Name:	
I TOTAL	

All Greek to me!

2. (8 points) Let's consider solving a ridge regression problem using stochastic gradient descent. For simplicity, we will ignore the offset. Our hypothesis has the form

$$h(x;\theta) = \theta^T x$$
;

our objective function has the form

$$J(\theta) = \left(\frac{1}{n} \sum_{i=1}^{n} \left(h(x^{(i)}; \theta) - y^{(i)} \right)^{2} \right) + \lambda \|\theta\|^{2} ;$$

and we will do T steps of gradient descent using a rule of the form

$$\theta = \theta - \eta \nabla_{\theta} J(\theta) ,$$

where η has a fixed value throughout the execution.

What is with all these Greek letters!? Each of θ , λ , and η has a role in what happens.

In the following questions, mark all answers that apply.

- (a) Which parameter(s) would be included when using the hypothesis to make predictions?
 - $\sqrt{\theta}$ $\bigcirc \lambda$ $\bigcirc \eta$ \bigcirc none
- (b) Which parameter(s) are primarily intended to improve generalization?
 - $\bigcirc \theta \quad \sqrt{\lambda} \quad \bigcirc \eta \quad \bigcirc \text{ none}$
- (c) Can T play a similar role to λ ?
 - $\sqrt{\text{ yes}}$ O no

Explain your answer.

Solution: By stopping the optimization early, we force the algorithm to use less of the training data, hence we can prevent it from being overly specialized (overfit) to the training data.

- (d) Can η play a similar role to λ ?
 - $\sqrt{\text{ yes}}$ \bigcirc no

Explain your answer.

Solution: Using a very small step size has a behavior somewhat like stopping early; using a large step size (or not decaying it appropriately) will also not allow the optimization to go into a "narrow valley," which might also help to prevent overfitting.