Technical Report: A Systematic Mapping Study of Machine Learning for Software Traceability

1. Extracted Data

1.1 Extracted Data for RQ1

Index	Title	Author	Subject	Year	Venue	Publication type
S1	An extended knowledge representation learning approach for context-based traceability link recovery	Guoshuai Zhao Tong Li Zhen Yang	Researcher	2020	International Conference on Software Engineering and Knowledge Engineering (SEKE)	Conference
S2	An Improved Approach to Traceability Recovery Based on Word Embeddings	Teng Zhao Qinghua Cao Qing Sun	Student	2017	Asia-Pacific Software Engineering Conference (APSEC)	Conference
\$3	An information theoretic approach for extracting and tracing non-functional requirements	Anas Mahmoud	Researcher	2015	International Requirements Engineering Conference (RE Conference)	Conference
S4	Application of reinforcement learning to requirements engineering requirements tracing	Hakim Sultanov Jane Huffman Hayes	Researcher	2013	International Requirements Engineering Conference (RE Conference)	Conference
S5	ATLaS: A Framework for Traceability Links Recovery Combining Information Retrieval and Semi-Supervised Techniques	Emma Effa Bella Stephen Creff Marie-Pierre Gervais Reda Bendraou	Student	2019	The Enterprise Computing Conference (EDOC)	Conference
S6	Traceability recovery between bug reports and test cases-a Mozilla Firefox case study	Guilherme Gadelha Franklin Ramalho Tiago Massoni	Researcher	2021	Automated Software Engineering (ASE)	Journal
S7	Automatic traceability link recovery via active learning	Tianbao Du Guohua Shen Zhiqiu Huang Yaoshen Yu Dexiang Wu	Student	2020	Frontiers of Information Technology & Electronic Engineering (FRONT INFORM TECH EL)	Journal
S8	Automatic Traceability Maintenance via Machine Learning Classification	Chris Mills Javier Escobar-Avila Sonia Haiduc	Researcher	2018	International Conference on Software Maintenance and Evolution (ICSME)	Conference
S 9	Automating traceability link recovery through classification	Chris Mills	Researcher	2017	European Software Engineering	Conference

					Conference (ESEC)	
S10	Clustering for Traceability Managing in System Specifications	Manel Mezghani Juyeon Kang Eun-Bee Kang Florence Sedes	Researcher	2019	International Requirements Engineering Conference (RE Conference)	Conference
S11	Combining Machine Learning and Logical Reasoning to Improve Requirements Traceability Recovery	Tong Li Shiheng Wang David Lillis Zhen Yang	Researcher	2020	Applied Sciences (APPS)	Journal
S12	Detecting, classifying, and tracing non-functional software requirements	Anas Mahmoud Grant Williams	Researcher	2016	Requirements Engineering (RE)	Journal
S13	Enhancing Automated Requirements Traceability by Resolving Polysemy	Wentao Wang Nan Niu Hui Liu Zhendong Niu	Researcher	2018	International Requirements Engineering Conference (RE Conference)	Conference
S14	A Machine Learning Approach for Determining the Validity of Traceability Links	Chris Mills Sonia Haiduc	Researcher	2017	International Conference on Software Engineering (ICSE)	Conference
S15	Enhancing Unsupervised Requirements Traceability with Sequential Semantics	Lei Chen Dandan Wang Junjie Wang Qing Wang	Researcher	2019	Asia-Pacific Software Engineering Conference (APSEC)	Conference
S16	Estimating the number of remaining links in traceability recovery	Davide Falessi Massimiliano Di Penta Gerardo Canfora Giovanni Cantone	Researcher	2017	Empirical Software Engineering (ESE)	Journal
S17	Evaluation of Textual Similarity Techniques in Code Level Traceability	Viktor Csuvik Andras Kicsi Laszlo Vidacs	Student	2019	International Conference on Computational Science and Its Applications (ICCSA)	Conference
\$18	Improving the effectiveness of traceability link recovery using hierarchical bayesian networks	Kevin Moran David N. Palacio Carlos Bernal-Cardenas Daniel McCrystal Denys Poshyvanyk Chris Shenefiel Jeff Johnson	Practitioner	2020	International Conference on Software Engineering (ICSE)	Conference
S19	Improving trace accuracy through data-driven configuration and composition of tracing features	Sugandha Lohar Sorawit Amornborvornwong Andrea Zisman Jane Cleland-Huang	Student	2013	European Software Engineering Conference (ESEC)	Conference
S20	Information retrieval versus deep learning approaches for generating traceability links in bilingual projects	Jinfeng Lin Yalin Liu Jane Cleland-Huang	Researcher	2022	Empirical Software Engineering (ESE)	Journal

\$21	Issue Link Label Recovery and Prediction for Open Source Software	Alexander Nicholson Jin L.C. Guo	Student	2021	International Requirements Engineering Conference (RE Conference)	Conference Workshop
S22	Large Scale Evaluation of Natural Language Processing Based Test-to-Code Traceability Approaches	Andras Kicsi Viktor Csuvik Laszlo Vidacs	Researcher	2021	IEEE Access (IEEE ACCESS)	Journal
S23	Leveraging Historical Associations between Requirements and Source Code to Identify Impacted Classes	Davide Falessi Justin Roll Jin L.C. Guo Jane Cleland-Huang	Researcher	2020	IEEE Transactions on Software Engineering (IEEE T SOFTWARE ENG)	Journal
S24	On the effect of incompleteness to check requirement-to-method traces	Mouna Hammoudi Christoph Mayr-Dorn Atif Mashkoor Alexander Egyed	Researcher	2021	ACM Symposium On Applied Computing (SAC)	Conference
\$25	On the relationship between similar requirements and similar software	Muhammad Abbas Alessio Ferrari Anas Shatnawi Eduard Enoiu Mehrdad Saadatmand Daniel Sundmark	Practitioner	2022	Requirements Engineering (RE)	Journal
S26	Tracing with Less Data: Active Learning for Classification-Based Traceability Link Recovery	Chris Mills Javier Escobar-Avila Aditya Bhattacharya Grigoriy Kondyukov Shayok Chakraborty Sonia Haiduc	Researcher	2019	International Conference on Software Maintenance and Evolution (ICSME)	Conference
S27	Semantically Enhanced Software Traceability Using Deep Learning Techniques	Jin L.C. Guo Jinghui Cheng Jane Cleland-Huang	Student	2017	International Conference on Software Engineering (ICSE)	Conference
S28	Semi-Automated Feature Traceability with Embedded Annotations	Hadil Abukwaik Andreas Burger Berima Kweku Andam Thorsten Berger	Researcher	2018	International Conference on Software Maintenance and Evolution (ICSME)	Conference
S29	Source Code Level Word Embeddings in Aiding Semantic Test-to-Code Traceability	Viktor Csuvik Andras Kicsi Laszlo Vidacs	Student	2019	ICSE Workshop on Software and Systems Traceability (SST)	Conference Workshop
S30	Tackling the term-mismatch problem in automated trace retrieval	Jin L.C. Guo Marek Gibiec Jane Cleland-Huang	Student	2017	Empirical Software Engineering (ESE)	Journal
S31	TCTracer: Establishing test-to-code traceability links using dynamic and static techniques	Robert White Jens Krinke	Practitioner	2022	Empirical Software Engineering (ESE)	Journal
S32	Toward accurate link between code and software documentation	Yingkui Cao Yanzhen Zou	Researcher	2018	Science China Information Sciences	Journal

