Binary Search

- pos = binarySearch(data,key=23)
- · find key position within sorted data

- optimizations
 - k-ary search for SIMD data-parallelism
 - * ?
 - interpolation search: probe expexted pos in key range
 - * e.g. search for "Bastian" in telephone book, dont start in the middle but rather at the beginning

BTree

- · self balancing tree
- · individual nodes stored as pages
 - [[Background Storage System]]
- · each node contains data or reference to data
 - values sorted within node

+ pointer left/right of value

points to leaf with smaller/bigger values

- Lookup Q_K within a node
 - Scan / binary search keys for Q_K , if $K_i=Q_K$, r
 - If node does not contain key
 - If leaf node, abort search w/ NULL (n
 - Decent into subtree Pi with K_i < Q_K ≤
- Range Scan Q_{L<K<U}
 - \blacksquare Lookup \mathbf{Q}_{L} and call next K while $\mathsf{K}{<}\mathbf{Q}_{\mathsf{U}}$ (kee

B-Tree Insert

- · always insert into leaf nodes
- if node overflows (exceeds 2k entries) ==> node splitting
- · node splitting
 - split into two leaf nodes
 - left node with first k entries
 - right node with last k entries
 - (k+1)th entry inserted into parent node
 - * may cause recursive splitting
- · self-balancing

• Example

B-Tree Insert, cont. (Example w/k=1)

B-Tree Delete

- deletion might cause underflow (<k entries)
 - underflow on inner node
 - * ==> move entry from fullest successor (node below) into inner node
 - underflow on leaf node
 - * ==> merge with sibling
- example

B-Tree Insert and Delete Example

B-Tree Insert and Delete w/ k=2

Prefix Tree

Excursus: Prefix Trees (Radix Trees, Tries)

Learned Index Structures

Excursus: Learned Index Structures

A Case For Learned Index Structures

- Sorted data array, predict position of key
- Hierarchy of simple models (stages models)
- [Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, Neoklis Polyzotis: The Case for Learned Index Structures. SIGMOD 2018]
- Tries to approximate the CDF similar to interpolation search (uniform data)

