1. Alapfogalmak

A valószínűségszámítás praktikusságát talán nem kell bizonygatni egyetlen olvasónak sem⁴: a legtöbb kísérleti tudomány támaszkodik rá valamilyen formában. Az mégis kérdés, hogy az egyszeri halandónak miért nem elég a "kedvező-per-összes" józan ésszel is kitalálható magasságaiban maradni?

Az egyik ok, hogy néha a naiv megközelítés helytelen vagy ellentmondásos eredményt ad. Ezt jól demonstrálja a számos valószínűségi paradoxon az irodalomban⁵, íme az egyik:

- Bertrand-féle doboz paradoxon

Adott három egyforma doboz. Az elsőben két arany érme van, a másodikban két ezüst érme, a harmadikban pedig egy arany és egy ezüst. A dobozok tartalmát nem ismerve, (egyenletesen) véletlenszerűen választva kihúzunk egy dobozból egy érmét. Feltéve, hogy a kihúzott érme arany, mi a valószínűsége, hogy a dobozban lévő másik érme is arany?

Első nekifutásra az $\frac{1}{2}$ reális tippnek tűnhet, hiszen két esetben húzhattunk arany érmét: ha az első vagy második dobozból húztunk. Ezek közül pedig csak az egyik esetben lesz a másik érme ezüst. Ugyanakkor a paradoxon helyes megoldása $\frac{2}{3}$, amit kísérlettel is igazolhatunk. Ennek magyarázata, hogy eredetileg 6-féle kimenetele lehet a húzásunknak az alapján, melyik érmét húzzuk (az érméket különbözőnek véve). Ebből a 6 esetből 3-ban húzunk arany érmét, ez tehát az összes eseteink száma. Ebből a 3 esetből 2-ben a dobozban lévő másik érme szintén arany, így a keresett valószínűség $\frac{2}{3}$. A példából okulva érdemes definiálnunk a vizsgált fogalmainkat.

1.1. Eseménytér

A valószínűség fogalmát a **Kolmogorov-axiómák**⁶ segítségével formalizálhatjuk. Kolmogorov a huszadik század nagy hatású matematikusa, aki a fentihez hasonló félreérthetőségek feloldásaként dolgozta ki azt a keretrendszert, aminek a kiindulópontját ma Kolmogorov-axiómáknak nevezünk. Maguk az axiómák a **valószínűségi mező** definíciójában szereplő feltételek (ld 1.3 alfejezet).

- 1.1.1. Definíció. Legyen Ω egy tetszőleges halmaz. A következő elnevezéseket fogjuk használni:
 - Eseménytér: Ω ,
 - Kimenetel: az eseménytér egy eleme, $\omega \in \Omega$,
 - Események: az eseménytér "kitüntetett" $A \subseteq \Omega$ részhalmazai,
 - Valószínűség: egy eseményhez hozzárendelt $\mathbb{P}(A)$ -val jelölt, 0 és 1 közti valós szám.

A fenti paradoxon esetében például 6 kimenetel van, így az eseménytér 6 elemű halmaz. Annak az A eseménynek pedig, hogy "elsőre arany érmét húzunk" a $\mathbb{P}(A)$ valószínűsége $\frac{1}{2}$.

De mi az, hogy az események "kitüntetett" részhalmazok? Honnan fogjuk tudni, egy kérdés esetében mit akarunk eseménynek nevezni, és mit nem? Röviden, azokat a részhalmazokat választjuk eseménynek, amikhez valószínűségeket szeretnénk hozzárendelni. Sok elemi feladat esetében ez nem igazi probléma: minden részhalmazt eseménynek választhatunk, mert feltesszük, hogy mindegyik részhalmaznak van értelme beszélni a valószínűségéről (még ha nem is ismerjük a pontos értékét).

1.1.2. Példa. Egy kockadobás leírásánál az eseménytér így definiálható: $\Omega \stackrel{\text{def}}{=} \{1, 2, 3, 4, 5, 6\}$. Az Ω elemeit, vagyis a kimeneteleket megfeleltethetjük annak, hogy mikor milyen számot dobunk. Legyen Ω összes részhalmaza esemény. Például $\{2, 4, 6\}$ egy esemény. Az eseményeket sokszor logikai állításokkal határozzuk meg, így a $\{2, 4, 6\}$ eseményt röviden írhatjuk úgy is, hogy $\{\text{párosat dobunk}\}$.

⁴Ha valakinek mégis kellene: robotics.stanford.edu/users/sahami/papers-dir/SIGCSE11-Probability.pdf

⁵lásd még: [youtube] PBS Infinite Series - Making Probability Mathematical

⁶Az axióma – hangzásával ellentétben – nem egy lassú lefolyású megbetegedés, hanem az *alapállítás* másik neve. Olyan kijelentéseket, alapvetéseket nevezünk így, amik globális feltevések az elméletünkben: nem bizonyítjuk, viszont bárhol használhatjuk őket. Kolmogorov eredeti axiómáit lásd Foundations of the Theory of Probability.

Felmerülhet a kérdés: "Miért nem választjuk simán mindig az összes részhalmazt eseménynek, 'oszt csókolom?". Azért, mert vannak olyan helyzetek, amikor szerepe van annak, mi esemény, és mi nem. Ilyen esetekre példa:

- (1) **Geometriai valószínűségek** esetén területekkel (vagy azzal analóg fogalommal) definiáljuk a valószínűségeket. Azonban ha minden részhalmazra szeretnénk értelmes területfogalmat definiálni, az nem fog sikerülni, ellentmondásokba futunk⁷. A megoldás, hogy nem minden részhalmaz esemény, így nem kell minden részhalmazra értelmeznünk annak területét.
- (2) **Megfigyelhetőség**en is alapulhat, mit nevezünk eseménynek. Például ha a fenti paradoxont szeretnénk modellezni: Ω továbbra is definiálható 6 eleműnek aszerint, hogy mit húzunk. Jelölje Ω elemeit $a_1, a_2, b_1, b_2, c_1, c_2$ (vegyük észre, hogy Ω elemei nem kell, hogy számok legyenek). Ezen húzások közül a_1, a_2, c_1 jelöl arany érméket, a többi ezüstöt, a_1, a_2 az első láda tartalmát, b_1, b_2 a másodikat és így tovább. A húzás ismeretében $\{a_1, a_2, c_1\}$ illetve $\{b_1, b_2, c_2\}$ részhalmazok megfigyelhetők, míg például $\{c_1, c_2\}$ nem, hiszen nem tudjuk, hogy a harmadik dobozból húztunk-e. Néhány problémánál érdemes pontosan azon részhalmazokat eseménynek nevezni, amik megfigyelhetők. Ilyen probléma például a feltételes várható érték számolása is.
- (3) Folyamatok, vagyis időben változó véletlen mennyiségek esetében az idő múlásával változhat, hogy mit tudunk megfigyelni és emiatt mit tartunk eseménynek. Lásd még Markov-láncok, martingálok.

Nézzük, milyen műveleteket végezhetünk eseményekkel.

1.1.3. Állítás. Mivel az események halmazok, így értelmezve van események **unió**ja $(A \cup B)$, **metszet**e $(A \cap B)$ és Ω -ra vett **komplementer**e (\overline{A}) .

Két esemény **különbség**e az előbbiekkel leírható: $A \setminus B = A \cap \overline{B}$. Két esemény **kizáró**, ha $A \cap B = \emptyset$. Az Ω -ra használatos még a **biztos esemény** elnevezés. Hasonlóan, az üreshalmaz (jele: \emptyset) neve a továbbiakban **lehetetlen esemény**.

1.1.4. Példa. A kockadobálós példánál maradva, a {párosat dobunk} esemény komplementere a {páratlant dobunk}, a {párosat dobunk} és a {3-nál nagyobbat dobunk} események metszete a $\{4,6\}$, míg uniója a $\{2,4,5,6\}$.

Végiggondolható, hogy ha az események kijelentésekkel vannak megfogalmazva (pl. {párosat dobunk}), akkor az uniójuk megfelel a kijelentések szintjén a "vagy" műveletnek, metszetük az "és"-nek, egy esemény komplementere pedig a logikai tagadásnak.

A halmazoknál megszokott tulajdonságok itt sem vesztik érvényüket: $A \cup B = B \cup A$, $A \cap \Omega = A$ és a többi. Névvel is bíró, megjegyzendő azonosság az alábbi:

1.1.5. Állítás. (de Morgan-azonosságok) *Két halmazra:*

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
 és $\overline{A \cap B} = \overline{A} \cup \overline{B}$,

illetve végtelen sok halmazra:

$$\overline{\bigcup_{i=1}^{\infty} A_i} = \bigcap_{i=1}^{\infty} \overline{A_i} \qquad \textit{és} \qquad \overline{\bigcap_{i=1}^{\infty} A_i} = \bigcup_{i=1}^{\infty} \overline{A_i}.$$

Az első állításpár Venn-diagramon könnyen ellenőrizhető.

Feladat. Legyenek A, B és C események. Írjuk fel a következő eseményeket a fenti műveletek segítségével: a) legalább egy esemény teljesül, b) A és B teljesül, de C nem, c) minden esemény teljesül, d) egyik esemény sem teljesül, e) pontosan egy esemény teljesül.

⁷lásd en.wikipedia.org/wiki/Vitali_set