Review of Statistics Part B: Hypothesis Testing

THOMAS WIEMANN

University of Chicago

Econometrics Econ 21020

Updated: April 13, 2022

In Part A of the statistics review discussed estimation:

- Developed estimators via the sample analogue principle;
- ▷ Characterized estimators with finite and large sample properties.

Our analysis highlighted that an estimator $\hat{\theta}_n$ is a random variable and may thus differ from the true (fixed) parameter θ .

In Part B, we consider the question of whether the true parameter is equal to a particular value or within a particular set.

▷ For example, when interested in the expected returns to education,

$$\tau = E_U[g(1, U) - g(0, U)|W = 1] \tag{1}$$

we may be particularly curious about whether $\tau > 0$.

The formal analysis of such questions is known as *hypothesis testing*.

Outline

- 1. Hypothesis Testing
 - ▶ Definitions

 - ▷ One-Sided Hypothesis Testing
- 2. Hypothesis Testing and Confidence Intervals

These notes benefit greatly from the exposition in Wasserman (2003) and the lecture notes of Prof. Max Tabord-Meehan.

1. Hypothesis Testing

- **Definitions**
- ▷ One-Sided Hypothesis Testing
- 2. Hypothesis Testing and Confidence Intervals

These notes benefit greatly from the exposition in Wasserman (2003) and the lecture notes of Prof. Max Tabord-Meehan.

Hypothesis Testing

Our analysis begins with defining a hypothesis to be tested.

Let θ denote the parameter of interest and Θ its possible values.

Consider a partition of Θ into two disjoint subsets Θ_0 and Θ_1 and that we wish to test

$$H_0: \theta \in \Theta_0 \quad \text{versus} \quad H_1: \theta \in \Theta_1.$$
 (2)

Some terminology:

- \triangleright H_0 is referred to as the *null hypothesis*;
- \triangleright H_1 is referred to as the *alternative hypothesis*;
- \triangleright When $\Theta_0 = \theta_0$ is a single element, H_0 is a simple hypothesis;
- \triangleright When Θ_0 is a non-singleton set, H_0 is a *composite hypothesis*.

Hypothesis Testing (Contd.)

Example 1

Let Y denote hourly wages and W denote being a college graduate. Do college graduates earn upwards of \$600 a week?

To formulate a corresponding hypothesis, let $\mu_{Y|1} \equiv E[Y|W=1]$. Then

$$H_0: \mu_{Y|1} \ge 600$$
 versus $H_1: \mu_{Y|1} < 600$.

Here H_0 is a composite hypothesis.

If we had instead asked, "Do college graduates earn \$600 a week?", the corresponding hypothesis would be

$$H_0: \mu_{Y|1} = 600$$
 versus $H_1: \mu_{Y|1} \neq 600$.

Here H_0 is a simple hypothesis.

Hypothesis Testing (Contd.)

Hypotheses pose economic questions in terms of statistical parameters.

▶ Now need a procedure to answer these questions.

For this purpose, define a *test statistic* T_n , which denotes a *known* function of the sample $X_1, \ldots, X_n \sim X$.

ho $T_n(X_1,\ldots,X_n)$ is a function of random variables and hence random.

Hypothesis testing finds an appropriate region $\mathcal{R} \subset \operatorname{supp} T_n$ such that

$$T_n \in \mathcal{R} \quad \Rightarrow \quad \text{reject } H_0,$$
 $T_n \notin \mathcal{R} \quad \Rightarrow \quad \text{don't reject } H_0.$

 ${\mathcal R}$ is known as the *rejection region*. We exclusively consider ${\mathcal R}$ of the form

$$\mathcal{R}(c) = \{ t \in \mathbb{R} \mid t > c \}, \tag{3}$$

for a *critical value* $c \in \mathbb{R}$. Note: "large" T_n is evidence against H_0 .

Type I and Type II Errors

Because T_n is random, we are bound to make errors at some point.

