Problem statement

To develop a machine learning model capable of predicting the groundwater potential of aquifers, quantified on a scale of 0 to 1, indicating the yield of an aquifer.

Background and Rationale

- Transmissivity: Defined as the measure of the ease of groundwater flow through an aquifer, calculated by multiplying the hydraulic conductivity by the thickness of the aquifer. This metric serves as a comprehensive indicator of water flow ease, rendering hydraulic conductivity as a feature is redundant when transmissivity is available.
- The following features are what are considered in predicting aquifer storage in this project.
 - Aquifer thickness
 - Transimisivity
 - hydraulic conductivy
 - Fracture contrast
 - Transverse resistance
 - longitudinal conductance
 - Overburden thickness
 - aquifer resistivity
 - Reflection co-efficient

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.preprocessing import RobustScaler
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import pearsonr, spearmanr, kendalltau
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.metrics import mean_squared_error
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import LinearSVR
```

Section 1: Load up and describe data

```
In []: # Settings
    pd.set_option('display.max_columns', None)
```

```
In []: # load up the datasets
df_1 = pd.read_excel("data/dataset_2.xlsx")
df_1.head()
```

Out[]:

	VES S/N	Easting (Min)	Northing (Min)	Elev(m)	No. of Layer	Curve Types	Thickness Topsoil h1(m)	Thickness Laterite h2(m)	Thickne: weathere h3 (r
0	1	36.94	28.00	343.0	4	KH	1.1	4.9	23
1	2	36.73	28.80	359.0	4	KH	0.8	1.6	22
2	3	36.60	28.75	397.0	3	Α	0.8	0.0	9
3	4	36.84	29.58	342.0	3	Н	0.9	0.0	6
4	5	36.60	29.54	348.0	3	Н	2.5	0.0	62

```
In [ ]: df_1.columns
```

```
Out[]: Index(['VES S/N', 'Easting (Min)', 'Northing (Min)', 'Elev(m)', 'No. of
        Layer',
                'Curve Types', 'Thickness Topsoil h1(m)', 'Thickness Laterite h2
         (m)',
                'Thickness weathered h3 (m)', 'Corrected Thick. weathered (m) H
        3',
                'Thickness Fractured h4 (m)', 'Corrected Thick. Fractured (m) H
        4',
                'Thick. Overb.\nB1=h1+h2', 'Total Aquifer Thick. B2=h3+h4',
                'Corrected Total Aquifer Thick', 'p1', 'p2', 'p3', 'p4', 'p5',
                'Res. Of Topsoil', 'Res. Of Laterite', 'Long. Cond. (mhos) Topsoi
        l',
                'Long. Cond. (mhos) Laterite', 'Long. Cond. (mhos) OVERBURRDEN',
                'Logarithm of Topsoil', 'RESISTIVITY OF FRESH BASEMENT',
                'Logarithm Fresh Basement', 'AQUIFER RES of Weathered. \n(Ohm-
        М)',
                'Logarithm Weathered', 'Hydraulic Conductivity (K)',
                'Transmissivity (T)', 'Wrong', 'Aquifer storage'],
               dtype='object')
```

In []: df_1.describe()

Out[]:

	VES S/N	Easting (Min)	Northing (Min)	Elev(m)	No. of Layer	Thickness Topsoil h1(m)
count	253.000000	253.000000	253.000000	253.000000	253.000000	253.000000
mean	127.000000	33.721700	30.040079	329.477075	3.379447	2.248221
std	73.179004	2.190428	1.293328	56.739089	0.510109	2.456100
min	1.000000	29.340000	27.600000	143.000000	3.000000	0.300000
25%	64.000000	32.060000	29.050000	305.000000	3.000000	1.000000
50%	127.000000	33.780000	29.950000	323.000000	3.000000	1.500000
75%	190.000000	35.520000	30.820000	343.000000	4.000000	2.200000
max	253.000000	37.080000	33.540000	930.000000	5.000000	12.700000

In []: df_1.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 253 entries, 0 to 252 Data columns (total 34 columns): Column Non-Null Count Dtype VES S/N 0 253 non-null int64 Easting (Min) 253 non-null float64 1 2 Northing (Min) 253 non-null float64 3 Elev(m) float64 253 non-null 253 non-null 4 No. of Layer int64 252 non-null object 5 Curve Types Thickness Topsoil h1(m) 253 non-null float64 6 7 Thickness Laterite h2(m) 253 non-null float64 Thickness weathered h3 (m) 253 non-null float64 8 9 Corrected Thick. weathered (m) H3 253 non-null float64 10 Thickness Fractured h4 (m) 253 non-null float64 11 Corrected Thick. Fractured (m) H4 253 non-null float64 12 Thick. Overb. 253 non-null float64 B1=h1+h2 13 Total Aquifer Thick. B2=h3+h4 253 non-null float64 Corrected Total Aquifer Thick 253 non-null float64 float64 15 р1 253 non-null 16 p2 253 non-null float64 17 p3 253 non-null float64 18 р4 90 non-null float64 float64 19 р5 4 non-null 20 Res. Of Topsoil 253 non-null float64 21 Res. Of Laterite 253 non-null float64 22 Long. Cond. (mhos) Topsoil 253 non-null float64 23 Long. Cond. (mhos) Laterite 253 non-null float64 24 Long. Cond. (mhos) OVERBURRDEN 253 non-null float64 25 Logarithm of Topsoil 253 non-null float64 26 RESISTIVITY OF FRESH BASEMENT 253 non-null float64 Logarithm Fresh Basement 253 non-null float64 28 AQUIFER RES of Weathered. (Ohm-M) 253 non-null float64 29 Logarithm Weathered 253 non-null float64 30 Hydraulic Conductivity (K) 253 non-null float64 float64 31 Transmissivity (T) 253 non-null 32 Wrong 253 non-null float64 33 Aquifer storage 253 non-null float64 dtypes: float64(31), int64(2), object(1) memory usage: 67.3+ KB

Insights from description and info

- The average value for aquifer storage is found to be 22.4. According to the
 literature, it is recommended that an aquifer storage exceeding 60 percent is
 indicative of a good water-bearing capacity. This recommendation is from W.O.
 Raji and K.A. Abdulkadir in their 2020 study.
- Most of the values we want to use for the study are not null

Section 2: Feature Selection

In order to select the features that would be used in this project, plotting to visualize the data is essential. This will help visualize similarities between the features if any

Assumptions:

- 1. Easting: Represents longitude values. (X axis)
- 2. Northing: Represents latitude values. (Y axis)

