Детекция галлюцинаций больших языковых моделей

Левыкин Александр Михайлович Научный руководитель: Воронцов Константин Вячеславович

МГУ им. М.В.Ломоносова

14 декабря 2024 г.

Понятие галлюцинации и их классификация

- Цель работы: исследование методов детекции галлюцинаций в token classification постановке. Фокус на детекции фактологических галлюцинаций для задачи в reference-free постановке. Анализируются подходы instruction-based, дообучение NER моделей, а также анализ временных рядов.
- Галлюцинация LLM ответ (или его часть) модели, не соответствующий входным данным или сгенерированному ранее контексту, либо противоречащий общеизвестным фактам о мире.
- Галлюцинации делятся на две части:
 - Intrinsic (внутренние) галлюцинации генерируемый текст не соответствует входным данным.
 - Extrinsic (внешние) галлюцинации -
 - ответ не соответствует фактам реального мира (в задачах без референсного документа)
 - ответ не может быть подтвержден информацией, содержащейся во входных данных (в задачах с референсным документом)

Классификация задач детекции галлюцинаций

Подходы детекции галлюцинаций бывают:

- reference-based когда есть документ-источник (суммаризация, переводчики, image caption и т.д.)
- reference-free (question answering наша задача)

Подходы детекции галлюцинаций бывают:

- online при классификации i-го токена можно смотреть только на 1,...,i-е токены.
- offline можно смотреть на весь текст.

Подходы детекции галлюцинаций бывают:

- document-level классифицируем весь текст одной меткой.
- token-level классифицируем каждый токен по-отдельности.

В данной работе - фокус на token-level reference-free задаче.

Постановка задачи

- Пусть заданы:
 - Запрос пользователя последовательность токенов $Q = \{q_1, ..., q_m\}$.
 - Ответ модели последовательность токенов $X = \{x_1, x_2, ..., x_n\}$.
- Задача: поиск всех пар вида (i_k,j_k) , где i_k и j_k , такие что $i_k \leqslant j_k$ индексы начала и конца текстового фрагмента $\overline{x_{i_k}x_{i_k+1}...x_{j_k}}$, являющегося галлюцинацией.
 - Предполагается отсутствие вложенных сущностей, поэтому постановка выше эквивалентна следующей:
- Задача: классификация каждого токена ответа $X = \{x_1, x_2, \dots, x_n\}$ на один из 3-х классов $y_i \in \{B, I, O\}$, где B начало галлюцинации, I продолжение, а O токен, не являющийся частью галлюцинации.

Предложенный метод 1. Instruction-based подход

 ${\it Merog}$ опирается на "prompt engineering", и "emergent behavior".

Данные в задаче - наборы пар: запрос пользователя $Q=\{q_1,q_2,\dots,q_m\}$ и ответ модели $X=\{x_1,x_2,\dots,x_n\}.$

Подход: создать промпт P для генеративной LLM, на котором достигается максмум по метрикам качества на валидационной выборке.

Преимущества:

- Адаптивность: подбор промптов позволяет решать широкий класс задач.
- Экономичность: не нужно дообучать модель, что снижает затраты на дополнительные данные и вычислительные ресурсы.
- Интерпретируемость: промптом можно потребовать пояснение галлюцинации.

Недостатки:

- Чувствительность к промпту
- \bullet Отсутствие вероятностей \Rightarrow сложно управлять степенью уверенности.
- Зависимость от масштабов модели: требуются очень крупные модели, что увеличивает временные затраты.

Instruction-based подход. Эксперимент

Данные: SemEval-2025 Validation Set на английском языке (50 троек: (вопрос, ответ, фрагменты галлюцинации).

Модель: Meta-Llama-3.1-8B-Instruct (release - 2024).

Лучший результат: 39.7% по IoU.

Рис.: Распределение IoU на объектах Val выборки

Предложенный метод 2. Обучение LSTM

В датасете SemEval-2025 известны логиты каждого токена \Rightarrow можно обучить модель, анализирующую лишь временной ряд логитов.

Архитектура: LSTM \rightarrow MLP.

Обучение: минимизация функции потерь BCE (Binary Cross-Entropy Loss):

BCE Loss =
$$-\frac{1}{N} \sum_{i=1}^{N} (y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)) \longrightarrow \min_{\Theta}$$

где:

- N количество токенов в обучающей выборке,
- y_i истинная метка для токена i,
- \hat{y}_i предсказанная моделью вероятность $p(y_i = 1)$,
- Θ параметры модели.

Предложенный метод 2. Обучение LSTM

Плюсы подхода:

 Свобода от языка: модель анализирует временные зависимости без учёта лексики ⇒ ниже зависимость от языка, концентрация на статистике.

Минусы подхода:

- Потеря информации: снижение точности, т.к. модель не учитывает семантику слов.
- Слабость модели: модель была представлена в 1997 году и уже давно не является SOTA.

Обучение LSTM. Эксперимент

Данные: SemEval-2025 Validation Set на 10 языках (500 троек: (вопрос, ответ, фрагменты галлюцинации).

