Devoir surveillé n°04 : corrigé

SOLUTION 1.

1. a. Il s'agit de résoudre l'équation $z + \frac{1}{z} = i$. Cette équation équivaut à $z^2 - iz + 1 = 0$. Le discriminant de cette équation du second degré est $-5 = (i\sqrt{5})^2$. Les solutions de cette équation sont donc

$$\frac{i}{2}(1+\sqrt{5}) \qquad \text{et} \qquad \frac{i}{2}(1-\sqrt{5})$$

b. Comme i possède deux antécédents par ϕ , ϕ n'est pas injective.

c. Soit $Z \in \mathbb{C}$. On considère l'équation f(z) = Z d'inconnue $z \in \mathbb{C}^*$. Cette équation équivaut à $z^2 - Zz + 1 = 0$. Cette équation du second degré admet au moins une solution. Une solution de cette équation ne peut être nulle puisque $0^2 - Z \times 0 - 1 = -1 \neq 0$. Ainsi l'équation f(z) = Z possède donc une solution dans \mathbb{C}^* , c'est-à-dire que Z possède un antécédent par φ . L'application φ est donc surjective.

d. Les antécédents de $2\cos\theta$ par φ sont les solutions de l'équation $\varphi(z)=2\cos\theta$ qui équivaut à $z^2-2z\cos\theta+1=0$. Puisque $e^{i\theta}+e^{-i\theta}=2\cos\theta$ et $e^{i\theta}\cdot e^{-i\theta}=1$, les solutions de cette équation sont $e^{i\theta}$ et $e^{-i\theta}$. Il n'y a en fait qu'une solution lorsque le discriminant $4(\cos^2\theta-1)=-4\sin^2\theta$ est nul et deux sinon. Or le discriminant n'est nul que si $\theta\equiv0[\pi]$. Finalement, $2\cos\theta$ possède deux antécédents lorsque $\theta\not\equiv0[\pi]$, à savoir $e^{i\theta}$ et $e^{-i\theta}$ et un unique antécédent

Finalement, $2\cos\theta$ possède deux antécédents lorsque $\theta \neq 0[\pi]$, à savoir $e^{i\theta}$ et un unique antécédent lorsque $\theta \equiv 0[\pi]$. On peut même préciser que, lorsque $\theta \equiv 0[2\pi]$, cet unique antécédent est $e^{i\theta} = e^{-i\theta} = 1$ et que, lorsque $\theta \equiv \pi[2\pi]$, cet unique antécédent est $e^{i\theta} = e^{-i\theta} = -1$.

2. a. Les antécédents de $2\sqrt{12}-4i$ par ψ lorsque n=3 sont ses racines cubiques. Or $2\sqrt{12}-4i=8e^{-\frac{i\pi}{6}}$ donc les antécédents de $2\sqrt{12}-4i$ par ψ sont $2e^{-\frac{i\pi}{18}}$, $2e^{\frac{11i\pi}{18}}$ et $2e^{\frac{23i\pi}{18}}$.

b. De manière générale, tout complexe non nul possède n racines n^{emes} donc n antécédents par ψ . L'application ψ est donc surjective. Mais, puisque $n \geqslant 2$, ψ n'est pas injective.

 $\textbf{c.} \text{ Les antécédents de } e^{\mathfrak{i} \pi \theta} \text{ par } \psi \text{ sont les racines } n^{\grave{e}mes} \text{ de } e^{\mathfrak{n} \mathfrak{i} \theta}, c'est-\grave{a}\text{-dire } e^{\mathfrak{i} \left(\theta + \frac{2k\pi}{n}\right)} \text{ pour } k \in [\![0,n-1]\!].$

3. a. On sait que ψ et ϕ sont surjectives donc $\xi=\phi\circ\psi$ l'est également. Par contre, $\xi=\phi\circ\psi$ ne peut-être injective car ψ le serait alors également, ce qui n'est pas.

b. D'après la question **1.d**, les antécédents de $2\cos(n\theta)$ par ϕ sont $e^{in\theta}$ et $e^{-in\theta}$ (éventuellement confondus lorsque $n\theta \equiv 0[\pi]$).

D'après la question 2.c, les antécédents de $e^{in\theta}$ et $e^{-in\theta}$ sont les complexes

$$e^{\mathrm{i}\left(\theta+\frac{2k\pi}{n}\right)} \qquad \text{et} \qquad e^{-\mathrm{i}\left(\theta+\frac{2k\pi}{n}\right)} \qquad \text{pour} \qquad k \in [\![0,n-1]\!]$$

Lorsque $n\theta \not\equiv 0[\pi]$, $e^{in\theta}$ et $e^{-in\theta}$ possèdent en tout 2n antécédents mais, lorsque $n\theta \equiv 0[\pi]$, $e^{in\theta}$ et $e^{-in\theta}$ sont confondus donc leurs antécédents égalements.

