Aircraft Flight Dynamics

Roberto A. Bunge

AA241X
April 13 2015
Stanford University

Overview

1. Equations of motion

- Full Nonlinear EOM
- Decoupling of EOM
- Simplified Models

2. Aerodynamics

- Dimensionless coefficients
- Stability & Control Derivatives

3. Trim Analysis

- o Level, climb and glide
- Turning maneuver

4. Linearized Dynamics Analysis

- Longitudinal
- Lateral

Equations of Motion

 Dynamical system is defined by a transition function, mapping states & control inputs to future states

$$\dot{X} = f(X, \delta)$$

States and Control Inputs

$$X = \begin{bmatrix} x \\ y \\ z \\ u \\ v \\ \theta \\ \phi \\ \psi \\ p \\ q \\ r \end{bmatrix} \quad \text{position}$$

$$\delta = \begin{bmatrix} \delta_e \\ \delta_t \\ \delta_a \\ \delta_r \end{bmatrix} \quad \text{elevator}$$

$$\delta = \begin{bmatrix} \delta_e \\ \delta_t \\ \delta_a \\ \delta_r \end{bmatrix} \quad \text{aileron}$$

$$\delta = \begin{bmatrix} \delta_r \\ \delta_t \\ \delta_r \\ \delta_r \end{bmatrix} \quad \text{are determined}$$

$$\delta = \begin{bmatrix} \delta_r \\ \delta_t \\ \delta_r \\ \delta_r \end{bmatrix} \quad \text{and}$$

$$\delta = \begin{bmatrix} \delta_r \\ \delta_t \\ \delta_r \\ \delta_r \\ \delta_r \end{bmatrix} \quad \text{and}$$

There are alternative ways of defining states and control inputs

Full Nonlinear EOM

• Dynamics Eqs.*

Linear Acceleration = Aero + gravity + Gyro

$$m\dot{u} = X - mg\sin(\theta) + m(rv - qw)$$

$$m\dot{v} = Y + mg\sin(\phi)\cos(\theta) + m(pw - ru)$$

$$m\dot{w} = Z + mg\cos(\phi)\cos(\theta) + m(qu - pv)$$

Angular Acceleration = Aero + Gyro

$$I_{xx}\dot{p} = l + (I_{yy} - I_{zz})qr$$

$$I_{yy}\dot{q} = m + (I_{zz} - I_{xx})pr$$

$$I_{zz}\dot{r} = n + (I_{xx} - I_{yy})pq$$

Kinematic Eqs.:

Relation between position and velocity

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{bmatrix} = {}^{N}R^{B}_{(\phi,\theta,\psi)} \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$

Relation between attitude and angular velocity

$$\dot{\phi} = p + q\sin(\phi)\tan(\theta) + r\cos(\phi)\tan(\theta)$$

$$\dot{\theta} = q\cos(\phi) - r\sin(\phi)$$

$$\dot{\psi} = q\frac{\sin(\phi)}{\cos(\theta)} + r\frac{\cos(\phi)}{\cos(\theta)}$$

^{*}Assuming calm atmosphere and symmetric aircraft (Neglecting cross-products of inertia

Nonlinearity and Model Uncertainty

Sources of nonlinearity:

- Trigonometric projections (dependent on attitude)
- Gyroscopic effects
- Aerodynamics
 - Dynamic pressure
 - Reynolds dependencies
 - Stall & partial separation

Model uncertainties:

- Gravity & Gyroscopic terms are straightforward, provided we can measure mass, inertias and attitude accurately
- **Aerodynamics is harder**, especially viscous effects: lifting surface drag, propeller & fuselage aerodynamics

Flight Dynamics and Navigation Decoupling

The full nonlinear EOMs have a cascade structure

Flight Dynamics

$$X_{dyn} = \begin{bmatrix} u \\ v \\ w \\ \theta \\ \phi \\ p \\ q \end{bmatrix} \qquad \delta_{dyn} = \begin{bmatrix} \delta_e \\ \delta_t \\ \delta_a \\ \delta_r \end{bmatrix}$$

