1	I CLAIM:
2	1.

1. A method for determining a polygonal intersection of a first polygon and a second polygon comprising:

at an intersection of a boundary of the first polygon with a boundary of the second polygon, determining a first known portion of a boundary of the polygonal intersection as comprised of a portion of the boundary of the first polygon that is located inside the second polygon; and

determining each subsequent portion of the boundary of the polygonal intersection that connects to a current known portion of the boundary of the polygonal intersection by selecting that portion of the boundary either the first polygon or the second polygon that connects to a leading end of the current known portion of the boundary of the polygonal intersection and that forms a minimum rotation angle therewith.

2. The method of Claim 1 wherein the first polygon, the second polygon and the polygonal intersection are represented by data indicating a list of edges.

3. The method of Claim 2 wherein the edges represent the boundaries of the polygons.

4. The method of Claim 2 wherein the edges in the list of edges are consistently ordered in either a clockwise or counterclockwise direction.

5. The method of Claim 2 wherein a hole located in the first polygon is represented by data indicating a list of edges.

6. The method of Claim 5 wherein the edges in the list of edges that represent a hole are ordered in an opposite direction to the direction used to order the edges in the list of edges used to represent the first polygon.

13.

29

30

1	7.	The method of Claim 2 wherein the edges in the list of edges are
2	consistently o	ordered in a clockwise direction.
3		
4	8.	The method of Claim 1 wherein the first polygon and the second polygon
5	represent two	-dimensional geographic features.
6		
7	9.	The method of Claim 1 wherein the steps of determining are performed by
8	a software pro	ogram that uses a geographic database containing data representations of the
9	first polygon	and the second polygon.
10		
11	10.	The method of Claim 1 wherein the portion of the boundary of the first
12	polygon that i	is located inside the second polygon is determined by comparing an angle
13	formed by the	e portion of the boundary of the first polygon with portions of the boundary
14	of the second	polygon formed by the intersection.
15		
16	11.	The method of Claim 1 wherein the intersection of the boundary of the
17	first polygon	with the boundary of the second polygon is found by searching a
18	rectangular ar	rea formed by an intersection of a first minimum bounding rectangle
19	encompassing	g the first polygon and a second minimum bounding rectangle encompassing
20	the second po	lygon.
21		
22	12.	The method of Claim 1 further comprising:
23	detern	nining an additional polygonal intersection of the first polygon and the
24	second polygo	on by performing the determining steps for any additional intersection of the
25	boundary of t	he first polygon with the boundary of the second polygon which is not
26	already part o	f the polygonal intersection of a first polygon and a second polygon already
27	determined.	
28		

- 13 -

a server connected to the Internet and that provides navigation-related services to users.

The method of Claim 1 wherein the steps of determining are performed on

1000
Ţ,
I.
ΠŰ
L.
劃
Ü
ļuk
adam dan

30

1		
2	14. A program for determining a polygonal intersection of a first polygon and	
3	a second polygon, wherein said program is stored on a computer-readable medium, said	
4	program comprising:	
5	program code that determines a first known portion of a boundary of the	
6	polygonal intersection as being comprised of a portion of a boundary of the first polygon	
7	that is located inside the second polygon at an intersection of the boundary of the first	
8	polygon with a boundary of the second polygon; and	
9	program code that determines each subsequent portion of the boundary of the	
10	polygonal intersection that connects to a current known portion of the boundary of the	
11	polygonal intersection by selecting that portion of the boundary either the first polygon or	
12	the second polygon that connects to a leading end of the current known portion of the	
13	boundary of the polygonal intersection and that forms a minimum rotation angle	
14	therewith.	
15		
16	15. The invention of Claim 14 wherein said program is run on a server	
17	connected to the Internet that provides navigation-related services to users.	
18		
19	16. The invention of Claim 14 wherein said polygons represent two	
20	dimensional geographic features.	
21		
22	17. The invention of Claim 14 wherein said polygons are represented by data	
23	contained in a database that represents geographic features.	
24		
25	18. A method for determining a polygonal intersection of a first polygon and a	
26	second polygon represented by data contained in a geographic database,	
27	wherein a boundary of the first polygon is represented by a first list of links	
28	connected at endpoints thereof and the second polygon is represented by a second list of	
29	links connected at endpoints thereof,	

Transport of the second

wherein an endpoint of a link is represented by either a node or a shape point;

I	wherein each location at which the boundary of the first polygon intersects with
2	the boundary of the second polygon is represented by a node;
3	wherein the links contained in the first list of links are in an order corresponding
4	to a consistent direction of traversal of the corresponding links representing the boundary
5	of the first polygon;
6	wherein the links contained in the second list of links are in the order
7	corresponding to the consistent direction of traversal of the corresponding links
8	representing the boundary of the second polygon;
9	the method comprising the steps of:
10	determining a first minimum bounding rectangle that encompasses the first
11	polygon;
12	determining a second minimum bounding rectangle that encompasses the second
13	polygon;
14	determining that the first minimum bounding rectangle and the second minimum
15	bounding rectangle intersect;
16	identifying all the links located entirely in a first polygonal area formed by an
17	intersection of the first minimum bounding rectangle and the second minimum bounding
18	rectangle that have at least one node at an endpoint thereof;
19	associating in a node-link map each node connected to each of the identified links
20	with each of the links connected thereto;
21	identifying a node from the node-link map that has at least three links connected
22	thereto;
23	from the order of two of said at least three links that belong to one of the
24	polygons, determining which one of said at least three links that belong to the other of
25	polygons is located inside the one of said polygons;
26	using the link that is located inside the one of said polygons as a starting link for
27	the polygonal intersection of the first polygon and the second polygon; and
28	determining each other link of the polygonal intersection by selecting from the
20	links that connect to a currently known link at the end thereof according to the consistent

l	direction of travel that link that forms a minimum rotation angle with the currently known
2	link.

3

5

6

19. The method of Claim 18 wherein the steps of determining, associating, identifying and using are performed by a software program that uses the geographic database.

7 8

9

10

20. The method of Claim 18 wherein the steps of determining, associating, identifying and using are performed on a server connected to the Internet and that provides navigation-related services to users.

· ARMAN