Contents

1	\mathbf{Firs}	t Order Differential Equations	2
	1.1	Existence and Uniqueness of Solutions	2
	1.2	Domain Restrictions	2
	1.3	Separable Diff. Equations	2
	1.4	Linear Diff. Equations	3
		1.4.1 Solving Linear Diff. Eq. with Complex Variables	4
	1.5	Homogeneous Differential Equations	5
	1.6	Isobaric Differential Equations	5
	1.7	Bernoulli Differential Equations	7
	1.8	Obvious and Embedded Derivative Substitutions	7
	1.9	Exact Differential Equations	8
		1.9.1 Integrating Factor for Inexact Differential Equations	8
	1.10	Reducible Second Order Equations	9
	1.11	Miscellaneous Forms	9
	1.12	Higher Degree First Order Differential Equations	10
		1.12.1 Soluble for $\frac{dy}{dx}$	10
		1.12.2 Soluble for X	11
		1.12.3 Soluble for Y	12
		1.12.4 Clairaut's Equation	12
2 Second Order Differential Equations		ond Order Differential Equations	13
	2.1	Second Order Linear Homogeneous ODEs with Constant Coefficients	13
	2.2	Theory of Second Order Linear ODEs	16
	2.3	Theory of Inhomogeneous Second Order ODES	19
	2.4	Fourier Series	23
		2.4.1 Using Fourier Series to Solve Differential Equations	26
	2.5	Laplace Transform	27
		2.5.1 Using Laplace Transforms to Solve Linear ODEs	28
		2.5.2 Laplace Transforms for ODEs with Jump Discontinuities	30
	2.6	Convolution	33
	2.7	Dirac-Delta Function	35
3	Syst	tems of Ordinary Differentials Equations	37
	3.1	First Order Systems of ODEs	37
		3.1.1 Eigenvalue Method of Solving First Order Systems of ODEs	38
	3.2	How to Sketch Solutions to Systems of First Order ODEs	44
	3.3	Inhomogeneous Systems	46
	3.4	Matrix Exponentials	48
	3.5	Decoupling Linear Systems	50
	3.6	Closed Trajectories	53

1 First Order Differential Equations

1.1 Existence and Uniqueness of Solutions

3 cases for a solution at a point

- 1. No solution for Diff. Eq. at point
- 2. Infinitely many solutions at a point
- 3. One unique solution to Diff Eq. in neighborhood around point *needs to be continuous to be differentiable

For a Diff. Eq.
$$\frac{dy}{dx} = f(x,y)$$

+ initial value (a,b) , $y(a) = b$

1. If f(x,y) is continuous around (a,b),

Then at least one solution exists on a open interval around x=a

-if f(x,y) is not continuous for open interval around x=a, a solution isn't guaranteed

2. If $\frac{\partial f}{\partial y}$ is also continuous around (a.b), then the solution to the Diff. Eq. at (a,b) is unique on the open interval around x=a

1.2 Domain Restrictions

When the equations is divided by 0 for example, the of the solution is no longer true for x = 0. Sometimes if absolute values are present, x is assumed ≥ 0 . The solution would only hold true for $x \geq 0$.

1.3 Separable Diff. Equations

If $\frac{dy}{dx}$ can be written as

$$\frac{dy}{dx} = \frac{f(x)}{g(y)} \tag{1.3.1}$$

Then

$$G(y) = F(x) + C \tag{1.3.2}$$

Essentially if you can split the variable into two function multiplied together. You can integrate each function independently.

Proof:

$$\frac{dy}{dx} = \frac{f(x)}{g(y)} \tag{1.3.1}$$

$$g(y) \cdot \frac{dy}{dx} = f(x) \tag{1.3.3}$$

$$\int g(y) \frac{dy}{dx} dx = \int f(x)dx \tag{1.3.4}$$

$$G(y) = F(x) + C \tag{1.3.5}$$

1.4 Linear Diff. Equations

Linear Differential Equation:

$$\frac{dy}{dx} + P(x)y = Q(x) \tag{1.4.1}$$

Definition 1.1 (Integrating Factor). An integrating factor is expression an equation is multiplied by in order to make integration possible.

The Linear Diff. Eq. looks very similar to the product rule:

$$\frac{d}{dy}[R(x)y = S(x)] \tag{1.4.2}$$

$$\frac{dy}{dx} \cdot R(x) + R'(x) \cdot y = S'(x) \tag{1.4.3}$$

$$\frac{dy}{dx} + \frac{R'(x)}{R(x)} \cdot y = \frac{S'(x)}{R'(x)} \tag{1.4.4}$$

Finding the Integrating Factor

$$\frac{dy}{dx} + P(x)y = Q(x) \tag{1.4.1}$$

$$\rho(x) \cdot \frac{dy}{dx} + \rho(x) \cdot P(x)y = \rho(x) \cdot Q(x) \tag{1.4.5}$$

$$\Rightarrow \rho'(x) = \rho(x)P(x) \tag{1.4.6}$$

$$\rho(x) = e^{\int P(x)dx} \tag{1.4.7}$$

By how we defined $\rho(x)$

$$D_x[y \cdot \rho(x)] = \rho(x) \cdot Q(x) \tag{1.4.8}$$

$$\int D_x[y \cdot \rho(x)] dx = \int \rho(x) \cdot Q(x) dx \qquad (1.4.9)$$

$$y \cdot \rho(x) = \int \rho(x) \cdot Q(x) \ dx \tag{1.4.10}$$

$$\frac{dy}{dx} + y\cot(x) = \cos(x)$$

$$\rho(x) = \exp\left(\int \cot(x) dx\right)$$

$$= e^{\ln|\sin(x)|}$$

$$= \sin(x) \qquad \forall x \in \mathbb{R}, \sin(x) \neq 0$$

$$\sin(x)\frac{dy}{dx} + y\cos(x) = \sin(x)\cos(x)$$
$$y \cdot \sin(x) = \int \sin(x)\cos(x) \ dx$$
$$y \cdot \sin(x) = \frac{1}{2}\sin^2 x + C$$
$$y = \frac{1}{2}\sin x + C\csc x$$

1.4.1 Solving Linear Diff. Eq. with Complex Variables

Using Euler's Identity

$$e^{i\theta} = \cos\theta + i\sin\theta \tag{1.4.11}$$

The trigonometric function in the input (Q) are converted to a complex exponential, which is easier to integrate.

Convert y into the complex function \widetilde{y}

Solve for \widetilde{y}

$$\widetilde{y} = y_1 + iy_2$$

Solve for y_1 or y_2 depending on whether cos or sin was converted.

Example:

$$y' + ky = k\cos(\omega t)$$

$$e^{i\omega t} = \cos \omega t + i \sin \omega t$$
$$\widetilde{v}' + k\widetilde{v} = ke^{i\omega t}$$

$$\rho(x) = e^{kt}$$

$$\widetilde{y} \cdot e^{kt} = \int k \cdot e^{(k+i\omega)t} dt$$

$$\widetilde{y} \cdot e^{kt} = \frac{k}{k+i\omega} \cdot e^{(k+i\omega)t}$$

$$\widetilde{y} = \frac{1}{1 + i\frac{\omega}{k}} \cdot e^{i\omega t}$$

Finding Real Part Using Polar Coordinates

$$\frac{1}{1+i\frac{\omega}{k}} = Ae^{-i\phi}$$

$$A = \left| \frac{1}{1+i\frac{\omega}{k}} \right| = \left(1 + \left(\frac{\omega}{k} \right)^2 \right)^{\frac{-1}{2}}$$

$$\phi = \arctan\left(\frac{\omega}{k} \right)$$

$$\widetilde{y} = \left(1 + \left(\frac{\omega}{k} \right)^2 \right)^{\frac{-1}{2}} \cdot e^{i(\omega t - \phi)}$$

$$y_1 = \left(1 + \left(\frac{\omega}{k} \right)^2 \right)^{\frac{-1}{2}} \cdot \cos\left(\omega t - \tan^{-1}\left(\frac{\omega}{k} \right) \right)$$

Using Cartesian Coordinates

$$\frac{1}{1+i\frac{\omega}{k}}\left[\cos\omega t + i\sin\omega t\right] \cdot \frac{1-i\frac{\omega}{k}}{1-i\frac{\omega}{k}}$$

$$\frac{1}{1+\left(\frac{\omega}{k}\right)^{2}} \cdot \left(1-i\frac{\omega}{k}\right) \cdot \left[\cos\omega t + i\sin\omega t\right]$$

Re:
$$\frac{1}{1+(\frac{\omega}{t})^2} \cdot \left[\cos \omega t + \frac{\omega}{k} \sin \omega t\right]$$

With trig. identities:
$$y_1 = \left(1 + \left(\frac{\omega}{k}\right)^2\right)^{\frac{-1}{2}} \cdot \cos\left(\omega t - \tan^{-1}\left(\frac{\omega}{k}\right)\right)$$

1.5 Homogeneous Differential Equations

Definition 1.2 (Homogeneous). A function f(x,y) is homogeneous of degree n if for any λ it satisfies

$$f(\lambda x, \lambda y) = \lambda^n f(x, y) \tag{1.5.1}$$

A homogeneous diff. eg. can be written as

$$\frac{dy}{dx} = \frac{A(x,y)}{B(x,y)} = F\left(\frac{y}{x}\right) \tag{1.5.2}$$

where A and B are both homogeneous functions of the same degree.

How to Solve

Make substitution

$$v = \frac{y}{x} \tag{1.5.3}$$

$$y' = x\frac{dv}{dx} + v \tag{1.5.4}$$

$$\frac{dy}{dx} = x\frac{dv}{dx} + v = F(v) \tag{1.5.5}$$

$$\int \frac{dv}{F(v) - v} = \int \frac{dx}{x} \tag{1.5.6}$$

Now solve for V and substitute back in $\frac{y}{x}$ for V and solve for y.

1.6 Isobaric Differential Equations

Definition 1.3 (Isobaric). A function f(x,y) is isobaric if for any t it satisfies

$$f(tx, t^{m}y) = t^{m-1}f(x, y)$$
(1.6.1)

An isobaric diff. eq. can be written as

$$\frac{dy}{dx} = \frac{A(x,y)}{B(x,y)} \tag{1.6.2}$$

If A and B are both isobaric functions.

How to Solve

- 1. Give y and dy a weight m and x and dx a weight of 1.
- 2. Find the weight of each term in the diff. equation.
- 3. Find a value for m such that all the weights are equal.
- 4. Make substitution $y = vx^m$
- 5. Solve the now separable diff. eq.

