(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004 年4 月22 日 (22.04.2004)

PCT

(10) 国際公開番号 WO 2004/032917 A1

(51) 国際特許分類7: A61K 31/198, A61P 9/00, 25/28, 43/00

(21) 国際出願番号:

PCT/JP2003/012891

(22) 国際出願日:

2003年10月8日(08.10.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願 2002-299575

2002年10月11日(11.10.2002) J

特願 2002-378176

2002年12月26日(26.12.2002) JP

(71) 出願人 (米国を除く全ての指定国について): 味の 素ファルマ株式会社 (AJINOMOTO PHARMA CO., LTD.) [JP/JP]; 〒104-0028 東京都 中央区 八重洲二丁 目 7-2 Tokyo (JP).

- (71) 出願人 および
- (72) 発明者: 古賀 靖敏 (KOGA,Yasutoshi) [JP/JP]; 〒830-0003 福岡県 久留米市 東櫛原町 7 7 1-5 Fukuoka (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 中西 眞人 (NAKANISHI,Masato) [JP/JP]; 〒104-0028 東京都 中

央区 八重洲二丁目 7-2 味の素ファルマ株式会社 内 Tokyo (JP).

- (74) 代理人: 霜越 正夫, 外(SHIMOKOSHI,Masao et al.); 〒103-0027 東京都 中央区 日本橋三丁目 1 5-2 高愛 ビル 9 階 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国(広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: COMPOSITION FOR PREVENTING/TREATING THE EXPRESSION OF CLINICAL SYMPTOM IN DISEASE CAUSED BY MITOCHONDRIAL DYSFUNCTION

- (54) 発明の名称: ミトコンドリア機能異常に起因する疾患における臨床症状発現の予防・治療用組成物
- (57) Abstract: An excellent composition for treating and/or preventing the expression of a clinical symptom in a disease caused by mitochondrial dysfunction which is characterized by being a composition for oral administration containing L-arginine as the active ingredient.
 - (57)要約: 本出願には、L-アルギニンを有効成分として含有する、経口投与用組成物であることを特徴とするミトコンドリア機能異常に起因する疾患における臨床症状発現の、優れた予防及び/又は治療用組成物が開示されている。

明細書

ミトコンドリア機能異常に起因する疾患における 臨床症状発現の予防・治療用組成物

(技術分野)

本発明は、経口投与されるべき、Lーアルギニンを有効成分として含有することを特徴とするミトコンドリア機能異常に起因する疾患における臨床症状発現の 予防及び/又は治療用組成に関する。

(背景技術)

ミトコンドリアは、細胞内小器官のひとつで、遺伝情報を持つミトコンドリア DNAを有し、エネルギー産生を主たる機能としている。このミトコンドリアD NAの変異により、ミトコンドリアの電子伝達系に異常をきたした場合には、エネルギー産生量が低下し全身のあらゆる細胞や組織の機能障害をきたす。特にエネルギー要求度の高い中枢神経系及び骨格筋、心筋などの障害が顕著である。

ミトコンドリア機能異常に起因する各種の疾患は、ヒトの遺伝性疾患としては 最も頻度の高いもと考えられており、そのほとんどは小児期に発病し、病型は低 身長、易疲労性から死に至るようなケースまで多様である。一方、ミトコンドリ アの機能異常は老化に伴って発症するケースも見られる。

ミトコンドリア機能異常に起因する疾患としては、例えば、MELAS (mito chondrial myopathy, encephalopathy, lactic acidosis, and stroke-like epi sodes)、CPEO (慢性進行性外眼筋麻痺症候群)、MERRF (myoclonus e pilepsy associated with ragged-red fibers) があり、そのうちMELASはミトコンドリア病の中でも最も発生頻度が高く、ミトコンドリア病全体の約25%を占めている。各疾患の症状は、例えば、MELASでは脳卒中様発作が繰り返えされて意識障害、運動麻痺、失語、半盲などを呈し、再発するに従い病状が進行し、知的障害が加わり、多くの患者が寝たきりとなる。そして、重症例では数年の経過で死に至る。

