#### Value Function Methods

CS 285

Instructor: Sergey Levine

UC Berkeley



### Recap: actor-critic

#### batch actor-critic algorithm:

- 1. sample  $\{\mathbf{s}_i, \mathbf{a}_i\}$  from  $\pi_{\theta}(\mathbf{a}|\mathbf{s})$  (run it on the robot)
- 2. fit  $\hat{V}_{\phi}^{\pi}(\mathbf{s})$  to sampled reward sums
- 3. evaluate  $\hat{A}^{\pi}(\mathbf{s}_i, \mathbf{a}_i) = r(\mathbf{s}_i, \mathbf{a}_i) + \hat{V}_{\phi}^{\pi}(\mathbf{s}_i') \hat{V}_{\phi}^{\pi}(\mathbf{s}_i)$
- 4.  $\nabla_{\theta} J(\theta) \approx \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}|\mathbf{s}_{i}) \hat{A}^{\pi}(\mathbf{s}_{i},\mathbf{a}_{i})$
- 5.  $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$



# Can we omit policy gradient completely?

 $A^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$ : how much better is  $\mathbf{a}_t$  than the average action according to  $\pi$  arg  $\max_{\mathbf{a}_t} A^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$ : best action from  $\mathbf{s}_t$ , if we then follow  $\pi$ 

at least as good as any  $\mathbf{a}_t \sim \pi(\mathbf{a}_t|\mathbf{s}_t)$ regardless of what  $\pi(\mathbf{a}_t|\mathbf{s}_t)$  is!



fit some kind of value function

fit  $A^{\pi}$  (or  $Q^{\pi}$  or  $V^{\pi}$ )



the argmax



# Policy iteration

#### High level idea:

advantage of policy iteration algorithm current policy



- 1. evaluate  $A^{\pi}(\mathbf{s}, \mathbf{a}) \stackrel{\forall}{\longleftarrow}$  how to do this? 2. set  $\pi \leftarrow \pi'$

$$\pi'(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 \text{ if } \mathbf{a}_t = \arg\max_{\mathbf{a}_t} A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) \\ 0 \text{ otherwise} \end{cases}$$

as before: 
$$A^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma E[V^{\pi}(\mathbf{s}')] - V^{\pi}(\mathbf{s})$$

let's evaluate  $V^{\pi}(\mathbf{s})!$ 



## Dynamic programming

Let's assume we know  $p(\mathbf{s}'|\mathbf{s}, \mathbf{a})$ , and  $\mathbf{s}$  and  $\mathbf{a}$  are both discrete (and small) tabular RL

| 0.2 | 0.3 | 0.4 | 0.3 |
|-----|-----|-----|-----|
| 0.3 | 0.3 | 0.5 | 0.3 |
| 0.4 | 0.4 | 0.6 | 0.4 |
| 0.5 | 0.5 | 0.7 | 0.5 |

16 states, 4 actions per state

can store full  $V^{\pi}(\mathbf{s})$  in a table!  $\mathcal{T}$  is  $16 \times 16 \times 4$  tensor

$$\mathcal{T}$$
 is  $16 \times 16 \times 4$  tensor

bootstrapped update: 
$$V^{\pi}(\mathbf{s}) \leftarrow E_{\mathbf{a} \sim \pi(\mathbf{a}|\mathbf{s})}[r(\mathbf{s}, \mathbf{a}) + \gamma E_{\mathbf{s}' \sim p(\mathbf{s}'|\mathbf{s}, \mathbf{a})}[V^{\pi}(\mathbf{s}')]]$$

just use the current estimate here

$$\pi'(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 \text{ if } \mathbf{a}_t = \arg\max_{\mathbf{a}_t} A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) \\ 0 \text{ otherwise} \end{cases} \longrightarrow \text{deterministic policy } \pi(\mathbf{s}) = \mathbf{a}$$

simplified: 
$$V^{\pi}(\mathbf{s}) \leftarrow r(\mathbf{s}, \pi(\mathbf{s})) + \gamma E_{\mathbf{s}' \sim p(\mathbf{s}' | \mathbf{s}, \pi(\mathbf{s}))}[V^{\pi}(\mathbf{s}')]$$

## Policy iteration with dynamic programming

recursive!

