Assignment 6: distributed memory basics By Abhishek Bhandwaldar Q1.

	Algorithm 1 Network Structure 1	Algorithm 1 Network Structure 2	Algorithm 1 Network Structure 3
Data on Each Link	Data on each link in total:	Data on each Link in total: Data is 1.	Data on each link in total:
Most Loaded Link	From above the Link 0 – 1 is most loaded	Every link has same load hence no one link with highest load.	Link 0-2 and Link 0-1 are most loaded.
Data Send/Received by Each Node	Sond Received SIR 6 8 10 2 P=3	0 th node receive p-1 data and sends 0 data other nodes receive 0 data and send 1 data	SR 15 R 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
Longest Chain of communication	Longest chain of communication is between last node in chain and 0 th node.	All communicati on are same.	Longest communication is between the leaf node of tree and root node of tree.

	Algorithm 2 Network Structure 1	Algorithm 2 Network Structure 2	Algorithm 2 Network Structure 3	
Data on Each Link	Data send on each link is 1	Data Send on each link is 1	Data send on each link differs with its depth in tree.	
Most Loaded Link	All links have same load	All Links have same Load	Link 0-1 and 0-2 are have highest load	
Data Send/Receive d by Each Node	Except for last node and 0th node every node receives and send 1 data. 0th node receives 1 data and last node sends 1 data	Except for last node and 0th node every node receives and send 1 data. 0th node receives 1 data and last node sends 1 data	Assumption: I have considered send and receive of intermediate nodes also while sending from 1 node to another and there is no direct link.	
Longest Chain of communicatio n	There is no longest chain of communication.	There is no longest chain of communication.	Longest chain of communication is between node from 1 subtree to another. In above diagram it from node 5 to node 4	

	Algorithm 3 Network Structure 1	Algorithm 3 Network Structure 2	Algorithm 3 Network Structure 3
Data on Each Link	Algorithm Not correct	Algorithm Not correct	Algorithm Not correct

Q2:

1. Algorithm for round robin:

- a. Initialize k=0
- b. Repeat below steps for all values of k
- c. If k=0
 - i. For every element send it to p-1 and p+1. If p=0 only send to p+1 and if p=P-1 then only send to p-1
 - ii. k++
- d. Else
 - i. For every element receive data from p-1 and p+1. If p=0 only receive to p+1 and if p=P-1 then only receive to p-1
 - ii. Calculate Heat equation. Using below equation:

$$Heat^{k}[0] = \frac{2Heat^{k-1}[0] + Heat^{k-1}[1]}{3}$$

$$Heat^{k}[n-1] = \frac{2Heat^{k-1}[N-1] + Heat^{k-1}[1] - 2}{N-2}$$

$$Heat^{k}[i] = \frac{Heat^{k-1}[i-1] + Heat^{k-1}[i] + Heat^{k-1}[i+1]}{3}, \forall 0 < i < N-1$$

- iii. For every element send it to p-1 and p+1. If p=0 only send to p+1 and if p=P-1 then only send to p-1
- iv. k++

2. Algorithm for block: (Solid lines is communication between processors and dashed line is communication with itself.)

- a. Initialize k=0
- b. Repeat below steps
- c. If k = 0

- i. Send the first and last element of the data allocated to that processor to p-1 and p+1. In case p is 0th processor only send to p+1. Eg: in figure p1 will send the 3rd and 4th element to p0 and p2
- ii. k++

d. Else

- i. Receive data from p-1 and p+1. If p=0 then only receive from p+1 and if p = P-1 then only receive from p-1.
- ii. Calculate Heat[i] for all the elements allocated to that processor. Eg for element 5 and 6 for processor p2. Using below

$$Heat^{k}[0] = \frac{2Heat^{k-1}[0] + Heat^{k-1}[1]}{3}$$

$$Heat^{k}[n-1] = \frac{2Heat^{k-1}[N-1] + Heat^{k-1}[1] - 2}{N-2}$$

$$Heat^{k}[i] = \frac{Heat^{k-1}[i-1] + Heat^{k-1}[i] + Heat^{k-1}[i+1]}{3}, \forall 0 < i < N-1$$

- iii. Send the first and last element of the data allocated to that processor to p-1 and p+1. In case p is 0th processor only send to p+1.
- iv. k++
- v. Goto step 2. Repeat for all values of k.
- 3. Communication per iteration is 2. As send and receive between same processor is not counted.
- 4. Block as it uses 2 communication per node whereas round robin uses N/P *2 communication per node. So we can use any one of them. But block communication is easy whereas round robin is tricky.

