```
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt, rcParams, style
style.use('seaborn-darkgrid')
import seaborn as sns
sns.set_style('darkgrid')
from plotly import express as px, graph_objects as go
from sklearn.preprocessing import RobustScaler, StandardScaler, Normalizer, MinM
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression, Ridge
from sklearn.ensemble import RandomForestRegressor, ExtraTreesRegressor, Bagging
import gc
gc.enable()
from warnings import filterwarnings, simplefilter
filterwarnings('ignore')
simplefilter('ignore')
```

			sales
date	store_nbr	family	
013-01-01	1	AUTOMOTIVE	0.000
		BABY CARE	0.000
		BEAUTY	0.000
		BEVERAGES	0.000
		BOOKS	0.000
		•••	
17-08-15	9	POULTRY	438.133
		PREPARED FOODS	154.553
		PRODUCE	2419.729
		SCHOOL AND OFFICE SUPPLIES	121.000
		SEAFOOD	16.000

3000888 rows x 1 columns

id onpromotion

date	store_nbr	family		
2017-08-16	1	AUTOMOTIVE	3000888	0
		BABY CARE	3000889	0
		BEAUTY	3000890	2
		BEVERAGES	3000891	20
		BOOKS	3000892	0
2017-08-31	9	POULTRY	3029395	1
		PREPARED FOODS	3029396	0
		PRODUCE	3029397	1
		SCHOOL AND OFFICE SUPPLIES	3029398	9
		SEAFOOD	3029399	0

28512 rows × 2 columns

```
# Plotting oil price
_ = sns.lineplot(data = oil.dcoilwtico.to_timestamp())
```


n_lags = 3
for l in range(1, n_lags + 1) :
 calendar[f'oil_lags{l}'] = calendar.avg_oil.shift(l)
calendar.dropna(inplace = True)
calendar

	avg_oil	oil_lags1	oil_lags2	oil_lags3
2013-01-13	93.284286	93.284286	93.284286	93.218571
2013-01-14	93.470000	93.284286	93.284286	93.284286
2013-01-15	93.490000	93.470000	93.284286	93.284286
2013-01-16	93.644286	93.490000	93.470000	93.284286
2013-01-17	93.970000	93.644286	93.490000	93.470000
2017-08-27	47.720000	47.720000	47.720000	47.598571
2017-08-28	47.624286	47.720000	47.720000	47.720000
2017-08-29	47.320000	47.624286	47.720000	47.720000
2017-08-30	47.115714	47.320000	47.624286	47.720000
2017-08-31	47.060000	47.115714	47.320000	47.624286

1692 rows × 4 columns

```
lag = 'oil_lags1'
plt.figure()
sns.regplot(x = calendar[lag], y = calendar.avg_oil)
plt.title(f'corr {calendar.avg_oil.corr(calendar[lag])}')
plt.show()
```


hol = hol[hol.locale == 'National'] # I'm only taking National holiday so there'
hol = hol.groupby(hol.index).first() # Removing duplicated holiday at the same d
hol

	type	locale	locale_name	description	transferred
date					
2012-08- 10	Holiday	National	Ecuador	Primer Grito de Independencia	False
2012-10- 09	Holiday	National	Ecuador	Independencia de Guayaquil	True
2012-10- 12	Transfer	National	Ecuador	Traslado Independencia de Guayaquil	False
2012-11- 02	Holiday	National	Ecuador	Dia de Difuntos	False
2012-11- 03	Holiday	National	Ecuador	Independencia de Cuenca	False
		•••			
2017-12- 22	Additional	National	Ecuador	Navidad-3	False
2017-12- 23	Additional	National	Ecuador	Navidad-2	False
0047 40					

calendar = calendar.join(hol) # Joining calendar with holiday dataset
calendar['dofw'] = calendar.index.dayofweek # Weekly day
calendar['wd'] = 1

calendar.loc[calendar.dofw > 4, 'wd'] = 0 # If it's saturday or sunday then it's calendar.loc[calendar.type == 'Work Day', 'wd'] = 1 # If it's Work Day event the calendar.loc[calendar.type == 'Transfer', 'wd'] = 0 # If it's Transfer event the calendar.loc[calendar.type == 'Bridge', 'wd'] = 0 # If it's Bridge event then it calendar.loc[(calendar.type == 'Holiday') & (calendar.transferred == False), 'wd calendar.loc[(calendar.type == 'Holiday') & (calendar.transferred == True), 'wd' calendar = pd.get_dummies(calendar, columns = ['dofw'], drop_first = True) # One calendar = pd.get_dummies(calendar, columns = ['type']) # One-hot encoding for t calendar.drop(['locale', 'locale_name', 'description', 'transferred'], axis = 1, calendar

	avg_oil	oil_lags1	oil_lags2	oil_lags3	wd	dofw_1	dofw_2	dofw_3
2013- 01-13	93.284286	93.284286	93.284286	93.218571	0	0	0	0
2013- 01-14	93.470000	93.284286	93.284286	93.284286	1	0	0	0
2013- 01-15	93.490000	93.470000	93.284286	93.284286	1	1	0	0
2013- 01-16	93.644286	93.490000	93.470000	93.284286	1	0	1	0
2013- 01-17	93.970000	93.644286	93.490000	93.470000	1	0	0	1
2017- 08-27	47.720000	47.720000	47.720000	47.598571	0	0	0	0
2017- 08-28	47.624286	47.720000	47.720000	47.720000	1	0	0	0
2017- 08-29	47.320000	47.624286	47.720000	47.720000	1	1	0	0
2017- 08-30	47.115714	47.320000	47.624286	47.720000	1	0	1	0
2017- 08-31	47.060000	47.115714	47.320000	47.624286	1	0	0	1

1692 rows × 17 columns


```
y = train.unstack(['store_nbr', 'family']).loc['2016-06':'2017']
family = {c[2] for c in train.index}
for f in family :
    ax = y.loc(axis = 1)['sales', :, f].plot(legend = None)
    ax.set_title(f)
```


HOME APPLIANCES

100 Jul Oct Jan Apr Jul 2017

date

CDOCEDVI

CLEANING 10000 8000 4000 2000 Jul Oct Jan Apr Jul 2017

sdate = '2017-04-30' # Start and end of training date edate = '2017-08-15'

```
school_season = [] # Feature for school fluctuations
for i, r in calendar.iterrows():
    if i.month in [4, 5, 8, 9]:
        school_season.append(1)
    else:
        school_season.append(0)
calendar['school_season'] = school_season
calendar
```

	avg_oil	oil_lags1	oil_lags2	oil_lags3	wd	dofw_1	dofw_2	dofw_3
2013- 01-13	93.284286	93.284286	93.284286	93.218571	0	0	0	0
2013- 01-14	93.470000	93.284286	93.284286	93.284286	1	0	0	0
2013- 01-15	93.490000	93.470000	93.284286	93.284286	1	1	0	0
2013- 01-16	93.644286	93.490000	93.470000	93.284286	1	0	1	0
2013- 01-17	93.970000	93.644286	93.490000	93.470000	1	0	0	1
2017- 08-27	47.720000	47.720000	47.720000	47.598571	0	0	0	0
2017- 08-28	47.624286	47.720000	47.720000	47.720000	1	0	0	0
2017- 08-29	47.320000	47.624286	47.720000	47.720000	1	1	0	0
2017- 08-30	47.115714	47.320000	47.624286	47.720000	1	0	1	0
2017- 08-31	47.060000	47.115714	47.320000	47.624286	1	0	0	1

1692 rows × 18 columns

y = train.unstack(['store_nbr', 'family']).loc[sdate:edate]
fourier = CalendarFourier(freq = 'W', order = 4)

	trend	sin(1,freq=W- SUN)	cos(1,freq=W- SUN)	sin(2,freq=W- SUN)	cos(2,freq=W- SUN)	sin
date						
2017- 04-30	1.0	-0.781831	0.623490	-0.974928	-0.222521	
2017- 05-01	2.0	0.000000	1.000000	0.000000	1.000000	
2017- 05-02	3.0	0.781831	0.623490	0.974928	-0.222521	
2017- 05-03	4.0	0.974928	-0.222521	-0.433884	-0.900969	
2017- 05-04	5.0	0.433884	-0.900969	-0.781831	0.623490	
2017- 08-11	104.0	-0.433884	-0.900969	0.781831	0.623490	
2017- 08-12	105.0	-0.974928	-0.222521	0.433884	-0.900969	
2017- 08-13	106.0	-0.781831	0.623490	-0.974928	-0.222521	
2017- 08-14	107.0	0.000000	1.000000	0.000000	1.000000	
2017- 08-15	108.0	0.781831	0.623490	0.974928	-0.222521	

108 rows × 25 columns

from statsmodels.tsa.deterministic import DeterministicProcess, CalendarFourier from statsmodels.graphics.tsaplots import plot_pacf

!pip install statsmodels

```
Requirement already satisfied: statsmodels in /usr/local/lib/python3.7/dist Requirement already satisfied: pandas>=0.19 in /usr/local/lib/python3.7/dist Requirement already satisfied: numpy>=1.11 in /usr/local/lib/python3.7/dist Requirement already satisfied: scipy>=0.18 in /usr/local/lib/python3.7/dist Requirement already satisfied: patsy>=0.4.0 in /usr/local/lib/python3.7/dist Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/pyt Requirement already satisfied: six in /usr/local/lib/python3.7/dist-package
```

!pip install --upgrade --no-deps statsmodels

Requirement already satisfied: statsmodels in /usr/local/lib/python3.7/dist Collecting statsmodels

Installing collected packages: statsmodels

Attempting uninstall: statsmodels

Found existing installation: statsmodels 0.10.2

Uninstalling statsmodels-0.10.2:

Successfully uninstalled statsmodels-0.10.2

Successfully installed statsmodels-0.13.2

WARNING: The following packages were previously imported in this runtime: [statsmodels]

You must restart the runtime in order to use newly installed versions.

RESTART RUNTIME

!pip3 uninstall statsmodels

```
Found existing installation: statsmodels 0.13.2
Uninstalling statsmodels-0.13.2:
Would remove:
/usr/local/lib/python3.7/dist-packages/statsmodels-0.13.2.dist-info/*
/usr/local/lib/python3.7/dist-packages/statsmodels/*
Proceed (y/n)? y
Successfully uninstalled statsmodels-0.13.2
```

!pip3 install numpy scipy patsy pandas

```
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packa
Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packa
Requirement already satisfied: patsy in /usr/local/lib/python3.7/dist-packa
Requirement already satisfied: pandas in /usr/local/lib/python3.7/dist-pack
Requirement already satisfied: six in /usr/local/lib/python3.7/dist-package
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dis
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/pyt
```

!pip3 install statsmodels

Collecting statsmodels

Using cached statsmodels-0.13.2-cp37-cp37m-manylinux 2 17 x86 64.manylinu Requirement already satisfied: patsy>=0.5.2 in /usr/local/lib/python3.7/dis Requirement already satisfied: packaging>=21.3 in /usr/local/lib/python3.7/ Requirement already satisfied: pandas>=0.25 in /usr/local/lib/python3.7/dis Requirement already satisfied: scipy>=1.3 in /usr/local/lib/python3.7/dist-Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.7/dist Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/p Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/pyt Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dis Requirement already satisfied: six in /usr/local/lib/python3.7/dist-package Installing collected packages: statsmodels

Successfully installed statsmodels-0.13.2

WARNING: The following packages were previously imported in this runtime:

You must restart the runtime in order to use newly installed versions.

RESTART RUNTIME

print(y.isna().sum().sum())
display(y)

0

sales

store_nbr 1

family	AUTOMOTIVE	BABY CARE	BEAUTY	BEVERAGES	BOOKS	BREAD/BAKERY	CELEBRAT
date							
2017-04-30	3.0	0.0	0.0	995.0	1.0	139.50700	
2017-05-01	0.0	0.0	2.0	825.0	0.0	116.33900	
2017-05-02	2.0	0.0	2.0	3179.0	0.0	447.23800	
2017-05-03	5.0	0.0	6.0	2479.0	1.0	434.02900	
2017-05-04	3.0	0.0	1.0	2454.0	0.0	438.21400	
2017-08-11	1.0	0.0	1.0	1006.0	0.0	145.60700	
2017-08-12	6.0	0.0	3.0	1659.0	0.0	243.22000	
2017-08-13	1.0	0.0	1.0	803.0	0.0	136.67900	
2017-08-14	1.0	0.0	6.0	2201.0	0.0	346.03800	
2017-08-15	4.0	0.0	4.0	1942.0	0.0	329.54102	

108 rows × 1782 columns

xtest = dp.out_of_sample(steps = 16) # 16 because we are predicting next 16 days
xtest = xtest.join(calendar)
xtest

	trend	sin(1,freq=W- SUN)	cos(1,freq=W- SUN)	sin(2,freq=W- SUN)	cos(2,freq=W- SUN)	sin
2017- 08-16	109.0	0.974928	-0.222521	-0.433884	-0.900969	
2017-						

08-17	110.0	0.433884	-0.900969	-0.781831	0.623490
2017- 08-18	111.0	-0.433884	-0.900969	0.781831	0.623490
2017- 08-19	112.0	-0.974928	-0.222521	0.433884	-0.900969
2017- 08-20	113.0	-0.781831	0.623490	-0.974928	-0.222521
2017- 08-21	114.0	0.000000	1.000000	0.000000	1.000000
2017- 08-22	115.0	0.781831	0.623490	0.974928	-0.222521
2017- 08-23	116.0	0.974928	-0.222521	-0.433884	-0.900969
2017- 08-24	117.0	0.433884	-0.900969	-0.781831	0.623490
2017- 08-25	118.0	-0.433884	-0.900969	0.781831	0.623490
2017- 08-26	119.0	-0.974928	-0.222521	0.433884	-0.900969
2017- 08-27	120.0	-0.781831	0.623490	-0.974928	-0.222521
2017- 08-28	121.0	0.000000	1.000000	0.000000	1.000000
2017- 08-29	122.0	0.781831	0.623490	0.974928	-0.222521
2017- 08-30	123.0	0.974928	-0.222521	-0.433884	-0.900969
2017- 08-31	124.0	0.433884	-0.900969	-0.781831	0.623490

16 rows × 25 columns


```
def make_lags(x, lags = 1) : #Fungsi untuk membuat fitur lags
    lags = lags
    x_{-} = x_{\bullet} copy()
    for i in range(lags) :
        lag = x_.shift(i + 1)
        x = pd.concat([x, lag], axis = 1)
    return x
from joblib import Parallel, delayed
from tqdm.auto import tqdm
from sklearn.metrics import mean_squared_log_error as msle
from sklearn.model_selection import TimeSeriesSplit
from sklearn.svm import SVR
from sklearn.multioutput import MultiOutputRegressor
lnr = LinearRegression(fit_intercept = True, n_jobs = -1, normalize = True)
lnr.fit(x, y)
yfit_lnr = pd.DataFrame(lnr.predict(x), index = x.index, columns = y.columns).cl
ypred_lnr = pd.DataFrame(lnr.predict(xtest), index = xtest.index, columns = y.co
svr = MultiOutputRegressor(SVR(C = 0.2, kernel = 'rbf'), n_jobs = -1)
svr.fit(x, y)
yfit svr = pd.DataFrame(svr.predict(x), index = x.index, columns = y.columns).cl
ypred_svr = pd.DataFrame(svr.predict(xtest), index = xtest.index, columns = y.co
yfit_mean = pd.DataFrame(np.mean([yfit_svr.values, yfit_lnr.values], axis = 0),
ypred_mean = pd.DataFrame(np.mean([ypred_lnr.values, ypred_svr.values], axis = 0
y_ = y.stack(['store_nbr', 'family'])
y_['lnr'] = yfit_lnr.stack(['store_nbr', 'family'])['sales']
y_['svr'] = yfit_svr.stack(['store_nbr', 'family'])['sales']
y_['mean'] = yfit_mean.stack(['store_nbr', 'family'])['sales']
print('='*70, 'Linear Regression', '='*70)
print(y_.groupby('family').apply(lambda r : np.sqrt(msle(r['sales'], r['lnr'])))
print('LNR RMSLE :', np.sqrt(msle(y, yfit_lnr)))
print('='*70, 'SVR', '='*70)
print(y_.groupby('family').apply(lambda r : np.sqrt(msle(r['sales'], r['svr'])))
print('SVR RMSLE :', np.sqrt(msle(y, yfit_svr)))
print('='*70, 'Mean', '='*70)
print(y_.groupby('family').apply(lambda r : np.sqrt(msle(r['sales'], r['mean']))
print('Mean RMSLE :', np.sqrt(msle(y, yfit_mean)))
     family
```

