Math 655 Henry Woodburn

655 Notes

Product Topology

Let Γ be a set and $(X_{\gamma}, \tau_{\gamma})_{\gamma \in \Gamma}$ a collection of topological spaces. The Product topology on $\prod_{\gamma \in \Gamma} X_{\gamma}$ is defined as the weakest topology on $\prod_{\gamma \in \Gamma} X_{\gamma}$ which makes the projection maps $\pi_{\gamma} : \prod_{\gamma \in \Gamma} X_{\gamma}$ continuous.

Example. On \mathbb{R}^{Γ} , the product topology is given by the following neighborhood basis:

$$\{U(x; \gamma_1, \dots, \gamma_n; \varepsilon) : \gamma_1, \dots, \gamma_n \in \Gamma, \varepsilon > 0, n \ge 1, x \in \mathbb{R}^{\gamma}\},\$$

where $U(x; \gamma_1, \dots, \gamma_n; \varepsilon) := \{z \in \mathbb{R}^{\Gamma} : |z_{\gamma_i} - x_{\gamma_i}| < \varepsilon, 1 \le i \le n\}.$ \mathbb{R}^{Γ} with the product topology is hausdorff.

Locally Convex Topological Vector Spaces

Definition. A topological vector space is a vector space X equipped with a topology τ such that the maps

$$A: X \times X \to X$$
 $\Omega: \mathbb{R} \times X \to X$ $(x_1, x_2) \mapsto x_1 + x_2$ $(a, x) \mapsto ax$

are both continuous.

A TVS is locally convex if every point has a local base consisting of convex sets.

Example. An arbitrary product of LCTVS's is an LCTVS with the product Topology. A vector subspace of an LCTVS is an LCTVS when given the relative topology.

Dual Pairs

Let E be a vector space and let $E^{\#} := \{f : E \to \mathbb{R} : f \text{ is linear}\}$ be the algebraic dual space. Let E and F be vector spaces. Then a bilinear form $\langle \cdot, \cdot \rangle : E \times F \to \mathbb{R}$ induces two maps:

$$\begin{split} \varphi : & E \to F^{\#} & \psi : F \to E^{\#} \\ & e \mapsto f \mapsto \langle e, f \rangle & f \mapsto e \mapsto \langle e, f \rangle. \end{split}$$

Definition. A dual pair is a pair of vector spaces E, F and a bilinear map $\langle \cdot, \cdot \rangle : E \times F \to \mathbb{R}$ such that

- a.) E separates points in F, meaning for all $f_1, f_2 \in E, f_1 \neq f_2$, there is an $e \in E$ such that $\langle e, f_1 \rangle \neq \langle e, f_2 \rangle$.
- b.) F separates points in E.

We write $\langle E, F \rangle$ is a dual pair.

Remark. The statement that E separates points in F is equivalent to the statement that for $f \in F$, if for all $e \in E$, $\langle e, f \rangle = 0$, then f = 0. Then ψ is an injection, and we can identify F with its image in under ψ in $E^{\#}$. The dual statement is that if F separates points in E, we can identify E with its image under φ in $F^{\#}$.

Example. Given a vector space E, $\langle E, E^{\#} \rangle$ is a dual pair for $\langle \cdot, \cdot \rangle : E \times E^{\#} \to \mathbb{R}$ given by $(e, e^{\#}) \mapsto e^{\#}(e)$.

Example. Given a normed vector space X, $\langle X, X^* \rangle$ is a dual pair for $\langle \cdot, \cdot, \rangle : X \times X^* \to \mathbb{R}$ given by $(x, x^*) \mapsto x^*(x)$.

Definition. Let $\langle E, F \rangle$ be a dual pair. The weak topology associated to the dual pair, denoted by $\sigma(E, F)$, is defined as the restriction to E of the product topology on \mathbb{R}^F .

Remark. We showed that we can view E as a subset of $F^{\#}$ by the injection φ . $F^{\#}$ is a subset of \mathbb{R}^{F} , the space of all maps $F \to \mathbb{R}$, consisting of those maps which are linear. Then we can view E as a subset of \mathbb{R}^{F} .

Example. Let X be a normed vector space and consider the dual pair $\langle X, X^* \rangle$, with $\langle e, e^* \rangle = e^*(e)$. The topology $\sigma(X, X^*)$ on X is called the weak topology. The topology $\sigma(X^*, X)$ on X^* is called the weak topology.

