Banco de Dados

Modelo Relacional Projeto Lógico

FACOM - UFMS

Vanessa Borges

vanessa.a.borges@ufms.br

Visão Geral

• Já criamos **abstração** do mundo real em um <u>modelo conceitual</u> de dados

 Agora iremos descrever a estrutura de um banco de dados da forma como será manipulado pelo SGBD

 Esse modelo é utilizado nos SGBDs comerciais tradicionais

Conceitos do Modelo Relacional

- O modelo de dados relacional é baseado no conceito de relação matemática
 - A força da estratégia relacional para o gerenciamento de dados vem de uma fundamentação formal baseada na teoria de relações
- Uma relação é um conceito matemático baseado na ideia de conjuntos
- O modelo foi proposto por E.F. Codd da IBM em 1970 no artigo:
 - "A Relational Model for Large Shared Data Banks", Communications of the ACM, June 1970
- O artigo causou uma revolução bastante grande no campo dos SGBDs

Modelo relacional

- Um Banco de dados relacional representa uma coleção de relações com nomes distintos
 - Uma relação
 - É uma tabela bidimensional
 - Cada coluna possui um nome distinto
 - Cada atributo possui um domínio
 - Cada domínio possui um valor atômico
 - Todos os valores de uma coluna são valores do mesmo atributo
 - Cada linha da tabela representa um relacionamento entre um conjunto de valores

PESSOA

COD	NOME	CIDADE
C1	João	POA
C2	Pedro	SP
C3	Paulo	SP
C4	Maria	RJ

Definição do modelo relacional

- No modelo formal, registros são chamados de tuplas
- Cada coluna tem um cabeçalho que dá uma indicação do significado do dado na coluna.
 - Os cabeçalhos são chamados de atributos
- Para cada atributo de uma relação, existe um conjunto de valores atômicos permitidos denominados domínio

PESSOA

COD	NOME	CIDADE
C1	João	POA
C2	Pedro	SP
С3	Paulo	SP
C4	Maria	RJ

Relação

- Conjunto não ordenado de tuplas
- Não existem tuplas duplicadas

O grau de uma relação é o número de atributos N desse esquema de relação

Atributo

- São as características da entidade
- Valores dos atributos são atômicos e monovalorados

Tupla

Conjunto ordenado de atributos

Esquema de uma relação

Esquema da relação

Definição formal do esquema de uma relação

- Um esquema de uma relação especifica o nome da relação, o nome de cada atributo e seu respectivo domínio
- O Esquema de uma Relação:
 - Denotado por R (A1, A2,An)
 - R é o nome da relação
 - Os atributos da relação são A1, A2, ..., An
- Exemplo:

CLIENTE (id, nome, endereco, telefone)

- CLIENTE é o nome da relação
- Definido sobre os atributos: id, nome, endereço, telefone
- Nome do atributo
 - Indica o significado dos valores do atributo
 - Designa o papel realizado por um domínio na relação

CLIENTE

ld	Nome	Endereco	Telefone
12	Daniela	Rua das Velas	1334222
13	Mario	Rua Itabuna	4223454

Domínio do atributo

- Determina um conjunto de valores válidos para um atributo
 - Por exemplo, o domínio de id é um número de 6 dígitos
- Dentro de cada tupla, o valor de cada atributo A deve ser um valor atômico D(A)
 - D(Ax) Domínio do atributo Ax
 - Um domínio tem uma definição lógica
 - D(cpf): conjunto de 11 caracteres
 - Um domínio está associado a um tipo de dado (string, inteiro, etc)
 - D(nome): string de até 100 caracteres

Definição formal do esquema de uma relação

- •Notação usual de um esquema:
 - Nome da relação (atributos : tipo (ou domínio),...)
 - Ex: (tipo é opcional na notação)
 - LIVRO (ISBN:String, Titulo:String, Autor: String, Ano: integer, Categoria: String)

LIVRO

ISBN	Titulo	Autor	Ano	Categoria
9580471444	Vidas Secas	Graciliano Ramos	1938	Romance
3456677443	Agosto	Rubem Fonseca	1990	Romance
5633444771	Micrographia	Robert Hooke	1665	Ciências

Sumário de conceitos

Informal	Formal
Tabela (bidimensional)	Relação
Cabeçalho da coluna	Atributo
Tipo de dado da coluna	Domínio
Linha da tabela	Tupla
Definição da tabela	Esquema da relação
Tabela Populada	Estado da relação

