PONTO DE CONTROLE 4 - ELETRÔNICA EMBARCADA

Clara Fonseca da Justa, Hallana Rayssa Alves da Silva

Programa de Graduação em Engenharia Eletrônica, Faculdade Gama Universidade de Brasília Gama, DF, Brasil

email: clarajusta31@gmail.com, hallanarayssa@gmail.com

1. JUSTIFICATIVA

O Brasil é um país localizado em uma região inter - tropical e possui grande potencial para aproveitamento de energia solar durante todo o ano. Apesar disso, a matriz energética brasileira ainda apresenta a energia hidraúlica como principal fonte da geração de eletricidade. Entretanto, nos últimos anos há um intenso esforço para que a geração solar fotovoltaica ocupe um espaço maior na matriz energética.[1]

Dados do Operador Nacional do Sistema Elétrico - ONS, demonstram a evolução da potência instalada e geração de usinas solares fotovoltaicas, desde setembro de 2015 até janeiro de 2019.[2]

Fig. 1. Evolução da geração e potência instalada de usinas solares fotovoltaicas.

Esses dados são referentes à geração de usinas solares fotovoltaicas do Sistema Interligado Nacional - SIN, e abrangem apenas as usinas em operação comercial. De acordo com as informações oferecidas pelo ONS e ao analisar a figura 1 é possível verificar que em setembro de 2015, quando as primeiras usinas entraram em operação, a potência instalada foi de 10 MW. Já em março de 2019 a potência instalada foi de 1800 MW. Através dessas informações é possível verificar que houve um crescimento significativo no uso dessa energia limpa.

Além das usinas em operação comercial, há uma outra modalidade de geração de energia solar: os sistemas sola-

res fotovoltaicos de microgeração e minigeração em Unidades Consumidoras - UC (residências, comércios, indústrias, edifícios públicos e na zona rural). Nesta modalidade as unidades que adotam o uso de placa solar, são compensadas pela energia injetada na rede em relação a energia consumida.[3]

Relatórios sobre Unidades Consumidoras com geração distribuída levantados pela CEB, traz informações copiladas e mapas sobre o uso de sistemas fotovoltaicos e fonte solar na região Centro-Oeste. Geração distribuída é o termo utilizado para referenciar a energia elétrica que é gerada próxima ou no local de consumo. Na figura 2 demonstra-se a quantidade de geração distribuída (1233), o número de unidades consumidoras que utilizam esta energia (1312) e a potência instalada (16959,61 kW). Já na figura 3 é possível notar que a adoção desse tipo de sistema vem em uma crescente desde de 2015.

REGIAO	QTD GD	UCs REC CRÉDITOS	POT INSTALADA (kW)
Centro Oeste	1.233	1,312	16.959,61
Total	1.233	1.312	16.959,61

Fig. 2. Geração de energia solar em Unidades Consumidoras na região centro - oeste.

ANO	QTD GD	UCs REC CRÉDITOS	POT INSTALADA (kW)	
2019	497	537	6.734,90	
2018	403	424	5.813,08	
2017	210	222	3.274,97	
2016	87	92	853,35	
2015	36	37	283,31	
Total	1.233	1.312	16.959,61	

Fig. 3. Evolução da geração de energia solar em Unidades Consumidoras na região centro - oeste.

Os benefícios desse sistema são muitos, vão deste ao baixo impacto ambiental até a redução de perdas por transmissão e distribuição da energia. Porém, o custo para a

instalação de um sistema fotovoltaico é elevado. O preço médio para a instalação de placas solares para um consumo de 2kWp é de aproximadamente 15.000 reais.[4]

Na tabela abaixo (figura 4) é possível estimar o investimento necessário para a instalação de um sistema fotovoltaico dependendo do tamanho da residência.

Tamanho da Residência	Modelo do Sistema Sistema de 1.32Kwp	Preço Médio R\$ 10.673,36
Casa pequena, com 2 pessoas		
Casa média, com 3 ou 4 pessoas	Sistema de 2,64Kwp	R\$ 17.570,00
Casa média, com 4 pessoas	Sistema de 3,3Kwp	R\$ 20.320,00
Casa grande, com 4 ou 5 pessoas	Sistema de 4,62Kwp	R\$ 25.695,00
Casa grande, com 5 pessoas	Sistema de 6,6Kwp	R\$ 32.410,00
Mansão, com mais de 5 pessoas	Sistemas de até 10,56Kwp	R\$ 52,240,00

Fig. 4. Preço da energia solar fotovoltaica residencial.

Por esse motivo, quanto maior a eficiência das placas solares, mais rápido será o retorno finaceiro da instalação. Para a otimização da captação solar, propõem-se a implementação de um dispositivo de baixo custo, um seguidor solar.