Finalement $2\cos(n\theta)$ possède 2n antécédents par ξ lorsque $n\theta \not\equiv 0[\pi]$, à savoir les complexes

$$e^{i\left(\theta+\frac{2k\pi}{n}\right)} \qquad \text{et} \qquad e^{-i\left(\theta+\frac{2k\pi}{n}\right)} \qquad \text{pour} \qquad k \in [\![0,n-1]\!]$$

Lorsque $n\theta \equiv 0[\pi]$, $2\cos(n\theta)$ ne possède que n antécédents. On peut préciser que, lorsque $n\theta \equiv 0[2\pi]$, ces antécédents sont les racines $n^{\rm èmes}$ de l'unité. En effet, ces antécédents sont les solutions de l'équation $\xi(z)=1$, qui équivaut à $(z^n-1)^2=0$. De même, lorsque $n\theta \equiv \pi[2\pi]$, ces antécédents sont les racines $n^{\rm èmes}$ de -1. En effet, ces antécédents sont les solutions de l'équation $\xi(z)=-1$, qui équivaut à $(z^n+1)^2=0$.

4. a. Puisque $\alpha(0)=\alpha(2i\pi)=1$, α n'est pas injective. Soit $Z\in\mathbb{C}^*$. Notons θ un argument de Z. Alors |Z|>0 don on peut définir $\ln(|Z|)+i\theta$ qui est un antécédent de Z par α . Ainsi α est surjective.

b. Les antécédents de i par ϕ sont $\frac{i}{2}(1+\sqrt{5})=\frac{\sqrt{5}+1}{2}e^{\frac{i\pi}{2}}$ et $\frac{i}{2}(1-\sqrt{5})=\frac{\sqrt{5}-1}{2}e^{-\frac{i\pi}{2}}$. Les antécédents de $\frac{1+\sqrt{5}}{2}e^{\frac{i\pi}{2}}$ et $\frac{\sqrt{5}-1}{2}e^{-\frac{i\pi}{2}}$ par α sont respectivement les complexes

$$\ln\left(\frac{\sqrt{5}+1}{2}\right)+\mathfrak{i}\left(\frac{\pi}{2}+2k\pi\right) \qquad \text{et} \qquad \ln\left(\frac{\sqrt{5}-1}{2}\right)+\mathfrak{i}\left(-\frac{\pi}{2}+2k\pi\right) \qquad \text{pour} \qquad k\in\mathbb{Z}$$

Ce sont donc également les antécédents de i par $\beta = \phi \circ \alpha$.

SOLUTION 2.

- 1. On a évidemment $1 + i = \sqrt{2}e^{\frac{i\pi}{4}}$.
- 2. D'après la formule du binôme,

$$\begin{split} (1+\mathfrak{i})^{2n} &= \sum_{k=0}^{2n} \binom{2n}{2k} \mathfrak{i}^k \\ &= \sum_{k=0}^n \binom{2n}{2k} \mathfrak{i}^{2k} + \sum_{k=0}^{n-1} \binom{2n}{2k+1} \mathfrak{i}^{2k+1} \qquad \text{en s\'eparant les termes d'indices pairs et impairs} \\ &= \sum_{k=0}^n \binom{2n}{2k} (-1)^k + \sum_{k=0}^{n-1} \binom{2n}{2k+1} (-1)^k \mathfrak{i} \qquad \text{car } \mathfrak{i}^{2k} = (\mathfrak{i}^2)^k = (-1)^k \\ &= S_n + \mathfrak{i} T_n \end{split}$$

3. Tout d'abord,

$$(1+i)^{2n} = \left(\sqrt{2}e^{\frac{i\pi}{4}}\right)^{2n} = 2^n e^{\frac{ni\pi}{2}}$$

De plus, $(1+i)^{2n} = S_n + iT_n$ et S_n et T_n sont *réels* (et même entiers) donc ce sont respectivement les parties réelle et imaginaire de $(1+i)^{2n}$. Finalement,

$$S_n = 2^n \cos\left(\frac{n\pi}{2}\right)$$
 et $T_n = 2^n \sin\left(\frac{n\pi}{2}\right)$

SOLUTION 3.

