Изпит по увод в програмирането на базата на езика С++, 22.02.2013 Вариант 1

Задача 1 (4 точки). Да се запишат на езика С++ следните изрази:

a)
$$\frac{a}{b \cdot \frac{c}{d \cdot \frac{e}{f \cdot h}}}$$

$$6) \frac{a+b}{x-2.y}$$

$$r)\frac{(\log_3|x-2|+e^{\frac{x-y}{2}})^3}{\lg(2+e^{\frac{x+y}{2}})}$$

- a) a / (b * (c / (d * (e/(f*h)))))
- б) (a+b) / (x 2*y)
- B) a + (b/(x-2))*y
- Γ) pow((log(abs(x-2))/log3 + exp((x-y)/2)), 3) / log10(2 + exp((x+y)/2))

Задача 2 (3 точки). Да се опростят булевите изрази като се приложи операцията !:

a) !
$$(a > 0 \&\& a < 7) - a <= 0 | | a >= 7$$

Задача 3 (3 точки). Дадени са точките $(x_1, y_1), (x_2, y_2), (x_3, y_3)$. Да се напише програмен фрагмент, който определя дали точките могат да са върхове на триъгълник.

```
double x1, y1, x2, y2, x3, y3;
double a = sqrt(pow(x1-x2, 2) + pow(y1-y2, 2));
double b = \operatorname{sqrt}(\operatorname{pow}(x2-x3, 2) + \operatorname{pow}(y2-y3, 2));
double c = \operatorname{sqrt}(\operatorname{pow}(x_1-x_3, 2) + \operatorname{pow}(y_1-y_3, 2));
bool is Triangle = (a < b + c \&\& b < a + c \&\& c < b + a):
if(isTriangle) {
          cout << "Points form a triangle.";</pre>
```

```
} else {
      cout << "Points don't form a triangle.";
}</pre>
```

Задача 4 (4 точки). Да се напише програмен фрагмент, който изследва за решение системата уравнения:

```
\begin{cases} a_1 & x + b_1 & y = c_1 \\ a_2 & x + b_2 & y = c_2 \end{cases}
```

Намира решение на системата, ако такова съществува $(a_1, b_1, c_1, a_2, b_2$ и c_2 са дадени реални числа).

```
#include<iostream>
#include<iomanip>
#include<cmath>
using namespace std;
int main()
{
  cout.precision(4);
  cout.setf(ios::fixed);
  int n,i,j,k,flag=0,count=0;
  cout<<"\nEnter the no. of equations\n";
                      //Input no. of equations
  cin>>n;
                             //declare a 2d array for storing the elements of the augmented
  double a[n][n+1];
matrix
  double x[n];
                        //declare an array to store the values of variables
  double eps,y;
  cout<<"\nEnter the elements of the augmented matrix row-wise:\n";
  for (i=0;i<n;i++)
     for (j=0;j<=n;j++)
       cin>>a[i][j];
  cout << "\nEnter the initial values of the variables:\n";
  for (i=0;i<n;i++)
     cin>>x[i];
  cout<<"\nEnter the accuracy upto which you want the solution:\n";
  cin>>eps;
  for (i=0;i<n;i++)
                      //Pivotisation(partial) to make the equations diagonally dominant
     for (k=i+1;k< n;k++)
       if (abs(a[i][i]) < abs(a[k][i])
          for (j=0;j<=n;j++)
```

```
double temp=a[i][j];
            a[i][j]=a[k][j];
            a[k][j]=temp;
  cout << "Iter" << setw(10);
  for(i=0;i<n;i++)
    cout << "x" << i << setw(18);
  cout<<"\n-----";
  do
                     //Perform iterations to calculate x1,x2,...xn
  {
    cout << "\n" << count +1 << "." << setw(16);
                              //Loop that calculates x1,x2,...xn
    for (i=0;i<n;i++)
       y=x[i];
       x[i]=a[i][n];
       for (j=0;j< n;j++)
         if (i!=i)
         x[i]=x[i]-a[i][j]*x[j];
       x[i]=x[i]/a[i][i];
       if (abs(x[i]-y) \le eps)
                                   //Compare the ne value with the last value
         flag++;
       cout << x[i] << setw(18);
    cout << "\n";
    count++;
  }while(flag<n);</pre>
                                   //If the values of all the variables don't differ from their
previious values with error more than eps then flag must be n and hence stop the loop
  cout<<"\n The solution is as follows:\n";
  for (i=0;i<n;i++)
    cout << "x" << i << " = " << x[i] << endl; //Print the contents of x[]
  return 0;
}
```

