

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
6. November 2003 (06.11.2003)

PCT

(10) Internationale Veröffentlichungsnummer
WO 03/091296 A1

(51) Internationale Patentklassifikation⁷: C08F 36/04, (74) Gemeinsamer Vertreter: **BASF AKTIENGESELLSCHAFT**; 67056 LUDWIGSHAFEN (DE).
4/54, 12/00, 12/04, 297/04, C07F 5/06

(21) Internationales Aktenzeichen: PCT/EP03/03900

(22) Internationales Anmeldedatum:
15. April 2003 (15.04.2003)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
102 18 161.6 23. April 2002 (23.04.2002) DE

(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): **BASF AKTIENGESELLSCHAFT [DE/DE]**; .., 67056 Ludwigshafen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (*nur für US*): **DESBOIS, Philippe** [DE/DE]; Immengartenstr. 31a, 67487 Maikammer (DE). **SCHADE, Christian** [DE/DE]; Kopernikusstr. 107, 67063 Ludwigshafen (DE). **DEFFIEUX, Alain** [FR/FR]; 70, rue Georges Mandel, F-33000 Bordeaux (FR). **MENORET, Stephane** [FR/FR]; 12 Rue J. Mette, F-33800 Bordeaux (FR). **DEMETER, Jürgen** [DE/DE]; Bruderweg 25, 67069 Ludwigshafen (DE).

(81) Bestimmungsstaaten (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (*regional*): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

— mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

WO 03/091296 A1

(54) Title: INITIATOR COMPOSITION AND METHOD FOR ANIONIC POLYMERISATION

(54) Bezeichnung: INITIATORZUSAMMENSETZUNG UND VERFAHREN ZUR ANIONISCHEN POLYMERISATION

(57) Abstract: The invention relates to an initiator composition and method for anionic polymerisation, comprising at least one alkali metal hydride, selected from LiH, NaH and KH and at least one organoaluminium compound. The invention further relates to a method for anionic polymerisation of styrol or dienyl monomers using said initiator composition.

(57) Zusammenfassung: Die Erfindung betrifft eine Initiatorzusammensetzung für die anionische Polymerisation, enthaltend mindestens ein Alkalimetallhydrid ausgewählt aus LiH, NaH und KH, und mindestens ein Aluminiumorganyl und ein Verfahren zur anionischen Polymerisation von Styrol- oder Dienmonomeren unter Verwendung der Initiatorzusammensetzung.

Initiatorzusammensetzung und Verfahren zur anionischen Polymerisation

5 Beschreibung

Die Erfindung betrifft eine Initiatorzusammensetzung für die anionische Polymerisation, enthaltend mindestens ein Alkalimetallhydrid ausgewählt aus LiH, NaH und KH, und mindestens ein Aluminiumorganyl.

Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung der Initiatorzusammensetzung, und ein Verfahren zur anionischen Homo- oder Copolymerisation von Styrolmonomeren oder Dienmonomeren in Gegenwart der Initiatorzusammensetzung, sowie die Verwendung der Initiatorzusammensetzung zur Herstellung von Polymeren. Schließlich betrifft die Erfindung die nach dem Verfahren erhältlichen Polymere, deren Verwendung zur Herstellung von Formkörpern, Folien, Fasern und Schäumen, und die Formkörper, Folien, Fasern und Schäume aus den Polymeren.

Die anionische Polymerisation verläuft in der Regel sehr schnell, so daß eine Kontrolle wegen der beträchtlichen Wärmeentwicklung im technischen Maßstab schwierig wird. Erniedrigt man die Polymerisationstemperatur, so steigt die Viskosität insbesondere bei konzentrierten Lösungen zu stark an. Eine Verringerung der Initiatorkonzentration erhöht das Molekulargewicht des gebildeten Polymers. Eine Kontrolle der Reaktion durch eine entsprechende Verdünnung der Monomeren führt zu einem höheren Lösemittelbedarf und zu geringen Raum-Zeit-Ausbeuten.

Es wurden daher verschiedene Zusätze zu den anionischen Polymerisationsinitiatoren vorgeschlagen, die die Polymerisationsgeschwindigkeit beeinflussen.

35

Über den Einfluss von Lewissäuren und Lewisbasen auf die Geschwindigkeit der anionischen Polymerisation von Styrol wurde in Welch, Journal of the American Chemical Society, Vol. 82 (1960), Seite 6000-6005 berichtet. So wurde gefunden, daß geringe Mengen von Lewis-Basen wie Ether und Amine die durch n-Butyllithium initiierte Polymerisation von Styrol bei 30°C in Benzol beschleunigen, wohingegen Lewis-Säuren wie Zink- und Aluminiumalkyle die Polymerisationsgeschwindigkeit reduzieren bzw. in überstöchiometrischen Mengen die Polymerisation zum Stillstand bringen.

45

2

Die US-PS 3655790 beschreibt Organomagnesium-Alkalimetallhydrid-Komplexe $M_nMgR^1R^2H_n$ mit M = Na, K, Li, Cs; R¹ und R² = C₃₋₁₅-Alkyl, -Aryl, -Aralkyl; n = 1/2, 1, 2, 3, und ihre Verwendung als Reduktions- und Metallierungsmittel.

5

Die US-PS 3691241 und 3817955 offenbaren ein Verfahren zur Polymerisation verschiedener Monomeren, u.a. Butadien, Isopren und Styrol, unter Verwendung der in der US-PS 3655790 beschriebenen Organomagnesium-Alkalimetallhydrid-Komplexe.

10

Im Gegensatz den vorstehend offenbarten Metallkomplexen enthalten die erfindungsgemäßen Initiatorzusammensetzungen kein Magnesium und keine Magnesiumorganyle.

15

In der DE-A 19806772 werden Initiatorzusammensetzungen aus einem Alkalimetallorganyl (d.h. Alkalimetallalkyl, -aryl oder -aralkyl) wie z.B. sec.-Butyllithium, und einem Aluminiumorganyl wie z.B. Triisobutylaluminium (TIBA) offenbart, sowie deren Verwendung zur Polymerisation von Vinylaromaten und Dienen.

20

Die US-PS 3716495 lehrt Initiatorzusammensetzungen aus a) Organo-lithiumverbindungen RLix mit R = C₁₋₂₀-Alkyl, -Aryl, -Cycloalkyl, -Alkaryl oder -Aralkyl wie etwa n- oder sec.-Butyllithium, b) Metallorganyle R_nM mit R wie vorstehend definiert und M = Metal aus den Gruppen 2a (Erdalkalimetalte), 2b (Zinkgruppe) und 3a (Borgruppe), wie z.B. Diethylzink oder Aluminiumorganyle, und c) polaren Verbindungen wie Tetrahydrofuran (THF). Sie werden zur Polymerisation von Dienen und Vinylaromaten verwendet.

25

Nachteilig an der Verwendung von Initiatoren, die Organolithiumverbindungen (Lithiumorganyle) wie n-, sec.- oder tert.-Butyllithium enthalten, ist der hohe Preis der Lithiumorganyle, der das Polymer-Endprodukt verteuert.

30

Im Unterschied zu den beiden vorstehend offenbarten Initiatorzusammensetzungen enthalten die erfindungsgemäßen Initiatoren Alkalimetallhydride ohne Organylreste.

35

Die WO-A 98/07765 offenbart Initiatoren für die anionische

40

Polymerisation, enthaltend die Metallorganyle

R¹M¹ mit M¹ = Li, Na, K

R¹ = Wasserstoff, C₁₋₁₀-Alkyl, C₆₋₂₀-Aryl, C₇₋₂₀ alkyl-substituiertes Aryl, und

45

R²_nM² mit M² = n-wertiges Element der Gruppen 2a, 2b, oder 3a des Periodensystems,

R² = Wasserstoff, Halogen, C₁₋₂₀-Alkyl, C₆₋₂₀-Aryl.

Außerdem wird ein entsprechendes Polymerisationsverfahren für Styrol- oder Dienmonomere offenbart.

5

Die vorliegende Erfindung stellt eine Auswahl erfindung gegenüber der WO-A 98/07765 dar, indem für R¹ allein Wasserstoff und für M² allein Aluminium ausgewählt wurde.

- 10 Es bestand die Aufgabe, alternative Initiatorzusammensetzungen für die anionische Polymerisation (insbesondere von Styrolmonomeren oder Dienmonomeren) bereitzustellen. Außerdem sollte ein alternatives anionisches Polymerisationsverfahren für Styrole und Diene bereitgestellt werden. Die Initiatorzusammensetzungen bzw.
15 das Verfahren sollte eine bessere Wirtschaftlichkeit aufweisen als die Verfahren des Standes der Technik.

Demgemäß wurden die eingangs erwähnten Initiatorzusammensetzungen, Verfahren und Verwendungen gefunden. Außerdem wurden die

- 20 dort genannten Polymere, deren Verwendung, sowie die Formkörper, Folien, Fasern und Schäume gefunden.

