

CSE578: Computer Vision

3D Reconstruction: Structure from Motion using Bundle Adjustment

Anoop M. Namboodiri, Makarand Tapaswi Center for Visual Information Technology IIIT Hyderabad, INDIA

Points in Multiple Views

Structure from Motion

- m cameras and n points, with correspondences
- Unknown: m matrices P_i and n coordinates, X_i
- We have: $x_{ij} = P_i X_j$, $1 \le i \le m$, $1 \le j \le n$
- 2mn equations in total (2 for each visible point)
- Can be solved if 2mn > 11m + 3n
- However, under projective transformation, PX = (PQ)(Q⁻¹X),
 a projective ambiguity will remain
- Projective structure if 2mn > 11m + 3n 15
- Affine structure if 2mn > 11m + 3n 12
- Metric structure if 2mn > 11m + 3n 7
- Affine/Metric structure only by enforcing affine/metric constraints

Bundle Adjustment

- Given m views of n 3D points, with unknown P_i and X_j . Ideally, $x_{ij} = P_i X_j$
- Minimize the re-projection error over all cameras/views:

$$\min_{P_i X_j} \sum_{i=1}^m \sum_{i=1}^n dist(\mathbf{x}_{ij}, P_i \mathbf{X}_j)^2$$

- A non-linear optimization problem. Can be solved using the Levenberg-Marquardt procedure directly.
- Called bundle adjustment. Known to photogrammetry community for a long time
- Needs good initialization as the complex non-linear optimization problem can get stuck in local minima

Photo Tourism or Photo-Synth

- An automatic process, starting with independent images of a scene/monument/object. The images could be from a video sequence.
- Of particular interest has been SfM from Community Photo Collections (CPC), which are images that can be downloaded from flickr/shutterfly by giving a keyword like "Taj Mahal".

SfM Steps

- 1. Download images for the place of interest!!
- 2. Extract descriptors from interest points on all images
- 3. Match points in pairs of images using Approximate Nearest Neighbours
- 4. Refine matches using Geometric Verification: Epipolar constraint, etc.
- 5. Form tracks of points across images. Transitively connect matches to get long matching "tracks"
- 6. Build image connectivity graph based on common points
- 7. Perform incremental SfM using the image connectivity graph and bundle adjustment

Matching Points across Images

- Extract interest points x_{ij} in each image I_i and descriptors s_{ij} for it. SIFT is popular. A few thousand in a typical image.
- Match interest points in image pairs. An approximate nearest neighbour approach is used, with a ratio test
- Point x_{ij} matches point x_{kl} iff:
 - 1. $dist(s_{ij}, s_{kl})$ is minimum over all points in I_k and
 - 2. $dist(s_{ij}, s_{kl}) < r \times dist(s_{ij}, s_{km})$ where x_{km} is the second closest point in I_k . r is typically 0.6
- Discard all points involved in case of multiple matches

Geometric Verification and Tracks

- Find fundamental matrix between pairs of cameras using RANSAC
- Refine matches by eliminating those not satisfying epipolar relation
- Propagate matches using transitivity to generate tracks, which represent the same world point in multiple images
- Form image connectivity graph. Two images have an edge if they share a point
- Densely connected regions represent parts of the scene that are visible to a large number of views. Sparse, leaf regions denote low sampling of parts of the scene

Features and Graph Match

Form **tracks** of points by transitively connecting matches. They represent the same 3D point in multiple images.

Track Statistics

- For a typical large data set with approximately 3000 images:
 - 1.5 million tracks
 - 75-80% with of length 2
 - 98% of length less than 10
 - A few tracks of length more than 100
- Remember: Only 2D feature matching and verification has been done so far, but we seem to have come far!!

- 11m + 3n parameters for m cameras and n points. 2mn equations mapping each point in each camera
- Recover camera and structure. Minimize reprojection error across all of them using a non-linear minimization step. This needs good initialization
- Not possible to do them all together. So, start with one pair of cameras and incrementally add more cameras
- Adjust points and cameras to reduce global reprojection error after new cameras are added

Modern digital cameras store a lot of metadata in the images as EXIF tags.

Assume: Only focal length is the unknown intrinsic parameter!

