

FCC TEST REPORT

For

BLUE IDEA LIMITED

SMART WATCH

Model No.: V01, L020, V02, V05, V06B, V07, V08B, V09, A8B

Prepared for : BLUE IDEA LIMITED

Address : ROOMS 1318-19, 13/F, HOLLYWOOD PLAZA, 610

NATHAN ROAD, KOWLOON, HONG KONG

Prepared By : Shenzhen Anbotek Compliance Laboratory Limited

Address : 1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road,

Nanshan District, Shenzhen, Guangdong, China

Tel: (86) 755-26066544 Fax: (86) 755-26014772

Report Number : R011605145Y

Date of Test : May 10~ 31, 2016

Date of Report : Jul. 08, 2016

TABLE OF CONTENT

Description

Page Test Report 1. GENERAL INFORMATION......4 2. TEST METHODOLOGY.......6 2.1. Summary of Test Results......6 2.2. Description of Test Modes......6 2.3. List of channels: 3. CONDUCTED EMISSION TEST...... 8 3.5. Test Procedure 9 4. FCC PART 15.247 REQUIREMENTS FOR DSSS & OFDM MODULATION...... 14 4.2 6dB Bandwidth 14 4.6. Radiated Emissions 62 APPENDIX II (INTERNAL PHOTOS)......80

TEST REPORT

Applicant : BLUE IDEA LIMITED

Manufacturer : BLUE IDEA LIMITED

EUT : SMART WATCH

Model No. : V01

Serial No. : L020, V02, V05, V06B, V07, V08B, V09, A8B

Trade Mark : N/A

Rating : DC 5.0V, 500mA by USB Cable from Host System

Li-ion Battery DC 3.7V, 420mAh

Measurement Procedure Used:

FCC Part15 Subpart C 2015, Paragraph 15.247

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Test:	May 10~ 31, 2016
	Buron War
Prepared by:	
	(Tested Engineer / Kebo Zhang)
	- 11
	Dolm mo
	\bigcup
Reviewer:	
	(Project Manager / Amy Ding)
Approved & Authorized Signer:	Ton Chen
	(Manager / Tom Chen)

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT : SMART WATCH

Model Number : V01, L020, V02, V05, V06B, V07, V08B, V09, A8B

(Note: All samples are the same except the model number and

colour, so we prepare "V01" for test only.)

Test Power Supply: DC 5.0V, 500mA by USB Cable from Host System

Li-ion Battery DC 3.7V, 420mAh

Adapter : N/A

Frequency

RF Transmission : WiFi: 2412MHz~2462MHz (802.11b/802.11g/802.11n(HT20))

2422MHz~2452MHz (802.11n(HT40))

GSM850 TX: 824.2~848.8MHz; RX: 869.2~893.8MHz PCS1900 TX: 1850.2~1909.8MHz; RX: 1930.2~1989.8MHz

Channels : WiFi: 11 For (802.11b/802.11g/802.11n(HT20))

7 For (802.11n(HT40))

GSM 850: 124CH PCS1900: 299CH

Modulation 802.11b CCK; 802.11g OFDM; 802.11n MCS

: WiFi: 1.4dBi Antenna Gain:

> GSM 850: 1.8dBi PCS 1900: 1.5dBi

Applicant : BLUE IDEA LIMITED

: ROOMS 1318-19, 13/F, HOLLYWOOD PLAZA, 610 NATHAN Address

ROAD, KOWLOON, HONG KONG

Manufacturer : BLUE IDEA LIMITED

Address : ROOMS 1318-19, 13/F, HOLLYWOOD PLAZA, 610 NATHAN

ROAD, KOWLOON, HONG KONG

Date of receipt : May 05, 2016

: May 10~31, 2016 Date of Test

1.2. Auxiliary Equipment Used during Test

Adapter : Manufacturer: ZTE

M/N: STC-A2050I1000USBA-C

S/N: 201202102100876

Input: 100-240V~50/60Hz 0.3A

Output: DC 5V, 1000mA

1.3. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 752021

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 752021, July 06, 2016.

IC-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited., EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada. The acceptance letter from the IC is maintained in our files. Registration 8058A, Jun. 13, 2016.

Test Location

All Emissions tests were performed at

Shenzhen Anbotek Compliance Laboratory Limited. at 1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road, Nanshan District, Shenzhen, Guangdong, China

1.4. Measurement Uncertainty

Radiation Uncertainty : Ur = 4.1 dB (Horizontal)

Ur = 4.3 dB (Vertical)

Conduction Uncertainty : Uc = 3.4dB

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10: 2013 and FCC Part 15, Paragraph 15.247.