Bevorzugte Ausführungsformen der Erfindung sind den Unter-
ansprüchen zu entnehmen.

25

Die erfindungsgemäße Initiatorzusammensetzung enthält mindestens ein Alkalimetallhydrid ausgewählt aus Lithiumhydrid LiH, Natriumhydrid NaH und Kaliumhydrid KH, sowie mindestens ein Aluminiumorganyl (Organoaluminiumverbindung).

30

Es besteht die Vorstellung, daß das Alkalimetallhydrid als Initiator der anionischen Polymerisation z.B. von Styrolmonomeren wirkt, sofern es im Lösungsmittel (üblicherweise unpolare, inerte Kohlenwasserstoffe) gelöst vorliegt. Das Aluminiumorganyl verbessert die Löslichkeit des Alkalimetallhydrids im Lösungsmittel, vermutlich durch Komplexbildung, und verbessert so die Wirksamkeit des Alkalimetallhydrids. Außerdem verlangsamt das Al-organyl die Polymerisationsgeschwindigkeit der Monomeren (sog. Retarder-Wirkung).

40

Die Alkalimetallhydride können in an sich bekannter Weise aus dem entsprechenden Metallen und Wasserstoffgas unter Druck und bei erhöhter Temperatur hergestellt werden. Sie sind jedoch auch in Chemikalienhandel erhältlich, beispielsweise als reiner Feststoff
45 oder suspendiert in einem Lösungsmittel.

Die benötigte Menge an Alkalimetallhydrid richtet sich u.a. nach dem gewünschten Molekulargewicht (Molmasse) des Polymeren, das hergestellt werden soll, nach Art und Menge der verwendeten Aluminiumorganyle, und nach der Polymerisationstemperatur. In der Regel verwendet man 0,0001 bis 10, bevorzugt 0,001 bis 1 und besonders bevorzugt 0,01 bis 0,2 Mol-% Alkalimetallhydrid, bezogen auf die Gesamtmenge der eingesetzten Monomeren.

Als Aluminiumorganyle können Monoorganyle RH_2Al , Diorganyle R_2HAL und - bevorzugt - Triorganyle R_3Al verwendet werden. Dabei können die Reste R gleich oder verschieden sein und unabhängig voneinander Wasserstoff, Halogen, C_1-C_{20} -Alkyl, C_6-C_{20} -Aryl oder C_7-C_{20} -alkylsubstituiertes Aryl bedeuten. Bevorzugte Aluminiumorganyle sind die Aluminiumtrialkyle wie Triethylaluminium, Tri-iso-butylaluminium, Tri-n-butylaluminium, Triisopropylaluminium, Tri-n-hexylaluminium. Besonders bevorzugt wird Triisobutylaluminium (TIBA) eingesetzt.

Als Aluminiumorganyle können auch solche verwendet werden, die durch teilweise oder vollständige Hydrolyse, Alkoholyse, Aminolyse oder Oxidation von Alkyl- oder Arylaluminiumverbindungen entstehen oder die Alkoholat-, Thiolat-, Amid-, Imid-, oder Phosphide-Gruppen tragen. Beispiele sind Diethylaluminium-(N,N-dibutylamid), Diethylaluminium-ethoxid, Diisobutylaluminum-ethoxid, Diisobutyl-(2,6-di-tert.-butyl-4-methyl-phenoxy)-aluminium (CAS-Nr. 56252-56-3), Methylaluminoxan, isobutyliertes Methylaluminoxan, Isobutylaluminoxan, Tetraisobutyldialuminoxan oder Bis(diisobutyl)aluminiumoxid.

Die Aluminiumorganyle sind in an sich bekannter Weise erhältlich oder können als Handelsprodukte bezogen werden.

Die benötigte Menge an Aluminiumorganyl richtet sich u.a. nach Art und Menge der verwendeten Alkalimetallhydride, und nach der Polymerisationstemperatur. Üblicherweise verwendet man 0,0001 bis 10, bevorzugt 0,001 bis 1 und besondere 0,01 bis 0,2 Mol-% Aluminiumorganyl, bezogen auf die Gesamtmenge der eingesetzten Monomeren.

Das molare Verhältnis von Alkalimetallhydrid (Initiator) zu Aluminiumorganyl (Retarder) kann in weiten Grenzen variieren. Es richtet sich z.B. nach der gewünschten Retardierungswirkung, der Polymerisationstemperatur, der Art und Menge (Konzentration) der eingesetzten Monomeren, und dem gewünschten Molekulargewicht des Polymeren.

Zweckmäßigerweise drückt man das genannte molare Verhältnis als Molverhältnis von Aluminium zu Alkalimetall, Al/Li bzw. Al/Na bzw. Al/K, aus. Es beträgt in einer bevorzugten Ausführungsform 0,01:1 bis 5:1, besonders bevorzugt 0,1:1 bis 2:1 und insbesondere 0,5:1 bis 1:1.

Zur Herstellung der Initiatorzusammensetzung vermischt man üblicherweise das Alkalimetallhydrid und das Aluminiumorganyl, bevorzugt unter Mitverwendung eines Lösungs- bzw. Suspendierungs-
10 mittels (je nach der Löslichkeit des Alkalimetallhydrids bzw. des Aluminiumorganyls, nachfolgend zusammenfassend als Lösungsmittel bezeichnet).

Als Lösungsmittel eignen sich insbesondere inerte Kohlenwasser-
15 stoffe, genauer aliphatische, cycloaliphatische oder aromatische Kohlenwasserstoffe, wie etwa Cyclohexan, Methylcyclohexan, Pentan, Hexan, Heptan, Isooctan, Benzol, Toluol, Xylol, Ethylbenzol; Dekalin oder Paraffinöl, oder deren Gemische. Toluol ist besonders bevorzugt.

20

In einer bevorzugten Ausführungsform setzt man das Alkalimetallhydrid als solches, d.h. als trockenen Feststoff ein. In einer anderen bevorzugten Ausführungsform setzt man das Aluminiumorganyl gelöst in einem inerten Kohlenwasserstoff, z.B. Toluol, ein.

25

Die Temperatur bei der Herstellung der Initiatorzusammensetzung hängt von der Konzentration, der Art der Metallverbindungen und dem Lösungsmittel ab. In der Regel ist der gesamte Temperaturbereich zwischen Gefrierpunkt und Siedepunkt der Mischung geeignet. Zweckmäßigerweise arbeitet man im Bereich von 0 bis 250°C,
30 bevorzugt im Bereich von 20 bis 200°C.

Die Reifung oder Alterung der frisch hergestellten Initiatorzusammensetzung ist wichtig für den reproduzierbaren Einsatz in der anionischen Polymerisation. Versuche haben gezeigt, daß Initiatorkomponenten, die getrennt voneinander verwendet oder nur kurz vor der Polymerisationsinitiierung vermischt werden, schlecht reproduzierbare Polymerisationsbedingungen und Polymer-eigenschaften hervorrufen. Der beobachtete Alterungsprozess ist
40 vermutlich auf eine Komplexbildung der Metallverbindungen zurückzuführen, die langsamer als der Mischungsvorgang abläuft.

Für die oben angegebenen Konzentrations- und Temperaturbereich reicht in der Regel eine Reifungszeit von etwa 2 Minuten aus.
45 Bevorzugt lässt man die homogene Mischung mindestens 5 Minuten, insbesondere mindestens 20 Minuten reifen. Es ist in der Regel

aber auch nicht abträglich, wenn man die homogene Mischung mehrere Stunden, z.B. 1 bis 480 Stunden reifen läßt.

Es ist auch möglich, daß man der Initiatorzusammensetzung zusätzlich Styrol zugibt. In diesem Fall erhält man ein oligomeres Polystyrylanion, an dessen Kettenende die Metallorganyle komplexiert sind. Bevorzugt verwendet man Styrol in Mengen im Bereich von 10 bis 1000 mol-%, bezogen auf das Alkalimetallhydrid.

- 10 Die Mischung der Initiatorkomponenten kann in jedem Mischaggregat durchgeführt werden, vorzugsweise in solchen, die mit Inertgas beaufschlagt werden können. Beispielsweise eignen sich Rührreaktoren mit Ankerrührer oder Schüttelbehälter. Für die kontinuierliche Herstellung eignen sich besonders beheizbare Rohre mit
15 statischen Mischelementen. Der Mischvorgang ist für eine homogene Vermischung der Initiatorkomponenten notwendig. Während der Reifung kann aber muß nicht weitergemischt werden. Die Reifung kann auch in einem kontinuierlich durchströmten Rührkessel oder
20 in einem Rohrabschnitt erfolgen, dessen Volumen zusammen mit der Durchströmgeschwindigkeit die Reifezeit festlegt.

