$ 上一致连续.
- 9. (15 分) 证明: 半径为 R 的球的体积为 $\frac{4\pi R^3}{3}$.
- 10. (15 分) 计算曲线积分

$$\int_{L} y dx + z dy + x dz$$

其中 L 是 $x^2 + y^2 + z^2 = 1$ 和 x + y + z = 1 的交线, 从 x 轴正向看去取逆时针方向.

65 西南大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

1. (20 分) 计算 n 阶行列式

$$D_{n} = \begin{vmatrix} a + x_{1} & a + x_{1}^{2} & \cdots & a + x_{1}^{n} \\ a + x_{2} & a + x_{2}^{2} & \cdots & a + x_{2}^{n} \\ \vdots & \vdots & & \vdots \\ a + x_{n} & a + x_{n}^{2} & \cdots & a + x_{n}^{n} \end{vmatrix}.$$

- 2. (20 分) 设矩阵 $A = \begin{pmatrix} 1 & 4 & 1 \\ 1 & 1 & 2 \\ 0 & 0 & 5 \end{pmatrix}$, 求 A^{2024} .
- 3. (20 分) 设 A 是一个二阶实对称矩阵, A 的特征值为 $\lambda_1 = 2, \lambda_2 = 3$. 并设 $\alpha = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ 是属于特征值 $\lambda_1 = 2$ 的特征向量, 求矩阵 A.
- 4. (20 分) 请问 a,b 取什么值时, 线性方程组

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 1 \\ 2x_1 + x_2 - 4x_5 = a; \\ x_1 + 2x_2 + 3x_3 + 3x_4 + 7x_5 = 4; \\ 5x_1 + 4x_2 + 3x_3 + 3x_4 - x_5 = b. \end{cases}$$

有解,并求其解.

- 5. $(20 \, \text{分})$ 设 $f(x) = x^3 + ax^2 + bx + c$ 是一个整系数多项式,且 ac + bc 是奇数.证明: f(x) 在有理数域上不可约.
- 6. $(20 \, \text{分})$ 设 $f(x_1, x_2, \dots, x_n)$ 是一个 n 元实二次型. 证明: 存在 n 元正定二次型 $g(x_1, x_2, \dots, x_n)$ 和 n 元负定二次型 $h(x_1, x_2, \dots, x_n)$ 使得

$$f(x_1, x_2, \dots, x_n) = g(x_1, x_2, \dots, x_n) + h(x_1, x_2, \dots, x_n).$$

7. (15 分) 设 σ 为 n 维线性空间 V 上的线性变换, λ 为 σ 的一个特征根, k 为 λ 的代数重数. 记

$$W = \operatorname{Ker} (\lambda I_V - \sigma)^k.$$

其中 I_V 足 V 上的恒等变换. 证明: W 的维数恰为 k.

- 8. (15 分) 解答如下问题:
 - (1) 设 V 为数域 \mathbb{F} 上的线性空间, W 为集合, f 为 V 到 W 的双射. 证明: W 也可以做成数域 \mathbb{F} 上的线性空间;
 - (2) 自然数集是否可以构成有理数域上的 2 维线性空间? 请说明理由.

66 上海交通大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. (10分)已知复数域上不可约多项式均为一次多项式.
 - (1) 证明:实数域上正次数多项式均为一次或二次多项式乘积;
 - (2) 证明: 有理数域上存在任意次数不可约多项式.
- 2. (20 分) 设 A 是数域 \mathbb{F} 上的 n 阶矩阵, 证明:
 - (1) 若 A 与所有对角阵可交换 $\Leftrightarrow A$ 是对角阵;
 - (2) 若 A 与所有矩阵可交换 ⇔ A 是纯量阵.
- 3. (20 分) 设 $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{R}^n$ 线性无关. 判断: $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \dots, \alpha_{n-1} + \alpha_n, \alpha_n + \alpha_1$ 线性无关性 $(n \ge 3)$.
- 4. (20 分) 设 $V = \mathbb{R}[X]_n$ 为次数小于 n 的全体实系数多项式构成的实线性空间, f'(x) 表示 f(x) 的导数. 定义 $\mathscr{A}: f(x) \to xf'(x) f(x)$.
 - (1) 证明 Ø 为线性变换;
 - (2) 求 Ø 的特征值与特征向量, Ker Ø, Im Ø;
 - (3) 判断是否有 $\operatorname{Ker} \mathscr{A} \oplus \operatorname{Im} \mathscr{A}$.
- 5. $(20 \, \text{分})$ 设矩阵 $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$
 - (1) 求 A 的 Jordan 标准型;
 - (2) 设 $k \in \mathbb{N}_+$, 求 A^k 的 Jordan 标准型;
 - (3) 设 $B = \begin{pmatrix} A & A \\ A & A \end{pmatrix}$, 求 B 的 Jordan 标准型.
- 6. (20 分) 设 A 的 n 阶可逆方阵.
 - (1) 证明: 存在正交阵 Q 和方阵 D, 使得 $Q^TAA^TQ = D^2$;
 - (2) 求 A 的奇异值分解.
- 7. (20 分) 若矩阵 A 满足 $A = A^T = A^2$, 则称 A 为投影矩阵 \Leftrightarrow 存在列满秩矩阵 B, 使得 $A = B \left(B^T B \right)^{-1} B^T$.
- 8. $(20 \, \text{分})$ 设 \mathcal{A} 为 n 维线性空间 V 上的线性变换.
 - (1) 证明: 存在 $1 \le k \le n$, 使 $V/\operatorname{Im}\left(\mathscr{A}^{k}\right) \cong \operatorname{Ker}\left(\mathscr{A}^{k}\right)$;
 - (2) 研究满足 (1) 中最小的 k.

67 大连理工大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180__ 分钟 满分:_150_分

- 一. 简答题. 每题 6 分, 共 60 分.
 - 1. 用数学语言描述 $\{a_n\}$ 不是基本列.
 - 2. 若 $\lim_{x\to 0} \frac{f(x)-f(-x)}{2x} = 0$, 则 f'(0) = 0. 此结论是否成立? 为什么?
 - 3. 设 0 < a < b, 证明不等式 $\frac{2a}{a^2 + b^2} < \frac{\ln b \ln a}{b a}$
 - 4. 已知 $a_n = \sqrt[n]{2022^n + (-2023)^n}, n = 1, 2, \dots, 求 \limsup_{n \to \infty} a_n$ 和 $\liminf_{n \to \infty} a_n$.
 - 5. 当 $x \to x_0$ 时, $\alpha = o(1)$. 证明: $(1+\alpha)^{\frac{1}{\alpha}} e = -\frac{e}{2}\alpha + o(\alpha), x \to x_0$.
 - 6. 证明: sin (x²) 在 ℝ 上不一致连续.
 - 7. f(x) 在 \mathbb{R} 上连续可微, g(x,y) = $\begin{cases} \frac{f(x) f(y)}{x y}, & x \neq y; \\ f'(x), & x = y. \end{cases}$ 证明: g(x,y) 在 \mathbb{R}^2 上连 续.
 - 8. 设 a, b 为正常数, 求由 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2x + 18y$ 所围成的面积.
 - 9. 求极限 $\lim_{x\to 0} \left(\frac{1}{x^2} \frac{\cot x}{x}\right)$.
 - 10. 证明: 含参量反常积分 $\int_0^{+\infty} \sqrt{y} e^{-yx^2} dx$ 在 $y \in (0, +\infty)$ 上不一致收敛.
- 二. 计算题. 每题 10 分, 共 30 分.
 - 1. 已知 y = f(x,t), 其中 t 是由 F(x,y,t) = 0 确定的关于 x,y 的隐函数, f 和 F 有连续的一阶偏导数, 求 $\frac{\mathrm{d}y}{\mathrm{d}x}$.
 - 2. 设 C 是 $z = \sqrt{a^2 x^2 y^2}$ 与 x = y 交线, 方向由 $\left(\frac{a}{\sqrt{2}}, \frac{a}{\sqrt{2}}, 0\right)$ 到 $\left(-\frac{a}{\sqrt{2}}, -\frac{a}{\sqrt{2}}, 0\right)$. $\int_C (z^3 + 3x^2y) dx + (x^3 + 3y^2z) dy + (y^3 + 3z^2x) dz.$

$$\int_C (z^3 + 3x^2y) \, dx + (x^3 + 3y^2z) \, dy + (y^3 + 3z^2x)$$

- 3. 求曲线 $\begin{cases} x + y z = 2; \\ z^2 = x^2 + y^2 \end{cases}$ 上距离原点最近的点.
- 三. 证明题. 每题 12 分, 共 60 分.
 - 1. 证明: $\int_{0}^{+\infty} \frac{x}{1+r^6 \sin^2 x} dx$ 收敛.

2. 设 f(x) 在 [0,2] 上存在三阶连续导数, f(0) = f(1) = f(2) = 0. 证明: 对任意的 $x \in (0,2)$, 存在 $\xi \in (0,2)$, 使得

$$f(x) = \frac{1}{6}x(x-1)(x-2)f'''(\xi).$$

3. 若 f(x) 在 [a,b] 上连续可微, 求证:

$$\max_{x \in [a,b]} f(x) \leq \frac{1}{b-a} \left| \int_a^b f(x) \mathrm{d}x \right| + \int_a^b \left| f'(x) \right| \mathrm{d}x.$$

- 4. 证明: $f(x) = \sum_{n=0}^{\infty} \frac{\sin{(2^n x)}}{n!}$ 在 \mathbb{R} 上有任意阶导数, 但不能在 \mathbb{R} 上展开为幂级数.
- 5. 设 $a_n \neq 0, n = 1, 2, \dots, \lim_{n \to \infty} n \left(1 \left| \frac{a_{n+1}}{a_n} \right| \right) = p > 1$, 证明: $\sum_{n=1}^{\infty} a_n$ 绝对收敛.

68 大连理工大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180__ 分钟 满分: _150__ 分

- 一. 计算题. 每题 10 分, 共 30 分.
 - 1. 已知 $\alpha_1 = (1,2,1,0), \alpha_2 = (-1,1,1,1), \alpha_3 = (0,3,2,1), V_1$ 是由 $\alpha_1,\alpha_2,\alpha_3$ 生成的空间, $\beta = (2,-1,0,1), \beta_2 = (1,-1,3,7), V_2$ 是由 β_1,β_2 生成的空间. 求 $V_1 + V_2$ 及 $V_1 \cap V_2$ 的 维数与基.
 - 2. 设 V 是 3 维欧氏空间, $\alpha_1, \alpha_2, \alpha_3$ 为 V 的一组基, 且这组基的度量矩阵为

$$A = \left(\begin{array}{rrr} 1 & -1 & 1 \\ -1 & 2 & 0 \\ 1 & 0 & 4 \end{array}\right).$$

求 V 的一组标准正交基 (用 $\alpha_1, \alpha_2, \alpha_3$ 表示).

- 3. 设矩阵 A 的特征多项式为 $f(\lambda) = (\lambda 2)^3(\lambda 3)^2$,若不计若尔当块的排列顺序,求 A 的所有可能的若尔当标准形.
- 二. 简答题. 每题 10 分, 共 80 分.
 - 1. 设 f(x), g(x) 不全为零,证明: 对任意正整数 n,都有 $(f^{n}(x), g^{n}(x)) = (f(x), g(x))^{n}$.
 - 2. 设 $\alpha_1, \alpha_2, \dots, \alpha_n$ 为矩阵 $A_{n \times n}$ 的 n 个列向量, $\beta = \alpha_1 + \alpha_2 + \dots + \alpha_n$, 且 $\alpha_1, \alpha_2, \dots, \alpha_{n-1}$ 线性相关. 证明: 线性方程组 $AX = \beta$ 有无穷多解.
 - 3. 设 $f(x) = x^3 + ax^2 + bx + c$ 为整系数多项式,且 (a + b)c 为奇数.证明: f(x) 在有理数域上不可约.
 - 4. 设 \mathscr{A} 是线性空间 V 上的线性变换, $\operatorname{Im}\mathscr{A}=\{\mathscr{A}\xi\mid \xi\in V\}$, $\operatorname{Ker}\mathscr{A}=\{\xi\mid \mathscr{A}\xi=0,\xi\in V\}$. 证明: $\operatorname{Im}\mathscr{A}^2=\operatorname{Im}\mathscr{A}$ 当且仅当 $\operatorname{Ker}\mathscr{A}^2=\operatorname{Ker}\mathscr{A}$.
 - 5. 已知实矩阵 A 满足 $A^2 = A$. 证明: 存在实对称矩阵 B 及正定矩阵 C, 使得 A = BC.
 - 6. 设 f(x), g(x) 为数域 \mathbb{P} 上的多项式,且满足 (f(x), g(x)) = 1. 设 V, V_1, V_2 分别是 f(A)g(A)X = 0, f(A)X = 0, g(A)X = 0 的解空间. 证明: $V = V_1 \oplus V_2$.
 - 7. 设 \mathscr{A} 为有限维线性空间 V 上的线性变换, 且 \mathscr{A} 为可逆线性变换, W 是 V 的子空间. 证明: 若 W 是 \mathscr{A} 的不变子空间, 则 W 也是 \mathscr{A}^{-1} 的不变子空间.
 - 8. 设 \mathcal{A} , \mathcal{B} 分别是 n 维线性空间 V 上的两个线性变换, \mathcal{A} 有 n 个不同的特征值. 证明: $\mathcal{A}\mathcal{B} = \mathcal{B}\mathcal{A}$ 的充要条件是存在多项式 f(x), 使得 $\mathcal{B} = f(\mathcal{A})$.
- 三. 综合题. 每题 20 分, 共 40 分.

- 1. 已知 X, Y 为三维列向量, $A = (a_{ij})$ 为 3 阶实对称矩阵.
 - (1) (10 分) 对任意的实数 a, 证明: $\begin{vmatrix} a & X^T \\ Y & A \end{vmatrix} = a|A| X^T A^*Y$.
 - (2) (10 分) 已知 A 的所有特征值的和为 1, A 的所有特征值的积为 -12, 且 $(1,0,-2)^T$ 为 $(A^*-4E)X=0$ 的解. 对于下列四元二次型, 用正交替换化为标准形.

$$f(x_1, x_2, x_3, x_4) = \begin{vmatrix} x_1^2 & x_2 & x_3 & x_4 \\ -x_2 & a_{11} & a_{12} & a_{13} \\ -x_3 & a_{21} & a_{22} & a_{23} \\ -x_4 & a_{31} & a_{32} & a_{33} \end{vmatrix}.$$

2. 对于 n 阶实矩阵 A 及任意的 n 维列向量 X_1, X_2, \dots, X_n , 且 $X_n \neq 0$, 满足

$$AX_1 = X_2, AX_2 = X_3, \dots, AX_{n-1} = X_n, AX_n = 0.$$

证明:

- (1) (8 分) X_1, X_2, \dots, X_n 线性无关.
- (2) (8 分) 求 A 的所有特征值及特征向量.
- (3) (4 分) A 是否可以对角化? 为什么?

69 福州大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- 1. $a_n = \int_0^{\frac{\pi}{4}} \tan^n x \, \mathrm{d}x, n \ge 1$, 证明:
 - (1) 数列 $\{a_n\}$ 收敛;
 - (2) 当 $n \ge 2$ 时有 $\frac{1}{2(n+1)} \le a_n \le \frac{1}{2(n-1)}$.
- 2. 若 f(x) 在 [0,1] 上二阶可导, f'(0) = f'(1) = 0, 证明: $\exists \xi \in (0,1)$ 使得

$$|f''(\xi)| \ge 4|f(1) - f(0)|.$$

- 3. 判断级数 $\frac{1}{2} \frac{1}{5} + \frac{1}{8} \frac{1}{11} + \cdots$ 的敛散性, 若收敛, 求级数的值.
- 4. 设 f(x), g(x) 在 [a,b] 连续, 证明

$$\left(\int_a^b f(x)g(x)dx\right)^2 \le \int_a^b f^2(x)dx \int_a^b g^2(x)dx,$$

且取等条件是当且仅当存在常数 α , β 使得 $\alpha f(x) = \beta g(x)$.

- 5. 计算第二型曲线积分 $\int_L x dy y dx$, 其中 $L: x^3 + y^3 = xy(x, y \ge 0$, 逆时针方向).
- 6. 计算单位时间内某流体 $\vec{V}=yz\vec{j}$ (密度为 1) 通过曲面 S 的流量, 其中 S 是椭球面 $x^2+\frac{y^2}{4}+z^2=1$.
- 7. 计算 $I = \int_0^{+\infty} \frac{e^{-x} e^{-2x}}{x} \cos x dx$.

70 福州大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

一. 填空题.

1. 若 a,b,c 是线性空间上的一组基,ta+b,tb+c,tc+a 也是一组基的充要条件是 t 满足_____.

2. 若
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & a & 6 \\ 3 & 6 & 9 \end{pmatrix}$$
, $r(B) = 2$, 且 $AB = O$, 则 $a =$ _____.

3. 设
$$A, B$$
 均为可逆矩阵, $\begin{pmatrix} O & A \\ B & O \end{pmatrix}^{-1} = \underline{\qquad}$

4. 设 A 为 n 阶矩阵, r(A) = m, 线性变换 φ 在基 $\xi_1, \xi_2, \dots, \xi_n$ 下的矩阵为 A, 且 AX = 0 的解空间维数为 m, 则 $\dim(\operatorname{Im}\varphi) = _____.$

5. 若
$$f(x_1, x_2, \dots, x_{2n}) = \sum_{i=1}^{n} x_i x_{2n+1-i}$$
, 二次型的符号差为_____.

二. 简答题.

6. 已知
$$a_{1k}=1(k=1,2,\cdots,2024), a_{2s}=1(s=1,2,\cdots,1012), a_{2m}=-1(m=1013,\cdots,2024),$$
 且 $|A|=2024,A$ 为 2024 阶方阵, 求 $\sum_{k=1}^{1012}A_{1k},\sum_{s=1013}A_{1s}.$

- 7. 若 $A_{3\times 2}$, $B_{2\times 3}$, AB 的特征多项式为 $\lambda^3 3\lambda^2 + 2\lambda$, 求 BA 的特征多项式.
- 8. 设 e_1, e_2 为空间的一组基, 线性变换 φ, v 满足

$$\varphi(e_1) = \beta_1, \varphi(e_2) = \beta_2, \psi(e_1 + e_2) = \beta_1 + \beta_2, \psi(e_1 - e_2) = \beta_1 - \beta_2.$$

证明: $\varphi = \psi$.

- 9. 忘了.
- 10. A 是一个给定的三阶方阵 (具体数值忘了), 求 A 的不变因子, 初等因子, Jordan 标准形.

三. 综合题.

11. 计算 n 阶行列式

$$D_n = \begin{vmatrix} x & y & y & \cdots & y \\ z & x & y & \cdots & y \\ z & z & x & \cdots & y \\ \vdots & \vdots & \vdots & & \vdots \\ z & z & z & \cdots & x \end{vmatrix}.$$

12. 设 A 为 n 阶方阵, 证明: A = BC, 其中 B 为可逆矩阵, C 为对称矩阵. 该分解唯一吗? 若唯一, 请证明; 若不唯一, 请说明理由.

13. 设 $A = (\alpha_1, \alpha_2, \alpha_3)$, 且 A 有三个不同的特征值, $\alpha_1 + 2\alpha_2 + 3\alpha_3 = 0$, $\beta = 4\alpha_1 + 5\alpha_2 + 6\alpha_3$, 求 $AX = \beta$ 的通解.

14. 设 $\sigma^2 = 3\sigma$, 证明: $V = W_1 \oplus W_2$, 其中 $W_1 = \{\alpha \in V \mid \sigma\alpha = 0\}$, $W_2 = \{\alpha \in V \mid \sigma\alpha = 3\alpha\}$.

15. 设 A 为三阶实对称矩阵, A 的每行元素之和为 4 , 且 (A-E)X=0 有两个线性无关的解, 求 A.

16. 定义

$$w = (w_1, w_2, \dots, w_n)^T, ||w|| = \sqrt{w_1^2 + w_2^2 + \dots + w_n^2} = 1$$

定义 $H = E - 2ww^T$.

- (1) 证明: H 为对称矩阵, 且为正交矩阵.
- (2) 若 ||x|| = ||y||, 证明: 存在镜面反射 H, 依得 H(x) = y.

17. 设 A 为数域 \mathbb{P} 上的 n 阶矩阵, g(x) 为其最小多项式. $f(x) \in \mathbb{P}[x], (f(x), g(x)) = d(x)$.

- (1) 证明: r(f(A)) = r(d(A)).
- (2) 证明: f(A) 可逆当且仅当 (f(x), g(x)) = 1.
- 18. 若 B 为 n 阶正定矩阵, A 为 n 阶矩阵, 且 r(A) = r, 证明: $r\begin{pmatrix} B & A \\ A^T & O \end{pmatrix} = n + r$.

71 中国矿业大学 (徐州)2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- 1. (15 分) 设函数 f(x) 在区间 [a,b] 上连续, f(a) = f(b), 且 $f_{+}'(a) \cdot f_{-}'(b) > 0$, 证明: 在 (a,b) 存在一个数 ξ , 使得 $f(\xi) = f(a)$.
- 2. (15 分) 叙述并证明 $\lim_{x\to +\infty} f(x) = +\infty$ 的归结原则.
- 3. (15分)叙述有限覆盖定理和致密性定理,并用有限覆盖定理证明致密性定理.
- 4. (15 分) 计算极限 $\lim_{x\to 0} \frac{1}{x} \left(\frac{1}{x} \cot x\right)$.
- 5. (15 分) 设 f(x) 和 g(x) 是 [a,b] 上的可积函数,证明: f(x)g(x) 也是 [a,b] 上的可积函数.
- 6. (15 分) 求积分 $I = \int_0^1 t g(t) dt$, 其中 $g(t) = \int_{t^2}^1 e^{-x^2} dx$.
- 7. (15 分) 求 $f(x) = \operatorname{sgn} x$ 在区间 $(-\pi, \pi)$ 上的傅里叶展开式, 并说明其一致收敛性.
- 8. (15 分) 设 $\alpha > 0$, 证明: 级数 $\sum_{n=1}^{\infty} \frac{\sin nx}{n^{2+\alpha}}$ 在区间 $(-\infty, +\infty)$ 上一致收敛, 并且其和函数 S(x) 的导函数在 $(-\infty, +\infty)$ 上连续.
- 10. (15 分) 若 $I(\alpha) = \int_0^{+\infty} e^{-\alpha x} \frac{\sin \beta x}{x} dx$, 其中 $\beta > 0$ 为常数.
 - (1) 证明: $I(\alpha)$ 在 $[0, +\infty)$ 上连续;
 - (2) 证明: $I(\alpha)$ 在 $(0, +\infty)$ 上可导, 并求出 $I(\alpha)$ 的表达式;
 - (3) 运用 $I(\alpha)$ 的表达式, 求 $J(\beta) = \int_0^{+\infty} \frac{\sin \beta x}{x} dx$ 的值.

