ENGR 504 (Fall 2024) S. Alghunaim

5. Linear models

- linear and affine functions
- Taylor approximation
- regression model
- linear equations
- linear dynamical systems

Linear functions

- $f: \mathbb{R}^n \to \mathbb{R}^m$ means f is a function mapping n-vectors to m-vectors
- value is an *m*-vector $f(x) = (f_1(x), \dots, f_m(x))$
- example: $f(x) = (x_1^2, x_2 x_1, x_2)$ is $f : \mathbb{R}^2 \to \mathbb{R}^3$

Linear functions: f is linear if it satisfies the *superposition* property

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

for all numbers α , β , and all n-vectors x, y

Extension: if f is linear, then

$$f\left(\alpha_{1}u_{1}+\alpha_{2}u_{2}+\cdots+\alpha_{m}u_{m}\right)=\alpha_{1}f\left(u_{1}\right)+\alpha_{2}f\left(u_{2}\right)+\cdots+\alpha_{m}f\left(u_{m}\right)$$

for all *n*-vectors u_1, \ldots, u_m and all scalars $\alpha_1, \ldots, \alpha_m$

Matrix-vector product function

define a function $f: \mathbb{R}^n \to \mathbb{R}^m$ as f(x) = Ax for fixed $A \in \mathbb{R}^{m \times n}$

- any function of this type is linear: $A(\alpha x + \beta y) = \alpha(Ax) + \beta(Ay)$
- every linear function f can be written as f(x) = Ax:

$$f(x) = f(x_1e_1 + x_2e_2 + \dots + x_ne_n)$$

$$= x_1f(e_1) + x_2f(e_2) + \dots + x_nf(e_n)$$

$$= [f(e_1) f(e_2) \dots f(e_n)] \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = Ax$$

where $A = [f(e_1) \ f(e_2) \ \cdots \ f(e_n)]$ and $f(e_i)$ is an m-vector

- for $f: \mathbb{R}^n \to \mathbb{R}$, we get inner product function $f(x) = a^T x$
- for any linear function f there is only one A for which f(x) = Ax for all x

Examples
$$(f: \mathbb{R}^3 \to \mathbb{R}^3)$$

Linear

• *f* reverses the order of the components of *x* is linear

$$A = \left[\begin{array}{rrr} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right]$$

• f scales x_1 by a given number d_1, x_2 by d_2, x_3 by d_3 is linear

$$A = \left[\begin{array}{ccc} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{array} \right]$$

Nonlinear

- f sorts the components of x in decreasing order: not linear
- f replaces each x_i by its absolute value $|x_i|$: not linear

Composition of linear functions

- A is an $m \times p$ matrix
- $B ext{ is } p \times n$
- define linear functions $f: \mathbb{R}^p \to \mathbb{R}^m$ and $g: \mathbb{R}^n \to \mathbb{R}^p$ as

$$f(u) = Au, \quad g(v) = Bv$$

• composition of f and g is $h: \mathbb{R}^n \to \mathbb{R}^m$

$$h(x) = f(g(x)) = A(Bx) = (AB)x$$

- · composition of linear functions is linear
- associated matrix is product of matrices of the functions

Example: Second difference matrix

• D_n is $(n-1) \times n$ difference matrix:

$$D_n x = (x_2 - x_1, x_3 - x_2, \dots, x_n - x_{n-1})$$

• D_{n-1} is $(n-2) \times (n-1)$ difference matrix:

$$D_n y = (y_2 - y_1, y_3 - y_2, \dots, y_{n-1} - y_{n-2})$$

• $\Delta = D_{n-1}D_n$ is $(n-2) \times n$ is called *second difference* matrix:

$$\Delta x = (x_1 - 2x_2 + x_3, x_2 - 2x_3 + x_4, \dots, x_{n-2} - 2x_{n-1} + x_n)$$

