Name: PID:

Do not turn the page until told to do so.

- 1. No calculators, tablets, phones, or other electronic devices are allowed during this exam.
- 2. Read each question carefully and answer each question completely.
- 3. Show all of your work. No credit will be given for unsupported answers, even if correct.
- 4. Please answer questions within the spaces provided. If you do need some more room, use the back side of the same piece of paper and clearly label the question.
- 5. If you are unsure of what a question is asking for, do not hesitate to ask an instructor or course assistant for clarification.
- 6. This exam has 9 pages.

Question	Points Available	Points Earned
1	10	
2	10	
3	10	
4	10	
5	15	
6	15	
TOTAL	70	

1. [10 points] Let X_n be the maximum of a random sample Y_1, \ldots, Y_n from the density $p(x) = 2(1-x)I(0 \le x \le 1)$. Find constants a_n and b_n such that $b_n(X_n-a_n)$ converges in distribution to a non-degenerate limit.

Solution: $a_n = 1$ and $b_n = \sqrt{n}$. For any $x \leq 0$, we have

$$\mathbb{P}(\sqrt{n}(X_n - 1) \le x) = \mathbb{P}(X_n \le x/\sqrt{n} + 1) = [\mathbb{P}(Y \le x/\sqrt{n} + 1)]^n$$
$$= (1 - x^2/n)^n \to e^{-x^2}.$$

2. [10 points] Let Z_1, \ldots, Z_n be independent standard normal variables. Show that the vector $U = (Z_1, \ldots, Z_n)^{\mathsf{T}}/N$, where $N^2 = \sum_{i=1}^n Z_i^2$, is uniformly distributed over the unit sphere \mathbb{S}^{n-1} in \mathbb{R}^n in the sense that U and OU are identically distributed for every orthogonal transformation O of \mathbb{R}^n .

Solution: Denote $Z = (Z_1, \ldots, Z_n)^{\mathsf{T}}$, so $U = Z/||Z||_2$. Given that $Z \sim \mathcal{N}(0, I_n)$, it's easy to see that for any orthogonal transformation O of \mathbb{R}^n , $OZ \sim \mathcal{N}(0, I_n)$ and $||OZ||_2 = ||Z||_2$. So

$$OU = \frac{OZ}{||Z||_2} = \frac{OZ}{||OZ||_2} \sim \frac{Z}{||Z||_2} = U.$$

3. [10 points] Suppose X_1, X_2, \ldots, X_n are independent and identically distributed with mean μ and finite variance σ^2 . Find the asymptotic distribution of \bar{X}_n^2 (after it is properly normalized), where $\bar{X}_n = (1/n) \sum_{i=1}^n X_i$.

Solution: By central limit theorem, we have

$$\sqrt{n}(\bar{X}_n - \mu) \xrightarrow{d} \mathcal{N}(0, \sigma^2).$$

To get the asymptotic distribution of \bar{X}_n^2 , we discuss two cases.

<u>Case 1</u>: $\mu \neq 0$. Applying delta method gives

$$\sqrt{n}(\bar{X}_n^2 - \mu^2) \xrightarrow{d} \mathcal{N}(0, 4\mu^2\sigma^2).$$

Case 2: $\mu = 0$. Then

$$\sqrt{n} \frac{\bar{X}_n}{\sigma} \xrightarrow{d} \mathcal{N}(0,1).$$

Taking square on both sides with continuous mapping gives

$$n\frac{\bar{X}_n^2}{\sigma^2} \xrightarrow{d} \chi_1^2.$$

4. [10 points] Suppose $X_n \sim \text{binomial}(n,p)$, where $0 . (a). Find the asymptotic distribution of <math>g(X_n/n) - g(p)$, where $g(x) = \min\{x, 1-x\}$. (b) Show that $h(x) = \sin^{-1}(\sqrt{x})$ is a variance-stabilizing transformation for X_n/n . This is called the arcsine transformation of a sample proportion. **Hint**: $\frac{d}{du}\sin^{-1}(u) = 1/\sqrt{1-u^2}$.

Solution:

(a). g(x) is not differentiable at 1/2, so we need to discuss two cases.

