#956 Do RNN and LSTM have Long Memory?

Jingyu Zhao ¹, Feiqing Huang ¹, Jia Lv ², Yanjie Duan ², Zhen Qin ², Guodong Li ¹, Guangjian Tian ²

Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong, China
Huawei Noah's Ark Lab, Hong Kong, China

ICML, Jul 2020

Pros and Cons of Long short-term Memory (LSTM)

Countless applications

 Numerically proven effectiveness on synthetic tasks

e.g.,
$$y_{T+1} = y_1$$

- Markovian updates: states at time t only depend on the states at time t - 1
- Statistical tests show that LSTM cannot

 (i) produce long memory output given white noise as input
 (ii) produce short
 - (ii) produce short memory residual given long memory input

• The term *Long Memory* in ...

Deep Learning

Not well-defined yet

- Short memory has a synonym "vanishing gradients" from the algorithmic / training aspect
- Datasets: language, music, etc.

Statistics

- Well-defined for stationary stochastic processes
- No exogenous inputs
- From the modeling perspective
 e.g. fractional ARIMA (ARFIMA)
- Datasets: records in finance, dendrochronology, hydrology, etc.

- 1. Assuming no exogenous inputs, we prove sufficient conditions for a recurrent network with Markovian updates to have short memory.
 - ⇒ RNN and LSTM do not have long memory most of the time!

- 1. Assuming no exogenous inputs, we prove sufficient conditions for a recurrent network with Markovian updates to have short memory.
- 2. We propose a new definition of long memory recurrent networks, allowing exogenous inputs.
 - We want the correlation between the target y_t and the input x_{t-k} to decay slowly as $k \to \infty$.

- 1. Assuming no exogenous inputs, we prove sufficient conditions for a recurrent network with Markovian updates to have short memory.
- 2. We propose a new definition of long memory recurrent networks, allowing exogenous inputs.
- 3. We explore theory-guided applications: MRNN and MLSTM.
 - A long memory filter is added to RNN at the input or LSTM at the cell states, to pass distant information to current hidden units.

- 1. Assuming no exogenous inputs, we prove sufficient conditions for a recurrent network with Markovian updates to have short memory.
- 2. We propose a new definition of long memory recurrent networks, allowing exogenous inputs.
- 3. We explore theory-guided applications: MRNN and MLSTM
- 4. We conduct numerical studies to illustrate the advantages of proposed models.
 - They can be used alone or merge into current network structures.

Introduction

- Statistical long memory models
 - A fractionally integrated processes $\{y_t\}$ is defined as

$$(1-B)^d y_t = x_t \iff y_t = (1-B)^{-d} x_t$$

If $x_t \sim ARMA$, $y_t \sim fractionally integrated ARMA = ARFIMA$

 $(1-B)^d$ represents an infinitely long filter

	:
w_K	$= \prod_{j=0}^{K-1} \frac{j-d}{j+1} = \frac{-d(1-d)\cdots(K-2-d)}{(K-1)!}$
	:
w_2	$=\frac{-d(1-d)}{2!}$
w_1	=-d
w_0	= 1

Introduction

Long memory datasets

• A statistical but visual check is to look at the sample plot of the autocorrelation function $\rho(k) = \operatorname{Corr}(X_t, X_{t-k})$, i.e., sample ACF plot

ACF Plot of Long Memory Time Series

ACF Plot of Short Memory Time Series

- The statistical definition of Long Memory
 - For a second-order stationary univariate process $\{X_t\}$, it has
 - (a) long memory, or (b) short memory if

(a)
$$\sum_{k=-\infty}^{\infty} \rho(k) = \infty$$
, or (b) $\sum_{k=-\infty}^{\infty} \rho(k) = C < \infty$

E.g. polynomial decay (blue dashed line)

$$\rho(k) \sim |k|^{-1}$$
, $\sum_{k=-\infty}^{\infty} \rho(k) = \infty$

• E.g. exponential decay (orange line)

$$\rho(k) \sim 2^{-|k|}, \sum_{k=-\infty}^{\infty} \rho(k) = C$$

 Assuming no exogenous inputs, we prove sufficient conditions for a recurrent network with Markovian updates to have short memory.

