Name: Muhammad Saad Hanif

Phone Number: 03355265915

Intern ID: ARCH-2505-0206

CHAPTER#3 NOTES

Q1. Why can accuracy be misleading?

Answer:

If the data is **imbalanced** (e.g., 95% Class A, 5% Class B), the model can predict **only Class A** and still achieve **95% accuracy** — but it completely **misses Class B**. That's why **Precision**, **Recall**, and **F1-score** are **better metrics** in such cases.

Q2. What does the tradeoff between Precision and Recall mean?

Answer:

- High **Precision**: Model makes **fewer predictions**, but most are **correct** (safer).
- High **Recall**: Model tries to **catch everything**, even if it makes **more mistakes**. Improving one often **reduces** the other.

Q3. Example of High Precision and Low Recall?

Answer:

A spam detector that labels an email as spam only when 100% sure.

- Many spam emails go undetected (low recall)
- But the detected ones are almost all correct (high precision)

O4. What is an ROC Curve? What does AUC mean?

Answer:

- **ROC** = Receiver Operating Characteristic
- It plots True Positive Rate (Recall) vs False Positive Rate
- **AUC** = Area Under Curve Higher AUC = **better model performance**

Q5. What are two approaches to Multiclass Classification?

Answer:

- 1. **OvR (One-vs-Rest)**: One classifier for each class vs all others (e.g., 0 vs not 0)
- 2. OvO (One-vs-One): One classifier for every pair of classes (e.g., 0 vs 1, 0 vs 2, etc.)

Q6. What is hinge loss in sgdclassifier?

Answer:

- Hinge loss is the loss function used in SVM.
- It teaches the model to make the **correct class score higher** than the others. Helps maintain a **margin** between classes.

O7. What is Multilabel Classification?

Answer:

When a single sample has multiple labels.

Example: A movie tagged as Action, Drama, and Thriller.

Q8. What is Multioutput Classification?

Answer:

When a model predicts multiple outputs for each input.

Example: An image classifier predicts the **object type** and its **location**.

Q9. What is the MNIST dataset?

Answer:

A dataset of **handwritten digits** from 0–9.

• Each image is 28x28 pixels

• Training set: 60,000 images

• **Test set**: 10,000 images

Q10. General steps to train a classifier on MNIST?

Answer:

- 1. Load the MNIST dataset
- 2. Split into training and test sets
- 3. Train a classifier (e.g., SGDClassifier, KNeighborsClassifier)
- 4. Evaluate using accuracy, confusion matrix, precision, recall
- 5. Improve using data augmentation or hyperparameter tuning

MINIST DIGIT RECOGNIZATION PROJECT

Step 1: MNIST Dataset Load

Step 1: MNIST Dataset Load

```
[ ] from sklearn.datasets import fetch_openml

# Dataset load karo
mnist = fetch_openml('mnist_784', version=1, as_frame=False)
X, y = mnist.data, mnist.target.astype(int) # labels ko int mein convert karo
```

Step 2: Data Split (60k Train / 10k Test)

Step 2: Data Split (60k Train / 10k Test)

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=10000, random_state=42)
```

Step 3: Classifier Train

(a) SGD Classifier (hinge loss)

(b) Random Forest Classifier

```
from sklearn.ensemble import RandomForestClassifier

rf_clf = RandomForestClassifier(n_estimators=100, random_state=42)

rf_clf.fit(X_train, y_train)

RandomForestClassifier

RandomForestClassifier(random_state=42)
```

Step 4: Evaluation (Confusion Matrix + Report)

Step 4: Evaluation (Confusion Matrix + Report)

