结构化分析

功能分解

灾害预警系统的主要功能模块可分为以下几个部分:

1. 数据采集模块:负责从多源传感器、卫星遥感、气象数据库等获取实时数据

2. 智能分析模块:处理采集的数据,进行风险评估和预测

3. 预警协同模块:基于分析结果生成预警方案,协调多部门响应

4. 用户交互模块: 向用户发送预警信息, 接收用户反馈

需求细化

需求编号	A1
需求描述	数据采集模块的可视化展示
源头	针对甲方对于数据采集界面的要求概括出的详细需求
成本需要	在现有页面上增加设计模块,或者设计一个新的页面进行可视化展示
可变性	较高,可能随着开发过程的推进不断发生变化
优先级	较高

需求编号	A2			
需求描述	智能分析模块的详细设定			
源头	需求提出与开发过程中发现的问题相结合			
成本需要	为智能分析模块赋予哪些应有的属性			
可变性	存在发展的可能性,即随着开发过程不断深化这方面的设计			
优先级	较低			

需求编号	А3
需求描述	预警协同模块的详细分类
源头	原始需求和开发过程的结合
成本需要	总体成本不高,但要求改变尽可能小
可变性	较低,否则需要重新设计

需求编号	А3
优先级	低

需求编 号	A4		
需求描 述	用户交互模块的联系		
源头	开发过程中出现的问题,主要围绕平台提供联系方式或直接发信息展开		
成本需 要	若只提供联系方式则基本无成本,若要给用户直接发信息则要考虑短息系统的开发或 应用		
可变性	较高,最终决策将与开发进度相关		
优先级	中等		

需求编号	A5
需求描 述	预警系统及其反馈
源头	预警的完成情况与用户之间应该存在交互性,使预警的发布者和接收者都能即时地查看 特定的预警,因此设置反馈信息
成本需要	需要在预警系统和用户系统之间安排后端处理反馈信息
可变性	较高,主要影响因素包括开发进程和开发人员的能力限制
优先级	中等

需求编号	B1
需求描述	对于注册、登录、登出的需求
源头	需求中包括"用户可以注册/登录""实名认证"等方面
成本需要	会难以避免地对用户信息数据库有要求
可变性	基本不会有变化
优先级	高

需求编号	B2	
需求描述	用户(个人)界面展示内容	
源头	个人界面内容需要展示包括预警信息和评价在内的全部信息,需要仔细斟酌	
成本需要	随着开发过程可能需要对这一页面不断更新一系列新的内容	

需求编号	B2			
可变性	很高,需要更新但在不同的阶段内不需要做较大的改变			
优先级	中等			

需求编号	В3		
需求描述	用户数据与预警数据的统一		
源头	原始需求中包括预警信息,在建模过程中最终确定预警信息与用户相连		
成本需要	需要将用户信息数据库与预警信息数据库同意,工作量较大		
可变性	很低		
优先级	很低		

优先级 (同一级按相对成本高低排序)

优先级	需求任务
第一优先级	B1对于注册、登录、登出的需求 A1数据采集模块的可视化展示
第二优先级	A5预警系统及其反馈 A4用户交互模块的联系
第三优先级	B2用户(个人)界面展示内容 A2智能分析模块的详细设定 A3预警协同模块的详细分类
第四优先级	B3用户数据与预警数据的统一

过程建模

DFD图

DFD 0层

整个灾害预警系统的功能改图,简介清晰地描述了整个系统地各部分功能和运作流程。

DFD 1层

DFD 2层

数据采集

智能分析

预警协同系统

用户交互

行为图

预警触发流程

预警信息推送

多部门协同响应

应急资源调度

舆情监控与分析

数据建模

数据字典

字段	描述	数据类型	约束
传感 器ID	唯一标识传感器设 备的编号	string	长度固定12位(如 SENSOR_0012),前缀 SENSOR_ +4位数字
监测 数据 值	传感器采集的实时 数值(如水位高 度、地震波振幅)	float	范围: 水位(0.0~50.0m)、地震波(0.0~2.0g) 等,超出范围标记为异常
风险 等级	系统判定的灾害风 险级别	int	0 =绿色 (无风险) , 1 =黄色 (低风险) , 2 =橙色 (中风险) , 3 =红色 (高风险)
预警 信息 内容	推送至用户的预警 文本(含灾害类 型、建议措施等)	string	必须包含灾害类型(预定义10种)、时间戳 (%Y-%m-%d %H:%M:%S)、至少1条避险建议

