15-150 Fall 2020

Stephen Brookes

Lecture 5
Efficiency analysis

Today

- Work and span
 - sequential and parallel runtime
- Recurrences
 - exact and asymptotic solutions
- Improving efficiency
 - careful program design

program → recurrence

what matters

Correctness

```
TYPE f:t_1 \rightarrow t_2

REQUIRES (value) \times (:t<sub>1</sub>) such that ...

ENSURES f \times \Longrightarrow^* v (:t<sub>2</sub>) such that ...
```

Efficiency

Information about evaluation time of f x

$$f \times \longrightarrow h(x)$$
 steps \vee

- exact number of steps h(x) depends on x and definition of f

An asymptotic estimate is good enough!

- h(x) is O(g(size x)) for some notion of size

asymptotic

- We want to estimate the runtime W_f(n)
 for evaluating f(n), for large n
 assuming basic operations take constant time
- We will give a **big-O** classification

The graph below compares the running times of various algorithms.

- Linear -- O(n)
- Quadratic -- $O(n^2)$
- Cubic -- $O(n^3)$
- Logarithmic -- O(log n)
- Exponential -- $O(2^n)$
- Square root -- O(sqrt n)

Why take
linear time
when we can
solve the problem in
log time
7

Why take
linear time
when we can
solve the problem in
log time
7

isqrt_0 123456789

Why take
linear time
when we can
solve the problem in
log time
7

isqrt_0 123456789 isqrt_1 123456789

Why take
linear time
when we can
solve the problem in
log time

7

isqrt_0 123456789
isqrt_1 123456789
isqrt_2 123456789

asymptotically

• Ignore additive constants

$$n^5 + 10000000$$
 is $O(n^5)$

• **Absorb** multiplicative constants

$$1000000n^5$$
 is $O(n^5)$

Be as accurate as you can

$$O(n^2) \subset O(n^3) \subset O(n^4)$$

Use common terminology

logarithmic, linear, quadratic, polynomial, exponential

asymptotically

• **Ignore** additive constants

$$n^5 + 10000000$$
 is $O(n^5)$

• Absorb multiplicative constants

$$1000000n^5$$
 is $O(n^5)$

Be as accurate as you can

$$O(n^2) \subset O(n^3) \subset O(n^4)$$

Use common terminology

logarithmic, linear, quadratic, polynomial, exponential

rules of thumb

To calculate work, span for recursive functions we can use recurrence relations, e.g.

$$W_f(n) = k * W_f(n-1) + c$$
 for $n>0$
where k, c are constants

Additive constants don't matter

WLOG let
$$c = I$$

Multiplicative constants do matter

$$W_f(n)$$
 is $O(k^n)$
 $O(2^n)$ is not the same as $O(3^n)$

work

 W(e), the work of e, is the time to evaluate e sequentially, on a single processor

work = total number of operations

 Often we have a function f and a notion of size for argument values, and want
 W_f(n), the work of f(v) when v has size n

span

• S(e), the span of e, is the time to evaluate e, using parallel evaluation for independent code

 Often we have a function f and a notion of size for argument values, and want Sf(n), the span of f(v) when v has size n

rules of thumb

- Most primitive ops are constant-time
 - but not @ on lists (it does a bunch of :: operations)
- To calculate work,
 - add the work for sub-expressions
- To calculate **span**,
 - max the span for independent sub-expressions
 - add the span for dependent sub-expressions

dependence

• if b then e₁ else e₂

b before e₁ or e₂

• $(fn x => e_2) e_1$

- e₁ before [x:v₁]e₂
- let val $x = e_1$ in e_2 end
- e₁ before [x:v₁] e₂

independence

• $(e_1, ..., e_n)$

tuple components

 \bullet e₁ + e₂

summands

work rules

```
W (n) = 0
W (e_1 + e_2) = W e_1 + W e_2 + 1
W (e_1, e_2) = W e_1 + W e_2
W (e_1@e_2) = W e_1 + W e_2 + length e_1 + 1
```

```
W (if b then e_1 else e_2)
\leq W b + \max(W e_1, W e_2) + I
```

span rules

```
S(n) = 0
S(e_1 + e_2) = max(Se_1, Se_2) + I
S(e_1, e_2) = max(Se_1, Se_2)
S(e_1@e_2) = max(Se_1, Se_2) + length e_1 + length
S (if b then e<sub>1</sub> else e<sub>2</sub>)
        \leq S b + max(S e<sub>1</sub>, S e<sub>2</sub>) + I
```

