МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра «Систем обработки информации и управления»

ОТЧЕТ

Лабораторная работа № 3по дисциплине «Методы машинного обучения в автоматизированных системах»

Тема: «Обработка признаков часть 2»

Москва - 2024

ИСПОЛНИТЕЛЬ:	<u> Калюта Н.И.</u>						
группа ИУ5-22М			подпись				
	"23"	<u>05</u>	2024 г.				
ПРЕПОДАВАТЕЛЬ:			ФИО				
		, ,	подпись				
	""		_2024 г.				

Задание:

- Выбрать один или несколько наборов данных (датасетов) для решения следующих задач. Каждая задача может быть решена
 на отдельном датасете, или несколько задач могут быть решены на одном датасете. Просьба не использовать датасет, на
 котором данная задача решалась в лекции.
- Для выбранного датасета (датасетов) на основе материалов лекций решить следующие задачи:
 - масштабирование признаков (не менее чем тремя способами); обработку выбросов для числовых признаков (по одному способу для удаления выбросов и для замены выбросов);
 - обработку по крайней мере одного нестандартного признака (который не является числовым или категориальным);
 - отбор признаков:
 - один метод из группы методов фильтрации (filter methods);
 - один метод из группы методов обертывания (wrapper methods);
 - один метод из группы методов вложений (embedded methods).

Импорт библиотек

```
[ ] import pandas as pd
  import matplotlib.pyplot as plt
  import numpy as np
  import seaborn as sns
  from sklearn.preprocessing import StandardScaler
  from sklearn.preprocessing import MinMaxScaler
  from sklearn.preprocessing import MobustScaler
  from sklearn.linear_model import LinearRegression
  from sklearn.linear_model import Lasso
  from sklearn.esture_selection import SelectFromModel
  from mlxtend.feature_selection import ExhaustiveFeatureSelector as EFS
```

Загружаем датасет:

```
[ ] from google.colab import drive drive.mount('/content/drive')
```

[] df = pd.read_csv("/content/drive/MyDrive/Временные файлы/CarPrice_Assignment.csv")

Описание параметров датасета:

→ Mounted at /content/drive

- CarID: Идентификационный номер для каждого автомобиля
- SafetyRating: Оценка безопасности автомобиля
- CarName: Название модели автомобиля
- FuelType: Тип используемого топлива (бензин, дизельное топливо, электричество и т.д.)
- Aspiration: Количество дверей в автомобиле
- NumDoors: Количество дверей в автомобиле
- BodyStyle: Тип кузова автомобиля (седан, купе, внедорожник и т.д.)
- DriveWheelType: Тип ведущих колес (передних, задних, всех)
- EngineLocation: Расположение двигателя автомобиля (спереди или сзади)
- Wheelbase: Длина колесной базы автомобиля
- CarLength: Общая длина автомобиля
- CarWidth: Ширина автомобиля
- CarHeight: Высота автомобиля
- CurbWeight: Масса автомобиля без пассажиров или груза
- EngineType: Тип двигателя (газовый, дизельный, электрический и т.д.)
- NumCylinders: Количество цилиндров в двигателе
- EngineSize: Размер двигателя автомобиля
- FuelSystem: Тип системы подачи топлива
- BoreRatio: Соотношение диаметра цилиндра и рабочего хода двигателя
- Stroke: Длина рабочего хода двигателя
- CompressionRatio: Степень сжатия двигателя
- Horsepower: Мощность двигателя автомобиля
- PeakRPM: Максимальная частота вращения двигателя (оборотов в минуту)
- CityMPG: Количество миль на галлон (миль на галлон) при движении по городу
- HighwayMPG: Количество миль на галлон на шоссе
- CarPrice: Цена автомобиля