• for n = 5, $\Delta = D_{n-1}D_n$ is

$$\begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 \end{bmatrix}$$

Affine function

a function $f:\mathbb{R}^n \to \mathbb{R}^m$ is *affine* if it satisfies

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

for all *n*-vectors x, y and all scalars α , β with $\alpha + \beta = 1$

Extension: if f is affine, then

$$f\left(\alpha_{1}u_{1}+\alpha_{2}u_{2}+\cdots+\alpha_{m}u_{m}\right)=\alpha_{1}f\left(u_{1}\right)+\alpha_{2}f\left(u_{2}\right)+\cdots+\alpha_{m}f\left(u_{m}\right)$$

for all n-vectors u_1, \ldots, u_m and all scalars $\alpha_1, \ldots, \alpha_m$ with

$$\alpha_1 + \alpha_2 + \dots + \alpha_m = 1$$

Affine functions and matrix-vector product

 $f: \mathbb{R}^n \to \mathbb{R}^m$ is affine, if and only if it can be expressed as

$$f(x) = Ax + b$$

for some $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$

• to see it is affine, let $\alpha + \beta = 1$ then

$$A(\alpha x + \beta y) + b = \alpha(Ax + b) + \beta(Ay + b)$$

• using the definition, we can show

$$A = [f(e_1) - f(0) \ f(e_2) - f(0) \ \cdots \ f(e_n) - f(0)], \quad b = f(0)$$

• for $f: \mathbb{R}^n \to \mathbb{R}$ the above becomes $f(x) = a^T x + b$

Example: Motion of a mass

- · a unit mass with zero initial position and velocity
- we apply piecewise-constant force F(t) during interval [0, 10):

$$F(t) = x_j$$
 for $t \in [j-1, j), j = 1, ..., 10$

• define f(x) as position at t = 10, g(x) as velocity at t = 10

find f and g and determine whether they are linear or affine in x?

Solution

- from Newton's law s''(t) = F(t) where s(t) is the position at time t
- integrate to get final velocity and position

$$g(x) = s'(10) = \int_0^{10} F(t)dt$$

$$= x_1 + x_2 + \dots + x_{10}$$

$$f(x) = s(10) = \int_0^{10} s'(t)dt$$

$$= \frac{19}{2}x_1 + \frac{17}{2}x_2 + \frac{15}{2}x_3 + \dots + \frac{1}{2}x_{10}$$

• the two functions are linear: $f(x) = a^T x$ and $g(x) = b^T x$ with

$$a = \left(\frac{19}{2}, \frac{17}{2}, \dots, \frac{3}{2}, \frac{1}{2}\right), \quad b = (1, 1, \dots, 1)$$

Outline

- linear and affine functions
- Taylor approximation
- regression model
- linear equations
- linear dynamical systems

First-order Taylor (affine) approximation

first-order *Taylor approximation* of $f: \mathbb{R}^n \to \mathbb{R}$, near point z:

$$\hat{f}(x) = f(z) + \frac{\partial f}{\partial x_1}(z) (x_1 - z_1) + \dots + \frac{\partial f}{\partial x_n}(z) (x_n - z_n)$$
$$= f(z) + \nabla f(z)^T (x - z)$$

• *n*-vector $\nabla f(z)$ is the *gradient* of f at z,

$$\nabla f(z) = \left(\frac{\partial f}{\partial x_1}(z), \dots, \frac{\partial f}{\partial x_n}(z)\right)$$

- $\hat{f}(x)$ is very close to f(x) when x_i are all near z_i
- sometimes written $\hat{f}(x;z)$, to indicate that z where the approximation appear
- \hat{f} is an affine function of x
- often called *linear approximation* of f near z, even though it is in general affine

Example with one variable

Example with two variables

$$f(x_1, x_2) = x_1 - 3x_2 + e^{2x_1 + x_2 - 1}$$

· gradient:

$$\nabla f(x) = \begin{bmatrix} 1 + 2e^{2x_1 + x_2 - 1} \\ -3 + e^{2x_1 + x_2 - 1} \end{bmatrix}$$

• Taylor approximation around z = 0:

$$\begin{split} \hat{f}(x) &= f(0) + \nabla f(0)^T (x - 0) \\ &= e^{-1} + (1 + 2e^{-1})x_1 + (-3 + e^{-1})x_2 \end{split}$$