1. a. On utilise la méthode de l'arc-moitié.

$$\frac{e^{2i\theta}-1}{e^{2i\theta}+1} = \frac{2ie^{i\theta}\sin\theta}{2e^{i\theta}\cos\theta} = i\tan\theta$$

b. Remarquons que -i n'est pas solution de (E) et que pour $z \neq -i$, $1 - iz \neq 0$ de sorte que

$$(1+iz)^{5} = (1-iz)^{5} \iff \left(\frac{1+iz}{1-iz}\right)^{5} = 1$$

$$\iff \frac{1+iz}{1-iz} \in \mathbb{U}_{5}$$

$$\iff \exists k \in \{-2, -1, 0, 1, 2\}, \ \frac{1+iz}{1-iz} = e^{\frac{2ik\pi}{5}}$$

$$\iff \exists k \in \{-2, -1, 0, 1, 2\}, \ 1+iz = e^{\frac{2ik\pi}{5}}(1-iz)$$

$$\iff \exists k \in \{-2, -1, 0, 1, 2\}, \ z = \frac{e^{\frac{2ik\pi}{5}} - 1}{i(e^{\frac{2ik\pi}{5}} + 1)} \qquad \text{car } \forall k \in \{-2, -1, 0, 1, 2\}, \ e^{\frac{2ik\pi}{5}} \neq -1$$

$$\iff \exists k \in \{-2, -1, 0, 1, 2\}, \ z = \tan\frac{k\pi}{5} \qquad \text{d'après la question } \textbf{1.a}$$

Les solutions de (E) sont donc les $r\acute{e}els - \tan\frac{2\pi}{5}$, $-\tan\frac{\pi}{5}$, 0, $\tan\frac{\pi}{5}$ et $\tan\frac{2\pi}{5}$.

c. Tout d'abord, pour $z \in \mathbb{C}$,

$$(1+\mathrm{i}z)^5 = \binom{5}{0} + \binom{5}{1}\mathrm{i}z + \binom{5}{2}(\mathrm{i}z)^2 + \binom{5}{3}(\mathrm{i}z)^3 + \binom{5}{4}(\mathrm{i}z)^4 + \binom{5}{5}(\mathrm{i}z)^5 = 1 + 5\mathrm{i}z - 10z^2 - 10\mathrm{i}z^3 + 5z^4 + \mathrm{i}z^5 + 10z^4 +$$

On en déduit que

$$(1-iz)^5 = 1 - 5iz - 10z^2 + 10iz^3 + 5z^4 - iz^5$$

Ainsi

$$(1+iz)^5 = (1-iz)^5 \iff 10iz - 20iz^3 + 2iz^5 = 0$$

$$\iff z(5-10z^2 + z^4) = 0$$

$$\iff z = 0 \text{ ou } z^4 - 10z^2 + 5 = 0$$

$$\iff z = 0 \text{ ou } z^2 = 5 + 2\sqrt{5} \text{ ou } z^2 = 5 - 2\sqrt{5}$$

$$\iff z = 0 \text{ ou } z = \sqrt{5 + 2\sqrt{5}} \text{ ou } z = -\sqrt{5 + 2\sqrt{5}} \text{ ou } z = \sqrt{5 - 2\sqrt{5}} \text{ ou } z = -\sqrt{5 - 2\sqrt{5}}$$

d. Pour tout $x \in \left] - \frac{\pi}{2}, \frac{\pi}{2} \right[$, $\tan'(x) = \frac{\sin^2 x + \cos^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} > 0$. Ainsi la fonction tan est-elle croissante sur l'intervalle $\left] - \frac{\pi}{2}, \frac{\pi}{2} \right[$. Or

$$-\frac{\pi}{2} < -\frac{2\pi}{5} < -\frac{\pi}{5} < 0 < \frac{\pi}{5} < \frac{2\pi}{5} < \frac{\pi}{2}$$

et

$$-\sqrt{5+2\sqrt{5}} < -\sqrt{5-2\sqrt{5}} < 0 < \sqrt{5-2\sqrt{5}} < \sqrt{5+2\sqrt{5}}$$

de sorte qu'en particulier, tan $\frac{\pi}{5} = \sqrt{5 - 2\sqrt{5}}$ et tan $\frac{2\pi}{5} = \sqrt{5 + 2\sqrt{5}}$.