If
$$e \Longrightarrow^{(k)} v$$
 then $W(e) = k$

If
$$e \Longrightarrow^{(k)} v$$
 then $W(e) = k$

$$(2+2)+(2+2) \Longrightarrow 4+(2+2)$$

$$\Longrightarrow 4+4$$

$$\Longrightarrow 8$$

If
$$e \Longrightarrow^{(k)} v$$
 then $W(e) = k$

$$(2+2)+(2+2) \Longrightarrow 4+(2+2)$$

$$\Longrightarrow 4+4$$

$$\Longrightarrow 8$$

$$W((2+2) + (2+2)) = 3$$

If
$$e \Longrightarrow (k) \vee then W(e) = k$$

$$(2+2)+(2+2) \Longrightarrow 4+(2+2)$$

$$\Longrightarrow 4+4$$

$$\Longrightarrow 8$$

$$W((2-4)+(2+2) \Longrightarrow 8$$

$$<$$
 $W((2+2) + (2+2)) = 3$

$$W(e_1+e_2) = W(e_1) + W(e_2) + I$$

If
$$e_1 \Rightarrow^* (fn \times => e)$$
 and $e_2 \Rightarrow^* v$,
then $W(e_1 e_2) = W(e_1) + W(e_2) + W([x:v]e) + I$

$$(\mathbf{fn} \times => \times + \times) (2+2)$$

$$\Rightarrow (\mathbf{fn} \times => \times + \times) 4$$

$$\Rightarrow 4+4$$

$$\Rightarrow 8$$
(3 steps)

$$W ((fn x => x+x) (2+2))$$

If
$$e_1 \Longrightarrow^* (fn x => e)$$
 and $e_2 \Longrightarrow^* v$,
then $W(e_1 e_2) = W(e_1) + W(e_2) + W([x:v]]e) + I$

$$(\mathbf{fn} \times => x+x) (2+2)$$

$$\Rightarrow (\mathbf{fn} \times => x+x) 4$$

$$\Rightarrow 4+4$$

$$\Rightarrow 8 \qquad (3 \text{ steps})$$

$$W ((fn \times => x+x) (2+2))$$

= 0 + 1 + $W(4+4)$ + 1

If
$$e_1 \Longrightarrow^* (fn x => e)$$
 and $e_2 \Longrightarrow^* v$,
then $W(e_1 e_2) = W(e_1) + W(e_2) + W([x:v]]e) + I$

$$(\mathbf{fn} \times => x+x) (2+2)$$

$$\Rightarrow (\mathbf{fn} \times => x+x) 4$$

$$\Rightarrow 4+4$$

$$\Rightarrow 8 \qquad (3 \text{ steps})$$

$$W ((fn x => x+x) (2+2))$$

$$= 0 + 1 + W(4+4) + 1$$

$$= 0 + 1 + 1 + 1$$

If
$$e_1 \Longrightarrow^* (fn \times => e)$$
 and $e_2 \Longrightarrow^* v$,
then $W(e_1 e_2) = W(e_1) + W(e_2) + W([x:v]]e) + I$

$$(\mathbf{fn} \times => x+x) (2+2)$$

$$\Rightarrow (\mathbf{fn} \times => x+x) 4$$

$$\Rightarrow 4+4$$

$$\Rightarrow 8$$

$$(3 \text{ steps})$$

$$W ((fn \times => x+x) (2+2))$$

$$= 0 + 1 + W(4+4) + 1$$

$$= 0 + 1 + 1 + 1$$

$$= 3$$

```
fun exp (n:int):int =
  if n=0 then | else 2 * exp (n-|)
```

Let M be (fn n => if n=0 then I else 2 * exp(n-I))

fun exp (n:int):int = **if** n=0 **then** | **else** 2 * exp (n-1)

Let M be (fn n => if n=0 then I else 2 * exp(n-1))

 $\exp 4 \Longrightarrow (1) M 4$

```
fun exp (n:int):int = if n=0 then | else 2 * exp (n-1)
```

Let M be (fn n => if n=0 then | else 2 * exp(n-1))

$$\exp 4 \Longrightarrow^{(1)} M 4$$

$$\Longrightarrow^{(5)} 2 * (M 3)$$

fun exp (n:int):int =
 if n=0 then | else 2 * exp (n-l)

