Software Requirements Specification for SE 4G06: subtitle describing software

Team 3, Tangle
Calvyn Siong
Cyruss Allen Amante
Edward Gao
Richard Li
Mark Angelo Cruz

October 6, 2024

Contents

1	Pur	Purpose of the Project vi				
	1.1	User Business	vi			
	1.2	Goals of the Project	vi			
2	Stakeholders					
	2.1	Client	vi			
	2.2	Customer	vi			
	2.3	Other Stakeholders	vi			
	2.4	Hands-On Users of the Project	vi			
	2.5	Personas	vi			
	2.6	Priorities Assigned to Users	vi			
	2.7	User Participation	vii			
	2.8	Maintenance Users and Service Technicians	vii			
3	Mandated Constraints vi					
	3.1	Solution Constraints	vii			
	3.2	Implementation Environment of the Current System	vii			
	3.3	Partner or Collaborative Applications	vii			
	3.4	Off-the-Shelf Software	vii			
	3.5	Anticipated Workplace Environment	vii			
	3.6	Schedule Constraints	vii			
	3.7	Budget Constraints	vii			
	3.8	Enterprise Constraints	viii			
4	Nar	ming Conventions and Terminology	viii			
	4.1	Glossary of All Terms, Including Acronyms, Used by Stake-				
		holders involved in the Project	viii			
5	Rel	evant Facts And Assumptions	viii			
	5.1	Relevant Facts	viii			
	5.2	Business Rules	viii			
	5.3	Assumptions				
6	The	e Scope of the Work	viii			
	6.1	The Current Situation	viii			
		6.1.1 Software Engineering Practices				
		6.1.2 Physics Engine Integration				

	6.2	The Context of the Work	X
		6.2.1 Software Engineering Practices	X
		6.2.2 Physics Engine Integration	X
	6.3	Work Partitioning	xii
	6.4	Specifying a Business Use Case (BUC)	xiv
7	Bus	iness Data Model and Data Dictionary	xiv
	7.1	Business Data Model	xiv
	7.2	Data Dictionary	xiv
8	The	Scope of the Product	xv
	8.1	Product Boundary	XV
	8.2	Product Use Case Table	XV
	8.3	Individual Product Use Cases (PUC's)	XV
9	Fun	ctional Requirements	xv
	9.1	Functional Requirements	XV
10	Loo	k and Feel Requirements	xv
	10.1	Appearance Requirements	XV
	10.2	Style Requirements	XV
11	Usa	bility and Humanity Requirements	xv
	11.1	Ease of Use Requirements	XV
	11.2	Personalization and Internationalization Requirements	xvi
	11.3	Learning Requirements	xvi
	11.4	Understandability and Politeness Requirements	xvi
	11.5	Accessibility Requirements	xvi
12	Peri	formance Requirements	xvi
		Speed and Latency Requirements	
	12.2	Safety-Critical Requirements	xvi
		Precision or Accuracy Requirements	
	12.4	Robustness or Fault-Tolerance Requirements	xvi
	12.5	Capacity Requirements	xvi
	12.6	Scalability or Extensibility Requirements	xvi
		Longevity Requirements	

13	Operational and Environmental Requirements	xvii
	13.1 Expected Physical Environment	. xvii
	13.2 Wider Environment Requirements	. xvii
	13.3 Requirements for Interfacing with Adjacent Systems	. xvii
	13.4 Productization Requirements	. xvii
	13.5 Release Requirements	. xvii
14	Maintainability and Support Requirements	xvii
	14.1 Maintenance Requirements	
	14.2 Supportability Requirements	
	14.3 Adaptability Requirements	. xviii
15	Security Requirements	xviii
	15.1 Access Requirements	. xviii
	15.2 Integrity Requirements	. xviii
	15.3 Privacy Requirements	
	15.4 Audit Requirements	. xviii
	15.5 Immunity Requirements	. xviii
16	Cultural Requirements	xviii
	16.1 Cultural Requirements	. xviii
17	Compliance Requirements	xix
	17.1 Legal Requirements	. xix
	17.2 Standards Compliance Requirements	. xix
18	Open Issues	xix
19	Off-the-Shelf Solutions	xix
	19.1 Ready-Made Products	. xix
	19.2 Reusable Components	. xix
	19.3 Products That Can Be Copied	. xix
20	New Problems	xix
	20.1 Effects on the Current Environment	. xix
	20.2 Effects on the Installed Systems	. xix
	20.3 Potential User Problems	. XX
	20.4 Limitations in the Anticipated Implementation Environment	
	That May Inhibit the New Product	XX

