Programación Dinámica Bottom-up y Reconstrucción de Solución

Eric Brandwein Fernando Frassia Ferrari

1er Cuatrimestre 2024, TN

- 1 Conceptitos
- 2 Fibonacci
 - 💶 🐌 Backtracking
 - Top-down
 - 🛮 🚹 Bottom-up
 - Diferencias
- 3 Caminos en una matriz
 - 📝 Enunciado
 - Teoremitas
 - Algoritmos
 - **?** Reconstrucción
 - Complejidades

📝 Conceptitos

- U Top-down: Ir de lo más general a lo más específico.
- Bottom-up: Ir de lo más específico a lo más general.

Fibonacci

Problema

Dado un entero no negativo n, obtener el n-ésimo número de la secuencia de Fibonacci.

La formulita

Problema

Dado un entero no negativo n, obtener el n-ésimo número de la secuencia de Fibonacci.

$$\mathit{fib}(\textit{n}) = \begin{cases} 0 & \text{si } \textit{n} = 0 \\ 1 & \text{si } \textit{n} = 1 \\ \mathit{fib}(\textit{n} - 1) + \mathit{fib}(\textit{n} - 2) & \text{sino} \end{cases}$$

$$fib(n) = \begin{cases} 0 & \text{si } n = 0 \\ 1 & \text{si } n = 1 \\ fib(n-1) + fib(n-2) & \text{sino} \end{cases}$$

$$fib(n) = \begin{cases} 0 & \text{si } n = 0\\ 1 & \text{si } n = 1\\ fib(n-1) + fib(n-2) & \text{sino} \end{cases}$$

```
1  def fib(n: int) -> int:
2    if n == 0:
3        return 0
4    elif n == 1:
5        return 1
6    else:
7     return fib(n - 1) + fib(n - 2)
```


$$fib(n) = \begin{cases} 0 & \text{si } n = 0\\ 1 & \text{si } n = 1\\ fib(n-1) + fib(n-2) & \text{sino} \end{cases}$$

```
def fib(n: int) -> int:
    if n == 0:
        return 0
4    elif n == 1:
        return 1
6    else:
7    return fib(n - 1) + fib(n - 2)
```

¿Complejidad temporal?

$$fib(n) = \begin{cases} 0 & \text{si } n = 0\\ 1 & \text{si } n = 1\\ fib(n-1) + fib(n-2) & \text{sino} \end{cases}$$

```
1  def fib(n: int) -> int:
2    if n == 0:
3       return 0
4    elif n == 1:
5       return 1
6    else:
7    return fib(n - 1) + fib(n - 2)
```


¿Complejidad temporal? $\mathcal{O}(2^n)$.

¿Complejidad espacial?

$$fib(n) = \begin{cases} 0 & \text{si } n = 0\\ 1 & \text{si } n = 1\\ fib(n-1) + fib(n-2) & \text{sino} \end{cases}$$

```
def fib(n: int) -> int:
    if n == 0:
        return 0
    elif n == 1:
        return 1
else:
    return fib(n - 1) + fib(n - 2)
```


¿Complejidad temporal? $\mathcal{O}(2^n)$.

¿Complejidad espacial? $\mathcal{O}(n)$.


```
def fib(n: int, memoria: list = None) -> int:
1
        if memoria is None:
            memoria = [-1] * (n + 1)
3
4
        if memoria[n] == -1:
5
            if n \le 1:
                 memoria[n] = n
            else:
8
                 memoria[n] = \
9
                     fib(n - 1, memoria) + fib(n - 2, memoria)
10
11
        return memoria[n]
12
```



```
def fib(n: int, memoria: list = None) -> int:
1
        if memoria is None:
            memoria = [-1] * (n + 1)
 4
        if memoria[n] == -1:
5
            if n <= 1:
                 memoria[n] = n
            else:
8
                 memoria[n] = \
9
                     fib(n - 1, memoria) + fib(n - 2, memoria)
10
11
        return memoria[n]
12
```

¿Complejidad temporal?


```
def fib(n: int, memoria: list = None) -> int:
1
        if memoria is None:
             memoria = [-1] * (n + 1)
 4
        if memoria[n] == -1:
5
             if n \le 1:
                 memoria[n] = n
             else:
8
                 memoria[n] = \
9
                     fib(n - 1, memoria) + fib(n - 2, memoria)
10
11
        return memoria[n]
12
```


