# Software Requirements Specification Document (SRS)

Lab Space and Desktop Allocation for Research Labs & Server Compute Usage Management

AN\_07

| Advaith Girish | Adithyan D | Y Venkateshwara<br>Rao | Prithvi Ganapathi<br>Bhat |
|----------------|------------|------------------------|---------------------------|
|                |            |                        |                           |

# **Table of Contents**

#### 1. Introduction

- 1.1 Purpose
- 1.2 Scope
- 1.3 Definitions, Acronyms, and Abbreviations
- 1.4 Overview

## 2. Functional Requirements

- 2.1 User Roles & Permissions
- 2.2 F1 Lab Layout Management
- 2.3 F2 Server Usage Monitoring
- 2.4 F3 User Management
- 2.5 F4 Notification System
- 2.6 F5 Allocation Tracking
- 2.7 F6 Real-Time Alerts
- 2.8 F7 Reporting
- 2.9 F8 System Configuration

## 3. Non-Functional Requirements

- 3.1 Performance Requirements
- 3.2 Security Requirements
- 3.3 Usability Requirements

## 4. System Design

- 4.1 Technologies to be Used
- 4.2 Database Design

| 5. Assumptions & Constraints |
|------------------------------|
| 6. Future Enhancements       |
| 7. Use Case Diagram          |
| 8. Class Diagram             |
| 9. Version History           |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |

# 1. Introduction

## 1.1 Purpose

This document defines the requirements for the **Lab Space & Desktop Allocation Management System**, a web-based solution designed to optimize lab resource allocation, monitor server compute usage, and provide real-time alerts for efficient resource management in academic research environments.

## 1.2 Scope

The system will:

- Enable **Admins** to upload lab layouts, define seating positions, and set server usage thresholds.
- Allow Faculty to allocate/deallocate seats and monitor server metrics.
- Permit **Students** to request seats and view usage statistics.
- Generate real-time alerts for server overuse and periodic resource utilization reports.

# 1.3 Definitions, Acronyms, and Abbreviations

| Term    | Definition                                                                     |  |
|---------|--------------------------------------------------------------------------------|--|
| Admin   | Superuser with privileges to manage lab layouts, users, and server thresholds. |  |
| Faculty | Authorized user to allocate seats and track resource usage.                    |  |
| RBAC    | Role-Based Access Control: Restricts system access based on user roles.        |  |
| SRS     | Software Requirements Specification.                                           |  |

## 1.4 Overview

This SRS outlines the functional and non-functional requirements, system architecture, and operational guidelines for the system.

# 2. Functional Requirements

#### 2.1 User Roles & Permissions

| Role    | Permissions                                                              |  |
|---------|--------------------------------------------------------------------------|--|
| Admin   | Upload lab layouts, define seating, set server thresholds, manage users. |  |
| Faculty | Allocate/deallocate seats, view allocations, monitor server usage.       |  |
| Student | Request seats, view allocated seat details, check server metrics.        |  |

# 3. Functional Requirements

## F1:Admin Functional Requirements

- F1.1 Upload Lab Layouts: Admins can upload scanned images of lab layouts.
- **F1.2 Define Seating Positions**: Admins can mark and label seating positions on the uploaded layouts.
- **F1.3 Manage Allocations**: Admins can assign seating to students and faculty with statuses such as Available, Allocated, or Blocked.
- **F1.4 Monitor Resource Usage**: Admins can track CPU and memory usage in real-time for desktop-based labs.
- F1.5 Set Usage Thresholds: Admins can define acceptable usage limits for server resources.
- **F1.6 Generate Alerts**: Admins receive notifications when usage exceeds predefined thresholds.
- **F1.7 Manage User Roles**: Admins can assign roles (Admin, Faculty, Student) with specific permissions.
- **F1.8 Manage Authentication and Authorization**: Admins can implement secure login mechanisms for users.

• **F1.9 Receive System Alerts**: Admins get real-time notifications for system issues and exceed resource usage.

## **F2:Faculty Functional Requirements**

- F2.1 View Lab Layouts: Faculty can access uploaded lab layouts and seating arrangements.
- **F2.2 Request Seating Modifications**: Faculty can request changes in seating allocations if necessary.
- **F2.3 Monitor Assigned Resources**: Faculty can view resource usage for assigned systems.
- **F2.4 Receive Notifications**: Faculty get alerts related to resource usage, lab status, or system issues.

## **F3:Student Functional Requirements**

- **F3.1 View Assigned Seat**: Students can check allocated seating positions in the lab layout.
- **F3.2 Monitor Personal System Usage**: Students can view real-time CPU and memory usage of the assigned system.
- **F3.3 Receive Personal Alerts**: Students get notifications if assigned system usage exceeds set thresholds.

#### **Use Case 1: Lab Space Allocation**

**Description:** The system automatically assigns lab spaces based on availability and predefined rules.

#### Steps:

- 1. The user logs into the system.
- 2. The user selects the desired lab and time slot.
- 3. The system checks availability.
- 4. If available, the system assigns the lab space and confirms the booking.
- 5. If unavailable, the system suggests alternative slots.
- 6. The user receives a confirmation message.

#### **Use Case 2: Lab Layout Management**

**Description:** Manage lab layouts and seating allocations.

## Steps:

- 1. The administrator logs into the system.
- 2. The administrator uploads a scanned lab layout (JPEG/PNG).
- 3. The system processes and displays the layout.
- 4. The administrator defines and labels seating positions.
- 5. The administrator assigns seat statuses as Available, Allocated, or Blocked.

#### **Use Case 3: Administrator Override Allocation**

**Description:** Administrators can manually override automatic lab allocations.

## Steps:

- 1. The administrator logs into the system.
- 2. The administrator selects the lab and time slot.

