

Coupling GPS + vehicle sensors

- For continuity and accuracy purpose
- Strength / Weakness
- GPS: constant accuracy / unavailable indoor and in deep unban environment
- Odometre (wheel speed sensor) and Gyrometre (vehicle turn rate): always work / drift with time
- => Combination of the strengths of both GPS and vehicle sensors: continuous positioning system and better accuracy

Proprioceptive sensors

 Odometre (wheel encoder, wheel speed sensor...): n pulses returned per revolution. Calibration needed.

- Both positive/negative counting (quadrature)
- CAN bus available data, for each wheel

Proprioceptive sensors

Gyrometre: turn rate (deg or rad/s)

 Fiber-optic and Micro-Electro-Mechanics systems are the most popular

IMU: Inertial Meas Units include 3 axis gyro and accelerometers

Exteroceptive sensors

- GNSS
- Camera vision, Lidar: make use of landmarks (that must be detected, recognized and georeferenced)

SLAM: Simultaneous Location And Mapping

Motion model

- The rover motion is not any!
- Predictive equations, e.g.:
 - double integration of acceleration

(planes, submarines...)

pedestrian stride model

Bayesian fusion

- Normal distributed random variable
- Its pdf: $f(x)=1/\sigma\sqrt{2\pi} \exp(-(x-\mu)^2/2\sigma^2)$
- μ: mean and σ : standard deviation (σ^2 : variance)

Bayesian data fusion applied to vehicle geolocalisation

David Bétaille – ESEO 2021

Bayesian fusion

- Fusion of normally distributed random variables
- These are caracterised by their mean and their variance: μ_1 , σ^2 and μ_2 , σ^2 (scalar here)
- Which « estimate » maximizes the prob of both « measurements » 1 and 2 to be observed?
- i.e. x? max[exp(-(x- μ_1)²/2 σ^2_1 * exp(-(x- μ_2)²/2 σ^2_2)]
- \Leftrightarrow x? maxlog[exp(-(x- μ_1)²/2 σ^{2_1} * exp(-(x- μ_2)²/2 σ^{2_2})]
- \Leftrightarrow x? max[(-(x- μ_1)²/2 σ^2_1 + (-(x- μ_2)²/2 σ^2_2)]
- Derivate: $[(-(x-\mu_1)/\sigma^2_1 + (-(x-\mu_2)/\sigma^2_2)]$ Null for: $x = (\mu_1/\sigma^2_1 + \mu_2/\sigma^2_2) / (1/\sigma^2_1 + 1/\sigma^2_2)$
- in Bayesian fusion this estimate is called MAP max a posteriori: the variance-weighted mean
- its variance is given by: $1/(1/\sigma^{2_1} + 1/\sigma^{2_2})$

Bayesian fusion and Kalman filter

- Fusion of normally distributed random variables
- These are caracterised by their mean and their variance: X1, P1 and X2, P2 (in dimension N)
- Distance of Mahalanobis (or NIS: normalized innovation squared):

• NIS =
$$\sqrt{(X1-X2)' * inv(P1+P2) * (X1-X2)}$$

- if NIS > chi² threshold N dof, incoherent variables
 - otherwise, variables can be fused computing:

in a Kalman filter, X1: predicted meas. h(X)
 and X2: actual meas. Y

One sets the risk of false alarm (in %)

Hidden Markov chain

- The whole past information is contained in the courant state of the system
- State vectors (X) are chained (by an evolution model or prediction model) with or w/o input vectors (U)
- Hidden state
- State vectors (X) are not directly observed by meas (Y) but thru an observation model or estimation model
- If the models have normal errors and are linear, the Kalman filter gives explicitely the optimal solution of the problem: this filter is also called predictor/estimator

Bayesian data fusion applied to vehicle geolocalisation

David Bétaille – ESEO 2021

Extended Kalman filter

- Generalisation when the models are not linear
- => linearization around the current state (ordre 1 Taylor development)
- Jacobian matrix: partial derivate of the equations of evolution et the equations of observation wrt the state vector (and eventually wrt to the input vector)
- No more optimal
- No guaranteed unicity: one may (in case of severe non linearity) converge to a local minima/maxima