Let M be (fn n => if n=0 then I else 2 * exp(n-I))

```
exp 4 \Rightarrow (I) M 4 \Rightarrow if 4=0 then ... \Rightarrow if false then ... \Rightarrow 2 * exp (4-I) \Rightarrow 2 * M (4-I) \Rightarrow 2 * (M 3)
```

```
fun exp (n:int):int = if n=0 then | else 2 * exp (n-1)
```

Let M be (fn n => if n=0 then | else 2 * exp(n-1))

$$\exp 4 \Longrightarrow^{(1)} M 4$$

$$\Longrightarrow^{(5)} 2 * (M 3)$$

```
fun exp (n:int):int = if n=0 then | else 2 * exp (n-|)
```

Let M be (fn n => if n=0 then I else 2 * exp(n-1))

exp
$$4 \Longrightarrow (1)$$
 M 4

$$\Longrightarrow (5) 2 * (M 3)$$

$$\Longrightarrow (5) 2 * (2 * (M 2))$$

```
fun exp (n:int):int = if n=0 then | else 2 * exp (n-|)
```

exp 4
$$\Rightarrow$$
(1) M 4
 \Rightarrow (5) 2 * (M 3)
 \Rightarrow (5) 2 * (2 * (M 2))
M 3 \Rightarrow (5) 2 * (M 2)

```
fun exp (n:int):int = if n=0 then | else 2 * exp (n-|)
```

exp
$$4 \Longrightarrow (1)$$
 M 4

$$\Longrightarrow (5) 2 * (M 3)$$

$$\Longrightarrow (5) 2 * (2 * (M 2))$$

```
fun exp (n:int):int = if n=0 then | else 2 * exp (n-|)
```

exp 4
$$\Longrightarrow$$
 (I) M 4
 \Longrightarrow (5) 2 * (M 3)
 \Longrightarrow (5) 2 * (2 * (M 2))
 \Longrightarrow (5) 2 * (2 * (2 * (M I)))

```
fun exp (n:int):int = if n=0 then | else 2 * exp (n-|)
```

exp 4
$$\Longrightarrow$$
 (1) M 4
 \Longrightarrow (5) 2 * (M 3)
 \Longrightarrow (5) 2 * (2 * (M 2))
 \Longrightarrow (5) 2 * (2 * (2 * (M I)))
 \Longrightarrow (5) 2 * (2 * (2 * (M O)))

```
fun exp (n:int):int = if n=0 then | else 2 * exp (n-|)
```

exp 4
$$\Longrightarrow$$
 (1) M 4
 \Longrightarrow (5) 2 * (M 3)
 \Longrightarrow (5) 2 * (2 * (M 2))
 \Longrightarrow (5) 2 * (2 * (2 * (M 1)))
 \Longrightarrow (5) 2 * (2 * (2 * (2 * (M 0))))
 \Longrightarrow (3) 2 * (2 * (2 * (2 * 1)))

```
fun exp (n:int):int = if n=0 then | else 2 * exp (n-|)
```

exp 4
$$\Rightarrow$$
(1) M 4
 \Rightarrow (5) 2 * (M 3)
 \Rightarrow (5) 2 * (2 * (M 2))
 \Rightarrow (5) 2 * (2 * (2 * (M 1)))
 \Rightarrow (5) 2 * (2 * (2 * (2 * (M 0))))
 \Rightarrow (3) 2 * (2 * (2 * (2 * 1)))
 \Rightarrow (4) 16

```
fun exp (n:int):int = if n=0 then | else 2 * exp (n-|)
```

```
\exp 4 \Longrightarrow (1) M 4
         \Rightarrow<sup>(5)</sup> 2 * (M 3)
         \implies (5) 2 * (2 * (M 2))
         \implies^{(5)} 2*(2*(2*(M1)))
         \implies^{(5)} 2*(2*(2*(M 0)))
         \implies (3) 2 * (2 * (2 * (1)))
         \Rightarrow(4) 16
                                                 \exp 4 \Longrightarrow (28) 16
```

It's not hard to prove that for all $n \ge 0$,

exp n \Longrightarrow (6n+4) k, where k is the numeral for 2ⁿ

It's not hard to prove that for all $n \ge 0$,

exp n \Longrightarrow (6n+4) k, where k is the numeral for 2ⁿ

But it's tedious, and why be so accurate?

