Capitolo 4: Determinante #GAL

Definizione: il determinante di una matrice quadrata

 $A = (a_{ii}) \in Mat(n,n)$ è definita ricorsivamente

- Caso n = 1 $A = (a_{ij}) => det(A) definito da <math>a_{11} \in R$
- Caso n > denotiamo $\hat{A}_{ij} \in Mat(n-1,n-1)$ sotto matrice ottenuta eliminando la riga i e colonna j

Definiamo det(A) in diversi modi equivalenti:

– Scegliamo una riga i e "espandiamo lungo la riga i": $\det(A) = {}^n\Sigma_{j=1}$ $(-1)^{i+j}*a_{ij}*\det(\hat{A}_{ij})$

segni

alterni - elementi di A sulla riga i - sottomatrici senza riga i

– Scegliamo una colonna j e "espandiamo lungo la colonna j": $\det(A) = {}^n \Sigma_{i=1} \; (-1)^{i+j} * a_{ij} * \det(\hat{A}_{ij})$

segni

alterni - elementi di A sulla colonna j - sottomatrici senza colonna j

Esempio:

- Scegliamo la riga i = 1:
$$\det(A) = {}^2\Sigma_{j=1} (-1)^{1+j} * a_{\times j} * \det(\hat{A}_{1j}) = (-1)^2 * a_{\times 1} * \det(\hat{A}_{11}) + (-1)^3 * a_{12} \times \det(\times_{12}) = a_{11} * \det(a_{11} - a_{12} | a_{21} a_{22}) + (-1) * a_{12} * \det(a_{11} - a_{12} | a_{21} a_{22}) = a_{11} * a_{22} - a_{12} * a_{21}$$

- Scegliamo la colonna j = 2:
$$\det(A) = {}^2\Sigma_{i=1} (-1)^{i+2} * a_{i2} * \det(\hat{A}_{i2}) = (-1)^3 * a_{\times 2} * \det(\hat{A}_{12}) + (-1)^4 * a_{22} * \det(\times_{22}) = = (-1) * a_{12} * \det(a_{11} a_{12} | a_{21} a_{22}) + a_{22} * \det(a_{11} a_{12} | a_{21} a_{22}) = (-1)^* a_{12}^* a_{21}^* a_{22}^* a_{11}$$

Osservazione:

si può dimostrare che scelte diverse danno lo stesso risultato (det(A) è ben definito)

Osservazione(formula speciale caso 2x2):

 $a_{11}^*a_{22}^- - a_{12}^*a_{21}^-$ (prodotto della prima diagonale - prodotto della seconda diagonale)

Osservazione(formula speciale caso 3x3):

data la matrice $A \in Mat(3,3)$ si ricopiano a destra le prime due colonne si tracciano

3 diagonali verso destra (sud-est) e 3 diagonali verso sinistra (sud-ovest)

(somma dei prodotti delle diagonali verso destra) - (somma dei

prodotti delle diagonali verso sinistra)

Osservazione:

per $n \ge 4$ non ci sono formule utili, si procede utilizzando la definizione

Osservazione:

I segni $(-1)^{i+j}$ nel calcolo di det(A) formano un pattern "a schiera" i=1 i=2 i=3 i=4

$$i=1 (+ - + ...)$$

$$i=2 (-+-...)$$

$$i=3 (+ - + ...)$$

Osservazione:

la funzione det: Mat(n,n)->R non è un'applicazione lineare

Proposizione:

A Mat(n,n) \rightarrow det(A) = det(A^t)

Esempio:

$$- n = 1 -> ovvio A = (a_{11}) = A^{t}$$

$$- n = 2 -> \det(a_{11} a_{12} | a_{21} a_{22}) = a_{11} a_{22} - a_{12} a_{21}$$

$$\det(a_{11} a_{21} | a_{21} a_{22}) = a_{11} a_{21}$$

$$\det(a_{11} a_{21} | a_{21} a_{22}) = a_{11} a_{22} - a_{12} a_{21}$$

Proposizione(proprietà multilineare):

