최소신장트리

Outline

- ◈ 16.1 가중그래프
 - ◈ 16.2 최소신장트리
 - ◈ 16.3 탐욕법
 - ◈ 16.4 최소신장트리 알고리즘
 - ◈ 16.5 응용문제

가중그래프

- ▶ 가중그래프(weighted graph):
 각 간선이 무게(weight)라
 부르는 수치값을 가지는
 그래프
- ◆ 무게: 거리, 비용, 시간 등
- 예
 - 오른편 철도 그래프에서, 간선의 무게는 양끝점 역간의 여행거리(km)를 표현

최소신장트리

신장 부그래프(spanning subgraph)

■ 그래프 *G*의 모든 정점들을 포함하는 부그래프

신장트리(spanning tree)

■ (자유) 트리인 신장 부그래프

최소신장트리(minimum spanning tree, **MST**)

■ 가중그래프의 총 간선 무게가 최소인 신장트리

◈ 응용

- 통신망
- 교통망

최소신장트리 속성

- ◈ 싸이클 속성
 - ◈ 분할 속성

최소신장트리 알고리즘의 정확성 검증에 이용

싸이클 속성

싸이클 속성

- *T*를 가중그래프 *G*의 **최소신장트리**라 하자
- *e*를 *T*에 존재하지 않는 *G*의 간선으로, *C*를 *e*를 *T*에 추가하여 형성된 **싸이클**로 가정
- 그러면 C의 모든 간선 f에 대해, $weight(f) \le weight(e)$

증명

- 모순법
- 만약 weight(f) > weight(e)라면, f를 e로 대체함으로써 무게가 더 작은 신장트리를 얻을 수 있기 때문

f를 e로 대체하면 더 좋은 신장트리를 얻는다

분할 속성

24 80

분할 속성

- *G*의 정점들을 두 개의 부분집합 *U*와 *V*로 **분할**한다고 하자
- e를 분할을 가로지르는 **최소 무게**의 간선이라고 하자
- 간선 *e*를 포함하는 *G*의 **최소신장트리**가 반드시 존재

증명

- *T를 G*의 MST라 하자
- 만약 T가 e를 포함하지 않는다면, e를 T에 추가하여 형성된 싸이클 C를 구성하는 간선들 가운데 분할을 가로지르는 간선 f가 존재
- W이클 속성에 의해,weight(f) ≤ weight(e)
- 그러므로, weight(f) = weight(e)
- *f*를 *e*로 대체하면 또 하나의 **MST**를 얻을 수 있다

f를 e로 대체하면 다른 MST를 얻는다

탐욕법

- ◆ 탐욕법(greedy method): 일반적인 알고리즘 설계 기법 → 가운데 하나 – 다음 요소에 기초하여 설계
 - **구성**(configuration): 다양한 선택, 모음, 또는 찾아야 할 값들
 - 목표(objective): 구성에 할당된 점수가 존재하며, 이를 최대화 또는 최소화해야 하는 상황
- ▶ 탐욕적 선택 속성(greedy-choice property)을 가진 문제에 적용할 경우 가장 잘 맞는다
 - 출발 구성으로부터 시작하여 지속적인 지역적 향상을 통해 전체 최적해를 항상 찾을 수 있다
- 예
 - 잔돈 거스르기
 - 부분적 배낭 문제(the fractional knapsack problem)
 - 최소신장트리 문제(minimum spanning trees)

잔돈 거스르기 문제

- ◈ 구성
 - 거슬러줘야 할 금액 정보
 - 종류별로 여러 개의 동전들
- ◈ 목표
 - 동전 수를 최소화
- ◈ 탐욕해
 - 가능하면 항상 제일 큰 동전으로 거슬러준다

"만약 이 문제가 **탐욕적 선택 속성**을 가졌다면 **탐욕해는 최적해**가 된다"

- **예 1:** 동전 종류가 32원, 8원, 1원인 경우
 - **탐욕적 선택 속성** 있음 왜냐면, 32원 이상의 금액은 32원을 빼고는 최소 수의 동전으로 만들 수가 없기 때문(8원을 넘지만 32원에 못 미치는 금액에 대해서도 마찬가지)
- ◆ 예 2: 동전 종류가 30원, 20원, 5원, 1원인 경우
 - **탐욕적 선택 속성** 없음 왜냐면, 40원은 두 개의 20원만으로 만들 수 있으나, 탐욕해는 세 개의 동전을 택하기 때문(어떤 세 개인가?)