```
In [ ]: cols_to_plot = [
               'Thickness Topsoil h1(m)', 'Thickness Laterite h2(m)',
                'Thickness weathered h3 (m)',
               'Thickness Fractured h4 (m)',
                'Thick. Overb.\nB1=h1+h2', 'Total Aquifer Thick. B2=h3+h4',
                'Corrected Total Aquifer Thick',
                'Res. Of Topsoil', 'Res. Of Laterite', 'Long. Cond. (mhos) Topsoil
                'Long. Cond. (mhos) Laterite', 'Long. Cond. (mhos) OVERBURRDEN',
                'Logarithm of Topsoil', 'RESISTIVITY OF FRESH BASEMENT',
                'Logarithm Fresh Basement', 'AQUIFER RES of Weathered. \n(Ohm-M)',
                'Logarithm Weathered', 'Hydraulic Conductivity (K)',
                'Transmissivity (T)', 'Aquifer storage '
        ]
In [ ]: # Create a function for making plots
        def plot_features(df, cols_to_plot, scale_data=False, title=""):
            Plot data for specified columns. Optionally scale the data before plo
            Parameters:
            - df: DataFrame containing the data
            - cols_to_plot: list of columns to plot
            - scale_data: boolean, if True, scale the data in cols_to_plot before
            # Copy the DataFrame to avoid modifying the original
            df_to_plot = df.copy()
            if scale_data:
                # Initialize StandardScaler
                scaler = RobustScaler()
                # Apply StandardScaler only to the specified columns
                df_to_plot[cols_to_plot] = scaler.fit_transform(df[cols_to_plot])
            n_plots = len(cols_to_plot)
            max_plots_per_row = 3
            # Calculate nrows and ncols for subplots
            ncols = min(n_plots, max_plots_per_row)
            nrows = (n_plots + max_plots_per_row - 1) // max_plots_per_row
            # Plotting the data on the same image
            fig, axs = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*6, n
            # Add a general title for the entire plot
            if title:
                fig.suptitle(title, fontsize=16)
            for i, col in enumerate(cols_to_plot):
                # Calculate row and column index for subplot
                row = i // ncols
                col_idx = i % ncols
```

```
ax = axs[row, col_idx]
# Plot using original or scaled data as per the scale_data flag
contour = ax.tricontourf(df['Easting (Min)'], df['Northing (Min)'
fig.colorbar(contour, ax=ax, label=col)
ax.set_title(f'Plot for {col}' + (' (Scaled)' if scale_data else
ax.set_xlabel('Longitude (Easting)')
ax.set_ylabel('Latitude (Northing)')

plt.tight_layout()
plt.show()
```

```
In []: # Plot the raw features
plot_features(df_1, cols_to_plot, False)
```


Plot db on the map to visualize VES points

