Communication Theory

Grados TIC

Dpto. de Teoría de la Señal y Comunicaciones

Year 2021/2022

Exercises. Lesson 2 Analog modulations

Problem 2.1

A zero-mean periodic signal x(t), with bandwidth 5kHz, amplitude 4V and normalized average power 0.5, DSB modulates a 1MHz carrier. The result is a signal with average power 400W. Determine:

- a. Carrier amplitude.
- b. Average power of the lower sideband.
- c. Outline of the detector needed to recover the signal x(t), and the value of its main parameters

Problem 2.2

The signal $x(t) = cos(2\pi \cdot 10 \cdot 10^3 t) + 4 \cdot cos(2\pi \cdot 15 \cdot 10^3 t) + cos(2\pi \cdot 20 \cdot 10^3 t)$ DSB modulates the carrier $p(t) = 2 \cdot cos(2\pi \cdot 10^5 t)$ and passes through a filter with frequency response $H(\omega)$ before reaching the detector, as it can be observed in the figure

with

$$H(\omega) = \left\{ \begin{array}{ll} 0 & |\omega| < 200\pi krad/s \\ 1 & |\omega| \geq 200\pi krad/s \end{array} \right.$$

- a. Find the signal obtained at the output of the detector, when using an envelope detector of $K_D=1$ with DC suppression.
- b. b) Determine the detector needed to obtain a detected signal equal to the modulating signal. Please specify all necessary parameters.

Problem 2.3

A transmitter has an average nominal power of 30W and a peak envelope power of 60W. Determine:

- a. The power in a sideband when the signal $x(t)=cos(\omega_m t)$ modulates the carrier given by $p(t)=A_p\cdot cos(\omega_p t)$, and the value of A_p in the following cases:
 - (a) AM modulation when the modulation index is 80%.
 - (b) DSB modulation
- b. Considering the first case for a), and knowing that the channel presents a non-uniform attenuation as depicted in the figure: Obtain the signal detected in the following cases:
 - (a) Envelope detector
 - (b) Synchornous detector

NOTE: Assume in both cases that a DC suppressor is present.

v.20220119

Communication Theory

Grados TIC

Dpto. de Teoría de la Señal y Comunicaciones

Year 2021/2022

Problem 2.4

A 10kHz signal x(t) modulates a 100kHz carrier and the result, as observed using an oscilloscope, is presented in the figure. Determine:

- a. Modulation used.
- b. Modulation index.
- c. Carrier's power and Modulating signal's normalized power. Recovered signal when using a synchronous detector tuned to 100kHz and with an amplitude of 1V.
- d. Recovered signal when using an envelope detector.

NOTE: It can be assumed that $K_D=1$.

v.20220119 **2**

Communication Theory

Grados TIC

Dpto. de Teoría de la Señal y Comunicaciones

Year 2021/2022

Problem 2.5

Considering that $x_{FM}(t)$ is the signal obtained when FM modulating a signal x(t) with the carrier $p(t) = A_p \cdot cos(\omega_p t)$. Determine the condition needed to recover the signal x(t) if the system outlined in the figure is used.

Problem 2.6

The outline presented in the figure shows a FM modulator followed by a frequency converter and a band-pass filter (used to adapt the modulated signal to a suitable transmission frequency band). In order to set the system's parameters, a test tone x(t) is used. Determine:

- a. Modulation index D, and modulated signal's bandwidth.
- b. Value of the filter's bandwidth, B, and the filter's central frequency, ω_0 , considering that a frequency band that is above ω_1 has been assigned for our transmission.
- c. Average power of the output y(t) as a function of A_p considering that the filter attenuates the signal a 10%.

DATA:

•
$$x(t) = cos(\omega_m t) [V]$$

•
$$\omega_m = 2\pi \cdot 4krad/s$$

•
$$\omega_p = 2\pi \cdot 400 krad/s$$

•
$$\omega_1 = 2\pi \cdot 2Mrad/s$$

•
$$\omega_d = 2\pi \cdot 16krad/s \cdot V$$

Problem 2.7

The signal $x(t) = cos(\omega_1 t) + cos(\omega_2 t)$ FM modulates the carrier $p(t) = A_p \cdot cos(\omega_p t)$. The modulated signal goes through a high pass filter with cutoff frequency $2\pi \cdot 350krad/s$, whose output signal is fed to a synchronous detector where the local oscillator is adjusted to the carrier frequency, following the expression given by $p_{OL}(t)$ (see Data and Figure).

Calculate the output signal y(t) as a function of A_p . DATOS:

• $\omega_1 = 2\pi \cdot 64krad/s$

v.20220119