ミトコンドリア機能異常に起因する疾患では、ミトコンドリアにおけるエネルギー産生機能に異常があるために細胞・臓器のエネルギー不足と乳酸の蓄積とを来す。乳酸蓄積による乳酸性アシドーシスの是正のためには、重曹液などのアルカリ剤の静脈投与、乳酸の排泄促進のための輸液投与などを行なう。また、乳酸の蓄積防止のための低炭水化物食事療法、乳酸の代謝促進のためのビタミンB₁、ビオチン、およびジクロロ酢酸ナトリウムの投与を行なう(「日本臨床」60巻、増刊号4「ミトコンドリアとミトコンドリア病」)。

さらに、ALS (amyotrophic lateral sclerosis) 治療薬であるリルゾール (2-アミノー6ートリフルオロメトキシベンゾチアゾール) をミトコンドリア 機能異常に起因する疾患に適用した例も見られる (特表平9-507498号公報)。

他方、ミトコンドリア機能異常に起因する疾患は、重篤でありながらその根本的な治療となる遺伝子治療は現時点で非現実的な状況である。

このように、ミトコンドリア機能異常に起因する疾患の治療に様々な薬物治療 が試みられているが、その有効性に関しては一定の見解は得られていない。

特に小児期発症のミトコンドリア機能異常に起因する疾患における臨床症状発現の治療は、その病状悪化、進行阻止を目的として継続的に投与可能で、患者のQOL (Quality of Life) の点から副作用の少ない新しいタイプの治療薬の開発創製が望まれている。

(発明の開示)

本発明者らは、ミトコンドリア機能異常に起因する種々の病型の中で、小児期に発作性の頭痛、嘔吐、半身けいれんなどで発症するMELAS患者の病理学的検査を実施し、筋生検でミトコンドリアの異常集積像と中小動脈壁の異常染色性が観察されることより、骨格筋その他の臓器にミトコンドリア異常の存在することを明らかにした。さらに、中小動脈壁の異常染色性は、筋内の中小動脈のみでなく、中枢神経の動脈でも観察され、MELASが血管障害を有するとの知見を得た。

本発明者らは、異常なミトコンドリアでは活性酸素の消去が十分でないことか

ら、血管平滑筋細胞内に異常に集積したミトコンドリアがこれら組織障害性を有するフリーラジカルを産生して血管障害をもたらす可能性を念頭におき、MELAS患者での脳卒中様発作が、脳内小動脈の部分的な拡張障害に起因しているとの仮説を立てた。この仮説に基づき、脳内小動脈の内皮細胞に作用し血流改善に効果のある種々の薬剤のなかから選ばれる血流遮断に由来する脳組織の障害及び嫌気性解糖系代謝による乳酸アンドーシスを改善する作用を有するものが、MELAS患者の臨床症状の改善に有用であると考えた。

これまでに、一時的または断続的な脳虚血による脳内グルタミン酸の著しい上 昇が生じた際の脳のグルタミン酸に対する耐性を高めることにより、脳障害の治療をすることができるとして、アルギニン、ロイシンおよびイソロイシンから選ばれるアミノ酸およびグルコースを有効成分とする治療薬が検討されている。

本発明者らは、一酸化窒素の生理作用と疾患に関する種々の報告例から、特にアルギニンが血管壁においては一酸化窒素合成酵素の基質となり、一酸化窒素を介した血管拡張作用を有することから、ミトコンドリア機能異常に起因する疾患における臨床症状発現の治療に応用できないか検討した。

本発明者らは、周期的な嘔吐、片側痙攣および低身長で来院し、ミトコンドリア t RNA (Lou) 3243Gの変異が認められた17歳の女性他2名に、Lーアルギニン一塩酸塩を静脈より点滴静注し、これがMELASによる脳卒中様発作急性期の治療法として有用であるとの知見を得た。

しかしながら、MELAS患者にとって、脳卒中様発作急性期に静脈内注射により治療を受けるためには、発作後直ちに静脈内注射をすべく病院へ移動しなければならず、簡便な治療法とはなり得ない。また、この静脈内注射による治療法では、脳卒中様発作が発現したときの治療法としては有用であるが、同発作の前兆症状、特に閃輝暗点を改善することができない。 閃輝暗点は、脳卒中様発作の前兆症状である視野異常を指し、突然視野の一部に水面が波打つような光が見え、通常5~30分持続する。さらに、血管内への大量のLーアルギニンー塩酸塩の投与は、血圧低下や塩酸アシドーシス等の副作用が懸念される。

