# Quantitative Propagation of Chaos for Singular First-order System on the Whole Space

Xuanrui Feng

Beijing International Center for Mathematical Research Peking University

Dec. 20, 2024

#### First-order System

Consider the large interacting particle system (IPS) with N indistinguishable particles governed by the microscopic SDE system:

$$dX_i(t) = \frac{1}{N} \sum_{i \neq i} K(X_i - X_j) dt + \sqrt{2\sigma} dB_i(t), \quad i = 1, 2, \dots, N. \quad (IPS)$$

 $X_i(t)$ : represents the position of the *i*-th particle at time t.

 $B_i(t)$ : N independent standard d-dimensional Brownian motions which model the random collisions on particles.

 $\sigma > 0$ : represents the viscosity of the dynamics or the inverse temperature.

K: interacting kernel which models the binary interaction forces between particles. We expect that the particle system converges to its mean-field limit as  $N \to \infty$ ,

i.e. the McKean-Vlasov system:

$$\mathrm{d}X_t = K * \bar{\rho}_t(X_t) \,\mathrm{d}t + \sqrt{2\sigma} \,\mathrm{d}B_t, \quad \bar{\rho}_t = \mathsf{Law}(X_t). \quad (\mathsf{MF})$$

Applying Itô's formula gives the limit Fokker-Planck equation:

$$\partial_t \bar{\rho}_t + \operatorname{div}\left(\bar{\rho}_t(K * \bar{\rho}_t)\right) = \sigma \Delta \bar{\rho}_t.$$
 (FP)

4□ > 4□ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □

#### The Liouville Equation

Statistical Approach: The joint law of N-particle system  $\rho_N(t, x_1, \dots, x_N)$  is governed by the Liouville equation/forward Kolmogorov equation:

$$\partial_t \rho_N + \sum_{i=1}^N \, \mathrm{div}_{x_i} \bigg( \rho_N \, \frac{1}{N} \sum_{j \neq i} K \big( x_i - x_j \big) \bigg) = \sigma \sum_{i=1}^N \Delta_{x_i} \rho_N.$$

The joint law  $\rho_N(t,\cdot)$  is symmetric/exchangeable, i.e.  $\rho_N(t,\cdot) \in \mathcal{P}_{sym}(\mathbb{R}^{dN})$ , since the particles are indistinguishable.

The observables of the particle system (statistical information: temperature, pressure  $\cdots$ ) are contained in the marginals  $\rho_{N,k}$  of  $\rho_N$  given by

$$\rho_{N,k}(t,x_1,\ldots,x_k) = \int_{\mathbb{R}^{d(N-k)}} \rho_N(t,x_1,\ldots,x_N) \,\mathrm{d}x_{k+1}\ldots\,\mathrm{d}x_N$$

for any fixed  $k = 1, 2, \cdots$ 

**Goal:** Establish and quantify the convergence: the k-marginal  $\rho_{N,k}(t)$  converges weakly to  $\bar{\rho}_t^{\otimes k}$ , or the empirical measure  $\mu_N^t = \frac{1}{N} \sum_{i=1}^N \delta_{X_i^t}$  converges in law to  $\bar{\rho}_t$ .

# Relative Entropy Method for Propagation of Chaos

Define the relative entropy between  $\rho_N$  and  $\bar{\rho}^{\otimes N}$  to quantify chaos:

$$\mathcal{H}_N(\rho_N|\bar{\rho}^{\otimes N})(t) \triangleq \int_{\mathbb{R}^{dN}} \rho_N \log \frac{\rho_N}{\bar{\rho}^{\otimes N}} dx_1 \dots dx_N.$$

The relative entropy quantity has the sub-additivity property:

$$\mathcal{H}_k(\rho_{N,k}|\bar{\rho}^{\otimes k}) \triangleq \int_{\mathbb{R}^{dN}} \rho_{N,k} \log \frac{\rho_{N,k}}{\bar{\rho}^{\otimes k}} dx_1 \dots dx_k \leq \frac{k}{N} \mathcal{H}_N(\rho_N|\bar{\rho}^{\otimes N}).$$

