Statistica - 11^a lezione

20 aprile 2021

Z-test per il valore atteso di un campione normale

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\mu_0 \in \mathbb{R}$ fissato

TESI: Posto $Z_0 := \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}$, questi sono test di significatività α :

H ₀	H ₁	rifiuto H_0 se	se H_0 è vera, $Z_0 \sim \dots$
$\mu = \mu_0$	$\mu > \mu_0$	$Z_0 > z_{1-\alpha}$	$\sum_{z_{1-\alpha}}$
$\mu = \mu_0$	$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$	$-Z_{1-\alpha}$
$\mu = \mu_0$	$\mu \neq \mu_0$	$ Z_0 > z_{1-\frac{\alpha}{2}}$	$\begin{array}{c c} & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \end{array}$

Z-test per il valore atteso di un campione normale

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\mu_0 \in \mathbb{R}$ fissato

 H_1 fissa la forma di RC_{α} ...

TESI: Posto $Z_0 := \frac{\sqrt{n}}{\sigma} \sqrt{n}$, questr sono test ar significatività α :

H ₀	H ₁	rifiuto H_0 se	se H_0 è vera, $Z_0 \sim \dots$
$\mu = \mu_0$	$\mu > \mu_0$	$Z_0 > Z_{1-\alpha}$	$\sum_{z_{1-\alpha}}$
$\mu = \mu_0$	$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$	$-z_{1-\alpha}$
$\mu = \mu_0$	$\mu \neq \mu_0$	$ Z_0 > z_{1-\frac{\alpha}{2}}$	$-z_{1-\frac{\alpha}{2}} \qquad z_{1-\frac{\alpha}{2}}$

Z-test per il valore atteso di un campione normale

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2), \qquad \mu_0 \in \mathbb{R}$ fissato

 \dots mentre α fissa la sua ampiezza

TESI: Posto Z_0 — $\frac{1}{\sigma}$ \sqrt{n} , questi sono test ui significatività α:

H ₀	H ₁	rifiuto H_0 se	se H_0 è vera, $Z_0 \sim \dots$
$\mu = \mu_0$	$\mu > \mu_0$	$Z_0 > z_{1-\alpha}$	$\sum_{z_{1-\alpha}}$
$\mu = \mu_0$	$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$	$-Z_{1-\alpha}$
$\mu = \mu_0$	$\mu \neq \mu_0$	$ Z_0 > z_{1-\frac{\alpha}{2}}$	$\begin{array}{c c} & & \\ \hline -z_{1-\frac{\alpha}{2}} & z_{1-\frac{\alpha}{2}} \end{array}$

	PRIMA		DOPO	
	dell'esperimento		l'esperimento	
variabili	$X_1 = \begin{pmatrix} x_1 & x_2 & x_3 \\ x_1 & x_2 & x_3 \end{pmatrix}$	\rightarrow	$x_1 = 1.2$	
aleatorie i.i.d.	$X_2 = \begin{pmatrix} x_2 & x_3 & x_4 \\ x_4 & x_5 & x_4 \end{pmatrix}$	\rightarrow	$x_2 = 0.6$	realizzazioni (dati)
		\rightarrow	• • •	
densità	$\left\{ X_i \sim f_{\theta} \right.$	\rightarrow	*	
	$\left\{ \begin{array}{c} \theta \in \mathbb{R} \\ \text{oppure } \theta \in \mathbb{R}^k \end{array} \right.$			
stimatore	$\Big\{ \hat{\Theta} = h(X_1, X_2, \ldots)$	\rightarrow	$\hat{\theta} = h(1.2, 0.6, \ldots)$	} stima
probabilità	$ \begin{cases} \mathbb{P}(\ell(X_1, X_2, \ldots) < \theta \\ < u(X_1, X_2, \ldots)) = \gamma \end{cases} $	\rightarrow	$\ell(1.2, 0.6, \ldots) < \theta$ < $u(1.2, 0.6, \ldots)$	} IC

	PRIMA dell'esperimento		DOPO l'esperimento	
voriobili	$X_1 = (0.6)^2$	\rightarrow	$x_1 = 1.2$	
variabili aleatorie < i.i.d.	$X_2 = \begin{pmatrix} 0.6 & 7^2 \\ 7^2 & 7^2 \end{pmatrix}$		$x_2 = 0.6$	realizzazioni (dati)
		\rightarrow	• • •	
densità <	$\left\{ egin{array}{cc} X_i \sim f_{ heta} \end{array} ight.$	\rightarrow	*	
parametri «	$egin{array}{ll} heta \in \mathbb{R} \ ext{oppure } heta \in \mathbb{R}^k \ heta = h(X_1, X_2, \ldots) \end{array}$	\rightarrow	$ heta \in \mathbb{R}$ oppure $ heta \in \mathbb{R}^k$	} parametri
stimatore <	$\left\{ \hat{\Theta} = h(X_1, X_2, \ldots) \right.$	\rightarrow	$\hat{\theta} = h(1.2, 0.6, \ldots)$	} stima
probabilità <	$\begin{cases} \mathbb{P}(\ell(X_1, X_2, \ldots) < \theta \\ < u(X_1, X_2, \ldots)) = \gamma \end{cases}$	\rightarrow	ℓ (1.2, 0.6,) < θ < u (1.2, 0.6,)) IC
significatività «	$\left\{ egin{array}{ll} \mathbb{P}_{H_0 ext{ vera}}ig(\mathcal{T}_0 \in \mathit{RC} ig) \end{array} ight.$			
	•			3/18

	PRIMA dell'esperimento		DOPO l'esperimento	
variabili	$X_1 = \sum_{\substack{0 \leq i \leq 2^{n}}} x^{n}$	\rightarrow	$x_1 = 1.2$	
aleatorie <	$X_2 = \begin{pmatrix} 0.6 & 7^2 \\ 7^2 & 7^2 \end{pmatrix}$		$x_2 = 0.6$	realizzazioni (dati)
		\rightarrow	•••	
densità <	$\left\{ egin{array}{cc} X_i \sim f_{ heta} \end{array} ight.$	\rightarrow	*	
	$ heta \in \mathbb{R}$ $ heta = \mathbf{p}$ $ heta \in \mathbb{R}^k$			
stimatore <	$\hat{\Theta}=h(X_1,X_2,\ldots)$	\rightarrow	$\hat{\theta} = h(1.2, 0.6, \ldots)$	} stima
probabilità <	$\begin{cases} \mathbb{P}(\ell(X_1, X_2, \ldots) < \theta \\ < u(X_1, X_2, \ldots)) = \gamma \end{cases}$	\rightarrow	ℓ (1.2, 0.6,) < θ < u (1.2, 0.6,)	} IC
significatività <	$\left\{ \begin{array}{c} \mathbb{P}_{H_0 \text{ vera}} ig(T_0 \in RC ig) \end{array} ight.$	\rightarrow	?	

Definizione

Supponiamo che questa regola sia un test di significatività α :

"rifiuto H_0 se trovo $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

Definizione

Supponiamo che questa regola sia un test di significatività α :

"rifiuto
$$H_0$$
 se trovo $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$

Definizione

Supponiamo che questa regola sia un test di significatività α :

"rifiuto
$$H_0$$
 se trovo $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$

Definizione

Supponiamo che questa regola sia un test di significatività α :

"rifiuto
$$H_0$$
 se trovo $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$

$$RC_{\alpha}$$
 $t(x_1,\ldots,x_n)$ RC_{α} $\alpha=0.5\%$

Definizione

Supponiamo che questa regola sia un test di significatività α :

"rifiuto
$$H_0$$
 se trovo $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$

$$RC_{\alpha}$$
 $t(x_1,\ldots,x_n)$ RC_{α} $\alpha=1\%$

Definizione

Supponiamo che questa regola sia un test di significatività α :

"rifiuto
$$H_0$$
 se trovo $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$

Definizione

Supponiamo che questa regola sia un test di significatività α :

"rifiuto
$$H_0$$
 se trovo $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$

$$RC_{\alpha}$$
 $t(x_1,\ldots,x_n)$ RC_{α} $\alpha=5\%$

Definizione

Supponiamo che questa regola sia un test di significatività α :

"rifiuto
$$H_0$$
 se trovo $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

$$p$$
-value = min $\{\alpha \mid t(x_1, \ldots, x_n) \in RC_\alpha\}$

$$RC_{\alpha}$$
 $t(x_1,\ldots,x_n)$ RC_{α} $\alpha=10\%$

Definizione

Supponiamo che questa regola sia un test di significatività α :

"rifiuto
$$H_0$$
 se trovo $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

$$p$$
-value = min $\{\alpha \mid t(x_1, \ldots, x_n) \in RC_\alpha\}$

$$RC_{\alpha}$$
 $t(x_1,\ldots,x_n)$ RC_{α} $\alpha=20\%$

Definizione

Supponiamo che questa regola sia un test di significatività α :

"rifiuto
$$H_0$$
 se trovo $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$

Definizione

Supponiamo che questa regola sia un test di significatività α :

"rifiuto
$$H_0$$
 se trovo $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$

Definizione

Supponiamo che questa regola sia un test di significatività α :

"rifiuto
$$H_0$$
 se trovo $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

Allora, se x_1, \ldots, x_n sono le realizzazioni di X_1, \ldots, X_n , si definisce

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$

$$RC_{\alpha}$$
 $t(x_1, \dots, x_n)$ RC_{α} $\alpha = 26\% = p$ -value

Se H_0 fosse vera, la probabilità di trovare questi dati sarebbe il 26%

Definizione

Supponiamo che questa regola sia un test di significatività α :

"rifiuto
$$H_0$$
 se trovo $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

Allora, se x_1, \ldots, x_n sono le realizzazioni di X_1, \ldots, X_n , si definisce

$$p$$
-value = min{ $\alpha \mid t(x_1, \ldots, x_n) \in RC_{\alpha}$ }

$$RC_{\alpha}$$
 $t(x_1,\ldots,x_n)$ RC_{α} $\alpha=26\%=p$ -value

Se H_0 fosse vera, la probabilità di trovare questi dati sarebbe il 26%

 \Rightarrow nessuna evidenza contro H_0

Definizione

Supponiamo che questa regola sia un test di significatività α :

"rifiuto
$$H_0$$
 se trovo $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$

$$RC_{\alpha}$$
 $t(x_1,\ldots,x_n)$
 $t = 0.25\%$

Definizione

Supponiamo che questa regola sia un test di significatività α :

"rifiuto
$$H_0$$
 se trovo $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$

$$RC_{\alpha}$$
 $t(x_1,\ldots,x_n)$
 $\alpha = 0.5\%$

Definizione

Supponiamo che questa regola sia un test di significatività α :

"rifiuto
$$H_0$$
 se trovo $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$

$$RC_{\alpha}$$
 $t(x_1,\ldots,x_n)$ $\alpha=1\%$

Definizione

Supponiamo che questa regola sia un test di significatività α :

"rifiuto
$$H_0$$
 se trovo $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$

$$RC_{\alpha}$$
 RC_{α} $\alpha = 1\% = p$ -value

Definizione

Supponiamo che questa regola sia un test di significatività α :

"rifiuto
$$H_0$$
 se trovo $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

Allora, se x_1, \ldots, x_n sono le realizzazioni di X_1, \ldots, X_n , si definisce

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$

$$RC_{\alpha}$$
 RC_{α} $\alpha = 1\% = p$ -value

Se H_0 fosse vera, la probabilità di trovare questi dati sarebbe l'1%

Definizione

Supponiamo che questa regola sia un test di significatività α :

"rifiuto
$$H_0$$
 se trovo $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

Allora, se x_1, \ldots, x_n sono le realizzazioni di X_1, \ldots, X_n , si definisce

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$

$$RC_{\alpha}$$
 RC_{α} $\alpha = 1\% = p$ -value

Se H_0 fosse vera, la probabilità di trovare questi dati sarebbe l'1%:

- o sono stato molto sfortunato

Definizione

Supponiamo che questa regola sia un test di significatività α :

"rifiuto
$$H_0$$
 se trovo $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

Allora, se x_1, \ldots, x_n sono le realizzazioni di X_1, \ldots, X_n , si definisce

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$

$$RC_{\alpha}$$
 RC_{α} $\alpha = 1\% = p$ -value

Se H_0 fosse vera, la probabilità di trovare questi dati sarebbe l'1%:

- o sono stato molto sfortunato
- o H₀ non è vera

Definizione

Supponiamo che questa regola sia un test di significatività α :

"rifiuto
$$H_0$$
 se trovo $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

