M23 - ggplot2

 ${\tt learningSpoonsR@gmail.com}$

시작하기

I. Scatterplot (산점도)

II. Faceting

III. 중첩

IV. Discussion

V. Grammar of Graphics

VI. More Plots

VII. Summary

VIII. 연습 문제

시작하기

시각화

'간단한 그래프는 다른 어떤 장치보다 데이터 분석가의 마음에 더 많은 정보를 제공합니다.' – John Tukey

효과적인 차트란 어떤 것일까요?

- ▶ 사실을 왜곡하지 않고 올바른 정보를 전달하세요
- ▶ 단순하지만 우아합니다. 많은 생각을 하지 않아도 이해할 수 있습니다.
- ▶ 미학은 정보를 가리기보다는 정보를 지원합니다.
- ▶ 너무 많은 정보를 담지 않습니다.

데이터셋 불러오기 mpg

- ▶ ggplot2 패키지에 내장된 데이터셋
- ▶ (library(ggplot2)를 실행하면 사용가능)
- ▶ 1999년과 2008년에 생산된 차량들의 연비 데이터
- ▶ 데이터셋 diamond, iris와 함께 R에서 가장 많이 예제로 쓰임

변수이름	설명
manufacturer	제조사
model	차종
displ	엔진크기
year	생산연도
cyl	기통

변수이름	설명
drv	전륜(f)/후륜(r)/사륜(4)
cty	도심 마일리지
hwy	고속도로 마일리지
fl	연료종류 (fuel)
class	클래스 (중형, 트럭, SUV,…)

```
library(ggplot2)
? mpg # getting help from web
help(mpg) # getting help from help panel
```

class(mpg)

- ## [1] "tbl_df" "tbl" "data.frame"

 mpg는 여러개의 class의 특징을
 - mpg는 어디게의 class의 특성을 가지고 있습니다.
- ▶ tbl_df는 data.frame의 업그레이드 버전입니다.
 - ▶ data.frame의 모든 기능 사용
 - ▶ 몇 가지 기능 추가

str(mpg)

I. Scatterplot (산점도)

- 엔진이 크면 연비가 안 좋을까요?
- ▶ 엔진 크기(displ)를 x축, 고속도로 마일리지(hwy)를 y축으로 하는 산점도 (scatterplot) 그리기

```
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy))

40
20
2 3 4 5 6 7
displ
```


▶ color=class: class 변수의 값에 따라 color가 다르게

```
b <- ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy, size = class))
b
## Warning: Using size for a discrete variable is not advised.
   40
                                                                            class
                                                                                2seater
                                                                                compact
                                                                                midsize
                                                                                minivan
                                                                                pickup
                                                                                subcompact
   20
                                                                                suv
                                     displ
```

▶ size=class: class변수의 값에 따라 size가 다르게

10/55

```
c <- ggplot(data = mpg) +</pre>
  geom_point(mapping = aes(x = displ, y = hwy, alpha = class))
С
## Warning: Using alpha for a discrete variable is not advised.
    40
                                                                               class
                                                                                   2seater
                                                                                   compact
yw4 30
                                                                                   midsize
                                                                                   minivan
                                                                                   pickup
                                                                                   subcompact
    20
                                                                                   suv
                                       displ
```

▶ alpha=class: class 변수의 값에 따라 alpha(진하기)가 다르게

```
d <- ggplot(data = mpg) +</pre>
  geom_point(mapping = aes(x = displ, y = hwy, shape = class))
d
## Warning: The shape palette can deal with a maximum of 6 discrete values
## because more than 6 becomes difficult to discriminate; you have 7.
## Consider specifying shapes manually if you must have them.
## Warning: Removed 62 rows containing missing values (geom_point).
   40
                                                                          class
                                                                              2seater
                                                                              compact
                                                                              midsize
                                                                              miniyan
                                                                              pickup
                                                                              subcompact
   20
                                                                              suv
                                          8
                                    displ
```

▶ shape=class: class변수의 값에 따라 shape이 다르게

Discussion

- a, b, c, d 중에 어느 그림이 가장 효과적인가요?
 - ▶ size, alpha, color, shape의 사용 기준은 무엇인가요?
 - ▶ 일반화 시키실 수 있나요?

Aesthetics (aes) - size, alpha, color, shape

- Numeric 변수
 - ▶ 수치 변수, 정량적 변수, numeric, quantative
 - ▶ 크고 작음이 있음, 더할 수 있음
 - size
 - ▶ alpha: 상한/하한이 있는 경우에 적합 (eg. 농도, 빈도, 확률)
- ▶ Categorical 변수
 - ▶ 범주형 변수, 정성적 변수, categorical, factor, qualitative
 - ▶ 집합. A,B,C로 치환 가능, 더할 수 없음, 크고 작음이 없음
 - ▶ color: 10개 미만의 범주에서 사용
 - ▶ shape: 7개 미만의 범주에서 사용, 컬러프린트 없을 때.

II. Faceting

Facets (1 variable) - facet_wrap

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy)) +
  facet_wrap(~ class, nrow = 2)
              2seater
                                    compact
                                                          midsize
                                                                                 minivan
   40
   30
   20
              pickup
                                  subcompact
                                                            suv
   40
   30
   20
                                                displ
```

- facet_wrap(~ class, nrow = 2)
 - ▶ 이산변수인 class의 값에 따라서 분할하여 배열 ▶ nrow=2에 의해 2행으로 배열

Facets (2 variables) - facet_grid

- facet_grid(drv ~ cyl)
 - ▶ 이산변수인 drv와 cy1의 값에 따라 분할하여 배열
 - ▶ 2차원의 grid 형태로 배열하는데,
 - ▶ drv를 y축(세로)으로 cyl을 x축(가로)으로 배열

Discussion

- ▶ Do facet
 - 1. Data가 충분히 많을 때
 - 2. Categorical 변수별로 각각의 distribution을 보고 싶을 때
- Do Not facet
 - 1. 근접 비교를 하고 싶을 때
 - 2. Reader들의 사전 지식 수준이 높을때
- Do and Don't facet!
 - 1. No facet → Yes facet 순서로
 - 2. 전체를 보여준 후에 나누어서 보여주며 top-down approach로 표현

III. 중첩

geom_point VS geom_smooth

```
e <- ggplot(data = mpg) + geom_point(mapping = aes(x = displ, y = hwy))
f <- ggplot(data = mpg) + geom_smooth(mapping = aes(x = displ, y = hwy))</pre>
```

`geom smooth()` using method = 'loess' andsformula 'y x'

40

30

20

2 3 4 5 6 7 2 3 4 5 6 7

displ

displ

▶ geom_point: 점으로 표시

▶ geom_smooth: curve로 표시

mapping의 상속

```
g <- ggplot(data = mpg) +
  geom_smooth(mapping = aes(x = displ, y = hwy))
h <- ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
  geom_smooth()</pre>
```

g

h

- ▶ g와 h의 명령어의 약간 variation이 있지만, 결과는 동일함
- h의 geom_smooth()에서 mapping이 없음 → 바로 앞의 ggplot()의 값을 사용

geom_point + geom_smooth

```
i <- ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy)) +
  geom_smooth(mapping = aes(x = displ, y = hwy))
j <- ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
  geom_point() + geom_smooth()</pre>
```


- ▶ i와 j는 동일한 결과를 만듬
- ▶ j의 geom_point()와 geom_smooth()는 앞의 ggplot()에서 mapping을 상속받음

```
k <- ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
    geom_smooth(aes(linetype = drv))
1 <- ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
    geom_smooth(aes(linetype = drv)) +
    geom_point(aes(color = drv))</pre>
```

k

1

- ▶ linetype=drv는 drv값에 따라서 각각 다른 curve를 그림
- ▶ k와 1의 geom_smooth()에는 x, y의 값이 없지만 이는 ggplot()에서 상속 받음
- ▶ 1의 geom_point()도 마찬가지

IV. Discussion

Summary so far

