

APRENDIZADO POR REFORÇO

Aula 6: Policy-Based Methods

Lucas Pereira Cotrim Marcos Menon José lucas.cotrim@maua.br marcos.jose@ maua.br

DÚVIDAS TRABALHO T_1

- Tarefa A)
 Determinar dimensões dos espaços de observações e ações.
- Tarefa B)

 Implementar um agente aleatório e verificar sua performance
- Tarefa C)
 Implementar o agente DQN para o PONG
- Tarefa D)
 Implementar o Loop de Treino para o DQN

RELEMBRANDO ÚLTIMA AULA

Na última aula vimos:

• Como utilizar aproximadores de funções para parametrizar as Funções Valor $V_{\pi}(s)$ e $Q_{\pi}(s,a)$:

$$V_w(s) \approx V_{\pi}(s)$$

 $Q_w(s, a) \approx Q_{\pi}(s, a)$

• A política era derivada a partir da Função Valor por comportamento $\epsilon - greedy$.

Na aule de hoje:

• Vamos parametrizar diretamente a função política $\pi(a|s)$:

$$\pi_{\boldsymbol{\theta}}(s, a) = \mathbb{P}[a|s; \boldsymbol{\theta}]$$

• O objetivo será aprender os parâmetros θ que levam à política π_{θ} com maior função Valor $V_{\pi_{\theta}}$.

TÓPICOS DA AULA

- Introdução a Policy-Based Methods
- Policy Gradient
 - Finite Difference Methods
 - Monte-Carlo Policy Gradient (REINFORCE)
 - Actor-Critic Methods
 - One-Step Actor-Critic
 - Asynchronous Advantage Actor-Critic (A3C)
 - Deep Deterministic Policy Gradient (DDPG)
 - Trust-Region Policy Optimization (TRPO)
 - Proximal Policy Optimization (PPO)

Sutton&Barto, Cp.13

Introdução a Policy-Based Methods

Value-Based:

- Aprender Função Valor $V^*(s)$ ou $Q^*(s, a)$
- Política implícita (ϵ -greedy)

Policy-Based:

- Não há Função Valor
- Política π^* é aprendida

Actor-Critic:

 Tanto Função Valor quanto Função Política são parametrizadas e aprendidas

Vantagens:

- Melhores propriedades de convergência (convergência mais "suave").
- Eficiente em espaços de ações A de alta dimensão ou contínuos.
- Capacidade de aprender políticas estocásticas.
- Intuitivamente mais próximo ao aprendizado humano.

Desvantagens:

- Frequente convergência a ótimos locais.
- Avaliação de política é tipicamente ineficiente e apresenta alta variância.

Espaços de Ações Contínuos

Em diversos problemas o agente pode interagir com o ambiente por meio de ações contínuas:

- Robótica (Controle de Atuadores)
- Carros Autônomos (Controle de aceleração, direção, freio)
- Business Management (Alocação de Recursos)
- NLP (Question Answering/Dialogue Generation)

Métodos Value-Based só conseguem lidar com esses problemas por meio da discretização do espaço \mathcal{A} .

A: Where are you going? (1)

B: I'm going to the restroom. (2)

A: how old are you? (1)

B: I'm 16. (2)

Espaços de Ações Contínuos

Por que métodos Value-Based não podem ser aplicados em problemas de ações contínuas?

Para encontrar $\max_{a \in \mathcal{A}} Q_w(s, a)$ seria preciso resolver um

problema de otimização não linear a cada iteração!

Isso acontece pois não podemos simplesmente calcular Q(s, a) para todas ações $a \in \mathcal{A}$ e tomar o máximo.

Métodos Policy-Based aproximam diretamente uma política estocástica $\pi_{\theta}(s, a)$ e simplesmente a atualizam para aumentar as probabilidades de se tomar ações boas.

Políticas Estocásticas

Por que aprender uma política não determinística?

- Em alguns problemas, a política ótima π^* é estocástica.
- Uma política determinística $\pi(s)$ é um caso particular de uma política estocástica $\pi(a|s)$.
- Ao treinar uma política estocástica, o comportamento do agente varia de forma mais suave.

Em um jogo de pedra-papel-tesoura:

- Uma política determinística $a = \pi(s)$ é facilmente explorada pelo adversário.
- Uma política uniformemente aleatória $\pi(a|s)$ é ótima.

Políticas Estocásticas

Considere o seguinte ambiente, no qual o agente não é capaz de diferenciar os estados em cinza.

Política determinística ótima

- Mesma ação em ambos estados cinza
- Agente pode ficar preso e nunca chegar no destino.

Política estocástica ótima

- 50% de probabilidade de ←, → nos estados em cinza.
- Agente rapidamente chegará no objetivo

Em problemas parcialmente observáveis a política ótima pode ser não-determinística.

APROXIMADORES DE FUNÇÕES (AÇÕES DISCRETAS E CONTÍNUAS)

Em métodos Policy-Based parametrizamos a Função Política $\pi_{\theta}(s, a) = \mathbb{P}[a|s; \theta]$ diretamente.

Como representar ações discretas e contínuas?

Ações Discretas

Ações Contínuas

$$\pi_{\boldsymbol{\theta}}(a|s) = \frac{1}{\sigma_a(s;\boldsymbol{\theta})\sqrt{2\pi}} \exp\left(-\frac{\left(a - \mu_a(s;\boldsymbol{\theta})\right)^2}{2\sigma_a(s;\boldsymbol{\theta})^2}\right)$$

FUNDAMENTOS DE POLICY-BASED METHODS

Objetivo: Dada política parametrizada $\pi_{\theta}(a|s)$, encontrar os melhores parâmetros θ .

Problema: Como determinar a qualidade de uma política π_{θ} ?

Em problemas episódicos podemos definir uma função Performance $J(\theta)$ dada pelo valor do estado inicial:

$$J(\boldsymbol{\theta}) = V_{\pi_{\boldsymbol{\theta}}}(s_0) = \mathbb{E}_{\pi_{\boldsymbol{\theta}}}[G_t | S_t = s_0] = \mathbb{E}_{\pi_{\boldsymbol{\theta}}}[R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-t-1} R_T | S_t = s_0]$$

Em problemas de horizonte infinito podemos avaliar o valor médio $J(\theta) = \sum_s d_{\pi_{\theta}}(s) V_{\pi_{\theta}}(s)$, mas na aula de hoje vamos focar em problemas episódicos.

FUNDAMENTOS DE POLICY-BASED METHODS

Métodos de Aprendizado por Reforço do tipo Policy-Based constituem um problema de Otimização:

$$\max_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

Encontrar parâmetros θ que maximizam $J(\theta) = V_{\pi_{\theta}}(s_0)$.

- Gradient-Free Methods:
 - Hill Climbing
 - Simplex, Amoeba, Nelder Mead
 - Algoritmos Genéticos
 - Cross-Entropy Method (CEM)
- Gradient-Based Methods (maior eficiência amostral)
 - Gradient Descent
 - Gradiente Conjugado

POLICY GRADIENT

Policy Gradient

POLICY GRADIENT

Seja $J(\theta)$ uma Função Performance que mede a qualidade da política $\pi_{\theta}(a|s)$.

Algoritmos do tipo Policy Gradient procuram por um máximo local de $J(\theta)$ por meio do método do gradiente ascendente com relação aos parâmetros θ :

$$\theta \leftarrow \theta + \Delta \theta$$

$$\Delta \boldsymbol{\theta} = \alpha \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

onde $\nabla_{\theta} J(\theta)$ é o gradiente da Performance J com relação aos parâmetros θ (Policy Gradient)

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \begin{pmatrix} \partial J(\boldsymbol{\theta}) / \partial \theta_1 \\ \vdots \\ \partial J(\boldsymbol{\theta}) / \partial \theta_N \end{pmatrix}$$

FINITE DIFFERENCE METHODS

Métodos de Diferenças Finitas avaliam o Policy Gradient $\nabla J(\theta)$ da política $\pi_{\theta}(a|s)$ por meio de aproximações de primeira ordem das derivadas parciais $\partial J(\theta)/\partial \theta_i$:

Para cada dimensão $k = \{1, ..., N\}$:

$$\frac{\partial J(\boldsymbol{\theta})}{\partial \theta_k} \approx \frac{J(\boldsymbol{\theta} + \delta \boldsymbol{u_k}) - J(\boldsymbol{\theta})}{\delta}$$

- Vantagem: Funciona para políticas arbitrárias (não diferenciáveis)
- Desvantagem: Extremamente ineficiente, estimativas com elevado ruído.

POLICY GRADIENT

Monte-Carlo Policy Gradient
(algoritmo REINFORCE)

NOTAÇÃO: SCORE FUNCTION

Vamos calcular o gradiente $\nabla_{\theta}J(\theta)$ da Performance J de forma **analítica**. Para isso, precisamos ter uma política π_{θ} **diferenciável** onde π_{θ} é não nula.

Se π_{θ} é dado por um aproximador de funções diferenciável (Softmax, Gaussian, Redes Neurais) com pesos θ :

- Podemos calcular o gradiente $\nabla_{\theta} \pi_{\theta}(a|s)$ de forma analítica.
- Likelihood Ratio:

$$\nabla_{\theta} \pi_{\theta}(a|s) = \pi_{\theta}(a|s) \frac{\nabla_{\theta} \pi_{\theta}(a|s)}{\pi_{\theta}(a|s)} = \pi_{\theta}(a|s) \nabla_{\theta} \log \pi_{\theta}(a|s)$$

• Score Function: $\nabla_{\theta} \log \pi_{\theta}(a|s)$ é o gradiente do logaritmo natural da política $\pi_{\theta}(a|s)$

COMO CALCULAR O GRADIENTE $\nabla_{\theta}J(\theta)$

- Vamos utilizar a seguinte função Performance: $J(\theta) = V_{\pi_{\theta}}(s_0)$
- A partir da definição da Função Valor V, temos:

$$J(\theta) = \mathbb{E}_{\pi_{\theta}}[G_t | S_t = s_0]$$

= $\mathbb{E}_{\pi_{\theta}}[R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-t-1} R_T | S_t = s_0]$

• Podemos calcular o valor esperado por meio da política $\pi_{\theta}(a|s)$:

$$= \sum_{a \in \mathcal{A}} \pi_{\theta(a|S)} Q_{\pi_{\theta}}(s_0, a)$$

• Denotando uma trajetória qualquer como $\tau = \{s_0, a_0, r_1, \dots, s_{T-1}, a_{T-1}, r_T, s_T\}$:

$$J(\boldsymbol{\theta}) = \sum_{\tau} \mathbb{P}_{\pi_{\boldsymbol{\theta}}}(\tau) G_0(\tau)$$

onde $\mathbb{P}_{\pi_{\theta}}(\tau)$ é a probabilidade da trajetória τ ocorrer sob a política π_{θ} e $G_0(\tau)$ é o retorno obtido na trajetória τ a partir do estado inicial s_0 , $G_0(\tau) = R_1 + \gamma R_2 + \cdots + \gamma^{T-1} R_T$

COMO CALCULAR O GRADIENTE $\nabla_{\theta}J(\theta)$

• A partir da formulação da Performance $J(\theta) = \sum_{\tau} \mathbb{P}_{\pi_{\theta}}(\tau) G_0(\tau)$ vamos calcular o gradiente $\nabla_{\theta} J(\theta)$:

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \sum_{\tau} \mathbb{P}_{\pi_{\theta}}(\tau) G_{0}(\tau)$$

$$= \sum_{\tau} \nabla_{\theta} \mathbb{P}_{\pi_{\theta}}(\tau) G_{0}(\tau)$$

$$= \sum_{\tau} \mathbb{P}_{\pi_{\theta}}(\tau) G_{0}(\tau) \frac{\nabla_{\theta} \mathbb{P}_{\pi_{\theta}}(\tau)}{\mathbb{P}_{\pi_{\theta}}(\tau)} \xrightarrow{\text{Score Function}}$$

$$= \sum_{\tau} \mathbb{P}_{\pi_{\theta}}(\tau) G_{0}(\tau) \nabla_{\theta} \log \mathbb{P}_{\pi_{\theta}}(\tau) \tag{1}$$

- Note que o retorno $G_0(\tau)$ depende apenas da trajetória, não dos parâmetros θ da política.
- A Função Score $\nabla_{\theta} \log \mathbb{P}_{\pi_{\theta}}(\tau)$ aparece após manipulação algébrica.