 $A \in Mat(n,n)$ $A = (R_1 ... R_n)^t$ fissiamo la riga $R_i \in R^n$ supponiamo $R_i = \times \underline{v}$

$$+ \ \mu \underline{w} \qquad \text{con } \mu, \text{i.e.} \qquad \underline{v}, \underline{w} \in \text{R}^n$$

allora
$$\det(A) = \det(R_1 \ R_{i-1} \times \underline{v} + \mu \underline{w} \ R_{i+1} \ \dots \ R_n)^t = \times \det(R_1 \ R_{i-1} \ \underline{v} \ R_{i+1}$$

...
$$R_n$$
)^t + μ *det($R_1 R_{i-1} \underline{w} R_{i+1} ... R_n$)^t

La stessa proprietà vale per le colonne

Esempio:

12)

$$2(1\ 1\ 0) + 3(0\ 0\ 1) = (2\ 2\ 3)$$

 $det(1\ 2\ 3\ |\ 2\ 2\ 3\ |\ 0\ 1\ 2) = 2*det(1\ 2\ 3\ |\ 1\ 1\ 0\ |\ 0\ 1\ 2) + 3*det(1\ 2\ 3\ |\ 0\ 0\ 1\ |\ 0$

Dimostrazione(righe):

$$A = (R_1 \dots \times \underline{v} + \mu \underline{w} \dots R_n)^t = a_{ij} B = (R_1 \dots \underline{v} \dots R_n)^t , B = (R_1 \dots \underline{w} \dots R_n)^t \in \mathsf{Mat}(\mathsf{n},\mathsf{n})$$

dobbiamo dimostrare $det(A) = \times *det(B) + \mu *det(C)$

denotiamo
$$\underline{\mathbf{v}} = (\mathbf{v}_1, ..., \mathbf{v}_n), \underline{\mathbf{w}} = (\mathbf{w}_1, ..., \mathbf{w}_n) \in \mathbb{R}^n = \mathsf{Mat}(1, n) => a_{ij} = \times \times \underline{\mathbf{v}}_j + \mathbf{w}_n$$

 $\mu \times w_i$

osservazione: le righe \neq i-esima coincidono per A, B, C => $\hat{A}_{ij} = B^{\circ}_{ij} = \hat{C}_{ij}$

calcoliamo det(A) sviluppando lungo la riga i:

$$\begin{split} \det(A) &= {}^{n}\Sigma_{j=1} \; (-1)^{i+j} * \; a_{\times j} * \; d\times t(\hat{A}_{ij}) \; = \; {}^{n}\Sigma_{j=1} \; (-1)^{i+j} * \; (\times^*\underline{v_{j}}\times + \mu^*\underline{w_{i}}\times * d\times t(\hat{A}_{ij}) \; = \\ &= \; {}^{n}\Sigma_{j=1} \; (-1)^{i+j} * \; (\times^*\underline{v_{j}}) * \; \det(\hat{A}_{ij}) \; + \; {}^{n}\Sigma_{j=1} \; (-1)^{i+j} * \; (\times^*\underline{w_{i}}\times * d\times t(\hat{A}_{ij}) \; = \\ {}^{n}\Sigma_{j=1} \; (-1)^{i+j} * \; \underline{v_{j}} * \; \det(B^*_{ij}) \; + \; {}^{n}\Sigma_{j=1} \; (-1)^{i+j} * \; \underline{w_{\times}} * \; d\times t(\hat{C}_{ij}) \; = \\ &= \times^*\det(B) \; + \; \mu^*\det(C) \end{split}$$

Osservazione:

$$c \in R$$
, $A \in Mat(n,n)$ $det(c \times A) = c^{n} * det(A)$

in altre parole fissando tutte le righe tranne 1 otteniamo un'applicazione lineare

$$det : R^{n} -> R$$
 $L(\underline{v}) = det(R_{1} \dots \underline{v} \dots R_{n})^{t}$

Esempio:

$$L: R^{n} \rightarrow R$$
 $L(x \ y \ z) = det(1 \ 2 \ 3 \ | \ 4 \ 5 \ 6 \ | \ x \ y \ z)$ è un'applicazione lineare

Proposizione(proprietà alternante):

 $A \in Mat(n,n)$

Se B è ottenuto da A scambiando 2 righe/colonne => det(B) = - det(A)

Esempio:

$$det(a b | c d) = ad - bc$$
 $det(c d | ab) = bc - ad$

Corollario:

se A ha 2 righe/colonne uguali \Rightarrow det(A) = 0

Dimostrazione:

scambiando le due righe otteniamo ancora $B = A \Rightarrow det(B) = det(A)$ ma per la proprietà alternante $\Rightarrow det(B) = -det(A) \Rightarrow det(A) = 0$

