Wiederholung

Eine folge reeller Zahlen (a_n) ist eine Cauchy-Folge wenn gilt: Für jedes $\varepsilon > 0$ gibt es ein $n \in \mathbb{N}$ so dass für $m, n \geq \mathbb{N}$ gilt $|a_n - a_m| < \varepsilon$ (a_n) konvergiert $\Leftrightarrow (a_n)$ ist Cauchy-Folge

Für Reihen: $\sum_{k=0}^{\infty} a_k$ konvergiert \Leftrightarrow Für jedes $\varepsilon > 0$ gibt es ein $N \in \mathbb{N}$ so dass für $m, n \geq \mathbb{N}$ mit $m \geq n$ ist

$$\left| \sum_{k=n}^{m} a_n \right| < \varepsilon$$

Absolute Konvergenz

0.1 Definition

Eine Reihe $\sum_{k=0}^{\infty} a_k$ mit $a_k \in \mathbb{R}$ heißt absolut konvergent wenn die Reihe $\sum_{k=0}^{\infty} |a_k|$ konvergiert

0.2 Satz

Jede absolut konvergente Reihe konvergiert

Beweis:

Verwende Cauchy-Kriterium für Reihen

$$\begin{split} & \text{Sei} \sum_{k=0}^{\infty} a_k \text{ absolut von konvergent.} \\ \Rightarrow & \text{Für jedes } \varepsilon > 0 \text{ gibt es } N \in \mathbb{N} \text{ mit:} \\ & \text{Für } n \geq m \geq N \text{ gilt } \sum_{k=m}^{n} |a_k| < \varepsilon \Rightarrow \left| \sum_{k=m}^{n} a_k \right| & \overset{\leq}{\underset{Dreiecksungleichung}{\leftarrow}} \sum_{k=m}^{n} |a_k| < \varepsilon \Rightarrow \sum_{k=m}^{n} a_k konvergiert \end{split}$$

Bemerkung:

Umkehrung gilt nicht. $\sum_{k=1}^{\infty} (-1)^k \frac{1}{k} = -1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$

konvergiert (Leibnitz)

denn
$$\sum_{k=1}^{\infty} \left| (-1)^k \frac{1}{k} \right| = \sum_{k=1}^{\infty} \frac{1}{k}$$
 divergiert

0.3 Definition

Eine Reihe $\sum_{k=0}^{\infty} b_k$ heißt Majorante der Reihe $\sum_{k=0}^{\infty} a_k$, wenn $|a_k| \leq b_k$ für alle k (schon gewesen wenn $a_k \geq 0$)

0.4 Satz (Majorantenkriterium)

Wenn eine Reihe eine konvergente Majorante hat, dann konvergiert sie absolut. Beweis von Satz 4.5

Umordnung von Reihen

0.5 Definition

Eine Umordnung einer Reihe $\sum_{k=0}^{\infty} a_k$ ist eine Reihe der Form $\sum_{k=0}^{\infty} a_{n_k}$ wobei (n_0, n_1, n_2, \dots) eine Folge natürlicher Zahlen ist, in der jedes $n \in \mathbb{N}_0$ genau einmal vorkommt

1

0.6 Satz

Jede Umordnung einer <u>absolut</u> konvergenten Reihe ist wieder absolut konvergent und hat den gleichen Grenzwert.

Im Gegensatz dazu gilt:

0.7 Satz

Sei $\sum_{k=0}^{\infty} a_k$ eine konvergente, nicht absolut konvergente, Reihe. Für jedes $c \in \mathbb{R} \cup \{-\infty, \infty\}$ hat $\sum a_k$ eine Umordnung, die gegen c konvergiert.

Beispiel:

Eine Reihe $\frac{1}{2} - \frac{1}{2} + \frac{1}{3} - \frac{1}{3} + \frac{1}{4} - \frac{1}{4} + \frac{1}{5} - \frac{1}{5} + \dots$ konvergiert gegen 0. Konvergiert aber nicht absolut: Folge: $(\frac{1}{2},0,\frac{1}{3},0,\frac{1}{4},0,\dots \to 0)$ $\sum_{k=1}^{\infty} 2\cdot 1/k = \infty$