2.1. Summary of Test Results

The EUT has been tested according to the following specifications:

Standard	Test Type	Result	Notes
FCC Part 15, Paragraph 15.107, 15.207	Conducted Emission Test	PASS	Complies
FCC Part 15, Paragraph 15.247(b)(1)	Maximum Output Power	PASS	Complies
FCC Part 15, Paragraph 15.247(a)(2)	6dB Bandwidth	PASS	Complies
FCC Part 15, Paragraph 15.247(c)	100kHz Bandwidth of Frequency Band Edges	PASS	Complies
FCC Part 15, Paragraph 15.209(a)(f)	Spurious Emission	PASS	Complies
FCC Part 15, Paragraph 15.247(a)(1)	Frequency Separation	1	N/A
FCC Part 15, Paragraph 15.247(a)(1)(iii)	Number of Hopping Frequency	-	N/A
FCC Part 15, Paragraph 15.247(a)(1)(iii)	Time of Occupancy	-	N/A
FCC Part 15, Paragraph 15.247(c)	Peak Power Density	PASS	Complies

2.2. Description of Test Modes

The EUT has been tested under operating condition.

Software used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

IEEE802.11b: Channel 1(2412MHz), Channel 6(2437MHz) and Channel 11(2462MHz) with 1 Mbps lowest data rate (worst case) are chosen for the final testing.

IEEE802.11g: Channel 1(2412MHz), Channel 6(2437MHz) and Channel 11(2462MHz) with 6 Mbps lowest data rate (the worst case) are chosen for the final testing.

IEEE802.11n (HT20): Channel 1(2412MHz), Channel 6(2437MHz) and Channel 11(2462MHz) with MCS 0 Mbps lowest data rate (the worst case) are chosen for the final testing.

IEEE802.11n (HT40): Channel 3(2422MHz), Channel 6(2437MHz) and Channel 9(2452MHz) with MCS 0 Mbps lowest data rate (the worst case) are chosen for the final testing.

2.3. List of channels:

 $\sqrt{\cdot}$ available

X - tested

A - icsicu				
Number	Frequency(MHz)		802.11 b/g/n	802.11 b/g/n
			(HT20)	(HT40)
1	2412	V	X	
2	2417			
3	2422			X
4	2427	√		
5	2432	√		
6	2437		X	X
7	2442			
8	2447			
9	2452			X
10	2457	V		
11	2462	V	X	

3. Conducted Emission Test

3.1. Block Diagram of Test Setup

3.1.1. Block diagram of connection between the EUT and simulators

3.2. Power Line Conducted Emission Measurement Limits (15.207)

Frequency	Limits dB(μV)			
MHz	Quasi-peak Level	Average Level		
0.15 ~ 0.50	66 ~ 56*	56 ~ 46*		
0.50 ~ 5.00	56	46		
5.00 ~ 30.00	60	50		

Notes: 1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

3.3. Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner which tends to maximize its emission characteristics in a normal application.

3.4. Operating Condition of EUT

- 3.4.1. Setup the EUT and simulator as shown as Section 3.1.
- 3.4.2. Turn on the power of all equipment.
- 3.4.3. Let the EUT work in test mode (Charging) and measure it.

3.5. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9KHz.

The frequency range from 150KHz to 30MHz is checked.

The test results are reported on Section 3.6.

3.6. Test equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Two-Line V-network	Rohde & Schwarz	ENV216	100055	Apr. 17, 2016	1 Year
2.	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Apr. 17, 2016	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Apr. 17, 2016	1 Year

3.7. Power Line Conducted Emission Measurement Results **PASS.**

The frequency range from 150KHz to 30 MHz is investigated.

Please refer the following pages.

Test Site: 1# Shielded Room

Operating Condition: Charging

Test Specification: AC 120V, 60Hz for adapter

Comment: Live Line

Test Site: 1# Shielded Room

Operating Condition: Charging

Test Specification: AC 120V, 60Hz for adapter

Comment: Neutral Line

No.	Freq.	Reading	Factor	Result	Limit	Over Limit	Detector	Remark
140.	(MHz)	(dBuV)	(dB)	(dBuV)	dBu∀	(dB)	Detector	remark
1	0.1660	11.11	20.00	31.11	55.15	-24.04	AVG	
2	0.1700	28.76	20.00	48.76	64.96	-16.20	QP	
3	0.4180	5.66	20.00	25.66	47.49	-21.83	AVG	
4	0.4700	17.65	20.00	37.65	56.51	-18.86	QP	
5	0.6060	16.89	20.00	36.89	56.00	-19.11	QP	
6	0.6180	3.21	20.00	23.21	46.00	-22.79	AVG	
7	1.0700	16.95	20.00	36.95	56.00	-19.05	QP	
8	1.0700	2.72	20.00	22.72	46.00	-23.28	AVG	
9	1.4380	15.53	20.00	35.53	56.00	-20.47	QP	
10	1.6820	1.50	20.00	21.50	46.00	-24.50	AVG	
11	1.8940	14.84	20.00	34.84	56.00	-21.16	QP	
12	2.0260	1.12	20.00	21.12	46.00	-24.88	AVG	

