Convolutional Neural Networks

COSC 410: Applied Machine Learning

Spring 2022

Prof. Apthorpe

Outline

- Why CNNs?
- 1D & 2D Convolutions
- Convolution hyperparameters
 - Filter size
 - Padding
 - Stride length
- Convolutional Networks (CNNs)

Motivating Tasks

Image classification

• Predict labels per image

Object Detection

Predict labels & bounding boxes

Predict labels per pixel

(a) Image Classification

(b) Object Detection

(c) Semantic Segmentation

(d) Instance Segmentation

Motivating Tasks

Image classification

Predict labels per image

Object Detection

Predict labels & bounding boxes

Image segmentation

Predict labels per pixel

Problems with FNNs

Thoughts?

Problems with FNNs

- Too many parameters
 - Even "small" FNNs are prone to overfitting

epoch_loss

Problems with FNNs

- Does not account for feature locality
 - Assumes feature order is arbitrary
- 厚
- All features treated equivalently with respect to each other
- Sensitive to shifting data via rotation or translation

Key Ideas of CNNs

Locality

- Images encode information in the order of features
- Nearby features should be considered together

Key Ideas of CNNs

Hierarchy

- Many data types consist of patterns of patterns
- Each layer of patterns involves a "wider" view of the data

Key Ideas of CNNs

- The human visual system is hierarchical
 - Neurons in the retina and V1 recognize simple localized light patterns
 - Neurons in higher visual cortices recognize combinations of patterns
 - Process repeats until entire scene is recognized

- Fewer overall parameters
- Insensitivity to data translation

Convolutions & Cross-Correlations

- Convolution and cross-correlation are operations on functions
 - Measure similarity between two functions across their domains
 - Computed by sliding one function over the other and integrating overlap
 - Convolution is just cross-correlation with one function reflected over y-axis
 - "Convolutional" neural networks actually use cross-correlation for simplicity

1D Cross-Correlation Examples

Image

Result

3x3 **Filter**

W _{0,0}	W _{0,1}	W _{0,2}
W _{1,0}	W _{1,1}	W _{1,2}
W _{2,0}	W _{2,1}	W _{2,2}

f _{0,0}	f _{0,1}	f _{0,2}	f _{0,3}	f _{0,4}	f _{0,5}
f _{1,0}	f _{1,1}	f _{1,2}	f _{1,3}	f _{1,4}	f _{1,5}
f _{2,0}	f _{2,1}	f _{2,2}	f _{2,3}	f _{2,4}	f _{2,5}
f _{3,0}	f _{3,1}	f _{3,2}	f _{3,3}	f _{3,4}	f _{3,5}
f _{4,0}	f _{4,1}	f _{4,2}	f _{4,3}	f _{4,4}	f _{4,5}
f _{5,0}	f _{5,1}	f _{5,2}	f _{5,3}	f _{5,4}	f _{5,5}

3x3 **Filter**

W _{0,0}	W _{0,1}	W _{0,2}
W _{1,0}	W _{1,1}	W _{1,2}
W _{2,0}	W _{2,1}	W _{2,2}

				lma	age			Result
	w _{0,0} f _{0,0}	w ₀		w _{0,2} f _{0,2}	f _{0,3}	f _{0,4}	f _{0,5}	
1	w _{1,0} f _{1,0}	W ₁		W _{1,2} f _{1,2}	f _{1,3}	f _{1,4}	f _{1,5}	r _{0,0}
	w _{2,0} f _{2,0}	W ₂		W _{2,2} f _{2,2}	f _{2,3}	f _{2,4}	f _{2,5}	$r_{0,0} = w_{0,0}f_{0,0} + w_{0,1}f_{0,1} + w_{0,2}f_{0,2} +$
	f _{3,0}	f _{3,}	,1	f _{3,2}	f _{3,3}	f _{3,4}	f _{3,5}	$w_{1,0}f_{1,0} + w_{1,1}f_{1,1} + w_{1,2}f_{1,2} + w_{2,0}f_{2,0} + w_{2,1}f_{2,1} + w_{2,2}f_{2,2}$
	f _{4,0}	f _{4,}	,1	f _{4,2}	f _{4,3}	f _{4,4}	f _{4,5}	
	f _{5,0}	f _{5,}	.1	f _{5,2}	f _{5,3}	f _{5,4}	f _{5,5}	