2. OBJETIVOS

Implementar um sistema de seguidor solar de baixo custo e eficaz em comparação aos que existem.[5]

2.1. Objetivos Específicos

- Movimentar dois servos motores para controlar os eixos de rotação em bases de placas fotovoltaicas usando o microcontrolador MSP430;
- Monitorar com eficácia dados de sensores de luminosidade e sensores de irradiação solar de forma com que a placa guie-se através do local com maior incidência dos raios solares;

3. REQUISITOS

- 1) Microcontrolador (MSP430)
- 2) Converter energia solar em elétrica
- 3) Estrutura capaz de atender os requisitos
- 4) Movimentar placa solar nos eixos x e y
- 5) Medir incidência solar sobre a placa
- 6) Manter a placa no local com maior incidência solar
- 7) Abordar todo o conteúdo de Eletrônica Embarcada
- 8) Baixo custo
- 9) Desenvolvimento completo no período de 3 meses

Para desenvolver o projeto será usado um microcontrolador MSP430, que tem como função movimentar dois servos motores, que serão posicionados no eixo "x" e no eixo "y". Esses servos motores irão se movimentar a partir dos dados coletados por 4 sensores de luminosidade. Os LDR's, serão analisados em pares, gerando dois conjuntos, o primeiro responsável pelo movimento azimutal e o segundo pelo movimento de declinação.

Os LDR's de cada conjunto serão separados um do outro por meio de um perfil "T", como mostra a figura 5. Sendo o microcontrolador acionado quando existe uma diferença entre as impedâncias dos LDR's.

O primeiro conjunto de LDR's compara a intensidade luminosa entre o lado direito e o lado esquerdo. O segundo conjunto compara os valores de um referencial em cima e outro abaixo, como mostra a figura 6.

Fig. 5. Conjunto de sensores separados por meio de perfil T.

Fig. 6. Referencial de orientação utilizado

4. DESENVOLVIMENTO

4.1. Materiais

4.1.1. Sensores

Para cumprir os requisitos do projeto descritos anteriormente foi necessário um levantamento dos sensores capazes de adquirir os dados de forma mais eficiente para as tomadas de decisão.

4.1.2. LDR

O sensor LDR, também conhecido como foto-resistor, apresenta uma resistência que varia de acordo com a incidência solar.

Fig. 7. LDR

Através da curva característica do componente, é possível observar que sua resistência cai a medida em que a intensidade da luz aumenta.

Características do LDR modelo GL5528:

• Diâmetro: 5mm.

• Tensão máxima: 150VDC

• Potência máxima: 100mW.

• Espectro: 540nm

• Comprimento com terminais: 32mm.

• Resistência no escuro: 1 M (Lux 0)

• Resistência na luz: 10-20 K (Lux 10)

Cada LDR funciona como um divisor de tensão. A saída deste divisor de tensão é atribuída a um pino do microcontrolador. Desta forma utiliza-se um registrador para guardar o valor coletado de cada um dos sensores de luminosidade.

Os LDR's são separados em dois conjuntos, como explicitado anteriormente, sendo que o microcontrolador é acionado quando existe uma diferença entre as impedâncias dos LDR's. O MSP430 envia um pulso para a movimentação dos servos quando nota essa diferença e reposiciona o sistema até que a discrepância entre as impedâncias seja mínima.

4.1.3. Servo Motor

Os servomotores, também conhecidos como servos, são componentes elaborados com o uso de engrenagens, capazes de gerar movimento em sentido horário e anti horário. É um motor em que podemos controlar a sua posição angular com o uso de um sinal PWM.

Fig. 8. Servo Motor.

Características do servo modelo: Servo 9g Tower Pro SG90:

• Tensão de Operação: 3 a 7,2V.

Faixa de Rotação: 180º

• Modulação: PWM.

• Velocidade (4.8V): 0.12 s / 60°

• Torque(4.8V): 1,5kg/cm.

• Dimensões: 22x12x19mm.

• Peso: 9g;

• Tamanho do cabo: 24cm.

4.2. Estrutura

Com o intuito de montar uma estrutura capaz de atender os requisitos estabelecidos e nas características do projeto, foi utilizada uma estrutura elaborada na impressora 3D.

A estrutura foi projetada para que a movimentação necessária á otimização da captação solar fosse possível e de fácil encaixe dos servomotores. A mesma possui um suporte para a placa solar e engrenagens para a rotação dos dois eixos do motor. Para a alocação dos LDR's construiu-se uma peça em formato de T, como descrito anteriormente.