		Yuxiang Luo			(SCIS)	
		Bing Xie				
		Junfeng Zhao				
					ICSE Workshop on	
		Patrick Rempel			Traceability in	0 (
S33	Towards feature-aware retrieval of refinement	Patrick Mader	Student	2013	Emerging Forms of	Conference
	traces	Tobias Kuschke			Software	Workshop
					Engineering (TEFSE)	
		Jinfeng Lin			International	
	Traceability Transformed_ Generating more	Yalin Liu			Conference on	Conference
S34	Accurate Links with Pre-Trained BERT Models	Qingkai Zeng	Researcher	2021	Software	
	Accurate Links with Pre- Hamed BERT Models	Meng Jiang			Engineering (ICSE)	
		Jane Cleland-Huang			Lingineering (ICSL)	
					International	
	Towards the automatic classification of traceability links	Chris Mills	Researcher	2017	Conference on	
S35					Automated Software	Conference
					Engineering (ASE	
					Conference)	
					International Journal	
S36	Tracing Requirements as a Problem of Machine Learning	Zeheng Li	Student 20	2018	of Software	Journal
		LiGuo Huang			Engineering &	
					Applications (IJSEA)	
		Michael Rath			International	
	Traceability in the wild: automatically augmenting	Jacob Rendall			Conference on	
S37	incomplete trace links	Jin L.C. Guo	Researcher	2018	Software	Conference
		Jane Cleland-Huang			Engineering (ICSE)	
		Patrick Mader			3 ()	
	Traceability Link Recovery between Requirements	Ana C. Marcen				
S38	and Models using an Evolutionary Algorithm	Raul Lapena	Researcher	ner 2020	Journal of Systems and Software (JSS)	Journal
	Guided by a Learning to Rank Algorithm: Train	Oscar Pastor				
	control and management case	Carlos Cetina				

1.2 Extracted Data for RQ2

Index	Title	ML Models	Stage
S1	An extended knowledge representation learning approach for context-based traceability link recovery	Decision Tree (DT) GBDT Naive Bayes (NB) SVM	link generation stage
S2	An Improved Approach to Traceability Recovery Based on Word Embeddings	Word2vec (learned) Ranking SVM	preprocessing stage link generation stage
S3	An information theoretic approach for extracting and tracing non-functional requirements	Hierarchical Agglomerative Clustering (HAC)	preprocessing stage
S4	Application of reinforcement learning to requirements engineering requirements tracing	Reinforcement Learning	link generation stage
S 5	ATLaS: A Framework for Traceability Links Recovery Combining Information Retrieval	Word2vec (pre-trained) GloVe (pre-trained)	preprocessing stage link generation stage

	and Semi-Supervised Techniques	Label spreading (Semi-supervised	
		Learning)	
S6	Traceability recovery between bug reports and test cases-a Mozilla Firefox case study	GloVe (pre-trained)	preprocessing stage
S7	Automatic traceability link recovery via active learning	Active Learning (Semi-supervised Learning)	link generation stage
\$8	Automatic Traceability Maintenance via Machine Learning Classification	K nearest neighbors (KNN) Naive Bayes (NB) Logistic Regression (LR) SVM Random Forest (RF)	link generation stage
S9	Automating traceability link recovery through classification	Decision Tree (DT) Random Forest (RF) K nearest neighbors (KNN) Naive Bayes (NB)	link generation stage
\$10	Clustering for Traceability Managing in System Specifications	K-means	link generation stage
\$11	Combining Machine Learning and Logical Reasoning to Improve Requirements Traceability Recovery	Doc2vec (learned) Decision Tree (DT) K nearest neighbors (KNN) Random Forest (RF) GBDT	preprocessing stage link generation stage
S12	Detecting, classifying, and tracing non- functional software requirements	Hierarchical Agglomerative Clustering (HAC) K-medoids	preprocessing stage
S13	Enhancing Automated Requirements Traceability by Resolving Polysemy	FNN Word2vec (learned)	preprocessing stage
S14	A Machine Learning Approach for Determining the Validity of Traceability Links	Random Forest (RF)	link generation stage
S15	Enhancing Unsupervised Requirements Traceability with Sequential Semantics	Word2vec (learned) Doc2vec (learned)	preprocessing stage
\$16	Estimating the number of remaining links in traceability recovery	Decision Tree (DT) Bagging K nearest neighbors (KNN) Logit Boost Naive Bayes (NB)	link generation stage
\$17	Evaluation of Textual Similarity Techniques in Code Level Traceability	Doc2vec (learned)	preprocessing stage
\$18	Improving the effectiveness of traceability link recovery using hierarchical bayesian networks	Hierarchical Bayesian Network (HBN)	link generation stage
\$19	Improving trace accuracy through data- driven configuration and composition of tracing features	Genetic Algorithm (GA)	link generation stage
S20	Information retrieval versus deep learning approaches for generating traceability links in bilingual projects	Word2vec (pre-trained) FastText (pre-trained) BERT (pre-trained)	preprocessing stage
S21	Issue Link Label Recovery and Prediction for	FastText (pre-trained)	preprocessing stage

	Open Source Software	Logistic Regression (LR)	link generation stage
		Random Forest (RF)	
		Neural Network (NN)	
		ZeroR	
	Large Scale Evaluation of Natural Language		
S22	Processing Based Test-to-Code Traceability	Doc2vec (learned)	preprocessing stage
	Approaches		
		Decision Tree (DT)	
	Leveraging Historical Associations between	Random Forest (RF)	
S23	Requirements and Source Code to Identify	Logistic Regression (LR)	link generation stage
	Impacted Classes	Naive Bayes (NB)	
		Bagging	
		Decision Tree (DT)	
	On the effect of incompleteness to check	Random Forest (RF)	
S24	requirement-to-method traces	Naive Bayes (NB)	link generation stage
	·	K nearest neighbors (KNN)	
		Doc2vec (pre-trained)	
		FastText (pre-trained)	
S25	On the relationship between similar	BERT (pre-trained)	preprocessing stage
323	requirements and similar software	Universal Sentence Encoder (USE)	preprocessing stage
	Tassian with Lass Data Astina Lassains for	(pre-trained)	
000	Tracing with Less Data: Active Learning for	Active Learning (Semi-supervised	P. I
S26	Classification-Based Traceability Link	Learning)	link generation stage
	Recovery	Random Forest (RF)	
		Word2vec (learned)	
		RNN (learned)	
S27	Semantically Enhanced Software Traceability	LSTM (learned)	preprocessing stage
	Using Deep Learning Techniques	Bi-LSTM (learned)	
		GRU (learned)	
		Bi-GRU (learned)	
	Semi-Automated Feature Traceability with	SVM	
S28	Embedded Annotations	K nearest neighbors (KNN)	link generation stage
	Embedded Amotations	Decision Tree (DT)	
S29	Source Code Level Word Embeddings in	Doc2vec (learned)	preprocessing stage
323	Aiding Semantic Test-to-Code Traceability	DOGENCO (ICAITICA)	proprocessing stage
S30	Tackling the term-mismatch problem in	Decision Tree (DT)	link generation stage
330	automated trace retrieval	Naive Bayes (NB)	IIIIV Actici atioti 2faAc
	TCTracer: Establishing test-to-code		
S31	traceability links using dynamic and static	FNN	link generation stage
	techniques		
	Toward accurate link between code and	Word2vec (learned)	preprocessing stage
S32	software documentation	GBDT	link generation stage
	Towards feature-aware retrieval of	0	
S33	refinement traces	Graph Clustering	link refinement stage
	Traceability Transformed_ Generating more	BERT (pre-trained)	
S34	Accurate Links with Pre-Trained BERT	LSTM	preprocessing stage
	Models	Bi-GRU	link generation stage
S35	Towards the automatic classification of	Decision Tree (DT)	link generation stage
333	Towards the automatic dassification of	Decision free (D1)	min generation stage

