О числе ребер в индуцированных подграфах специального дистанционного графа

Ф. А. Пушняков 24.06.2015

Аннотация

В работе получены новые оценки числа ребер в индуцированных подграфах специального дистанционного графа. Библиография: 21 название.

1 Введение

Рассмотрим последовательность графов $G_n = G_n(V_n, E_n) = G(n, 3, 1)$, у которых

$$V_n = \{x = (x_1, \dots, x_n) \mid x_i \in \{0, 1\}, \ i = 1, \dots, n, \ x_1 + \dots + x_n = 3\},\$$

$$E_n = \{(x, y) \mid \langle x, y \rangle = 1\},\$$

где через $\langle x,y \rangle$ обозначено скалярное произведение векторов x и y. Иными словами, вершинами графа G(n,3,1) являются (0,1)-векторы, скалярный квадрат которых равен трем. И эти вершины соединены ребром тогда и только тогда, когда скалярное произведение соответствующих веторов равно единице. Данное определение можно переформулировать в комбинаторных терминах. А именно, рассмотрим граф, вершинами которого являются всевозможные трехэлементные подмножества множества $\mathcal{R}_n = \{1, \dots, n\},$ причем ребро между такими вершинами проводится тогда и только тогда, когда соответствующие трехэлементные подмножества имеют ровно один общий элемент. Изучение данного графа обусловлено многими задачами комбинаторной геометрии, экстремальной комбинаторики, теории кодирования: например, задачей Нелсона-Эрдёша-Хадвигера о раскраске метрического пространства (см. |1|-|12|), проблемой Борсука о разбиении множеств в пространствах на части меньшего диаметра (см. |1|-|3|, |13|-|15|), задачами о числах Рамсея (см. [16], [17]), задачами о кодах с одним запрещенным расстоянием (см. [18], [19]).

Напомним несколько свойств данного графа. Граф G(n,3,1) является

 $C_n^3 \sim \frac{n^3}{6}$ при $n \to \infty$. В силу регулярности рассматриваемого графа имеем $|E_n| = \frac{d_n \cdot |V_n|}{2} = \frac{3}{2} \cdot C_{n-3}^2 \cdot C_n^3 \sim \frac{n^5}{8}$ при $n \to \infty$.

Напомним, что независимым множсеством графа называется такое подмножество его вершин, что никакие две вершины подмножества не соединены ребром. Числом независимости $\alpha(G)$ называется наибольшая мощность независимого множества. Положим $\alpha_n = \alpha(G(n,3,1))$. Результат теоремы Ж. Надя (см. [17]) отвечает на вопрос о числе независимости графа G(n,3,1). А именно, $\alpha_n \sim n$ при $n \to \infty$. Более того, из доказательства теоремы Ж. Надя можно сделать вывод о структуре независимого множества в рассматриваемом графе. Для описания этой структуры введем дополнительные обозначения. Пусть $W \subseteq V_n$. Будем говорить, что W является множеством вершин *первого типа*, если $|W| \ge 3$ и существуют такие $i,j\in\mathcal{R}_n$, что для любой вершины $w\in W$ выполнено $i,j\in w$; далее, W является множеством вершин *второго типа*, если $|W| \ge 2$ и существуют такие $i, j, k, t \in \mathcal{R}_n$, что для любой вершины $w \in W$ выполнено $w \subset \{i, j, k, t\}$; наконец, W является множеством вершин $mpembero\ muna$, если для любых $w_1, w_2 \in W$ выполнено соотношение $w_1 \cap w_2 = \emptyset$. Более того, носителем множества вершин назовем объединение всех вершин данного множества. Тогда имеет место следующее утверждение.

Утверждение 1 Любое независимое множество $U \subseteq V_n$ можно представить в виде объединения

$$U = (\cup_{i \in \mathcal{I}} A_i) \cup (\cup_{i \in \mathcal{I}} B_i) \cup (\cup_{k \in \mathcal{K}} C_k),$$

где A_i – множество вершин первого типа, B_j – множество вершин второго типа, C_k – множество вершин третьего типа, $i \in \mathcal{I}, j \in \mathcal{J}, k \in \mathcal{K},$ и носители всех упомянутых множеств попарно не пересекаются.

Мы не доказываем данное утверждение, так как оно мгновенно следует из доказательства теоремы Ж. Надя (см. [17]).

