Section 5.3

Diagonalization

Motivation

Difference equations

Many real-word linear algebra problems have the form:

$$v_1 = A v_0, \quad v_2 = A v_1 = A^2 v_0, \quad v_3 = A v_2 = A^3 v_0, \quad \dots \quad v_n = A v_{n-1} = A^n v_0.$$

This is called a difference equation.

Motivation

Difference equations

Many real-word linear algebra problems have the form:

$$v_1 = Av_0, \quad v_2 = Av_1 = A^2v_0, \quad v_3 = Av_2 = A^3v_0, \quad \dots \quad v_n = Av_{n-1} = A^nv_0.$$

This is called a difference equation.

Our toy example about rabbit populations had this form.

Motivation

Difference equations

Many real-word linear algebra problems have the form:

$$v_1 = Av_0, \quad v_2 = Av_1 = A^2v_0, \quad v_3 = Av_2 = A^3v_0, \quad \dots \quad v_n = Av_{n-1} = A^nv_0.$$

This is called a difference equation.

Our toy example about rabbit populations had this form.

The question is, what happens to v_n as $n \to \infty$?

Motivation Difference equations

Many real-word linear algebra problems have the form:

$$v_1 = Av_0, \quad v_2 = Av_1 = A^2v_0, \quad v_3 = Av_2 = A^3v_0, \quad \dots \quad v_n = Av_{n-1} = A^nv_0.$$

This is called a difference equation.

Our toy example about rabbit populations had this form.

The question is, what happens to v_n as $n \to \infty$?

Taking powers of diagonal matrices is easy!

Motivation Difference equations

Many real-word linear algebra problems have the form:

$$v_1 = Av_0, \quad v_2 = Av_1 = A^2v_0, \quad v_3 = Av_2 = A^3v_0, \quad \dots \quad v_n = Av_{n-1} = A^nv_0.$$

This is called a difference equation.

Our toy example about rabbit populations had this form.

The question is, what happens to v_n as $n \to \infty$?

- ▶ Taking powers of diagonal matrices is easy!
- ► Taking powers of *diagonalizable* matrices is still easy!

Motivation Difference equations

Many real-word linear algebra problems have the form:

$$v_1 = Av_0, \quad v_2 = Av_1 = A^2v_0, \quad v_3 = Av_2 = A^3v_0, \quad \dots \quad v_n = Av_{n-1} = A^nv_0.$$

This is called a difference equation.

Our toy example about rabbit populations had this form.

The question is, what happens to v_n as $n \to \infty$?

- ▶ Taking powers of diagonal matrices is easy!
- ► Taking powers of *diagonalizable* matrices is still easy!
- Diagonalizing a matrix is an eigenvalue problem.

Powers of Diagonal Matrices

If D is diagonal, then D^n is also diagonal; its diagonal entries are the nth powers of the diagonal entries of D:

What if A is not diagonal?

What if A is not diagonal?

Let
$$A = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$$
. Compute A^n .

What if A is not diagonal?

Example

Let
$$A = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$$
. Compute A^n .

In $\S 5.2$ lecture we saw that A is similar to a diagonal matrix:

$$A = PDP^{-1}$$
 where $P = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ and $D = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$.

What if A is not diagonal?

Example

Let
$$A = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$$
. Compute A^n .

In $\S 5.2$ lecture we saw that A is similar to a diagonal matrix:

$$A = PDP^{-1}$$
 where $P = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ and $D = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$.

Then

$$A^2 =$$

$$A^3 =$$

$$A^n =$$

What if A is not diagonal?

Example

Let
$$A = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$$
. Compute A^n .

In $\S 5.2$ lecture we saw that A is similar to a diagonal matrix:

$$A = PDP^{-1}$$
 where $P = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ and $D = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$.

Then

$$A^2 =$$

$$A^3 =$$

$$A^n =$$

Therefore

$$A^n =$$

Diagonalizable Matrices

Definition

An $n \times n$ matrix A is **diagonalizable** if it is similar to a diagonal matrix:

$$A = PDP^{-1}$$
 for D diagonal.

Diagonalizable Matrices

Definition

An $n \times n$ matrix A is **diagonalizable** if it is similar to a diagonal matrix:

$$A = PDP^{-1}$$
 for D diagonal.