<u>Case 1</u>: $p \neq 1/2$. Central limit theorem gives us

$$\sqrt{n}(X_n/n-p) \xrightarrow{d} \mathcal{N}(0, p(1-p)).$$

Since g(x) is differentiable at p, and $g'(p) = \pm 1$. Applying delta method yields

$$\sqrt{n}(g(X_n/n) - g(p)) \xrightarrow{d} \mathcal{N}(0, p(1-p)).$$

Case 2: p = 1/2. Denote

$$Y_n = \frac{X_n}{n} - \frac{1}{2},$$

then by central limit theorem, we have $\sqrt{n}Y_n \to \mathcal{N}(0,1/4)$. Notice that

$$g(X_n/n) - g(1/2) = g(Y_n + 1/2) - 1/2 = \min\{1/2 + Y_n, 1/2 - Y_n\} - 1/2$$
$$= 1/2 - |Y_n| - 1/2 = -|Y_n|.$$

Since the absolute value function is continuous, by continuous mapping, we have

$$\sqrt{n}(g(X_n/n) - g(1/2)) = -\sqrt{n}|Y_n| \xrightarrow{d} -|Z|,$$

where $Z \sim \mathcal{N}(0, 1/4)$.

The absolute value of normal distribution is called folded normal distribution.

(b). It can be found that

$$h'(x) = \frac{1}{2\sqrt{x(1-x)}}.$$

So $h'(p)^2p(1-p)=1/4$ is a constant, and h(x) is a variance-stabilizing transformation for X_n/n .

- 5. [15 points] Suppose that we observe data in pairs $(X,Y) \in \mathbb{R}^d \times \{\pm 1\}$, where the data come from a logistic model with $X \sim P_0$ and $p_{Y|X}(y|x) = 1/(1 + e^{-y \cdot x^\intercal \theta_0})$. Define the log-loss function $\ell_{\theta}(y|x) = \log(1 + e^{-y \cdot x^\intercal \theta})$. Let $\hat{\theta}_n$ minimize the empirical logistic loss $L_n(\theta) = (1/n) \sum_{i=1}^n \ell_{\theta}(Y_i|X_i) = (1/n) \sum_{i=1}^n \log(1 + e^{-Y_i X_i^\intercal \theta})$ from pairs (X_i, Y_i) drawn from the logistic model with parameter θ_0 . Assume that the covaraites $X_i \in \mathbb{R}^d$ are i.i.d. and satisfy $\mathbb{E}(X_i X_i^\intercal) = \Sigma \succ 0$ and $\mathbb{E}||X_i||_2^4 < \infty$.
 - (a) Let $L(\theta) = \mathbb{E}_{\theta_0}\{\ell_{\theta}(Y|X)\}$ be the population logistic loss. Show that the second order derivative evaluated at θ_0 is positive definite.

Solution: We can interchange expectation and derivative since $\ell_{\theta}(\cdot)$ is smooth enough.

$$\nabla L(\theta) = \mathbb{E} \left[(-1/(1 + e^{YX^{\mathsf{T}}\theta}))YX \right],$$

$$\nabla^2 L(\theta) = \mathbb{E} \left[(e^{YX^{\mathsf{T}}\theta}/(1 + e^{YX^{\mathsf{T}}\theta})^2)XX^{\mathsf{T}} \right].$$

For any $u \in \mathbb{R}^d$, we have

$$u^{\mathsf{T}} \nabla^2 L(\theta) u = \mathbb{E}[(e^{YX^{\mathsf{T}}\theta}/(1+e^{YX^{\mathsf{T}}\theta})^2)(u^{\mathsf{T}}X)^2] \ge 0.$$

To further show that $\nabla^2 L(\theta) \succ 0$, if there is a $u \in \mathbb{R}^d$ such that $u^{\mathsf{T}} \nabla^2 L(\theta) u = 0$, then $u^{\mathsf{T}} \mathbb{E}(XX^{\mathsf{T}}) u = 0$. This is a contradiction with $\mathbb{E}(X_iX_i^{\mathsf{T}}) = \Sigma \succ 0$.

(b) Under these assumptions show that $\hat{\theta}_n$ is consistent estimator of θ_0 as $n \to \infty$. Provide details of your work.

Solution: By Taylor expansion of $L_n(\theta)$ around θ_0 ,

$$L_n(\theta) = L_n(\theta_0) + \nabla L_n(\theta_0)^{\mathsf{T}} (\theta - \theta_0) + \frac{1}{2} (\theta - \theta_0)^{\mathsf{T}} \nabla^2 L_n(\tilde{\theta}) (\theta - \theta_0), \tag{1}$$

where $\tilde{\theta}$ is between θ_0 and θ .