```
In []: def plot_locations(df):
    # Create a scatter plot
    fig, ax = plt.subplots(figsize=(6,7))

    ax.scatter(df['Easting (Min)'], df['Northing (Min)'], marker='o', col

# Set labels and title
    ax.set_xlabel('Longitude')
    ax.set_ylabel('Latitude')
    ax.set_title('Locations on Map')

# Show plot
    plt.show()
```

In []: plot_locations(df_1)

Locations on Map

Plot Insights

- The plot for the thickness of the weathered layer is very similar to the plot for the
 aquifer storage. The goal of the final model is to predict the aquifer storage. This
 is insightful because this project can investigate how the final model would be
 improved or impaired by that feature.
- This same distinction can be seen when comparing the total aquifer thickness with the aquifer storage (this is logical as the larger the aquifer, the larger the expected yield of the aquifer.)
- From the plots some features could be removed, as they seem to be duplicates from a prediction point of view. e.g, corrected thicknesses, fracture thickness

Rank Features

Rank the features with different methods, in order to decide which features would be the most important for the study. Three correlation methods are considered for this;

- Pearson
- Spearman
- Kendall

```
In []: # Create a function to plot correlation analysis
        def plot_correlation_analysis(df, columns_to_check, column_to_correlate_a
            Perform and plot correlation analysis between specified columns and a
            Parameters:
            - df (pandas.DataFrame): The DataFrame containing the data.
            - columns_to_check (list of str): A list of column names to calculate
            - column_to_correlate_against (str): The name of the column to correl
            # Initialize a DataFrame to store the correlation results
            correlation_results = []
            # Loop through each column to calculate correlation coefficients
            for column in columns to check:
                pearson_corr, _ = pearsonr(df[column], df[column_to_correlate_aga
                spearman_corr, _ = spearmanr(df[column], df[column_to_correlate_a
                kendall_corr, _ = kendalltau(df[column], df[column_to_correlate_a
                # Append the results to the list as a dictionary
                correlation results.append({
                    'Variable': column,
                    'Pearson': pearson_corr,
                    'Spearman': spearman_corr,
                    'Kendall': kendall_corr
                })
            # Convert the list to a DataFrame
            correlation_results_df = pd.DataFrame(correlation_results)
            correlation_results_df = correlation_results_df.melt(id_vars=['Variab
            print(correlation_results_df)
            # Plotting
            sns.catplot(x='Coefficient', y='Variable', hue='Correlation Type', da
            plt.title(f'Correlation Analysis with {column_to_correlate_against}')
            plt.xlabel('Correlation Coefficient')
            plt.ylabel('Variables')
            plt.tight_layout()
            plt.show()
In [ ]: features_to_corr = [
              'Thickness Topsoil h1(m)', 'Thickness Laterite h2(m)',
               'Thickness weathered h3 (m)',
               'Thickness Fractured h4 (m)',
               'Thick. Overb.\nB1=h1+h2', 'Total Aquifer Thick. B2=h3+h4',
               'Res. Of Topsoil', 'Res. Of Laterite', 'Long. Cond. (mhos) Topsoil
               'Long. Cond. (mhos) Laterite', 'Long. Cond. (mhos) OVERBURRDEN',
               'Logarithm of Topsoil', 'RESISTIVITY OF FRESH BASEMENT',
               'Logarithm Fresh Basement', 'AQUIFER RES of Weathered. \n(Ohm-M)',
               'Logarithm Weathered', 'Hydraulic Conductivity (K)',
```

]

'Transmissivity (T)',

```
In [ ]: plot_correlation_analysis(df_1, features_to_corr, 'Aquifer storage ')
```