Taylor approximation for vector-valued functions

first-order Taylor approximation of differentiable $f: \mathbb{R}^n \to \mathbb{R}^m$ around z:

$$\hat{f}_i(x) = f_i(z) + \frac{\partial f_i}{\partial x_1}(z) (x_1 - z_1) + \dots + \frac{\partial f_i}{\partial x_n}(z) (x_n - z_n), \quad i = 1, \dots, m$$

in matrix-vector notation: $\hat{f}(x) = f(z) + D f(z)(x - z)$ where

$$Df(z) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(z) & \frac{\partial f_1}{\partial x_2}(z) & \cdots & \frac{\partial f_1}{\partial x_n}(z) \\ \frac{\partial f_2}{\partial x_1}(z) & \frac{\partial f_2}{\partial x_2}(z) & \cdots & \frac{\partial f_2}{\partial x_n}(z) \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(z) & \frac{\partial f_m}{\partial x_2}(z) & \cdots & \frac{\partial f_m}{\partial x_n}(z) \end{bmatrix} = \begin{bmatrix} \nabla f_1(z)^T \\ \nabla f_2(z)^T \\ \vdots \\ \nabla f_m(z)^T \end{bmatrix}$$

- Df(z) is called the *derivative* or *Jacobian* matrix of f at z
- \hat{f} is a local affine approximation of f around z

Example

$$f(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \end{bmatrix} = \begin{bmatrix} e^{2x_1 + x_2} - x_1 \\ x_1^2 - x_2 \end{bmatrix}$$

derivative matrix

$$Df(x) = \begin{bmatrix} 2e^{2x_1 + x_2} - 1 & e^{2x_1 + x_2} \\ 2x_1 & -1 \end{bmatrix}$$

• first order approximation of f around z = 0:

$$\hat{f}(x) = \left[\begin{array}{c} \hat{f}_1(x) \\ \hat{f}_2(x) \end{array} \right] = \left[\begin{array}{c} 1 \\ 0 \end{array} \right] + \left[\begin{array}{cc} 1 & 1 \\ 0 & -1 \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right]$$

Outline

- linear and affine functions
- Taylor approximation
- regression model
- linear equations
- linear dynamical systems

Regression model

a regression model is the affine function:

$$\hat{\mathbf{y}} = \mathbf{x}^T \boldsymbol{\beta} + \mathbf{v} = \boldsymbol{\beta}_1 \mathbf{x}_1 + \dots + \boldsymbol{\beta}_n \mathbf{x}_n + \mathbf{v}$$

- \hat{y} is prediction of true value y called the dependent variable, outcome, or label
- x is regressor or feature vector (entries called regressors)
- β is weight or coefficient vector (β_i are model parameters)
- v is offset parameter or intercept
- together β and v are called the parameters
- interpretation: β_i is amount ŷ changes when x_i increases by one with all x_j the same

House price regression model

y: selling price (in 1000 dollars) of a house in some neighborhood, over a time period

- x_1 is the area (1000 square feet)
- x_2 is the number of bedrooms

the regression model

$$\hat{y} = 54.4 + 148.73x_1 - 18.85x_2$$

predicts the price in terms of attributes or features (\hat{y} is predicted selling price)

house	x_1 (area)	x_2 (beds)	y (price)	\hat{y} (prediction)
1	0.846	1	115.00	161.37
2	1.324	2	234.50	213.61
3	1.150	3	198.00	168.88
4	3.037	4	528.00	430.67
5	3.984	5	572.50	552.66

Example: house sale prices

- scatter plot shows sale prices for 774 houses in Sacramento
- regression models for house prices that are used in practice use many more than two regressors and are more accurate

Regression model in matrix form

given N features (examples, samples) $x^{(1)}, \ldots, x^{(N)}$ and outcomes $y^{(1)}, \ldots, y^{(N)}$

- associated predictions are $\hat{y}^{(i)} = (x^{(i)})^T \beta + v$
- write as

$$\hat{\mathbf{y}}^{\mathrm{d}} = X^{T} \boldsymbol{\beta} + v \mathbf{1} = \begin{bmatrix} 1^{T} \\ X \end{bmatrix}^{T} \begin{bmatrix} v \\ \boldsymbol{\beta} \end{bmatrix}$$

- X is feature matrix with columns $x^{(1)}, \ldots, x^{(N)}$
- $-\hat{y}^{\mathrm{d}}=(\hat{y}^{(1)},\ldots,\hat{y}^{(N)})$ is N-vector of predictions
- vector of prediction errors or residuals

$$r^{\mathrm{d}} = y^{\mathrm{d}} - \hat{y}^{\mathrm{d}} = y^{\mathrm{d}} - X^{T}\beta - v\mathbf{1}$$