2. a.

$$\frac{1+i\tan\alpha}{1-i\tan\alpha} = \frac{1+i\frac{\sin\alpha}{\cos\alpha}}{1+i\frac{\sin\alpha}{\cos\alpha}} = \frac{\cos\alpha+i\sin\alpha}{\cos\alpha-i\sin\alpha} = \frac{e^{i\alpha}}{e^{-i\alpha}} = e^{2i\alpha}$$

- **b.** Il s'agit d'un problème d'extraction de racines cinquièmes. Les solutions sont donc les complexes $e^{\frac{2\mathfrak{i}(\alpha+k\pi)}{5}}$ pour $k\in\{-2,-1,0,1,2\}$.
- c. L'équation (E_{α}) équivaut à l'équation $\left(\frac{1+iz}{1-iz}\right)^5=e^{2i\alpha}$. D'après la question précédente, les solutions de (E_{α}) sont les complexes z tels qu'il existe $k\in\{-2,-1,0,1,2\}$ tel que $\frac{1+iz}{1-iz}=e^{\frac{i(\alpha+2k\pi)}{5}}$. Or, pour $k\in\{-2,-1,0,1,2\}$, en posant $\alpha_k=\frac{\alpha+k\pi}{5}$

$$\frac{1+iz}{1-iz} = e^{2i\alpha_k}$$

$$\iff z = \frac{e^{2i\alpha_k} - 1}{i(e^{2i\alpha_k} + 1)}$$

$$\iff z = \tan \alpha_k \qquad \text{d'après la question 1.a}$$

Les solutions de (E_{α}) sont donc les réels $\tan \alpha_k$ pour $k \in \{-2,0,1,2\}$, autrement dit les réels $\tan \left(\frac{\alpha-2\pi}{5}\right)$, $\tan \left(\frac{\alpha}{5}\right)$, $\tan \left(\frac{\alpha+\pi}{5}\right)$ et $\tan \left(\frac{\alpha+2\pi}{5}\right)$.

SOLUTION 4.

- 1. a. On a évidemment $j^3 = e^{2i\pi} = 1$.
 - **b.** On reconnaît la somme de trois termes consécutifs d'une suite géométrique de raison $j \neq 1$. Ainsi

$$1 + j + j^2 = \frac{j^3 - 1}{j - 1} = 0$$

puisque $j^3 = 1$.

c. En développant,

$$(a+bj+cj^2)(a+bj^2+cj) = a^2+b^2j^3+c^2j^3+ab(j+j^2)+bc(j+j^2)+ca(j+j^2)$$
 Or $j^3=1$ et $j+j^2=-1$ donc

$$(a + bj + cj^{2})(a + bj^{2} + cj) = a^{2} + b^{2} + c^{2} - ab - bc - ca$$

d.

$$\begin{split} -j &= -e^{\frac{2i\pi}{3}} = e^{-i\pi}e^{\frac{2i\pi}{3}} = e^{-\frac{i\pi}{3}} \\ -j^2 &= -e^{\frac{4i\pi}{3}} = e^{-i\pi}e^{\frac{4i\pi}{3}} = e^{\frac{i\pi}{3}} \end{split}$$

2. a. D'après la question 1.c, $(a + bj + cj^2)(a + bj^2 + cj) = 0$. Ainsi $a + bj + cj^2 = 0$ ou $a + bj^2 + cj = 0$. \blacktriangleright Si $a + bj + cj^2 = 0$,

$$\frac{c-a}{b-a} = \frac{c+bj+cj^2}{b+bj+cj^2} \qquad car -a = bj+cj^2$$

$$= \frac{c(1+j^2)+bj}{b(1+j)+cj^2}$$

$$= \frac{-cj+bj}{-bj^2+cj^2} \qquad car 1+j+j^2 = 0$$

$$= \frac{j(b-c)}{j^2(c-b)}$$

$$= -\frac{1}{j} = -j^2 \qquad car j^3 = 1$$

$$ia + bj^2 + cj = 0,$$

$$\frac{c-a}{b-a} = \frac{c+bj+cj^2}{b+bj+cj^2} \qquad car -a = bj+cj^2$$

$$= \frac{c(1+j^2)+bj}{b(1+j)+cj^2}$$

$$= \frac{-cj+bj}{-bj^2+cj^2} \qquad car 1+j+j^2 = 0$$

$$= \frac{j(b-c)}{j^2(c-b)}$$

$$= -\frac{1}{j} = -j^2 \qquad car j^3 = 1$$

b. D'après la question **1.d**, $\frac{c-a}{b-a}=e^{\frac{i\pi}{3}}$ ou $\frac{c-a}{b-a}=e^{-\frac{i\pi}{3}}.$ Ainsi

$$\left|\frac{c-a}{b-a}\right|=1 \qquad \text{ou encore} \qquad \frac{|c-a|}{|b-a|}=1 \qquad \text{ou enfin} \qquad |b-a|=|c-a|$$

et

$$\arg\left(\frac{c-a}{b-a}\right) \equiv \pm \frac{\pi}{3}[2\pi]$$

Ces deux conditions s'écrivent également AB = AC et $(\overrightarrow{AB}, \overrightarrow{AC}) \equiv \pm \frac{\pi}{3} [2\pi]$. Le triangle ABC est donc équilatéral.