

Residual =
$$y_i - y_i$$

$$\frac{ax+by+c=0}{ax_1+by_1+c=0}$$

$$y = mx + c$$

Method of least squares

$$y = b_0 + b_1 \propto$$
(c) (m)

$$x_1$$
 y_1
 x_2 y_2
 x_n y_n

$$\sum_{i} (y_i - \hat{y}_i)^2$$
; Residual Sum of Squares

Optimization Problem:

Find bo, b, such that

$$= (y_i - \hat{y_i})^2$$
 is minimum

$$\frac{9p}{9z} = 0 \qquad \frac{9p}{9z} = 0$$

Simultaneously

to get best values of bo, b,

y: Dependent or Response X: Independent variable (s)

Predictors

or

Fontures

Sales = 5.485 + 23.506 & Promote
Promote = 0
$$\Rightarrow$$
 Sales = 5.485
Sales = 5.485 + 23.506 & 100
?
1
23.506

Mean Squared
$$=\frac{\sum (y_i - \hat{y}_i)^2}{n}$$

$$y_i = b_0 + b_1 x^{\mu}$$
 Home
 $b_0 = 23045.63894523328$ for Home

One hot Encoding / Dummying

Sex	F	M	
F	1	0	
F	1	0	
М	0	1	
M	0	1	
F	1	0	

rank	Aso P	Ass P	Р
Р	0	0	1
Ass P	0	1	0
Aso P	1	0	0
Ass P	0	1	0
Aso P	1	0	0
Р	0	0	1
Р	0	0	1