Series A	Series B	Series C
200	200	1
200	205	989
200	202	2
200	203	3
200	190	5
Mean = 200	200	200

Measure of Dispersion

Scatteredness (homogeneity or heterogeneity)

The degree to which numerical data tend to spread about an average value is called variation or dispersion of data.

Measures of Dispersion: Range

Quartile Deviation

Mean Deviation

Standard Deviation

Absolute Measure of Dispersion:

Relative Measure of Dispersion:

Range

Definition: Difference between the value of the smallest item and the value of the largest item in the distribution.

Range =
$$L - S$$

L – Largest Value, S- Smallest Value

The relative measure corresponding to range is called the coefficient of range,

Coefficient of Range =
$$\frac{L-S}{L+S}$$

Example 1: The following are the prices of shares of a company from Monday to Saturday:

Days	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Price(Rs.)	200	210	208	160	220	250

Calculate the range and its coefficient.

Solution: Range =
$$L - S = 250 - 160 = 90$$

$$Range = Rs. 90$$

Coefficient of Range =
$$\frac{L-S}{L+S} = \frac{250-160}{250+160} = \frac{90}{410} = 0.22$$

In a frequency distribution, range is calculated by taking the difference between the lower limit of the lowest class and the upper limit of the highest class.

Example 2:

Marks	10-20	20-30	30-40	40-50	50-60	60-70
No. of Students	12	18	27	20	17	6

Range =
$$L - S = 70 - 10 = 60$$

Coefficient of Range = $\frac{L - S}{L + S} = \frac{70 - 10}{70 + 10} = \frac{60}{80} = 0.75$

Quartile Deviation

Definition: Average amount by which the two quartiles differ from the median.

Quartile Deviation (Q.D.) =
$$\frac{Q_3 - Q_1}{2}$$

• The Median \pm Q.D. covers exactly 50 per cent of the observations.

• When Q.D. is very small, it describes high uniformity or small variation of the central 50% items, and a high Q.D. means that the variation among the central items is large.

Relative measure of Q.D.

Coefficient of Q.D. =
$$\frac{Q_3 - Q_1}{Q_3 + Q_1}$$

It can be used to compare the degree of variation in different distributions.

Example 3: Calculate the value of Q.D. and its coefficient of Q.D. from the following data.

Roll No.	1	2	3	4	5	6	7
Marks	20	28	40	12	30	15	50

Solution: Marks in ascending order 12 15 20 28 30 40 50

$$Q_1 = \text{Size of } \frac{N+1}{4} \ th \ \text{item} = \text{Size of } \frac{7+1}{4} = 2^{\text{nd}} \ \text{item}.$$
 Size of 2^{nd} item is 15. Hence $Q_1 = 15$

$$Q_3 = \text{Size of } 3\left(\frac{N+1}{4}\right) th \text{ item} = \text{Size of } 3\left(\frac{7+1}{4}\right) = 6^{th} \text{ item.}$$

Size of 6th item is 40. Hence $Q_3 = 40$.

$$\therefore Q.D. = \frac{Q_3 - Q_1}{2} = \frac{40 - 15}{2} = 12.5$$

Coefficient of Q.D.
$$=\frac{Q_3-Q_1}{Q_3+Q_1}=\frac{40-15}{40+15}=\mathbf{0.455}$$

Example 4: Compute the value of Q.D. and its coefficient from the following data.

Marks	10	20	30	40	50	60
No. of Students	4	7	15	8	7	2

Solution:

Marks	Frequency	cumulative frequency
10	4	4
20	7	11
30	15	26
40	8	34
50	7	41
60	2	43

$$Q_1 = \text{Size of } \frac{N+1}{4} \ th \ \text{item} = \text{Size of } \frac{43+1}{4} = 11^{\text{th}} \ \text{item}.$$
 Size of 11th item is 20. Hence $Q_1 = 20$

$$Q_3 = \text{Size of } 3\left(\frac{N+1}{4}\right) \ th \ \text{item} = \text{Size of } 3\left(\frac{43+1}{4}\right) = 33^{\text{rd}} \ \text{item}.$$
 Size of 33rd item is 40. Hence $Q_3 = 40$.

