有次品 56 件,能否认为这项新工艺显著地影响产品的质量(α=0.05)?

19 对一台设备进行无故障运行时间检测,记录其 10 次无故障运行时间为(单位:h):520,480,1200,950,2150,1950,1860,920,2010,2041.已知设备无故障运行时间服从指数分布,试问能否认为该设备的平均无故障运行时间超过 1500 h(α =0.05)?

20. 某药厂研发了一种能够降低血压的新药,为了了解该药的疗效,随机抽取了 15 名高血压 患者,并得到他们使用该药治疗前后的舒张压数据,如下所示:

患者编号	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
治疗前舒张 压/mmHg	101.4	110	95	115.6	102.5	113	108	102	100	108	120	118	98	99	102
治疗后舒张 压/mmHg	95.9	90.4	88.3	116.8	96	110	100	90	95	88.5	115	118.6	92.5	90.5	102.5

假设舒张压数据来自正态总体,在检验水平 0.05 下,试检验该药是否有效?

2). 袋中装有8只球,其中红球数未知,在其中任取3只,记录红球的只数X,然后放回,再任取3只,记录红球的只数,然后放回,如此重复进行了112次,其结果如下

红球只数	0	1	2	3
出现次数	1	31	55	25

试取 α=0.05 检验假设

$$H_0: X$$
 服从超几何分布,即 $P(X=k) = \frac{C_5^k C_3^{3-k}}{C_5^3}$ (k=0,1,2,3)

即检验假设 Ho:红球的只数为 5.

22. 卢瑟福在 2 612 个相等时间间隔(每个时间间隔为 $\frac{1}{8}$ min)内,观察了放射性物质放射的粒子数.下表中 n_x 是在一个时间间隔内观察到x个放射粒子的时间间隔个数:

x	0	1	2	3	4	5	6	7	8	9	10	11	合计
$n_{_x}$	57	203	383	525	532	408	273	139	49	27	10	6	2 612

试检验在每个时间间隔内观察到的粒子数是否服从泊松分布(α=0.05)?

23. 在一批灯泡中抽取 300 只做寿命试验,其结果如下:

寿命 t/h	<i>t</i> ≤ 100	$100 < t \le 200$	200< <i>t</i> ≤ 300	t>300
灯泡只数	121	78	43	58

取 $\alpha = 0.05$. 试检验假设 H_0 : 灯泡寿命服从指数分布,即

$$f(t) = \begin{cases} 0.005 e^{-0.005t}, & t \ge 0, \\ 0, & t < 0 \end{cases}$$

24. 对某汽车零件制造厂所生产的汽缸螺栓口径进行抽样检验,测得100个数据分组列表如下: