

LTE and NR UE Simulator

Version: 2025-06-13

Table of Contents

1	Introduction	1
2	Features	2
	2.1 4G LTE	2
	2.2 5G NR	
		4
3	Requirements	4
	3.1 Hardware requirements	4
	3.2 Software requirements	4
4	Installation	5
_		
	4.1 Linux setup	
	4.1.1 Packages	
	4.1.2 OpenSSL	
	4.2 Linux setup for best performance	
	4.3 RRH setup	
	4.3.1 Amarisoft PCIe SDR	
	4.3.2 Ettus Research USRP	
	4.3.3 Lime Microsystems LimeSDR	
	4.4 LTEUE installation	
	4.4.1 RRH selection	
	4.4.2 License key installation	
	4.5 Initial testing	
	4.6 5G SA initial testing	
	4.7 Multiple UE case	
	4.8 Multiple UE case with Channel Simulator	
	4.9 Resources	
	4.9.1 Amarisoft eNB	9
	4.9.2 Amarisoft MME	9
_		10
5	8	
	5.1 Configuration	
	5.2 Scenario tab	10
	5.2.1 Create scenario	10
	5.2.2 Create UEs tab	
	5.2.3 Power on/off tab	12
	5.2.4 Simulations tab	12
	5.2.4.1 Internal IP simulations	13
	5.2.4.2 External application	13
	5.2.5 Export scenario	13
	5.3 UE tab	
	5.3.1 Actions	
	5.3.2 UE list	
	5.3.3 Statistics	
	5.4 Scenario example	
	5.5 Executing scenario tab	
	5.6 Example	

6	Configuration reference	20
	6.1 Configuration file syntax	. 20
	6.1.1 JSON merge rules	
	6.2 Global properties	. 22
	6.3 Radio driver configuration	
	6.4 Cell group configuration	
	6.5 Cell configuration	
	6.6 UE configuration	
	6.6.1 Virtual USIM	
	6.6.2 SIM card reader	
	6.6.3 UE parameters	
	6.6.3.1 Common parameters	
	6.6.3.2 LTE specific parameters	
	6.6.3.3 NB-IoT specific parameters	
	6.6.4 Power control	
	6.6.5 RF test mode	
	6.6.6 SWu and NWu interface	
	6.7 Channel simulator	
	6.7.1 Introduction	
	6.7.2 Per cell parameters	
	6.7.3 Per UE parameters	
	6.7.4 Known limitations and implementation details	
7	CPU/Cores configuration	58
•	7.1 Hyperthreading	
	7.2 Core restriction cores	
	7.3 Affinity	
	7.4 Memory	
	7.1 Monory	. 00
8	Remote API	60
U		
	8.1 Messages	
	8.3 Errors	
	8.5 Common messages	
	8.6 LTE messages	
	8.7 LTE events	
	8.8 IP simulation messages	
	8.8.1 Common message definition	
	8.8.2 Common response definition	
	8.8.3 Definitions	
	8.8.4 Start notification	
	8.9 IP simulation examples	. 88
	8.9.1 IP simulation server	
	8.10 Examples	. 89
9	Command line monitor reference	90
_		
14	O Damata III	00
10		
	10.1 Configuration	. 92

11 U	JDC configuration reference	93
11.1	args Configuration	
11.2	Debug	
±±. =	2 5 5 4 6	00
12 L	og file format	. 94
12.1	PHY layer	94
12.2	MAC and RRC layers	
12.3	RLC, PDCP and NAS layers	
12.4	IP layer	
13 K	Known limitations	. 96
14 C	Change history	. 97
14.1	Version 2025-06-13	97
14.2	Version 2025-03-14	97
14.3	Version 2024-12-13	97
14.4	Version 2024-09-13	98
14.5	Version 2024-06-14	98
14.6	Version 2024-03-15	98
14.7	Version 2023-12-15	99
14.8	Version 2023-09-08	
14.9	Version 2023-06-10	
14.10		
14.11	Version 2022-12-16	
14.12		
14.13		
14.14	Version 2022-03-18	
14.15		
14.16	Version 2021-09-17	102
15 L	icense	104

1 Introduction

LTEUE is a LTE and NR UE simulator.

It simulates one or more UEs (typically hundreds of UEs) by communicating through a RF system with eNodeB and core network.

It allows to test LTE and NR procedures and to simulate a large number of users on eNodeBs. It supports NR both in Standalone (SA) and Non-standalone (NSA) mode.

It also supports connecting to a 5G core network through a ng-eNB.

The LTEUE is connected to network via eNB through the air on one side.

On the other side it can be managed using WebSocket and IP traffic may be reachable with a Linux TUN network interface.

2 Features

- Simulate a large number of UEs sharing the same spectrum.
- IP traffic simulator (ping, constant bitrate UDP, HTTP).
- Remote API based on Websocket and JSON.
- Command line monitor.
- Access to external programs such as iPerf in tunnel interface mode with IPv6 support and automatic DNS configuration.
- Includes PHY, MAC, RLC, PDCP, RRC and NAS layers.
- Support of all ciphering and integrity protection algorithms including ZUC.

2.1 4G LTE

- LTE Release 8 support with features up to Release 17.
- FDD/TDD support.
- Bandwidths: 1.4, 3, 5, 10, 15 and 20 MHz.
- MIMO DL support.
- 1024QAM support in DL, 256QAM in UL.
- MBMS support.
- Category M1 support for FDD, HD-FDD and TDD.
- NB-IoT support (category NB1/NB2) with multi-tone, multi-carrier and multi-DRB support.
- Release 17 NTN support in NB-IoT.
- Release 16 WUS support in NB-IoT and Cat-M1.
- eDRX and PSM support.
- Multi-UE fading channel simulator.
- ETWS and CMAS support.
- Semi-persistent scheduling (SPS) support.
- TTI bundling support.
- EPS user plane integrity support.

2.2 5G NR

- Release 18 EN-DC support for 5G NSA mode.
- Release 18 5G SA support.
- FDD/TDD support.
- Support of all FR1 carrier spacings for DL, UL and SSB.
- Bandwidth up to 50 MHz or 100MHz depending on the product version.
- Up to 8 DL MIMO layers.
- Up to 4 UL MIMO layers.
- 256QAM support in DL and UL, 1024QAM in DL.
- Support of DCI formats 0-0, 0-1, 1-0 and 1-1.
- Support of PUCCH formats 0, 1, 2, 3 and 4.
- Periodic and aperiodic CSI reports.
- Periodic and aperiodic SRS.

- Multi-BWP support.
- Carrier aggregation support (DL and UL CA).
- Supplementary Uplink support.
- ETWS and CMAS support.
- RRC Inactive mode support.
- eDRX, MICO and active time support.
- Multi-UE fading channel simulator.
- Release 17 NTN support.
- $-\,\,$ Release 18 RedCap and eRedCap support.

3 Requirements

3.1 Hardware requirements

- A fast PC:
 - For best performances, a quad core Intel Core i7 CPU (Haswell architecture or later) is recommended. Support of the AVX2 instruction set extension is required to run the software.
 - At least 1 Gigabit Ethernet ports.
 - At least 2 GB of RAM.
 - At least 1 GB of hard disk space.
 - The video adapter does not matter.
- Radio front end
 - Amarisoft PCIe SDR
 - Ettus Research USRP N2x0 (SBX daughterboard). For MIMO 2x2, a second N2x0 with the SBX daughterboard and a USRP MIMO cable are needed.
 - Ettus Research USRP B2x0.
 - Ettus Research USRP X3x0.
 - Lime Microsystem LimeSDR
- Appropriate antennas for the intended LTE frequencies or cables and attenuators to connect to a UE.
- An eNodeB connected to a LTE Core Network must be available to communicate.

3.2 Software requirements

- A 64 bit Linux distribution. Fedora 39 is the officially supported distribution. The following distributions are known as compatible:
 - Fedora 22 to 39
 - Cent OS 7
 - Ubuntu 14 to 22

Your system requires at least GLIBC 2.17.

Other distributions can be used provided the radio frontend drivers are available for them.

4 Installation

4.1 Linux setup

4.1.1 Packages

The Remote UE feature of LTEUE uses the SCTP protocol for which the necessary packages are not usually installed. In order to install them, do as root user:

• Fedora

dnf install lksctp-tools kernel-modules-extra

• Ubuntu

sudo apt-get install lksctp-tools linux-image-extra-3.13.0-24-generic Note that linux-image-extra package name may differ depending on your kernel version.

To verify that SCTP kernel module is running, do as root user:

checksctp

If it reports that the protocol is not supported,

- check if you have a /etc/modprobe.d/sctp-blacklist.conf file
- edit it to comment the 'blacklist sctp' line

Then reboot the PC in case the Linux kernel was upgraded too.

4.1.2 OpenSSL

LTEUE has been compiled against opensel version 1.1.1w.

If your system does not have compatible version installed you may have this error message at startup:

error while loading shared libraries: libssl.so.1.1: cannot open shared object file: No such file or directory

To overcome this problem, you may:

- Copy libssl.so.1.1 and libcrypto.so.1.1 from libs subdirectory of your release tarball. If you have installed software with automatic install script, this should have been done automatically.
- Compile and install proper opensal version yourself

In case of persisting issue, raise a ticket from our support site at https://support.amarisoft.com/ with the information provided by below commands executed in LTEUE directory:

```
uname -a
ls -l
ldd ./lteue
openssl version
```

4.2 Linux setup for best performance

LTEUE requires a lot of CPU power and it has hard real time requirements (a maximum latency of 3 ms is required).

In order to get the lowest latency, it is recommended to set up the performance frequency governor for each CPU core. An example is included in the lte_init.sh script given with LTEUE.

Some buggy drivers are known to block the CPU during a few tens of ms. When it happens, LTEUE displays UHD status: L=X U=Y S=Z. One known problem is the DRM KMS cable polling. The script lte_init.sh disables it automatically.

Other drivers such as Wifi controllers can give the same problem. In order to avoid such problems, remove all unnecessary peripherals from the PC.

4.3 RRH setup

Please refer to sub section of your radio frontend to set it up. When configured, you will have to select it (See [RRH selection], page 6).

4.3.1 Amarisoft PCIe SDR

Read the PCIe SDR documentation (trx_sdr.pdf).

4.3.2 Ettus Research USRP

Read the UHD Compatible RF frontends documentation (trx_uhd.pdf).

4.3.3 Lime Microsystems LimeSDR

Use LimeSuiteNG software suite located at https://github.com/myriadrf/LimeSuiteNG, which contains Amarisoft plugin. During build it creates the needed trx_limesuite.so (build directory) file, which can be sim linked or copy pasted.

4.4 LTEUE installation

Decompress the LTEUE archive to a convenient place. The executable lieue can be launched from this directory.

4.4.1 RRH selection

To select appropriate RF frontend to use, please execute following command:

./config/rf_select.sh <type>

Where type is your frontend type:

- sdr
- n2x0
- b2x0
- n3x0
- x3x0
- limeMini
- limeSDR

NB: you can lanch following command to see available frontends:

./config/rf_select.sh

4.4.2 License key installation

LTEUE needs a license key file to run. It is associated to your PC, so if you replace it or change its hardware configuration you must contact Amarisoft to get a new license key.

The following steps are needed to get this license file:

• Run LTEUE:

./lteue config/ue.cfg

It says that the license key is not present and prints a 16 digit hexadecimal code.

- Send by mail to delivery@amarisoft.com this hexadecimal code to your contact at Amarisoft. You will get back the lteue.key license key file.
- Copy the lteue.key file to the \${HOME}/.amarisoft/ directory (\${HOME} is the home directory of the root user). You can use the shell variable AMARISOFT_PATH to change this path.

Once the license key is installed, Iteue should start normally.

4.5 Initial testing

First update config/ue.cfg configuration file to match your eNB frequency and bandwidth by editing:

- dl_earfcn
- sample_rate

Look at ue_list section to match UE SIM parameters on MME side.

Check your eNB is running.

Start the LTEUE software as root user. root privileges are needed to use real time scheduling priority.

./lteue config/ue.cfg

You should see SIB found message displayed.

Type ue in the monitor, you should see list of UEs with their states.

If UE has been able to register to network, its EMM_STATE should be registered.

If not, look at logs on both UE and eNB/MME side.

4.6 5G SA initial testing

Update config/ue-nr-sa.cfg configuration file to match your gNB frequency, bandwidth and numerology by editing:

- dl_nr_arfcn
- ssb_nr_arfcn
- bandwidth
- subcarrier_spacing

Look at ue_list section to match UE SIM parameters on AMF side.

Check your gNB is running.

Start the LTEUE software as root user. root privileges are needed to use real time scheduling priority.

```
./lteue config/ue-nr-sa.cfg
```

You should see SIB found message displayed. If the gNB is not running, the message TRX discontinuity too wide might appear.

Type ue in the monitor, you should see list of UEs with their states.

4.7 Multiple UE case

To activate the simulation of multiple UEs, the parameter multi_ue should be set to true. In this mode, UE simulator may have difficulties to synchronize with eNB signal. If such a case occurs, you should see that UE is able to receive SIBs but further communications fails with bad CRC on physical layer.

This means that you should adjust the parameter global_timing_advance (See

[global_timing_advance], page 30) in your configuration file. The global_timing_advance parameter can be set automatically by using the special value -1 (global_timing_advance:-1). If automatic mode is set, the UE simulator uses the timing advance from the first received RAR for all UEs. This is the default behaviour.

You can also manually adjust the timing advance for all UEs in case you still experience CRC error with automatic mode. You can check TA value on eNB side and set it to minus 1 in UE (global_timing_ advance = TA[enb] - 1). if you are using simulator with Amarisoft eNB/gNB, you can type t at eNB/gNB screen and look at PRACH traces.

Then, use ta value minus one as global_timing_advance.

```
PRACH: cell=01 seq=17 ta=2 snr=18.5 dB
PRACH: cell=01 seq=22 ta=2 snr=18.0 dB
PRACH: cell=01 seq=23 ta=2 snr=18.5 dB
PRACH: cell=01 seq=29 ta=3 snr=17.6 dB
```

In this example, adjust global_timing_advance to 1.

If you are using another eNB and you do not have access to eNB logs and information, you can enable the PHY and MAC layer logs in UE simulator and look for ta value in MAC traces

```
12:13:37.086 [MAC] - 0001 ta=13 ul_grant=128768 c_rnti=0x0047
```

In this example, you should set the global_timing_advance to 12.

If all the simulated UEs are expected to share the same timing advance and if this timing advance will likely need further adjustments (moving UEs, NGSO NTN scenario, ...) the parameter apply_ta_commands can be set to apply the TA commands received by the network. The apply_ta_commands parameter is supported only in NB-IoT and NR.

To summarize:

- apply_ta_commands set to true: the UE simulator can change the timing advance of ALL UEs upon reception of the RAR and TA commands during the runtime
- global_timing_advance set to -1: the UE simulator can change the timing advance of ALL UEs only ONCE, upon reception of the first RAR
- global_timing_advance set to a <value>: the UE simulator statically fixes the timing advance of ALL UEs at start-up and the it is never adjusted

4.8 Multiple UE case with Channel Simulator

In multi_ue mode, because all UEs share the same physical layer, the timing advance cannot be adjusted independently for each UE. However, this can be achieved by using the [Channel Simulator], page 50, with the parameter [delay_sim], page 54, set to true.

With delay_sim, a different timing advance for each UE can be simulated by applying a cycling shift on each UE uplink signal. It assumes that the all timing advances stay in a certain range, the center of this range is set either by the first received RAR or by the value of global_timing_advance.

When delay_sim is set to true, the apply_ta_command is not applicable.

4.9 Resources

When using a big amount of UE (> 32), you need to check in your eNB and MME configurations that enough resources are available.

4.9.1 Amarisoft eNB

If your are using Amarisoft eNB for your simulation, you may need to increase SRS resources so that your UE can simultaneously connect to eNB.

You can check you are running into this issue if you find such message in your eNB log file:

```
11:44:06.533 [RRC] - 01 005d RRC connection request: ue_allocate_resources() fail Please take a look at srs_dedicated parameter in eNB documentation.
```

Here is an example to allow more than 1000 UE on eNB:

```
srs_dedicated: {
    srs_period: 320,
    srs_bandwidth: 3,
    srs_hopping_bandwidth: 0,
    cyclic_shift: 0,
},
```

Depending on the number of UEs simulated, you may also need to provision enough resources for SR (Scheduling Request) and CQI (Channel Quality Indicator) reporting. One way of checking if all your resources are available, is to take a look at the eNB log. In the header part, you always see the following information:

```
# SR resource count=480
# CQI resource count=960
# SRS resources: offsets=32 freqs=10 total=640
```

In this example, the eNB has SR resources to serve 480 UEs, CQI resources to serve 960 UEs and SRS resources for 640 UEs. You can increase the SR resources by increasing the value of sr_period. The CQI resources could as well be increased by reducing its periodicity cqi_period. Depending on the number of UEs that you would like to simulate, you may as well need to increase the following parameters in SIB2:

- n1PUCCH-AN to add more RB (Resource Blocks) for SR
- preambleTransMax to increase the number of retries after PRACH collision

4.9.2 Amarisoft MME

If your are using Amarisoft MME for your simulation, you may need to increase IP allocation range so that your UE can simultaneously connect to network.

You can check you are running into this issue if you find such message in your MME log file:

```
11:47:54.643 [NAS] - 0041 Can't allocate new IPv4 address
```

Please take a look at first_ip_addr, last_ip_addr and ip_addr_shift parameter in eNB documentation.

Here is an example to allow more than 1000 UE on MME:

```
first_ip_addr: "192.168.4.2",
last_ip_addr: "192.168.7.254",
ip_addr_shift: 0,
```

Please make sure to change the net_mask in mme-ifup script as well to go with your IP allocation range.

5 Using web interface

You can configure your UEs and test scripts using configuration file or you can dynamically use remote API. As an example, the Amarisoft Web interface will allow you to make basic tests.

5.1 Configuration

First enable remote API by setting com_addr in configuration file.

If you want to add UEs, you also need to enable multi_ue.

Then, on Web interface, click on Add server button and set UE com_addr

When Web interface is connected, you should see a green lightning icon on left panel, logs displayed on center panel and a two new tabs on top:

UE Scenario will be used to define scenarii.

UE Simulator is to control your UE simulator instance.

5.2 Scenario tab

5.2.1 Create scenario

Click on the UE Scenario tab.

Click on Add button and select New scenario.

The scenario panel will be displayed on right. After modification, click on Apply changes to commit them.

5.2.2 Create UEs tab

You will then define for the UE that will be created their configuration:

Count Number of UE to create.

If set to 0, the scenario shall only be applied to an already created UE.

IMSI of each UE.

To differentiate each UE, the special character \$ or \${f(i)} can be added.

\$ will be replaced by the UE index and \${f(i)} will be replaced by the result of

NB: if IMSI are all the same, your MME must support it (For Amarisoft MME,

the mathematical formula f(i) where i is the UE index. Ex: \${i+64}

check that multi_sim parameter is true).

RAT RAN technology of the UE: either LTE, NB-IoT, LTE + NR (5G NSA) or NR (5G

SA).

category UE category. This field is not present in NR SA.

Forced RI Forces RI return by UE to base station. If set to 0, UE will estimate it.

We recommend to force it to 2 when UE category is > 2.

Forced CQI

Forces CQI return by UE to base station. If set to 0, UE will estimate it.

We recommend to force it to when UE category is > 2.

K USIM secret. As for IMSI, \$ or \${f(i)} can be used.

OP USIM OP. Only available for milenage. As for IMSI, \$ or \${f(i)} can be used.

Configure either OP or OPc.

OPc USIM OPc. Only available for milenage. As for IMSI, \$ or \${f(i)} can be used.

Configure either OP or OPc.

Algo USIM Algo. Can be XOR or milenage.

Type Allow to select simulation mode between default simulation, tunnel interface mode and remote UE mode.

Setup script

Used with tunnel interface mode and remote UE mode as tun_setup_script parameter

Remote address

Used with remote UE mode as rue_addr.

5.2.3 Power on/off tab

If Power on/off is checked, simulation will generate on and off period for each UE and place inside each on period defined simulations.

Scenario will try to put as many simulation as possible, depending on parameters.

Duration Duration of the simulation in seconds.

All simulations and power off/on commands will be over before this duration.

If can be seen as the maximum simulation duration.

Connection attempts/s

Number of maximum UE connection attempt per second.

Max simultaneous connected UE

Maximum number of simultaneously connected UE.

Simulation will avoid any power on until this limit is reached, in other words, next power on will occur after new power off.

Power on duration

Duration in seconds of power on period. UE will remain powered on during this time and them will power off, allowing a new UE to connect.

Power off duration

Minimum duration in seconds of power off period. When powered off, a UE will remain powered off at least this time before being candidate to power on again.

5.2.4 Simulations tab

The simulation allow you to create different type of IP traffic simulation.

You can add several simulation per scenario.

Each simulation will be placed inside each power on period of each UE.

Click on add button and select simulation type:

The following parameters apply to all simulations:

Start delay

Script start delay in seconds.

If power off/on procedure is not activated, script starts after this delay. If power on/off procedure is activated, you should always set a delay as power on procedure may take a while unless it is what you want to do.

Duration Duration of the script in seconds.

5.2.4.1 Internal IP simulations

You can choose the following simulations:

ICMP Ping Perform ICMP Ping request.

UDP Send UDP constant bitrate traffic.

RTP Send RTP constant bitrate traffic.

VOIP Simulate voice RTP traffic using statistical model.

Flood Send UDP packet burst

HTTP transfert

Send HTTP requests.

Application

Launches an external application.