Gegenstand der Erfindung ist demnach auch ein Verfahren zur Herstellung einer Initiatorzusammensetzung enthaltend mindestens ein Alkalimetallhydrid ausgewählt aus LiH, NaH und KH, und mindestens
25 ein Aluminiumorganyl, wobei man das Alkalimetallhydrid und das in einem inerten Kohlenwasserstoff gelöste Aluminiumorganyl vermischt und die Mischung bei einer Temperatur von 0 bis 120°C mindestens 2 Minuten lang reifen lässt.

- 30 Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur anionischen Homo- oder Copolymerisation von Styrolmonomeren oder Dienmonomeren oder deren Mischungen in Gegenwart einer Initiatorzusammensetzung, wobei die Initiatorzusammensetzung mindestens ein Alkalimetallhydrid ausgewählt aus LiH, NaH und KH, und mindestens
35 ein Aluminiumorganyl, enthält. Es handelt sich demnach um ein Verfahren, bei dem die erfindungsgemäße Initiatorzusammensetzung verwendet wird.

Als Styrolmonomere sind alle vinylaromatischen Monomere geeignet,
40 z.B. Styrol, p-Methylstyrol, p-tert-Butylstyrol, Ethylstyrol, Vinylstyrol, Vinylnaphthalin und 1,1-Diphenylethylen. Bevorzugt verwendet man Styrol.

Als Dienmonomere kommen z.B. 1,3-Butadien, 2,3-Dimethylbutadien,
45 1,3-Pentadien, 1,3-Hexadien, Isopren und Piperylen in Betracht. 1,3-Butadien und Isopren sind bevorzugt, insbesondere 1,3-Butadien (nachfolgend kurz Butadien). Zweckmäßigerweise setzt

man die Monomeren in der verfahrenstypisch erforderlichen Reinheit ein, d.h. man entfernt störende Begleitstoffe wie Restfeuchte, polare Stoffe, Sauerstoff unmittelbar vor der Polymerisation in an sich bekannter Weise.

5

Man kann eine Art oder mehrere Arten Monomere verwenden, d.h. das Verfahren eignet sich zur Homopolymerisation und zur Copolymerisation.

- 10 Zusätzlich kann man bei der Polymerisationsreaktion polare Verbindungen bzw. Lewis-Basen mitverwenden. Es sind grundsätzlich alle literaturbekannten Additive der anionischen Polymerisation geeignet. Sie enthalten im allgemeinen mindestens ein O-, N-, S- oder P-Atom, das über ein freies Elektronenpaar verfügt. Bevor-
- 15 zugt sind Ether und Amine, z.B. Tetrahydrofuran, Diethylether, Tetrahydropyran, Dioxan, Kronenether, Alkylenglykoldialkylether, z.B. Ethylenglykolmonoethylether, Ethylenglykoldimethylether, N,N,N',N'-Tetramethylethylendiamin, N,N,N',N"-Pentamethyl-diethylen-triamin, 1,2-Bis(piperidino)ethan, Pyridin,
- 20 N,N,N',N',N",N"-Hexamethyltriethylentriamin und Phosphorsäure-hexamethyltriamid.

Die polaren Verbindungen bzw. Lewis-Basen wirken als Aktivator und erhöhen in vielen Fällen den Umsatz der Polymerisationsreaktion bzw. steigern die Reaktionsgeschwindigkeit. Sie vermögen außerdem die Anteile der verschiedenen Vinylverknüpfungen im Butadien- bzw. Isopren-Polymeren zu steuern, siehe weiter unten, und damit die Mikrostruktur des Kautschuks zu beeinflussen. Falls sie die Reaktionsgeschwindigkeit erhöhen, ist ihre Menge zweckmäßigerweise so zu bemessen, daß die Reaktionsgeschwindigkeit des gesamten Ansatzes kleiner ist als in einem Ansatz, der ohne Zusatz der retardierenden Komponenten durchgeführt wird. Dazu verwendet man weniger als 500 Mol-%, bevorzugt weniger als 200 Mol-% und insbesondere weniger als 100 Mol-% der polaren Verbindung bzw. Lewis-Base, bezogen auf die Initiatorzusammensetzung.

Das erfindungsgemäße Verfahren kann in Anwesenheit (Lösungspolymerisation) oder in Abwesenheit (Massepolymerisation) eines Lösungsmittels durchgeführt werden. Ohne Lösungsmittel arbeitet man in der Regel bei Temperaturen über 100°C, bei denen sich auch Schmelzen von Polymeren handhaben lassen.

Als Lösungsmittel eignen sich die für die anionische Polymerisation üblichen aliphatischen, cycloaliphatischen oder aromatischen Kohlenwasserstoffe mit 4 bis 12 Kohlenstoffatomen wie Pentan, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Isooctan,

Dekalin, Benzol, Alkylbenzole wie Toluol, Xylool, Ethylbenzol oder Cumol oder geeignete Gemische. Das Lösungsmittel sollte die verfahrenstypisch erforderliche Reinheit aufweisen. Zur Abtrennung protonenaktiver Substanzen kann es beispielsweise über Aluminium-
5 oxid oder Molekularsieb getrocknet und/oder vor Verwendung destilliert werden. Vorzugsweise wird das Lösungsmittel aus dem Verfahren nach Kondensation der Lösungsmittlgase und der genannten Reinigung wiederverwendet.

10 Bei der Lösungspolymerisation arbeitet man üblicherweise bei Temperaturen von 0 bis 250, bevorzugt 20 bis 200°C.

Durch die Auswahl von Zusammensetzung und Menge der Aluminiumorganyle ist es möglich, die Retardierungswirkung in weiten

15 Temperaturbereichen einzustellen. So kann auch bei anfänglichen Monomerkonzentrationen im Bereich von 50 bis 100 Volumenprozent, insbesondere von 70 bis 100 Volumenprozent polymerisiert werden, die zu hochviskosen Polymerlösungen führen und zumindest bei höheren Umsätzen höhere Temperaturen verlangen.

20 Nach Beendigung der Polymerisation können die lebenden Polymerketten mit einem Kettenabbruchmittel verschlossen werden. Als Kettenabbruchmittel eignen sich protonenaktive Substanzen oder Lewis-Säuren wie beispielsweise Wasser, Alkohole wie Methanol
25 oder Isopropanol, aliphatische und aromatische Carbonsäuren sowie anorganische Säuren wie Kohlensäure oder Borsäure.

Das erfindungsgemäße Verfahren kann in jedem druck- und temperaturfesten Reaktor durchgeführt werden, wobei es grundsätzlich
30 möglich ist, rückvermischende oder nicht rückvermischende Reaktoren (d.h. Reaktoren mit Rührkessel- oder Rohrreaktor-Verhalten) zu verwenden. Das Verfahren führt je nach Wahl der Initiatorkonzentration und -zusammensetzung, des speziell angewandten Verfahrensablaufs und anderer Parameter, wie Temperatur und evtl.
35 Temperaturverlauf, zu Polymerisaten mit hohem oder niedrigem Molekulargewicht. Geeignet sind zum Beispiel Rührkessel, Turmreaktoren, Schlaufenreaktoren sowie Rohrreaktoren oder Rohrbündelreaktoren mit oder ohne Einbauten. Einbauten können statische oder bewegliche Einbauten sein.

40 Neben dem vorstehend beschriebenen Verfahren zur Polymerisation und der Verwendung der Initiatorzusammensetzung zur Herstellung von Polymeren betrifft die Erfindung ebenso die nach dem Polymerisationsverfahren erhältlichen Polymere.

45

Solche Polymere sind beispielsweise Homopolymere wie Polystyrol (PS bzw. GPPS für general purpose polystyrene), Polybutadien (PB) und Polyisopren (PI). Als Copolymeren sind z.B. schlagzähes Polystyrol (high impact polystyrene, HIPS) und Styrol-Butadien-Block-
5 copolymeren (S-B-Polymeren oder kurz P-S-B) zu nennen.

Das erfindungsgemäße Verfahren erlaubt demnach die Herstellung von thermoplastischen Formmassen (z.B. PS oder HIPS) und von Elastomeren (z.B. PB, PI, P-S-B).

10

Die erfindungsgemäßen Styrol-Butadien-Blockcopolymere können z.B. lineare Zweiblock-Copolymere S-B oder Dreiblock-Copolymere S-B-S bzw. B-S-B sein (S = Styrolblock, B = Butadienblock), wie man sie durch anionische Polymerisation nach dem erfindungsgemäßen Ver-
15 fahren erhält. Die Blockstruktur entsteht im wesentlichen da- durch, daß man zunächst Styrol alleine anionisch polymerisiert, wodurch ein Styrolblock entsteht. Nach Verbrauch der Styrol- monomere wechselt man das Monomere, indem man monömeres Butadien zufügt und anionisch zu einem Butadienblock polymerisiert (sog.
20 sequentielle Polymerisation). Das erhaltene Zweiblockpolymere S-B kann durch erneuten Monomerwechsel auf Styrol zu einem Drei- blockpolymeren S-B-S polymerisiert werden, falls gewünscht. Ent- sprechendes gilt sinngemäß für Dreiblockcopolymere B-S-B.