Allora, se x_1, \ldots, x_n sono le realizzazioni di X_1, \ldots, X_n , si definisce

$$p$$
-value = min $\{\alpha \mid t(x_1, \dots, x_n) \in RC_\alpha\}$

$$RC_{\alpha}$$
 RC_{α} $\alpha = 1\% = p$ -value

Se H_0 fosse vera, la probabilità di trovare questi dati sarebbe l'1%:

- o sono stato molto sfortunato
- o H₀ non è vera

Definizione

Supponiamo che questa regola sia un test di significatività α :

"rifiuto
$$H_0$$
 se trovo $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

Allora, se x_1, \ldots, x_n sono le realizzazioni di X_1, \ldots, X_n , si definisce

$$p$$
-value = min{ $\alpha \mid t(x_1, ..., x_n) \in RC_{\alpha}$ }

$$RC_{\alpha}$$
 RC_{α} $\alpha = 1\% = p$ -value

Se H_0 fosse vera, la probabilità di trovare questi dati sarebbe l'1%

 \Rightarrow forte evidenza contro H_0

Definizione

Supponiamo che questa regola sia un test di significatività α :

"rifiuto
$$H_0$$
 se trovo $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

Allora, se x_1, \ldots, x_n sono le realizzazioni di X_1, \ldots, X_n , si definisce

$$p$$
-value = min $\{\alpha \mid t(x_1, \ldots, x_n) \in RC_\alpha\}$

p-value alto (>5%) \Rightarrow non rifiuto H_0 (conclusione debole)

Definizione

Supponiamo che questa regola sia un test di significatività α :

"rifiuto
$$H_0$$
 se trovo $t(X_1, \ldots, X_n) \in RC_{\alpha}$ "

Allora, se x_1, \ldots, x_n sono le realizzazioni di X_1, \ldots, X_n , si definisce

$$p$$
-value = min $\{\alpha \mid t(x_1, \ldots, x_n) \in RC_\alpha\}$

p-value alto (>5%) \Rightarrow non rifiuto H_0 (conclusione debole)

p-value basso ($\leq 5\%$) \Rightarrow accetto H_1 (conclusione forte)

	PRIMA dell'esperimento		DOPO l'esperimento	
variabili	$X_1 = (0.6 \% 2.9)$	\rightarrow	$x_1 = 1.2$	
aleatorie i.i.d.	$X_2 = (38)^2$	\rightarrow	$x_2 = 0.6$	realizzazioni (dati)
		\rightarrow	•••	
densità	$\left\{ X_i \sim f_{\theta} \right.$	\rightarrow	*	
	$\left\{ \begin{array}{c} \theta \in \mathbb{R} \\ \text{oppure } \theta \in \mathbb{R}^k \end{array} \right.$		• •	
stimatore	$\Big\{ \hat{\Theta} = h(X_1, X_2, \ldots)$	\rightarrow	$\hat{\theta} = h(1.2, 0.6, \ldots)$	} stima
	$ \left\{ \begin{array}{l} \mathbb{P} \big(\ell(X_1, X_2, \ldots) < \theta \\ < u(X_1, X_2, \ldots) \big) = \gamma \end{array} \right. $		ℓ (1.2, 0.6,) < θ < u (1.2, 0.6,)	} IC
significatività	$\left\{ \mathbb{P}_{H_0 \text{ vera}} \left(T_0 \in RC \right) \right.$	\rightarrow	?	

	PRIMA dell'esperimento		DOPO l'esperimento	
variabili	$X_1 = \begin{pmatrix} x_1 & x_2 & x_3 \\ x_4 & x_2 & x_3 \end{pmatrix}$	\rightarrow	$x_1 = 1.2$	
aleatorie i.i.d.	$X_2 = (x_0 + y_0)$	\rightarrow	$x_2 = 0.6$	realizzazioni (dati)
		\rightarrow	•••) (dati)
densità	$\left\{ X_i \sim f_{ heta} ight.$	\rightarrow	*	
	$\left\{ \begin{array}{c} \theta \in \mathbb{R} \\ \text{oppure } \theta \in \mathbb{R}^k \end{array} \right.$			
stimatore	$\left\{ \hat{\Theta} = h(X_1, X_2, \ldots) \right.$	\rightarrow	$\hat{\theta} = h(1.2, 0.6, \ldots)$	} stima
probabilità	$\begin{cases} \mathbb{P}(\ell(X_1, X_2, \ldots) < \theta \\ < u(X_1, X_2, \ldots)) = \gamma \end{cases}$	\rightarrow	ℓ (1.2, 0.6,) < θ < u (1.2, 0.6,)	} IC
significatività	$\left\{ \mathbb{P}_{H_0 \text{ vera}} (T_0 \in RC) \right\}$	\rightarrow	minimo α t.c. $t(1.2, 0.6, \ldots) \in RC_{\alpha}$	<i>p</i> -value

H ₁	rifiuto <i>H</i> ₀ se	<i>p</i> -value
$\mu > \mu_0$	$Z_0 > Z_{1-\alpha}$	
$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$	
$\mu \neq \mu_0$	$ Z_0 >Z_{1-\frac{\alpha}{2}}$	

 $z_0 = \text{realizzazione di } Z_0 \text{ dopo l'esperimento}$

H ₁	rifiuto H ₀ se	<i>p</i> -value
$\mu > \mu_0$	$Z_0 > z_{1-\alpha}$	$z_0 \equiv z_{1-\alpha}$
$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$	
$\mu \neq \mu_0$	$ Z_0 >z_{1-\frac{\alpha}{2}}$	

 z_0 = realizzazione di Z_0 dopo l'esperimento

H ₁	rifiuto H ₀ se	<i>p</i> -value
$\mu > \mu_0$	$Z_0 > z_{1-\alpha}$	$z_0 \equiv z_{1-lpha} \ \Leftrightarrow \Phi(z_0) \equiv \Phi(z_{1-lpha})$
$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$	
$\mu \neq \mu_0$	$ Z_0 > z_{1-\frac{\alpha}{2}}$	

 z_0 = realizzazione di Z_0 dopo l'esperimento

H ₁	rifiuto <i>H</i> ₀ se	<i>p</i> -value
$\mu > \mu_0$	$Z_0 > z_{1-\alpha}$	$z_0 \equiv z_{1-\alpha}$ $\Leftrightarrow \Phi(z_0) \equiv \Phi(z_{1-\alpha}) = 1 - \alpha$
$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$	
$\mu \neq \mu_0$	$ Z_0 >Z_{1-\frac{\alpha}{2}}$	

 z_0 = realizzazione di Z_0 dopo l'esperimento

H ₁	rifiuto H_0 se	<i>p</i> -value
$\mu > \mu_0$	$Z_0 > Z_{1-\alpha}$	$z_0 \equiv z_{1-\alpha}$ $\Leftrightarrow \Phi(z_0) \equiv \Phi(z_{1-\alpha}) = 1 - \alpha$ $\Leftrightarrow \alpha = 1 - \Phi(z_0)$
$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$	
$\mu \neq \mu_0$	$ Z_0 >Z_{1-\frac{\alpha}{2}}$	

H ₁	rifiuto H ₀ se	<i>p</i> -value
$\mu > \mu_0$	$Z_0 > z_{1-\alpha}$	$z_0 \equiv z_{1-\alpha}$ $\Leftrightarrow \Phi(z_0) \equiv \Phi(z_{1-\alpha}) = 1 - \alpha$ $\Leftrightarrow \alpha = 1 - \Phi(z_0)$
$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$	
$\mu \neq \mu_0$	$ Z_0 >z_{1-\frac{\alpha}{2}}$	

H ₁	rifiuto H ₀ se	<i>p</i> -value
$\mu > \mu_0$	$Z_0 > z_{1-\alpha}$	p -value $= 1 - \Phi(z_0)$
$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$	
$\mu \neq \mu_0$	$ Z_0 >Z_{1-\frac{\alpha}{2}}$	

 z_0 = realizzazione di Z_0 dopo l'esperimento

H ₁	rifiuto <i>H</i> ₀ se	<i>p</i> -value
$\mu > \mu_0$	$Z_0 > Z_{1-\alpha}$	p -value $= 1 - \Phi(z_0)$
$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$	$z_0 \equiv -z_{1-\alpha}$
$\mu \neq \mu_0$	$ Z_0 >z_{1-\frac{\alpha}{2}}$	

H ₁	rifiuto <i>H</i> ₀ se	<i>p</i> -value
$\mu > \mu_0$	$Z_0 > Z_{1-\alpha}$	p -value $= 1 - \Phi(z_0)$
$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$	$z_0 \equiv -z_{1-\alpha}$ $\Leftrightarrow \Phi(z_0) \equiv \Phi(-z_{1-\alpha})$
$\mu \neq \mu_0$	$ Z_0 >z_{1-\frac{\alpha}{2}}$	

 z_0 = realizzazione di Z_0 dopo l'esperimento

H ₁	rifiuto <i>H</i> ₀ se	<i>p</i> -value
$\mu > \mu_0$	$Z_0 > Z_{1-\alpha}$	p -value = 1 $-\Phi(z_0)$
$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$	$z_0 \equiv -z_{1-\alpha}$ $\Leftrightarrow \Phi(z_0) \equiv \Phi(-z_{1-\alpha}) = \Phi(z_{\alpha})$
$\mu \neq \mu_0$	$ Z_0 >Z_{1-\frac{\alpha}{2}}$	

H ₁	rifiuto <i>H</i> ₀ se	<i>p</i> -value
$\mu > \mu_0$	$Z_0 > Z_{1-\alpha}$	p -value = 1 $-\Phi(z_0)$
$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$	$z_0 \equiv -z_{1-\alpha}$ $\Leftrightarrow \Phi(z_0) \equiv \Phi(-z_{1-\alpha}) = \Phi(z_{\alpha})$ $= \alpha$
$\mu \neq \mu_0$	$ Z_0 >z_{1-\frac{\alpha}{2}}$	

H ₁	rifiuto <i>H</i> ₀ se	<i>p</i> -value
$\mu > \mu_0$	$Z_0 > Z_{1-\alpha}$	p -value = 1 $-\Phi(z_0)$
$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$	$z_0 \equiv -z_{1-\alpha}$ $\Leftrightarrow \Phi(z_0) \equiv \Phi(-z_{1-\alpha}) = \Phi(z_{\alpha})$ $= \alpha$
$\mu \neq \mu_0$	$ Z_0 >z_{1-\frac{\alpha}{2}}$	

H ₁	rifiuto <i>H</i> ₀ se	<i>p</i> -value
$\mu > \mu_0$	$Z_0 > z_{1-\alpha}$	p -value $= 1 - \Phi(z_0)$
$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$	$p ext{-value} = \Phi(z_0)$
$\mu \neq \mu_0$	$ Z_0 >z_{1-\frac{\alpha}{2}}$	

 z_0 = realizzazione di Z_0 dopo l'esperimento

H ₁	rifiuto <i>H</i> ₀ se	<i>p</i> -value
$\mu > \mu_0$	$Z_0 > z_{1-\alpha}$	p -value = 1 $-\Phi(z_0)$
$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$	p -value $=\Phi(z_0)$
$\mu \neq \mu_0$	$ Z_0 > z_{1-\frac{\alpha}{2}}$	$ z_0 \equiv z_{1-\frac{\alpha}{2}}$

 z_0 = realizzazione di Z_0 dopo l'esperimento

H ₁	rifiuto <i>H</i> ₀ se	<i>p</i> -value
$\mu > \mu_0$	$Z_0 > z_{1-\alpha}$	p -value $= 1 - \Phi(z_0)$
$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$	$p ext{-value} = \Phi(z_0)$
$\mu \neq \mu_0$	$ Z_0 > z_{1-\frac{\alpha}{2}}$	$ z_0 \equiv z_{1-\frac{\alpha}{2}}$ $\Leftrightarrow \Phi(z_0) \equiv \Phi(z_{1-\frac{\alpha}{2}})$

H ₁	rifiuto H ₀ se	<i>p</i> -value	
$\mu > \mu_0$	$Z_0 > z_{1-\alpha}$	p -value = 1 $-\Phi(z_0)$	
$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$	$p ext{-value} = \Phi(z_0)$	
$\mu \neq \mu_0$	$ Z_0 >z_{1-\frac{\alpha}{2}}$	$ z_0 \equiv z_{1-\frac{\alpha}{2}}$ $\Leftrightarrow \Phi(z_0) \equiv \Phi(z_{1-\frac{\alpha}{2}}) = 1 - \frac{\alpha}{2}$	

 z_0 = realizzazione di Z_0 dopo l'esperimento

H ₁	rifiuto H ₀ se	<i>p</i> -value	
$\mu > \mu_0$	$Z_0 > z_{1-\alpha}$	p -value $= 1 - \Phi(z_0)$	
$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$	p -value = $\Phi(z_0)$	
$\mu \neq \mu_0$	$ Z_0 >z_{1-\frac{\alpha}{2}}$	$ z_0 \equiv z_{1-\frac{\alpha}{2}}$ $\Leftrightarrow \Phi(z_0) \equiv \Phi(z_{1-\frac{\alpha}{2}}) = 1 - \frac{\alpha}{2}$ $\Leftrightarrow \alpha = 2 \left[1 - \Phi(z_0)\right]$	

 z_0 = realizzazione di Z_0 dopo l'esperimento

H ₁	rifiuto H_0 se	<i>p</i> -value	
$\mu > \mu_0$	$Z_0 > Z_{1-\alpha}$	p -value $= 1 - \Phi(z_0)$	
$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$	p -value $=\Phi(z_0)$	
$\mu \neq \mu_0$	$ Z_0 >z_{1-\frac{\alpha}{2}}$	$ z_0 \equiv z_{1-\frac{\alpha}{2}}$ $\Leftrightarrow \Phi(z_0) \equiv \Phi(z_{1-\frac{\alpha}{2}}) = 1 - \frac{\alpha}{2}$ $\Leftrightarrow \alpha = 2 \left[1 - \Phi(z_0)\right]$	

 z_0 = realizzazione di Z_0 dopo l'esperimento

H ₁	rifiuto <i>H</i> ₀ se	<i>p</i> -value	
$\mu > \mu_0$	$Z_0 > Z_{1-\alpha}$	p -value $= 1 - \Phi(z_0)$	
$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$	$p ext{-value} = \Phi(z_0)$	
$\mu \neq \mu_0$	$ Z_0 >z_{1-\frac{\alpha}{2}}$	p -value = 2 [1 $-\Phi(z_0)$]	

 z_0 = realizzazione di Z_0 dopo l'esperimento

...

