2019 年全国高中数学联合竞赛加试(A卷) 参考答案及评分标准

说明:

- 1. 评阅试卷时,请严格按照本评分标准的评分档次给分.
- 2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.
- 一、(本题满分 40 分) 如图,在锐角 $\triangle ABC$ 中,M 是 BC 边的中点.点 P 在 $\triangle ABC$ 内,使得 AP 平分 $\angle BAC$. 直线 MP 与 $\triangle ABP$, $\triangle ACP$ 的外接圆分别相交于不同于点 P 的两点 D, E .证明:若 DE = MP,则 BC = 2BP .

证明: 延长 PM 到点 F, 使得 MF = ME. 连接 BF, BD, CE.

由条件可知 $\angle BDP = \angle BAP = \angle CAP = \angle CEP = \angle CEM$. ……10 分 因为 BM = CM 且 EM = FM,所以 BF = CE 且 BF // CE.

又DE = MP, 故DP = EM = FM.

于是在等腰 $\triangle BDF$ 中,由对称性得 BP = BM . 从而 BC = 2BM = 2BP .

.....40 ↔

二、(本题满分 40 分)设整数 $a_1, a_2, \dots, a_{2019}$ 满足 $1 = a_1 \le a_2 \le \dots \le a_{2019} = 99$. 记 $f = (a_1^2 + a_2^2 + \dots + a_{2019}^2) - (a_1a_3 + a_2a_4 + a_3a_5 + \dots + a_{2017}a_{2019}^2)$.

求 f 的最小值 f_0 . 并确定使 $f = f_0$ 成立的数组 $(a_1, a_2, \dots, a_{2019})$ 的个数.

解:由条件知

$$2f = a_1^2 + a_2^2 + a_{2018}^2 + a_{2019}^2 + \sum_{i=1}^{2017} (a_{i+2} - a_i)^2.$$
 (1)

由于 a_1,a_2 及 $a_{i+2}-a_i$ $(i=1,2,\cdots,2016)$ 均为非负整数,故有 $a_1^2\geq a_1,a_2^2\geq a_2$,且 $(a_{i+2}-a_i)^2\geq a_{i+2}-a_i$ $(i=1,2,\cdots,2016)$. 于是

$$a_1^2 + a_2^2 + \sum_{i=1}^{2016} (a_{i+2} - a_i)^2 \ge a_1 + a_2 + \sum_{i=1}^{2016} (a_{i+2} - a_i) = a_{2017} + a_{2018}.$$

………10分

由①、②得

$$2f \geq a_{\rm 2017} + a_{\rm 2018} + (a_{\rm 2019} - a_{\rm 2017})^2 + a_{\rm 2018}^2 + a_{\rm 2019}^2 \; , \label{eq:2.10}$$

结合 $a_{2019} = 99$ 及 $a_{2018} \ge a_{2017} > 0$,可知

$$f \ge \frac{1}{2} \left(2a_{2017} + (99 - a_{2017})^2 + a_{2017}^2 + 99^2 \right)$$

= $(a_{2017} - 49)^2 + 7400 \ge 7400$.

-----20 分

另一方面,令

 $a_1=a_2=\cdots=a_{1920}=1,$ $a_{1920+2k-1}=a_{1920+2k}=k(k=1,2,\cdots,49),$ $a_{2019}=99$,此时验证知上述所有不等式均取到等号,从而 f 的最小值 $f_0=7400$.

-----30 分

以下考虑③的取等条件. 此时 $a_{2017}=a_{2018}=49$,且②中的不等式均取等,即 $a_1=a_2=1$, $a_{i+2}-a_i\in\{0,1\}$ $(i=1,2,\cdots,2016)$.

因此 $1 = a_1 \le a_2 \le \cdots \le a_{2018} = 49$,且对每个 $k(1 \le k \le 49)$, $a_1, a_2, \cdots, a_{2018}$ 中至少有两项等于k. 易验证知这也是③取等的充分条件.

对每个 $k(1 \le k \le 49)$,设 $a_1, a_2, \dots, a_{2018}$ 中等于k的项数为 $1+n_k$,则 n_k 为正整数,且 $(1+n_1)+(1+n_2)+\dots+(1+n_{49})=2018$,即

$$n_1 + n_2 + \cdots + n_{49} = 1969$$
.

该方程的正整数解 $(n_1, n_2, \dots, n_{49})$ 的组数为 C_{1968}^{48} ,且每组解唯一对应一个使④取等的数组 $(a_1, a_2, \dots, a_{2019})$,故使 $f = f_0$ 成立的数组 $(a_1, a_2, \dots, a_{2019})$ 有 C_{1968}^{48} 个.