EKF equations

State system

$$X_k = f_k(X_{k-1}, U_k, V_k)$$

 $Y_k = h_k(X_k, W_k)$
with $X = (x_1, x_2, ..., x_n)^T$

- Bayesian rules
- Gaussian assumptions

$$\begin{split} p(X_{k-1}|Y_{1:k-1}) &\approx \mathcal{N}(\bar{X}_{k-1|k-1}, \mathbf{P}_{k-1|k-1}) \\ p(X_{k}|Y_{1:k-1}) &\approx \mathcal{N}(\bar{X}_{k|k-1}, \mathbf{P}_{k|k-1}) \\ p(X_{k}|Y_{1:k}) &\approx \mathcal{N}(\bar{X}_{k|k}, \mathbf{P}_{k|k}) \\ &- \text{with } P = cov(x_1, x_2, ..., x_n) \end{split}$$

Bayesian data fusion applied to vehicle geolocalisation

David Bétaille – ESEO 2021

EKF equations

Prediction step

EKF equations

Prediction step

$$\begin{split} & p(X_k|Y_{1:k-1}) \approx \mathcal{N}(\bar{X}_{k|k-1}, P_{k|k-1}) \\ & \bar{X}_{k|k-1} = f_k(\bar{X}_{k-1|k-1}, U_k, 0) \\ & \mathbf{P}_{k|k-1} = \mathbf{F}_k P_{k-1|k-1} \mathbf{F}_k^T + \mathbf{\Theta}_k \mathbf{\Sigma}_U \mathbf{\Theta}_k^T + \underbrace{\mathbf{\Psi}_k \mathbf{\Sigma}_V \mathbf{\Psi}_k^T}_{x_{k|k-1}} \mathbf{\mathcal{I}} \\ & \mathbf{\mathcal{I}}_{x_{k|k-1}} \\ \end{split}$$

Correction step

$$\begin{aligned} &p(X_k|Y_{1:k}) \approx \mathcal{N}(\bar{X}_{k|k}, \mathbf{P}_{k|k}) \\ &\bar{X}_{k|k} = \bar{X}_{k|k-1} + \mathbf{K}_k(Y_k - h_k(\bar{X}_{k|k-1}, 0)) \\ &P_{k|k} = (\mathbf{I} - \mathbf{K}_k \mathbf{H}_k) P_{k|k-1} \end{aligned} \qquad \mathbf{R} \\ &\mathbf{K}_k = P_{k|k-1} \mathbf{H}_k^T (\mathbf{H}_k P_{k|k-1} \mathbf{H}_k^T + \mathbf{\Upsilon}_k \mathbf{\Sigma}_W \mathbf{\Upsilon}_k^T)^{-1} \end{aligned}$$

EKF equations

Prediction step

$$p(X_k|Y_{1:k-1}) \approx \mathcal{N}(\bar{X}_{k|k-1}, P_{k|k-1})$$

$$\bar{X}_{k|k-1} = f_k(\bar{X}_{k-1|k-1}, U_k, 0)$$

$$\mathbf{P}_{k|k-1} = \mathbf{F}_k P_{k-1|k-1} \mathbf{F}_k^T + \mathbf{\Theta}_k \mathbf{\Sigma}_U \mathbf{\Theta}_k^T + \mathbf{\Psi}_k \mathbf{\Sigma}_V \mathbf{\Psi}_k^T$$

 $x_{k|k-1}$ y_k

Odo

David Bétaille – ESEO 2021

Gyro

Loose coupling for vehicle location

State: East North (E N) and heading

Input: ∆distance odo and gyro turn rate

 $E(k+1) = E(k) + \Delta distance odo * cos (heading)$

 $N(k+1) = N(k) + \Delta distance odo * sin (heading)$

heading (k+1) = heading (k) + gyro turn rate * Δt

- GPS observation: lat, lon, alt (E and N in projection)
- Gaussian noises (GPS, odo, gyro)

Loose coupling EKF implementation

- State: east(E), north(N), heading(θ)
- Prediction (at e.g. 10 Hz):
 evolution model of the vehicle using
 performed distance (odo) and turn
 rate (gyro)
- Estimation (at e.g. 1 Hz): observation model of E and N directly with GPS co-ordinates

Loose coupling for vehicle location

Jacobian matrixes: F (k):

```
    1 0 -Δd * sin (heading)
    0 1 Δd * cos (heading)
    0 0 1
```

and Θ (k):

```
cos (heading) 0
sin (heading) 0
0 Δtemps
```

H (k) linear: [1 0 0; 0 1 0] (and state not hidden)

Real-time filtering of vehicle position

- Prediction: at the odo gyro frequency (10 to 100 Hz)
- Estimation: at the GPS output frequency (1 to 10 Hz)

Offline smoothing of vehicle position

- Smooting: Raugh's equations (fwd rwd filter)
 - Non causal (future is known)
 - Demo application: Gyrolis (freeware)