It's not hard to prove that for all $n \ge 0$,

exp n \Longrightarrow (6n+4) k, where k is the numeral for 2ⁿ

But it's tedious, and why be so accurate?

Does 6n+4 really tell us about actual *runtime* in milliseconds?

It's not hard to prove that for all $n \ge 0$,

exp n \Longrightarrow (6n+4) k, where k is the numeral for 2ⁿ

But it's tedious, and why be so accurate?

Does 6n+4 really tell us about actual *runtime* in milliseconds?

No! But it does tell us runtime is *linear*.

big-O is big-OK

- It's best to classify runtimes asymptotically
- This ignores irrelevant constants... (which may be machine-dependent, so not very significant)
- ... and ignores runtime on small inputs (which may have been special-cased in the code)

$$\exp n \Longrightarrow^{O(n)} 2^n$$

If we double n, the runtime... doubles

- Given a recursive definition for function f and a non-negative size function that decreases in every recursive call
- Extract a recurrence relation for the applicative work of f

worst-case work, over all values of size n

 $W_f(n)$ = work of f v on values v of size n

- Given a recursive definition for function f and a non-negative size function that decreases in every recursive call
- Extract a recurrence relation for the applicative work of f

worst-case work, over all values of size n

 $W_f(n)$ = work of f v on values v of size n

Idea: express $W_f(n)$ in terms of $W_f(m)$, $0 \le m \le n$

- Given a recursive definition for function f and a non-negative size function that decreases in every recursive call
- Extract a recurrence relation for the applicative work of f

worst-case work, over all values of size n

 $W_f(n)$ = work of f v on values v of size n

Idea: express $W_f(n)$ in terms of $W_f(m)$, $0 \le m < n$

Q:When can this method succeed?

- Given a recursive definition for function f and a non-negative size function that decreases in every recursive call
- Extract a recurrence relation for the applicative work of f

worst-case work, over all values of size n

 $W_f(n)$ = work of f v on values v of size n

Idea: express $W_f(n)$ in terms of $W_f(m)$, $0 \le m < n$

Q:When can this method succeed?

A: If the work of $f \lor depends only on the size of <math>\lor (!)$

example

```
fun Fib(0) = |
| Fib(1) = |
| Fib(n) = Fib(n-1) + Fib(n-2)
```

size is value of n

$$\begin{aligned} W_{Fib}(0) &= c_0 \\ W_{Fib}(1) &= c_0 \\ W_{Fib}(n) &= W_{Fib}(n-1) + W_{Fib}(n-2) + c_1 \\ &\qquad \qquad \text{for some constants } c_0, c_1 \end{aligned}$$

solving a recurrence

WLOG let additive constants be 1

Try to find a *closed form* solution for W(n) (usually, by guessing and *induction*)

- OR Code the recurrence in ML, test for small n, look for a common pattern
- OR Find solution to a simplified recurrence with the same asymptotic properties
- OR Appeal to table of standard recurrences

For
$$n \ge 0$$
, exp $n \Longrightarrow^* 2^n$

Let $W_{exp}(n)$ be the runtime for exp(n)

$$W_{exp}(0) = c_0$$

$$W_{exp}(n) = W_{exp}(n-1) + c_1 \quad \text{for } n>0$$

for some constants co and ci

c₀: cost for test n=0c₁: cost for test n=0, multiply by 2

solution

Easy to prove by induction on n that

$$W_{exp}(n) = c_0 + n c_1$$
 for $n \ge 0$

comment

If we'd simplified by letting constants be I,

$$W_{exp}(0) = I$$

$$W_{exp}(n) = W_{exp}(n-1) + 1$$
 for $n>0$

we'd have gotten $W_{exp}(n) = 1 + n$

$$W_{exp}(n)$$
 is $O(n)$

The simpler recurrence has the same solution, asymptotically

summary

- We've shown that for n≥0,
 exp n computes the value of 2ⁿ in O(n) steps
- This fact is independent of machine details (assuming that basic operations are constant time)
- Can we do better?

use parallelism?

(with the same exp function)

```
fun exp (n:int):int = if n=0 then | else 2 * exp (n-|)
```

• Give a recurrence for the span of exp n

It will be *identical* to the recurrence we gave for work, with the same asymptotic solution... why?

There is no advantage to be gained by parallel evaluation here!

a faster method?

