Groundwater flow modeling: uncertain boundary conditions and their impact on the forecast

Emanuel Huber¹, Jef Caers¹, Peter Huggenberger², Thomas Vienken³, Manuel Kreck³, Peter Dietrich^{3,4}

¹Department of Geological Sciences, Stanford University

²Applied and Environmental Geology, University of Basel

³UFZ-Helmholtz Centre for Environmental Research, Leipzig

⁴Eberhard Karls University of Tübingen

Context

Subsurface flow

An interplay between

- subsurface heterogeneity
- boundary conditions (inflow/outflow, pressure)

Context

Subsurface flow

An interplay between

- subsurface heterogeneity
- boundary conditions (inflow/outflow, pressure)

Bacterial contamination of groundwater

High discharge events in the river

- Z bacteria concentration in the river
- infiltration of river water into the aquifer
- ¬ possible contamination of groundwater water

Context

Subsurface flow

An interplay between

- subsurface heterogeneity
- boundary conditions (inflow/outflow, pressure)

Bacterial contamination of groundwater

High discharge events in the river

- \(\simega \) bacteria concentration in the river
- infiltration of river water into the aguifer
- possible contamination of groundwater water

Shall the drinking water extraction well be turned off?

- Uncertainty model for boundary conditions
- Uncertainty quantification of forecast

- Uncertainty model for boundary conditions
- Uncertainty quantification of forecast

Synthetic case study

Drinking water extraction in one well

River water–groundwater interaction \rightarrow infiltration $q = C_{\text{riv}} (h_{\text{riv}} - h_{\text{gw}})$

Specified head boundary conditions

Mechanical bacteria filtration in aquifer \rightarrow exponential decay of $\lambda \cdot s$

- Uncertainty model for boundary conditions
- Uncertainty quantification of forecast

Synthetic case study

Prediction = bacteria concentration for the next 10 days

- Uncertainty model for boundary conditions
- Uncertainty quantification of forecast

Uncertain boundary conditions

River water-groundwater interaction

- river bed conductivity $C_{riv} \rightarrow$ spatially constant, uniform prior.
- river heads $(h_{riv}) \rightarrow$ measured (assumed to be known everywhere)

Uncertain boundary conditions

River water-groundwater interaction

- river bed conductivity $C_{riv} o$ spatially constant, uniform prior.
- river heads $(h_{riv}) \rightarrow$ measured (assumed to be known everywhere)

Specified heads

Interpolation: space-time Gaussian process conditioned to measured groundwater heads

- Matérn (space) and Gaussian (time) covariance functions
- (unknown) linear mean function
- no-flow boundary conditions (specified derivatives)

Uncertain boundary conditions

River water-groundwater interaction

- river bed conductivity $C_{riv} o$ spatially constant, uniform prior.
- river heads $(h_{riv}) \rightarrow$ measured (assumed to be known everywhere)

Specified heads

Interpolation: space-time Gaussian process conditioned to measured groundwater heads

- Matérn (space) and Gaussian (time) covariance functions
- (unknown) linear mean function
- no-flow boundary conditions (specified derivatives)

But river and groundwater heads are unknown for the next 10 days!

Convolution (*) model

Strong relationship between precipitation and river heads

Convolution (*) model

Strong relationship between precipitation and river heads

Convolution (*) model

Strong relationship between precipitation and river heads

Uncertain weather forecast \rightarrow random sampling

Convolution (*) model

Strong relationship between precipitation and river heads

Uncertain weather forecast \rightarrow random sampling

Convolution (*) model

Strong relationship between precipitation and river heads

Uncertain weather forecast → random sampling

Convolution (*) model

Strong relationship between precipitation and river heads

Uncertain weather forecast \rightarrow random sampling

Convolution (⋆) model

Strong relationship between precipitation and river heads

Uncertain weather forecast → random sampling

Same approach for the groundwater heads

Spatial uncertainty

Subsurface heterogeneity uncertainty

Hydraulic conductivity

→ Gaussian random field (Matérn covariance function)

Porosity, specific storage, specific yield

ightarrow spatially constant, uniform prior

- Sample 1000 realisations and compute the model response
- Cluster the realisations based on the model response
- For each parameter: compare the parameter distribution in each cluster with the global parameter distribution
- If the distance between both distributions is significant, then the parameter is influential (on the model response)