	traceability links	Random Forest (RF)	
		K nearest neighbors (KNN)	
		Naive Bayes (NB)	
S36	Tracing Requirements as a Problem of	SVM	link generation stage
330	Machine Learning	Single-link clustering	preprocessing stage
	Traceability in the wild: automatically	Naive Bayes (NB)	
S37		Decision Tree (DT)	link generation stage
	augmenting incomplete trace links	Random Forest (RF)	
\$38	Traceability Link Recovery between Requirements and Models using an Evolutionary Algorithm Guided by a Learning to Rank Algorithm: Train control and management case	Genetic Algorithm (GA) FNN RNN RankBoost	link generation stage

1.3 Extracted Data for RQ3

Index	Source Artifact (number)	Target Artifact (number)	Datasets (true link number)	Evidence Level
S1	Use Case	Code	eTour	Level 1: Evaluation conducted in
31	Ose Case	Code	eroui	academic context (0.6)
	High-level requirement	Low-level requirement	CM1-NASA	
	Use case	Code	GANNT	Level 1: Evaluation conducted in
S2	Use case	Interaction Diagrams	eTOUR	academic context (0.6)
	Use case	Test Case	iTrust	addadiiiid dairidae (d.d)
			EasyClinic	
			SmartTrip *	Level 2: Evaluation conducted in
S3	Requirement	Code	SafeDrink *	industry context (1.0)
			BlueWallet *	, , ,
S4	Requirement	Use case	Pine	Level 1: Evaluation conducted in
	Requirement	Design	CM1SUB	academic context (0.6)
S5	High-level requirements	Design	ARC-IT	Level 2: Evaluation conducted in
				industry context (1.0)
S6	Bug Report	Test Case	Mozilla Firefox	Level 1: Evaluation conducted in
				academic context (0.6)
	High-level requirement	Low-level requirement	eAnci	
0.7	Use Case	Code	SMOS	Level 1: Evaluation conducted in
S7	Test Case	Use Case	MODIS	academic context (0.6)
	Test Case	Code	EasyClinic	
	Interaction Diagram	Test Case	eTour	
	High-level requirement	Low-level requirement	eAnci	
	Use Case	Code	SMOS	
60	Test Case Test Case	Use Case Code	MODIS	Level 1: Evaluation conducted in
S8		0000	EasyClinic	academic context (0.6)
	Interaction Diagram	Test Case	eTour	
	Interaction Diagram	Code Use Case	iTrust	
	Interaction Diagram High-level requirement	Low-level requirement	eAnci	
S9	Use Case	Low-level requirement Code	SMOS	Level 1: Evaluation conducted in
38	Test Case	Use Case	EasyClinic	academic context (0.6)
	1631 (436	Use Case	LasyCliffic	

	Test Case	Code	eTour	
	Interaction Diagram	Test Case	iTrust	
	Interaction Diagram	Code	CM-1	
	Interaction Diagra	Use Case		
242			Dataset1 *	Level 1: Evaluation conducted in
S10	Requirement	Requirement	Dataset2 *	academic context (0.6)
			eTour	
			SMOS	Level 1: Evaluation conducted in
S11	Use Case	Code	Albergate	academic context (0.6)
			eAnci	
			SmartTrip *	
S12	Requirement	Code	SafeDrink *	Level 2: Evaluation conducted in
			BlueWallet *	industry context (1.0)
			AIRFLOW	
			ANY23	
			DASHBUILDER	
	Requirement	Requirement	DROOLS	Level 1: Evaluation conducted in
S13	Requirement	Design	IMMUTANT	academic context (0.6)
	Requirement	Design	JBTM	academic context (0.0)
			MODIS	
			CM-1	
			eAnci 	Level 1: Evaluation conducted in
S14	Use Case	Code	eTour	academic context (0.6)
			SMOS	
	Requirement	Requirement	GANNT	
	Use Case	Code	CM1-NASA	Level 1: Evaluation conducted in
S15	Use Case	Test Case	eTour	academic context (0.6)
	Use Case	Interaction Diagram	iTrust	
			EasyClinic	
	Requirement	Requirement		
	Use Case	Code		
	Use Case	Use Case		
	Use Case	Test Case		
	Use Case	Interaction Diagram		
	Test Case	Test Case	Selex SI	Level 2: Evaluation conducted in
S16	Test Case	Code	eTour	industry context (1.0)
	Interaction Diagram	Interaction Diagram	EasyClinic	madsify context (1.0)
	Interaction Diagram	Code		
	Interaction Diagram	Test Case		
	Interaction Diagram	Use Case		
	Code	Code		
	Code	Test Case		
			Commons Lang	
64-	T 0		Commons Math	Level 1: Evaluation conducted in
S17	Test Case	Code	JfreeChart	academic context (0.6)
			MONDRIAN	
	Requirement	Code	Albergate	
S18	Requirement	Test Case	EBT	Level 2: Evaluation conducted in
	Use Case	Code	LibEST	industry context (1.0)
		1		

