University of British Columbia, Vancouver

Department of Computer Science

CPSC 304 Project Cover Page

Milestone :	#: 2	2
-------------	------	---

Date:_25, October 2021

Group Number:_____77

Na me	Student Number	CS Alias (Use rid)	Preferred E-mail Address
Wenkai Cai	90787698	q6d3d	wenkai101cai@gmail.com
Heng Wu	31696198	v4b4c	black14369@gmail.com
Michelle Chen	65406415	u0f7w	hsiangyi1025@gmail.com

Changes from M1:

- 1. Corrected Meal to Contains so that Meal can be associated with multiple orders instead of one.
- 2. The arrow from customer to Place, this change allows customers to place multiple orders instead of only one.
- 3. We decided to switch the weak entity from staff to workstation, since workstation can only belong to a store, now the workstation can be identified by both (Storeld, WorkstationName).

Staff now have a unique id and can only work in exactly one store.

- 4. Changed the workstation weak entity key from name to ID, and now it has an additional attribute of name.
- 5. We found out the many to one relation between Meal and workstation is ambiguous, the original case a meal can only be made by one store and workstation, which means the meal exists in only one store. So we changed it to many to many with total participation with Meals.
- 6. Added additional attributes to membership to normalize when violating 3NF or BCNF.
 - Type: Types of Memberships offered to customers.
 - Number: A number must match a type to identify a member, which means each type can have the same number.
 - Level: Each type of membership has a set of levels.
 - Expense: Record the total money spent.
 - Points: Record the total points earned.
 - Discount: Discounts offered for the type and level of membership.
- 7. Changed Store entity's attributes. Removed StoreID and changed primary key to StreetAddress, City, Province. Added PostalCode, LocalDiscount.

Store

Store(StoreName: Char, StoreStreetAddress: Char, StoreCity: Char, StoreProvince: Char,

StorePostalCode: Char, LocalDiscount: Char)

FDs:

StoreStreetAddress, StoreCity, StoreProvince → StoreName, StorePostalCode,

LocalDiscount

StoreCity, StorePostalCode → StoreProvince

StoreCity, StoreProvince → LocalDiscount

Primary Key: (StoreName: Char, StoreStreetAddress: Char, StoreCity: Char, StoreProvince:

Char)

Candidate Key: (StoreName: Char, StoreStreetAddress: Char, StoreCity: Char,

StoreProvince: Char, StorePostalCode: Char)

Normalize Store

Step 1: Put FDs in standard form (have only one attribute on RHS)

 $StoreStreetAddress,\ StoreCity,\ StoreProvince \rightarrow StorerName,$

StoreStreetAddress, StoreCity, StoreProvince → StorePostalCode,

StoreStreetAddress, StoreCity, StoreProvince → LocalDiscount,

StoreCity, StorePostalCode → StoreProvince

StoreCity, StoreProvince → LocalDiscount

Step2: Minimize LHS of each FD

Nothing to do with this step

Step3: Delete Redundant FDs

Nothing to do with this step

Final answer:

StoreStreetAddress, StoreCity, StoreProvince → StorerName,

 $StoreStreetAddress,\ StoreCity,\ StoreProvince \rightarrow StorePostalCode,$

StoreStreetAddress, StoreCity, StoreProvince → LocalDiscount,

StoreCity, StorePostalCode → StoreProvince

StoreCity, StoreProvince → LocalDiscount

StoreCity, StorePostalCode → StoreProvince, violates BCNF in Store, so decompose

Store1(StoreCity, StorePostalCode, StoreProvince), Store2(StoreName,

<u>StoreStreetAddress</u>, <u>StoreCity</u>, <u>StorePostalCode</u>, LocalDiscount)

StoreCity, StorePostalCode → LocalDiscount, violates BCNF in Store2, so decompose

Store3(StoreCity, StorePostalCode, LocalDiscount), Store4(StoreName,

<u>StoreStreetAddress</u>, <u>StoreCity</u>, <u>StorePostalCode</u>)

```
Final answer:
```

