ВВЕДЕНИЕ В МАШИНОЕ ОБУЧЕНИЕ

Лекция №2

01

Работа с числовыми признаками

Задача: хотим применить knn вместе с Евклидовым расстоянием на набор данных, есть ли тут какая-то проблема?

Задача: хотим применить knn вместе с Евклидовым расстоянием на набор данных, есть ли тут какая-то проблема?

Мы можем заметить, что масштаб по оси Y сильно отличается от масштаба по оси X, как думаете, на что это влияет? Как мы можем это исправить?

Масштабирование признаков (scaling)

Данный метод используется для нормализации данных и приведения их к одинаковому масштабу. Обычно применяется к числовым признакам.

MinMaxScaler: $x_{scaled} = \frac{x - x_{min}}{x_{max} - x_{min}}$

- х исходное значение признака
- x_min минимальное значение признака в обучающей выборке
- x_max максимальное значение признака в обучающей выборке
- x_scaled масштабированное значение признака

Масштабирование признаков (scaling)

Standart scaler:

$$x_scaled = \frac{x - x_mean}{std \pi o x}$$

- х исходное значение признака
- mean среднее значение признака в обучающей выборке
- std стандартное отклонение признака в обучающей выборке
- x_scaled масштабированное значение признака

После применения среднее значение будет равно 0 и стандартное отклонение будет равно 1.

Есть ли здесь какие-то проблемы?

Разделимость признаков

Разделимость признаков

Выборка № 1

Зависимости для признаков

Выборка № 2

02

Embeddings

векторное представление признаков

Embeddings

Преобразование категориальных / текстовых данных в числовые векторы фиксированной длины

- One-hot Encoding: создаем вектор фиксированной длины, состоящий из нулей и одной единицы, которая указывает на наличие или отсутствие конкретной категории. Недостатком этого метода является то, что он не сохраняет отношения между категориями. (рассмотрим сегодня позднее)
- Count Encoding: замена каждую категорию на ее количество в данных. Он сохраняет относительную частоту категории в данных, но не сохраняет семантические отношения между категориями.
- Embedding Layer: создаются числовые векторы фиксированной длины для каждой категории, используя нейронную сеть. Он позволяет сохранять семантические отношения между категориями и учитывать контекст, в котором категория встречается в данных.

Embeddings

Embedding Layer

Пример: закодировать каждое уникальное слово числовым значением

Какой результат получится? Что нужно сделать со словами?

- зеленое яблоко
- 2. красные яблоки
- 3. красный гранат

Embeddings

Embedding Layer

Пример: закодировать каждое уникальное слово числовым значением

Какой результат получится? Что нужно сделать со словами?

1. зеленое яблоко

2. красные яблоки

3. красный гранат

	зеленый	красный	яблоко	гранат
1	1	0	1	0
2	0	1	1	0
3	0	1	0	1

03

Feature encoding

кодирование признаков

One-hot кодирование

- Значения признака "район": $U = \{u_1, ..., u_n\}_m$
- Новые признаки вместо $x : [x \neq u], ..., [x \neq u_m]$

Район
ЦАО
ЮАО
ЦАО
CAO
ЮАО

ЦАО	ЮАО	CAO
1	0	0
0	1	0
1	0	0
0	0	1
0	1	0

$$a(x) = w_0 + w_1 * (площадь)$$
 $+ w_2 * (квартира в ЦАО?)$
 $+ w_3 * (квартира в ЮАО?)$
 $+ w_4 * (квартира в САО?)$

Label Encoding

- Применимо к порядковым признакам
- Так как множество признаков является упорядоченным, то мы можем заменить значения на числа

Звание		Звание
Рядовой	Так как звание ранжированы, то мы можем заменить их на числовые значения	0
Офицер		2
Сержант		1

Target Encoding

Целевая кодировка отлично подходит для:

- 1) Функций с высокой мощностью: Функция с большим количеством категорий может вызывать проблемы с кодированием: однократное кодирование привело бы к появлению слишком большого количества функций, и альтернативные варианты, такие как кодировка меток, могут не подходить для этой функции. Целевая кодировка выводит номера для категорий, используя наиболее важное свойство объектов: их связь с целевой кодировкой.
- 2) Особенности, связанные с предметной областью: Исходя из предыдущего опыта, вы можете предположить, что категориальный признак должен быть важным, даже если он имеет низкую оценку по показателю объекта. Целевая кодировка может помочь выявить истинную информативность объекта.

$$S_i = \lambda(n_i) \frac{n_{iY}}{n_i} + \left(1 - \lambda(n_i)\right) \frac{n_Y}{n_{TR}}$$

n(Y) - общее количество строк с 1 в целевой метрике,

$$\lambda(n) = \frac{1}{1 + e^{\frac{-(n-k)}{f}}}$$

n(i) - количество строк с i-той категории,

n(iY) - количество строк с 1 в целевой метрике в i-той категории.