```
ggplot(data = <DATA>) + <GEOM_FUNCTION>(mapping = aes(<MAPPING>))
```

- 1. Y 변수 결정
 - 무엇을 설명하고 싶은가?
 - ▶ 목적 (target) 변수가 일반적으로 Y변수가 됨
- 2. X 변수 결정
 - 무엇으로 설명할 수 있을까?
 - ▶ 설명 (explanatory) 변수가 X변수가 됨
- 3. X변수와 Y변수의 성격이 각각 어떠한가?
 - ▶ X변수는 이산/연속?
 - ▶ Y변수는 이산/연속?
 - ▶ geom_function이 결정됨
- 4. X, Y 변수외에 다른 추가할 수 있는 변수가 있을까?
 - ▶ 특성을 추가하여 그림의 정보량을 늘림
 - size, alpha, color, shape, fill, dodge,...
- 5. 그래프를 장식
 - ▶ 축, 격자, 레이블, 색깔, 폰트 크기
 - 좌표 변화
 - ▶ M24의 예제들과 특히 theme() 섹션 참조

Carseats와 additivity

```
Dataset review
library(ISLR)
str(Carseats)
## 'data.frame': 400 obs. of 11 variables:
## $ Sales : num 9.5 11.22 10.06 7.4 4.15 ...
   $ CompPrice : num 138 111 113 117 141 124 115 136 132 132 ...
## $ Income
            : num
                     73 48 35 100 64 113 105 81 110 113 ...
## $ Advertising: num 11 16 10 4 3 13 0 15 0 0 ...
## $ Population : num 276 260 269 466 340 501 45 425 108 131 ...
## $ Price : num
                     120 83 80 97 128 72 108 120 124 124 ...
## $ ShelveLoc : Factor w/ 3 levels "Bad", "Good", "Medium": 1 2 3 3 1 1 3 2 3 3 ...
## $ Age : num 42 65 59 55 38 78 71 67 76 76 ...
## $ Education : num 17 10 12 14 13 16 15 10 10 17 ...
## $ Urban : Factor w/ 2 levels "No", "Yes": 2 2 2 2 2 1 2 2 1 1 ...
## $ US
                : Factor w/ 2 levels "No", "Yes": 2 2 2 2 1 2 1 2 1 2 ...
```

```
ggplot review
a <- ggplot(data = Carseats, aes(x = Advertising, y = Sales)) +</pre>
  geom_point(aes(color = ShelveLoc))
print(a)
  10
                                                                                      Shelvel oc
Sales
                                                                                       Bad
                                                                                         Good

    Medium
```

Amazingly Additive!

```
# Add features to existing ggplot object by "SIMPLY ADDING"
a <- a + facet_wrap(~ ShelveLoc)
print(a)</pre>
```


기능을 더하면 plot에 더해집니다!

```
a <- ggplot(data = Carseats, aes(x = Advertising, y = Sales)) +
    geom_point(aes(color = Urban))</pre>
```

a <- a + facet_wrap(~ Urban)

rmarkdown과 함께 사용하면 매우 강력합니다.

- ▶ 스토리텔링 기반 발표 및 보고서 작성
 - ▶ 점점 깊이 들어가면서 발표 (top-down)
 - 좌우 혹은 상하로 배열하여 보고서 작성
 - ▶ 좌우 혹은 상하로 배열하여 대시보드 작성 (M32)
 - ▶ 사용자가 선택할 수 있게 대시보드 작성 (M33)

Example: M41-longevity

실습과제 1

- 1. C:/LS-DS/classProject라는 폴더를 만드세요.
- 2. Rstudio를 열어서 rmarkdown의 html형식에 해당하는 .Rmd파일을 만드세요.
- 3. classProject1.Rmd로 위 폴더에 저장하세요.
- 4. Rstudio를 닫고 classProject1.Rmd를 더블클릭하여 실행하면 working directory가 자동으로 위의 폴더가 됩니다.
- 5. github M41-longevity/data에서 lifeCountry.csv파일을 다운받아서 위 폴더에 넣으세요.
- 6. 이제 분석을 위한 모든 준비가 끝났습니다.
- 7. Infile/Preprocessing을 해야합니다. classProject1.Rmd에서 lifeCountry.csv를 불러와서 data.frame으로 저장합니다.
- 8. 각 나라의 GDP와 기대수명에 대해서 산점도를 그리고 대륙에 따라서 점의 색깔이 달라지게 해보세요.
- 9. 자유롭게 분석을 시작해보세요.
- 10. html로 제작해 이메일을 보내주세요. learningSpoonsR@gmail.com

V. Grammar of Graphics

GG? - Grammar of Graphics

- **F**eatures
 - 1. 독립적이고 더할 수 있는 구성 요소들로 그래픽을 표현
 - 2. 개발과정에서 그래프의 특징을 한 가지 씩, 반복적으로 바꾸면서 그래프를 만들어 감
 - 3. 생각의 흐름, 스토리텔링과 연계시켜 interactive graphics와 잘 조화됨
- Motivation
 - 1. 그래픽 관련 패키지와 함수는 단지 특수 경우의 모음일 뿐??
 - 2. 문법이 있다면 체계적인 그래픽 가능

구성 요소

- Aesthetics aes()
 - 1. position
 - 2. size
 - 3. color
 - 4. shape
- ► Geometric Object (geom_())
 - 1. Scatterplot point
 - 2. Bubblechart point (size)

 - Barchart bar (frequency)
 Box-and-whisker plot boxplot (distribution)
 - 5. Line chart line

Behind the scene

VI. More Plots

position = "jitter"

