

Data Visualization Lab

Estimated time needed: 45 to 60 minutes

In this assignment you will be focusing on the visualization of data.

The data set will be presented to you in the form of a RDBMS.

You will have to use SQL queries to extract the data.

Objectives

In this lab you will perform the following:

- Visualize the distribution of data.
- Visualize the relationship between two features.
- Visualize composition of data.
- · Visualize comparison of data.

Demo: How to work with database

Download database file.

```
Connect to the database.
```

```
In [2]: import sqlite3
conn = sqlite3.connect("m4_survey_data.sqlite") # open a database connection
```

Import pandas module.

```
In [3]: import pandas as pd
```

Demo: How to run an sql query

```
In [4]: # print how many rows are there in the table named 'master'
QUERY = """
SELECT COUNT(*)
FROM master
"""

# the read_sql_query runs the sql query and returns the data as a dataframe
df = pd.read_sql_query(QUERY,conn)
df.head()
```

```
Out[4]: COUNT(*)

0 11398
```

Demo: How to list all tables

```
In [5]: # print all the tables names in the database
    OUERY = """
    SELECT name as Table_Name FROM
    sqlite_master WHERE
    type = 'table'
    """

# the read_sql_query runs the sql query and returns the data as a dataframe
    pd.read_sql_query(QUERY,conn)
```

:	Table_Name
0	EduOther
1	DevType
2	LastInt
3	JobFactors
4	WorkPlan
5	WorkChallenge
6	LanguageWorkedWith
7	LanguageDesireNextYear
8	DatabaseWorkedWith
9	DatabaseDesireNextYear
10	PlatformWorkedWith
11	PlatformDesireNextYear
12	WebFrameWorkedWith
13	WebFrameDesireNextYear
14	MiscTechWorkedWith
15	MiscTechDesireNextYear
16	DevEnviron
17	Containers
18	SOVisitTo
19	SONewContent
20	Gender
21	Sexuality
22	Ethnicity
23	master

Demo: How to run a group by query

```
In [6]: QUERY = """
SELECT Age, COUNT(*) as count
FROM master
group by age
order by age
"""
pd.read_sql_query(QUERY, conn)
```

Out[6]:

	Age	count
0	NaN	287
1	16.0	3
2	17.0	6
3	18.0	29
4	19.0	78
5	20.0	109
6	21.0	203
7	22.0	406
8	23.0	581
9	24.0	679
10	25.0	738
11	26.0	720
12	27.0	724
13	28.0	787
14	29.0	697
15	30.0	651
16	31.0	531
17	32.0	489
18	33.0	483
19	34.0	395
20	35.0	393
21	36.0	308
22	37.0	280
23	38.0	279
24	39.0	232
25	40.0	187
26	41.0	136
27	42.0	162
28	43.0	100
29	44.0	95
30	45.0	85
31	46.0	66
32	47.0	68
33	48.0	64
34	49.0	66
35	50.0	57
36	51.0	29
37	52.0	41
38	53.0	32
39	54.0	26
40	55.0	13
41	56.0	16
42	57.0	11
43	58.0	12
44	59.0	11
45	60.0	2
46	61.0	10
47	62.0	5
48	63.0	7

