Matematická analýza 2 lidsky Jakub Dokulil

Vytvořeno pro zjednodušení a lepší interpretaci složitých matematických definic od Lůďy ♡. Proto neručím správnost. Poslední aktualizace 14. května 2020. Šiřte a upravujte podle svého gusta.

Obsah

1	Metrické prostory	1
2	Podmnožiny metrickém prostoru	2
3	Konvergence v metrickém prostoru	3
4	Úplné a kompaktní metrické prostory	3
5	Zobrazení	4
6	Funkce n proměnných	4
7	Parciální a směrová derivace	5
8	Implicitní funkce	5
9	Vázané extrémy	7
10	Dvojný intergrál	8
11	Jordanův přístup k dvojnému integrálu	9
12	Trojný integrál	11
13	Substituce	11
14	Křivky	11
15	Křivkový integrál	12
16	Nezávislost na integrační cestě = konzervativní pole	12
17	Plochy v prostoru	12
18	Plošný integrál	13

1 Metrické prostory

Nechápatmnožinu \mathbb{R}^n pouze jako množinu n-tic, ale jako množinu na níž jsou nadefinovány operace sčítání a násobení skalárem - **vektorový prostor nad** \mathbb{R} .

Metrický prostor M s prvky $x, y \in M$ splňuje následující axiomy:

- Totožné body jsou od sebe vzdálené 0
- vzálenost x od y, je stejná jako vzdálenost y od x (symetrie)

• platí trojúhelníková nerovnost $|xy| \le |xy| + |yz| \ (\rho(x,y) \le \rho(x,y) + \rho(y,z))$

Metrika na $M = Vzdálenost bodů je nadefinována jako zobrazení <math>\rho: M \times M \to \mathbb{R}^+$

Metrický prostor je dvojce (M, ρ)

Druhy metrik Manhattanská - pravoúhlý systém, $|x_1-y_1|+|x_2-y_2|+\cdots+|x_n-y_n|$ Eukleidovská - nejkratší možná cesta $\sqrt{(x_1-y_1)^2+(x_2-y_2)^2+\cdots}$

Šachovnicová - nejvzdálenější souřadnice $\max\{|x_1-y_1|, |x_2-y_2|, \ldots, |x_n-y_n|\}$

Koule a okolí -

Koule je množina bodů X metrického prostoru (M, ρ) , které mají od jejího středu a stejnou "vzdálenost" $(\rho(a, X) = \text{konst.})$

Ryzí okolí bodu a je koule bez středu.

Vzdálenst prostorů, průměr -

vzdálenost množin $\rho(A, B)$ v metr. prostoru, je jejich nekratší spojnice – $\inf\{\rho(a, b); a \in A; b \in B\}$

průměr množiny d(A) je nevětší vzdálenost dvou prvků množiny, sup $\{\dots$

Obrázek 1: (a) vzdálenost množin. (b) Průměr množiny.

2 Podmnožiny metrickém prostoru

Pojmy: spojené s množinou A v metrickém prostoru.

vnitřní bod – alespoň jedno okolí bodu je součástí množiny (**vnitřek** – A°)

hraniční bod – není ani v množině ani mimo ni. Jeho okolí má prázdný průnik s množinou $(O(a) \cap A = \emptyset)$, ale i se zbytkem prostoru $(O(a) \cap (M \setminus A) = \emptyset)$ (**hranice** – ∂A)

bod uzávěru vzdálenost od množiny je 0 (**uzávěr** – \bar{A})

hrom. bod - každé okolí není prázdné (hrom body -A') izolovaný bod - existuje okolí, ve kterém je bod sám

otevřená množina pro množina je svým vnitřkem, nemá hranici

uzavřená množina každý bod má nulovou vzdálenost od ní, je sama svým užávěrem

3 Konvergence v metrickém prostoru

Polsoupnost bodů $\{x_n\}$ si lze představit jako diskrétně rozložené body v metrickém prostoru (například body v rovině).

- Konvergentní posloupnost vzdálenost (metrika) bodů konverguje k nule. Posloupnost x_n konverguje k bodu x pokud se k bodu podle metriky blíží $\lim_{n\to \inf} \rho(x_n, x) = 0$
- **Ohraničená posloupnost** pokud množina výsledků posloupnosti, funkčních hodnot, je ohraničená. (má konečný průměr)
- **Cauchyovská** od určitého n_0 leží každé dvě funkční hodnoty v ε okolí.

konvergentní ⇒ Cauchyovská

 $D\mathring{u}kaz$ věty – zvolit $\frac{\varepsilon}{2}$ a použít trojúhelníkovou nerovnost.

