Data Mining:

Concepts and Techniques

(3rd ed.)

— Chapter 7 —

Slides Courtesy of Textbook

Chapter 7: Advanced Frequent Pattern Mining

- Pattern Mining: A Road Map
- Pattern Mining in Multi-Level, Multi-Dimensional Space
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Mining Compressed or Approximate Patterns
- Sequential Pattern Mining
- Graph Pattern Mining
- Summary

frequent pattern

Chapter 7: Advanced Frequent Pattern Mining

- Pattern Mining: A Road Map
- Pattern Mining in Multi-Level, Multi-Dimensional Space
- Constraint-Based Frequent Pattern Mining

- Mining High-Dimensional Data and Colossal Patterns
- Mining Compressed or Approximate Patterns
- Sequential Pattern Mining
- Graph Pattern Mining
- Summary

Constraint-based (Query-Directed) Mining

- Finding all the patterns in a database autonomously? unrealistic!
 - The patterns could be too many but not focused!
- Data mining should be an interactive process
 - User directs what to be mined using a data mining query language (or a graphical user interface)
- Constraint-based mining
 - User flexibility: provides constraints on what to be mined
 - Optimization: explores such constraints for efficient mining constraintbased mining: constraint-pushing, similar to push selection first in DB query processing
 - Note: still find all the answers satisfying constraints, not finding some answers in "heuristic search"

Constraints in Data Mining

- Rule (or pattern) constraint
- small sales (price < \$10) triggers big sales (sum > \$200)
- Other Types of Constraints:
 - Knowledge type constraint:
 - classification, association, etc.
 - Data constraint using SQL-like queries
 - find product pairs sold together in stores in Chicago this year
 - Dimension/level constraint
 - in relevance to region, price, brand, customer category
 - Interestingness constraint
 - strong rules: min_support ≥ 3%, min_confidence ≥ 60%

Constraint-Based Frequent Pattern Mining

- Pattern space pruning constraints
 - ■Anti-monotonic: If constraint c is violated, its further mining can be terminated
 - Monotonic: If c is satisfied, no need to check c again
 - Succinct: c must be satisfied, so one can start with the data sets satisfying c
 - ■Convertible: c is not monotonic nor anti-monotonic, but it can be converted into it if items in the transaction can be properly ordered

Pattern Space Pruning with Anti-Monotonicity Constraints

- pattern anti-monotone: For a constraint C, if the super pattern satisfies C, all of its sub-patterns do so too
- data anti-monotone: If an itemset S violates the constraint, so does any of its superset
- ■Ex. 1. $sum(S.price) \le v$ is anti-monotonic
- ■Ex. 2. $max(S.profit) \le 15$ is anti-monotonic
 - ■Itemset ab violates C
 - ■So does every superset of *ab*
- ■Ex. 3. $sum(S.Price) \ge v$ is not anti-monotonic
- ■Ex. 4. *support count* is anti-monotone: core property used in Apriori

TDB (min_sup=2)

TID	Transaction		
10	a, b, c, d, f		
20	b, c, d, f, g, h		
30	a, c, d, e, f		
40	c, e, f, g		

Item	Profit	Price
a	40	10
b	0	5
С	-20	20
d	10	10
е	-30	100
f	30	40
g	20	50
h	-10	60

Pattern Space Pruning with Monotonicity Constraints

- ■A constraint C is *monotonic* if the pattern satisfies C, we do not need to check C in subsequent mining
- ■Ex. 1. $sum(S.Price) \ge v$ is monotonic
- ■Ex. 2. $min(S.Price) \le v$ is monotonic
- ■Ex. 3. C: $max(S.profit) \ge 15$
 - ■Itemset ab satisfies C
 - ■So does every superset of *ab*

TDB (min_sup=2)

TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

Item	Profit	Price
а	40	10
b	0	5
С	-20	20
d	10	10
е	-30	100
f	30	40
g	20	50
h	-10	60

Pattern Space Pruning with Succinctness

■Succinctness:

- Exists a set A_1 such that for any set S satisfying C, S and A1 have a non-empty intersection, i.e., to satisfy C, S contains a subset belonging to A_1
- $■min(S.Price) \le v$ is succinct
- $\blacksquare sum(S.Price) \ge v$ is not succinct
- ■Optimization: If *C* is succinct, *C* is pre-counting pushable

Apriori + Constraint

Constrained Apriori: Push a Succinct Constraint Deep

Constrained FP-Growth: Push a Succinct Constraint Deep

1-Projected DB

TID	Items
100	3 4
300	235

No Need to project on 2, 3, or 5

Constraint:

min{S.price } <= 1

Constrained FP-Growth: Push a Data Antimonotonic Constraint Deep

Single branch, we are done

Constraint:
min{S.price } <= 1</pre>

Convertible Constraints: Ordering Data in Transactions

- ■Convertible constraints are converted into anti-monotone or monotone by properly ordering items
- Examine C: $avg(S.profit) \ge 25$
 - ■Order items in value-descending order
 - <a, f, g, d, b, h, c, e>
 - ■If an itemset *afb* violates C
 - So does afbh, afb*
 - It becomes anti-monotone!

