- -- CS341 info session is on Thu 3/12 6pm in Gates415
- -- Final exam logistics
- -- Please fill out course evaluation forms (THANKS!!!)

Optimizing Submodular Functions

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu

Announcement: Final Exam Logistics

Final: At Stanford

- Alternate final: Mon 3/16 7:00-10:00pm in Bishop Auditorium (Lathrop Library)
 - Register at: http://goo.gl/forms/5505oC0Y94
- Final: Fri 3/20 12:15-3:15pm
 NVidia (Lastname starting with A-M)
 Hewlett200 (Lastname starting with N-Z)
 - See http://campus-map.stanford.edu
 - Practice finals + Gradiance quizzes will be on Piazza
 - Open book, open computer, no internet
- SCPD students can take the exam at Stanford!

Final: SCPD Students

- Exam protocol for SCPD students:
 - On Monday 3/16 your exam proctor will receive the PDF of the final exam from SCPD
 - If you take the exam at Stanford:
 - Ask the exam monitor to delete the SCPD email
 - If you don't take the exam at Stanford:
 - Arrange a 3h slot with your exam monitor
 - You can take the exam anytime but return it in time
 - Email exam PDF to <u>cs246.mmds@gmail.com</u> by <u>Thursday 3/19 11:59pm Pacific time</u>

Announcement: CS341: Project in Mining Massive Datasets

CS341

- Data mining research project on real data
 - Groups of 3 students
 - We provide interesting data, computing resources (Amazon EC2) and mentoring
 - You provide project ideas
 - Class meets once a week + individual group mentoring

Information session: Thursday 3/12 6:00pm in Gates 415

(there will be pizza!)

CS341: Schedule

- Thu 3/12: Info session
 - We will introduce datasets, problems, ideas
- Students form groups and project proposals
- Mon 3/23: Project proposals are due
- We evaluate the proposals
- Mon 3/30: Admission results
 - 10 to 15 groups/projects will be admitted
- Mon 5/4, Wed 5/6: Midterm presentations
- Thu 6/11: Presentations, poster session

More info: http://cs341.stanford.edu

Optimizing Submodular Functions

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu

Recommendations: Diversity

Redundancy leads to a bad user experience

Obama Calls for Broad Action on Guns

Obama unveils 23 executive actions, calls for assault weapons ban

Obama seeks assault weapons ban, background checks on all gun sales

- Uncertainty around information need => don't put all eggs in one basket
- How do we optimize for diversity directly?

Covering the day's news

France intervenes

Chuck for Defense

Hagel expects fight

Monday, January 14, 2013

Covering the day's news

France intervenes

Chuck for Defense

New gun proposals

Monday, January 14, 2013

Encode Diversity as Coverage

- Idea: Encode diversity as coverage problem
- Example: Word cloud of news for a single day
 - Want to select articles so that most words are "covered"

Diversity as Coverage

What is being covered?

- Q: What is being covered?
- A: Concepts (In our case: Named entities)

- Q: Who is doing the covering?
- A: Documents

Simple Abstract Model

- Suppose we are given a set of documents V
 - Each document \mathbf{d} covers a set X_d of words/topics/named entities \mathbf{W}
- For each set of documents A we define

$$F(A) = \left| \bigcup_{d \in A} X_d \right|$$

Goal: We want to

$$\max_{|A| \le k} F(A)$$

■ Note: F(A) is a set function: F(A): Sets $\rightarrow \mathbb{N}$

Maximum Coverage Problem

• Given universe of elements $W = \{w_1, ..., w_n\}$ and sets $X_1, ..., X_m \subseteq W$

- Goal: Find k sets X_i that cover the most of W
 - More precisely: Find k sets X_i whose size of the union is the largest
 - Bad news: A known NP-complete problem

Simple Heuristic: Greedy Algorithm:

- Start with $A_0 = \{\}$
- For i = 1 ... k
 - Take set d that $\max F(A_{i-1} \cup \{d\})$
 - Let $A_i = A_{i-1} \cup \{d\}$

$$F(A) = \left| \bigcup_{d \in A} X_d \right|$$

Example:

- Eval. $F(\{d_1\})$, ..., $F(\{d_m\})$, pick best (say d_1)
- ullet Eval. $F(\{d_1\}\cup\{d_2\})$, ..., $F(\{d_1\}\cup\{d_m\})$, pick best (say d_2)
- Eval. $F(\{d_1, d_2\} \cup \{d_3\}), ..., F(\{d_1, d_2\} \cup \{d_m\})$, pick best
- And so on...

When Greedy Heuristic Fails?

- Goal: Maximize the size of the covered area
- Greedy first picks A and then C
- But the optimal way would be to pick B and C

Approximation Guarantee

- Greedy produces a solution A where: $F(A) \ge (1-1/e)*OPT$ $(F(A) \ge 0.63*OPT)$ [Nemhauser, Fisher, Wolsey '78]
- Claim holds for functions F(·) with 2 properties:
 - F is monotone: (adding more docs doesn't decrease coverage) if $A \subseteq B$ then $F(A) \leq F(B)$ and $F({}_{\{\}})=0$
 - F is submodular:
 adding an element to a set gives less improvement than adding it to one of its subsets

Submodularity: Definition

Definition:

Set function F(·) is called submodular if: For all A,B⊆W:

$$F(A) + F(B) \ge F(A \cup B) + F(A \cap B)$$

Submodularity: Or equivalently

- Diminishing returns characterization
 Equivalent definition:
- Set function F(·) is called submodular if: For all A⊆B, s∉B:

$$F(A \cup d) - F(A) \ge F(B \cup d) - F(B)$$
Gain of adding d to a small set

Gain of adding d to a large set

Example: Set Cover

• $F(\cdot)$ is submodular: $A \subseteq B$

$$F(A \cup d) - F(A) \geq F(B \cup d) - F(B)$$

Gain of adding X_d to a small set

Gain of adding X_d to a large set

Natural example:

- Sets X_1, \ldots, X_m
- $F(A) = |\bigcup_{d \in A} X_d|$ (size of the covered area)
- Claim: F(A) is submodular!

Submodularity – Diminishing returns

Submodularity is discrete analogue of concavity

Submodularity & Concavity

Marginal gain:

$$\Delta_F(d|A) = F(A \cup X_d) - F(A)$$

Submodular:

$$F(A \cup d) - F(A) \ge F(B \cup d) - F(B)$$

Concavity:

$$f(a+d)-f(a) \ge f(b+d)-f(b)$$

 $A \subseteq B$

 $a \leq b$

Submodularity: Useful Fact

- Let $F_1 \dots F_m$ be submodular and $\lambda_1 \dots \lambda_m > 0$ then $F(A) = \sum_i^m \lambda_i F_i(A)$ is submodular
 - Submodularity is closed under non-negative linear combinations!
- This is an extremely useful fact:
 - Average of submodular functions is submodular: $F(A) = \sum_{i} P(i) \cdot F_{i}(A)$
 - Multicriterion optimization: $F(A) = \sum_{i} \lambda_{i} F_{i}(A)$

Back to our problem

- Q: What is being covered?
- A: Concepts (In our case: Named entities)

Hagel expects fight

- Q: Who is doing the covering?
- A: Documents

Back to our Concept Cover Problem

Objective: pick k docs that cover most concepts

- F(A): the number of concepts covered by A
 - Elements...concepts, Sets ... concepts in docs
 - F(A) is submodular and monotone!
 - We can use greedy to optimize F

The Set Cover Problem

Objective: pick k docs that cover most concepts

The good:

Penalizes redundancy
Submodular

The bad:

Concept importance?

All-or-nothing too harsh

Probabilistic Set Cover

Concept importance?

Objective: pick **k** docs that cover most concepts <u>Mali</u> Zero Dark Thirty Obama Romney France Hagel Pentagon **Inauguration weekend Enthusiasm for Inauguration wanes**

Each concept c has importance weight w_c

All-or-nothing too harsh

Document coverage function

$$\operatorname{cover}_d(c) = \operatorname{probability} \operatorname{document} \operatorname{d} \operatorname{covers}$$

$$\operatorname{concept} \operatorname{c}$$
 [e.g., how strongly $\operatorname{d} \operatorname{covers} \operatorname{c}$]

Enthusiasm for Inauguration wanes

Probabilistic Set Cover

Document coverage function:

$$cover_d(c) =$$
probability document **d** covers concept **c**

- Cover_d(c) can model how relevant is concept c for user u
- Set coverage function:

$$\operatorname{cover}_{\mathcal{A}}(c) = 1 - \prod_{d \in \mathcal{A}} (1 - \operatorname{cover}_d(c))$$

Prob. that at least one document in A covers c

Objective:
$$\max_{\mathcal{A}:|\mathcal{A}|\leq k}F(\mathcal{A})=\sum_{c}w_{c}\text{ cover}_{\mathcal{A}}(c)$$

Optimizing F(A)

$$\max_{\mathcal{A}:|\mathcal{A}|\leq k} F(\mathcal{A}) = \sum_{c} w_c \operatorname{cover}_{\mathcal{A}}(c)$$

- The objective function is also submodular
 - Intuitive diminishing returns property
 - Greedy algorithm leads to a $(1 1/e) \sim 63\%$ approximation, i.e., a **near-optimal** solution

Summary: Probabilistic Set Cover

Objective: pick k docs that cover most concepts

Enthusiasm for Inauguration wanes

Inauguration weekend

- Each concept c has importance weight w_c
- Documents partially cover concepts: $\mathbf{cover}_d(c)$

Lazy Optimization of Submodular Functions

Submodular Functions

Greedy

Marginal gain: $F(A \cup x)-F(A)$

Add document with highest marginal gain

Greedy algorithm is slow!