Test Site: 1# Shielded Room

Operating Condition: Charging

Test Specification: AC 240V, 60Hz for adapter

Comment: Live Line

No.	(MHz)	(dBuV)	(dB)	(dBuV)	dBuV	(dB)	Detector	Remark
1	0.1500	30.28	20.00	50.28	65.99	-15.71	QP	
2	0.1500	10.32	20.00	30.32	55.99	-25.67	AVG	
3	0.2300	25.61	20.00	45.61	62.45	-16.84	QP	
4	0.2300	8.35	20.00	28.35	52.45	-24.10	AVG	
5	0.4020	2.92	20.00	22.92	47.81	-24.89	AVG	
6	0.5580	16.03	20.00	36.03	56.00	-19.97	QP	
7	0.8540	1.27	20.00	21.27	46.00	-24.73	AVG	
8	0.8620	13.88	20.00	33.88	56.00	-22.12	QP	
9	1.3500	14.84	20.00	34.84	56.00	-21.16	QP	
10	1.3820	0.55	20.00	20.55	46.00	-25.45	AVG	
11	2.0260	0.06	20.00	20.06	46.00	-25.94	AVG	
12	2.3340	13.92	20.00	33.92	56.00	-22.08	QP	

Test Site: 1# Shielded Room

Operating Condition: Charging

Test Specification: AC 240V, 60Hz for adapter

Comment: Neutral Line

4. FCC Part 15.247 Requirements for DSSS & OFDM Modulation

4.1 Test Setup

4.2 6dB Bandwidth

a. Limit

For the direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz.

b.Test Procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as:

RBW = 100kHz, $VBW \ge 3*RBW = 300kHz$,

Detector= Peak

Trace mode= Max hold.

Sweep- auto couple.

- 4. Mark the peak frequency and –6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

20dB Bandwidth:

C63.10

Occupied Bandwidth (OBW=20dB Bandwidth

- 1. Set RBW=1%~5% OBW
- 2. Set the VBW>3*RBW
- 3. Set the span range between 2 times and 5 times of the OBW
- 4. Sweep Time= Auto

Detector= Peak

Trace= Max hold

5. Once the reference level is established, the equipment is conditioned with typical modulating signals to produce the worst case (i.e. the widest) bandwidth. Unless otherwise specified for an unlicensed wireless device, measure the bandwidth at the -20dB levels with respect to the reference level.

c. Test Setup See 4.1

d. Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analysis	Agilent	E4407B	US39390582	Apr. 17, 2016	1 Year
2.	Preamplifier	Instruments corporation	EMC01183 0	980100	Apr. 17, 2016	1 Year
3.	EMI Test Receiver	Rohde & Schwarz	ESPI	101604	Apr. 17, 2016	1 Year
4.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Apr. 20, 2016	1 Year
5.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Apr. 20, 2016	1 Year
6.	Pre-amplifier	SONOMA	310N	186860	Apr. 17, 2016	1 Year
7.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
8	Power Sensor	DAER	RPR3006 W	15I00041SN0 46	Jun 30, 2016	1 Year
9	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Jun 30, 2016	1 Year
10	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Jun 30, 2016	1 Year
11	Signal Generator	Agilent	E4421B	MY41000743	Jun 30, 2016	1 Year
12	DC Power supply	IV	IV-8080	YQSB0096	Jun 30, 2016	1 Year
13	TEMP&HUMI PROGRAMMAB LE CHAMBER	Bell Group	BE-THK-1 50M8	SE-0137	Mar 16, 2016	1 Year

e. Test Results

Pass.

f. Test Data 6dB Bandwidth

Test mode: IEEE 802.11b

Channel	Frequency (MHz)	Bandwidth (MHz)	Limit (kHz)	Results
Low	2412	9.564		Pass
Mid	2437	9.554	>500	Pass
High	2462	10.02		Pass

Test mode: IEEE 802.11g

Channel	Frequency (MHz)	Bandwidth (MHz)	Limit (kHz)	Results
Low	2412	15.33		Pass
Mid	2437	15.45	>500	Pass
High	2462	15.13		Pass

Test mode: IEEE 802.11n (HT20)

Channel	Frequency	Bandwidth	Limit	Results
	(MHz)	(MHz)	(kHz)	Results
Low	2412	15.11		Pass
Mid	2437	16.08	>500	Pass
High	2462	15.13		Pass

Test mode: IEEE 802.11n (HT40)

Channel	Frequency (MHz)	Bandwidth (MHz)	Limit (kHz)	Results
Low	2422	35.16	, ,	Pass
Mid	2437	35.13	>500	Pass
High	2452	35.35		Pass

Test Plots See the following page.