We now give some equivalent definitions for the weak topology in the case that X is a normed vector space and $\langle X, X^* \rangle$ is our dual pair.

Weak Topology

The weak topology on X is given by:

• The topology generated by the sets

$$U(x_0; x_1^*, \dots, x_n^*; \varepsilon) = \{x \in X : |\langle x_0, x_i^* \rangle - \langle x, x_i^* \rangle| < \varepsilon, 1 \le i \le n\}$$
$$= \{x \in X : |x_i^*(x_0) - x_i^*(x)| < \varepsilon, 1 \le i \le n\}$$

- If $\{x_{\alpha}\}_{\alpha}$ is a net in X and $x \in X$, then $x_{\alpha} \to x$ weakly if and only if for all $x^* \in X^*$, $x^*(x_{\alpha}) \to x^*(x)$
- the weakest topology on X which makes all of the bounded linear functionals on X continuous.

Weak* Topology

The weak* topology on X^* is given by

• the topology generated by sets

$$U(x_0^*; x_1, \dots, x_n; \varepsilon) = \{x^* \in X^* : |x_0^*(x_i) - x^*(x_i)| < \varepsilon, 1 \le i \le n\}$$

- $x_{\alpha}^* \to x^*$ in the weak* topology if and only if $x_{\alpha}^*(x) \to x^*(x)$ for all $x \in X$
- the weakest topology on X^* for which the maps $x^* \to x^*(x)$ are continuous for every $x \in X$.

Remark. The map $i:(X^*,\sigma(X^*,X))\to\mathbb{R}^X, x^*\mapsto (x^*(x))_{x\in X}$ is a homeomorphism from $(X^*,\sigma(X^*,X))$ onto its image in \mathbb{R}^X with the product topology.

We have $x_{\alpha}^* \to x^*$ in the weak* topology if and only if for all $x \in X$, $x_{\alpha}^*(x) \to x^*(x)$, if and only if $i(x_{\alpha}^*) \to i(x^*)$ in the product topology.

Remark. The map $j:(X,\sigma(X,X^*))\to X^{**}\subset\mathbb{R}^{X^*}, x\mapsto (x^*(x))_{x^*\in X^*}$ is a homeomorphism from $(X,\sigma(X,X^*))$ onto its image in $(X^{**},\sigma(X^{**},X^*))$.

We have $x_{\alpha} \to x$ weakly if and only if for all $x^* \in X^*$, $x^*(x_{\alpha}) \to x^*(x)$ if and only if $j(x_{\alpha}) \to j(x)$ in the weak* topology on X^{**} .

Proposition. Let X be a normed space.

1.
$$(X, \sigma(X, X^*))^* = X^*$$

2.
$$(X^*, \sigma(X^*, x))^* = i(X)$$

Proof. (1.) We have $(X, \sigma(X, X^*))^* \subset X^*$ because $\sigma(X, X^*)$ is weaker than the norm topology, thus every functional which is weak-continuous is also norm-continuous. That $X^* \subset (X, \sigma(X, X^*))$ follows by construction, since $\sigma(X, X^*)$ ensures that each functional which is norm-continuous is also $\sigma(X, X^*)$ continuous.

(2.) We have $j(X) \subset (X^*, \sigma(X^*, X))^*$ by construction, since $\sigma(X^*, X)$ is a topology such that the maps j(x) are continuous.

To show the other direction, let $\varphi:(X^*,\sigma(X^*,X))\to\mathbb{R}$ be a weak* continuous functional on X^* . Since φ is continuous, there is a weak* neighborhood $U\ni 0$ in X^* such that $U\subset \varphi^{-1}(-1,1)$.

From one of the above characterizations of the weak* topology, we know that there must be elements x_1, \ldots, x_n such that $U = \{x^* : |x^*(x_i)| < \varepsilon \text{ for } 1 \le i \le n\}$. Now suppose $f^* \in \bigcap_{i=1}^n \ker x_i$. In particular, we have $|f^*(x_i)| = 0 < \varepsilon$ for $i = 1, \ldots, n$, thus $f^* \in U$. Then for any $\lambda > 0$, $|\lambda f(x_i)| = \lambda 0 = 0 < \varepsilon$ for $i = 1, \ldots, n$, thus $\lambda f^* \in U$, and we have $|\varphi(\lambda f^*)| < 1$ and thus $|\varphi(f^*)| < 1/\lambda$.