$$Q.D. = \frac{Q_3 - Q_1}{2} = \frac{40 - 20}{2} = 10$$

Coefficient of Q.D.
$$=\frac{Q_3-Q_1}{Q_3+Q_1}=\frac{40-20}{40+20}=0.333$$

Example 4: Compute the value of Q.D. and coefficient of Q.D. from the following data

<i>C.I.</i>	10-20	20-30	30-40	40-50	50-60	60-70	70-80
f	12	19	5	10	9	6	6

Solution:

Marks	Frequency	Cumulative Frequency
10-20	12	12
20-30	19	31
30-40	5	36
40-50	10	46
50-60	9	55
60-70	6	61
70-80	6	67
	N = 67	

$$Q_1 = \text{Size of } \frac{N}{4} th \text{ item} = \text{Size of } \frac{67}{4} = 16.75^{\text{th}} \text{ item.}$$

$$Q_1 \text{ lies in the interval } \textbf{20-30}$$

$$Q_1 = l + \frac{\frac{N}{4} - c.f.}{f} \times i$$
 $l = 20, N/4 = 16.75, c.f. = 12 f = 19, i = 10$

$$Q_1 = 20 + \frac{\frac{67}{4} - 12}{19} \times 10 = 20 + 2.5 = 22.5$$

Hence
$$Q_1 = 22.5$$

 $Q_3 = \text{Size of } \frac{3N}{4} th \text{ item} = \text{Size of } \frac{3 \times 67}{4} = 50.25^{\text{th}} \text{ item.}$ $Q_3 = \text{Size of } \frac{3N}{4} th \text{ item} = \text{Size of } \frac{3 \times 67}{4} = 50.25^{\text{th}} \text{ item.}$

$$Q_3 = l + \frac{\frac{3N}{4} - c.f.}{f} \times i$$
 $l = 50, 3N/4 = 50.25, c.f. = 46 f = 9, i = 10$

$$Q_3 = 50 + \frac{50.25 - 46}{9} \times 10 = 50 + 4.72 = 54.72$$

Hence $\mathbf{Q_3} = \mathbf{54.72}$

$$Q.D. = \frac{Q_3 - Q_1}{2} = \frac{54.72 - 22.5}{2} = 16.11$$

Coefficient of $Q.D. = \frac{Q_3 - Q_1}{Q_3 + Q_1} = \frac{54.72 - 22.5}{54.72 + 22.5} = 0.4172$

Mean Deviation

Definition: M.D. is the average difference between the observations in a distribution and the *median* or *mean* of that series.

Mean Deviation or M.D. =
$$\frac{\sum |D|}{N}$$

Where |D| is the deviations from *median* ignoring signs.

For individual observations:

- (i) Compute median of the series.
- (ii) Take deviations of items from median ignoring \pm signs and denote these deviations by |D|.
- (iii) Obtain the total of these observations, $\sum |D|$.
- (iv) Divide the total obtained in step (iii) by the number of observations to get the value of *mean deviation*.

Relative Measure of M.D.:

Co-efficient of M.D. =
$$\frac{M.D.}{Median}$$

Example 5: Calculate the mean deviation of the two income groups.

I (Rs.)	II (Rs.)
4000	3000
4200	4000
4400	4200
4600	4400
4800	4600
	4800
	5800

Solution:

Grou	ıp I	Group II		
Rs.	D	Rs.	D	
4000	400	3000	1400	
4200	200	4000	400	
4400	0	4200	200	
4600	200	4400	0	
4800	400	4600	200	
		4800	400	
		5800	1400	
N=5	$\sum D = 1200$	N = 7	$\sum D = 4000$	

Mean deviation : **I group** M.D. =
$$\frac{\sum |D|}{N}$$

Median =
$$\frac{N+1}{2}$$
 th item = $\frac{5+1}{2}$ = 3rd item. Size of the 3rd item = 4400.
M.D. = $\frac{1200}{5}$ = 240

i.e., the average deviation of the individual incomes from the median income is **Rs. 240**.

Mean deviation : II group
$$M.D. = \frac{\sum |D|}{N}$$

Median =
$$\frac{N+1}{2}$$
 th item = $\frac{7+1}{2}$ = 4th item.

Size of the 4^{th} item = 4400.

$$M.D. = \frac{4000}{5} = 571.43$$

i.e., the average deviation of the individual incomes from the median income is **Rs. 571.43**.

