STAT 2131 orly ollow

MIDTERM EXAM	p.1
Y=XB+E, NER", XER"xp	
$E(E) = 0$, $Var(E) = \sigma^2 I_n$, $q \in \{1,, p\} = rank($	×)
@ Show that H for x can be $H = X(x^Tx)^+ X^-$	
hi be ith leverage score (ith diag. of H). Show	0=h;=1.
O From Moore-Penrose we have	morel of the state
$0 AA^{\dagger}A = A$	Fig. 18 copyrights for compression and the second control of the s
and for nonsingular A, A+= A-1	
$\Im (AA^{\dagger})^{\top} = AA^{\dagger}$	ing i shi ngjira a maja aga dadan shi asa sa
$\Theta (A^{\dagger}A)^{T} = A^{\dagger}A$	that property and the Markette of the colour colour and account the colour and account and the colour and account
In HW7 we showed that	en general de partir y general en la companya de partir de la partir de la partir de la partir de la partir de
H = XX	gydd garllagu. Gyrai'r chwy gy gar y rol Goraeth o en o garllaeth gweleith gylloe.
$= (xx^{+})^{T} \qquad \text{by } 3$	and the second s
$= (x^{+})^{T} X^{T}$	
$= \left[\left(x^{T} x \right)^{+} X^{T} \right]^{T} X^{T} $ by @	
$= \times \left[\left(\times^{T} \times \right)^{+} \right]^{T} \times^{T}$	
$= \times (\times^{T} \times)^{T} \times^{T} \text{ by } \Theta$	And the second of the second second of the s
which, when x is singular and when	r sper yerrore sammen (p. n. = 1 a popular por positiva (Ambien (Ambien) Ambien)
(x^TX) is invertible, = $x(x^TX)^TX^T$	more a bit i se in the read sand a market by the sa
and is the hat matrix of X.	
if hi is the ith leverage score,	····
hi = xi(XTX) xi, distance from xi to	
Since H and (I-H) are pst and $(X^TX)^{-1}$ is	pa, within
hi = 0 only when xi = 0 If XERnxp, say xi is the last row of X ->	$X^{T} = \begin{bmatrix} X_{ij}^{T} & x_{ij} \end{bmatrix}$
when $h_i = 1$, H is now = $\left[\frac{X_{(i)}(X^TX)^{-1}X_{(i)}^T}{X_{(i)}} \right]$	0 1
	1 1
and since H is idemontent.	
rank (Xw) = rank [Xw (x x) x xv] = trace [Xw	$(X^TX)^TX^T$
= $p-1$ and $rank(X^T) = p$, wh	
So, hi is 0 or) > 0 = hi = 1	
	· · · · · · · · · · · · · · · · · · ·

```
L continued
\Theta Let \hat{\epsilon} = (In - H)Y = QY be residuals for linkey model
 (i) Derive an expression for E(êTê), use to find
      unbiased estimator for or
KNOW: E(\varepsilon) = 0, Var(\varepsilon) = \sigma^2 I_n, \hat{\varepsilon} = V - X\hat{\beta}

\hat{\varepsilon} = V - X\hat{\beta} = V - X(XTX)^{-1}X^{T}Y = [I - X(XTX)^{-1}X^{T}]Y
       = (I-H)Y = QY= Q(XB+E) = QXB+QE = QE
 because QXB goes to zero
Now, E(\hat{\epsilon}^T\hat{\epsilon}) = E(\hat{\epsilon}^TO\hat{\epsilon})
            = E[trace(êTQê)] = E[trace(QêêT)]
            = trace \left[ E(Q \hat{\epsilon} \hat{\epsilon}^{T}) \right] = trace \left[ Q E(\hat{\epsilon} \hat{\epsilon}^{T}) \right]
            = trace (Q o2In) = o2 trace (Q)
             = \sigma^2 +race (I-H) = \sigma^2 +race [I- \times(\times^T\times)^{-1}\times^T]
            = o2 [trace (I)- trace (X(XTX)-'XT)]
            = o2[n- trace(x(xTx)-'xT)]
         =\sigma^2(h-p)
 making an unbiased estimator for \sigma^2
to be S^2 = \frac{e^2 e^2}{h-p}
@ Ei is ith element of E, derive var(Ei) in
 terms of \sigma^2 and leverage scores hy...h..

