실력 완성 | 고1

2-3-2.연립이차방정식

수학 계산력 강화

(1)연립방정식의 풀이(1)

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일 : 2018-02-15

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

미지수가 2개인 연립일차방정식

- (1) 미지수가 2개인 연립일차방정식: 미지수가 2개인 두 일차방정식을 한 쌍으로 묶어 놓은 것
- (2) 연립방정식의 해: 두 일차방정식을 동시에 만족하는 x,y의 값 또는 그 순서쌍 (x,y)
- (3) 연립방정식의 풀이
- ① 가감법: 두 일차방정식을 변끼리 더하거나 빼어서 한 미지수를 소거하여 해를 구하는 방법
- ② 대입법: 한 방정식을 한 미지수 x 또는 y에 대하여 풀고 이것을 다른 방정식에 대입하여 해를 구하는 <u>방법</u>

☑ 다음 연립방정식을 대입법을 이용하여 풀어라.

- $[x-y=-1 \cdots \bigcirc]$ 1. $5x+y=19\cdots$
- $(3x-y=8 \cdots \bigcirc)$ 2. $y = -x + 4 \cdots \bigcirc$
- $\int 2x + y = 10$... \bigcirc 3. $-3x+2y=-1\cdots$

☑ 다음 연립방정식을 가감법을 이용하여 풀어라.

$$\begin{cases} x+y=3 & \cdots \bigcirc \\ 2x-y=9 \cdots \bigcirc \end{cases}$$

5.
$$\begin{cases} 3x - 4y = 7 & \cdots \bigcirc \\ 5x - 6y = 13 & \cdots \bigcirc \end{cases}$$

6.
$$\begin{cases} x - 2y = 1 & \cdots \bigcirc \\ 2x + 3y = 9 \cdots \bigcirc \end{cases}$$

☑ 다음 연립방정식을 풀어라.

7.
$$\begin{cases} x = y - 1 & \cdots \\ y = 4x - 2 & \cdots \end{cases}$$

$$\begin{cases} x = 3y - 1 \cdots \bigcirc \\ x = 3 - y \cdots \bigcirc \end{cases}$$

$$9. \quad \begin{cases} 2x - 4y = 0 \cdots \bigcirc \\ x = 3y + 1 \cdots \bigcirc \end{cases}$$

10.
$$\begin{cases} 2x - y = 2 \cdots \bigcirc \\ y = x + 1 \cdots \bigcirc \end{cases}$$

11.
$$\begin{cases} 3x - 2y = 5 & \cdots & \bigcirc \\ x + 2y = -1 & \cdots & \bigcirc \end{cases}$$

$$12. \quad \begin{cases} 3x - y = 3 \cdots \bigcirc \\ 2x + y = 2 \cdots \bigcirc \end{cases}$$

13.
$$\begin{cases} 4x - 2y = 1 & \cdots & \bigcirc \\ 3x + y = -3 & \cdots & \bigcirc \end{cases}$$

$$14. \quad \begin{cases} x-2y=2 & \cdots \bigcirc \\ -2x+y=-1 & \cdots \bigcirc \end{cases}$$

$$\textbf{15.} \quad \begin{cases} x+y+z=6 & \cdots \bigcirc \\ 4x+y-z=10 \cdots \bigcirc \\ 3x-2y+z=1 \cdots \bigcirc \end{cases}$$

16.
$$\begin{cases} x+y+z=3 & \cdots \bigcirc \\ 2x+y-z=6 & \cdots \bigcirc \\ 3x-2y+z=-4 \cdots \bigcirc \end{cases}$$

$$\textbf{17.} \quad \begin{cases} 3x + 2y + z = 12 \cdots \bigcirc \\ x + y - z = 6 \cdots \bigcirc \\ x - 2y + z = -2 \cdots \bigcirc \end{cases}$$

$$\textbf{18.} \quad \begin{cases} x+y-2z=2 & \cdots \bigcirc \\ x-y-z=0 & \cdots \bigcirc \\ -x+5y-z=2 \cdots \bigcirc \end{cases}$$

$$\textbf{19.} \quad \begin{cases} x+y=7 & \cdots \bigcirc \\ y+z=10 \cdots \bigcirc \\ z+x=9 & \cdots \bigcirc \end{cases}$$

20.
$$\begin{cases} x+y=7\cdots \bigcirc\\ y+z=5\cdots \bigcirc\\ z+x=8\cdots \bigcirc\\ \end{cases}$$

21.
$$\begin{cases} x + 3y = 6 & \cdots \bigcirc \\ 3y + 2z = -1 \cdots \bigcirc \\ 2z + x = -1 & \cdots \bigcirc \end{cases}$$

22.
$$\begin{cases} x+y=5\cdots \bigcirc\\ y+z=6\cdots \bigcirc\\ z+x=7\cdots \bigcirc\\ \end{cases}$$

23.
$$x+y=y+z-3=z+x+3=2$$

24.
$$x+y-1=y+z-5=z+x-3=3$$

25.
$$\frac{x+y}{2} = \frac{y+z}{3} = \frac{z+x}{4} = 2$$

26.
$$\frac{x+y}{3} = \frac{y+z}{5} = \frac{z+x}{6} = 1$$

일차방정식과 이차방정식으로 이루어진 02

- ① 일차방정식을 x 또는 y에 대하여 정리한다.
- ② ①에서 얻은 식을 이차방정식에 대입하여 푼다.

☑ 다음 연립방정식을 풀어라.

27.
$$\begin{cases} x - y = 2 \\ x^2 + y^2 = 10 \end{cases}$$

28.
$$\begin{cases} x - y = 3 \\ x^2 + y^2 = 5 \end{cases}$$

29.
$$\begin{cases} 2x + y = 5 & \dots \\ x^2 + y^2 = 25 & \dots \end{cases}$$

30.
$$\begin{cases} 2x + y = 1 \\ 3x^2 - y^2 = 2 \end{cases}$$

31.
$$\begin{cases} y - x = 1 & \cdots \bigcirc \\ x^2 + y^2 = 5 \cdots \bigcirc \end{cases}$$

32.
$$\begin{cases} x+y=-2 \\ x^2-2y^2=7 \end{cases}$$

33.
$$\begin{cases} x - 3y = 0 \\ x^2 - 2y = 11 \end{cases}$$

34.
$$\begin{cases} 2x - y = 1 \\ 3x^2 - y^2 = -6 \end{cases}$$

35.
$$\begin{cases} x+y=4 \\ x^2+xy+y^2=13 \end{cases}$$

36.
$$\begin{cases} x + 2y = 1 \\ x^2 + xy - y^2 = 5 \end{cases}$$

37.
$$\begin{cases} x - y = 2 \\ x^2 + xy - y^2 = 11 \end{cases}$$

38.
$$\begin{cases} x - y = -2 \\ x^2 - xy + 2y^2 = 4 \end{cases}$$

39.
$$\begin{cases} x - 2y = 1 \\ x^2 - xy + y^2 = 7 \end{cases}$$

40.
$$\begin{cases} x+y=4 \\ x^2 - xy - y^2 = -4 \end{cases}$$

41.
$$\begin{cases} x - y + 2 = 0 \\ x^2 + 3x - y - 1 = 0 \end{cases}$$

42.
$$\begin{cases} 2x + y = 3 \\ x^2 + xy + y^2 = 3 \end{cases}$$

43.
$$\begin{cases} x - 2y = -1 \\ x^2 - 2xy - y^2 = -2 \end{cases}$$

03 두 이차방정식으로 이루어진 연립방정식

- (1) 인수분해가 되는 연립이차방정식
 - ① 어느 한 식을 인수분해하여 일차방정식을 얻는다.
 - ② ①에서 얻은 일차방정식을 이차방정식에 대입하여 푼다.
- (2) 인수분해가 되지 않는 연립이차방정식
 - ① 이차항을 소거하여 일차방정식을 만든 후, 이차방정식과 연립하여 푼다.
 - ② 상수항을 소거하여 인수분해되는 이차방정식을
 - 만든 후 푼다.

☑ 다음 연립방정식을 풀어라.

44.
$$\begin{cases} x^2 - xy - 2y^2 = 0 \\ 2x^2 + y^2 = 9 \end{cases}$$

45.
$$\begin{cases} x^2 - xy = 6 \\ y^2 - xy = -2 \end{cases}$$

46.
$$\begin{cases} x^2 - xy - 2y^2 = 0 \\ x^2 + y^2 = 10 \end{cases}$$

47.
$$\begin{cases} x^2 - 2xy - 3y^2 = 0 \cdots \bigcirc \\ x^2 + y^2 = 10 \cdots \bigcirc \end{cases}$$

48.
$$\begin{cases} x^2 + xy - 2y^2 = 0 \\ x^2 + y^2 = 10 \end{cases}$$

49.
$$\begin{cases} x^2 - 2xy - 3y^2 = 0 \\ x^2 + y^2 = 100 \end{cases}$$

50.
$$\begin{cases} 2x^2 - 3xy + y^2 = 0 \\ 5x^2 - y^2 = 4 \end{cases}$$

51.
$$\begin{cases} x^2 - y^2 = 0 \\ x^2 + xy + 3y^2 = 15 \end{cases}$$

52.
$$\begin{cases} x^2 - y^2 = 0 \\ 3x^2 + xy - y^2 = 9 \end{cases}$$

53.
$$\begin{cases} x^2 + y^2 + 2x = 0 \\ x^2 + y^2 + x + y = 2 \end{cases}$$

54.
$$\begin{cases} x^2 + y^2 - 7x + y = -10 \\ x^2 + y^2 - x - 2y = 5 \end{cases}$$

55.
$$\begin{cases} x^2 - xy + y^2 = 7 & \cdots \bigcirc \\ 4x^2 - 9xy + y^2 = -14 \cdots \bigcirc \end{cases}$$

56.
$$\begin{cases} x^2 - 2xy + 2y^2 = 5 \\ 4x^2 - 11xy + 7y^2 = 10 \end{cases}$$

57.
$$\begin{cases} x^2 - 6xy + 5y^2 = 0 \\ x^2 + y^2 = 26 \end{cases}$$

65.
$$\begin{cases} x^2 + y^2 - 2x + y = 0 \\ 2x^2 + 2y^2 - 5x + y = -1 \end{cases}$$