Navigation

$$X_{nav} = \begin{bmatrix} x \\ y \\ z \\ \psi \end{bmatrix} \delta_{nav} = \begin{bmatrix} u \\ v \\ w \\ \theta \\ \phi \\ p \\ q \\ r \end{bmatrix}$$

- Flight Dynamics is the "inner dynamics"
- Navigation is "outer dynamics": usually what we care about

Longitudinal & Lateral Decoupling

For a symmetric aircraft near a symmetric flight condition, the Flight Dynamics can be further decoupled in two independent parts

Longitudinal Dynamics

$$X_{lon} = \begin{bmatrix} u \\ w \\ \theta \\ a \end{bmatrix} \qquad \delta_{lon} = \begin{bmatrix} \delta_e \\ \delta_t \end{bmatrix}$$

Lateral-Directional Dynamics

$$X_{lat} = \begin{bmatrix} v \\ \phi \\ p \\ r \end{bmatrix} \qquad \delta_{lat}^* = \begin{bmatrix} \delta_a \\ \delta_r \end{bmatrix}$$

• Although usually used in perturbational (linear) models, many times this decoupling can also be used for nonlinear analysis (e.g. symmetric flight with large vertical motion)

^{*} As we shall see, throttle also has effects on the lateral dynamics, but these can be eliminated with appropriate aileron and rudder

Alternative State Descriptions

• Translational dynamics:

- 1. {u, v, w}: most useful in 6 DOF flight simulation
- 2. {V, alfa, beta}: easiest to describe aerodynamics

Longitudinal dynamics:

- 1. {V, alfa, theta, q}: conventional description
- 2. {V, CL, gamma, q}: best for nonlinear trajectory optimization
- 3. {V, CL, theta, q}: all states are measurable, more natural for controls

Transformations:

$$u = V \cos(\alpha) \cos(\beta)$$

$$v = V \sin(\beta)$$

$$w = V \sin(\alpha) \cos(\beta)$$

$$C_L = a_o(\alpha - \alpha_{L_o})$$

$$\gamma = \theta - \alpha$$

$$C_L \approx -\frac{m}{\frac{1}{2}\rho S} \frac{accel_z}{V^2}$$

Simplified Models

- Many times we can neglect or assume aspects of the system and look at the overall behavior
- Its important to know what you want to investigate

x,y,z: North, East, Down position coordinates

 ε : course over ground

Model	States	Controls	EOM	Constraints
2 DOF navigation+ 1 DOF point mass	x,y,ε	$\dot{\mathcal{E}}$	$\dot{x} = V_o \sin(\varepsilon)$ $\dot{y} = V_o \cos(\varepsilon)$ $\varepsilon = \int \dot{\varepsilon} dt$	$\dot{\varepsilon} \leq \frac{V_o}{R_{\min}}$
3 DOF navigation + 1 DOF point mass	x,y,z,ε	$\dot{\varepsilon},\gamma$	$\dot{x} = V_o \sin(\varepsilon) \cos(\gamma)$ $\dot{y} = V_o \cos(\varepsilon) \cos(\gamma)$ $\dot{z} = -V_o \sin(\gamma)$	$\gamma \leq \gamma_{\max}$
3 DOF navigation + 2 DOF point mass	x,y,z,γ,ε	V, C_L, ϕ	$\dot{\varepsilon} = \frac{1}{2} \rho \frac{m}{S}^{-1} V C_L \sin(\phi)$ $\dot{\gamma} = \frac{1}{2} \rho \frac{m}{S}^{-1} V C_L \cos(\phi) - \frac{g \cos(\gamma)}{V}$	$V \le V_{\text{max}}$ $C_L < C_{L_{\text{max}}}$ $\phi \le \phi_{\text{max}}$
3 DOF navigation + 3 DOF point mass	$x,y,z,\gamma,\varepsilon,V$	T,C_L,ϕ	$\dot{V} = \frac{T}{m} - \frac{g}{m} \sin(\gamma) - \frac{1}{2} \rho \frac{m}{S}^{-1} V^2 C_D(C_L)$	$T \le T_{\max}$
Many more models!				••••