Note that TUN mode must be enabled on UE.

For more detail on configuration, See [IP simulation messages], page 85.

5.2.4.2 External application

You can replace predefined simulation by a custom application.

For this, choose Application in IP simulation list. See [ext_app], page 76, for its configuration.

When started, the external application will fork a process and return its standard output and error.

To handle dedicated application, please take a look at libsim_custom.js file in LTEWWW component.

You can add specific result handler using tag for association.

Note that it requires associated UE to be configured in tunnel mode or with remote UE mode and thus IP simulations can't be mixed.

5.2.5 Export scenario

The Export will generate json config file that you can directly integrate in your UE configuration file

Thus, you can start several time same scenario directly from command line.

5.3 UE tab

When selecting UE tab, several area are displayed.

- One to perform actions
- One for UE list that allows you to perform action and it
- One with various real time charts providing informations

5.3.1 Actions

Refresh button will force refresh of UE list. Else it is done regularly and refresh period is defined by the number field on the right.

Start button will allow you to start predefined scenario.

Note that only scenario that create UEs will be proposed.

Stop button will stop any pending simulation on UE simulator.

5.3.2 UE list

The UE list displays list of UE and their state.

You can click on the first icon to power on and off UE.

Right click on any UE to perform more actions:

- Power on/off
- Connect pdn: enter APN for PDN to connect
- Scenario: apply scenario on this UE (Only scenario without UE creation can be used).

5.3.3 Statistics

Here you can find some general real time statistics.

5.4 Scenario example

- First create a scenario in UE scenario tab and call it My first test.
- Select Simulations tab and add ICMP ping:

- Click on Apply changes
- Go to UE Simulator tab.
- Click on red icon to power on UE and right click on UE:

- Select My first test. A new tab is created to follow scenario.
- Select scenario tab

5.5 Executing scenario tab

Following buttons are available:

- Reset will flush logs
- Retry will start scenario again
- Stop will stop current scenario
- Export will export in a CSV file scenario results

5.6 Example

Let's try the following exercise:

- 100 UE have to be connected simultaneously.
- 20 UE will connect every second.

- Each UE will stay connected 10s
- Each UE can't be powered of less than 10s
- Scenario will last 1 minute.
- UE will perform HTTP transfer and pings.

Let's create a new scenario.

First, we need to estimate the amount of necessary UE. If we set only 100 UE:

- The first one will connect at t=0s and disconnect at t=10s
- The last one will connect at t=5s (100 UE will take 5s to connect at 20 caps).
- From t=10s, UE will start to disconnect but there will be no non connected remaining UE to connect again as UE have to stay disconnected at least 10s.

This implies between t=10s and t=20s, total amount of connected UE will decrease to 0 at t=20s. As a result:

So what can we do?

We can reduce power off duration but this will imply all UE will stay disconnected 0s! And we can increase the amount of UE to have a constant pool of disconnected UE.

Let's do this:

Then we can add our scripts:

Apply changes Exercice Loop: 0 \$									
Create UEs I	ower on/off Sim	nulations	PDN	Channel sim	ulation				
Simulations: HTTP transfert #0 -									
Type:	HTTP transfert								
Name:	HTTP transfert #0								
Probability:								-	
Start delay:	0				-	+/-	0	-	
Duration:	6				-	+/-	0	-	
URL:	http://192.168.2.1:8080/data?size=10000								
Maximum delay:	1						-		
Maximum connections:					\$				
APN:									

With this configuration, HTTP transfer will last 6s.

As power on duration is 10s, it means HTTP transfer will start 2s after power on and will stop 2s before power off.

Take a look at URL: http://192.1.168.4.1:8080/data?size=10000

This URL will be interpreted by $ltesim_server$ embedded HTTP server as a transfer of 10000 byte(s).

Note that ltesim_server must be started with HTTP server enabled:

sudo ./ltesim_server -a 192.168.4.1 -H 8080

Then add ping

And start it

6 Configuration reference

6.1 Configuration file syntax

The main configuration file uses a syntax very similar to the Javascript Object Notation (JSON) with few extensions.

- 1. Supported types:
 - Numbers (64 bit floating point). Notation: 13.4
 - Complex numbers. Notation: 1.2+3*I
 - Strings. Notation: "string"
 - Booleans. Notation: true or false.
 - Objects. Notation: { field1: value1, field2: value2, }
 - Arrays. Notation: [value1, value2,]
- 2. The basic operations +, -, * and / are supported with numbers and complex numbers. + also concatenates strings. The operators !, | |, &&, ==, !=, <, <=, >=, > are supported too.
- 3. The numbers 0 and 1 are accepted as synonyms for the boolean values false and true.
- 4. {} at top level are optional.
- 5. " for property names are optional, unless the name starts with a number.
- 6. Properties can be duplicated.

If properties are duplicated, they will be merged following [JSON merge rules], page 21, with overriding occurring in reading direction (last overrides previous). Ex:

```
{
    value: "foo",
    value: "bar",
    sub: {
        value: "foo"
    },
    sub: {
        value: "bar"
    }
}
Will be equivalent to:
{
    value: "bar",
    sub: {
        value: "bar"
    }
}
```

7. Files can be included using *include* keyword (must not be quoted) followed by a string (without:) representing the file to include (path is relative to current file) and terminating by a comma.

Arrays can't be included.

Merge will be done as for duplicate properties.

If file1.cfg is:

```
value: "foo",
include "file2.cfg",
foo: "foo"
```

```
And file2.cfg is:
    value: "bar",
    foo: "bar"
Final config will be:
{
    value: "bar",
    foo: "foo"
}
```

8. A C like preprocessor is supported. The following preprocessor commands are available:

#define var expr

Define a new variable with value expr. expr must be a valid JSON expression. Note that unlike the standard C preprocessor, expr is evaluated by the preprocessor.

#undef var

Undefine the variable var.

#include expr

Include the file whose filename is the evaluation of the string expression expr.

#if expr Consider the following text if expr is true.

#else Alternative of #if block.

#elif Composition of #else and #if.

#endif End of #if block.

#ifdef var

Shortcut for #if defined(var)

#ifndef var

Shortcut for #if !defined(var)

In the JSON source, every occurrence of a defined preprocessor variable is replaced by its value.

9. Backquote strings: JSON expression can be inserted in backquote delimited strings with the \${expr} syntax. Example: 'abc\${1+2}d' is evaluated as the string "abc3d". Preprocessor variables can be used inside the expression. Backquote strings may span several lines.

6.1.1 JSON merge rules

Merge overriding direction depends on context, i.e source may override destination or the opposite.

JSON merge is recursive for Objects and Arrays.

```
Example, merging
{
   foo: { value: "bar" },
   same: "one",
   one: 1
}
   with
{
   foo: { value: "none", second: true },
```

```
same: "two",
   two: 1
}
Will become:
{
   foo: { value: "bar", second: true },
   same: "one",
   one: 1
   two: 1
}
```

assuming first object overrides second one.

In case of Array merging, the final array length will be the maximum length of all merged arrays.

For each element of the final array, merge will be done considering defined elements only.

```
{
    array: [0, 1, 2, { foo: "bar" } ],
    array: [3, 4],
    array: [5, 6, 7, { bar: "foo" }, 8 ]
}
    Will be merged to:
{
    array: [5, 6, 7, { foo: "bar", bar: "foo" }, 8 ],
}
```

6.2 Global properties

log_filename

String. Set the log filename. If no leading /, it is relative to the configuration file path. See [Log file format], page 93.

log_options

String. Set the logging options as a comma separated list of assignments.

- layer.level=verbosity. For each layer, the log verbosity can be set to none, error, info or debug. In debug level, the content of the transmitted data is logged.
- layer.max_size=n. When dumping data content, at most n bytes are shown in hexa. For ASN.1, NAS or Diameter content, show the full content of the message if n > 0.
- layer.payload=[0|1]. Dump ASN.1, NAS, SGsAP or Diameter payload in hexadecimal.
- layer.key=[0]1]. Dump security keys (NAS and RRC layers).
- layer.crypto=[0|1]. Dump plain and ciphered data (NAS and PCDP layers).
- phy.signal=[0|1]. Dump binary received signal data of the physical layer to another file (log_filename.bin). The currently available data are QAM constellations and channel estimation for PDSCH, PUSCH and SRS. The GUI can be used to display them. Note: the size of the binary signal data is larger than the textual logs, so they should be enabled only when needed.

- phy.rep=[0|1]. Log the NPUSCH/NPDSCH allocations and repetitions in each subframe (NB-IoT UE only).
- phy.dci_size=[0|1]. Log the expected DCI sizes (NR UE only).
- phy.csi=[0|1]. Log the computed CSI information.
- phy.cell_meas=[0|1]. Log some cell related statistics.
- phy.cch=[0|1]. Log number of CCH symbols and SINR.
- phy.ntn=[0|1]. Log timing updates performed for NTN.
- rrc.cell_meas=[0|1]. Log RRC cell measurements.
- nas.plmn=[0|1]. Log the PLMNs used by the NAS PLMN selection.
- time=[sec|short|full]. Display the time as seconds, time only or full date and time (default = time only).
- time.us=[0|1]. Dump time with microseconds precision.
- file=cut. Close current file log and open a new one.
- file.rotate=now. Move and rename to the same directory or to the directory pointed by file.path and open a new log file (Headers are kept).
- file.rotate=size. Every time log file size reaches size bytes, move and rename to the same directory or to the directory pointed by file.path, and open a new log file (Headers are kept).
 - Size is an integer and can be followed by K, M or G.
- file.rotate=#count. Everytime number of logs in log file reaches count, move and rename to the same directory or to the directory pointed by file.path, and open a new log file (Headers are kept).

 Size is an integer and can be followed by K, M or G.
- file.path=path. When log rotation is enabled (file.rotate set), rename and move current log to this path instead of initial log path.
- append=[0|1]. (default=0). If 0, truncate the log file when opening it. Otherwise, append to it.

Available layers are: phy, mac, rlc, pdcp, rrc, nas, ip, ikev2, swu, nwu, ipsec

log_sync Optional boolean (default = false). If true, logs will be synchronously dumped to file

Warning, this may lead to performances decrease.

rf_driver

Object. Parameters of the radio driver. See [Radio driver configuration], page 27.

tx_gain Float or array of floats. Transmit gain in dB. The range is device dependent. For the PCIe SDR board, the range is between 0 and 89.75 dB. For the USRP N2x0 device with the SBX daughterboard, the range is 0 to 31.5 dB. With an array of floats a different gain is specified for each channel.

rx_gain Float or array of floats. Receive gain in dB. The range is device dependent. For the PCIe SDR board, the range is between -11 and 77 dB (the exact limits depend on the RX frequency). For the USRP N2x0 device with the SBX daughterboard, the range is 0 to 31.5 dB. With an array of floats a different gain is specified for each channel.

udc_ports

Optional array of objects. Each object contains the configuration of the corresponding UDC port.

Each object contains the following properties:

String. Set the UDC configuration parameters. Each parameter composing the string is separed by semicolon (See [args configuration], page 93).

String. Specifies the path to the script for the UDC configuration (See [UDC configuration reference], page 92). The script is called once for each configured udc_port with the following command line arguments:

- args: (See [args], page 24)
- lo_freq: (See [lo_freq], page 24)
- min_freq: automatically set by the software, spectrum minimum frequency for aggregated cells using the same udc_port
- max_freq: automatically set by the software, spectrum maximum frequency for aggregated cells using the same udc_port
- freq: automatically set by the software, FR2 cell central frequency, for each rf_port using the same udc_port
- bandwidth: automatically set by the software, FR2 cell bandwidth, for each rf_port using the same udc_port

lo_freq Optional float. Specifies the UDC LO frequency in MHz to be configured. If not present, it will be automatically computed.

tx_power_offset

Optional float. Measured in dB, negative value. It corresponds to the amount of attenuation between the SDR and the UDC IF port.

The default value is 0, in case of aggregated cells with combiner the attenuation is computed as -10*log10(COMBINER_PORTS).

cell_groups

Array of object. Parameters for each group of similar cells. See [Cell group configuration], page 27.

ue_list Array of object. Each element gives the configuration of a UE. See [UE configuration], page 34.

custom_freq_band

Optional object or array of objects. Define a non standard LTE or NR frequency band. Standard bands can also be overriden by this option. If the uplink information is not provided, it is assumed to be the same as the downlink (TDD band). Use an array of objects if you want to define more than one custom band.

For LTE bands, the following parameters are available:

band Range: 1 to 256.

dl_earfcn_min

Range: 0 to 262143.

dl_earfcn_max

Range: 0 to 262143.

dl_freq_min

Float. Low DL frequency in MHz.

ul_earfcn_min

Optional integer. Range: 0 to 262143.

ul_earfcn_max

Optional integer. Range: 0 to 262143.

ul_freq_min

Optional Float. Low UL frequency in MHz.

ntn Optional boolean. True if this is a NTN band.

For NR bands, the following parameters are available:

band_nr Range: 1 to 1024. NR band number.

dl_freq_min

Float. Range: 0 to 65535. Minimum DL frequency in MHz. Use 0 if no DL $\,$

dl_freq_max

Float. Range: 0 to 65535. Maximum DL frequency in MHz. Use 0 if no DL.

ul_freq_min

Float. Range: 0 to 65535. Minimum UL frequency in MHz. Use 0 if no UL. If not provided, use the same value as DL (TDD).

ul_freq_max

Float. Range: 0 to 65535. Maximum UL frequency in MHz. Use 0 if no UL.

Array of integers. List of allowed SSB subcarrier spacing for this band. Allowed values: 15, 30, 120 or 240.

f_raster Enumeration: 100, 15, 15_30, 15_30_100, 60_120, 100_enhanced. Frequency raster in kHz.

ssb_case_c

Boolean. True if SSB case C is enabled on this band.

min_40mhz_bw

Boolean. True if the minimum allowed bandwidth on this band is at least 40 MHz. This information is used to select the CoReSet #0 table in standalone mode.

delta_gscn

Optional enumeration: 1, 3, 7, 16 (default = 1). GSCN step size.

ntn Optional boolean. True if this is a NTN band.

rue_bind_addr

Optional string. Set it to enable and define lterue bind address.

user_thread_count

Optional integer (default = 1). Sets number of threads for external application launcher and tun_setup_script.

com_addr Optional string. Address of the WebSocket server remote API. See [Remote API], page 59.

If set, the WebSocket server for remote API will be enabled and bound to this address.

Default port is 9002.

Setting IP address to [::] will make remote API reachable through all network interfaces.

com_name Optional string. Sets server name. UE by default

com_ssl_certificate

Optional string. If set, forces SSL for WebSockets. Defines CA certificate filename.

com_ssl_key

Optional string. Mandatory if *com_ssl_certificate* is set. Defines CA private key filename.

com_ssl_peer_verify

Optional boolean (default is false). If true, server will check client certificate.

com_ssl_ca

Optional string. Set CA certificate. In case of peer verification with self signed certificate, you should use the client certificate.

com_log_lock

Optional boolean (default is false). If *true*, logs configuration can't be changed via config_set remote API.

com_log_us

Optional boolean (default is false). If true, logs sent by log_get remote API response will have a timestamp_us parameters instead of timestamp

com_auth Optional object. If set, remote API access will require authentication.

Authentication mechanism is describe in [Remote API Startup], page 61, section.

passfile Optional string. Defines filename where password is stored (plaintext).

If not set, password must be set

password Optional string. Defines password.

If not set, passfile must be set.

unsecure Optional boolean (default false). If set, allow password to be sent plaintext.

NB: you should set it to true if you access it from a Web Browser (Ex: Amarisoft GUI) without SSL (https) as your Web Browser may prevent secure access to work.

com_log_count

Optional number (Default = 8192). Defines number of logs to keep in memory before dropping them.

Must be between 4096 and 2097152).

license_server

Configuration of the Amarisoft license server to use.

Object with following properties:

server_addr

String. IP address of the license server.

name Optional string. Text to be displayed inside server monitor or remote API.

tag Optional string. If set, server will only allow license with same tag.

Example:

```
license_server: {
    server_addr: "192.168.0.20",
    name: "My license"
}
```

sim_ip_remote_addr

Optional string. Defines default server address for IP simulation events of all UE.

cpu_core_list

Optional array. Defines the list of CPU cores indexes on which LTEUE will run. If not set, LTEUE may use all cores, refer to [cpu_core_list], page 58, for syntax. Note that the number of cores depends on Linux scheduler and LTEUE configuration.

vrb_lib_path

Optional string. Path to the vrb_dpdk.so dynamic library file located in the delivered tarball. If present, the eNodeB uses Intel vRANBoost device for LDPC decoding. The CPU must support vRANBoost, DPDK must be installed on the machine and the vRANBoost device must be configured properly before use. This mode enables faster LDPC decoding. It can be used to lower the CPU usage of the stack or to increase the number of LDPC decoding iterations in order to improve decoding sensitivity.

sim_events

Array of object. Each element defines a remote API request ([Remote API], page 59) except that message field is replaced by event.

sim_events_loop_count

If set, will define loop_count for each event of sim_events, See [loop_count], page 60.

sim_events_loop_delay

If set, will define loop_delay for each event of sim_events, See [loop_delay], page 60.

6.3 Radio driver configuration

name Driver name. The corresponding DLL file name is trx_name.so. It is searched in the lteue executable directory, in the path configured in the path property.

The following drivers are currently available:

dummy Dummy driver. Can be used to measure the RX to TX latency.

 ${\rm sdr} \qquad \qquad {\rm Amarisoft\ PCIe\ SDR\ driver}.$

Parameters are defined here:

 ${
m SDR50}$ (https://tech-academy . amarisoft . com / trx_sdr . doc # TDX defines and investigation and investigation of the control of the

TRX-driver-configuration-options)

 ${
m SDR100}$ (https://tech-academy .amarisoft .com/trx_sdr100 .doc#

TRX-driver-configuration-options)

 CPRI (https://tech-academy . amarisoft . com / trx_cpri . doc #

TRX-driver-configuration-options)

uhd Ettus Research UHD driver for USRP N2x0, B2x0 and X3x0 series.

Please check Amarisoft UHD documentation delivered within package.

lms7002m Lime MicroSystem LimeSDR platform driver.

Please check Amarisoft SDR documentation delivered within package.

If you don't have and need one of these drivers, please contact customer@amarisoft.com and ask for it.

6.4 Cell group configuration

A cell groups references the configuration of 1 or more cells of the same type.

Cells within same group must be synchronized at subframe/frame level. Handovers are not allowed between cells of different groups. NB-IoT groups can only handle one cell.

To perform 5G NSA, the configuration must contain at least two groups, one of LTE type and one of NR type.

group_type

String. Defines cell type, can be:

lte LTE category 0 to max.

cat_m1 Cat-M1
nbiot NB-IoT
nr 5G NR

tx_gain_offset

Optional float. Set the digital TX gain (can be seen as the opposite of the TX backoff power). Warning: do not change it unless you know what you do because a too high value introduces saturation in the output.

For LTE, the default value is -12 dB in multi UE mode and -8 dB in single UE mode.

For NB-IoT the default value is always -20 dB.

For NR the default value is always -14 dB.

tx_time_offset

Optional integer (LTE only). Time offset (in samples) for the TX stream relative to the RX stream. It may be needed to compensate internal delays in the radio head.

tx_pad_duration

Optional integer (default = 23) (NR only). Duration (in 1/1.92 us units) of the zero sample burst sent before the start of the uplink burst in TDD. It corresponds to the power amplifier ramp up duration. The appropriate value depends on the radio head.

ground_position

Optional object needed for GNSS location estimate for LPP and/or NTN. For NTN, this position will allow the dynamic computation of the timing advance, based on satellite realtime position. Defines the geographic coordinates at the origin [0, 0, 0] in the local coordinates system in which the position in defined See [position], page 54.

Contains the following parameters:

latitude Float value. Range -90 to 90. Degrees of latitude.

longitude

Float value. Range -180 to 180. Degrees of longitude.

altitude Optional float value (default = 0). Range -1000m to 20km. Altitude in meters.

Array of object. Each element gives the configuration of a cell. See [Cell configuration], page 29.

multi_ue Boolean. If enabled, UE simulation mode is activated where multiple UEs can be run at the same time. Note that when this mode is enabled, you should adjust the global_timing_advance cell parameter. If set to false, the real UE mode is activated with one single instance of UE.

cell_sync

Optional boolean (default = true), NR only. When multiple cells are configured in the group, this parameter indicates that the cells are synchronized at the slot level. It must be set to true for CA or SUL operation. On the opposite, if the cells are known to have very different timing (eg in NTN scenarios), the parameter should be set to false.

long_range

Optional boolean (default = false). If true, enable a proprietary Amarisoft extension to extend the cell range (a modified eNodeB is necessary) (LTE only). This parameter applies to all the UEs in multi-UE mode.

rel13_5 Optional boolean (default = true). If true, enable incompatible physical layer changes for NPBCH/BCCH introduced in release 13.5 (category NB1 only).

channel_sim

Optional boolean (default = false). If set, the UE channel simulator is enabled. It is only available in multi UE mode (multi_ue = true). See [channel_sim], page 50, for more information.

pdcch_decode_opt

Optional boolean (default = false). If set, pdcch_decode_opt_threshold will be used (LTE and NR).

pdcch_decode_opt_threshold

Optional float. pdcch_decode_opt must be set to true. This parameter defines an EPRE (Energy Per Resource Element) threshold relative to CRS (LTE) or SSB (NR) for PDCCH detection to save CPU time.

