Segmentez des clients d'un site e-commerce

Gaëtan PELLETIER

Sommaire

- Problématique, interprétation et pistes de recherche envisagées
- Nettoyage des données, feature engineering et exploration/analyse
- Modélisations effectuées
- Choix du modèle final Stabilité
- Synthèse

Problématiques, interprétation et pistes de recherche envisagées

Problématiques

D'après les données fournies par l'entreprise Olist, les problématiques sont :

- Quels sont les différents types d'utilisateurs de la plateforme ?
- Quelle est la fréquence à laquelle la segmentation doit être mise à jour ?

Interprétation

- Quels sont les différents types d'utilisateurs ?
 - Choix de features caractérisant le comportement d'un utilisateur
 - Cible à prédire : aucune
 - Segmentation de clients interprétable pour Olist
- Quelle est la fréquence à laquelle la segmentation doit être mise à jour ?
 - Analyse de la stabilité du modèle, au cours du temps.

Pistes de recherche envisagées

- Nettoyage des données
- Analyse des features :
 - Distribution des features.
 - Indépendance des features entre elles ?
- Transformation des données
- Présentation d'une segmentation RFM
- Mise en place d'un algorithme non supervisé (K-Means)
- Analyse de la stabilité du modèle

Nettoyage des données, feature engineering et exploration/analyse

Nettoyage des données

- Mémoire Ram:
 - Les données utilisent 37,7MB de mémoire RAM (sans géolocalisation)

On ne garde que les commandes « delivered »

On ne garde que les variables quantitatives

Suppression des « NaN »

Feature engineering

- Création de features :
 - Récence
 - Fréquence de visite sur la plateforme olist
 - Montant dépensé
 - Temps de livraison
- Utilisation d'un logarithme pour obtenir une distribution normale (segmentation RFM):
 - \rightarrow transformation x = log(x + 1)
- Création de scores pour la segmentation RFM
- Utilisation de QuantileTransformer (pour le modèle K-Means)

Exploration / Analyse

Analyse univariée de payment_value :

mean: 141.024 skewness: 2.530 median: 100.000 kurtosis: 7.890 var: 18465.645

var: 18465.645 ect: 135.888 mean: 4.613 skewness: -0.150 median: 4.615 kurtosis: 1.040 var: 0.695 ect: 0.834

Annexes

Analyse bivariée de delivery_time:

→ on vérifie que les features ne sont pas trop fortement corrélées entre elles

	delivery_time corr with:	corr	p-value
4	review_score	-0.192996	2.111405e-41
0	payment_value	0.043166	2.812985e-03
2	recency	-0.028765	4.655999e-02
1	frequency	-0.020084	1.646817e-01

→ on effectue la même vérification pour les autre features

Annexes

Analyse univariée de frequency :

mean: 1.021 skewness: 12.080 median: 1.000 kurtosis: 219.520

var: 0.030 ect: 0.172

Qualité des données

ACP avec 1 composante

Explained variance: 74.6 %

```
(Mean(statistic=4.748823630811029e-16, minmax=(-0.08500604604740075, 0.08500604604740165)), Variance(statistic=12.787900842396299, minmax=(12.358003813290345, 13.217797871502253)), Std_dev(statistic=3.576017455549721, minmax=(3.5159091039477475, 3.636125807151694)))
```

• Interprétations :

- Les ordres de grandeur de la moyenne, de l'écart-type et de la variance sont similaires
- Chaque individu est proche de l'individu moyen
 - → ils ont sensiblement le même comportement d'achat
- Cela va négativement impacter les segmentations
 - → les clusters risquent de ne pas être de très bonne qualité
- Les observations se basent sur une composante d'ACP représentant 75 % de la variance du dataset

Résumé choix des features

Segmentation RFM:

- Récence
- Fréquence
- Montant dépensé (passage au log)

Résumé choix des features

Modèle non supervisé (K-Means):

- Récence
- Fréquence
- Montant dépensé
- Temps de livraison
- Review score

Impact du scaler

Transformation avec QuantileTransformer

Thanks to this scaler, the range of the different features is the same. All the features will have the same weight in the clustering model.

Modélisations effectuées

Segmentation RFM

Modélisations effectuées - RFM

- Création d'un dataset de 3 mois
- Montant dépensé → passage au log
- Attribution d'un score (de 1 à 3):
 - R et M : binning en 3 intervalles d'amplitude égale (distribution normale)
 - F: Choix arbitraire (très faible variation des valeurs)
- Segmentation des clients selon leurs scores

Modélisations effectuées - RFM

Répartition des clients

Customers segmentation (M/R log)

Modélisations effectuées - RFM

- Limitations de la segmentation RFM:
 - Clients évalués sur seulement 3 features
 - Les choix des scores sont arbitraires
 (e.g. qu'est-ce qu'une bonne ou mauvaise récence ?)
- Pour éviter les choix arbitraires et enrichir la segmentation, nous allons utiliser un algorithme non supervisé : K-Means

Algorithme non supervisé K-Means

Étapes effectuées avec le modèle K-Means:

- Détermination du nombre de clusters
- Visualisation des clusters créés
- Qualité des clusters
- Détermination des caractéristiques des clusters

Détermination du nombre de clusters

The clustering model will use 5 clusters

Visualisation des clusters créés : t-sne

Qualité des clusters

Silhouette Plot of KMeans Clustering for 4788 Samples in 5 Centers -- Average Silhouette Score 2 cluster label 0 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 silhouette coefficient values

We can see 3 clusters distant from each other. But 2 clusters overlap. As expected, because of the dataset, the quality of the clusters is not very good.

