Announcements

- Project 4: Due Friday Oct 28 5:00pm
- Homework 8: Due Monday Oct 31 11:59pm
- Midterm 2: Wednesday 11/9 7-9pm
 - Up to and including today's lecture.
- Upcoming Lectures exact order TBD
 - Naïve Bayes
 - Perceptrons
 - Deep Learning
 - Advanced Topics

CS 188: Artificial Intelligence

Hidden Markov Models -- Filters

Instructors: Pieter Abbeel & Anca Dragan --- University of California, Berkeley

Example: Weather HMM

An HMM is defined by:

• Initial distribution: $P(X_1)$

• Transitions: $P(X_t \mid X_{t-1})$

• Emissions: $P(E_t \mid X_t)$

R_{t-1}	R_{t}	$P(R_t R_{t-1})$
+r	+ <i>r</i>	0.7
+r	-r	0.3
-r	+r	0.3
-r	-r	0.7

R_{t}	U _t	$P(U_t R_t)$
+r	+u	0.9
+r	-u	0.1
-r	+u	0.2
-r	-u	0.8

Online Belief Update

$$B_3(X) = P(X_3|e_{1:3})$$

$$B'_4(X) = P(X_4|e_{1:3}) = \sum_{x_3} P(X_4|x_3)B_3(X)$$

$$B_4(X) = P(X_4|e_{1:4}) \propto_{X_4} P(e_4|X_4)B'_4(X)$$

Example: Weather HMM

R_{t}	R_{t+1}	$P(R_{t+1} $
+r	+r	0.7
+r	-r	0.3
-r	+r	0.3
-r	-r	0.7

R_{t}	U _t	$P(U_t R_t)$
+r	+u	0.9
+r	-u	0.1
-r	+ <i>u</i>	0.2
-r	-u	0.8

Video of Demo Pacman - Sonar (with beliefs)

Particle Filtering

Particle Filtering

- Filtering: approximate solution
- Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store B(X)
 - E.g. X is continuous
- Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
- This is how robot localization works in practice
- Particle is just new name for sample

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

When is Exact Inference Too Big?

- For an HMM, when would you want to avoid exact inference?
 - The domain of X is big, but the domain of E is small?
 - The domain of E is big, but the domain of X is small?
 - Both domains are big?

Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
 - Generally, N << |X|
 - Storing map from X to counts would defeat the point
- P(x) approximated by number of particles with value x
 - So, many x may have P(x) = 0!
 - More particles, more accuracy
- For now, all particles have a weight of 1

Particles: (3,3) (2,3) (3,3) (3,2) (3,3) (3,2) (1,2) (3,3) (3,3) (2,3)

Particle Filtering: Elapse Time

Particle Filtering: Elapse Time

 Each particle is moved by sampling its next position from the transition model

$$x' = \text{sample}(P(X'|x))$$

- This is like prior sampling samples' frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)

Particles: (3,3) (2,3) (3,3) (3,2) (3,3) (3,2) (1,2) (3,3) (3,3) (2,3)	
Particles: (3,2) (2,3) (3,2) (3,1) (3,3) (3,2) (1,3) (2,3)	

(3,2)

Particle Filtering: Observe

Particle Filtering: Observe

Slightly trickier:

- Don't sample observation, fix it
- Similar to likelihood weighting, downweight samples based on the evidence

$$w(x) = P(e|x)$$

$$B(X) \propto P(e|X)B'(X)$$

 As before, the probabilities don't sum to one, since all have been downweighted (in fact they now sum to (N times) an approximation of P(e))

Particles:
(2, 2)
(3,2)
(2.2)
(2,3)
(3,2)
(3,2)
(3,1)
` ' '
(3,3)
· / /
(3,2)
(4.2)
(1,3)
(2,3)
(2,3)
(3,2)
` ' '
(2,2)
\ / /

Particles: (3,2) w=.9 (2,3) w=.2 (3,2) w=.9

(3,1)	w=.4
(3,3)	w=.4
(3,2)	w=.9
(1,3)	w=.1
	_

$$(2,3)$$
 W=.2 $(3,2)$ W=.9

$$(2,2)$$
 w=.4

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

Particles:

- (3,2) w=.9 (2,3) w=.2
- (3.2) w=.9
- (3,1) w=.4
- (3,3) w=.4
- (3,2) W=.9
- (1,3) w=.1 (2.3) w=.2
- (3,2) w=.9
- (2,2) w=.4

- (3,2)
- (2,2)
- (3,2)
- (2,3)
- (3,3)
- (3,2)
- (1,3) (2,3)
- (3,2)
- (3,2)

Recap: Particle Filtering

 Particles: track samples of states rather than an explicit distribution

Video of Demo - Moderate Number of Particles

Video of Demo - One Particle

Video of Demo - Huge Number of Particles

Robot Localization

In robot localization:

- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
- Particle filtering is a main technique

Particle Filter Localization (Sonar)

[Dieter Fox, et al.]

Particle Filter Localization (Laser)

[Dieter Fox, et al.] [Video: global-floor.gif]

Robot Mapping

- SLAM: Simultaneous Localization And Mapping
 - We do not know the map or our location
 - State consists of position AND map!
 - Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

[Demo: PARTICLES-SLAM-mapping1-new.a

Particle Filter SLAM - Video 1

[Sebastian Thrun, et al.]

[Demo: PARTICLES-SLAM-mapping1-new.a

Particle Filter SLAM - Video 2

[Dirk Haehnel, et al.]

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from t-1

Dynamic Bayes nets are a generalization of HMMs

Video of Demo Pacman Sonar Ghost DBN Model

Exact Inference in DBNs

- Variable elimination applies to dynamic Bayes nets
- Procedure: "unroll" the network for T time steps, then eliminate variables until $P(X_T | e_{1:T})$ is computed

 Online belief updates: Eliminate all variables from the previous time step; store factors for current time only

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the t=1 Bayes net
 - Example particle: $G_1^a = (3,3) G_1^b = (5,3)$
- Elapse time: Sample a successor for each particle
 - Example successor: $G_2^a = (2,3) G_2^b = (6,3)$
- **Observe:** Weight each <u>entire</u> sample by the likelihood of the evidence conditioned on the sample
 - Likelihood: $P(E_1^a | G_1^a) * P(E_1^b | G_1^b)$
- Resample: Select prior samples (tuples of values) in proportion to their likelihood

Most Likely Explanation

HMMs: MLE Queries

- HMMs defined by
 - States X
 - Observations E
 - Initial distribution:
 - Transitions:
 - Emissions:
- New query: most likely explanation:

$$P(X_1)$$

$$P(X|X_{-1})$$

$$P(E|X)$$

$$\underset{x_{1:t}}{\operatorname{arg\,max}} P(x_{1:t}|e_{1:t})$$

State Trellis

State trellis: graph of states and transitions over time

- Each arc represents some transition $x_{t-1}
 ightharpoonup x_t$
- Each arc has weight $P(x_t|x_{t-1})P(e_t|x_t)$
- Each path is a sequence of states
- The product of weights on a path is that sequence's probability along with the evidence
- Forward algorithm computes sums of paths, Viterbi computes best paths

State Trellis

State trellis: graph of states and transitions over time

- Each arc represents some transition $x_{t-1}
 ightharpoonup x_t$
- Each arc has weight $P(x_t|x_{t-1})P(e_t|x_t)$
- Each path is a sequence of states
- The product of weights on a path is that sequence's probability along with the evidence
- Forward algorithm computes sums of paths, Viterbi computes best paths

State Trellis

State trellis: graph of states and transitions over time

- Each arc represents some transition $x_{t-1}
 ightharpoonup x_t$
- Each arc has weight $P(x_t|x_{t-1})P(e_t|x_t)$
- Each path is a sequence of states
- The product of weights on a path is that sequence's probability along with the evidence
- Forward algorithm computes sums of paths, Viterbi computes best paths

Forward / Viterbi Algorithms

Forward Algorithm (Sum)

Viterbi Algorithm (Max)

$$f_t[x_t] = P(x_t, e_{1:t})$$

$$m_t[x_t] = \max_{x_{1:t-1}} P(x_{1:t-1}, x_t, e_{1:t})$$

$$= P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1}) f_{t-1}[x_{t-1}]$$

$$= P(e_t|x_t) \max_{x_{t-1}} P(x_t|x_{t-1}) m_{t-1}[x_{t-1}]$$