markdown公式

【参考文章】

https://blog.csdn.net/weixin_42782150/article/details/104878759

基本是照着敲了一遍,按自己喜好改了下排版,原文里有个别错漏的直接补上了

行内公式: 在公式代码块的前后均添加一个 \$ (ctrl+M)

行间公式:则是在公式代码块的前后均添加两个 \$\$ (\$\$)

括号内为思源快捷键

一、基本语法

上下标符号

默认情况下,上、下标符号仅仅对下一个组起作用。一个组即单个字符或者使用 {...} 包裹起来的内容。

数学算式	markdown公式	备注
a_i	a_i	
a_{ij}	a_{ij}	
a^i	a^i	
a^{ij}	a^{ij}	
$ar{a}$	\bar{a}	
á	\acute{a}	
ă	\breve{a}	
à	\grave{a}	
\dot{a}	\dot{a}	
ä	\ddot{a}	
$\dot{\dot{x}}$	\dot {\dot x}	
\hat{a}	\hat{a}	
\widehat{xy}	\widehat{xy}	
ă	\check{a}	

数学算式	markdown公式	备注
$ ilde{a}$	\tilde{a}	
$ec{a}$	\vec{a}	矢量
\overrightarrow{xy}	\overrightarrow {xy}	向量
$\overline{a+b+c+d}$	\overline{a + b + c + d}	
$\underline{a+b+c+d}$	\underline{a + b + c + d}	
a+b+c+d	\overbrace{a + b + c + d}	
$\underbrace{a+b+c+d}$	\underbrace{a + b + c + d}	
$\overbrace{a+\underbrace{b+c}_{1.0}+d}^{2.0}$	\overbrace{a + \underbrace{b + c}_{1.0} + d}^{2.0}	

括号

使用原始的()[],得到的括号大小是固定的。

使用 \left 或 \right 可使括号大小与邻近的公式相适应。

数学公式	markdown语法	
(,)	(,)	
[,]	[,]	
\langle, \rangle 或 $\langle, angle$	\lang, \rang 或 \langle, \rangle	
,	\lvert, \rvert	
,	\IVert, \rVert	
{,}或,	\lbrace, \rbrace 或 {, }	

增大括号的方法:

数学公式	markdown语法
(x)	(x)
(x)	\big(x \big)
(x)	\Big(x \Big)
(x)	\bigg(x \bigg)

数学公式	markdown语法
$\begin{pmatrix} x \end{pmatrix}$	\Bigg(x \Bigg)
$\left(\left(\left(\left((x)\right)\right)\right)\right)$	\Bigg(\bigg(\Big(\big((x)\big)\Big)\Bigg)\Bigg)
$\left[\left[\left[\left[\left[x\right]\right]\right]\right]\right]$	\Bigg[\bigg[\Big[\big[[x]\big]\Big]\Bigg]\Bigg]
$\left\langle \left\langle \left\langle \left\langle \left\langle \left\langle \left\langle x \right\rangle \right\rangle \right\rangle \right\rangle \right\rangle$	\Bigg \langle \bigg \langle \Big \langle\big\\langle x \rangle \big \rangle\Big\\rangle\Big\\rangle \Big\\rangle \Big\rangle \Big\\rangle \Big\\rangle \Big\\rangle \Big\\rangle \Big\\rangle \Big\rangle \Big\\rangle \Big\rangle \Big\rangle \Big\\rangle \Big\\rangle \Big\rangle
	\Bigg\lvert\bigg\lvert\big\lvert\big\lvert\lvert x \rvert\big\rver
	\Bigg\IVert\big\IVert\big\IVert\big\IVert\Vert x \rVert\big\rVert\Big\rVert\bigg\rVert

分式与根式

- (1) 使用 $\{frac\{a\}\{b\}$ 表示分式,如 $\frac{a}{b}$
- (2) 使用 \over 来分隔一个组的前后两部分。
- (3) 连分数,使用使用 \cfrac 代替 \frac 或者 \over

\frac 表示连分式

$$x=a_0+rac{1^2}{a_1+rac{2^2}{a_2+rac{3^2}{a_3+rac{4^2}{a_4+...}}}}$$

 $\ x=a_0 + \frac{1^2}{a_1+\frac{2^2}{a_2+\frac{3^2}{a_3+\frac{4^2}{a_4+\ldots}}}} \$