COMO CALCULAR O GRADIENTE $\nabla_{\theta}J(\theta)$

• Vamos agora calcular o gradiente da Score Funtion da probabilidade de uma trajetória τ com relação aos parâmetros θ da política de ações π_{θ} que gerou esta trajetória:

$$\nabla_{\theta} \log \mathbb{P}_{\pi_{\theta}}(\tau) = \nabla_{\theta} \log \left[\frac{\sum_{t=0}^{\text{Initial State}} \sum_{t=0}^{\text{Finition in on}} \sum_{t=0}^{\text{Policy}} \sum_{t=0}^{\text{Environment}} \sum_{t=$$

• Ao tomar o gradiente ∇_{θ} eliminamos a necessidade de conhecer a dinâmica do ambiente!

COMO CALCULAR O GRADIENTE $\nabla_{\theta} J(\theta)$

• Substituindo (2) em (1) temos:

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \sum_{\boldsymbol{\tau}} \left[\mathbb{P}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(\boldsymbol{\tau}) G_0(\boldsymbol{\tau}) \sum_{t=0}^{T-1} \nabla_{\boldsymbol{\theta}} \log \boldsymbol{\pi}_{\boldsymbol{\theta}} \left(a_t^{(\boldsymbol{\tau})} \middle| s_t^{(\boldsymbol{\tau})} \right) \right]$$

- Mas como lidar com a soma sobre todas trajetórias τ possíveis e suas probabilidades $\mathbb{P}_{\pi_{\theta}}(\tau)$?
- Solução: Amostrar grande número de trajetórias (Monte-Carlo Policy Gradient)

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \approx \frac{1}{N_{\tau}} \sum_{j=1}^{N_{\tau}} \left[G_0(\tau_j) \sum_{t=0}^{T-1} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}} \left(a_t^{(\tau_j)} \middle| s_t^{(\tau_j)} \right) \right]$$

POLICY GRADIENT THEOREM

• O Policy Gradient Theorem generaliza o resultado obtido nos útlimos slides para qualquer

Função Performance $J(\theta)$:

Policy Gradient Theorem:

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \propto \sum_{s \in \mathcal{S}} \mu(s) \sum_{a \in \mathcal{A}} \nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}}(a|s) Q_{\pi_{\boldsymbol{\theta}}}(s,a)$$

• Vamos determiner a Lei de Atualização dos parâmetros $\boldsymbol{\theta}$ a partir do Policy Gradient Theorem.

Sutton&Barto Cp. 13, pp. 325

Proof of the Policy Gradient Theorem (episodic case)

With just elementary calculus and re-arranging of terms, we can prove the policy gradient theorem from first principles. To keep the notation simple, we leave it implicit in all cases that π is a function of θ , and all gradients are also implicitly with respect to θ . First note that the gradient of the state-value function can be written in terms of the action-value function as

$$\nabla v_{\pi}(s) = \nabla \left[\sum_{a} \pi(a|s) q_{\pi}(s, a) \right], \quad \text{for all } s \in \mathbb{S} \qquad \text{(Exercise 3.18)}$$

$$= \sum_{a} \left[\nabla \pi(a|s) q_{\pi}(s, a) + \pi(a|s) \nabla q_{\pi}(s, a) \right] \quad \text{(product rule of calculus)}$$

$$= \sum_{a} \left[\nabla \pi(a|s) q_{\pi}(s, a) + \pi(a|s) \nabla \sum_{s', \tau} p(s', \tau|s, a) (\tau + v_{\pi}(s')) \right] \quad \text{(Exercise 3.19 and Equation 3.2)}$$

$$= \sum_{a} \left[\nabla \pi(a|s) q_{\pi}(s, a) + \pi(a|s) \sum_{s'} p(s'|s, a) \nabla v_{\pi}(s') \right] \quad \text{(Eq. 3.4)}$$

$$= \sum_{a} \left[\nabla \pi(a|s) q_{\pi}(s, a) + \pi(a|s) \sum_{s'} p(s'|s, a) \quad \text{(unrolling)} \right]$$

$$= \sum_{a'} \left[\nabla \pi(a'|s') q_{\pi}(s', a') + \pi(a'|s') \sum_{s''} p(s''|s', a') \nabla v_{\pi}(s'') \right]$$

$$= \sum_{x \in \mathbb{S}} \sum_{b = 0}^{\infty} \Pr(s \to x, k, \pi) \sum_{a} \nabla \pi(a|x) q_{\pi}(x, a),$$

after repeated unrolling, where $Pr(s \rightarrow x, k, \pi)$ is the probability of transitioning from state s to state x in k steps under policy π . It is then immediate that

$$\nabla J(\boldsymbol{\theta}) = \nabla v_{\pi}(s_0)$$

$$= \sum_{s} \left(\sum_{k=0}^{\infty} \Pr(s_0 \to s, k, \pi) \right) \sum_{a} \nabla \pi(a|s) q_{\pi}(s, a)$$

$$= \sum_{s} \eta(s) \sum_{a} \nabla \pi(a|s) q_{\pi}(s, a) \qquad \text{(box page 199)}$$

$$= \sum_{s'} \eta(s') \sum_{s} \frac{\eta(s)}{\sum_{s'} \eta(s')} \sum_{a} \nabla \pi(a|s) q_{\pi}(s, a)$$

$$= \sum_{s'} \eta(s') \sum_{s} \mu(s) \sum_{a} \nabla \pi(a|s) q_{\pi}(s, a) \qquad \text{(Eq. 9.3)}$$

$$\propto \sum_{s'} \mu(s) \sum_{s} \nabla \pi(a|s) q_{\pi}(s, a) \qquad \text{(Q.E.D.)}$$

LEI DE ATUALIZAÇÃO DE PARÂMETROS θ

• A partir do Policy Gradient Theorem temos:

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \propto \sum_{s \in \mathcal{S}} \mu(s) \sum_{a \in \mathcal{A}} \nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}}(a|s) Q_{\pi_{\boldsymbol{\theta}}}(s,a)$$

• A distribuição $\mu(s)$ representa a frequência com que o estado s é visitado com a política π , assim, podemos escrever:

$$= \mathbb{E}_{\pi_{\theta}} \left[\sum_{a \in \mathcal{A}} Q_{\pi_{\theta}}(S_{t}, a) \nabla_{\theta} \pi_{\theta}(a|S_{t}) \right]$$

$$= \mathbb{E}_{\pi_{\theta}} \left[\sum_{a \in \mathcal{A}} \pi_{\theta}(a|S_{t}) Q_{\pi_{\theta}}(S_{t}, a) \frac{\nabla_{\theta} \pi_{\theta}(a|S_{t})}{\pi_{\theta}(a|S_{t})} \right]$$

$$= \mathbb{E}_{\pi_{\theta}} \left[G_{t} \frac{\nabla_{\theta} \pi_{\theta}(A_{t}|S_{t})}{\pi_{\theta}(A_{t}|S_{t})} \right]$$

$$= \mathbb{E}_{\pi_{\theta}} \left[G_{t} \frac{\nabla_{\theta} \pi_{\theta}(A_{t}|S_{t})}{\pi_{\theta}(A_{t}|S_{t})} \right]$$
Lei de Atualização de Parâmetros θ

$$\Theta \leftarrow \theta + \alpha G_{t} \frac{\nabla_{\theta} \pi_{\theta}(A_{t}|S_{t})}{\pi_{\theta}(A_{t}|S_{t})} \right]$$

$$\nabla_{\theta} \log \pi_{\theta}(A_{t}|S_{t})$$

LEI DE ATUALIZAÇÃO DE PARÂMETROS θ

• A Lei de Atualização dos parâmetros θ é baseada no gradiente da função Performance $J(\theta)$:

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

$$\theta \leftarrow \theta + \alpha (G_t) \frac{\nabla_{\theta} \pi_{\theta}(A_t | S_t)}{\pi_{\theta}(A_t | S_t)}$$

- A Atualização dos Parâmetros *θ* ocorre na direção do gradiente da política (direção que aumenta a probabilidade da mesma ação ser tomada neste estado) e é proporcional ao retorno, assim quanto maior o retorno obtido maior a chance da ação ser tomada no futuro.
- A divisão pela probabilidade da ação ter sido tomada é feita para normalizar as atualizações e não priorizar ações mais frequentes.

REINFORCE: MONTE-CARLO POLICY GRADIENT

Algoritmo: REINFORCE (Monte-Carlo Policy Gradient)

Input: Política parametrizada e diferenciável $\pi_{\theta}(a|s)$

Parâmetro do Algoritmo: Taxa de aprendizado $\alpha > 0$

Inicializar Parâmetros θ da política parametrizada $\pi_{\theta}(a|s)$ aleatoriamente

Repetir para cada episódio:

Gerar episódio $\tau = \{S_0, A_0, R_1, ..., S_{T-1}, A_{T-1}, R_T\} \sim \pi_{\theta}(a|s)$

Repetir para cada timestep t = 0,1, ... T - 1 do episódio τ :

Calcular Retorno: $G_t \leftarrow \sum_{k=t+1}^T \gamma^{k-t-1} R_k$

Atualizar Função Política: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \gamma^t G_t \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(A_t | S_t)$

Retorna: $\pi_{\theta} \approx \pi^*$

REINFORCE: MONTE-CARLO POLICY GRADIENT

• Lei de Atualização de parâmetros utilizando *Cross-Entropy Loss Function*:

$$Loss = -\sum_{i=1}^{m} y_i \log \hat{y}_i$$

$$\begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \end{bmatrix}$$

• Para cada ação transição $(S_t, A_t, R_{t+1}, S_{t+1}, done)$ do episódio

$$d = [OneHotEncoding(A_t) - \pi_{\theta}(.|S_t)]$$
Probability distribution over actions

$$target = \pi_{\theta}(.|S_t) + \alpha G_t d$$

• Ao minimizar a *Cross-Entropy Loss Function* para os alvos definidas acima, o Keras executa a Atualização do REINFORCE $\theta \leftarrow \theta + \alpha \gamma^t G_t \nabla_{\theta} \log \pi_{\theta}(A_t | S_t)$

REINFORCE: EXEMPLO

REINFORCE_cartpole.ipynb

LIMITAÇÕES DO ALGORITMO REINFORCE

• As atualizações dos Parâmetros θ são *unbiased*, mas apresentam alta variância:

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \gamma^t G_t \frac{\nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}}(A_t | S_t)}{\pi_{\boldsymbol{\theta}}(A_t | S_t)}$$

- Isso acontece porque os retornos G_t dependem de todas as recompensas obtidas até o final do episódio $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots + \gamma^{T-t-1} R_T$
- A alta variância do estimador de $\nabla_{\theta}J(\theta)$ leva a baixa eficiência amostral e longo tempo de convergência.
- Soluções:
 - Utilizar uma *Baseline* para reduir variância → REINFORCE with Baseline
 - Substituir Retorno G_t por estimativa treinada do retorno \rightarrow Actor-Critic

REINFORCE WITH BASELINE

• A partir do Policy Gradient Theorem, o gradiente da Performance é dado por:

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \propto \mathbb{E}_{\pi_{\boldsymbol{\theta}}} \left[G_t \frac{\nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}}(A_t | S_t)}{\pi_{\boldsymbol{\theta}}(A_t | S_t)} \right]$$

- Se substituirmos G_t por $G_t b(S_t)$, o valor esperado não é alterado (porque $b(S_t)$ independe de a).
- Uma escolha natural para $b(S_t)$ é uma aproximação da função valor $V_w(S_t)$
- Intuição: Facilita a identificação de ações ótimas em meio a diversas ações boas.

