* Limit of a function.

<u>Definition</u>. Let $D \subset \mathbb{R}$ and $f: D \to \mathbb{R}$ be a function. Let c be a limit point of D.

A real number l is said to be a limit of f at c if corresponding to a pre-assigned E70 there exists a 870 such that

1f(x)-11<€ for all x∈ (c-8, c+8)-{c}. or 0<1x-c1<8

symbol: lim f(x) = l.

Theorem: Let DCR and f: D - IR be a function. Let c be a limit point of D. Then f can have at most one limit point at c.

Example: Show that \(\frac{1}{271} \) (52-3) = 2:

 \Rightarrow Let ε 70 be given. (depends on ε) We have to find a suitable ε 70 so that

0 < 12-11 < 8 implies |(5x-3)-2| < 8.

Note that $|(5x-3)-2| < \epsilon$ if $|5(x-1)| < \epsilon$ that if $|x-1| < \frac{\epsilon}{5}$

choose $S = \frac{E}{5}$. Then 0 < |x-1| < S implies |f(x)-2| < E, where f(x) = 5x-3

 $\lim_{x\to 1} f(x) = 2$

ZZA

* Let $D \subseteq R$ and $C \in R$. Then c is called a limit point of D if there is a sequence $\{x_n\}$ in $D^{-}\{c\}$ such that $x_n \to c$.

* Sequential definition.

Let DCR and $f: D \rightarrow R$ be a function. Let c be a limit point of D and $l \in \mathbb{R}$.

Then $\lim_{x\to c} f(x) = l$ if and only if

for every sequence $\{x_n\}$ in $D-\{c\}$ converging to c, the sequence $\{f(x_n)\}$ converges to l.

Example: Let $f: \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 1 if x is rational = 0 if x is irrational

Let CER. Show that lim f(x) does NOT exist.

Let $\{x_n\}$ be a sequence of rational numbers such that $x_n \to c$ and, $\{y_n\}$ be a sequence of irrational number such that $y_n \to c$.

But $f(x_n) \rightarrow 1$ and $f(y_n) \rightarrow 0$.

Thus there can be no $l \in \mathbb{R}$ such that $f(x) \rightarrow l$ as $x \rightarrow c$.

* Limit Theorem for functions.

Let $D\subseteq \mathbb{R}$ and c be a limit point of $D\cdot Also$, let $l,m\in \mathbb{R}$ and $f,g:D\to \mathbb{R}$ be functions such that

Cim f(x) = l and Cim g(x) = m. Then

(i) $\lim_{x\to c} (f+g)(x) = l+m$, (ii) $\lim_{x\to c} (nf)(x) = rl$, for $n\in\mathbb{R}$ (iii) $\lim_{x\to c} (fg)(x) = lm$.

(iv) if
$$1 \neq 0$$
, then there is 870 such that $f(x)\neq 0$ for all $x \in D$ satisfying $0 < |x-c| < 8$; also c is a limit point of $\{x \in D : 0 < |x-c| < 8\}$ and c im c

Theorem: Let DCR and f and g be functions on D to R.

Let c be a limit point of D.

D If f is bounded on some deleted neighbourhood of c

then $\lim_{x \to c} (f,g)(x) = 0$

Example. As i) $\sin \frac{1}{2}$ is bounded in any deleted neighbourhood of 0,

ii) $\lim_{x\to 0} x = 0$,

 $\Rightarrow \text{ 2 Lim } \chi \sin \frac{1}{\chi^2} = 0.$

Theorem: [Sandwich theorem]

Let DCR and c be a limit point of D. Let $f,g,h:D\rightarrow \mathbb{R}$ be functions.

If i) $f(x) \leq g(x) \leq h(x)$ for all $x \in D - \{c\}$ and

ii) $\lim_{x\to c} f(x) = L = \lim_{x\to c} f(x)$

then $\lim_{x \to c} g(x) = l$.

