Global Air Quality and Respiratory Health Outcomes

July 1, 2025

```
import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
[3]: | df = pd.read_csv('../data/air_quality_health_dataset.csv')
     print(df.head())
     print(df.info())
                                                                 temperature
                                  aqi
                                       pm2_5
                                              pm10
                                                     no2
                                                             о3
               city
                           date
                                                     2.2
       Los Angeles
                     2020-01-01
                                  65
                                        34.0
                                              52.7
                                                           38.5
                                                                         33.5
                                        33.7
                                              31.5
    1
           Beijing
                     2020-01-02
                                  137
                                                    36.7
                                                           27.5
                                                                         -1.6
    2
             London
                     2020-01-03
                                  266
                                        43.0
                                              59.6
                                                    30.4
                                                           57.3
                                                                         36.4
    3
       Mexico City
                     2020-01-04
                                  293
                                        33.7
                                              37.9
                                                    12.3
                                                          42.7
                                                                        -1.0
                                        50.3
                                              34.8
    4
             Delhi
                     2020-01-05
                                 493
                                                    31.2 35.6
                                                                         33.5
       humidity
                  hospital_admissions population_density
                                                           hospital_capacity
    0
              33
                                     5
                                                    Rural
                                                                          1337
    1
              32
                                     4
                                                    Urban
                                                                         1545
              25
                                    10
                                                 Suburban
                                                                         1539
    3
              67
                                    10
                                                    Urban
                                                                          552
              72
                                     9
                                                 Suburban
                                                                         1631
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 88489 entries, 0 to 88488
    Data columns (total 12 columns):
         Column
                               Non-Null Count
                                                Dtype
                                88489 non-null
                                                object
     0
         city
     1
         date
                                88489 non-null
                                                object
     2
         aqi
                                88489 non-null
                                                int64
     3
                               88489 non-null
                                                float64
         pm2_5
     4
         pm10
                               88489 non-null
                                                float64
     5
         no2
                                88489 non-null
                                                float64
     6
         о3
                                88489 non-null
                                                float64
     7
         temperature
                                88489 non-null
                                                float64
         humidity
                               88489 non-null
                                                int64
         hospital_admissions
                               88489 non-null
                                                int64
         population_density
                               88489 non-null
                                                object
         hospital_capacity
                               88489 non-null
                                                int64
```

```
memory usage: 8.1+ MB
     None
 [5]: # Missing values are checked for each column
      print("Missing values:\n", df.isna().sum())
     Missing values:
      city
                             0
     date
                            0
     aqi
                            0
     pm2_5
                            0
                            0
     pm10
     no2
     о3
     temperature
                            0
     humidity
                            0
     hospital_admissions
                            0
     population_density
                            0
     hospital_capacity
                            0
     dtype: int64
 [7]: # Convert the 'date' column to datetime format
      df['date'] = pd.to_datetime(df['date'])
[15]: # Top 10 days with the highest PM2.5 levels
      top_pm25 = df.nlargest(10, 'pm2_5')[['city', 'date', 'pm2_5']]
      print(top_pm25)
                   city
                              date pm2_5
     52628
                  Delhi 2164-02-03 109.9
     43181
                  Delhi 2138-03-24 108.7
     31482
                  Cairo 2106-03-13 105.2
            Mexico City 2034-02-20 103.8
     5164
     75840
                  Delhi 2227-08-24
                                    96.3
                  Delhi 2138-09-09
     43350
                                    95.9
     10471 Mexico City 2048-09-01
                                     94.7
                  Delhi 2130-09-14
                                     94.1
     40433
     57637
                  Delhi 2177-10-21
                                     93.4
     77990
                  Delhi 2233-07-13
                                     92.9
[17]: #Line plot of Air Quality Index (AQI) in London
      la = df[df['city']=='London']
      plt.plot(la['date'], la['aqi'])
      plt.title('AQI Over Time - London')
      plt.ylabel('AQI')
      plt.xlabel('Date')
      plt.show()
```

dtypes: float64(5), int64(4), object(3)


```
[35]: # Average hospital admissions per city (Top 10 cities)
df.groupby('city')['hospital_admissions'].mean().sort_values(ascending=False).

→head(10)
```