			o ^T 0	
			eTour SMOS	
			iTrust	
			Industry 1 *	
	Requirement	Design	Industry 2 *	
S19	Requirement	Code	iTrust	Level 2: Evaluation conducted in
	Use Case	Test Case	CCHIT	industry context (1.0)
	Code	Requirement	EasyClinic	
			CM-1	
			Arthas	
			bk-cmdb	
			Canal	
			Druid	
			Emmagee	
			Nacos	
			NCNN	
200	0 %		Pegasus	Level 1: Evaluation conducted in
S20	Commit	Issue	QMUI Android	academic context (0.6)
			QMUI IOS	
			Rax	
			San	
			Weui	
			xLua	
			Konlpy Cica	
			Aws-berline	
			AMBARI	
S21	Issue	Issue	FLEX	Level 1: Evaluation conducted in
321	issue	Issue	HIVE	academic context (0.6)
			ArgoUML	
			Commons Lang	
			Commons Math	
			Gson	Level 1: Evaluation conducted in
S22	Test Case	Code	JfreeChart	academic context (0.6)
			Joda-Time	deddernie context (c.c)
			MONDRIAN	
			PMD	
			Accumulo	
			Ignite	Level 1: Evaluation conducted in
S23	Requirement	Code	Isis	academic context (0.6)
			Tika	(2.27)
			Chess	
			Gantt	Level 2: Evaluation conducted in
S24	Requirement	Code	iTrust	industry context (1.0)
			JHotDraw	
	Requirement	Requirement	A *	Level 2: Evaluation conducted in
S25	Requirement	Code	B*	industry context (1.0)
	High-level requirement	Low-level requirement	eAnci	Level 1: Evaluation conducted in
S26	Use Case	Code	SMOS	academic context (0.6)
	Use Case	Code	SIVIUS	academic context (0.0)

			T	
	Test Case	Use Case	MODIS	
	Test Case	Code	EasyClinic	
	Interaction Diagram	Test Case	eTour	
	Interaction Diagram	Code	iTrust	
	Interaction Diagram	Use Case		
S27	Requirement	Design	PTC	Level 2: Evaluation conducted in
321	Requirement	Design	PIC	industry context (1.0)
S28	Code	Code	Clafer Tools	Level 1: Evaluation conducted in academic context (0.6)
			Commons Lang	
620	Toot Coop	Cada	Commons Math	Level 1: Evaluation conducted in
S29	Test Case	Code	JfreeChart	academic context (0.6)
			MONDRIAN	
			Care2x	
			CCHIT	
			ClearHealth	
			Physician	
			iTrust	Level 1: Evaluation conducted in
S30	Regulatory code	Requirement	1	
	Ç		Trial Implementations	academic context (0.6)
			PatientOS	
			PracticeOne	
			Lauesen	
			WorldVistA	
			Apache Ant	
			Commons IO	
S31	Test Case	Code	Commons Lang	Level 1: Evaluation conducted in
			JfreeChart	academic context (0.6)
			Gson	
				Level 1: Evaluation conducted in
S32	Code	Software documentation	Lucene	academic context (0.6)
	Requirement	Use Case	CM-1	
S33	Use Case	Test Case	EasyClinic	Level 2: Evaluation conducted in
000	Feature	Use Case	Waterloo	industry context (1.0)
	reature	OSC Gasc	CodeSearchNet	
S34	Commit	Issue	Pgcli	Level 1: Evaluation conducted in
			Flask	academic context (0.6)
			Keras	
	Requirement	Requiremen	CM-1	
	Use Case	Code	eAnci	
	Test Case	Code	eTour	Level 1: Evaluation conducted in
S35	Interaction Diagram	Test Case	SMOS	academic context (0.6)
	Interaction Diagram	Use Case		academic context (0.0)
	Test Case	Use Case	iTrust	
	Interaction Diagram	Code	EasyClinic	
				Level 1: Evaluation conducted in
S36	Requirement	Use case	Pine	academic context (0.6)
			Maven	Level 1: Evaluation conducted in
S37	Commit	Issue		
			Derby	academic context (0.6)

			Infinispan	
			Groovy	
			Pig	
			Drools	
S38	Daguiramant	Model	CAF	Level 2: Evaluation conducted in
336	Requirement	iviodei	CAF	industry context (1.0)

^{*} present that author uses a pseudonym of the name of dataset for confidentiality agreements

1.4 Extracted Data for RQ4

Index	Title	Measures	Evidence Level
S1	An extended knowledge representation learning approach for context-based traceability link recovery	Precision Recall F-Measure	Level 3: Evidence obtained from academic studies (0.6).
S2	An Improved Approach to Traceability Recovery Based on Word Embeddings	Precision Recall F-Measure MAP MRR Running Time	Level 3: Evidence obtained from academic studies (0.6).
S3	An information theoretic approach for extracting and tracing non-functional requirements	Precision Recall	Level 3: Evidence obtained from academic studies (0.6).
\$4	Application of reinforcement learning to requirements engineering requirements tracing	Precision Recall F-Measure	Level 3: Evidence obtained from academic studies (0.6).
S 5	ATLaS: A Framework for Traceability Links Recovery Combining Information Retrieval and Semi- Supervised Techniques	Precision Recall F-Measure	Level 4: Evidence obtained from industrial studies (0.6).
S6	Traceability recovery between bug reports and test cases-a Mozilla Firefox case study	Recall Precision F-Measure REI	Level 4: Evidence obtained from industrial studies (0.6).
S7	Automatic traceability link recovery via active learning	Precision Recall F-Measure	Level 3: Evidence obtained from academic studies (0.6).
\$8	Automatic Traceability Maintenance via Machine Learning Classification	Precision Recall F-Measure	Level 3: Evidence obtained from academic studies (0.6).
S9	Automating traceability link recovery through classification	Recall (TPR) FPR	Level 3: Evidence obtained from academic studies (0.6).
S10	Clustering for Traceability Managing in System Specifications	Precision	Level 3: Evidence obtained from academic studies (0.6).
\$11	Combining Machine Learning and Logical Reasoning to Improve Requirements Traceability Recovery	Precision Recall F-Measure	Level 3: Evidence obtained from academic studies (0.6).
S12	Detecting, classifying, and tracing non-functional software requirements	Precision Recall	Level 3: Evidence obtained from academic studies (0.6).
S13	Enhancing Automated Requirements Traceability by	Precision	Level 3: Evidence obtained from academic studies (0.6).