```
Variable Correlation Type
                                                             Coefficient
0
                Thickness Topsoil h1(m)
                                                    Pearson
                                                                0.149565
1
               Thickness Laterite h2(m)
                                                    Pearson
                                                                0.121427
2
             Thickness weathered h3 (m)
                                                    Pearson
                                                                0.999225
3
             Thickness Fractured h4 (m)
                                                    Pearson
                                                                -0.016601
4
                 Thick. Overb.\nB1=h1+h2
                                                    Pearson
                                                                0.182830
5
          Total Aguifer Thick. B2=h3+h4
                                                    Pearson
                                                                0.974173
6
                         Res. Of Topsoil
                                                    Pearson
                                                               -0.051762
7
                        Res. Of Laterite
                                                    Pearson
                                                               -0.093737
8
             Long. Cond. (mhos) Topsoil
                                                    Pearson
                                                                0.199653
9
                                                    Pearson
            Long. Cond. (mhos) Laterite
                                                                0.121976
10
         Long. Cond. (mhos) OVERBURRDEN
                                                    Pearson
                                                                0.184247
11
                    Logarithm of Topsoil
                                                    Pearson
                                                               -0.084771
          RESISTIVITY OF FRESH BASEMENT
12
                                                    Pearson
                                                               -0.119565
13
               Logarithm Fresh Basement
                                                    Pearson
                                                               -0.089655
14
    AQUIFER RES of Weathered. \n(0hm-M)
                                                    Pearson
                                                               -0.019119
15
                     Logarithm Weathered
                                                    Pearson
                                                               -0.080903
16
             Hydraulic Conductivity (K)
                                                    Pearson
                                                                0.162177
17
                      Transmissivity (T)
                                                    Pearson
                                                                0.484136
18
                Thickness Topsoil h1(m)
                                                   Spearman
                                                                0.152381
19
               Thickness Laterite h2(m)
                                                   Spearman
                                                                0.017991
20
             Thickness weathered h3 (m)
                                                   Spearman
                                                                0.999122
21
             Thickness Fractured h4 (m)
                                                   Spearman
                                                               -0.052515
22
                 Thick. Overb.\nB1=h1+h2
                                                   Spearman
                                                                0.192251
23
          Total Aguifer Thick. B2=h3+h4
                                                   Spearman
                                                                0.977808
24
                         Res. Of Topsoil
                                                               -0.145283
                                                   Spearman
25
                        Res. Of Laterite
                                                   Spearman
                                                               -0.072456
             Long. Cond. (mhos) Topsoil
26
                                                   Spearman
                                                                0.234784
27
            Long. Cond. (mhos) Laterite
                                                   Spearman
                                                                0.022671
28
         Long. Cond. (mhos) OVERBURRDEN
                                                   Spearman
                                                                0.224567
29
                    Logarithm of Topsoil
                                                   Spearman
                                                               -0.145283
30
          RESISTIVITY OF FRESH BASEMENT
                                                   Spearman
                                                               -0.108986
31
               Logarithm Fresh Basement
                                                               -0.108986
                                                   Spearman
32
    AQUIFER RES of Weathered. \n(0hm-M)
                                                   Spearman
                                                               -0.138672
33
                     Logarithm Weathered
                                                   Spearman
                                                               -0.138672
34
             Hydraulic Conductivity (K)
                                                   Spearman
                                                                0.138672
35
                      Transmissivity (T)
                                                   Spearman
                                                                0.610228
36
                 Thickness Topsoil h1(m)
                                                    Kendall
                                                                0.101673
                Thickness Laterite h2(m)
37
                                                    Kendall
                                                                0.015624
38
             Thickness weathered h3 (m)
                                                    Kendall
                                                                0.994315
39
             Thickness Fractured h4 (m)
                                                    Kendall
                                                               -0.043257
40
                Thick. Overb.\nB1=h1+h2
                                                    Kendall
                                                                0.129861
41
          Total Aguifer Thick. B2=h3+h4
                                                    Kendall
                                                                0.972838
42
                         Res. Of Topsoil
                                                    Kendall
                                                               -0.100154
43
                        Res. Of Laterite
                                                    Kendall
                                                               -0.054790
44
             Long. Cond. (mhos) Topsoil
                                                    Kendall
                                                                0.159451
45
            Long. Cond. (mhos) Laterite
                                                    Kendall
                                                                0.017110
46
         Long. Cond. (mhos) OVERBURRDEN
                                                    Kendall
                                                                0.153257
47
                    Logarithm of Topsoil
                                                    Kendall
                                                               -0.100154
48
          RESISTIVITY OF FRESH BASEMENT
                                                    Kendall
                                                               -0.069306
49
               Logarithm Fresh Basement
                                                    Kendall
                                                               -0.069306
50
    AQUIFER RES of Weathered. \n(0hm-M)
                                                    Kendall
                                                               -0.097077
51
                     Logarithm Weathered
                                                    Kendall
                                                               -0.097077
52
             Hydraulic Conductivity (K)
                                                    Kendall
                                                                0.097077
53
                      Transmissivity (T)
                                                    Kendall
                                                                0.436888
```


Insights from the plot

Two features, weathered thickness and aquifer thickness seem to be very highly correlated with aquifer storage. The following features will be selected for training from the plots; the features selected generally have correlation greater than or equal to 0.2

- 1. Thickness Topsoil h1(m)
- 2. Thickness weathered h3 (m) (high correlation)
- 3. Thick. Overb.\nB1=h1+h2
- 4. Total Aquifer Thick. B2=h3+h4 (high correlation)
- 5. Long. Cond. (mhos) OVERBURRDEN
- 6. Long. Cond. (mhos) Topsoil
- 7. Transmissivity (T)