- Uzavřenost a konvergence podmnožina metrického prostoru A je uzavřená \Leftrightarrow každá konvergentní posloupnost v podmnožině konverguje k a posloupnost konvergující k $a \in A$
- Uzavřenost a konvergence podmnožina metrického prostoru A je uzavřená \Leftrightarrow každá konvergentní posloupnost v podmnožině konverguje k a, pak $a \in A$
- **ekv metriky** metriky jsou ekvivalentní pokud konvergentní posloupnosti dávají stejnou konvergenci
- ekv metriky jinak metriky ρ, σ jsou ekvivalentní pokud existují kladná čísla a, b tak, aby

$$a\sigma < \rho < b\sigma$$

 $D\mathring{u}kaz$: vezme se konvergentní posloupnost bodů x_n tak aby $\lim \sigma(x_n, a) = 0$ s využitím věty o třech posloupnostech platí $\lim \rho(x_n, a) = 0$.

indukované metriky podprostor metrického prostoru má svou vlastní metriku shodnou s tou originální (například aplikace metriky pro \mathbb{R}^2 na \mathbb{R} , kde se uvažuj, že prvky a z \mathbb{R} lze zapsat jako (a,0).

4 Úplné a kompaktní metrické prostory

V úplném prostoru má každá Cauchyovská posloupnost má limitu náležící danému prostoru. (Například \mathbb{Q} s Eukleidovskou metrikou, posloupnost $\left\{\frac{1}{n}+n\right\}$ konverguje k e $\notin \mathbb{Q}$). uzavřená podmnožina úplného prostoru je úplná.

Kompaktní prostor – ze všech posloupností jeho bodů, které obsahuje lze vybrat konvergentní posloupnost

A kompaktní množina v prostoru $\Rightarrow A$ uzavřená a ohraničená

A je uzavřený a ačkoli může mít díru nesmí se jednat o pěnu.

Pozn1: Pro prostory (\mathbb{R}^n, ρ_i) , $i=1,2,\infty$ platí implikace (kompaktní \Leftrightarrow uzavřená a ohraničená)

Pozn2: Kompakní prostor je vždy úplný.

5 Zobrazení

Izometrické zobr. takové které zachovává vzdálenost $(F:(M,\rho)\to(N,\sigma)$ pak $\rho(x,y)=\sigma(F(x),F(y)).)$

Spojité zobrazení x z ε -okolí se zobrazí na F(x) z δ -okolí $F(x_0)$.

Heineho podm. pokud x konverguje k x_0 pak F(x) konverguje k x_0 .

zobrazení kompaktní mn kompaktní množina se zobrazí na kompaktní množinu. (Důsledkem jsou Weierstrassovy věty.)

Stejnoměrně spojité zobrazení dvojce vzor obraz lze projet $\varepsilon-\delta$ -okoím $(\rho(x,y)<\delta, \sigma(F(x),F(y))<\varepsilon)$

Heine-Cantor 1 – prostor M je kompaktní, zobr. F je spojité, pak F je stejnoměrně spojité.

Lipschitzovské zobrazení Lineárně násobí (škáluje) vzdálenosti. Existuje L>0 tak, že $\sigma(F(x),F(y))=L\rho(x,y)$ (vzdálenost obrazů dvou bodů je menší jak násobek vzdálenosti bodů samotných.)

Lipschitzovské ⇒ Stejnoměrně spojité

Kontrakce je zobrazení s 0 < L < 1

Limita zobrazení x_0 je hromadný bod množiny M, zobrazení v něm má limitu² a jestliže x z ryzího δ okolí $(x \in O^*_{\delta}(x_0))$ se zobrazí do ε -okolí a $(F(x) \in O^*_{\varepsilon}(x_0))$

Pevný bod se zobrazí sám na sebe $(F: M \to M, F(x) = x)$

Banachova věta o pevném bodu. Pokud je zobrazení kontrakcí, pak existuje jediný pevný bod.

6 Funkce *n* proměnných

Funkce n proměnných je zadefinována jako zobrazení

$$f: \mathbb{R}^n \to \mathbb{R}$$
.

