IDO- Tarea 1

Marcelino Sánchez Rodríguez 19165429/1/24

Problema de la ONU

Enunciado

Considere la situación en que se asignan M poblaciones en N áreas distintas. El tamaño de la población i es p_i y el costo de la asignación de la población i al área j es c_{ij} . Un área seleccionada en la solución óptima debe incluir al menos L personas (L se supone constante). También cada área puede aceptar más de una población. El objetivo del problema trata de la minimización del costo total de las asignaciones. Supongamos que: $x_{ij}=1$ si se asigna la población i al área j, y 0 en caso contrario $y_j=1$ si se apunta el área j en la solución, y 0 en caso contrario

Formulación

$$\begin{aligned} & \min & & \sum_{i=1}^{M} \sum_{j=1}^{N} c_{ij} x_{ij} \\ & \text{s.a.} & & \sum_{j=1}^{N} x_{ij} = 1, \quad i = 1, \dots, M \\ & & \sum_{i=1}^{M} p_i x_{ij} \geq L y_i, \quad j = 1, \dots, N \\ & & \sum_{j=1}^{M} p_i x_{ij} \left(\sum_{j=1}^{M} p_i \right) \leq y_j = N \\ & & y_{ij} = \begin{cases} 1 & \text{si el área } j \text{ se utiliza} \\ 0 & \text{en otro caso} \end{cases} \\ & & x_{ij} = \begin{cases} 1 & \text{si la población } i \text{ está en el área } j \\ 0 & \text{en otro caso} \end{cases} \\ & & x_{ij}, y_{ij} \geq 0, \quad i = 1, \dots, M, \ j = 1, \dots, N \end{aligned}$$

Modelo en julia

using JuMP, Cbc