25 Bei den Dreiblockcopolymeren können die beiden Styrol-Blöcke gleich groß (gleiches Molekulargewicht, also symmetrischer Aufbau S₁-B-S₁) oder verschieden groß (unterschiedliches Molekulargewicht also asymmetrischer Aufbau S₁-B-S₂) sein. Gleches gilt sinngemäß für die beiden Butadien-Blöcke der Blockcopolymere B-S-B. Selbst-
30 verständlich sind auch Blockabfolgen S-S-B bzw. S₁-S₂-B, oder S- B-B bzw. S-B₁-B₂, möglich. Vorstehend stehen die Indices für die Blockgrößen (Blocklängen bzw. Molekulargewichte). Die Blockgrößen hängen beispielsweise ab von den verwendeten Monomermengen und den Polymerisationsbedingungen.

35

Anstelle der kautschukelastischen "weichen" Butadienblöcke B oder zusätzlich zu den Blöcken B können auch Blöcke B/S stehen. Sie sind ebenfalls weich und enthalten Butadien und Styrol, beispielsweise statistisch verteilt oder als tapered-Struktur
40 (tapered = Gradient von Styrol-reich nach Styrol-arm oder umge- kehrt). Falls das Blockcopolymere mehrere B/S-Blöcke enthält, können die Absolutmengen, und die relativen Anteile, an Styrol und Butadien in den einzelnen B/S-Blöcken gleich oder verschieden (ergebend unterschiedliche Blöcke (B/S)₁, (B/S)₂, etc.) sein.

45

10

Als Styrol-Butadien-Blockcopolymere sind auch Vier- und Poly-blockcopolymere geeignet.

Die genannten Blockcopolymere können eine (vorstehend beschrieben) lineare Struktur aufweisen. Jedoch sind auch verzweigte oder sternförmige Strukturen möglich und für manche Anwendungen bevorzugt. Verzweigte Blockcopolymere erhält man in bekannter Weise, z.B. durch Ppropfreaktionen von polymeren "Seitenästen" auf eine Polymer-Hauptkette.

10

Sternförmige Blockcopolymere sind z.B. durch Umsetzung der lebenden anionischen Kettenenden mit einem mindestens bifunktionellen Kopplungsmittel gebildet. Solche Kopplungsmittel werden etwa in den US-PS 3 985 830, 3 280 084, 3 637 554 und 4 091 053 beschrieben. Bevorzugt sind epoxidierte Glyceride (z. B. epoxidiertes Leinsamenöl oder Sojaöl), Siliciumhalogenide wie SiCl_4 , oder auch Divinylbenzol, außerdem polyfunktionelle Aldehyde, Ketone, Ester, Anhydride oder Epoxide. Speziell für die Dimerisiierung eignen sich auch Dichlordialkylsilane, Dialdehyde wie Terephthalaldehyd und Ester wie Ethylformiat. Durch Kopplung gleicher oder verschiedener Polymerketten kann man symmetrische oder asymmetrische Sternstrukturen herstellen, d.h. die einzelnen Sternäste können gleich oder verschieden sein, insbesondere verschiedene Blöcke S, B, B/S bzw. unterschiedliche Blockabfolgen enthalten. Weitere Einzelheiten zu sternförmigen Blockcopolymeren sind beispielsweise der WO-A 00/58380 zu entnehmen.

Die vorstehend gebrauchten Monomerbezeichnungen Styrol bzw. Butadien stehen beispielhaft auch für andere Vinylaromaten bzw. Diene.

Erfindungsgemäß sind die Styrol-Butadien-Blockcopolymere, solange mindestens ein Block nach dem erfundungsgemäßen Verfahren hergestellt wurde. D.h. es müssen nicht alle Blöcke nach dem erfundungsgemäßen Verfahren hergestellt werden. Beispielsweise kann man mindestens einen Block mit einer erfundungsgemäßen Initiatorzusammensetzung enthaltend Alkalimetallhydrid und Aluminiumorganyl polymerisieren, und einen oder mehrere andere Blöcke desselben Blockcopolymers nach einem anderen, nicht erfundungsgemäßen Verfahren, etwa mit Organolithiumverbindungen oder Organomagnesiumverbindungen, herstellen.

Das erfundungsgemäße schlagzähe Polystyrol (HIPS) enthält neben der Polystyrolmatrix als Kautschukkomponente z. B. Polybutadien, Polyisopren, oder - bevorzugt - Styrol-Butadien-Blockcopolymere.

11

Dabei kann man die Kautschukkomponente nach dem erfindungsgemäßen Verfahren herstellen, oder auch nach Verfahren des Standes der Technik, z.B. durch anionische Polymerisation unter Verwendung von Organolithiumverbindungen oder durch radikalische Polymerisation.

Bei durch anionische Polymerisation hergestellten Kautschuken liegt der Kautschuk in der Regel gelöst in einem Lösungsmittel oder monomerem Styrol vor. Beim erfindungsgemäßen Verfahren brauchen die Kautschuke nicht vom Lösungsmittel abgetrennt zu werden (obwohl auch dies möglich ist). Vielmehr kann man die Lösung des Kautschuks mitsamt Lösungsmittel direkt zum HIPS weiterverarbeiten.

15 Dazu wird zu der Kautschuklösung, die ggf. zuvor durch Zusatz von Kettenabbruchmittel ausreagieren gelassen wurde, monomeres Styrol und die erfindungsgemäße Initiatorzusammensetzung gegeben, und die Mischung nach dem erfindungsgemäßen Verfahren anionisch polymerisiert, d.h. man polymerisiert Styrol in Gegenwart des
20 Kautschuks.

Erfindungsgemäßes Polymer ist auch ein HIPS enthaltend erfindungsgemäß hergestelltem Kautschuk, wobei die Styrolmatrix nach einem anderen als dem erfindungsgemäßen Verfahren in Gegenwart des Kautschuks polymerisiert wurde.

Demnach umfasst das erfindungsgemäße HIPS solche HIPS-Polymeren, bei denen entweder die Kautschukkomponente oder die Styrolmatrix oder beide Bestandteile nach dem erfindungsgemäßen Verfahren hergestellt wurden.

Erfindungsgemäß besonders bevorzugt sind schlagzähe Polystyrolformmassen, enthaltend als Kautschuk

- 35 a) ein Styrol-Butadien-Zweiblockcopolymer S₁-B₁ mit einem Styrolanteil von 30 bis 70, bevorzugt 40 bis 60 Gew.-%, bezogen auf das Zweiblockcopolymer, oder
- 40 b) eine Mischung aus dem unter a) beschriebenen Zweiblockcopolymer mit einem zweiten Styrol-Butadien-Zweiblockcopolymer S₂-B₂ mit einem Styrolanteil von 10 bis 50, bevorzugt 20 bis 40 Gew.-%, bezogen auf das Zweiblockcopolymer, oder
- 45 c) eine Mischung aus dem unter a) beschriebenen Zweiblockcopolymer mit einem Styrol-Butadien-Styrol-Dreiblockcopolymer S-B-S mit einem Styrolanteil von 5 bis 75, bevorzugt 20 bis 50 Gew.-%, bezogen auf das Dreiblockcopolymer. Beson-

12

ders bevorzugt verwendet man als Dreiblockcopolymer ein Polymer S₁-B-S₂, bei dem der Styrolblock S₁ ein gewichtmittleres Molekulargewicht Mw von 20.000 bis 200.000, bevorzugt 50.000 bis 120.000, der Butadienblock B ein Mw von 5 30.000 bis 300.000, bevorzugt 100.000 bis 200.000, und der Styrolblock S₂ ein Mw von 1.000 bis 100.000, bevorzugt 5.000 bis 30.000, aufweist.

Bei den Styrol-Butadien-Blockcopolymeren, beim Polybutadien und 10 beim Polyisopren erlaubt das erfindungsgemäße Verfahren darüberhinaus eine Steuerung des Gehaltes an 1,2-Vinylverknüpfungen im Polybutadien bzw. Polyisopren. Da die mechanischen Eigenschaften dieser Polymere auch vom 1,2-Vinylgehalt des Polybutadiens bzw. Polyisoprens bestimmt werden, ermöglicht das Verfahren demnach 15 die Herstellung von Polybutadien, Polyisopren bzw. Styrol-Butadien-Blockcopolymeren mit maßgeschneiderten Eigenschaften.