Def. obor množina $x \in \mathbb{R}^n$ tak, že k němu existuje obraz.

Obor hodnot množina $y \in \mathbb{R}$, tak že je obrazem nějakého x.

pozn: Spojitost zevdena podle předchozí kapitoly. Zavadí se "nelastní případ" $(\mathbb{R}^*)^n = \underbrace{\mathbb{R}^* \times \mathbb{R}^* \times \cdots \times \mathbb{R}^*}_{n\text{-krát}}$.

Pro okolí se používá šachovnicová metrika ρ_{∞} .

Limita funkce funkce má v bodě a limitu pokud se x z ryzího δ -okolí zobrazí do ε -okolí.

věta 6.7 funkce má v bodě limitu pokud se zobrazí na kruhové okolí obrazu

parciální derivace definovanéá pomocí limity $h \to 0$ se přičítá jen k jedné proměnné.

$$\frac{\partial f(x_0, y_0)}{\partial x} = f'_x(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$$

 $^{{}^{1}}Pro \mathbb{R}$: je-li funkce spojitá na intervalu $\langle a, b \rangle$, pak je na něm také stejnoměrně spojitá.

 $^{{}^{2}}$ Pozor: od Nechvátalových materiálů se liší značení. V materiálech je značena y_{0} nikoli a.

Obrázek 2: okolí nulového bodu pro následnou implicitní funkci.

7 Parciální a směrová derivace

Schwarzova v. druhé parciální derivace podle různých proměnných jsou záměnné

$$\frac{\partial^2 f(X)}{\partial x_n \partial x_m} = \frac{\partial^2 f(X)}{\partial x_m \partial x_n}$$

Směrová derivace definičním oborem se vede přímka nebo rovina v požadovaném směru, která se derivuje.

$$\phi(t) = f(x_0 + s_1 t, y_0 + s_2 t)$$

Gradient funkce f

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right)$$

8 Implicitní funkce

Pokud funkce $F: \mathbb{R}^2 \to \mathbb{R}$ ma nulový bod $[x_0, y_0]$ $(F(x_0, y_0) = 0)$. V okolí takového bodu je funkce y = f(x) definovaná implicitně rovnicí F(x, y) = 0, pokud na δ -okolí bodu x_0 platí F(x, f(x)) = 0. Tedy vybere jen takové body z okolí x_0 viz 2, které následně budou tvořit funkci f. Zkusit chápat tak, že se nejprve z nulového bodu určí funkce f a následně pomocí této funkce se najdou zbylé body z \mathbb{R}^2 , které budou tvořit funkci f.

Věta o existenci impl. funkce Implicitní funkce existuje pokud (⇐)

- 1. F je spojitá na čtverci R (a-okolí bodu $x_0, y_0 \vee \rho_{\infty}$),
- 2. existuje $\frac{\partial F}{\partial y}$ spojitá v b. $[x_0, y_0]$,
- 3. $\frac{\partial F(x_0,y_0)}{\partial y} \neq 0$ viz příklad s kružnicí, pro x=r a y=0, pak se nemusí jednat o zobrazení, jednomu x mohou být přiřazena dvě y.

Derivace impl funkce je definována jako

$$\frac{\mathrm{d}f(x_0)}{\mathrm{d}x} = \frac{\frac{\partial F(x_0, y_0)}{\partial x}}{\frac{\partial F(x_0, y_0)}{\partial y}}$$

Pokud jsou druhé derivace také spojité, tak lze určit druhou derivaci:

impl funkce dvou proměnných podobně lze definovat i pro zobrazení $F: \mathbb{R}^3 \to \mathbb{R}$ a z = f(x, y), zde se definuje pro δ - okolí $(x - \delta, x + \delta) \times (y - \delta, y + \delta)$ bodu f(x, y, f(x, y)).

Derivace

$$\frac{\partial f(x_0, y_0)}{\partial x} = \frac{\frac{\partial F(x_0, y_0, z_0)}{\partial x}}{\frac{\partial F(x_0, y_0, z_0)}{\partial z}}, \qquad \frac{\partial f(x_0, y_0)}{\partial y} = \frac{\frac{\partial F(x_0, y_0, z_0)}{\partial y}}{\frac{\partial F(x_0, y_0, z_0)}{\partial z}}$$

m-funkce zjednodušeně $\mathscr{F}: \mathbb{R}^n \to R^m$. Přesněji:

$$\mathscr{F}: [x_1, x_2, \dots, x_n] \to [f_1(x_1, x_2, \dots, x_n), f_2(x_1, x_2, \dots, x_n), \dots, f_m(x_1, x_2, \dots, x_n)]$$

čili \mathscr{F} vektor \rightarrow vektor, proto se také někdy mluví o vektorovém poli.