\cfrac 表示连分式

$$x = a_0 + \cfrac{1^2}{a_1 + \cfrac{2^2}{a_2 + \cfrac{3^2}{a_3 + \cfrac{4^2}{a_4 + \dots}}}}$$

 $\ x=a_0 + cfrac{1^2}{a_1+cfrac{2^2}{a_2+cfrac{3^2}{a_3}} \ a_4+...}}$

开方

数学公式	markdown语法
$\sqrt{a+b}$	\sqrt{a + b}
$\sqrt[n]{a+b}$	\sqrt[n]{a + b}

累加/累乘

数学公式	markdown语法	
$\sum_{i=0}^n x^2$	$\sum_{i=0}^{n} x_2$	
$\prod_{i=0}^{n} \frac{1}{x}$	$\prod_{i = 0}^{n} frac_{1}(x)$	

三角函数

数学公式	markdown语法	备注
\sin	\sin	正弦
cos	\cos	余弦
tan	\tan	正切
cot	\cot	余切
sec	\sec	反正弦
csc	\csc	反余弦
	\bot	
_	\angle	
40°	40^\circ	

对数函数

数学公式	markdown语法
$\ln a + b$	\ln{a + b}
\log_a^b	\log_{a}^{b}
$\lg a + b$	\lg{a + b}

二元运算符

数学公式	markdown语法	备注
土	\pm	
干	\mp	
×	\times	
÷	\div	
*	\ast	
*	\star	
	\mid	
†	\nmid	
0	\circ	
•	\bullet	
•	\cdot	
}	\wr	
\$	\diamond	
\Diamond	\Diamond	
Δ	\triangle	
\triangle	\bigtriangleup	
∇	\bigtriangledown	
◁	\triangleleft	
\triangleright	\triangleright	
⊲	\lhd	
\triangleright	\rhd	

数学公式	markdown语法	备注
⊴	\unlhd	
⊵	\unrhd	
0	\circ	
\circ	\bigcirc	
\odot	\odot	
\odot	\bigodot	点积
\oslash	\oslash	
\ominus	\ominus	
\otimes	\otimes	
\otimes	\bigotimes	克罗内克积
\oplus	\oplus	
\oplus	\bigoplus	异或
†	\dagger	
‡	\ddagger	
П	\amalg	

关系符号

数学公式	markdown语法
<u>≤</u>	\leq
<u>></u>	\geq
=	\equiv
F	\models
\prec	\prec
>	\succ
\sim	\sim
上	\perp
\preceq	\preceq
<u>></u>	\succeq

数学公式	markdown语法	
\simeq	\simeq	
	\mid	
«	\II	
>>	\gg	
\simeq	\asymp	
	\parallel	
\approx	\approx	
\cong	\cong	
#	\neq	
Ė	\doteq	
\propto	\propto	
\bowtie	\bowtie	
\bowtie	\Join	
$\overline{}$	\smile	
	\frown	
—	\vdash	
4	\dashv	

极限

数学公式	markdown语法	
lim	\lim	
\rightarrow	\rightarrow	
∞	\infty	
$\lim_{n o +\infty} n$	\lim_{n\rightarrow+\infty}n	

向量

数学公式	markdown语法	
$ec{a}$	\vec{a}	
$J(\mathbf{w})$	J(\mathbf{w})	

模运算

模运算使用 \pmod 来表示。

 $a \equiv b \pmod n$

\$a \equiv b \pmod n\$

箭头

数学公式	markdown语法
↑	\uparrow
+	\downarrow
‡	\updownarrow
\uparrow	\Uparrow
\	\Downarrow
\$	\Updownarrow
\rightarrow	\rightarrow
	\leftarrow
\leftrightarrow	\leftrightarrow
\Rightarrow	\Rightarrow
(\Leftarrow
\Leftrightarrow	\Leftrightarrow
\longrightarrow	\longrightarrow
	\longleftarrow
\longleftrightarrow	\longleftrightarrow
\Longrightarrow	\Longrightarrow

