Three important theorems in advanced calculus

Sean Fitzpatrick

June 13, 2018

Source: Marsden, J. E. and Tromba, A. J., *Vector Calculus*, 4th ed. W. H. Freeman and Company, New York, 1996.

We state three theorems of theoretical importance in multivariable calculus: the chain rule, the implicit function theorem, and the inverse function theorem. The first two are mentioned in most Stewart-style texts, but not in their most general form, and the last is not mentioned at all. We'll give a general proof of the chain rule, and state the implicit and inverse function theorems. (The proofs can be found in more advanced texts on real analysis.)

1 The Chain Rule

For a general function $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$, the derivative $\mathbf{D}f(\mathbf{x}_0)$ at a point $\mathbf{x}_0 \in U$ is the $m \times n$ matrix whose entries are given by the partial derivatives of f. That is, if

$$f(x_1,\ldots,x_n)=(f_1(x_1,\ldots,x_n),\ldots,f_m(x_1,\ldots,x_n)),$$

where each of the component functions f_i is a real-valued function of the variables x_1, \ldots, x_n , then the entry in the i^{th} row and j^{th} column of $\mathbf{D}f(\mathbf{x}_0)$ is $\frac{\partial f_i}{\partial x_j}(\mathbf{x}_0)$. The chain rule tells us that the derivative of a composition is given by the product of the derivatives, just as for the case of single-variable functions. First, we need a fact about linear functions:

Lemma 1.1. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear function given by $T(\mathbf{x}) = A \cdot \mathbf{x}$, where $A = [a_{ij}]$ is an $m \times n$ matrix. Then T is continuous, and in particular, $||T(\mathbf{x})|| \le M||\mathbf{x}||$, where $M = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2}$.

Proof. The components of T are given by $T_i(\mathbf{x}) = \sum_{j=1}^n a_{ij} x_j = \mathbf{a}_i \cdot \mathbf{x}$, where $\mathbf{a}_i = \langle a_{i1}, \dots, a_{in} \rangle$. Thus,

$$||T(\mathbf{x})|| = \sqrt{(T_1(\mathbf{x})^2 + \dots + T_m(\mathbf{x})^2}$$

$$= \sqrt{|\mathbf{a}_1 \cdot \mathbf{x}|^2 + \dots + |\mathbf{a}_m \cdot \mathbf{x}|^2}$$

$$\leq \sqrt{||\mathbf{a}_1||^2 ||\mathbf{x}||^2 + \dots + |\mathbf{a}_m||^2 ||\mathbf{x}||^2}$$
 (Cauchy-Schwartz inequality)
$$= \sqrt{(||\mathbf{a}_1||^2 + \dots + ||\mathbf{a}_m||^2) ||\mathbf{x}||^2}$$

$$= M||\mathbf{x}||.$$

Theorem 1.2 (Chain Rule). Let $U \subseteq \mathbb{R}^n$ and $V \subseteq \mathbb{R}^m$ be open. Let $g: U \to \mathbb{R}^m$ and $f: V \to \mathbb{R}^p$ be given functions such that the range of g is contained in V, so that $f \circ g$ is defined. If g is differentiable at $\mathbf{x}_0 \in U$ and f is differentiable at $\mathbf{y}_0 = g(\mathbf{x}_0) \in V$, then $f \circ g$ is differentiable at \mathbf{x}_0 and

$$\mathbf{D}(f \circ g)(\mathbf{x}_0) = \mathbf{D}f(g(\mathbf{x}_0))\mathbf{D}g(\mathbf{x}_0). \tag{1}$$

Proof. Using the definition of differentiability, we need to prove that the right-hand side of (1) defines a linear function from \mathbb{R}^n to \mathbb{R}^p such that

$$\lim_{\mathbf{x} \to \mathbf{x}_0} \frac{\|f(g(\mathbf{x})) - f(g(\mathbf{x}_0)) - \mathbf{D}f(\mathbf{y}_0)\mathbf{D}g(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0)\|}{\|\mathbf{x} - \mathbf{x}_0\|} = 0.$$

The result then follows from the uniqueness of the derivative. By adding and subtracting $\mathbf{D}f(\mathbf{y}_0) \cdot (g(\mathbf{x}) - g(\mathbf{x}_0))$ in the numerator and applying the triangle inequality, we get, with $\mathbf{y} = g(\mathbf{x})$ and $\mathbf{y}_0 = g(\mathbf{x}_0)$,

$$||f(\mathbf{y}) - f(\mathbf{y}_0) - \mathbf{D}f(\mathbf{y}_0)\mathbf{D}g(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0)|| \le ||f(\mathbf{y}) - f(\mathbf{y}_0) - \mathbf{D}f(\mathbf{y}_0) \cdot (\mathbf{y} - \mathbf{y}_0)|| + ||\mathbf{D}f(\mathbf{y}_0) \cdot (g(\mathbf{x}) - g(\mathbf{x}_0) - \mathbf{D}g(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0))||.$$

