# 概率统计期末复习

## 冬季期末考试

- (1) 线上
- (2) 开卷, 独立完成
- (3) 50 道选择判断题
- (4) 平时:期末 = 3:7
- (5) 25 日或 26 日, 具体时间等通知

## 第一章 概率论的基本概念

§ 1 随机试验 § 2 样本空间、随机试验

随机试验

样本空间、事件

子事件、和事件、积事件、差事件

必然事件、不可能事件、互斥(互不相容)、对立

运算律 De Morgan 律等

事件的表示与化简

## §3 频率与概率

频率、概率的统计定义

概率的公理化定义。非负性、规范性、可列可加性

概率的性质  $P(\emptyset) = 0$  有限可加性

$$P(A-B) = P(A) - P(AB)$$

 $B \subset A$  时, P(A-B) = P(A) - P(B)  $P(A) \le P(B)$ 

$$P(\overline{A}) = 1 - P(A) \qquad P(A) \le 1$$

加法公式  $P(A \cup B) = P(A) + P(B) - P(AB)$  推广

## § 4 古典概型

古典概型定义

$$P(A) = \frac{A \text{ 包含的样本点数}}{\text{样本空间中的样本点总数}}$$

计数法则 乘法法则 加法法则

排列 全排列

组合 分组组合

有放回抽样 无放回抽样

## § 5 条件概率

$$P(A \mid B) := \frac{P(AB)}{P(B)} \qquad P(B) > 0$$

条件概率的性质 非负性、规范性、可列可加性

乘法公式

$$P(AB) = P(B)P(A \mid B) \qquad P(B) > 0$$

$$P(AB) = P(A)P(B \mid A) \qquad P(A) > 0$$

推广 
$$P(ABC) = P(C|AB)P(B|A)P(A)$$

全概率公式

$$P(A) = \sum_{i=1}^{n} P(B_i) P(A | B_i)$$
 完备事件组

$$P(B_j \mid A) = \frac{P(AB_j)}{P(A)} = \frac{P(B_j)P(A \mid B_j)}{\sum_{i=1}^{n} P(B_i)P(A \mid B_i)}$$

## §6 独立性

独立性定义 
$$P(AB) = P(A)P(B)$$

$$P(A \mid B) = P(A)$$

$$P(B \mid A) = P(B) \qquad P(A) > 0$$

$$P(A) > 0, P(B) > 0$$
 独立 二 不互斥

多个事件的独立性

$$\begin{cases} P(AB) = P(A)P(B) \\ P(BC) = P(B)P(C) \end{cases}$$
$$P(CA) = P(C)P(A)$$
$$P(ABC) = P(A)P(B)P(C)$$

P(B) > 0

## 第二章 随机变量及其分布

## §1 随机变量

样本空间上的实值单值函数

离散型 连续型 非离散非连续型

把事件用随机变量的关系式表达出来

## § 2 离散型随机变量及其分布律

分布律 所有取值 ♣ 每个取值的概率 列表法 图示法 公式法

性质 (1) 
$$p_k \ge 0$$
, (2)  $\sum p_k = 1$ 

(0-1) 分布 
$$X \sim b(1, p)$$
  $0 \le p \le 1$ 

$$P(X = k) = p^{k} (1-p)^{1-k}, k = 0,1$$

$$\begin{array}{c|cc} X & 0 & 1 \\ \hline P(X) & 1-p & p \end{array}$$

$$EX = p$$
  $DX = p(1-p)$ 

伯努利试验

(1) 只考虑成功失败 (2) 可重复性 (3) 独立性

二项分布 
$$X \sim b(n, p)$$
  $0 \le p \le 1$ 

$$P(X = k) = C_n^k p^k (1-p)^{n-k}, k = 0,1,\dots,n$$

$$EX = np$$
  $DX = np(1-p)$ 

泊松分布

(1) 平稳性 (2) 无后效性 (3) 普通性

相同长度等概率

不重叠独立 充分小只发生一次

$$X \sim \pi(\lambda)$$
  $\lambda > 0$ 

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \ k = 0, 1, 2, \dots$$

$$EX = DX = \lambda$$

## § 3 随机变量的分布函数

分布函数  $F(x) := P(X \le x)$ 

性质 (1) 不减函数

(2) 
$$F(-\infty) = 0$$
,  $F(+\infty) = 1$ 

(3) 右连续

$$P(a < X \le b) = P(X \le b) - P(X \le a) = F(b) - F(a)$$

## § 4 连续型随机变量及其概率密度

概率密度 描述每一点附近概率的函数 f(x)

