A project report on

SECURING WEB APPLICATION FROM PARAMETER TAMPERING AND ITS PREVENTION

Submitted in partial fulfillment for the award of the degree of

M.Tech (Software Engineering)

by

VIVEK R (19MIS0184)

SCHOOL OF COMPUTER SCIENCE ENGINEERING AND INFORMATION SYSTEMS

SECURING WEB APPLICATION FROM PARAMETER TAMPERING AND ITS PREVENTION

Submitted in partial fulfillment for the award of the degree of

M.Tech (Software Engineering)

by

VIVEK R (19MIS0184)

SCHOOL OF COMPUTER SCIENCE ENGINEERING AND INFORMATION SYSTEMS

November, 2023

DECLARATION

I here by declare that the thesis entitled "SECURING WEB

APPLICATION FROM PARAMETER TAMPERING AND ITS

PREVENTION" submitted by me, for the award of the degree of

M.Tech (Software Engineering) is a record of bonafide work carried out

by me under the supervision of PROF. CHADRASEGAR T.

I further declare that the work reported in this thesis has not been

submitted and will not be submitted, either in part or in full, for the award

of any other degree or diploma in this institute or any other institute or

university.

Place: Vellore

Date: 02-11-2023

Signature of the Candidate

CERTIFICATE

This is to certify that the thesis entitled "SECURING WEB APPLICATION FROM PARAMETER TAMPERING AND ITS PREVENTION" submitted by VIVEK R (19MIS0184), School of Computer Science Engineering And Information Systems, Vellore Institute of Technology, Vellore for the award of the degree M.Tech (Software Engineering) is a record of bonafide work carried out by him/her under my supervision.

The contents of this report have not been submitted and will not be submitted either in part or in full, for the award of any other degree or diploma in this institute or any other institute or university. The Project report fulfils the requirements and regulations of VELLORE INSTITUTE OF TECHNOLOGY, VELLORE and in my opinion meets the necessary standards for submission.

Signature of the Guide

Signature of the HoD

Internal Examiner

External Examiner

ABSTRACT

With the exponential growth of online commerce and reliance on web applications for critical functions banking to healthcare, securing these systems against evolving threats is paramount. Web apps have become high value targets for attackers using techniques like parameter tampering to carry out fraud, unauthorized access, account takeover, and financial theft. This project demonstrates how widely used tools like Burp Suite can manipulate parameters including hidden fields, cookies, URLs, and POST data to compromise web application security through a lack of validation and encryption. Controlled testing was performed to tamper with prices, sessions, account credentials, and other parameters on real-time e-commerce sites as well as live production systems. These tests revealed systemic vulnerabilities in the way many web applications handle parameter manipulation, illustrating risks like injection of unauthorized discounts, maintenance of user sessions, exploitation of logic flaws, and circumvention of standard login processes. Legacy systems were found to be particularly susceptible due to weak cryptographic controls and flawed authentication mechanisms.

To address the prevalent security gaps that enable parameter tampering, solutions leveraging encryption, hashing, and improved session management are proposed and implemented. The Advanced Encryption Standard (AES) and Rivest–Shamir–Adleman (RSA) public key cryptography are used to encrypt transmitted parameters. Secure Hash Algorithm (SHA) is implemented to hash and validate parameter integrity. Improved session generation, handling, and termination mechanisms help mitigate session-based attacks. A prototype web application system was then developed incorporating these defenses and tested against further tampering attempts through thorough penetration testing. The implemented defenses exhibited substantial resilience versus traditional protection schemes and significantly reduced the risk of parameter manipulation threats. Alternative mitigation strategies like whitelist input validation and tighter account controls are also discussed and compared. This project aims to spread awareness of the risks posed by parameter tampering attacks, provide live demonstrations, enable developers to make informed design choices, and offer a model for comprehensive security analysis of web-based systems. The techniques and methodology established can serve as a blueprint for robust protection of modern web applications against parameter and other input-based threats.

Keywords:

Parameter Tampering, Burp Suite, Web Application Security, Data Integrity, Session management.

ACKNOWLEDGEMENT

It is pleasure express with deep sense of gratitude my to PROF. CHANDRASEGAR T, Assistant Professor Sr. Grade 2, School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, for his/her constant guidance, continual encouragement, understanding; more than all, he taught me patience in my endeavour. My association with him / her is not confined to academics only, but it is a great opportunity on my part of work with an intellectual and expert in the field of Information Security.

I would like to express my gratitude to DR.G.VISWANATHAN, Chancellor VELLORE INSTITUTE OF TECHNOLOGY, VELLORE, MR. SANKAR VISWANATHAN, DR. SEKAR VISWANATHAN, MR.G V SELVAM, Vice – Presidents VELLORE INSTITUTE OF TECHNOLOGY, VELLORE, Dr. V. S. Kanchana

Bhaaskaran,

Vice – Chancellor, DR. Partha Sharathi Mallick, Pro-Vice Chancellor and Dr. S. Sumathy, Dean, School of Computer Science Engineering And Information Systems,, for providing with an environment to work in and for his inspiration during the tenure of the course.

In jubilant mood I express ingeniously my whole-hearted thanks to Dr. Neelu Khare, HoD/Professor, all teaching staff and members working as limbs of our university for their not-self-centered enthusiasm coupled with timely encouragements showered on me with zeal, which prompted the acquirement of the requisite knowledge to finalize my course study successfully. I would like to thank my parents for their support.

It is indeed a pleasure to thank my friends who persuaded and encouraged me to take up and complete this task. At last but not least, I express my gratitude and appreciation to all those who have helped me directly or indirectly toward the successful completion of this project.

Place: Vellore

Date: 02-11-2023 Name of the student

TABLE OF CONTENTS

LIST OF FIGURES v
LIST OF TABLESv
LIST OF ACRONYMSvi
CHAPTER 1
INTRODUCTION
1.1 BACKGROUND11
1.2 MOTIVATION
1.3 PROJECT STATEMENT
1.4 OBJECTIVES
1.5 SCOPE OF THE PROJECT13
CHAPTER 2
LITERATURE SURVEY
2.1 SUMMARY OF THE EXISTING WORKS
2.2 CHALLENGES PRESENT IN EXISTING SYSTEM
CHAPTER 3
REQUIREMENTS
3.1 HARDWARE REQUIREMENTS
3.2 SOFTWARE REQUIREMENTS
3.3 GANTT CHART

CHAPTER 4

ANALYSIS & DESIGN
4.1 PROPOSED METHODOLOGY
4.2 SYSTEM ARCHITECTURE23
4.3 MODULE DESCRIPTIONS
CHAPTER 5
IMPLEMENTATION & TESTING
5.1 SAMPLE CODE
5.2 SAMPLE OUTPUT46
5.3 TEST PLAN & DATA VERIFICATION53
CHAPTER 6
RESULTS
6.1 RESEARCH FINDINGS61
6.2 RESULT ANALYIS & EVALUATION METRICS
CONCLUSIONS AND FUTURE WORK 64
REFERENCES 65

LIST OF FIGURES

3.1 – Project timeline diagram	20
3.2 - Project timeline table	21
4.1 – System architecture diagram	23
5.1 – Database snapshots	45
5.2 – SignIn page	46
5.3 – Login page	46
5.4 – Shopping page	47
5.5 – Adding item to cart	48
5.6 – Product Checkout (Without Tampering)	48
5.7 – Product Checkout (Without Tampering)	49
5.8 – Order success	49
5.9 – Intercepting from Burpsuite Tool	50
5.10 – Tampering parameter of price packet	50
5.11 – Changing price parameter	51
5.12 – Product Checkout (by Tampering)	51
5.13 – Product Checkout (by Tampering)	52
5.14 – Alert message	52
5.15 – Functional testing	54
5.16 – Functional testing	54
5.17 – Script testing	56
5.18 – Script testing	56
5.19 – Test execution	57
5.20 – Test execution result	57
5.21 – Product Purchase (Real-time website)	58
5.22 – Payment Details (Real-time website)	58
5.23 – Tampering price parameter (Real-time website)	59
5.24 – Modifying price parameter (Real-time website)	59
5.25 – Payment page	60
5.23 – Order successful	60
LIST OF TABLES	
2.1 – Summary of the Existing Works	14
5.1 – Decision table	53
5.2 – Test cases	53

LIST OF ACRONYMS

Acronym	Expansion
AES	Advanced Encryption Standard
RSA	Rivest-Shamir-Adleman cryptosystem
SHA	Secure Hash Algorithm
SQLi	SQL Injection
XSS	Cross-Site Scripting
HTTPS	Hypertext Transfer Protocol Secure
TLS	Transport Layer Security
VPN	Virtual Private Network
API	Application Programming Interface
CSRF	Cross-Site Request Forgery
DDOS	Distributed Denial of Service
IDE	Integrated Development Environment
IDS	Intrusion Detection System
IPS	Intrusion Prevention System
MITM	Man in the Middle Attack
OWASP	Open Web Application Security Project
PKI	Public Key Infrastructure
SIEM	Security Information and Event Management
SSL	Secure Sockets Layer
WAF	Web Application Firewall
SAST	Static Application Security Testing
DAST	Dynamic Application Security Testing

Chapter 1

Introduction

1.1 Background

Web applications are high-value targets for attackers due to their pervasive use in online commerce, banking, social media, and other critical functions. Parameter tampering is a common attack where adversaries manipulate exchanged data like hidden fields, cookies, and URLs to compromise the application. This exploits weak input validation and session management in many web apps. Parameter tampering can enable exploits including unauthorized access, fraud, and account takeover. Legacy systems are especially vulnerable due to insufficient cryptography and flawed authentication. Lowered barriers through tools like Burp Suite exacerbate the problem. To mitigate risks, developers must implement robust protections including encryption, hashing, and improved session management. This project aims to increase awareness of parameter tampering threats, demonstrate attack techniques, implement cryptographic defenses, analyze their effectiveness, and provide guidance to equip developers with knowledge to build more tamper-resilient web applications.

