INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT299 8-bit universal shift register; 3-state

Product specification
File under Integrated Circuits, IC06

December 1990

74HC/HCT299

FEATURES

- Multiplexed inputs/outputs provide improved bit density
- Four operating modes:
 - shift left
 - shift right
 - hold (store)
 - load data
- Operates with output enable or at high-impedance OFF-state (Z)
- · 3-state outputs drive bus lines directly
- · Can be cascaded for n-bits word length
- Output capability: bus driver (parallel I/Os), standard (serial outputs)
- · I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT299 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT299 contain eight edge-triggered D-type flip-flops and the interstage logic necessary to perform synchronous shift-right, shift-left, parallel load and hold operations. The type of operation is determined by the mode select inputs (S_0 and S_1), as shown in the mode select table.

All flip-flop outputs have 3-state buffers to separate these outputs (I/ O_0 to I/ O_7) such, that they can serve as data inputs in the parallel load mode. The serial outputs (Q_0 and Q_7) are used for expansion in serial shifting of longer words.

A LOW signal on the asynchronous master reset input (\overline{MR}) overrides the S_n and clock (CP) inputs and resets the flip-flops. All other state changes are initiated by the rising edge of the clock pulse. Inputs can change when the clock is either state, provided that the recommended set-up and hold times, relative to the rising edge of CP, are observed.

A HIGH signal on the 3-state output enable inputs (\overline{OE}_1 or \overline{OE}_2) disables the 3-state buffers and the I/O_n outputs are set to the high-impedance OFF-state. In this condition, the shift, hold, load and reset operations can still occur. The 3-state buffers are also disabled by HIGH signals on both S₀ and S₁, when in preparation for a parallel load operation.

QUICK REFERENCE DATA

GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns

SYMBOL	DADAMETED	CONDITIONS	TYP	LINUT	
STIVIBUL	PARAMETER	CONDITIONS	HC HCT		UNIT
t _{PHL} / t _{PLH}	propagation delay	C _L = 15 pF; V _{CC} = 5 V			
	CP to Q ₀ , Q ₇		20	19	ns
	CP to I/O _n		20	19	ns
t _{PHL}	\overline{MR} to Q ₀ , Q ₇ or I/O _n		20	23	ns
f _{max}	maximum clock frequency		50	46	MHz
C _I	input capacitance		3.5	3.5	pF
C _{I/O}	input/output capacitance		10	10	pF
C _{PD}	power dissipation capacitance per package	notes 1 and 2	120	125	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_1 \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

fo = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

74HC/HCT299

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 19	S ₀ , S ₁	mode select inputs
2, 3	\overline{OE}_1 , \overline{OE}_2	3-state output enable inputs (active LOW)
7, 13, 6, 14, 5, 15, 4, 16	I/O ₀ to I/O ₇	parallel data inputs or 3-state parallel outputs (bus driver)
8, 17	Q ₀ , Q ₇	serial outputs (standard output)
9	MR	asynchronous master reset input (active LOW)
10	GND	ground (0 V)
11	D _{SR}	serial data shift-right input
12	СР	clock input (LOW-to-HIGH, edge-triggered)
18	D _{SL}	serial data shift-left input
20	V _{CC}	positive supply voltage

8-bit universal shift register; 3-state

74HC/HCT299

MODE SELECT TABLE

INPUTS				RESPONSE
MR	S ₁	S ₀	СР	RESPONSE
L	X	Х	Х	asynchronous reset; Q ₀ –Q ₇ = LOW
Н	Н	Н	1	parallel load; $I/O_n \rightarrow Q_n$
Н	L	Н	1	shift right; $D_{SR} \rightarrow Q_0$, $Q_0 \rightarrow Q_1$ etc.
Н	Н	L	1	shift left; $D_{SL} \rightarrow Q_7$, $Q_7 \rightarrow Q_6$ etc.
Н	L	L	X	hold

Notes

1. H = HIGH voltage level

L = LOW voltage level

X = don't care

↑ = LOW-to-HIGH CP transition

74HC/HCT299

8-bit universal shift register; 3-state

74HC/HCT299

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver (parallel I/Os)

standard (serial outputs)

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

		T _{amb} (°C)								TEST CONDITIONS		
0)/4501	PARAMETER	74HC									WAVEFORMO	
SYMBOL		+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(*)		
t _{PHL} / t _{PLH}	propagation delay CP to Q ₀ , Q ₇		66 24 19	200 40 34		250 50 43		300 60 51	ns	2.0 4.5 6.0	Fig.6	
t _{PHL} / t _{PLH}	propagation delay CP to I/O _n		66 24 19	200 40 34		250 50 43		300 60 51	ns	2.0 4.5 6.0	Fig.6	
t _{PHL} /	propagation delay MR to Q ₀ , Q ₇ or I/O _n		66 24 19	200 40 34		250 50 43		300 60 51	ns	2.0 4.5 6.0	Fig.7	
t _{PZH}	$\frac{\text{3-state output enable time}}{\overline{\text{OE}}_n \text{ to I/O}_n}$		50 18 14	155 31 26		195 39 33		235 47 40	ns	2.0 4.5 6.0	Fig.9	
t _{PZL}	3-state output enable time \overline{OE}_n to I/O_n		41 15 12	130 26 22		165 33 28		195 39 33	ns	2.0 4.5 6.0	Fig.9	
t _{PHZ}	$\frac{\text{3-state output disable time}}{\overline{\text{OE}}_n \text{ to I/O}_n}$		66 24 19	185 37 31		230 46 39		280 56 48	ns	2.0 4.5 6.0	Fig.9	
t _{PLZ}	$\frac{\text{3-state output disable time}}{\overline{\text{OE}}_n \text{ to I/O}_n}$		55 20 16	155 31 26		195 39 33		235 47 40	ns	2.0 4.5 6.0	Fig.9	
t _{THL} / t _{TLH}	output transition time bus driver (I/O _n)		14 5 4	60 12 10		75 15 13		90 18 15	ns	2.0 4.5 6.0	Fig.6	
t _{THL} / t _{TLH}	output transition time standard (Q ₀ , Q ₇)		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.6	
t _W	clock pulse width HIGH or LOW	80 16 14	17 6 5		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.6	
t _W	master reset pulse width LOW	80 16 14	19 7 6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.7	

