# 第一章 认识数据

## 数据对象与数据属性

数据是由数据对象组成,一个数据对象代表一个实体。每个数据对象都有不同特征,称为数据的属性(attribute)。

#### 数据的属性包含:

- 标称属性(nominal): 值是符号或名称, 主要用于分类
- 二元属性(binary): 标称属性的一种,只有两个类别
- 序数属性(ordinal): 值的顺序或秩(rank)有意义,相继值得差未知
- 数值属性(numeric): 可度量的值
  - 。 区间标度(interval-scaled): 用相同单位的尺度衡量,没有真正的零点(即数值0不代表没有,代表相对情况),倍数无意义。
  - 。 比率标度(retio-scaled): 具有固定零点的数值, 倍数有意义。

## 数据的基本统计描述

## 中心趋势

描述数据的中心趋势的统计量主要由:均值、中位数和众数。

### 均值(mean):

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

加权平均:

$$\bar{x} = \sum_{i=1}^{N} w_i x_i \tag{2}$$

```
## 导入数据
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

data = pd.read_excel('./data/居民人均可支配收入.xlsx', index_col=0)
data.head()
```

|          | 居民人均可支配收入中位数 (元) | 居民人均可支配收入平均数 (元) |
|----------|------------------|------------------|
| 2013年第1季 | 4117.2           | 5006.1           |
| 2013年第2季 | 3606.2           | 4043.0           |
| 2013年第3季 | 3976.8           | 4507.4           |
| 2013年第4季 | 3931.9           | 4754.3           |
| 2014年第1季 | 4693.6           | 5562.2           |

## 计算均值 data.mean(axis=0)

居民人均可支配收入中位数 (元) 4700.211111 居民人均可支配收入平均数 (元) 5399.833333

dtype: float64

## 中位数(median)

对于非对称数据,数据中心更好的度量是中位数,中位数是有序数值的中间值。

## 计算中位数 data.median(axis=0)

居民人均可支配收入中位数(元)4726.80居民人均可支配收入平均数(元)5351.55

dtype: float64

## 众数(mode)

众数是集合中出现最频繁的值,根据最高频率对应不同的值的个数,可分为单峰 (unimodal)、双峰(bimodal)等。在极端情况下,如果每个数据仅出现一次,则没有众 数。

对于适度倾斜的单峰数据,有如下经验关系:

 $mean-mode \approx 3 \times (mean-median)$ 

data.mode(axis=0) ##所有数据都只出现了一次

|    | 居民人均可支配收入中位数(元) | 居民人均可支配收入平均数(元) |
|----|-----------------|-----------------|
| 0  | 3606.2          | 4043.0          |
| 1  | 3931.9          | 4462.8          |
| 2  | 3976.8          | 4507.4          |
| 3  | 4086.3          | 4754.3          |
| 4  | 4117.2          | 4843.8          |
| 5  | 4340.2          | 4960.6          |
| 6  | 4449.7          | 5006.1          |
| 7  | 4483.7          | 5181.5          |
| 8  | 4693.6          | 5266.7          |
| 9  | 4760.0          | 5436.4          |
| 10 | 4821.1          | 5562.2          |
| 11 | 4835.0          | 5599.1          |
| 12 | 5120.7          | 5747.9          |
| 13 | 5170.8          | 5849.4          |
| 14 | 5216.3          | 6085.6          |
| 15 | 5257.3          | 6086.9          |
| 16 | 5670.0          | 6619.3          |
| 17 | 6067.0          | 7184.0          |

(3)

```
import scipy.stats as stats
from scipy.stats import skewnorm
fig = plt.figure(figsize=(16,4))
ax1 = plt.subplot(1,3,1)
x1 = np.linspace(skewnorm.ppf(0.0001, a), skewnorm.ppf(0.9999, a), 100)
rv = skewnorm(a)
ax1.plot(x1, rv.pdf(x1), label='frozen pdf')
plt.xlabel(u'a)正倾斜数据', fontsize=15)
ax2 = plt.subplot(1,3,2)
x2 = np.linspace(-3, 3, 1000)
ax2.plot(x2, stats.norm.pdf(x2, 0, 1))
plt.xlabel(u'b)对称数据', fontsize=15)
ax3 = plt.subplot(1,3,3)
a = -4
x3 = np.linspace(skewnorm.ppf(0.0001, a), skewnorm.ppf(0.9999, a), 100)
rv = skewnorm(a)
ax3.plot(x3, rv.pdf(x3), label='frozen pdf')
plt.xlabel(u'c)负倾斜数据', fontsize=15)
```

<matplotlib.text.Text at 0x1579fa190b8>



### 离散程度

度量数据的离散程度的指标包括极差、分位数、四分位数、百分位数和四分位数极差。五数概括可以用箱线图(盒图)显示,它对于离群点的是识别是有用的。

### 极差、四分位数和四分位数极差

```
## 极差(range)
data.max() - data.min()
```

居民人均可支配收入中位数 (元) 2460.8 居民人均可支配收入平均数 (元) 3141.0

dtype: float64

## 第1个4分位数 data.quantile(1/4)

居民人均可支配收入中位数 (元) 4172.95 居民人均可支配收入平均数 (元) 4873.00

Name: 0.25, dtype: float64

#### 四分位数极差 (IQR)

 $IQR = Q_3 - Q_1 \tag{4}$ 

## 四分位数极差 data.quantile(3/4) - data.quantile(1/4)

居民人均可支配收入中位数 (元) 985.325 居民人均可支配收入平均数 (元) 951.025

dtype: float64

#### 箱线图和离群点

离群点的识别规则为:挑选落在第3个四分位数之上或第1个四分位数之下至少1.5×IQR处的值

## 箱线图 data.boxplot()

<matplotlib.axes.\_subplots.AxesSubplot at 0x1579ebc2438>



### 方差和标准差

方差(variance):

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2 = \left(\frac{1}{N} \sum_{i=1}^{N} x_i^2\right)^2 - \bar{x}^2$$
 (5)

标准差(standard deviation) σ是方差 σ² 的平方根

## 方差 data.var()

居民人均可支配收入中位数(元)居民人均可支配收入平均数(元)

416851.712810 626944.210588

dtype: float64

## 标准差 data.std()

居民人均可支配收入中位数(元)居民人均可支配收入平均数(元)

645.640545 791.798087

dtype: float64

## 数据快速统计摘要

data.describe()

|       | 居民人均可支配收入中位数(元) | 居民人均可支配收入平均数(元) |
|-------|-----------------|-----------------|
| count | 18.000000       | 18.00000        |
| mean  | 4700.211111     | 5399.833333     |
| std   | 645.640545      | 791.798087      |
| min   | 3606.200000     | 4043.000000     |
| 25%   | 4172.950000     | 4873.000000     |
| 50%   | 4726.800000     | 5351.550000     |
| 75%   | 5158.275000     | 5824.025000     |
| max   | 6067.000000     | 7184.000000     |

## 数据可视化

### 数据的基本统计描述的图形显示

### 分位数图(quantile plot)

分位数图是一种观察单变量数据分布的简单有效方法,首先显示给定属性的所有数据,其次它绘出了分数数信息。

```
fig = plt.figure(figsize=(12,4))
ax = fig.add_subplot(121)
x = data.iloc[:,0]
stats.probplot(x, plot=ax)
plt.ylabel(u'居民人均可支配收入中位数', fontsize=13)
plt.xlabel(u'f 值', fontsize=13)

ax = fig.add_subplot(122)
x = data.iloc[:,1]
stats.probplot(x, plot=ax)
plt.ylabel(u'居民人均可支配收入平均数', fontsize=13)
plt.xlabel(u'f 值', fontsize=13)
plt.xlabel(u'f 值', fontsize=13)
```



#### 分位数-分位数图(Q-Q图)

q-q图对着另一个对应的分位数,绘制一个单标量分布的分位数。它可使得用户可以观察从一个分布到另一个分布是否有漂移。

```
import statsmodels.api as sm
fig = plt.figure()
ax = fig.add_subplot(111)
a = sm.qqplot_2samples(data.iloc[:,0], data.iloc[:,1], xlabel=u'居民人均可
```

C:\Users\J\AppData\Local\Continuum\Anaconda3\lib\site-packages\statsmode
from pandas.core import datetools



## 直方图(histogram)

<

<

data.hist(bins=10, figsize=(12,4))

array([[<matplotlib.axes.\_subplots.AxesSubplot object at 0x00000157A214A <matplotlib.axes.\_subplots.AxesSubplot object at 0x00000157A21FF24