Chave

 Nenhum par de tuplas de uma relação pode ter exatamente o mesmo valor para todos os seus atributos

• Superchave:

 Conjunto de um ou mais atributos que, tomados coletivamente, nos permite identificar unicamente uma tupla da relação

Chave candidata:

• Superchave mínima: não podemos remover nenhum atributo e ainda mantemos uma restrição de exclusividade na condição

Chave primária:

 Notação de uma chave candidata escolhida pelo projetista como principal meio de identificar tuplas dentro de uma relação

Chave

• Uma chave é **invariável no tempo** (permanece verdadeira quando inserimos novas tuplas)

• Muitas vezes, números sequenciais são assinalados como chave para identificar o registro na tabela.

DISCIPLINA

<u>id</u>	nome
4620	Fundamentos da Computação
4622	Computação Aplicada

CARRO

placa	numero_chassi	marca	modelo	ano
ABC1D23	9BWZZZ377VT004251	Toyota	Corolla	2023
DEF4G56	8AJZZZ123KT987654	Toyota	Yaris	2024
GHI7J89	3FAHP0HA7AR123456	Honda	Civic	2022
JKL0M12	5YJ3E1EA7KF123456	Honda	Civic	2023
MNO3P45	9C6KE1230M1234567	Ford	Mustang	2023
QRS6T78	3HGCM82633G123789	Ford	EcoSport	2024
TUV9W00	1HGCM82633A123456	Volkswagen	Polo	2023
WXY3Z12	1HGCM82633A654321	Volkswagen	Virtus	2024
ZAB5C67	5YJ3E1EA7KF111111	Tesla	Model 3	2023
CDE8F90	5YJ3E1EA7KF222222	Tesla	Model 3	2025

Superchave?

CARRO

placa	numero_chassi	marca	modelo	ano
ABC1D23	9BWZZZ377VT004251	Toyota	Corolla	2023
DEF4G56	8AJZZZ123KT987654	Toyota	Yaris	2024
GHI7J89	3FAHP0HA7AR123456	Honda	Civic	2022
JKL0M12	5YJ3E1EA7KF123456	Honda	Civic	2023
MNO3P45	9C6KE1230M1234567	Ford	Mustang	2023
QRS6T78	3HGCM82633G123789	Ford	EcoSport	2024
TUV9W00	1HGCM82633A123456	Volkswagen	Polo	2023
WXY3Z12	1HGCM82633A654321	Volkswagen	Virtus	2024
ZAB5C67	5YJ3E1EA7KF111111	Tesla	Model 3	2023
CDE8F90	5YJ3E1EA7KF222222	Tesla	Model 3	2025

Superchave? Sim!

CARRO

placa	numero_chassi	marca	modelo	ano
ABC1D23	9BWZZZ377VT004251	Toyota	Corolla	2023
DEF4G56	8AJZZZ123KT987654	Toyota	Yaris	2024
GHI7J89	3FAHP0HA7AR123456	Honda	Civic	2022
JKL0M12	5YJ3E1EA7KF123456	Honda	Civic	2023
MNO3P45	9C6KE1230M1234567	Ford	Mustang	2023
QRS6T78	3HGCM82633G123789	Ford	EcoSport	2024
TUV9W00	1HGCM82633A123456	Volkswagen	Polo	2023
WXY3Z12	1HGCM82633A654321	Volkswagen	Virtus	2024
ZAB5C67	5YJ3E1EA7KF111111	Tesla	Model 3	2023
CDE8F90	5YJ3E1EA7KF222222	Tesla	Model 3	2025

Superchave?

placa	numero_chassi	marca	modelo	ano
ABC1D23	9BWZZZ377VT004251	Toyota	Corolla	2023
DEF4G56	8AJZZZ123KT987654	Toyota	Yaris	2024
GHI7J89	3FAHP0HA7AR123456	Honda	Civic	2022
JKL0M12	5YJ3E1EA7KF123456	Honda	Civic	2023
MNO3P45	9C6KE1230M1234567	Ford	Mustang	2023
QRS6T78	3HGCM82633G123789	Ford	EcoSport	2024
TUV9W00	1HGCM82633A123456	Volkswagen	Polo	2023
WXY3Z12	1HGCM82633A654321	Volkswagen	Virtus	2024
ZAB5C67	5YJ3E1EA7KF111111	Tesla	Model 3	2023
CDE8F90	5YJ3E1EA7KF222222	Tesla	Model 3	2025

Superchave? Não!

