2-adic images of Galois representations

David Zureick-Brown (Emory University)
Jeremy Rouse (Wake Forest University)

Emory University Slides available at http://www.mathcs.emory.edu/~dzb/slides/

PANTS XX, Davidson College

September 7-8, 2013

Gratuitous picture – subgroups of $GL_2(\mathbb{Z}_2)$ containing -I

Background - Image of Galois

$$G_{\mathbb{Q}} := \operatorname{\mathsf{Aut}}(\overline{\mathbb{Q}}/\mathbb{Q})$$
 $E[n](\overline{\mathbb{Q}}) \cong (\mathbb{Z}/n\mathbb{Z})^2$

$$ho_{E,n} \colon \ G_{\mathbb{Q}} o \operatorname{Aut} E[n] \cong \operatorname{GL}_{2}(\mathbb{Z}/n\mathbb{Z})$$

$$ho_{E,\ell^{\infty}} \colon \ G_{\mathbb{Q}} o \operatorname{GL}_{2}(\mathbb{Z}_{\ell}) = \varprojlim_{n} \operatorname{GL}_{2}(\mathbb{Z}/\ell^{n}\mathbb{Z})$$

$$ho_{E} \colon \ G_{\mathbb{Q}} o \operatorname{GL}_{2}(\widehat{\mathbb{Z}}) = \varprojlim_{n} \operatorname{GL}_{2}(\mathbb{Z}/n\mathbb{Z})$$

Background - Galois Representations

$$\rho_{E,n} \colon G_{\mathbb{Q}} \twoheadrightarrow G_n \hookrightarrow \mathrm{GL}_2(\mathbb{Z}/n\mathbb{Z})$$

Example - torsion on an ellitpic curve

If *E* has a *K*-rational torsion point $P \in E(K)[n]$ (of exact order *n*), then the image is constrained:

$$G_n \subset \left(egin{array}{cc} 1 & * \ 0 & * \end{array}
ight)$$

since for $\sigma \in G_K$ and $Q \in E(\overline{K})[n]$ such that $E(\overline{K})[n] \cong \langle P, Q \rangle$,

$$\sigma(P) = P$$

$$\sigma(Q) = a_{\sigma}P + b_{\sigma}Q$$

Example - Isogenies

If E has a K-rational, cyclic isogeny $\phi \colon E \to E'$ with $\ker \phi = \langle P \rangle$, then the image is constrained

$$G_n \subset \left(\begin{array}{cc} * & * \\ 0 & * \end{array} \right)$$

since for $\sigma \in G_K$ and $Q \in E(\overline{K})[n]$ such that $E(\overline{K})[n] \cong \langle P, Q \rangle$,

$$\sigma(P) = a_{\sigma}P$$

$$\sigma(Q) = b_{\sigma}P + c_{\sigma}Q$$

Example - other maximal subgroups

Normalizer of a split Cartan:

$$\mathcal{N}_{\mathsf{sp}} = \left\langle \left(egin{array}{cc} * & 0 \ 0 & * \end{array}
ight), \left(egin{array}{cc} 0 & 1 \ -1 & 0 \end{array}
ight)
ight
angle$$

 $G_n \subset N_{\sf sp}$ iff

- there exists an unordered pair $\{\phi_1, \phi_2\}$ of cyclic isogenies,
- neither of which is defined over K
- ullet but which are both defined over some quadratic extension of K
- and which are Galois conjugate.

Classification of Images - Mazur's Theorem

Theorem

Let E be an elliptic curve over \mathbb{Q} . Then for $\ell > 11$, $E(\mathbb{Q})[\ell] = \{ \text{cusps} \}$.