Proof:

$$\frac{dy}{dx} = \frac{A(x,y)}{B(x,y)} \tag{1.7.2}$$

$$y = vx^m \tag{1.6.3}$$

$$\frac{dy}{dx} = x^m \frac{dv}{dx} + mx^{m-1} \cdot V \tag{1.6.4}$$

$$x^{m} \frac{dv}{dx} + mx^{m-1} \cdot V = \frac{A(x, vx^{m})}{B(x, vx^{m})}$$
 (1.6.5)

$$= x^{m-1} \frac{A(1,v)}{B(1,v)} \leftarrow \text{def. of isobaric}$$
 (1.6.6)

$$=x^{m-1}C(v) \leftarrow \text{only dependent on v}$$
 (1.6.7)

$$x^{m}\frac{dv}{dx} + mx^{m-1} \cdot V = x^{m-1}C(v)$$
 (1.6.8)

$$x\frac{dv}{dx} + m \cdot V = C(v) \tag{1.6.9}$$

$$\frac{dv}{dx} = \frac{C(v) - m \cdot v}{x} \tag{1.6.10}$$

Example:

$$\frac{dy}{dx} = \frac{-1}{2yx} \left(y^2 + \frac{2}{x} \right)$$

$$\frac{dy}{dx} = \frac{-y}{2x} + \frac{-1}{x^2y}$$

$$(m-1) = (m-1) = (-m-2)$$

$$m = \frac{-1}{2}$$

$$y = vx^{\frac{-1}{2}}$$

$$\frac{dy}{dx} = x^{\frac{-1}{2}} \frac{dv}{dx} - \frac{1}{2}v \cdot x^{\frac{-3}{2}}$$

$$x^{\frac{-1}{2}} \frac{dv}{dx} - \frac{1}{2}v \cdot x^{\frac{-3}{2}} = \frac{-vx^{\frac{-1}{2}}}{2x} - \frac{1}{vx^{\frac{3}{2}}}$$

$$\frac{dv}{dx} = \frac{-1}{xv}$$

$$\frac{1}{2}v^2 = -\ln|x| + C$$

$$\frac{1}{2}y^2x = -\ln|x| + C$$

Bernoulli Differential Equations 1.7

Bernoulli Diff. Eq.

$$\frac{dy}{dx} + P(x)y = Q(x)y^n \tag{1.7.1}$$

For $n \neq 0, 1$ use substitution

$$V = y^{1-n} (1.7.2)$$

to reduce to a linear diff. equation.

Proof:

$$\frac{dy}{dx} + P(x)y = Q(x)y^n \tag{1.8.1}$$

$$v = y^{1-n} (1.8.2)$$

$$y = v^{\frac{1}{1-n}} \tag{1.7.3}$$

$$\frac{dy}{dx} = \frac{1}{1 - n} \cdot \frac{dv}{dx} \cdot v^{\frac{1}{1 - n} - 1} \tag{1.7.4}$$

Notice

$$v^{\frac{1}{1-n}-1} = v^{\frac{n}{1-n}} = \left(v^{\frac{1}{1-n}}\right)^n \tag{1.7.5}$$

Substituting

$$\frac{1}{1-n} \cdot \frac{dv}{dx} \cdot v^{\frac{1}{1-n}-1} + P(x) \cdot v^{\frac{1}{1-n}} = Q(x) \cdot v^{\frac{1}{1-n}-1}$$
 (1.7.6)

$$\frac{1}{1-n} \cdot \frac{dv}{dx} + P(x) \cdot v^1 = Q(x) \tag{1.7.7}$$

Obvious and Embedded Derivative Substitutions 1.8

Embedded Derivative-

*Look for a piece that is a derivative of another piece

- Must include a y in order to have the $\frac{dy}{dx}$ by the chain rule *Then replace not just $\frac{dy}{dx}$, but $f(x,y)\frac{dy}{dx}$ with $\frac{dx}{dx}$ Example: $3y^2\frac{dy}{dx} + y^3 = e^{-x}$

Obvious Substitution-

Look for any part that can be solved for y and make a substitution.

Not guaranteed to achieve any thing

Both of these techniques just simplify the diff. eq. or put it into a form which we know how to solve.

1.9 Exact Differential Equations

$$F(x,y) = C \tag{1.9.1}$$

$$\frac{d}{dx}[F(x,y) = C] \tag{1.9.2}$$

$$\frac{dF}{dx} = \frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} \cdot \frac{dy}{dx} = 0 \tag{1.9.3}$$

$$dF = \frac{\partial F}{\partial x}dx + \frac{\partial F}{\partial y}dy = 0 \tag{1.9.4}$$

$$M = \frac{\partial F}{\partial x}, \quad N \frac{\partial F}{\partial y} \tag{1.9.5}$$

$$Mdx + Ndy = 0 ag{1.9.6}$$

is an exact differential equation if M and N are partials of some some function F

Steps

1. Check for $F_{xy} = F_{yx}$, $M_y = N_x$, $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$

2.
$$M = \frac{\partial F}{\partial x} \to F(x, y) = \int M dx + g(y)$$

 $N = \frac{\partial F}{\partial y} \to F(x, y) = \int N dy + h(x)$

- 3. Find $\frac{\partial F}{\partial y}$. . . Must Equal N, you will have g'(y) or $\frac{\partial F}{\partial x}$. . . Must Equal M, you will have h'(x)
- 4. Solve for g'(y) or h'(x)

5. Solve for
$$g(y)$$
 or $h(x)$: $g(y) = \int g'(y)dy$ or $h(x) = \int h'(x)dx$

- 6. Replace g(y) or h(x) in # 2
- 7. Now you have F(x, y) = C

1.9.1 Integrating Factor for Inexact Differential Equations

Given
$$Mdx + Ndy = 0$$

What if $M_y \neq N_x$

Multiply by an integrating factor U(x,y) to make it exact

$$\frac{\partial}{\partial y}[U(x,y)\cdot M] = \frac{\partial}{\partial x}[U(x,y)\cdot N] \tag{1.9.7}$$

$$\frac{\partial U}{\partial y} \cdot M + U \cdot \frac{\partial M}{\partial y} = \frac{\partial U}{\partial x} \cdot N + U \cdot \frac{\partial N}{\partial x}$$
 (1.9.8)

$$U\left[\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\right] = \frac{\partial U}{\partial x} \cdot N - \frac{\partial U}{\partial y} \cdot M \tag{1.9.9}$$

This is too complicated so lets assume U contains only Xs

$$U\left[\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\right] = \frac{dU}{dx} \cdot N \tag{1.9.10}$$

$$\int \frac{dU}{U} = \int \frac{\left[\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\right]}{N} dx \tag{1.9.11}$$

$$U = \exp\left(\int \frac{\left[\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\right]}{N} dx\right)$$
 (1.9.12)

U contains only Xs

$$U = \exp\left(\int \frac{M_y - N_x}{N} dx\right) \tag{1.9.13}$$

U contains only Ys

$$U = \exp\left(\int \frac{N_x - M_y}{N} dx\right) \tag{1.9.14}$$

If these contain the other variable then an integrating factor is impossible with only that variable.

1.10 Reducible Second Order Equations

Must be missing all Ys or all Xs

3 Cases

1. Y is gone: $P = \frac{dy}{dx} \rightarrow y'' = \frac{dP}{dx}$

2. X is gone:
$$P = \frac{dy}{dx} \rightarrow y'' = \frac{dP}{dx} = \frac{dP}{dy} \cdot \frac{dy}{dx} \rightarrow y'' = P \cdot \frac{dP}{dy}$$

3. Both are gone: either substitution works

1.11 Miscellaneous Forms

For

$$\frac{dy}{dx} = F(ax + by + c) \tag{1.11.1}$$

Make Substitution

$$V = ax + by + c \tag{1.11.2}$$

$$\frac{dV}{dx} = a + b \cdot \frac{dy}{dx} \tag{1.11.3}$$

$$\frac{dV}{dx} = a + b \cdot F(V) \tag{1.11.4}$$

For

$$\frac{dy}{dx} = \frac{ax + by + c}{ex + fy + g} \tag{1.11.5}$$

Substitute

Where α and β satisfy

$$x = X + \alpha \qquad a\alpha + b\beta + c = 0 \tag{1.11.6}$$

$$y = Y + \beta \qquad e\alpha + f\beta + g = 0 \tag{1.11.7}$$

Giving

$$\frac{dY}{dX} = \frac{aX + bY}{eX + fY} \tag{1.11.8}$$

Which is homogeneous and therefore solvable.

Higher Degree First Order Differential Equations 1.12

The term $\frac{dy}{dx}$ is raised to an power Typically written in two forms

$$F(x, y, \frac{dy}{dx}) = 0 \tag{1.12.1}$$

$$\left(\frac{dy}{dx}\right)^n + a_{n-1}(x,y)\left(\frac{dy}{dx}\right)^{n-1} + \dots + a_1(x,y)\frac{dy}{dx} + a_0(x,y) = 0$$
 (1.12.2)

3 Way to solve

- 1.) Soluble for $\frac{dy}{dx}$
- 2.) Soluble for x
- 3.) Soluble for y

Clairaut's Equation (Special Case)

Soluble for $\frac{dy}{dx}$ 1.12.1

Must be forced into $(P - F_1)(P - F_2)$. . $(P - F_n) = 0$

Where $P = \frac{dy}{dx}$

Now solve each first degree equation for a solution $G_i(x, y) = 0$

The general solution is of the form

$$\prod_{i=1}^{n} G_i(x,y) = 0 \tag{1.12.3}$$

Example:
$$[(x+1)P - y][(x^2+1)P - 2xy] = 0$$

$$(x+1)P - y = 0$$

$$\int \frac{dy}{y} = \int \frac{dx}{x+1}$$

$$\ln|y| = \ln|x+1| + C_1$$

$$0 = C(x+1) - y$$

$$(x^2+1)P = 2xy$$

$$\int \frac{dy}{y} = \int \frac{2x}{x^2+1} dx$$

$$\ln|y| = \ln|x^2+1| + C_1$$

$$0 = C(x^2+1) - y$$

Solution: $[C(x+1)-y] \cdot [C(x^2+1)-y] = 0$

1.12.2 Soluble for X

If

$$x = F(y, P) \tag{1.12.4}$$

Differentiating both sides by y yields

$$\frac{dx}{dy} = \frac{1}{P} = \frac{\partial F}{\partial y} + \frac{\partial F}{\partial P} \cdot \frac{dP}{dy}$$
 (1.12.5)

Example:
$$3x = \frac{y}{P} - 6y^{2}P$$

$$\frac{3}{P} = \frac{1}{P} - 12yP + \left(\frac{-y}{p^{2}} - 6y^{2}\right)P'$$

$$0 = -(1 + 6yP^{2})(2P + yP')$$

$$P' + \frac{2}{y}P = 0$$

$$y^{2}P' + 2yP = 0$$

$$y^{2}P = C$$

$$P = \frac{C}{2x^{2}}$$

 $P = \frac{C}{y^2}$ Plugging back into problem and simplifying: $6C^2 + 3xC = y^3$ This is the general solution.

$$1 + 6yP^2 = 0$$
$$P = \sqrt{\frac{-1}{6y}}$$

Plugging back into problem and simplifying: $-3x^2 = 8y^3$ This is the singular solution.

1.12.3 Soluble for Y

If

$$y = F(x, P) \tag{1.12.6}$$

Differentiating both sides by x yields

$$\frac{dy}{dx} = \frac{\partial F}{\partial x} + \frac{\partial F}{\partial P} \cdot \frac{dP}{dx} = P \tag{1.12.7}$$

Example:

$$y = xp^2 + 2xp$$

$$P = P^{2} + 2P + (2xp + 2x)P'$$

$$0 = (P+1)(P+2xP')$$

$$0 = \frac{P}{2x} + P'$$

$$0 = \frac{P}{2\sqrt{x}} + \sqrt{x}P'$$

$$P = \frac{C}{\sqrt{x}}$$

Plugging back into problem and simplifying: $(y-c)^2 = 4cx$ This is the general solution.

$$p = -1$$

Plugging back into problem and simplifying: y = -xThis is the singular solution.

1.12.4 Clairaut's Equation

$$y = px + F(p) \tag{1.12.8}$$

Differentiating by x yields

$$\frac{dy}{dx} = p = p + x\frac{dp}{dx} + \frac{dF}{dp}\frac{dp}{dx}$$
 (1.12.9)

$$0 = \frac{dp}{dx} \left(\frac{dF}{dp} + x \right) \tag{1.12.10}$$

$$\frac{dp}{dx} = \frac{d^2y}{dx^2} = 0\tag{1.12.11}$$

$$p = c_1 y = c_1 x + c_2 (1.12.12)$$

General Solution:

$$y = c_1 x + F(c_1) (1.12.13)$$

Singular Solution:

$$\frac{dF}{dp} + x = 0\tag{1.12.14}$$

2 Second Order Differential Equations

2.1 Second Order Linear Homogeneous ODEs with Constant Coefficients

Standard Form:

$$y'' + Ay' + By = 0 (2.1.1)$$

Solution:

$$y = c_1 y_1 + c_2 y_2 \tag{2.1.2}$$

Where y_1 and y_2 are solutions.

