I5 SINGLE PART ANSWERS PAPER 3

5	EITHER:	Integrate by parts and reach $kx^{\frac{1}{2}} \ln x - m \int x^{\frac{1}{2}} \cdot \frac{1}{x} dx$	M1	*	
		Obtain $2x^{\frac{1}{2}} \ln x - 2 \int \frac{1}{x^{\frac{1}{2}}} dx$, or equivalent	A	1	
		Integrate again and obtain $2x^{\frac{1}{2}} \ln x - 4x^{\frac{1}{2}}$, or equivalent Substitute limits $x = 1$ and $x = 4$, having integrated twice	A M1(dep ³	")	
	OR1:	Obtain answer $4(\ln 4 - 1)$, or exact equivalent Using $u = \ln x$, or equivalent, integrate by parts and reach $kue^{\frac{1}{2}u} - m \int e^{\frac{1}{2}u} du$	A M1		
		Obtain $2ue^{\frac{1}{2}u} - 2\int e^{\frac{1}{2}u} du$, or equivalent	A		
		Integrate again and obtain $2ue^{\frac{1}{2}u} - 4e^{\frac{1}{2}u}$, or equivalent Substitute limits $u = 0$ and $u = \ln 4$, having integrated twice Obtain answer $4\ln 4 - 4$, or exact equivalent	A M1(dep³ A	1	
	OR2:	Using $u = \sqrt{x}$, or equivalent, integrate and obtain $ku \ln u - m \int u \cdot \frac{1}{u} du$	M1	*	
		Obtain $4u \ln u - 4 \int 1 du$, or equivalent	A	1	
		Integrate again and obtain $4u \ln u - 4u$, or equivalent	A	1	
		Substitute limits $u = 1$ and $u = 2$, having integrated twice or quoted $\int \ln u du$ as $u \ln u \pm u$ Obtain answer $8 \ln 2 - 4$, or exact equivalent	M1(dep³	-	
	OR3:	Integrate by parts and reach $I = \frac{x \ln x \pm x}{\sqrt{x}} + k \int \frac{x \ln x \pm x}{x \sqrt{x}} dx$	M1	*	
		Obtain $I = \frac{x \ln x - x}{\sqrt{x}} + \frac{1}{2}I - \frac{1}{2}\int \frac{1}{\sqrt{x}} dx$	A	.1	
		Integrate and obtain $I = 2\sqrt{x} \ln x - 4\sqrt{x}$, or equivalent Substitute limits $x = 1$ and $x = 4$, having integrated twice Obtain answer $4 \ln 4 - 4$, or exact equivalent	A M1(dep ³ A	")	
		© UCLES 2013	9709	31/O/N/13	
		identity $\tan^2 2 \sec^2 2 = 1$			M1
	Obtain	Correct $3x + \frac{1}{2} \tan 2x$, condoning absence of $+c$ $x = x - \frac{1}{2} \tan 2x$	R1	[3]	1111
(b)	State si	$n x \cos \frac{1}{2} \pi + \cos x \sin \frac{1}{6} \pi$	B1		
	Simplif	y integrand to $\cos \frac{1}{6} \pi + \frac{\cos x \sin \frac{1}{6} \pi}{\sin x}$ or equivalent	B1		
	Integrate to obtain at least term of form $a \ln(\sin x)$		*M1		
		imits and simplify to obtain two terms	M1 dep *M		
	Obtain	$\frac{1}{8} \pi \sqrt{3} - \frac{1}{2} \ln(\frac{1}{\sqrt{2}})$ or equivalent	A1	[5]	

6

© UCLES 2015 9709/31/M/J/15

7 Integrate by parts and reach
$$axe^{-2x} + b \int e^{-2x} dx$$
 M1

Obtain $-\frac{1}{2}xe^{-2x} + \frac{1}{2} \int e^{-2x} dx$, or equivalent

Complete the integration correctly, obtaining $-\frac{1}{2}xe^{-2x} - \frac{1}{4}e^{-2x}$, or equivalent

Use limits $x = 0$ and $x = \frac{1}{2}$ correctly, having integrated twice

Obtain answer $\frac{1}{4} - \frac{1}{2}e^{-1}$, or exact equivalent

A1

[5]

8 Integrate by parts and reach
$$ax^2 \cos 2x + b \int x \cos 2x \, dx$$
 M1*

Obtain $-\frac{1}{2}x^2 \cos 2x + \int x \cos 2x$, or equivalent

Complete the integration and obtain $-\frac{1}{2}x^2 \cos 2x + \frac{1}{2}x \sin 2x + \frac{1}{4}\cos 2x$, or equivalent

Use limits correctly having integrated twice

Obtain answer $\frac{1}{8}(\pi^2 - 4)$, or exact equivalent, with no errors seen

A1 [5]

© UCLES 2016 9709/32/M/J/16

Question		
9	Integrate by parts and reach $a\theta \cos \frac{1}{2}\theta + b \int \cos \frac{1}{2}\theta d\theta$	
	Complete integration and obtain indefinite integral $-2\theta\cos\frac{1}{2}\theta + 4\sin\frac{1}{2}\theta$	A1
	Substitute limits correctly, having integrated twice	DM1
	Obtain final answer $(4-\pi)/\sqrt{2}$, or exact equivalent	A1
	Total:	4

© UCLES 2017 9709/33/M/J/17

10	Integrate by parts and reach $ax \sin 3x + b \int \sin 3x dx$	M1*
	Obtain $\frac{1}{3}x\sin 3x - \frac{1}{3}\int \sin 3x dx$, or equivalent	A1
	Complete the integration and obtain $\frac{1}{3}x\sin 3x + \frac{1}{9}\cos 3x$, or equivalent	A1
	Substitute limits correctly having integrated twice and obtained $ax \sin 3x + b \cos 3x$	M1(dep*)
	Obtain answer $\frac{1}{18}(\pi - 2)$ OE	A1
	Total:	5

© UCLES 2018 9709/33/M/J/18

estion			
11	Integrate by parts and reach $a \frac{\ln x}{x^2} + b \int \frac{1}{x} \cdot \frac{1}{x^2} dx$	M1*	
	Obtain $\pm \frac{1}{2} \frac{\ln x}{x^2} \pm \int \frac{1}{x} \cdot \frac{1}{2x^2} dx$, or equivalent	A1	
	Complete integration correctly and obtain $-\frac{\ln x}{2x^2} - \frac{1}{4x^2}$, or equivalent	A1	Condone without '+ C' ISW
		3	

© UCLES 2018 9709/32/O/N/18

estion			
12	Commence integration and reach $ax^2 \sin 2x + b \int x \sin 2x dx$	M1*	
	Obtain $\frac{1}{2}x^2 \sin 2x - \int x \sin 2x dx$, or equivalent	A1	
	Complete the integration and obtain $\frac{1}{2}x^2 \sin 2x + \frac{1}{2}x \cos 2x - \frac{1}{4}\sin 2x, \text{ or equivalent}$	A1	
	Use limits correctly, having integrated twice	DM1	
	Obtain given answer correctly	A1	
		5	

© UCLES 2019 9709/33/M/J/19