

Reflexión y transmisión de ondas

Los ejercicios con (*) entrañan una dificultad adicional. Son para investigar después de resolver los demás.

Discontinuidades en cuerdas

- 1. Nos interesa estudiar la unión de dos cuerdas de distinta densidad lineal λ_{m1} y λ_{m2} , por lo que las consideraremos semi-infinitas. Mientras se las somete a una tensión constante, T_0 , incide desde la primera una onda $\psi_i(x,t) = A_i \cos(k_1 x - \omega t)$.
- a) Calcule k_1 y k_2 , es decir, los números de onda a cada lado de la unión.
- b) Plantee la solución más general para $\psi(x,t)$ de cada lado de la unión.
- c) ¿Qué condiciones deben verificarse en el punto de unión de las cuerdas?
- d) Usando b) y c), calcule la perturbación $\psi(x,t)$ en cada una de las cuerdas.
- e) Determine coeficientes de reflexión, R, y transmisión, T. ¿Qué sucede en el caso $\lambda_{m2} \to \infty$? ¿Y sí $\lambda_{m1} \to \lambda_{m2}$?
- 2. La cuerda de la izquierda, de densidad λ_{m1} y largo L, se encuentra \emptyset fija en su extremo izquierdo a la pared, y en su extremo derecho a otra λ_{m1} cuerda semi-infinita de densidad λ_{m2} . Todo el sistema se encuentra sometido a tensión T_0 . Suponga que por la cuerda de densidad λ_{m2} incide la onda armónica $\psi_i(x,t) = A_i e^{i(\omega t + k_2 x)}$.

- a) Imponga las condiciones de contorno apropiadas y determine $\psi(x,t)$ en cada sector de la cuerda.
- b) Halle los valores de L para los cuales hay un nodo de desplazamiento en la unión de las cuerdas.
- 3. Una cuerda de densidad lineal λ_m sometida a una tensión T_0 tiene en su centro, x=0, un pequeño nudo de masa M. Este causa que sea parcialmente reflejada viajando en la dirección de las x positivas $\overline{}$ dada por $\psi_i(x,t) = A_i e^{i(kx - \omega t)}$.

- a) Plantee la solución más general para la onda $\psi(x,t)$ a cada lado del nudo,
- b) y las condiciones de empalme. Demuestre que una condición le permite definir que $A_i + A_r = A_t$ y que la otra implica que $A_i - A_r = (1 + i \frac{M\omega^2}{kT}) A_t$.

Interfaces para el sonido

4. Como nos interesa estudiar la unión de dos caños cuadrados de área transversal A_1 y A_2 los consideramos semi-infinitos. Desde el izquierdo incide una onda acústica $\delta p_i(x,t) = a_i \cos(k_i x - \omega t)$. Suponga despreciables los efectos de la viscosidad y dé por conocidos $A_1, A_2,$ presión media P_0 , densidad media ρ_0 , v_s , ω , a_i . Halle amplitudes de presión y desplazamiento de moléculas a causa de las ondas reflejadas y transmitidas.

- 5. A este armado con idénticas áreas del problema anterior incide la op misma onda. Halle $\delta p(x,t)$ y $\psi(x,t)$ en cada tramo.
 - Α, aire agua
- 6. (*) Desde el aire incide en dirección perpendicular a una superficie calma de agua una onda de sonido plana $\delta p_i(y,t) = A_i \cos(k_i y - \omega t)$. Hallar la onda reflejada $\delta p_r(y,t)$ y transmitida $\delta p_t(y,t)$.
- 7. (*) Calcule los coeficientes de reflexión y de transmisión del sonido en las siguientes interfases: a) Fe-Cu, b) Al-Pb