	Resolving Polysemy	Recall	
		F-Measure	
S14	Enhancing software model encoding for feature location approaches based on machine learning techniques	TP FP	Level 3: Evidence obtained from academic studies (0.6).
S15	Enhancing Unsupervised Requirements Traceability with Sequential Semantics	Precision Recall F-Measure	Level 3: Evidence obtained from academic studies (0.6).
S16	Estimating the number of remaining links in traceability recovery	MRE MAE	Level 3: Evidence obtained from academic studies (0.6).
\$17	Evaluation of Textual Similarity Techniques in Code Level Traceability	Precision	Level 3: Evidence obtained from academic studies (0.6).
S18	Improving the effectiveness of traceability link recovery using hierarchical bayesian networks	Precision Recall Average Precision (AP)	Level 4: Evidence obtained from industrial studies (0.6).
S19	Improving trace accuracy through data-driven configuration and composition of tracing features	МАР	Level 3: Evidence obtained from academic studies (0.6).
S20	Information retrieval versus deep learning approaches for generating traceability links in bilingual projects	Average Precision (AP) F-Measure	Level 3: Evidence obtained from academic studies (0.6).
S21	Issue Link Label Recovery and Prediction for Open Source Software	F-Measure	Level 4: Evidence obtained from industrial studies (0.6).
S22	Large Scale Evaluation of Natural Language Processing Based Test-to-Code Traceability Approaches	Precision	Level 3: Evidence obtained from academic studies (0.6).
S23	Leveraging Historical Associations between Requirements and Source Code to Identify Impacted Classes	Precision Recall F-Measure	Level 3: Evidence obtained from academic studies (0.6).
S24	On the effect of incompleteness to check requirement-to-method traces	Precision Recall F-Measure	Level 4: Evidence obtained from industrial studies (0.6).
S25	On the relationship between similar requirements and similar software	None	Level 3: Evidence obtained from academic studies (0.6).
S26	Tracing with Less Data: Active Learning for Classification-Based Traceability Link Recovery	F-Measure	Level 3: Evidence obtained from academic studies (0.6).
S27	Semantically Enhanced Software Traceability Using Deep Learning Techniques	Precision Recall MAP	Level 3: Evidence obtained from academic studies (0.6).
S28	Semi-Automated Feature Traceability with Embedded Annotations	Precision Recall F-Measure	Level 4: Evidence obtained from industrial studies (0.6).
S29	Source Code Level Word Embeddings in Aiding Semantic Test-to-Code Traceability	Precision	Level 3: Evidence obtained from academic studies (0.6).
\$30	Tackling the term-mismatch problem in automated trace retrieval	Precision Recall F-Measure MAP	Level 3: Evidence obtained from academic studies (0.6).
S31	TCTracer: Establishing test-to-code traceability links	Precision	Level 3: Evidence obtained from academic studies (0.6).

	using dynamic and static techniques	Recall	
		F-Measure	
		MAP	
		AUC	
		Precision	
S32	Toward accurate link between code and software	Recall	Level 3: Evidence obtained from academic studies (0.6).
332	documentation	F-Measure	Level 3. Evidence obtained from academic studies (0.0).
		TNR	
		Precision	
S33	Towards feature-aware retrieval of refinement traces	Recall	Level 4: Evidence obtained from industrial studies (0.6).
		Average Precision (AP)	
		F-Measure	
	Traceability Transformed: Generating more Accurate	MAP	
S34	Links with Pre-Trained BERT Models	MRR	Level 3: Evidence obtained from academic studies (0.6).
	LINAS WITH THE TRAINED BENT MODELS	Precision	
		Running Time	
S35	Towards the automatic classification of traceability	Recall	Level 3: Evidence obtained from academic studies (0.6).
333	links	FPR	Level 3. Evidence obtained from academic studies (0.0).
	Tracing Requirements as a Problem of Machine	Recall	
S36	Learning	Precision	Level 3: Evidence obtained from academic studies (0.6).
	Learning	F-Measure	
	Traceability in the wild: automatically augmenting	Precision	
S37	incomplete trace links	Recall	Level 3: Evidence obtained from academic studies (0.6).
	moonipiete trace mino	F-Measure	
	Traceability Link Recovery between Requirements and	Recall	
	Models using an Evolutionary Algorithm Guided by a	Precision	
S38	Learning to Rank Algorithm: Train control and	F-Measure	Level 4: Evidence obtained from industrial studies (0.6).
	management case	Matthews Correlation	
	munugement ease	Coefficient	

1.5 Extracted Data for RQ5

		Me	thod		ı	Data		Experiment					Score		
Index\ Factors	Problem		Research questions	Pseudo code	Dataset partitioning	Dataset source	Results	Hypothesi s and Prediction	Source code	Hardware specificati ons			D1	D2	D3
S1	0	1	1	0	1	1	1	0	1	0	1	1	0.5	1	0.6
S2	1	1	0	0	1	1	0	1	0	1	0	1	0.5	0.66	0.6
S3	1	1	1	0	0	0	0	0	0	0	0	0	0.75	0	0
S4	0	1	0	1	1	0	0	1	0	0	0	1	0.5	0.33	0.4
S5	1	1	1	0	1	1	0	0	0	1	1	0	0.75	0.66	0.4
S6	1	1	1	0	0	1	1	0	1	1	1	1	0.75	1	0.8
S7	0	0	1	1	1	0	0	1	0	0	0	1	0.5	0.33	0.4
S8	1	1	1	0	1	1	1	0	0	0	0	1	0.75	1	0.2
S9	0	0	0	0	1	0	0	0	0	0	1	1	0	0.33	0.4
S10	1	0	0	0	0	0	0	0	0	0	0	1	0.25	0	0.2
S11	1	1	1	0	0	0	0	0	0	0	0	1	0.75	0	0.2

S12	0	1	1	0	0	0	0	0	0	0	1	1	0.5	0	0.4
S13	1		0	0	0	0	0	0	0	0	1	1	0.5	0	0.4
-		1			_		-								
S14	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0.2
S15	1	1	1	0	0	1	0	0	0	0	1	1	0.75	0.5	0.4
S16	1	0	1	1	1	1	0	1	1	0	1	1	0.75	0.66	0.8
S17	0	1	1	0	0	1	0	0	0	0	1	0	0.5	0.5	0.2
S18	1	1	1	0	0	1	0	0	1	0	1	1	0.75	0.33	0.6
S19	1	1	1	0	0	0	0	1	0	0	0	1	0.75	0	0.4
S20	1	1	1	0	1	1	0	0	1	0	1	1	0.75	0.66	0.6
S21	1	1	1	0	1	1	0	0	0	0	1	1	0.75	0.66	0.4
S22	1	1	1	0	0	0	0	0	0	0	1	1	0.75	0	0.4
S23	0	1	1	0	1	0	0	0	0	0	0	1	0.5	0.33	0.2
S24	1	1	1	0	1	1	0	0	1	0	1	0	0.75	0.66	0.4
S25	1	1	1	0	0	1	0	0	1	0	1	1	0.75	0.5	0.6
S26	1	0	1	0	1	1	1	0	1	0	1	1	0.5	1	0.6
S27	1	1	1	0	1	0	0	0	1	0	1	1	0.75	0.33	0.6
S28	1	1	1	0	1	0	0	0	0	0	0	0	0.75	0.33	0
S29	1	1	1	0	0	1	0	0	0	0	1	1	0.75	0.5	0.4
S30	1	1	0	0	1	1	0	1	0	0	0	1	0.5	0.66	0.4
S31	1	1	1	0	1	1	0	0	1	0	1	1	0.75	0.66	0.6
S32	1	1	1	0	1	0	0	0	0	0	0	1	0.75	0.33	0.2
S33	1	1	0	0	0	1	0	1	0	0	0	1	0.5	0.5	0.4
S34	1	1	1	0	1	1	0	0	1	1	1	1	0.75	0.66	0.8
S35	1	0	0	0	0	0	0	0	0	0	1	0	0.25	0	0.2
S36	1	1	0	0	1	0	0	0	0	0	0	1	0.5	0.33	0.2
S37	1	1	1	0	1	0	0	0	0	0	0	1	0.75	0.33	0.2
S38	1	1	0	0	1	1	0	1	1	0	1	0	0.5	0.66	0.6
Num of True	30	31	27	3	22	20	4	8	12	4	23	30			

