Definition 1 (Total Variation). $TV[f,T] = \sup_{0 < t_1 < \dots < t_n = T, n \ge 1} \sum_{k=1}^n |f(t_i) - f(t_{i-1})|$

Theorem 1 (TV of of a Brownian Motion). $(X_t)_t BM \Rightarrow TV[X,T] = \infty$ ass

Proof. Eough to show that: $\lim_{n \infty} \sum_{k=1}^{2^n} |X_{Tk2^{-n}} - X_{T(k-1)2^{-n}}| = \infty$

$$\mathbb{P}(\limsup_{n \infty} \sum_{k=1}^{2^{n}} |X_{Tk2^{-n}} - X_{T(k-1)2^{-n}}|) < M) \le \liminf \mathbb{P}(\sum_{k=1}^{2^{n}} \underbrace{|X_{Tk2^{-n}} - X_{T(k-1)2^{-n}}|}_{\mathcal{N}(0,T2^{-n})} < M)$$

$$\le \liminf \mathbb{P}(\frac{1}{2^{n}} \sum_{k=1}^{2^{n}} |\epsilon_{k}| < \frac{M}{\sqrt{T2^{n}}})$$

$$\to 0$$

1 Continuous Time theory

 $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$ filtered probability space. (X_t) continuous time process

Definition 2 (Continuous - Adapted). • X is \mathcal{F}_t -adapted (nonanticipating) if X_t is \mathcal{F}_t -measurable $\forall t$

- X is continuous if $t \to X_t(\omega)$ is continuous $\forall \omega$.
- X is measurable if $(t, \omega) \to X_t(\omega)$ is $\mathcal{B}(\mathbb{R}) \times \mathcal{F}$ -measurable.
- X is progressively measurable if $X : [0,T] \times \Omega \to \mathbb{R}; (t,\omega) \to X_t(\omega)$ is $\mathcal{B}([0,T]) \times \mathcal{F}_t$ -measurable.

Beware: measurable and adapted \Rightarrow progressively measurable. But continuous + adapted \Rightarrow progressively measurable

Definition 3 (Usual conditions). $(\mathcal{F}_t)_t$ is set to satisfy the usual conditions if

a)
$$\forall B \subseteq A \in \mathcal{F} \ P(A) = 0 \implies B \in \mathcal{F}_0 \ (completeness)$$

b)
$$\mathcal{F}_t = \bigcup_{\varepsilon > 0} \mathcal{F}_{t+\varepsilon}$$
 (right-continuity)

Why?

• (a) \Longrightarrow : if (X_t) progressively measurable, B borel set in \mathbb{R} , $\tau = \inf\{t : X_t \in B\}$ is a stopping time.

But if (X_t) is continuous adapated, B closed, τ is always a stopping time. (doesn't need a)).

• X BM, \mathcal{F}_t^0 the natural filtration. $\{t \to X_t \text{ has a local maximum at } t\} \in \mathcal{F}_{t^+}^0$ and not in \mathcal{F}_t^0 . But one can prove $\mathcal{F}_t^0 = \mathcal{F}_{t^+}^0$ a.s (for every set $A \in \mathcal{F}_{t^+}^0$, there exist $B \in \mathcal{F}_t^0$ such that $\mathbb{P}(A \setminus B) = 0$).

 $\mathcal{N} = \{B : B \subseteq A \in \mathcal{F}, \mathbb{P}(A) = 0\}, \ \mathcal{F}_t = \cap_{\varepsilon > 0}(F_t^0 \vee N) \ is \ called \ the standard Brownian filtration, it satisfies usual conditions.$

b) is important if processes have jumps.

2 Continuous Time Martingale

Definition 4 (Martingale). (M_t) is a martingale if

- 1. M is adapted
- 2. $\mathbb{E}[|M_t|] < \infty \forall t$
- 3. $\mathbb{E}[M_t|\mathcal{F}_s] = M_s \forall t \geq s$

Definition 5 (Stopping time). A r.v $\tau: \Omega \to [0, \infty]$ is a stopping time if $\{\tau \leq t\} \in \mathcal{F}_t \forall t$.

Definition 6 (Stopped filtration). $\mathcal{F}_{\tau} = \{A \in \mathcal{F}_{\infty} : A \cup \{\tau \leq t\} \in \mathcal{F}_{t} \ \forall t\}$

Theorem 2 (Optional Stopping). M is a continuous martingale. τ is a stopping time.

Then $(M_{t\wedge\tau})_t$ is a continuous martingale

*Proof*step 1) Suppose $\tau \in \underbrace{\{t_1, t_2, \ldots\}}_{\Pi}$ as. Let's show that for s < t

- (a) $M_{t \wedge \tau}$ is \mathcal{F}_t -measurable
- (b) $\mathbb{E}|M_{t\wedge\tau}|<\infty$
- (c) $\mathbb{E}(M_{t \wedge \tau}|F_s) = M_{s \wedge \tau}$

Without loss of generality let's assume that s < t both in Π . Let $X_n = M_{t_n}$. Then X_n is a discrete time martingale with respect to the filtration $(\mathcal{G}_n = \mathcal{F}_{t_n})_n$.