• The definition of exp relies on the fact that

$$2^{n} = 2 (2^{n-1})$$
 when $n > 0$

Everybody knows that

$$2^n = (2^{n \operatorname{div} 2})^2$$
 when n is even

Let's define

fastexp : int -> int
based on this idea...

fastexp

```
fun square(x:int):int = x * x

fun fastexp (n:int):int =
  if n=0 then | else
  if n mod 2 = 0 then square(fastexp (n div 2))
       else 2 * fastexp(n-1)
```

fastexp

```
fun square(x:int):int = x * x
fun fastexp (n:int):int =
  if n=0 then | else
  if n mod 2 = 0 then square(fastexp (n div 2))
                  else 2 * fastexp(n-1)
   fastexp 4 = square(fastexp 2)
             = square(square (fastexp I))
             = square(square (2 * fastexp 0))
             = square(square (2 * I))
             = square 4 = 16
```

```
fun fastexp (n:int):int =
  if n=0 then | else
  if n mod 2 = 0 then square(fastexp (n div 2))
       else 2 * fastexp(n-1)
```

```
fun fastexp (n:int):int =
  if n=0 then | else
  if n mod 2 = 0 then square(fastexp (n div 2))
       else 2 * fastexp(n-1)
```

Code design leads to recurrence...

```
fun fastexp (n:int):int =
  if n=0 then | else
  if n mod 2 = 0 then square(fastexp (n div 2))
       else 2 * fastexp(n-1)
```

Code design leads to recurrence...

```
\begin{aligned} W_{fastexp}(0) &= k_0 \\ W_{fastexp}(n) &= W_{fastexp}(n \text{ div 2}) + k_1 \text{ for n>0, even} \\ W_{fastexp}(n) &= W_{fastexp}(n-1) + k_2 \text{ for n>0, odd} \end{aligned}
```

for some constants k_0 , k_1 , k_2

```
fun fastexp (n:int):int =
  if n=0 then | else
  if n mod 2 = 0 then square(fastexp (n div 2))
       else 2 * fastexp(n-1)
```

Code design leads to recurrence...

```
W_{fastexp}(0) = k_0
```

$$W_{fastexp}(n) = W_{fastexp}(n \text{ div } 2) + k_1 \text{ for } n>0, \text{ even}$$

$$W_{fastexp}(n) = W_{fastexp}(n-1) + k_2$$
 for n>0, odd

for some constants k_0 , k_1 , k_2

```
k_0: cost for test n=0

k_1: cost for tests n=0, n mod 2 = 0, squaring

k_2: cost for tests n=0, n mod 2 = 0, multiplication by 2
```

```
fun fastexp (n:int):int =
  if n=0 then | else
  if n mod 2 = 0 then square(fastexp (n div 2))
       else 2 * fastexp(n-1)
```

Expand, then set constants to 1

```
fun fastexp (n:int):int =
  if n=0 then | else
  if n mod 2 = 0 then square(fastexp (n div 2))
       else 2 * fastexp(n-1)
```

Expand, then set constants to 1

$$\begin{aligned} W_{fastexp}(0) &= I \\ W_{fastexp}(I) &= I \\ W_{fastexp}(n) &= W_{fastexp}(n \text{ div 2}) + I & \text{for } n > I, \text{ even} \\ W_{fastexp}(n) &= W_{fastexp}(n \text{ div 2}) + I & \text{for } n > I, \text{ odd} \end{aligned}$$

```
fun fastexp (n:int):int =
  if n=0 then | else
  if n mod 2 = 0 then square(fastexp (n div 2))
       else 2 * fastexp(n-1)
```

Expand, then set constants to 1

```
fun fastexp (n:int):int =
  if n=0 then | else
  if n mod 2 = 0 then square(fastexp (n div 2))
       else 2 * fastexp(n-1)
```

Expand, then set constants to 1

$$\begin{aligned} W_{fastexp}(0) &= I \\ W_{fastexp}(I) &= I \\ W_{fastexp}(n) &= W_{fastexp}(n \text{ div } 2) + I \qquad \text{for } n > I \end{aligned}$$

approx solution

W_{fastexp}(n) is defined like log₂(n)

```
log<sub>2</sub> n =
if n=1 then 0 else log<sub>2</sub> (n div 2) + 1

W<sub>fastexp</sub>(n) =
if n<2 then 1 else W<sub>fastexp</sub>(n div 2) + 1
```