If s^2 = \frac{\hat{E} + \hat{E}}{h - \hat{P}}, s^2 = \frac{\hat{E} \cdot \hat{E} + \hat{E}}{h - \hat{P}}
 If \hat{\epsilon} = (I - H)Y, then \hat{\epsilon_i} = (I - h_i)Y
 Var(\hat{\epsilon}) = Var[(I-H)Y] = Var[(I-H)(XB+\epsilon)]
             = var[(I- H) \in ] = (I-H) var(\in ) (I-H) T
             = \sigma^2 (\underline{I} - \underline{H})(\underline{I} - \underline{H})^T = \sigma^2 (\underline{I} - \underline{H})
 And for & where the associated leverage
 Score is his Var(\hat{ei}) = \sigma^2 (I - hi)
(ii) Xi is it now of X, find expression for magnitude of
 difference between i and line at xi
 Observation at Xi -> yi= hiy
 error at \chi_i \rightarrow \hat{\epsilon_i} = (I - \hat{h_i}) \hat{y_i}
 distance: di = Fhii (the larger hii is, the
     further away X is from Xi
```

```
@ If f(xi) = tilyi, show df=1 and if
     f(xi)=yi, show df=n.
      Let's call of (xi) = yi
                                     yi = yavg where yavg = {y, ..., 5}
        and g= h & yi
       df(\hat{y_i}) = df(\hat{y_{avg}}) = \vec{\sigma_2} : \frac{\vec{\xi}}{\vec{\zeta_2}} cov(\vec{y_1} y_i)
= \vec{\sigma_2} : \frac{\vec{\xi_1}}{\vec{\zeta_2}} r^2 \cdot \vec{h} = \frac{\vec{\sigma_2}}{\vec{\sigma_2}} \cdot n \cdot \vec{h} = 1
     For \hat{y_i} = \hat{y_i}, (and since \hat{x_i} \in \mathbb{R}^p, \hat{y} \in \mathbb{R}^{n \times p})
df(\hat{y_i}) = \hat{\sigma^2} : \hat{z_i} cov(\hat{y_i}, \hat{y_i}) = \hat{\sigma^2} : \hat{z_i} var(\hat{y_i})
= \hat{\sigma^2} : \hat{\sigma^2} \cdot n = (n)

\Theta = (y_1, y_n)^T, \hat{y} = (\hat{y}_1, \hat{y}_n)^T \in \mathbb{R}^n

\hat{y} = LY \text{ for some Lerman idepends only on } x_1, x_n

     Show that df = trace (L)
     If Y=LY, we already know Y=HY so Lis our
         hat matuix for X
     of = \sigma^2 i cov (y c_1 y_1) = \sigma^2 + race [cov (LY, Y)]
= \sigma^2 + race [x(xTx)^{-1}x^{T}cov (Y, Y)] since Lonly depends
          = \frac{1}{\sigma^2} \cdot \sigma^2, trace \left[ \times (\times^T \times)^{-1} \times^T \right]
          = trace [x(xTx)-1xT]
          = trace [xTx(xTx)] = trace (In) =(n = tr(L)
    @ XERnixp, full-rank design, nows xi.
      Show if f(xi) = xiT(xTx)-1xTY is obsestimate for f(xi),
      then df=p we know: hij = xiT(XTX) XT
    of (f(xi)) = oz trace [cov(xiT(XTX)-XTY, Y)]
            = 82 +race (xiT(XTX)-XT) · cov(XT,Y)
            = trace (xi T(xTx) TxT) = trace (XTxiT(xTx)-1)
           = trace (Ip) = (p) when xi are nows
     By XEBurb
```

```
2 continued

Θ For χεRP, K≥1, Νκ(χ) = ξί,..., ἰκ3 ⊆ ξ1,..., η δε

       K-heavest neighboring indices of xi, ie
                 11x-xi,112 = .. = 11x-xix112, 11x-xix11=11x-x;11for ;43i,...,ix3
  Define KNN estimate for f(x_i) to be f'(x_i) = K^{-1} jewers y_i

