Université Moulay Ismaïl Ecole Nationale Supérieure d'Arts et Métiers — Meknès

CONCOURS D'ENTREE en 1ère Année

Filières : Sciences Expérimentales et Techniques

Epreuve de Mathématiques

Mardi 09/08/11 - Durée : 2h 10mn

Questions à réponse précise, Partie I

Questions à réponse précise, Partie I Répondre dans la colonne Réponses (NB : Chaque question est notée sur (1Pt))	
Repondre dano la contraction de la contraction d	Réponses
Questions	
Les propositions suivantes sont-elles vraies ou fausses?	, effects of the least of the early of the end of the e
(a) La somme de deux fonctions monotones est monotone	
(b) $\forall x > 1$, $\frac{x-1}{\ln(x-1)} \in \mathbb{R}$	
(c) Soit A, B et C trois ensembles, on a $(A \cup B) \cap C = A \cup (B \cap C)$	
(d) $\forall x \in \mathbb{R}, x^2 < 0 \Longrightarrow x < 0$	
(e) La somme de deux irrationnels est un irra- tionnel	Grand Georgia (Company) and the Burning of the Company of the Comp
Traduire à l'aide des quantificateurs les propositions suivantes :	
(a) La fonction f est constante sur [0, 5]	
(b) La fonction ψ est strictement décroissante et positive	
(c) La fonction g n'est pas injective sur l'ensemble E	
(d) La fonction h, définie sur IR, atteint toutes les valeurs de IN	
(e) Tout réel possède une racine carré dans R	

Questions à réponse précise, Partie II

Répondre dans la colonne Réponses	(Chaque question est notée sur (2Pts))
Questions	Réponses
Soit le segment $P_1(-8,5)$ et $P_2(6,11)$. Déterminer les coordonnées du point $P(x,y)$ situé aux deux tiers de ce segment à partir du point P_1	
Trouver les entiers relatifs a , b et c de sorte que pour tout $x \in \mathbb{R}$, $(x-a)(x-10)+1=(x+b)(x+c)$	
E, F et G étant trois ensembles finis, exprimer $card(E \cup F \cup G)$ en fonction des cardinaux des ensembles $E, F, G, E \cap F, E \cap G, F \cap G$ et $E \cap F \cap G$	
Exprimer à l'aide d'intervalles de $I\!\!R$ l'ensemble suivant : $A = \{x \in I\!\!R \ / \ 2 \le x < 4\}$	
Représenter graphiquement le domaine limité par : $x^2+y^2+2y\leq 3$, $x+y\leq 0$ et $x>-1$	
Comment faire 21 avec les chiffres 1 5 6 et 7 utilisés qu'une fois chacun, et en utilisant à son gré les opérateurs simples +, -, * et /	
Calculer le nombre complexe $B = \left(\frac{1 + i\sqrt{3}}{1 - i}\right)^{20}$	
Calculer $\alpha = \sum_{k=1}^{n} \frac{2^k + 3^{k+2}}{5^{k+1}}$	
Calculer $\beta = \sum_{k=1}^{n} (2k+7)$	
Diviser $20xy + 5y^2 - 10y - 12x + 6$ par $5y - $ avec $x \in \mathbb{R}$ est un paramètre fixé	3

Questions à réponse précise, Partie C

Répondre dans la colonne Réponses (NB	: Chaque question est notée sur (2Pts))
Questions	Réponses
our quelles valeurs de $\beta \in \mathbb{R}$, l'équation $2^2 + \sqrt{x} - \beta = 0$ admet une unique racine dans intervalle $[0, 1]$?	
Déterminer la fonction f telle que $gof(x) = 2 x $ achant que g est la fonction définie par $g(x) = \begin{cases} e^x & \text{si } x < 0 \\ \sqrt{x+1} & \text{si } x \ge 0 \end{cases}$	
Calculer $\int t^3 \cos t^2 dt$	
Soit la fonction f définie sur $I = [0, 3]$ par $f(x) = \begin{cases} -1 & \text{si } x = 0 \\ xe^{x^2} & \text{si } x \in]0, 2[\\ 1 & \text{si } x = 2 \\ \frac{2x}{1+x^2} & \text{si } x \in]2, 3] \end{cases}$ Calculer $F(x) = \int_0^x f(x) dx$ avec $x \in I$	
On considère, pour tout $n \in I\!\!N^*$, l'intégrale $I_n = \int_0^1 x^n e^{2x} dx$. Trouver une relation entre I_n et I_{n-1} avec $n>1$	
Calculer la dérivée, lorsqu'elle existe, de la fonction suivante : $f(x) = x \ln x+1 $	
Déterminer l'équation de la droite qui est asymptote à la courbe C_f en $+\infty$ de la fonction f , définie sur \mathbb{R}^* par $f(x) = \frac{2e^x + 1}{1 - e^x}$	
Calculer $\lim_{x \to +\infty} \frac{2x+1}{\sqrt[3]{x^3+3x}}$	
Résoudre dans \mathbb{R} l'équation $ E(x) = 3$ avec $E(x)$ est la partie entière de x	
Donner l'ensemble S des réels appartenant à l'intervalle $[0, 2\pi[$ vérifiant l'équation : $(\sin x)^2 + \frac{\sqrt{3}}{2}\sin x = 0$	

$oldsymbol{U}$ niversité $oldsymbol{M}$ oulay $oldsymbol{I}$ sma $\ddot{ ext{il}}$ Ecole Nationale Supérieure d'Arts et Métiers — Meknès