Example: Show that $\lim_{x\to 0} x \cos \frac{1}{x} = 0$. Let $f(x) = \cos \frac{1}{x}$, $x \in D = \mathbb{R} - \{0\}$. Note that 0 is a limit point of D. Then we have $-1 \le f(x) \le 1$ for all $x \in D$ This implies, $-x \le x f(x) \le x$ for all x > 0 $x \le x f(x) \le -x$ for all x < 0. Therefore $-|x| \le x f(x) \le |x|$ for all $x \in D$. Since Lim (-1x1) = 0 = Lim 121, by Sandwich theorem lim x cost = on x f(x) =0 that is $\lim_{n \to 0} x \cos \frac{1}{n} = 0$.

Definition. [Left hand limit] Dn (-0, c)

Let DCR and c be a limit point of D. Let f: D - R be a function.

f is said to have a left hand limit lER at c if for a given E>0 there exists a S>0 such that If(x)-l/< & for all, C-8<x<C. we denote $\lim_{x\to c^{-}} f(x) = l$.

[Right hand limit]

Let c be a limit point of DN (c, 00). It is said to have right hand limit $l \in \mathbb{R}$ at c if for a given $\varepsilon > 0$ there exists a 8>0 such that If(x)-lI<E for all 2ED satisfying <<x<C+8.

Notation: 2im f(x) = 1.

[4]

Example: i)
$$f(x) = sgn x$$
, $x \in \mathbb{R}$.
that is $f(x) = 1$ for $x > 0$
 $= 0$ for $x = 0$
 $= -1$ for $x < 0$

To find $\lim_{x\to c+} f(x)$, condider f(x) on the set Dn (c,∞) .

For $\lim_{x\to c-} f(x)$, need to know f(x) on Dn $(-\infty,c)$.

Examine if $\lim_{x\to 0+} f(x)$ and $\lim_{x\to 0-} f(x) = xist$.

 \Rightarrow Here $D = \mathbb{R}$, and c = 0.

For 4m f(x).

Note that $D \cap (0, \infty) = (0, \infty)$ and 0 is a limit point of $(0, \infty)$.

Also, f(x) = 1 for all $x \in (0, \infty)$

this implies cim f(x) = 1

Similarly, $D \cap (-\infty,0) = (-\infty,0)$ and 0 is a limit point of $(-\infty,0)$.

f(x) = -1 for all $x \in (-\infty, 0)$ therefore, $\lim_{x \to 0^{-}} f(x) = -1$

In the above example both the LHL and RHL exists but NOT equal.

Let $f(x) = Sin \frac{1}{x}$, $x \in \mathbb{R} - \{0\}$ To check if $\lim_{x \to 0+} Sin \frac{1}{x}$ exexist. Here $D = \mathbb{R} - \{0\}$ and $Dn(0, \infty) = (0, \infty)$

[5]

 $\nabla \lambda$

o is a limit point of $(0,\infty)$ Let = Consider the sequences $\{x_n\}$ and $\{y_n\}$ where $x_n = \frac{1}{n\pi}$, $\forall n \in \mathbb{N}$, and $y_n = \frac{1}{2n\pi + \frac{\pi}{2}}$ $\forall n \in \mathbb{N}$. Note that both othe sequences are in $(0,\infty)$. $x_n \to 0$ and $y_n \to 0$ but $f(x_n) \to 0$, $f(y_n) \to 1$ Therefore $\lim_{x \to 0} f(x)$ does NOT exist. x_{70+}

Similarly, considering two sequences $\{un\}$, $\{vn\}$ from $(-\infty, 0)$ such that $un \to 0$ and $un \to 0$ but $f(un) \to 0$ and $f(vn) \to -1$, it can be concluded that $\lim_{n \to \infty} f(x)$ does NOT exist. $\lim_{n \to \infty} f(x)$

biii) Let $f(x) = e^{\frac{1}{2}}$, $x \in \mathbb{R} - \{0\} = D$.

Then show that (im f(x) does NOT exist, x+0+f(x)

but 4m f(x) = 0

 \Rightarrow Left as exercise. [Hint. to show $\lim_{x\to 0^-} f(x) = 0$, use $0 < t < e^t$ for t > 0]