

Greenberger-Horne-Zeilinger State

Team SSQRT

Problem Statements

Build and run a GHZ state on an Real Quantum Hardware **Apply Readout Error Mitigation** Implement Quantum Communication Scheme

Improve GHZ circuit with Pulse-level Calibration Optimize Pulse Parameters

Perform Zero-noise Extrapolation Calibrate DRAG pulse and Rotary term

Problem Statements

1

Build and run a GHZ state on an Real Quantum Hardware

Apply Readout Error Mitigation

Implement Quantum Communication Scheme

How to make a GHZ state

$$|\Psi\rangle_{GHZ} = \frac{1}{\sqrt{2}}[|0000\rangle + |1111\rangle]$$

Four-qubit GHZ State

How to make a GHZ state

$$|\Psi\rangle_{GHZ} = \frac{1}{\sqrt{2}}[|0000\rangle + |1111\rangle]$$

Four-qubit GHZ State including Two-qubit Repetition Code

W state

$$|\Psi\rangle_W = \frac{1}{2}[|0001\rangle + |0010\rangle + |0100\rangle + |1000\rangle]$$

Readout Error Mitigation

Readout Error Mitigation Scheme using CNOT gate

R. Hicks et. al, "Active Readout Error Mitigation," University of California, Berkeley, 2022.

Bit flip Readout Error Probability

$$q_{eff,2} \approx \frac{\epsilon}{4} + q^2$$

Two-qubit readout error detection

$$q_{eff,3} \approx 3(\frac{\epsilon}{4} + q^2)$$

Three-qubit readout error correction

IBM Canberra

Falcon r6 Processor
27 Qubits

Optimal Qubit Layout Algorithm

Optimal Qubit Layout Algorithm

Optimal Qubit Layout Algorithm

Find all possible sets of four connected qubits

Find sets of qubits capable of three CNOT connections

If a qubit is subject to two CNOT possibilities, compare the error probabilities of the two cases

Compare among the finalists for the optimal result

Optimal Qubit Layout Algorithm

Fidelity **Qubit Set** [[0.7101795149797284, [15, 18, 21, 23]], [0.9211295107767663, [1, 2, 4, 7]], [0.9334404942956175, [22, 23, 24, 25]], [0.9373700099975102, [19, 22, 24, 25]], [0.9478085901001727, [7, 10, 12, 15]], [0.9479723635803164, [5, 8, 11, 14]], [0.9480160560790225, [7, 10, 12, 13]], [0.9502487309366804, [11, 14, 16, 19]], [0.9506613203193462, [13, 14, 16, 19]], [0.951626455094902, [12, 13, 14, 15]], [0.9532287676512312, [1, 4, 7, 10]],[0.95455368823144, [4, 7, 10, 12]], [0.9592733452157228, [14, 16, 19, 22]], [0.9667088227140149, [1, 2, 3, 4]], [0.9690453653527326, [12, 13, 14, 16]], [0.9691544876849959, [16, 19, 22, 25]], [0.9705736050821081, [10, 12, 13, 14]], [0.9707075355230773, [8, 11, 14, 16]], [0.970788798420706, [11, 12, 13, 14]], [0.9754935406708112, [12, 15, 18, 21]], [0.9758126844009003, [10, 12, 15, 18]], [0.9778210520288816, [8, 11, 13, 14]], [0.97812598828705, [12, 13, 15, 18]], [0.9831852999039822, [3, 5, 8, 11]]]

Post-Measurement Treatment

Before Correction After Correction

orrection

Two Best Sets

 $|0\rangle$ U R^{-1}

Local Error Approximation

 $R \cong R_1 \otimes R_2 \otimes R_3 \otimes R_4$

0.96481

0.88822

0.99846

0.99978

Two Worst Sets

0.70727

0.99152

0.54980

0.98054

Post-Measurement Treatment

Before Correction After Correction

Two Best Sets

0.96481

0.99978

0.88822

0.99846

Two Worst Sets

0.70727

0.99152

0.54980

0.98054

Comparison with IBM Runtime Sampler

Readout Error Mitigation

One-Hop Bidirectional Quantum Transportation 🥞 Qiskit

15

Not a Bidirectional Channel!

Two independent path of channel each consuming one GHZ pair

$$(\alpha|0\rangle+\beta|1\rangle)\otimes\frac{|000\rangle+|111\rangle}{\sqrt{2}}=\frac{\alpha|0000\rangle+\alpha|0111\rangle+\beta|1000\rangle+\beta|1111\rangle}{\sqrt{2}}$$

One-Hop Bidirectional Quantum Transportation 😂 Qiskit

$$\frac{\alpha|+000\rangle + \alpha|+111\rangle + \beta|-110\rangle + \beta|-001\rangle}{\sqrt{2}}$$

$$=\frac{1}{2}[|000\rangle(\alpha|0\rangle+\beta|1\rangle)+|001\rangle(\alpha|0\rangle-\beta|1\rangle)+|110\rangle(\alpha|1\rangle+\beta|0\rangle)+|111\rangle(\alpha|1\rangle-\beta|0\rangle)]$$