Tight coupling EKF implementation

State: x, y, θ (like loose coupling) + height z, receiver clock

 $(\rho)_N$

- Prediction (at 10 Hz): like loose coupling + z and ck assumed constant
- Estimation (at 1 Hz): pseudoranges (ρ) for N svs

Tight coupling for vehicle location

- Evolution of the state(with input)like loose coupling
- Pb in 3D:coordinates ENU:
- x=East, y=North, z=Up

$$\rho_j = \sqrt{(x_j - xu)^2 + (y_j - yu)^2 + (z_j - zu)^2} + c.ck$$

Tight coupling for vehicle location

Jacobian matrix: H (k) (non linear observation)

- $\mathbf{a}\mathbf{x}_{j} = d\rho_{j}/dx$, $a\mathbf{y}_{j} = d\rho_{j}/dy$, $a\mathbf{z}_{j} = d\rho_{j}/dz$
- N satellites

Bayesian data fusion applied to vehicle geolocalisation

David Bétaille – ESEO 2021

Tight coupling for vehicle location

Use every satellite initially (N satellites visibles)

Even if N<4
(i.e. no GPS solution) satellite data are used

- chi² test on the pseudo-ranges NIS
- if the test with N svs is negative
 - one makes weighted residuals (Cholesky)
 - one eliminates the sv with
 the highest weighted residual
 - one iterates using N-1 svs

GPS solution by Kalman filtering

- State: X, Y, Z, receiver clock (cdt) and their derivates
- Prediction (at 1 Hz): dynamic model
- Estimation (at 1 Hz): observation model using pseudo-ranges (ρ) and Dopplers (ρ') for N svs

Constant velocity model

- State: X,vX, Y,vY, Z,vZ, cdt,cdt
- Input : none
- State prediction :

$$X (k+1) = X (k) + vX * \Delta temps$$

$$vX (k+1) = vX (k)$$

$$cdt (k+1) = cdt (k) + cdt * \Delta temps$$

$$cdt * (k+1) = cdt * (k)$$

- GPS observation : pseudo-distances et Doppler
- Gaussian noises (model and GPS measurements)

Doppler effect

- measured in frequency: fd (Hz)
- $fd = fn (1 \rho^2/c)$ where
- fn is the nominal frequency (L band : 1.5 GHz)
- c is the speed of light
- ρ' is the satellite / receiver range rate

Doppler effect

- ρ' is the satellite / receiver range rate
- vX, vY, vZ : receiver
- vXs, vYs, vZs : satellite
- ρ' = (v_rec-v_sat).u
- u : unit vector rec-sat

Doppler effect from sat rise to set

GPS solution by Kalman filtering

Jacobian matrix: H (k) (non linear observation)

$$\begin{bmatrix} ax_1 & ay_1 & az_1 & 1 & 0 & 0 & 0 & 0 \\ & & & & & & \\ ax_N & ay_N & az_N & 1 & 0 & 0 & 0 & 0 \\ bx_1 & by_1 & bz_1 & 0 & cx_1 & cy_1 & cz_1 & 1 \\ & & & & & \\ ax_N & ay_N & az_N & 0 & cx_N & cy_N & cz_N & 1 \end{bmatrix}$$

- $\mathbf{ax}_{j} = d\rho_{j}/dx$, $ay_{j} = d\rho_{j}/dy$, $az_{j} = d\rho_{j}/dz$ for ranges (ρ_{j})
- $\mathbf{b}\mathbf{x}_{j} = \mathrm{d}\rho_{j}^{\dagger}/\mathrm{d}\mathbf{x}$, $\mathrm{b}\mathbf{y}_{j} = \mathrm{d}\rho_{j}^{\dagger}/\mathrm{d}\mathbf{y}$, $\mathrm{b}\mathbf{z}_{j} = \mathrm{d}\rho_{j}^{\dagger}/\mathrm{d}\mathbf{z}$ and $\mathbf{c}\mathbf{x}_{j} = \mathrm{d}\rho_{j}^{\dagger}/\mathrm{d}\mathbf{v}\mathbf{x}$, $\mathrm{c}\mathbf{y}_{j} = \mathrm{d}\rho_{j}^{\dagger}/\mathrm{d}\mathbf{v}\mathbf{y}$, $\mathrm{c}\mathbf{z}_{j} = \mathrm{d}\rho_{j}^{\dagger}/\mathrm{d}\mathbf{v}\mathbf{z}$ Dopplers (ρ_{j}^{\dagger})

GPS solution by Kalman filtering

The pb is to fix variance matrixes characterizing noises in both dynamic model (W also noted Q) and observation model (V also noted R)

