

Análisis y Predicción de Resultados en Partidas de Clash Royale

Trabajo Fin de Máster

Máster en Ciencia de Datos e Ingeniería de Datos en la Nube

Iván Fernández García

Junio, 2025

Tabla de contenidos (I)

01

Introducción

02

Creación del Dataset

03

Análisis Exploratorio de Datos 04

Preprocesamiento de Datos

Tabla de contenidos (II)

05 06

Modelado Explicabilidad y Despliegue

07 08

Conclusiones Planificación del Proyecto

Introducción

Motivación

- Aprovechar al máximo los datos disponibles
- Aplicar ML en un entorno competitivo real
- Complementar plataformas como RoyaleAPI

Crear una herramienta que nos permita tomar decisiones estratégicas y comprender cómo los diferentes factores del juego pueden influir en el desenlace de las partidas

Objetivos

Crear un conjunto de datos a partir de la API de Clash Royale

Desarrollar un modelo capaz de predecir nuevas partidas

Evaluar los resultados y sacar conclusiones

Integrar el modelo en una aplicación web

Metodología

CRISP-DM (Cross-Industry Standard Process for Data Mining)

Creación del Dataset

Adquisición de datos

Limpieza y transformación

Análisis Exploratorio de Datos

Distribución de la variable objetivo

Partidas por arena

Cartas más utilizadas

Análisis univariado y multivariado (I)

Análisis univariado y multivariado (II)

Importancia de las variables

Preprocesamiento de Datos

Pipelines de preprocesamiento

Baselines

Binary + Numeric

Binary + Differences

Binary + Numeric + Differences

Only Differences

Selected Differences

Validación y selección de modelos

- Combinar diferentes algoritmos de aprendizaje con cada pipeline de preprocesamiento
- Para cada combinación, optimizar los hiperparámetros mediante búsqueda en malla:
 - Definir varias configuraciones
 - Validar cada configuración mediante una 5-CV utilizando accuracy como métrica
 - Reentrenar el mejor modelo con todos los datos de entrenamiento

Modelos probados en total: 1330

Modelos seccionados: 45 (mejor configuración por cada par algoritmo-pipeline)

Modelos para la evaluación final: 50 (los 45 modelos seleccionados y los 5 baselines)

Evaluación final de modelos

model	train accuracy	val accuracy (10x5-CV)	test accuracy
Random Forest (Binary + Numeric + Differences)	0.994978	0.630036	0.630965
Gradient Boosting (Binary + Numeric + Differences)	0.654525	0.629686	0.628503
Histogram Gradient Boosting (Binary + Numeric + Differences)	0.672628	0.629631	0.628980
AdaBoost (Binary + Numeric + Differences)	0.711475	0.628916	0.625724
Gradient Boosting (Binary + Numeric)	0.719475	0.628160	0.630171
***	***	***	***
Baseline (Only Differences)	0.578319	0.578319	0.571417
Baseline (Binary + Numeric)	0.578220	0.578220	0.579198
Baseline (Binary + Numeric + Differences)	0.578220	0.577875	0.579198
Baseline (Selected Differences)	0.576255	0.576094	0.572052
KNN (Binary + Numeric)	1.000000	0.575937	0.580627

20

Rendimiento medio por preprocesamiento

Rendimiento medio por algoritmo

Rendimiento del modelo sobre test

¿Cuánta incertidumbre hay?

- Ninguna predicción alcanza una probabilidad del 95%
- 1 de cada 10 partidas se predicen con una probabilidad inferior al 52%
- 9 de cada 10 partidas se predicen con una probabilidad inferior al 76%
- Prácticamente la mitad de las partidas se predicen con una probabilidad inferior al 60%

Explicabilidad y Despliegue

Explicabilidad

- ¿Qué variables son más determinantes en el resultado?
- ¿Cómo influyen los diferentes factores del juego en las predicciones?
- ¿Qué variables favorecen la victoria de cada jugador?
- ¿Cuáles pesan más y hacia qué lado se inclina la balanza?
- ¿Qué cambios serían necesarios para que el resultado fuera distinto?

Interpretabilidad global: SHAP

diff meanCardLevel player2_totalStarLevel diff maxCardLevel diff numCounters player2_numEvolutionCards diff_numEvolutionCards player2_supportCardName_Tower Princess player1_supportCardName_Tower Princess player2 numTroopCards Sum of 318 other features

Interpretabilidad global: PDP

Interpretabilidad local: SHAP

Despliegue

Aplicación interactiva para predecir nuevas partidas:

- Cargar los perfiles de los jugadores a partir de sus tags
- Seleccionar los mazos de ambos jugadores
- Crear un nuevo registro con el formato adecuado
- Integrar el modelo y las técnicas de explicabilidad
- Mostrar el resultado de la predicción

Desarrollo de la aplicación (I)

31

Desarrollo de la aplicación (II)

Desarrollo de la aplicación (III)

33

Desarrollo de la aplicación (IV)

Conclusiones

Conclusiones

Dominio del problema

Complejidad e incertidumbre

Importancia de los niveles

Matchmaking

Futuras mejoras

Competencias desarrolladas

Implementación de una solución práctica

Planificación del Proyecto

Planificación del proyecto

¡Gracias por su atención!

¿Alguna pregunta?