ACM 100b

Structure of the Sturm-Liouville eigenfunctions

Dan Meiron

Caltech

February 3, 2014

Zeroes of the eigenfunctions

- We next look at proving results about the zeroes of the eigenfunctions.
- Recall we showed in two examples that the eigenfunction corresponding to the smallest eigenvalue had no internal zeroes
- Then the eigenfunction corresponding to the next eigenvalue has one internal zero - and so forth.
- We will next see how the Lagrange identity strongly constrains how the eigenfunctions behave.
- In particular, it's possible to get some fairly strong results on where the zeroes of the eigenfunctions have to be.
- To get at this we need some preliminary results.

• Let u(x) and v(x) be two functions and recall the Sturm-Liouville ODE:

$$L[y] = \frac{d}{dx} \left(p(x) \frac{dy}{dx} \right) + q(x)y(x) = -r(x)\lambda y(x) \qquad a \leq x \leq b.$$

- Note that L is the negative of what we usually use.
- Define the auxiliary function w(x) by

$$w(x) = u\frac{dv}{dx} - v\frac{du}{dx}.$$

We will show that if

$$uL[v] \ge vL[u]$$
 and $p(a)w(a) \ge 0 \ge p(b)w(b)$

then

$$w(x) = 0.$$

- We'll then use this result to compare eigenfunctions with varying values of λ .
- To show why this result holds, assume that we do have

$$uL[v] \geq vL[u]$$
.

Using the ODE this implies that

$$u(x)\frac{d}{dx}\left(p(x)\frac{dv}{dx}\right) + u(x)q(x)v(x) \ge v(x)\frac{d}{dx}\left(p(x)\frac{du}{dx}\right) + v(x)q(x)u(x)$$

Differential form of Lagrange's identity

Previously we showed

$$\int_{a}^{b} \left\{ L[u(x)]v(x) - u(x)L[(v(x)] \right\} dx = -\left\{ p(x) \left[\frac{du}{dx}v - u \frac{dv}{dx} \right] \right\} \Big|_{a}^{b}.$$

- This is the integral form of Lagrange's identity over an interval a < x < b
- But you can see the result is still true if $a \le x' \le x$ where the interval is now variable in x:

$$\int_{a}^{x} \left\{ L[u(x')]v(x') - u(x')L[(v(x')] \right\} dx' =$$

$$- \left\{ \rho(x') \left[\frac{du}{dx'}v - u \frac{dv}{dx'} \right] \right\} \Big|_{a}^{x}.$$

Differential form of Lagrange's identity

Now differentiate both sides of

$$\int_{a}^{x} \left\{ L[u(x')]v(x') - u(x')L[(v(x')] \right\} dx' =$$

$$- \left\{ \rho(x') \left[\frac{du}{dx'}v - u \frac{dv}{dx'} \right] \right\} \Big|_{a}^{x}.$$

with respect to x.

• We get the differential form of Lagrange's identity:

$$uL[v] - vL[u] = \frac{d}{dx}(p(x)w(x))$$

where w(x) was introduced earlier

$$w(x) = u\frac{dv}{dx} - v\frac{du}{dx}.$$

Now recall the inequality we had

$$u(x)\frac{d}{dx}\left(p(x)\frac{dv}{dx}\right) + u(x)q(x)v(x) \ge v(x)\frac{d}{dx}\left(p(x)\frac{du}{dx}\right) + v(x)q(x)u(x)$$

And look at the differential form of the Lagrange identity:

$$uL[v] - vL[u] = \frac{d}{dx}(p(x)w(x))$$

Put these results together to get

$$\frac{d}{dx}(p(x)w(x))\geq 0.$$

This result

$$\frac{d}{dx}(p(x)w(x))\geq 0.$$

means that p(x)w(x) must be a non-decreasing function of x.

• Now look at the end point x = a where we assumed

$$p(a)w(a) \geq 0$$

• We just showed p(x)w(x) is a non-decreasing function so

$$0 \le p(a)w(a) \le p(x)w(x) \le p(b)w(b).$$

But earlier the assumption is made that

$$p(a)w(a) \geq 0 \geq p(b)w(b)$$
.