Пусть min_sample_leaf, k = 1 и сглаживание, f = 1

 $\lambda(\text{'Male'})=1/(1+\exp(-(2-1)/1))=0.73$ # Weight Factor for 'Male'

Target Statistic=(Weight Factor * Probability of 1 for Males) + ((1-Weight Factor) * Probability of 1 Overall)S('Male') = (0.73 * 0.5) + ((1–0.73) * 0.4) = 0.485

 $\lambda(\text{`Female'})=1/(1+\exp(-(4-1)/1))=0.95 \text{ #Weight Factor for 'Female'}$

Target Statistic = (Weight Factor * Probability of 1 for Females) + ((1-Weight Factor) * Probability of 1 Overall)S('Female') = (0.95 * 0.25) + ((1-0.95) * 0.4) = 0.259

	Gender	Target
0	Male	1
1	Male	0
2	Female	0
3	Female	0
4	Female	0
5	Female	1
6	Other	1
7	Other	1
8	Other	0

Target Encoding

Для небинарного признака

	Target			Target_1	Target_2	Target_3
0	0		0	1	0	0
1	0		1	1	0	0
2	1	7	2	0	1	0
3	2	\Box	3	0	0	1
4	2		4	0	0	1
5	0		5	1	0	0
6	1		6	0	1	0
7	2		7	0	0	1

	Color	Target_1			Color_Target_1
0	Red	1		0	0.400000
1	Red	1		1	0.400000
2	Red	0		2	0.400000
3	Red	0	\Rightarrow	3	0.400000
4	Red	0		4	0.400000
5	Green	1		5	0.333333
6	Green	0		6	0.333333
7	Green	0		7	0.333333

	Color	Target_3			Color_Target_3
0	Red	0		0	0.400000
1	Red	0		1	0.400000
2	Red	0		2	0.400000
3	Red	1	\Box	3	0.400000
4	Red	1		4	0.400000
5	Green	0		5	0.333333
6	Green	0		6	0.333333
7	Green	1		7	0.333333

Frequency Encoding

- Применимо к порядковым признакам
- Частотное кодирование это метод кодирования, который кодирует значения категориальных признаков в соответствии с их частотами

```
nom_2
Snake
Hamster
Lion
Snake
```

```
enc_nom_1 = (train.groupby('nom_1').size()) / len(train)
enc_nom_1
nom_1
Circle
             0.124400
Polygon
             0.120477
Square
             0.165323
             0.153013
Star
Trapezoid
             0.337270
Triangle
             0.099517
dtype: float64
```

04

Заполнение пропусков

Часто в мы можем найти пропуски в данных, что может помешать работе моделей.

Как можно было бы заполнить отсутствующие значения и стоит ли это делать?

Часто в мы можем найти пропуски в данных, что может помешать работе моделей.

Как можно было бы заполнить отсутствующие значения и стоит ли это делать?

Посмотрим на возможные варианты для числовых значений:

- мода
- медиана
- среднее

Когда какой вид значений лучше использовать? Почему?

Часто в мы можем найти пропуски в данных, что может помешать работе моделей.

Как можно было бы заполнить отсутствующие значения и стоит ли это делать?

Посмотрим на возможные варианты для числовых значений:

- мода часто используется для категориальных / порядковых данных, так как это наиболее часто встречающееся значение в наборе данных.
- медиана используется для количественных данных, если данные содержат выбросы или несимметричны. Устойчивое заполнение пропусков.
- среднее значение используется для количественных данных, если данные имеют симметричное распределение и нет выбросов.

- Всегда стоит смотреть на логику заполняемых данных
- Нужно учитывать стоит ли вообще заполнять пропуски какими-либо не нулевыми значениями

Пример: предположим у нас есть датасет содержащий информацию о клиентах компании, занимающейся телекоммуникациями. Как стоит заполнить пропуски?

Возраст	Самый популярный сайт по посещениям	Кол-во потраченных минут
20	vk.com	
45	ok.ru	90
75		200

- Всегда стоит смотреть на логику заполняемых данных
- Нужно учитывать стоит ли вообще заполнять пропуски какими-либо не нулевыми значениями

Пример: предположим у нас есть датасет содержащий информацию о клиентах компании, занимающейся телекоммуникациями. Как стоит заполнить пропуски?

Возраст	Самый популярный сайт по посещениям	Кол-во потраченных минут
20	vk.com	
45	ok.ru	90
75		200

Вывод: заполнять данные нужно аккуратно и заполнение нулевыми значениями - не всегда плохо

Другие варианты заполнения

Интерполяция

- прогнозируем пропущенные значения на основе известных соседних наблюдений
- линейная используем линейную функцию между двумя соседними точками
- ближайшего соседа используется для категориальных / дискретных значений, значения заполняются на основе ближайшего известного
- сплайн-интерполяция это метод, который используется для заполнения пропущенных значений в числовых данных, где значения могут иметь сложное нелинейное поведение. Он состоит в том, чтобы приблизить пропущенное значение кусочно-линейной функцией, которая проходит через несколько точек соседних наблюдений

Другие варианты заполнения

Интерполяция

Плюсы:

• достаточно эффективна (особенно, если в данных есть сезонность / тенденция)

Минусы:

- сложный процесс, особенно если множество пропусков / сложная структура данных
- требуется тщательный анализ данных перед проведением заполнения

Другие варианты заполнения

Конечно, существуют и другие варианты заполнения пропусков, один из них - использование моделей машинного обучения (да, так тоже можно), но сильно усложнять данный процесс не стоит, так как он может лишь помешать в дальнейшем.

Место для ваших вопросов

05

Линейная модель

Простейшая модель

• В пространстве есть множество точек X, хотим каждому объекту сопоставить значение

Простейшая модель

- В пространстве есть множество точек X, хотим каждому объекту сопоставить значение
- Опишем одной функцией

$$a(x) = w_1 x + w_0$$

Модель с двумя признаками

- В пространстве есть множество точек X, хотим каждому объекту сопоставить значение
- Опишем одной функцией

$$a(x) = w_0 + w_1 x_1 + w_2 x_2$$

Основные понятия

- ullet Задача регрессии: $\mathbb{X}
 ightarrow \mathbb{R}$
- В d-мерном пространстве d признаков
- Количество параметров: d + 1
- Вектор весов: $w = (w_0, ..., w_d) \in \mathbb{R}^{d+1}$
- Цель найти такое w, чтобы он «лучшим образом» описывал данные
- ullet Общий вид модели: $a(x) = w_0 + w_1 x_1 + \dots + w_d x_d$

Свободный коэффициент/сдвиг/bias

Полиномиальные признаки

• Что если целевая переменная имеет нелинейную зависимость от одного из параметров?

Полиномиальные

признаки

- Что если целевая переменная имеет нелинейную зависимость от одного из параметров?
- Добавим еще один признак в модель, который будет функцией (тригонометрические, возведение в степень, произведение с другим признаком и т.д.) от данного, тогда модель сможет линейно описывать данные

06Обучение модели

Матричный вид

- Модель: $a(x) = w_0 + \langle w, x \rangle$
- Матрица объекты-признаки:

объект и его признаки
$$egin{pmatrix} x_{11} & x_{12} & \cdots & x_{1d} \ x_{21} & x_{22} & \cdots & x_{2d} \ dots & dots & \ddots & dots \ x_{\ell 1} & x_{\ell 2} & \cdots & x_{\ell d} \ \end{pmatrix}$$

$$egin{pmatrix} x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ dots & dots & \ddots & dots \\ x_{\ell 1} & x_{\ell 2} & \cdots & x_{\ell d} \end{pmatrix}$$

значения признака на всех объектах

• Результирующий вектор ответов

$$\begin{aligned}
(x_i) &= X\vec{w} \\
(x_i) &= 1 \\
\sum_{i=1}^d w_i x_i \\
\vdots \\
\sum_{i=1}^d w_i x_i
\end{aligned}$$

- Будем определять насколько хорошо модель предсказывает ответы с помощью «расстояния» между целевой переменной и предсказанием модели
- Есть множество различных способов вычислить это «расстояние» (функцию потерь)

- Будем определять насколько хорошо модель предсказывает ответы с помощью «расстояния» между целевой переменной и предсказанием модели
- Есть множество различных способов вычислить это «расстояние» (функцию потерь)

$$ullet$$
 Отклонение прогнозов: $Xw-y=\begin{pmatrix} \langle w,x_1 \rangle -y_1 \ dots \ \langle w,x_\ell \rangle -y_\ell \end{pmatrix}$