```
In [ ]:
        # The following features will be used for the rest of the analysis.
        all_selected_features = [
                'Thickness Topsoil h1(m)',
                'Thickness weathered h3 (m)',
                'Thick. Overb.\nB1=h1+h2',
                'Total Aquifer Thick. B2=h3+h4',
                'Long. Cond. (mhos) OVERBURRDEN',
                'Long. Cond. (mhos) Topsoil',
                'Transmissivity (T)',
        ]
        features_without_high_corr = [
                'Thickness Topsoil h1(m)',
                'Thick. Overb.\nB1=h1+h2',
                'Long. Cond. (mhos) Topsoil',
                'Long. Cond. (mhos) OVERBURRDEN',
                'Transmissivity (T)',
        ]
        features_without_weathered_thick = [
                'Thickness Topsoil h1(m)',
                'Thick. Overb.\nB1=h1+h2',
                'Total Aquifer Thick. B2=h3+h4',
                'Long. Cond. (mhos) OVERBURRDEN',
```

```
'Long. Cond. (mhos) Topsoil',
'Transmissivity (T)',

]

features_without_aquifer_thick = [
    'Thickness Topsoil h1(m)',
    'Thickness weathered h3 (m)',
    'Thick. Overb.\nB1=h1+h2',
    'Long. Cond. (mhos) OVERBURRDEN',
    'Long. Cond. (mhos) Topsoil',
    'Transmissivity (T)',
]
```

Section 3: Preprocessing data

The selected features have been broken down into categories. In order to preprocess the data, two major step taken is to transform the features.

Transform features

It is important to do some level of feature transformation in any machine learning project. The idea is to modify the features in the dataset to improve the performance and accuracy of the machine learning models.

```
In [ ]: # function to scale features as needed
        def scale_features(df, feature_columns, label):
            Scales the specified features in the DataFrame using StandardScaler.
            Parameters:
            - df: pandas DataFrame containing the data.
            - feature_columns: List of column names to be scaled.
            - label: String name of the label column
            scaler = StandardScaler()
            # Copy the original DataFrame to avoid modifying it directly
            df_scaled = df.copy()
            df_scaled = df_scaled[feature_columns]
            # Scale the specified features
            df_scaled[feature_columns] = scaler.fit_transform(df_scaled[feature_c
            df_scaled['Aquifer Storage'] = df[label]
            df_scaled[["Easting (Min)", "Northing (Min)"]] = df[["Easting (Min)"]
            return df_scaled
In [ ]: # feature scaling for all feature groups
```

```
In []: # feature scaling for all feature groups
# creating scaled version of all feature groups
df_all_predicted = scale_features(df_1, all_selected_features, 'Aquifer s
```

df_without_high_corr = scale_features(df_1, features_without_high_corr,
df_without_weathered_thick = scale_features(df_1, features_without_weath
df_without_aquifer_thick = scale_features(df_1, features_without_aquifer_

In []: df_all_predicted.head()

-			r	- 7	
\cap	1.1	+		- 1	ш
U	u	L.	L	- 1	н

:		Thickness Topsoil h1(m)	Thickness weathered h3 (m)	Thick. Overb.\nB1=h1+h2	Total Aquifer Thick. B2=h3+h4	Long. Cond. (mhos) OVERBURRDEN	Long Cond (mhos Topsoi
	0	-0.468424	0.641042	0.273002	0.596086	-0.234145	-0.30943
	1	-0.590811	0.565512	-0.407114	0.522118	-0.505891	-0.51993
	2	-0.590811	-0.858771	-0.709387	-0.872713	0.098037	1.36583{
	3	-0.550016	-1.160891	-0.690495	-1.168587	-0.523319	-0.479188
	4	0.102715	4.827571	-0.388222	4.696045	-0.533278	-0.50875

In []: df_without_high_corr.head()

Out[]:

	Thickness Topsoil h1(m)	Thick. Overb.\nB1=h1+h2	Long. Cond. (mhos) Topsoil	Long. Cond. (mhos) OVERBURRDEN	Transmissivity (T)	Aqui Stora
0	-0.468424	0.273002	-0.309435	-0.234145	-0.179934	30.017
1	-0.590811	-0.407114	-0.519935	-0.505891	-0.657226	29.119
2	-0.590811	-0.709387	1.365838	0.098037	-0.598868	12.186
3	-0.550016	-0.690495	-0.479188	-0.523319	-0.738212	8.594
4	0.102715	-0.388222	-0.508759	-0.533278	-0.465206	79.79(

Key insights

- Features are now scaled as seen in the printed out values of the data
- Aquifer storage has been renamed to label just for clarity and to make it easy to work with

Split data and train ML model

The scaled data will be split at a ratio of 70:30.

- 70% of the data will be used for training the model
- 30% of the data will be used for testing the data

Multiple ML models will be tested to evaluate which works best This is a regression problem so the major regression models will e evaluated on effectiveness;

- 1. Linear Regression
- 2. Decision Tree Regression

- 3. Random Forest Regressor
- 4. Linear SVR