#### policy iteration:



1. evaluate  $V^{\pi}(\mathbf{s})$   $\leftarrow$  2. set  $\pi \leftarrow \pi'$ 

$$\pi'(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 \text{ if } \mathbf{a}_t = \arg\max_{\mathbf{a}_t} A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) \\ 0 \text{ otherwise} \end{cases}$$

policy evaluation:



$$V^{\pi}(\mathbf{s}) \leftarrow r(\mathbf{s}, \pi(\mathbf{s})) + \gamma E_{\mathbf{s}' \sim p(\mathbf{s}'|\mathbf{s}, \pi(\mathbf{s}))}[V^{\pi}(\mathbf{s}')]$$



| 0.2 | 0.3 | 0.4 | 0.3 |
|-----|-----|-----|-----|
| 0.3 | 0.3 | 0.5 | 0.3 |
| 0.4 | 0.4 | 0.6 | 0.4 |
| 0.5 | 0.5 | 0.7 | 0.5 |

16 states, 4 actions per state can store full  $V^{\pi}(\mathbf{s})$  in a table!

$$\mathcal{T}$$
 is  $16 \times 16 \times 4$  tensor

## Even simpler dynamic programming

select the action

Construct table of qvalues



$$A^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma E[V^{\pi}(\mathbf{s}')] - V^{\pi}(\mathbf{s})$$

 $\arg\max_{\mathbf{a}_t} A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \arg\max_{\mathbf{a}_t} Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$ 

$$Q^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma E[V^{\pi}(\mathbf{s}')]$$
 (a bit simpler)

skip the policy and compute values directly!



$$Q^{\pi}(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + \gamma E_{\mathbf{s}' \sim p(\mathbf{s}' | \mathbf{s}, \mathbf{a})}[V^{\pi}(\mathbf{s}')]$$



approximates the new value!

by taking the max

value iteration algorithm:



- 1. set  $Q(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + \gamma E[V(\mathbf{s}')] \leftarrow \frac{\text{construct Q-value table}}{2. \text{ set } V(\mathbf{s}) \leftarrow \max_{\mathbf{a}} Q(\mathbf{s}, \mathbf{a})}$  set the value to be the max

we can simplify this even more by representing the entire thing w.r.t to the Q-function, and leliminate V

Fitted Value Iteration & Q-Iteration

#### Fitted value iteration

this fails due to the curse of dimensionality! Cannot store this many entries. For continuous state-space, it won't work at all

fixes the curse of dimensionality

how do we represent V(s)?

big table, one entry for each discrete  $\mathbf{s}$  neural net function  $V: \mathcal{S} \to \mathbb{R}$ 



 $V(\mathbf{s})$  parameters  $\phi$ 

$$\mathcal{L}(\phi) = \frac{1}{2} \left\| V_{\phi}(\mathbf{s}) - \max_{\mathbf{a}} Q^{\pi}(\mathbf{s}, \mathbf{a}) \right\|^{2}$$

 $\mathbf{s} = 0: V(\mathbf{s}) = 0.2$ 

$$\mathbf{s} = 1: V(\mathbf{s}) = 0.3$$

$$\mathbf{s} = 2: V(\mathbf{s}) = 0.5$$



$$|\mathcal{S}| = (255^3)^{200 \times 200}$$

(more than atoms in the universe)

 $Q^{\pi}(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + \gamma E_{\mathbf{s}' \sim p(\mathbf{s}' | \mathbf{s}, \mathbf{a})} [V^{\pi}(\mathbf{s}')]$ 



 $V^{\pi}(\mathbf{s}) \leftarrow \max_{\mathbf{a}} Q^{\pi}(\mathbf{s}, \mathbf{a})$ 

fitted value iteration algorithm:



2. set  $\phi \leftarrow \arg\min_{\phi} \frac{1}{2} \sum_{i} \|V_{\phi}(\mathbf{s}_{i}) - \mathbf{y}_{i}\|^{2}$ 

Step 1: Create targets by calculating the expected returns for every possible action given the state. Then take the max.