부분적 배낭 문제

- lacktriangle 구성: n 항목의 집합 S 각 항목 i는 다음을 가진다
 - *b_i*: 양수의 이득
 - *v_i*: 양수의 부피
 - ◈ 목표
 - 최대 부피 한도 V 내에서, 최대의 총이득을 주는 항목들을 선택
 - ◆ 부분적 배낭 문제(the fractional knapsack problem): 각 항목의 일부만을 취할 수 있는 문제
 - x_i 가 항목 i를 덜어 담는 양을 표시한다고 하면,
 - 목표: $\sum_{i \in S} b_i(x_i/v_i)$ 를 최대화
 - 제약: $\sum_{i \in S} x_i \leq V$

부분적 배낭 문제 예

b_i : 양수의 이득
 v_i : 양수의 부피

◆ 목표: 최대 부피 한도 V 내에서, 최대의 총이득을 주는 항목들을 선택

탐욕해:

- **B** (3ml)
- **A** (7ml)

총이득: 43

0-1 배낭 문제

- **0/1 배낭 문제**(또는 all-or-nothing knapsack problem): 각 항목의 일부만을 취할 수 없는 문제
- ◆ 0/1 배낭 문제는 탐욕적 선택 속성을 만족하지 **않는다**
- 예: 최적해는 이득 = 36을 가져다 주는 {A, E}지만, 탐욕해는 이득 = 24를 가져다 주는 {B, E, D}를 고른다

항목:					X	
	A	В	C	D	E	
이득:	32	15	27	5	4	
무게:	8kg	3kg	9kg	5kg	2kg	
가치: (kg 당)	4	5	3	1	2	

배낭 10kg

탐욕해:

- **B** (3kg)
- **E** (2kg)
- **D** (5kg)

총이득: 24

최소신장트리 알고리즘

- ◆ Prim-Jarnik 알고리즘
 - ◆ Kruskal 알고리즘
 - ◈ Baruvka 알고리즘

모두 **탐욕법**으로 해결

Prim-Jarnik 알고리즘

- ◈ 탐욕 알고리즘
 - ◆ 대상: 단순 연결 무방향 가중그래프
 - ◈ 임의의 정점 s를 택하여, s로부터 시작하여 정점들을 (가상의) **배낭**에 넣어가며 배낭 안에서 MST T를 키워 나간다 -s는 T의 루트가 된다
 - ◈ 각 정점 v에 라벨 d(v)를 정의 -d(v)는 배낭 안의 정점과 배낭 밖의 정점을 연결하는 간선의 무게
 - ◈ 반복의 각 회전에서:
 - 배낭 밖의 정점들 가운데 최소 d(z) 라벨을 가진 정점 z를 배낭에 넣는다
 - z에 인접한 정점들의 라벨을 갱신

Prim-Jarnik 알고리즘 (conti.)

- 배낭 밖의 정점들을 우선순위 큐에 저장
 - **키**: 거리
 - **원소**: 정점
- ◈ 보조 메쏘드
 - Q.replaceKey(e, k): 원소 e의 키를 k로 변경하고 우선순위 큐 Q 내의 e의 위치를 갱신
- - 거리(distance): *d*(*v*)
 - **위치자**(locator): 우선순위 큐에서의 v의 위치
 - **부모**(parent): **p**(**v**), MST에서 **v**의 부모를 향한 가서

```
Alg PrimJarnikMST(G)
   input a simple connected weighted
              graph G with n vertices and m
edges
   output an MST T for G
1. for each v \in G.vertices()
      d(v) \leftarrow \infty
      p(v) \leftarrow \emptyset
2. s \leftarrow a \text{ vertex of } G
3. d(s) \leftarrow 0
4. Q \leftarrow a priority queue containing all the
   vertices of G using d labels as keys
5. while (!Q.isEmpty())
       {pull a vertex into the sack}
       u \leftarrow Q.removeMin()
       for each e \in G.incidentEdges(u)
          z \leftarrow G.opposite(u, e)
          if ((z \in Q) \& (w(u, z) < d(z)))
             d(z) \leftarrow w(u, z)
             p(z) \leftarrow e
             Q.replaceKey(z, w(u, z))
```

