MATH 323 RINGS, FIELDS AND GALOIS THEORY

(FALL TERM 2020-21)

FINAL EXAM

In what follows, K denotes a field.

(1) Let E be an extension field of K. An element $\varepsilon \in E$ is called separable over F, if ε is algebraic over K with separable irreducible polynomial $m_{\varepsilon,K}(X) \in K[X]$ over K.

Now assume that E/K is a finite extension such that $E=K(\varepsilon_1,\cdots,\varepsilon_s)$ where $\varepsilon_1,\cdots,\varepsilon_s\in E$ are all separable over K. Prove that, there exists $\varepsilon\in E$ such that

$$E = K(\varepsilon)$$
.

- (2) Recall that, a finite extension E/K is respectively called :
 - a separable extension, if every $\varepsilon \in E$ is separable over K;
 - a normal extension, if every irreducible polynomial $p(X) \in K[X]$ that has a zero in E actually splits in E[X];
 - a Galois extension, if E/K is both normal and separable.

Prove: For a finite extension E/K, T.F.A.E.:

- (i) E/K is Galois.
- (ii) $E = \operatorname{Split}_K(p_1(X), \dots, p_s(X))$ for some separable polynomials $p_1(X), \dots, p_s(X) \in K[X]$ over K.
- (iii) $E = \operatorname{Split}_K(p(X))$ of a separable polynomial $p(X) \in K[X]$ over K.
- (3) Let E/K be a finite extension. Let F be an intermediate field of E/K; which means that, we have a chain of field extensions $K \subseteq F \subseteq E$. Prove that:

$$E/K$$
: Galois $\Rightarrow E/F$: Galois.

(4) Let E be an (not necessarily finite) extension of K. Introduce

$$\operatorname{Aut}(E/K) = \{ \varphi : E \xrightarrow{\sim} E \mid \varphi(\kappa) = \kappa, \ \forall \kappa \in K \}.$$

Prove that $\operatorname{Aut}(E/K)$ is a group under composition of mappings. In case E/K is Galois, $\operatorname{Aut}(E/K)$ is denoted by $\operatorname{Gal}(E/K)$, and called the Galois group of E/K.

- (5) Prove that $\mathbb{Q}(^4\sqrt{2})/\mathbb{Q}$ is not a Galois extension but $\mathbb{Q}(^4\sqrt{2})/\mathbb{Q}(\sqrt{2})$ is Galois. Determine the Galois group of $\mathbb{Q}(^4\sqrt{2})/\mathbb{Q}(\sqrt{2})$.
- (6) Let E/K be a finite Galois extension. To simplify the discussion, introduce the collection of all intermediate fields of E/K

$$I(E/K) := \{ F \mid K \subseteq F \subseteq E \},\$$

and the collection of all subgroups of Gal(E/K)

$$S(E/K) := \{H \mid H \le Gal(E/K)\}.$$

Date: January 30, 2021.

1

Define two mappings

$$i_{E/K}: I(E/K) \rightarrow S(E/K)$$

and

$$j_{E/K}: S(E/K) \rightarrow I(E/K)$$

by the rules

$$i_{E/K}(F) = \operatorname{Gal}(E/F), \ \forall F \in \operatorname{I}(E/K)$$

and

$$j_{E/K}(H) = \{ \varepsilon \in E \mid \sigma(\varepsilon) = \varepsilon, \ \forall \sigma \in H \}, \ \forall H \in S(E/K)$$

respectively.

- (i) Prove that i and j are inverses of each other, and both define "inclusion-reversing" bijections.
- (ii) Prove that there are finitely many intermediate fields of E/K.
- (iii) Prove that for $F \in I(E/K)$, |Gal(E/F)| = [E : F].
- (iv) For $\varphi \in \operatorname{Gal}(E/K)$ and $F \in \operatorname{I}(E/K)$, prove that $\operatorname{Gal}(E/\varphi(F)) = \varphi \operatorname{Gal}(E/F) \varphi^{-1}$.
- (v) Prove that, for $F \in I(E/K)$, the extension F/K is Galois iff $i_{E/K}(F) \subseteq Gal(E/K)$. If this is the case,

$$Gal(F/K) \simeq Gal(E/K)/i_{E/K}(F)$$
.