一方、急激な脳卒中様発作の発現は、脳梗塞および知的障害を進展させること

から、いかに発作を予防するかが、臨床医の最大の課題であった。

特に小児期発症のミトコンドリア機能異常に起因する疾患における臨床症状発現の治療は、その病状悪化、進行阻止を目的として継続的に投与可能で、患者のQOL (Quality of Life) の点から副作用の少ない新しいタイプの、ミトコンドリア機能異常に起因する疾患における臨床症状発現の治療薬の開発創製が望まれている。

そこで、本発明者らは、MELAS患者の急性期発作症状及びその前兆症状全般を改善し、安全かつ簡便な治療法を模索すべくさらに検討を重ねた。

本発明者らは、L-アルギニンの投与ルートとその投与量の研究を行なっていたところ、意外にもL-アルギニンの低用量を維持療法的に経口投与することで、急性期発作のみならずその前兆症状の頻度およびその程度も著しく低下するとの知見を得た。すなわち、従来報告されているL-アルギニンの静脈内注射のように急速に高用量を投与(0.5g/kgを30分かけて点滴静注)することなく、低用量の経口投与によって初めて閃輝暗点を含む発作の前兆症状のみならず急性期発作の頻度およびその程度も著しく低下することを見出し、このような知見に基いて本発明を完成した。

すなわち、本発明は、(1) Lーアルギニンを有効成分として含有する、経口投与用組成物であることを特徴とするミトコンドリア機能異常に起因する疾患における臨床症状発現の予防及び/又は治療用組成物、(2) Lーアルギニン換算で成人1日当たり1~30gの量で経口投与されるべきことを特徴とする前記(1) 記載のミトコンドリア機能異常に起因する疾患における臨床症状発現の予防及び/又は治療用組成物、(3) ミトコンドリア機能異常に起因する疾患がMELASの脳卒中様発作又は脳卒中様発作の前兆症状であることを特徴とする前記(1) 又は(2) 記載のミトコンドリア機能異常に起因する疾患における臨床症状発現の予防及び/又は治療用組成物、(4) 脳卒中様発作の前兆症状が閃輝暗点であることを特徴とする前記(3) 記載のミトコンドリア機能異常に起因する疾患における臨床症状発現の予防及び/又は治療用組成物、(5) Lーアルギニンに加えて、他のアミノ酸、ビタミン類などのミトコンドリア機能補助剤及び/

又は一酸化窒素放出剤をも含有することを特徴とする前記(1)~(4)のいずれかに記載のミトコンドリア機能異常に起因する疾患における臨床症状発現の予防及び/又は治療用組成物、および(6)有効成分として遊離態のLーアルギニンとLーアルギニンー塩酸塩とを併含することを特徴とする前記(1)~(5)のいずれかに記載のミトコンドリア機能異常に起因する疾患における臨床症状発現の予防及び/又は治療用組成物に関する。

以下、本発明を詳細に説明する。

本発明の組成物に配合すべきLーアルギニンは、遊離態のLーアルギニンのみならず、その薬学的に許容される塩の形態であってもよいことは言うまでもない。従って、本明細書において、文脈上別異に解されない限り、L-アルギニンは遊離態のLーアルギニンおよびその薬学的に許容される塩を含む(広義のLーアルギニン)。

さて、そのような塩には、酸付加塩と塩基の塩とがある。Lーアルギニンの薬学的に許容される酸付加塩としては、例えば、塩化水素、臭化水素、硫酸、リン酸等との無機酸塩、及び酢酸、乳酸、クエン酸、酒石酸、マレイン酸、フマル酸、モノメチル硫酸等との有機酸塩を挙げることができる。また、Lーアルギニンの薬学的に許容される塩基の塩としては、例えば、ナトリウム、カリウム、カルシウム、アンモニア等との無機の塩基の塩、及びエチレンジアミン、プロピレンジアミン、エタノールアミン、モノアルキルエタノールアミン、ジアルキルエタノールアミン、ジエタノールアミン、トリエタノールアミン等との有機の塩基の塩を挙げることができる。本発明の組成物には、遊離態のLーアルギニン又は/及び薬学的に許容される塩のみからなる剤形も含まれる(広義の組成物)。