58.
$$\begin{cases} x^2 - xy - 2y^2 = 0 & \cdots \text{ } \\ x^2 + 2xy - 3y^2 = 20 & \cdots \text{ } \end{cases}$$

66.
$$\begin{cases} 2x^2 + xy - y^2 = 0 \\ x^2 + xy + y^2 = 7 \end{cases}$$

59.
$$\begin{cases} 2x^2 - xy - y^2 = 0 \\ 2x^2 - 5xy + y^2 = 16 \end{cases}$$

67.
$$\begin{cases} x^2 + xy - 2y^2 = 0 \\ x^2 - xy + 2y^2 = 16 \end{cases}$$

60.
$$\begin{cases} 6x^2 - xy - 2y^2 = 0 \\ x^2 - xy + y^2 = 7 \end{cases}$$

68.
$$\begin{cases} 6x^2 - xy - 2y^2 = 0 \\ 4x^2 + xy - 4y^2 = -14 \end{cases}$$

61.
$$\begin{cases} 3x^2 + 5y - 2x = 8 \\ x^2 + 2y - x = 2 \end{cases}$$

69.
$$\begin{cases} x^2 - xy = 0 \\ 2xy - y^2 = 3 \end{cases}$$

62.
$$\begin{cases} 3x^2 + xy + 2y^2 = 48 \\ x^2 + 2xy + y^2 = 16 \end{cases}$$

70.
$$\begin{cases} x^2 - xy - 2y^2 = 0 \\ 2x^2 + y^2 = 9 \end{cases}$$

63.
$$\begin{cases} x^2 + 2xy - 3y^2 = 5\\ 2x^2 - 3xy + y^2 = 3 \end{cases}$$

71.
$$\begin{cases} y^2 + 2x - 3y = 8 & \cdots \bigcirc \\ 2y^2 - 3x + y = -5 \cdots \bigcirc \end{cases}$$

64.
$$\begin{cases} 3x^2 + 2x - y = 1 \\ x^2 - x + 3y = 2 \end{cases}$$

정답 및 해설

- 1) x = 3, y = 4
- $\Rightarrow \begin{cases} x y = -1 & \cdots \\ 5x + y = 19 & \cdots \\ \bigcirc \end{cases}$
- \bigcirc 을 y에 대하여 정리하면 y=x+1 \cdots \bigcirc
- \bigcirc 을 \bigcirc 에 대입하면 6x+1=19 $\therefore x=3$
- 이것을 ©에 대입하면 y=4
- 따라서 주어진 연립방정식의 해는 x=3,y=4
- 2) x = 3, y = 1
- $\Rightarrow \begin{cases} 3x y = 8 & \cdots \\ y = -x + 4 & \cdots \end{cases}$
- \bigcirc 을 \bigcirc 에 대입하면 4x-4=8 $\therefore x=3$
- 이것을 \bigcirc 에 대입하면 y=1
- 따라서 주어진 연립방정식의 해는 x=3,y=1
- 3) x = 3, y = 4
- $\Rightarrow \begin{cases} 2x+y=10 & \cdots \bigcirc \\ -3x+2y=-1 \cdots \bigcirc \end{cases}$
- \bigcirc 을 y에 대하여 정리하면 y=-2x+10 \cdots \Box
- \bigcirc 을 \bigcirc 에 대입하면 -7x+20=-1 $\therefore x=3$
- 이것을 ©에 대입하면 y=4
- 따라서 주어진 연립방정식의 해는 x=3,y=4
- 4) x = 4, y = -1
- $\Rightarrow \begin{cases} x+y=3 & \cdots \bigcirc \\ 2x-y=9 \cdots \bigcirc \end{cases}$
- $\bigcirc + \bigcirc$ 을 하면 3x = 12 $\therefore x = 4$
- 이것을 \bigcirc 에 대입하면 y=-1
- 따라서 주어진 연립방정식의 해는 x=4,y=-1
- 5) x = 5, y = 2
- $\Rightarrow \begin{cases} 3x 4y = 7 & \cdots \bigcirc \\ 5x 6y = 13 \cdots \bigcirc \end{cases}$
- $3 \times \bigcirc -2 \times \bigcirc$ 을 하면 -x = -5 $\therefore x = 5$
- 이것을 \bigcirc 에 대입하면 y=2
- 따라서 주어진 연립방정식의 해는 x=5,y=2
- 6) x = 3, y = 1
- $\Rightarrow \begin{cases} x 2y = 1 & \cdots \bigcirc \\ 2x + 3y = 9 \cdots \bigcirc \end{cases}$
- $2 \times$ ① ①을 하면 -7y = -7 $\therefore y = 1$
- 이것을 \bigcirc 에 대입하면 x=3
- 따라서 주어진 연립방정식의 해는 x=3,y=1
- 7) x = 1, y = 2
- \Rightarrow \ominus 을 \bigcirc 에 대입하면 y=4(y-1)-2
- 3y = 6 $\therefore y = 2$
- 이것을 \bigcirc 에 대입하면 x=1
- 8) x = 2, y = 1
- \Rightarrow ①을 ①에 대입하면 3y-1=3-y
- 4y = 4 $\therefore y = 1$
- 이것을 \bigcirc 에 대입하면 x=2

- 9) x = -2, y = -1
- \Rightarrow ①을 \Rightarrow 에 대입하면 2(3y+1)-4y=0
- 2y = -2 : y = -1
- 이것을 \bigcirc 에 대입하면 x=-2
- 10) x = 3, y = 4
- \Rightarrow \bigcirc 을 \bigcirc 에 대입하면 2x-(x+1)=2
- x-1=2 $\therefore x=3$
- 이것을 \bigcirc 에 대입하면 y=4
- 11) x = 1, y = -1
- \Rightarrow $\bigcirc + \bigcirc$ 을 하면 4x = 4 $\therefore x = 1$
- 이것을 \bigcirc 에 대입하면 y=-1
- 12) x = 1, y = 0
- ⇒ ①+ⓒ을 하면 5x=5 ∴x=1
- 이것을 \bigcirc 에 대입하면 y=0
- 13) $x = -\frac{1}{2}$, $y = -\frac{3}{2}$
- \Rightarrow ①+ⓒ \times 2를 하면 10x=-5 $\therefore x=-\frac{1}{2}$
- 이것을 \bigcirc (또는 \bigcirc)에 대입하면 $y=-\frac{3}{2}$
- 14) x = 0, y = -1
- 이것을 \bigcirc 에 대입하면 x=0
- 15) x = 2, y = 3, z = 1 $\int x + y + z = 6$...
- $\Rightarrow \begin{cases} 4x + y z = 10 \cdots \bigcirc \\ 3x 2y + z = 1 \cdots \bigcirc \end{cases}$
- ①+ⓒ을 하면 5x+2y=16 ··· ②
- ①+ⓒ을 하면 7x-y=11 ··· ⑫
- ②+①×2를 하면 19x = 38 $\therefore x = 2$
- x=2를 📵에 대입하면 y=3
- x=2, y=3을 \bigcirc 에 대입하면 z=1
- $\therefore x = 2, y = 3, z = 1$
- 16) x = 1, y = 3, z = -1
- $\Rightarrow \begin{cases} x+y+z=3 & \cdots \bigcirc \\ 2x+y-z=6 & \cdots \bigcirc \\ 3x-2y+z=-4 \cdots \bigcirc \end{cases}$
- 먼저 미지수 z를 소거하기 위하여
- $\bigcirc + \bigcirc$ 을 하면 3x+2y=9 … ②
- ①+ⓒ을 하면 5x-y=2 … 回
- $(2)+(1)\times 2$ 를 하면 13x=13 $\therefore x=1$
- 이것을 \bigcirc 에 대입하면 y=3
- 구한 x, y의 값을 \bigcirc 에 대입하면 z = -1
- 17) x = 3, y = 2, z = -1
- $\begin{cases} 3x+2y+z=12\cdots \ \textcircled{1} \\ x+y-z=6 & \cdots \ \textcircled{1} \\ x-2y+z=-2 & \cdots \ \textcircled{1} \end{cases}$
- ①+①을 하면 4x+3y=18 ··· ②

- \Box + \Box 을 하면 2x-y=4 ··· \Box
- ②+①×3를 하면 10x = 30 $\therefore x = 3$
- x=3을 ©에 대입하면 y=2
- x=3, y=2를 ©에 대입하면 z=-1
- $\therefore x = 3, y = 2, z = -1$
- 18) 해는 없다.
- $\Rightarrow \begin{cases} x+y-2z=2 & \cdots \bigcirc \\ x-y-z=0 & \cdots \bigcirc \end{cases}$ $1-x+5y-z=2\cdots$
- (¬)-(□)을 하면 2y-z=2 ··· (문)
- ①+ⓒ을 하면
- 4y-2z=2 $\therefore 2y-z=1$ $\cdots \bigcirc$
- (2)-(1)을 하면 (1)=1이 되어 모순이다.
- 따라서 주어진 연립방정식의 해는 없다.
- 19) x = 3, y = 4, z = 6
- $\Rightarrow \begin{cases} x+y=7 & \cdots \bigcirc \\ y+z=10 \cdots \bigcirc \end{cases}$ z+x=9 ... \Box
- $\bigcirc + \bigcirc + \bigcirc =$ 하면 2(x+y+z) = 26
- $\therefore x + y + z = 13 \cdots \bigcirc$
- ②-C)을 하면 x=3
- ②-C)을 하면 y=4
- 20) x = 5, y = 2, z = 3
- $[x+y=7\cdots \bigcirc]$ $\Rightarrow \left\{ y + z = 5 \cdots \bigcirc \right\}$
- ①+①+ⓒ을 하면 2(x+y+z)=20
- $\therefore x + y + z = 10 \cdots \textcircled{2}$
- $②-\bigcirc$ 을 하면 x=5
- ②-C을 하면 y=2
- 21) x = 3, y = 1, z = -2
- $\int x + 3y = 6 \quad \cdots \quad \bigcirc$ $\Rightarrow \{3y+2z=-1\cdots \bigcirc$
 - $\lfloor 2z + x = -1 \cdots \bigcirc$
- $\bigcirc + \bigcirc + \bigcirc \Rightarrow$ 하면 2(x+3y+2z)=4
- $\therefore x + 3y + 2z = 2 \cdots \textcircled{2}$
- ②-C)을 하면 x=3

