Data Mining Capstone Task 3

February 27, 2020

Asad Bin Imtiaz CS598 Data Mining Capstone MCS-DS UIUC

Email: aimtiaz2@illinois.edu

1 Introduction:

In this task, popular dishes in the Yelp Review Academic Challenge Dataset for specific cuisines were extracted using frequent phrase mining algorithms. The analysis and findings are part of Task-3 for Data Mining Capstone course, wherein the Yelp restaurant reviews were explored to identify popular dishes for some specific cuisines. The goal of this task was to come up with a dish recognizer which would identify common dishes present in any cuisine.

In the following, the implementation of the sub tasks for this task are explained.

1.1 Tools and Libraries:

The exploration and analysis of Yelp restaurant dataset was performed with Python 3 using Jupyter notebook and with Java 12. Phrasal mining algorithms such as **SegPhrase**, **AutoPhrase** and **TopMine** were used. Several python libraries such as **Gensim**, **scipy**, **numpy** and **Scikit-learn** were used to analyze and cleanse the review texts.

1.2 Application:

The first step was to gather all the relevant reviews. All reviews for the categories of "American (New)", "Chinese", "Indian", "Italian", "Mexican" and "Mediterranean" were extracted. To accomplish the phrase mining efficiently, a sample of <u>50,000</u> reviews for each category were retained.

The following tasks, as described in subsequent sections in this report, were performed:

- 1. Manual Tagging of dishes See chapter 2
- 2. Mining Additional Dish Names See chapter 3
 - a. Mutual Information (MI) calculation
 - b. Dish name mining with TopMine
 - c. Dish name mining with SegPhrase
 - d. Dish name mining with AutoPhrase
 - e. Dish name mining with Word2Vec

In the following, the results of the analysis for each of the above are explained in detail.

2 Task 3.1: Manual Tagging

In this sub-task, candidate dish names were manually tagged and labelled for SegPhease. This label list was already provided with the task but was modified to correct some of the labels. For example, the false positive label of "spring training" (among others) in "American_(New).label" was changed to 0 while false negative label of "deep dish pizzas" was changed to 1. Similarly, in the label files for

Chinese, Indian, Italian, Mexican and Mediterranean, the False-Positive and False-Negative labels were also corrected to True Negative and True positive accordingly.

As a first set, the provided label files were not used, rather new label files were generated by using a different sample of <u>5000</u> reviews for each category. These generated table files were exhaustively analyzed to gather more true positive tables to complement the provided and corrected table files. Some labels such as "**cole slaw**" & "**mash potatoes**" (among others) were discovered in American (New) cuisine and were added to the main label file. This was also done for the other 5 categories.

Some ambiguous labels were also removed increase quality of generated results. Labels similar to "shrimp and pork" in Chinese label file or "their garlic sauce" in the Mediterranean label file could be confusing in the phrase mining and were either corrected by removing the unwanted words or removed from the file altogether.

These manually tagged labels are used in dish name mining with **SegPhrase** (as discussed in chapter 3.3).

3 Task 3.2: Mining Additional Dish Names

In this subtask several phrase mining algorithms were used to extract dish names from the data set. Each algorithm produced a different quality of resulting dish name list and was analyzed to evaluate the general accuracy of the algorithm. The following approaches for Dish Name recognition were applied:

- a. Mutual Information calculation Chapter 3.1
- b. Dish name mining with **TopMine** Chapter 3.2
- c. Dish name mining with SegPhrase Chapter 3.3
- d. Dish name mining with AutoPhrase Chapter 3.4
- e. Dish name mining with Word2Vec Chapter 3.5

It is worth mentioning here that the data for the dish name extraction sub tasks were already preprocessed and tokens were already converted in their base lemma form and the stop words were removed.

3.1 Task 3.2 (A): Mutual Information calculation

The Mutual information between the frequent words in all of the 6 selected categories (both combined and separately) was calculated. The idea was to compute the co-occurrence strength between the words, to estimate the probability for them being in a multi word phrase. However, this information was not useful since each of the unigram word was associated with another with a MI score, which was not easy to interpret. Moreover, dish names mostly are not uni-grams so the results were not very useful.