72 中国矿业大学 (徐州)2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- 一. 填空题 (每小题 4 分, 共 40 分)
 - 1. 若 1 是多项式 $Ax^4 + Bx^2 + 1$ 的二重根, 则 A = , B = .
 - 2. 设 A 是 3 阶方阵, |A| = -2, 把它按列分块成 (A_1, A_2, A_3) , 则方阵 $(A_3 A_1, 3A_2, A_1)$ 的行列式的值为
 - 3. 设 $A = \begin{pmatrix} 1 & 2 & -2 \\ 4 & k & 3 \\ 3 & -1 & 1 \end{pmatrix}$, B 为三阶非零矩阵, 且 AB = O, 则 k =_____.
 - 4. 设 A 为 n 阶可逆矩阵 $(n \ge 2)$, 交换 A 的第 1 行与第 2 行得到 B, 则
 - A. 交換 A^* 的第 1 列与第 2 列得到 B^*
 - B. 交换 A^* 的第 1 行与第 2 行得到 B^*
 - C. 交换 A^* 的第 1 列与第 2 列得到 $-B^*$
 - D. 交换 A^* 的第 1 行与第 2 行得到 $-B^*$
 - 5. 设 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 为 4 阶方阵, 其中 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 分别是 A 的列向量, 且 |A| = 0, A 的代数余子式 $A_{12} \neq 0$, A^* 是 A 的伴随矩阵, 则方程组 $A^*X = 0$ 有一个基础解系是
 - 6. 当 t 满足条件_____ 时,二次型 $f = x_1^2 + 2x_2^2 + 3x_3^2 + 2x_1x_2 2x_1x_3 + 2tx_2x_3$ 是正定的.
 - 7. 设 $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, 则与 A 乘积可交换的三阶方阵组成的线性空间的维数是______.
 - 8. 已知 σ 为 n 维欧式空间 V 上的线性变换, 且 $\sigma^2=0$, 则 σ 的像空间的维数不超过_____.
 - 9. 设 $A = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}$, 则 A 的 2024 次方幂是_____.
 - 10. 已知 $V \in n$ 维欧式空间, 定义 V 上内积为向量的数量积, 则欧式空间 V 上的柯西-布涅柯夫斯基不等式的一般形式为_____.
- 二. (10 分) 已知 $a_1, a_2, \ldots, a_{n-1}$ 是 n-1 个两两不同的数, 请将 f(x) 分解成不可约一次多项

式的乘积, 并求出 f(x) 的根, 其中

$$f(x) = \begin{vmatrix} 1 & x & x^2 & \dots & x^{n-1} \\ 1 & a_1 & a_1^2 & \dots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \dots & a_2^{n-1} \\ \dots & \dots & \dots & \dots \\ 1 & a_{n-1} & a_{n-1}^2 & \dots & a_{n-1}^{n-1} \end{vmatrix}.$$

- 三. (10 分) 假设 f(x) 是复数域上的非零 n 次多项式,且 f(x) 的一阶微商 $\frac{\mathrm{d}y}{\mathrm{d}x}$ 只有非零根, 若 $\frac{\mathrm{d}y}{\mathrm{d}x} \mid xf(x)$,证明: f(x) 是一个一次因式的 n 次方幂.
- 四. (10 分) 设 $A = (a_{ij})$, $B = (b_{ij})$ 是两个 n 阶方阵, 证明: 矩阵方程 AX = B 有解的充分 必要条件是 n+1 个矩阵 A, A_1, A_2, \ldots, A_n 有相同的的秩, 其中

$$A_k = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_{1k} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} & b_{nk} \end{pmatrix}, \quad k = 1, 2, \dots, n.$$

- 五. (15 分) 假设实二次型 $f(X) = X^T A X$ 满足 $X^T A X = 0$ 当且仅当 X = 0, 证明: 二次型 $f(X) = X^T A X$ 或者为正定二次型, 或者为负定二次型.
- 六. (10 分) 设 G 是数域 F 上一些 n 阶可逆方阵的集合, 对 G 中任意两个不同的矩阵 A, B, 都有 |A+B|=0. 设 $X=\lfloor x_{ij}\rfloor$ 是由 n^2 个字母 x_{ij} 组成的 n 阶方阵, 对每一个 $A\in G$, 定义多项式 $f_A(X)=|X+A|$.
 - (1) (5 分) 证明: 集合 { $f_A(X)$: $A \in G$ } 的任意个有限子集都是线性无关的;
 - (2) (5 分) 证明: 集合 *G* 是有限的.
- 七. (15 分) 设矩阵 $A = \alpha \beta^T$, 其中 $\alpha, \beta \in R^n (n \ge 2), \alpha \ne 0, \beta \ne 0$. 证明:
 - (1) (5 分) α 以及与 β 正交的非零向量 ξ 都是矩阵 A 的特征向量;
 - (2) (5 分) 若 α 与 β 不正交, 则矩阵 A 可对角化;
 - (3) (5 分) 若 α 与 β 正交, 则矩阵 A 不可对角化.
- 八. (15 分) 设 α 是 $n(n \ge 1)$ 维欧式空间 V 中的单位向量, 定义 V 上的线性变换:

$$\sigma(\beta) = \beta - (\alpha, \beta)\alpha.$$

- (1) (5 分) 证明: 线性变换 σ 是正交变换 (称这种变换为 V 上的镜面反射);
- (2) (5 分) 证明: 线性变换 σ 是第二类的 (即行列式为 -1);
- (3) (5 分) 若上述 V 上的线性变换 τ 以 1 为特征值, 且属于特征值 1 的特征子空间的维数是 n-1, 证明: τ 是 V 上的镜面反射.

73 中国矿业大学 (北京)2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- 1. (10 分) 计算函数极限 $\lim_{x\to 0} \frac{(1+x)^{\frac{2}{x}} e^2(1-\ln(1+x))}{x}$.
- 2. (10 分) 计算不定积分 $\int \frac{xe^x}{\sqrt{e^x+1}} dx$.
- 3. (10 分) 函数 z = z(x, y) 是由方程 $\frac{x}{z} = \ln \frac{z}{y}$ 确定的隐函数, 计算 $\frac{\partial^2 z}{\partial x \partial y}$.
- 4. (10 分) 计算二重积分 $\iint_D e^{-(x+y)^2} dx dy$, 其中 D 是由 x + y = 1, x = 0, y = x 所围成的 区域.
- 5. (10 分) 计算曲线积分 $\oint_L \frac{3x dx 4y dy}{3x^2 + 4y^2}$, 其中 $L \neq x^2 + y^2 = 1$ 的正向边界.
- 6. (10 分) 计算曲面积分

$$\iint_{\Sigma} y^3 \mathrm{d}z \,\mathrm{d}x + (y+z) \,\mathrm{d}x \,\mathrm{d}y.$$

其中 Σ 为 $z = x^2 + y^2$ 被 z = 0, z = 1 所截部分的外侧.

- 7. (15 分) 求函数 $f(x) = \arctan \frac{1-x^2}{1+x^2}$ 的单调区间, 极值, 凹凸区间, 拐点和渐近线.
- 8. (15 分) 函数 $f(x,y) = x^2 + (y-1)^2 (x \neq 0)$ 在 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 条件下有最小值 1,且椭圆的面积最小,求 a,b 的值.
- 9. (15 分) 判断反常积分 $\int_0^{+\infty} \frac{e^{\sin x} \sin 2x}{x^p} dx (p > 0)$ 的敛散性, 并讨论条件收敛和绝对收敛.
- 10. (15 分) 设函数 f(x), g(x) 在区间 [a,b] 上二阶可导,且 f(a) = g(a), f(b) = g(b), f(x), g(x) 在 (a,b) 内有相同的最大值. 证明: 存在 $\xi \in (a,b)$, 使得 $f''(\xi) = g''(\xi)$.
- 11. (15 分) 设 $f(x) = \sum_{n=1}^{\infty} \frac{\cos nx}{\sqrt{n^3 + n}}, g(x)$ 是 f(x) 的原函数, 且 g(0) = 0, 证明:
 - (1) f(x) 在 \mathbb{R} 上连续.
 - (2) $\frac{\sqrt{2}}{2} \frac{1}{15} < g\left(\frac{\pi}{2}\right) < \frac{\sqrt{2}}{2}$.
- 12. (15 分) 叙述实数系的闭区间套定理和确界原理,并用闭区间套定理证明确界原理.

74 中国矿业大学 (北京)2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

1. 计算行列式.

$$(1) \begin{vmatrix} 1 & 1 & 1 & 1 \\ x & y & z & w \\ x^2 & y^2 & z^2 & w^2 \\ x^4 & y^4 & z^4 & w^4 \end{vmatrix}$$

$$(2) D_n = \begin{vmatrix} 2a & 1 & 0 & \cdots & 0 & 0 \\ a^2 & 2a & 1 & \cdots & 0 & 0 \\ 0 & a^2 & 2a & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2a & 1 \\ 0 & 0 & 0 & \cdots & a^2 & 2a \end{vmatrix},$$

2. 设 a_1, a_2, \dots, a_n 是 n 个两两互异的实数, $f_1(x), f_2(x), \dots, f_n(x)$ 是 n 个次数不大于 n-2 的实系数多项式, 证明:

$$\begin{vmatrix} f_1(a_1) & f_1(a_2) & \cdots & f_1(a_n) \\ f_2(a_1) & f_2(a_2) & \cdots & f_2(a_n) \\ \vdots & \vdots & & \vdots \\ f_n(a_1) & f_n(a_2) & \cdots & f_n(a_n) \end{vmatrix} = 0.$$

- 3. 解答如下问题.
 - (1) 设 A 是秩为 1 的 $m \times n$ 矩阵, 证明: 存在 m 维非零列向量 α 和 n 维非零列向量 β , 使得 $A = \alpha \beta^T$.
 - (2) 设 A 是秩为 1 的 n 阶方阵, 证明: $A^{m} = (\operatorname{tr} A)^{m-1} A$, 其中 m 为正整数.
- 4. 给定 ℝ⁴ 中的向量

$$\alpha_1 = (1, 2, 3, -1)^T$$
, $\alpha_2 = (3, 2, 1, -1)^T$, $\alpha_3 = (2, 2, 2 - 1)^T$, $\beta_1 = (2, 3, 1, 1)^T$, $\beta_2 = (5, 5, 2, 0)^T$. 记子空间 $V_1 = L(\alpha_1, \alpha_2, \alpha_3)$, $V_2 = L(\beta_1, \beta_2)$, 求子空间 $V_1 + V_2$, $V_1 \cap V_2$ 的基与维数.

5. 设 $\mathbb{R}^{n \times n}$ 是实数域上全体 n 阶矩阵构成的线性空间,子空间

$$V = \{A \in \mathbb{R}^{n \times n} \mid \text{tr}(A) = 0\}, W = \{kE_n \mid k \in \mathbb{R}\}.$$

证明: $\mathbb{R}^{n \times n} = V \oplus W$.

6. 设实数域上 4 维线性空间 V 的一组基为 $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4, V$ 上的线性变换 $\mathscr A$ 满足

$$\mathscr{A}\varepsilon_1 = 3\varepsilon_1 + \varepsilon_2, \mathscr{A}\varepsilon_2 = 3\varepsilon_2 + \varepsilon_3, \mathscr{A}\varepsilon_3 = 3\varepsilon_3 + \varepsilon_4, \mathscr{A}\varepsilon_4 = 3\varepsilon_4.$$

求 V 上的线性变换 \mathscr{A}^n 在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ 下的矩阵.

7. 三维欧氏空间 V 的一组标准正交基为 $\varepsilon_1, \varepsilon_2, \varepsilon_3, V$ 上的对称变换 $\mathscr A$ 有特征值 $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 3, \mathscr A$ 的属于特征值 λ_1, λ_2 的特征向量依次为

$$\eta_1 = -\frac{1}{3}\varepsilon_1 + \frac{2}{3}\varepsilon_2 + \frac{2}{3}\varepsilon_3, \eta_2 = \frac{2}{3}\varepsilon_1 + \frac{2}{3}\varepsilon_2 + \frac{1}{3}\varepsilon_3$$

求对称变换 \mathscr{A} 在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 下的矩阵.

- 8. 给定 $\mathbb{R}[x]$ 的子集 $W = \{f(x) \in \mathbb{R}[x] \mid f(0) = 0\}$.
 - (1) 证明: W 是 $\mathbb{R}[x]$ 的线性子空间.
 - (2) 映射 $\varphi: \mathbb{R}[x] \to W$ 定义为对任意的 $f(x) \in \mathbb{R}[x], \varphi(f(x)) = xf(x)$, 证明: φ 是同构映射.
- 9. 化二次型

$$f(x_1, x_2, x_3, x_4) = -x_1^2 - x_2^2 - x_3^2 - x_4^2 - 6x_1x_2 + 6x_1x_3 - 6x_1x_4 - 6x_2x_3 + 6x_2x_4 - 6x_3x_4$$
 为标准形.

10. 设 \mathscr{A} 是 n 维欧氏空间 V 上的线性变换, V 上的变换 \mathscr{B} 满足

$$(\alpha, \mathcal{B}\beta) = (\mathcal{A}\alpha, \beta), \forall \alpha, \beta \in V.$$

- (1) 证明: \mathcal{S} 是 V 上的线性变换.
- (2) 证明: $\mathscr{A}^{-1}(0) = (\mathscr{B}V)^{\perp}$.

75 东北大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- 1. 计算 $\lim_{x\to 0} \frac{\frac{x}{x+1} \ln(1+x)}{x^2}$.
- 2. 设 $f(x) = \int_{x}^{1} e^{-y^{2}} dy$ 求 $\int_{0}^{1} x^{2} f(x) dx$.
- 3. 计算幂级数 $\sum_{n=0}^{\infty} \frac{(-1)^n (n^2 n + 1)}{2^n}$ 的值.
- 4. 计算曲面积分 $I=\iint_{\Sigma}(xy+yz+xz)\mathrm{d}S$,其中 Σ 是 $z=\sqrt{x^2+y^2}$ 被柱面 $x^2+y^2=2ax$ 所截的部分 (a>0).
- 5. 设 $0 \le \alpha \le 1$, 证明: $f(x) = x^{\alpha}$ 在区间 $[0, +\infty)$ 上一致连续.
- 6. 函数项级数 $\sum_{n=1}^{\infty} \left(1 \cos \frac{x}{n}\right)$ 在 [-a, a] (a 为有限数) 上一致收敛.
- 7. 设数列 $\{x_n\}$ 有界且 $\lim_{n\to\infty} (x_{2n}+2x_n)$ 存在,证明: $\lim_{n\to\infty} x_n$ 存在.
- 8. 讨论级数 $\sum_{i=1}^{n} (-1)^{i-1} \frac{1}{i}$ 的绝对收敛性和条件收敛性.
- 9. 设 f(x) 是 [a,b] 上连续的单调递增函数,证明

$$\int_{a}^{b} x f(x) dx \ge \frac{a+b}{2} \int_{a}^{b} f(x) dx$$

10. 设函数 f(x) 满足条件: 1) $-\infty < a \le f(x) \le b < \infty, a \le x \le b$; 2) 存在常数 $L \in (0,1)$ 使得

$$|f(x)-f(y)| \leq L|x-y|, \forall x,y \in [a,b]$$

若对 $\forall x_0 \in [a,b]$, 令 $x_n = f(x_{n-1})(n=1,2,\cdots)$, 证明: $\lim_{n\to\infty} x_n = \xi \in [a,b]$, 且 $f(\xi) = \xi$.

76 东北大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

1. (15 分) 设有两个向量组

(I):
$$\alpha_1 = (1, 0, 2)^T$$
, $\alpha_2 = (1, 1, 3)^T$, $\alpha_3 = (1, -1, a + 2)^T$;
(II): $\beta_1 = (1, 2, a + 3)^T$, $\beta_2 = (2, 1, a + b)^T$, $\beta_3 = (2, 2, a + 2)^T$.

讨论当 a 为何值时, 向量 (I) 和 (II) 等价? 当 a 为何值时, 向量组 (I) 能由向量组 (II) 线性表出, 但向量组 (II) 不能由向量组 (I) 线性表出?

2. (15 分) 计算 n 阶行列式

$$D_n = \left| \begin{array}{ccccc} x & a & a & \cdots & a \\ b & x & a & \cdots & a \\ b & b & x & \cdots & a \\ \vdots & \vdots & \vdots & & \vdots \\ b & b & b & \cdots & x \end{array} \right|.$$

- 3. (15 分) 设实二次型 $f(x_1, x_2, x_3) = (x_1 + \lambda_1 x_2)^2 + (x_2 + \lambda_2 x_3)^2 + (x_3 + \lambda_3 x_1)^2$.
 - (1) (5 分) 当 $\lambda_1, \lambda_2, \lambda_3$ 满足什么条件时, $f(x_1, x_2, x_3)$ 是正定二次型?
 - (2) (10 分) 若 $f(x_1, x_2, x_3)$ 经过正交线性替换可化为标准形 $y_1^2 + y_2^2 + y_3^2$, 求 $\lambda_1, \lambda_2, \lambda_3$ 的值.
- 4. (15 分) 设 f(x) = a + bx 是有理数域上的一元多项式, $\alpha = (1, 1, \dots, 1)^T$ 和 $\beta = (-1, -1, \dots, -1)^T$ 是 n 维列向量. 令 $J = \beta \alpha^T, A = f(J)$.
 - (1) (5 分) 求 J 的全部特征值和属于每个特征值的全部特征向量.
 - (2) (10 分) A 是否能相似于一个对角矩阵? 如果能, 求一个可逆矩阵 P, 使得 $P^{-1}AP$ 为对角矩阵, 并写出这个对角矩阵.

5. (15分)已知

$$A = \left(\begin{array}{rrr} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & 3 & -1 \end{array}\right).$$

分别在有理数域和复数域上讨论矩阵 A 是否可对角化? 并说明理由.

6. $(15 \, \text{分})$ 设 $V \in \mathbb{R}$ 上所有二阶矩阵构成的线性空间, V 上的两组基为

$$E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix};$$

$$B_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, B_{12} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, B_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, B_{22} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

定义 V 上的线性变换 \mathscr{A} 为

$$\mathscr{A}(X) = \begin{pmatrix} 1 & 3 \\ -2 & -6 \end{pmatrix} X, X \in V.$$

- (1) (5 分) 求基 E_{11} , E_{12} , E_{21} , E_{22} 到 B_{11} , B_{12} , B_{21} , B_{22} 的过渡矩阵.
- (2) (10 分) 求线性变换 \mathscr{A} 在基 $B_{11}, B_{12}, B_{21}, B_{22}$ 下的矩阵.
- 7. (15 分) 设 $f(x) = (x k_1)(x k_2) \cdots (x k_n) + 1$, 其中 $k_1, k_2, \cdots, k_n (n > 2)$ 是互异的 整数. 证明:
 - (1) (5 分) 多项式 f(x) 在复数域上可约.
 - (2) (10 分) 若多项式 f(x) 在有理数域上可约,则 n 必为偶数,且 f(x) 必能表示成某个整系数多项式的平方.
- 8. (15 分) 设 A 为 n 阶正定矩阵, 证明: 存在下三角矩阵 B, 使得 $A = BB^T$.
- 9. (15 分) 证明如下问题:
 - (1) (5 分) $n \times n$ 数字矩阵 A 的特征矩阵是满秩矩阵, 但不是可逆矩阵.
 - (2) (10 分) $n \times n$ 数字矩阵 A 是可逆矩阵的充要条件是 A 的最后一个不变因子 $d_n(\lambda)$ 有非零常数项.
- 10. (15 分) 设 A 为 n 阶方阵, 且 $A^3 5A^2 + 4A = O$. 证明:

$$rank(A) = rank(A^2 - A) + rank(A^2 - 4A)$$

77 中国海洋大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

1. 计算题.

- (1) 求极限 $\lim_{x\to 0} \frac{1}{x} \left(\frac{1}{x} \cos x \right)$.
- (2) 利用 $\frac{1}{n+1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}, n \in \mathbb{N}^+,$ 计算 $\lim_{n \to \infty} \frac{1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}}{\ln n}.$

(3) 已知
$$\int_0^{+\infty} \frac{\sin x}{x} = \frac{\pi}{2}$$
, 计算 $\int_0^{+\infty} \left(\frac{\sin \alpha x}{x}\right)^2 dx (\alpha > 0)$.

- 2. 判断题. 须加以说明
 - (1) 判断正误: 设 f(x) 是 [a,b] 上的非负函数, 且 $\int_a^b f(x) dx = 0$. 则在 [a,b] 上一定存在非空开区间使得 f 恒为零.
 - (2) 设 $f_n(x) = x^n x^{3n}, 0 \le x \le 1$, 判断函数列 $\{f_n(x)\}$ 在 [0,1] 上的收敛.
 - (3) 判断正误: 在 [0,1] 上存在函数, 使得在每个有理点处连续, 但在每个无理点处不连续,

(4) 设
$$a_n > 0$$
 且级数 $\sum_{n=1}^{\infty} a_n$ 发散, 判断级数 $\sum_{n=1}^{\infty} \frac{a_n}{1 + n^2 a_n}$ 的敛散性.

- 3. 证明题.
 - (1) 设 f(x) 为 $U_{-}^{\circ}(x_{0})$ 上的单调有界函数, 证明 $\lim_{x \to x_{0}^{-}} f(x)$ 存在.
 - (2) 叙述并证明拉格朗日中值定理.
- 4. 设 f(x) 在 [0,1] 上连续, 且 f(0) = f(1), 证明: 对任何正整数 n, 必存在相应的 $\xi \in (0,1)$, 使得

$$f\left(\xi + \frac{1}{n}\right) = f(\xi).$$

5. 设 f(x) 为 $[0, +\infty)$ 上正值单调减少函数, 且 $\int_0^{+\infty} f(x) dx$ 收敛. 证明:

$$\lim_{h \to 0^+} h \sum_{n=1}^{\infty} f(nh) = \int_0^{+\infty} f(x) dx$$

6. 计算第二类曲线积分

$$I - \int_{I} \frac{(x+y)dx - (x-y)dy}{x^2 + y^2}$$

其中 L 是从点 A(-1,0) 到点 B(1,0) 的一条在 x 轴上侧且不通过原点的光滑曲线.

7. 求函数 $f(x, y, z) = x^4 + y^4 + z^4$ 在条件 xyz = 1 下的极值, 并判断该极值是极大值还是极小值? 为什么?

8. 计算三重积分

$$\iiint_{\omega}z\mathrm{d}x\mathrm{d}y\mathrm{d}z$$

其中 ω 是球面 $x^2+y^2+z^2=8$ 的上半部分与抛物面 $z=\frac{1}{2}(x^2+y^2)$ 所围立体.

78 中国海洋大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

1. 设 $f_1(x)$, $f_2(x)$, $f_3(x)$ 是数域 \mathbb{P} 上的多项式, 证明:

$$x^{3} + x^{2} + x + 1 \mid x^{2} f_{1}(x^{4}) + x f_{2}(x^{4}) + f_{3}(x^{4})$$

当且仅当 $(x-1) \mid f_i(x), i = 1, 2, 3.$

2. 已知 $\alpha_1, \alpha_2, \dots, \alpha_t$ 是方程组 AX = 0 的基础解系, 证明:

$$2\alpha_1 + \alpha_2, 2\alpha_2 + \alpha_3, \cdots, 2\alpha_{t-1} + \alpha_t, 2\alpha_t + \alpha_1$$

也是方程组 AX = 0 的基础解系.

- 3. 已知 $A \neq n$ 阶方阵, 多项式 g(x) 满足 g(A) = O. 证明: 对于任意非零多项式 $f(\lambda)$, 当 $(f(\lambda), g(\lambda)) = d(\lambda)$ 时, f(A) 与 d(A) 的秩相等.
- 4. 已知

$$W_{1} = \left\{ \begin{pmatrix} a & 0 & d \\ c & 0 & b \\ 0 & c & 0 \end{pmatrix} \middle| a, b, c, d \in \mathbb{R} \right\}, W_{2} = \left\{ \begin{pmatrix} x & 0 & z \\ 0 & y & 0 \\ 0 & 0 & 0 \end{pmatrix} \middle| x, y, z \in \mathbb{R} \right\}$$

求 $W_1 + W_2$ 与 $W_1 \cap W_2$, 并指出维数和基.

- 5. 已知线性空间 V, W_1, W_2 满足 $V = W_1 \oplus W_2$, 对任意的 $X \subset V$, 记 $X = X_1 + X_2, X_i \in W_i$ (i = 1, 2), 定义线性变换 σ , 使得 $\sigma(X) = X_1$, 则称 σ 是 V 上的投影变换. 证明: 线性变换 σ 是 V 的投影变换当且仅当 σ 在任意基下的矩阵 A 满足 $A^2 = A$.
- 6. 已知矩阵

$$A = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & 3 & -1 \end{array}\right)$$

- (1) 若 A 是有理数域上的矩阵, 判断 A 是否可以对角化, 并说明理由.
- (2) 若 A 是复数域上的矩阵, 判断 A 足否可以对角化, 并说明理由.
- 7. 设 σ , τ 是欧氏空间 V 上的两个线性变换: 满足 $(\sigma\alpha, \beta) = (\alpha, \tau\beta), \forall \alpha, \beta \in V$. 证明: σ 的 核是 τ 的值域的正交补空间.
- 8. 设 A 是 n 阶反对称矩阵,对于任意常数 λ ,若存在非零列向量 α ,都有 $|A + \lambda \alpha \alpha'| = |A|$ 成立.

79 湖南大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

1. 解答如下问题:

(1) 已知 $0 < x_1 < 1, x_{n+1} = x_n (1 - x_n), n = 1, 2, \dots$, 证明: $\lim_{n \to \infty} n x_n = 1$.

(2) 设
$$0 证明: $\lim_{n \to \infty} nx_n = \frac{1}{p}$.$$

2. 设函数 f(x) 在点 $x = x_0$ 处可导.

(1)
$$i \exists x_n = f\left(x_0 + \frac{1}{n^2}\right) + f\left(x_0 + \frac{2}{n^2}\right) + \dots + f\left(x_0 + \frac{n}{n^2}\right) - nf(x_0), \text{ if } \text{if: } \lim_{n \to \infty} x_n = \frac{1}{2}f'(x_0).$$

(2) 求极限
$$\lim_{n\to\infty} \left(\sin\frac{1}{n^2} + \sin\frac{2}{n^2} + \dots + \sin\frac{n}{n^2}\right)$$
.

(3) 求极限
$$\lim_{n\to\infty} \left(1+\frac{1}{n^2}\right) \left(1+\frac{2}{n^2}\right) \cdots \left(1+\frac{n}{n^2}\right)$$
.