 H_0 : i neutrini rispettano la relatività $\Leftrightarrow \mu = 3 \cdot 10^8 \, \mathrm{m/s}$

 H_1 : i neutrini violano la relatività $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$

$$Z_0 := \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha}$$

...

 H_0 : i neutrini rispettano la relatività $\Leftrightarrow \mu = 3 \cdot 10^8 \,\mathrm{m/s} =: \mu_0$

 H_1 : i neutrini violano la relatività $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$

$$Z_0 := \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha}$$

...

 H_0 : i neutrini rispettano la relatività $\Leftrightarrow \mu = 3 \cdot 10^8 \text{ m/s} =: \mu_0$

 H_1 : i neutrini violano la relatività $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$

$$Z_0 := \frac{\overline{X} - 3 \cdot 10^8}{\sigma} \sqrt{n} > z_{1-\alpha}$$

...

$$H_0$$
: i neutrini rispettano la relatività $\Leftrightarrow \mu = 3 \cdot 10^8 \, \mathrm{m/s} =: \mu_0$

 H_1 : i neutrini violano la relatività $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$

$$Z_0 := \underbrace{\frac{\overline{X} - 3 \cdot 10^8}{0.4 \cdot 10^8}} \sqrt{n} > z_{1-\alpha}$$

$$\sigma = 0.4 \cdot 10^8 \text{ nota}$$

...

 H_0 : i neutrini rispettano la relatività $\Leftrightarrow \mu = 3 \cdot 10^8 \, \mathrm{m/s} =: \mu_0$

 H_1 : i neutrini violano la relatività $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$

$$Z_0 := \frac{\overline{X} - 3 \cdot 10^8}{0.4 \cdot 10^8} \stackrel{\boxed{5}}{\longrightarrow} Z_{1-\alpha}$$

$$n = 5$$

...

$$H_0$$
: i neutrini rispettano la relatività $\Leftrightarrow \mu = 3 \cdot 10^8 \, \mathrm{m/s} =: \mu_0$

 H_1 : i neutrini violano la relatività $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$

$$Z_0 := \frac{\overline{X} - 3 \cdot 10^8}{0.4 \cdot 10^8} \sqrt{5} > z_{1-\alpha}$$
 significatività = 5%

...

$$H_0$$
: i neutrini rispettano la relatività $\Leftrightarrow \mu = 3 \cdot 10^8 \, \mathrm{m/s} =: \mu_0$

 H_1 : i neutrini violano la relatività $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$

$$Z_0 := \frac{\overline{X} - 3 \cdot 10^8}{0.4 \cdot 10^8} \sqrt{5} >$$
 significatività = 5%

...

$$H_0$$
: i neutrini rispettano la relatività $\Leftrightarrow \mu = 3 \cdot 10^8 \, \mathrm{m/s} =: \mu_0$

 H_1 : i neutrini violano la relatività $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$

$$Z_0 := \frac{\overline{X} - 3 \cdot 10^8}{0.4 \cdot 10^8} \sqrt{5} > 1.645 \longleftrightarrow \text{ significatività} = 5\%$$

$$H_0$$
: i neutrini rispettano la relatività $\Leftrightarrow \mu = 3 \cdot 10^8 \, \mathrm{m/s} =: \mu_0$

 H_1 : i neutrini violano la relatività $\Leftrightarrow \mu > 3 \cdot 10^8 \,\mathrm{m/s}$

rifiuto H_0 (\Leftrightarrow rigetto la teoria della relatività) se trovo REGOLA:

$$Z_0 := \frac{\overline{X} - 3 \cdot 10^8}{0.4 \cdot 10^8} \sqrt{5} > 1.645$$
 significatività = 5%

 $x_1 = 3.4$ $x_2 = 3.3$ $x_3 = 2.7$ Dopo le misure:

$$x_4 = 3.3$$
 $x_5 = 2.9$ $(... \cdot 10^8)$

...

$$H_0$$
: i neutrini rispettano la relatività $\Leftrightarrow \mu = 3 \cdot 10^8 \, \mathrm{m/s} =: \mu_0$

 H_1 : i neutrini violano la relatività $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$

$$Z_0 := \frac{\overline{X} - 3 \cdot 10^8}{0.4 \cdot 10^8} \sqrt{5} > 1.645$$
 significatività = 5%

$$x_1 = 3.4$$
 $x_2 = 3.3$ $x_3 = 2.7$
 $x_4 = 3.3$ $x_5 = 2.9$ $(\dots \cdot 10^8)$ $\Rightarrow z_0 = 0.671$

...

$$H_0$$
: i neutrini rispettano la relatività $\Leftrightarrow \mu = 3 \cdot 10^8 \, \text{m/s} =: \mu_0$

 H_1 : i neutrini violano la relatività $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$

REGOLA: rifiuto H_0 (\Leftrightarrow rigetto la teoria della relatività) se trovo

$$Z_0 := \frac{\overline{X} - 3 \cdot 10^8}{0.4 \cdot 10^8} \sqrt{5} > 1.645$$
 significatività = 5%

Dopo le misure:
$$x_1 = 3.4 \quad x_2 = 3.3 \quad x_3 = 2.7$$
 $\Rightarrow z_0 = 0.671$

 $z_0 > 1.645 \Rightarrow \text{non posso rifiutare } H_0 \text{ al } 5\%$

...

$$H_0$$
: i neutrini rispettano la relatività $\Leftrightarrow \mu = 3 \cdot 10^8 \, \mathrm{m/s} =: \mu_0$

 H_1 : i neutrini violano la relatività $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$

$$Z_0 := \frac{\overline{X} - 3 \cdot 10^8}{0.4 \cdot 10^8} \sqrt{5} > 1.645$$
 significatività = 5%

$$z_0 \geqslant 1.645 \Rightarrow \text{non posso rifiutare } H_0 \text{ al } 5\%$$

 $p\text{-value} = 1 - \Phi(z_0)$

$$H_0$$
: i neutrini rispettano la relatività $\Leftrightarrow \mu = 3 \cdot 10^8 \, \mathrm{m/s} =: \mu_0$

 H_1 : i neutrini violano la relatività $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$

$$Z_0 := \frac{\overline{X} - 3 \cdot 10^8}{0.4 \cdot 10^8} \sqrt{5} > 1.645$$
 significatività = 5%

$$z_0 > 1.645 \Rightarrow \text{non posso riflutare } H_0 \text{ al } 5\%$$

$$p$$
-value = $1 - \Phi(z_0) = 1 - \Phi(0.671) = 25.1%$

$$H_0$$
: i neutrini rispettano la relatività $\Leftrightarrow \mu = 3 \cdot 10^8 \,\mathrm{m/s} =: \mu_0$

 H_1 : i neutrini violano la relatività $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$

$$Z_0 := \frac{\overline{X} - 3 \cdot 10^8}{0.4 \cdot 10^8} \sqrt{5} > 1.645$$
 significatività = 5%

$$z_0 \geqslant 1.645 \quad \Rightarrow \quad \text{non posso rifiutare } H_0 \quad \text{al } 5\%$$

$$p$$
-value = 1 - $\Phi(z_0)$ = 1 - $\Phi(0.671)$ = 25.1% \Rightarrow nessuna evidenza contro H_0

Z-test per il valore atteso di un campione normale

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\mu_0 \in \mathbb{R}$ fissato

TESI: Posto $Z_0 := \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}$, questi sono test di significatività α :

H ₀	H ₁	rifiuto H_0 se	se H_0 è vera, $Z_0 \sim \dots$
$\mu = \mu_0$	$\mu > \mu_0$	$Z_0 > Z_{1-\alpha}$	$\sum_{z_{1-\alpha}}$
$\mu = \mu_0$	$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$	$-Z_{1-\alpha}$
$\mu = \mu_0$	$\mu \neq \mu_0$	$ Z_0 > z_{1-\frac{\alpha}{2}}$	$\begin{array}{c c} & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \end{array}$

Z-test per il valore atteso di un campione normale

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2), \qquad \mu_0 \in \mathbb{R}$ fissato

TESI: Posto

 H_0 determina univocamente \mathbb{P} (ipotesi semplice)

H ₀	H ₁	rifiuto <i>H</i> ₀ se	se H_0 è vera, $Z_0 \sim \dots$
$\boxed{\mu = \mu_0}$	$\mu > \mu_0$	$Z_0 > Z_{1-\alpha}$	$\sum_{z_{1-\alpha}}$
$\boxed{\mu = \mu_0}$	$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$	$-Z_{1-\alpha}$
$\boxed{\mu = \mu_0}$	$\mu \neq \mu_0$	$ Z_0 > z_{1-\frac{\alpha}{2}}$	$\begin{array}{c c} & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \end{array}$

nificatività α :

Z-test per il valore atteso di un campione normale

IPOTESI: X_1, \dots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2), \quad \mu_0 \in \mathbb{R}$ fissato

TESI: Posto

Ma se non la determinasse? (ipotesi composta)

H ₀	H ₁	rifiuto H_0 se	se H_0 è vera, $Z_0 \sim \dots$
$\boxed{\qquad \qquad \mu \leq \mu_0}$	$\mu > \mu_0$	$Z_0 > Z_{1-\alpha}$	$\sum_{z_{1-\alpha}}$
$\boxed{\mu \geq \mu_0}$	$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$	$-Z_{1-\alpha}$
$\mu = \mu_0$	$\mu \neq \mu_0$	$ Z_0 > z_{1-\frac{\alpha}{2}}$	$\begin{array}{c c} & & \\ \hline \end{array}$

nificatività α :

Ipotesi nulla composta

SIGNIFICATIVITÀ (con H_0 composta)

:= massima probabilità di errore di I tipo

Ipotesi nulla composta

```
SIGNIFICATIVITÀ (con H_0 composta)
```

```
:= massima probabilità di errore di I tipo =\max_{H_0 \text{ vera}} \mathbb{P} \big( \text{"rifiuterò } H_0 \text{"} \big)
```

Ipotesi nulla composta

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con
$$H_0$$
 composta) = $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})$

ESEMPIO: nello Z-test con

$$H_0: \mu \leq \mu_0$$
 vs. $H_1: \mu > \mu_0$ "rifiuto H_0 se $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\sqrt{n}>z_{1-lpha}$ "

SIGNIFICATIVITÀ = ???