- Target sequence: $\{y_t\}$
- General hidden states: $\{s_t\}$
- Random error: $\{\varepsilon_t\}$
- Transition function: \mathcal{M}
- A recurrent network with Markovian updates is written as

$${y_t \choose s_t} = \mathcal{M}(y_{t-1}, s_{t-1}) + {\varepsilon_t \choose 0}$$

RNN and LSTM belongs to recurrent networks with Markovian updates!

- Assuming no exogenous inputs, we prove sufficient conditions for a recurrent network with Markovian updates to have short memory.
 - The sufficient conditions are met most of the time!
 (see Corollary 1 & 2 in the paper)

Table 1. Restrictions on weights such that the RNN process is geometrically ergodic.

Output	Activation function σ		
function g	identity or ReLU	sigmoid or tanh	
identity	$\begin{aligned} w_{zh}w_{hh} &\leq a, \\ w_{zh}w_{hy} &\leq a, \\ w_{hh} &\leq a, w_{hy} &\leq a \end{aligned}$	No	
sigmoid	$ w_{hh} \le a, w_{hy} \le a$	No	
softmax	$ w_{hh} \le a, w_{hy} \le a$	No	

- Assuming no exogenous inputs, we prove sufficient conditions for a recurrent network with Markovian updates to have short memory.
 - The sufficient conditions are met most of the time!
 (see Corollary 1 & 2 in the paper)

Table 4. Application of Theorem 1 to specific LSTMs.

		Activation function σ			
		ReLU or identity	sigmoid or tanh		
Output function	identity	$ w_{oh} + w_{ih} + w_{zh}w_{oh} \le a, w_{oy} + w_{iy} + w_{zh}w_{oy} \le a, w_{fh}v + w_{fy}u + b_f \le a$	No		
g sigmoid		$ w_{oh} + w_{ih} \le a,$ $ w_{oy} + w_{iy} \le a,$ $ w_{fh}v + w_{fy}u + b_f \le a$	$ \sigma(w_{fh} + w_{fy} + b_f) \le a$		
	softmax	$ w_{oh} + w_{ih} \le a,$ $ w_{oy} + w_{iy} \le a,$ $ w_{fh}v + w_{fy}u + b_f \le a$	$ \sigma(w_{fh} + w_{fy} + b_f) \le a$		

- We propose a new definition of long memory recurrent networks, allowing exogenous inputs.
 - Suppose we manage to write the target sequence $\{y_t\}$ as a linear function of the network inputs $\{x_t\}$,

$$y_t = \sum_{k=0}^{\infty} A_k x_{t-k} + \varepsilon_t$$

- A neural network has long memory if elements of A_k decay slowly as $k \to \infty$.
- This definition is closely connected to its statistics counterpart.
- Possible extensions to nonlinear networks are discussed in the paper.

- We explore theory-guided applications: MRNN and MLSTM.
 - Long-term information cannot be stably stored in the hidden states of a recurrent network with Markovian updates.
 - A long memory filter is added to RNN at the input or LSTM at the cell states, to pass distant information to current hidden units.

truncated $(1 - B)^d$ as the long memory filter

w_K	$= \prod_{j=0}^{K-1} \frac{j-d}{j+1} = \frac{-d(1-d)\cdots(K-2-d)}{(K-1)!}$
	i
w_2	$=\frac{-d(1-d)}{2!}$
w_1	=-d

- We explore theory-guided applications: MRNN and MLSTM.
 - In Memory-augmented RNN, x_t and $F(x_t)$ are parallel inputs
 - Normal hidden units: $h_t = \tanh(W_h[h_{t-1}, x_t] + b_h)$
 - Long memory hidden: $m_t = \tanh(W_m[m_{t-1}, F(x_t)] + b_m)$
 - Output: $z_t = g(W_z[h_t, \mathbf{m_t}] + b_z)$

truncated $(1 - B)^d$ as the long memory filter

w_K	$= \prod_{j=0}^{K-1} \frac{j-d}{j+1} = \frac{-d(1-d)\cdots(K-2-d)}{(K-1)!}$
	:
w_2	$=\frac{-d(1-d)}{2!}$
w_1	=-d