4.3. Desenvolvimento do Ponto de Controle 2 - Protótipo funcional utilizando ferramentas mais básicas.

Para o primeiro protótipo funcional utilizou-se o software Energia IDE, pois através dele é possível utilizar bibliotecas e funções em linguagem C de forma que as mesmas sejam executadas na MSP430. Com o intuido de validar o projeto, foi usado o Energia IDE junto do Arduino Uno. Esta etapa é apenas para a validação do projeto, de forma que será necessário o desenvolvimento dos códigos em assembly no code composer posteriormente.

4.3.1. Código Servomotor

Para testar o servomotor na estrutura, utilizou-se a biblioteca Servo.h. Esta é uma biblioteca comumente utilizada em projetos desenvolvidos no arduino, é necessário apenas instanciar o servomotor a um pino e chamar as funções informando o ângulo de movimento.

4.3.2. Código LDR

A leitura da entrada analógica é feita com a função analogRead, que recebe como parâmetro o pino analógico a ser lido e retorna o valor digital que representa a tensão no pino.O código lerá o valor do sinal em A0 com o auxílio do comando analogRead(), que retornará um valor entre 0 a 1023, e o comparará com um valor de referência determinado em 800.

Tendo em vista que, quanto mais escuro, maior será o valor de A0, caso A0 seja maior que o valor de referência o programa liga o LED conectado ao pino 6. Do contrário, ele apaga o LED. O programa também imprime o valor de A0 para que possamos verificar a faixa de valores e até mesmo calibrar nosso sensor.

4.3.3. Código Geral

Para a funcionalidade total do sistema utilizou-se o código mostrado nas figuras 12,13,14 e 15. São criadas duas variáveis para controle dos servomotores e quatro variáveis do tipo inteiro para armazenar os valores lidos pelos sensores de luminosidade.

O loop da linha 35 utiliza os valores armazenados pelos LDR's de acordo com a incidência para fazer comparações entre os dois LDR's de cada conjunto. No primeiro conjunto, é comparada a incidência entre os lados direito e esquerdo (linha 45). Enquanto o segundo conjunto compara os valores de incidência entre a parte de cima e a parte de baixo (linha 59).

Ainda dentro do loop o servo R1 é controlado a partir dos dados do primeiro conjunto e o servo R2 controlado a partir dos dados do segundo connjunto. Após analisar a variação de valores entre os conjuntos dos sensores de luminosidade, os motores são movimentos até que essa discrepância seja mínima.

4.4. Desenvolvimento do Ponto de Controle 3 - Refinamento do protótipo em linguagem C.

Nesta etapa do trabalho o objetivo é abranger as seguintes condições: subrotinas, interrupções, modo de baixo consumo e assembly. Utilizou-se o software code composer para que execução do seguidor solar pudesse ser verificada na msp430.

O código foi desenvolvido para controlar os servosmotores, com uso do PWM em uma frequência de 46 Hz e um passo de motor de 30 graus. O laço infinito, estabelecido entre as linhas 62 a 84, gera o comando de movimento para o servo, por meio de registradores e variáveis que são incrementadas/decrementadas dentro da interrupção apresentada nas linhas 87 a 120.

A leitura dos LDRs ocorre com a utilização do conversor analógico digital da msp430.Para que ocorra o movimento dos servos, é necessário que tenha uma variação entre os valores apresentados pelos LDRs. Os LDRs, são comparados em pares. Para desenvolver essa comparação, foram elaboradas condições if/else, que armazenam valores dentro dos registrados os valores das variáveis "count".

O modo de baixo consumo ocorre na linha 121, dando comando para a CPU ser desligada.

4.4.1. Dificuldades encontradas

O comportamento desejado era que o seguidor solar se movesse de acordo com a incidência luminosa de uma fonte externa. Porém, ao executar o código na msp430 os servosmotores não agiram em consonância com os LDR's, escapando da incidência luminosa.

Levantaram-se algumas hipoteses para o não funcionamento do seguidor solar:

- Erro na estrutura do código, fazendo com que a logíca estivesse errada;
- O dispositivo não está respondendo corretamente por aferição não adequada dos LDR's, ou conexão entre os sensores e a msp430.
- Comparação que deve ser realizada entre um conjunto e outro de LDR's não está bem definida - formado por um par dos sensores um de cada lado do perfil em T já citado no subseção estrutura.

4.4.2. Próximos Passos

Devido aos problemas enfrentados na execução do projeto, a dupla optou por seguir uma nova estratégia.

- Debugar o código com o qual foi implementado o projeto;
- Averiguar a obtenção de dados e comparação dos LDR's;

.