Diferencovatelnost Funkce $\mathcal F$ je difencovatelná pokud všechny funkce f_1 až f_m jsou diferencovatelné. Pak

$$d\mathscr{F}(X_0): [h_1, h_2, \dots h_n] \to [df_1(X_O), df_2(X_0), \dots, df_m(X_0)]$$

lze jej také určit Jacobiovou maticí \mathcal{F}' (maticí prvních derivací)

$$\mathscr{F}' = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \dots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

a pak totální diferenciíl je:

$$\begin{pmatrix} df_1(X_0) \\ df_2(X_0) \\ \vdots \\ df_m(X_0) \end{pmatrix} = \mathscr{F}'(X_0) \begin{pmatrix} dh_1 \\ dh_2 \\ \vdots \\ dh_n \end{pmatrix}$$

 $\mathscr{F}'(X_0)$ je zde matice hodnot prvních derivací.

Pro m=n se determinant Jacobiho matice nazývá Jacobián. a značí se $J_{\mathscr{F}}(X_0)$

Matice složeného zobrazení: Jacobiho matice složeného zobrazení $\mathscr{H} = \mathscr{F} \circ \mathscr{G}$ je součinem matic jednotlivých zobrazení $\mathscr{H}'(X_0) = \mathscr{F}'(Y_0)\mathscr{G}'(X_0)$. Pokud máme zobrazení $\mathscr{G}: R^n \to \mathbb{R}^m$ a $\mathscr{F}: R^m \to R^p$ a zobrazení

Lokální inverze Pokud je v bodě ${\mathscr F}$ Jacobián nulový, pak je zobrazení v bodě tomto prosté. Pak platí:

$$(\mathscr{F}^{-1})'(Y_0) = (\mathscr{F}'(X_0))^{-1} \quad a \quad J_{\mathscr{F}^{-1}} = \frac{1}{J_{\mathscr{F}}(X_0)}$$

Implicitní *m*-funkce Pokud je $\mathscr{G}: \mathbb{R}^{n+m} \to \mathbb{R}^m$

- spojitá na okolí bodu $[X_0, Y_0] = \left[\underbrace{x_1^0, x_2^0, \dots, x_n^0}_{\text{npryků}}, \underbrace{y_1^0, y_2^0, \dots y_m^0}_{\text{mpryků}}\right] O_a([X_0, Y_0])$
- a funkce je v bodě nulová, $\mathcal{G}(X_0, Y_0) = (0, 0, \dots, 0)$
- a všechny funkce $\mathscr{G} = (g_1, g_2, \dots, g_n)$ jsou derivovatelné podle všech proměnných y_1, y_2, \dots, y_n aby v okolí nikam zběsile neskákala, ale měnila se předvídatelně, **zapisuje se do Jacobiho** matice!

pak je implicitně zadána jediná spojitá m-funkce

$$Y = \mathscr{F}(X)$$

9 Vázané extrémy

Vázaný extrém je extrém z vybrané podmnožiny definičního oboru, přičemž podmnožina bývá definována soustavou rovnic (podmínky vázaného extrému). Vázaný extrém X_0 funkce $F: \mathbb{R}^n \to \mathbb{R}$ je definován tak, že existuje podokolí na M kde má funkce extrém.

Lagrangeovy multiplikátory nechť máme funkci f a podmínky g_1, \ldots, g_m . Dohromady dávají zobrazení $\mathbb{R}^n \to \mathbb{R}$ $(1 \leq m < n)$ a mají spojité všechny parciální derivace. Nechť Jacobiho matice \mathscr{G}' m-funkce \mathscr{G} má hodnost m (podímnky jsou na sobě nezávislé). Pak je li v X_0 vázený extrém platí

$$\frac{\partial f}{\partial x_j} + \sum_{k=0}^{m} \lambda_k \frac{\partial g_k}{\partial x_j} = 0$$

tj pokud se k derivaci podle jedné proměnné přičnou násobky derivací podmínek podle druhé proměnné dostaneme nulu.