- 22) x = 3, y = 2, z = 4
- $\int x + y = 5 \cdots \bigcirc$ $\Rightarrow \{y+z=6\cdots \bigcirc$ $z + x = 7 \cdots \equiv$
- $\bigcirc + \bigcirc + \bigcirc =$ 하면 2(x+y+z) = 18
- $\therefore x + y + z = 9 \cdots \bigcirc$
- $②-\bigcirc$ 을 하면 x=3
- ②-C을 하면 y=2
- $②-\bigcirc$ 을 하면 z=4

- 23) x = -2, y = 4, z = 1
- $\Rightarrow x+y=y+z-3=z+x+3=2$ 에서

$$\begin{cases} x+y=2\\ y+z-3=2\\ z+x+3=2 \end{cases} \Rightarrow \begin{cases} x+y=2 & \cdots \bigcirc \\ y+z=5 & \cdots \bigcirc \\ z+x=-1 \cdots \bigcirc \end{cases}$$

- $\bigcirc + \bigcirc + \bigcirc =$ 하면 2(x+y+z)=6
- $\therefore x + y + z = 3 \cdots \supseteq$
- ②-①을 하면 x=-2
- (2)-(C)을 하면 y=4
- 24) x = 1, y = 3, z = 5
- $\Rightarrow x+y-1=y+z-5=z+x-3=3$

$$\begin{cases} x+y-1=3\\ y+z-5=3\\ z+x-3=3 \end{cases} \Rightarrow \begin{cases} x+y=4\cdots \ \textcircled{\tiny }\\ y+z=8\cdots \ \textcircled{\tiny }\\ z+x=6\cdots \ \textcircled{\tiny }\\ \end{cases}$$

- ①+①+①+②을 하면 2(x+y+z)=18
- $\therefore x + y + z = 9 \cdots \supseteq$
- ②-C)을 하면 x=1
- ②-C을 하면 y=3
- 25) x = 3, y = 1, z = 5
- $\Rightarrow \frac{x+y}{2} = \frac{y+z}{3} = \frac{z+x}{4} = 2 \text{ on } \forall$
 - $\int x + y = 4 \cdots \bigcirc$
 - $y + z = 6 \cdots \bigcirc$
 - $z+x=8\cdots$
 - ①+①+ⓒ을 하면 2(x+y+z)=18
 - $\therefore x + y + z = 9 \cdots \supseteq$

- 26) x = 2, y = 1, z = 4
- $\Rightarrow \frac{x+y}{3} = \frac{y+z}{5} = \frac{z+x}{6} = 1 \text{ and } \forall$
 - $(x+y=3\cdots\bigcirc$
- $\begin{cases} y+z=5 \cdots \bigcirc \\ z+x=6 \cdots \bigcirc \end{cases}$
- $\bigcirc + \bigcirc + \bigcirc =$ 하면 2(x+y+z)=14
- $\therefore x + y + z = 7 \cdots \supseteq$
- $②-\bigcirc$ 을 하면 x=2
- ②-C을 하면 y=1
- $\begin{array}{ll}
 x = -1 \\
 y = -3
 \end{array}
 \quad \text{E} \stackrel{\sqsubseteq}{\sqsubseteq} \begin{cases}
 x = 3 \\
 y = 1
 \end{cases}$
- $\Rightarrow x-y=2$ 에서 $y=x-2\cdots$
- \bigcirc 을 $x^2 + y^2 = 10$ 에 대입하면
- $x^{2} + (x-2)^{2} = 10$. $2x^{2} 4x 6 = 0$
- $x^2-2x-3=0$, (x+1)(x-3)=0
- $\therefore x = -1 \stackrel{\sqsubseteq}{=} x = 3$
- x = -1을 \bigcirc 에 대입하면 y = -3
- x=3을 \bigcirc 에 대입하면 y=1
- 따라서 구하는 해는

$$\begin{cases} x = -1 \\ y = -3 \end{cases} \quad \text{Fig. } \begin{cases} x = 3 \\ y = 1 \end{cases}$$

$$\Rightarrow \begin{cases} x - y = 3 & \cdots & \bigcirc \\ x^2 + y^2 = 5 & \cdots & \bigcirc \end{cases}$$

 \bigcirc 을 y에 대하여 정리하면 y=x-3 ··· ©

②을 ②에 대입하면 $x^2 + (x-3)^2 = 5$

$$x^2-3x+2=0, (x-1)(x-2)=0$$

$$\therefore x = 1 \quad \exists \exists x = 2$$

 \bigcirc 에서 x=1이면 y=-2, x=2이면 y=-1

따라서 주어진 연립방정식의 해는

$$\begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\text{\tiny \bot}}{=} \begin{cases} x = 2 \\ y = -1 \end{cases}$$

29)
$$\begin{cases} x = 0 \\ y = 5 \end{cases} \not\sqsubseteq \begin{matrix} x = 4 \\ y = -3 \end{cases}$$

$$\Rightarrow \begin{cases} 2x + y = 5 & \cdots \bigcirc \\ x^2 + y^2 = 25 \cdots \bigcirc \end{cases}$$

$$\bigcirc$$
에서 $y=5-2x$ ··· \bigcirc

그 요즘 그 대입하면 x²+(5-2x)² = 25

$$5x^2 - 20x = 0$$
, $5x(x-4) = 0$

$$\therefore x = 0$$
 또는 $x = 4$

이것을 \square 에 대입하여 y의 값을 구하면

(i)
$$x = 0$$
일 때, $y = 5$

(ii)
$$x = 4$$
일 때, $y = -3$

$$\therefore \begin{cases} x = 0 \\ y = 5 \end{cases} \stackrel{\text{\tiny }}{=} \stackrel{\text{\tiny }}{=} \begin{cases} x = 4 \\ y = -3 \end{cases}$$

30)
$$\begin{cases} x=1 \\ y=-1 \end{cases} \quad \text{ } \underline{\text{ }}\underline{\text{ }}\underline{\text{ }} \begin{cases} x=3 \\ y=-5 \end{cases}$$

$$\Rightarrow \begin{cases} 2x + y = 1 & \cdots \bigcirc \\ 3x^2 - y^2 = 2 \cdots \bigcirc \end{cases}$$

 \bigcirc 을 y에 대하여 정리하면 y=1-2x ··· ©

 \Box 을 \Box 에 대입하면 $3x^2-(1-2x)^2=2$

$$x^2-4x+3=0, (x-1)(x-3)=0$$

$$\therefore x = 1 + 1 = 3$$

 \bigcirc 에서 x=1이면 y=-1, x=3이면 y=-5

따라서 주어진 연립방정식의 해는

$$\begin{cases} x = 1 \\ y = -1 \end{cases} \stackrel{\text{E}}{=} \begin{cases} x = 3 \\ y = -5 \end{cases}$$

31)
$$\begin{cases} x = -2 \\ y = -1 \end{cases} \quad \text{ } \underbrace{ \begin{cases} x = 1 \\ y = 2 \end{cases} }$$

 \Rightarrow \ominus 을 y에 대하여 정리하면 y=x+1 \cdots \Box

 \Box 을 \Box 에 대입하면 $x^2 + (x+1)^2 = 5$

$$x^2 + x - 2 = 0, (x + 2)(x - 1) = 0$$

$$\therefore x = -2 \quad \text{£} \quad x = 1$$

©에서 x = -2이면 y = -1, x = 1이면 y = 2

따라서 주어진 연립방정식의 해는

$$\begin{cases} x = -2 \\ y = -1 \end{cases} \quad \text{Fig. } \begin{cases} x = 1 \\ y = 2 \end{cases}$$

$$\Rightarrow \begin{cases} x+y=-2 & \cdots \\ x^2-2y^2=7 & \cdots \end{cases}$$

 \bigcirc 을 y에 대하여 정리하면 y=-x-2 ··· ©

 \square 을 \square 에 대입하면 $x^2-2(-x-2)^2=7$

$$x^2 + 8x + 15 = 0, (x+5)(x+3) = 0$$

$$\therefore x = -5 \quad \text{£} \stackrel{\vdash}{=} \quad x = -3$$

©에서 x = -5이면 y = 3, x = -3이면 y = 1

따라서 주어진 연립방정식의 해는 $\begin{cases} x = -5 \\ y = 3 \end{cases}$ 또는

$$\begin{cases} x = -3 \\ y = 1 \end{cases}$$

33)
$$\begin{cases} x = \frac{11}{3} \\ y = \frac{11}{9} \end{cases} \quad \text{ } \pm \frac{1}{3} \quad \text{ } \begin{cases} x = -3 \\ y = -1 \end{cases}$$

$$\Rightarrow \begin{cases} x - 3y = 0 & \cdots \bigcirc \\ x^2 - 2y = 11 \cdots \bigcirc \end{cases}$$

$$\bigcirc$$
에서 $x=3y$ ··· \Box

 \Box 을 \Box 에 대입하면 $(3y)^2 - 2y = 11$

$$9y^2 - 2y - 11 = 0 \implies (9y - 11)(y + 1) = 0$$

$$\therefore y = \frac{11}{9}$$
 또는 $y = -1$

이것을 ©에 대입하여
$$\begin{cases} x=\frac{11}{3} \\ y=\frac{11}{9} \end{cases}$$
 또는 $\begin{cases} x=-3 \\ y=-1 \end{cases}$

34)
$$\begin{cases} x = -1 \\ y = -3 \end{cases} \quad \text{ } \underline{+} \underbrace{-}_{y=9} \begin{cases} x = 5 \\ y = 9 \end{cases}$$

$$\Rightarrow \begin{cases} 2x - y = 1 & \cdots \bigcirc \\ 3x^2 - y^2 = -6 \cdots \bigcirc \end{cases}$$

 \bigcirc 에서 y=2x-1, 이를 \bigcirc 에 대입하면

$$3x^2 - (2x - 1)^2 = -6$$
, $x^2 - 4x - 5 = 0$

$$(x+1)(x-5) = 0$$
 $\therefore x = -1 + x = 5$

$$\bigcirc$$
에서 $x = -1$ 이면 $y = -3$, $x = 5$ 이면 $y = 9$

따라서 주어진 연립방정식의 해는 $\begin{cases} x=-1 \\ y=-3 \end{cases}$ 또는 $\int x = 5$

35)
$$\begin{cases} x = 1 \\ y = 3 \end{cases} \quad \text{ } \underbrace{ \begin{cases} x = 3 \\ y = 1 \end{cases} }$$