Make substitution $y = e^{rx}$

$$r^2 e^{rx} + Are^{rx} + Be^{rx} = 0 (2.1.3)$$

$$r^2 + Ar + B = 0 (2.1.4)$$

This is called the characteristic equation of the system

<u>Case 1</u>: If the characteristic equation produces two distinct real roots r_1, r_2

$$y = c_1 e^{r_1 x} + c_2 e^{r_2 x} (2.1.5)$$

<u>Case 2</u>: If the characteristic equation produces two complex roots

$$r_1 = a + bi$$
 $r_2 = a - bi$

Complex Solution

$$y = e^{(a+bi)x} \tag{2.1.6}$$

Solutions:

$$e^{ax}\cos(bx)$$
, $e^{ax}\sin(bx)$ (2.1.7)

$$y = e^{ax} [c_1 \cos(bx) + c_2 \sin(bx)]$$
 (2.1.8)

Theorem 2.1. If u(x) + iv(x) is a complex solution to y'' + Ay' + By = 0 then u(x) and v(x) are both real solutions.

Proof.

$$(u+iv)'' + A(u+iv)' + B(u+iv) = 0 (2.1.9)$$

$$[u'' + Au' + Bu] + i[v'' + Av' + Bv] = 0 (2.1.10)$$

$$\therefore$$
 Real Part = 0 = Complex Part

Case 3: If the characteristic equation produces two equal roots r

$$r = -a \tag{2.1.11}$$

$$(r+a)^2 = 0 (2.1.12)$$

$$r^2 + 2ar + a^2 = 0 (2.1.13)$$

$$y'' + 2ay' + a^2y = 0 (2.1.14)$$

Theorem 2.2. If y_1 is one solution to y'' + py' + qy = 0 then there is another of the form $y_2 = y_1 \cdot u$

Proof. Starting with one solution e^{-ax}

$$a^{2} \cdot [y = e^{-ax} \cdot u]$$

$$2a \cdot [y' = -ae^{-ax} \cdot u + e^{-ax} \cdot u']$$

$$1 \cdot [y'' = a^{2}e^{-ax} \cdot u - 2ae^{-ax} \cdot u' + e^{ax} \cdot u'']$$

 $0 = 0 + 0 + u''e^{ax}$

$$u'' = 0 (2.1.15)$$

$$u = c_a x + c_b \tag{2.1.16}$$

$$y_2 = x \cdot e^{-ax} \tag{2.1.17}$$

Any choice of constants work, so the simplest is picked

$$y = (c_1 + c_2 x)e^{rx} (2.1.18)$$

Example: y'' + 4y' + 3y = 0 y(0) = 1, y'(0) = 0

$$r^{2} + 4r + 3 = 0$$

$$r = -1, -3$$

$$y = c_{1}e^{-t} + c_{2}e^{-3t}$$

$$y = -c_{1}e^{-t} - 3c_{2}e^{-3t}$$

$$1 = c_{1} + c_{2}$$

$$0 = -c_{1} - 3c_{2}$$

$$c_{2} = \frac{-1}{2} \qquad c_{1} = \frac{3}{2}$$

$$y = \frac{3}{2}e^{-3t} - \frac{1}{2}e^{-t}$$

Example: y'' + 4y' + 5y = 0 y(0) = 1, y'(0) = 0

$$r^{2} + 4r + 5 = 0$$

$$r = -2 \pm i$$

$$y = e^{-2t}(c_{1}\cos t + c_{2}\sin t)$$

$$y' = -2e^{-2t}(c_{1}\cos t + c_{2}\sin t) + e^{-2t}(c_{2}\cos t - c_{1}\sin t)$$

$$1 = 1 \cdot (c_{1} + 0)$$

$$0 = -2(1 \cdot 1 + 0) + 1 \cdot (c_{2} - 0)$$

$$c_{2} = 2$$

$$c_{1} = 1$$

$$y = e^{-2t}(\cos t + 2\sin t)$$

Most General Complex Solution

$$y = C_1 e^{(a+bi)t} + C_2 e^{(a-bi)t}, \quad C_i \in \mathbb{C}$$
 (2.1.19)

Making it Real

- 1. Multiply everything out and set imaginary part to zero
- 2. or Use the fact that if real: (u + vi = u iv)

$$= C_1 e^{(a+bi)t} + C_2 e^{(a-bi)t} (2.1.19)$$

$$=\overline{C}_1 e^{(a-bi)t} + \overline{C}_2 e^{(a+bi)t} \tag{2.1.20}$$

$$\therefore C_1 = \overline{C}_2, \quad C_2 = \overline{C}_1 \tag{2.1.21}$$

So in order to be real

$$= (c+di)e^{(a+bi)t} + (c-di)e^{(a+bi)t}$$
(2.1.22)

$$= e^{at} \left[c \left(e^{ibt} + e^{-ibt} \right) + id \left(e^{ibt} - e^{-ibt} \right) \right]$$
 (2.1.23)

$$=e^{at}\left[2c\cos bt + 2d\sin bt\right] \tag{2.1.24}$$

$$y = e^{at} [c_1 \cos bt + c_2 \sin bt]$$
 (2.1.25)

2.2 Theory of Second Order Linear ODEs

$$y'' + p(x)y' + q(x)y = 0 (2.2.1)$$

Solution $y = c_1y_1 + c_2y_2$ is called a linear combination.

Question 1: Why are $c_1y_1 + c_2y_2$ solutions?

Theorem 2.3 (Superposition Principle). If y_1 and y_2 are solutions to a linear homo. ODE. then $c_1y_1 + c_2y_2$ is also a solution.

Proof.

$$y'' + py' + qy = 0 (2.2.2)$$

$$D^2y + pDy + qy = 0 (2.2.3)$$

$$(D^2 + pD + q)y = 0 (2.2.4)$$

7

Definition 2.1. Linear Operator -Turns a function of x into another function of x

$$Ly = 0,$$
 $L = D^2 + pD + q$ (2.2.5)

Because L is linear

$$L(u_1 + u_2) = L(u_1) + L(u_2)$$

 $L(k \cdot u) = k \cdot L(u)$

$$Ly = 0 (2.2.6)$$

$$L(c_1y_1 + c_2y_2) = c_1L(y_1) + c_2L(y_2)$$
(2.2.7)

$$L(c_1y_1 + c_2y_2) = c_1 \cdot 0 + c_2 \cdot 0 \tag{2.2.8}$$

$$L(c_1y_1 + c_2y_2) = 0 (2.2.9)$$

Question 2: Why are $c_1y_1 + c_2y_2$ all of the solutions?

Theorem 2.4. $\{c_1y_1 + c_2y_2\}$ is enough to satisfy any initial conditions.

Proof. Initial Values: $y(x_0) = a$, $y'(x_0) = b$

$$c_1 y_1(x_0) + c_2 y_2(x_0) = a (2.2.10)$$

$$c_1 y_1'(x_0) + c_2 y_2'(x_0) = b (2.2.11)$$

This system is solvable if

$$\begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} \neq 0 \tag{2.2.12}$$

This is true if y_1 and y_2 are linearly independent.

This is called the Wronskian:

$$W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix}$$
 (2.2.13)

Theorem 2.5. If y_1 and y_2 are solutions to y'' + py' + qy = 0, then

$$W(y_1, y_2) \equiv 0 \text{ for all } x$$
 (2.2.14)

$$W(y_1, y_2)$$
 is never 0 for all x (2.2.15)

Finding Normalized Solutions:

 $\overline{\{c_1y_1+c_2y_2\}}=\overline{\{c_1'u_1+c_2'u_2\}}-\overline{u_1}$ and u_2 are any other pair of ind. solutions.

$$u_1 = \bar{c}_1 y_1 + \bar{c}_2 y_2 u_2 = \bar{c}_1 y_1 + \bar{c}_2 y_2$$

$$Y_1: y_1(0) = 1$$

 $y'_1(0) = 0$

$$Y_2: y_2(0) = 0$$

 $y'_2(0) = 1$

Example: y'' - y = 0

$$y_1 = e^x$$
$$y_2 = e^{-x}$$

$$y = c_1 e^x + c_2 e^{-x}$$

 $y' = c_1 e^x - c_2 e^{-x}$

$$Y_1: c_1 + c_2 = 1$$
 $Y_2: c_1 + c_2 = 0$ $c_1 - c_2 = 0$ $c_1 = c_2 = \frac{1}{2}$ $c_1 = \frac{1}{2}c_2 = \frac{-1}{2}$

$$Y_1 = \frac{e^x + e^{-x}}{2}$$
 $Y_2 = \frac{e^x - e^{-x}}{2}$ $Y_1 = \sinh x$ $Y_2 = \cosh x$

Why?

 Y_1 and Y_2 normalized at 0 and IVP: $y(0) = y_0$, $y'(0) = y'_0$. The solution is

$$y = y_0 Y_1 + y_0' Y_2$$
 (2.2.16)
$$y(0) = a \cdot 1 + b \cdot 0$$
$$y'(0) = a \cdot 0 + b \cdot 1$$

Theorem 2.6 (Existence and Uniqueness Theorem). Given y'' + py' + qy = 0 and p and q being continuous for all x, there is one and only one solution to the initial value: y(0) = a, y'(0) = b

Proof. Cont. of Question 2 Given a solution
$$u(x)$$
 w/ $u(0) = u_0$, $u'(0) = u'_0$

Then $u_0Y_1 + u_0'Y_2$ satisfies the same initial conditions

$$\therefore$$
 $u = u_0 Y_1 + u_0' Y_2$ by Exi. & Uni. Theorem

2.3 Theory of Inhomogeneous Second Order ODES

Inhomogeneous:

$$y'' + p(x)y' + q(x)y = f(x)$$
(2.3.1)

Associated Homo. Equation: y'' + p(x)y' + q(x)y = 0Complementary Solution: $y_h = c_1y_1 + c_2y_2$

Theorem 2.7. Given L(y) = f(x) (L being a linear operator) The solution is $y_p + y_h$

 y_p is a particular solution to the equation.