] df																				
<u>-</u>	car_ID	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	enginelocation	wheelbase	 enginesize	fuelsystem	boreratio	stroke	compressionratio	horsepower	peakrpm	citympg	highwaympg	price
0	1	3	alfa-romero giulia	gas	std	two	convertible	rwd	front	88.6	130	mpfi	3.47	2.68	9.0	111	5000	21	27	13495.0
1	2	3	alfa-romero stelvio	gas	std	two	convertible	nvd	front	88.6	130	mpfi	3.47	2.68	9.0	111	5000	21	27	16500.0
2	3	1	alfa-romero Quadrifoglio	gas	std	two	hatchback	rwd	front	94.5	152	mpfi	2.68	3.47	9.0	154	5000	19	26	16500.0
3	4	2	audi 100 ls	gas	std	four	sedan	fwd	front	99.8	109	mpfi	3.19	3.40	10.0	102	5500	24	30	13950.0
4	5	2	audi 100ls	gas	std	four	sedan	4wd	front	99.4	136	mpfi	3.19	3.40	8.0	115	5500	18	22	17450.0
200	201	-1	volvo 145e (sw)	gas	std	four	sedan	rwd	front	109.1	141	mpfi	3.78	3.15	9.5	114	5400	23	28	16845.0
201	202	-1	volvo 144ea	gas	turbo	four	sedan	rwd	front	109.1	141	mpfi	3.78	3.15	8.7	160	5300	19	25	19045.0
202	203	-1	volvo 244dl	gas	std	four	sedan	rwd	front	109.1	173	mpfi	3.58	2.87	8.8	134	5500	18	23	21485.0
203	204	-1	volvo 246	diesel	turbo	four	sedan	rwd	front	109.1	145	idi	3.01	3.40	23.0	106	4800	26	27	22470.0
204	205	-1	volvo 264gl	gas	turbo	four	sedan	rwd	front	109.1	141	mpfi	3.78	3.15	9.5	114	5400	19	25	22625.0
205 r	ows × 26 c	olumns																		

```
[ ] df.info()
 <pr
      RangeIndex: 205 entries, 0 to 204
Data columns (total 26 columns):
# Column Non-Null Co
                            Non-Null Count Dtype
          car_ID
symboling
CarName
                            205 non-null
                                            int64
                                            int64
                            205 non-null
                                            object
                                           object
object
           fueltype
                            205 non-null
           aspiration
                            205 non-null
          doornumber
                                            object
           carbody
                            205 non-null
                                            object
          drivewheel
enginelocation
                            205 non-null
205 non-null
                                            object
           wheelbase
                            205 non-null
                                            float64
          carlength
carwidth
                            205 non-null
                                            float64
                            205 non-null
                                            float64
       11
       12
          carheight
                            205 non-null
                                            float64
          curbweight
enginetype
cylindernumber
       13
                            205 non-null
                                           int64
object
       15
                            205 non-null
                                           object
          enginesize
fuelsystem
       16
17
                            205 non-null
                                            int64
                            205 non-null
       18
          boreratio
                            205 non-null
                                            float64
       19
          stroke
                            205 non-null
                                            float64
          compressionratio
horsepower
                            205 non-null
205 non-null
       20
21
                                            float64
                                            int64
          peakrom
       22
                            205 non-null
                                           int64
          citympg
highwaympg
                            205 non-null
205 non-null
                                           int64
int64
       23
24
      dtypes: float64(8), int64(8), object(10) memory usage: 41.8+ KB
       25
          price
                            205 non-null
                                            float64

    Масштабирование признаков

    Масштабирование данных на основе Z-оценки

data_standard_scaled_temp = standardScaler.fit_transform(df[numerical_features])
    data_standard_scaled = pd.DataFrame(data_standard_scaled_temp, columns=numerical_features)
     data_standard_scaled
∓
         wheelbase carlength carwidth carheight curbweight enginesize boreratio stroke compressionratio horsepower peakrpm citympg highwaympg price
      0 -1.690772 -0.426521 -0.844782 -2.020417 -0.014566 0.074449 0.519071 -1.839377 -0.288349 0.174483 -0.262960 -0.646553 -0.546059 0.027391
      1 -1.690772 -0.426521 -0.844782 -2.020417 -0.014566 0.074449 0.519071 -1.839377
                                                                                           -0.288349 1.264536 -0.262960 -0.953012 -0.691627 0.404461
     2 -0.708596 -0.231513 -0.190566 -0.543527 0.514882 0.604046 -2.404880 0.685946
         -0.035973 -0.053668 0.787855 -0.186865 -0.109354 0.084485
     3
          0.107110 0.207256 0.230001 0.235942 0.516807 0.218885 -0.517266 0.462183 -0.540725 0.275883 0.787855 -1.106241 -1.273900 0.523668
     200 1.721873 1.198549 1.398245 0.728239 0.763241 0.339248 1.666445 -0.336970 -0.162161 0.250533 0.577692 -0.340094 -0.400490 0.447752
     201 1.721873 1.198549 1.351515 0.728239 0.949992 0.339248 1.666445 -0.336970
                                                                                           -0.364062 1.416637 0.367529 -0.953012 -0.837195 0.723810
     202 1.721873 1.198549 1.398245 0.728239 0.878757 1.109571 0.926204 -1.232021 -0.338824 0.757535 0.787855 -1.106241 -1.128332 1.029983
     203 1.721873 1.198549 1.398245 0.728239 1.273437 0.435538 -1.183483 0.462183
                                                                                            3.244916 0.047732 -0.683286 0.119594 -0.546059 1.153582
    204 1.721873 1.198549 1.398245 0.728239 0.975021 0.339248 1.666445 -0.336970 -0.162161 0.250533 0.577692 -0.953012 -0.837195 1.173031
    205 rows × 14 columns
[ ] fig, (ax1, ax2) = plt.subplots(
         ncols=2, figsize=(12, 5))
     sns.kdeplot(data=df[numerical features], ax=ax1)
     ax2.set title("После масштабирования")
      sns.kdeplot(data=data_standard_scaled, ax=ax2)
     plt.show()
 ∓
                                                                                          После масштабирования
                            Ло масштабирования
                                                                        0.07
                                                  wheelbase
                                                                                                                 wheelbase
                                                  carlength
                                                                                                                 carlength
         0.10
                                                                        0.06
                                              — carwidth
                                                                                                            — carwidth
                                                  carheight
                                                                                                                 carheight
                                                  curbweight
                                                                                                                 curbweight
                                                                        0.05
         0.08
                                                  enginesize
                                                                                                                 enginesize
                                                  boreratio
                                                                                                                 boreratio
                                                  stroke
                                                                        0.04
                                                                                                                 stroke
      Density
90.0
                                                  compressionratio
                                                                                                                 compressionratio
                                                  horsepower
                                                                                                                 horsepower
                                                                        0.03
                                                  peakrom
                                                                                                                 peakrom
                                                  citympg
         0.04
                                                                                                                 citympg
                                                  highwaympg
                                                                                                                 highwaympg
                                                                        0.02
                                                  price
                                                                                                                 price
```