## 散点图(scatter)

散点图是确定两个数值变量之间看上去是否存在联系、模式或趋势的最有效图形方法之

data.plot.scatter(\*data.columns)



## 其他可视化基本图形

```
data2 = pd.read_excel('./data/各省份收入数据.xlsx', index_col=0)
data2.head()
```

|     | 工资性收入   | 家庭性收入   | 财产性收入  | 转移性收入  |
|-----|---------|---------|--------|--------|
| 北京  | 4524.25 | 1778.33 | 588.04 | 455.64 |
| 天津  | 2720.85 | 2626.46 | 152.88 | 79.64  |
| 河北  | 1293.50 | 1988.58 | 93.74  | 105.81 |
| 山西  | 1177.94 | 1563.52 | 62.70  | 86.49  |
| 内蒙古 | 504.46  | 2223.26 | 73.05  | 188.10 |

## 曲线图(plot)

```
markers = ['^', 'o', 'v', 's', 'd']
linestyles = ['-', ':', '-.','--']
```

```
for column, linestyle in zip(data2.columns,linestyles,):
   data2[column].plot(linestyle=linestyle)
plt.legend();
```



#### 柱状图

```
data2.plot(kind='bar', stacked=True, color=['blue','gold', 'green', 'red')
```

<matplotlib.axes.\_subplots.AxesSubplot at 0x157a2667080>



## 面积图

```
data2.plot.area(stacked=True)
```

```
<matplotlib.axes._subplots.AxesSubplot at 0x157a2764dd8>
```



#### 饼图

```
data2.plot.pie(y=data2.columns[0], figsize=(10,10))
```

```
<matplotlib.axes._subplots.AxesSubplot at 0x157a1d6ef28>
```



## 其他可视化图

```
from scipy import stats, integrate
import seaborn as sns
```

```
ax = sns.boxplot(data=data2)
ax = sns.stripplot(data=data2, jitter=True, edgecolor="gray")
```



sns.violinplot( data=data2, size=6)

<matplotlib.axes.\_subplots.AxesSubplot at 0x157a2908438>



sns.jointplot(x=data2.columns[0], y=data2.columns[1], data=data2, size=5)

<seaborn.axisgrid.JointGrid at 0x157a322d048>



```
g = sns.PairGrid(data2, hue=data2.columns[2])
g.map(plt.scatter, s=50, edgecolor="white")
g.map_offdiag(plt.scatter)
g.add_legend();
```



## 数据的相异性与相似性

在诸如聚类、离群点分析和最邻近分类等数据挖掘应用中,我们需要评估对象之间相互比较的相似性与相异性。相似性和相异性都称为临近性(proximity),如果两个对象<sub>i</sub>和<sub>j</sub>不相似,则它们相似性度量值为0,如果完全相似则为1。因此,我们可以构造数据的想异性矩阵,用来表示<sub>n</sub>个对象两两之间的邻近度。

其中d(i,j)是对象之间的想异性,一般而言,d(i,j)是一个非负的数值,对象i和j越接近,其值越接近0,如果越不同,该值越大。

## 标称属性的临近性度量

标称属性有多个状态,设其状态数目为 $_{M}$ ,这些状态用一组整数表示(整数只用书数据处理,不代表特定顺序)。两个对象 $_{i}$ 和 $_{i}$ 之间的相异性可以根据不匹配率来计算:

$$d(i,j) = \frac{p-m}{p} \tag{7}$$

其中, "是匹配的数目,即(i和j取值相同状态的属性值),而,是刻画对象属性总数。

|   | test-1 | test-2 | test-3 |
|---|--------|--------|--------|
| 0 | A      | 优秀     | 45     |
| 1 | В      | 一般     | 22     |
| 2 | С      | 好      | 64     |
| 3 | Α      | 优秀     | 28     |

我们看到除了对象1和4(d(4,1)=0)之外,其他都不相似。

相似性也可以用下式公式计算:

## 二元属性的邻近性度量

我们考虑对称和非对称二元属性刻画对象的想异性和相似性度量。

|   | 1 | 0 |
|---|---|---|
| 1 | q | r |
| 0 | s | t |

对于对对称的二元相异性,可以定义为:

$$d(i,j) = \frac{r+s}{q+r+s+t} \tag{9}$$

对于非对称的二元相异性,可以为t是不重要的,因此可以定义为:

$$d(i,j) = \frac{r+s}{q+r+s} \tag{10}$$

同样,我们也可以基于相似性来度两个个属性的差别,如对于非对称的二元相似性可以用下式计算:

$$sim(i,j) = \frac{q}{q+r+s} = 1 - d(i,j)$$
 (11)

