

Diode

Rapid Switching Emitter Controlled Diode

IDP20E65D2

Emitter Controlled Diode

Data sheet

Industrial Power Control

Rapid Switching Emitter Controlled Diode

Features:

- · Qualified according to JEDEC for target applications
- 650 V Emitter Controlled technology
- Fast recovery
- Soft switching
- Low reverse recovery charge
 Low forward voltage and stable over temperature
 175 °C junction operating temperature
 Easy paralleling

- · Pb-free lead plating; RoHS compliant

Applications:

• Boost diode in CCM PFC

Key Performance and Package Parameters

Туре	V _{rrm}	I f	<i>V</i> _f , <i>T</i> _{∨j} =25°C	T _{vjmax}	Marking	Package
IDP20E65D2	650V	20A	1.6V	175°C	E20ED2	PG-TO220-2-1

Table of Contents

Description	2
Table of Contents	3
Maximum Ratings	4
Thermal Resistance	4
Electrical Characteristics	4
Electrical Characteristics Diagrams	6
Package Drawing	8
Testing Conditions	9
Revision History	0
Disclaimer	O

3

Maximum Ratings

For optimum lifetime and reliability, Infineon recommends operating conditions that do not exceed 80% of the maximum ratings stated in this datasheet.

Parameter	Symbol	Value	Unit
Repetitive peak reverse voltage, <i>T</i> _{vj} ≥ 25°C	V_{RRM}	650	V
Diode forward current, limited by T_{vjmax} $T_C = 25^{\circ}C$ $T_C = 100^{\circ}C$	I _F	40.0 20.0	А
Diode pulsed current, t_p limited by T_{vjmax}	I _{Fpuls}	60.0	Α
Diode surge non repetitive forward current $T_C = 25^{\circ}C$, $t_p = 8.3$ ms, sine halfwave	I FSM	120.0	А
Power dissipation $T_C = 25^{\circ}C$	P _{tot}	120.0	W
Operating junction temperature	T _{vj}	-40+175	°C
Storage temperature	T _{stg}	-55+150	°C
Soldering temperature, wave soldering 1.6 mm (0.063 in.) from case for 10s		260	°C
Mounting torque, M3 screw Maximum of mounting processes: 3	М	0.6	Nm

Thermal Resistance

Parameter	Symbol	Conditions	Max. Value			
Characteristic	1					
Diode thermal resistance, ¹⁾ junction - case	R _{th(j-c)}		1.25	K/W		
Thermal resistance junction - ambient	R _{th(j-a)}		62	K/W		

Electrical Characteristic, at T_{vj} = 25°C, unless otherwise specified

Davamatar.	Cymahal	Canditiana	Value			11:4
Parameter	Symbol	Conditions	min.	typ.	max.	Unit
Static Characteristic			•			
Diode forward voltage	V _F	$I_F = 20.0A$ $T_{vj} = 25^{\circ}C$ $T_{vj} = 175^{\circ}C$		1.60 1.65	2.20	V
Reverse leakage current	I_{R}	$V_{R} = 650V$ $T_{vj} = 25^{\circ}C$ $T_{vj} = 175^{\circ}C$		2.0 500.0	40.0	μA

Electrical Characteristic, at T_{vj} = 25°C, unless otherwise specified

Davamatav	C. mah al	Conditions	Value			11
Parameter	Symbol	Conditions	min.	typ.	max.	Unit
Dynamic Characteristic				•		
Internal emitter inductance measured 5mm (0.197 in.) from case	LE		-	7.0	-	nH

¹⁾ Please be aware that in non standard load conditions, due to high Rth(j-c), Tvj close to Tvjmax can be reached.

