Data Analysis – You're Now the Hacker

Introduction

Data Hackers Inc. specializes in identifying critical information from aggregate data sources, compiled via phishing attempts or directly from corporate data sources. The most recent heist includes a plethora of data from a popular online shopping platform. As a Principal Hacker, I have been tasked with identifying High Value Targets (HVTs) from the collected data. These are candidates that are best suited for identity and credit card theft, and their data will either be used internally by Data Hackers Inc., or sold to external bad actors.

Methodology

HVTs, as defined in the introduction, are optimal candidates from the aggregate dataset for identity and credit card theft. Based on this principle, the following evaluation protocol was developed for identifying the theft potential of a given person:

- 1. Likelihood of existing credit or identity fraud.
 - a. This was determined through a complex analysis of social security numbers in the data set. See the Analysis section for more information.
- 2. Spend-to-income ratio (12 month purchase history divided by the annual income).
 - a. High spend-to-income ratio is an attribute of targets that would be unlikely to notice irregular spending.
- 3. Credit Card Expiration date.
 - a. Only targets with valid credit cards will be considered.
- 4. Travel frequency.
 - a. Targets that frequently travel will not receive fraudulent spending alerts from their credit card provider.
- 5. Active account status.
 - a. Targets with active accounts are less likely to identify spending on the platform as fraudulent.

The target criteria, listed above, neglects some common factors for identity theft and scams. Factors such as age and income weren't directly considered, as they are secondary to the factors above. The Federal Trade Commission identified online shopping as the highest loss category for all fraud in both the 18-59 and 60+ age groups, effectively eliminating age as a meaningful factor for the fraud being pursued ("Who Experiences Scams"). Income was not a direct consideration as the goal is to identify targets for credit and identity fraud. Individuals that spend more in proportion to their income are more likely to overlook additional charges and are more likely to default on their debt. This fact spans all age demographics, per Andrew Dorn of News Nation (Dorn).

<u>Analysis</u>

The merged dataset was primarily analyzed using the pandas package in python. The following steps were taken as part of the analysis. A detailed breakdown of each step will follow.

- 1. Identify the number of customer ID occurrences.
- 2. Within the set of customers with multiple customer ID entries, identify if they are the same people by validating DOB, SSN, Credit Card Number, and others are consistent across customer ID occurrences.
- 3. At this point, it was decided that SSN might be a better indicator of targets that may already be victims of identity fraud. The same analysis from steps 1 and 2 was completed with SSN as the key row.
- 4. Filter the dataset of customers with multiple SSN entries by the criteria listed in the Methodology section.
- 5. Extract the remaining results to identify primary HVTs.
- 6. Remove the targets identified in step 3 from the global dataset.
- 7. Repeat step 4 to identify secondary HVTs.
- 8. Extract the remaining results for secondary HVTs.

Step 1:

Image 1: Extract Occurrences of Customer IDs

The data was previously pulled into a data frame entitled "data." The *customer_id* column was extracted from the data frame and converted to a list, and a dictionary was instantiated to capture the customer IDs as keys and the occurrence count as values. Upon looping through the *cust_id* list, the existence of the current ID key was verified. If it exists, the value was overwritten to the current value plus one, otherwise a new key was added to the dictionary with a value of 1. The max number of customer ID occurrences in the data set was found to be 3, and a histogram plot was generated (see Image 2).

Image 2: Histogram of Customer ID Occurrences

Step 2:

Image 3: Extract Dataset of Multiple Customer IDs

A new dictionary was instantiated to capture all cases of multiple customer ID occurrences. These customer IDs were checked against the data set, and the indices of non-multiple customer IDs were stored to a list to drop. The original data was copied to a new data frame, then the drop indices were removed to leave all rows that contain customer IDs with greater than one occurrence.

Upon inspection of the multiples dataset in excel, it was clear there were targets with multiple "aliases." An important note is that this could be a result of unclean data, however, this analysis is operating under the assumption that these targets are already victims of identity fraud. To verify the targets are, in fact, the same people, the columns with "aliases" were identified. This was done by iterating through the multiples data set columns and appending the column name to an *aliased_cols* list if there were more unique rows in the column than the total number of customer IDs with multiple occurrences.

```
After looking at the excel, it seems like there is some aliasing going on in this data set. Let's see which columns have customers with aliasing.

aliased_cols = []

for col in multiples.columns:
    if len(multiples[col].unique())>len(multiple_occurrences):
        aliased_cols.append(col)

aliased_cols

v    00s

['last_name', 'email', 'address', 'credit_card_expiry']

This is a great hint, it tells me that these are the same people that used aliases or have been victims of identity fraud. I am confident in this conclusion because the critical identifiers like SSN, credit card number, DOB, and IP are all the same for each customer. That said, the aliasing I've discovered is making me question the use of customer ID as the primary key for my analysis. Perhaps social security number would be better. This is guaranteed to be unique for each customer.
```

Image 4: Find Aliased Columns

From this analysis step, it was evident that the targets with multiple customer IDs were the same people. However, this step led to a clue in the data set. The existence of multiple customer IDs hints at the existence of multiple Social Security Numbers, which is a better tool for identity theft. If multiple people share the same social security number, it is likely the SSN has been utilized in identity theft by organizations other than Data Hackers Inc.

