الشعبه: علوم تجريبيه		الإجابه النموذجيه لموضوع امتحال شهاده البكالوريا ﴿ دُورِهُ: 2024 ﴿ احْتِبَارُ مَادُهُ: الْعُلُومُ الْفَيزِياتِيهُ ۗ ا			
العلامة		عناصر الإجابة – الموضوع الأول			
مجموع	مجزأة	معاصر الإجاب – الموصوح الاون			
		الجزء الأول: (13 نقطة)			
		التمرين الأول: (06 نقاط)			
0,25	1. تعريف النّواة المشعة: نواة غير مستقرة تتفكك تلقائيا لتعطي نواة بنتا أكثر استقرارا مع اصدار				
		اشعاعات.			
0,50	$0,25\times2$	2. تركيب النواة $Z = 30$: $Z = 30$ بروتون $Z = 30$ نيترون $Z = 30$ نيترون			
	0,25	(بوزیترون) الکترون موجب e^0 الکترون موجب e^0 الکترون موجب e^0			
	0,25	$^{1}_{1}P o ^{1}_{0}n + ^{0}_{+1}e$ آلية إصداره: يتحول البروتون $^{1}_{1}$ إلى نيترون $^{1}_{0}$ وفق المعادلة:			
	$0,25\times2$				
		$\begin{cases} 62 = A \\ 30 = Z + 1 \end{cases} \Rightarrow \begin{cases} 62 = A \\ Z = 29 \end{cases}$ حسب قانوني الانحفاظ لصودي:			
	$0,25\times2$	$^{62}_{29}$ Cu $\rightarrow ^{62}_{28}$ Ni + $^{0}_{+1}$ e			
	0,20112	$\begin{cases} 62 = A \\ 29 = Z + 1 \end{cases} \Rightarrow \begin{cases} 62 = A \\ Z = 28 \end{cases}$ حسب قانوني الانحفاظ لصودي:			
		N/			
2,00		3.3. تمثيل التحولين النوويين: (عند النوويين النواي ال			
		$\frac{62}{28}$ Ni			
	0,50	33 62 Cu			
		$\begin{array}{c c} 32 & 62 \\ \hline & 30 \\ \hline \end{array} \mathbf{Zn}$			
		31			
		28 29 30 31 32 Z (N,Z) المخطط 1 . المخطط			
		السكل ١. المحطط (١٠,١)			
0,25	0,25	$E=m\cdot c^2$: گنیشتاین کتله طاقه لأینشتاین کتله کتله کتله کتله کتله کتله التکافو			
		$^{62}_{30}\mathrm{Zn}$ تعريف طاقة الربط لنواة $^{A}_{Z}X$ وحساب قيمتها بالنسبة للنواة.			
	0,25	\checkmark هي الطاقة اللازم تقديمها للنواة $^{A}_{Z}X$ الساكنة لتفكيكها إلى نويات متفرقة وساكنة.			
0,75		\checkmark هي الطاقة المتحررة خلال تشكل نواة Z^A_Z ساكنة انطلاقا من نويات متفرقة وساكنة.			
0,73	0.25	$F(AV) = [(Zm + (A - Z)m - m(AV)] \times c^2$			
	0,25 0,25	$E_{\ell} \begin{pmatrix} {}^{A}X \end{pmatrix} = \left[\left(Zm_{p} + (A - Z)m_{n} - m \begin{pmatrix} {}^{A}X \end{pmatrix} \right] \times c^{2} $ $E_{\ell} \begin{pmatrix} {}^{62}Zn \end{pmatrix} = \begin{bmatrix} (20 \times 1.0072 + (62 - 20) \times 1.0087 & 61.0170 \end{bmatrix} \times 021.5 = 520.8 \text{ MeV}$			
	0,23	$E_{\ell}\left(\frac{62}{30}Zn\right) = \left[\left(30 \times 1,0073 + (62 - 30) \times 1,0087 - 61,9179\right] \times 931,5 = 539,8 \text{MeV}\right]$			