Switching Characteristic, Inductive Load

Davamatav	Cymahal	Conditions	Value			Unit
Parameter	Symbol	Conditions	min.	typ.	max.	Unit
Diode Characteristic, at T_{vj} = 25°C						
Diode reverse recovery time	t _{rr}	$T_{\rm vj} = 25^{\circ}{\rm C},$	-	32	-	ns
Diode reverse recovery charge	Qrr	$V_{\rm R} = 400 \text{V},$ $I_{\rm F} = 20.0 \text{A},$	-	0.25	-	μC
Diode peak reverse recovery current	I _{rrm}	/ _F = 20.0A, di _F /dt = 1000A/μs,	-	12.2	-	Α
Diode peak rate of fall of reverse recovery current during t_b	I of reverse di/dt $L\sigma = 30$ nH,		-	-900	-	A/µs
Diode reverse recovery time	t _{rr}	T _{vi} = 25°C,	_	43	_	ns
Diode reverse recovery charge	Qrr	$V_{\rm R} = 400 \text{V},$	-	0.19	-	μC
Diode peak reverse recovery current Irrm		$I_F = 20.0A,$ $di_F/dt = 400A/\mu s,$	-	6.3	-	Α
Diode peak rate of fall of reverse recovery current during t_b	di _{rr} /dt	$L\sigma$ = 30nH, $C\sigma$ = 40pF, switch IKW50N65H5	-	-420	-	A/µs

Switching Characteristic, Inductive Load

Doromotor	Symbol	Conditions	Value		11!4	
Parameter	Symbol	Conditions	min.	typ.	max.	Unit

Diode Characteristic, at T_{vj} = 175°C/125°C

t _{rr}	$T_{\rm vj} = 175^{\circ}{\rm C},$	-	55	-	ns
Diode reverse recovery charge Q _{rr}		-	0.58	-	μC
I rrm	di _F /dt = 1000A/μs,	-	18.0	-	Α
Diode peak rate of fall of reverse recovery current during t_b di_{rr}/dt $C\sigma = 30nH$, $C\sigma = 40pF$, switch IKW50N65H5		-	-650	-	A/µs
				ı	
t _{rr}	$T_{vi} = 125^{\circ}C,$	-	61	-	ns
Q _{rr}	$V_{R} = 400V$,	ı	0.38	-	μC
I rrm	$di_{\rm F}/dt = 400 {\rm A/\mu s},$	-	9.3	-	Α
crate of fall of reverse urrent during t_b di_{rr}/dt $L\sigma = 30 nH$, $C\sigma = 40 pF$, switch IKW50N65H5		-	-500	-	A/µs
	Qrr Irrm dirr/dt trr Qrr Irrm	Q_{rr} $V_{R} = 400V$, $V_{R} = 20.0A$, $I_{F} = 20.0A$, I_{frm} I_{frm} $I_{fr} = 20.0A$, I_{frm} $I_{fr} = 30nH$, $I_{fr} = 40pF$, switch IKW50N65H5 $I_{fr} = 125^{\circ}C$, $I_{fr} = 125^{\circ}C$, $I_{fr} = 20.0A$, $I_{frm} = 125^{\circ}C$,	Q_{rr} $V_{R} = 400V$, $I_{F} = 20.0A$, I_{rrm} $di_{F}/dt = 1000A/\mu s$, $I_{C}\sigma = 30nH$, $I_{C}\sigma = 40pF$, $I_{C}\sigma = 40pF$, $I_{C}\sigma = 400V$, $I_{C}\sigma = 400V$, $I_{C}\sigma = 400V$, $I_{C}\sigma = 20.0A$, I_{rrm} $I_{C}\sigma = 30nH$, $I_{C}\sigma = 30nH$, $I_{C}\sigma = 40pF$,	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Figure 1. Power dissipation as a function of case temperature (*T*_{vj}≤175°C)

Figure 2. Diode transient thermal impedance as a function of pulse width $(D=t_p/T)$

Figure 3. Typical reverse recovery time as a function of diode current slope $(V_R=400V)$ Figure 4. Typical reverse recovery charge as a function of diode current slope $(V_R=400V)$

6

Figure 5. Typical peak reverse recovery current as a function of diode current slope $(V_R=400V)$

Figure 6. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope $(V_R=400V)$

Figure 7. Typical diode forward current as a function of forward voltage as a function of junction temperature

Figure A. Definition of switching times

Figure B. Definition of switching losses

Figure C. Definition of diodes switching characteristics

Figure D. Thermal equivalent circuit

Figure E. Dynamic test circuit Parasitic inductance L_{σ} , Parasitic capacitor C_{σ} , Relief capacitor C_{r} (only for ZVT switching)

Revision History

IDP20E65D2

Revision: 2014-09-18, Rev. 2.1

Previous Revision

1 Teviodo Nevioloti							
Revision	Date	ubjects (major changes since last revision)					
2.1	2014-09-18	Final data sheet					

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 Munich, Germany 81726 München, Germany © 2014 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.