

Bars and dots: point data

Nick Strayer Instructor

What is point data?

- One categorical axis, one numeric
- Counts, averages, rates, etc.

A single observation

- Represents a singular observation of something
- E.g. population of a state, rate of cell growth

The Bar Chart

- Popular
- Simple
- Accurate

```
ggplot(who_disease) +
  geom_col(aes(x = disease, y = cases))
```


Not always the best

- Bar charts are frequently used when other charts are more appropriate
- A few principles can be followed to help avoid this

The stacking principle

- Should be used for data that represents a meaningful quantity
- Ask: 'Could I stack what I'm measuring to make the bars?'

Why quantities?

"...viewers judge points that fall within the bar as being more likely than points equidistant from the mean, but outside the bar..." - Scholl & Newman, 2012

- People view the bar as 'containing' the values below top
- Quantities fulfill this assumption

A big deal?

- Not really...
- ... but alternatives are not worse, so they may as well be used

Let's practice!

Point Charts

Nick Strayer Instructor

When a bar chart isn't ideal

- Not a quantity
- Non-Linear transformations

Point charts

- Simply replace bar with a point
- Sometimes called point charts or dot plots

Benefits of point charts

- High precision
- Efficient representation
- Simple

Data for lesson

- Working with a subset of WHO data
- Countries are an 'interesting' subset -- let's see if we can find out why

```
interestingCountries <- c(
    "NGA", "SDN", "FRA", "NPL", "MYS",
    "TZA", "YEM", "UKR", "BGD", "VNM"
)
who_subset <- who_disease %>%
    filter(
        countryCode %in% interestingCountries,
        disease == 'measles',
        year %in% c(2006, 2016)
    ) %>%
    mutate(year = paste0('cases_', year)) %>%
    spread(year, cases)
```


who_subset

```
> who subset
# A t\overline{i}bble: 10 x 6
   region countryCode country
                                    disease cases 2006 cases 2016
                       <chr>
                                    <chr>
                                                  <dbl>
                                                              <dbl>
   <chr> <chr>
                                                    704
                                                              17136
1 AFR
          NGA
                       Nigeria
                                    measles
                                                   2362
                                                                 33
                       Tanzania
                                    measles
 2 AFR
          TZA
                                                    228
                                                               1767
 3 EMR
          SDN
                       Sudan (the) measles
                                                   8079
                                                                143
 4 EMR
          YEM
                       Yemen
                                    measles
 5 EUR
          FRA
                                    measles
                                                     40
                                                                 79
                       France
                                    measles
                                                  42724
                                                                102
 6 EUR
          UKR
                       Ukraine
                                                   6192
                                                                972
 7 SEAR
          BGD
                       Bangladesh
                                    measles
                                                   2838
 8 SEAR
                                                               1269
          NPL
                       Nepal
                                    measles
                                                    564
                       Malaysia
                                    measles
                                                               1569
 9 WPR
          MYS
                       Viet Nam
                                    measles
                                                   1978
                                                                 46
10 WPR
          VNM
```


Code for point charts

• geom_point with one categorical and one numerical axis

```
who_subset %>%
  # we log transform our values here so bars are not appropriate
  ggplot(aes(y = country, x = log10(cases_2016))) +
  # simple geom_point.
  geom_point()
```


Ordering your point charts

- Ordering can vastly help legibility
- Use the reorder function in the aesthetic assignment

```
who_subset %>%
  # calculate the log fold change between 2016 and 2006
mutate(logFoldChange = log2(cases_2016/cases_2006)) %>%
  ggplot(aes(x = logFoldChange, y = reorder(country, logFoldChange))) +
  geom_point()
```


reorder

Let's practice!

Tuning your bar and point charts

Nick Strayer Instructor

A busy bar chart

```
who_disease %>%
  filter(region == 'EMR', disease == 'measles', year == 2015) %>%
  ggplot(aes(x = country, y = cases)) +
  geom_col()
```


Flipping the bar

• geom_bar and geom_col don't allow categories on y-axis

```
busy_bars <- who_disease %>%
filter(region == 'EMR', disease == 'measles', year == 2015) %>%
ggplot(aes(x = country, y = cases)) +
geom_col()
```

So we have to flip!

```
busy_bars + coord_flip() # swap x and y axes!
```


Excess grid

- No need for parallel grid lines in bars
- In point charts, only grids in line with point locations are needed

Removing vertical grid

```
plot <- who_disease %>%
  filter(country == "India", year == 1980) %>%
  ggplot(aes(x = disease, y = cases)) +
  geom_col()
```

```
# get rid of vertical grid lines
plot + theme(
   panel.grid.major.x = element_blank()
)
```


Lighter background for point charts

- Default grey background can be too low-contrast for points
- theme minimal() is a quick fix
- Making points bigger helps too

```
who_subset %>%
  ggplot(aes(y = reorder(country, cases_2016), x = log10(cases_2016))) +

# point size increased
geom_point(size = 2) +

# theme minimal for light background
theme_minimal()
```


size=2 +
theme_minimal()

Let's try it out