2 Formas DIFERENCIALES.

VF y 1-FORMAS.

Exercise 2.1.i. Prove Lemma 2.1.18

Exercise 2 1 ii Prove Lemma 2 1 11

 Let <i>II</i> be an open subse	of \mathbf{R}^n and \boldsymbol{v}_2 and \boldsymbol{v}_2	vector fields on	U Show that	

Exercise 2.1.iii. Let U be an open subset of \mathbf{R}^n and \mathbf{v}_1 and \mathbf{v}_2 vector fields on U. Show that there is a unique vector field \boldsymbol{w} , on U with the property $L_{\boldsymbol{w}}\phi = L_{\boldsymbol{v}_1}(L_{\boldsymbol{v}_2}\phi) - L_{\boldsymbol{v}_2}(L_{\boldsymbol{v}_1}\phi)$ for all $\phi \in C^{\infty}(U)$.

Exercise 2.1.iv. The vector field w in Exercise 2.1.iii is called the *Lie bracket* of the vector fields v_1 and v_2 and is denoted by $[v_1, v_2]$. Verify that the Lie bracket is *skew-symmetric*, i.e.,

$$[v_1, v_2] = -[v_2, v_1],$$

and satisfies the Jacobi identity

$$[v_1, [v_2, v_3]] + [v_2, [v_3, v_1]] + [v_3, [v_1, v_2]] = 0.$$

(And thus defines the structure of a Lie algebra.)

Hint: Prove analogous identities for $L_{\boldsymbol{v}_1}$, $L_{\boldsymbol{v}_2}$ and $L_{\boldsymbol{v}_3}$.

Exercise 2.1.vi. Let ${\pmb v}_1$ and ${\pmb v}_2$ be vector fields and f a C^∞ function. Show that $[\boldsymbol{v}_1, f\boldsymbol{v}_2] = L_{\boldsymbol{v}_1} f\boldsymbol{v}_2 + f[\boldsymbol{v}_1, \boldsymbol{v}_2] \; .$

Exercise 2.1.vii. Let U be an open subset of \mathbb{R}^n and let $\gamma: [a,b] \to U$, $t \mapsto (\gamma_1(t),...,\gamma_n(t))$ be a C^1 curve. Given a C^∞ one-form $\omega = \sum_{i=1}^n f_i dx_i$ on U, define the *line integral* of ω over γ to be the integral

$$\int_{\gamma} \omega \coloneqq \sum_{i=1}^n \int_a^b f_i(\gamma(t)) \frac{d\gamma_i}{dt} \, dt \; .$$

Show that if $\omega = df$ for some $f \in C^{\infty}(U)$

$$\int_{\gamma} \omega = f(\gamma(b)) - f(\gamma(a)).$$

In particular conclude that if γ is a closed curve, i.e., $\gamma(a) = \gamma(b)$, this integral is zero.

Exercise 2.1.viii. Let ω be the C^{∞} one-form on $\mathbb{R}^2 \setminus \{0\}$ defined by

$$\omega = \frac{x_1 dx_2 - x_2 dx_1}{x_1^2 + x_2^2} ,$$

and let $\gamma: [0, 2\pi] \to \mathbb{R}^2 \setminus \{0\}$ be the closed curve $t \mapsto (\cos t, \sin t)$. Compute the line integral $\int_{\gamma} \omega$, and note that $\int_{\gamma} \omega \neq 0$. Conclude that ω is not of the form df for $f \in C^{\infty}(\mathbb{R}^2 \setminus \{0\})$.

Exercise 2.1.ix. Let f be the function

$$f(x_1, x_2) = \begin{cases} \arctan \frac{x_2}{x_1} & x_1 > 0\\ \frac{\pi}{2}, & x_2 > 0 \text{ or } x_1 = 0\\ \arctan \frac{x_2}{x_1} + \pi & x_1 < 0 \end{cases}.$$

Recall that $-\frac{\pi}{2} < \arctan(t) < \frac{\pi}{2}$. Show that f is C^{∞} and that df is the 1-form ω in Exercise 2.1.viii. Why does not this contradict what you proved in Exercise 2.1.viii?

2 Curvas INI. Y VF.

Exercise 2.2.i. Prove the reparameterization result Theorem 2.2.20.

Exercise 2.2.ii. Let U be an open subset of \mathbb{R}^n . V an open subset of \mathbb{R}^n and $f:U\to V$ a C^k

Exercise 2.2.ii. Let U be an open subset of \mathbb{R}^n , V an open subset of \mathbb{R}^n and $f:U\to V$ a C^k map.

(1) Show that for $\phi \in C^{\infty}(V)$ (2.2) can be rewritten

$$f^*d\phi=df^*\phi.$$

(2) Let μ be the one-form

$$\mu = \sum_{i=1}^{m} \phi_i dx_i , \ \phi_i \in C^{\infty}(V)$$

on *V*. Show that if $f = (f_1, ..., f_m)$ then

$$f^{\star}\mu = \sum_{i=1}^{m} f^{\star}\phi_i df_i.$$

(3) Show that if μ is C^{∞} and f is C^{∞} , $f^{*}\mu$ is C^{∞} .

