CO 250: Introduction to Optimization

Module 6: Nonlinear Programs (the KKT theorem)

© University of Waterloo 1/

$$\min -x_1-x_2$$

s.t.

$$-x_2 + x_1^2 \le 0 \quad (1)$$

$$-x_1 + x_2^2 \leq 0 \quad (2)$$

$$-x_1 + \frac{1}{2} \le 0$$
 (3)

- (1) $x_2 \ge x_1^2$;
- (2) $x_1 \geq x_2^2$;
- (3) $x_1 \geq \frac{1}{2}$.

min $-x_1 - x_2$ s.t. $-x_2 + x_1^2 \le 0$ (1) $-x_1 + x_2^2 \le 0$ (2) $-x_1 + \frac{1}{2} \le 0$ (3)

Claim

 $\bar{x} = (1,1)^{\top}$ is an optimal solution to the NLP.

How do we prove this?

Step 1. Find a relaxation of the NLP.

Step 2. Prove \bar{x} is optimal for the relaxation.

Step 3. Deduce that \bar{x} is optimal for the NLP.

Original NLP

 $\min -x_1-x_2$

s.t.

$$-x_2 + x_1^2 \le 0 \quad (1)$$

$$-x_1 + x_2^2 \le 0$$
 (2)

$$-x_1 + \frac{1}{2} \quad \le \quad 0 \quad (3)$$

Relaxation

$$\min -x_1-x_2$$

s.t.

$$-x_2 + x_1^2 \leq 0 \quad (1)$$

$$-x_1 + x_2^2 \le 0$$
 (2)

Original NLP

 $\min -x_1-x_2$

s.t.

$$-x_2 + x_1^2 \le 0 \quad (1)$$

$$-x_1 + x_2^2 \le 0$$
 (2)

$$-x_1 + \frac{1}{2} \leq 0 \quad (3)$$

New relaxation

 $\min -x_1-x_2$

s.t.

$$2x_1 - x_2 \leq 1$$
 (a)

$$-x_1 + 2x_2 \leq 1 \quad (b)$$

Claim

 $\bar{x} = (1,1)^{\top}$ is an optimal solution to

© University of Waterloo 6/

Claim

 $\bar{x} = (1,1)^{\top}$ is an optimal solution to

Proof

Tight constraints for \bar{x} are (a) and (b).

Goal: Show that the objective function is in the cone of tight constraints.

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \stackrel{?}{\in} cone \left\{ \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \end{pmatrix} \right\} \quad \Longleftarrow$$

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1 \times \begin{pmatrix} 2 \\ -1 \end{pmatrix} + 1 \times \begin{pmatrix} -1 \\ 2 \end{pmatrix} \quad \checkmark$$

Original NLP

$$\min \quad -x_1-x_2$$

s.t.

$$-x_2 + x_1^2 \le 0 \quad (1)$$

$$-x_1 + x_2^2 \leq 0 \quad (2)$$

$$-x_1 + \frac{1}{2} \le 0$$
 (3)

Relaxation

s.t.

$$2x_1 - x_2 \leq 1 \quad (a)$$

$$-x_1 + 2x_2 \leq 1 \quad (b)$$

 $\bar{x} = (1,1)^{\top}$ is an optimal solution to the relaxation

 $ar{x}$ is an optimal solution to the *original NLP*

Question

Can we do this in general? YES

The key tool we'll use is subgradients.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function and $\bar{x} \in \mathbb{R}^n$.

Then, $s \in \Re^n$ is a subgradient of f at \bar{x} if

$$h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x)$$
 for all $x \in \Re^n$.

h(x) is affine

$$h(\bar{x}) = f(\bar{x})$$

h is a lower bound for f

unique subgradient

©University of Waterloo 9/3

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function and $\bar{x} \in \mathbb{R}^n$.

Then, $s \in \Re^n$ is a subgradient of f at \bar{x} if

$$h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x)$$
 for all $x \in \Re^n$.

h(x) is affine

$$h(\bar{x}) = f(\bar{x})$$

h is a lower bound for f

first subgradient

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function and $\bar{x} \in \mathbb{R}^n$.

