Spring 2021

Section 1 (DSSA)

Decision Tables

- The aim of decision analysis is to select the best decision, among a number of decision alternatives, when the future is uncertain.
- The main objective is to optimize the resulting payoff in terms of a decision criterion.
- Maximizing expected profit is a common criterion when probabilities can be assessed.
- Maximizing the decision maker's utility function is the mechanism used when risk is factored into the decision-making process.

Payoff Table:

- A useful way to represent and analyze a scenario where there is a range of possible outcomes and a variety of possible responses. A payoff table simply illustrates all possible profits/losses.
- The rows correspond to the possible decision alternatives
- The columns correspond to the possible future events.
- Future events (states of nature) are mutually exclusive and collectively exhaustive.
- The table entries are the payoffs.

Example:

- Tom Brown has inherited \$1000.
- He has to decide how to invest the money for one year.
- A broker has suggested five potential investments.
 - Gold
 - Junk Bond
 - Growth Stock
 - Certificate of Deposit
 - Stock Option Hedge
- The return on each investment depends on the (uncertain) market behavior during the year.
- Tom would build a payoff table to help make the investment decision

Decision		States of Nature								
Alternatives	Large Rise	arge Rise Small Rise No Change Small Fall Large Fa								
Gold	-100	100	200	300	0					
Bond	250	200	150	-100	-150					
Stock	500	250	100	-200	-600					
C/D account	60	60	60	60	60					
Stock option	200	150	150	-200	-150					

The stock option alternative is dominated by the bond alternative

Decision Making Criteria:

- 1. Decision making under certainty.
 - The future state-of-nature is assumed known.
- 2. Decision making under uncertainty.
 - There is no knowledge about the probability of the states of nature occurring.
- 3. Decision making under risk.
 - There is some knowledge of the probability of the states of nature occurring.

Decision Making under uncertainty:

- The decision criteria are based on the decision maker's attitude toward life.
- The criteria include:
 - 1. Maximax Criterion optimistic or aggressive approach.
 - 2. Maximin Criterion pessimistic or conservative approach.
 - 3. Criterion of Realism (Hurwicz)
 - 4. Equally Likely (La Place)
 - 5. Minimax Regret Criterion pessimistic or conservative approach.

Maximax Criterion:

- This criterion is based on the best possible scenario. It fits both an optimistic and an aggressive decision maker.
- An optimistic decision maker believes that the best possible outcome will always take place regardless of the decision made.
- An aggressive decision maker looks for the decision with the highest payoff (when payoff is profit).
- To find an optimal decision.
 - Find the maximum payoff for each decision alternative.
 - Select the decision alternative that has the maximum of the "maximum" payoff.

				Theor	dinal decision	
		The Maxin	nax Criterion		maj	Maximum
Decision	Large rise	Small rise	No change	Small fall	L ORCIN	Payoff
Gold	-100	100	200	300	13/01	300
Bond	250	200	150	-100	-150	200
Stock	500	250	100	-200	-600	500
C/D	60	60	60	60	60	60

Therefore, the optimal decision is (Stock)

Maximin Criterion:

- This criterion is based on the worst-case scenario.
 - It fits both a pessimistic and a conservative decision maker's styles.
 - A pessimistic decision maker believes that the worst possible result will always occur.
 - A conservative decision maker wishes to ensure a guaranteed minimum possible payoff.
- To find an optimal decision
 - Record the minimum payoff across all states of nature for each decision.
 - Identify the decision with the maximum "minimum payoff."

			C /	1/20							
The Maximin Criter 90%											
rge Rise	Small rise	No Change	Sm. "Pa/	Varge Fall	Payoff						
-100	100	200	300	80,00	-100						
250	200	150	-100	³ 01	-150						
500	250	100	-200	-00-	-600						
60	60	60	60	60	[∠] 60						
ī	-100 250 500	rge Rise Small rise -100 100 250 200 500 250	rge Rise Small rise No Change -100 100 200 250 200 150 500 250 100	-100 100 200 300 250 200 150 -100 500 250 100 -200	rge Rise Small rise No Change Sm. No Change No Change						

Therefore, the optimal decision is (C/D account)

Criterion of Realism (Hurwicz):

- A weighted average compromises between optimistic & pessimistic.
- To find an optimal decision, for each state of nature:
 - Select a coefficient of realism α , between 0 and 1.
 - A value of 1 is 100% optimistic
 - Compute the weighted average for each alternative.
 - Select the decision alternative with the highest average.
 - $\alpha(maximum in row) + (1 \alpha)(minimum in row)$

Let $\alpha = 0.7$					
Decisions	Criterion of Realism				
Gold	= (0.7) (300) + (0.3) (-100) = 180				
Bond	= (0.7) (250) + (0.3) (-150) = 130				
Stock	= (0.7) (500) + (0.3) (-600) = 170				
C/D account	= (0.7) (60) + (0.3) (60) = 60				

Therefore, the optimal decision is (Gold)

Equally Likely (La Place):

- Consider all the payoffs for each decision alternative.
- Find the average payoff, for each decision alternative.
- Select the decision alternative with the highest average.