$$\begin{array}{ll} \text{SIGNIFICATIVIT\`A} & := & \text{massima probabilit\`a di errore di I tipo} \\ (\text{con } H_0 \text{ composta}) & = & \max_{H_0 \text{ vera}} \mathbb{P}\big(\text{``rifiuter\'o } H_0\text{''}\big) \end{array}$$

$$\begin{aligned} H_0: \mu \leq \mu_0 \quad \text{vs.} \quad & H_1: \mu > \mu_0 \\ \text{"rifiuto } & H_0 \text{ se } Z_0:= \frac{\overline{X} - \mu_0}{\sigma} \, \sqrt{n} > z_{1-\alpha} \, \text{"} \\ \text{SIGNIFICATIVITÀ} & = \max_{\mu \leq \mu_0} \, \mathbb{P}_{\mu} \bigg(\frac{\overline{X} - \mu_0}{\sigma} \, \sqrt{n} > z_{1-\alpha} \bigg) \end{aligned}$$

$$\begin{aligned} & \text{SIGNIFICATIVITA} &:= & \text{massima probabilità di errore di I tipo} \\ & (\text{con } H_0 \text{ composta}) &= & \underset{H_0 \text{ vera}}{\text{max}} \, \mathbb{P}\big(\text{"rifiuterò } H_0 \text{"}\big) \\ & = & \underset{H_0 \text{ vera}}{\text{max}} \, \mathbb{P}\big(\text{"rifiuterò } H_0 \text{"}\big) \\ & \text{ESEMPIO: nello } Z\text{-test con} \\ & & H_0 : \mu \leq \mu_0 \quad \text{vs.} \quad H_1 : \mu > \mu_0 \\ & \text{"rifiuto} \quad H_0 \text{ se } Z_0 := & \overline{X} - \mu_0 \\ & \sigma & \sqrt{n} > z_{1-\alpha} \text{"} \end{aligned}$$

$$& \text{SIGNIFICATIVITÀ} \quad = & \underset{\mu \leq \mu_0}{\text{max}} \, \mathbb{P}_{\mu} \left(\overline{X} - \mu_0 \\ \sigma & \sqrt{n} > z_{1-\alpha} \right) \end{aligned}$$

quella di $X_i \sim N(\mu, \sigma^2)$

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con
$$H_0$$
 composta) = $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})$

ESEMPIO: nello Z -test con
$$H_0: \mu \leq \mu_0 \qquad \text{vs.} \qquad H_1: \mu > \mu_0$$
"rifiuto H_0 se $Z_0:=\frac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha}$ "

SIGNIFICATIVITÀ = $\max_{\mu \leq \mu_0} \mathbb{P}_{\mu}\left(\frac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha}\right)$ quella di Z_0

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con
$$H_0$$
 composta) = $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})$

ESEMPIO: nello Z-test con

$$H_0: \mu \leq \mu_0 \qquad \text{vs.} \qquad H_1: \mu > \mu_0$$
 "rifiuto H_0 se $Z_0:=\frac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha}$ " SIGNIFICATIVITÀ $=\max_{\mu \leq \mu_0} \mathbb{P}_{\mu}\left(\frac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha}\right)$

non sono la stessa cosa

 $\Rightarrow \overline{X}$ va ancora standardizzata

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con
$$H_0$$
 composta) = $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})$

$$\begin{aligned} \textit{ESEMPIO:} & \text{ nello Z-test con} \\ H_0: \mu \leq \mu_0 & \text{ vs. } & H_1: \mu > \mu_0 \\ & \text{``rifiuto } & H_0 \text{ se } Z_0 := \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \text{'`} \\ \\ \textit{SIGNIFICATIVIT\`A} & = \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg(\frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \bigg) \\ & = \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg(\frac{\overline{X} - \mu}{\sigma} \sqrt{n} + \frac{\mu - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \bigg) \end{aligned}$$

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con
$$H_0$$
 composta) = $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0 \text{"})$

$$\begin{aligned} \textbf{ESEMPIO:} & \text{ nello Z-test con} \\ & H_0: \mu \leq \mu_0 \quad \text{ vs.} \quad H_1: \mu > \mu_0 \\ & \text{``rifiuto } H_0 \text{ se } Z_0 := \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \text{'`} \\ & \text{SIGNIFICATIVIT\`A} &= \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg(\frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \bigg) \\ &= \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg(\frac{\overline{X} - \mu}{\sigma} \sqrt{n} > z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \sqrt{n} \bigg) \end{aligned}$$

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con
$$H_0$$
 composta) = $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})$

$$H_0: \mu \leq \mu_0 \quad \text{vs.} \quad H_1: \mu > \mu_0$$
 "rifiuto H_0 se $Z_0:=\dfrac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha}$ "
$$\text{SIGNIFICATIVITÀ} \quad = \max_{\mu \leq \mu_0} \ \mathbb{P}_{\mu}\bigg(\dfrac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha}\bigg)$$

$$= \max_{\mu \leq \mu_0} \mathbb{P}_{\mu}\bigg(\dfrac{\overline{X}-\mu}{\sigma}\sqrt{n} > z_{1-\alpha}-\dfrac{\mu-\mu_0}{\sigma}\sqrt{n}\bigg)$$

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con
$$H_0$$
 composta) = $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})$

$$\begin{split} H_0: \mu &\leq \mu_0 \quad \text{ vs. } \quad H_1: \mu > \mu_0 \\ \text{"rifiuto } H_0 \text{ se } Z_0:= \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \text{"} \\ \text{SIGNIFICATIVITÀ} &= \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg(\frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \bigg) \\ &= \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg(\underbrace{\frac{\overline{X} - \mu}{\sigma} \sqrt{n}}_{\sim N(0,1)} > z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \sqrt{n} \bigg) \\ &= \max_{\mu \leq \mu_0} \bigg[1 - \Phi \bigg(z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \sqrt{n} \bigg) \bigg] \end{split}$$

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con
$$H_0$$
 composta) = $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})$

$$\begin{aligned} H_0: \mu &\leq \mu_0 \quad \text{ vs. } \quad H_1: \mu > \mu_0 \\ \text{"rifiuto } \quad H_0 \text{ se } \quad Z_0: &= \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \text{"} \\ \text{SIGNIFICATIVITÀ} \quad &= \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg(\frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \bigg) \\ &= \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg(\underbrace{\frac{\overline{X} - \mu}{\sigma} \sqrt{n}}_{\sim N(0,1)} > z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \sqrt{n} \bigg) \\ &= \max_{\mu \leq \mu_0} \, \bigg[1 - \Phi \bigg(z_{1-\alpha} - \underbrace{\frac{\mu - \mu_0}{\sigma} \sqrt{n}}_{\text{crescente in } \mu} \bigg) \bigg] \end{aligned}$$

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con
$$H_0$$
 composta) = $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})$

$$\begin{split} H_0: \mu & \leq \mu_0 \quad \text{ vs. } \quad H_1: \mu > \mu_0 \\ \text{"rifiuto } H_0 \text{ se } Z_0: = \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \text{"} \\ \text{SIGNIFICATIVITÀ} & = \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg(\frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \bigg) \\ & = \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg(\underbrace{\frac{\overline{X} - \mu}{\sigma} \sqrt{n}}_{\sim N(0,1)} > z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \sqrt{n} \bigg) \\ & = \max_{\mu \leq \mu_0} \, \bigg[1 - \Phi \bigg(\underbrace{z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \sqrt{n}}_{\text{decrescente in } \mu} \bigg) \bigg] \end{split}$$

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con
$$H_0$$
 composta) = $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})$

ESEMPIO: nello Z-test con

$$H_0: \mu \leq \mu_0 \quad \text{vs.} \quad H_1: \mu > \mu_0$$
 "rifiuto H_0 se $Z_0:=\frac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha}$ "
$$\text{SIGNIFICATIVITÀ} \quad = \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg(\frac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha} \bigg)$$

$$= \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg(\frac{\overline{X}-\mu}{\sigma}\sqrt{n} > z_{1-\alpha} - \frac{\mu-\mu_0}{\sigma}\sqrt{n} \bigg)$$

$$= \max_{\mu \leq \mu_0} \bigg[1 - \Phi \bigg(z_{1-\alpha} - \frac{\mu-\mu_0}{\sigma}\sqrt{n} \bigg) \bigg]$$

decrescente in μ

9/18

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con
$$H_0$$
 composta) = $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})$

$$H_0: \mu \leq \mu_0 \quad \text{vs.} \quad H_1: \mu > \mu_0$$
 "rifiuto H_0 se $Z_0:=\frac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha}$ "
$$\text{SIGNIFICATIVITÀ} \quad = \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg(\frac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha} \bigg)$$

$$= \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg(\frac{\overline{X}-\mu}{\sigma}\sqrt{n} > z_{1-\alpha} - \frac{\mu-\mu_0}{\sigma}\sqrt{n} \bigg)$$

$$= \max_{\mu \leq \mu_0} \bigg[1 - \Phi \bigg(z_{1-\alpha} - \frac{\mu-\mu_0}{\sigma}\sqrt{n} \bigg) \bigg]$$
 crescente in μ

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con
$$H_0$$
 composta) = $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})$

ESEMPIO: nello Z-test con

$$H_0: \mu \leq \mu_0 \quad \text{vs.} \quad H_1: \mu > \mu_0$$
 "rifiuto H_0 se $Z_0:=\dfrac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha}$ "
$$\text{SIGNIFICATIVIT\`A} \quad = \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg(\dfrac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha}\bigg)$$

$$= \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg(\dfrac{\overline{X}-\mu}{\sigma}\sqrt{n} > z_{1-\alpha} - \dfrac{\mu-\mu_0}{\sigma}\sqrt{n}\bigg)$$

$$= \max_{\mu \le \mu_0} \left[1 - \Phi \left(z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \sqrt{n} \right) \right] \quad \text{il max è preso in } \mu = \mu_0$$

 $\sim N(0.1)$

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con
$$H_0$$
 composta) = $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})$

$$\begin{split} H_0: \mu &\leq \mu_0 \quad \text{ vs. } \quad H_1: \mu > \mu_0 \\ \text{"rifiuto } H_0 \text{ se } Z_0:= \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \text{"} \\ \text{SIGNIFICATIVITÀ } &= \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg(\frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \bigg) \\ &= \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg(\underbrace{\frac{\overline{X} - \mu}{\sigma} \sqrt{n}}_{\sim N(0,1)} > z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \sqrt{n} \bigg) \\ &= \max_{\mu \leq \mu_0} \bigg[1 - \Phi \bigg(z_{1-\alpha} - \frac{\mu_0 - \mu_0}{\sigma} \sqrt{n} \bigg) \bigg] \end{split}$$

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con
$$H_0$$
 composta) = $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0 \text{"})$

$$\begin{aligned} H_0: \mu &\leq \mu_0 \quad \text{ vs.} \quad H_1: \mu > \mu_0 \\ \text{"rifiuto } H_0 \text{ se } Z_0:= \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \text{"} \\ \text{SIGNIFICATIVITÀ} &= \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg(\frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \bigg) \\ &= \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg(\underbrace{\frac{\overline{X} - \mu}{\sigma} \sqrt{n}}_{\sim N(0,1)} > z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \sqrt{n} \bigg) \\ &= \max_{\mu \leq \mu_0} \bigg[1 - \Phi \bigg(z_{1-\alpha} - \frac{\mu_0 - \mu_0}{\sigma} \sqrt{n} \bigg) \bigg] = 1 - \Phi(z_{1-\alpha}) \end{aligned}$$

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con
$$H_0$$
 composta) = $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})$

$$\begin{aligned} & \text{ESEMPIO: nello Z-test con} \\ & H_0: \mu \leq \mu_0 \quad \text{vs.} \quad H_1: \mu > \mu_0 \\ & \text{"rifiuto } H_0 \text{ se } Z_0 := \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \text{"} \end{aligned} \\ & \text{SIGNIFICATIVITÀ} \quad = \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg(\frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \bigg) \\ & = \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg(\frac{\overline{X} - \mu}{\sigma} \sqrt{n} > z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \sqrt{n} \bigg) \\ & = \max_{\mu \leq \mu_0} \, \bigg[1 - \Phi \bigg(z_{1-\alpha} - \frac{\mu_0 - \mu_0}{\sigma} \sqrt{n} \bigg) \bigg] = 1 - \Phi(z_{1-\alpha}) = \alpha \end{aligned}$$

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con
$$H_0$$
 composta) = $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})$

ESEMPIO: nello Z-test con
$$H_0: \mu \leq \mu_0 \quad \text{vs.} \quad H_1: \mu > \mu_0$$
 "rifiuto H_0 se $Z_0:=\frac{\overline{X}-\mu_0}{\sigma}\sqrt{n} > z_{1-\alpha}$ "
$$\text{SIGNIFICATIVITÀ} \quad = \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg(\frac{\overline{X}-\mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \bigg)$$

$$= \max_{\mu \leq \mu_0} \, \mathbb{P}_\mu \bigg(\frac{\overline{X}-\mu}{\sigma} \sqrt{n} > z_{1-\alpha} - \frac{\mu-\mu_0}{\sigma} \sqrt{n} \bigg)$$

$$= \max_{\mu \leq \mu_0} \left[1 - \Phi \bigg(z_{1-\alpha} - \frac{\mu_0-\mu_0}{\sigma} \sqrt{n} \bigg) \right] = 1 - \Phi(z_{1-\alpha}) = \alpha$$

SIGNIFICATIVITÀ := massima probabilità di errore di I tipo (con
$$H_0$$
 composta) = $\max_{H_0 \text{ vera}} \mathbb{P}(\text{"rifiuterò } H_0\text{"})$

ESEMPIO: nello Z-test con

$$H_0: \mu \leq \mu_0 \qquad ext{vs.} \qquad H_1: \mu > \mu_0$$
 "rifiuto H_0 se $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\,\sqrt{n}\,>\,z_{1-lpha}$ "

SIGNIFICATIVITÀ $= \alpha \Rightarrow \text{tutto come prima}$

Z-test per il valore atteso di un campione normale

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\mu_0 \in \mathbb{R}$ fissato

TESI: Posto $Z_0 := \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}$, questi sono test di significatività α :

H ₀	H ₁	rifiuto H_0 se	se $\mu=\mu_0, \ Z_0\sim\dots$
$\mu = \mu_0$ oppure $\mu \le \mu_0$	$\mu > \mu_0$	$Z_0 > z_{1-\alpha}$	$\sum_{z_{1-\alpha}}$
$\mu = \mu_0$ oppure $\mu \ge \mu_0$	$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$	$-Z_{1-\alpha}$
$\mu = \mu_0$	$\mu \neq \mu_0$	$ Z_0 > z_{1-\frac{\alpha}{2}}$	$\begin{array}{c c} & & \\ \hline \end{array}$

	H ₀ vera	H_0 falsa
accetto H ₀	OK!	
rifiuto H ₀	errore di I tipo	OK!