Step 3:

```
#Extract the ssn column
ssn = list(data["ssn"])

#Instantiate a defaultdict to count occurrences of ssn
ssn_occurrences = defaultdict(int)

#Loop through the set of ids and append them to the dictionary. If they already exist, add one to the id value.
for id in ssn:
    if id in ssn_occurrences:
        ssn_occurrences[id]+=1
    else:
        ssn_occurrences[id]=1

print(max(ssn_occurrences.values()))

    o.0s
```

Image 5: Extracting Occurrences of Social Security Numbers

See step 1 detailed breakdown. The process was identical, this time using the "ssn" column.

Image 6: Histogram of Social Security Number Occurrences

Step 4:

As stated in the Methodology section, the primary filtering criteria for HVTs are Spend-to-Income ratio, credit card expiration date, travel frequency, and active account status. The Spend-to-Income ratio was computed by dividing 12 month purchase history by annual income for the *multiple_ssn* dataset (seen in Image 7, below). The result was multiplied by 100 to give a percentage of annual income spent on a 12 month cycle.

```
Okay, I am glad I did this. SSN is a better metric for identifying repeat customers\customers with possibly fraudulent data than customer ID. Based on the excel file, there appear to be unrelated customers that share SSNs in this data set. These customers are potentially already victims of identity fraud. These will be the primary targets to screen for High Value Target status.

To identify high value targets, I want to filter by Annual Income, 12 month purchase history, travel frequency, credit card expiration, and subscription status. I want people with the highest purchase history to income ratio with active subscriptions, frequent travel, and non-expired credit cards. These people are the least likely to identify credit card fraud, and they are frequent travelers, so the credit card agency won't be tipped off if they login/purchase from another IP (me).

#Compute spend to income ratio and add it as a column multiple_ssn("spend_to_income_ratio") = multiple_ssn("annual_income")*i00 multiple_ssn("spend_to_income_ratio") = multiple_ssn("annual_income")*i00 python
```

Image 7: Compute Spend-to-Income Ratio

With Spend-to-Income ratio computed, the *multiple_ssn* dataset can now be filtered by the remaining criteria. The results of this search are the primary HVTs.

```
#filter multiple_ssn by credit card expiration and subscription status

primary_hvts = multiple_ssn[(multiple_ssn["subscription_status"]=="Active") & (multiple_ssn["credit_card_expiry"]>datetime.today()) & (multiple_ssn["travel_freq_per_month"]>=5)]

primary_hvts.sort_values(("travel_freq_per_month", "spend_to_income_ratio"), ascending=False)
```

Image 8: Filtering for Primary HVTs

The minimum travel frequency allowed was 5, which averages to more than one trip per week.

Step 5:

The result of this query can be found in Table 1 of the Appendix.

Step 6:

With Primary HVTs identified, the remaining targets in the data set can be evaluated on the same criteria as step 4. First, the remaining targets need to be extracted from the original dataset. As a result of already computing a *multiple_ssn_occurrences* dictionary, this is far easier. As done in step 1, the data set is looped through, and this time the drop indices will only include rows that contain serial numbers with multiple entries.

```
ssn_drop_indices = []

#Loop through the df and extract the indices that are not the customers of interest
for i in range(len(data)):
    if data.iloc[i]["ssn"] in multiple_ssn_occurrences:
        ssn_drop_indices.append(i)

print(len(data)-len(ssn_drop_indices))

single_ssn = data.copy()
single_ssn.drop(ssn_drop_indices, axis = 0, inplace=True)
len(single_ssn)

0.0s
959
```

Image 9: Removing Duplicate SSNs

Step 7:

The process in step 4 is now repeated with the *single_ssn* dataset. First, Spend-to-Income ratio is calculated.

```
#Compute spend to income ratio and add it as a column
single_ssn["spend_to_income_ratio"] = single_ssn["12 month purchace history"]/single_ssn["annual_income"]*100
single_ssn["spend_to_income_ratio"]
```