(11) 式中的系数sim(i,j)被称为Jaccard系数,它在文献中被广泛应用。

|      | gender | fever | cough | test-1 | test-2 | test-3 | test-4 |
|------|--------|-------|-------|--------|--------|--------|--------|
| Jace | М      | Υ     | N     | Р      | N      | N      | N      |
| Jim  | М      | Υ     | Υ     | N      | N      | N      | N      |
| Mary | F      | Υ     | N     | Р      | N      | Р      | N      |

```
## 转换成数值型
label_map = {'Y': 1, 'N': 0, 'P': 1}
data4_num = data4.copy()
for column in data4.columns:
    data4_num[column] = data4[column].map(label_map)
data4_num.drop('gender', axis=1, inplace=True)
data4_num
```

|      | fever | cough | test-1 | test-2 | test-3 | test-4 |
|------|-------|-------|--------|--------|--------|--------|
| Jace | 1     | 0     | 1      | 0      | 0      | 0      |
| Jim  | 1     | 1     | 0      | 0      | 0      | 0      |
| Mary | 1     | 0     | 1      | 0      | 1      | 0      |

```
## 调用scipy计算jaccard 相异性
from scipy.spatial.distance import jaccard
jaccard(data4_num.iloc[0,:], data4_num.iloc[1,:])
```

#### 0.666666666666663

```
## 或者使用sklearn 计算jaccard from sklearn.metrics import jaccard_similarity_score jaccard_similarity_score(data4_num.iloc[0,:], data4_num.iloc[1,:])
```

#### 0.666666666666663

```
## 或者调用pdist计算所有jaccard
from scipy.spatial.distance import pdist
pdist(data4_num, metric='jaccard')
```

```
array([ 0.66666667, 0.33333333, 0.75 ])
```

## 数值属性相异性

计算数值属性的相异性,一般我们常用的是距离。我们最常用的距离是欧几里得距离,其他被广泛应用的距离还有:曼哈顿距离、闵可夫斯基距离。

距离公式都需要满足如下四个条件:

- **非负性**:  $d(i,j) \ge 0$ : 距离是一个非负的数值
- **同一性**: d(i,j) = 0: 对象到自身的距离为0

- **对称性:** d(i,j) = d(j,i): 距离是一个对称的函数
- **三角不等式:**  $d(i,j) \leq d(i,k) + d(k,j)$ : 从对象i到对象j的直接距离不会大于途经任何其他对象k的距离。

欧几里得距离(euclidean):

$$d(i,j) = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \dots + (x_{in} - x_{jn})^2}$$
(12)

曼哈顿距离(Manhattan):

$$d(i,j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{in} - x_{jn}|$$

$$\tag{13}$$

闵可夫斯基距离(Minkowski):

$$d(i,j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \dots + |x_{in} - x_{jn}|^h}$$
(14)

切比雪夫距离(Chebyshev)或称上界距离( $L_{max}$ ),是 $L \to \infty$ 时闵可夫斯基距离的推广:

$$d(i,j) = \lim_{h \to \infty} \left( \sum_{f=1}^{n} x_{if} - x_{jf} \right)^{\frac{1}{h}} = \max_{f} \left| x_{if} - x_{jf} \right|$$

$$(15)$$

```
from scipy.spatial import distance
x1 = np.arange(0,5)
x2 = np.arange(5,10)
print('x1:',x1)
print('x2:',x2)
```

```
x1: [0 1 2 3 4]
x2: [5 6 7 8 9]
```

```
## 欧几里德距离
distance.euclidean(x1, x2)
```

11.180339887498949

```
distance.cityblock(x1, x2)
```

25

```
## 闵可夫斯基距离
distance.minkowski(x1, x2, p=3)
```

```
8.5498797333834844
```

```
## 切比雪夫距离
distance.chebyshev(x1, x2)
```

5

```
## 计算矩阵的距离

## 欧几里德距离
pdist(data4_num, metric='euclidean')

## 曼哈顿距离
pdist(data4_num, metric='cityblock')

## 闵可夫斯基距离
pdist(data4_num, metric='minkowski', p=5)

## 切比雪夫距离
pdist(data4_num, metric='chebyshev')
```

```
array([ 1., 1., 1.])
```