0.00

0.02

0.00

10000

20000

30000

40000

50000

```
[ ] minMaxScaler = MinMaxScaler()

data_minmax_scaled_temp = minMaxScaler.fit_transform(df[numerical_features])
data_minmax_scaled = pd.DataFrame(data_minmax_scaled_temp, columns=numerical_features)
data_minmax_scaled
```

wheelbase carlength carwidth carheight curbweight enginesize boreratio stroke compressionratio horsepower peakrpm citympg highwaympg **0** 0.058309 0.413433 0.316667 0.083333 0.411171 0.260377 0.664286 0.290476 0.12500 0.262500 0.346939 0.22222 0.289474 0.207959 1 0.058309 0.413433 0.316667 0.083333 0.411171 0.260377 0.664286 0.290476 0.12500 0.441667 0.346939 0.166667 0.263158 0.282558 **2** 0.230321 0.449254 0.433333 0.383333 0.517843 0.343396 0.100000 0.666667 0.384840 0.529851 0.491667 0.541667 0.329325 0.181132 0.464286 0.633333 3 0.18750 0.225000 0.551020 0.305556 0.368421 0.219254 4 0.373178 0.529851 0.508333 0.541667 0.518231 0.283019 0.464286 0.633333 0.06250 0.279167 0.551020 0.138889 0.157895 0.306142 **200** 0.655977 0.711940 0.716667 0.641667 0.567882 0.301887 0.885714 0.514286 201 0.655977 0.711940 0.708333 0.641667 0.605508 0.301887 0.885714 0.514286 0.10625 0.466667 0.469388 0.166667 0.236842 0.345738 **202** 0.655977 0.711940 0.716667 0.641667 0.591156 0.422642 0.742857 0.380952 0.11250 0.358333 0.551020 0.138889 0.184211 0.406311 **203** 0.655977 0.711940 0.716667 0.641667 0.670675 0.316981 0.335714 0.633333 **204** 0.655977 0.711940 0.716667 0.641667 0.610551 0.301887 0.885714 0.514286

205 rows × 14 columns

Масштабирование по медиане

[] robustScaler = RobustScaler()

data_robust_scaled_temp = robustScaler.fit_transform(df[numerical_features])
data_robust_scaled = pd.DataFrame(data_robust_scaled_temp, columns=numerical_features)
data_robust_scaled