3. 解答如下问题:

(1) 设 f(x) 为三次多项式, $x \in [-1, 1]$. 证明:

$$\int_{-1}^{1} f(x) dx = \frac{1}{3} [f(1) + 4f(0) + f(-1)].$$

(2) 设 f(x) 为 [a,b] 上的三次多项式,证明:

$$\int_{a}^{b} f(x) dx = \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right].$$

- 4. 设 f(x) 在 $[0, +\infty)$ 上一致连续,对任意的 h > 0,序列 $\{f(nh)\}$ 极限存在. 证明 $\lim_{x \to +\infty} f(x)$ 存在.
- 5. 设函数列 $\{f_n(x)\}$ 在 [a,b] 上连续, 且 $\{f_n(x)\}$ 在 [a,b] 上一致收敛于 f(x). 证明:
 - (1) 存在 M > 0, 对任意的正整数 $n \ \mathcal{D} \ x \in [a,b]$, 有 $|f_n(x)| \le M$, 且 $|f(x)| \le M$.
 - (2) 若 g(x) 在 $(-\infty, +\infty)$ 上连续, 那么 $\{g(f_n(x))\}$ 在 [a,b] 上一致收敛于 g(f(x)).
- - (1) 将 f(x) 展开为 $[0, 2\pi]$ 上的 Fourier 级数, 并计算 $\sum_{n=1}^{\infty} \frac{1}{n^2}$.
 - (2) 通过将 f(x) 的 Fourier 级数逐项积分, 计算 $\sum_{n=1}^{\infty} \frac{1}{n^4}$.
- 7. 设 f(x), g(x) 在 (a,b) 上连续,什么情况下方程 f(x)y = g(x) 在 (a,b) 上确定了唯一的连续解?

- 8. 设 f(x) 在 $[0, +\infty)$ 上连续, 证明: 含参量积分 $\int_0^{+\infty} \mathrm{e}^{-\alpha x} f(x) \mathrm{d}x$ 在 $\alpha \in [0, +\infty)$ 上一致 收敛的充要条件为 $\int_0^{+\infty} f(x) \mathrm{d}x$ 收敛.
- 9. 计算曲面积分

$$\iint_{S} xyz \left(x^2y^2 + y^2z^2 + z^2x^2\right) dS$$

其中 S 为 $x^2 + y^2 + z^2 = a^2(a > 0)$ 在第一封限的部分.

80 湖南大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- - (1) 求 f'(x).
 - (2) 求 f'(x) 的所有复数根及在复数域和实数上的不可约因式分解.
 - (3) 判断 f(x) 是否有重根, 并说明理由.
- 2. 判断题. 正确的请简要证明, 错误的请举出反例.
 - (1) 已知 $V = W_1 \oplus W_2$, 则对任意的 $\alpha \in V$, 有 $\alpha \in W_1$ 或 $\alpha \in W_2$.
 - (2) 多项式 p(x) 在数域 \mathbb{K} 上不可约, 则 $p(x^2)$ 在数域 \mathbb{K} 上也不可约.
 - (3) 当 n 为偶数, 则存在 $A, B \in M_{n \times n}(\mathbb{R})$, 满足对任意的 $0 \neq \alpha \in \mathbb{R}^n$, 都有 $A\alpha, B\alpha$ 线性 无关.

3. 设
$$n$$
 阶矩阵 $A = \begin{pmatrix} 1 & -1 & & & \\ & 1 & -1 & & & \\ & & \ddots & \ddots & & \\ & & & 1 & -1 & \\ & & & & 1 \end{pmatrix}$, 求 A^{-1} .

4. 记 $N(A) = \{\lambda \in \mathbb{C} \mid \lambda A \text{ 和 } A \text{ 相似 } \}.$

- (2) A 不是幂零矩阵, 证明: N(A) 为有限集.
- 5. 已知 V 为有限维线性空间, \mathscr{A} 为 V 上的线性变换.
 - (1) 证明: $\dim V = \dim \operatorname{Ker} \mathscr{A} + \dim \operatorname{Im} \mathscr{A}$.
 - (2) 证明: ৶ 可逆的充要条件是 ৶ 为单射.
 - (3) 举例说明 V 为无限维线性空间时, (2) 不成立.
- 6. 设 A 是数域 \mathbb{K} 上的 n 阶矩阵, 证明 r(A) = r 的充要条件是: 存在两个线性无关的向量组

$$\alpha_1, \alpha_2, \cdots, \alpha_r \in \mathbb{K}^n, \beta_1, \beta_2, \cdots, \beta_r \in \mathbb{K}^n.$$

使得

$$A = \alpha_1 \beta_1^T + \alpha_2 \beta_2^T + \dots + \alpha_r \beta_r^T$$

- 7. 设 A 为复数域上的 n 阶可逆矩阵, A^2 在复数域上可相似对角化, 证明: A 在复数域上可相似对角化.
- 8. 设 $A = (a_{ij})$ 为 3 阶实正定对称矩阵, 且 $a_{ij} \in \{-1,0,1\}$, 求矩阵 A, 并证明你的结论.

81 中南大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. 计算题. 每题 10 分, 共 40 分.
 - (1) 求极限 $\lim_{n \to \infty} \left(1 \frac{3}{4n^2} \right)^{n^2 + 4n + 3}$.

(2) 已知
$$f(x) = \begin{vmatrix} e^x & x^2 & 2 \\ 1 & 3x & 4x^2 \\ 0 & 5 & e^{2x} \end{vmatrix}$$
, 求 $f'(x)$.

- (3) 求定积分 $\int_0^{\frac{\pi}{2}} \frac{\cos \theta}{\cos \theta + \sin \theta} d\theta$
- (4) 求级数 $\sum_{n=1}^{\infty} \frac{1}{n!}$ 的和.
- 2. (10 分) 设 $\{f_n(x)\}$ 在 [a,b] 上满足: 对任意的 $x \in [a,b]$, $f'_n(x)$ 存在. 且
 - (1) 对任意的 $x_0 \in [a,b], \{f_n(x_0)\}$ 收敛.
 - (2) $\{f'_n(x)\}$ 在 [a,b] 上一致收敛.

证明: $\{f_n(x)\}$ 在 [a,b] 上一致收敛.

3.
$$(20 分)$$
 证明:
$$\int_0^1 \frac{\ln(1-t)}{t} dt = -\sum_{n=1}^\infty \frac{1}{n^2}.$$

4. (15 分) 设 f(x) 在 $[0,\pi]$ 上二阶连续可导, $f(\pi)=2$, 且

$$\int_0^{\pi} \left[f(x) + f''(x) \right] \sin x dx = 5.$$

求 f(0).

5. (15 分) 计算以下曲线积分

$$\int_C x^2 y \mathrm{d}x + (y - 3) \mathrm{d}y.$$

其中C为长方形区域的边界,沿顺时针方向,长方形四个顶点分别为

6. (15 分) 定义以下二元函数

$$f: \mathbb{R}^2 \to \mathbb{R}, f(x, y) = \begin{cases} \frac{x^3 + x^2y + xy^2 + 2y^4}{x^2 + y^2}, & x^2 + y^2 \neq 0\\ 0, & x^2 + y^2 = 0. \end{cases}$$

证明:

- (1) f 在 (0,0) 点连续.
- (2) f 在 (0,0) 点处存在偏导数.
- (3) f 在 (0,0) 点处是否可微?请详细说明.
- 7. (15 分) 设 $f:(0,1) \to \mathbb{R}$ 一阶连续可导, 且满足对任意的 $x, y \in (0,1)$, 有 $|f(x) f(y)| \le |x y|^2$, 证明: f 恒为常数.
- 8. (20 分) 若 f(x) 是 $[0, +\infty)$ 上的单调连续函数, 且 $\lim_{x \to +\infty} f(x) = 0$. 证明:

$$\lim_{n \to \infty} \int_0^{+\infty} f(x) \sin(nx) dx = 0$$

82 中南大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. (16 分) 证明: 任意给定 $k(k \ge 1)$ 个两两不等的素数 a_1, a_2, \dots, a_k ,对任意的正整数 n(n > 1),都有 $\sqrt[n]{a_1 a_2 \cdots a_k}$ 是无理数.
- 2. (20 分) 解答如下问题:
 - (1) (10 分) 设 n 阶行列式

$$D = \begin{vmatrix} 1 & -1 & -1 & \cdots & -1 \\ 1 & 1 & -1 & \cdots & -1 \\ 1 & 1 & 1 & \cdots & -1 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 1 & 1 & \cdots & 1 \end{vmatrix}.$$

求 D 展开式的正项总数.

(2) (10 分) 计算 n 阶行列式

$$D_{n} = \begin{vmatrix} \frac{1 - a_{1}^{n} b_{1}^{n}}{1 - a_{1} b_{1}} & \frac{1 - a_{1}^{n} b_{2}^{n}}{1 - a_{1} b_{2}} & \cdots & \frac{1 - a_{1}^{n} b_{n}^{n}}{1 - a_{1} b_{n}} \\ \frac{1 - a_{2}^{n} b_{1}^{n}}{1 - a_{2} b_{1}} & \frac{1 - a_{2}^{n} b_{2}^{n}}{1 - a_{2} b_{2}} & \cdots & \frac{1 - a_{1}^{n} b_{n}^{n}}{1 - a_{2}^{n} b_{n}^{n}} \\ \vdots & \vdots & & \vdots \\ \frac{1 - a_{n}^{n} b_{1}^{n}}{1 - a_{n} b_{1}} & \frac{1 - a_{n}^{n} b_{2}^{n}}{1 - a_{n} b_{2}} & \cdots & \frac{1 - a_{n}^{n} b_{n}^{n}}{1 - a_{n} b_{n}} \end{vmatrix}$$

- 3. (16 分) 设 A 为 $m \times n$ 实矩阵, b 是 $m \times 1$ 实列向量.
 - (1) 证明: $\operatorname{rank}(A^T A) = \operatorname{rank}(A)$.
 - (2) 设 $X = (x_1, x_2, \dots, x_n)^T$, 证明: 线性方程组 $A^T A X = A^T b$ 有解.
 - (3) 试举反例说明对复矩阵 A, 结论 $\operatorname{rank}\left(A^{T}A\right)=\operatorname{rank}(A)$ 不一定成立, (2) 中线性方程组不一定有解.
- 4. (16 分) 设 W_1, W_2 是线性空间 $\mathbb{P}^{2\times 2}$ 的子空间, $W_1 = L(A_1, A_2), W_2 = (B_1, B_2),$ 其中

$$A_1 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, A_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, B_1 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, B_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

- (1) 求 $W_1 + W_2$ 的一组基与维数.
- (2) 求 $W_1 \cap W_2$ 的一组基与维数.
- (3) 问 $\mathbb{P}^{2\times 2} = W_1 \oplus W_2$ 是否成立, 为什么?

5. (18 分) 给定前 n 个自然数 $1,2,\cdots,n$ 的一个全排列 $j_1j_2\cdots j_n$,定义复数域上线性空间 $\mathbb{C}^{n\times n}$ 的一个线性变换 φ 如下:

$$\varphi \left(\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array} \right) = \left(\begin{array}{cccc} a_{1j_1} & a_{1j_2} & \cdots & a_{1j_n} \\ a_{2j_1} & a_{2j_2} & \cdots & a_{2j_n} \\ \vdots & \vdots & & \vdots \\ a_{nj_1} & a_{nj_2} & \cdots & a_{nj_n} \end{array} \right).$$

- (1) 试确定 φ 的 n 个线性无关的特征向量.
- (2) 证明: 存在正整数 k, 使得对 φ 的任意特征值 λ , 都有 $\lambda^k=1$.
- (3) 证明: 如果全排列 $j_1j_2\cdots j_n=23\cdots n1$, 那么相应的线性变换 φ 是可对角化的.
- 6. (16 分) 设 A 为 n 阶半正定矩阵, E 为 n 阶单位矩阵. 证明:

$$|A + 2024E| \ge 2024^n$$
.

并且等号成立当且仅当 A = O.

- 7. (16 分) 设 σ , τ 是 n 维线性空间 V 上的线性变换, $\sigma^2 = \sigma$. 证明:
 - (1) $V = \operatorname{Im} \sigma \oplus \operatorname{Ker} \sigma$.
 - (2) σ 的像 $\text{Im} \sigma$ 与核 $\text{Ker} \sigma$ 都是 τ 的不变子空间当且仅当 $\sigma \tau = \tau \sigma$.

8. (16 分) 设数域
$$\mathbb{P}$$
 上的矩阵 $A = \begin{pmatrix} 1 & -3 & 3 \\ -2 & -6 & 13 \\ -1 & -4 & 8 \end{pmatrix}$.

- (1) 求矩阵 A 的 Jordan 标准形 J.
- (2) 求可逆矩阵 P, 使得 $P^{-1}AP = J$.
- (3) 求 A 的最小多项式.

$$(A, B) = \operatorname{tr}(AB).$$

其中 tr(AB) 表示 AB 的迹.

- (1) 证明: V 构成一欧氏空间.
- (2) 求使 tr(A) = 0 的子空间 *S* 的维数.
- (3) 求 S 的正交补空间 S^{\perp} 的维数.

83 云南大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. 填空题. 每题 5 分, 共 30 分.
 - (1) 求极限 $\lim_{x\to 0} \left(\cot x \frac{1}{x}\right) = \underline{\qquad}$
 - (2) $\[\mathcal{G} f(x) = \begin{cases} e^{ax}, & x \le 0; \\ (x-b)^3, & x > 0. \end{cases} \]$ $\[\text{then } x = 0 \]$
 - (3) 不定积分 $\int \frac{\mathrm{d}x}{2\mathrm{e}^{-x} + \mathrm{e}^x + 2} = \underline{\qquad}$
 - (4) 曲面 $z = x + 2y + \ln(1 + x^2 + y^2)$ 在 (0,0,0) 的切平面方程是_____.
 - (5) $\mathcal{U} f(x,y) = \int_0^{xy} e^{xt^2} dt, \quad \mathcal{U} \left. \frac{\partial^2 f}{\partial x \partial y} \right|_{(1,1)} = \underline{\qquad}.$
 - (6) 曲线 $y = \int_0^x \tan t \, \mathrm{d}t, 0 \le x \le \frac{\pi}{4}$ 的弧长 $s = \underline{\hspace{1cm}}$.
- 2. (15 分) 按定义证明: $\lim_{x \to 1} \frac{x(x-1)}{x^2-1} = \frac{1}{2}$.
- 3. (15 分) 判别级数 $\sum_{n=1}^{\infty} \frac{a^n n!}{n^n} (a > 0)$ 的敛散性.
- 4. (15 分) 设函数 f(x) 和 g(x) 在区间 [a,b] 上二阶可导, 并且 $g''(x) \neq 0$, f(a) = f(b) = g(a) = g(b) = 0. 证明:
 - (1) 在开区间 (a,b) 内, $g(x) \neq 0$.
 - (2) 在开区间 (a,b) 内, 至少存在一点 ξ , 使得 $\frac{f(\xi)}{g(\xi)} = \frac{f''(\xi)}{g''(\xi)}$.
- 5. (15 分) 已知函数 $z = ue^{ax+by}$, 其中 u = u(x,y) 具有二阶偏导数, 且 $\frac{\partial^2 u}{\partial x \partial y} = 0$. 确定常数 a,b, 使得函数 z = z(x,y) 满足方程

$$\frac{\partial^2 z}{\partial x \partial y} + 2 \frac{\partial z}{\partial x} + 3 \frac{\partial z}{\partial y} + 6z = 0$$

6. (15 分) 设 f(x) 在 $t \neq 0$ 时一阶连续可导, 且 f(1) = 0. 求函数 $f(x^2 + y^2)$, 使得曲线积分

$$\int_{L} y \left(2 - f \left(x^{2} + y^{2}\right)\right) dx + x f \left(x^{2} + y^{2}\right) dy$$

与路径无关, 其中 L 为不经过原点的光滑曲线.

- 7. (15 分) 求级数 $\sum_{n=1}^{\infty} n(n+2)x^{n-1}$ 的和函数.
- 8. (15 分) 计算极限 $\lim_{a \to +\infty} \iint_D \min\{x, y\} e^{-(x^2+y^2)} dxdy$, 其中 $D: [-a, a] \times [-a, a]$.

9.	(15 分) 设 $f(x)$ 在 $[a, +\infty)$ 上一致连续, $g(x)$ 在 $[a, +\infty)$ 上连续, 且 $\lim_{x \to +\infty} [f(x) - g(x)] = 0$. 证明: $g(x)$ 在 $[a, +\infty)$ 上一致连续.

84 云南大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- 1. 填空题, 每题 5 分, 共 30 分.
 - (1) 3 \overline{y} \pm ($x^{2023} 1, x^{2024} 1$) =____.
 - (2) 秩为 r 的 n 阶方阵 A 满足 $A^2 = A$, 则 A 的所有一阶主子式之和 = .
 - (3) 实二次型 $x_1^2 3x_3^2 2x_1x_2 + 2x_1x_3 2x_2x_3$ 的符号差为_____.
 - (4) 由所有 n 阶对称矩阵构成的实线性空间的维数
 - (5) 若 3 阶方阵 A 的行列式是 1 , 迹是 2 , 并且多项式 $f(x) = x^2 2x$ 与 A 的特征多项式不互素, 写出 A 的所有特征值_____.
 - (6) 记 E 是 n 阶单位阵, 若 n 阶方阵 A, B 满足 AB BA = E + A, 则 A^{2024} 的行列式 等于_____.
- 2. (15 分) 求实数 b, 使得实系数线性方程组

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 2\\ 2x_1 + 2x_3 = 0\\ 2x_1 + x_2 + 2x_3 + x_4 = 2\\ bx_1 + 2x_2 + bx_3 + 2x_4 = b \end{cases}$$

有解,并在有解的情况下求所有的解.

- 3. (15 分) 计算 n 阶矩阵 $\begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 2 & 2 & 3 & \cdots & n \\ 3 & 3 & 3 & \cdots & n \\ \vdots & \vdots & \vdots & & \vdots \\ n & n & n & \cdots & n \end{pmatrix}$ 的行列式.
- 4. (15 分) 设矩阵 $A = \begin{pmatrix} 2 & 0 & 2 & 4 \\ 0 & 2 & 0 & 2 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$. 求 A 的 Jordan 标准形.
- 5. (15 分) 用正交的线性替换化四元实二次型 $\sum_{1 \leq i \leq j \leq 4} x_i x_j$ 成平方和的形式.
- 6. (15 分) 证明: 每一个 n 维线性空间都可以写成 n 个 1 维线性空间的直和.

7. (15 分) 证明: n 阶实对称矩阵

$$A = \begin{pmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & & \\ & -1 & 2 & \ddots & & \\ & & \ddots & \ddots & -1 \\ & & & -1 & 2 \end{pmatrix}$$

正定, 并且它有n个互不相同的正特征值.

- 8. (15 分) 设 $V \in \mathbb{R}$ 维欧氏空间, $\gamma, \alpha_1, \dots, \alpha_m \in V$ 满足 $(\gamma, \alpha_k) > 0$, $(\alpha_i, \alpha_j) \leq 0$ 对一切的 $i, j, k \in \{1, 2, \dots, m\}$ 且 $i \neq j$. 证明: $\alpha_1, \dots, \alpha_m$ 线性无关.
- 9. (15 分) 记 End (V) 是由 n 维复线性空间 V 上的所有线性变换构成的线性空间. 固定 $\sigma \in \operatorname{End}(V)$, 定义 End(V) 上的变换 φ 为

$$\varphi(\rho) = \sigma \rho - \rho \sigma, \forall \rho \in \text{End}(V)$$

证明: φ 是 $\operatorname{End}(V)$ 上的线性变换, 并且若线性变换 $\tau \in \operatorname{End}(V)$ 使得对某个正整数 m 有 $\varphi^m(\tau) = 0$, 则 σ 的任一个根子空间都是 τ — 子空间.

85 东北师范大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. 计算题. 每题 6 分, 共 30 分.
 - $(1) \lim_{n \to \infty} \left(\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n+1} \right).$
 - (2) $\lim_{x \to +\infty} \sqrt{x} \int_{x}^{x+1} \frac{\mathrm{d}t}{\sqrt{t+\ln t}}$
 - (3) $\lim_{n\to\infty} \left(\frac{1}{2} + \frac{3}{2^2} + \frac{5}{2^3} + \dots + \frac{2n-1}{2^n}\right)$.
 - (4) $\int_0^1 dx \int_0^1 \left| xy \frac{1}{4} \right| dy$.
 - (5) 求球面 $x = \sin \varphi \cos \theta$, $y = \sin \varphi \sin \theta$, $z = \cos \varphi$ 在对应 $\theta = \varphi = \frac{\pi}{4}$ 处的切平面和法 线方程.
- 2. (15 分) 由方程组

$$\begin{cases} x^2 + y^2 - uv = 0; \\ xy + u^2 - v^2 = 0. \end{cases}$$

能否确定 u,v 为 x 与 y 的函数? 在能确定隐函数的条件下, 求 u_x,v_x,u_y,v_y .

- 3. (15 分) 求函数 $f(x, y) = \sin x + \sin y + \sin(x + y)$ 在 $(x, y) \in [0, 2\pi] \times [0, 2\pi]$ 的所有极值点.
- 4. (15 分) 计算曲面积分

$$I = \iint_{S} (z^{2} + x) \, \mathrm{d}y \, \mathrm{d}z + \sqrt{z} \, \mathrm{d}x \, \mathrm{d}y.$$

其中 S 为抛物面 $z = \frac{1}{2}(x^2 + y^2)$ 在 z = 0 和 $z = \pi$ 之间的部分, 定向取下侧.

5. (15 分) 设函数 f(x) 在 $(-\infty, +\infty)$ 上有任意解导数, 且对任意实数 x 及 $n=0,1,2,\cdots$, 满足

$$\left| f^{(n)}(x) \right| \le n! |x|.$$

证明: $f(x) = 0, x \in (-\infty, +\infty)$.

- 6. 设 D 为平面区域, $u(x,y) \in C^2(D)$, 证明: u(x,y) 为调和函数, 即 u 满足 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ 的充要条件是: 对 D 内任一圆周 L, 且 L 所围圆属于 D, 都有 $\int_L \frac{\partial u}{\partial n} \mathrm{d}s = 0$,n 为外法向量.
- 7. (15 分) 设 $\{a_n\}$ 是正的单调递增序列, 证明: 级数 $\sum_{n=1}^{\infty} \left(1 \frac{a_n}{a_{n+1}}\right)$ 当 $\{a_n\}$ 有界时收敛, 当 $\{a_n\}$ 无界时发散。

- 8. $(15 分) \diamondsuit f(t) = \int_{1}^{+\infty} \frac{\cos xt}{1+x^2} dx$. 证明:
 - (1) 积分在 $t \in (-\infty, +\infty)$ 上一致连续.
 - (2) $f(t) \in C(-\infty, +\infty)$.
 - $(3) \lim_{t \to +\infty} f(t) = 0.$
- 9. (15 分) 设 $\{f_n\}$ 是 [a,b] 上连续的函数列, 对任意的 $x \in [a,b]$, 有 $f_n(x) \leq f_{n+1}(x)$, $n = 1,2,\cdots$. 证明: 若 $\{f_n\}$ 在 [a,b] 上收敛于连续函数 f, 则 $\{f_n\}$ 必定一致收敛于 f.

86 东北师范大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

1. (15 分) 求下列行列式

$$\begin{vmatrix} 1 + x_1 & 1 + x_1^2 & \cdots & 1 + x_1^n \\ 1 + x_2 & 1 + x_2^2 & \cdots & 1 + x_2^n \\ \vdots & \vdots & & \vdots \\ 1 + x_n & 1 + x_n^2 & \cdots & 1 + x_n^n \end{vmatrix}$$

2. (15 分) 设 A 为一个 4 阶实对称矩阵, 特征值为 0,0,0,4, 属于特征值 0 的线性无关的特征向量为

$$(-1, 1, 0, 0)', (-1, 0, 1, 0)', (-1, 0, 0, 1)'.$$

求矩阵 A.