Proof. All $y_p + c_1y_1 + c_2y_2$ are solutions.

$$L(y_p + c_1y_1 + c_2y_2) = L(y_p) + L(c_1y_1 + c_2y_2)$$
(2.3.2)

$$= f(x) + 0 = f(x) \tag{2.3.3}$$

Proof. There are no other solutions.

u(x) is a solution.

$$L(u) = f(x) = L(y_p)$$
 (2.3.4)

$$L(u - y_p) = 0 (2.3.5)$$

$$u - y_p = c_1 y_1 + c_2 y_2 \tag{2.3.6}$$

$$\therefore u = y_p + c_1 y_1 + c_2 y_2 \tag{2.3.7}$$

 $y'' + Ay' + By = f(t) \quad A, B \in \mathbb{R}$ (2.3.8)

$$y = y_p + y_h \tag{2.3.9}$$

Definition 2.2 (Stable). An ODE is stable if y_h goes to 0 as $t \to \infty$

 y_h is called the trangent y_p is called the steady-state solution

Roots	Solution	Stability Condition
$r_1 \neq r_2$	$c_1 e^{r_1 t} + c_2 e^{r_2 t}$	$r_1, r_2 < 0$
$r_1 = r_2$	$(c_1 + c_2 x)e^{rt}$	r ₁ < 0
$r = a \pm bi$	$e^{at}[c_1\cos bt + c_2\sin bt]$	a < 0

Some important f(x)s

$$e^{ax}$$
, $\sin \omega t$, $\cos \omega y$, $e^{ax} \sin \omega t$, $e^{ax} \cos \omega t$, $e^{(a\pm bi)t}$ or $e^{\alpha x}$

$$y'' + Ay' + By = f(x)$$
 (2.3.8)

$$(D^2 + AD + B)y = f(x)$$
 (2.3.10)

$$p(D)y = f(x) \tag{2.3.11}$$

$$p(D)e^{\alpha x} = p(\alpha)e^{\alpha x} \tag{2.3.12}$$

Proof.

$$(D^2 + AD + B)e^{\alpha x} \tag{2.3.13}$$

$$D^2 e^{\alpha x} + ADe^{\alpha x} + Be^{\alpha x} \tag{2.3.14}$$

$$e^{\alpha x} \cdot \alpha^2 + Ae^{\alpha x} \cdot \alpha + Be^{\alpha x} \tag{2.3.15}$$

$$p(\alpha)e^{\alpha x} \tag{2.3.16}$$

Theorem 2.8 (Exponential Input Theorem). For $(D^2 + AD + B)y = e^{\alpha x}$

$$y_p = \frac{e^{\alpha x}}{p(\alpha)} \tag{2.3.17}$$

Proof.

$$p(D)y_p = e^{\alpha x} \tag{2.3.18}$$

$$p(D)\frac{e^{\alpha x}}{p(\alpha)} = e^{\alpha x} \tag{2.3.19}$$

$$p(\alpha)\frac{e^{\alpha x}}{p(\alpha)} = e^{\alpha x} \tag{2.3.20}$$

$$e^{\alpha x} = e^{\alpha x} \tag{2.3.21}$$

Example: $y'' - y' + 2y = 10e^{-x}\sin x$

$$(D^{2} - D + 2)\tilde{y}_{p} = 10e^{(-1+i)x}$$

$$\tilde{y}_{p} = \frac{10e^{(-1+i)x}}{(-1+i)^{2} - (-1+i) + 2}$$

$$\tilde{y}_{p} = \frac{10}{3} \cdot \frac{(1+i)}{2} \cdot e^{-x}(\cos x + i\sin x)$$

$$y_{p} = \Im(\tilde{y}_{p}) = \frac{5}{3}e^{-x}(\cos x + \sin x)$$

$$y = e^{\frac{1}{2}x} \left(c_1 \cos\left(\frac{\sqrt{7}}{2}x\right) + c_2 \sin\left(\frac{\sqrt{7}}{2}x\right) \right) + \frac{5}{3} \cdot e^{-x} \cdot \sqrt{2} \cos\left(x - \frac{\pi}{4}\right)$$

What if $p(\alpha) = 0$

Exponential Shift Rule

$$p(D)(e^{ax} \cdot u(x)) = e^{ax}p(D+a)u(x)$$
 (2.3.22)

Check: p(D) = D (simple polynomial)

$$De^{ax}u (2.3.23)$$

$$e^{ax} \cdot Du + ae^{ax} \cdot u \tag{2.3.24}$$

$$e^{ax}(Du + au) (2.3.25)$$

$$e^{ax}(D+a)u\tag{2.3.26}$$

$$p(D) = D^2$$

$$D^2 e^{ax} u \tag{2.3.27}$$

$$D(De^{ax}u) (2.3.28)$$

$$D(e^{ax}(D+a)u) \tag{2.3.29}$$

$$e^{ax}(D+a)[(D+a)u]$$
 (2.3.30)

$$e^{ax}(D+a)^2u$$
 (2.3.31)

$$(D^2 + AD + B)y = e^{ax}, p(a) = 0$$
 (2.3.32)

Then

$$y_p = \frac{xe^{ax}}{p'(a)} \tag{2.3.33}$$

If a is a double root:

$$y_p = \frac{x^2 e^{ax}}{p''(a)} \tag{2.3.34}$$

Proof. Simple Root Case

$$p(D) = (D - b)(D - a), \quad a \neq b$$
 (2.3.35)

$$p'(D) = (D - a) + (D - b)$$
(2.3.36)

$$p'(a) = a - b (2.3.37)$$

$$p(D)\frac{e^{ax} \cdot x}{p'(a)} = e^{ax} \tag{2.3.38}$$

$$e^{ax} \cdot (D+a-b)D\frac{x}{p'(a)} \tag{2.3.39}$$

$$e^{ax}(D+a-b)\frac{1}{p'(a)}$$
 (2.3.40)

$$e^{ax} \frac{a-b}{a-b}$$

$$e^{ax} = e^{ax}$$
(2.3.41)
$$(2.3.42)$$

$$e^{ax} = e^{ax} \tag{2.3.42}$$

Example: $y'' - 3y' + 2y = e^x$

$$p(D) = D^2 - 3D + 2$$

 $p'(D) = 2D - 3D$
 $p'(1) = -1$

$$y_p = -xe^x$$

2.4 Fourier Series

$$f(t) = c_0 + \sum_{n+1}^{\infty} [a_n \cos nt + b_n \sin nt]$$
 (2.4.1)

Where f(t) is a periodic function

$$f(t) = \sum_{n=1}^{\infty} \frac{\text{Response}}{b_n y_n^s(t)}$$

$$\frac{b_n \sin nt}{a_n \cos nt} \Rightarrow \frac{a_n y_n^s(t)}{a_n y_n^c(t)}$$

$$f(t) = \sum_{n=1}^{\infty} [a_n y_n^c(t) + b_n y_n^s(t)] + c_1$$

Because the ODE is linear

Definition 2.3. Given two functions u(t) and v(t) which are continuous on \mathbb{R} and have a period of 2π . They are orthogonal on $[-\pi,\pi]$ if

$$\int_{-\pi}^{\pi} u(t)v(t)dt = 0 \tag{2.4.2}$$

Theorem 2.9. From the set of functions

$$\sin nt$$
 $n = 1, 2, 3,$
 $\cos mt$ $m = 0, 1, 2,$

Any two distinct (can be same function) members are orthogonal on $[-\pi, \pi]$

Proof. $m \neq n$

They $(\sin nt, \cos nt)$ satisfy the ODE

$$u_n'' + n_n^2 u = 0 (2.4.3)$$

Let u_n , v_m be any distinct of the two functions

$$\int_{-\pi}^{\pi} u_n'' v_m dt = u_n' v_m \Big|_{-\pi}^{\pi} - \int_{-\pi}^{\pi} u_n' v_m' dt$$
 (2.4.4)

$$\int_{-\pi}^{\pi} u_n'' v_m dt = -\int_{-\pi}^{\pi} u_n' v_m' dt = \int_{-\pi}^{\pi} v_m'' u_n dt$$
 (2.4.5)

$$\int_{-\pi}^{\pi} u_n'' v_m dt = -n^2 \int_{-\pi}^{\pi} u_n v_m dt$$
 (2.4.6)

$$\int_{-\pi}^{\pi} v_m'' u_n dt = -m^2 \int_{-\pi}^{\pi} u_n v_m dt$$
 (2.4.7)

$$-n^{2} \int_{-\pi}^{\pi} u_{n} v_{m} dt = -m^{2} \int_{-\pi}^{\pi} u_{n} v_{m} dt$$
 (2.4.8)

$$\rightarrow \int_{-\pi}^{\pi} u_n v_m dt = 0 \tag{2.4.9}$$

Given f(t) with period 2π find a_n and b_n

$$f(t) = \dots + a_k \sin kt + \dots + a_n \cos nt + \dots$$
 (2.4.10)

$$f(t) \cdot \cos nt = \dots + a_k \cos nt \sin kt + \dots + a_n \cos nt \cos nt + \dots$$
 (2.4.11)

$$\int_{-\pi}^{\pi} f(t) \cdot \cos nt \ dt = \dots + \int_{-\pi}^{\pi} a_k \cos nt \sin kt \ dt + \dots + \int_{-\pi}^{\pi} a_n \cos nt \cos nt \ dt + \dots$$
 (2.4.12)

$$\int_{-\pi}^{\pi} f(t) \cdot \cos nt \ dt = \dots + 0 + 0 + 0 + \dots + 0 + a_n \pi + 0 + \dots$$
 (2.4.13)

Formula for a_n and b_n

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cdot \cos nt \ dt$$
 (2.4.14)

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cdot \sin nt \ dt \tag{2.4.15}$$

The constant term:

$$f(t) = c_0 + \dots + a_n \cos nt + \dots$$
 (2.4.16)

$$\int_{-\pi}^{\pi} f(t)dt = 2\pi + 0 + 0 + 0 + \dots$$
 (2.4.17)

$$c_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)dt = \frac{a_0}{2}$$
 (2.4.18)

Example: Find the fourier series of

$$a_n = \frac{1}{\pi} \left(\int_0^{\pi} \cos nt \ dt - \int_{-\pi}^0 \cos nt \ dt \right) = 0$$

$$b_n = \frac{1}{\pi} \left(\int_0^{\pi} \sin nt \ dt - \int_{-\pi}^0 \sin nt \ dt \right)$$

$$\frac{1}{\pi} \left(\frac{1 - \cos n\pi}{n} + \frac{1 - \cos n\pi}{n} \right) = \frac{2}{\pi n} (1 - \cos n\pi)$$

$$= \frac{2}{\pi n} (1 - (-1)^n) = b_n$$

$$f(t) = \frac{a_n}{2} + \sum_{n+1}^{\infty} \left[a_n \cos nt + b_n \sin nt \right]$$

$$f(t) = \sum_{n+1}^{\infty} \frac{2}{\pi n} (1 - (-1)^n) = b_n$$

$$= \frac{4}{\pi} \sin t + \frac{4}{3\pi} \sin 3t + \frac{4}{5\pi} \sin 5t + \dots$$

How to shorten Process:

1. If f(t) is an even function

$$\to f(t) = \frac{a_n}{2} + \sum_{n=1}^{\infty} a_n \cos nt$$

all b_n are zero

2. If f(t) is an odd function

$$\to f(t) = \sum_{n=1}^{\infty} abn \sin nt$$
 all a_n are zero

3. If f(t) is an even function

$$\rightarrow a_n = \frac{2}{\pi} \int_0^{\pi} f(t) \cdot \cos nt \ dt$$

4. If f(t) is an even function

$$\to b_n = \frac{2}{\pi} \int_0^{\pi} f(t) \cdot \cos nt \ dt$$

Example: Find the Fourier series

$$b_n = \frac{2}{\pi} \int_0^{\pi} t \sin t \, dt$$

$$b_n = \frac{2}{\pi} \left[-t \frac{\cos nt}{n} \Big|_0^{\pi} - \int_0^{\pi} \frac{-\cos nt}{n} \, dt \right]$$

$$b_n = \frac{2}{\pi} \left[\frac{-\pi}{n} (-1)^n + \frac{\sin nt}{n^2} \Big|_0^{\pi} \right]$$

$$b_n = \frac{2}{n} (-1)^{n+1}$$

$$f(t) = \sum_{n=1}^{\infty} \frac{2}{n} (-1)^{n+1} \sin nt$$

Theorem 2.10. If f is continuous at t_0 , then $f(t_0) = sum$ of F.S. If f has a jump discontinuity, then F.S. = midpoint of the jump.

