

Selección de chasis en biología sintética:

¿qué debo saber?

Club Synbio III Sesión, 2021

Repaso

¿Qué es un organismo modelo?

¿Qué es un chasis?

doi: <u>10.1111/1751-7915.13292</u>

¿Qué debemos tomar en cuenta al seleccionar un chasis?

- ¿Qué se quiere obtener de él?
- ¿En qué área se quiere implementar?
- ¿Posee las características necesarias para lo que quiero obtener?
- ¿Qué tan caracterizado está?
- ¿Cuáles herramientas existen para transformarlo, modelarlo y caracterizarlo?
- ¿Ya hay algo similar reportado?
- ¿Cuánto tiempo tomará obtener resultados?
- ¿De cuáles recursos dispongo?
- ¿Es viable?

Ningún chasis es perfecto: costo vs. beneficio

¿Según mis **prioridades**, qué es más importante?

Características básicas de un chasis

★ Manejabilidad genética

★ Robustez del crecimiento

★ Estabilidad genética

★ Capacidad de predecir con precisión las interacciones entre el dispositivo sintético y el chasis

Tipos de chasis

	Manipulación genética	Compuestos robustos	Escalabilidad	Costos	
	+	✓	×	++++	
X	+++	✓	✓	+++	
	+++	X	✓	++	
	++	×	✓×	++	
	+++	✓	✓	+	

Ejemplo

Microalgal species	Editing method	Application
Synechococcus elongatus PCC 7942	One plasmid-driven CRISPRi/dCas9 system	Downregulating the expression level of glgc gene
Synechocystis sp. PCC 6803	One plasmid-driven CRISPRi/dCas9 system	Repression the formation of carbon storage compounds
Synechococcus elongatus UTEX 2973	Two plasmid-driven CRISPR/Cas9 system	Knock-out of the nblA gene
Synechococcus sp. PCC 7002	Genomic integration CRISPRi/dCas9 system	Downregulating the expression level of carboxysome
Synechococcus sp. PCC7942	One plasmid-driven CRISPR/Cas9 system	Knock-out of the glgc gene and knock-in of gltA/ppc genes improving succinate production
Chlamydomonas reinhardtii CC-503	One plasmid-driven CRISPR/Cas9 system (C. reinhardtii codon-optimized Cas9)	First successful transient expression of Cas9 and sgRNA genes in Chlamydomonas reinhardtii
Chlamydomonas reinhardtii CC-124	CRISPR-Cas9 ribonucleoproteins	Mutagenesis of MAA7, CpSRP43 and ChlM gene
Chlamydomonas reinhardtii	CRISPR-Cas9 ribonucleoproteins	Knock-out of the CpFTSY and ZEP gene, improving photosynthetic productivity
Chlamydomonas reinhardtii CC-400	Two plasmid-driven CRISPRi/dCas9-KRAB system	Downregulating the expression level of CrPEPC1 gene
Chlamydomonas reinhardtii CC-4349	CRISPR-Cas9 ribonucleoproteins	Knock-out of the zeaxanthin epoxidase gene
Phaeodactylum tricornutum	One plasmid-driven CRISPR/Cas9 system (C. reinhardtii codon-optimized Cas9)	Mutagenesis of the CpSRP54 gene
Thalassiosira pseudonana	One plasmid-driven CRISPR/Cas9 system	A 37 nt deletion in the urease gene
Nannochloropsis oceanica IMET1	CRISPR-Cas9 ribonucleoproteins	Knock-out of the NR gene
Nannochloropsis oceanica CCMP1779	One plasmid-driven CRISPR/Cas9 system	Knock-out of the NR gene

¿Multi-chasis?

 $\frac{\text{https://www.sciencedirect.com/science/article/pii/S2405805X183}}{00413}$

https://doi.org/10.1016/j.copbio.2019.09.005

Dispositivos ortogonales

Ortogonalidad → Dispositivos sintéticos que funcionan independientemente del host

 El hecho de contar con mecanismos sintéticos, no significa que no vayan a interactuar con los componentes endógenos del chasis.

 La complejidad del sistema aumenta exponencialmente las posibilidades de interacciones impredecibles que pueden obstaculizar la salida.

