يسم الله الرحمن الرحيم

ساختمانهای داده

جلسه ۸

مجتبی خلیلی دانشکده برق و کامپیوتر دانشگاه صنعتی اصفهان

حل رابطه بازگشتی

○ رابطههای بازگشتی را میتوان به روشهای زیر حل کرد:

- حدس و استقراء (substitution method)
 - بسط دادن (Expanding)
 - درخت بازگشت (recursion-tree)
 - قضیه اصلی (Master Theorem)

حل رابطه بازگشتی (مثال ۱)

حل رابطه بازگشتی زیر:

○ آیا بهترین حدس بود؟

$$T(n) = O(n^2)$$

حل رابطه بازگشتی (مرتبسازی ادغامی)

حل رابطه بازگشتی زیر:

$$T(n) = \begin{cases} 1 & \text{if n= 1} \\ 2T(\frac{n}{2}) + cn & \text{otherwise} \end{cases}$$

$$T(n) = O(n \log n) \Rightarrow T(n) \le d \ n \log n \qquad d > 0, n \ge n_0$$

حل رابطه بازگشتی زیر:

$$T(n) = \begin{cases} 1 & \text{if n= 1} \\ 2T(\frac{n}{2}) + n & \text{otherwise} \end{cases}$$

$$T(n) = O(n^2) \Rightarrow T(n) \le c n^2$$

اثبات حکم به کمک فرض:

$$T(n) = 2T(n/2) + n$$

$$\leq 2c(n/2)^{2} + n$$

$$= 2cn^{2}/4 + n$$

$$= 1/2cn^{2} + n$$

$$= cn^{2} - (1/2cn^{2} - n)$$

$$-(1/2cn^{2} - n) \leq 0$$

$$-1/2cn^{2} + n \leq 0$$

$$cn \geq 2$$

حل رابطه بازگشتی زیر:

$$T(n) = \begin{cases} 1 & \text{if n= 1} \\ 2T(\frac{n}{2}) + n & \text{otherwise} \end{cases}$$

$$T(n) = O(n) \Rightarrow T(n) \le c n$$

اثبات حکم به کمک فرض:

$$T(n) = 2T(n/2) + n$$

$$\leq 2cn/2 + n$$

$$= cn + n$$

$$\leq cn$$

حل رابطه بازگشتی (مرتبسازی ادغامی)

حل رابطه بازگشتی زیر:

$$T(n) = \begin{cases} 1 & \text{if n= 1} \\ 2T(\frac{n}{2}) + cn & \text{otherwise (power of 2)} \end{cases}$$

$$T(n) = O(n \log n) \Rightarrow T(n) \le d \ n \log n \qquad d > 0, n \ge n_0$$

. فرض: برای $n \geq n_0$ و به ازای k < n فرض کنیم رابطه برقرار 0

$$T(k) \le d k \log k$$

حکم:

$$T(n) \le d n \log n$$

فرض به حکم:

$$T(n) = 2T(n/2) + cn$$

$$\leq 2dn/2\log(n/2)+cn$$

$$\leq dn(\log n - \log 2) + cn$$

$$\leq dn \log n - dn + cn$$

$$\leq dn \log n$$

حل رابطه بازگشتی (مرتبسازی ادغامی)

n=2 و در نظر گرفتن برای $n_0=2$ با فرض $n_0=2$

$$T(2) = 2T\left(\frac{2}{2}\right) + 2c = 2 + 2c$$

$$T(n) \le d \ n \log n \quad \stackrel{\mathsf{n=2}}{\longrightarrow} \quad$$

$$1 + c \leq d$$

مثال

یافتن کران بالا برای

$$T(n) = 2T(n/2) + \Theta(1)$$

Let's guess that the solution is T(n) = O(n) \longrightarrow $T(n) \le cn$ for $n \ge n_0$,

برای اثبات حکم:

$$T(n) \leq 2(c(n/2)) + \Theta(1)$$
$$= cn + \Theta(1),$$

مثال

0 اصلاح حدس:

 $T(n) \le cn - d$, where $d \ge 0$ is a constant.

و در نتیجه:

$$T(n) \leq 2(c(n/2) - d) + \Theta(1)$$

$$= cn - 2d + \Theta(1)$$

$$\leq cn - d - (d - \Theta(1))$$

$$\leq cn - d$$

حل رابطه بازگشتی

○ رابطههای بازگشتی را میتوان به روشهای زیر حل کرد:

- حدس و استقراء (substitution method)
 - بسط دادن (Expanding)
 - درخت بازگشت (recursion-tree)
 - قضیه اصلی (Master Theorem)

حل رابطه بازگشتی

همچنین فرض کنید
$$1 \leq a \geq 1$$
 و $a \geq 1$ یک ثابت باشد. $T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^p)$. $T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^p)$. آنگاه:

$$T(n) = \begin{cases} O(n^p \log(n)) & \text{if } a = b^p \\ O(n^p) & \text{if } a < b^p \\ O(n^{\log_b(a)}) & \text{if } a > b^p \end{cases}$$