Middleware Architectures 1 Motivation and Course Overview

doc. Ing. Tomáš Vitvar, Ph.D.

tomas@vitvar.com • @TomasVitvar • https://vitvar.com

Czech Technical University in Prague
Faculty of Information Technologies • Software and Web Engineering • https://vitvar.com/lectures

- Course at a Glance
 - Motivation and Scope
 - Requirements and Organization
- Assessment
- Communication and Resources

What is Middleware?

- Say anything you think has something to do with middleware
 - Architecture
 - Tehnology
 - Tools
 - Concept or style
 - *Methodology*
 - ...
 - No worries, there is no bad answer!

Motivation in Brief

- Systems rely on complex infrastructures
 - A lot of data and many processes, internal and external
 - As people communicate, underlying systems must too
 - *− But:*
 - → variety of data formants, technologies, protocols
 - \rightarrow variety of architectures, client-server, peer-to-peer, ...
- Rapid changes in applications' functionalities
 - modular development
 - reuse of application logic
 - low costs do it now and quickly!
- Good performance
 - frequent changes in applications' loads, peek hours
 - scalability effective load balancing
 - − low costs − cheaper to outsource?

Scope

- Architectural and conceptual basis
 - What is an architecture methodology, global, software
 - Service concepts, integration patterns, microservices, middleware
- Backend technologies
 - Communication protocols HTTP, TLS, HTTP/2
 - Application backend and requests handling
 - Advances of REST, gRPC
 - Kubernetes
- Performance and Scalability
 - Performance tuning
 - Load balancers

- Course at a Glance
 - Motivation and Scope
 - Requirements and Organization
- Assessment
- Communication and Resources

Prerequisites

- Operating systems
 - Basics of Linux
- Computer Networks
 - Basics of networking concepts
- JavaScript
 - Code examples will be in JavaScript
 - Lab work will be in JavaScript
- Web Architecture
 - Basics of REST, HTTP, URI/URL

Organization of Lectures

• 12 Lectures

- Czech: Mon 9:15-10:45, JP:B-571
- English: TBA

• Plan

- 1. 22.09.2025 Motivation and Course Overview
- 2. 29.09.2025 Information System Architectures
- 3. 06.10.2025 Introduction to Service Architecture
- 4. 13.10.2025 Microservices and Cloud-Native Architectures
- 5. 20.10.2025 Communication protocols, HTTP, TLS
- 6. 27.10.2025 HTTP/2 and HTTP/3
- 7. 03.11.2025 HATEOAS, Caching, Concurrency Control
- 8. 10.11.2025 gRPC
- 9. 17.11.2025 No Lecture
- 10. 24.11.2025 Synchronous and Asynchronous I/O
- 11. 01.12.2025 High Availability and Performance
- 12. 08.12.2025 Performance Tuning
- 13. 15.12.2025 Reserve

Organization of Labs

- Individual work (no teams!)
- Labs every second week
- Number of labs: 6
 - 1. Introduction FIT Workspaces, setup
 - 2. REST Basics, development of a REST service
 - 3. Security, TLS
 - 4. Messaging systems
 - 5. Load balancers, nginx

Methodology for Lab Work

- No app development, not directly related assignments
 - assignment every second week
 - be prepared for the lab!
 - work alone, ask others for advices
 - Results:
 - → 5 completed tasks
 - → you will submit results to FIT GitLab

FIT Workspaces

- All work you will do in **FIT Workspaces**
 - Cloud-native Development Environment running in Kubernetes
 - Each student has an access to their own workspace
 - Workspace is ready for the lab work
- Access
 - You use your FIT username and a key (stored in GitLab)
 - → ssh vitvatom~am1@fit-workspaces.ksi.fit.cvut.cz
 - You can use SSH CLI, VSCode or IntelliJ with Remote SSH plugin
 - You have sudo access if you want to add packages
 - For more Information see FIT Workspaces Wiki

- Course at a Glance
- Assessment
- Communication and Resources

Assessment

• Labs

- Every task gives you the maximum of 6 points = 30 points in total
- Activity in labs gives you the maximum of 10 points
- Total maximum points = 40, to pass: 20 points minimum

• Final exam

- Written exam: 3 exercises, 1 hour
 - \rightarrow each gives you a max. of 20 points, the total is 60 points
 - → To pass, you need to have at least 50% from each exercise!
- Final score:
 - → 100 points maximum

Final Marks

Mark	Points	In words
А	100–90	výborně
В	89–80	velmi dobře
С	79–70	dobře
D	69–60	uspokojivě
E	59–50	dostatečně
F	49–0	nedostatečně

Source: http://www.cvut.cz/pracoviste/pravniodbor/dokumenty/studijni-predpisy/studijnirad.pdf

- Course at a Glance
- Assessment
- Communication and Resources

Communication

- Language
 - Text: English (slides, tweets, posts, instructions, etc.)
 - Voice: Czech and English (English version of the course)
- Direct
 - you can always contact me directly at tomas@vitvar.com or @TomasVitvar

Overview of Resources

Overview of resources

Item	URL
Course slides	http://mdw.vitvar.com
Courses@FIT	https://courses.fit.cvut.cz/NI-AM1/
Lab projects	https://gitlab.fit.cvut.cz/
Assessment https://grades.fit.cvut.cz/courses/NI-AM1/	

Books

- L. Richardson, S. Ruby: RESTful Web Services: Web services for the real world, O'Reilly Media, May 2007, ISBN 9780596529260.
- I. Grigorik: High Performance Browser Networking, O'Reilly Media, May 2013, ISBN 978-1-449-34476-4.
- Thomas Erl: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall, Aug 2, 2005.

About Slides

- Humla Open Source HTML5 Presentation System
 - every slide has a unique URL
 - all figures linked with Google drawings
 - auto-generated PDFs (1 and 2 slides per page) using travis-ci
 - running local (with local nodejs-based http server), and in github pages
 - Suggest edits or correct errors by pull requests at mdw github repo

Keys

- 1 default browsing mode
- slideshow mode (automatically scales to fullscreen)
- 3 grid (overview) mode
- 4 print mode, 2 slides per page
- ← slide left
- \rightarrow slide right