Теортест-1 (Вариант 132)

Тема – определенный интеграл

Задача 1

Функция $f \in R[0,10]$ и $-1 \le f(x) \le 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_{-\ln 2}^0 \frac{f(x)}{e^x} dx$:

- 1. [0.5; 5];
- 2. [-0.25; 10];
- 3. [-1; 5];
- 4. [-2; 10];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Пусть $f:[a,b]\to\mathbb{R};\ \sigma_{\tau}(\xi)$ — интегральная сумма для f, построенная по разбиению τ с оснащением $\xi;\ s_{\tau},\ S_{\tau}$ — нижняя и верхняя суммы Дарбу. Выберите все верные утверждения:

- 1. $\forall \tau \ \forall \varepsilon > 0 \ \exists \xi : \ \sigma_{\tau}(\xi) > S_{\tau} + \varepsilon;$
- 2. $\forall \tau \ \forall \varepsilon > 0 \ \exists \xi : \ \sigma_{\tau}(\xi) < s_{\tau} + \varepsilon$:
- 3. $\forall \tau \; \exists \xi : \; s_{\tau} \leq \sigma_{\tau}(\xi) \leq S_{\tau};$
- 4. $\forall \tau : s_{\tau} < S_{\tau}$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Выберите все верные утверждения:

- 1. Длина любого пути не меньше длины вписанной в его носитель ломаной;
- 2. Кусочно-гладкая кривая спрямляема;
- 3. Длина любой кривой не меньше длины отрезка, соединяющего ее начало и конец;
- 4. Длина кривой определяется как супремум длин всевозможных параметризаций кривой;
- 5. Длина кривой зависит от параметризации;

Задача 4

Пусть $f \in R[a,b], F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. F первообразная для f на [a, b];
- 2. F ограничена на [a, b];
- 3. F имеет разрывы в точках разрыва функции f;
- 4. F дифференцируема на [a,b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Пусть функция u=u(x) – первообразная для функции v=v(x) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. vdt = du;
- 2. v' = u + C;
- 3. u = v' + C;
- 4. u = v';

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Пусть $f \in R[a,b], a < b$. Выберите все верные утверждения:

- 1. Если $\int_a^b |f(x)| dx = 0$, то $f(x) \equiv 0$ на [a,b];
- 2. Если $f \geq 0$ на [a,b] и $\exists c \in [a,b] : f(c) > 0$, то $\int_a^b f(x) dx > 0$;
- 3. Если $\left| \int_a^b f(x) dx \right| < A$, то $\int_a^b |f(x)| dx < A$;
- 4. Если $\left| \int_a^b f(x) dx \right| = 0$, то $f(x) \equiv 0$ на [a,b];

Задача 7

Пусть f интегрируема и $f \ge 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f > 0 на [a, b];
- 2. f непрерывна на [a, b] и f(a + b) = 1;
- 3. f непрерывна на [a,b] и f((a+b)/2) = 1;
- 4. f(a) > 0, f(b) > 0;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Пусть f(x), x(t) – дифференцирумые функции. Выберите все верные утверждения (при соответствующей замене) :

- 1. $\int f(x)d(2x) = \int \frac{f(\sqrt{t})}{\sqrt{t}}dt;$
- 2. $\int f(x)dx = \int \frac{f(\ln t)}{t}dt$;
- 3. $\int f(x)dx = \int f(\ln t)tdt$;
- 4. $\int f(1/x)dx = -\int \frac{f(t)dt}{t^2};$

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Выберите все функции, имеющие дробно-рациональные первообразные:

- 1. $\frac{2x+1}{x^2(x+1)^2}$;
- 2. $\frac{x^2+1}{x^5}$;
- 3. $\frac{x}{x^2-1}$;
- 4. $\frac{x^4}{(x^5+1)^3}$;

Задача 10

Выберите все верные утверждения (тела А и В имеют объем):

- 1. $V(A) = V(A \cap B) + V(A \setminus B);$
- 2. объем любого сечения тела A равен нулю;
- 3. объем A всегда неотрицателен;
- 4. любое множество имеет неотрицательный объем;