Hard Diffraction at HERA: Results from H1

Frank-Peter Schilling / DESY H1 Collaboration

High Energy QCD – Beyond the Pomeron BNL, Brookhaven, May 2001

- ullet Inclusive diffraction: F_2^D and the partonic interpretation
- A closer look:
 - Energy flow and thrust
- Diffractive final states in DIS:
 - Dijet and 3-jet production, open charm
- ... and in hadron-hadron(like) interactions:
 - Dijets in diffr. photoproduction [and at the Tevatron]

Hard Diffraction at HERA

Determine q, g structure of colour singlet exchange with point-like γ^* probe in large rapidity gap DIS events

 $t=(p-p')^2$: (momentum transfer) 2 at p vertex M_X , M_Y : Masses of X and Y

$$m{x}_{I\!\!P} = rac{q \cdot (p-Y)}{q \cdot p} = rac{Q^2 + M_X^2 - t}{Q^2 + W^2 - M_p^2}$$

ightarrow long. momentum fraction transferred from $m{p}$ to exchange

$$eta=rac{-q^2}{q\cdot(p-Y)}=rac{Q^2}{Q^2+M_X^2-t}$$

ightarrow fraction of exchange momentum carried by $m{q}$ coupling to $m{\gamma}$

F_2^D and Factorization(s)

Define diffractive structure function $oldsymbol{F_2^D}$:

If Y not measured, integ. over M_Y , $t o F_2^{D(3)}(eta, Q^2, x_{I\!\!P})$

QCD Factorization:

[proof John Collins, 1998]

$$F_2^D(x,Q^2,x_{I\!\!P},t) \sim C_i \otimes p_i^D$$
 (+higher twist)

- ullet valid at fixed $oldsymbol{x_{I\!\!P}}$, $oldsymbol{t}$
- $oldsymbol{p}_i^D$: 'conditional probabilities', obey DGLAP evolution
- ullet determine $oldsymbol{p_i^D}$ in inclusive diffr. scattering, then predict exclusive processes

Regge Factorization:

[additional assumption]

$$F_2^D(x_{I\!\!P},t,eta,Q^2) = ~f_{I\!\!P/p}(x_{I\!\!P},t) ~~ imes~~ F_2^{I\!\!P}(eta,Q^2)$$

$$F_2^{D(3)}$$
 at medium $Q^2=4.5\dots 75~{
m GeV}^2$ $x_{I\!\!P}F_2^D$ eta $ag{$eta$}$

 $F_2^D \sim f_{I\!\!P/p}(x_{I\!\!P},t) \; F_2^{I\!\!P}(eta,Q^2) \; + \; f_{I\!\!R/p}(x_{I\!\!P},t) \; F_2^{I\!\!R}(eta,Q^2)$

 $\alpha_{I\!\!P}(0) = 1.20 \pm 0.04$ $\alpha_{I\!\!R}(0) \approx 0.6$

Scaling violations of $F_2^{D(3)}$

 F_2^D vs Q^2 at fixed $x_{I\!\!P}$:

ullet flat or positive scaling violations over whole $oldsymbol{eta}$ and $oldsymbol{Q^2}$ range

Strongly suggestive of gluon dominated exchange!

Parton Distributions of Diffractive Exchange

DGLAP QCD fit to F_2^D : **IP** parton distributions:

- gluon >> quark singlet!
- Uncertainty on g^D , especially at large z!

Use to predict diffractive final state cross sections!

$F_2^{D(3)}$ at high $Q^2=200\dots 800~{ m GeV^2}$

• Good description by QCD fit extrapolated to high Q^2 , even at high β (excluded from fit)

Confirmation: Energy Flow

Average transverse energy as a function of η in M_X bins:

Need g-dominated $I\!\!P$ to model energy flow!

Confirmation: Thrust

Average thrust as function of $1/M_X$:

- Thrust smaller than in e^+e^- ightharpoonup g radiation more important
- ZEUS recently clearified long-standing disagreement with H1; now consistent

Need g-dominated $I\!\!P$ to model thrust!

