二阶常系数齐次线性微分方程及其解法:

(*)y'' + py' + qy = 0, 其中p,q为常数; 求解步骤:

- 1、写出特征方程(Δ) $r^2 + pr + q = 0$,其中 r^2 ,r的系数及常数项恰好是*)式中y'',y',y的系数;
- 2、求出(Δ)式的两个根 r_1, r_2
 - 3、根据4,42的不同情况,按下表写出(*)式的通解:

r ₁ , r ₂ 的形式	(*)式的通解
两个不相等实根 $(p^2-4q>0)$	$y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$
两个相等实根 $(p^2-4q=0)$	$y = (c_1 + c_2 x)e^{r_1 x}$
一对共轭复根 $(p^2-4q<0)$	$y = e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x)$
$r_1 = \alpha + i\beta, r_2 = \alpha - i\beta$	
$\alpha = -\frac{p}{2}, \beta = \frac{\sqrt{4q - p^2}}{2}$	

二阶常系数非齐次线性微分方程

$$y'' + py' + qy = f(x)$$
, p,q 为常数
$$f(x) = e^{\lambda x} P_m(x)$$
型, λ 为常数;
$$f(x) = e^{\lambda x} [P_l(x) \cos \omega x + P_n(x) \sin \omega x]$$
型