1.6 The information of Datasets and the studied papers which used the datasets

Dataset Name	Source Artifacts (Number)	Target Artifacts (Number)	True link	Scale (Total)	Source Link	Freq	Primary researches
	Use Case (58)	Code (116)	336	(174)			[S1] [S2] [S7] [S8] [S9]
	Use Case (58)	Code (116)	308	(174)			[S11] [S14] [S15]
eTour	Use Case (58)	Code (116)	385	(174)	http://www.coest.org/	12	
	Use Case (58)	Code (116)	366	(174)			[S16] [S18] [S26] [S35]
	Use Case (Unclear)	Code (Unclear)	365	Unclear			[333]
	Use Case (30)	Code (47)	93	(77)		10	[\$2] [\$7] [\$8] [\$9] [\$15] [\$16] [\$19] [\$33] [\$35] [\$26]
	Use Case (30)	Test Case (63)	63	(93)			
	Use Case (30)	Test Case (47)	63	(77)			
EasyClinic	Use Case (30)	Interaction Diagram (20)	26	(50)	http://www.coest.org/		
	Use Case (30)	Use Case (30)	53	(60)			
	Test Case (63)	Test Case (63)	578	(126)			
	Test Case (63)	Code (47)	204	(110)			

	Toot Coop (Unalear)	Heo Coso (Heology)	60	Unalcar			
	Test Case (Unclear)	Use Case (Unclear)	63	Unclear			
	Interaction Diagram	Use Case (30)	26	(50)			
	(20)						
	Interaction Diagram	Test Case (63)	83	(83)			
	(20)						
	Interaction Diagram	Code (47)	69	(67)			
	(20)						
	Interaction Diagram	Interaction Diagram	59	(40)			
	(20)	(20)		(0.1)			
	Code (47)	Code (47)	69	(94)			
	Code (47)	Test Case (63)	202	(110)			
	Use Case (131)	Code (367)	534	(498)			
_	Requirement (131)	Code (367)	399	(498)			[S2] [S8] [S9] [S15]
iTrust	Requirement (131)	Code (332)	535	(463)	http://www.coest.org/	10	[S18] [S19] [S24]
	Requirement (34)	Code (4913)	307	(4947)			[S26] [S35] [S30]
	Use Case (Unclear)	Code (Unclear)	58	Unclear			
	Use Case (67)	Code (100)	1045	(167)			[S7] [S8] [S9] [S11]
SMOS	Use Case (67)	Code (100)	1044	(167)	http://www.coest.org/	8	[\$14] [\$18] [\$35] [\$26]
	High-level requirement	Low-level design	Unclear	(455)			
	(235)	document (220)	Officieal	(455)			
	High-level requirement	Low-level requirement	45	(75)			[S2] [S4] [S9] [S13]
CM-1	(22)	(53)	45	(75)	http://www.coest.org/	8	[S15] [S19] [S33]
	Requirement (22)	Design (46)	46	(68)			[S35]
	Requirement (22)	Design (53)	45	(75)			
	Requirement (Unclear)	Use Case (Unclear)	Unclear	Unclear			
	Use Case (140)	Code (55)	567	(195)		_	[S7] [S8] [S9] [S11]
eAnci	Use Case (Unclear)	Code (Unclear)	554	Unclear	http://www.coest.org/	7	[S14] [S35] [S26]
Commons	Test Case (2473)	Code (596)	Unclear	(3069)	https://github.com/apache		[S17] [S22] [S29]
Lang	Test Case (3061)	Code (3111)	163	(6172)	/commons-lang	4	[S31]
36 01	Test Case (2239)	Code (953)	Unclear	(3192)	https://github.com/jfree/jfr		[S17] [S22] [S29]
JfreeChart	Test Case (2244)	Code (9053)	432	(11297)	eechart	4	[S31]
14050	High-level requirement	Low-level requirement	4.4	(00)	http://promise.site.uottawa.		[07] [00] [040] [006
MODIS	(19)	(49)	41	(68)	ca/SERepository	4	[S7] [S8] [S13] [S26]
MONDRIAN	Test Case (1546)	Code (1626)	Unclear	(3172)	https://github.com/pentah	3	[S17] [S22] [S29]
Commons					https://github.com/apache		
Math	Test Case (3493)	Code (2033)	Unclear	(5526)	/commons-math	3	[S17] [S22] [S29]
	Use Case (17)	Code (55)	54	(72)			
Albergate	Requirement (55)	Code (17)	53	(72)	http://www.coest.org/	2	[S11] [S18]
	Test Case (924)	Code (757)	Unclear	(1681)	https://github.com/google		
Gson	Test Case (1006)	Code (635)	55	(1641)	/gson	2	[S22] [S31]
GANNT	High-level requirement	Low-level requirement	68	(86)	http://www.coest.org/	2	[S15] [S2]
	(17)	(69)		/a			
CCHIT	Code (453)	Requirement (958)	534	(1411)	http://www.coest.org/	2	[S19] [S30]
	Requirement (Unclear)	Requirement (Unclear)	1046	Unclear	_		
EBT	Requirement (40)	Test Case (25)	51	(65)	http://www.coest.org/	1	[S18]
	Requirement (40)	Code (50)	98	(90)	_		