🛸 ¿Complejidad espacial?


```
def fib(n: int, memoria: list = None) -> int:
 1
        if memoria is None:
             memoria = [-1] * (n + 1)
 4
        if memoria[n] == -1:
5
             if n \le 1:
                 memoria[n] = n
             else:
8
                 memoria[n] = \
9
                     fib(n - 1, memoria) + fib(n - 2, memoria)
10
11
        return memoria[n]
12
```



```
def fib(n: int) -> int:
    memoria = [-1] * (n + 1)
    memoria[0] = 0
    memoria[1] = 1

for i in range(2, n + 1):
    memoria[i] = memoria[i-1] + memoria[i-2]

return memoria[n]
```



```
1  def fib(n: int) -> int:
2     memoria = [-1] * (n + 1)
3     memoria[0] = 0
4     memoria[1] = 1
5
6     for i in range(2, n + 1):
7         memoria[i] = memoria[i-1] + memoria[i-2]
8
9     return memoria[n]
```

🕑 ¿Complejidad temporal?

```
def fib(n: int) -> int:
1
       memoria = [-1] * (n + 1)
       memoria[0] = 0
       memoria[1] = 1
       for i in range(2, n + 1):
           memoria[i] = memoria[i-1] + memoria[i-2]
8
       return memoria[n]
9
```


¿Complejidad temporal? $\mathcal{O}(n)$.

¿Complejidad espacial?


```
def fib(n: int) -> int:
1
       memoria = [-1] * (n + 1)
       memoria[0] = 0
       memoria[1] = 1
       for i in range(2, n + 1):
           memoria[i] = memoria[i-1] + memoria[i-2]
8
       return memoria[n]
9
```


; Complejidad temporal? $\mathcal{O}(n)$.

 \Longrightarrow ; Complejidad espacial? $\mathcal{O}(n)$.


```
def fib(n: int) -> int:
    memoria = [-1] * (n + 1)
    memoria[0] = 0
    memoria[1] = 1

for i in range(2, n + 1):
    memoria[i] = memoria[i-1] + memoria[i-2]

return memoria[n]
```


Bottom-up 2 − menos memoria que Eric en final™

```
def fib(n: int) -> int:
    anterior = 0
    resultado = 1

for _ in range(2, n + 1):
    nuevo = resultado + anterior
    anterior = resultado
    resultado = nuevo

return resultado

return resultado
```


Bottom-up 2 − menos memoria que Eric en final™

```
def fib(n: int) -> int:
    anterior = 0
    resultado = 1

for _ in range(2, n + 1):
    nuevo = resultado + anterior
    anterior = resultado
    resultado = nuevo

return resultado

return resultado
```

¿Complejidad temporal?

1

Bottom-up 2 − menos memoria que Eric en final™

```
def fib(n: int) -> int:
    anterior = 0
    resultado = 1

for _ in range(2, n + 1):
    nuevo = resultado + anterior
    anterior = resultado
    resultado = nuevo

return resultado

return resultado
```

- $igoplus_{\mathcal{C}}$ ¿Complejidad temporal? $\mathcal{O}(n)$.
- ¿Complejidad espacial?

Bottom-up 2 − menos memoria que Eric en final[™]

```
def fib(n: int) -> int:
    anterior = 0
    resultado = 1

for _ in range(2, n + 1):
    nuevo = resultado + anterior
    anterior = resultado
    resultado = nuevo

return resultado
```

- \bigcirc ¿Complejidad temporal? $\mathcal{O}(n)$.
- \red ¿Complejidad espacial? $\mathcal{O}(1)$.

Diferencias

Diferencias

Top-down

- Recursivo en general
- A veces más fácil de programar (agarrás el backtracking, le agregás memorización y listo el

🚹 Bottom-up

- Iterativo en general 🔃
- A veces usa menos memoria 💿
- A veces más rápido en la práctica (recursión vs. iteración) 🕚

Caminos en una matriz

Problema

Se tiene una matriz M de $m \times n$ números naturales. Se quiere llegar desde la posición (0,0) de la matriz a la (m-1,n-1), y sólo se pueden hacer movimientos para abajo o para la derecha en cada paso. Calcular el camino de la posición (0,0) a la (m-1,n-1) cuya suma de casilleros sea mínima.

