Name: Abdullah Hasan Sajjad Rafi

ID: 19301097 Section: 5 CSE460 Lab 3

Problem: Derive the state diagram of the Mealy version for the example FSM that is, the FSM will generate z = 1 at the instant the input values of w have the pattern 1111 or 1001. Overlapping of the input patterns are allowed.

Answer:

State diagram:

State table diagram:

Present state (y3 y2 y1)	Next state (Y3Y2Y1)		Output (Z)	
	w=0	w=1	w =0	w=1
А	А	В	0	0
В	F	С	0	0
С	F	D	0	0
D	F	E	0	1
E	F	E	0	1
F	G	В	0	0
G	А	В	0	1

State assignment table :

Present state (y3 y2 y1)	Next state Y3 Y2 Y1		Output (Z)	
	w=0	w=1	w=0	w=1
000	000	001	0	0
001	101	010	0	0
010	102	011	0	0
011	103	100	0	1
100	104	100	0	1
101	110	001	0	0
110	000	001	0	1

Verilog code:

```
module exp3(z,w,clock,reset);
input clock, reset, w;
output reg z;
reg [2:0] y;
parameter [2:0] A = 0, B = 1, C = 2, D=3, E=4, F=5, G=6, S7=7;
always @(posedge clock, posedge reset)
      if (reset) y<=A;
      else
             case(y)
             A: if (w)
             begin
             z <= 0;
             y<=B;
             end
             else
             begin
             z <= 0;
             y<=A;
             end
             B: if (w)
             begin
             z <= 0;
             y<=C;
             end
             else
             begin
             z <= 0;
             y<=F;
             end
             C: if (w)
             begin
             z <= 0;
             y<=D;
             end
             else
             begin
             z <= 0;
             y<=F;
             end
             D: if (w)
             begin
```

z <= 1;y<=D; end else begin z<=0; y<=F; end E: if (w) begin z <= 1;y<=E; end else begin z<=0; y<=F; end F: if (w) begin z<=0; y<=B; end else begin z<=0; y<=G; end

G: if (w)
begin
z<=1;
y<=B;
end
else
begin
z<=0;</pre>

y<=A; end

endcase

endmodule

Timing diagram:

