Stochastic Processes

Kevin Chang

April 5, 2022

1 Laplace Transform

- $\mathcal{L}{f}(s) = \int_0^\infty f(t)e^{-st}dt$
- Property

$$-tf(t) \leftrightarrow -F'(s)$$

$$-\frac{f(t)}{t} \leftrightarrow \int_{s}^{\infty} F(\sigma) d\sigma$$

$$-f'(t) \leftrightarrow sF(s) - f(0^{-})$$

$$-\int_{0}^{t} f(\tau) d\tau \leftrightarrow \frac{F(s)}{s}$$

$$-e^{at} f(t) \leftrightarrow F(s-a)$$

$$-f(t-a)u(t-a) \leftrightarrow e^{-at} F(s)$$

2 Moment Generating Function

- Moment Generating Function: $\mathbb{E}[e^{tX}]$
 - Property:

*
$$\mathbb{E}[e^{tX}] = \int_{-\infty}^{\infty} e^{tx} f_X(x) dx$$

* $\mathbb{E}[e^{tX}] = \sum_{k=0}^{\infty} E[X^k] \frac{t^k}{k!}$
 $\cdot e^{tx} = \sum_{k=0}^{\infty} \frac{(tx)^k}{k!}$
 $\cdot E[e^{tX}] = E[\sum_{k=0}^{\infty} \frac{(tX)^k}{k!}] = \sum_{k=0}^{\infty} E[X^k] \frac{t^k}{k!}$
* $\frac{d\mathbb{E}[e^{tX}]}{dt} = \mathbb{E}[X]$
* $\mathbb{E}[e^{t(aX+b)}] = e^t b \mathbb{E}[e^{taX}]$

- $\ast\,$ Not all random variables have Moment generating function
- Characteristic Function: $\mathbb{E}[e^{itX}]$
 - Property:
 - * All random variables have Moment generating function
- Joint Moment Generating Function: $G(x,y) = \mathbb{E}[e^{xX}e^{yY}]$
- Property:
 - (Joint) moment generating function uniquely determines the (joint) CDF
- Example
 - Trapped miner's random walk
 - * Miner has probability of $\frac{1}{3}$ to waste 3 hours in vain, $\frac{1}{3}$ to waste 5 hours in vain, and $\frac{1}{3}$ to spend 2 hours to go out of the mine.
 - * X is the random variables of the hours to go out of the mine
 - * Y_i is the random variables of the hours for the *i*-th action.
 - $$\begin{split} * \ \mathbb{E}[e^{tX}] &= \mathbb{E}[e^{tX}|Y_1 = 2] + \mathbb{E}[e^{tX}|Y_1 = 3] + \mathbb{E}[e^{tX}|Y_1 = 5] \\ &= \mathbb{E}[e^{2t}] + \mathbb{E}[e^{t(X+3)}] + \mathbb{E}[e^{t(X+5)}] \end{split}$$
 - * Find expectation and variance by joint moment generating function

3 Expectation

- \bullet N i.i.d. events, when N is a random variable
 - Suppose N is a integer random variable
 - Suppose $X_1, \ldots, X_i, \ldots, X_N$ are i.i.d random variables with mean μ and variance σ^2
 - $-Y = \sum_{i=1}^{N} X_i$
 - $-\mathbb{E}[Y] = \mathbb{E}[N]\mu$

$$\begin{split} * \ \mathbb{E}[Y] &= \sum_{n=1}^{\infty} \mathbb{E}[\sum_{i=1}^{N} X_i | N = n] P[N = n] \\ &= \mu \times \sum_{n=1}^{\infty} n P[N = n] = \mathbb{E}[N] \mu \\ &- \ \mathbb{E}[Y^2] &= \mathbb{E}[N] \mathbb{E}[X^2] + \mathbb{E}[N^2] \mu^2 - \mathbb{E}[N] \mu^2 \end{split}$$

*
$$\mathbb{E}[Y^2] = \sum_{n=1}^{\infty} \mathbb{E}[(\sum_{i=1}^{N} X_i)^2 | N = n] P[N = n] = \sum_{n=1}^{\infty} (n \mathbb{E}[X_i^2] + n(n-1)\mu^2) P[N = n] = \mathbb{E}[N] \mathbb{E}[X^2] + \mathbb{E}[N^2] \mu^2 - \mathbb{E}[N] \mu^2$$

- $Var(Y) = \mathbb{E}[N]\sigma^2 + Var(N)\mu^2$
- Expectation by P[X > x]
 - $\mathbb{E}[X] = \sum_{x} P[X > x]$, when X is a non-negative discrete random variable

*
$$\mathbb{E}[X] = \sum_{x=0}^{\infty} x P[X = x] = \sum_{x=0}^{\infty} \sum_{y=0}^{x-1} P[X = x] = \sum_{y=0}^{\infty} \sum_{x=y+1}^{\infty} P[X = x] = \sum_{y=0}^{\infty} P[X > y]$$

 $-\mathbb{E}[X] = \int_0^\infty P[X > x] dx$, when X is a non-negative continuous random variable

*
$$\mathbb{E}[X] = \int_0^\infty x f_X(x) dx = \int_0^\infty \int_0^x f_X(x) dy dx = \int_0^\infty \int_y^\infty f_X(x) dx dy = \int_0^\infty P[X > y] dy$$

Inequality 4

• Markov Inequality

Definition:

– Suppose
$$X \ge 0$$
, then $P[X \ge \epsilon] \le \frac{\mathbb{E}[X]}{\epsilon}$

Proof:

1.
$$\mathbb{E}[X] = \int_0^\infty x f_X(x) \ge \int_\epsilon^\infty x f_X(x) \ge \epsilon \int_\epsilon^\infty f_X(x) = \epsilon P[X \ge \epsilon]$$

2.
$$X(\omega) \ge \epsilon \mathbb{1}_{X(\omega) \ge \epsilon}, \forall \omega \in S$$

Calculate expectation on both side.

$$- \mathbb{E}[X] \ge \epsilon P[X \ge \epsilon]$$

Property:

- The equality happens when $P[X = k] = 0, \forall k \notin \{0, \epsilon\}.$
- Chebyshev Inequality

Definition:

– Suppose
$$m = \mathbb{E}[X], \sigma^2 = Var(X)$$
, then $P[|X - m| \ge \epsilon] \le \frac{\sigma^2}{\epsilon^2}$

Proof:

$$-P[|X-m| \ge \epsilon] = P[(X-m)^2 \ge \epsilon^2]$$

–
$$P[(X-m)^2 \ge \epsilon^2] \le \frac{\mathbb{E}[(X-m)^2]}{\epsilon^2}$$
 (by Markov Inequality)

Property:

- The equality happens when $P[X = k] = 0, \forall k \notin \{m \epsilon, m, m + \epsilon\}.$
- Might be tighter than Markov Inequality since it requires m, σ
- Chernoff Inequality

Definition:

- Suppose X_1, \ldots, X_n are independent identically distributed Bernoulli random variable with probability p and $X = \sum_{i=1}^{n} X_i$
- $P[X \ge \epsilon] \le \frac{(pe^t + 1 p)^n}{e^{t\epsilon}} \le \frac{e^{np(e^t 1)}}{e^{t\epsilon}}$

$$* P[X \ge \epsilon] = P[e^{tX} \ge e^{t\epsilon}] \le \frac{E[e^{tX}]}{e^{t\epsilon}} = \frac{(E[e^{tX_i}])^n}{e^{t\epsilon}} = \frac{(pe^t + 1 - p)^n}{e^{t\epsilon}} \le \frac{e^{np(e^t - 1)}}{e^{t\epsilon}}$$

$$* P[X \ge \epsilon] = P[e^{tX} \ge e^{t\epsilon}] \le \frac{E[e^{tX}]}{e^{t\epsilon}} = \frac{(E[e^{tX_i}])^n}{e^{t\epsilon}} = \frac{(pe^t + 1 - p)^n}{e^{t\epsilon}} \le \frac{e^{np(e^t - 1)}}{e^{t\epsilon}}$$
$$- P[X \ge np(1 + \epsilon)] \le \left(\frac{e^{\epsilon}}{(1 + \epsilon)^{1 + \epsilon}}\right)^{np} \le \begin{cases} e^{\frac{-\epsilon^2 np}{3}} & \text{if } 0 \le \epsilon \le 1\\ e^{\frac{-\epsilon^2 np}{(2 + \epsilon)}} & \text{if } \epsilon \ge 1 \end{cases}$$

- * Substitude ϵ with $np(1+\epsilon)$
- * Substitude t with $\log(1+\epsilon)$
- * the last inequality is without proof

$$- P[X \le \epsilon] \le \frac{(pe^t + 1 - p)^n}{e^{t\epsilon}} \le \frac{e^{np(e^t - 1)}}{e^{t\epsilon}}$$

$$* P[X \le \epsilon] = P[e^{-tX} \ge e^{-t\epsilon}] \le \frac{E[e^{-tX}]}{e^{-t\epsilon}} = \frac{(E[e^{-tX_i}])^n}{e^{-t\epsilon}} = \frac{(pe^{-t}+1-p)^n}{e^{-t\epsilon}} \le \frac{e^{np(e^{-t}-1)}}{e^{-t\epsilon}}$$

$$-P[X \le np(1-\epsilon)] \le \left(\frac{e^{-\epsilon}}{(1-\epsilon)^{1-\epsilon}}\right)^{np} \le e^{\frac{-\epsilon^2 np}{2}}$$