	20.5 Follow-Up Problems	XX
21	Tasks	xx
	21.1 Project Planning	XX
	21.2 Planning of the Development Phases	XX
22	Migration to the New Product	xx
	22.1 Requirements for Migration to the New Product	XX
	22.2 Data That Has to be Modified or Translated for the New System	XX
23	Costs	xxi
		xxi xxi
		xxi
	User Documentation and Training	xxi xxi
24	User Documentation and Training 24.1 User Documentation Requirements	xxi xxi

Revision History

Date	Version	Notes
Date 1	1.0	Notes
Date 2	1.1	Notes

1 Purpose of the Project

1.1 User Business

Insert your content here.

1.2 Goals of the Project

Insert your content here.

2 Stakeholders

2.1 Client

Insert your content here.

2.2 Customer

Insert your content here.

2.3 Other Stakeholders

Insert your content here.

2.4 Hands-On Users of the Project

Insert your content here.

2.5 Personas

Insert your content here.

2.6 Priorities Assigned to Users

2.7 User Participation

Insert your content here.

2.8 Maintenance Users and Service Technicians

Insert your content here.

3 Mandated Constraints

3.1 Solution Constraints

Insert your content here.

3.2 Implementation Environment of the Current System

Insert your content here.

3.3 Partner or Collaborative Applications

Insert your content here.

3.4 Off-the-Shelf Software

Insert your content here.

3.5 Anticipated Workplace Environment

Insert your content here.

3.6 Schedule Constraints

Insert your content here.

3.7 Budget Constraints

3.8 Enterprise Constraints

Insert your content here.

4 Naming Conventions and Terminology

4.1 Glossary of All Terms, Including Acronyms, Used by Stakeholders involved in the Project

Insert your content here.

5 Relevant Facts And Assumptions

5.1 Relevant Facts

Insert your content here.

5.2 Business Rules

Insert your content here.

5.3 Assumptions

Insert your content here.

6 The Scope of the Work

6.1 The Current Situation

For the scope of this capstone, there are two main areas of focus: Software Engineering practices and physics engine integration. Both of these have current states which will be improved upon over the course of this project.

6.1.1 Software Engineering Practices

The TPG (Tangled Program Graph) project is currently managed with basic software engineering practices. The codebase is hosted on GitLab, and Dr.

Kelly's research group uses Git branches to separate and manage their work. This current setup does allow for parallel work and multiple contributors. However, several key practices are missing:

- Unit Testing: There are no unit tests in place. This absence means that code changes are not systematically validated, increasing the risk of introducing bugs and regressions.
- Continuous Integration/Continuous Deployment (CI/CD): The project lacks automated pipelines for building, testing, and deploying code. Without CI/CD, integrating changes can be time-consuming and errorprone.
- Pull Request Templates and Standards: There are no standardized templates or guidelines for pull requests, leading to inconsistencies in code reviews and collaboration.
- Open Source License: The project has not yet adopted an open-source license, which can deter external contributions and limit the software's usage.
- Issue Management: There is no formal system for tracking bugs, feature requests, or tasks, making project management less efficient.

The current structure of the TPG codebase may not be optimized for use as an open-source library. Current researchers need to run shell scripts as the entry point, which can be a barrier to entry for those unfamiliar with the system. Additionally, MacOS with ARM based chips may have extra difficulty in onboarding to this project due to the many dependency conflicts in this current state. This approach limits accessibility and may discourage potential users and contributors. More research into code structure and analysis of how other open source libraries allow for their frameworks to be integrated into open source contributor workflows should be studied.