Extension 1: period is 2L

$$\cos\frac{n\pi}{L}t \qquad a_n = \frac{1}{L} \int_{-L}^{L} f(t) \cdot \cos\frac{n\pi}{L}t \ dt \qquad (2.4.19)$$

$$\sin\frac{n\pi}{L}t \qquad b_n = \frac{1}{L} \int_{-L}^{L} f(t) \cdot \sin\frac{n\pi}{L}t \ dt \qquad (2.4.20)$$

Extension 2: if f is defined on (0, L]

Periodic Extension:

Either odd or even extensions making it periodic on [-L, L], now do a F.S.

2.4.1 Using Fourier Series to Solve Differential Equations

Example: Use $f(t) = \frac{1}{2} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin((2n+1)\pi t)}{2n+1}$ to solve $x'' + \omega_0 x = f(t)$

Knowing that if
$$f(t) = \sin \omega t$$
, then $x_p = \frac{\sin \omega t}{\omega_0^2 - \omega^2}$
 $f(t) = \cos \omega t$ $x_p = \frac{\cos \omega t}{\omega_0^2 - \omega^2}$

More General: If
$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \omega_n t + b_n \sin \omega_n t$$

$$\omega_n = \frac{n\pi}{L}$$
$$x_p = \frac{a_0}{2\omega_0^2} + \sum_{n=1}^{\infty} \frac{a_n \cos \omega_n t}{\omega_0^2 - \omega_n^2} + \frac{b_n \sin \omega_n t}{\omega_0^2 - \omega_n^2}$$

If f is the sum of a bunch of functions, the particular solution will be the sum of the individual solutions because the ODE is linear. The constant term in front is treated as a cosine when $\omega_n = 0$

Another Method if
$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} b_n \sin nt$$

Assume a solution in the form $x_p = c_0 + \sum_{1}^{\infty} c_n \sin nt$ $x_p = \sum_{1}^{\infty} -c_n n^2 \sin nt$

$$x_{p} = \sum_{1}^{\infty} -c_{n} n^{2} \sin nt$$

$$c_{0} + \sum_{1}^{\infty} c_{n} [\sin nt - n^{2} \sin nt] = \frac{a_{0}}{2} + \sum_{n=1}^{\infty} b_{n} \sin nt$$

$$c_{0} = \frac{a_{0}}{2} \qquad c_{n} = \frac{b_{n}}{1 - n^{2}}$$
(2.4.21)

2.5 Laplace Transform

Start with a power series

$$\sum_{n=0}^{\infty} a(n)x^n = A(x)$$
 (2.5.1)

The continuous analogue where $n=0,1,2,\ldots \to 0 \le t \le \infty$

$$\int_0^\infty a(t)x^t dt = A(x) \tag{2.5.2}$$

 $x = e^{\ln x}$ $x^{t} = (e^{\ln x})^{t}$ $0 \le x \le 1 \text{ we want } \int \text{ to converge}$ $\ln x < 0$ $-s = \ln x$

Laplace Transform:

$$\int_0^\infty f(t)e^{-st} dt = F(s) \tag{2.5.3}$$

$$\mathcal{L}\{f(t)\} = F(s) \tag{2.5.4}$$

Linear Transform

$$\mathcal{L}(f+g) = \mathcal{L}(f) + \mathcal{L}(g) \tag{2.5.5}$$

$$\mathcal{L}(c \cdot f) = c \cdot \mathcal{L}(f) \tag{2.5.6}$$

Because the integral is linear operator.

Example: $\mathscr{L}(1)$

$$\int_0^\infty e^{-st} dt = \lim_{r \to \infty} \frac{e^{-st}}{-s} \Big|_0^r$$

$$= \lim_{r \to \infty} \frac{e^{-sr}}{-s} - \frac{e^0}{-s}$$

$$= \frac{1}{s}, \quad s > 0$$

Exponential Shift Formula

$$e^{at}f(t) \rightsquigarrow F(s-a)$$
 (2.5.7)

Proof.

$$\mathcal{L}(e^{at}f(t)) = \int_0^\infty e^{at}f(t)e^{-st} dt$$
 (2.5.8)

$$\int_0^\infty e^{-(s-a)t} f(t) dt \tag{2.5.9}$$

This is just a Laplace Transform in terms of s - a.

$$\mathscr{L}(e^{at}) = \frac{1}{s-a}, \quad s > a$$

Example:
$$\mathscr{L}(\sin at \text{ and } \cos at)$$

$$\cos at = \frac{e^{iat} + e^{-iat}}{2}$$

$$\mathcal{L}(\cos at) = \frac{1}{2}\mathcal{L}(e^{iat}) + \frac{1}{2}\mathcal{L}(e^{-iat})$$

$$= \frac{1}{2}\left(\frac{1}{s-ia} + \frac{1}{s+ia}\right)$$

$$\mathcal{L}(\cos at) = \frac{s}{s^2 + a^2}$$
$$\mathcal{L}(sinat) = \frac{s}{s^2 + a^2}$$

Example: Find
$$\mathscr{L}^{-1}$$
 of $\frac{1}{s(s-3)}$

By partial fraction decomp.
$$\frac{1}{s(s-3)} = \frac{\frac{1}{3}}{s} + \frac{\frac{-1}{3}}{s+3}$$

$$\mathscr{L}^{-1} \rightsquigarrow \frac{1}{3} - \frac{1}{3}e^{-3t}$$

Example:
$$\mathscr{L}(t^n)$$

$$\int_0^\infty t^n e^{-st} dt = t^n \frac{e^{-st}}{-s} \Big|_0^\infty - \int_0^\infty n t^{n-1} \frac{e^{-st}}{-s} dt$$

$$= 0 + \frac{n}{s} \int_0^\infty t^{n-1} e^{-st} dt$$

$$= \frac{n}{s} \mathcal{L}(t^{n-1})$$

$$\mathcal{L}(t^n) = \frac{n}{s} \mathcal{L}(t^{n-1}) = \dots = \frac{n!}{s^n} \mathcal{L}(t^0)$$

$$\mathcal{L}(t^n) = \frac{n!}{s^{n+1}}$$

Using Laplace Transforms to Solve Linear ODEs 2.5.1

We need a condition that guarantees that \mathscr{L} Growth Condition:

$$|f(t)| \leqslant Ce^{kt} \quad C, k > 0 \tag{2.5.10}$$

Must be true all t > 0f(t) must be of exponential type

Example: $\frac{1}{t}$

$$\int_0^\infty \frac{e^{-st}}{t} dt$$

Doesn't converge at t = 0 $\frac{1}{t}$ is not of exponential type

 e^{t^2} is also not of exponetial type

Solving ODEs: $[\mathcal{L}(y(t)) = Y(s)]$

$$y'' + Ay' + By = h(t) (2.5.11)$$

 $\downarrow \mathscr{L}$

$$Y = \frac{p(s)}{q(s)}$$

$$\downarrow \mathcal{L}^{-1}$$
(2.5.12)

$$y(t) = y \tag{2.5.13}$$

Laplace Transform of a Derivative

$$\mathcal{L}(f'(t)) \tag{2.5.14}$$

$$= \int_0^\infty f'(t)e^{-st}dt \tag{2.5.15}$$

$$= f(t)e^{-st} \bigg|_{0}^{\infty} + s \int_{0}^{\infty} f(t)e^{-st}dt$$
 (2.5.16)

$$= \lim_{t \to \infty} \frac{f(t)}{e^{st}} - \frac{f(0)}{1} + sF(s)$$
 (2.5.17)

$$\mathcal{L}(f'(t)) = sF(s) - f(0) \tag{2.5.18}$$

$$\mathcal{L}(f''(t)) = s^2 F(s) - s f(0) - f'(0) \tag{2.5.19}$$

Example: $y'' - y = e^{-y}$, y(0) = 1 y'(0) = 0

$$\begin{aligned} \mathcal{L}(y''-y) &= \mathcal{L}(e^{-t}) \\ s^2Y - s \cdot 1 - 0 - Y &= \frac{1}{s+1} \text{ Plugged in initial conditions.} \\ Y \cdot (s^2 - 1) &= \frac{1}{s+1} + s \\ Y \cdot (s^2 - 1) &= \frac{s^2 + s + 1}{s+1} \end{aligned}$$

$$Y = \frac{s^2 + s + 1}{(s+1)^2(s-1)}$$

$$Y = \frac{-.5}{(s+1)^2} + \frac{.25}{s+1} + \frac{.75}{s-1}$$

$$y(t) = \mathcal{L}^{-1} \left(\frac{-.5}{(s+1)^2} + \frac{.25}{s+1} + \frac{.75}{s-1} \right)$$

$$y = \frac{1}{4}e^{-t} + \frac{3}{4}e^t - \frac{1}{2}te^{-t}$$

2.5.2 Laplace Transforms for ODEs with Jump Discontinuities

u(t) is the unit step function

$$u(t-a) = u_a(t)$$

 $u_{ba}(t)$ is the unit box function = $u_b(t) - u_a(t)$

$$\mathcal{L}(u(t)) = \int_0^\infty e^{-st} u(t) \ dt = \frac{1}{s}, \quad s > 0$$
 (2.5.20)

$$\mathcal{L}(1) = \frac{1}{s} = \mathcal{L}(u(t)) \tag{2.5.21}$$

All these functions have the same $\mathscr{L},\,\mathscr{L}$ doesn't care about x<0.

Now if $\mathcal{L}(f(t)) = F(s)$

$$\mathcal{L}^{-1}(F(s)) = u(t) \cdot f(t) \tag{2.5.22}$$

Formula for $\mathcal{L}(f(t-a))$ in terms of f(t) doesn't exist

The shaded blue piece is not used for f(t) however it will be needed for f(t-a)

We can find a formulas for $u(t-a) \cdot f(t-a)$

$$\mathcal{L}(u(t-a)\cdot f(t-a)) = e^{-as}F(s)$$
(2.5.23)

$$\mathcal{L}(u(t-a)\cdot f(t)) = e^{-as}\mathcal{L}(f(t+a))$$
(2.5.24)

Proof.

$$\int_0^\infty e^{-st} u(t-a) f(t-a) dt \qquad t_1 = t - a$$
 (2.5.25)

$$\int_{-a}^{\infty} e^{-s(t_1+a)} u(t_1) f(t_1) dt_1 = e^{-as} \int_{a}^{\infty} e^{-st_1} u(t_1) f(t_1) dt_1$$
 (2.5.26)

u(t) is zero when negative, bound simplified

$$e^{-as} \int_{a}^{\infty} e^{-st_1} f(t_1) dt_1$$
 (2.5.27)

$$e^{-as}F(s) (2.5.28)$$

$$u(t-a) \cdot f(t-a) \sim e^{-as} \mathcal{L}(f(t))$$
 replace t by t+a in f (2.5.29)

$$u(t-a) \cdot f(t) \rightsquigarrow e^{-as} \mathcal{L}(f(t+a))$$
 (2.5.30)

Example: $\mathscr{L}(u_{ab}(t))$

$$\frac{\mathcal{L}(u(t-a)) - \mathcal{L}(u(t-b))}{\frac{e^{-as}}{s} - \frac{e^{-bs}}{s}}$$