0 470050

AUIUMUIIVE	U.4/UY53
BABY CARE	0.253725
BEAUTY	0.470013
BEVERAGES	0.165701
B00KS	0.124115
BREAD/BAKERY	0.133141
CELEBRATION	0.512125
CLEANING	0.325909
DAIRY	0.122254
DELI	0.152218
EGGS	0.281778
FROZEN FOODS	0.243512
GROCERY I	0.147955
GROCERY II	0.548617
HARDWARE	0.491726
HOME AND KITCHEN I	0.457245
HOME AND KITCHEN II	0.449896
HOME APPLIANCES	0.363741
HOME CARE	0.192405
LADIESWEAR	0.447912
LAWN AND GARDEN	0.398217
LINGERIE	0.587564
LIQUOR, WINE, BEER	0.538526
MAGAZINES	0.461284
MEATS	0.165268
PERSONAL CARE	0.209257
PET SUPPLIES	0.423930
PLAYERS AND ELECTRONICS	0.423179
POULTRY	0.171110
PREPARED FOODS	0.245395
PRODUCE	0.107894
SCHOOL AND OFFICE SUPPLIES	0.981280
SEAF00D	0.459579
dtype: float64	
LNR RMSLE : 0.395843383587989	91
	======================================
family	
AUTOMOTIVE	0.537979
BABY CARE	0.276018
BEAUTY	0.548399
BEVERAGES	0.287354
B00KS	0.148110
BREAD/BAKERY	0.247432
CELEBRATION	0.583759
CLEANING	0.342808
DAIRY	0.256998
DELI	0.259028
EGGS	0.404389
FROZEN FOODS	0.397948
GROCERY I	0.249870
GROCERY II	0 . 594346
HARDWARE	0.537422
HOME AND KITCHEN I	0.512461
HOME AND KITCHEN II	0.468299
HOME ABBLITANCES	0 407744

HOME APPLIANCES

0.306196

1.ADTESWEAR

0.306196

```
from sklearn.metrics import mean_absolute_error as mae
print('='*70, 'Linear Regression', '='*70)
print(y_.groupby('family').apply(lambda r : mae(r['sales'], r['lnr'])))
print('LNR RMSLE :', mae(y, yfit_lnr))
print('='*70, 'SVR', '='*70)
print(y_.groupby('family').apply(lambda r : mae(r['sales'], r['svr'])))
print('SVR RMSLE :', mae(y, yfit_svr))
print('='*70, 'Mean', '='*70)
print(y_.groupby('family').apply(lambda r : mae(r['sales'], r['mean'])))
print('Mean RMSLE :', mae(y, yfit_mean))
    family
    AUTOMOTIVE
                                   2.462666
    BABY CARE
                                   0.218935
    BEAUTY
                                   1.993658
    BEVERAGES
                                 393,223348
    B00KS
                                   0.062452
    BREAD/BAKERY
                                  48.987934
    CELEBRATION
                                   4.508831
    CLEANING
                                 234,958095
    DAIRY
                                  77.517478
    DELI
                                  35.185488
    EGGS
                                  29.019481
    FROZEN FOODS
                                  19.628004
    GROCERY I
                                 488.737700
    GROCERY II
                                   8.638179
    HARDWARE
                                   0.944746
    HOME AND KITCHEN I
                                  10.298440
    HOME AND KITCHEN II
                                   9.755713
    HOME APPLIANCES
                                   0.467302
    HOME CARE
                                  39.605771
    LADIESWEAR
                                   3.409966
    LAWN AND GARDEN
                                   4.229637
    LINGERIE
                                   2.976668
    LIQUOR, WINE, BEER
                                  22.118200
    MAGAZINES
                                   2.093751
    MEATS
                                  40.686022
    PERSONAL CARE
                                  47.811009
    PET SUPPLIES
                                   2.440073
    PLAYERS AND ELECTRONICS
                                   2.952325
    POULTRY
                                  42.445535
    PREPARED FOODS
                                  12.464928
    PRODUCE
                                 164.030993
    SCHOOL AND OFFICE SUPPLIES
                                   7.653268
                                   4.159589
    SEAF00D
    dtype: float64
```

LNR RMSLE : 53.50564200304283

family **AUTOMOTIVE** 3.038670 BABY CARE 0.213618 **BEAUTY** 2.589378 **BEVERAGES** 807.456838 B00KS 0.078344 101.144459 BREAD/BAKERY CELEBRATION 5.584227 **CLEANING** 319.913149 DAIRY 180.690911 DELI 68.286139 **EGGS** 56.841999 FROZEN FOODS 38,263943 GROCERY I 920.832156 GROCERY II 10.857102 **HARDWARE** 1.031637 HOME AND KITCHEN I 12.069000 HOME AND KITCHEN II 10.981285 HOME APPLIANCES 0.495080 HOME CARE 72.677757 INDTESMEND 5 10/127/

true_low = [2]
pred low = [4]

print('RMSLE for low value :', np.sqrt(msle(true_low, pred_low)))
print('MAE for low value :', mae(true_low, pred_low))

 $true_high = [255]$ pred high = [269]

print('RMSLE for high value :', np.sqrt(msle(true_high, pred_high)))
print('MAE for high value :', mae(true_high, pred_high))

RMSLE for low value : 0.5108256237659907

MAE for low value: 2.0

RMSLE for high value: 0.053244514518812736

MAE for high value: 14.0

display(x, xtest)

	trend	sin(1,freq=W- SUN)	cos(1,freq=W- SUN)	sin(2,freq=W- SUN)	cos(2,freq=W- SUN)	sin
date						
2017- 04-30	1.0	-0.781831	0.623490	-0.974928	-0.222521	