CARRO

placa	numero_chassi	marca	modelo	ano
ABC1D23	9BWZZZ377VT004251	Toyota	Corolla	2023
DEF4G56	8AJZZZ123KT987654	Toyota	Yaris	2024
GH17J89	3FAHP0HA7AR123456	Honda	Civic	2022
JKL0M12	5YJ3E1EA7KF123456	Honda	Civic	2023
MNO3P45	9C6KE1230M1234567	Ford	Mustang	2023
QRS6T78	3HGCM82633G123789	Ford	EcoSport	2024
TUV9W00	1HGCM82633A123456	Volkswagen	Polo	2023
WXY3Z12	1HGCM82633A654321	Volkswagen	Virtus	2024
ZAB5C67	5YJ3E1EA7KF111111	Tesla	Model 3	2023
CDE8F90	5YJ3E1EA7KF222222	Tesla	Model 3	2025

Superchave?

CARRO

placa	numero_chassi	marca	modelo	ano
ABC1D23	9BWZZZ377VT004251	Toyota	Corolla	2023
DEF4G56	8AJZZZ123KT987654	Toyota	Yaris	2024
GHI7J89	3FAHP0HA7AR123456	Honda	Civic	2022
JKL0M12	5YJ3E1EA7KF123456	Honda	Civic	2023
MNO3P45	9C6KE1230M1234567	Ford	Mustang	2023
QRS6T78	3HGCM82633G123789	Ford	EcoSport	2024
TUV9W00	1HGCM82633A123456	Volkswagen	Polo	2023
WXY3Z12	1HGCM82633A654321	Volkswagen	Virtus	2024
ZAB5C67	5YJ3E1EA7KF111111	Tesla	Model 3	2023
CDE8F90	5YJ3E1EA7KF222222	Tesla	Model 3	2025

Superchave? Sim!

Chave candidata

CARRO

placa	numero_chassi	marca	modelo	ano
ABC1D23	9BWZZZ377VT004251	Toyota	Corolla	2023
DEF4G56	8AJZZZ123KT987654	Toyota	Yaris	2024
GH17J89	3FAHP0HA7AR123456	Honda	Civic	2022
JKL0M12	5YJ3E1EA7KF123456	Honda	Civic	2023
MNO3P45	9C6KE1230M1234567	Ford	Mustang	2023
QRS6T78	3HGCM82633G123789	Ford	EcoSport	2024
TUV9W00	1HGCM82633A123456	Volkswagen	Polo	2023
WXY3Z12	1HGCM82633A654321	Volkswagen	Virtus	2024
ZAB5C67	5YJ3E1EA7KF111111	Tesla	Model 3	2023
CDE8F90	5YJ3E1EA7KF222222	Tesla	Model 3	2025

Chave candidata?

Chave candidata

CARRO

placa	numero_chassi	marca	modelo	ano
ABC1D23	9BWZZZ377VT004251	Toyota	Corolla	2023
DEF4G56	8AJZZZ123KT987654	Toyota	Yaris	2024
GHI7J89	3FAHP0HA7AR123456	Honda	Civic	2022
JKL0M12	5YJ3E1EA7KF123456	Honda	Civic	2023
MNO3P45	9C6KE1230M1234567	Ford	Mustang	2023
QRS6T78	3HGCM82633G123789	Ford	EcoSport	2024
TUV9W00	1HGCM82633A123456	Volkswagen	Polo	2023
WXY3Z12	1HGCM82633A654321	Volkswagen	Virtus	2024
ZAB5C67	5YJ3E1EA7KF111111	Tesla	Model 3	2023
CDE8F90	5YJ3E1EA7KF222222	Tesla	Model 3	2025

Chave candidata? Não!