Use it only with high SNR (Ex: using cables) as it may prevent from decoding low power PDCCH.

pdsch_max_its

Optional integer (range 1 to 20, default = 6). CPU load limitation: set the maximum number of iterations of the turbo decoder (LTE only). A higher value gives a lower frame error rate but a higher CPU load.

ldpc_max_its

Optional integer (range 1 to 50, default = 5). CPU load limitation: set the maximum number of iterations of the LDPC decoder (NR only). A higher value gives a lower frame error rate but a higher CPU load.

cpu_core_list

Optional array. Defines the list of CPU cores indexes on which the cell group will run.

Refer to [cpu_core_list], page 58, for syntax.

If not set, LTEUE may use all cores, or if RF frontend driver provides NUMA nodes, they will be used.

6.5 Cell configuration

n_antenna_dl

Optional integer (default = 1). Range: 1 to 8. Set the number of downlink antennas. See [channel_sim], page 50, to have more information when the channel simulator is enabled. NB-IoT cells only support a single downlink antenna.

n_antenna_ul

Optional integer (default = 1). Range: 1 to 8. Set the number of uplink antennas. See [channel_sim], page 50, to have more information when the channel simulator is enabled. LTE and NB-IoT cells only support a single uplink antenna.

sample_rate

Optional float. Sample rate in MHz. It is normally automatically set depending on the radio head capabilities and selected bandwidth.

To take effect, bandwidth must not be set.

rf_dl_freq

Optional float. Override the tuning frequency in MHz for the downlink. This optional is only needed if there is a frequency translator after the SDR device.

rf_ul_freq

Optional float. Override the tuning frequency in MHz for the uplink. This optional is only needed if there is a frequency translator after the SDR device.

global_timing_advance

Optional integer. Range: -1 to 1292 (default = -1). This option is only meaningful in multiple UE mode and specifies the timing advance of the uplink relative to the downlink. The unit is 1/1.92 us for non NR cells and 1/(0.128*SCS) us for NR cells where SCS is the cell subcarrier spacing in kHz. The special value -1 indicates to use the timing advance from the first received RAR. See [Multiple UE case], page 7, for more information.

apply_ta_commands

Optional boolean (default = false). This option is only meaningful in multiple UE mode and allows the UE to follow the TA commands received from the network. This option is only available for NB-IoT and NR UEs. It is not possible to have both delay_sim and apply_ta_commands set to true. See [Multiple UE case], page 7, for more information.

forced_pci

Optional integer (default = -1). Force the selected Physical Cell Identity. The default value -1 indicates to select the first detected PCI. This parameter is currently not available for NB-IoT cells.

tx_gain_offset

Optional float. If set, overrides group value: [tx_gain_offset], page 28.

ntn_n_ta_ue

Optional float (default = -1). If positive, specify a constant NTA_UE in microseconds when computing Timing Advance in NTN.

If negative or left out and if the cell is in a NTN band, ground_position in the cell group is mandatory.

ntn_eci_aligned_ecef

Optional boolean (default = false). If set to true, the orbital parameters (read from SIB31 in NB-IoT or SIB19 in NR) are understood with the ECI reference frame aligned with the ECEF frame at the current epoch.

If set to false, the ECI reference is aligned with the J2000 vernal equinox.

ntn_service_dl_freq

Optional integer (default = 0). NR only. If non zero, this parameter sets the value in Hz of the actual DL frequency used on the satellite service link when it is different from the DL frequency specified by dl_nr_arfcn.

ntn_service_ul_freq

Optional integer (default = 0). NR only. If non zero, this parameters sets the value in Hz of the actual UL frequency used on the satellite service link.

ntn_internal_model

Optional enumeration: orbital, state_vectors (default = orbital). Choose the internal propagation model for the satellite position, either based on keplerian orbital elements or based on a force-model integration of the state vectors. This is irrespective of the configuration from SIB19 which can either be OrbitalElements or StateVectors.

cpu_core_list

Optional Array. Defines the core affinity of the digital signal processing engine (Physical layer) for both UL and DL of the cells associated to this rf_port (See [cpu_core_list], page 58).

cpu_core_list_ul

Optional Array. Defines the core affinity of the digital signal processing engine (Physical layer) for UL of the associated cell(s). If set, overrides cpu_core_list.

cpu_core_list_dl

Optional Array. Defines the core affinity of the digital signal processing engine (Physical layer) for DL of the associated cell(s). If set, overrides cpu_core_list.

nb_threads

Optional number. If set, forces the number of threads used by the digital processing engine for DL or UL of the associated cell(s).

nb_threads_ul

Optional number. If set, forces the number of threads used by the digital processing engine for UL of the associated cell(s). If set, overrides nb_threads.

nb_threads_dl

Optional number. If set, forces the number of threads used by the digital processing engine for DL of the associated cell(s). If set, overrides nb_threads.

cpu_numa_list

Optional array of integers. Each integer represent a NUMA node index. If set will, digital processing engine will use the list of defined NUMA nodes for its memory usage.

If this field is not set but cpu_core_list is defined, LTEUE will select the NUMA nodes associated to the affected cores. This means that most of the time this parameter shouldn't be set. The only relevant case is when a NUMA node has no RAM bank connected, you may use this parameter to select the closest NUMA node with memory.

S72 Optional object. If set, this cell port will use ORAN split 7.2 TRX API to send data to the radio unit.

This section has the following properties:

rtc_id Integer. RTC id.

ud_comp_hdr

Optional integer (default = 0). Set User Data compression header configuration. Can be 0 for no compression, 0x81 for BF8, 0x91 for BF9, 0xc1 for BF12 or 0xe1 for BF14.

port_mapping

Optional array of integers. If set, allows to map UE antenna to different RU port.

Each number represents the RU port ID used for the antenna in ORAN packets.

This array must have same number of elements as the maximum between DL antenna count and UL antenna count.

Each RU port must be set once in the array. Ex:

port_mapping: [1, 2, 4, 0],

Means UE will use RU port 1 for the first antenna, RU port 2 for the second antenna... By default, it is set to [0, 1, 2, ...]

port_mapping_dl

Optional array of integers. Same as port_mapping except that it applies only for DL antenna and the array must have same number of elements as DL antenna count.

port_mapping_ul

Optional array of integers. Same as port_mapping except that it applies only for UL antenna and the array must have same number of elements as UL antenna count.

port_mapping_prach

Optional array of integers. Same as port_mapping except that it applies only for the PRACH ORAN packets.

gen_prb0 Optional boolean (default = false). If true, numPrbc of U-Plane ORAN section will be set to 0 when all ressources blocks are used and exceed 255.

If set to false and number of ressources blocks exceed 255, multiple ORAN sections will be generated.

relative_symbol

Optional boolean (default = false). In case of section type 3, start symbol of both control and data packet will start at 0, i.e relative to time_offset

debug Optional boolean (default = false). If true, mode information will be displayed in logs. May have an impact on performances.

The following parameters are available if group_type is not set to "nr":

dl_earfcn

Range: 0 to 262143. Set the DL EARFCN. See https://www.sqimway.com/lte_band.php to convert between the center frequency and EARFCN.

ul_earfcn

Optional. Range: 0 to 262143. Set the UL EARFCN. If not provided, the default DL/UL gap is used (i.e. ul_earfcn = dl_earfcn + 18000 for FDD).

bandwidth

Optional number. Defines LTE bandwidth and can be 20, 15, 10, 5, 3 or 1.4. If omitted, sample_rate has to be set.

sample_rate_num

Optional integer (LTE only). Main sample rate used for the LTE signal processing in 1.92 MHz units (hence 3 means 5.76 MHz). It is normally automatically set depending on the radio head capabilities and selected bandwidth. If the resulting rate is different from sample_rate, a fractional sample rate interpolator is used to convert the sample rate.

prach_delay

Optional integer (LTE and NR only). Range: 0 to 1920 (default = 0). This option specifies the PRACH delay relative to the other uplink signals in TA units. The same PRACH delay is applied to all the UEs of the cell. This option is useful to simulate an arbitrary PRACH timing advance in multiple UE mode.

sync_id Optional integer (default = 0). Cells with same sync_id must be synchronized in time (Same Frame/SubFrame numbers). To allow non synchronized cells within a group, set different sync_id for each cell. Only applicable to LTE UEs.

Note that for proper CA operation, the PCell and SCells must be synchronized.

The following parameters are available if group_type is set to "nr":

band Integer (range 0 to 1024). NR band.

dl_nr_arfcn

Integer (range 0 to 3279165). Set the DL NR-ARFCN. See https://www.sqimway.com/nr_band.php to convert between the center frequency and NR-ARFCN.

ul_nr_arfcn

Integer (range 0 to 3279165). Set the UL NR-ARFCN. See https://www.sqimway.com/nr_band.php to convert between the center frequency and NR-ARFCN.

subcarrier_spacing

Integer (15, 30, 60, 120). Set the cell subcarrier spacing.

ssb_subcarrier_spacing

Optional integer (15, 30, 120, 240). Set the SSB subcarrier spacing. If absent, the value from subcarrier_spacing is used instead.

ssb_nr_arfcn

Optional integer (range 0 to 3279165). Set the SSB NR-ARFCN. See https://www.sqimway.com/nr_band.php to convert between the center frequency and NR-ARFCN. If absent, the value from dl_nr_arfcn is used instead.

ssb_case_c

Optional boolean. Set to true if case C must be used instead of case B for 30 kHz SSB SCS. The default value depends on the selected frequency band (see 3GPP TS 38.101-1 table 5.4.3.3-1).

bandwidth

Optional integer (range 3 to 400). Cell bandwidth.

n_rb_dl Optional integer (range 20 to 275). Number of DL resource blocks. Used if bandwidth is absent.

rx_to_tx_latency

Optional integer (Range 2 to 32, default = 4). Minimum allowed latency in slots between RX and TX.

This parameter will bound the minimum k1 and k2 parameter allowed by the system. Increasing the value will improve performances, especially in case of radio frontend underflows.

pdcch_log_filename

Optional string. Log the PDCCH decoding attempts to the pdcch_log_filename file. It is useful only when debugging the PHY layer. Do not enable it in other cases as it may generate a large log file and may degrade the UE performance.

udc_port Optional integer. Selects the UDC port used for the cell. Cells aggregated with the same UDC device, will use the same udc_port number.

tx_power_offset

Optional float. If set add an offset in dB to any TX signal power information such as 't spl'. Useful when placing an attenuator (negative value) or a power amplifier (positive value) after the radio frontend TX output.

6.6 UE configuration

6.6.1 Virtual USIM

The following parameters configure the virtual USIM:

mnc_nb_digits

Optional enumeration: 2, 3 (default = 2). Set the number of digits in home network MNC.

imsi Optional string. Shall be present if nai is absent. Set the IMSI.

nai Optional string applicable to 5G only.

Shall be present if imsi is not set. Set the Network specific identifier-based SUPI.

 sim_algo Optional enumeration. xor, milenage or tuak (default = xor). Set the USIM authentication algorithm. Note: test USIM cards use the XOR algorithm.

optional String (6 byte hexadecimal string). Default = "00000000000". Set the initial sequence number. For the XOR algorithm, the actual value does not matter. For the Milenage or TUAK algorithm, a sequence number resynchronization is initiated if the sequence number does not match the one stored in the USIM.

K String. Set the user secret key (as a 16 bytes hexadecimal string, or eventually 32 bytes hexadecimal string for TUAK).

op Optional string. Operator key (as a 16 byte hexadecimal string). When the Milenage authentication algorithm is used, either op or opc must be set.

opc Optional string. Operator key preprocessed with the user secret key (as a 16 byte hexadecimal string). When the Milenage authentication algorithm is used, either op or opc must be set.

r Optional array of 5 integers (range: 0 to 127). Allows to customize the r1 to r5 parameters when Milenage authentication algorithm is used. If the array is not present, the default values (as defined in 3GPP TS 35.206) are used.

c Optional array of 5 strings. Each value contains a 16 byte hexadecimal string. Allows to customize the c1 to c5 parameters when Milenage authentication algorithm is used. If the array is not present, the default values (as defined in 3GPP TS 35.206) are used.

Optional string. Operator key (as a 32 byte hexadecimal string). When the TUAK authentication algorithm is used, either top or topc must be set.

Optional string. Operator key preprocessed with the user secret key (as a 32 byte hexadecimal string). When the TUAK authentication algorithm is used, either top or topc must be set.

keccak_iter

Optional integer (range: 1 to MAX_INT). Allows to customize the number of Keccak permutations performed when using the TUAK authentication algorithm. If the item is not present, the default value 1 (as defined in 3GPP TS 35.231) is used.

cag_info_list

Optional array. Subscribed CAG information list. Each element of the array contains:

plmn String (5 or 6 digits).

cag_id_list

Array of 1 to 12 integers (range 0 to 4294967295) giving the list of the allowed CAG-Identifiers.

cag_only_ind

Optional boolean (default = FALSE). Indication that the UE is only allowed to access 5GS via CAG cells.

csg_info_list

Optional array of objects. Subscribed CSG information. Each element of the array contains:

plmn String (5 or 6 digits).

csg_id_list

Array of integers in range 0 to 0x7FFFFFF. Allowed CSG id list in the PLMN.

optional integer (default = 8). Defines length of response in bytes during authentication. For TUAK authentication algorithm, the RES length configured on UE and network side must match and the value must be 4, 8 or 16 bytes long.

preferred_plmn_list

Optional array. Each element of the array contains a PLMN string (5 or 6 digits) ordered by decreasing priority. Can be present only if none of plmnwact, oplmnwact and ehplmn is present.

plmnwact Optional array containing the list of user controlled PLMN with access technology (refer to 3GPP 31.102 chapter 4.2.5) used by the NAS PLMN selection procedure. Each element of the array contains a PLMN and the allowed access technologies, ordered by decreasing priority:

plmn String (5 or 6 digits).

access_techno

Array of enumeration: eutra_nb, eutra_wb, eutra, nr.

oplmnwact

Optional array containing the list of operator controlled PLMN with access technology (refer to 3GPP 31.102 chapter 4.2.53) used by the NAS PLMN selection procedure. See [plmnwact], page 35, for coding.

hplmnact Optional array of elements listed in decreasing priority order, giving the access technologies of the home PLMN the UE will consider when searching for the HPLMN

(refer to 3GPP 31.102 chapter 4.2.54). Each element is an array of enumeration: eutra_nb, eutra_wb, eutra, nr. Example:

```
hplmnact:
[
    ["nr", "eutra_nb"],
    ["eutra_wb"]
]
```

ehplmn Optional array containing the equivalent home PLMN list (refer to 3GPP 31.102 chapter 4.2.84) used by the NAS PLMN selection procedure. Each element of the array contains a PLMN string (5 or 6 digits) ordered by decreasing priority.

1rplmnsi Optional enumeration: last_registered, hplmn_or_last_registered (default = last_registered). Gives the Last RPLMN Selection Indication as defined in 3GPP 31.102 chapter 4.2.86.

access_control_classes

Optional array of integers containing the assigned access control classes (refer to 3GPP 31.102 chapter 4.2.15 EFACC).

Default value is [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].

Each element of the array is an access class number in range 0-9 or 11, 12, 13, 14, 15.

uac_access_identities

Optional array of enumeration: "mps", "mcs". Gives the configuration information pertaining to access identities allocated for specific high priority services. If "mps" is present in the array, the UE is configured for Multimedia Priority Service, if "mcs" is present in the array, the UE is configured for Mission Critical Services, see specified in 3GPP 31.102 chapter 4.4.11.7 EFUAC_AIC;

eab Optional boolean (default = false). Indicates whether the UE applies EAB (extended access barring). Equivalent parameter in the USIM is 'Extended access barring' in EFNASCONFIG (see 31.102 chapter 4.2.94 EFNASCONFIG).

6.6.2 SIM card reader

external_sim

Optional boolean (default = false). If set, will try to use SIM card reader instead previous parameters. (Uses the PCSC lite library)

sim_reader_index

Optional integer (range 0 to 1024). If external_sim is set, this allow to select SIM card reader if several are plugged.

6.6.3 UE parameters

6.6.3.1 Common parameters

The following parameters are available for UEs of all types, unless stated otherwise.

imeisv Optional string. Set the International Mobile station Equipment Identity and Software Version Number. If not set, will be automatically generated.

as_release

Optional integer (default = 8). Define the Access Stratum release for UE capabilities. Releases 8 to 18 are supported.

nas_5gs Optional boolean (default = false). When set to true, the LTE or NB-IoT UE will connect to a 5G core network through a ng-eNB.

ue_category

Optional integer (-2 to 13) or string (default = 4). Set the UE category/type. The string values m1, nb1, nb2 or nr are also accepted. For backward compatibility, -1 means category M1 and -2 means category NB1. Category M1 or NB1 need at least as_release 13. Category NB2 needs at least as_release 14. Category NR needs at least as_release 15 and sets the UE in 5G SA mode.

All UEs must be either category ≥ 0 , category M1, NB-IoT or NR.

long_drx Optional boolean (default = true). When set to false, the UE does not indicate supporting DRX in its capabilities (LTE, NR).

short_drx

Optional boolean (default = true). When set to false, the UE does not indicate supporting short DRX cycles in its capabilities (LTE, NR).

Optional integer. Value in seconds of the T3324 information element sent by the UE in the NAS Attach Request, Tracking Area Update Request and Registration Request messages.

sprt_support

Optional boolean (default = false). Set strictly periodic registration timer support in 5GMM MICO indication IE.

Optional integer. Value in seconds of the T3412 extended information element sent by the UE in the NAS Attach Request and Tracking Area Update Request messages, or requested T3512 information element sent by the UE in the NAS Registration Request message. t3324 parameter must be set.

edrx_params

Optional integer (range 0 to 255). If present, UE will declare support for extended idle mode DRX. This integer is encoded according to 3GPP TS 24.008 chapter 10.5.5.32.

- dl_ca Optional boolean (default = true). When set to false, the UE does not report BandCombinations with DL CA in its capabilities.
- Ul_ca Optional boolean (default = true). When set to false, the UE does not report BandCombinations with UL CA in its capabilities.

ca_filter_bc_3x101

Optional boolean (default = true). When set to false, the UE will report all the possible band combinations (in the SupportedBandCombinationList IE of the UE capabilities) based on the cells array, regardless of their support in 3GPP TS 36.101/38.101 v18.2.0.

When set to true, only the combinations supported in 3GPP specification will be reported.

ca_intraband

Optional enumeration: all, contiguous_only, non_contiguous_only (default = all). Controls how the UE reports the intraband CA band combinations.

wus_support

Optional boolean (default = true). When set to false, the UE does not indicate supporting wake up signal in NB-IoT and Cat-M1.

wus_edrx_min_time_offset

Optional enumeration: 40, 240, 1000, 2000 (default = 40). Minimum time offset (in ms) between the end of WUS transmission and beginning of paging occasion when UE is in eDRX.

gwus_paging_probability

Optional enumeration: -1, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 (default = -1: group WUS not activated). Requested paging probability of the UE used to determine the WUS group to which belongs the UE.

apn Optional string. If set, this APN will be used for UE attachment as default APN.

authentication

Optional enumeration: none, pap, chap or eap (default set to none). Defines the APN authentication mechanism used during attachment. eap is applicable to 5G only.

username Optional string (up to 100 characters) containing the user name used for pap, chap or eap authentication.

password Optional string (up to 100 characters) containing the password used for pap, chap or eap authentication.

tun_setup_script

Optional string. Set the path of the shell script to set up the virtual network interface (Path can be absolute or relative to config file).

Script is called for each PDN with following parameters:

- 1. UE ID
- 2. PDN unique ID (starts from 0)
- 3. Interface name
- 4. IPv4 address
- 5. IPv4 DNS address
- 6. IPv6 link local address
- 7. IPv6 DNS address
- 8. tun_script_param associated to UE
- 9. APN/DNN name

followed by those optional informations:

- -cid <CID> PDN connection ID associated to pdn_connect command
- -mtu <MTU size> Interface MTU size

A sample script is provided: ue-ifup.

It configures a network namespace for each UE.

As a result you can set IP traffic this way:

ip netns exec <UE ID> ping 192.168.3.1

If no script is given, no virtual network interface is created.

If rue_addr is set, this parameter will be forwarded to remote UE server.

When this mode is on, only ext_app simulation is available.

tun_script_param

Optional string. Parameter passed to tun_setup_script for this UE.

tun_ifname

Optional string. If tun_setup_script is set, defines the name of the TUN interface for the first PDN. The TUN interface may have been created outside of the program.

rue_addr Optional string. Address of remote UE server. See [Remote UE], page 91. Default port is 2152.

Note that tun_setup_script is mandatory.

sim_events

Array of object. Each element defines a remote API request ([Remote API], page 59) except that message field is replaced by event.

ue_id is implicitely set to this UE so that the message may apply to it.

sim_events_loop_count

If set, will define loop_count for each event of sim_events, See [loop_count], page 60.

sim_events_loop_delay

If set, will define loop_delay for each event of sim_events, See [loop_delay], page 60.

sim_ip_remote_addr

Optional string. Defines default server address for IP simulation events

attach_request_with_dummy_guti

Optional boolean (default = false). If true, attach procedure will be done with a dummy GUTI instead of IMSI.

emergency_attach

Optional boolean (default = false). If true, attach procedure will be for emergency services.

imei_attach

Optional boolean (default = false). If true, attach procedure will be done with an IMEI instead of an IMSI.

ue_usage_setting

Optional enumeration: none, voice, data (default = data). Sets the UE usage setting as defined in 3GPP TS 24.008 chapter 10.5.5.28 and 3GPP TS 24.501 chapter 9.11.3.55.

voice_domain_preference_eutran

Optional enumeration: cs_only, ims_ps_only, cs_preferred, ims_ps_preferred (default = ims_ps_only). Sets the voice domain preference for E-UTRAN as defined in 3GPP TS 24.008 chapter 10.5.5.28.

cp_ciot_opt

Optional boolean (default = false). If true, enable control plane CIoT optimization support. It can be used if the network supports it.

cp_edt Optional boolean (default = false). If true and control plane CIoT is supported, enable CP-EDT support.

attach_without_pdn

Optional boolean (default = false). If true;

For LTE, enable attach without PDN for data transfer via SMS. It can be used if the network supports it.