[35]: city Cairo 8.108519 8.096039 Beijing London 8.057409 Delhi 8.044323 Tokyo 8.028469 Los Angeles 8.021215 Mexico City 8.007550 São Paulo 7.952517

Name: hospital_admissions, dtype: float64

[37]: # Scatter plot showing the relationship between PM2.5 levels and hospital → admissions

sns.scatterplot(data=df, x='pm2_5', y='hospital_admissions', alpha=0.3)

plt.title('PM2.5 vs Hospital Admissions')

plt.show()


```
[41]: # Scatter plot showing the relationship between temperature and hospital

→ admissions

sns.scatterplot(data=df, x='temperature', y='hospital_admissions')

plt.title('Temperature vs Admissions')

plt.show()
```



```
[43]: # Average Air Quality Index (AQI) by population density

df.groupby('population_density')['aqi'].mean()
```

[43]: population_density
Rural 252.397079

Suburban 248.999131 Urban 249.052207 Name: aqi, dtype: float64

```
[45]: # Boxplot of AQI levels by population density
sns.boxplot(data=df, x='population_density', y='aqi')
plt.title('AQI by Population Density')
plt.show()
```



```
[49]: # Heatmap showing average pollution levels (PM2.5, PM10, NO2, O3) by city

pollutants = df.pivot_table(index='city', values=['pm2_5','pm10','no2','o3'],

→aggfunc='mean')

sns.heatmap(pollutants, cmap='coolwarm')

plt.title('Average Pollutants by City')

plt.show()
```



```
[61]: # Top cities with the highest total hospital admissions
df.groupby('city')['hospital_admissions'].sum().nlargest(10)
```

```
São Paulo 13901
Name: hospital_admissions, dtype: int64
```

2402

1101

676

Tokyo

Cairo

São Paulo

dtype: int64

```
[105]: #City Comparison of Extreme Pollution Days
       # Count days with AQI > 300 (Hazardous) by city
       hazardous_days = df[df['aqi'] > 300].groupby('city').size().

→sort_values(ascending=False)
       print("Days with Hazardous AQI (>300) by City:")
       print(hazardous_days)
       plt.figure(figsize=(10, 6))
       hazardous_days.plot(kind='bar', color='darkred')
       plt.title('Days with Hazardous AQI (>300) by City')
       plt.xlabel('City')
       plt.ylabel('Number of Days')
      plt.xticks(rotation=45, ha='right')
       plt.tight_layout()
      plt.show()
      Days with Hazardous AQI (>300) by City:
      city
      Delhi
                     10492
      Beijing
                      8752
      Mexico City
                      5250
      Los Angeles
                      3617
      London
                      2771
```



```
[71]: # Annual average AQI over the years

mask = (df['date']>='2020-01-01')&(df['date']<'2021-01-01')

df[mask].groupby('city')['aqi'].mean()
```

[71]: city

Beijing 273.400000 Cairo 236.916667 Delhi 245.412281 London 221.064516 Los Angeles 268.189189 Mexico City 249.177419 São Paulo 392.000000 Tokyo 237.458333 Name: aqi, dtype: float64

```
[85]: #Simple Linear Regression Analysis: Relationship between PM2.5 and Hospital

→Admissions

sns.regplot(x='pm2_5', y='hospital_admissions', data=df.sample(1000))

plt.title('Pollution vs Health Regression')

plt.show()
```

Pollution vs Health Regression


```
[95]: # 18. AQI Distribution for the Top 7 Most Polluted Cities
top7 = df.groupby('city')['aqi'].mean().nlargest(7).index

plt.figure(figsize=(12, 6))
sns.boxplot(data=df[df['city'].isin(top7)], x='city', y='aqi')
plt.title('AQI Distribution - Top 7 Cities')
plt.xticks(rotation=45)
plt.ylabel('Air Quality Index (AQI)')
plt.xlabel('City')
plt.tight_layout()
plt.show()
```



```
[93]: sns.histplot(df['pm10'], bins=30)
plt.title('PM10 Distribution')
plt.show()
```



```
[103]: # City-Specific AQI Histogram
# Plot AQI distribution for top polluted city
top_city = df.groupby('city')['aqi'].mean().idxmax()
plt.figure(figsize=(10, 6))
sns.histplot(df[df['city'] == top_city]['aqi'], bins=30, color='red')
plt.title(f'AQI Distribution in {top_city}')
plt.xlabel('AQI')
plt.ylabel('Frequency')
plt.tight_layout()
plt.show()
```



```
[99]: # Weekend vs. Weekday AQI Comparison
    # Compare AQI on weekends vs. weekdays
    df['day_of_week'] = df['date'].dt.dayofweek
    df['is_weekend'] = df['day_of_week'].isin([5, 6])
    aqi_weekend = df.groupby('is_weekend')['aqi'].mean()
    print("Average AQI: Weekday vs. Weekend:")
    print(aqi_weekend)
    plt.figure(figsize=(8, 6))
    aqi_weekend.plot(kind='bar', color=['blue', 'green'])
    plt.title('Average AQI: Weekday vs. Weekend')
    plt.xlabel('Day Type')
```

```
plt.ylabel('Average AQI')
plt.xticks([0, 1], ['Weekday', 'Weekend'], rotation=0)
plt.tight_layout()
plt.show()
```

Average AQI: Weekday vs. Weekend:

is_weekend

False 250.043002 True 247.688078

Name: aqi, dtype: float64


```
[109]: #Monthly AQI Variance by City
# Calculate variance of AQI by month for each city
df['month'] = df['date'].dt.month
aqi_variance = df.groupby(['city', 'month'])['aqi'].var().unstack()
print("AQI Variance by Month and City:")
print(aqi_variance)
plt.figure(figsize=(12, 8))
sns.heatmap(aqi_variance, cmap='YlOrRd')
plt.title('AQI Variance by Month and City')
plt.show()
```

month	by Month and	City: 2	3	4	\
city					
Beijing	20251.681782	20576.396850	20909.597959	21001.512997	
Cairo	22705.849318	22288.054296	19675.014705	22323.321760	
Delhi	21026.724436	21608.593142	20438.884101	21371.467676	
London	20459.647485	21444.243397	21388.372484	20603.003784	
Los Angeles	20834.124699	20175.640740	19664.042579	21125.159225	
Mexico City	20906.085357	21322.747489	21224.460180	20530.157560	
São Paulo	21133.356530	18837.132799	21166.645705	22055.874986	
Tokyo	20889.843681	19752.248083	20345.702500	20886.261658	
·					
month	5	6	7	8	\
city					
Beijing	20349.831404	20626.295799	21085.438105	20878.264081	
Cairo	20485.494110	19504.547400	20930.691502	19477.923988	
Delhi	20235.484214	20564.806929	21780.744638	21177.805578	
London	22037.544638	21421.969065	20908.783240	21374.595598	
Los Angeles	19881.123054	20140.608000	21245.291729	20514.335777	
Mexico City	20175.782638	20670.814945	20870.601782	21409.540250	
São Paulo	21425.295260	18717.854806	20586.918321	19386.432206	
Tokyo	21668.044243	20540.277919	20484.143195	21378.548921	
·					
month	9	10	11	12	
city					
Beijing	20140.346190	20424.515405	20870.025037	20775.460928	
Cairo	21169.391964	21433.884077	20334.508889	21192.104096	
Delhi	20481.948432	21308.092310	21318.203511	21453.581290	
London	21444.010012	21158.324686	20722.905136	22270.714671	
Los Angeles	21848.777871	21487.742809	20803.065800	20896.395207	
Mexico City	20688.794599	20184.762181	21369.139185	21387.439433	
São Paulo	20895.014631	21557.394465	23530.107178	22013.838936	
Tokyo	20659.706269	19910.498150	20412.535430	19739.822663	
•					


```
[67]: # Annual average AQI over the years
annual_avg_aqi = df.groupby(df['date'].dt.year)['aqi'].mean()

plt.figure(figsize=(10, 5))
annual_avg_aqi.plot(marker='o')
plt.title('Annual Average AQI')
plt.xlabel('Year')
plt.ylabel('Average AQI')
plt.grid(True)
plt.tight_layout()
plt.show()
```



```
[73]: sns.

→heatmap(df[['aqi','pm2_5','pm10','no2','o3','temperature','hospital_admissions']].

→corr(), annot=True)

plt.title('Correlation Matrix')

plt.show()
```