Store1(<u>StoreCity</u>: Char, <u>StorePostalCode</u>: Int, StoreProvince: Char), Store3(<u>StoreCity</u>: Char, <u>StorePostalCode</u>: Char, LocalDiscount: Char), Store4(<u>StoreStreetAddress</u>: Char, <u>StoreCity</u>: Char, <u>StorePostalCode</u>: Char, StoreName: Char)

storeCity	storePostalCode	storeProvince
Vancouver	V3H 1V6	BC
Vancouver	H7Y 7E4	BC
Calgary	O9U 4R2	AB
Calgary	X4I 8N5	AB
Burnaby	G4R 7U8	ВС

storeCity	storePostalCode	localDiscount
Burnaby	G6Y 8Z6	5%
Burnaby	O9Z 5M7	5%
Vancouver	U7F 4T0	5%
Toronto	A9B 1F1	7%
Calgary	M0B 6H6	10%

storeCity	storePostalCode	storeStreetAddress	storeName
Vancouver	F7N 9A6	1234 W2 Ave	Store2
Vancouver	F1Z 9U9	3456 W7 Ave	Store4
Burnaby	J1J 7Y7	2234 KingsWay St	Store7
Toronto	Y2F 5C9	4122 Harvord St	Store99
Calgary	H9Z 6G1	5642 Kiki Ave	Store2

Workstation

Workstation(StoreStreetAddress: Char, StoreCity: Char, StoreProvince: Char,

<u>WorkstationID</u>: Int, WorkstationName: Char) (StoreStreetAddress, StoreCity, StoreProvince cannot be null)

FDs:

StoreStreetAddress, StoreCity, StoreProvince, WorkstationID → WorkstationName

StoreStreetAddress, StoreCity, StoreProvince → StoreName, StorePostalCode, LocalDiscount

Primary Key: (StoreStreetAddress: Char, StoreCity: Char, StoreProvince: Char,

WorkstationID: Int)

Candidate Key: (StoreStreetAddress: Char, StoreCity: Char, StoreProvince: Char,

WorkstationID: Int)

Normalize Workstation

StoreStreetAddress, StoreCity, StoreProvince, WorkstationID \rightarrow WorkstationName In BCNF, there is nothing to do.

CREATE TABLE WorkStation {

storeStreetAddress CHAR(80) NOT NULL, storeCity CHAR(40) NOT NULL, storeProvince CHAR(40) NOT NULL,

workStationID INT,

workStationName CHAR(40),

PRIMARY KEY (storeStreetAddress, storeCity, storeProvince, WorkstationID),

FOREIGN KEY (storeStreetAddress, storeCity, storeProvince) REFERENCES Store ON DELETE CASCADE

storeStreetAddress	storeCity	storeProvince	workStationID	workStationName
1831 W37 Ave	Vancouver	ВС	01	Station1
1831 W37 Ave	Vancouver	ВС	02	Station2
1223 Abord Ave	Calgary	AB	01	Station1
1234 W16 Ave	Vancouver	ВС	01	Station5
1221 Asot St	Toronto	ON	02	Station6

Meal

Meal(MealName: Char, MealPrice: Int)

FDs:

MealName → MealPrice

Primary Key: Meal(MealName: Char)
Candidate Key: Meal(MealName: Char)

Normalize Meal

 $MealName \rightarrow MealPrice$

In BCNF, there is nothing to do.

CREATE TABLE Meal {

mealName CHAR(40) PRIMARY KEY,

mealPrice INT

mealName	mealPrice
spicy chicken	12
bbq chicken	10
bbq chicken	10
Large Fries	10
small diet coke	4

FriedChicken

FriedChicken(MealName: Char, MealPrice: Int, FriedChickenFlavour: Char)

FDs:

MealName → MealPrice

 $MealName \rightarrow FriedChickenFlavour$

Primary Key: Meal(MealName: Char)
Candidate Key: Meal(MealName: Char)

Normalize FriedChicken

 $MealName \rightarrow MealPrice$

 $MealName \rightarrow FriedChickenFlavour$

In BCNF, there is nothing to do.

CREATE TABLE FriedChicken {

mealName CHAR(40) PIMARY KEY,

mealPrice INT,

friedChickenFlavour CHAR(40)

mealName	mealPrice	friedChickenFlavour
spicy chicken	12	spicy
bbq chicken	10	bbq
bbq chicken	10	bbq
butter milk chicken	15	butter milk
buffalo chicken	8	buffalo

Drink

Drink(MealName: Char, MealPrice: Int, DrinkFlavour: Char, DrinkSize: Char)

FDs:

MealName → MealPrice

MealName → DrinkFlavour, DrinkSize

Primary Key: Meal(MealName: Char)
Candidate Key: Meal(MealName: Char)

Normalize Drink

MealName → MealPrice

MealName → DrinkFlavour, DrinkSize

In BCNF, there is nothing to do.

