Author Index of Volume 18

Agapito, J. A., 265
Akolekar, D. B., 245
Amadelli, R., 57
Amoros, J., 401
Andreopoulos, A. G., 49
Anpo, M., 465
Asakura, K., 499
Atmani, H., 129

Baba, A. I., 381
Babini, G. N., 205
Bachiorrini, A., 391
Balda, R., 359
Barteau, M. A., 425
Barthomeuf, D., 553
Bartocci, C., 57
Bellosi, A., 205
Bernal, S., 119
Bertolotti, M., 277
Bhowmick, A. K., 35
Biliński, B., 231
Blasse, G., 81, 155, 351
Botana, F. J., 119

Carassiti, V., 57
Cebollada, F., 265
Choma, J., 103, 409
Choudhary, V. R., 245
Cocke, D. L., 71
Coluccia, S., 445
Coudurier, G., 553

De Battisti, A., 57
De La Fuente, M. R., 359
Delmastro, A., 391
De Vries, A. J., 81
Diaz Paña, M., 325
Duran. P., 287

Eguiazaba	1, J. I.,	147
Elvira, C.,	265	

Ferrari, A., 277
Friedrich, K., 93
Fuiita, T., 193

Garcia,	R.,	119)	
Gaztelu	me	ndi,	M.,	343

Gillot, B., 139		
Gopalakrishnan,	R.,	171
Gutierrez, J., 26:	5	

Hattori, H., 533
Hess, M., 93
Hindermann, J. P., 513

Idriss	, H	I.,	51	3
Iruin,	J.	J.	, 1	47
Iwasa	wa	,	Y.,	49

Jaroniec, M., 103, 4	09
Jemmali, F., 139	
Jun Pin Lin, 255	
Jurado, J. R., 287	
Jurado, M. J., 343	

Katime, I., 359
Kiennemann, A., 513
Kikkawa, S., 375
Kiliaan, H. S., 155, 35
Klabunde, K. J., 485
Kladnig, W. F., 181
Koizumi, M., 375
Kosfeld, R., 93
Kuriacose, J. C., 171

Lavagnir	10,	S.,	445
Lercher,	J.	A.,	577

Maldotti, A., 57
Marchese, L., 445
Mencer, D. E., 71
Millan, E., 265
Minami, T., 1
Mondragon, I., 343
Montanaro, L., 391
Moure, C., 287

Naugle, D. G., 71
Nazabal, J., 343
Nieves, I., 485
Noguera, H., 295
Noller, H., 577

O'Brien, R. N., 19 Ohkura, H., 375 Onuchukwu, A. I., 381

Palanco, J. M. G., 325 Papanicolaou, G. C., 49 Peng, X. D., 425 Perez Jubindo, M. A., 359 Piotrowska, J., 409 Prolongo, M. G., 325

Ramakrishnan, V., 171 Ramirez, F., 119 Ricciardiello, G., 277 Rodriguez-Izquierdo, J. M., 119 Rubio, R. G., 325 Rus, J., 295

Saha Deuri, A., 35 Sakamoto, M., 193 Sansare, S. D., 245 Santhanam, K. S. V., 19 Sibilia, C., 277 Smeets, W. J. J., 81 Solana, J. R., 401 Steele, B. C. H., 287 Suber, G., 277 Šušić, M. V., 307

Tatsumisago, M., 1 Ting Quan Lei, 255 Tsai, C. L., 71 Tsipas, D. N., 295

Valverde, N., 287 van Herwijnen, F. P., 351 Vautier, C., 129 Védrine, J. C., 553 Villar, E., 401 Vincenzini, P., 205 Vinek, H., 577 Viswanathan, B., 171

Watanabe, S., 193

Xi Yong An, 255

Yamada, Y., 465

Author Index of Volume 15

THE RESERVE OF THE PARTY OF THE

Community V. d., 245 Community C. 255 Community C. 255 Community A. 57

Or to France, A., 37 Or to France, A., 393 On Yorac, A. J., 81 One Pride, M., 323 Dente, P., 387

TALL E. L. DAT

DV _ A _ mantane

Day of the second

Gillor, B., 139 Gegalikhishman, A., 171 Gottoman, J., 265

Hermit, H., 533 Hum M., 93 Humlermann, J. P., 513

> CH. J. J. and CH. J. J. and Ch. J. J. and Ch. J. J. and Ch. and C

901 - 101 -

THE A SECOND STATE OF THE PARTY OF THE PARTY

TVL A Location

17 J. O. organi 186 J. Jahreni 286 J. eveli CVI J. ortogal 75 J. ortogal

O'Brien, R. M., 19 Obluga, H., 275 Onudintrate, A. L. 101

Patento, J. M. G., 438.
Papenloidenc, G. C., 49
Peng, X. D., 423
Peng, X. D., 423
Peng, Juniono, M. A., 355
Planew des, J., 409
Professy, M. G., 125

Hamburger, P., 179 Hamburger, P., 179 Hamburger, P., 277 Hamburger, Inquincies, M., 119 Hamburger, N. C., 222 Hamburger, L. 202

Manageria, M., 193

Januari, S. D., 345

Januari, K. E. V., 19

Januari, W. J. J., mi

Januari, W. J. J., mi

Januari, W. J. J., mi

Januari, M. J. J., mi

Januari, M. J. J., 197

Transmission, M., I Train Count Let, 355 Train Count Let, 355 Training, Dr. Nr., 295

Valuation No. 287
Vanter, C., 129
Value, S., 129
Value, S., 401
Value, S., 401
Value, R., 402
Value, R., 403
Value, R., 277
Value, R., 277

Waterston N., 183 N. Yong Arl, 235

Mary January - -

Subject Index of Volume 18

Acidic sites

and basic sites of main group mixed metal oxides, 577

Activated carbons

characterization of, by distribution functions of adsorption potential and micropore dimension, 103

mesopore correction of adsorption data used for characterizing microporous structure of, 409

Adsorbed species

on ZnO in CO-H₂ and CO₂-H₂ reactions,

Adsorption data

mesopore correction of, used for characterizing microporous structure of activated carbons, 409

Adsorption potential

and micropore dimension; characterization of activated carbons by distribution functions of, 103

Alloy

Al-4.5Cu-1.5Mg; restoration mechanism during hot tension of, 255

Aluminium

crystallization of AlPO₄-5 from system-1.5 (C₃H₇)₃N.1.0Al₂O₃.1.0 P₂O₅.40.0 H₂O; characterization of products of crystallization, 245

fracture behaviour of duplex Al₂O₃-ZrO₂ ceramics, 181

restoration mechanism during hot tension of Al-4.5Cu-1.5Mg alloy, 255

Si₃N₄-Al₂O₃-ZrO₂ hot pressed composites, 205

trapping of Gd³⁺ excitation energy by Cr³⁺ and rare earth ions in GdAlO₃, 81

Amorphous substances

XPS investigation of surfaces of amorphous (Ti₉₀Ru₁₀)₈₇Si₁₃, 71

Antimicrobial materials

characteristic properties as, of diesters from various glycols, 193

Basicity

and basic catalytic properties of zeolites, 553
Basic metal oxides
catalysis by, 533

Basic sites

and acidic sites of main group mixed metal oxides, 577

Benzoate

compatibility and transesterification in poly(ethyleneterephthalate)CO-Phydroxibenzoate/poly(bisphenol-Acarbonate) blends, 93

Bismuth

high oxygen ion conduction in some Bi₂O₃-Y₂O₃(Er₂O₃) solid solutions, 287

sensitizer in luminescent systems $(Y, Gd)_2$ - O_2SO_4 :Bi, Tb and Li₆ $(Y, Gd)(BO_3)_3$:
S, Tb $(S = Ce^{3+}, Pr^{3+} \text{ or } Bi^{3+}), 155$

thermal behaviour of Se_{0.995}Bi_{0.005} thin films, 129

Boron

corrosion behaviour of boronized low carbon steel, 295

Cadmium

visible light induced photoreduction of heteropolytung states on colloidal cadmium sulphide semiconductor; reduction of K₄SiW₁₂O₄₀ under steady state irradiation, 57

