

XMB1R

BLUETOOTH LOW ENERGY SOC

PRELIMINARY DATASHEET

(CONFIDENTIAL: Development Partners Only)

Rev. 0.72

15 Jan 2021

Track ID: JATR-8275-15

Realtek Semiconductor Corp. No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan Tel.: +886-3-578-0211. Fax: +886-3-577-6047

www.realtek.com

COPYRIGHT

©2018 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written permission of Realtek Semiconductor Corp.

DISCLAIMER

Realtek provides this document 'as is', without warranty of any kind. Realtek may make improvements and/or changes in this document or in the product described in this document at any time. This document could include technical inaccuracies or typographical errors.

TRADEMARKS

Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document are trademarks/registered trademarks of their respective owners.

USING THIS DOCUMENT

This document is intended for the software engineer's reference and provides detailed programming information.

Though every effort has been made to ensure that this document is current and accurate, more information may have become available subsequent to the production of this guide.

ELECTROSTATIC DISCHARGE (ESD) WARNING

This product can be damaged by Electrostatic Discharge (ESD). When handling, care must be taken. Damage due to inappropriate handling is not covered by warranty.

Do not open the protective conductive packaging until you have read the following, and are at an approved anti-static workstation.

- Use an approved anti-static mat to cover your work surface
- Use a conductive wrist strap attached to a good earth ground
- Always discharge yourself by touching a grounded bare metal surface or approved anti-static mat before picking up an ESD-sensitive electronic component
- If working on a prototyping board, use a soldering iron or station that is marked as ESD-safe
- Always disconnect the microcontroller from the prototyping board when it is being worked on

REVISION HISTORY

Revision	Release Date	Summary			
0.7	2018/07/16	Preliminary release.			
0.71	2018/11/28	orrected minor typing errors.			
0.72	2021/01/15	Add new mark			

Table of Contents

1. GE	ENERAL DESCRIPTION	1
1.1.	Overview	1
1.2.	MCU PLATFORM.	
1.3.	XMB1R MEMORY ARCHITECTURE	2
2. FE	EATURES	3
3. AP	PPLICATIONS	4
	OCK DIAGRAMS	
	N ASSIGNMENTS	
5.1.	XMB1R Pin Assignments	
5.2.	PACKAGE IDENTIFICATION	
6. PII	N DESCRIPTIONS	7
6.1.	RF Interface	
6.2.	XTAL AND SYSTEM INTERFACE	
6.3.	GENERAL PURPOSE IOS	
6.4.	POWER PINS	
7. BL	LUETOOTH RADIO	11
7.1.	RF Transceiver	
7.1.	MODEM	
7.2.	Transmitter	
7.4.	Front-End.	
8. CL	LOCK MANAGEMENT	12
8.1.	40MHz XTAL Oscillator	12
8.2.	32KHZ/32.768KHZ XTAL OSCILLATOR	
8.3.	INTERNAL 32KHZ RC OSCILLATOR	
9. PO	OWER MANAGEMENT UNIT (PMU)	15
10. I	PERIPHERAL INTERFACE DESCRIPTIONS	15
10.1.	PIN MULTIPLEXER	16
10.2.		
10.3.		
10.4.	GPIO CONTROL	20
10.5.	HARDWARE KEY SCAN	20
10.6.		
10.7.		
10.8.		
10.9.		
10.10 10.11		
	ELECTRICAL AND THERMAL CHARACTERISTICS	
11.1.		
11.2.		
11.3.		
11.4.		26
11.5.	SYNTHESIZER LDO CHARACTERISTICS	26
11.6.	ESD CHARACTERISTICS	26

14. O	ORDERING INFORMATION	36
14 0	ADDEDING INFORMATION	24
13. R	EFLOW PROFILE	35
12.2.	MECHANICAL DIMENSIONS NOTES	34
12.1.	PLASTIC QUAD FLAT NO-LEAD PACKAGE 40 LEADS 5X5MM OUTLINE	34
12. M	MECHANICAL DIMENSIONS	34
11.1	13.2. Active Mode	33
11.1	13.1. Low Power Mode	33
11.13.	POWER CONSUMPTION	33
11.12.		32
11.11.	UART CHARACTERISTICS	31
11.10.	BOOT SEQUENCE	30
11.9.	DIGITAL IO PIN DC CHARACTERISTICS	29
11.8.	RADIO CHARACTERISTICS	28
11.7.	AUXADC CHARACTERISTICS	27

List of Tables

TABLE 1. RF INTERFACE	7
TABLE 2. XTAL AND SYSTEM INTERFACE	7
TABLE 3. GENERAL PURPOSE IOS	
TABLE 4. POWER PINS	10
TABLE 5. 40MHz XTAL SPECIFICATION	
TABLE 6. 32KHZ XTAL SPECIFICATION	
TABLE 7. PERIPHERAL INTERFACE DESCRIPTIONS.	
TABLE 8. PIN MULTIPLEXER (PINMUX)	
TABLE 9. HARDWARE TIMER (BASE ADDRESS: 0x4000_2000)	19
TABLE 10. GPIO MAPPING TABLE.	
TABLE 11. UART BAUDRATE	
TABLE 12. TEMPERATURE LIMIT RATINGS.	
TABLE 13. POWER SUPPLY DC CHARACTERISTICS	
TABLE 14. INTERNAL LDO CHARACTERISTICS	
TABLE 15. SWITCHING REGULATOR CHARACTERISTICS	
TABLE 16. RTX LDO CHARACTERISTICS	
TABLE 17. SYNTHESIZER LDO CHARACTERISTICS	
TABLE 18. ESD CHARACTERISTICS	
TABLE 19. AUXADC CHARACTERISTICS	
TABLE 20. GENERAL RADIO CHARACTERISTICS	
TABLE 21. RX PERFORMANCE	
TABLE 22. TX PERFORMANCE	
TABLE 23. DIGITAL IO PIN DC CHARACTERISTICS	
TABLE 24. UART TIMING CHARACTERISTICS	
TABLE 25. I2C TIMING CHARACTERISTICS	
TABLE 26. LOW POWER MODE	
TABLE 27. ACTIVE MODE	
TABLE 28. REFLOW PROFILE.	35
TABLE 29. ORDERING INFORMATION	36

