Process-Based Nitrification Module (Parton-type Formulation)

1. Overview

We implement a process-based nitrification module following Parton–type response functions. The daily nitrification rate combines a **humus-derived source** from decomposition and an **NH**₄*-**driven potential**, **modulated multiplicatively** by environmental scalars for soil moisture (WFPS), temperature, and pH. Soil- and layer-specific parameters (e.g., porosity, depth, pH, bulk density) represent heterogeneity across soils. Unit conversions are applied between mass- and area-based forms to maintain consistency with the rest of the model.

2. Governing Formulation

2.1 Sources (humus- and NH₄⁺-driven)

Let $H_{\rm dec}(t)$ be the daily nitrogen released from humus decomposition (mass units), and $N_{\rm NH4}(t)$ the ammonium pool. A fraction of decomposed humus contributes directly to nitrification after conversion to concentration units; an NH₄⁺-driven term provides the potential substrate for nitrification:

$$S_h(t) = f_h C_{
m humus,dec}(t), \qquad S_n(t) = k_{
m max} C_{
m NH4}(t),$$

where $f_h \approx 0.2$ (humus-to-nitrification fraction), $k_{\rm max}$ is the maximum nitrification rate constant, and $C_{\rm humus,dec},~C_{\rm NH4}$ are concentrations (e.g., mg g $^{-1}$) obtained from pool masses using bulk density and layer depth.

2.2 Environmental Limitation Functions

(a) Water limitation (WFPS):

$$F_w(w) = \left(rac{w-b}{a-b}
ight)^{drac{(b-a)}{(a-c)}} \left(rac{w-c}{a-c}
ight)^d,$$

where w is water-filled pore space, and a,b,c,d are shape parameters.

(b) Temperature limitation:

$$F_T(T) = a + b \, \exp(cT),$$

with coefficients (a, b, c) controlling baseline, amplitude, and sensitivity.

(c) pH limitation:

$$F_{ ext{pH}}(ext{pH}) = a + rac{1}{\pi} \arctan(\pi b(c + ext{pH})),$$

with parameters (a, b, c) shaping the curve.

2.3 Nitrification Rate

The daily nitrification flux (mass per area per day) is

$$R_{
m nit}(t) = \eta \Big(S_h(t) + S_n(t)\Big) F_wig(w(t)ig) F_Tig(T(t)ig) F_{
m pH}({
m pH}),$$

where η is a scale/units conversion factor to reconcile concentration- to area-based flux.

Parameters and Defaults

- Kinetics: $f_h=0.2$, $k_{
 m max}$ (soil-specific).
- WFPS response: a = 0.4, b = 1.7, c = -0.007, d = 3.22.
- Temperature response: a = -0.06, b = 0.13, c = 0.07.
- pH response: a=0.56, b=0.45, c=-5.0.
- Bulk density: default 1.52 g cm^{-3} .
- Scale factor: $\eta=1000$ (to align with model units).
- Soil heterogeneity: soil-specific $k_{
 m max}$, porosity, depth, pH, humus decay rate, bulk density.

Variable and Function Glossary

- $N_{
 m NH4}(t)$: ammonium pool.
- ullet $H_{
 m dec}(t)$: daily N released from humus decomposition.
- $C_{\rm NH4}, C_{\rm humus, dec}$: concentrations (mg g⁻¹).

- w(t): water-filled pore space (WFPS).
- T(t): soil temperature (°C).
- pH: soil acidity/alkalinity.
- $F_w, F_T, F_{
 m pH}$: environmental limitation functions.
- $R_{
 m nit}(t)$: nitrification flux (mass per area per day).
- η : scale/units conversion factor.