Round robin:

Total Communication: N/P *2 per node except for first and last which is N/P*1. Total is (P-2)*N/P*2 + 2*N/P*1.

Per link: N/P*2 per link. As n figure where N/P =2 communication between p2 and p1 happens 2 times and between p1 and p0 happens 2 times. le 4 times in total.

Per Node: Each node receives N/P*2 data except for first and last node.

Block:

Total Communication: 2 per iteration per node and 1 for first and last node. Therefore total is $(P-2)^2 + 2$ per iteration.

Per link: 2 as for example in above figure p2 send to p1 and p1 sends to p2 on same link. Per Node: Each node receives 2 data and sends 2 data except for first and last node which each send 1 data.

Q3.

1. Assumption : x is a column vector.

- a. Algorithm for horizontal decomposition:
 - i. The matrix are decomposed horizontally. Hence each processor receives N/P rows of matrix A and N/P elements of column vector x.
 - ii. So each processor has partial copy of vector x.
 - iii. Send the value of column vector x to every processor in network.
 - iv. For i=p*N/P to (p+1)*N/P do
 - 1. Send the x [i] to every processor (Scatter)
 - v. For i=0 to (p)*N/P and i=(p+1)*N/P to N do
 - 1. Receive The x [i] to from every processor in network (Gather)
 - vi. Now each processor has its own copy of x.
 - vii. Compute Matrix multiplication between the N/P rows (p*N/P to (p+1)*N/P) at each processor and Column vector x and save the result in y.
 - viii. Copy the result in variable x.
 - ix. Goto to step 3. Repeat above for 10 iterations.
- b. Algorithm for Vertical decomposition:
 - i. The matrix A and column vector x are decomposed vertically. Every processor will receive N/P columns of matrix A and processor 0 will receive the complete vector x as it is only 1 column wide.
 - ii. If p==0 (if it is 0th processor)
 - Send column vector x to every other processor in network such that every processor receives N/P block. (Scatter). Eg: 2nd processor receives 2nd N/P blocks 3rd receives 3rd N/P blocks and so on.
 - iii. If p!=0
 - 1. Receive value of column vector x
 - iv. For row = 1 to N do
 - 1. For Column= p*N/P to (p+1)N/P do
 - a. Multiply a[row][Column] * x[Column] and store in data vector.
 - v. For i= 1 to N do and i != p
 - a. Send data vector to i
 - vi. For i = 1 to N do and i != p
 - a. Receive data vector from other processors and aggregate to vector y
 - vii. Copy value of y into x and Goto step 4. Repeat for 10 iterations.
- c. Algorithm for Block decomposition:
 - i. Every processor has block of N/sqrt(P) * N/sqrt(P) block. Every processor has N/sqrt(P) rows of the column vector x
 - ii. Every processor will compute N/sqrt(P) rows of solution vector y.
 - iii. For row = p%sqrt(P) * N/sqrt(P) to (p+1)%sqrt(P)* N/sqrt(P)

- 1. For column= p%sqrt(P) * N/sqrt(P) to (p+1)%sqrt(P)* N/sqrt(P)
 - a. y[row] = y[row] + A[row][column] * x[column]
- iv. If p is not diagonal element in processor network than
 - Send its local Y vector to closest diagonal numbered processor.
 Eg. In P=9 processor network , p2 will send to p0, Processor p4 will send to itself and processor p7 will send to p8

- v. If processors diagonal element in network than it will receive all the y vectors and aggregate it to create single vector.
- vi. Copy y into x and send x to all processor in same row. Eg p4 will send to p3 and p5
- vii. Goto step 3 and repeat above steps for 10 iterations.
- 2. Memory needed: Consider each element requires 1 unit of memory
 - a. Horizontal Decomposition: N^2/P + N units
 - b. Vertical Decomposition: N^2/P + N units
 - c. Block Decomposition: N^2/P + N units
- 3. Communication:
 - a. Horizontal:
 - i. Total: P* (P-1) * N/P
 - ii. Per link: P-1 (every processor sends to every other processor)
 - iii. Per Node: P (every Processor receives P-1 and sends 1 data to P-1 processors)
 - b. Vertical:
 - i. Total: P* (P-1) * N/P
 - ii. Per link: P-1 (every processor sends to every other processor)
 - iii. Per Node: P (every Processor receives P-1 and sends 1 data to P-1
 - c. Block:
 - i. Total: (P-sqrt(P)) * N/sqrt(P)
 - ii. Per link: N/sqrt(P)
 - iii. Per Node: diagonal receives input from all processor in row.