本発明の経口投与用組成物に有効成分として配合すべきLーアルギニンは、高齢者や小児に対する服用のし易さや、長期投与時の副作用防止の見地から遊離態のLーアルギニン及びその一塩酸塩の形態のいずれか、若しくは両者を併用することが好ましい。特に経口投与に際しては悪味の少ないLーアルギニン一塩酸塩を利用することが好ましいが、一方、塩酸塩由来のアシドーシスをも考慮し、遊

離態のL-アルギニンとL-アルギニン一塩酸塩とを等モル量で配合するのがより好ましい。

本発明の経口投与用組成物の服用量に関しては、成人の一日投与量は遊離態の Lーアルギニン換算で1~50g、好ましくは1~30gである。特に、遊離態 のLーアルギニンとLーアルギニンー塩酸塩を等モル量で又は両者の等モル混合 物を成人一日当りLーアルギニンとして1~30gを少なくとも2回に分割して 服用することがよい。上記投与量の範囲より少ない量では、Lーアルギニン配合 の効果が奏されず、一方、多い量では服薬におけるQOLの低下あるいは塩酸ア シドーシスの要因となり、ともに好ましくない。

本発明の経口投与用組成物には、ミトコンドリア機能を増強する補助剤をさらに配合することができる。補助剤としては、糖、クエン酸回路(TCA回路、トリカルボン酸回路、クレブス回路とも呼ばれる)中間体、クエン酸回路中間体の前駆体もしくはその塩、ビタミン類、アミノ酸類、ミネラル、抗酸化剤、代謝改善剤などを挙げることができる。

上記の糖としては、単糖、二糖及び多糖を挙げることができ、より具体的には ブドウ糖、果糖、マンノース、ガラクトース、ショ糖、麦芽糖、乳糖、デンプン などを挙げることができる。

クエン酸回路中間体としては、クエン酸、アコニット酸、イソクエン酸、αーケトグルタル酸、コハク酸、フマル酸、リンゴ酸、オキサロ酢酸などを挙げることができる。

クエン酸回路中間体の前駆体もしくはその塩としては、2ーケトー4ーヒドロキシプロパノール、2,4ージヒドロキシプタノール、2ーケトー4ーヒドロキシブタノール、2,4ージヒドロキシ酪酸、2ーケトー4ーヒドロキシ酪酸、アスパラギン酸塩、オキサロ酢酸のモノーアルキルエステル、オキサロ酢酸のジーアルキルエステル、モノーおよびジーアルキルクエン酸塩、アコニット酸塩、イソクエン酸塩、αーケトグルタル酸塩、コハク酸塩、フマル酸塩、リンゴ酸塩、オキサロ酢酸塩などを挙げることができる。

ビタミン類としては、ビタミン B_1 、ビタミン B_2 、ビタミン B_6 、ビタミン B_{12} 、ビタミンC、ビタミンA、ビタミンD、ビタミンC、ビタミンC、ビタミンCとビタミンCが抗酸化剤としての特性に富み好ましい補助剤と言える。

アミノ酸類としては、通常輸液に用いられるアミノ酸であれば特に制限はない。具体的には、Lーイソロイシン、Lーロイシン、Lーバリン、Lーリジン、Lーメチオニン、Lーフェニルアラニン、Lースレオニン、Lートリプトファン、Lーアラニン、Lーアルギニン、Lーアスパラギン酸、Lーシステイン、Lーグルタミン酸、Lーヒスチジン、Lープロリン、Lーセリン、Lーチロシン、グリシンなどを挙げることができる。これらのアミノ酸は1種類でも、複数種類組み合わせても使用(配合)することができるが、複数種類組み合わせるのが好ましく、中でも、Lートリプトファン、Lーメチオニン、Lーリジン、Lーフェニルアラニン、Lーロイシン、Lーイソロイシン、LーバリンおよびLースレオニンの8種の必須アミノ酸を併用することが好ましく、更に好ましくは、8種の必須アミノ酸と非必須アミノ酸を組み合わせて使用することである。更に、保存安定性の面からはLーバリン、Lーイソロイシン及びLーロイシンの分岐鎖アミノ酸を補助剤として配合することが特に好ましい。

