# Геометрия - 8 класс



# формулы площади



прямоугольник



$$S = ab$$

трапеция

$$S = \frac{a+b}{2}h = mh$$

# $S = ah_a = bh_b$ ромб



треугольник



$$\phi$$
ормула  $\Gamma$ ерона $S = \sqrt{p(p-a)(p-b)(p-c)}$   $p = rac{a+b+c}{2}$  полупериметр

## теорема Пифагора



$$c^2 = a^2 + b^2$$

квадрат гипотенузы равен сумме квадратов катетов

$$\Rightarrow c = \sqrt{a^2 + b^2}$$

$$a = \sqrt{c^2 - b^2}$$

$$b = \sqrt{c^2 - a^2}$$

# средняя линия треугольника





# параллелограмм признаки







свойства параллелограмма

биссектриса отсекает равнобедренный ∆:











подобные фигуры отношение периметров, площадей, объемов  $S_2 = k^2 S_1$   $V_2 = k^3 V_1$  $P_2 = kP_1$ 

пр: подобные Δ





 $\triangle ABC \sim \triangle A_1B_1C$  $k = \cos \angle C$ 

теорема Вариньёна

отрезки, соединяющие середины сторон четырехугольника, образуют параллелограмм





$$h_c = \sqrt{c_a \cdot c_b}$$
 $a = \sqrt{c_a \cdot c}$   $b = \sqrt{c_b \cdot c}$ 

# медиана, проведенная к



# биссекриса



$$\frac{c_a}{c_b} = \frac{a}{b}$$

$$l_c = \sqrt{ab - c_a c_b}$$



$$m_c = \frac{1}{2}\sqrt{2a^2 + 2b^2 - c^2}$$



$$S_1 = S_2 = \dots = S_6$$

высота, проведенная к гипотенузе, образует три подобных Д; их гипотенузы и все схожие элементы составляют «теорему Пифагора»



 $R_1^2 + R_2^2 = R_3^2$ 





#### сумма дуг окружности



 $a1 + a2 = 360^{\circ}$ 

угол между секущими



# теорема о вписанном угле



половине дуги, на которую он опирается



вписанный угол равен углы, опирающиеся на одну дугу, равны



углы, опирающиеся на полуокружность (диаметр) равны 90°

# отрезки секущих



$$AB_1\cdot AB_2=AC_1\cdot AC_2$$



$$AB_1 \cdot AB_2 = AC_1 \cdot AC_2$$



 $AB^2 = AC_1 \cdot AC_2$ 

# равносторонний треугольник и окружности



т.О - центр вписанной и описанной окружностей, т. пересечения медиан, высот, биссектрис

$$h = 3r \quad R = 2r$$

$$h = \frac{a\sqrt{3}}{2} \quad R = \frac{a\sqrt{3}}{3} \quad r = \frac{a\sqrt{3}}{6}$$

$$S = \frac{1}{2}a^2 \sin 60^\circ = \frac{a^2\sqrt{3}}{4} \qquad R = \frac{c}{2} = m$$

# прямоугольный треугольник и окружности



$$R=\frac{c}{2}=m$$



$$r = \frac{a+b-c}{2}$$



место точек - точки, удовлетворяющие



биссектриса





отрезки касательных

описанный четырехугольник





вписанный четырехугольник



 $\angle A + \angle C = 180^{\circ}$  $\angle B + \angle D = 180^{\circ}$ 

#### четыре замечательные точки треугольника

### пересечение биссектрис и центр вписанной окружности





пересечение медиан (центроид)



A0: OM = 2:1

серединный перпендикуляр

ГМТ равноудаленных от сторон угла



ГМТ равноудаленных от концов отрезка

# пересечение серединных перпендикуляров и центр описанной окружности





пересечение высот (ортоцентр)



окружность



ГМТ равноудаленных от центра

площадь треугольника и окружности







для вписанного четырехугольника:

теорема Птолемея:  $ac + bd = d_1d_2$ 

формула Брахмагупты:

 $S = \sqrt{(p-a)(p-b)(p-c)(p-d)}$ (подходит для равнобед. трапеции)

 $\partial$ ля описанного: S = pr

для (одновременно) вписанного и описанного:

 $S = \sqrt{abcd}$ 





общая хорда пересек-ся окружностей делит пополам отрезок их общей касат-ой



биссектриса и серед. перпенд-р к противоп-ой стороне пересекаются на описанной



прямая Эйлера ортоцентр, центр описанной окружности и точка пересечения медиан лежат на одной прямой  $MH = 2 \cdot MO$  $AH = 2 \cdot \rho(O, CB)$ 



#### свойства трапеции

средняя линия



отрезок, соединяющий середины диагоналей



в трапеции четыре точки лежат на одной прямой: пересечение диагоналей, пересечение (продолжений) боковых сторон; середины оснований



равнобед. трапеция





трапеция описанная трапеция вписанная ⇒ равнобед.











метод сдвига диагонали:  $MB \parallel AC \Rightarrow$ 

$$S_{MBD} = S_{ABCD}$$

$$\angle MBD = \angle AOD$$

$$\Delta MBD$$
 — равноб. ⇔  $ABCD$  — равноб.

$$BH = KP$$







#### Основы тригонометрии

# отношения сторон

в прямоугольном треугольнике



 $\sin lpha = rac{b}{c}$  противолежащий катет к гипотенузе

$$\cos \alpha = rac{a}{c}$$
 прилежащий катет к гипотенузе

$$tg \; \alpha = rac{b}{a}$$
 противолежащий катет  $\kappa$  прилежащему

$$ctg \ lpha = rac{a}{b}$$
 прилежащий катет к противолежащему

выражение сторон прямоугольного треугольника с помощью тригонометрических функций:

$$b = c \cdot \sin \alpha$$

$$b = a \cdot t a \cdot c$$

$$a = c \cdot \cos \alpha$$
$$a = b \cdot \operatorname{ctg} \alpha$$

$$c = \frac{b}{\sin \alpha}$$
$$c = \frac{a}{\cos \alpha}$$

# $b = a \cdot tg \alpha \qquad a = b \cdot ctg \alpha \qquad c = \frac{a}{a}$ основное тригонометрическое тождество

# $sin^2\alpha + cos^2\alpha = 1$

другие тригонометрические равенства

$$1 + tg^2\alpha = \frac{1}{\cos^2\alpha} \qquad 1 + ctg^2\alpha = \frac{1}{\sin^2\alpha}$$

$$tg \alpha = \frac{\sin \alpha}{\cos \alpha}$$
  $ctg\alpha = \frac{\cos \alpha}{\sin \alpha}$   $tg \alpha \cdot ctg\alpha = 1$ 

# дополнительные углы



 $\beta = 90^{\circ} - \alpha$ 

 $\sin \beta = \cos \alpha$  $\cos \beta = \sin \alpha$ 

 $tg \beta = ctg \alpha$  $ctg \beta = tg \alpha$ 

# тригонометрический



### значения тригонометрических функций основных углов

|       | <b>0</b> ° | 30°                  | <b>45</b> °          | 60°                  | 90° |
|-------|------------|----------------------|----------------------|----------------------|-----|
| sin α | 0          | $\frac{1}{2}$        | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | 1   |
| cos α | 1          | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$        | 0   |
| tg α  | 0          | $\frac{\sqrt{3}}{3}$ | 1                    | $\sqrt{3}$           | -   |
| ctg α | -          | $\sqrt{3}$           | 1                    | $\frac{\sqrt{3}}{3}$ | 0   |