NN Classiffication - Amino Acid Example

MCC

2/19/2020

Obtain uniquely sorted FP & FN from number sets

OR

Generating Outliers and Venn Diagrams

Introduction

One goal of this experiment is to determine if there are any patterns between the lists of outliers generated by PCA and the FP/FN generated when the machine learning models were carried out. To review quickly, the **Outliers** were produced by finding observations (in this case proteins, either myoglobin or control sets), which were greater than or equal to 3 stadnard deviations away from the of the first and second principal components. The *Outliers* were produced as can be seen in the flowchart below.

The logistic regression set included a total of x observations generated by 5 fold cross-validatioon

It is hoped that the *Outliers* generated from the PCA (unsupervised learning) will have some correlation to the 6 statistical learning methods investigated for this report.

```
## Load Libraries
rm(list = ls())
Libraries = c("doMC", "knitr", "readr", "ggVennDiagram")

for(p in Libraries){ # Install Library if not present
    if(!require(p, character.only = TRUE)) { install.packages(p) }
    library(p, character.only = TRUE)
}
opts_chunk$set(cache = TRUE)
```

Logit set

```
keep <- "rowIndex"

fp_fn_logit <- read_csv("../00-data/03-ml_results/fp_fn_logit.csv")

logit_fp_fn_nums <- sort(unique(unlist(fp_fn_logit[, keep], use.names = FALSE)))

length(logit_fp_fn_nums)</pre>
```

[1] 119

```
logit_fp_fn_nums
     [1]
            1
                 2
                      8
                          10
                                46
                                     57
                                          58
                                               88
                                                   100
                                                        114
                                                             130
                                                                  146
                                                                        150
                                                                             182
                    252
                                              407
##
    [16]
         239
                         254
                              302
                                   368
                                         400
                                                   449
                                                        453
                                                             501
                                                                  503
                                                                        516
                                                                             518
               249
##
               542 547
                         566
                              573
                                    580
                                         592
                                              655
                                                   910
                                                        912
                                                             913
                                                                  980 1032 1033 1034
   [46] 1035 1041 1067 1069 1092 1093 1094 1099 1100 1101 1106 1116 1117 1121 1128
    [61] 1130 1135 1140 1141 1142 1144 1147 1150 1152 1190 1219 1222 1223 1224 1226
   [76] 1233 1234 1264 1279 1281 1282 1471 1482 1484 1508 1510 1522 1569 1571 1574
  [91] 1575 1576 1579 1585 1588 1589 1594 1600 1618 1622 1623 1693 1723 1780 1828
## [106] 1829 1830 1832 1833 1845 1846 1847 1848 1849 1850 1852 1853 1872 1873
write_csv(x = as.data.frame(logit_fp_fn_nums),
          path = "../00-data/04-sort unique outliers/logit nums.csv")
```

• The 'logistic regression set' included a total of 119 unique observations containing both FP and FN.

Random Forest set

• The 'Random Forest set' included a total of 46 unique observations containing both FP and FN.

SVM Linear set

```
fp_fn_svm_linear <- read_csv("../00-data/03-ml_results/fp_fn_svm_linear.csv")</pre>
svm_linear_fp_fn_nums <- sort(unique(unlist(fp_fn_svm_linear[, keep], use.names = FALSE)))</pre>
length(svm_linear_fp_fn_nums)
## [1] 120
svm_linear_fp_fn_nums
     [1]
                 2
                       8
                           10
                                46
                                     57
                                           58
                                                88
                                                    100
                                                          114
                                                               130
                                                                    150
                                                                         182
                                                                               183
    [16]
          252
               254
                    301
                          302
                               368
                                    400
                                          407
                                               453
                                                                         526
##
                                                    501
                                                         503
                                                               516
                                                                    518
##
    [31]
         547
               566
                    573
                          580
                               655
                                    910
                                         912
                                               913
                                                    980 1032 1033 1034 1035 1041 1067
   [46] 1069 1092 1093 1094 1100 1101 1106 1116 1117 1121 1130 1135 1136 1138 1139
   [61] 1140 1141 1142 1144 1145 1152 1190 1219 1222 1223 1226 1233 1234 1245 1264
```

• The 'SVM-Linear set' included a total of 125 unique observations containing both FP and FN.