0 Find LER" such that \hat{y} = L y.
      If Y = X\beta, \hat{Y} = X\hat{\beta} and \hat{\beta} = (X^TX)^{-1}X^TY
      From Q, Lis our hat martinx,
                         SO 1=xp= X(XTX)-1XTY
                                                                                       Hat mouthix
                                                                      = LY, when LERMAN
@ Derive of for KNN reguession. (f(xi) = K-1/ENNX, Yi)
          df = 02 = cov & f(xi), yi }
                                = \frac{1}{\sigma^2} \sum_{i=1}^{\infty} CoV \{ K^{-1} \sum_{j \in N_K(x_i)} Y_{j} \} Y_{i} \} \rightarrow \text{make } j \in N_K(x_i) = x_i \in N_K(x_i)
= \frac{1}{\sigma^2} \sum_{i=1}^{\infty} Cov \{ K^{-1} \sum_{x_i \in N_K(x_i)} Y_{i} \} Y_{i} \}
                                = ot + trace { cov (K-1 = NKO) yi, yi) }
                          = 02 · K2 trace { cov (xienk(x) yi, yi)}
                                                                               xienkowyi is the average responses of
                                                    K-nequest xi to x, and we minimize
                                                 that distance - 11x-xix112 for K=1,...,
                     50 we take n out and calculate \Delta = \frac{1}{\sigma^2} \cdot \frac{1}{k^2} \cdot \frac{1}{
                                   = 1/2 · trace(11x-xill2)
                                                                                                                 by which is minimized at
                                              R2. K = & deguees of fueedom
Simplified: df = + = (ov(yi,yi) = -2 = + 02. K-1 = +
```

```
Y: Hex10 matrix with log-transformed expuession
  of m=10 genes from n=46 muelated people
Data: 4 lex 1 data frame of conc (drug A
concentration in umo!)

QY" & IR" is gene! expuession concis

a factor variable with 5 levels, Mode!
 Y" as a function of conc. State any
 assumptions, define parameters.
Assumptions:
 - E(Noi) is linear in factor (conc)
 - residuals are independent, identically
  distuibuted (constant variance)
Parameters
  -Yi": genel expuession
 -Xi concentration as factor, levels of
      dug A
    levels = 20, 625, 1.25, 2.5,53
 -Ei : errors, normally distributed under
     assumptions above
- βi : coefficient by Xi level, βo = intercept
Model:
    Y_{i}^{(n)} = \beta_{0} + \beta_{i} X_{i} + \epsilon_{i}
@ 95% CI for
  E { Yi | conc = 1.25 } - E { Yi | conc = 0 }
To assess the difference, we treat conc
as 4 different indicators (when
  each of these is o, we are left with the
 lowest level (0).
The levels of Xi:
 XiI = 1 for conc = . 625, 0 for ow
\chi_{i2} = 1 for conc = 1.25, 0 for ow
\chi_{i3}=1 for conc = 2.5, 0 for
```

40, continued	2.7
when all Xi are zero, we've left with	30
which indicates gene expuession for no adv	
of dwg A.	
E(Y: Xi=1.25) - E(Y: Xi = 0)	
$= (\beta_0 + \beta_2) - (\beta_0) = \beta_2$	
From $R, \beta_2 = .3319$	
CI: $\beta_2^2 \pm t(\alpha/2, n-p) \cdot SE(\beta_2^2)$	A A A A A A A A A A A A A A A A A A A
at 41 df, 95%, t = 2.018	
SE(B2) = .6649	
$C1 \Rightarrow (-1.010, 1.674)$	
@ 47th patient → . 625 jumps (Xi = 1)	
Find 95% CI (see next page for 9-9 plot)	<u> </u>
Assumptions:	
- value is within scope of the model	\
(satisfied, neu Xi is at a level we know	(0)
- linearity, independence (normal) constant v	anance
(9-9 plot shows almost a trend, so	<u> </u>
may suspect no linearity?)	^ \
Defining Xi "as.factor" in R, we can estim	wire + en+
the gene I expression of the new par	110101
$\hat{y}_{i}^{(i)}(.625) = \hat{\beta_0} + \hat{\beta_1}\hat{x}_{i} + \epsilon_{i}$ $7 = \hat{\beta_1}(1) = 3.44$	173
(V: still as factor (cons)	
(Xi Still as factor (conc)) t(d/2, df=41) = 2.018 SE(B1) = .6862	
C1: (2.062, 4.833)	
@ Hypothesis: E(Y;") is linear in drug Aadministr	ation
0 Model: To make Yi' estimable / testable	
we remove the intercept	
$V_i^{(n)} = B_i \times i_i + E_i$	
Bis matrix of coefficients for each	lenel
9 Xi	
yij is factor (as.factor), levels = 20,.1025	1,1.25,2.5,5)
	>

.____

ALCOHOLD HAND	40, continued (i)
Negotive Common	Ei aue errors, ~N(0,02) ild
	Yi'' is genel expuession as a function of
	dug A administration
	D show of is a sub-model of o
S. C.	D show D is a sub-model of Θ In Θ, the model → Yi = βo + βijXij +εi.
A STANLES	_ ln 0, model -> Yi = Bij Xij + Ei
	Because @ is not full rank, in a where
- 100	the sun of Xi's =1, we do have a
	full-rank model, making @ a sub-model of @.