Step 2) τ any stop time. Introduce discrete step times $\tau_n \downarrow \tau$, take limits. $\Pi_n := \{s, t, \infty, k2^{-n}, k \in \mathbb{Z}\}$ $\tau_n = \inf\{r \in \Pi_n r \geq \tau\}$ (We round up so it stays a stopping time)

Lemma 3. τ_n is a stopping time beacause

$$\{\tau_n \le t\} = \{\tau \le \underbrace{\max\{s \in \Pi_n : s \le t\}}_{\le t}\}$$

So:

- a) $M_{t \wedge \tau} = \lim_n M_{t \wedge \tau_n}$ (because M is continuous) all \mathcal{F}_t -measurable
- b) $\mathbb{E}|M_{t\wedge \tau}| = \mathbb{E}\liminf |M_{t\wedge \tau_n}|\underbrace{\leq}_{\text{fatou}} \liminf \mathbb{E}\underbrace{|M_{t\wedge \tau_n}|}_{\text{(submartingale)}} \leq E|M_t| < \infty$
- c) $\mathbb{E}[M_{\tau_n \wedge t}|\mathcal{F}_s] = M_{\tau_n \wedge s} \ M_{s \wedge \tau_n} \to M_{s \wedge \tau}$ as by continuity. **Claim:** $M_{s \wedge \tau_n} \to M_{s \wedge \tau}$ in L_1 . Recall: $\mathbb{E}[M_s|\mathcal{F}_{s \wedge \tau_n}] = M_{s \wedge \tau_n}$ (matringale in discrete time) $\mathcal{F}_{s \wedge \tau_n} \downarrow$ as $n \to \infty$ so $M_{s \wedge \tau_n}$ is a reverse martingale, and any reverse martingale converges in L_1 . As a result, $\mathbb{E}[M_{t \wedge \tau_n}|\mathcal{F}_s] \to \mathbb{E}[M_{t \wedge \tau}|\mathcal{F}_s]$ in L_1

Theorem 4 (Doob). $(M_t)_t$ continuous mtg. Then

- $\mathbb{P}[\sup_{0 \le t \le T} M_t > x] \le \frac{\mathbb{E}[|M_t|^p]}{x^p}$
- $\|\sup_{0 \le t \le T} M_t\|_p \le \frac{p}{p-1} \|M_T\|_p$

Proof. $\max_{0 \le k \le 2^n} |M_{k2^{-n}T}| \uparrow \max_{0 \le t \le T} |M_t|$ by continuity. Use Doob for discrete mtg + MCN.

Theorem 5 (Mtg conv thm). M_t continuous martingale.

- If L_1 -bounded, then $M_t \to M_{\infty}$ as.
- If M_t are UI, then $M_t \to M_{\infty}$ in L_1 .
- If L^p -bounded, $M_t \to M_\infty$ in L^p
- Proof. $N_T^n(a,b)$ # of up corssings of (a,b) on a grid $\Pi_n = \{\frac{k}{2^n}T, k \leq 2^n\}$ (number of upcrossing of $(M_{t_i})_{t_i \in \Pi_n} \mathbb{E}N_T^n(a,b) \leq \frac{\mathbb{E}(M_T-a)_+}{b-a}, (N_T^n(a,b))_n \uparrow N_T(a,b)$, by monotonuous convergence $\mathbb{E}N_T(a,b) \leq \frac{\mathbb{E}(M_T-a)_+}{b-a} \leq \frac{\mathbb{E}|M_t|+|a|}{b-a}$ By L_1 boundedness, $\mathbb{E}\mathbb{E}N_T(a,b) < C$. Let $T \to \infty$, (MON) $\mathbb{E}N_\infty(a,b) < \infty$

$$\mathbb{P}(M_t \not\to M_\infty) = \mathbb{P}(\exists a,b \in \mathbb{Q}, \liminf M_t < a < b < \limsup M_t) \leq \sum_{a < b \in \mathbb{Q}} \mathbb{P}(\liminf M_t < a < b < \limsup M_t) \leq \leq \sum_{a < b \in \mathbb{Q}} \mathbb{P}(N_\infty(a,b) = \infty) = 0$$

- convergence as + UI \implies convergence in L_1
- Doob's inequality + dominated convergence theorem.

Theorem 6 (Some classical BM martingales). $(B_t)_t$ BM

- $(B_t)_t$ is a mtg
- $(B_t^2 t)_t$ is a mtg
- $(e^{\sigma B_t \frac{1}{2}\sigma^2 t})_t$ is a mtg

Theorem 7 (Stooping time). $\tau = \inf\{t, B_t = A \text{ or } B_t = B\} = \inf\{t, B_t \in [A, B]\}.$

- $\mathbb{P}(\tau < \infty) = 1$
- $\mathbb{P}(B_{\tau} = A) = \frac{B}{A+B}$
- $\mathbb{E}\tau = AB$

Theorem 8 (Stooping time). $\tau = \inf\{t, B_t = A\}$

- $\mathbb{P}(\tau < \infty) = 1$
- $\mathbb{E}\tau = \infty$
- $\mathbb{E}e^{-\lambda\tau} = e^{-|A|\sqrt{2\lambda}}$

Proof. For b): $e^{\lambda x} = 1 - x \int_0^{\lambda} e^{-\sigma x} d\sigma \ \mathbb{E} e^{\lambda x} = 1 - \int_0^{\lambda} E[xe^{-\sigma x}] d\sigma$ (fubini) Take derivative at $\lambda = 0$.