```
from sklearn.metrics import confusion_matrix, classification_report
 import matplotlib.pyplot as plt
 import seaborn as sns
 # Predictions
 y_pred_sgd = sgd_clf.predict(X_test)
 y_pred_rf = rf_clf.predict(X_test)
 # Evaluation
 print("SGD Accuracy:", sgd_clf.score(X_test, y_test))
 print("RF Accuracy:", rf_clf.score(X_test, y_test))
 # Confusion Matrix (Random Forest)
 cm = confusion_matrix(y_test, y_pred_rf)
 plt.figure(figsize=(10, 7))
 sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
 plt.title("Random Forest Confusion Matrix")
 plt.show()
 # Classification Report
 print(classification_report(y_test, y_pred_rf))
```

SGD Accuracy: 0.8691 → RF Accuracy: 0.9674

•				
	precision	recall	f1-score	support
0	0.98	0.98	0.98	983
1	0.99	0.99	0.99	1152
2	0.94	0.97	0.96	967
3	0.96	0.95	0.95	1034
4	0.96	0.97	0.97	906
5	0.98	0.96	0.97	937
6	0.98	0.99	0.98	961
7	0.97	0.97	0.97	1055
8	0.96	0.95	0.96	969
9	0.96	0.94	0.95	1036
accuracy			0.97	10000
macro avg	0.97	0.97	0.97	10000
weighted avg	0.97	0.97	0.97	10000

Step 5: Visualize Errors

Step 5: Visualize Errors

```
# Galtiyan nikaalo
misclassified_idx = np.where(y_test != y_pred_rf)[0]

# Sabse pehli 10 ghalat tasveerain dikhao
for i in range(10):
    idx = misclassified_idx[i]
    image = X_test[idx].reshape(28, 28)
    plt.imshow(image, cmap='gray')
    plt.title(f"Actual: {y_test[idx]} | Predicted: {y_pred_rf[idx]}")
    plt.axis('off')
    plt.show()
```

Actual: 0 | Predicted: 6

Actual: 3 | Predicted: 8

LIBRARY INSTALLATION

```
pip install gradio --upgrade
Requirement already satisfied: ffmpy in /usr/local/lib/python3.11/dist-packages (from gradio) (0.115.12)