- We explore theory-guided applications: MRNN and MLSTM.
 - In Memory-augmented RNN, the memory parameter d can be time-varying (MRNN) or constant through time (MRNNF):

$$d_t = 0.5 \ \sigma(W_d[d_{t-1}, h_{t-1}, m_{t-1}, x_t] + b_d) \in (0, 0.5)$$

truncated $(1 - B)^d$ as the long memory filter

w_K	$= \prod_{j=0}^{K-1} \frac{j-d}{j+1} = \frac{-d(1-d)\cdots(K-2-d)}{(K-1)!}$
	:
w_2	$=\frac{-d(1-d)}{2!}$
<i>w</i> ₁	=-d

- We explore theory-guided applications: MRNN and MLSTM.
 - In Memory-augmented RNN, the memory parameter d can be timevarying (MRNN) or constant through time (MRNNF):

$$d = 0.5 \sigma($$

$$b_d$$
) \in (0, 0.5)

truncated $(1-B)^d$ as the long memory filter

w_K	$= \prod_{j=0}^{K-1} \frac{j-d}{j+1} = \frac{-d(1-d)\cdots(K-2-d)}{(K-1)!}$
	:
w_2	$=\frac{-d(1-d)}{2!}$
w_1	=-d

- We explore theory-guided applications: MRNN and MLSTM.
 - In LSTM, the update of cell states can be viewed as a random coefficient vector AR(1) model

(LSTM)
$$c_t = f_t c_{t-1} + i_t \widetilde{c_t} \leftrightarrow c_t = A_t c_{t-1} + \varepsilon_t \text{ (RC-VAR(1))}$$

(LSTM) $c_t - f_t c_{t-1} = i_t \widetilde{c_t} \leftrightarrow c_t - A_t c_{t-1} = \varepsilon_t \text{ (RC-VAR(1))}$

- We explore theory-guided applications: MRNN and MLSTM.
 - In Memory-augmented LSTM, long memory filter is applied to the cell states, generalizing the RC-VAR(1) form

(MLSTM)
$$c_t - d c_{t-1} - \cdots = (1 - B)^d c_t = i_t \widetilde{c_t}$$

(LSTM) $c_t - f_t c_{t-1} = i_t \widetilde{c_t}$

truncated $(1-B)^d$ as the long memory filter

w_K	$= \prod_{j=0}^{K-1} \frac{j-d}{j+1} = \frac{-d(1-d)\cdots(K-2-d)}{(K-1)!}$
	:
w_2	$=\frac{-d(1-d)}{2!}$
w_1	=-d

- We explore theory-guided applications: MRNN and MLSTM.
 - In Memory-augmented LSTM, the memory parameter d can be time-varying (MLSTM) or constant through time (MLSTMF):

(MLSTM)
$$(1-B)^d$$
 $c_t=i_t$ $\widetilde{c_t}$, $d_t=0.5$ $\sigma(W_d[d_{t-1},h_{t-1},x_t]+b_d)$ (LSTM) c_t-f_t $c_{t-1}=i_t$ $\widetilde{c_t}$, $f_t=\sigma(W_d[h_{t-1},x_t]+b_f)$ truncated $(1-B)^d$ as the long memory filter

w_K	$= \prod_{j=0}^{K-1} \frac{j-d}{j+1} = \frac{-d(1-d)\cdots(K-2-d)}{(K-1)!}$
	:
w_2	$=\frac{-d(1-d)}{2!}$
w_1	=-d

- We explore theory-guided applications: MRNN and MLSTM.
 - In Memory-augmented LSTM, the memory parameter d can be time-varying (MLSTM) or constant through time (MLSTMF):

(MLSTM)
$$(1-B)^d$$
 $c_t=i_t$ $\widetilde{c_t}$, $d=0.5$ $\sigma(b_d)$ (LSTM) c_t-f_t $c_{t-1}=i_t$ $\widetilde{c_t}$, $f_t=\sigma(W_d[h_{t-1},x_t]+b_f)$ truncated $(1-B)^d$ as the long memory filter

w_K	$= \prod_{j=0}^{K-1} \frac{j-d}{j+1} = \frac{-d(1-d)\cdots(K-2-d)}{(K-1)!}$
	:
w_2	$=\frac{-d(1-d)}{2!}$
w_1	=-d

- We conduct numerical studies to illustrate the advantages of proposed models.
 - They can be used alone or merge into current network structures!