Incremental SfM

- Find a strong starting pair of cameras. These should have a large number of points in common and a large baseline
- Find a pair with a large number of matches. Compute a planar homography from the matches. The pair is good if the error from the homography is high!
- Select the pair with the lowest percentage of inliers to homography using RANSAC
- Estimate the essential matrix for the camera pair
- Reconstruct cameras and common points using the essential matrix
- Perform bundle adjustment to minimize reprojection error

Adding Views

- While there are more connected cameras
 - Pick an image that sees the highest number of 3D points so far
 - Estimate pose of the camera using DLT and known 3D points.
 Perform a local bundle adjustment to correct new camera pose
 - Triangulate new points (if any) and add to the collection
 - Perform a global bundle adjustment on all cameras and points, using a non-linear optimization step
- Can remove outlier tracks altogether
- Can add a small group of camera views together, instead of one at a time

Bundle Adjustment

• Find P, X that minimizes (with visibility indicator wij)

$$g(P,X) = \sum_{i}^{m} \sum_{j}^{n} w_{ij} ||x_{ij} - P_i X_j||^2$$

- Write it as $g(P,X) = \|A C(P,X)\|^2$, where C is the non-linear camera projection function
- Linearize
- Iterative solution using Levenberg-Marquardt method
- A sparse problem as the indicator w_{ij} of point j being visible in camera/image i is sparse.

Practical Aspects

- Heavy computations. Several days to reconstruct 500 images.
 About half of that time is for the bundle adjustment step
- Several optimizations have been worked on in the past.
- Interesting papers:
 - "Building Rome in a Day", ICCV 2009 (U of W)
 - "Building Rome on a Cloudless Day", ECCV 2010 (UNC)
 - "Reconstructing the World in Six Days (As Captured by the Yahoo 100 Million Image Dataset)", CVPR 2015 (UNC)
 - "Pixel-Perfect SFM with Featuremetric Refinement", ICCV 2021 (ETH-Z)
- Combinatorics of pairwise matching is also huge. Use image search approaches to reduce the potential numbers

Building Rome in a Day

Agarwal, Simon, Seitz, Szeliski. ICCV 2009

- Over a million images of the city of Rome
- Pair-wise matching can take 15 years at 2 pairs/sec
- Find 40 most similar words (fast matching)
- Query expansion to increase graph density
- Full bundle adjustment may run till end of time (nearly!)
- Use skeletal graphs to capture overall structure; perform bundle adjustment in local clusters
- Reconstructed Rome in 24 hours on a 1000-node cluster!!
- A local experiment on a 400-image Hampi dataset:
 - Extracting SIFT: 54 minutes,
 - Image matching: 17.2 hrs
 - Bundle adjustment: 12.6 hrs!!

Rome Reconstructions

Pixel-Perfect SFM

Use deep features for refining 2D & 3D points, and Camera locations

 The pipeline uses 2D key-point adjustment before SFM and 3D point

and camera location refinement after SFM

Paper and Code:

https://github.com/cvg/pixel-perfect-sfm

3D Reconstruction in Practice

A few practical setups

Studios to Record Events

- Virtualized Reality (CMU, 1995)
 - A 51-camera recording setup
 - Off-line digitization
 - Multi-baseline stereo
 - Merge depth maps to get structure
- Free-Viewpoint Video (ETH, MPI)
 - Multicamera setup, all digital
 - Visual hull for quick structure
- 123D from Autodesk
 - Submit your photographs
 - Get a 3D model!!

Structure Recovery: Conclusions

- A problem that has been solved somewhat well
- Many challenges remain, but many have been tackled
- Next generation movies: Watch it from a viewpoint of your choice, decided at view time!!
- Integrating structure recovered by geometry-based techniques such as SFM and appearance-based techniques such as shape from shading and single-image reconstruction are promising.

- Lecture 10 from:
 - https://www.youtube.com/channel/UC8wqMjG6rQNN 1EGLmOfNnA
- Multiple-View Geometry: Lectures by Prof. Daniel Cremers
 - https://www.youtube.com/watch?v=RDkwklFGMfo&list=PLTBdjV_4f-EJn6udZ34tht9EVIW7lbeo4
- Structure from Motion: First Principles of CV course by Shree Nayar
 - https://fpcv.cs.columbia.edu
- Other Related Topics:
 - SLAM: Simultaneous Localization and Mapping (Robotics)
- Code:
 - VisualSFM: http://ccwu.me/vsfm/
 - COLMAP: https://colmap.github.io

Questions?