Flattening Polygonal Linkages via Uniform Angular Motion

Hugo A. Akitaya¹ Matthew D. Jones¹ Gregory A. Sandoval² Diane L. Souvaine¹ David Stalfa¹ Csaba D. Tóth^{1,2}

¹Tufts University, Medford, MA ²California State University, Northridge, Los Angeles, CA

• Rectangle formed by unit length segments.

 $t = \frac{2}{3}$

• Regular Polygons, Triangles, Quadrilaterals and Convex Pentagons

LINKAGES THAT UNFOLD INTO NEITHER A STRAIGHT LINE NOR A ZIG-ZAG

Orthogonal Polygons with two concavities/x-Monotone Polygons

Wei Wang, Hugo Rodrigue, Sung-Hoon Ahn, Deployable Soft Composite Structures.

DOI:10.1038/srep20869, 2016.

References

[1] Robert Connelly and Erik D. Demaine, Geometry and topology of polygonal linkages, in *Handbook of Discrete and Computational Geometry*, third edition, 2017, chapter 9, pages 233–256.