(materiale didattico redatto da prof. R. D'Angiò)

(Libro di testo Newbold: Capitolo 5, Sezione 6). Distribuzione o v.a. di Poisson o poissoniana:

X = "numero di successi in un intervallo di tempo di lunghezza t"

<u>Simbolo</u>: $X \sim Po(\mu)$. <u>Parametro</u>: μ , o λ , ($\mu = \mu_X = \lambda$, Newbold p. 181). <u>Funzione di probabilita'</u>:

$$p(x) = \begin{cases} e^{-\mu} \frac{\mu^{x}}{x!}, & x \in S_{X} = \{0,1,2,3,\ldots\}, \\ 0, & altrove \end{cases}, \quad \left(\mu = E(X) = V(X) = \lambda, \sum_{x=0}^{\infty} p(x) = \sum_{x=0}^{\infty} e^{-\mu} \frac{\mu^{x}}{x!} = 1\right)$$

Esercizio 1. Per $X \sim Po(4)$ (vedi qui sopra il grafico della funzione di probabilità') si calcoli p(0), p(1), p(2). **Soluzione**. I valori delle probabilità' richieste coincidono con quelli nel grafico:

$$p(0) = e^{-4} \frac{4^{0}}{0!} = e^{-4} = 0.018 | 32, p(1) = e^{-4} \frac{4^{1}}{1!} = 4e^{-4} = 0.073 | 26, p(2) = e^{-4} \frac{4^{2}}{2!} = 8e^{-4} = 0.146 | 53.$$

(materiale didattico redatto da prof. R. D'Angiò)

Il grafico precedente e' quello della funzione di ptobabilita' di $Y \sim Po(2)$.

Osservazione. Parametro della v.a. di Poisson: μ , o λ , ($\mu = \mu_x = \lambda$, Newbold p. 181).

 μ = numero medio (atteso) di successi nell'intervallo di intervallo di tempo t, ed inoltre

$$\mu = \mu_X = \sigma_X^2$$
 (ovvero $\mu = E(X) = V(X)$). Talvolta e' di interesse anche:

 $\frac{\mu}{t}$ = numero medio (atteso) di successi per unita' di tempo in cui e' misurato l'intervallo di tempo della

Poisson, che e' detto anche intensita' dei successi (per unita' di tempo).

Esercizio 2. Si considerino le due v.a. $X \sim Po(4)$ e $Y \sim Po(2)$.

(a) Per entrambe si calcoli la probabilità di osservare un qualsiasi valore della v.a. nell'intervallo con al centro la media e di lunghezza 2 (estremi dell'intervallo compresi). Si possono utilizzare i valori delle probabilità indicati nei grafici riportati nella pagina precedente (che pero' sono arrotodate a 3 decimali).

(b) Si commenti quanto ottenuto in (a).

Soluzione. (a) L'intervallo e': $[\mu-1,\mu+1]$. Infatti: lunghezza $=\mu+1-(\mu-1)=2$, valore centrale

$$=\frac{(\mu-1)+(\mu+1)}{2}=\frac{2\mu}{2}=\mu$$
. Allora per la v.a. $X \sim Po(4)$, quindi con $\mu_X=4$, si ha:

$$P(X \in [\mu_X - 1, \mu_X + 1]) = P(\mu_X - 1 \le X \le \mu_X + 1) = P(3 \le X \le 5) = 0.195 + 0.195 + 0.156 = 0.546$$

Per la v.a. $Y \sim Po(2)$, quindi con $\mu_Y = 2$, si ha:

$$P(Y \in [\mu_Y - 1, \mu_Y + 1]) = P(\mu_Y - 1 \le X \le \mu_Y + 1) = P(1 \le X \le 3) = 0.271 + 0.271 + 0.180 = 0.722$$

(b) Si nota che per l'intervallo con al centro la media e con la stessa lunghezza 2 e' piu' alta la probabilita' di osservare valori in tale intervallo per la v.a. Y con $\mu_Y = 2 = \sigma_Y^2$ che non per la v.a. X con $\mu_X = 4 = \sigma_X^2$:

$$P(\mu_X - 1 \le X \le \mu_X + 1) = 0.546 < P(\mu_Y - 1 \le X \le \mu_Y + 1) = 0.722 \quad (\sigma_X^2 = 4 > \sigma_Y^2 = 2)$$

Commento. Cio' e' dovuto al fatto che la v.a. X ha varianza maggiore della v.a. Y. Quindi ai valori della v.a. X in tale intervallo corrisponde una probabilita' piu' bassa di quella che si ha per la v.a. Y.

Osservazione. Anche se i valori nell'intervallo di cui sopra sono 3 per entrambe le v.a. X e Y, si dice che sono piu' concentrati (o meno dispersi) rispetto alla media i valori della v.a. Y con varianza minore rispetto a quelli della v.a. X con varianza maggiore. Cio' si dice nel senso che: e' la probabilita' corrispondente a tali valori che e'piu' "concentrata" – ovvero e' maggiore – su tale intervallo per la v.a. con varianza minore ($\sigma_Y^2 = 2$, probabilita' 0.722) rispetto alla probabilita' che si ha (a parta' di lunghezza dell'intervallo) per la v.a. con varianza magggiore ($\sigma_X^2 = 4$, probabilita' 0.546).

Esercizio 3. Si considerino le due v.a. $X \sim Po(4)$ e $Y \sim Po(2)$. (a) Per entrambe le v.a. si calcolino le probabilità cumulate sino al valore 2 compreso (le probabilità nei grafici precedenti sono arrotondate a 3 decimali). (b) La stessa domanda (a) ma determinando le cumulate con la lettura della <u>tavola numerica</u>. **Soluzione.** (a):

Boluzione: (a).					
$X \sim Po(4)$			$Y \sim Po(2)$		
		F(x) =			F(y) =
x	p(x)	$P(X \le x)$	у	p(y)	$P(Y \le y)$
0	0,018	0,018	0	0,135	0,135
1	0,073	0,091	1	0,271	0,406
2	0,147	0,238	2	0,271	0,677

(b): Con la lettura della tavola numerica si ottiene esattamente lo stesso risultato per la v.a. $Y \sim Po(2)$.

Per la v.a. $X \sim Po(4)$ con la lettura della tavola numerica la seconda cumulata e' 0.092 invece di 0.091 (a causa dell'arrotondamento a 3 decimali delle propbabilita' riportate nel grafico).