2017- 05-01	2.0	0.000000	1.000000	0.000000	1.000000
2017- 05-02	3.0	0.781831	0.623490	0.974928	-0.222521
2017- 05-03	4.0	0.974928	-0.222521	-0.433884	-0.900969
2017- 05-04	5.0	0.433884	-0.900969	-0.781831	0.623490
2017- 08-11	104.0	-0.433884	-0.900969	0.781831	0.623490
2017- 08-12	105.0	-0.974928	-0.222521	0.433884	-0.900969
2017- 08-13	106.0	-0.781831	0.623490	-0.974928	-0.222521
2017- 08-14	107.0	0.000000	1.000000	0.000000	1.000000
2017- 08-15	108.0	0.781831	0.623490	0.974928	-0.222521

108 rows × 25 columns

	trend	<pre>sin(1,freq=W- SUN)</pre>	cos(1,freq=W- SUN)	sin(2,freq=W- SUN)	cos(2,freq=W- SUN)	sin
2017- 08-16	109.0	0.974928	-0.222521	-0.433884	-0.900969	
2017- 08-17	110.0	0.433884	-0.900969	-0.781831	0.623490	
2017- 08-18	111.0	-0.433884	-0.900969	0.781831	0.623490	
2017- 08-19	112.0	-0.974928	-0.222521	0.433884	-0.900969	
2017- 08-20	113.0	-0.781831	0.623490	-0.974928	-0.222521	
2017- 08-21	114.0	0.000000	1.000000	0.000000	1.000000	
2017- 08-22	115.0	0.781831	0.623490	0.974928	-0.222521	

2017- 08-23	116.0	0.974928	-0.222521	-0.433884	-0.900969
2017- 08-24	117.0	0.433884	-0.900969	-0.781831	0.623490
2017- 08-25	118.0	-0.433884	-0.900969	0.781831	0.623490
2017- 08-26	119.0	-0.974928	-0.222521	0.433884	-0.900969
2017- 08-27	120.0	-0.781831	0.623490	-0.974928	-0.222521
2017- 08-28	121.0	0.000000	1.000000	0.000000	1.000000
2017- 08-29	122.0	0.781831	0.623490	0.974928	-0.222521
2017- 08-30	123.0	0.974928	-0.222521	-0.433884	-0.900969
2017- 08-31	124.0	0.433884	-0.900969	-0.781831	0.623490

16 rows × 25 columns

ypred_svr

sales

store_nbr 1

family	AUTOMOTIVE	BABY CARE	BEAUTY	BEVERAGES	BOOKS	BREAD/BAKERY	CELE
2017-08-16	4.168328	0.0	3.106363	2325.245879	0.100142	373.672883	1
2017-08-17	4.171205	0.0	3.108065	2325.234816	0.100236	373.657439	1
2017-08-18	4.174432	0.0	3.108846	2325.228624	0.100270	373.645969	1
2017-08-19	4.176663	0.0	3.110402	2325.218258	0.100128	373.632541	1
2017-08-20	4.176519	0.0	3.109982	2325.207597	0.100150	373.618532	1
2017-08-21	4.179100	0.0	3.112900	2325.201505	0.100278	373.609427	1
2017-08-22	4.180521	0.0	3.113378	2325.193626	0.100241	373.597693	1
2017-08-23	4.181644	0.0	3.113919	2325.185312	0.100157	373.588922	1
2017-08-24	4.182878	0.0	3.114176	2325.175266	0.100292	373.576802	1
2017-08-25	4.184311	0.0	3.113415	2325.169632	0.100337	373.568393	1
2017-08-26	4.184841	0.0	3.113694	2325.160160	0.100217	373.558223	1
2017-08-27	4.183350	0.0	3.112574	2325.150750	0.100236	373.547657	1
2017-08-28	4.184480	0.0	3.114721	2325.145678	0.100366	373.541627	1
2017-08-29	4.184687	0.0	3.114931	2325.139185	0.100322	373.533325	1
2017-08-30	4.184661	0.0	3.115486	2325.132428	0.100213	373.527987	1
2017-08-31	4.184795	0.0	3.115784	2325.124179	0.100352	373.519514	1

16 rows × 1782 columns


```
fam = 'BOOKS'
nbr = '1'
plt.rcParams['figure.figsize'] = (15, 9)
plt.figure()
y.loc(axis = 1)['sales', nbr, fam].plot()
yfit_lnr.loc(axis = 1)['sales', nbr, fam].plot(label = 'Linear Regression')
#yfit_svr.loc(axis = 1)['sales', nbr, fam].plot(label = 'SVR')
#yfit_mean.loc(axis = 1)['sales', nbr, fam].plot(label = 'Mean')
#y.mean(axis = 1).plot()
#yfit_lnr.median(axis = 1).plot(label = 'Linear Regression')
#yfit_svr.median(axis = 1).plot(label = 'SVR')
#yfit_mean.mean(axis = 1).plot(label = 'Mean')
plt.legend()
plt.show()
```


ymean = yfit_lnr.append(ypred_lnr)
school = ymean.loc(axis = 1)['sales', :, 'SCHOOL AND OFFICE SUPPLIES']
ymean = ymean.join(school.shift(1), rsuffix = 'lag1') # I'm also adding school l
x = x.loc['2017-05-01':]

ymean.loc['2017-08-16':]

