Math100C IX

C23,34,35,26

Shikun Nie, PhD student, Department of Mathematics, UBC

Topic: Newton's Method

Suppose you want to find the root (or x-intercept of a function f(x) where you have an algebraic expression for f(x) and f'(x), but where you cannot easily "solve" f(x) = 0.

Recall from assignment 3, we have

$$r(x) = \max(0, x)$$

$$S(x) = \frac{x}{1 + e^{-x}}$$

$$F(x) = r(x) - s(x) = \begin{cases} -\frac{x}{1 + e^{-x}}, x < 0\\ x - \frac{x}{1 + e^{-x}}, x \ge 0 \end{cases}$$

$$f(x) = \frac{d}{dx}F(x)$$

Suppose you want to find the root (or x-intercept of a function f(x) where you have an algebraic expression for f(x) and f'(x), but where you cannot easily "solve" f(x) = 0.

One example of this is the derivative f(x) = F'(x) of the vertical distance function

$$F(x) = r(x) - s(x) = -\frac{x}{1 + e^{-x}}$$

defined on $(-\infty, 0)$, from Assignment 3. In that assignment you narrowed down the root of f(x) (so the maximum of F(x)) to the interval [-2, -1], without actually finding the root.

Suppose you want to find the root (or x-intercept of a function f(x) where you have an algebraic expression for f(x) and f'(x), but where you cannot easily "solve" f(x) = 0.

1. Use the picture below to write x_1 in terms of the other quantities labelled in the picture.

Suppose you want to find the root (or x-intercept of a function f(x) where you have an algebraic expression for f(x) and f'(x), but where you cannot easily "solve" f(x) = 0.

2. Is it possible that x_1 is the root?

Suppose you want to find the root (or x-intercept of a function f(x) where you have an algebraic expression for f(x) and f'(x), but where you cannot easily "solve" f(x) = 0.

3. If x_1 is not the root, what is an idea to get closer to the root? (Hint, we found x_1 using a linear approximation. Can we use the same idea again?) Draw a picture to explain the idea.

 (x_0, y_0)

 $(x_1, 0)$

Suppose you want to find the root (or x-intercept of a function f(x) where you have an algebraic expression for f(x) and f'(x), but where you cannot easily "solve" f(x) = 0.

3. **Definition**: This method, of successively using the intercepts of linear approximations

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

to estimate the root, is known as *Newton's method*.

Applications of Newton's Method

Let f(x) be the derivative of the vertical distance function from Assignment 3. Then

$$f(x) = -\frac{e^x(x + e^x + 1)}{(e^x + 1)^2}$$

$$f'(x) = \frac{(x-2)e^{-x}}{(1+e^{-x})^2} - \frac{2xe^{-2x}}{(1+e^{-x})^3}$$

1. Write an Excel program to estimate the root of f(x) on [-2, -1]. The columns of your Excel spreadsheet should be labelled: "Guess number", "Guess (x_n) ", "Function at x_n $(f(x_n))$ ", "Derivative at x_n $(f'(x_n))$ ", and "Intercept of linear approximation about guess (x_{n+1}) ".

Applications of Newton's Method

Let f(x) be the derivative of the vertical distance function from Assignment 3. Then

$$f(x) = -\frac{e^x(x + e^x + 1)}{(e^x + 1)^2}$$

$$f'(x) = \frac{(x-2)e^{-x}}{(1+e^{-x})^2} - \frac{2xe^{-2x}}{(1+e^{-x})^3}$$

2. Use a few iterations and an initial guess of $x_0 = -2$. What approximation do you converge to?

Applications of Newton's Method

Let f(x) be the derivative of the vertical distance function from Assignment 3. Then

$$f(x) = -\frac{e^x(x + e^x + 1)}{(e^x + 1)^2}$$

$$f'(x) = \frac{(x-2)e^{-x}}{(1+e^{-x})^2} - \frac{2xe^{-2x}}{(1+e^{-x})^3}$$

Additional problems

1. CLP-1 Appendix C: Examples C.1.2-C.1.5.

THE UNIVERSITY OF BRITISH COLUMBIA