

Listas

Conceitos abordados nesta aula

A proposta desta aula é apresentar as listas em Python e como podemos manipulá-las.

```
main.py
     nomes = []
     for i in range(5):
       n = input("Digite um nome: ")
       nomes.append(n)
 10
 11
 12
 13
```

Motivação

- Suponha que precisamos armazenar as notas de vários alunos.
- Com o conceito somente de variáveis, como faríamos para armazenar as notas de, por exemplo, 100 alunos?

```
nota1 = float(input("Entre com a nota do aluno 1: "))
nota2 = float(input("Entre com a nota do aluno 2: "))
nota3 = float(input("Entre com a nota do aluno 3: "))
...
nota100 = float(input("Entre com a nota do aluno 100: "))
```

Certamente, criar 100 variáveis distintas **não** seria uma solução elegante.

O que são listas?

- Em Python, as <u>listas são uma estrutura de dados</u> muito importante e útil.
- Elas são usadas para <u>armazenar um conjunto de valores em uma única variável</u>. Listas são <u>mutáveis</u>, ou seja, podem ser modificadas após a sua criação.
- Além disso, as listas em Python são <u>ordenadas</u>, o que significa que cada item possui uma posição específica na lista.

Armazenando notas de 100 alunos de uma turma!!!

O que são listas?

- Uma lista em Python é uma estrutura que armazena vários dados, que podem ser de um mesmo tipo ou não.
- Listas são construções de linguagens de programação que servem para <u>armazenar</u> vários dados de <u>forma simplificada</u>.

```
lista1 = [10, 20, 30, 40]
lista2 = ["programação", "computadores", "python"]
lista3 = ["oi", 2.0, 2, 5, "exemplo"]
```

Características:

- Acesso por meio de um <u>índice</u> inteiro.
- Listas podem ser modificadas.
- Pode-se incluir e remover itens de listas.

Criação de listas em Python

Observe que os dados armazenados nas listas não precisam ser de mesmo tipo.

Como acessar um item em uma lista

- Pode-se <u>acessar</u> uma determinada posição da lista utilizando-se um <u>índice</u> de valor inteiro.
- A sintaxe para acesso de uma determinada posição é: identificador[posição]

```
notas = [8.0, 5.5, 9.3, 7.6, 3.1]
print(notas[1])

G 5.5

A primeira posição da lista tem índice 0
```

Sendo *n* o tamanho da lista, os índices válidos para ela vão de 0 até **n-1**.

- A primeira posição da lista tem índice 0.
- A última posição da lista tem índice n-1.

Percorrendo uma lista

- A utilização de uma lista está associada a uma estrutura de repetição.
- Com isso podemos facilmente percorrer uma lista para consultas ou atualizações.

```
main.py
     nomes = ['Marco', 'Eduardo', 'Mônica', 'Philippe']
     for i in range(4):
       print(nomes[i])
            Exibindo os itens de uma lista!!
main.py
     nomes = ['Marco', 'Eduardo', 'Mônica', 'Philippe']
     for i in nomes:
       print(i)
```


1- Faça um programa em Python que calcule a média de um aluno a partir de cinco notas previamente armazenadas em uma lista. Utilize a lista: **notas** = [6, 7, 6.5, 4.8, 8]

```
notas = [6,7,6.5,4.8,8]
2  soma = 0
3  for i in range(5):
4    soma = soma + notas[i]
5
6  media = soma/5
7  print("Média: %.2f" %media)
```


1- Faça um programa em Python que calcule a média de um aluno a partir de cinco notas previamente armazenadas em uma lista. Utilize a lista: **notas** = [6, 7, 6.5, 4.8, 8]

```
main.py

1  notas = [6,7,6.5,4.8,8]
2  soma = 0
3  for i in notas:
4    soma +=i
5
6  media = soma/5
7  print("Média: %.2f" %media)
```


Observe que não há somente uma forma de percorrer a lista.

