

עקרונות המענה לאירוע קרינה

2017

יעדי למידה

- המשתתף יכיר את הסיכונים באירוע קרינה
- המשתתף יהיה בקיא בעקרונות המיגון ובכללי ההתנהגות באירוע
 - המשתתף יהיה בקיא בהבדלים בין זיהום לשדה קרינה באירוע

מבנה האטום

- האטום הוא היחידה הבסיסית של החומר
- חלקו המרכזי של האטום הוא הגרעין, שכולל פרוטונים בעלי מטען חיובי ונויטרונים ללא מטען חשמלי
 - אלקטרונים נעים במסלול סביב הגרעין ולהם מטען שלילי •

פרוטון 🕂

נויטרון

אלקטרון 🗨

מבנה האטום

באטום ניטרלי (מבחינה חשמלית) מס' האלקטרונים שווה למספר הפרוטונים

מבנה האטום

- על פרוטון 1 בגרעין, וסביבו נע אלקטרון 1. ולכן הוא אטום ניטרלי H − בעל פרוטון 1 בגרעין, וסביבו נע אלקטרון 1. ולכן
- בעל 3 פרוטונים ו 4 נויטרונים בגרעין, ועוד 3 אלקטרונים שנעים סביב הגרעין Li בעל 3 פרוטונים ו 4 נויטרונים בגרעין אלקטרונים שנעים סביב הגרעין גם כאן מדובר באטום ניטרלי

קרינה

- סוג של אנרגיה -בדומה לחום או לאור, שנפלטת בתוך החלל והחומר ולא ניתנת לזיהוי
 בעזרת אחד מחמשת החושים
 - קרינה היא אנרגיה הנפלטת עקב אי-יציבות של הגרעין •

קרינה בלתי מייננת

• אנרגיה אשר נפלטת מהגרעין (קרינה) אבל אינה חזקה מספיק ע"מ לגרום לשינוי במבנה האטום- קרינה בלתי-מייננת מתבטאת בעיקר כאנרגיה תרמית

<u>דוגמאות לקרינה לא-מייננת:</u>

- מנורות אינפרא- אדום
 - מיקרוגל
 - אור נראה

זה עניין של חיים

• קרינה חזקה, היכולה להשפיע על האטום ולגרום לשינוי במבנה האטום

- כאשר נפלט אלקטרון, מופרת היציבות החשמלית של האטום
- האלקטרונים בעלי המטען השלילי נעים מסביב לגרעין המלא פרוטונים בעלי המטען החיובי, כלומר -האלקטרונים שומרים על הגרעין יציב ושלא יפלטו פרוטונים
 - מכיוון שהגרעין הוא יחידת שטח קטנה עם הרבה מאוד חלקיקים חיוביים, מה שמחזיק אותו הם
 האלקטרונים השליליים שמסביב

קרינה מייננת יכולה להופיע כ 4 סוגי קרינה ע"פ חלקי האטום הנפלטים:

- אלפא
- **B** בטא
 - י גמא •
- נויטרונים

α קרינת אלפא

- הגרעין פולט חלקיק אלפא המורכב משני פרוטונים ושני נויטרונים
 - מה שמביא ל:
 - שנוי המטען החשמלי
 - שנוי מסת הגרעין •
 - קבלת גרעין של יסוד שונה

B קרינת בטא

• פליטת אלקטרון ממסלולו

: מה שמביא לכך ש

- מתרחש שינוי במטען החשמלי
 - אין שינוי משמעותי במסה •

קרינת גמא γ

• הגרעין פולט קרינה אלקטרומגנטית

: מה שמביא לכך ש

- אין שנוי במטען
- אין שנוי במסה
- הגרעין מאבד אנרגיה
 - נותר אותו היסוד

סוגי קרינה

<u>קרינת חלקיקים קטנים- אלקרונים</u> חדירה עד 1/2מטר באוויר מסוכן בעיקר מחשיפה פנימית אך גם מחשיפה חיצונית

סיכום חדירות קרינה

גורמים המשפיעים על ספיגת הקרינה והשפעתה

זמן החשיפה

בידוד מהמקור

מרחק מהמקור

מקור רדיואקטיבי של מצלמה לבדיקת צנרת

יחידות קרינה

הנזק הביולוגי נמדד ביחידות ראם Rem = 0.01 Sievert

זה עניין של חיים

מדידת מנת הקרינה הנספגת

מנת הקרינה הנספגת (rad) מודדת את כמות האנרגיה שנספגת על ידי חומר

- מוגדרת עבור כל סוג של חומר
 - מתייחסת לכל סוגי הקרינה
- אינה מביאה בחשבון את ההשפעה האפשרית שיש לסוגי קרינה
 שונים על גוף האדם
 - (mrad) מילי-ראד 1000 = 1
 - ראד 100 = (Gy) וראד 1 •

מדידת השפעת רמת הקרינה

יחידת המידה (Roentgen Equivalent Man (rem) מודדת את הנזק הביולוגי שגורמת הקרינה לגוף האדם

- מוגדרת מבחינת ההשפעה על גוף האדם
 - מתייחסת לכל סוגי הקרינה
- מביאה בחשבון את הקרינה הנספגת (מנת הקרינה) ואת ההשפעה הביולוגית על גוף האדם כתוצאה מחשיפה לסוגים שונים של קרינה
 - 1 rem = 1000 millirem (mrem) •
 - 100 rem = Sievert (Sv) יחידה נוספת שנקראת
 - 1 rem = 10 milliSieverts (mSv) •