3.2 Task 3.2 (B): Using TopMine Algorithm

Next the TopMine algorithm was applied on the review texts of each of the categories. TopMine is an unsupervised quality frequent phrase mining algorithm.

For the TopMine settings, support level was set to $\underline{10}$ and max tokens in the phrase was set to $\underline{6}$ and number of iterations set to $\underline{100}$. The results of the TopMine in terms of top $\underline{10}$ phrases for each of the categories is shown in the table below. The score here is the frequency of the phrase in the data sample.

TopMine Top 10 Frequent Phrases

America New	Score	Chinese	Score	Italian	Score
happy hour	2613	dim sum	3612	good pizza	2242
chicken waffle	2607	chinese food	2974	margherita pizza	2027
food good	2604	pho kim long	1894	bread basket	1814
mac cheese	1553	fry rice	1812	spaghetti meatball	1789
sweet potato fry	1152	egg roll	1462	pasta dish	1330
fry chicken	977	spring roll	1254	bottle wine	976
cheesecake factory	885	sweet potato fry	1152	garlic bread	939
french toast	833	orange chicken	1097	tomato sauce	846
wait minute	769	cheesecake factory	885	caesar salad	730
short rib	768	hot sour soup	863	olive oil	697

Indian	Score	Mexican	Score	Mediterranean	Score
garlic naan	2615	fish taco	2059	pita jungle	2542
chicken tikka masala	2607	chips salsa	2039	great food	2301
spaghetti meatball	1789	rice bean	1398	hookah lounge	1588
tandoori chicken	1506	gallo blanco	1166	flat bread	1472
mango lassi	1062	black bean	1056	beef carpaccio	1423
bottle wine	976	street taco	1051	olive ivy	1323
chicken curry	972	highly recommend	953	bread basket	1142
butter chicken	948	chicken enchilada	896	short rib	927
gulab jamun	914	corn tortilla	891	olive oil	813
tikka masala	852	chile relleno	825	ice cream	795

As can be seen, the results are reasonably okay with a few phrases not representing dish names in the topic representing dishes. For example, in the Indian, Chinese and Italian categories, all of the top 10 results are popular dishes of respective cuisines. However, there are some inaccuracies such as "happy hour" in American (New) cuisine or "Highly recommend" in Mexican cuisine, which are obviously not dish names.

Let's see if the results could be improved with SegPhease.

3.3 Task 3.2 (C): Using SegPhrase

In this sub task, the Dish name mining was done with SegPhrase (Jialu Liu, n.d.).

As first step, the Auto-Label setting was turned on for a sample of 5000 reviews to gather some more quality dish name phrases for enriching the provided label files. This process of enriching label files is discussed in chapter 2.

Once the label files were enriched and false positive label were removed and true positive added, these table files were used used for training with the Auto-Label setting turned off. Following settings were used:

- The Support threshold was set to <u>10</u>
- The max Iteration number was set to 5
- The max number of tokens in a phrase to <u>6</u>
- The wordnet noun was set to 0

The algorithm was performed on all <u>6</u> category texts iteratively. These text files comprised of 50,000 preprocessed reviews for each of the cuisine type. The Pre-processing included token lemmatization, stop-word removal and retention of specific POS tags; namely Nouns, Verbs, Adverbs, Adjectives and Determiners.

The results in terms of top <u>10</u> phrases for each of the category was generated is shown in the table below:

SegPhrase Top 10 Frequent Phrases

America New	Score	Chinese	Score	Italian	Score
zucchini fry	0.93738169	fried egg	0.91576738	cooked perfection	0.92405985
sage fried chicken	0.93391903	thai curry	0.90796381	balsamic vinegar	0.91959047
mac cheese	0.93374460	dim sum	0.89776206	mario batali	0.91952784
turkey burger	0.93001348	pho kim long	0.89667780	filet mignon	0.91922584
fry chicken waffle	0.93001348	orange chicken	0.89557540	al dente	0.91326477
chop salad	0.92984120	pork belly	0.89455911	pizza margherita	0.91114584
bread pudding	0.92878398	taste kung pao	0.89417565	ice cream	0.90978081
goat cheese	0.92824001	hoisin sauce	0.89326790	spaghetti meatball	0.90800980
chicken breast	0.92820474	chicken soup	0.89222804	olive oil	0.90563586
cheesecake factory	0.92776630	sushi sushi roll	0.89102507	smoked salmon	0.90354018