For 5G, the UE will not set the Follow-On request bit in the initial registration message and will not request any PDU session establishment, unless a call to pdn_connect is performed.

attach_pdn_type

Optional enumeration: ipv4, ipv6, ipv4v6, unstructured, ethernet (default = ipv4v6).

For LTE, selects the PDN type for the PDN connectivity request message piggy-backed in attach request.

For 5G, selects the PDU session type for the PDU session establishment request

sent after the UE registration.

Note that IPv6 and Ethernet require the use of the tun interface.

attach_pdn_ims

Optional boolean (default = false). Specifies if the PDN connectivity request message piggybacked in attach request or the first PDU session establishment request sent after the UE registration is for IMS or not.

combined_eps_imsi_attach

Optional boolean (default = false). If true, attach procedure type will use combined EPS/IMSI.

sms_centre_address

Optional object used to configure the SMS centre address. Contains the following parameters:

type_of_number

Optional enumeration "unknown", "international", "national" (default = "unknown"). SMS centre address type of number.

numbering_plan

Optional enumeration "unknown", "national", "private" (default = "unknown"). SMS centre address numbering plan identification.

number String. Contains optional '+' at first position followed by a maximum of 20 digits. SMS centre address number.

use_security_context_for_registration

Optional boolen (default = true). If false, the UE will never use its current security context for the EMM attach request or initial 5GMM registration request message.

eutra_voice_support

Optional boolean (default = true). If true, UE declares voice support in EUTRA RRC capabilities.

nr_voice_support

Optional boolean (default = true). If true, UE declares voice support in NR RRC capabilities.

lpp_support

Optional boolean (default = true). Indicates the support of LPP in the UE.

cipher_algo_bitmap

Optional integer (default = 0xe0). Defines the ciphering algorithms advertised by the UE in the NAS UE Network Capability information element. The coding of the field is per 3GPP TS 24.301 chapter 9.9.3.34: most significant bit is for EEA0/5G-EA0, followed by EEA1/5G-EA1, EEA2/5G-EA2 and EEA3/5G-EA3.

If encryption is necessary, AES (EEA2/5G-EA2) would give the best performance if your CPU supports the AES NI Intel instruction set (use "grep -o aes /proc/cpuinfo" in Linux to see if AES is displayed). In this case, it is recommended to configure the network to use EEA2. Alternatively, the EEA2 usage could be forced at the network side by setting the supported algorithms to EEA0 and EEA2 in the bitmap, if there is no other solution.

integ_algo_bitmap

Optional integer (default = 0xe0). Defines the integrity algorithms advertised by the UE in the NAS UE Network Capability information element. The coding of the field

is per 3GPP TS 24.301 chapter 9.9.3.34: most significant bit is for EIA0/5G-IA0, followed by EIA1/5G-IA1, EIA2/5G-IA2 and EIA3/5G-IA3.

For best performance, use AES (EIA2/5G-IA2) if your CPU supports the AES NI Intel instruction set (use "grep -o aes /proc/cpuinfo" in Linux to see if AES is displayed). In this case, it is recommended to configure the network to use EIA2. Alternatively, the EIA2 usage could be forced at the network side by setting the supported algorithms to EIA0 and EIA2 in the bitmap, if there is no other solution.

cell_index

Optional integer. Defines the cell index (index of the object in the cells array) to be used for the initial cell selection. If rrc_initial_selection is set to true, cell_index is ignored.

rrc_initial_selection

Optional boolean (default = true). It set to true, RRC initial cell selection according to 3GPP 36.304 and 38.304 is performed and cell_index is ignored.

rrc_sel_resel

Optional boolean (default = true). It set to false, RRC cell selection and reselection according to 3GPP 36.304 and 38.304 are not performed.

ue_count Optional integer (default = 1). Create n user entries by incrementing the IMSI and K. All other properties would stay the same for the UEs. Note that you should as well create the same user entries at the MME side with their corresponding IMSI and K values (For Amarisoft MME, you can use the count parameter).

rsrq_offset

Optional float (default = 0). Add an offset in dB to the measured RSRQ.

apply_ul_mbr

Optional boolean (default = true). If set to true, the UE restricts the UL traffic to the configured non-GBR AMBR or GBR MBR/MFBR.

pdsch_fer

Optional float. Range 0 to 1 (default = 0). If different from zero, simulate a given Frame Error Rate (or BLER) for each PDSCH decoding. The FER is simulated only when the PDSCH are successfully decoded. Note: pdsch_fer overrides the FER coming from the UE channel simulator.

6.6.3.2 LTE specific parameters

dl_category

Optional integer (0 to 15, 20). If present, set the DL UE category for a release 12 UE or for the secondary RAT in a NR UE with s1 mode support. Not all combinations of DL UE category and UL UE category are allowed (see Table 4.1A-6 in 3GPP TS 36.306). DL category 20 is only supported for release 15 UE.

ul_category

Optional integer (0 to 13, 16 to 20). Must be present if dl_category is present. Set the UL UE category for a release 12 UE or for the secondary RAT in a NR UE with s1 mode support. UL category 16 or higher is only supported for release 14 UE.

drx_cycle

Optional integer (32, 64, 128 or 256 for LTE and NR UEs, 32, 64, 128, 256, 512 or 1024 for NB-IOT UEs). If set, the UE indicates a UE specific DRX cycle in the EPS NAS Attach Request or 5GS Registration Request message and uses it for paging monitoring.

sps Optional boolean (default = false). When set to true, the UE indicates semipersistent scheduling support in its capabilities.

tti_bundling

Optional boolean (default = false). When set to true, the UE indicates TTI bundling support in its capabilities. UE with release 12 or higher will also declare support for e-HARQ-Pattern-FDD-r12 and noResourceRestrictionForTTIBundling-r12.

half_duplex

Optional boolean (default = false). Set UE duplex mode.

mbms Optional boolean (default = true). If true, MBMS is enabled.

forced_cqi

Optional integer. Range 0 to 15 (default = -1). If \geq 0, forces the CQI reported to eNB.

forced_ri

Optional integer. Range -1 to 8 (default = 0). If \geq 1 force the Rank Indicator (RI) reported to eNodeB. 0 indicates to compute the RI (currently it is always set to the maximum number of layers determined from the transmission mode, number of downlink antennas and UE capabilities). -1 forces the RI to cycle between 1 and the maximum number of layers.

forced_pmi

Optional integer. Range -1 to 15 (default = -1). If >= 0, force the Precoding Matrix Indicator (PMI) in the CSI reports. Otherwise the PMI is randomly selected.

max_mimo_layers_dl

Optional integer (default = 0). Range 0 to 8. If != 0, the maximum number of DL MIMO layers in the UE capabilities is set to min(max_mimo_layers_dl, n_antenna_dl).

random_ap_subband_cqi

Optional boolean (default = false). If true, send random aperiodic subband CQI (reporting modes 3-0 and 3-1). The wideband CQI is not random.

random_ap_subband_pmi

Optional boolean (default = false). If true, send random aperiodic subband PMI (reporting mode 1-2). The wideband PMI is not random.

forced_ce_level

Optional integer. Range -1 to 3 (default = -1). If \geq 0, force the coverage extension level (UE Category M1 or NB-IoT only).

6.6.3.3 NB-IoT specific parameters

multi_tone

Optional boolean (default = true). If true, UE declares support for multi tone.

multi_carrier

Optional boolean (default = false). If true, UE declares support for multi carriers. This option is only compatible in UE simulation mode (multi_ue:true).

bandwidth or sample_rate should be large enough to fit the the expected non-anchor carriers around the anchor carrier. There is no need to specify the DL/UL EARFCN of the non anchor carriers. If the UE is also release 14 or higher, NPRACH and paging on non anchor carrier is supported.

two_harq Optional boolean (default = false). If true, UE declares support for two HARQ processes (NB-IoT category NB2 only).

interf_rnd

Optional boolean (default = false). If true, UE declares support for interference randomisation feature (NB-IoT Rel 14 only). If UE declares multi carrier support, the value defaults to true.

6.6.3.4 NR specific parameters

en_dc_support

Optional boolean (default = false). Activates EN-DC support to perform 5G NSA. Need at least as_release 15 and ue_category 1.

n1_support

Optional boolean applicable to a LTE UE only (default = false). Activates the N1 mode in the UE.

s1_support

Optional boolean applicable to a NR UE only (default = false). Activates the S1 mode in the UE.

srb3_support

Optional boolean (default = false). Activates SRB3 support for EN-DC UEs.

rrc_inactive_support

Optional boolean (default = false). Activates RRC Inactive mode support (SA only).

sul_support

Optional boolean (default = false). Activates Supplementary Uplink support. The cell used as supplementary uplink should be defined in the NR cell_group and transmit at least a valid SSB, similarly to carrier aggregation operation. multi_ue also needs to be set to true.

uplink_tx_switch_option

Optional enumeration: none, switched, dual, both (default = none). If set different from none and if ul_ca is false, the UE will advertise Uplink Tx Switch band combinations and set the corresponding value for uplinkTxSwitching-OptionSupport-r16.

ecc_params

Optional object. Set the parameters used for concealing the subscription permanent identifier (SA only).

scheme Optional enumeration: null, A, B (default = null). Set the protection scheme.

home_nw_public_key

Conditional string. Shall be absent if scheme is null, and present otherwise. Set the home network public key. Length shall be 32 bytes for profile A and 33 for profile B.

home_nw_public_key_id

Integer in range 0 to 255. Set the home network public key identifier related to the provided home network public key. Value 0 is only valid for null scheme protection.

routing_indicator

Optional string (default = "0"). 1 to 4 numerical digits. Set the home network routing indicator.

nr_forced_cqi

Optional integer. Range 0 to 15 (default = -1). If \geq 0, forces the CQI reported in the CSI reports.

nr_forced_ri

Optional integer. Range -1 to 8 (default = 0). If \geq 1 force the Rank Indicator (RI) in the CSI reports.

nr_forced_pmi_i1

Optional integer (default = -1). If $\geq = 0$, force the Precoding Matrix Indicator i1 in the CSI reports. The subparts of the i1 (i1_1, i1_2 and i1_3) are extracted from the value and cropped accordingly based on the network-configured codebook and reported rank indicator.

nr_forced_pmi_i2

Optional integer (default = -1). If ≥ 0 , force the Precoding Matrix Indicator i2 in the CSI reports.

nr_forced_li

Optional integer (default = -1). If >= 0, force the Layer Indicator in the CSI reports with CRI_RI_LI_PMI_CQI report quantity.

nr_max_mimo_layers_dl

Optional integer (default = 0). Range 0 to 8. If !=0, the maximum number of DL MIMO layers in the UE capabilities is set to min(nr_max_mimo_layers_dl, n_antenna_dl).

nr_max_mimo_layers_ul

Optional integer (default = 0). Range 0 to 8. If != 0, the maximum number of UL MIMO layers in the UE capabilities is set to min(nr_max_mimo_layers_ul, n_antenna_ul).

ptrs_density_recommendation_dl

Optional object. Specify the ptrs-DensityRecommendationSetDL NR UE RRC capability for all the supported bands. The following object properties are defined:

frequency_density

Optional array of 2 integers (default = [1, 176]).

time_density

Optional array of 3 integers (default = [0, 0, 0]).

default_pdu_session_snssai

Optional object (SA only). S-NSSAI provided by the UE during the establishment of the default PDU session.

If not present, no S-NSSAI is provided.

sst Integer (range 0-255). Slice Service Type.

sd Optional integer (range 0-0xFFFFFE). Slice Differentiator.

default_nssai

Optional array (SA only). Default configured NSSAI as defined in 3GPP TS 23.501. Each entry will set a S-NSSAI value as defined below:

See [default_pdu_session_snssai], page 44,

snssai_credentials

Optional array (SA only). Each entry will set the credentials of a given S-NSSAI as defined below:

snssai S-NSSAI value. See [default_pdu_session_snssai], page 44,

username String (up to 100 characters) containing the user name used for NSSAA.

password String (up to 100 characters) containing the password used for NSSAA.

eap_tls Optional object applicable to SA only. Shall be present if EAP-TLS method is supported by the UE.

It contains the following objects:

certificate

Define the user certificate filename.

private_key

Define the user private key filename.

ca_certificate

Define the CA certificate filename. It contains a list of root certificates to authenticate the server.

snpn_access_mode

Optional boolean applicable to SA only (default = false). Activates the SNPN mode in the UE. This mode is configurable dynamically when the UE is powered off using the remote api config_set.

allowed_snpn

Optional object (SA only). Set the SNPN id to select in SNPN mode.

plmn String (5 or 6 digits).

nid Network Identifier as defined in 23.003 12.7 Stand-Alone Non-Public Network Identifier. Contains the following parameters:

value String (10 hexadecimal digits). NID value.

assignment_mode

Optional enumeration ("self", "coordinated_1", "coordinated_2"). Default value is "self".

cag_info_list

Optional array (SA only). Preconfigured CAG information list as defined in 3GPP TS 23.501 5.30.3.3 UE configuration. Each element of the array contains:

plmn String (5 or 6 digits).

cag_id_list

Array of 1 to 12 integers (range 0 to 4294967295) giving the list of the allowed CAG-Identifiers.

cag_only_ind

Optional boolean (default = false). Indication that the UE is only allowed to access 5GS via CAG cells.

redcap Optional enumeration (normal redcap, eredcap). Set the UE type in SA. The as_release needs to be at least 17 for redcap and 18 for eredcap.

eredcap_reduced_bb_bw

Optional boolean (default = true). Defines if the eRedCap UE is with reduced baseband bandwidth or not.

half_duplex

Optional boolean (default = false). Set a RedCap UE as half-duplex. Value is ignored if redcap is not set.

6.6.4 Power control

The following parameter control the UE power:

power_control_enabled

Optional boolean. If set, UE power control is enabled. The uplink messages are transmitted with the power specified by the standard.

The default value of power_control_enabled is true if the UE channel simulator is enabled and otherwise false.

If the UE power control is disabled, the uplink messages are transmitted with a constant EPRE (Energy Per Resource Element) = EPRE_max determined by tx_gain_offset (digital gain) and [tx_gain], page 23, (RF interface TX gain).

When the UE power control is enabled, the EPRE (Energy Per Resource Element) is limited by EPRE_max so that there is no digital saturation even if the uplink bandwidth is shared between several UEs.

The sat column of the t g monitor command counts the number of times the UE simulator had to limit the TX power of an uplink signal (e.g. PUCCH or PUSCH) to EPRE_max. It indicates that the actual UE TX power was lower than the specified one.

power

Optional float (only meaningful if UE power control is enabled). Set the maximum UE transmit power in dBm. The default value is 23 dBm.

Note that the actual maximum TX power may be lower because of the limited power of the RF interface and because of the uplink EPRE limitation (see the power_control_enabled parameter).

power_min

Optional float (default = -40) (only meaningful if UE power control is enabled). Set the minimum UE transmit power in dBm.

6.6.5 RF test mode

The following parameters configure the UE RF test mode:

test_mode

Optional Object. If present, enable the UE RF test mode. In this mode, the UE automatically goes to RRC connected mode with a default configuration after acquiring the System Information. Then it listens to PDCCH to initiate PDSCH or PUSCH transmissions. It also transmits PUCCH ACK/NACK and listens to PHICH.

The following properties are available for LTE UEs:

rnti Integer. Range 0 to 65535. Select the C-RNTI.

trans_mode

Integer. (LTE only) Range 1 to 9. Select the PDSCH transmission mode.

d1_256qam

Optional boolean. (LTE only) Enable the DL 256QAM MCS table.

The following properties are available for NB-IoT UEs:

rnti Integer. Range 0 to 65535. Select the C-RNTI.

npdcch_uss_n_rep_max

Integer. Range: 1 to 2048. Maximum number of repetition for the User Search Space (USS) NPDCCH.

npdcch_uss_start_sf

Enumeration: 1.5, 2, 4, 8, 16, 32, 48, 64. Used to compute of the period of the USS NPDCCH by multiplying it to npdcch_uss_n_rep_max.

npdcch_uss_offset

Integer. Range: 0 to 3. USS NPDCCH start offset in 8th of the USS NPDCCH period.

ul_sc_spacing

Enumeration: 0, 1. Select the subcarrier spacing used by the UE. 0 = 3.75 KHz subcarriers, 1 = 15 KHz subcarriers.

timing_advance

Integer (0 to 1282). Initial timing advance in 1/1.92 microsecond.

The following properties are available for NR UEs:

rnti Integer. Range 0 to 65535. Select the C-RNTI.

dmrs_type_a_pos

Integer. Range 2 to 3. dmrs-TypeA-Position parameter.

ssb_pos_bitmap

String. SSB position bitmap in bits (4, 8 or 64 bits depending on the DL frequency).

ssb_period

Enumeration (5, 10, 20, 40, 80, 160). SSB periodicity in ms.

pdcch Object containing the following parameters:

rb_start Integer. Range 0 to 274. PDCCH resource block start.

1_crb Integer. PDCCH resource block length.

duration Integer. Range 1 to 3. PDCCH duration.

n_candidates

Array of 5 integers. Enumeration: 0, 1, 2, 3, 4, 5, 6, 8. nrofCandidates parameters for each aggregation level (1, 2, 4, 8, 16).

pdsch Object containing the following parameters:

start_symb

Integer. Range 0 to 3. PDSCH start symbol.

n_symb Optional integer. Range 3 to 14-start_symb, default = 14-start_symb. Number of symbols for PDSCH.

k0 Integer. Range 0 to 3. Delay in slots from DCI to PDSCH.

pucch Object containing the following parameters:

pucch_group_hopping

Enumeration: neither, enable, disable. pucch-GroupHopping parameter.

pusch Object containing the following parameters:

beta_offset_ack_index

Integer. Range 0 to 15.

n_symb Integer. Range 4 to 14. Number of symbols for PUSCH.

tf_precoding

Boolean. Enable transform precoding for PUSCH (only used in DCI 0_1).

k2 Integer. Range 0 to 7. Delay in slots from DCI to PUSCH.

timing_advance

Integer. Range 0 to 4095. Timing advance value in TA units.

6.6.6 SWu and NWu interface

The following parameters configure the SWu interface for communication with ePDG or NWu interface for communication with N3IWF:

n3gpp Option

Optional object. Allow to configure the SWu or the NWu interface. It can contain the following object:

bind_addr

IP address and optional port on which the SWu/NWu connection is bound.

server_addr

ePDG/N3IWF address.

server_certificate

Optional string. Defines the ePDG/N3IWF certificate filename.

esp_duration

Optional integer in range 10 to 5*3600 (default = 300). Gives the duration in seconds of the ESP-Sa.

ike_duration

Optional integer in range 20 to 48*3600 (default = 24*3600). Gives the duration in seconds of the IKE-Sa.

ike_encryption_algo_list

Optional list of IKE-Sa supported encryption algorithms "aes-cbc-128" (AES CBC 128 bits key length), "aes-cbc-192" (AES CBC 192 bits key length), "aes-cbc-256" (AES CBC 256 bits key length), "aes-gcm-128-16" (AES GCM 128 bits key length and 16 bytes ICV), "aes-gcm-256-16" (AES GCM 256 bits key length and 16 bytes ICV), "des", "3des", "blowfish", "aes-ctr-128" (AES CTR 128 bits key length), "aes-ctr-192" (AES CTR 192 bits key length), and aes-ctr-256 (AES CTR 256 bits key length) ordered from most preferred to least preferred.

Default value is ["aes-cbc-128", "aes-cbc-192", "aes-cbc-256", "aes-gcm-128-16", "aes-gcm-256-16", "des", "3des", "blowfish", "aes-ctr-128", "aes-ctr-192", "aes-ctr-256"].

ike_integrity_algo_list

Optional list of IKE-Sa supported integrity algorithms "hmac-sha-1-96", "hmac-sha-1-160", "hmac-sha-256-128", "hmac-sha-384-192, "hmac-sha-512-256", "hmac-md5-96", "hmac-md5-128" and "aes-cmac-96" ordered from most preferred to least preferred.

Default value is ["hmac-sha-1-96", "hmac-sha-1-160", "hmac-sha-256-128", "hmac-sha-384-192", "hmac-sha-512-256", "hmac-md5-96", "hmac-md5-128", "aes-cmac-96"];

ike_prf_list

Optional list of IKE-Sa supported pseudo-random functions "prf-hmac-sha1", "prf-hmac-sha2-256", "prf-hmac-sha2-384",

"prf-hmac-sha2-512", "prf-hmac-md5" and "prf-aes128-xcbc" ordered from most preferred to least preferred.

Default value is ["prf-hmac-sha1", "prf-hmac-sha2-256", "prf-hmac-sha2-384, "prf-hmac-sha2-512", "prf-hmac-md5", "prf-aes128-xcbc"].

ike_dh_group_list

Optional list of IKE-Sa supported Diffie-Hellman groups "group_1", "group_2", "group_5", "group_14", "group_15", "group_16", "group_17", "group_18", "group_19", "group_22", "group_23" and "group_24" ordered from most preferred to least preferred.