 $y^{\rm d} = (y^{(1)}, \dots, y^{(N)})$ is *N*-vector of responses (true outcomes if known)

Outline

- linear and affine functions
- Taylor approximation
- regression model
- linear equations
- linear dynamical systems

Systems of linear equations

set (system) of m linear equations in n variables x_1, \ldots, x_n :

$$A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n = b_1$$

$$A_{21}x_1 + A_{22}x_2 + \dots + A_{2n}x_n = b_2$$

$$\vdots$$

$$A_{m1}x_1 + A_{m2}x_2 + \dots + A_{mn}x_n = b_m$$

- can express compactly as Ax = b
- A_{ij} are the *coefficients*; A is the *coefficient matrix*
- b is called the right-hand side
- may have no solution, a unique solution, infinitely many solutions

Classification

- under-determined if m < n (A is wide; more unknowns than equations)
- square if m = n (A is square)
- over-determined if m > n (A is tall; more equations than unknowns)

Example: Polynomial interpolation

• polynomial of degree at most n-1 with coefficients x_1, x_2, \ldots, x_n :

$$p(t) = x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1}$$

- fit polynomial to m given points $(t_1, y_1), \ldots (t_m, y_m)$
- this is a system of linear equations:

$$Ax = \begin{bmatrix} 1 & t_1 & \cdots & t_1^{n-1} \\ 1 & t_2 & \cdots & t_2^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & t_m & \cdots & t_m^{n-1} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

here A is the Vandermonde matrix

Example: Recovery of function from derivative

consider finding a function v(t) from its second derivative -g(t) on interval [0,1]

- this problem arises in many applications such as the heat equation in one variable
- for any v with $-\frac{d^2v}{dt^2}(t)=g(t)$, the function $w(t)=v(t)+\alpha+\beta t$ has the same second derivative for any constants α and β
- to fix these constants we need two additional constraints
- we assume v(0) = v(1) = 0
- this yields a differential equation, $-\frac{d^2v}{dt^2}(t) = g(t)$, with boundary conditions

linear equations SA — ENGR504 5.2

- we subdivide the interval [0,1] into N subintervals of size h=1/N each
- define $v_k = v(kh)$ and $g_k = g(kh)$ for k = 0, 1, ..., N
- discrete approximation of $-\frac{d^2v}{dt^2}(t)=g(t)$

$$-\frac{d^2v}{dt^2}(kh) = -\frac{v_{k+1} - 2v_k + v_{k-1}}{h^2} = g_k, \quad k = 1, 2, \dots, N - 1$$

- for boundary conditions v(0) = 0, v(1) = 0, we write $v_0 = 0$, $v_N = 0$
- rewriting the equations in matrix-vector form, we get Av = g, where

$$v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_{N-1} \end{bmatrix}, \quad g = \begin{bmatrix} g_1 \\ g_2 \\ \vdots \\ g_{N-1} \end{bmatrix}, \quad A = \frac{1}{h^2} \begin{bmatrix} 2 & -1 \\ -1 & 2 & -1 \\ & \ddots & \ddots & \ddots \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{bmatrix}$$

linear equations SA — ENGR504 5.2

Example: Diffusion system

diffusion system is a model that arises in physics to describe flows and potentials

Flows

- consider a directed graph with *n* nodes and *m* edges
- f_i is flow across edge j (e.g., electricity, heat, energy, or mass)
- s_i is source flow at node i
- in diffusion system, flows satisfy flow conservation (sum of flows equal zero)
- example:

• flow conservation at every node is A f + s = 0 where A is the incidence matrix

Potentials

- with node i we associate a potential v_i (e.g., temperature in thermal model, voltage in an electrical circuit)
- flow on an edge is proportional to the potential difference across its adjacent nodes $r_i f_i = v_k v_l$ where r_i is *resistance* of edge j
- example:

$$r_8 f_8 = v_2 - v_3$$

• edge flow equations: $Rf = -A^T v$, where $R = \operatorname{diag}(r)$ is called *resistance matrix*