```
In [ ]: def evaluate_models(df, features, target, models=None, title=""):
            # Split the data into features (X) and target (y)
            X = df[features]
            y = df[target]
            default models = [
                ('Linear Regression', LinearRegression()),
                ('Decision Tree Regressor', DecisionTreeRegressor()),
                ('Random Forest Regressor', RandomForestRegressor()),
                ("Linear SVR", LinearSVR())
            1
            # If no models are provided, use the default models
            if models is None:
                models = default models
            # Split data into training and testing sets
            X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0
            results = []
            best score = float('-inf')
            best_model = None
            for name, model in models:
                # Perform cross-validation
                cv scores = cross val score(model, X train, y train, cv=5)
                cv_mean = np.mean(cv_scores)
                # Fit the model on the full training data and evaluate on the tes
                model.fit(X_train, y_train)
                y_pred = model.predict(X_test)
                test_score = mean_squared_error(y_test, y_pred, squared=False) #
                results.append({
                     'Model': name,
                     'Average Accuracy (CV Mean Score)': cv_mean,
                     'Test Score': test_score
                })
                # Update the best model if this model has a better score
                if cv_mean > best_score:
                    best_score = cv_mean
                    best_model = model
            results_df = pd.DataFrame(results)
            # Predict with the best model for the test dataset
            print(f"{best_model} is the best model with a CV mean score / accurac
            predicted_col_name = f'Predicted {target}'
            # Only predict for X_test and append to the original df
            test_predictions = best_model.predict(X_test)
            test_df = df.loc[X_test.index].copy()
            test_df[predicted_col_name] = test_predictions
```

```
# Plotting or additional operations can be added here
# For simplicity, this part is omitted
plot_features(test_df, [target, predicted_col_name], title=title)

# Return the evaluation results and the DataFrame with predictions on
return results_df, test_df
```

```
In [ ]: def evaluate_models(df, features, target, models=None, title=""):
            # Split the data into features (X) and target (y)
            X = df[features]
            y = df[target]
            default_models = [
                ('Linear Regression', LinearRegression()),
                ('Decision Tree Regressor', DecisionTreeRegressor()),
                ('Random Forest Regressor', RandomForestRegressor()),
                 ("Linear SVR", LinearSVR())
            1
            # If no models are provided, use the default models
            if models is None:
                models = default models
            # Split data into training and testing sets
            X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0
            results = []
            best_score = float('-inf')
            best_model = None
            for name, model in models:
                # Perform cross-validation
                cv_scores = cross_val_score(model, X_train, y_train, cv=5)
                cv_mean = np.mean(cv_scores)
                # Fit the model on the full training data and evaluate on the tes
                model.fit(X_train, y_train)
                y_pred = model.predict(X_test)
                test_df = df.loc[X_test.index].copy()
                predicted_col_name = f'Predicted {target}'
                test_df[predicted_col_name] = y_pred
                plot_features(test_df, [target, predicted_col_name], title=f"{nam
                test_score = mean_squared_error(y_test, y_pred, squared=False) #
                results.append({
                     'Model': name,
                     'Average Accuracy (CV Mean Score)': cv_mean,
                     'Test Score': test_score
                })
                # Update the best model if this model has a better score
                if cv_mean > best_score:
                    best_score = cv_mean
                    best_model = model
            results_df = pd.DataFrame(results)
```

```
# Print the best model
print(f"{best_model} is the best model with a CV mean score / accurac
# Predict with the best model for the test dataset
predicted_col_name = f'Predicted {target}'
test_predictions = best_model.predict(X_test)
test_df = df.loc[X_test.index].copy()
test_df[predicted_col_name] = test_predictions