Verwendet man beispielsweise - nicht erfindungsgemäß - anstelle der erfindungsgemäßen Initiatorzusammensetzung Natriummetall in 20 Tetrahydrofuran, so weist ein derart hergestelltes Polyisopren einen hohen Gehalt an 1,2-Vinylverknüpfungen auf, was ein anderes Eigenschaftsprofil ergibt, insbesondere andere mechanische Eigenschaften.

25 Die erfindungsgemäßen Polymere zeichnen sich außerdem durch einen geringen Gehalt an Restmonomeren bzw. -oligomeren aus. Dieser Vorteil fällt insbesondere bei den styrolhaltigen Polymeren PS, HIPS und P-S-B ins Gewicht, weil der geringe Gehalt an Styrol-Restmonomeren und Styrol-Oligomeren eine nachträgliche Entgasung 30 - z.B. auf einem Entgasungsextruder, verbunden mit höheren Kosten und nachteiliger thermischer Schädigung des Polymeren (Depolymerisation) - überflüssig macht.

Die Polymere können übliche Zusatzstoffe und Verarbeitungshilfsmittel enthalten, z.B. Gleit- oder Entformungsmittel, Farbmittel wie z.B. Pigmente oder Farbstoffe, Flammenschutzmittel, Antioxidantien, Stabilisatoren gegen Lichteinwirkung, faser- und pulvelförmige Füll- oder Verstärkungsmittel oder Antistatika, sowie andere Zusatzstoffe, oder deren Mischungen.

40 Geeignete Gleit- und Entformungsmittel sind z.B. Stearinsäuren, Stearylalkohol, Stearinsäureester oder -amide, Metallstearate, Montanwachse und solche auf Basis von Polyethylen und Polypropylen.

45

Pigmente sind beispielsweise Titandioxid, Phthalocyanine, Ultramarinblau, Eisenoxide oder Ruß, sowie die Klasse der organischen Pigmente. Unter Farbstoffen sind alle Farbstoffe zu verstehen, die zur transparenten, halbtransparenten oder nichttransparenten 5 Einfärbung von Polymeren verwendet werden können, insbesondere solche, die zur Einfärbung von Styrolcopolymeren geeignet sind. Derartige Farbstoffe sind dem Fachmann bekannt.

Als Flammeschutzmittel können z.B. die dem Fachmann bekannten 10 halogenhaltigen oder phosphorhaltigen Verbindungen, Magnesiumhydroxid, sowie andere gebräuchliche Verbindungen, oder deren Mischungen verwendet werden.

Geeignete Antioxidantien (Wärmestabilisatoren) sind etwa sterisch 15 gehinderte Phenole, Hydrochinone, verschiedene substituierte Vertreter dieser Gruppe, sowie deren Mischungen. Sie sind etwa als Topanol® oder Irganox® im Handel erhältlich.

Geeignete Stabilisatoren gegen Lichteinwirkung sind z.B. verschiedene 20 substituierte Resorcine, Salicylate, Benzotriazole, Benzophenone, HALS (Hindered Amine Light Stabilizers), wie sie z.B. als Tinuvin® kommerziell erhältlich sind.

Als Beispiele für faserförmige bzw. pulverförmige Füllstoffe 25 seien Kohlenstoff- oder Glasfasern in Form von Glasgeweben, Glasmatten oder Glasseidenrovings, Schnittglas, Glaskugeln sowie Wollastonit genannt, besonders bevorzugt Glasfasern. Bei der Verwendung von Glasfasern können diese zur besseren Verträglichkeit mit den Blendkomponenten mit einer Schlichte und einem Haft- 30 vermittler ausgerüstet sein. Die Einarbeitung der Glasfasern kann sowohl in Form von Kurzglasfasern als auch in Form von Endlossträngen (Rovings) erfolgen.

Als teilchenförmige Füllstoffe eignen sich Ruß, amorphe Kiesel- 35 säure, Magnesiumcarbonat (Kreide), gepulverter Quarz, Glimmer, Mica, Bentonite, Talkum, Feldspat oder insbesondere Calciumsilikate wie Wollastonit und Kaolin.

Geeignete Antistatika sind beispielsweise minderivate wie 40 N,N-is(hydroxyalkyl)alkylamine oder -alky. amine, Polyethylen-glycolester oder Glycerinmono- und -distearate, sowie deren Mischungen.

Die einzelnen Zusatzstoffe werden in den jeweils üblichen Mengen 45 verwendet, so daß sich nähere Angaben hierzu erübrigen.

14

Die Herstellung der erfindungsgemäßen Formmassen kann nach an sich bekannten Mischverfahren erfolgen, beispielsweise unter Aufschmelzen in einem Extruder, Banbury-Mischer, Kneter, Walzenstuhl oder Kalander. Die Komponenten können jedoch auch "kalt" 5 verwendet werden und das pulvrig oder aus Granulaten bestehende Gemisch wird erst bei der Verarbeitung aufgeschmolzen und homogenisiert.

Bevorzugt werden die Komponenten, gegebenenfalls mit den erwähnten 10 Zusatzstoffen, in einem Extruder oder einer anderen Mischvorrichtung bei Temperaturen von 100 bis 320°C unter Aufschmelzen vermischt, und ausgetragen. Die Verwendung eines Extruders ist besonders bevorzugt.

15 Aus den Formmassen lassen sich Formkörper (auch Halbzeuge, Folien, Filme und Schäume) aller Art herstellen.

Gegenstand der Erfindungen sind demnach auch die Verwendung der erfindungsgemäßen Polymere zur Herstellung von Formkörpern, 20 Folien, Fasern und Schäume, sowie die aus den Polymeren erhältlichen Formkörper, Folien, Fasern und Schäume.

Beispiele

25 1. Herstellung von Initiatorzusammensetzungen

Es wurden folgende Verbindungen verwendet:

Lithiumhydrid (LiH) und Natriumhydrid (NaH) als Feststoff von Fa. 30 Aldrich,
Triisobutylaluminium (TIBA) als fertige 1,0 molare Lösung in Toluol von Fa. Aldrich,
Toluol von BASF, gereinigt und getrocknet mit Aluminiumoxid.

35 Allgemeine Vorschrift zu den Beispielen II bis I6

Das Alkalimetallhydrid (Art und Menge siehe Tabelle 1) wurde mit einer 1,0 molaren Lösung von TIBA in Toluol (Menge der Lösung siehe Tabelle 1) bei 25°C unter Rühren zusammengegeben und die 40 Mischung nach Zugabe von Toluol (Menge siehe Tabelle 1) bei 50°C 24 Stunden lang gerührt. Man erhielt eine Initiatorlösung, die als solche weiterverwendet wurde. Das Molverhältnis von Aluminium zu Alkalimetall ist in Tabelle 1 angegeben. Es wurde unter Feuchtigkeitsausschluß in einer Stickstoffatmosphäre in einer glovebox 45 gearbeitet.

Tabelle 1: Initiatorzusammensetzungen

Bsp.	Alkalimetallhydrid	TIBA-Lösung	Toluol	Molverh. Al/Li bzw. Al/Na
5	I1 0,8 g LiH	40 ml	960 ml	0,4:1
	I2 0,8 g LiH	70 ml	930 ml	0,7:1
	I3 0,8 g LiH	90 ml	910 ml	0,9:1
	I4 2,4 g NaH	40 ml	960 ml	0,4:1
	I5 2,4 g NaH	70 ml	930 ml	0,7:1
	I6 2,4 g NaH	90 ml	910 ml	0,9:1

10

2. Polymerisation von Monomeren

15 Es wurden die unter 1 angegebenen bzw. folgende Verbindungen verwendet:

Styrol, Isopren und 1,3-Butadien von BASF, jeweils gereinigt und getrocknet mit Aluminoxan,
 20 sec-Butyllithium von Fa. FMC,
 Methanol und Isopropanol von BASF,
 Cyclohexan von BASF, gereinigt und getrocknet mit Aluminoxan,
 Tetrahydofuran (THF) von BASF.

25 Alle Polymerisationen wurden unter Feuchtigkeitsausschluß unter Stickstoffatmosphäre in einer glovebox durchgeführt.

Die nachfolgend angegebenen Molekulargewichte der Polymere (Gewichtsmittel M_w und Zahlenmittel M_n) wurden mittels Gel-permeationschromatographie (GPC) bestimmt. Die Einzelheiten waren wie folgt: Eluent Tetrahydrofuran; Flußrate 1,2 ml/min; RI- bzw. UV-Detektor; drei Styroldivinylbenzolgel-Trennsäulen (35°C, je 300 x 8 mm) PLgel Mixed B von Fa. Polymer Laboratories; Kalibration mit Polystyrolstandards, Polyisoprenstandards bzw. Polybutadienstandards je nach erhaltenem Polymeren.

35

Aus M_w und M_n wurde die Uneinheitlichkeit M_w/M_n berechnet.