الشعبة: علوم تجريبية		الإجابة النموذجية لموضوع امتحان شهادة البكالوريا دورة: 2024 اختبار مادة: العلوم الفيزيائية
		$^{62}_{29}$ Cu و النواة الأكثر استقرارا من بين النواتين $^{62}_{30}$ Zn و 3
	0,25	$\frac{E_{\ell}\left(\frac{62}{30}Zn\right)}{A} = \frac{539.8}{62} = 8,70 MeV / nuc$
0,75	0,25	$rac{E_\ell\left(rac{62}{30}Zn ight)}{A}$ $\langle rac{E_\ell\left(rac{62}{29}Cu ight)}{A}$ المقارنة:
	0,25	النواة الأكثر استقرارا هي النواة $^{62}_{29}\mathrm{Cu}$
0,25	0,25	ثالثا: 1. يفضل استخدام هذا النظير في العلاج لقصر مدة حياته.
0,25	0,25	$A(t)=A_0e^{-\lambda t}$:قانون النشاط الاشعاعي 2. قانون النشاط الاشعاعي
	0,25	$A_0=\lambda N_0=rac{\ln 2}{t_{1/2}} imesrac{m_0}{M}N_A$ يومة النشاط الاشعاعي الابتدائي: 3.3
1,00	0,25	$A_0 = \frac{\ln 2}{9,186 \times 3600} \times \frac{10 \times 10^{-6}}{62} \times 6,02 \times 10^{23} = 2,03 \times 10^{12} \mathrm{Bq}$
1,00	0,25	$t_1 = \frac{-t_{1/2}}{\ln 2} \ln \frac{A(t_1)}{A_0}$: استنتاج اللحظة المراجعة المرا
	0,25	$t_1 = \frac{-9,186}{\ln 2} \ln 0, 6 = 6,8 heures$
		التمرين الثاني: (07 نقاط)
0,50		المرحلة الأولى: التزلج على المستوي المائل AB
	0,50	1.المرجع المناسب لدراسة حركة الجملة: المرجع السطحي الأرضي.
0,75	0,25×3	A يَمثيل القوى الخارجية المطبقة على الجملة: R
		3. نص القانون الثاني لنيوتن: في مرجع غاليلي، المجموع الشعاعي للقوى الخارجية المطبقة
0,75	0,75	على جملة مادية يساوي في كل لحظة جداء كتلتها في شعاع تسارع مركز عطالتها.
		4. المعادلة التفاضلية التي تحققها فاصلة مركز العطالة:
1.05	0,25+0,5	$\sum \overrightarrow{F_{ext}} = m\overrightarrow{a_G} \Rightarrow \overrightarrow{P} + \overrightarrow{R} + \overrightarrow{f} = m\overrightarrow{a_G}$ نطبيق القانون الثاني لنيوتن:
1,25	0,5	$P\sin \alpha - f = ma_G \Rightarrow \frac{d^2x}{dt^2} = g\sin \alpha - \frac{f}{m}$ بالإسقاط على محور الحركة:
	0,50	$g \sin \alpha - \frac{f}{m} = a_G \Rightarrow f = m(g \sin \alpha - a_G)$: (f) شدة قوة الاحتكاك .5
0,75	0,25	$f = 60(9, 8 \times 0, 5 - 4) = 54N$

الشعبة: علوم تجريبية		2024 اختبار مادة: العلوم الفيزيائية	الإجابة النموذجية لموضوع امتحان شهادة البكالوريا دورة:
			المرحلة الثانية: دراسة القفز فوق بركة ماء
	0,25	$Ec_0 = \frac{1}{2}i$	nv_0^2 1. قيمة السرعة الابتدائية:
1,00	0,25	$v_{0} = \sqrt{\frac{2}{1}}$	$\frac{\overline{Ec_0}}{m}$
	0,50	$v_0 = \sqrt{\frac{2}{2}}$	$\frac{1000}{60} = 7,96 \text{m·s}^{-1}$
	0,25×4	$0.15473x_G^2$ -	$x_{G} - 0.5 = 0$: x_{G} الأرض السقوط على الأرض 1.2
2,0	0,25×2		ومنه: $x'_G = -0.47m$ ، $x_G = 6.9m$ ومنه:
2,0	0,5		2.2. المتزلج يجتاز البركة
			$x_G > 6m$: التبرير
			الجزء الثاني: (07 نقاط)
			التمرين التجريبي: (07 نقاط)
			أولا:
0,75			1. دلالات المعلومات:
	0,25×3		النقاوة، M : الكتلة المولية الجزئية، d :كثافة المحلول، P
		للحمض (نكتفي بـ 03 إجابات)	إشارة الخطر (بيكتوغرام)، HCl الصيغة الجزيئية المجملة
	0,25×2	$c_0 = \frac{10d}{M}$	$\frac{P}{36.5} = \frac{10 \times 1,19 \times 37}{36.5} = 12,06 mol \cdot L^{-1}$ التركيز المولي: 1.2
1,00	0,25×2	$c_1 V = c_0 V_0 \rightarrow V_0 =$	$\frac{c_1 V}{c_0} = \frac{0.482 \times 500}{12.06} \approx 20 mL$:حجم المحلول الأم:

الشعبة: علوم تجريبية		اختبار مادة: العلوم الفيزيائية	دورة: 2024	الإجابة النموذجية لموضوع امتحان شهادة البكالوريا	
	0,25			3. البروتوكول التجريبي:الاحتياطات الأمنية: قفازات، مئزر، نظاراتالوسائل:	
1,00	0,25	، مص، طارحة		- حوجلة عيارية $500m$ ، ماصة عيارية $0mL$ - المحلول التجاري (s_0) ، ماء مقطر خطوات العمل: s_0 من المحلول التجاري بواسطة الله عنا خذ s_0 من المحلول التجاري بواسطة ال	
	0,5		ها قليل من الماء نسدها ونرجها؛	* نسكب الحجم المأخوذ في الحوجلة العيارية ب انصيف الماء المقطر إلى $\frac{3}{4}$ حجم الحوجلة و $*$ نكمل بالماء المقطر الى خط العيار $*$ 500 m L	
0,25	0,25	ة دقائق	طيء يستغرق عد	ثانیا: 1. تصنیف التحول من حیث مدة حدوثه: تحول ب	
0,50	0,25×2	ي ي كوبان ي Ox/Red المشاركتان في التفاعل: Ox/Red الشائيتان Ox/Red و Ox/Red و Ox/Red الثنائيتان Ox/Red و Ox/Red الثنائيتان			
1,0	$0,25$ $0,25 \times 2$ $0,25$	و. تعریف $t_{1/2}$: هو الزمن اللازم لبلوغ تقدم التفاعل نصف قیمته النهائیة. $ \left[Al^{3+} \right]_{t_{1/2}} = \frac{\left[Al^{3+} \right]_f}{2} = 5 \times 10^{-2} mol \cdot L^{-1} $ قیمته بیانیا: $t_{1/2} = 1,4 min$			
0,50	0,25 0,25		$=\frac{1}{V_1}\frac{dn(Al^{3+})}{dt}$	4. حساب السرعة الحجمية لتشكل شوارد AI^{3+} عند $C = \frac{d[AI^{3+}]}{dt}$ $\frac{d}{dt} = 5 \times 10^{-2} mol \cdot L^{-1} \cdot min^{-1}$	
	0,25	للمتفاعلات.	-)، التركيز المولي	1.5. العوامل الحركية: درجة حرارة الوسط التفاعلي	
1,25	0,25 0,25			يتناقص $t_{1/2}$ زمن نصد $t_{1/2}$ بنناقص والمحيحة: أ $t_{1/2}$ بنناقص بالمحيدة الحجمية الحجمية	

الشعبة: علوم تجريبية		اختبار مادة: العلوم الفيزيائية	دورة: 2024	الإجابة النموذجية لموضوع امتحان شهادة البكالوريا
	0,25×2	$\begin{bmatrix} Al^{3+} \end{bmatrix} \times 10^{-2} mol. L^{-1}$	t(min)	.3.5
0,25	0,25)" عل الكيميائي بين الألمنيوم	طماطم، خل، الناتجة عن التفا	 6. تبرير صحة العبارة " يحذر المختصون من استخاصة إذا كانت ساخنة وتحتوي على حمض (التبرير: تسرب شوارد الألمنيوم إلى جسم الانسان والحمض، والرفع في درجة الحرارة يؤدي إلى زياد سلبا على صحة الانسان.

0,50

0,50

7. الحل المقترح: تغليف الأطعمة بورق طهي صحي ثم تغليفه بورق الألمنيوم.