Chave candidata:

Superchave mínima: não podemos remover nenhum atributo e ainda mantemos uma restrição de exclusividade na condição

Chave candidata

 O esquema da relação pode possuir mais de uma chave. Nesse caso cada uma das chaves é chamada chave candidata

CARRO

placa	numero_chassi	marca	modelo	ano
ABC1D23	9BWZZZ377VT004251	Toyota	Corolla	2023
DEF4G56	8AJZZZ123KT987654	Toyota	Yaris	2024
GHI7J89	3FAHP0HA7AR123456	Honda	Civic	2022
JKL0M12	5YJ3E1EA7KF123456	Honda	Civic	2023
MNO3P45	9C6KE1230M1234567	Ford	Mustang	2023
QRS6T78	3HGCM82633G123789	Ford	EcoSport	2024
TUV9W00	1HGCM82633A123456	Volkswagen	Polo	2023
WXY3Z12	1HGCM82633A654321	Volkswagen	Virtus	2024
ZAB5C67	5YJ3E1EA7KF111111	Tesla	Model 3	2023
CDE8F90	5YJ3E1EA7KF222222	Tesla	Model 3	2025

Chave primária

• É comum designar uma das chaves candidatas como chave primária.

CARRO

placa	numero_chassi	marca	modelo	ano
ABC1D23	9BWZZZ377VT004251	Toyota	Corolla	2023
DEF4G56	8AJZZZ123KT987654	Toyota	Yaris	2024
GHI7J89	3FAHP0HA7AR123456	Honda	Civic	2022
JKL0M12	5YJ3E1EA7KF123456	Honda	Civic	2023
MNO3P45	9C6KE1230M1234567	Ford	Mustang	2023
QRS6T78	3HGCM82633G123789	Ford	EcoSport	2024
TUV9W00	1HGCM82633A123456	Volkswagen	Polo	2023
WXY3Z12	1HGCM82633A654321	Volkswagen	Virtus	2024
ZAB5C67	5YJ3E1EA7KF111111	Tesla	Model 3	2023
CDE8F90	5YJ3E1EA7KF222222	Tesla	Model 3	2025

Chave primária?

Chave primária

CARRO

placa	numero_chassi	marca	modelo	ano
ABC1D23	9BWZZZ377VT004251	Toyota	Corolla	2023
DEF4G56	8AJZZZ123KT987654	Toyota	Yaris	2024
GHI7J89	3FAHP0HA7AR123456	Honda	Civic	2022
JKL0M12	5YJ3E1EA7KF123456	Honda	Civic	2023
MNO3P45	9C6KE1230M1234567	Ford	Mustang	2023
QRS6T78	3HGCM82633G123789	Ford	EcoSport	2024
TUV9W00	1HGCM82633A123456	Volkswagen	Polo	2023
WXY3Z12	1HGCM82633A654321	Volkswagen	Virtus	2024
ZAB5C67	5YJ3E1EA7KF111111	Tesla	Model 3	2023
CDE8F90	5YJ3E1EA7KF222222	Tesla	Model 3	2025

Chave primária? Sim!

Chave primária

- Chave cujos valores distinguem uma tupla das demais dentro de uma relação.
- · Identifica a tupla de forma única
- Usada como referência a partir de outra tupla
- Atributos da chave primaria recebem sublinhado:
 - CARRO (placa, <u>numero_chassi</u>, marca, modelo, ano)

Restrições em modelo relacional

 Restrições são condições que devem ser mantidas por todos os estados válidos da relação

- Restrições
 - de chave e sobre o valor NULL
 - de domínio
 - Integridade referencial
 - Outros tipos de restrições
- Restrições de integridade:
 - Devem ser verdadeiras para cada instância do banco de dados

Integridade Existencial - chave

 Uma restrição de chave é uma declaração de que certo subconjunto mínimo dos campos de uma relação é um identificador único para uma tupla

Integridade existencial

- O atributo chave primária PK (*primary key*) de cada esquema de relação R no S não pode conter valores **NULL** nas tuplas de r(R).
 - t[PK] ≠ null para toda tupla t em r(R)
 - Se PK tiver vários atributos, null não é permitido para nenhum destes atributos
- Nota: Outros atributos de R podem conter valores nulos, desde que não sejam membros da chave primária.

Restrições de domínio do atributo

- Valores dos atributos devem ser atômicos
- Valor do atributo:
 - tem que ser do domínio do atributo
 - pode ser nulo (se permitido pelo atributo)
- Os tipos de dados associados aos domínios incluem:
 - Inteiros(inteiro curto, inteiro e inteiro longo)
 - Número reais (ponto flutuante e flutuante de precisão dupla)
 - Caracteres booleanos
 - Cadeias de caracteres (data, hora, timestamp), etc.

