On the Self-supervised Learning of protein engineering

Boyuan Wang

2020-04-23

What is protein engineering?

- **Protein engineering** is the process of developing useful or valuable proteins. It is a young discipline, with much research taking place into the understanding of protein folding and recognition for protein design principles. *from Wikipedia*
- Common tasks in protein engineering:
 - Secondary structure prediction (1D)
 - Contact map prediction (2D)
 - Protein folding prediction (3D)

Secondary Structure Prediction

• Predict the position of alpha-helix (H) and beta-strand (E), coil region(C).

Contact map prediction

Predict the contact information of amino acid residue

Protein folding prediction

• Predict the 3D geometric folding shape of proteins like Google Alpha-fold. (Hardest)

Why Do We Care Self-supervised Learning?

- Old methods involves too much human engineering work from selecting features to define functions for specific tasks.
- Recent use of deep supervised learning in protein engineering alleviates human laboring and brings exciting improvement in many tasks.
- However, data is scarce and obtaining supervised dataset is extremely costly in protein domain.
- Unlabelled protein data is abundant and contains the fundamental knowledge of proteins.
- Self-supervised learning is able to utilize the massive unlabelled data and extract knowledge from it.

Overview

- BERT: An Brief Introduction
 - Bidirectional Encoder Representations from Transformers, which is a pertained masked language model.
- Unified rational protein engineering with sequence-based deep representation learning (Nature Method 2019)
 - Rational protein engineering requires a holistic understanding of protein function. This paper proposed to use RNN based model to learn the holistic knowledge of protein sequences.
- Evaluating Protein Transfer Learning with TAPE (NeurIPS 2019)
 - This paper implements a more extensive framework by training three different self-supervised models. It also provided benchmark results on 5 standard tasks.
- Generative models for graph-based protein design (NeurlPS 2019)
 - This paper introduce a conditional generative model for protein sequences given 3D structures based on graph representations. (incomplete)

BERT - Architecture

- A stack of Transformer Encoder. (red box in the right)
- Bidirectional representation.

BERT - Architecture

- A stack of Transformer Encoder.
- Bidirectional representation.

BERT - Input Features

• Token embedding + position embedding +. Segment embedding (sentence pairs)

BERT - Pretrain Task

- Masked Language Model (MLM)
 - Mask 15% of tokens. Amount this 15%, 10% replaced, 10% unchanged.
 - 80%: my dog is hairy -> my dog is [mask]
 - 10%: my dog is hairy -> my dog is apple
 - 10%: my dog is hairy -> my dog is hairy
- Next Sentence Prediction (NSP)
 - Input sentence pairs (A, B), 50% of time B is the next sentence of A.
 - For question answering and natural language inference.

BERT - Fine-Tuning

- Fine-tuning on your specific tasks.
- [CLS] or token-level representation.

Paper I - Motivation

- Proteins are sequential data. We need to consider the spatial-temporal relationship.
- Likewise, natural language process (NLP) also deal with sequential data. We can adopt the algorithms from NLP domain to protein domain.
- Self-supervision brings significant improvement in many NLP tasks because it learns some fundamental knowledge of language. It should also be the case for proteins.

Paper I - Approach

- Self-supervision setup:
 - Architecture:
 - LSTM
 - Single-layer, 1900 hidden-size
 - Objective: Language model (next token prediction)
 - Data:
 - UniRef: ~24 millions sequence
 - Dictionary size: 20
 - Training Time:
 - ~770K steps, 1 epoch

Paper I - Approach

- Training process:
 - Self-supervision: language modeling.
 - Downstream tasks: supervised learning.

Paper I - Experimental Results

- UniRep Feature:
 - averages all hidden states across time axis to make it more longterm dependent.
- Some results:

Paper I - Conclusion

- UniRep learns from raw data.
- It is unconstrained by a specific task, so features can be used in many tasks.
- It shows that protein informatics can potential go well directly from sequence to design.