	Age	count
49	65.0	2
50	66.0	1
51	67.0	1
52	69.0	1
53	71.0	2
54	72.0	1
55	99.0	1

Demo: How to describe a table

```
In [7]: table_name = 'master' # the table you wish to describe

QUERY = """
SELECT sql FROM sqlite_master
WHERE name= '{}'
""".format(table_name)

df = pd.read_sql_query(QUERY,conn)
print(df.iat[0,0])
```

```
CREATE TABLE "master" (
 "index" INTEGER,
  "Respondent" INTEGER,
"MainBranch" TEXT,
"Hobbyist" TEXT,
  "OpenSourcer" TEXT,
"OpenSource" TEXT,
"Employment" TEXT,
  "Country" TEXT,
"Student" TEXT,
   "EdLevel" TEXT,
   "UndergradMajor" TEXT,
   "OrgSize" TEXT,
   "YearsCode" TEXT,
   "Age1stCode" TEXT,
   "YearsCodePro" TEXT,
   "CareerSat" TEXT,
  "JobSet" TEXT,
"MgrIdiot" TEXT,
"MgrMoney" TEXT,
"MgrWant" TEXT,
"JobSeek" TEXT,
  "LastHireDate" TEXT,
"FizzBuzz" TEXT,
"ResumeUpdate" TEXT,
   "CurrencySymbol" TEXT,
   "CurrencyDesc" TEXT,
   "CompTotal" REAL,
   "CompFreq" TEXT,
  "ConvertedComp" REAL,
"WorkWeekHrs" REAL,
  "WorkRemote" TEXT,
"WorkLoc" TEXT,
  "ImpSyn" TEXT,
"CodeRev" TEXT,
   "CodeRevHrs" REAL,
   "UnitTests" TEXT,
   "PurchaseHow" TEXT,
  "PurchaseWhat" TEXT,
"OpSys" TEXT,
  "BlockchainOrg" TEXT,
"BlockchainIs" TEXT,
"BetterLife" TEXT,
   "ITperson" TEXT,
   "OffOn" TEXT,
   "SocialMedia" TEXT,
   "Extraversion" TEXT,
  "ScreenName" TEXT,
"SOVisit1st" TEXT,
   "SOVisitFreq" TEXT,
   "SOFindAnswer" TEXT,
   "SOTimeSaved" TEXT,
   "SOHowMuchTime" TEXT,
   "SOAccount" TEXT,
  "SOPartFreq" TEXT,
"SOJobs" TEXT,
   "EntTeams" TEXT,
   "SOComm" TEXT,
   "WelcomeChange" TEXT,
   "Age" REAL,
   "Trans" TEXT,
   "Dependents" TEXT,
   "SurveyLength" TEXT,
   "SurveyEase" TEXT
```

Hands-on Lab

Visualizing distribution of data

Histograms

Plot a histogram of ConvertedComp.

```
In [8]: QUERY = """
SELECT ConvertedComp
FROM master
"""

df = pd.read_sql_query(QUERY,conn)
df.hist(bins=10)
```

Out[8]: array([[<AxesSubplot:title={'center':'ConvertedComp'}>]], dtype=object)

Box Plots

Plot a box plot of Age.

```
In [9]: QUERY = """
SELECT Age
FROM master
"""

df = pd.read_sql_query(QUERY,conn)
df.plot(kind='box')
```

Out[9]: <AxesSubplot:>

Visualizing relationships in data

Scatter Plots

Create a scatter plot of Age and WorkWeekHrs.

```
In [10]: from matplotlib import pyplot as plt
import seaborn as sns

In [11]: QUERY = """
    SELECT Age, WorkWeekHrs
    FROM master
    """
    df = pd.read_sql_query(QUERY,conn)
```

```
x=df['Age']
y=df['WorkWeekHrs']
plt.scatter(x,y)
```

Out[11]: <matplotlib.collections.PathCollection at 0x7f7f6d3fa3d0>


```
In [12]: #catter plot of Age and WorkWeekHrs with a regression line
sns.regplot(x=df['Age'], y=df['WorkWeekHrs'],data= df)
```

Out[12]: <AxesSubplot:xlabel='Age', ylabel='WorkWeekHrs'>

Bubble Plots

Create a bubble plot of WorkWeekHrs and CodeRevHrs , use Age column as bubble size.

```
In [13]: import plotly.express as px
In [14]: QUERY = """
SELECT WorkWeekHrs, CodeRevHrs, Age
FROM master
"""
df = pd.read_sql_query(QUERY,conn)
#drop the rows where Age value is missing.
df.dropna(subset=['Age'], inplace=True)
px.scatter(df, x='WorkWeekHrs', y='CodeRevHrs', size='Age')
```

Visualizing composition of data

Pie Charts

Create a pie chart of the top 5 databases that respondents wish to learn next year. Label the pie chart with database names. Display percentages of each database on the pie chart.

```
In [38]: QUERY = """
         SELECT DatabaseDesireNextYear, Count(*) as Count
         FROM DatabaseDesireNextYear
         GROUP BY DatabaseDesireNextYear
         ORDER BY Count DESC
         LIMIT 5
         df = pd.read_sql_query(QUERY, conn)
         df.set_index('DatabaseDesireNextYear', inplace=True)
         color_list = ['coral', 'yellow', 'pink', 'lightskyblue', 'lightgreen']
         labels = df.index # use the index as labels
         # create the pie chart
         plt.figure(figsize=(10, 6))
         plt.pie(df['Count'], labels=labels, colors=color_list, autopct='%1.1f%%', startangle=90, shadow=True, pctdistance=0.85)
         plt.title('Top 5 Database Desire Next Year')
plt.axis('equal') # pie is drawn as a circle
         plt.legend(labels, loc='upper right')
         plt.show()
```

