Application of Routh-Hurwitz Stability Criterion to Second-order Systems

The characteristic equation of a second-order system is given as follows:

$$a\lambda^2 + b\lambda + c$$

The Routh-Hurwitz table for the system will be:

λ^2	а	C
λ	b	0
λ^0	$\left -\frac{\begin{vmatrix} a & c \\ b & 0 \end{vmatrix}}{b} = c \right $	

According to Routh-Hurwitz stability criterion, the system will be stable if the numbers in the second column of the table above are all positive. Therefore the coefficients *a*, *b*, and *c* have to be positive for stability.

You must have learned about Routh-Hurwitz stability in Control Systems (or classical control theory) in undergraduate school. Please use the following reference book to refresh your memory about Routh-Hurwitz stability.

Norman S. Nise, Control Systems Engineering, 7th Edition, 2015, John Wiley & Son, Inc.

The explanation above should help you with understanding the conclusion at the bottom of Slide 25 in Lecture 1.