List of Figures

	RXMB1R MEMORY ARCHITECTURE	
FIGURE 2.	BLOCK DIAGRAM	5
FIGURE 3.	POWER BLOCK DIAGRAM	5
	XMB1R PIN ASSIGNMENTS	
	RF Transceiver Block Diagram	
	40MHz Crystal Oscillation Schematic	
FIGURE 8.	32KHz Crystal Oscillator Schematic	13
FIGURE 9.	PINMUX AND GPIO PADS CONTROL PATH	17
	RTC BLOCK DIAGRAM	
	UART WAVEFORM	
	AUXADC FUNCTIONAL BLOCK	
	BOOT UP BY INTERNAL POWER ON RESET CIRCUIT.	
	BOOT UP BY HW_RST_N PIN	
	UART CHARACTERISTICS	
	I2C Interface Timing Diagram	
	PLASTIC QUAD FLAT NO-LEAD PACKAGE 40 LEADS 5X5MM OUTLINE	
		-

1. General Description

1.1. Overview

The XMB1R is an ultra-low-power system on-chip solution for Bluetooth 5 low energy applications that combines the excellent performance of a leading RF transceiver with a low-power ARM Cortex-M4F and rich powerful supporting features and peripherals.

The XMB1R embeds an IR transceiver and hardware key-scan on a single IC, and is provided in a QFN package.

1.2. MCU Platform

The embedded ARM Cortex-M4F 32-bit CPU features a 16-bit instruction set with 32-bit extensions (Thumb-2® technology) that delivers high-density code with a small memory footprint. By using a single-cycle 32-bit multiplier, a 3-stage pipeline, and a Nested Vector Interrupt Controller (NVIC), the ARMCortex-M4F makes program execution simple and highly efficient.

Serial Wire Debug (SWD) interface provided as part of the Debug Access Port (DAP), in conjunction with the Basic Branch Buffer (BBB). This offers a flexible and powerful mechanism for non-intrusive program code debugging. Developers can easily add breakpoints in the code and perform single-step debugging.

The XMB1R memory architecture includes ROM, 160kByte RAM and 8MByte Flash Address Space.

The 160kByte RAM consists of RAM1 (112kByte Data RAM), RAM2 (8kByte Cache Shared RAM), RAM3 (8kByte Cache Shared RAM), and RAM4 (32kByte Buffer RAM). All the RAM regions can be used to execute code and hold data.

Flash Address Space is a virtual space that is mapped to external Flash to extend the code space in XIP (eXecute In Place) mode.

1.3. XMB1R Memory Architecture

Figure 1. RXMB1R Memory Architecture

2. Features

General

- Ultra-low power consumption with intelligent PMU
- Supports Bluetooth 5 core specification
- Supports 2Mbps LE
- LE advertising Extensions
- LE Long Range
- Additional Adv channel
- Channel Selection #2
- High Duty Cycle Non-Connectable Adv
- Integrated MCU to execute Bluetooth protocol stack
- Supports multiple level Low Energy states
- Supports LE L2CAP Connection Oriented Channel Support
- Supports LE low duty directed advertising
- Supports LE data length extension feature
- Supports OTA (Over-the-Air) programming mechanism for firmware upgrade
- Supports GAP, ATT/GATT, SMP, L2CAP
- Generic Applications for GAP Central, Peripheral, Observer and Broadcaster Roles

Platform

- ARM Cortex-M4 with floating-point unit
- Serial flash controller (One and Dual-bits mode) with 16kB 4-way cache.

- Total 160kB SRAM
- 4Kbits eFUSE for manufacturer use
- Supports AES128/192/256 encrypt/decrypt engine
- Embedded 4Mbits flash
- Bluetooth Transceiver
- RX sensitivity: -97dBm BLE(min)
- Max TX power: 8dBm
- Fast AGC control to improve receiving dynamic range
- Supports Bluetooth Low Energy PHY

Peripheral Interfaces

- 26 (max) Flexible General Purpose IOs
- Hardware Keyscan
- Embedded IR transceiver
- Real-Time Counters (RTC)
- Supports generic 4-wire SPI master/slave
- Supports 8 channel Low power comparators
- 400ksps, 12bit, 4channel AUXADC
- Timers x 8
- I2C x 2
- PWM x 8
- UART x 2
- Supports external 40MHz XTAL without capacitor (in limited condition)

- Supports external 32.768kHz XTAL without capacitor (in limited condition)
- Supports embedded internal 32K RCOSC to keep BLE link (in limited condition)
- Embedded Switching Regulator for low current consumption

Package

■ 40-pin 5x5mm QFN

3. Applications

- MESH LED
- MESH BUTTON
- MESH SWITCHER
- MESH POWER STRIP

4. Block Diagrams

Figure 2. Block Diagram

Figure 3. Power Block Diagram

5. Pin Assignments

5.1. XMB1R Pin Assignments

Figure 4. XMB1R Pin Assignments

5.2. Package Identification

Green package is indicated by the 'G' in GXXXV (Figure 4)

6. Pin Descriptions

The following signal type codes are used in the tables.

I: Input O: Output

P: Power A: Analog

6.1. RF Interface

Table 1. RF Interface

Symbol	Type	Pin	Description
RFIO	A	9	BT RX /BT TX interface

6.2. XTAL and System Interface

Table 2. XTAL and System Interface

Symbol	Type	Pin	Description
32K_XI	A/IO	37	32k crystal input or external 32k clock input (optional)
			Pin share as GPIO when external 32k is not used.
32K_XO	A/IO	38	32k crystal output (optional)
			Pin share as GPIO when external 32k is not used.
XI	A	12	40MHz crystal input
XO	A	13	40MHz crystal output or external 40MHz clock input
HW_RST_N	I	14	Hardware reset pin; low active

6.3. General Purpose IOs

Table 3. General Purpose IOs

Symbol	Type	Pin	Description
P0_0	Ю	26	General purpose IO; refer to Table 8 Pin Multiplexer (PINMUX), page 16. 8mA driving capability. With wakeup function. With internal strong/weak pull-up and pull-down.
P0_1	Ю	25	General purpose IO; refer to Table 8 Pin Multiplexer (PINMUX), page 16. 8mA driving capability. With wakeup function. With internal strong/weak pull-up and pull-down.