TDB (min_sup=2)

TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

Item	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Strongly Convertible Constraints

- ■Strongly convertible constraints can be converted to both monotone or anti-monotone constraints.
- \blacksquare avg(X) \ge 25 is convertible anti-monotone
 - ■item value descending order R:
 - **■**<*a*, *f*, *g*, *d*, *b*, *h*, *c*, *e*>
 - ■If an itemset *af* violates a constraint C, so does every itemset with *af* as prefix, such as *afd*
- \blacksquare avg(X) \ge 25 is convertible monotone
 - ■item value ascending order R⁻¹:
 - **■**<*e*, *c*, *h*, *b*, *d*, *g*, *f*, *a*>
 - \blacksquare If an itemset d satisfies a constraint C, so does itemsets df and dfa, which having d as a prefix
- ■Thus, $avg(X) \ge 25$ is strongly convertible

Item	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Can Apriori Handle Convertible Constraints?

- ■A convertible (not monotone nor anti-monotone nor succinct) constraint cannot be pushed deep into the an Apriori mining algorithm
 - ■Within the level wise framework, no direct pruning based on the constraint can be made
 - ■Itemset df violates constraint C: avg(X) >= 25
 - ■Since adf satisfies C, Apriori needs df to assemble adf, df cannot be pruned
- ■But it can be pushed into frequent-pattern growth framework!

Item	Value
а	40
b	0
С	-20
d	10
e	-30
f	30
g	20
h	-10
h	-10

Pattern Space Pruning w. Convertible Constraints

- C: avg(X) >= 25, min_sup=2
- List items in every transaction in value descending order R: <a, f, g, d, b, h, c, e>
 - C is convertible anti-monotone w.r.t. R
- Scan TDB once
 - remove infrequent items
 - Item h is dropped
 - Itemsets a and f are good, ...
- Projection-based mining
 - Imposing an appropriate order on item projection
 - Many tough constraints can be converted into (anti)monotone