字段	描述	数据类型	约束
用户 位置 坐标	接收预警的GPS坐标 (纬度,经度)	string	格式: ±DD.DDDD,±DD.DDDD (如 39.9042,116.4074),超出中国国界的坐标 自动过滤
反馈 状态	用户对预警的响应 状态	int	0=未读, 1=已读未确认, 2=已确认, 3=上 报异常
资源 调度 指令	向政府部门发送的 救援资源分配命令	JSON	必须包含资源类型 (枚举值)、数量 (正整数)、目标地点 (坐标)、优先级 (1~3级)
数据 更新 时间	最后一条数据的采集时间	Timestamp	格式: %Y-%m-%d %H:%M:%S , 系统时间偏差 ≤5秒
灾害 类型 编码	标识灾害类别的唯 一代码	string	前缀 D_ +3位数字(如 D_101 =洪水),需与国家标准《GB/T 28921-2012》一致
预警 通道 标识	信息发布的渠道类型	int[]	1=短信, 2=APP推送, 3=广播, 4=GSM小区广播, 多选时用逗号分隔(如 1,2,4)

示例数据

```
1 {
2 "传感器ID": "SENSOR_0483",
3 "风险等级": 2,
4 "预警信息内容": "【橙色预警】预计3小时内发生山体滑坡,请避免前往山区。时间: 2024-06-15 14:30:00",
5 "灾害类型编码": "D_205"
6 }
```

实体关系图

核心实体说明

用户实体

```
1 用户(User):
2
    属性:
3
     - userID: "USER_0001" (主键)
     - role: 枚举[政府, 企业, 公众]
4
     - location: "39.9042,116.4074" (WGS84)
5
     - auth_method: 生物认证/短信验证
6
7
    关系:
    - 1:N 预警反馈
8
     - 1:1 认证信息
9
   约束:
10
11
     - 电话号码符合E.164标准
12
      - GPS坐标自动过滤境外数据
```

预警信息实体

```
1 预警(Warning):
2
     - level: 红/橙/黄/绿 (对应GB/T 28921)
3
      - content: "【红色预警】预计2小时内发生山体滑坡..."
4
5
     - affectedArea: GeoJSON格式多边形
6
   关系:
7
     - N:N 灾害类型
8
     - 1:N 资源调度
     - 1:N 分发通道
9
10
   业务规则:
    - 红色预警必须包含至少3条避险建议
11
12
     - 复合灾害需关联多个灾害类型编码
```

传感器数据实体

```
1 监测数据(MonitoringData):
2
3
     - value: 数值型(带范围约束)
4
      - 水位: 0.0~50.0m
5
       - 地震波: 0.0~2.0g
     - status: 自动标记异常数据
6
7
    关系:
     - N:1 传感器设备
8
    数据质量:
9
     - 时间戳偏差≤5秒
10
11
      - 异常值触发自动校准
```

复杂类型设计

资源调度指令结构

```
1 {
2    "resourceType": ["医疗物资", "工程机械"],
3    "quantity": [200, 15],
4    "priority": 1,
5    "targetLocation": "N37°25′, E111°14′",
6    "dispatchTime": "2024-06-20T08:00:00Z"
7 }
```

多通道分发策略

数据约束实现

灾害类型编码约束

```
1    CREATE TABLE disaster_type (
2         code VARCHAR(4) PRIMARY KEY CHECK (code ~ '^D_\d{3}$'),
3         name VARCHAR(50) REFERENCES national_standard(code)
4    );
```

预警时效性约束

```
1 def check_warning_latency():
2 if (current_time - create_time).seconds > 60:
3 trigger_alert("预警响应超时")
```

数据建模创新点

时空联合索引

```
1 时空索引:
2 - 地理围栏: R-Tree索引
3 - 时间窗口: 按小时分片
4 - 联合查询:
5 SELECT * FROM warnings
6 WHERE ST_Within(location, 'POLYGON(...)')
7 AND create_time BETWEEN '2024-06-20 08:00' AND '2024-06-20 20:00'
```