In other words, for $\ell > 11$ the mod ℓ image is not contained in a subgroup conjugate to

$$\left(\begin{array}{cc}1&*\\0&*\end{array}\right).$$

Classification of Images - Mazur; Bilu, Parent

Theorem (Mazur)

Let E be an elliptic curve over $\mathbb Q$ without CM. Then for $\ell > 37$ the mod ℓ image is not contained in a subgroup conjugate to

$$\left(\begin{array}{cc} * & * \\ 0 & * \end{array}\right).$$

Theorem (Bilu, Parent)

Let E be an elliptic curve over $\mathbb Q$ without CM. Then for $\ell>13$ the mod ℓ image is not contained in a subgroup conjugate to

$$\left\langle \left(\begin{array}{cc} * & 0 \\ 0 & * \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right) \right\rangle.$$

Main conjecture

Conjecture

Let E be an elliptic curve over $\mathbb Q$ without CM. Then for $\ell>37$, $\rho_{E,\ell}$ is surjective.

Serre's Open Image Theorem

Theorem (Serre, 1972)

Let E be an elliptic curve over K without CM. The image of $\rho_{\rm E}$

$$\rho_E(G_K) \subset \operatorname{GL}_2(\hat{\mathbb{Z}})$$

is open.

Note:

$$\mathsf{GL}_2(\hat{\mathbb{Z}}) \cong \prod_p \mathsf{GL}_2(\mathbb{Z}_p)$$

Sample Consequences of Serre's Theorem

Surjectivity

For large ℓ , $\rho_{E,\ell}$ is surjective.

Lang-Trotter

Density of supersingular primes is 0.

"Vertical" image conjecture

Conjecture

There exists a constant N such that for every E/\mathbb{Q} without CM

$$[\rho_E(G_K): \operatorname{GL}_2(\hat{\mathbb{Z}})] \leq N.$$

Remark

This follows from the " $\ell > 37$ " conjecture.

Problem

Assume the " $\ell > 37$ " conjecture and compute N.

Main Theorem

Theorem (Rouse, ZB)

The index of $\rho_{E,2^{\infty}}(G_{\mathbb{Q}})$ divides 64 or 96; all such indices occur.

Cremona Database

```
Index, # of isogeny classes
1,727995
2,7281
3, 175042
4, 1769
6,57500
8 . 577
12.29900
16, 235
24,5482
```

96, 241 (finitely many, first example - $X_0(15)$)

CM . 1613

64, 0 (one example)

32 , 20 48 , 1544

Cremona Database

Index, # of isogeny classes

$$j = -3 \cdot 2^{18} \cdot 5 \cdot 13^3 \cdot 41^3 \cdot 107^3 \cdot 17^{-16}$$
 on $X_{ns}^+(16)$ (Heegner, Baran)

Modular curves

Definition

- $X(N) := \{(E, P, Q) : E[N] = \langle P, Q \rangle\} \cup \{\text{cusps}\}$
- $X(N) \ni (E, P, Q) \Leftrightarrow G_N = \{I\}$

Definition

$$\Gamma(N) \subset H \subset \mathsf{GL}_2(\hat{\mathbb{Z}})$$
 (finite index)

- $X_H(N) := X(N)/H$
- $X_H(N) \ni (E, \iota) \Leftrightarrow G_N \subset H \mod N$

Rational Points on modular curves

Goal

Compute $X_H(\mathbb{Q})$ for all H.

Remark

- Sometimes $X_H \cong \mathbb{P}^1$ or elliptic.
- Can compute $g(X_H)$ group theoretically (via Riemann-Hurwitz).

Fact

 $g(X_H) \to \infty$.

Arithmetically maximality

Definition

- $H \subset H' \Leftrightarrow X_H \to X_{H'}$
- Say that H is arithmetically maximal if
 - **1** $g(X_H) > 1$ and
 - $P \cap H' \Leftrightarrow g(X_{H'}) \leq 1$
- ullet Every modular curve maps to an arithmetically maximal or genus < 1 curve.

Template¹

- **①** Compute all arithmetically maximal $H \subset \mathsf{GL}_2(\mathbb{Z}_2)$
- ② Compute all $H \subset GL_2(\mathbb{Z}_2)$ with $g(X_H) \leq 1$
- Compute equations for each X_H
- Find (provably) all rational points on each X_H .