- Sample 1000 realisations and compute the model response
- Cluster the realisations based on the model response
- For each parameter: compare the parameter distribution in each cluster with the global parameter distribution
- If the distance between both distributions is significant, then the parameter is influential (on the model response)

- Sample 1000 realisations and compute the model response
- Cluster the realisations based on the model response
- For each parameter: compare the parameter distribution in each cluster with the global parameter distribution
- If the distance between both distributions is significant, then the parameter is influential (on the model response)

- Sample 1000 realisations and compute the model response
- Cluster the realisations based on the model response
- For each parameter: compare the parameter distribution in each cluster with the global parameter distribution
- If the distance between both distributions is significant, then the parameter is influential (on the model response)

- Sample 1000 realisations and compute the model response
- Cluster the realisations based on the model response
- For each parameter: compare the parameter distribution in each cluster with the global parameter distribution
- If the distance between both distributions is significant, then the parameter is influential (on the model response)

Statistical prediction

Data (1000 realisations)

groundwater heads (day 1 - day 31) 7 wells \times 31 time steps

Statistical prediction

Data (1000 realisations)

groundwater heads (day 1 - day 31) 7 wells \times 31 time steps

tracer concentration (day 1 - day 5) 7 wells \times 500 time steps

Statistical prediction

Forecast (1000 realisations)

bacteria concentration (day 1 - day 31) 1 wells \times 10 time steps

Dimension reduction + CCA + linear regression + backtransform data

Dimension reduction + CCA + linear regression + backtransform

data ↓

basis function expansion

Time-series d(t) approximated by a linear combination of B-splines $\Phi_j(t)$ $d(t) \approx \sum_j c_j \Phi_j(t)$

Dimension reduction + CCA + linear regression + backtransform

data

basis function expansion

 $\downarrow \downarrow$

functional PCA

functional version of PCA summations change into integrations

Dimension reduction + CCA + linear regression + backtransform

data

basis function expansion

 \Downarrow

functional PCA

merge scores

Dimension reduction + CCA + linear regression + backtransform

data

↓
basis function expansion
↓
functional PCA
↓
merge scores
↓
PCA

Dimension reduction + CCA + linear regression + backtransform

data

↓
basis function expansion
↓
functional PCA
↓
merge scores
↓
PCA

PCA

↑
prediction

Dimension reduction + CCA + linear regression + backtransform

find two bases **A** and **B** in which the correlation matrix between the variables is diagonal and the correlations on the diagonal are maximized.

$$\begin{aligned} \mathbf{U} &= \mathbf{X}\mathbf{A} \\ \mathbf{V} &= \mathbf{Y}\mathbf{B} \end{aligned}$$

with

 (\mathbf{U}, \mathbf{V}) = canonical variables

X = reduced data variable

Y = reduced forecast variable

Dimension reduction + CCA + linear regression + backtransform

Dimension reduction + CCA + linear regression + backtransform

Dimension reduction + CCA + linear regression + backtransform

Statistical prediction - Results

Canonical correlation space

tracer data (99.9% of variance)

data (1000 \times 64), forecast (1000 \times 7)

Statistical prediction - Results

Canonical correlation space

tracer data (99.9% of variance)

data (1000 \times 64), forecast (1000 \times 7)

head data (99.9% of variance)

data (1000 \times 16), forecast (1000 \times 7)

Statistical prediction – Results

Prediction

tracer data

head data

More accurate results with head data (larger log predictive density)

Statistical prediction – Results

Decision

tracer data

head data

Turn off the drinking water extraction well!

Conclusion

- model of uncertain boundary conditions
- distance-based general sensitivity analysis
 - \rightarrow importance of boundary conditions (specified heads)
- statistical prediction
 - ightarrow circumvent classical inversion
 - \rightarrow relevance of data for prediction

Conclusion

- model of uncertain boundary conditions
- distance-based general sensitivity analysis
 - \rightarrow importance of boundary conditions (specified heads)
- statistical prediction
 - \rightarrow circumvent classical inversion
 - \rightarrow relevance of data for prediction

Further research

- model for riverbed conductivity (spatial and temporal)
- statistical prediction for designing monitoring network
- use statistical prediction for resampling