Econ 425 Week 2

Classification I: logistic regression

Grigory Franguridi

UCLA Econ

USC CESR

franguri@usc.edu

Classification

- Data $\mathcal{D} = (\boldsymbol{x}_i, y_i)_{i=1}^n$.
 - x_i : covariates of *i*-th instance
 - $y_i \in \{-1, 1\}$: label of *i*-th instance
- Question: Can we directly minimize the averaged 0-1 loss (misclassification rate)?

$$R(f) = \frac{1}{n} \sum_{i=1}^{n} I(f(\boldsymbol{x}_i) \neq y_i)$$

 Answer: No, the 0-1 loss function is non-convex and discontinuous, so (sub)gradient methods cannot be applied

Classification: surrogate loss

• Replace the 0-1 loss with other loss functions, viz.

$$\frac{1}{n} \sum_{i=1}^{n} L(f(\mathbf{x}_i), y_i) = \frac{1}{n} \sum_{i=1}^{n} \phi(f(\mathbf{x}_i) y_i)$$

- Hinge loss: $\phi(x) = \max\{0, 1 x\}$
- Logistic loss: $\phi(x) = \log(1 + \exp(-x))$

Hinge Loss

$$L_{hinge}(f(\mathbf{x}_i), y_i) = (1 - f(\mathbf{x}_i)y_i)_+ = \begin{cases} 1 - f(\mathbf{x}_i)y_i & \text{if } f(\mathbf{x}_i)y_i \le 1\\ 0, & \text{if } f(\mathbf{x}_i)y_i > 1 \end{cases}$$

Why Hinge Loss?

• Let $\eta(\boldsymbol{x}) = \mathbb{P}(Y = 1 | \boldsymbol{X} = \boldsymbol{x})$. Then hinge risk

$$R_{hinge}(f) = \mathbb{E}_{\boldsymbol{X},Y} \left[L_{hinge}(f(\boldsymbol{X}), Y) \right]$$
$$= \mathbb{E}_{X} \left[\eta(\boldsymbol{X}) (1 - f(\boldsymbol{X}))_{+} + (1 - \eta(\boldsymbol{X})) (1 + f(\boldsymbol{X}))_{+} \right]$$

• Suppose $f(\boldsymbol{X}) \in [-1,1]$ for any \boldsymbol{X} . Then

$$\eta(\boldsymbol{X})(1 - f(\boldsymbol{X})) + (1 - \eta(\boldsymbol{X}))(1 + f(\boldsymbol{X}))$$

= $\eta(\boldsymbol{X}) - 2\eta(\boldsymbol{X})f(\boldsymbol{X}) + 1 + f(\boldsymbol{X}) - \eta(\boldsymbol{X})$
= $f(\boldsymbol{X})(1 - 2\eta(\boldsymbol{X})) + 1$.

- Minimizer f_{hinge}^* of $R_{hinge}(f)$ is (why?)
 - If $\eta(\boldsymbol{X}) < 1/2$, then $f^*_{hinge}(\boldsymbol{X}) = -1$
 - If $\eta(\boldsymbol{X}) > 1/2$, then $f^*_{hinge}(\boldsymbol{X}) = 1$

Why Hinge Loss?

• Under binary loss, the optimal (Bayes) classifier is

$$f^*(\boldsymbol{x}) = egin{cases} 1, & ext{if } \mathbb{P}(Y=1|\boldsymbol{X}=\boldsymbol{x}) > 1/2 \ -1, & ext{if } \mathbb{P}(Y=1|\boldsymbol{X}=\boldsymbol{x}) < 1/2 \end{cases}$$

- f_{hinae}^* is exactly Bayes classifier
- f_{hinge}^{*} is convex, allowing minimization of training error in practice

Another surrogate loss: logistic

$$L_{log}(f(\boldsymbol{x}_i), y_i) = \log \left(1 + \exp(-f(\boldsymbol{x}_i)y_i)\right)$$

Why Logistic Loss?