¿Cómo se piensan estos problemas?

- Dibujar ejemplos.
- 2 Identificar casos borde.
- 3 Definir una función de recurrencia f.
- 4 Demostrar que efectivamente f resuelve el problema.
- Implementarla y deducir la complejidad.

Camino
$$1 = [(0,0), (0,1), (1,1)], Sum(Camino 1) = 9$$

Camino $2 = [(0,0), (1,0), (1,1)], Sum(Camino 2) = 6$

Caminos en una matriz

Definición

Un **camino** P en la matriz M desde el casillero (a,b) al casillero (a',b') es una secuencia de tamaño I de tuplas (i,j) con $i\in\{0,\ldots,m-1\}$ y $j\in\{0,\ldots,n-1\}$ que cumple las siguientes condiciones:

- P_0 .fila = a y P_0 .col = b.
- P_I .fila = a' y P_I .col = b'.
- Para todo $k \in \{2, ..., I\}$:
 - $P_k = P_{k-1} + (1,0)$, o
 - $P_k = P_{k-1} + (0,1).$

Caminos en una matriz

Definición

El **costo** de un camino en la matriz M es la suma de los valores $M_{fila_i,columna_i}$ para todo $i \in \{1,\ldots,I\}$.

Caminos en una matriz – traducción

Problema

Se tiene una matriz M de $m \times n$ números naturales. ¿Cuál es el camino desde el casillero (0,0) al (m-1,n-1) que tiene menor costo?

Principio de Optimalidad

- Las partes de una solución óptima a un problema, deben ser soluciones óptimas de los correspondientes subproblemas.
- Permite obtener una solución óptima al problema original a partir de soluciones óptimas de los subproblemas.

Principio de Optimalidad

Lema

Sea P un camino de mínimo costo en una matriz M entre dos posiciones diferentes (a,b) y (c,d). Sea Q un sufijo de P, y sea (a',b') el primer elemento de Q. El camino Q es de mínimo costo entre todos los caminos desde (a',b') hasta (c,d).

Demostración Lema

Veámoslo por absurdo: Sea P un camino de costo mínimo de (a, b) a (c,d), y Q un sufijo de P que empieza en (a',b'). Supongamos que Q no es mínimo, y entonces existe un camino Q' que va de (a',b') a (c,d)y tiene menor costo que Q. Llamemos R al subcamino de P que comienza en (a, b) y termina en (a', b'). Construyamos entonces un camino P' concatenando R con Q'. Como P' = R + Q', y P = R + Q, tenemos que costo(P') = costo(R) + costo(Q'), y costo(P) = costo(R) + costo(Q), por lo tanto costo(P') < costo(P) (por costo(Q') < costo(Q)). Absurdo! Pues comenzamos diciendo que P era un camino mínimo, y construimos otro camino de costo estrictamente menor. El absurdo provino de asumir que Q no era mínimo.

Observación Clave

Un camino desde la posición (i,j) está formado por un camino desde (i + 1, j) o desde (i, j + 1).

Observación Clave

Un camino desde la posición (i,j) está formado por un camino desde (i+1,j) o desde (i,j+1).

Podemos usar esto para pensar la función de recurrencia?

Función de Recurrencia

Correctitud

Teorema (Correctitud de minCamino)

minCamino(fila, col, M) es el costo de un camino mínimo desde (fila, col) hasta (m, n) en la matriz M para todo $fila \in \{0, \ldots, m\}$ y $col \in \{0, \ldots, n\}$.

Demostración Correctitud I

Sea P un camino de costo mínimo de (fila,col) a (m,n). Queremos ver que minCamino(fila,col,M)=costo(P). Vamos a demostrarlo por inducción en la estructura de P. Si P tiene más de un elemento, llamamos Q al sufijo de P de longitud |P|-1.

