Investigação Operacional - Trabalho Prático 2

Carlos Machado a
97114, Gustavo Pereira a
96867, Vasco Oliveira a
96361, Cláudio Bessa a
97063, Tiago Oliveira a
97254

Universidade do Minho

1 Formulação do Problema

Neste problema em questão trata-se de um problema de escalonamento de equipas (com tempos de serviço fixos) onde a cada cliente está associada uma hora de serviço. Uma dada equipa pode apenas efetuar o serviço a um cliente 2 se e somente se, após o término do serviço ao cliente 1, tiver tempo para a deslocação entre clientes.

Sendo essa restrição expressa maticamente por $a_i + t_{ij} \leq t_j$.

Cada equipa inicia o seu dia de trabalho às 09 : 00 na sede da empresa (K). Os dados relativos aos clientes são:

j	cliente	a_j (¼hora)	a_j (hora do serviço)
1	Ana	8	11:00
2	Beatriz	7	10:45
3	Carlos	4	10:00
4	Diogo	2	09:30
5	Eduardo	10	11:30
6	Francisca	6	10:30
7	Gonçalo	9	11:15
8	Helena	3	09:45
9	Inês	2	09:30
10	José	5	10:15

Figura 1. Horas de serviço

Foi-nos informado, pelo corpo docente, que certos dados no enunciado não obedeciam à propriedade da "desigualdade triangular". Em termos de distâncias, essa propriedade pode ser enunciada da seguinte forma:

$$dAC \le dAB + dBC$$
.

Sendo assim, como já tinhamos o trabalho numa fase final, não assumimos tal propriedade.

	В	C	D	E	F	G	Н	I	J	K
A	4	1	2	2	3	2	1	0	3	1
В		3	5	3	3	2	3	4	2	5
C			3	2	3	2	0	1	1	2
D				1	3	3	3	2	3	1
E					2	1	2	2	2	2
F						2	3	3	3	4
G							2	2	2	3
Н								1	1	1
I									3	2
J										4

tempos de deslocação

Figura 2. Tempos de deslocação

	В	C	D	E	F	G	H	I	J	K
Α	13	5	6	5	10	7	5	0	7	1
В		11	14	10	8	6	11	13	4	15
C			8	6	10	6	0	5	6	2
D				4	8	8	8	6	11	4
E					6	4	6	5	7	6
F						5	10	10	8	11
G							10	7	5	9
Η								5	6	9
I									7	9
J										10
custos de deslocação										

Figura 3. Custos de deslocação

2 Modelo

Primeiro, através da restrição $a_i+t_{ij}\leq t_j$, determinados quais os arcos que iam fazer parte do nosso modelo.

```
Arcos depois das restrições ai + tij ≤ aj
K: A,B,C,D,F,G,H,I,J
A:
B: G
C: A,B,G
D: A,B,F,G,J
F: G
G:
H: A,B,C,F,G,J
I: A,B,C,F,G,J
J: A,B,C
```

Figura 4. Arcos efetuados

Com esta informação, formulamos o nosso grafo de compatibilidades, para orientarmo-nos.

 ${\bf Figura \, 5.} \; {\bf Grafo} \; {\bf de} \; {\bf compatibilidades}$

Antes de passarmos para a resolução do problema no relax4 precisamos de pensar como obrigar as equipas a passarem por todos os vértices (uma em cada vértice), adicionando um fluxo de exactamente uma unidade em cada vértice, representado na figura 6, em que o fluxo de um dos arcos de entrada é igual a 1 e o fluxo de um dos arcos de saída é igual a 1.

Figura 6. Fluxo de 1 unidade

No fim, resolvemos o exercício no relax4 usando o método de um fluxo de uma unidade em cada vértice, e, como nós não sabiamos qual seria o número ótimo de equipas criamos um arco auxiliar de K até K' com custo 0, e damos um fluxo de entrada no vértice K igual a 20 e um fluxo de saída no vértice K' igual a 20, fazendo, assim, com que as equipas que não tenham sido usadas possam passar por esse arco auxiliar, tornando o nosso ficheiro de input numa solução admissível (o ficheiro de input do relax4 será enviado em anexo).

Utilizamos como valores de oferta e procura dos vértices K e K', respetivamente, o valor 20 mas é de notar que podíamos ter usado qualquer valor que seja maior ou igual ao número de clientes, que no nosso caso é 9.

3 Solução Ótima

Após a inserção do nosso input no relax4 obtivemos a seguinte informação:

```
**********************
```

NUMBER OF NODES = 22, NUMBER OF ARCS = 45 USING DEFAULT INITIALIZATION

OPTIMAL COST = 72.