العلامة		*12ti _ *, ti		
مجموع	مجزأة	عناصر الإجابة – الموضوع الثاني		
0,50	0,25	$Apollo 11$ (13) الجزء الأول: (13 نقطة) التمرين الأول: (06 نقاط) التمرين الأول: $\vec{F}_{L/A}$: $\vec{F}_{L/P}$ القوة وتمثيل القوة $\vec{F}_{L/P}$ المرجع الدراسة وتمثيل القوة المراسة وتمثيل المراسة		
	0,25	المرجع المناسب لدراسة حركة المركبة هو المرجع المركزي القمري.		
	0,25	$\sum \vec{F}_{ex} = m\vec{a} \Rightarrow \vec{F}_{L/A} = m\vec{a}$: عبارة سرعة المركبة الفضائية بتطبيق القانون الثاني لنيوتن		
1,25	0,25×3	$F_{L/A} = m \cdot a \Rightarrow \frac{G.m.M_L}{(R_L + h)^2} = m.\frac{v^2}{(R_L + h)} \Rightarrow v = \sqrt{\frac{G.M_L}{(R_L + h)}}$ بالإسقاط وفق الناظم:		
	0,25	$v = \sqrt{\frac{6,67 \times 10^{-11} \times 7,34 \times 10^{22}}{(1,73 + 0.11) \times 10^6}} = 1631,18 \text{m} \cdot \text{s}^{-1}$		
	0,5	$T_A = \frac{2\pi(R_L + h)}{v}$: عبارة دور المركبة الفضائية:		
0,75	0,25	$T_A = \frac{2\pi (1,73 + 0.11) \times 10^6}{1631,18} = 7087,54s = 1,97h$		
0,50	0,5	$T_A \neq 27,32$ المركبة ليست مستقرة بالنسبة للقمر ، لأن دورها يختلف عن دور القمر $T_A \neq 27,32$		
	0,25	1.5. الفرضية الصحيحة هي الفرضية (أ)		

وم تجريبية	الشعبة: عل	الإجابة النموذجية لموضوع امتحان شهادة البكالوريا دورة: 2024 اختبار مادة: العلوم الفيزيائية
	0,25	1.2.5. المعادلة التفاضلية التي تحققها سرعة مركز عطالة المطرقة:
		بتطبيق القانون الثاني لنيوتن على مركز عطالة المطرقة في المرجع السطحي القمري:
	0,25	$\sum \vec{F}_{ext} = m\vec{a}_G \Rightarrow \vec{P} = m\vec{a}_G$
3,00	$0,25\times2$	$a_G = -g_L \Rightarrow \frac{dv}{dt} = -g_L$ بالإسقاط وفق محور الحركة:
	0,50	$v_z(t) = -g_L t$: المعادلتان الزمنيتان: 2.2.5
	0,50	$z(t) = -\frac{1}{2}g_L t^2 + h$
	0,25×2	$t = \sqrt{\frac{2(h-h_1)}{g_1}}$ = 1.2.5 cmlp. the transfer that $t = \sqrt{\frac{2(h-h_1)}{g_1}}$
	0,25	$t = \sqrt{\frac{2 \times (1, 5 - 0, 05)}{1,62}} = 1,34s$
	0,20	التمرين الثاني: (07 نقاط)
0,75	0,25×3	E u_R u_b u_b u_b u_b u_b
		i (L,r)
		2. إثبات المعادلة التفاضلية للدارة الكهربائية: di
	$0,25\times2$	$u_R + u_b = E \implies R.i + r.i + L \frac{di}{dt} = E$ بتطبیق قانون جمع التوترات:
1,00	0,25	$(R+r)\cdot\frac{u_R}{R} + L\cdot\frac{1}{R}\cdot\frac{du_R}{dt} = E$: بأخذ $i = \frac{u_R}{R}$
	0,25	$rac{du_R}{dt} + rac{\left(R+r ight)}{L} \cdot u_R = rac{R}{L} \cdot E$: منه
		auنتتاج عبارة الثابتين A و $ au$:
	0,25	من: $\frac{du_R(t)}{dt} = \frac{A}{\tau}e^{-\frac{1}{\tau}t}$ نجد : $u_R(t) = A\left(1-e^{-\frac{1}{\tau}t}\right)$ من:
	0,25	: بالنشر نجد: $\frac{A}{\tau}e^{-\frac{1}{\tau}t} + \frac{\left(R+r\right)}{L} + A\left(1-e^{-\frac{1}{\tau}t}\right) = \frac{R}{L} \cdot E$
1,75	0,25	$\left(\frac{A}{\tau} - \frac{(R+r)}{L} \cdot A\right) \cdot e^{-\frac{t}{\tau}} + \frac{(R+r)}{L} \cdot A - \frac{R}{L} \cdot E = 0$
	0,25	$\begin{cases} \left(\frac{A}{\tau} - \frac{(R+r)}{L} \cdot A\right) = 0 \\ \frac{(R+r)}{L} \cdot A - \frac{R}{L} \cdot E = 0 \end{cases} \Rightarrow \begin{cases} \tau = \frac{L}{R+r} \\ A = \frac{E \cdot R}{R+r} = R \cdot I_0 = U_{R \text{max}} \end{cases}$
	0,25	(L L)
	$0,25\times2$	المدلول الفيزيائي: $ au$ ثابت الزمن وهو الزمن اللازم لبلوغ قيمة $u_R(t)$ % من قيمته العظمى. A التوتر الأعظمى بين طرفى الناقل الأومى
		H . اللولز الأعظمي بين طرقي الناس المولمي