ההיבטים הביולוגים של הקרינה

- אפקטים חריפים
- מחלת קרינה חריפה
 - כוויות •

- אפקטים ארוכי טווח
- נזקים גנטיים •
- עלייה בשכיחות ממאירות •

גורמים המשפיעים על מידת הנזק הביולוגי

קביעת הנזק מבוססת על:

- מנת הקרינה הכוללת שנקלטה
 - משך החשיפה לקרינה
 - סוג הקרינה
 - שטח הגוף שנחשף
 - רגישות התאים •
 - רגישות אישית •

הנזק ביולוגי

נתיבי חדירה של חומר רדיואקטיבי

אפקט דטרמיניסטי – חשיפה עורית

- גורמת לכוויות- בדומה לכוויות חום
 - **טווח רחב** של חומרה והסתמנות
- הכוויה מופיעה לאחר תקופה "לטנטית" (שקטה ללא סימנים) בת כשבועיים לערך
 - לעתים קרובות נזק לכלי דם קטנים

חשיפה עורית

~1 week post exp

~2 weeks post exp

~4 weeks post exp

~8 weeks post exp

~12 weeks post exp

~17 weeks post exp

השפעות חשיפה עורית

תזמון

יום 17

דק'-שבועות בתלות החשיפה

2-3 שבועות

2-3 שבועות

סימן

נשירת שיער

אריתמה

נזק אפידרמלי

נזק דרמלי

נמק

מנה (ראד)

300

600

1000-1500

2000-5000

<5000

אפקט דטרמיניסטי- מחלת קרינה חריפה

- מופיעה לאחר חשיפה כל גופית ל-1 Gray) RAD מופיעה לאחר חשיפה כל גופית ל-1 Gray) פייעה לאחר חשיפה כל גופית ל-100
 - מעל 10 Gray התמותה מגיעה למאה אחוז
 - נגרמת מפגיעה **בתאים מתחלקים**: מח העצם, רירית המעי
 - חומרתה וקצב התפתחותה תלויים במנת הקרינה

מחלת קרינה חריפה

שלבים:

- פרודרום תקופה המקדימה את הופעתה של מחלה, אך יש בה תסמינים המרמזים על המחלה העתידית
 - שלב לטנטי
 - מחלת קרינה חריפה
 - התאוששות/ מוות

מחלת קרינה חריפה

זה עניין של חיים

ההבדל בין שדה קרינה לנפגע מזיהום

שימוש נכון במיגון

- (ציוד/מבנים) נצל אמצעי מיגון קבועים או זמניים
- ערכת המלט"ק מספקת הגנה מפני זיהום חלקיקי אלפא ובטא
 - בקרינת גמא- זמן, מרחק, בידוד

זיהום חיצוני והטיפול בו

- פיזור חומר רדיואקטיבי על הגוף או הביגוד לרוב אינו גורם לנזק מיידי אלא לכוויות
 - הפשטת הנפגע תרחיק כ- 90% מכמות הזיהום
 - שטיפה במים וסבון בדר"כ מספיקה לטיהור חיצוני

זיהום פנימי והטיפול בו

מטרת הטיפול- **הפחתת הנזק** הנוצר מהחומר המזהם

קשירה של החומר ונטרול פעולתו הביולוגית

אוראניום

מניעת קליטת החומר באיברי המטרה הרגישים

יוד רדיואקטיבי

האצת תהליך הפרשת החומר מהגוף

צזיום

עקרונות מענה לאירוע

מקרה מיוחד של אירוע חומ"ס/ אט"ה

- ברירת המחדל- "זיהום קורן"
 - בידוד אזור האירוע •
- מרחק גדול ככול הניתן ממקורות קורנים
 - קיצור זמן החשיפה למינימום ההכרחי
 - שדה קרינה- <u>אין להיכנס</u>
- LEVEL C מיגון אישי ע"ב ערכת מלט"ק •
- אין לאכול/ לשתות/ לעשן עד לאחר הסרת המיגון •
- ניטור וטיהור במידת הצורך (תחנת הפשטה בבי"ח)

עקרונות הטיפול הרפואי

- הרחקה מהירה של הנפגע מהזירה (מיגון אישי במידה ונדרש)
 - טיפול בטראומה ע"פ PHTLS סייפול בטראומה ע"פ
 - הפשטת הנפגע- גזירת בגדים ללא ניעור
 - הכנסת הבגדים לשקית כביסה מזוהמת
 - (למעט פנים/ עירוי) כיסוי הנפגע- כול הגוף כולל ראש
 - לאחר הפשטה- מיגון אוניברסלי

יעד פינוי של נפגעי קרינה

- טראומה מסכנת חיים- מרכז טראומה/ בי"ח קרוב
 - הודעה לבי"ח על הגעת נפגע מזוהם
- בתי חולים יעודיים (שיבא, וולפסון, בילינסון, עין כרם, רמב"ם, כרמל, סורוקה....)

סיום אירוע

1. מעבר בתחנת טיהור והפשטה בבי"ח (כולל ניטור)

ע"פ הנחיית מרכז מד"א בתיאום גורמים מקצועיים • ריכוז ציוד • ניטור וטיפול ברכב

2. רישום אנשי צוות

מה לקחת הביתה . . .

- נפגע קרינה אינו "זורח בלילה"!!
 - טראומה קודמת לקרינה
- נפגע שנחשף לשדה קרינה אינו מסכן צוות רפואי
- מעל ומעבר LEVEL C מיגון צוות מד"א בערכת מלט"ק
 - הפשטה (גזירה) וכיסוי הנפגע (עטיפה)
 - הודעה לבי"ח

שאלות?

זה עניין של חיים