Definizione:

$$A = (a_{ii}) \in Mat(n,n)$$

- Si dice triangolare superiore (dalla diagonale in su) se a_{ij} = 0 per ogni i
 j
- Si dice triangolare inferiore (dalla diagonale in giù) se a_{ij} = 0 per ogni j >
 i
- Si dice diagonale se a_{ii} = 0 per ogni i ≠ j

Proposizione:

se $A = (a_{ij}) \in Mat(n,n)$ è triangolare/diagonale allora $det(A) = a_{11}*a_{22}*...*a_{nn}$

Dimostrazione:

prendiamo A triangolare superiore

$$A = (a_{11} \ a_{12} \ a_{13} \ ... \ | \ 0 \ a_{22} \ a_{23} \ ... \ | \ 0 \ 0 \ a_{33} \ ... \ | \ 0 \ 0 \ 0 \ ... \ | \ ...)$$
 sviluppiamo det(A) lungo j = 1

$$\det(\hat{A}) = a_{11} \times \det(\hat{A}_{11}) - 0 \times \det(\hat{A}_{21}) + 0 \times \det(\hat{A}_{13}) + ... = a_{11} \times \det(\hat{A}_{11})$$
$$= (\hat{A}_{11} \text{ ancora triangolare superiore}) = a_{11}(a_{22} * \det(\hat{A}_{11}))$$

Proposizione(calcolo det(A) con operazioni righe/colonne):

- 1. Scambiare due righe cambia il segno del determinante $A-R_{i}<->R_{j}->A'=>\det(A')=-\det(A)$
- 2. Moltiplicare una riga per c moltiplica il determinante per c $A-cR_1->A'$ => det(A') = c*det(A)
- Aggiunta a una riga un multiplo di un'altra preserva il determinante A
 -R_i+cR_i->A' => det(A') = det(A)

Gli stessi enunciati valgono per le colonne

Dimostrazione:

- 1. Proprietà alternante
- 2. Proprietà multilineare (caso particolare)

3.
$$\det(A') = \det(R_1 \dots R_i + cR_j \dots R_n)^t = (\text{proprietà multilineare}) = \det(R_1 \dots R_i \dots R_i \dots R_n)^t + c*\det(R_1 \dots R_i \dots R_n)^t = \det(A) + 0$$

Corollario:

sia $A \in Mat(n,n)$ allora $det(A) \neq 0 <=> rk(A) = n$

Dimostrazione:

segue dalla proposizione precedente e dal fatto che

rk(A) = n <=> A-(Gauss)->A' a scala con n pivot =>

=> A' matrice triangolare superiore con elementi \neq 0 sulla diagonale (pivot) <=> $det(A') \neq 0$

Dalla proprietà precedente, riducendo a scala A->A' abbiamo det(A')=c'* det(A) con $c \neq 0$

Quindi $det(A') \neq 0 \iff det(A) \neq 0$ quindi $rk(A) = n \iff det(A) \neq 0$

Corollario:

A ∈Mat(n,n), le seguenti condizioni sono equivalenti:

- 1. $det(A) \neq 0$
- 2. rk(A) = n
- 3. A è invertibile
- 4. $Ax = b \Rightarrow 1$ soluzione
- 5. $ker(A) = \{0\}$

- 6. $row(A) = R^{n}$
- 7. Righe Ll/generatori/base di Rⁿ
- 8. $col(A) = R^n$
- 9. Colonne LI/generatori/base di Rⁿ
- 10. T_A è iniettiva
- 11. T_A è suriettiva
- 12. T_A è un isomorfismo

Calcolo del determinante:

per calcolare det(A), usare un mix di strategie

- Sviluppare lungo una riga/colonna con tanti 0
- Operazioni su righe/colonne per semplificare A
- Ridurre a una matrice triangolare

Teorema di Binet:

$$det(AB) = det(A) * det(B)$$

Corollario:

se A invertibile =>
$$det(A) \neq 0$$
 => $det(A^{-1}) = 1/det(A)$

Dimostrazione:

$$AA^{-1} = I_n \implies \det(A)\det(A^{-1}) = (Binet) = \det(AA^{-1}) = \det(I_n) = 1$$