ERRORE DI I TIPO = errore molto più grave SIGNIFICATIVITÀ = probabilità di errore di I tipo

	H ₀ vera	H_0 falsa
accetto H ₀	OK!	errore di II tipo
rifiuto <i>H</i> ₀	errore di I tipo	OK!

ERRORE DI I TIPO = errore molto più grave SIGNIFICATIVITÀ = probabilità di errore di I tipo ERRORE DI II TIPO = errore meno grave

	H ₀ vera	H_0 falsa
accetto H ₀	OK!	errore di II tipo
rifiuto H ₀	errore di I tipo	OK!

ERRORE DI I TIPO = errore molto più grave

SIGNIFICATIVITÀ = probabilità di errore di I tipo

ERRORE DI II TIPO = errore meno grave

 \Rightarrow tollero anche una grossa probabilità di commetterlo

	H ₀ vera	H_0 falsa
accetto H ₀	OK!	errore di II tipo
rifiuto H ₀	errore di I tipo	OK!

ERRORE DI I TIPO = errore molto più grave

SIGNIFICATIVITÀ = probabilità di errore di I tipo

ERRORE DI II TIPO = errore meno grave

⇒ tollero anche una grossa probabilità di commetterlo

POTENZA = probabilità di non commettere errore di II tipo

	H ₀ vera	H_0 falsa
accetto H ₀	OK!	errore di II tipo
rifiuto H ₀	errore di I tipo	OK!

ERRORE DI I TIPO = errore molto più grave

SIGNIFICATIVITÀ = probabilità di errore di I tipo

ERRORE DI II TIPO = errore meno grave

⇒ tollero anche una grossa probabilità di commetterlo

POTENZA = probabilità di non commettere errore di II tipo =
$$\mathbb{P}_{H_0 \text{ falsa}}(\text{"rifiuterò } H_0\text{"})$$

	H ₀ vera	H_0 falsa
accetto H ₀	OK!	errore di II tipo
rifiuto H ₀	errore di I tipo	OK!

ERRORE DI I TIPO = errore molto più grave

SIGNIFICATIVITÀ = probabilità di errore di I tipo

ERRORE DI II TIPO = errore meno grave

⇒ tollero anche una grossa probabilità di commetterlo

POTENZA = probabilità di <u>non</u> commettere errore di II tipo

$$= \mathbb{P}_{H_0 \text{ falsa}}(\text{"rifiuterò } H_0\text{"})$$
 può essere molto piccola

Esempio: l'amico è un baro?

ESEMPIO: Un amico propone di puntare testa con una sua moneta

$$X_i = egin{cases} 1 & ext{ se esce testa all'} i - ext{esimo lancio} \\ 0 & ext{ altrimenti} \end{cases}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim B(1, q)$

 H_0 : l'amico è onesto $\Leftrightarrow q = 1/2$

 H_1 : l'amico è un baro $\Leftrightarrow q < 1/2$

REGOLA: rifiuto H_0 (\Leftrightarrow accuso l'amico) se trovo

$$Y := X_1 + X_2 + \ldots + X_{10} \le 1$$

ERRORE DI I TIPO = accusare l'amico quando in realtà è onesto

ERRORE DI II TIPO = non accusare l'amico quando in realtà bara

Esempio: l'amico è un baro?

ESEMPIO: Un amico propone di puntare testa con una sua moneta

$$X_i = egin{cases} 1 & ext{ se esce testa all'} i ext{-esimo lancio} \ 0 & ext{altrimenti} \end{cases}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim B(1, q)$

 H_0 : l'amico è onesto $\Leftrightarrow q = 1/2$

 H_1 : l'amico è un baro $\Leftrightarrow q < 1/2$

REGOLA: rifiuto H_0 (\Leftrightarrow accuso l'amico) se trovo

$$Y := X_1 + X_2 + \ldots + X_{10} \le 1$$

ERRORE DI I TIPO = accusare l'amico quando in realtà è onesto

ERRORE DI II TIPO = <u>non</u> accusare l'amico quando in realtà bara

$$\mathsf{POTENZA} \, = \, \mathbb{P}_{q < \frac{1}{2}} \big(\, \mathsf{Y} \leq \, \mathsf{1} \, \big)$$

Esempio: l'amico è un baro?

ESEMPIO: Un amico propone di puntare testa con una sua moneta

$$X_i = egin{cases} 1 & ext{ se esce testa all'} i ext{-esimo lancio} \ 0 & ext{altrimenti} \end{cases}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim B(1, q)$

 H_0 : l'amico è onesto $\Leftrightarrow q = 1/2$

 H_1 : l'amico è un baro $\Leftrightarrow q < 1/2$

REGOLA: rifiuto H_0 (\Leftrightarrow accuso l'amico) se trovo

$$Y:=X_1+X_2+\ldots+X_{10} \leq 1$$

ERRORE DI I TIPO = accusare l'amico quando in realtà è onesto

ERRORE DI II TIPO = \underline{non} accusare l'amico quando in realtà bara

POTENZA =
$$\mathbb{P}_{q<\frac{1}{2}}(Y \le 1)$$
 dipende da q

Esempio: i neutrini sono più veloci della luce?

...

$$H_0$$
: i neutrini rispettano la relatività $\Leftrightarrow \mu = 3 \cdot 10^8 \, \mathrm{m/s} =: \mu_0$

 H_1 : i neutrini violano la relatività $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$

REGOLA: rifiuto H_0 (\Leftrightarrow rigetto la teoria della relatività) se trovo

$$Z_0 := \frac{\overline{X} - 3 \cdot 10^8}{0.4 \cdot 10^8} \sqrt{5} > 1.645$$
 significatività = 5%

ERRORE DI I TIPO = rigettare la relatività quando in realtà è vera

ERR. DI II TIPO = non rigettare la relatività quando in realtà è falsa

Esempio: i neutrini sono più veloci della luce?

...

$$H_0$$
: i neutrini rispettano la relatività $\Leftrightarrow \mu = 3 \cdot 10^8 \, \text{m/s} =: \mu_0$

 H_1 : i neutrini violano la relatività $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$

REGOLA: rifiuto H_0 (\Leftrightarrow rigetto la teoria della relatività) se trovo

$$Z_0 := \frac{\overline{X} - 3 \cdot 10^8}{0.4 \cdot 10^8} \sqrt{5} > 1.645$$
 significatività = 5%

ERRORE DI I TIPO = rigettare la relatività quando in realtà è vera

ERR. DI II TIPO = non rigettare la relatività quando in realtà è falsa

$$\mathsf{POTENZA} = \, \mathbb{P}_{\mu > 3} \big(Z_0 > 1.645 \big)$$

Esempio: i neutrini sono più veloci della luce?

...

$$H_0$$
: i neutrini rispettano la relatività $\Leftrightarrow \mu = 3 \cdot 10^8 \, \mathrm{m/s} =: \mu_0$

 H_1 : i neutrini violano la relatività $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$

REGOLA: rifiuto H_0 (\Leftrightarrow rigetto la teoria della relatività) se trovo

$$Z_0 := \frac{\overline{X} - 3 \cdot 10^8}{0.4 \cdot 10^8} \sqrt{5} > 1.645$$
 significatività = 5%

ERRORE DI I TIPO = rigettare la relatività quando in realtà è vera

ERR. DI II TIPO = non rigettare la relatività quando in realtà è falsa

POTENZA =
$$\mathbb{P}_{\mu>3}(Z_0>1.645)$$
 dipende da μ

ESEMPIO: nello *Z*-test con

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu>\mu_0$$
 "rifiuto H_0 se $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\,\sqrt{n}>\, z_{1-lpha}$ "

POTENZA = ???

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu>\mu_0$$
 "rifiuto H_0 se $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\,\sqrt{n}>z_{1-lpha}$ "

$$POTENZA = \mathbb{P}_{H_0 \text{ falsa}}(\text{"rifluter\'o } H_0\text{"})$$

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu>\mu_0$$
 "rifiuto H_0 se $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\,\sqrt{n}>z_{1-lpha}$ "

POTENZA =
$$\mathbb{P}_{H_0 \text{ falsa}}(\text{"rifiuterò} \ H_0 \text{"})$$

= $\mathbb{P}_{\mu > \mu_0} \left(\frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \right)$

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu>\mu_0$$
 "rifiuto H_0 se $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\,\sqrt{n}>z_{1-lpha}$ "

$$\begin{aligned} \mathsf{POTENZA} &= \mathbb{P}_{H_0 \; \mathsf{falsa}} \big(\text{``rifiuter\'o} \;\; H_0 \; \text{'`} \big) \\ &= \mathbb{P}_{\mu_0} \mu_0 \left(\frac{\overline{X} - \mu_0}{\sigma} \, \sqrt{n} \, > \, z_{1-\alpha} \, \right) \\ &\text{quella di} \\ X_i &\sim \mathit{N}(\mu, \sigma^2) \end{aligned}$$

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu>\mu_0$$
 "rifiuto H_0 se $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\,\sqrt{n}>z_{1-lpha}$ "

POTENZA =
$$\mathbb{P}_{H_0 \text{ falsa}}(\text{"rifiuterò} \ H_0 \text{"})$$

= $\mathbb{P}_{\mu > \mu_0} \left(\frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \right)$
quella di Z_0

ESEMPIO: nello *Z*-test con

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu>\mu_0$$
 "rifiuto H_0 se $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\,\sqrt{n}>z_{1-lpha}$ "

POTENZA =
$$\mathbb{P}_{H_0 \text{ falsa}}(\text{"rifiuterò} \ H_0\text{"})$$

= $\mathbb{P}_{\mu\nu}\mu_0\left(\frac{\overline{X}-\mu_0}{\sigma}\sqrt{n}>z_{1-\alpha}\right)$
non sono la stessa cosa

 $\Rightarrow \overline{X}$ va ancora standardizzata

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu>\mu_0$$
 "rifiuto H_0 se $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\,\sqrt{n}>z_{1-lpha}$ "

$$\begin{aligned} \mathsf{POTENZA} &= \mathbb{P}_{H_0 \; \mathsf{falsa}} \big(\text{``rifiuter\'o } \; H_0 \, \text{'`} \big) \\ &= \mathbb{P}_{\mu > \mu_0} \bigg(\frac{\overline{X} - \mu_0}{\sigma} \, \sqrt{n} \, > \, z_{1-\alpha} \, \bigg) \\ &= \mathbb{P}_{\mu > \mu_0} \bigg(\; \frac{\overline{X} - \mu}{\sigma} \, \sqrt{n} \, > \, z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \, \sqrt{n} \, \bigg) \end{aligned}$$

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu>\mu_0$$
 "rifiuto H_0 se $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\,\sqrt{n}\,>\,z_{1-lpha}$ "

POTENZA =
$$\mathbb{P}_{H_0 \text{ falsa}} \left(\text{"rifiuterò} \ H_0 \text{"} \right)$$