Let $\epsilon > 0$ be given. According to the lemma above $\|\mathbf{D}f(\mathbf{y}_0) \cdot \mathbf{v}\| \le M\|\mathbf{v}\|$ for any $\mathbf{v} \in \mathbb{R}^m$, for some constant M > 0. We will apply this for $\mathbf{v} = g(\mathbf{x}) - g(\mathbf{x}_0) - \mathbf{D}g(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0)$. Since g is differentiable at \mathbf{x}_0 , we can find a $\delta_1 > 0$ such that $0 < \|\mathbf{x} - \mathbf{x}_0\| < \delta_1$ implies

$$\frac{\|g(\mathbf{x}) - g(\mathbf{x}_0) - \mathbf{D}g(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0)\|}{\|\mathbf{x} - \mathbf{x}_0\|} < \frac{\epsilon}{2M}.$$

Also since g is differentiable at x_0 , we can find a $\delta_2 > 0$ and a constant N such that $0 < \|\mathbf{x} - \mathbf{x}_0\| < \delta_2$ implies $\|g(\mathbf{x}) - g(\mathbf{x}_0)\| \le N\|\mathbf{x} - \mathbf{x}_0\|$. Since f is differentiable at $\mathbf{y}_0 = g(\mathbf{x}_0)$, we can find a $\delta_3 > 0$ such that $0 < \|\mathbf{y} - \mathbf{y}_0\| < \delta_3$ implies that

$$||f(\mathbf{y}) - f(\mathbf{y}_0) - \mathbf{D}f(\mathbf{y}_0) \cdot (\mathbf{y} - \mathbf{y}_0)|| \le \frac{\epsilon}{2N} ||\mathbf{y} - \mathbf{y}_0|| = \frac{\epsilon}{2N} ||g(\mathbf{x}) - g(\mathbf{x}_0)|| < \frac{\epsilon}{2} ||\mathbf{x} - \mathbf{x}_0||,$$

provided that $\|\mathbf{x} - \mathbf{x}_0\| < \min\{\delta_2, \delta_3/N\}$. Thus if we let $\delta = \min\{\delta_1, \delta_2, \delta_3/N\}$, we have

$$\frac{\|f(g(\mathbf{x})) - f(g(\mathbf{x}_0)) - \mathbf{D}f(g(\mathbf{x}_0))\mathbf{D}g(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0)\|}{\|\mathbf{x} - \mathbf{x}_0\|} < \frac{\epsilon}{2} + M \frac{\epsilon}{2M} = \epsilon.$$

2 The Implicit and Inverse Function Theorems

Recall that for a level curve g(x,y) = c, we can solve for y as a function of x locally near a given point (x_0, y_0) on the curve, provided that the curve has a well-defined tangent line at that point, and that tangent line is not vertical. Notice that finding y' = dy/dx by implicit differentiation is the same as finding y' via the relationship

$$\frac{\partial g}{\partial x} + \frac{\partial g}{\partial y} \frac{dy}{dx} = 0.$$

Thus, we can solve for y' provided $\frac{\partial g}{\partial y}(x_0, y_0) \neq 0$.

We will first state a special case that will be useful for dealing with level surfaces in \mathbb{R}^n before stating the general result.

Theorem 2.1. Suppose $F: \mathbb{R}^{n+1} \to \mathbb{R}$ is continuously differentiable. Denote points in \mathbb{R}^{n+1} by (\mathbf{x}, z) , where $\mathbf{x} \in \mathbb{R}^n$ and $z \in \mathbb{R}$. If at a point $(\mathbf{x}_0, z_0) \in \mathbb{R}^{n+1}$ we have

$$F(\mathbf{x}_0, z) = 0$$
 and $\frac{\partial F}{\partial z}(\mathbf{x}_0, z_0) \neq 0$,

then there is a ball U containing \mathbf{x}_0 in \mathbb{R}^n and a interval (a,b) containing z in \mathbb{R} such that there is a unique function $z = g(\mathbf{x})$ defined for $\mathbf{x} \in U$ and $z \in (a,b)$ that satisfies $F(\mathbf{x}, g(\mathbf{x})) = 0$. Moreover, if $\mathbf{x} \in U$ and $z \in (a,b)$ satisfy $F(\mathbf{x},z) = 0$, then $z = g(\mathbf{x})$. Finally, $z = g(\mathbf{x})$ is continuously differentiable, with the derivative given by

$$\mathbf{D}g(\mathbf{x}) = -\frac{1}{\frac{\partial F}{\partial z}(\mathbf{x}, z)} \mathbf{D}_{\mathbf{x}} F(\mathbf{x}, z)|_{z=g(\mathbf{x})},$$

where $\mathbf{D}_{\mathbf{x}}F$ denotes the matrix of partial derivatives of F with respect to the variables x_1, \ldots, x_n . Equivalently, we have

$$\frac{\partial g}{\partial x_i} = -\frac{\partial F/\partial x_i}{\partial F/\partial z}, \quad i = 1, \dots n.$$

