T.	AT IT	TIC)RIF	CTIVE	OPTIMIS	ATION
13	/I U / I	41 IV.	m.ir.	LIIVE	OF LIVIN	\mathbf{A}

Contents

- · Basic Concepts
- · Aggregation-based Approaches
- · Evolutionary Multiobjective Optimisation
 - · A Non-Pareto Based Approach Vega
 - · A Pareto Based Approach NSGA-II

1

Literature:

- 1. Multi-Objective Optimisation using Evolutionary Algorithms, Kalyanmoy Deb. Willey, 2004
- Evolutionary algorithms for solving multi-objective problems, Carlos Coello Coello, Gary Lamont, David Van Veldhuizen, 2nd Edition, Springer, 2007.
- A Comprehensive Survey of Evolutionary-based Multiobjective Optimisation Techniques, C. Coello Coello, Knowledge and Information Systems, Vol.1, No. 3, 1999, p.269-308
- Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art, D. Van Veldhuizen, G. Lamont, Evolutionary Computation, Vol.8, No. 2, 1999, p.125-147
- Multi-objective Optimisation, K. Deb in: Search Methodologies: Introductory Tutorials in Optimization and Decision Support Methodologies, E.K.Burke and G.Kendall (editors), Springer, 2005.

6. Metaheuristics for Multiobjective Optimisation,

- X. Gandibleux, M.Sevaux, K.Sorensen, V.T'kindt (editors) Lecture Notes in economics and Mathematical Systems, Vol. 535, Springer, 2004.
- 7. Modern Heuristic Techniques for Combinatorial Problems, (Ed) C.Reeves 1995, McGraw-Hill. Chapter 4.
- 8. Evolutionary Multiobjective Bibliography: http://www.lania.mx/~ccoello/EMOO/
- PISA (Platform and programming language independent Interface for Search Algorithms) website: http://www.tik.ee.ethz.ch/pisa/

From modelling and analysis lecture:

Linear programming

Variables

T = number of tables made per week C = number of chairs made per week

Constraints

total work time customer demand storage space $6T + 3C \le 40$ (C >= 3T $C + 4T \le 16$ all variables >= 0

Objective

maximise 30T + 10C

1. Basic Concepts

Many real world optimisation problems can be formulated as non-linear programming problems with multiple objectives. e.g.:

minimise $f_1(x)$

minimise $f_2(x)$

maximise $f_3(x)$

subject to constraints $C(x) = (c_1(x), ..., c_m(x))$

such that $x=(x_1,...,x_n), x \in X$

where X is the decision space x is the decision vector

5

1. Basic Concepts

General problem statement

minimise $F(x) = (f_1(x), ..., f_k(x)),$

subject to constraints $C(x) = (c_1(x), ..., c_m(x))$

such that $x=(x_1,...,x_n), x \in X$

where X is the decision space

Y is the objective space

x is the decision vector

 $F: X \rightarrow Y$

Dominance relation

Dominance relation, used by almost all MO algorithms

Dominance is denoted by $u \triangleleft v \ (u \ dominates \ v)$

Among a set of solutions, the non-dominated set is where each dominates any solution outside the set.

14

◆ Pareto dominance

An objective vector $u = (u_1, ..., u_k)$, is said to dominate another objective vector $v = (v_1, ..., v_k)$, (denoted by $u \triangleleft v$) iff $u_i \leq v_i$, i = 1, ...k, and there exists $i \in \{1, ..., k\}$, $u_i < v_i$ (for a minimisation problem)

◆ Pareto optimality

A solution $x \in X$, is said to be Pareto optimal with respect to X iff there is no $x' \in X$ for which F(x') dominates F(x).

- The Pareto-optimal front contains those objective vectors that are not dominated by any other vector.
- The Pareto-optimal set contains those decision vectors whose corresponding objective vectors are not dominated by any other vector in the objective space.

Dominance exercise

Identify the Pareto (non-dominated) front in each diagram

17

2. Aggregation-based Approaches

Weighted Sum Approach (Similar to last lecture)

minimise
$$\sum_{i=1}^{k} w_i f_i(x)$$
, $w_i \ge 0$

Simplifies the problem, as you now have one objective

Drawbacks:

- Uniform spread of weights does not necessarily produce a uniform spread of points on the Pareto front.
- · 'Non-convex' parts of the Pareto front cannot be obtained.

3. Evolutionary Multiobjective Optimisation Evolutionary computation population selection variation mutation environmental selection crossover Maintains a population of solutions As we want to find a set of solutions, intuitively evolutionary computation is a highly appropriate methodology

3. Evolutionary Multiobjective Optimisation **Evolutionary computation** variation population mutation mating selection environmental crossover selection Population: contains the currently considered solution candidates Mating selection: takes (promising) solutions for variations Variation: modifies solutions Mutation operator modifies individuals by changing small parts Crossover operator takes 2 'parents' and combines them. Environmental selection: determines which of the previously stored solutions and the newly created ones are kept in the population $_{21}$

Pseudo-code of Evolutionary Algorithms (EAs)

Input: EAs parameters //Population size, Operators 'rates, Stopping Condition Output: a set of solutions
Generate the initial population Pop_0 t=0repeat
for each individual $i \in Pop_t$ do
Assign Fitness to individual i.
end for
Select solutions from Pop_t based on their fitness values
Apply mutation/crossover operations on the selected solutions
Perform environmental selection to obtain next generation Pop_{t+1} t=t+1until the stopping condition is met.

4. Non-pareto Based Evolutionary Algorithm

<u>VEGA</u>: The <u>Vector Evaluated Genetic Algorithm</u>, (Shaffer 1985)

Split the population, one subpopulation per objective. Within each subpopulation, the fitness is assigned based on its one objective.

The main drawback:

- Selects individuals which are good at one objective, but leaves out compromise solutions.
- •Non-convex parts of the Pareto front cannot be obtained.

25

likely to have two copies of sol. 6 and one copy of sol. 3

6. Pareto-based Evolutionary Algorithm

Procedure for finding the nondominated set

Variables:

 ${\it P}$ - the Pareto front (approximation)

i - counter for solutions

j – counter for solutions from P

N – number of the solutions in the population

```
Step 1. Initialise P=\{1\} // P (the nondominated set) contains the first solution
Step 2. j=1
Step 3. Compare solution i and solution j from P in terms of dominance
    IF i \triangleleft j
                          // i dominates j
       P = P \setminus \{j\}
                           //delete j from P
       IF j < |P| THEN j = j + 1
                           GO TO Step 3
       ELSE GO TO Step 4
             IF j \triangleleft i
                          // j dominates i
             THEN GO TO Step 5.
    ELSE IF j < |P| THEN j = j + 1 // j and i do not dominate each other
                                        GO TO Step 3
Step 4. P = P \cup \{i\}
                           // insert i in P
Step 5. IF i < N//N is the total number of solutions
       THEN i = i + 1
              GO TO Step 2.
       ELSE P is the approximation of Pareto front; STOP
```

Solution	f_I (minimise)	(minimise)	f_2
1	5	30	30 1
2	8	10	25 5
3	18	5	10 2
4	10	25	5
5	20	18	5 8 10 13 18 20
6	13	35	

Decision Support Methodologies

Non-dominated sorting procedure

Variables:

 n_i – domination count: the number of solutions which dominate the solution i

 S_i – set of solutions dominated by solution i

Pop – population

 F_k – non-dominated front of level k

```
Step 1. For all i \in Pop
n_i = 0 \; ; \; S_i = 0
Step 2. For all i \in Pop
\text{IF } i \lhd j \qquad \text{$//i$ dominates } j
S_i = S_i \cup \{j\}
\text{ELSE IF } j \lhd i \qquad \text{$//j$ dominates } i
n_i = n_i + 1
Step 3. For all i \in Pop
\text{IF } n_i = 0
\text{keep } i \text{ in the first non-dominated front } F_1
```


Decision Support Methodologies

 $\begin{array}{ll} \textbf{Variables:} & P_r \text{ parent population} \\ & Q_t \text{ offspring population} \\ & F_m \text{ different fronts, } m{=}1,...,\!M \\ & N \text{ size of the population} \end{array}$

Step 1. $R_t = P_t \cup Q_t$

Step 2. perform **Non-dominated sorting** to R_t identify different fronts F_m , m=1,...,M

 $\begin{aligned} \textbf{Step 3.} & \ P_{t+1} = \varnothing \\ & m = 1 \\ & \ \textbf{While} & \ | P_{t+1} | + |F_m| < N \\ & \ P_{t+1} = P_{t+1} \cup F_m \\ & m = m + 1 \end{aligned}$

Step 4. Perform Crowding distance sorting

Include the most widely spread $(N-|P_{t+1}|)$ solutions in P_{t+1}

Step 5. Create offspring population Q_{t+1} from P_{t+1} by using the **crowded tournament selection**, crossover and mutatiqn

Crowding-sort						
Step 1 . For all $i \in F_m$, $d_i = 0$	$0, i=1,\ldots,s$					
Step 2. For each objective $k, k=1,,K$						
$I_k = \operatorname{sort}(f_k, >)$	// sorts the set from lowest to highest of f_k					
	$//I_k$ is the list of indices					
Step 3. For all $k=1,,K$						
$d_{Ik1} = d_{Iks} = \infty$	// the distance for the extreme solutions set to infinity					
	// I_{kj} is the index of the j th member in the sorted list I_k					
For all other solu	tions $j=2,,s-1$ Distance between the					
$f_{k}(I_{k} j+1) - f_{k}(I_{k} j-1)$ two solutions either side						
$d_{I_k \ j} = \frac{g_k}{f_i}$	two solutions either side $\frac{f(j+1) - f_k(I_k \ j-1)}{k^{\max} - f_k^{\min}} \leftarrow \text{Normalise the distance}$					
$d_j = d_j + d_{I_k j}$						
	45					

Summary

- Aggregation of several objectives into a single one requires setting of parameters.
- Why is Evolutionary computation good for multiobjective optimisation?
 - The solution space can be explored in a single optimization run
 - Applicable to complex and huge search spaces
 - Enables flexibility: problem formulation can be easily modified / extended.
- ➤ Elitist Non-dominating Sorting GA uses:
 - · elitist principle
 - · explicit diversity preserving mechanism
 - · emphasises the non-dominated solutions