R: characterizes errors in pseudoranges and Doppler

Q: integrated white noise whose level (Sp) by trial-and-error method

Q matrix:

Sp.Ts 3 /3 Sp.Ts 2 /2

Sp.Ts 2 /2 Sp.Ts

Ts = sampletime

Bayesian data fusion applied to vehicle geolocalisation

David Bétaille – ESEO 2021

GPS solution by Kalman filtering

- Use every satellite initially (N visible satellites)
 - chi² test on both range & Doppler NIS
 - if the test with N svs is negative
 - one makes weighted residuals (Cholesky)
 - one eliminates the sv with the highest weighted residual
 - one iterates using N-1 svs
- innov = Y-HX Pondération : chol((HPH'+R)-1)*innov

Table of χ^2

LOI DE X2 OU DE PEARSON

FONCTION DE RÉPARTITION

— Une variable aléatoire Z suit une loi de χ^2 si elle peut prendre toutes les valeurs positives, la densité de probabilité pour la valeur z étant

$$f(z) = \frac{1}{2^{\nu/2} \Gamma(\frac{\nu}{2})} z^{\frac{\nu-2}{2}} e^{-\frac{z}{2}} \quad \text{où} \quad \Gamma(n) = \int_0^\infty e^{-x} x^{n-1} dx$$

 ν est un nombre entier dit nombre de degrés de liberté. La moyenne de cette loi est égale à ν et sa variance à 2 ν .

- La table qui suit donne la valeur χ_P^2 de la variable Z ayant la probabilité P de ne pas être dépassée, en fonction du nombre ν de degrés de liberté. Cette table est résumée par l'abaque de la page 27.

P est égale à l'aire située à gauche de l'abscisse χ_R^2 au-dessous de la courbe représentant la densité de probabilité.

$$P = \int_{-\infty}^{\chi_p^2} f(z) \ dz$$

Exemple: $\nu = 12$ P = 0.900 $\chi^2_{0.90} = 18.5$

— Dès que ν est supérieur à 30, la quantité $[\sqrt{2\chi^2} - \sqrt{2\nu - 1}]$ suit une loi très voisine de la loi normale réduite ce qui permet de calculer les limites χ_p^2 pour $\nu > 30$.

Exemple: Pour $\nu = 44$, quelle est la valeur de χ^2 qui a une probabilité de 0,90 de ne pas être dépassée, c'est-à-dire quelle est la valeur de $\chi^2_{n,90}$?

$$\sqrt{2\chi_{0,90}^2} - \sqrt{2\nu - 1} = \sqrt{2\chi_{0,90}^2} - \sqrt{87} \approx 1,28$$

$$\sqrt{2\chi_{0,90}^2} \approx 1,28 + \sqrt{87} = 10,60$$

$$\chi_{0,90}^2 = \text{est voisin de} \qquad 56,2$$

- La variable aléatoire $Z=U_1^2+U_2^2+\ldots U_{n,i}^2$ pour laquelle tous les U_i sont des variables aléatoire normales réduites et indépendantes, suit la loi de χ^2 à $\nu=n$ degrés de liberté.

La variable de χ^2 sert, en particulier, à l'étude d'une distribution observée (chapitre II-1), au calcul de l'intervalle de confiance d'une variance (II-2), à la comparaison de variances (IV-3) et de proportions (IV-4).

Table of X²

Cette table donne les valeurs de χ^2_P en fonction de P et du nombre ν de degrés de liberté.