Note that the theorem essentially tells us when we can solve the equation $F(\mathbf{x}, z)$ for z in terms of \mathbf{x} . More generally, suppose we are given a system of equations of the form

$$F_1(x_1, ..., x_n, z_1, ..., z_m) = 0$$

$$F_2(x_1, ..., x_n, z_1, ..., z_m) = 0$$

$$\vdots$$

$$F_m(x_1, ..., x_n, z_1, ..., z_m) = 0.$$

The general implicit function theorem tells us that we can solve the system for the z_i in terms of the x_j , giving $z_i = f_i(x_1, \ldots, x_n)$ for unique smooth functions f_1, \ldots, f_m , provided that the *determinant* of the $m \times m$ matrix

$$\begin{bmatrix} \frac{\partial F_1}{\partial z_1} & \cdots & \frac{\partial F_1}{\partial z_m} \\ \vdots & & \vdots \\ \frac{\partial F_m}{\partial z_1} & \cdots & \frac{\partial F_m}{\partial z_m} \end{bmatrix}$$

is non-zero. A special case of the general implicit function theorem is when m=n and $F_i(y_1, \ldots, y_n, x_1, \ldots, x_n) = y_i - f(x_1, \ldots, x_n)$, (here the x_i above are now the y_i , and the z_i

above are now the x_i , just to keep you on your toes) so that we are trying to solve the system of equations

$$f_1(x_1, \dots x_n) = y_1$$

$$\vdots \qquad \qquad \vdots$$

$$f_n(x_1, \dots x_n) = y_n,$$

which means we are trying to invert the system of equations to express the x_i as functions of the y_j . Note that this is equivalent to writing $\mathbf{y} = F(\mathbf{x})$ for the vector-valued function $F = \langle f_1, \dots f_n \rangle$ and asking for the inverse function such that $\mathbf{x} = F^{-1}(\mathbf{y})$. Given such a function F, we define the Jacobian J(F) of F as the determinant of the derivative of F:

$$J(F)(\mathbf{x}) = \det \mathbf{D}f(\mathbf{x}).$$

Theorem 2.2. Let $U \subseteq \mathbb{R}^n$ be open and let $F: U \to \mathbb{R}^n$ be continuously differentiable. For any $\mathbf{x}_0 \in U$, if $J(F)(\mathbf{x}_0) \neq 0$, then there is a neighbourhood N of \mathbf{x}_0 contained in U and a unique function G that is also continuously differentiable, such that for each $\mathbf{x} \in N$ and each $\mathbf{y} = F(\mathbf{x})$, we have $\mathbf{x} = G(\mathbf{y})$. Moreover, we have

$$\mathbf{D}G(\mathbf{y}) = (\mathbf{D}F(\mathbf{x}))^{-1}$$

for each $\mathbf{x} \in N$. (The -1 on the right-hand side denotes the matrix inverse.)

Note: The inverse function theorem only applies to maps $F : \mathbb{R}^n \to \mathbb{R}^n$ where the number of variables is equal to the number of components. Notice that even if F is not defined on all of \mathbb{R}^n , $\mathbf{D}F(\mathbf{x})$ is for each \mathbf{x} in the domain of F: the domain of any linear function is all of \mathbb{R}^n . The condition that the determinant of $\mathbf{D}F(\mathbf{x})$ is nonzero is equivalent to requiring the linear function $\mathbf{D}F(\mathbf{x})$ to be both one-to-one and onto (and therefore invertible). Since this condition may hold at some points \mathbf{x} in the domain of F and not at others, the invertibility of F only holds locally (e.g. on the neighbourhood N in the statement of the theorem).

If $F: \mathbb{R}^n \to \mathbb{R}^m$ with m > n, $\mathbf{D}F(\mathbf{x})$ is no longer a square matrix, and therefore cannot be invertible. In this case, the best we can ask for is that $\mathbf{D}F(\mathbf{x})$ is one-to-one. If this is true at each \mathbf{x} in the domain of F, then F is called an *immersion*. An immersion is a map that "preserves structure" in a sense that is made precise in more advanced courses. For example, if $F: \mathbb{R}^2 \to \mathbb{R}^3$ is an immersion, and C is a curve contained in the domain of F, then the image of C under F will still be a curve in \mathbb{R}^3 , and if D is a region in \mathbb{R}^2 (such as a disk or a rectangle), then the image of D will be a surface. (Roughly speaking, F "preserves the dimension" of these objects - it doesn't collapse a curve to a point or a region to a curve.

If m < n, then the strongest condition one can impose is that $\mathbf{D}F(\mathbf{x}) : \mathbb{R}^n \to \mathbb{R}^m$ be onto. When this is the case, F looks locally like a projection. Such maps are called *submersions*.