Calcium

influence of synthesis process on reactivity to water of CaSO₄-II; role of specific surface and microstructural disorder, 391

Carbonate

compatibility and transesterification in poly(ethyleneterephthalate)CO-Phydroxibenzoate/poly(bisphenol-Acarbonate) blends, 93

Carbon dioxide

adsorbed species on ZnO in CO-H₂ and CO₂-H₂ reactions, 513

Carbon monoxide

adsorbed species on ZnO in CO-H₂ and CO₂-H₂ reactions, 513

Carbon steel

boronized low; corrosion behaviour of, 295

Catalysis

by basic metal oxides, 533

Catalysts

preparation of, constituted by Rh supported

© Elsevier Sequoia/Printed in The Netherlands

on two cerium dioxides with different surface area, 119

Catalytic activity

photo-, and photoluminescence of MgO powders, 465

Catalytic properties

basic, and basicity of zeolites, 553 of metal-doped MgO systems; structure model as origin of, 499

Cellulose

plasticized, acetobutyrate/phenoxy blends; solid state behaviour and properties of, 343

Ceramics

duplex Al₂O₃-ZrO₂; fracture behaviour of, 181

Cerium

preparation of catalysts constituted by Rh supported on two cerium dioxides with different surface area, 119

sensitizer in luminescent systems $(Y, Gd)_2$ - O_2SO_4 : Bi, Tb and $Li_6(Y, Gd)(BO_3)_3$:
S, Tb $(S = Ce^{3+}, Pr^{3+} \text{ or } Bi^{3+})$, 155

Chemisorbed species

nature of, on metal oxide surfaces; electron transfer and bond-breaking processes, 485

Chromium

electrical conductivity and thermogravimetry of oxidation of some spinels with Cr³⁺ and Fe²⁺ ions, 139

trapping of Gd³⁺ excitation energy by Cr³⁺ and rare earth ions in GdAlO₃, 81

Composites

particulate; dependence of impact strength of, on temperature and filler volume fraction, 49

Si₃N₄-Al₂O₃-ZrO₂ hot pressed, 205

Copper

restoration mechanism during hot tension of Al-4.5Cu-1.5Mg alloy, 255

Corrosion

behaviour of boronized low carbon steel, 295 stripping; effects of ionogen on, of Zn surface of galvanized steel in aqueous medium, 381

Crystallization

of AlPO₄-5 from system-1.5 (C₃H₇)₃ N.1.0-Al₂O₃.1.0 P₂O₅.40.0 H₂O: characterization of products of crystallization, 245

Devitrification

glassy phase, of some superionic conductors based on silver iodide; kinetics of, 307

Dielectric relaxation

low frequency study in PMMA/PS blends, 359

Diesters

characteristic properties as antimicrobial materials of, from various glycols, 193

Doping

structure model as origin of catalytic properties of metal-doped MgO systems, 499

Electrical conductivity

and thermogravimetry of oxidation of some spinels with Cr³⁺ and Fe²⁺ ions, 139

Electrodes

bilayer conducting; laser interferometry of electrodeposition of polypyrrole on polycarbazole anode, 19

Electron transfer

and bond-breaking processes; nature of chemisorbed species on metal oxide surfaces, 485

Equation(s) of state

of liquid methane at high pressures; behaviour of, 401

perturbed hard-core, for fluids, 325

Erbium

high oxygen ion conduction in some Bi₂O₃-Y₂O₃(Er₂O₃) solid solutions, 287

Excitation energy

Gd³⁺; trapping of, by Cr³⁺ and rare earth ions in GdAlO₃, 81

Filler volume fraction

and temperature; dependence of impact strength of particulate composites on, 49

Films

Se_{0.995} Bi_{0.005} thin; thermal behaviour of, 129

Fracture behaviour

of duplex Al₂O₃-ZrO₂ ceramics, 181

Gadolinium

sensitization of Tb³⁺ luminescence in NaGdSiO₄, 351

sensitizer in luminescent systems $(Y, Gd)_2$ - O_2SO_4 : Bi, Tb and Li₆ $(Y, Gd)(BO_3)_3$:
S, Tb $(S = Ce^{3+}, Pr^{3+} \text{ or } Bi^{3+})$, 155

trapping of Gd³⁺ excitation energy by Cr³⁺ and rare earth ions in GdAlO₃, 81

Gas sensors

tin oxide; mechanisms of detection on, 265 Glasses

Li ion conducting, prepared by rapid quenching, 1

kinetics of glassy phase devitrification of some superionic conductors bases on silver iodide, 307 Glycols

various; characteristic properties as antimicrobial materials of diesters from, 193