<u> </u>				P					,					1 5 7
V.P	0,005	0,010	0,025	0,050	0,100	0,250	0,500	0,750	0,900	0,950	0,975	0,990	0,995	٧ /
1	0,0000	0.0002	0.0010	0.0039	0.0158	0.102	0,455	1,32	2,71	3,84	5,02	6,63	7,88	1
2	0,0100	0.0201	0.0506	0.103	0,211	0.575	1,39	2,77	4,61	5,99	7,38	9,21	10,6	2
3	0,0717	0,115	0,216	0,352	0,584	1,21	2,37	4,11	6,25	7,81	9,35	11,3	12,8	3
	0.303						,		4	-		ĺ .		1 1
4	0,207	0,297	0,484	0,711	1,06	1,92	3,36	5,39	7,78	9,49	11,1	13,3	14,9	4
5	0,412	0,554	0,831	1,15	1,61	2,67	4,35	6,63	9,24	11,1	12,8	15,1	16,7	5
5	0,676	0,872	1,24	1,64	2,20	3,45	5,35	7,84	10,6	12,6	14,4	16,8	18,5	6
7	0,989	1,24	94.1	2.17	2,83	4,25	6,35	9,04	12.0	14.1	16,0	18.5	20,3	7
8	1,34	1,65	2,18	2,73	3,49	5,07	7.34	10.2	13.4	15.5	17.5	20.1	22,0	8
9	1,73	2,09	2,70	3,33	4, 17	5,90	8,34	11,4	14,7	16,9	19,0	21,7	23,6	9
10	2.16	3.5.	3.25							'				١١
10	2,10	2,56	3,25	3,94	4,87	6,74	9,34	12,5	16,0	18,3	20,5	23,2	25,2	10
11	2,60	3,05	3,82	4,57	5,58	7,58	10,3	13,7	17,3	19,7	21,9	24,7	26,8	11
12	3,07	3,57	4,40	5,23	6,30	8,44	11,3	14,8	18,5	21,0	23,3	26,2	28,3	12
13	3,57	4,11	5,01	5,89	7,04	9,30	12,3	16,0	19,8	22,4	24,7	27,7	29,8	13
14	4.07	4,66	5,63	6,57	7,79	10,2	13,3	17.1	21,1	23,7	26,1	29,1	31,3	14
15	4,60	5.23	6,26	7,26		11,0	14,3	18,2	22,3	25,0	27,5	30,6	32.8	15
16	5,14	5,81	6,91	7,96		11,9	15,3	19,4	23,5	26,3	28,8	32,0	34,3	16
	1		.,,,,	,,,,,	,,5.	,,	13,3	17,7	23,3	20,3	20,0	32,0	34,3	l " I
17	5,70	6,41	7,56	8,67	10,1	12,8	16,3	20,5	24.8	27,6	30,2	33,4	35,7	17
18	6,26	7,01	8.23	9,39	10,9	13,7	17,3	21,6	26,0	28,9	31,5	34,8	37,2	18
19	6,84	7,63	8,91	10,1	11,7	14,6	18,3	22,7	27,2	30,1	32,9	36,2	38,6	19
20	7,43	8,26	9,59	10,9	12,4	15,5	19,3	23,8	28,4	31,4	34,2	37,6	40,0	20
21	8,03	8,90	10,3	11,6	13,2	16,3	20,3	24,9	29.6	32,7	35,5	38.9	41,4	21
22	8,64	9,54	11,0	12,3	14,0	17,2	21,3	26,0	30,8	33,9	36,8	40,3	42,8	22
23	9,26	10,2	11,7	13,1	14,8	18,1	22,3	27,1	32,0	35,2	38,1	41,6	44,2	23
24	9.89	10,9	12,4	13,8	15.7	19.0	23,3	28.2	33.2	36,4	39,4	43,0	45,6	24
25	10,5			14,5	16.5	19.9	24,3	29.3	34,4	37,7	40,6	44,3	46,9	25
26	11,2		13,8	15,4		20,8	25,3	30,4	35,6	38,9	41,9	45,6	48,3	26
1	1				1	į	l	· ·						1
27	13,8	, ,	i '	16,2		21,7	26,3	31,5	36,7	40,1	43,2	47,0	49,6	27
28	12,5	13,6	15,3	16,9		22,7	27,3	32,6	37,9	41,3	44,5	48,3	51,0	28
29	13,1	14,3	16,0	17,7	19,8	23,6	28,3	33,7	39,1	42,6	45,7	49,6	52,3	29
30	13,8	15,0	16,8	18,5	20,6	24,5	29,3	34,8	40,3	43,8	47,0	50,9	53,7	30
40	20,7		24,4	26,5	29.1		39,3	45.6	51.8	55,8	59,3	63.7	66.8	40
50	28,0	1	32.4	34.8		42,9	49,3	56,3	63,2	67,5	71,4	76,2	79,5	50
80	35,5	37.5	40,5	43,2	46,5	52,3	59,3	67,0	74,4	79.1	83,3	88,4	92,0	60
70	43,3	45,4	48,8	51,7	55,3	61,7	69.3	77,6	85,5	90,5	95,0 1	100,4	104,2	70
80	51,2	1	57,2	60,4	64,3	71,1	79,3	88,1		,-	-	1 *	116,3	80
90	59,2		65,6	69,1	73,3	80,6	89,3	98,6	107,6	113,1	118,1	124,1	128.3	90
100	67,3	70,1	74,2	77,9	82,4	90,1	99,3	109,1	118.5	124,3	129,6	135,8	140,2	100
	···							Ε					L	ı I

Table of χ^2

Cet abaque fournit la valeur de χ^2_P en fonction de P et du nombre ν de degrés de liberté.