Step 2: Regress over those targets

#### curse of

dimensionality

for every state we have to find this value for every possible action

# What if we don't know the transition dynamics?

fitted value iteration algorithm:



1. set 
$$\mathbf{y}_i \leftarrow \max_{\mathbf{a}_i} (r(\mathbf{s}_i, \mathbf{a}_i) + \gamma E[V_{\phi}(\mathbf{s}_i')])$$
  
2. set  $\phi \leftarrow \arg\min_{\phi} \frac{1}{2} \sum_i ||V_{\phi}(\mathbf{s}_i) - \mathbf{y}_i||^2$ 

so one issue is that we can't actually try every single action b/c this would require us to be able to reset to the state. So if we don't know the transition dynamics, we can't do this.

> need to know outcomes for different actions!

#### Back to policy iteration...

policy iteration:



1. evaluate  $Q^{\pi}(\mathbf{s}, \mathbf{a})$ 2. set  $\pi \leftarrow \pi'$ 

2. set 
$$\pi \leftarrow \pi'$$

$$\pi'(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 \text{ if } \mathbf{a}_t = \arg\max_{\mathbf{a}_t} Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) \\ 0 \text{ otherwise} \end{cases}$$

policy evaluation:





can fit this using samples

this allows us to do policy iteration without having to know the transition probabilities. it just requires us to use samples

# Can we do the "max" trick again?

policy iteration:



1. evaluate  $V^{\pi}(\mathbf{s})$ 2. set  $\pi \leftarrow \pi'$ 



fitted value iteration algorithm:



1. set  $\mathbf{y}_i \leftarrow \max_{\mathbf{a}_i} (r(\mathbf{s}_i, \mathbf{a}_i) + \gamma E[V_{\phi}(\mathbf{s}_i')])$ 2. set  $\phi \leftarrow \arg\min_{\phi} \frac{1}{2} \sum_i ||V_{\phi}(\mathbf{s}_i) - \mathbf{y}_i||^2$ 

forget policy, compute value directly

can we do this with Q-values **also**, without knowing the transitions?

fitted Q iteration algorithm:



doesn't require simulation of actions!





now all we need are samples (s, a, s') which we can achieve by rolling out our policy

- + works even for off-policy samples (unlike actor-critic)
- + only one network, no high-variance policy gradient
- no convergence guarantees for non-linear function approximation (more on this later)

e.g. neural network

### Fitted Q-iteration

full fitted Q-iteration algorithm:

parameters

1. collect dataset  $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$  using some policy

dataset size N, collection policy

iterations K

2. set  $\mathbf{y}_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')$  for every transition that we sampled, calculate the target 3. set  $\phi \leftarrow \arg\min_{\phi} \frac{1}{2} \sum_i \|Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i\|^2$  update our Q-function

gradient steps S



another architecture is to input the state and then output the Q-values for every possible action a

#### Review

- Value-based methods
  - Don't learn a policy explicitly

represented by a

recover a policy by

using the argmax

table or NN

- Just learn value or Q-function
- If we have value function, we have a policy if we have a value function, we can
- Fitted Q-iteration

removes the need for us to know the transition probabilities



From Q-Iteration to Q-Learning

# Why is this algorithm off-policy?

full fitted Q-iteration algorithm:



2. set 
$$\mathbf{y}_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')$$

2. set 
$$\mathbf{y}_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')$$

$$3. \text{ set } \phi \leftarrow \arg \min_{\phi} \frac{1}{2} \sum_i \|Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i\|^2$$

given **s** and **a**, transition is independent of  $\pi$ 

this approximates the value of  $\pi'$  at  $\mathbf{s}'_i$ 

$$\pi'(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 \text{ if } \mathbf{a}_t = \arg\max_{\mathbf{a}_t} Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) \\ 0 \text{ otherwise} \end{cases}$$



# What is fitted Q-iteration optimizing?

full fitted Q-iteration algorithm:



2. set  $\mathbf{y}_{i} \leftarrow r(\mathbf{s}_{i}, \mathbf{a}_{i}) + \gamma \max_{\mathbf{a}'_{i}} Q_{\phi}(\mathbf{s}'_{i}, \mathbf{a}'_{i})$  this max improves the policy (tabular case) 3. set  $\phi \leftarrow \arg\min_{\phi} \frac{1}{2} \sum_{i} \|Q_{\phi}(\mathbf{s}_{i}, \mathbf{a}_{i}) - \mathbf{y}_{i}\|^{2}$  in tabular learning, we could just write the y's in

3. set 
$$\phi \leftarrow \arg\min_{\phi} \frac{1}{2} \sum_{i} \|Q_{\phi}(\mathbf{s}_{i}, \mathbf{a}_{i}) - \mathbf{y}_{i}\|^{2}$$



our table, but in deep learning, we need to optimize the network

$$\mathcal{E} = \frac{1}{2} E_{(\mathbf{s}, \mathbf{a}) \sim \beta} \left[ \left( Q_{\phi}(\mathbf{s}, \mathbf{a}) - \left[ r(\mathbf{s}, \mathbf{a}) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}', \mathbf{a}') \right] \right)^{2} \right]$$

if 
$$\mathcal{E} = 0$$
, then  $Q_{\phi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}', \mathbf{a}')$ 

this is an optimal Q-function, corresponding to optimal policy  $\pi'$ :

$$\pi'(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 \text{ if } \mathbf{a}_t = \arg\max_{\mathbf{a}_t} Q_{\phi}(\mathbf{s}_t, \mathbf{a}_t) & \text{maximizes reward} \\ 0 \text{ otherwise} & \text{sometimes written } Q^* \text{ and } \pi^* \end{cases}$$

most guarantees are lost when we leave the tabular case (e.g., use neural networks)

but using NN, the error is never 0, so we can't guarantee lwe have the optimal policy

## Online Q-learning algorithms

full fitted Q-iteration algorithm:



2. set 
$$\mathbf{y}_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')$$

2. set  $\mathbf{y}_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')$ 3. set  $\phi \leftarrow \arg\min_{\phi} \frac{1}{2} \sum_i \|Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i\|^2$ 





 $\mathbf{a} = \arg \max_{\mathbf{a}} Q_{\phi}(\mathbf{s}, \mathbf{a})$ 

off policy, so many choices here!

online Q iteration algorithm:



2. 
$$\mathbf{y}_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$$

3. 
$$\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i)$$

This is the Watkin's Q-learning algorithm



# Exploration with Q-learning

#### online Q iteration algorithm:



2. 
$$\mathbf{y}_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$$

2. 
$$\mathbf{y}_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$$
  
3.  $\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i)$ 

$$\pi(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 - \epsilon \text{ if } \mathbf{a}_t = \arg\max_{\mathbf{a}_t} Q_{\phi}(\mathbf{s}_t, \mathbf{a}_t) \\ \epsilon/(|\mathcal{A}| - 1) \text{ otherwise} \end{cases}$$

$$\pi(\mathbf{a}_t|\mathbf{s}_t) \propto \exp(Q_{\phi}(\mathbf{s}_t,\mathbf{a}_t))$$

#### final policy:

$$\pi(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 \text{ if } \mathbf{a}_t = \arg\max_{\mathbf{a}_t} Q_{\phi}(\mathbf{s}_t, \mathbf{a}_t) \\ 0 \text{ otherwise} \end{cases}$$

#### why is this a bad idea for step 1?

because we won't explore! Our initial Q-function will be pretty bad, so we will commit our policy to take the same action every time we enter a particular state. If this action isn't good, then we have a bad result

#### "epsilon-greedy"

with probability (1 - epsilon) take the max. With probability epsilon) take another action uniformly at random. You can vary epsilon over the course of training.

"Boltzmann exploration"

We'll discuss exploration in detail in a later lecture!