- * Substitude ϵ with $np(1-\epsilon)$
- * Substitude t with $-\log(1-\epsilon)$
- * the last inequality is without proof
- Chernoff/ Hoeffding Lemma

Definition:

- Suppose X_1, \ldots, X_n are independent distributed random variable and $a_i \leq X_i \leq b_i$
- Suppose $X = \sum_{i=1}^{n} X_i$ and $\mu = \mathbb{E}[X]$
- $-P[|X-\mu| > \epsilon] < 2e^{\frac{-2\epsilon^2}{\sum_{i=1}^n (b_i a_i)^2}}$ without proof
- Application:
 - Balls in Bins

Definition: Throw n balls into n bins, find bounds for the maximum number of balls in all bins

- * P[maximum number of balls in all bins $\geq \epsilon]$
 - $= P[\bigcup_{i=1}^n \text{ number of balls in } i\text{-th bin } \geq \epsilon]$
 - $\leq n \times P[$ number of balls in one bin $\geq \epsilon]$
- * By Markov inequality:
 - · P[number of balls in one bin $\geq \epsilon$] $\leq \frac{1}{\epsilon} \rightarrow$ useless
- * By Chebyshev inequality:
 - · P[number of balls in one bin $\geq \epsilon] \leq \frac{(1-\frac{1}{n})}{\epsilon^2}$
 - · P[maximum number of balls in all bins $\geq n^{\frac{1}{2}+\epsilon} \leq \frac{(1-\frac{1}{n})}{n^{2\epsilon}}$
 - · when $n \to \infty$, the maximum number of balls should less than $n^{\frac{1}{2}+\epsilon}$
- * By Chernoff inequality:
 - · $P[\text{ number of balls in one bin } \geq 2\log n] \leq \frac{e^{np(e^t-1)}}{n^{2t}}$
 - · P[maximum number of balls in all bins $\geq 2 \log n] \leq \frac{e^{np(e^t-1)}}{n^{2t-1}}$
 - · when t is a constant ≥ 0.5 and $n \to \infty$, the maximum number of balls should less than $2 \log n$

Law of Large Numbers 5

- $\{X_i\}_{i=1}^{\infty}$ is a sequence of pairwise uncorrelated random variable with $\mathbb{E}[X_i] = m, Var(X_i) = \sigma_i^2$
- $\bullet \ M_n = \frac{1}{n} \sum_{i=1}^n X_i$
- $M_n \to m$ almost surely, in mean square and in probability.

6 Memoryless

• Definition: $P[X > x_1 + x_2 | X > x_1] = P[X > x_2]$

• Property:

- Exponential random variable is the only continuous memoryless random variable

- Bernoulli random variable is the only discrete memoryless random variable

7 Famous Random Variable

• Poisson:

$$\begin{split} P[X=k] &= \tfrac{\lambda^k}{k!} \exp(-\lambda) \\ \mathbb{E}[X] &= \sum_{k=0}^\infty k \tfrac{\lambda^k}{k!} \exp(-\lambda) = \sum_{k=0}^\infty \lambda \tfrac{\lambda^{k-1}}{(k-1)!} \exp(-\lambda) = \lambda \\ \text{Interpretation:} \end{split}$$

- Cut total time into infinite period in Binomial random variable, $n \to \infty, p \to \frac{\lambda}{n}$

$$- \to P[X=k] = \lim_{n \to \infty} \binom{n}{k} (\frac{\lambda}{n})^k (\frac{n-\lambda}{n})^{n-k} = \frac{\lambda^k}{k!} (1 - \frac{\lambda}{n})^n = \frac{\lambda^k}{k!} \exp(-\lambda)$$

• Gaussian: $N(m, \sigma^2)$

$$- f_X[x] = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-m)^2}{2\sigma^2}}, \forall x \in \mathbb{R}$$
$$- \mathbb{E}[e^{cX}] = e^{cm + \frac{c^2\sigma^2}{2}}$$

• Erlang:

$$f_X(x) = \frac{\lambda^n x^{n-1} e^{-\lambda x}}{(n-1)!}, \forall x \in \mathbb{R}$$

$$\mathbb{E}[X] = \frac{n}{\lambda}$$

Interpretation:

- Suppose $X_1, X_2, ..., X_n$ are i.i.d exponential random variable with λ .

$$-X = \sum_{i=1}^{n} X_i$$

- Proof by induction:

Suppose
$$n=2, f_X(x)=\int_0^x \lambda e^{-\lambda t} \lambda e^{-\lambda(x-t)} dt = \lambda^2 x e^{-\lambda x}$$

8 Stochastic Processes

• Stochastic Process: a collection of random variable

Arrival Process: a sequence of arriving event in continuous time

 $-X_i$: the time between the *i*-th event and the i-1-th event

 $-S_i$: the time from start to *i*-th event

-N(t): the number of the arrived event at time t

-X and S Relation:

$$* X_1 = S_1, X_i = S_i - S_{i-1}$$

-N and S Relation:

- * $N(t) < n \leftrightarrow S_{n+1} > t$
- $* N(t) > n \leftrightarrow S_n < t$
- * $N(t) = n \leftrightarrow S_n \le t < S_{n+1}$
- $* N(t) = \max\{n : S_n \le t\}$
- Renewal Process: an arrival process with i.i.d X_i

Delayed Renewal Process: the process becomes a renewal process after several arrivals

- * if X_i is dependent on the interval states, then X_i might be dependent on $X_{i-1} \to \text{not renewal}$ process
- S_i Property
 - * $P[\lim_{n\to\infty} S_n = \infty] = 1$ Proof: $\lim_{n\to\infty} P[\hat{S}_n = \infty] = \lim_{n\to\infty} P[\sum_{i=1}^n X_n = n \times \mathbb{E}[X_i]] = 1$ Interpretation: infinite events do not take finite time

N(t) Property

* for any $t, P[N(t) < \infty] = 1$

Proof: $P[\lim_{n\to\infty} S_n = \infty] = 1 \to \text{ for any } t, P[\lim_{n\to\infty} S_{n+1} > t] = 1$

Interpretation: infinite events do not take finite time

* $P[\lim_{t\to\infty} N(t) \to \infty] = 1$

Proof: if $P[\lim_{t\to\infty} N(t) = k] > 0 \to P[X_{k+1} = \infty] > 0$

Interpretation: finite events do not take infinite time

* $P[\lim_{t \to \infty} \frac{N(t)}{t} = \frac{1}{\mathbb{E}[X_i]}] = 1$ Proof: $P[\lim_{t \to \infty} \frac{N(t)}{S_{N(t)+1}} \le \lim_{t \to \infty} \frac{N(t)}{t}] = 1$ and $P[\lim_{t \to \infty} \frac{N(t)}{S_{N(t)+1}} = \frac{1}{\mathbb{E}[X_i]}] = 1$

$$P[\lim_{t\to\infty} \frac{N(t)}{t} \le \lim_{t\to\infty} \frac{N(t)}{S_{N(t)}}] = 1 \text{ and } P[\lim_{t\to\infty} \frac{N(t)}{S_{N(t)}} = \frac{1}{\mathbb{E}[X_i]}] = 1$$

Inspection Paradox

* $\mathbb{E}[X_{N(t)+1}] \geq \mathbb{E}[X_i]$: inspection paradox

Interpretation:

- $f_{X_{N(t)+1}}(x) = \lambda x f_{X_i}(x)$
- · when selecting t with equal probability, we tend to choose X_i with longer period
- * $P[\lim_{t\to\infty} \frac{1}{t} \int_0^t (S_{N(t)+1} s) ds = \frac{\mathbb{E}[X_i^2]}{2\mathbb{E}[X_i]}] = 1$

$$P[\lim_{t\to\infty} \frac{1}{t} \sum_{i=i}^{N(t)} \frac{\mathbb{E}[X_i^2]}{2} \le \lim_{t\to\infty} \frac{1}{t} \int_0^t (S_{N(t)+1} - s) ds] = 1 \text{ and } P[\lim_{t\to\infty} \frac{1}{t} \sum_{i=i}^{N(t)} \frac{\mathbb{E}[X_i^2]}{2} = \frac{\mathbb{E}[X_i^2]}{2\mathbb{E}[X_i]} = 1$$

$$\frac{\mathbb{E}[X_i^2]}{2\mathbb{E}[X_i]}] = 1$$

$$P[\lim_{t \to \infty} \frac{1}{t} \int_0^t (S_{N(t)+1} - s) ds \le \lim_{t \to \infty} \frac{1}{t} \sum_{i=i}^{N(t)+1} \frac{\mathbb{E}[X_i^2]}{2}] = 1 \text{ and } P[\lim_{t \to \infty} \frac{1}{t} \sum_{i=i}^{N(t)+1} \frac{\mathbb{E}[X_i^2]}{2}] = 1$$