Détermination des caractéristiques des clusters

Choix du modèle final Stabilité

K-Means - Stabilité

ARI et V Measure

The x axis represent the number of trimesters we add to the dataset.

After 2 additions (9 months in total), the randscore is still above 0.90. After 3 additions (12 months in total), the randscore is under 0.90. We will have to fit the model once again after 9 months.

K-Means - Stabilité

Synthèse

Synthèse

- Nettoyage/Analyse puis Transformation des features :
 - Création de features (e.g. fréquence, ...)
 - log(x + 1) et scores pour RFM
 - QuantileTransformer pour K-Means
- Segmentation RFM
- Modèle non supervisé : K-Means
- Avantages de notre modèle par rapport à RFM :
 - Nombre de features non limité
 - → meilleure souplesse pour comprendre le comportement des clients
 - Pas d'attribution arbitraire de scores (données brutes utilisées)
 - Évaluation possible de la qualité des clusters
 - Prédiction des comportements des clients
 - → anticiper des pertes de clients,
 - → adapter sa stratégie marketing plusieurs mois à l'avance

Merci de votre attention

Annexes

Annexes

Analyse univariée de recency:

mean: 32.894 skewness: 0.290 median: 30.000 kurtosis: -1.050

var: 467.605

ect: 21.624

Annexes

Analyse univariée de delivery_time:

mean: 9.200 skewness: 9.390 median: 7.000 kurtosis: 122.290

var: 146.611 ect: 12.108

Analyse univariée de review_score:

mean: 4.178 skewness: -1.510 median: 5.000 kurtosis: 1.140 var: 1.549 ect: 1.244

Exploration / Analyse

Analyse bivariée de payment_value :

	payment_value corr with:	corr	p-value
3	delivery_time	0.043166	0.002813
4	review_score	-0.029205	0.043303
1	frequency	-0.028028	0.052466
2	recency	0.013633	0.345599

Analyse bivariée de recency:

	recency corr with:	corr	p-value
1	frequency	0.050972	0.000418
3	delivery_time	-0.028765	0.046560
4	review_score	0.014284	0.323070
0	payment_value	0.013633	0.345599

Analyse bivariée de frequency:

	frequency corr with:	corr	p-value
2	recency	0.050972	0.000418
0	payment_value	-0.028028	0.052466
3	delivery_time	-0.020084	0.164682
4	review_score	-0.010005	0.488843

Analyse bivariée de review_score :

	review_score corr with:	corr	p-value
3	delivery_time	-0.192996	2.111405e-41
0	payment_value	-0.029205	4.330305e-02
2	recency	0.014284	3.230701e-01
1	frequency	-0.010005	4.888426e-01

Résumé nettoyage

Dataset pour segmentation RFM :

• Dataset pour modèle non supervisé:

Modélisations effectuées - RFM

Taille des segments

Kmeans tous les mois:

	group	Monetary_Value	Frequency	Recency	Delivery	Review
0	0	0.497603	0.000000	0.000000	0.552465	0.725182
1	1	0.502806	0.000000	0.535227	0.464171	1.000000
2	2	0.499450	0.000000	0.531342	0.531963	0.245777
3	3	0.380616	0.984239	0.606890	0.420489	0.818684
4	4	0.524472	0.028829	0.543192	0.589379	0.000000

The dataset is only split with frequency and review features. The average of the others are too similar.

Kmeans tous les 2 mois:

	group	Monetary_Value	Frequency	Recency	Delivery	Review
0	0	0.513561	0.000000	0.503364	0.568226	0.000000
1	1	0.501391	0.000000	0.502114	0.469659	1.000000
2	2	0.497012	0.000000	0.477953	0.512701	0.231233
3	3	0.447644	0.990663	0.587667	0.421393	0.640079

The dataset is only split with frequency and review features. The average of the others are too similar.

Kmeans tous les 3 mois:

	group	Monetary_Value	Frequency	Recency	Delivery	Review
ø	0	0.578581	0.000000	0.710791	0.534507	1.000000
1	1	0.498874	0.000000	0.493724	0.514953	0.192047
2	2	0.411967	0.000000	0.272093	0.381391	1.000000
3	3	0.518713	0.000000	0.489073	0.599369	0.000000
4	4	0.457174	0.991394	0.555596	0.461900	0.542325

The 5 groups seem relatively different according to all the features

Kmeans tous les 4 mois:

	group	Monetary_Value	Frequency	Recency	Delivery	Review
0	0	0.499659	0.000000	0.505882	0.459455	1.000000
1	1	0.495862	0.000000	0.490119	0.521923	0.252373
2	2	0.528131	0.000000	0.485867	0.614667	0.000000
3	3	0.449736	0.991304	0.531338	0.446655	0.611774

For all the groups, the monetary and recency features do not seem very different.

Kmeans tous les 6 mois:

For the first prediction, the rand score is under 0.75. We will not use 6 months in order to train our algorithm.

K-Means - Stabilité

Diagramme de Sankey Behavior Predictions for olist customers No_comeback Low_value Low_value No_comeback Low_value Low_value No comeback No_comeback Recent Recent Recent Recent Unhappy Unhappy Unhappy