Then, $s \in \Re^n$ is a subgradient of f at \bar{x} if

$$h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x)$$
 for all $x \in \Re^n$.

h(x) is affine

$$h(\bar{x}) = f(\bar{x})$$

h is a lower bound for f

second subgradient

NOT UNIQUE

©University of Waterloo 11/3

 $s\in\Re^n$ is a subgradient of f at \bar{x} if

$$h(x) := f(\bar{x}) + s^\top (x - \bar{x}) \leq f(x) \qquad \text{ for all } x \in \Re^n.$$

Example

Consider $f:\Re^2 \to \Re$ where $f(x) = -x_1 + x_2^2$ and $\bar{x} = (1,1)^\top$.

We claim that $(-1,2)^{\top}$ is a subgradient of f at \bar{x} .

$$h(x) = f(\bar{x}) + s^{\top}(x - \bar{x})$$

= 0 + (-1,2)(x - (1,1)^{\top}) = -x_1 + 2x_2 - 1.

Check: $h(x) \leq f(x)$ for all $x \in \Re^n$.

$$-x_1 + 2x_2 - 1 \stackrel{?}{\leq} -x_1 + x_2^2$$

or equivalently,

$$x_2^2 - 2x_2 + 1 \stackrel{?}{\geq} 0$$
,

which is the case as $x_2^2 - 2x_2 + 1 = (x_2 - 1)^2 > 0$.

Let $C \in \Re^n$ be a convex set and let $\bar{x} \in C$.

The halfspace $F = \{x : s^{\top}x \leq \beta\}$ is supporting C at \bar{x} if

- (1) $C \subseteq F$ and
- (2) $s^{\top} \bar{x} = \beta$. That is, \bar{x} is on the boundary of F.

Unique supporting halfspace at \bar{x} .

©University of Waterloo

Let $C \in \mathbb{R}^n$ be a convex set and let $\bar{x} \in C$.

The halfspace $F = \{x : s^{\top}x \leq \beta\}$ is supporting C at \bar{x} if

- (1) $C \subseteq F$ and
- (2) $s^{\top}\bar{x} = \beta$. That is, \bar{x} is on the boundary of F.

Non-unique supporting halfspace at \bar{x} .

Let $C \in \Re^n$ be a convex set and let $\bar{x} \in C$.

The halfspace $F = \{x : s^{\top}x \leq \beta\}$ is supporting C at \bar{x} if

- (1) $C \subseteq F$ and
- (2) $s^{\top}\bar{x} = \beta$. That is, \bar{x} is on the boundary of F.

Question

What do we get when n = 1?

- \bullet C is a segment (or a halfline)
- F is a halfline

©University of Waterloo

Subgradients and Supporting Halfspaces

Proposition

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$.

Let s be a subgradient of g at \bar{x} .

Let
$$C = \{x : g(x) \le 0\}.$$

Let
$$F = \{x : h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}.$$

Then, F is a supporting halfspace of C at \bar{x} .

Remark

- \bullet C is convex, as g is a convex function,
- F is a halfspace, as h(x) is an affine function, and
- $h(\bar{x}) = g(\bar{x}) = 0$ thus, \bar{x} is on the boundary of F.

©University of Waterloo 16/3

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$.

Let s be a subgradient of g at \bar{x} .

Let
$$C = \{x : g(x) \le 0\}.$$

Let
$$F = \{x : h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}.$$

Then, F is a supporting halfspace of C at \bar{x} .

Example

$$q(x) = x_2^2 - x_1$$

$$\bar{x} = (1, 1)^{\top}$$

$$s = (-1, 2)^{\top}$$
 subgradient at \bar{x}

$$h(x) = 0 + (-1, 2) \left[\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right]$$
$$= -x_1 + 2x_2 - 1$$

$$F = \{x : -x_1 + 2x_2 < 1\}$$

©University of Waterloo 17/3:

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$.

Let s be a subgradient of g at \bar{x} .

Let $C = \{x : g(x) \le 0\}.$

Let $F = \{x : h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}.$

Then, F is a supporting halfspace of C at \bar{x} .

©University of Waterloo 18/3

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$.

Let s be a subgradient of g at \bar{x} .

Let $C = \{x : g(x) \le 0\}.$

Let $F = \{x : h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}.$

Then, F is a supporting halfspace of C at \bar{x} .

©University of Waterloo 19/3:

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$.