CREATE TABLE Drink {

mealName CHAR(40) PIMARY KEY,

mealPrice INT,

drinkFlavour CHAR(40),

drinkSize CHAR(40)

mealName	mealPrice	drinkFlavour	drinkSize
large coke	5	coke	large
medium coke	4	coke	medium
medium coffee	4	coffee	medium
large sprite	5	sprite	large
large iced tea	5	iced tea	large

Fries

Fries(MealName: Char, MealPrice: Int, FriesSize: Char)

FDs:

 $MealName \rightarrow FriesSize$

Primary Key: Meal(MealName: Char)
Candidate Key: Meal(MealName: Char)

Normalize Fries

MealName → MealPrice MealName → FriesSize

In BCNF, there is nothing to do.

CREATE TABLE Fries {

mealName CHAR(40) PIMARY KEY,

mealPrice INT,

friesSize CHAR(40)

mealName	mealPrice	friesSize
large fries	10	large
medium fries	8	medium
medium fries	8	medium
small fries	6	samll
samll fries	6	samll

Order

Order(**Phone**: Int, <u>OrderNumber</u>: Int) (Phone cannot be null)

FDs:

OrderNumber \rightarrow Phone

Trivial:

 $Phone \rightarrow CustomerName, MemberName, MemberNumber, CustomerName$

Primary Key: Order(OrderNumber: Int)
Candidate Key: Order(OrderNumber: Int)

Normalize Order

OrderNumber → Phone

In BCNF, there is nothing to do.

CREATE TABLE Order {

orderNumber INT PRIMARY KEY,

phone INT UNIQUE,

FOREIGN KEY (phone) REFERENCES Customer ON DELETE CASCADE

orderNumber	phone
18	6041234567
19	6042345678
33	6043456789
44	2481234567
45	2482345678

Customer

Customer(**MemberName**: Char, **MemberNumber**: Int, <u>Phone</u>: Int, CustomerName: Char)

FDs:

Phone → CustomerName, MemberName, MemberNumber, CustomerName

Trivial:

 $\mbox{MemberName, MemberNumber} \rightarrow \mbox{MemberType, MemberLevel, MemberExpense,}$

MemberPoints, MemberDiscount

Primary Key: Customer(Phone: Int)
Candidate Key: Customer(Phone: Int)

Normalize Customer

Phone \rightarrow CustomerName, MemberName, MemberNumber, CustomerName In BCNF, there is nothing to do.

CREATE TABLE Customer {

phone INT PRIMARY KEY,

memberName CHAR(40),

memberNumber INT,

customerName CHAR(40),

FOREIGN KEY (memberName, memberNumber) REFERENCES Membership

phone	memberName	memberNumber	customerName
6041234567	Mars Wang	12345	Mars Wang
6042345678	Wenkai Cai	23456	Wenkai Cai
6043456789	Dwayne Johnson	76852	Dwayne Johnson
2481234567	Maddie Ziegler	56789	Maddie Ziegler
2482345678	Heng Wu	24689	Heng Wu

Membership

Membership(<u>MemberName</u>: Char, <u>MemberNumber</u>: Int, MemberType: Char, MemberLevel: Int, MemberExpense: Int, MemberPoints: Int, MemberDiscount: Char)

FDs:

MemberName, MemberNumber → MemberType, MemberLevel, MemberExpense,

MemberPoints, MemberDiscount

 $MemberType,\,MemberLevel \rightarrow MemberDiscount$

MemberType, MemberExpense → MemberPoints

MemberPoints → MemberLevel

Primary Key: Membership(MemberName: Char, MemberNumber: Int)

Candidate Key: Membership(MemberName: Char, MemberNumber: Int, MemberType: Char,

MemberLevel: Int, MemberExpense: Int, MemberPoints: Int)

Normalize MemberShip

Step 1: Put FDs in standard form (have only one attribute on RHS)

 $MemberName,\ MemberNumber \rightarrow MemberType,$

MemberName, MemberNumber → MemberLevel,

MemberName, MemberNumber → MemberExpense,

MemberName, MemberNumber → MemberPoints,

MemberName, MemberNumber → MemberDiscount,

MemberType, MemberLevel → MemberDiscount,

MemberType, MemberExpense → MemberPoints

MemberPoints → MemberLevel

Step2: Minimize LHS of each FD

Nothing to do with this step

Step3: Delete Redundant FDs Nothing to do with this step

Final answer:

MemberName, MemberNumber → MemberType,

MemberName, MemberNumber → MemberLevel,

MemberName, MemberNumber → MemberExpense,

MemberName, MemberNumber → MemberPoints,

MemberName, MemberNumber → MemberDiscount,

MemberType, MemberLevel → MemberDiscount,

MemberType, MemberExpense → MemberPoints

 $MemberPoints \rightarrow MemberLevel$

MemberType, MemberLevel → MemberDiscount, violates 3NF in Membership, so decompose Member1(MemberType, MemberLevel, MemberDiscount),