e.g. proposed cell structure replacing the hidden units in RNN/LSTM

output output

MRNN

input

input

e.g. a two layer network with one layer of MLSTM cell + one layer of LSTM cell

Datasets

Time Series Forecasting

- Synthetic series
 - ARFIMA sequence
- Real data
 - DJI financial returns
 - Traffic volume
 - Tree ring measures
 - Source:
 - Yahoo Finance
 - UCI machine learning repository
 - R package: tsdl

Datasets

Paper Reviews Classification

- Spanish paper reviews
- Evaluated by a five-point scale:
 - -2, -1, 0, 1, 2

- Source:
 - UCI machine learning repository

```
"evaluation": "1",
"text": "- El artículo aborda un
problema contingente y muy
relevante, e incluye tanto un
diagnóstico nacional de uso de
buenas prácticas como una solución
buenas prácticas concretas). - El
lenguaje es adecuado. - El artículo se
siente como la concatenación de tres
artículos diferentes: (1) resultados de
una encuesta, (2) buenas prácticas de
seguridad, (3) incorporación de
buenas prácticas. - El orden de las
secciones sería mejor si refleja este
orden (la versión revisada es #2, #1,
#3). - El artículo no tiene validación de
ningún tipo, ni siquiera por evaluación
de expertos.",
```

Experiment highlights

Time Series Forecasting

Table 2. Overall performance in terms of RMSE. Average RMSE and the standard deviation (in brackets) are reported. The best result is highlighted in **bold**.

	ARFIMA	DJI (x100)	Traffic	Tree
RNN	1.1620	0.2605	336.44	0.2871
KININ	(0.1980)	(0.0171)	(10.401)	(0.0086)
RNN2	1.1630	0.2521	336.32	0.2855
KININZ	(0.1820)	(0.0112)	(10.182)	(0.0077)
RWA	1.6840	0.2689	346.62	0.3048
KWA	(0.0050)	(0.0095)	(1.410)	(0.0001)
MIST	1.1390	0.2604	358.09	0.2883
MIST	(0.1832)	(0.0154)	(16.270)	(0.0091)
MRNNF	1.1010	0.2472	333.36	0.2822
WIKININF	(0.1000)	(0.0109)	(8.453)	(0.0048)
MRNN	1.0880	0.2487	333.72	0.2818
	(0.1140)	(0.0105)	(10.157)	(0.0053)
	1.1340	0.2492	337.60	0.2833
LSTM	(0.1200)	(0.0128)	(8.146)	(0.0070)
MI CTME	1.1580	0.2540	337.78	0.2859
MLSTMF	(0.1660)	(0.0139)	(9.020)	(0.0082)
MI CTM	1.1490	0.2531	337.83	0.2859
MLSTM	(0.1660)	(0.0130)	(9.440)	(0.0083)

Paper Reviews Classification

Table 5. Overall performance on Paper Reviews in terms of accuracy, precision, recall and cross-entropy loss (CEloss).

	Accuracy	Precision	Recall	CEloss
RNN	0.2836	0.1786	0.2248	1.5787
KNIN	(0.0348)	(0.0606)	(0.0350)	(0.0348)
LSTM	0.3021	0.1724	0.2274	1.5752
LSTM	(0.0468)	(0.0697)	(0.0332)	(0.0189)
MRNNF50	0.3096	0.1692	0.2224	1.5704
	(0.0373)	(0.0839)	(0.0428)	(0.0328)
MLSTMF50	0.3110	0.2254	0.2594	1.4758
WILDTWIFSO	(0.0204)	(0.0707)	(0.0262)	(0.0218)

Table 6. Best performance of the models on Paper Reviews.

	Accuracy	Precision	Recall	CEloss
RNN	0.3600	0.3951	0.3093	1.5204
LSTM	0.3800	0.4304	0.3225	1.5512
MRNNF50	0.4000	0.3992	0.3178	1.5209
MLSTMF50	0.3600	0.4621	0.3596	1.4489

Additional experiments

Performance on short memory dataset

- Synthetic dataset:
 - RNN sequence

Hyperparameter K

- K = 25, 50, 75, 100 tested.
- For MRNN(F), we recommend
 K = 100
- For MLSTM(F), we recommend
 K = 25

Thank you for listening!

• Full Paper: https://arxiv.org/abs/2006.03860

• Code Preview: https://github.com/Gladys-Zhao/mRNN-mLSTM

Full paper at arXiv

Code preview at GitHub