Default value is ["group_5", "group_14", "group_15", "group_16", "group_17", "group_18", "group_19", "group_22", "group_23", "group_24"].

esp_encryption_algo_list

Optional list of ESP-Sa supported encryption algorithms "null", "aes-cbc-128" (AES CBC 128 bits key length), "aes-cbc-192" (AES CBC 192 bits key length), "aes-cbc-256" (AES CBC 256 bits key length), "aes-gcm-128-16" (AES GCM 128 bits key length and 16 bytes ICV), "aes-gcm-192-16" (AES GCM 192 bits key length and 16 bytes ICV), "aes-gcm-256-16" (AES GCM 256 bits key length and 16 bytes ICV), "des", "3des", "blowfish", "aes-ctr-128" (AES CTR 128 bits key length), "aes-ctr-192" (AES CTR 192 bits key length), aes-ctr-256 (AES CTR 256 bits key length), "encr-null-auth-aesgmac-128" (ENCR_NULL_AUTH_AES_GMAC 128 bits key length), "encr-null-auth-aes-gmac-192" (ENCR_NULL_AUTH_AES_GMAC 192 key length) "encr-null-auth-aes-gmac-256" bits and (ENCR_NULL_AUTH_AES_GMAC 256 bits key length) ordered from most preferred to least preferred.

Default value is ["null", "aes-cbc-128", "aes-cbc-192", "aes-cbc-256", "aes-gcm-128-16", "aes-gcm-192-16", "aes-gcm-256-16", "des", "3des", "blowfish", "aes-ctr-128", "aes-ctr-192", "aes-ctr-256", "encr-null-auth-aes-gmac-128", "encr-null-auth-aes-gmac-192", "encr-null-auth-aes-gmac-256"].

esp_integrity_algo_list

Optional list of ESP-Sa supported integrity algorithms "null", "hmac-sha-1-96", "hmac-sha-1-160", "hmac-sha-256-128", "hmac-sha-384-192, "hmac-sha-512-256", "hmac-md5-96", "hmac-md5-128" and "aes-cmac-96" ordered from most preferred to least preferred.

esp_dh_group_list

Optional list of ESP-Sa supported Diffie-Hellman groups "none", "group_1", "group_2", "group_5", "group_14", "group_15", "group_16", "group_17", "group_18", "group_19", "group_22", "group_23" and "group_24"ordered from most preferred to least preferred.

This list is used for rekeying ESP-Sa. Default value is ["none", "group_5", "group_14", "group_15", "group_16", "group_17", "group_18", "group_19", "group_22", "group_23" and "group_24"].

multiple_auth_support

Optional boolean (default = false). Indicates if multiple UE authentications is supported in the UE (see 3GPP 33.402 chapter 6.5).

tun_setup_script

Optional string. Set the path of the shell script to set up the virtual network interface (Path can be absolute or relative to config file). Script is called for each PDN with following parameters:

- 1. UE ID
- 2. type (SWU/XWU)
- 3. APN name
- 4. interface name
- 5. IPv4 address
- 6. IPv6 link local address
- 7. remote address

6.7 Channel simulator

6.7.1 Introduction

The UE channel simulator simulates an AWGN or fading channel for each UE. It is available in multi UE mode for LTE or NR UEs.

On the downlink side, depending on the simulated UE path loss and fading model, the channel simulator modifies the PER (Packet Error Rate) of PDSCH and PDCCH and updates the measured RSRP and CSI. On the uplink side, the signal level is modified according to the path loss and the fading model is applied.

The path loss of each UE is computed according to the corresponding UE and cell positions and the channel and antenna models.

The channel simulator is enabled with the global channel_sim parameter. It can optionally be disabled with the per-UE parameter channel_sim parameter.

6.7.2 Per cell parameters

When the channel simulator is enabled, the following additional parameters may be specified for each cell:

n_antenna_dl

Optional integer (default = 1). Set the number of simulated UE downlink antennas.

n_antenna_ul

Optional integer (default = 1). Set the number of simulated UE uplink antennas.

n_antenna_dl_rf

Optional integer (default = n_antenna_dl). Specifies the number of eNB/gNB DL RF antennas for this cell. For LTE cells, it is usually equal to the number of PBCH antennas. When using a parabolic_panel antenna, it must be equal to (p*n1*n2).

n_antenna_ul_rf

Optional integer (default = $n_antenna_ul$). Specifies the number of eNB/gNB UL RF antennas for this cell. When using a parabolic_panel antenna, it must be equal to (p*n1*n2).

position Array of 1 to 3 floats. X, Y and Z coordinates of the cell antenna, in meters. If less than 3 elements are provided, the remaining coordinates are set to zero. For

the satellite antenna type, the position corresponds to the beam center on the ground.

antenna Object. Cell antenna parameters:

Object. Cen antenna parameters

type

Enumeration: isotropic, parabolic, parabolic_panel, satellite. An isotropic antenna radiates the same intensity in all directions. A parabolic antenna sends a beam in a given direction (attenuation in dB = min(max_attenuation, 12*(phi/beam_width)^2) where phi is the radiation angle. A parabolic_panel antenna is the same as a parabolic antenna except that it has several N1 antenna elements in the Y direction, N2 antenna elements in the Z direction and P polarisation channels per antenna elements. See 3GPP TR 38.901 section 7.3 for more information. A satellite antenna emulates a satellite link for NTN operation and is valid only for a NR cell.

attenuation

Optional enumeration (urban, vacuum, atmospheric, custom, custom_freq). Set the propagation loss model. It must be provided for the satellite antenna. For the other antenna types it is set to urban by default. The following values are available:

urban

The path loss in dB is computed from the 3GPP urban model as A + B * log10(d) where d is the distance in meters between the UE and the cell antenna, A = 15.3 and B = 37.6.

custom Same as urban except than A and B can be set.

custom_freq

Same as custom with an additional frequency term. The path loss is defined as A + B * log10(d) + 20 * log10(f) where f is the downlink frequency in Hz.

vacuum

Free space path loss depending only on the downlink frequency and distance.

atmospheric

Only available for satellite. Same as vacuum but with an additional atmospheric attenuation term depending on the satellite elevation.

attenuation_A attenuation_B

Optional float. Parameters for the custom and custom_freq attenuation

The following parameters are for the parabolic, parabolic_panel and satellite antennas:

max_attenuation

Optional float (default = 20). Maximum attenuation in dB when the UE is out of the beam coverage

The following parameters are for the parabolic and parabolic_panel antennas:

beam_width

Optional float (default = 70). Horizontal beam half-width in degrees.

vertical_beam_width

Optional float (default = 70). Vertical beam half-width in degrees.

orientation

Float (range = -180 to 180). Orientation of the antenna in the X-Y plane in degrees.

elevation

Optional float (range = -90 to 90, default = 0). Elevation of the antenna in degrees.

The following parameters are for the parabolic_panel antenna:

- n1 Integer. Number of antenna elements in the Y direction.
- n2 Optional integer (default = 1). Number of antenna elements in the Z direction.
- p Optional integer (range = 1 to 2, default = 2). Number of polarisation channels per antenna element.
- d1 Optional float (default = 0.5). Distance between the antenna elements in the Y direction in wavelength units.
- d2 Optional float (default = 0.5). Distance between the antenna elements in the Z direction in wavelength units.

The RF channel index c corresponding to an antenna element can be computed as c=(k*n2+j)*n1+i with $0 \le i \le n1$, $0 \le j \le n2$, $0 \le k \le p$ and $0 \le c \le p*n2*n1$. i is the antenna element index in the Y direction, j is the antenna element index in the Z direction and k is the index of the polarisation channel.

The following parameters are for the satellite antenna:

beam_width

Optional float (default = 5). Conical beam half-width in degrees.

ephemeris_from_sib

Optional boolean (default = true). If true, the satellite orbit will be determined based on SIB19 reception. If false, the orbit information needs to be explicitly given by the tle_filename or ephemeris parameters.

tle_filename

Optional string. If ephemeris_from_sib is false, specifies a TLE file to describe satellite orbit.

ephemeris

Optional object. If ephemeris_from_sib is false and tle_filename is absent, this parameter describes explicitly the orbital elements of the satellite. The ephemeris configuration is understood in a fixed ECI reference frame aligned with the J2000 vernal equinox, like a TLE configuration.

Contains the following parameters:

eccentricity

Float value. Range 0 to 0.99. Eccentricity, unitless

inclination

Float value. Range 0 to π . Inclination, in radians. Value between $\pi/2$ and π will be encoded as $-\pi/2$ to -1 in RRC ASN.1 representation.

semi_major_axis

Float value. Semi-major axis, in meters.

longitude

Float value. Range 0 to 2π . Longitude of the ascending node, in radians.

periapsis

Float value. Range 0 to 2π . Argument of periapsis, in radians.

anomaly Float value. Range 0 to 2π . Mean anomaly of the satellite on its orbit at epoch, in radians.

epoch Optional string. Epoch for the anomaly parameter, formatted "YYYY-MM-DDTHH:MM:SS[.mmm]" (ISO 8601 format) in UTC time.

feeder_position

Optional object to specify the coordinate of the feeder link ground station. If not set, it is assumed that the feeder link ground station is located at cell position parameter. The feeder link ground position is used to compute the full delay of the satellite link (service link + feeder link).

Contains the following parameters:

latitude Float value. Range -90 to 90. Degrees of latitude.

longitude

Float value. Range -180 to 180. Degrees of longitude.

altitude Optional float value (default = 0). Range -1000m to 20km. Altitude in meters.

gain

Optional float (default 0.0). Configures the directional gain (in dBi) of the satellite antenna. Any additional directional gain on the UE side antenna can also be added.

ref_signal_power

Float. Reference signal power in dBm. Should normally have the same value as SIB2.referenceSignalPower (LTE) or SIB1.ss-PBCH-BlockPower (NR).

ul_power_attenuation

Float. Real uplink analog attenuation (in dB) actually present between the UE simulator and the eNodeB. It is used to compute the TX power of each UE TX message so that the eNodeB receives them at the power level computed by the channel simulator.

The UE TX power is calculated as

pTX = p0 - path_loss + ul_power_attenuation

where p0 is the simulated TX power (as per 3GPP power control) and path_loss is calculated by channel simulator.

The ul_power_attenuation should be set low enough so that there is no power saturation and high enough so that the DAC range of the RF interface is correctly used.

The ul_power_attenuation should be lowered until there is no saturation in the sat column of the t g monitor command while the virtual UEs are transmitting. The sat column counts the number of times the UE simulator had to limit the TX power of an uplink signal (e.g. PUCCH or PUSCH) so that it does not give a

saturated output on the DAC. These saturations do not degrade the signal like the saturations at the sample level (see t spl monitor command) but they indicate that the UE received power at the eNodeB will be lower than expected by the channel simulator.

The same can be achieved with the [tx_gain], page 23, the tx_gain should be set high enough so that there is no power saturation (higher analog power requires less digital power) and low enough so that the DAC range of the RF interface is correctly used.

With the PCIe SDR board, it is suggested to start with a tx_gain at maximum value (90 dB) and 60 dB analog attenuation. The actual value depends on the simulated UE path loss.

delay_sim

Optional boolean (default = true). When the UE channel simulator is enabled, select whether the propagation delays are simulated. They are computed according to the distance between the UE and the cell antenna. The propagation delay is simulated by adding a cyclic shift to the corresponding uplink signal.

6.7.3 Per UE parameters

When the channel simulator is enabled, the following additional parameters may be specified for each UE:

channel_sim

Optional boolean. If group channel_sim parameter is set, allow to override its value on a UE basis.

position Array of 1 to 3 floats. X, Y and Z coordinates of the UE in meters. If less than 3 elements are provided, the remaining coordinates are set to zero.

initial_radius

Optional float (default = 0). If larger than zero, set the UE position randomly in a disc of initial_radius meters centered on position.

speed Optional float (default = 0). UE speed in kilometers per hour.

direction

Optional float (default = 0). the UE speed vector direction in degrees.

elevation

Optional float (default = 0). the UE speed vector elevation in degrees.

noise_spd

Optional float (default = -174). Noise spectral density in dBm/Hz.

min_distance

Optional float. If set, when UE is moving and its distance to origin is less than this value, UE will bounce according to bounce parameter.

max_distance

Optional float. If set, when UE is moving and its distance to origin is more than this value, UE will bounce according to bounce parameter.

bounce Optional string (default = random). Defines bouncing mode when min_distance or max_distance are reached.

Mode	Descri	ption	
random	Get	back	
	with	a	
	random		
	angle		
back	Get	back	
	in opp	osite	
	direction		
normal	Get	back	
	while		
	mainta	ining	
	the	same	
	angle t	to the	
	normal		

channel

Object. Parameters of the downlink channel. If ul_channel is not present, the same parameters are used for the uplink channel. Each UE has separate uplink and downlink channel simulator instance to each connected cell. The following properties are available:

type Simulated channel type:

\mathbf{Type}	Description
awgn	Additive White Gaussian Noise channel. When there are
	more than one input or output antennas, the channel ma-
	trix $a_{i,j}$ is set such as $a_{i,i \mod n_{tx}} = 1$.
epa	Extended Pedestrian A model from 3GPP TS 36.101.
eva	Extended Vehicular A model from 3GPP TS 36.101.
etu	Extended Typical Urban model from 3GPP TS 36.101.
mbsfn	MBSFN channel from 3GPP TS 36.101.
tdla30	TDLA30 channel from 3GPP TS 38.141 (TDLA with 30
	ns delay spread).
tdlb100	TDLB100 channel from 3GPP TS 38.141 (TDLB with 100
	ns delay spread).
tdlc300	TDLC300 channel from 3GPP TS 38.141 (TDLC with 300
	ns delay spread).
tdla, tdlb,	TDL channels from 3GPP TS 38.901 section 7.7.2. Note
tdlc, tdld	that the TDL channels from 3GPP TS 38.141 slightly differ
or tdle	from the ones defined in 3GPP TS 38.901 when using the
	same delay spread.

freq_doppler

Optional float. For non AWGN channels, sets the doppler frequency, in Hz. Note that is has no relation with the configured UE speed which is only used to update the UE position.

delay_spread

Set the delay spread in ns for TDL channels (tdla, tdlb, tdlc, tdld and tdle).

mimo_correlation

Optional enumeration. Set the MIMO correlation matrix for non AWGN channels.

Allowed values:

Value	Description
low	Low correlation matrix (identity matrix)
	(3GPP TS 36.101 section B.2.3.2).
medium	Medium correlation matrix with uniform
	linear array (3GPP TS 36.101 section
	B.2.3.2).
high	High correlation matrix with uniform
	linear array (3GPP TS 36.101 section
	B.2.3.2).
$cross_pol_medium$	Medium correlation matrix with cross po-
	larized antennas (3GPP TS 38.101-4 sec-
	tion B.2.3.2).
cross_pol_high	High correlation matrix with cross polar-
	ized antennas (3GPP TS 38.101-4 section
	B.2.3.2).
Ontional float (defai	alt = 15.3

A Optional float (default = 15.3)

Optional float (default = 37.6). If A or B are provided, the UE path loss in dB is computed as A + B * log10(d) where d is the distance in meters between the UE and the cell antenna. Otherwise, the UE path loss is computed from the cell antenna attenuation parameter.

ul_channel

В

Optional object. If present, specifies the parameters of the uplink channel. Otherwise the uplink channel has the same parameters as the downlink channel. This object contains the properties type, freq_doppler and mimo_correlation with the same definition as in the channel object.

DL and UL channel reciprocity on TDD NR serving cells is enabled provided the following conditions are met:

- ul_channel is not present
- n_antenna_ul is less or equal to n_antenna_dl
- n_antenna_ul_rf is equal to n_antenna_dl_rf

When channel reciprocity is enabled, SRS antenna switching is accurately simulated.

When channel reciprocity is not enabled or when the UE channel simulator is not used, SRS configured with antenna switching are sent to the n-th UL antenna assuming the UL antennas are connected to the same cables as the DL antennas so that they share the same channel propagation. In this case, SRS antenna switching can only be accurately simulated if n_antenna_ul is equal to n_antenna_dl.

6.7.4 Known limitations and implementation details

- The fading channels are implemented in the frequency domain. Hence the channel simulation is accurate only if the doppler frequency (freq_doppler) is small regarding to the subcarrier spacing.
- For the uplink, the channel is not modified between the symbol repetitions of a given PRACH.
- For the downlink, the PER of the PDCCH is currently computed assuming an AWGN channel. However the fading channel is accurately modeled for PDSCH and CSI measurements.

 In LTE, the PDSCH PER for UE specific transmission modes (TM7/TM8/TM9/TM10) is not accurately modeled. For TM9/TM10, the CSI measurement is currently modeled from the CRS (cell reference signal) instead of the CSI-RS.

7 CPU/Cores configuration

For optimal performances LTEUE will use multiple cores. Those cores can be spread on multiple CPUs (Multi socket) as long as Linux operating system makes them available.

By default, LTEUE will try to find the most suitable amount of necessary cores depending on the total number of available cores and the desired radio configuration (Mainly depending on number of cells, on their bandwidth and number of antenna).

For optimization purpose, this can be manually defined as explained in this chapter.

7.1 Hyperthreading

We strongly recommend to disable CPU hyperthreading.

The main reason is that LTEUE is memory intensive and any process running on a twin of a core used by the process may steal its cache resources, leading to performance degradation.

If you use Amarisoft automatic installation, you should disable it during the installation process.

For optimal performances, you may disable hyperthreading in the BIOS.

If you want to keep hyperthreading on for other processes, you may configure Linux to avoid scheduling other processes on the twin of the cores used by LTEUE using core isolation.

7.2 Core restriction cores

LTEUE will restrict its core usage to the list of cores affected to the process by the OS at startup.

If the process is launch with a dedicated core list, such as what tasket program will do, the software relies on it and will tries to use only specified cores.

In the case where cores would have been isolated by kernel at boot time, those cores won't be used by default.

If you want to use them, you will need to use taskset program (or equivalent) to prevent this restriction.

7.3 Affinity

You can force core affinity of the process externaly (Ex: using taskset program) or use cpu_core_list array.

Each element will represent cores to use or not, with following syntax:

Number Represent the core index to use (Same as processor information in /proc/cpuinfo). String

String	Description
<a>>	where <a> is a number, represents the core index to use.
*	all cores (excluding hyperthreaded twins) will be added to
	the list.
numa <n></n>	all cores related to NUMA node <n> will be added</n>
<a>-	all cores between core index <a> and core index (in-
	cluded) will be added. can be "last" representing the
	index of the last core

!<cores> remove all the cores defined by <core> where <code> can have the other string syntax defined above.

By default, only non hyperthreaded cores will be used. To select hyperthreaded core twins, use number syntax or start string by "ht:".

Ex: "ht:*" will select all cores including hyperthreaded twins.

The cpu_core_list can be defined at top level of your configuration file to force the global affinity of the process or for dedicated sections.

Examples:

Let's assume we have a CPU with 8 hyperthreaded cores (16 logical cores).

```
cpu_core_list: ["*", "!4"]
  Will assign cores 0, 1, 2, 3, 5, 6 and 7
cpu_core_list: ["5-last", "ht:12-last"]
  Will assign cores 5, 6, 7, 12, 13, 14, 15
```

7.4 Memory

On NUMA (Non Uniform Memory Access) CPU architecture, you may improve performances by assigning NUMA nodes to different digital processing engines.

This is the case when you have multiple sockets on your motherboard or with AMD processor. Note that by default NUMA nodes are hidden by BIOS to the OS so you may change your BIOS configuration to use them.

For each digital processing engine, you should assign NUMA nodes for memory and for core affinity that has the shortest path.

In other words, when you affect cores to a DSP engine, you should ensure that the assigned cores are located on the fewest NUMA nodes possible and if needed select manually your NUMA node for memory (See [cpu_numa_list], page 31).

As the DSP engine communicates huge amount of memory to the radio frontend, you may select same NUMA nodes as your radio frontend.

If you use Amarisoft PCIe radio frontends, you can check which NUMA node is used by checking kernel traces (dmesg) when inserting kernel driver.

Ex:

sdr PCI device 6c:00.0 assigned to minor 5, type=RF_SDR100_Slave (rev 1) numa=1 dma:1ch 64b

8 Remote API

You can access LTEUE via a remote API.

Protocol used is WebSocket as defined in RFC 6455 (https://tools.ietf.org/html/rfc6455).

Note that Origin header is mandatory for the server to accept connections.

This behavior is determined by the use of nopoll library.

Any value will be accepted.

To learn how to use it, you can refer to our the following tutorial (https://tech-academy.amarisoft.com/RemoteAPI.html).

8.1 Messages

Messages exchanged between client and LTEUE server are in strict JSON format.

Each message is represented by an object. Multiple message can be sent to server using an array of message objects.

Time and delay values are floating number in seconds.

There are 3 types of messages:

• Request

Message sent by client.

Common definition:

message String. Represent type of message. This parameter is mandatory and depending on its value, other parameters will apply.

message_id

Optional any type. If set, response sent by the server to this message will have same message_id. This is used to identify response as WebSocket does not provide such a concept.

start_time

Optional float. Represent the delay before executing the message.

If not set, the message is executed when received.

absolute_time

Optional boolean (default = false). If set, start_time is interpreted as absolute.