Principais métodos

```
[\mathfrak{G},\mathfrak{S}].\mathsf{append}(\mathfrak{G}) = [\mathfrak{G},\mathfrak{S},\mathfrak{S}]
[\mathfrak{S},\mathfrak{S}].insert(\mathfrak{S},\mathfrak{S}) — [\mathfrak{S},\mathfrak{S},\mathfrak{S}]
[ \mathfrak{S}, \mathfrak{S}, \mathfrak{S} ].pop() \longrightarrow [\mathfrak{S}, \mathfrak{S}]
[\mathfrak{S},\mathfrak{S},\mathfrak{S}].\mathsf{pop}(\mathfrak{S}) — [\mathfrak{S},\mathfrak{S}]
[ ( ), ( ), ( ) ].remove( ( ) ) — [ ( ), ( ) ]
[ @ , ♠ , ∰ , @ ].count( @ ) ______ 2
[@, @, 💆, @].reverse() — [@, @, @, 💆]
[3,7,1,5].sort() — [1,3,5,7]
[ ① , ② , ② ].clear() — []
```

Principais métodos

```
[ ② , ② ] . append( ○ )
```


O método append() adiciona um valor (n) ao final da lista!!!


```
nomes = ['Marco', 'João', 'Maria']
nomes.append('Giulianna')
nomes
v 0.1s

['Marco', 'João', 'Maria', 'Giulianna']
```

Principais métodos

```
[ ② , ② ].insert(0, ③ )
```


O método insert(pos, item) adiciona um item à posição (pos) da lista!!

2- Vamos criar um programa em Python que solicite ao usuário o nome de 5 pessoas e armazene em uma lista. Em seguida o programa deve solicitar ao usuário um número de 0 a 4, correspondendo ao índice, e o programa deverá mostrar nome armazenado nesse índice.

```
nomes = []
for i in range(5):
    n = input("Digite um nome: ")
    nomes.append(n)
    print(nomes)
    n = int(input("Digite um número: "))
    print(nomes[n])
```


Lista: outras funções

A função len() retorna o tamanho da lista (nº de elementos):

```
nomes = ["Marco", "Maria", "João"]
len (nomes)

Retorna a quantidade de elementos da lista
```

É muito comum usar a função len junto com o laço for para percorrer todas as posições de uma lista:

```
main.py
1 notas = [8.0, 5.5, 9.3, 0.5, 3.1]
2 for i in range(len(notas)):
3    print(notas[i])
4
```


3- Faça um programa em Python que calcule e mostre a média de uma quantidade indeterminada de números inteiros digitados pelo usuário. Para sair o usuário deverá digitar 0. Use lista e exiba no final os números digitados.

```
num = []
soma = 0
while True:
  n = int(input('Digite um número inteiro: '))
  if n==0:
   break
  num.append(n)
  soma+=n
media = soma/len(num)
print(f'{media:.2f}')
print(num)
```


3- Faça um programa em Python que calcule e mostre a média de uma quantidade indeterminada de números inteiros digitados pelo usuário. Para sair o usuário deverá digitar 0. Use lista e exiba no final os números digitados.

```
num = []
while True:
 n = int(input('Digite um número inteiro: '))
  if n==0:
    break
  num.append(n)
media = sum(num)/ len(num)
print(f'{media:.2f}')
print(num)
```


O **Python** tem uma função nativa dedicada à soma de todos os elementos de uma lista: a função **sum()**

4- Faça um programa que leia n notas, mostre as notas e a média.

```
notas = []
soma = 0
n = int(input('Entre com o número de notas: '))
for i in range(n):
  nota = float(input(f'Entre com a {i+1}a nota: '))
  notas.append(nota)
  soma+=nota
print(notas)
soma = 0
media = soma/n
print(f'{media:.2f}')
```

Lista: outras funções

A função remove(item) remove o primeiro item encontrado na lista cujo valor é igual a <u>item</u>.

```
nomes = ["Marco", "Maria", "João"]
len(nomes)
nomes.remove("Marco")
nomes
['Maria', 'João']
```


Lista: outras funções

```
nomes = ["Marco", "Maria", "João"]
for x, e in enumerate(nomes)
    print(f"[{x+1}] - {e}")

[1]- Marco
[2]- Maria
[3]- João
```


(*)Tuplas são similares às listas, porém são imutáveis!