$$F(x) = \int_{-\infty}^{x} f(t) dt = P(X \le x)$$

性质 (1) 
$$f(x) \ge 0$$
, (2)  $\int_{-\infty}^{+\infty} f(x) dx = 1$ 

(3) 
$$P(a < X \le b) = \int_{a}^{b} f(x) dx = F(b) - F(a)$$

$$(4) F'(x) = f(x) f(x) 在点 x 连续$$

$$P(x=a) = 0 \qquad P(A) = 0 \implies A = \emptyset \qquad P(A) = 1 \implies A = S$$

$$P(a \le X \le b) = P(a < X \le b) = P(a \le X < b) = P(a < X < b)$$

#### 均匀分布

$$X \sim U(a,b)$$



$$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & \pm \end{cases}$$

$$F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x < b \\ 1, & b \le x \end{cases}$$

$$EX = \frac{a+b}{2} \qquad DX = \frac{(b-a)^2}{12}$$

#### 指数分布

$$X \sim e(\theta)$$
  $\theta > 0$ 



$$f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

$$F(x) = \begin{cases} 1 - e^{-\frac{x}{\theta}}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

$$F(x) = \begin{cases} 1 - e^{-\frac{x}{\theta}}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

$$EX = \theta$$
  $DX = \theta^2$ 

#### 正态分布

$$X \sim N(\mu, \sigma^2) \quad \sigma > 0$$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

$$EX = \mu$$
  $DX = \sigma^2$ 



关于  $\mu$  对称  $\mu$  处最大值, 左增右减  $\mu \pm \sigma$  拐点

#### 标准正态分布

$$X \sim N(0,1)$$

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

$$\Phi(x) = \int_{-\infty}^{x} \varphi(t) \ dt$$

(1) 
$$\Phi(0) = 0.5$$

(2) 
$$\Phi(-x) = 1 - \Phi(x)$$

$$X \sim N(\mu, \sigma^2)$$
 时,

$$F_X(x) = \Phi\left(\frac{x - \mu}{\sigma}\right)$$

x 轴为渐近线

$$P(a < X < b) = \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right)$$

3σ 准则

## § 5 随机变量的函数的分布

离散型 合并

连续型 
$$(1) F_Y(y) = P(Y \le y) = P(g(X) \le y)$$
 先求分布函数 
$$(2) f_Y(y) = \frac{dF_Y(y)}{dy}$$
 再求导得密度

$$f_{Y}(y) = \begin{cases} f[h(y)] \left| \frac{dh(y)}{dy} \right|, & \alpha < y < \beta \\ 0, & 其它 \end{cases}$$
  $y = g(x)$  可导  $x = h(y)$  是  $y = g(x)$  的反函数

$$y=g(x)$$
 可导  $x=h(y)$  是  $y=g(x)$  的反函数

X的分布函数 F(x) 严格单调连续  $\longrightarrow Y = F(x) \sim U(0,1)$ 

## 第三章 多维随机变量及其分 布

## §1 二维随机变量

分布函数 
$$F(x,y) := P((X \le x) \cap (Y \le y)) =: P(X \le x, Y \le y)$$
  
 $P(x_1 < X \le x_2, y_1 < Y \le y_2)$   
 $= F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1)$ 

性质 (1) 对 x (或对 y)不减函数

$$(2) F(x, -\infty) = 0, F(-\infty, y) = 0$$
$$F(-\infty, -\infty) = 0, F(+\infty, +\infty) = 1$$