Since this holds for all $\lambda > 0$, it must be that $\varphi(f^*) = 0$ and $f^* \in \ker \varphi$. We have therefore shown that $\ker \varphi \subset \bigcap_{1}^{n} \ker x_{i}$. Then linear algebra tells us that φ must be a linear combination of the functionals x_{i} , $\varphi = \sum_{1}^{n} a_{i}x_{i} := x$. Then $j(x) = \varphi$

Theorem (Banach-Alaoglu Theorem). Let X be a normed vector space. Then $(B_{X^*}, \sigma(X^*, X))$ is a compact topological space.

Proof (outline) Observe that for all $x \in X, x^* \in X^*, \|x^*(x)\| \leq \|x^*\| \|x\|$. Then B_{X^*} embeds in \mathbb{R}^X by the map

$$i: B_{X^*} \to \prod_{x \in X} [-\|x\|, \|x\|] \subset \mathbb{R}^X$$

 $x^* \mapsto (x^*)_{x \in X}.$

 $K := \prod_{x \in X} [-\|x\|, \|x\|]$ is compact by Tychonoff's theorem. $i(B_{X^*})$ consists of only the elements of K that are linear. To finish show nets in $i(B_{X^*})$ converge to linear elements of K.

Theorem. If X is reflexive, then $(B_X, \sigma(X, X^*))$ is compact.

Hahn-Banach Theorems

Definition. Let E be a vector space over \mathbb{R} . A subset $A \subset E$ is called absorbing if for all $x \in E$, there exists $\lambda > 0$ such that $x \in \lambda A$.

A neighborhood of 0 in a topological vector space is absorbing: For all $x \in E$, the map $\mu_{\lambda} : \mathbb{R} \to E$ sending λ to λx is continuous and sends 0 to 0. Then if V is a neighborhood of 0 in E, there exists r > 0 such that $(-r, r) \subset \mu_x^{-1}(V)$, and thus for all $|\lambda| < r$, $\mu_x(\lambda) = \lambda x \in V$.

Definition. Let A be an absorbing set in a topological vector space E. We define the gauge, or Minkowski Functional, of A, denoted μ_A , as follows:

$$\mu_A : X \to [0, \infty)$$

 $x \mapsto \inf\{\lambda > 0 : x \in \lambda A\}$

Notice that $\mu_A(0) = 0$.

Lemma. If C is a convex absorbing subset, then

- i. μ_C is a sublinear functional
- ii. $\{x \in E : \mu_C(x) < 1\} \subset C \subset \{x \in E : \mu_C(x) \le 1\}.$
- iii. If E is an LCTVS and $0 \in C^{\circ}$, then μ_C is continuous at 0.

Proof. (i.) Let $x, y \in E$ and $\varepsilon > 0$. By definition, there are $\lambda, \mu > 0$ such that $\lambda < \mu_C(x) + \varepsilon, \mu < \mu_C(y) + \varepsilon$ and $x \in \lambda C, y \in \mu C$. Then

$$\frac{x+y}{\lambda+\mu} = \frac{\lambda}{\lambda+\mu} \frac{x}{\lambda} + \frac{\mu}{\lambda+\mu} \frac{y}{\mu} \in C,$$

so that $x + y \in (\lambda + \mu)C$ and $\mu_C(x + y) \le \lambda + \mu \le \mu_C(x) + \mu_C(y) + 2\varepsilon$. This shows subadditivity. Positive homogeneity is obvious after expanding the definition of μ_C .

- (ii.) If $x \in C$, then $x = \frac{x}{1}$, which proves the second inclusion. For the first, if $\mu_C(x) < 1$, then for some $\lambda < 1$, we have $x \in \lambda C$. Since C is convex, writing $x = \lambda \frac{x}{\lambda} + (1 \lambda)0$ shows that $x \in C$.
- (iii.) Since $x \in C^{\circ}$, there is a convex open neighborhood $U \ni 0$ in C. Let $\varepsilon > 0$, then εU is also an open neighborhood of 0, and if x_{α} is a net in E converging to 0, then there exists α_{0} such that $x_{\alpha} \in \varepsilon U$ for all $\alpha > \alpha_{0}$. Then $\mu_{C}(x_{\alpha}) \leq \mu_{U}(x_{\alpha}) \leq \varepsilon$.