数学公式	markdown语法	
	\Longleftarrow	
\iff	\Longleftrightarrow	
\mapsto	\mapsto	
\longmapsto	longmapsto	
\leftarrow	\hookleftarrow	
\hookrightarrow	\hookrightarrow	
	\rightharpoonup	
<u> </u>	\leftharpoondown	
$\overline{}$	\rightleftharpoons	
	\leftharpoonup	
~	\rightharpoondown	
~→	\leadsto	
7	\nearrow	
\searrow	\searrow	
~	\swarrow	
	\nwarrow	

集合

数学公式	markdown语法	备注
Ø	\emptyset	
Ø	\varnothing	
\in	\in	
∋	\ni	
∉	\notin	
\subset	\subset	
\supset	\supset	
¢	\not\subset	
\subseteq	\subseteq	

数学公式	markdown语法	备注
Ç	\subsetneq	
\supseteq	\supseteq	
U	\cup	
U	\bigcup	
\cap	\cap	
\cap	\bigcap	
\forall	\uplus	
+	\biguplus	多重集
	\sqsubset	
	\sqsupset	
П	\sqcap	
	\sqsubseteq	
\supseteq	\sqsupseteq	
V	\vee	
\wedge	\wedge	
\	\setminus	差集

微积分

数学公式	markdown语法
,	\prime
ſ	\int
\iint	\iint
\iiint	\iiint
∮	\oint
∇	\nabla
$\int_0^2 x^2 dx$	\int_0 ^{2 x} 2 dx

逻辑运算

数学公式	markdown语法	
:	\because	
··	\therefore	
\forall	\forall	
3	\exist	
V	\vee	
\wedge	\wedge	
V	\bigvee	
\wedge	\bigwedge	

希腊字母

大写	Markdown公式	小写	Markdown公式
A	\Alpha	α	\alpha
В	\Beta	β	\beta
Γ	\Gamma	γ	\gamma
Δ	\Delta	δ	\delta
E	\Epsilon	ϵ	\epsilon
		ε	\varepsilon
Z	∖Zeta	ζ	\zeta
Н	\Eta	η	\eta
Θ	\Theta	θ	\theta
I	\lota	ι	\iota
K	∖Карра	κ	\kappa
Λ	\Lambda	λ	\lambda
M	\Mu	μ	\mu
N	\Nu	ν	\nu
Ξ	\Xi	ξ	\xi

大写	Markdown公式	小写	Markdown公式
O	\Omicron	o	\omicron
П	\Pi	π	\pi
P	\Rho	ho	\rho
Σ	\Sigma	σ	\sigma
T	\Tau	au	\tau
Υ	\Upsilon	v	\upsilon
Φ	\Phi	ϕ	\phi
		arphi	\varphi
X	\Chi	χ	\chi
Ψ	\Psi	ψ	\psi
Ω	\Omega	ω	\omega

省略号

不同省略号的区别是点的位置不同, \ldots 位置稍低, \cdots 位置居中。

数学公式	markdown语法	备注
	\dots	一般用于有下标的序列
	\ldots	
• • •	\cdots	纵向位置比\dots稍高
:	\vdots	竖向
٠	\ddots	

$$x_1, x_2, \ldots, x_n$$
 $1, 2, \cdots, n$ \vdots \cdots

\$\$

 $x_1,\ x_2,\ \dots,\ x_n \ \dots,\ x_n \ \dots,\ n \ \dots \ \dots$

\$\$

空格

数学公式	markdown语法	备注
123123	123!123	空格距离: -3/18 em
123123	123,123	空格距离: 3/18 em
123 123	123:123	空格距离: 4/18 em
123 123	123;123	空格距离: 5/18 em
123 123	123123	空格距离: 1 em
123 123	123\qquad123	空格距离: 2 em

上表中的em是指当前文本中文本的字体尺寸

其他符号

数学公式	markdown语法
×	\aleph
\hbar	\hbar
\imath	\imath
J	\jmath
ℓ	\ell
B	\wp
\Re	\Re
\Im	\lm
Ω	\mho
∇	\nabla
\checkmark	\surd
Т	\top
	\bot
	\neg
b	\flat
h	\natural