• Logistic risk:

$$R_{log}(f) = \mathbb{E}_{\boldsymbol{X},Y} \left[\log \left(1 + \exp(-f(\boldsymbol{X})Y) \right) \right]$$
$$= \mathbb{E}_{\boldsymbol{X}} \left[\eta(\boldsymbol{X}) \log \left(1 + \exp(-f(\boldsymbol{X})) \right) + \left(1 - \eta(\boldsymbol{X}) \right) \log \left(1 + \exp(f(\boldsymbol{X})) \right) \right]$$

Take derivative w.r.t. f,

$$-\eta(\boldsymbol{X}) \frac{\exp(-f(\boldsymbol{X}))}{1 + \exp(-f(\boldsymbol{X}))} + (1 - \eta(\boldsymbol{X})) \frac{\exp(f(\boldsymbol{X}))}{1 + \exp(f(\boldsymbol{X}))}$$

$$= -\eta(\boldsymbol{X}) \frac{1}{1 + \exp(f(\boldsymbol{X}))} + (1 - \eta(\boldsymbol{X})) \frac{\exp(f(\boldsymbol{X}))}{1 + \exp(f(\boldsymbol{X}))}$$

$$= \frac{\exp(f(\boldsymbol{X}))}{1 + \exp(f(\boldsymbol{X}))} - \eta(\boldsymbol{X}) = 0 \longleftrightarrow f_{log}^*(\boldsymbol{X}) = \log \frac{\eta(\boldsymbol{X})}{1 - \eta(\boldsymbol{X})}$$

Connection between binary loss and surrogate losses

- Binary-optimal (Bayes) classifier $f^*(x) = \operatorname{sign}(\eta(x) 1/2)$
- Hinge-optimal classifier $f^*_{hinge}({m x}) = {\rm sign}(\eta({m x}) 1/2)$
- Logistic-optimal classifier $f_{log}^*(m{x}) = \log rac{\eta(m{X})}{1-\eta(m{X})}$
- Question: what is the connection between these optimal classifiers?
- Answer: The signs of $f^*, f^*_{hinge}, f^*_{log}$ are always the same, e.g., always positive as long as $\eta(x) > 1/2$.

Logistic Regression

• To estimate $f_{log}^*(x)$, impose parametric structure on

$$\eta(\boldsymbol{x}) = \mathbb{P}\Big(Y = 1 \big| \boldsymbol{X} = \boldsymbol{x}\Big)$$

Logistic regression:

$$\eta(\boldsymbol{x}) = \frac{\exp(\beta_0 + \boldsymbol{\beta}' \boldsymbol{x})}{1 + \exp(\beta_0 + \boldsymbol{\beta}' \boldsymbol{x})},\tag{1}$$

where

- $x = (x_1, \dots, x_p)'$ is a p-dimensional predictor
- β_0 and $\beta = (\beta_1, \dots, \beta_p)'$ are unknown parameters
- $\beta' x = \sum_{l=1}^p \beta_i x_i$

Log odds ratio

• Rewrite (1) to get

$$\exp(\beta_0 + \boldsymbol{\beta}' \boldsymbol{x}) = \frac{\mathbb{P}(Y = 1 | \boldsymbol{X} = \boldsymbol{x})}{1 - \mathbb{P}(Y = 1 | \boldsymbol{X} = \boldsymbol{x})} = \frac{\mathbb{P}(Y = 1 | \boldsymbol{X} = \boldsymbol{x})}{\mathbb{P}(Y = 0 | \boldsymbol{X} = \boldsymbol{x})},$$

where the last expression is "odds ratio"

• In other words, the log odds ratio is linear in β ,

$$\log \frac{\mathbb{P}(Y = 1 | \boldsymbol{X} = \boldsymbol{x})}{\mathbb{P}(Y = 0 | \boldsymbol{X} = \boldsymbol{x})} = \beta_0 + \boldsymbol{\beta}' \boldsymbol{x}$$

Interpretation: β_i is the average change in the log odds ratio under one-unit increase in x_i

Maximum likelihood estimation

Likelihood function

$$L(\beta_0, \boldsymbol{\beta}) = \prod_{i=1}^n \mathbb{P}(Y = 1 | \boldsymbol{X} = \boldsymbol{x})^{y_i} \mathbb{P}(Y = 0 | \boldsymbol{X} = \boldsymbol{x})^{1-y_i}$$

Log-likelihood

$$\log L(\beta_0, \boldsymbol{\beta})$$

$$= \sum_{i=1}^{n} \left[y_i \log \mathbb{P}(Y = 1 | \boldsymbol{X} = \boldsymbol{x}) + (1 - y_i) \log \mathbb{P}(Y = 0 | \boldsymbol{X} = \boldsymbol{x}) \right]$$

$$= \sum_{i=1}^{n} \left[y_i (\beta_0 + \boldsymbol{\beta}' \boldsymbol{x}) - \log \left(1 + \exp(\beta_0 + \boldsymbol{\beta}' \boldsymbol{x}) \right) \right]$$

Computation: gradient ascent

Let $\beta_0^{(t)}, \boldsymbol{\beta}^{(t)}$ be *t*-th step estimates.