Image 10: Compute Spend-to-Income Ratio on Non-Duplicate SSN Dataset

Next, Secondary HVTs are selected using similar filtering criteria to step 4. In an effort to more effectively identify HVTs in this larger dataset, there was an additional filter added on Spend-to-Income ratio. A minimum of 35% was set, as this is well above the 20% utilization threshold that credit bureaus identify as a "healthy" balance when evaluating an individual's credit score.

```
#filter multiple_ssn by credit card expiration and subscription status secondary_htts = single_ssn(single_ssn'subscription_status")="Active") & (single_ssn'credit_card_expiry"]>datetime.today()) & (single_ssn["travel_freq_per_month"]>=5) & (single_ssn["spend_to_income_ratio"]>=35) secondary_htts = single_ssn(single_ssn'subscription_status")==35) secondary_htts = single_ssn("subscription_status")=35) secondary_htts = single_ssn("subscription_status
```

Image 11: Filtering single ssn by HVT Selection Criteria

Step 8:

The result of this query can be found in Table 2 of the Appendix.

Conclusion

The data analysis yielded 6 potential primary HVTs (with one duplicate) and 21 secondary HVTs, for a total of 26 High Value Targets for credit or identity theft. There is one important note regarding the duplicate primary HVT; there is likely enough information in this dataset to verify their true identity through Google or other internet resources. In the case this does not yield a result, both names and credit card information can be used in a purchase attempt to see which is correct. These 26 individuals are the best candidates for credit and identity theft, with the lowest likelihood of legal repercussions. That said, if additional income was needed to keep Data Hackers Inc. operational, the filtering criteria could be loosened to accommodate more targets. These targets are viable, however, their risk profile is greater, as they may be more likely to identify fraudulent charges, or their banks may notice unusual spending from uncommon IP addresses.

<u>Appendix</u>

						credit		credit_				
						card	credit c	card s		12 month		spend_t
first	last		phone_			numb	ard_expi	ecurity	annual i	purchace	travel_freq_	o_incom
name	name	email	number	ssn	dob	er	ry	_code	ncome	history	per_month	e_ratio
		Paula.Willi		243-	9/28							
	Willia	ams@gmai	045-895-	63-	/200	566251	7/30/202					
Paula	ms	l.com	4113	5844	1	192993	5	913	167154	75707	13	45.2919
			001-364-									
		Carl.Austin	375-	878-	10/3	414741						
		@nguyen.c	5444x92	70-	/197	179478	9/22/202					
Carl	Austin	om	63	5975	3	3260	6	822	274158	67951	5	24.7853
		Mark.Davis		722-	12/1	358170						
		@gmail.co	(651)062	65-	4/19	923986	12/25/20					
Mark	Davis	m	-4029	2813	92	0870	26	380	170393	46436	13	27.2523
			(365)634									
		Eric.Davis	-	455-	4/27	303971						
		@williams-	3934x66	39-	/196	369514	5/27/202					
Eric	Davis	burton.biz	2	5032	5	19	7	104	70690	50817	24	71.8867
		Eric.Holme	(365)634									
		s@william	-	455-	4/27	303971						
	Holme	S-	3934x66	39-	/196	369514						
Eric	S	burton.biz	2	5032	5	19	9/2/2026	104	70690	50817	22	71.8867
		Paula.Willi		243-	9/28							
	Willia	ams@gmai	045-895-	63-	/200	566251						
Paula	ms	l.com	4113	5844	1	192993	6/9/2027	913	167154	75707	11	45.2919

Table 1: Primary HVTs

								Credit card		12 month		
			phone				credit_	securi		purcha	travel_f	
first_n	last_na		_num			credit_card_nu	card_e	ty	Annual	ce	req_per	spend_to_inc
ame	me	email	ber	ssn	dob	mber	xpiry	code	income	history	_month	ome_ratio
			708-									
		Matthew.	672-									
Matth		Rivera@t	3512x	761-43-	6/21/		7/8/20		67458.			
ew	Rivera	urner.org	0034	6702	1947	563556581061	26	980	6	66646	12	98.79540933
		Robert.R	146-									
		oberts@a	222-									
		ndrews-	9244x	863-81-	8/19/	458788491430	6/27/2		145647			
Robert	Roberts	rocha.org	564	0428	1951	3620	025	143	.6	75914	25	52.12169648
١.		Joseph.S	378.5	705.05	0.000.0	05005000005	40/04/					
Josep	C	uarez@ga	08.24	765-05-	6/22/	353850090885	12/31/	070	050504	005.40	٥٦	00.04000704
h	Suarez	rrett.com	00	9614	1976	6380	2025	979	252584	98549	25	39.01632724
		Tammy.F	558.3									
		uller@si mpson-	65.74		11/1							
Tamm		johnson.c	24x72	835-40-	7/19	301376993001	8/15/2		153547			
у	Fuller	om	9	6345	55	03	026	516	.6	85477	12	55.66807948
y	Tattor	James.Lo	596.6	0040	- 00	00	020	010	.0	00477	12	00.00007040
		pez@mu	27.93	700-28-	9/29/	305921183079	8/22/2		40490.			
James	Lopez	eller.com	18	7329	1966	82	026	5135	4	34618	25	85.49680912
			001-									
		Gregory.	275-									
		Quinn@	146-									
Grego		montgom	7885x	684-44-	5/14/	353280751738	12/6/2		118880			
ry	Quinn	ery.com	856	0627	1952	6030	026	666	.8	62917	22	52.92444196
			356-									
		George.G	316-									
Georg		iles@yah	5029x	863-44-	9/1/2	302146341738	12/20/					
е	Giles	oo.com	620	4255	005	69	2025	534	204590	79378	13	38.79857276