Stacionární bod – bod pro který existují L. multiplikátory, tak že vyhovují podmínce. Lze je nalézt pomocí Lagrangeovy funkce

$$L(x_1, x_2, \dots, x_n, \lambda_1, \lambda_2, \dots, \lambda_m) = f(x_1, x_2, \dots, x_n) + \sum_{k=0}^{m} \lambda_k g_k$$

Položí se $\vec{\nabla} L = 0$ čímž vzniká vztah výše.

Zda-li je v stac bodě S extrém se určí pomocí druhého diferenciálu $d^2L(S, \Lambda_S)$ Pozitivně definitní \Rightarrow minimum.

10 Dvojný intergrál

Cílem je nalézt objem pod pochou na obdélníku $I = \langle a, b \rangle \times \langle c, d \rangle$.

- 1. Dělení obdélníku I na na $n \times m$ menších obdélníčků $I_{i,j}$. Dělení je značeno D. $D_x: a < x_1 < x_2 < \cdots < x_n = b,$ D_y obdobně
- 2. Obsah obdélníčku I_{ij} je značen $\lambda(I_{ij})=(x_i-x_{i-1})(y_i-y_{i-1})$
- 3. Horní a dolní hodnota
 - M_{ij} supremum funkce na obdélníčku ij
 - m_{ij} infimum funkce na obdélníčku ij
- 4. Horní a dolní součet. Součet "dolního a horního objemu"

$$s(f, D) = \sum_{i=1}^{n} \sum_{j=1}^{m} m_{ij} \lambda(I_i j) \quad S(f, D) = \sum_{i=1}^{n} \sum_{j=1}^{m} M_{ij} \lambda(I_i j)$$

5. Pro všechna dělení $D \in \mathcal{D}$ platí, že dolní a horní intergrál (dolní je největších z těch pod křivkou a horní ...)

$$\iint_{\underline{I}} f(x,y) dx dy = \sup \{ s(D,f) : D \in \mathcal{D} \} \quad \iint_{\overline{I}} f(x,y) dx dy = \inf \{ S(D,f) : D \in \mathcal{D} \}$$

6. Riemanův integrál hodnota integrálů, pokud

$$\iint_{I} f(x,y) dxdy = \iint_{\overline{I}} f(x,y) dxdy$$

Platí:

Spojitá na obdelníku ⇒ integrovatelná na obdelníku

Fubiniho v. Nejdřív jeden rozměr (integrál), pak druhý rozměr. Pokud máme obdelník $I = \langle a, b \rangle \times \langle c, d \rangle$, pak integrál lze spočítat jako

$$\iint_{I} f(x,y) dxdy = \int_{a}^{b} \left(\int_{c}^{d} f(x,y) dy \right) dx$$

Normální množina Například normání množina vzhledem k ose x znamená, že množina je pro $x \in \langle a, b \rangle$ vymezena funkcemi φ_1, φ_2 (funkce se nesmí křížit, tj, $\varphi_1 < \varphi_2$). Pak Fubiniho věta nabývá obecnější podoby

$$\iint_{M_x} f(x,y) dx dy = \int_a^b \left(\int_{\varphi_1}^{\varphi_2} f(x,y) dy \right) dx; \quad \iint_{M_y} f(x,y) dx dy = \int_c^d \left(\int_{\psi_1}^{\psi_2} f(x,y) dx \right) dy$$

Obrázek 4: Jádro řádu n (tmavší šedá) a obal řádu n (světlejší šedá) množiny A (čtverce jádra jsou zároveň čtverci obalu).

11 Jordanův přístup k dvojnému integrálu

Míra množiny λ je cosi~jako~obsah. Zobrazení $\mathbb{R}^2\to\mathbb{R}^+.$ Měla by splňovat následující podmínky

- $A=B \, \rightarrow \, \lambda(A)=\lambda(B)$ stejná množina, stejný obsah
- $A\subseteq B \ \to \ \lambda(A) \le \lambda(B)$ menší množina, menší obsah
- $A \cap B = \emptyset \rightarrow \lambda(A \cup B)\lambda(A) + \lambda(B)$

Nadefinuje se síť řádu n, kde čím větší n tím menší čtverečky. Pak j-tý a k-tý čtverec je brán jako

$$Q_{j,k}^n = \{ [x,y] \in \mathbb{R}^2 : \frac{j}{2^n} \le x \le \frac{j+1}{2^n}, \frac{k}{2^n} \le y \le \frac{k+1}{2^n} \}$$

Jelikož má jeden čtverec stranu $\frac{1}{2^n}$ tak potom jeho míra, *obsah*, je:

$$\lambda(Q_{j,k}^n) = \left(\frac{1}{2^n}\right)^2$$

Sjednocení čtverců je nazýváno elementární množinou $M = \bigcup_{j,k \in I} Q_{j,k}^n$. Definujem jádro a obal množiny A.