* $P[\lim_{t\to\infty} \frac{1}{t} \int_0^t (s - S_{N(t)}) ds = \frac{\mathbb{E}[X_i^2]}{2\mathbb{E}[X_i]}] = 1$

Proof: similar to above

* $P[\lim_{t\to\infty} \frac{1}{t} \int_0^t X_{N(t)} ds = \frac{\mathbb{E}[X_i^2]}{\mathbb{E}[X_i]}] = 1$

Proof: $P[\lim_{t\to\infty} \frac{1}{t} \int_0^t X_{N(t)} ds = \lim_{t\to\infty} \frac{1}{t} \int_0^t (S_{N(t)+1} - S_{N(t)}) ds] = 1$

* $\mathbb{E}[X_{N(t)+1}] = \frac{\mathbb{E}[X_i^2]}{\mathbb{E}[X_i]}$

Proof: $P[\lim_{t\to\infty}\frac{1}{t}\int_0^t X_{N(t)}ds = \frac{\mathbb{E}[X_i^2]}{\mathbb{E}[X_i]}] = P[\mathbb{E}[X_{N(t)+1}] = \frac{\mathbb{E}[X_i^2]}{\mathbb{E}[X_i]}] = 1$

Central Limit Theorem

- $* \mu = \mathbb{E}[X_i]$
- * $\sigma = \sqrt{Var(X_i)}$
- * $Z \sim \text{Normal}(0,1)$
- * $\lim_{t\to\infty} P[N(t) \le \frac{t}{\mu} + k \frac{\sigma\sqrt{t}}{\sqrt{\mu^3}}] = P[Z \le k]$ Proof:
 - 1. Suppose $n(t) = \frac{t}{\mu} + k \frac{\sigma \sqrt{t}}{\sqrt{n^3}}$
 - 2. $P[N(t) \ge n(t)] = P[S_{n(t)} \le t] = P[\frac{S_{n(t)} n\mu}{\sigma \sqrt{n}} \le \frac{t n\mu}{\sigma \sqrt{n}}]$.

- 3. When $t \to \infty$, $\frac{t-n\mu}{\sigma\sqrt{n}} \to k$
- 4. By law of large number, $\lim_{t\to\infty} P\left[\frac{S_{n(t)}-n\mu}{\sigma\sqrt{n}} \le k\right] = P[Z \le k]$

- $\cdot \frac{t}{u}$ is approximately the mean of N(t)
- $k \frac{\sigma\sqrt{t}}{\sqrt{\mu^3}}$ is $k\sigma\sqrt{n}$ after dividing by μ , the ratio between t and N(t) and changing n with $\frac{t}{\mu}$

Wald's Identity

- * Stopping Times: a random variable τ s.t. $\{\tau = n\}$ is independent of $\{X_i\}_{i=n+1}^{\infty}$
- * Stopping Condition: a condition to stop if we can consider $\tau = \min\{n : \operatorname{condition}(n) = \top\}$
- * Example: N(t) + 1 is a stopping times and can be consider $N(t) + 1 = \min\{n : S_n > t\}$
- * $\mathbb{E}[\sum_{i=1}^{\tau} X_i] = \mathbb{E}[\tau]\mathbb{E}[X_i]$ if $\mathbb{E}[X_i] < \infty$ and $\mathbb{E}[N] < \infty$
 - 1. $\mathbb{E}[\sum_{i=1}^{\tau} X_i] = \sum_{i=1}^{\infty} \mathbb{E}[X_i \times \mathbb{1}_{i \leq \tau}]$ (by Fubin's Theorem without proof) (if $\mathbb{E}[X_i] < \infty$ and $\mathbb{E}[N] < \infty$)
 - 2. $\sum_{i=1}^{\infty} \mathbb{E}[X_i \times \mathbb{1}_{i \le \tau}] = \mathbb{E}[X_i] \sum_{i=1}^{\infty} \mathbb{E}[\mathbb{1}_{i \le \tau}] \text{ (by } P[\tau \ge i] = 1 P[\tau < i] \text{ is independent of } X_i)$
 - 3. $\mathbb{E}[X_i] \sum_{i=1}^{\infty} \mathbb{E}[\mathbb{1}_{i \le \tau}] = \mathbb{E}[\tau] \mathbb{E}[X_i]$
- $* \lim_{t \to \infty} \frac{\sum_{i=1}^{u} \mathbb{E}[X(t)]}{t} = \frac{1}{\mathbb{E}[X_i]}$ Proof:

- · Suppose $\mu = \mathbb{E}[X_i]$
- $\cdot \frac{\mathbb{E}[N(t)]}{t} = \frac{\mathbb{E}[S_{N(t)+1}]}{t \times \mu} \frac{1}{t} \text{ (by considering } N(t) + 1 \text{ as the stopping time)}$ $\cdot \lim_{t \to \infty} \frac{\mathbb{E}[N(t)]}{t} \ge \frac{1}{\mu} \text{ (by } \mathbb{E}[S_{N(t)+1}] > t)$

- · Suppose $\hat{X}_n = \min\{X_n, T\}$, where T is a constant · $\frac{\mathbb{E}[N(t)]}{t} \leq \frac{\mathbb{E}[\hat{N}(t)]}{t} = \frac{\mathbb{E}[S_{\hat{N}(t)+1}]}{t \times \hat{\mu}} \frac{1}{t} \leq \frac{t+T}{t \times \hat{\mu}} \frac{1}{t}$

Blackwell's Theorem

- * $\mathbb{E}[N(t)] = F_{X_i}(t) + \int_0^t \mathbb{E}[N(t-x)] f_{X_i}(t) dt$ Proof: $\mathbb{E}[N(t)] = \int_0^t \mathbb{E}[N(t)|X_1 = x] f_{X_1}(x) dx$ $= \int_0^t \mathbb{E}[N(t-x)+1] f_{X_1}(x) dx = F_{X_i}(t) + \int_0^t \mathbb{E}[N(t-x)] f_{X_i}(t) dt$
- * $\mathcal{L}\{\mathbb{E}[N(t)]\}(s) = \frac{\mathcal{L}\{f_{X_i}\}(s)}{s(1-\mathcal{L}\{f_{X_i}\}(s))}$ Proof: Laplace transform both sides

- * Lattice/ Non-Lattice: N(t) is lattice iff X_i only takes on values that are $nd, n \in \mathbb{N}, d \in \mathbb{R}$
- * For a non-lattice process: $\lim_{t\to\infty} \mathbb{E}[N(t+\delta)-N(t)] = \frac{\delta}{\mathbb{E}[X_i]}$, for any δ **Proof: Without Proof**

Interpretation: $\mathbb{E}[N(t)]$ will converge to be linear

- * For a lattice process and period d: $\lim_{n\to\infty} \mathbb{E}[\# \text{ events at } t=nd] = \frac{d}{\mathbb{E}[X,1]}$ **Proof: Without Proof** Interpretation: $\mathbb{E}[N(t)]$ will converge to be stairs with width d and height $\frac{d}{\mathbb{E}[X_t]}$
- Renewal-Reward Process:

Definition

* A renewal process N(t) and $\{R_i\}_{i=1}^{\infty}$ such that (X_i, R_i) are i.i.d. $(X_i, R_j, i \neq j \text{ are independent, but } X_i, R_i \text{ might be dependent})$

- * $P[\lim_{t \to \infty} \frac{1}{t} \sum_{i=1}^{N(t)} R_i = \frac{\mathbb{E}[R_i]}{\mathbb{E}[X_i]}] = 1$ Proof: $P[\lim_{t \to \infty} \frac{1}{t} \sum_{i=1}^{N(t)} R_i = \lim_{t \to \infty} \sum_{i=1}^{N(t)} \frac{R_i}{N(t)} \times \lim_{t \to \infty} \frac{N(t)}{t}] = 1$
- Poisson Process: a renewal process with $X_i \sim \text{Exponential}(\lambda)$
 - S_i Property
 - * S_i is an Erlang random variable Erlang is the sum of the Exponential random variables

* Joint Distribution $f_{S_1,\ldots,S_n}(s_1,\ldots,s_n) = \lambda^n e^{-\lambda s_n}$ Prove by induction.