反馈验证机制

核心业务流程活动图

关键路径说明

• 数据采集频率: 地震数据100Hz, 气象数据1分钟/次

• 模型推理窗口: 台风预测每10分钟滚动更新

• 预警响应闭环: 用户反馈需在5分钟内完成有效性验证

预警生命周期状态图

状态转换条件

• 自动审核通过: 置信度>85%且跨部门数据一致

• 强制升级条件: 3个以上传感器触发红色阈值

• 时效定义: 地震预警30秒, 台风预警2小时

多通道预警顺序图

异常处理机制

- A. 5G信道拥塞时自动降级到2G CBS广播
- B. 移动端无响应时触发无人机喊话 (10分钟内抵达)
- C. 重要工业企业采用专线+卫星双通道保障

模型训练活动图

训练策略

• 基础模型:基于10年历史数据的预训练

• 增量更新:每日凌晨1点自动执行

• 紧急训练: 重大灾害发生后即时触发

用户反馈验证状态图

验证技术指标

● 定位精度:城市区域≤50米,乡村≤500米

• NLP分析: 支持8种方言语音转文本

● 图像验证:灾损特征识别准确率≥92%

需求展示

性能需求

指标	需求描述	Benchmark 测试方法
实时响应能 力	 数据采集至预警触达延迟≤3秒 (地震场景) 台风路径预测:每10分钟更新一次 系统可用性:≥99.99% (年故障时间≤1小时) 	- 模拟多源数据并发输入(10万条/秒), 测试端到端处理延迟 - 使用JMeter进行压力测试 - 对比不同灾害场景的响应阈值
系统吞吐量	- 支持单节点每秒处理 50 万条传感器数据 - 灾难恢复时间(RTO):≤15分钟	- 使用 Apache Kafka + Spark 集群压力测试 记 - 模拟台风场景下多维度数据流峰值 - ELK日志分析系统实时监控
并发用户承 载能力	- 支持 5000 万用户同时接收预警信息 - 多通道并发:语音、短信、广播	- 基于 5G 核心网仿真环境构建分布式消息队列 - 断网/弱网环境下切换至2G通道(成功率≥99%)
预测模型推 理速度	- 多模态融合模型推理时间 ≤200ms - TensorFlow模型单次预测延迟 ≤200ms	- 使用 NVIDIA A100 GPU 测试混合模型 - 边缘计算节点本地推理性能测试
容灾恢复能力	- 主数据中心宕机后,备用系统 30 秒内完成切换 - 本地边缘节点72小时离线工作能 力	- 模拟极端场景:光纤切断、电力中断 - 验证多活架构的故障转移机制

质量属性

属性	实现方案
可靠性	- 三级冗余架构: 国家级中心(北京/上海) + 区域中心(省级) + 边缘计算节点(市县) - 多通道冗余:卫星通信+5G+2G混合组网 - 传感器双电源供电(主电+72小时备用电池)
可用性	- 99.999% SLA保障 - 卫星链路备份保障网络中断时的预警广播 - 每季度进行GDPR/网络安全法合规审计
安全性	- 符合 ISO 27001 标准 - 量子加密传输关键预警指令 - 区块链存证关键预警日志(Hyperledger Fabric) - RBAC权限模型(政府/企业/个人分级)

属性	实现方案
可维护性	- 容器化微服务架构 - 算法模型热更新(无需停机) - ELK日志分析系统(实时监控传感器状态)
可扩展性	- 开放式数据接口规范(OGC SensorThings API) - 预留API网关接入无人机巡检数据 - 支持第三方传感器快速接入
易用性	- 多模态交互: • 手机 App 分级震动编码(区分灾害类型) • 公共场所 LED 屏动态色温警示 • 支持语音播报(多语言+方言适配) • 无障碍设计:WCAG 2.1 AA标准

接口说明

数据接入

```
数据接入:
2
     - 名称:卫星遥感数据接入
3
      协议: gRPC
4
      数据格式:
5
        timestamp: ISO8601
6
         coordinates: WGS84
7
         sensor_type: [红外, 可见光, 雷达]
8
         resolution: 0.5-30m
9
       JSON示例: {"timestamp":"2024-01-
   01T00:00:00Z","coordinates":"114.3,30.5","sensor_type":"红
   外","resolution":10}
10
       频率: 5分钟/次(静止轨道卫星)
11
       安全要求:
12
        - 传输层: TLS 1.3
13
         - 存储: AES-256加密
14
         - 认证: OAuth 2.0 + JWT
15
     - 名称: 第三方数据源
16
       气象局接口:
17
        协议: RESTful API
18
        路径: GET /weather/v1/alerts
19
       卫星遥感:
20
       标准: OGC WMS
21
         支持格式: GeoTIFF
```