ミネラルとしては、一般にこの分野で用いられる、例えば輸液成分であれば特に制限は無い。具体的には、無機及び有機塩の形態のカルシウム、ナトリウム、カリウム、マグネシウム、塩素及びリンを挙げることができる。各無機及び有機塩については、既に上市されている輸液や経腸栄養剤に配合される有効成分と同じものを用いることができる。また、ミネラルとして微量元素も添加することができる。緻量元素とは、微量ではあるが生体にとって必要不可欠とされる金属元素である。微量元素の配合は、ミトコンドリア内の酵素の活性を高めるために補助剤としては特に好ましい。具体的には、無機及び有機塩の形態の亜鉛、鉄、マンガン、銅、クロム、モリブデン、セレン、フッ素およびヨウ素を挙げることができる。この場合、高カロリー輸液用として上市されている微量元素製剤を配合することのできることはもちろんである。各微量元素は、一日必要量を考慮して配合すればよい。

本発明の経口投与用組成物には、生理条件下で一酸化窒素を持続的に放出できる薬剤(本明細書において、一酸化窒素放出剤と略称する。)を加えてもよい。例えば、硝酸薬やニトロ薬と称されるニトロ基を有する化合物が前記一酸化窒素を持続的に放出できる薬剤の範疇に入る。

硝酸薬としては、ニトロプルシドナトリウム、ニトログリセリン、グリセリルトリニトレート、イソソルビッドモノニトレート、イソソルビットジニトレート、モルシドミン、SーニトロソーNーアセチルーDLーペニシラミンを挙げることができる。さらに、一酸化窒素供給源として、ジチオトレイトール、システイン、Nーアセチルシステイン、メルカプトコハク酸、チオサリチル酸、メチルチオサリチル酸などを挙げることができる。

本発明の経口投与組成物は、適宜の剤形、例えば散剤、細粒剤、顆粒剤、錠剤、カプセル剤、内服液剤等に調製される。前記各剤形のうち、嚥下に問題のある 老人や小児においても服用されやすいようにするには、矯味、矯臭処理された細 粒剤もしくは顆粒剤に調製するのが好ましい。

これらの製剤は、Lーアルギニン(遊離態又は/及びその薬学的に許容される 塩)をそのままか、または各剤形に応じた薬学的、製剤学的に許容される適宜の 添加剤と混合・造粒し、もしくは適当な溶剤中に溶解して乳化または懸濁し、さ らには適当な基剤と混合する等して、常法により調製することができる。

散剤、細粒剤、顆粒剤、錠剤、カプセル剤等に加える添加剤としては、賦形剤 (例えば、乳糖、ブドウ糖、Dーマンニトール、澱粉、結晶セルロース、炭酸カ ルシウム、カオリン、軽質無水ケイ酸、トレハロースなど)、結合剤(例えば、 デンプン糊液、ゼラチン溶液、ヒドロキシプロピルセルロース、ヒドロキシプロ ピルメチルセルロース、ポリビニルピロリドンなど)、崩壊剤(例えば、デンプ ン、ゼラチン末、カルボキシメチルセルロース、カルボキシメチルセルロースカ ルシウム塩など)、滑沢剤(例えば、ステアリン酸マグネシウム、タルクなど) 、コーティング剤(例えば、ヒドロキシプロピルセルロース、ヒドロキシプロピ ルメチルセルロース、アセチルセルロース、白糖、酸化チタンなど)等があり、 その他必要に応じて着色剤、矯味・矯臭剤等が加えられる。また、内用液剤に加

えられる添加剤としては、保存剤(例えば、安息香酸、パラオキシ安息香酸エステル、デヒドロ酢酸ナトリウムなど)、懸濁化剤または乳化剤(例えば、アラビアゴム、トラガント、カルボキシメチルセルロースナトリウム塩、メチルセルロース、卵黄レシチン、界面活性剤など)、甘味剤(例えば、トレハロース、クエン酸など)等があり、その他必要に応じて着色剤、安定剤等が加えられ、これらに使用される溶剤は、主として精製水であるが、エタノール、グリセリン、プロピレングリコール等も使用することができる。また、適当な基剤としては、例えば、ポリエチレングリコールなどを挙げることができる。

Lーアルギニン(遊離態若しくはその薬学的に許容される塩)は、胃壁に対する刺激性を有していることから腸溶性製剤とすることが好ましい。この際、腸溶性物質としては、pH4以下の水には実質的に溶解しないが、pH4.5以上、とりわけpH5.5~7.5の溶液には溶解する物質であればよく、たとえばセルロース誘導体、セルロースもしくはポリビニル化合物の二塩基酸エステル、アクリル酸系共重合体およびマレイン酸系共重合体などの通常、腸溶性製剤に用いられているものを使用することができる。

