COSTANTI FISICHE

Massa elettrone m_e =9x10⁻³¹ kg; carica elettrone -e=1.6x10⁻¹⁹ C; ϵ_0 =8.85x10⁻¹² (SI); $1/4\pi\epsilon_0$ =9x10⁹ (SI); μ_0 =4 π 10⁻⁷ (SI)

QUESITO 1

Enunciare il teorema di Gauss per il campo elettrico, spiegandone significato fisico e condizioni di validità.

ESERCIZIO 1

Un cilindrico conduttore cavo di lunghezza indefinita, raggio interno R_2 =5cm e raggio esterno R_3 =6cm, contiene, in modo coassiale, un filo conduttore con densità di carica lineare λ =6.67 10^{-10} Cm⁻¹. Il sistema è isolato.

- 1- Determinare la distribuzione di carica indotta.
- 2- Ricavare il campo elettrico e il potenziale nello spazio in funzione della distanza r dall'asse del sistema. Dare la rappresentazione grafica delle funzioni E(r) e V(r).

Si consideri la nuova situazione in cui a distanza **R**_P**=10cm** dall'asse del sistema, in punti diametralmente opposti, vengono posti un'elettrone e un protone (trascurare gli effetti induttivi delle particelle sul cilindro).

3- Calcolare il lavoro totale del campo per portare il protone e l'elettrone sulla superficie del conduttore.

Successivamente l'armatura esterna del conduttore viene collegata a terra.

4- Calcolare nella nuova situazione di equilibrio la densità di energia del campo elettrico nella regione esterna e interna al sistema.

L'intercapedine tra R_1 e R_2 viene riempita di un materiale dielettrico lineare e omogeneo di costante dielettrica **K=3**.

5- Calcolare il vettore polarizzazione P e la densità di cariche di polarizzazione nel dielettrico.

QUESITO 2

Enunciare il teorema di Ampere per il campo magnetico, spiegandone significato fisico e condizioni di validità.

ESERCIZIO 2

Un solenoide toroidale di raggio interno **R=10cm**, composto da **N=10**² spire a sezione quadrata di lato **a=2cm**, è percorso da una corrente elettrica stazionaria **i=2A**.

- 1- Ricavare il campo magnetico nello spazio in funzione della distanza r dall'asse del sistema.
- 2- Calcolare il flusso del campo magnetico concatenato con il solenoide
- 3- Calcolare il coefficiente di autoinduzione del sistema.
- 4- Calcolare la quantità di energia del campo magnetico immagazzinata nel solenoide.

ESERCIZIO 3

Un circuito a U posizionato nel piano XY e formato da due binari paralleli ad X distanti **a=5cm** ha una parte mobile libera di scorrere senza attrito in direzione x (fig). Nello spazio è presente un campo magnetico stazionario e uniforme **B=+0.2T** ortogonale al circuito in direzione z. Al tratto mobile viene trasmesso un impulso che lo mette in moto con velocità iniziale \mathbf{v}_0 =**10ms**⁻¹ lungo x. La massa della barretta mobile è m=10g.

- 1- Determinare il valore della forza elettromotrice indotta nel circuito
- 2- Qual è l'origine fisica di questa f.e.m?
- a) Il circuito viene chiuso con una resistenza $R=5\Omega$ si trascuri ogni fenomeno di autoinduzione.
 - 3- Ricavare la legge con cui varia la corrente indotta nel tempo.
 - 4- Calcolare l'energia totale dissipata per effetto joule e discutere il bilancio energetico.
- b) Si consideri ora il caso in cui la barretta è in moto a velocità costante v_0 e il circuito viene chiuso con un condensatore $C=100\mu F$ e una resistenza $R=5\Omega$ si trascuri ogni fenomeno di autoinduzione.
 - 5- Ricavare la legge di variazione temporale della corrente indotta i(t).
 - 6- Discutere il bilancio energetico: calcolare la potenza meccanica spesa per tenere in moto il conduttore, la potenza spesa nel resistore, l'energia immagazzinata nel condensatore.

QUESITO 3

- 1. Dare le leggi di Maxwell che descrivono il comportamento del campo elettromagnetico nel vuoto, spiegarne il significato fisico e le conseguenze.
- 2. Definire il vettore di Poynting e dare l'equazione di continuità dell'energia elettromagnetica nel vuoto.