OF ALGORITHMS DESIGN AND ANALYSIS

TUTORIAL - 1

1 What do you understand by Asymptometic notations. Define different Asymptotic notation with examples.

Asymptotic notation is used to describe the nuring time of an algorithm - how much time an algorithm takes with a given input (n). Different Asymptotic notations are -

1) Big-O Notation - Describes the worst case nuning time of a program example - O(logn) - Binary Seauch

 $\Rightarrow f(n) = O(q(n))$ 2/ f(n) < cg(n) + n> no

cg(n) g(n) is tight upper bound of f(n)

2) Big Omega (12) Notation $\rightarrow f(n) = \Omega(q(n))$

q(n) is 'tight lower bound of

f(n) = -2 (g(n))if , $f(n) \ge cg(n)$

example -> consider

_cr(1) -> Binary Search for some constant, c70

what should be the time complexity of -

for (i = 1 to n)
$$\begin{cases} i = 1, 2, 4, 8, \dots n \end{cases}$$

for (i to n) $\begin{cases} i = 1, 2, 4, 8, \dots n \end{cases}$
 $i = i * * 2;$ $\begin{cases} for (i) = 1, 2, 4, 8, \dots n \end{cases}$
 $i = i * * 2;$ $for (i) = 1, 2, 4, 8, \dots n \end{cases}$
 $i = i * * 2;$ $for (i) = 1, 2, 4, 8, \dots n \end{cases}$
 $i = i * * 2;$ $for (i) = 1, 2, 4, 8, \dots n \end{cases}$
 $i = i * 2;$ $for (i) = 1, 2, 4, 8, \dots n \end{cases}$
 $i = i * 2;$ $for (i) = 1, 2, 4, 8, \dots n \end{cases}$
 $i = i * 2;$ $for (i) = 1, 2, 4, 8, \dots n \end{cases}$
 $i = i * 2;$ $for (i) = 1, 2, 4, 8, \dots n \end{cases}$
 $i = i * 2;$ $for (i) = 1, 2, 4, 8, \dots n \end{cases}$
 $i = i * 2;$ $for (i) = 1, 2, 4, 8, \dots n \end{cases}$
 $i = i * 2;$ $for (i) = 1, 2, 4, 8, \dots n \end{cases}$
 $i = i * 2;$ $for (i) = 1, 2, 4, 8, \dots n \end{cases}$
 $i = i * 2;$ $for (i) = 1, 2, 4, 8, \dots n \end{cases}$
 $i = i * 2;$ $for (i) = 1, 2, 4, 8, \dots n \end{cases}$
 $i = i * 2;$ $for (i) = 1;$ $for ($

3
$$T(n) = \{3T(n-1) \text{ if } n>0 \text{ , otherwise } 1\}$$

 $T(n) = 3T(n-1)$ — 1
put $n = n-1$ in eq. (1)

$$T(n-1) = 3T(n-2) - 2$$
put value of q^n (2) in (1)

$$T(n) = 3[3T(n-2)]$$

 $T(n) = 9T(n-2)$ — 3

put
$$n = n - 2$$
 in eq $\sqrt{0}$
 $T(n-2) = 3T(n-3) - 9$
put eq $\sqrt{9}$ in $\sqrt{3}$

$$T(n) = 349 [3T (n-3)]$$

 $T(n) = 27 T(n-3)$

$$T(n) = 3^k T(n-k)$$

put
$$n-k=0$$
 $n=k$

$$T(n) = 3^{k}T(0)$$

$$= 3^{k}n$$

$$T(n) = o\left(3^{n}\right)$$

$$T(n) = o\left(3^{n}\right)$$

Dall. Page No_

5 What should be the time complexity of-

int i=1, s=1; while (s.<=n)

++1;

1=1 2 3 4+

s=1+3+6+10+15+ ... n

Sum of s = 1+3+6+10+...+n — (1) also $s = 1+3+6+...T_{n-1}+T_n$ — (2)

from 1 -2

D= 1+2+3+4+....n-Tn

TK= 1+2+3+ k

Tr = 1 k(k+1)

1+2+3+ ... +k <=n

k(k+1) <=n

k2+k <=n

 $d(k^2) <= n \Rightarrow k = O(\sqrt{n})$

T(n) = O(n)

int i, count = 0;
for (i=1; i*i <= n; ++i)
$$i^2 <= n \Rightarrow i <= \sqrt{n}$$

 $i = 1$; i*i <= n; ++i) $i = 1$; $i = 1$;

Date.	
Page	No

9 Time complexity of

void function (int n)

 $for (\hat{i} = 1 \text{ to } n)$

for (j= 1; j <=n; = j+i)

pointf ("#");

i. j

 $1 \qquad 1,2,3,4,\ldots n = n$

2 |4,34,5,... n = n/2|4,4,7,... n = n/3

n = 1

 $\sum_{j=n}^{\infty} n + n + n + \dots + 1$

 $n\begin{bmatrix} 1+1+1+\cdots & 1 \\ 2 & 3 & n \end{bmatrix}$

O(nlogn)

Date____ Page No.____ 10 For the functions ne and con, what is the asymptotic relationship between these functions? Assume that k>=1 and c>1 are constants. Find out the value of c and no for which relation holds. $f(n) = n^k$ $g(n) = c^n$; $k \ge 1$, $c \ge 1$ $n^k = o(c^n)$ f(n) = o(g(n))as nk \le a c^n

the new and some constant a >0 $n_0 = 1$ and c = 2