Symbol	Type	Pin	Description
P0_2	IO	24	General purpose IO; refer to Table 8 Pin Multiplexer (PINMUX), page 16.
			8mA driving capability.
			With wakeup function.
			With internal strong/weak pull-up and pull-down.
P0_3	IO	23	LOG_UART TX.
			Power on trap: Pull-up for normal operation
			Pull-down to bypass executing program code in flash
			(PAD internal pull-up by default).
P0_4	IO	22	General purpose IO; refer to Table 8 Pin Multiplexer
			(PINMUX), page 16
			8mA driving capability.
			With wakeup function.
			With internal strong/weak pull-up and pull-down.
P0_5	IO	20	General purpose IO; refer to Table 8 Pin Multiplexer
			(PINMUX), page 16
			8mA driving capability.
			With wakeup function.
D0 6	10	10	With internal strong/weak pull-up and pull-down.
P0_6	IO	19	General purpose IO; refer to Table 8 Pin Multiplexer
			(PINMUX), page 16
			8mA driving capability. With wakeup function.
			With internal strong/weak pull-up and pull-down.
P1 0	IO	27	General purpose IO; refer to Table 8 Pin Multiplexer
F1_0	10	21	(PINMUX), page 16.
			8mA driving capability.
			With wakeup function.
			With internal strong/weak pull-up and pull-down.
			SWDIO (default).
P1 1	IO	28	General purpose IO; refer to Table 8 Pin Multiplexer
_			(PINMUX), page 16.
			8mA driving capability.
			With wakeup function.
			With internal strong/weak pull-up and pull-down.
			SWDCLK (default).
P2_2	IO	40	General purpose IO; refer to Table 8 Pin Multiplexer
			(PINMUX), page 16.
			8mA driving capability.
			With wakeup function.
			With internal strong/weak pull-up and pull-down.
DC C	10		AUXADC input 2.
P2_3	IO	1	General purpose IO; refer to Table 8 Pin Multiplexer
			(PINMUX), page 16.
			8mA driving capability.
			With internal strong/week pull up and pull down
			With internal strong/weak pull-up and pull-down.
	Ì		AUXADC input 3.

Symbol	Type	Pin	Description
P2_4	IO	2	General purpose IO; refer to Table 8 Pin Multiplexer (PINMUX), page 16.
			8mA driving capability. With wakeup function.
			With internal strong/weak pull-up and pull-down.
			AUXADC input 4.
P2_5	IO	3	General purpose IO; refer to Table 8 Pin Multiplexer (PINMUX), page 16.
			8mA driving capability. With wakeup function.
			With internal strong/weak pull-up and pull-down.
			AUXADC input 5.
P2_6	IO	4	General purpose IO; refer to Table 8 Pin Multiplexer (PINMUX), page 16.
			8mA driving capability.
			With wakeup function. With internal strong/weak pull-up and pull-down.
			AUXADC input 6.
P2_7	Ю	5	General purpose IO; refer to Table 8 Pin Multiplexer (PINMUX), page 16.
			8mA driving capability.
			With wakeup function. With internal strong/weak pull-up and pull-down.
			AUXADC input 7.
P3_0	Ю	36	General purpose IO; refer to Table 8 Pin Multiplexer (PINMUX), page 16.
			8mA driving capability.
			With wakeup function.
			With internal strong/weak pull-up and pull-down. HCI_UART_TX (default).
P3_1	Ю	35	General purpose IO; refer to Table 8 Pin Multiplexer (PINMUX), page 16.
			8mA driving capability.
			With wakeup function.
			With internal strong/weak pull-up and pull-down. HCI UART RX (default).
P3_2	IO	34	General purpose IO; refer to Table 8 Pin Multiplexer
			(PINMUX), page 16. 8mA driving capability.
			With wakeup function.
			With internal strong/weak pull-up and pull-down.
P3_3	IO	33	General purpose IO; refer to Table 8 Pin Multiplexer
			(PINMUX), page 16. 8mA driving capability.
			With wakeup function.
			With internal strong/weak pull-up and pull-down.

Symbol	Type	Pin	Description
P4_0	IO	18	General purpose IO; refer to Table 8 Pin Multiplexer
			(PINMUX), page 16.
			8mA driving capability.
			With wakeup function.
			With internal strong/weak pull-up and pull-down.
P4_1	IO	17	General purpose IO; refer to Table 8 Pin Multiplexer
			(PINMUX), page 16.
			8mA driving capability.
			With wakeup function.
			With internal strong/weak pull-up and pull-down.
P4_2	IO	16	General purpose IO; refer to Table 8 Pin Multiplexer
			(PINMUX), page 16.
			8mA driving capability.
			With wakeup function.
			With internal strong/weak pull-up and pull-down.
P4_3	IO	15	General purpose IO; refer to Table 8 Pin Multiplexer
			(PINMUX), page 16.
			8mA driving capability.
			With wakeup function.
			With internal strong/weak pull-up and pull-down.
P5_0	IO	6	General purpose IO; refer to Table 8 Pin Multiplexer
_			(PINMUX), page 16.
			8mA driving capability.
			With wakeup function.
			With internal strong/weak pull-up and pull-down.

6.4. Power Pins

Table 4. Power Pins

Symbol	Type	Pin	Description
VA18	P	7	ADC reference voltage (decouple)
VD12_PA	P	10	Supply 1.2V power for PA
VD12_TRX	P	8	Supply 1.2V power for RF transceiver
VD12_SYN	P	11	Supply 1.2V power for synthesizer
VDDIO	P	21	Supply 1.8V~3.3V power for digital IO PADs
VDDCORE	P	30	Supply 1.2V power to LDO for digital core
VDIGI	P	29	1.1V digital power decouple.
HVD	P	32	Supply 1.8V~3.3V power for Switching regulator input
LX	P	31	Switching regulator output
VBAT	P	39	Battery voltage input

7. Bluetooth Radio

7.1. RF Transceiver

The XMB1R includes an embedded GFSK RF transceiver with ultra-low power consumption and full compliance with the Bluetooth low energy wireless system. The block diagram is shown in Figure 5.

Figure 5. RF Transceiver Block Diagram

7.2. Modem

In the transmit path, the modem combines with the RF transmitter to generate a GFSK signal. In the receiver path, the modem receives a baseband GFSK signal from an analog to digital converter (ADC), and decodes the bit data via channel filtering, synchronizing, and demodulating.

An RF automatic calibration scheme is implemented in the modem to compensate for transistor characteristic variations in the CMOS process, and for ambient temperature differences.

7.3. Transmitter

The transmitter convert baseband signals to 2.4GHz unlicensed Industrial, Scientific and Medical (ISM) band GFSK modulated signals. The up-converted GFSK signal is amplified by the integrated power amplifier.