/n-hexadecane system; free surface energy changes in, 231

Hexadecane

free surface energy changes in graphite/nhexadecane system, 231

Hydrogen

adsorbed species on ZnO in Co-H2 and CO₂-H₂ reactions, 513

Impact strength

of particulate composites on temperature and filler volume fraction; dependence of, 49

Interferometry

laser, of electrodeposition of polypyrrole on polycarbazole anode; bilayer conducting electrodes, 19

Ion exchange

of layered α-NaFeO₂, 375

effects of, on corrosion stripping of Zn surface of galvanized steel in aqueous medium, 381

Iron

boronized low carbon steel; corrosion behaviour of, 295

electrical conductivity and thermogravimetry of oxidation of some spinels with Cr3+ and Fe2+ ions, 139

galvanized steel; effects of ionogen on corrosion stripping of Zn surface of, in aqueous medium, 381

ion exchange of layered α-NaFeO₂, 375

steady state; reduction of K₄SiW₁₂O₄₀ under; visible light induced photoreduction of heteropolytungstates on colloidal cadmium sulphide semiconductor, 57

Kinetics

of glassy phase devitrification of some superionic conductors based on silver iodide, 307

Laser interferometry

of electrodeposition of polypyrrole on polycarbazole anode; bilayer conducting electrodes, 19

Lithium

Li ion conducting glasses prepared by rapid quenching, 1 sensitizer in luminescent systems (Y, Gd)2- O_2SO_4 :Bi, Tb and $Li_6(Y, Gd)(BO_3)_3$: S. Tb (S = Ce^{3+} , Pr^{3+} or Bi^{3+}), 155

Low frequency dielectric relaxation study in PMMA/PS blends, 359

Luminescence

photo-, and photocatalytic activity of MgO powders, 465 sensitizer in luminescent systems (Y, Gd)2-O₂SO₄:Bi, Tb and Li₆ (Y, Gd)(BO₃)₃: S, Tb (S = Ce^{3+} , Pr^{3+} or Bi^{3+}), 155 Tb³⁺; sensitization of, in NaGdSiO₄, 351

Magnesium formation of well-defined MgO layers, 425 hydroxylated surface of MgO powders and formation of surface sites, 445 photoluminescence and photocatalytic activity of MgO powders, 465 restoration mechanism during hot tension of Al-4.5Cu-1.5Mg alloy, 255 structure model as origin of catalytic properties of metal-doped MgO systems, 499

Main group mixed metal oxides acidic sites and basic sites of, 577

Mesopore correction

of adsorption data used for characterizing microporous structure of activated carbons, 409

Methane

liquid; behaviour of equation of state of, at high pressures, 401

Micropore dimension

and adsorption potential; characterization of activated carbons by distribution functions of, 103

Microporous structure

mesopore correction of adsorption data used for characterizing, of activated carbons, 409

Microstructural disorder

and specific surface: role of; influence of synthesis process on reactivity to water of CaSO₄-II, 391

Miscibility

and thermal decomposition in phenoxy/ poly(ethylene terephthalate) and phenoxy/poly(butylene terephthalate) blends, 147

Morphology

and strength properties; influence of age-

ing on, of fracture surface of hydroxy terminated polybutadiene rubber, 35

Niobium

photoelectrochemical properties of $Zr_xTi_{1-x}Nb_2O_7$ mixed oxides, 171

Oxidation

electrical conductivity and thermogravimetry of, of some spinels with Cr³⁺ and Fe²⁺ ions, 139

Oxygen ion conduction

high, in some Bi₂O₃-Y₂O₃ (Er₂O₃) solid solutions, 287

Phenoxy blends

miscibility and thermal decomposition in phenoxy/poly(ethylene terephthalate) and phenoxy/poly(butylene terephthalate) blends, 147

solid state behaviour and properties of plasticized cellulose acetobutyrate/phenoxy blends, 343