Outcomes of Hypothesis Testing

	Don't Reject <i>H</i> ₀	Reject <i>H</i> ₀
H_0 true H_0 false	correct type II error	type I error correct

We will need to trade-off type I error and type II errors in our analysis.

- The less likely we make type I errors, the more likely are type II errors (and vice versa).
- ▶ We often focus on controlling the probability of a type I error.

Why? Wasserman (2003) has a nice analogy: "Hypothesis testing is like a legal trial. We assume someone is innocent unless the evidence strongly suggests that they are guilty. Similarly, we don't reject H_0 unless there is strong evidence against H_0 ."

Type I and Type II Errors (Contd.)

A test is characterized by its type I and type II error probabilities.

Definition 1 (Size and Power)

The size (or: significance level) of a test is $\alpha \in (0,1)$ such that

$$\alpha = P(T_n \in \mathcal{R}(c_\alpha) \mid H_0 \text{ is true}) = P(T_n > c_\alpha \mid H_0 \text{ is true})$$

$$= P(\text{reject } H_0 \mid H_0 \text{ is true}) = P(\text{type I error}). \tag{4}$$

The *power* of a test is defined as

In practice, we choose a critical value c_{α} s.t. our test has the desired size.

▷ This controls the probability of a type I error.

Type I and Type II Errors (Contd.)

In practice, economists often consider a size of $\alpha = 0.05$ appropriate.

- \triangleright This is rather arbitrary: Is 1/20 rare enough?
- ▶ Practitioners may disagree on the size they would like to consider.

The next definition allows for side-stepping the issue of pre-specified sizes.

Definition 2 (p-Value)

The *p-value* of a test is defined as

$$\inf\{\alpha \in (0,1) \mid T_n \in \mathcal{R}(c_\alpha)\},\tag{6}$$

that is, the smallest size of the test such that H_0 would be rejected.

Small p-values are interpreted as evidence against H_0 :

 \triangleright The smaller the *p*-value, the stronger the evidence against H_0 .

Importantly: Large p-values are not evidence in favor of H_0 !

▶ Large p-values may also occur because our test has low power.

1. Hypothesis Testing

- ▶ Definitions
- ▷ One-Sided Hypothesis Testing
- 2. Hypothesis Testing and Confidence Intervals

Two-Sided Hypothesis Testing

Let's make things more concrete: Consider a sample $X_1, \ldots, X_n \stackrel{iid}{\sim} X$.

 \triangleright Suppose we are interested a parameter $\theta \in \mathbb{R}$ (e.g., $\theta = E[X]$), and that we developed an estimator $\hat{\theta}_n$ such that

$$\frac{\left(\hat{\theta}_{n}-\theta\right)}{se(\hat{\theta}_{n})} \stackrel{d}{\to} N(0,1). \tag{7}$$

Is θ equal to a particular value, say, θ_0 ?

For this purpose, we consider testing

$$H_0: \theta = \theta_0 \quad \text{versus} \quad H_1: \theta \neq \theta_0.$$
 (8)

We are now in need of an appropriate test statistic T_n and a corresponding critical value c_α such that the size of our test is $\alpha \in (0,1)$.

Two-Sided Hypothesis Testing (Contd.)

Given the standard normal limit of (7), a natural choice of test statistic is

$$T_n = \left| \frac{\left(\hat{\theta}_n - \theta_0\right)}{\operatorname{se}(\hat{\theta}_n)} \right| \tag{9}$$

- \triangleright Recall that we reject H_0 if T_n is "large".
- \triangleright Here, T_n increases in deviations of $\hat{\theta}_n$ from θ_0 : Seems sensible!

The following theorem shows that T_n is indeed a useful test statistic:

Theorem 1

Let $\hat{\theta}_n$ be an estimator for θ such that (7) holds. Then for T_n defined by (9), it hold that

$$P(T_n > z_{1-\frac{\alpha}{2}} | H_0 \text{ is true}) \to \alpha,$$
 (10)

where $z_{1-\frac{\alpha}{2}} = \Phi^{-1}(1-\frac{\alpha}{2})$ is the $1-\frac{\alpha}{2}$ quantile of a standard normal.