4.3. Maximum Output Power Test

a. Limit

The maximum output power of the intentional radiator shall not exceed the following:

- 1. For systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 watt (30dBm).
- 2. Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antenna of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

b. Configuration of Measurement

EUT	Power Sensor	Power Meter
-----	--------------	-------------

c. Data Rates

IEEE802.11b: Channel 1(2412MHz), Channel 6(2437MHz) and Channel 11(2462MHz) with 1 Mbps data rate (worst case) are chosen for the final testing.

IEEE802.11g: Channel 1(2412MHz), Channel 6(2437MHz) and Channel 11(2462MHz) with 6 Mbps data rate (the worst case) are chosen for the final testing.

IEEE802.11n (HT20: Channel 1(2412MHz), Channel 6(2437MHz) and Channel 11(2462MHz) with 6.5Mbps data rate (the worst case) are chosen for the final testing.

IEEE802.11n (HT40: Channel 3(2422MHz), Channel 6(2437MHz) and Channel 9(2452MHz) with 13.5Mbps data rate (the worst case) are chosen for the final testing.

d. Test Procedure

This test was according the kDB 558074 D01 DTS Meas Guidance v03r05 9.1.1:

- 1. Set span to at least 1.5 times the OBW.
- 2. Set the RBW = $1\sim5\%$ of the OBW, not to exceed 1MHz.
- 3. Set VBW>3*RBW.
- 4. Detector = Average.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

e. Test Equipment

Same as the equipment listed in 4.2.

f. Test Results

Pass.

g. Test Data

Test mode: IEEE 802.11b

Channel	Frequency	Maximum transmit power	Li	Result	
Chamilei	(MHz)	(dBm)	(dBm)	(watts)	Resuit
Low	2412	8.35			Pass
Mid	2437	8.26	30	1	Pass
High	2462	8.30			Pass

Test mode: IEEE 802.11g

Channel	Frequency	Maximum transmit power	Li	Result	
Chamiei	(MHz)	(dBm)	(dBm)	(watts)	Resuit
Low	2412	8.14			Pass
Mid	2437	8.15	30	1	Pass
High	2462	8.07			Pass

Test mode: IEEE 802.11n (HT20)

Channel	Frequency	Maximum transmit power	Liı	Result	
Chamilei	(MHz)	(dBm)	(dBm)	(watts)	Result
Low	2412	8.12			Pass
Mid	2437	7.97	30	1	Pass
High	2462	8.21			Pass

Test mode: IEEE 802.11n (HT40)

Channel	Frequency	Maximum transmit power	Liı	mit	Result
Chamilei	(MHz)	(dBm)	(dBm)	(watts)	Result
Low	2422	8.03			Pass
Mid	2437	7.91	30	1	Pass
High	2452	7.94			Pass

Duty cycle used in all test items: 100%

4.4. Band Edges Measurement

a. Limit

According to §15.247(c), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

b. Test Procedure

- 1. Conducted Method:
- 1) Set RBW=100KHz, VBW=300KHz
- 2) Detector=peak
- 3) Sweep time= auto
- 4) Trace mode=max hold.

2. Radiated Method:

- 1) For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane. The EUT is tested in 9*6*6 Chamber.
 - For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane. The EUT is tested in 9*6*6 Chamber.
- 2) The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4) Peak detector: RBW=1MHz, VBW=3MHz, SWT=AUTO Average detector: RBW=1MHz, VBW=10Hz, SWT=AUTO The EUT is tested in 9*6*6 Chamber.
- 5) Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

30M to 1G emissions:

1G to 40G emissions:

c. Test Equipment

Same as the equipment listed in 4.2.

d. Test Results

Pass.

e. Test Plots

See the following page.

Shenzhen Anbotek Compliance Laboratory Limited FCC ID: 2AIQ2-V01 Page 25 of 82 Report No.: 011605145Y

Test Mode: 802.11b

2412MHz

Horizontal-PEAK:

Frequency	CableLoss	AntFactor	PreampFac tor	ReadLevel	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dΒμV	dBμV/m	dBμV/m	dB	
2382.738	2.23	30.60	32.50	43.93	44.26	74.00	-29.74	Peak
2390.000	2.23	30.60	32.50	43.04	43.37	74.00	-30.63	Peak
2400.000	2.23	30.60	32.50	52.50	52.83	74.00	-21.17	Peak

Horizontal-AV:

Frequency	CableLoss	AntFactor	PreampFac tor	ReadLevel	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dΒμV	dBμV/m	dBμV/m	dB	
2378.425	2.25	30.30	32.41	34.47	34.61	54.00	-19.39	AVG
2390.000	2.25	30.30	32.41	36.30	36.44	54.00	-17.56	AVG
2400.000	2.25	30.30	32.41	45.80	45.94	54.00	-8.06	AVG