Let s be a subgradient of g at \bar{x} .

Let
$$C = \{x : g(x) \le 0\}.$$

Let
$$F = \{x : h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}.$$

Then, F is a supporting halfspace of C at \bar{x} .

Proof

Claim: $C \subseteq F$.

Let $x \in C$ and thus, $g(x) \leq 0$

By definition of a subgradient, we know that $h(x) \leq g(x)$.

It follows that $h(x) \leq g(x) \leq 0$.

Hence, $x \in F$.

Claim: $h(\bar{x}) = 0$

 $h(\bar{x}) = g(\bar{x}) = 0.$

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$.

Let s be a subgradient of g at \bar{x} .

Let
$$C = \{x : g(x) \le 0\}.$$

Let
$$F = \{x : h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}.$$

Then, F is a supporting halfspace of C at \bar{x} .

Question

Why is this relevant for us?

WE USE IT TO CONSTRUCT BELAXATIONS OF NLPS

©University of Waterloo 21/3:

 $\min c^{\top}x$

s.t.

$$g_i(x) \le 0$$
 $(i = 1, \dots, k)$

 \bar{x} is a feasible solution q_1 is convex

 $g_1(\bar{x}) = 0$

$$g_1(x) = 0$$

s is a subgradient for q_1 at \bar{x}

If we replace the nonlinear constraint

$$g_1(x) \leq 0$$

with the linear constraint

$$h(x) = g_1(\bar{x}) + s^{\top}(x - \bar{x}) \le 0$$

we get a relaxation.

$$\min \quad c^{\top} x$$
 s.t.
$$g_i(x) \leq 0 \quad (i = 1, \dots, k)$$

 g_1,\dots,g_k all convex $ar{x}$ is a feasible solution $\forall i\in I,\ g_i(ar{x})=0$ $\forall i\in I,\ s^{(i)}$ subgradient for g_i at $ar{x}$

If $-c \in cone \left\{ s^{(i)} : i \in I \right\}$ then \bar{x} is optimal.

Example

$$\begin{array}{ll} \min & -x_1-x_2\\ \text{s.t.} \\ & -x_2+x_1^2 \leq 0 \quad (1)\\ & -x_1+x_2^2 \leq 0 \quad (2)\\ & -x_1+\frac{1}{2} \leq 0 \quad (3) \end{array}$$

$$ar{x}=(1,1)^{ op}$$
 feasible $I=\{1,2\}$ $(2,-1)^{ op}$ subgradient for g_1 at $ar{x}$ $(-1,2)^{ op}$ subgradient for g_2 at $ar{x}$

$$-\begin{pmatrix} -1 \\ -1 \end{pmatrix} \in cone \left\{ \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \end{pmatrix} \right\} \qquad \Longrightarrow \qquad \bar{x} \text{ optimal}.$$

$$\min \quad c^{\top} x$$
 s.t.
$$g_i(x) \leq 0 \quad (i = 1, \dots, k)$$

 g_1,\ldots,g_k all convex $ar{x}$ is a feasible solution $orall i\in I,\ g_i(ar{x})=0$ $orall i\in I,\ s^{(i)}$ subgradient for g_i at $ar{x}$

If $-c \in cone \{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Proof

We have a relaxation

$$\begin{aligned} & \min \quad c^\top x \\ & \text{s.t.} & \\ & g_i(x) \leq 0 \quad (i \in I) \end{aligned}$$

We proved that the set of solutions to $g_i(x) \le 0$ is contained in the set of solutions to $g_i(\bar{x}) + s^{(i)}(x - \bar{x}) < 0$.

©University of Waterloo 24 /

min
$$c^{\top}x$$

s.t. $g_i(x) \leq 0 \quad (i = 1, \dots, k)$

 g_1,\ldots,g_k all convex $ar{x}$ is a feasible solution $orall i\in I,\ g_i(ar{x})=0$ $orall i\in I,\ s^{(i)}$ subgradient for g_i at $ar{x}$

If $-c \in cone \left\{ s^{(i)} : i \in I \right\}$ then \bar{x} is optimal.