But if both these are true then

$$0 \le p(a)w(a) \le p(x)w(x) \le p(b)w(b) \le 0.$$

• This means w(x) is both less than or equal and greater than or equal to 0, so w(x) = 0

Theorem (Sturm comparison theorem)

Suppose u(x) and v(x) are solutions of the S-L ODE but for any value of λ . Let α , β be two consecutive zeroes of v(x) Suppose also on the interval $\alpha < x < \beta$ we have

$$\frac{d}{dx}\left(p(x)\frac{du}{dx}\right) + q(x)u(x) + P(x)u(x) = 0$$

$$\frac{d}{dx}\left(p(x)\frac{dv}{dx}\right) + q(x)v(x) + Q(x)v(x) = 0$$

with

$$P(x) \ge Q(x)$$
 $\alpha < x < \beta$,

then either u(x) has a zero on $\alpha < x < \beta$ or u(x) = cv(x) where c is a constant.

Proof of the Sturm comparison theorem

- To show this result we show that assuming otherwise leads to a contradiction.
- Suppose u(x) had no zero on $\alpha < x < \beta$.
- Then u(x) is either all positive or all negative on that interval.
- Given that the Sturm-Liouville ODE is homogeneous we can adjust the overall sign of u(x) and v(x) so that their respective graphs on the interval $\alpha < x < \beta$ must look as follows

Proof of the Sturm comparison theorem

- In the figure the function v(x) is zero at $x = \alpha$ and $x = \beta$ by assumption.
- We see that u(x) can be above or below v(x)
- But u(x) must start and end above v(x) at the end points
- And it cannot cross the x-axis.
- In any case we must have

$$uL[v] - vL[u] = (P - Q)uv \ge 0$$
 $\alpha < x < \beta$

because we assumed that $P \geq Q$.

 But if we look at the figure we see that because of the assumptions we're also constrained to have

$$u(\alpha) \ge 0$$
 $v'(\alpha) \ge 0$ $u(\beta) \ge 0$ $v'(\beta) \le 0$

Proof of the Sturm comparison theorem

• If we consider the function w(x) = uv' - vu' this means

$$w(\alpha) \ge 0$$
 $w(\beta) \le 0$

 But from the previous result which constrains w(x) we must have

$$w(x)=0$$

which implies

$$uv' - vu' = 0$$
 or $\frac{u'}{u} = \frac{v'}{v}$

which then implies

$$u = cv$$

where c is a constant.

- This means *u* and *v* are essentially the same function.
- The only way to avoid this when P > Q is to let there be some zeros in u(x) between the consecutive zeros of v(x).

Application of the comparison theorem

 We can now use the Sturm comparison theorem to show statements such as the following:

Theorem (Interlacing of roots for S-L eigenfunctions)

Let u(x) be an eigenfunction with eigenvalue λ and v(x) be an eigenfunction with eigenvalue μ . If $\lambda > \mu$ there is at least one zero of u between any two consecutive zeroes of v.

- To show this take $P = \lambda r$ and $Q = \mu r$ in the Sturm comparison theorem.
- Since $\lambda > \mu$ it must be that P > Q and so u must have a zero between consecutive zeroes of v.
- The alternative is that u = cv which means we don't have two eigenfunctions as u is really v
- So the two eigenvalues must correspond to different eigenfunctions.

Application of the comparison theorem

Another result of this type is as follows

Theorem (Eigenfunctions and the number of zeroes)

Let u(x) be an eigenfunction with eigenvalue λ and let v(x) be an eigenfunction with eigenvalue μ . Suppose u and v have exactly u zeroes in the interval u and u are linearly dependent and have the same zeroes.

• To show this consider the case with $n \ge 2$. The zeros x_j of v(x) divide the interval a < x < b into intervals

$$(a, x_1)$$
 (x_1, x_2) \cdots (x_n, b)

Now the separable boundary conditions make

$$p(a)w(a)=p(b)w(b)=0$$

Application of the comparison theorem

- Suppose we have an eigenvalue $\lambda > \mu$ but we still have n zeros.
- Then the eigenfunction u(x) has at least one zero on each interval made between the zeros of v(x).
- That means u(x) will have too many zeroes.
- If $\lambda < \mu$ then you can see u(x) will end up with too few zeroes.
- This means the only way to have n zeroes for u is for $\lambda = \mu$ and so it must be that u = v.
- This exemplifies the remarkable range of results we can get from the special properties of the Sturm-Liouville ODE's.
- So far everything we said relies on the conditions that the boundary conditions are separable and that p(x) > 0.
- When we relax any of these assumptions we lose some of the guarantees.