Baseline
$$b(S_t)$$

$$V_{\pi_{\theta}}(s) = 46$$

REINFORCE WITH BASELINE: MONTE-CARLO POLICY GRADIENT

Algoritmo: REINFORCE with Baseline (Monte-Carlo Policy Gradient)

Input: Política parametrizada e diferenciável $\pi_{\theta}(a|s)$, Função Valor parametrizada e diferenciável $V_w(s)$

Parâmetro do Algoritmo: Taxas de aprendizado $\alpha_{\theta} > 0$ e $\alpha_{w} > 0$

Inicializar Parâmetros θ da política parametrizada $\pi_{\theta}(a|s)$ e parâmetros w da Função Valor $V_w(s)$ aleatoriamente

Repetir para cada episódio:

Gerar episódio $\tau = \{S_0, A_0, R_1, \dots, S_{T-1}, A_{T-1}, R_T\} \sim \pi_{\theta}(a|s)$

Repetir para cada timestep t = 0,1, ... T - 1 do episódio τ :

Calcular Retorno $G_t \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$

Calcular Erro: $\delta \leftarrow G_t - V_w(S_t)$

Atualizar Função Valor (Baseline): $\mathbf{w} \leftarrow \mathbf{w} + \alpha_w \delta \nabla_{\mathbf{w}} V_{\mathbf{w}}(S_t)$

Atualizar Função Política: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha_{\theta} \gamma^{t} \delta \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(A_{t}|S_{t})$

Retorna: $\pi_{\theta} \approx \pi^*$

REINFORCE WITH BASELINE: EXEMPLO

REINFORCE_cartpole.ipynb

ACTOR-CRITIC POLICY GRADIENT

Actor-Critic Policy Gradient

LIMITAÇÕES DO ALGORITMO REINFORCE COM BASELINE

- O Algoritmo REINFORCE com Baseline é um algoritmo de Monte-Carlo, ou seja, precisamos esperar o término do episódio para atualizar $\pi_{\theta}(a|s)$ e $V_w(s)$.
- Isso impede a implementação em problemas de horizonte infinito e torna o treino menos frequente.
- Na aula 3 vimos como o TD(0) corrige este problema estimando o retorno G_t a partir da Função Valor calculada no estado seguinte. A mesma estimativa pode ser implementada aqui:

ACTOR-CRITIC POLICY GRADIENT

• Seja a lei de atualização do algoritmo REINFORCE com Baseline:

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \gamma^t [\boldsymbol{G_t} - V_w(S_t)] \frac{\nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}}(A_t | S_t)}{\pi_{\boldsymbol{\theta}}(A_t | S_t)}$$

• Vamos utilizar a Função Valor parametrizada para aproximar o Retorno G_t a cada timestep:

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \gamma^t [R_t + \gamma V_w(S_{t+1}) - V_w(S_t)] \frac{\nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}}(A_t | S_t)}{\pi_{\boldsymbol{\theta}}(A_t | S_t)}$$

- Essa lei de atualização constitui o algoritmo Actor-Critic:
 - Actor $\pi_{\theta}(a|s)$ executa ações de acordo com sua política e treina com base no retorno estimado pelo Critic.
 - Critic $V_w(s)$ avalia ações executadas pelo Actor e treina sua Função Valor.
- Permite o treino a cada timestep (sem precisar observar retorno real G_t)

ACTOR-CRITIC POLICY GRADIENT

Algoritmo: One-Step Actor-Critic Policy Gradient (State Value Critic)

Input: Política parametrizada e diferenciável $\pi_{\theta}(a|s)$, Função Valor parametrizada e diferenciável $V_{w}(s)$

Parâmetro do Algoritmo: Taxas de aprendizado $\alpha_{\theta} > 0$ e $\alpha_{w} > 0$

Inicializar Parâmetros θ , w aleatoriamente

Repetir (para cada episódio):

Inicializar estado S_0

$$t = 0$$

Repetir enquanto S_t não é terminal (para cada timestep):

Amostrar ação $A_t \sim \pi_{\theta}(a|S_t)$

Executar ação A_t e observar S_{t+1} , R_{t+1}

Calcular Erro: $\delta \leftarrow R_{t+1} + \gamma V_w(S_{t+1}) - V_w(S_t)$

Atualizar Critic: $\mathbf{w} \leftarrow \mathbf{w} + \alpha_w \delta \nabla_{\mathbf{w}} V_{\mathbf{w}}(S_t)$

Atualizar Actor: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha_{\theta} \gamma^{t} \delta \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(A_{t}|S_{t})$

 $t \leftarrow t + 1$

Retorna: $\pi_{\theta} \approx \pi^*$

ACTOR-CRITIC POLICY GRADIENT

Algoritmo: One-Step Actor-Critic Policy Gradient (State-Action Value Critic)

Input: Política parametrizada e diferenciável $\pi_{\theta}(a|s)$, Função Valor parametrizada e diferenciável $Q_w(s,a)$

Parâmetro do Algoritmo: Taxas de aprendizado $\alpha_{\theta} > 0$ e $\alpha_{w} > 0$

Inicializar Parâmetros θ , w aleatoriamente

Repetir (para cada episódio):

Inicializar estado S_0

$$t = 0$$

Amostrar ação $A_t \sim \pi_{\theta}(a|S_t)$

Repetir enquanto S_t não é terminal (para cada timestep):

Executar ação A_t e observar S_{t+1} , R_{t+1}

Amostrar ação $A_{t+1} \sim \pi_{\theta}(a'|S_{t+1})$

Atualizar Actor: $\theta \leftarrow \theta + \alpha_{\theta} Q_{\mathbf{w}}(S_t, A_t) \nabla_{\theta} \log \pi_{\theta}(A_t | S_t)$

Calcular Erro: $\delta \leftarrow R_{t+1} + \gamma Q_w(S_{t+1}, A_{t+1}) - Q_w(S_t, A_t)$

Atualizar Critic: $\mathbf{w} \leftarrow \mathbf{w} + \alpha_{\mathbf{w}} \delta \nabla_{\mathbf{w}} Q_{\mathbf{w}}(S_t, A_t)$

$$t \leftarrow t + 1$$

Retorna: $\pi_{\theta} \approx \pi^*$

ASYNCHRONOUS ADVANTAGE ACTOR-CRITIC (A3C)

Asynchronous Advantage Actor-Critic (A3C)

ASYNCHRONOUS ADVANTAGE ACTOR-CRITIC (A3C)

O algoritmo Actor-Critic tradicional pode ser reformulado para computação paralela em contexto multiagente. O Asynchronous Advantage Actor-Critic, ou A3C (Mnih, 2016) é uma extensão do Actor-Critic com foco em treinamento paralelo.