Item	Value
а	40
f	30
g	20
d	10
b	0
h	-10
С	-20
е	-30
	~~~ ~

TDB (min_sup=2)

TID	Transaction		
10	a, f, d, b, c		
20	f, g, d, b, c		
30	a, f, d, c, e		
40	f, g, h, c, e		

#### Handling Multiple Constraints

- Different constraints may require different or even conflicting item-ordering
- If there exists an order R s.t. both  $C_1$  and  $C_2$  are convertible w.r.t. R, then there is no conflict between the two convertible constraints
- ■If there exists conflict on order of items
  - ■Try to satisfy one constraint first
  - ■Then using the order for the other constraint to mine frequent itemsets in the corresponding projected database

### Constraint-Based Mining — A General Picture

Constraint	Anti-monotone	Monotone	Succinct
v ∈ S	no	yes	yes
S⊇V	no	yes	yes
S⊆V	yes	no	yes
min(S) ≤ v	no	yes	yes
min(S) ≥ v	yes	no	yes
max(S) ≤ v	yes	no	yes
max(S) ≥ v	no	yes	yes
count(S) ≤ v	yes	no	weakly
count(S) ≥ v	no	yes	weakly
sum(S) ≤ v ( a ∈ S, a ≥ 0 )	yes	no	no
sum(S) ≥ v ( a ∈ S, a ≥ 0 )	no	yes	no
range(S) ≤ v	yes	no	no
range(S) ≥ v	no	yes	no
$avg(S) \theta v, \theta \in \{ =, \leq, \geq \}$	convertible	convertible	no
support(S) ≥ ξ	yes	no	no
support(S) ≤ ξ	no	yes	no

#### Chapter 7: Advanced Frequent Pattern Mining

- Pattern Mining: A Road Map
- Pattern Mining in Multi-Level, Multi-Dimensional Space
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Mining Compressed or Approximate Patterns
- Sequential Pattern Mining



- Graph Pattern Mining
- Summary

#### Sequence Databases & Sequential Patterns

- Transaction databases, time-series databases vs. sequence databases
- ■Frequent patterns vs. (frequent) sequential patterns
- ■Applications of sequential pattern mining
  - ■Customer shopping sequences:
    - First buy computer, then CD-ROM, and then digital camera, within 3 months.
  - ■Medical treatments, natural disasters (e.g., earthquakes), science & eng. processes, stocks and markets, etc.
  - ■Telephone calling patterns, Weblog click streams
  - ■Program execution sequence data sets
  - ■DNA sequences and gene structures

#### What Is Sequential Pattern Mining?

■Given a set of sequences (ordered lists of itemsets), find the complete set of *frequent* subsequences

#### A sequence database

SID	sequence
10	<a(<u>abc)(a<u>c</u>)d(cf)&gt;</a(<u>
20	<(ad)c(bc)(ae)>
30	<(ef)( <u>ab</u> )(df) <u>c</u> b>
40	<eg(af)cbc></eg(af)cbc>



- An element may contain a set of items
- Items within an element are unordered and we list them alphabetically

Given <u>support threshold</u> min_sup = 2, <(ab)c> is a <u>sequential pattern</u>

<u>Sequential pattern mining</u>: find the complete set of patterns, satisfying the minimum support (frequency) threshold

#### Sequential Pattern Mining Algorithms

- Concept introduction and an initial Apriori-like algorithm
  - Agrawal & Srikant: Mining sequential patterns, ICDE'95
- Requirement: efficient, scalable, complete, minimal database scans, and be able to incorporate various kinds of user-specific constraints
- Representative algorithms
  - GSP (Generalized Sequential Patterns): Srikant & Agrawal @ EDBT'96)
  - Vertical format-based mining: SPADE (Zaki@Machine Leanining'00)
  - Pattern-growth methods: PrefixSpan (Pei, Han et al. @ICDE'01)
- Constraint-based sequential pattern mining (SPIRIT: Garofalakis, Rastogi, Shim@VLDB'99; Pei, Han, Wang @ CIKM'02)
- Mining closed sequential patterns: CloSpan (Yan, Han et al. @SDM'03)

#### The Apriori Property of Sequential Patterns

- A basic property: Apriori (Agrawal & Sirkant'94)
  - If a sequence S is not frequent
  - Then none of the super-sequences of S is frequent
  - E.g, <hb> is infrequent → so do <hab> and <(ah)b>

Seq. ID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

Given <u>support threshold</u> min_sup =2

#### GSP—Generalized Sequential Pattern Mining

- GSP (Generalized Sequential Pattern) mining algorithm
  - proposed by Agrawal and Srikant, EDBT'96
- Outline of the method
  - Initially, every item in DB is a candidate of length-1
  - for each level (i.e., sequences of length-k) do
    - scan database to collect support count for each candidate sequence
    - generate candidate length-(k+1) sequences from length-k frequent sequences using Apriori
  - repeat until no frequent sequence or no candidate can be found
- Major strength: Candidate pruning by Apriori

#### Finding Length-1 Sequential Patterns

- ■Examine GSP using an example
- ■Initial candidates: all singleton sequences

■Scan database once, count support for candidates

min	SUP	=2
		_

Seq. ID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

Cand	Sup
<a>&gt;</a>	3