#### Review

- Value-based methods
  - Don't learn a policy explicitly
  - Just learn value or Q-function
- If we have value function, we have a policy
- Fitted Q-iteration
  - Batch mode, off-policy method
- Q-learning
  - Online analogue of fitted Qiteration



Value Functions in Theory

## Value function learning theory

value iteration algorithm:



1. set  $Q(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + \gamma E[V(\mathbf{s}')]$  construct table of Q-V

2. set  $V(\mathbf{s}) \leftarrow \max_{\mathbf{a}} Q(\mathbf{s}, \mathbf{a})$  set the value function to be the

construct table of Q-values



max along the rows of that table

| V(s1) = 0.4 | 0.2 | 0.3 | 0.4 | 0.3 |
|-------------|-----|-----|-----|-----|
| V(s2) = 0.5 | 0.3 | 0.3 | 0.5 | 0.3 |
| V(s3) = 0.6 | 0.4 | 0.4 | 0.6 | 0.4 |
| V(s4) = 0.7 | 0.5 | 0.5 | 0.7 | 0.5 |

does it converge?

and if so, to what?

stacked vector of rewards at all states for action **a** define an operator  $\mathcal{B}$ :  $\mathcal{B}V = \max_{\mathbf{a}} r_{\mathbf{a}} + \gamma \mathcal{T}_{\mathbf{a}}V$ 

matrix of transitions for action **a** such that  $\mathcal{T}_{\mathbf{a},i,j} = p(\mathbf{s}' = i | \mathbf{s} = j, \mathbf{a})$ 

 $V^*$  is a fixed point of  $\mathcal{B}$ 

$$V^{\star}(\mathbf{s}) = \max_{\mathbf{a}} r(\mathbf{s}, \mathbf{a}) + \gamma E[V^{\star}(\mathbf{s}')], \text{ so } V^{\star} = \mathcal{B}V^{\star}$$

always exists, is always unique, always corresponds to the optimal policy

...but will we reach it?

### Value function learning theory

value iteration algorithm:



- 1. set  $Q(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + \gamma E[V(\mathbf{s}')]$ 2. set  $V(\mathbf{s}) \leftarrow \max_{\mathbf{a}} Q(\mathbf{s}, \mathbf{a})$

| 0.2 | 0.3 | 0.4 | 0.3 |   |
|-----|-----|-----|-----|---|
| 0.3 | 0.3 | 0.5 | 0.3 |   |
| 0.4 | 0.4 | 0.6 | 0.4 |   |
| 0.5 | 0.5 | 0.7 | 0.5 |   |
|     |     |     |     | • |

$$V^*$$
 is a fixed point of  $\mathcal{B}$ 

$$V^*$$
 is a fixed point of  $\mathcal{B}$   $V^*(\mathbf{s}) = \max_{\mathbf{a}} r(\mathbf{s}, \mathbf{a}) + \gamma E[V^*(\mathbf{s}')], \text{ so } V^* = \mathcal{B}V^*$ 

we can prove that value iteration reaches  $V^*$  because  $\mathcal{B}$  is a contraction

contraction: for any 
$$V$$
 and  $\bar{V}$ , we have  $\|\mathcal{B}V - \mathcal{B}\bar{V}\|_{\infty} \leq \gamma \|V - \bar{V}\|_{\infty}$ 

gap always gets smaller by  $\gamma!$ 

(with respect to  $\infty$ -norm)

what if we choose  $V^*$  as  $\bar{V}$ ?  $\mathcal{B}V^* = V^*$ !

$$\|\mathcal{B}V - V^{\star}\|_{\infty} \le \gamma \|V - V^{\star}\|_{\infty}$$



# Non-tabular value function learning

value iteration algorithm (using  $\mathcal{B}$ ):

$$1. V \leftarrow \mathcal{B}V$$

fitted value iteration algorithm (using  $\mathcal{B}$  and  $\Pi$ ):



fitted value iteration algorithm:



what does this do?

define new operator 
$$\Pi$$
:  $\Pi V = \arg\min_{V' \in \Omega} \frac{1}{2} \sum \|V'(\mathbf{s}) - V(\mathbf{s})\|^2$ 

 $\Pi$  is a projection onto  $\Omega$  (in terms of  $\ell_2$  norm)

updated value function

$$V' \leftarrow \arg\min_{V' \in \Omega} \frac{1}{2} \sum \|V'(\mathbf{s}) - (\mathcal{B}V)(\mathbf{s})\|^2$$