Induce by
$$f_{S_1,\ldots,S_n}(s_1,\ldots,s_n) = f_{S_1,\ldots,S_{n-1}}(s_1,\ldots,s_{n-1}) \times f_{S_n|S_1,\ldots,S_{n-1}}(s_n,s_1,\ldots,s_{n-1})$$

N(t) Property

- * $N(t) \sim \text{Poisson}(\lambda t), P[N(t) = n] = \frac{(\lambda t)^n}{n!} e^{-\lambda t}$ Prove by $P[N(t) = n] = P[S_n \le t \text{ and } S_{n+1} > t]$
- * Conditioned on N(t) = n, the set of arrival times $\{s_1, \ldots, s_n\}$ have the same distribution with a set of n sorted i.i.d. Uniform(0,t) random variables

set of
$$n$$
 sorted i.i.d. Uniform $(0,t)$ random variables
Prove by $f_{S_1,\ldots,S_n|N(t)}(s_1,\ldots,s_n,n) = \frac{f_{S_1,\ldots,S_n}(s_1,\ldots,s_n)P[X_{n+1}>t-s_n]}{P[N(t)=n]} = \frac{n!}{t^n}$

Property

* Z is the interval from t to the first arrival $\to Z$ is exponential random variable with same λ and independent of N(t) and the arrival time before t

Froon:
$$P[Z > z] = \sum_{n=0}^{\infty} \int_{0}^{\infty} \cdots \int_{0}^{\infty} P[Z > z | N(t) = n, S_{1} = s_{1}, \dots, S_{n} = s_{n}] ds_{1} \dots ds_{n}$$

$$= \sum_{n=0}^{\infty} \int_{0}^{\infty} \cdots \int_{0}^{\infty} P[X_{n+1} > z + t - s_{n} | N(t) = n, S_{1} = s_{1}, \dots, S_{n} = s_{n}] ds_{1} \dots ds_{n}$$

$$= \sum_{n=0}^{\infty} \int_{0}^{\infty} \cdots \int_{0}^{\infty} P[X_{n+1} > z + t - s_{n} | X_{n+1} > t - s_{n}] ds_{1} \dots ds_{n} = e^{-\lambda z}$$
* Stationary Increments: $N(t_{1} + t_{2}) - N(t_{1})$ and $N(t_{2})$ share the same distribution

- Without Proof
- * Independent Increments: $\forall 0 < t_1 < t_2 < \dots, t_k, N(t_1), N(t_2) N(t_1), \dots$ are independent Without Proof
- Any arrival process with stationary and independent increments must be a Poisson process Without Proof

Exercise

*
$$\mathbb{E}[S_{i}|N(t) = n] = \frac{t \times i}{n+1}$$

 $\cdot \mathbb{E}[S_{i}|N(t) = n] = i \times \mathbb{E}[X_{1}|N(t) = n] = i \int_{0}^{t} \int_{0}^{s_{n}} \cdots \int_{0}^{s_{2}} s_{1} \times \frac{n!}{t^{n}} ds_{1} \dots ds_{n-1} ds_{n} = \frac{t \times i}{n+1}$
* $\mathbb{E}[\sum_{i=0}^{N(t)} S_{i}] = \frac{\lambda t^{2}}{2}$
 $\cdot \mathbb{E}[\sum_{i=0}^{N(t)} S_{i}] = \sum_{n=0}^{\infty} \mathbb{E}[\sum_{i=0}^{n} S_{i}|N(t) = n]P[N(t) = n]$
 $= \sum_{n=0}^{\infty} \frac{nt}{2}P[N(t) = n] = \frac{\lambda t^{2}}{2}$

2D Poisson Process

- * Definition:
 - · For any region R: number of points in R is a Poisson random variable
 - · number of points in the non-overlapping region is independent

Combining Poisson Process

- * $N^1(t), N^2(t)$ are two independent Poisson process with λ_1, λ_2
- * X_i is the first arrival of X_i^1, X_i^2
- * Property
 - . X_i is independent of $\{X_i^1 < X_i^2\}$ and $\{X_i^1 > X_i^2\}$ Proof: $P[X_1^1 < X_1^2] = \frac{\lambda_1}{\lambda_1 + \lambda_2}$ $P[X_1 > x] = P[X_1^1 > x, X_1^2 > x] = e^{-(\lambda_1 + \lambda_2)x}$ $P[X_1 > x, X_1^1 < X_1^2] = P[X_1 > x]P[X_1^1 < X_1^2]$
 - · X_i is a Poisson Process with $\lambda = \lambda_1 + \lambda_2$
 - · $\min(X_1, X_2)$ is an exponential random variable with $\lambda = \lambda_1 + \lambda_2$

Splitting Poisson Process

- * $N^1(t), N^2(t)$ are two independent Poisson process with λ_1, λ_2
- * N(t) is a random process with $\lambda = \lambda_1 + \lambda_2$
 - · $N^{1*}(t)$ is the process of the first event when N(t) arrives consider it as first event with probability $\frac{\lambda_1}{\lambda_1 + \lambda_2}$
 - · $N^{2*}(t)$ is the process of the second event when N(t) arrives consider it as second event with probability $\frac{\lambda_2}{\lambda_1 + \lambda_2}$
- * $N^{i}(t)$ and $N^{i*}(t)$ share the same distribution

- * Proof:
 - · $B_n(k)$ is a Binomial random variable with $p = \frac{\lambda_1}{\lambda_1 + \lambda_2}$
 - $P[N^{1*}(t) = m, N^{2*}(t) = n] = P[N(t) = m + n, B_{m+n}(m)] = P[N^{1}(t) = m, N^{2}(t) = n]$

Compound Poisson Process

- * N(t) is a Poisson Process
- * A_n is a sequence of cost
- * $A(t) = \sum_{n=0}^{N(t)} A_n$ is the summation of cost over Poisson Process

Non-Homogeneous Poisson Process

*
$$N(t) - N(s) \sim \text{Poisson}(\int_{s}^{t} \lambda(x) dx)$$

Queuing Theory

- * Definition: Arrival Process/Service Process/number of services
 - \cdot M: memoryless (Poisson) process
 - \cdot D: deterministic process
 - \cdot G: general renewal process
- * T: the random variable of the processing time for each customer
- * Y(t): number of cutomers in the service
 - $\cdot Y(t) \sim \text{Poisson}(\lambda \int_0^t P[T > x] dx)$
 - · Proof:

Consider Y(t) is a splitting Poisson Process. Since the distribution for the arrival given N(t) is universal, the probability the arrival is still in service: $\frac{1}{t} \int_0^t P[T > t - x] dx = \frac{1}{t} \int_0^t P[T > x] dx$

9 Markov Chain

- Definition
 - Model with states and transition probability matrix
 - States: $\{X_n\}_{n=0}^{\infty}$
 - Transition Probability Matrix: $[P]_{ij} = P[X_{n+1} = j | X_n = i]$
- Terminology
 - $-p^n = [P[X_n = 0], P[X_n = 1], \dots]^T$: distribution at step n
 - $-T_i = \min\{n \geq 1 : X_n = i\}$: a random variable of the minimum time step to go to state i
 - $-f_{ij} = P[T_j < \infty | X_0 = i]$: the probability of starting at i and ever reaching j
 - $-\mu_{ij} = \mathbb{E}[T_i|X_0 = i]$
 - $-i \rightarrow j$ iff $f_{ij} > 0$: j is reachable from i with probability greater than 0
 - $N_i(n)$: number of visits to i by time n
 - Irreducible: $i \leftrightarrow j, \forall$ states i, j
 - aperiodic: period of $X_n = i$ is 1, \forall states i
- Property
 - Consider a given distribution as an event $\tau: [P[X_n = 0|\tau], P[X_n = 1|\tau], \dots]^T$
 - Updating distribution

$$p^n = p^0 P^n$$

- Markovian: transition probability depend only on current state

*
$$P[X_{n+1} = j | X_n = i, ..., X_0 = x_0] = [P]_{ij}$$

- Stationary Distribution: p s.t. if $p^n = p \rightarrow p^{n+1} = p$

Property from renewal process

- * consider $X_n = j$ as a event \rightarrow Markov Chain becomes a delayed renewal process
- * If $i \leftrightarrow j$ and the model starts from i, then following holds

*
$$P[\lim_{n\to\infty} \frac{N_j(n)}{n} = \frac{1}{\mu_{jj}}] = 1$$

*
$$\lim_{n\to\infty} \frac{\mathbb{E}[N_j(n)]}{n} = \frac{1}{\mu_{jj}}$$

* if the period of
$$X_n = j$$
 is $d \to \lim_{n \to \infty} p_j^{nd} = \frac{d}{\mu_{ij}}$

Theorem of an irreducible, aperiodic Markov Chain

- * Either
 - · All states have $\mu_{ii} = \infty$
 - · All states have $\mu_{ii} < \infty$ and $p_i = \frac{1}{\mu_{ii}}$ is the unique stationary distribution
- * Proof
 - · From if the period of $X_n = j$ is $d \to \lim_{n \to \infty} p_j^{nd} = \frac{d}{\mu_{jj}}$ Proof: $\lim_{n \to \infty} p_j^{nd} = \lim_{n \to \infty} \mathbb{E}[\# \text{ events at } nd]$

Theorem of an irreducible, aperiodic Markov Chain

* All states have $\mu_{ii} < \infty$ and $p_i = \frac{1}{\mu_{ii}}$ is the unique stationary distribution

p can be calculated as the eigenvector corresponds to eigenvalue 1 of P^T

- Detailed Balance

Definition:

- * Given a distribution π
- * $\pi_i P_{ij} = \pi_j P_{ji}, \forall i, j$

Property:

- * distribution π satisfying Detailed Balance is the stationary distribution p
- * symmetric transition probability matrix \rightarrow uniform stationary distribution
- Reversible

Definition: A Markov Chain with stationary distribution p is reversible if it satisfies detailed balance Interpretation

- * Transitions forward and backward in the stationary distribution have the same probability
- * $P[X_{n+1} = j | X_n = i] = P_{ij}$
- * $P[X_{n-1} = j | X_n = i] = \frac{P[X_{n-1} = j, X_n = i]}{P[X_n = i]} = \frac{p_j P_{ji}}{p_i} = P_{ij}$
- Metropolis Update Rule

Definition

- * Given a Markov Chain and distribution p', find P' such that p' is the stationary distribution
- Procedure
 - * For each pair $(i,j),\,P'_{ij}=P_{ij}\times\min\{1,\frac{p'_jP_{ji}}{p'_iP_{ij}}\}$
 - * construct self loop to satisfy $\sum_{i} P'_{ij} = 1$

Proof

- * To satisfy detailed balance, for each pair (i,j), we should set $p_i'P_{ij}' = \min\{p_i'P_{ij}, p_i'P_{ji}\}$
- Distance between Probability Measure

Definition:

* Total Variation Distance between P_1 and P_2 is: $d_{TV}(P_1, P_2) = \frac{1}{2} \sum_{\omega} |P_1[\omega] - P_2[\omega]|$

Interpretation:

- * consider the distributions as events τ_1, τ_2
- * $P_i[\omega] = P[\omega|\tau_i]$
- * $d_{TV}(P_1, P_2) = \frac{1}{2} \sum_{\omega} |P[\omega|\tau_1] P[\omega|\tau_2]| = \sum_{\omega} |P[\omega \wedge \tau_1] P[\omega \wedge \tau_2]|$
- Mixing Time

Definition

* Mixing time τ is the least t such that for all initial state p^0 , $d_{TV}(p, p^0 P^t) \leq \frac{1}{2e}$ Interpretation

- * the factor $\frac{1}{2e}$ is set such that $d_{TV}(p,p^0P^t) \leq \epsilon$ if $t \geq \tau \times \log(\frac{1}{\epsilon})$ Without proof
- Example

Random Walk on Graph

- * Definition: move from vertex i to vertex j with probability $P_{ij} = \begin{cases} 0 & \text{if } (i,j) \notin E \\ \frac{1}{\text{degree}(i)} & \text{if } (i,j) \in E \end{cases}$
- * Distribution $\pi,\,\pi_i=\frac{\mathrm{degree}(x)}{2|E|}$ satisfies detailed balance
- * If we want stationary distribution to be uniform $\rightarrow P'_{ij} = \begin{cases} \frac{1}{\deg{\text{ree}(i)}} & \text{if } \deg{\text{ree}(i)} \geq \deg{\text{ree}(j)} \\ \frac{1}{\deg{\text{ree}(j)}} & \text{if } \deg{\text{ree}(i)} < \deg{\text{ree}(j)} \end{cases}$

Random graph coloring

- * Given a graph with V vertices, maximum degree Δ and q colors, to color each vertex one color such that adjacent vertex do not share the same color
- * Assume $q > 4\Delta$
- * Markov Chain Transition:
 - · Pick random vertex and random color, if the color is changeable then change
- * Property
 - · Aperiodic: there exist self loops
 - · Symmetric: symmetric transition
 - · Irreducible
- * Mixing time is $O(V \log V)$

Proof:

- · Assume X is a event s.t. Markov Chain starts with any valid coloring and Y is a event s.t. Markov Chain starts with uniform distribution
- · Apply same transition on both X and Y
- · D_n is a random variable for the number of vertices in different colors in X and Y at time n
- · Good moves: number of vertices in different colors decrease $\geq D_n \times (q-2\Delta) \geq (2\Delta+1)D_n$ (vertices with different colors \times color that is different with any adjacent color in X and Y)
- · Bad moves: number of vertices in different colors increase $\leq (D_n \Delta) \times 2$ (vertices adjacent to different colors vertices \times color of the different colors vertices)
- $\cdot \mathbb{E}[D_{n+1} D_n] \le V(1 \frac{1}{qV})^n$
- $\cdot \mathbb{E}[D_n] \le V(1 \frac{1}{qV})^n$
- $P[D_n \ge 1] \le V(1 \frac{1}{qV})^n$
- Hidden Markov Chain
 - Definition: output is a function of the state
 - Interpretation: if the model is not markovian, then reformulate the model as a hidden markov chain
 by complicating the states and rendering the output as a function of the state

10 Continuous Markov Chain

- Interpretation
 - $-v_i$: coefficient of exponential distribution, where time in state i before next step is \sim Exponential (v_i)
- Definition
 - Model with states and transition rate matrix
 - States: $X(t), \forall 0 \le t < \infty$
 - Transition Probability Matrix R
- $P_{ij}(t)$
 - Definition: $P_{ij}(t) = P[X(t) = j | X(0) = i]$

- Chapman-Kolmogorov Equation
 - * Definition: $P(s+t) = P(s) \times P(t)$
 - * Proof

$$\begin{array}{l} \cdot \ P_{ij}(s+t) = P[X(s+t) = j | X(0) = i] \\ = \sum_k P[X(s+t) = j | X(s) = k, X(0) = i] P[X(s) = k | X(0) = i] \\ = \sum_k P[X(s+t) = j | X(s) = k] P[X(s) = k | X(0) = i] = \sum_k P_{kj}(t) P_{ik}(s) \end{array}$$

- Kolmogorov's Differential Equation
 - * Forward: $\frac{dP(t)}{dt} = P(t)R$ Interpretation:

· Change of distribution at t equals the distribution at $t \times R$

Proof:

$$\cdot \frac{dP(t)}{dt} = \lim_{\delta \to 0} \frac{P(t+\delta) - P(t)}{\delta} = P(t) \lim_{\delta \to 0} \frac{P(\delta) - P(0)}{\delta} = P(t)R$$

* Backward: $\frac{dP(t)}{dt} = RP(t)$ Interpretation:

· Change of distribution at t equals the distribution at $t = 0 \times P(t)$

$$\cdot \frac{dP(t)}{dt} = \lim_{\delta \to 0} \frac{P(t+\delta) - P(t)}{\delta} = \lim_{\delta \to 0} \frac{P(\delta) - P(0)}{\delta} P(t) = RP(t)$$
 * Solution: $P(t) = e^{Rt}$

- R
- Definition:

$$\begin{array}{l} * \;\; R_{ij} = \frac{dP_{ij}(t)}{dt}|_{t=0} \\ * \;\; R_{ij} = \left\{ \begin{array}{ll} -v_i & \text{if } i=j \\ v_i P_{ij} & \text{if } i \neq j \end{array} \right. \text{ (if there is no self-transition)}$$

- Interpretation
 - * πR is the change of distribution of π (by Kolmogorov's Differential Equation)
 - * simulation by transition from state i to j when $e^{-R_{ij}t}$ event arrives

$$\frac{dP_{ii}(t)}{dt} = R_{ii}P_{ii}(t) \to P_{ii}(t) = e^{-R_{ii}t}$$

· simulate the transition out of state i by $e^{-R_{ii}t}$ and transition to j state by probability $\frac{R_{ij}}{R_{ii}}$ is the same as transition from state i to j when $e^{-R_{ij}t}$ event arrives

Property

- · Continuous Markov Chain with same R are of the same functionality
- - * $\sum_{i} R_{ij} = 0$: sum of element is a row of R is 0
- Property
 - Self Transition:
 - * Since R defines the Markov Chain, we can modify v_i to conduct self transition without changing
 - Uniformization:
 - * Since R defines the Markov Chain, we can modify v_i such that v_i are the same for all states without changing R
 - Stationary Distribution: p s.t. $pR = 0, pe^{Rt} = p$

Interpretation:

*
$$\frac{dpP(t)}{dt} = p\frac{dP(t)}{dt} = pRP(t) = 0$$

* p is the eigenvector of eigenvalue 0 of R, then p is the eigenvector of eigenvalue 1 of $e^{Rt} \to the$ distribution would not change, if start with p

Trick:

- * cluster states such that every state in the cluster share the same R_{ij} to calculate the stationary distribution of the cluster
- * assume distribution is independent of the cluster and check pR = 0 after the calculation
- Poisson process is a special case of Continuous Markov Chain
 - $v_i = \lambda, \forall i$
 - * i-th state transition to i + 1-th state
- Exploding process: only if $v_i \to \infty$
 - * exploding process: traverse infinite states in finite time

11 Martingales

- Definition
 - Discrete

General Discrete Martingales

- * $\{Z_i\}_{i=0}^{\infty}$ such that
 - 1. $\mathbb{E}[|Z_n|] < \infty$
 - 2. $\mathbb{E}[Z_{n+1}|Z_0,\ldots,Z_n] = Z_n$
 - · sub-martingales: $\mathbb{E}[Z_{n+1}|Z_0,\ldots,Z_n] \geq Z_n$
 - · super-martingales: $\mathbb{E}[Z_{n+1}|Z_0,\ldots,Z_n] \leq Z_n$

Discrete Martingales with respect to X_i

- * $\{Z_i\}_{i=0}^{\infty}$ such that
 - 1. $\mathbb{E}[|Z_n|] < \infty$
 - 2. $\mathbb{E}[Z_{n+1}|X_0,\ldots,X_n] = Z_n$
 - · sub-martingales: $\mathbb{E}[Z_{n+1}|X_0,\ldots,X_n] \geq Z_n$
 - · super-martingales: $\mathbb{E}[Z_{n+1}|X_0,\ldots,X_n] \leq Z_n$
- * $\mathbb{E}[Z_{n+1}|X_0,\ldots,X_n]=Z_n$ implies $\mathbb{E}[Z_{n+1}|Z_0,\ldots,Z_n]=Z_n$
 - $\cdot Z_n$ is a function of X_0, \ldots, X_n
 - $\mathbb{E}[Z_{n+1}|Z_0,\ldots,Z_n] = \mathbb{E}[\mathbb{E}[Z_{n+1}|X_0,\ldots,X_n,Z_0,\ldots,Z_n]|Z_0,\ldots,Z_n]$ $= \mathbb{E}[\mathbb{E}[Z_{n+1}|X_0,\ldots,X_n]|Z_0,\ldots,Z_n] = \mathbb{E}[Z_n|Z_0,\ldots,Z_n] = Z_n$
- Continuous Martingales with respect to N(t)
 - * Y(t) such that
 - 1. $\mathbb{E}[|Y(t)|] < \infty$
 - 2. $\mathbb{E}[Y(t)|\{N(s)|0 \le s \le \tau\}] = Y(\tau), \forall \tau \le t$
 - · sub-martingales: $\mathbb{E}[Y(t)|\{N(s)|0\leq s\leq \tau\}]\geq Y(\tau), \forall \tau\leq t$
 - · super-martingales: $\mathbb{E}[Y(t)|\{N(s)|0\leq s\leq \tau\}]\leq Y(\tau), \forall \tau\leq t$
- Property
 - $-\mathbb{E}[Z_n] = \mathbb{E}[Z_1]$

Proof:
$$\mathbb{E}[Z_{n+1} - Z_n] = \mathbb{E}[\mathbb{E}[Z_{n+1} - Z_n | Z_0, \dots, Z_n]] = 0$$

$$-\mathbb{E}[Z_n | \{Z_i | i \in S\}] = Z_{\max_{i \in S} i}$$
, where $\forall i \in S, i < n$

Proof:
$$\mathbb{E}[Z_n|Z_i] = \mathbb{E}[\mathbb{E}[Z_n|Z_0,...,Z_{n-1}]|Z_i] = \mathbb{E}[Z_{n-1}|Z_i]$$

- Azuma's Inequality
 - * $\mu = \mathbb{E}[Z_0]$
 - $* -a_i \le Z_i Z_{i-1} \le b_i$

*
$$-a_i \le Z_i - Z_{i-1} \le b_i$$

* $P[|Z_n - \mu| \ge \delta] \le 2e^{-\frac{2\delta^2}{\sum_{i=1}^n (b_i + a_i)^2}}$

- Kolmogorov's sub-martingales inequality
 - * $P[\sup_{n>1} Z_n \ge a] \le \frac{\mathbb{E}[Z_1]}{a}$
- Martingales Stopping Theorem

- * Stopping Times: a random variable τ s.t. $\{\tau = n\}$ is independent of $\{X_i\}_{i=n+1}^{\infty}$
- * Stopping Condition: a condition to stop if we can consider $\tau = \min\{n : \text{condition}(n) = \top\}$
- * $\mathbb{E}[Z_{\tau}] = \mathbb{E}[Z_0]$ if the either of the following holds
 - 1. $P[\tau \le k] = 1$
 - 2. $P[\max_{i < \tau} |Z_{\tau}| \le k] = 1$
 - 3. $\mathbb{E}[\tau] < k$ and $\mathbb{E}[|Z_{n+1} Z_n||Z_0, \dots, Z_n] < k$
- Application for generating Martingales
 - Sum of iid. random variables
 - * $\{X_i\}_{i=1}^{\infty}$ are iid. random variables
 - * $Z_n = \sum_{i=1}^n X_i n\mathbb{E}[X_i]$ is a martingales.
 - * Proof: $\mathbb{E}[Z_{n+1}|Z_0,...,Z_n] = \mathbb{E}[Z_n + X_{n+1} \mathbb{E}[X_i]|Z_0,...,Z_n] = Z_n$
 - Squre of sum of iid. random variables
 - * $\{X_i\}_{i=1}^{\infty}$ are iid. random variables and $\mathbb{E}[X_i] = 0$
 - * $Z_n = (\sum_{i=1}^n X_i)^2 n\mathbb{E}[X_i^2]$ is a martingales.
 - * Proof: $\mathbb{E}[Z_{n+1}|Z_0,\ldots,Z_n] = \mathbb{E}[Z_n + X_{n+1}^2 + 2X_{n+1}(\sum_{i=1}^n X_i) \mathbb{E}[X_i^2]|Z_0,\ldots,Z_n] = Z_n$
 - Product of iid. random variables
 - * $\{X_i\}_{i=1}^{\infty}$ are iid. random variables
 - * $Z_n = \frac{\prod_{i=1}^n X_i}{\mathbb{E}[X_i]^n}$ is a martingales.
 - * Proof: $\mathbb{E}[Z_{n+1}|Z_0,...,Z_n] = \mathbb{E}[Z_n(\frac{X_{n+1}}{\mathbb{E}[X_i]})|Z_0,...,Z_n] = Z_n$
 - Poisson Process
 - * N(t) is a poisson process
 - * $Y(t) = N(t) \lambda t$ is a martingales.
 - * Proof: $\mathbb{E}[Y(t)|\{N(s)|0 \le s \le \tau\}] = \mathbb{E}[Y(\tau) + Y(t) Y(\tau)|\{N(s)|0 \le s \le \tau\}] = Y(\tau) + \mathbb{E}[N(t) N(\tau) + \lambda(t \tau)|\{N(s)|0 \le s \le \tau\}] = Y(\tau)$
 - Doob-type Martingales
 - * $X, \{Y_i\}_{i=1}^{\infty}$ are random variables
 - * $Z_n = \mathbb{E}[X|Y_1, Y_2, \dots, Y_n]$ is a martingales
 - * Proof: $\mathbb{E}[Z_{n+1}|Y_1,\ldots,Y_n] = \mathbb{E}[\mathbb{E}[X|Y_1,Y_2,\ldots,Y_n,Y_{n+1}]|Y_1,Y_2,\ldots,Y_n] = \mathbb{E}[X|Y_1,Y_2,\ldots,Y_n] = Z_n$
- Example
 - Symmetric Random Walk
 - * p = 0.5
 - $* \tau = \min\{i | \sum_{i=0}^{n} X_i \in \{-a, b\}\}$
 - * $Z_n = \sum_{i=0}^n X_i$, by second rule of Martingales Stopping Theorem: $\mathbb{E}[Z_\tau] = 0$ $\to P[Z_\tau \text{ at } a] = \frac{b}{a+b}, P[Z_\tau \text{ at } b] = \frac{a}{a+b}$
 - * $Z_n = (\sum_{i=0}^n X_i)^2 n$, by third rule of Martingales Stopping Theorem: $\mathbb{E}[Z_\tau] = 0$ $\to \mathbb{E}[\tau] = ab$
 - Unbiased Random Walk
 - $* \tau = \min\{i | \sum_{i=0}^{n} X_i \in \{-a, b\}\}$
 - * $Z_n = (\frac{1-p}{p})^{\sum_{i=0}^{n} X_i}$, by second rule of Martingales Stopping Theorem: $\mathbb{E}[Z_{\tau}] = 0$ $P[Z_{\tau} \text{ at } a] = \frac{(\frac{1-p}{p})^b - 1}{(\frac{1-p}{p})^b - (\frac{1-p}{p})^{-a}}, P[Z_{\tau} \text{ at } b] = \frac{1 - (\frac{1-p}{p})^{-a}}{(\frac{1-p}{p})^b - (\frac{1-p}{p})^{-a}}$
 - * $Z_n = \sum_{i=0}^n X_i n\mathbb{E}[X_0]$, by third rule of Martingales Stopping Theorem: $\mathbb{E}[Z_\tau] = 0$ $\to \mathbb{E}[\tau] = \frac{\mathbb{E}[\sum_{i=0}^\tau X_i]}{\mathbb{E}[X_0]}$

12 Random Walk

• Definition

$$- X_i = \begin{cases} 1 & \text{with probability } p \\ -1 & \text{with probability } 1 - p \end{cases}$$

$$- S_n = \sum_{i=0}^n X_i$$

- The monkey at the cliff
 - $-P_k = P[\exists n \text{ such that } S_n = k] = \begin{cases} 1 & \text{if } p \geq \frac{1}{2} \\ (\frac{p}{1-p})^k & \text{if } p < \frac{1}{2} \end{cases} \text{ where } k \in \mathbb{N}$

*
$$P_k = P_1^k$$
 by memoryless property

*
$$P_1 = p + q \times P_2 \to P_1 = 1 \text{ or } \frac{p}{1-p}$$

* if
$$p \ge 0.5 \to P_1 = 1 \ (P_1 \le 1)$$

* if
$$p < 0.5 \to P_1 = \frac{p}{1-p}$$

* if $p < 0.5 \rightarrow P_1 = \frac{p}{1-p}$ Since $P_1 \leq \frac{p}{1-p}$ by induction on n to ∞ for $P_1(n) = P[S_n = k]$

$$- \ \mathbb{E}_k = \mathbb{E}[\min\{n: S_n = k\}] = \left\{ \begin{array}{cc} \infty & \text{if } p \leq \frac{1}{2} \\ \frac{k}{2p-1} & \text{if } p > \frac{1}{2} \end{array} \right. \text{ where } k \in \mathbb{N}$$

Proof

*
$$\mathbb{E}_k = \mathbb{E}_1 \times k$$
 by memoryless property

$$* \mathbb{E}_1 = 1 + 0 \times p + \mathbb{E}_2 \times (1 - p)$$

* if
$$p < 0.5 \rightarrow P_1 = \frac{p}{1-p} \rightarrow \mathbb{E}_1 = \infty$$

* if
$$p = 0.5 \to \mathbb{E}_1 = 1 + \mathbb{E}_1$$
 (no solution) $\to \mathbb{E}_1 = \infty$

* if
$$p > 0.5 \rightarrow \mathbb{E}_1 = \frac{1}{2p-1}$$

–
$$P_0 = P[\exists n \text{ such that } S_n = 0] = 1 - |2p - 1| \text{ where } k \in \mathbb{N}$$

$$* P_0 = p \times P_{-1} + (1-p) \times P_1$$

$$- \mathbb{E}_0 = \mathbb{E}[\min\{n : S_n = 0\}] = \infty$$

* if
$$p \neq \frac{1}{2} \rightarrow P_0 \neq 1 \rightarrow \mathbb{E}_0 = \infty$$

* if
$$p = \frac{1}{2} \to \mathbb{E}_0 = 1 + \frac{1}{2}\mathbb{E}_{-1} + \frac{1}{2}\mathbb{E}_1 = \infty$$

• The Gambler's Ruin

- Definition:
$$\tau = \min\{i|S_n \in \{-a, b\}\}$$

$$-A_k = P[S_\tau = b|X_0 = k]$$

$$* A_k = pA_{k+1} + (1-p)A_{k-1}$$

$$- A_0 = \begin{cases} \frac{a}{a+b} & \text{if } p = \frac{1}{2} \\ \frac{(\frac{1-p}{p})^a - 1}{(\frac{1-p}{p})^{a+b} - 1} & \text{if } p \neq \frac{1}{2} \end{cases}$$

Solved by previous recursive equation

$$- E_k = \mathbb{E}[\tau | X_0 = k]$$

$$* E_k = 1 + pE_{k+1} + (1-p)E_{k-1}$$

*
$$E_k = 1 + pE_{k+1} + (1-p)E_{k-1}$$

$$- E_0 = \begin{cases} ab & \text{if } p = \frac{1}{2} \\ \frac{a}{1-2p} - \frac{a+b}{1-2p} \times \frac{(\frac{1-p}{p})^a - 1}{(\frac{1-p}{p})^a + b - 1} & \text{if } p \neq \frac{1}{2} \end{cases}$$

Solved by previous recursive equation

Observation

$$-S_n = O(n)$$

Upperbound:
$$\lim_{n\to\infty} P[S_n \le k\sqrt{n}] = \int_{-\infty}^k \frac{1}{2\pi} e^{-\frac{x^2}{2}} dx$$

Lowerbound:
$$P[|S_n| \ge k\sqrt{n}] \le 2e^{-\frac{k^2}{2}}$$

13 **Brownian Motion**

- Standard Brownian Motion
 - Interpretation: generalize discrete time and space of random walk to be in continuous time and space
 - * $S_t = \delta_x(\sum_{i=0}^{\frac{t}{\delta_t}} X_i)$
 - * let $\delta_x = \sqrt{\delta_t}$ and $\delta_x \to 0$
 - $* \mathbb{E}[S_t] = 0$
 - * $Var(S_t) = t$

$$Var(S_t) = \delta_x^2 \frac{t}{\delta_t} = t$$

- Definition:
 - * X(0) = 0
 - * $X(t) \sim N(0, \sigma^2 = t)$
 - * X(t) has independent, stationary increment
 - · independent: $X(t_{i_2}) X(t_{i_1})$ and $X(t_{i_1}) X(t_{i_0})$ are independent
 - · stationary: X(s+t) X(t) = X(s)
- Property
 - * Distribution self-similarity
 - $X(t) \sim N(0,t)$
 - $\cdot \sqrt{k}X(\frac{t}{k}) \sim N(0,t)$
 - * Nowhere Differentiable
 - · With probability 1, X(t) is nowhere differentiable
 - $\cdot \lim_{\delta_t \to 0} \frac{X(t+\delta_t) X(t)}{\delta_t} = \lim_{\delta_t \to 0} \frac{N(0, \delta_t)}{\delta_t} = \lim_{\delta_t \to 0} N(0, \frac{1}{\delta_t})$
 - * Unbounded Variation
 - · Length of distance $\to \infty$ in finite time t
 - $\cdot \lim_{n\to\infty} \sum_{j=1}^n |X(\frac{jt}{n}) X(\frac{(j-1)t}{n})| = \infty$

Proof:
$$\lim_{n\to\infty} \sum_{j=1}^n |X(\frac{jt}{n}) - X(\frac{(j-1)t}{n})| = \lim_{n\to\infty} \sum_{j=1}^n |X(\frac{t}{n})| = n \times \sqrt{\frac{2t}{\pi n}} = \infty$$

* Hitting Time

The Gambler's Ruin

- $\tau = \min\{t \ge 0 : X(t) \in \{-A, B\}\}$
- · $P[X(\tau) = A] = \frac{B}{A+B}$, $P[X(\tau) = B] = \frac{A}{A+B}$ Prove by Martingales Stopping Theorem on X(t):

$$\rightarrow \mathbb{E}[X(t)] = P[X(\tau) = A]A + P[X(\tau) = B]B = 0$$

Prove by Martingales Stopping Theorem on $X(t)^2 - t$:

$$\to \mathbb{E}[X(t)^2 - t] = P[X(\tau) = A]A^2 + P[X(\tau) = B]B^2 - \mathbb{E}[\tau] = 0$$

The monkey at the cliff

- $\cdot \ \tau = \min\{t \ge 0 : X(t) = B\}$
- $P[\tau < \infty] = 1$

Prove by let $A = -\infty$ in The Gambler's Ruin

$$P[\tau \le t] = 2P[X(\tau) \ge B]$$

$$P[\tau \le t] = P[\tau \le t \text{ and } X(t) \ge B] + P[\tau \le t \text{ and } X(t) < B]$$

= $2P[\tau \le t \text{ and } X(t) \ge B] = 2P[X(t) \ge B]$

 $\cdot \mathbb{E}[\tau] = \infty$

Prove by let $A = -\infty$ in The Gambler's Ruin

- * Diffusion Equation
 - · Forward Diffusion Equation: $\frac{\partial f}{\partial t} = \frac{1}{2} \frac{\partial^2 f}{\partial x^2}$
 - · Backward Diffusion Equation: $\frac{\partial f}{\partial t} = \frac{-1}{2} \frac{\partial^2 f}{\partial x^2}$
 - · $f(X(t_2) = x | X(t_1) = k)$ satisfies Forward Diffusion equation
 - $f(X(t_2) = k | X(t_1) = x)$ satisfies Backward Diffusion equation
- * Martingales

- $\cdot X(t)$ is a martingale
- · $X(t)^2 t$ is a martingale
- $e^{cX(t)-\frac{c^2}{2}t}$ is a martingale
- * Zeros

Definition:
$$P[X(t) = 0, t_0 < t < t_1] = \frac{2}{\pi} \cos^{-1}(\sqrt{\frac{t_0}{t_1}})$$

· Prove by
$$P[X(t) = 0, t_0 < t < t_1] = \int_{-\infty}^{\infty} f_{X(t_0)}(x_1) P[T_{-x} \le t_1 - t_0] dx_1$$