4.5. Desenvolvimento do Ponto de Controle 4 - Refinamento do protótipo em linguagem C, acrescentado temporização bem definida.

Devido a problemas enfrentados no desenvolvimento do projeto, uma nova estratégia foi adotada. A primeira etapa realizada foi refazer o código responsável por movimentar o servomotor. De acordo com o datasheet do servomotor SG90, o componente apresenta um período de 20 ms e um duty cycle de 1 ms a 2 ms, sendo portanto necessário adotar essas configurações.

Visando atender aos requisitos foram usadas duas interrupções, uma responsável pela frequência e outra pelo duty cycle do servomotor, utilizando o Timer A e dois registradores. Além disso, foi estabelecido o limite da trajetória do motor. Para delimitar o movimento de inclinação, foi usado um transferidor aferindo-se 40 graus em cada um dos lados da estrutura.

Fig. 9. Medindo a inclinação.

Fig. 10. Limite Inclinação

Ao determinar a trajetória desse componente, foram observado os valores interpretados pela MSP430 de acordo com a posição do servo. Foi aferido que os limites dessa movimentação eram lidos pelo microcontrolador como 1110 e 2025.

O segundo passo foi analisar a disposição e o valor lido por cada LDR quando exposto a incidência luminosa. Para realizar a movimentação correta de acordo com uma fonte luminosa externa é necessário comparar a incidência luminosa em cada um dos LDR's. Adotou-se um padrão que pode ser observado na figura 11, onde indica-se a posição da fonte luminosa e a partir dela compara-se os valores nos LDR's. Exemplo: Se o LDR1 for maior que o LDR3 ou o LDR2 for maior que o LDR4, então o seguidor solar está na posição A.

Fig. 11. Disposição dos LDR's.

No Arduino o valor lido do LDR na porta analógica, varia entre 0 e 1024. Com o intuito de aferir essa medição dos LDRs em diversas intensidades de luz, foi posicionado uma lâmpada sobre a estrutura, como mostra a figura 12. E a inclinação do servomotor foi variada de 1 em 1 grau até percorrer todo o trajeto estabelecido. A cada grau percorrido, era feita a leitura de cada LDR 5 vezes e tirada uma média para cada componente. Assim no final do trajeto, foi obtido o ângulo do servo e a leitura apresentada por cada LDR.

Fig. 12. Aquisição de dados dos LDR's.

4.5.1. Dificuldades encontradas

Ao colocar no Code Composer a integração do LDR com o motor, a leitura apresentada do LDR funciona de forma correta, mas o servo motor se movimenta de maneira independente, não variando de acordo com a leitura feita pelo LDR. Apresentando assim uma dificuldade em integrar o servo com a modelagem do LDR.

5. REVISÃO BIBLIOGRÁFICA

Um seguidor solar é um sistema microcontrolado que altera a posição de um painel solar em função da irradiação do sol. A energia solar fotovoltaica vem sendo amplamente utilizada e é considerada uma fonte de energia limpa. Devido aos beneficios e eficiencia dessa tecnologia, uma relatório da Agência Internacional de Energia (AIE) constatou que até 2060 é possível que um terço da energia do mundo seja gerada por tecnologia fotovoltaica.

Fig. 13. Funcionamento do seguidor solar - Tracker.

Uma célula solar ou uma celúla fotovoltaica é um dispositivo que converte a luz solar em eneria elétrica. Essas celúlas apresentam eficiência na conversão da energia de 16 per cento, dependendo do material utilizado na fabricação de até 28 per cento.

Fig. 14. Comparação entre a energia gerada por um sistema fixo e outro com seguidor solar.

Esses sistemas descritos, quando possuem seguidores solares, também chamados de tracker, melhoram o rendimento ao captar a energia considerando o movimento do sol como um fator real e fazendo com que as placas solares sigam na direção em que a incidência solar for maior. O aumento é em torno de 30 per cento na produção de energia quando comparados a sistemas fixos.

6. REFERENCIAS

- [1] S. L. d. A. R. R. Enio Bueno Pereira, Fernando Ramos Martins, "Atlas brasileiro de energia solar."
- [2] O. N. do Sistema Elétrico ONS, "Boletim mensal de geração solar fotovoltaica."
- [3] CEB, "Relatórios sobre unidades consumidoras com geração distribuída informações copiladas e mapas."
- [4] "Portal solar. seguidor solar tracker: Vantagens e desvantagens. disponível em:https://www.portalsolar.com.br/blog-solar/painel-solar/seguidor-solar—tracker-vantagens-edesvantagens-parte-1.html."
- [5] J. D. B. de Araújo, "Protótipo de rastreador solar de um eixo baseado em microcontrolador," 2015.