Dr. Jürg M. Stettbacher

Neugutstrasse 54 CH-8600 Dübendorf

Telefon: +41 43 299 57 23 Email: dsp@stettbacher.ch

Quiz

Kanalcodierung: Hamming Codes

Sie sollten in der Lage sein, die folgenden Fragen ohne langes Nachdenken beantworten zu können.

Hamming Codes sind eine Familie von linearen (N,K) Block Codes, deren Codeworte immer eine Hamming Distanz von genau drei haben.

1. Wie viele Bitfehler pro Codewort kann ein Hamming Code erkennen?

2. Wie viele Bitfehler pro Codewort kann ein Hamming Code korrigieren?

2=1

3. Vervollständigen Sie die Tabelle für einige bekannte Hamming Codes. Dabei steht R für die Coderate, P_1 für die Wahrscheinlichkeit, dass bei der fehlerkorrigierenden Übertragung (FEC) eines Codeworts mindestens ein Fehler passiert, und P_M für die Wahrscheinlichkeit, dass bei der Übertragung mit FEC von m=2000 informationstragenden Bits mindestens ein Fehler passiert. M bezeichnet dabei die Anzahl der notwendigen Codewort.

Wir nehmen an, dass die Übertragung über einen BSC verläuft mit der BER $\varepsilon = 0.001$.

N	K	R	P_1	P_M	M			
3 6 000	1	专	6,975-12	Po= (4-2) =0.00t(
7	4	4	6,975-12					
15	11	茶						
31	26	<u>16</u> 31						
63	57	57 63						
127	120	सर धेंग देश शह से						
255	247	150						

Objest to the file and position of our 1

Antworten

1. Mit der Hamming Distanz $d_{min} = 3$ folgt, dass $n_e = 2$ Fehler erkennbar sind.

$$n_e = d_{min} - 1$$

2. Mit der Hamming Distanz $d_{min} = 3$ folgt, dass $n_k = 1$ Fehler korrigierbar ist.

$$n_k = \left| \frac{d_{min} - 1}{2} \right|$$

3. Mit der BER $\varepsilon = 0.001$ berechnen wir:

$$R = \frac{K}{N}$$

Die Wahrscheinlichkeit P_0 , dass bei der fehlerkorrigierenden Übertragung von einem Codewort kein Feher auftritt ist:

$$P_0 = (1 - \varepsilon)^N + N \cdot \varepsilon \cdot (1 - \varepsilon)^{N-1}$$

Damit folgt P_1 als Gegenereignis von P_0 :

$$P_1 = 1 - P_0$$

Die Anzahl notwendiger Codeworte M für die Übertragung von m Informationsbits ist¹:

$$M = \left\lceil \frac{m}{K} \right\rceil$$

Die Wahrscheinlich P_M lässt sich direkt nicht leicht berechnen, denn P_M umfasst die Fälle, wo genau ein Codewort fehlerhaft decodiert wird, zwei Codewort, usw., bis zu M fehlerhaft decodierten Codeworten. Das Gegenereignis davon ist jedoch der Fall, wo von M Codeworten gar keines fehlerhaft decodiert wird. Damit können wir P_M angeben als:

$$P_M = 1 - P_0^M$$

Somit erhalten wir die folgenden Werte:

N	K	R	P_1	P_M	M
3	1	0.333	0.000003	0.006	2000
7	4	0.571	0.000021	0.010	500
15	11	0.733	0.000104	0.019	182
31	26	0.839	0.000456	0.035	77
63	57	0.905	0.001875	0.065	36
127	120	0.945	0.007364	0.118	17
255	247	0.969	0.027406	0.221	9

¹ Wir nehmen an, dass allfällige überzählige Bits als Nullen übertragen werden.