Der Styrolanteil der Kautschuke, wurde durch Auswertung von ¹H-Kernresonanzspektren (NMR nuclear magnetic resonance) bestimmt.
 40 Der Gehalt an 1,2-Vinylverknüpfungen im Polybutadien, im Polyisopren bzw. im Butadienanteil des Styrol-Butadien-Blockcopolymers wurde durch ¹³C-Kernresonanzspektroskopie bestimmt.

45

2a) Herstellung von Polystyrol (PS)

Allgemeine Vorschrift zu den Beispielen PS1 bis PS9V

5 Zu 27 ml Toluol wurden unter Rühren bei 100°C eine der zuvor in Beispiel I1 bis I6 hergestellten Initiatorlösungen - bzw. bei den Beispielen PS8V und PS9V Initiator als Feststoff - (Art und Menge siehe Tabelle 2) und monomeres Styrol (Menge siehe Tabelle 2) gegeben. Die Abnahme der Styrolkonzentration wurde gravimetrisch 10 verfolgt. Nach einer bestimmten Reaktionsdauer (siehe Tabelle 2) wurde die Polymerisation durch Zugabe von 1 ml Methanol abgebrochen. Tabelle 2 enthält den zu diesem Zeitpunkt erreichten Umsatz. Von der erhaltenen Polymermischung wurden durch GPC-Analyse die Molekulargewichte M_w und M_n bestimmt und die 15 Uneinheitlichkeit M_w/M_n berechnet, siehe Tabelle 2.

Tabelle 2: Polystyrol (n.b. nicht bestimmt, V zum Vergleich)

Bsp	Initiator-lösung*	Styrol	Reaktions-dauer	Umsatz	M_n [g/mol]	M_w/M_n
PS1	3 ml I1	3,5 ml	5 h	13 %	1800	1,3
PS2	3 ml I2	3,5 ml	5 h	8 %	1000	1,2
PS3	3 ml I3	3,5 ml	24 h	15 %	1600	1,1
PS4	3 ml I3	35 ml	260 h	95 %	120.000	1,2
PS5	3 ml I4	3,5 ml	2 h	82 %	6800	1,3
PS6	3 ml I5	3,5 ml	2 h	41 %	6800	1,3
PS7	3 ml I6	3,5 ml	2 h	20 %	2000	1,2
PS8V	0,1 g LiH	3,5 ml	24 h	< 1 %	n.b.	n.b.
PS9V	0,1 g NaH	3,5 ml	24 h	< 1 %	n.b.	n.b.

30 * Beispiele PS8V und PS9V: Initiator als Feststoff

Die Beispiele zeigen, daß Polystyrolpolymere mit geringer Uneinheitlichkeit und "maßgeschneiderten" Molekulargewichten erhalten werden.

35 Mit steigendem Gehalt der Initiatorzusammensetzung an Aluminium-organyl (Molverhältnisse Al/Li bzw. Al/Na in den Beispielen PS1 bzw. PS5 0,4:1, PS2 bzw. PS6 0,7:1, PS3 bzw. PS7 0,9:1) nimmt der Umsatz innerhalb der Reihen PS1 bis PS3 bzw. PS5 bis PS7 erwartungsgemäß ab, da das Al-organyl als Retarder wirkt. (Bei Beispiel PS3 ist der Umsatz nur aufgrund der wesentlich längeren Polymerisationsdauer, 24 h statt 5 h, höher).

40 45 Beispiel PS4 unterscheidet sich von Beispiel PS3 durch die höhere Monomermenge und die längere Reaktionsdauer. Auf diese Weise lassen sich Polymere mit hohem Molekulargewicht herstellen.

17

Der Vergleich von LiH (Reihe PS1 bis PS3) mit NaH (Reihe PS5 bis PS7) ergibt, daß NaH - sogar trotz kürzerer Polymerisationsdauer - höhere Umsätze und höhere Molekulargewichte liefert als LiH.

5 Die Vergleichsbeispiele PS8V und PS9V illustrieren, daß die Monomeren nicht polymerisieren (kein Umsatz nach 24 h), wenn man - nicht erfindungsgemäß - LiH bzw. NaH ohne Aluminiumorganyl verwendet.

10 2b) Herstellung von Polyisopren (PI)

Allgemeine Vorschrift zu den Beispielen PI1 bis PI3

Zu 27 ml Toluol wurden unter Rühren bei 80°C eine Initiatorlösung
15 (Art und Menge siehe Tabelle 3) und monomeres Isopren (Menge siehe Tabelle 3) gegeben. Die Abnahme der Isoprenkonzentration wurde gravimetrisch verfolgt. Nach einer bestimmten Reaktionsdauer (siehe Tabelle 3) wurde die Polymerisation durch Zugabe von 1 ml Methanol abgebrochen. Tabelle 3 enthält den zu diesem Zeitpunkt
20 erreichten Umsatz. Von der erhaltenen Polymermischung wurden durch GPC-Analyse M_w und M_n bestimmt und die Uneinheitlichkeit berechnet, siehe Tabelle 3, sowie durch ^{13}C -NMR die Anteile der verschiedenen Vinylverknüpfungen bestimmt.

25

30

35

40

45

Tabelle 3: Polyisopren

Bsp.	Initiator- lösung	Isopren	Reaktions- dauer	Umsatz	M_n [g/mol]	M_w/M_n	Vinylverknüpfungen
PI1	3 ml I1	8 ml	7 Tage	9 %	49.000	1,2	0% 1,2-Vinyl 90% 1,3-trans 10% 3,4-trans
PI2*	3 ml I1	8 ml	7 Tage	76 %	47.000	1,2	1,6% 1,2-Vinyl 59,6% 1,4-trans 38,9% 3,4-trans
PI3	2,5 ml I4	8 ml	4 Tage	70 %	46.000	1,3	3,5% 1,2-Vinyl 43% 1,4-trans 53,5% 3,4-trans

* Dem Ansatz wurden außerdem 10 mol eq/Li THF zugefügt

Die Beispiele illustrieren, daß die Polyisoprenpolymere geringe Uneinheitlichkeit und maßgeschneiderte Molekulargewichte aufweisen.

5

Durch Zusatz von THF in Beispiel PI2, verglichen mit Beispiel PI1, lassen sich Anteile von 1,2-, 1,4-trans- und 3,4-trans-Verknüpfungen verändern und so die Mikrostruktur des Polymeren steuern, und der Umsatz erhöhen.

10

Verwendet man NaH statt LiH in der Initiatorzusammensetzung, können höhere Umsätze erzielt werden: in Beispiel PI3 (mit NaH) ist der Umsatz trotz erheblich kürzerer Polymerisationsdauer höher als in Beispiel PI1 (mit LiH).

15

2c) Herstellung von Polybutadien (PB)

Beispiel PB1

20 Zu 27 ml Toluol wurden unter Rühren bei 80°C 3 ml der Initiatorlösung I5 und soviel monomeres Butadien gegeben, daß die Butadienkonzentration in der Mischung 1 mol/l betrug. Die Abnahme der Butadienkonzentration wurde gravimetrisch verfolgt. Nach 2 Tagen Reaktionsdauer wurde die Polymerisation durch Zugabe von 25 1 ml Methanol abgebrochen. Der erreichte Umsatz betrug 10 %. Durch ^{13}C -NMR wurden 25 % 1,2-Vinylverknüpfungen und 55 % 1,4-trans-Verknüpfungen ermittelt.

2d) Herstellung von Styrol-Butadien-Blockcopolymeren (PSB)

30

Allgemeine Vorschrift zu den Beispielen PSB1 bis PSB4

Lineare Blockcopolymeren wurden durch sequentielle Polymerisation von Styrol bzw. Butadien-Styrol-Gemischen hergestellt. Dazu wurde 35 500 ml Cyclohexan vorgelegt und gerührt. Tabelle 4a fasst die bei den einzelnen Blöcken verwendeten Initiatoren, Monomeren und Temperaturen zusammen. Die Monomeren und Initiatoren für den nächsten Block wurden erst zugefügt, nachdem die Monomeren für den vorherigen Block verbraucht waren. Bei den Beispielen PSB1 und 40 PSB2 wurde die Reaktion schließlich mit Isopropanol abgebrochen. Die Tabelle 4b enthält außerdem den Blockaufbau der erhaltenen Polymere und die Gewichtsanteile der einzelnen Blöcke am Blockpolymeren.

45 In Tabelle 4a bedeutet

I5: Initiatorlösung aus Beispiel I5

20

1 M TIBA: 1,0 molare Lösung von TIBA in Toluol
 B: momomeres Butadien
 S: monomeres Styrol
 } : gemeinsame Zugabe.

5

In Tabelle 4b bedeutet:

S_1, S_2, S_3 : Styrolblock

10 (B/S)₁, (B/S)₂: Butadien-Styrol-Block.