7.4. Front-End

To minimize external BOM requirements, the XMB1R is single-ended RF mode and TX/RX path sharing the same RFIO pin with an integrated balun. For antenna matching and harmonic signal reduction, a PI matching network is required in the RF path.

8. Clock Management

For optimal power consumption and performance, the XMB1R offers high and low frequency clocks. The high frequency clock is generated by an external 40MHz crystal oscillator (XTAL). The low frequency clock is generated by a 32.768kHz/32kHz XTAL.

In normal mode the high frequency clock is kept running to provide clock to the CPU, Bluetooth core, and the peripheral block. In low power mode the high frequency clock is turned off for power saving. The 32.768kHz/32kHz kHz low frequency clock remains on to provide clock to the RTC (Real Time Counter), BT core, and PMU.

8.1. 40MHz XTAL Oscillator

The XMB1R has a built-in 40MHz crystal oscillation circuit to provide a stable, controllable system clock. With the help of the internal built-in capacitor, the clock offset could be fine-tuned in the mass production process. The maximum internal cap is 20pF typically, and it is suggested to follow Realtek crystal design specification and QVL, the external capacitor, C₁ and C₂, could be replaced by an internal capacitor, reducing the BOM cost, minimizing the PCB dimensions, and adding flexibility for clock fine tuning.

Figure 6. 40MHz Crystal Oscillation Schematic

Example:

For a crystal with spec C_L=9pF

 $C_{L}=[(C_1 \times C_2)/(C_1+C_2)]+(C_{int}/2)+C_{parasitic}$, the parasitic capacitor $C_{parasitic}$ could be observed on the PCB trace and IC SMT soldering pad....etc.

With the rule of thumb, ' $C_1 + C_{int}$ ' is typical to be $12\sim15pF$, hence the external capacitor C_1 and C_2 is possible to be replaced by the internal capacitor C_{int} , which could be 20pF at the maximum setting to over the need of external capacitors.

Table 5: Town 12 ATAL Openication					
Parameter	Minimum	Typical	Maximum		
Frequency (MHz)	-	40	-		
Frequency tolerance (ppm)	-	-	±10		
Frequency stability (ppm)	-	-	±10		
Load capacitance (pF)	7	9	-		
Maximum Drive Level (μW)	300	-	-		
Equivalent Series Resistance (Ohm)	-	-	50Ω@7pF 40Ω@9pF		
Insulation Resistance (MOhm)	500	-	-		

Table 5. 40MHz XTAL Specification

8.2. 32kHz/32.768kHz XTAL Oscillator

The XMB1R uses a 32kHz/32.768kHz XTAL oscillator as a sleep clock in low power mode. The block diagram of the XTAL Oscillator is shown in Figure 7. The 32kHz/32.768kHz XTAL specification is shown in Table 6, page 14.

There is a fixed 7pF capacitor (Cx) and a trimming capacitor (Cxi/Cxo) with a value from 0pF to 12.8pF in the XMB1R. The embedded Cx, C1 and C2 are not required when a Crystal Load capacitor (CL) of 7pF is selected. The calculated value of Cxi, Cxo, C1, and C2 is shown in the following equation:

$$CL = \frac{(C1 + Cx + Cxi)(C2 + Cx + Cxo)}{(C1 + 2Cx + Cxi + C2 + Cxo)} + Cstray$$

If an external 32k crystal is not used, 32k_XI and 32k XO pins can be configured as GPIO pins.

Figure 7. 32kHz Crystal Oscillator Schematic

Parameter	Minimum	Typical	Maximum
Frequency (kHz)	-	32.768	-
		32	
Frequency tolerance (ppm)	-	-	±20
Load capacitance (pF)	-	7	-
Maximum Drive Level (μW)	0.5	-	-
Equivalent Series Resistance (KOhm)	-	-	90
Insulation Resistance (MOhm)	500	-	-

8.3. Internal 32kHz RC Oscillator

The XMB1R has a built-in internal 32K RCOSC used as a low speed clock source. With run-time self-calibration algorithm and limited user environment, temperature variation less than 1°C per second, the BLE link could be maintained via the internal 32K RC Oscillator.

9. Power Management Unit (PMU)

The XMB1R is supplied with 3V by a single power source. For more flexibility of peripheral usage, IO voltage (VDDIO) can be different from VBAT (but VDDIO should be less than or equal to VBAT). There is an internal LDO regulator to provide power to the digital core circuit and radio circuit.

The XMB1R defines three PMU power states for various conditions.

Active Mode: All clock and power is turned on. All functions operate in this mode.

Deep LPS Mode: High-speed clock and core domain power is turned off. The CPU stops running. Data can be retained in retention SRAM.

Power Down Mode: Except in an 'always-on' power domain, all clock sources and power are turned off. Power down mode can only be woken by GPIO pins.

10. Peripheral Interface Descriptions

The XMB1R series peripheral descriptions are shown in the table below.

Table 7. Peripheral Interface Descriptions

	•
Physical Address	IP Function
0x4000_0000 - 0x4000_0FFF	SYS Control
0x4000_1000 - 0x4000_17FF	GPIO
0x4000_2000 - 0x4000_2FFF	Timer
0x4000_3000 - 0x4000_37FF	IR RC
0x4000_4000 - 0x4000_47FF	2-Wire SPI
0x4000_5000 - 0x4000_57FF	Key Scan
0x4001_0000 - 0x4001_0FFF	AUXADC
0x4001_1000 - 0x4001_11FF	UART_1
0x4001_2000 - 0x4001_23FF	UART_0
0x4001_3000 - 0x4001_33FF	SPI_0
0x4001_3400 - 0x4001_37FF	SPI_1
0x4001_4000 - 0x4001_4FFF	AES Engine
0x4001_5000 - 0x4001_53FF	I2C_0
0x4001_5400 - 0x4001_57FF	I2C_1
0x4002_0000 - 0x4002_0FFF	Reserved
0x4002_1000 - 0x4002_1FFF	Reserved
0x4002_4000-0x4002_43FF	UART_2
0x4002 4800-0x4002 4BFF	Reserved

10.1. Pin Multiplexer

All GPIO pins in the XMB1R are configurable via the built-in pin multiplexer (PINMUX). Table 8 shows all GPIO pin configurations. Figure 8, page 17 shows the PINMUX and GPIO PADs control path. In the XMB1R, all pins have an internal pull-up and pull-down resistor for controlling GPIO_PU and GPIO_PD.