Обозначим через r(W) количество ребер графа G на множестве $W\subseteq V_n$. Иными словами,

$$r(W) = |\{(x,y) \in E(G) \mid x \in W, \ y \in W\}| \ .$$

Также положим

$$r(l(n)) = \min_{|W|=l(n), W \subseteq V_n} r(W) .$$

Заметим, что если $l(n) \leq \alpha_n$, то r(l(n)) = 0 и обсуждать нечего. Если же $l(n) > \alpha_n$, то, очевидно, в любом $W \subseteq V_n$ мощности l(n) непременно найдутся ребра. Возникает интересный вопрос об изучении величины r(l(n)). В настоящей работе мы приведем практически полное исследование данной величины. Нами доказана следующая теорема.

- 1. Пусть функции $f: \mathbb{N} \to \mathbb{N}, \ g: \mathbb{N} \to \mathbb{N}$ таковы, что выполнено n = o(f) и $g = o(n^2)$ при $n \to \infty$. Пусть функция $l: \mathbb{N} \to \mathbb{N}$ такова, что для любого $n \in \mathbb{N}$ выполнена цепочка неравенств $f(n) \leq l(n) \leq g(n)$. Тогда $r(l(n)) \sim \frac{l(n)^2}{2\alpha_n}$ при $n \to \infty$.
- 2. Пусть функция $l: \mathbb{N} \to \mathbb{N}$ такова, что существуют константы C_1, C_2, c которыми для каждого $n \in \mathbb{N}$ выполнена цепочка неравенств $C_1 \cdot n^2 \leq f(n) \leq C_2 \cdot n^2$. Тогда $r(l(n)) \sim \frac{l(n)^2}{2\alpha_n}$ при $n \to \infty$.
- 3. Пусть функции $f: \mathbb{N} \to \mathbb{N}, g: \mathbb{N} \to \mathbb{N}$ таковы, что выполнено $n^2 = o(f(n))$ и $g(n) = o(n^3)$ при $n \to \infty$. Пусть функция $l: \mathbb{N} \to \mathbb{N}$ такова, что для каждого $n \in \mathbb{N}$ выполнено $f(n) \leq l(n) \leq g(n)$. Тогда существует такая функция $h: \mathbb{N} \to \mathbb{N}$, что $h(n) \sim \frac{5l(n)^2}{\alpha_n}$ при $n \to \infty$ и для каждого $n \in \mathbb{N}$ выполнена цепочка неравенств $\frac{l(n)^2}{\alpha_n} \leq r(l(n)) \leq h(n)$.
- 4. Пусть функция $l: \mathbb{N} \to \mathbb{N}$ такова, что существует константа C, c которой выполнена цепочка неравенств $C \cdot n^3 \leq l(n) \leq C_n^3$. Пусть $c_n = 1 \frac{l(n)}{C_n^3}$. Тогда существует функция $f: \mathbb{N} \to \mathbb{N}$, такая, что $f(n) \sim n^5 \left(\frac{1}{8} \frac{c_n}{4} + \frac{c_n^2}{72}\right)$ при $n \to \infty$, и для каждого $n \in \mathbb{N}$ выполнено $r(l(n)) \geq f(n)$.

Проанализируем формулировку данной теоремы. В первых двух случаях мы нашли асимптотическое значение величины r(l) при $n \to \infty$. В третьем случае мы нашли порядок величины r(l(n)). Четвертый случай исследован не до конца, но оценка, полученная в нем, обладает тем свойством, что $r(l(n)) \sim |E_n|$ при $l(n) \sim |V_n|$ и $n \to \infty$. В следующем разделе мы приведем доказательство теоремы 1.

2 Доказательство теоремы 1

1 Доказательство пункта 1

Нижняя оценка известна и вытекает из классической теоремы Турана (см., например, [20], [21]). Для доказательства верхней оценки необходимо для каждой функции l(n), удовлетворяющей условию пункта 1 теоремы, и для каждого n построить пример множества W_n мощности l(n), для которого величина $r(W_n)$ оценивается сверху нужным образом. При этом можно считать, что n достаточно велико.

Зафиксируем произвольную функцию l, удовлетворяющую условию пункта 1 теоремы, и число n. Положим $a(n) = \left[\frac{n^2}{l(n)}\right]$. Положим $b(n) = [\ln a(n)]$.