		Stephani										
		e.Meyer			10/2							
Steph		@yahoo.c	62116	828-89-	2/19	466365589665	2/12/2		88989.			
anie	Meyer	om	0838	2919	89	3	026	666	6	56170	20	63.11973534
		Amanda.	653.4									
		Parker@k	82.00		12/1							
Aman		ennedy.n	85x22	155-84-	6/19	461553089670	2/6/20		164626			
da	Parker	et	150	9566	97	8340	27	957	.4	85738	25	52.08034677
			+1-									
			585-									
		Charles.	905-		12/1							
Charle		Garcia@g	4322x	861-91-	2/19	452917974239	1/20/2		18090.			
S	Garcia	mail.com	08686	5218	84	4	027	892	4	11263	9	62.25954097
			+1-									
		Melissa.A	123-									
		tkins@wil	608-									
Meliss		liams.co	4233x	432-41-	10/2/	444023985296	5/15/2		199559			
a	Atkins	m	436	1377	1982	9	027	666	.2	74824	20	37.49463818
			(442)4									
		Daniel.W	77-									
		alsh@hot	7659x	332-16-	1/17/	356809457180	9/24/2					
Daniel	Walsh	mail.com	5582	4913	1937	1460	025	666	32000	25331	22	79.159375
		Frank.La	105.7									
		wrence@	90.92									
	Lawren	perez.co	27x19	292-48-	7/31/	456881429875	10/6/2		38161.			
Frank	ce	m	581	3023	1994	9159808	025	6961	2	54521	9	142.8702452
		Erik.Pha	(984)8		12/2							
		m@yaho	29-	469-75-	8/19	357670773793	6/12/2					
Erik	Pham	o.com	3100	5046	35	5050	025	75	153408	62708	18	40.8766166
			+1-									
			876-									
		Darlene.	405-									
Darlen		Barnes@	3493x	610-58-	8/25/	386439980520	5/10/2					
е	Barnes	davis.net	81868	7498	1978	32	027	122	85460	73225	5	85.68336064

		Nicholas.										
		Lambert	(092)4									
Nichol	Lamber	@jimenez	42-	799-97-	5/30/		12/23/		34104.			
as	t	.com	2697	6606	1994	571762850949	2025	666	8	17604	13	51.61736764
			001-									
		Gregory.G	764-									
		onzalez@	800-		10/1							
Grego	Gonzal	yahoo.co	3385x	556-23-	9/19	359527361367	4/14/2		79025.			
ry	ez	m	05731	4302	50	5770	026	666	6	33028	11	41.79405155
			001-									
		Stephani	028-									
		e.Gonzal	552-									
Steph	Gonzal	ez@rivers	1997x	170-36-	6/19/	496752581757	9/4/20		70598.			
anie	ez	.org	274	6180	1974	2090	26	748	8	54212	11	76.7888406
		Paul.Ada	001-									
		ms@mcl	349-									
		aughlin-	158-									
		nelson.or	9165x	029-11-	2/26/		4/3/20		192196			
Paul	Adams	g	939	9412	2006	630418047977	27	666	.8	92308	8	48.02785478
		Bradley.G										
Bradle	Graha	raham@f	33149	600-46-	3/22/	601158240440	10/18/		201889			
У	m	rench.biz	2484	0911	2005	1600	2026	649	.6	75011	8	37.15446462
		Christine.										
		Ortiz@za	1-10-		12/2							
Christi		mora.co	319-	477-83-	7/19	489875304378	12/30/					
ne	Ortiz	m	1976	4643	68	8	2025	625	87788	76233	5	86.83760878

Table 2: Secondary HVTs

<u>Sources</u>

- 1. Dorn, Andrew. "American Credit Card Debt." *NewsNationNow*, 8 June 2023, www.newsnationnow.com/business/your-money/american-credit-card-debt/. Accessed 8 June 2025.
- 2. "Who Experiences Scams? A Story for All Ages." Data Spotlight, Federal Trade Commission, 8 Dec. 2022, www.ftc.gov/news-events/data-visualizations/data-spotlight/2022/12/who-experiences-scams-story-allages. Accessed 8 June 2025.