Two-Sided Hypothesis Testing (Contd.)

Proof.
$$\rho\left(T_{n} > c \mid H_{0}\right) = \rho\left(\left|\frac{\partial_{u} - \Theta_{0}}{se(\delta_{u})}\right| > c \mid H_{0}\right)$$

$$= \rho\left(\frac{\partial_{u} - \Theta_{0}}{se(\delta_{u})} > c \mid H_{0}\right) + \rho\left(\frac{\partial_{u} - \Theta_{0}}{se(\delta_{u})} < - c \mid H_{0}\right)$$

$$= 1 - \rho\left(\frac{\partial_{u} - \Theta_{0}}{se(\delta_{u})} \le c \mid H_{0}\right) + \rho\left(\frac{\partial_{u} - \Theta_{0}}{se(\delta_{u})} < - c \mid H_{0}\right)$$

$$\Rightarrow \Phi(t_{1-\frac{\alpha}{2}}) = \Phi(\Phi(t_{1-\frac{\alpha}{2}}))$$

$$= 1 - \frac{\alpha}{2}$$

$$= 1 - \overline{\phi}(c) + (1 - \overline{\phi}(c)) = 2(1 - \overline{\phi}(c))$$

Take
$$c = t_{1-\frac{\alpha}{2}}$$
, then $2(1 - \frac{\alpha}{2}(t_{1-\frac{\alpha}{2}})) = 2(1 - (1 - \frac{\alpha}{2}))$
= $2(1 - (1 - \frac{\alpha}{2}))$

Note: It's worth memorizing that when $\alpha=0.05,$ we have $z_{1-\frac{\alpha}{2}}\approx 1.96.$

Wiemann Hypothesis Testing 14 / 24

Two-Sided Hypothesis Testing (Contd.)

Example 2

Consider the test statistic T_n defined in equation (9). By Theorem 1, we reject $H_0: \theta = \theta_0$ at significance level α when

$$T_n > z_{1-\frac{\alpha}{2}}.\tag{11}$$

Hence, the p-value is given by

=)
$$\Phi(T_n) > \Phi(z_{1-\frac{\alpha}{2}}) = 1 - \frac{\alpha}{2}$$

=) $\alpha > 2(1 - \Phi(T_n))$

=)
$$2(1-\overline{2}(\overline{1}_{u})) = \rho - value$$

1. Hypothesis Testing

- ▶ Definitions
- ▷ One-Sided Hypothesis Testing
- 2. Hypothesis Testing and Confidence Intervals

One-Sided Hypothesis Testing

Instead of the simple hypothesis considered in (18), suppose we test

$$H_0: \theta \leq \theta_0 \quad \text{versus} \quad H_1: \theta > \theta_0, \tag{12}$$

or

$$H_0: \theta \ge \theta_0 \quad \text{versus} \quad H_1: \theta < \theta_0.$$
 (13)

Recall that we want large T_n to be evidence against H_0 .

 \triangleright For $H_0: \theta \leq \theta_0$, choose

$$T_n = \frac{\left(\hat{\theta}_n - \theta_0\right)}{\operatorname{se}(\hat{\theta}_n)} \tag{14}$$

 \triangleright For $H_0: \theta \geq \theta_0$, choose

$$T_n = \frac{-\left(\hat{\theta}_n - \theta_0\right)}{\operatorname{se}(\hat{\theta}_n)} \tag{15}$$

Wiemann Hypothesis Testing 17 / 24

One-Sided Hypothesis Testing

The next result shows that these are indeed useful test statistics:

Theorem 2

Let $\hat{\theta}_n$ be an estimator for θ such that (7) holds. Then for T_n defined by (14), it hold that

$$P(T_n > z_{1-\alpha} | H_0 \text{ is true}) \to \alpha,$$
 (16)

where $z_{1-\alpha} = \Phi^{-1}(1-\alpha)$ is the $1-\alpha$ quantile of a standard normal. An analogous result holds for T_n defined by (15).

