HSBC Share Price Forecasting Using ARIMA Model

Project Overview

This project leverages the ARIMA(3,0,1) statistical model to forecast the future share prices of

HSBC. By using historical price data, the study aims to provide actionable insights into market

trends, assisting investors and financial analysts in making informed decisions.

Data Source

Source: Yahoo Finance

Details: Historical share prices of HSBC are meticulously gathered from Yahoo Finance. This

data forms the backbone of our forecasting model, offering a detailed look at price fluctuations

over the specified period.

Tools and Technologies

IBM SPSS: Primary tool for statistical modeling and analysis.

Microsoft Excel: Used for initial data preparation and cleaning.

Methodology

Data Collection

Data is sourced from Yahoo Finance, focusing specifically on the historical share prices of HSBC.

This dataset includes critical market data necessary for a robust analysis.

Data Preparation

The dataset undergoes rigorous preprocessing to address missing values and outliers, ensuring the

integrity and accuracy of our model.

Model Selection

The ARIMA(3,0,1) model is selected based on its suitability to address the non-stationary nature

of financial time series data. Preliminary tests, including the Autocorrelation Function (ACF) and

Partial Autocorrelation Function (PACF), help determine the appropriate parameters.

Model Implementation

The model is implemented in SPSS, where extensive testing is conducted to refine the parameters and validate the model's effectiveness through various diagnostic checks.

Key Findings

- **Model Performance:** The ARIMA(3,0,1) model achieves an R-squared value of 0.907, indicating a strong predictive capability.
- **Forecast Accuracy:** With a Root Mean Square Error (RMSE) of 27.163, the model demonstrates high accuracy in forecasting future share prices.
- Market Insights: The analysis provides deep insights into how economic variables influence HSBC's share price, aiding strategic investment decisions.

Results

The ARIMA model successfully forecasts future share price movements with high accuracy. Detailed forecasts include visual representations like graphs and tables, offering both quantitative and qualitative insights.

Conclusion

The ARIMA(3,0,1) model proves to be a powerful tool in predicting financial market trends, specifically for HSBC's share prices. This project not only underscores the viability of ARIMA models in financial forecasting but also provides a strategic framework for investors looking to navigate market volatilities effectively.

Appendix

Result of ARIMA

Model Description

			Model Type
Model ID	Price	Model 1	ARIMA(3,0,1)(0,0,0)

Model Fit

				1							
								Percentile			
Fit Statistic	Mean	SE	Minimum	Maximum	5	10	25	50	75	90	95
Stationary R-squared	.907		.907	.907	.907	.907	.907	.907	.907	.907	.907
R-squared	.907		.907	.907	.907	.907	.907	.907	.907	.907	.907
RMSE	27.163		27.163	27.163	27.163	27.163	27.163	27.163	27.163	27.163	27.163
MAPE	4.903		4.903	4.903	4.903	4.903	4.903	4.903	4.903	4.903	4.903
MaxAPE	15.130		15.130	15.130	15.130	15.130	15.130	15.130	15.130	15.130	15.130
MAE	20.820		20.820	20.820	20.820	20.820	20.820	20.820	20.820	20.820	20.820
MaxAE	82.355		82.355	82.355	82.355	82.355	82.355	82.355	82.355	82.355	82.355
Normalized BIC	6.803		6.803	6.803	6.803	6.803	6.803	6.803	6.803	6.803	6.803

Model Description

			Model Type
Model ID	Price	Model 1	ARIMA(3,0,1)(0,0,0)

Model Statistics

		Model Fit	statistics	Lju	Ljung-Box Q(18)					
	Number of	Stationary R-	Normalized				Number of			
Model	Predictors	squared	BIC	Statistics	DF	Sig.	Outliers			
Price -Model_1	0	.907	6.803	15.493	14	.345	0			

ARIMA Model Parameters

					Estimate	SE	t	Sig.
Price -Model_1	Price	No Transformation	Const	ant	446.930	50.326	8.881	.000
			AR	Lag 1	.081	.100	.809	.420

	Lag 2	.760	.082	9.249	.000
	Lag 3	.076	.101	.752	.454
MA	Lag 1	964	.039	-24.436	.000