sales

store_nbr 1

family	AUTOMOTIVE	BABY CARE	BEAUTY	BEVERAGES	BOOKS	BREAD/BAKERY	CELE
2017-08-16	3.555439	0.0	5.867603	2177.101514	0.051118	375.696460	1
2017-08-17	3.157970	0.0	5.351209	1820.884426	0.000000	325.401119	1
2017-08-18	7.196938	0.0	4.625604	2226.318076	0.000000	360.358263	2
2017-08-19	5.081869	0.0	5.161570	2110.332182	0.000000	324.401823	
2017-08-20	1.890016	0.0	3.552465	791.784055	0.000000	122.069647	
2017-08-21	3.861995	0.0	5.501442	2086.850066	0.000000	350.405306	1
2017-08-22	3.870789	0.0	5.098935	2142.494108	0.000000	331.975768	1
2017-08-23	3.805114	0.0	5.927498	2152.189495	0.000000	374.242688	1
2017-08-24	3.201296	0.0	5.033964	1831.757276	0.000000	320.689802	1
2017-08-25	7.808126	0.0	4.222571	2217.743153	0.000000	353.374110	2
2017-08-26	5.231181	0.0	4.950071	2107.504993	0.000000	317.896659	
2017-08-27	2.180226	0.0	3.556282	766.607195	0.000000	116.138004	
2017-08-28	3.932675	0.0	5.609625	2067.059825	0.000000	346.750075	1
2017-08-29	3.741585	0.0	5.253178	2125.002831	0.000000	327.227568	1
2017-08-30	3.644864	0.0	6.388955	2108.349389	0.000000	369.009468	1
2017-08-31	3.123013	0.0	5.688508	1774.781559	0.000000	319.225734	1

16 rows × 1836 columns

x = x.join(ymean) # Concating linear result
xtest = xtest.join(ymean)
display(x, xtest)

	trend	sin(1,freq=W- SUN)	cos(1,freq=W- SUN)	sin(2,freq=W- SUN)	cos(2,freq=W- SUN)	sin
date	•					
2017- 05-01	クロ	0.000000	1.000000	0.000000	1.000000	
2017- 05-02	3 0	0.781831	0.623490	0.974928	-0.222521	
2017- 05-03	4.0	0.974928	-0.222521	-0.433884	-0.900969	
2017- 05-04	5.0	0.433884	-0.900969	-0.781831	0.623490	
2017- 05-05	60	-0.433884	-0.900969	0.781831	0.623490	
2017- 08-11	1040	-0.433884	-0.900969	0.781831	0.623490	
2017- 08-12	1050	-0.974928	-0.222521	0.433884	-0.900969	
2017- 08-13	1060	-0.781831	0.623490	-0.974928	-0.222521	
2017- 08-14	1070	0.000000	1.000000	0.000000	1.000000	
2017- 08-15	1090	0.781831	0.623490	0.974928	-0.222521	

107 rows × 1861 columns

	trend	sin(1,freq=W- SUN)	cos(1,freq=W- SUN)	sin(2,freq=W- SUN)	cos(2,freq=W- SUN)	sin
2017- 08-16	109.0	0.974928	-0.222521	-0.433884	-0.900969	

2017- 08-17	110.0	0.433884	-0.900969	-0.781831	0.623490
2017- 08-18	111.0	-0.433884	-0.900969	0.781831	0.623490
2017- 08-19	112.0	-0.974928	-0.222521	0.433884	-0.900969
2017- 08-20	113.0	-0.781831	0.623490	-0.974928	-0.222521
2017- 08-21	114.0	0.000000	1.000000	0.000000	1.000000
2017- 08-22	115.0	0.781831	0.623490	0.974928	-0.222521
2017- 08-23	116.0	0.974928	-0.222521	-0.433884	-0.900969
2017- 08-24	117.0	0.433884	-0.900969	-0.781831	0.623490
2017- 08-25	118.0	-0.433884	-0.900969	0.781831	0.623490
2017- 08-26	119.0	-0.974928	-0.222521	0.433884	-0.900969
2017- 08-27	120.0	-0.781831	0.623490	-0.974928	-0.222521
2017- 08-28	121.0	0.000000	1.000000	0.000000	1.000000
2017- 08-29	122.0	0.781831	0.623490	0.974928	-0.222521
2017- 08-30	123.0	0.974928	-0.222521	-0.433884	-0.900969
2017- 08-31	124.0	0.433884	-0.900969	-0.781831	0.623490

16 rows × 1861 columns

sales

store_nbr 1

family	AUTOMOTIVE	BABY CARE	BEAUTY	BEVERAGES	BOOKS	BREAD/BAKERY	CELEBRAT
date							
2017-05-01	0.0	0.0	2.0	825.0	0.0	116.33900	
2017-05-02	2.0	0.0	2.0	3179.0	0.0	447.23800	
2017-05-03	5.0	0.0	6.0	2479.0	1.0	434.02900	
2017-05-04	3.0	0.0	1.0	2454.0	0.0	438.21400	
2017-05-05	12.0	0.0	0.0	2243.0	1.0	398.96500	
2017-08-11	1.0	0.0	1.0	1006.0	0.0	145.60700	
2017-08-12	6.0	0.0	3.0	1659.0	0.0	243.22000	
2017-08-13	1.0	0.0	1.0	803.0	0.0	136.67900	
2017-08-14	1.0	0.0	6.0	2201.0	0.0	346.03800	
2017-08-15	4.0	0.0	4.0	1942.0	0.0	329.54102	

107 rows × 1782 columns

print(y.isna().sum().sum())

0

display(x, xtest)

trend sin(1,freq=W-cos(1,freq=W-sin(2,freq=W-cos(2,freq=W-sinSUN)SUN)SUN)

date					
2017- 05-01	2.0	0.000000	1.000000	0.000000	1.000000
2017- 05-02	3.0	0.781831	0.623490	0.974928	-0.222521
2017- 05-03	4.0	0.974928	-0.222521	-0.433884	-0.900969
2017- 05-04	5.0	0.433884	-0.900969	-0.781831	0.623490
2017- 05-05	6.0	-0.433884	-0.900969	0.781831	0.623490
2017- 08-11	104.0	-0.433884	-0.900969	0.781831	0.623490
2017- 08-12	105.0	-0.974928	-0.222521	0.433884	-0.900969
2017- 08-13	106.0	-0.781831	0.623490	-0.974928	-0.222521
2017- 08-14	107.0	0.000000	1.000000	0.000000	1.000000
2017- 08-15	108.0	0.781831	0.623490	0.974928	-0.222521