Equally Likely					
Decisions	Average Payoff				
Gold	= Average (-100, 100, 200, 300, 0) $=$ 100				
Bond	= Average (250, 200, 150, -100, -150) = 70				
Stock	= Average (500, 250, 100, -200, 600) = 250				
C/D account	= Average (60, 60, 60, 60, 60) $=$ 60				

Therefore, the optimal decision is (Stock)

Minmax Regret(opportunity loss) Criterion:

- This criterion fits both a pessimistic and a conservative decision maker approach.
- The payoff table is based on "opportunity loss," or "regret."
- The decision maker incurs regret by failing to choose the "best" decision.
- To create an opportunity loss (regret) table:
 - Determine the best payoff over all decisions.
 - Calculate the regret for each decision alternative as the difference between its payoff value and this best payoff value.
- To find an optimal decision:
 - For each decision find the maximum regret over all states of nature.
 - Select the decision alternative that has the minimum of these "maximum regrets."

Therefore, the optimal decision is (Bond)

Decision Making under risk:

- The probability estimates for the occurrence of each state of nature (if available) can be incorporated in the search for the optimal decision.
- For each decision calculate its EMV (expected monetary value) or Expected value.

The EMV criterion:

Expected Payoff = Σ (Probability)(Payoff)

- The summation is calculated across all the states of nature
- Select the decision with the best expected payoff

Let's assume that the future events (states of nature) have probabilities of occurrences; 20%, 30%, 10%, 10%; respectively.

NOTE: Sum of probabilities must be equal 100%

The Expected Value Criter Expected Decision Large rise Small rise No change Small fall Value									
Decision	Large rise	Expected Value							
Gold	-100	100	200	300	D	100			
Bond	250	200	150	-100	-150	130			
Stock	500	250	100	-200	-600	/125			
C/D	60	60	60	60	60	/ 60			
Prior Prob.	0.2	0.3	0.3	0.1	0.1				
EV = (0.2	2)(250) + (0	.3)(200) +	(0.3)(150) +	· (0.1)(-100)) + (0.1)(-1	150) = 130			

Therefore, the optimal decision is (Bond)

Expected value of perfect information (EVPI):

- The gain in expected return obtained from knowing with certainty the future state of nature.
- It places an upper bound on what you should pay for additional information.
- EVPI = EVWP Maximum EMV
- EVWP is expected value with perfect information, which states the long run average return if we have perfect information before a decision is made.

If it were known with certainty that there will be a "Large Rise" in the market

	Danisia	-100	ted Value of Perfect Information							
	Decision	050	Small ri	se	No c	nande	Smal	tali	Large	rall
	Gold	250	1	00		200		300		0
-	Ctook	F00	2	200		150		-100	-	150
2	Stock	500	2	250		100		-200	-	600
	C/D	60		60		60		60		60
	Probab.	00		0.3		0.3		0.1		0.1

Decision	-100	Large fall			
Gold	250	100	No change	300	0
Bond	F00	200	150	-100	-150
Stock	500	250	100	-200	- <u>600</u>
C/D	60	60	60	60	60
Probab.	00	0.3	0.3	0.1	0.1

$$EVWP = (0.2) (500) + (0.3) (250) + (0.3) (200) + (0.1) (300) + (0.1) (60) = $271$$

EVPI = \$271 - \$130

DSS App (Section #2 continued).mp4

= \$141

This means, that the max which the decision maker can pay for additional information is \$141

Expected opportunity loss (EOL):

- The cost of not picking the best solution.
 - First, construct an opportunity loss (regret) table.
 - For each decision alternative, multiply the opportunity loss by the probability of that loss for each possible outcome and add these together
- Minimum EOL will always result in the same decision as maximum EMV.
- Minimum EOL will always equal EVPI

The Opportunity loss (Regret)table									
Decisions	Decisions Large Small rise No change Small Large rise (0.2) (0.3) (0.3) fall (0.1) fall (0.1								
Gold	600	150	0	0	60				
Bond	250	50	50	400	210				
Stock	0	0	100	500	660				
C/D account	440	190	140	240	0				

- EOL of Gold = (0.2) (600) + (0.3) (150) + (0.3) (0) + (0.1) (0) + (0.1) (60) = 171
- EOL of Bond = (0.2)(250) + (0.3)(50) + (0.3)(50) + (0.1)(400) + (0.1)(210) = 141
- EOL of Stock = (0.2) (0) + (0.3) (0) + (0.3) (100) + (0.1) (500) + (0.1) (660) = 146
- EOL of C/D account= (0.2) (440) + (0.3) (190) + (0.3) (140) + (0.1) (240) + (0.1) (0) = 211

Sensitivity Analysis:

- Sensitivity analysis examines how our decision might change with different input data
- Will be explained on the example in Lecture 3 (Slide 4).

If you have any questions, email me at r.bidweihy@fci-cu.edu.eg

Best of Luck!

Rawaa...

Rawaa ElBidweihy