Customer Segmentation Using K-Means Clustering

Introduction

This report presents a customer segmentation analysis using K-Means clustering. The goal is to segment customers based on their transaction data, which can help in designing targeted marketing strategies and improving customer relationship management.

Methodology

Data Aggregation

The first step involves aggregating transaction data to create a summary for each customer:

- TotalValue: Sum of transaction values for each customer.
- Quantity: Sum of the quantity of products purchased by each customer.

customer_summary = transactions.groupby('CustomerID').agg({'TotalValue': 'sum', 'Quantity': 'sum'}).reset_index()

Adding Customer Profile Data

Customer profile data is merged with the transaction summary to enrich the dataset:

customer_summary = customer_summary.merge(customers, on='CustomerID')

Standardizing Data

To ensure consistent scaling across features, the data is standardized using StandardScaler:

scaler = StandardScaler()

features = scaler.fit_transform(customer_summary[['TotalValue', 'Quantity']])

K-Means Clustering

K-Means clustering is applied to segment customers into distinct clusters:

- Model Initialization: The model is initialized with 4 clusters and a random state for reproducibility.
- **Fitting Model:** The model is fitted to the standardized features.
- Cluster Assignment: Each customer is assigned to a cluster.

kmeans = KMeans(n_clusters=4, random_state=42)

customer_summary['Cluster'] = kmeans.fit_predict(features)

Evaluating Clustering Performance

The Davies-Bouldin Index (DB Index) is calculated to evaluate the clustering performance. A lower DB Index indicates better clustering quality.

db_index = davies_bouldin_score(features, customer_summary['Cluster'])

print(f"Davies-Bouldin Index: {db_index}")

Visualization

A scatter plot is used to visualize the customer clusters:

```
plt.figure(figsize=(10, 6))
sns.scatterplot(x=features[:, 0], y=features[:, 1], hue=customer_summary['Cluster'], palette='viridis')
plt.title('Customer Clusters')
plt.show()
```

Saving Results

The clustered customer data is saved to a CSV file for further analysis:

customer_summary.to_csv('Customer_Segmentation.csv', index=False)

Conclusion

The K-Means clustering algorithm successfully segmented customers based on their transaction data. By understanding the characteristics of each cluster, businesses can tailor their marketing efforts, improve customer retention, and drive growth.