

Agents and Multi-Agent Systems

Multi-Agent Systems

Multi-Agent System

"There's no such thing as a single agent system."

A *multiagent system* is one that consists of a number of agents, which *interact* with one-another. In the most general case, agents will be acting on behalf of users with different goals and motivations. To successfully interact, they will require the ability to *cooperate*, *coordinate*, and *negotiate* with each other, much as people do.

• **Social ability**: intelligent agents are capable of interacting with other agents (and possibly humans) in order to satisfy their design objectives.

Multi-Agent System

Multi-Agent Systems

COMMUNICATION

Interaction

Communication

- Communication in OOP: method invocation
 - Object o_2 can communicate with object o_1 by invoking a (publicly) available method m_1 in o_1
 - o1.m1(...)
 - Object o_1 has no control over execution of m_1 : decision is made by o_2
- Communication in an agent-oriented setting
 - Agent a_1 has the capability to perform action α
 - Agent a_2 cannot 'invoke a method' in a_1 , since it is an **autonomous** agent
 - a_1 has control over both its state and its behavior
 - Agent a_2 can ask agent a_1 to perform the action, but is up to a_1 to actually perform it or not

"Objects do it for free, agents do it for money!"

Speech Act Theory

- Communicative actions
 - Agents can *influence* other agents
- Multi-agent approaches to communication are based on speech act theory [Austin, 1962] [Searle, 1969]
 - How utterances are used to achieve one's intentions
 - Utterances are just like "physical" actions to change the state of the world
 - Performative verbs: request, inform, promise, ...

Speech Acts

- Three aspects of a speech act
 - Locution: physical utterance
 - "Please make me some tea"
 - Illocution: intended meaning
 - "He requested me to make some tea"
 - Perlocution: resulting action
 - "He got me to make tea"

reflects the sender's intention

determined by the receiver's autonomy

- Two parts of a speech act
 - Performative = communicative verb used to distinguish between different "illocutionary forces" (the type of speech act)
 - Examples: inform, request, enquire, promise, ...
 - Propositional content = what the speech act is about
 - Example: "the window is open"

Agent Communication Languages

- Communication includes two kinds of semantics:
 - Semantics of the communication protocol (which must be domain independent)
 - Semantics of the enclosed message (which typically depends on the domain)
- Agent communication languages two main efforts:
 - Knowledge Sharing Effort (KSE)
 - Knowledge Query and Manipulation Language (KQML): defines an envelope for messages, including the *performative* (message intent)
 - Knowledge Interchange Format (KIF): content language, similar to first-order logic
 - Foundation for Intelligent Physical Agents (FIPA)
 - Agent Communication Language (ACL): similar to KQML, but with more precise performatives

ACL Message Components

- Content: message proper, using a representation language and an ontology
- Message: wraps the message content defines the type of interaction
- Communication: low-level parameters, such as the identity of the sender and receiver –
 "envelope"

ACL Message Components

Typical message (performative + parameters)

```
(<performative>
  :sender <word>
  :receiver <word>
  :language <word>
  :ontology <word>
  :content <expression>
  ...)
```

```
(inform
    :sender Amazon
    :receiver ag123
    :language Prolog
    :ontology BookShop
    :content price(AIMA, 29.99) )
```

- The <u>semantics of performatives</u> is domain independent
- The <u>semantics of the message</u> is defined by :content, :language: and :ontology

Arguments

Parameter	Category of Parameters			
performative	Type of communicative acts			
:sender	Participant in communication			
:receiver	Participant in communication			
:reply-to	Participant in communication			
:content	Content of message			
:language	Description of Content			
:encoding	Description of Content			
:ontology	Description of Content			
:protocol	Control of conversation			
:conversation-id	Control of conversation			
:reply-with	Control of conversation			
:in-reply-to	Control of conversation			
:reply-by	Control of conversation			

Performatives

- Two main performatives:
 - inform: the sender wants the receiver to believe this content
 - basic mechanism for communicating information
 - request: the sender requests the receiver to perform an action
- All other performatives are defined in terms of these two
- FIPA ACL Semantics: meaning of inform and request defined in terms of
 - "feasibility precondition"
 - "rational effect"

FIPA ACL Semantics for Inform and Request

INFORM

- The content is a statement
- Pre-condition:
 - Sender believes the content is true
 - Sender does not believe the recipient is aware of whether the content is true

Rational effect:

 Sender intends the recipient to believe the content

REQUEST

- The content is an action
- Pre-condition:
 - Sender believes recipient can perform the action
 - Sender does not believe that recipient already intends to perform action

