Por último, se suma la ecuación (1.2.6c) a la ecuación (1.2.6a) y después se multiplica la ecuación (1.2.6c) por -2 y se suma a la ecuación (1.2.6b) para obtener el siguiente sistema, el cual es equivalente al sistema (1.2.1):

$$x_1 = 4$$

$$x_2 = -2$$

$$x_3 = 3$$

Eliminación de **Gauss-Jordan** Ésta es la solución única para el sistema. Se escribe en la forma (4, -2, 3). El método que se usó se conoce como eliminación de Gauss-Jordan.³

Antes de seguir con otro ejemplo es conveniente resumir lo que se hizo en éste:

- i) Se dividió la primera ecuación, entre una constante, para hacer el coeficiente de x_1 igual a 1.
- ii) Se "eliminaron" los términos en x_1 de la segunda y tercera ecuaciones. Esto es, los coeficientes de estos términos se volvieron cero al multiplicar la primera ecuación por las constantes adecuadas y sumándola a la segunda y tercera ecuaciones, respectivamente, de manera que al sumar las ecuaciones una de las incógnitas se eliminaba.
- iii) Se dividió la segunda ecuación entre una constante, para hacer el coeficiente de x2 igual a 1 y después se usó la segunda ecuación para "eliminar" los términos en x_2 de la primera y tercera ecuaciones, de manera parecida a como se hizo en el paso anterior.
- iv) Se dividió la tercera ecuación entre una constante, para hacer el coeficiente de x₃ igual a 1 y después se usó esta tercera ecuación para "eliminar" los términos de x_3 de la primera y segunda ecuaciones.

Cabe resaltar el hecho de que, en cada paso, se obtuvieron sistemas equivalentes. Es decir, cada sistema tenía el mismo conjunto de soluciones que el precedente. Esto es una consecuencia de las propiedades A y B de la página 2.

Antes de resolver otros sistemas de ecuaciones es conveniente introducir una notación que simplifica la escritura de cada paso del procedimiento mediante el concepto de matriz. Una matriz es un arreglo rectangular de números y éstas se estudiarán con gran detalle al inicio de la sección 2.1. Por ejemplo, los coeficientes de las variables x_1 , x_2 , x_3 en el sistema (1.2.1) se pueden escribir como los

elementos de una matriz A, llamada matriz de coeficientes del sistema:

 $A = \begin{pmatrix} 2 & 4 & 6 \\ 4 & 5 & 6 \\ 3 & 1 & -2 \end{pmatrix}$ (1.2.7)

Una matriz con m renglones y n columnas se llama una matriz de $m \times n$. El símbolo $m \times n$ se lee "mpor n". El estudio de matrices constituye gran parte de los capítulos restantes de este libro. Por la conveniencia de su notación para la resolución de sistemas de ecuaciones, las presentamos aquí.

Al usar la notación matricial, el sistema (1.2.1) se puede escribir como la matriz aumentada

$$\begin{pmatrix} 2 & 4 & 6 & | & 18 \\ 4 & 5 & 6 & | & 24 \\ 3 & 1 & -2 & | & 4 \end{pmatrix}$$
 (1.2.8)

Matriz

Matriz de coeficientes

Matriz de $m \times n$

Matriz aumentada

Recibe este nombre en honor del gran matemático alemán Karl Friedrich Gauss (1777-1855) y del ingeniero alemán Wilhelm Jordan (1844-1899). Vea la semblanza bibliográfica de Gauss en la página 21. Jordan fue un experto en investigación geodésica tomando en cuenta la curvatura de la Tierra. Su trabajo sobre la solución de sistemas de ecuaciones apareció en 1888 en su libro Handbuch der Vermessungskunde (Manual de geodesia).