You can get current clock of system using time member of any response.

standalone

Optional boolean (default = false). If set, message will survive WebSocket disconnection, else, if socket is disconnected before end of processing, the message will be cancelled.

loop_count

Optional integer (default = 0, max = 1000000). If set, message will be repeated loop_count time(s) after loop_delay (From message beginning of event). Response will have a loop_index to indicate iteration number.

```
loop_delay
              Optional number (min = 0.1, max = 86400). Delay in seconds to repeat message
              from its start_time. Mandatory when loop_count is set > 0.
• Response
  Message sent by server after any request message as been processed.
  Common definition:
  message
             String. Same as request.
  message_id
              Optional any type. Same as in request.
              Number representing time in seconds since start of the process.
  time
              Usefull to send command with absolute time.
              Number representing UTC seconds.
  utc
• Events
  Message sent by server on its own initiative.
  Common definition:
             String. Event name.
  message
             Number representing time in seconds.
  time
```

Usefull to send command with absolute time.

If authentication is not set, message will be ready:

8.2 Startup

When WebSocket connections is setup, LTEUE will send a first message with name set to com_name and type set to UE.

```
"message": "ready",
         "type": "UE",
          "name": <com_name>,
          "version": <software version>,
          "product": <Amarisoft product name (optional)>
  If authentication is set, message will be authenticate:
          "message": "authenticate",
         "type": "UE",
          "name": <com_name>,
          "challenge": <random challenge>
  To authenticate, the client must answer with a authenticate message and a res parameter
where:
     res = HMAC-SHA256( "<type>:<password>:<name>", "<challenge>" )
  res is a string and HMAC-SHA256 refers to the standard algorithm (https://en.
wikipedia.org/wiki/HMAC)
  If the authentication succeeds, the response will have a ready field set to true.
     {
          "message": "authenticate",
```

```
"message_id": <message id>,
    "ready": true
}

If authentication fails, the response will have an error field and will provide a new challenge.
{
    "message": "authenticate",
    "message_id": <message id>,
    "error": <error message>,
    "type": "UE",
    "name: <name>,
    "challenge": <new random challenge>
}
```

If any other message is sent before authentication succeeds, the error "Authentication not done" will be sent as a response.

8.3 Errors

If a message produces an error, response will have an error string field representing the error.

8.4 Sample nodejs program

You will find in this documentation a sample program: ws.js.

It is located in doc subdirectory.

This is a nodejs program that allow to send message to LTEUE.

It requires nodejs to be installed:

```
dnf install nodejs npm
npm install nodejs-websocket
```

Use relevant package manager instead of NPM depending on your Linux distribution.

Then simply start it with server name and message you want to send:

```
./ws.js 127.0.0.1:9002 '{"message": "config_get"}'
```

8.5 Common messages

```
config_get
```

Retrieve current config.

Response definition:

```
type Always "UE"
```

name String representing server name.

logs Object representing log configuration.

With following elements:

layers Object. Each member of the object represent a log layer configuration:

layer name

Object. The member name represent log layer name and parameters are:

level See [log_options], page 22,

	max_size	See [log_options], page 22,	
	key	See [log_options], page 22,	
	crypto	See [log_options], page 22,	
	payload	See [log_options], page 22,	
	rep	Optional boolean. [log_options], page 22,	See
	dci_size	Optional boolean. [log_options], page 22,	See
	csi	Optional boolean. [log_options], page 22,	See
	cell_meas		
		Optional boolean. [log_options], page 22,	See
	cch	Optional boolean. [log_options], page 22,	See
	ntn	Optional boolean. [log_options], page 22,	See
	plmn	Optional boolean. [log_options], page 22,	See
	signal	Optional boolean. [log_options], page 22,	See
\T	ban af bu	fforigan lang	

count Number. Number of bufferizer logs.

rotate Optional number. Max log file size before rotation.

rotate_count

Optional number. Max log count before rotation.

path Optional string. Log rotation path.

bcch Boolean. True if BCCH dump is enabled (eNB only).

mib Boolean. True if MIB dump is enabled (eNB only).

locked Optional boolean. If true, logs configuration can't be changed with config_set API.

Cells Object. List of objects (numbered by cell index) containing the following members:

pci Optional integer. Physical cell ID. Not present if the cell is not synchronized.

dl_earfcn

Integer. Downlink EARFCN.

mode Optional numeration: FDD, TDD. Operation mode.

n_rb_dl Integer. Number of downlink resource blocks.

uldl_config

Optional integer. TDD subframe assignment. Only present if mode is "TDD".

sp_config

Optional integer. TDD special subframe pattern. Only present if mode is "TDD".

ul_earfcn

Optional integer. Uplink EARFCN. Present once SIB2 is read.

ul_carrier_freq_offset

Optional integer. NB-IoT uplink carrier frequency offset in multiple of $2.5~\mathrm{kHz}$. Present once SIB2 is read.

n_rb_ul Optional integer. Number of uplink resource blocks. Present once SIB2 is read.

counters Object. List of counters, with following sub members:

messages Object. Each member name is the message

name and its value is its occurence.

To get list of message, type cevent help msg in

LTEUE monitor.

errors Object. Each member name is the error name

and its value is its occurence.

To get list of message, type cevent help error in

LTEUE monitor.

rx_channels

Array of objects. Each entry contains the following members:

gain Float. Cell gain in dB.

freq Float. Receive frequency in MHz.

rtx_channels

Array of objects. Each entry contains the following members:

gain Float. Cell gain in dB.

freq Float. Transmit frequency in MHz.

port Integer. RF port index.

config_set

Change current config.

Each member is optional.

Message definition:

logs Optional object. Represent logs configuration. Same structure as con-

fig_get (See [config_get logs member], page 62).

All elements are optional.

Layer name can be set to all to set same configuration for all layers. If set and logs are locked, response will have logs property set to locked.

log_get Get logs.

This API has a per connection behavior. This means that the response will depend on previous calls to this API within the same WebSocket connection.

In practice, logs that have been provided in a response won't be part of subsequent

request unless connection is reestablished. To keep on receiving logs, client should send a new log_get request as soon as the previous response has been received. If a request is sent before previous request has been replied, previous request will be replied right now without considering specific min/max/timeout conditions.

Message definition:

min Optional number (default = 1). Minimum amount of logs to retrieve.

Response won't be sent until this limit is reached (Unless timeout oc-

curs).

max Optional number (default = 4096). Maximum logs sent in a response.

timeout Optional number (default = 1). If at least 1 log is available and no more

logs have been generated for this time, response will be sent.

allow_empty

Optional boolean (default = false). If set, response will be sent after

timeout, event if no logs are available.

rnti Optional number. If set, send only logs matching rnti.

ue_id Optional number. If set, send only logs with matching ue_id.

layers Optional Object. Each member name represents a log layer and values must be string representing maximum level. See [log_options], page 22.

If layers is not set, all layers level will be set to debug, else it will be set

to none.

Note also the logs is also limited by general log level. See [log_options],

page 22.

 ${\tt short} \qquad {\tt Optional\ boolean\ (default=false)}. \ {\tt If\ set}, \ {\tt only\ first\ line\ of\ logs\ will\ be}$

dumped.

headers Optional boolean. If set, send log file headers.

start_timestamp

Optional number. Is set, filter logs older than this value in milliseconds.

end_timestamp

Optional number. Is set, filter logs more recent than this value in mil-

liseconds.

max_size Optional number (default = 1048576, i.e. 1MB). Maximum size in bytes of the generated JSON message. If the response exceeds this size, the

sending of logs will be forced independently from other parameters.

Response definition:

logs Array. List of logs. Each item is a an object with following members:

data Array. Each item is a string representing a line of log.

timestamp

Number. Milliseconds since January 1st 1970. Not present

if com_log_us is set in configuration.

timestamp_us

Number. Microseconds since January 1st 1970. Only

present if com_log_us is set in configuration.

layer String. Log layer.

level String. Log level: error, warn, info or debug.

dir Optional string. Log direction: UL, DL, FROM or TO.

ue_id Optional number. UE_ID.

cell Optional number (only for PHY layer logs). Cell ID.

rnti Optional number (only for PHY layer logs). RNTI.

frame Optional number (only for PHY layer logs). Frame number

(Subframe is decimal part).

channel Optional string (only for PHY layer logs). Channel name.

src String. Server name.

idx Integer. Log index.

headers Optional array. Array of strings.

discontinuity

Optional number. If set, this means some logs have been discarded due to log buffer overflow.

microseconds

Optional boolean. Present and set to true if com_log_us is set in configuration file.

log_set Add log.

Message definition:

log Optional string. Log message to add. If set, layer and level are manda-

tory.

layer String. Layer name. Only mandatory if log is set.

level String. Log level: error, warn, info or debug. Only mandatory if log is

set.

dir Optional string. Log direction: UL, DL, FROM or TO.

ue_id Optional number. UE_ID.

flush Optional boolean (default = false). If set, flushes fog file.

rotate Optional boolean (default = false). If set, forces log file rotation.

cut Optional boolean (default = false). If set, forces log file reset.

log_reset

Resets logs buffer.

license Retrieves license file information.

Response definition:

products String. List of products, separated by commas.

user String. License username.

validity String. License end of validity date.

id Optional string. License ID.

id_type Optional string. License ID type. Can be host_id or dongle_id

uid Optional string. License unique ID.

filename Optional string. License filename.

server Optional string. License server URL.

server_id

Optional string. License server ID.

quit Terminates Iteue.

help Provides list of available messages in messages array of strings and events to register in events array of strings.

stats Report statistics for LTEUE.

Every time this message is received by server, statistics are reset.

Warning, calling this message from multiple connections simultaneously will modify the statistics sampling time.

Message definition:

optional boolean (default = false). Provide information similar to the 't spl' monitor command.

optional boolean (default = false). Provide information similar to the 't cpu' monitor command.

Response definition:

cpu Object. Each member name defines a type and its value cpu load in % of one core.

instance_id

Number. Constant over process lifetime. Changes on process restart.

counters Object. List of counters, with following sub members:

messages Object. Each member name is the message name and its value is its occurence.

To get list of message, type cevent help msg in LTEUE monitor.

errors Object. Each member name is the error name and its value is its occurence.

To get list of message, type cevent help error in LTEUE monitor.

cells Object. Each member name is the cell ID and each value is an object representing statistics as follow:

dl_sched_users_min

Number. Downlink minimum number of scheduled UE by TTI.

dl_sched_users_max

Number. Downlink maximum number of scheduled UE by TTI.

dl_sched_users_avg

Number. Downlink average number of scheduled UE by TTI.

ul_sched_users_min

Number. Uplink minimum number of scheduled UE by TTI.

ul_sched_users_max

Number. Uplink maximum number of scheduled UE by TTI.

ul_sched_users_avg

Number. Uplink average number of scheduled UE by TTI.

dl_bitrate

Number. Downlink bitrate in bits per seconds.

ul_bitrate

Number. Uplink bitrate in bits per seconds.

dl_rx_count

Integer. Number of downlink transmitted packets (Without retransmissions).

ul_tx_count

Integer. Number of uplink transmitted packets (Without retransmissions).

dl_retx_count

Integer. Number of downlink retransmitted packets.

ul_retx_count

Integer. Number of uplink retransmitted packets.

dl_err_count

Integer. Number of downlink bad CRC packets.

ue_count Number. Current number of powered on UE.

rxtx_delay

Object. each value is an object representing the TX-RX latency statistics (average, max and min values).

cfo Number. Center frequency offset in Hz.

samples Object. Set if samples has been set to true in request.

This object has the following properties:

tx Array of objects. Each object represents samples statistics of the antenna port.

rms Number. RMS of the signal in dBFS

max Number. Maximum sample value in dBFS

sat Number. Number of saturation events

count Number of IQ samples analyzed

rms_dbm Number. RMS of the signal in dBm

rx Array of objects. Each object represents samples statistics of the antenna port.

rms Number. RMS of the signal in dBFS

max Number. Maximum sample value in dBFS

sat Number. Number of saturation events

count Number of IQ samples analyzed

rms_db Number. RMS of the signal in dBm.

register Register client for messages generated by server. Message definition:

register Optional string or array of string. List of messages to register to.

Can be ue_update, sms, non_ip_data, pws_msg, measurement_report, srs, pdsch, npdsch.

unregister

Optional string or array of string. List of messages to unregister. Can be ue_update, sms, non_ip_data, pws_msg, measurement_report, srs, pdsch, npdsch.

8.6 LTE messages

pdn_connect

Forces a connection to a PDN (LTE) or a PDU session (5G). Message definition:

ue_id Integer. UE identifier.

apn Optional string. Access Point Name. Must be present if emergency is set to false.

emergency

Optional boolean (default = false). Indicates if it is an emergency PDN. Must be set to true if apn is absent.

authentication

Optional enumeration: none, pap, chap or eap. Default none. eap is applicable to 5GS only. Defines the authentication mechanism used for this APN.

username Optional string (up to 100 characters) containing the user name used for pap or chap or eap authentication.

password Optional string (up to 100 characters) containing the password used for pap or chap or eap authentication.

pdn_type Optional enumeration: ipv4, ipv6, ipv4v6, unstructured or ethernet. Default ipv4v6. Defines the PDN/PDU session type. Note that IPv6 and Ethernet require the use of the tun interface.

ims Optional boolean (default = false). Specifies if the PDN or PDU session is for IMS.

pdu_session_id

Optional integer. PDU session identity.

always_on

Optional boolean (default = true). Requests a non always-on PDU session if set to false (5G only).

snssai Optional S-NSSAI value (5G only). See [default_pdu_session_snssai], page 44,

Response definition:

erab_id Optional integer. Allocated ERAB identity for the corresponding default EPS bearer (LTE).

pdu_session_id

Optional integer. Allocated PDU session ID (5G).

cid Integer. Unique connection ID of the PDN connection / PDU session.

pdn_disconnect

Forces a PDN/PDU session deconnection.

Message definition:

ue_id Integer. UE identifier.

Optional integer. Unique connection ID of the PDN connection / PDU session allocated during pdn_connect procedure (value is set to 0 for the initial PDN connection / PDU session establishment during the registration procedure).

apn Optional string. Access Point Name. Must be present if cid is absent and if emergency is set to false.

emergency

Optional boolean (default = false). Indicates if it is an emergency PDN. Must be set to true if cidand apn are absent.

snssai Optional S-NSSAI value (5G only).

rrc_reest

Triggers a RRC reestablishment.

Message definition:

ue_id Integer. UE identifier.

power_on Switch UE on.

Message definition:

ue_id Integer. UE identifier.

power_off

Switch UE off.

Message definition:

ue_id Integer. UE identifier.

n3gpp Optional boolean (default = FALSE). Indicates if the power off is required for non-3GPP only.

deregister

Deregister the UE.

Message definition:

ue_id Integer. UE identifier.

ue_get Get list of UE with their states.

Message definition:

ue_id Optional integer. Identifier of UE to get state.

If not set, returns all UE.

max Optional integer. Maximum number of UE to retrieve.

update Optional boolean. If set to true will only return modified UE since last call with update set to true on same Web Socket connection.

If no UE have been modified, response will only occur when a UE will change or when timeout has been reached.

Optional integer (default = 5). Time in seconds to wait before returning when no UE has changed. Only used when update is set to true.

Response definition:

ue_list Array of Object. Each object represent a UE with following parameters:

imsi String. UE IMSI.

ue_id Integer. UE identifier

category Integer or string. If integer, UE LTE category, else can be m1, nb1, nb2 or nr.

timing_advance

Integer. Current timing advance.

rnti Integer. UE current RNTI.

power_on Boolean. UE power state (true = powered on, false = powered off).

rrc_state

String. Radio connection state, can be disconnected, connecting, connected, idle or inactive.

emm_state

String. EMM/5GMM state. In 4G, it can be power off, deregistered, registering, registered, tracking area updating or unregistering. In 5G, it can be power off, deregistered, registering, registered, service request sending or deregistering.

cells Array. List of cells (First one is always primary cell):

index Number. Index of the cell (as reported by the config_get message).

pci Number. Physical cell ID.

cqi Number. Last reported cqi.

ri Number. Last reported ri.

rsrp Number. RSRP of cell.

rsrq Number. RSRQ of cell.

snr Number. SNR of cell.

path_loss

Number. Current path loss estimated by the UE from RSRP and SIB reference signal level.

sim_path_loss

Optional number. It is present if the channel simulator is enabled. Current path loss computed by the channel model.

cfo Integer. Center frequency offset in hertz.

sample_rate_offset

Number. Sample rate offset compared to the RF frontend one in ppm.

position Array of 3 floats. If the channel simulator is enabled, define the current position of the UE.

pdn_list Optional array containing the list of PDN/PDU session connections. Each element contains the following objects:

cid Integer. Connection ID.

apn String. Access point name.

ipv4 Optional string. IPv4 address for this PDN connection.

ipv6_if_id

Optional string. IPv6 interface identifier for this PDN connection.

mac_addr Optional string. MAC address for this PDN connection.

pdu_session_id

Optional integer. Applicable to 5GS only. PDU session identity.

qos_flows

Optional array of objects. Applicable to 5GS only. Each objects contains:

default Optional boolean. If present and set to true, indicates that it is the default QoS flow.

qfi Integer. Range: 0 to 63. QoS flow identifier.

drb_id Integer. Data Radio Bearer identity.

erabs Optional array of objects. Applicable to EPS only. Each objects contains:

default Optional boolean. If present and set to true, indicates that it is the default PDN.

erab_id Integer. EPS bearer identity.

drb_id Integer. Data Radio Bearer identity.

dl_bitrate

Number. DL bitrate in bit/s (excluding transport blocks with CRC errors).

ul_bitrate

Number. UL bitrate in bit/s (excluding retransissions).

dl_rx_count

Integer. Number of received transport blocks without CRC error.

dl_err_count

Integer. Number of received transport blocks with CRC errors.

dl_retx_count

Integer. Number of received retransmitted transport blocks (with or without CRC errors).

ul_tx_count

Integer. Number of sent transport blocks (first transmission only).

ul_retx_count

Integer. Number of retransmitted transport blocks.

dl_mcs Number. Average MCS used for DL.

ul_mcs Number. Average MCS used for UL.

dl_rb Number. Average DL resource blocks per allocation.

ul_rb Number. Average UL resource blocks per allocation.

dl_decoder_min

Optional number. Minimum turbo/ldpc decoder pass.

dl_decoder_avg

Optional number. Average turbo/ldpc decoder pass.

dl_decoder_max

Optional number. Maximum turbo/ldpc decoder pass.

pending Boolean. Set to true if update was set to true with max parameter and modified UE are remaining. You may call ueget again with update set to true when receiving pending.

counters Object. List of counters, with following sub members:

messages Object. Each member name is the message name and its value is its occurence.

To get list of message, type cevent help msg in LTEUE monitor.

errors Ob

Object. Each member name is the error name and its value is its occurrence.

To get list of message, type cevent help error in LTEUE monitor.

ue_add Add one or several UE.

Message definition:

Array of object. Each object represent a UE as defined config file. See [UE configuration], page 34,

Response definition:

info Array of string. List of information.

ue_del Remove a UE.

The UE will be removed without performing any deregistration.

Message definition:

ue_id Integer or array of integers. UE ID(s) of the UE to remove.

Response definition:

deleted Integer. Number of deleted UE in case of list deletion.

unknown Array of integers. List of unknown UE IDs in case of list deletion.

invalid Array of integers. List of invalid UE IDs in case of list deletion.

ue_del_all

Remove all UEs.

The UEs will be removed without performing any deregistration.

ue_move Move a UE to a specific position. Relevant only with *channel_sim* set to true. Message definition:

ue_id Integer. Identifier of UE to move.

position Optional array. See [position], page 54, channel simulator option.

speed Optional number. See [speed], page 54, channel simulator option.

direction

Optional number. See [direction], page 54, channel simulator option.

elevation

Optional number. See [elevation], page 54, channel simulator option.

rf Set radio frontend channels gain.

Message definition:

tx_gain Optional number or array of numbers. Set TX gain. Same definition as the [tx_gain], page 23, property.

tx_channel_index

Optional number. If set, apply gain to specified channel only.

rx_gain Optional number or array of numbers. Set RX gain. Same definition as the [rx_gain], page 23, property.

rx_channel_index

Optional number. If set, apply gain to specified channel only.

Response definition:

tx_gain Array. List of TX gain per channel.

rx_gain Array. List of RX gain per channel.

rf_info Optional string. RF driver information (depends on radio frontend).

trx_iq_dump

Dump baseband IQ samples (time domain) to files.

The IQ samples are stored as little endian 32 bit floating point numbers.

Real and imaginary part are interleaved: the real part (I) is written first, the imaginary one (Q) next:

I(0) [0 ... 31]

Q(0) [32 ... 63]

I(1) [64 ... 95]

Q(1) [96 ... 127]

• • •

I(n) [n*64 ... n*64+31]

Q(n) [n*64+32 ... n*64+63]

Message definition

duration Optional value (default = 1s, max = 30s). Sets dump duration in milliseconds.

rf_port Optional integer or array of integer. If set, dump only the related RF port channels.

rx_filename

Optional string. If set defines the file where the received IQ samples will be dumped.

May contain %d to differentiate antenna streams (printf style).

If not set, no RX data will be dumped.

tx_filename

Optional string. If set defines the file where the transmitted IQ samples will be dumped.

May contain %d to differentiate antenna streams (printf style).

If not set, no TX data will be dumped.

rx_channels

Optional array of integer. Selects channel to dump. Each integer represents the global index of the channel.

tx_channels

Optional array of integer. Selects channel to dump. Each integer represents the global index of the channel.

rx_header

Optional boolean (Default = false). Set the dump mode.

If not set, only the IQ samples are written to the files. If set, add a header for each TRX read or write operation. It is followed by the corresponding IQ samples.

Header:

timestamp

64 bit TRX timestamp, in samples.

count 32 bit integer: number of following IQ samples before next header.

tx_header

Optional boolean (Default = false). Same as rx-header for TX.

Message response:

dump_utc Integer. UTC time in milliseconds of the capture start

rf_ports Array of object representing information on each rf port capture.