- At each iteration we need to re-evaluate marginal gains of all remaning documents
- Runtime $O(|D| \cdot K)$ for selecting K documents out of the set of D of them

Speeding up Greedy

- In round i: So far we have $A_{i-1} = \{d_1, ..., d_{i-1}\}$
 - Now we pick $\mathbf{d}_i = \arg\max_{d \in V} F(A_{i-1} \cup \{d\}) F(A_{i-1})$
 - Greedy algorithm maximizes the "marginal benefit" $\Delta_i(d) = F(A_{i-1} \cup \{d\}) F(A_{i-1})$
- By submodularity property:

$$F(A_i \cup \{d\}) - F(A_i) \ge F(A_j \cup \{d\}) - F(A_j) \text{ for } i < j$$

Observation: By submodularity:

For every $d \in D$

$$\Delta_i(d) \ge \Delta_j(d)$$
 for $i < j$ since $A_i \subseteq A_j$

$$\Delta_i(d) \geq \Delta_i(d)$$

• Marginal benefits $\Delta_i(d)$ only shrink! (as i grows) Selecting do

Selecting document d in step i covers more words than selecting d at step j (j>i)

Lazy Greedy

Idea:

- Use Δ_i as upper-bound on Δ_j (j > i)
- Lazy Greedy:
 - Keep an ordered list of marginal benefits Δ_i from previous iteration
 - Re-evaluate Δ_i only for top node
 - Re-sort and prune

(Upper bound on) Marginal gain Δ_1

 $A_1 = \{a\}$

$$F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B)$$
 $A \subseteq B$

Lazy Greedy

Idea:

- Use Δ_i as upper-bound on Δ_j (j > i)
- Lazy Greedy:
 - Keep an ordered list of marginal benefits Δ_i from previous iteration
 - Re-evaluate Δ_i only for top node
 - Re-sort and prune

Upper bound on Marginal gain Δ_2

 $A_1 = \{a\}$

$$F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B)$$
 $A \subseteq B$

Lazy Greedy

Idea:

- Use Δ_i as upper-bound on Δ_j (j > i)
- Lazy Greedy:
 - Keep an ordered list of marginal benefits Δ_i from previous iteration
 - Re-evaluate Δ_i only for top node
 - Re-sort and prune

Upper bound on Marginal gain Δ_2

 $A_1 = \{a\}$

 $A_2 = \{a,b\}$

$$F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B)$$
 $A \subseteq B$

Summary so far

Summary so far:

- Diversity can be formulated as a set cover
- Set cover is submodular optimization problem
- Can be (approximately) solved using greedy algorithm
- Lazy-greedy gives significant speedup

But what about personalization?

Concept Coverage

We assumed same concept weighting for all users

Personal Concept Weights

Each user has different preferences over concepts Romney Zero Dark Thirty France <u>Hagel</u> Pentagon Obama Mali politico <u>Obama</u> Romney Zero Dark Thirty France Mali Hagel Pentagon movie buff

Personal concept weights

• Assume each user u has **different** preference vector $\mathbf{w}_c^{(u)}$ over concepts c

$$\max_{\mathcal{A}:|\mathcal{A}| \leq k} F(\mathcal{A}) = \sum_{c} w_c \operatorname{cover}_{\mathcal{A}}(c)$$

$$\max_{\mathcal{A}:|\mathcal{A}| \leq k} F(\mathcal{A}) = \sum_{c} w_c^{(u)} \operatorname{cover}_{\mathcal{A}}(c)$$

 Goal: Learn personal concept weights from user feedback

Interactive Concept Coverage

Multiplicative Weights (MW)

Multiplicative Weights algorithm

- lacktriangle Assume each concept $oldsymbol{c}$ has weight $oldsymbol{w}_{oldsymbol{c}}$
- We recommend document $m{d}$ and receive feedback, say $m{r} = + {f 1}$ or ${f 1}$
- Update the weights:
 - If $c \in X_d$ then $w_c = \beta^r w_c$
 - If $c \notin X_d$ then $w_c = \beta^{-r} w_c$
 - If concept **c** appears in $\mathbf{X_d}$ and we received positive feedback **r=+1** then we increase the weight $\mathbf{w_c}$ by multiplying it by $\boldsymbol{\beta}$ ($\boldsymbol{\beta} > \mathbf{1}$) otherwise we decrease the weight (divide by $\boldsymbol{\beta}$)
 - Normalize weights so that $\sum_c w_c = 1$

Summary of the Algorithm

Steps of the algorithm:

- 1. Identify **items** to recommend from
- 2. Identify concepts [what makes items redundant?]
- 3. Weigh concepts by general importance
- 4. Define item-concept coverage function
- 5. Select items using probabilistic set cover
- 6. Obtain feedback, update weights

Summary: Submodularity

		Maximization	Minimization
	Unconstrained	NP-hard, but well-approximable (if nonnegative)	Polynomial time! Generally inefficent (n^6), but can exploit special cases (cuts; symmetry; decomposable;)
	Constrained	NP-hard but well- approximable "Greedy-(like)" for cardinality, matroid constraints; Non-greedy for more complex (e.g., connectivity) constraints	NP-hard; hard to approximate, still useful algorithms