Phosphorus

crystallization of AlPO₄-5 from system-1.5. (C₃H₇)₃N.1.0Al₂O₃.1.0 P₂O₅.40.0 H₂O: characterization of products of crystallization, 245

Photocatalytic activity

and photoluminescence of MgO powders, 465

Photoelectrochemical properties

of ZrxTi_{1-x}Nb₂O₇ mixed oxides, 171

Photoluminescence

and photocatalytic activity of MgO powders, 465

Photoreduction

visible light induced, of heteropolytungstates on colloidal cadmium sulphide semicontor; reduction of K₄SiW₁₂O₄₀ under steady state irradiation, 57

Photothermal deflection spectroscopy determination of thermal diffusivity of solid surface by, 277

Phthalate

compatibility and transesterification in poly(ethyleneterephthalate)CO-Phydroxibenzoate/poly(bisphenol-Acarbonate) blends, 93

miscibility and thermal decomposition in phenoxy/poly(ethylene terephthalate) and phenoxy/poly(butylene terephthalate) blends, 147

Plasticized cellulose acetobutyrate /phenoxy blends; solid state behaviour and properties of, 343 PMMA/PS blends

low frequency dielectric relaxation study in, 359

Polycarbazole anode

laser interferometry of electrodeposition of polypyrrole on; bilayer conducting electrodes, 19

Polypyrrole

laser interferometry of electrodeposition of, on polycarbazole anode; bilayer conducting electrodes, 19

Praseodymium

sensitizer in luminescent systems $(Y, Gd)_2$ - O_2SO_4 : Bi, Tb and Li₆ $(Y, Gd)(BO_3)_3$:
S, Tb $(S = Ce^{3+}, Pr^{3+} \text{ or } Bi^{3+})$, 155

Quenching

rapid; Li ion conducting glasses prepared by, 1

Rare earth ions

trapping of Gd³⁺ excitation energy by Cr³⁺ and rare earth ions in GdAlO₃, 81

Rhodium

preparation of catalysts constituted by Rh supported on two cerium dioxides with different surface area, 119

Rubber

hydroxy terminated polybutadiene; influence of ageing on strength properties and morphology of fracture surface of, 35

Ruthenium

XPS investigation of surfaces of amorphous (Ti₉₀Ru₁₀)₈₇Si₁₃, 71

Selenium

thermal behaviour of Se_{0.995} Bi_{0.005} thin films, 129

Semiconductor

colloidal cadmium sulphide; visible light induced photoreduction of heteropolytungstates on; reduction of K₄SiW₁₂O₄₀ under steady state irradiation, 57

Sensitization

of Tb³⁺ luminescence in NaGdSiO₄, 351

Sensitizer

in luminescent systems (Y, Gd)₂O₂SO₄: Bi, Tb and Li₆ (Y, Gd)(BO₃)₃:S, Tb (S = Ce³⁺, Pr³⁺ or Bi³⁺), 155

Silicon

sensitization of Tb³⁺ luminescence in NaGdSiO₄, 351

Si₃N₄-Al₂O₃-ZrO₂ hot pressed composites, 205

XPS investigation of surfaces of amorphous (Ti₉₀Ru₁₀)₈₇Si₁₃, 71

Silver iodide

kinetics of glassy phase devitrification of some superionic conductors based on, 307

Sodium

ion exchange of layered α-NaFeO₂, 375 sensitization of Tb³⁺ luminescence in NaGdSiO₄, 351

Spectroscopy

photothermal deflection; determination of thermal diffusivity of solid surface by, 277

XPS investigation of surfaces of amorphous (Ti₉₀Ru₁₀)₈₇Si₁₃, 71

Spinels

electrical conductivity and thermogravimetry of oxidation of some spinels with Cr³⁺ and Fe²⁺ ions, 139

Steel

boronized low carbon; corrosion behaviour of, 295

galvanized; effects of ionogen on corrosion stripping of Zn surface of, in aqueous medium, 381