Rational effect:

Sender intends the recipient to execute the action

Performatives

	Passing	Requesting		Performing	Error
Performative	information	information	Negotiation	actions	handling
accept-proposal			×		
agree				×	
cancel		×		×	
cfp			×		
confirm	×				
disconfirm	×				
failure					\times
inform	×				
inform-if	×				
inform-ref	×				
not-understood					\times
propagate				×	
propose			×		
proxy				×	
query-if		×			
query-ref		×			
refuse				×	
reject-proposal			×		
request				×	
request-when				×	
request-whenever				×	
subscribe		×			

Ontologies

- If two agents are going to communicate about a certain domain, they
 must agree on terminology
- Ontology
 - A formal definition of a body of knowledge, involving a taxonomy of class and subclass relations coupled with their definitions
 - A formal specification of a shared conceptualization
- Many developments in ontology languages arise from interest in the semantic web
 - Add information to web pages such that it becomes possible for computers to process them
- Ontology languages
 - XML, OWL, RDF, ...

Ontologies

Figure 6.1: A fragment of Bob's knowledge after a conversation about the novel *Prey*. Classes are drawn as ovals, and instances as rectangles. Labels on arrows indicate the nature of the relationship between entities.

Multi-Agent Systems

FIPA

Foundation for Intelligent Physical Agents

FIPA is an IEEE Computer Society standards organization that promotes agent-based technology

FIPA Abstract Architecture Specification

Foundation for Intelligent Physical Agents

- Agent Communication Language (ACL) Specifications
 - Message Structure
 - Communicative Act Library
 - Performatives
 - Content Languages
 - FIPA Semantic Language (SL) content language
 - Interaction Protocols
- Agent Management
- Agent Message Transport

FIPA Interaction Protocols

- Interaction protocols define conversations, that is, sequences of messages that together define a semantically meaningful interaction
- One of the most basic and well-known is the ContractNet protocol:
 - A <u>manager</u> agent announces a task it wants to assign
 - Responder agents bid for the task execution
 - The manager assigns the task by comparing the bids
 - The assignee finally sends the result of task execution

FIPA-ContractNet

FIPA-Request

FIPA-Subscribe

Multi-Agent Systems

MAS DEVELOPMENT METHODOLOGIES AND PLATFORMS

MAS Software Engineering

- AOSE (Agent-Oriented Software Engineering)
 - Abstractions: agent, environment, interaction protocol, context, roles, organizations, BDI
 - Methodologies: Gaia, MaSE, Prometheus, Tropos, Porto, ...
- MAS programming constructs
 - Agents (internal architecture and building blocks)
 - Infrastructure
 - Environment
 - Interaction artifacts/protocols (communication)
 - Distribution, mobility
- Development tools
 - IDE plugins, debugging
 - Agent and MAS visualization

MAS Development

- Some examples of platforms...
 - JADE
 - Jadex
 - Cougaar
 - Brahms
 - SPADE
- ...and languages...
 - Jason (AgentSpeak)
 - 2APL
 - Concurrent MetateM

- ...and organizational/environment modeling and programming
 - Moise, CArtAgO, JaCaMo

JADE: a FIPA-compliant agent platform

- FIPA-compliant
 - Agent Platform
 - Agent Management System (AMS)
 - Directory Facilitator (DF)
 - Message Transport System (MTS)

- Agent Platform
 Agent Management System

 Message Transport System

 Message Transport System

 Agent Platform
- Agent Communication Language (ACL)
- Interaction Protocols

JADE Architecture

SPADE: Smart Python Agent Development Environment

- Multi-agent platform
- Based on the XMPP protocol
 - XMPP server as middleware, enables agent communication, discovery, and management
- Agent model based on behaviours
- FIPA-compliant
- Agent Communication Language (ACL)
- Web-based interface

Further Reading

- Wooldridge, M. (2009). *An Introduction to MultiAgent Systems*, 2nd ed., John Wiley & Sons: Chap. 7
- Austin, J. L. (1962). How to do things with words. Oxford University Press.
- Searle, J. R. (1969). Speech acts: An essay in the philosophy of language. Cambridge University Press.
- Shoham, Y. (1993). *Agent-oriented programming*. Artificial Intelligence 60(1), 51-92.
- FIPA: http://www.fipa.org/
- JADE: https://jade.tilab.com/
- SPADE: https://spade-mas.readthedocs.io/en/latest/