= $\mathbb{P}_{\mu > \mu_0} \left(\frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \right)$
= $\mathbb{P}_{\mu > \mu_0} \left(\underbrace{\frac{\overline{X} - \mu}{\sigma} \sqrt{n}}_{\sim N(0,1)} > z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \sqrt{n} \right)$

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu>\mu_0$$
 "rifiuto H_0 se $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\,\sqrt{n}>z_{1-lpha}$ "

$$\begin{aligned} &\mathsf{POTENZA} = \, \mathbb{P}_{H_0 \, \mathsf{falsa}} \big(\, \mathsf{``rifiuter\'o} \ \, H_0 \, \mathsf{'`} \big) \\ &= \, \mathbb{P}_{\mu > \mu_0} \bigg(\, \frac{\overline{X} - \mu_0}{\sigma} \, \sqrt{n} \, > \, z_{1-\alpha} \, \bigg) \\ &= \, \mathbb{P}_{\mu > \mu_0} \bigg(\, \underbrace{\frac{\overline{X} - \mu}{\sigma} \, \sqrt{n}}_{\sim N(0,1)} \, > \, z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \, \sqrt{n} \, \bigg) \\ &= \, 1 - \Phi \bigg(\, z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \, \sqrt{n} \, \bigg) \end{aligned}$$

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu>\mu_0$$
 "rifiuto H_0 se $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\,\sqrt{n}\,>\,z_{1-lpha}$ "

$$\begin{split} \mathsf{POTENZA} &= \mathbb{P}_{H_0 \; \mathsf{falsa}} \big(\text{``rifiuter\'o } H_0 \text{'`} \big) \\ &= \mathbb{P}_{\mu > \mu_0} \bigg(\frac{\overline{X} - \mu_0}{\sigma} \, \sqrt{n} > z_{1-\alpha} \, \bigg) \\ &= \mathbb{P}_{\mu > \mu_0} \bigg(\underbrace{\frac{\overline{X} - \mu}{\sigma} \, \sqrt{n}}_{\sim N(0,1)} > z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \, \sqrt{n} \, \bigg) \\ &= 1 - \Phi \bigg(z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \, \sqrt{n} \, \bigg) = \Phi \bigg(\frac{\mu - \mu_0}{\sigma} \, \sqrt{n} - z_{1-\alpha} \, \bigg) \end{split}$$

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu>\mu_0$$
 "rifiuto H_0 se $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\,\sqrt{n}\,>\,z_{1-lpha}$ "

POTENZA =
$$\mathbb{P}_{H_0 \text{ falsa}}(\text{"rifiuterò } H_0\text{"})$$

= $\mathbb{P}_{\mu > \mu_0} \left(\frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha} \right)$
= $\mathbb{P}_{\mu > \mu_0} \left(\underbrace{\frac{\overline{X} - \mu}{\sigma} \sqrt{n}}_{\sim N(0,1)} > z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \sqrt{n} \right)$
= $1 - \Phi \left(z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma} \sqrt{n} \right) = \Phi \left(\frac{\mu - \mu_0}{\sigma} \sqrt{n} - z_{1-\alpha} \right)$

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu>\mu_0$$
 "rifiuto H_0 se $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\,\sqrt{n}>z_{1-lpha}$ "

POTENZA =
$$\Phi\left(\frac{\mu - \mu_0}{\sigma}\sqrt{n} - z_{1-\alpha}\right)$$

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu>\mu_0$$
 "rifiuto H_0 se $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\,\sqrt{n}>z_{1-lpha}$ "

POTENZA =
$$\Phi\left(\frac{\mu-\mu_0}{\sigma}\sqrt{n}-z_{1-\alpha}\right)$$
 dipende da μ

ESEMPIO: nello Z-test con

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu>\mu_0$$
 "rifiuto H_0 se $Z_0:=rac{\overline{X}-\mu_0}{\sigma}\,\sqrt{n}>z_{1-lpha}$ "

POTENZA =
$$\Phi\left(\frac{\mu - \mu_0}{\sigma}\sqrt{n} - z_{1-\alpha}\right)$$
 aumenta se:

- aumenta μ (non controllabile)

$$\begin{aligned} H_0: \mu = \mu_0 \quad \text{vs.} \quad H_1: \mu > \mu_0 \\ \text{"rifiuto } H_0 \ \text{se } Z_0:= \frac{\overline{X} - \mu_0}{\sigma} \, \sqrt{n} > z_{1-\alpha} \, \text{"} \end{aligned}$$

$$\text{POTENZA} = \Phi \bigg(\frac{\overbrace{\mu - \mu_0}^{\geq 0}}{\sigma} \, \sqrt{n} - z_{1-\alpha} \bigg) \quad \text{aumenta se:}$$

- aumenta μ (non controllabile)
- aumenta *n* (più misure)

$$\begin{aligned} H_0: \mu = \mu_0 & \text{vs.} & H_1: \mu > \mu_0 \\ \text{"rifiuto } H_0 & \text{se } Z_0:= \frac{\overline{X} - \mu_0}{\sigma} \, \sqrt{n} > z_{1-\alpha} \, \text{"} \\ \text{POTENZA} = \Phi \bigg(\overbrace{\frac{\mu - \mu_0}{\sigma}}^{\geq 0} \, \sqrt{n} - z_{1-\alpha} \, \bigg) & \text{aumenta se:} \end{aligned}$$

- aumenta μ (non controllabile)
- aumenta *n* (più misure)
- diminuisce σ (più precisione)

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$,

 μ_0 fissato

TESI: Se $Z_0 := \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}$, sono test di significatività α :

H ₀	H ₁	rifiuto <i>H</i> ₀ se
$\mu = \mu_0$ oppure $\mu \le \mu_0$	$\mu > \mu_0$	$Z_0 > z_{1-\alpha}$
$\mu = \mu_0$ oppure $\mu \ge \mu_0$	$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$
$\mu = \mu_0$	$\mu \neq \mu_0$	$ Z_0 >z_{1-\frac{\alpha}{2}}$

IPOTESI: X_1, \dots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, μ_0 fissato

TESI: Se $Z_0 := \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}$, sono test di significatività α :

H_0	H ₁	rifiuto <i>H</i> ₀ se
$\mu=\mu_0$ oppure $\mu\leq\mu_0$	$\mu > \mu_0$	$Z_0 > z_{1-\alpha}$
$\mu=\mu_0$ oppure $\mu\geq\mu_0$	$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$
$\mu = \mu_0$	$\mu \neq \mu_0$	$ Z_0 > z_{1-\frac{\alpha}{2}}$

$$\overline{X} \underset{\text{di }N}{\sim} N\left(\mu, \frac{\sigma^2}{n}\right)$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$,

 μ_0 fissato

TESI: Se $Z_0 := \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}$, sono test di significatività α :

H_0	H ₁	rifiuto H_0 se
$\mu=\mu_0$ oppure $\mu\leq\mu_0$	$\mu > \mu_0$	$Z_0 > z_{1-\alpha}$
$\mu=\mu_0$ oppure $\mu\geq\mu_0$	$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$
$\mu = \mu_0$	$\mu \neq \mu_0$	$ Z_0 > z_{1-\frac{\alpha}{2}}$

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

$$\Rightarrow \frac{\overline{X} - \mu}{\sigma} \sqrt{n} \sim N(0, 1)$$

IPOTESI: X_1, \dots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, μ_0 fissato

TESI: Se $Z_0 := \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}$, sono test di significatività α :

H_0	H ₁	rifiuto <i>H</i> ₀ se
$\mu=\mu_0$ oppure $\mu\leq\mu_0$	$\mu > \mu_0$	$Z_0 > z_{1-\alpha}$
$\mu = \mu_0$ oppure $\mu \ge \mu_0$	$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$
$\mu = \mu_0$	$\mu \neq \mu_0$	$ Z_0 >z_{1-\frac{\alpha}{2}}$

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

$$\Rightarrow \frac{\overline{X} - \mu}{\sigma} \sqrt{n} \sim N(0, 1)$$

$$\Rightarrow Z_0 \sim N(0, 1) \text{ se } \mu = \mu_0$$

IPOTESI: X_1, \ldots, X_n i.i.d. con n grande,

 μ_0 fissato

TESI: Se
$$Z_0 := \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}$$
, sono test di significatività $\simeq \alpha$:

H ₀	H ₁	rifiuto <i>H</i> ₀ se
$\mu = \mu_0$ oppure $\mu \le \mu_0$	$\mu > \mu_0$	$Z_0 > z_{1-\alpha}$
$\mu = \mu_0$ oppure $\mu \ge \mu_0$	$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$
$\mu = \mu_0$	$\mu \neq \mu_0$	$ Z_0 > z_{1-\frac{\alpha}{2}}$

$$\overline{X} \underset{\text{TLC}}{\approx} N\left(\mu, \frac{\sigma^2}{n}\right)$$

$$\Rightarrow \frac{\overline{X} - \mu}{\sigma} \sqrt{n} \approx N(0, 1)$$

$$\Rightarrow Z_0 \approx N(0, 1) \text{ se } \mu = \mu_0$$

IPOTESI: X_1, \ldots, X_n i.i.d. con n grande, $X_i \sim B(1, q)$, q_0 fissato

TESI: Se $Z_0 := \frac{\overline{X} - q_0}{\sqrt{q_0(1 - q_0)}} \sqrt{n}$, sono test di significatività $\simeq \alpha$:

H ₀	H ₁	rifiuto <i>H</i> ₀ se
$q = q_0$ oppure $q \le q_0$	$q > q_0$	$Z_0 > z_{1-\alpha}$
$egin{aligned} oldsymbol{q} &= oldsymbol{q}_0 \ & ext{oppure} \ oldsymbol{q} &\geq oldsymbol{q}_0 \end{aligned}$	$q < q_0$	$Z_0 < -z_{1-\alpha}$
$q=q_0$	$q \neq q_0$	$ Z_0 > z_{1-\frac{\alpha}{2}}$

$$\overline{X} \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$

$$\Rightarrow \frac{\overline{X} - \mu}{\sigma} \sqrt{n} \approx N(0, 1)$$

$$\Rightarrow$$
 $Z_0 \approx N(0,1)$ se $\mu = \mu_0$

IPOTESI: X_1, \ldots, X_n i.i.d. con n grande, $X_i \sim B(1, q)$, q_0 fissato

TESI: Se
$$Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\sqrt{n}$$
, sono test di significatività $\simeq \alpha$:

H_0	H_1	rifiuto <i>H</i> ₀ se
$egin{array}{c} q = q_0 \ ext{oppure} \ q \leq q_0 \ \end{array}$	$q > q_0$	$Z_0 > z_{1-\alpha}$
$egin{array}{c} q = q_0 \ ext{oppure} \ q \geq q_0 \ \end{array}$	$q < q_0$	$Z_0 < -z_{1-\alpha}$
$q=q_0$	$q \neq q_0$	$ Z_0 > z_{1-\frac{\alpha}{2}}$

DIMOSTRAZIONE:

$$\overline{X} \underset{\mathsf{TLC}}{\approx} N\left(q, \frac{q(1-q)}{n}\right)$$

$$\Rightarrow \frac{\overline{X} - \mu}{\sigma} \sqrt{n} \approx N(0,1)$$

$$\Rightarrow Z_0 \approx N(0,1) \text{ se } \mu = \mu$$

IPOTESI: X_1, \ldots, X_n i.i.d. con n grande, $X_i \sim B(1, q)$, q_0 fissato

TESI: Se $Z_0 := \frac{X - q_0}{\sqrt{q_0(1 - q_0)}} \sqrt{n}$, sono test di significatività $\simeq \alpha$:

H ₀	H ₁	rifiuto <i>H</i> ₀ se
$q=q_0 \ ext{oppure} \ q \leq q_0$	$q > q_0$	$Z_0 > z_{1-\alpha}$
$egin{array}{c} q=q_0 \ ext{oppure} \ q\geq q_0 \end{array}$	$q < q_0$	$Z_0 < -z_{1-\alpha}$
$q=q_0$	$q \neq q_0$	$ Z_0 > z_{1-\frac{\alpha}{2}}$

DIMOSTRAZIONE:

$$\overline{X} \approx N\left(q, \frac{q(1-q)}{n}\right)$$

$$\Rightarrow \frac{\overline{X} - q}{\sqrt{q(1-q)}}\sqrt{n} \approx N(0,1)$$

$$\Rightarrow$$
 $Z_0 pprox {\it N}(0,1)$ se $\mu=\mu_0$

IPOTESI: X_1, \ldots, X_n i.i.d. con n grande, $X_i \sim B(1, q)$, q_0 fissato

TESI: Se
$$Z_0 := \frac{X - q_0}{\sqrt{q_0(1 - q_0)}} \sqrt{n}$$
, sono test di significatività $\simeq \alpha$:

H ₀	H ₁	rifiuto <i>H</i> ₀ se
$q=q_0 \ ext{oppure} \ q \leq q_0$	$q > q_0$	$Z_0 > z_{1-\alpha}$
$egin{array}{l} q=q_0 \ ext{oppure} \ q\geq q_0 \end{array}$	$q < q_0$	$Z_0 < -z_{1-\alpha}$
$q=q_0$	$q eq q_0$	$ Z_0 > z_{1-\frac{\alpha}{2}}$

DIMOSTRAZIONE:

$$\overline{X} \approx N\left(q, \frac{q(1-q)}{n}\right)$$

$$\Rightarrow \frac{\overline{X} - q}{\sqrt{q(1-q)}}\sqrt{n} \approx N(0,1)$$

$$\Rightarrow Z_0 \approx N(0,1) \text{ se } q = q_0$$

IPOTESI: X_1, \ldots, X_n i.i.d. con n grande, $X_i \sim B(1, q)$, q_0 fissato

TESI: Se $Z_0 := \frac{X - q_0}{\sqrt{q_0(1 - q_0)}} \sqrt{n}$, sono test di significatività $\simeq \alpha$:

H ₀	H ₁	rifiuto <i>H</i> ₀ se
$q=q_0 \ ext{oppure} \ q \leq q_0$	$q > q_0$	$Z_0 > z_{1-\alpha}$
$egin{array}{c} q=q_0 \ ext{oppure} \ q\geq q_0 \end{array}$	$q < q_0$	$Z_0 < -z_{1-\alpha}$
$q=q_0$	$q \neq q_0$	$ Z_0 > z_{1-\frac{\alpha}{2}}$

E la potenza?