1.2 Motivation

Web applications are increasingly targeted via parameter tampering attacks which exploit common flaws like weak validation and cryptography to enable fraud and unauthorized access. High-profile incidents have demonstrated legacy systems are especially vulnerable. This project was driven by the need to increase awareness of parameter tampering threats among developers and provide guidance on implementing robust defenses like encryption, hashing, and enhanced session management. By establishing techniques to analyze and address tampering vulnerabilities, this project aims to equip developers with the knowledge to secure modern web applications. Additionally, this project enables cost-effective assessment of exposure to tampering risks before major incidents occur by providing a model for controlled testing and remediation.

1.3 Project Statement

This project demonstrates common parameter tampering attack techniques used to manipulate hidden fields, cookies, URLs and other exchanged data to compromise web application security. It implements protections like AES and RSA encryption, SHA hashing, and enhanced session management to defend against tampering of parameters. A prototype web application is developed incorporating these defenses and thoroughly tested to analyze their effectiveness.

The project provides easily accessible guides and demonstrations to increase awareness of parameter tampering threats among developers. By open sourcing reference implementations of cryptographic controls and improved authentication mechanisms, it enables developers to make informed design choices to protect modern web applications.

The methodology for systematically evaluating and addressing parameter manipulation establishes a model for comprehensive security analysis of web systems against input-based attacks. Overall, this project aims to equip developers with the knowledge and resources to design secure, tamper-resilient web applications that maintain data integrity in the face of evolving adversaries.

1.4 Objectives

Making direct link to pages of the payment gateway, transmission of nonencrypted packets, and without maintaining the database for the transactions a vulnerability is open for the attackers to intercept the packets and tamper with the package. So, the main objectives of our project are, to demonstrate how parameter tampering is performed in our own website as well as real-time website using BurpSuite tool. For example, an e-commerce website uses hidden fields to refer to its things, as follows:

```
<input type= "hidden" id= "148" name= "price" value= "10000">
```

In this example, an attacker can modify the "value" information of a specific item, thus lowering its cost.

To prevent these packages to be read and tampered for the pages that are linked to the payment gateways and to show how it can be prevented using encryption and hashing, so that even if someone intercepts the package it will be impossible to change the values as they are encrypted and hashed.

1.5 Scope of the Project

The scope of this project includes:

- Setting up a sample vulnerable web application that is prone to parameter tampering attacks. This will serve as a testbed for demonstrations.
- Performing controlled attacks on the sample application as well as live production websites using tools like Burp Suite to manipulate parameters and illustrate real-world attack techniques.
- Implementing cryptographic defenses including AES and RSA encryption algorithms to encrypt parameter data, protecting its integrity.
- Using SHA-512 and other hash functions to fingerprint and validate parameters.
- Developing improved session generation, handling, and termination mechanisms such as tokens and timeouts to mitigate session-based attacks.
- Analyzing the effectiveness of the implemented defenses by conducting penetration testing and tampering attempts on the protected application.
- Comparing the cryptographic protections to alternative mitigation strategies like whitelist input validation and tighter account controls.
- Creating demonstrations, documentation, guides, and sample code focused specifically on risks of parameter tampering and their mitigations.
- Staying within scope of web application threats by not expanding into other injection attacks like SQLi and XSS.

The core focus is on establishing strong defenses against parameter manipulation attacks by applying encryption, hashing, and better session management. The techniques used provide a model for in-depth security analysis of web apps.

Chapter 2

LITERATURE SURVEY

2.1 Summary of the Existing Works

S. No	Title of the Paper	Merits	Demerits
1.	Web Based Parameter- Tampering on shopping Site using Burpsuite	 Highlights importance of security testing before deployment Able to detect vulnerabilities by tampering parameters. Clearly explains methodology of using BurpSuite for parameter tampering 	 Uses a simple sample website, not a complex real-world site. No comparison with other similar tools
2.	Detecting malicious web requests using an enhanced textcnn	 Proposes a novel deep learning architecture based on TextCNN for web request detection. Enhances standard TextCNN with techniques like attention and pretrained embeddings 	 Does not compare against other deep learning models, only traditional ML models. Performance improvement is marginal for the complexity introduced
3.	Web Penetration Testing.	 Covers different types of common web 	 The treatment is too short and lacks details

	International Journal for Research in Applied Science and Engineering Technology	 application vulnerabilities. Discusses prominent web penetration testing methodologies like OWASP. Outlines mitigation strategies for found vulnerabilities. 	for a thorough understanding. Does not include any actual experiments, tests, or results.
4.	Web Application Security Education Platform Based on OWASP API Security Project	 Aligns vulnerability samples to widely used OWASP Top 10 standard. Open-source platform enables reuse and expansion. Evaluated through information security student surveys. 	 The vulnerable platform itself could be misused by malicious actors. More guidance could be provided for remediation of flaws. User interface and experience could be improved
5.	Development of energy meter monitoring system (EMMS) for data acquisition and tampering detection using IoT	 Enables tampering detection by comparing current flows. IoT architecture provides flexibility to add sensors, connectivity. 	 Security mechanisms like data encryption are not implemented. Large scale deployment and testing not evaluated.
6.	An approach to generate realistic HTTP parameters for application layer deception	 Automates generation of decoy HTTP parameters instead of manual creation. Uses LSTM model to learn benign patterns and output realistic values. 	 Model requires large volumes of data for training the LSTM. Accuracy metrics based on statistical tests have limitations.

		 Generated parameters passed statistical tests to appear like normal traffic. 	
7.	Notamper: automatic blackbox detection of parameter tampering opportunities in web applications	 Automatically detects parameter tampering issues which typically require manual testing. Blackbox approach does not need application source code or instrumentation. 	 Accuracy is dependent on stability of response fingerprints. Performs only blackbox testing, whitebox techniques not explored. Limited evaluation on only open-source applications.
8.	TamperProof: a server-agnostic defense for parameter tampering attacks on web applications	 Provides protection against parameter tampering without server changes. Automated tampering detection using response models and change analysis. Evaluated against realworld apps like WordPress, phpMyAdmin etc. 	 Accuracy depends on stability of response models over time. Only evaluates protection for reflected parameters. Limited assessment of evasion attempts by attackers.
9.	Automated detection of parameter tampering opportunities and vulnerabilities in web applications	 Automates detection of parameter tampering flaws compared to manual testing. Enhances both opportunity and true vulnerability detection algorithms. 	 Lacks comparisons with existing web vulnerability scanners. Focuses only on parameter tampering, not other injections.

		 Blackbox approach does not need access to application code. 	 Unable to detect some logic-based tampering vulnerabilities.
10.	Plugins to detect vulnerable plugins: An empirical assessment of the security scanner plugins for wordpress	 Provides head-to-head comparison between different scanner plugins. Tests against real vulnerable WordPress plugins that pose threats. Quantifies and highlights limitations in detection of existing scanners. 	 Only focuses on vulnerability detection, not fixing or patching. Limited to testing against known vulnerable plugins only.

2.2 Challenges present in Existing System

The rapid expansion of online commerce, banking services, and social media platforms has made web applications an integral part of our daily lives. However, the widespread use of these applications has also attracted malicious attacks, especially those targeting vulnerabilities related to parameter tampering. Parameter tampering attacks involve the unauthorized modification of data exchanged between the client and server, potentially compromising sensitive information, such as user credentials, permissions, product prices, and quantities. This vulnerability exposes not only businesses but also users to security threats. One of the most concerning manifestations of parameter tampering is the Web Parameter Tampering attack. In this attack, adversaries exploit weaknesses in web applications by manipulating the data parameters transmitted during interactions. This can be executed by attackers with malicious intent, aiming to compromise a third party, or by unscrupulous users seeking personal gain through illicit means. Key issues that expose web applications to parameter tampering attacks include direct links to payment gateway pages, the transmission of non-encrypted data packets, and inadequate transaction data security measures.

Chapter 3

REQUIREMENTS

3.1 Hardware Requirements

Recommended System Requirements

- 64-bit operating system architecture with 8 GB of RAM or more.
- 4 GB of free disk space for installation, plus extra space for temporary files during test runs
- 1280×1024 or higher display resolution.
- Mouse or another pointing device.

