Contatore 2 a 2 modulo 32

Obiettivo: costruire un contatore sincrono che conti 2 a 2 modulo 32.

Utilizzando i contatori sincroni abbiamo creato il diagramma degli stati in modo da saltare tutti i numeri dispari.

	State		Re	Rete combinatoria						Stato futuro					
Q4	Q3	Q2	Q1	Q0	D4	D3	D2	D1	D0		Q4	Q3	Q2	Q1	Q0
0	0	0	0	0	0	0	0	1	0		0	0	0	1	0
0	0	0	1	0	0	0	1	0	0		0	0	1	0	0
0	0	1	0	0	0	0	1	1	0		0	0	1	1	0
0	0	1	1	0	0	1	0	0	0		0	1	0	0	0
0	1	0	0	0	0	1	0	1	0		0	1	0	1	0
0	1	0	1	0	0	1	1	0	0		0	1	1	0	0
0	1	1	0	0	0	1	1	1	0		0	1	1	1	0
0	1	1	1	0	1	0	0	0	0		1	0	0	0	0
1	0	0	0	0	1	0	0	1	0		1	0	0	1	0
1	0	0	1	0	1	0	1	0	0		1	0	1	0	0
1	0	1	0	0	1	0	1	1	0		1	0	1	1	0
1	0	1	1	0	1	1	0	0	0		1	1	0	0	0
1	1	0	0	0	1	1	0	1	0		1	1	0	1	0
1	1	0	1	0	1	1	1	0	0		1	1	1	0	0
1	1	1	0	0	1	1	1	1	0		1	1	1	1	0
1	1	1	1	0	0	0	0	0	0		0	0	0	0	0

Dopo di che abbiamo utilizzato le cinque uscite della rete combinatoria e le abbiamo rappresentate tramite la creazione di multiplexer.

Successivamente ogni multiplexer è stato attaccato tramite dei cavi a dei flip flop D la qui entrata è l'uscita dei multiplexer mentre l'uscita viene utilizzata come input dei multiplexer e output attaccato ad un diodo led con una messa a terra.

Per ulteriori informazioni vedere il file in allegato nel quale è compresa tutta la rete combinatoria con multiplexer, flip flop D, clock e diodi led per visualizzare l'output.

L'utilizzare dei multiplexer ci permette di bypassare le mappe di Karnaugh e la creazione di una rete combinatoria complessa, con i relativi calcoli, nella quale la possibilità di commettere errori è molto più alta.