(3) 对 x (或对 y) 右连续

二维离散型 
$$P(X = x_i, Y = y_j) = p_{ij}, i, j = 1, 2, ...$$

联合分布律 列表法 公式法

性质 (1) 
$$p_{ij} \ge 0$$
, (2)  $\sum_{i} \sum_{j} p_{ij} = 1$ 

二维连续型 
$$F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(u,v) \, du \, dv$$

性质 (1) 
$$f(x,y) \ge 0$$
, (2)  $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) \, dx dy = 1$ 

(3) 
$$P((X,Y) \in G) = \iint_G f(x,y) dxdy$$

## § 2 边缘分布

#### 边缘分布函数

$$F_X(x) = P(X \le x) = P(X \le x, Y < +\infty) = F(x, +\infty)$$
  
$$F_Y(y) = P(Y \le y) = P(X \le +\infty, Y < y) = F(+\infty, y)$$

選散型 
$$P(X = x_i) = \sum_{j=1}^{\infty} P(X = x_i, Y = y_j) = \sum_{j=1}^{\infty} p_{ij} =: p_{i\bullet}$$

$$P(Y = y_j) = \sum_{i=1}^{\infty} P(X = x_i, Y = y_j) = \sum_{i=1}^{\infty} p_{ij} =: p_{\bullet j}$$

连续型 
$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$
 
$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

#### 二维均匀分布

二维正态分布 
$$(X,Y) \sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$$

$$X \sim N(\mu_1, \sigma_1^2)$$
  
边缘分布

$$Y \sim N(\mu_2, \sigma_2^2)$$

相关系数 
$$\rho$$

由联合分布可以确定边缘分布由边缘分布一般不能确定联合分布

## §3条件分布

$$P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{p_{ij}}{p_{\bullet j}}$$

$$P(Y = y_j | X = x_i) = \frac{P(X = x_i, Y = y_j)}{P(X = x_i)} = \frac{p_{ij}}{p_{i\bullet}}$$

#### 条件 密度

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} \qquad F_{X|Y}(x|y) = \int_{-\infty}^x \frac{f(x,y)}{f_Y(y)} dx$$

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} \qquad F_{Y|X}(y|x) = \int_{-\infty}^{y} \frac{f(x,y)}{f_X(x)} dy$$

### § 4 相互独立的随机变量

$$P(X \le x, Y \le y) = P(X \le x)P(Y \le y)$$

分布函数表示 
$$F(x,y) = F_X(x)F_Y(y)$$

离散型表示 
$$P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j)$$
 
$$p_{ij} = p_{i \bullet} p_{\bullet j}$$

连续型表示 
$$f(x,y) = f_X(x)f_Y(y)$$
 几乎处处成立

有放回抽样 🛶 独立

无放回抽样 一 不独立

## § 5 两个随机变量的函数的分布

$$Z = X + Y$$

$$P(Z = r) = \sum_{i=0}^{r} P(X = i, Y = r - i)$$

#### 连续型

连续型 
$$\begin{cases} f_Z(z) = \int_{-\infty}^{\infty} f_X(z - y) f_Y(y) dy \\ f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx \end{cases}$$

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) \ dx$$

$$M = \max\{X, Y\}$$

$$M = \max\{X, Y\}$$
 
$$F_{M}(z) = F_{X}(z)F_{Y}(z)$$
 独立

$$N = \min\{X, Y\}$$

$$F_N(z) = 1 - [1 - F_X(z)][1 - F_Y(z)]$$
 独立

$$X_1, \dots, X_n \sim b(1, p)$$
 独立同分布  $\Longrightarrow \sum_{i=1}^n X_i \sim b(n, p)$ 

$$X \sim b(m, p), Y \sim b(n, p)$$
 独立  $\longrightarrow$   $X + Y \sim b(m + n, p)$ 

$$X \sim \pi(\lambda_1), \quad Y \sim \pi(\lambda_2) \quad \text{ind} \quad \Longrightarrow \quad X + Y \sim \pi(\lambda_1 + \lambda_2)$$

$$X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$$
 独立  $\Longrightarrow$  
$$aX + bY \sim N(a\mu_1 + b\mu_2, a^2\sigma_1^2 + b^2\sigma_2^2)$$

$$X \sim e(\theta_1), Y \sim e(\theta_2)$$
 独立  $\Longrightarrow$   $\min\{X,Y\} \sim e\left(\frac{\theta_1\theta_2}{\theta_1+\theta_2}\right)$ 

