Лекция 4 от 20.09.2016. Простейшие теоретико числовые алгоритмы

Числовые алгоритмы играют огромную роль в криптографии, фактически вся криптография держится на том, что не придуман до сих пор алгоритм, который умеет факторизовать числа за полиномиальное время от размера числа.

Алгоритм Евклида

Начнём, пожалуй, с одного из самых известных алгоритмов нахождения наибольшего общего делителя, а именно— алгоритм Евклида и его расширенную версию.

Algorithm 1 Алгоритм Евклида.

```
1: function gcd(int a, int b)
2: if b = 0 then
3: return a;
4: else
5: return gcd(b, a mod b);
```

Практически очевидно, что данный алгоритм возвращает нужное нам число. Вспомните курс дискретной математики или выпишите на бумаге то, что делает данный алгоритм.

Асимптотика такого алгоритма $\mathcal{O}(\log n)$ (где n — максимальное значение числа) — легко проверить, что каждое число уменьшается хотя бы в 2 раза за 2 шага алгоритма.

Расширенный алгоритм Евклида

Пусть даны числа a,b,c, мы хотим найти хотя бы одну пару решений x,y таких, что ax+by=c. Понятно, что $\gcd(a,b)\mid c$, поэтому если это условие не выполняется, то найти решение мы не сможем. Пусть $c=k\gcd(a,b)$. Сейчас мы предъявим хотя бы одну пару чисел x,y, что $ax+by=\gcd(a,b)$ — после этого мы просто домножим x,y на k и получим, что сможем представить c в таком виде.

Algorithm 2 Расширенный алгоритм Евклида.

```
1: function EXTENDED_gcd(int a, int b) 
ightharpoonup - возвращаем тройку чисел (x, y, \gcd(a, b)).
2: if b = 0 then
3: return (1, 0, a);
4: (x', y', d) \leftarrow \text{EXTENDED\_gcd}(b, a \text{ mod } b)
5: return (y', x' - \left\lfloor \frac{a}{b} \right\rfloor y', d)
```

Лемма 1. Для произвольных неотрицательных чисел a u b $(a \geqslant b)$ расширенный алгоритм Евклида возвращает целые числа x, y, d, для которых $\gcd(a, b) = d = ax + by$.

Доказательство. Если не рассматривать x, y в алгоритме, то такой алгоритм полностью повторяет обычный алгоритм Евклида. Поэтому алгоритм 3-им параметром действительно вычислит $\gcd(a,b)$.

Про корректность x,y будет вести индукцию по b. Если b=0, тогда мы действительно вернём верное значение. Шаг индукции: заметим, что алгоритм находит $\gcd(a,b)$, произведя рекурсивный вызов для $(b,a \mod b)$. Поскольку $(a \mod b) < b$, мы можем воспользоваться предположением индукции и заключить, что для возвращаемых рекурсивным вызовом чисел x',y' выполняется равенство:

$$\gcd(b, a \bmod b) = bx' + (a \bmod b)y'$$

Понятно, что $a \mod b = a - \left\lfloor \frac{a}{b} \right\rfloor b$, поэтому

$$d = \gcd(a, b) = \gcd(b, a \mod b) = bx' + (a \mod b)y' = bx' + \left(a - \left\lfloor \frac{a}{b} \right\rfloor b\right)y' = ay' + b\left(x' - \left\lfloor \frac{a}{b} \right\rfloor y'\right)$$

Пример 1. Мы умеем с помощью расширенного алгоритма Евклида вычислять обратные остатки по простому модулю (в поле \mathbb{F}_p). Действительно, если (a,p)=1 то существуют x,y, что ax+py=1, а значит в поле $\mathbb{F}_p-ax=1$, откуда $x=a^{-1}$.

Алгоритм быстрого возведения в степень по модулю

Хотим вычислить $a^b \mod p$. Основная идея в том, чтобы разложить b в двоичную систему и вычислять только $a^{2^i} \mod p$. Здесь будем предполагать, что операции с числами выполняются достаточно быстро. Приведём ниже псевдокод такого алгоритма:

Algorithm 3 Алгоритм быстрого возведения в степень.

```
\triangleright — возвращаем a^b \mod p.
1: function FAST POW(int a, int b, int p)
      if b = 0 then
2:
           return 1;
3:
      if b \mod 2 = 1 then
4:
           return FAST POW(a, b - 1, p) \cdot a \mod p
5:
      else
6:
           c \leftarrow \text{FAST POW}(a, b/2, p)
7:
           return c^2 \mod p
8:
```

Корректность этого алгоритма следует из того, что $a^b = a^{b-1} \cdot a$ для нечетных b и $a^b = a^{b/2} \cdot a^{b/2}$ для четных b. Также мы здесь неявно пользуемся индукцией по b, в которой корректно возвращается база при b=0.