) ¥		wheelbase	carlength	carwidth	carheight	curbweight	enginesize	boreratio	stroke	compressionratio	horsepower	peakrpm	citympg	highwaympg	price
	0	-1.063291	-0.261905	-0.500000	-1.514286	0.169620	0.227273	0.372093	-2.033333	0.000	0.347826	-0.285714	-0.272727	-0.333333	0.367183
	1	-1.063291	-0.261905	-0.500000	-1.514286	0.169620	0.227273	0.372093	-2.033333	0.000	0.347826	-0.285714	-0.272727	-0.333333	0.711991
	2	-0.316456	-0.119048	0.000000	-0.485714	0.517722	0.727273	-1.465116	0.600000	0.000	1.282609	-0.285714	-0.454545	-0.444444	0.711991
	3	0.354430	0.202381	0.250000	0.057143	-0.097468	-0.250000	-0.279070	0.366667	1.250	0.152174	0.428571	0.000000	0.000000	0.419392
	4	0.303797	0.202381	0.321429	0.057143	0.518987	0.363636	-0.279070	0.366667	-1.250	0.434783	0.428571	-0.545455	-0.888889	0.820998
	200	1.531646	0.928571	1.214286	0.400000	0.681013	0.477273	1.093023	-0.466667	0.625	0.413043	0.285714	-0.090909	-0.222222	0.751578
	201	1.531646	0.928571	1.178571	0.400000	0.803797	0.477273	1.093023	-0.466667	-0.375	1.413043	0.142857	-0.454545	-0.555556	1.004016
	202	1.531646	0.928571	1.214286	0.400000	0.756962	1.204545	0.627907	-1.400000	-0.250	0.847826	0.428571	-0.545455	-0.777778	1.283993
	203	1.531646	0.928571	1.214286	0.400000	1.016456	0.568182	-0.697674	0.366667	17.500	0.239130	-0.571429	0.181818	-0.333333	1.397017
	204	1.531646	0.928571	1.214286	0.400000	0.820253	0.477273	1.093023	-0.466667	0.625	0.413043	0.285714	-0.454545	-0.555556	1.414802

205 rows × 14 columns

Метод Mean Normalisation приводит распределение значений к нормальному закону смещая их медиану.

Метод MinMax-масштабирование приводит значение в общий диапазон с примерным сохранением их медиану.

Метод масштабирования по медиане приводит значение к медиане значений в 0.

Чтобы изменить содержимое ячейки, дважды нажмите на нее (или выберите "Ввод")

```
[] df_ip = pd.read_csv('<u>/content/drive/MyDrive</u>/Временные файлы/asn-ipv4.csv', sep=",")

[] df_ip

[] df_ip
```

Inc.	Cloudflare, 1	13335	1.0.0.255	1.0.0.0	
y Ltd	Wirefreebroadband Pty	38803	1.0.7.255	1.0.4.0	0
ation	ARTERIA Networks Corpora	2519	1.0.16.255	1.0.16.0	1
INC.	QUANTUM DATA COMMUNICATIONS,	141748	1.0.32.255	1.0.32.0	2
s,Inc.	Energia Communications	18144	1.0.127.255	1.0.64.0	3
nited	TOT Public Company Lin	23969	1.0.255.255	1.0.128.0	4
Ltd.	Hong Kong Five Towns Development Co.	55649	223.255.243.255	223.255.240.0	363043
work	Ishan's Net	45117	223.255.247.255	223.255.244.0	363044
., Ltd	CDS Global Cloud Co.	63199	223.255.251.255	223.255.248.0	363045
ation	Cloud Computing Corpora	58519	223.255.253.255	223.255.252.0	363046
e Ltd	Marina Bay Sands Pte	55415	223.255.254.255	223.255.254.0	363047

363048 rows × 4 columns

```
[ ] def ip_code(ip, level):
    arr = ip.split('.')
    if level > 4:
        level=4
    if level == 1:
        return arr[0]
    else:
        return '_'.join(arr[:level])
```

```
[ ] ip_features = []
  for i in range(4):
    f = str('ip_' + str(i+1))
    df_ip[f] = df_ip.apply(lambda x: ip_code(x['1.0.0.0'], i+1), axis=1)
    ip_features.append(f)
ip_features.append(f)
```

['ip_1', 'ip_2', 'ip_3', 'ip_4']