Moreover, it controls the square of  $L^1$  distance by the classical Csiszár-Kullback-Pinsker (CKP) inequality

$$\|\rho_{N,k}-\bar{\rho}^{\otimes k}\|_{L^1}\leq \sqrt{2\mathcal{H}_k(\rho_{N,k}|\bar{\rho}^{\otimes k})},$$

although it is not itself a distance. One can obtain quantitative strong propagation of chaos given the uniform-in-N bound of  $\mathcal{H}_N(\rho_N|\bar{\rho}^{\otimes N})$ .

This relative entropy method is initiated in the breakthrough paper Jabin-Z.Wang (2018) for first-order systems, but restricted on the torus case.

# 2D Viscous Vortex Model on the Whole Space $\mathbb{R}^2$

#### Theorem (F.-Z.Wang (2023))

Assume that  $\rho_N$  is an entropy solution to the Liouville equation and that  $\bar{\rho}$  solves the limit equation with  $\bar{\rho} \geq 0$  and  $\int_{\mathbb{R}^2} \bar{\rho}(t,x) \, \mathrm{d}x = 1$ . Assume that the initial data  $\bar{\rho}_0 \in W^{2,1} \cap W^{2,\infty}(\mathbb{R}^2)$  satisfies the logarithmic growth conditions

$$|\nabla \log \bar{\rho}_0(x)| \lesssim 1 + |x|,\tag{1}$$

$$|\nabla^2 \log \bar{\rho}_0(x)| \lesssim 1 + |x|^2, \tag{2}$$

and the Gaussian upper bound that there exists some  $C_0 > 0$  such that

$$\bar{\rho}_0(x) \le C_0 \exp(-C_0^{-1}|x|^2).$$
 (3)

Then we have the uniform-in-N bound on the relative entropy

$$\mathcal{H}_N(
ho_N|ar
ho^{\otimes N})(t) \leq Me^{Mt^2}\Big(\mathcal{H}_N(
ho_N^0|ar
ho_0^{\otimes N})+1\Big),$$

where M is some universal constant that only depends on those initial bounds.

#### 2D Viscous Vortex Model with General Circulations

We can further consider the 2D viscous vortex model on the whole space with general circulations for vortices:

$$dX_i(t) = \frac{1}{N} \sum_{i \neq i} \mathcal{M}_j K(X_i - X_j) dt + \sqrt{2\sigma} dB_i(t), \quad i = 1, 2, \dots, N. \quad (IPS)$$

Here  $\mathcal{M}_i \in \mathbb{R}$  represents the circulation of the *i*-th vortex, which is assumed to be i.i.d. copies of some compactly supported random variable  $\mathcal{M}$  and independent of time t. The different cases of circulations with  $\mathcal{M}_i > 0$  and  $\mathcal{M}_i < 0$  represent the two different orientations of the point vortices.

The mean-field limit McKean-Vlasov system reads as:

$$\mathrm{d}X_t = K * \omega_t(X_t) \, \mathrm{d}t + \sqrt{2\sigma} \, \mathrm{d}B_t, \quad \omega_t = \mathbb{E}_{\mathcal{M}} \bar{\rho}_t(\mathcal{M}, X_t), \quad \bar{\rho}_t = \mathsf{Law}(\mathcal{M}, X_t). \quad (\mathsf{MF})$$

Applying Itô's formula, the vorticity  $\omega_t$  solves the vorticity formulation of 2D Navier-Stokes equation:

$$\partial_t \omega_t + (K * \omega_t) \cdot \nabla \omega_t = \sigma \Delta \omega_t.$$
 (VOR)

**Advantage**: No longer require  $\omega_t \geq 0$  or  $\int_{\mathbb{R}^2} \omega_t \, \mathrm{d}x = 1$ . More general vorticity.