• It follows that $W_{fastexp}(n)$ is O(log n)

exercise

 Using ML, discover the relationship between the functions

fun $\log n = if n=1$ then 0 else 1 + $\log(n \text{ div } 2)$

fun W n = if n<2 then | else | + W(n div 2)

(see previous slide)

it's really faster

- Work of exp(n) is O(n)
- Work of fastexp(n) is O(log n)
- O(log n) is a proper subset of O(n)
- fastexp is asymptotically faster than exp

list reversal

```
fun rev [] = []
| rev (x::L) = (rev L) @ [x]
```

For list values A and B, $W_{@}(A, B)$ is linear in the length of A

Runtime of rev(L)

depends on *length* of L

but not the contents of L

length(rev L)= length(L)

```
fun rev [] = []
| rev (x::L) = (rev L) @ [x]
```

Let $W_{rev}(n)$ be work of rev L when length L = n

$$W_{rev}(0) = I$$

$$W_{rev}(n) = W_{rev}(n-1) + (n-1) + 1$$
 for n>0

```
fun rev [] = []
| rev (x::L) = (rev L) @ [x]
```

Let $W_{rev}(n)$ be work of rev L when length L = n

$$W_{rev}(0) = I$$

$$W_{rev}(n) =$$

for n>0

```
fun rev [] = []
| rev (x::L) = (rev L) @ [x]
```

Let $W_{rev}(n)$ be work of rev L when length L = n

$$W_{rev}(0) = I$$

$$W_{rev}(n) = W_{rev}(n-I) + n$$

for n>0

```
fun rev [] = []
| rev (x::L) = (rev L) @ [x]
```

Let $W_{rev}(n)$ be work of rev L when length L = n

$$W_{rev}(0) = I$$

 $W_{rev}(n) = W_{rev}(n-1) + n$ for n>0
 $= W_{rev}(n-2) + (n-1) + n$

```
fun rev [] = []
| rev (x::L) = (rev L) @ [x]
```

Let $W_{rev}(n)$ be work of rev L when length L = n

$$W_{rev}(0) = I$$

 $W_{rev}(n) = W_{rev}(n-1) + n$ for n>0
 $= W_{rev}(n-2) + (n-1) + n$
 $= I + 2 + ... + (n-1) + n$

```
fun rev [] = []
| rev (x::L) = (rev L) @ [x]
```

Let $W_{rev}(n)$ be work of rev L when length L = n

$$W_{rev}(0) = I$$

 $W_{rev}(n) = W_{rev}(n-1) + n$ for n>0
 $= W_{rev}(n-2) + (n-1) + n$
 $= I + 2 + ... + (n-1) + n$

 $W_{rev}(n)$ is $O(n^2)$

```
fun rev [] = []
    rev (x::L) = (rev L) @ [x]
```

Let $W_{rev}(n)$ be work of rev L when length L = n

$$W_{rev}(0) = I$$

 $W_{rev}(n) = W_{rev}(n-1) + n$ for $n>0$
 $= W_{rev}(n-2) + (n-1) + n$
 $= I + 2 + ... + (n-1) + n$

faster rev

Surely O(n) should be feasible...

 Use an extra argument to accumulate the reversed list

revver: int list * int list -> int list

 Instead of append after the recursive call, do a cons before the recursive call

faster rev

Surely O(n) should be feasible...

faster rev

```
For all L,A, revver(L, A) = (rev L) @ A
```

For all L, Rev L = rev L

Explain why $W_{Rev}(n)$ is O(n)

Hint: analyze W(revver (L, A))

even more faster?

The definition of fastexp relies on

$$2^{n} = (2^{n \text{ div } 2})^{2}$$
 if n is even
 $2^{n} = 2(2^{n-1})$ if n is odd

A moment's thought tells us that

$$2^n = 2 (2^{(n \text{ div } 2)})^2$$
 if n is odd

Let's define

based on this idea...

pow

```
fun pow (n:int):int =
  case n of
   0 = > 1
  | | => 2
  _ => let
          val k = pow(n div 2)
         in
           if n mod 2 = 0 then k*k else 2*k*k
         end
```

work of pow(n)

$$W_{pow}(0) = I$$

 $W_{pow}(1) = I$
 $W_{pow}(n) = I + W_{pow}(n \text{ div } 2) \text{ for } n > I$