Diffractive Dijet Production in DIS [hep-ex/0012051]

Motivation:

- Direct sensitivity to g^D through $\mathcal{O}(\alpha_s)$ process (boson gluon fusion):
- ullet Jet $oldsymbol{P_T}$ provides second hard scale

Kinematics (in partonic picture):

M_{12}

- Invariant mass of two leading jets

$$z_{I\!\!P}^{(jets)}pprox rac{Q^2+M_{12}^2}{Q^2+M_X^2}$$

- Momentum fraction of exch. entering hard scattering

QCD Factorization @ Work

Predict diffr. dijet cross sections with PDF's obtained from inclusive $F_2^{D(3)}$ measurement:

[resolved γ^* component included]

⇒ Consistent with QCD factorization in diffr. DIS!

Diffractive Gluon Distribution

Dijets directly constrain shape and normalization of $oldsymbol{g}^{oldsymbol{D}}$:

[res. γ^* , $I\!\!R$ and quark contributions small]

- H1 fit 2: very good agreement with data
- H1 fit 3: overshoots at high *z*_{IP}
- ACTW-D: too high

 \Rightarrow Support for factorizable diffr. PDF's in DIS which are gluon-dominated and rather flat in z

Proton rest frame picture: $qar{q}g\gg qar{q}$ states

Features of Diffractive PDF's

H1 Diffractive Dijets

- ullet Data consistent with DGLAP evolution of PDF's with factorization scale $oldsymbol{\mu}^2 = oldsymbol{Q}^2 + oldsymbol{p}_T^2$
- Also compatible with factorization of $x_{I\!\!P}$ dependence $[f_{I\!\!P/P}(x_{I\!\!P}) \otimes p_i^D(z,\mu^2)]$ No visible variation of $\alpha_{I\!\!P}(0)$ with $z_{I\!\!P}$ [see BEKW]

Energy dependence $\alpha_{I\!\!P}(0)$

• Shape of x_{IP} distribution sensitive to energy dependence of cross section:

Parameterization used:

$$egin{align} f_{I\!\!P/P}(x_{I\!\!P},t) &\sim \left(rac{1}{x_{I\!\!P}}
ight)^{2lpha_{I\!\!P}(t)-1} e^{Bt} \ lpha_{I\!\!P}(t) &= lpha_{I\!\!P}(0) + lpha_{I\!\!P}'t \ \ [B = 4.6 \ {
m GeV}^{-2}, \ lpha_{I\!\!P}' = 0.26 \ {
m GeV}^{-2}] \ \end{array}$$

Fit Result:

$$lpha_{I\!\!P}(0) = 1.17 \, {}^{+0.03}_{-0.03} \; ({
m stat.}) \, {}^{+0.06}_{-0.06} \; ({
m syst.}) \, {}^{+0.03}_{-0.07} \; ({
m model})$$

- \Rightarrow Consistent with H1- $F_2^{D(3)}$ [$m{Q}^2$ similar]
- ullet eta distribution: Jets are small $oldsymbol{eta}$, compared with F_2^D

Soft Colour Neutralization

- Soft Colour Interactions SCI (Edin, Ingelman, Rathsman) original version and "generalized area law" (Rathsman)
- Semiclassical Model (Buchmüller, Gehrmann, Hebecker)

H1 Diffractive Dijets

 \Rightarrow Sensitivity to differences between models which all (have been tuned to) describe $F_2^{D(3)}$!

Colour Dipole / 2-Gluon Exchange Models

Proton rest frame picture: $q\bar{q}$, $q\bar{q}g$ photon fluctuations scatter elastically off proton by 2-gluon exchange

$$egin{aligned} {\sigma_{T,L}^{\gamma^*p} \sim |\Psi_{T,L}(lpha,\mathrm{r})|^2 \,\otimes\,\,\hat{\sigma}^2(r^2,x,...)} \ \hat{\sigma}(x,\mathrm{r}) \sim \int rac{\mathrm{d}^2\mathrm{k}_t}{k_t^2} \left[1-\mathrm{e}^{i\mathrm{r}\cdot\mathrm{k}}
ight] lpha_s(k_t^2) \,\mathcal{F}(x,k_t^2) \end{aligned}$$

