# Computing Equilibria in Multi-Player Games

Christos H. Papadimitriou Tim Roughgarden

UC Berkeley

ACM-SIAM Symposium on Discrete Algorithms 2005, Pages 82-91

Presented by Yiu-Cho Leung on Apr 26, 2006 for course COMP6700

### Overview

- A systematic study of algorithmic issues involved in finding Nash and correlated equilibria
- A polynomial-time algorithms for computing the correlated equilibria for symmetric game.
- A general framework for obtaining polynomial-time algorithms for optimizing over correlated equilibria
- Proving that such algorithms are not possible for some kind of games

# Multi-player Games Complexity of Computing Equilibria

- This paper studies the complexity of computing equilibria in games with many players.
- Immediate obstacle: massive input complexity
- $n2^n$  numbers are required to specify a general game for n players with binary decisions.
- Three games with compact representation will be studied:
  - Symmetric Games
  - Graphical Games
  - Congestion Games
- What properties of a compact game permit polynomial-time algorithms for computing equilibria?

# Games with Compact Representation Symmetric Games

- All players are identical and indistinguishable.
- They have same strategy sets and utility functions which depend only on the *number* of players choosing each strategy and the player's own strategy.
- ullet For n players with k strategies, there are  $\binom{n+k-1}{k-1}$  distinct distributions of n players among k strategies.
- $\bullet$  The game can be summarized with only  $k\left(\begin{array}{c} n+k-1\\ k-1 \end{array}\right)$  numbers.

# Games with Compact Representation Graphical Games

- Players are vertices of a graph.
- The payoff of each player only depands on its strategy and those of its neighbors.
- There are polynomial-time algorithms for computing Nash and correlated equilibria for graphical games defined on tree.

### Games with Compact Representation **Congestion Games**

- There is a ground set of elements.
- Players choose a strategy from a prescribed collection of subset of the ground set.
- The cost of an element is a function of the number of players that select a strategy that contains it, but is independent of the identity of the player.
- The cost (negative payoff) to a player is then the sum of costs of elements in its strategy.

# Preliminaries Normal Form Game

- A normal form game is a collection of  $S_1, \ldots, S_n$  of finite strategy sets and a collection of  $u_1, \ldots, u_n$  of utility functions, each defined on  $S_1 \times \cdots \times S_n$ .
- A strategy set  $S_i$  and utility function  $u_i$  is identified by player i.
- An element s of  $S_1 \times \cdots \times S_n$  is called strategy profile.
- The set of all strategy profiles is the state space of the game.
- For a strategy profile s,  $s_i$  is the strategy of player i and  $s_{-i}$  is the (n-1)-vector of strategies of players other han i.

# Correlated Equilibria

#### Definition 1

Let  $G = (\{S_i\}, \{u_i\})$  be an n-player game. Let q be a probability distribution on  $S_1 \times \cdots \times S_n$  Distribution q is a correlated equilibria if for each player i and each pair l, l' of strategies is  $S_i$ ,

$$\sum_{s:s_i=l} q(s)u_i(s) \ge \sum_{s:s_i=l} q(s)u_i(s'),$$

where s' is obtained from s by reassigning i's strategy to be l'.

Interpretation: A trusted authority picks a strategy profile s at random according to q, and recommends strategy  $s_i$  to each player i. Each player i is assumed to know only its recommended strategy and the other players will follow their recommendations. Then this conditional expectation should be maximized by the recommended strategy.

# Symmetric Games with Two Strategies More Definitions

- Let  $G = (S = \{1, 2\}, u_1, \dots, u_n)$  be an n-player, 2-strategy symmetric game.
- $S_i(j) \subseteq S^n$  denotes the subset of strategy profile which exactly j players, includeing player i, choose strategy 1.
- $S(j) \subseteq S^n$  denotes the subset of strategy profile which exactly j players choose strategy 1.
- $p_i(j)$  denotes the aggregated probability of the startegy profiles in  $S_i(j)$  for  $i \in \{1, ..., n\}$  and  $j \in \{0, ..., n\}$ .
- p(j) denotes the aggregated probability of the startegy profiles in S(j) for  $j \in \{0, \dots, n\}$ .
- $u_i(j,l)$  denotes the payoff to player i when player i chooses strategy l and a total of j players choose strategy 1.