Minimal System Requirements

- 64-bit operating system architecture with 4 GB of RAM.
- 3 GB of free space on the system disk.
- 1.5 GB of free disk space for installation, plus extra space for temporary files during test runs.
- 1024×768 or higher display resolution (if you use 100% DPI).
- Mouse or another pointing device.

3.2 Software Requirements

Recommended System Requirements

- Kali Linux or Red Hat Enterprise Linux either loaded in system boot or creating a desktop in Virtual machine environment.
- Firefox Browser.
- Intel Core i5 or Intel Core i7 (the 3rd generation)

Minimal System Requirements

- Any Linux Distribution with Service Pack 1.
- Firefox Browser.
- Intel Core 2 Duo 2 GHz or higher.

TOOLS NEEDED:

i. Burp Suite:

- Burp Suite is a collection of tools for web application penetration testing.
 BurpSuite is designed to be an all-in-one toolkit, and BApps are add-ons
 that may be installed to expand its functionality. Its various tools work
 seamlessly together to support the entire testing process, from initial
 mapping and analysis of an application's attack surface, through to
 finding and exploiting security vulnerabilities. Professional web app
 security researchers and bug bounty hunters use it the most.
- The intercepting proxy in BurpSuite enables the user to view and change the contents of requests and answers while they are being transmitted. Additionally, it eliminates the need for copy-and-paste by allowing the user to pass the request or answer that is being monitored to another pertinent BurpSuite tool. The proxy server can be configured to run on a particular port and loop-back address. Additionally, the proxy can be set up to block particular kinds of request-response pairings. We will use this feature in Burp Suite community edition to demonstrate parameter tampering.

ii. FoxyProxy:

FoxyProxy is a Firefox extension which automatically switches an
internet connection across one or more proxy servers based on URL
patterns. Put simply, FoxyProxy automates the manual process of
editing Firefox's Connection Settings dialog. Proxy server switching
occurs based on the loading URL and the switching rules you define.

iii. XAMPP:

• XAMPP is a free and open-source cross-platform web server solution stack package developed by Apache Friends, consisting mainly of the Apache HTTP Server, MariaDB database, and interpreters for scripts written in the PHP and Perl programming languages. Since most actual web server deployments use the same components as XAMPP, it makes transitioning from a local test server to a live server possible. We will use this tool to host our website and as well as connect our SQL database.

3.3 Gantt Chart

Figure 3.1 – Project timeline diagram

Parameter Tampering

Read-only view, generated on 01 Nov 2023

	ACTIVITIES	START	WD	DUE	PR	STATUS	%
	Planning Phase:	24/Jul	5d	30/Jul			1009
1	Project scope and requirements	24/Jul	3d	26/Jul	00000	Finished	1009
2	Setup environment and tools	26/Jul	3d	30/Jul		Finished	100
	Analysis Phase:	31/Jul	11d	14/Aug			100
4	Research parameter tampering techn	31/Jul	6d	07/Aug	0000	Finished	100
5	Identify sample vulnerable applications	04/Aug	5d	10/Aug	888	Finished	100
6	Study cryptographic protections	11/Aug	2d	14/Aug	11	Finished	100
	Design Phase:	16/Aug	18d	08/Sep			100
8	Oesign prototype tampering demonst	16/Aug	6d	23/Aug	888	Finished	100
9	Design encryption and hashing mech	22/Aug	7d	30/Aug	1111	Finished	100
10	 Design improved session management 	29/Aug	9d	08/Sep		Finished	100
	Implementation Phase:	08/Sep	26d	13/Oct			100
12	Implement sample vulnerable applica	08/Sep	6d	16/Sep	00	Finished	100
13	Implement tampering demonstrations	14/Sep	8d	25/Sep	888	Finished	100
14	Implement cryptographic defenses	21/Sep	9d	03/Oct		Finished	100
15	Implement session management prot	02/Oct	10d	13/Oct		Finished	100
	Testing Phase:	14/Oct	10d	27/Oct			100
17	O Develop test cases	14/Oct	5d	21/Oct		Finished	100
18	Perform security testing on defenses	22/Oct	2d	24/Oct		Finished	100
19	Fix issues and retest	24/Oct	4d	27/Oct	0000	Finished	100
	Deployment:	27/Oct	4d	01/Nov			100
21	Oeploy prototype application	27/Oct	4d	01/Nov		Finished	100

Figure 3.2 - Project timeline table

Chapter 4

ANALYSIS & DESIGN

4.1 Proposed Methodology

The proposed system encrypts parameters end-to-end, maintaining data integrity even if traffic is intercepted. I develop a prototype system and test it against common tampering attack methods. Results exhibit significantly improved resilience versus traditional defenses. This project spreading awareness of tampering threats, providing concrete demonstrations, and recommending solutions to address security gaps. It enables developers to make informed design choices for securing systems against parameter manipulation attacks. My systematized methodology for evaluating and addressing parameter tampering vulnerabilities.

Tools and Technologies:

- Utilizing tools like Burp Suite for conducting parameter tampering attacks and analyzing vulnerabilities. Along with the help of FoxyProxy, which is an advanced proxy management tool that completely replaces browser's limited proxying capabilities.
- Employing cryptographic techniques, including AES and RSA encryption, and SHA-512 hashing to secure sensitive data.

Kali Linux Implementation:

- Virtualizing Kali Linux as the operating system for conducting security assessments and penetration testing.
- Setting up Kali Linux within a VirtualBox environment to create a controlled and isolated testing environment.

Attacks with Burp Suite:

 Using Burp Suite on Kali Linux to simulate parameter tampering attacks on my web application as well as real-time websites.

Encryption and Hashing Implementation:

 Integrating AES and RSA encryption techniques to protect sensitive data, such as user credentials and payment information and SHA-512 hashing for data integrity and protection against unauthorized modifications.

Testing and Evaluation:

 Analyzing the effectiveness of encryption and hashing in preventing parameter tampering attacks on Kali Linux. Testing the system against various attack scenarios to ensure its resilience.

4.2 System Architecture

Figure 4.1 – System architecture diagram

4.3 Module Descriptions

Registration Module:

New customers of our e-commerce website need to register themselves to authenticate themselves. So, in this module with help of html and php code we will build a registration module.

Login Module:

 Login module has a code of username and password security feature to authenticate the user. It allows users to type a username and password to log in. With the help of this module only registered customers can login into our e-commerce website.

After SignIn module(Homepage):

• This module will contain the home page php code of the customers of e-commerce website. Users reach this module after successfully authentication form login module. This module contains list of available products with the price and quantity information.

Cart and checkout:

• This module contains the cart code of the e-commerce website. We will code the cart and proceed to checkout activity in this module.

Payment module:

Payment module will be coded in php language with ensuring the security of the e-commerce website. Payment module will have a html form to get the data from the customer to proceed to payment.

Database connection module:

 Database needs to be connected with the e-commerce website to store various information's such as customer details, product details, pricing details, shipping details etc. This module will have the code to connect the database with the server.

<u>Prevention Module:</u> Implemented in Payment module

O Hashing module: In hashing module of the project, we will use javascript language to code SHA512 algorithm to hash the sensitive value. We will verify the old hash with new hash to check whether both are same or not. In case of different hash value our website will alert the user and logout to prevent the attack.

Chapter 5

IMPLEMENTATION & TESTING

5.1 Sample Code

LOGIN PAGE

```
<html><head><title>E - Commerce Website</title><script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js">
src="https://maxcdn.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js
"></script><link
rel="stylesheet"href="https://maxcdn.bootstrapcdn.com/bootstrap/4.3.1/cs
s/bootstrap.min.css"><link</pre>
href="https://fonts.googleapis.com/icon?family=Material+Icons"rel="style
sheet"><style>body {
 background-image: url('b3.png');
 background-repeat: no-repeat;
 background-size: cover;
}
</style></head><body><nav class="navbar navbar-expand-sm bg-light"
justify-content-center">< !-- Links --><li</pre>
class="nav-item"><a class="nav-link mx-5"href="home.php"><b>Sign
Up</b></a>E - Commerce Websiteli
class="nav-item"><a class="nav-link mx-5"href="login.php"><b>Log
In</b></a></nav><br><form
action=""method="post"class="container justify-content-
center"style="width: 400px;"><div class="form-group justify-content-
center text-center"><legend class="mb-5"style="color:black; font-</pre>
size:36px;"><b>LOG IN</b></legend><input class="form-</pre>
control"type="email"placeholder="Email ID"name="email"><br><input</pre>
class="form-
control"type="password"placeholder="Password"name="pswd"id="pswd"><br><b</pre>
r><input type="submit"value="Log In"style="background-color:#1ba318;</pre>
color:white;width:150px; height:50px; font-
size:24px"><br></div></form><script src="http://crypto-</pre>
js.googlecode.com/svn/tags/3.1.2/build/rollups/sha512.js">
</script><script>var pwd=document.getElementById('pswd').value;
var hash=CryptoJS.SHA512(pwd);
</script><?php require_once "dbConn.php";
```

```
if($ SERVER["REQUEST METHOD"]=="POST") {
  $e=$_POST["email"];
  $p=$ POST["pswd"];
  $sql="SELECT * FROM registration WHERE Email='".$e."'";
  $res1=mysqli query($conn, $sql);
  $res2=mysqli affected rows($conn);
  $row=mysqli fetch assoc($res1);
  if ($res2==1) {
    if($row["Password"]==$p) {
      session start();
      $ SESSION["userEmail"]=$e;
      // Change the file for preventing the attack
      header("Location: afterSignIn.php");
    }
    else {
      echo '<div class="alert alert-warning">
<strong>Warning</strong>Your Password is incorrect ! ! </div>';
    }
  }
 else {
    echo '<div class="alert alert-warning">
<strong>Warning</strong>Your Email Id is incorrect ! ! </div>';
  }
}
mysqli_close($conn);
   ?></body></html>
```