数学公式	markdown语法
#	\sharp
\	\backslash
∂	\partial
	\Box
*	\clubsuit
\Diamond	\diamondsuit
\Diamond	\heartsuit
^	\spadesuit

表格格式设置

一般使用 |--|--|, 这样的形式来创建表格。

- (1) 列样式可以是 c, l, r 分别表示居中, 左, 右对齐;
- (2) 使用 | 表示一条竖线;
- (3) 表格中各行使用\分隔,各列使用&分隔;
- (4) 使用 \hline 在本行前加入一条直线。

二、公式

1、向量

向量表示: 使用 $\mbox{mathbf}\{x\}$ 来表示向量 \mathbf{x} 。

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$$

 $f(\mathbf{x})=\mathbf{y}^T\mathbf{x}$

2、多行表达公式

有时候需要将一行公式分多行进行显示,其中 \begin{aligned} 表示<u>开始方程</u>, \end{equation} 表示<u>方程结束</u>;使用 \\ 表示<u>公式换行</u>。\begin{gather}表示环境设置, & 表示

对齐的位置。

$$egin{align} J(\mathbf{w}) &= rac{1}{2m} \sum_{i=1}^m (f(\mathbf{x_i}) - y_i)^2 \ &= rac{1}{2m} \sum_{i=1}^m [f(\mathbf{x_i})]^2 - 2f(\mathbf{x_i})y_i + y_i^2 \ \end{aligned}$$

```
$$ \end{aligned} $$ J(\mathbb{1}_{2m}\sum_{i=1}^m(f(\mathbb{x_i})-y_i)^2\\ &=\frac{1}{2m}\sum_{i=1}^m [f(\mathbb{x_i})]^2-2f(\mathbb{x_i})}y_i+y_i^2\\ &=d{aligned} $$
```

3、分段函数

定义函数的时候经常需要分情况给出表达式,使用 {... 。其中:

- (1) 使用\ 来分隔分组;
- (2) 使用 & 来指示需要对齐的位置;
- (3) 使用\ + 空格 来表示空格;
- (4) 如果要<u>使分类之间的垂直间隔变大</u>,可以使用 \[2ex] 代替 \ 来分隔不同的情况。 (3ex,4ex 也可以用,1ex 相当于原始距离)。
 - (5) \\ 表示换行。

分段函数

$$y = \begin{cases} -x, & x \le 0 \\ x, & x > 0 \end{cases} \tag{1}$$

```
# 分段函数

$$
y=
\begin{cases}
-x,\quad x\leq 0\\
x, \quad x>0
\end{cases}
```

```
\tag{1}
$$
```

使用 \[2ex] 代替 \ 使分组的垂直间隔增大:

```
y = \begin{cases} -x, & x \le 0 \\ x, & x > 0 \end{cases} \tag{1}
```

```
$$
y=
\begin{cases}
-x,\quad x\leq 0 \\[2ex]
x, \quad x>0
\end{cases}
\tag{1}
$$
```

4、其他

方程组

$$\left\{egin{array}{l} a_1x+b_1y+c_1z=d_1\ a_2x+b_2y+c_2z=d_2\ a_3x+b_3y+c_3z=d_3 \end{array}
ight.$$

均方误差

$$J(heta) = rac{1}{2m} \sum_{i=0}^m (y^i - h_ heta(x^i))^2.$$

```
# 均方误差
$$
J(\theta) = \frac{1}{2m}\sum_{i = 0} ^m(y^i - h_\theta (x^i))^2
$$
```

批量梯度下降

$$rac{\partial J(heta)}{\partial heta_j} = -rac{1}{m} \sum_{i=0}^m (y^i - h_ heta(x^i)) x^i_j$$

```
# 批量梯度下降

$$

\frac{\partial J(\theta)}{\partial\theta_j}=-\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i))x^i_j

$$
```