.....40 分

三、(本题满分 50 分) 设 m 为整数, $|m| \ge 2$. 整数数列 a_1, a_2, \cdots 满足: a_1, a_2 不全为零,且对任意正整数 n ,均有 $a_{n+2} = a_{n+1} - ma_n$.

证明: 若存在整数 r,s $(r>s\geq 2)$ 使得 $a_r=a_s=a_1$,则 $r-s\geq |m|$.

证明: 不妨设 a_1, a_2 互素(否则,若 $(a_1, a_2) = d > 1$,则 $\frac{a_1}{d}$ 与 $\frac{a_2}{d}$ 互素,并且用 $\frac{a_1}{d}, \frac{a_2}{d}, \frac{a_3}{d}, \cdots$ 代替 a_1, a_2, a_3, \cdots ,条件与结论均不改变).

由数列递推关系知

$$a_2 \equiv a_3 \equiv a_4 \equiv \cdots \pmod{|m|}$$
.

以下证明:对任意整数n>3,有

$$a_n \equiv a_2 - (a_1 + (n-3)a_2)m \pmod{m^2}$$
.

.....10 分

事实上,当n=3时②显然成立.假设n=k时②成立(其中k为某个大于 2的整数),注意到①,有 $ma_{k-1} \equiv ma_2 \pmod{m^2}$,结合归纳假设知

$$a_{k+1} = a_k - ma_{k-1} \equiv a_2 - (a_1 + (k-3)a_2)m - ma_2$$

$$\equiv a_2 - (a_1 + (k-2)a_2) \pmod{m^2},$$

即 n = k + 1时②也成立. 因此②对任意整数 $n \ge 3$ 均成立. ………20 分注意, 当 $a_1 = a_2$ 时, ②对 n = 2 也成立.

设整数 $r, s(r > s \ge 2)$,满足 $a_r = a_s = a_1$.

若 $a_1 = a_2$,由②对 $n \ge 2$ 均成立,可知

 $a_2 - (a_1 + (r-3)a_2)m \equiv a_r = a_s \equiv a_2 - (a_1 + (s-3)a_2)m \pmod{m^2}$,

即 $a_1 + (r-3)a_2 \equiv a_1 + (s-3)a_2 \pmod{|m|}$,即

$$(r-s)a_2 \equiv 0 \pmod{|m|}.$$

我们证明 a_2, m 互素.

事实上,假如 a_2 与m存在一个公共素因子p,则由①得p为 a_2 , a_3 , a_4 ,…的公因子,而 a_1 , a_2 互素,故 $p \nmid a_1$,这与 $a_r = a_s = a_1$ 矛盾.

因此,由③得 $r-s \equiv 0 \pmod{|m|}$. 又r>s,所以 $r-s \ge |m|$.

-----50 分

四、(本题满分 50 分)设V 是空间中 2019 个点构成的集合,其中任意四点不共面.某些点之间连有线段,记E 为这些线段构成的集合.试求最小的正整数n,满足条件:若E 至少有n个元素,则E 一定含有 908 个二元子集,其中每个二元子集中的两条线段有公共端点,且任意两个二元子集的交为空集.

解: 为了叙述方便, 称一个图中的两条相邻的边构成一个"角".

先证明一个引理: 设G = (V, E) 是一个简单图,且G 是连通的,则G 含有 $\left\lceil \frac{|E|}{2} \right\rceil$ 个两两无公共边的角(这里 $\left[\alpha \right]$ 表示实数 α 的整数部分).

引理的证明: 对 E 的元素个数 |E| 归纳证明. 当 |E| = 0,1,2,3 时,结论显然成立. 下面假设 |E| ≥ 4,并且结论在 |E| 较小时均成立. 只需证明,在 G 中可以选取两条边 a,b 构成一个角,在 G 中删去 a,b 这两条边后,剩下的图含有一个连通分支包含 |E| – 2 条边. 对这个连通分支应用归纳假设即得结论成立.

考虑G中的最长路 $P: v_1v_2\cdots v_k$,其中 v_1, v_2, \cdots, v_k 是互不相同的顶点.因为G连通,故 $k \geq 3$.

情形 1: $\deg(v_1) \geq 2$. 由于 P 是最长路, v_1 的邻点均在 v_2 ,…, v_k 中,设 $v_1v_i \in E$,其中 $3 \leq i \leq k$.则 $\{v_1v_2, v_1v_i\}$ 是一个角,在 E 中删去这两条边.若 v_1 处还有第三条边,则剩下的图是连通的;若 v_1 处仅有被删去的两条边,则 v_1 成为孤立点,其余顶点仍互相连通.总之在剩下的图中有一个连通分支含有 |E| - 2 条边.