3x3 **Filter**

W _{0,0}	W _{0,1}	W _{0,2}
W _{1,0}	W _{1,1}	W _{1,2}
W _{2,0}	W _{2,1}	W _{2,2}

		lm	age			Result
f _{0,0}	w _{0,0} f _{0,1}	w _{0,1} f _{0,2}	w _{0,2} f _{0,3}	f _{0,4}	f _{0,5}	
f _{1,}	w _{1,0} f _{1,1}	w _{1,1} f _{1,2}	W _{1,2} f _{1,3}	f _{1,4}	f _{1,5}	$r_{0,0}$ $r_{0,1}$
f _{2,}	w _{2,0} f _{2,1}	w _{2,1} f _{2,2}	w _{2,2} f _{2,3}	f _{2,4}	f _{2,5}	$r_{0,1} = w_{0,0}f_{0,1} + w_{0,1}f_{0,2} + w_{0,2}f_{0,3} +$
f _{3,}	o f _{3,1}	f _{3,2}	f _{3,3}	f _{3,4}	f _{3,5}	$w_{1,0}f_{1,1} + w_{1,1}f_{1,2} + w_{1,2}f_{1,3} + w_{2,0}f_{2,1} + w_{2,1}f_{2,2} + w_{2,2}f_{2,3}$
f _{4,}	0 f _{4,1}	f _{4,2}	f _{4,3}	f _{4,4}	f _{4,5}	
f _{5,0}	o f _{5,1}	f _{5,2}	f _{5,3}	f _{5,4}	f _{5,5}	

3x3 **Filter**

W _{0,0}	W _{0,1}	W _{0,2}
W _{1,0}	W _{1,1}	W _{1,2}
W _{2,0}	W _{2,1}	W _{2,2}

		lma	age			Result
f _{0,0}	f _{0,1}	w _{0,0} f _{0,2}	w _{0,1} f _{0,3}	w _{0,2} f _{0,4}	f _{0,5}	
f _{1,0}	f _{1,1}	W _{1,0} f _{1,2}	w _{1,1} f _{1,3}	W _{1,2} f _{1,4}	f _{1,5}	$\begin{bmatrix} \mathbf{r}_{0,0} & \mathbf{r}_{0,1} & \mathbf{r}_{0,2} \end{bmatrix}$
f _{2,0}	f _{2,1}	W _{2,0} f _{2,2}	w _{2,1} f _{2,3}	w _{2,2} f _{2,4}	f _{2,5}	
f _{3,0}	f _{3,1}	f _{3,2}	f _{3,3}	f _{3,4}	f _{3,5}	
f _{4,0}	f _{4,1}	f _{4,2}	f _{4,3}	f _{4,4}	f _{4,5}	
f _{5,0}	f _{5,1}	f _{5,2}	f _{5,3}	f _{5,4}	f _{5,5}	