Table 8. Pin Multiplexer (PINMUX)

	Table 8. Pin Multiplexer (PINMUX)							
0	IDEL	25	reserved	50	SPI0_CLK (master only)	75	KEY_COL_17	
1	reserved	26	reserved	51	SPI0_MO (master only)	76	KEY_COL_18	
2	reserved	27	UART2_TX	52	SPI0_MI (master only)	77	KEY_COL_19	
3	reserved	28	UART2_RX	53	SPI2W_DATA (master only)	78	KEY_ROW_0	
4	reserved	29	UART1_TX	54	SPI2W_CLK (master only)	79	KEY_ROW_1	
5	I2C0_CLK	30	UART1_RX	55	SPI2W_CS (master only)	80	KEY_ROW_2	
6	I2C0_DAT	31	UART1_CTS	56	reserved	81	KEY_ROW_3	
7	I2C1_CLK	32	UART1_RTS	57	reserved	82	KEY_ROW_4	
8	I2C1_DAT	33	IRDA_TX	58	KEY_COL_0	83	KEY_ROW_5	
9	PWM2_P	34	IRDA_RX	59	KEY_COL_1	84	KEY_ROW_6	
10	PWM2_N	35	UART0_TX	60	KEY_COL_2	85	KEY_ROW_7	
11	PWM3_P	36	UART0_RX	61	KEY_COL_3	86	KEY_ROW_8	
12	PWM3_N	37	UART0_CTS	62	KEY_COL_4	87	KEY_ROW_9	
13	PWM0	38	UART0_RTS	63	KEY_COL_5	88	KEY_ROW_10	
14	PWM1	39	SPI1_SS_N_0 (master only)	64	KEY_COL_6	89	KEY_ROW_11	
15	PWM2	40	SPI1_SS_N_1 (master only)	65	KEY_COL_7	90	DWGPIO	
16	PWM3	41	SPI1_SS_N_2 (master only)	66	KEY_COL_8	ı	-	
17	PWM4	42	SPI1_CLK (master only)	67	KEY_COL_9	-	-	
18	PWM5	43	SPI1_MO (master only)	68	KEY_COL_10	-	-	
19	PWM6	44	SPI1_MI (master only)	69	KEY_COL_11	-	-	
20	PWM7	45	SPI0_SS_N_0 (slave)	70	KEY_COL_12	-	-	
21	reserved	46	SPI0_CLK (slave)	71	KEY_COL_13	ı	-	
22	reserved	47	SPI0_SO (slave)	72	KEY_COL_14	-	-	
23	reserved	48	SPI0_SI (slave)	73	KEY_COL_15	ı	-	
24	reserved	49	SPI0_SS_N_0 (master only)	74	KEY_COL_16	-	-	

Figure 8. PINMUX and GPIO PADs Control Path

10.2. Real-Time Counter (RTC)

There are 24-bit counters with four individual comparators. The counter is clocked by an internal 32k RCOSC/external 32k XTAL with 12-bit pre-scalar. The comparators output can interrupt the CPU and wake up the chip from DLPS mode. The RTC block diagram is shown below.

Features:

- 12-bits pre-scale counter
- 24-bits read only RTC counter
- Internal 32k RCOSC/external 32k XTAL clock resource
- 4 independent comparators (with interrupt)
- 1 tick interrupt
- RTC counter overflow interrupt

Figure 9. RTC Block Diagram

10.3. PWM/Hardware Timer (TIM)

The XMB1R supports eight PWM/TIM modules.

Timer/PWM features:

- 8 independent Timers (2 Timers are dedicated for Internal use)
- Independent input clock divider 1/2 1/4, 1/8,1/16, 1/40 (on all Timers)
- 3 mode (free run/user define/PWM)
- 32bits counter
- Complementary PWM output & Dead zone (only Timer2, Timer3)
- PWM output state read back (<100kHz)

Table 9. Hardware Timer (Base Address: 0x4000 2000)

14010 01 1141411410 (2400 /14410001 0/1000_2000)				
Address Range (Base +)	Function			
0x00 to 0x10	Timer 0 Registers			
0x14 to 0x24	Timer 1 Registers			
0x28 to 0x38	Timer 2 Registers			
0x3c to 0x4c	Timer 3 Registers			
0x50 to 0x60	Timer 4 Registers			
0x64 to 0x74	Timer 5 Registers			
0x78 to 0x88	Timer 6 Registers			
0x8c to 0x9c	Timer 7 Registers			
0xb0 to 0xcc	TimerNLoadCount2 Registers			

10.4. GPIO Control

The XMB1R provides a highly flexible GPIO module for developers. There are 32 GPIOs assigned to IO PADs. The mapping table is shown in Table 10. GPIO function could be assigned to the IO PAD via the pin mux register.

Features:

- 32 GPIOs
- Input/output function
- 32 Independence interrupts
- 3 interrupt trigger conditions (level/edge/dual-edge)
- Hardware interrupt de-bounce

Table 10. GPIO Mapping Table

	Table 10. Of 10 Mapping Table								
Pin	DWGPIO	Pin	DWGPIO	Pin	DWGPIO	Pin	DWGPIO	Pin	DWGPIO
Name		Name		Name		Name		Name	
P0_0	GPIO[0]	P1_0	GPIO[8]	P2_0	GPIO[16]	P3_0	GPIO[24]	P5_0	GPIO[25]
P0_1	GPIO[1]	P1_1	GPIO[9]	P2_1	GPIO[17]	P3_1	GPIO[25]	32k_XI	GPIO[26]
P0_2	GPIO[2]	P1_2	GPIO[10]	P2_2	GPIO[18]	P3_2	GPIO[26]	32k_XO	GPIO[27]
P0_3	GPIO[3]	P1_3	GPIO[11]	P2_3	GPIO[19]	P3_3	GPIO[27]	P4_0	GPIO[28]
P0_4	GPIO[4]	P1_4	GPIO[12]	P2_4	GPIO[20]	P3_4	GPIO[28]	P4_1	GPIO[29]
P0_5	GPIO[5]	P1_5	GPIO[13]	P2_5	GPIO[21]	P3_5	GPIO[29]	P4_2	GPIO[30]
P0_6	GPIO[6]	P1_6	GPIO[14]	P2_6	GPIO[22]	P3_6	GPIO[30]	P4_3	GPIO[31]
P0_7	GPIO[7]	P1_7	GPIO[15]	P2_7	GPIO[23]	-	-	-	-

10.5. Hardware Key Scan

The XMB1R supports a Configurable 12 rows * 20 columns key matrix with key scan engine. Each IO PAD could be configured as any row or column pin of Key Scan to reduce complexity of PCB routing. Features:

- Configurable matrix; max matrix (12 row * 20column)
- Configurable matrix scan clock
- Configurable de-bounce time
- Configurable scan interval
- Configurable all-key release detect time
- 26 depth Key FIFO
- Key filter (one key)

10.6. IR Controller

The IR module provides a flexible way of transmitting and receiving IR code used in remote controls. It can send an IR waveform within an IR carrier, and receive an IR waveform within an IR carrier.