Update (gradient ascent):

$$\beta_0^{(t+1)} \leftarrow \beta_0^{(t)} + \lambda \sum_{i=1}^n \left[y_i - \frac{\exp(\beta_0^{(t)} + x'\beta^{(t)})}{1 + \exp(\beta_0^{(t)} + x'\beta^{(t)})} \right],$$
$$\beta^{(t+1)} \leftarrow \beta^{(t)} + \lambda \sum_{i=1}^n \left[y_i - \frac{\exp(\beta_0^{(t)} + x'\beta^{(t)})}{1 + \exp(\beta_0^{(t)} + x'\beta^{(t)})} \right] x_i,$$

where $\lambda > 0$ is step size (tuning parameter)

Logistic classifiction

Denote the final estimates by \widehat{eta}_0 and $\widehat{oldsymbol{eta}}$

Estimate class probability $P(Y = 1 | \boldsymbol{X})$ as

$$\widehat{\eta}(\boldsymbol{x}) = \frac{\exp(\widehat{\beta}_0 + \widehat{\boldsymbol{\beta}}'\boldsymbol{x})}{1 + \exp(\widehat{\beta}_0 + \widehat{\boldsymbol{\beta}}'\boldsymbol{x})}$$

Then the logistic classifier is (recall $\eta(\boldsymbol{x}) = P(Y=1|\boldsymbol{X})$)

$$\widehat{f}(\boldsymbol{x}) = \begin{cases} 1, & \text{if } \widehat{\eta}(\boldsymbol{x}) > 1/2\\ 0, & \text{if } \widehat{\eta}(\boldsymbol{x}) < 1/2 \end{cases}$$

If $\widehat{\eta}(\boldsymbol{x}) = 1/2$, then assign a label $\in \{0,1\}$ randomly

Example

Data $\mathcal{D} = (x_i, y_i)_{i=1}^{5000}$, where $x_i = (x_{i1}, x_{i2}, x_{i3}, x_{i4})$.

- $x_{il} \sim Unif(0,2), l = 1, \ldots, 4.$
- $\beta_0 = 0.5$, $\beta = (\beta_1, \beta_2, \beta_3, \beta_4)$ with $\beta_i \sim Unif(-1, 1)$
- Model:

$$Y_i \sim Bernoulli\left(\frac{\exp(\beta_0 + \boldsymbol{\beta}'\boldsymbol{x})}{1 + \exp(\beta_0 + \boldsymbol{\beta}'\boldsymbol{x})}\right),$$

i.e.

$$P(Y_i = 1 | \mathbf{X}) = \frac{\exp(\beta_0 + \boldsymbol{\beta}' \mathbf{x})}{1 + \exp(\beta_0 + \boldsymbol{\beta}' \mathbf{x})}$$

Python code – data generation

```
import numpy as np
np.random.seed(2)
n,p = 5000,4  # Set training datasize and dimension of features
X = np.random.uniform(-1,1,[n,p]) # Generation of features
beta = np.random.uniform(0,2,4) # Generation of parameters
beta_0 = 0.5 # Set the intercept term to 0.5
logOdd = (X * beta).sum(axis=1)+beta_0 # Log-odds
Prob = np.exp(logOdd)/(1+np.exp(logOdd)) # Probability
Y = np.array(Prob - np.random.uniform(0,1,n)>0,dtype=int) # Generate labels
```

```
Beta_0_hat = 0. # Initialization of intercept term
Beta_hat = np.zeros(p) # Initialization of beta
lamb = 0.1 # Learning rate
Error = \prod \# Error set
for i in range(2000):# Iterations of gradient ascent
  logOdd_hat = (X * Beta_hat).sum(axis=1)+Beta_0_hat
  Beta_0_hat = Beta_0_hat + lamb * np.mean(Y - np.exp(logOdd_hat)/(1+np.exp(logOdd_hat)))
  Beta_hat = Beta_hat + lamb * ((Y - np.exp(logOdd_hat)/(1+np.exp(logOdd_hat)))) * X.T).mean(ax)
  Error.append(np.linalg.norm(Beta_hat-beta)**2)
import matplotlib.pyplot as plt
plt.plot(np.arange(0,2000),Error)
plt.xlabel('Number of iterations')
plt.ylabel('$\Vert \\beta - \hat{\\beta}\Vert_2^2$')
plt.grid()
```

