Notes on Fourier Series

Youming Zhao

Email: youming0.zhao@gmail.com

First draft: December 5, 2023 Last update: December 21, 2023

4 Contents

5	1	Orthogonal Functions	1
6	2	Fourier Series	2
7		2.1 Definition	2
8		2.2 Some useful results for computing Fourier coefficients	3
9	3	Fourier Sine and Cosine Series	8
10	4	More results on coefficients of Fourier Series	4
11		4.1 f defined on $[a, a + 2\pi]$	4
12		4.2 f defined on $[-T,T]$	4
13		4.3 f defined on $[0,T]$	5
14	В	ibliography	Ę

1 Orthogonal Functions

To describe orthogonal functions, we follow the definition in (Apostol, 1974, page 306). First, we denote by L(I) the set of Lebesgue-integrable functions on an interval I. Then we denote by $L^2(I)$ the set of all complex-valued functions f which are measurable on I and are such that $|f|^2 \in L(I)$.

The inner product (f,g) of two such functions, defined by

$$(f,g) = \int_{I} f(x)\overline{g(x)} dx, \qquad (1.1)$$

20 always exists.

21

22

Definition 1.1 (orthogonal systems). Let $S = \{\phi_0, \phi_1, \phi_2, \cdots\}$ be a collection of functions in $L^2(I)$. If

$$(\phi_n, \phi_m) = 0 \qquad \text{whenever } m \neq n, \tag{1.2}$$

the collection S is said to be an orthogonal system on I. If, in addition, each ϕ_n has norm 1, then S is said to be orthonormal on I.

The following orthogonal system is fundamental in the field of Fourier analysis.

$$\{1, \sin x, \cos x, \sin 2x, \cos 2x, \cdots, \sin nx, \cos nx, \cdots\}$$
(1.3)

More specifically, for $m, n \in \mathbb{N}^+$, on any interval with the length of 2π , we have

$$\int_{-\pi}^{\pi} \cos mx \cos nx dx = \int_{-\pi}^{\pi} \sin mx \sin nx dx = \begin{cases} 0, & m \neq n \\ \pi, & m = n \end{cases}.$$
 (1.4)

Particularly, we have

$$\int_{-\pi}^{\pi} 1 \cdot \cos mx dx = \int_{-\pi}^{\pi} 1 \cdot \sin mx dx = 0, \qquad m = 1, 2, \dots$$
 (1.5)

$_{\scriptscriptstyle 25}$ 2 Fourier Series

$_{26}$ 2.1 Definition

Suppose f(x) can be represented as the following series

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
 (2.1)

which means the right-hand side converges to f(x). Now we compute the coefficients a_n and b_n using the trigonometric orthogonality discussed earlier. Assume the right-hand side of (2.1) can be integrated term by term, then multiplying both sides by $\cos mx(m=0,1,2,\cdots)$ and integrating both sides over $[-\pi,\pi]$ gives

$$\int_{-\pi}^{\pi} f(x) \cos mx dx = \int_{-\pi}^{\pi} f(x) \left[\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \right] \cos mx dx$$
 (2.2)

$$= \frac{a_0}{2} \int_{-\pi}^{\pi} \cos mx dx + \sum_{n=1}^{\infty} a_n \int_{-\pi}^{\pi} \cos nx \cos mx dx + \sum_{n=1}^{\infty} b_n \int_{-\pi}^{\pi} \sin nx \sin mx dx$$
 (2.3)

$$=a_m\pi$$
 (2.4)

32 which implies

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, \qquad n = 0, 1, 2, \cdots.$$
 (2.5)

33 Likewise, we get

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx, \qquad n = 1, 2, \cdots.$$
 (2.6)

(2.5) and (2.6) are called Euler formulas for Fourier coefficients.

Definition 2.1 (Fourier series). Given f(x) is 2π -periodic, Riemann integrable, and absolutely integrable on $[-\pi, \pi]$, the Fourier series is defined by

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx),$$
 (2.7)

where a_n and b_n are computed by (2.5) and (2.6), respectively, which are called Fourier coefficients

Note. A trigonometric series is not necessarily a Fourier series. For example,

$$f(x) = \sum_{n=2}^{\infty} \frac{\sin nx}{\ln n}$$
 (2.8)

is uniformly convergent on any closed interval residing in $(0,2\pi)$, which follows from the Dirichlet's

- test for uniform convergence. However, it is not a Fourier series because it does not satisfy the
- ³⁹ definition of Fourier series.