IR Transmitter Feature

- Programmable IR carrier (10kHz~60kHz)
- Programmable IR carrier duty
- Programmable IR carrier cycle number
- Hardware output waveform control
- TX FIFO Depth: 32

IR Receiver Feature

- Programmable sample clock (max clock 40MHz)
- Ability to learn IR waveform directly (carrier frequency = < 60kHz)
- Automatic/manual trigger mode
- Hardware waveform sample (not interfered with by software tasks)
- RX FIFO Depth: 32

10.7. SPI

There are two individual SPI interfaces in the XMB1R. SPI0 supports master and slave mode. SPI1 supports master mode only.

SPI0 Features

- Master & slave mode
- Supports Clock Mode 0~3 (CPOL, CPHA)
- 4 transmit mode: TX only, RX only, Full-duplex, EEPROM
- 2*n SPI CLK Divider
- Supports 4-32bits SPI data frame (master)
- Supports 4-16bits SPI data frame (slave)
- 1 Hardware CS (master)
- 32bits FIFO; 36 depth (master)
- 16bits FIFO; 64 depth (slave)
- DMA transfer supported

SPI1 Features

- Master mode
- Support Clock Mode 0~3 (CPOL, CPHA)
- 4 transmit mode: TX only, RX only, Full-duplex, EEPROM
- 2*n SPI CLK Divider (Max. 20MHz)
- Supports 4-32bits SPI data frame (master)
- 3 Hardware CS (master)
- 32bits FIFO; 36 depth (master)
- DMA transfer supported

10.8. I2C

There are two separate I2C interfaces in the XMB1R. Each I2C interface is comprised of Serial Data Line (SDA) and Serial Clock Line (SCL). Both I2C interfaces can be configured to master or slave mode.

Features:

- Master/Slave mode
- Supports 7/10 bits I2C address
- Configurable I2C address (slave mode)
- Standard speed (0-100kHz), Fast speed(100kHz~400kHz)
- TX FIFO 8 bits * 24
- RX FIFO 8bits * 40
- DMA supported

10.9. UART

There are three hardware UARTs (UART0, UART1, UART2), UART2 dedicated for log output. The UARTs have the same hardware features.

The XMB1R provides multiple UART baud-rate configured by register setting. The common band-rate example is shown in Table 11 below. The UART clock error between two devices should be less than +-2.5%.

- Supports 7/8 Data Format
- 1/2 bit Stop bit
- Configurable parity bit: odd/even
- Programmable baud rate (max. baud rate 4,000,000)
- Hardware flow control
- RX line idle state detect
- DMA supported

Figure 10. UART Waveform

Table 11. UART BaudRate

BaudRate (bps)	Error (%)	BaudRate (bps)	Error (%)
1200	-0.23	460800	0.17
9600	< 0.01	500000	< 0.01
14400	< 0.01	921600	0.18
19200	< 0.01	1000000	< 0.01
28800	< 0.01	1382400	0.17
38400	< 0.01	1444400	-0.31
57600	< 0.01	1500000	< 0.01
76800	0.01	1843200	-0.35
115200	< 0.01	2000000	0.02
128000	0.02	2764800	0.14
153600	-0.10	3000000	0.06
230400	0.03	4000000	0.03

10.10. Direct Memory Access Controller (DMA)

DMA Features

- 6 DMA Channels
- Independent interrupts and control bit for every channel
- 4 transfer mode: Memory to memory, memory to peripheral, peripheral to memory, peripheral to peripheral
- Max block length 4095
- Multi-block supported (Channel 0 & 2)
- Scatter-gather supported (Channel 1 & 3)
- Safe abort/abnormal abort/suspend transfer
- Transferred items counter (single block)
- Hardware handshake interface for peripheral

10.11. AUXADC

The XMB1R provides a built in (maximum 8 channels; the maximum number of ADC channels depends on the package type) 12bits, 400kbps AUXADC for external analog signal sensing and internal VBAT voltage monitoring. The functional block is shown in Figure 11.

- A 12bits, max 400ksps AUXADC with 8 channel sharing
- Flexible sampling schedule table for multi-channel sampling
- Divided mode: Supports 0~VBAT input range with internal resistor divider
- Internal VBAT voltage sensing
- Supports single-ended mode and differential mode

Figure 11. AUXADC Functional Block

11. Electrical and Thermal Characteristics

11.1. Temperature Limit Ratings

Table 12. Temperature Limit Ratings

Parameter	Minimum	Maximum	Units
Storage Temperature	-55	+125	°C
Ambient Operating Temperature	-40	+105	°C

11.2. Power Supply DC Characteristics

Table 13. Power Supply DC Characteristics

Symbol	Parameter	Minimum	Typical	Maximum	Units
VBAT	Single power source for whole chip	1.8	3	3.3	V
VDD_CORE VD12_PA VD12_RTX VD12_SYN	1.2V Core and RFAFE Supply Voltage	1.10	1.2	1.26	V
VDIGI	Digital core voltage	0.99	1.1	1.21	-
VDD_IO ^{Note}	Power for digital IO PADs	1.8	-	3.6	V
HVD	Power for switching regulator	1.8	-	3.6	V

Note: VDD IO≤VBAT

11.3. Internal LDO Characteristics

Condition: VBAT=3V, VDDIO=3V, ambient temperature: 25°C

Table 14. Internal LDO Characteristics

Parameter	Condition	Min	Typical	Max
Input voltage (V)	-	2.7	3	3.3
Output voltage (V)	-	-	1.2	-
Output current (mA)	Only for XMB1R internal use	-	-	50