- Будем определять насколько хорошо модель предсказывает ответы с помощью «расстояния» между целевой переменной и предсказанием модели
- Есть множество различных способов вычислить это «расстояние» (функцию потерь)
- ullet Отклонение прогнозов: $Xw-y=\begin{pmatrix} \langle w,x_1 \rangle -y_1 \\ \vdots \\ \langle w,x_\ell \rangle -y_\ell \end{pmatrix}$
- ullet Функция потерь (среднеквадратичная ошибка): $\frac{1}{\ell}\|Xw-y\|^2 = \frac{1}{\ell}\sum_{i=1}^{\ell}(\langle w,x_i \rangle y_i)^2$

- Будем определять насколько хорошо модель предсказывает ответы с помощью «расстояния» между целевой переменной и предсказанием модели
- Есть множество различных способов вычислить это «расстояние» (функцию потерь)
- ullet Отклонение прогнозов: $Xw-y=\begin{pmatrix} \langle w,x_1 \rangle -y_1 \\ \vdots \\ \langle w,x_\ell \rangle -y_\ell \end{pmatrix}$
- ullet Функция потерь (среднеквадратичная ошибка): $\frac{1}{\ell}\|Xw-y\|^2 = \frac{1}{\ell}\sum_{i=1}^{r}(\langle w,x_i \rangle y_i)^2$
- Задача обучения: $\frac{1}{\ell} \|Xw y\|^2 \to \min_{w}$

Градиент

• Как найти оптимальный вектор w, минимизировать функционала ошибки? $Q = \frac{1}{\ell} \|Xw - y\|^2$

Градиент

- Как найти оптимальный вектор w, минимизировать функционала ошибки? $\mathbf{Q} = \frac{1}{\ell} \|Xw y\|^2$
- Будем использовать градиент!

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_d}\right)$$

Градиент

- Как найти оптимальный вектор w, минимизировать функционала ошибки? $Q = \frac{1}{\ell} \|Xw y\|^2$
- Будем использовать градиент!

- Градиент показывает направление, в котором функция растет быстрее всего. А антиградиент показывает обратное
- В точке оптимума градиент примет нулевое значение
- Если функция выпуклая, то экстремум один. При соблюдении $\nabla f(x_0) = 0$ х условий MSE для линейной регрессии будет выпуклой

Аналитическое решение

Вычислим градиент для MSE:

$$\nabla \frac{1}{\ell} \|Xw - y\|^2 = \frac{2}{\ell} X^T (Xw - y)$$

• Приравняем к нулю и найдем оптимальный вектор весов:

$$w = (X^T X)^{-1} X^T y$$

$$S = |Aw - y|^2 = (Aw - y)^T (Aw - y) =$$

= $y^T y - y^T Aw - w^T A^T y + w^T A^T Aw =$
= $y^T y - 2y^T Aw + w^T A^T Aw$.

$$\frac{\partial S}{\partial w} = -2A^T y + 2A^T A w = 0.$$

$$A^T A w = A^T y,$$

$$w = (A^T A)^{-1} (A^T y).$$

Аналитическое решение

• Вычислим градиент для MSE:

$$\nabla \frac{1}{\ell} ||Xw - y||^2 = \frac{2}{\ell} X^T (Xw - y)$$

• Приравняем к нулю и найдем оптимальный вектор весов:

$$w = (X^T X)^{-1} X^T y$$

ullet Если матрица X^TX вырожденная/почти вырожденная, возникнут проблемы

Аналитическое решение

• Вычислим градиент для MSE:

$$\nabla \frac{1}{\ell} ||Xw - y||^2 = \frac{2}{\ell} X^T (Xw - y)$$

• Приравняем к нулю и найдем оптимальный вектор весов:

$$w = (X^T X)^{-1} X^T y$$

- ullet Если матрица X^TX вырожденная/почти вырожденная, возникнут проблемы
- Подумайте: как изменяется количество необходимых вычислений при увеличении матрицы X?