Geometric Hahn-Banach Separation Theorem for LCTVS

Theorem. Let (X, τ) be an LCTVS, C a nonempty closed convex subset, and $x_0 \in X \setminus C$. Then there exists $x^* \in (X, \tau)^*$ such that

$$x^*(x_0) > \sup_{x \in C} x^*(x)$$

Proof. WLOG, suppose $0 \in C$. Since C is closed, $X \setminus C$ is open and there exists a convex neighborhood U of 0 such that $x_0 + U \subset X \setminus C$. Then take a convex neighborhood V of 0 such that $V - V \subset U$ by continuity of operations in a TVS.

Let D = C + V and observe that $(x_0 + V) \cap D = \emptyset$, and D is convex and $0 \in D^{\circ}$. Need to write this step out to see how $V - V \subset U$ is used.

Let μ_D be the gauge of D. Then for all $z \in x_0 + V$, $\mu_D(z) \ge 1$. Since V is open, there is a $\lambda > 1$ such that $\lambda x_0 \in x_0 + V$ and in fact $\mu_D(x_0) > 1$.

Now define

$$f: \mathbb{R}x_0 \to \mathbb{R}$$
$$\alpha x_0 \mapsto \alpha \mu_D(x_0)$$

and observe that f is linear. Then for any $\alpha > 0$, we have

$$f(\alpha x_0) = \alpha \mu_D(x_0) = \mu_D(\alpha x_0).$$

Likewise if $\alpha < 0$ we have

$$f(\alpha x_0) = \alpha \mu_D(x_0) \le \mu_D(\alpha x_0),$$

so that $f \leq \mu_D$ on $\mathbb{R}x_0$. By the algebraic Hahn-Banach theorem, we can extend f to a function $F: X \to \mathbb{R}$ such that F equals f on the subspace $\mathbb{R}x_0$, and $F \leq \mu_D$ on X. In particular, $x \in D$ implies $\mu_D(x) \leq 1$ and thus $F(x) \leq 1$ on D and $F(x) \geq -1$ on -D. Then we have $|F(x)| \leq 1$ on $D \cap (-D)$ and F is continuous at 0.

The inequality holds since $F(x_0) \ge 1$ but F(x) < 1 for all $x \in D$.

Applications

Theorem (Goldstine's Theorem). Let X be a normed space. Then

$$\overline{j(B_x)}^{\sigma(X^{**},X^*)} = B_{X^{**}}.$$

In particular,

$$\overline{j(X)}^{\sigma(X^{**},X^*)} = X^{**}.$$

Proof. First notice that

$$\overline{j(B_x)}^{\sigma(X^{**},X^*)} \subset B_{X^{**}}$$

since $B_{X^{**}}$ is weak* compact and hence closed.

Next suppose $x_0 \in B_{X^{**}} \setminus \overline{j(B_x)}^{\sigma(X^{**},X^*)}$. $\sigma(X^{**},X^*)$ is a hausdorff LCVT, so we can apply geometric Hahn-Banach theorem to obtain $\varphi \in (X,\sigma(X^{**},X^*)) = j(X^*)$ such that $\varphi(x_0) > \sup_{x \in \overline{j(B_x)}^{\sigma(X^{**},X^*)}} \varphi(x)$.

Then since $\varphi = j(x_0^*)$ for some $x_0^* \in X^*$, we have

$$\varphi(x_0) > \sup_{x \in \overline{j(B_x)}^{\sigma(X^{**}, X^{*})}} x(x_0^{*}) \ge \sup_{x \in j(B_X)} x(x_0) = \sup_{x \in B_x} x_0^{*}(x) = ||x_0^{*}||.$$

However, $j(x_0^*)(x_0) = x_0(x_0^*) \le ||x_0||_{\sigma(X^{**},X^*)} ||x_0^*||_{X^*} \le ||x_0||_{X^*}$, which shows $||x_0^*|| < ||x_0^*||$, a contradiction.

Theorem (Mazur's Theorem). Let C be a convex subset of a normed space X. Then $\overline{C}^{\|\cdot\|} = \overline{C}^w$.

Proof. We have $\overline{C}^{\|\cdot\|} \subset \overline{C}^w$ by definition. The intuition is that since the weak topology is less restrictive, it allows more into the closure.

