

Butterfly Counting in Bipartite Networks

CheolHee Jeong
DM Lab
04.04.2024

Outline

- > Introduction
- Motivation
- Proposed Method
- > Conculsion

Bipartite Network Definition

- Graph G = (V, E) is called a bipartite graph if:
 - V can be partitioned into two **disjoint** subsets L and R such that E ⊆ L × R, i.e. Every edge connects a vertex in L and a vertex in R

The Importance of Motifs

Understanding Network

 Butterfly motifs within bipartite graphs are essential for understanding the complexity of networks

Data Mining and Recommendation Systems

 Utilized for developing more sophisticated recommendation systems by identifying connections between user preferences and product attributes

Partition R

Outline

- > Introduction
- Motivation
- Proposed Method
- > Conclusion

Existing Problem

- > 기존 모티프 계산 알고리즘은 어떤 문제 점이 있을까?
 - 계산 복잡도
 - 기존 모티프 계산 알고리즘은 높은 계산 복잡도를 갖고 있음, 이로 인해 대용량 데이터를 다루는 현대의 응용 분야에서는 실용적이지 못한 경우가 많음
 - 제한된 확장성
 - 빠르게 증가하는 데이터 크기에 비해, 기존 알고리즘 들이 이를 효율적을 처리할 수 있는 확장성 부족

이분 네트워크에서 모티프 계산을 하는데 정확성과 효율성을 동시에 제공하는 방법 필요

Problem Statement

- Input : Bipartite graph G = (V = (L, R), E)
- Goal: To rapidly and accurately compute the number of butterflies in G

Outline

- > Introduction
- Motivation
- Proposed Method
- > Conclusion

Butterfly Counting

- ➤ Graph 내 나비 숫자 카운팅:
 - 목표 : 이분 그래프 내 나비 개수 세기
 - 방법:
 - ExactBFC
 - vBFC
 - EBFC

Exact Butterfly Counting

- Exact Butterfly Counting(ExactBFC):
 - 목표 : 이분 그래프 내 나비 개수 세기
 - 방법:
 - 하나의 분할 내 모든 정점 순회
 - 해당 정점을 포함하는 나비 수를 카운트하고 합산
 - 나비를 두 번 세지 않음

Exact Butterfly Counting

Algorithm 1: ExactBFC (V, E): Exact Butterfly Counting

```
Input :Graph G = (V = (L, R), E)
    Output: \boxtimes (G)
 1 \mathcal{A} \leftarrow L, \times \leftarrow 0
2 if \sum_{u \in L} (d_u)^2 < \sum_{v \in R} (d_v)^2 then
 3 \mid \mathcal{A} \leftarrow R
 4 for v \in \mathcal{A} do
         C \leftarrow hashmap
                                                      // initialized with zero
        for u \in \Gamma_{\upsilon} do
               for w \in \Gamma_u : w \prec v do
               C[w] \leftarrow C[w] + 1
                                                // dist-2 multiplicities
 8
         for w \in C : C[w] > 0 do
 9
           \times \leftarrow \times + \binom{C[w]}{2}
11 return \mathbb{Z}/2 (\mathbb{X})
```


Time Complexity of ExactBFC

- ExactBFC: $O(\min\{\sum_{v\in L}(d_v)^2, \sum_{v\in R}(d_v)^2\})$
- Algorithm by to Wang et : $O(\sum_{v \in R} (d_v)^2)$

Performance of ExactBFC

Random Sampling

Counting 알고리즘의 속도를 더 높이고 싶다

- ▶ 정말 정확한 나비의 수가 필요할까?
 - 목표 : 추정치를 이용하여 알고리즘 속도를 향상
 - 방법:
 - Random Sampling
 - VSAMP
 - ESAMP
 - WSAMP

Random Sampling

> Random Sampling

- 샘플링에 의한 근사화 → 나비 수의 추정치 계산
- 원 그래프보다 작으므로 비용 감소
- 샘플링 과정은 더 나은 분산을 줄이기 위해 여러 번 반복하여 평균을 내어 사용

Vertex Sampling(VSAMP)

> Algorithm VSAMP

• 무작위로 선택된 한 정점의 거리-2 이웃을 기반으로 샘플링

Algorithm 4: VSAMP (single iteration)

Input: A bipartite graph G = (V, E)

Output: An estimate of $\Xi(G)$

- 1 Choose a vertex v from V uniformly at random.
- $z \times_v \leftarrow vBFC(v,G)$

// Algorithm 2

3 return $\times_{v} \cdot n/4$

VSAMP의 추정치는 비편향, 추정치의 분산은 나비 쌍의 수에 의존

Average time per iteration

Figure 4: Average time per iteration of sampling algorithms.