 $\Rightarrow x+y=4 \text{ odd} \quad y=-x+4\cdots \ \, \bigcirc$

$$\bigcirc$$
을 $x^2 + xy + y^2 = 13$ 에 대입하면

$$x^{2} + x(-x+4) + (-x+4)^{2} = 13$$

$$x^2-4x+3=0$$
, $(x-1)(x-3)=0$

$$\therefore x = 1 \quad \text{£} \stackrel{}{=} \quad x = 3$$

x=1을 \bigcirc 에 대입하면 y=3

x=3을 \bigcirc 에 대입하면 y=1

따라서 구하는 해는

$$\begin{cases} x = 1 \\ y = 3 \end{cases} \quad \text{ } \stackrel{\sqsubseteq}{\vdash} \quad \begin{cases} x = 3 \\ y = 1 \end{cases}$$

36)
$$\begin{cases} x = 3 \\ y = -1 \end{cases}$$
 $\exists \begin{bmatrix} x = -7 \\ y = 4 \end{bmatrix}$

$$\Rightarrow \begin{cases} x+2y=1 & \cdots \bigcirc \\ x^2+xy-y^2=5 \cdots \bigcirc \end{cases}$$

 \bigcirc 을 x에 대하여 정리하면 x=1-2y \cdots ©

 \bigcirc 을 \bigcirc 에 대입하면 $(1-2y)^2+(1-2y)y-y^2=5$

$$y^2-3y-4=0,\,(y+1)(y-4)=0$$

 \bigcirc 에서 y = -1이면 x = 3, y = 4이면 x = -7

따라서 주어진 연립방정식의 해는

$$\begin{cases} x = 3 \\ y = -1 \end{cases} \stackrel{\text{\tiny \pm}}{=} \begin{cases} x = -7 \\ y = 4 \end{cases}$$

$$\begin{array}{ll} 37) & \begin{cases} x=-5 \\ y=-7 \end{cases} & \text{ } \underline{+} \underline{+} \begin{cases} x=3 \\ y=1 \end{cases} \\ \Leftrightarrow & \begin{cases} x-y=2 & \cdots \text{ } \bigcirc \\ x^2+xy-y^2=11 \cdots \text{ } \bigcirc \end{cases} \end{array}$$

$$\Rightarrow \begin{cases} x - y = 2 & \cdots \bigcirc \\ x^2 + xy - y^2 = 11 \cdots \bigcirc \end{cases}$$

 \bigcirc 에서 y=x-2, 이를 \bigcirc 에 대입하면

$$x^2 + x(x-2) - (x-2)^2 = 11$$
, $x^2 + 2x - 15 = 0$

$$(x+5)(x-3) = 0$$
 $\therefore x = -5$ $\nsubseteq \vdash x = 3$

$$\bigcirc$$
에서 $x = -5$ 이면 $y = -7$, $x = 3$ 이면 $y = 1$

따라서 주어진 연립방정식의 해는 $\begin{cases} x = -5 \\ y = -7 \end{cases}$ 또는

$$\begin{cases} x = 3 \\ y = 1 \end{cases}$$

$$\begin{array}{ll} 38) & \begin{cases} x = -1 \\ y = 1 \end{cases} & \text{ } \underline{\text{4}} \underline{\text{4}} \underline{\text{4}} = 2 \\ y = 0 \end{cases} \\ \Rightarrow & \begin{cases} x - y = -2 & \cdots \text{ } \\ x^2 - xy + 2y^2 = 4 \cdots \text{ } \end{aligned}$$

$$\Rightarrow \begin{cases} x - y = -2 & \cdots \\ x^2 - xy + 2y^2 = 4 & \cdots \end{cases}$$

 \bigcirc 에서 y=x+2. 이를 \bigcirc 에 대입하면

$$x^{2}-x(x+2)+2(x+2)^{2}=4$$
, $x^{2}+3x+2=0$

$$(x+1)(x+2) = 0$$
 $\therefore x = -1$ $\Xi = x = -2$

$$\bigcirc$$
에서 $x = -1$ 이면 $y = 1$, $x = -2$ 이면 $y = 0$

따라서 주어진 연립방정식의 해는 $\begin{cases} x=-1 \\ y=1 \end{cases}$ 또는

$$\begin{cases} x = -2 \\ y = 0 \end{cases}$$

39)
$$\begin{cases} x = -3 \\ y = -2 \end{cases} \quad \text{ } \pm \frac{1}{2} \begin{cases} x = 3 \\ y = 1 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y = 1 & \cdots \bigcirc \\ x^2 - xy + y^2 = 7 \cdots \bigcirc \end{cases}$$

 \bigcirc 에서 x=2y+1, 이를 \bigcirc 에 대입하면

$$(2y+1)^2 - (2y+1)y + y^2 = 7$$
, $y^2 + y - 2 = 0$

$$(y+2)(y-1) = 0$$
 : $y = -2$ $= -2$

$$\bigcirc$$
에서 $y=-2$ 이면 $x=-3$, $y=1$ 이면 $x=3$

따라서 주어진 연립방정식의 해는 $\begin{cases} x = -3 \\ y = -2 \end{cases}$ 또는

$$\begin{cases} x = 3 \\ y = 1 \end{cases}$$

40)
$$\begin{cases} x = -6 \\ y = 10 \end{cases} = \underbrace{\pm}_{0} \begin{cases} x = 2 \\ y = 2 \end{cases}$$

$$\Rightarrow \begin{cases} x+y=4 & \cdots \\ x^2-xy-y^2=-4 \cdots \bigcirc \end{cases}$$

 \bigcirc 을 y에 대하여 정리하면 y=4-x … \bigcirc

$$\bigcirc$$
을 \bigcirc 에 대입하면 $x^2 - x(4-x) - (4-x)^2 = -4$

$$x^2+4x-12=0, (x+6)(x-2)=0$$

$$\therefore x = -6 + \pm \frac{1}{2} = 2$$

 \bigcirc 에서 x = -6이면 y = 10, x = 2이면 y = 2

따라서 주어진 연립방정식의 해는

$$\begin{cases} x = -6 \\ y = 10 \end{cases} \quad \text{ } \underbrace{\pm} \begin{cases} x = 2 \\ y = 2 \end{cases}$$

41)
$$\begin{cases} x = -3 \\ y = -1 \end{cases} \quad \text{£} \vdash \begin{cases} x = 1 \\ y = 3 \end{cases}$$

$$\Rightarrow \begin{cases} x - y + 2 = 0 & \cdots \bigcirc \\ x^2 + 3x - y - 1 = 0 \cdots \bigcirc \end{cases}$$

 \bigcirc 을 y에 대하여 정리하면 y=x+2 \cdots \bigcirc

⑤을 ⑥에 대입하면
$$x^2 + 3x - (x+2) - 1 = 0$$

$$x^2+2x-3=0$$
, $(x+3)(x-1)=0$

$$\therefore x = -3 + = 1$$

 \bigcirc 에서 x = -3이면 y = -1, x = 1이면 y = 3

42)
$$\begin{cases} x = 1 \\ y = 1 \end{cases} \quad \text{for } \begin{cases} x = 2 \\ y = -1 \end{cases}$$

$$\Rightarrow \begin{cases} 2x + y = 3 & \cdots \bigcirc \\ x^2 + xy + y^2 = 3 \cdots \bigcirc \end{cases}$$

$$\bigcirc$$
에서 $y=3-2x$ ··· ©

⑤을 ⑥에 대입하면 $x^2 + x(3-2x) + (3-2x)^2 = 3$

$$x^2 + 3x - 2x^2 + 9 - 12x + 4x^2 = 3$$

$$3x^2 - 9x + 6 = 0 \implies x^2 - 3x + 2 = 0$$

$$(x-1)(x-2) = 0$$
 $\therefore x = 1$ $\Xi = 2$

이것을 ©에 대입하여
$$\begin{cases} x=1 \\ y=1 \end{cases}$$
 또는 $\begin{cases} x=2 \\ y=-1 \end{cases}$

43)
$$\begin{cases} x = -7 \\ y = -3 \end{cases}$$
 $\exists = 1 \\ y = 1 \end{cases}$

$$\begin{array}{ll} 43) & \begin{cases} x = -7 \\ y = -3 \end{cases} & \text{ } \underline{+} \underline{-} \begin{cases} x = 1 \\ y = 1 \end{cases} \\ \Rightarrow & \begin{cases} x - 2y = -1 \\ x^2 - 2xy - y^2 = -2 \cdots \end{cases} \end{array}$$

 \bigcirc 에서 x=2y-1, 이를 \bigcirc 에 대입하면

$$(2y-1)^2-2(2y-1)y-y^2=-2$$
, $y^2+2y-3=0$

$$(y-1)(y+3) = 0$$
 $\therefore y = -3$ $\oplus \frac{1}{2}$ $y = 1$

$$\bigcirc$$
에서 $y=-3$ 이면 $x=-7$, $y=1$ 이면 $x=1$

따라서 주어진 연립방정식의 해는 $\begin{cases} x = -7 \\ y = -3 \end{cases}$ 또는

$$\begin{cases} x = 1 \\ y = 1 \end{cases}$$

44)
$$\begin{cases} x = -\sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = -\sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = 2 \\ y = 1 \end{cases} \quad \text{Eight}$$

$$\begin{cases} x = -2 \\ y = -1 \end{cases}$$

$$\Rightarrow x^2 - xy - 2y^2 = 0 \text{ odd } (x+y)(x-2y) = 0$$

$$\therefore x = -y \subseteq x = 2y$$

(i) $x = -y = 2x^2 + y^2 = 9$ 에 대입하면

$$2(-y)^2 + y^2 = 9$$
, $3y^2 = 9$

$$y^2 = 3$$
 : $y = \pm \sqrt{3}$

$$\therefore x = \mp \sqrt{3}, y = \pm \sqrt{3}$$
 (복호동순)

(ii)
$$x = 2y$$
를 $2x^2 + y^2 = 9$ 에 대입하면

$$2(2y)^2 + y^2 = 9$$
, $9y^2 = 9$

$$y^2 = 1$$
 $\therefore y = \pm 1$

∴ x =± 2, y =± 1(복호동순)

(i), (ii)에서 구하는 해는

$$\begin{cases} x = -\sqrt{3} \\ y = \sqrt{3} \end{cases} \text{ If } \qquad \begin{cases} x = \sqrt{3} \\ y = -\sqrt{3} \end{cases} \text{ If } \qquad \begin{cases} x = 2 \\ y = 1 \end{cases} \text{ If } \qquad \begin{cases} x = 2 \\ y = 1 \end{cases}$$

45)
$$\begin{cases} x = 3 \\ y = 1 \end{cases}$$
 $\exists \exists \begin{bmatrix} x = -3 \\ y = -1 \end{bmatrix}$

$$\Rightarrow \begin{cases} x^2 - xy = 6 & \cdots \bigcirc \\ y^2 - xy = -2 \cdots \bigcirc \end{cases}$$

$$\bigcirc +3 \times \bigcirc$$
을 하면 $x^2 - 4xy + 3y^2 = 0$

(x-y)(x-3y) = 0 : x = y = x = 3y

(i) *x* = *y*를 ⊙에 대입하면

$$y^2 - y^2 = 6$$

이때, $0 \neq 6$ 이므로 해가 없다.