Then suppose $x_0 \in \overline{C}^w \setminus \overline{C}^{\|\cdot\|}$.

By the Geometric Hahn-Banach theorem, there exists $x_0^* \in (X, \|\cdot\|)^*$ such that $x_0^*(x_0) > \sup_{x \in C} x_0^*(x)$. Now let x_α be a net in C converging weakly to x_0 . Then for all $x^* \in X^*$, $x^*(x_\alpha) \to x^*(x_0)$. In particular, $x_0^*(x_\alpha) \to x_0^*(x_0)$. However, we have $x_0^*(x_\alpha) \leq \sup_{x \in C} x_0^*(x)$, implying $x_0^*(x_0) \leq \sup_{x \in C} x_0^*(x) < x_0^*(x_0)$, a contradiction.

Theorem (Eberlein-Smulian). Let $(X, \|\cdot\|)$ be a normed vector space. Then $A \subset X$ is (relatively) weakly compact if and only if A is (relatively) weakly sequentially compact.

Remark. 1. The weak topology on X is metrizable iff X is finite dimensional

- 2. The weak topology on X is not 1st countable
- 3. $(B_X, \sigma(X, X^*))$ is metrizable iff X^* is separable
- 4. $(B_{X^*}, \sigma(X^*, X))$ is metrizable iff X is separable.

Lemma. Let $(X, \|\cdot\|)$ be a normed space. If X is separable, then there exists a norm on X that induces a topology that is weaker than the weak topology on the unit ball.

Proof of Lemma. Let $\{x_n\}$ be a dense sequence in B_X . Choose $x_n^* \in B_X$ such that $x_n^*(x_n) = ||x_n||$ using algebraic Hahn-Banach theorem. Let $p(x) = \sum_{1}^{\infty} \frac{1}{2^n} |x_n^*(x)|$, taking values in $[0, \infty)$. Check that p is a sublinear functional. Assume that p(x) = 0 and $||x|| \le 1$. Let $i \ge 1$ such that $||x - x_i|| < \varepsilon$. Then

$$||x_i|| = |x_i^*(x_i)| = |x_i^*(x - x_i)| < ||x_i - x|| < \varepsilon$$

Now let r > 0 and consier $\{x \in B_X : p(x) < r\}$. Let $V = \{x \in B_X : |x_i^*(x)| < \varepsilon, 1 \le i \le N\}$. We can choose ε small so that the first N terms of p(x) sum to less than r/2 and N large so that the remaining terms sum to less than r/2.

Proof of Eberlein-Smulian (\Rightarrow) Since X is a normed vector space and A relatively weakly compact, every sequence in A has a subsequence which is convergent in X.

Let $K = \overline{A}^{\sigma(X,X^*)}$. Then K is weakly compact. Let $a_n \in A$ and define $Z := \overline{\operatorname{span}\{a_n\}}^{\|\cdot\|} \subset X$. Z is a separable subspace of X.

Let $K_0 = \overline{\{a_n\}}^{\sigma(X,X^*)}$. Note that $K_0 \subset Z$, since Z is a convex set and is thus also weakly closed by Mazur's theorem. Also K_0 is a weakly closed subset of K, which is compact, thus K_0 is weakly compact.

In fact K_0 is $\sigma(Z, Z^*)$ compact by Hahn-Banach extension theorem, since every linear functional on Z extends to one on X.

Note that K_0 is weakly compact and hence bounded in Z. By the previous lemma, there is a norm ρ on Z which induces a topology on K_0 which is weaker than the weak topology.

The ρ topology actually coincides with $\sigma(Z, Z^*)$ on K_0 . This is because if $\tau_1 \subset \tau_2$ are both topologies, with τ_1 hausdorff and τ_2 compact, then $\tau_1 = \tau_2$. Then K_0 is metrizable, so a_n has a subsequence which is weakly convergent in Z.

Definition. Let $A \subset (X, \|\cdot\|)$. We say that A is weakly bounded if for all $x^* \in X^*$, the set $x^*(A) \subset \mathbb{R}$ is bounded. Remark. Every originally bounded subset is also weakly bounded.

Lemma. If A is weakly bounded, then A is norm bounded.