6.1.2 Physics Engine Integration

The TPG framework has been validated using OpenAI Gym's classic control problems such as CartPole, Acrobot, and Pendulum. These environments are stationary, meaning their transition functions (the rules determining the next state given a current state and action) do not change over time. In

contrast, real-world environments are typically non-stationary. Their transition functions can evolve due to external factors, requiring agents to adapt continuously. Currently, the TPG framework needs to evolve and be adapted to more dynamic environments.

6.2 The Context of the Work

6.2.1 Software Engineering Practices

Figure 1: System Context

- Unit Testing: Focused on improving code quality, unit tests ensure that individual pieces of the codebase work as expected.
- CI/CD Pipelines: The integration and automation of software processes, such as building and testing, will allow for continuous integration and deployment of changes, ensuring the project remains robust as it scales.

- Software Architecture: This examines how users interact with TPG, the use of shell scripting, and how the framework is structured using API development and object-oriented programming (OOP) principles. It emphasizes improving design principles for a better developer and user experience.
- Documentation: This is critical for onboarding new developers, ensuring explainability, and providing clear, thorough project documentation.
- Issue Management: Introducing a formal system to track bugs, feature requests, and community suggestions will help organize tasks and streamline project development.
- Guidelines for Open Source Contributors: Establishing clear guidelines will provide a roadmap for external contributors to participate in the project, increasing collaboration and contributions.
- Guidelines for Current Researchers: This component covers how researchers and developers within the project can contribute effectively, ensuring consistency and alignment with the project's goals.

6.2.2 Physics Engine Integration

Figure 2: System Context

- TPG (Tangled Program Graphs): TPG is a reinforcement learning framework. In this context, its role is to act as the core system that will be tested and integrated with dynamic environments. Establishing the interface between TPG and MuJoCo will allow the TPG framework to be tested in physically realistic simulations.
- MuJoCo (Multi-Joint dynamics with Contact): MuJoCo is a high-performance physics engine used for modeling and simulating dynamic systems. In this diagram, it represents the external library that provides the physics-based environments required for testing TPG. The interface with TPG will enable the reinforcement learning agents created using TPG to interact with complex, real-world-like physics simulations provided by MuJoCo.
- Experiments: Experiments define the environments and scenarios where TPG will be tested. This component represents the experimental setups that specify the parameters for evaluating TPG's performance in various MuJoCo-based scenarios. These experiments are critical for determining how well TPG adapts to different physics-based tasks, environments, and scenarios.

6.3 Work Partitioning

Table 1: A sample long table.

Event Name	Inputs	Outputs	Summary
		Contin	nued on next page

Table 1 – continued from previous page

Event Name	Inputs	Outputs	Summary
Contributor	New changes	New code is	CI - Continuous
wants to merge	(code that was	successfully	Integration
code changes	modified in a	integrated with	practices into
they made	PR)	the main code	the repo,
			ensuring all
			devs can make
			changes in a
			seamless
			manner and be
			up to date while
			concurrent work
			is occuring
Contributor	New code blocks	Test functions	Automated tests
wants to	that are written	are created to	are generated
evaluate the	by a contributor	evaluate new	for new code
code they wrote		code	blocks that are
			written ensuring
			code robustness
Contributor	N/A	Contributor is	Seamless
wants to		able to run the	onboarding
onboard and use		framework	experience that
TPG			allows a new
			contributor/user
			to get up and
			running
Continued on next page			

Table 1 – continued from previous page

Event Name	Inputs	Outputs	Summary
Contributor	TPG, MuJoCo	Functioning	New
wants to		simulation of an	experiments to
perform an		experiment	be conducted in
experiment to		integrated with	more realistic
test the TPG		a physics engine	scenarios
framework in			evolving the
MuJoCo			development of
			this
			reinforcement
			learning
			framework
Contributor	TPG, MuJoCo	Graphs of the	Evaluation of
wants to get		recent	the experiment
visual results of		experiment	is crucial to
from test data			improving the
			framework and
			allowing it to
			become good at
			multi task
			reinforcement
			learning tasks

6.4 Specifying a Business Use Case (BUC)

Insert your content here.