(ii) *x* = 3*y*를 ○에 대입하면

$$9y^2 - 3y^2 = 6, y^2 = 1, \therefore y = \pm 1$$

따라서 주어진 연립방정식의 해는

46)
$$\begin{cases} x = \sqrt{5} \\ y = -\sqrt{5} \end{cases} \quad \text{Eig} \begin{cases} x = -\sqrt{5} \\ y = \sqrt{5} \end{cases} \quad \text{Eig} \begin{cases} x = 2\sqrt{2} \\ y = \sqrt{2} \end{cases} \quad \text{Eig} \end{cases}$$

$$\begin{cases} x = -2\sqrt{2} \\ y = -\sqrt{2} \end{cases}$$

$$\Rightarrow \begin{cases} x^2 - xy - 2y^2 = 0 \cdots \bigcirc \\ x^2 + y^2 = 10 \cdots \bigcirc \end{cases}$$

 \bigcirc 에서 (x+y)(x-2y)=0 $\therefore x=-y$ 또는 x=2y

(i) x = -y를 ①에 대입하면

$$u^2 + u^2 = 10, u^2 = 5$$
 : $u = \pm \sqrt{5}$

$$x = -y$$
이므로 $y = \pm \sqrt{5}$, $x = \mp \sqrt{5}$ (복호동순)

(ii) x = 2y를 \bigcirc 에 대입하면

$$4y^2 + y^2 = 10, y^2 = 2$$
 : $y = \pm \sqrt{2}$

x = 2y이므로 $y = \pm \sqrt{2}$, $x = \pm 2\sqrt{2}$ (복호동순)

따라서 주어진 연립방정식의 해는

$$\begin{cases} x = \sqrt{5} \\ y = -\sqrt{5} \end{cases} \quad \underbrace{\Xi \, \succeq \,}_{w} \begin{cases} x = -\sqrt{5} \\ y = \sqrt{5} \end{cases} \quad \underbrace{\Xi \, \succeq \,}_{w} \begin{cases} x = 2\sqrt{2} \\ y = \sqrt{2} \end{cases}$$

$$\underline{\Xi \, \succeq \,}_{w} \begin{cases} x = -2\sqrt{2} \\ y = -\sqrt{2} \end{cases}$$

47)
$$\begin{cases} x = -\sqrt{5} \\ y = \sqrt{5} \end{cases} \quad \text{£} \vdash \quad \begin{cases} x = \sqrt{5} \\ y = -\sqrt{5} \end{cases} \quad \text{£} \vdash \quad \begin{cases} x = -3 \\ y = -1 \end{cases} \quad \text{£} \vdash \quad \begin{cases} x = 3 \\ y = 1 \end{cases}$$

$$\Rightarrow \begin{cases} x^2 - 2xy - 3y^2 = 0 \cdots \bigcirc \\ x^2 + y^2 = 10 \cdots \bigcirc \end{cases}$$

 \bigcirc 에서 (x+y)(x-3y)=0 $\therefore x=-y$ 또는 x=3y

(i) x = -y를 ①에 대입하면

$$y^2 + y^2 = 10$$
, $y^2 = 5$: $y = \pm \sqrt{5}$

$$\therefore x = \pm \sqrt{5}, y = \mp \sqrt{5}$$
 (복부호동순)

(ii)
$$x = 3y$$
를 ©에 대입하면 $9y^2 + y^2 = 10$

$$y^2 = 1$$
 $\therefore y = \pm 1$

(i), (ii)에서 구하는 연립방정식의 해는

$$\begin{cases} x = -\sqrt{5} \\ y = \sqrt{5} \end{cases} \quad \text{ET} \quad \begin{cases} x = \sqrt{5} \\ y = -\sqrt{5} \end{cases} \quad \text{ET} \quad \begin{cases} x = -3 \\ y = -1 \end{cases} \quad \text{ET} \quad \begin{cases} x = 3 \\ y = 1 \end{cases}$$

48)
$$\begin{cases} x = \sqrt{5} \\ y = \sqrt{5} \end{cases} \quad \text{E:} \quad \begin{cases} x = -\sqrt{5} \\ y = -\sqrt{5} \end{cases} \quad \text{E:} \quad \begin{cases} x = -2\sqrt{2} \\ y = \sqrt{2} \end{cases}$$

$$\text{ } \text{ } \underbrace{\text{ } \text{ } \text{ } \text{ } \left\{ \begin{aligned} x &= 2\sqrt{2} \\ y &= -\sqrt{2} \end{aligned} \right. }$$

$$\Rightarrow \begin{cases} x^2 + xy - 2y^2 = 0 \cdots \bigcirc \\ x^2 + y^2 = 10 \cdots \bigcirc \end{cases}$$

$$\bigcirc$$
에서 $(x+2y)(x-y)=0$

$$\therefore x = y \quad \text{£} \stackrel{\leftarrow}{\vdash} \quad x = -2y$$

(i) x = y를 ①에 대입하면

$$2y^2 = 10$$
, $y^2 = 5$ $\therefore y = \pm \sqrt{5}$

(ii) x =-2y를 ◎에 대입하면

$$4y^2 + y^2 = 10$$
, $y^2 = 2$: $y = \pm \sqrt{2}$

$$\begin{array}{ccc} \therefore \begin{cases} x = -2\sqrt{2} \\ y = \sqrt{2} \end{cases} & \text{ } \underline{ \text{ }}\underline{ \text{ }}\text{ } \overset{ }{ \text{ }}\text{ } \overset{ }{ \text{ }}\text{ } \overset{ }{ \text{ }}\text{ } \begin{cases} x = 2\sqrt{2} \\ y = -\sqrt{2} \end{cases} \\ \end{array}$$

(i).(ii)에서 구하는 연립방정식의 해는

$$\begin{cases} x = \sqrt{5} \\ y = \sqrt{5} \end{cases} \xrightarrow{\text{Ξ}^\perp} \begin{cases} x = -\sqrt{5} \\ y = -\sqrt{5} \end{cases} \xrightarrow{\text{Ξ}^\perp} \begin{cases} x = -2\sqrt{2} \\ y = \sqrt{2} \end{cases} \xrightarrow{\text{Ξ}^\perp} \begin{cases} x = 2\sqrt{2} \\ y = -\sqrt{2} \end{cases}$$

49)
$$\begin{cases} x = 3\sqrt{10} \\ y = \sqrt{10} \end{cases} \quad \text{E} = \begin{cases} x = -3\sqrt{10} \\ y = -\sqrt{10} \end{cases} \quad \text{E} = \begin{cases} x = 5\sqrt{2} \\ y = -5\sqrt{2} \end{cases}$$

$$\mathbf{E} = \begin{cases} x = -5\sqrt{2} \\ y = 5\sqrt{2} \end{cases}$$

$$\Rightarrow \begin{cases} x^2 - 2xy - 3y^2 = 0 \cdots \bigcirc \\ x^2 + y^2 = 100 \cdots \bigcirc \end{cases}$$

 \bigcirc 에서 (x-3y)(x+y)=0 $\therefore x=3y$ 또는 x=-y

(i) x = 3y를 ②에 대입하면

$$9y^2 + y^2 = 100, y^2 = 10, \therefore y = \pm \sqrt{10}$$

$$x = 3y$$
이므로 $y = \pm \sqrt{10}$, $x = \pm 3\sqrt{10}$ (복호동순)

(ii) x =-y를 ⓒ에 대입하면

$$y^2 + y^2 = 100$$
, $y^2 = 50$ $\therefore y = \pm 5\sqrt{2}$

$$x=-y$$
이므로 $y=\pm 5\sqrt{2}$, $x=\mp 5\sqrt{2}$ (복호동순)

$$\begin{cases} x = 3\sqrt{10} & \text{ } \pm \frac{1}{4} \begin{cases} x = -3\sqrt{10} \\ y = \sqrt{10} \end{cases} & \text{ } \pm \frac{1}{4} \begin{cases} x = 5\sqrt{2} \\ y = -5\sqrt{2} \end{cases} \end{cases}$$

$$\begin{cases} x = -5\sqrt{2} \\ y = 5\sqrt{2} \end{cases}$$

50)
$$\begin{cases} x = 1 \\ y = 1 \end{cases}$$
 $\mathbb{E} \stackrel{\vdash}{\leftarrow} \begin{cases} x = -1 \\ y = -1 \end{cases}$ $\mathbb{E} \stackrel{\vdash}{\leftarrow} \begin{cases} x = 2 \\ y = 4 \end{cases}$ $\mathbb{E} \stackrel{\vdash}{\leftarrow} \begin{cases} x = -2 \\ y = -4 \end{cases}$

$$\Rightarrow \begin{cases} 2x^2 - 3xy + y^2 = 0 \cdots \bigcirc \\ 5x^2 - y^2 = 4 \cdots \bigcirc \end{cases}$$

 \bigcirc 에서 (x-y)(2x-y)=0 $\therefore y=x$ 또는 y=2x

(i) y=x를 ①에 대입하면

$$5x^2 - x^2 = 4$$
, $x^2 = 1$ $\therefore x = \pm 1$

$$y = x$$
이므로 $x = \pm 1$, $y = \pm 1$ (복호동순)