Member2(<u>MemberName</u>, <u>MemberNumber</u>, MemberType, MemberLevel, MemberExpense, MemberPoints)

MemberType, MemberExpense → MemberPoints, violates 3NF in Membership, so decompose Member2(<u>MemberName</u>, <u>MemberNumber</u>, MemberType, MemberLevel, MemberExpense, MemberPoints)

We get Member3(<u>MemberType</u>, <u>MemberExpense</u>, MemberPoints), Member4(<u>MemberName</u>, <u>MemberNumber</u>, MemberType, MemberLevel, MemberExpense)

We lost FD: MemberPoints \rightarrow MemberLevel, so add Member5(MemberPoints, MemberLevel)

Final answer:

Member1(<u>MemberType</u>: Char, <u>MemberLevel</u>: Int, MemberDiscount: Char), Member3(<u>MemberType</u>: Char, <u>MemberExpense</u>: Int, MemberPoints: Int),

Member4(MemberName: Char, MemberNumber: Int, MemberType: Char, MemberLevel: Int,

MemberExpense: Int),

Member5(MemberPoints: Int, MemberLevel: Int)

memberType	memberLevel	memberDiscount
А	1	6%off
А	2	7%off
С	3	10%off
В	1	3%off
В	2	4%off

memberType	memberExpense	memberPoints
А	500	1000
A	400	800
А	300	600
В	500	500
В	400	400

memberName	memberNumber	memberType	memberLevel	memberExpense
Mars Wang	12345	A	2	500
Mars Wang	23456	В	1	500
Dwayne Johnson	76852	А	1	300
Maddie Ziegler	56789	А	3	750
Heng Wu	24689	В	2	750

```
CREATE TABLE Member5 {
    memberPoints INT, PRIMARY KEY, memberLevel INT,
};
```

memberPoints	memberLevel
500	2
500	2
300	1
750	3
1000	4

Staff

Staff(<u>StoreStreetAddress</u>: Char, <u>StoreCity</u>: Char, <u>StoreProvince</u>: Char, <u>StaffID</u>: Int, StaffName: Char) (StoreStreetAddress, StoreCity, StoreProvince cannot be null)

FDs:

StaffID → StoreStreetAddress, StoreCity, StoreProvince, StaffName

Primary Key: Staff(StaffID: Int)
Candidate Key: Staff(StaffID: Int)

Normalize Staff

 $StaffID \rightarrow StoreStreetAddress$, StoreCity, StoreProvince, StaffName In BCNF, there is nothing to do.

CREATE TABLE Staff {

staffID INT PRIMARY KEY, storeStreetAddress CHAR(80) NOT NULL, storeCity CHAR(40) NOT NULL, storeProvince CHAR(40) NOT NULL, staffName CHAR(40),

FOREIGN KEY (storeStreetAddress, storeCity, storeProvince) REFERENCES Store ON DELETE CASCADE

staffID	storeStreetAddress	storeCity	storeProvince	staffName
807812	4014 16th Ave	Vancouver	ВС	Wenkai Hu
807813	4014 16th Ave	Vancouver	ВС	Andy Yu
807814	4014 16th Ave	Vancouver	ВС	Lei Wang
807820	4014 16th Ave	Vancouver	ВС	Zhu Yu
453762	220 George Street	Calgary	AB	Sandy Wu

SendsMealTo

SendsMealTo(StaffID: Int, StoreStreetAddress: Char, StoreCity: Char, StoreProvince:

Char, WorkstationID: Int) (Staffld, StoreStreetAddress, StoreCity, StoreProvince,

WorkstationID cannot be null)

FDs:

All trivial

StaffID → StoreStreetAddress, StoreCity, StoreProvince, StaffName StoreStreetAddress, StoreCity, StoreProvince, WorkstationID → WorkstationName

Primary Key: SendsMealTo(StaffID: Int, StoreStreetAddress: Char, StoreCity: Char,

StoreProvince: Char, WorkstationID: Int)

Candidate Key: SendsMealTo(StaffID: Int, StoreStreetAddress: Char, StoreCity: Char,

StoreProvince: Char, WorkstationID: Int)