Important

If
$$A = PDP^{-1}$$
 for $D = \begin{pmatrix} d_{11} & 0 & \cdots & 0 \\ 0 & d_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn} \end{pmatrix}$ then

$$A^{k} = PD^{k}P^{-1} = P \begin{pmatrix} d_{11}^{k} & 0 & \cdots & 0 \\ 0 & d_{22}^{k} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn}^{k} \end{pmatrix} P^{-1}.$$

Diagonalizable Matrices

Definition

An $n \times n$ matrix A is **diagonalizable** if it is similar to a diagonal matrix:

$$A = PDP^{-1}$$
 for D diagonal.

Important

If
$$A = PDP^{-1}$$
 for $D = \begin{pmatrix} d_{11} & 0 & \cdots & 0 \\ 0 & d_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn} \end{pmatrix}$ then

$$A^{k} = PD^{k}P^{-1} = P \begin{pmatrix} d_{11}^{k} & 0 & \cdots & 0 \\ 0 & d_{22}^{k} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn}^{k} \end{pmatrix} P^{-1}.$$

So diagonalizable matrices are easy to raise to any power.

The Diagonalization Theorem

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

The Diagonalization Theorem

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

In this case, $A = PDP^{-1}$ for

$$P = \begin{pmatrix} | & | & & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & & | \end{pmatrix} \qquad D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix},$$

where v_1, v_2, \ldots, v_n are linearly independent eigenvectors, and $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the corresponding eigenvalues (in the same order).

The Diagonalization Theorem

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

In this case, $A = PDP^{-1}$ for

$$P = \begin{pmatrix} | & | & & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & & | \end{pmatrix} \qquad D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix},$$

where v_1, v_2, \ldots, v_n are linearly independent eigenvectors, and $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the corresponding eigenvalues (in the same order).

The Diagonalization Theorem

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

In this case, $A = PDP^{-1}$ for

$$P = \begin{pmatrix} | & | & & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & & | \end{pmatrix} \qquad D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix},$$

where v_1, v_2, \ldots, v_n are linearly independent eigenvectors, and $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the corresponding eigenvalues (in the same order).

Corollary a theorem that follows easily from another theorem

An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

The Diagonalization Theorem

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

In this case, $A = PDP^{-1}$ for

$$P = \begin{pmatrix} | & | & & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & & | \end{pmatrix} \qquad D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix},$$

where v_1, v_2, \ldots, v_n are linearly independent eigenvectors, and $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the corresponding eigenvalues (in the same order).

Corollary a theorem that follows easily from another theorem

An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

The Corollary is true because eigenvectors with distinct eigenvalues are always linearly independent.

The Diagonalization Theorem

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

In this case, $A = PDP^{-1}$ for

$$P = \begin{pmatrix} | & | & & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & & | \end{pmatrix} \qquad D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix},$$

where v_1, v_2, \ldots, v_n are linearly independent eigenvectors, and $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the corresponding eigenvalues (in the same order).

Corollary a theorem that follows easily from another theorem

An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

The Corollary is true because eigenvectors with distinct eigenvalues are always linearly independent. We will see later that a diagonalizable matrix need not have n distinct eigenvalues though.

Diagonalization Example

Problem: Diagonalize
$$A = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$$
.

Diagonalization Another example

Problem: Diagonalize
$$A = \begin{pmatrix} 4 & -3 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$$
.

Another example, continued

Problem: Diagonalize
$$A = \begin{pmatrix} 4 & -3 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$$
.

Another example, continued

Problem: Diagonalize
$$A = \begin{pmatrix} 4 & -3 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$$
.

Note: In this case, there are three linearly independent eigenvectors, but only two distinct eigenvalues.

A non-diagonalizable matrix

Problem: Show that
$$A=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 is not diagonalizable.

A non-diagonalizable matrix

Problem: Show that
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 is not diagonalizable.

Conclusion: A has only one linearly independent eigenvector, so by the "only if" part of the diagonalization theorem, A is not diagonalizable.

Poll

Which of the following matrices are diagonalizable, and why?

A. $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ B. $\begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$ C. $\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$ D. $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$

Matrix A is not diagonalizable: its only eigenvalue is 1, and its 1-eigenspace is spanned by $\binom{1}{0}$.

Matrix A is not diagonalizable: its only eigenvalue is 1, and its 1-eigenspace is spanned by $\binom{1}{0}$.

Similarly, matrix ${\sf C}$ is not diagonalizable.

Matrix A is not diagonalizable: its only eigenvalue is 1, and its 1-eigenspace is spanned by $\binom{1}{0}$.

Similarly, matrix C is not diagonalizable.

Matrix B is diagonalizable because it is a 2×2 matrix with distinct eigenvalues.

Matrix A is not diagonalizable: its only eigenvalue is 1, and its 1-eigenspace is spanned by $\binom{1}{0}$.