(ii) y = 2x를 ①에 대입하면

$$5x^2 - 4x^2 = 4$$
, $x^2 = 4$, $x = \pm 2$

$$y = 2x$$
이므로 $x = \pm 2$, $y = \pm 4$ (복호동순)

따라서 주어진 연립방정식의 해는

$$\begin{cases} x=1 \\ y=1 \end{cases} \quad \text{ } \underbrace{\mathbb{E}} \begin{cases} x=-1 \\ y=-1 \end{cases} \quad \text{ } \underbrace{\mathbb{E}} \underbrace{\begin{cases} x=2 \\ y=4 \end{cases}} \quad \text{ } \underbrace{\mathbb{E}} \underbrace{\begin{bmatrix} x=-2 \\ y=-4 \end{cases}}$$

51)
$$\begin{cases} x = -\sqrt{5} \\ y = \sqrt{5} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{5} \\ y = -\sqrt{5} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x$$

$$\Rightarrow x^2-y^2=0 \, \text{on} \, \& (x+y)(x-y)=0$$

$$\therefore x = -y$$
 또는 $x = y$

(i)
$$x = -y$$
를 $x^2 + xy + 3y^2 = 15$ 에 대입하면

$$(-y)^2 + (-y) \cdot y + 3y^2 = 15, 3y^2 = 15$$

$$y^2 = 5$$
 $\therefore y = \pm \sqrt{5}$

$$\therefore x = \mp \sqrt{5}, y = \pm \sqrt{5}$$
(복호동순)

(ii)
$$x = y$$
를 $x^2 + xy + 3y^2 = 15$ 에 대입하면

$$y^2 + y \cdot y + 3y^2 = 15$$
, $5y^2 = 15$

$$y^2 = 3$$
 $\therefore y = \pm \sqrt{3}$

$$\therefore x = \pm \sqrt{3}, y = \pm \sqrt{3}$$
 (복호동순)

(i), (ii)에서 구하는 해는

$$\begin{cases} x = -\sqrt{5} \\ y = \sqrt{5} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{5} \\ y = -\sqrt{5} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight} \quad \begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eight$$

52)
$$\begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \quad \text{Eig} \begin{cases} x = -\sqrt{3} \\ y = -\sqrt{3} \end{cases} \quad \text{Eig} \begin{cases} x = 3 \\ y = -3 \end{cases} \quad \text{Eig} \end{cases}$$

$$\Rightarrow \begin{cases} x^2 - y^2 = 0 & \cdots \bigcirc \\ 3x^2 + xy - y^2 = 9 \cdots \bigcirc \end{cases}$$

$$\bigcirc$$
에서 $(x-y)(x+y)=0$ $\therefore x=y$ 또는 $x=-y$

(i) x = y를 ©에 대입하면

$$3y^2 + y^2 - y^2 = 9$$
, $y^2 = 3$: $y = \pm \sqrt{3}$

$$x=y$$
이므로 $y=\pm\sqrt{3}$, $x=\pm\sqrt{3}$ (복호동순)

(ii) x = -y를 ©에 대입하면

$$3y^2 - y^2 - y^2 = 9$$
, $y^2 = 9$: $y = \pm 3$

$$x = -y$$
이므로 $y = \pm 3$, $x = \mp 3$ (복호동순)

따라서 주어진 연립방정식의 해는

$$\begin{cases} x = \sqrt{3} \\ y = \sqrt{3} \end{cases} \stackrel{\leftarrow}{\to} \stackrel{\leftarrow}{\downarrow} \begin{cases} x = -\sqrt{3} \\ y = -\sqrt{3} \end{cases} \stackrel{\leftarrow}{\to} \stackrel{\leftarrow}{\downarrow} \begin{cases} x = 3 \\ y = -3 \end{cases} \stackrel{\leftarrow}{\to} \stackrel{\leftarrow}{\downarrow} \begin{cases} x = 3 \\ y = -3 \end{cases} \stackrel{\leftarrow}{\to} \stackrel{\leftarrow}{\downarrow} \stackrel{\leftarrow}{\downarrow} \begin{cases} x = 3 \\ y = -3 \end{cases} \stackrel{\leftarrow}{\to} \stackrel{\leftarrow}{\to} \stackrel{\leftarrow}{\downarrow} \stackrel{\leftarrow}{\to} \stackrel{\leftarrow}{\downarrow} \stackrel{\leftarrow}{\to} \stackrel{\to}{\to} \stackrel$$

53)
$$\begin{cases} x = -1 \\ y = 1 \end{cases} \quad \text{Eight} \begin{cases} x = -2 \\ y = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x^2 + y^2 + 2x = 0 & \cdots \\ x^2 + y^2 + x + y = 2 & \cdots \end{cases}$$

$$\bigcirc$$
 - \bigcirc 을 하면 $x-y=-2$

$$\therefore y = x + 2 \cdots \bigcirc$$

②을 ③에 대입하면
$$x^2 + (x+2)^2 + 2x = 0$$

$$x^2 + 3x + 2 = 0, (x+1)(x+2) = 0$$

$$\therefore x = -1 + x = -2$$

$$\bigcirc$$
에서 $x = -1$ 이면 $y = 1$, $x = -2$ 이면 $y = 0$

따라서 주어진 연립방정식의 해는

$$\begin{cases} x = -1 \\ y = 1 \end{cases} \stackrel{\text{\tiny \bot}}{=} \begin{cases} x = -2 \\ y = 0 \end{cases}$$

$$54) \begin{cases} x=2 \\ y=-1 \end{cases} \stackrel{\text{\tiny \pm}}{=} \begin{cases} x=3 \\ y=1 \end{cases}$$

$$\Rightarrow \begin{cases} x^2+y^2-7x+y=-10\cdots\bigcirc\\ x^2+y^2-x-2y=5 &\cdots \bigcirc \end{cases}$$

$$\therefore y = 2x - 5 \cdots \bigcirc$$

□을 →에 대입하면

$$x^2 + (2x-5)^2 - 7x + (2x-5) = -10$$

$$x^2-5x+6=0, (x-2)(x-3)=0$$

$$\therefore x = 2 \quad \text{£} \quad x = 3$$

©에서 x = 2이면 y = -1, x = 3이면 y = 1

따라서 주어진 연립방정식의 해는

$$\begin{cases} x = 2 \\ y = -1 \end{cases} \stackrel{\text{\tiny \pm}}{=} \begin{cases} x = 3 \\ y = 1 \end{cases}$$

$$\Rightarrow$$
 2×①+①을 하면 $6x^2-11xy+3y^2=0$

$$(3x-y)(2x-3y) = 0$$
 $\therefore y = 3x$ $\exists \pm \frac{1}{2}$ $y = \frac{2}{3}x$

(i) *y* = 3*x* 를 ∋에 대입하면

$$x^2 - 3x^2 + 9x^2 = 7$$
, $x^2 = 1$ $\therefore x = \pm 1$

(ii)
$$y = \frac{2}{3}x$$
를 \bigcirc 에 대입하면

$$x^2 - \frac{2}{3}x^2 + \frac{4}{9}x^2 = 7$$
, $x^2 = 9$ $\therefore x = \pm 3$

$$y = \frac{2}{3}x$$
이므로 $x = \pm 3$, $y = \pm 2$ (복호동순)

$$\begin{cases} x = 1 \\ y = 3 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = -1 \\ y = -3 \end{cases} \stackrel{\mathcal{L}}{=} \stackrel{\mathcal{L}}{=}$$

$$\begin{cases} x = 3 \\ y = 2 \end{cases} \stackrel{\text{L}}{=} \begin{cases} x = -3 \\ y = -2 \end{cases}$$

56)
$$\begin{cases} x=3 \\ y=1 \end{cases} \stackrel{\text{EL}}{=} \quad \begin{cases} x=-3 \\ y=-1 \end{cases} \stackrel{\text{EL}}{=} \quad \begin{cases} x=1 \\ y=2 \end{cases} \stackrel{\text{EL}}{=} \quad \begin{cases} x=1 \\ y=2 \end{cases}$$

$$\begin{cases} x^2 - 2xy + 2y^2 = 5 & \cdots & \bigcirc \\ 4x^2 - 11xy + 7y^2 = 10 & \cdots & \bigcirc \\ 2 \times & \bigcirc - \bigcirc \\ \stackrel{\bullet}{\Rightarrow} & \text{하면} & -2x^2 + 7xy - 3y^2 = 0 \\ 2x^2 - 7xy + 3y^2 = 0, (x - 3y)(2x - y) = 0 \\ \therefore y = \frac{1}{2}x & 또는 y = 2x \end{cases}$$

(i)
$$y = \frac{1}{3}x$$
를 \bigcirc 에 대입하면

$$x^2 - \frac{2}{3}x^2 + \frac{2}{9}x^2 = 5, x^2 = 9, \quad \therefore x = \pm 3$$

$$y = \frac{1}{3}x$$
이므로 $x = \pm 3$, $y = \pm 1$ (복호동순)

$$x^2 - 4x^2 + 8x^2 = 5, x^2 = 1$$
. $\therefore x = \pm 1$

$$y = 2x$$
이므로 $x = \pm 1, y = \pm 2$ (복호동순)

따라서 주어진 연립방정식의 해는

$$\begin{cases} x=3 \\ y=1 \end{cases} \quad \text{Eig} \begin{cases} x=-3 \\ y=-1 \end{cases} \quad \text{Eig} \begin{cases} x=1 \\ y=2 \end{cases} \quad \text{Eig} \begin{cases} x=-1 \\ y=-2 \end{cases}$$

$$\Rightarrow \begin{cases} x^2 - 6xy + 5y^2 = 0 \cdots \bigcirc \\ x^2 + y^2 = 26 \cdots \bigcirc \end{cases}$$

$$\bigcirc$$
에서 $(x-5y)(x-y)=0$

$$\therefore x = 5y + 2 = y$$

$$25y^2 + y^2 = 26, \Rightarrow 26y^2 = 26 \therefore y = \pm 1$$

(ii) x = y를 ©에 대입하면

$$2y^2 = 26 \implies y^2 = 13 \therefore y = \pm \sqrt{13}$$

$$\therefore x = \pm \sqrt{13}$$
, $y = \pm \sqrt{13}$ (복부호동순)