107 rows × 1861 columns

	trend	sin(1,freq=W- SUN)	cos(1,freq=W- SUN)	sin(2,freq=W- SUN)	cos(2,freq=W- SUN)	sin
2017- 08-16	109.0	0.974928	-0.222521	-0.433884	-0.900969	
2017- 08-17	110.0	0.433884	-0.900969	-0.781831	0.623490	
2017- 08-18	111.0	-0.433884	-0.900969	0.781831	0.623490	
2017- 08-19	112.0	-0.974928	-0.222521	0.433884	-0.900969	
2017-	113.0	-0.781831	0.623490	-0.974928	-0.222521	

U8-2U					
2017- 08-21	114.0	0.000000	1.000000	0.000000	1.000000
2017- 08-22	115.0	0.781831	0.623490	0.974928	-0.222521
2017- 08-23	116.0	0.974928	-0.222521	-0.433884	-0.900969
2017- 08-24	117.0	0.433884	-0.900969	-0.781831	0.623490
2017- 08-25	118.0	-0.433884	-0.900969	0.781831	0.623490
2017- 08-26	119.0	-0.974928	-0.222521	0.433884	-0.900969
2017- 08-27	120.0	-0.781831	0.623490	-0.974928	-0.222521
2017- 08-28	121.0	0.000000	1.000000	0.000000	1.000000
2017- 08-29	122.0	0.781831	0.623490	0.974928	-0.222521
2017- 08-30	123.0	0.974928	-0.222521	-0.433884	-0.900969
2017- 08-31	124.0	0.433884	-0.900969	-0.781831	0.623490

16 rows × 1861 columns

from joblib import Parallel, delayed

```
# Import necessary library
from sklearn.linear_model import Ridge, LinearRegression, ElasticNet
from sklearn.svm import SVR
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.ensemble import BaggingRegressor
from sklearn.ensemble import VotingRegressor

# SEED for reproducible result
SEED = 5
```

class CustomRegressor():

```
def __init__(self, n_jobs=-1, verbose=0):
    self.n_jobs = n_jobs
    self.verbose = verbose
    self.estimators_ = None
def _estimator_(self, X, y):
   warnings.simplefilter(action='ignore', category=FutureWarning)
    if y.name[2] == 'SCHOOL AND OFFICE SUPPLIES': # Because SCHOOL AND OFFIC
        r1 = ExtraTreesRegressor(n_estimators = 225, n_jobs=-1, random_state
        r2 = RandomForestRegressor(n_estimators = 225, n_jobs=-1, random_sta
        b1 = BaggingRegressor(base_estimator=r1,
                              n_estimators=10,
                              n_{jobs=-1}
                              random_state=SEED)
        b2 = BaggingRegressor(base_estimator=r2,
                              n_estimators=10,
                              n_jobs=-1,
                              random_state=SEED)
        model = VotingRegressor([('et', b1), ('rf', b2)]) # Averaging the re
    else:
        ridge = Ridge(fit_intercept=True, solver='auto', alpha=0.75, normali
        svr = SVR(C = 0.2, kernel = 'rbf')
        model = VotingRegressor([('ridge', ridge), ('svr', svr)]) # Averagin
    model.fit(X, y)
    return model
def fit(self, X, y):
    from tqdm.auto import tqdm
    if self.verbose == 0:
        self.estimators_ = Parallel(n_jobs=self.n_jobs,
                              verbose=0,
                              )(delayed(self._estimator_)(X, y.iloc[:, i]) f
    else:
        print('Fit Progress')
        self.estimators_ = Parallel(n_jobs=self.n_jobs,
                              verbose=0,
                              )(delayed(self._estimator_)(X, y.iloc[:, i]) f
    return
```

```
def predict(self, X):
        from tqdm.auto import tqdm
        if self.verbose == 0 :
            y_pred = Parallel(n_jobs=self.n_jobs,
                               verbose=0)(delayed(e.predict)(X) for e in self.est
        else:
            print('Predict Progress')
            y_pred = Parallel(n_jobs=self.n_jobs,
                               verbose=0)(delayed(e.predict)(X) for e in tqdm(sel
        return np.stack(y_pred, axis=1)
%%time
model = CustomRegressor(n_jobs=-1, verbose=1)
model.fit(x, y)
y_pred = pd.DataFrame(model.predict(x), index=x.index, columns=y.columns)
    Fit Progress
     100%
                                               1782/1782 [50:08<00:00, 6.46it/s]
    Predict Progress
     100%
                                               1782/1782 [03:35<00:00, 13.32it/s]
    CPU times: user 3min 2s, sys: 15.6 s, total: 3min 18s
    Wall time: 55min 40s
```

```
display(y_pred)
print(y_pred.isna().sum().sum())
```

sales

store_nbr 1

family	AUTOMOTIVE	BABY CARE	BEAUTY	BEVERAGES	BOOKS	BREAD/BAKERY	CELI
date							
2017-05-01	1.698524	0.0	2.173227	1579.802698	0.054388	245.079779	
2017-05-02	3.004028	0.0	2.616627	2680.868116	0.177364	409.074859	
2017-05-03	3.521669	0.0	3.814092	2386.076368	0.404251	407.459876	
2017-05-04	3.257565	0.0	3.335985	2214.912187	0.331597	382.893081	•
2017-05-05	5.520494	0.0	3.073227	2386.152081	0.267680	397.429907	
•••							
2017-08-11	2.418747	0.0	2.013310	1636.205361	-0.022421	260.527651	
2017-08-12	4.411518	0.0	3.135655	2173.003408	-0.047607	331.894410	
2017-08-13	3.088893	0.0	2.752154	1598.121771	-0.034620	251.354349	
2017-08-14	4.142985	0.0	4.142910	2239.278581	0.101574	364.541466	•
2017-08-15	4.359934	0.0	3.894137	2237.649700	0.063734	354.972784	