Gratuitous picture – subgroups of $GL_2(\mathbb{Z}_2)$ containing -I

Sample subgroup (Serre): $H \subset GL_2(\mathbb{Z}_2), \ H(n) \subset GL_2(\mathbb{Z}/2^n\mathbb{Z}).$

$$\ker \phi_2 \subset H(3) \subset \operatorname{GL}_2(\mathbb{Z}/8\mathbb{Z}) \qquad \dim_{\mathbb{F}_2} \ker \phi_2 = 3$$

$$\downarrow^{\phi_2} \qquad \qquad \downarrow$$

$$I + 2M_2(\mathbb{F}_2) = H(2) = \operatorname{GL}_2(\mathbb{Z}/4\mathbb{Z}) \qquad \dim_{\mathbb{F}_2} \ker \phi_1 = 4$$

$$\downarrow^{\phi_1} \qquad \qquad \downarrow$$

$$H(1) = \operatorname{GL}_2(\mathbb{F}_2)$$

$$\chi \colon \operatorname{\mathsf{GL}}_2(\mathbb{Z}/8\mathbb{Z}) \to \operatorname{\mathsf{GL}}_2(\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/8\mathbb{Z})^* \to \mathbb{F}_2 \times (\mathbb{Z}/8\mathbb{Z})^* \cong \mathbb{F}_2^3.$$

$$H := \chi^{-1}(H), \ H \subset \mathbb{F}_2^3.$$

Sample subgroup (Dokchitser, Dokchitser): $H \subset GL_2(\mathbb{Z}_2)$, $H(n) \subset GL_2(\mathbb{Z}/2^n\mathbb{Z})$.

$$\begin{array}{ccccc} \langle \mathit{I} + 2\mathit{E}_{1,1}, \mathit{I} + 2\mathit{E}_{2,2} \rangle & \subset & \mathit{H}(2) & \subset & \mathsf{GL}_2(\mathbb{Z}/4\mathbb{Z}) & & \mathsf{dim}_{\mathbb{F}_2} \ker \phi_1 = 2 \\ & & & \downarrow & & \downarrow \\ & & & \mathit{H}(1) & = & \mathsf{GL}_2(\mathbb{F}_2) \end{array}$$

$$H(2) = \left\langle \left(egin{array}{cc} 0 & 1 \ 3 & 0 \end{array}
ight), \left(egin{array}{cc} 0 & 1 \ 1 & 1 \end{array}
ight)
ight
angle \cong \mathbb{F}_3
times \mathcal{D}_8.$$

$$\operatorname{im} \rho_{E,4} \subset H \Leftrightarrow j(E) = -4t^3(t+8).$$

$$X_H \cong \mathbb{P}^1 \xrightarrow{j} X(1).$$

Sample subgroup: $H \subset GL_2(\mathbb{Z}_2)$, $H(n) \subset GL_2(\mathbb{Z}/2^n\mathbb{Z})$.

$$\begin{split} \ker \phi_4 &\subset H(5) \subset \operatorname{GL}_2(\mathbb{Z}/32\mathbb{Z}) & \operatorname{dim}_{\mathbb{F}_2} \ker \phi_2 = 4 \\ & \qquad \\ \ker \phi_3 &\subset H(4) &\subset \operatorname{GL}_2(\mathbb{Z}/16\mathbb{Z}) & \operatorname{dim}_{\mathbb{F}_2} \ker \phi_2 = 3 \\ & \qquad \\ \ker \phi_2 &\subset H(3) &\subset \operatorname{GL}_2(\mathbb{Z}/8\mathbb{Z}) & \operatorname{dim}_{\mathbb{F}_2} \ker \phi_2 = 2 \\ & \qquad \\ \ker \phi_1 &\subset H(2) &\subset \operatorname{GL}_2(\mathbb{Z}/4\mathbb{Z}) & \operatorname{dim}_{\mathbb{F}_2} \ker \phi_2 = 3 \\ & \qquad \\ \ker \phi_1 &\subset H(2) &\subset \operatorname{GL}_2(\mathbb{Z}/4\mathbb{Z}) & \operatorname{dim}_{\mathbb{F}_2} \ker \phi_2 = 3 \\ & \qquad \\ \end{pmatrix} \end{split}$$

