Claims

- 1. Process of forming an organic compound wherein
 - (a) a component (A) containing at least one cyclic carbonate group having the general formula (I):

$$R^2$$
 R^3 R^4 (I)

wherein:

5

10

15

20

R², R³ and R⁴ are, each independently, chosen from hydrogen, alkyl, alkenyl, wherein alkyl and alkenyl may contain from 0 to 8 ether bridges, and/or may be substituted by one or more aryl, hydroxyl group, and/or cyclic carbonate group of formula (II)

$$\begin{array}{c|c}
 & O \\
 & O \\$$

wherein R^2 ', R^3 ' and R^4 ' are, each independently, chosen from hydrogen, alkyl, alkenyl, wherein alkyl and alkenyl may contain from 0 to 8 ether bridges, and/or may be substituted by one or more aryl, hydroxyl group and/or Y group; Y is an electrophilic group selected from ammonium $-N^+(R^1)$ (R^1 ') (R^1 ') R^1 ') R^1 ' and R^1 ' (R^1 ') (R^1 ') R^1 ') R^1 ' and R^1 ', wherein each n, independently, is 0 or 1 and each R^1 , R^1 ' and R^1 '', independently, represents an alkyl optionally substituted by one or more aryl, Y group and/or cyclic carbonate group of formula (III)

$$R^{2^n}$$
 O O R^{4^n} (III)

wherein R²", R³" and R⁴" are, each independently, chosen from hydrogen, alkyl, alkenyl, wherein alkyl and alkenyl may contain from 0 to 8 ether bridges, and/or may be substituted by one or more aryl and/or hydroxyl group;

5 Z- represents an anion;

15

20

25

- (b) is reacted with ammonia, hydrazine or an organic compound (B) containing at least one reactive nucleophilic function X wherein each X is, independently, chosen from a primary amino or hydrazo, secondary amino or hydrazo, thiol, hydroxy, and/or oxime;
- 10 (c) such that the cyclic carbonate is opened and that an organic compound (C) containing at least one unit of the general formula -X-CO-O- is formed.
 - 2. Process according to claim 1, wherein component (A) contains at least two carbonate cycles.
 - 3. Process according to any of claims 1 or 2, wherein component (A) is chosen from 4-(trimethylammoniummethyl)-1,3-dioxolane-2-one, 4-(N-benzyl-N,N-dimethylammoniummethyl)-1,3-dioxolane-2-one and the tetracarbonate made starting from the tetraglycidylether of metaxylylenediamine.
 - 4. Process according to claim 1, wherein an organic compound (B) which contains at least one nucleophilic function X which is an amino group is used.
 - Process according to claim 4, wherein component (B) is an amine of formula (IX),
 (X), (XI) or (XII)

wherein

R³³ is an alkyl, optionally substituted by hydroxy, tertiary amine and/or aryl, and optionally containing from 1 to 20 ether bridges and/or from 1 to 3 tertiary amine bridges,

 R^{34} , R^{5} , R^{6} , R^{12} , R^{13} , R^{14} , R^{15} and R^{16} are, independently, chosen from the group of

- 10 · hydrogen, and
 - alkyl, optionally substituted by hydroxy, tertiary amine and/or aryl, and optionally containing from 1 to 8 ether bridges and/or from 1 to 3 tertiary amine bridges,
 - with the proviso that, respectively, R^{33} and R^{34} , R^5 and R^6 , R^{12} and/or R^{13} and/or R^{14} , R^{15} and R^{16} may be linked together in order to form a ring,
- R⁷, R⁸, R⁹, R¹⁰, R¹⁷ and R¹⁸ are, independently, chosen from alkylene, alkenylene, arylene and aralkylene chains which may contain from 1 to 8 ether bridges and/or from 1 to 3 tertiary amine bridges,

 R¹¹ is hydrogen or alkyl.
- 20 6. Process according to claim 4, wherein component (B) contains at least two primary or secondary amino groups.
 - 7. Process according to claim 4, wherein compound (B) is an amine chosen amongst cyclohexylamine, N-methylbutylamine, N-methylbenzylamine, piperidine,

piperazine, morpholine, benzylamine, diethylenetriamine, ethanolamine, diethanolamine and polyoxyalkylene amines and diamines.

8. Process according to claim 1, wherein the reaction temperature is comprised between 0 and 120°C.

5

10

- Process according to claim 1, wherein the amount of component (A) and compound
 (B) are such that the molar ratio of cyclic carbonate groups to nucleophilic groups X is from 0.5 to 2.
- Process according to claim 1, wherein the reaction is made in a solvent chosen among: alcohol, ether, ester, dimethylformamide, dimethylsulfoxide,
 N-methylpyrolidone and water.
- 11. Process according to claim 1, wherein component (A) is prepared by reacting compounds (A) where the electrophilic group Y is chloride or bromide or iodide with a nucleophilic compound such as a tertiary (trialkyl)amine, or a trialkyl phosphine or phosphite.
- 20 12. Products obtainable by the process according to claim 1 comprising at least one –X-CO-O- group and a hydroxy group in β-position of said –X-CO-O- group and at least one Y-group according to at least one of the structures

wherein X, R², R³, R⁴ and Y are such as defined in claim 1 or, in case R², R³, R⁴ and Y contain a cyclic carbonate group themselves, the structures resulting from the ring-opening of said cyclic carbonate group.

- 13. Products according to claim 12 wherein X is N.
- 30 14. Products according to claim 13 responding to one of the following formula or their mixtures