Normalize SendsMealTo

This is a relationship so all FDs are trivial so it doesn't violate BCNF.

```
CREATE TABLE SendsMealTo {
      staffID
                           INT.
      storeStreetAddress
                           CHAR(80),
      storeCity
                           CHAR(40),
      storeProvince
                           CHAR(40),
      workStationID
                           INT,
      PRIMARY KEY (staffID, storeStreetAddress, storeCity, storeProvince, workstationID),
      FOREIGN KEY (staffID) REFERENCES Staff,
      FOREIGN KEY (storeStreetAddress, storeCity, storeProvince, WorkstationID)
REFERENCES Workstation
};
```

staffID	storeStreetAddress	storeCity	storeProvince	workStationID
807882	1014 Willingdon Ave	Burnaby	ВС	02
807812	4014 16th Ave	Vancouver	ВС	02
807814	4014 16th Ave	Vancouver	ВС	02
807820	4014 16th Ave	Vancouver	ВС	03
453762	220 George Street	Calgary	AB	03

Contains

```
Contains(\underline{OrderNumber}: Int, \underline{MealName}: Char) (OrderNumber cannot be null) FDs: All trivial OrderNumber \rightarrow Phone MealName \rightarrow MealPrice
```

Primary Key: Contains(OrderNumber: Int. MealName: Char) Candidate Key: Contains(OrderNumber: Int. MealName: Char)

Normalize Contains

This is a relationship so all FDs are trivial so it doesn't violate BCNF.

```
CREATE TABLE Contains {
    orderNumber INT,
    mealName CHAR(40),
    PRIMARY KEY (orderNumber, mealName),
    FOREIGN KEY (orderNumber) REFERENCES Order,
    FOREIGN KEY (mealName) REFERENCES Meal
};
```

orderNumber	mealName
23	large Coke
24	medium fries
26	medium fries
41	large fries
41	samll fries

Serves

Serves(StaffID: Int, Phone: Int)

FDs:

All trivial

 $StaffID \to StoreStreetAddress, \ StoreCity, \ StoreProvince, \ StaffName$

 $Phone \rightarrow CustomerName, MemberName, MemberNumber, CustomerName$

Primary Key: Serves(StaffID: Int, Phone: Int)
Candidate Key: Serves(StaffID: Int, Phone: Int)

Normalize Serves

This is a relationship so all FDs are trivial so it doesn't violate BCNF.

```
CREATE TABLE Serves {
    staffID INT,
    phone INT,
    PRIMARY KEY (staffID, Phone),
    FOREIGN KEY (staffID) REFERENCES Staff,
    FOREIGN KEY (phone) REFERENCES Customer
};
```

staffID	phone
807812	6041236548
807812	7784228456
807814	6048825673
807820	6048825673
453762	7783453911

CookBy

CookBy(StoreStreetAddress: Char, StoreCity: Char, StoreProvince: Char,

WorkstationID: Int. MealName: Char) (MealName cannot be null)

FDs:

All trivial

StoreStreetAddress, StoreCity, StoreProvince → StoreName, StorePostalCode,

LocalDiscount

MealName → MealPrice

Primary Key: CookBy(StoreStreetAddress: Char, StoreCity: Char, StoreProvince: Char,

WorkstationID: Int, MealName: Char)

Candidate Key: CookBy(StoreStreetAddress: Char, StoreCity: Char, StoreProvince: Char,

WorkstationID: Int, MealName: Char)

Normalize CookBy

This is a relationship so all FDs are trivial so it doesn't violate BCNF.

CREATE TABLE CookBy {

storeStreetAddress CHAR(80), storeCity CHAR(40), storeProvince CHAR(40),

workStationID INT, mealName INT,

PRIMARY KEY (storeStreetAddress, storeCity, storeProvince, sorkstationID, mealID),

FOREIGN KEY (storeStreetAddress, storeCity, storeProvince, workstationID)

REFERENCES Workstation,

FOREIGN KEY (mealID) REFERENCES Meal

storeStreetAddr ess	storeCity	storeProvince	workStationI D	mealName
2222 W41 Ave	Vancouver	ВС	1	Large Coke
2222 W41 Ave	Vancouver	ВС	1	Medium Fries
2234 W11 Ave	Vancouver	ВС	1	Spicy Chicken
2234 W11 Ave	Vancouver	ВС	2	Medium Coffee
3241 Dawn St	Toronto	ON	2	Small Juice

Insertion: Insert a Meal to the Meal table.

Insertion: Insert a Membership to Membership table. **Insertion**: Insert a Store to the Store table and Staff table.

Deletion: Delete a store from Store table, workstation is a weak entity on store so on delete cascade also deletes workstation. Since Staff has the foreign key from store, this also affects and deletes the information related to store on the Staff table.

Deletion: Delete a customer from customer table, since order has the on delete cascade relationship with customer, so this will also deletes the information related to customer on the Order table