Secure Trajectory Planning Against Spoofing Attacks

Gianluca Bianchin, Yin-Chen Liu, and Fabio Pasqualetti

Department of Mechanical Engineering, University of California Riverside

Secure Trajectory Planning

Attacks are intentional changes of:

- Received localization signals
- Control inputs to the robot

Attacker vs Defender: Objectives

Attacker: Design spoofing and control so that

- Deviation between desired trajectory and actual trajectory is maximized
- Attack remains undetected

Defender: Design secure, open-loop, control inputs that guarantee

- In the absence of attacks, the robot achieves a desired final state at minimum time
- In the presence of attacks, available sensors allow attack detection

Spoofing Mechanism

Contact Information

Email: gianluca@engr.ucr.edu

• Web: sites.google.com/a/ucr.edu/gbianchin

Robot Dynamics

Double integrator dynamics moving on a 2-D plane

$$\underbrace{\begin{bmatrix} \dot{p}_{\rm n} \\ \dot{v}_{\rm n} \end{bmatrix}}_{\dot{x}_{\rm n}} = \underbrace{\begin{bmatrix} \mathbf{0}_2 \ I_2 \\ \mathbf{0}_2 \ \mathbf{0}_2 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} p_{\rm n} \\ v_{\rm n} \end{bmatrix}}_{\dot{x}_{\rm n}} + \underbrace{\begin{bmatrix} \mathbf{0}_2 \\ I_2 \end{bmatrix}}_{B} u_{\rm n}$$

Bound on largest robot acceleration

$$||u_{\mathbf{n}}|| \leq u_{\max}$$

Sensor readings

$$y_{
m n}^{
m GNSS} = p_{
m n} \qquad \qquad y_{
m n}^{
m RSSI} = p_{
m n}^{\sf T} p_{
m n}$$

Attacker Model

Attackers can simultaneously:

• Compromise the nominal control input $u_{\rm n}$

$$\underbrace{\begin{bmatrix} \dot{p} \\ \dot{v} \end{bmatrix}}_{\dot{x}} = \underbrace{\begin{bmatrix} \mathbf{0}_2 \ I_2 \\ \mathbf{0}_2 \ \mathbf{0}_2 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} p \\ v \end{bmatrix}}_{x} + \underbrace{\begin{bmatrix} \mathbf{0}_2 \\ I_2 \end{bmatrix}}_{B} \mathbf{u} \quad \|u\| \le u_{\text{max}}$$

2 Spoof the received GNSS signal

$$y^{\text{GNSS}} = p + u^{\text{GNSS}}$$
 $y^{\text{RSSI}} = p^{\mathsf{T}}p$

Attack Undetectability

$$y^{
m GNSS} = y^{
m GNSS}_{
m n}$$

$$y^{
m RSSI} = y^{
m RSSI}_{
m n}$$

That is, sensor readings are compatible with each other and follow the nominal dynamics

Double Integrator Robots

Undetectable Trajectories

Position and velocity satisfy, for all times,

Undetectable Control Inputs

The attack undetectability constraints the radial acceleration of the robot

Radial Acc. =
$$\frac{u_{n}^{\mathsf{T}}p_{n} + ||v_{n}||^{2} - ||v||^{2}}{||p||^{2}}$$

Attacker Control Problem

$$\max_{u,x} \qquad (x(T) - x_{n}(T))^{\mathsf{T}} Q(x(T) - x_{n}(T))$$
subject to
$$\dot{x} = Ax + Bu$$

$$\operatorname{Radial Acc.} = \frac{u_{n}^{\mathsf{T}} p_{n} + ||v_{n}||^{2} - ||v||^{2}}{||p||^{2}}$$

$$||u|| \leq u_{\max}$$

Control of Tangential Acceleration

Secure Trajectory Planning

Given initial position $p_{\rm I}$ and desired final position $p_{\rm F}$, determine $u_{\rm n}$ and the control horizon [0, T] s.t.

$$p_{\mathrm{n}}(0) = p_{\mathrm{I}} \qquad p_{\mathrm{n}}(T) = p_{\mathrm{F}}$$

and, for any undetectable attack, either

- $p = p_n \text{ for all } t \in [0, T]$
- 2 If $p \neq p_n$ then the attack is detectable

Secure Control Inputs

A control input is secure if and only if

$$u_{\rm n} = \kappa \frac{p_{\rm n}}{\|p_{\rm n}\|} u_{\rm max}$$

where $\kappa : \mathbb{R}_{[0,T]} \to \{-1,1\}$

Secure control inputs accelerate the robot with the maximum admissible acceleration

Secure Trajectory Planning

$$\min_{\kappa,T} T + (x_{n}(T) - x_{D})^{\mathsf{T}} Q(x_{n}(T) - x_{D})$$
subject to
$$\dot{x}_{n} = Ax_{n} + Bu_{n}$$

$$u_{n} = \kappa \frac{p_{n}}{\|p_{n}\|} u_{\text{max}}$$

- ⇒ Two-point boundary value problem
- \Rightarrow Bang-Bang optimal control $\kappa^* = -\operatorname{sgn}(\lambda^\mathsf{T} B p_{\mathrm{n}})$

Control of Radial Acceleration