Property

$$P[X(t) = 0, 0 < t < t_1] = 1, \forall t_1 > 0$$

$$P[\inf\{t > 0 : X(t) = 0\} = 0] = 1$$

· P[there are infinitely many zeros in [0,t]] = 1

- Brownian Bridge

- * Definition: the distribution of t_1 given the result of the future $X(t_2)$
- * Property

$$\begin{split} &f_{X(t_1)|X(t_2)}(x_1,x_2) = \frac{f_{X(t_1),X(t_2)}(x_1,x_2)}{f_{X(t_2)}(x_2)} \sim N(\frac{t_1}{t_2}x_2,\frac{t_1(t_2-t_1)}{t_2}) \\ &\cdot \text{ let } s = t_2 - t_1 \\ &\cdot f_{X(t_1)|X(t_2)}(x_1,x_2) = \frac{f_{X(t_1),X(t_2)}(x_1,x_2)}{f_{X(t_2)}(x_2)} \\ &= \frac{f_{X(t_1),X(s)}(x_1,x_2-x_1)}{f_{X(t_2)}(x_2)} \text{ (By transformation of 2-D random variables)} \\ &= \frac{f_{X(t_1),X(s)}(x_1,x_2-x_1)}{f_{X(t_2)}(x_2)} = \frac{\frac{1}{\sqrt{2\pi t_1}}e^{\frac{-x_1^2}{2t_1}} \frac{1}{\sqrt{2\pi (t_2-t_1)}}e^{\frac{-(x_2-x_1)^2}{2(t_2-t_1)}}}{\frac{1}{\sqrt{2\pi t_2}}e^{\frac{-x_2^2}{2t_2}}} \\ &= \frac{1}{\sqrt{2\pi}\frac{t_1(t_2-t_1)}{t_2}}e^{\frac{-(x_1-\frac{t_1}{t_2}x_2)^2}{2}} \rightarrow X(t_1) - \frac{t_1}{t_2}X(t_2) \sim N(0,\frac{t_1(t_2-t_1)}{t_2}) \\ &\cdot \mathbb{E}[X(t_1)|X(t_2)] = \frac{t_1}{t_2}X(t_2) \\ &\cdot Var(X(t_1)|X(t_2)) = \frac{t_1(t_2-t_1)}{t_2} \end{split}$$

·
$$Y(t_1)=X(t_1)-\frac{t_1}{t_2}X(t_2)$$
 share the same distribution as $X(t_1)|X(t_2)=0$ $Cov(X(t_1),X(t_2)|X(t_3))=\frac{t_1(t_3-t_2)}{t_3}$

$$\begin{array}{l} \cdot \ Cov(X(t_1),X(t_2)|X(t_3)) \\ = \mathbb{E}[X(t_1)X(t_2)|X(t_3)] - \mathbb{E}[X(t_1)|X(t_3)] \times \mathbb{E}[X(t_2)|X(t_3)] \\ = \mathbb{E}[X(t_1)^2 + X(t_1)(X(t_2) - X(t_1))|X(t_3)] - \frac{t_1t_2}{t_3^2}X(t_3)^2 \\ = \mathbb{E}[X(t_1)(X(t_2) - X(t_1))|X(t_3)] + \frac{t_1(t_1-t_2)}{t_3^2}X(t_3)^2 + \frac{t_1(t_3-t_1)}{t_3} \\ = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi \frac{t_1(t_3-t_1)}{t_3}}} e^{-\frac{(x_1 - \frac{t_1}{t_3}X(3))^2}{2\frac{t_1(t_3-t_1)}{t_3}}} \mathbb{E}[x_1(X(t_2) - x_1)|X(t_3), X(t_1) = x_1]dx_1 + \frac{t_1(t_1-t_2)}{t_3^2}X(t_3)^2 + \frac{t_1(t_3-t_1)}{t_3} \\ = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi \frac{t_1(t_3-t_1)}{t_3}}} e^{-\frac{(x_1 - \frac{t_1}{t_3}X(3))^2}{2\frac{t_1(t_3-t_1)}{t_3}}} x_1(-x_1 + X(3)) \frac{t_2-t_1}{t_3-t_1} dx_1 + \frac{t_1(t_1-t_2)}{t_3^2}X(t_3)^2 + \frac{t_1(t_3-t_1)}{t_3} \\ = \frac{t_1(t_2-t_1)}{t_3}X(t_3)^2 - \frac{t_1(t_2-t_1)}{t_3} + \frac{t_1(t_1-t_2)}{t_3^2}X(t_3)^2 + \frac{t_1(t_3-t_1)}{t_3} \\ = \frac{t_1(t_3-t_2)}{t_3} \end{array}$$

• Brownian Motion with drift

 Interpretation: generalize discrete time and space of biased random walk to be in continuous time and space

*
$$X_i = \left\{ \begin{array}{ll} 1 & \text{with probability } p \\ -1 & \text{with probability } 1-p \end{array} \right.$$

*
$$S_t = \delta_x(\sum_{i=0}^{\frac{t}{\delta_t}} X_i)$$

* let
$$\delta_x = \sqrt{\delta_t}$$
, $p = \frac{1 + \mu \sqrt{\delta_t}}{2}$, and $\delta_x \to 0$

$$* \mathbb{E}[S_t] = \mu t$$

$$\cdot \mathbb{E}[S_t] = \delta_x \frac{t}{\delta_t} (2p - 1) = \mu t$$

*
$$Var(S_t) = t$$

·
$$Var(S_t) = \delta_x^2 \frac{t}{\delta_t} (1 - (2p - 1)^2) = t$$

- Definition:
 - * X(t) is Standard Brownian Motion
 - $* Y(t) = X(t) + \mu t$
- Property
 - * Hitting Time

The Gambler's Ruin

$$\tau = \min\{t \ge 0 : Y(t) \in \{-A, B\}\}$$

$$P[Y(t) = A] = \frac{e^{-2\mu B} - 1}{e^{-2\mu B} - e^{2\mu A}}, P[Y(t) = B] = \frac{1 - e^{2\mu A}}{e^{-2\mu B} - e^{2\mu A}}$$

Prove by Martingales Stopping Theorem on $e^{cX(t)-\frac{e^2}{2}t}$ and $c=-2\mu$:

$$\to \mathbb{E}[e^{cX(t) - \frac{c^2}{2}t}] = \mathbb{E}[e^{-2\mu Y(t)}] = 1$$

$$\cdot \mathbb{E}[\tau] = \frac{1}{\mu} (P[Y(t) = B] \times (A+B) - A)$$

Prove by Martingales Stopping Theorem on X(t):

$$\to \mathbb{E}[X(t)] = P[Y(t) = B] \mathbb{E}[B - \mu t | Y(t) = B] + P[Y(t) = A] \mathbb{E}[-A - \mu t | Y(t) = A] = 0$$

The monkey at the cliff

$$\cdot \ \tau = \min\{t \ge 0 : X(t) = B\}$$

$$P[\tau < \infty] = \begin{cases} e^{2\mu B} & \text{if } \mu < 0 \\ 1 & \text{if } \mu \ge 0 \end{cases}$$
Prove by let $A = -\infty$ in The Gambler's Ruin

- Gaussian Process
 - Definition: A stochastic process $\{X(t): t \geq 0\}$ such that for every $\{t_i\}_{i=1}^n, [X(t_1), X(t_2), \dots, X(t_n)]$ is a joint Gaussian distribution
 - * Defined by
 - $\cdot \mathbb{E}[X(t)], \forall t$
 - $\cdot Cov(X(s), X(t)), \forall s, t$
 - Property
 - * Standard Brownian Motion is a Gaussian Process with $\mathbb{E}[X(t)] = 0$, $Cov(X(s), X(t)) = \min\{s, t\}$

$$Cov(X(s), X(t)) = \min(s, t) \text{ (by } X(t) = X(s) + X(t - s) \text{ if } t > s)$$

- Geometric Brownian Motion
 - Definition:

$$* Y(t) = e^{\sigma X(t)}$$

- Property:

$$* \mathbb{E}[Y(t)] = e^{\frac{\sigma^2 t}{2}}$$

*
$$Var[Y(t)] = e^{\sigma^2 t}$$

- Brownian Motion reflected at the origin
 - Definition:

$$* Z(t) = |X(t)|$$

- Property

*
$$P[Z(t) \ge x] = \frac{2}{\sqrt{2\pi t}} e^{\frac{-x^2}{2t}}$$

- \cdot same distribution as Maximum Brownian Motion
- Maximum Brownian Motion
 - Definition:

$$* Z(t) = \max_{0 \le s \le t} X(t)$$

- Property

*
$$P[Z(t) \ge x] = \frac{2}{\sqrt{2\pi t}}e^{\frac{-x^2}{2t}}$$

$$P[Z(t) \ge x] = P[T_x \le t] = \frac{2}{\sqrt{2\pi t}}e^{\frac{-x^2}{2t}}$$
same distribution as Brownian Motion reflected at the origin

- Tricks

- Creat
$$Y_1, Y_2 \sim N(0, 1)$$
 and $Cov(Y_1, Y_2) = \cos \theta$

*
$$X_1, X_2 \sim N(0, 1)$$
 and independent

$$* Y_1 = X_1$$

$$* Y_2 = \cos\theta \times X_1 + \sin\theta \times X_2$$