MLOps — from Prototyping to Production

Gianluca Campanella 6th June 2019 Hello!

My name is **Gianluca** [dʒanˈluːka]

What I do nowadays

I'm a Data Scientist at

in AzureCAT

What I do nowadays

I also run my own company

Data Science consulting and training

Today we're talking about...

MLOps

Today we're talking about...

MLOps

 $(\approx$ a whole bunch of mistakes I made in the last few years)

Things I've helped build recently

- High-frequency trading system for sports betting
- Context-aware, personalised search engine
- Content recommender for a mobile app
- Automated forecasting tool for an e-commerce business

Two types of Data Science

Analysis-focused

- Maths and Statistics
- Business Intelligence
- → Assist human decision-making

Building-focused

- Machine Learning
- Software Engineering
- → Develop and deploy data-driven products

Don't try to run before you can walk

AI, DEEP LEARNING

A/B TESTING, EXPERIMENTATION, SIMPLE ML ALGORITHMS

ANALYTICS, METRICS, SEGMENTS, AGGREGATES, FEATURES, TRAINING DATA

CLEANING, ANOMALY DETECTION, PREP

RELIABLE DATA FLOW, INFRASTRUCTURE, PIPELINES, ETL, STRUCTURED AND UNSTRUCTURED DATA STORAGE

INSTRUMENTATION, LOGGING, SENSORS, EXTERNAL DATA, USER GENERATED CONTENT

From M. Rogati

What is MLOps?

What is DevOps?

DevOps

What?

Automation practices between software developers and IT

Why?

To build, test and release software faster and more reliably

DevOps

At its essence, DevOps is a culture, a movement, a philosophy.

Atlassian

MLOps

What?

Automation practices between data scientists, data engineers, software developers and IT

Why?

To build, test, release and monitor software that embeds ML faster and more reliably

9

High-risk, high-reward innovation culture

 \downarrow

Iterate quickly ←→ Fail fast

If it's not used in production...

It never happened!

If *it is* used in production...

It better work!

As a Data Scientist, MLOps...

- Is hard but does pay off
- Gives you peace of mind
- Allows you to focus on more interesting tasks

As a Software Engineer, MLOps...

- Is something you're probably already doing
- Increases the dependability of ML systems
- Brings you closer to the Data Science team

Research question Obtain ←→ Explore ←→ Model Operationalise

Research question Obtain ←→ Explore ←→ Model **Operationalise**

Research question Obtain ←→ Explore ←→ Model **Operationalise**

Data sources

 \downarrow

ETL ←→ Model development ←→ Training

1

Deployment

Data sources ETL \longleftrightarrow Model development \longleftrightarrow Training Deployment

Data sources

 \downarrow

ETL ←→ Model development ←→ Training

 \downarrow

Deployment

ETL

What?

- Extract, Transform, Load
- Data Science alchemy
- Heavily informed by domain knowledge and EDA

ETL

Things to keep in mind

- Distributional assumptions
- Transformations
- External data sources

Data sources

 \downarrow

ETL ←→ Model development ←→ Training

 \downarrow

Deployment

Model development

How?

- Hyperparameter tuning
- Automated ML

Model development

Things to keep in mind

- Choice of programming language
- Versioning
- Performance tracking

Model development

Interlude

Online vs offline metrics

- Business metrics → online metrics
- Offline metrics ≈ online metrics
- Experiment early and often

Interlude

Feedback loops

- Models become self-fulfilling prophecies
- Biased data collection
- Explore-exploit trade-off

Data sources

 \downarrow

ETL ←→ Model development ←→ Training

 \downarrow

Deployment

Training vs scoring

Training

- Historical data → model
- Scheduled offline (batch) jobs

Training vs scoring

Training

- Historical data → model
- Scheduled offline (batch) jobs

Scoring

- Model + new data → predictions
- Online or offline (batch)

Deployment

How?

- Offline (batch) scoring
- Queues
- RPC (e.g. REST endpoint)
- In-process

Deployment

Things to keep in mind

- Throughput and latency requirements
- Impedance mismatch between training and scoring*
- Access control and security
- Other moving parts (e.g. databases)

^{*} I'm looking at you, Apache Spark

Online deployment

How?

- Docker
- Kubernetes
- CI/CD pipeline

Online deployment

Things to keep in mind

- Splitting traffic
- A/B testing
- Incremental roll-out

Data sources

 \downarrow

ETL ←→ Model development ←→ Training

 \downarrow

Deployment

So... we're done?

Not quite!

We still need to automate ETL and training

Retraining

Things to keep in mind

- Data drift
- Performance tracking
- $\bullet \ \ \text{Golden set} \to \text{gated deployment}$

Monitoring

- Logging
 - Data drift
 - Statistical performance
 - Serving performance
- Anomaly detection and alerting
- Fallback mechanisms

Monitoring

Now we're really done!

But then...

Do it again!

- Versioning
- Roll-back mechanisms
- Experimentation

Recap

Data sources

 \downarrow

ETL ←→ Model development ←→ (Re)training

Experimentation \longleftrightarrow Deployment \longleftrightarrow Monitoring

Recap

As a Data Scientist...

- Familiarise yourself with the tools
- Try moving some of your workloads away from your laptop
- Understand where Engineering is coming from

Recap

As a Software Engineer...

- Ramp up on containers and orchestration
- Check out the different cloud offerings
- Help your fellow Data Scientists

Thank you!

If you want to keep in touch...