Fun facts

318 curves (excluding pointless conics)

Genus	0	1	2	3	5	7
Number	175	52	57	18	20	4

Equations – Basic idea

- **1** The canoncial map $C \hookrightarrow \mathbb{P}^{g-1}$ is given by $P \mapsto [\omega_1(P) : \ldots : \omega_g(P)]$.
- For a general curve, this is an embedding, and the relations are quadratic.
- For a modular curve,

$$M_k(H) \cong H^0(X_H, \Omega^1(\Delta)^{\otimes k/2})$$

given by

$$f(z) \mapsto f(z) dz^{\otimes k/2}$$
.

Equations – Example: $X_1(17) \subset \mathbb{P}^4$

$$q - 11q^5 + 10q^7 + O(q^8)$$

 $q^2 - 7q^5 + 6q^7 + O(q^8)$
 $q^3 - 4q^5 + 2q^7 + O(q^8)$
 $q^4 - 2q^5 + O(q^8)$
 $q^6 - 3q^7 + O(q^8)$

$$xu + 2xv - yz + yu - 3yv + z^{2} - 4zu + 2u^{2} + v^{2} = 0$$

$$xu + xv - yz + yu - 2yv + z^{2} - 3zu + 2uv = 0$$

$$2xz - 3xu + xv - 2y^{2} + 3yz + 7yu - 4yv - 5z^{2} - 3zu + 4zv = 0$$

Equations – general

- **1** $H' \subset H$ of index 2, $X_{H'} \to X_H$ degree 2;
- ② given equations for X_H , compute equations for $X_{H'}$;
- **3** compute a new modular form on H', compute (quadratic) relations between this and modular forms on H;
- **Main technique** if $X_{H'}$ has "new cusps", then write down Eisenstein series with different values at "new cusps".

Rational points rundown

318 curves (excluding pointless conics)

Genus	0	1	2	3	5	7
Number	175	52	56	18	20	4
Rank of Jacobian						
0		25	46	_	_	??
1		27	3	9	10	??
2			7	_	_	??
3				9	_	??
4					_	??
5					10	??

Techniques

- Local methods
- Chabauty
- Elliptic Chabauty
- Mordell-Weil sieve
- étale descent
- Pryms
- Dem'janenko-Manin
- A novel, indirect argument (étale descent + group theory) for genus 7 curves

Pryms

$$D \xrightarrow{\iota - \mathsf{id} - (\iota(P) - P)}
ightarrow \mathsf{ker}_0(J_D o J_C) =: \mathsf{Prym}(D o C)$$
 $\mathsf{et} \bigvee_{C} \bigcup_{C} \mathcal{L}$
 $C(\mathbb{Q}) = \bigcup_{\delta \in \{\pm 1, \pm 2\}} \mathsf{im} \, D_\delta(\mathbb{Q})$

Pryms
$$D \xrightarrow{\iota - id - (\iota(P) - P)} \ker_0(J_D \to J_C) =: \Prym(D \to C)$$
et
$$C$$

Example (Genus $C = 3 \Rightarrow \text{Genus } D = 5$)

- C: Q(x, y, z) = 0
- $Q = Q_1 Q_3 Q_2^2$

$$D_{\delta}: Q_1(x, y, z) = \delta u^2$$

$$Q_2(x, y, z) = \delta uv$$

$$Q_3(x, y, z) = \delta v^2$$

- $Prym(D_{\delta} \to C) \cong Jac_{H_{\delta}}$,
- H_{δ} : $\delta v^2 = -\det(M_1 + 2xM_2 + x^2M_3)$.

Thanks

Thank you!