#### The Liouville Equation

The joint law of *N*-particle system  $\rho_N(t, z_1, \dots, z_N)$  solves the Liouville equation:

$$\partial_t \rho_N + \frac{1}{N} \sum_{i,j=1}^N m_j K(x_i - x_j) \cdot \nabla_{x_i} \rho_N = \sigma \sum_{i=1}^N \Delta_{x_i} \rho_N,$$

where  $z_i = (m_i, x_i) \in \mathbb{D} = \mathbb{R} \times \mathbb{R}^2$ . Now  $\rho_N$  is symmetric in  $z_i$  but not in  $x_i$ . The k-particle vorticity is given by

$$\omega_{N,k}(t,X^k) = \int_{\mathbb{R}^k \times \mathbb{D}^{(N-k)}} m_1 \cdots m_N \rho_N(t,Z^N) \, \mathrm{d}m_1 \ldots \, \mathrm{d}m_k \, \mathrm{d}z_{k+1} \ldots \, \mathrm{d}z_N$$

for any fixed  $k=1,2,\ldots$  We expect to quantify the convergence from  $\omega_{N,k}$  to  $\omega_t^{\otimes k}$  in total variation. This is based on the global estimates  $\mathcal{H}_N(\rho_N|\bar{\rho}^{\otimes N})$  or local estimates  $\mathcal{H}_k(\rho_{N,k}|\bar{\rho}^{\otimes k})$ .

Applying Itô's formula,  $\bar{\rho}_t$  solves the nonlinear Fokker-Planck equation:

$$\partial_t \bar{\rho}_t + (K * \omega_t) \cdot \nabla_{\times} \bar{\rho}_t = \sigma \Delta_{\times} \bar{\rho}_t.$$
 (FP)

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

# Global Relative Entropy Control

#### Theorem (F.-Z. Wang (2024))

Assume that  $\rho_N$  is an entropy solution to the Liouville equation and that  $\bar{\rho}$  solves the limit equation with  $\bar{\rho} \geq 0$  and  $\int_{\mathbb{D}} \bar{\rho}(t,x) \, \mathrm{d}x = 1$ . Assume that the initial data  $\bar{\rho}_0 \in W^{2,1} \cap W^{2,\infty}(\mathbb{D})$  satisfies the logarithmic growth conditions

$$|\nabla \log \bar{\rho}_0(x)| \lesssim 1 + |x|,$$

$$|\nabla^2 \log \bar{\rho}_0(x)| \lesssim 1 + |x|^2,$$

and the Gaussian upper bound that there exists some  $C_0 > 0$  such that

$$\bar{\rho}_0(x) \leq C_0 \exp(-C_0^{-1}|x|^2).$$

Then we have the uniform-in-N bound on the relative entropy

$$\mathcal{H}_N(\rho_N|\bar{\rho}^{\otimes N})(t) \leq \textit{Me}^{\textit{M}\log^2(1+t)}\Big(\mathcal{H}_N(\rho_N^0|\bar{\rho}_0^{\otimes N}) + 1\Big),$$

where M is some universal constant that only depends on those initial bounds.

# Sharp Local Estimates and BBGKY Hierarchy

As observed by Lacker (2023), using the sub-additivity property of the relative entropy may lead to suboptimal convergence rate in total variation

$$\|\omega^{N,k} - \omega^{\otimes k}\|_{TV} \lesssim \sqrt{k/N},$$

while the best optimal convergence rate one may expect is actually O(k/N), tested by some simple Gaussian examples.

