Table 3: Measures of Sampling Adequacy and Partial Correlations

	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X_9	X_{10}	X_{11}	X_{12}	X_{13}	X_{14}	X_{15}	X_{16}	X_{17}
$\overline{\mathrm{X}_{2}}$.441															
X_3	292	.399														
X_4	072	.090	.598													
X_5	.015	034	.005	.137												
X_6	.027	006	.020	167	.578											
X_7	.003	001	.011	001	004	.006										
X_8	020	054	017	024	.031	.009	.384									
X_9	.028	054	.011	014	.009	.009	.045	.141								
X_{10}	.055	015	004	.005	028	.004	.004	027	.305							
X_{11}	.001	001	.039	007	010	.019	.043	.023	054	.095						
X_{12}	.010	007	.030	002	007	.013	.014	.033	.008	.046	.035					
X_{13}	003	.002	006	.001	.002	004	009	009	003	013	009	.003				
X_{14}	008	.023	234	020	.013	.000	.023	008	003	.001	007	.000	.435			
X_{15}	.011	003	.012	004	.003	.003	.018	.001	.017	.004	.002	004	033	.075		
X_{16}	.032	004	.024	137	.162	.001	.015	.017	002	.008	.004	001	.012	002	.200	
X_{17}	003	.060	.060	162	.203	.010	.054	.044	.000	.042	.020	007	020	.004	.162	.421