- Jádro jsou všechny čtverečky, které jsou celé v množině A.
- Obal jsou všechny čtverečky, které jsou od množiny vzdáleny 0. Mají prázdný průnik s uzávěrem.

 A° – vnitřek, \bar{A} – uzávěr, ∂A – hranice

$$V_n(A) = \cup \{Q^n : Q_{j,k}^n \subseteq A^\circ\}$$

$$W_n(A) = \bigcup \{Q^n : \bar{A} \cap Q_n \neq \emptyset\}$$

Vlastnosti:

- jádro \subseteq množina \subseteq obal
- míra hranice = obal jádro
- čím vyšší n tím menší obal a tím větší jádro
- Posloupnosti $\{\lambda(V_n)\}_{n=0}^{\infty}$ mají konečnou limitu

Vnější a vnitřní Jordanova míra Největší jádro a nejmenší obal. Vnitřní míra λ_* a vnější míra λ^* jsou definovány jako

$$\lambda_*(A) = \lim_{n \to \infty} \lambda(V_n) \quad \lambda^*(A) = \lim_{n \to \infty} \lambda(W_n)$$

Pokud platí $\lambda_*(A) = \lambda^*(A) = \lambda(A)$, pak číslo $\lambda(A)$ je Jordanovou mírou množiny A.

Vlastnosti:

- $\lambda^* = 0 \Rightarrow \lambda = 0$
- ...

Dále se čtvereček C_{jk}^n nazve *čtvercovou množinou*, dohromady pokrývají celý prostor \mathbb{R}^2 a jsou vzájemně disjuktní. Přičemž každá čtvercová množina má konst. míru.

Množina M se pokryje čtvercovými množinami P, které nemají prázdný průnik s M. Míra množiny pak je

$$\lambda(M) = \sum_{i=1}^{m} \lambda(P_i^n)$$

Následně se vytvoří horní a dolní hodnota na čtverečku

$$h_i = \inf\{f(x,y); [x,y] \in P_i^n\}, \qquad H_i = \sup\{f(x,y); [x,y] \in P_i^n\}$$

a horní a dolní součet, řádu n

$$s_n(M, f) = \sum_{i=1}^m h_i \lambda(P_i^n) \qquad S_n(M, f) = \sum_{i=1}^m H_i \lambda(P_i^n).$$

Jordanovská definice dvojného Riemanova integrálu nadefinuje se dolní a horní integrál funkce

$$\iint_{M} f(x,y) dxdy = \lim_{n \to \infty} s_n \qquad \iint_{\overline{M}} f(x,y) dxdy = \lim_{n \to \infty} S_n$$

Pokud se jednotlivé integrály sobě rovnají, nazveme společnou hodnotu dvojným Riemanovým integrálem f přes množinu M.

Integrální věta o stř. hodnotě pokud se jedná o součin dvou funkcí pak jednu funkci lze nahradit její střední hodnotou. Pokud $\forall [x,y] \in M$ platí $0 \le g(x,y)$ a a < f(x,y) < b pak existuje μ

$$\iint_{M} f(x,y)g(x,y) = \mu \iint_{M} g(x,y)$$

Skoro všude = všude krom množin míry nula.

int skoro všude pokud skoro všude platí g(x,y) = f(x,y) pak

$$\iint f(x,y) = \iint g(x,y)$$

Podmínka pro integrál Pokdu je funkce na M ohraničená a skoro všude spojitá, pak je integrovatelná.

12 Trojný integrál

Obdoba dvojného, jen přidat rozměr, platí také fubiniho věta.

