Lógica para Computação 2014/2

Profa: Daniela Scherer dos Santos danielass@unisc.br

Introdução

- Formas de representação de uma função Booleana:
 - uma equação;
 - tabela verdade;
 - <u>Gráfica</u>: onde cada operador está associado a um símbolo específico, permitindo o imediato reconhecimento visual. Tais símbolos são conhecidos por portas lógicas.

As portas lógicas representam recursos físicos, isto é, circuitos eletrônicos, capazes de realizar as operações lógicas.

- INVERSOR (Negação):
- simboliza a operação complementação (NÃO). Como a operação complementação só pode ser realizada sobre uma variável por vez (ou sobre o resultado de uma expressão), o inversor só possui uma entrada e, obviamente, uma saída.

Α	Ā
0	1
1	0

- Porta AND (e)
- O comportamento da porta AND segue a definição e tabela verdade da operação E (multiplicação lógica).

A	В	A·B
0	0	0
0	1	0
1	0	0
1	1	1

- PORTA OR (ou)
- O funcionamento da porta OU segue a definição e tabela-verdade da operação OU (soma lógica).

Α	В	А+В
0	0	0
0	1	1
1	0	1
1	1	1

Porta NAND (negação E)

Porta NOR (negação OU)

Porta NAND (com uma entrada invertida)

Porta NOR (com uma entrada invertida)

Porta XOR (ou exclusivo)

	Nome	Função	Representação
	Inversor (negação)	a'	a <u></u> ⊳o <u>a'</u>
	AND (e)	a.b	aa.b_
	OR (ou)	a + b	a <u>a+b</u>
	NAND (negação e)	(a . b)'	a(a.b)'
	NOR (negação - ou)	(a + b)'	a(a+b)'
	NAND (com uma entrada invertida)	(a' . b)'	a
1 81	NOR (com uma entrada invertida)	(a' + b)'	a(a'+b)'
1		Luyica para Guilipu	naçao

- Exemplo de Circuito Lógico:
 - circuito lógico para a equação W= X + Y . Z'

- Exemplo de Circuito Lógico:
 - circuito lógico para a equação W= X + Y . Z'

- Exemplo de Circuito Lógico:
 - circuito lógico para a equação W= X + Y . Z'

- Exemplo de Circuito Lógico:
 - circuito lógico para a equação W= X + Y . Z'

- Exemplo de Circuito Lógico:
 - circuito lógico para a equação

$$x = (((a + b') \cdot c) + (a' \cdot b' \cdot c')) \cdot (a' + b)'$$

- Exemplo de Circuito Lógico:
 - circuito lógico para a equação

$$x = (((a + b') \cdot c) + (a' \cdot b' \cdot c')) \cdot (a' + b)'$$

- Exemplo de Circuito Lógico:
 - circuito lógico para a equação

$$x = (((a + b') \cdot c) + (a' \cdot b' \cdot c')) \cdot (a' + b)'$$

- Exemplo de Circuito Lógico:
 - circuito lógico para a equação

$$x = (((a + b') \cdot c) + (a'.b'.c')) \cdot (a' + b)'$$

- Exemplo de Circuito Lógico:
 - circuito lógico para a equação

$$x = (((a + b') \cdot c) + (a'.b'.c')) \cdot (a' + b)'$$

- Exemplo de Circuito Lógico:
 - circuito lógico para a equação

$$x = (((a + b') \cdot c) + (a'.b'.c')) \cdot (a' + b)'$$

- Exemplo de Circuito Lógico:
 - circuito lógico para a equação

$$x = (((a + b') \cdot c) + (a' \cdot b' \cdot c')) \cdot (a' + b)'$$

Referências

DAGHLIAN, Jacob. Lógica e Álgebra de Boole. São Paulo: Editora Atlas, 1990.