Paper II - Motivation

- The first attempt for systematically evaluating semi-supervised learning on protein sequences.
- TAPE includes a set of five biologically relevant supervised tasks that evaluate the performance of learned protein embeddings across diverse aspects of protein understanding.
- A framework for multi-tasks benchmark.

Paper II - Tasks

- Task 1: Secondary Structure (SS) Prediction
 - Impact: understanding the function of a protein. Important for high level of structure prediction.
- Task 2: Contact Prediction
 - Impact: global information. Important for final 3D structure prediction.
- Task 3: Remote Homology Detection
 - Type: multilabel classification
 - Impact: detection of emerging antibiotic resistant genes and discovery of new enzymes.
- Task 4: Fluorescence Landscape Prediction
 - Type: regression
 - Impact: efficient exploration of the landscape.
- Task 5: Stability Landscape Prediction
 - Type: regression
 - Impact: important to ensure that drugs are delivered before they are degraded.

Paper II - Datasets

Table S1: Dataset sizes

Task	Train	Valid	Test
Language Modeling	32,207,059	N/A	2,147,130 (Random-split) / 44,314 (Heldout families)
Secondary Structure	8,678	2,170	513 (CB513) / 115 (TS115) / 21 (CASP12)
Contact Prediction	25,299	224	40 (CASP12)
Remote Homology	12,312	736	718 (Fold) / 1,254 (Superfamily) / 1,272 (Family)
Fluorescence	21,446	5,362	27,217
Stability	53,679	2,447	12,839

Paper II - Approach

- Self-supervised Learning Setup:
 - LSTM (RNN)
 - forward 3-layer LSTM+ backward 3-layer LSTM, 1024 hidden size.
 - loss: language modeling + task fine-tune.
 - Bert (SAN)
 - 12-layer, 512 hidden size, 8 attention head.
 - loss: Masked language modeling + fine-tune.
 - ResNet (CNN)
 - 35*(2 conv-layer with 256 filter), kernel size 9, dilation rate 2.
 - loss: language model + fine-tune.

Paper II - Experiment Results

Table 1: Language modeling metrics

	Ran	dom Families	3	Heldout Families		
	Accuracy	Perplexity	ECE	Accuracy	Perplexity	ECE
Transformer	0.45	8.89	6.01	0.30	13.04	10.04
LSTM	0.40	8.89	6.94	0.16	14.72	15.21
ResNet	0.41	10.16	6.86	0.29	13.55	10.32
Supervised LSTM [11]	0.28	11.62	10.17	0.14	15.28	16.02
UniRep mLSTM [12]	0.32	11.29	9.08	0.12	16.36	16.92
Random	0.04	25	25	0.04	25	25

Paper II - Experiment Results

Table 2: Results on downstream supervised tasks

Method		Structure		Evolutionary	Engineering	
		SS	Contact	Homology	Fluorescence	Stability
No Pretrain	Transformer	0.70	0.32	0.09	0.22	-0.06
	LSTM	0.71	0.19	0.12	0.21	0.28
	ResNet	0.70	0.20	0.10	-0.28	0.61
Pretrain	Transformer	0.73	0.36	0.21	0.68	0.73
	LSTM	0.75	0.39	0.26	0.67	0.69
	ResNet	0.75	0.29	0.17	0.21	0.73
Supervised [11]	LSTM	0.73	0.40	0.17	0.33	0.64
UniRep [12]	mLSTM	0.73	0.34	0.23	0.67	0.73
Baseline	One-hot	0.69	0.29	0.09	0.14	0.19
	Alignment	0.80	0.64	0.09	N/A	N/A

Paper II - Conclusion

- The improve over labelled data shows promising future for self-supervision in protein prediction.
- No single self-supervised model performs best across all protein tasks. Needs the
 extensive benchmark to evaluate the models.
- Structure prediction still is inferior to the alignment method. In need for better selfsupervision design and studying the relationship between alignment and learnedbased representation.