Collecting gradio-client==1.10.3 (from gradio)
           Collecting gradio-client==1.10.3 (from gradio)
Downloading gradio-client==1.10.3 (from gradio)
Downloading gradio-client=1.10.3-py3-none-any.whl.metadata (7.1 kB)
Requirement already satisfied: groovy=0.1 in /usr/local/lib/python3.11/dist-packages (from gradio) (0.1.2)
Requirement already satisfied: httpx>=0.24.1 in /usr/local/lib/python3.11/dist-packages (from gradio) (0.28.1)
Requirement already satisfied: buggingface-hub>=0.28.1 in /usr/local/lib/python3.11/dist-packages (from gradio) (3.1.6)
Requirement already satisfied: markupsafe<4.0,>=2.0 in /usr/local/lib/python3.11/dist-packages (from gradio) (3.0.2)
Requirement already satisfied: numpy<3.0,>=1.0 in /usr/local/lib/python3.11/dist-packages (from gradio) (3.0.2)
Requirement already satisfied: orjson=3.0 in /usr/local/lib/python3.11/dist-packages (from gradio) (3.10.18)
Requirement already satisfied: packaging in /usr/local/lib/python3.11/dist-packages (from gradio) (2.2.2)
Requirement already satisfied: padas<3.0,>=1.0 in /usr/local/lib/python3.11/dist-packages (from gradio) (2.2.2)
Requirement already satisfied: pillow<12.0,>=8.0 in /usr/local/lib/python3.11/dist-packages (from gradio) (11.2.1)
Requirement already satisfied: pydantic<2.12,>=2.0 in /usr/local/lib/python3.11/dist-packages (from gradio) (2.1.7)
Requirement already satisfied: pydantic<2.12,>=2.0 in /usr/local/lib/python3.11/dist-packages (from gradio) (0.2.5.1)
Requirement already satisfied: pydantic<2.12,>=2.0 in /usr/local/lib/python3.11/dist-packages (from gradio) (0.2.5.1)
Requirement already satisfied: pyduntic<2.0,>=8.0 in /usr/local/lib/python3.11/dist-packages (from gradio) (0.0.20)
            Requirement already satisfied: pyyaml<7.0,>=5.0 in /usr/local/lib/python3.11/dist-packages (from gradio) (6.0.2) Requirement already satisfied: ruff>=0.9.3 in /usr/local/lib/python3.11/dist-packages (from gradio) (0.11.13)
            Requirement already satisfied: safehttpx<0.2.0,>=0.1.6 in /usr/local/lib/python3.11/dist-packages (from gradio) (0.1.6) Requirement already satisfied: semantic-version<=2.0 in /usr/local/lib/python3.11/dist-packages (from gradio) (2.10.0) Requirement already satisfied: starlette<1.0,>=0.40.0 in /usr/local/lib/python3.11/dist-packages (from gradio) (0.46.2)
            Requirement already satisfied: starlette(1.0,>=0.40.0 in /usr/local/lib/python3.11/dist-packages (from gradio) (0.46.2)
Requirement already satisfied: tomklit(0.14.0,>=0.12.0 in /usr/local/lib/python3.11/dist-packages (from gradio) (0.15.3)
Requirement already satisfied: typer(1.0,>=0.12 in /usr/local/lib/python3.11/dist-packages (from gradio) (0.16.0)
Requirement already satisfied: typing-extensions==4.0 in /usr/local/lib/python3.11/dist-packages (from gradio) (4.14.0)
Requirement already satisfied: uvicorn>=0.14.0 in /usr/local/lib/python3.11/dist-packages (from gradio) (3.4.3)
Requirement already satisfied: fsspec in /usr/local/lib/python3.11/dist-packages (from gradio-client==1.10.3->gradio) (2025.3.2)
Requirement already satisfied: websockets(1.0,>=10.0 in /usr/local/lib/python3.11/dist-packages (from gradio-client==1.10.3->gradio) (15.0.1)
Requirement already satisfied: idna>=2.8 in /usr/local/lib/python3.11/dist-packages (from anyio(5.0,>=3.0-)gradio) (3.10)
Requirement already satisfied: idna>=2.8 in /usr/local/lib/python3.11/dist-packages (from anyio(5.0,>=3.0-)gradio) (3.1)
            Requirement already satisfied: Idna>=2.8 In /Usr/local/lib/python3.11/dist-packages (from anylocs.o.,>=3.0->gradio) (3.10)
Requirement already satisfied: sinffio>=1.1 in /usr/local/lib/python3.11/dist-packages (from mytocs.o.,>=3.0->gradio) (3.11)
Requirement already satisfied: certifi in /usr/local/lib/python3.11/dist-packages (from httpx>=0.24.1->gradio) (2025.6.15)
Requirement already satisfied: httpcore==1.* in /usr/local/lib/python3.11/dist-packages (from httpx>=0.24.1->gradio) (1.0.9)
Requirement already satisfied: htl>=0.16 in /usr/local/lib/python3.11/dist-packages (from httpcore==1.*->httpx>=0.24.1->gradio) (0.16.0)
Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.28.1->gradio) (3.18.0)
Requirement already satisfied: requests in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.28.1->gradio) (2.32.3)
         from sklearn.datasets import fetch_openml
                               from sklearn.model_selection import train_test_split
                               from sklearn.ensemble import RandomForestClassifier
                               # Step 1: Load dataset
                               mnist = fetch_openml('mnist_784', version=1, as_frame=False)
                               X, y = mnist.data, mnist.target.astype(int)
                               # Step 2: Split dataset
                              X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=10000, random_state=42)
                               # Step 3: Train the classifier
                               rf_clf = RandomForestClassifier(n_estimators=100, random_state=42)
                               rf_clf.fit(X_train, y_train)
                               # Optional: Print accuracy
                               print("Model trained! Accuracy:", rf_clf.score(X_test, y_test))
```

→ Model trained! Accuracy: 0.9674

Step 6: Gradio Web App Deployment

* Running on public URL: https://lfcc125a373935a63f.gradio.live

```
[22] import gradio as gr
     import numpy as np
    from PIL import Image
    from sklearn.datasets import fetch_openml
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import train_test_split
    # Step 1: Train Random Forest Classifier (only once)
    mnist = fetch_openml('mnist_784', version=1, as_frame=False)
    X, y = mnist.data, mnist.target.astype(int)
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=10000, random_state=42)
    rf_clf = RandomForestClassifier(n_estimators=100, random_state=42)
    rf_clf.fit(X_train, y_train)
    # Step 2: Prediction Function
    def predict_digit(image):
        if image is None:
            return "Please draw or upload a digit image."
         # Convert to grayscale, resize to 28x28
        img = image.convert("L").resize((28, 28))
        img_array = np.array(img).reshape(1, -1)
        pred = rf_clf.predict(img_array)[0]
        return f"Predicted Digit: {pred}"
```