13 Substituce

2-funkce $\mathscr{F}:\mathbb{R}^2\to\mathbb{R}^2$ je na M regulární pokud $J_{\mathscr{F}}\neq 0$. Pokud je \mathscr{F} regulární a M, kde $M\subseteq\Omega,\,\Omega$ – otevřená množina, pak

$$\iint_{M} f(x,y) dxdy = \iint_{M^{*}} f(\mathscr{F}(u,v)) |J_{\mathscr{F}}(u,v)| dxdy$$

Používané tranformace:

- Translace x = u + a, y = v + b, pak J(u, v) = 1
- dilatace x = au, y = bu pak J(u, v) = ab
- Zavedení polárních souřadnic. $x = \rho \cos \varphi, y = \rho \sin \varphi$ pak $J(\rho, \varphi) = \rho$
- Zavedení eliptických souřadnic. $x = a\rho\cos\varphi, y = b\rho\sin\varphi$ pak $J(\rho,\varphi) = ab\rho$

Analogicky pro trojné integrály

- Válcové souřadnice $x = \rho \cos \varphi$, $y = \rho \sin \varphi$ a z = z pak $J(\rho, \varphi, z) = \rho$
- Sférické souřadnice $x = \rho \cos \varphi \cos \theta$, $y = \rho \sin \varphi \sin \theta$ a $z = \rho \cos \theta$ pak $J(\rho, \varphi, \theta) = \rho^2 \sin \theta$.

14 Křivky

Rovinná křivka pokud existuje funkce $\mathscr{F}(t) = [\varphi(t), \psi(t)]$ spojitá pro $t \in \langle a, b \rangle$. Pak množina $\Gamma\{\mathscr{F}(t) : t \in \langle a, b \rangle\} \subseteq \mathbb{R}^2$ je rovinnou křivkou.

Vlastnosti křivek Křivky mohou mít Vlastnosti

 $\mathbf{Jednoduch\acute{a}}$ – nikde se neprotíná, \mathscr{F} je prostá

Jednoduchá uzavřená – jednoduchá a uzavřená

Třídy C^1 pokud funkce φ a ψ mají spojité první derivace na $\langle a, b \rangle$

Jednoduchá hladká – je-li jednoduchá, třídy C_1 a také $\varphi^2 + \psi > 0$

Jednoduchá uzavřená hladká – jednoduchá hladká a $\varphi'_{+}(a) = \varphi'_{-}(b), \ \psi'_{+}(a) = \psi'_{-}(b)$

Jednoduchá po částech hladká – spojení jednoduchých hladkých křivek spojených koncovými body

15 Křivkový integrál

První druh "běžný integrál" pokud je Γ jednoduchá hladká křivka parametrizovaná \mathscr{F} a f – skalární pole

$$\int_{\Gamma} f(x, y) ds = \int_{a}^{b} f(\varphi(t), \psi(t)) \sqrt{(\varphi'(t))^{2} + (\psi'(t))^{2}} dt$$

Druhý druh skalární součin pokud je Γ orientovaná jednoduchá hladká křivka parametrizovaná \mathscr{F} a $\vec{f}(x,y) = (P(x,y), Q(x,y))$ – vektorové pole

$$\int_{\Gamma} \vec{f}(x,y) \cdot d\vec{s} = \int_{\Gamma} P(x,y) dx + Q(x,y) dy = \pm \int_{a}^{b} \left[P(\varphi(t), \psi(t)) \varphi'(t) + Q(\varphi(t), \psi(t)) \psi'(t) \right] dt$$

$$\pm \text{ podle orientace křivky}$$

Greenova věta Pro normální množinuvzhledem k ose x s hranicí ∂M funkce φ a ψ a vektorové pole $\vec{f}(x,y) = (P(x,y),\,Q(x,y))$ je spojité na M a má spojité derivace, pak

$$\iint_{M} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint_{\partial M} (P, Q) \cdot d\vec{s}$$

16 Nezávislost na integrační cestě = konzervativní pole

 $\vec{f} = (P,Q)$ je vektorové pole a Ω oblast v \mathbb{R}^2 a A,B body v oblasti a Γ po částech hladká křivka ležící v oblasti. Pokud hodnota integrálu $\int_{\Gamma} \vec{f} \cdot d\vec{s}$ je stejná pro každou křivku

Pfaffova forma pokud (P,Q) nezávisí na integrační cestě, pak výraz P(x,y)dx + Q(x,y)dy pak potenciálem je:

$$\Phi(x,y) = \int_{[x_A,y_A]}^{[x,y]} (P,Q) \cdot d\vec{s}$$

Bod A je konstantní a koncový bod je proměnlivý.