```
▶ 중첩된 관찰값에 노이즈를
a <- ggplot(mpg) + geom_point(aes(displ, hwy, color = cyl))</pre>
b <- ggplot(mpg) + geom_point(aes(displ, hwy, color = cyl), position = "jitter")
                                             40
   40
                                   cyl
                                                                             cyl
                                             20
   20
        2
            3
                                                      3
                 displ
                                                           displ
```

Barchart (count, density, distribution)

 x축에 Categorical 변수를 넣어서
 각각의 값에 대해서 몇 개의 관찰값이 있는지를 보여줌.

```
mpg$displ_fac <-
  as.factor(round(mpg$displ,0))
a <- ggplot(mpg) +
  geom bar(aes(x = displ fac))
а
   80
   60
 count
   20
    0
                           5
                                 6
                    displ fac
```

▶ y축에 해당하는 값이 계산되어 있다면 stat = "identity"를 geom_bar()에 넣어주어야 함.

```
library(dplyr)
mpg_fac <- mpg %>%
  group_by(displ_fac) %>%
  summarise(cnt = length(displ fac))
b <- ggplot(mpg fac) +
  geom_bar(aes(x = displ_fac, y = cnt),
           stat = "identity")
b
   80
   60
 Ħ 40
   20
              3
                          5
                   displ fac
```

geom_bar()에 다른 Categorical 변수 추가

color and fill

position="dodge"

- ▶ discrete 변수를 잘 처리하는 법?▶ 쌓아서 배치 vs 비껴서 배치

 - ▶ 변수가 가지는 값의 갯수를 고려해야 함 (i.e. unique())

Barchart (position = "fill")

- ▶ class의 각각의 displ_fac 값에서의 분포?
- count vs proportion

Boxplot

- ▶ x는 이산 변수, y는 연속 변수
- ▶ x의 값에 따라 y의 분포를 보고 싶을 때

2seateompartidsizminivarpickuubcompartuv

- 1. 박스의 가운데 직선은 중간값
- 2. 박스의 상단은 상위 25%, 하단은 하위 25%
- 3. 점으로 표현된 것은 이상치(outlier)로서 이상하게 높거나 낮은 값

Violin plot

b <- ggplot(mpg, aes(x = class, y = hwy)) +
geom_violin()
b

40

20

2seateompartidsizeinivarpicksubcompastiv

class

- 4. x변수의 값이 character라서 display가 복잡하네요.
- 5. 이럴때는 어떻게 할까요?

coord_flip()

색깔을 넣어볼까요?

▶ 생각해보면 aes()도 ggplot()이나 geom_XXX()이후에도 추가가 가능해야 겠죠?

coord_flip() for Barplot

coord_polar() for Barplot

- ▶ Bar chart vs Pie chart
- ▶ 둘의 차이는 ggplot2 개발의 motivation이 되었다고 합니다.

Pie Chart (from M24-ggplot2 Gallery)