107 rows x 1782 columns

Λ

```
from sklearn.metrics import mean_squared_log_error
y_pred = y_pred.stack(['store_nbr', 'family']).clip(0.)
y_ = y.stack(['store_nbr', 'family']).clip(0.)
y_['pred'] = y_pred.values
print(y_.groupby('family').apply(lambda r : np.sqrt(np.sqrt(mean_squared_log_err
# Looking at error
print('RMSLE : ', np.sqrt(np.sqrt(msle(y_['sales'], y_['pred']))))
    family
    AUTOMOTIVE
                                   0.682456
    BABY CARE
                                   0.485725
    BEAUTY
                                   0.678844
    BEVERAGES
                                   0.429658
                                   0.345595
    B00KS
    BREAD/BAKERY
                                   0.398289
    CELEBRATION
                                   0.706130
    CLEANING
                                   0.508470
    DAIRY
                                   0.393521
    DELI
                                   0.418994
    EGGS
                                   0.532926
    FROZEN FOODS
                                   0.517150
    GROCERY I
                                   0.407054
    GROCERY II
                                   0.707978
    HARDWARE
                                   0.685809
    HOME AND KITCHEN I
                                   0.657512
    HOME AND KITCHEN II
                                   0.630601
    HOME APPLIANCES
                                   0.589133
    HOME CARE
                                   0.453047
    LADIESWEAR
                                   0.656678
    LAWN AND GARDEN
                                   0.636974
    LINGERIE
                                   0.750291
    LIQUOR, WINE, BEER
                                   0.688461
    MAGAZINES
                                   0.673514
                                   0.445274
    MEATS
    PERSONAL CARE
                                   0.474278
    PET SUPPLIES
                                    0.647409
    PLAYERS AND ELECTRONICS
                                    0.648474
                                    0.446971
    POULTRY
    PREPARED FOODS
                                   0.502954
    PRODUCE.
                                   0.400223
    SCHOOL AND OFFICE SUPPLIES
                                    0.659191
    SEAF00D
                                   0.674311
    dtype: float64
    RMSLE: 0.5956418338066279
y_pred.isna().sum()
```

sales

dtype: int64

ypred = pd.DataFrame(model.predict(xtest), index = xtest.index, columns = y.colu
ypred

Predict Progress 100%

1782/1782 [03:05<00:00, 17.47it/s]

sales

store_nbr 1

family	AUTOMOTIVE	BABY CARE	BEAUTY	BEVERAGES	BOOKS	BREAD/BAKERY	CELE
2017-08-16	4.101210	0.0	4.555177	2262.699439	0.083691	376.819611	1
2017-08-17	3.999122	0.0	4.505269	2088.280422	0.000000	353.284558	1
2017-08-18	5.929922	0.0	3.980679	2288.157058	0.000000	369.008065	1
2017-08-19	4.965905	0.0	3.877032	2209.862598	0.000000	348.557214	1
2017-08-20	3.073618	0.0	3.006838	1565.133852	0.000000	250.150492	
2017-08-21	4.058973	0.0	4.425900	2213.437938	0.057167	363.289727	1
2017-08-22	4.371059	0.0	4.122630	2217.087207	0.005848	353.989573	1
2017-08-23	4.234922	0.0	4.576363	2254.981841	0.011189	377.320787	1
2017-08-24	3.971611	0.0	4.438793	2104.928285	0.000000	350.620445	1
2017-08-25	6.203956	0.0	3.812185	2290.446241	0.000000	366.933996	1
2017-08-26	4.867389	0.0	3.832786	2216.427732	0.000000	344.879051	1
2017-08-27	3.105635	0.0	3.019963	1550.103784	0.000000	246.607038	
2017-08-28	4.106690	0.0	4.521539	2202.474459	0.032032	361.053611	1
2017-08-29	4.366303	0.0	4.228360	2210.058813	0.004319	352.237739	1
2017-08-30	4.235968	0.0	4.766981	2225.605043	0.000000	374.495130	1
2017-08-31	4.115426	0.0	4.796192	2072.149925	0.000000	351.192205	1

16 rows × 1782 columns

ypred = ypred.stack(['store_nbr', 'family'])
ypred

sales

	store_nbr	family	
2017-08-16	1	AUTOMOTIVE	4.101210
		BABY CARE	0.000000
		BEAUTY	4.555177
		BEVERAGES	2262.699439
		BOOKS	0.083691
2017-08-31	9	POULTRY	367.115985
		PREPARED FOODS	109.489971
		PRODUCE	1336.562983
		SCHOOL AND OFFICE SUPPLIES	136.896222
		SEAFOOD	14.133084

28512 rows × 1 columns

sub = pd.read_csv('sample_submission.csv')
sub['sales'] = ypred.values
sub.to_csv('submission.csv', index = False) # Submit
sub

	id	sales
0	3000888	4.101210
1	3000889	0.000000
2	3000890	4.555177
3	3000891	2262.699439
4	3000892	0.083691
28507	3029395	367.115985
28508	3029396	109.489971
28509	3029397	1336.562983
28510	3029398	136.896222
28511	3029399	14.133084

28512 rows x 2 columns

sub

	id	sales	7
0	3000888	4.101210	
1	3000889	0.000000	
2	3000890	4.555177	
3	3000891	2262.699439	
4	3000892	0.083691	
28507	3029395	367.115985	
28508	3029396	109.489971	
28509	3029397	1336.562983	
28510	3029398	136.896222	
28511	3029399	14.133084	

28512 rows × 2 columns

sub.to_csv('submission.csv', index = False)

✓ 0초 오후 5:49에 완료됨