Produziere Umordnung, die gegen ∞ konvergiert:

$$\frac{1}{2} - \frac{1}{2} + \underbrace{\frac{1}{3} + \frac{1}{4}}_{\geq \frac{1}{4} + \frac{1}{4} = \frac{1}{2}}_{\geq \frac{1}{4} + \frac{1}{4} = \frac{1}{2}} - \underbrace{\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}}_{\geq \frac{1}{2} - \frac{1}{4} + \frac{1}{16}}_{\geq \frac{1}{2}} - \underbrace{\frac{1}{5} + \dots + \frac{1}{16}}_{\geq \frac{1}{2} - \frac{1}{5} + \dots}_{\geq \frac{1}{2}}$$

$$\leq \underbrace{\frac{1}{2} - \frac{1}{2}}_{0} + \underbrace{\frac{1}{2} - \frac{1}{3}}_{6} + \underbrace{\frac{1}{2} - \frac{1}{4}}_{1} + \underbrace{\frac{1}{2} - \frac{1}{5}}_{10} + \dots = \infty$$

Beweise von 4.24, 4.25 eventuell später.

Produkte von Reihen

Frage: was ist
$$\left(\sum_{k=0}^{\infty} a_k\right) \cdot \left(\sum_{k=0}^{\infty} b_k\right)$$
?

0.8 Definition

Das Cauchy-Produkt von zwei reihen $\sum_{k=0}^{\infty} a_k$ und $\sum_{k=0}^{\infty} b_k$ ist eine Reihe $\sum_{k=0}^{\infty} c_k$ mit $c_n := \sum_{k=0}^{\infty} a_k \cdot b_{n-k} = a_0 \cdot b_n + a_1 \cdot b_{n-1} + a_2 \cdot b_{n-2} + \ldots + a_n \cdot b_0$ 2-dimensionale Anordnung der $a_k \cdot b_l$

0.9 Satz

Seien $\sum_{k=0}^{\infty} a_k$ und $\sum_{k=0}^{\infty} b_k$ konvergente Reihen, mindestens eine von ihnen absolut konvergent. Dann kon-

vergiert ihr Cauchy-Produkt
$$\sum_{k=0}^{\infty} c_k$$
. Wenn $\sum_{k=0}^{\infty} a_k = a$, $\sum_{k=0}^{\infty} b_k = b$ $\sum_{k=0}^{\infty} c_k = a \cdot b$

Beweis von 4.27:

Sei $\sum a_k$ absolut konvergent, $\sum b_k$ konvergent, so zeige $\sum c_k$ konvergent, $c_n := \sum_{k=0}^{\infty} a_k \cdot b_{n-k}$ Schreibe: $s_n = a_0 + \ldots + a_n$ $t_n = b_0 + \ldots + b_n$

2

$$u_n = c_0 + \dots + c_n$$

$$s_n \rightarrow a, t_n \rightarrow b \ (*)$$

Zeige $u_n \rightarrow a \cdot b$

(*)
$$\Rightarrow s_n \cdot b \rightarrow a \cdot b$$
 Zeige $s_n \cdot b - u_n \rightarrow 0$

$$u_n = a_0 \cdot b_0 + (a_0 \cdot b_1 + a_1 \cdot b_0) + (a_0 \cdot b_2 + a_1 \cdot b_1 + a_2 \cdot b_0) + \dots + a_n \cdot b_0 = a_1 \cdot t_{n-1} + a_2 \cdot t_{n-2} + \dots + a_n \cdot t_0$$

$$s_n \cdot b = a_0 \cdot b + a_1 \cdot b + a_2 \cdot b + a_3 \cdot b + \dots + a_n \cdot b$$

$$s_n \cdot b - u = a_0 \cdot (b - t_n) + a_1 \cdot (b - t_{n-1}) + a_2 \cdot (b - t_{n-2}) + a_3 \cdot (b - t_{n-3}) + \dots + a_n \cdot (b - t_0) \xrightarrow{?} 0$$

Sei $C \in \mathbb{R}$ mit $|b| \leq C$ und $|b - t_n| \leq C$ für alle n

Sei
$$\sum_{k=0}^{\infty} |a_n| = a^*$$
.

