ĐẠI HỌC KHOA HỌC TỰ NHIÊN HÀ NỘI KHOA TOÁN-CO-TIN (Đề gồm 4 câu/4 trang)

 $$\rm \D\tilde{E}\ KI\tilde{E}M\ TRA\ GI\tilde{U}A\ K\dot{Y}$$ Môn: Toán rời rạc (MAT3500 1, 2023-2024)

Thời gian: 50 phút

- Điền các thông tin về Họ Tên, Mã Sinh Viên, Lớp trước khi bắt đầu làm bài.
- Trình bày lời giải vào các khoảng trống sau đề bài. Sử dụng mặt sau nếu thiếu khoảng trống.
- Không sử dụng tài liệu. Không trao đổi, bàn bạc khi làm bài.
- Điểm bài kiểm tra này chiếm 20% tổng số điểm của môn học. Tổng điểm nhỏ hơn hoặc bằng 10 thì giữ nguyên, còn ngược lại thì tính là 10 điểm.

Họ và Tên:	
Mã Sinh Viân:	Lán

Câu:	1	2	3	4	Tổng
Điểm tối đa:	3	3	3	3	12
Điểm:					

1. (3 điểm) Hãy chứng minh bằng ít nhất hai cách khác nhau rằng các mệnh đề $\neg p \lor (r \to \neg q)$ và $\neg p \lor \neg q \lor \neg r$ là tương đương lôgic.

Lời giải:

• Cách 1: Sử dụng các tương đương lôgic đã biết.

• Cách 2: Lập bảng chân trị.

p	q	r	$\neg p$	$\neg q$	$\neg r$	$r \to \neg q$	$\neg p \lor \neg q$	$\neg p \lor (r \to \neg q)$	$\neg p \lor \neg q \lor \neg r$
T	Т	Т	F	F	F	F	F	F	F
T	T	F	F	F	Т	Т	F	T	T
T	F	T	F	Т	F	Т	T	T	T
F	Т	Т	Т	F	F	F	T	Т	Т
T	F	F	F	Т	Т	Т	T	Т	Т
F	Т	F	Т	F	Т	Т	T	Т	Т
F	F	Т	Т	Т	F	Т	T	Т	Т
F	F	F	Т	Т	Т	Т	T	Т Т	Т

Do các hàng tương ứng của hai mệnh đề $\neg p \lor (r \to \neg q)$ và $\neg p \lor \neg q \lor \neg r$ đều có giá trị giống nhau, các mệnh đề đã cho là tương đương lôgic.

- 2. Chứng minh các tính chất sau của hàm trần và hàm sàn, trong đó $x \in \mathbb{R}$ và $n \in \mathbb{Z}$.
 - (a) $(1\frac{1}{2} \text{ diểm}) |x| = n$ khi và chỉ khi $n \le x < n + 1$.
 - (b) $(1\frac{1}{2} \text{ diểm}) \lfloor x+n \rfloor = \lfloor x \rfloor + n.$

Lời giải:

- (a) Ta chứng minh hai chiều:
 - (⇒) Giả sử $\lfloor x \rfloor = n$. Ta chứng minh $n \leq x < n+1$. Thật vậy, theo định nghĩa hàm sàn, $n \leq x$. Ta chứng minh x < n+1 bằng phương pháp phản chứng. Giả sử $x \geq n+1$. Do đó $\lfloor x \rfloor \geq \lfloor n+1 \rfloor = n+1 > n$, mâu thuẫn với giả thiết |x| = n.
 - (<) Giả sử $n \le x < n+1$. Ta chứng minh $\lfloor x \rfloor = n$. Thật vậy, từ giả thiết $n \le x < n+1$, ta có $n \le \lfloor x \rfloor < n+1$. Do $\lfloor x \rfloor$ là một số nguyên, ta có $\lfloor x \rfloor = n$.
- (b) Giả sử $\lfloor x+n\rfloor=m$ với $m\in\mathbb{Z}$ nào đó. Kết hợp với câu (a), ta có $m\leq x+n< m+1$. Do đó, $m-n\leq x\leq (m-n)+1$. Kết hợp với câu (a), ta suy ra $\lfloor x\rfloor=m-n$, nghĩa là $\lfloor x\rfloor+n=m=\lfloor x+n\rfloor$.