Положим $x(n)=n-\left\lceil \frac{n}{b(n)}\right\rceil$. Ясно, что $x(n)\sim n$ при $n\to\infty$. Также по-

$$\mathcal{R}_n = \{1, \dots, n\}:$$
 $A_1 = \{1, \dots, x\}.$

Рассмотрим также следующее множество вершин:

$$W_n = \bigcup_{i \in A_1} \bigcup_{j \in \{1, \dots, \left\lceil \frac{y}{2} \right\rceil \}} \{ \{ x + 2(j-1) + 1, x + 2(j-1) + 2, i \} \}.$$

Найдем мощность множества W_n . Ясно, что

$$|W_n| = |A_1| \cdot \left[\frac{y}{2}\right] = x \cdot \left[\frac{y}{2}\right] \sim \frac{xy}{2}$$

при $n \to \infty$. Найдем $r(W_n)$. Обозначим через $E(W_n)$ множество ребер графа G(n,3,1) на множестве вершин W_n . Иными словами, $E(W_n) = \{(a,b) \in E(G) | a \in W_n, b \in W_n\}$.

Посчитаем мощность множества $E(W_n)$. Ясно, что только вершины вида $\{x+2(j-1)+1,x+2(j-1)+2,i\}$ при фиксированном $i\in A_1$ могут образовывать ребро. Всего существует $\left[\frac{y}{2}\right]\cdot x\cdot \left(\left[\frac{y}{2}\right]-1\right)\cdot \frac{1}{2}$ пар таких вершин. Действительно, $\left[\frac{y}{2}\right]\cdot x$ способами можно выбрать одну вершину из W_n , $\left(\left[\frac{y}{2}\right]-1\right)$ способами можно выбрать ей пару из W_n , и, наконец, сомножитель $\frac{1}{2}$ показывает нам, что каждую пару вершин мы посчитали два раза.

Таким образом, $|E(W_n)| = \left[\frac{y}{2}\right] \cdot x \cdot (\left[\frac{y}{2}\right] - 1) \cdot \frac{1}{2}$. Подставим в полученное выражение значения параметров:

$$|E(W_n)| \sim \frac{xy^2}{8} = \frac{x^2y^2}{8n} \cdot \frac{n}{x} \sim \frac{x^2y^2}{8n} \sim \frac{l(n)^2}{2\alpha_n}.$$

Таким образом, искомая верхняя оценка получена.

2 Доказательство пункта 2

Нижняя оценка, как и в предыдущем пункте, известна и вытекает из классической теоремы Турана. Для доказательства верхней оценки необходимо для каждой функции l(n), удовлетворяющей условию пункта 2 теоремы, и для каждого n построить пример множества W_n мощности l(n), для которого величина $r(W_n)$ оценивается сверху нужным образом. По-прежнему можно считать, что n достаточно велико.

Зафиксируем произвольную функцию l, удовлетворяющую условию пункта 2 теоремы, и число n. Положим $c_n = 4 - \frac{1}{\ln n}, k = \left[\frac{n}{4}\right]$. Положим

$$W_1 = \bigcup_{i=3}^{[c_n k]} \{ \{1, 2, i\} \},\$$

$$\begin{bmatrix} c & k \end{bmatrix} \begin{bmatrix} \frac{n-[c_n k]}{2} \end{bmatrix}$$

Обозначим $W_n = W_1 \sqcup W_2$. Ясно, что

$$|W_n| = |W_1| + |W_2| = [c_n k] - 2 + ([c_n k] - 2) \left[\frac{n - [c_n k]}{2} \right] \sim c_n k \frac{n - c_n k}{2} \sim$$
$$\sim c_n k \frac{(4 - c_n)k}{2} = \frac{c_n (4 - c_n)k^2}{2}.$$

Как и раньше, обозначим через $E(W_n)$ множество ребер графа G(n,3,1) на множестве вершин W_n . Ясно, что

$$|E(W_n)| = ([c_n k] - 2) \left[\frac{n - [c_n k]}{2} \right] + \frac{1}{2} ([c_n k] - 2) \left[\frac{n - [c_n k]}{2} \right] \left(\left[\frac{n - [c_n k]}{2} \right] - 1 \right) \sim$$

$$\sim \frac{c_n \left(4 - c_n \right)^2 k^3}{8} = \frac{c_n^2 \left(4 - c_n \right)^2 k^4}{4} \frac{1}{2c_n k} \sim \frac{|W_n|^2}{2\alpha_n}.$$

Таким образом, утверждение пункта 2 доказано.