Co-efficient of M.D. (I - Group) =
$$\frac{M.D.}{Median} = \frac{240}{4400} = 0.055$$

(II- Group) = $\frac{571.43}{4400} = 0.13$

Mean deviation – Discrete Series

M.D.
$$=\frac{\sum f|D|}{N}$$

- (i) Compute median of the series.
- (ii) Take deviations of items from median ignoring \pm signs and denote these deviations by |D|.
- (iii) Multiply these deviations by the respective frequencies and Obtain the total, $\sum f|D|$.
- (iv) Divide the total obtained in step (iii) by the number of observations to get the value of *mean deviation*.

Example 6: The number of telephone calls received at an exchange in 245 successive one-minute intervals are shown in the following frequency distribution. Compute the mean deviation about the median.

Number of Calls	0	1	2	3	4	5	6	7
Frequency	14	21	25	43	51	40	39	12

Solution:

No. of Calls	f	c.f.	D	f D
0	14	14	4	56
1	21	35	3	63
2	25	60	2	50
3	43	103	1	43
4	51	154	0	0
5	40	194	1	40
6	39	233	2	78
7	12	245	3	36
	N = 245			$\sum f D = 366$

Median = Size of
$$\frac{N+1}{2}$$
 th item = $\frac{245+1}{2}$ = 123rd item.

Hence the median value is 4.

M.D.
$$=\frac{\sum f|D|}{N}=\frac{366}{245}=$$
1.49

In Continuous Series:

We have to obtain the mid-points of the various classes and take the deviations of these **mid-points** from median.

Calculate the coefficient of mean deviation from the following data:

Marks	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90
No. of Students	2	6	12	18	25	20	10	7

Mean deviation = 12.94

Standard deviation

For the frequency distribution $x_i \mid f_i$; i = 1, 2, ..., n,

Variance =
$$\sigma^2 = \frac{\sum (x_i - \bar{x})^2}{N} = \frac{1}{N} \sum x_i^2 - (\frac{1}{N} \sum x_i)^2 = \frac{1}{N} \sum x_i^2 - \bar{x}^2$$

(ii) Discrete or Continuous frequency distribution

$$\sigma^2 = \frac{1}{N} \sum_i f_i (x_i - \bar{x})^2$$

$$= \frac{1}{N} \sum_i f_i x_i^2 - \left(\frac{1}{N} \sum_i f_i x_i\right)^2 \text{ or } \frac{1}{N} \sum_i f_i d_i^2 - \left(\frac{1}{N} \sum_i f_i d_i\right)^2$$

Standard deviation =
$$\sqrt{variance}$$
 $\sigma = \sqrt{\frac{1}{N} \sum (x_i - \bar{x})^2}$ or $\sqrt{\frac{1}{N} \sum f_i (x_i - \bar{x})^2}$

 \overline{x} – Arithmetic mean of the distribution

Coefficient of Variation

Coefficient of Variation : C.V. =
$$\frac{\sigma}{\bar{x}}$$
 x 100 (Relative Measure)

The score of two players A and B in ten innings during a certain season are:

A										
В	19	31	48	53	67	90	10	62	40	80

Find which of the two players A, B is more consistent in scoring.

Solution: Calculation of Coefficient of Variation

X	$(X-\bar{X})$	$(X-\overline{X})^2$
32	-14	196
28	-18	324
47	+1	1
63	+17	289
71	+25	625
39	-7	49
10	-36	1296
60	+14	196
96	+50	2500
14	-32	1024
$\sum X = 460$	0	6500

Y	$(Y-\overline{Y})$	$(Y-\overline{Y})^2$
19	-31	961
31	-19	361
48	-2	4
53	+3	9
67	+17	289
90	+40	1600
10	-40	1600
62	+12	144
40	-10	100
80	+30	900
$\sum Y = 500$	0	5968

$$\bar{X} = \frac{460}{10} = 46$$

$$\sigma_A^2 = \frac{\sum (x_i - \bar{x})^2}{N} = \frac{6500}{10} = 650$$

$$\overline{Y} = \frac{500}{10} = 50$$

$$\sigma_B^2 = \frac{\sum (y_i - \overline{y})^2}{N} = \frac{5968}{10} = 596.8$$

$$\sigma_A = \sqrt{\frac{\sum (x_i - \bar{x})^2}{N}} = 25.5$$

$$\sigma_A = \sqrt{\frac{\sum (x_i - \bar{x})^2}{N}} = 25.5$$
 $\sigma_B = \sqrt{\frac{\sum (y_i - \bar{y})^2}{N}} = 24.43$