```
ggplot(mpg, aes(x = "", fill = factor(class))) +
  geom_bar(width = 1) +
  theme(axis.line = element_blank(), plot.title = element_text(hjust=0.5)) +
  labs(fill = "class", x = NULL, y = NULL,
      title = "Pie Chart of class", caption = "Source: mpg") +
  coord_polar(theta = "y", start=0)
```

Pie Chart of class

ggplot 기타 기능 (저장 & plotly)

▶ ggplot객체를 png 파일로 저장

```
a <- ggplot(mpg) + geom_bar(aes(x=class)) + coord_flip()
ggsave(filename = "out_file.png", plot = a, dpi = 300, width = 9, height = 7.5)</pre>
```

▶ plotly - htmlwidget 생성

```
library(plotly)
a <- ggplot(mpg) + geom_bar(aes(x=class, fill=class))
ggplotly(a) # better in html</pre>
```


VII. Summary

Summary

▶ 1 Variable

변수	이름	Name	geom_()
Continuous (연속 변수)	확률분포 히스토그램	density plot histogram	<pre>geom_density() geom_histogram()</pre>
Discrete (이산 변수)	ㅡㅡㅡ 막대차트 파이차트	bar plot pie chart	geom_bar() ("dodge", "jitter") geom_bar() + coord_polar()

▶ 2 Variables

X	у	이름	Name g	geom_()
Discrete	Continuous	박스플랏	box plot	geom_boxplot()
Continuous	Continuous	 산점도		geom_point() "jitter" geom_line(), geom_smooth()

More References

- 1. ggplot2 Cheatsheet
- 2. M24-ggplot-Gallery 50개의 예제
- 3. M6X References/books/ggplot2.pdf
 - ▶ 무료 베포된 ggplot관련 영문 서적
 - ▶ 번역본도 출간되어 있음
- 4. google: 'ggplot gallery'
 - https://www.r-graph-gallery.com/portfolio/ggplot2-package/

'Tantum videmus quantum scimus.' '아는 만큼 본다.'

VIII. 연습 문제

1. hwy와 cy1을 이용해서 산점도(scatterplot)를 그려보세요. cy1과 같은 discrete variable을 이용해서 산점도를 그리면 어떤 일이 벌어지나요? 아래 명령을 실행해보세요.

```
ggplot(mpg, aes(x = cyl, y = hwy)) + geom_point()
ggplot(mpg, aes(x = cyl, y = hwy)) + geom_boxplot()
ggplot(mpg, aes(x = as.factor(cyl), y = hwy)) + geom_boxplot()
ggplot(mpg, aes(x = as.factor(cyl), y = hwy)) + geom_violin()
```

2. 아래 명령은 무엇이 잘못되었나요? 모든점을 파란색으로 그리려면 어떻게 해야하나요?

```
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy, color = "blue"))

40

20

colour
blue

displ
```

```
정답은 아래의 코드에 있습니다. 무엇이 다르나요?
```

```
ggplot(data = mpg) + geom_point(mapping = aes(x = displ, y = hwy), color = "blue") 이해되시나요? 즉, aes()에는 데이터마다 달라지는 특성, geom_XXXXX에는 데이터에 상관없이 공통적으로 적용되는 특성을 넣어줘야 합니다.
```

- 3. 데이터셋 mpg의 어떤 변수가 categorical입니까? 어떤 변수가 continuous입니까? (Hint: summary(), length(unique()))
- 4. Continuous 변수로 facet을 하면 어떤 일이 벌어질까요? x=displ, y=hwy로 산점도를 그리고 cyl로 facet해보세요.

5. 아래의 코드를 실행시켜 보세요. facet_grid()가 아니라 facet_wrap()을 사용한 것과 차이가 있나요?

```
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +
facet_grid(drv ~ .)

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +
facet_grid(. ~ cyl)

6. 아래 코드를 실행해보세요. 어떤점을 새로 알게되었나요?
ggplot(data = diamonds, mapping = aes(x = cut, fill = clarity)) +
geom_bar(alpha = 1/5)

ggplot(data = diamonds, mapping = aes(x = cut, colour = clarity)) +
geom_bar(fill = NA)
```

7. labs() 함수는 레이블을 만듭니다. ? labs를 콘솔에 실행해서 읽어보세요. 이를 이용해서 그래프의 제목, x축, y축에 글자를 넣어보세요.