3 Доказательство пункта 3

Нижняя оценка вытекает из аналога теоремы Турана для дистанционных графов (см., например, [20], [21]). Для доказательства верхней оценки необходимо для каждой функции l(n), удовлетворяющей условию пункта 3 теоремы, и для каждого n построить пример множества W_n мощности l(n), для которого величина $r(W_n)$ оценивается сверху нужным образом. Попрежнему можно считать, что n достаточно велико.

Зафиксируем произвольную функцию l, удовлетворяющую условию пункта 3 теоремы, и число n. Положим $k(n) = \left[\frac{l(n)}{\left[\frac{n}{2}\right]\cdot\left[\frac{n}{4}\right]}\right]$. Ясно, что k(n) = o(n), при $n \to \infty$. Рассмотрим следующие подмножества множества \mathcal{R}_n :

$$A_1 = \begin{cases} \{1, \dots, 2m\} & \text{при } n = 4m, \\ \{1, \dots, 2m+1\} & \text{при } n = 4m+1, \\ \{1, \dots, 2m+2\} & \text{при } n = 4m+2, \\ \{1, \dots, 2m+3\} & \text{при } n = 4m+3, \end{cases}$$
$$A_2 = \mathcal{R}_n \setminus A_1.$$

Ясно, что $|A_1|\sim \frac{n}{2},\, |A_2|\sim \frac{n}{2}$ при $n\to\infty$. Также ясно, что число $|A_2|$ четно. Положим $a(n)=|A_1|$. Пусть $\sigma\in S_{n-a(n)}$ — произвольная перестановка. Назовем разбиением множества A_2 , отвечающем перестановке σ , следующее множество:

$$P_{\sigma} = \{(a(n) + \sigma(1), \ a(n) + \sigma(2)), \dots, (a(n) + \sigma(n - a(n) - 1), \ a(n) + \sigma(n - a(n)))\}.$$

разбиению. Иными словами, можно выбрать k(n)+1 попарно не пересекающихся разбиений. Обозначим их $P_1,\ldots,P_{k(n)+1}$. Тогда для $i=1,\ldots,k(n)+1$ положим

$$W^{(i)} = \bigcup_{x \in A_1, (y,z) \in P_i} \{ \{x, y, z\} \}.$$

Пусть $w(n)=|W^{(1)}|=\ldots=|W^{(k(n)+1)}|$. Тогда ясно, что $w(n)=\frac{|A_1|\cdot|A_2|}{2}\sim\frac{n^2}{8}$ при $n\to\infty$. Более того, ясно, что $|E(W^{(i)})|=\frac{1}{2}\cdot(\left[\frac{n}{4}\right]-1)\cdot w(n)$. Действительно, каждая из w(n) вершин $W^{(i)}$ соединена ровно с $\left[\frac{n}{4}\right]-1$ другими вершинами из $W^{(i)}$, а сомножитель $\frac{1}{2}$ показывает, что каждое ребро было посчитано два раза.

Выберем из множества $W^{(k(n)+1)}$ ровно $l(n)-k(n)\cdot\left[\frac{n}{2}\right]\cdot\left[\frac{n}{4}\right]$ вершин про-извольным образом. Обозначим получившееся подмножество вершин через U. Ясно, что

$$|E(U)| \le \frac{1}{2} \cdot |U| \cdot \left(\left[\frac{n}{4} \right] - 1 \right) \le \frac{n^3}{64}.$$

Положим

$$W_n = U \bigcup \left(\bigcup_{i=1}^{k(n)} W^{(i)} \right).$$

Тогда

$$|W_n| = l(n) - k(n) \cdot \left[\frac{n}{2}\right] \cdot \left[\frac{n}{4}\right] + k(n) \cdot w(n) \sim l(n) \sim k(n) \cdot \frac{n^2}{8}$$

при $n \to \infty$. Посчитаем мощность множества $E(W_n)$. Обозначим

$$E_1 = \{(x, y) \in E(W_n) \mid \exists i \neq j, i, j \leq k(n) : x \in W^{(i)}, y \in W^{(j)}\},\$$

$$E_2 = \{(x, y) \in E(W_n) \mid x \in U, y \in W_n \setminus U\}.$$

Тогда

$$|E(W_n)| = \sum_{i=1}^{k(n)} |E(W^{(i)})| + |E(U)| + |E_1| + |E_2|.$$

Найдем мощности множеств E_1 и E_2 . Зафиксируем произвольную вершину $v \in W^{(1)}$. Обозначим

$$d_n = |\{y \in W_n \setminus (W^{(1)} \cup U) \mid (v, y) \in E(W_n)\}|.$$

Докажем, что $d_n = (k(n)-1)\left(\left[\frac{n}{4}\right]-2+2\cdot(|A_1|-1)\right)$. Действительно, пусть $v=\{i,j,k\},\ i\in A_1,\ j,k\in A_2$. Рассмотрим произвольную вершину $u=\{x,y,z\}\in W_n\setminus \left(W^{(1)}\cup U\right)$, соединенную ребром с v. Тогда имеют место два случая:

1. x = i и $|\{j, k\} \cap \{y, z\}| = 0$. Существует $(k(n) - 1)(\left[\frac{n}{4}\right] - 2)$ вершин u,

2. $x \neq i$ и $|\{j,k\} \cap \{y,z\}| = 1$. Существует $2 \cdot (k(n)-1) \cdot (|A_1|-1)$ вершин u, удовлетворяющих данному условию. Действительно, k(n)-1 способами можно выбрать такое натуральное t, что $u \in W^{(t)}$, еще двумя способами можно выбрать элемент, по которому пересекаются $\{j,k\}$ и $\{y,z\}$, и, наконец, $|A_1|-1$ способом можно выбрать элемент x.

Ясно, что $d_n \sim k(n) \frac{5n}{4}$ при $n \to \infty$. Тогда в силу регулярности подграфа графа G(n,3,1), порожденного множеством вершин $W_n \setminus U$, имеем

$$|E_1| = \frac{1}{2} \cdot d_n \cdot |W_n \setminus U| \sim \frac{5k(n)^2 n^3}{64},$$

$$|E_2| \le \frac{1}{2} \cdot d_n \cdot |U| \le \frac{1}{2} \cdot \left[\frac{n}{2}\right] \cdot \left[\frac{n}{4}\right] \cdot d_n \le \frac{n^2}{16} \cdot k(n) \cdot \left(\left[\frac{n}{4}\right] - 2 + 2 \cdot (|A_1| - 1)\right) \sim \frac{5k(n)n^3}{64}$$

при $n \to \infty$. Итого имеем

$$|E(W_n)| \sim \frac{k(n)n^3}{64} + \frac{5k(n)^2n^3}{64} + |E(U)| + |E_2| \sim \frac{5k(n)^2n^3}{64} \sim \frac{5l(n)^2}{\alpha_n}$$

при $n \to \infty$. Таким образом, утверждение пункта 3 доказано.

4 Доказательство пункта 4

Зафиксируем произвольную функцию l, удовлетворяющую условию пункта 4 теоремы, и число n. Положим $c_n = 1 - \frac{l(n)}{C_n^3}$. Рассмотрим произвольное подмножество вершин $W \subseteq V_n$ мощности l(n), положим $W_1 = V_n \setminus W$. Ясно, что $|W_1| = c_n C_n^3$. Обозначим через $E(W_1)$ множество ребер, концами которых являются вершины из W_1 . Формально,

$$E(W_1) = \{(x, y) \in E_n \mid x, y \in W_1\}.$$

Обозначим через E_1 множество ребер, один конец которых принадлежит множеству W, а другой — множеству W_1 :

$$E_1 = \{(x, y) \in E_n \mid x \in W, y \in W_1\}.$$

С учетом введенных обозначений мы имеем

$$E(W) = E_n \setminus (E(W_1) \sqcup E_1).$$

Тогда ясно, что

$$|E(W)| = |E_n| - |E(W_1)| - |E_1|.$$

Оценим сверху величину $|E(W_1)|+|E_1|$. В силу регулярности графа G(n,3,1) имеем

$$|E(W_1)| + |E_1| \le d_n \cdot |W_1|.$$

ребер, содержащих вершины из W_1 . Данную оценку можно слегка уточнить. Заметим, что при таком подсчете дважды были посчитаны ребра из $E(W_1)$. Мощность данного множества можно оценить снизу с помощью теоремы Турана:

$$|E(W_1)| \ge \frac{|W_1|^2}{2\alpha_n} (1 + o(1)).$$

Тогда

$$|E(W_1)| + |E_1| \le d_n \cdot |W_1| - \frac{|W_1|^2}{2\alpha_n} (1 + o(1)).$$

В итоге, суммируя все вышесказанное, имеем:

$$\begin{split} r(l(n)) &\geq |E(W)| \geq \frac{3}{2}C_{n-3}^2C_n^3 - d_n \cdot |W_1| + \frac{|W_1|^2}{2\alpha_n}(1+o(1)) = \\ &= \frac{3}{2}C_{n-3}^2C_n^3 - 3 \cdot C_{n-3}^2 \cdot |W_1| + \frac{|W_1|^2}{2n}(1+o(1)) \sim \\ &\sim \frac{3}{2}C_{n-3}^2C_n^3 - 3 \cdot C_{n-3}^2 \cdot \left(\frac{c_n n^3}{6}\right) + \frac{1}{2n}\left(\frac{c_n n^3}{6}\right)^2(1+o(1)) \sim \\ &\sim n^5\left(\frac{1}{8} - \frac{c_n}{4} + \frac{c_n^2}{72}\right) \text{ при } n \to \infty. \end{split}$$

Список литературы

- [1] A.M. Raigorodskii, Cliques and cycles in distance graphs and graphs of diameters, "Discrete Geometry and Algebraic Combinatorics", AMS, Contemporary Mathematics, 625 (2014), 93 109.
- [2] A.M. Raigorodskii, Coloring Distance Graphs and Graphs of Diameters, Thirty Essays on Geometric Graph Theory, J. Pach ed., Springer, 2013, 429 - 460.
- [3] А.М. Райгородский, *Проблема Борсука и хроматические числа метрических пространств*, Успехи матем. наук, 56 (2001), вып. 1, 107 146.
- [4] А.М. Райгородский, О хроматических числах сфер в евклидовых пространствах, Доклады РАН, 432 (2010), N2, 174 177.
- [5] A.M. Raigorodskii, On the chromatic numbers of spheres in \mathbb{R}^n , Combinbatorica, 32 (2012), N1, 111 123.
- [6] J. Balogh, A.V. Kostochka, A.M. Raigorodskii, Coloring some finite sets in \mathbb{R}^n , Discussiones Mathematicae Graph Theory, 33 (2013), N1, 25 31.

- [7] Л.И. Боголюбский, А.С. Гусев, М.М. Пядёркин, А.М. Райгородский, Числа независимости и хроматические числа случайных подграфов в некоторых последовательностях графов, Доклады РАН, 457 (2014), N4, 383 - 387.
- [8] Л.И. Боголюбский, А.С. Гусев, М.М. Пядёркин, А.М. Райгородский, Числа независимости и хроматические числа случайных подграфов в некоторых последовательностях графов, Матем. сборник, 2015.
- [9] P.K. Agarwal, J. Pach, *Combinatorial geometry*, John Wiley and Sons Inc., New York, 1995.
- [10] L.A. Székely, Erdős on unit distances and the Szemerédi–Trotter theorems, Paul Erdős and his Mathematics, Bolyai Series Budapest, J. Bolyai Math. Soc., Springer, 11 (2002), 649 666.
- [11] A. Soifer, The Mathematical Coloring Book, Springer, 2009.
- [12] V. Klee, S. Wagon, Old and new unsolved problems in plane geometry and number theory, Math. Association of America, 1991.
- [13] V.G. Boltyanski, H. Martini, P.S. Soltan, Excursions into combinatorial geometry, Universitext, Springer, Berlin, 1997.
- [14] A.M. Raigorodskii, Three lectures on the Borsuk partition problem, London Mathematical Society Lecture Note Series, 347 (2007), 202 - 248.
- [15] А.М. Райгородский, Вокруг гипотезы Борсука, Итоги науки и техники. Серия "Современная математика", 23 (2007), 147 164.
- [16] R.L. Graham, B.L. Rothschild, J.H. Spencer, *Ramsey theory*, John Wily and Sons, NY, Second Edition, 1990.
- [17] Z. Nagy, A certain constructive estimate of the Ramsey number, Matematikai Lapok, 23 (1972), N 301-302, 26.
- [18] Ф.Дж. Мак-Вильямс, Н.Дж.А. Слоэн, Теория кодов, исправляющих ошибки, М.: Радио и связь, 1979.
- [19] L. Bassalygo, G. Cohen, G. Zémor, Codes with forbidden distances, Discrete Mathematics, 213 (2000), 3 - 11.
- [20] Е.Е. Демёхин, А.М. Райгородский, О.И. Рубанов, Дистанционные графы, имеющие большое хроматическое число и не содержащие клик или циклов заданного размера, Матем. сборник, 204 (2013), N4, 49 78.
- [21] А.М. Райгородский, К.А. Михайлов, O числах Рамсея для полных