											Residua	ACF												
											44													
Model		2	3	4	- 5	- 6	-/	8	9	10	- 11	12	13	14	15	16	17	18	19	20	21	22	23	24
Price -Model_1 _ ACF	.012	.108	.064	086	.184	.123	108	.025	082	037	.134	.054	.039	.014	022	.038	042	031	052	034	.031	132	042	.032
SE	.091	.091	.092	.093	.093	.096	.098	.099	.099	.099	.099	.101	.101	.101	.101	.101	.101	.102	.102	.102	.102	.102	.103	.104

												Residual	PACF												
Model		1	2	3	4	- 5	- 6	7	- 8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Price -Model_1	PAC	.012	.108	.063	100	.176	.141	151	032	027	035	.085	.104	.035	019	.012	.003	115	048	029	.007	.057	123	043	.069
	F																								
	-																								
	SE	.091	.091	.091	.091	.091	.091	.091	.091	.091	.091	.091	.091	.091	.091	.091	.091	.091	.091	.091	.091	.091	.091	.091	.091

	Forecast																	
	Model		Sep 2023	Oct 2023	Nov 2023	Dec 2023	Jan 2024	Feb 2024	Mar 2024	Apr 2024	May 2024	Jun 2024	Jul 2024	Aug 2024	Sep 2024	Oct 2024	Nov 2024	Dec 2024
	Price -	Forecas	571.56082	567.76353	560.95629	557.34328	551.59329	547.87036	542.92868	539.26731	534.93639	531.43209	527.58251	524.28252	520.82697	517.75033	514.62759	511.77726
,	Model_1	t	6	7	4	1	8	9	9	2	1	8	3	2	0	5	4	0
		UCL	624.28884	644.02983	649.25733	658.54113 9	661.14549	666.04220	667.42841	670.03197	670.65769	671.91712 8	672.02005 5	672.44423 8	672.17619	672.06488	671.53307	671.07394
		LCL	518.83280	491.49723	472.65525	456.14542	442.04110	429.69853	418.42896	408.50264	399.21508	390.94706	383.14497	376.12080	369.47775	363.43578	357.72211	352.48057
			9	5	2	2	1	6	1	5	6	8	2	6	1	4	1	7

For each model, forecasts start after the last non-missing in the range of the requested estimation period, and end at the last period for which non-missing values of all the predictors are available or at the end date of the requested forecast period, whichever is

earlier.

Model Description

Model Name		MOD_5
Series Name	1	Price

Transformation	None
Non-Seasonal Differencing	1
Seasonal Differencing	0
Length of Seasonal Period	No periodicity
Maximum Number of Lags	16
Process Assumed for Calculating the Standard Errors of the	Independence(white
Autocorrelations	noise) ^a
Display and Plot	All lags

Applying the model specifications from MOD_5

a. Not applicable for calculating the standard errors of the partial autocorrelations.

Case Processing Summary

		Price
Series Length		120
Number of Missing Values	User-Missing	0
	System-Missing	0
Number of Valid Values		120
Number of Values Lost Due	to Differencing	1
Number of Computable First	Lags After Differencing	118

Autocorrelations

Series:	Price

			Box-Ljung Statistic		
Lag	Autocorrelation	Std. Error ^a	Value	df	Sig. ^b
1	010	.091	.012	1	.913
2	.002	.090	.012	2	.994
3	.113	.090	1.609	3	.657
4	226	.089	7.993	4	.092
5	.244	.089	15.493	5	.008
6	.063	.089	16.000	6	.014
7	123	.088	17.942	7	.012
8	.008	.088	17.951	8	.022
9	100	.087	19.248	9	.023
10	056	.087	19.659	10	.033
11	.167	.087	23.372	11	.016
12	.022	.086	23.439	12	.024

13	.045	.086	23.714	13	.034
14	.001	.085	23.714	14	.050
15	044	.085	23.978	15	.065
16	.043	.085	24.231	16	.085

- a. The underlying process assumed is independence (white noise).
- b. Based on the asymptotic chi-square approximation.

Partial Autocorrelations

Series:	Price	
	Partial	
Lag	Autocorrelation	Std. Error
1	010	.092
2	.002	.092
3	.113	.092
4	226	.092
5	.261	.092
6	.034	.092
7	084	.092
8	098	.092

9	.009	.092
10	079	.092
11	.131	.092
12	.052	.092
13	.074	.092
14	055	.092
15	.049	.092
16	039	.092

