1. Priority Queue: Recap

If pair in priority queue : (x, y) if x equal than compare with y. Time Complexity of push & pop : $O(\log n)$

2. Optimized Dijkstra : Pseudocode & complexity {Sparce Graph: E<<<V}

Normal Dijkstra = $O(n^2) \rightarrow Optimized Dijksatra = O(n^2 Log n)$

```
While (!pq.empty()): O(E)
```

Pick the node with minimum distance value from priority queue : pq.front();

pq.pop(); **O** (log **E**)

If visited[head] == 1: ignore

If visited[head] == 0: set it 1;

Take a reverse [Minimum] priority queue pq;

pq.push({distance, src_node})

After relaxation:

pq.push({distance[adj_node], adj_node}) O (log E)

Time Complexity:

O(E Log E) + O(E Log E) = O (|E| log |E|) { |E| = Number of Edges } Worst Case : $E \rightarrow V^2$

So,

O (
$$|E| Log |V^2|$$
)
=>O ($2|E| Log |V|$)

$$O(|E| Log |V|) \Rightarrow O(E Log V) [Base : 2]$$

Optimization : $O(n^2) \rightarrow O(E Log V)$ {Sparse Graph}

New Time Complexity : O(E Log V)Space Complexity : $O(V) \rightarrow O(E)$

3. Solving on Codeforces: https://codeforces.com/problemset/problem/20/C