Prim-Jarnik 알고리즘이 탐욕법 알고리즘인 이유

- ◆ 구성: 다양한 수치의 항목들 가운데 선택
 - **직녀의 문제:** 다양한 이득을 주는 물건들 가운데 선택
 - MST 문제: 다양한 무게의 간선들 가운데 선택
- ◆ 목표: 총수치를 최대화 또는 최소화
 - **직녀의 문제:** 배낭 안 물건들의 총이득을 최대화
 - MST 문제: 배낭 안 간선들의 총무게를 최소화
- ◆ 탐욕적 해결: 항상 최대/최소 수치 항목부터 배낭에 포함
 - **직녀의 문제:** 항상 최대 이득 물건부터 배낭에 포함
 - MST 문제: 항상 최소 무게 간선부터 배낭에 포함

- ◆ 즉, 구성, 목표, 해결절차 면에서 **탐욕법**의일반 공식과 일치
- ▶ **탐욕법**을 사용하는정당성
 - 탐욕적 선택 속성
 - 즉, 탐욕적 문제 **구성**과 목표 설정이 가능하더라도, **탐욕적** 해결로 목표를 성취할 수 있는 문제여야 함

Prim-Jarnik 알고리즘 수행 예

Prim-Jarnik 알고리즘 수행 예 (conti.)

Algorithms

최소신장트리

18

Prim-Jarnik 알고리즘 정확성

- ▶ Prim-Jarnik 알고리즘은 반복의 각 회전에서 항상 배낭 C 안의 정점을 배낭 C 밖의 정점과 이어주는 최소 무게의 간선을 선택하므로, MST에 항상 타당한 간선을 추가한다
- 따라서 최소신장트리에 관한 분할 속성의 요건을 마족

Prim-Jarnik 알고리즘 분석

- ◈ 그래프 작업
 - 메쏘드 incidentEdges는 각 정점에 대해 한번 호출
- ◈ 라벨 작업
 - 정점 z의 거리, 부모, 위치자 라벨을 O(deg(z)) 시간 읽고 쓴다
 - 라벨을 읽고 쓰는데 **O**(1) 시간 소요
- ◆ 우선순위 큐 (**힙**으로 구현할 경우) 작업
 - 각 정점은 우선순위 큐에 한번 삽입되고 한번 삭제: 삽입과 삭제에 각각 $O(\log n)$ 시간 소요
 - 우선순위 큐 내의 정점 w의 키는 최대 deg(w)번 변경: 각 키 변경에 $O(\log n)$ 시간 소요
- 그래프가 인접리스트 구조로 표현되어 있다면, Prim-Jarnik 알고리즘은 $\mathbf{O}((n+m)\log n)$ 시간에 수행
 - 참고: $\sum_{v} deg(v) = 2m$
- \bullet 단순 연결그래프에서 n = O(m)이므로, 실행시간: $O(m \log n)$

Kruskal 알고리즘

- ◈ 탐욕 알고리즘
- ◈ 알고리즘을 위한 초기 작업
 - 모든 정점을 각각의 독자적인 (실제의) **배낭**에 넣는다
 - 배낭 밖의 간선들을 **우선순위** 큐에 저장
 - **키**: 무게
 - 원소: 간선
 - 비어 있는 MST *T*를 초기화
- ◈ 반복의 각 회전에서:
 - 두 개의 다른 배낭 속에 양끝점을 가진 최소 무게의 간선을 MST T에 포함하고 두 배낭을 하나로 합친다
- ◈ 반복이 완료되면:
 - MST *T*를 포함하는 한 개의 배낭만 남는다

Alg KruskalMST(G)

input a simple connected weighted graph G with n vertices and m edges

output an MST T for G

- 1. **for each** $v \in G.vertices()$ define a $Sack(v) \leftarrow \{v\}$
- 2. $Q \leftarrow$ a priority queue containing all the edges of G using weights as keys
- 3. $T \leftarrow \emptyset$
- 4. while (T has fewer than n 1 edges) $(u, v) \leftarrow Q$.removeMin() if ($Sack(u) \neq Sack(v)$) Add edge (u, v) to TMerge Sack(u) and Sack(v)
- 5. return T

Kruskal 알고리즘 수행 예

Algorithms

최소신장트리

Kruskal 알고리즘 수행예 (conti.)