For the <u>gradient</u>, notice that $\mathbb{E}\nabla L_n(\theta_0) = \nabla L(\theta_0) = 0$, and by weak law of large numbers, we have $\nabla L_n(\theta_0) \stackrel{p}{\to} 0$. Thus, for any $\epsilon > 0$,

$$\mathbb{P}(||\nabla L_n(\theta_0)||_2 \le \epsilon) \to 1. \tag{2}$$

For the <u>Hessian</u> matrix, consider general value of θ ,

$$\nabla^2 L_n(\theta) - \nabla^2 L_n(\theta_0) = \frac{1}{n} \sum_{i=1}^n X_i X_i^{\mathsf{T}} \left[\frac{\exp(Y_i X_i^{\mathsf{T}} \theta)}{(1 + \exp(Y_i X_i^{\mathsf{T}} \theta))^2} - \frac{\exp(Y_i X_i^{\mathsf{T}} \theta_0)}{(1 + \exp(Y_i X_i^{\mathsf{T}} \theta_0))^2} \right].$$

If we define $\phi(t) = e^t/(1+e^t)^2$, then it satisfies $-1 \le \phi'(t) \le 1$, so $\phi(\cdot)$ is 1-Lipschitz continuous. Using this notation, the above display becomes

$$\nabla^2 L_n(\theta) - \nabla^2 L_n(\theta_0) = \frac{1}{n} \sum_{i=1}^n X_i X_i^{\mathsf{T}} (\phi(Y_i X_i^{\mathsf{T}} \theta) - \phi(Y_i X_i^{\mathsf{T}} \theta_0)).$$

Consider any $u \in \mathbb{R}^p$ with $||u||_2 = 1$, by the above Lipschitz continuity and Cauchy-

Schwarz inequality, we have

$$|u^{\mathsf{T}} \{ \nabla^{2} L_{n}(\theta) - \nabla^{2} L_{n}(\theta_{0}) \} u | = \frac{1}{n} \sum_{i=1}^{n} (X_{i}^{\mathsf{T}} u)^{2} (\phi(Y_{i} X_{i}^{\mathsf{T}} \theta) - \phi(Y_{i} X_{i}^{\mathsf{T}} \theta_{0}))$$

$$\leq \frac{1}{n} \sum_{i=1}^{n} (X_{i}^{\mathsf{T}} u)^{2} |Y_{i} X_{i}^{\mathsf{T}} (\theta - \theta_{0})|$$

$$\leq ||\theta - \theta_{0}||_{2} \times \frac{1}{n} \sum_{i=1}^{n} ||X_{i}||_{2} (X_{i}^{\mathsf{T}} u)^{2},$$

which further implies the ℓ_2 -operator norm / spectral norm

$$||\nabla^2 L_n(\theta) - \nabla^2 L_n(\theta_0)||_2 \le ||\theta - \theta_0||_2 \times \left| \left| \frac{1}{n} \sum_{i=1}^n ||X_i||_2 X_i X_i^{\mathsf{T}} \right| \right|_2.$$
 (3)

Now since $\mathbb{E}||X_i||_2^4 < \infty$, applying weak law of large numbers on the matrix on the RHS of (3) gives

$$\frac{1}{n} \sum_{i=1}^{n} ||X_i||_2 X_i X_i^{\mathsf{T}} \xrightarrow{p} \mathbb{E} [||X_i||_2 X_i X_i^{\mathsf{T}}].$$

Combining this with (3) means there exists a constant C, such that

$$\mathbb{P}(||\nabla^2 L_n(\theta) - \nabla^2 L_n(\theta_0)||_2 \le C||\theta - \theta_0||_2) \to 1. \tag{4}$$

Now denote $\lambda = \lambda_{\min}(\nabla^2 L(\theta_0))$, from part (a), we know $\lambda > 0$. Because of (4) and weak law of large numbers $\nabla^2 L_n(\theta_0) \stackrel{p}{\to} \nabla^2 L(\theta_0)$, there exists $\delta > 0$ sufficiently small such that for any $\theta \in \{\theta : ||\theta - \theta_0||_2 \le \delta\}$,

$$\mathbb{P}\left(\nabla^2 L_n(\theta) \succeq \frac{\lambda}{2} I_p\right) \to 1. \tag{5}$$

Applying (2) and (5) to (1) yields that for any $\theta \in \{\theta : ||\theta - \theta_0||_2 \leq \delta\}$, with probability tending to 1,

$$L_n(\theta) \ge L_n(\theta_0) - \epsilon ||\theta - \theta_0||_2 + \frac{\lambda}{4} ||\theta - \theta_0||_2^2,$$

and if $||\theta - \theta_0|| > 4\epsilon/\lambda$, then $-\epsilon||\theta - \theta_0||_2 + \lambda||\theta - \theta_0||_2^2/4 > 0$, which means θ cannot minimize $L_n(\theta)$, so $||\hat{\theta}_n - \theta_0|| \le \min\{4\epsilon/\lambda, \delta\}$. Finally, by taking $\epsilon > 0$ arbitrarily small, we therefore have

$$\hat{\theta}_n \xrightarrow{p} \theta_0.$$

(c) Find the asymptotic distribution of $\sqrt{n}(\hat{\theta}_n - \theta_0)$, provided that it is consistent. You may assume d = 1.