(i), (ii)에서 구하는 연립방정식의 해는

$$\begin{cases} x=5 \\ y=1 \end{cases} \text{ Eight} \quad \begin{cases} x=-5 \\ y=-1 \end{cases} \text{ Eight} \quad \begin{cases} x=\sqrt{13} \\ y=\sqrt{13} \end{cases} \text{ Eight} \quad \begin{cases} x=\sqrt{13} \\ y=\sqrt{13} \end{cases}$$

58)
$$\begin{cases} x = 4 \\ y = 2 \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = -4 \\ y = -2 \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = -\sqrt{5}i \\ y = \sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \stackrel{\square}{\sqsubseteq} \quad \begin{cases} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \begin{matrix} x = \sqrt{5}i \\ y = -\sqrt{5}i \end{cases} \not\equiv \begin{matrix} x = \sqrt{5}i \end{cases} \not\equiv \begin{matrix} x = \sqrt{5}i \end{cases} \not\equiv \begin{matrix}$$

$$\Rightarrow$$
 에서 $(x-2y)(x+y)=0$ $\therefore x=2y$ 또는 $x=-y$

(i) x = 2y를 ②에 대입하면

$$4y^2 + 4y^2 - 3y^2 = 20$$
, $y^2 = 4$ $\therefore y = \pm 2$

x = 2y이므로 $y = \pm 2$, $x = \pm 4$ (복호동순)

(ii) x = -y를 \bigcirc 에 대입하면

$$y^2 - 2y^2 - 3y^2 = 20$$
, $y^2 = -5$ $\therefore y = \pm \sqrt{5}i$

$$x=-y$$
이므로 $y=\pm\sqrt{5}i$, $x=\mp\sqrt{5}i$ (복호동순)

따라서 주어진 연립방정식의 해는

$$\begin{cases} x = -\sqrt{5} i \\ y = \sqrt{5} i \end{cases} \quad \text{Fig. } \begin{cases} x = \sqrt{5} i \\ y = -\sqrt{5} i \end{cases}$$

59)
$$\begin{cases} x = 2\sqrt{2}i \\ y = 2\sqrt{2}i \end{cases} \quad \text{E} \sqsubseteq \begin{cases} x = -2\sqrt{2}i \\ y = -2\sqrt{2}i \end{cases} \quad \text{E} \sqsubseteq \begin{cases} x = 1 \\ y = -2 \end{cases} \quad \text{E} \sqsubseteq \begin{cases} x = 1 \\ y = -2 \end{cases}$$

$$\Rightarrow \begin{cases} 2x^2 - xy - y^2 = 0 & \cdots \bigcirc \\ 2x^2 - 5xy + y^2 = 16 \cdots \bigcirc \end{cases}$$

$$\bigcirc$$
에서 $(x-y)(2x+y)=0$ $\therefore y=x$ 또는 $y=-2x$

(i) y=x를 ⓒ에 대입하면

$$2x^2 - 5x^2 + x^2 = 16$$
, $x^2 = -8$ $\therefore x = \pm 2\sqrt{2}i$

$$y = x$$
이므로 $x = \pm 2\sqrt{2}i$, $y = \pm 2\sqrt{2}i$ (복호동순)

(ii) y =-2x를 ⓒ에 대입하면

$$2x^2 + 10x^2 + 4x^2 = 16, x^2 = 1$$
. $\therefore x = \pm 1$

$$y = -2x$$
이므로 $x = \pm 1, y = \mp 2$ (복호동순)

따라서 주어진 연립방정식의 해는

$$\begin{cases} x = 2\sqrt{2}\,i \\ y = 2\sqrt{2}\,i \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = -2\sqrt{2}\,i \\ y = -2\sqrt{2}\,i \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\ y = -2 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 1 \\$$

$$60) \ \begin{cases} x=2 \\ y=3 \end{cases} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-2 \\ y=-3 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=1 \\ y=-2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right.}_{} \ \ \underline{\mathtt{E}} \, \underbrace{\hspace{-0.1cm} \left\{ \begin{matrix} x=-$$

$$\Rightarrow \begin{cases} 6x^2 - xy - 2y^2 = 0 \cdots \bigcirc \\ x^2 - xy + y^2 = 7 \cdots \bigcirc \end{cases}$$

①에서
$$(3x-2y)(2x+y)=0$$
 $\therefore y=\frac{3}{2}x$ 또는
$$y=-2x$$

(i)
$$y = \frac{3}{2}x$$
를 ©에 대입하면

$$x^2 - \frac{3}{2}x^2 + \frac{9}{4}x^2 = 7$$
, $x^2 = 4$ $\therefore x = \pm 2$

$$y = \frac{3}{2}x$$
이므로 $x = \pm 2$, $y = \pm 3$ (복호동순)

(ii) y =-2x를 ①에 대입하면

$$x^2 + 2x^2 + 4x^2 = 7, x^2 = 1$$
. $x = +1$

$$y = -2x$$
이므로 $x = \pm 1, y = \mp 2$ (복호동순)

따라서 주어진 연립방정식의 해는

$$\begin{cases} x = 2 \\ y = 3 \end{cases} \quad \text{£} \ \ \, \begin{bmatrix} x = -2 \\ y = -3 \end{bmatrix} \quad \text{£} \ \ \, \begin{bmatrix} x = 1 \\ y = -2 \end{bmatrix} \quad \text{£} \ \ \, \begin{bmatrix} x = -1 \\ y = 2 \end{bmatrix}$$

61)
$$\begin{cases} x = -3 \\ y = -5 \end{cases} \quad \text{E-} \begin{cases} x = 2 \\ y = 0 \end{cases}$$

$$\Rightarrow \begin{cases} 3x^2 + 5y - 2x = 8 \cdots \bigcirc \\ x^2 + 2y - x = 2 \cdots \bigcirc \end{cases}$$

$$\bigcirc -3 \times \bigcirc$$
을 하면 $x-y=2$

$$\therefore y = x - 2 \cdots \bigcirc$$

①을 ①에 대입하면 $x^2 + 2(x-2) - x = 2$

$$x^2+x-6=0, (x+3)(x-2)=0$$

$$\therefore x = -3 \quad \text{£} \stackrel{\vdash}{=} \quad x = 2$$

©에서 x = -3이면 y = -5, x = 2이면 y = 0

$$\begin{cases} x = -3 \\ y = -5 \end{cases}$$
 $\exists x = 2 \\ y = 0 \end{cases}$

$$\Rightarrow \begin{cases} 3x^2 + xy + 2y^2 = 48 \cdots \bigcirc \\ x^2 + 2xy + y^2 = 16 \cdots \bigcirc \end{cases}$$

$$\bigcirc -3 \times \bigcirc$$
을 하면 $-5xy-y^2=0$

$$y(5x+y) = 0$$
 : $y = 0$ 또는 $y = -5x$

(i) y=0를 ∋에 대입하면

$$3x^2 = 48, x^2 = 16$$
 $\therefore x = \pm 4$

$$3x^2 - 5x^2 + 50x^2 = 48, x^2 = 1$$
 $\therefore x = \pm 1$

$$y = -5x$$
이므로 $x = \pm 1, y = \mp 5$ (복호동순)

따라서 주어진 연립방정식의 해는

$$\begin{cases} x=4 \\ y=0 \end{cases} \quad \underbrace{\text{E-}} \begin{cases} x=-4 \\ y=0 \end{cases} \quad \underbrace{\text{E-}} \begin{cases} x=1 \\ y=-5 \end{cases} \quad \underbrace{\text{E-}} \begin{cases} x=-1 \\ y=5 \end{cases}$$

$$\Rightarrow \begin{cases} x^2 + 2xy - 3y^2 = 5 \cdots \bigcirc \\ 2x^2 - 3xy + y^2 = 3 \cdots \bigcirc \end{cases}$$

$$3 \times \bigcirc -5 \times$$
 입을 하면 $-7x^2 + 21xy - 14y^2 = 0$

$$(x-y)(x-2y) = 0 \quad \therefore x = y \quad \text{£} \sqsubseteq \quad x = 2y$$

(i) *x* = *y*를 ⊙에 대입하면

$$y^2 + 2y^2 - 3y^2 = 5$$

이때, $0 \neq 5$ 이므로 해가 없다.

(ii) *x* = 2*y*를 ⊙에 대입하면

$$4y^2 + 4y^2 - 3y^2 = 5$$
, $y^2 = 1$ $\therefore y = \pm 1$

따라서 주어진 연립방정식의 해는

$$\begin{cases} x = 2 \\ y = 1 \end{cases} \quad \text{for } \begin{cases} x = -2 \\ y = -1 \end{cases}$$

64)
$$\begin{cases} x = -1 \\ y = 0 \end{cases} = \underbrace{\frac{1}{2}}_{x = \frac{3}{4}}$$

$$\Rightarrow \begin{cases} 3x^2 + 2x - y = 1 \cdots \bigcirc \\ x^2 - x + 3y = 2 \cdots \bigcirc \end{cases}$$

 \bigcirc 을 \bigcirc 에 대입하면 $(2y-1)^2-(2y-1)+3y=2$

$$4y^2 - 3y = 0, y(4y - 3) = 0$$
 $\therefore y = 0$ $\text{£} = \frac{3}{4}$

©에서
$$y=0$$
이면 $x=-1$, $y=\frac{3}{4}$ 이면 $x=\frac{1}{2}$

따라서 주어진 연립방정식의 해는

$$\begin{cases} x = -1 \\ y = 0 \end{cases} \quad \text{Eight} \begin{cases} x = \frac{1}{2} \\ y = \frac{3}{4} \end{cases}$$

65)
$$\begin{cases} x = \frac{1}{2} \\ y = \frac{1}{2} \end{cases} \quad \text{ } \underline{ } \underline{ } \underline{ } \underline{ } \underbrace{ \begin{cases} x = 2 \\ y = -1 \end{cases} }$$

$$\Rightarrow \begin{cases} x^2+y^2-2x+y=0 & \cdots \bigcirc \\ 2x^2+2y^2-5x+y=-1 \cdots \bigcirc \end{cases}$$

$$2 \times \bigcirc -\bigcirc$$
을 하면 $x+y=1$ $\therefore y=1-x$ \cdots \bigcirc

②을 ③에 대입하면
$$x^2 + (1-x)^2 - 2x + (1-x) = 0$$

$$2x^2 - 5x + 2 = 0, (2x - 1)(x - 2) = 0$$
 $\therefore x = \frac{1}{2}$ $\Xi = \frac{1}{2}$