**Regular Kernels**  $K \in W^{1,\infty}$ : Lacker (2023), Lacker-Le Flem (2023).

**Singular Kernels**: 2D Navier-Stokes with  $\mathcal{M}_i \equiv 1$  on  $\mathbb{T}^2$  by S. Wang (2024).

The basic idea is to compute the local relative entropy directly using the BBGKY hierarchy solved by the marginals  $\rho_{N,k}$ .

$$\partial_t \rho_{N,k} + \frac{1}{N} \sum_{i,j=1}^k m_j K(x_i - x_j) \cdot \nabla_{x_i} \rho_{N,k}$$

$$+ \frac{N-k}{N} \sum_{i=1}^k \int_{\mathbb{D}} m_{k+1} K(x_i - x_{k+1}) \cdot \nabla_{x_i} \rho_{N,k+1} \, \mathrm{d}z_{k+1} = \sigma \sum_{i=1}^k \Delta_{x_i} \rho_{N,k}.$$

# Local Relative Entropy Control

#### Theorem (F.-Z. Wang (2024))

We further assume that the viscosity constant  $\sigma$  is large enough in the sense of

$$\sigma > \sqrt{2}A\|V\|_{\infty},$$

where A is some constant such that  $\mathcal{M} \in [-A, A]$ . Then we have

$$\mathcal{H}_k(\rho_{N,k}|\bar{\rho}^{\otimes k}) \leq Me^{M\log^2(1+t)} \Big( \mathcal{H}_k(\rho_0^{N,k}|\bar{\rho}_0^{\otimes k}) + \frac{k^2}{N^2} \Big)$$

for any  $t \in [0, T]$ , where M is some universal constant depending only on  $\sigma, A, C_0$  and some Sobolev norms and logarithmic bounds of the initial data  $\bar{\rho}_0$ .

# 2D Log Gas on the Whole Space $\mathbb{R}^2$

#### Theorem (Cai-F.-Gong-Z.Wang (2024))

Assume that  $\rho_N$  is an entropy solution to the Liouville equation and that  $\bar{\rho}$  solves the limit equation with  $\bar{\rho} \geq 0$  and  $\int_{\mathbb{R}^2} \bar{\rho}(t,x) \, \mathrm{d}x = 1$ . Assume that the initial data  $\bar{\rho}_0 \in W^{2,1} \cap W^{2,\infty}(\mathbb{R}^2)$  satisfies the logarithmic growth conditions

$$|\nabla \log \bar{\rho}_0(x)| \lesssim 1 + |x|,\tag{4}$$

$$|\nabla^2 \log \bar{\rho}_0(x)| \lesssim 1 + |x|^2,\tag{5}$$

and the Gaussian upper bound that there exists some  $C_0 > 0$  such that

$$\bar{\rho}_0(x) \le C_0 \exp(-C_0^{-1}|x|^2).$$
 (6)

Then for any  $\varepsilon > 0$  we have the uniform-in-N bound on the relative entropy

$$\mathcal{H}_N(\rho_N|\bar{\rho}^{\otimes N})(t) \leq M e^{\frac{M}{\varepsilon}t^{\varepsilon}} \Big(\mathcal{E}_N(\rho_N^0|\bar{\rho}_0^{\otimes N}) + 1\Big),$$

where M is some universal constant that only depends on those initial bounds.

#### Landau Equation with Maxwellian Molecules

Consider the spatially homogeneous Landau equation in dimension d in the following form:

$$\begin{cases} \frac{\partial f}{\partial t} = Q(f, f) = \frac{\partial}{\partial v_{\alpha}} \int_{\mathbb{R}^d} a_{\alpha\beta} (v - v_*) \Big( f(v_*) \frac{\partial f(v)}{\partial v_{\beta}} - f(v) \frac{\partial f(v_*)}{\partial v_{*\beta}} \Big) \, \mathrm{d}v_*, \\ f(0, \cdot) = f_0, \end{cases}$$

where  $t \geq 0$  and  $v \in \mathbb{R}^d$ . The coefficient matrix is given by

$$a_{\alpha\beta}(z) = |z|^{\gamma+2} \Pi_{\alpha\beta}(z), \quad \text{with } \Pi_{\alpha\beta}(z) = \delta_{\alpha\beta} - \frac{z_{\alpha}z_{\beta}}{|z|^2}.$$
 (7)

Usually we consider the parameter  $\gamma \in [-d,1]$ . The most physically important and meaningful case is when d=3 and  $\gamma=-3$  (Landau-Coulombian). Here we consider the case with Maxwellian molecules, i.e. when  $\gamma=0$ , for mathematical simplification.

