Trabalho prático de Arquitetura de Computadores

Professor Eliseu César Miguel

Ampliação do processador

1. Introdução

Neste trabalho, o objetivo é dar continuidade à implementação do processador multiciclo de 16 bits com instruções de tamanho fixo implementado no trabalho anteriro.

As descrições do processador continuma as mesmas apresentadas na primeira parte do trabalho. Contudo, houve a inclusão de uma instrução dentre as já apresentadas, como mostra a Tabela 01 na seção 2, a seguir:

2. Descrição do processador

O processador a ser implementado sempre executa uma instrução a cada intervalo de 4 ciclos de clock, possui 8 registradores de 16 bits e uma unidade lógica aritmética (ALU) capaz de fazer operações de soma e subtração. Dessa forma, todas as instruções, devem estar prontas na entrada de dados, exatamente ao final dos 4 ciclos de clock necessários para a execução de uma instrução.

As instruções reconhecidas pelo processador, estão descritas na Tabela 1.

Ope	ração)	Código	digo Função realizada			ada		Explicação
rep	Rx,	Ry	111	Rx	←	[Ry]			Rep laces Rx with Ry
ldi	Rx,	#D	101	Rx	←	D			<u>L</u> oa <u>d</u> s <u>i</u> mmediate #D in register Rx
add	Rx,	Ry	000	Rx	+	[Rx]	+	[Ry]	<u>Add</u> s Rx and Ry and stores in Rx
sub	Rx,	Ry	001	Rx	+	[Rx]	-	[Ry]	<u>Sub</u> stracts Rx and Ry and stores the result
									in Rx
nan	Rx,	Ry	010	Rx	+	[Rx]	~&	[Ry]	Rx <u>nan</u> d Ry and stores in Rx
out	Rx		100	[Rx]				Out puts Rx in the Bus
bne	Rx,	#D	110	PC ·	⊢ F	C+D s	se R	$R \times = = 0$	Condictional statement. New PC equal to PC + D if Rx ==0

Tabela 1

3. Adaptações necessárias

Este trabalho consiste em você definir as adaptações necessárias para que o novo processador execute, corretamente, as instruções propostas. Dentre as inovações, no texto de teste de seu código deverá aparecer os elementos de endereçamento, com o código começando pela posição 0.

Faça e documente toda a proposta de organização de seu novo hardware. Como por exemplo, seus endereços no código aparecem em binário, hexadecimal ou decimal?

Um detalhe importante é que foi criada apeans uma instrução de desvio. Como podemos ter desvios para posições posteriores ou anteriores ao PC (*program counter*) atual, a Tabela 3 deverá ser repensada, pelo menos, em relação ao Extensor de sinal. Veja que ele admite número apenas sem sinal. Então, neste caso, o D apenas permitirá desvios para PCs posteriores ao PC atual. O Extensor de sinal deverá permitir números imediatos, a partir de agora, inteiros com sinal.

Módulo	Descrição					
Registradores r0 r7, A, R e IR	Armazenam dos dados da entrada de dados, quando o sinal de enable estiver ativado e o sinal de clock estive na borda de subida.					
Extensor de sinal	Pega a entrada de instruções (DIN) no formato IIIXXXDDDDDDDD e a transforma em 00000DDDDDDDDDD , separando assim o imediato dos valores da instrução.					
Multiplexador	Utiliza os sinais de select para selecionar qual entrada será enviada aos registradores, à ULA e ao Bus.					
ULA	Realiza as operações aritméticas e lógicas do processador.					
Unidade de controle	Seleciona quais sinais devem estar ativos em cada estágio do processador.					
Contador	Determina qual o estágio atual do processador a partir do estímulo da borda de subida do clock.					

Tabela 3: Descrição dos módulos do processador.

Como exemplo, faça um programa que exercute a multiplicação de dois números inteiros.