 $[\mathcal{F}(x,k_t^2)$: unintegrated gluon distribution]

- BJLW Model [Bartels et al.]:
 - calculation for high $oldsymbol{p_T}$ diffractive final states
 - $p_{T,g}>p_{T,q}$ included (unordered p_T)
 - $\mathcal{F}(x,k_T^2)$: Derivative of GRV NLO
- Saturation Model [Golec-Biernat, Wüsthoff]:
 - $p_{T,g} \ll p_{T,q}$ required $(p_T$ ordering)
 - $\mathcal{F}(x,k_T^2)$ parameterized from fit to $F_2(x,Q^2)$

Colour Dipole / 2-Gluon Exchange Models

 $m{x_{I\!\!P}} < 0.01 \; \Rightarrow$ avoid $m{I\!\!R}$ exch.; P PDF's $m{g}$ -dominated

- ullet tiny $oldsymbol{q}ar{oldsymbol{q}}$ contribution
- ullet BJLW \sim OK if $p_{T,g} > 1.5~{
 m GeV}$
- Saturation Model too low
- $p_{T,rem}^{(I\!\!P)}$ not able to discriminate ;-(

3-Jet Production

Features:

- Limited statistics: 130 3-jets for $\mathcal{L} = 18.0 \text{ pb}^{-1}$
- Kinematically forced to $x_{I\!\!P}>0.01$

- Data above LO QCD prediction based on diffr. PDF's if MEPS is used for higher order approximation
- CDM does better job

[Difference MEPS/CDM much smaller for dijets]

• 2-gluon exchange (BJLW) low

Diffractive Open Charm Production (D^*)

$$\sigma(\mathbf{ep} \to \mathbf{eD}^{*\pm}\mathbf{XY}) = \mathbf{154} \pm \mathbf{40}(\mathbf{stat}) \pm \mathbf{35}(\mathbf{syst}) \ \mathbf{pb}$$
(H1 preliminary)

Statistics still very limited.

Diffractive D^* Production

- ⇒ H1 fit predicts three times higher cross section!
- ⇒ Broken factorization (Errors still large)?
- \Rightarrow 2-gluon, $q\overline{q}+q\overline{q}g$ calculation (Bartels et al.) OK at small $x_{I\!\!P}$, high $z_{I\!\!P}$!

Dijets in Diffr. Photoproduction $(Q^2 \approx 0)$

 $oldsymbol{x_{\gamma}}$ dependence of cross section:

- ullet Resolved $oldsymbol{\gamma}$ similar to hadron-hadron
- ullet Suppression factor S=0.6 at small $oldsymbol{x_{\gamma}}$ necessary !

⇒ Factorization broken ? (Large errors...)

[New measurement in progress...]

Crossing the Atlantic: Factorization broken!

CDF measurement of diffractive dijet production with leading anti-proton in $p\bar{p}$ collisions:

Effective diffr. structure function $ar{F}_{JJ}^D(eta)$

 Prediction based on diffractive PDF's extracted at HERA one order of magnitude above measured cross section!

\Rightarrow Serious breaking of factorization!

Important to understand to get unified picture!

Summary and Conclusions

Diffractive dijet production (and F_2^D):

- ullet Diffr. Dijets tightly constrain diffractive gluon distribution $m{g^D}$ (shape and norm.), in contrast to $m{F_2^{D(3)}}$ measurements
- Data favour diffr. PDF's, evolving with DGLAP, strongly dominated by gluons with momentum distribution rel. flat in \boldsymbol{z} ("H1 fit 2")
- ullet Consistent picture from $F_2^{D(3)}$ and jet measurements: Concept of factorizing diffr. PDF's in DIS [Collins] works.
- Consistent with factorizing $x_{I\!\!P}$ dependence with $\alpha_{I\!\!P}(0)=1.17$ ("Regge factorization")
- SCI and Semiclassical models not yet able to simultaneously give correct shape and normalizations of jet cross sections
- Improved models calculations based on 2-gluon exchangecan describe part of dijet cross section

Indications for breakdown of Factorization?

- Suppression of open charm (D^*)
- ullet Suppression of $x_{\gamma} < 1$ dijets for $Q^2 pprox 0$