Problem 1.a. Let expression E: $e \to 0 \mid 3 \mid e + e \mid e * e$, and a semantic function $[\![\cdot]\!] \in E \to \mathbb{Z}$. Then, $[\![0]\!] = 0$, $[\![3]\!] = 3$, $[\![e_1 + e_2]\!] = [\![e_1]\!] + [\![e_2]\!]$, $[\![e_1 * e_2]\!] = [\![e_1]\!] \times [\![e_2]\!]$.

Problem 1.b. Theorem: $\forall e \in E, [e] = 3k$ where $k \in \mathbb{Z}$.

- (1) Use structional induction on e.
- (2) Base Case:
 - $(2.1) \ e \to 0$: $[e] = [0] = 0 = 3 \cdot 0$.
 - $(2.2) \ e \rightarrow 3$: $[e] = [3] = 3 = 3 \cdot 1$.
- (3) $e \to e_1 + e_2$:
 - $(3.1) [e] = [e_1 + e_2] = [e_1] + [e_2].$
 - (3.2) By induction hypothesis, $\llbracket e_1 \rrbracket = 3k_1$, $\llbracket e_2 \rrbracket = 3k_2$ where $k_1, k_2 \in \mathbb{Z}$.
 - (3.3) \therefore $\llbracket e \rrbracket = \llbracket e_1 \rrbracket + \llbracket e_2 \rrbracket = 3k_1 + 3k_2 = 3 \cdot (k_1 + k_2), \text{ and } (k_1 + k_2) \in \mathbb{Z}.$
- (4) $e \to e_1 * e_2$:
 - $(4.1) [e] = [e_1 * e_2] = [e_1] \times [e_2].$
 - (4.2) By induction hypothesis, $\llbracket e_1 \rrbracket = 3k_1$, $\llbracket e_2 \rrbracket = 3k_2$ where $k_1, k_2 \in \mathbb{Z}$.
 - (4.3) $\|e\| = \|e_1\| \times \|e_2\| = 3k_1 \times 3k_2 = 3 \cdot (3k_1k_2)$, and $3k_1k_2 \in \mathbb{Z}$.

Problem 1.c.
$$\frac{\langle e_1 \rangle \to v_1, \langle e_2 \rangle \to v_2}{\langle 0 \rangle \to 0} \frac{\langle e_1 \rangle \to v_1, \langle e_2 \rangle \to v_2}{\langle e_1 + e_2 \rangle \to v_1 + v_2} \frac{\langle e_1 \rangle \to v_1, \langle e_2 \rangle \to v_2}{\langle e_1 * e_2 \rangle \to v_1 \times v_2}$$

Problem 2.a. Let $d_i = i$. Obviously, $\{d_i\}$ is a chain.

- (1) $f(|\cdot|_i d_i) = f(1 \sqcup 2 \sqcup \cdots) = f(\infty) = \top$
- $(2) \bigsqcup_{i} f(d_{i}) = f(1) \sqcup f(2) \sqcup \cdots \sqcup f(n) \sqcup \cdots = \bot \sqcup \bot \sqcup \cdots \bot \sqcup \cdots = \bot$
- (3) $f(| \cdot | d_i) \neq | \cdot | f(d_i)$, hence f is not continuous.

Problem 2.b. f_k is continuous.

- (1) $x \sqsubseteq x' \Rightarrow f(x) \sqsubseteq f(x')$ (i.e f is monotonic)
 - $(1.1) \ x' \le k \Rightarrow f(x) = f(x') = \bot \ (\because x \le x')$
 - $(1.2) \ x \le k \land k < x' \Rightarrow f(x) = \bot \sqsubseteq \top = f(x')$
 - $(1.3) k < x \Rightarrow f(x) = f(x') = \top$
- $(2) \ \forall \{d_i\}, \ f(\bigsqcup_i d_i) = \bigsqcup_i f(d_i).$
 - (2.1) Assume $k \neq \infty$. (Otherwise, $\forall x \ f_{\infty}(x) = \bot$ and obviously satisfies (2))
 - (2.2) Let $x \in \{d_i\}$ and assume that x > k.
 - (2.3) If x exists, $\bigsqcup_i d_i > k$ so $f_k(\bigsqcup_i d_i) = \top$, $\bigsqcup_i f_k(d_i) = \cdots \sqcup f_k(x) \sqcup \cdots = \cdots \sqcup \top \sqcup \cdots = \top$.
 - (2.4) Otherwise, $\bigsqcup_i d_i \leq k$ so $f_k(\bigsqcup_i d_i) = \bot$, $\bigsqcup_i f_k(d_i) = \bot \sqcup \bot \sqcup \cdots \sqcup \bot = \bot$.

