1 Einführung

1.1 Probleme in der Informatik

Ein **Problem** im Sinne der Informatik:

- Enthält Beschreibung der Eingabe
- Enthält Beschreibung der Ausgabe
- Gibt selbst keinen Übergang von Ein und Ausgabe an

ABBILDUNG 1: Modell Problem Informatik

z.B. Finde den kürzesten Weg zwischen 2 Orten

Eine **Probleminstanz** ist eine konkrete Eingabebelegung für die entsprechende Ausgabe gewünscht. Für das obige Problem wäre das z.B. "Was ist der kürzeste Weg vom Audimax in die Mensa?"

1.2 Definitionen für Algorithmen

"Ein Algorithmus ist eine **endliche Folge** von Rechenschritten, die eine **Eingabe** in eine **Ausgabe** umwandelt."¹ **Anforderungen an Algorithmen:**

- Spezifizierung der Ein- und Ausgabe:
 - Anzahl und Typen aller Elemente ist/sind definiert
- Eindeutigkeit:
 - Jeder Einzelschritt ist klar definiert und ausführbar
 - Die Reihenfolge der Einzelschritte ist festgelegt.
- Endlichkeit
 - Notation hat endliche Länge

Eigenschaften von Algorithmen:

- Determiniertheit:
 - Für gleiche Eingabe folgt stets die gleiche Ausgabe (andere Zwischenzustände sind möglich)
- Determinismus:
 - Für die gleiche Eingabe ist die Ausführung und Ausgabe stets identisch.
- Terminierung:
 - Der Algorithmus läuft für jede endliche Eingabe nur endlich lange
- Korrektheit:
 - Der Algorithmus berechnet stets die spezifizierte Ausgabe (falls dieser terminiert).
- Effizienz:
 - Sparsamkeit im Ressourcenverbrauch (Zeit, Speicher, Energie, ...)

¹Quelle: Cormen et al., 4. Auflage

1.3 Definitionen für Datenstrukturen

"Eine Datenstruktur ist eine Methode, Daten **abzuspeichern** und zu **organisieren** sowie den **Zugriff** auf die Daten und die **Modifikation** der Daten zu erleichtern."²

Datenstrukturen:

- Sind Organisationsformen für Daten
- Beinhalten Strukturbestandteile und Nutzerdaten (Payload)

z.B. Arrays, listen, ...

ABBILDUNG 2: Beispiel Datenstruktur (Rot-Schwarz-Baum)

1.4 Pseudocode-Konventionen

- Blöcke werden durch Einrückungen hervorgehoben
- Blockkonstrukte sind "for x to y", "while", "repeat-until" und "if-else"
- Kommentare erhalten das Prädikat "//"
- "i = j = e" bedeutet, i und j erhalten den Wert von e
- · Variablen sind immer lokal
- A[i] bezeichnet das i-te Element im Array A
- A[i..j] Array A im Bereich von i-j
- Attribute werden über einen "." abgerufen

1.5 Weitere wichtige Definitionen

- **short circuit evaluation (Kurzschlussauswertung)**: Strategie, bei der die Auswertung, nachdem die Gesamtlösung durch einen Teilausdruck eindeutig bestimmt wurde, abgebrochen wird. z.B.: 1+1==2 | | 1/0==0→ true
- call-by-reference (Referenzparameter): Übergeben von Referenz auf ein Objekt. Dadurch sind Änderungen an diesem innerhalb der Routine möglich.
- call-by-value (Wertparameter): Übergeben einer Kopie des Objekts. Das ursprüngliche Objekt kann so nicht mehr verändert werden, jedoch die Kopie. Die referenzen bleiben beim Kopieren gleich (z.B. bein Linked List)

²Quelle: Cormen et al., 4. Auflage