# Particle Systems for Landau Equation

We are interested in deriving the Landau equation as the mean-field limit of some many-particle system. Consider the N indistinguishable interacting particle system studied in Fontbona-Guérin-Méléard (2009) and Fournier (2010) that

$$dV_t^i = \frac{2}{N} \sum_{j=1}^N b(V_t^i - V_t^j) dt + \sqrt{2} \left( \frac{1}{N} \sum_{j=1}^N a(V_t^i - V_t^j) \right)^{\frac{1}{2}} dB_t^i, \quad i = 1, \dots, N.$$

We use the convention that a(0)=0 and b(0)=0 to omit the notation  $i\neq j$ . Applying Itô's formula and the relation  $\nabla \cdot a=b$ , we can derive the Liouville equation of the N-particle joint distribution  $F_N(t,V)$ ,  $V=(v^1,\ldots,v^N)$  on  $\mathbb{R}^{dN}$ :

$$\partial_t F_N = \sum_{i=1}^N \operatorname{div}_{v^i} \Big[ \frac{1}{N} \sum_{j=1}^N a(v^i - v^j) \nabla_{v^i} F_N - \frac{1}{N} \sum_{j=1}^N b(v^i - v^j) F_N \Big],$$

where the initial value is fully factorized as  $F_N(0,\cdot) = f_0^{\otimes N}$ .

- 4日 > 4日 > 4目 > 4目 > 1目 - 990

# Propagation of Chaos in Relative Entropy

#### Theorem (Carrillo-F.-Guo-Jabin-Z. Wang (2024))

Assume that  $F_N$  is an entropy solution to the Liouville equation and that the classical solution  $f \in \mathcal{C}^1([0,T],\mathcal{C}^2(\mathbb{R}^d))$  of the Landau equation satisfies  $f \geq 0$  and the conservation laws. Assume that the initial data  $f_0 \in \mathcal{C}^2(\mathbb{R}^d)$  satisfies the logarithmic growth conditions

$$|\nabla \log f_0(v)| \lesssim 1 + |v|, \quad |\nabla^2 \log f_0(v)| \lesssim 1 + |v|^2,$$

and the Gaussian upper bound that there exists some  $C_0 > 0$  such that

$$f_0(v) \leq C_0 \exp(-C_0^{-1}|v|^2).$$

Then we have the relative entropy estimate

$$\mathcal{H}_N(F_N|f^{\otimes N})(t) \leq \mathcal{H}_N(F_N|f^{\otimes N})(0) + C_T\sqrt{N},$$

where  $C_T$  is some constant that depends on those initial bounds and grows polynomially in T.

#### References



- D. Bresch, P.E. Jabin and Z. Wang, Mean-Field Limit and Quantitative Estimates with Singular Attractive Kernels. **Duke Mathematical Journal 172**, no. 13 (2023): 2591-2641.
- X. Feng and Z. Wang, Quantitative Propagation of Chaos for 2D Viscous Vortex Model on the Whole Space. arXiv preprint arXiv:2310.05156 (2023).
  - J. A. Carrillo, X. Feng, S. Guo, P.-E. Jabin, and Z. Wang. Relative entropy method for particle approximation of the Landau equation for Maxwellian molecules. arXiv preprint arXiv:2408.15035 (2024).
- X. Feng and Z. Wang, Quantitative Propagation of Chaos for 2D Viscous Vortex Model with General Circulations on the Whole Space. arXiv preprint arXiv:2411.14266 (2024).
- S. Cai, X. Feng, Y. Gong, and Z. Wang. Propagation of Chaos for 2D Log Gas on the Whole Space. arXiv preprint arXiv:2411.14777 (2024).

# Thank you!