# Return the evaluation results and the DataFrame with predictions on
return results_df, test_df
```

In []: results, df_pred = evaluate_models(df_all_predicted, all_selected_feature

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/metrics/_regression.py:483: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.

warnings.warn(

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/metrics/_regression.py:483: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.

warnings.warn(

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/metrics/_regression.py:483: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.

warnings.warn(

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/svm/_classes.py:31: FutureWarning: The default value of `dual` will ch ange from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning.

warnings.warn(

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/svm/_classes.py:31: FutureWarning: The default value of `dual` will ch ange from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning.

warnings.warn(

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/svm/_classes.py:31: FutureWarning: The default value of `dual` will ch ange from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning.

warnings.warn(

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/svm/_classes.py:31: FutureWarning: The default value of `dual` will ch ange from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning.

warnings.warn(

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/svm/_classes.py:31: FutureWarning: The default value of `dual` will ch ange from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning.

warnings.warn(

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/svm/_classes.py:31: FutureWarning: The default value of `dual` will ch ange from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning.

warnings.warn(

Linear SVR with accuracy (cv mean) of 0.9962738714621449 for prediction with all features

LinearRegression() is the best model with a CV mean score / accuracy score of 1.0.

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/metrics/_regression.py:483: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.

warnings.warn(

Plot data points of predicted values

In []: plot_locations(df_pred)

Locations on Map

In []: results_whc, df_pred_whc = evaluate_models(df_without_high_corr, feature

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/metrics/_regression.py:483: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.

warnings.warn(

Decision Tree Regressor with accuracy (cv mean) of -0.2513922181530209 for prediction without high correlators

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/metrics/_regression.py:483: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.

warnings.warn(

Random Forest Regressor with accuracy (cv mean) of 0.2505589063574526 for prediction without high correlators

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/metrics/_regression.py:483: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.

warnings.warn(

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/svm/_classes.py:31: FutureWarning: The default value of `dual` will ch ange from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning.

warnings.warn(

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/svm/_classes.py:31: FutureWarning: The default value of `dual` will ch ange from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning.

warnings.warn(

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/svm/_classes.py:31: FutureWarning: The default value of `dual` will ch ange from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning.

warnings.warn(

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/svm/_classes.py:31: FutureWarning: The default value of `dual` will ch ange from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning.

warnings.warn(

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/svm/_classes.py:31: FutureWarning: The default value of `dual` will ch ange from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning.

warnings.warn(

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/svm/_classes.py:31: FutureWarning: The default value of `dual` will ch ange from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning.

warnings.warn(

warnings.warn(

Linear SVR with accuracy (cv mean) of 0.12221561022021629 for prediction without high correlators

RandomForestRegressor() is the best model with a CV mean score / accuracy score of 0.2505589063574526.

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/metrics/_regression.py:483: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.

In []: results_wwt, df_pred_wwt = evaluate_models(df_without_weathered_thick, f

Linear Regression with accuracy (cv mean) of 0.9109362093015712 for prediction without weathered thickness

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/metrics/_regression.py:483: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.

warnings.warn(

Decision Tree Regressor with accuracy (cv mean) of 0.8473775945645793 for prediction without weathered thickness

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/metrics/_regression.py:483: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.

warnings.warn(

Random Forest Regressor with accuracy (cv mean) of 0.869792986195699 for prediction without weathered thickness

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/metrics/_regression.py:483: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.

warnings.warn(

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/svm/_classes.py:31: FutureWarning: The default value of `dual` will ch ange from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning.

warnings.warn(

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/svm/_classes.py:31: FutureWarning: The default value of `dual` will ch ange from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning.

warnings.warn(

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/svm/_classes.py:31: FutureWarning: The default value of `dual` will ch ange from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning.

warnings.warn(

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/svm/_classes.py:31: FutureWarning: The default value of `dual` will ch ange from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning.

warnings.warn(

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/svm/_classes.py:31: FutureWarning: The default value of `dual` will ch ange from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning.