Top 5 Database Desire Next Year


```
In [52]: #Finf 10 most popular languages respondents wish to learn next year. What is the rank of Python?

QUERY = """
SELECT LanguageDesireNextYear, Count(*) as Count
FROM LanguageDesireNextYear
GROUP BY LanguageDesireNextYear
ORDER BY Count DESC
LIMIT 10
"""

df = pd.read_sql_query(QUERY, conn)
df.head()

#df.loc[df['LanguageDesireNextYear'] == 'Python']
```

Out [52]: LanguageDesireNextYear Count 0 JavaScript 6630 1 HTML/CSS 5328 2 Python 5239 3 SQL 5012 4 TypeScript 4088

```
In [59]: #How many respondents indicated that they currently work with 'SQL'?

QUERY = """
SELECT LanguageWorkedWith, Count(*) as Count
FROM LanguageWorkedWith
GROUP BY LanguageWorkedWith
ORDER BY Count DESC
LIMIT 10
"""

df = pd.read_sql_query(QUERY, conn)
#df.head()

df.loc[df['LanguageWorkedWith'] == 'SQL']
```

```
        Out [59]:
        LanguageWorkedWith
        Count

        2
        SQL
        7106
```

```
In [103... #How many respondents indicated that they work on 'MySQL' only?

QUERY="""
SELECT DatabaseWorkedWith, Count(Respondent) as Count
FROM DatabaseWorkedWith
group by Respondent
having count(DatabaseWorkedWith)=1 and DatabaseWorkedWith='MySQL'"""

df = pd.read_sql_query(QUERY, conn)
```

```
#df.head()
print(df['Count'].sum())
```

474

Stacked Charts

Create a stacked chart of median WorkWeekHrs and CodeRevHrs for the age group 30 to 35.

```
In [139...
OUERY = """
SELECT Age, WorkWeekHrs, CodeRevHrs
FROM master
WHERE Age BETWEEN 30 AND 35
ORDER BY Age asc
"""

df = pd.read_sql_query(QUERY, conn)

df1=df.groupby('Age').median()

df1.plot(kind='bar',stacked=True)
plt.title('Median workweek hrs and CodeRevHrs for the age group 30 to 35')
plt.xlabel('Age')
plt.ylabel('Hours')
plt.show()
```

Median workweek hrs and CodeRevHrs for the age group 30 to 35

Visualizing comparison of data

Line Chart

Plot the median ConvertedComp for all ages from 45 to 60.

```
In [145... QUERY = """
SELECT Age, ConvertedComp
FROM master
WHERE Age BETWEEN 45 AND 60
ORDER BY Age asc
"""

df = pd.read_sql_query(QUERY, conn)

df1=df.groupby('Age').median()
df1.head()

df1.plot(kind='line',stacked=True)
plt.title('Median ConvertedComp for the age group 45 to 60')
plt.xlabel('Age')
plt.ylabel('USD')
plt.show()
```


Bar Chart

Create a horizontal bar chart using column MainBranch.

```
In [156... QUERY = """
          SELECT MainBranch, Count(*) as Count
          FROM master
          GROUP BY MainBranch
          df = pd.read_sql_query(QUERY, conn)
          df.set_index('MainBranch', inplace=True)
          df.head()
          df.plot(kind='barh')
          plt.xlabel('Count')
          plt.show()
                                                                                                                                   Count
           I am not primarily a developer, but I write code sometimes as part of my work
         MainBranch
                                                    I am a developer by profession
                                                                                Ó
                                                                                         2000
                                                                                                    4000
                                                                                                               6000
                                                                                                                           8000
                                                                                                                                     10000
```

```
In [165... #Find the 5 top DevType (by occurence)

QUERY = """
SELECT DevType, Count(*) as Count
FROM DevType
GROUP BY DevType
ORDER BY Count DESC
LIMIT 5
"""

df = pd.read_sql_query(QUERY, conn)

df.head()
```

Count

Out[165]:

	DevType	Count
0	Developer, full-stack	6928
1	Developer, back-end	6290
2	Developer, front-end	3920
3	Developer, desktop or enterprise applications	2575
4	Developer, mobile	1959

Close the database connection.

In []: conn.close()

Authors

Ramesh Sannareddy

Other Contributors

Rav Ahuja

Change Log

Date (YYYY-MM-DD)	Version	Changed By	Change Description
2020-10-17	0.1	Ramesh Sannareddy	Created initial version of the lab

Copyright © 2020 IBM Corporation. This notebook and its source code are released under the terms of the MIT License.