CS116-Automata Theory and Formal Languages

Lecture 3

Nondeterministic Finite Automata

Computer Science Department 1st Semester 2025-2026

Nondeterministic Finite Automaton (NFA)

Alphabet =
$$\{a\}$$

Alphabet = $\{a\}$

Alphabet = $\{a\}$

All input is consumed

Second Choice

Second Choice

Input cannot be consumed

An NFA accepts a string: if there is a computation of the NF

if there is a computation of the NFA that accepts the string

i.e., all the input string is processed and the automaton is in an accepting state

aa is accepted by the NFA:

because this computation accepts aa

this computation is ignored

Rejection example

Second Choice

Second Choice

Another Rejection example

Input cannot be consumed

Second Choice

Second Choice

Input cannot be consumed

An NFA rejects a string:

if there is no computation of the NFA that accepts the string.

For each computation:

 All the input is consumed and the automaton is in a non final state

OR

The input cannot be consumed

a is rejected by the NFA:

All possible computations lead to rejection

aaa is rejected by the NFA:

All possible computations lead to rejection

Language accepted: $L = \{aa\}$

Lambda Transitions

$$- q_0 \xrightarrow{a} q_1 \xrightarrow{\lambda} q_2 \xrightarrow{a} q_3$$

$$-q_0 \xrightarrow{a} q_1 \xrightarrow{\lambda} q_2 \xrightarrow{a} q_3$$

input tape head does not move

all input is consumed

String aa is accepted

Rejection Example

$$-q_0 \xrightarrow{a} q_1 \xrightarrow{\lambda} q_2 \xrightarrow{a} q_3$$

(read head doesn't move)

Input cannot be consumed

Automaton halts

String aaa is rejected

Language accepted: $L = \{aa\}$

$$-q_0 \xrightarrow{a} q_1 \xrightarrow{\lambda} q_2 \xrightarrow{a} q_3$$

Another NFA Example

Another String

 $a \mid b \mid a \mid b$

Language accepted

$$L = \{ab, abab, ababab, ...\}$$
$$= \{ab\}^+$$

Another NFA Example

Language accepted

$$L(M) = {\lambda, 10, 1010, 101010, ...}$$

= ${10} *$

Remarks:

- The λ symbol never appears on the input tape
- ·Simple automata:

·NFAs are interesting because we can express languages easier than DFAs

Formal Definition of NFAs

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: Set of states, i.e. $\{q_0, q_1, q_2\}$

 Σ : Input alphabet, i.e. $\{a,b\}$ $\lambda \notin \Sigma$

 δ : Transition function

 q_0 : Initial state

F: Accepting states

Transition Function δ

$$\delta(q, x) = \{q_1, q_2, \dots, q_k\}$$

resulting states with following one transition with symbol x

$$\delta(q_0,1) = \{q_1\}$$

$$\delta(q_1,0) = \{q_0,q_2\}$$

$$\delta(q_0,\lambda)=\{q_2\}$$

$$\delta(q_2,1) = \emptyset$$

Extended Transition Function

 δ^{\star}

Same with δ but applied on strings

$$\delta^*(q_0,a) = \{q_1\}$$

$$\delta^*(q_0,aa) = \{q_4,q_5\}$$

$$\delta^*(q_0,ab) = \{q_2,q_3,q_0\}$$

Special case:

for any state q

$$q \in \delta^*(q,\lambda)$$

In general

 $q_j \in \delta^*(q_i, w)$: there is a walk from q_i to q_j with label w

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$q_i \xrightarrow{\sigma_1} \sigma_2 \xrightarrow{\sigma_2} q_j$$

The Language of an NFA $\,M\,$

The language accepted by $\,M\,$ is:

$$L(M) = \{w_1, w_2, \dots w_n\}$$

where
$$\delta^*(q_0, w_m) = \{q_i, ..., q_k, ..., q_j\}$$

and there is some $q_k \in F$ (accepting state)

 $w_m \in L(M)$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$q_1$$

$$\lambda$$

$$q_3$$

$$\delta^*(q_0,aa) = \{q_4,\underline{q_5}\} \qquad aa \in L(M)$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$q_1$$

$$\lambda$$

$$q_3$$

$$\delta^*(q_0,ab) = \{q_2,q_3,\underline{q_0}\} \Longrightarrow ab \in L(M)$$

$$\Rightarrow \in F$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$q_1$$

$$\lambda$$

$$q_3$$

$$\delta^*(q_0, abaa) = \{q_4, \underline{q_5}\} \longrightarrow aaba \in L(M)$$

$$E = F$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$q_1$$

$$\lambda$$

$$q_3$$

$$\delta^*(q_0,aba) = \{q_1\} \longrightarrow aba \notin L(M)$$

$$L(M) = \{ab\}^* \cup \{ab\}^* \{aa\}$$

NFAs accept the Regular Languages

Equivalence of Machines

Definition:

Machine $\,M_1\,$ is equivalent to machine $\,M_2\,$

if
$$L(M_1) = L(M_2)$$

Example of equivalent machines

$$L(M_1) = \{10\} *$$

Theorem:

Languages accepted by NFAs Languages accepted by DFAs

NFAs and DFAs have the same computation power, accept the same set of languages

Proof: we only need to show

Languages accepted by NFAs AND Languages accepted by NFAs

Proof-Step 1

Languages
accepted
by NFAs
Regular
Languages

Every DFA is trivially an NFA

Any language $\,L\,$ accepted by a DFA is also accepted by an NFA

Proof-Step 2

 Languages

 accepted

 by NFAs

 Regular

 Languages

Any NFA can be converted to an equivalent DFA

Any language L accepted by an NFA is also accepted by a DFA

Conversion NFA to DFA

$$\delta^*(q_0,a) = \{q_1,q_2\}$$

$$\delta^*(q_0,b) = \emptyset$$
 empty set

NFA M
$$\frac{\delta^*(q_1, a) = \{q_1, q_2\}}{\delta^*(q_2, a) = \emptyset}$$

$$\frac{a}{b} \frac{\lambda}{\{q_1, q_2\}}$$

$$\frac{q_1}{b} \frac{\lambda}{\{q_1, q_2\}}$$

END OF CONSTRUCTION

General Conversion Procedure

Input: an NFA M

Output: an equivalent DFA M' with L(M) = L(M')

The NFA has states q_0, q_1, q_2, \dots

The DFA has states from the power set

 \emptyset , $\{q_0\}$, $\{q_1\}$, $\{q_0,q_1\}$, $\{q_1,q_2,q_3\}$,

Conversion Procedure Steps

step

1. Initial state of NFA: q_0

Initial state of DFA: $\{q_0\}$

Example

step

2. For every DFA's state $\{q_i, q_i, ..., q_m\}$

$$\{q_i,q_j,...,q_m\}$$

compute in the NFA
$$\delta * (q_i, a)$$

$$\cup \delta * (q_j, a)$$

$$\cdots$$

$$\cup \delta * (q_m, a)$$

$$\cup \delta * (q_m, a)$$
Union
$$\{q'_k, q'_1, ..., q'_n\}$$

add transition to DFA

$$\delta(\{q_i,q_j,...,q_m\}, a) = \{q'_k,q'_1,...,q'_n\}$$

Example
$$\delta^*(q_0, a) = \{q_1, q_2\}$$

NFA M

DFA
$$M^{\prime}$$

$$\mathbf{DFA} \ M' \qquad \delta(\{q_0\}, a) = \{q_1, q_2\}$$

step

3. Repeat Step 2 for every state in DFA and symbols in alphabet until no more states can be added in the DFA

Example

step

4. For any DFA state $\{q_i,q_j,...,q_m\}$

if some q_j is accepting state in NFA

Then, $\{q_i,q_j,...,q_m\}$ is accepting state in DFA

Example

Lemma:

If we convert NFA M to DFA M' then the two automata are equivalent: L(M) = L(M')

Proof:

We only need to show: $L(M) \subseteq L(M')$ AND $L(M) \supseteq L(M')$

First we show:
$$L(M) \subseteq L(M')$$

We only need to prove:

$$w \in L(M)$$
 \longrightarrow $w \in L(M')$

 $w = \sigma_1 \sigma_2 \cdots \sigma_k$

symbol

denotes a possible sub-path like

symbol

We will show that if $w \in L(M)$

label

label

More generally, we will show that if in M:

(arbitrary string) $v = a_1 a_2 \cdots a_n$

NFA
$$M: -q_0 \overset{a_1}{\smile} q_i \overset{a_2}{\smile} q_j \overset{a_2}{\smile} q_l \overset{a_n}{\smile} q_m$$

then

$$\mathsf{DFA}\ M': \xrightarrow{a_1} \underbrace{a_2}_{\{q_0\}\ \{q_i,\ldots\}\ \{q_j,\ldots\}} \underbrace{a_n}_{\{q_l,\ldots\}\ \{q_m,\ldots\}}$$

Proof by induction on |v|

Induction Basis:
$$|v|=1$$
 $v=a_1$

NFA
$$M: -q_0 q_i$$

DFA
$$M'$$
: q_0 q_i ...}

is true by construction of M'

Induction hypothesis:
$$1 \le |v| \le k$$

 $v = a_1 a_2 \cdots a_k$

Suppose that the following hold

NFA
$$M: -q_0 \stackrel{a_1}{\longrightarrow} q_i \stackrel{a_2}{\longrightarrow} q_j \stackrel{a_2}{\longrightarrow} q_d$$

$$\mathsf{DFA}\ M': \longrightarrow \underbrace{ a_1 }_{\{q_0\}} \underbrace{ a_2 }_{\{q_i,\ldots\}} \underbrace{ a_2 }_{\{q_j,\ldots\}} \underbrace{ a_k }_{\{q_c,\ldots\}} \underbrace{ a_k }_{\{q_d,\ldots\}}$$

Induction Step:
$$|v| = k + 1$$

$$v = \underbrace{a_1 a_2 \cdots a_k}_{v'} a_{k+1} = v' a_{k+1}$$

Then this is true by construction of M'

NFA
$$M: q_0^{a_1} q_i^{a_2} q_j^{a_2} q_j^{a_k} q_d^{a_{k+1}} q_e$$

Therefore if $w \in L(M)$

We have shown: $L(M) \subseteq L(M')$

With a similar proof we can show: $L(M) \supseteq L(M')$

Therefore:
$$L(M) = L(M')$$