3. (3 điểm) Sử dụng phương pháp quy nạp để chứng minh $6^{n+1} + 7^{2n-1}$ chia hết cho 43 với mọi số nguyên dương n.

Lời giải: Gọi P(n) là vị từ " $6^{n+1} + 7^{2n-1}$ chia hết cho 43". Ta chứng minh $\forall n \in \mathbb{Z}^+$ P(n).

- Bước cơ sở: Ta chứng minh P(1) đúng. Thật vậy, với n=1, ta có $6^{1+1}+7^{2\cdot 1-1}=43$ chia hết cho 43.
- Bước quy nạp: Giả sử P(k) đúng với số nguyên $k \in \mathbb{Z}^+$ nào đó, nghĩa là $6^{k+1} + 7^{2k-1}$ chia hết cho 43. Ta chứng minh P(k+1) đúng, nghĩa là chứng minh $6^{(k+1)+1} + 7^{2(k+1)-1} = 6^{k+2} + 7^{2k+1}$ chia hết cho 43. Thất vậy, ta có

$$\begin{aligned} 6^{k+2} + 7^{2k+1} &= 6 \cdot 6^{k+1} + 7^2 \cdot 7^{2k-1} \\ &= 6 \cdot (6^{k+1} + 7^{2k-1}) + 43 \cdot 7^{2k-1}. \end{aligned}$$

Theo giả thiết quy nạp, $6^{k+1}+7^{2k-1}$ chia hết cho 43, và do đó $6\cdot(6^{k+1}+7^{2k-1})$ cũng thế. Thêm vào đó, $43\cdot7^{2k-1}$ cũng chia hết cho 43. Do đó, ta có điều cần chứng minh.

Theo nguyên lý quy nạp, ta có $6^{n+1} + 7^{2n-1}$ chia hết cho 43 với mọi số nguyên dương n.

4. (3 điểm) Giải hệ thức truy hồi $a_n = 3a_{n-1} + 7$ (n = 1, 2, ...) với điều kiện ban đầu $a_0 = 3$.

Lời giải: Ta có

$$\begin{split} a_n &= 3a_{n-1} + 7 \\ &= 3(3a_{n-2} + 7) + 7 = 3^2a_{n-2} + (1+3) \cdot 7 \\ &= 3^2(3a_{n-3} + 7) + (1+3) \cdot 7 = 3^3a_{n-3} + (1+3+3^2) \cdot 7 \\ &= \dots \\ &= 3^ra_{n-r} + (1+3+3^2+\dots+3^{r-1}) \cdot 7 \\ &= \dots \\ &= 3^na_0 + (1+3+3^2+\dots+3^{n-1}) \cdot 7 \\ &= 3^{n+1} + 7 \cdot \frac{3^n-1}{2} \\ &= \frac{13 \cdot 3^n - 7}{2}. \end{split}$$

Để kiểm tra dự đoán trên, ta chứng minh $a_n = \frac{13 \cdot 3^n - 7}{2}$ với mọi $n \ge 0$ bằng phương pháp quy nạp.

- Bước cơ sở: Với n=0, ta có $a_0=\frac{13\cdot 3^0-7}{2}=3$. Do đó, $a_n=\frac{13\cdot 3^n-7}{2}$ đúng với n=0.
- Bước quy nạp: Giả sử $a_k=\frac{13\cdot 3^k-7}{2}$ đúng với số nguyên $k\geq 0$ nào đó. Ta chứng minh $a_{k+1}=\frac{13\cdot 3^{k+1}-7}{2}$ cũng đúng. Thật vậy, ta có

$$\begin{aligned} a_{k+1} &= 3a_k + 7 & \text{Dịnh nghĩa của dãy } \{a_n\} \\ &= 3 \cdot \frac{13 \cdot 3^k - 7}{2} + 7 & \text{Giả thiết quy nạp} \\ &= \frac{3(13 \cdot 3^k - 7) + 14}{2} \\ &= \frac{13 \cdot 3^{k+1} - 7}{2}. \end{aligned}$$

Theo nguyên lý quy nạp, $a_n = \frac{13 \cdot 3^n - 7}{2}$ với mọi $n \geq 0$.