Diffusion model

$$\left[\begin{array}{ccc} A & I & 0 \\ R & 0 & A^T \end{array}\right] \left[\begin{array}{c} f \\ s \\ v \end{array}\right] = 0$$

- a set of n + m homogeneous equations in m + 2n variables
- to these underdetermined equations we can specify some entries of f, s, v

linear equations SA — ENGR504 5.25

Outline

- linear and affine functions
- Taylor approximation
- regression model
- linear equations
- linear dynamical systems

Linear dynamical system

sequence of n-vectors x_1, x_2, \ldots

$$x_{t+1} = A_t x_t, \quad t = 1, 2, \dots$$

- A_t are $n \times n$ dynamics matrices
- t denotes time or period
- x_t is *state* at time t; sequence is called (state) *trajectory*
- x_t is current state, x_{t-1} is previous state, x_{t+1} is next state
- examples: x_t represents
 - mechanical variables (positions or velocities)
 - age distribution in a population
 - portfolio that changes daily
- system is *time-invariant* if $A_t = A$ (doesn't depend on time)
- for time-invariant system $x_{t+\ell} = A^{\ell} x_t$ (A^{ℓ} propagates the state forward ℓ times)

Linear dynamical system

(Linear) K-Markov model

$$x_{t+1} = A_1 x_t + \dots + A_K x_{t-K+1}, \quad t = K, K+1, \dots$$

- next state depends on current state and K-1 previous states
- also known as auto-regressive model
- for K = 1, this is the standard linear dynamical system $x_{t+1} = Ax_t$

Linear dynamical system with input

$$x_{t+1} = A_t x_t + B_t u_t + c_t, \quad t = 1, 2, \dots$$

- *u_t* is an *input m*-vector (or exogenous variable)
- B_t is $n \times m$ input matrix
- c_t is *offset* (or noise)
- for fixed A, B, and $c_t = 0$,

$$x_{t+\ell} = A^{\ell} x_t + A^{\ell-1} B u_t + A^{\ell-2} B u_{t+1} + \dots + B u_{t+\ell-1}$$

Linear dynamical system with state feedback

$$x_{t+1} = Ax_t + Bu_t, \quad t = 1, 2, \dots$$

- the input u_t is something we can manipulate, e.g., the control
- in state feedback control, input u_t is a linear function of the state,

$$u_t = Kx_t$$
,

where K is the $m \times n$ state-feedback gain matrix

with state feedback, we have

$$x_{t+1} = Ax_t + Bu_t = (A + BK)x_t, \quad t = 1, 2, \dots$$

5 28

- recursion is the *closed-loop system* ($x_{t+1} = Ax_t$ is open-loop system)
- matrix A + BK is called the closed-loop dynamics matrix
- widely used in many applications (we will see methods for choosing K)

Example: Population distribution

model the evolution of age distribution in some population over time by linear dynamical system

- $x_t \in \mathbb{R}^{100}$ gives population distribution in year $t = 1, \dots, T$
- $(x_t)_i$ is the number of people with age i-1 in year t (say, on January 1)
 - total population in year t is $\mathbf{1}^T x_t$
 - number of people age 70 or older in year t is $(0_{70}, 1_{30})^T x_t$
- birth rate $b \in \mathbb{R}^{100}$
 - $-\ b_i$ is average number of births per person with age i-1
- death (or mortality) rate $d \in \mathbb{R}^{100}$
 - $-\ d_i$ is the portion of those aged i-1 who will die this year (we'll take $d_{100}=1$)
- b and d can vary with time, but we'll assume they are constant

let's find next year's population distribution x_{t+1} (ignoring immigration)

Population distribution dynamics

number of 0-year-olds next year is total births this year:

$$(x_{t+1})_1 = b^T x_t$$

• no. of *i*-year-olds next year is no. of (i-1)-year-olds this year, minus deaths:

$$(x_{t+1})_{i+1} = (1 - d_i) (x_t)_i, \quad i = 1, \dots, 99$$

• hence, $x_{t+1} = Ax_t$, where

$$A = \begin{bmatrix} b_1 & b_2 & \cdots & b_{99} & b_{100} \\ 1 - d_1 & 0 & \cdots & 0 & 0 \\ 0 & 1 - d_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 - d_{99} & 0 \end{bmatrix}$$