warnings.warn(

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/svm/_classes.py:31: FutureWarning: The default value of `dual` will ch ange from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning.

warnings.warn(

Linear SVR with accuracy (cv mean) of 0.9094173670295447 for prediction without weathered thickness

LinearRegression() is the best model with a CV mean score / accuracy score of 0.9109362093015712.

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/metrics/_regression.py:483: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.

warnings.warn(

In []: results_wat, df_pred_wat = evaluate_models(df_without_aquifer_thick, fea

Linear Regression with accuracy (cv mean) of 0.9973361885316774 for prediction without aquifer thickness

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/metrics/_regression.py:483: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.

warnings.warn(

Decision Tree Regressor with accuracy (cv mean) of 0.9650901083151113 for prediction without aquifer thickness

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/metrics/_regression.py:483: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.

warnings.warn(

Random Forest Regressor with accuracy (cv mean) of 0.9787459006913878 for prediction without aquifer thickness

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/metrics/_regression.py:483: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.

warnings.warn(

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/svm/_classes.py:31: FutureWarning: The default value of `dual` will ch ange from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning.

warnings.warn(

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/svm/_classes.py:31: FutureWarning: The default value of `dual` will ch ange from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning.

warnings.warn(

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/svm/_classes.py:31: FutureWarning: The default value of `dual` will ch ange from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning.

warnings.warn(

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/svm/_classes.py:31: FutureWarning: The default value of `dual` will ch ange from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning.

warnings.warn(

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/svm/_classes.py:31: FutureWarning: The default value of `dual` will ch ange from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning.

warnings.warn(

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/svm/_classes.py:31: FutureWarning: The default value of `dual` will ch ange from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning.

warnings.warn(

warnings.warn(

Linear SVR with accuracy (cv mean) of 0.9973595779820302 for prediction without aquifer thickness

LinearSVR() is the best model with a CV mean score / accuracy score of 0.9 973595779820302.

/Users/ayomide/Work/ML/AquiferStorage/env/lib/python3.9/site-packages/skle arn/metrics/_regression.py:483: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed in 1.6. To calculate the root mean squared error, use the function'root_mean_squared_error'.

Key Insights and Conclusion

The evaluation of the project on developing a machine learning model to predict aquifer storage capacity has yielded several important insights. A data split of 30:70 (test:training) was employed, and multiple models were trained to identify the one best suited for predicting aquifer storage. The models were evaluated across different feature groups, highlighting the significance of feature selection in machine learning. Below are the key insights derived from testing these feature groups:

• All Selected Features:

- Features: Thickness Topsoil h1(m), Thickness weathered h3 (m), Thick. Overb.\nB1=h1+h2, Total Aquifer Thick. B2=h3+h4, Long. Cond. (mhos) OVERBURRDEN, Long. Cond. (mhos) Topsoil, Transmissivity (T).
- Result: Linear Regression emerged as the best model with a cross-validation (CV) mean score of 1.0. This indicates a potentially perfect prediction, suggesting a linear relationship between these features and the target variable.

• Features Without High Correlation:

- Features: Excluding the two highest correlators (with correlation scores of 0.98 and above), the features used were Thickness Topsoil h1(m), Thick. Overb.\nB1=h1+h2, Long. Cond. (mhos) Topsoil, Long. Cond. (mhos) OVERBURRDEN, Transmissivity (T).
- **Result**: RandomForestRegressor was the best model with a CV mean score of 0.239. The drop in CV score compared to the all features model suggests that the excluded features were significant predictors of aquifer storage.

• Features Without Weathered Thickness:

- Features: After removing one of the highest correlators, the selected features included Thickness Topsoil h1(m), Thick. Overb.\nB1=h1+h2, Total Aquifer Thick. B2=h3+h4, Long. Cond. (mhos) OVERBURRDEN, Long. Cond. (mhos) Topsoil, Transmissivity (T).
- **Result**: Linear Regression again proved to be the best model with a CV mean score of 0.9109, highlighting its robustness in capturing the relationship between the selected features and the target variable even after the exclusion of a significant predictor.

• Features Without Aquifer Thickness:

- Features: By excluding one of the highest correlators, the remaining features were Thickness Topsoil h1(m), Thickness weathered h3 (m), Thick. Overb.\nB1=h1+h2, Long. Cond. (mhos) OVERBURRDEN, Long. Cond. (mhos) Topsoil, Transmissivity (T).
- Result: LinearSVR emerged as the best model with a CV mean score of 0.9974, indicating excellent performance and suggesting that the remaining features still capture significant predictive power.

Conclusion

The evaluation across different feature groups has shown that careful feature selection is paramount in developing predictive models. While Linear Regression showed outstanding performance in two of the feature groupings, suggesting a strong linear relationship, RandomForestRegressor and LinearSVR's best performances in other groupings indicate the complexity and non-linear nature of the relationships in groundwater potential prediction. This analysis underscores the necessity of experimenting with both feature selection and various modeling approaches to identify the best predictor of aquifer storage.

References

 Raji, W.O., Abdulkadir, K.A. Evaluation of groundwater potential of bedrock aquifers in Geological Sheet 223 Ilorin, Nigeria, using geo-electric sounding. Appl Water Sci 10, 220 (2020). https://doi.org/10.1007/s13201-020-01303-2