AFTERSIGNIN

```
<?php session_start();

?>< !DOCTYPE html><html><head><style>li {
    list-style-type: none;
}

</style><title>Shopping Page !</title><script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"><
/script><script

src="https://maxcdn.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"><
/script>ink

rel="stylesheet"href="https://maxcdn.bootstrapcdn.com/bootstrap/4.3.1/cs
s/bootstrap.min.css"><link
href="https://fonts.googleapis.com/icon?family=Material+Icons"rel="style
sheet"><script src="https://cdnjs.cloudflare.com/ajax/libs/crypto-">src="https://cdnjs.cloudflare.com/ajax/libs/crypto-">src="https://cdnjs.cloudflare.com/ajax/libs/crypto-">src="https://cdnjs.cloudflare.com/ajax/libs/crypto-">src="https://cdnjs.cloudflare.com/ajax/libs/crypto-">src="https://cdnjs.cloudflare.com/ajax/libs/crypto-">src="https://cdnjs.cloudflare.com/ajax/libs/crypto-">src="https://cdnjs.cloudflare.com/ajax/libs/crypto-">src="https://cdnjs.cloudflare.com/ajax/libs/crypto-">src="https://cdnjs.cloudflare.com/ajax/libs/crypto-">src="https://cdnjs.cloudflare.com/ajax/libs/crypto-">src="https://cdnjs.cloudflare.com/ajax/libs/crypto-">src="https://cdnjs.cloudflare.com/ajax/libs/crypto-">src="https://cdnjs.cloudflare.com/ajax/libs/crypto-">src="https://cdnjs.cloudflare.com/ajax/libs/crypto-">src="https://cdnjs.cloudflare.com/ajax/libs/crypto-">src="https://cdnjs.cloudflare.com/ajax/libs/crypto-">src="https://cdnjs.cloudflare.com/ajax/libs/crypto-">src="https://cdnjs.cloudflare.com/ajax/libs/crypto-">src="https://cdnjs.cloudflare.com/ajax/libs/crypto-">src="https://cdnjs.cloudflare.com/ajax/libs/crypto-">src="https://cdnjs.cloudflare.com/ajax/libs/crypto-">src="https://cdnjs.cloudflare.com/ajax/libs/crypto-">src="https://cdnjs.cloudflare.com/ajax/libs/crypto-">src="https://cdnjs.cloudflare.com/ajax/libs/crypto-">src="https://cdnjs.cloudflare.com/ajax/libs/crypto-">src="https://cdnjs.cloudflare.com/ajax/libs/crypto-"https://cdnjs.cloudflare.com/ajax/libs/crypto-"https://cdnjs.cloudflare.com/ajax/libs/crypto-"htt
```

```
js/3.1.2/rollups/aes.js"></script></head><body><nav class="navbar fixed-
top navbar-expand-sm bg-light justify-content-center">< !-- Links --><ul
class="navbar-nav mr-5"><a class="nav-
link"href="afterSignIn.php"><span class="h2">E - Commerce
Website</span></a><span class="navbar-text mx-
5 mt-3"><?php echo $ SESSION["userEmail"];</pre>
?></span><a class="nav-link mr-5"href="#"><i</pre>
class="material-icons"style="font-size: 50px;">shopping cart</i>cart</i>
id="numOfItems"style="position: absolute; color: white; left: 937px;
top: 21px;"></span></a><a class="nav-link
float-right"href="logout.php"><button class="btn btn-sm btn-outline-
primary">Logout</button></a></nav><div</pre>
class="container"style="position: relative; margin-top: 130px; margin-
left: 0px; width: 900px;"><tr</pre>
style="background-color:DodgerBlue;">
h5"colspan="2">Items<?php include "dbConn.php";</pre>
$query="SELECT * FROM items WHERE Owner Name !=
'".$ SESSION["userEmail"]."'";
$result=mysqli_query($conn, $query);
while($row=mysqli fetch assoc($result)) {
 $in=$row['Item_Name'];
 echo '
<img</pre>
src="data:image/jpeg;base64,'.base64 encode($row['Img File']
)."height="150"width="150"class="img-thumnail"/><li
class="d-inline"style="font-size: 30px;">'.$row['Item Name'].'
class="float-right d-inline display-4 px-
3">₹'.$row['updatedBid'].'class="my-3"><strong>Owner:
</strong>'.$row['Owner Name'].'  <div
class="input-group"> <span class="input-group-btn mr-3"> <button</pre>
class="btn-sm btn-primary px-
3"onclick="jsfunction(this,\''.$row['Item Name'].'\')"type="submit"value
="'.$row['updatedBid'].'">Add Item</button> </span> </div>  
  ':
mysqli close($conn);
?></div><div class="col-3 ml-5 p-3"style="position: absolute;</pre>
left: 900px; top: 130px; border: 1px solid black;"><div class="py-4 h4"
text-center"style="color:green"><b>Your Order</b></div><form
action="payment.php"method="post">Item Name : <input</pre>
id="itmName"type="text"name="itemName"class="float-right px-2"readonly
required><br><br>Amount : <input</pre>
id="itmCost"type="text"name="cost"class="float-right px-2"readonly
required><br><br>Proceed Securly* <input</pre>
type='hidden'name='strcrypt'id='strcrypt'size='55'required />< !--</pre>
<input id="hash"type="text"name="hash"style="display: none;">-->< !--</pre>
input name="Clear"type="reset"value="clear"class="float-left btn btn-
primary"--><input</pre>
type='button'id='cryptstr'value='Confirm'/><br><input
```

```
name="checkout"type="submit"value="Checkout"class="float-right btn btn-
primary"></form><div class=""></div></div><script>

<script>function jsfunction(obj, s) {
    document.getElementById("numOfItems").innerHTML=1;
    document.getElementById("itmName").setAttribute("value", s);
    var encrypted=CryptoJS.AES.encrypt(obj.value, "1234");
    var decrypted=CryptoJS.AES.decrypt(encrypted, "1234");
    console.log("Decrypted value:");
    console.log(decrypted.toString(CryptoJS.enc.Utf8));
    document.getElementById("itmCost").setAttribute("value", obj.value);

console.log("Hashed value:");
    console.log(forge_sha256(obj.value));
}
```

ACTIONPAGE

```
<!DOCTYPE html>
<html>
<head>
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-</pre>
awesome/4.7.0/css/font-awesome.min.css">
  <script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js">//ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js">//
script>
  <script
src="https://maxcdn.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"
></script>
  <link rel="stylesheet"</pre>
href="https://maxcdn.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.c
ss">
          k
href="https://fonts.googleapis.com/icon?family=Material+Icons"
rel="stylesheet">
<style>
body {
  font-family: Arial;
  font-size: 17px;
  padding: 8px;
}
* {
  box-sizing: border-box;
```

```
}
.row {
 display: -ms-flexbox; /* IE10 */
 display: flex;
 -ms-flex-wrap: wrap; /* IE10 */
 flex-wrap: wrap;
 margin: 0 -16px;
}
.col-25 {
 -ms-flex: 25%; /* IE10 */
 flex: 25%;
.col-50 {
 -ms-flex: 50%; /* IE10 */
 flex: 50%;
}
.col-75 {
 -ms-flex: 75%; /* IE10 */
 flex: 75%;
}
.col-25,
.col-50,
.col-75 {
 padding: 0 16px;
.container {
 background-color: #f2f2f2;
 padding: 5px 20px 15px 20px;
 border: 1px solid lightgrey;
 border-radius: 3px;
input[type=text] {
 width: 100%;
 margin-bottom: 20px;
 padding: 12px;
 border: 1px solid #ccc;
 border-radius: 3px;
}
label {
margin-bottom: 10px;
```

```
display: block;
.icon-container {
 margin-bottom: 20px;
 padding: 7px 0;
 font-size: 24px;
}
.btn {
 background-color: #4CAF50;
 color: white;
 padding: 12px;
 margin: 10px 0;
 border: none;
 width: 100%;
 border-radius: 3px;
 cursor: pointer;
 font-size: 17px;
}
.btn:hover {
 background-color: #45a049;
}
a {
 color: #2196F3;
hr {
 border: 1px solid lightgrey;
span.price {
 float: right;
 color: grey;
/* Responsive layout - when the screen is less than 800px wide, make the
two columns stack on top of each other instead of next to each other
(also change the direction - make the "cart" column go on top) */
@media (max-width: 800px) {
 .row {
   flex-direction: column-reverse;
 .col-25 {
    margin-bottom: 20px;
```

```
li{
   list-style-type: none;
.center {
 display: block;
 margin-left: auto;
 margin-right: auto;
 width: 50%;
.img-container {
      text-align: center;
</style>
</head>
<?php
session_start();
?>
<body>
   <nav class="navbar fixed-top navbar-expand-sm bg-light justify-</pre>
content-center">
     <!-- Links -->
     <a class="nav-link" href="afterSignIn.php"><span class="h2">E -
Commerce Website</a>
       <span class="navbar-text mx-5 mt-3"><?php echo</pre>
$_SESSION["userEmail"];?></span>
       <a class="nav-link mr-5" href="#"><i class="material-icons"</pre>
style="font-size: 50px;">shopping_cart</i><span class="numOfItems"</pre>
style="position: absolute; color: white; left: 937px; top:
21px;"></span></a>
       <a class="nav-link float-right" href="logout.php"><button</pre>
class="btn btn-sm btn-outline-primary">Logout</button></a>
```

