□格□塔法是一种求解常微分方程的**数□解法**,微分方程可以是**□性**也可以是**非□性**的。

$$\dot{x} = f(x, u)$$

在控制系口中, x 指系口状口, u 指系口口入。

## 四□□格□塔法:

$$\begin{aligned} x_{k+1} &= x_k + \frac{h}{6} (K_1 + K_2 + K_3 + K_4) \\ K_1 &= f(x_k, u_1) \\ K_2 &= f(x_k + \frac{h}{2} K_1, u_2) \\ K_3 &= f(x_k + \frac{h}{2} K_2, u_3) \\ K_4 &= f(x_k + h * K_3) \end{aligned}$$

 $u_1, u_2, u_3, u_4$ 为对应时刻的系统输入,当微分方程中存在输入信号u时,求解步长h不能取太大,否则误差将很大。

从微分方程的形式 $\dot{x}=f(x,u)$ 可以看出,口是一个一口微分方程,口于高口微分方程如何求解?

$$\ddot{z} + \dot{z} + z = u$$

取状口向量 $x_1 = z, x_2 = \dot{z}$ ,得

$$\dot{x_1} = \dot{z} = x_2$$
  
 $\dot{x_2} = \ddot{z} = -z - \dot{z} + u = -x_1 - x_2 + u$ 

代口示例:

以一个二口非口性微分方程口例,通口取状口向量,化口2个一口微分方程:

$$\dot{x_1} = x_2$$

$$\dot{x_2} = \mu(1 - x_1^2)x_2 - x_1$$

clc

clear all

close all

```
Tmax = 20;
h = 0.01;
               % 龙格库塔法求解区间[0,Tmax] 步长为 h
T=[0:h:Tmax];
               % 微分方程初始条件
X0=[1;0];
[T_labrk4,x_labrk4] = lab_ode_rk4(@non_linear_d_func,T,X0);
plot(T_labrk4,x_labrk4(1,:),'LineWidth',1);
yyaxis left
ylabel('x_1');
hold on
plot(T_labrk4,x_labrk4(2,:),'LineWidth',1);
yyaxis right
ylabel('x_2');
hold off
grid on
grid minor
```



## 代口示例:

假 $\Box x = e^t$ ,  $\Box \dot{x} = e^t = x$ (对比解析解和数值解)

```
Tmax = 3;
t = 0:0.001:Tmax;
x = exp(t);
h = 0.909;
```

```
T = [0:h:Tmax];

X0 = 1;

[T_labrk4,x_labrk4] = lab_ode_rk4(@exp_diff,T,X0);

figure()

plot(t, x, 'g')

hold on

plot(T_labrk4, x_labrk4, 'b')

hold off

legend("e^{x}(解析解)", "e^{x} rk4(数值解)")

grid on

grid minor
```



```
function dx = exp_diff(t,x)
    dx = x;
end
```