Table 1 The Five Key Equations for Uniformly Accelerated Motion

	Equation	Variables found in equation	Variable not in equation
Equation 1	$\Delta \vec{d} = \left(\frac{\vec{v}_{f} + \vec{v}_{i}}{2}\right) \Delta t$	$\Delta \vec{d}$, Δt , $\vec{v}_{\rm f}$, $\vec{v}_{\rm i}$	ā
Equation 2	$\vec{v}_{\rm f} = \vec{v}_{\rm i} + \vec{a}\Delta t$	$\vec{v}_{\rm f}, \vec{v}_{\rm i}, \vec{a}, \Delta t$	$\Delta \vec{d}$
Equation 3	$\Delta \vec{d} = \vec{\mathbf{v}}_{i} \Delta t + \frac{1}{2} \vec{a} \Delta t^2$	$\Delta \vec{d}$, \vec{v}_i , Δt , \vec{a}	\vec{V}_{f}
Equation 4	$v_{\rm f}^2 = v_{\rm i}^2 + 2a\Delta d$	$V_{\rm f}, V_{\rm i}, a, \Delta d$	Δt
Equation 5	$\Delta \vec{d} = \vec{v}_{f} \Delta t - \frac{1}{2} \vec{a} \Delta t^2$	$\Delta \vec{d}$, \vec{v}_{f} , Δt , \vec{a}	V i

PROJECTILE MOTION

1. Projectile launched horizontally

 $v_{ix} = given (horizontal component only)$ $v_{iv} = 0$ (no vertical component) $a_v = -9.8 \, m/s^2 \, (negative \, since + y \, is \, up)$ $\Delta d_v = negative (projectile goes down)$

Solve for time of flight:

$$\Delta d_y = y_{y}\Delta t + \frac{1}{2}a_y(\Delta t)^2$$

$$\Delta d_y = \frac{1}{2}a_y(\Delta t)^2$$

$$\Delta d_y = \frac{1}{2}a_y(\Delta t)^2$$

$$\Delta d_y = \Delta t^2$$

$$\Delta d_y = \Delta t^2$$

$$\Delta d_y = \Delta t$$

Solve for range/horizontal distance:

$$v = \frac{\Delta d}{\Delta t}$$

$$v = \frac{\Delta d}{\Delta t}$$
 \rightarrow $v_{ix} = \frac{\Delta d_x}{\Delta t}$

$$\Delta d_r = v_{ir} \cdot \Delta t$$

2. Projectile from ground to ground

 $\Delta d_v = 0$ (since it goes ground to ground) $v_{\ell v} = 0 (at \max height)$

Solve for v_{ix} and v_{iy}

Solve for time of flight:

$$\Delta d_y = v_{iy} \Delta t + \frac{1}{2} a_y (\Delta t)^2$$

*Note: will get two roots, one root will be zero, the other root will have a value for time

Solve for range/horizontal distance:

$$\Delta d_x = v_{ix} \cdot \Delta t$$

Solve for Δd_v or max height:

$$v_y^2 = v_{iy}^2 + 2a_y \Delta d_y$$

3. Projectile from height to ground

 $\Delta d_v = negative (projectile goes down)$

4. Projectile from ground to height

 $\Delta d_v = positive (projectile goes up)$

Solve for v_{ix} and v_{iy}

Solve for time of flight:

$$\Delta d_y = v_{iy} \Delta t + \frac{1}{2} a_y (\Delta t)^2$$

*Note: will get a quadratic equation, take the positive value for time

Solve for range/horizontal distance:

$$\Delta d_x = v_{ix} \cdot \Delta t$$

Solve for velocity while landing using components:

 $v_{fx} = v_{ix}$ (same velocity in the x-direction)

$$v_{fy}^{2} = v_{iy}^{2} + 2a_{y}\Delta d_{y}$$
or
$$v_{fy} = v_{iy} + a_{y}\Delta t$$

$$v_{f} = \sqrt{(v_{fx})^{2} + (v_{fy})^{2}}$$

$$\beta = tan^{-1} \left(\frac{opp}{adj}\right) = tan^{-1} \left(\frac{|v_{fy}|}{|v_{fx}|}\right)$$