推导过程

$$egin{aligned} rac{\partial J(heta)}{\partial heta_j} &= -rac{1}{m} \sum_{i=0}^m (y^i - h_ heta(x^i)) rac{\partial}{\partial heta_j} (y^i - h_ heta(x^i)) \ &= -rac{1}{m} \sum_{i=0}^m (y^i - h_ heta(x^i)) rac{\partial}{\partial heta_j} (\sum_{j=0}^n heta_j x^i_j - y^i) \ &= -rac{1}{m} \sum_{i=0}^m (y^i - h_ heta(x^i)) x^i_j \end{aligned}$$

```
# 推导过程
$$
\begin{aligned}
\frac{\partial J(\theta)}{\partial\theta_j}
& = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i)) \frac{\partial}{\partial\theta_j}
(y^i-h_\theta(x^i)) \\
& = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i)) \frac{\partial}{\partial\theta_j}
(\sum_{j=0}^n\theta_jx_j^i-y^i) \\
```

```
& = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i))x^i_j
\end{aligned}
$$
```

case环境的使用

$$a = egin{cases} \int x \, \mathrm{d}x \ b^2 \end{cases}$$

```
# case环境的使用

$$
a =
    \begin{cases}
      \int x\, \mathrm{d} x\\
      b^2
    \end{cases}

$$
$$
```

带方框的等式

$$\boxed{x^2+y^2=z^2}$$

```
# 带方框的等式
$$
\begin{aligned}
\boxed{x^2+y^2 = z^2}
\end{aligned}
$$
```

最大 (最小) 操作符

$$rg \max_a f(a) = rg \max_b f(b) \ rg \min_c f(c) = rg \min_d f(d)$$

```
\begin{gathered}
\operatorname{arg\,max}_a f(a)
= \operatorname*{arg\,max}_b f(b) \\
\operatorname{arg\,min}_c f(c)
= \operatorname*{arg\,min}_d f(d)
\end{gathered}
$$
```

求极限

$$\lim_{a\to\infty} \tfrac{1}{a}$$

$$\lim_{a o\infty}rac{1}{a}$$

```
# 求极限
$$
\begin{aligned}
  \lim_{a\to \infty} \left(1\right)_{a\to \infty}
\end{aligned}
$$
$$
\begin{aligned}
   \lim\nolimits_{a\to \infty} \tfrac{1}{a}
\end{aligned}
$$
```

求积分

$$\int_a^b x^2 \mathrm{d}x$$

$$\int_a^b x^2 \mathrm{d}x$$

$$\int_a^b x^2 \mathrm{d}x$$

```
# 求积分
$$
\begin{aligned}
```

```
\int_a^b x^2 \mathrm{d} x
\end{aligned}

$$

$$
\begin{aligned}
  \int\limits_a^b x^2 \mathrm{d} x
\end{aligned}

$$
```

5、常见公式环境

环境名称	释义
align	最基本的对齐环境
multline	非对齐环境
gather	无对齐的连续方程

gathered 允许多行(多组)方程式在彼此之下设置并分配单个方程式编号。 split 与align *类似,但在另一个显示的数学环境中使用。 aligned 与align类似,可以在其他数学环境中使用。 alignedat 与alignat类似,同样需要一个额外的参数来指定要设置的方程列数。

备注: 如果各个方程需要在某个字符处对齐(如等号对齐),只需在所有要对齐的字符前加上 & 符号。

$$B' = -\partial imes E, \ E' = \partial imes B - 4\pi j,$$
 Maxwell's equations

$$egin{aligned} \sigma_1 &= x + y & \qquad \sigma_2 &= rac{x}{y} \ \sigma_1' &= rac{\partial x + y}{\partial x} & \qquad \sigma_2' &= rac{\partial rac{x}{y}}{\partial x} \end{aligned}$$

$$a_n = rac{1}{\pi} \int\limits_{-\pi}^{\pi} f(x) \cos nx \,\mathrm{d}x \ = rac{1}{\pi} \int\limits_{-\pi}^{\pi} x^2 \cos nx \,\mathrm{d}x$$

```
$$
\begin{aligned}
\left.\begin{aligned}
        B'&=-\partial \times E,\\
                                       %加&指定对齐位置
        E'&=\partial \times B - 4\pi j,
       \end{aligned}
\right\}
                                       %加右}
\qquad \text{Maxwell's equations}
\end{aligned}
$$
$$
\begin{aligned}
\sum_{x \in \mathbb{Z}} x + y   \quad \sigma_2 &= \frac{x}{y} \\
\sigma_1' \&= \frac{x + y}{\pi x} \& \sigma_2'
    &= \frac{\partial \frac{x}{y}}{\partial x}
\end{aligned}
$$
$$
\begin{aligned}
a_n&=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cos nx\,\mathrm{d}x\)
&=\frac{1}{\pi}\int\limits_{-\pi}^{\pi}x^2\cos nx\,\mathrm{d}x\\[6pt]
\end{aligned}
$$
```