#### 第4章 随机变量的数字特征

#### (一)要求:

- (1)掌握数学期望、方差的定义及其计算;
- (2)掌握数学期望、方差的公式及其证明;
- (二) 数学期望 口诀:取值 乘以 取这个值的概率 之和。

$$EX = \sum_{i=1}^{\infty} x_i p_i \qquad EX = \int_{-\infty}^{+\infty} x f(x) dx$$

$$EX = \sum_{i=1}^{\infty} g(x_i) p_i \qquad EX = \int_{-\infty}^{+\infty} g(x) f(x) dx$$

$$Eg(X,Y) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} g(x_i, y_j) p_{ij}$$

$$Eg(X,Y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y) f(x,y) dx dy = \iint_{\mathbb{R}^2} g(x,y) f(x,y) dx dy$$

## 六、数学期望的性质

$$\Box E(c) = c \qquad -- 常数$$

$$\square E(cX) = c E(X)$$

$$\square E(X+Y) = E(X) + E(Y)$$

$$E\left(\sum_{i=1}^{n} c_{i} X_{i} + C\right) = \sum_{i=1}^{n} c_{i} E(X_{i}) + C$$

⇒线性性质

 $\square$  当X,Y独立时,E(XY) = E(X)E(Y).

## 反之未必成立,即

若E(XY) = E(X)E(Y), X,Y不一定独立

(四)方差

$$D(X) = E[X - E(X)]^2$$

 $\sqrt{DX}$  称为X的均方差或标准差。

离差(偏差)平方的数学期望

(五) 方差性质

$$D(X)=E(X^2)-[E(X)]^2$$

1. 
$$D(c) = 0$$
  
2.  $D(cX) = c^2D(X)$   $D(c_1X+c_2) = c_1^2D(X)$ 

$$3 \cdot D(X+Y) = DX + DY + 2Cov(X,Y)$$

特别地,若X,Y相互独立,则

$$D(C_1 X \pm C_2 Y) = C_1^2 D(X) + C_2^2 D(Y)$$

#### 第4章 几类重要的分布

6-10分

(1) 0-1分布 (两点分布)

$$P{X = 0} = 1 - p = q$$
,  $P{X = 1} = p$   
 $\vec{x}$   $p(x) = P{X = x} = p^x q^{1-x}$ ,  $x = 0, 1$ 

或 
$$X = 0$$
 1  $p_k = 1-p$   $p$ 

记作  $X \sim B(1, p)$  , 或  $X \sim 0-1$ 分布'

(2) 二项分布

$$P(X=k)=C_n^k p^k (1-p)^{n-k}, \quad k=0,1,\dots,n$$
  
记作  $X \sim B(n, p)$ 

### (3) 泊松分布(Poisson)

若X的分布为  $P\{X=k\} = \frac{\lambda^k}{k!}e^{-\lambda}, k=0, 1, 2, ...,$ 其中 $\lambda > 0$ 是常数,则称X服从参数为 $\lambda$ 的泊松分布. 记为 $X \sim \pi(\lambda)$ 或 $P(\lambda)$ .

#### (4) 几何分布

$$P{X = k} = q^{k-1}p, k = 1, 2, ...$$

### Micr

#### (5) 超几何分布

设一批产品有N个,其中有M个次品。从这批产品中任意抽取n个,则取出的产品中次品数X的分布律为

$$P(X=k) = \frac{C_M^k C_{N-M}^{n-k}}{C_N^n},$$

 $\max(0, n-N+M) \le k \le \min(n, M)$ 

称为X服从参数为p的超几何分布. 记为  $X \sim H(n, M, N)$ 

#### (6) 均匀分布:

$$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & \sharp \dot{\Xi} \end{cases}$$



则称X服从区间(a, b)上的均匀分布,记作:  $X \sim U(a, b)$ 

#### (7) 指数分布

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & \text{其它} \end{cases}$$
 其中**\(\lambda\) > 0 为常数**

记为  $X \sim E(\lambda)$ .

