Листок 3 МАТЕМАТИЧЕСКИЙ АНАЛИЗ-I

Открытые множества, компактность, канторово множество, предел последовательности, фундаментальные последовательности

- 1. Докажите, что каждое непустое открытое множество U на прямой является объединением не более чем счётного набора непересекающихся открытых промежутков.
 - 2. Докажите, что замкнутое подмножество компакта всегда компактно.
- **3.** Множество называется совершенным, если оно замкнуто и не имеет изолированных точек. Докажите, что канторово множество совершенно.
 - 4. Докажите, что канторово множество нигде не плотно, а дополнение к нему плотно.
- **5.** Рассмотрим поле рациональных функций над \mathbb{R} . Приведите пример фундаментальной последовательности, которая не сходится.
- **6.** Пусть a>0. Докажите, что $a^{1/n}\to 1$ при $n\to\infty$. Более общо, пусть $x_n\in [\varepsilon,M]$, тогда $\sqrt[n]{x_n}\to 1$.
 - 7. Найдите пределы последовательностей

(a)
$$\lim_{n \to \infty} \sqrt{n^2 + 7n + 7} - \sqrt{n^2 + 5n + 5}$$
, (b) $\lim_{n \to \infty} \left(\frac{5^n + 7^n}{2}\right)^{1/n}$, (c) $\lim_{n \to \infty} n^{1/n}$

8. Найдите пределы последовательности $(x_n)_{n\in\mathbb{N}}$, где

(a)
$$x_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1) \cdot n}$$
, (b) $x_{n+1} = \sqrt{1 + x_n}, x_1 = 1$.

- **9.** (а) Докажите, что последовательность $((1+\frac{1}{n})^n)_{n\in\mathbb{N}}$ является возрастающей, а последовательность $((1+\frac{1}{n})^{n+1})_{n\in\mathbb{N}}$ является убывающей.
- (b) Докажите, что пределы обеих последовательностей из пункта (a) совпадают. Это число есть основание натуральных логарифмов $e\approx 2,71828\ldots$
 - (c) Докажите неравенство $\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)^{n+1}$ и покажите что оно влечёт $\left(\frac{n}{e}\right)^n < n! \leqslant en\left(\frac{n}{e}\right)^n, \ \forall n \in \mathbb{N}.$
 - **10.** Докажите, что если $x_n/x_{n-1} \to A$, при $n \to \infty$, то $\sqrt[n]{x_n} \to A$, при $n \to \infty$.
 - **11.** Пусть $x_1, x_2, \dots, x_N > 0$. Найдите, $\lim_{n \to \infty} \sqrt[n]{x_1^n + \dots + x_N^n}$.
 - 12. Найдите пределы

$$\limsup_{n \to \infty} \left(1 + \frac{(-1)^n}{n^2} \right)^{n^2}, \quad \liminf_{n \to \infty} \left(1 + \frac{(-1)^n}{n^2} \right)^{n^2}$$

1