"Everything should be made as simple as possible, but not more" (~A. Einstein)

+ dynamics + variables + details

Aerodynamics

• In the full nonlinear EOM aerodynamic forces and moments are:

• Given how experimental data is presented, and to separate different aerodynamic effects, its easier to use:

- Dimensional analysis allows to factor different contributions:
 - Dynamic pressure
 - Aircraft size
 - Aircraft geometry
 - Relative flow angles
 - o Reynolds number

$$L = \frac{1}{2} \rho V^2 SC_L$$
 dyn. pressure size Aircraft and flow geometry, and Reyonolds

Aerodynamics II

- The dimensionless forces and moments $C_L, C_D, C_Y, C_T, C_L, C_m, C_n$ are a function of:
 - i. Aircraft geometry (fixed): AR, taper, dihedral, etc.
 - ii. Control surface deflections $\delta_e, \delta_a, \delta_r$

iii. Relative flow angles:
$$\alpha \approx \frac{w}{V}$$
, $\beta \approx \frac{v}{V}$, $\lambda = \frac{V}{\Omega R}$, $\hat{p} = \frac{pb}{2V}$, $\hat{q} = \frac{qc}{2V}$, $\hat{r} = \frac{rb}{2V}$

iv. Reynolds number: Re =
$$\frac{\rho cV}{u}$$
 if the variation of speeds is small, it can be assumed constant and factored out

- Alfa and lambda: dependence is nonlinear and should be preserved if possible
- The rest can be represented with linear terms (Stability and Control Derivatives)
- At low AoA some stability derivatives depend on alfa, and at high angles of attack all are affected by alf

Stability and Control Derivatives

		Stak	pility Derivta	ives		Cor	trol Derivat	ives	Nonline	ear/Trim
	lpha'	β	ĝ	\hat{q}	r	$\delta_{\!_{e}}$	$\delta_{\!a}$	δ_{r}	α	λ
CL	$C_{L_{lpha}}$			$oxed{C_{L_q}}$		$C_{L_{\delta_e}}$			$\bar{C}_L(a)$	(α,λ)
CD	$C_{D_{lpha}}$			C_{D_q}		$C_{D_{\delta_e}}$			$\bar{C}_{\scriptscriptstyle D}(c)$	(α, λ)
СУ		$C_{Y_{eta}}$			C_{Y_r}			$C_{Y_{\delta_r}}$		
Cl		$oxed{C_{l_eta}}$	C_{l_p}		C_{l_r}		$oldsymbol{C}_{l_{\delta_a}}$	$C_{l_{\delta_r}}$		$\overline{C}_l(\lambda)$
Cm	$C_{m_{lpha}}$			C_{m_q}		$C_{m_{\delta_e}}$			\overline{C}_m ((α,λ)
Cn		$C_{n_{\beta}}$	C_{n_p}		C_{n_r}		$C_{n_{\delta_a}}$	$C_{n_{\delta_r}}$		$\overline{C}_n(\lambda)$
СТ										$C_T(\lambda)$

 δ are small angular deflections w.r.t. a zero position, usually the trim deflection

 α' is an angle of attack perturbation around α

~zero
Minor importance
Estimate via calculations
Estimate via calculations or flight testing
Estimate or trim out via flight testing
Hard to estimate

Stability and Control Derivatives II

Examples of force and moment expressions:

Lift:
$$C_L = \overline{C}_L(\alpha_0, \lambda) + C_{L_\alpha}\alpha' + C_{L_\alpha}\hat{q} + C_{L_{\delta_a}}(\delta_e - \delta_{e_0})$$