Proof

We have a relaxation

$$\begin{array}{ll} \min & c^\top x \\ \text{s.t.} \end{array}$$

$$g_i(\bar{x}) + s^{(i)}(x - \bar{x}) \le 0 \quad (i \in I)$$

$$g_i(\bar{x}) + s^{(i)}(x - \bar{x}) \le 0$$
 can be rewritten as

$$s^{(i)}x \le s^{(i)}\bar{x} - g_i(\bar{x})$$

$$\begin{aligned} & \min \quad c^\top x \\ & \text{s.t.} \\ & g_i(x) \leq 0 \quad (i=1,\dots,k) \end{aligned}$$

 g_1,\ldots,g_k all convex \bar{x} is a feasible solution $\forall i\in I,\ g_i(\bar{x})=0$ $\forall i\in I,\ s^{(i)}$ subgradient for g_i at \bar{x}

If $-c \in cone \{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Proof

We have a relaxation

$$\max_{} \quad -c^{\top}x$$
 s.t.
$$s^{(i)}x \leq s^{(i)}\bar{x} - g_i(\bar{x}) \quad (i \in I)$$

Then, \bar{x} is optimal for the relaxation if $-c \in cone \{s^{(i)} : i \in I\}$. This means that \bar{x} is also optimal for the NLP.

Question

Is there a converse to this result? YES

Gradients: A Calculus Detour

Proposition

Let $f: \Re^n \to \Re$ be a convex function and let $\bar{x} \in \Re^n$.

If the gradient $\nabla f(\bar{x})$ of f exists at \bar{x} , then it is a subgradient.

Proposition

Let $f: \mathbb{R}^n \to \mathbb{R}$ be function and let $\bar{x} \in \mathbb{R}^n$.

If the partial derivative $\frac{\partial f(x)}{\partial x_j}$ exists for f at \bar{x} for all $j=1,\ldots,n$, then the gradient $\nabla f(\bar{x})$ is obtained by evaluating for \bar{x} ,

$$\left(\frac{\partial f(x)}{\partial x_1}, \dots, \frac{\partial f(x)}{\partial x_n}\right)^{\top}.$$

©University of Waterloo 27/3

Example

Compute the gradient of the convex function

$$f(x) = -x_2 + x_1^2$$

at $\bar{x} = (1, 1)^{\top}$.

We have

$$\left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}\right)^{\top} = (2x_1, -1)^{\top}$$

For \bar{x} we get $\nabla f(\bar{x}) = (2, -1)^{\top}$.

Since $(2,-1)^{\top}$ is the gradient of f at \bar{x} , it is a subgradient as well.

©University of Waterloo 28 / 31

A feasible solution to \bar{x} is a Slater point of

$$\min \quad c^{\top} x$$
s.t.
$$g_i(x) \le 0 \quad (i = 1, \dots, k)$$

if $g_i(\bar{x}) < 0$ for all $i = 1, \dots, k$.

Example

min
$$-x_1 - x_2$$

s.t. $-x_2 + x_1^2 \le 0$ (1) $-x_1 + x_2^2 \le 0$ (2) $-x_1 + \frac{1}{2} \le 0$ (3)

 $\bar{x} = \left(\frac{3}{4}, \frac{3}{4}\right)^{\top}$ is a Slater point.

The Karush-Kuhn-Tucker (KKT) Theorem

Consider the following NLP:

$$\begin{bmatrix} \min & c^{\top} x \\ \text{s.t.} \\ g_i(x) \le 0 \quad (i = 1, \dots, k) \end{bmatrix}$$

Suppose that

- 1. g_1, \ldots, g_k are all convex,
- 2. there exists a Slater point,
- 3. \bar{x} is a feasible solution,
- 4. I is the set of indices i for which $g_i(\bar{x}) = 0$, and
- 5. for all $i \in I$ there exists a gradient $\nabla g_i(\bar{x})$ of g_i at \bar{x} .

Then \bar{x} is optimal \iff $-c \in cone \{ \nabla g_i(\bar{x}) : i \in I \}.$

Remark

We proved the "easy" direction "\=".

Recap

- We showed how to prove optimality using relaxations.
- We defined subgradients.
- We defined supporting halfspaces.
- We related subgradients and supporting halfspaces.
- We showed how to relax convex constraints by a linear constraint.
- We gave sufficient conditions for a solution to be optimal.
- We stated the KKT theorem.

©University of Waterloo 31/31