WSAMP : 실행 시간이 전반적 가장 짧음

ESAMP: 일관되게 많은 시간 필요함

ESAMP + Fast-eBFC : ESAMP의 시간 크게 단축

Sparsification

> Sparsification

- 그래프를 전역 샘플링 단계를 통해 더 작은 그래프로 축소
- 각 엣지를 특정 확률로 샘플에 포함
- 방법:
 - ESpar
 - ClrSpar

Sparsification

- > Espar
 - 각 엣지가 포함될 확률은 다른 엣지와 독립적

Algorithm 8: ESPAR: Edge Sparsification

Input: A bipartite graph G = (V, E), parameter p, 0

- 1 Construct E' by including each edge $e \in E$ independently with probability p
- 2 $\beta \leftarrow \text{EXACTBFC}(V, E')$

// Algorithm 1

3 return $\beta \cdot p^{-4}$

Sparsification

- > CIrSpar
 - 특정 구조(밀집된 영역)를 기반으로 확률이 조정 → **밀집된 영역에 있는 엣지의 확률 높게 설정**

Algorithm 9: CLRSPAR

```
Input: Bipartite graph G = (V, E), number of colors N

1 Let f: V \to \{1, \ldots, N\} // map to random colors

2 E' \leftarrow \{(u, v) \in E_G | f(u) = f(v)\}

3 \beta \leftarrow \text{ExactBFC}(V, E') // Algorithm 1

4 return \beta \cdot p^{-3} where p = 1/N
```

Sampling or Sparsification

➤ Sampling과 Sparsification 중 어떤 것이 좋을까?

	ESAMP (with FAST-EBFC)	ESPAR
Deli	3.4	2.1
Journal	5.0	1.7
0rkut	3.4	3.4
Web	4.1	3.9
Wiki-en	4.8	2.3

Table 5: Time (in seconds) to obtain 1% relative percent error for the best sampling and sparsification algorithms.

메모리 사용량: Espar 메모리 사용량 O(mp) Esamp보다 많음

매개변수 설정 : Espar은 샘플링 확률 p를 결정 \rightarrow 정확도와

실행 시간 사이 trade - off

데이터 접근성: Espar은 전체 그래프 필요하므로 데이터 접근이

제한적인 환경에서 불리

Outline

- > Introduction
- Motivation
- Proposed Method
- > Conclusion

Conclusion

Conclusion:

• 간단한 통계를 활용하여 이분 네트워크 내 나비 모티프를 빠르고 정확하게 근사 계산하는 새로운 알고리즘을 제안

> Strong points

- 속도와 정확성 :
 - 나비 모티프의 수를 빠르고 정확하게 추정
- 정확도 보장 :
 - 정확도에 대한 이론적 알고리즘을 제공
- 범용성과 적용성 :
 - 다양한 유형의 이분 네트워크 데이터에 적용가능

Conclusion

Weak Points

- 실시간 데이터에 적용 한계
- Vsamp 가정의 명확성 부족 :
 - 독립적 샘플링 가정 :
 - ✓ 실제 네트워크 영역에서는 종속성 있을 수 있음
 - 정점 공유의 균일한 확률 가정 :
 - ✓ 모든 모티프가 그래프 내의 모든 정점과 같은 확률로 연결되어 있다고 가정. 이는 모든 정점이 같은 중요성과 연결성을 가진다는 것을 의미

Thank You

Appendix

Algorithm 2: vBFC (v, G): Per Vertex Butterfly Counting

Input: A vertex $v \in V$ in $G = (V = (L \cup R), E)$

Output: \boxtimes_v , number of butterflies in G that contain v

1
$$\times_v \leftarrow 0, C \leftarrow hashmap$$
 // initialized with zero

- 2 for $u \in \Gamma_{\mathcal{U}}$ do
- for $w \in \Gamma_u$ do if $w \neq v$ then $C[w] \leftarrow C[w] + 1$
- 4 for $w \in C$ do $\boxtimes_{\mathcal{V}} \leftarrow \boxtimes_{\mathcal{V}} + \binom{C[w]}{2}$
- 5 return X_v

특정 정점을 포함한 나비 수 Counting

Appendix

➤ VSAMP 추정치 특성 증명

PROOF. Consider that the butterflies in G are numbered from 1 to X. Let $X = X_{\mathcal{U}}$, the number of butterflies that contain the vertex \mathcal{U} , which is sampled uniformly. For $i = 1, \ldots, X$, let X_i be an indicator random variable equal to 1 if the i^{th} butterfly includes the vertex \mathcal{U} . We have $X = \sum_{i=1}^{X} X_i$. Since each butterfly has four vertices, $\mathbb{E}[X_i] = \Pr[X_i = 1] = 4/n$. Thus, $\mathbb{E}[X] = \sum_{i=1}^{X} \mathbb{E}[X_i] = \sum_{i=1}^{X} \Pr[X_i = 1] = \frac{4X}{n}$. Since $Y_V = X \cdot \frac{n}{4}$, we have $\mathbb{E}[Y_V] = X$.

$$\operatorname{\mathbb{V}ar}\left[Y_{V}\right] = \operatorname{\mathbb{V}ar}\left[\frac{n}{4}\sum_{i=1}^{\mathbb{X}}X_{i}\right] = \frac{n^{2}}{16}\operatorname{\mathbb{V}ar}\left[\sum_{i=1}^{\mathbb{X}}X_{i}\right]$$
$$= \frac{n^{2}}{16}\left[\sum_{i=1}^{\mathbb{X}}\operatorname{\mathbb{V}ar}\left[X_{i}\right] + \sum_{i\neq j}\operatorname{\mathbb{C}ov}\left(X_{i}, X_{j}\right)\right]$$

Appendix

▶ 나비 쌍의 종류

Figure 3: A pair of butterflies in G can be of one of the above five types.