PRVI MEĐUISPIT IZ ELEKTRONIKE 1

PRVA SKUPINA ZADATAKA

 Pojačalo na slici ima naponsko pojačanje neopterećenog pojačala A, = 150, ulazni otpor R_{wl} = 1 kΩ i izlazni otpor $R_{iz} = 2 \text{ k}\Omega$. Uz koji će otpor R_T naponsko pojačanje biti $A_V = u_{iz}/u_{ul} = 100$? Koliko je pri tome strujno pojačanje $A_l = i_{iz}/i_{ul}$ (1 bod)?

(a)
$$R_T = 4 \text{ k}\Omega, A_I = 25,$$

(b) $R_T = 1 \text{ k}\Omega, A_I = 100,$
(c) $R_T = 4 \text{ k}\Omega, A_I = 400,$
(d) $R_T = 4 \text{ k}\Omega, A_I = 400,$

d)
$$R_T = 2 \text{ k}\Omega$$
, $A_I = 200$,

e)
$$R_T = 1 \text{ k}\Omega$$
, $A_I = 50$.

 Zadana su dva CR člana čije se vremenske konstante odnose kao t/
 Kako se odnose srednje vrijednosti njihovih izlaznih napona ako je na ulaz doveden napon sa slike (1bod)?

(a)
$$U_{SRI} >> U_{SR2}$$

 $U_{SRI} = U_{SR2} = -2V$,
(c) $U_{SRI} = U_{SR2} = +1/3V$,

e)
$$U_{SRI} = U_{SR2} = +1/3V$$
,

d)
$$U_{SRI} \ll U_{SR2}$$

e)
$$U_{SRI} = U_{SR2} = 0 \text{V}.$$

 Zadana su dva RC člana čije se vremenske konstante odnose kao τ₁<<τ₂. Kako se odnose srednje vrijednosti njihovih izlaznih napona ako je na ulaz doveden napon sa slike (1 bod)?

a)
$$U_{SRI} >> U_{SR2}$$

b)
$$U_{SRI}/U_{SR2} = -3$$
,

d)
$$U_{SRI} << U_{SRZ}$$

(e)
$$U_{SRI}/U_{SR2} = 1$$
.

- 4./Silicij je dopiran jednim tipom primjese koncentracije N. Fermijeva energija nalazi se 0,2 eV od dna vodljivog pojasa. Koji tip i koliku koncentraciju primjese treba dodati da Fermijeva energija završi na udaljenosti 0,2 eV od vrha valentnog pojasa. Treba dodati (1 bod):
 - a) akceptore, $N_A = 2 \cdot N_A$
 - b) akceptore, $N_A = N$,
 - c) donore, $N_D = N$.
 - d) donore, $N_D = 2 \cdot N$,
 - e) akceptore, N_A > 2·N.

- Pločica silicija dopirana je donorima koncentracije N_{DI}. Specifična vodljivost pločice je σ_I. Koji tip i koncentraciju primjesa treba dodati u pločicu da silicij promijeni tip vodljivosti, a da specifična vodljivost nakon drugog dopiranja bude $\sigma_2 = \sigma_1$. Treba dodati (1 bod):
 - a) akceptore, $N_{A2} = 2 \cdot N_{DI}$,
 - b) donore, $N_{D2} = N_{DI}$,
 - c) akceptore, $N_{A2} = N_{DI}$,
 - d) akceptore, $N_{A2} > 2 \cdot N_{DL}$
 - akceptore, $N_{A2} < 2 \cdot N_{DL}$

- Silicij je dopiran donorima koncentracije N_D =10¹⁶ cm⁻³. Temperatura poraste s T₁=300 K na T₂=350 K. Pri tome za koncentracije elektrona n i šupljina p vrijedi (1 bod):
 - a) n ostaje približno isti, p ostaje približno isti,
 - b) n pada, p ostaje približno isti,
 - c) n pada, p raste,
 - (d) n raste, p ostaje približno isti,
 - n ostaje približno isti, p raste.
- 7. Dva pn-spoja imaju jednake koncentracije primjesa pri čemu prvi pn-spoj ima uske strane, a drugi pn-spoj ima široke strane. Za struje zasićenja Is i kapacitete osiromašenih slojeva CB tih pn-spojeva vrijedi (1 bod):
 - a) $I_{S1} > I_{S2}$ i $C_{B1} = C_{B2}$.

