WE CLAIM:

4 5

6

1	1.	A method	of	coding	partially-masked	image	data,	comprising
---	----	----------	----	--------	------------------	-------	-------	------------

- 2 receiving original image data to be coded;
- 3 receiving a definition of a mask;
 - coding the image data, according to the step of:
 - generating wavelet coefficients representing the image data to be coded, canceling coefficients of masked wavelets,
- 7 reconstructing image data based on the remaining wavelet 8 coefficients.
- 9 for the reconstructed image data that lies outside the
- 10 mask substituting the original image data therefor, the
- 11 resultant image data to be coded for a next iteration of
- 12 coding, if any; and
- repeating the generating, canceling, reconstructing and substituting steps until convergence is reached.
- 1 2. The method of claim 1, wherein masked wavelets are those
- 2 having a substantial portion of their energy located below the
- 3 mask.
- 1 3. A method of coding partially-masked image data, comprising:
- 2 receiving image data to be coded and a mask;
- 3 coding the image data as transform coefficients in a plurality
- 4 of stages, performed from finest scale to coarsest scale, wherein
- 5 each stage of coding comprises:
- 6 setting the resolution of the image data to the scale of
- 7 the instant stage,
- generating transform coefficients representative of the
- 9 unmasked image data, the transform coefficients associated
- with the scale of the instant stage,

Doc. No.: ::ODMA\SOFTSOL\311\DC1\154956\0

11	identifying transform coefficients associated with image
12	data located below the mask,
13	canceling the identified transform coefficients,
14	reconstructing image data based on the remaining
15	coefficients,
16	for any portion of the reconstructed image data located
17	outside of the mask, substituting the corresponding original
18	image data therefor, and
19	repeating the generating, identifying, canceling and
20 -	reconstructing steps until the reconstructed image data
21	outside of the mask converges to the corresponding original
22	image data.

- 1 4. The method of claim 3, wherein the transform coefficients are wavelet coefficients obtained by wavelet coding.
- 1 5. The method of claim 4, wherein the identified coefficients are
- 2 clipped wavelets, wavelets having a substantial portion of their
- 3 energy below the mask.
- 1 6. The method of claim 3, wherein the setting step includes low
- 2 pass filtering the image data.
- 7. A method of coding partially-masked image data, comprising:
- 2 receiving image data and a mask, and
- 3 iteratively, until convergence is reached:
- coding the image data as transform coefficients,
- identifying transform coefficients corresponding to image data located under the mask,

1	for each identified coefficient w, modifying the
2	coefficient by a transform $w'=w(1-\gamma)$, where γ is an overshoot
3	factor having a value from 0 to 2,
4	reconstructing image data from the modified transform
5	coefficients and the unaltered transform coefficients,
6	for any portion of the reconstructed image data x', that
7	differs from a corresponding portion of the received image
8	data x_i , resetting the reconstructed image data to $x'_i = (1+\gamma)x_i$.
1	8. The method of claim 7, wherein the transform coefficients are
2	wavelet coefficients obtained by wavelet coding.
1	9. The method of claim 8, wherein the identified coefficients are
2	clipped wavelets, wavelets having a substantial portion of their
3	energy below the mask.
	4
1	10. A coded data signal representing partially-masked image data,
2,	the signal constructed according to the steps of:
3	receiving image data to be coded and a mask;
4	coding the image data according to the steps of:
5	generating wavelet coefficients of the image data,
6	canceling coefficients of masked wavelets,
7	reconstructing image data based on non-masked wavelets,
8	for any portion of the reconstructed image data that lies
9	outside of the mask, substituting the original image data
10	therefor, and

Doc. No.: ::ODMA\SOFTSOL\311\DC1\154956\0

coded image data.

11

12

13

14

substituting steps until convergence is reached; and

repeating the generating, canceling, reconstructing and

outputting the coefficients of the non-masked wavelets as the

•

1	11. A coded data signal representing partially-masked image data
2	constructed according to the process of:
3	receiving original image data to be coded and a mask;
4	coding the image data as transform coefficients in a plurality
5	of stages, performed from a finest scale to a coarsest scale, the
6	coding for at least one stage comprising:
7	filtering the image data at a resolution corresponding to
8	the scale of the instant stage,
9	generating transform coefficients representative of the
0	filtered image data, the transform coefficients associated
L1	with the scale of the instant stage,
12	identifying transform coefficients associated with image
L3	data located below the mask,
L 4	canceling the identified transform coefficients,
15	reconstructing image data based on the remaining
16	coefficients,
17	for any portion of the reconstructed image data located
18	outside of the mask, substituting original image data
19	therefor, and
20	repeating the generating, identifying and canceling steps
21	until the reconstructed image data converges to the original
22	image data outside of the mask; and
23	outputting the unaltered transform coefficients from each
24	stage as the coded data signal.

12. The coded data signal of claim 11, wherein the transform coefficients are wavelet coefficients obtained by wavelet coding.

1	13. A coded data signal representing partially-masked image data,
2	constructed according to the process of:
3	receiving image data to be coded and a mask;
4	initializing reconstructed image data to the received image
5	data; and
6	iteratively, until convergence is reached:
7	generating transform coefficients representative of the
8	reconstructed image data,
9	identifying transform coefficients associated with image
10	data below the mask,
11	for each identified transform coefficient w, modifying
12	the coefficient by $w'=w(1-\gamma)$, where γ is an overshoot factor
13	having a value from 0 to 2,
14	reconstructing image data from the modified transform
15	coefficients and the unaltered transform coefficients, and
16	for any portion of the reconstructed image data x'; that
17	differs from a corresponding portion of the received image
18	data x_i , setting the reconstructed image data to $x'_i = (1+\gamma)x_i$,

Doc. No.: ::ODMAISOFTSOLI311/DC1/154956/0

1

14. The coded data signal of claim 13, wherein the transform

coefficients are wavelet coefficients obtained by wavelet coding.