Integridade referencial chave estrangeira (*foreign key - FK*)

- Conjunto de campos em uma relação que é usado para fazer referência à chave primária da segunda relação.
- Valor de cada chave estrangeira deve corresponder à chave primária existente da relação referenciada.
 - Os atributos da FK deve possuir o mesmo domínio dos atributos da PK
 - Os valores da FK em uma tupla ou são os mesmos de alguma PK, ou possuem valor NULL
 - t₁[FK]=t₂[PK]
- Funciona como um "ponteiro lógico".

Relacionando entidade no modelo relacional

Relacionando entidade no modelo relacional

TURMA

Cod_Turma	Cod_Curso	Período	Num_alunos	Dt_inicio	Dt_fim
1	1	Matutino	50	01/10/2015	01/10/2020
2	1	Vespertino	20	01/08/2018	01/08/2022
3	2	Matutino	40		
4	2	Noturno	80		
5	NULL	Noturno	60		

CURSO

Cod_Curso	Nome_Curso	Cod_departamento
1	Ciência da Computação	2
2	Engenharia de Software	2
3	Engenharia de Computação	2

Integridade referencial – chave estrangeira

Departamento				
<u>Código</u> Nome				
4620	Fundamentos da Computação			
4622 Computação Aplicada				

Primary Key = Código

1

PK = Código

FK = Depto

Foreign Keys:

Depto → Departamento.Código CodSupervisor → Funcionario.Código

Funcionário					
<u>Código</u> Nome CodDepto CodSuperviso					
1	Ana Carla	NULL	NULL		
2	Avelino	4620	1		
3	Rodrigo	4622	2		

PK = Código

FK = Superior

Representação de um BD relacional e suas restrições

- Cada esquema de relação pode ser representado como um registro de nome de atributos
- O nome da relação é escrito sobre o nome dos atributos
- A PK deve ser <u>sublinhada</u>
- A FK é representada por um seta do atributo FK para a tabela referenciada
 - Pode também apontar para a PK da relação referenciada

Representação de um BD relacional e suas restrições

FUNCIONARIO (pnome, minicial, unome, <u>cpf</u>, datanasc, endereço, sexo, salario, cpf_supervisor (FK funcionario.cpf), dnr (FK departamento.dnumero))

DEPARTAMENTO (dnome, <u>dnumero</u>, cpf_gerente (FK funcionario.cpf), data_inicio_gerente)

DEP_LOCAL (dnumero (FK), dlocal)

FUNCIONARIO

<u>cpf</u>	nome
01111111111	Carlos Eduardo Russo
0222222222	Chico Bento Gonçalves
0333333333	Maria Fernanda Moura

DEPENDENTE

<u>id</u>	nome	filiação	cpf
1	Roberto Carlos	Filho	01111111111
2	Ana Carolina	Conjuje	01111111111
3	Rebeca Ribeiro	Filho	0222222222

Vamos supor que você vai fazer uma busca de um funcionário pela PK

• Exemplo: GET http://seusistema:3000/funcionarios/01111111111

FUNCIONARIO

<u>id</u>	<u>cpf</u>	nome
1	01111111111	Carlos Eduardo Russo
2	0222222222	Chico Bento Gonçalves
3	03333333333	Maria Fernanda Moura

DEPENDENTE

<u>id</u>	nome	filiação	id
1	Roberto Carlos	Filho	1
2	Ana Carolina	Conjuje	1
3	Rebeca Ribeiro	Filho	2

Ficou bom?

FUNCIONARIO

<u>id</u>	<u>cpf</u>	nome
1	01111111111	Carlos Eduardo Russo
2	0222222222	Chico Bento Gonçalves
3	03333333333	Maria Fernanda Moura
1	04444444444	Osvaldo José da Silva

DEPENDENTE

<u>id</u>	nome	filiação	id_funcionario
1	Roberto Carlos	Filho	1
2	Ana Carolina	Conjuje	1
3	Rebeca Ribeiro	Filho	2

Roberto Carlos é filho de Carlos ou Osvaldo?

A chave estrangeira precisa conter a totalidade da chave primaria

FUNCIONARIO

<u>id</u>	<u>cpf</u>	nome
1	01111111111	Carlos Eduardo Russo
2	0222222222	Chico Bento Gonçalves
3	03333333333	Maria Fernanda Moura
1	04444444444	Osvaldo José da Silva

DEPENDENTE

	<u>id</u>	nome	filiação	id_funcionario	cpf
•	1	Roberto Carlos	Filho	1	01111111111
\	2	Ana Carolina	Conjuje	1	01111111111
	3	Rebeca Ribeiro	Filho	2	0222222222

Ficou bom?