 - b) $I_S = I_{S2} i C_{BI} = C_{B2}$ F) $I_{S1} < I_{S2} i C_{BI} = C_{B2}$
 - d) $I_{S1} > I_{S2}$ i $C_{B1} < C_{B2}$
 - e) $I_{S1} < I_{S2}$ i $C_{B1} < C_{B2}$.
- 8. pn-dioda sa širokim stranama ima n-stranu puno jače dopiranu od p-strane i spojena je na napon U_D = 0,5 V. Smanjimo li koncentraciju primjesa na p-strani, vrijedit će (1 bod):
 - a) struja kroz diodu će se smanjiti, električno polje će se povećati,
 - struja kroz diodu će se povećati, električno polje će se povećati,
 - e) struja kroz diodu i električno polje ostat će nepromijenjeni,
 - d) struja kroz diodu će se povećati, električno polje će se smanjiti,
 - e) struja kroz diodu će se smanjiti, električno polje će se smanjiti.
- 9. Za silicijski pn-spoj priključen na vanjski napon $U = 0,55 \,\mathrm{V}$ s koncentracijama primjesa iznosa $N_A=10^{15}\,\mathrm{cm^{-3}}$ i $N_D=10^{16}\,\mathrm{cm^{-3}}$, te širokim stranama, uz pokretljivosti nosilaca $\mu_s=2\mu_p$ i istim vremenima života manjinskih nosilaca vrijedi (T=300 K) (1 bod):
 - a) struja elektrona manja je od struje šupljina, pn-spoj je zaporno polariziran,
 - struja elektrona jednaka je struji šupljina, pn-spoj je u ravnoteži,
 - e) struja elektrona veća je od struje šupljina, pn-spoj je propusno polariziran,
 - d) struja elektrona veća je od struje šupljina, pn-spoj je zaporno polariziran,
 - e) struja elektrona manja je od struje šupljina, pn-spoj je propusno polariziran.
- Strujno-naponske karakteristike dioda u mreži na slici mogu se opisati Schockleyevom jednadžbom. Kolika struja I teče u mreži ako su struje zasićenja $I_{S1} = 1$ pA, $I_{S2} = I_{S3} = 2$ pA i $I_{S4} = 3$ pA? Na kojoj je diodi najveći pad napona (1 bod)?

- a) I = 2 pA, najveći pad napona na D₂,
- b) I = 4 pA, najveći pad napona na D_2 ,
- e) I = 2 pA, najveći pad napona na D₃,
- (d) I = 3 pA, najveći pad napona na D₄,
- e) I= 1 pA, najveći pad napona na D₁.

DRUGA SKUPINA ZADATAKA

ZADATAK 1. Za sklop na slici a) priključen je ulazni napon $u_{UL}(t)$ prema slici b). U t = 0 ms napon na kondenzatoru iznosi $U_{C0} = 2$ V.

- a) Odrediti vremensku konstantu (1 bod),
- b) Napisati izraze za izlazni napon u_{IZ} u intervalima 0 < t< 1 ms, 1 ms < t< 2 ms i t > 2 ms, te izračunati vrijednosti izlaznog napona u t = 0 ms, 1 ms, 2 ms i 3 ms (3 boda),
- c) Na istom grafu nacrtati ulazni i izlazni napon (1 bod).

ZADATAK 2. Silicij p-tipa homogeno je dopiran primjesom koncentracije 10¹⁶ cm⁻³. Doda li se u taj silicij druga primjesa, Fermijeva energija će se pomaknuti za 0,15 eV, a specifična vodljivost će se smanjiti. Pokretljivosti slobodnih nosilaca su 820 cm²/Vs i 400 cm²/Vs, T = 300 K. Izračunati:

- a) Tip i iznos druge primjese (2 boda),
- Koncentraciju manjinskih nosilaca nakon drugog dopiranja (1 bod),
- Specifični otpor silicija nakon prvog i drugog dopiranja (2 boda).

ZADATAK 3 Silicijska *pn*-dioda ima homogeno dopirane strane. Koncentracije primjesa su $N_D = 2 \cdot 10^{17}$ cm⁻³ i $N_A = 8 \cdot 10^{15}$ cm⁻³, efektivne širine neutralnih strana $W_n = 1$ µm i $W_p = 200$ µm, a površina pn-spoja iznosi S = 0,1 mm². Pokretljivosti manjinskih nosilaca iznose $\mu_n = 1000$ cm²/Vs i $\mu_p = 200$ cm²/Vs, a vremena života $\tau_n = 0,1$ µs i $\tau_p = 0,5$ µs. Pretpostaviti T = 300 K.

- a) Odrediti iznos struje kroz diodu ako se na nju spoji napon propusne polarizacije $U_D = 0.55 \text{ V } (3 \text{ boda})$,
- Nacrtati raspodjele manjinskih nosilaca, izračunati i označiti rubne te ravnotežne koncentracije za zadani priključeni napon (2 boda).