3x3 Filter

W _{0,0}	W _{0,1}	W _{0,2}
W _{1,0}	W _{1,1}	W _{1,2}
W _{2,0}	W _{2,1}	W _{2,2}

3x3 Filter

W _{0,0}	W _{0,1}	W _{0,2}
W _{1,0}	W _{1,1}	W _{1,2}
W _{2,0}	W _{2,1}	W _{2,2}

3x3 Filter

W _{0,0}	W _{0,1}	W _{0,2}
W _{1,0}	W _{1,1}	W _{1,2}
W _{2,0}	W _{2,1}	W _{2,2}

filter weight parameters w

Image

f _{0,0}	f _{0,1}	f _{0,2}	f _{0,3}	f _{0,4}	f _{0,5}
f _{1,0}	f _{1,1}	f _{1,2}	$f_{1,3}$	f _{1,4}	f _{1,5}
f _{2,0}	f _{2,1}	f _{2,2}	f _{2,3}	f _{2,4}	f _{2,5}
			W _{0,0}	W _{0,1}	W _{0,2}
f _{3,0}	f _{3,1}	f _{3,2}	f _{3,3}	f _{3,4}	f _{3,5}
			W _{1,0}	W _{1,1}	W _{1,2}
f _{4,0}	f _{4,1}	f _{4,2}	f _{4,3}	f _{4,4}	f _{4,5}
			W _{2,0}	W _{2,1}	W _{2,2}
f _{5,0}	f _{5,1}	f _{5,2}	f _{5,3}	f _{5,4}	f _{5,5}

Result

r _{0,0}	r _{0,1}	r _{0,2}	r _{0,3}
r _{1,0}	r _{1,1}	r _{1,2}	r _{1,3}
r _{2,0}	r _{2,1}	r _{2,2}	r _{2,3}
r _{3,0}	r _{3,1}	r _{3,2}	r _{3,3}

Convolution Hyperparameters

Filter Size

- Convolutional filters identify areas of the image with similar patterns
- Why might you want larger or smaller filters?

Example convolutional filters

Filter Size

- Convolutional filters identify areas of the image with similar patterns
- Larger filters can identify larger patterns, but have more parameters and less locality benefit

Example convolutional filters

- In our convolution example, the result was smaller than the original image
- If we add padding to the edges of the input, the result will be the same size

Padding options

- "Same" Add padding (usually 0s) to edges of data so convolution results are the same size as the input examples
- Width of padding depends on filter size

Padding options

- "Valid" Do NOT add padding, so convolution results are is smaller than the input example
- Size difference depends on filter size

• Why might you want "same" vs. "valid" padding or vice versa?

- When to use different padding options
 - "Same" (padding): Use for image segmentation when each pixel in input needs a label in the output or generally when the edges have important info

Don't cut off the edges of the scene!

- When to use different padding options
 - "Same" (padding): Use for image segmentation when each pixel in input needs a label in the output or generally when the edges have important info
 - "Valid" (NO padding): Use for image classification when you only need label(s) for the entire image or generally when the edges are irrelevant

Label: Dog

Label: Cat

Stride

- In our 2D convolution example, we slid the filter by one "space" each time
- We can also choose to slide the filter by multiple spaces
- Tradeoff between identifying overlapping patterns & computation cost

Convolutional Neural Networks

Convolutional Neural Networks (CNNs)

 Combine many convolutional filters in parallel and in sequence to identify localized & hierarchical patterns in data

Convolutional Layers

- Primary building block of CNNs
 - N independent convolutional filters
 - N is a hyperparameter
 - All filters have same size, padding, and stride
 - All filters initialized to different random starting weights
 - Activation function applied to each filter output

• Produces N unique outputs called "feature maps" for each input

Pooling Layers

Downsampling

Allows following convolution layers to find patterns over wider areas

Reduces # of computations

厚

Pros & cons

Information loss can reduce performance

 12
 20
 30
 0

 8
 12
 2
 0

 34
 70
 37
 4

 112
 100
 25
 12

 2 × 2 Max-Pool
 20
 30

 112
 37

Max-Pooling
(2 x 2)

n1 channels
(24 x 24 x n1)

(12 x 12 x n1)

Computation is less
 of a bottleneck than it used to be

Fully Connected Layers

• CNNs for image classification often end with one (or more) fully-connected feedforward layers

 Effectively a FNN that treats the outputs of the last convolutional layers as input features

Produces class probabilities or regression values

CNN Architecture

Training CNNs

Training CNNs

- Goal: Find convolutional filter weights (and feedforward connection weights if applicable) that minimize training error
- Approach: Gradient descent with backpropagation

Example Trained CNN Filters

Lee, et al.

Conv layers early in network

→ Conv layers later in network

Questions?