От каждого числа b, если оно четно, мы запускаем наш алгоритм от b/2, а если оно нечетно, то от b-1, откуда получаем, что количество действий, совершенным нашим алгоритмом будет не более, чем $2\log b = \mathcal{O}(\log b)$.

Замечание 1. На самом деле быстрое возведение в степень работает на всех ассоциативных операциях. Например, если вы хотите вычислить A^n , где A — квадратная матрица, то это можно сделать тем же самым алгоритмом за $\mathcal{O}(T(m)\log n)$, где T(m) асимптотика перемножения матриц $m \times m$.

Китайская теорема об остатках и её вычисление

Китайская теорема об остатках звучит так — пусть даны попарно взаимно простые модули и числа r_1, \ldots, r_n . Тогда существует единственное с точностью по модулю $a_1 \ldots a_n$ решение такой системы:

$$\begin{cases} x \equiv r_1 \pmod{a_1} \\ x \equiv r_2 \pmod{a_2} \\ \vdots \\ x \equiv r_n \pmod{a_n} \end{cases}$$

Доказательство. Докажем и предъявим сразу алгоритм вычисления за $\mathcal{O}(n \log \max(a_1, \ldots, a_n))$.

Пусть $x = \sum_{i=1}^n r_i M_i M_i^{-1}$, где $M_i = \frac{a_1 \dots a_n}{a_i}$, M_i^{-1} это обратное к M_i по модулю a_i (такое всегда найдётся из попарной взаимной простоты). Прошу заметить, что такое число мы можем вычислить за $\mathcal{O}(n \log \max(a_1, \dots, a_n))$ (см. пример в расширенном алгоритме Евклида).

Докажем, что это число подходит по любому модулю a_i .

$$x \equiv \sum_{j=1}^{n} r_j M_j M_j^{-1} \equiv r_i M_i M_i^{-1} \equiv r_i \pmod{a_i}$$

Второе равенство следует из того, что $a_i \mid M_j$ при $j \neq i$ (из построения).

Докажем единственность решения по модулю. Пусть x, x' — различные решения данной системы, тогда $0 < |x - x'| < a_1 \dots a_n$ и |x - x'| делится на $a_1 \dots a_n$, что невозможно, так как ни одно положительное число до $a_1 \dots a_n$ не делится на $a_1 \dots a_n$.

Решето Эратосфена

Решето Эратосфена — это один из первых алгоритмов в истории человечества. Он позволяет найти все простые числа на отрезке от [1; n] за $\mathcal{O}(n \log \log n)$, а разложить все числа на простые множители за $\mathcal{O}(n \log n)$

В первом случае у нас задача состоит в том, чтобы вернуть 1, если число простое и 0, если непростое.

Предъявим псевдокод такого алгоритма:

Доказательство. Докажем по индукции по n. База n=2 очевидна.

Переход $n \to n+1$. Заметим, что наш алгоритм и корректно завершит для n чисел, потому что мы только расширяем область рассматриваемых чисел.

Если n+1 составное, тогда $n+1=p\cdot m$ для какого-то простого p< n+1. По предположению индукции мы рассмотрим простое число p правильно, то есть удалим из массива все числа, которые кратны p, а значит и n+1 мы правильно уберём.

Если n+1 простое, то если мы его убрали на каком-то шаге, то оно делилось на то простое, которые мы рассматривали до этого, но это противоречит определению простых чисел. \Box

Algorithm 4 Решето Эратосфена.

```
1: function Sieve of Eratosthenes(int n)
                                                                       ▶ найти — массив prime<sub>i</sub>, означающий
    характеристическую функцию простых чисел от 1 до n.
 2:
        for i \leftarrow 1 to n do
            prime_i \leftarrow true
 3:
        prime_1 \leftarrow false
 4:
        for i \leftarrow 2 to n do
 5:
            if prime_i = true then
 6:
                 i \leftarrow 2i
 7:
                 while j \leq n \operatorname{do}
 8:
                     prime_i \leftarrow false
 9:
                     j \leftarrow j + i
10:
```

Заметим, что алгоритм будет выполняться за время

$$\sum_{\substack{p\leqslant n,\\ p\,-\,\text{inductoe}}}\frac{n}{p}$$

Потому что для каждого простого числа мы рассматриваем в таблице все числа, кратные p. Можно оценить очень грубо и получим, что

$$\sum_{\substack{p \leqslant n, \\ n \text{--unocroe}}} \frac{n}{p} \leqslant \sum_{i=1}^{n} \frac{n}{i} \approx n \ln n + o(n) = \mathcal{O}(n \log n)$$

Но используя свойства ряда $\sum_{\substack{p\leqslant n,\\p-\text{простое}}} \frac{n}{p} \approx n \ln \ln n + o(n)$, следует, что алгоритм работает за

 $\mathcal{O}(n \log \log n)$, но факт про асимптотику этого ряда мы оставим без доказательства.

