School Name Mathematics 2017

Year 8

Transformations and Congruence

Non Calculator
Test

Skills and Knowledge Assessed:

- Describe translations, reflections in an axis, and rotations of multiples of 90° on the Cartesian plane using coordinates. Identify line and rotational symmetries (ACMMG181)
- Define congruence of plane shapes using transformations (ACMMG200)
- Develop the conditions for congruence of triangles (ACMMG201)
- Establish properties of quadrilaterals using congruent triangles and angle properties, and solve related numerical problems using reasoning (ACMMG202)

increal problems using reasoning (NCMW0202)

Name_____

Section 1 Short Answer Section

Write all working and answers in the spaces provided on this test paper.

Geometric Instruments will be needed for this test.

Questions 1 and 2 refer to the diagram below.

- 1. Draw all the axes of line symmetry on the shape.
- 2. What order of rotational symmetry does the shape have?
 - Order 2
- Order 4
- Order 8
- ☐ It has none

A triangle ABC is rotated through 180° about the point B.
Which point does not change position?
Every point changes position.
Point A does not change position.
Point B does not change position.

4. Use geometric instruments to draw the image after *ABCDEF* is reflected in the line *XY*.

Point C does not change position.

5. Use geometric instruments to draw the image after *NOPQ* has been rotated through 270° in a clockwise direction.

6. What order of rotational symmetry does the shape below have?

☐ None

Use geometric instruments to draw the image after *EFGH* is translated in the distance and direction 7. indicated by the arrow.

8. The triangle OPQ is reflected in the line OQ.

Which triangle could be the image?

The figure *PQR* could be transformed to the 9.

figure P'Q'R' by:

- Rotation through 180°.
- Reflection.
- Translation.
- Rotation through 90°.

10. Which polygon has exactly 2 axes of symmetry?

11. Complete the figure given that *LM* is an axis of line symmetry.

12. A polygon *ABCDE* which has its vertices labelled in a clockwise direction, is transformed to a congruent image which is also labelled in a clockwise direction.

Which of these transformations could have been used?

☐ A reflection, a rotation or a translation.
--

- Only a reflection and a rotation.
- Only a reflection and a translation
- Only a rotation and a translation.

13. The point K(-5, -8) is translated through the distance and direction indicated by the arrow.

Which point is the image after the transformation?

- ☐ A (-5, 8)
- ☐ B (1, 2)
- ☐ C(1, -2)
- \Box D (5, 8)

14. Draw the image of triangle ABC after a rotation through 180° about the origin O.

15. The point P(-8, -2) is reflected in the line AB.

Which are the coordinates of the image after the transformation?

16. Draw the position of the figure PQRS after a reflection in the line y = 2.

17. The point K(-5, 3) is rotated through 90° in a clockwise direction about the origin O.

Which point is its image?

- \Box A (3, 5)
- ☐ B (5, 3)
- ☐ C (3, –5)
- ☐ D (-5, -3)

18. Figure *ABCD* is moved to an image *A'B'C'D'* by a single transformation.

What was the transformation?

- \square A reflection in the line y = -x
- ☐ A rotation of 180°.
- ☐ A translation.

19. Quadrilateral *STUV* is a parallelogram.

What transformation could move $\triangle STW$ to $\triangle UVW$?

- A reflection.
- ☐ A rotation of 90°.
- A rotation of 180°.
- A translation.

20. A rhombus *DEFG* has its diagonals drawn, intersecting at H.

Which pair of triangles are not congruent?

- \Box Δ *DEF* and Δ *DEG*
- \Box Δ DEG and Δ FEG
- \Box Δ *DEH* and Δ *DGH*

21. The rhombus WXYZ is reflected in the line segment AB, to give the rhombus EFGH.

Which distances are equal?

- \square FX and HZ
- \square FN and XN
- \square HE and WY
- \square HF and HP

22. POQ is rotated through 180° about O and then the image is reflected in the y axis.

Which figure is its image?

- Triangle A
- Triangle B
- Triangle C
- Triangle D

23. Which of the congruence tests could be used to show that \triangle ABC \equiv \triangle DEF?

- \square AAS
- ⊃ RHS
- SAS
- □ SSS

24. The point A (-5, 3) is reflected in the line y = x. The image is then rotated through 90° in a clockwise direction about the origin.

Give the coordinates of the point which is the image after these transformations?

- \Box (-5, 3)
- \Box (-5, -3)
- (3, -5)

25. A congruence proof has been started below.

$$\angle STW = \angle VTU$$
 (vert opp angles)

$$ST = VT$$
 (given)

$$WT = UT$$
 (given)

Which of the congruence tests is used?

- \square AAS
- \square RHS
- \square SAS
- \square SSS

26. In the figure below AB = DE, BC = EF, $\angle ACB = \angle DFE$ and $\angle ABC = \angle DEF$.

Which two congruence tests could be used to prove \triangle ABC \equiv \triangle DEF.

- AAS and RHS
- AAS and SAS
- ☐ AAS and SSS
- ☐ SAS and SSS
- 27. $\triangle NOP$ is reflected in the line y = -x and the image is then translated the distance and direction indicated by *RS*.

Draw the image after the two transformations.

2017

28. Which of the congruence tests could be used to show that $\Delta GHI \equiv \Delta JKI$?

- \square AAS
- RHS
- SAS
- SSS

29. A roof truss for a house is a series of welded steel triangles, as shown below.

The shape has line symmetry along the line *CG*.

Name two pairs of congruent triangles in the figure.

- Δ _____ and Δ _____
 - Δ _____ and Δ _____

30. In the diagram below, AB = CD, BC = AD and $\angle BCA = \angle DAC$.

Name two congruence tests that could be used to prove that $\Delta BCA \equiv \Delta DAC$.

and

School Name Mathematics 2017

Year 8

Transformations and Congruence

Calculator Allowed

Name____

Section 2

Longer Answer Section

Write all working and answers in the spaces provided on this test paper.

Marks

1.

(a) Draw the image when the triangle ABC is rotated through 90° in a clockwise direction about C.

2

Use geometric instruments. B

Marks

(b) Translate the figure below so that the side ST coincides with VW.

2.

(a) Draw a figure congruent to *ABCD*, by rotating through 180° in a clockwise direction.

2

Marks

(b) Draw the image of the quadrilateral *ABCD* after a reflection in the line *XY*.

2

3. (a) KL = NO, LM = PO and $\angle L = \angle O$. Prove that $\Delta KLM \equiv \Delta NOP$. 2

.....

Marks

3

(b) EFGH is a parallelogram with the diagonal EG drawn. Using **only** the property that the opposite sides of a parallelogram are parallel, prove that $\Delta EFG \equiv \Delta EHG$.

School Name Mathematics Test 2017

Year 8

Transformations and Congruence

Non Calculator Test

ANSWERS

Question	Working and Answer
23.	There are two pairs of corresponding angles equal with the included side also equal. ASS 1st Answer
24.	3 rd Answer
25.	Two sides and an included angle (SAS). 3 rd Answer
26.	AAS and SAS 2 nd Answer

Question	Working and Answer
27.	Diagram with two triangle drawn.
28.	There are a pair of equal vertically opposite angles and a pair of equal alternate angles, which together with the given sides being equal allow proof using AAS. 1st Answer
29.	Any two pairs. Some examples are : $\Delta ABH \text{ and } \Delta EDF.$ $\Delta ACH \text{ and } \Delta ECF.$ $\Delta BHC \text{ and } \Delta DFC.$ $\Delta CGH \text{ and } \Delta CGF.$
30.	AC is common, so this allows SSS, since two sides are already given. AC being common, along with $BC = AD$ and the angle given allows SAS.

School Name Mathematics Test 2017

Year 8

Transformations and Congruence

Longer Answer Section

ANSWERS

Question	Answer	Marks
1.	(a) $B \longrightarrow A' \longrightarrow B'$ $A \longrightarrow C$	2 marks for an accurate drawing. 1 mark if inaccurate or a minor error.
		2 marks for an accurate drawing. 1 mark if inaccurate or a minor error.

Question	Answer	Marks
2.	$\begin{pmatrix} y \\ b \\ 7 \\ 4' \end{pmatrix}$	2 marks for an accurate and correct drawing of the image.
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 mark for an inaccurate drawing or one with a minor error
	(b) X A' C' C'	2 marks for an accurate and correct drawing of the image. 1 mark for an inaccurate drawing or one with a minor error
3.	(a) In \triangle KLM and \triangle NOP $KL = NO$ (given) $LM = OP$ (given) $\angle L = \angle O = 90^{\circ}$ (given) $\therefore \triangle KLM \equiv \triangle NOP$ (SAS)	2 marks for stating the three equal features and stating congruence with SAS. 1 mark for a partial proof or incorrect conclusion

Question	Answer	Marks
	(b) In \triangle <i>EFG</i> and \triangle <i>EHG</i> \angle <i>FEG</i> = \angle <i>HGE</i> (alt \angle on \parallel lines) \angle <i>FGE</i> = \angle <i>HEG</i> (alt \angle on \parallel lines) <i>EG</i> is common \therefore \triangle <i>EFG</i> \equiv \triangle <i>EHG</i> (<i>AAS</i>)	3 marks for stating the three equal features and including the reasons for the two angles being equal and stating congruence with AAS.
		2 marks for a proof without one of the reasons or with another minor error or an incorrect conclusion
		1 mark for a proof without reasons or incorrect reasons, or which is only a partial attempt at the proof