C.V._(B) =
$$\frac{\sigma_B}{\bar{y}}$$
 x 100 = 48.86

$$\sum X = 460$$
; $\sum (X_i - \bar{x}) = 0$; $\sum (X_i - \bar{x})^2 = 6500$

$$\sum Y = 500; \quad \sum (Y_i - \bar{y}) = 0; \quad \sum (Y_j - \bar{y})^2 = 5968$$

$$\sigma_{A} = 25.5$$

$$\sigma_B = 24.43$$

$$C.V._{(A)} = 55.43$$

$$C.V._{(B)} = 48.86$$

4) Suppose that samples of polythene bags from two manufacturers, A and B, are tested by a prospective buyer for bursting pressure, with the following results:

Bursting	Number of Bags			
Pressure (lb.)	$m{A}$	\boldsymbol{B}		
5.0 - 9.9	2	9		
10.0 - 14.9	9	11		
15.0 - 19.9	29	18		
20.0 - 24.9	54	32		
25.0 - 29.9	11	27		
30.0 - 34.9	5	13		

Which set of bags has the highest average burning pressure? Which has more uniform pressure? If prices are the same, which manufacturer's bags would be preferred by the buyer? **Why**?

For Manufacturer A

Bursting Pressure (lb.)	m	f		fd	fd^2
4.95-9.95	7.45	2	-2	-4	4
9.95-14.95	12.45	9	-1	-9	9
14.95-19.95	17.45	29	0	0	0
19.95-24.95	22.45	54	1	54	54
24.95-29.95	27.45	11	2	22	44
29.95-34.95	32.45	5	3	15	45
		N = 110		$\sum f d = 78$	$\sum f d^2 = 160$

$$\bar{X}_A = A + \frac{\sum_{i=1}^n f_i d_i}{N} \times i$$

Here, $A = 17.45, \sum f d = 78, N = 110, i = 5$

$$\bar{X}_A = 17.45 + \frac{78}{110} \times 5 = 21$$

$$\sigma_A = \sqrt{\frac{\sum f_i d_i^2}{N} - \left(\frac{\sum f_i d_i}{N}\right)^2} \times i$$

$$=\sqrt{1.455-0.503}$$
 \times 5 = 4.88

C.V. =
$$\frac{\sigma_A}{\bar{x}} \times 100 = 23.24\%$$

For Manufacturer B

Bursting Pressure (lb.)	m	f		fd	fd^2
4.95-9.95	7.45	9	-2	-18	36
9.95-14.95	12.45	11	-1	-11	11
14.95-19.95	17.45	18	0	0	0
19.95-24.95	22.45	32	+1	+32	32
24.95-29.95	27.45	27	+2	+54	108
29.95-34.95	32.45	13	+3	+39	117
		N = 110		$\sum fd = 96$	$\sum f d^2 = 304$

$$\bar{X}_B = A + \frac{\sum_{i=1}^n f_i d_i}{N} \times i$$

Here, A = 17.45, $\sum fd = 96$, N = 110, i = 5

$$\bar{X}_B = 17.45 + \frac{96}{110} \times 5 = 21.81$$

$$\sigma_{B} = \sqrt{\frac{\sum f_{i} d_{i}^{2}}{N} - \left(\frac{\sum f_{i} d_{i}}{N}\right)^{2}} \times i$$

$$=\sqrt{2.764-0.762}$$
 \times 5 = 7.075

C.V. =
$$\frac{\sigma_B}{\bar{x}} \times 100 = 32.44\%$$

$$\bar{X}_A = 21$$

$$\bar{X}_B = 21.81$$

$$\sigma_{A} = 4.88$$

$$\sigma_{\!\scriptscriptstyle B} = 7.07$$

$$C.V._{(A)} = 23.24\%$$

$$C.V._{(B)} = 32.44\%$$

Since the average bursting pressure is higher for manufacturer B, the bags of manufacturer B have higher bursting pressure.