- 3. (10 分) 设 $f(x) = x^m 1$, $g(x) = x^n 1$, 其中 m, n 为正整数, 证明: $(f(x), g(x)) = x^d 1$, 其中 d 为 m, n 的最大公因式.
- 4. (15 分) 设 V_1, V_2, \dots, V_m 是有理数域上向量空间 V 的 m 个真子空间, 证明: V 中必定有一个向量 α, α 不属于任何一个 V_i .
- 5. (15 分) 设 A 是复数域上的 n 阶幂等矩阵, 且 $A = A_1 + A_2 + \dots + A_k$, 其中 k 是大于等于 2 的正整数, 又有 $r(A) = r(A_1) + r(A_2) + \dots + r(A_k)$. 证明: $A_i^2 = A_i$, $A_i A_j = O(i \neq j)$.
- 6. (15 分) 若二次型 $f(x_1, x_2, \dots, x_n)$ 仅在 $x_1 = x_2 = \dots = x_n = 0$ 时为零, 证明: f 必定 是正定型或负定型.
- 7. $(15 \, \text{分})$ 设 φ 是 n 维欧氏空间 V 上的对称变换, 证明: 对 V 中任意向量 α 都有 $(\varphi(\alpha), \alpha) \ge 0$ 的充要条件是 φ 的全部特征值都为非负实数.
- 8. (20 分) 设直线 $l_1: \frac{x-1}{2} = \frac{y}{1} = \frac{z}{-1}, l_2: \frac{x}{2} = \frac{y}{1} = \frac{z+1}{-2}$ 和平面 $\pi: x+y+z=0$, 求与直线 l_1, l_2 相交且平行于 π 的所有直线构成的曲面 S 的方程.
- 9. (20 分) 证明方程

$$5x^2 + 5y^2 + 2z^2 - 8xy - 2xz - 2yz + 20x + 20y - 40z - 16 = 0$$

表示的曲面是柱面,并指出此柱面的母线方向及一条准线方程.

10. (10 分) 证明: O, A, B 不共线, $A \neq B$, 则点 C 与点 A, B 共线的充分必要条件是向量 \overrightarrow{OC} 可以分解为向量 \overrightarrow{OA} 和向量 \overrightarrow{OB} 的线性组合, 且分解的系数之和为 1.

87 郑州大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- 1. $(10 \, \mathcal{G})$ 求函数极限 $\lim_{x \to 0^+} \left[\frac{1}{x(1+x)^{\frac{1}{2}}} \frac{1}{xe} \right]$.
- 2. (10 分) 求定积分 $\int_0^{2024} \frac{x}{e^{2024-x} + e^x} dx$.
- 3. (10 分) 设椭圆 $\frac{x^2}{4} + \frac{y^2}{9} = 1$ 在点 $A\left(1, \frac{3\sqrt{3}}{2}\right)$ 的切线交 y 轴于点 B, 计算

$$\int_{I} \left(\frac{\sin y}{x+1} - \sqrt{3}y \right) dx + (\cos y \ln(1+x) + 2\sqrt{3}x - \sqrt{3}) dy.$$

其中 L 是从 A 到 B 的直线段.

- 4. (10 分) 讨论 $\int_0^{+\infty} \frac{\sin x}{x^{p-1} + \frac{1}{x}} dx (p \ge 0)$ 的条件收敛和绝对收敛性.
- 5. (10 分) 求函数 $f(x) = \int_0^x \frac{\ln(1+2t)}{t} dt$ 的麦克劳林级数展开式.
- 6. (15 分) 讨论方程 $f(x) = -\frac{1}{2}(1 + e^{-1}) + \int_{1}^{1} |x t|e^{-t^2} dt = 0$ 在 [-1, 1] 上根的个数.
- 7. (15 分) 设 $f(x,y) = \begin{cases} \frac{|x|^{\alpha}|y|^{\alpha}}{x^2 + y^2}, & x^2 + y^2 \neq 0; \\ 0, & x^2 + y^2 = 0. \end{cases}$ 证明:
 - (1) 当 $\alpha > 1$ 时, f(x, y) 在 (0,0) 连续.
 - (2) 当 $\alpha > \frac{3}{2}$ 时, f(x, y) 在 (0,0) 可微.
- 8. (15 分) 证明: 函数项级数 $\sum_{n=1}^{\infty} \frac{x^2}{(1+x^2)^n}$ 在 $(-\infty, +\infty)$ 上点点收敛, 但并非一致收敛.
- 9. (35分)证明题.
 - (1) (5 分) 已知 $\lim_{x \to +\infty} [f(x) (ax + b)] = 0$, 求 a, b.
 - (2) (10 分) 设 f(x) 在 $[a, +\infty)$ 上一致连续, $g(x) \in C[a, +\infty)$, 且 $\lim_{x \to +\infty} [f(x) g(x)] = 0$. 证明: g(x) 在 $[a, +\infty)$ 上一致连续.
 - (3) (5 分) 用 (2) 的结论说明 $f(x) = \frac{1}{x} + \ln(1 + e^x)$ 在 $[1, +\infty)$ 上一致连续.
 - (4) (15 分) 设函数 f(x) 在 $(-\infty, +\infty)$ 上可导, 且存在常数 a, b, c, d(a < c) 使得

$$\lim_{x \to -\infty} [f(x) - (ax + b)] = 0, \lim_{x \to +\infty} [f(x) - (cx + d)] = 0.$$

证明: 对任意的 $\lambda \in (a,c)$, 存在 $\xi \in (-\infty, +\infty)$, 使得 $f'(\xi) = \lambda$.

- 10. (20 分) 证明:
 - $(1) \int_0^{+\infty} \frac{\sin ux}{x} \mathrm{d}x \text{ 在任何不包含 } u = 0 \text{ 的闭区间 } [a,b] \text{ 上一致收敛}.$

88 郑州大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

一. 填空题. 每题 5 分, 共 30 分.

1.
$$\begin{vmatrix} 1 & -1 & 1 & x-1 \\ 1 & -1 & x+1 & -1 \\ 1 & x-1 & 1 & -1 \\ x+1 & -1 & 1 & -1 \end{vmatrix} = \underline{\qquad}.$$

2. 设
$$n$$
 阶矩阵 $A = \begin{pmatrix} 1 & a & a & \cdots & a \\ a & 1 & a & \cdots & a \\ \vdots & \vdots & \vdots & & \vdots \\ a & a & a & \cdots & 1 \end{pmatrix}, n \geq 3, A$ 的秩为 $n - 1$, 则 $a = \underline{\hspace{1cm}}$.

- 3. 设 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 为 4 阶矩阵, A^* 为 A 的伴随矩阵, 若单个向量 $\beta \neq 0$ 是方程组 AX = 0 的一个基础解系, 则 $A^*X = 0$ 的基础解系含有解向量的个数是_____.
- 4. 实二次型 $f(x_1, x_2, x_3) = (x_1 + 2x_2)^2 + (2x_2 x_3)^2 + (x_1 + x_3)^2$ 的正惯性指数为_____.

等价,则 a 满足_____.

- 6. 设 σ 是 n 维线性空间 V 上的线性变换, σ 有 n 个不同的特征值 $\lambda_1, \lambda_2, \cdots, \lambda_n$, 则 V 的所有 σ 不变子空间的个数是_____.
- 二. 计算与证明. 每题 15 分, 共 120 分.
 - 1. 若实系数多项式 f(x) 满足 $f(2x^2+1) = 2f^2(x) + 1, \forall x \in \mathbb{R}, f(0) = 0$, 证明: $f(x) \equiv x$.
 - 2. 设 $A=\begin{pmatrix}1&a\\1&0\end{pmatrix}$, $B=\begin{pmatrix}0&1\\1&b\end{pmatrix}$, 当 a,b 为何值时, 存在矩阵 C, 使得 AC-CA=B, 并求所有矩阵 C.
 - 3. 设 $A \in n$ 阶矩阵, n > 1. 若对任意 n 阶矩阵 B 都有 |A + B| = |A| + |B|, 证明: A = O.
 - 4. 已知实二次型

$$f(x_1, x_2, x_3) = ax_1^2 + ax_2^2 + ax_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3$$

用正交替换 X = TY 化为标准形 $f(x_1, x_2, x_3) = by_1^2 + cy_2^2, b, c \neq 0$, 求 a, b, c 并写出正交替换及所化成的标准二次型.

5. 求复矩阵
$$A = \begin{pmatrix} 3 & 2 & 1 \\ 1 & 4 & 1 \\ -3 & -6 & -1 \end{pmatrix}$$
 的约当标准形 J , 并求可逆矩阵 T , 使得 $T^{-1}AT =$

J.

6. 设

$$\alpha_1 = \begin{pmatrix} a_1 + b \\ a_1 \\ \vdots \\ a_1 \end{pmatrix}, \alpha_2 = \begin{pmatrix} a_2 \\ a_2 + b \\ \vdots \\ a_2 \end{pmatrix}, \dots, \alpha_n = \begin{pmatrix} a_n \\ a_n \\ \vdots \\ a_n + b \end{pmatrix}.$$

其中 $\sum_{i=1}^{n} a_i \neq 0, W = L(\alpha_1, \alpha_2, \dots, \alpha_n)$, 求 W 的维数与一组基.

- 7. 设 $A \in n$ 阶实矩阵, $A^2 = E$, 证明:
- (1) r(A + E) + r(A E) = n.
- (2) A 与对角矩阵相似.
- (3) $\mathbb{R}^n = V_1 \oplus V_2$, $\sharp \mapsto V_1 = \{X \in \mathbb{R}^n \mid (A+E)X = 0\}$, $V_2 = \{X \in \mathbb{R}^n \mid (A-E)X = 0\}$.
- 8. 设 $V = \mathbb{P}^{2\times 2}$ 是数域 \mathbb{P} 上的线性空间, $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in V$, 线性变换 $\sigma: X \to AX, \forall X \in \mathbb{P}^{2\times 2}$.
- (1) 求线性变换 σ 在基

$$E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

下的矩阵.

(2) 若 A 相似于对角矩阵, 证明: 线性变换 σ 在 V 的某组基下的矩阵是对角矩阵.

89 合肥工业大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

1. (10分)求极限

$$\lim_{n\to\infty} n^2 \left(3^{\frac{1}{n}} - 3^{\frac{1}{n+1}}\right).$$

2. (10分)求极限

$$\lim_{x \to 0} \frac{1}{x^4} \left[\ln \left(1 + \sin^2 x \right) - 6(\sqrt[3]{2 - \cos x} - 1) \right].$$

- 3. (10 分) 判断数项级数 $\sum_{n=1}^{\infty} (-1)^n \ln \left(1 + \frac{1}{n}\right)$ 是否收敛, 如果收敛, 则判断是条件收敛还是绝对收敛.
- 4. (15分)求极限

$$\lim_{n\to\infty} \frac{\ln n}{\ln (1^{2023} + 2^{2023} + \dots + n^{2023})}.$$

5. (15 分) 设 f(x) 在 [a,b] 上可积, 且在 x = b 处连续, 证明:

$$\lim_{n \to \infty} \frac{n+1}{(b-a)^{n+1}} \int_{a}^{b} (x-a)^{n} f(x) dx = f(b).$$

- 6. (15 分) 设函数 f(x) 在 $(-\infty, +\infty)$ 上有界且 $f''(x) \ge 0$. 证明: f(x) 为常值函数.
- 7. (15 分) 求幂级数 $\sum_{n=0}^{\infty} (n+2)(n+1)x^n$ 的收敛域及和函数.
- 8. (15 分) 证明: $F(x) = \int_{1}^{+\infty} \frac{y \sin xy}{1 + v^2} dy$ 在 $(0, +\infty)$ 上连续.
- 9. (15分)已知

$$f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2}, & (x,y) \neq (0,0); \\ 0, & (x,y) = (0,0). \end{cases}$$

证明: f(x,y) 在 (0,0) 处连续, 并计算 $f_x(0,0)$ 和 $f_{xy}(0,0)$.

10. (15 分) 求曲面积分

$$I = \iint_{S} x dy dz + y dz dx + \left[(z+1)^{2} + e^{-(x^{2}+y^{2})} \right] dx dy.$$

其中 S 为 $z = 1 - x^2 - y^2 (0 \le z \le 1)$, 方向取下侧.

- 11. (15 分) 设有方程 $\cos(x+y) + e^{y+x^2} x^3y^3 = 2$.
 - (1) 证明: 在点 (0,0) 的某邻域内能确定唯一的隐函数 y = f(x).
 - (2) 判断在 (0,0) 的某邻域内能否确定隐函数 x = f(y) ? 并说明理由.

90 合肥工业大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

1. 计算 n 阶行列式

$$D_n = \begin{vmatrix} \cos \alpha & 1 & 0 & \cdots & 0 & 0 \\ 1 & 2\cos \alpha & 1 & \cdots & 0 & 0 \\ 0 & 1 & 2\cos \alpha & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2\cos \alpha & 1 \\ 0 & 0 & 0 & \cdots & 1 & 2\cos \alpha \end{vmatrix}.$$

2. 讨论方程组

$$\begin{cases} ax_1 + (a+3)x_2 + x_3 = -2; \\ x_1 + ax_2 + x_3 = a; \\ x_1 + x_2 + ax_3 = a^2. \end{cases}$$

何时有无穷多解, 唯一解, 无解? 并在有无穷多解时求通解.

- 3. 已知 n 阶矩阵 A, B 满足 AB = BA, 证明: $r(A) + r(B) \ge r(A + B) + r(AB)$.
- 4. 设 $A = E \xi \xi^T$, 其中 ξ 为 n 维实列向量.
 - (1) 证明: $A^2 = A$ 等价于 $\xi^T \xi = 1$.
 - (2) 当 $\xi^T \xi = 1$ 时, 求 r(A).
- 5. 已知复矩阵 $A = \begin{pmatrix} 1 & 5 & 5 \\ 0 & 4 & 3 \\ 0 & a & 2 \end{pmatrix}$ 有一个二重特征值.
 - (1) 求 A 的最小多项式和若尔当标准形
 - (2) 求 A 可对角化的充要条件.
- 6. 解答如下问题:
 - (1) 设 A 为上三角矩阵也为正交矩阵. 证明: A 为对角矩阵, 且对角线元素为 ± 1 .
 - (2) 设 B 为 n 阶实可逆矩阵, 证明: 存在正交矩阵 Q 和主对角线元素大于零的上三角矩阵 R, 使得 B = QR, 并且这种分解是唯一的.
- 7. 设数域 \mathbb{P} 上 n 维线性空间 V 的一组基为 $\alpha_1, \alpha_2, \cdots, \alpha_n$, 令 $\beta = \alpha_1 + \alpha_2 + \cdots + \alpha_n$, 已知 V_1 为 β 生成的子空间,

$$V_2 = \left\{ k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_n \alpha_n \mid \sum_{i=1}^n k_i = 0, k_i \in P, i = 1, 2, \dots, n \right\}$$

- (1) 求 V_2 的一组基和维数.
- (2) 证明: $V = V_1 \oplus V_2$.
- 8. 给定 $\mathbb{R}^{2\times 2}$ 中的矩阵 $B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$,定义 $\mathbb{R}^{2\times 2}$ 上的线性变换 \mathscr{A} 为 $\mathscr{A}(X) = XB BX, X \in \mathbb{R}^{2\times 2}$,另外取子空间 $W = \left\{ \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} \in \mathbb{R}^{2\times 2} \middle| x_2 + x_3 = 0 \right\}$.
 - (1) 求 W 的一组基.
 - (2) 证明: W 是 Ø 的不变子空间.
 - (3) 记 \mathscr{A} 在 W 上的限制 $\mathscr{A} \mid W$ 为 \mathscr{A}_1 , 求 \mathscr{A}_1 的特征值和特征向量.
 - (4) 求 W 的一组基, 使得 \mathcal{A}_1 在此基下的矩阵为对角矩阵.
- 9. 设 $f_1(x)$, $f_2(x)$, ..., $f_{n-1}(x)$ 为复数域上的多项式 $(n \ge 2)$, 且

$$1 + x + x^2 + \dots + x^{n-1} \mid f_1(x^n) + x f_2(x^n) + \dots + x^{n-2} f_{n-1}(x^n)$$
.

证明: $f_i(x)(i = 1, 2, \dots, n-1)$ 的系数之和为 0.

- 10. 已知 A 为三阶实对称矩阵,且 r(A) = 2, $\lambda_1 = \lambda_2 = 3$ 为其特征值, $\alpha_1 = (1, 1, 0)^T$, $\alpha_2 = (2, 1, 1)^T$ 为属于特征值 3 的特征向量,求矩阵 A.
- 11. 设 η 是 n 维欧氏空间 V 的一个单位向量, 定义线性变换 σ 如下:

$$\sigma(\alpha) = \alpha - 2(\eta, \alpha)\eta, \forall \alpha \in V.$$

称这样的线性变换为一个镜面反射.

- (1) 证明: 镜面反射是一个正交变换.
- (2) 证明: 镜面反射在任意一组标准正交基下的矩阵行列式为 -1.
- (3) 设 ρ 是 V 的一个正交变换, 有特征值 $\lambda_0=1$, 且 dim $V_{\lambda_0}=n-1$, 证明: ρ 是一个镜面反射.

91 南京理工大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- 1. (15 分) 解答如下问题:
 - (1) 求极限 $\lim_{x \to \infty} \left(\cos \frac{1}{x}\right)^{x^2 1}$.
 - (2) 设 $z = x^2 + y^2$, 其中 y = f(x) 是由曲线 $x^2 xy + y^2 = 1$ 确定的隐函数, 求 $\frac{dz}{dx}$.
- 2. (15 分) 解答如下问题:
 - (1) 判断 $\sum_{n=1}^{\infty} \frac{1}{\left[\ln\left(\tan\frac{1}{n}\right)\right]^3}$ 的敛散性.
 - (2) 判断 $\int_{1}^{+\infty} \frac{\sin x^2}{1+x^p} dx (p \ge 0)$ 的敛散性.
- 3. (15 分) 设 f(x) 在 \mathbb{R} 上二阶可导,且 f'(0) = 0,证明: 存在 $\xi \in (0,1)$,使得 $f'(\xi) = (\xi 1)^2 f''(\xi)$.
- 4. (15 分) 设 $f(x) = \sum_{n=1}^{\infty} n e^{-nx}$.
 - (1) 讨论 f(x) 的连续区间.
 - (2) 计算 $\int_1^2 f(x) dx$.
- 5. (15 分) 设 f(x) 在 \mathbb{R} 上连续,且 $\lim_{x \to \infty} [f(x) \lambda x] = 0$,其中 λ 为常数,证明: f(x) 在 \mathbb{R} 上一致连续.
- 6. (15 分) 解答如下问题:
 - (1) 求 $f(x) = \arctan \frac{x+3}{x-3}$ 的麦克劳林级数展开式, 并讨论收敛区间.
 - (2) 求 $f(x) = x^3$ 在 $[0, \pi]$ 上的余弦级数.
- 7. (15 分) 计算三重积分

$$\iiint_V z^2 \mathrm{d}x \mathrm{d}y \mathrm{d}z$$

其中 $V: x^2 + y^2 + z^2 \le a^2, x^2 + y^2 \le ax, a > 0.$

8. (15 分) 计算曲面积分

$$I = \iint_{S} x^{2} \mathrm{d}y \mathrm{d}z + y^{2} \mathrm{d}z \mathrm{d}x + z^{2} \mathrm{d}x \mathrm{d}y.$$

其中 S 为 $x^2 + y^2 = z^2, 0 \le z \le 1$, 取曲面下侧.

9. (15分) 计算曲线积分

$$\lim_{d(\Omega)\to 0}\frac{1}{S(\Omega)}\oint_L(F,n)\mathrm{d}s.$$

其中 Ω 是包含原点且由简单封闭的光滑曲线 C 围成的区域, $d(\Omega)$ 为 Ω 的直径, $S(\Omega)$ 为 Ω 的面积, F=(P(x,y),Q(x,y)) 为区域 $\Omega+C$ 上连续可微的向量函数, n 为曲线 C 的单位外法向量.

10. (15 分) 用有限覆盖定理证明致密性定理, 即任意有界数列 {x_n} 必定有收敛子列.

92 南京理工大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. 填空题. 每题 5 分, 共 40 分.

 - (2) 设 n 阶行列式 $D_n = |a_{ij}| = 1$, 令 $b_{ij} = 3^{2i-j}a_{ij}$, 求 $|b_{ij}|$ 的值_____.
 - (3) 设 A 为一个 3 阶方阵, 将 A 的第 1 行加到第 3 行, 再将第 1 行与第 2 行互换之后为 2 E, 求矩阵 A =
 - (4) 设 $A^* = \begin{pmatrix} 1 & -1 & 1 \\ a & 2 & -b \\ 2a & -3a-2 & 3a+b \end{pmatrix}$ 为矩阵 A 的伴随矩阵, 则 a,b 依次为_____.
 - (5) 设 A 为一个 3 阶方阵, 且 |A+E|=|A+2E|=|A+3E|=0, 求 $|A-A^{-1}|=$ _____.
 - (6) 设二次型 $f(x_1, x_2, x_3) = X^T A X$, 其中 $A^T = A$, |A| = a, r(A + bE) = 1, 若 f 正定, 求 a, b 满足的条件为
 - (7) 在几何空间中,设 O xyz 为一直角坐标系,必 表示将空间绕 Ox 轴,由 Oy 轴向 Oz 轴旋转 90° 的线性变换,则 必 在基 $\varepsilon_1 = (1,0,0), \varepsilon_2 = (0,1,0), \varepsilon_3 = (0,0,1)$ 下的矩 阵为_____.
 - (8) 设一数域 \mathbb{P} , 设线性空间 \mathbb{P}^2 中的基 α_1, α_2 的对偶基为 f_1, f_2 , 则 \mathbb{P}^2 中的基 $\alpha_1 + \alpha_2, \alpha_1 \alpha_2$ 的对偶基为_____(用 f_1, f_2 表示).
- 2. (10 分) 设实数域上的多项式为 $f(x) = x^3 + 6x^2 + 3px + 8$, 求当 p 为何值时, f(x) 有重因式?
- 3. (10 分) 设 $A = (a_{ij})$ 为一个 n 阶矩阵, 其中 $a_{ij} = \max\{i, j\}$, 求 $|A^*|$.
- 4. (15 分) 设 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 为一个 4 阶方阵, 且 α_1, α_2 线性无关, $\alpha_3 = \alpha_1 + \alpha_2, \alpha_4 = \alpha_1 \alpha_2$, 求方程组 $AX = \alpha_3 + \alpha_4$ 的通解.
- 5. (15 分) 设 V_1 为 $\alpha_1 = (1,2,3), \alpha_2 = (1,0,1)$ 生成的子空间, V_2 为 $\beta_1 = (-1,2,t), \beta_2 = (4,1,5)$ 生成的子空间. 若 $V_1 = V_2$, 求 t 的值, 并将 β_1,β_2 写成 α_1,α_2 的线性组合.
- 6. (15 分) 设矩阵 $A = \begin{pmatrix} 1 & a & 1 \\ a & 2a & 1 \\ 1 & 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, 且 A 与 B 合同.
 - (1) (5 分) 求 a 的值.
 - (2) (10 分) 求一可逆矩阵 C, 使得 $C^TAC = B$.
- 7. (15 分) 设 $V = \mathbb{P}[x]_n$ 为次数小于 n 多项式与零多项式生成的线性空间, 在 V 上定义一个二元函数

$$\varphi(f(x),g(x)) = \int_{-1}^{1} f(x)g(x)\mathrm{d}x, f(x), g(x) \in V.$$

- (1) (6 分) 若 n = 4, 求 φ 在基 $1, x, x^2, x^3$ 下的度量矩阵.
- (2) (9 分) 证明: φ 为非退化的.
- 8. (15 分) 设矩阵 $A = \begin{pmatrix} 0 & 2 & -2 \\ -1 & 3 & -3 \\ 1 & -2 & a \end{pmatrix}$, $B = \begin{pmatrix} 1 & -2 & 0 \\ 0 & b & 0 \\ 0 & 3 & 1 \end{pmatrix}$, 且 A 与 B 相似.
 - (1) (5 分) 求 a,b 的值.
 - (2) (10 分) 求可逆矩阵 P, 使得 $P^{-1}AP = B$.
- 9. (15 分) 设 A 为一个秩为 r 的 n 阶方阵, 且 $A^2 = A$. 证明: 存在一个秩为 r 的 $r \times n$ 矩 阵 B 与一个秩为 r 的 $n \times r$ 矩阵 C, 满足 A = CB, 且 $BC = E_r$ (E_r 为 r 阶单位矩阵).