SVM Polynomial Kernel set

```
fp fn svm poly <- read csv("../00-data/03-ml results/fp fn svm poly.csv")
svm_poly_fp_fn_nums <- sort(unique(unlist(fp_fn_svm_poly[, keep], use.names = FALSE)))</pre>
length(svm_poly_fp_fn_nums)
## [1] 70
svm_poly_fp_fn_nums
    [1]
           6
               15
                    94
                        115
                             130
                                   136
                                        141
                                             150
                                                  182
                                                       183
                                                             185
                                                                  445
                                                                       449
                                                                            452
                                                                                  453
                        529
                             530
                                   531
                                             534
                                                  542
                                                       546
                                                             560
                                                                                 570
## [16]
         522
              525
                   526
                                        532
                                                                  562
                                                                       566
                                                                            568
## [31]
         579
              580
                   582
                        592
                             912
                                  913
                                        980 1034 1035 1067 1091 1093 1100 1101 1109
## [46] 1121 1188 1190 1219 1226 1233 1264 1471 1510 1522 1575 1576 1579 1585 1587
## [61] 1608 1618 1621 1623 1697 1734 1773 1780 1831 1833
write_csv(x = as.data.frame(svm_poly_fp_fn_nums),
          path = "../00-data/04-sort_unique_outliers/svm_poly_nums.csv")
```

 $\bullet\,$ The 'SVM-Polynomial Kernel set' included a total of 70 unique observations containing both FP and FN

SVM Radial Bias Kernel set

```
fp_fn_svmRadialCost <- read_csv("../00-data/03-ml_results/fp_fn_svmRbf.csv")</pre>
svm_svmRadial_fp_fn_nums <- sort(unique(unlist(fp_fn_svmRadialCost[, keep], use.names = FALSE)))</pre>
length(svm_svmRadial_fp_fn_nums)
## [1] 58
svm_svmRadial_fp_fn_nums
                    94 115
                             130
                                  141
                                             182
                                                  183
                                                       185
                                                                       453
               15
                                        150
                                                            192
                                                                 449
                                                                            522
## [16]
                  531
                       534
        526
             529
                             542 546
                                       566
                                            568
                                                  570
                                                       580
                                                           582
                                                                 592
                                                                      655
                                                                            913 1034
## [31] 1035 1091 1093 1094 1100 1101 1109 1121 1190 1219 1226 1233 1264 1471 1475
## [46] 1510 1575 1576 1579 1585 1587 1608 1618 1621 1766 1780 1831 1833
write_csv(x = as.data.frame(svm_svmRadial_fp_fn_nums),
          path = "../00-data/04-sort_unique_outliers/svm_rbf_nums.csv")
```

• The 'SVM-Polynomial Kernel set' included a total of 58 unique observations containing both FP and FN.

NEED DEEP LEARNING set

NNModel_fp_fn_nums <- read.csv("~/Dropbox/a1_mcc_project/05-ae-nn/NN_nums.csv", sep="")

• The 'DL set' included a total of X unique observations containing both FP and FN.

Statistical Learning Method Vs Total Number of FP/FN

Statistical Method	Total Number Produced	Unique	Total/Unique
Principal Componnent Analysis	461	460	1.002
Logit	537	119	4.51
SVM Linear	496	125	3.97
SVM Polynomial	278	70	3.97
SVM Radial Basis Function	244	58	4.21
Random Forest	190	46	4.13
Deep Learning	347	133	2.61

Venn Diagrams

$SVM_RBF \cap SVM_Poly \cap RF$

This will be known as the **Round** set.

• RF \bigcap SVM_Poly \bigcap SVM_RBF = 33

$\operatorname{Logit} \bigcap \operatorname{SVM_Lin}$

This will be known as the $\bf Linear$ set.

• Logit \bigcap SVM_Lin = 105

Find Intersecting numbers from Round Vs Linear sets

??????????????????????

Unique Round

```
U_0_round_set <- unique(round_set)</pre>
U_O_round_set
## [[1]]
                                     150 182 183
##
  [1]
          6
              15
                   94 115 130 141
                                                    185
                                                         192 449
                                                                   453 522 525
                                                570
                                                     580
## [16]
        526 529
                 531
                       534
                            542
                                546
                                      566
                                           568
                                                         582
                                                              592
                                                                    655
                                                                        913 1034
## [31] 1035 1091 1093 1094 1100 1101 1109 1121 1190 1219 1226 1233 1264 1471 1475
## [46] 1510 1575 1576 1579 1585 1587 1608 1618 1621 1766 1780 1831 1833
##
## [[2]]
##
  [1]
          6
              15
                   94
                       115
                            130
                                 136
                                     141
                                          150
                                                182
                                                     183
                                                         185
                                                              445
                                                                   449
                                                                        452
                                                                             453
## [16]
        522
             525
                  526
                       529
                            530
                                 531
                                      532
                                          534
                                                542
                                                     546
                                                         560
                                                              562
                                                                   566
                                                                        568
                                                                             570
## [31]
        579 580 582 592 912 913 980 1034 1035 1067 1091 1093 1100 1101 1109
## [46] 1121 1188 1190 1219 1226 1233 1264 1471 1510 1522 1575 1576 1579 1585 1587
## [61] 1608 1618 1621 1623 1697 1734 1773 1780 1831 1833
##
## [[3]]
## [1]
          6
              57 100 130 141 150 183 453 526
                                                    534 542 570 573 580
## [16] 1033 1034 1035 1091 1092 1093 1100 1101 1219 1223 1226 1233 1264 1470 1471
## [31] 1510 1569 1575 1576 1579 1585 1587 1588 1594 1608 1618 1622 1623 1780 1831
## [46] 1833
```