Задача 5 (4 точки). Да се напише програмен фрагмент, който намира стойността на верижната дроб (x е дадено реално число):

$$\frac{x}{x^{2} + \frac{2}{x^{2} + \frac{4}{x^{2} + \frac{8}{\dots}}}}$$

Задача 6 (4 точки). Да се напише програмен фрагмент, който проверява дали редицата от реални числа $a_0, a_1, ..., a_{n-1}$ ($1 \le n \le 100$) е трион от вида: $a_0 > a_1 < a_2 > ...$ a_{n-1} .

```
int n;
double* a = new double[n];
bool isTrion = true;
for(size t i = 0; i < n; i+=2) {
      if(i % 2 == 1) {
             if(i==n-1) {
                   break;
             if(!(a[i] < a[i-1] \&\& a[i] < a[i+1]) {
                   isTrion = false;
                   break;
             }
}
if(isTrion) {
      cout << "Sequence is trion.";</pre>
} else {
      cout << "Sequence is not trion.";</pre>
}
```

Задача 7 (**6 точки**). Дадени са две редици от числа. Да се напише програмен фрагмент, който определя колко пъти първата редица се съдържа във втората. Например редицата 1, 2, 3 се съдържа 2 пъти в редицата 3, 4, $\underline{1, 2, 3}$, 5, 6, $\underline{1, 2, 5}$, 3, 8, $\underline{1, 2, 3}$, 4.

```
int n;
int* a = new int[n];
int m;
int* b = new int[m];
//cin ...
int occurenceCounter = 0;
for(size t i = 0; i < m; i++) {</pre>
      if(b[i]==a[0]) {
            bool isFullyContained = true;
            i++;
             for(size t j = 1; j < n; j++) {
                   if(a[j] == b[j]) {
                         i++;
                         continue;
                   } else {
                         isFullyContainde = false;
                         break;
             occurenceCounter += isFullyContained;
cout << isFullyContained;</pre>
```

Задача 8 (4 точки). Какъв е резултатът от изпълнението на програмата?

```
#include <iostream>
                                                   func: x = 3
using namespace std;
                                                   func: y = 9
                                                   func: *z = 6
void func(int x, int& y, int* z)
                                                   func: a = 6
\{ int a = 3; \}
                                                   func: b = 4
  int b = 4;
                                                   main: a = 1
  a = b + y;
                                                   main: b = 9
  y = x + a;
  z = &a;
  cout << "func: x = " << x << endl;</pre>
  cout << "func: y = " << y << endl;</pre>
  cout << "func: *z = " << *z<< endl;</pre>
  cout << "func: a = " << a << endl;</pre>
  cout << "func: b = " << b << endl;</pre>
  return;
int main()
\{ int a = 1; \}
```

```
int b = 2;
func(a+b, b, &a);
cout << "main: a = " << a << endl;
cout << "main: b = " << b << endl;
return 0;
}</pre>
```

Задача 9 (4 точки). Да се напише булева функция, която проверява дали число е степен на 5.

```
Има и мн. други начини, но напр.:
bool isPowOfFive(int n) {
    if(n % 5 == 1 && n == 1) {
        return true;
    }
    if(n%5 != 0) {
        return false;
    }
    return isPowOfFive(n/5);
}
```

Задача 10 (4 точки). Да се напише булева функция, която проверява дали редица от числа съдържа число, което е степен на 5. За целта да се използва функцията от задача 9.

```
//нека редицата е arr, с дължина n bool containsSuch(int* arr, int n) {
    for(int i = 0; i < n; i++) {
        if(isPowOfFive(arr[i])) {
            return true;
        }
    }
    return false; //може и без този ред;
}
```