Example:
$$\mathscr{L}u(t-1)\cdot t^2$$

$$= e^{-s} \mathcal{L}(t+1)^2$$

$$= e^{-s} \mathcal{L}(t^2 + 2t + 1)$$

$$= e^{-s} \left(\frac{2}{s^2} + \frac{2}{s^2} + \frac{1}{s}\right)$$

Example:
$$\mathscr{L}^{-1}\left(\frac{1+e^{-\pi s}}{s^2+1}\right)$$

$$\mathcal{L}^{-1} \frac{1}{s^2 + 1} + \frac{e^{-\pi s}}{s^2 + 1}$$

$$\mathcal{L}^{-1} \frac{1}{s^{2}+1} + \frac{e^{-\pi s}}{s^{2}+1} u(t) \sin t + u(t-\pi) \sin (t-\pi)$$

u(t) because we need a unique solution of this in order for formulas to work

$$f(t) = \sin t \quad 0 \le t \le \pi$$

$$0 \quad t > \pi$$

2.6 Convolution

Convolution

$$f(t) * g(t) \tag{2.6.1}$$

Given $F(s) = \int_0^\infty e^{-st} f(t) dt$ $G(s) = \int_0^\infty e^{-st} g(t) dt$

$$F(s)G(s) = \int_0^\infty e^{-st} (f * g)dt$$
 (2.6.2)

Why should a formula for f * g exist

$$F(x) = \sum_{n=0}^{\infty} a_n x^n$$
$$G(x) = \sum_{n=0}^{\infty} b_n x^n$$

$$F(x)G(x) = \sum_{n=0}^{\infty} c_n x^n$$
 (2.6.3)

$$(a_0 + a_1x + a_2x^2...)(b_0 + b_1x + b_2x^2...)$$

$$x^0 x^1 x^2...$$

$$a_0b_0 (a_0b_1 + b_1a_0) (a_0b_2 + a_1b_1 + a_2b_0)...$$

$$c_n = \sum_{t=0}^{n} a_t b_{n-t} \tag{2.6.4}$$

Back to $\mathcal L$

$$f * g = \int_0^t f(u)g(t - u) \ du \tag{2.6.5}$$

Remember f * g = g * f

Example:
$$t^{2} * t$$

$$\int_{0}^{t} u^{2}(t-u) du$$

$$\frac{2}{s^{3}} \cdot \frac{1}{s^{2}} = \frac{2}{s^{5}}$$

$$\frac{t^{4}}{3} - \frac{t^{4}}{4} = \frac{t^{4}}{12}$$

$$\mathcal{L}^{-1}(\frac{2}{s^{5}}) = \frac{t^{4}}{12}$$

Example:
$$f(t) * 1$$
$$= \int_0^t f(u) 1 du$$
$$= \int_0^t f(u) du$$

Proof.

$$F(s)G(s) = \int_0^\infty e^{-st} (f * g) dt$$
 (2.6.6)

$$F(s)G(s) = \int_0^\infty e^{-su} f(u) dt \cdot \int_0^\infty e^{-sv} g(v) dt$$
 (2.6.7)

$$= \int_0^\infty \int_0^\infty e^{-s(u+v)} f(u)g(v) \ du \ dv$$
 (2.6.8)

$$t = u + v$$

$$u = u \qquad v = t - u$$

$$\int_0^\infty \int_0^t e^{-st} f(u)g(t-u) \ du \ dt \tag{2.6.9}$$

$$J = \begin{vmatrix} 1 & 0 \\ -1 & 1 \end{vmatrix} = 1$$

$$= \int_0^\infty e^{-st} \int_0^t f(u)g(t-u) \ du \ dt$$
 (2.6.10)

The middle is the formula for convolution.

Example: Radioactive waste is dumped. f(t) is the dump rate where t = years

Starting at t = 0

Remembering radioactive decay, at time t, how much waste is in the dump?

 A_0e^{-kt} is the amount left at time t

Amount dumped on $[u_i, u_{i+1}]$

$$\approx f(u_i) \cdot \Delta u$$

By time t, it has decayed to: $f(u_i)\Delta u \cdot e^{-k(t-u_i)}$

Total

$$= \lim_{\Delta u \to 0} \sum_{i=1}^{n} f(u_i) e^{-k(t-u_i)} \Delta u$$

$$= \int_0^t f(u)e^{-k(t-u)}du = f(t) * e^{-kt}$$

What if it didn't decay

$$f(t) * 1$$
 = $\int_0^t f(u) du$ which is intuitive

$$f(t)$$
 * $g(t)$ = amount of x at time t

prod. of x how x changes

2.7 Dirac-Delta Function

Force = force \times time [a, b]

Constant force

Impulse = $F \cdot (b - a)$

Lets say required constants are 1 and a unit impulse is applied.

This is modeled by

$$y'' + y = \frac{1}{h}u_{0h}(t) \tag{2.7.1}$$

$$\mathcal{L}\left(\frac{1}{h}u_{0h}(t)\right) \tag{2.7.2}$$

$$\frac{1}{h}\mathcal{L}\left(u(t) - u(t - h)\right) \tag{2.7.3}$$

$$\frac{1}{h} \left(\frac{1}{s} - \frac{e^{-hs}}{s} \right) \tag{2.7.4}$$

What if $h \to 0$

$$\lim_{h \to 0} \frac{1 - e^{-hs}}{hs} \tag{2.7.5}$$

$$\lim_{u \to 0} \frac{1 - e^{-u}}{u} = \lim_{u \to 0} \frac{e^{-u}}{1} = 1 \tag{2.7.6}$$

This is the Dirac Delta Function

$$\delta(t) \tag{2.7.7}$$

$$\mathcal{L}[\delta(t)] = 1 \tag{2.7.8}$$

$$\int_{-\infty}^{\infty} \delta(t) \ dt = 1 \tag{2.7.9}$$

$$\mathscr{L}[u(t)f(t)*\delta(t)] = F(s)\cdot 1$$

$$\mathscr{L}[u(t)f(t)] = F(s)$$

$$u(t)f(t) * \delta(t) = u(t)f(t)$$
(2.7.10)

 $\delta(t)$ is the identity element of convolution

Example: $y'' + y = A\delta(t - \frac{\pi}{2})$ y(0) = 1, y'(0) = 0 "kicked with impulse A at time $\frac{\pi}{2}$ "

$$\begin{split} s^{2}Y - s + Y &= Ae^{-\frac{\pi}{2}s} \\ Y &= \frac{s}{s^{2}+1} \frac{Ae^{-\frac{\pi}{2}s}}{s^{2}+1} \\ y &= \cos t + u(t - \frac{\pi}{2})A\sin\left(t - \frac{\pi}{2}\right) \end{split}$$

$$y = \cos t \qquad 0 \le t \le \frac{\pi}{2}$$
$$(1 - A)\cos t \qquad t \ge \frac{\pi}{2}$$

$$y'' + ay' + by = f(t)$$
 $y(0) = 0$, $y'(0) = 0$ (2.7.11)

$$s^{2}Y + asY + bY = F(s)$$
 (2.7.12)

$$Y = F(s) \cdot \frac{1}{s^2 + as + b} \tag{2.7.13}$$

 $\frac{1}{s^2+as+b} = W(s)$ Transfer function

$$y(t) = f(t) * \mathcal{L}^{-1}\left(\frac{1}{s^2 + as + b}\right)$$
 (2.7.14)

 $\mathcal{L}^{-1}\left(\frac{1}{s^2+as+b}\right) = w(t)$ Weight function

$$y(t) = \int_0^t f(u) \cdot w(t - u) \ du \tag{2.7.15}$$

But what is w(t), well imagine the input being the Dirac Delta Function

$$y'' + ay' + by = \delta(t) y(0) = 0, y'(0) = 0 (2.7.16)$$

$$s^2Y + asY + bY = 1 (2.7.17)$$

$$Y = \frac{1}{s^2 + as + b} \tag{2.7.18}$$

$$y(t) = w(t)$$
 (2.7.19)

3 Systems of Ordinary Differentials Equations

3.1First Order Systems of ODEs

$$x' = f(x, y, t) = \frac{dx}{dt}$$
(3.1.1)

$$y' = g(x, y, t) = \frac{dy}{dt}$$
(3.1.2)

x and y are independent variables on t.

Linear Systems:

$$x' = ax + by + r_1(t) (3.1.3)$$

$$y' = cx + dy + r_2(t) (3.1.4)$$

$$x(t_0) = x_0 y(t_0) = y_0 (3.1.5)$$

a, b, c, d can be functions of t. If a, b, c, d are constants, the system is called a constant-coefficient system.

Definition 3.1. A system is Homogeneous if it has no $r_1(t)$ or $r_2(t)$.

A system has as many initial conditions as the total order in the system.

Example:

An egg in water with yolk and white stuff.

 $T_e(t)$ = temp. of water (constant for simplicity)

 $T_2(t)$ = temp. of white stuff

 $T_1(t) = \text{temp. of yolk}$

$$\frac{dT_1}{dt} = a(T_2 - T_1)$$

$$\frac{dT_2}{dt} = a(T_1 - T_2) + b(T_e - T_2)$$

$$T'_1 = -aT_1 + aT_2$$

 $T'_2 = aT_1 - (a+b)T_2 + bT_e$

Lets say $T_e = 0$ also a=2, b=3

$$T_1' = -2T_1 + 2T_2$$

 $T_2' = 2T_1 - 5T_2$

To eliminate T_2

$$T_2 = \frac{T_1' + 2T_1}{2}$$

$$\left(\frac{T_1' + 2T_1}{2}\right)' = 2T_1 - 5\left(\frac{T_1' + 2T_1}{2}\right)$$

$$T_1'' + 7T_1' + 6T = 0$$

$$T_1 = c_1 e^{-6t} + c_2 e^{-t}$$

$$T_2 = \frac{1}{2}c_2 e^{-t} - 2c_1 e^{-6t}$$

$$T_1 = c_1 e^{-6t} + c_2 e^{-t}$$

 $T_2 = \frac{1}{2} c_2 e^{-t} - 2 c_1 e^{-6t}$

$$T_1(0) = 40$$
 $T_2(0) = 45$

$$40 = c_1 + c_2$$

$$45 = \frac{1}{2}c_2 - 2c_1$$

$$c_1 = -10 \qquad c_2 = 50$$

$$T_1 = 50e^{-t} - 10e^{-6t}$$

$$T_2 = 25e^{-t} + 20e^{-6t}$$

Definition 3.2. An autonomous system has no "t"s.

$$x' = f(x, y)$$
$$y' = g(x, y)$$

The solution is a parametric equations of the form x = x(t)y = y(t)

x' and y' give a vector field of the velocities of the solutions.

3.1.1 Eigenvalue Method of Solving First Order Systems of ODEs

A different method to the first example.

Process:

Substitute

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} e^{\lambda t}$$

$$\lambda \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} e^{\lambda t} = \begin{pmatrix} -2 & 2 \\ 2 & -5 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} e^{\lambda t}$$

$$\lambda \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} -2 & 2 \\ 2 & -5 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

This is now a system of equations:

$$\lambda a_1 = -2a_1 + 2a_2$$
$$\lambda a_2 = 2a_1 - 5a_2$$

This is 3 unknowns in 2 equations so lets treat λ as a parameter

$$(-2 - \lambda)a_1 + 2a_2 = 0$$
$$2a_1 + (-5 - \lambda)a_2 = 0$$

There exists a non-trivial solution if and only if:

$$\begin{vmatrix} -2 - \lambda & 2 \\ 2 & -5 - \lambda \end{vmatrix} = 0$$

This is the condition λ must satisfy

$$(\lambda + 2)(\lambda + 5) - 4 = 0$$
$$\lambda^2 + 7\lambda + 6 = 0$$
$$\lambda = -1, -6$$

Notice how the quadratic equation is the same as the characteristic equation gotten from the first method. These values of λ are called the eigenvalues of the coefficient matrix.

$$\lambda = -1$$
 Find a_1 and a_2 $\lambda = -6$

$$-a_1 + 2a_2 = 0$$

$$2a_1 - 4a_2 = 0$$

$$2a_1 + a_2 = 0$$

$$2a_1 + a_2 = 0$$

Notice how one equation is a constant multiple of the other, this is an easy way to check if everything is going correctly. As these are the same equations, find any solution that works. Usually substitute 1 in and see what value the other unknown is. Then put the two values into what is known as a eigen vector. Then multiply by e to the eigenvalue times t.

$$a_2 = 1 \rightarrow a_1 = 2$$

$$\begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{-t}$$

$$a_2 = -2 \rightarrow a_1 = 1$$

$$\begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{-6t}$$

By superposition:

$$\begin{pmatrix} x \\ y \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix} e^{-t} + c_2 \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{-6t}$$

If a different eigen vector was chosen, it would have to be a constant multiple of the previous, which can be factored out into the unknown constants in front.

