MA1521 Cheatsheet

AY20/21 Sem 1 | Chapter 1-3

01. FUNCTIONS & LIMITS

Rules of Limits

1.
$$\lim (f \pm g)(x) = L \pm L'$$

$$2. \lim_{x \to a} (fg)(x) = LL'$$

3.
$$\lim_{x\to a} \frac{f}{g}(x) = \frac{L}{L'}$$
, provided $L'\neq 0$

4.
$$\lim_{x \to a} kf(x) = kL$$
 for any real number k .

Estimation

first order estimate:
$$y' \approx y + \Delta x \times \frac{dy}{dx}\Big|_{x=2}$$
 second order estimate: $y' \approx 1$ st estimate $+(\frac{(\triangle x)^2}{2} \times \frac{d^2y}{dx^2}\Big|_{x=2})$

pop. variance:
$$\sigma^2 = \frac{\sum x^2 - \frac{\left(\sum x\right)^2}{n}}{n}$$

pop. covariance:
$$\text{cov}(x,y) = \frac{\sum xy^2 - \frac{\sum x \sum y}{n}}{n}$$
 pop. correlation: $\frac{\text{cov}(x,y)}{\sigma_x \times \sigma_y}$

02. DIFFERENTIATION

extreme values:

- f'(x) = 0
- f'(x) does not exist
- ullet end points of the domain of f

parametric differentiaton:
$$\frac{d^2y}{dx^2}=\frac{d}{dx}(\frac{dy}{dx})=\frac{\frac{d}{dt}(\frac{dy}{dx})}{\frac{dx}{dt}}$$

Differentiation Techniques

f(x)	f'(x)
$\tan x$	$\sec^2 x$
$\csc x$	$-\csc x \cot x$
$\sec x$	$\sec x \tan x$
$\cot x$	$-\csc^2 x$
$a^{f(x)}$	$\ln a \cdot f'(x) a^{f(x)}$
$\log_a f(x)$	$\log_a e \cdot \frac{f'(x)}{f(x)}$
$\sin^{-1} f(x)$	$\frac{f'(x)}{\sqrt{1-[f(x)]^2}}, f(x) < 1$
$\cos^{-1} f(x)$	$-\frac{f'(x)}{\sqrt{1-[f(x)]^2}}, f(x) < 1$
$\tan^{-1} f(x)$	$\frac{f'(x)}{1+[f(x)]^2}$
$\cot^{-1} f(x)$	$-\frac{f'(x)}{1+[f(x)]^2}$
$\sec^{-1} f(x)$	$\frac{f'(x)}{ f(x) \sqrt{[f(x)]^2-1}}$
$\csc^{-1} f(x)$	$-\frac{f'(x)}{ f(x) \sqrt{[f(x)]^2-1}}$

L'Hopital's Rule

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

- for indeterminate forms $(\frac{0}{0} \text{ or } \frac{\infty}{\infty})$, cannot directly substitute
- for other forms: convert to $(\frac{0}{0} \text{ or } \frac{\infty}{\infty})$ then apply L'Hopital's
- for exponents: use \ln , then sub into $e^{f(x)}$

03. INTEGRATION

Integration Techniques

_		•
	f(x)	$\int f(x)$
	$\tan x$	$\ln(\sec x), x < \frac{\pi}{2}$
	$\cot x$	$\ln(\sin x), 0 < x < \pi$
	$\csc x$	$-\ln(\csc x + \cot x), 0 < x < \pi$
	$\sec x$	$\ln(\sec x + \tan x), x < \frac{\pi}{2}$
	$\frac{1}{x^2 + a^2}$	$\frac{1}{a} \tan^{-1}(\frac{x}{a})$
	$\frac{1}{\sqrt{a^2-x^2}}$	$\sin^{-1}\left(\frac{x}{a}\right), x < a$
	$\frac{\frac{1}{x^2 - a^2}}{\frac{1}{x^2 - a^2}}$	$\frac{1}{2a}\ln\left(\frac{x-a}{x+a}\right), x>a$
	$\frac{1}{a^2-x^2}$	$\frac{1}{2a}\ln\left(\frac{x-a}{x+a}\right), x > a$ $\frac{1}{2a}\ln\left(\frac{x+a}{x-a}\right), x < a$
	a^x	$\frac{a^x}{\ln a}$

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

- indefinite integral the integral of the function without any
- antiderivative any function whose derivative will be the same as the original function

substitution:
$$\int_a^b f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(u)du$$
 by parts:
$$\int uv' \ dx = uv - \int u'v \ dx$$

volume of revolution

about x-axis:

- (with hollow area) $V=\pi\int_a^b [f(x)]^2-[g(x)]^2dx$
- (about line y = k) $V = \pi \int_a^b [f(x) k]^2 dx$

Logistic Models

$$N = \frac{N_{t=\infty}}{1 + (\frac{N_{t=\infty}}{N_{t=0}} - 1)e^{-Bt}}$$

- N number
- B birth rate
- *t* time