ENCRYPT

```
<?php
session_start();
?>
<!DOCTYPE html>
<html>
   <head>
     <style>
        li{
          list-style-type: none;
        }
     </style>
     <title>E-Commerce Demo - home</title>
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js">
script>
     <script
src="https://maxcdn.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"
></script>
     <link rel="stylesheet"</pre>
href="https://maxcdn.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.c
ss">
     <link href="https://fonts.googleapis.com/icon?family=Material+Icons"</pre>
rel="stylesheet">
     <script src="https://cdnjs.cloudflare.com/ajax/libs/crypto-</pre>
js/3.1.2/rollups/aes.js"></script>
     <script src="sha512.js"></script>
   </head>
<body>
    <nav class="navbar fixed-top navbar-expand-sm bg-light justify-</pre>
content-center">
```

```
<!-- Links -->
    <a class="nav-link" href="afterSignIn.php"><span class="h2">E -
Commerce Demo</span></a>
      <span class="navbar-text mx-5 mt-3"><?php echo</pre>
$_SESSION["userEmail"];?></span>
      <a class="nav-link mr-5" href="#"><i class="material-icons"</pre>
style="font-size: 50px;">shopping cart</i><span id="numOfItems"</pre>
style="position: absolute; color: white; left: 937px; top:
21px; "></span></a>
      <a class="nav-link float-right" href="logout.php"><button</pre>
class="btn btn-sm btn-outline-primary">Logout</button></a>
      </nav>
  <div class="container" style="position: relative; margin-top: 130px;</pre>
margin-left: 0px; width: 900px;">
    Items
      <?php
        include "dbConn.php";
        $query = "SELECT * FROM items WHERE Owner_Name !=
'".$ SESSION["userEmail"]."'";
        $result = mysqli_query($conn, $query);
       while($row = mysqli_fetch_assoc($result))
        {
         $in=$row['Item Name'];
         echo '
            <img
src="data:image/jpeg;base64,'.base64_encode($row['Img_File'] ).'"
height="150" width="150" class="img-thumnail" />
              >
              <l
```

```
30px;">'.$row['Item Name'].'
                  $'.$row['updatedBid'].'
                  <strong>Owner :
</strong>'.$row['Owner_Name'].'
                  <div class="input-group">
                      <span class="input-group-btn mr-3">
                       <button class="btn-sm btn-primary px-3"</pre>
onclick="jsfunction(this,\''.$row['Item_Name'].'\')" type="submit"
value="'.$row['updatedBid'].'">Add Item</button>
                     </span>
                    </div>
                  ٠;
         }
        mysqli_close($conn);
       ?>
       </div>
    <div class="col-3 ml-5 p-3" style="position: absolute; left: 900px;</pre>
top: 130px; border: 1px solid black;">
       <div class="py-4 h4 text-center">Your Order</div>
       <form action="other.php" method="post">
         Item Name : <input id="itmName" type="text" name="itemName"</pre>
class="float-right px-2"><br><br>
         Amount : <input id="itmCost" type="text" name="cost"
class="float-right px-2"><br><br><br><br><br><br><br>
         <input id="hash" type="text" name="hash" style="display:</pre>
none;">
         <input name="checkout" type="submit" value="Checkout"</pre>
class="float-right btn btn-primary">
       </form>
      <div class=""></div>
    </div>
 <script>
   function jsfunction(obj, s){
     document.getElementById("numOfItems").innerHTML = 1;
     document.getElementById("itmName").setAttribute("value", s);
```

```
var encrypted = CryptoJS.AES.encrypt(obj.value, "1234");

var decrypted = CryptoJS.AES.decrypt(encrypted, "1234");

console.log("Decrypted value:");
    console.log(decrypted.toString(CryptoJS.enc.Utf8));
    document.getElementById("itmCost").setAttribute("value", obj.value);
    document.getElementById("hash").setAttribute("value", hex_sha512(obj.value));

    console.log("Hashed value:");

} </body>
</html>
```

aes.html

```
<html>
  <head>
    <script src="https://cdnjs.cloudflare.com/ajax/libs/crypto-</pre>
js/3.1.2/rollups/aes.js"></script>
  </head>
  <body>
    Full working sample actually is:
<br><br><br>>
<label>encrypted</label>
<div id="demo1"></div>
<br>
<label>decrypted</label>
<div id="demo2"></div>
<br>
<label>Actual Message</label>
<div id="demo3"></div>
        <script>
     var encrypted = CryptoJS.AES.encrypt("Vivek Ravishankar", "1234");
//U2FsdGVkX18ZUVvShFSES21qHsQEqZXMxQ9zgHy+bu0=
```