Indian	Score	Mexican	Score	Mediterranean	Score
garlic naan	0.95800768	shrimp chorizo	0.90386185	pita jungle service food	0.92110210
brown rice	0.95748908	chips salsa	0.90386185	mixed green salad	0.92073173
mango lassi	0.95685180	fish taco	0.90386185	salad veggie burger	0.92057974
rice pudding kheer	0.95377389	chicken enchilada	0.90386185	spaghetti meatball	0.91917863
flat bread	0.95102835	horchata rice	0.90206697	lentil soup	0.91884344
chicken tikka masala	0.95011965	corn tortilla	0.90206697	hummus chicken appetizer	0.91884344
tandoori chicken	0.94932060	appetizer tortilla bean	0.90206697	rice gyro meat	0.91884344
mango pudding carrot	0.94842000	guacamole flight	0.90205552	cook al dente	0.91880826
chilli kebab platter	0.94803171	appetizer chips salsa	0.90205552	chicken filet mignon	0.91880826
chicken curry	0.94654702	shrimp tacos	0.90126569	flatbread ravioli	0.91878728

As can be seen, the results are remarkably good and the top 10 high quality phrases are almost always a dish name in all of the cases. The manually tagged labelled list helped the miner to retain only the high-quality phrases.

3.4 Task 3.2 (D): Using AutoPhrase

In this sub task, the Dish name mining was done with **AutoMine** (Jingbo Shang, n.d.), which is claimed to have more improvements over **SegPhrase**. The Support threshold was set to <u>10</u>, the max Iteration number to <u>5</u> and the max number of tokens in a phrase to <u>6</u>. The algorithm was performed on all 6 category texts and the results in terms of top 10 phrases for each category is shown in the table below:

AutoPhrase Top 10 Frequent Phrases

America New	Score	Chinese	Score	Italian	Score
pulled pork	0.90167371	sugar cane	0.93337092	blood orange	0.91719167
poached egg	0.89993675	papaya salad	0.92881902	mamma mia	0.91652395
peanut butter	0.89989261	dim sum	0.92875140	le provencal	0.91257753
cole slaw	0.89825726	sam woo	0.92771841	lagunitas ipa	0.90978012
eggs benedict	0.89425803	chen wok	0.92667058	meatpacking district	0.90860496
smoked salmon	0.89412178	pho kim chicken	0.92618466	broccoli rabe	0.90785202
mgm grand	0.89401837	shishito pepper	0.92567369	pizza margherita	0.90755681
hash browns	0.89357116	sesame seed	0.92537112	poppy seed	0.90747147
duck confit	0.89337578	cajeta flan	0.92514461	hip hop	0.90738095
cotton candy	0.89337577	bachelorette party	0.92503198	eggs benedict	0.90694854

Indian	Score	Mexican	Score	Mediterranean	Score
kabli pulao	0.94743472	mariachi band	0.90694339	taco bell	0.94004745
belly dancing	0.94301010	volcano cookie	0.90634061	puff pastry	0.93946604
seekh kabab	0.94288975	passion fruit	0.90592059	philly cheesesteak	0.93915983
daal maharani	0.94280114	churro tot	0.90584621	rice pilaf	0.93873404
health inspection	0.94253531	fortune cookie	0.90530442	fremont street	0.93864248
kebab mahal	0.94196539	chips salsa	0.90470102	ali baba	0.93842364
chicken tikka masala	0.94020639	planet hollywood	0.90469890	avgolemono soup	0.93814974
sear tofu	0.94006193	shu mai	0.90398738	cheesecake factory	0.93779585
baingan bartha	0.93984807	goat cheese	0.90371827	hole wall	0.93760772
grocery store	0.93983429	hot dogs	0.90298360	hanger steak	0.93747120

Despite the fact that the **AutoPhrase** phrase mining was unsupervised and no manual labels were provided (in contract to **SegPhrase**), the results reasonably good, though some of the phrases were obviously far from being dish names.