Example: gradient ascent for logistic regression

Over/underfitting problem

- Overfitting: model is too flexible/complex, learns the training data too well, capturing noise and making it perform poorly on unseen data
 - low bias, high variance
- Underfitting: model is too rigid/simple to capture patterns in the data, resulting in poor performance on both the training and test data
 - high bias, low variance
- Simple example: polynomial regression

Example: underfitting

Degree 1: The model is unable to capture the patterns in the data

Example: good fit

Degree 5: The model captures the patterns well and generalizes to test data

Example: overfitting

Degree 15: The model fits the training data too well, capturing noise and performing poorly on unseen data

Classification outcomes

- true positive (TP): a correctly predicted positive data point, i.e., $\widehat{y}=y=1$
- true negative (TN): a correctly predicted negative data point, i.e., $\hat{y} = y = -1$
- false positive (FP): an incorrectly predicted positive data point, i.e., $\widehat{y}=1$ but y=-1
- false negative (FN): an incorrectly predicted negative data point, i.e., $\widehat{y}=-1$ but y=1

Example: image recognition

$$Y=1$$
 (dog), $Y=-1$ (not dog)

index	actual	predicted	Result	
1	Dog	Dog	TP	
2	Dog	Not Dog	FN	
3	Dog	Dog	TP	
4	Not Dog	Not Dog	TN	
5	Dog	Dog	TP	
6	Not Dog	Dog	FP	
7	Dog	Dog	TP	
8	Dog	Dog	TP	
9	Not Dog	Not Dog	TN	
10	Not Dog	Not Dog	TN	

Example: image recognition

- Actual Dog Counts = ?
- Actual Not Dog Counts = ?
- True Positive Counts = ?
- False Positive Counts = ?
- True Negative Counts = ?
- False Negative Counts = ?

Example: image recognition

- Actual Dog Counts = 6
- Actual Not Dog Counts = 4
- True Positive Counts = 5
- False Positive Counts = 1
- True Negative Counts = 3
- False Negative Counts = 1

Example: confusion matrix

		Actual		
		Dog	Not Dog	
Predicted	Dog	True Positive (TP =5)	False Positive (FP=1)	
	Not Dog	False Negative (FN =1)	True Negative (TN=3)	

 How to use the confusion matrix to assess classifier performance?

Classification metrics: accuracy

- Accuracy is the ratio of total correct instances to the total instances
- Accuracy = $\frac{TP+TN}{TP+TN+FP+FN}$
- In our example: Accuracy = ?
- In our example: Accuracy = (5+3)/(5+3+1+1) = 8/10 = 0.8

Classification metrics: precision

- Precision is proportion of correct positive classifications
- Def: ratio of true positive predictions to the total number of positive predictions
- Precision = $\frac{TP}{TP+FP}$
- In our example: Precision = ?
- In our example: Precision = 5/(5+1) = 5/6 = 0.8333

Classification metrics: recall

- Recall measures the proportion of correctly classified positives
- Def: ratio of the number of true positive instances to the total number of positive instances
- Recall = $\frac{TP}{TP+FN}$
- In our example: Recall = ?
- In our example: Recall = 5/(5+1) = 5/6 = 0.8333

Classification metrics: F1 Score

- F1 score is the harmonic mean of precision and recall
- Harmonic mean is often used to calculate the average of ratios/rates
- Harmonic mean is the reciprocal of the arithmetic mean of the reciprocals of observations
- Example: harmonic mean of 1, 4, 4 is

$$\left(\frac{1^{-1} + 4^{-1} + 4^{-1}}{3}\right)^{-1} = 2$$

Classification metrics based on confusion matrix: F1 Score

- F1 score = $\frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$
- In our example: F1-Score=?
- In our example: F1-Score = (2*0.8333*0.8333)/(0.8333+0.8333) = 0.8333

Example: classification metrics

- A binary classification model is used to predict whether an email is spam (positive class) or not spam (negative class).
 After testing the model on a dataset of 100 emails, you get the following results:
 - 40 emails are correctly identified as spam (True Positives).
 - 10 emails are incorrectly identified as spam (False Positives).
 - 30 emails are correctly identified as not spam (True Negatives).
 - 20 emails are incorrectly identified as not spam (False Negatives).