Pitching moment: $C_m = \overline{C}_m(\alpha_0, \lambda) + C_{m_\alpha}\alpha' + C_{m_q}\hat{q} + C_{m_{\delta_e}}(\delta_e - \delta_{e_0})$

Rolling moment: $C_l = C_{l_p} \hat{p} + C_{l_{\delta_a}} \delta_a + C_{l_{\beta}} \beta + C_{l_{\delta_r}} \delta_r$

Example dimensionless pitching equation*:

$$\hat{I}_{xx}\hat{q} = C_m = \overline{C}_m(\alpha_0, \lambda) + C_{m_\alpha}\alpha' + C_{m_q}\hat{q} + C_{m_{\delta_e}}(\delta_e - \delta_{e_0})$$

^{*} Neglecting gyroscopic terms

Aerodynamics IV

Bihrle, et. al. (1978)

LSPAD, Selig, et. al. (1997)

0.4 — Total — Wing — Wertcal Tail — Birdsontal Tail — Total — Wertcal Tail — Total — Wertcal Tail — Total — Wertcal Tail — Wer

Zilliac (1983)

Trim Analysis

• Flight conditions at which if we keep controls fixed, the aircraft will remain at that same state (provided no external disturbances)

- For each aircraft there is a mapping between trim states and trim control inputs
 - o Analogy: car going at constant speed, requires a constant throttle position

$$\dot{X} = f(X_{trim}, \delta_{trim}) = 0$$
 $X_{trim} = g_{trim}(\delta_{trim})$

- The mapping g() is not always one-to-one, could be many-to-many!
- If internal dynamics are stable, then flight condition converges on trim condition

An idea: Trim + Regulator Controller

- Inverse trim: set control inputs that will take us to the desired state
- II. Regulator: to stabilize modes and bring us back to desired trim state in the presence of disturbances

Longitudinal Trim

Simple wing-tail system

Longitudinal Trim (II)

• Moment balance:

$$0 = M_{wing} - h_{CG}L_{wing} + x_{tail}L_{tail}$$

$$\rightarrow 0 = 1/2\rho V^2 \left[c_{wing} S_{wing} C_{m_{wing}} - h_{CG} S_{wing} C_{L_{wing}} + h_{tail} S_{tail} C_{L_{tail}} \right]$$

$$\Rightarrow \frac{h_{CG}}{c_{wing}}C_{L_{wing}}(\alpha_{trim}) = \frac{h_{tail}S_{tail}}{c_{wing}S_{wing}}C_{L_{tail}}(\alpha_{trim}, \delta e_{trim}) - C_{m_{wing}}$$

Elevator trim defines trim AoA, and consequently trim CL

Longitudinal Trim (III)

Force balance*

$$mg = L\cos(\gamma) \approx L = \frac{1}{2}\rho V^2 SC_L$$

$$\Rightarrow V^2 = \frac{mg}{\frac{1}{2}\rho SC_L(\delta e_{trim})}$$

Trim Elevator defines trim Velocity!

$$T = D + L\sin(\gamma) \approx D + L\gamma$$

$$\Rightarrow \gamma = \frac{T_{(\delta t_{trim})}}{mg} - \frac{1}{(L/D)_{(\delta e_{trim})}}$$

Elevator & Thrust both define Gamma!

*Assuming small Gamma

Longitudinal Trim (IV)

- How do we get an aircraft to climb? (Gamma > 0)
- Two ways:
 - 1. Elevator up
 - ▼ Elevator up increases AoA, which increases CL
 - Increased CL, accelerates aircraft up
 - Up acceleration, increases Gamma
 - Increased Gamma rotates Lift backwards, slowing down the aircraft
 - 2. Increase Thrust
 - Increased thrust increases velocity, which increases overall Lift
 - Increased Lift, accelerates aircraft up
 - Up acceleration, increases Gamma
 - Increased Gamma rotates Lift backwards, slowing down the aircraft to original speed (set by Elevator, remember!)
- Elevator has its limitations
 - o When L/D max is reached, we start going down
 - When CL max is reached, we go down even faster!