• we can use this model to predict the total population in future

predicting U.S. 2020 distribution from 2010 (ignoring immigration) with initial value x_1 given by the 2010 age distribution

Example: Epidemic dynamics

4-vector x_t gives proportion of population in 4 infection states

- susceptible: can acquire the disease the next day, $(x_t)_1$
- *infected:* have the disease, $(x_t)_2$
- recovered: had the disease, recovered, now immune, $(x_t)_3$
- deceased: had the disease, and unfortunately died, $(x_t)_4$

Example: $x_t = (0.75, 0.10, 0.10, 0.05)$ means in day t

- 75% of the population is susceptible
- 10% is infected
- 10% is recovered and immune
- 5% has died from the disease

Model assumption: suppose over each day

- 5% of susceptible acquires the disease (95% remain susceptible)
- 1% of infected dies
- 10% of infected recovers with immunity
- 4% of infected recover without immunity (*i.e.*, become susceptible)
- 85% remain infected
- 100% of immune and dead people remain in their state

linear dynamical systems SA — FNCR504 5.34

Epidemic dynamics as linear dynamical system

· susceptible portion in the next day

$$(x_{t+1})_1 = 0.95 (x_t)_1 + 0.04 (x_t)_2$$

- $-0.95(x_t)_1$ is susceptible individuals from today, who did not become infected,
- $-0.04(x_t)_2$ is infected individuals today who recovered without immunity
- infected portion in the next day

$$(x_{t+1})_2 = 0.85 (x_t)_2 + 0.05 (x_t)_1$$

- first term counts those who are infected and remain infected
- second term counts those who are susceptible and acquire disease
- using similar arguments for $(x_{t+1})_3$ and $(x_{t+1})_4$, we get

$$x_{t+1} = \begin{bmatrix} 0.95 & 0.04 & 0 & 0\\ 0.05 & 0.85 & 0 & 0\\ 0 & 0.10 & 1 & 0\\ 0 & 0.01 & 0 & 1 \end{bmatrix} x_t$$

simulation from $x_1 = (1, 0, 0, 0)$

Example: Motion of a mass

- linear dynamical systems can be used to (approximately) describe the motion of many mechanical systems
- for example, an airplane (that is not undergoing extreme maneuvers)
- we describe the simplest case: a single mass moving in 1-D

Motion of mass dynamics

$$m\frac{d^2p}{d\tau^2}(\tau) = -\eta \frac{dp}{d\tau}(\tau) + f(\tau)$$

- m > 0 is the mass
- ullet f(au) is the external force acting on the mass at time au
- $\eta > 0$ is the drag coefficient
- introducing the velocity of the mass, $v(\tau) = dp(\tau)/d\tau$, we can write

$$\frac{dp}{d\tau}(\tau) = v(\tau), \quad m\frac{dv}{d\tau}(\tau) = -\eta v(\tau) + f(\tau)$$

Discretization

- let h > 0 be a small time interval (called the *sampling interval*)
- define the continuous quantities 'sampled' at multiples of h seconds

$$p_k = p(kh), \quad v_k = v(kh), \quad f_k = f(kh)$$

we now use the approximations

$$\frac{dp}{d\tau}(kh) \approx \frac{p_{k+1} - p_k}{h}, \quad \frac{dv}{d\tau}(kh) \approx \frac{v_{k+1} - v_k}{h}$$

this leads to the (approximate) equations

$$\frac{p_{k+1} - p_k}{h} = v_k, \quad m \frac{v_{k+1} - v_k}{h} = f_k - \eta v_k$$

• using state $x_k = (p_k, v_k)$, we write this as

$$x_{k+1} = \begin{bmatrix} 1 & h \\ 0 & 1 - h\eta/m \end{bmatrix} x_k + \begin{bmatrix} 0 \\ h/m \end{bmatrix} f_k, \quad k = 1, 2, \dots$$

References and further readings

- S. Boyd and L. Vandenberghe. Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares, Cambridge University Press, 2018.
- L. Vandenberghe. *EE133A lecture notes*, University of California, Los Angeles. (http://www.seas.ucla.edu/~vandenbe/ee133a.html)

references SA_FNGF504 5.39