8-bit universal shift register; 3-state

74HC/HCT299

SYMBOL					T _{amb} (TES	T CONDITIONS			
	PARAMETER				74H	UNIT		WAVEFORMS			
			+25			-40 to +85		-40 to +125		V _{CC}	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(' /	
t _{rem}	removal time MR to CP	5 5 5	-14 -5 -4		5 5 5		5 5 5		ns	2.0 4.5 6.0	Fig.7
t _{su}	set-up time D _{SR} , D _{SL} to CP	100 20 17	33 12 10		125 25 21		150 30 26		ns	2.0 4.5 6.0	Fig.6
t _{su}	set-up time S ₀ , S ₁ to CP	100 20 17	33 12 10		125 25 21		150 30 26		ns	2.0 4.5 6.0	Fig.8
t _{su}	set-up time I/O _n to CP	125 25 21	39 14 11		155 31 26		190 38 32		ns	2.0 4.5 6.0	Fig.6
t _h	hold time I/O _n , D _{SR} , D _{SL} to CP	0 0 0	-14 -5 -4		0 0 0		0 0 0		ns	2.0 4.5 6.0	Fig.6
t _h	hold time S ₀ , S ₁ to CP	0 0 0	-28 -10 -8		0 0 0		0 0 0		ns	2.0 4.5 6.0	Fig.8
f _{max}	maximum clock pulse frequency	5.0 25 29	15 45 54		4.0 20 24		3.4 17 20		MHz	2.0 4.5 6.0	Fig.6

8-bit universal shift register; 3-state

74HC/HCT299

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver (parallel I/Os)

standard (serial outputs)

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
I/O _n	0.25
D _{SR} , D _{SL}	0.25
CP, S ₀	0.60
MR, S₁	0.25
OE _n	0.30

8-bit universal shift register; 3-state

74HC/HCT299

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

						TES	TEST CONDITIONS					
SYMBOL	PARAMETER	74HCT									MANEEODMC	
STWIBOL	PARAMETER	+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(',		
t _{PHL} / t _{PLH}	propagation delay CP to Q ₀ , Q ₇		22	37		46		56	ns	4.5	Fig.6	
t _{PHL} / t _{PLH}	propagation delay CP to I/O _n		22	37		46		56	ns	4.5	Fig.6	
t _{PHL}	propagation delay MR to Q ₀ , Q ₇ or I/O _n		27	46		58		69	ns	4.5	Fig.7	
t _{PZH} / t _{PZL}	3-state output enable time \overline{OE}_n to I/O _n		19	30		38		45	ns	4.5	Fig.9	
t _{PHZ}	3-state output disable time \overline{OE}_n to I/O _n		24	37		46		56	ns	4.5	Fig.9	
t _{PLZ}	3-state output disable time \overline{OE}_n to I/O _n		20	32		40		48	ns	4.5	Fig.9	
t _{THL} / t _{TLH}	output transition time bus driver (I/O _n)		5	12		15		18	ns	4.5	Fig.6	
t _{THL} / t _{TLH}	output transition time standard (Q ₀ , Q ₇)		7	15		19		22	ns	4.5	Fig.6	
t _W	clock pulse width HIGH or LOW	20	10		25		30		ns	4.5	Fig.6	
t _W	master reset pulse width LOW	20	11		25		30		ns	4.5	Fig.7	
t _{rem}	removal time MR to CP	10	2		9		11		ns	4.5	Fig.7	
t _{su}	set-up time I/O _n , D _{SR} , D _{SL} to CP	25	14		31		38		ns	4.5	Fig.6	
t _{su}	set-up time S ₀ , S ₁ to CP	32	18		40		48		ns	4.5	Fig.8	
t _h	hold time I/O _n , D _{SR} , D _{SL} to CP	0	-11		0		0		ns	4.5	Fig.6	
t _h	hold time S ₀ , S ₁ to CP	0	-17		0		0		ns	4.5	Fig.8	
f _{max}	maximum clock pulse frequency	25	42		20		17		MHz	4.5	Fig.6	

74HC/HCT299

AC WAVEFORMS

Fig.6 Waveforms showing the clock (CP) to output (I/O_n, Q₀, Q₇) propagation delays, the clock pulse width, the I/O_n, D_{SR} and D_{SL} to CP set-up and hold times, the output transition times and the maximum clock frequency.

8-bit universal shift register; 3-state

74HC/HCT299

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT : V_M = 1.3 V; V_I = GND to 3 V.

Fig.8 Waveforms showing the set-up and hold times from the mode control inputs (S₀, S₁) to the clock (CP).

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".