One-Hop Bidirectional Quantum Transportation 😂 Qiskit

$$\frac{|000\rangle(\alpha|0\rangle+\beta|1\rangle)+|001\rangle(\alpha|0\rangle-\beta|1\rangle)+|110\rangle(\alpha|1\rangle+\beta|0\rangle)+|111\rangle(\alpha|1\rangle-\beta|0\rangle)}{2}$$

|000}

No Process

 $|001\rangle$

Z Gate

 $|011\rangle$

X Gate

 $|111\rangle$

X – Z Gates

18

1 Prepare GHZ States

2 Transfer Information to the Next Qubit with GHZ⁻¹ Gate

3 Measurement: Transfer the Entire Information

4 Post-Processing

Multi-Hop

 A_1 , B_1 , A_2 , B_2 , A_3 , B_3 : one of I, X, Z, ZX

Multi-Hop

 $A_1, B_1, A_2, B_2, A_3, B_3$: one of I, X, Z, ZX

$$\psi_A = A_1^{-1} A_2^{-1} A_3^{-1} A_3 A_2 A_1 \psi_A$$

$$\psi_B = B_1^{-1} B_2^{-1} B_3^{-1} B_3 B_2 B_1 \psi_B$$

Multi-Hop

Problem Statements

2

Improve GHZ circuit with Pulse-level Calibration
Optimize Pulse Parameters

3-qubit GHZ Gate Abstraction

Calibrated 3-qubit GHZ Gate

X Gate

SX Gate

Amplitude Optimization

Qubit 1

Qubit 2

SX Gate Optimal Values

```
In [173]: from qiskit import QuantumCircuit from qiskit_experiments.library import ProcessTomography qc = QuantumCircuit(2) qc.sx(0)

exp = ProcessTomography(qc. physical_qubits=(0, 1), backend=backend) exp.analysis.set_options(fitter="cvxpy_linear_lstsq") exp_data = exp.run().block_for_results() exp_data.analysis_results("process_fidelity").value

Out[173]: 0.9866742495096311
```

```
In [174]:

from qiskit import QuantumCircuit
from qiskit_experiments.library import ProcessTomography
qc = QuantumCircuit(2)
qc.sx(1)

exp = ProcessTomography(qc, physical_qubits=(0, 1), backend=backend)
exp.analysis.set_options(fitter="cvxpy_linear_lstsq")
exp_data = exp.run().block_for_results()
exp_data.analysis_results("process_fidelity").value

Out[174]:

0.9851802814896147
```

X Gate Optimal Values

```
In [175]: from qiskit import QuantumCircuit
from qiskit_experiments.library import ProcessTomography
qc = QuantumCircuit(2)
qc.x(0)

exp = ProcessTomography(qc, physical_qubits=(0, 1), backend=backend)
exp.analysis.set_options(fitter="cvxpy_linear_lstsq")
exp_data = exp.run().block_for_results()
exp_data.analysis_results("process_fidelity").value

Out[175]: 0.9826479135791473
```

```
In [176]: from qiskit import QuantumCircuit from qiskit_experiments.library import ProcessTomography qc = QuantumCircuit(2) qc.x(1)

exp = ProcessTomography(qc, physical_qubits=(0, 1), backend=backend) exp.analysis.set_options(fitter="cvxpy_linear_lstsq") exp_data = exp.run().block_for_results() exp_data.analysis_results("process_fidelity").value

Out[176]: 0.98157197918988
```

Cross Resonance Pulse Calibration

Cross Resonance Pulse Calibration

6070 6000 4500 Count 3000 2292 1500 334

Poor Calibration

Optimized Calibration

Cross Resonance Pulse Calibration

CNOT Gate Calibration by Optimizing Amplitude

J. Jang, et. al

Problem Statements

3
© 2020 IBM Corporation

Zero-noise Extrapolation

DRAG pulse and Rotary term

Zero-Noise Extrapolation

T. Girugica-Tiron, et. al, "Digital Zero noise extrapolation for quantum error mitigation," Stanford University, 2021.

Pulse Calibration: DRAG

$$DRAG(x, x_0, A, \sigma, \beta) = A \exp\left(-\frac{(x - x_0)^2}{2\sigma^2}\right) + i\beta \frac{d}{dx} \left[A \exp\left(-\frac{(x - x_0)^2}{2\sigma^2}\right)\right]$$

Limits Leakage to higher energy levels

Pulse Calibration: Rotary Term

$$H = \sum \{\omega_j b_j^{\dagger} b_j + \frac{\delta_j}{2} b_j^{\dagger} b_j (b_j^{\dagger} b_j - I)\} + J (b_0^{\dagger} b_1 + b_1^{\dagger} b_0) + \Omega \cos(\omega_d t + \phi_c) (b_0^{\dagger} + b_0)$$

Block-Diagonalization

$$H(\Omega) = \nu_{IX} \frac{IX}{2} + \nu_{IZ} \frac{IZ}{2} + \nu_{ZI} \frac{ZI}{2} + \nu_{ZX} \frac{ZZ}{2} + \nu_{ZX} \frac{ZZ}{2},$$

Echoed Cross-Resonance Gate

$$ZX_{\pi/2} = XI \cdot ZX_{-\pi/4} \cdot XI \cdot ZX_{\pi/4}$$