

Applications - Parallel Clustering

Revolution Analytics

Outline

1 Background

Noisy Solutions

Parallel Approach

Cluster Analysis in R

- k-means is a collection of clustering algorithms which partition a set of points into "k" groups
- The kmeans() function in R will pick k initial cluster centers at random, then assign points to each cluster so that the sums of squares is minimized.
- The function kmeans() is part of the stats package.
- Shows how to parallelize a complex function

A Small Data Set Example

We want to identify 5 clusters of points from this small 2-dimensional data set, X:

```
# Create artificial data
set.seed(1)
X <- rbind(matrix(rnorm(100, mean = 0, sd = 0.3), ncol = 2), matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2))
colnames(X) <- c("x", "y")</pre>
```


Plot

plot(X)

Cluster analysis with k-means

From R, we call:

Simple code for clustering
kmeans(X, 5)

Cluster analysis with k-means

```
# Create function to plot k-means clustering solution
clusterPlot <- function(x, n = 5, nstart = 1) {
  cl <- kmeans(x, n, nstart = nstart)
  plot(x, col = cl$cluster)
  points(cl$centers, col = 1:n, pch = 8, cex = 2)
}</pre>
```


Outline

Background

2 Noisy Solutions

Parallel Approach

Two different 5-cluster solutions

- Five arbitrary cluster center points are set, then adjusted iteratively to minimize the total sum of squares of points from center points.
- But we may get different clustering solutions (i.e., different local sums of squares minimums) with different initial center points, as shown next

Clusters vary with starting points

```
par(mfrow = c(1, 2))
clusterPlot(X)
clusterPlot(X)
```


par(mfrow = c(1, 1))

The Best of 25

- The kmeans() function will optionally repeat the procedure, each time randomly selecting initial center points.
- It then computes the minimum sums of squares over each of the procedures, determining the global optimum from the calculated local optimums.
- This graph shows the result of kmeans (X, 5, nstart=25) which gives the best solution from 25 potentially different sets of starting values.

The Best of 25

clusterPlot(X, n = 5, nstart = 25)

Outline

Background

Noisy Solutions

3 Parallel Approach

Application for Parallel Computing

Cluster analysis is a good application for parallel computing because:

- For complex problems, you need to calculate k-means for many different starting points for cluster centers
- For large problems, computation of each cluster solution can be time consuming
- Each of the clustering solutions can be calculated independently

Steps for Parallel Computation

- Pass the data to a specified number of computing resources just once.
- Split the work into smaller tasks for passing to each computing resource.
- Combine the results from all the computing resources so the best result is returned.

An Example with rxExec()

- Suppose we have a large array Z and we want to classify 10 clusters.
- Because it is a complex problem, we would like to run the clustering procedure 400 times, allowing up to 35 iterations each time, in order to establish a global optimum.

Slow on a Single Processor

■ We could do this analysis in R by calling:

```
kmeans(Z, 10, iter.max = 35, nstart = 400)
```

but it would be slow doing all the calculations on just one processor.

Instead we'll take advantage of all available processors by using rxExec().

Step 1: Create a Master Process

- With rxExec(), you can use a variety of sequential or parallel backends.
- We have mostly been using the local parallel compute context, or an explicit parallel backend using doParallel.
- You can think of rxExec() as the "master process" and the parallel back end as the "workers" - the compute context, however established, is the glue that binds the master to the workers.

rxSetComputeContext(RxLocalParallel())

Step 2: Define Worker Data and Tasks

- In this example, instead of doing 400 kmeans() starting values on one processor, we will do 50 on each of eight processors
- The following call to rxExec() does this:

```
numTimes <- 8
results <- rxExec(kmeans, X, centers = 5, iter.max = 35, nstart = 50,
   timesToRun = numTimes)</pre>
```


Step 3: Combine the Results

- Now each of the workers has produced information on the "best" 5-cluster set for their sets of starting cluster center points. The returned results object is a list containing these kmeans objects.
- Each kmeans objects has a withinss component which gives the within-cluster sum of squares for each cluster.
- If we calculate the total sums of squares for each of the cluster sets, we know that the smaller will give us our final globally-optimal result.

Step 3 (continued)

```
(sumSSW <- vapply(results, function(x) sum(x$withinss), FUN.VALUE = numeric(1)))
## [1] 7.062323 7.062323 7.062323 7.062323 7.062323 7.062323 7.062323
results[[which.min(sumSSW)]]
## K-means clustering with 5 clusters of sizes 25, 12, 24, 24, 15
##
## Cluster means:
## 1 -0.1096832 0.2106891
## 2 1.3290081 1.1185534
## 3 0.1581362 -0.1761590
```


Creating rxExec kmeans

- Based on this example, a parallel version of kmeans() with all of its functionality can be created.
- It can be used in place of kmeans() for faster processing, with the user specifying the number of processors.
- It combines the parallel call to rxExec() with the calculation of the best, as shown on the next slide.

kmeansRSR

Compare kmeans and kMeansRSR

To compare the speeds of the serial and parallel functions, we can create a sample data set and time the results:

```
# Create 5000 x 50 matrix
nrow <- 5000
ncol <- 50
Z <- matrix(rnorm(nrow * ncol), nrow, ncol)
iter.max <- 35
workers <- 8</pre>
```


Time them...

```
nstart <- 800
# Time kmeans
(km1st <- system.time(km1 <- kmeans(Z, 10, iter.max, nstart))[[3]])

## [1] 178.782

# Time kmeansRSR
(km8st <- system.time(kmrsr <- kMeansRSR(Z, 10, iter.max, nstart = nstart/(2 * workers), numTimes = 2 * workers))[[3]])

## [1] 174.434</pre>
```


kmeans Performance Results

```
plot(x = c(1, workers), y = c(km1st, km8st), type = "b", ylim = c(0,
    max(km1st, km8st) + 1))
```


Session Summary

■ This presentation has shown an example of how you can write your own faster, parallelized routines using existing R functions and rxExec() and // or foreach().

Other Parallelization Strategies

- DoRedis fault tolerant system that can dynamically allocate workers
- R+Hadoop
- RHIPE // RHadoop talk Hadoop without leaving R
- Segue seamlessly talk with Amazon EMR

Course Bibliography

- Revolution Analytics *RevoScaleR Distributed Computing Guide*.
- R vignettes:
 - Weston, S. Using The foreach Package
 - Calaway, R. Using The iterators Package
- Das, S. and Granger, B. Financial Application with Parallel R, Journal of Investment Management, 7(4)
- Schmidberger, M, et.al, (2009). State of the Art in Parallel Computing in R, Journal of Statistical Software. 31(1)
- Q. Ethan McCallum and Stephen Weston. (2011) Parallel R -Data Analysis in the Distributed World, O'Reilly Media

Bibliography (Continued)

- John Fox (2002), *Bootstrapping Regression Models*, Appendix to An R and S-PLUS Companion to Applied Regression
- Davison, A.C. & D.V. Hinkley (1997). Bootstrap Methods and their Application. Cambridge: Cambridge University Press
- Efron, B. & R.J. Tibshirani (1993). An Introduction to the Bootstrap. New York: Chapman and Hall.

Questions?

Thank you

Revolution Analytics is the leading commercial provider of software and support for the popular open source R statistics language.

www.revolutionanalytics.com 1.855.GET.REVO

Twitter: @RevolutionR

