Exceptional schooling. Exceptional students. Independent Public School

Course Specialist Year 12 Test Two 2022

Formula sheet provided:	уè
Task weighting:	%οτ_
Marks available:	
Special items:	Drawing instruments, templates, notes on one unfolded sheet of A4 paper, and up to three calculators approved for use in the WACE examinations
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters
Materials required:	Upto 3 Calculators with CAS capability (to be provided by the student)
Number of questions:	 9
Time allowed for this tas	snim04 :3
Ізак type:	Kesbonse
Student name:	Теасher name:

Note: All part questions worth more than 2 marks require working to obtain full marks.

9869 **1**

a 1 **0**

Q1 (2, 3 & 3= 8 marks)

Consider the functions $f(x) = \sqrt{x-2}$ and $g(x) = \frac{1}{x}$

- a) Determine the natural domains of f & g.
- b) Does $f \circ g(x)$ exist over the natural domain of g? Explain.

c) State the rule and largest possible domain for $g \circ f(x)$ and its corresponding range.

Q2 (2, 4, 1 & 3 = 10 marks)

The function h(x) is defined below for $x \le 2$.

a) Sketch the inverse function $h^{-1}(x)$ on the axes above.

Mathematics Department Q6 (2, 3 & 3 = 8 marks)

Consider the plane Ω given by 2x - 3y + 5z = 11.

- a) The point A(5, -8, 3) is on a plane parallel to Ω . Determine the cartesian equation of this
- b) Determine the distance between these two planes. Show full reasoning.

$$r_{A} = \begin{pmatrix} 2 \\ -9 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 4 \\ -3 \end{pmatrix} \qquad r_{B} = \begin{pmatrix} 3 \\ 11 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 10 \\ -8 \\ 5 \end{pmatrix}.$$
 Determine the distance

Q5 (6 marks)

Q2 continued

b) Determine the rule for $h^{-1}(\chi)$ and its domain showing full working.

- c) Determine $h \circ h^{-1}(x)$.
- d) Determine the exact coordinates (if any) for where $h(x) = h^{-1}(x)$.

Perth Modern

- (i) (ii) (iii)
- the line is a tangent to the sphere. the line misses the sphere completely.

Mathematics Department

Perth Modern

Q3 (2 & 3 = 5 marks)

Consider the function y = f(x) which is plotted below.

a) Sketch
$$y = f(-|x|)$$

$$y = \frac{1}{|f(x)|}$$
 b) Sketch

Mathematics Department Perth Modern

Q4 (4 marks)

$$r_{\scriptscriptstyle A} = \begin{pmatrix} 1 \\ -5 \\ 7 \end{pmatrix}, r_{\scriptscriptstyle B} = \begin{pmatrix} 11 \\ 15 \\ -9 \end{pmatrix}$$

Consider two moving objects A & B such that at t=0 seconds

$$v_A = \begin{pmatrix} 2 \\ 8 \\ 12 \end{pmatrix}, v_B = \begin{pmatrix} 4 \\ -5 \\ 10 \end{pmatrix}$$

metres per second. Determine the closet approach using **vector** methods.

⁵ | Page