非线性方程的数值解作业

一、问题(方程组):

实验 1-3: 设映射 $F: \mathbb{R}^n \to \mathbb{R}^n$ 定义为

$$F_1(x) = x_1 - e^{\cos(\frac{1}{n+1}(x_1 + x_2))}$$

$$F_i(x) = x_i - e^{\cos(\frac{1}{n+1}(x_{i-1} + x_i + x_{i+1}))}$$

$$F_n(x) = x_n - e^{\cos(\frac{1}{n+1}(x_{n-1} + x_n))}$$

实验 4:

$$f_1(x1, x2, x3) = 3x_1 - \cos(x2 * x3) - 0.5$$

$$f_2(x1, x2, x3) = x1^2 - 81(x2 + 0.1)^2 + \sin(x3) + 1.06$$

$$f_3(x1, x2, x3) = e^{-x1*x2} + 20x3 + \frac{1}{3}(10\pi - 3)$$

二、数值实验

实验 1: 用牛顿迭代法求解上述非线性方程组的解牛顿迭代法:

$$\begin{cases} x^{k+1} = x^k + \Delta x^k \\ F'(x^k) \Delta x^k + F(\Delta x^k) = 0 \end{cases}$$

用 Matlab2018b 进行牛顿迭代法的编程,方程的维数为 100, 初始值 \mathbf{x}^0 =[1,······,1],精度 ϵ =10⁻⁶。

停止准则为以下两者

$$\left(1\right)\|x^{k+1}-x^k\|<~\epsilon~*\|x^k\|$$

$$(2)\,\|F\big(x^k\big)\|<\,\epsilon$$

实验 2: 用 Newton-SOR 迭代法和 SOR-Newton 迭代法,求解上述非线性方程组的解。

用 Matlab2018b 进行 Newton-SOR 迭代法和 SOR-Newton 迭代法的编程,方程的维数为 100,初始值为 $x0=[0,\cdots,0]$ [1,…,1] [20,…,20]三种,精度 $\epsilon=10^{-6}$,内迭代次数均为 2,松弛因子 w 均为 1。

停止准则为: ||F(xk)|| < ε

实验 3: 用一点割线法、两点割线法和改进 n 步迭代法,求解上述非线性方程组的解。

用 Matlab2018b 进行一点割线法、两点割线法和改进 n 步迭代法的编程,方程的维数为 100,初始值为 $x0=[0,\cdots,0]$ $[1,\cdots,1]$ $[20,\cdots,20]$ 三种,精度 $\epsilon=10^{-6}$,h=0.5。

停止准则为: $\|F(x^k)\| < ε$

实验 4: 用延拓牛顿法和循环中点求积牛顿法,选择初始点 [0,0,0]' 和[20,20,20]',求解上述 3 维非线性方程组的解。其中精度 $\epsilon=10^{-6}$ 。

收敛准则为 $\|F(x^k)\| < \epsilon$ 和 $\|x^{k+1} - x^k\| < \epsilon$

三、实验4的程序(sess_run5.m)