6、矩阵

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$\begin{cases}
1 & 2 \\
3 & 4
\end{cases}$$

$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$$

```
$$\begin{pmatrix}1 & 2 \\ 3 &4\\ \end{pmatrix}$$
$$\begin{bmatrix}1 & 2 \\ 3 & 4\\ \end{bmatrix}$$
$$\begin{Bmatrix}1 & 2 \\ 3 & 4\\ \end{Bmatrix}$$
$$\begin{vmatrix}1 & 2 \\ 3 & 4\\ \end{vmatrix}$$
$$\begin{Vmatrix}1 & 2 \\ 3 & 4\\ \end{Vmatrix}$$
```

元素省略可以使用 \cdots 表示…, \ddots 表示:, \vdots 表示:, 从而省略矩阵中的元素, 如:

$$egin{pmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^n \ 1 & a_2 & a_2^2 & \cdots & a_2^n \ dots & dots & dots & \ddots & dots \ 1 & a_m & a_m^2 & \cdots & a_m^n \end{pmatrix}$$

\$\$

6.1 不带括号的矩阵

```
$$
\begin{matrix}
1 & 2 & 3\\
4 & 5 & 6 \\
7 & 8 & 9
\end{matrix}
\tag{1}
$$
```

6.2 带小括号的矩阵

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \tag{2}$$

```
$$\left(
\begin{matrix}
1 & 2 & 3\\
4 & 5 & 6 \\
7 & 8 & 9
\end{matrix}
\right)
\tag{2}
$$$
```

6.3 带中括号的矩阵

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \tag{3}$$

```
$$\left[
\begin{matrix}
1 & 2 & 3\\
4 & 5 & 6 \\
7 & 8 & 9
\end{matrix}
\right]
\tag{3}
$$$
```

6.4 带大括号的矩阵

```
$$\left\{
\begin{matrix}
1 & 2 & 3\\
4 & 5 & 6 \\
7 & 8 & 9
\end{matrix}
\right\}
\tag{4}
$$$
```

6.5 带省略号的矩阵

$$\begin{bmatrix} a & b & \cdots & a \\ b & b & \cdots & b \\ \vdots & \vdots & \ddots & \vdots \\ c & c & \cdots & c \end{bmatrix}$$
 (5)

```
$$
\left[
```

```
\begin{matrix}
a & b & \cdots & a\\
b & b & \cdots & b\\
\vdots & \vdots & \ddots & \vdots\\
c & c & \cdots & c
\end{matrix}
\right]
\tag{5}
$$$$
```

6.6 带横线/竖线分割的矩阵

横线用 \hline 分割

$$\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{bmatrix}$$
(7)

```
$$
\left[
   \begin{array}{c|cc}
   1 & 2 & 3 \\ \hline
   4 & 5 & 6 \\
   7 & 8 & 9
   \end{array}
\right]
\tag{7}
$$$
```

7、公式编辑的编号设置

符号	功能
\tag{标号}	公式宏包序号设置命令,可用于带星号公式环境中的公式行
\tag*{标号}	作用与\tag相同,只是标号两侧没有圆括号

$$x^2 + y^2 = z^2 (1')$$

$$x^4 + y^4 = z^4 (*)$$

$$x^5 + y^5 = z^5 \qquad \qquad *$$

$$x^6 + y^6 = z^6 (1-1)$$

\$\$

x^2+y^2=z^2 \tag{1\$'\$}

\$\$

\$\$

x^4+y^4=z^4 \tag{*}

\$\$

\$\$

x^5+y^5=z^5 \tag*{*}

\$\$

\$\$

x^6+y^6=z^6 \tag{1-1}

\$\$