93 南京航空航天大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. 解答如下问题:
 - (1) 求极限 $\lim_{x\to 0} \frac{1}{x^4} \left[6 + x^2 \frac{5}{6}x^4 6\sqrt[3]{2 \cos x} \right]$
 - (2) 求定积分 $\int_0^{\frac{\pi}{4}} \frac{x}{1 + \cos 2x} dx$.
- 2. 设 $f(x) = \frac{x+2}{x+1} \sin \frac{1}{x}, a > 0$ 为常数, 证明: f(x) 在 $[a, +\infty)$ 上一致连续, 在 (0, a) 上不一致连续.
- 3. 设 f(x) 在 [a,b] 上连续, 在 (a,b) 内二阶可导, 证明: 对任意的 $x \in [a,b]$, 存在 $\xi \in [a,b]$, 使得

 $\frac{f(x) - f(a)}{x - a} - \frac{f(b) - f(a)}{b - a} = \frac{1}{2}f''(\xi)(x - b).$

- 4. 判断反常积分 $\int_0^{+\infty} \frac{\ln^2 x \sin x}{x+1} dx$ 是绝对收敛, 条件收敛还是发散, 并证明.
- 5. 解答如下问题:
 - (1) 设 f(x), g(x) 在 [a,b] 上可积, 证明 Cauchy-Schwarz 不等式:

$$\left(\int_a^b f(x)g(x)\mathrm{d}x\right)^2 \le \int_a^b f^2(x)\mathrm{d}x \int_a^b g^2(x)\mathrm{d}x.$$

(2) 设 f(x) 在 [a,b] 上有连续的导函数, 且 f(a) = 0, 证明:

$$\int_a^b |f(x)f'(x)| \, \mathrm{d}x \le \frac{b-a}{2} \int_a^b \left[f'(x) \right]^2 \, \mathrm{d}x.$$

- - (1) 证明 $\{a_n\}$ 收敛, 并求其极限,
 - (2) 判断级数 $\sum_{n=1}^{\infty} \left(\frac{a_n}{a_{n+1}} 1 \right)$ 的敛散性并证明.
- 7. 将 $f(x) = e^x(-\pi \le x \le \pi)$ 展开成傅里叶级数, 讨论级数的收敛性, 并求级数 $\sum_{n=0}^{\infty} \frac{1}{1+n^2}$ 的和.
- 8. 给定方程组

$$\begin{cases} xu^2 + v = y^3; \\ 2yu - xv^3 = 4x. \end{cases}$$

判断其在 $P_0(x_0, y_0, u_0, v_0) = (0, 1, 0, 1)$ 附近能否确定 u, v 为 x, y 的函数, 若能, 求出偏导数 $\frac{\partial u}{\partial y}, \frac{\partial v}{\partial y}, \frac{\partial^2 v}{\partial y^2}$ 在点 $(x_0, y_0) = (0, 1)$ 的值.

- 9. 解答如下问题:
 - (1) 求曲面积分

$$\iint_{S} \left(x^2 + y^2 \right) \mathrm{d}S.$$

其中 S 为立体 $\sqrt{x^2 + y^2} \le z \le 1$ 的边界曲面.

(2) 求曲线积分

$$\oint_L (y + \sin x) dx + (z - e^y) dy + (x + 1) dz.$$

其中 L 为球面 $x^2 + y^2 + z^2 = R^2$ 与平面 x + y + z = 0 的交线, 从 x 轴正向看去, L 沿 逆时针方向.

10. 设 f(x) 在 $[0, +\infty)$ 上可导, 且 f(0) = 0. 求极限

$$\lim_{t\to 0^+}\frac{1}{\pi t^4}\iiint_V f\left(\sqrt{x^2+y^2+z^2}\right)\mathrm{d}x\mathrm{d}y\mathrm{d}z.$$

其中 $V: x^2 + y^2 + z^2 \le t^2$.

- 11. 设 $\{f_n(x)\}$ 是在 [a,b] 上连续的函数列,且 $\{f_n(x)\}$ 在 [a,b] 上一致收敛于 f(x),f(x) 在 [a,b] 上恒为负值。证明:当 n 充分大时, $f_n(x)$ 在 [a,b] 上也恒为负值,且函数列 $\left\{\frac{1}{f_n(x)}\right\}$ 在 [a,b] 上一致收敛于 $\frac{1}{f(x)}$.
- 12. 设 f(x) 在 [a,b] 上可积, 且 $A \le f(x) \le B$, g(u) 在 [A,B] 上连续, 证明: g(f(x)) 在 [a,b] 上可积.

94 南京航空航天大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

1. 给定矩阵

$$A = \left(\begin{array}{ccc} 1 & -3 & 4 \\ 4 & -7 & 8 \\ 6 & -7 & 7 \end{array}\right)$$

- (1) 求 A 的特征值和最小多项式.
- (2) 求 A 的初等因子和 Jordan 标准形.
- 2. 设 V₁ 是由

$$\alpha_1 = (1, 1, a)^T, \alpha_2 = (-2, a, 4)^T, \alpha_3 = (-2, a, -2)^T$$

生成的 \mathbb{R}^3 的子空间, V_2 是由

$$\beta_1 = (1, 1, a)^T, \beta_2 = (1, a, 1)^T, \beta_3 = (a, 1, 1)^T$$

生成的 \mathbb{R}^3 的子空间.

- (1) 若 $V_1 \neq V_2$, 求 a 的范围.
- (2) 当 a = 2 时, 求 dim $(V_1 \cap V_2)$.
- 3. 设 σ 为 \mathbb{R}^3 上的线性变换, $\varepsilon_1 = (1, 1, 0)^T$, $\varepsilon_2 = (0, 1, 1)^T$, $\varepsilon_3 = (1, 1, 1)^T$ 为 \mathbb{R}^3 的一组 基, σ 在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 下的矩阵为 A, 且 $\sigma(\varepsilon_1) = (1, 0, 0)^T$, $\sigma(\varepsilon_2) = (0, 1, 1)^T$, $\sigma(\varepsilon_3) = (1, 1 + a, a)^T$.
 - (1) 若 σ 可对角化, 求 a 的值.
 - (2) 当 a=2 时, 求 A^{2023} .
- 4. 设 α , β 为 \mathbb{R}^3 中的单位列向量且相互正交, 实二次型 $f(X) = 2(\alpha^T X)^2 + (\beta^T X)^2$ 的矩阵 为 A, 其中 $X = (x_1, x_2, x_3)^T$. 证明:
 - (1) 存在正交矩阵 U, 使得 U^TAU 为对角形 diag{2,1,0}.
 - (2) 是否存在唯一的半正定矩阵 S 使得 $A = S^2$? 请说明理由.
- 5. 设 A, B 是两个 n 阶矩阵, $\exists AB = 4B + 3A 10E$. 证明:
 - (1) $\lambda = 4$ 不是 A 的特征值, 且 AB = BA.
 - (2) 若 A 相似于对角矩阵,则存在可逆矩阵 P,使得 $P^{-1}AP$, $P^{-1}BP$ 均为对角矩阵.
- 6. 设 A, B, C, D 都是 n 阶矩阵且 AB = BA. 证明:

(1) 若
$$r(A) = n$$
, 则 $r\begin{pmatrix} A & B \\ C & D \end{pmatrix} = n + r(DA - CB)$.

$$(2) \left| \begin{array}{cc} A & B \\ C & D \end{array} \right| = |DA - CB|.$$

- - (1) 若复方阵 A 为 Hermite 矩阵, 则 A 的特征值均为实数.
 - (2) 若复方阵 A 满足 $A(\bar{A})^T = A^2$, 则 A 为 Hermite 矩阵.
- 8. 设 V 是数域 \mathbb{P} 上的 n 维线性空间, σ 是 V 上的线性变换, 多项式 $f(x), g(x) \in \mathbb{P}[x]$, 且 h(x) = f(x)g(x), (f(x), g(x)) = 1, 记 $\operatorname{Ker} \sigma = \{\alpha \mid \alpha \in V, \sigma(\alpha) = 0\}$. 证明:
 - (1) $\operatorname{Ker} h(\sigma) = \operatorname{Ker} f(\sigma) \oplus \operatorname{Ker} g(\sigma)$.
 - (2) $\dim \operatorname{Ker} \sigma + \dim \operatorname{Ker} \sigma^3 \leq 2 \dim \operatorname{Ker} \sigma^2$.

95 河北工业大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- 一. 填空题. 每题 5 分, 共 30 分.
 - 1. 求和函数 $\sum_{n=1}^{\infty} nx^{n-1} = _____.$
 - 2. 求极限 $\lim_{x\to 0} \frac{e^x \sin x x(1+x)}{x^3} =$ _____
 - 3. 求球面 $x^2 + y^2 + z^2 = 1$ 在点 $(x, y, z) = \left(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right)$ 处的切平面方程_____.
 - 4. 求函数 $f(x) = (x-2)^{\frac{2}{3}}$ 在区间 [-1,2] 上的最大值和最小值_____.
 - 5. 设 $S = \{(x, y, z) \mid x^2 + y^2 + z^2 = 1\}$, 方向向外, 求曲面积分 $\iint_S x dy dz + y dz dx + z dx dy = _____.$
 - 6. 求极限 $\lim_{n\to\infty} \left[\frac{1}{n\ln^2 n} + \frac{1}{(n+1)\ln^2(n+1)} + \dots + \frac{1}{(2n-1)\ln^2(2n-1)} \right] = \underline{\hspace{1cm}}$
- 二. 计算题. 每题 10 分, 共 60 分.
 - 1. 判断函数 $f(x) = \frac{x^2}{4} \cos x$ 的凸性.
 - 2. 设 F 为二阶可微的三元函数, 又设由方程

$$F(xy, y + z, xz) = 0$$

可以确定隐函数 z = f(x, y), 求偏导数 $\frac{\partial f}{\partial x}$ 和 $\frac{\partial f}{\partial y}$.

- 3. 设曲面 Σ 为球面 $x^2 + y^2 + z^2 = 1$ 在 $z^2 \ge \frac{1}{2}$ 的部分, 求 $I = \iint_{\Sigma} (1 z^2) \, \mathrm{d}S$.
- 4. 设 L 是从 A 点 (2,0) 出发, 先沿直线 x + 2y = 2 到 B 点 (0,1), 再沿圆周 $x^2 + y^2 = 1$ 到 C 点 (-1,0), 最后由 C 点沿 x 轴到 A 的定向曲线, 计算第二类曲线积分

$$\int_{L} (x^{2} - 3y) dx + (3x + e^{y}) dy.$$

- 5. 求解不定积分 $\int \frac{1}{1+x^3} dx$.
- 6. 计算 $\int_0^{+\infty} \frac{e^{-x^2} e^{-4x^2}}{x^2} dx$.
- 三. 证明题. 每题 15 分, 共 60 分.
 - 1. 设 $f(x) = x^s$, 其中参数 0 < s < 1, 证明: f(x) 在 $[0, +\infty)$ 上一致连续.
 - 2. 设 D 为平面上一个有界区域, 它在 x 轴与 y 轴上投影长度分别为 a 和 b, D 的面积为
 - $A, (x_0, y_0) \in D$, 证明:

$$(1) \left| \iint_D (x - x_0) (y - y_0) \, \mathrm{d}x \, \mathrm{d}y \right| \le abA.$$

(2)
$$\left| \iint_D (x - x_0) (y - y_0) dx dy \right| \le \frac{1}{4} a^2 b^2.$$

3. 证明函数
$$J(x) = \frac{1}{\pi} \int_0^{\pi} \cos(t - x \sin(t)) dt$$
 满足 Bessel 方程

$$x^{2}J''(x) + xJ'(x) + (x^{2} - 1)J(x) = 0.$$

4. 设函数 f(x) 在 [a,b] 上连续, 证明: $M(x) = \sup_{a \le t \le x} f(t)$ 在 [a,b] 上连续.

96 河北工业大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

1. (15 分) 设 $f_0(x), f_1(x), \dots, f_{n-1}(x)$ 为 n 个实系数多项式, 且

$$(x^{n}-2) \mid \sum_{i=0}^{n-1} f_{i}(x_{i}^{n}) x^{i}.$$

证明: $x-2 \mid f_i(x), i = 0, 1, \dots, n-1$.

2. (15 分) 计算行列式

- 3. (15 分) 设 A 为 5 阶矩阵, k 为大于 5 的正整数, 证明: $r(A^5) = r(A^k)$.
- 4. (15 分) 设 A 为 4 阶实对称矩阵, 且 A 的特征值为 $\lambda_1 = \lambda_2 = 1, \lambda_3 = \lambda_4 = 2$, 且 (1,1,0,0)',(1,1,0,1)' 为 A 的属于特征值 1 的特征向量, 求矩阵 A.
- 5. (15 分) 设线性方程组的一个解为 η, 其导出组的一个基础解系为 $ξ_1, ξ_2, \dots, ξ_s$, 记

$$\gamma_0 = \eta, \gamma_1 = \eta + \xi_1, \gamma_2 = \eta + \xi_2, \cdots, \gamma_s = \eta + \xi_s.$$

证明: 方程组的任意一个解 γ 可表示为 $\sum_{i=0}^{s} \mu_i \gamma_i$, 其中 $\sum_{i=0}^{s} \mu_i = 1$.

6. (15 分) 设 W 是数域 ℙ 上所有形如

$$\begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ a_n & a_1 & a_2 & \cdots & a_{n-1} \\ a_{n-1} & a_n & a_1 & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & & \vdots \\ a_2 & a_3 & a_4 & \cdots & a_1 \end{pmatrix}$$

的矩阵关于矩阵的加法和数量乘法构成的线性空间, U 是数域 \mathbb{P} 上 n 阶对角阵全体关于矩阵的加法和数量乘法构成的线性空间, 证明: W 和 U 同构.

- 7. (20 分) 设 V_1 是数域 \mathbb{P} 上全体 n 阶对称矩阵的集合, V_2 是数域 \mathbb{P} 上全体 n 阶反称矩阵的集合, $\mathbb{P}^{n \times n}$ 是 n 阶矩阵生成的线性空间.
 - (1) 证明: $\mathbb{P}^{n\times n} = V_1 \oplus V_2$.
 - (2) 证明: 存在唯一的线性变换 σ , 使得 σ 的值域为 V_1 , 核为 V_2 , 且 $\sigma^2 = \sigma$.

8. (20 分) 设 A, B 均为 n 阶实对称矩阵, 且 B 为正定矩阵. (1) 若 A 为半正定矩阵, 证明: A + B 为正定矩阵. (2) 证明: 存在一实可逆矩阵 S, 使得 S'AB 与 S'BS 均为对角形. 9. (20 分) 设 A 为任意 $m \times n$ 矩阵, X 为未知 $n \times m$ 矩阵. 证明: 矩阵方程 AXA = A 一定 有解.

97 哈尔滨工程大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

1. $\Diamond A, B$ 为任意的非空实数集, 定义

$$A + B = \{z \mid z = x + y, x \in A, y \in B\}, A - B = \{z \mid z = x - y, x \in A, y \in B\}.$$

证明: $\sup(A+B) = \sup A + \sup B, \sup(A-B) = \sup A - \inf B.$

- 2. 计算 $\lim_{\pi \to \infty} \sin(n!\alpha\pi)$, 其中 α 为有理数.
- 3. 求曲线 $\left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right)^2 = x^2 + y^2$ 所围平面图形的面积.
- 4. 设 f(x,y) 在 $P(x_0,y_0)$ 处可微, l_1,l_2,\cdots,l_n 为 $P(x_0,y_0)$ 点处给定的 n 个方向不同的单位向量,两相邻向量夹角为 $\frac{2\pi}{n}$,计算 $\sum_{i=1}^n \frac{\partial f(x_0,y_0)}{\partial l_i}$,其中 $\frac{\partial f(x_0,y_0)}{\partial l_i}$ 表示 f(x,y) 在 $P(x_0,y_0)$ 处沿 l_i 的方向导数.
- 5. $\Rightarrow x = \frac{1}{n} \sum_{k=1}^{n} x_k$, 其中 $x_i \in (0, \pi)$, 证明: $\prod_{k=1}^{n} \frac{\sin x_k}{x_k} \le \left(\frac{\sin x}{x}\right)^n$.
- 6. 求 $f(x) = [x] \sin \pi x$ 的单侧导数.
- 7. 设 f(x) 在 [0,1] 上二次可微, f''(x) 有界且黎曼可积, 证明:

$$\lim_{n \to \infty} n^2 \left(\int_0^1 f(x) dx - \frac{1}{n} \sum_{i=1}^n f\left(\frac{2i-1}{2n}\right) \right) = \frac{f'(1) - f'(0)}{24}.$$

8 🛆

$$u_n(x) = \begin{cases} -n, & x \le -n; \\ x, & -n < x \le n; \\ n, & x > n. \end{cases}$$

设 f(x) 为实值函数, 证明: f(x) 连续等价于对任意固定的正整数 $n, g_n(x) = u_n(f(x))$ 都 是 x 的连续函数.

- 9. 设 $f(x) \in C^{\infty}([0,1])$ 且满足下列条件:
 - (1) $f(x) \not\equiv 0$.
 - (2) $f^{(n)}(x) = 0, n = 1, 2, \cdots$
 - (3) 实数序列 $\{a_n\}$ 满足级数 $\sum_{n=1}^{\infty} a_n f^n(x)$ 在 [0,1] 上一致收敛.

证明: $\lim_{n\to\infty} n! a_n = 0$.

10. 证明: $H_n(x) = (-1)^n e^{x^2} \frac{\mathrm{d}^n}{\mathrm{d}x^n} \left(e^{-x^2} \right)$ 所有根都是实数.

11. 计算第二类曲面积分

$$\iint_{S} (f(x,y,z)+x)\mathrm{d}y\mathrm{d}z + 2f(x,y,z)\mathrm{d}z\mathrm{d}x + (f(x,y,z)+z)\mathrm{d}x\mathrm{d}y.$$

其中 f(x, y, z) 为连续函数, S 为平面 x - y + z = 1 在第四卦腿的上侧.

12. 设 f(x, y) 定义在 $x^2 + y^2 \le 1$, 且具有连续的偏导数, $|f(x, y)| \le 1$. 证明: 在 $x^2 + y^2 \le 1$ 内有一点 (x_0, y_0) , 使得 $|f_x(x_0, y_0)|^2 + |f_y(x_0, y_0)|^2 < 16$.

98 哈尔滨工程大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- 1. 设 $a \neq b, n$ 阶行列式 $\begin{vmatrix} a+b & ab & 0 & \cdots & 0 & 0 \\ 1 & a+b & ab & \cdots & 0 & 0 \\ 0 & 1 & a+b & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a+b & ab \\ 0 & 0 & 0 & \cdots & 1 & a+b \end{vmatrix}$ 的值为_____
- 2. 若 3 阶可逆阵 A 交换 1,2 行得矩阵 B, 再将矩阵 B 的第 2 行加到第 3 行上得到矩阵 C, 则满足 PA = C 的矩阵 $P = ____$.
- 3. 若二次型 $f(x_1, x_2, x_3) = t(x_1^2 + x_2^2 + x_3^2) + 2x_1x_2 2x_2x_3$ 正定, 则参数 t 应满足_____.
- 4. 设 A, B 均为 $m \times n$ 矩阵, 且 rank $A = \text{rank } B = 1, W_1$ 与 W_2 分别为齐次线性方程组 AX = 0 和 BX = 0 的解空间, 且 $W_1 \neq W_2$, 则 dim $(W_1 \cap W_2) =$ _____.
- 5. 设 3 阶对称阵 A 满足 $A^2 + 2A 3E = O$, 其中 E 为单位阵, 且 A 与 $B = \begin{pmatrix} 2 & 3 & 3 \\ 3 & 2 & 3 \\ 3 & 3 & 2 \end{pmatrix}$ 合同, 则 |A + 2E| = .
- 6. 设有向量组

$$\alpha_{1} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ -1 \end{pmatrix}, \alpha_{2} = \begin{pmatrix} 2 \\ 2 \\ 0 \\ -2 \end{pmatrix}, \alpha_{3} = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \end{pmatrix}, \alpha_{4} = \begin{pmatrix} 3 \\ 2 \\ -1 \\ -5 \end{pmatrix}.$$

令 $W = \text{span}(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 为 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 的全部线性组合构成的线性空间, 求 W 的维数和一组基.

7. 设 A, B 均为 3 阶非零实方阵, E 为 3 阶单位阵, A 与 B 相似, 且 $A = (a_{ij})_{3\times 3}$ 满足 $A_{ij} = a_{ij}(i, j = 1, 2, 3)$.

其中 A_{ij} 为元素 a_{ij} 的代数余子式, 记 A^* 为 A 的伴随矩阵, 又已知 |E+B|=|E-B|=0, 求

$$|A^*B + 2A^* + 2B + 4E|$$
.

- 8. 设 V 为 $\mathbb{R}^{2\times 2}$ 的子空间, V 的一组基 $A_1 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, $A_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $A_3 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
 - (1) 求证: $B_1 = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$, $B_2 = \begin{pmatrix} 2 & 2 \\ 0 & 1 \end{pmatrix}$, $B_3 = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$ 也是 V 的基.
 - (2) 求基 A_1, A_2, A_3 到基 B_1, B_2, B_3 的过渡矩阵.

- 9. 设向量组 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性无关,且 $\beta_k = \sum_{i=1}^n c_{ki}\alpha_i (k=1,2,\cdots,n)$,令 $C = (c_{ij})_{n \times n}$,求证:向量组 $\beta_1, \beta_2, \cdots, \beta_n$ 线性无关的充要条件是 $|C| \neq 0$.
- 10. 设矩阵 $A = \begin{pmatrix} 2 & 2 & 0 \\ 8 & 2 & 0 \\ 0 & a & 6 \end{pmatrix}$ 可相似对角化.
 - (1) 求 a 的值.
 - (2) 求正交变换 X = PY, 将二次型 $f(X) = X^T AX$ 化为标准形.
- 11. 设 V 为 n 维线性空问, \mathcal{I}_1 为 V 上的线性变换, 求证: 存在 V 上的线性变换 \mathcal{I}_2 和 \mathcal{I}_3 , 使得 $\mathcal{I}_1 = \mathcal{I}_2\mathcal{I}_3$, 其中 $\mathcal{I}_2^2 = \mathcal{I}_2$, 且 \mathcal{I}_3 可逆.
- 12. 记 $\mathbb{R}[x]_4$ 为所有次数小于 4 的实系数一元多项式及零多项式构成的线性空间. f'(x) 表示 f(x) 的导数, 定义 $\mathbb{R}[x]_4$ 上的线性变换 $\mathcal{T}: \forall f(x) \in \mathbb{R}[x]_4$, $\mathcal{T}(f(x)) = f(x) f(0) + f'(x)$.
 - (1) 求 \mathscr{F} 在基 $\varepsilon_1 = 1, \varepsilon_2 = x, \varepsilon_3 = x^2, \varepsilon_4 = x^3$ 下的矩阵 A.
 - (2) 求 罗 的特征值和线性无关的特性向量.
- 13. 设 $\beta = \sqrt[3]{2}$, \mathbb{Q} 为有理数域, 求证: $F = \{k_0 + k_1\beta + k_2\beta^2 \mid k_0, k_1, k_2 \in \mathbb{Q}\}$ 构成数域.
- 14. 设 n 阶方阵 A, B 满足 AB = A + B.
 - (1) 求证: AB = BA.
 - (2) 求证: 若存在正整数 k 使得 $A^k = O$, 则 |B + 2024A| = |B|.

99 太原理工大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180__ 分钟 满分: _150__ 分

1. (10 分) 计算 n 阶行列式

$$\begin{vmatrix} x & y & 0 & \cdots & 0 & 0 \\ 0 & x & y & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & x & y \\ y & 0 & 0 & \cdots & 0 & x \end{vmatrix} .$$

2. (20 分) 已知线性方程组

$$\begin{cases} 3x_1 + x_2 - x_3 + 2x_4 = 2; \\ x_1 - 5x_2 + 2x_3 + x_4 = -1; \\ 2x_1 + 6x_2 - 3x_3 - 3x_4 = a + 1; \\ -x_1 - 11x_2 + 5x_3 + 4x_4 = 4. \end{cases}$$

- (1) a 为何值时线性方程组有解?
- (2) 当有解时,求出它的一般解.
- 3. (20 分) 解答如下问题:
 - (1) 证明: 如果 (f(x), g(x)) = 1, (f(x), h(x)) = 1, 那么 (f(x), g(x)h(x)) = 1.
 - (2) 证明: 如果 (f(x), g(x)) = 1, 那么 (f(x)g(x), f(x) + g(x)) = 1.
- 4. (20 分) 方阵 A 如果满足 $A^2 = E$, 那么称 A 是对合矩阵. 设 A, B 都是数域 \mathbb{P} 上的 n 阶 方阵, 证明:
 - (1) 如果 A, B 都是对合矩阵, 且 |A| + |B| = 0, 那么 A + B, E + AB 都不可逆.
 - (2) 如果 B 是对合矩阵, 且 |B| = -1, 那么 E + B 不可道.
- 5. (20 分) 证明如下问题:
 - (1) n 阶实对称矩阵 A 为正定矩阵的充分必要条件是有 n 阶可逆实矩阵 C 使得 A = C'C.
 - (2) n 阶实对称矩阵 A 为正定矩阵的充分必要条件是有 n 阶可逆实对称矩阵 C 使得 $A=C^2$.
- 6. (20 分) 求由向量组 α_1, α_2 生成的子空间与由向量组 β_1, β_2 生成的子空间的交的基和维数, 其中

$$\alpha_1 = (1, 2, 1, 0), \alpha_2 = (-1, 1, 1, 1); \beta_1 = (2, -1, 0, 1), \beta_2 = (1, -1, 3, 7).$$

$$\varphi: \mathbb{R}^4 \to \mathbb{R}^4, (x_1, x_2, x_3, x_4) \to (x_1 + x_2, x_2 - x_3, x_3 - 2x_4, x_1 + 2x_4).$$

- (1) $\bar{x} \varphi$ 在基 $\varepsilon_1 = (1,0,0,0), \varepsilon_2 = (0,1,0,0), \varepsilon_3 = (0,0,1,0), \varepsilon_4 = (0,0,0,1)$ 下的矩阵.
- (2) φ 是否为同构映射? 说明理由.
- 8. (20 分) 已知二次型 $f(x_1, x_2, x_3, x_4) = 2x_1x_2 + 2x_1x_3 2x_1x_4 2x_2x_3 + 2x_2x_4 + 2x_3x_4$.
 - (1) 求一个正交线性变换 X = QY 将 $f(x_1, x_2, x_3, x_4)$ 化为标准形.
 - (2) 求一个可逆线性替换 X = PY 将 $f(x_1, x_2, x_3, x_4)$ 化为规范形.