Table 15. Switching Regulator Characteristics

Parameter	Condition	Min	Typical	Max
Input voltage (V)	=	1.8	3	3.6
Output voltage (V)	-	=	1.2	-
Output current (mA)	Only for XMB1R internal use	-	-	50
Recommended input capacitor (µF)	X5R	4.7	-	10
Recommended output capacitor (µF)	X5R	-	4.7	-
Recommended output inductor (µH)	1. Power inductor 2. +-20%	-	2.2	-

11.4. RTX LDO Characteristics

Condition: VBAT=3V, VDDIO=3V, ambient temperature: 25°C

Table 16. RTX LDO Characteristics

Parameter	Condition	Min	Typical	Max			
Input voltage (V)	-	1.1	-	1.26			
Output voltage (V)	-	=	1	-			
Output voltage accuracy (%)	-	-5	-	5			
Output current (mA)	Only for internal use	-	-	6			
Quiescent current (µA)	-	-	40				
PSRR	At 1kHz tone, vin= 1.2V	30	40	50			

11.5. Synthesizer LDO Characteristics

Condition: VBAT=3V, VDDIO=3V, ambient temperature: 25°C

Table 17. Synthesizer LDO Characteristics

Parameter	Condition	Min	Typical	Max			
Input voltage (V)	-	1.1	-	1.26			
Output voltage (V)	-	-	1	-			
Output voltage accuracy (%)	-	-5	-	5			
Output current (mA)	Only for internal use	-	-	10			
Quiescent current (µA)	-	-	40	-			
PSRR	At 1kHz tone, vin= 1.2V	30	40	50			

11.6. ESD Characteristics

Table 18. ESD Characteristics

Parameter	Condition	Minimum	Typical	Maximum
HBM	All pins, test method: JESD22	-	-	+- 3.5 kV

Parameter	Condition	Minimum	Typical	Maximum
MM	All pins, test method: JESD22	-	-	+- 200 V
CDM	All pins, test method: JESD22	-	-	+- 500 V

11.7. AUXADC Characteristics

Condition: VBAT=3V, VDDIO=3V, ambient temperature: 25°C.

Table 19. AUXADC Characteristics

AUX Mode	Conditions	Min.	Тур.	Max.	Unit
D 14:	Bypass mode	-	12	-	BITS
Resolution	Divided mode (1/3.3)	-	12	-	BITS
Clock Source	From digital -		-	400	kHz
DC Offset Error	After calibration (Bypass mode)	-	TBD	-	LSB
Gain Error	After calibration (Bypass mode)	-	TBD	-	LSB
DM	Single-ended mode (Bypass mode)	-	+-1.5	-	LSB
DNL	Differential mode (Bypass mode)	_		-	LSB
NII	Single-ended mode (Bypass mode)	-	+-1	-	LSB
INL	Differential mode (Bypass mode)		+-2		LSB
	External channel (ch0 ~ ch5) (Divided mode)	0	-	VBAT	V
Input Voltage Range	External channel (ch0 ~ ch5) (Bypass mode)	0	-	1	-
	Internal channel 0 (VBAT)	1.8	-	3.63	V
Innest Innesdance	Bypass mode	-	10	-	MOhm
Input Impedance	Resistor divider mode (1/4)	-	500	-	kOhm
Sampling Canacitanas	Bypass mode	-	1.9	-	pF
Sampling Capacitance	Resistor divider mode (1/4)	-	1.9	-	pF

11.8. Radio Characteristics

Condition: VBAT=3V, VDDIO=3V, ambient temperature: 25°C

Table 20. General Radio Characteristics

Parameter	Condition	Minimum	Typical	Maximum
Frequency Range (MHz)	-	2402	-	2480

Table 21. RX Performance

Parameter	Condition	Minimum	Typical	Maximum
Sensitivity (dBm)	PER ≤30.8%	-97	-	-
Maximum Input Level (dBm)	PER ≤ 30.8%	-	-1	-
	C/I _{co-channel} (dB)	21	-	-
	C/I _{+1MHz} (dB)	15	-	-
	C/L _{1MHz} (dB)	15	ı	-
	C/I _{+2MHz} (dB)	-17	-	-
C/I	C/L _{2MHz} (dB)	-15	-	-
	C/I _{+3MHz} (dB)	-27	ı	-
	C/I _{Image} (dB)	-9	-	-
	C/I _{Image+1MHz} (dB)	-15	ı	-
	C/I _{Image-1MHz} (dB)	-15	ı	-
	30~2000MHz, Wanted signal level =- 67dBm	-30	ı	-
Blocker Power (dBm)	2003~2399MHz, Wanted signal level =-67dBm	-35	1	-
Blocker Fower (dBill)	2484~2997MHz, Wanted signal level =- 67dBm	-35	-	-
	3000MHz~12.75GHz, Wanted signal level =-67dBm	-30	-	-
Max PER Report Integrity	Wanted signal: -30dBm	-	50%	_
Max Intermodulation level (dBm) Wanted signal (f0): -64dBm Worst intermodulation level @2f1-f2=f0, f1-f2 =n MHz, n=3, 4, 5		-50	-	-

Note: 1. Does not include spur channel

Note: 2. Depends on PCB design and registers setting

Table 22. TX Performance

Parameter	Condition	Minimum	Typical	Maximum
Maximum Output Power (dBm)	-	-	-	8
	+2MHz	-	-	-20
Adjacent Channel Power Ratio	-2MHz	-	-	-20
(dBm)	>=+3MHz	-	-	-30
	<=-3MHz	-	-	-30
	$\Delta fl_{avg}(kHz)$	-	250	-
Modulation Characteristics	Δf2max (kHz)	185	-	-
Woddiation Characteristics	$\Delta f2_{max}$ Pass Rate (%)	-	100	-
	$\Delta f 2_{avg}/\Delta f 1_{avg}$	-	0.88	-
	Average Fn (kHz)	-	12.5	-
Carrier Frequency Offset and	Drift Rate (kHz/50µs)	-	10	-
Drift	Avg Drift (kHz/50μs)	-	10	-
	Max Drift (kHz/50μs)	-	10	-
Output power of second harmonic(dBm)	-	-	-50(note)	-
Output power of third harmonic(dBm)	-	-	-50(note)	-

Note: Tested by EVB with RF PI network.