Defined as follow:

sample_rate

Integer. IQ sample rate in samples per seconds

index Integer. RF port index

timestamp

Integer. Timestamp (in IQ sample) associated with frame/slot start.

frame Integer. Frame number of slot starting at timestamp

slot Integer. Slot number of slot starting at timestamp

mu Integer. Subcarrier spacing (0, 1...)

rx_files Array of string representing IQ files for RX.

tx_files Array of string representing IQ files for TX.

rx_overflows

Optional integer. Number of RX lost data during catpure process

tx_overflows

Optional integer. Number of TX lost data during catpure process

rx_timestamp0

Integer. If rx_header mode not set, timestamp of first IQ sample in RX files.

tx_timestamp0

Integer. If tx_header mode not set, timestamp of first IQ sample in TX files.

ext_app Launch and external application.

Only available if tun_setup_script is set. Message definition:

name String. Session name.

end_time Float. End time. If external application is not over when this time is reached, a kill signal will be sent.

eached, a kiii signai wiii be seiit.

The command may finish before this time if external application process ends up before.

prog String. Name of external application to launch.

If path is not absolute, LTEUE config file path will be used.

Arguments passed to application will be:

- UE_ID
- TUN interface name
- Duration in seconds.

Array of string or number that will be passed to application as argument (from 4th).

dump_stdout

Optional boolean (default = false). If set, external application stdout will be redirected to LTEUE stdout.

If external application is defined in [sim_events], page 38, the default value is true.

dump_stderr

Optional boolean (default = false). If set, external application stderr will be redirected to LTEUE stderr.

If external application is defined in [sim_events], page 38, the default value is true.

Response definition:

output String. Standard output of the application.

error String. Standard error of the application.

Start notification:

A message with notification set to start will be sent when application is launched.

Progress notification:

notification: 'progress'

A message with notification set to progress will be sent with output as defined in response.

```
Example:
Message sent:
{
   message: "ext_app",
   message_id: 'foo',
   ue_id: 1,
    start_time: 1,
    end_time: 5,
   prog: "ext_app.sh",
    args: ["iperf -c 220.103.220.10 -i 1 -t 4"],
}
Start notification:
{
   message_id: 'foo',
   notification: 'start'
}
Progress notifications:
{
   message_id: 'foo',
    output: 'ip netns exec ue1 iperf -c 220.103.220.10 -i 1 -t 4\n',
   notification: 'progress'
}
{
   message_id: 'foo',
    output: '-----
   notification: 'progress'
}
{
   message_id: 'foo',
    output: '[ ID] Interval
                                 Transfer
                                               Bandwidthn[3] 0.0-1.0 sec 1.3
   notification: 'progress'
}
{
   message_id: 'foo',
    output: '[ 3] 1.0-2.0 sec 1.00 MBytes 8.39 Mbits/sec\n',
```

```
Final response:
               message: 'ext_app',
               message_id: 'foo',
                output: '[ 3]
                                  2.0-3.0 sec
                                                   896 KBytes 7.34 Mbits/sec\n'
           }
           Send a SMS over SG.
SMS
           Message definition:
                      Integer. Identifier of UE.
           ue_id
                      String. Phone number to send SMS to.
           dst
           text
                      String. SMS text.
                      Optional integer (Default = 86400). Validity period in seconds.
           validity
           status_req
                      Optional boolean (Default = false). Indicates if a status report is re-
                      quested.
```

sms_command

Send a SMS-COMMAND.

Message definition:

ue_id Integer. Identifier of UE.

type Enumeration: 0, 1, 2, 3. TP-Command-Type as defined in 3GPP 23.040 paragraph 9.2.3.19 TP-Command-Type:

0 = Enquiry relating to previously submitted short message 1 = Cancel Status Report Request relating to previously submitted short message 2 = Delete previously submitted Short Message 3 = Enable Status Report Request relating to previously submitted short message

msg_number

Integer in range 0 to 255. Parameter indicating which SM in the SC to operate on. TP-Message-Number as defined in 3GPP 23.040 paragraph 9.2.3.18 TP-Message-Number.

dst String. Destination Address to which the TP-Command refers. TP-Destination-Address as defined in 3GPP 23.040 9.2.3.8 TP-Destination-Address

sms_memory

Set SMS memory availability.

Message definition:

memory Boolean. If true, UE will send a RP SMMA message, else received SMS will lead to memory capacity exceeded error message.

non_ip_data

Send data over a non IP PDN or unstructured PDU session.

Message definition:

ue_id Integer. Identifier of UE.

erab_id Optional integer. ERAB identity of the non IP default bearer, as given in pdn_connect response. Mandatory for a LTE UE.

pdu_session_id

Optional integer. PDU session identity of the non IP PDU session, as given in pdn_connect response. Mandatory for a 5G UE.

data String. ASCII representation of the data hexadecimal dump.

force_meas_report

Force the sending of a RRC Measurement Report message.

Message definition:

ue_id Integer. Identifier of UE.

meas_id Integer. Measurement identifier.

tau_request

Trigger a NAS Tracking Area Update / mobility Registration Request procedure. Message definition:

ue_id Integer. Identifier of UE.

rlc_drop_rate

Define a percentage of downlink RLC PDUs dropped.

Message definition:

ue_id Integer. Identifier of UE.

rb_id Integer. Bearer identity.

srb Boolean. Indicates if the bearer is for signalling or data.

percentage

Integer (range 0 to 100). Drop percentage.

mbms_set Start/stop receiving MBMS service.

Message definition:

ue_id Integer. Identifier of UE.

service_list

Array of strings. Each string should be formatted like "plmn.service_id" to start listening the given service.

ue_activate_dedicated_bearer

Trigger a Bearer Resource Allocation Request.

Message definition:

ue_id Integer. Identifier of UE.

def_beared_id

Integer. Default EPS bearer id.

qci Optional integer (range 1 to 255). QoS Class Identifier of the E-RAB.

gbr Optional object. Guaranted Bitrate information. List of properties:

maximum_bitrate_dl

Integer. Bearer maximum bitrate for downlink (in bits/s).

maximum_bitrate_ul

Integer. Bearer maximum bitrate for uplink (in bits/s).

guaranteed_bitrate_dl

Integer. Bearer guaranteed bitrate for downlink (in bits/s).

guaranteed_bitrate_ul

Integer. Bearer guaranteed bitrate for uplink (in bits/s).

filters Optional array of objects. List of TFT filters or QoS rules. Each filter has the following properties:

direction

Enumeration: dl, ul or both. Set the filter direction.

id Range: 0 to 15. Set the filter identifier.

precedence

Range: 0 to 255. Set the filter precedence. All the filters must have different precedence. 0 is the highest precedence. Note that precedence 80 is reserved for derived QOS rules in 5GS and thus will be rejected if configured.

components

Array of objects. Each component contains one of the following properties as described in 3GPP TS 23.060 chapter 15.3.2:

ipv4_remote_addr

String. Match a remote (external network entity) IPv4 address with the additional mask property.

ipv4_local_addr

String. Match a local IPv4 address with the additional mask property. Note that not all core networks support it (they must indicate the support of the Local address in TFT in PCO/ePCO).

ipv6_remote_addr

String. Match a remote (external network entity) IPv6 address with the additional mask property.

ipv6_remote_addr_prefix

String. Match a remote (external network entity) IPv6 address with the additional prefix_len property. Note that not all core networks support it (they must indicate the support of the Local address in TFT in PCO/ePCO).

ipv6_local_addr_prefix

String. Match a local IPv6 address with the additional prefix_len property. Note that not all core networks support it (they must indicate the support of the Local address in TFT in PCO/ePCO).

proto_id Range: 0 to 255. Match against the IP protocol identifier.

local_port

Range: 0 to 65536. Match against the local (UE) port.

local_port_range

Array of 2 integers. Match against a local (UE) port range.

remote_port

Range: 0 to 65536. Match against the remote (external network entity) port.

remote_port_range

Array of 2 integers. Match against a remote (external network entity) port range.

security_parameter_index

32 bit integer. Match the ESP or AH security parameter index.

type_of_service

Range: 0 to 255. Match the type of service (IPv4) or the traffic class (IPv6) field. The additional mask property is the corresponding mask.

mask Depends on TFT component.

If ipv4_remote_addr is set, string representing IPv4 address used as a mask to apply on packet remote address.

If ipv6_remote_addr is set, string representing IPv6 address used as a mask to apply on packet remote address.

If type_of_service is set, integer between 0 and 255 used as a mask to apply on packet tos.

flow_label

20 bit integer. Match the IPv6 flow label.

prefix_len

Range: 1 to 128. IPv6 address prefix length.

destination_mac_addr

String. Match the destination MAC address.

source_mac_addr

String. Match the source MAC address.

802.1q_ctag_vid

Range: 0 to 4095. Match the 802.1Q C-TAG VID.

$802.1q_stag_vid$

Range: 0 to 4095. Match the 802.1Q S-TAG VID.

802.1q_ctag_pcp_dei

Range: 0 to 15. Match the 802.1Q C-TAG PCP and DEI.

802.1q_stag_pcp_dei

Range: 0 to 15. Match the 802.1Q S-TAG PCP and DEI.

ethertype

Range: 0 to 65535. Match the ethertype.

destination_mac_addr_range

Array of 2 strings. Match the destination MAC address range. Only applicable to 5GC.

source_mac_addr_range

Array of 2 strings. Match the source MAC address range. Only applicable to 5GC.

Response definition:

erab_id Integer. Allocated ERAB identity for the corresponding dedicated EPS bearer.

ue_bearer_resource_modification

Trigger a Bearer Resource Modification Request for bearer modification. Message definition:

ue_id Integer. Identifier of UE.

beared_id

Integer . EPS bearer id.

qci Optional integer (range 1 to 255). QoS Class Identifier of the E-RAB.

gbr Optional object. See [GBR], page 79.

filters Optional array. See [TFT], page 80.

ue_deactivate_dedicated_bearer

Trigger a Bearer Resource Modification Request for bearer deactivation .

Message definition:

ue_id Integer. Identifier of UE.

beared_id

Integer . EPS bearer id.

ue_pdu_session_modification

Trigger a PDU Session Modification Request.

Message definition:

ue_id Integer. Identifier of UE.

Optional integer. Unique connection ID of the PDU session allocated during pdn_connect procedure (value is set to 0 for the initial PDU session establishment during the registration procedure).

apn Optional string. Access point name. Not required if cid is present.

qos_rules

Optional array. List of the QoS rules other than the default one. Each element of the array contains the followings objects:

id QoS rule identifier. Set it to 0 when creating a new QoS rule, or to the assigned value when modifying an existing QoS rule.

qfi Integer. Range: 0 to 63. QoS flow identifier.

filters Array of packet filters. See [TFT], page 80.

qos_flow Optional object. QoS flow parameters for the qfi. Contains the following items:

qfi Integer. Range: 0 to 63. QoS flow identifier.

5qi Integer. Range: 1 to 254. 5QI of the QoS flow.

gbr Optional object. See [GBR], page 79.

ue_assistance_information

Trigger the sending of a UE assistance information message.

Message definition:

ue_id Integer. Identifier of UE.

power_pref_indication

Optional enumeration (normal, lowPowerConsumption). Defines the power preference indication to be sent in the UE assistance information message. LTE UE only.

preferred_rrc_state

Optional enumeration (idle, inactive, connected, outOfConnected). Defines the preferred RRC state to be sent in the UE assistance information message. NR UE only.

preferred_max_cc

Optional integer. Range: 1 to 31. Defines the reducedMaxCCs value for DL and UL to be sent in the UE assistance information message. NR UE only.

preferred_max_layers

Optional integer. Range: 1 to 4. Defines the reducedMaxMIMO_Layers for DL and UL to be sent in th UE assistance information message. NR UE only.

8.7 LTE events

Following events are sent by UE if they have been registered on WebSocket.

ue_update

Generated by a UE NAS or RRC state change:

ue_id Integer. UE ID.

measurement_report

Generated when a UE sends a measurement report:

ue_id Integer. UE ID.

meas_id Integer. Measurement identifier.

report_type

String. Measurement report type. Can be periodical_strongest_cells, cgi, event_a1, event_a2, event_a3, event_a4, event_a5, event_a6, event_b1_nr, event_b2_nr, event_b1, or event_b2

sms Generated by SMS reception:

imsi String. IMSI.

originator

String. SMS originator.

text String. SMS text.

binary String. If text is not set, base64 encoded string of SMS data.

dcs Integer. Data coding scheme.

sms_status_report

Generated by the reception of SMS-STATUS_REPORT:

imsi String. IMSI.

tp_qualifier

Enumeration: "SMS-SUBMIT", "SMS-COMMAND". TP-Status-Report-Qualifier as defined in 23.040 9.2.2.3 SMS-STATUS-REPORT type.

tp_message_ref

Integer. TP-Message-Reference as defined in 23.040 9.2.2.3 SMS-STATUS-REPORT type.

tp_recipient_address

String. TP-Recipient-Address as defined in 23.040 9.2.2.3 SMS-STATUS-REPORT type.

tp_discharge_time

String. TP-Discharge-Time as defined in 23.040~9.2.2.3 SMS-STATUS-REPORT type.

tp_status

Integer. TP-Status as defined in $23.040\ 9.2.2.3\ SMS-STATUS-REPORT$ type.

non_ip_data

Generated by data reception over a non IP PDN or unstructured PDU session.

ue_id Integer. Identifier of UE.

erab_id Integer. ERAB identity of the non IP default bearer.

data String. ASCII representation of the data hexadecimal dump.

pws_msg Generated by reception of a PWS message (either CMAS or ETWS secondary message).

ue_id Integer. Identifier of UE.

message_id

Integer. Message Identifier, as per 3GPP TS 23.041

serial_number

Integer. Serial Number, as per 3GPP TS 23.041.

message Array of strings containing the UTF8 representation of each page of the message.

srs, pdsch, npdsch

Generated each time such a channel is decoded by the physical layer. This message is in binary format and includes a JSON structure and signal data as followed: First 4 bytes are an 32 bit integer representing the length in bytes of the serialized JSON, followed by the serialized JSON itslef.

Next 4 bytes are the length of the signal data in bytes followed by the data itself. Note that the message can include several signal data. In this case, the pattern length/signal is repeated.

JSON data has the following definition:

label String. Can be rs or re

data Array of string. Information related to the signal being decoded. Check log_get API.

Signal data bytes are defined this way:

- Bytes 0...3: integer representing data length in bytes of the subsequent information.
- Bytes 4...7: integer representing data element size where:
 - 0: 32 bits floats
 - 1: 16 bits integer.
- Bytes 8..11: number of elements in data
- Remaining bytes are for data.

Note that <data length> = <# of elements> * <element size in bytes> + 8
For more information about signal data, please check signal.js code inside ltewww software package.

8.8 IP simulation messages

8.8.1 Common message definition

name String. Simulation name.

ue_id Integer. UE identifier.

end_time Float. End time.

dst_addr Optional string. <address>[:<port>] address and optionally port number of the remote test server.

If not set, use sim_ip_remote_addr of LTEUE configuration.

At least one of this two address must be set.

Must be an IP address or a MAC address if type is ethernet (cbr_recv and cbr_send cases).

Optional integer. Conenction ID. If defined, IP simulation will use the corresponding PDN to send and receive packets.

apn Optional string. Access point name. If defined, IP simulation will use the corresponding PDN to send and receive packets. It is ignored if cid is present.

8.8.2 Common response definition

info String. Human readable simulation result.

8.8.3 Definitions

ping Performs a ICMP ping.

Message definition:

delay Float. Delay in seconds between two ICMP echos.

payload_len

Integer. Size of ICMP payload (Between 4 and 1500).

id Optional integer. ICMP id. If not set, randomly defined.

Response definition:

sent Number of sent ECHO requests.

recv Number of received ECHO replies.

cbr_send Send UDP/Ethernet packets at constant bitrate.

Message definition:

type Optional enumeration: udp, rtp voip or ethernet (default = udp). Select the packet format: UDP, RTP, VOIP (Voice Over IP) or Ethernet.

VOIP uses RTP packets with 8 kHz timestamps and an optional silence compression (SID (Silence Indicator) payload size of 6 bytes and one SID packet).

bit_rate Integer. Bitrate in bits per second.

payload_len

Integer. Size of UDP/RTP/Ethernet payload (Between 4 and 1500).

Additional parameter when type is voip:

vaf Range: 0 to 100 (only for VOIP). Voice Activity Factor in percent. 100% means no silence.

mean_talking_duration

Float (only for VOIP). Mean talking duration in seconds.

sid_period

Optional integer. Silent duration in packets. If not set, period will be configured so that silent packets are sent at least every 160ms.

Additional parameter when type is ethernet:

ether_type

Optional integer (Between 0 and 65535). In case of Ethernet packets, sets the ether_type protocol number of the Ethernet header.

Response definition:

sent Number of sent packets.

recv Number of received packets.

cbr_recv Receive UDP/Ethernet packets at constant bitrate.

Message definition:

type Optional enumeration: udp, rtp voip ethernet (default = udp). Select the packet format: UDP, RTP, VOIP (Voice Over IP) or Ethernet.

VOIP uses RTP packets with 8 kHz timestamps and an optional silence compression (SID (Silence Indicator) payload size of 6 bytes and one SID every 8 normal voice packets).

bit_rate Integer. Bitrate in bits per second.

payload_len

Integer. Size of UDP/RTP/Ethernet payload (Between 4 and 1500).

vaf Range: 0 to 100 (only for VOIP). Voice Activity Factor in percent. 100% means no silence.

mean_talking_duration

Float (only for VOIP). Mean talking duration in seconds.

start_delay

Optional float (default = 0). Tell the server to begin sending packets after start_delay seconds. It is useful to test paging.

ether_type

Optional integer (Between 0 and 65535). In case of Ethernet packets, sets the ether_type protocol number of the Ethernet header.

Response definition:

sent Number of sent packets.

recv Number of received packets.

flood_send

Send UDP packets by burst.

Message definition:

payload_len

Integer. Size of UDP payload (Between 4 and 1500).

Response definition:

sent Number of sent packets.

recv Number of received packets.

rate_kbps

Transfer rate.

flood_recv

Receive UDP packets by burst.

Message definition:

payload_len

Integer. Size of UDP payload (Between 4 and 1500).

Response definition:

sent Number of sent packets.

recv Number of received packets.

rate_kbps

Transfer rate.

http Performs HTTP transfers in loop.

Message definition:

url String. URL to download.

max_delay

Float. Maximum delay between two connection attempts.

max_cnx Integer (default = 1000). Maximum number of connections.

Response definition:

connections

Number of transfer attempt.

rx_size Downloaded size in bytes.

duration Real transfer duration. Useful to estimate bitrate.

8.8.4 Start notification

When started, an intermediate message is sent.

This message is identified by a notification field set to string start.

8.9 IP simulation examples

```
1. Ping
    1. Client message
       {
           "message": "ping",
           "message_id": 42,
           "start_time": 1.5,
           "ue_id": 1,
           "delay": 1,
           "payload_len": 100
    2. Server notification
           "message": "ping",
           "message_id": 42,
           "notification": "start"
    3. Server response
       {
           "message": "ping"
           "message_id": 42,
           "sent": 100,
           "recv": 100,
           "info": "PING: sent 100, received 100"
       }
```

8.9.1 IP simulation server

Some IP simulations requires a server to communicate with.

PING test are handled directly by network stacks implementing ICMP protocol.

A common HTTP server can be used for HTTP simulations.

In LTEUE package, you will find a ltesim_server program used for this communication. It is mandatory for simulations like CBR and FLOOD.

In order to use this program, you need to copy the following files, available in your package, to your core network PC.

- ltesim_server
- libnopoll.so
- libcrypto.so.1.1 (See [openssl], page 5)
- libssl.so.1.1 (See [openssl], page 5)
- libc_wrapper.so
- libnuma.so

Now, you can start this program in core network as below:

```
./ltesim_server -a <interface address>[:<port>]
```

```
Or, if you want HTTP handling:
     ./ltesim_server -a <interface address> -H <port>
  For Ethernet, you need to select listening interface:
     ./ltesim_server -e <interface name>[/<ether_type>] -H <port>
8.10 Examples
 1. Config
     1. Client sends
        {
            "message": "config_get",
            "message_id": "foo"
     2. Server replies
        {
            "message_id": "foo",
            "message": "config_get",
            "name": "UE",
            "logs": {
                 "phy": {
                     "level": "error",
                     "max_size": 0
                 },
                 . . .
                 "rrc": {
                     "level": "debug",
                     "max_size": 1
                 }
            }
 2. Error
     1. Client sends
        {
            "message": "bar",
            "message_id": "foo"
     2. Server replies
        {
            "message_id": "foo",
            "message": "bar",
            "error": "Unknown message: bar"
        }
```

9 Command line monitor reference

The following commands are available:

help Display the help. Use help command to have a more detailed help about a command.

t [ue|g|cpu|spl] [period]

Activate various traces on the console. The display is stopped when typing return. The default trace is **ue**. An optional display period (in seconds) is accepted.

Available traces:

ue[:n] UE MAC and PRACH traces. If n is provided, only display the UE ID

g Show global statistics.

cpu Display the CPU usage from the TRX (transceiver) API and the TX-RX latency statistics.