3.5 Task 3.2 (E): Using Word2Vec

In this sub-task, **Word2Vec** (models.word2vec – Word2vec embeddings, n.d.) in python was used to mine top frequent dish names. Python genism library was used to create a word2vec model for each of the selected category, with $\underline{5,000}$ vector dimensions and $\underline{20}$ iterations. Before creating the model, bigrams were created with a min-count of $\underline{4}$ and threshold of $\underline{1}$.

Once the model was created, the positive distance between the word 'dish' and bigrams in the model was calculated (only bigrams were returned). The results are shown in the table below. The score here represents the vector distance between the word 'dish' and the bi-gram phrase.

Word2Vec	
Top 10 Frequent Phrases	

America New	Score	Chinese	Score	Italian	Score
green bean	0.41307586	stir frie	0.39408854	pasta cook	0.52054375
cast iron	0.39234251	bell pepper	0.39146996	black truffle	0.51151115
sea bass	0.38351846	spicy sauce	0.37574905	al dente	0.49955612
cream sauce	0.37390384	garlic sauce	0.37300736	pork belly	0.46560961
mash potatoe	0.36415756	clay pot	0.34477097	brown butter	0.45664680
brussel sprout	0.36057016	mapo tofu	0.34379196	creamy polenta	0.45280433
pan seared	0.35750324	bean sauce	0.33908427	squid ink	0.44802022
mashed potatoe	0.34987217	thai style	0.33260161	bone marrow	0.43743646
bread pudding	0.34463316	singapore noodle	0.31919032	lobster gnocchi	0.43240350
pot pie	0.34302545	black pepper	0.31781009	melted mouth	0.42854014

Indian	Score	Mexican	Score	Mediterranean	Score
basmati rice	0.30863297	goat cheese	0.49950641	pork loin	0.35750413
fish curry	0.30369198	mole sauce	0.45765573	veal cheek	0.35018638
tender sauce	0.29365849	chicken breast	0.43017730	foie gra	0.33790028
lamb goat	0.29341763	spicy sauce	0.41204765	sweet corn	0.32510704
tandoori chicken	0.29241410	fry egg	0.41086793	beef belly	0.31337315
tikki masala	0.28896201	cream sauce	0.40921682	ricotta ravioli	0.30675721
lentil soup	0.27102092	mashed potatoe	0.39969632	tender juicy	0.29658297
chicken makhani	0.26762787	chile verde	0.37079218	wagyu beef	0.29590678
chili chicken	0.26642936	dan dan	0.32840639	foie gras	0.29415131
chicken breast	0.26051587	pork bun	0.30877316	poached egg	0.28740370

It can be seen that Word2Vec model generated quite good results but the quality is not as good as was with SegPhrase. It is worth mentioning here that the data for word2vec consisted of parts of speech (POS) of types Nouns, Verbs, Adverbs & Adjectives only to increase the quality of results.

4 Conclusions

It can be concluded that **SegPhrase** with manual labels generated remarkably good results. The accuracy of **AutoPhrase** was also good considering no manual labels were provided and still reasonable results were achieved.

The **Mutual Information** calculation on uni-grams was barely useful for dish name extraction.

If the data good pre-processed (such as specific POS tags are retained and stop words are removed), **word2vec** also provide acceptable results to mine dish names.

5 References

- Jialu Liu, J. S. (n.d.). *Mining Quality Phrases from Massive Text Corpora*. Retrieved from GitHub: https://github.com/shangjingbo1226/SegPhrase
- Jingbo Shang, J. L. (n.d.). *AutoPhrase: Automated Phrase Mining from Massive Text Corpora*. Retrieved from GitHub: https://github.com/shangjingbo1226/AutoPhrase
- models.word2vec Word2vec embeddings. (n.d.). Retrieved from Gensim: https://radimrehurek.com/gensim/models/word2vec.html