| Full Name: | SOLUTIONS |
|------------|-----------|
| run wante. |           |



# MATHEMATICS METHODS

Test 3 – Counting and Probability

Chapters 2 and 5

Semester 1 2015

## **Calculator Assumed**

#### Time allowed for this section

Working time for this section:

45 minutes

Marks available:

40 marks

## Material required/recommended for this section

## To be provided by the supervisor

This Question/Answer booklet Formula sheet

#### To be provided by the candidate

Standard items:

pens, pencils, pencil sharpener, eraser, correction fluid, ruler, highlighters

Special items:

drawing instruments, templates, notes on one unfolded sheet of A4 paper, and up to three calculators satisfying the conditions set by the Curriculum

Council for this course.

## Important note to candidates

No other items may be used in this section of the examination. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

Consider the following sets:

 $U = \{\text{counting numbers from 1 to 20}\}\$ 

 $A = \{\text{prime numbers in the universal set U}\}$  235 1113 1719

 $B = \{ \text{factors of 20} \}$  \ 2 \ 4 \ 5 \ \ 20

 $C = \{\text{multiples of 4 in the universal set}\}$   $L_{\uparrow}$  % 12 16 20

#### a. Determine:

i. n(A) [1]

ii. 
$$B \cap C$$
 
$$\left\{ 4,20 \right\}$$

| 
$$\overline{A \cup B}$$
  $\{6, 8, 9, 12, 14, 15, 16, 18\}$ 

iv. 
$$n(\overline{C})$$
 [2]

## b. State whether the following statements are True (T) or False (F)

i.  $C \subset B$  [1]

ii. 
$$A \cap B \cap C = \emptyset$$
 [1]

iv. 
$$\{4,5\} \subset B$$
 [1]

#### 2. (4 marks)

Two hundred (200) people were asked whether they had flown internationally (I) or domestically (D) in the past 12 months.

- The ratio of those who had flown domestically to those who had not was 3:1
- 10% had flown both internationally and domestically
- A fifth of those who had not flown domestically, had flown internationally

Use the above information to complete the two-way table below.

|                             | Flown<br>Internationally | Did not fly<br>internationally | Total |         |
|-----------------------------|--------------------------|--------------------------------|-------|---------|
| Flown<br>domestically       | 20 i                     | 130                            | 150 ( | point 1 |
| Did not fly<br>domestically | 10 v                     | / 40                           | 50 6  |         |
| Total                       | 30                       | 170                            | 200   | }       |

## 3. (4 marks)

Use your knowledge of Pascal's Triangle to answer the following question.

a. Expand and simplify 
$$(x+m)^6$$

b. Expand and simplify  $(n-3)^5$   $\sqrt{5}$   $\sqrt{6}$   $\sqrt{5}$ 

$$n^{5} - 5n^{4} \cdot 3 + 10n^{3} \cdot 3^{2} - 10n^{2} \cdot 3^{3} + 5n \cdot 3^{4} - 3^{5}$$

$$= n^{5} - 15n^{4} + 90n^{3} - 270n^{2} + 405n - 243$$

4. (7 marks)

Tom has 5 notes in his wallet: \$100, \$50, \$20, \$10 and \$5.

a. If he chooses two notes at random, how many combinations can he make?

$$5C_2 = \frac{5 \times 4}{2 \times 1} = 10$$

b. If he chooses three notes at random, how many combinations contain:

i. a \$5 note? [2]

$$\frac{1}{2}\frac{3}{1}=6$$
 or  $\frac{1}{2}$ ,  $\frac{4}{2}$ =6

ii. no \$50 note? [2] 10 combinations total

10-6= 4 with no \$50 note (403)

[1]

iii. either a \$100 note or a \$50 note? [2]

10,302 + 10,302 + 302301 = 9

- 5. (6 marks)
  - a. Hannah is getting married and wants to choose three of her 6 best friends to be her bridesmaids. How many choices does she have? [2]

6C3 = 36x5x4 = 20

b. Young Seth is going on a camp. He is allowed to pack four shirts, 3 pants and 2 pairs of shoes. If he has 10 shorts, 5 pants and 4 pairs of shoes to choose from, how many choices does he have?

[4]

10C4 × 5C3 × 4C2 = 10×9×16×7 × 5×××3 × ××3 × ××1 × 2×1 × 2×1 × 12600

### 6. (8 marks)

Tristan is the last one at a birthday party to choose two wrapped gifts from the 'lucky dip' bag. When it is his turn there are 2 toy cars, a bracelet a doll, a pack of cards and a puzzle left in the bag.

He puts his hand in the bag without looking, chooses a wrapped gift, puts it aside and then returns his hand to the bag to choose his second wrapped gift.

a. Draw a tree diagram to represent all possible combinations of the gifts Tristan could



and so on ...

symbols ore Sine.

[3]

b. Determine the probability that Tristan chooses

|    | •            | •  |     |
|----|--------------|----|-----|
| Ī. | Two toy cars | _  | [1] |
|    |              | 7  | • • |
|    |              |    |     |
|    |              | 20 |     |
|    |              |    |     |

ii. A doll and a puzzle [1]

iii. A bracelet or a toy car [1]

iv. A puzzle if his first gift was a toy car [2]

10

**End of Test** 