Tabelle 4a: Styrol-Butadien-Blockcopolymere

Bsp.	PSB1	PSB2	PSB3	PSB4
Block 1				
- Initiator	16 ml I5	16 ml I5	13 ml I5	13 ml I5
- Monomere	36 g S	16 g S	78 g S	79 g S
- Temp.	100°C	100°C	100°C	100°C
Block 2				
- Initiator	0,3 ml 1M TIBA	0,3 ml 1M TIBA	45 ml I5	45 ml I5
- Monomere	23 g B 23 g S}	23 g B 23 g S}	46 g S	50 g S
- Temp.	120°C	120°C	120°C	120°C
Block 3				
- Initiator	-	-	1 ml 1M TIBA	1 ml 1 M TIBA
- Monomere	23 g B 23 g S}	23 g B 23 g S}	23 g B 23 g S}	34 g B 34 g S}
- Temp.	120°C	120°C	120°C	120°C
Block 4				
- Initiator	-	-	-	-
- Monomere	74 g S	90 g S	26 g S	-
- Temp.	120°C	120°C	120°C	-

35 Tabelle 4b: Blockaufbau der Blockcopolymere

Beispiel	Blockaufbau und Gewichtsanteile der Blöcke am Blockcopolymeren [Gew.-%]
PSB1	$S_1-(B/S)_1-(B/S)_2-S_2$ 18- 23- 23- 36
PSB2	$S_1-(B/S)_1-(B/S)_2-S_2$ 8- 23- 23- 46
PSB3	$S_1-S_2-(B/S)_2-S_3$ 39-23- 25- 13
PSB4	$S_1-S_2-(B/S)_2$ 40-26- 34

21

Aus den linearen Blockcopolymeren PSB3 bzw. PSB4 wurden durch Kopplungsreaktion der lebenden Polymerketten sternförmige Blockcopolymere hergestellt, wobei epoxidiertes Leinsamenöl als Kopplungsmittel (Edenol® B316 von Fa. Henkel) verwendet wurde. Im 5 Einzelnen wurde vorgegangen wie in der WO-A 00/58380, Beispiel 6 bis 8 auf Seite 8 bis 9 beschrieben.

Die Beispiele zeigen, daß sich durch entsprechende Monomerenwechsel und Initiatoren maßgeschneiderte Styrol-Butadien-Blockcopolymere herstellen lassen. Sie können zu sternförmigen Polymeren 10 umgesetzt werden.

Dabei müssen nicht alle Blöcke nach dem erfindungsgemäßen Verfahren hergestellt werden. Vielmehr kann man den einen Block 15 erfindungsgemäß mit einem Alkalimetallhydrid-Aluminiumorganyl-Initiator herstellen, den anderen Block jedoch nach anderen Verfahren.

2e) Herstellung von schlagzähem Polystyrol (HIPS)

20

Als Kautschukkomponente wurden Styrol-Butadien-Blockcopolymere K verwendet, wobei die Blockcopolymere K1, K2 und K3 nicht erfindungsgemäß unter Verwendung von sec-Butyllithium hergestellt wurden.

25

Kautschuke K1 und K2: lineare, in monomerem Styrol gelöste Butadien-Styrol-Zweiblockcopolymere B-S

Für K1 wurde vorgegangen wie beschrieben in der DE-A 100 22 504, 30 Beispiel K1 auf Seite 4, Zeilen 10-25. Für K2 wurde vorgegangen wie beschrieben in der DE-A 100 22 504, Beispiel K3 auf Seite 4, Zeilen 42-56. Die Molekulargewichte M_w betrugen beim Kautschuk K1: Polybutadienblock 100.000, Polystyrolblock 85.000, und beim Kautschuk K2: Polybutadienblock 160.000, Polystyrolblock 95.000.

35

Kautschuk K3: lineares, in monomerem Styrol gelöstes Styrol-Butadien-Styrol-Dreiblockcopolymer S-B-S

Es wurde vorgegangen wie beschrieben in der DE-A 100 22 504, Beispiel K5 auf Seite 5, Zeilen 6-20. Die Molekulargewichte M_w betrugen: erster Styrolblock 15.000, Butadienblock 120.000, zweiter Styrolblock 70.000.

45

22

Das HIPS wurde durch kontinuierliche Polymerisation hergestellt, indem Styrol nach dem erfundungsgemäßen Verfahren in Gegenwart der vorstehenden Kautschuke K1, K2 bzw. K3 nach folgender Vorschrift polymerisiert wurde.

5

Beispiele HI1 bis HI3

In einem 1,9 l-Rührkessel wurden unter Röhren kontinuierlich

10 für HI1 363 g/h, für HI2 380 g/h, für HI3 361 g/h

Styrol und

für HI1 653 g/h der Kautschuklösung K1,

15 für HI2 661 g/h der Kautschuklösung K2,

für HI3 688 g/h der Kautschuklösung K3

und 35 ml/h

20 des Initiators I3 für HI1,

des Initiators I6 für HI2,

des Initiators I3 für HI3

25 eindosiert und bei 90°C (HI2: 93°C) gehalten. Die Mischung hatte einen Feststoffgehalt von

41 Gew.-% für HI1, 43 Gew.-% für HI2, 40 Gew.-% für HI3

30 und wurde in einem gerührten 4 l-Turmreaktor weiter gefördert, der mit zwei gleichgroßen Heizzonen (erste Zone 120°C, zweite Zone 160°C Innentemperatur) versehen war. Der Austrag des Reaktors wurde mit 10 g/h einer 10 Gew.-%igen Lösung von Methanol in Toluol versetzt, danach durch einen Mischer, in den 2,5 Gew.-%, bezogen auf die Reaktionsmischung, Mineralöl eindosiert wurden, 35 und schließlich durch ein auf 240°C beheiztes Rohrstück geleitet. Schließlich wurde über ein Durchregelventil in einen bei 10 mbar betriebenen Vakuumtopf entspannt. Die Schmelze wurde mit einer Fördereschnecke ausgetragen und granuliert. Der Umsatz war quantitativ.

40

Die Polystyrol-Matrix hatte ein Molekulargewicht M_w von

168.000 für HI1, 163.000 für HI2, 175.000 für HI3

45

und eine Uneinheitlichkeit M_w/M_n von

23

2,8 für HI1, 2,6 für HI2, 2,7 für HI3.

In allen drei Beispielen betrug der Restmonomergehalt < 5 ppm Styrol und < 5 ppm Ethylbenzol.

5

Beispiel HI4:

Beispiel HI3 wurde wiederholt mit dem Unterschied, daß der Initiator I6 verwendet wurde.

10

4. Eigenschaften der hergestellten HIPS-Polymer

Aus den HIPS-Granulaten wurden gepresste Probekörper nach DIN 16770 Teil 1 und gespritzte Probekörper nach ISO 3167 hergestellt.

Die Streckspannung und die Reißdehnung wurden nach DIN 53455 bei 23°C bestimmt.

20 Der Oberflächenglanz wurde ermittelt durch Glanzmessung mit einem Reflektometer micro-TRI-gloss von Fa. BYK-Gardner als Reflektometerwerte nach DIN 67530 bei 60° und 20° Beobachtungswinkel.

Die Lochkerbschlagzähigkeit wurde nach DIN 53753 bei 23°C an gepressten Platten 50x6x4 mm und 3 mm Lochdurchmesser durchgeführt.

Die Wärmeformbeständigkeit Vicat B der Proben wurde mittels der Vicat-Erweichungstemperatur ermittelt. Die Vicat-Erweichungstemperatur wurde nach DIN 53 460, Methode B, mit einer Kraft von 30 49,05 N und einer Temperatursteigerung von 50 K je Stunde an Normkleinstäben bestimmt.

Die Fließfähigkeit der Formmassen wurde als Melt Volume Index (MVI) nach DIN 53 735 bei einer Temperatur von 260°C und 5 kg Belastung bestimmt.

Tabelle 5 fasst die Ergebnisse zusammen.

40

45

Tabelle 5: HIPS-Eigenschaften (n.b. nicht bestimmt)

	Beispiel	HI1	HI2	HI3	HI4
5	Streckspannung [N/mm ²]	32,1	32,5	30,3	29,5
	Oberflächenglanz [%] bei 60°/20°	91/62	n.b.	n.b.	n.b.
10	Reißdehnung [%]	11	23	25	32
	Lochkerbschlag- zähigkeit [kJ/m ²]	4,5	12,6	15,1	14,7
	MVI [ml/10 min]	7,6	6,4	4,8	5,2
	Vicat B [°C]	89	91	91	90

15 Die Beispiele belegen, daß sich mit dem erfundungsgemäßen Verfahren Polymere mit maßgeschneiderten mechanischen und thermischen Eigenschaften herstellen lassen.