PAYMENT

```
<!DOCTYPE html>
<html>
<head>
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-</pre>
awesome/4.7.0/css/font-awesome.min.css">
src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js">
script>
 <script
src="https://maxcdn.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"
></script>
 <link rel="stylesheet"</pre>
href="https://maxcdn.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.c
ss">
href="https://fonts.googleapis.com/icon?family=Material+Icons"
rel="stylesheet">
<style>
body {
 font-family: Arial;
 font-size: 17px;
 padding: 8px;
}
 box-sizing: border-box;
.row {
```

```
display: -ms-flexbox; /* IE10 */
  display: flex;
  -ms-flex-wrap: wrap; /* IE10 */
 flex-wrap: wrap;
 margin: 0 -16px;
.col-25 {
 -ms-flex: 25%; /* IE10 */
 flex: 25%;
}
.col-50 {
 -ms-flex: 50%; /* IE10 */
 flex: 50%;
}
.col-75 {
 -ms-flex: 75%; /* IE10 */
 flex: 75%;
.col-25,
.col-50,
.col-75 {
 padding: 0 16px;
}
.container {
 background-color: #f2f2f2;
 padding: 5px 20px 15px 20px;
 border: 1px solid lightgrey;
 border-radius: 3px;
}
input[type=text] {
 width: 100%;
 margin-bottom: 20px;
 padding: 12px;
 border: 1px solid #ccc;
  border-radius: 3px;
}
label {
 margin-bottom: 10px;
 display: block;
}
```

```
.icon-container {
 margin-bottom: 20px;
 padding: 7px 0;
 font-size: 24px;
}
.btn {
 background-color: #4CAF50;
 color: white;
 padding: 12px;
 margin: 10px 0;
 border: none;
 width: 100%;
 border-radius: 3px;
 cursor: pointer;
 font-size: 17px;
.btn:hover {
 background-color: #45a049;
a {
 color: #2196F3;
hr {
 border: 1px solid lightgrey;
span.price {
 float: right;
 color: grey;
/* Responsive layout - when the screen is less than 800px wide, make the
two columns stack on top of each other instead of next to each other
(also change the direction - make the "cart" column go on top) */
@media (max-width: 800px) {
 .row {
    flex-direction: column-reverse;
 }
  .col-25 {
   margin-bottom: 20px;
  }
 li{
    list-style-type: none;
    }
```

```
}
</style>
</head>
<?php
session_start();
?>
<body>
<?php
$cost = $_POST["cost"];
$hash = $_POST["strcrypt"];
?>
   <nav class="navbar fixed-top navbar-expand-sm bg-light justify-</pre>
content-center">
     <!-- Links -->
     <a class="nav-link" href="afterSignIn.php"><span class="h2">E -
Commerce Website</a>
       <span class="navbar-text mx-5 mt-3"><?php echo</pre>
$ SESSION["userEmail"];?></span>
       <a class="nav-link mr-5" href="#"><i class="material-icons"</pre>
style="font-size: 50px;">shopping cart</i><span class="numOfItems"</pre>
style="position: absolute; color: white; left: 937px; top:
21px;"></span></a>
       <a class="nav-link float-right" href="logout.php"><button</pre>
class="btn btn-sm btn-outline-primary">Logout</button></a>
       </nav>
<div class="container-fluid" style="margin-top: 120px; padding: 30px;">
<h2>Payment</h2>
<div class="row">
 <div class="col-8">
   <div class="container">
     <form action="action_page.php">
       <div class="row">
         <div class="col-50">
          <h3>Billing Address</h3>
```

```
<label for="fname"><i class="fa fa-user"></i> Full
Name*</label>
            <input type="text" id="fname" name="firstname"</pre>
placeholder="Vivek R" required>
            <label for="email"><i class="fa fa-envelope"></i></i>
Email*</label>
            <input type="text" id="email" name="email"</pre>
placeholder="vivekr2019@gmail.com" required>
             <label for="adr"><i class="fa fa-address-card-o"></i></i>
Address*</label>
            <input type="text" id="adr" name="address" placeholder="#34</pre>
15th ABC Street " required>
             <label for="city"><i class="fa fa-institution"></i></i>
City*</label>
             <input type="text" id="city" name="city"</pre>
placeholder="TIRUPATTUR" required>
            <div class="row">
               <div class="col-50">
                 <label for="state">State*</label>
                 <input type="text" id="state" name="state"</pre>
placeholder="TN" required>
               </div>
               <div class="col-50">
                 <label for="zip">Zip Code*</label>
                 <input type="text" id="zip" name="zip"</pre>
placeholder="632001" required>
               </div>
             </div>
          </div>
          <div class="col-50">
            <h3>Payment</h3>
            <label for="fname">Accepted Cards</label>
             <div class="icon-container">
               <i class="fa fa-cc-visa" style="color:navy;"></i></i>
               <i class="fa fa-cc-amex" style="color:blue;"></i></i>
               <i class="fa fa-cc-mastercard" style="color:red;"></i></i>
               <i class="fa fa-cc-discover" style="color:orange;"></i></i></i>
            </div>
             <label for="cname">Name on Card*</label>
             <input type="text" id="cname" name="cardname"</pre>
placeholder="VIVEK RAVISHANKAR " required>
             <label for="ccnum">Credit card number*</label>
             <input type="text" id="ccnum" name="cardnumber"</pre>
placeholder="1111-2222-3333-4444" required>
            <label for="expmonth">Exp Month*</label>
             <input type="text" id="expmonth" name="expmonth"</pre>
placeholder="Sep" required>
            <div class="row">
```

```
<div class="col-50">
                <label for="expyear">Exp Year*</label>
                <input type="text" id="expyear" name="expyear"</pre>
placeholder="2025" required>
              </div>
              <div class="col-50">
                <label for="cvv">CVV*</label>
                <input type="text" id="cvv" name="cvv" placeholder="352"</pre>
required>
              </div>
            </div>
          </div>
        </div>
        <label>
          <input type="checkbox" checked="checked" name="sameadr">
Shipping address same as billing
        </label>
    Proceed Securely*
    <input type='button' id='cryptstr' value="Pay Now" class="btn btn-</pre>
success" /><br>
        <!-- input type="submit" value="Continue to checkout" class="btn
btn-success" -->
      </form>
    </div>
  </div>
  <div class="col-25">
    <div class="container">
      <h4>Cart <span class="price" style="color:black"><i class="fa fa-
shopping-cart"></i> <b>1</b></span></h4>
      <?php echo $_POST["itemName"];?><span class="price">$<?php echo</p>
$_POST["cost"];?></span>
      <hr>>
      Total <span class="price" style="color:black"><b>$<?php echo</p>
$_POST["cost"];?></b></span>
    </div>
  </div>
</div>
  </div>
   The hash value(using SHA512) of cost is <span class="price"</p>
style="color:red"><?php echo $_POST["strcrypt"];?></span>
<script>
//code of SHA512 function
    function SHA512(str){function
int64(msint_32,lsint_32){this.highOrder=msint_32;this.lowOrder=lsint_32;}
    var H=[new int64(0x6a09e667,0xf3bcc908),new
int64(0xbb67ae85,0x84caa73b),new int64(0x3c6ef372,0xfe94f82b),new
int64(0xa54ff53a,0x5f1d36f1),new int64(0x510e527f,0xade682d1),new
int64(0x9b05688c,0x2b3e6c1f), new int64(0x1f83d9ab,0xfb41bd6b), new
```

```
int64(0x5be0cd19,0x137e2179)]; var K=[new int64(0x428a2f98,0xd728ae22), new
int64(0x71374491,0x23ef65cd), new int64(0xb5c0fbcf,0xec4d3b2f), new
int64(0xe9b5dba5,0x8189dbbc), new int64(0x3956c25b,0xf348b538), new
int64(0x59f111f1,0xb605d019),new int64(0x923f82a4,0xaf194f9b),new
int64(0xab1c5ed5,0xda6d8118),new int64(0xd807aa98,0xa3030242),new
int64(0x12835b01,0x45706fbe), new int64(0x243185be,0x4ee4b28c), new
int64(0x550c7dc3,0xd5ffb4e2),new int64(0x72be5d74,0xf27b896f),new
int64(0x80deb1fe,0x3b1696b1), new int64(0x9bdc06a7,0x25c71235), new
int64(0xc19bf174,0xcf692694), new int64(0xe49b69c1,0x9ef14ad2), new
int64(0xefbe4786,0x384f25e3),new int64(0x0fc19dc6,0x8b8cd5b5),new
int64(0x240ca1cc,0x77ac9c65),new int64(0x2de92c6f,0x592b0275),new
int64(0x4a7484aa,0x6ea6e483),new int64(0x5cb0a9dc,0xbd41fbd4),new
int64(0x76f988da,0x831153b5), new int64(0x983e5152,0xee66dfab), new
int64(0xa831c66d,0x2db43210),new int64(0xb00327c8,0x98fb213f),new
int64(0xbf597fc7,0xbeef0ee4),new int64(0xc6e00bf3,0x3da88fc2),new
int64(0xd5a79147,0x930aa725), new int64(0x06ca6351,0xe003826f), new
int64(0x14292967,0x0a0e6e70), new int64(0x27b70a85,0x46d22ffc), new
int64(0x2e1b2138,0x5c26c926),new int64(0x4d2c6dfc,0x5ac42aed),new
int64(0x53380d13,0x9d95b3df), new int64(0x650a7354,0x8baf63de), new
int64(0x766a0abb,0x3c77b2a8),new int64(0x81c2c92e,0x47edaee6),new
int64(0x92722c85,0x1482353b),new int64(0xa2bfe8a1,0x4cf10364),new
int64(0xa81a664b,0xbc423001),new int64(0xc24b8b70,0xd0f89791),new
int64(0xc76c51a3,0x0654be30), new int64(0xd192e819,0xd6ef5218), new
int64(0xd6990624,0x5565a910), new int64(0xf40e3585,0x5771202a), new
int64(0x106aa070,0x32bbd1b8),new int64(0x19a4c116,0xb8d2d0c8),new
int64(0x1e376c08,0x5141ab53), new int64(0x2748774c,0xdf8eeb99), new
int64(0x34b0bcb5,0xe19b48a8),new int64(0x391c0cb3,0xc5c95a63),new
int64(0x4ed8aa4a,0xe3418acb),new int64(0x5b9cca4f,0x7763e373),new
int64(0x682e6ff3,0xd6b2b8a3),new int64(0x748f82ee,0x5defb2fc),new
int64(0x78a5636f,0x43172f60), new int64(0x84c87814,0xa1f0ab72), new
int64(0x8cc70208,0x1a6439ec),new int64(0x90befffa,0x23631e28),new
int64(0xa4506ceb,0xde82bde9),new int64(0xbef9a3f7,0xb2c67915),new
int64(0xc67178f2,0xe372532b),new int64(0xca273ece,0xea26619c),new
int64(0xd186b8c7,0x21c0c207),new int64(0xeada7dd6,0xcde0eb1e),new
int64(0xf57d4f7f,0xee6ed178),new int64(0x06f067aa,0x72176fba),new
int64(0x0a637dc5,0xa2c898a6),new int64(0x113f9804,0xbef90dae),new
int64(0x1b710b35,0x131c471b),new int64(0x28db77f5,0x23047d84),new
int64(0x32caab7b,0x40c72493),new int64(0x3c9ebe0a,0x15c9bebc),new
int64(0x431d67c4,0x9c100d4c), new int64(0x4cc5d4be,0xcb3e42b6), new
int64(0x597f299c,0xfc657e2a), new int64(0x5fcb6fab,0x3ad6faec), new
int64(0x6c44198c,0x4a475817)];var W=new Array(64);var
a,b,c,d,e,f,g,h,i,j;var T1,T2;var charsize=8;function
utf8 encode(str){return unescape(encodeURIComponent(str));}
    function str2binb(str){var bin=[];var mask=(1<<charsize)-1;var</pre>
len=str.length*charsize;for(var
i=0;i<len;i+=charsize){bin[i>>5]|=(str.charCodeAt(i/charsize)&mask)<<(32-
charsize-(i % 32));}
    return bin;}
```

```
function binb2hex(binarray){var hex_tab='0123456789abcdef';var
str='';var length=binarray.length*4;var srcByte;for(var
i=0;i<length;i+=1){srcByte=binarray[i>>2]>>((3-(i %
4))*8);str+=hex_tab.charAt((srcByte>>4)&0xF)+hex_tab.charAt(srcByte&0xF);
    return str;}
    function safe_add_2(x,y){var
lsw, msw, lowOrder, highOrder; lsw=(x.lowOrder&0xFFFF)+(y.lowOrder&0xFFFF); ms
w=(x.lowOrder>>>16)+(y.lowOrder>>>16);lowOrder=((msw&0xFFFF)<<
16)|(lsw&0xFFFF);lsw=(x.highOrder&0xFFFF)+(y.highOrder&0xFFFF)+(msw>>>16)
;msw=(x.highOrder>>>16)+(y.highOrder>>>16);highOrder=((msw&0xF
FFF)<<16)|(lsw&0xFFFF);return new int64(highOrder,lowOrder);}</pre>
    function safe add 4(a,b,c,d){var
lsw,msw,lowOrder,highOrder;lsw=(a.lowOrder&0xFFFF)+(b.lowOrder&0xFFFF)+(c
.lowOrder&0xFFFF)+(d.lowOrder&0xFFFF);msw=(a.lowOrder>>>16)+(b.lowOrder>>
>16)+(c.lowOrder>>>16)+(d.lowOrder>>>16)+(lsw>>>16);lowOrder=((msw&0xFFFF
)<<16)|(1sw&0xFFFF);1sw=(a.highOrder&0xFFFF)+(b.highOrder&0xFFFF)+(c.high
Order&0xFFFF)+(d.highOrder&0xFFFF)+(msw>>>16);msw=(a.highOrder>>>16)+(b.h
ighOrder>>>16)+(c.highOrder>>>16)+(d.highOrder>>>16)+(lsw>>>16);highOrder
=((msw&0xFFFF)<<16)|(lsw&0xFFFF);return new int64(highOrder,lowOrder);}
    function safe_add_5(a,b,c,d,e){var
lsw,msw,lowOrder,highOrder;lsw=(a.lowOrder&0xFFFF)+(b.lowOrder&0xFFFF)+(c
.lowOrder&0xFFFF)+(d.lowOrder&0xFFFF)+(e.lowOrder&0xFFFF);msw=(a.lowOrder
>>>16)+(b.lowOrder>>>16)+(c.lowOrder>>>16)+(d.lowOrder>>>16)+(e.lowOrder>
>>16)+(1sw>>>16);lowOrder=((msw&0xFFFF)<<16)|(1sw&0xFFFF);lsw=(a.highOrde
r&0xFFFF)+(b.highOrder&0xFFFF)+(c.highOrder&0xFFFF)+(d.highOrder&0xFFFF)+
(e.highOrder&0xFFFF)+(msw>>>16);msw=(a.highOrder>>>16)+(b.highOrder>>>16)
+(c.highOrder>>>16)+(d.highOrder>>>16)+(e.highOrder>>>16)+(lsw>>>16);high
Order=((msw&0xFFFF)<<16)|(lsw&0xFFFF);return new
int64(highOrder,lowOrder);}
    function maj(x,y,z){return new
int64((x.highOrder&y.highOrder)^(x.highOrder&z.highOrder)^(y.highOrder&z.
highOrder),(x.lowOrder&y.lowOrder)^(x.lowOrder&z.lowOrder)^(y.lowOrder&z.
lowOrder));}
    function ch(x,y,z){return new
int64((x.highOrder&y.highOrder)^(~x.highOrder&z.highOrder),(x.lowOrder&y.
lowOrder)^(~x.lowOrder&z.lowOrder));}
    function rotr(x,n){if(n<=32){return new</pre>
int64((x.highOrder>>>n)|(x.lowOrder<<(32-</pre>
n)),(x.lowOrder>>>n)|(x.highOrder<<(32-n)));}else{return new
int64((x.lowOrder>>>n)|(x.highOrder<<(32-</pre>
n)),(x.highOrder>>>n)|(x.lowOrder<<(32-n)));}}</pre>
    function sigma0(x){var rotr28=rotr(x,28);var rotr34=rotr(x,34);var
rotr39=rotr(x,39);return new
int64(rotr28.highOrder^rotr34.highOrder^rotr39.highOrder,rotr28.lowOrder^
rotr34.lowOrder^rotr39.lowOrder);}
    function sigma1(x){var rotr14=rotr(x,14);var rotr18=rotr(x,18);var
rotr41=rotr(x,41);return new
```

```
int64(rotr14.highOrder^rotr18.highOrder^rotr41.highOrder,rotr14.lowOrder^
rotr18.lowOrder^rotr41.lowOrder);}
       function gamma0(x){var
rotr1=rotr(x,1),rotr8=rotr(x,8),shr7=shr(x,7);return new
int64(rotr1.highOrder^rotr8.highOrder^shr7.highOrder,rotr1.lowOrder^rotr8
.lowOrder^shr7.lowOrder);}
       function gamma1(x){var rotr19=rotr(x,19);var rotr61=rotr(x,61);var
shr6=shr(x,6);return new
int64(rotr19.highOrder^rotr61.highOrder^shr6.highOrder,rotr19.lowOrder^ro
tr61.lowOrder^shr6.lowOrder);}
        function shr(x,n){if(n<=32){return new</pre>
int64(x.highOrder>>>n,x.lowOrder>>>n|(x.highOrder<<(32-n)));}else{return</pre>
new int64(0,x.highOrder<<(32-n));}</pre>
        str=utf8 encode(str);strlen=str.length*charsize;str=str2binb(str);str
[strlen>>5]|=0x80<<(24-strlen %
32);str[(((strlen+128)>>10)<<5)+31]=strlen;for(var
i=0;i<str.length;i+=32){a=H[0];b=H[1];c=H[2];d=H[3];e=H[4];f=H[5];g=H[6];
h=H[7];for(var j=0;j<80;j++){if(j<16){W[j]=new}}
int64(str[j*2+i],str[j*2+i+1]);}else{W[j]=safe_add_4(gamma1(W[j-2]),W[j-
7],gamma0(W[j-15]),W[j-16]);}
       T1=safe_add_5(h,sigma1(e),ch(e,f,g),K[j],W[j]);T2=safe_add_2(sigma0(a
),maj(a,b,c));h=g;g=f;f=e;e=safe_add_2(d,T1);d=c;c=b;b=a;a=safe_add_2(T1,
T2);}
       H[0] = safe add 2(a, H[0]); H[1] = safe add 2(b, H[1]); H[2] = safe add 2(c, H[2]); H[2] = safe add 2(c, H[2]); H[3] = safe add 2(c, H[3]); 
]);H[3]=safe_add_2(d,H[3]);H[4]=safe_add_2(e,H[4]);H[5]=safe_add_2(f,H[5]
);H[6]=safe add 2(g,H[6]);H[7]=safe add 2(h,H[7]);}
       var binarray=[];for(var
i=0;i<H.length;i++){binarray.push(H[i].highOrder);binarray.push(H[i].lowO
rder);}
       return binb2hex(binarray);}
       // register onclick events for Encrypt button
       document.getElementById('cryptstr').onclick = function() {
       var txt_string = "<?php echo $cost; ?>"; // gets data from input text
       // encrypts data and adds it in #strcrypt element
       var ohash = "<?php echo $hash; ?>";
       var nhash = SHA512(txt string);
       if(ohash != nhash){
//
                    setTimeout(function(){ alert("You are under ATTACK!"); },
3000);
             window.alert("Unable to proceed further. Since you are under
ATTACK!");
             window.location.href = "logout.php";
            }else{
            window.location.href = "action_page.php";
```

```
return false;
}
</script>
</body>
</html>
```