Algorithms

최소신장트리

Kruskal 알고리즘 정확성

- ◈ Kruskal 알고리즘의 정확성은 **분할 속성**으로부터 유도
- ◆ Kruskal 알고리즘은 반복의 회전마다 간선 (u, v)를
 MST T에 추가
- ◈ 이때 정점 집합 V가 u를 포함하는 배낭 V_1 과, V_1 에 속하지 않은 나머지 정점들을 모두 포함하는 배낭 V_2 로 분할되었다고 보면,
- ◆ 이는 모든 정점이 두 부분으로 분리된 **분할** 상태
- ◆ Q로부터 간선들을 무게 순서로 추출하고 있으므로, (u, v)는 양끝점이 각각 V_1 과 V_2 에 속한 최소 무게의 간선
- 따라서, Kruskal 알고리즘은 항상 타당한 MST 간선을 추가한다

Algorithms

Kruskal 알고리즘을 구현 위한 데이터구조

- ◈ Kruskal 알고리즘은 **인접 정보**를 사용하지 않는다
 - 인접 정보(부착리스트 또는 인접행렬)가 생략된, 즉 간선리스트 구조로 표현된 그래프에서 수행 가능
- ◈ Kruskal 알고리즘은 **트리들의 숲**을 유지
 - 각 트리들을 **리스트**로 구현된 **분리집합**에 저장하고 각 원소에 소속 집합을 가리키는 참조를 저장
 - ◆ 작업 find(u)는 u가 소속된 집합을 반환: O(1) 시간 소요
 - ◆ 작업 union(u, v)은 크기가 작은 집합의 원소들을 큰 집합 리스트로 옮기며 원소들의 참조를 갱신: $O(min(n_u, n_v))$ 시간 소요 여기서 n_u 와 n_v 는 각각 u와 v를 저장한 집합의 크기

분리집합에 기초한 Kruskal 알고리즘

★ Kruskal 알고리즘의 분리집합에 기초한 버전은 find로 소속 집합 검사를, union으로 배낭 합치기를 수행

Alg KruskalMST-DisjointSets(G)

input A simple connected weighted graphG with n vertices and m edgesoutput An MST T for G

- 1. Let \mathbf{D} be a disjoint set of the vertices of \mathbf{G} , where each vertex forms a separate set
- 2. Let Q be a priority queue storing the edges of G, sorted by their weights
- 3. Let **T** be an initially-empty tree
- 4. while (!Q.isEmpty()) $(u, v) \leftarrow Q.removeMin()$ if $(D.find(u) \neq D.find(v))$ Add(u, v) to TD.union(u, v)
- 5. return T

Kruskal 알고리즘 분석

- ◈ 우선순위 큐 초기화 작업
 - **힙**을 사용하여 우선순위 큐 Q를 구현하면, 반복적인 삽입 방식에 의해서는 $\mathbf{O}(m \log m)$ 시간에, 상향식 힙 생성 방식에 의해서는 $\mathbf{O}(m)$ 시간에 Q 생성 가능
- ◈ 반복의 각 회전에서
 - 최소 무게의 간선을 $O(\log m)$ 시간에 삭제 가능 여기서, G가 단순그래프이므로, $O(\log m) = O(\log n)$
 - 각 배낭을 위한 **분리집합**을 리스트로 구현하면, find(u) ≠ find(v) 검사에 **O**(1) 시간
 - 두 개의 배낭 Sack(u), Sack(v)를 합치는데 O(min(|Sack(u)|, |Sack(v)|)) 시간 원소가 새 배낭으로 합쳐질 때마다 최소 두 배 크기의 배낭으로 합쳐지므로, 각 원소는 최대 $\log n$ 번 이동 이를 모든 정점에 대해 누적하면 $O(n \log n)$
- ◆ 총 반복 회수: 최악의 경우 m번
- \bullet 그러므로 Kruskal 알고리즘은 $O((n + m)\log n)$ 시간에 수행
- ◈ G가 단순 연결그래프인 경우 n = O(m)이므로, 실행시간은 $O(m \log n)$