Similarly, matrix C is not diagonalizable.

Matrix B is diagonalizable because it is a 2×2 matrix with distinct eigenvalues.

Matrix D is already diagonal!

Diagonalization Procedure

How to diagonalize a matrix A:

Diagonalization Procedure

How to diagonalize a matrix A:

1. Find the eigenvalues of A using the characteristic polynomial.

Diagonalization Procedure

How to diagonalize a matrix A:

- 1. Find the eigenvalues of A using the characteristic polynomial.
- 2. For each eigenvalue λ of A, compute a basis \mathcal{B}_{λ} for the λ -eigenspace.

Diagonalization Procedure

How to diagonalize a matrix A:

- 1. Find the eigenvalues of A using the characteristic polynomial.
- 2. For each eigenvalue λ of A, compute a basis \mathcal{B}_{λ} for the λ -eigenspace.
- 3. If there are fewer than n total vectors in the union of all of the eigenspace bases \mathcal{B}_{λ} , then the matrix is not diagonalizable.

How to diagonalize a matrix A:

- 1. Find the eigenvalues of A using the characteristic polynomial.
- 2. For each eigenvalue λ of A, compute a basis \mathcal{B}_{λ} for the λ -eigenspace.
- 3. If there are fewer than n total vectors in the union of all of the eigenspace bases \mathcal{B}_{λ} , then the matrix is not diagonalizable.
- 4. Otherwise, the *n* vectors v_1, v_2, \dots, v_n in your eigenspace bases are linearly independent, and $A = PDP^{-1}$ for

$$P = \begin{pmatrix} | & | & & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & & | \end{pmatrix} \quad \text{and} \quad D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix},$$

where λ_i is the eigenvalue for v_i .

Diagonalization Proof

Why is the Diagonalization Theorem true?

Definition

Let λ be an eigenvalue of a square matrix A. The **geometric multiplicity** of λ is the dimension of the λ -eigenspace.

Definition

Let λ be an eigenvalue of a square matrix A. The **geometric multiplicity** of λ is the dimension of the λ -eigenspace.

Theorem

Let λ be an eigenvalue of a square matrix A. Then

 $1 \le$ (the geometric multiplicity of λ) \le (the algebraic multiplicity of λ).

Definition

Let λ be an eigenvalue of a square matrix A. The **geometric multiplicity** of λ is the dimension of the λ -eigenspace.

Theorem

Let λ be an eigenvalue of a square matrix A. Then

 $1 \le$ (the geometric multiplicity of λ) \le (the algebraic multiplicity of λ).

The proof is beyond the scope of this course.

Definition

Let λ be an eigenvalue of a square matrix A. The **geometric multiplicity** of λ is the dimension of the λ -eigenspace.

Theorem

Let λ be an eigenvalue of a square matrix A. Then

 $1 \le$ (the geometric multiplicity of λ) \le (the algebraic multiplicity of λ).

The proof is beyond the scope of this course.

Corollary

Let λ be an eigenvalue of a square matrix A. If the algebraic multiplicity of λ is 1, then the geometric multiplicity is also 1.

Definition

Let λ be an eigenvalue of a square matrix A. The **geometric multiplicity** of λ is the dimension of the λ -eigenspace.

Theorem

Let λ be an eigenvalue of a square matrix A. Then

 $1 \le$ (the geometric multiplicity of λ) \le (the algebraic multiplicity of λ).

The proof is beyond the scope of this course.

Corollary

Let λ be an eigenvalue of a square matrix A. If the algebraic multiplicity of λ is 1, then the geometric multiplicity is also 1.

The Diagonalization Theorem (Alternate Form)

Let A be an $n \times n$ matrix. The following are equivalent:

Definition

Let λ be an eigenvalue of a square matrix A. The **geometric multiplicity** of λ is the dimension of the λ -eigenspace.

Theorem

Let λ be an eigenvalue of a square matrix A. Then

 $1 \le$ (the geometric multiplicity of λ) \le (the algebraic multiplicity of λ).

The proof is beyond the scope of this course.

Corollary

Let λ be an eigenvalue of a square matrix A. If the algebraic multiplicity of λ is 1, then the geometric multiplicity is also 1.

The Diagonalization Theorem (Alternate Form)

Let A be an $n \times n$ matrix. The following are equivalent:

1. A is diagonalizable.

Definition

Let λ be an eigenvalue of a square matrix A. The **geometric multiplicity** of λ is the dimension of the λ -eigenspace.