### Non-tabular value function learning

fitted value iteration algorithm (using  $\mathcal{B}$  and  $\Pi$ ):



1.  $V \leftarrow \Pi \mathcal{B} V$ 



 $\Pi$  is a contraction w.r.t.  $\ell_2$ -norm (Euclidean distance)



$$\|\mathcal{B}V - \mathcal{B}\bar{V}\|_{\infty} \le \gamma \|V - \bar{V}\|_{\infty}$$

$$\|\Pi V - \Pi \bar{V}\|^2 \le \|V - \bar{V}\|^2$$

but...  $\Pi \mathcal{B}$  is not a contraction of any kind



Conclusions:
value iteration converges
(tabular case)
fitted value iteration does **not**converge
not in general
often not in practice

#### What about fitted Q-iteration?

fitted Q iteration algorithm:



- 1. set  $\mathbf{y}_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma E[V_{\phi}(\mathbf{s}_i')]$ 2. set  $\phi \leftarrow \arg\min_{\phi} \frac{1}{2} \sum_i \|Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) \mathbf{y}_i\|^2$

define an operator  $\mathcal{B}$ :  $\mathcal{B}Q = r + \gamma \mathcal{T} \max_{\mathbf{a}} Q$ 

max now after the transition operator

define an operator  $\Pi$ :  $\Pi Q = \arg\min_{Q' \in \Omega} \frac{1}{2} \sum \|Q'(\mathbf{s}, \mathbf{a}) - Q(\mathbf{s}, \mathbf{a})\|^2$ 

fitted Q-iteration algorithm (using  $\mathcal{B}$  and  $\Pi$ ):



 $\mathcal{B}$  is a contraction w.r.t.  $\infty$ -norm ("max" norm)

 $\Pi$  is a contraction w.r.t.  $\ell_2$ -norm (Euclidean distance)

 $\Pi \mathcal{B}$  is not a contraction of any kind Applies also to online Q-learning

# But... it's just regression!

#### online Q iteration algorithm:



1. take some action  $\mathbf{a}_i$  and observe  $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$ 

2. 
$$\mathbf{y}_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$$

2. 
$$\mathbf{y}_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$$
  
3.  $\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i)$ 

isn't this just gradient descent? that converges, right?

#### Q-learning is *not* gradient descent!

$$\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - (r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)))$$

no gradient through target value

### A sad corollary

batch actor-critic algorithm:



- 1. sample  $\{\mathbf{s}_i, \mathbf{a}_i\}$  from  $\pi_{\theta}(\mathbf{a}|\mathbf{s})$  (run it on the robot)
- 2. fit  $\hat{V}_{\phi}^{\pi}(\mathbf{s})$  to sampled reward sums
- 3. evaluate  $\hat{A}^{\pi}(\mathbf{s}_i, \mathbf{a}_i) = r(\mathbf{s}_i, \mathbf{a}_i) + \hat{V}_{\phi}^{\pi}(\mathbf{s}_i') \hat{V}_{\phi}^{\pi}(\mathbf{s}_i)$
- 4.  $\nabla_{\theta} J(\theta) \approx \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}|\mathbf{s}_{i}) \hat{A}^{\pi}(\mathbf{s}_{i},\mathbf{a}_{i})$
- 5.  $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$





$$\mathcal{L}(\phi) = \frac{1}{2} \sum_{i} \left\| \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i}) - y_{i} \right\|^{2}$$

 $\ell_2$  contraction  $\Pi$ 

#### An aside regarding terminology

 $V^{\pi}$ : value function for policy  $\pi$  this is what the critic does

 $V^*$ : value function for optimal policy  $\pi^*$  this is what value iteration does

fitted bootstrapped policy evaluation doesn't converge!

#### Review

- Value iteration theory
  - Operator for backup
  - Operator for projection
  - Backup is contraction
  - Value iteration converges
- Convergence with function approximation
  - Projection is also a contraction
  - Projection + backup is **not** a contraction
  - Fitted value iteration does not in general converge
- Implications for Q-learning
  - Q-learning, fitted Q-iteration, etc. does not converge with function approximation
- But we can make it work in practice!
  - Sometimes tune in next time