100 西南交通大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- 1. 已知 $\lim_{n\to\infty} a_n = a$, 证明: $\lim_{n\to\infty} \frac{[na_n]}{n} = a$, 其中 [·] 表示取整
- 2. 设 f(x) 在 (a,b) 上连续, 且 f(a+0), f(b-0) 存在, 证明: f(x) 在 (a,b) 上一致连续.
- 3. 设 f(x) 在 [a,b] 上连续, 在 (a,b) 上可导, 证明: 存在 $\xi \in (a,b)$, 使得 $f'(\xi) + \lambda f(\xi) = 0$.
- 4. 设 f(x) 在 [a,b] 上: 有界, 判断 f(f), f^2 之间的可积性关系.
- 5. 讨论级数 $\sum_{n=1}^{\infty} \frac{\sin nx}{n^p}$ 的敛散性.
- 6. 证明 $f(x, y) = \sqrt{|xy|}$ 在点 (0,0) 处连续, 并求 $f_x(0,0)$, $f_y(0,0)$, 判断 f(x,y) 在点 (0,0) 的可微性.
- 7. 设 f(x) 在 $(0, +\infty)$ 上连续,当 $x \to 0^+$ 时, $f(x) \to +\infty$,且 $\int_0^1 f(x) dx$ 收敛,证明: $\lim_{x \to 0^+} x f(x) = 0$.
- 8. 设 u = f(x, y), 其中 $x = r \cos \theta$, $y = r \sin \theta$, 且 $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$, $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$, 证朋:

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{r^2} \frac{\partial^2 v}{\partial y^2}, \frac{\partial^2 u}{\partial y^2} = -\frac{1}{r^2} \frac{\partial^2 v}{\partial x^2},$$

- 9. 求 $y = mx^2$, $y = nx^2(0 < m < m)$, $y = \alpha x$, $y = \beta x(0 < \alpha < \beta)$ 所围区域的面积.
- 10. 设 Ω 是单连通区域, L 为其边界, 在 Ω 内部或外部取一定点, 设其为原点, r 为 L 上的点 到原点的向量, n 为该点的单位切向量, 求 $\oint_L \frac{\cos(n,r)}{|r|} \mathrm{d}s$.
- 11. 设 f(x) 在 [a,b] 上无界, 证明: 存在 $x_0 \in (a,b)$, 使得对任意的 $\delta > 0$, 满足 f(x) 在 $(x_0 \delta, x_0 + \delta) \cap [a,b]$ 上无界.

101 西南交通大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

1. 已知炬阵
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
, 求 $A^n - 2A^{n-1} = \underline{\qquad}$.

- 2. 已知矩阵 $B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$, 且 A 与 B 相似, 则 r(A E) + r(A 2E) =_____.
- 3. 设 A, B 为正交矩阵, 且 $\frac{|A|}{|B|} = -1$, 则 $|A + B| = _____$.
- 4. 设 $f(x) = x^2 + x + 1$, $g(x) = x^{2023} (x+1)^{4045}$, 求 f 和 g 的最大公因式.
- 5. 求实二次型 $f(x_1, x_2, \dots, x_n) = \sum_{i=1}^n x_i^2 + 4 \sum_{1 \le i < j \le n} x_i x_j$ 的秩和符号差.
- 6. 讨论方程组

$$\begin{cases} x_1 + ax_2 + x_3 = 2\\ x_1 + x_2 + 2bx_3 = 2\\ x_1 + x_2 - bx_3 = -1 \end{cases}$$

在什么情况下无解,有唯一解,有无穷多解,并在有解时求解,

- 7. 设 $A = \begin{pmatrix} 17 & 0 & 25 \\ 0 & 3 & 0 \\ 9 & 0 & -13 \end{pmatrix}$, 求 A 的若尔当标准形 J, 并求可逆矩阵 P, 使得 $P^{-1}AP = J$,
- 8. 设 $A = \begin{pmatrix} 2 & -1 & 3 \\ a & 1 & b \\ 4 & c & 6 \end{pmatrix}$, 存在秋为 2 的矩阵 B, 使得 BA = O, 求 A^{10} .
- 9. 已知 $\alpha_1, \alpha_2, \alpha_3$ 是欧氏空间 V 的一组基, 其度量矩阵为

$$\left(\begin{array}{cccc}
2 & -1 & 1 \\
-1 & 3 & -1 \\
1 & -1 & 2
\end{array}\right)$$

记 $W = L(\alpha_1 + \alpha_2, \alpha_2 + \alpha_3).$

- (1) 求 W 的一组标准正交基.
- (2) 求 W^{\perp} 的维数和一组基.
- 10. 设 A 是秩为 r 的 n 阶方阵, 证明: $A^2 = A$ 的充要条件是存在 $r \times n$ 矩阵 B 和 $n \times r$ 矩阵 C, 使得 A = BC, 且 $BC = E_r$.

11. 定义 $\mathbb{R}_0 = \{a \in \mathbb{R} \mid a > 0\}$ 上的"加法"和"数乘"为 \oplus , \otimes , 满足
$a \oplus b = ab, k \otimes a = a^k, \forall a, b \in \mathbb{R}_0, k \in \mathbb{R}.$
证明 \mathbb{R}_{0} 关于 \oplus 和 \otimes 构成线性空间, 并求 \mathbb{R}_{0} 的一组基和维数.

102 华东理工大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. 求极限
 - $(1) \lim_{n \to \infty} \sqrt[n]{2\sin^2 n + \cos^2 n}.$
 - (2) $\lim_{x\to 0} \frac{\cos x e^{-\frac{x^2}{2}}}{x^4}$,
- 2. 求重积分 $\iint_D e^{\max\{x^2,y^2\}} dx dy$, 其中 $D:[0,1] \times [0,1]$.
- 3. 设 f(x) 是 $[1, +\infty)$ 上单调递减的连续函数. 证明:
 - $(1) \int_{1}^{+\infty} f(x) dx 收敛时, 有 \lim_{x \to +\infty} x f(x) = 0.$
 - (2) 举例说明: 存在不单调递减的函数 f(x) 使得 $\int_1^{+\infty} f(x) dx$ 收敛, 但 f(x) 在 $+\infty$ 的极限不存在.
- 4. 求 $f(x, y, z) = \ln x + 2 \ln y + 3 \ln z$ 在 $x^2 + y^2 + z^2 = r^2(x, y, z > 0, r > 0)$ 下的最大值, 并证明对任意的正数 a, b, c, 都有

$$ab^2c^3 \le 108\left(\frac{a+b+c}{6}\right)^6.$$

5. 已知 $a_n > 0$, 证明:

$$\underline{\lim_{n\to\infty}} \frac{a_{n+1}}{a_n} \le \underline{\lim_{n\to\infty}} \sqrt[n]{a_n} \le \overline{\lim_{n\to\infty}} \sqrt[n]{a_n} \le \overline{\lim_{n\to\infty}} \frac{a_{n+1}}{a_n}.$$

- 6. 设函数列 $\{S_n(x)\}$ 在 [0,a] 上连线,且 $S_n(x) = \int_0^x S_{n-1}(t) dt$,证明: $\{S_n(x)\}$ 在 [0,a] 上一致收敛.
- 7. 求曲面积分

$$I = \iint_{\Sigma} \frac{x \mathrm{d}y \mathrm{d}z + y \mathrm{d}z \mathrm{d}x + z \mathrm{d}x \mathrm{d}y}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}.$$

其中 Σ 是立方体 $|x| \le 1$, $|y| \le 2$, $|z| \le 3$ 的表面, 取外侧.

8. 证明函数

$$f(x) = \begin{cases} x^{\alpha} \cos \frac{1}{x}, & x \in \left(0, \frac{\pi}{2}\right]; \\ \left(x - \frac{\pi}{2}\right)^{2024} e^{-x}, & x \in \left(\frac{\pi}{2}, +\infty\right). \end{cases}$$

在 $(0, +\infty)$ 上一致连续, 其中 $\alpha > 0$.

9. 讨论 $\int_{1}^{+\infty} \cos(x^p) dx$ 的绝对收敛性和条件收敛性.

103 华东理工大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- 1. 求一个三次多项式 f(x) 使得 $(x-1)^2 | f(x) + 1, (x+1)^2 | f(x) 1$.
- 2. 设矩阵

$$A = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{array}\right), B = \left(\begin{array}{rrr} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right).$$

若矩阵 X 满足 AXA + BXB = AXB + BXA + E, 求 X

3. 设行列式

$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{n-1,1} & a_{n-1,2} & \cdots & a_{n-1,n} \\ 1 & 1 & \cdots & 1 \end{vmatrix}.$$

 D_i 是用 $(x_1, x_2, \dots, x_{n-1}, 1)^T$ 替换掉 D 的第 i 列后得到的行列式, 证明:

$$D_1 + D_2 + \dots + D_n = D.$$

- 4. 设 A 是秩为 r 的 $m \times n$ 矩阵, B 是秩为 n r 的 $n \times p$ 矩阵, 且 AB = O. 若向量 b 满足 Ab = 0. 证明:
 - (1) 方程组 BX = b 有解.
 - (2) 当 p = n r 时, 方程组 BX = b 有唯一解.
- 5. 设 $\alpha_1, \alpha_2, \dots, \alpha_n$ 为 n 个列向量, 满足

$$\alpha_i^T \alpha_i = \pm \cos \theta, i \neq j, \cos \theta \neq 1.$$

记 $X_i = \alpha_i \alpha_i^T, i = 1, 2, \dots, n.$

- (1) 求 $\operatorname{tr}(X_i)$ 和 $\operatorname{tr}(X_iX_i)$.
- (2) 证明: X_1, X_2, \dots, X_n 线性无关.
- 6. 设实矩阵 A 满足 $A + A^T = J E$, 其中 J 是元素全为 1 的 n 阶方阵. 证明:
 - (1) 对任意复向量 α , 有 $0 \le \alpha^H J \alpha \le n \alpha^H \alpha$.
 - (2) A 的特征值在 $\left[-\frac{1}{2}, \frac{n-1}{2}\right]$ 之间.
- 7. 在所有 n 阶实对称矩阵构成的线性空间 V 上定义内积 (A, B) = tr(AB).
 - (1) 证明: V 构成欧几里得空间.
 - (2) $S \neq V$ 中满足 tr(A) = 0 的矩阵组成的子空间, 求 dim S.
 - (3) 求 dim (S^{\perp}) .

- 8. 设 V 是酉空间, W 是 V 的子空间, $\beta \in V$ 是一个向量, 如果 W 中的向量 α 满足对任意 的 $\gamma \in W$ 都有 $\|\beta \alpha\| \le \|\beta \gamma\|$, 则称 α 是 β 到 W 的投影.
 - (1) α 属于 W 的正交补. (2) α 是唯一的.
- 9. 设 n 维欧氏空间 V 上的两个线性变换 σ , τ 满足

$$(\sigma(\alpha), \sigma(\beta)) = (\tau(\alpha), \tau(\beta)), \forall \alpha, \beta \in V.$$

证明: $\text{Im } \sigma$ 和 $\text{Im } \tau$ 同构.

10. 设线性空间 V 和 V 的子空间 V_1, V_2 满足 $V = V_1 \oplus V_2, \sigma, \tau$ 是两个线性变换, $\sigma(\alpha) = \alpha_1 + \alpha_2 (\alpha_i \in V_i)$, 证明: V_1, V_2 都是 τ 的不变子空问的充要条件是 $\sigma\tau = \tau\sigma$.

104 武汉理工大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- 1. 计算极限 $\lim_{n\to\infty} (e^2 + 6^n + 8^n)^{\frac{1}{n}}$.
- 2. 设 $f(x) = (x^2 + a) e^x$ 在定义域 \mathbb{R} 上有拐点但无极值点, 求 a 的取值范围、
- 3. 计算积分 $\int_0^{\frac{\pi}{2}} \frac{\cos x}{\sin x + \cos x} \mathrm{d}x.$
- 4. 计算曲面积分

$$\iint_{\Sigma} x^3 dy dz + y^3 dz dx + (x^2 + y^2 + z^3) dx dy$$

其中 Σ : $x^2 + y^2 + z^2 = R^2$, 方向取外侧.

- 5. 讨论级数 $\sum_{n=1}^{\infty} \frac{x^n}{n(n+1)}$ 在 [-1,1] 上的一致收敛性, 并求其和函数.
- 6. 设 f(x) 在 x = 0 的某邻域内存在一阶连续导数, 且 $\lim_{x \to 0} \frac{f(x)}{x} = a > 0$. 讨论 $\sum_{n=1}^{\infty} (-1)^n f\left(\frac{1}{n}\right)$ 是否收敛, 若收敛是条件收敛还是绝对收敛?
- 7. 已知 z = f(x, y) 的全微分 dz = 2xdx 2ydy, 且 f(1, 1) = 2.
 - (1) 求 f(x,y) 的表达式.

(2) 求
$$f(x, y)$$
 在 $D: \left\{ (x, y) \middle| x^2 + \frac{y^2}{4} \le 1 \right\}$ 上的最大值与最小值.

8. 讨论函数

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0); \\ 0, & (x,y) = (0,0). \end{cases}$$

在原点处的连续性与可微性.

9. 设 f(x) 存在一阶连续导数, 且

$$f(x) = x + \int_0^x t f'(x - t) dt + \int_0^{+\infty} e^{-\sqrt{x}} dx.$$

求 f(x) 的表达式.

10. 证明如下问题:

$$(1) \frac{x}{1+x} < \ln(1+x) < x(x>0).$$

(2)
$$a_n = \sum_{k=1}^n \frac{1}{k} - \ln n \text{ www}.$$

11. 用有限覆盖定理证明康拓定理, 即 [a,b] 上的连续函数一致连续,

12. 设 f(x) 在 [-a,a] 上二阶连续可导,且 f(0)=0,证明: 存在 $\xi\in(-a,a)$,使得

$$f''(\xi) = \frac{1}{a^2} [f(a) + f(-a)].$$

13. 已知连续函数列 $\{f_n(x)\}$ 在 [a,b] 上一致收敛于 f(x), 若 $\{x_n\} \subset [a,b]$ 满足 $\lim_{n\to\infty} x_n = c$, 证明:

$$\lim_{n\to\infty} f_n(x_n) = f(c).$$

105 武汉理工大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

1. (10 分) 计算行列式

$$D_{n} = \begin{vmatrix} a+1 & a+2 & a+3 & \cdots & a+n \\ a+2 & a+3 & a+4 & \cdots & a+1 \\ a+3 & a+4 & a+5 & \cdots & a+2 \\ \vdots & \vdots & \vdots & & \vdots \\ a+n & a+1 & a+2 & \cdots & a+n-1 \end{vmatrix}.$$

2. (15 分) 已知非齐次线性方程组

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = -1 \\ 4x_1 + 3x_2 + 5x_3 - x_4 = -1 \\ ax_1 + x_2 + 3x_3 + bx_4 = 1 \end{cases}$$

有三个线性无关的解.

- (1) 求系数矩阵的秩.
- (2) 求 a,b 及解集合的秩与极大线性无关组.
- 3. (15 分) 已知 A 为 4 阶矩阵, 且有特征值 1, -1, 2, -2, 求 $\left| \frac{1}{16} (A^*)^* + A^3 A^* 2E \right|$.
- 4. (20 分) 已知 $W = \{A \mid \operatorname{tr}(A) = 0, A \in \mathbb{R}^{2 \times 2}\}.$
 - (1) 证明 W 为 $\mathbb{R}^{2\times 2}$ 的子空间.
 - (2) 求 W 的维数与一组基.
- 5. (20 分) 已知数域 ℙ 上的线性空间

$$V = \left\{ f(t) \mid f(t) = a_0 + a_1 t + a_2 t^2, a_0, a_1, a_2 \in P \right\}.$$

设 \mathcal{F} 为 V 上的一个线性变换, 且 $\mathcal{F}(f(t)) = f(2), f(t) \in V$.

- (1) 求 \mathcal{I} 在基 $1,t,t^2$ 下的矩阵 A.
- (2) 求 Ø 的特征子空间的维数与基.
- 6. (20 分) 已知二次型 $f(x_1, x_2, x_3) = x_1^2 + 4x_2^2 + 4x_3^2 + 2tx_1x_2 2x_1x_3 + 4x_2x_3$ 为正定二次型.
 - (1) 求 t 的取值范围.
 - (2) 求一个非退化线性替换化二次型为规范型.
- 7. (20 分) 已知 A 为三阶实对称矩阵, 1,-1,0 为 A 的特征值, $\alpha_1 = (1,-2,1)^T$ 为 $\lambda = 1$ 对 应的特征向量, $\alpha_2 = (-1,a,1)^T$ 为 $\lambda = -1$ 对应的特征向量, 求 a 的值以及矩阵 A.

- 8. (20 分) 设 $A \in M_{n \times n}(\mathbb{R})$, rank(A) = r.
 - (1) 证明: 存在 m 级正交矩阵 P 和 n 级正交矩阵 Q, 使得 $P^TAQ = \begin{pmatrix} D & O \\ O & O \end{pmatrix}$, 其中 D 为 r 阶可逆对角矩阵.

(2) 若
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ 1 & 1 \end{pmatrix}$$
, 求相应的正交矩阵 P, Q , 使得 $P^T A Q = \begin{pmatrix} D & O \\ O & O \end{pmatrix}$,

9. (10 分) 设 $V = V_1 \oplus V_2, \alpha_1, \alpha_2, \cdots, \alpha_s$ 为 V_1 中线性无关的向最, $\beta_1, \beta_2, \cdots, \beta_t$ 为 V_2 中的 线性无关的向量, 证明: $\alpha_1, \alpha_2, \cdots, \alpha_s, \beta_1, \beta_2, \cdots, \beta_t$ 线性无关.

106 广西大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- 1. 求极限 $\lim_{x\to 0} \frac{\sqrt{1+\tan x} \sqrt{1-\sin x}}{x}$.
- 2. 设 $z = x^2 + y^2$, 其中 y = f(x) 是由方程 $x^2 xy + y^2 = 1$ 确定的隐函数, 求 $\frac{d^2z}{dx^2}$.
- 3. 设抛物线 $y^2 = 2x$ 将 $x^2 + y^2 \le 8$ 分成左右两部分,求左右两部分面积之比.
- 4. 求 $y^2 = 2px$ 上一点, 使得此点处的法线被抛物线截取的线段最短.
- 5. 求曲线积分 $\int_{L} xy ds$, 其中 L 为椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 在第一象限的部分.
- 6. 求重积分 $\iiint_V (x^2 + y^2 + z) dx dy dz$, 其中 V 是直线 z = y, x = 0 绕 z 轴施转所得曲面与 z = 1 围成的区域。
- 7. 求 $y = \arcsin(\cos x)$ 的傅里叶级数展开式.
- 8. 求曲面积分 $\iint_{S} (x+y+z) dS$, 其中 $S: x^2 + y^2 + z^2 = a^2, z \ge 0$.
- 9. 已知 $\lim_{n\to\infty} a_n = a$, 若 $a_n, a > 0$, 证明: $\lim_{n\to\infty} \sqrt[3]{a_n} = 1$.
- 10. 设 f(x) 在 $[a, +\infty)$ 上连续, 且 $\lim_{x\to +\infty} f(x)$ 存在, 证明: f(x) 在 $[a, +\infty)$ 上一致连续.
- 11. 证明 $f(x) = x^3 e^{-x^2}$ 是有界函数.
- 12. 证明 $\int_0^{+\infty} \frac{\sin xy}{y} dy$ 在 $[\delta, +\infty)(\delta > 0)$ 上一致收敛, 在 $(0, +\infty)$ 上不一致收敛.
- 13. 由闭域套定理证明 \mathbb{R}^2 中的有界无限点集 E 在 \mathbb{R}^2 中至少有一个聚点.
- 14. 设 S 是包闱 V 的光滑曲面, 证明 V 的体积 ΔV 为

$$\Delta V = \frac{1}{3} \iint_{S} (x \cos \alpha + y \cos \beta + z \cos \gamma) dS.$$

其中 $\cos \alpha$, $\cos \beta$, $\cos \gamma$ 是曲面 S 外法线的方向余弦.

107 广西大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- 一. 填空题. 每题 6 分, 共 48 分.

 - 2. 设向量组

$$\alpha_1 = (1, 0, 3, 4, 3)', \alpha_2 = (3, -1, 2, 1, 3)', \alpha_3 = (-1, 1, 0, 5, 2)',$$

$$\alpha_4 = (3, 0, 5, 10, 8)', \alpha_5 = (-1, 0, 1, -2, -2)'$$

则 $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ 的秩是 .

- 3. 已知二次型 $x_1^2 + x_2^2 + 5x_3^2 + 2tx_1x_2 2x_1x_3 + 4x_2x_3$ 是正定的, 则 t 满足 ...
- 4. 设 ℙ 为数域, 在 ℙ⁴ 中, 今

$$W_1 = \{(x_1, x_2, x_3, x_4) \mid x_1 - 2x_2 + 2x_4 = 0, x_1 + 2x_3 = 0\};$$

$$W_2 = \{(x_1, x_2, x_3, x_4) \mid x_1 - 4x_2 - 2x_3 + 4x_4 = 0.\}$$

则 $W_1 \cap W_2$ 的维数是_____.

5. 若 AB = BA, 矩阵 B 就称与 A 可交换, 则所在与 $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ 可交换的矩阵

为_____

- 6. 若方程组 $\begin{cases} x_1 + x_2 + x_3 = 3; \\ x_1 + 2x_2 ax_3 = 9; \end{cases}$ 有唯一解, 则 a 满足的条件是_____. $2x_1 x_2 + 3x_3 = 6;$
- 7. 设 \mathbb{P} 为数域,在 \mathbb{P}^3 中给出一组基 $\alpha_1 = (-1,0,2), \alpha_2 = (0,1,1), \alpha_3 = (3,-1,0)$,定义 线性变换 σ 如下: $\sigma(\alpha_1) = (-5,0,3), \sigma(\alpha_2) = (0,-1,6), \sigma(\alpha_3) = (-5,-1,9)$. 则 σ 在基 $\alpha_1,\alpha_2,\alpha_3$ 下的矩阵为_____.
- 8. 设二阶矩阵 $\begin{pmatrix} -2 & 1 \\ 0 & t \end{pmatrix}$ 与 $\begin{pmatrix} -10 & -4 \\ 26 & 11 \end{pmatrix}$ 相似,则 t =_____.
- 二. (12 分) 计算 n 阶行列式

$$D_{n} = \begin{vmatrix} x & a & a & \cdots & a \\ -a & x & a & \cdots & a \\ -a & -a & x & \cdots & a \\ \vdots & \vdots & \vdots & & \vdots \\ -a & -a & -a & \cdots & x \end{vmatrix}.$$

- 三. (18 分) 设 V_1, V_2, \dots, V_s 是数域 \mathbb{P} 上线性空间 V 的 s 个非平凡子空间, 证明: V 中至少存在向量 α , 使得 $\alpha \notin V_i, i = 1, 2, \dots, s$.
- 四. (12 分) 设 σ 是数域 \mathbb{P} 上线性空间 V 的线性变换,且 $\sigma^2 = \varepsilon$ (ε 是 V 的恒等变换). 证 明: 对 V 中每个向量 α , 存在 $\alpha_1, \alpha_2 \in V$, 使得 $\sigma(\alpha_1) = \alpha_1, \sigma(\alpha_2) = -\alpha_2$,且 α 可唯一地 表示成 α_1 与 α_2 之和 (即 $\alpha = \alpha_1 + \alpha_2$ 表示唯一).
- 五. (12分)设有齐次线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0; \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0; \\ \dots \\ a_{n-1,1}x_1 + a_{n-1,2}x_2 + \dots + a_{n-1,n}x_n = 0. \end{cases}$$

 $M_i(i=1,2,\cdots,n)$ 为系数矩阵 A 划去地 i 列剩下的 $(n-1)\times(n-1)$ 矩阵的行列式. 证明: 如果秩 (A)=n-1,则 $\eta_0=(M_1,-M_2,\cdots,(-1)^{n-1}M_n)$ 是方程组的一个基础解系.

- 六. (18 分) 设 $A = (a_{ij})_{n \times n}$, $B = (b_{ij})_{n \times n}$, $C = (a_{ij}b_{ij})_{n \times n}$. 证明: 若 A, B 均是正定矩阵, 则 C 也是正定矩阵.
- 七. (18 分) 设 m 为正整数, f(x) 和 g(x) 为数域 \mathbb{P} 上的非零多项式, 证明: $g^{m}(x) \mid f^{m}(x)$ 的 充分必要条件是 $g(x) \mid f(x)$.
- 八. (12) 设 α 是欧氏空间 V 的一个非零向量, $\alpha_1,\alpha_2,\cdots,\alpha_m \in V$ 满足

$$(\alpha_i,\alpha) > 0(i=1,2,\cdots,n); (\alpha_i,\alpha_j) \leq 0(i,j=1,2,\cdots,m; i \neq j).$$

其中符号 (x,y) 表示向量 x,y 的内积. 证明: $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性无关.

108 北京交通大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. 设数列 $\{a_n\}$ 没有最大值, 没有最小值, 证明: $\{a_n\}$ 发散.
- 2. f(x) 在 [0,2] 上连续, 且 f(0)+f(1)=2, f(2)=1. 证明: 存在 $\xi \in (0,2)$ 使得 $f'(\xi)=0$.
- 3. 计算 $\int \frac{xe^x}{(x+1)^2} dx$, $\int \frac{1}{(x-1)^2(x-2)} dx$.
- 4. 设 f(x) 在 [a,b] 上三阶可导, 证明存在 $\xi \in (a,b)$ 使得

$$f(b) = f(a) + \frac{1}{2}(b-a)\left[f'(a) + f'(b)\right] - \frac{1}{12}(b-a)^3 f'''(\xi).$$

- 5. 证明:
 - (1) $f(x) = \frac{|\sin x|}{x}$ 在 (-1,0) 和 (0,1) 上一致连续.
 - (2) $f(x) = \frac{|\sin x|}{x}$ 在 $(-1,0) \cup (0,1)$ 上不一致连续.
- 6. 设

$$f(x) = \begin{cases} xy \sin \frac{1}{x^2 + y^2}, & x^2 + y^2 \neq 0\\ 0, & x^2 + y^2 = 0. \end{cases}$$

(1) 求 $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$. (2) $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ 在 (0,0) 是否连续, f(x,y) 在 (0,0) 是否可微?

7. 证明
$$\begin{cases} x+y+u+v=0\\ x^2+y^2+u^4+v^4=1 \end{cases}$$
 存在
$$\begin{pmatrix} u\\ v \end{pmatrix} = \begin{pmatrix} u(x,y)\\ v(x,y) \end{pmatrix}, 并计算 \frac{\partial u}{\partial x}, \frac{\partial^2 u}{\partial x^2}.$$

- - (1) 证明: $\{f_n(x)\}$ 在 (0,1] 上不一致收敛.
 - (2) 证明: $\{f_n(x)\}$ 在 $[\alpha,1]$ 上一致收敛, 其中 $0 < \alpha < 1$.
- 9. 计算 $\sum_{n=1}^{\infty} \frac{1}{(n+1)2^n}$.

109 西北大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

1. (20分) 求下列极限.

(1)
$$\lim_{x\to 0} \left(\frac{2 + e^{\frac{1}{x}}}{1 + e^{\frac{4}{x}}} + \frac{\sin x}{|x|} \right).$$

(2)
$$\lim_{x \to 0} \frac{1}{x^3} \left[\left(\frac{2023 + \cos x}{2024} \right)^x - 1 \right].$$

2. (20 分) 设 $x_1 > 0$, 作迭代序列

$$x_{n+1} = \ln(1 + x_n), n = 1, 2, \cdots$$

- (1) 证明: $\lim_{n\to\infty} x_n$ 存在, 并求其值.
- $(2) \not \exists \lim_{n \to \infty} \frac{x_n x_{n+1}}{x_n x_{n+1}}.$
- 3. (15 分) 设 f(x) 在 [-1,1] 上有连续的二阶导数, 且 f(0) = 0.
 - (1) 号出 f(x) 的带拉格朗日型余项的一阶麦克劳林公式.
 - (2) 证明: 至少存在一点 $\eta \in [-1, 1]$, 使得 $f''(\eta) = 3 \int_{-1}^{1} f(x) dx$.
- 4. (15 分) 已知 z = f(x, y) 的全微分为 $\mathrm{d}z = 2x\mathrm{d}x 2y\mathrm{d}y$, 且 f(1, 1) = 2, 求 f(x, y) 在有界闭区域 $D: x^2 + \frac{y^2}{4} \le 1$ 上的最大值与最小值.
- 5. (15 分) 设 Ω 为半球 $\{(x, y, z) \mid x^2 + y^2 + z^2 \le 1, z \ge 0\}$, 计算

$$I = \iiint_{\Omega} (\sqrt{2}x + z)^2 \mathrm{d}x \mathrm{d}y \mathrm{d}z.$$

- 6. $(15 \, \text{分}) \, \stackrel{\cdot}{\mathcal{U}} P(x,y) = \frac{x \left(x^2 + y^2\right)^k}{y}, Q(x,y) = -\frac{x^2 \left(x^2 + y^2\right)^k}{y^2}.$
 - (1) 若积分 $\int_{L} P dx + Q dy$ 在 $D = \{(x, y) \mid y > 0\}$ 上与路径无关, 求 k 的值.
 - (2) 对第 (1) 的 k, 在 D 内求函数 u(x,y), 使得 du = Pdx + Qdy, 并计算 $I = \int_{(1,2)}^{(3,4)} Pdx + Qdy$.
- 7. (15 分) 计算第二类曲面积分

$$\iint_{\Sigma} dy dz + z dz dx + \frac{e^{x}}{\sqrt{x^{2} + y^{2}}} dx dy.$$

其中 Σ 是曲面 $z = \sqrt{x^2 + y^2}$ 介于两平面 z = 1 和 z = 2 之间的部分, 取下侧.

- 8. $(15 \, \mathcal{G})$ 求函数项级数 $\sum_{n=1}^{\infty} \left(x + \frac{1}{n}\right)^n$ 的收敛域, 并讨论和函数的连续性.
- 9. (20 分) 设 $\varphi(x) = \int_0^{+\infty} \frac{t}{2+t^x} dt (x \ge 3)$. 令

$$f_n(x) = \sum_{k=0}^{n-1} \frac{1}{n} \varphi\left(x + \frac{k}{n}\right), n = 1, 2, \cdots$$

证明: 函数列 $\{f_n(x)\}$ 在 [3,A] 上一致收敛, 其中 A > 3.

110 北京邮电大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

1. 求极限

$$\lim_{x \to 0} \frac{1 - \cos x \sqrt{\cos 2x} \sqrt[3]{\cos 3x}}{x^2}.$$

2. 计算

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 + \sin 3x}{1 + \cos^2 x} \mathrm{d}x.$$

- 3. 求幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^{(n-1)}}{2n-1} x^{2n}$ 的收敛域及和函数.
- 4. 求二元函数 $f(x, y) = x^2(2 + y^2) + y \ln y$ 的极值.
- 5. 若 $a_n > 0$, $\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = l > 1$, 证明: $\lim_{n \to \infty} a_n = 0$.
- 6. 讨论 $\ln^2 x 2 \ln x + 2x + k = 0$ 的实根个数, 其中 k 是常数.
- 7. 已知 $xe^{-\frac{\pi}{2}} \ln(1+x)$ 与 αx^n 是等价无穷小量, 求 α 和 n.
- 8. 判别 $\int_0^{+\infty} \frac{\ln x}{\sqrt[3]{x^4 x}} dx$ 的迫敛性.
- 9. 求圆锥体 $z \ge \sqrt{x^2 + y^2}$ 与 $x^2 + y^2 + (z 1)^2 \le 1$ 所围立体的体积.
- 10. 计算

$$I = \int_{I} 3xy dx + (x^{3} + x - 2y) dy.$$

其中 L 是第一象限从 (0,0) 沿圆周 $x^2 + y^2 - 2x = 0$ 到 (2,0), 再从 (2,0) 沿圆周 $x^2 + y^2 = 4$ 到 (0,2) 的曲线.

11. 设平面 2x + y + 2z = 2 与三个坐标平面围成 Ω, Σ 为 Ω 的整个表面, 取外侧, 求

$$I = \iint_{\Sigma} (x^2 + 1) \, \mathrm{d}y \, \mathrm{d}z - 2y \, \mathrm{d}z \, \mathrm{d}x + 3z \, \mathrm{d}x \, \mathrm{d}y.$$

- 12. 讨论 $\alpha > 0$ 时, $f(x) = x^{\alpha}$ 在 $(0, +\infty)$ 上的一致连续性.
- 13. 证明 $\sum_{n=1}^{\infty} \frac{(-1)^n}{x^2 + n}$ 在 $(-\infty, +\infty)$ 上一致收敛。
- 14. f(x) 在 $(0, +\infty)$ 上可微, $0 \le f(x) \le \frac{x}{1+x^2}$, 证明存在 $\xi > 0$, 使 $f'(\xi) = \frac{1-\xi^2}{(1+\xi^2)^2}$,
- 15. 设 f(x) 可导且 $f(0) = 1, 0 < f'(x) < \frac{1}{2}$, 数列 $\{x_n\}$ 满足 $x_{n+1} = f(x_n)$ $(n = 1, 2, \cdots)$. 证明:
 - (1) 级数 $\sum_{n=1}^{\infty} (x_{n+1} x_n)$ 绝对收敛;
 - $(2) \lim_{n \to \infty} x_n$ 存在且 $0 < \lim_{n \to \infty} x_n < 2.$

111 北京邮电大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- 1. 证明: 在 $\mathbb{Q}[x]$ 中, 如果 $(x+1) \mid f\left(x^{2k+1}\right)$, 那么 $\left(x^{2k+1}+1\right) \mid f\left(x^{2k+1}\right)$, 其中 k 为任 意自然数.
- 2. 已知矩阵

$$A = \left(\begin{array}{rrr} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right).$$

- (1) 证明当 $n \ge 3$ 时, 有 $A^n = A^{n-2} + A^2 E$, 其中 E 为 3 阶单位矩阵.
- (2) 求 A^{100} .
- 3. 当

$$A^{-1} = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 3 \end{array}\right).$$

求 A^* , $|A^*|$, $\sum_{j=1}^3 \sum_{i=1}^3 A_{ij}$, 其中 A^* 是 A 的伴随迅阵, A_{ij} 是 |A| 中第 i 行第 j 列的代数余子式.

- 4. 已知 $\alpha_1 = (1,2,3), \alpha_2 = (3,-1,2), \alpha_3 = (2,3,c),$ 当 c 为何值时, $\alpha_1,\alpha_2,\alpha_3$ 线性相关? 当 c 为何值时, $\alpha_1,\alpha_2,\alpha_3$ 线性无关?
- 5. 设 3 阶实对称矩阵 A 的特征值是 $1, 2, 3, \alpha_1 = (-1, -1, 1)', \alpha_2 = (1, -2, -1)'$ 分别为 A 对应于 1, 2 的特征向星.
 - (1) 求 A 对应于特征值 3 的特征向量.
 - (2) 求炬阵 A.
 - (3) 设 $\beta = (2,1,0)'$, 计算 $A^n \beta$.
- 6. 已知实二次型 $f(x_1, x_2, x_3) = ax_1^2 + 2x_2^2 2x_3^2 + 2bx_1x_3$ (其中 b > 0), 它的矩阵 A 的特征值之和为 1, 特征值之积为 -12.
 - (1) 求 a, b 的值.
 - (2) 求正交变换, 把上述二次型 $f(x_1, x_2, x_3)$ 化为标准形.
- 7. 设实矩阵 $A = (a_{ij})_{m \times n}$, V_1 是 AX = 0 的解空间. 令 $\alpha_i = (a_{i1}, a_{i2}, \dots, a_{in})'$ $(i = 1, 2, \dots, m)$, V_2 为向量组 $\alpha_1, \alpha_2, \dots, \alpha_m$ 生成的向量空间,即 $V_2 = L(\alpha_1, \alpha_2, \dots, \alpha_m)$,证 明: $\mathbb{R}^n = V_1 \oplus V_2$.

8. 设 $M_2(P)$ 表示数域 \mathbb{P} 上全体 2 阶矩阵关于矩阵加法和数乘构成的 P 上的线性空问, 在 $M_2(P)$ 中定义的变换 σ 如下

$$\sigma((a_{ij})) = (b_{ij}), \forall A = (a_{ij}) \in M_2(P),$$

其中 $b_{ij} = \begin{cases} a_{ij}, & i \neq j; \\ i \operatorname{tr}(A), & i = j. \end{cases}$ 这里 $\operatorname{tr}(A)$ 表示矩阵的迹,即对角线元素之和,

- (1) 证明 σ 是 $M_2(P)$ 上的线性变换.
- (2) 求出 σ 的核 $Ker(\sigma)$ 的维数和一个基.
- (3) 求出 σ 的全部特征子空间.
- 9. 设 V_1, V_2 是 4 维欧几里得空间 \mathbb{R}^4 的两个子空间, 其中 V_1 是由向量

$$\alpha_1 = (1, 0, 1, -2)', \alpha_2 = (1, 2, -1, 0)', \alpha_3 = (1, 1, 0, -1)'$$

生成的子空间, V2 由向量

$$\beta_1 = (0, -2, 2, -2)', \beta_2 = (-1, 3, 0, 4)', \beta_3 = (1, 5, 0, 2)', \beta_4 = (-1, 1, 2, 2)'$$

生成的子空问, 求 $V_1 + V_2$ 的正交补。

10. 设 A 是数域 \mathbb{P} 上的一个 $m \times n$ 矩阵, β 是数域 \mathbb{P} 上的一个 m 维非零列向量, 令

$$W = \{ \alpha \mid \alpha \in P^n, \, \text{f} \text{a} t \in P \, \text{f} \text{d} \alpha = t \beta \}.$$

- (1) 证明 $W \in \mathbb{P}^n$ 的一个子空间.
- (2) 设线性方程组 $Ax = \beta$ 的增广矩阵的称为 r, 证明 W 的维数为 n r + 1.

112 北京科技大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180__ 分钟 满分: _150__ 分

- 1. 解答题, 每题 10 分, 共 40 分.
 - $(1) 求极限 \lim_{x\to 0} \left(\frac{1}{x^2} \frac{1}{x\tan x}\right).$
 - (2) 求极限 $\lim_{x\to 0} \frac{1+\frac{1}{2}x^2-\sqrt{1+x^2}}{(\cos x-e^{x^2})\sin x^2}.$
 - (3) 设 g(0) = 0, g'(0) = 1, 分析 $f(x) = \begin{cases} g(x) \sin \frac{1}{x}, & x > 0; \\ g(x) \cos x, & x \le 0. \end{cases}$ 在 x = 0 处的连续性和可导性.
 - (4) \vec{x} $I = \int x e^{\alpha x} \cos bx dx \not D = \int x e^{\alpha x} \sin bx dx$.
- 2. (10 分) 设正数列 $\{a_n\}$ 满足 $a_n = \frac{a_{n+1}^2}{n} + a_{n+1}, n = 1, 2, \cdots$. 计算极限 $\lim_{n \to \infty} a_n \ln n$.
- 3. (10 分) 设 f(x) 在 [a,b] 上有二阶导数,且 $f^{(k)}(a) = f^{(k)}(b) = 0(k = 0,1)$,证明: 存在 $\xi \in (a,b)$,使得

$$f^{(2)}(\xi) = f(\xi).$$

- 4. (10分)利用致密性定理证明闭区间上的连续函数必然是有界的.
- 5. (15 分) 按照 p 的范围来说明级数 $\sum_{n=1}^{\infty} \left(\frac{1}{n^p} \ln \left(1 + \frac{1}{n^p} \right) \right) (p > 0)$ 的收敛性.
- 6. (15 分) 求 $x = r \cos \varphi$, $y = r \sin \varphi$, $z = r \cot \alpha$ 在点 $M_0(r_0, \varphi_0)$ 处的切平面方程 (α 为常数).
- 7. (10 分) 讨论级数 $\sum_{n=0}^{\infty} \int_{0}^{1} (-1)^{n} (1-x) x^{n} dx$ 的收敛性并计算其和。
- 8. (15 分) 设函数 f(x) 连续, Σ 是球面 $x^2 + y^2 + z^2 = 1$, 且 a, b, c 是常数, 证明:

$$\iint_{\Sigma} f(ax + by + cz) dS = 2\pi \int_{-1}^{1} f\left(\sqrt{a^2 + b^2 + c^2}u\right) du.$$

9. (15 分) 设 $a > 0, b > 0, m \neq 0$ 为常数, 计算积分

$$I(a,b) = \int_0^{+\infty} \frac{e^{-ax} - e^{-bx}}{x} \cos(mx) dx.$$

10. (10 分) 设 P(x,y), Q(x,y) 在 \mathbb{R}^2 上有一阶连续偏导数, 若对以任意点 $(x_0,y_0)\in\mathbb{R}^2$ 为中心,以任意 r>0 为半径的上半圆周 $L_r:y-y_0=\sqrt{r^2-(x-x_0)^2}$, 均有

$$I(r) = \int_{L_r} P(x, y) dx + Q(x, y) dy = 0.$$

证明: $P(x, y) \equiv 0, \frac{\partial Q(x, y)}{\partial x} \equiv 0.$

113 北京科技大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

1. (15 分) 计算 π 阶行列式

$$D_n = \begin{vmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ 2 & 3 & 4 & \cdots & n & 1 \\ 3 & 4 & 5 & \cdots & 1 & 2 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ n-1 & n & 1 & \cdots & n-3 & n-2 \\ n & 1 & 2 & \cdots & n-2 & n-1 \end{vmatrix}.$$

- 2. (15 分) 设 $\alpha_1 = (1,2,0)^T$, $\alpha_2 = (1,a+2,-3a)^T$, $\alpha_3 = (-1,-b-2,a+2b)^T$, $\beta = (1,3,-3)^T$. 试讨论当 a,b 为何值时.
 - (1) β 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表出.
 - (2) β 可由 $\alpha_1, \alpha_2, \alpha_3$ 唯一的线性表示, 并求出表示式.
 - (3) β 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示, 但表示式不唯一, 并求出其一般表达式.
- 3. $(15 \, \text{分})$ 设 α 为 3 维单位列向量, E 为 3 阶单位矩阵, 求矩阵 $E \alpha \alpha^T$ 的秩.
- 4. (15分)已知实对称矩阵

$$A = \left(\begin{array}{ccc} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{array}\right).$$

- (1) 若 tE + A 为正定矩阵, 求 t 的取值范围.
- (2) 求正交矩阵 Q, 使得 $Q^T A Q$ 为对角矩阵.
- 5. (20分)设 A 为 n×n 实矩阵, 令

$$N(A) = \{X \in \mathbb{R}^n \mid AX = 0\},\,$$

$$R(A) = \{ Y \in \mathbb{R}^m \mid \text{ 存在}X \in \mathbb{R}^n \text{ 使得}AX = Y \}.$$

- (1) N(A) 为 \mathbb{R}^n 的子空间, R(A) 为 \mathbb{R}^m 的子空间.
- (2) $N(A)^{\perp} = R(A^T)$, 这里 $N(A)^{\perp}$ 表示 N(A) 的正交补空间.
- 6. (20 分) 设 A, B, C, D 是数域 \mathbb{P} 上的两两可交换的 n 阶方阵, 且 $AC + BD = E_n$, 这 里 E_n 为 n 阶单位矩阵, 记线性方程组 ABX = 0, AX = 0 和 BX = 0 的解空问分别为 W, W_1, W_2 , 证明: $W = W_1 \oplus W_2$.

- 7. $(25 \, \text{分})$ 设 $D = \begin{pmatrix} A & C \\ C^T & B \end{pmatrix}$ 为正定矩阵, 其中 A, B 分别为 m 阶和 n 阶对称矩阵, C 为 $m \times n$ 矩阵, 证明: $B C^T A^{-1} C$ 为正定矩阵.
- 8. (10 分) 设 p 为素数, a 为整数, 且 $p^2 \mid (a+1)$, 判断多项式 $f(x) = ax^p + px + 1$ 在有理数域上是否可约, 并给出理由.
- 9. (15 分) 设 V 为复数域上的 4 维线性空间, e_1 , e_2 , e_3 , e_4 为 V 的一组基, 令 φ 为 V 上的线性变换, 且 φ 在基 e_1 , e_2 , e_3 , e_4 下的矩阵为

$$A = \left(\begin{array}{rrrr} 3 & -1 & 1 & -7 \\ -9 & -3 & -7 & -1 \\ 0 & 0 & 4 & -8 \\ 0 & 0 & 2 & -4 \end{array}\right).$$

- (1) 求 V 的一组基 f_1, f_2, f_3, f_4 , 使得 φ 在该组基下的矩阵为若尔当标准形矩阵.
- (2) 求从基 ϵ_1 , ϵ_2 , ϵ_3 , ϵ_4 到基 f_1 , f_2 , f_3 , f_4 的过渡矩阵.

114 北京工业大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. 利用致密性定理 (有界数列必有收敛子列) 证明闭区间连续函数可以达到最大值.
- 2. 设 z = (x, y) 是方程 $x + y + z = e^z$ 确定的隐函数, 求 $\frac{\partial^2 z}{\partial x \partial y}$.
- 3. 求曲线积分

$$I = \int_{I} \frac{y \mathrm{d}x - x \mathrm{d}y}{x^2 + y^2}.$$

其中 L 是 $\frac{x^2}{4} + \frac{y^2}{9} = 1$ 从 (2,0) 逆时针到 (-2,0) 的一段曲线.

4. 利用定积分定义求极限

$$\lim_{n\to\infty}\sum_{k=1}^n\frac{n}{n^2+k}\sin\frac{k}{n}.$$

5. 已知在 f(x,y) 在区域

$$D = \{(x, y) \mid a \le x < +\infty, c \le y \le d\}$$

内连续, 且无穷积分 $\varphi(y) = \int_a^{+\infty} f(x,y) dx$ 在 [c,d] 上一致收敛, 试证明 $\varphi(y)$ 在 [c,d] 上连结

6. 计算

$$I = \int_0^{+\infty} \frac{e^{-x} \sin ax}{x} dx$$

- 7. 证明无穷积分 $\int_{1}^{+\infty} \frac{\sin x}{x^{p}} \cos \frac{1}{x} dx$ 在 p > 1 时绝对收敛, 0 时条件收敛.
- 8. 计算

$$\oint_C (y^2 - z^2) dx + (z^2 - x^2) dy + (x^2 - y^2) dz$$

其中 $C: \begin{cases} x^2 + y^2 + z^2 = 1 \\ x + y + z = 1 \end{cases}$ 的方向和 x + y + z = 1 的法方向 $\vec{n} = (1, 1, 1)$ 构成右手螺旋系.

9. 计算

$$I = \int_0^{\frac{1}{2}} dx \int_x^{1-x} \sqrt{y^2 - x^2} dy.$$

10. 已知 f(x) 在 [0,1] 存在连续导函数, $d_n = \int_0^1 f(x) dx - \frac{1}{n} \sum_{k=1}^n f\left(\frac{k-1}{n}\right)$, 证明:

$$\lim_{n \to \infty} n \, d_n = \frac{1}{2} [f(1) - f(0)]$$

115 北京工业大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

设数域 ℙ上 n 阶方阵

$$A = \begin{pmatrix} a_1^2 & a_1a_2 + 1 & \cdots & a_1a_n + 1 \\ a_2a_1 + 1 & a_2^2 & \cdots & a_2a_n + 1 \\ \vdots & \vdots & & \vdots \\ a_na_1 + 1 & a_na_2 + 1 & \cdots & a_n^2 \end{pmatrix}.$$

其中
$$\sum_{i=1}^{n} a_i = 1, \sum_{i=1}^{n} a_i^2 = n.$$

- (1) 求 A 的行列式 |A|.
- (2) 求 A 的所有特征值.
- 2. 已知 V 是有理数域上的 3 维线性空间, σ 是 V 的线性变换, 已知 α , β , γ ∈ V 满足

$$\sigma(\alpha) = \beta, \sigma(\beta) = \gamma, \sigma(\gamma) = \alpha - 2\beta.$$

证明: 若 $\alpha \neq 0$, 则 α, β, γ 是 V 的一组基.