Example: classification metrics

Problem:

- construct the confusion matrix
- calculate the following metrics:
 - Accuracy
 - Precision
 - Recall
 - F1 Score

Example: classification metrics

Solution

- confusion matrix:
 - True Positives (TP): 40
 - False Positives (FP): 10
 - True Negatives (TN): 30
 - False Negatives (FN): 20

• Accuracy =
$$\frac{40+30}{40+30+10+20} = 0.7$$

- Precision = $\frac{40}{40+10} = 0.8$
- Recall = $\frac{40}{40+20} = \frac{2}{3}$
- F-1 Score = $2 \times \frac{0.8 \times 0.667}{0.8 + 0.667} \approx 0.727$

Application: banknote authentication

- The banknote authentication dataset is used for determining if a banknote is authentic based on features of wavelet-transformed images of banknotes
- Features:
 - x_1 is the variance of the image
 - x₂ is the skewness of the image
 - x_3 is the kurtosis of the image
 - x₄ is the entropy of the image

Application: banknote authentication

• Logistic regression:

$$P(\mathsf{authentic}|X) = \frac{1}{1 + \exp\{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4\}}$$

- Classifier:
 - if $P(\text{authentic}|X) \ge 0.5$, predict that the banknote is authentic
 - if $P(\operatorname{authentic}|X) < 0.5$, predict that the banknote is not authentic

Application: banknote authentication

```
Variance Skewness Curtosis Entropy Class
  3.62160 8.6661 -2.8073 -0.44699
                                           0
  4.54590 8.1674 -2.4586 -1.46210
                                           0
2 3.86600 -2.6383 1.9242 0.10645
                                           0
3 3.45660 9.5228 -4.0112 -3.59440
   0.32924
             -4.4552 4.5718 -0.98880
                                           0
Accuracy: 0.98
Confusion Matrix:
[[144 4]
   2 125]]
Classification Report:
             precision
                         recall f1-score
                                          support
                 0.99
                           0.97
                                    0.98
                                              148
                 0.97
                           0.98
                                    0.98
                                              127
                                    0.98
                                              275
   accuracy
                           0.98
                                    0.98
                                              275
  macro avg
                 0.98
weighted avg
                 0.98
                           0.98
                                    0.98
                                              275
```

Python package statsmodels

- · designed for statistical modeling and hypothesis testing
- e.g. linear regression, logistic regression, time-series models
- includes modules for performing hypothesis tests, constructing confidence intervals, and fitting various statistical models with an emphasis on providing detailed statistical information
- widely used in business and academic research

Statsmodels: Linear regression

```
import statsmodels.api as sm
import numpy as np
# Generate some random data for demonstration
np.random.seed(42)
X = np.random.rand(100, 2)
y = 3 * X[:, 0] + 2 * X[:, 1] + 1 + 0.1 * np.random.randn(100)
# Add a constant term to the independent variable
X = sm.add constant(X)
# Create a Linear model
model = sm.OLS(y, X)
results = model.fit()
# Print detailed statistical summary
print(results.summary())
```

Statsmodels: output

OLS Regression Results

==========			=====	====		======	========
Dep. Variable: y			У	R-sq	uared:		0.991
Model:			0LS	Adj.	R-squared:		0.991
Method:		Least Squa	res	F-sta	atistic:		5655.
Date:	Th	u, 21 Dec 2	023	Prob	(F-statistic):		3.86e-101
Time:		10:50	:14	Log-	ikelihood:		89.304
No. Observatio	ons:		100	AIC:			-172.6
Df Residuals:			97	BIC:			-164.8
Df Model:			2				
Covariance Typ	oe:	nonrob	ust				
			=====	====		======	
	coef	std err		t	P> t	[0.025	0.975]
const	0.9772	0.026	37.	651	0.000	0.926	1.029
x1	3.0339	0.033	91.	615	0.000	2.968	3.100
x2	2.0355	0.035	57.	426	0.000	1.965	2.106
			=====	====:		======	
Omnibus:					in-Watson:		2.104
Prob(Omnibus):					ue-Bera (JB):		5.624
Skew:					(JB):		0.0601
Kurtosis:		3.	761	Cond	. No.		5.22
==========			=====	====		=======	

Python library scikit-learn

- provides tools for various ML tasks
- e.g., classification, regression, clustering, dimensionality reduction
- provides a consistent interface for various ML algorithms, making it easy to train models, perform feature engineering, and evaluate model performance
- widely used in industry for building and deploying machine learning models in areas such as image recognition, natural language processing, and predictive analytics