#### (8)正态分布或高斯分布

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty,$$

记为 $X \sim N(\mu, \sigma^2)$ .

#### (三) 常见随机变量 的数学期望

| 概率分布列                                                            | 期望                                                                                                                                        | 方差                                                                                                                                                          |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P(X=1) = p $P(X=0) = 1 - p$                                      | p                                                                                                                                         | pq                                                                                                                                                          |
| $P(X = k) = C_n^k p^k (1-p)^{n-k}$<br>$k = 0,1,2,\dots,n$        | np                                                                                                                                        | npq                                                                                                                                                         |
| $P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$ $k = 0,1,2,\dots$ | λ                                                                                                                                         | $\lambda$                                                                                                                                                   |
|                                                                  | $P(X = 1) = p$ $P(X = 0) = 1 - p$ $P(X = k) = C_n^k p^k (1 - p)^{n-k}$ $k = 0,1,2,\dots,n$ $P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$ | $P(X = 1) = p$ $P(X = 0) = 1 - p$ $P(X = k) = C_n^k p^k (1 - p)^{n-k}$ $k = 0, 1, 2, \dots, n$ $p$ $P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$ $\lambda$ |

#### (三) 常见随机变量 的数学期望

| 分布                           | 密度                                                                                       | 期望              | 方差                   |
|------------------------------|------------------------------------------------------------------------------------------|-----------------|----------------------|
| 区间(a,b)上的<br>均匀分布<br>U(a, b) | $f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b, \\ 0, & 其它 \end{cases}$                | $\frac{a+b}{2}$ | $\frac{(b-a)^2}{12}$ |
| 指数分布<br><i>E</i> (λ)         | $f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0, \\ 0, & \sharp : \Xi \end{cases}$ | $\lambda^{-1}$  | $\lambda^{-2}$       |
| 正态分布<br>N(μ,σ²)              | $f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$                    | μ               | $\sigma^2$           |
|                              |                                                                                          |                 |                      |

#### 第5章 中心极限定理

#### (一)要求:

- (1)熟记依概率收敛的定义;
- (2)理解什么是大数定律,什么是中心极限定理?
- (3)会写切比雪夫不等式、大数定律。

#### (二) 依概率收敛:

$$\forall \varepsilon > 0, \quad \lim_{n \to \infty} P\{ \mid Y_n - a \mid \geq \varepsilon \mid \} = 0$$

则称序列 $Y_1,Y_2,Y_n$ , …依概率收敛于a,

记为 
$$Y_n \xrightarrow{P} a$$
.

#### (三) 切比雪夫不等式(要求会写,会证):

设随机变量X 的期望EX及方差DX存在,则对任意的  $\varepsilon$  >0,有

$$P(|X - EX| \ge \varepsilon) \le \frac{DX}{\varepsilon^2}$$

偏差较大 的概率较小

证明: (1)设X为连续型随机变量,其密度函数为f(x)

$$P(|X - EX| \ge \varepsilon) = \int_{|x - EX| \ge \varepsilon} f(x) dx$$

$$\leq \int_{|x - EX| \ge \varepsilon} \frac{(x - EX)^2}{\varepsilon^2} f(x) dx$$

$$\leq \int_{-\infty}^{+\infty} \frac{(x - EX)^2}{\varepsilon^2} f(x) dx = \frac{DX}{\varepsilon^2}$$

# 四、契比雪夫(大数定律)定理 (要求会证)

设 $\{X_n\}$ 为相互独立的随机变量序列, $E(X_i)$ 存在, $D(X_i) \leq M$ ,(i=1,2,…)则对  $\forall \epsilon > 0$ ,有

$$\lim_{n\to\infty} P\left\{\left|\frac{1}{n}\sum_{i=1}^n X_i - \frac{1}{n}\sum_{i=1}^n E(X_i)\right| < \varepsilon\right\} = 1$$

证明: (用契比雪夫不等式)