- I Si (fila, col) = (m, n): $\exists !$ camino P y P = [(m,n)] $\implies costo(P) = M_{fila,col} = minCamino(fila, col, M)$.
- Si fila = m y col < n: Por definición de camino, el segundo elemento de P debe ser (fila, col + 1). Además, existe Q, y por el Lema, Q es de costo mínimo entre los caminos desde (fila, col + 1) hasta (m, n). Por hipótesis inductiva, minCamino(fila, col + 1, M) es el costo de Q. Además, por definición de costo, el costo de P es el costo de Q más M_{fila,col}, que es exactamente minCamino(fila, col, M).

Demostración Correctitud II

- 3 Si fila < m y col = n: Análogo al anterior.
- 4 Si $\mathit{fila} < m \ \mathit{y} \ \mathit{col} < n$: El camino P puede tener como segundo elemento una de dos cosas: $(\mathit{fila} + 1, \mathit{col})$, o $(\mathit{fila}, \mathit{col} + 1)$. El subcamino Q tendrá como primer elemento el segundo elemento de P, sea cual sea. Por el Lema, Q es de costo mínimo entre los que van desde su primer elemento hasta (m, n). Por hipótesis inductiva, entonces, su costo es o $\mathit{minCamino}(\mathit{fila} + 1, \mathit{col}, M)$, o $\mathit{minCamino}(\mathit{fila}, \mathit{col} + 1, M)$. Por lo tanto, por definición de costo, el costo de P es igual o a $M_{\mathit{fila},\mathit{col}} + \mathit{minCamino}(\mathit{fila} + 1, \mathit{col}, M)$, o a $M_{\mathit{fila},\mathit{col}} + \mathit{minCamino}(\mathit{fila}, \mathit{col} + 1, M)$.

Por otro lado, existen caminos con esos costos. Los mismos son formados agregándole el elemento $(\mathit{fila}, \mathit{col})$ a los caminos óptimos desde $(\mathit{fila}+1, \mathit{col})$ y $(\mathit{fila}, \mathit{col}+1)$, respectivamente. Esto quiere decir que el costo de P, al ser un camino mínimo, debe ser menor o

Demostración Correctitud III

igual a los costos de estos dos caminos. Como el costo de P debe ser uno de los dos costos anteriores, y debe ser menor o igual a los dos, forzosamente debe ser el menor de los dos. Entonces

$$\begin{split} & \operatorname{costo}(P) \\ &= \min\{M_{\mathit{fila},\mathit{col}} + \mathit{minCamino}(\mathit{fila}+1,\mathit{col},\mathit{M}), \\ & \qquad M_{\mathit{fila},\mathit{col}} + \mathit{minCamino}(\mathit{fila},\mathit{col}+1,\mathit{M})\} \\ &= M_{\mathit{fila},\mathit{col}} + \min\{\mathit{minCamino}(\mathit{fila}+1,\mathit{col},\mathit{M}), \\ & \qquad \mathit{minCamino}(\mathit{fila},\mathit{col}+1,\mathit{M})\} \\ &= \mathit{minCamino}(\mathit{fila},\mathit{col},\mathit{M}) \end{split}$$

Demostramos que sin importar qué valores tienen fila y col, minCamino(fila, col, M) es el costo de un camino de costo mínimo entre (fila, col) y (m, n), que es lo que queríamos.

Algoritmo Top-down

```
def f(i: int, j: int, M, memo=None) -> int:
        filas = len(M)
2
        columnas = len(M[0])
        if memo is None:
            memo = [[-1] * columnas for _ in range(filas)]
5
        if memo[i][j] == -1:
6
            memo[i][j] = M[i][j]
            if i == filas-1 and j < columnas-1:
8
                memo[i][j] += f(i, j+1, M, memo)
9
            elif i < filas-1 and j == columnas-1:
10
                memo[i][j] += f(i+1, j, M, memo)
11
            elif i < filas-1 and j < columnas-1:
12
                memo[i][j] += min(f(i+1, j, M, memo), f(i, j+1, M, memo))
13
        return memo[i][j]
14
```