ď	'n	df ip

uga.	up								
₹		1.0.0.0	1.0.0.255	13335	Cloudflare, Inc.	ip_1	ip_2	ip_3	ip_4
	0	1.0.4.0	1.0.7.255	38803	Wirefreebroadband Pty Ltd	1	1_0	1_0_4	1_0_4_0
	1	1.0.16.0	1.0.16.255	2519	ARTERIA Networks Corporation	1	1_0	1_0_16	1_0_16_0
	2	1.0.32.0	1.0.32.255	141748	QUANTUM DATA COMMUNICATIONS, INC.	1	1_0	1_0_32	1_0_32_0
	3	1.0.64.0	1.0.127.255	18144	Energia Communications,Inc.	1	1_0	1_0_64	1_0_64_0
	4	1.0.128.0	1.0.255.255	23969	TOT Public Company Limited	1	1_0	1_0_128	1_0_128_0
	363043	223.255.240.0	223.255.243.255	55649	$\label{thm:condition} \mbox{Hong Kong Five Towns Development Co. Ltd.}$	223	223_255	223_255_240	223_255_240_0
	363044	223.255.244.0	223.255.247.255	45117	Ishan's Network	223	223_255	223_255_244	223_255_244_0
	363045	223.255.248.0	223.255.251.255	63199	CDS Global Cloud Co., Ltd	223	223_255	223_255_248	223_255_248_0
	363046	223.255.252.0	223.255.253.255	58519	Cloud Computing Corporation	223	223_255	223_255_252	223_255_252_0
	363047	223.255.254.0	223.255.254.255	55415	Marina Bay Sands Pte Ltd	223	223_255	223_255_254	223_255_254_0
	363048 rd	ows × 8 columns							

Отбор признаков

Метод фильтрации, основанный на корреляции

```
[ ] sns.heatmap(df[numerical_features].corr(), fmt='.3f')
```

```
wheelbase -
         carlength -
          carwidth
         carheight
       curbweight
        enginesize
         boreratio
             stroke -
                                                                                                         0.00
compressionratio
      horsepower
                                                                                                         - -0.25
          peakrpm
           citympg
              price -
                        carlength carvidth carvidth carvidth carvidth enginesize boreratio stroke pressionratio peakrym carvimpg citympg citympg price-
```

```
cr = df(numerical_features].corr()
cr = cr.abs().unstack()
cr = cr.sort_values(ascending=false)
cr = cr[cr > 0.8]
cr = cr[cr < 1]
cr = pd.DateFrame(cr).reset_index()
cr.columns = ['f1', 'f2', 'corr']
           grouped_feature_list = []
correlated_groups = []
             for feature in cr['f1'].unique():
  if feature not in grouped_feature_list:
  # находим коррелирующие признаки
             # находим коррелирующие признаки
correlated_block = cr[cr['f2'] == feature]
cur_dups = list(correlated_block['f2'].unique()) + [feature]
grouped_feature_list = grouped_feature_list + cur_dups
correlated_groups.append(cur_dups)
correlated_groups
[['cirtympg', 'highwaympg'],
['curbweight', 'wheelbase', 'carwidth', 'carlength'],
['price', 'curbweight', 'horsepower', 'enginesize']]
```

Только третья группа имеет целевой признак price, так что имеет смысл выбрать её

df[correlated_groups[2]]

5		price	curbweight	horsepower	enginesize
	0	13495.0	2548	111	130
	1	16500.0	2548	111	130
	2	16500.0	2823	154	152
	3	13950.0	2337	102	109
	4	17450.0	2824	115	136
	200	16845.0	2952	114	141
	201	19045.0	3049	160	141
	202	21485.0	3012	134	173
	203	22470.0	3217	106	145
	204	22625.0	3062	114	141
	205 rd	ws × 4 col	umns		

∨ Методы обертывания (wrapper methods)

```
[ ] features = ['wheelbase', 'carlength', 'carwidth', 'carheight', 'curbweight', 'enginesize', 'boreratio', 'stroke', 'compressionratio', 'horsepower', 'peakrpm', 'citympg', 'highwaympg']
       train_x = df[features]
  train_y = df["price"]
```

Алгоритмы полного перебора

```
[ ] lr = LinearRegression()
```

```
[ ] efs = EFS(lr,
                  min_features=3,
                  max_features=5,
                  scoring='r2',
                  print_progress=True,
                  CV=5)
     efs = efs.fit(train_x, train_y)
     print('Best accuracy score: %.2f' % efs.best_score_)
     print('Best subset (indices)', efs.best_idx_)
print('Best subset (corresponding names):', efs.best_feature_names_)
```

Вывод

В ходе данной работы были выполнены следующие основные этапы: загрузка и предварительный анализ данных о характеристиках автомобилей, масштабирование числовых признаков с использованием различных методов, обработка признаков, связанных с IP-адресами, анализ корреляции между числовыми признаками и выявление сильно коррелирующих признаков, отбор признаков с использованием двух методов: ExhaustiveFeatureSelector (EFS) и Lasso-регрессии с последующим отбором признаков с помощью SelectFromModel. Проведенная работа позволила подготовить данные для дальнейшего моделирования, выявить наиболее информативные признаки и сформировать набор данных, готовый для применения различных методов машинного обучения.