3. 已知

$$A = \left(\begin{array}{ccc} 1 & -1 & 1 \\ x & 4 & y \\ -1 & -1 & 3 \end{array}\right)$$

有 3 个线性无关的特征向量, 且 |A| = 16, 其中 4 是 A 的一个特征值, 求:

- (1) x, y 的值.
- (2) A^m , 其中 m 是正整数.
- 4. 解答如下问题:
 - (1) 已知 A 为 n 阶半正定矩阵, B 是实矩阵且 AB + BA = O, 证明: AB = BA = O.
 - (2) 已知 A, C 均为 n 阶正定矩阵, 实矩阵 B 是 AX + XA = C 的唯一解, 证明: B 为正定矩阵,
- 5. 已知 V 是实数域上的 n 维线性空间, σ 是 V 的可对角化线性变换, U 是 V 的任一 σ-子 空间.
 - (1) 证明: 存在 V 的 σ -子空间 U', 使得 $V = U \oplus U'$,
 - (2) 证明: σ 在 U 上的限制线性变换 $\sigma|_{V}$ 也是可对角化的.

- 6. 设 V 是实数城 ℝ 上所有 2 阶方阵构成的线性空间, $\forall A, B \in V$ 定义 $(A, B) = \operatorname{tr}(A'B)$.
 - (1) 证明 V 是 4 维欧氏空间.
 - (2) 设 $O \neq A \in V$, 定义 $\sigma_A(B) = B \frac{(2B, A)}{(A, A)}A$, 证明 σ_A 是可对角化的线性变换.
 - (3) 设 $A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, 求 V 的一组基, 使得 σ_A 在这组基下的矩阵为对角矩阵, 并求出该对角矩阵.
- 7. 设数域 \mathbb{P} 上的 n 阶矩阵 A 在数域 \mathbb{P} 上的全部特征值为 λ_i ($i=1,2,\cdots,n$).
 - (1) 证明矩阵 A 相似于上三角矩阵

$$\left(\begin{array}{cccc} \lambda_1 & * & \cdots & * \\ & \lambda_2 & \ddots & \vdots \\ & & \ddots & * \\ & & & \lambda_n \end{array}\right).$$

(2) 若 $-\lambda_i(i=1,2,\cdots,n)$ 全都不是 A 的特征值, 证明 $\varphi: x \mapsto xA + A'x$ 是 $M_n(P)$ 上 的同构线性变换, 其中 $x \in M_n(P), M_n(P)$ 是数域 \mathbb{P} 上所有 n 阶方阵做矩阵加法和矩阵数乘而构成的线性空间.

116 陕西师范大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. (15分)判断对错并说明理由(正确的给出证明,错误的给出反例).
 - (1) 若 f(x) 在 (a,b) 上连续, 则 f(x) 在 (a,b) 上有界.
 - (2) 若 f(x) 在 (a,b) 上连续, 且 $\lim_{x\to a^+} f(x)$ 与 $\lim_{x\to b^-} f(x)$ 均存在, 则 f(x) 在 (a,b) 上有 界.
 - (3) 若 f(x) 在 (a,b) 上连续且有界, 则 $\lim_{x\to a^+} f(x)$ 与 $\lim_{x\to b^-} f(x)$ 均存在.
- 2. (15 分)设数列

$$a_1 = 2, a_2 = 2 + \frac{1}{2}, a_3 = 2 + \frac{1}{2 + \frac{1}{2}}, a_4 = 2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}}, \cdots$$

问数列 {a_n} 是否收敛? 说明理由.

3. (15分)已知

$$f(x) = \begin{cases} (x-1)^3 \cos \frac{1}{x}, & x < 1; \\ a, & x = 1; \\ e^{b(x-1)} + c, & x > 1. \end{cases}$$

问: a, b, c 为何值时, f(x) 在 x = 1 处可导, 并计算 f'(1).

- 4. (15 分) 已知 z = z(x, y) 是由方程 $x + 2y + 3z = e^z$ 确定的隐函数, 计算 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$, $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial y \partial x}$.
- 5. (15 分) 求抛物线 $y^2 = px$, $y^2 = qx(0 及双曲线 <math>xy = a$, xy = b(0 < a < b) 所 围成区域 D 的面积.
- 6. (15分) 计算

$$\iint_{\Sigma} \frac{(x+y)\mathrm{d}y\mathrm{d}z + y\mathrm{d}z\mathrm{d}x + 2z\mathrm{d}x\mathrm{d}y}{\sqrt{x^2 + y^2 + z^2}}.$$

其中 Σ 为球面 $x^2 + y^2 + z^2 = a^2(a > 0)$ 的外侧

- 7. (15 分) 设 f 在闭区间 [a,b] 上有定义,且对任意的 $x,y \in [a,b]$,有 $|f(x) f(y)| \le 2(x-y)^2$,证明: f(x) 在 [a,b] 上为常值函数.
- 8. (15 分) 求幂级数 $\sum_{n=1}^{\infty} \frac{\ln(n+1)}{n} x^n$ 的收敛域.
- 9. (15 分) 设三元函数 f(x, y, z) 在 $D = \{(x, y, z) \mid x + y + z \le 1\}$ 上可微, 且. $\forall (x, y, z) \in D$,

$$|f_x(x, y, z)| \le 1, |f_y(x, y, z)| \le 2, |f_z(x, y, z)| \le 3.$$

证明: $\forall (x_1, y_1, z_1), (x_2, y_2, z_2) \in D$, 有

$$|f(x_2, y_2, z_2) - f(x_1, y_1, z_1)| \le |x_2 - x_1| + 2|y_2 - y_1| + 3|z_2 - z_1|.$$

10. (15 /	分) 设 f(x) ^z	在闭区间 [a,b]	上只有可去间	断点, 证明: .	f(x) 在 [a,b]	上存在.

117 陕西师范大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

1. (15 分) 已知 n(n ≥ 2) 阶行列式

而 A_{ij} 为 D 的第 i 行 j 列元素 a_{ij} 的代数余子式, 求 $A_{11} + A_{12} + \cdots + A_{1m}$.

2. (15 分) 证明复数域上的多项式

$$f(x) = x^n + nx^{n-1} + (n(n-1))x^{n-2} + \dots + (n(n-1)(n-2) \dots 4 \cdot 3)x^2 + (n!)x + n!$$

没有重根.

3. (20) 设 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 是线性方程组 AX=0 的一个基础解系, 记

$$\beta_1 = t_1 \alpha_1 + t_2 \alpha_2, \beta_2 = t_1 \alpha_2 + t_2 \alpha_3, \cdots, \beta_m = t_1 \alpha_m + t_2 \alpha_1.$$

其中 t_1, t_2 为常数, 求 t_1, t_2 满足何种关系时, $\beta_1, \beta_2, \cdots, \beta_m$ 也为方程组 AX = 0 的一个基础解系.

- 4. (15 分) 设 A 是秩为 r 的 n 阶方阵, 证明: 存在 n 阶可逆矩阵 P, 使得 PAP^{-1} 的后 n-r 行全为零.
- 5. $(20 \, \text{分})$ 设 $A = (a_{ij})$ 是 $m \times n$ 阶实矩阵, 证明: n 元实二次型 $f(x_1, x_2, \dots, x_n) = (a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n)^2 + \dots + (a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mnn}x_n)^2$ 是正定二次型的充要必要条件是 A 的秩等于 n.
- 6. (15 分) 设 $A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$ 是数域 \mathbb{P} 上的 $n(n \ge 2)$ 阶可逆分块矩阵, 记 $W_1 = \{X \in P^n \mid A_1 X = 0\}, W_2 = \{X \in P^n \mid A_2 X = 0\}.$

证明: $P^n = W_1 \oplus W_2$.

7. $(20\ \mathcal{G})$ 设 σ 和 τ 是数域 \mathbb{P} 上 n 维线性空间 V 上的两个线性变换, σ 在数域 \mathbb{P} 上有 n 个 互不相同的特征值, 证明: σ 的特征向量都是 τ 的特征向量的充要必要条件是 $\sigma\tau = \tau\sigma$.

8. (15 分) 已知复数域上的三阶矩阵

$$A = \left(\begin{array}{ccc} 2 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{array}\right).$$

求 A 所有可能的 Jordan 标准形, 并确定 A 可对角化的条件.

9. (15 分) 设 A 与 B 都是 n 阶正定矩阵, 证明: AB 是正定矩阵的充要条件是 AB = BA.

118 长安大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. 计算题. 每题 5 分, 共 30 分.
 - (1) 求极限 $\lim_{n\to\infty} \left(1 + \frac{1}{n} + \frac{1}{n^2}\right)^n$.
 - (2) 求极限 $\lim_{x \to +\infty} \left(\sqrt[5]{x^5 + x^4} \sqrt[5]{x^5 x^4} \right)$.
 - (3) 求不定积分 $\int x^2 e^{-x} dx$.
 - (4) 设 $y = \frac{h}{\sqrt{\pi}} e^{-h^2 x^2}$ 在 $x = \pm \delta(\delta > 0)$ 处为拐点, 求 h 的值 (h > 0).
 - (5) 求心形线 $r = a(1 + \cos \theta)(a > 0)$ 所围图形的面积.
 - (6) 求坐标平面与 x = 2, y = 3, x + y + z = 4 所围成的角柱体的体积.
- 2. 简答题. 每题 10 分, 共 40 分.
 - $(1) 证明数列 \left\{ \left(1 + \frac{1}{n+1}\right)^n \right\} \, 是递增数列, 并求极限 \lim_{n \to \infty} \left(1 + \frac{1}{n+1}\right)^n.$
 - (2) $\begin{tabular}{l} \begin{tabular}{l} \begin{$
 - (3) 计算曲面积分 $\iint_S (x+y+z) \mathrm{d}S$, 其中 S 是上半球面 $x^2+y^2+z^2=a^2, z\geq 0$.
 - (4) 计算曲线积分 $\int_L \frac{x \, \mathrm{d}y y \, \mathrm{d}x}{x^2 + y^2}$, 其中 L 是 x O y 平面上任一光滑的封闭曲线, 且不过原点, L 的方向为逆时针方向.
- 3. (15 分) 设 f(x) 在 $(a, +\infty)$ 上可导, 且 $\lim_{x \to +\infty} f'(x) = 0$, 证明: $\lim_{x \to +\infty} \frac{f(x)}{x} = 0$.
- 4. (15 分) 设 f(x) 为 [a,b] 上的连续增函数, 记

$$F(x) = \begin{cases} \frac{1}{x-a} \int_{a}^{x} f(t) dt, & x \in (a,b]; \\ f(a), & x = a. \end{cases}$$

证明: F(x) 为 [a,b] 上的单调增函数.

- 5. (15 分) 设 $f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2}, & x^2 + y^2 \neq 0\\ 0, & x^2 + y^2 = 0. \end{cases}$
 - (1) 讨论 f(x, y) 在 (0,0) 点的连续性.
 - (2) 证明 f(x, y) 在 (0,0) 点偏导数存在.
 - (3) 讨论 f(x, y) 在 (0,0) 点的可微性.

- 6. (20 分) 证明含参量广义积分 $\int_0^{+\infty} \frac{\sin xy}{y} dy$
 - (1) 在 $[\delta, +\infty)$ 上一致收敛 $(\delta > 0)$.
 - (2) 在 $(0,+\infty)$ 上不一致收敛.
- 7. (15 分) 设 f(x) 在 [a,b] 上有连续的导函数, 且 f(a) = 0.
 - (1) 证明: $M^2 \le (b-a) \int_a^b [f'(x)]^2 dx, M = \max_{a \le x \le b} |f(x)|.$
 - (2) 证明: $\int_a^b f^2(x) dx \le \frac{(b-a)^2}{2} \int_a^b [f'(x)]^2 dx$.

119 长安大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: _180 _ 分钟 满分: _150 _ 分

- 1. 填空随. 每题 5 分, 共 30 分.

 - (2) n 阶行列式 $D = |d_{ij}|$, 其中 $d_{ij} = \begin{cases} -1, & i > j \\ 1, & i \leq j. \end{cases}$ 则 D 的展开式中正项总数为_____.
 - (3) 设 A 为 3 阶方阵, 若 A + E, A + 2E, A + 3E 均为退化矩阵, 则 |2A + 8E| =
 - (4) 当 a = 时, 二次型 $f(x, y, z) = a(x^2 + y^2 + z^2) + 2xy + 2xz 2yz$ 是负定的.
 - (5) 设 A, B, A + B 均为 n 阶可逆方阵, 则 $A^{-1} + B^{-1}$ 的遥、逆矩阵为_____.

(6) 设
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & a \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & b \end{pmatrix}$, 则当 $P =$ ______ 时, 满足 $P^{-1}AP =$ _______ B.

- 2. (10 分)应用一元多项式理论证明 sin 10° 为无理数.
- 3. (10 分) 设 $x_1x_2\cdots x_n \neq 0$, 计算下面 n 阶行列式

$$D = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ x_1^2 & x_2^2 & x_3^2 & \cdots & x_n^2 \\ x_1^3 & x_2^3 & x_3^3 & \cdots & x_n^3 \\ \vdots & \vdots & \vdots & & \vdots \\ x_1^n & x_2^n & x_3^n & \cdots & x_n^n \end{bmatrix}.$$

$$\begin{cases} x_1 + x_2 = c; \\ x_2 + x_3 = c; \\ \dots \\ x_{n-1} + x_n = c; \\ x_1 + x_n = c. \end{cases}$$

- 5. (10 分) 设 A, B 是 n 阶方阵, 且满足 AB = A + B, 证明: AB = BA.
- 6. (20分)已知矩阵

$$A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}_{n \times n}$$

- (1) 求满足 f(A) = O 的一个二次多项式 f(x).
- (2) 求 A^{100} .
- (3) 求 $(E_{\rm r} + A)^{100}$.
- (4) $\vec{x} (E_n + A)^{-1}$.
- 7. $(20 \, \text{分})$ 设 $\mathscr A$ 是数域 $\mathbb P$ 上. n 维线性空间 V 的一个线性变换. 证明:
 - (1) 在 $\mathbb{P}[x]$ 中有一个次数不超过 n^2 的多项式 f(x), 使得 $f(\mathscr{A}) = \mathscr{O}$.
 - (2) 如果 $f(\mathscr{A}) = \mathscr{O}, g(\mathscr{A}) =$,那么 $d(\mathscr{O}) =$,这里 d(x) 是 f(x) 与 g(x) 的最大公因式.
 - (3) $\mathscr A$ 可逆的充要条件足存在一个常数项不为 0 的多项式 f(x) 使得 $f(\mathscr A) = \mathscr O$.

8. (15 分) 设
$$A = \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}$, 证明: $A 与 B$ 在复数域上相似

- 9. (15 分) 已知二次型 $f(x_1, x_2, x_3) = (1-a)x_1^2 + (1-a)x_2^2 + 2x_3^2 + 2(1+a)x_1x_2$ 的秩为 2.
 - (1) 求 a 的值.
 - (2) 用正交变换化 $f(x_1, x_2, x_3)$ 为标准形 (要求写出所用的正交变换).
 - (3) 求方程 $f(x_1, x_2, x_3) = 0$ 的解集合.

120 西安电子科技大学 2024 年数学分析试题真题

(考试时间: 2023 年 12 月 24 日上午 8:30-11:30)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. 计算题, 每题 7 分, 共 42 分.
 - (1) 求极限 $\lim_{n \to \infty} \sqrt{1 + a^n + \left(\frac{a^2}{2}\right)^n} (a > 0).$
 - (2) 求不定积分 $\int e^{-\sin x} \frac{\sin 2x}{\sin^4\left(\frac{\pi}{4} \frac{x}{2}\right)} dx.$
 - (3) 求极限 $\lim_{x\to 0} \frac{6(\sqrt[3]{2-\cos x}-1)+\ln\left(1-x^2\right)}{x^4}$.
 - (4) 求重积分 $\iint_D e^{\frac{y}{x+y}} dx dy$, 其中 $D \not\in x + y = 1, x = 0, y = 0$ 所围成的区域.
 - (5) 求曲线积分 $\oint_L \frac{x dy y dx}{4x^2 + y^2}$, 其中 L 是圆周 $(x 1)^2 + y^2 = R^2$, 取逆时针方向.
 - (6) 设 Σ 是 $z = 2 x^2 y^2$ 介于 z = 1 和 z = 2 之间的部分, 取上侧, 求曲面积分

$$\iint_{\Sigma} (x^3 z + x) \, \mathrm{d}y \, \mathrm{d}z - x^2 y z \, \mathrm{d}z \, \mathrm{d}x - x^2 z^2 \, \mathrm{d}x \, \mathrm{d}y.$$

- 2. 判断下列命题是否正确, 若正确请给出证明, 若错误则给出反例, 每题 6 分, 共 24 分.
 - (1) 若数列 $\{a_n\}$ 以 0 为极限, 数列 $\{b_n\}$ 收敛, 则级数 $\sum_{n=1}^{\infty} a_n b_n$ 收敛.
 - (2) 设 $f: \mathbb{R} \to \mathbb{R}$ 是连续映射, $f_n = f \circ f \circ \ldots \circ f$ 为 f 的 n 次复合, 若存在 $x_0 \in \mathbb{R}$ 使得数列 $\{f_n(x_0)\}$ 收敛到 a, 则 a 是 f 的不动点, 即 f(a) = a.
 - (3) 设 f(x), $f_n(x)$ ($n = 1, 2, \cdots$) 均在 [0, 1] 上连续, 且 $\{f_n(x)\}$ 在 [0, 1] 上收敛于 f(x), 则 $\{f_n(x)\}$ 在 [0, 1] 上一致收敛于 f(x).
 - (4) 设 D 是凸区域, 若在 D 内满足 $f_x(x, y) = 0$, 则 f(x, y) 在 D 内的取值与 x 无关.
- 3. (12 分) 讨论 a,b,c 取何值时, $\sum_{n=2}^{\infty} \frac{a^n}{n^b (\ln n)^c}$ 绝对收敛, 条件收敛, 发散.
- 4. (12 分) 设二元函数 f(x,y) 在点 (1,0) 的某邻域有一阶连续偏导数,且 f(1,0) = 0, $f_i(1,0) \neq 0$, 证明: 方程 $f\left(x, \int_0^t \cos u \, \mathrm{d}u\right) = 0$ 在点 (1,0) 的某邻域内可确定隐函数 $t = \varphi(x)$, 并求 $\varphi'(1)$.
- 5. (15 分) 设 $f(x, y, z) = \ln x + 2 \ln y + \ln z$, 求 f(x, y, z) 在 $x^2 + y^2 + z^2 = 4r^2(x, y, z > 0)$ 下 的极大值, 其中 r 为正常数. 证明: 对任意的正实数 a, b, c, 满足 $ab^2c \le 4\left(\frac{a+b+c}{4}\right)^4$.
- 6. $(15 \ \%) \ \% \ f(x) = \sum_{n=0}^{\infty} \frac{1}{2^n + x}$.
 - (1) 证明: f(x) 在 $[0,+\infty)$ 上可导且一致连续.

- (2) 证明: 反常积分 $\int_0^{+\infty} f(x) dx$ 发散.
- 7. $(15 \, \text{分})$ 设 f(x) 在 [0,2] 上逢续, $h \in \left(0,\frac{1}{2}\right)$, 记 $f_h(x) = \frac{1}{h^2} \int_0^h \mathrm{d}u_2 \int_0^h f(x+u_1+u_2) \, \mathrm{d}u_1$.
 - (1) 证明: $f_h(x)$ 在 [0,1] 上二阶可导, 并求 $f_h''(x)$.
 - (2) 若 f(x) 在 $x_0 \in [0,1]$ 处存在二阶导数, 证明: $\lim_{h\to 0^+} f_h''(x_0) = f''(x_0)$.
- 8. (15 分) 设 f(x) 在 [a,b] 上黎曼可积.
 - (1) 证明: 对任意的 $\varepsilon > 0$, 存在区间 $[c,d] \subset [a,b]$, 使得 f(x) 在 [c,d] 振幅 $\omega_f < \varepsilon$.
 - (2) 证明: f(x) 的连续点在 [a,b] 上稠密, 即对任意的 $[\alpha,\beta] \subset [a,b]$, f(x) 在 $[\alpha,\beta]$ 内部有连续点.
 - (3) 若 $f(x) \ge 0$, 证明: $\int_a^b f(x) dx = 0$ 当且仅当 f(x) 在其连续点恒为 0.

121 西安电子科技大学 2024 年高等代数试题真题

(考试时间: 2023 年 12 月 24 日下午 2:00-5:00)

微信公众号: 八一考研数学竞赛

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分

- 1. 设矩阵 $A \in \mathbb{C}^{n \times n}$, 复系数多项式 f(x) = h(x)g(x), 其中 (h(x), g(x)) = 1, 证明: f(A) = O 的充要条件是 rank(h(A)) + rank(g(A)) = n.
- 2. 设 x_1, x_2, \dots, x_n 是互不相同的 n 个数.

(1)
$$\[ec{id} \] |A(t)| = \left| \begin{array}{cccc} x_1 + t & x_1^2 + t & \cdots & x_1^n + t \\ x_2 + t & x_2^2 + t & \cdots & x_2^n + t \\ \vdots & \vdots & & \vdots \\ x_n + t & x_n^2 + t & \cdots & x_n^n + t \end{array} \right|, \]$$

$$\[\] \[\] \] \[\] \[\] \[$$

$$|A(t)| = |A(0)| + t \sum_{ij=1}^{n} A_{ij}.$$

其中 A_{ij} 是 x_i^j 在 |A(0)| 中的代数余子式.

(2) 计算

$$\begin{vmatrix} x_1 + 1 & x_1^2 + 1 & \cdots & x_1^n + 1 \\ x_2 + 1 & x_2^2 + 1 & \cdots & x_2^n + 1 \\ \vdots & \vdots & & \vdots \\ x_n + 1 & x_n^2 + 1 & \cdots & x_n^n + 1 \end{vmatrix}$$

- 3. 设 $A \in \mathbb{R}^n$, 解答如下问题:
 - (1) 若: A 为实矩阵, 证明: 线性方程组 $A^TAX = A^Tb$ 有解.
 - (2) 若 A 为复矩阵, 线性方程组 $A^TAX = A^Tb$ 是否一定有解? 为什么?
 - (3) 若 A 为复矩阵, 线性方程组 $A^H A X = A^H b$ 是否一定有解? 为仆么?
- 4. 求矩阵

$$H = \begin{pmatrix} 1 & -b & & & \\ & 1 & -b & & & \\ & & \ddots & \ddots & & \\ & & & 1 & -b & \\ & & & & 1 \end{pmatrix}$$

的逆.

- 5. 解答如下问题:
 - (1) 证明: 实二次型 $f(x_1, x_2, \dots, x_n) = X^T A X$ 的秋等于矩阵 A 非零特征值的个数, 其中 A 为实对称矩阵, $X = (x_1, x_2, \dots, x_n)^T$.
 - (2) 化二次型 $\sum_{i=1}^{n} (x_i \bar{x})^2$ 为标准形, 其中 $\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$.

- 6. 已知 A, B 分别为 $m \times n, n \times s$ 矩阵,证明: $\operatorname{rank}(AB) = \operatorname{rank}(A) + \operatorname{rank}(B) n$ 的充要条件是 $N(A) \subseteq R(B)$,其中 N(A), R(B) 分别为矩阵 A 的零空间和矩阵 B 的值域空间.
- 7. 设 n 阶复矩阵 A, B 均可相似对角化,且 AB = BA,证明: 存在可道矩阵 P,使得 $P^{-1}AP, P^{-1}BP$ 都是对角矩阵.
- 8. 证明: n 阶矩阵 A 是幂等矩阵的充要条件是 $\operatorname{rank}(A) + \operatorname{rank}(I_n A) = n$.
- 9. 设 A 为 n 阶方阵, 1 不是 A 的不变因子, 3 是 A 的一个特征值, 证明: $A = 3I_r$.
- 10. 设 V 是由 $\mathbb{R}^{3\times3}$ 中所有斜对称矩阵组成的线性空间, 对任意的 $A,B\in V$, 定义 $(A,B)=\frac{1}{2}\operatorname{tr}\left(AB^{T}\right)$.
 - (1) 证明: (,) 是 V 上的一个内积.
 - (2) 令 $\sigma: \mathbb{R}^3 \to V$ 如下:

$$\sigma: \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) \mapsto \left(\begin{array}{cccc} 0 & x_1 & x_2 \\ -x_1 & 0 & x_3 \\ -x_2 & -x_3 & 0 \end{array}\right).$$

证明: σ 是欧几里得空间 \mathbb{R}^3 (指定标准内积) 到 V 的一个同构映射, 并求 V 的一组标准 正交基,

11. 设 W 是向量组 $\alpha_1, \alpha_2, \alpha_3$ 张成的线性子空间, 其中 $\alpha_1 = (1,0,2,1)^T, \alpha_2 = (2,1,2,3)^T, \alpha_3 = (0,1,-2,1)^T$, 求 W 正交补 W^{\perp} 的标准正交基.