# Low-Resolution Face Recognition

Final-year Project Presentation

Department of Electronic and Information Engineering

Hong Kong Polytechnic University

Jiawei Tang 14109816d

Supervisor: Prof. Kenneth Lam

Assessor: Dr. Y. L. Chan

### CONTENT

- Introduction
- 2 Conventional Method
- 3 Deep-learning Method
- 4 Conclusion
- 5 Q&A

## Background

### Face Recognition in our daily life



Face detection in digital camera



**Access control** 

## Background

### Face Recognition in our daily life





**Payments** 

criminal identification

# Background

















20x20 16x16 12x12 8x8

# Background





## Objective

Develop effective and robust face recognition algorithms that can achieve satisfactory performance in **low-resolution** condition.

### Achievement

- Two algorithms that apply competently different techniques have been implemented.
- The multidimensional scaling method for matching LR image
- The deep-learning-based method with feature loss
- Experiments have been conducted around the built algorithms

## Methodology

#### Multidimensional scaling (MDS) for Matching Low-resolution Images [1]

#### **Key Ideas**

- HR images and LR images are with different resolution, cannot be compared directly.
- Transform the HR image and LR image to a **common space** to minimize their distance.
- The result of LR images is close to the result of HR images.



[1] Biswas, S., Bowyer, K. W., & Flynn, P. J. (2012). Multidimensional scaling for matching low-resolution face images. *IEEE transactions on pattern analysis and machine intelligence*, *34*(10), 2019-2030.

## Methodology

Multidimensional scaling for Matching Low-resolution Images





PCA/LBP/SIFT

## Methodology

Multidimensional scaling for Matching Low-resolution Images

### **Objective function**

$$J(W^{l}, W^{h}) = \sum_{i=1}^{N} \sum_{j=1}^{N} (|(W^{l}) x_{i}^{l} - (W^{h}) x_{i}^{h}| - d_{ij}^{h})^{2}$$

Minimize the  $J(W^l, W^h)$  by the iterative majorization algorithm

## Experiment

- ORL database: 400 face images of 40 subjects.
- For each subject: 2 for training, 8 for testing
- Feature: Principal Component Analysis (PCA)
- Baseline method : Eigenface for Recognition [2]

[2] Matthew Turk and Alex Pentland. Eigenfaces for recognition. Journal of cognitive neuroscience,3(1):71–86, 1991.



### Result



# Methology

#### **Convolutional Neural Network Model**





| Convo | lutional | Layer |
|-------|----------|-------|
|       |          |       |



Pooling Layer

# Methology

**Convolutional Neural Network Model** 

























#### LICIONAB-Breeze Montrel d'Applicatione



## Methodology

## Deep-Learning Method

#### **Loss function**

Mean Square Error

$$d(\mathbf{p},\mathbf{q}) = d(\mathbf{q},\mathbf{p}) = \sqrt{(q_1-p_1)^2 + (q_2-p_2)^2 + \dots + (q_n-p_n)^2}$$

• L1 Distance

$$d_1(\mathbf{p},\mathbf{q}) = \|\mathbf{p}-\mathbf{q}\|_1 = \sum_{i=1}^n |p_i-q_i|$$

Cosine Similarity

$$ext{similarity} = \cos( heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = rac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}}$$

## Methodology

# Deep-Learning Method

#### **LR-CNN-Based Model Pipeline**



## Experiment

#### **Database**

Training set - Casia-webface [3]: 500k face images of 10k subjects



Testing set - LFW database [4]:
3k matching face images pairs
3k unmatching face images pairs



[3] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z Li. Learning face representation from scratch.arXiv preprint arXiv:1411.7923, 2014. [4] Gary B. Huang Erik Learned-Miller. Labeled faces in the wild: Updates and new reporting procedures. Technical Report UM-CS-2014-003, University of Massachusetts, Amherst, May 2014.

## Experiment



## Backbone Result

#### **In high Resolution Condition**



|         | Accuracy | AUC   |
|---------|----------|-------|
| Alexnet | 0.953    | 0.986 |
| Resnet  | 0.989    | 0.999 |

**AUC of Resnet and Alexnet (HR Images)** 

### Backbone Result

#### **In Low Resolution Condition**





### LR-Resnet Result



|        | Resnet | LR-<br>Resnet |
|--------|--------|---------------|
| 96x112 | 0.989  | 0.9462        |
| 24x28  | 0.9242 | 0.9495        |
| 19x22  | 0.8925 | 0.9450        |
| 14x16  | 0.7958 | 0.9303        |
| 10x11  | 0.7478 | 0.8592        |
| 7x8    | 0.6762 | 0.7398        |

**ROC Curve of Resnet** 

**ROC Curve of LR-Resnet** 

Rank-1 Accuracy

### LR-Alexnet Result



|        | Alexnet | LR-<br>Alexnet |
|--------|---------|----------------|
| 96x112 | 0.9532  | 0.8968         |
| 24x28  | 0.9242  | 0.9048         |
| 19x22  | 0.8925  | 0.8988         |
| 14x16  | 0.7958  | 0.8582         |
| 10x11  | 0.7478  | 0.7808         |
| 7x8    | 0.6762  | 0.7205         |

**ROC** of Alexnet

**ROC of LR-Alexnet** 

Rank-1 Accuracy

# Interesting Finding

#### **Training Interactions VS Accuracy**



#### 10 times

(LR-Resnet trained with 14x16 pixels LR images)

# Interesting Finding

#### **Training Interactions VS Accuracy**



#### 100 times

(LR-Resnet trained with 14x16 pixels LR images)

# Interesting Finding

#### **Training Interactions VS Accuracy**



#### **2000 times**

(LR-Resnet trained with 14x16 pixels LR images)

# Interesting Finding

#### **Training Interactions VS Accuracy**



# Interesting Finding

#### **Training Image Resolution VS Accuracy**



(LR-Resnet trained with 1000 iterations)

# Interesting Finding

#### **Training Image Resolution VS Accuracy**



19x22

(LR-Resnet trained with 1000 iterations)

# Interesting Finding

#### **Training Image Resolution VS Accuracy**



14x16

(LR-Resnet trained with 1000 iterations)

## Conclusion

### Conclusion

- •In this project, both a conventional approach and a deep-learning-based approach are implemented and evaluated.
- •Although the MDS method works, the result is not satisfactory.
- •The feature loss can make the CNN-based model much suitable for low resolution condition and robust to image resolution, which realizes the objective of this project.
- •As for the future work, we will try different loss functions to test the model's performance and combine the image super-resolution with low-resolution face recognition.

Q&A

## Thank You!