Busca la racionalización del genoma

Manejo de secuencias de ADN

- Snapgene https://www.snapgene.com/
- Benchling www.benchling.com
- Optimización codones https://www.idtdna.com/CodonOpt
- Uso de codones http://www.kazusa.or.ip/codon/
- Random DNA generator
 - https://faculty.ucr.edu/~mmaduro/random.htm
- Masaieador secuencias
 - http://biomodel.uah.es/en/lab/cybertory/analysis/massager.htm
- Traducciones http://www.ebi.ac.uk/Tools/st/
- Alineamiento múltiple en línea
 - http://www.ebi.ac.uk/Tools/msa/clustalo/
- Alineamiento múltiple descargar (en masa) https://www.megasoftware.net/

Búsqueda de secuencias

Blast (ojo, tiene diferentes tipos) https://blast.ncbi.nlm.nih.gov/

Info sobre genes/proteínas/bichos

- All https://www.ncbi.nlm.nih.gov/
 - Genes y anotaciones http://geneontology.org/
 - Proteinas https://www.uniprot.org/
 - Enzimas https://www.brenda-enzymes.org/
 - Genomas, ojo que hay varias plataformas http://bacteria.ensembl.org/index.html
- Bichos patógenos https://www.patricbrc.org/
- Microbioma humano https://www.hmpdacc.org/HMREFG/

Rutas metabólicas

- MetaCyc https://metacyc.org/ KEGG https://www.genome.jp/kegg/pathway.html

E. coli

- EcoCyc https://ecocyc.org/
- Regulación http://regulondb.ccg.unam.mx/index.jsp Calculadora regulación https://salislab.net/software/
- Factores transcripción
- https://shigen.nig.ac.jp/ecoli/tec/cytoscape/ Visualización rutas metabólicas https://escher.github.io/#/

Primers

- Análisis https://www.idtdna.com/calc/analyzer
- Alineamiento múltiple https://services.birc.au.dk/prifi/main.py
- Diseño http://primer3plus.com/cgi-bin/dev/primer3plus.cgi
- PCR in silico http://insilico.ehu.es/PCR/
- Primer Blast https://www.ncbi.nlm.nih.gov/tools/primer-blast/

Anotación genómica

- https://rast.nmpdr.org/
- https://www.ncbi.nlm.nih.gov/genome/annotation_prok/
- https://www.hsls.pitt.edu/obrc/index.php?page=URL1132678306

Múltiples herramientas en una

- Bioinfo TEC https://sites.google.com/site/bionformaticaitcr/home?authuser=0
- Flujos de trabajo https://www.kbase.us/ (blast, anotación, flujos metabólicos, etc.)
- Literal de todo https://www.expasy.org/
- Varias (secuencias, modelado proteico, etc.) https://bip.weizmann.ac.il/toolbox/structure/structure.html

Synbio specific

- SBOL (lenguaje) https://sbolstandard.org/ Repositorio iGEM http://parts.igem.org/Main_Page
- Repositorio ampliado https://synbiohub.org/
- Promotores y terminadores https://molbiol-tools.ca/Promoters.htm

Lípidos

https://www.lipidmaps.org/tools/ms/

Clonación

http://nebcloner.neb.com/#!/

Restricción

- Búsqueda de sitio en una secuencia http://nc2.neb.com/NEBcutter2/
- Info sobre enzimas https://worldwide.promega.com/resources/tools/retool/
- Herramientas varias https://molbiol-tools.ca/Restriction_endonuclease.htm

Análisis ARN

- http://rna.tbi.univie.ac.at//cgi-bin/RNAWebSuite/RNAfold.cgi
- http://unafold.rna.albany.edu/?q=DINAMelt/Hybrid2

Genealogía

MEGA también hace árboles filogenéticos

Data para modelado matemático

https://datanator.info/

Análisis de expresión

https://www.hsls.pitt.edu/obrc/index.php?page=gene expression tools

Herramientas de interés: mi mina de oro

Selección de chasis en biología sintética:

¿qué debo saber?

Club Synbio III Sesión, 2021