Test Mode: 802.11b

2412MHz Vertical-PEAK:

Frequency	CableLoss	AntFactor	PreampFac tor	ReadLevel	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dΒμV	dΒμV/m	dΒμV/m	dB	
2372.387	2.23	30.60	32.50	47.83	48.16	74.00	-25.84	Peak
2390.000	2.23	30.60	32.50	48.27	48.60	74.00	-25.40	Peak
2400.000	2.23	30.60	32.50	54.99	55.32	74.00	-18.68	Peak

Vertical-AV:

Frequency	CableLoss	AntFactor	PreampFac tor	ReadLevel	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dΒμV	dBμV/m	dBμV/m	dB	
2378.713	2.25	30.30	32.41	43.89	44.03	54.00	-9.97	AVG
2390.000	2.25	30.30	32.41	42.49	42.63	54.00	-11.37	AVG
2400.000	2.25	30.30	32.41	48.34	48.48	54.00	-5.52	AVG

Test Mode: 802.11b

2462MHz

Horizontal-PEAK:

Frequency	CableLoss	AntFactor	PreampFac tor	ReadLevel	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dBµV	dBμV/m	dΒμV/m	dB	
2483.500	2.23	30.60	32.50	44.66	44.99	74.00	-29.01	Peak
2484.500	2.23	30.60	32.50	43.40	43.73	74.00	-30.27	Peak

Horizontal-AV:

Frequency	CableLoss	AntFactor	PreampFac tor	ReadLevel	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dBµV	dBμV/m	dBµV/m	dB	
2483.500	2.25	30.30	32.41	36.81	36.95	54.00	-17.05	AVG
2487.625	2.25	30.30	32.41	36.01	36.15	54.00	-17.85	AVG

Test Mode: 802.11b

2462MHz Vertical-PEAK:

Frequency	CableLoss	AntFactor	PreampFac tor	ReadLevel	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dΒμV	dBμV/m	dBμV/m	dB	
2483.500	2.23	30.60	32.50	44.39	44.72	74.00	-29.28	Peak
2485.750	2.23	30.60	32.50	42.99	43.32	74.00	-30.68	Peak

Vertical-AV:

Frequency	CableLoss	AntFactor	PreampFac tor	ReadLevel	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dΒμV	dBμV/m	dBμV/m	dB	
2483.500	2.25	30.30	32.41	39.13	39.27	54.00	-14.73	AVG
2485.750	2.25	30.30	32.41	40.06	40.20	54.00	-13.80	AVG

Test Mode: 802.11g

2412MHz

Horizontal-PEAK:

Frequency	CableLoss	AntFactor	PreampFac tor	ReadLevel	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dΒμV	dBμV/m	dBμV/m	dB	
2379.287	2.23	30.60	32.50	46.25	46.58	74.00	-27.42	Peak
2390.000	2.23	30.60	32.50	43.52	43.85	74.00	-30.15	Peak
2400.000	2.23	30.60	32.50	48.84	49.17	74.00	-24.83	Peak

Horizontal-AV:

Frequency	CableLoss	AntFactor	PreampFac tor	ReadLevel	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dΒμV	dBμV/m	dBμV/m	dB	
2382.162	2.25	30.30	32.41	33.05	33.19	54.00	-20.81	AVG
2390.000	2.25	30.30	32.41	32.28	32.42	54.00	-21.58	AVG
2400.000	2.25	30.30	32.41	47.78	47.92	54.00	-6.08	AVG

Test Mode: 802.11g

2412MHz Vertical-PEAK:

Frequency	CableLoss	AntFactor	PreampFac tor	ReadLevel	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dΒμV	dΒμV/m	dΒμV/m	dB	
2374.975	2.23	30.60	32.50	41.67	42.00	74.00	-32.00	Peak
2390.000	2.23	30.60	32.50	43.21	43.54	74.00	-30.46	Peak
2400.000	2.23	30.60	32.50	49.17	49.50	74.00	-24.50	Peak

Vertical-AV:

Frequency	CableLoss	AntFactor	PreampFac tor	ReadLevel	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dΒμV	dBμV/m	dBμV/m	dB	
2377.275	2.25	30.30	32.41	38.86	39.00	54.00	-15.00	AVG
2390.000	2.25	30.30	32.41	38.53	38.67	54.00	-15.33	AVG
2400.000	2.25	30.30	32.41	48.66	48.80	54.00	-5.20	AVG

Test Mode: 802.11g

2462MHz

Horizontal-PEAK:

Frequency CableLoss AntFactor PreampFac tor ReadLevel Level Limit Over	imit Remark
MHz dB dB/m dB dB μ V dB μ V/m dB μ V/m d	
2483.500 2.23 30.60 32.50 43.30 43.63 74.00 -30	Peak
2487.000 2.23 30.60 32.50 43.12 43.45 74.00 -30	55 Peak