FUNCIONARIO

UNIQUE NOT NULL

<u>id</u>	cpf	nome
1	01111111111	Carlos Eduardo Russo
2	0222222222	Chico Bento Gonçalves
3	03333333333	Maria Fernanda Moura
4	04444444444	Osvaldo José da Silva

DEPENDENTE

<u>id</u>	nome	filiação	id_funcionario
1	Roberto Carlos	Filho	1
2	Ana Carolina	Conjuje	1
3	Rebeca Ribeiro	Filho	2

Ficou bom?

FUNCIONARIO

UNIQUE NOT NULL

<u>id</u>	cpf	nome
1	01111111111	Carlos Eduardo Russo
2	0222222222	Chico Bento Gonçalves
3	03333333333	Maria Fernanda Moura
4	04444444444	Osvaldo José da Silva

DEPENDENTE

<u>id</u>	nome	filiação	id_funcionario
1	Roberto Carlos	Filho	1
2	Ana Carolina	Conjuje	1
3	Rebeca Ribeiro	Filho	2

SIM!

• Exemplo: GET http://seusistema:3000/funcionarios/1

Exemplo Chave primário que também é chave estrangeira

BD Povoado

- Cada relação terá várias tuplas no estado corrente da relação
 - O estado do BD relacional é a união dos estados correntes de todas as relações
 - Quando um BD é alterado, um novo estado é criado
- Operações básicas para alterar um BD:
 - INSERT: inserir uma nova tupla na relação
 - **DELETE:** apagar uma tupla existente na relação
 - MODIFY/UPDATE: alterar uma tupla existente na relação
 - A restrição de integridade não pode ser violada pelas operações de atualização
 - Várias operações de atualização podem ser realizadas em uma mesma transação
 - Atualizações podem ser propagadas para causar outras atualizações automaticamente

Operações de atualização das relações

 No caso, se acontecer uma violação de integridade, várias ações podem ser realizadas a fim de recuperar o estado de consistência do BD:

- Cancelar a operação que causou a violação
- Realizar a operação mas informar o usuário da violação
- Trigger pode corrigir violação através de funções, procedimentos ou cascata
- Executa-se uma rotina específica para corrigir o erro

- INSERT pode violar várias restrições:
 - Chave:
 - Se o valor de um atributo chave já existir em uma outra tupla da relação.
 - Exemplo: tentar inserir na tabela CURSO a tupla t1=(1,"Sistemas de Informação", 1)
 - Se o valor da PK da nova tupla for NULL (integridade de entidade)
 - Exemplo: tentar inserir na tabela CURSO a tupla t2=(NULL,"Sistemas de Informação", 1)

TURMA

Cod_Turma	Cod_Curso	Período	Num_alunos	Dt_inicio	Dt_fim
1	1	Matutino	50	01/10/2015	01/10/2020
2	1	Vespertino	20	01/08/2018	01/08/2022
3	2	Matutino	40		
4	3	Noturno	80		
5	3	Noturno	60		

Cod_Curso	Nome_Curso	Cod_departamento
1	Ciência da Computação	2
2	Engenharia de Software	2
3	Engenharia de Computação	2

- INSERT pode violar várias restrições:
 - Integridade referencial:
 - Se o valor da chave estrangeira na nova tupla não existir como chave primária da relação referenciada
 - Exemplo: tentar inserir na tabela TURMA a tupla t=(6,4,"Noturno", 35, 10/10/2010, 10/10/2015)

TURMA

Cod_Turma	Cod_Curso	Período	Num_alunos	Dt_inicio	Dt_fim
1	1	Matutino	50	01/10/2015	01/10/2020
2	1	Vespertino	20	01/08/2018	01/08/2022
3	2	Matutino	40		
4	3	Noturno	80		
5	3	Noturno	60		

<u>Cod_Curso</u>	Nome_Curso	Cod_departamento
1	Ciência da Computação	2
2	Engenharia de Software	2
3	Engenharia de Computação	2