- Cada thread sincroniza parâmetros locais w', θ' com parâmetros globais w, θ de tempo em tempo.
- Em cada *thread* um crítico e um agente acumulam atualizações dw e $d\theta$ a cada timestep local.
- No fim do episódio parâmetros globais são atualizados de forma assíncrona: $w \leftarrow w + dw$

for Deep Reinforcement Learning, 2016

ASYNCHRONOUS ADVANTAGE ACTOR-CRITIC A3C

until $T > T_{max}$

```
Algorithm S3 Asynchronous advantage actor-critic - pseudocode for each actor-learner thread.
   // Assume global shared parameter vectors \theta and \theta_v and global shared counter T=0
   // Assume thread-specific parameter vectors \theta' and \theta'_{\eta}
   Initialize thread step counter t \leftarrow 1
   repeat
        Reset gradients: d\theta \leftarrow 0 and d\theta_v \leftarrow 0.
        Synchronize thread-specific parameters \theta' = \theta and \theta'_v = \theta_v
       t_{start} = t
                                                                                          Simulação de episódio
       Get state s_t
       repeat
                                                                                                                                                   Acúmulo de atualizações
            Perform a_t according to policy \pi(a_t|s_t;\theta')
            Receive reward r_t and new state s_{t+1}
                                                                                                                                                   de gradientes
            t \leftarrow t + 1
            T \leftarrow T + 1
                                                                                                                                                   Atualização assíncrona
       until terminal s_t or t - t_{start} == t_{max}
                                                                                                                                                   de parâmetros globais
                              for terminal s_t
                                     for non-terminal s_t /\!\!/ Bootstrap from last state
       for i \in \{t-1, \ldots, t_{start}\} do
            R \leftarrow r_i + \gamma R
           Accumulate gradients wrt \theta': d\theta \leftarrow d\theta + \nabla_{\theta'} \log \pi(a_i|s_i;\theta')(R - V(s_i;\theta'_v))
Accumulate gradients wrt \theta'_v: d\theta_v \leftarrow d\theta_v + \partial (R - V(s_i;\theta'_v))^2/\partial \theta'_v
       end for
                                                                                                                                  Mnih, V.; et. al. Asynchronous Methods
      Perform asynchronous update of \theta using d\theta and of \theta_v using d\theta_v.
```

ASYNCHRONOUS ADVANTAGE ACTOR-CRITIC A3C

https://www.youtube.com/watch?v=Ajjc08-iPx8

Method	Training Time	Mean	Median
DQN	8 days on GPU	121.9%	47.5%
Gorila	4 days, 100 machines	215.2%	71.3%
D-DQN	8 days on GPU	332.9%	110.9%
Dueling D-DQN	8 days on GPU	343.8%	117.1%
Prioritized DQN	8 days on GPU	463.6%	127.6%
A3C, FF	1 day on CPU	344.1%	68.2%
A3C, FF	4 days on CPU	496.8%	116.6%
A3C, LSTM	4 days on CPU	623.0%	112.6%

Table 1. Mean and median human-normalized scores on 57 Atari games using the human starts evaluation metric. Supplementary Table SS3 shows the raw scores for all games.

Fonte: Mnih, V.; et. al. Asynchronous Methods for Deep Reinforcement Learning, 2016

Deep Deterministic Policy Gradient (DDPG)

Nos algoritmos anteriores a política parametrizada $\pi_{\theta}(a|s)$ era uma política estocástica, ou seja, para cada estado a política retornava uma distribuição de probabilidades sobre o espaço de ações.

- O cálculo do gradiente $\nabla_{\theta}J(\theta)$ é mais complexo para políticas estocásticas pois é necessário amostrar sobre diferentes ações.
- Ao utilizar uma **política determinística** $\pi_{\theta}(s)$ podemos calcular $\nabla_{\theta}J(\theta)$ de forma fechada:

$$\mathbb{E}_{\pi_{\theta}} \left[\sum_{a \in \mathcal{A}} Q_{\pi_{\theta}}(S_{t}, a) \nabla_{\theta} \pi_{\theta}(a | S_{t}) \right] \Rightarrow \nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \pi_{\theta}(S_{t}) \left(\nabla_{a} Q_{w} \left(S_{t}, a \right) \Big|_{a = A_{t}} \right) \right]$$
Política Estocástica
$$\left(\sum_{a} Q_{\pi_{\theta}}(S_{t}, a) \right)$$
Política Determinística $\left(A_{t} = \pi_{\theta}(S_{t}) \right)$

- Ao reformular o Policy Gradient para políticas determinísticas temos um problema:
 Uma política estocástica naturalmente realiza exploração durante o treino.

 No entanto, uma política determinística irá realizar sempre a mesma ação em cada estado.
- Solução: Introduzir um ruído aleatório \mathcal{N}_t sobre a ação amostrada antes de executá-la.
 - Este ruído desempenha um papel análogo ao comportamento ϵ -greedy no DQN

- O resultado é o DDPG, um algoritmo Actor-Critic análogo ao DQN
 - Model-Free
 - Off-Policy
 - Diferente do DQN, o DDPG funciona com ações contínuas.

Algorithm 1 DDPG algorithm

Randomly initialize critic network $Q(s, a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ .

Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^{Q}$, $\theta^{\mu'} \leftarrow \theta^{\mu}$

Initialize replay buffer R

for episode = 1, M do

Initialize a random process \mathcal{N} for action exploration

Receive initial observation state s_1

for t = 1, T do

Select action $a_t = \mu(s_t|\theta^{\mu}) + \mathcal{N}_t$ according to the current policy and exploration noise

Execute action a_t and observe reward r_t and observe new state s_{t+1}

Store transition (s_t, a_t, r_t, s_{t+1}) in R

Sample a random minibatch of N transitions (s_i, a_i, r_i, s_{i+1}) from R

Set
$$y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$$

Update critic by minimizing the loss: $L = \frac{1}{N} \sum_{i} (y_i - Q(s_i, a_i | \theta^Q))^2$

Update the actor policy using the sampled policy gradient:

$$\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} Q(s, a|\theta^{Q})|_{s=s_{i}, a=\mu(s_{i})} \nabla_{\theta^{\mu}} \mu(s|\theta^{\mu})|_{s_{i}}$$

Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^Q + (1 - \tau)\theta^{Q'}$$

$$\theta^{\mu'} \leftarrow \tau \theta^{\mu} + (1 - \tau) \theta^{\mu'}$$

end for end for Armazenar Transição em Buffer R

Amostrar minibatch de N Transições de Buffer R

→ Atualizar parâmetros de Actor e Critic

Atualizar target networks

David Silver, et al.. Deterministic Policy

Gradient Algorithms. ICML, Jun 2014,

Beijing, China.

DDPG EXEMPLO: PENDULUM-VO EM KERAS-RL 2

DDPG_pendulum-v0.ipynb

DISTRIBUTED DISTRIBUTIONAL DEEP DETERMINISTIC POLICY GRADIENT (D4PG)

https://www.youtube.com/watch?v=rAai4QzcYbs
Tassa, Y.; et. al. *Deep Mind Control Suite*, 2018.

TRUST REGION POLICY OPTIMIZATION (TRPO)

Trust Region Policy Optimization (TRPO)

DESAFIOS DE MÉTODOS DE POLICY GRADIENT

- Gradient Ascent $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$ faz uso de uma **aproximação de primeira ordem da derivada** da Performance e a **taxa de aprendizado** α **deve ser pequena o suficiente** para lidar com a
 - curvatura da superfície de $J(\theta)$.
- Como determinar α ?
 - Muito alto: Política torna-se instável.
 - Muito baixo: Longo tempo de convergência e baixa eficiência amostral.

Line search (like gradient ascent)

https://jonathan-hui.medium.com/rl-trust-region-policy-optimization-trpo-explained-a6ee04eeeee9

- Podemos limitar a diferença entre políticas sucessivas durante o treino por meio de **Trust Regions** (regiões de confiança) e melhorar eficiência amostral por meio de **Importance Sampling**.
- O algoritmo resultante é denominado Trust Region Policy Optimization (TRPO).

TRPO: IMPORTANCE SAMPLING

- Importance Sampling: Métodos tradicionais de Policy Gradient possuem baixa eficiência amostral pois precisam simular um episódio inteiro antes de atualizar a política $\pi_{\theta}(a|s)$ e, após a atualização, **as experiências obtidas pela política anterior não são utilizadas para treinar a nova**.
 - Podemos corrigir este problema estimando $\nabla_{\theta'}J(\theta')$ com base em experiências amostradas de π_{θ} :

$$\nabla_{\theta}J(\theta) = E_{\underbrace{\tau \sim \pi_{\theta}(\tau)}} [\nabla_{\theta} \log \pi_{\theta}(\tau) \underline{r(\tau)}]$$
 reward is calculated from the trajectory using the current policy
$$\nabla_{\theta'}J(\theta') = E_{\underbrace{\tau \sim \pi_{\theta}(\tau)}} \left[\sum_{t=1}^{T} \nabla_{\theta'} \log \pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t}) \left(\prod_{t'=1}^{t} \frac{\pi_{\theta'}(\mathbf{a}_{t'}|\mathbf{s}_{t'})}{\pi_{\theta}(\mathbf{a}_{t'}|\mathbf{s}_{t'})} \right) \left(\sum_{t'=t}^{T} r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \right) \right]$$
 Sample data from another policy

 Para controlar a variância desta estimativa precisamos garantir que as políticas antiga e nova sejam próximas o suficiente → Limite para Divergência KL entre políticas (Trust Regions)

TRPO: TRUST REGIONS

• A região de confiança é definida como uma região no espaço de parâmetros θ em que a Divergência KL entre a política nova π' e a política antiga π é menor do que δ :

$$\mathbb{E}_{s \sim d^{\pi}}[D_{KL}(\pi'||\pi)[s]] \leq \delta$$

• Intuição: Maximizar uma aproximação quadrática local M da diferença entre as Performances de π' e π sujeito à restrição acima.

$$\max_{\pi'} \mathcal{L}_{\pi} (\pi') - C \sqrt{\underset{s \sim d^{\pi_k}}{\text{E}} [D_{\mathsf{KL}}(\pi'||\pi)[s]]}$$
or
$$\max_{\pi'} \mathcal{L}_{\pi} (\pi')$$
s.t. $\underset{s \sim d^{\pi}}{\text{E}} [D_{\mathsf{KL}}(\pi'||\pi)[s]] \leq \delta$

https://jonathan-hui.medium.com/rl-trust-region-policyoptimization-trpo-explained-a6ee04eeee9

TRUST REGION POLICY OPTIMIZATION: TRPO

Algorithm 1 Trust Region Policy Optimization

- 1: Input: initial policy parameters θ_0 , initial value function parameters ϕ_0
- 2: Hyperparameters: KL-divergence limit δ , backtracking coefficient α , maximum number of backtracking steps K
- 3: **for** k = 0, 1, 2, ... **do**
- 4: Collect set of trajectories $\mathcal{D}_k = \{\tau_i\}$ by running policy $\pi_k = \pi(\theta_k)$ in the environment.
- 5: Compute rewards-to-go \hat{R}_t .
- 6: Compute advantage estimates, \hat{A}_t (using any method of advantage estimation) based on the current value function V_{ϕ_k} .
- 7: Estimate policy gradient as

$$\hat{g}_k = \frac{1}{|\mathcal{D}_k|} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^T \left. \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) \right|_{\theta_k} \hat{A}_t.$$

8: Use the conjugate gradient algorithm to compute

$$\hat{x}_k \approx \hat{H}_k^{-1} \hat{g}_k$$

where \hat{H}_k is the Hessian of the sample average KL-divergence.