Horizontal-AV:

Frequency	CableLoss	AntFactor	PreampFac tor	ReadLevel	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dΒμV	dBμV/m	dBμV/m	dB	
2483.500	2.25	30.30	32.41	37.43	37.57	54.00	-16.43	AVG
2489.500	2.25	30.30	32.41	38.02	38.16	54.00	-15.84	AVG

Test Mode: 802.11g

2462MHz Vertical-PEAK:

Frequency	CableLoss	AntFactor	PreampFac tor	ReadLevel	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dΒμV	dBμV/m	dBμV/m	dB	
2483.500	2.23	30.60	32.50	41.43	41.76	74.00	-32.24	Peak
2486.750	2.23	30.60	32.50	41.75	42.08	74.00	-31.92	Peak

Vertical-AV:

Frequency	CableLoss	AntFactor	PreampFac tor	ReadLevel	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dBµV	dBμV/m	dBμV/m	dB	
2483.500	2.25	30.30	32.41	40.93	41.07	54.00	-12.93	AVG
2489.500	2.25	30.30	32.41	40.95	41.09	54.00	-12.91	AVG

Test Mode: 802.11n (HT20)

2412MHz

Horizontal-PEAK:

Frequency	CableLoss	AntFactor	PreampFac tor	ReadLevel	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dΒμV	dBμV/m	dBµV/m	dB	
2383.887	2.23	30.60	32.50	43.43	43.76	74.00	-30.24	Peak
2390.000	2.23	30.60	32.50	43.29	43.62	74.00	-30.38	Peak
2400.000	2.23	30.60	32.50	49.93	50.26	74.00	-23.74	Peak

Horizontal-AV:

Frequency	CableLoss	AntFactor	PreampFac tor	ReadLevel	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dΒμV	dBμV/m	dBμV/m	dB	
2374.400	2.25	30.30	32.41	38.76	38.90	54.00	-15.10	AVG
2390.000	2.25	30.30	32.41	38.68	38.82	54.00	-15.18	AVG
2400.000	2.25	30.30	32.41	50.26	50.40	54.00	-3.60	AVG

Test Mode: 802.11n (HT20)

2412MHz Vertical-PEAK:

Frequency	CableLoss	AntFactor	PreampFac tor	ReadLevel	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dΒμV	dBμV/m	dBμV/m	dB	
2383.025	2.23	30.60	32.50	46.64	46.97	74.00	-27.03	Peak
2390.000	2.23	30.60	32.50	44.79	45.12	74.00	-28.88	Peak
2400.000	2.23	30.60	32.50	49.91	50.24	74.00	-23.76	Peak

Vertical-AV:

Frequency	CableLoss	AntFactor	PreampFac tor	ReadLevel	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dΒμV	dBμV/m	dBμV/m	dB	
2378.713	2.25	30.30	32.41	39.25	39.39	54.00	-14.61	AVG
2390.000	2.25	30.30	32.41	38.65	38.79	54.00	-15.21	AVG
2400.000	2.25	30.30	32.41	46.87	47.01	54.00	-6.99	AVG

Test Mode: 802.11n (HT20)

2462MHz

Horizontal-PEAK:

Frequency	CableLoss	AntFactor	PreampFac tor	ReadLevel	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dΒμV	dΒμV/m	dΒμV/m	dB	
2483.500	2.23	30.60	32.50	42.45	42.78	74.00	-31.22	Peak
2487.875	2.23	30.60	32.50	46.21	46.54	74.00	-27.46	Peak

Horizontal-AV:

Frequency	CableLoss	AntFactor	PreampFac tor	ReadLevel	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dΒμV	dBμV/m	dBμV/m	dB	
2483.500	2.25	30.30	32.41	36.52	36.66	54.00	-17.34	AVG
2487.250	2.25	30.30	32.41	34.11	34.25	54.00	-19.75	AVG

Test Mode: 802.11n (HT20)

2462MHz Vertical-PEAK:

Frequency	CableLoss	AntFactor	PreampFac tor	ReadLevel	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dΒμV	dBμV/m	dBμV/m	dB	
2483.500	2.23	30.60	32.50	41.48	41.81	74.00	-32.19	Peak
2486.375	2.23	30.60	32.50	43.64	43.97	74.00	-30.03	Peak

Vertical-AV:

Frequency	CableLoss	AntFactor	PreampFac tor	ReadLevel	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dBµV	dBμV/m	dBμV/m	dB	
2483.500	2.25	30.30	32.41	36.16	36.30	54.00	-17.70	AVG
2487.750	2.25	30.30	32.41	37.10	37.24	54.00	-16.76	AVG

Test Mode: 802.11n (HT40)

2422MHz

Horizontal-PEAK:

Frequency	CableLoss	AntFactor	PreampFac tor	ReadLevel	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dΒμV	dBμV/m	dΒμV/m	dB	
2373.000	2.23	30.60	32.50	43.05	43.38	74.00	-30.62	Peak
2390.000	2.23	30.60	32.50	43.17	43.50	74.00	-30.50	Peak
2400.000	2.23	30.60	32.50	56.19	56.52	74.00	-17.48	Peak

Horizontal-AV:

Frequency	CableLoss	AntFactor	PreampFac tor	ReadLevel	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dBµV	dBμV/m	dBμV/m	dB	
2384.550	2.25	30.30	32.41	35.00	35.14	54.00	-18.86	AVG
2390.000	2.25	30.30	32.41	40.00	40.14	54.00	-13.86	AVG
2400.000	2.25	30.30	32.41	48.51	48.65	54.00	-5.35	AVG

Test Mode: 802.11n (HT40)

2422MHz Vertical-PEAK:

Frequency	CableLoss	AntFactor	PreampFac tor	ReadLevel	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dBµV	dBμV/m	dBμV/m	dB	
2365.300	2.23	30.60	32.50	45.79	46.12	74.00	-27.88	Peak
2390.000	2.23	30.60	32.50	46.62	46.95	74.00	-27.05	Peak
2400.000	2.23	30.60	32.50	56.90	57.23	74.00	-16.77	Peak

2.25

2.25

2400.000

Vertical-AV:

48.53

41.13

48.67

-12.87

-5.33

54.00

AVG

AVG

32.41

32.41

30.30

Test Mode: 802.11n (HT40)

2452MHz

2486.350

2.20

30.40

32.50

Horizontal-PEAK:

49.10

49.20

74.00

-24.80

Peak

Horizontal-AV:

Frequency	CableLoss	AntFactor	PreampFac tor	ReadLevel	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dΒμV	dBμV/m	dBμV/m	dB	
2483.500	2.32	30.50	32.41	43.48	43.89	54.00	-10.11	AVG
2488.800	2.32	30.50	32.41	43.86	44.27	54.00	-9.73	AVG

Test Mode: 802.11n (HT40)

2452MHz Vertical-PEAK:

Frequency	CableLoss	AntFactor	PreampFac tor	ReadLevel	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dBµV	dBμV/m	dBμV/m	dB	
2483.500	2.20	30.40	32.50	49.40	49.50	74.00	-24.50	Peak
2487.925	2.20	30.40	32.50	48.11	48.21	74.00	-25.79	Peak

Vertical-AV:

_									
Freq	quency	CableLoss	AntFactor	PreampFac tor	ReadLevel	Level	Limit	Over Limit	Remark
M	1Hz	dB	dB/m	dB	dBµV	dBμV/m	dBμV/m	dB	
248	3.500	2.32	30.50	32.41	42.88	43.29	54.00	-10.71	AVG
248	7.575	2.32	30.50	32.41	43.48	43.89	54.00	-10.11	AVG

4.5. Peak Power Spectral Density

a. Limit

- 1. For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.
- 2. The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

b. Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW = 10kHz, VBW = 30kHz, Span = 1.5xDTS BW
- 3. Record the max. reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed.

c. Test Equipment

Same as the equipment listed in 4.2.

d. Test Setup

See 4.1

e. Test Results

Pass

f. Test Data

Please refer to the following data.

g. Test Plot See the following pages

Test mode: IEE					
Channel	Frequency (MHz)	PPSD (dBm/3KHz)	∑PPSD (dBm/3KHz)	Limit (dBm)	Result
Low	2412	-19.589	(uDiii/3K112) -	(uDIII)	Pass
Mid	2437	-19.949	-	8.00	Pass
High	2462	-18.877	-		Pass
Test mode: IEE	E 802.11g				
Channel	Frequency	PPSD	\sum PPSD	Limit	Result
	(MHz)	(dBm)	(dBm)	(dBm)	
Low	2412	-23.718	-	0.00	Pass
Mid	2437	-21.639	-	8.00	Pass
High	2462	-27.060	-		Pass
Test mode: IEE	E 802.11n (HT2	20)			
Channel	Frequency	PPSD	∑PPSD	Limit	Result
	(MHz)	(dBm/3KHz)	(dBm/3KHz)	(dBm)	
Low	2412	-23.972	-		Pass
Mid	2437	-23.041	-	8.00	Pass
High	2462	-25.167			Pass
Test mode: IEE	E 802.11n (HT				
Channel	Frequency	PPSD	∑PPSD	Limit	Result
	(MHz)	(dBm/3KHz)	(dBm/3KHz)	(dBm)	
Low	2422	-28.483	-	0.00	Pass
Mid	2437 2452	-26.393 -28.468	-	8.00	Pass Pass
High	2432	-20.408	-		rass