Theorem

Let λ be an eigenvalue of a square matrix A. Then

 $1 \le$ (the geometric multiplicity of λ) \le (the algebraic multiplicity of λ).

The proof is beyond the scope of this course.

Corollary

Let λ be an eigenvalue of a square matrix A. If the algebraic multiplicity of λ is 1, then the geometric multiplicity is also 1.

The Diagonalization Theorem (Alternate Form)

Let A be an $n \times n$ matrix. The following are equivalent:

- 1. A is diagonalizable.
- 2. The sum of the geometric multiplicities of the eigenvalues of A equals n.

Definition

Let λ be an eigenvalue of a square matrix A. The **geometric multiplicity** of λ is the dimension of the λ -eigenspace.

Theorem

Let λ be an eigenvalue of a square matrix A. Then

 $1 \le$ (the geometric multiplicity of λ) \le (the algebraic multiplicity of λ).

The proof is beyond the scope of this course.

Corollary

Let λ be an eigenvalue of a square matrix A. If the algebraic multiplicity of λ is 1, then the geometric multiplicity is also 1.

The Diagonalization Theorem (Alternate Form)

Let A be an $n \times n$ matrix. The following are equivalent:

- 1. A is diagonalizable.
- 2. The sum of the geometric multiplicities of the eigenvalues of A equals n.
- 3. The sum of the algebraic multiplicities of the eigenvalues of *A* equals *n*, and *the geometric multiplicity equals the algebraic multiplicity* of each eigenvalue.

Non-Distinct Eigenvalues Examples

Example

If A has n distinct eigenvalues, then the algebraic multiplicity of each equals 1, hence so does the geometric multiplicity, and therefore A is diagonalizable.

Non-Distinct Eigenvalues Examples

Example

If A has n distinct eigenvalues, then the algebraic multiplicity of each equals 1, hence so does the geometric multiplicity, and therefore A is diagonalizable.

For example,
$$A=\begin{pmatrix}1&2\\-1&4\end{pmatrix}$$
 has eigenvalues 2 and 3, so it is diagonalizable.

Non-Distinct Eigenvalues Examples

Example

If A has n distinct eigenvalues, then the algebraic multiplicity of each equals 1, hence so does the geometric multiplicity, and therefore A is diagonalizable.

For example,
$$A = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$$
 has eigenvalues 2 and 3, so it is diagonalizable.

Example

The matrix
$$A=\begin{pmatrix} 4 & -3 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$$
 has characteristic polynomial
$$f(\lambda)=-(\lambda-1)^2(\lambda-2).$$

If A has n distinct eigenvalues, then the algebraic multiplicity of each equals 1, hence so does the geometric multiplicity, and therefore A is diagonalizable.

For example,
$$A = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$$
 has eigenvalues 2 and 3, so it is diagonalizable.

Example

The matrix
$$A = \begin{pmatrix} 4 & -3 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$$
 has characteristic polynomial

$$f(\lambda) = -(\lambda - 1)^2(\lambda - 2).$$

The algebraic multiplicities of 1 and 2 are 2 and 1, respectively.

If A has n distinct eigenvalues, then the algebraic multiplicity of each equals 1, hence so does the geometric multiplicity, and therefore A is diagonalizable.

For example,
$$A = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$$
 has eigenvalues 2 and 3, so it is diagonalizable.

Example

The matrix
$$A = \begin{pmatrix} 4 & -3 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$$
 has characteristic polynomial

$$f(\lambda) = -(\lambda - 1)^2(\lambda - 2).$$

The algebraic multiplicities of 1 and 2 are 2 and 1, respectively. They sum to 3.

If A has n distinct eigenvalues, then the algebraic multiplicity of each equals 1, hence so does the geometric multiplicity, and therefore A is diagonalizable.

For example,
$$A = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$$
 has eigenvalues 2 and 3, so it is diagonalizable.

Example

The matrix
$$A = \begin{pmatrix} 4 & -3 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$$
 has characteristic polynomial

$$f(\lambda) = -(\lambda - 1)^2(\lambda - 2).$$

The algebraic multiplicities of 1 and 2 are 2 and 1, respectively. They sum to 3. We showed before that the geometric multiplicity of 1 is 2 (the 1-eigenspace has dimension 2).

If A has n distinct eigenvalues, then the algebraic multiplicity of each equals 1, hence so does the geometric multiplicity, and therefore A is diagonalizable.

For example,
$$A = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$$
 has eigenvalues 2 and 3, so it is diagonalizable.