Exercise 2.2.iii. Let ${\bf v}$ be a complete vector field on U and $f_t:U\to U$, the one parameter group of diffeomorphisms generated by ${\bf v}$. Show that if $\phi\in C^1(U)$

Exercise 2.2.iv.

(1) Let $U = \mathbb{R}^2$ and let \boldsymbol{v} be the vector field, $x_1 \partial/\partial x_2 - x_2 \partial/\partial x_1$. Show that the curve

$$t \mapsto (r\cos(t+\theta), r\sin(t+\theta))$$
,

for $t \in \mathbb{R}$, is the unique integral curve of v passing through the point, $(r \cos \theta, r \sin \theta)$, at t = 0.

(2) Let $U = \mathbb{R}^n$ and let \mathbf{v} be the constant vector field: $\sum_{i=1}^n c_i \partial / \partial x_i$. Show that the curve

$$t \mapsto a + t(c_1, ..., c_n)$$
,

for $t \in \mathbf{R}$, is the unique integral curve of \boldsymbol{v} passing through $a \in \mathbf{R}^n$ at t = 0.

(3) Let $U = \mathbb{R}^n$ and let v be the vector field, $\sum_{i=1}^n x_i \partial / \partial x_i$. Show that the curve

$$t \mapsto e^t(a_1, ..., a_n)$$
,

for $t \in \mathbf{R}$, is the unique integral curve of \mathbf{v} passing through a at t = 0.

Exercise 2.2.v. Show that the following are one-parameter groups of diffeomorphisms: (1) $f_t: \mathbf{R} \to \mathbf{R}$, $f_t(x) = x + t$ (2) $f_t: \mathbf{R} \to \mathbf{R}$, $f_t(x) = e^t x$ (3) $f_t: \mathbf{R}^2 \to \mathbf{R}^2$, $f_t(x, y) = (x \cos(t) - y \sin(t), x \sin(t) + y \cos(t))$.

Exercise 2.2.vi. Let $A: \mathbb{R}^n \to \mathbb{R}^n$ be a linear mapping. Show that the series

$$\exp(tA) := \sum_{n=0}^{\infty} \frac{(tA)^n}{n!} = \mathrm{id}_n + tA + \frac{t^2}{2!} A^2 + \frac{t^3}{3!} A^3 + \cdots$$

converges and defines a one-parameter group of diffeomorphisms of ${\bf R}^n$.

Exercise 2.2.vii.

- (1) What are the infinitesimal generators of the one-parameter groups in Exercise 2.2.v?
- (2) Show that the infinitesimal generator of the one-parameter group in Exercise 2.2.vi is the vector field

$$\sum_{1 \leq i,j \leq n} a_{i,j} x_j \frac{\partial}{\partial x_i}$$

where $(a_{i,j})$ is the defining matrix of A.

Exercise 2.2.viii. Let v be the vector field on \mathbf{R} given by $x^2 \frac{d}{dx}$. Show that the curve

$$x(t) = \frac{a}{a - at}$$

is an integral curve of \boldsymbol{v} with initial point x(0) = a. Conclude that for a > 0 the curve

$$x(t) = \frac{a}{1 - at}, \ 0 < t < \frac{1}{a}$$

is a maximal integral curve. (In particular, conclude that \boldsymbol{v} is not complete.)

Exercise 2.2.ix. Let U and V be open subsets of \mathbb{R}^n and $f:U \cong V$ a diffeomorphism. If \boldsymbol{w} is a vector field on V, define the *pullback* of \boldsymbol{w} to U to be the vector field

$$f^* \mathbf{w} \coloneqq (f_*^{-1} \mathbf{w})$$
.

Show that if ϕ is a C^{∞} function on V

$$f^{\star}L_{\boldsymbol{w}}\phi=L_{f^{\star}\boldsymbol{w}}f^{\star}\phi\;.$$

Hint: Equation (2.2.25).

Exercise 2.2.x. Let U be an open subset of \mathbb{R}^n and \mathbf{v} and \mathbf{w} vector fields on U. Suppose \mathbf{v} is the infinitesimal generator of a one-parameter group of diffeomorphisms

$$f_t : U \simeq U, -\infty < t < \infty.$$

Let $\boldsymbol{w}_t = f_t^* \boldsymbol{w}$. Show that for $\phi \in C^{\infty}(U)$ we have

$$L_{[v,w]}\phi=L_{\dot{w}}\phi\;,$$

where

$$\dot{\boldsymbol{w}} = \left. \frac{d}{dt} f_t^* \boldsymbol{w} \right|_{t=0} .$$

Hint: Differentiate the identity

$$f_t^{\star} L_{\boldsymbol{w}} \phi = L_{\boldsymbol{w}_t} f_t^{\star} \phi$$

with respect to t and show that at t=0 the derivative of the left hand side is $L_v L_w \phi$ by Exercise 2.2.iii, and the derivative of the right hand side is

$$L_{\dot{\boldsymbol{w}}} + L_{\boldsymbol{w}}(L_{\boldsymbol{v}}\phi)$$
.

Exercise 2.2.xi. Conclude from Exercise 2.2.x that $[\boldsymbol{v}, \boldsymbol{w}] = \left. \frac{d}{dt} f_t^* \boldsymbol{w} \right|_{t=0}$. (2.2.25)