(continuation_newton.m) (recurrent_newton.m)

```
File: sess_run5.m(主程序)
   function sess_run5
   x0=[100;100;100];
   N=3000;
   err=1e-6;
   M=10;
   %[x,iter]=continuation newton(@f,@df,x0,N,err)
  [x,iter]=recurrent newton(@f,@df,x0,N,M,err,err)
   function y=f(x)
   f1=3*x(1)-cos(x(2)*x(3))-0.5;
   f2=x(1)^2-81*(x(2)+0.1)^2+sin(x(3))+1.06;
   f3=exp(-x(1)*x(2))+20*x(3)+10*pi/3-1;
   y=[f1;f2;f3];
  function y=df(x)
  y=[3 \times (3) * \sin(x(2) * x(3)) \times (2) * \sin(x(2) * x(3));
     2*x(1) -162*(x(2)+0.1) cos(x(3));
     -x(2)*exp(-x(1)*x(2)) -x(1)*exp(-x(1)*x(2)) 20];
```

```
File: continuation newton.m(延拓牛顿法)
   function [x1,iter]=continuation newton(f,df,x0,N,err)
   %延拓牛顿法
   x=x0;
   itermax=100;
   f0=f(x0);
   for i=0:N-1
      x=x-df(x) \setminus (f(x)+(i/N-1)*f0);
   end
   for iter=1:itermax
      x1=x-df(x) \setminus f(x);
      if norm(x1-x) < err
         break
      end
      x=x1;
   end
```

```
File: recurrent_newton(循环中点求积牛顿法)
   function [x,iter] = recurrent_newton(f,df,x0,N,M,err1,err2)
   %循环中点求积牛顿法"
   for iter=1:M
      f0=f(x0);
       x=x0-df(x0) f0/N;
       for j=1:N-1
          x_half=x+(x-x0)/2;
         x0=x;
         x=x-df(x_half) f0/N;
       end
       z0=0.1;
       z1=df(x) \setminus f(x);
       while norm(z1)<norm(z0)</pre>
          z0=z1;
          x=x-z1;
          if norm (z1) <= err1</pre>
             return
         end
          if norm (f(x)) \le err2
             return
          end
          z1=df(x) \setminus f(x);
       end
  end
```

四、数值实验结果

实验 1(牛顿迭代法):

	停	5止条件1:	停止	二条件 2:		
	x ^{k+1} -	$-x^k \ < \varepsilon * \ x^k\ $	$\ F(x^k)\ < \epsilon$			
初始值	迭代次数	$\left\ x^{k+1} - x^k \right\ $	迭代次数	$\ F(x^k)\ $		
[0,, 0]	1	27. 18281828	1	27. 18281828		
	2	9. 207523076	2	14. 74672184		
	3	0. 431678826	3	0. 743106864		
	4	3.04E-05	4	2. 77E-05		
	5	3. 78E-13	5 3. 77E-13			
	_					
[1, …, 1]	•••	•••	•••	•••		
	3	30. 33457253	3	27. 92264291		
	4	11. 93883392	4	18. 38908032		
	5	0. 837697626	5	1. 446653964		
	6	0. 000274334	6	0.000473777		
	7	2.47E-11	7	4. 26E-11		
[20, …, 20]	•••	•••	•••	•••		
	9	17. 49526454	9	14. 531269289013		
	10	9. 599137236	10	11. 24358681		
	11	1.609389575	11	2. 464247536		
	12	0. 037460134	12	0.05483113		
	13	1. 33E-06	13	2. 03E-06		
			14	2.89E-15		

实验 2(Newton-SOR 迭代法和 SOR-Newton 迭代法)结果:

寻找最好的松弛因子: (初始值: [20, …, 20])

松弛因子 w	Newton-SOR 迭代法的迭代次数	SOR-Newton 迭代法的迭代次数
0.1	90	100(不收敛)
0.2	43	85

0.3	27	53
0.4	19	37
0.5	14	28
0.6	11	21
0.7	8	16
0.8	6	12
0.9	5	9
1.0*	3 (最少迭代步数)	4 (最少迭代步数)
1.1	5	9
1.2	7	12
1.3	9	16
1.4	11	21
1.5	14	28
1.6	19	38
1.7	27	54
1.8	43	86
1.9	91	100(不收敛)

所以,w=1.0(保留一位小数)是最佳松弛因子。

实验2数值实验结果:

松弛因子 w=1	Newton-SC	DR 迭代法	SOR-Newton 迭代法						
初始值	迭代次数	$\ F\left(x^k\right)\ $	迭代次数	$\ F\left(x^k\right)\ $					
[0,, 0]	1	8.7700e-02	1	4.8520e-02					
	2	1. 3012e-06	2	1.0374e-04					
	3	5.9591e-12	3	2. 2162e-07					
[1, …, 1]	1	3.4731e-02	1	3.2851e-02					
	2	2.9977e-07	2	7.0219e-05					
			3	1.5001e-07					
[20, …, 20]	1	2. 3296e+00	1	7. 4433e-01					

2	6.4473e-04	2	1.5811e-03
3	3.0037e-09	3	3. 3778e-06
		4	7. 2159e-09

实验 3 (一点、两点割线法和改进 n 步迭代法) 数值实验结果:

	一点割线流	去迭代法	两点割线剂	去迭代法	改进n步迭代法		
初始值	迭代次数	$\ F(x^k)\ $	迭代次数	$\ F(x^k)\ $	迭代次 数	$\ F \left(x^k \right) \ $	
[0,, 0]	1	5. 8529e-02	1	8. 2267e-02	1	5. 8529e- 02	
	2	2. 7117e-07	2	8. 7796e-05	2	6. 1283e- 05	
			3	2. 8117e-10	3	6. 4473e- 08	
[1,, 1]	1	2. 3358e-02	1	3. 1333e-02	1	2. 3358e- 02	
	2	4. 3191e-08	2	2. 1032e-05	2	1. 5283e- 05	
			3	2. 5695e-11	3	1.0021e- 08	
[20,, 20]	1	2.6608e+00	1	2. 3180e+00	•••3	2. 7204e- 03	
	2	2. 1912e-03	2	1.5038e-02	4	8. 7536e- 05	
	3	1. 4988e-09	3	1. 3962e-06	5	2.8170e- 06	
			4	8. 1975e-13	6	9.0734e- 08	

实验 4 (延拓牛顿法和循环中点求积牛顿法) 数值实验结果:

其中,N是中点求积的步数 M是循环中点求积牛顿法的循环次数

	延拓牛顿法 (N=8) 循环中			P点求积法(N=8,M=10)				
初始值	迭代次数	"	k+1	CPU TIME	迭代次数	•	$\ F(x^k)\ $	CP U TI ME

[0,0,0]	1	9.0491e-02	2.493 ms	1	3.9958e-06	4.552ms
	2	2.8364e-04		2	4. 9472e-12	
	3	4.0231e-07		3		

当初始点[20,20,20]距离 x*比较远时,需要取较大的 N 才能使得算法收敛这里我们延拓牛顿法取 N=50,循环中点求积法取 N=500,M=10。

	延拓牛顿剂	去(N=50)	循环中点求积法(N=8,M=10)								
1	初始值	迭代次 数		$\ x^{k+1}$	$-x^{k}\ $	CPU TIME		迭代次 数		F (x ^k))	CPU TIM E
[[20, 20, 20]	·····7	2.	8983e-03	9.802 ms	1	1.56	65e-06	26	6.926 ms		
		8	4.	2050e-05		2	7.60	28e-13				
		9	8.	8550e-09								

五、结论

实验 1 结论: 在使用牛顿迭代法时,在收敛速度上,停止条件 2 往往比停止条件 1 更加严格,可能需要更多的迭代步数。

实验 2 结论: 在解上述非线性方程组时,最好的松弛因子是 w=1.0。在收敛速度上,Newton-SOR 迭代法往往比 SOR-Newton 迭代法更快的收敛。

实验 3 结论: 在收敛速度上,一点割线法法最快,两点割线法法次之,改进 n 步 迭代法最慢。而两点割线法法因为使用了之前两点的信息,比一点割线法计算的 函数值要更少,而改进 n 步迭代法主要是为了克服计算的稳定性而提出的算法。

实验 4 结论: 在收敛速度上,循环中点求积法使用的 CPU 时间要比延拓牛顿法使用的 CPU 时间更多。但是循环中点求积法使用的迭代次数会更少,因为他在每次迭代过程中利用中点求积公式更新点的位置更好,但是会损失一定的 CPU 时间。其次,对于离真解 x*较远的点,循环中点求积法的中点求积步数 N 明显多

于延拓牛顿法的中点求积步数 N, 也往往更难求出最好的步数 N。