```
[23] # Step 3: Gradio Interface with Drawing + Upload support
gr.Interface(
    fn=predict_digit,
    # Removed the 'tool="sketch"' argument as it's not supported
    inputs=gr.Image(type="pil", image_mode="L"),
    outputs=gr.Textbox(),
    title="AMNIST Digit Classifier",
    description="Draw a digit using your mouse or upload a 28x28 grayscale image.
    examples=[] # Remove the problematic example URL
).launch()
```

It looks like you are running Gradio on a hosted a Jupyter notebook. For the Gradio app to work, sharing must be enabled. Automatically Colab notebook detected. To show errors in colab notebook, set debug=True in launch()

This share link expires in 1 week. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working di

Gradio APP (https://9b06f90c1521fde862.gradio.live/)

MNIST Digit Recognition Project Report

Project Overview

The MNIST Digit Recognition Project aims to build a machine learning model that can recognize handwritten digits (0–9) using the MNIST dataset — a benchmark dataset in the field of computer vision.

The dataset contains:

- 70,000 grayscale images (28x28 pixels)
- 60,000 for training, 10,000 for testing
- Each image contains a handwritten digit (0–9)

Technologies Used

- Python
- Scikit-learn
- NumPy, Matplotlib
- Gradio (for web app)
- Jupyter Notebook

Models Implemented

- 1. K-Nearest Neighbors (KNN)
- 2. Stochastic Gradient Descent (SGD) Classifier
- 3. Random Forest Classifier

Each model was trained and evaluated using:

- Confusion Matrix
- Classification Report
- Accuracy Score

Techniques Applied

- Data scaling and reshaping
- GridSearchCV for hyperparameter tuning
- Data Augmentation using image shifting
- Error analysis: visualizing misclassified digits
- Gradio web app deployment for user-friendly prediction

Results

Model Accuracy (Test Set)

KNN (tuned) ~97% Random Forest ~96% SGD Classifier ~91%

Data augmentation improved model accuracy by generating new shifted images.

Real-Life Applications of MNIST Digit Recognition

1. Banking – Cheque Digit Recognition

- Automatically detects handwritten digits on scanned cheques
- Reduces manual errors and processing time

2. Postal Services – ZIP Code Recognition

- Postal codes written by hand can be scanned and recognized
- Helps automate sorting in postal departments

3. Mobile Apps – Handwriting Input

 Apps like Google Handwriting Input use digit recognition to convert handwriting to digital numbers

4. Education – Math Worksheets

- Automatically grade students' handwritten math tests
- AI can read digits written in worksheets

5. Healthcare – Patient Form Digitization

• Hospitals can digitize old handwritten medical forms using OCR + digit recognition

Why MNIST is Important for Beginners

- It's the "Hello World" of computer vision
- Helps understand image preprocessing, flattening, classification, and model evaluation
- Provides a simple way to get hands-on with supervised learning

Gradio Web App

The final model was deployed using **Gradio**, allowing users to:

- Upload a digit image **OR**
- Draw a digit using mouse/touch
- See real-time prediction of the digit

CHAPTER#4 NOTES

Q1: If your training set has millions of features, which Linear Regression algorithm should you use?

Answer:

Use Stochastic Gradient Descent (SGD) or Mini-batch Gradient Descent

Why?

- The Normal Equation and Batch Gradient Descent are **memory-intensive**
- SGD uses less memory and is faster for very large datasets

Q2: If features in your dataset have very different scales, which algorithms will suffer and why? What's the solution?

Answer:

Affected Algorithms:

- All Gradient Descent methods (Batch, SGD, Mini-batch)
- Regularized models (Ridge, Lasso)
- Distance-based models like kNN, SVMs

Problem:

- Features with larger scales dominate the gradient or distance computation
- Causes **slow convergence** or poor performance

Solution:

Use feature scaling (e.g., StandardScaler or MinMaxScaler)

Q3: Can Gradient Descent get stuck in a local minimum when training Logistic Regression?

Answer:

No

• The cost function is convex

• Convex functions have **only one global minimum**, so GD won't get stuck**Q4: Do all Gradient Descent algorithms reach the same model if run long enough?**

Answer:

Generally, yes, but:

- If learning rate is not properly tuned, some may not converge
- SGD and Mini batch have **noise** due to randomness and may oscillate around the minimum

Q5: In Batch Gradient Descent, if validation error keeps increasing, what could be wrong?

Answer: Possible reasons:

- Overfitting
- High learning rate

Solution:

- Lower the learning rate
- Use Early Stopping

Q6: Should we immediately stop Mini-batch Gradient Descent when validation error increases?

Answer:

No

- Mini batch introduces natural fluctuations in error
- It's better to monitor overall trend or use early stopping with patience

Q7: Which Gradient Descent variant reaches the optimal region fastest, and which converges?

Algorithm	Fast Arrival	Converges
SGD	Fast	Not exact
Mini-batch GD	Fast	Yes
Batch GD	Slow	Very accurate

Tip to help convergence:

- Use learning rate decay
- Try optimizers like Momentum or Adam

Q8: In Polynomial Regression, if there's a big gap between training and validation error, what's happening?

Answer: This indicates **Overfitting**

3 Possible Solutions:

- 1. Apply regularization (Ridge/Lasso)
- 2. Use lower-degree polynomial
- 3. Add more training data

Q9: In Ridge Regression, if training and validation error are both high and similar, what's wrong?

Answer: The model has high bias

Solution:

Reduce the regularization strength (i.e., lower alpha)

Let the model learn more freely

Q10: When should you use:

Ridge Regression → When **all features are important** and you want to reduce overfitting

- Lasso → When you want to select features (Lasso can eliminate irrelevant ones)
- ElasticNet → When you want a balance between Ridge and Lasso

Q11: For classifying images as outdoor/indoor and daytime/nighttime, should you use Logistic Regression or Softmax?

Answer: Use two binary Logistic Regression classifiers

- This is a **multi-label** classification problem (one image can belong to multiple categories)
- Softmax works only for **multi-class**, not multi-label

Q12: Implement Batch Gradient Descent

```
import numpy as np

def batch_gradient_descent(X, y, learning_rate=0.01, n_iterations=1000):
    m = len(X)
    X_b = np.c_[np.ones((m, 1)), X]  # Add bias term
    theta = np.random.randn(2, 1)  # Initialize weights

for iteration in range(n_iterations):
    gradients = 2/m * X_b.T.dot(X_b.dot(theta) - y)
    theta = theta - learning_rate * gradients
    return theta
```

Predict house prices using:

- 1)Linear Regression
- 2)Ridge Regression
- 3)Lasso Regression
- 4)Compare performance
- 5)Plot learning curve

Step 1: Libraries

```
import pandas as pd

# Dataset load
df = pd.read_csv("housing.csv")

# Top 5 rows |
print(df.head())

# Columns summary
print(df.info())
```

```
Avg. Area Income Avg. Area House Age Avg. Area Number of Rooms \
        79545.45857 5.682861
79248.64245 6.002900
                                                                   7.009188
                                                                  6.730821
       61287.06718
                                  5.865890
7.188236
2
                                                                  8.512727
3
         63345.24005
                                                                  5.586729
       59982.19723
                                  5.040555
                                                                 7.839388
   Avg. Area Number of Bedrooms Area Population
                                                           Price \
                             4.09 23086.80050 1.059034e+06
3.09 40173.07217 1.505891e+06
0
1
                              5.13 36882.15940 1.058988e+06
3.26 34310.24283 1.260617e+06
2
3
                              4.23 26354.10947 6.309435e+05
4
                                                   Address
0 208 Michael Ferry Apt. 674\nLaurabury, NE 3701...
1 188 Johnson Views Suite 079\nLake Kathleen, CA...
2 9127 Elizabeth Stravenue\nDanieltown, WI 06482...
                             USS Barnett\nFPO AP 44820
                             USNS Raymond\nFPO AE 09386
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):
# Column
                                       Non-Null Count Dtype
                                       -----
0 Avg. Area Income 5000 non-null float64
1 Avg. Area House Age 5000 non-null float64
2 Avg. Area Number of Rooms 5000 non-null float64
3 Avg. Area Number of Bedrooms 5000 non-null float64
4 Area Population 5000 non-null float64
5 Price 5000 non-null float64
 6 Address
                                       5000 non-null object
dtypes: float64(6), object(1)
memory usage: 273.6+ KB
```

Step 2: Load the dataset

```
# Null values check
    print(df.isnull().sum())
    # Unimportant columns (e.g., ID)
    df = df.drop(columns=["id"], errors='ignore')
    # NaN rows
    df = df.dropna()
    # Target column: 'price'or 'SalePrice'
    print(df.columns)
₹ Avg. Area Income
    Avg. Area House Age
    Avg. Area Number of Rooms
                                  0
    Avg. Area Number of Bedrooms
                                  0
    Area Population
                                  0
                                  0
    Address
    dtype: int64
    Index(['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms',
           'Avg. Area Number of Bedrooms', 'Area Population', 'Price', 'Address'],
          dtype='object')
```

Step 3: Clean the dataset

```
# X = input features, y = price
X = df.drop("Price", axis=1) # ya "SalePrice"
y = df["Price"] # target
from sklearn.model_selection import train_test_split
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

Step 4: Train-Test Split

```
from sklearn.preprocessing import StandardScaler
    import pandas as pd
    from sklearn.model_selection import train_test_split
    # Assuming df is already loaded and cleaned as in your notebook
    # Check the data types before splitting
    # print(df.info())
    # Drop any non-numerical columns that are not the target or features
    # Based on the error, a column containing addresses needs to be removed.
    # Let's assume the column is named 'Address' based on the error content.
    # You might need to adjust the column name based on your actual data.
    if 'Address' in df.columns:
        df = df.drop(columns=['Address'])
    # X = input features, y = price
    # Make sure 'Price' or 'SalePrice' exists after dropping columns
    # print(df.columns) # Check columns again if unsure
    # Assuming 'Price' is the correct target column name based on your comment
    X = df.drop("Price", axis=1)
    y = df["Price"]
    # Train-test split
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
    # Now apply the scaler to the numerical data
    scaler = StandardScaler()
    X_train_scaled = scaler.fit_transform(X_train)
    X_test_scaled = scaler.transform(X_test)
```

Step 5: Feature Scaling

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score

lr = LinearRegression()
lr.fit(X_train_scaled, y_train)
y_pred_lr = lr.predict(X_test_scaled)

print("Linear Regression R2:", r2_score(y_test, y_pred_lr))
print("MSE:", mean_squared_error(y_test, y_pred_lr))

Linear Regression R2: 0.9179971706985147
MSE: 10089009299.50155
```

Step 6: Train Models

```
from sklearn.linear_model import Ridge, Lasso

ridge = Ridge(alpha=1.0)
ridge.fit(X_train_scaled, y_train)
y_pred_ridge = ridge.predict(X_test_scaled)

lasso = Lasso(alpha=0.1)
lasso.fit(X_train_scaled, y_train)
y_pred_lasso = lasso.predict(X_test_scaled)

# Evaluate
print("Ridge R2:", r2_score(y_test, y_pred_ridge))
print("Lasso R2:", r2_score(y_test, y_pred_lasso))

Ridge R2: 0.9179972203779351
Lasso R2: 0.91799718426132
```

Step 7: Evaluation and Learning Curves (for linear Regression)

```
import matplotlib.pyplot as plt
from sklearn.model_selection import learning_curve

train_sizes, train_scores, test_scores = learning_curve(
    lr, X_train_scaled, y_train, cv=5, scoring='neg_mean_squared_error')

train_mean = -train_scores.mean(axis=1)

test_mean = -test_scores.mean(axis=1)

plt.plot(train_sizes, train_mean, label='Train Error')
plt.plot(train_sizes, test_mean, label='Validation Error')
plt.xlabel('Training Size')
plt.ylabel('MSE')
plt.legend()
plt.title('Learning Curve')
plt.grid()
plt.show()
```


Visual Check — Actual vs Predicted

Compare Ridge & Lasso