Algoritmo Bottom-up

```
def minCamino(M) -> dict:
        dic = {}
        m = len(M) - 1
3
        n = len(M[0]) - 1
4
        dic[(m,n)] = M[m][n] #caso 1
5
        for j in range(n-1, -1, -1): #caso 2
6
            dic[(m, j)] = M[m][j] + dic[(m, j+1)]
7
8
        for i in range(m-1, -1, -1): #caso 3
9
            dic[(i,n)] = M[i][n] + dic[(i+1, n)]
10
11
        for i in range(m-1, -1, -1): #caso 4
12
            for j in range(n-1, -1, -1):
13
                dic[(i,j)] = M[i][j] + min(dic[(i+1,j)], dic[(i, j+1)])
14
        return dic
15
```


n Reconstrucción I

```
def reconstruir(M) -> list:
         costos = minCamino(M)
        m = len(M) - 1
        n = len(M[0]) - 1
         camino = [(0,0)]
         i = j = 0
         while i < m \text{ or } j < n:
             if i == m: #case 2
8
                 i += 1
9
             elif j == n: \#caso\ 3
10
                 i += 1
11
             else: #caso 4
12
                  if costos[(i+1,j)] < costos[(i, j+1)]:
13
                      i += 1
14
                 else:
15
```


Reconstrucción II

```
16
             camino.append((i, j))
17
18
         return camino
19
```


📆 Reconstrucción (otra forma)

```
ABAJO = 1
    DERECHA = 2
3
    def minCamino(M, direcciones) -> dict:
        dic = {}
5
        m = len(M) - 1
        n = len(M[0]) - 1
        dic[(m,n)] = M[m][n]
9
        direcciones[(m,n)] = -1 \#caso 1
10
11
        for j in range(n-1, -1, -1): #caso 2
12
            dic[(m, j)] = M[m][j] + dic[(m, j+1)]
13
            direcciones[(m,j)] = DERECHA
14
15
         . . .
```


📆 Reconstrucción (otra forma)

```
1
        for i in range(m-1, -1, -1): #caso 3
            dic[(i,n)] = M[i][n] + dic[(i+1, n)]
            direcciones[(i,n)] = ABAJO
5
        for i in range(m-1, -1, -1): #caso 4
            for j in range(n-1, -1, -1):
                 dic[(i,j)] = M[i][j] + min(dic[(i+1,j)], dic[(i, j+1)])
                 if dic[(i+1,j)] < dic[(i, j+1)]:</pre>
9
                     direcciones[(i,j)] = ABAJO
10
                 else:
11
                     direcciones[(i,j)] = DERECHA
12
13
14
        return dic
```


📆 Reconstrucción (otra forma)

```
def reconstruir(direcciones) -> list:
         camino = [(0, 0)]
         while directiones \lceil camino \lceil -1 \rceil \rceil != -1:
              i, j = camino[-1]
              if direcciones[(i,j)] == ABAJO:
                   camino.append((i+1, j))
              else:
8
                   camino.append((i, j+1))
9
10
         return camino
11
```


🏗 Reconstrucción (otra forma)

```
M = [[1,2,3], [4,5,6], [7,8,9], [10,11,12]]
   directiones = [[-1] * len(M[0]) for _ in range(len(M))]
3
   minCamino(M, direcciones)
   camino = reconstruir(direcciones)
   print(camino)
   \# [(0, 0), (0, 1), (0, 2), (1, 2), (2, 2), (3, 2)]
```


- Algoritmo Top-down:
 - U Temporal:
 - Espacial:
- 🚹 Algoritmo Bottom-up:
 - P Temporal:
 - Espacial:

- Reconstrucción 1:
 - Temporal:
 - **Espacial**:
- Reconstrucción 2:
 - P Temporal:
 - Espacial:

🥯 Complejidades

- Algoritmo Top-down:
 - \bigcirc Temporal: $\mathcal{O}(mn)$
 - **Section** Espacial:
- 🚹 Algoritmo Bottom-up:
 - P Temporal:
 - Espacial:

- Reconstrucción 1:
 - Temporal:
 - **Espacial**:
- 🏗 Reconstrucción 2:
 - P Temporal:
 - Espacial:

- Algoritmo Top-down:
 - \bigcirc Temporal: $\mathcal{O}(mn)$
 - \leq Espacial: $\mathcal{O}(mn)$
- 🚹 Algoritmo Bottom-up:
 - P Temporal:
 - Espacial:

- Reconstrucción 1:
 - Temporal:
 - **Espacial**:
- 🏗 Reconstrucción 2:
 - P Temporal:
 - Espacial:

- Algoritmo Top-down:
 - Temporal: $\mathcal{O}(mn)$
 - \Longrightarrow Espacial: $\mathcal{O}(mn)$
- 🚹 Algoritmo Bottom-up:
 - \bigcirc Temporal: $\mathcal{O}(mn)$
 - Espacial:

- n Reconstrucción 1:
 - Temporal:
 - Sepacial:
- Reconstrucción 2:
 - P Temporal:
 - Espacial:

- 💵 Algoritmo Top-down:
 - Temporal: $\mathcal{O}(mn)$
 - \blacksquare Espacial: $\mathcal{O}(mn)$
- 🚹 Algoritmo Bottom-up:
 - \bigcirc Temporal: $\mathcal{O}(mn)$
 - \Longrightarrow Espacial: $\mathcal{O}(mn)$

- Reconstrucción 1:
 - Temporal:
 - **Espacial**:
- 🏗 Reconstrucción 2:
 - P Temporal:
 - Espacial:

Algoritmo Top-down:

Temporal: $\mathcal{O}(mn)$

 \Longrightarrow Espacial: $\mathcal{O}(mn)$

🚹 Algoritmo Bottom-up:

Temporal: $\mathcal{O}(mn)$

Sepacial: $\mathcal{O}(mn)$

Reconstrucción 1:

 \bigcirc Temporal: $\mathcal{O}(mn)$

Espacial:

🏗 Reconstrucción 2:

P Temporal:

Espacial:

💵 Algoritmo Top-down:

Temporal: $\mathcal{O}(mn)$

S Espacial: $\mathcal{O}(mn)$

🚹 Algoritmo Bottom-up:

Temporal: $\mathcal{O}(mn)$

Sepacial: $\mathcal{O}(mn)$

n Reconstrucción 1:

 \bigcirc Temporal: $\mathcal{O}(mn)$

S Espacial: $\mathcal{O}(mn)$

Reconstrucción 2:

P Temporal:

Espacial:

- 🚺 Algoritmo Top-down:
 - $\mathcal{O}(mn)$
 - \Longrightarrow Espacial: $\mathcal{O}(mn)$
- 🚹 Algoritmo Bottom-up:
 - P Temporal: $\mathcal{O}(mn)$
 - \clubsuit Espacial: $\mathcal{O}(mn)$

- neconstrucción 1:
 - \bigcirc Temporal: $\mathcal{O}(mn)$
 - \leq Espacial: $\mathcal{O}(mn)$
- Reconstrucción 2:
 - \bigcirc Temporal: $\mathcal{O}(mn)$
 - Espacial:

- Algoritmo Top-down:
 - Temporal: $\mathcal{O}(mn)$
 - \blacksquare Espacial: $\mathcal{O}(mn)$
- 🚹 Algoritmo Bottom-up:
 - \bigcirc Temporal: $\mathcal{O}(mn)$
 - \Longrightarrow Espacial: $\mathcal{O}(mn)$

- Reconstrucción 1:
 - \bigcirc Temporal: $\mathcal{O}(mn)$
 - \leq Espacial: $\mathcal{O}(mn)$
- 🏗 Reconstrucción 2:
 - \bigcirc Temporal: $\mathcal{O}(mn)$
 - \Longrightarrow Espacial: $\mathcal{O}(mn)$

Complejidades

- 💵 Algoritmo Top-down:
 - Temporal: $\mathcal{O}(mn)$
 - **Section** Espacial: $\mathcal{O}(mn)$
- 🚹 Algoritmo Bottom-up:
 - Properties: $\mathcal{O}(mn)$ Support Espacial: $\mathcal{O}(mn)$

¿Se puede mejorar alguno?

- 🟗 Reconstrucción 1:
 - \bigcirc Temporal: $\mathcal{O}(mn)$
 - 🛸 Espacial: $\mathcal{O}(mn)$
- 🏗 Reconstrucción 2:
 - \bigcirc Temporal: $\mathcal{O}(mn)$
 - \Longrightarrow Espacial: $\mathcal{O}(mn)$