Example

The matrix
$$A=\begin{pmatrix} 4 & -3 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$$
 has characteristic polynomial
$$f(\lambda)=-(\lambda-1)^2(\lambda-2).$$

The algebraic multiplicities of 1 and 2 are 2 and 1, respectively. They sum to 3.

We showed before that the geometric multiplicity of 1 is 2 (the 1-eigenspace has dimension 2). The eigenvalue 2 automatically has geometric multiplicity 1.

If A has n distinct eigenvalues, then the algebraic multiplicity of each equals 1, hence so does the geometric multiplicity, and therefore A is diagonalizable.

For example, $A = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$ has eigenvalues 2 and 3, so it is diagonalizable.

Example

The matrix
$$A = \begin{pmatrix} 4 & -3 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$$
 has characteristic polynomial

$$f(\lambda) = -(\lambda - 1)^2(\lambda - 2).$$

The algebraic multiplicities of 1 and 2 are 2 and 1, respectively. They sum to 3. We showed before that the geometric multiplicity of 1 is 2 (the 1-eigenspace has dimension 2). The eigenvalue 2 automatically has geometric multiplicity 1. Hence the geometric multiplicities add up to 3, so A is diagonalizable.

Example

The matrix
$$A=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 has characteristic polynomial $f(\lambda)=(\lambda-1)^2$.

Example

The matrix
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 has characteristic polynomial $f(\lambda) = (\lambda - 1)^2$.

It has one eigenvalue 1 of algebraic multiplicity 2.

Example

The matrix
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 has characteristic polynomial $f(\lambda) = (\lambda - 1)^2$.

It has one eigenvalue 1 of algebraic multiplicity 2.

We showed before that the geometric multiplicity of 1 is 1 (the 1-eigenspace has dimension 1).

Example

The matrix
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 has characteristic polynomial $f(\lambda) = (\lambda - 1)^2$.

It has one eigenvalue 1 of algebraic multiplicity 2.

We showed before that the geometric multiplicity of 1 is 1 (the 1-eigenspace has dimension 1).

Since the geometric multiplicity is smaller than the algebraic multiplicity, the matrix is *not* diagonalizable.

Let
$$D = \begin{pmatrix} 1 & 0 \\ 0 & 1/2 \end{pmatrix}$$
.

Fix a vector v_0 , and let $v_1 = Dv_0$, $v_2 = Dv_1$, etc., so $v_n = D^n v_0$.

Let
$$D = \begin{pmatrix} 1 & 0 \\ 0 & 1/2 \end{pmatrix}$$
.

Fix a vector v_0 , and let $v_1 = Dv_0$, $v_2 = Dv_1$, etc., so $v_n = D^n v_0$.

Question: What happens to the v_i 's for different choices of v_0 ?

Applications to Difference Equations Picture

 v_0

$$D\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1/2 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ b/2 \end{pmatrix}$$

Applications to Difference Equations Picture

*v*₀ *v*₁

$$D\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1/2 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ b/2 \end{pmatrix}$$

*v*₀ *v*₁

 v_0

V₀V₁V₂V₃V₄

Applications to Difference Equations Picture

V₀V₁V₂V₃

VΔ

So all vectors get "sucked into the x-axis," which is the 1-eigenspace.

More complicated example

Let
$$A = \begin{pmatrix} 3/4 & 1/4 \\ 1/4 & 3/4 \end{pmatrix}$$
.

Fix a vector v_0 , and let $v_1 = Av_0$, $v_2 = Av_1$, etc., so $v_n = A^n v_0$.

Applications to Difference Equations More complicated example

Let
$$A = \begin{pmatrix} 3/4 & 1/4 \\ 1/4 & 3/4 \end{pmatrix}$$
.

Fix a vector
$$v_0$$
, and let $v_1 = Av_0$, $v_2 = Av_1$, etc., so $v_n = A^n v_0$.

Question: What happens to the v_i 's for different choices of v_0 ?

Picture of the more complicated example

Picture of the more complicated example

Recall: $A^n = PD^nP^{-1}$ acts on the usual coordinates of v_0 in the same way that D^n acts on the \mathcal{B} -coordinates, where $\mathcal{B} = \{w_1, w_2\}$.

So all vectors get "sucked into the 1-eigenspace."

The matrix
$$A = \begin{pmatrix} 3/4 & 1/4 \\ 1/4 & 3/4 \end{pmatrix}$$
 is called a **stochastic matrix**.

The matrix
$$A = \begin{pmatrix} 3/4 & 1/4 \\ 1/4 & 3/4 \end{pmatrix}$$
 is called a **stochastic matrix**.

We will study such matrices in detail next time.