In General:

$$\begin{pmatrix} x \\ y \end{pmatrix}' = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
 (3.1.6)

Trial

$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} e^{\lambda t}$$
 (3.1.7)

$$\lambda \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = A \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \tag{3.1.8}$$

Solvable if:

$$\begin{vmatrix} a - \lambda & b \\ c & d - \lambda \end{vmatrix} = 0 \tag{3.1.9}$$

$$\lambda^{2} - (a+b)\lambda + ad - bc = 0 \tag{3.1.10}$$

This the characteristic equation which can also be written as:

$$\lambda^2 + \lambda \operatorname{trace} A + \det A = 0 \tag{3.1.11}$$

Where det is the determinant and trace is the sum of the main diagonal.

The two roots λ_1 and λ_2 (for now assume real and distinct) are the eigenvalues for A.

For each λ_i , find the associated:

$$\vec{\alpha}_i = \begin{pmatrix} a_{1i} \\ a_{2i} \end{pmatrix} \tag{3.1.12}$$

By solving the system:

$$\begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = 0 \tag{3.1.13}$$

The general solution is now in the form:

$$\begin{pmatrix} x \\ y \end{pmatrix} = c_1 \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix} e^{\lambda_1 t} + c_2 \begin{pmatrix} a_{12} \\ a_{22} \end{pmatrix} e^{\lambda_2 t}$$
 (3.1.14)

More in general:

$$\begin{pmatrix} x \\ y \\ \vdots \end{pmatrix} = \vec{x} \qquad \qquad \vec{x}' = A\vec{x} \tag{3.1.15}$$

$$\begin{pmatrix} a & b & \dots \\ c & d & \dots \\ \vdots & \vdots & \ddots \end{pmatrix} = A \qquad \text{Trial}: \quad \vec{x} = \vec{\alpha} e^{\lambda t}$$
 (3.1.16)

$$\begin{pmatrix} a_1 \\ a_2 \\ \vdots \end{pmatrix} = \vec{\alpha} \qquad \lambda \vec{\alpha} = A\vec{\alpha} \tag{3.1.17}$$

$$\begin{pmatrix} 1 & 0 & 0 & \dots \\ 0 & 1 & 0 & \dots \\ 0 & 0 & 1 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = I \qquad (A - \lambda \cdot I)\vec{\alpha} = 0 \qquad (3.1.18)$$

Chara. Eq.
$$|A - \lambda I| = 0$$
 (3.1.19)

now continue with the eigenvalues as before

Example: Image a tank divide into 3 sections where

 X_i gives the temperature in tank i.

Any constants are 1.

$$x'_1 = a(x_3 - x_1) + a(x_2 - x_1)$$

 $x'_1 = -2ax_1 + ax_2 + ax_3$

$$x'_1 = -2x_1 + x_2 + x_3$$

$$x'_2 = x_1 - 2x_2 + x_3$$

$$x'_3 = x_1 + x_2 - 2x_3$$

$$|A - \lambda I| = \begin{vmatrix} -2 - \lambda & 1 & 1 \\ 1 & -2 - \lambda & 1 \\ 1 & 1 & -2 - \lambda \end{vmatrix} = -(\lambda + 2)^3 + 2 - 3(-2 - \lambda) = 0$$

$$\lambda^3 + 6\lambda^2 + 12\lambda + 8 - 2 - 6 - 3\lambda = 0$$

$$\lambda^3 + 6\lambda^2 + 9\lambda = 0$$

$$\lambda(\lambda^2 + 6\lambda + 9) = 0$$

$$\lambda(\lambda + 3)^2 = 0$$

The eigenvalues are 0 and a repeated -3

$$\lambda = 0$$

$$(A - \lambda I)\vec{\alpha} = 0$$
$$A\vec{\alpha} = 0$$

$$-2a_1 + a_2 + a_3 = 0$$

$$a_1 - 2a_2 + a_3 = 0$$

$$a_1 + a_2 - 2a_3 = 0$$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} e^{0t} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\lambda = -3$$

$$a_1 + a_2 + a_3 = 0$$

$$a_1 + a_2 + a_3 = 0$$

$$a_1 + a_2 + a_3 = 0$$

In this case, there are two possible solutions such that one is not a constant multiple of the other:

$$\begin{pmatrix} 1\\0\\-1 \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} 1\\-1\\0 \end{pmatrix}$$

Notice how $\begin{pmatrix} 0\\1\\-1 \end{pmatrix}$ is not a new solution. It is not a constant multiple of the other but it is a linear combination, disqualifying it. The solution now is:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} e^{-3t} + c_2 \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} e^{-3t} + c_3 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Definition 3.3 (Complete Eigenvalue). If an eigenvalue λ is repeated, but you can find enough needed eigenvectors, then it is complete.

Definition 3.4 (Defective Eigenvalue). If an eigenvalue λ is repeated, but you can not find enough needed eigenvectors, then it is defective.

Theorem 3.1. If a real $n \times n$ matrix which is symmetric (about diagonal) then all of its eigenvalues are complete.

Complex Eigenvalues:

1. Calculate complex eigenvalues

x' = x + 2y

- 2. Formulate solution: $\vec{\alpha}e^{(a+bi)t}$
- 3. Take the real and imaginary parts to get two solutions.

Example:

$$A = \begin{pmatrix} 1 & 2 \\ -1 & -1 \end{pmatrix}$$
$$\lambda^2 + 0\lambda + (-1 + 2) = 0$$
$$\lambda^2 + 1 = 0$$
$$\lambda = \pm i$$

$$\lambda = i$$

$$(1-i)a_1 + 2a_2 = 0$$

$$-1a_1 + (-1-i)a_2 = 0$$

$$a_1 = 1 \to a_2 = \frac{-1+i}{2}$$

$$\left(\frac{1}{\frac{-1+i}{2}}\right)e^{it} = \left[\begin{pmatrix} 1\\ -\frac{1}{2} \end{pmatrix} + i\begin{pmatrix} 0\\ \frac{1}{2} \end{pmatrix}\right](\cos t + i\sin t)$$

Solutions:

Real
$$= \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ -\frac{1}{2} \end{pmatrix} \cos t - \begin{pmatrix} 0 \\ \frac{1}{2} \end{pmatrix} \sin t$$

Imaginary $= \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{1}{2} \end{pmatrix} \cos t + \begin{pmatrix} 1 \\ -\frac{1}{2} \end{pmatrix} \sin t$

3.2 How to Sketch Solutions to Systems of First Order ODEs

We will work with the cases of:

$$x' = -x + by \tag{3.2.1}$$

$$y' = cx - 3y \tag{3.2.2}$$

First Case:
$$x' = -x + 2y$$

 $y' = -3y$

Solving the system yields:

$$\begin{pmatrix} x \\ y \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-3t} + c_2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{-t}$$

1.) There are 4 easy solutions

$$c_1 = \pm 1, \quad c_2 = 0$$

 $c_1 = 0, \quad c_2 = \pm 1$

These just straight lines, what about in between

2.)
$$\begin{pmatrix} x \\ y \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-3t} + c_2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{-t}$$

$$\downarrow \qquad \qquad \downarrow \text{ dom. as } t \to \infty$$

$$\text{dom. as } tv \to -\infty$$

In this case, all the lines go towards the origin as $t \to \infty$, making the origin a sync node. If the signs where flipped as in

$$\begin{pmatrix} x \\ y \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{3\underline{t}} + c_2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{\underline{t}}$$
 (3.2.3)

then the curves would go all outwards from the origin, making the origin a source node.

Example:
$$x' = -x + 3y$$
$$y' = 5x - 3y$$

Solving the system yields:

$$\begin{pmatrix} x \\ y \end{pmatrix} = c_1 \begin{pmatrix} 3 \\ -5 \end{pmatrix} e^{-6t} + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{2t}$$

The four trivial solutions give line where one goes toward the origin and another away. This makes the origin a saddle point. Everything in between acts like a hyperbola.

Example: Complex eigenvalues:

Solutions looks something like

$$\begin{pmatrix} x \\ y \end{pmatrix} = c_1 \left[\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \cos t + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \sin t \right] e^{(\lambda t)} + c_2 [\text{something similar}]$$

The $\cos t$ and $\sin t$ make circles which grow and decay because of the exponential. So essentially you get spirals. To check which direction, you plug a point into the initial problem to get a velocity vector.

3.3 Inhomogeneous Systems

Lets begin with the theory of Homogeneous Systems (constant coefficient matrix):

$$\vec{x}' = A\vec{x} \tag{3.3.1}$$

Theorem 3.2. The general solution to $\vec{x}' = A\vec{x}$ is:

$$\vec{x} = c_1 \vec{x}_1 + c_2 \vec{x}_2 \tag{3.3.2}$$

Where \vec{x}_1 and \vec{x}_2 are two solutions which linearly independent of each other and not constant multiples of each other.

Theorem 3.3. The Wronskian of two solutions

$$W(\vec{x}_1, \ \vec{x}_2) = |\vec{x}_1 \ \vec{x}_2| \tag{3.3.3}$$

Either: $W(t) \equiv 0$ (if \vec{x}_1 , \vec{x}_2 are dependent) or W(t) is never 0 for any t.

Fundamental Matrix for the System: $\mathbb{X} = \begin{bmatrix} \vec{x}_1 & \vec{x}_2 \end{bmatrix}$ where \vec{x}_1 and \vec{x}_2 are two ind. solutions Properties:

- 1.) $|\mathbb{X}| \neq 0$ for any t.
- $2.) \ \mathbb{X}' = A\mathbb{X}$

Proof.

$$\begin{bmatrix} \vec{x}_1' & \vec{x}_2' \end{bmatrix} = A \begin{bmatrix} \vec{x}_1 & \vec{x}_2 \end{bmatrix} = \begin{bmatrix} A\vec{x}_1 & A\vec{x}_2 \end{bmatrix}$$
 (3.3.4)

$$\Leftrightarrow \vec{x}_1' = A\vec{x}_1 \ , \ \vec{x}_2' = A\vec{x}_2 \tag{3.3.5}$$

Inhomogeneous Systems:

$$x' = ax + by + r_1(t)$$

$$y' = cx + dy + r_2(t)$$

$$\vec{x}' = A\vec{x} + \vec{r}(t) \tag{3.3.6}$$

Theorem 3.4. The general solution is the sum of the solution to the homogeneous system and the particular solution.

$$\vec{x}_g = \vec{x}_c + \vec{x}_p \tag{3.3.7}$$

46

We need a method to solve $\vec{x}' = A\vec{x} + \vec{r}$ for \vec{x}_p

Variation of Parameters:

$$\vec{x}_p = v_1(t)\vec{x}_1 + v_2(t)\vec{x}_2 \tag{3.3.8}$$

Where \vec{x}_1 and \vec{x}_2 are solutions to the homo. system.

$$\vec{x}_p = \mathbb{X}\vec{v} \tag{3.3.9}$$

$$\vec{x}_p = \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} x_1 v_1 + x_2 v_2 \\ y_1 v_1 + y_2 v_2 \end{pmatrix}$$
(3.3.10)

Substitute into system and see what \vec{v} is

$$\vec{x}' = A\vec{x} + \vec{r} \tag{3.3.11}$$

$$X'\vec{v} + X\vec{v}' = AX\vec{v} + \vec{r} \tag{3.3.12}$$

$$AX\vec{v} + X\vec{v}' = AX\vec{v} + \vec{r} \tag{3.3.13}$$

$$X\vec{v}' = \vec{r} \tag{3.3.14}$$

$$\vec{v}' = X^{-1}\vec{r} \tag{3.3.15}$$

$$\vec{v} = \int \mathbb{X}^{-1} \vec{r} \ dt \tag{3.3.16}$$

$$\vec{x}_p = \mathbb{X} \int \mathbb{X}^{-1} \vec{r} \ dt \tag{3.3.17}$$

There isn't a Fundamental Matrix X, any two solutions to the homo. system will work.

$$\vec{x} = c_1 \vec{x}_1 + c_2 \vec{x}_2 \tag{3.3.18}$$

$$\vec{x} = \mathbb{X}\vec{c} \tag{3.3.19}$$

Using that new definition of a solution, the most general FM looks like:

$$\begin{bmatrix} \mathbb{X}\vec{c}_1 & \mathbb{X}\vec{c}_2 \end{bmatrix} = \mathbb{X} \begin{bmatrix} \vec{c}_1 & \vec{c}_2 \end{bmatrix} \tag{3.3.20}$$

$$= XC \tag{3.3.21}$$

Where C is any 2x2 constant coefficient matrix.