 $Mogeль: torch.nn.LSTM \rightarrow torch.nn.Linear.$

Setup: Train/Test = 9:1, hidden_size = 2048. n_epochs = 50.

Результат: 15.5% по IoU на Test.

Рис.: Зависимость IoU и BCE Loss от эпохи обучения на Train и Test.

Предложенный метод 3. Дообучение NER модели

Модель обучается предсказывать вероятности \hat{S} для каждого токена текста.

Обозначения матриц меток и предсказаний:

 $S \in \{0,1\}^{N \times 3}$: бинарная матрица, содержащая истинные метки для каждого токена, где:

- $S_{i,0} = 1$, если токен x_i отмечен как ${\bf B}$,
- $S_{i,1} = 1$, если токен x_i отмечен как **I**,
- $S_{i,2} = 1$, если токен x_i отмечен как **О**.

 $\hat{S} \in [0,1]^{N \times 3}$: матрица предсказаний модели, где $\hat{S}_{i,t}$ обозначает вероятность того, что токен x_i относится к классу $t \in \{B,I,O\}$. Задача обучения модели заключается в поиске параметров, доставляющих минимум функции потерь:

$$CE(S, p(S \mid \theta)) = CE(S, \hat{S}) = -\frac{1}{N} \sum_{i=1}^{N} \sum_{t \in \{B, I, O\}} S_{i,t} \log(\hat{S}_{i,t}) \longrightarrow \min_{\theta}$$

◆□▶◆圖▶◆불▶◆불▶ 불 りゅ

Дообучение NER модели. Эксперимент

Данные: HaluEval с переразметкой в token classification формат с помощью GPT-4 (10000 объектов: (вопрос, ответ, фрагменты_галлюцинации)).

Модель: distilbert-base-uncased.

Setup:

- Train/Test = 9:1,
- Обучение 3 эпохи.
- \bullet warmup steps=500
- weight decay=0.01,
- per_device_train_batch_size=16,

Качество обученной модели на Test Set:

- **Accuracy:** 0.94
- **F1 Macro:** 0.810
- **F1 Micro:** 0.939
- **IoU:** 0.711

Дообучение NER модели. Эксперимент

Процесс обучения представлены на графиках

Рис.: BCE Loss на обучающей выборке.

Дообучение NER модели. Эксперимент

Процесс обучения представлены на графиках

Рис.: BCE Loss на валидационной выборке.

Дообучение NER модели. Результаты эксперимента

Модель: distilbert-base-uncased.

	Precision	Recall	F1-Score	Support
0	0.95	0.98	0.97	34944
1	0.77	0.57	0.65	3911
Macro Avg	0.86	0.77	0.81	38855
Weighted Avg	0.93	0.94	0.94	38855

Таблица: Classification Report

Accuracy: 0.94F1 Macro: 0.810F1 Micro: 0.939

• **IoU:** 0.711

Сравнение качества работы моделей на всех датасетах

Model	HaluEval (val)	SemEval-500	SemEval-50 (Eng)
LSTM	_	$0.23\ /\ 0.155$	$0.25\ /\ 0.19$
Llama-3.1-8B	$0.722\ /\ 0.693$	$0.398 \ / \ 0.375$	$f{0.421}\ /\ f{0.397}$
DistilBERT	0.810 / 0.711	$0.303\ /\ 0.281$	$0.361\ /\ 0.332$

Таблица: F1 Macro & IoU для всех моделей по всем датасетам на их валидационных частях

Выводы:

- Наиболее устойчивой к формату данных является Llama-3.1-8B
- На выборке, схожей с обучающей, DistilBERT превосходит по метрикам большую генеративную Llama-3.1-8B, но хуже обощается под другие датасеты.
- LSTM показывает качество несопоставимо хуже остальных подходов.

Заключение

- Наиболее удобным, устойчивым к формату данных, быстрым в реализации является prompt-engineering LLM
- При всех преимуществах prompt-engineering работает крайне медленно на inference.
- При качественной обучающей выборке NER метод приближается по метрикам к большим LLM.
- LSTM показывает наибольшую скорость, но качество несопоставимо хуже остальных подходов, из-за чего подход неактуален.
- Дальнейшие исследования будут связаны с построением RAG систем.

Литература I

- Hochreiter, Sepp и Jürgen Schmidhuber (дек. 1997). "Long Short-term Memory". B: Neural computation 9, с. 1735—80. DOI: 10.1162/neco.1997.9.8.1735.
- OpenAI и др. (2024). *GPT-4 Technical Report*. arXiv: 2303.08774 [cs.CL]. URL: https://arxiv.org/abs/2303.08774.
- Reynolds, Laria M Kyle McDonell (2021). Prompt Programming for Large Language Models: Beyond the Few-Shot Paradigm. arXiv: 2102.07350 [cs.CL]. URL: https://arxiv.org/abs/2102.07350.
- Wei, Jason и др. (2022). Emergent Abilities of Large Language Models. arXiv: 2206.07682 [cs.CL]. url: https://arxiv.org/abs/2206.07682.