(五) 要熟记几个大数定律, 中心极限定理:

熟记名称及内容:

契比雪夫(大数定律)定理,辛钦大数定律,伯努利大数定律

熟记名称及内容的中心极限定理:

林德伯格-列维(独立同分布),

棣莫佛-拉普拉斯。

### 第6章 样本及抽样分布

#### (一) 要求:

- (1)理解把握总体、个体、样本、统计量的定义
- (2)熟悉常用统计量: 样本均值、方差、一、二阶原点矩中心矩
- (3)三大分布的定义、图形、查表
- (4)熟练掌握抽样分布定理

#### (二) 三大分布:

### 定义1(卡方分布):

$$\chi^2 = X_1^2 + X_2^2 + \dots + X_n^2 \sim \chi^2(n)$$
  
 $\not = \psi X_i \sim N(0,1)$ 



### 定义2(t-分布):

$$T = \frac{X}{\sqrt{Y/n}} \sim t(n)$$

其中  $X \sim N(0,1)$ ,  $Y \sim \chi^2(n)$ 

#### 定义3(F-分布):

$$F = \frac{X/n_1}{Y/n_2} \sim F(n_1, n_2)$$
  
其中  $X \sim \chi^2(n_1), Y \sim \chi^2(n_2)$ 



### (三) 抽样分布定理:

总体
$$X \sim N(\mu, \sigma^2)$$
,则

Th1: 
$$U = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$
 Th4:  $T = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1)$ 

Th2: 
$$\chi_1^2 = \frac{nS}{\sigma^2} \sim \chi^2(n)$$
 Th3:  $\chi_2^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$ 

其中 
$$\tilde{S}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$$

$$Th4: T = \frac{X - \mu}{S / \sqrt{n}} \sim t(n-1)$$

Th3: 
$$\chi_2^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

Th7: 
$$F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} = \frac{S_1^2\sigma_2^2}{S_2^2\sigma_1^2} \sim F(n_1-1,n_2-1)$$

要求熟记这5个定理

### 第7章 参数估计

#### (一) 要求:

- (1)掌握点估计中的矩估计及 极大似然估计(对离散及连续);
- (2)掌握无偏性,有效性,一致性的定义,及应用;
- (3)区间估计公式(简单的不复杂的)。
- (二) 矩估计: 用样本矩去估总体矩。

#### 矩估计法的具体步骤:

- 0、确定分布 $F(x;\theta_1,\theta_2,...,\theta_m)$ (如果未知);
- $1、计算总体的k阶原点矩EX^k$ ;(至多到2阶)
- 2、用  $M_k = \frac{1}{n} \sum_{i=1}^{n} X_i^k = EX^k$  建立方程组;
- 3、解方程组; 4、戴帽; 5、回答(当需要时)。

例 设总体X在区间[0,  $\theta$ ]上服从均匀分布, 其中 $\theta>0$  为未知参数,若取样本为 $X_1,\dots,X_n$ 试求 $\theta$ 的矩估计.

解: 0、确定分布 $F(x;\theta_1,\theta_2,...,\theta_m)$ (如果未知); 1、计算总体的k阶原点矩 $EX^k$ 

$$EX = \frac{0+\theta}{2} = \frac{\theta}{2}$$
,

2、用
$$M_{k} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{k} = EX^{k}$$

$$M_{1} = \frac{1}{n} \sum_{i=1}^{n} X_{i} = \overline{X} = EX = \frac{\theta}{2}$$

$$f(x) = \begin{cases} \frac{1}{\theta}, & 0 \le x \le \theta \\ 0, & \text{#.de} \end{cases}$$

$$EX = \int_{-\infty}^{+\infty} x f(x) dx$$

$$e^{\theta} x \qquad e^{2} \Big|_{\theta}^{\theta} = \theta$$

$$= \int_0^\theta \frac{x}{\theta} dx = \frac{x^2}{2\theta} \bigg|_0^\theta = \frac{\theta}{2},$$

