Neural-Pull

论文: 《Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space

onto Surfaces》

地址: https://arxiv.org/abs/2011.13495

年份: ICML 2021

Introduction

任务: 表面重建

技术贡献:

(1) 使用将位于表面附近的点拉到表面上的方式来学习 SDF。

Method

首先明确输入输出。有相应物体的 ground truth 点云 P,共计 2×10^4 个点 ${m p}_j$,通过采样的方式得到 query points ${m q}_i$,具体做法是在每个 ${m p}_j$ 处构建一个各项同性的高斯分布 ${\cal N}({m p}_j,\sigma^2)$,设定 σ^2 为 ${m p}_j$ 到 50-th nearest neighbor 的距离平方,然后在高斯分布中采样 25 个点作为 query locations ${m q}_i$,这样就构建了一个包含 5×10^5 个点的集合 Q。

网络的输入是 Q 中的点,而**不需要**任何 P 中的点 (这是与其他文章不同的地方) ,网络输出是到表面的距离。

文章的做法比较简单,对于输入的不在表面上的点,可以根据网络的输出和网络的梯度将点"拉"到表面上,然后计算一个 loss 用于训练网络。

通过以下公式计算 q_i 在表面上的对应点 t_i' :

$$oldsymbol{t}_i' = oldsymbol{q}_i - oldsymbol{f}(oldsymbol{q}_i) imes
abla oldsymbol{f}(oldsymbol{q}_i) / \|
abla oldsymbol{f}(oldsymbol{q}_i)\|_2$$

而 loss 就是计算 t_i' 和 q_i 在 P 中的最近邻 t_i 之间的距离:

$$d(\{m{t}_i'\}, \{m{t}_i\}) = rac{1}{I} \sum_{i \in [1, I]} \|m{t}_i' - m{t}_i\|_2^2$$

文章中证明了只需要这个 loss 就能让网络学习到物体的 SDF。

Experiments

实验是在 ABC 数据集的子集、FAMOUS 数据集 和 ShapeNet 数据集子集 上与 DSDF、ATLAS、PSR、Points2Surf 和 IGR 进行比较,评估指标是 L2-Chamfer distance,Normal Consistency 和 F-score。详见原文。

Ablation Study

Table 8. Ablation studies in terms of L2-CD ($\times 100$).			
No GNI	Space sampling	Gradient constraint	Ours
0.35	0.80	1.15	0.22

消融实验的结果表明:

- 对网络进行几何初始化能够提升重建效果;
- 在表面附近采样点而非在整个空间内采样能够提升效果;
- 加入 IGR 中提出的梯度模长为 1 的限制不能提升效果, 甚至差很多;

还有修改采样范围即 $\mathcal{N}(\boldsymbol{p}_j,\sigma^2)$ 中的 σ^2 ,过大或者过小的值都会降低效果。