- 3. The system displays the current allocation status.
- 4. The administrator overrides the existing allocation.
- 5. The system updates the records and notifies affected users.

#### **Use Case 4: Server Usage Monitoring**

**Description:** Monitor real-time server compute resources.

#### Steps:

1. The administrator accesses the server monitoring dashboard.

- 2. The system displays CPU and memory usage for desktop-based labs.
- The administrator sets usage thresholds (e.g., 90% CPU).
- 4. The system continuously tracks resource consumption.
- 5. If a threshold is exceeded, the system triggers an alert.

## **Use Case 5: User Cancellation of Lab Booking**

**Description:** Users can cancel their lab reservations if needed.

## Steps:

- 1. The user logs into the system.
- 2. The user navigates to their bookings.
- 3. The user selects the booking to cancel.
- 4. The system asks for confirmation.
- 5. Upon confirmation, the system releases the lab space.
- 6. The user receives a cancellation confirmation.

## **Use Case 6: Viewing Lab Availability**

Description: Users can check lab availability before making a booking.

## Steps:

1. The user logs into the system.

- 2. The user selects the lab and date.
- 3. The system fetches and displays available time slots.

#### **Use Case 7: Lab Usage Reporting**

**Description:** The system generates reports on lab space utilization.

#### Steps:

- 1. The administrator logs into the system.
- 2. The administrator selects the reporting module.
- 3. The system compiles lab usage data.
- 4. The report is generated and displayed/downloaded.

## **Use Case 8: User Management**

**Description:** Manage user roles and authentication.

#### Steps:

- 1. The user accesses the login page.
- 2. The user enters credentials (LDAP/NITC-based authentication).
- 3. The system verifies login credentials.
- 4. If valid, access is granted based on role (Admin, Faculty, Student).
- 5. The user can reset passwords or enable multi-factor authentication if required.

## **Use Case 9: Role-Based Access Control (RBAC)**

**Description:** The system restricts functionalities based on user roles.

## Steps:

- 1. The user logs in.
- 2. The system verifies the user's role.
- 3. Based on the role, the system grants access to permitted features.

#### **Use Case 10: Notification and Alerts**

**Description:** Deliver system alerts and reports to users/admins.

#### Steps:

- 1. A critical event occurs (e.g., booking confirmation, server overload).
- 2. The system generates a notification.
- 3. The notification is sent via email/SMS to relevant users.

#### **Use Case 11: Allocation Tracking**

**Description:** Track and display seat allocation history.

#### Steps:

- 1. The administrator logs into the system.
- 2. The system displays real-time seat occupancy per lab.
- 3. The administrator accesses historical allocation records.
- 4. The system allows downloading archived allocation data.

#### **Use Case 12: Real-Time Alerts**

**Description:** Notify users of critical events immediately.

## Steps:

- 1. The system continuously monitors server and seat allocations.
- 2. If server usage exceeds a threshold, an alert is triggered.
- 3. If a seat allocation is changed, the affected user is notified.

## **Use Case 13: Reporting and Analytics**

**Description:** Generate analytical reports on lab allocations and server usage.

#### Steps:

- 1. The administrator logs into the reporting module.
- 2. The administrator selects the report type (seat allocation/server usage).
- 3. The system compiles and displays data.
- 4. Reports can be exported in PDF/CSV formats.
- 5. Graphs visualize usage trends.

## **Use Case 14: System Configuration**

**Description:** Configure system parameters and alerts.

#### Steps:

- 1. The administrator accesses system settings.
- 2. The administrator modifies server monitoring intervals (e.g., 5s, 10s).
- 3. The administrator customizes alert templates and recipient lists.
- 4. Changes are saved and applied system-wide.

## 3. Non-Functional Requirements

#### 3.1 Performance Requirements

- Support 500+ concurrent users with response times under 2 seconds.
- Server usage data updated every **5 seconds**.

#### 3.2 Security Requirements

- Encrypt user data and lab layouts using AES-256.
- JWT authentication for API endpoints.
- RBAC to restrict access based on roles.

#### 3.3 Usability Requirements

- Intuitive drag-and-drop interface for lab layout upload.
- Mobile-responsive dashboard for faculty and students.

## 4. System Design

## 4.1 Technologies to be Used

- Frontend: React.js (Material-UI for layouts).
- Backend: Java Spring(Spring Boot, REST APIs).
- Database: MongoDB (store layouts, allocations, server logs).

#### 4.2 Database Design



#### Entities:

- 1. **Users** (userId, email, role, encryptedPassword)
- 2. Labs (labld, layoutImage, seatingCapacity)
- 3. **Seats** (seatId, labId, status, allocatedTo)
- 4. **ServerUsage** (timestamp, labld, cpuUsage, memoryUsage)
- 5. Alerts (alertId, labId, message, severity)

## 5. Assumptions & Constraints

- Only admins can modify lab layouts and server thresholds.
- Students cannot request multiple seats simultaneously.
- Server thresholds are predefined and non-editable by faculty/students.

7. Use Case Diagram



Actors: Admin, Faculty, Student

**Key Use Cases**:

• Admin: Upload Layout, Set Server Thresholds, Manage Users.

• Faculty: Allocate Seats, View Allocation Reports.

• Student: Request Seat, Check Usage Statistics.

## 8. Class Diagram



# 9. Version History

| Version | Date        | Author               | Changes                                                    |
|---------|-------------|----------------------|------------------------------------------------------------|
| 1.0     | 10-Dec-2024 | Advaith Girish       | Initial draft.                                             |
| 1.1     | 12-Feb-2024 | Adithyan D           | Added use case diagrams, refined NFRs.                     |
| 1.2     | 24-Feb-2025 | Prithvi<br>Ganapathi | Refined the SRS, added Database design, and Class diagram. |