Если теперь первый раз, приходя в составное число в алгоритме, хранить его наименьший простой делитель, то рекурсивно мы можем разложить число на простые множители. Всего количество простых делителей у числа не может превышать $\mathcal{O}(\log n)$ (так как самый наименьший простой делитель это двойка), поэтому разложение на множители будет выполняться за $\mathcal{O}(n\log n)$.

Решето Эйлера

Составим двусвязный список из чисел от 2 до n, а также ещё массив длиной n с указателями на каждый элемент.

Будем идти итеративно: первый непросмотренный номер в списке берётся как простое число, и определяются все произведения с последующими элементами в списке (само на себя тоже умножим), пока не выйдем в произведении за пределы n. После этого удаляются все числа, которые мы вычислили (смотрим в массив укзателей и удаляем по указателю за $\mathcal{O}(1)$) и повторяем процедуру.

Лемма 3. После k шагов алгоритма останется первых k простых чисел в начале и в списке будут только числа взаимно простые c первыми k.

Доказательство. База при k=1 очевидна. Просто убираем все четные числа.

Переход $k \to k+1$.

Докажем, что следующим нерассмотренным элементом списка мы возьмём p_{k+1} . Действительно, простые числа мы не выкидываем, а значит следующим шагом после p_k мы возьмём число, не большее p_{k+1} , но по предположению индукции все числа от (p_k, p_{k+1}) были убраны, так как они составные и содержат в разложении только простые, меньшие p_{k+1} .

Предположим, что после ещё одного шага алгоритма у нас осталось число, кратное p_{k+1} (и большее p_{k+1}) (все числа, делящиеся на предыдущие простые до этого были убраны).

Тогда пусть это будет $m = p_{k+1} \cdot a, a > 1$. Если a содержит в разложении на простые хотя бы одно число, меньшее p_{k+1} , то получим противоречие, так как все числа не взаимно простые с p_1, \ldots, p_k по предположению индукции были убраны.

Значит a содержит в разложении на простые числа, не меньшие p_{k+1} , а значит $a \geqslant p_{k+1}$ и это число ещё было в списке, значит мы это число уберем, противоречие.

Если мы вдруг на шаге алгоритма получили в умножении число, которое мы уже убрали, то значит у этого числа есть меньший простой делитель, чем p_k , но по доказанной лемме у нас все такие числа к k-ому шагу были убраны. Значит каждое составное число мы рассмотрим ровно 1 раз уберем за $\mathcal{O}(1)$.

Также по лемме получаем, что в начале списка останутся только простые числа.

Простые числа мы тоже рассматриваем по 1 разу в нашем алгоритме, значит общая сложность решета Эйлера будет $\mathcal{O}(n)$.

Наивная факторизация числа за $\mathcal{O}(\sqrt{n}\,)$

На данный момент не существует алгоритма факторизации числа за полином от размера числа, а не от значения. Здесь мы рассмотрим наивный алгоритм факторизации числа. На следующей лекции рассмотрим ρ -метод Полларда (**UPD** так и не рассмотрели), который работает за $\mathcal{O}(\sqrt[4]{n})$.

Пусть n'=n. Будем перебирать от 2 до $\lceil \sqrt{n'} \rceil$ числа и пока текущее n делится на данное число, делим n на это число.

Легко показать, что делим мы только на простые числа (иначе мы поделили бы на меньшее простое несколькими шагами раньше).

В конце n будет либо 1 (тогда факторизация удалась), либо простым. Составным оно не может быть, иначе n=ab, a, b>1 и $a,b>\left\lceil \sqrt{n'}\right\rceil$, так как на все числа, меньшие корня, мы поделили.

Осталось оценить, сколько операций раз мы обращаемся к циклу while. В нём мы делаем суммарно не более, чем $\mathcal{O}(\log n + \sqrt{n})$ действий, так как сумма степеней при разложении числа не более, чем $\mathcal{O}(\log n)$ (см. выше). Ну а также обращаемся по 1 разу каждый шаг внешнего цикла.