

planetmath.org

Math for the people, by the people.

continuous functions on the extended real numbers

 ${\bf Canonical\ name} \quad {\bf Continuous Functions On The Extended Real Numbers}$

Date of creation 2013-03-22 16:59:31 Last modified on 2013-03-22 16:59:31 Owner Wkbj79 (1863) Last modified by Wkbj79 (1863)

Numerical id 10

Author Wkbj79 (1863)

Entry type Theorem Classification msc 12D99 Classification msc 28-00 Within this entry, $\overline{\mathbb{R}}$ will be used to refer to the extended real numbers.

Theorem 1. Let $f: \mathbb{R} \to \mathbb{R}$ be a function. Then $\overline{f}: \overline{\mathbb{R}} \to \overline{\mathbb{R}}$ defined by

$$\overline{f}(x) = \begin{cases} f(x) & \text{if } x \in \mathbb{R} \\ A & \text{if } x = \infty \\ B & \text{if } x = -\infty \end{cases}$$

is continuous if and only if f is continuous such that $\lim_{x\to\infty} f(x) = A$ and $\lim_{x\to-\infty} f(x) = B$ for some $A, B \in \overline{\mathbb{R}}$.

Proof. Note that \overline{f} is continuous if and only if $\lim_{x\to c} \overline{f}(x) = \overline{f}(c)$ for all $c\in \overline{\mathbb{R}}$. By defintion of \overline{f} and the topology of $\overline{\mathbb{R}}$, $\lim_{x\to c} \overline{f}(x) = \lim_{x\to c} f(x)$ for all $c\in \overline{\mathbb{R}}$. Thus, \overline{f} is continuous if and only if $\lim_{x\to c} f(x) = \overline{f}(c)$ for all $c\in \overline{\mathbb{R}}$. The latter condition is http://planetmath.org/Equivalent3equivalent to the hypotheses that f is continuous on \mathbb{R} , $\lim_{x\to\infty} f(x) = A$, and $\lim_{x\to -\infty} f(x) = B$.

Note that, without the universal assumption that f is a function from \mathbb{R} to \mathbb{R} , necessity holds, but sufficiency does not. As a counterexample to sufficiency, consider the function $\overline{f}: \mathbb{R} \to \mathbb{R}$ defined by

$$\overline{f}(x) = \begin{cases} \frac{1}{x^2} & \text{if } x \in \mathbb{R} \setminus \{0\} \\ \infty & \text{if } x = 0 \\ 0 & \text{if } x = \pm \infty. \end{cases}$$