18.102 Midterm

Octavio Vega

April 23, 2023

Problem 1

Proof. We will show that $\Lambda([a,b])$ is a proper closed subspace of C([a,b]), which we know is a Banach space. Let $\{f_n\}_n$ be a cauchy sequence in $\Lambda([a,b])$ such that $f_n \to f$ pointwise. Then for every $\epsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall n \geq N$, $||f - f_n|| < \epsilon$. This is equivalent to

$$\sup_{x \in [a,b]} |f(x) - f_n(x)| + \sup_{x \neq y \in [a,b]} \frac{|f(x) - f_n(x) - f(y) + f_n(y)|}{|x - y|} < \epsilon.$$
 (1)

Since both terms on the left hand side are non-negative, this implies

$$\sup_{x \neq y \in [a,b]} \frac{|f(x) - f_n(x) - f(y) + f_n(y)|}{|x - y|} < \epsilon.$$

$$(2)$$

Then for any $x \neq y \in [a, b]$, we have

$$|f(x) - f_n(x) - f(y) + f_n(y)| < \epsilon |x - y|,$$
 (3)

which confirms that for each $n \geq N$, the function $f - f_n$ is Lipschitz continuous. By assumtion, f_n is Lipschitz continuous $\forall n \in \mathbb{N}$, and the sum of Lipschitz continuous functions is also Lipschitz, thus $f = f_n + (f - f_n)$ is Lipschitz continuous.

So, $\lim_{n\to\infty} f_n = f \in \Lambda([a,b])$, which proves that $\Lambda([a,b])$ is a proper closed subspace of C([a,b]).

Therefore, $\Lambda([a,b])$ is a Banach space.

Problem 2

Proof. First we show that $||a + c_0||_{\ell^{\infty}/c_0} \leq \limsup_{n \to \infty} |a_n|$.

Let $a = \{a_n\}_n \in \ell^{\infty}$. For each $n \in \mathbb{N}$, let $b_n = (a_1, a_2, ..., a_n, 0, 0, ...) \in c_0$. Then

$$\inf_{b \in c_0} ||a+b||_{\infty} \le \inf_n ||a-b_n||_{\infty} \tag{4}$$

$$=\inf_{n}\sup_{m\in\mathbb{N}}|a_{m}-b_{m}|\tag{5}$$

$$=\inf_{n}\sup_{m\geq n}|a_{m}|\tag{6}$$

$$= \limsup_{n \to \infty} |a_n|. \tag{7}$$

Thus,

$$||a + c_0||_{\ell^{\infty}/c_0} \le \limsup_{n \to \infty} |a_n|.$$
 (8)

Let $b=(b_1,b_2,b_3,\ldots)\in c_0$. Then for every $\epsilon>0,\ \exists n\in N$ such that $\forall m\geq n,\ |b_m|<\epsilon,$ so

$$||a+b||_{\infty} \ge \sup_{m \ge n} |a_m| - \epsilon \tag{9}$$

$$\geq \lim_{n \to \infty} \sup |a_n| - \epsilon, \tag{10}$$

hence $\limsup_{n\to\infty} |a_n| < ||a+c_0||_{\ell^{\infty}/c_0} + \epsilon$.

Therefore,
$$||a + c_0||_{\ell^{\infty}/c_0} = \limsup_{n \to \infty} |a_n|$$
.

Problem 3

(a)

Proof. Since $\lim_{n\to\infty} T_n x = Tx$, then for every $\epsilon > 0 \exists N \in \mathbb{N}$ such that $\forall n \geq N$,

$$||T_n x - Tx|| < \epsilon. \tag{11}$$

By linearity of T, this is equivalent to

$$||(T_n - T)x|| < \epsilon. \tag{12}$$

Choose $\epsilon = ||x||.$ With a sufficiently large choice of N, we have $\forall n \geq N$ and $\forall x \in V,$

$$||(T_n - T)x|| < ||x||. (13)$$

The above equation implies that the operator $T_n - T$ is continuous. Since $\{T_n\}_n$ is assumed to be a sequence in $\mathcal{B}(V, W)$, then $T_n - (T_n - T) = T$ is continuous.

Therefore,
$$T$$
 is a bounded linear operator.

(b)

Proof. Since V is a Banach space with respect to both norms $||\cdot||_1$ and $||\cdot||_2$, we may regard the spaces $V_1:=(V,||\cdot||_1)$ and $V_2:=(V,||\cdot||_2)$ as separate Banach spaces.

Consider the identity mapping $\mathbb{1} \in \mathcal{B}(V_1, V_2)$. Since $\mathbb{1}$ is a bounded linear operator, then $\exists C > 0$ such that $\forall v \in V_1$,

$$||v||_2 = ||\mathbb{1}v||_2 \le C||v||_1, \tag{14}$$

and we are done. \Box