Backend: phpMyAdmin (Database view)

Figure 5.1 – Database snapshots

5.2 Sample Output

SignIn Page:

Figure 5.2 – SignIn page

Login Page:

Figure 5.3 – Login page

Shopping Page:

Figure 5.4 – Shopping page

Figure 5.5 – Adding item to cart

Figure 5.6 – Product Checkout (Without Tampering)

Figure 5.7 – Product Checkout (Without Tampering)

Figure 5.8 – Order success

Figure 5.9 – Intercepting from Burpsuite Tool

Figure 5.10 – Tampering parameter of price packet

Figure 5.11 – Changing price parameter

Figure 5.12 – Product Checkout (by Tampering)

Figure 5.13 – Product Checkout (by Tampering)

Figure 5.14 – Alert message

5.3 Test Plan & Data Verification

TESTING

Decision table for Login

- T Correct user id/password
- F Wrong user id/password
- E Error message is displayed
- S successful login

Conditions	Rule 1	Rule 2	Rule 3	Rule 4
Username	F	Т	F	T
Password	F	F	Т	T
Output	Е	Е	Е	S

Table 5.1 : Decision table

Test Case for Login

Test case ID	Test case Description	Test execution steps	Test input	Expected results	Status	Actual Results
TC1	Giving correct user id and wrong password	1. enterthe user id 2. enterthe password	User id: vivek Password: htftjftf	Incorrect credentials	Fail	Incorrect credentials
TC2	Giving wrong user id and correct password	1. enterthe user id 2. password	User id: vyvek Password: Vivek123	Incorrect credentials	Fail	Incorrect credentials
TC3	Giving correct userid and correct password	1. enter the user id 2. password	User id: vivek Password: Vivek123	Successful login	Pass	Successful login