3、解方程组; 4、戴帽; 5、回答(当需要时);

$$\Rightarrow \hat{\theta} = 2\overline{X}$$
 为所求 $\theta$ 的矩估计(量)。

#### (三)极大似然估计:

### 求最大似然估计量的步骤:

- 0、确定分布(若未知);
- 1、写出似然函数并化简

$$L(\theta) = L(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^{n} p(x_i; \theta) ; \qquad L(\theta) = \prod_{i=1}^{n} f(x_i; \theta) ;$$

2、写出对数似然函数并化简

$$\ln L(\theta) = \sum_{i=1}^{n} \ln p(x_i; \theta) \quad ; \qquad \qquad \ln L(\theta) = \sum_{i=1}^{n} \ln f(x_i; \theta) \quad ;$$

- 3、 对  $\theta$  求导  $\frac{\mathrm{d} \ln L(\theta)}{\mathrm{d} \theta}$ , 并令  $\frac{\mathrm{d} \ln L(\theta)}{\mathrm{d} \theta} = 0$ ;
- 4、解方程(组),求驻点,就得θ的极大似然估计。

极大似然原理: 总体参数应有利于样 本观察值的出现。

### (四) 三种评价标准:

(1) 无偏性

$$E(\hat{\theta}) = \theta$$
 则称 $\hat{\theta}$  为 $\theta$  的无偏估计.

(2) 有效性

若 
$$D(\hat{\theta}_1) < D(\hat{\theta}_2)$$
 则称  $\hat{\theta}_1$  较 (比)  $\hat{\theta}_2$  有效。

(3) 一致性

$$\hat{\theta}_n \xrightarrow{P} \theta$$

则称 $\hat{\theta}_n$ 是总体参数 $\theta$ 的一致(或相合)估计量

#### (五)区间估计:

定义7.4.1: 设X是以 $\theta$ 为未知参数的总体, $X_1$ ,  $X_2$ , ...,  $X_n$ 来自总体的样本。如果对于小概率 $\alpha$ (一般取0.1, 0.05等),存在两个统计量  $T_1(X_1, X_2, ..., X_n)$ ,  $T_2(X_1, X_2, ..., X_n)$ ,使得

$$P\{T_1 \leq \theta \leq T_2\} = 1 - \alpha,$$

则称随机区间 [ $T_1$ ,  $T_2$ ]为 $\theta$ 为的区间估计,  $T_1$ 为置信下限,  $T_2$ 为置信上限,  $1-\alpha$ 置信水平(或置信度);[ $T_1$ ,  $T_2$ ]又称为参数 $\theta$ 的置信区间。

# 求置信区间的一般步骤如下(枢轴统计量法):

- 1. 明确问题,是对什么参数求置信区间? 置信水平 1-α 是多少?
- 2. 寻找参数  $\theta$  的一个良好的统计量(或随机变量,称为枢轴统计量)

$$T(\theta) = T(X_1, X_2, ..., X_n; \theta)$$

- (1) 含待估参数
- (2) 不含其他 未知参数
- (3)分布为已知(可查表).
- 3. 对于给定的置信水平1- $\alpha$ ,根据T的分布,确定常数a, b,使得  $P(a \le T(\theta) \le b) = 1-\alpha$
- 4. 对 " $a \leq T(\theta) \leq b$ " 作等价变形, 得到如下形式:

$$\hat{T}_1 \leq \theta \leq \hat{T}_2$$

从而随机区间 [ $T_1$ ,  $T_2$ ]就是 $\theta$ 的置信水平为 $1-\alpha$ 的置信区间。

### (七) 置信区间公式:

### 即µ的双侧置信区间为

从而得 $\sigma^2$ 的置信水平 为 $1-\alpha$ 的(双侧)置信区间为

$$\left[\frac{(n-1)s^2}{\chi^2_{1-\alpha/2}(n-1)}, \frac{(n-1)s^2}{\chi^2_{\alpha/2}(n-1)}\right]$$

### 第9章 假设检验

#### (一)要求:

- (1)理解小概率原理;
- (2)熟悉假设检验步骤(并能熟练应用);
- (3)理解两类误差。

#### (二) 假设检验步骤:

- 1、根据题意,提出恰当的假设
  - (1) 对哪个参数在什么条件下进行检验
  - (2) 单侧,还是双侧检验;

备择假设的方向与提问方向一致!