Proof. Consider linear maps $T_a: X^* \to \mathbb{R}$, where $x^* \mapsto x^*(a)$ for $a \in A$. Then $||T_a|| = ||a||$. Since A is weakly bounded, for each $x^* \in X^*$ we have $\sup_{a \in A} |T_a(x^*)| < \infty$. Then the Uniform Boundedness Principle implies that $\sup_{a \in A} ||T_a|| < \infty$ and thus $\sup_{a \in A} ||a|| < \infty$.

Corollary. If $A \subset (X, \|\cdot\|)$ is (relatively) weakly compact OR (relatively) weakly sequentially compact, then A is norm-bounded.

Proof. Prof. only sketched. Prove by contradiction.

Lemma. Let $(X, \|\cdot\|)$ be a normed space and $E \subset X^*$ a finite dimensional subspace. Then there exists a finite subset $F \subset X$ such that for all $x^* \in E$, we have

$$\frac{\|x^*\|}{2} \le \max_{x \in F} |x^*(x)| \le \|x^*\|$$

Proof. Since E is finite dimensional, the unit sphere S_E is compact. Then we can choose a finite η -net $\{x_1^*, \ldots, x_N^*\}$ such that for all $x^* \in S_E$, there is some $i \in \{1, \ldots, N\}$ such that $\|x^* - x_i^*\| < \eta$. For each i, choose $x_i \in B_X$ such that $|x_i^*(x_i)| > 1 - \eta$.

Then for any $x^* \in E$, choose $i \in \{1, ..., N\}$ such that $\left\| \frac{x^*}{\|x^*\|} - x_i^* \right\| < \eta$. Then we have

$$\left| \frac{x^*}{\|x^*\|}(x_i) \right| = \left| \left(\frac{x^*}{\|x^*\|} - x_i^* \right)(x_i) + x_i^*(x_i) \right| \ge |x_i^*(x_i)| - \left| \left(\frac{x^*}{\|x^*\|} - x_i^* \right)(x_i) \right| \ge 1 - \eta - \eta,$$

using the reverse triangle inequality. Then take $\eta = 1/4$.

Proof of Eberlein-Smulian (\Leftarrow) Our first observation is that A is bounded by the above corollary. The second and main observation is that if $A \subset X$ is bounded, then $\overline{A}^{\sigma(X,X^*)}$ is compact if and only if $\overline{J(A)}^{\sigma(X^{**},X^*)} \subset J(X)$.

To prove the only if, first we have that $j(\overline{A}^{\sigma(X,X^*)})$ is $\sigma(X^{**},X^*)$ compact since J is weak to weak* continuous. Then $j(\overline{A}^{\sigma(X,X^*)})$ is closed since the weak* topology is hausdorff. Then since $A \subset \overline{A}^{\sigma(X,X^*)}$, we have $\overline{J(A)}^{\sigma(X^{**},X^*)} \subset j(\overline{A}^{\sigma(X,X^*)})$.

For the other direction, A bounded implies j(A) bounded, so $\overline{j(A)}^{\sigma(X^{**},X^{*})}$ is $\sigma(X^{**},X^{*})$ -compact by Banach-Alaoglu. Now if $\overline{j(A)}^{\sigma(X^{**},X^{*})} \subset J(X)$, the $\sigma(X^{**},X^{*})$ topology restricted to J(X) coincides with the weak topology on X and thus $\overline{A}^{\sigma(X,X^{*})}$ is weakly compact.

Now we begin the proof. Let $x_0^{**} \in \overline{J(A)}^{\sigma(X^{**},X^*)}$. Our goal will be to show that there is some $x_0 \in X$ such that $x_0^{**} = J(x)$. We will construct a sequence $\{a_n\} \subset A$ and $\{x_n^*\} \subset B_{X^*}$ inductively.

Begin by taking $x_1^* \in S_{X^*}$ and consider the $\sigma(X^{**}, X^*)$ neighborhood $V = \{x^{**} \subset X^{**} : |x^{**}(x_1^*) - x_0^{**}(x_1^*)| < 1\}$ of x_0^{**} . Since $x_0^{**} \in \overline{J(A)}^{\sigma(X^{**}, X^*)}$, there is $a_1 \in A$ such that $J(a_1) \in V$ and hence $|J(a_1)(x_1^*) - x_0^{**}(x_1^*)| < 1$.

