EXERCISE 11.3

(1) Prove that the line-segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.

D

R

C

Given

ABCD is a quadrilateral.

P, Q, R, S are the mid-points of $\overline{AB}, \overline{BC}, \overline{CD}, \overline{DA}$ respectively.

P is joined to R, Q is joined to S. $\overline{SQ}, \overline{PR}$ intersect at point "O"

To Prove

$$\overline{OP} \cong \overline{OR}, \overline{OS} \cong \overline{OQ}$$

Construction Join P, Q, R, S in order, join A to C.

Proof

Statements		Reasons
SR AC	(i)	In ΔADC. S, R are mid-points
		Of AD, DC
$m\overline{SR} = \frac{1}{2}m\overline{AC}$	(ii)	

R

And	PQIIAC	(iii)	In ΔABC; P, Q are mid-points
	$m\overline{PQ} = \frac{1}{2}m\overline{AC}$	(iv)	of AB, BC
ļ . .	PQIISR	(v)	
	$m\overline{PQ} = m\overline{SR}$	(vi)	from (i), and (iii) From (ii) and (iv)
Simila	rly PS#QR		Troni (ii) und (iv)
	$\overline{mPS} = \overline{mQR}$		
Hence	PQRS is a parallelog	gram	
Now	\overline{PR} , \overline{SQ} are the dia	igonals	
Of PQ	RS that intersect at p	oint O.	
<i>:.</i>	$\overline{OP} \cong \overline{OR}$		
∴	$\overline{OS} \cong \overline{OQ}$		
! 			Diagonals of a parallelogram
1			Bisect each other.

(2) Prove that the line-segments joining the mid-points of the opposite sides of a rectangle are the right-bisectors of each other. D R \sim C

S

Α

Given

ABCD is a rectangle.

and P, Q, R, S are the mid-points of sides

 \overline{AB} , \overline{BC} , \overline{CD} and \overline{DA} , respectively.

P is joined to R, S to Q These intersect at "O"

To Prove

$$\overrightarrow{OQ} \cong \overrightarrow{OS}, \overrightarrow{OR} \cong \overrightarrow{OP} \text{ and } \overrightarrow{RP} \perp \overrightarrow{SQ}$$

Proof

Statements		Reasons
ABII CD	 -	opposite sides of rectangle
$\overline{AP} = \overline{DR}$	(i)	
$m\overline{AB} = m\overline{CD}$		
$\frac{1}{2}m\overline{AB} = \frac{1}{2}m\overline{CD}$		
$\overline{mAP} = m\overline{DR}$	(ii)	
APRD is rectangle		

As $m\angle A = m\angle D = 90^{\circ}$

Max: Diagonals of a rectangle are congruent.]

Hence SORD is rectangle. $m\angle SOR = 90^{\circ}$, $\overrightarrow{RP} \perp \overrightarrow{SQ}$.

- Prove that the line-segment passing through the mid-point of one side and mile to another side of a triangle also bisects the third side.
- In AABC, D is mid-point AB, DEIBC which meets AC at E.

ABand EA = EC

Take EFIIAB which meets BC at F.

Reasons
DE BF given, EF DB const.
Opposite sides of parallelogram
Given
Corresponding angles.
Corresponding angles.
Form (iii)
Form (iv)
Corresponding angles.
Form (ii) A.A.S ≅ A.A.S

·:	ĀĒ≅CĒ	Corresponding sides of
}		congruent triangles.

Theorem

The medians of a triangle are concurrent and their point of concurrency is the point of trisection of each median.

Given

ΔΑΒC

To Prove

The medians of the $\triangle ABC$ are concurrent and the point of concurrency is the point of trisection of each median.

Construction

Draw two medians \overline{BE} and \overline{CF} of the $\triangle ABC$ which intersect each other at point (Join A to G and produce it to point H such that $\overline{AG} \cong \overline{GH}$. Join H to the points B and C.

AH Intersects BC at the point D.

Proof

	Statements	Reasons	
In	ΔACH,		
	GE II HC,	G and E are mid-points of sides AH and	
		AC respectively	
or	BE HC(i)	G is a point of BE	
Simil	arly $\overline{CF} \parallel \overline{HB} \qquad(ii)$		
<i>:</i> .	BHCG is a parallelogram	from (i) and (ii)	
and	$m\overline{GD} = \frac{1}{2}m\overline{GH}$ (iii) $\overline{BD} \cong \overline{CD}$	(Diagonals BC and GH of a parallelogram BHCG intersect each other	
	$\frac{D}{AD}$ is a median of $\triangle ABC$	at point D).	
AD is a median of AABC			
Medians \overline{AD} , \overline{BE} and \overline{CF} pass through		(G is the intersecting point of BE and	
the point G		CF and AD pass through it.)	
Now	$\overrightarrow{GH} \cong \overrightarrow{AG}$ (iv)	Construction	
		i i	