4.6. Radiated Emissions

4.6.1.1. Test Limits (< 30 MHZ)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meter)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30

4.6.1.2. Test Limits (\geq 30 MHZ)

FIELD STRENGTH	FIELD STRENGTH	S15.209	
of Fundamental:	of Harmonics	30 - 88 MHz	40 dBuV/m
@3M			
902-928 MHZ		88 - 216 MHz	43.5
2.4-2.4835 GHz		216 - 960 MHz	46
94 dBµV/m @3m	54 dBµV/m @3m	ABOVE 960 MHz	54dBuV/m

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analysis	Agilent	E4407B	US39390582	Apr. 17, 2016	1 Year
2.	Preamplifier	Instruments corporation	EMC011830	980100	Apr. 17, 2016	1 Year
3.	EMI Test Receiver	Rohde & Schwarz	ESPI	101604	Apr. 17, 2016	1 Year
4.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Apr. 20, 2016	1 Year
5.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Apr. 20, 2016	1 Year
6.	Pre-amplifier	SONOMA	310N	186860	Apr. 17, 2016	1 Year
7.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
8	Power Sensor	DAER	RPR3006W	15I00041SN046	Jun 30, 2016	1 Year
9	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Jun 30, 2016	1 Year
10	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Jun 30, 2016	1 Year
11	Signal Generator	Agilent	E4421B	MY41000743	Jun 30, 2016	1 Year
12	DC Power supply	IV	IV-8080	YQSB0096	Jun 30, 2016	1 Year
13	TEMP&HUMI PROGRAMMABLE CHAMBER	Bell Group	BE-THK-15 0M8	SE-0137	Mar 16, 2016	1 Year

4.6.2. Test Configuration:

4.6.2.1. 9k to 30MHz emissions:

4.6.2.2. 30M to 1G emissions:

4.6.2.3. 1G to 40G emissions:

4.6.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane. For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on test.

Measurements are made on 9KHz to 30MHz and 30MHz to 26GHz range with the transmitter set to the lowest, middle, and highest channels.

All readings from 30MHz to 1GHz are quasi-peak values with a resolution bandwidth of 120kHz. All reading are above 1GHz, peak & average values with a resolution bandwidth of 1MHz.

The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

The test results are listed in Section 4.6.4.

4.6.4. Test Results

The EUT was tested on (Charging, WiFi Mode, GSM Mode) modes, only the worst data of (Charging) is attached in the following pages.
Only the worst case (x orientation).

The test results of above 18000MHz are attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Job No.: 011605145I Polarization: Horizontal

Standard: (RE)FCC PART15 C _3m Power Source: AC 120V, 60Hz for adapter

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Test Mode: Charging Distance: 3m

Job No.: 011605145I Polarization: Vertical

Standard: (RE)FCC PART15 C _3m Power Source: AC 120V, 60Hz for adapter

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Test Mode: Charging Distance: 3m

Job No.: 011605145I Polarization: Horizontal

Standard: (RE)FCC PART15 C _3m Power Source: AC 120V, 60Hz for adapter

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Note: 802.11b(2412MHz) Distance: 3m

Job No.: 011605145I Polarization: Vertical

Standard: (RE)FCC PART15 C _3m Power Source: AC 120V, 60Hz for adapter

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Note: 802.11b(2412MHz) Distance: 3m

Job No.: 011605145I Polarization: Horizontal

Standard: (RE)FCC PART15 C _3m Power Source: AC 120V, 60Hz for adapter

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Note: 802.11b(2437MHz) Distance: 3m

Job No.: 011605145I Polarization: Vertical

Standard: (RE)FCC PART15 C _3m Power Source: AC 120V, 60Hz for adapter

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Note: 802.11b(2437MHz) Distance: 3m

Job No.: 011605145I Polarization: Horizontal

Standard: (RE)FCC PART15 C _3m Power Source: AC 120V, 60Hz for adapter

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Note: 802.11b(2462MHz) Distance: 3m

Job No.: 011605145I Polarization: Vertical

Standard: (RE)FCC PART15 C _3m Power Source: AC 120V, 60Hz for adapter

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Note: 802.11b(2462MHz) Distance: 3m

5. ANTENNA APPLICATION

5.1. Antenna requirement

The EUT'S antenna is met the requirement of FCC part 15C section 15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

5.2. Result

The EUT's antenna used a Line antenna which is permanently attached, The antenna's gain is 1.4dBi and meets the requirement.

6. PHOTOGRAPH

6.1. Photo of Conducted Emission Measurement

6.2. Photo of Radiation Emission Test

APPENDIX I (EXTERNAL PHOTOS)

2. Figure

3. Figure The EUT-Bottom View

4. Figure The EUT-Right View

APPENDIX II (INTERNAL PHOTOS)

4. Figure PCB of the EUT-Back View

6. Figure PCB of the EUT-Back View