Display various statistics about the sent and received complex samples (at the TRX API level). For the TX side, the RMS and maximum sample value are displayed. The number of saturation events (abs(sample) > 1) are displayed too. For the RX side the RMS and maximum sample value are displayed. The unit is dB FS (dB Full Scale). 0 dB FS is reached with a square signal of amplitude 1.

log [log_options]

Display the current log state. If *log_options* are given, change the log options. The syntax is the same as the *log_options* configuration property.

tx_gain gain [channel]

Set the TX gain in dB of the radio driver. With an array of floats a different gain is specified for each channel. Same definition as the [tx_gain], page 23, property.

rx_gain gain [channel]

Set the RX gain in dB of the radio driver. With an array of floats a different gain is specified for each channel. Same definition as the [rx_gain], page 23, property.

rf_info gain

Get RF driver information.

ue List the configured UEs.

pdn_connect [ue_id] apn|emergency [auth username password]

Send PDN connectivity / PDU session establishment request.

pdn_disconnect [ue_id] apn|emergency

Send PDN disconnect / PDU session release request.

rrc_reest [ue_id]

Trigger a RRC reestablishment.

power_on [ue_id]

Initiate a UE power on.

power_off [ue_id]

Initiate a UE power off.

n3gpp_power_off [ue_id] [n3gpp]

Initiate a UE power off.

deregister [ue_id]

Initiate a UE detach/deregistration.

sms ue_id tel text [status_req]

Send SMS

sms_command ue_id type msg_number dst

Send SMS-COMMAND.

mbms_set ue_id [plmn.service_id] [plmn.service_id]

Starting receiving MBMS service(s).

mbms ue_id

Show MBMS statistics.

rlc_drop_rate UE_ID rb_id rate [is_srb]

Define a rate percentage of downlink RLC PDUs dropped.

csfb [ue_id] [service_type]

Initiate a CS fallback.

force_meas_report [ue_id] meas_id

Force a RRC Measurement Report message sending.

tau_request ue_id

Trigger a NAS Tracking Area Update / mobility Registration Request procedure.

cevent error|msg|<event>|help [error|msg]

Display event counters for errors, messages or a selected event. To get the list of error or message counters, you can type cevent help error or cevent help msg.

com COM connection status.

cell_gain cell_index gain

Set the UL gain of the cell *cell_index*. The gain is in dB and must be ≤ 0 . The gain of the other cells is not modified.

NR cell only.

10 Remote UE

When using tunnel interface with external program, you may want external program to be run on a different PC.

The Remote UE tool allows you to transfer IP traffic from each UE to a remote entity.

For this run lterue program on a different computer.

You don't need any specific license.

lterue uses GTP over SCTP to communicate with LTEUE.

lterue must be used with tun_setup_script.

Note that we recommend to use same version of lterue and lteue.

10.1 Configuration

bind_addr

IP address and optional port on which the SCTP with connection to LTEUE is bound.

Note that tun_setup_script and ext_app prog member associated to UE will be forwarded to lterue and thus those scripts must be present in local directory.

For instance, if you put *lterue* on another PC, copy *lterue*, *config/rue.cfg*, *config/ue-if.cfg*, *config/ext_app.sh*, *libnopoll.so*, *libc_wrapper.so*, *libcrypto.so.1.1* and *libssl.so.1.1*.

11 UDC configuration reference

The UDC configuration is made by the script udc-auto-cfg.sh. For the input parameters See [cmd], page 24. The script needs to outure on stdout the following lines:

- LO_FREQ: LO frequency configured for the UDC devices belonging to the same udc_port
- TX_POWER_OFFSET: UDC up conversion gain [dB]. This quantity is used by the software to estimate the value of ss-PBCH-BlockPower
- TX_POWER_MAXn: it corresponds to the maximum power level [dBm] tolerated by the UDC IF port equally divided by the number of aggregated carriers using the same udc_port. n line output, one for each rf_port. This quantity is used by the software to find the maximum allowed tx_gain for each rf_port in order to avoid the UDC device IF port saturation.
- IFn: it corresponds to the intermediate frequency at which each SDR is configured. n line output, one for each rf_port.
- TX_GAIN_MARGINn: it corresponds to the tx_gain reduction [dB] from the maximum allowed value. It is automatically applied by the software by rf_port during the startup. n line output, one for each rf_port.

11.1 args Configuration

This section specifies how to configure the parameter args (See [args], page 24). The only mandatory string parameter is the UDC device enumeration, it specifies how the UDC has been mounted at Linux level. UDCB2 and UDCB4 are mounted as /dev/ttyUSBx and UDCA2 as /dev/ttyACMx. The other string parameters are optional, if not specified, they are configured with the default value. Supported parameters:

Clock configuration:

- A2: default(ingored). Any possibility to send clock configuration command for this UDC
- B2: internal, external, default (master=internal, slave=external). If only one UDC B2 in the setup default=internal.
- B4: internal, external, gps, default (internal)

TX port configuration:

- A2: 1,2,default(1). 1=port IF1, 2=port IF2
- B2: 1,2,3,4,default(2). 1=port IF1A, 2=port IF1B, 3=port IF2A, 4=port IF2B
- B4: 1,2,3,4,default(1,3). 1=port IF1, 2=port IF2, 3=port IF3, 4=port IF4

RX port configuration:

- A2: 1,2,default(2). 1=port IF1, 2=port IF2
- B2: 1,3,default(3). 1=port IF1A, 3=port IF2A
- B4: 1,2,3,4,default(2,4). 1=port IF1, 2=port IF2, 3=port IF3, 4=port IF4

Example: "/dev/ttyUSB0;clock=default;tx=default;rx=default"

11.2 Debug

To enable the udc-auto-cfg.sh debug logs it is required to enable the trx log level in debug mode in the configuration file. Example:

```
log_options: "all.level=error,all.max_size=0,nas.level=debug,nas.max_size=1,
s1ap.level=debug,s1ap.max_size=1,x2ap.level=debug,x2ap.max_size=1,
rrc.level=debug,rrc.max_size=1,trx.level=debug,trx.max_size=1",
```

12 Log file format

12.1 PHY layer

When a PHY message is dumped (debug level), the format is:

time layer dir ue_id cell rnti frame.subframe channel:short_content
 long_content

time Time using the selected format.

layer ([PHY] here).

dir UL (uplink) or DL (downlink).

ue_id eNodeB UE identifier (hexadecimal, unique among all cells).

cell index (hexadecimal).

rnti Associated RNTI (hexadecimal) or - if none.

frame.subframe

Frame number (0-1023) and either subframe number (0-9) for LTE and NB-IoT cells or slot number for NR cells.

channel PHY channel name (e.g. PUSCH, PUCCH, PRACH, SRS, PSS, PBCH, PCFICH, PDSCH, PHICH, PDCCH, EPDCCH, ...).

short_content

Single line content.

long_content

Hexadecimal dump of the message if phy.max_size > 0.

In the uplink messages, epre is the relative Energy per Resource Element in dB. The origin 0 dB corresponds to tx_gain_offset dBFS.

If UE power control is enabled, p is the absolute transmit power in dBm.

If the UE channel simulator is enabled, **p** is the absolute power before the channel simulation is applied. Moreover, if the UE channel simulator is enabled, **epre** is clamped to 0 dB to avoid a potential saturation in the RF interface.

12.2 MAC and RRC layers

When a message is dumped, the format is:

time layer - ue_id message

When a PDU is dumped (debug level), the format is:

time Time using the selected format

layer ([MAC] or [RRC] here).

dir UL (uplink) or DL (downlink).

ue_id eNodeB UE identifier (hexadecimal, unique among all cells).

cell_id Primary cell index.

short_content

Single line content.

long_content

- MAC: hexadecimal dump of the message if layer.max_size > 0.
- RRC: full ASN.1 content of the RRC message if layer.max_size > 0.

long_content

- MAC, RLC, PDCP: hexadecimal dump of the message if layer.max_size > 0.
- RRC: full ASN.1 content of the RRC message if layer.max_size > 0.

12.3 RLC, PDCP and NAS layers

When a message is dumped, the format is:

```
time layer - ue_id message
```

When a PDU is dumped (debug level), the format is:

time Time using the selected format

layer ([RLC], [PDCP], or [NAS] here).

dir UL (uplink) or DL (downlink).

ue_id eNodeB UE identifier (hexadecimal, unique among all cells).

short_content

Single line content.

• RLC, PDCP: preceded by the SRB or DRB identifier.

long_content

• NAS: full content of the NAS message if layer.max_size > 0.

12.4 IP layer

When a IP data PDU is dumped (debug level), the format is:

```
time layer dir short_content
    long_content
```

time Time using the selected format

layer Indicate the layer ([IP] here).

dir UL (uplink) or DL (downlink).

short_content

Single line content (at least the IP protocol and the source and destination address).

long_content

Optional hexadecimal dump of the PDU if ip.max_size > 0.

13 Known limitations

We present here the known limitations of LTEUE:

- No cell search (except for the initial connection).
- Handover is supported both in LTE and NR in UE simulation mode (multi_ue:true) between the configured cells. The real UE mode does not yet support handover.
- In UE simulation mode (multi_ue:true), events A1 to A6 and periodical report for strongest cells are supported for the configured cells. Events B1 and B2 are supported for EN-DC. RRC measurements are not yet supported in real UE mode.
- Subband periodic CQI is not supported (but wideband CQI and aperiodic CQI are supported).
- Category M1 specific:
 - Only CE-Mode A is supported.
 - No message repetition for PRACH.
 - No frequency hopping.
- NB-IoT specific:
 - Channel simulator is not supported.
 - Multi cell is not supported.
- NR specific:
 - The maximum number of PDSCH codewords per DCI is one.
 - A single code block group is supported.
 - Semi-static HARQ ACK is not fully supported.
 - k1 (PDSCH to ACK delay in slots) must be larger than or equal to rx_to_tx_latency.
 - k2 (DCI to PUSCH delay in slots) must be larger than or equal to rx_to_tx_latency.
 - The RAR to PUSCH delay in slots must be larger than or equal to rx_to_tx_latency + 1.

14 Change history

14.1 Version 2025-06-13

- updated RRC ASN.1 to release 18.5.0
- updated NR RRC ASN.1 to release 18.5.1
- updated LPP ASN.1 to release 18.4.0
- added coarse location reporting
- added NB-IoT R14 servingCellMeasInfo support
- added non 3GPP (ePDG and N3IWF) support
 - added n3gpp parameter
- added access point name to tun_setup_script arguments
- added cid to pdn_connect, pdn_disconnect, ue_pdu_session_modification, ue_get remote APIs and IP simulation messages
- added ntn_internal_model parameter at cell level
- added min_distance, max_distance and bounce parameters
- added remote API for lterue
- added cell_sync parameter for NR cell group configuration

14.2 Version 2025-03-14

- updated NR RRC ASN.1 to release 18.4.0
- added NR DL MIMO 8x8
- added NR FR2 NTN
- the crc=KO log is renamed to crc=FAIL
- added direct SCell activation support
- added R18 NR PDCP SN gap report support
- added tx_gain_offset at cell level
- added cell_gain monitor command

14.3 Version 2024-12-13

- updated RRC ASN.1 to release 18.3.0
- updated NR RRC ASN.1 to release 18.3.0
- added R18 3MHz cell bandwidth support for NR cells
- added NR band 106 definition
- added R14 skip uplink TX dynamic and SPS support
- redcap parameter is changed from a boolean to an enum. Boolean is still supported for backward compatibility
- added eredcap_reduced_bb_bw parameter
- added pdsch_fer parameter
- added dl_ca parameter
- added max_mimo_layers_dl, nr_max_mimo_layers_dl and nr_max_mimo_layers_ul parameters
- added measurement_report remote API event
- added vrb_lib_path parameter to the NR UE configuration for Intel vRANBoost support

14.4 Version 2024-09-13

- added LTE bands 107 and 108 definition
- added split 7.2 multi cell support
- added support for NR Paging Early Indication (PEI)
- added status_req to sms remote API and monitor command
- added sms_status_report event
- added sms_command remote API and monitor command
- added license remote API
- added attenuation parameter to all antenna types in the channel simulator
- added tun_ifname parameter
- added ue_del_all remote API
- added value 100_enhanced to f_raster parameter
- com_logs_lock parameter is renamed to com_log_lock. com_logs_lock is still supported for backward compatibility
- added com_log_us parameter
- added sid_period to cbr_send remote API
- added eab parameter

14.5 Version 2024-06-14

- OpenSSL library is upgraded to 1.1.1w
- added FR2 support
- added NR band 54 definition
- added data inactivity monitoring
- added apply_ul_mbr parameter
- added delay_sim parameter
- added ca_intraband parameter
- added access_control_classes and uac_access_identities parameters
- added satellite antenna type for NTN channel simulator
- added sim_path_loss to ue_get remote API
- added rrc_sel_resel parameter

14.6 Version 2024-03-15

- updated NR RRC ASN.1 to release 17.6.0
- added LTE bands 106, 253 and 254 definition
- added NR bands 31, 72, 105, 109 and 254 definition
- added IPv4 Link MTU request in PCO and automatic configuration of TUN interface based on the value received from the network
- added NR 2-steps RA SDT support
- added NR multi-CSI-PUCCH support
- added NR R17 PUSCH repetition support
- added qos_flows and erabs parameters to ue_get remote API
- added apply_ta_commands parameter
- added rlc_drop_rate remote API

- added cells.counters to config_get remote API
- added support of '+' in sms_centre_address
- added uplink_tx_switch_option parameter
- ntn_ground_position and ground_position_at_origin are deprecated, replaced by a single ground_position parameter
- added sprt_support parameter
- increased drx_cycle value range for NB-IoT UEs
- added handover_command, handover_success and handover_failure cevent counters
- added cfo parameter to stats remote API
- use trx_get_numa_nodes2 TRX API instead of trx_get_numa_nodes

14.7 Version 2023-12-15

- added EPS user plane integrity support when as_release is set to 17 or higher
- added RRC cell selection and reselection
- added NAS PLMN selection
- added support of TRX multi-thread API
- added extended measurement identities and measurement objects support
- added CSG support
- ca_filter_bc_3x101 parameter replaces the old ca_filter_bc_36101 and can now apply to NR UEs
- ul_ca parameter can also apply to NR UEs
- added loop_count and loop_delay to remote API messages
- added sim_events_loop_count and sim_events_loop_delay
- added plmnwact, oplmnwact, hplmnact, ehplmn and lrplmnsi used by the NAS PLMN selection procedure
- added ntn parameter to custom_freq_band object
- removed ntn parameter from the cell configuration object (the NTN info comes from the band used)
- added ue_usage_setting and voice_domain_preference_eutran parameters
- added Ethernet traffic generation type to cbr_recv and cbr_send
- added preferred_max_cc and preferred_max_layers parameters to ue_assistance_information API for NR UEs
- altitude parameter in ground_position_at_origin and ntn_ground_position parameters is now optional
- added ntn_service_dl_freq and ntn_service_ul_freq parameters for NR NTN cell groups
- added csg_info_list parameter
- added com_ssl_ca parameter for SSL verification
- added emergency_attach and imei_attach parameters
- added emergency parameter to pdn_connect and pdn_disconnect remote APIs
- mnc_nb_digits parameter is now also applicable to LTE and NB-IoT UEs

14.8 Version 2023-09-08

- updated EUTRA band combinations based on 3GPP TS 36.101 v18.2.0
- added the ptrs_density_recommendation_dl parameter
- snssai parameter is added to pdn_disconnect remote API
- sms_centre_address parameter is added
- NUMA configuration automatically uses RF frontend driver information
- attach_pdn_type parameter value ethernet is added
- pdn_type parameter value ethernet is added
- wus_support, wus_edrx_min_time_offset and gwus_paging_probability parameters are added for Cat-M1 UEs
- redcap and half_duplex parameters added for NR UEs
- supi_concealment_by_sim parameter is removed

14.9 Version 2023-06-10

- added LTE band 73 definition
- ntn, ntn_n_ta_ue and ntn_ground_position parameters have been moved to the cell configuration and are now available for NB-IoT and NR cells
- added ntn_eci_aligned_ecef parameter
- phy related logging parameters are moved in the phy layer object of config_set/config_get remote APIs
- added rrc.cell_meas=[0|1] log level
- fading is now applied to the PRACH signal when using the channel simulator
- attach_pdn_type parameter value non-ip is renamed to unstructured. non-ip is still supported for backward compatibility
- pdn_type parameter value non-ip in pdn_connect remote API is renamed to unstructured. non-ip is still supported for backward compatibility
- com_logs_lock parameter added to disable logs configuration change via remote API
- attach_pdn_ims parameter is added
- ims parameter is added to pdn_connect remote API
- ground_position_at_origin parameter is added
- lpp_support parameter is added

14.10 Version 2023-03-17

- com_addr parameter now uses [::] address instead of 0.0.0.0 in the delivered configuration files to allow IPv6 connection
- updated RRC ASN.1 to release 17.3.0
- updated NR RRC ASN.1 to release 17.3.0
- added LTE category 1 bis support
- added inter-RAT EUTRA/NR support
- added EUTRA/NR CGI reporting support
- added LTE bands 54, 255 and 256 definition
- added NR bands 100, 101, 102, 104, 255 and 256 definition
- added wus_support, wus_edrx_min_time_offset and gwus_paging_probability parameters for NB-IoT UEs

- added rms_dbm parameter to stats remote API
- added cpu_core_list parameter to cell group
- added missing deregister monitor command in documentation
- \bullet t3412 parameter can be used for MICO requested T3512
- added eutra_voice_support and nr_voice_support parameters
- cfo parameter was wrongly named freq_shift in ue_get remote API documentation
- f_raster parameter supports the value 15_30_100
- delta_gscn parameter supports the value 7
- added snssai_credentials parameter
- increased sim_reader_index parameter range

14.11 Version 2022-12-16

- updated RRC ASN.1 to release 17.2.0
- updated NR RRC ASN.1 to release 17.2.0
- added Configured Grant Type1 support
- added eDRX support for NR UEs
- added enhanced skip uplink TX support for NR UEs
- added ca_certificate parameter to eap_tls
- added snpn_access_mode and allowed_snpn parameters
- added cag_info_list parameters
- added tun_script_param for tun mode
- nr_support parameter is renamed to en_dc_support. nr_support is still supported for backward compatibility
- added ntn, ntn_n_ta_ue, ntn_ground_position in NB-IoT UEs for Rel17 NTN support
- added random_ap_subband_cqi and random_ap_subband_pmi parameters
- added inactive value to rrc_state parameter in ue_get remote API
- added utc parameter to remote API response messages

14.12 Version 2022-09-16

- updated RRC ASN.1 to release 17.1.0
- updated NR RRC ASN.1 to release 17.1.0
- added NUMA architecture support
- added log support for remote UE. GTP-U and IP layers available
- added freq_shift and sample_rate_offset parameters to ue_get remote API
- added gtp_socket_size option for remote UE
- added nr_forced_li parameter
- added ue_assistance_information remote API
- $\bullet\,$ added R17 35MHz and 45MHz cell bandwidth support for NR cells
- added cross_pol_medium and cross_pol_high MIMO correlation matrixes to channel simulator
- added deregister remote API
- added band 103 support
- added support for CRI_RI_LI_PMI_CQI report quantity

- added Cat-M R14 PDSCH scheduling enhancement, HARQ ACK bundling and 10 HARQ processes support
- added dump_stdout and dump_stderr parameters to ext_app

14.13 Version 2022-06-17

- OpenSSL library is upgraded to 1.1.1n
- improved global NR performances
- added ipv4_local_addr, ipv6_remote_addr_prefix and ipv6_local_addr_prefix TFT components
- pdcch_decode_opt and pdcch_decode_opt_threshold are now supported with NR
- the delay_spread channel simulator parameter is added for the new tdla, tdlb, tdlc, tdld and tdle channel types
- added start_timestamp and end_timestamp to log_get API
- added phy.rep=1 log level for NPUSCH/NPDSCH allocations and repetitions in each sub-frame
- added support for R16 NR RLC extended t-PollRetransmit and extended t-StatusProhibit
- added support for R16 NR PDCP extended discardTimer

14.14 Version 2022-03-18

- prach_delay is now available for NR UEs too
- added notes about channel reciprocity and SRS antenna switching
- updated NR UE capabilities reporting
- the NR UE configuration files found in config folder are changed to use a cell SCS of 15kHz in FDD to match the changes done in the gNB configuation files
- added channel estimation signal log for PDSCH (LTE, NR)
- supi_concealment_by_sim parameter is added

14.15 Version 2021-12-17

- a new phy.cell_meas log level is added
- license monitor command is added
- support of antenna panels in the multi-UE channel simulator is added
- rx_agc and rx_agc_timeout remote APIs are removed; use rx_gain instead
- ssf5120 and sf10240 DRX long cycle in RRC connected state is supported
- PDCCH order PRACH in LTE, NB-IoT and NR is supported
- aperiodic SRS is supported in NR
- NB-IoT NPRACH Format 2 is supported
- mbms_set remote API is added

14.16 Version 2021-09-17

- the minimum GLIBC version is now 2.17
- logs can be displayed with microseconds precision
- nas_5gs parameter is added for EUTRA/5GC in LTE, Category M1 and NB-IoT
- addition of control plane CIoT 5GS optimization
- sul_support parameter is added for NR supplementary uplink

- cpu_core_list parameter is added to control the list of cores used for multi threading
- forced_pci parameter is added for LTE, Category M1 and NR UEs
- new parameters are added to the channel simulator for antenna panels
- f_raster parameter supports the value 15
- ullet as_release parameter supports the value 16
- NAI can be configured instead of IMSI
- the ue-xwu script is updated
- PRACH repetitions in LTE-M are added

15 License

1teue is copyright (C) 2012-2025 Amarisoft. Its redistribution without authorization is prohibited

lteue is available without any express or implied warranty. In no event will Amarisoft be held liable for any damages arising from the use of this software.

For more information on licensing, please refer to license.pdf file.