⁴⁰ 2.2 Some useful results for computing Fourier coefficients

$$\int_0^{\pi} \sin nx dx = -\int_{-\pi}^0 \sin nx dx = \frac{1 - (-1)^n}{n} = \frac{2}{2k - 1},$$
(2.9)

$$\int_0^{\pi} x \cos nx dx = -\int_{-\pi}^0 x \cos nx dx = \frac{(-1)^n - 1}{n^2} = -\frac{2}{(2k-1)^2},$$
 (2.10)

$$\int_0^{\pi} x \sin nx dx = \int_{-\pi}^0 x \sin nx dx = \frac{(-1)^{n+1}}{n} \pi,$$
(2.11)

$$\int_0^{\pi} x^2 \cos nx dx = \int_{-\pi}^0 x^2 \cos nx dx = \frac{2(-1)^n}{n^2} \pi,$$
(2.12)

$$\int_0^{\pi} e^x \cos nx dx = \frac{(-1)^n e^{\pi} - 1}{n^2 + 1},\tag{2.13}$$

$$\int_0^{2\pi} x \sin nx dx = -\frac{2\pi}{n},\tag{2.14}$$

$$\int_{0}^{2\pi} x \cos nx dx = 0, \tag{2.15}$$

where $n, k \in \mathbb{N}^+$.

$$\int_0^{\pi/2} \cos x \cos nx dx = -\int_{\pi/2}^{\pi} \cos x \cos nx dx = -\frac{\cos \frac{n\pi}{2}}{n^2 - 1} = \frac{(-1)^k}{4k^2 - 1}$$
 (2.16)

where $n, k \in \mathbb{N}^+$.

3 Fourier Sine and Cosine Series

It is easy to observe that when f(x) is an odd function, the Fourier coefficients a_n vanish. In this case, the Fourier series is called Fourier sine series since it is comprised of sine functions as follows.

$$f(x) \sim \sum_{n=1}^{\infty} b_n \sin nx, \tag{3.1}$$

46 where

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx, \qquad n = 1, 2, \cdots.$$
 (3.2)

When f(x) is an even function, the Fourier coefficients b_n vanish. In this case, the Fourier series is called Fourier cosine series since it is comprised of cosine functions as follows.

$$f(x) \sim \sum_{n=0}^{\infty} a_n \cos nx, \tag{3.3}$$

49 where

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx, \qquad n = 0, 1, 2, \cdots.$$
 (3.4)

More results on coefficients of Fourier Series

4.1 f defined on $[a, a + 2\pi]$

When f(x) is defined on $(a, a + 2\pi)$, the coefficients a_n and b_n can be obtained in the same way as on $(-\pi, \pi)$ as follows:

$$\int_{a}^{a+2\pi} f(x) \cos mx dx = \int_{a}^{a+2\pi} f(x) \left[\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \right] \cos mx dx \tag{4.1}$$

$$= \frac{a_0}{2} \int_a^{a+2\pi} \cos mx dx + \sum_{n=1}^{\infty} a_n \int_a^{a+2\pi} \cos nx \cos mx dx + \sum_{n=1}^{\infty} b_n \int_a^{a+2\pi} \sin nx \sin mx dx \qquad (4.2)$$

$$=a_m\pi$$
 (4.3)

54 which implies

$$a_n = \frac{1}{\pi} \int_a^{a+2\pi} f(x) \cos nx dx, \qquad n = 0, 1, 2, \cdots.$$
 (4.4)

55 Likewise, we get

$$b_n = \frac{1}{\pi} \int_a^{a+2\pi} f(x) \sin nx dx, \qquad n = 1, 2, \cdots.$$
 (4.5)

⁵⁶ 4.2 f defined on [-T,T]

If f(x) is 2T-periodic, let $x = \frac{T}{\pi}t$ where $t \in [-\pi, \pi]$, then

$$\phi(t) = f(\frac{T}{\pi}t) = f(x) \tag{4.6}$$

is periodic with period 2π . Thus, with the results obtained in section 2.1, we have

$$\phi(t) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt),$$
 (4.7)

59 and

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos \frac{n\pi}{T} x + b_n \sin \frac{n\pi}{T} x),$$
 (4.8)

60 where

61

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \phi(t) \cos nt dt = \frac{1}{T} \int_{-T}^{T} f(x) \cos \frac{n\pi}{T} x dx, \qquad n = 0, 1, 2, \dots,$$
 (4.9)

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \phi(t) \sin nt dt = \frac{1}{T} \int_{-T}^{T} f(x) \sin \frac{n\pi}{T} x dx, \qquad n = 1, 2, \cdots.$$
 (4.10)

62 **4.3** f defined on [0,T]

If f(x) is defined on [0,T], then we can take advantage of (4.4) and (4.5) with a=0. Also, we need the trick of change of variables as performed in (4.6). Let $x=\frac{T}{2\pi}t$ where $t\in[0,2\pi]$, then

$$f(x) = f(\frac{T}{2\pi}t) = \phi(t).$$
 (4.11)

 $_{65}$ Combining this with (4.4) and (4.5) gives

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(t) \cos nt dt = \frac{2}{T} \int_0^1 f(\frac{2\pi}{T}x) \cos(\frac{2n\pi}{T}x) dx, \qquad n = 0, 1, 2, \dots$$
 (4.12)

$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(t) \sin nt dt = \frac{2}{T} \int_0^1 f(\frac{2\pi}{T}x) \sin(\frac{2n\pi}{T}x) dx, \qquad n = 1, 2, \dots$$
 (4.13)

Finally, the Fourier series is given by

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos(\frac{2n\pi}{T}x) + b_n \sin(\frac{2n\pi}{T}x) \right),$$
 (4.14)

88 Bibliography

⁶⁹ Apostol, T. M. (1974). Mathematical Analysis, Second Edition. Pearson Education.