©에서
$$x = \frac{1}{2}$$
이면 $y = \frac{1}{2}$, $x = 2$ 이면 $y = -1$

따라서 주어진 연립방정식의 해는

$$\begin{cases} x = \frac{1}{2} \\ y = \frac{1}{2} \end{cases}$$

$$= \frac{1}{2} \begin{cases} x = 2 \\ y = -1 \end{cases}$$

66)
$$\begin{cases} x=\sqrt{7} & \text{ for } x=-\sqrt{7} \\ y=-\sqrt{7} & \text{ for } x=-\sqrt{7} \end{cases}$$

$$\Rightarrow \begin{cases} 2x^2 + xy - y^2 = 0 \cdots \bigcirc \\ x^2 + xy + y^2 = 7 \cdots \bigcirc \end{cases}$$

$$\bigcirc$$
에서 $(x+y)(2x-y)=0$

$$\therefore y = -x$$
 또는 $y = 2x$

(i) y =-x를 ⓒ에 대입하면

$$x^2 - x^2 + x^2 = 7, x^2 = 7$$
 $\therefore x = \pm \sqrt{7}$

$$y=-x$$
이므로 $x=\pm\sqrt{7}$, $y=\mp\sqrt{7}$ (복호동순)

(ii) y = 2x를 ②에 대입하면

$$x^2 + 2x^2 + 4x^2 = 7, x^2 = 1$$
 $\therefore x = \pm 1$

$$y = 2x$$
이므로 $x = \pm 1, y = \pm 2$ (복호동순)

따라서 주어진 연립방정식의 해는

67)
$$\begin{cases} x = 2\sqrt{2} \\ y = -\sqrt{2} \end{cases} \quad \text{If } \begin{cases} x = -2\sqrt{2} \\ y = \sqrt{2} \end{cases}$$

$$\mathbf{E} = \begin{cases} x = 2\sqrt{2} \\ y = 2\sqrt{2} \end{cases} \quad \mathbf{E} = \begin{cases} x = -2\sqrt{2} \\ y = -2\sqrt{2} \end{cases}$$

$$\Rightarrow \begin{cases} x^2 + xy - 2y^2 = 0 & \cdots \bigcirc \\ x^2 - xy + 2y^2 = 16 \cdots \bigcirc \end{cases}$$

$$\bigcirc$$
에서 $(x+2y)(x-y)=0$ $\therefore x=-2y$ 또는 $x=y$

(i) x =-2y를 ⓒ에 대입하면

$$4y^2 + 2y^2 + 2y^2 = 16, y^2 = 2$$
 : $y = \pm \sqrt{2}$

$$x=-2y$$
이므로 $y=\pm\sqrt{2}\,,x=\mp2\sqrt{2}\,$ (복호동순)

(ii) *x* = *y*를 ◎에 대입하면

$$y^2 - y^2 + 2y^2 = 16, y^2 = 8$$
 : $y = \pm 2\sqrt{2}$

$$x = y$$
이므로 $y = \pm 2\sqrt{2}$, $x = \pm 2\sqrt{2}$ (복호동순)

$$\begin{cases} x = 2\sqrt{2} \\ y = -\sqrt{2} \end{cases} \not \to \stackrel{\sqsubseteq}{\sqsubseteq} \begin{cases} x = -2\sqrt{2} \\ y = \sqrt{2} \end{cases} \not \to \stackrel{\sqsubseteq}{\sqsubseteq} \begin{cases} x = 2\sqrt{2} \\ y = 2\sqrt{2} \end{cases} \not \to \stackrel{\sqsubseteq}{\sqsubseteq} \begin{cases} x = 2\sqrt{2} \\ y = 2\sqrt{2} \end{cases} \not \to \stackrel{\sqsubseteq}{\sqsubseteq} \end{cases}$$

$$\begin{array}{ll} \text{68)} & \begin{cases} x=1 \\ y=-2 \end{cases} & \text{ } \underbrace{\mathbb{E}} \begin{bmatrix} x=-1 \\ y=2 \end{bmatrix} & \text{ } \underbrace{\mathbb{E}} \begin{bmatrix} x=2 \\ y=3 \end{bmatrix} & \text{ } \underbrace{\mathbb{E}} \begin{bmatrix} x=-2 \\ y=-3 \end{bmatrix} \\ \Leftrightarrow \begin{cases} 6x^2-xy-2y^2=0 & \cdots \bigcirc \\ 4x^2+xy-4y^2=-14 \cdots \bigcirc \end{array} \end{array}$$

①에서
$$(2x+y)(3x-2y)=0$$
 $\therefore y=-2x$ 또는 $y=\frac{3}{2}x$

$$4x^2 - 2x^2 - 16x^2 = -14$$
, $x^2 = 1$ $\therefore x = \pm 1$
 $y = -2x$ 이므로 $x = \pm 1$, $y = \mp 2$ (복호동순)

(ii)
$$y = \frac{3}{2}x$$
를 ©에 대입하면

$$4x^2 + \frac{3}{2}x^2 - 9x^2 = -14, x^2 = 4$$
 : $x = \pm 2$

$$y = \frac{3}{2}x$$
이므로 $x = \pm 2, y = \pm 3$ (복호동순)

따라서 주어진 연립방정식의 해는

$$\begin{cases} x=1 \\ y=-2 \end{cases} \quad \text{Eig} \begin{cases} x=-1 \\ y=2 \end{cases} \quad \text{Eig} \begin{cases} x=2 \\ y=3 \end{cases} \quad \text{Eig} \begin{cases} x=-2 \\ y=-3 \end{cases}$$

$$\begin{cases} x=0\\ y=\sqrt{3}\,i \end{cases} \stackrel{\Xi}{\to} \begin{cases} x=0\\ y=-\sqrt{3}\,i \end{cases} \stackrel{\Xi}{\to} \begin{cases} x=\sqrt{3}\\ y=\sqrt{3} \end{cases} \stackrel{\Xi}{\to} \begin{cases} x=\sqrt{3}\\ y=\sqrt{3} \end{cases}$$

$$\Rightarrow \begin{cases} x^2 - xy = 0 & \cdots \\ 2xy - y^2 = 3 & \cdots \end{cases}$$

$$\bigcirc$$
에서 $x(x-y)=0$

$$\therefore x = 0 \quad \exists \exists x = y$$

(i)
$$x=0$$
을 ©에 대입하면 $-y^2=3$, \Rightarrow $y^2=-3$ $\therefore y=\pm\sqrt{3}\,i$

$$\therefore x = 0, y = \pm \sqrt{3}i$$

(ii)
$$x=y$$
를 ©에 대입하면 $2y^2-y^2=3$ \Rightarrow $y^2=3$ \therefore $y=\pm\sqrt{3}$

$$\therefore x = \pm \sqrt{3}$$
, $y = \pm \sqrt{3}$ (복부호동순)

(i), (ii)에서 구하는 연립방정식의 해는

$$\begin{cases} x=0\\ y=\sqrt{3}\,i \end{cases} \stackrel{\text{\tiny L}}{=} \begin{cases} x=0\\ y=-\sqrt{3}\,i \end{cases} \stackrel{\text{\tiny L}}{=} \begin{cases} x=\sqrt{3}\\ y=\sqrt{3} \end{cases} \stackrel{\text{\tiny L}}{=} \stackrel{\text{\tiny L}}{=} \begin{cases} x=\sqrt{3}\\ y=\sqrt{3} \end{cases}$$

70)

$$\begin{cases} x = 2 \\ y = 1 \end{cases} \stackrel{\text{EL}}{=} \begin{cases} x = -2 \\ y = -1 \end{cases} \stackrel{\text{EL}}{=} \begin{cases} x = \sqrt{3} \\ y = -\sqrt{3} \end{cases} \stackrel{\text{EL}}{=} \begin{cases} x = \sqrt{3} \\ y = -\sqrt{3} \end{cases}$$

$$\Rightarrow \begin{cases} x^2 - xy - 2y^2 = 0 \cdots \bigcirc \\ 2x^2 + y^2 = 9 \cdots \bigcirc \end{cases}$$

$$\bigcirc$$
에서 $(x-2y)(x+y)=0$

$$\therefore x = 2y$$
 또는 $x = -y$

(i) x = 2y를 ②에 대입하면

$$8y^2 + y^2 = 9, \Rightarrow 9y^2 = 9 \therefore y = \pm 1$$

(ii) x =-y를 ⓒ에 대입하면

$$2y^2 + y^2 = 9 \implies 3y^2 = 9 \therefore y = \pm \sqrt{3}$$

$$\therefore x = \pm \sqrt{3}$$
, $y = \mp \sqrt{3}$ (복부호동순)

(i), (ii)에서 구하는 연립방정식의 해는

$$\begin{cases} x=2\\y=1 \end{cases} \quad \Xi \stackrel{\sqsubseteq}{\sqsubseteq} \quad \begin{cases} x=-2\\y=-1 \end{cases} \qquad \Xi \stackrel{\sqsubseteq}{\sqsubseteq} \quad \begin{cases} x=\sqrt{3}\\y=-\sqrt{3} \end{cases} \quad \Xi \stackrel{\sqsubseteq}{\sqsubseteq} \quad \begin{cases} x=\sqrt{3}\\y=-\sqrt{3} \end{cases}$$

71)
$$\begin{cases} x=2 \\ y=-1 \end{cases} \quad \text{E} \vdash \begin{cases} x=5 \\ y=2 \end{cases}$$

$$\therefore x = y + 3 \cdots \boxdot$$

 \bigcirc 을 \bigcirc 에 대입하면 $y^2 + 2(y+3) - 3y = 8$

$$y^2-y-2=0$$
, $(y+1)(y-2)=0$

$$\therefore y = -1 \quad \text{£} \stackrel{}{=} \quad y = 2$$

y = -1 이면 x = 2, y = 2이면 x = 5

$$\begin{cases} x = 2 \\ y = -1 \end{cases} \stackrel{\mathcal{L}}{=} \begin{cases} x = 5 \\ y = 2 \end{cases}$$