セルロース誘導体としては、たとえばカルボキシメチルエチルセルロースなど が挙げられる。

セルロースもしくはポリビニル化合物の二塩基酸エステルとしては、たとえば セルロース・アセテート・フタレート、セルロース・アセテート・サクシネート 、セルロース・アセテート・マレエート、ヒドロキシプロピルメチルセルロース ・フタレート、ヒドロキシプロピルメチルセルロース・アセテート・サクシネー ト、ポリビニルアセテート・フタレート、ポリビニルプロピオネート・フタレー ト、ポリビニルブチレート・フタレートなどがあげられる。

アクリル酸系共重合体としては、たとえばアクリル酸メチル・メタアクリル酸 共重合体、アクリル酸エチル・メタアクリル酸共重合体、メタアクリル酸メチル・メタアクリル酸共重合体などがあげられる。

マレイン酸系共重合体としては、たとえばビニルアセテート・無水マレイン酸 共重合体、スチレン・マレイン酸共宜合体などがあげられる。

上記腸溶性物質は市販のものであっても好適に使用することができ、例えばヒ

ドロキシプロピルメチルセルロース・フタレートとしては「HP-50」または「HP-55」(いずれも、信越化学工業株式会社製)などを用いることができる。さらに、メタアクリル酸メチル・メタアクリル酸共重合体として「オイドラギットL」または「オイドラギットS」(いずれも、レーム・ファーマ社(ドイツ)製)などを用いることができる。

本発明の経口投与用組成物の有効成分であるLーアルギニン(遊離態若しくは その薬学的に許容される塩)は、例えばブドウ糖やショ糖とメイラード反応を起 こし経時的に着色、分解するため、添加剤としてはメイラード反応を起さない澱 粉、トレハロースなどを使用することが好ましい。より好ましくは、トレハロー スを添加剤として前述の腸溶性製剤とするのがよい。

このようなL-アルギニンの遊離態若しくはその薬学的に許容される塩は、例えば医薬品として下垂体機能検査に使用する日本薬局方塩酸アルギニン注射液「アルギニン注モリシタ」、並びに尿素サイクル異常症薬「アルギリ顆粒」、及び同「アルギリ注」(いずれも、味の素ファルマ社製)が市販されており、毒性に関するデータも多くの刊行物に見ることができ、安全性に関しては特記すべき問題はない。

(発明を実施するための最良の形態)

以下、実施例を以って本発明をより具体的に説明する。

(1a) 臨床試験例(その1)

MELASと診断され各種の発作時所見が認められる12~31歳の3名の患者につき、LーアルギニンとLーアルギニン一塩酸の等モル混合物を有効成分として含有する顆粒剤「アルギリ顆粒」(味の素ファルマ社製)2.6g(Lーアルギニン換算2g)を一日3回(一日投与量としてLーアルギンン6g相当)服用させ、服用前後の脳卒中様発作とその前兆症状の発現頻度を比較した。

その結果、3名の患者は、ともに、発作と前兆症状の発生頻度が減少し、特に 来院が必要となる重篤な半身けいれんの発生頻度は顕著に少なくなった。また、 前兆症状における閃輝暗点を自覚した直後に前記顆粒を服用することにより、服 用後約30分で症状改善が認められ、前兆症状の発生頻度の低下とともに、同症 状の速やかな改善が認められた。

(1b) 臨床試験例 (その2)

MELASと診断され各種の発作時所見が認められる22歳と47歳の女性患者2名につき、上記臨床試験例(その1)におけると同様に、Lーアルギニンと Lーアルギニンー塩酸の等モル混合物を有効成分として含有する顆粒剤「アルギ U顆粒」(味の素ファルマ社製)2.6g(Lーアルギニン換算2g)を一日3回(一日投与量としてLーアルギンン6g相当)服用させ、服用前後の脳卒中様発作とその前兆症状の発現頻度を比較した。

その結果、2名の患者は、ともに、発作と前兆症状の発生頻度が減少し(1か月当りの発作と前兆症状の頻度は、投与前が1.7回/月および1.0回/月であったのがそれぞれ0.2回/月および0.3回/月と顕著に減少した)、特に来院が必要となる重篤な半身けいれんの発生頻度は顕著に少なくなった。