الشعبة: علوم تجريبية		الإجابة النموذجية لموضوع امتحان شهادة البكالوريا دورة: 2024 اختبار مادة: العلوم الفيزيائية
		لا التحليل البعدي لثابت $ au$ المميز للدارة وتحديد قيمته بيانيا:
0,75	0,25	$\tau = \frac{L}{R+r} \Longrightarrow \left[\tau\right] = \frac{\left[L\right]}{\left[R\right]} = \frac{\left[i\right]}{\left[i\right]} = \left[t\right] = T$
	0,25	τ له بُعْدُ الزّمن ت ب ب ب د ۱ م ۱ م ۱ م ۱ م ۱ م ۱ م ۱ م ۱ م ۱ م ۱
	0,25	$u_R(\tau) = 0.63 \cdot U_{Rmax} = 2.1$ تحدید قیمته بیانیا:
	0,23	au=1,2ms : من البيان (1) نقرأ
		5. التحديد البياني للمجال الزمني لكل من النظامين الانتقالي والدائم:
	0,25	$(t \in [0; 7]s]$ النظام الانتقالي: $t \in [0; 6]s$)
	0,25	(t > 7s) النظام الدائـــم: $t > 6s$
1,00	0,50	$u_R(t)$ يتطور التيار $i(t)$ بنفس كيفية تطور التوتر $i(t)=rac{1}{R}u_R(t)$ حسب قانون أوم
		مر أي تؤخر الوشيعة ظهور التيار في الدارة، فتزداد شدة التيار الكهربائي لفترة قصيرة من قيمة
		معدومة في اللحظة $t=0$ إلى قيمة عظمى I_0 (نظام انتقالي) ثم تحافظ على نفس القيمة (نظام
		دائم).
	. تعيين قيمة المقدار $\dfrac{di(t)}{dt}$ أثناء النظام الدائم:	
0,50	0,25×2	$rac{di(t)}{dt}$ = 0 منه: $i(\infty)$ = I_0 = C^{te} شدة التيار ثابتة
		ثانيا: الوشيعة مزودة بنواة حديدية
0,25	0,25	1. المقدار المتوقع تغيره هو ذاتية الوشيعة.
		2. تحديد بيانيا الثابت 'τ المميز للدارة الجديدة:
0,50	0,25×2	$ au'=2,4ms$: من البيان $u_{R}(au)=0,63.U_{Rmax}=2,1\mathrm{V}$
0,50	0,25	$ au=rac{L}{R+r}$ يَأْثِيرِ النواة الحديدية على ذاتية الوشيعة: $ au=rac{L}{R+r}$ $ au'> au\Rightarrow L'>L$

0,25

0,25

0,25

عند إدخال نواة حديدية في قلب وشيعة تزداد الذاتية L للوشيعة وبالتالي يزداد ثابت الزمن.

