Centro Federal de Educação Tecnológica de Minas Gerais ENGENHARIA DA COMPUTAÇÃO

Introdução

Um dos problemas que ocorrem frequentemente em trabalhos científicos é o cálculo de zeros (também chamada raízes) de equações na forma:

$$f(x) = 0$$

onde f(x) pode ser uma equação:

$$>$$
 polinomial: $x^5 - 4x^3 + 10x - 100 = 0$

> transcendental:
$$xtg(x)-1=0$$

$$\Rightarrow$$
 algébrica:
$$\frac{1}{\sqrt{x^3 + 2}} - 20x = 0$$

Zeros da Função

Definição: Um número α é um zero da função f(x) ou uma raiz da equação f(x)=0 se $f(\alpha)=0$.

Zeros da Função

Definição: Um número α é um zero da função f(x) ou uma raiz da equação f(x)=0 se $f(\alpha)=0$.

Em alguns casos, os valores de α que anulam f(x) podem ser reais ou complexos. Inicialmente, somente os zeros reais da função f(x) serão estudos.

Zeros da Função

Definição: Um número α é um zero da função f(x) ou uma raiz da equação f(x)=0 se $f(\alpha)=0$.

Em alguns casos, os valores de α que anulam f(x) podem ser reais ou complexos. Inicialmente, somente os zeros reais da função f(x) serão estudos.

Como obter raízes reais de uma equação qualquer?

A ideia central do uso de **métodos numéricos** é partir de uma aproximação inicial para a raiz e em seguida refinar essa aproximação através de um processo iterativo.

A ideia central do uso de **métodos numéricos** é partir de uma aproximação inicial para a raiz e em seguida refinar essa aproximação através de um processo iterativo.

Existem dois grupos de métodos numéricos, sendo:

- 1) Métodos de confinamento, onde se identifica um intervalo que inclui a raiz;
- 2) Métodos abertos, onde estima-se um valor inicial (chute inicial) para a solução. Este métodos são, usualmente, mais eficazes, mas às vezes podem não levar à solução.

Fases de implementação:

Fase 1) Localização ou isolamento das raízes de f(x), que consiste em obter um intervalo que contém a raiz;

Fases de implementação:

Fase 1) Localização ou isolamento das raízes de f(x), que consiste em obter um intervalo que contém a raiz;

Fase 2) Refinamento, que consiste em, escolhidas as aproximações iniciais no intervalo (a, b) encontrado, melhorá-las sucessivamente, até se obter uma aproximação suficiente dentro da precisão prefixada.

Métodos abertos

Métodos abertos

Métodos abertos

Fase 1: Isolamento das raízes

Teorema 1 – Seja f(x) uma função contínua num intervalo [a,b]. Se f(a)f(b)<0 então existe pelo menos um ponto $x=\alpha$ entre a e b que é zero de f(x).

Fase 1: Isolamento das raízes

Teorema 1 – Seja f(x) uma função contínua num intervalo [a,b]. Se f(a)f(b)<0 então existe pelo menos um ponto $x=\alpha$ entre a e b que é zero de f(x).

Observações:

- Se f'(x) existir e preservar sinal em (a,b), então este intervalo contém um único zero de f(x).
- Um ponto α é uma raiz de multiplicidade m da equação f(x)=0, se $f(x)=(x-\alpha)^m g(x)$, com $g(\alpha) \neq 0$.

Exemplo – 1: Determine as raízes da equação:

$$f(x) = x^2 + 2x + 1 = (x+1)^2 = 0$$

Exemplo – 1: Determine as raízes da equação:

$$f(x) = x^2 + 2x + 1 = (x+1)^2 = 0$$

Como pode ser observado, a análise gráfica da função f(x) ou da equação f(x)=0 é fundamental para se obter boas aproximações para a raiz.

Como pode ser observado, a análise gráfica da função f(x) ou da equação f(x)=0 é fundamental para se obter boas aproximações para a raiz.

Para tanto, é suficiente utilizar um dos processos:

- esboçar o gráfico da função f(x) e localizar as abcissas dos pontos onde a curva intercepta o eixo x;
- a partir da equação f(x)=0, obter a equação equivalente g(x) e h(x), esboçar os gráficos das funções g(x) e h(x) no mesmo eixo cartesiano e localizar os pontos x onde as duas curvas se interceptam.

Exemplo – 2: Esboçar o gráfico de:

$$f(x) = x^3 - 9x + 3$$

$$x^3 = 9x - 3$$

Exemplo – 2: Esboçar o gráfico de:

$$f(x) = x^3 - 9x + 3$$

$$x^3 = 9x - 3$$

Exemplo – 2: Esboçar o gráfico de:

$$f(x) = x^3 - 9x + 3$$

$$x^3 = 9x - 3$$

Exemplo – 3: Esboçar o gráfico de:

$$f(x) = \sqrt{x} - 5e^{-x}$$

$$\sqrt{x} = 5e^{-x}$$

Exemplo – 3: Esboçar o gráfico de:

$$f(x) = \sqrt{x} - 5e^{-x}$$

$$\sqrt{x} = 5e^{-x}$$

Exemplo – 3: Esboçar o gráfico de:

$$f(x) = \sqrt{x} - 5e^{-x}$$

$$\sqrt{x} = 5e^{-x}$$