3.4 Matrix Exponentials

For

$$\vec{x}' = A\vec{x} \tag{3.4.1}$$

We want a formula and not a algorithm.

For a 1×1 case: $x' = ax \rightsquigarrow x = ce^{at}$

$$e^{at} = 1 + at + \frac{a^{2}t^{2}}{2!} + \frac{a^{3}t^{3}}{3!} + \dots$$

$$\frac{de^{at}}{dt} = a + a^{2}t + \frac{a^{3}t^{2}}{2!} + \frac{a^{3}t^{3}}{3!} + \dots$$

$$\frac{de^{at}}{dt} = ae^{at}$$

So e^{at} solves the 1×1 differential equation.

A fundamental matrix for $\vec{x}' = A\vec{x}$

$$ise^{At} := I_n + At + \frac{A^2t^2}{2!} + \frac{A^3t^3}{3!}$$
 (3.4.2)

This is the FM because it satisfies X' = AX and $\det X \neq 0$

Example: x' = yy' = x

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_{2}$$

$$A^{3} = I \cdot A = A$$

$$A^{4} = A^{3} \cdot A = A \cdot A = I_{2}$$

$$e^{At} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} t + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \frac{t^2}{2!} + \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \frac{t^3}{3!} + \dots$$

$$\begin{bmatrix} 1 + \frac{t^2}{2!} + \frac{t^4}{4!} + \dots & t + \frac{t^3}{3!} + \dots \\ t + \frac{t^3}{3!} + \dots & 1 + \frac{t^2}{2!} + \frac{t^4}{4!} \end{bmatrix}$$

$$e^{At} = \begin{bmatrix} \cosh t & \sinh t \\ \sinh t & \cosh t \end{bmatrix}$$

What about an initial value $\vec{x}(0) = \vec{x}_0$

Solution

$$\vec{x} = e^{At} \cdot \vec{c} \tag{3.4.3}$$

$$\vec{x}(0) = e^{A0} \cdot \vec{c} \tag{3.4.4}$$

$$\vec{x}_0 = I_2 \cdot \vec{c} \tag{3.4.5}$$

$$\vec{x}_0 = \vec{c} \tag{3.4.6}$$

$$\vec{x} = e^{At} \cdot \vec{x}_0 \tag{3.4.7}$$

Matrix Exponentials don't follow standard laws of exponents:

$$e^{A+B} \neq e^A \cdot e^B \tag{3.4.8}$$

This is only true in the special case of AB = BA

Three important cases of AB = BA

1.) if
$$A = cI = \begin{bmatrix} c & 0 \\ 0 & c \end{bmatrix}$$

- 2.) B = -A
- 3.) $B = A^{-1}$

The second law leads to:

$$I = e^{A-A} = e^A \cdot e^{-A} \tag{3.4.9}$$

$$(e^A)^{-1} = e^{-A} (3.4.10)$$

-1 is a inverse, not power

A third way of solving is:

$$\mathbb{X} \cdot \mathbb{X}^{-1}(0) \tag{3.4.11}$$

Because $\mathbb{X}^{-1}(0)$ is constant coefficient matrix, above is still a FM Its value at 0 is $\mathbb{X}(0) \cdot \mathbb{X}^{-1}(0) = I_2$

These are the same two properties of e^{At}

$$\therefore e^{At} = \mathbb{X} \cdot \mathbb{X}^{-1}(0) \tag{3.4.12}$$

3.5 Decoupling Linear Systems

Find u and v

$$u = ax + by \tag{3.5.1}$$

$$v = cx + dy \tag{3.5.2}$$

such that in uv-coordinates, the two problems aren't related

$$u' = k_1 u \tag{3.5.3}$$

$$v' = k_2 v \tag{3.5.4}$$

Example: Imagine two tanks with heights y and x next to each other with the base of x being 1 and the base of y being 2 (meaning it the water level rises half as fast). Also remember flow rate \propto area of hole \cdot height difference.

$$x' = c(y - x)$$

$$y' = \frac{c}{2}(x - y)$$

$$c = 2$$

$$x' = -2x + 2y$$
$$y' = x - y$$

Lets somethings better than height:

$$u = x + 2y$$
 (total water)
 $v = x - y$ (height difference)

$$u' = x' + 2y' = 0$$

 $v' = x' - y' = -3x + 3y = -3v$

$$u = c_1$$
$$v = c_2 e^{-3t}$$

$$x = \frac{1}{3}(u+2v) = \frac{1}{3}(c_1 + 2c_2e^{-3t})$$

$$y = \frac{1}{3}(u-v) = \frac{1}{3}(c_1 - c_2e^{-3t})$$

$$\vec{x} = \frac{1}{3}c_1\begin{pmatrix}1\\1\end{pmatrix} + \frac{1}{3}c_2\begin{pmatrix}2\\-1\end{pmatrix}e^{-3t}$$

To Decouple: all e-values must be real and complete

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} a_1' & a_2' \\ b_1' & b_2' \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \tag{3.5.5}$$

D - the decoupling matrix

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} u \\ v \end{pmatrix} \begin{pmatrix} a_1 & a_2 \\ b_1 & b_2 \end{pmatrix}$$
 (3.5.6)

A D^{-1} works when = E the matrix whose columns are the e-vectors.

$$E = (\vec{\alpha}_1 \ \vec{\alpha}_2) \tag{3.5.7}$$

$$\vec{\alpha}_1 \longrightarrow \begin{pmatrix} 1\\0 \end{pmatrix}$$
 (3.5.8)

$$\vec{\alpha}_2 \longrightarrow \begin{pmatrix} 0\\1 \end{pmatrix}$$
 (3.5.9)

This is saying that what would be the e-vectors in xy-coordinates become the \hat{i} and \hat{j} in uv-coordinates.

Now substitute these new variable into $\vec{x}' = A\vec{c}$ to see if the system was decoupled.

This gives a different definition of e-vectors:

$$A\vec{\alpha}_1 = \lambda_1 \vec{\alpha}_1 \tag{3.5.10}$$

Where $\vec{\alpha}$ is an e-vector and λ is an e-value.

$$AE = A \begin{bmatrix} \vec{\alpha}_1 & \vec{\alpha}_2 \end{bmatrix} = \begin{bmatrix} A\vec{\alpha}_1 & A\vec{\alpha}_2 \end{bmatrix}$$
 (3.5.11)

$$= \begin{bmatrix} \lambda_1 \vec{\alpha}_1 & \lambda_2 \vec{\alpha}_2 \end{bmatrix} \tag{3.5.12}$$

$$= \begin{bmatrix} \vec{\alpha}_1 & \vec{\alpha}_2 \end{bmatrix} \cdot \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$
 (3.5.13)

$$= E \cdot \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \tag{3.5.14}$$

Given as system $\vec{x}' = A\vec{x}$ and the new variables $\vec{x} = E\vec{u}$

$$E\vec{u}' = AE\vec{u} = E\begin{bmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{bmatrix} \vec{u}$$
 (3.5.15)

$$\vec{u}' = \begin{bmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{bmatrix} \vec{u} \tag{3.5.16}$$

$$u' = \lambda_1 u \qquad u = c_1 e^{\lambda_1 t} \tag{3.5.17}$$

$$v' = \lambda_2 v \qquad v = c_2 e^{\lambda_2 t} \tag{3.5.18}$$

Example: Decouple
$$\begin{pmatrix} x \\ y \end{pmatrix}' = \begin{pmatrix} -2 & 2 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\lambda^2 + 3\lambda = 0$$

$$\lambda = 0 \qquad \lambda = -3$$

$$\lambda = 0 \qquad \lambda = -3$$

$$\lambda = 0 \qquad \lambda = -3$$

$$-2a_1 + 2b_1 = 0 \qquad 1a_1 + 2b_1 = 0$$

$$a_1 = 1 = b_1 \quad \vec{\alpha}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \vec{\alpha}_2 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

$$E = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$$

$$D = E^{-1} = \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} \cdot \frac{1}{3}$$

$$\begin{pmatrix} u \\ v \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}$$
$$u' = \frac{1}{3}(x' + 2y')$$
$$v' = \frac{1}{3}(-x' + y')$$

$$u' = \frac{1}{3}((-2x + 2y) + 2(x - y)) = 0$$

$$v' = \frac{1}{3}(-(-2x + 2y) + (x - y)) = \frac{1}{3}(3x - 3y) = -\frac{1}{3}v$$

$$u' = 0$$
$$v' = -\frac{1}{3}v$$

3.6 Closed Trajectories

Represents periodic behavior of a system. (Example: circles)

Definition 3.5 (Limit cycle). A closed trajectory which is stable and isolated (no others nearby).

An closed trajectory is stable when nearby curves asymptote towards the closed trajectory. An unstable closed trajectory is the opposite.

<u>Existence</u>: not much is known except Poincaie-Bendixson Theorem. Today mostly computers are used.

For not non-existence, Bendixson's Theorem and Crit points are used.

Theorem 3.5 (Bendixson's Theorem). Given D a region of the plane, if $\operatorname{div} \vec{F} \neq 0$ in D, then there are no closed trajectories in D.

Proof. Suppose a closed trajectory c exists in D which defines a region R.

$$\oint_{c} \vec{F} \cdot \hat{n} \ ds = \iint_{R} \operatorname{div} \vec{F} \ dA \tag{3.6.1}$$

 $\vec{F} \cdot \hat{n}$ since \vec{F} must perpendicular to the curve and therefore orthogonal to \hat{n} . The hypothesis is that $\operatorname{div} \vec{F} > 0$ everywhere or $\operatorname{div} \vec{F} < 0$ everywhere. It can't be both positive and negative because if you connected the two points with a line, because \vec{F} is continuous, it would have to cross 0. The LHS = 0 and because $\operatorname{div} \vec{F} \neq 0$, the RHS is never zero which is a contradiction. Therefore there cannot be a closed trajectory.

For example, if a div $\vec{F} = 0$ along a curve c if a closed trajectory exists, it must intersect c.

Critical Points

Given a region D with a closed trajectory c inside. There must be a critical point inside c.

Theorem 3.6. If D has no critical points, it has no closed trajectories.