Same recurrence as $W_{fastexp}$

Same asymptotic behavior

pow(n) is O(log n)

badpow

```
fun badpow (n:int):int =
                                      bad idea:
  case n of
                                     does same
    0 = > 1
                                    recursive call
                                       twice
   _ => let
           val k2 = badpow(n div 2)*badpow(n div 2)
           if n mod 2 = 0 then k2 else 2*k2
          end
```

work of badpow(n)

$$W_{badpow}(0) = I$$

 $W_{badpow}(1) = I$
 $W_{badpow}(n) = I + 2 W_{badpow}(n \text{ div } 2)$
for n>1

• This implies that $W_{badpow}(n)$ is O(n)

But $W_{pow}(n)$ is O(log n) (faster!)

Bad code design leads to poor performance

summary

Use recurrences for work/span

- recurrence form *mimics* function syntax
- OK to be sloppy with additive constants
 - let c = 1, or add/subtract 1

Asymptotic estimates are robust

- independent of architecture
- give information about scaling

exercise

Recall the functions

```
isqrt_0 : int -> int
isqrt_l : int -> int
isqrt 2 : int -> int
```

Figure out the asymptotic work for

```
isqrt_0 n
isqrt_l n
isqrt 2 n
```

Try them out on large values of n and see the differences!

```
fun isqrt_0 (n : int) : int =
   if n=0 then 0 else
   let
     fun loop i = if n < i*i then i-l else loop(i+l)
   in
     loop l
   end</pre>
```

- $W_{isqrt_0}(0) = I$
- $W_{isqrt_0}(n) = W_{loop}(1)$ for n>0

How can this be? RHS doesn't seem to use n

The loop function used by isqrt_0(n)
 does use the value of n

```
fun loop i = if n < i*i then i-1 else loop(i+1)
```

• Let k be the integer square root of n, so

$$||^{2} \le |^{2} \le ... \le |^{2} \le |^{2}$$

The loop function used by isqrt_0(n)
 does use the value of n

```
fun loop i = if n < i*i then i-1 else loop(i+1)
```

• Let k be the integer square root of n, so

$$||^{2} \le 2^{2} \le ... \le k^{2} \le n < (k+1)^{2}$$
 $W_{loop}(i) = 1 + W_{loop}(i+1) \quad \text{for } i=1, ..., k$
 $W_{loop}(k+1) = 1$

Hence $W_{loop}(1) \quad \text{is } O(k)$

So
$$W_{isqrt_0}(n)$$
 is $O(\sqrt{n})$

```
fun isqrt_l(n) =
  if n=0 then 0 else
  let
    val r = isqrt_l(n - l) + l
  in
    if n<r*r then r-l else r
  end</pre>
```

•
$$W_{isqrt_I}(0) = I$$

•
$$W_{isqrt_l}(n) = I + W_{isqrt_l}(n - I)$$
 for $n > 0$

$$W_{isqrt_I}(n)$$
 is $O(n)$

```
fun isqrt_l(n) =
  if n=0 then 0 else
  let
    val r = isqrt_l(n - l) + l
  in
    if n<r*r then r-l else r
  end</pre>
```

•
$$W_{isqrt_I}(0) = I$$

•
$$W_{isqrt_l}(n) = I + W_{isqrt_l}(n - I)$$
 for $n > 0$

$$W_{isqrt_I}(n)$$
 is $O(n)$

```
fun isqrt_2(n) =
  if n=0 then 0 else
  let
    val r = 2 * isqrt_2(n div 4) + 1
  in
    if n<r*r then r-1 else r
  end</pre>
```

```
• W_{isqrt_2}(0) = I
```

•
$$W_{isqrt_2}(n) = I + W_{isqrt_2}(n \operatorname{div} 4)$$
 for $n > 0$

$$W_{isqrt_2}(n)$$
 is $O(log n)$

```
fun isqrt_2(n) =
  if n=0 then 0 else
  let
    val r = 2 * isqrt_2(n div 4) + 1
  in
    if n<r*r then r-1 else r
  end</pre>
```

- $W_{isqrt_2}(0) = I$
- $W_{isqrt_2}(n) = 1 + W_{isqrt_2}(n \text{ div } 4)$ for n > 0

$$W_{isqrt_2}(n)$$
 is $O(log n)$

summary

 Asymptotic work analysis "explains" runtime experience

$$O(log\ n)\subset O(\sqrt{n})\subset O(n)$$
 isqrt_0 isqrt_I