Mathematics 227 Final Review, Part II

1. Consider the matrix

$$A = \left[\begin{array}{rrr} -2 & 1 & 3 \\ 2 & 1 & -1 \\ -4 & 0 & 8 \end{array} \right].$$

Perform (by hand) a sequence of row operations to find a row equivalent matrix that is upper-triangular. Use this to compute det(A).

2. Suppose that A is the 2×2 matrix that describes the reflection in the line y = 2x. Think geometrically to give a description of the eigenvalues and eigenvectors of A.

3. Suppose that A is a square $n \times n$ matrix. If A is invertible, what is the reduced row echelon form of A?

Explain an algorithm to find A^{-1} and why it works.

Apply this algorithm to find
$$A^{-1}$$
 if $A=\begin{bmatrix}1&2&-1\\2&4&-3\\1&-2&0\end{bmatrix}$.

If A is invertible, what can you say about Col(A)?

If A is invertible, what can you say about Nul(A)?

4. What do we mean by a basis of \mathbb{R}^n ?

Verify that

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ 4 \\ -2 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} -1 \\ -3 \\ 0 \end{bmatrix}$$

form a basis \mathcal{B} .

If
$$\mathbf{x} = \begin{bmatrix} -6 \\ 7 \\ 0 \end{bmatrix}$$
, find $\{\mathbf{x}\}_{\mathcal{B}}$.

If
$$\{\mathbf{y}\}_{\mathcal{B}} = \begin{bmatrix} -2\\3\\1 \end{bmatrix}$$
, find \mathbf{y} .

Suppose that A is a 3×3 matrix having eigenvectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 with associated eigenvalues $\lambda_1 = 2$, $\lambda_2 = -3$, and $\lambda_3 = 1$. If $\{\mathbf{x}\}_{\mathcal{B}} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$, find $\{A\mathbf{x}\}_{\mathcal{B}}$.

Find a matrix P such that $P\{\mathbf{x}\}_{\mathcal{B}} = \mathbf{x}$.

Find a matrix D such that $\{A\mathbf{x}\}_{\mathcal{B}} = D\{\mathbf{x}\}_{\mathcal{B}}$.

Find
$$A \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 by first finding $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\}_{\mathcal{B}}$, then $\left\{ A \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\}_{\mathcal{B}}$, and finally $A \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

Explain why $A = PDP^{-1}$.