Statistica della Formazione Slides

A.A. 2020-2021

Docente: ANNA LINA SARRA

La Distribuzione **Normale** o **Gaussiana** è la distribuzione <u>più importante ed</u> utilizzata in tutta la statistica

- La curva delle frequenze della distribuzione Normale ha <u>una forma</u> <u>caratteristica, simile ad una campana</u>
- Il valore medio si trova esattamente al centro della distribuzione, e la curva è simmetrica rispetto ad esso: quindi valor medio, mediana e moda coincidono

- La maggior parte delle osservazioni si concentrano intorno al valore medio
- Allontanandosi dal valore medio, la curva si avvicina sempre più all'asse delle ascisse ma non giunge mai a toccarlo: quindi si possono avere anche (pochissime) osservazioni che risultano molto distanti dalla media

Normal Distribution (Bell) Curve

Mathematical concept called normal distribution Many natural phenomena demonstrate a pattern called the 'Normal Distribution' or 'Bell Curve'. The world tends to be bell-shaped Fewer Fewer Most outcomes Even very Even very in the in the occur in the rare rare "tails" "tails" middle outcomes are outcomes are (lowe possible (upper possible

Esempio altezze

Istogramma della distribuzione delle altezze

Molte variabili continue seguono questa distribuzione!!!

La Forma della Distribuzione Normale

La distribuzione Normale non descrive in realtà una sola distribuzione, ma piuttosto una famiglia di distribuzioni, tutte con la stessa forma a campana, ma caratterizzate da media e varianza diverse

Tutte le curve normali hanno cioè la stessa forma caratteristica, ma possono essere più strette e appuntite, oppure più larghe e piatte

La funzione matematica della distribuzione normale

Una curva normale è definita in maniera univoca da due soli parametri:

il valore medio e lo scarto quadratico medio della distribuzione stessa

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

La funzione f(x) descrive, al variare dei valori assunti dai due parametri, una famiglia di curve normali :

- se si varia μ: si sposta orizzontalmente l'asse di simmetria della curva
- \square <u>se si varia σ :</u> la curva si allarga e appiattisce al crescere del valore di σ

<u>Variando contemporaneamente μ e σ </u>: la curva trasla orizzontalmente e contemporaneamente si fa più o meno appuntita

Una distribuzione Normale con media μ e scarto quadratico σ viene indicata semplicemente come: $N(\mu, \sigma)$

Per indicare che la variabile X si distribuisce come una Normale si scrive:

$$x \sim N(\mu, \sigma)$$

Posizione e forma della curva normale in funzione dei parametri μ e σ

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, -\infty < x < +\infty,$$

La media individua la posizione della curva lungo l'asse delle ascisse. La varianza determina la concentrazione della curva attorno alla retta (figura a).

Distribuzioni normali: con medie uguali e varianze diverse, grafico a, con medie diverse e varianze uguali, grafico b.

Posizione e forma della curva normale in funzione dei parametri $\underline{\mu\ e\ \sigma}$

Proprietà della distribuzione normale

- È simmetrica, avendo come asse di simmetria la retta $x = \mu$;
- È crescente nell'intervallo $(-\infty, \mu)$ e decrescente nell'intervallo (μ, ∞) ;
- Ha due punti di flesso in $x = \mu \sigma$ e $x = \mu + \sigma$;
- È concava (verso il basso) nell'intervallo $(\mu \sigma, \mu + \sigma)$ e convessa altrove;
- Ha come asintoto l'asse delle x.

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, -\infty < x < +\infty,$$

Qual è la curva corretta?

La curva normale è simmetrica, asintotica e unimodale

Unimodale?

Questa curva è Normale? Simmetrica? Asintotica? Unimodale?

Quando una curva descrive una distribuzione di frequenze relative, l'area totale sottesa alla curva è pari a 1 (la somma delle frequenze relative).

Dunque anche l'area sottesa alla distribuzione Normale è pari ad 1: allora per la simmetria della curva, l'area a sinistra della media è pari a ½, come pure l'area alla sua destra

Vi sono aree importanti sottese alla curva Normale, individuate in termini di scarti

quadratici medi di distanza dalla media:

- lo 0,6826 dell'area si trova compresa tra $(\overline{x} \sigma)$ e $(\overline{x} + \sigma)$
- lo 0,9544 dell'area si trova compresa tra $(\overline{x}-2\sigma)$ e $(\overline{x}+2\sigma)$
- lo 0,9973 dell'area si trova compresa tra $(\overline{x}-3\sigma)$ $e(\overline{x}+3\sigma)$

Funzione di densità della curva normale

La funzione di densità consente di calcolare la probabilità che la X assuma valori all'interno di un qualsiasi intervallo (a, b):

tale probabilità è data dall'area sottesa alla curva normale in detto intervallo.

$$P(a \le X \le b) = \int_{a}^{b} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^{2}} dx$$

Distribuzione normale

16

Funzione di ripartizione della curva normale

È la probabilità

$$F(x) = P(X \le x) = \int_{-\infty}^{x} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{t-\mu}{\sigma}\right)^{2}} dt$$

Graficamente F(x) è rappresentata dall'area sottesa alla curva normale da - ∞ fino a x.

La funzione di ripartizione consente anche di calcolare i quantili della distribuzione ——
normale.

La distribuzione Normale Standardizzata

La distribuzione Normale è scomoda da usare per calcolare le aree di interesse, quando i valori critici non sono multipli esatti di sigma, perché dipende da due parametri (μ e σ).

Per questo si introduce la **Normale Standard**, ottenuta standardizzando la variabile Normale.

Data una variabile X, Normale con $media \ \mu \ e \ scarto \ quadratico \ \sigma$

$$f(x) = \frac{1}{\sqrt{2\pi} \,\sigma} \ e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

la trasformazione

$$z = \frac{x - \mu}{\sigma}$$

avrà media 0 e scarto quadratico medio uguale a 1.

La funzione f(z) risultante dalla trasformazione non dipende più da alcun parametro.

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$$

Questa distribuzione viene chiamata Normale
Standard e indicata come: **N(0,1)**Distribuzione normale

Distribuzione normale e distribuzione normale standardizzata

La distribuzione Normale Standardizzata

La funzione Normale Standard ha la stessa forma della Normale completa, ma non contenendo nessun parametro, <u>descrive una unica e ben determinata curva</u>.

Valgono naturalmente tutte le proprietà viste per la Normale, con gli opportuni adattamenti per tenere conto del fatto che la media è 0 e la varianza è 1,quindi:

- \square la curva è centrata e simmetrica rispetto all'origine degli assi: z = 0
- \Box il massimo delle frequenze si ha per z = 0 e vale f(0) = 0.3989
- □ le aree di interesse viste in precedenza diventano più semplicemente

Funzione di ripartizione

- ☐ La tavola della Normale Standard può essere realizzata in diversi formati
- □ Uno dei formati più utilizzati è quello che riporta la Funzione di ripartizione F(z) (frequenze cumulate), cioè l'intera area a sinistra di un dato valore z

Nei problemi di calcolo con la N conviene sempre per prima cosa **disegnare l'area** che ci interessa calcolare

Tavola 1: Funzione di ripartizione della Variabile Casuale Normale Standardizzata

2	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998