- DELETE pode violar somente a restrição de integridade referencial:
 - Se o valor da chave primária da tupla que está sendo excluída estiver sendo referenciada por uma tupla de outra relação no BD.
 - Pode ser contornado por várias ações: RESTRICT, CASCADE, SET NULL
 - RESTRICT: rejeita a ação de DELETE
 - Exemplo: ao tentar apagar na tabela CURSO a tupla t=(1, "Ciência da Computação", 2) o BD rejeita a operação pois há referência na tabela TURMA

TURMA

Cod_Turma	Cod_Curso	Período	Num_alunos	Dt_inicio	Dt_fim
1	1	Matutino	50	01/10/2015	01/10/2020
2	1	Vespertino	20	01/08/2018	01/08/2022
3	2	Matutino	40		
4	3	Noturno	80		
5	3	Noturno	60		

CURSO

Cod_Curso	Nome_Curso	Cod_departamento
1	Ciência da Computação	2
2	Engenharia de Software	2
3	Engenharia de Computação	2

Banco de Dados

- Pode ser contornado por várias ações: RESTRICT, CASCADE, SET NULL
 - CASCADE: Propaga para as tuplas referenciadas
 - Exemplo: ao tentar apagar na tabela CURSO a tupla t=(1, "Ciência da Computação", 2) o BD apagará as tuplas referenciadas na tabela TURMA

TURMA

Cod_Turma	Cod_Curso	Período	Num_alunos	Dt_inicio	Dt_fim
1	1	Matutino	50	01/10/2015	01/10/2020
2	1	Vespertino	20	01/08/2018	01/08/2022
3	2	Matutino	40		
4	3	Noturno	80		
5	3	Noturno	60		

Cod_Curso	Nome_Curso	Cod_departamento
1	Ciência da Computação	2
2	Engenharia de Software	2
3	Engenharia de Computação	2

- Pode ser contornado por várias ações: RESTRICT, CASCADE, SET NULL
 - SET NULL: Seta NULL para as tuplas que referenciam-na (quando possível)
 - Exemplo: ao tentar apagar a tupla t=(1, "Ciência da Computação", 2) o BD seta para NULL as referências e apaga a tupla desejada

TURMA

Cod_Turma	Cod_Curso	Período	Num_alunos	Dt_inicio	Dt_fim
1	NULL	Matutino	50	01/10/2015	01/10/2020
2	NULL	Vespertino	20	01/08/2018	01/08/2022
3	2	Matutino	40		
4	3	Noturno	80		
5	3	Noturno	60		

Cod_Curso	Nome_Curso	Cod_departamento
1	Ciência da Computação	2
2	Engenharia de Software	2
3	Engenharia de Computação	2

- DELETE pode violar somente a restrição de integridade referencial:
 - CASCADE, RESTRICT e SET NULL
 - Deve ser especificada durante o projeto do BD para cada restrição de integridade referencial

(Modelagem Física)

- UPDATE pode violar a restrição de domínio e NOT NULL sobre um atributo modificado
 - Domínio
 - Exemplo: ao tentar atualizar na tabela CURSO com o valor Cod_departamento="FACOM" para o Cod_curso=1
 - NOT NULL
 - Exemplo: considerando que o Cod_departamento na tabela CURSO foi definido pelo projetista como NOT NULL
 - Exemplo: ao tentar atualizar na tabela CURSO com o valor Cod_departamento="NULL" para o Cod_curso=1

TURMA

Cod_Turma	Cod_Curso	Período	Num_alunos	Dt_inicio	Dt_fim
1	1	Matutino	50	01/10/2015	01/10/2020
2	1	Vespertino	20	01/08/2018	01/08/2022
3	2	Matutino	40		
4	3	Noturno	80		
5	3	Noturno	60		

<u>Cod_Curso</u>	Nome_Curso	Cod_departamento
1	Ciência da Computação	2
2	Engenharia de Software	2
3	Engenharia de Computação	2

Notação — modelo lógico Charles Willian Bachman

Setas

 A notação de Bachman teve uma derivação gráfica que ficou conhecida como notação de setas.

Cardinalidade	Notação original de Bachman	Notação de Setas
1:1		←
1 : N		←
N : 1	•	*
M : N	←	**

Notação Pé de Galinha

Cardinalidade	Representação	
N		
1	-	
Opcional		
Obrigatório		

Notação Pé de Galinha

Restrições	Representação	
(1,1)		
(1,N)		
(0,1)		
(0,N)		

Notação Pé de Galinha

Notação Pé de Galinha – Empresa

Banco de Dados

Notação Pé de Galinha – Empresa

Resumo