Resumo dos métodos

Método	Parâmetros	Descrição
append	item	Acrescenta um novo item no final da lista
insert	posição, item	Insere um novo item na posição dada
pop	nenhum	Remove e retorna o último item
pop	posição	Remove e retorna o item da posição
sort	nenhum	Ordena a lista
reverse	nenhum	Ordena a lista em ordem reversa
index	item	Retorna a posição da primeira ocorrência do item
count	item	Retorna o número de ocorrências do item
remove	item	Remove a primeira ocorrência do item
enumerate	nenhum	Exibe o índice da lista sendo enumerada

5- Faça um programa em Python que leia o nome e duas notas de n alunos e calcule a média. O usuário deverá digitar o número do aluno e o programa exibirá a média e o resultado, sabendo que o critério para aprovação é média igual ou maior que 6.0.


```
medias = []
nomes = []
x = int(input('Digite a quantidade de alunos: '))
for i in range(x):
 nome = input('Digite o nome do aluno: ')
 n1 = float(input(f'Qual a 1<sup>a</sup> nota do {nome}? '))
 n2 = float(input(f'Qual a 2ª nota do {nome}? '))
 media = (n1+n2) / 2
 medias.append(media)
 nomes.append(nome)
print(10*'-')
n = int(input('Digite o nº do aluno que deseja exibir: '))
result = 'APROVADO' if medias[n] >= 6.0 else 'REPROVADO'
print('O aluno {nomes[n]} foi {result} com média {medias[n]:.2f}')
```



```
medias = []
nomes = []
x = int(input('Digite a quantidade de alunos: '))
for i in range(x):
  nome = input('Digite o nome do aluno: ')
  n1 = float(input(f'Qual a 1<sup>a</sup> nota do {nome}? '))
  n2 = float(input(f'Qual a 2ª nota do {nome}? '))
 media = (n1+n2) / 2
 medias.append(media)
  nomes.append(nome)
print(10*'-')
n = input('Digite o nome do aluno que deseja exibir: ')
if n in nomes:
    i = nomes.index(n)
    result = 'APROVADO' if medias[i] >= 6.0 else 'REPROVADO'
    print(f'O aluno {nomes[i]} foi {result} com média {medias[i]:.2f}')
else:
  print('Aluno não encontrado!')
```


6- Vamos criar um programa em Python que solicite ao usuário o nome de 5 pessoas, armazene em uma lista e exiba os nomes digitados e o tamanho da lista. Em seguida o programa deve solicitar ao usuário um nome, e o programa deverá remover o nome armazenado na lista, exibir os nomes digitados e o tamanho da lista.


```
main.py
     #Criação da lista
     nomes = [] #ou nomes = list()
     #Armazenar valores na lista
     for i in range(5):
         n = input("Digite um nome: ")
         nomes.append(n) #adiciona no final da lista
  6
         #nomes.insert(i , n)
  8
     print(nomes) #mostra os itens da lista
     print(len(nomes)) #quantidade de itens da lista
     #exclui um item da lista
     nome = input("Digite um nome para remover da lista: ")
     if nome in nomes:
       nomes.remove(nome) #remove o nome da lista
 14
       print(nomes) #mostra os itens da lista
 15
       print(len(nomes)) #mostra o tamanho da lista
 16
     else:
       print("Nome não encontrado!")
 18
```