CONCOURS D'ENTREE en 1ère Année

Filières : Sciences Expérimentales et Techniques

Epreuve de Mathématiques

Mardi 09/08/11 - Durée : 2h 10mn

|| Questions à réponse précise. Partie I ||

Questions à réponse précise, Partie I		
Répondre dans la colonne Réponses		
Questions	Réponses	
 Les propositions suivantes sont-elles vraies ou fausses? (a) La somme de deux fonctions monotones est monotone (b) ∀x > 1, x - 1 / ln (x - 1) ∈ R (c) Soit A, B et C trois ensembles, on a (A∪B) ∩ C = A∪(B∩C) (d) ∀x ∈ R, x² < 0 ⇒ x < 0 (e) La somme de deux irrationnels est un irrationnel 	(d) Vrai,	
 Traduire à l'aide des quantificateurs les propositions suivantes : (a) La fonction f est constante sur [0, 5] (b) La fonction ψ est strictement décroissant et positive (c) La fonction g n'est pas injective su l'ensemble E (d) La fonction h, définie sur IR, atteint tout les valeurs de IN (e) Tout réel possède une racine carré dans II 	es $(a)(\exists K \in \mathbb{R})(\forall n \in T_0[5]) \ f(n) = K$ $(a)(a)(a)(a)(a)(a)(a)(b) = K$	

Questions à réponse précise, Partie II

Répondre dans la colonne Réponses	(Chaque question est notée sur (2Pts))
Questions	Réponses
Soit le segment $P_1(-8,5)$ et $P_2(6,11)$. Déterminer les coordonnées du point $P(x,y)$ situé aux deux tiers de ce segment à partir du point P_1	
Trouver les entiers relatifs a , b et c de sorte que pour tout $x \in \mathbb{R}$, $(x-a)(x-10)+1=(x+b)(x+c)$	
E, F et G étant trois ensembles finis, exprimer $card(E \cup F \cup G)$ en fonction des cardinaux des ensembles $E, F, G, E \cap F, E \cap G, F \cap G$ et $E \cap F \cap G$	Card (EUFUG) = Card (E) + Card (F) + Card (G) - Card (ENF) - Card (ENG) - Card (FNG) + Card (ENFNG)
Exprimer à l'aide d'intervalles de $I\!\!R$ l'ensemble suivant : $A = \{x \in I\!\!R \ / \ 2 \le x < 4\}$	A = [2,4] U[-4,-2]
Représenter graphiquement le domaine limité par : $x^2+y^2+2y\leq 3, \ x+y\leq 0$ et $x>-1$	
Comment faire 21 avec les chiffres 1 5 6 et 7 utilisés qu'une fois chacun, et en utilisant à son gré les opérateurs simples +, -, * et /	6: (1-5=7)=6==================================
Calculer le nombre complexe $B = \left(\frac{1+i\sqrt{3}}{1-i}\right)^{20}$	$B = \left[\sqrt{2}, \frac{7\pi}{12}\right]^{24} = \left[2^{12}, 14\pi\right] = 2^{12} + 40^{\circ}$
Calculer $\alpha = \sum_{k=1}^{n} \frac{2^k + 3^{k+2}}{5^{k+1}}$	$a = \frac{2}{15} \left(1 - \left(\frac{2}{5} \right)^n \right) + \frac{27}{10} \left(1 - \left(\frac{3}{5} \right)^n \right)$
Calculer $\beta = \sum_{k=1}^{n} (2k+7)$	$\beta = \sum_{k=1}^{n} (2k+7) = h(n+8)$
Diviser $20xy + 5y^2 - 10y - 12x + 6$ par $5y - 3$ avec $x \in \mathbb{R}$ est un paramètre fixé	

Questions à réponse précise, Partie C

Questions à réponses (NE	3 : Chaque question est notée sur (2Pts))
Repollate dama to	Réponses
Questions Your quelles valeurs de $\beta \in \mathbb{R}$, l'équation $\beta^2 + \sqrt{x} - \beta = 0$ admet une unique racine dans intervalle [0, 1]?	
Déterminer la fonction f telle que $g \circ f(x) = 2 x $ cachant que g est la fonction définie par $g(x) = \begin{cases} e^x & \text{si } x < 0 \\ \sqrt{x+1} & \text{si } x \ge 0 \end{cases}$	\$.
Calculer $\int t^3 \cos t^2 dt$	- coset + t4.cost + 1/4
Soit la fonction f définie sur $I = [0, 3]$ par $f(x) = \begin{cases} -1 & \text{si } x = 0 \\ xe^{x^2} & \text{si } x \in]0, 2[\\ 1 & \text{si } x = 2 \\ \frac{2x}{1+x^2} & \text{si } x \in]2, 3] \end{cases}$ Calculer $F(x) = \int_0^x f(x) dx$ avec $x \in I$ On considère, pour tout $n \in I\!N^*$, l'intégrale $I_n = \int_0^1 x^n e^{2x} dx$. Trouver une relation entre I_n et I_{n-1} avec $n > 1$	
Calculer la dérivée, lorsqu'elle existe, de la fonction suivante : $f(x) = x \ln x+1 $ Déterminer l'équation de la droite qui est asymptote à la courbe C_f en $+\infty$ de la fonction f , définie sur \mathbb{R}^* par $f(x) = \frac{2e^x + 1}{1 - e^x}$	
Calculer $\lim_{x \to +\infty} \frac{2x+1}{\sqrt[3]{x^3+3x}}$	
Résoudre dans IR l'équation $ E(x) = 3$ avec $E(x)$ est la partie entière de x	
Donner l'ensemble S des réels appartenant à l'intervalle $[0, 2\pi[$ vérifiant l'équation : $(\sin x)^2 + \frac{\sqrt{3}}{2} \sin x = 0$	A.