情形 2: $\deg(v_1)=1$, $\deg(v_2)=2$.则 $\{v_1v_2,v_2v_3\}$ 是一个角,在G中删去这两条边后, v_1,v_2 都成为孤立点,其余的点互相连通,因此有一个连通分支含有 |E|-2 条边.

情形 3: $\deg(v_1)=1$, $\deg(v_2)\geq 3$,且 v_2 与 v_4,\cdots,v_k 中某个点相邻.则 $\{v_1v_2,v_2v_3\}$

是一个角,在G中删去这两条边后, v_1 成为孤立点,其余点互相连通,因此有一个连通分支含有|E|-2条边.

情形 4: $\deg(v_1)=1$, $\deg(v_2)\geq 3$,且 v_2 与某个 $u\notin\{v_1,v_3,\cdots,v_k\}$ 相邻.由于P 是最长路,故u的邻点均在 v_2,\cdots,v_k 之中.因 $\{v_1v_2,v_2u\}$ 是一个角,在G中删去这两条边,则 v_1 是孤立点.若u处仅有边 uv_2 ,则删去所述边后u 也是孤立点,而其余点互相连通.若u处还有其他边 uv_i , $3\leq i\leq k$,则删去所述边后,除 v_1 外其余点互相连通.总之,剩下的图中有一个连通分支含有|E|=2条边.

引理获证.20 分

回到原题, 题中的V和E可看作一个图G = (V, E).

首先证明 $n \ge 2795$.

设 $V = \{v_1, v_2, \dots, v_{2019}\}$. 在 v_1, v_2, \dots, v_{61} 中,首先两两连边,再删去其中 15 条边(例如 $v_1v_2, v_1v_3, \dots, v_1v_{16}$),共连了 $C_{61}^2 - 15 = 1815$ 条边,则这 61 个点构成的图是连通图. 再将剩余的 2019 - 61 = 1958 个点配成 979 对,每对两点之间连一条边,则图G中一共连了 1815 + 979 = 2794 条线段. 由上述构造可见,G中的任何一个角必须使用 v_1, v_2, \dots, v_{61} 相连的边,因此至多有 $\left[\frac{1815}{2}\right] = 907$ 个两两无公共边的角. 故满足要求的n不小于 2795.

另一方面,若 $|E| \ge 2795$,可任意删去若干条边,只考虑|E| = 2795的情形.设G有k个连通分支,分别有 m_1, \cdots, m_k 个点,及 e_1, \cdots, e_k 条边.下面证明 e_1, \cdots, e_k 中至多有 979 个奇数.

反证法,假设 e_1, \cdots, e_k 中有至少 980 个奇数,由于 $e_1 + \cdots + e_k = 2795$ 是奇数,故 e_1, \cdots, e_k 中至少有 981 个奇数,故 $k \geq 981$. 不妨设 $e_1, e_2, \cdots, e_{981}$ 都是奇数,显然 $m_1, m_2, \cdots, m_{981} \geq 2$.

令 $m = m_{981} + \dots + m_k \ge 2$,则有 $C_{m_i}^2 \ge e_i \ (1 \le i \le 980)$, $C_m^2 \ge e_{981} + \dots + e_k$,故

$$2795 = \sum_{i=1}^{k} e_i \le C_m^2 + \sum_{i=1}^{980} C_{m_i}^2 .$$

利用组合数的凸性,即对 $x \ge y \ge 3$,有 $\mathbf{C}_x^2 + \mathbf{C}_y^2 \le \mathbf{C}_{x+1}^2 + \mathbf{C}_{y-1}^2$,可知当 m_1, \cdots, m_{980}, m 由 980 个 2 以及一个 59 构成时, $\mathbf{C}_m^2 + \sum_{i=1}^{980} \mathbf{C}_{m_i}^2$ 取得最大值.于是

$$C_m^2 + \sum_{i=1}^{980} C_{m_i}^2 \le C_{59}^2 + 980C_2^2 = 2691 < 2795$$
,

这与①矛盾. 从而 e_1, \dots, e_k 中至多有 979 个奇数. ...

对每个连通分支应用引理,可知G中含有N个两两无公共边的角,其中

$$N = \sum_{i=1}^{k} \left[\frac{e_i}{2} \right] \ge \frac{1}{2} \left(\sum_{i=1}^{k} e_i - 979 \right) = \frac{1}{2} (2795 - 979) = 908.$$

综上,所求最小的n是2795.

.....50分