(2) 腸溶性製剤の調製例

遠心流動型造粒コーティング装置「CF-360」(フロイント産業社製)を用い、回転で転動状態下、温風を送風しながら、遊離態LーアルギニンとLーアルギニン一塩酸塩の等モル混合物、澱粉及びヒドロキシプロピルセルロースを混合して予め造粒した平均粒子径約1,000~500μmの球形状の芯顆粒200gの上に、腸溶性物質ヒドロキシプロピルメチルセルロースアセテートサクシネートおよびタルクの7:3混合末200gを懸濁した水ーエタノール溶液を噴霧して加えた。さらに、回転し、乾燥させたのち、室温に冷却して腸溶性製剤350gをえた。

この腸溶性製剤について、日局第1液(pH1.2)および第2液(pH6.8)各900m1を溶媒とし、37Cでパドル回転数100rpmの条件にて溶出試験を実施した。第1液における溶出の抑制と、第2液では速やかに溶出する腸溶性の機能が認められた。

(3)溶液剤の調製例

Lーアルギニン、ビタミンC、ビタミンE、クエン酸、コハク酸、オレンジ香 料、サッカリンナトリウム及び亜硫酸水素ナトリウムを下記第1表に示す添加量 に従い秤取し、精製水に溶解した後、酸素難透過性の多層樹脂からなる実質充填 容量350m1の樹脂製ボトルに充填し、口部材にて密封した後、滅菌してボト ル入りの溶液剤を調製した。このボトル入り溶液剤は、発作前兆の症状発現後直 ちに服用可能で、効果発現も早く、MELAS患者の在宅維持療法としての利便 性に優れた経口投与用の製剤と言える。

第1表:350ml	当りの配合量
L-アルギニン	10.000g
ビタミンC	0.500g
ビタミンロ	0 440 %

クエン酸 0.440g コハク酸 0.440g サッカリンナトリウム 0.200g 亜硝酸水素ナトリウム

0.070g

適量 オレンジ香料

(産業上の利用可能性)

本発明の経口投与されるべき、ミトコンドリア機能異常に起因する疾患におけ る臨床症状発現の予防及び/又は治療用組成物は、その有効成分であるLーアル ギニンが血管壁における一酸化窒素合成酵素の基質となり得ること、及び一酸化 **窒素を介した血管拡張作用によりミトコンドリア機能異常に起因する疾患におけ** る臨床症状発現の治療に有効であり、例えば、MELAS患者の発作症状及びそ の前兆症状全般を改善することができる。また、本発明の経口投与用組成物は安 全かつ簡便に投与可能で、特に脳卒中様発作を伴い来院した発症初期の患者の、 再発する発作症状を防止するためには在宅における維持療法が必要であるところ 本発明の予防及び/又は治療用組成物は維持療法として極めて有用である。

請求の範囲

- 1. L-アルギニンを有効成分として含有する、経口投与用組成物であることを特徴とするミトコンドリア機能異常に起因する疾患における臨床症状発現の予防及び/又は治療用組成物。
- 2. Lーアルギニン換算で成人1日当たり1~30gの量で経口投与されるべきことを特徴とする請求項1記載のミトコンドリア機能異常に起因する疾患における臨床症状発現の予防及び/又は治療用組成物。
- 3. ミトコンドリア機能異常に起因する疾患における臨床症状がMELASの脳卒中様発作又は脳卒中様発作の前兆症状であることを特徴とする請求項1又は2記載のミトコンドリア機能異常に起因する疾患における臨床症状発現の予防及び/又は治療用組成物。
- 4. 脳卒中様発作の前兆症状が閃輝暗点であることを特徴とする請求項3記載のミトコンドリア機能異常に起因する疾患における臨床症状発現の予防及び/ 又は治療用組成物。
- 5. Lーアルギニンに加えて、他のアミノ酸、ビタミン類などのミトコンドリア機能補助剤及び/又は一酸化窒素放出剤をも含有することを特徴とする請求項1~4のいずれかに記載のミトコンドリア機能異常に起因する疾患における臨床症状発現の予防及び/又は治療用組成物。
- 6. 有効成分として遊離態のL-アルギニンとL-アルギニン一塩酸塩とを $併含することを特徴とする請求項<math>1\sim5$ のいずれかに記載のミトコンドリア機能 異常に起因する疾患における臨床症状発現の予防及び/又は治療用組成物。