NUMBER OF ITERATIONS = 3

NUMBER OF MULTINODE ITERATIONS = 0

NUMBER OF MULTINODE ASCENT STEPS = 0

NUMBER OF REGULAR AUGMENTATIONS = 0

f 21 22 16	f 17 22 1	f 18 2 0
f 21 1 1	f 18 22 0	f 18 3 0
f 21 2 0	f 19 22 0	f 18 6 0
f 21 3 1	f 20 22 0	f 18 7 0
f 21 4 1	f 12 7 1	f 18 10 1
f 21 6 0	f 13 1 0	f 19 1 0
f 21 7 0	f 13 2 0	f 19 2 0
f 21 8 0	f 13 7 0	f 19 3 0
f 21 9 1	f 14 1 0	f 19 6 0
f 21 10 0	f 14 2 0	f 19 7 0
f 11 22 1	f 14 6 1	f 19 8 1
f 12 22 0	f 14 7 0	f 19 10 0
f 13 22 1	f 14 10 0	f 20 1 0
f 14 22 0	f 16 7 0	f 20 2 1
f 16 22 1	f 18 1 0	f 20 7 0

Através desta informação conseguimos saber:

- $-\,$ O custo ótimo de 72, obtido no ficheiro de output onde diz: OPTIMAL COST = 72.
- O total de 4 equipas utilizadas, obtido no ficheiro de output aqui: f 21 22 16, que é a representação do arco auxiliar K-K', falado anteriormente, onde possou uma quantidade de fluxo de 16, e como nós demos 20 como o valor de oferta, fazemos 20 16 e temos o número de equipas = 4.
- Os caminhos que cada equipa fez, vendo os arcos onde passaram uma quantidade de fluxo de 1.

É de notar que poderá haver outras soluções admissíveis com o mesmo custo mínimo, no nosso caso 72.

Carlos, Gustavo, Vasco, Cláudio, Tiago

8

O output pode ser visto em tabela da seguinte forma:

Equipa 1 cliente a_i (1/4 hora) a_i (hora do serviço) tempo de deslocação custo deslocação KA: ¼hora Keleirós 0 09:00 8 11:00 AK: 1/4 hora Ana 9 11:15 Keleirós 3 custo de operação da equipa

Figura 7. Plano de deslocação da equipa 1

			Equipa 2		
j	cliente	a _j (1/4 hora)	a _j (hora do serviço)	tempo de deslocação	custo deslocação
	Keleirós	0	09:00	KC: ² / ₄ hora	2
3	Carlos	4	10:00	CK: ² / ₄ hora	2
	Keleirós	6	10:30		1
cus	to de operaç	5			

 ${\bf Figura\,8.}$ Plano de deslocação da equipa 2

			Equipa 3		
j	cliente	a _, (1/4 hora)	a _j (hora do serviço)	tempo de deslocação	custo deslocação
	Keleirós	0	09:00	KD: 1/4 hora	4
4	Diogo	2	09:30	DF: 3/4 hora	8
6	Francisca	6	10:30	FK: 4/4 hora	11
	Keleirós	10	11:15		1
cus	to de operac	24			

 ${\bf Figura\,9.}$ Plano de deslocação da equipa 3

			Equipa 4		
j	cliente	a _j (1/4 hora)	a _j (hora do serviço)	tempo de deslocação	custo deslocação
	Keleirós	0	09:00	KI: ² / ₄ hora	9
9	Inês	2	09:30	IH: ⅓ hora	5
8	Helena	3	09:45	HJ: 1/4 hora	6
10	José	5	10:15	JB: ² / ₄ hora	4
2	Beatriz	7	10:45	BG: ² / ₄ hora	6
7	Gonçalo	9	11:15	GK: 3/4 hora	9
	Keleirós	12	12:00		1
cus	40				

Figura 10. Plano de deslocação da equipa 4

4 Validação

Para validarmos o nosso modelo primeiro verificamos se os seguintes dados faziam parte da nossa solução:

- Os arcos K-I e K-D, são os únicos arcos possíveis quando estamos a entrar nos vértices I e D, respetivamente.
- Os arcos A-K' e G-K', são os únicos arcos possíveis quando estamos a sair dos vértices I e D, respetivamente
- Como os arcos K-I, K-D, A-K' e G-K' são de passagem obrigatória, significa que iriamos precisar de pelo menos duas equipas.

Seguidamente, visualizamos os caminhos que foram feitos pelas equipas, através da solução do *relax4*, e verificamos se as equipas não passavam pelo mesmo vértice mais do que uma vez e se passavam por todos os vértices.

Para finalizar, acabamos por resolver o nosso modelo no *lpsolve*, em anexo tal como o ficheiro de *input* do *relax4*, para verificar se as soluções coincidiam. Finalizando assim a validação.