Baruvka 알고리즘

- ◆ a.k.a. Sollin 알고리즘
- ◆ Kruskal이나 Prim-Jarnik
 알고리즘과 달리, 우선순위
 큐를 사용하지 않는다
- ★ Kruskal 알고리즘과
 마찬가지로, Baruvka
 알고리즘도 모든 정점을
 각각의 독자적인 (실제의)
 배낭에 넣고 시작
- ★ Kruskal이나 Prim-Jarnik 알고리즘이 반복의 각 회전에서 한 개의 간선을 취함으로써 배낭을 키워 나가는 것과 달리, 한꺼번에 여러 개의 간선을 취하여 여러 수의 배낭을 동시에 키워 나감

Alg BaruvkaMST(G)

input A simple connected weighted graph G = (V, E) with n vertices and m edges output An MST T for G

- 1. $T \leftarrow V$ {just the vertices of G}
- 2. **while** (T has fewer than n-1 edges) **for each** connected component C_i in TLet edge e be the smallest-weight

 edge from C_i to another

 component

 in T **if** (e is not already in T)

Add edge **e** to **T**

3. **return** *T*

Baruvka 알고리즘 수행 예

Algorithms

최소신장트리

Baruvka 알고리즘 정확성

- Baruvka 알고리즘 반복의 각 단계에서는, 현재의 MST T의 각 연결요소 C_i 사이를 교차하는 최소무게의 간선들을 취한다
- lacktriangle 여기서 V가 C_i 에 속한 정점들과, C_i 바깥의 정점들로 **분할**되었다고 가정하면,
- ◆ C_i를 위해 선택된 간선 e는 e가 MST에 반드시 포함되어야 한다는 MST에 관한 분할 속성의 요건을 만족
- 따라서 반복의 각 단계에서 취해지는 간선들은 모두 타당한 선택이 된다

Baruvka 알고리즘 구현

- ◆ 간선 삽입에 따른 연결요소(트리)들의 숲을 유지: 인접리스트를 사용하면 O(1) 시간에 처리 가능
- lacktriangle 연결요소들을 찾기 위해 숲을 순회: DFS를 사용하면 O(n) 시간에 수행 가능
- ◈ 정점이 소속된 연결요소 표시: 각 정점에 라벨 정의하여 표시
- ◈ 연결요소 C_i 에 인접한 최소 무게의 간선 찾기: 그래프 G의 인접리스트에서 C_i 에 속한 정점들을 조사

Baruvka 알고리즘 분석

- ◈ 반복의 각 회전에서
 - 각 연결요소 C_i 사이를 교차하는 최소 무게의 간선들을 찾기 위해, 각 C_i 의 인접리스트를 전면적으로 탐색
 - 이때 그래프 G의 모든 간선 (v, u)를, (각 정점은 자신이 소속된 연결요소 라벨을 가지므로) 한 번은 v에 대해 또 한 번은 u에 대해, 합계 두 번 조사하므로 총 O(m) 시간 소요
 - 모든 정점을 재라벨: **O**(*n*)
 - *T*의 모든 간선을 순회: **O**(*n*)
 - 따라서 반복 1회전의 수행 시간은 O(m) (∵n ≤ m)

- ◈ 반복회수
 - 반복의 각 회전에서, 각 배낭으로부터 나오는 하나의 간선을 고르고, 각각의 새로운 연결요소들을 합쳐 새 배낭을 만든다
 - 즉, 각각의 기존 배낭이 최소 한 개의 다른 기존 배낭과 합쳐진다
 - 따라서 반복의 회전마다 배낭의 총수는 최소 절반으로 줄어든다
 - 따라서 총 반복회수: O(log n)
- ◆ 그러므로 Baruvka
 알고리즘의 실행시간:
 O(m log n)

MST 알고리츔 비교

알고리즘	주요 전략	수행 시간	외부 데이터구조
Prim- Jarnik	탐욕	$\mathbf{O}(m \log n)$	◆ 정점들을 저장하기 위한 우선순위 큐
Kruskal	탐욕	$\mathbf{O}(m \log n)$	◆ 간선들을 저장하기 위한 우선순위 큐◆ 배낭들을 구현하기 위한 분리집합 (리스트로 구현 가능)
Baruvka	탐욕	$\mathbf{O}(m \log n)$	◆ 연결요소를 표현하기 위한 데이터구조 필요

