ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ 1

$$| \underline{\mathsf{lgx}} \underline{\mathsf{lox}} \underline{\mathsf{lgx}} \underline{\mathsf{lgx}} | = | \mathbf{f'}(\mathbf{x}) \pm \mathbf{g'}(\mathbf{x}) | = | \mathbf{a} * \mathbf{f'}(\mathbf{x}) |, \text{ a: } \underline{\mathsf{gta}} \underline{\mathsf{gta}} \underline{\mathsf{gta}}$$

Εξετάζω (με τη σειρά) σε ποια από τις 5 (πιο συχνές) περιπτώσεις είμαι:

1	Βασικές	f(x)	a	X	x ^a	a ^x	ln(x)	sin(x)	cos(x)
•	Βασικές	f'(x)	0	1	a*x ^{a-1}	ln(a)*a ^x	$\frac{1}{x}$	cos(x)	- sin(x)

$$[f(x) * g(x)]' = f'(x) * g(x) + f(x) * g'(x)$$

$$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x)*g(x) - f(x)*g'(x)}{g(x)^2} , g(x) \neq 0$$

[fog]' =
$$[f(g(x))]' = f'(g(x)) * g'(x)$$

$$f(x) = x^{x} \Rightarrow \ln[f(x)] = \ln[x^{x}] \Rightarrow \ln[f(x)] = x * \ln[x] \Rightarrow (\ln[f(x)])' = (x * \ln x)' \Rightarrow \frac{1}{f(x)} * f'(x) = (x)' * \ln x + x * (\ln x)' \Rightarrow f'(x) = f(x) * [1 * \ln x + x * \frac{1}{x}] \Rightarrow f'(x) = x^{x} * [\ln x + 1]$$

$$\lim_{\mathbf{x} \to \mathbf{x}_0} \frac{\mathbf{f}(\mathbf{x})}{\mathbf{g}(\mathbf{x})} = \frac{\mathbf{0}}{\mathbf{0}} \quad \text{if} \quad \lim_{\mathbf{x} \to \mathbf{x}_0} \frac{\mathbf{f}(\mathbf{x})}{\mathbf{g}(\mathbf{x})} = \frac{\pm \, \infty}{\pm \, \infty} \qquad \Rightarrow \qquad \qquad \lim_{\mathbf{x} \to \mathbf{x}_0} \frac{\mathbf{f}(\mathbf{x})}{\mathbf{g}(\mathbf{x})} = \lim_{\mathbf{x} \to \mathbf{x}_0} \frac{\mathbf{f}'(\mathbf{x})}{\mathbf{g}'(\mathbf{x})}$$

f'(x)>0	,x∈(a,b)	f↑	αύξουσα	,x∈[a,b]	f''(x)>0	,x∈(a,b)	f∪	κυρτή	,x∈[a,b]
f'(x)<0	\Rightarrow	f↓	φθίνουσα	,xc[a,b]	f''(x)<0	\Rightarrow	f∩	κοίλη	

Πιθανά Τοπικά Ακρότατα (Κρίσιμα Σημεία)		$f'(x_0)=0$	ή	∄ f'(x₀)		Πιθανά Σημεία Καμπής		$f''(x_0)=0$	ή	∄ f''(x₀)
--	--	-------------	---	----------	--	----------------------	--	--------------	---	-----------

	$f''(x_0) < 0$	ń	£! ()	>0	αριστερά	_	v gogusk ukuggo	
<u>Αν</u>	$1 (x_0) < 0$	4	f'(x)	<0	δεξιά	Π	χο τοπικό μέγιστο	
$f'(x_0)=0$								
1 (20)—0	f"(~) > 0	ń	f'(w)	<0	δεξιά	1	χο τοπικό ελάχιστο	
	$f''(x_0) > 0$	4	f'(x)	>0	αριστερά	⇒	χο τοπικό ελαχιότο	

	Κατακόρυφη	$x = x_0$		$\lim_{\mathbf{x}\to\mathbf{x}_0^-}[\mathbf{f}(\mathbf{x})]=\pm\infty$	ή	$\lim_{\mathbf{x}\to\mathbf{x}_0^+}[\mathbf{f}(\mathbf{x})]=\pm\infty$	
Ασύμπτωτες	Οριζόντια	$y = y_o$	αν	$\lim_{x\to-\infty}[f(x)]=y_0$		$\lim_{x\to+\infty}[f(x)]=y_0$	
	Πλάγια	y = bx + a		$\lim_{\mathbf{x}\to-\infty(+\infty)} \left[\frac{\mathbf{f}(\mathbf{x})}{\mathbf{x}} \right] = \mathbf{b} \neq 0$	και	$\lim_{\mathbf{x}\to-\infty(+\infty)}[\mathbf{f}(\mathbf{x})-\mathbf{b}\mathbf{x}]=\mathbf{a}\in\mathbb{R}$	

Ολοκληρώματα
$$\int [f'(x)] dx = f(x) + c \qquad \int [f(x)] dx = F(x) + c \qquad \left(\int [f(x)] dx \right)' = f(x)$$

D		F(x)		0	1	x ^a	a ^x	$\frac{1}{x}$	sin(x)	cos(x)
Βασικές		f(x)		a	x + c	$\frac{x^{a+1}}{a+1} + c$	$\frac{a^{x}}{\ln(a)} + c$	ln(x) + c	-[cos(x)] + c	$\sin(x) + c$

$$\mathbb{E}$$
μβαδόν $=$ $\int_{a}^{b} [\mathbf{f}(\mathbf{x})] d\mathbf{x}$ $=$ $[\mathbf{F}(\mathbf{x})]_{\mathbf{x}=a}^{\mathbf{x}=b}$ $=$ $\mathbf{F}(\mathbf{b}) - \mathbf{F}(\mathbf{a})$

$$\int_{a}^{a} [f(x)] dx = 0 \qquad \int_{a}^{b} [f(x)] dx = -\int_{b}^{a} [f(x)] dx \qquad \int_{a}^{b} [f(x)] dx = \int_{a}^{c} [f(x)] dx + \int_{c}^{b} [f(x)] dx$$

$$\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} [f(x)] dx \pm \int_{a}^{b} [g(x)] dx$$

$$\int_{a}^{b} [k * f(x)] dx = k * \int_{a}^{b} [f(x)] dx$$

$$\int_{a}^{\infty} [f(x)] dx = \lim_{k \to \infty} \int_{a}^{k} [f(x)] dx$$

$$\int \big[f \big(g(x) \big) * g'(x) \big] dx \qquad = \qquad \frac{\Theta \acute{\epsilon} \tau \omega}{du = [g'(x)] dx} \qquad = \qquad \int [f(u)] du$$

$$\int [f(x) * g'(x)] dx = [f(x) * g(x)] - \int [f'(x) * g(x)] dx \rightarrow \int (u) dv = uv - \int (v) du$$

$$\Gamma(x) = \int_0^\infty [t^{x-1} * e^{-t}] dt \qquad x>0 \qquad \underline{\kappa\alpha} \qquad \Gamma(x+1) = x! = x * (x-1) * (x-2) * ... * 2 * 1$$

Διαφορικές Εξισώσεις Δ ίνει συνάρτηση με x, y, y' και μια λύση y, είτε για έλεγχο (0=0), είτε για αρχικές τιμές