Problem 2.c. f_0, f_1, \cdots constitute a chain, and f_{∞} is the least element.

- $(1) \ n \le m \Rightarrow f_m \sqsubseteq f_n$
 - $(1.1) x \le n \Rightarrow f_m(x) = f_n(x) = \bot$
 - $(1.2) \ n < x \le m \Rightarrow f_m(x) = \bot \sqsubseteq \top = f_n(x)$
 - $(1.3) m < x \Rightarrow f_m(x) = f_n(x) = \top$
 - (1.4) $\therefore \forall x \in P \ f_m(x) \sqsubseteq f_n(x)$
- (2) By (1), $\forall n \in P$ $f_{\infty} \sqsubseteq f_n$. So, f_{∞} is the least element.

Problem 3. Use the fixed point theorem.

(0) Let
$$f^{\perp}(x) = \begin{cases} \bot & \text{if } x = \bot \\ f(x) & \text{otherwise} \end{cases}$$
 and $\llbracket \cdot \rrbracket : \mathbb{Z}_{\bot} \to \mathbb{Z}_{\bot}$.

(1) In plain English, f is a function returns 1 if $z \ge 0$, otherwise returns $-z + 1$.

- (2) $[\![f]\!] = fix(F)$ where $F = (\lambda f. \lambda z. \text{ if } z \ge 0 \text{ then } 1 \text{ else } (1 + f^{\perp}(z+1))).$
- (3) $\llbracket f \rrbracket = fix(F) = \coprod \{F^0(\bot_f), F^1(\bot_f), \dots\}$ where $\bot_f = \lambda z.\bot$. $(3.1) F^0(\bot_f) = \lambda z. \bot.$

(3.2)
$$F^1(\perp_f) = \lambda z$$
. if $z \ge 0$ then 1 else $(1 + (\lambda z.\perp)^\perp (z+1)) = \begin{cases} 1 & \text{if } z \ge 0 \\ \perp & \text{otherwise} \end{cases}$

(3.3)
$$F^2(\perp_f) = \lambda z$$
. if $z \ge 0$ then 1 else $(1 + (F^1(\perp_f))^{\perp}(z+1))) = \begin{cases} 1 & \text{if } z \ge 0 \\ 2 & \text{if } z = -1 \\ \perp & \text{otherwise} \end{cases}$

$$(3.1) \ F^{0}(\bot_{f}) = \lambda z.\bot.$$

$$(3.2) \ F^{1}(\bot_{f}) = \lambda z. \text{ if } z \ge 0 \text{ then 1 else } (1 + (\lambda z.\bot)^{\bot}(z+1))) = \begin{cases} 1 & \text{if } z \ge 0 \\ \bot & \text{otherwise} \end{cases}$$

$$(3.3) \ F^{2}(\bot_{f}) = \lambda z. \text{ if } z \ge 0 \text{ then 1 else } (1 + (F^{1}(\bot_{f}))^{\bot}(z+1))) = \begin{cases} 1 & \text{if } z \ge 0 \\ 2 & \text{if } z = -1. \\ \bot & \text{otherwise} \end{cases}$$

$$(3.4) \therefore F^{n}(\bot_{f}) = \lambda z. \text{ if } z \ge 0 \text{ then 1 else } (1 + (F^{n-1}(\bot_{f}))^{\bot}(z+1))) = \begin{cases} 1 & \text{if } z \ge 0 \\ -z+1 & \text{if } 0 > z \ge -n+1. \\ \bot & \text{otherwise} \end{cases}$$

$$(4) \therefore \llbracket f \rrbracket = \begin{cases} 1 & \text{if } z \ge 0 \\ -z+1 & \text{otherwise} \end{cases}$$
 and matches to the plain meaning that is described in (1).

(4)
$$\therefore [\![f]\!] = \begin{cases} 1 & \text{if } z \ge 0 \\ -z + 1 & \text{otherwise} \end{cases}$$
 and matches to the plain meaning that is described in (1).