- 2、确定检验统计量。
- 3、确定拒绝域: 拒绝域方向与备择假设的方向一致。
- 4、计算并判断;
- 5、回答(解释)。

# (**1**) 对μ进行检验

|      | 是否有显<br>著差异                              | 是否明显减小                                               | 是否明显增大                                      |  |
|------|------------------------------------------|------------------------------------------------------|---------------------------------------------|--|
| 假设   | 双侧检验                                     | 左侧检验                                                 | 右侧检验                                        |  |
| 假设形式 | $H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0$ | $H_0: \mu \ge \mu_0$<br>$H_1: \mu < \mu_0$           | $H_0: \mu \leq \mu_0$<br>$H_1: \mu > \mu_0$ |  |
| 统计量  | $\sigma$ 已知:                             | $U = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$ |                                             |  |
|      | <b>σ</b> 未知:                             | $T = \frac{\overline{X} - \mu_0}{S / \sqrt{n}}$      |                                             |  |
| 拒绝域  | $ U  > u_{1-\alpha/2}$                   | $U < -u_{1-\alpha}$                                  | $U > u_{1-\alpha}$                          |  |
|      | $\mid T \mid > t_{1-\alpha/2}(n-1)$      | $T < -t_{1-\alpha}(n-1)$                             | $T > t_{1-\alpha}(n-1)$                     |  |

# (2) 对 $\sigma^2$ 进行检验

是否有显 著差异 是否明显 减小

是否明显 增大

| 假设       | 双侧检验                                                          | 左侧检验                                                                                                                         | 右侧检验                                                          |  |
|----------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|
| 假设形<br>式 | $H_0: \sigma^2 = \sigma^2_0$ $H_1: \sigma^2 \neq \sigma^2_0$  | $H_0:  \sigma^2 \ge \sigma_0^2$ $H_1:  \sigma^2 < \sigma_0^2$                                                                | $H_0:  \sigma^2 \le \sigma^2_0$ $H_1:  \sigma^2 > \sigma^2_0$ |  |
| 统计量      | μ 已知:                                                         | $\chi^{2} = \frac{n\widetilde{S}^{2}}{\sigma^{2}} = \frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\sigma^{2}} \sim \chi^{2}(n)$    |                                                               |  |
|          | μ未知:                                                          | $\chi^{2} = \frac{(n-1)S^{2}}{\sigma^{2}} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)$ |                                                               |  |
| 拒绝域      | $\chi^2 < \chi^2_{\alpha/2}$ 或 $\chi^2 > \chi^2_{1-\alpha/2}$ | $\chi^2 < \chi_{\alpha}^2$                                                                                                   | $\chi^2 > \chi^2_{1-\alpha}$                                  |  |

# (3) 均值差方差比的检验自己总结

|      | 是否有显<br>著差异                              | 是否明显减小                                     | 是否明显增大减小                                   |
|------|------------------------------------------|--------------------------------------------|--------------------------------------------|
| 假设   | 双侧检验                                     | 左侧检验                                       | 右侧检验                                       |
| 假设形式 | $H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0$ | $H_0: \mu \ge \mu_0$<br>$H_1: \mu < \mu_0$ | $H_0: \mu \le \mu_0$<br>$H_1: \mu > \mu_0$ |
| 统计量  | 己知:                                      |                                            |                                            |
|      | 未知:                                      |                                            |                                            |
| 拒绝域  |                                          |                                            |                                            |
|      |                                          |                                            |                                            |

#### (三) 两类错误

# 第一类错误(又称为弃真错误)

原假设本身为真,但由于小概率事件发生,错误的拒绝了原假设而犯的错误。

# 第二类错误(又称为存伪错误)

原假设本身为假,但却错误地接受了原假设而犯的错误。

在样本容量一定的情况下,两类错误不能同时减小。

即犯第一类错误的概率减小必然导致犯第二类错误的概率增加,反之亦然!