Solution: When d = 1, the Fisher information is

$$I_{\theta_0} = \mathbb{E}[X^2 e^{X\theta_0}/(1 + e^{X\theta_0})^2],$$

and under regularity conditions, we have

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{d} \mathcal{N}(0, 1/I_{\theta_0}).$$

6. [15 points] Let X_1, \ldots, X_n be a data sample of a continuous random variable X with distribution function F and density f. From the kernel density estimator $\hat{f}_h(x) = (1/n) \sum_{i=1}^n K_h(x - X_i)$, where $K_h(u) = K(u/h)/h$, one can construct a kernel estimator for the distribution function as $\hat{F}_h(x) = \int_{-\infty}^x \hat{f}_h(t) dt$. Equivalently, we have

$$\hat{F}_h(x) = \frac{1}{n} \sum_{i=1}^n H\left(\frac{x - X_i}{h}\right), \text{ where } H(x) = \int_{-\infty}^x K(t) dt.$$

Assume K is non-negative, symmetric around 0 and integrates to 1. Under smoothness conditions, find the leading term of the mean integrated square error (MISE) of \hat{F}_h , that is, $\text{MISE}(\hat{F}_h) = \int_{-\infty}^{\infty} \mathbb{E}_f \{\hat{F}_h(x) - F(x)\}^2 dx$. What is the order of the optimal bandwidth?

Solution: With integration by parts, change of variable and Taylor expansion, the bias is

$$\mathbb{E}_{f}\hat{F}_{h}(x) - F(x) = \int H\left(\frac{x-t}{h}\right) dF(t) - F(x)
= H\left(\frac{x-t}{h}\right) F(t) \Big|_{-\infty}^{\infty} - \int F(t) dH\left(\frac{x-t}{h}\right) - F(x)
= \frac{1}{h} \int F(t) K\left(\frac{x-t}{h}\right) dt - F(x)
= \frac{1}{h} \int F(t) K\left(\frac{t-x}{h}\right) dt - F(x)
= \int F(x+hy) K(y) dy - F(x)
\sim \int \{F(x) + hyf(x) + h^{2}y^{2}f'(x)/2\} K(y) dy - F(x)
= F(x) \int K(y) dy + hf(x) \int yK(y) dy + \frac{h^{2}}{2}f'(x) \int y^{2}K(y) dy - F(x)
\sim \frac{h^{2}}{2}f'(x) \int y^{2}K(y) dy := h^{2}B_{f}(x).$$
(6)

The variance is

$$\operatorname{Var}_{f} \hat{F}_{h}(x) = \frac{1}{n} \left[\int H^{2} \left(\frac{x-t}{h} \right) dF(t) - \left(\int H \left(\frac{x-t}{h} \right) dF(t) \right)^{2} \right]$$
 (7)

For the first term,

$$\int H^{2}\left(\frac{x-t}{h}\right) dF(t) = H^{2}\left(\frac{x-t}{h}\right) F(t) \Big|_{-\infty}^{\infty} - \int F(t) dH^{2}\left(\frac{x-t}{h}\right)$$

$$= \frac{2}{h} \int F(t) H\left(\frac{x-t}{h}\right) K\left(\frac{x-t}{h}\right) dt$$

$$= \frac{2}{h} \int F(t) \left[1 - H\left(\frac{t-x}{h}\right)\right] K\left(\frac{t-x}{h}\right) dt$$

$$= 2 \int F(x+hy)(1-H(y))K(y) dy$$

$$\sim 2 \int \{F(x) + hyf(x)\}(K(y) - H(y)K(y)) dy$$

$$= F(x) - 2hf(x) \int yH(y)K(y) dy. \tag{8}$$

For the second term, it's been calculated in (6),

$$\left(\int H\left(\frac{x-t}{h}\right) dF(t)\right)^2 \sim F(x)^2 \tag{9}$$

Combining (7), (8) and (9) gives

$$\operatorname{Var}_{f} \hat{F}_{h}(x) \sim \frac{1}{n} F(x) (1 - F(x)) - \frac{2h}{n} f(x) \int y H(y) K(y) dy$$
$$:= \frac{1}{n} F(x) (1 - F(x)) - \frac{h}{n} V_{f}(x). \tag{10}$$

Finally, with bias-variance decomposition and (6), (10), we thus have

$$MISE(\hat{F}_h) \sim h^4 \int B_f^2(x) dx + \frac{1}{n} \int F(x) (1 - F(x)) dx - \frac{h}{n} \int V_f(x) dx,$$

and the optimal choice of h is

$$h = \left(\frac{\int V_f(x) dx}{4n \int B_f^2(x) dx}\right)^{1/3} \sim n^{-1/3}.$$