附录 A 贝尔曼方程

定理 A.1. 贝尔曼方程(将 Q_{π} 表示成 Q_{π})

假设 R_t 是 S_t 、 A_t 、 S_{t+1} 的函数。那么

$$Q_{\pi}(s_t, a_t) = \mathbb{E}_{S_{t+1}, A_{t+1}} \Big[R_t + \gamma \cdot Q_{\pi}(S_{t+1}, A_{t+1}) \, \Big| \, S_t = s_t, A_t = a_t \Big].$$

证明 根据回报的定义 $U_t = \sum_{k=t}^n \gamma^{k-t} \cdot R_k$, 不难验证这个等式:

$$U_t = R_t + \gamma \cdot U_{t+1}.$$

用符号 S_{t+1} : = $\{S_{t+1}, S_{t+2}, \dots\}$ 和 A_{t+1} : = $\{A_{t+1}, A_{t+2}, \dots\}$ 表示从 t+1 时刻起所有的状态和动作随机变量。根据动作价值函数 Q_{π} 的定义,

$$Q_{\pi}(s_t, a_t) = \mathbb{E}_{\mathcal{S}_{t+1:}, \mathcal{A}_{t+1:}} \Big[U_t \, \Big| \, S_t = s_t, A_t = a_t \Big].$$

把 U_t 替换成 $R_t + \gamma \cdot U_{t+1}$, 那么

$$Q_{\pi}(s_{t}, a_{t}) = \mathbb{E}_{\mathcal{S}_{t+1:}, \mathcal{A}_{t+1:}} \left[R_{t} + \gamma \cdot U_{t+1} \mid S_{t} = s_{t}, A_{t} = a_{t} \right]$$

$$= \mathbb{E}_{\mathcal{S}_{t+1:}, \mathcal{A}_{t+1:}} \left[R_{t} \mid S_{t} = s_{t}, A_{t} = a_{t} \right] + \gamma \cdot \mathbb{E}_{\mathcal{S}_{t+1:}, \mathcal{A}_{t+1:}} \left[U_{t+1} \mid S_{t} = s_{t}, A_{t} = a_{t} \right]. \quad (A.1)$$

假设 R_t 是 S_t 、 A_t 、 S_{t+1} 的函数。那么,给定 S_t 和 a_t ,则 R_t 随机性唯一的来源就是 S_{t+1} ,所以

$$\mathbb{E}_{S_{t+1}, A_{t+1}} \left[R_t \, \middle| \, S_t = s_t, A_t = a_t \right] = \mathbb{E}_{S_{t+1}} \left[R_t \, \middle| \, S_t = s_t, A_t = a_t \right]. \tag{A.2}$$

等式 (A.1) 右边 U_{t+1} 的期望可以写成

$$\mathbb{E}_{S_{t+1},A_{t+1}} \left[U_{t+1} \mid S_t = s_t, A_t = a_t \right]$$

$$= \mathbb{E}_{S_{t+1},A_{t+1}} \left[\mathbb{E}_{S_{t+2},A_{t+2}} \left[U_{t+1} \mid S_{t+1}, A_{t+1} \right] \mid S_t = s_t, A_t = a_t \right]$$

$$= \mathbb{E}_{S_{t+1},A_{t+1}} \left[Q_{\pi} \left(S_{t+1}, A_{t+1} \right) \mid S_t = s_t, A_t = a_t \right]. \tag{A.3}$$

由公式 (A.1)、(A.2)、(A.3) 可得定理。

定理 A.2. 贝尔曼方程(将 Q_{π} 表示成 V_{π})

假设 R_t 是 S_t 、 A_t 、 S_{t+1} 的函数。那么

$$Q_{\pi}(s_t, a_t) = \mathbb{E}_{S_{t+1}} \Big[R_t + \gamma \cdot V_{\pi}(S_{t+1}) \, \Big| \, S_t = s_t, A_t = a_t \Big].$$

证明 由于 $V_{\pi}(S_{t+1}) = \mathbb{E}_{A_{t+1}}[Q(S_{t+1}, A_{t+1}],$ 由定理 A.1 可得定理 A.2。

定理 A.3. 贝尔曼方程(将 V_{π} 表示成 V_{π})

假设 R_t 是 S_t 、 A_t 、 S_{t+1} 的函数。那么

$$V_{\pi}(s_t) = \mathbb{E}_{A_t, S_{t+1}} \left[R_t + \gamma \cdot V_{\pi}(S_{t+1}) \mid S_t = s_t \right].$$

证明 由于 $V_{\pi}(S_t) = \mathbb{E}_{A_t}[Q(S_t, A_t]$, 由定理 A.2 可得定理 A.3。

定理 A.4. 最优贝尔曼方程

假设 R_t 是 S_t 、 A_t 、 S_{t+1} 的函数。那么

$$Q_{\star}(s_t, a_t) = \mathbb{E}_{S_t \sim p(\cdot \mid s_t, a_t)} \left[R_t + \gamma \cdot \max_{A \in \mathcal{A}} Q_{\star}(S_{t+1}, A) \mid S_t = s_t, A_t = a_t \right].$$

证明 设最优策略函数为 $\pi^* = \operatorname{argmax}_{\pi} Q_{\pi}(s, a), \forall s \in \mathcal{S}, a \in \mathcal{A}$ 。由贝尔曼方程可得:

$$Q_{\pi^{\star}}(s_t, a_t) = \mathbb{E}_{S_{t+1}, A_{t+1}} \Big[R_t + \gamma \cdot Q_{\pi^{\star}}(S_{t+1}, A_{t+1}) \, \Big| \, S_t = s_t, A_t = a_t \Big].$$

根据定义,最优动作函数是

$$Q_{\star}(s, a) \triangleq \max_{\pi} Q_{\pi}(s, a), \quad \forall s \in \mathcal{S}, \quad a \in \mathcal{A}.$$

所以 $Q_{\pi^*}(s,a)$ 就是 $Q_*(s,a)$ 。于是

$$Q_{\star}(s_t, a_t) = \mathbb{E}_{S_{t+1}, A_{t+1}} \left[R_t + \gamma \cdot Q_{\star}(S_{t+1}, A_{t+1}) \, \middle| \, S_t = s_t, A_t = a_t \right].$$

因为动作 $A_{t+1} = \operatorname{argmax}_A Q_{\star}(S_{t+1}, A)$ 是状态 S_{t+1} 的确定性函数, 所以

$$Q_{\star}(s_t, a_t) = \mathbb{E}_{S_{t+1}} \Big[R_t + \gamma \cdot \max_{A \in \mathcal{A}} Q_{\star}(S_{t+1}, A) \, \Big| \, S_t = s_t, A_t = a_t \Big].$$

238