20

25

30

35

40

45

Patentansprüche

1. Initiatorzusammensetzung für die anionische Polymerisation,
5 enthaltend mindestens ein Alkalimetallhydrid ausgewählt aus
LiH, NaH und KH, und mindestens ein Aluminiumorganyl.
2. Initiatorzusammensetzung nach Anspruch 1, wobei das Mol-
verhältnis von Aluminium zu Alkalimetall 0,01:1 bis 5:1 be-
10 trägt.
3. Initiatorzusammensetzung nach den Ansprüchen 1 bis 2, wobei
als Aluminiumorganyl Triisobutylaluminium verwendet wird.
- 15 4. Verfahren zur Herstellung einer Initiatorzusammensetzung ent-
haltend mindestens ein Alkalimetallhydrid ausgewählt aus LiH,
NaH und KH, und mindestens ein Aluminiumorganyl, wobei man
das Alkalimetallhydrid und das in einem inerten Kohlenwasser-
stoff gelöste oder suspendierte Aluminiumorganyl vermischt
20 und die Mischung bei einer Temperatur von 0 bis 120°C minde-
stens 2 Minuten lang reifen lässt.
5. Verfahren zur anionischen Homo- oder Copolymerisation von
Styrolmonomeren oder Dienmonomeren oder deren Mischungen in
25 Gegenwart einer Initiatorzusammensetzung, wobei die
Initiatorzusammensetzung mindestens ein Alkalimetallhydrid
ausgewählt aus LiH, NaH und KH, und mindestens ein Aluminium-
organyl, enthält.
- 30 6. Verfahren nach Anspruch 5, wobei das Molverhältnis von
Aluminium zu Alkalimetall 0,01:1 bis 5:1 beträgt.
7. Verfahren nach den Ansprüchen 5 bis 6, wobei als Aluminiumor-
gananyl Triisobutylaluminium verwendet wird.
- 35 8. Verfahren nach den Ansprüchen 5 bis 7, wobei als Styrolmono-
meres Styrol verwendet wird.
9. Verfahren nach den Ansprüchen 5 bis 8, wobei als Dienmono-
40 meres Butadien oder Isopren oder deren Mischung verwendet wird.
10. Verwendung der Initiatorzusammensetzung gemäß den Ansprüchen
1 bis 3 zur Herstellung von Polymeren.
- 45 11. Polymere, erhältlich nach dem Verfahren gemäß den Ansprüchen
5 bis 9.

26

12. Polymere nach Anspruch 11, ausgewählt aus Polystyrol, schlagzähem Polystyrol, Polybutadien, Polyisopren und Styrol-Butadien-Blockcopolymeren.

5 13. Verwendung der Polymere gemäß den Ansprüchen 11 und 12 zur Herstellung von Formkörpern, Folien, Fasern und Schäumen.

14. Formkörper, Folien, Fasern und Schäume aus den Polymeren gemäß Ansprüchen 11 bis 12.

10

15

20

25

30

35

40

45

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 03/03900

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7	C08F36/04	C08F4/54	C08F12/00	C08F12/04	C08F297/04
	C07F5/06				

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C08F C07F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, CHEM ABS Data, PAJ, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 98 07765 A (GAUSEPOHL HERMANN ; BASF AG (DE); LOTH WOLFGANG (DE); KNOLL KONRAD) 26 February 1998 (1998-02-26) cited in the application page 21 -page 22; examples 3.4,3.6 page 7, line 19 - line 38 page 4, line 15 - line 21 ---	1-14
X	EP 0 512 310 A (ETHYL CORP) 11 November 1992 (1992-11-11) column 3; example 1 ---	1-3
X	GB 947 993 A (EASTMAN KODAK CO) 29 January 1964 (1964-01-29) page 5; example 3 page 1, column 1, line 12 - line 14 ---	1,2,4,10 -/-

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents:

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the International filing date but later than the priority date claimed

- *T* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *8* document member of the same patent family

Date of the actual completion of the International search

Date of mailing of the International search report

11 July 2003

18/07/2003

Name and mailing address of the ISA

Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Thomas, D

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 03/03900

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2 915 541 A (KARL ZIEGLER ET AL) 1 December 1959 (1959-12-01) column 4; example 4 column 4, line 19 - line 22 -----	1,2,4,10
X	US 3 453 093 A (KOBETZ PAUL ET AL) 1 July 1969 (1969-07-01) page 1, column 1, line 47 - line 49 examples -----	1,2,4,10

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 03/03900

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 9807765	A	26-02-1998	DE	19633272 A1	26-02-1998
			DE	19633273 A1	26-02-1998
			DE	19715036 A1	15-10-1998
			DE	19731419 A1	28-01-1999
			CN	1231679 A	13-10-1999
			DE	59702613 D1	14-12-2000
			DE	59707512 D1	18-07-2002
			WO	9807765 A2	26-02-1998
			WO	9807766 A1	26-02-1998
			EP	0918805 A2	02-06-1999
			EP	0918806 A1	02-06-1999
			ES	2178784 T3	01-01-2003
			ES	2152706 T3	01-02-2001
			JP	2000516286 T	05-12-2000
			US	6444762 B1	03-09-2002
			US	6303721 B1	16-10-2001
EP 0512310	A	11-11-1992	US	5097052 A	17-03-1992
			CA	2064629 A1	04-11-1992
			EP	0512310 A1	11-11-1992
			JP	5163283 A	29-06-1993
GB 947993	A	29-01-1964	DE	1240668 B	18-05-1967
			FR	1337624 A	13-09-1963
US 2915541	A	01-12-1959	DE	918928 C	07-10-1954
			GB	774516 A	08-05-1957
			US	RE25179 E	
US 3453093	A	01-07-1969	US	3535261 A	20-10-1970

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 03/03900

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
 IPK 7 C08F36/04 C08F4/54 C08F12/00 C08F12/04 C08F297/04
 C07F5/06

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
 IPK 7 C08F C07F

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, CHEM ABS Data, PAJ, WPI Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	WO 98 07765 A (GAUSEPOHL HERMANN ; BASF AG (DE); LOTH WOLFGANG (DE); KNOLL KONRAD) 26. Februar 1998 (1998-02-26) in der Anmeldung erwähnt Seite 21 -Seite 22; Beispiele 3.4,3.6 Seite 7, Zeile 19 - Zeile 38 Seite 4, Zeile 15 - Zeile 21 ---	1-14
X	EP 0 512 310 A (ETHYL CORP) 11. November 1992 (1992-11-11) Spalte 3; Beispiel 1 ---	1-3
X	GB 947 993 A (EASTMAN KODAK CO) 29. Januar 1964 (1964-01-29) Seite 5; Beispiel 3 Seite 1, Spalte 1, Zeile 12 - Zeile 14 ---	1,2,4,10
	-/-	

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche

Absendedatum des internationalen Recherchenberichts

11. Juli 2003

18/07/2003

Name und Postanschrift der Internationalen Recherchenbehörde
 Europäisches Patentamt, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Thomas, D

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 03/03900

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	US 2 915 541 A (KARL ZIEGLER ET AL) 1. Dezember 1959 (1959-12-01) Spalte 4; Beispiel 4 Spalte 4, Zeile 19 - Zeile 22 ----	1,2,4,10
X	US 3 453 093 A (KOBETZ PAUL ET AL) 1. Juli 1969 (1969-07-01) Seite 1, Spalte 1, Zeile 47 - Zeile 49 Beispiele ----	1,2,4,10

INTERNATIONALER RECHERCHENBERICHT

Internat... des Aktenzeichen

PCT/EP 03/03900

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 9807765	A	26-02-1998	DE	19633272 A1	26-02-1998
			DE	19633273 A1	26-02-1998
			DE	19715036 A1	15-10-1998
			DE	19731419 A1	28-01-1999
			CN	1231679 A	13-10-1999
			DE	59702613 D1	14-12-2000
			DE	59707512 D1	18-07-2002
			WO	9807765 A2	26-02-1998
			WO	9807766 A1	26-02-1998
			EP	0918805 A2	02-06-1999
			EP	0918806 A1	02-06-1999
			ES	2178784 T3	01-01-2003
			ES	2152706 T3	01-02-2001
			JP	2000516286 T	05-12-2000
			US	6444762 B1	03-09-2002
			US	6303721 B1	16-10-2001

EP 0512310	A	11-11-1992	US	5097052 A	17-03-1992
			CA	2064629 A1	04-11-1992
			EP	0512310 A1	11-11-1992
			JP	5163283 A	29-06-1993

GB 947993	A	29-01-1964	DE	1240668 B	18-05-1967
			FR	1337624 A	13-09-1963

US 2915541	A	01-12-1959	DE	918928 C	07-10-1954
			GB	774516 A	08-05-1957
			US	RE25179 E	

US 3453093	A	01-07-1969	US	3535261 A	20-10-1970

This Page Blank (uspto)