Sapienza University of Rome

Master in Artificial Intelligence and Robotics Master in Engineering in Computer Science

Machine Learning

A.Y. 2019/2020

Prof. L. locchi, F. Patrizi, V. Ntouskos

L. locchi, F. Patrizi, V. Ntouskos

10. Instance based learning

1 / 10

Sapienza University of Rome, Italy - Machine Learning (2019/2020)

10. Instance based learning

L. locchi, F. Patrizi, V. Ntouskos

Summary

- Non-parametric models
- K-NN for classification
- Locally weighted regression

References

C. Bishop. Pattern Recognition and Machine Learning. Sect. 2.5

L. locchi, F. Patrizi, V. Ntouskos

10. Instance based learning

3 / 10

Sapienza University of Rome, Italy - Machine Learning (2019/2020)

Parametric and non-parametric models

Parametric model: Model has a fixed number of parameters

Examples:

- Linear regression
- Logistic regression
- Perceptron

Non-parametric model: Number of parameters grows with amount of data

K-nearest neighbors

Simple non-parametric model: instance-based learning

Classification with K-NN (target $f: X \mapsto C$, data set $D = \{(x_i, t_i)_{i=1}^n\}$:

- Find K nearest neighbors of new instance x

Likelihood of class c for new instance x:

$$p(c|\mathbf{x}, D, K) = \frac{1}{K} \sum_{i \in N_K(\mathbf{x}, D)} \mathbb{I}(t_i = c),$$

with $N_K(\mathbf{x}, D)$ the K nearest points to \mathbf{x} and $\mathbb{I}(e) = \begin{cases} 1 & \text{if } e \text{ is true} \\ 0 & \text{if } e \text{ is false} \end{cases}$

Requires storage of all the data set!

L. Iocchi, F. Patrizi, V. Ntouskos

10. Instance based learning

5 / 10

Sapienza University of Rome, Italy - Machine Learning (2019/2020)

K-nearest neighbors examples

Voronoi tesselation for K=1

K-nearest neighbors

Increasing K brings to smoother regions (reducing overfitting)

L. locchi, F. Patrizi, V. Ntouskos

10. Instance based learning

7 / 10

Sapienza University of Rome, Italy - Machine Learning (2019/2020)

Kernelized nearest neighbors

Distance function in computing $N_K(\mathbf{x}, D)$

$$\|\mathbf{x} - \mathbf{x}_i\|^2 = \mathbf{x}^T \mathbf{x} + \mathbf{x}_i^T \mathbf{x}_i - 2\mathbf{x}^T \mathbf{x}_i.$$

can be kernelized by using a kernel $k(\mathbf{x}, \mathbf{x}_i)$

Locally weighted regression

Regression problem $f: X \mapsto \Re$ with data set $D = \{(x_i, t_i)_{i=1}^N\}$

Fit a local regression model around the query sample \mathbf{x}_q

- **1** Compute $N_K(\mathbf{x}_q, D)$: K-nearest neighbors of \mathbf{x}_q
- 2 Fit a regression model $y(\mathbf{x}; \mathbf{w})$ on $N_K(\mathbf{x}_q, D)$
- **3** Return $y(\mathbf{x}_q; \mathbf{w})$

L. Iocchi, F. Patrizi, V. Ntouskos

10. Instance based learning

9 / 10

Sapienza University of Rome, Italy - Machine Learning (2019/2020)

Summary

- Non-parametric models based on storing data (lazy approaches)
- No explicit model
- Require storage of all data