Градиентный спуск

• Чтобы избежать проблем, возникающих при аналитическом решении, воспользуемся другим способом, а именно градиентным спуском

Градиентный спуск

- Чтобы избежать проблем, возникающих при аналитическом решении, воспользуемся другим способом, а именно градиентным спуском
- Алгоритм:
 - 1. Берем случайный вектор весов
 - 2. Двигаемся в сторону антиградиента
 - 3. Повторяем, пока не выполнится критерий остановки, либо установленное количество раз

Сходимость

• Останавливаем процесс, если

$$||w^t - w^{t-1}|| < \varepsilon$$

Либо:

$$\|\nabla Q(w^t)\| < \varepsilon$$

Проблема локальных минимумов

• Градиентный спуск находит только локальные минимумы

Подбор гиперпараметров

• Длина шага является гиперпараметром, который необходимо установить до обучения модели

$$w^t = w^{t-1} - \eta \, \nabla Q(w^{t-1})$$

Подбор гиперпараметров

 Длина шага является гиперпараметром, который необходимо установить до обучения модели

$$w^t = w^{t-1} - \eta \nabla Q(w^{t-1})$$

• Визуализация разной длины шага

- При слишком большом шаге, градиентный спуск может разойтись, а при слишком маленьком модель будет обучаться слишком долго, либо не дойдет до оптимума
- Можно менять в зависимости от номера итерации, например:

07

Регуляризация модели

Проблема переобучения

• Модель может подогнать веса под тренировочную выборку, вместо того чтобы описать истинное распределение

$$a(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + \dots + w_{15} x^{15}$$

Большие коэффициенты - симптом переобучения

$$a(x) = 0.5 + 13458922x - 43983740x^2 + \cdots$$

Регуляризация

• Будем штрафовать модель за большие веса

Регуляризация

- Будем штрафовать модель за большие веса
- Регуляризатор (на примере Ridge): $||w||^2 = \sum_{j=1}^{u} w_j^2$
- ullet Регуляризованный функционал: $\dfrac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x_i \rangle y_i)^2 + \lambda \|w\|^2 o \min_w$
- *λ* коэффициент регуляризации

Эффект регуляризации

Необходимо подбирать коэффициент как гиперпараметр

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 \to \min_{w}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + \frac{0.01}{\ell} ||w||^2 \to \min_{w}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + \frac{1}{\ell} ||w||^2 \to \min_{w}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + 0.01 \|w\|^2 \to \min_{w} \qquad \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + 1 \|w\|^2 \to \min_{w} \qquad \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + 100 \|w\|^2 \to \min_{w}$$

Виды регуляризаторов

- Ridge $||z||_2 = \sqrt{\sum_{j=1}^d z_j^2} L_2$ -норма
- Lasso $\sum_{j=1}^{d} |z_j| L_1$ -норма

Лассо

• Регуляризованный функционал:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x_i \rangle - y_i)^2 + \lambda \sum_{j=1}^{d} |w_j| \to \min_{w} \qquad \nabla_w L(f_w, X, y) = 2X^T (Xw - y) + 2\lambda w$$

$$abla_w L(f_w,X,y) = 2X^T(Xw-y) + 2\lambda u$$

LASSO (Least Absolute Shrinkage and Selection operator)

$$w = (X^T X + \lambda I)^{-1} X^T y$$

- Некоторые веса загуляются
- Приводит к отбору признаков

08

Функции потерь

Функции потерь

Помимо MSE существует множество других видов функций потерь:

- Функция потерь Хубера
- MAPE
- SMAPE

• ...

Функция потерь Хубера

$$L_{H}(y,a) = \begin{cases} \frac{1}{2}(y-a)^{2}, & |y-a| < \delta \\ \delta(|y-a| - \frac{1}{2}\delta), & |y-a| \ge \delta \end{cases}$$

• Функционал ошибки:

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} L_H(y_i, a(x_i))$$

MAPE

Mean Absolute Percentage Error (средний модуль относительной ошибки)

$$L(y,a) = \left| \frac{y-a}{y} \right|$$

$$Q(a,X) = \frac{100\%}{\ell} \sum_{i=1}^{\ell} \left| \frac{a(x_i) - y_i}{y_i} \right|$$

SMAPE

• Symmetric Mean Absolute Percentage Error (симметричный средний модуль относительной ошибки)

$$L(y,a) = \frac{|y-a|}{(|y|+|a|)/2}$$

$$Q(a,X) = \frac{100\%}{\ell} \sum_{i=1}^{\ell} \frac{|y_i-a(x_i)|}{(|y_i|+|a(x_i)|)/2}$$

Место для ваших вопросов

Литература

- 1. Учебник по машинному обучению ШАД https://education.yandex.ru/handbook/ml
- 2. Гайдбук Kaggle https://www.kaggle.com/learn/feature-engineering
- 3. Примеры кодирования Kaggle https://www.kaggle.com/code/subinium/11-categorical-encoders-and-benchmark

4.