## 序数属性的邻近性度量

序数属性的值之间具有意义的序(rank),而相继值之间的值未知。序数属性的处理与数值属性非常相似。

- 1. 用数值排位 $1, ..., M_t$ 取代 $x_{i,t}$
- 2. 再将数值映射到[0,1]区间,使得每个属性都有相同的权重:

$$z_{if} = \frac{r_{if} - 1}{M_f - 1} \tag{16}$$

3. 当成数值属性计算邻近性

##处理data3的test-2 data3

|   | test-1 | test-2 | test-3 |
|---|--------|--------|--------|
| 0 | Α      | 优秀     | 45     |
| 1 | В      | 一般     | 22     |
| 2 | С      | 好      | 64     |
| 3 | Α      | 优秀     | 28     |

```
0    3
1    1
2    2
3    3
Name: test-2, dtype: int64
```

```
## 规范化
x_scale = (x - 1) / (x.max() - 1)
x_scale
```

```
0   1.0
1   0.0
2   0.5
3   1.0
Name: test-2, dtype: float64
```

```
## 计算欧几里得距离
dis_2 = pdist(x_scale.values.reshape(-1,1))
dis_2
```

```
array([ 1. , 0.5, 0. , 0.5, 1. , 0.5])
```

## 混合类型属性相异性

前面我么分别介绍了不同类型属性的处理方法,但是在实际中,我们数据处理的属性往往混合了不同类型的属性。我们可以分别计算每种类型属性的相异性,然后将值映射到[0,1]区间,再进行加权平均:

$$d(i,j) = \frac{\sum_{f=1}^{n} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{n} \delta_{ij}^{(f)}}$$
(17)

其中,如果 $x_{if}=0$ 或 $x_{if}=0$ ,指示符 $\delta_{ij}^{(f)}=0$ ,并且f是非对称的二元属性;否则 $\delta_{ij}^{(f)}=1$ 。

- f 是数值的:  $d_{ij}^{(f)} = \frac{\left|x_{if} x_{jf}\right|}{\max_{h} x_{hf} \min_{h} x_{hf}}$
- f是表称或二元的: 如果 $x_{if} = x_{jf}$ ,则 $d_{ij}^{(f)} = 0$ ; 否则 $d_{ij}^{(f)} = 1$
- $_f$ 是序数的: 计算排位 $_{r_{if}}$ 和 $_{z_{if}}=\frac{r_{if}-1}{M_f-1}$ , 并将 $_{z_{if}}$ 当成数值属性对待

|   | test-1 | test-2 | test-3 |
|---|--------|--------|--------|
| 0 | A      | 优秀     | 45     |
| 1 | В      | 一般     | 22     |
| 2 | С      | 好      | 64     |
| 3 | A      | 优秀     | 28     |

```
dis_1
```

 ${\tt dis\_2}$ 

<

```
array([ 1. , 0.5, 0. , 0.5, 1. , 0.5])
```

```
## 计算test-3
dis_3 = pdist(data3['test-3'].values.reshape(-1,1),metric='minkowski',p=:
dis_3
```

```
## 转换dis_1
dis_1_ = np.array([1,1,0,1,1,1])
```

```
dis_all = np.sum((dis_1_, dis_2, dis_3), axis=0)/ 3
#dis_all = np.sum((dis_1_, dis_2, dis_3), axis=0)/ (2 + dis_1_)
dis_all
```

```
array([ 0.84920635, 0.65079365, 0.13492063, 0.83333333, 0.71428571, 0.78571429])
```

## 余弦相似性

余弦相似性是一种度量,可以用于比较文档,或针对给定的查询词向量对文档排序。令<sub>求</sub>和<sub>y</sub>是两个待比较的向量,使用余弦相似函数,我们有:

$$sim(x,y) = \frac{x \cdot y}{\|x\| \|y\|} \tag{18}$$

余弦值为0意味着两个向量没有匹配,余弦值越接近1,匹配程度越大。

```
data5 = pd.DataFrame([[5,0,3,0,2,0,0,2,0,0],[3,0,2,0,1,1,0,1,0,1,],[0,7,0]
data5.columns = ['team', 'coach', 'hocky', 'baseball', 'soccer', 'penalt data5
```

|   | team | coach | hocky | baseball | soccer | penalty | score | win |
|---|------|-------|-------|----------|--------|---------|-------|-----|
| 0 | 5    | 0     | 3     | 0        | 2      | 0       | 0     | 2   |
| 1 | 3    | 0     | 2     | 0        | 1      | 1       | 0     | 1   |
| 2 | 0    | 7     | 0     | 2        | 1      | 0       | 0     | 3   |
| 3 | 0    | 1     | 0     | 0        | 1      | 2       | 2     | 0   |

## 计算单个余弦相似性

1 - distance.cosine(data5.iloc[0,:], data5.iloc[1,:])

#### 0.93560148570639967

```
## 计算所有余弦相似性
1 - pdist(data5, metric='cosine')
```

```
array([ 0.93560149, 0.15552316, 0.07079923, 0.12222647, 0.16692447, 0.23122933])
```

#### 课后习题 2.6

求 x = (22, 1, 42, 10) 和 y = (20, 0, 36, 8) 各种距离:

- 欧几里得距离
- 曼哈顿距离
- 闵可夫斯基距离 (q=3)

• 上确界距离

```
from scipy.spatial import distance
x=np.array([22,1,42,10])
y=np.array([20,0,36,8])
```

```
## 欧几里得距离
distance.euclidean(x,y)
```

6.7082039324993694

```
## 曼哈顿距离
distance.cityblock(x, y)
```

11

```
## 闵可夫斯基距离(p=3)
distance.minkowski(x, y, p=3)
```

6.1534494936636817

```
## 切比雪夫上确界距离
distance.chebyshev(x, y)
```

6

#### 课后习题 2.8

- 1. 计算新数据 x=(1.4,1.6) 与给定数据的欧几里得距离、曼哈顿距离、上确界距离和余弦相似性,并基于相似性排序
- 2. 规范化数据, 使得每个数据点的范数为1

```
data6 = pd.DataFrame([[1.5,2,1.6,1.2,1.5],[1.7,1.9,1.8,1.5,1.0]]).T
data6.columns=['A1', 'A2']
data6.index=['x1', 'x2', 'x3', 'x4', 'x5']
data6
```

|            | A1  | A2  |
|------------|-----|-----|
| <b>x</b> 1 | 1.5 | 1.7 |
| x2         | 2.0 | 1.9 |

| x3         | 1.6 | 1.8 |
|------------|-----|-----|
| x4         | 1.2 | 1.5 |
| <b>x</b> 5 | 1.5 | 1.0 |

```
## 计算距离并排序
x_new = np.array([1.4,1.6])
dist = ['euclidean', 'cityblock', 'chebyshev', 'cosine']
dis_new = [[distance.pdist([data6.iloc[i,:], x_new], metric=way) for i ir
dis_new = [np.stack(i) for i in dis_new]
for i, way in enumerate(dist):
    data6[way] = dis_new[i]
    data6[way+'_rank'] = data6[way].rank()
data6
```

|            | <b>A</b> 1 | A2  | euclidean | euclidean_rank | cityblock | cityblock_rank |
|------------|------------|-----|-----------|----------------|-----------|----------------|
| <b>x</b> 1 | 1.5        | 1.7 | 0.141421  | 1.0            | 0.2       | 1.0            |
| <b>x2</b>  | 2.0        | 1.9 | 0.670820  | 5.0            | 0.9       | 5.0            |
| х3         | 1.6        | 1.8 | 0.282843  | 3.0            | 0.4       | 3.0            |
| x4         | 1.2        | 1.5 | 0.223607  | 2.0            | 0.3       | 2.0            |
| х5         | 1.5        | 1.0 | 0.608276  | 4.0            | 0.7       | 4.0            |

```
## 规格化数据,使每个数据范数为1
data6['A1_scale'] = data6['A1'] / (data6['A1']**2 + data6['A2'] **2)**0.5
data6['A2_scale'] = data6['A2'] / (data6['A1']**2 + data6['A2'] **2)**0.5
data6.loc[:,['A1_scale', 'A2_scale']]
```

|            | A1_scale | A2_scale |
|------------|----------|----------|
| <b>x</b> 1 | 0.661622 | 0.749838 |
| <b>x2</b>  | 0.724999 | 0.688749 |
| х3         | 0.664364 | 0.747409 |
| x4         | 0.624695 | 0.780869 |
| <b>x</b> 5 | 0.832050 | 0.554700 |