### Q1

#### Q1 (i):

The variance explained by a particular principal component is essentially the associated eigenvalue Therefore, the following results were obtained:

- Variance explained by principal component 1: 17.1319 (54.18%)
- Variance explained by principal component 2: 14.4896 (45.82%)

#### Q1 (ii):

- Centering does not affect the data.
- Centering the data doesn't have any effect on the variance as seen by each of the principal components
- This means that the data is already a centered data

#### • Original Data:



#### Centered:





• Without Centering:



Q1 (iii) A:

Kernel PCA was implemented using the given kernels

• Polynomial Kernel :  $k(x, y) = (1 + x T y)^d$  for d=2



• Polynomial Kernel :  $k(x, y) = (1 + x T y)^d$  for d=3



Q1 (iii) B:

Gaussian Kernel: 
$$\kappa(x,y)=\exp\frac{-(x-y)^T(x-y)}{2\sigma^2}$$
 for  $\sigma=\{0.1,0.2,\ldots,1\}$ 



#### Q1 (iv):

Polynomial kernal with d = 2 find the better clusters in the data.

Variance is high for d=2, Also we need 3 principle components for d=2, and 4 for d=3

# Q2:

## Q2(i):

Run 1:



Run 2:



Run 3:



Run 4:



Run 5:



Run 6:



Q2(ii):

K=2



K=3



K=4







#### Q2(iii):

Polynomial performs better than Exponential Kernel function

For d=2 in polynomial, we get clearly distinct clusters



#### Q2(iv):

The results were visualised and it was seen that it was not as good as spectral clustering.

Because in given function clustered points are scattered across different dimensions