Experimental Trim Relations

- Theoretical relations hold to some degree experimentally
- In reality:
 - Propeller downwash on horizontal tail has a significant distorting effect
 - Reynolds variations with speed, distort aerodynamics
- One can build trim tables experimentally
 - Trim flight at different throttle and elevator positions
 - o Measure:
 - Average airspeed
 - Average flight path angle Gamma
 - Phugoid damper would be very helpful
- One could almost fly open loop with trim tables!

Turning Maneuver

Centripetal force balance:

$$L\sin(\phi) = \frac{mV^2}{R}$$

$$\Rightarrow R = \frac{mV^2}{\frac{1}{2}\rho V^2 SC_L \sin(\phi)} = \frac{m}{S} \frac{1}{\frac{1}{2}\rho C_L \sin(\phi)}$$

$$R_{\min} = \frac{m}{S} \frac{1}{\frac{1}{2} \rho C_{L_{\max}} \sin(\phi_{\max})}$$

• Depends on: $\phi_{\text{max}}, \frac{m}{S} \& C_{L_{\text{max}}}$

Turning Maneuver II

- 1. Elevator deflection to achieve high CL in a turn
- 2. Do we care about loosing altitude?
- 3. Maximum speed and thrust
- 4. Controls: maneuver can be short lived, so high bandwidth is require for tracking tracking
 - 1. Roll tracking, etc.
 - 2. Sensor bandwidth
- 5. Maximum G-loading
- 6. Maximum CL and stall
- 7. Aerolasticity of controls at high loading

Elevator to achieve CL:

• The pitching moment balance equation in dimensionless form:

$$\hat{I}_{xx}\hat{q} = \overline{C}_m(\alpha, \lambda_0) + C_{m_q}\hat{q} + C_{m_{\delta_e}}(\delta_e - \delta_{e_0})$$

• Assume that before the turn we have trimmed the aircraft in level flight at the desired alfa (CL):

$$\Rightarrow C_{m_{\delta_{e}}}\delta_{e_{0}} = \overline{C}_{m}(\alpha,\lambda_{0})$$

Turning Maneuver III

• The pitch rate is the projection of the turn rate onto the pitch axis:

$$q = \dot{\varepsilon}\sin(\phi) = \frac{V}{R}\sin(\phi)$$
$$\Rightarrow \hat{q} = \frac{qc}{2V} = \frac{c\sin(\phi)}{2R}$$

• To maintain the same alfa (CL), extra elevator is required to counter the pitch rate

$$\delta_e = -C_{m_q} \frac{c \sin(\phi)}{2R}$$

• To take advantage of elevator throw, horizontal tail incidence has set appropriately, otherwise turning ability might be limited

Linearized Dynamics Analysis

- Many flight dynamic effects can be analyzed & explained with Linearized Dynamics
- Most of the times we linearize dynamics around Trim conditions

- Useful to synthesize linear regulator controllers
 - Provide stability in the face of uncertainty in different dynamic parameters
 - They help in rejecting disturbances
 - o They can also help in going from one trim state to the another, provided they are not "too far away"

Linearized Dynamics

- Limited to a small region (what does "small" mean?)
 - Especially due to trigonometric projections and nonlinear alfa dependences
- In practice, nonlinear dynamics bear great resemblance
 - We can gain a lot of insight by studying dynamics in the vicinity a flight condition
- We can separate into longitudinal and lateral dynamics (If aircraft and flight condition are symmetric)
- Linearized models also provide some information about trim relations

Longitudinal Static Stability

- Static stability
 - O Does pitching moment increase when AoA increases?
 - o If so, then divergent pitch motion (a.k.a statically unstable)

- CG needs to be ahead of quarter chord!
- As CG goes forward, static margin increases, but... more elevator deflection is required for trim and trim drag increases