Algorithms 최소신장트리 33

응용문제: 보석전시회

- ★ 보석전시회가 열리고 있는 긴 복도를 표현하는 1차원 축 L이 있다
- ◈ 복도축 L을 따라 보석들이 놓인 위치를 나타내는 실수들의 집합 $X = \{x_0, x_1, ..., x_{n-1}\}$ 가 주어졌다
- 한 명의 경비가 자신이 서있는 위치에서 좌우 양쪽으로 최대 k
 거리까지 커버할 수 있다고 가정하자
 – 따라서 좌우 한쪽으로는 k/2
- ▶ 최소 인원의 경비를 사용하여 X의 위치들에 놓인 보석들을 모두 지킬수 있도록 하는 경비들의 배치를계산할 알고리즘 gemGuard(X, k)를 의사코드로 작성하라

해결

- ◈ L 상의 모든 지정된 위치를 최소 개수의 k 간격으로 커버할 수 있는 **탐욕 알고리즘**을 사용
- ◆ 우선 X의 원소들(즉, 위치들)을 오름차순으로 정렬
- ◆ 다음, X의 첫 원소 x_0 에 대해 x_0 로부터 k/2 위치에 경비를 세운다 이 경비는 자신의 좌우 k/2 거리 내에 있는 보석들을 모두 커버
- lacktriangle 커버되지 않은 다음 지점이 x_i 라면, x_i 로부터 위와 동일한 커버링 절차를 반복
- ◈ X의 모든 원소들을 커버할 때까지 이 절차를 반복

해결 (conti.)

Alg gemGuard(X, k)

input list X of points on L, interval k
output list G of guard points

- 1. Sort the points in **X** in ascending order
- 2. $G \leftarrow empty\ list$
- $3. x \leftarrow X.removeFirst()$
- $4. \mathbf{g} \leftarrow \mathbf{x} + \mathbf{k}/2$
- 5. *G.addLast(g)* {the first guard}
- 6. **while** (!*X.isEmpty*())

$$x \leftarrow X.removeFirst()$$

if
$$(x - g > k/2)$$
 {uncovered}

 $g \leftarrow x + k/2$

G.addLast(*g*) {next guard}

7. return G.elements()

- ♥ 목표: 최대화해야 할 목표(최소의 경비로 최다의 보석을 커버)
- ◆ 구성: 다양한 수치의 항목들(보석들의 위치)
- 탐욕적 해결: 출발 이후 최소 거리에 있는 원소부터 반복적으로 처리
- ◆ 탐욕적 선택 속성:
 최적해 구함

응용문제: 공연홀 좌석배정

- 당신이 살고 있는 Sin City의 시립 공연홀의 관장은 오로지 돈, 즉 티켓 판매고에만 관심이 있다.
- 단체관람객이 공연을 보기 위해서는 그 단체의 모든 멤버가 좌석을 배정받아야만 하며 그렇지 않으면 관람을 포기한다

- 관장은 당신을 판매담당 고문으로 영입하여 티켓 판매고를 올리는 문제를 일임했다 – 여러가지 생각 끝에 당신은 새로운 티켓 판매전략을 제안했다
- 새 전략: "선착순으로 좌석을 배정하기 보다는 큰 단체에게 좌석을 우선 배정하고 그 후 크기가 작은 순서로 단체에게 배정하며 마지막에는 개인관람객(즉, 1인 단체)에게 배정"

응용문제: 공연홀 좌석배정 (conti.)

◆ 티켓을 사려는 단체들:

$$G[1..m] = (g_1, g_2, ..., g_m)$$

- $g_i \ge 1$ 는 단체 i의 크기
- ◈ 총 관람석 수: n
- ▶ 탐욕적 좌석배정 알고리즘 seat(G, n):
 - admit(i): 단체 *i*를 입장시킴
 - reject(i)는 단체 *i*를 좌석 부족으로 돌려 보냄

```
Alg seat(G, n)
   input array G[1..m] of integers, integer n
   output number of people admitted
1. admitted \leftarrow 0
2. G \leftarrow Sort G largest to smallest
3. remaining \leftarrow n
4. for i \leftarrow 1 to m
        if (G[i] \leq remaining)
            admit(i)
            remaining \leftarrow remaining - G[i]
            admitted \leftarrow admitted + G[i]
        else
            reject(i)
```

5. return admitted

응용문제: 공연홀 좌석배정 (conti.)