			ı	1	T	, ,	
LibEST	Requirement (59)	Code (11)	204	(70)	http://sarec.nd.edu/coest/d	1	[S18]
	Requirement (59)	Test Case (18)	352	(77)	atasets.html		. ,
Selex SI	Requirement (Unclear)	Requirement (Unclear)	138	(2500)	http://www.finmeccanica.c om/en/home	1	[\$16]
AMBARI	Issue (Unclear)	Issue (Unclear)	942	(1512)	http://ambari.apache.org	1	[S21]
FLEX	Issue (Unclear)	Issue (Unclear)	247	(362)	http://flex.apache.org	1	[S21]
HIVE	Issue (Unclear)	Issue (Unclear)	5811	(6730)	http://hive.apache.org	1	[S21]
Chess	Requirement (8)	Code (752)	563	(760)	https://github.com/warpwe /java-chess	1	[S24]
Gantt	Requirement (18)	Code (5013)	343	(5031)	https://sourceforge.net/pro jects/ganttproject	1	[S24]
JHotDraw	Requirement (21)	Code (6520)	439	(6541)	https://sourceforge.net/pro jects/jhotdraw	1	[S24]
CodeSearch Net	Commit (Unclear)	Issue (Unclear)	Unclear	Unclear	https://github.com/github/ CodeSearchNet	1	[S34]
Pgcli	Commit (531)	Issue (522)	530	(1053)	https://zenodo.org/record/	1	[S34]
Flask	Commit (752)	Issue (739)	753	(1491)	4511291#.YB3tjyj0mbg	1	[S34]
Keras	Commit (551)	Issue (550)	51	(1101)	TOTIZOT#.1 DOGJYJUTIDG	1	[S34]
ARC-IT	Requirement (2395)	System Functions (802)	2395	(3197)	https://local.iteris.com/arc- it/index.html	1	[S5]
Commons IO	Test Case (994)	Code (1246)	97	(2240)	https://commons.apache.o rg/proper/commons-io/	1	[\$31]
Apache Ant	Test Case (1830)	Code (10477)	79	(12307)	https://ant.apache.org/	1	[S31]
Mozilla Firefox	Bug Report (34)	Test Case (113)	514	(147)	https:// github.com/ guilhermemg/trace-	1	[S6]
FILETOX					links-tc-br		
Arthas	Commit (122)	Issue (167)	167	(289)		1	[S20]
bk-cmdb	Commit (895)	Issue (1178)	1179	(2073)		1	[S20]
Canal	Commit (232)	Issue (273)	273	(505)		1	[S20]
Druid	Commit (1092)	Issue (1161)	1161	(2253)		1	[S20]
Emmagee	Commit (31)	Issue (32)	32	(63)		1	[S20]
Nacos	Commit (132)	Issue (161)	161	(293)		1	[S20]
NCNN	Commit (97)	Issue (99)	99	(196)		1	[S20]
Pegasus	Commit (160)	Issue (160)	160	(320)		1	[S20]
QMUI Android	Commit (70)	Issue (71)	71	(141)	https://doi.org/10.5281/ze nodo.3713256	1	[S20]
QMUI IOS	Commit (32)	Issue (35)	35	(67)		1	[S20]
Rax	Commit (560)	Issue (571)	571	(1131)		1	[S20]
San	Commit (186)	Issue (275)	275	(461)		1	[S20]
Weui	Commit (154)	Issue (159)	159	(313)		1	[S20]
xLua	Commit (52)	Issue (52)	52	(104)		1	[S20]
Konlpy	Commit (32)	Issue (33)	33	(65)		1	[S20]
Cica	Commit (25)	Issue (27)	27	(52)		1	[S20]
Aws-berline	Commit (74)	Issue (74)	74	(148)		1	[S20]
DASHBUILDE R	Requirement (Unclear)	Requirement (Unclear)	Unclear	(85)	https://issues.jboss.org/bro wse/DASHBUILDE	1	[S13]
Maven	Commit (8205)	Issue (4728)	Unclear	(12933)	https://issues.apache.org/ji ra/browse/MNG	1	[\$37]

	T	T	1	1	T	1	
Derby	Commit (4468)	Issue (3608)	Unclear	(8076)	https://issues.apache.org/ji ra/browse/DERBY	1	[S37]
Groovy	Commit (1754)	Issue (2709)	Unclear	(4463)	https://issues.apache.org/ji ra/browse/GROOVY	1	[\$37]
JBTM	Requirement (Unclear)	Requirement (Unclear)	Unclear	(1575)	https://issues. jboss.org/browse/JBTM	1	[\$13]
Accumulo	Requirement (145)	Code (593)	3412	(738)	http://isis.apache.org	1	[S23]
Ignite	Requirement (41)	Code (668)	15569	(709)	https://ignite.apache.org/	1	[S23]
Isis	Requirement (252)	Code (2424)	11850	(2676)	http://isis.apache.org	1	[S23]
Tika	Requirement (49)	Code (72)	248	(121)	http://tika.apache.org	1	[S23]
Care2x	Requirement (Unclear)	Requirement (Unclear)	44	Unclear	http://www.care2x.org	1	[S30]
ClearHealth	Requirement (Unclear)	Requirement (Unclear)	44	Unclear	e http://www.clear- health.com	1	[\$30]
Physician	Requirement (Unclear)	Requirement (Unclear)	147	Unclear	hmss.org/content/files/CTC _use_Case.pdf	1	[\$30]
Trial Implementati ons	Requirement (Unclear)	Requirement (Unclear)	100	Unclear	http://healthit.hhs.gov	1	[\$30]
PatientOS	Requirement (Unclear)	Requirement (Unclear)	90	Unclear	http://www.patientos.org	1	[S30]
PracticeOne	Requirement (Unclear)	Requirement (Unclear)	34	Unclear	http://www.practiceone.co m	1	[S30]
WorldVistA	Requirement (Unclear)	Requirement (Unclear)	66	Unclear	http:/worldvista.org	1	[S30]
ċ	Requirement (49)	Use case (51)	250	(100)			[0.4] [0.00]
Pine	Requirement (49)	Use case (51)	246	(100)		2	[S4] [S36]
SafeDrink *	Functional requirement (170)	Code (173)	Unclear	(343)		2	[S3] [S12]
SmartTrip *	Functional requirement (214)	Code (266)	Unclear	(480)		2	[S3] [S12]
BlueWallet *	Functional requirements (184)	Code (374)	Unclear	(558)		2	[S3] [S12]
Drools	Requirement (Unclear)	Requirement (Unclear)	Unclear	(486)		2	[912] [927]
DIOOIS	Commit (3735)	Issue (3992)	Unclear	(7727)		2	[S13] [S37]
Lauesen	Requirement (Unclear)	Requirement (Unclear)	116	Unclear		1	[S30]
Joda-Time	Test Case (3779)	Code (522)	Unclear	(4301)		1	[S22]
PTC	Requirement (1651)	Design (466)	1387	(2117)		1	[S27]
Lucene	Code (5097)	Software documentation (1899)	2137	(6996)		1	[\$32]
A *	Paguiromont (112)	Paguiromont (142)	Unclear	(254)		1	[60E]
B*	Requirement (112)	Requirement (142)	Unclear	(254)		1	[S25]
ArgoUML	Test Case (554)	Code (2404)	Unclear	(2958)		1	[S22]
Industry 1 *	Requirement (442)	Design (3104)	6961	(3546)		1	[S19]
Industry 2 *	Requirement (224)	Design (945)	100	(1169)		1	[S19]
Waterloo	Feature (Unclear)	Use Case (Unclear)	Unclear	Unclear		1	[\$33]
PMD	Test Case (825)	Code (1608)	Unclear	(2433)		1	[S22]
Clafer Tools	Feature annotation (14000)	Code (Unclear)	Unclear	Unclear		1	[S28]
AIRFLOW	Requirement (Unclear)	Requirement (Unclear)	Unclear	(629)		1	[S13]
ANY23	Requirement (Unclear)	Requirement (Unclear)	Unclear	(182)		1	[S13]

Pig	Commit (4839)	Issue (2012)	Unclear	(6851)	1	[S37]
Infinispan	Commit (4778)	Issue (2058)	Unclear	(6836)	1	[S37]
IMMUTANT	Requirement (Unclear)	Requirement (Unclear)	Unclear	(404)	1	[S13]
CAF	Requirement (Unclear)	Model (Unclear)	Unclear	Unclear	1	[S38]
Dataset1 *	Requirement (762)	Requirement (521)	367	(1283)	1	[S10]
Dataset2 *	Requirement (2060)	Requirement (4188)	817	(6248)	1	[S10]