### Symmetric Games with Two Strategies Basic Linear System for Correlated Equilibria

 $\sum_{i=0}^{n} p_i(j)u_i(j,1) \geq \sum_{i=0}^{n} p_i(j)u_i(j-1,2)$ (1)

$$\sum_{j=0}^{n} [p(j) - p_i(j)] u_i(j,2) \ge \sum_{j=0}^{n} [p(j) - p_i(j)] u_i(j+1,1)$$
 (2)

$$\sum_{j=0}^{n} p(j) = 1 \tag{3}$$

$$\sum_{i=0}^{n} p_i(j) = j \cdot p(j)$$

$$0 \le p_i(j) \le p(j) \le 1$$

$$(5)$$

$$0 \le p_i(j) \le p(j) \le 1 \tag{5}$$

# Correlated Equilibria of Symmetric Games

- Every correlated equilibrium of an n-player, 2-strategy symmetric game G induces a solution to G's basic linear system.
- p is said to extend to  $S^n$  if there is a function  $q: S^n \to \mathcal{R}^+$  with  $\sum_{s \in S_i(j)} q(s) = p_i(j)$  and  $\sum_{s \in S(j)} q(s) = p(j)$ .
- ullet If p extends to  $S^n$ , the extension is a correlated equilibrium of  ${\sf G}$ .
- However, it not obvious at all that such extension must exist.

#### Theorem 2

Let G be an n-player, 2-strategy symmetric game. Then every solution to G's basic linear system can be extended to a correlated equilibrium of G.

# Correlated Equilibria of Symmetric Games

#### Definition 3

- A *j*-basic cover is a function  $x : \{S_1(j), \ldots, S_n(j)\} \to \mathcal{R}^+$  with  $\sum_{i:s \in S_i(j)} x_i(j) \ge j$  for all  $s \in S(j)$ , where  $x_i(j)$  denotes  $x(S_i(j))$ .
- A solution p to G's basic linear system is uniform if for all  $j \in \{0, \dots, n\}$ ,  $\sum_{i=1}^n p_i(j) x_i(j) \ge \sum_{i=1}^n p_i(j) = j \cdot p(j)$  for every j-basic cover x.
- For every  $j \in \{0, \dots, n\}$ , a uniform j-cover is obtained by setting  $x_i(j) = 1$  for all  $i \in \{1, \dots, n\}$ .

# Correlated Equilibria of Symmetric Games

#### Lemma 4

Let G be an n-player, 2-strategy symmetric game. Then every uniform solution to G's basic linear system can be extended to a correlated equilibrium of G.

#### Lemma 5

Let G be an n-player, 2-strategy symmetric game. Then every solution to G's basic linear system is uniform.

- Let p be a solution to G and u be the uniform j-cover. Proving p is uniform is equivalent to showing that, for each  $j \in \{0, \dots, n\}$ , u minimizes  $\sum_{i=1}^{n} p_i(j)x_i(j)$  over all j-basic cover x.
- Let x be a non-uniform j-basic cover for some  $j \in \{0, \ldots, n\}$ . Let U be the set of indices underused by x (i.e.  $x_i(j) < 1$ ) and O be the set of indices overused by x (i.e.  $x_i(j) > 1$ ).
- W.L.O.G., let  $x_1(j) \ge x_2(j) \ge \cdots \ge x_n(j)$ ,  $O = \{1, \ldots, m\}$  and  $U = \{t, \ldots, n\}$  for  $1 \le m < t \le n$ .