الجزء الثاني: (07 نقاط)

التمرين التجريبي: (07 نقاط)

1. احتياطات الأمن والوقاية: مئزر، قفازات، نظارات

الشعبة: علوم تجريبية		جابة النموذجية لموضوع امتحان شهادة البكالوريا دورة: 2024 اختبار مادة: العلوم الفيزيائية					
		2. أسماء عناصر التركيب التجريبي:					
		① فتحة خروج الماء ② مبرد ③ فتحة دخول الماء					
0,75	$0,25\times2$	 (دورق کروي) مسخن کهربائي مسخن کهربائي 					
	0,25	نضع المبرد شاقوليا على البالون لتجنب ضياع المادة حيث تتكاثف الأبخرة على جدران المبرد					
		وترتد للوسط التفاعلي.					
	0,25	3. دور حمض الكبريت: وسيط يسرع التفاعل					
0,50	0,25	دور حجر الخفان: تنظيم درجة حرارة الوسط التفاعلي في البالون					
0,25	0,25	4. دور العنصر @: إبعاد المسخن الكهربائي عن البالون عند الحاجة لذلك.					
0,25	0,25	$C_5H_{12}O(l)+C_2H_4O_2(l)=C_7H_{14}O_2(l)+H_2O(l)$:5. المعادلة الكيميائية: 5. المعادلة الكيميائية					
		1.6. كمية المادة الابتدائية للمتفاعلين:					
		التجربة 01:					
		$n_i(alcool) = \frac{m}{M} = \frac{\rho V_1}{M} = \frac{0.81 \times 20}{88} \approx 0.18 mol$					
	0,25	m m					
	0,25	$n_i(acide) = \frac{m}{M} = \frac{\rho V_2}{M} = \frac{1,05 \times 10}{60} \approx 0,18 mol$					
		التجربة 02:					
	0,25	$n_i(alcool) = \frac{m}{M} = \frac{\rho V_1}{M} = \frac{0.81 \times 20}{88} \approx 0.18 mol$					
		2.2					
	0,25	$n_i(acide) = \frac{m}{M} = \frac{\rho V_2}{M} = \frac{1,05 \times 25}{60} \approx 0,44mol$					
F 00	0,25	1.2.6. تحديد صنف الكحول واستنتاج قيمة نسبة التقدم النهائي للتفاعل:					
5,00	0,25	✓ صنف الكحول: كحول أولي (من الوثيقة 01)					
	0,25	$ au_f = 0.67$ نسبة التقدم النهائي: الكحول أولي والمزيج متكافئ في كمية المادة. منه:					
		$r=\frac{n_{exp}}{}$:مردود التحول:					
		n_{max}					
	0,25	$n_{exp} = \frac{\rho V}{M} = \frac{0.87 \times 16}{130} \approx 0.11 mol$					
	0,25	$n_{max} = 0.18mol$					
		$r = \frac{0.11}{0.18} \approx 0.61 \rightarrow r = 61\%$					
	0,25	0,10					
	$0,25\times2$	أثناء تحضير الأستر يحدث ضياع طفيف للمادة بسبب التبخر وكذلك عند تنقية $r\langle au_f$					
		واستخلاص الأستر.					

وم تجريبية	الشعبة: علم	ة: العلوم الفيزيائية	2024 اختبار ماد	البكالوريا دورة: ا	موضوع امتحان شهادة	الإجابة النموذجية ل
	0,25				$\tau_f' = \frac{x_f}{x_{\text{max}}} : \tau_f'$	3.6. حساب قيمة
						جدول التقدم:
			$C_5H_{12}O$	$+C_2H_4O_2=$	$=C_7H_{14}O_2$	$+H_2O$
	0,25×2	ح. ابتدائية	0,18mol	0,44mol	0	0
		ح. انتقالية	0,18 - x	0,44 - x	x	x
		ح. نهائية	$0.18 - x_f$	0,44 - x _f	x_f	x_f
	0,25×3	$x_f = 0.16mol$; $x'_f = 0.67mol$				
	0,25			$ \tau_f = \frac{0.16}{0.18} \simeq $	0,89	
						4.6. الاستنتاج:
	0,25		لمادة.	بر متكافئ في كمية ا	ند استخدام مزیج غب	تزداد قیمهٔ $ au_f$ عد