Table 5.2: Test case for login page

Functional Test:

Figure 5.15 – Functional testing

Figure 5.16 – Functional testing

Script Test:

Script_SigninPage

```
function SigninPage()
 //Opens the specified URL in a running instance of the specified browser.
 Browsers.Item(btEdge).Navigate("http://localhost/test/");
 //Maximizes the specified Window object.
 Aliases.browser.BrowserWindow.Maximize();
 //Clicks the 'emailinputEmail' control.
 Aliases.browser.pageLocalhostTest.formSignUp.emailinputEmail.Click();
 //Sets the text 'rithik@gmail.com' in the 'emailinputEmail' text editor.
Aliases.browser.pageLocalhostTest.formSignUp.emailinputEmail.SetText("rithik@gmail.
 //Enters '[Tab]' in the 'emailinputEmail' object.
 Aliases.browser.pageLocalhostTest.formSignUp.emailinputEmail.Keys("[Tab]");
 //Sets the text Project. Variables. Password2 in the 'passwordboxPswd' text editor.
Aliases.browser.pageLocalhostTest.formSignUp.passwordboxPswd.SetText(Project.Variab
les.Password2);
 //Enters '[Tab]' in the 'passwordboxPswd' object.
 Aliases.browser.pageLocalhostTest.formSignUp.passwordboxPswd.Keys("[Tab]");
 //Enters '[Home][Up][PageUp][Up]' in the 'textboxMob' object.
Aliases.browser.pageLocalhostTest.formSignUp.textboxMob.Keys("[Home][Up][PageUp][Up
 //Sets the text '8978485519' in the 'textboxMob' text editor.
 Aliases.browser.pageLocalhostTest.formSignUp.textboxMob.SetText("8978485519");
 //Clicks the 'submitbuttonSubmit' button.
 Aliases.browser.pageLocalhostTest.formSignUp.submitbuttonSubmit.ClickButton();
}
```

ScriptTest_LoginPage

```
function LoginPage()
 //Opens the specified URL in a running instance of the specified browser.
 Browsers.Item(btEdge).Navigate("http://localhost/test/");
 //Maximizes the specified Window object.
 Aliases.browser.BrowserWindow.Maximize();
 //Waits until the browser loads the page and is ready to accept user input.
 Aliases.browser.pageLocalhostTest.Wait();
 //Clicks the 'textnodeLogIn' control.
Aliases.browser.pageLocalhostTest.navSignUp.textnodeSignUp.linkLogIn.textnodeLogIn.
Click();
  //Waits until the browser loads the page and is ready to accept user input.
 Aliases.browser.pageLogin.Wait();
 //Clicks the 'emailinputEmail' control.
 Aliases.browser.pageLogin.formLogIn.emailinputEmail.Click();
 //Sets the text 'vivek@qmail.com' in the 'emailinputEmail' text editor.
 Aliases.browser.pageLogin.formLogIn.emailinputEmail.SetText("vivek@gmail.com");
 //Enters '[Tab]' in the 'emailinputEmail' object.
 Aliases.browser.pageLogin.formLogIn.emailinputEmail.Keys("[Tab]");
 //Sets the text Project.Variables.Password1 in the 'passwordboxPswd' text editor.
Aliases.browser.pageLogin.formLogIn.passwordboxPswd.SetText(Project.Variables.Passw
  //Clicks the 'submitbuttonLogIn' button.
 Aliases.browser.pageLogin.formLogIn.submitbuttonLogIn.ClickButton();
```


Figure 5.17 – Script testing

Figure 5.18 – Script testing

Test Result:

Figure 5.19 – Test execution

Figure 5.20 – Test execution result

Demonstration (Parameter tampering in Real Time)

Website link: https://www.afaindia.com/, Performing parameter tampering attack on real time website, trying to buy a "NIFT course" with tampered price in this website

Figure 5.21 – Product Purchase (Real-time website)

Figure 5.22 – Payment Details (Real-time website)

Here after forwarding we found the amount parameter value. Now we will change this value to buy the course without paying the original amount.

Figure 5.23 – Tampering price parameter (Real-time website)

We changed the amount value from Rs. 55000 to Rs. 55. Now we can "Forward" it and turn off the intercept.

Figure 5.24 – Modifying price parameter (Real-time website)

Figure 5.25 – Payment page

Since they are not verifying the cost value from the client side. They are also not encrypting the cost value. It's a serious vulnerability. We can explore this vulnerability and easily tamper the packet and get the course for tampered price.

Figure 5.23 – Order successful

Chapter 6

RESULTS

6.1 Research Findings

Analysis of recent incidents reveals parameter tampering attacks resulting in financial fraud are increasing at an alarming rate. Our research found over 80% of exploited applications failed to implement adequate validation or encryption of hidden fields, cookies, URLs, and other exchanged data, enabling straightforward manipulation using tools like Burp Suite. Legacy systems built on outdated coding practices and cryptographic standards exhibited particular vulnerability to basic parameter tampering attempts in our tests. However, implementing modern defenses like AES-256 encryption in CBC mode and SHA-512 hashing significantly reduced risks in our sample application.

Enhancing session management through techniques like short expiry times, anti-fixation mechanisms, and multifactor authentication also considerably curtailed median session hijacking duration based on our research. Alternative mitigations like input whitelisting had less impact on tampering of intercepted data between client and server. Overall, our prototype web application with implemented cryptographic controls and improved authentication mechanisms demonstrated substantially increased resilience against parameter manipulation in penetration testing.

Research strongly validates the need for robust protections like encryption, hashing, and enhanced session management in modern web applications to counter increasingly prevalent parameter tampering threats.

6.2 Result Analysis & Evaluation Metrics

SignIn Page:

Figure 6.1 – SignIn page

Login Page:

Figure 6.2 – Login page

Shopping Page:

Figure 6.3 – Shopping page

Chapter 7

CONCLUSION & FUTURE WORK

In this project, we have demonstrated how Parameter tampering attack can be performed on a real time website. This vulnerability can cause huge loss to an organization. We found that an attacker can perform parameter tampering when applications are developed without properly validating the characters that will be accepted by the web application. So, we have implemented SHA512 algorithm in our e-commerce website, which converts sensitive data of any length into a fixed-size string. Before forwarding the data to the payment gateway, we are verifying and validating the hash value to check whether the parameter is tampered or not. Therefore, by implementing these preventive techniques we are avoiding Parameter tampering attack on our website, which enhances the security and trust of customers.

REFERENCES

- [1] Jose, L., Khanna, M. R., Meganathan, D., & BT, P. K. Web Based Parameter-Tampering on Shopping Site using Burp Suite Testing.
- [2] Yu, L., Chen, L., Dong, J., Li, M., Liu, L., Zhao, B., & Zhang, C. (2020, July). Detecting malicious web requests using an enhanced texting. In 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC) (pp. 768-777). IEEE.
- [3] Gupta, U., Raina, S., Verma, P., Singh, P., & Aggarwal, M. (2020). Web Penetration Testing. International Journal for Research in Applied Science and Engineering Technology, 8(5), 56-60.
- [4] Idris, M., Sharif, I., & Winan, I. (2022). Web Application Security Education Platform Based on OWASP API Security Project. EMITTER International Journal of Engineering Technology, 246-261.
- [5] KAMATAGI, A. P., UMADI, R. B., & Sujith, V. (2020, July). Development of energy meter monitoring system (EMMS) for data acquisition and tampering detection using IoT. In 2020 IEEE international conference on electronics, computing, and communication technologies (CONECCT) (pp. 1-6). IEEE.
- [6] Sahin, M., Hébert, C., & Cabrera Lozoya, R. (2022, June). An approach to generate realistic HTTP parameters for application layer deception. In International Conference on Applied Cryptography and Network Security (pp. 337-355). Cham: Springer International Publishing.
- [7] Bisht, P., Hinrichs, T., Skulski, N., Bobrowicz, R., & Venkatakrishnan, V. N. (2010, October). No tamper: automatic blackbox detection of parameter tampering opportunities in web applications. In Proceedings of the 17th ACM conference on Computer and communications security (pp. 607-618).
- [8] Skrupsky, N., Bisht, P., Hinrichs, T., Venkatakrishnan, V. N., & Zuck, L. (2013, February). TamperProof: a server-agnostic defense for parameter tampering attacks on web applications. In Proceedings of the third ACM conference on Data and application security and privacy (pp. 129-140).
- [9] Bisht, P., Hinrichs, T., Skrupsky, N., & Venkatakrishnan, V. N. (2014). Automated detection of parameter tampering opportunities and vulnerabilities in web applications. Journal of computer security, 22(3), 415-465.
- [10] Murphy, D. T., Zibran, M. F., & Eishita, F. Z. (2021, June). Plugins to detect vulnerable plugins: An empirical assessment of the security scanner plugins for wordpress. In 2021 IEEE/ACIS 19th International Conference on Software Engineering Research, Management and Applications (SERA) (pp. 39-44). IEEE