11.9. Digital IO Pin DC Characteristics

Table 23. Digital IO Pin DC Characteristics

Parameter	Condition	Min	Typical	Max
Input high voltage (V)	VDDIO=3.3V	2	3.3	3.6
Input low voltage (V)	VDDIO=3.3V	-	0	0.9
Output high voltage (V)	VDDIO=3.3V	2.97	-	3.3
Output low voltage (V)	VDDIO=3.3V	0	-	0.33
Input high voltage (V)	VDDIO=2.8V	1.8	2.8	3.1
Input low voltage (V)	VDDIO=2.8V	-	0	0.8
Output high voltage (V)	VDDIO=2.8V	2.5	-	
Output low voltage (V)	VDDIO=2.8V	0	-	0.28
	VDDIO=3.3V Strong pull/weak pull	-	10/100	-
	VDDIO=1.8V Strong pull/weak pull	-	20/200	-
Pull high and pull low resister (KOhm)	VDDIO=3.3V Strong pull/weak pull (P2_0~P2_7, P5_0)	-	5/50	-
	VDDIO=1.8V Strong pull/weak pull (P2_0~P2_7, P5_0)	-	2.5/25	-
Input high current (µA)	PAD configured as input mode	-	-	0.1
Input low current (µA)	PAD configured as input mode	-	-	0.1

11.10. Boot Sequence

The XMB1R embeds a Power On Reset Circuit (POR), and power on sequence finite state machine to boot the system. Power on timing is shown in the figures below.

Figure 12. Boot Up By Internal Power On Reset Circuit

Figure 13. Boot Up By HW_RST_N Pin

11.11. UART Characteristics

Figure 14. UART Characteristics

Table 24. UART Timing Characteristics

Parameter	Symbol	Min	Typical	Max		
Timing between RX Stop bit and RTS go high when RX FIFO is full (symbol time)	$t_{ m d_rts}$	-	-	0.5		
Timing between CTS go low and device send first bit (ns)	$t_{ m d_cts}$	-	-	25		
Timing between CTS go high and TX send stop bit (ns)	t _{set_cts}	75	-	-		

11.12. I2C Timing Characteristics

Figure 15. I2C Interface Timing Diagram

Table 25. I2C Timing Characteristics

Parameter	Symbol	Min	Typical	Max
SCL clock frequency (kHz)	-	-	-	400
High period of SCL (ns)	$t_{ m high}$	600	-	-
Low period of SCL (ns)	$t_{ m low}$	1300	-	-
Hold time of START (ns)	t_{h_STR}	600	-	-
Hold time of DATA (ns)	t_{h_DAT}	0	-	-
Setup time of STOP (ns)	$t_{ m set_STOP}$	600	-	-
Setup time of DATA (ns)	t_{set_DAT}	100	-	-
Rise time of SCL and SDA (ns) (with 4.7k ohm resistor pulled high)	$t_{\rm r}$	See note	-	-
Fall time of SCA and SDA (ns)	$t_{ m f}$	See note	-	-

Note: Depends on the external bus pull up resistor.

11.13. Power Consumption

11.13.1. Low Power Mode

Condition: VBAT=3V, VDDIO=3V, ambient temperature: 25°C

Table 26. Low Power Mode

Power Mode	Always on Registers	32k RCOSC/XTAL	Retention SRAM	CPU	Wakeup Method	Current Consumption (typical)
Power down	ON	OFF	OFF	OFF	Wakeup by GPIO	450nA
Deep LPS	ON	ON	Retention	OFF	Wakeup by GPIO, timer	2.5µA (with 160K SRAM in retention state)

11.13.2. Active Mode

Condition: VBAT=3V, VDDIO=3V, ambient temperature: 25°C

Table 27. Active Mode

145.5 2.17.5.1.5 11.545			
Power Mode	Current Consumption (Typical)		
	(Typicar)		
Active RX mode	7.3 mA		
Active TX mode	7.9 mA		
(TX power: 0dBm)			
Active TX mode	9.6 mA		
(TX power: 4dBm)			
Active TX mode	11.3 mA		
(TX power: 7.5dBm)			

12. Mechanical Dimensions

12.1. Plastic Quad Flat No-Lead Package 40 Leads 5x5mm Outline

Figure 16. Plastic Quad Flat No-Lead Package 40 Leads 5x5mm Outline

12.2. Mechanical Dimensions Notes

Symbol	Dimension in mm		Dimension in inch			
	Min	Nom	Max	Min	Nom	Max
A	0.80	0.85	0.90	0.031	0.033	0.035
A1	0.00	0.02	0.05	0.000	0.001	0.002
A3	0.20 REF		0.008 REF			
b	0.15	0.20	0.25	0.006	0.008	0.010
D/E		5.00 BSC			0.197 BSC	
D2/E2	3.45	3.60	3.75	0.136	0.142	0.148
e	0.40 BSC		0.016 BSC			
L	0.30	0.40	0.50	0.012	0.016	0.020

Notes:

CONTROLLING DIMENSION: MILLIMETER (mm). REFERENCE DOCUMENT: JEDEC MO-220.

13. Reflow Profile

Table 28. Reflow Profile

Stage	Note	Pb-Free Assembly	
Average ramp-up rate	T _L to Tp	3°C/ second max.	
Preheat	Temperature min (T _{smin})	150°C	
	Temperature max (Tsmax)	200°C	
	Time $(t_{smin} \text{ to } t_{smax})$	60 – 120 seconds	
Time maintained above	Temperature(T _L)	217°C	
	Time (t _L)	60 – 150 seconds	
Peak package body temperature (Tp)		See following table. Tp must not exceed the specified classification temp in the following table.	
Time(tp) within 5°C of the specified classification temperature (Tc)		30 seconds	
Ramp-dov	vn rate (Tp to T _L)	6°C / seconds max.	
Time 25°C to peak temperature		8 minutes max.	

Package Thickness	Volume < 350 mm3	Volume 350 – 2000 mm3	Volume > 2000 mm3
< 1.6 mm	260 +0 /-5°C	260 +0/-5°C	260 +0 /-5°C
1.6 – 2.5 mm	260 +0 /-5°C	250 +0/-5°C	245 +0/-5°C
□ 2.5 mm	250 +0 /-5°C	245 +0/-5°C	245 +0/-5°C

14. Ordering Information

Table 29. Ordering Information

Part Number	Package	Status
XMB1R -CGT	QFN-40, 5x5mm Outline; 'Green' Package (Tape & Reel)	MP

Note: See section 5 Pin Assignments, page 6 for package identification.

Realtek Semiconductor Corp.

Headquarters

No. 2, Innovation Road II, Hsinchu Science Park,

Hsinchu 300, Taiwan, R.O.C.

Tel: 886-3-5780211 Fax: 886-3-5776047

www.realtek.com