Longitudinal Dynamics

Longitudinal modes

- 1. Short period
- 2. Phugoid

• Short period:

- Weather cock effect of horizontal tail
- o Usually highly damped, if you have a tail
- Dynamics is on AoA

• Phugoid:

- Exchange of potential and kinetic energy (up->speed down, down-> speed up)
- o Lightly damped, but slow
- Causes "bouncing" around pitch trim conditions
- Damping depends on drag: low drag, low damping!
- How can we stabilize/damp it?
- Propeller dynamics: as a first order lag
- Idea for Phugoid damper design: reduced 2nd order longitudinal system

$$\omega_{ph} \approx \sqrt{2} \frac{8}{V_o}$$

$$\zeta_{ph} \approx \frac{1}{\sqrt{2}} \frac{C_{D_0}}{6}$$

Lateral Dynamics

- Roll subsidence
- Dutch roll
- Spiral

Roll subsidence:

Naturally highly damped "Rolling in honey" effect
$$\sigma_{roll} \approx \frac{\frac{1}{2}\rho V_o Sb^2}{I_{xx}} C_{l_p}$$

Dutch roll:

- Oscillatory motion
- Usually stable, and sometimes lightly damped
- Exchange between yaw rate, sideslip and roll rate

Spiral:

Usually unstable, but slow enough to be easily stabilized

$$\sigma_{spiral} \approx \frac{\frac{1}{2}\rho V_o S b^2}{I_{zz}} (C_{n_r} - C_{n_\beta} \frac{C_{l_r}}{C_{l_\beta}})$$

- Dutch Roll and Spiral stability are competing factors
 - Dihedral and vertical tail volume dominate these
- Note: see "Flight Vehicle Aerodynamics", Ch. 9 for more details

Vortex Lattice Codes

- Good at predicting inviscid part of attached flow around moderate aspect ratio lifting surfaces
- Represents potential flow around a wing by a lattice of horseshoe vortices

VLM Codes (II)

- Viscous drag on a wing, can be added for with "strip theory"
 - o Calculate local Cl with VLM
 - o Calculate 2D Cd(Cl) either from a polar plot of airfoil
 - Add drag force in the direction of the local velocity

Usually not included:

- Fuselage
 - can be roughly accounted by adding a "+" lifting surface
- Propeller downwash

VLMs can roughly predict:

- Aerodynamic performance (L/D vs CL)
- Stall speed (CLmax)
- Trim relations
- Stability Derivatives
 - Linear control system design
 - Nonlinear Flight simulation (non-dimensional aerodynamics is linear, but dimensional aerodynamics are nonlinear and EOMs are nonlinear)

VLM Codes (III)

• AVL:

- Reliable output
- Viscous strip theory
- o No GUI & cumbersome to define geometry

• XFLR:

- o Reliable output
- Viscous strip theory
- o GUI to define geometry
- Good analysis and visualization tools

Tornado

- o I've had some discrepancies when validating against AVL
- Written in Matlab

QuadAir

- Good match with AVL
- Written in Matlab
- Easy to define geometries
- Viscous strip theory soon
- o Originally intended for flight simulation, not aircraft design
 - Very little native visualization and performance analysis tools

Recommended Readings

1. Fundamentals of Flight, Shevell

o Big picture of Aerodynamics, Flight Dynamics and Aircraft Design

2. Dynamics of Flight, Etkin

 Very good development of trim and linearized flight dynamics and aerodynamics. Some ideas for control

3. Flight Vehicle Aerodynamics, Drela

• Great mix between real world and mathematical aerodynamics and flight dynamics. No controls. Ch. 9 very clear and useful development of linearized models

4. Automatic Control of Aircraft and Missiles, Blakelock

o In depth description of flight EOMs and many ideas for linear regulators

5. Low-speed Aerodynamics, Plotkin & Katz

• Great book on panel methods (only if you want to write your own panel code)