Package 'elm'

January 10, 2014

Type Package	
Title Exact linear regression	
Version 0.1	
Date 2013-11-17	
Description Provides an implementation of exact t	tests for the coefficients of a linear regression.
Depends R (>= 2.10.0), stats, Rglpk, quadprog	
License GPL-2	
Index	4
elm-package Exact linear models	
Description Implementation of exact test of linear regression Details	ons.
Version: Date:	elm Package 0.1 2013-11-17 GPL-2

^{~~} An overview of how to use the package, including the most ~~ ~~ important functions ~~

2 elm

Author(s)

Karl Schlag, Olivier Gossner, Gareth Liu-Evans and Oliver Reiter

References

Olivier Gossner, Karl H. Schlag, "Finite-sample exact tests for linear regressions with bounded dependent variables", Journal of Econometrics, Volume 177, Issue 1, November 2013, Pages 75-84, ISSN 0304-4076, http://dx.doi.org/10.1016/j.jeconom.2013.06.003.

See Also

http://homepage.univie.ac.at/karl.schlag/research/statistics/

elm

Exact linear models

Description

Uses exact tests for the coefficients of linear regressions.

Usage

```
elm(Y, X, lower = 0, upper = 1,
    alternative = "greater",
    alpha = 0.05,
    coefs = 2,
    nullvalue = 0,
    upperbetabound = 1,
    lambda = 1, lambdamm = 1,
    qq = 0.0001, qqmm = 0.0001,
    iterations = 1000,
    steppc = 0.1,
    silent = FALSE,
    verbose = TRUE,
    na.action = getOption("na.action"))
```

Arguments

Υ	dependent variable, as matrix.
Χ	independent variable, as matrix.
lower, upper	the theoretical lower and upper bounds on the data outcomes known ex-ante before gathering the data.
alternative	the hypothesis to be tested, "less" or "greater" (default).
alpha	the type I error.
coefs	index of the coefficient to be tested
nullvalue	the critical value for the null hypothesis

elm 3

upperbetabound the upper bound of beta in the set of the alternative hypothesis. The program

tries to find a beta in [nullvalue, upperbetabound] which brings the typeII error to 0.5. If upperbetabound is set to NULL, it will try to guess a usable upperbetabound and slowly increase (steppc controls the increases) it until it finds an optimal beta. This could be, however, computationally expensive.

steppc Controls the size of the steps taken in finding the optimal beta. The stepwise

increase is upperbetabound * steppc. Default is 0.1.

lambda

lambdamm

iterations number of iterations

qq

qqmm

silent Should warnings during the procedure be displayed? Default is FALSE. verbose If FALSE, it prints only essential summary of the test. Default is TRUE. na.action How to cope with missing values. Uses system-default as default value.

Details

This function computes several exact tests for the coefficient of a linear regression. For an explanation as to how the tests are constructed, please refer to the paper mentioned below.

Author(s)

Karl Schlag, Olivier Gossner, Gareth Liu-Evans and Oliver Reiter

References

Olivier Gossner, Karl H. Schlag, "Finite-sample exact tests for linear regressions with bounded dependent variables", Journal of Econometrics, Volume 177, Issue 1, November 2013, Pages 75-84, ISSN 0304-4076, http://dx.doi.org/10.1016/j.jeconom.2013.06.003.

See Also

http://homepage.univie.ac.at/karl.schlag/research/statistics.html

Examples

```
## step example  n <- 40   h <- 0.5   Y <- sample(c(0, 1), size = n, replace = TRUE)   X <- cbind(1, runif(n = n) < h)   elm(Y, X, 0, 1, coefs = 2, nullvalue = 0, upperbetabound = NULL)
```

Index

```
*Topic exact method
elm, 2
*Topic linear regression
elm, 2
elm, 2
elm-package, 1
```