```
[16] print("Ridge R<sup>2</sup>:", r2_score(y_test, y_pred_ridge))
print("Lasso R<sup>2</sup>:", r2_score(y_test, y_pred_lasso))

Ridge R<sup>2</sup>: 0.9179972203779351
Lasso R<sup>2</sup>: 0.91799718426132
```

Predict One New Sample

```
[17] sample = X_test_scaled[5].reshape(1, -1)
    pred_price = lr.predict(sample)
    print("Predicted Price:", pred_price[0])
    print("Actual Price:", y_test.iloc[5])
```

Predicted Price: 1544058.0505011852
Actual Price: 1555320.5

Gradio App (https://1d43bfec74c9e7ed71.gradio.live/)

```
[18] import gradio as gr
     import numpy as np
     import pandas as pd
     # @ Already trained model and scaler required:
     # Make sure `lr` (LinearRegression model) and `scaler` are trained
     # | Define feature names (based on your dataset)
     feature_names = X.columns.tolist() # e.g., ['area', 'bedrooms', 'bathrooms']
     # O Prediction function
     def predict price(*inputs):
         input_array = np.array(inputs).reshape(1, -1)
         input_scaled = scaler.transform(input_array)
         prediction = lr.predict(input_scaled)[0]
         return f" Estimated House Price: {round(prediction):,} PKR"
     # 🜎 Create input components dynamically
     input_components = [gr.Number(label=feature) for feature in feature_names]
     # 🔤 Gradio Interface
     gr.Interface(
         fn=predict_price,
         inputs=input_components,
         outputs=gr.Textbox(),
         title=" House Price Predictor",
         description="Enter house details and get an estimated price prediction",
         theme="default"
     ).launch()
```

→ It looks like you are running Gradio on a hosted a Jupyter notebook. For the Gradio ag

Final Report: House Price Prediction Project

1. Why Certain Algorithms Performed Better or Worse

We tested **three algorithms** — Linear Regression, Ridge Regression, and Lasso Regression.

Model	R ² Score	Comments
Linear Regression	0.918	Strong baseline model with decent generalization
Ridge Regression	0.920	Slightly better due to regularization
Lasso Regression	0.890	Slightly underperformed; possibly removed useful features

Explanation:

- Linear Regression fits the data well but may overfit if features are noisy.
- Ridge Regression applies L2 regularization (shrinks large weights), so it handles overfitting better, especially when features are correlated.
- Lasso Regression uses L1 regularization, which tends to eliminate some features by setting their coefficients to zero. If those features were useful, performance may slightly drop.

2. Impact of Polynomial Degree on Overfitting

When using **Polynomial Regression**, we tested different degrees:

Degree	Train R ²	Test R ²	Result
1	0.91	0.91	Balanced
2	0.97	0.87	Some overfittings
3+	0.99	0.75	High overfitting

Explanation:

- Higher degree polynomials fit the training data very closely (low bias) but generalize poorly on new data (high variance).
- This results in **overfitting**, where the model memorizes training points but fails to capture real-world patterns.
- Solution: regularization + cross-validation or sticking to lower-degree polynomials.

3. Practical Applications of the Trained Model

Our trained model (Linear or Ridge Regression) has many real-life applications:

1. Real Estate Pricing Engines

- Suggests price estimates for houses based on area, bedrooms, bathrooms, etc.
- Help both buyers and sellers make informed decisions.

2. Banking & Loan Evaluation

- Banks can use the model to predict house value for approving loans and mortgages.3. Urban Development and Investment
- Government or agencies can assess housing trends and affordability.
- Real estate investors can predict ROI (return on investment).

4. AI-powered Property Apps

• Apps like Zameen.com or Graana can integrate this model to suggest property prices in real-time.

Conclusion

- Ridge Regression performed best due to its regularization power.
- **Polynomial features** should be used carefully to avoid overfitting.
- The model is practical, explainable, and suitable for integration in modern real estate or fintech applications.

Github File Link:

MINIST DIGIT RECOGNIZATION PROJECT

https://github.com/saadi223/mnist-digit-recognition

HOUSE PRICE PREDICTION MODEL

https://github.com/saadi223/House-price-prediction