9: Update the policy by backtracking line search with

$$\theta_{k+1} = \theta_k + \alpha^j \sqrt{\frac{2\delta}{\hat{x}_k^T \hat{H}_k \hat{x}_k}} \hat{x}_k,$$

where $j \in \{0, 1, 2, ...K\}$ is the smallest value which improves the sample loss and satisfies the sample KL-divergence constraint.

10: Fit value function by regression on mean-squared error:

$$\phi_{k+1} = \arg\min_{\phi} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^{T} \left(V_{\phi}(s_t) - \hat{R}_t \right)^2,$$

typically via some gradient descent algorithm.

11: end for

https://spinningup.openai.com/en/latest/algorithms/trpo.html

Simulação de agente π_{θ_k} e estimativa de gradiente $\hat{g}_k \approx \nabla_{\theta} J(\theta_k)$

Atualização de parâmetros θ da política π_{θ} de acordo com *KL-divergence constraint*

TRPO garante melhora monotônica de políticas ao longo do treino!

(1): Similar à estimativa de gradiente $\nabla_{\theta} J(\theta)$ do Actor-Critic.

(2): Estudar algoritmos Natural Policy Gradient e Truncated Natural Policy Gradient (TNPG). TRPO = TNPG + line search

PROXIMAL POLICY OPTIMIZATION (PPO)

Proximal Policy Optimization (PPO)

PROXIMAL POLICY OPTIMIZATION (PPO)

- A matriz Hessiana da divergência KL nos algoritmos NPG, TNPG e TRPO apresenta elevado custo computacional.
- O algoritmo Proximal Policy Optimization (PPO), em vez de impor uma hard constraint δ sobre a divergência KL, a incorpora como uma soft constraints na função $J(\pi') J(\pi)$ a ser otimizada.

maximize

Algorithm 4 PPO with Adaptive KL Penalty Input: initial policy parameters θ_0 , initial KL penalty β_0 , target KL-divergence δ

for k=0,1,2,... do Collect set of partial trajectories \mathcal{D}_k on policy $\pi_k=\pi(\theta_k)$ Estimate advantages $\hat{A}_t^{\pi_k}$ using any advantage estimation algorithm

Compute policy update A_t using any advantage estimation algorithms.

$$heta_{k+1} = rg \max_{ heta} \mathcal{L}_{ heta_k}(heta) - eta_k ar{\mathcal{D}}_{ extit{KL}}(heta|| heta_k)$$

by taking K steps of minibatch SGD (via Adam)

if
$$\bar{D}_{\mathit{KL}}(\theta_{k+1}||\theta_k) \geq 1.5\delta$$
 then $\beta_{k+1} = 2\beta_k$ else if $\bar{D}_{\mathit{KL}}(\theta_{k+1}||\theta_k) \leq \delta/1.5$ then $\beta_{k+1} = \beta_k/2$ end if end for

Penalidade sobre divergência entre políticas sucessivas

$$\hat{\mathbb{E}}_t \bigg[\frac{\pi_{\theta}(\mathsf{a}_t \mid \mathsf{s}_t)}{\pi_{\theta_{\text{old}}}(\mathsf{a}_t \mid \mathsf{s}_t)} \hat{\mathsf{A}}_t \bigg] - \beta \hat{\mathbb{E}}_t [\mathsf{KL}[\pi_{\theta_{\text{old}}}(\cdot \mid \mathsf{s}_t), \pi_{\theta}(\cdot \mid \mathsf{s}_t)]] \bigg]$$

http://rail.eecs.berkeley.edu/deeprlcoursefa17/f17docs/lecture 13 advanced pg.pdf

PPO EXEMPLO: CARTPOLE-V1 EM STABLE BASELINES 3

PPO_cartpole_v1.ipynb

LISTA DE ALGORITMOS DE POLICY GRADIENT MAIS UTILIZADOS

- REINFORCE
- Actor-Critic
- Off-Policy Policy Gradient
- A3C
- A2C
- DPG
- DDPG
- D4PG
- MADDPG

- TRPO
- PPO
- PPG
- ACER
- ACTKR
- SAC
- TD3
- SVPG
- IMPALA

Stable Baselines 3

Name	Вох	Discrete	MultiDiscrete	MultiBinary	Multi Processing
A2C	✓	✓	✓	✓	✓
DDPG	✓	×	×	×	×
DQN	×	✓	×	×	×
HER	✓	✓	×	×	×
PPO	✓	✓	✓	✓	✓
SAC	✓	×	×	×	×
TD3	✓	×	×	×	×

https://stable-

baselines3.readthedocs.io/en/master/guide/algos.html

TRABALHO T2: DDPG PORTFOLIO MANAGEMENT

Objetivo do trabalho:

• Criar um agente DDPG com biblioteca kerasrl2 e treiná-lo em ambiente FinRL fornecido para *portfolio management* de 15 ações entre as mais negociadas da bolsa brasileira no período entre 2008 e 2020.

Tarefas:

- A) Criação do ambiente *StockPortfolioEnv*
- B) Criação de modelos de agente π_{θ} e crítico Q_w .
- C) Inicialização e compilação de agente DDPGAgent.
- D) Treino e visualização de resultados.

T2.ipynb

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] Sutton, R. and Barto, A. Reinforcement Learning: An Introduction, The MIT Press (2020). [Cp. 13]
- [2] https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html#actor-critic
- [3] Williams, R., J. Simple Statistical Gradient Following Algorithms for Connectionist Reinforcement Learning, 1992
- [4] Mnih, V.; et. al. Asynchronous Methods for Deep Reinforcement Learning, 2016
- [5] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, et al.. *Deterministic Policy Gradient Algorithms*. ICML, Jun 2014, Beijing, China. ffhal-00938992
- [6] Lillicrap, T; et. al. Distributed Distributional Deterministic Policy Gradients, ICLR, 2018.
- [7] Tassa, Y.; et. al. Deep Mind Control Suite, 2018.
- [8] Schulman, J.; et. al. Trust Region Policy Optimization, University of California, Berkeley, 2017.
- [9] Schulman, J.; et. al. *Proximal Policy Optimization Algorithms*, University of California, Berkeley, 2017.

DÚVIDAS

Muito obrigado a todos!

Dúvidas