Strength properties

and morphology; influence of ageing on, of fracture surface of hydroxy terminated polybutadiene rubber, 35

Sulphur

influence of synthesis process on reactivity to water of CaSO₄-II; role of specific surface and microstructural disorder, 391

visible light induced photoreduction of heteropolytungstates on colloidal cadmium sulphide semiconductor; reduction of K₄SiW₁₂O₄₀ under steady state irradiation, 57

Superionic conductors

some; kinetics of glassy phase devitrification of, based on silver iodide, 307

Surface(s)

area, different; preparation of catalysts constituted by Rh supported on two cerium dioxides with, 119

fracture; influence of ageing on strength properties and morphology of, of hydroxy terminated polybutadiene rubber, 35

free, energy changes in graphite/n-haxadecane system, 231

hydroxylated, of MgO powders and formation of surface sites, 445 metal oxide; nature of chemisorbed species on; electron transfer and bond-breaking processes, 485

solid; determination of thermal diffusivity of, by photothermal deflection spectroscopy, 277

specific, and microstructural disorder: role of; influence of synthesis process on reactivity to water of CaSO₄-II, 391

XPS investigation of, of amorphous (Ti₉₀Ru₁₀)₈₇Si₁₃, 71

Zn; effects of ionogen on corrosion stripping of, of galvanized steel in aqueous medium, 381

Synthesis process

influence of, on reactivity to water of CaSO₄-II; role of specific surface and microstructural disorder, 391

Tension

hot; restoration mechanism during, of Al-4.5Cu-1.5Mg alloy, 255

Terbium

sensitization of Tb³⁺ luminescence in NaGdSiO₄, 351

sensitizer in luminescent systems $(Y, Gd)_2$ - O_2SO_4 : Bi, Tb and Li₆ $(Y, Gd)(BO_3)_3$:
S, Tb $(S = Ce^{3+}, Pr^{3+} \text{ or } Bi^{3+})$, 155

Thermal behaviour

of Se0.995 Bio.005 thin films, 129

Thermal decomposition

and miscibility in phenoxy/poly(ethylene terephthalate) and phenoxy/poly(butylene terephthalate) blends, 147

Thermal diffusivity

of solid surface by photothermal deflection spectroscopy; determination of, 277

Thermogravimetry

and electrical conductivity of oxidation of some spinels with Cr³⁺ and Fe²⁺ ions, 139

Tin oxide gas sensors

mechanisms of detection on, 265

Titanium

photoelectrochemical properties of $Zr_xTi_{1-x}Nb_2O_7$ mixed oxides, 171 XPS investigation of surfaces of amorphous ($Ti_{90}Ru_{10}$)₈₇Si₁₃, 71

Transesterification

and compatibility in poly(ethyleneterephthalate)CO-P-hydroxibenzoate/ poly(bisphenol-A-carbonate) blends, 93

Tungsten

visible light induced photoreduction of heteropolytungstates on colloidal cadmium sulphide semiconductor; reduction of K₄SiW₁₂O₄₀ under steady state irradiation, 57

Water

influence of synthesis process on reactivity to, of CaSO₄-II; role of specific surface and microstructural disorder, 391

Yttrium

high oxygen ion conduction in some
Bi₂O₃-Y₂O₃(Er₂O₃) solid solutions,
287

sensitizer in luminescent system $(Y, Gd)_2$ - O_2SO_4 : Bi, Tb and Li₆ $(Y, Gd)(BO_3)_3$:
S, Tb $(S = Ce^{3+}, Pr^{3+} \text{ or } Bi^{3+}), 155$

Zeolites

basicity and basic catalytic properties of, 553 Zinc

adsorbed species on ZnO in CO-H₂ and CO₂-H₂ reactions, 513 surface of a galvanized steel in an aqueous medium, a study of the effects of ionogen on the corrosion stripping of, 381

Zirconium

fracture behaviour of duplex Al₂O₃-ZrO₂
ceramics, 181
photoelectrochemical properties of
Zr_xTi_{1-x}Nb₂O₇ mixed oxides, 171
Si₃N₄-Al₂O₃-ZrO₂ hot pressed composites, 205