

ATTACHMENT B

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application.

Please cancel claims 3 and 7 without prejudice or disclaimer.

1. (Currently Amended) A solid support for a biochemical assay, which support is substantially linear or planer in shape, incorporates a spatially varying pattern for identification purposes, and has an anodised metal surface layer, probe molecules for the biochemical assay being bound to the surface layer, and the largest external dimension of the support being less than 100µm, whereby an aqueous suspension is formable from a plurality of the supports.
2. (Original) A support according to claim 1, wherein the surface layer has a cellular structure anodisation layer, the growth direction of the cells of the anodisation layer being perpendicular to the plane of the surface layer.
3. (Cancelled)
4. (Original) A support according to claim 1, wherein the surface layer is of aluminum.
5. (Original) A support according to claim 1, wherein the surface layer is porous.

BEST AVAILABLE COPY

6. (Currently Amended) A support according to claim 5, wherein the pore size of the surface layer is approximately matched to the size of the biochemically active bound probe molecules to be bound.

7. (Cancelled)

8. (Currently Amended) A support according to claim 7, wherein said pattern is a barcode.

9. (Original) A support according to claim 8, wherein the barcode is a linear barcode.

10. (Original) A support according to claim 1, in which the pattern comprises a series of holes in the support.

11. (Withdrawn) A method of fabricating the supports of claim 1, comprising sputter coating a flat surface with metal layer, anodising the metal layer, and lithographically patterning and etching the metal layer to reveal the supports.

12. (Withdrawn) A method according to claim 13, wherein said surface consists of layer of soluble material on a rigid substrate, and the method further comprises releasing the supports from said surface by solvation of the soluble material.

13. (Withdrawn) A method according to claim 12, wherein the soluble material is a resist.

14. (Withdrawn) A method according to claim 11, wherein the anodising is carried out at a voltage of up to 150 V.

15. (Withdrawn) A method according to claim 14, wherein the anodising is carried out at a voltage in the range from 4 V to 30V.

16. (Withdrawn) A method according to claim 11, further comprising binding probe molecules to the anodised metal layer.