<b></b>	5
<c></c>	4
<d>&gt;</d>	3
<e></e>	3
<f></f>	2
\$g≥	1
\$h\$	1
shz	1

#### GSP: Generating Length-2 Candidates

51 length-2 Candidates

	<a></a>	<b></b>	<c></c>	<d></d>	<e></e>	<f></f>
<a></a>	<aa></aa>	<ab></ab>	<ac></ac>	<ad></ad>	<ae></ae>	<af></af>
<b></b>	<ba></ba>	<bb></bb>	<bc></bc>	<bd></bd>	<be></be>	<bf></bf>
<c></c>	<ca></ca>	<cb></cb>	<cc></cc>	<cd></cd>	<ce></ce>	<cf></cf>
<d></d>	<da></da>	<db></db>	<dc></dc>	<dd></dd>	<de></de>	<df></df>
<e></e>	<ea></ea>	<eb></eb>	<ec></ec>	<ed></ed>	<ee></ee>	<ef></ef>
<f></f>	<fa></fa>	<fb></fb>	<fc></fc>	<fd></fd>	<fe></fe>	<ff></ff>

	<a></a>	<b></b>	<c></c>	<d></d>	<e></e>	<f></f>
<a></a>		<(ab)>	<(ac)>	<(ad)>	<(ae)>	<(af)>
<b></b>			<(bc)>	<(bd)>	<(be)>	<(bf)>
<c></c>				<(cd)>	<(ce)>	<(cf)>
<d></d>					<(de)>	<(df)>
<e></e>						<(ef)>
<f></f>						

Without Apriori property, 8*8+8*7/2=92 candidates

Apriori prunes 44.57% candidates

### The GSP Mining Process

Cand. cannot pass <(bd)cba> 5th scan: 1 cand. 1 length-5 seq. sup. threshold pat. <abba> <(bd)bc> ... 4th scan: 8 cand. 6 length-4 seq. pat. 3rd scan: 46 cand. 19 length-3 seq. <abb> <aab> <aba> <bab> ... pat. 20 cand. not in DB at all 2nd scan: 51 cand. 19 length-2 seq. <aa> <ab> ... <af> <ba> <bb> ... <ff> <(ab)> ... <(ef)> pat. 10 cand. not in DB at all 1st scan: 8 cand. 6 length-1 seq. <a> <b> <c> <d> <e> <f> <q> <h> pat.

Seq. ID
 Sequence

 
$$10$$
 $<(bd)cb(ac)>$ 
 $20$ 
 $<(bf)(ce)b(fg)>$ 
 $30$ 
 $<(ah)(bf)abf>$ 
 $40$ 
 $<(be)(ce)d>$ 
 $50$ 
 $$ 

#### Bottlenecks of GSP

- ■A huge set of candidates could be generated
  - ■1,000 frequent length-1 sequences generate s huge number of length-2

One itemset

candidates! 
$$1000 \times 1000 + \frac{1000 \times 999}{2} = 1,499,500$$
  
Two itemsets

- ■Multiple scans of database in mining
- ■Breadth-first search
- ■Mining long sequential patterns by growing from shorter patterns
  - Needs an exponential number of short candidates
  - ■A length-100 sequential pattern needs 10³⁰ candidate sequences!

$$\sum_{i=1}^{100} \binom{100}{i} = 2^{100} - 1 \approx 10^{30}$$

PrefixSpan: Mining Sequential Patterns by Prefix

**Projections** 

Prefix and suffix

	Given sequence <	a(abc	:)(ac	)d(	(cf)>
--	------------------	-------	-------	-----	-------

<pre>Prefixes: <a>,</a></pre>	<aa>,</aa>	<a(ab)></a(ab)>	and
<a(abc)></a(abc)>			

•	PrefixSpan	Mining	framework
---	------------	--------	-----------

• Step 1: find length-1 sequential patterns

•	<a>,</a>	<b>,</b>	<c>,</c>	<d>,</d>	<e>,</e>	<f></f>
	,	,	,	,	,	

•	Step 2: divid	de search spac	ce and dat	abase. The	complete	set of se	q.
	pat. can be	partitioned in	to 6 subse	ts:			

- The ones having prefix <a>;
- The ones having prefix <b>;
- ...
- The ones having prefix <f>

	_
Prefix	<u>Suffix</u> (Prefix-Based <u>Projection</u> )
<a></a>	<(abc)(ac)d(cf)>
<aa></aa>	<(_bc)(ac)d(cf)>
<ab></ab>	<(_c)(ac)d(cf)>

SID	sequence
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
20	<(ad)c(bc)(ae)>
30	<(ef)(ab)(df)cb>
40	<eg(af)cbc></eg(af)cbc>

#### Finding Seq. Patterns with Prefix <a>

- Only need to consider projections w.r.t. <a>
  - <a>-projected database:
    - <(abc)(ac)d(cf)>
    - <(_d)c(bc)(ae)>
    - <(_b)(df)cb>
    - <(_f)cbc>
- Find all the length-2 seq. pat. Having prefix <a>: <aa>, <ab>,<ab>,<ac>, <ad>, <af></a>
  - Further partition into 6 subsets
    - Having prefix <aa>;
    - ...
    - Having prefix <af>

SID	sequence
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
20	<(ad)c(bc)(ae)>
30	<(ef)(ab)(df)cb>
40	<eg(af)cbc></eg(af)cbc>

#### Completeness of PrefixSpan

#### **SDB**

SID	sequence
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
20	<(ad)c(bc)(ae)>
30	<(ef)(ab)(df)cb>
40	<eg(af)cbc></eg(af)cbc>

Length-1 sequential patterns <a>, <b>, <c>, <d>, <e>, <f>

Projected (parititioned) databases keep shrinking



#### Speed-up by Pseudo-Projection

- ■Major cost of PrefixSpan: Constructing projected databases
  - ■Postfixes of sequences often appear repeatedly in recursive projected databases
- ■When (projected) database can be held in main memory, use pointers to form pseudo-projections
  - ■Pointer to the sequence
  - ■Offset of the postfix

#### Pseudo-Projection vs. Physical Projection

- ■Pseudo-projection avoids physically copying postfixes
  - ■Efficient in running time and space when database can be held in main memory
- ■However, it is not efficient when database cannot fit in main memory
  - ■Disk-based random accessing is very costly
- ■Suggested Approach:
  - ■Integration of physical and pseudo-projection
  - ■Swapping to pseudo-projection when the data set fits in memory