^{*} present that author uses a pseudonym of the name of dataset for confidentiality agreements

2. Search process record

Database	Number of searches	Number of repetitions in each database	Number of each database (After deleting repetitions)	Number of repetitions in all databases	Total number (After deleting repetitions)
ACM	70	1	69		56
Springer	171	0	171		132
Science Direct	133	20	113	227	80
EI	634	38	596	221	457
IEEE	310	67	243		240
Total	1318	126	1192		965

Excute inclusion/exclusion criteria

Database	apply criteria (ISC1-ISC3, ESC1-ESC4)	apply criteria(ISC4-ISC5, ESC5-ESC6) in title, abstract, keywords	apply criteria(ISC4-ISC5, ESC5-ESC6) in full article	Snowballing	final
ACM					
Springer					
Science					
Direct	625	184	35	3	38
EI					
IEEE					
Total					

1.7 Search records

Digital Libraries:

Database	Website
ACM	https://dl.acm.org/
Springer	https://www.springer.com/
Science Direct	https://www.sciencedirect.com/
El	https://www.engineeringvillage.com/
IEEE	https://ieeexplore.ieee.org/

Search terms:

P1	software traceability	I1	machine learning	
P2	software trace	12	ML	
Р3	software tracing	I3 supervised learning		
P4	traceability link recovery	I4 unsupervised learning		
		15	semi-supervised learning	
		16	reinforcement learning	

(1) ACM

	Anywhere
(P1 OR P2 OR P3 OR P4)	
AND	70
(I1 OR I2 OR I3 OR I4 OR I5 OR I6)	

Advanced search:

("software traceability" OR "software trace" OR "software tracing" OR "traceability link recovery") AND ("machine learning" OR "ML" OR "supervised learning" OR "unsupervised learning" OR "semi-supervised learning" OR "reinforcement learning")

Screenshot of search process in ACM:

(2) Spinger

	Keywords+Title+Abstract
(P1 OR P2 OR P3 OR P4) AND	171

(I1 OR I2 OR I3 OR I4 OR I5 OR I6)

Advanced search:

("software traceability" OR "software trace" OR "software tracing" OR "traceability link recovery") AND ("machine learning" OR "ML" OR "supervised learning" OR "unsupervised learning" OR "semi-supervised learning" OR "reinforcement learning")

Screenshot of search process in Springer:

(3) Science Direct

	Title+Abstract+Keywords
(P1 OR P2 OR P3 OR P4) AND (I1)	63
(P1 OR P2 OR P3 OR P4) AND (I2)	57
(P1 OR P2 OR P3 OR P4) AND (I3)	7
(P1 OR P2 OR P3 OR P4) AND (I4)	2
(P1 OR P2 OR P3 OR P4) AND (I5)	1
(P1 OR P2 OR P3 OR P4) AND (I6)	3
Total	133

■ Advanced search((P1 OR P2 OR P3 OR P4) AND (I1)):

(software traceability OR software trace OR software tracing OR traceability link recovery) AND (machine learning)

Screenshot of search process in Scienct Direct:

ScienceDirect	Journals & Books
	Find articles with these terms Year: 2013-2022 × Title, abstract, keywords: (software traceability OR software trace OR software tracing OR traceability link r × State of the software traceability or the software traceability link r ×
63 results	sorted by relevance date
Refine by: Years 2022 (14) 2021 (18)	Research article Traceability Link Recovery between Requirements and Models using an Evolutionary Algorithm Guided by a Learning to Rank Algorithm: Train control and management case Journal of Systems and Software, 15 January 2020, Ana C. Marcén, Raúl Lapeña, Carlos Cetina
☐ 2020 (6) Show more ✓ Article type ⑦	Book chapter Chapter 10: Error Traceability and Error Prediction using Machine Learning Techniques to Improve the Quality of Vehicle Modeling in Computer-Aided Engineering Cognitive Computing for Human-Robot Interaction, 20 August 2021, A. Anny Leema, Krishna Sai Narayana, Subramani Sellamani

■ Advanced search((P1 OR P2 OR P3 OR P4) AND (I2)):

(software traceability OR software trace OR software tracing OR traceability link recovery) AND (ML)

Screenshot of search process in Scienct Direct:

■ Advanced search((P1 OR P2 OR P3 OR P4) AND (I3)):

(software traceability OR software trace OR software tracing OR traceability link recovery) AND (supervised learning)

Screenshot of search process in Scienct Direct:

■ Advanced search((P1 OR P2 OR P3 OR P4) AND (I4)):

(software traceability OR software trace OR software tracing OR traceability link recovery) AND (unsupervised learning)

Screenshot of search process in Scienct Direct:

■ Advanced search((P1 OR P2 OR P3 OR P4) AND (I5)):

(software traceability OR software trace OR software tracing OR traceability link recovery) AND (semi-supervised learning)

Screenshot of search process in Scienct Direct:

■ Advanced search((P1 OR P2 OR P3 OR P4) AND (I6)):

(software traceability OR software trace OR software tracing OR traceability link recovery) AND (reinforcement learning)

Screenshot of search process in Scienct Direct:

(4) EI

	Subject/Title/Abstract
(P1 OR P2 OR P3 OR P4)	
AND	634
(I1 OR I2 OR I3 OR I4 OR I5 OR I6)	

Expert search:

(software traceability OR software trace OR software tracing OR traceability link recovery) AND (machine learning OR ML OR supervised learning OR unsupervised learning OR semi-supervised learning OR reinforcement learning)

Screenshot of search process in EI:

(5) IEEE

	Title	Abstract	Index terms
(P1 OR P2 OR P3 OR P4)			
AND	2	151	157
(I1 OR I2 OR I3 OR I4 OR I5 OR I6)			
Total	Total 310		

Command Search(Title):

("Document Title":software traceability OR "Document Title":software trace OR "Document Title":software tracing OR "Document Title":traceability link recovery) AND ("Document Title":machine learning OR "Document Title":ML OR "Document Title":supervised learning OR "Document Title":semi-supervised learning OR "Document Title":reinforcement learning)

Screenshot of search process in IEEE:

Command Search(Abstract):

("Abstract":software traceability OR "Abstract":software trace OR "Abstract":software tracing OR "Abstract":traceability link recovery) AND ("Abstract":machine learning OR "Abstract":ML OR "Abstract":supervised learning OR "Abstract":unsupervised learning OR "Abstract":semi-supervised learning OR "Abstract":reinforcement learning)

Screenshot of search process in IEEE:

Command Search(Index Terms):

("Index Terms":software traceability OR "Index Terms":software trace OR "Index Terms":software tracing OR "Index Terms":software traceability link recovery) AND ("Index Terms":machine learning OR "Index Terms":ML OR "Index Terms":supervised learning OR "Index Terms":semi-supervised learning OR "Index Terms":reinforcement learning)

Screenshot of search process in IEEE:

