1 | Position of m_i

In a rigid body consisting of N point masses, the vector to the position of m_i is defined as $r_i(t)$, which is defined as follows:

$$\vec{r_i(t)} = \vec{R_{CM}(t)} + \vec{r_i}'(t)$$
 (1)

whereas, $\vec{R_{CM}}(t)$ is the position vector of the center of mass of the rigid body as a whole, and $\vec{r_i}'(t)$ the vector from the center of mass to m_i .

2 | Velocity of m_i

The velocity of m_i is simply determined by the first derivative of the position equation as per above. Namely, that:

$$\vec{v_i(t)} = \vec{V_{CM}(t)} + \vec{v_i}'(t)$$
 (2)

where, $v_i \vec{t}$ is the velocity vector of m_i , and $\vec{V}_{CM}(t)$ is the velocity vector of the center of mass of the rigid body, and $\vec{v_i}'(t)$ is the velocity vector from center of mass to m_i .

$\exists \mid \mathbf{Deriving} \ KE_{total}$

From definition of KE_{total} itself, KE_{total} is the sum of all energies of each point mass in the rigid body.

$$\sum_{i=1}^{N} \frac{1}{2} m_i v_i^2 \tag{3}$$

Expanding this equation and replacing