7 Business Data Model and Data Dictionary

7.1 Business Data Model

Insert your content here.

7.2 Data Dictionary

8 The Scope of the Product

8.1 Product Boundary

Insert your content here.

8.2 Product Use Case Table

Insert your content here.

8.3 Individual Product Use Cases (PUC's)

Insert your content here.

9 Functional Requirements

9.1 Functional Requirements

Insert your content here.

10 Look and Feel Requirements

10.1 Appearance Requirements

Insert your content here.

10.2 Style Requirements

Insert your content here.

11 Usability and Humanity Requirements

11.1 Ease of Use Requirements

11.2 Personalization and Internationalization Requirements

Insert your content here.

11.3 Learning Requirements

Insert your content here.

11.4 Understandability and Politeness Requirements

Insert your content here.

11.5 Accessibility Requirements

Insert your content here.

12 Performance Requirements

12.1 Speed and Latency Requirements

Insert your content here.

12.2 Safety-Critical Requirements

Insert your content here.

12.3 Precision or Accuracy Requirements

Insert your content here.

12.4 Robustness or Fault-Tolerance Requirements

Insert your content here.

12.5 Capacity Requirements

12.6 Scalability or Extensibility Requirements

Insert your content here.

12.7 Longevity Requirements

Insert your content here.

13 Operational and Environmental Requirements

13.1 Expected Physical Environment

Insert your content here.

13.2 Wider Environment Requirements

Insert your content here.

13.3 Requirements for Interfacing with Adjacent Systems

Insert your content here.

13.4 Productization Requirements

Insert your content here.

13.5 Release Requirements

Insert your content here.

14 Maintainability and Support Requirements

14.1 Maintenance Requirements

14.2 Supportability Requirements

Insert your content here.

14.3 Adaptability Requirements

Insert your content here.

15 Security Requirements

15.1 Access Requirements

Insert your content here.

15.2 Integrity Requirements

Insert your content here.

15.3 Privacy Requirements

Insert your content here.

15.4 Audit Requirements

Insert your content here.

15.5 Immunity Requirements

Insert your content here.

16 Cultural Requirements

16.1 Cultural Requirements

17 Compliance Requirements

17.1 Legal Requirements

Insert your content here.

17.2 Standards Compliance Requirements

Insert your content here.

18 Open Issues

Insert your content here.

19 Off-the-Shelf Solutions

19.1 Ready-Made Products

Insert your content here.

19.2 Reusable Components

Insert your content here.

19.3 Products That Can Be Copied

Insert your content here.

20 New Problems

20.1 Effects on the Current Environment

Insert your content here.

20.2 Effects on the Installed Systems

20.3 Potential User Problems

Insert your content here.

20.4 Limitations in the Anticipated Implementation Environment That May Inhibit the New Product

Insert your content here.

20.5 Follow-Up Problems

Insert your content here.

21 Tasks

21.1 Project Planning

Insert your content here.

21.2 Planning of the Development Phases

Insert your content here.

22 Migration to the New Product

22.1 Requirements for Migration to the New Product Insert your content here.

22.2 Data That Has to be Modified or Translated for the New System

23 Costs

Insert your content here.

24 User Documentation and Training

24.1 User Documentation Requirements

Insert your content here.

24.2 Training Requirements

Insert your content here.

25 Waiting Room

Insert your content here.

26 Ideas for Solution

Appendix — Reflection

The information in this section will be used to evaluate the team members on the graduate attribute of Lifelong Learning. Please answer the following questions:

- 1. What knowledge and skills will the team collectively need to acquire to successfully complete this capstone project? Examples of possible knowledge to acquire include domain specific knowledge from the domain of your application, or software engineering knowledge, mechatronics knowledge or computer science knowledge. Skills may be related to technology, or writing, or presentation, or team management, etc. You should look to identify at least one item for each team member.
- 2. For each of the knowledge areas and skills identified in the previous question, what are at least two approaches to acquiring the knowledge or mastering the skill? Of the identified approaches, which will each team member pursue, and why did they make this choice?