Proof.

Taking
$$c = z_{1-\alpha}$$
, implies $|-\overline{\phi}(z_{1-\alpha}) = |-(|-\alpha) = \alpha$

Note: It's worth memorizing that when $\alpha = 0.05$, we have $z_{1-\alpha} \approx 1.64$.

Example 3

Consider the test statistic T_n defined in equation (14). By Theorem 2, we reject $H_0: \theta = \theta_0$ at significance level α when

$$T_n > z_{1-\alpha}. \tag{17}$$

Hence, the p-value is given by

Outline

- 1. Hypothesis Testing
 - ▶ Definitions

 - ▷ One-Sided Hypothesis Testing

2. Hypothesis Testing and Confidence Intervals

Hypothesis Testing and Confidence Intervals

Consider the following thought experiment: Suppose you test

$$H_0: \theta = \tilde{\theta}_0 \quad \text{versus} \quad H_1: \theta \neq \tilde{\theta}_0,$$
 (18)

for all possible values $\tilde{\theta}_0 \in \Theta$ using a test of size α .

- \triangleright Whenever H_0 is not rejected, you write down the value of $\tilde{\theta}_0$.
- \triangleright This gives the set (say, C_n) of $\tilde{\theta}_0$ for which H_0 would not be rejected.
- \triangleright C_n summarizes the collection of hypotheses we would not reject.

It turns out that this newly constructed set C_n is the confidence interval discussed in Part A of the statistics review!

► This is known as the duality between hypothesis testing and confidence intervals.

This implies that we can use a $1-\alpha$ confidence interval to test hypothesis at a significance level α .

- \triangleright Step 1: Construct the $1-\alpha$ confidence interval c_n ;
- \triangleright Step 2: Check whether $\theta_0 \in c_n$. If not, reject $H_0: \theta = \theta_0$.

Hypothesis Testing and Confidence Intervals (Contd.)

To see this dual relationship, recall that we would include $\tilde{\theta}_0$ in the set C_n if our test of size α does not reject $H_0: \theta = \tilde{\theta}_0$. That is, whenever

$$T_n \leq c_{\alpha}.$$
 (19)

Take T_n as defined in Equation (9) so that $c_{\alpha}=z_{1-\frac{\alpha}{2}}$. Then

$$\left| \frac{\partial_{N} - \Theta_{0}}{Se(\Theta_{N})} \right| \leq \mathcal{Z}_{1-\frac{1}{2}} = 2 - \mathcal{Z}_{1-\frac{1}{2}} \leq \frac{\partial_{N} - \Theta_{0}}{Se(\Theta_{N})} \leq \mathcal{Z}_{1-\frac{1}{2}}$$

$$= 2 \quad \Theta_{N} - \mathcal{Z}_{1-\frac{1}{2}} Se(\widehat{\Theta}_{N}) \leq \Theta_{0} \leq \widehat{\Theta}_{N} + \mathcal{Z}_{1-\frac{1}{2}} Se(\widehat{\Theta}_{N})$$

Hence, the set of $\tilde{\theta}_0$ for which we don't reject H_0 at significance level α is

$$C_{N} = \left[\frac{1}{\Theta_{n}} - \frac{1}{2} e(\hat{\theta}_{n}) \right] + \frac{1}{\Theta_{n}} + \frac{1}{2} e(\hat{\theta}_{n})$$

which is identical to our definition of the symmetric confidence interval.

Summary

This concludes our statistics review:

- ▷ Discussed the construction of estimators;
- ▷ Introduced tools to study the properties of estimators;
- ▷ Developed procedure for testing hypothesis about parameters.

Now we're fully equipped to delve into the analysis of causal questions!

- Can leverage our probability expertise for Task 1 (Definition) and Task 2 (Identification).
- ▷ Can leverage our statistics expertise for Task 3 (Estimation).

To get things started properly, we revisit the returns to education example in the next lecture.

References

Wasserman, L. (2003). All of statistics. Springer.