预警输出

1 预警输出: 2 - 名称: 预警分发接口 通道类型: - 名称: 小区广播(CBS) 5 协议: ETSI TS 123.041 6 覆盖: 2G/3G/4G/5G 多模基站 7 备份机制: 卫星通信 8 - 名称: 应急APP推送 9 主要通道: FCM/APNs 增强模式 备份通道: WebSocket长连接 10 - 名称: 电视速报 11 12 标准: ATSC 3.0 紧急警报系统 13 兼容性: 支持模拟信号降级推送

外部系统对接

1 外部系统对接: 2 - 名称: 政府应急平台 3 协议: SOAP 标准: GB/T 37228-2018 4 5 加密: 量子通信通道 审计: 区块链日志 6 7 - 名称: 企业工控系统 8 协议: OPC UA over TSN 9 实时性: 端到端延迟<10ms 10 安全: IEC 62443认证

系统演示

人机交互界面核心功能

实时态势感知墙

• 分层显示:基础地理信息+实时传感器数据+预测风险区域

• 交互操作: 滑动时间轴查看预测演进, 点击区域调取应急预案

多级预警决策看板

```
1 # 预警等级算法伪代码
2 def calculate_alert_level():
3     risk_score = 0.6 * AI_prediction + 0.3 * expert_judgement + 0.1 *
historical_similarity
4     if risk_score > 0.8:
        return "红色预警 (立即疏散)"
6     elif risk_score > 0.6:
7     return "橙色预警 (准备避险)"
```

公众反馈通道

支持语音输入险情报告 (ASR转文本 + NLP关键信息提取)

关键技术实现

创新技术应用

• 边缘智能预警

在通信中断区域启用 LoRa 自组网, 部署轻量化模型 (TensorFlow Lite) 进行本地化决策

• 多模态数据融合

采用注意力机制对齐卫星影像 (CNNs) 与地面传感器时序数据

• 因果推理引擎

基于历史灾害知识图谱 (Neo4j) ,实现台风→洪涝→电力中断的因果链推演

合规性标准

类别	适用标准	实施要求
通信协议	- 3GPP TS 22.268 (公共预警系统) - ITU-T X.1303 (应急通信)	- 季度合规性测试 - 第三方安全评估
数据安全	- GB/T 35273-2020(个人信息安全规范) - ISO 22301(业务连续性管理) - GDPR合规	- 数据分级存储 - 加密传输 - 定期审计
地理信息	- OGC API - Features 1.0 - GB/T 35648-2017(应急地理信息)	- 坐标系转换 - 实时更新机制
预警信息格式	- CAP 1.2 - GB/T 37025-2018(应急广播)	- 多语言支持 - 降级处理
设备兼容性	- 多模基站覆盖 - ETSI TS 102 900	- 兼容性测试 - 性能基准

优先级映射

需求编号	关联指标	实现阶段
B1	安全性、易用性	第一阶段(关键)
A1	性能、接口定义	第一阶段
A5	可靠性、用户交互	第二阶段
A4	多通道预警	第二阶段
B2	界面设计	第三阶段

原型系统部署路线图

1. 在第一阶段(6个月): 完成京津冀区域试点,验证地震-燃气泄漏联动预警机制

2. 第二阶段 (12个月):扩展至东南沿海台风预警,实现海陆空立体监测网络

3. 第三阶段(18个月): 构建全国统一预警平台,接入20类灾害监测数据源

成员分工

姓名	需求获取	需求分析
王兆鲁	前景与范围	数据建模、行为建模
叶子宁	涉众分析	需求展示、接口设计、前端设计、博客搭建
云若飞	涉众分析	DFD、行为图、数据字典
林柏健	面谈分析	DFD、行为图、数据字典
蒋浩天	PPT、汇报	PPT、汇报、前端设计
董石楷	项目文档	项目文档、功能分解、需求细化、前端设计