Gegeben sei $\varepsilon > 0$. Wähle $N \in \mathbb{N}$ so dass $C \cdot (|a_N| + |a_{N+1}| + |a_{N+2}| + \dots) < \frac{\varepsilon}{2}$ (geht weil $\sum |a_k|$ konvergiert)

und $|b-t_n| < \frac{\varepsilon}{2a^*}$ für alle $n \ge N$ (geht weil $b-t_n \to 0$ für alle $m \to \infty$)

Bemerkung:

Wenn $a^* = 0$ dann $a_n = 0$ für alle k. Dann alles klar. Für alle $n \ge 2N$ gilt:

$$|a_{0}(b-t_{n})+a_{1}(b-t_{n-1})+\ldots+a_{n}(b-t_{0})| \leq |a_{0}| \cdot |(b-t_{n})| + |a_{1}| \cdot |(b-t_{n-1})| + \ldots + |a_{n}| \cdot |(b-t_{0})|$$

$$\leq (|a_{0}|+|a_{1}|+|a_{2}|+\ldots|a_{N}|) \cdot \underbrace{\frac{\varepsilon}{2a^{*}}}_{\text{wegen}(2)} + (|a_{N+1}|+|a_{N+2}|+|a_{N+3}|+\ldots|a_{n}|) \cdot C \leq a^{*} \cdot \underbrace{\frac{\varepsilon}{2a^{*}}}_{\text{2}} + \underbrace{\frac{\varepsilon}{2}}_{\text{2}} = \underbrace{\frac{\varepsilon}{2}}_{\text{2}} + \underbrace{\frac{\varepsilon}{2}}_{\text{2}} = \underbrace{\varepsilon}_{\text{2}}_{\text{2}} + \underbrace{\varepsilon}_{\text{2}}_{\text{2}} = \underbrace{\varepsilon}_{\text{2}}_{\text{2}} = \underbrace{\varepsilon}_{\text{2}}_{\text{2}} + \underbrace{\varepsilon}_{\text{2}}_{\text{2}} = \underbrace$$

Also gilt: $s_n - u \rightarrow 0$ für $n \rightarrow \infty$

<u>Zusatz:</u> Wenn $\sum a_k$ und $\sum b_k$ beide absolut konvertieren, dann auch das Cauchy-Produkt $\sum c_k$

Beweis:

Sei $\sum a_k^*$ das Cauchy-Produkt von $\sum |a_k|$ und $\sum |b_k|$. Beide konvergieren $\Rightarrow \sum_n c_n^*$ konvergiert

d.h.
$$c_n^* = |a_0 \cdot b_n| + |a_1 \cdot b_{n-1}| + \dots + |a_n \cdot b_0| \ge |a_0 \cdot b_n + a_1 \cdot b_{n-1} + \dots + a_n \cdot b_0| = |c_n|$$

Also $\sum_{n} c_{n}^{*}$ ist konvergente Majorante von $\sum_{n} c_{n} \Rightarrow \sum_{n} c_{n}$ konvergent absolut

Beispiel:

Die Reihe
$$\sum_{k=0}^{\infty} a_k = 1 - +\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \frac{1}{\sqrt{5}} - \dots$$
 konvergiert (Leibnitz)

Das Cauchy-Produkt der Reihe von $\sum a_k$ und $\sum a_k$ konvergiert nicht.

0.10 Beispiel

Für jedes $x \in \mathbb{R}$ ist die Exponentialreihe $\exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!}$ absolut konvergent.

Es gilt exp(x) - exp(y) = exp(x+y) Funktionalgleichung der Exponentialfunktion.

Beweis:

Betrag von
$$\sum_{k=0}^{\infty} \left| \frac{x^k}{k!} \right| = \sum_{k=0}^{\infty} \frac{|x|^k}{k!} = \exp(|x|)$$
 konvergiert (bekannt, Quotientenkriterium)

Berechne Cauchy-Produkt $exp(x) \cdot exp(y) = \sum_{k=0}^{\infty} c_k$

$$c_{k} = \frac{x^{0}}{0!} \cdot \frac{x^{n}}{n!} + \frac{x^{1}}{1!} \cdot \frac{y^{n-1}}{(n-1)!} + \dots + \frac{x^{n}}{n!} \cdot \frac{y^{0}}{0!} = \frac{1}{n!} \cdot \left(\frac{n!}{0! \cdot n!} \cdot x^{0} y^{n} + \frac{n!}{1! \cdot (n-1)!} \cdot x^{1} y^{n-1} + \dots + \frac{n!}{n! \cdot 0!} \cdot x^{n} y^{0} + \right) = \frac{x^{n}}{n!} \cdot \frac{y^{n}}{n!} \cdot$$

$$\frac{1}{n!} \sum_{k=0}^{n} \frac{n!}{k! \cdot (n-k)!} x^k y^{n-k} = \frac{1}{n!} \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k} = \frac{1}{n!} (x+y)^n \Rightarrow \sum_{k=0}^{\infty} c_k = \exp(x+y)$$