• If s is an element in  $S_t(j)\cap\cdots\cap S_n(j)$ , the the contribution of U to the sum  $\sum_{i:s\in S_i(j)}x_i(j)$  for s is  $c=\sum_{i=t}^n(1-x_i(j))$  less than in the uniform solution. This implies

$$\sum_{i:s\in S_i(j),i\leq m} [x_i(j)-1] \geq c.$$

• If  $s = \{n - j + 1, n - j + 2, \dots, n\}$ , then,

$$\sum_{i \le r: s \in S_i(j)} 1 = [r+j-n]^+$$

where  $[\alpha]^+ = \max(\alpha, 0)$ 



• Let  $z_r(j)=x_r(j)-x_{r+1}(j)$  for  $r\in\{1,2,\ldots,m-1\}$  and  $z_m(j)=x_m(j)-1$ , then

$$c \leq \sum_{i:s \in S_i(j), i \leq m} [x_i(j) - 1]$$

$$= \sum_{i:s \in S_i(j), i \leq m} \sum_{r=i}^m z_r(j)$$

$$= \sum_{r=1}^m \sum_{i \leq r: s \in S_i(j)} z_r(j)$$

$$= \sum_{r=1}^m [r+j-n]^+ z_r(j)$$

•

•

$$\sum_{i=1}^{n} p_i(j)x_i(j) = \sum_{i=1}^{n} p_i(j)u_i(j) + \sum_{i=1}^{m} p_i(j)[x_i(j) - 1] - \sum_{i=1}^{n} p_i(j)[1 - x_i(j)]$$

$$\sum_{i=t}^{n} p_i(j)[1 - x_i(j)] \le p(j) \sum_{i=t}^{n} [1 - x_i(j)] = c \cdot p(j)$$

•

$$\sum_{i=1}^{m} p_i(j)[x_i(j) - 1] = \sum_{i=1}^{m} \left( z_r(j) \sum_{i=1}^{r} p_i(j) \right)$$

$$\geq \sum_{i=1}^{m} z_r(j)[r + j - n]^+ p_i(j)$$

$$\geq c \cdot p(j)$$

## A General Framework

Let  $G=(S_1,\ldots,S_n,u_1,\ldots,u_n)$  be a game in normal form. For  $i=1,2,\ldots,n$ , Let  $P_i=\{P_i^1,\ldots,P_i^{m_i}\}$  be a partition of  $S_{-i}$  into  $m_i$  classes.

- For a player i, two strategy profiles s and s' are i-equivalent if  $s_i = s'_i$ , and both  $s_{-i}$  and  $s'_{-i}$  belong to the same class of the partition  $P_i$ .
- The set  $\mathcal{P} = \{P_1, \dots, P_n\}$  of partition is a compact representation of G if  $u_i(s) = u_i(s')$  whenever s and s' are i-equivalent.

# Separation Problem and Correlated Equilibria

#### Definition 6

Let  $\mathcal{P}$  be a compact representation of a game G. The separation problem for  $\mathcal{P}$  is that: Given rational numbers  $y_i(j,l)$  for all i, j and  $l \in S_i$ , is there a strategy profile s with  $\sum_{(i,j,l):s_i=l,s_{-i}\in P_i^j}y_i(j,l)<0$ ?

#### Theorem 7

Let  $\mathcal{P}$  be a compact representation of a game G. If the separation problem for  $\mathcal{P}$  can be solved in polynomial time, then a correlated equilibrium of Gcan be computed in time polynomial in the size of  $\mathcal{P}$ .

# Complexity of Computing Correlated Equilibria for Compactly represented Game

### Corollary 8

A correlated equilibrium of a symmetric game can be found in time polynomial in its natural compact representation.

### Corollary 9

A correlated equilibrium of a graphical game with a tree topology can be found in time polynomial in its natural compact representation.

# Complexity of Computing Correlated Equilibria for Compactly represented Game

### Corollary 10

There is no polynomial-time algorithm for computing a correlated equilibrium of a compactly represented graphical game.

#### Corollary 11

There is no polynomial-time algorithm for computing a correlated equilibrium of a compactly represented congestion game.

# Symmetric Nash Equilibrium

#### Theorem 12

A symmetric Nash equilibrium in a symmetric game with n players and k strategies can be computed to arbitary precision in time polynomial in  $n^k$ , the number of bits required to described the utility functions, and the number of bits of precision desired.

#### Corollary 13

A Nash equilibrium of a compactly represented n-player k-strategy symmetric game with  $k = O(\log n/\log\log n)$  can be computed in polynomial time.