Pokud je f konzervativní vektorové pole a Φ jeho potenciál pak

$$\int_{A}^{B} P dx + Q dy = \Phi(B) - \Phi(A)$$

Podmínka pro konzervativní pole f

$$\vec{\nabla} \times \vec{f} = 0$$

17 Plochy v prostoru

Plocha je parametrizována 3-funkcí $\mathscr{F}:\mathbb{R}^2\to\mathbb{R}^3,\,\mathscr{F}(u,v)=\varphi(u,v)+\psi(u,v)+\chi(u,v)$ Plocha má tečné vektory

$$\vec{t_u}(u,v) = \left(\frac{\partial \varphi(u,v)}{\partial u}, \frac{\partial \psi(u,v)}{\partial u}, \frac{\partial \chi(u,v)}{\partial u}\right) \quad \vec{t_v}(u,v) = \left(\frac{\partial \varphi(u,v)}{\partial v}, \frac{\partial \psi(u,v)}{\partial v}, \frac{\partial \chi(u,v)}{\partial v}\right)$$

Pokud jsou lin nezávislé pak plochu nazýváme hladkou.

Plocha je po částech hladká pokud

- \bullet se skládá z n ploch
- průnik dvou ploch je součástí průniku jejich hranic, a je to po částech hladká křivka
- průnik tří různých ploch je ednobodová nebo prázdná množina
- každá plocha sousedí s, je přilehlá k, jiné ploše

Okraj ∂S = sjednocení všech částí hranice plochy. Křivka Γ je částí okraje tak, že neprázdný průnik křivky Γ s hranicí části plochy S_i je součástí hranice plochy. plocha je uzavřená pokud nemá okraj

18 Plošný integrál

1. druh $\mathscr{F} = [\varphi, \psi, \chi]$ - parametrizace plochy \mathscr{S}, f - skalární pole $\mathbb{R}^3 \to \mathbb{R}$

$$\iint_{\mathscr{S}} f(x,y,z) \mathrm{d}S = \iint_{S_{uv}} \underbrace{f(\varphi(u,v),\psi(u,v),\chi(u,v))}_{\text{hodnota funkce na ploše, popsané pomocí parametrizace}} \underbrace{\left| \vec{t}_u(u,v) \times \vec{t}_v(u,v) \right|}_{\text{obsah plošky}} \mathrm{d}u \mathrm{d}v$$

Probl'em se převede na tak, aby byl parametrizovaný pomocí plochy parametrizované $\mathscr F$

2. druh $\mathscr{F}=[\varphi,\psi,\chi]$ - parametrizace plochy $\mathscr{S},\,\vec{f}=[P,Q,R]$ - vektorové pole $\mathbb{R}^3\to\mathbb{R}^3$

$$\iint_{\mathcal{S}} f(x,y,z) \cdot \mathrm{d}\vec{S} = \iint_{S_{uv}} \underbrace{f(\varphi(u,v),\psi(u,v),\chi(u,v))}_{\text{hodnota funkce na ploše, popsané pomocí parametrizace}} \cdot \underbrace{\left(\vec{t}_u(u,v) \times \vec{t}_v(u,v)\right)}_{\text{obsah plošky}} \mathrm{d}u \mathrm{d}v$$

Gaußova-Ostrogratského věta M – normální množina v \mathbb{R}^3 , ∂M – po částech hladká orientovaná plocha (orientovaná ven), \vec{f} – vektorové pole, $\vec{\nabla} \cdot \vec{f}$ – spojité

$$\iiint_{M} \vec{\nabla} \cdot \vec{f} dx dy dz = \oiint_{\partial M} \vec{f} \cdot d\vec{S}$$

Stokesova věta S – hladká plocha, ∂S pravotočivě orientovaný okraj plochy (prsty pravé ruky ve směru orientace znamenají, že palec ukazuje vektor normály). \vec{f} - vektorové pole

$$\iint_{S} (\vec{\nabla} \times \vec{f}) \cdot d\vec{S} = \oint_{\partial S} \vec{f} \cdot d\vec{s}$$

Operátorové identity

$$\vec{\nabla} \times (\vec{\nabla}f) = \vec{0}$$
$$\vec{\nabla} \cdot \vec{\nabla} \times \vec{f} = 0$$

 $\vec{\nabla} \cdot (\vec{\nabla} f) = \Delta f$ – Laplaceův operátor