IPOTESI: X_1, \ldots, X_n i.i.d. con n grande, $X_i \sim B(1, q)$, q_0 fissato

$$H_0: q=q_0 \qquad ext{vs.} \qquad H_1: q>q_0$$
 "rifiuto H_0 se $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\,\sqrt{n}>z_{1-lpha}$ "

POTENZA = ???

$$H_0: q=q_0 \qquad ext{vs.} \qquad H_1: q>q_0$$
 "rifiuto H_0 se $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\,\sqrt{n}>z_{1-lpha}$ "

$$\mathsf{POTENZA} = \mathbb{P}_{H_0 \text{ falsa}}(\text{"rifluter\'o } H_0\text{"})$$

$$H_0:q=q_0$$
 vs. $H_1:q>q_0$ "rifiuto H_0 se $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\sqrt{n}>z_{1-lpha}$ "

POTENZA =
$$\mathbb{P}_{H_0 \text{ falsa}}(\text{"rifiuterò} \ H_0 \text{"})$$

= $\mathbb{P}_{q>q_0} \left(\frac{\overline{X} - q_0}{\sqrt{q_0(1 - q_0)}} \sqrt{n} > z_{1-\alpha} \right)$

$$H_0:q=q_0$$
 vs. $H_1:q>q_0$ "rifiuto H_0 se $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\,\sqrt{n}>z_{1-lpha}$ "

POTENZA =
$$\mathbb{P}_{H_0 \text{ falsa}}$$
 ("rifiuterò H_0 ")
$$= \mathbb{P}_{q_0} \left(\frac{\overline{X} - q_0}{\sqrt{q_0(1 - q_0)}} \sqrt{n} > z_{1-\alpha} \right)$$
quella di
 $X_i \sim B(1,q)$

$$H_0:q=q_0\qquad\text{vs.}\qquad H_1:q>q_0$$
 "rifiuto H_0 se $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\,\sqrt{n}>z_{1-lpha}$ "

$$\begin{aligned} \mathsf{POTENZA} &= \mathbb{P}_{H_0 \; \mathsf{falsa}} \big(\text{``rifiuter\'o } \; H_0 \; \text{'`} \big) \\ &= \mathbb{P}_{q > q_0} \Bigg(\frac{\overline{X} - \overline{q_0}}{\sqrt{q_0(1 - q_0)}} \sqrt{n} \, > \, z_{1 - \alpha} \, \Bigg) \\ & \qquad \qquad \mathsf{quella} \; \mathsf{di} \; Z_0 \end{aligned}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con n grande, $X_i \sim B(1, q)$, q_0 fissato

$$H_0:q=q_0\qquad\text{vs.}\qquad H_1:q>q_0$$
 "rifiuto H_0 se $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\,\sqrt{n}>z_{1-lpha}$ "

$$\mathsf{POTENZA} = \, \mathbb{P}_{\textit{H}_0 \; \mathsf{falsa}}\big(\, \text{``riflutero'} \; \; \textit{H}_0 \, \text{''}\,\big)$$

$$= \mathbb{P}_{q_0} \left(\frac{\overline{X} - q_0}{\sqrt{q_0(1 - q_0)}} \sqrt{n} > z_{1-\alpha} \right)$$

non sono la stessa cosa

 $\Rightarrow \overline{X}$ va ancora standardizzata

$$H_0: q=q_0 \qquad ext{vs.} \qquad H_1: q>q_0$$
 "rifiuto H_0 se $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\,\sqrt{n}>z_{1-lpha}$ "

$$ext{POTENZA} = \mathbb{P}_{H_0 ext{ falsa}}ig(ext{"rifiuter\'o} \ H_0 ext{"}ig) \ = \mathbb{P}_{q>q_0}igg(rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\sqrt{n} > z_{1-lpha} \ igg)$$

$$H_0:q=q_0\qquad\text{vs.}\qquad H_1:q>q_0$$
 "rifiuto H_0 se $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\sqrt{n}>z_{1-lpha}$ "

POTENZA =
$$\mathbb{P}_{H_0 \text{ falsa}}(\text{"rifiuterò} \ H_0 \text{"})$$

= $\mathbb{P}_{q>q_0} \left(\frac{\overline{X} - q_0}{\sqrt{q_0(1-q_0)}} \sqrt{q} > z_{1-\alpha} \sqrt{\frac{q_0(1-q_0)}{n}} \right)$

$$H_0:q=q_0\qquad\text{vs.}\qquad H_1:q>q_0$$
 "rifiuto H_0 se $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\,\sqrt{n}>z_{1-lpha}$ "

$$\begin{split} \mathsf{POTENZA} &= \mathbb{P}_{H_0 \; \mathsf{falsa}} \big(\text{``rifiuter\'o } \; H_0 \; \text{''} \big) \\ &= \mathbb{P}_{q > q_0} \Bigg(\frac{\overline{X} - \mathbf{q_0}}{\sqrt{q_0 (1 - q_0)}} \sqrt{q} > z_{1-\alpha} \sqrt{\frac{q_0 (1 - q_0)}{n}} + \mathbf{q_0} \Bigg) \end{split}$$

$$H_0:q=q_0\qquad\text{vs.}\qquad H_1:q>q_0$$
 "rifiuto H_0 se $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\,\sqrt{n}>z_{1-lpha}$ "

$$\begin{split} \mathsf{POTENZA} &= \mathbb{P}_{H_0 \; \mathsf{falsa}} \big(\text{``rifiuter\'o } \; H_0 \, \text{''} \big) \\ &= \mathbb{P}_{q > q_0} \Bigg(\frac{\overline{X} - \overline{q_0}}{\sqrt{q_0(1 - q_0)}} \sqrt{q} > z_{1 - \alpha} \sqrt{\frac{q_0(1 - q_0)}{n}} + q_0 \Bigg) \end{split}$$

$$H_0:q=q_0\qquad\text{vs.}\qquad H_1:q>q_0$$
 "rifiuto H_0 se $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\,\sqrt{n}>z_{1-lpha}$ "

$$\begin{split} \mathsf{POTENZA} &= \mathbb{P}_{H_0 \; \mathsf{falsa}} \big(\text{``rifiuter\'o } \; H_0 \, \text{''} \big) \\ &= \mathbb{P}_{q > q_0} \Bigg(\frac{\overline{X} - \mathsf{q_0}}{\sqrt{q_0(1 - q_0)}} > z_{1 - \alpha} \sqrt{\frac{q_0(1 - q_0)}{n}} + q_0 \Bigg) \end{split}$$

$$H_0:q=q_0\qquad\text{vs.}\qquad H_1:q>q_0$$
 "rifiuto H_0 se $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\,\sqrt{n}>z_{1-lpha}$ "

$$ext{POTENZA} = \mathbb{P}_{H_0 ext{ falsa}} ig(ext{`rifiuterò} \ H_0 ext{''} ig) \ = \mathbb{P}_{q>q_0} igg(rac{\overline{X} - q_0}{\sqrt{q_0(1-q_0)}} > z_{1-lpha} \sqrt{rac{q_0(1-q_0)}{n}} + q_0 igg) \ = \mathbb{P}_{q>q_0} igg(rac{\overline{X}}{\sqrt{q_0(1-q_0)}} > z_{1-lpha} \sqrt{rac{q_0(1-q_0)}{n}} + q_0 igg) igg)$$

$$H_0:q=q_0$$
 vs. $H_1:q>q_0$ "rifiuto H_0 se $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\sqrt{n}>z_{1-lpha}$ "

$$\begin{aligned} \mathsf{POTENZA} &= \mathbb{P}_{H_0 \text{ falsa}} \big(\text{``rifiuter\'o } H_0 \text{'`} \big) \\ &= \mathbb{P}_{q > q_0} \Bigg(\frac{\overline{X} - q_0}{\sqrt{q_0(1 - q_0)}} > z_{1 - \alpha} \sqrt{\frac{q_0(1 - q_0)}{n}} + q_0 \Bigg) \\ &= \mathbb{P}_{q > q_0} \Bigg(\frac{\overline{X} - q}{>} > z_{1 - \alpha} \sqrt{\frac{q_0(1 - q_0)}{n}} + q_0 - q \Bigg) \Bigg) \end{aligned}$$

$$H_0:q=q_0\qquad\text{vs.}\qquad H_1:q>q_0$$
 "rifiuto H_0 se $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\sqrt{n}>z_{1-lpha}$ "

$$\begin{aligned} &\mathsf{POTENZA} = \mathbb{P}_{H_0 \; \mathsf{falsa}} \big(\text{``rifiuter\'o } \; H_0 \; \text{'`} \big) \\ &= \mathbb{P}_{q > q_0} \Bigg(\frac{\overline{X} - q_0}{\sqrt{q_0(1 - q_0)}} > z_{1 - \alpha} \sqrt{\frac{q_0(1 - q_0)}{n}} + q_0 \, \Bigg) \\ &= \mathbb{P}_{q > q_0} \Bigg(\frac{\overline{X} - q}{\sqrt{q(1 - q)}} \quad > \frac{z_{1 - \alpha} \sqrt{\frac{q_0(1 - q_0)}{n}} + q_0 - q}{\sqrt{q(1 - q)}} \, \Bigg) \end{aligned}$$

$$H_0:q=q_0$$
 vs. $H_1:q>q_0$ "rifiuto H_0 se $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\sqrt{n}>z_{1-lpha}$ "

$$\begin{split} \mathsf{POTENZA} &= \mathbb{P}_{H_0 \text{ falsa}} \big(\text{``rifiuter\'o } H_0 \text{'`} \big) \\ &= \mathbb{P}_{q > q_0} \Bigg(\frac{\overline{X} - q_0}{\sqrt{q_0(1 - q_0)}} \vee \overline{n} > z_{1 - \alpha} \sqrt{\frac{q_0(1 - q_0)}{n}} + q_0 \, \Bigg) \\ &= \mathbb{P}_{q > q_0} \Bigg(\frac{\overline{X} - q}{\sqrt{q(1 - q)}} \sqrt{n} > \frac{z_{1 - \alpha} \sqrt{\frac{q_0(1 - q_0)}{n}} + q_0 - q}{\sqrt{q(1 - q)}} \sqrt{n} \, \Bigg) \end{split}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con n grande, $X_i \sim B(1, q)$, q_0 fissato

$$H_0:q=q_0\qquad\text{vs.}\qquad H_1:q>q_0$$
 "rifiuto H_0 se $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\,\sqrt{n}>z_{1-lpha}$ "

$$\begin{aligned} &\mathsf{POTENZA} = \mathbb{P}_{H_0 \; \mathsf{falsa}} \big(\text{``rifiuter\'o } \; H_0 \, \text{'`} \big) \\ &= \mathbb{P}_{q > q_0} \Bigg(\frac{\overline{X} - q_0}{\sqrt{q_0(1 - q_0)}} > z_{1 - \alpha} \sqrt{\frac{q_0(1 - q_0)}{n}} + q_0 \, \Bigg) \\ &= \mathbb{P}_{q > q_0} \Bigg(\underbrace{\frac{\overline{X} - q}{\sqrt{q(1 - q)}} \sqrt{n}}_{\approx N(0 \; 1)} > \frac{z_{1 - \alpha} \sqrt{\frac{q_0(1 - q_0)}{n}} + q_0 - q}{\sqrt{q(1 - q)}} \sqrt{n} \Bigg) \end{aligned}$$