	(ii) Test null (Ho) that E(Y") is linear, d=0.05
-	Ho' E(Yi') is linear in dng A ad. (Xij)
	HA: E(Y(") is not linear in Xij
_	With 41 dequees of freedom (46 observations,
	puedictor of 5 levels, 46-5=41) and 0=0.05,
	R tells us that this model has an F-stat
	g 13.82 (F(x, 5, 41) and p-value = 6.36x10-6
	We can reject the null and conclude that
_	a linear model is likely not the appropriate
-	model for relationship between drug A
	administration (as a factor variable) and
	gene 1 ex pression.
	O 10
	© Y ⁽³⁾ is gene j'expuession
	Hoj E(Y(1)) is linear vs. HAJ E(Y(1)) not linear
	USE FWER, d= 0.05, to determine which
	g m=10 genes are not linear in drug A
	administration.
	FWER lowers the "cutoff" from & to were of the "cutoff" from & to where opined of the port model: Vi' = Bix Xix + Ei
	d (H > extimators)
	for model: Vis = Bux Xix + Ei / Ough
	= B1 X11 + B2 X12 + B3 X13 + B4 X14 + E1

40, continued p.10 Using the no-intercept models for each of
the m=10 gene expuertions Vii), I modeled
dng A administration as a factor
Variable. The models including the intercept
would tell us that genes 3,4,5,6 should
be modeled linearly (by FWER), but
since those models are not full rank, since those models are various. With we use the no-intercept models. With a cutoff of It, we find that all of the adjusted p-values fall under the cutoff, leading us to conclude that none of the m=10 gene expuessions should be modeled as linear functions of administration of drug A.

R Code for Problem 4

```
load(file = "Genes.RData")
# (a)
Y 1 = Y[,1]
conc.f = as.factor(Data$conc)
model1 = Im(Y 1 \sim conc.f)
# (b)
summary(model1)
confint(model1)
# (c)
confint(model1)
qqnorm(Y 1, pch = 1, frame = TRUE)
qqline(Y_1, col = "red", lwd = 2)
mtext("Q4 part c", side = 3)
# (d)
model2 = Im(Y_1 \sim conc.f + 0)
summary(model2)
# (e)
Y_1 = Y[,1]; Y_2 = Y[,2]; Y_3 = Y[,3]; Y_4 = Y[,4]; Y_5 = Y[,5];
Y_6 = Y[,6]; Y_7 = Y[,7]; Y_8 = Y[,8]; Y_9 = Y[,9]; Y_{10} = Y[,10]
model_1 = Im(Y_1 \sim conc.f + 0); model_2 = Im(Y_2 \sim conc.f + 0); model_3 = Im(Y_3 \sim conc.f + 0)
model_4 = Im(Y_4 \sim conc.f + 0); model_5 = Im(Y_5 \sim conc.f + 0); model_6 = Im(Y_6 \sim conc.f + 0)
model_7 = Im(Y_7 \sim conc.f + 0); model_8 = Im(Y_8 \sim conc.f + 0); model_9 = Im(Y_9 \sim conc.f + 0)
model_10 = Im(Y_10 \sim conc.f + 0)
Regressionp <- function (x) {
if (class(x) != "lm") stop("Not an object of class 'lm' ")
f <- summary(x)$fstatistic
p <- pf(f[1], f[2], f[3], lower.tail = F)
attributes(p) <- NULL
return(p)
}
p = c(Regressionp(model_1), Regressionp(model_2), Regressionp(model_3), Regressionp(model_4),
   Regressionp(model_5), Regressionp(model_6), Regressionp(model_7), Regressionp(model_8),
   Regressionp(model 9), Regressionp(model 10))
р
p.ad = p.adjust(p, method = "bonferroni")
p.ad > .05/4
```