기계인공기능 Hw ※4 Sol

	1	

Prob 4.

(a) Let $f(x) = \omega^{T}x$ yes 1, 13

C1

C2

Then, $y(\omega^Tx) < 0$

If the data point is in the C1
The angle between ω and x is less than $\angle 90^\circ$ So the value of inner product is positive. $(\omega^\intercal x > 0)$ ① when the decision boundary classify this point as +1 (well classified)
Then, $y(\omega^\intercal x) > 0$

Duhen the decision boundary classify this point as -1 (misclassified) Then, $y(\omega \tau x) < 0$

If the data point is in the C_2 The angle between ω and x is greater than $\angle 90^\circ$ So the value of inner product is negative ($\omega^T x < 0$)

① when the decision boundary classify this point as -1 (well classified) Then, $y(\omega^T x) > 0$ ② when the decision boundary classify this point as +1 (misclassified)

(b) From the problem 4-(a) we show $y(\omega^Tx) < 0$ when it is misclassified and $y(\omega^Tx) > 0$ when it is well classified.

 $J = \sum u(-y(\omega^T x))$

$$u(x) = 0$$
 when $x < 0$
so, $u(-y(w^Tx)) = 0$ when it is well classified.

And u(x)=1 when x>0so, $u(-y(w^{T}x))=1$ when it is misdossified.

(d)

$$\frac{d6}{dz} = \frac{-1 \cdot (-e^{-z})}{(1+e^{-z})^2} = \frac{e^{-z}}{1+e^{-z}} \cdot \frac{1}{1+e^{-z}}$$

$$\frac{1}{1+e^{-z}} = 6(z)$$
 and $\frac{e^{-z}}{1+e^{-z}} = 1-6(z)$

Thus,
$$\frac{dG}{dZ} = G(Z) (1 - G(Z))$$

Since the sigmoid function is monotonic, classification boundary does not changed from ideal Classification.

However, there are some error

So, the logistic regression can approximately solve the classification problem