IPOTESI: $X_1, ..., X_n$ i.i.d. con n grande, $X_i \sim B(1, q)$, q_0 fissato

$$H_0:q=q_0\qquad\text{vs.}\qquad H_1:q>q_0$$
 "rifiuto H_0 se $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\,\sqrt{n}>z_{1-lpha}$ "

POTENZA =
$$\mathbb{P}_{H_0 \text{ falsa}} \left(\text{"rifiuterò} \ H_0 \right)$$

= $\mathbb{P}_{q > q_0} \left(\frac{\overline{X} - q_0}{\sqrt{q_0(1 - q_0)}} > z_{1-\alpha} \sqrt{\frac{q_0(1 - q_0)}{n}} + q_0 \right)$
= $\mathbb{P}_{q > q_0} \left(\frac{\overline{X} - q}{\sqrt{q(1 - q)}} \sqrt{n} > \frac{z_{1-\alpha} \sqrt{\frac{q_0(1 - q_0)}{n}} + q_0 - q}{\sqrt{q(1 - q)}} \sqrt{n} \right)$
= $1 - \Phi \left(z_{1-\alpha} \sqrt{\frac{q_0(1 - q_0)}{q(1 - q)}} + \frac{q_0 - q}{\sqrt{q(1 - q)}} \sqrt{n} \right)$

IPOTESI: X_1, \ldots, X_n i.i.d. con n grande, $X_i \sim B(1, q)$, q_0 fissato

$$H_0: q=q_0 \qquad ext{vs.} \qquad H_1: q>q_0$$
 "rifiuto H_0 se $Z_0:=rac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\,\sqrt{n}>z_{1-lpha}$ "

POTENZA =
$$\mathbb{P}_{H_0 \text{ falsa}}(\text{"rifiuterò } H_0\text{"})$$

= $\mathbb{P}_{q>q_0} \left(\frac{\overline{X} - q_0}{\sqrt{q_0(1-q_0)}} > z_{1-\alpha} \sqrt{\frac{q_0(1-q_0)}{n}} + q_0 \right)$
= $\mathbb{P}_{q>q_0} \left(\frac{\overline{X} - q}{\sqrt{q(1-q)}} \sqrt{n} > \frac{z_{1-\alpha} \sqrt{\frac{q_0(1-q_0)}{n}} + q_0 - q}{\sqrt{q(1-q)}} \sqrt{n} \right)$
= $1 - \Phi \left(z_{1-\alpha} \sqrt{\frac{q_0(1-q_0)}{q(1-q)}} + \frac{q_0 - q}{\sqrt{q(1-q)}} \sqrt{n} \right)$

IPOTESI: $X_1, ..., X_n$ i.i.d. con n grande, $X_i \sim B(1, q)$, q_0 fissato

$$H_0:q=q_0\qquad\text{vs.}\qquad H_1:q>q_0$$
 "rifiuto H_0 se $Z_0:=\dfrac{\overline{X}-q_0}{\sqrt{q_0(1-q_0)}}\,\sqrt{n}>z_{1-lpha}$ "

$$\begin{split} &\mathsf{POTENZA} = \, \mathbb{P}_{H_0 \, \mathsf{falsa}} \big(\, \mathsf{``rifiuter\'o} \ \, H_0 \, \mathsf{``} \big) \\ &= \mathbb{P}_{q > q_0} \Bigg(\frac{\overline{X} - q_0}{\sqrt{q_0 (1 - q_0)}} > z_{1 - \alpha} \sqrt{\frac{q_0 (1 - q_0)}{n}} + q_0 \, \Bigg) \\ &= \mathbb{P}_{q > q_0} \Bigg(\frac{\overline{X} - q}{\sqrt{q(1 - q)}} \sqrt{n} > \frac{z_{1 - \alpha} \sqrt{\frac{q_0 (1 - q_0)}{n}} + q_0 - q}{\sqrt{q(1 - q)}} \sqrt{n} \Bigg) \\ &= 1 - \Phi \left(z_{1 - \alpha} \sqrt{\frac{q_0 (1 - q_0)}{q(1 - q)}} + \frac{q_0 - q}{\sqrt{q(1 - q)}} \sqrt{n} \right) \quad \mathsf{dipende} \, \mathsf{da} \, n, q \end{split}$$

E se non conosciamo σ^2 ?

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\mu_0 \in \mathbb{R}$ fissato

TESI: Posto $T_0 := \frac{\overline{X} - \mu_0}{S} \sqrt{n}$, questi sono test di significatività α :

H ₀	H ₁	rifiuto <i>H</i> ₀ se	se $\mu=\mu_0,$ $T_0\sim\dots$
$\mu = \mu_0$ oppure $\mu \le \mu_0$	$\mu > \mu_0$	$T_0 > t_{1-\alpha}(n-1)$	$t_{1-\alpha}$
$\mu = \mu_0$ oppure $\mu \ge \mu_0$	$\mu < \mu_0$	$T_0 < t_{\alpha}(n-1)$	t_{α}
$\mu = \mu_0$	$\mu \neq \mu_0$	$T_0 < t_{rac{lpha}{2}}(n-1) \ ext{oppure} \ T_0 > t_{1-rac{lpha}{2}}(n-1)$	$t_{\frac{\alpha}{2}} \qquad t_{1-\frac{\alpha}{2}}$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\mu_0 \in \mathbb{R}$ fissato

TESI: Posto $T_0 := \frac{\overline{X} - \mu_0}{S} \sqrt{n}$, questi sono test di significatività α :

H ₀	H ₁	rifiuto <i>H</i> ₀ se	se $\mu=\mu_0, \ T_0\sim \dots$
$\mu = \mu_0$ oppure $\mu \le \mu_0$	$\mu > \mu_0$	$T_0 > t_{1-\alpha}(n-1)$	$ \uparrow t(n-1) $ $t_{1-\alpha}$
$\mu=\mu_0$ oppure $\mu\geq\mu_0$	$\mu < \mu_0$	$T_0 < -t_{1-\alpha}(n-1)$	$-t_{1-\alpha}$
$\mu = \mu_0$	$\mu \neq \mu_0$	$ T_0 >t_{1-\frac{\alpha}{2}}(n-1)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

PROBLEMA: nel *T*-test con

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu
eq \mu_0$$
 "rifiuto H_0 se $|T_0|:=\left|rac{\overline{X}-\mu_0}{\sigma}\sqrt{n}
ight|>t_{1-rac{\alpha}{2}}(n-1)$ "

dopo n = 4 misure abbiamo trovato

$$t_0 = -1.4783$$

PROBLEMA: nel *T*-test con

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu
eq \mu_0$$
 "rifiuto H_0 se $|T_0|:=\left|rac{\overline{X}-\mu_0}{\sigma}\sqrt{n}
ight|>t_{1-rac{lpha}{2}}(n-1)$ "

dopo n = 4 misure abbiamo trovato

$$t_0 = -1.4783$$

Qual è il p-value?

PROBLEMA: nel T-test con

$$H_0: \mu=\mu_0 \qquad \text{vs.} \qquad H_1: \mu
eq \mu_0$$
 "rifiuto H_0 se $|T_0|:=\left|rac{\overline{X}-\mu_0}{\sigma}\sqrt{n}
ight|>t_{1-rac{\alpha}{2}}(n-1)$ "

dopo n = 4 misure abbiamo trovato

$$t_0 = -1.4783$$

Qual è il *p*-value?

$$|-1.4783| \equiv t_{1-\frac{\alpha}{2}}(3)$$

PROBLEMA: nel T-test con

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu
eq \mu_0$$
 "rifiuto H_0 se $|T_0|:=\left|rac{\overline{X}-\mu_0}{\sigma}\sqrt{n}
ight|>t_{1-rac{lpha}{2}}(n-1)$ "

dopo n = 4 misure abbiamo trovato

$$t_0 = -1.4783$$

Qual è il p-value?

$$|-1.4783| \equiv t_{1-\frac{\alpha}{2}}(3)$$

 $\Rightarrow 1.4783 = t_{1-\frac{\alpha}{2}}(3)$

PROBLEMA: nel *T*-test con

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu
eq \mu_0$$
 "rifiuto H_0 se $|T_0|:=\left|rac{\overline{X}-\mu_0}{\sigma}\sqrt{n}
ight|>t_{1-rac{lpha}{2}}(n-1)$ "

dopo n = 4 misure abbiamo trovato

$$t_0 = -1.4783$$

Qual è il p-value?

$$|-1.4783| \equiv t_{1-\frac{\alpha}{2}}(3)$$

 $\Rightarrow 1.4783 = t_{1-\frac{\alpha}{2}}(3)$

Tavola dei quantili della distribuzione T(n)									
	Valore della funzione di ripartizione								
n	0.75	8.0	0.85	0.9	0.95	0.975	0.99	0.995	
1	1.0000	1.3764	1.9626	3.0777	6.3137	12.7062	31.8210	63.655	
2	0.8165	1.0607	1.3862	1.8856	2.9200	4.3027	6.9645	9.925	
3	0.7649	0.9785	1.2498	1.6377	2.3534	3.1824	4.5407	5.840	
4	0.7407	0.9410	1.1896	1.5332	2.1318	2.7765	3.7469	4.604	
5	0.7267	0.9195	1.1558	1.4759	2.0150	2.5706	3.3649	4.032	
6	0.7176	0.0057	1 13/12	1 // 308	1 0/132	2.4469	3 1427	3 707	

PROBLEMA: nel *T*-test con

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu
eq \mu_0$$
 "rifiuto H_0 se $|T_0|:=\left|rac{\overline{X}-\mu_0}{\sigma}\sqrt{n}
ight|>t_{1-rac{lpha}{2}}(n-1)$ "

dopo n = 4 misure abbiamo trovato

$$t_0 = -1.4783$$

Qual è il p-value?

$$|-1.4783| \equiv t_{1-\frac{\alpha}{2}}(3)$$

 $\Rightarrow 1.4783 = t_{1-\frac{\alpha}{2}}(3)$
 $\Rightarrow 0.85 < 1 - \frac{\alpha}{2} < 0.9$

	Tavola dei quantili della distribuzione T(n)							
	Valore della funzione di ripartizione							
n	0.75	8.0	0.85	0.9	0.95	0.975	0.99	0.995
1	1.0000	1.3764	1.9626	3.0777	6.3137	12.7062	31.8210	63.65
2	0.8165	1.0607	1,3862	1.8856	2.9200	4.3027	6.9645	9.92
3	0.7649	0.9785	1.2498	1.6377	2.3534	3.1824	4.5407	5.840
4	0.7407	0.9410	1.1896	1.5332	2.1318	2.7765	3.7469	4.60
5	0.7267	0.9195	1.1558	1.4759	2.0150	2.5706	3.3649	4.032
6	0.7176	0.0057	1 13/12	1 // 208	1 0/132	2 4460	3 1/127	3.70

PROBLEMA: nel *T*-test con

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu
eq \mu_0$$
 "rifiuto H_0 se $|T_0|:=\left|rac{\overline{X}-\mu_0}{\sigma}\sqrt{n}
ight|>t_{1-rac{lpha}{2}}(n-1)$ "

dopo n = 4 misure abbiamo trovato

$$t_0 = -1.4783$$

Qual è il p-value?

$$|-1.4783| \equiv t_{1-\frac{\alpha}{2}}(3)$$

$$\Rightarrow 1.4783 = t_{1-\frac{\alpha}{2}}(3)$$

$$\Rightarrow$$
 0.85 < 1 - $\frac{\alpha}{2}$ < 0.9

$$\Rightarrow$$
 0.2 < α < 0.3

PROBLEMA: nel *T*-test con

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu
eq \mu_0$$
 "rifiuto H_0 se $|T_0|:=\left|rac{\overline{X}-\mu_0}{\sigma}\sqrt{n}
ight|>t_{1-rac{lpha}{2}}(n-1)$ "

dopo n = 4 misure abbiamo trovato

$$t_0 = -1.4783$$

Qual è il p-value?

$$|-1.4783| \equiv t_{1-\frac{\alpha}{2}}(3)$$

$$\Rightarrow$$
 1.4783 = $t_{1-\frac{\alpha}{2}}(3)$

$$\Rightarrow$$
 0.85 < 1 - $\frac{\alpha}{2}$ < 0.9

$$\Rightarrow$$
 0.2 < p-value < 0.3