Now $E_1 := \text{span}\{x_0^{**}, x_0^{**} - J(a_1)\}$ is a finite dimensional subspace of X^* , so by the lemma there is a finite sequence $x_2^*, \dots, x_{n_2}^* \in B_{X^*}$ such that for all $x^{**} \in E_1$,

$$\frac{\|x^{**}}{2} \le \max_{2 \le i \le n_2} |x^{**}(x_i^*)| \le \|x^{**}\|$$

Then in a similar fashion to above, there is some $a_2 \in A$ such that

$$|J(a_2)(x_i^*) - x_0^{**}(x_i^*)| < \frac{1}{2}$$

for all $1 \le i \le n_2$. By the lemma there exist $x_{n_2+1}^*, \dots, x_{n_3}^* \in B_{X^*}$ such that for all $x^{**} \in \text{span}\{x_0^{**}, x_0^{**} - j(a_1), x_0^{**} - j(a_2)\}$, we have

$$\frac{\|x^{**}\|}{2} \le \max_{n_2+1 < i < n_3} |x^{**}(x_i^*)| \le \|x^{**}\|.$$

Continue inductively to obtain sequences $\{a_n\} \subset A$ and $\{x_n^*\} \subset B_{X^*}$, such that

1. for all $x^{**} \in \text{span}\{x_0^{**}, x_0^{**} - J(a_1), x_0^{**} - J(a_2), \dots\},\$

$$\frac{\|x^{**}\|}{2} \le \sup_{i>1} |x^{**}(x_i)| \le \|x^{**}\|$$

2. $|J(a_k)(x_i^*) - x_0^{**}(x_i^*)| < \frac{1}{k}$ for all $1 \le i \le n_k$.

Since A is relatively weakly sequentially compact, there is some $x \in X$ and a subsequence $\{a_{n_k}\}$ converging to x in the $\sigma(X, X^*)$ topology.

Note that by Mazur's theorem, $x \in \overline{\operatorname{span}\{a_n : n \geq 1\}}$. Hence $x_0^{**} - j(x) \in \overline{\operatorname{span}\{x_0^{**} - J(a_n) : n \geq 1\}} =: Z$. This needs to be verified. Then for any $z^{**} \in Z$, we have

$$\frac{\|z^{**}\|}{2} \le \sup_{i>1} |z^{**}(x_i^*)|$$

by a continuity argument.

In particular,

$$\frac{\|x_0^{**} - J(x)\|}{2} \le \sup_{i>1} |(x_0^{**} - J(x))(x_i^*)|.$$

Finally we will show this last term must be zero. Let $i \geq 1$. Then

$$|(x_0^{**} - J(x))(x_i^*)| \le |(x_0^{**} - J(a_k))(x_i^*)| + |(J(a_k) - J(x))(x_i^*)| \le \varepsilon/2 + \varepsilon/2$$

by choosing k large enough that the second term is small by weak convergence, and the first is small by (2.) above, such that $a_k > i$.

Reflexive Spaces

Definition. A normed space is called reflexive if the canonical map

$$J: X \to X^{**}$$

$$x \mapsto (x^* \mapsto x^*(x)) =: \langle J(x), x^* \rangle$$

Remark. A reflexive space is always a Banach space.

The obvious examples are the spaces ℓ_p and $L_p([0,1])$ for 1 .

Topological Characterization of Reflexivity

Theorem. Let X be a Banach space. X is reflexive if and only if B_X is $\sigma(X, X^*)$ compact.

Proof. The forward direction is immediate by Banach-Alaoglu theorem.

For the other direction, if $(B_X, \sigma(X, X^*))$ is compact, then $J(B_X)$ is $\sigma(X^{**}, X^*)$ compact. Then $J(B_X)$ is closed since $\sigma(X^{**}, X^*)$ is a hausdorff topology. But by Goldstine's theorem, $J(B_X) = \overline{J(B_X)}^{\sigma(X^{**}, X^*)} = B_{X^{**}}$. Then $J(B_X) = B_{X^{**}}$, implying that $J(X) = X^{**}$.

Corollary. Let X be a Banach space. If X is reflexive, then

- 1. X^* is reflexive
- 2. Every closed subspace of X is reflexive
- 3. Every $x^* \in X^*$ attains its norm
- 4. Y is reflexive whenever Y is isomorphic to X
- 5. Every bounded sequence in X has a weakly convergent subsequence.