- A. 탐욕 알고리즘 seat가 **최적 알고리즘**은 아니라는 것을 **예**를 들어 설명하라
 - B. 만약 k명의 사람을 입장시키는 것이 **최적해**라면, seat 알고리즘은 적어도 k/2명의 사람을 입장시킨다는 것을 설명하라

해결 A

- \bullet **Q**: G = ((n + 2)/2, n/2, n/2)
 - 구체적 예: n = 100에 대해 G = (51, 50, 50)
 - ◆ G 에 대해 탐욕 알고리즘 seat는 (n + 2)/2 크기의 단체를 우선 입장시킬 것이고 나머지 단체들은 모두 입장시키지 못할 것이다
 - ◈ 반면, **최적 알고리즘**이라면 n/2 크기의 두 단체만을 입장시킴으로써 n개의 좌석을 모두 채울 것이다

해결 B

- seat 알고리즘은 항상 적어도 k/2명의 사람을 입장시킨다는 명제에 대한 증명 – 여러 가지 경우로 나누어 고려하여 어떤 경우에도 명제가 성립함을 증명
- ◈ 아래 둘 중 하나다 seat 알고리즘이 주어진 G의 모든 단체를:
 - 입장시키든가 (전자)
 - 입장시키지 못하든가 (후자)
- ◈ (전자) seat 알고리즘이 모든 단체를 입장시킨다면:
 - k명을 모두 입장시킨 것이니 적어도 k/2명을 입장시킨 것이된 된다 따라서 증명됨

해결 B

- ◈ (후자) 모든 단체를 입장시키지는 못한다면:
 - 입장시키지 못한 단체 g_i 가 적어도 한 개 존재하며, 아래 둘 중 하나다
 - $g_i \ge k/2$
 - $g_i < k/2$
 - $g_i \ge k/2$ 경우
 - ◆ 탐욕 알고리즘 seat의 속성 상 g_i 보다 큰 단체를 먼저 입장시켰을 것이다 그런 단체가 없다면 g_i 를 먼저 입장시킬 것이 확실하기 때문
 - 즉, 그런 단체가 있든 없든 seat 알고리즘이 최소 k/2명의 사람을 입장시킨다 명제가 증명됨
 - $g_i < k/2$ 경우
 - 이는 seat 알고리즘 수행의 어떤 시점에서 $remaining < g_i < k/2$ 이 성립했다는 의미 즉, 그 시점에 남은 좌석 수가 k/2보다 작았음
 - * k ≤ n이므로, 이 말은 바로 그 시점에 적어도 k/2명의 관객이 이미 입장했다는 말과 같다 명제가 증명됨

응용문제: 8자-모양 그래프에서의 MST

- ◈ 아래 그림처럼, n개의 정점과 m개의 간선으로 이루어진, 두 개의 싸이클이 한 정점에서 만난 형태의 단순 연결 무방향 가중그래프 G가 있다
- ◈ **전제:** 두 개의 싸이클은 반드시 동일한 개수의 정점으로 이루어진 것은 아니며, n에 대해서도 아무런 가정이 없다
- ◆ G의 최소신장트리를 구하는 효율적인 알고리즘을 작성하고 실행시간을 구하라

해결

- 8자-모양 그래프에 대한 최소신장트리는 기존의 MST 알고리즘을 사용하지 않고 지름길 메쏘드로 구할 수 있다
 - **♦** 실행시간: **O**(*n*)

Alg eight-ShapedMST(G)

input a simple connected weighted graph G
 consisting of two cycles with n vertices
 and m edges
output an MST T for G

- 1. $e_1 \leftarrow$ the maximum-weight edge in the left cycle of G {O(n)}
- 2. $e_2 \leftarrow$ the maximum-weight edge in the right cycle of G {O(n)}
- 3. $T \leftarrow E (\{e_1\} \cup \{e_2\})$
- 4. return T

{Total $\mathbf{O}(n)$ }