- 7- Vamos fazer um programa em Python que controle a utilização de 5 salas do cinema CINEMARKO. O programa deverá ter as seguintes funcionalidades:
- Uma lista deverá armazenar os lugares vagos por sala: lugares Vagos = [10, 5, 6, 8, 0], respectivamente para as sala 1, 2, 3, 4 e 5.
- O usuário deverá digitar o número da sala e a quantidade de ingressos que deseja comprar, ou zero para encerrar o programa.
- O programa deverá verificar se a venda é possível antes de concretizá-la, informando quando não há lugares disponíveis para venda.
- Caso a compra seja efetivada, atualizar o número de lugares livres e exibir na tela.

```
main.py
     lugaresVagos=[10,2,3,4,0]
     x=1
     print("Bem vindos ao CINEMARKO")
     for s in lugares Vagos:
       print("Sala %d: %d lugares vagos"%(x,s))
       x+=1
     while True:
       sala = int(input("Escolha uma sala (0 para sair): "))
  8
      if sala==0:
         print("Até logo")
 10
         break
 11
       elif sala>len(lugaresVagos):
 12
         print("Sala inválida!!\n")
 13
       elif lugaresVagos[sala-1]==0:
 14
 15
         print("Desculpe! Sala lotada!\n")
```

```
16
      else:
17
        compra = int(input("Quantos ingressos você deseja (%d vagos) :"%lugaresVagos[sala-1]))
        if compra>lugaresVagos[sala-1]:
18
19
          print("Desculpe! Número de ingressos indisponível\n!!")
        elif compra<=0:</pre>
20
          print("Número inválido\n!!")
21
        else:
22
23
          lugaresVagos[sala-1]-=compra
          print("%d ingressos vendidos! Bom filme"%compra)
24
25
          break
26
    print("Utilização das salas:")
    for x,s in enumerate(lugaresVagos):
27
      print("Sala %d - %d lugar(es) vago(s)"%(x+1,s))
28
```

Material Complementar

https://www.devmedia.com.br/como-trabalhar-com-listas-em-python/37460

http://devfuria.com.br/python/listas/

Alguma dúvida????

Exercícios de aplicação

- 1- Faça um programa em Python que contenha 3 listas com os nomes: valores, par e impar. Solicite N números inteiros ao usuário e armazene-os na lista chamada valores (utilize como critério de parada se o usuário deseja continuar).
- Após a obtenção dos dados, na lista par armazene apenas os números pares da lista valores e na lista ímpar os números ímpares. É obrigatório o uso de estrutura de repetição e listas.
- Exiba os números armazenados nas 3 listas.

2- Faça um programa em Python que solicite ao usuário a placa e o valor da multa de 15 carros. As informações obtidas devem ser armazenadas em 2 listas distintas (observe que cada lista poderá ter apenas 15 itens armazenados e que na posição i das duas listas ficarão armazenados: a placa i e o valor de venda i, veja exemplo abaixo).

É obrigatório o uso de estrutura de repetição e listas. Calcule e mostre e o valor médio de todas as multas e quantos carros possuem o valor de multa maior ou igual a R\$300.00, para isso utilize os dados armazenados nas listas descritas anteriormente e estrutura de repetição.

0	AAA-1234
1	CCC-1234
2	AAA-1234
3	DDD-1234
14	BBB-1234

880.41
1467.35
293.47
293.47
2934.70

3- Faça um programa em Python que solicite ao usuário o dia da semana e o volume de chuva correspondente a 10 dias. As informações obtidas devem ser armazenadas em 2 listas distintas (observe que cada lista poderá ter apenas 10 itens armazenados e que na posição i das duas listas ficarão armazenados: o dia da semana i e o volume de chuva i). É obrigatório o uso de estrutura de repetição e listas.

Em seguida, calcule e mostre o volume médio de chuva apenas do dia de semana igual a quarta-feira e a soma total do volume de chuva, para isso utilize os dados armazenados nas listas. É obrigatório o uso de estrutura de repetição e das listas do exercício descritas anteriormente.

- **4-** Criar um programa em Python que leia os dados necessários para cadastrar os nomes de N alunos em uma lista, em outra lista as respectivas notas dos alunos e em uma terceira lista o seu curso (ccp ou tads). Observe que na posição i das três listas ficarão guardados: o nome do aluno i, a nota do aluno i e o curso do aluno i. Resolva os seguintes itens:
- a) Calcule e visualize a quantidade de alunos do curso de tads.
- b) Calcule e visualize a média das notas dos N alunos.
- c) Quantos alunos estão com a nota acima da média.

5- Faça um programa em Python que solicite ao usuário, enquanto o mesmo desejar, números e armazene-os em uma lista.

Após a entrada de dados, somar os valores da lista, calcular e mostrar a média.

Calcule e mostre quantos números armazenados na lista estão acima da média.

Créditos

Esta aula foi elaborada com base no material produzido e cedido gentilmente pelos **Professores Alcides, Lédon, Amilton e Cristiane**.