Задача 11 (6 точки). Да се дефинира функция, която извежда на екрана елементите на квадратна матрица като ги обхожда по диагонали, успоредни на вторичния главен диагонал, започвайки от долния десен ъгъл.

```
void print(int** matrix, int n) { 
	for (int i = 2 * (n - 1); i >= 0; i--)  { 
	for (int j = n - 1; j >= 0; j--)  { 
	for (int k = 0; k < n; k++)  { 
		if (j + k == i) {
```

```
cout << matrix[j][k] << " ";

}

cout << endl;

}

//за да си тествате:
int main(int argc, char** argv)

{
    int** matrix = new int* [4];
    for (int i = 0; i < 4; i++) {
        matrix[i] = new int[4];
    }
    for (int j = 0; j < 4; j++) {
        cin >> matrix[j][k];
    }

    print(matrix, 4);
}
```

Задача 12 (6 точки). Да се дефинира **рекурсивна** функция, която проверява дали елементите на редица съдържат даден елемент.

```
bool contains(int* arr, int n, int element) {
        if (n == 1) {
            return arr[0] == element;
        }
        return arr[n - 1] == element || contains(arr, n - 1, element);
}
int main(int argc, char** argv) {
        int* arr = new int[5]{ 3, 2, 5, 23, 0 };
        cout << contains(arr, 5, 5);
        cout << contains(arr, 5, 6);
}</pre>
```

Име......Фак. номер......

Изпит по увод в програмирането на базата на езика C++, 22.02.2013 Вариант 2

Задача 1 (4 точки). Да се запишат на езика С++ следните изрази:

a)
$$\frac{a+b}{b-d}$$
.x

$$f) \sqrt{a \cdot \frac{b}{c - d}}$$

$$\frac{a+b}{b+\frac{b+c}{c+\frac{d}{e+f}}}$$

- a) ((a+b)/(b-d))*x
- σ) sqrt(abs(a*(b/(c-d))))
- (a+b)/(b+((b+c)/(c+b/(e+f))))
- Γ) atan(x) + a/tan(x) (pow(sin(x*x) + cos(x*x*x), 2))/(log10(abs(2+x)))

r) arctg x + cotg x -
$$\frac{(\sin x^2 + \cos x^3)^2}{\lg |2 + x|}$$
....

Задача 2 (3 точки). Да се опростят булевите изрази като се приложи операцията !:

- a) ! (a > 0 | | a < 7)
- 6)!(!(a > 0) && (a < -7 || a > -3))
- B) ! (a > -6 && a < -4 | | ! (a <= 4) && a < 6)
- Като по дстр

Задача 3 (3 точки). Известно е, че точките (x_1, y_1) , (x_2, y_2) , (x_3, y_3) са върхове на триъгълник. Да се напише програмен фрагмент, който определя вида на триъгълника – равностранен, равнобедрен, разностранен.

```
cout << "Разностранен"; }
```

Задача 4 (4 точки). Да се напише програмен фрагмент, който изследва за решение уравнението:

$$|x-3| + |x-5| = 2$$

Намира и извежда решение, ако такова съществува (х е реална променлива).

Задача 5 (4 точки). Да се напише програмен фрагмент, който намира стойността на верижната дроб:

$$\begin{array}{r}
1 \\
1 + \frac{1}{3 + \frac{1}{5 + \frac{1}{\dots}}} \\
 & 1 + \frac{1}{111}
\end{array}$$

```
double result = 111;
for(size_t i = 111; i >= 1; i-=2) {
          double helper = 1/result;
          result = i + helper;
}
```

Задача 6 (4 точки). Да се напише програмен фрагмент, който проверява дали редицата от реални числа $a_0, a_1, ..., a_{n-1}$ ($1 \le n \le 100$) е трион от вида: $a_0 < a_1 > a_2 < ...$ a_{n-1} .

```
int n;
double* a = new double[n];
bool isTrion = true;
for(size_t i = 0; i < n; i+=2) {
    if(i % 2 == 1) {
        if(i==n-1) {
            break;
        }
        if(!(a[i] > a[i-1] && a[i] > a[i+1]) {
            isTrion = false;
            break;
        }
}
```

```
}
}
if(isTrion) {
    cout << "Sequence is trion.";
} else {
    cout << "Sequence is not trion.";
}</pre>
```

Задача 7 (6 точки). Дадени са две редици от числа. Те представят две множества. Да се напише програмен фрагмент, който определя дали първото множество е подмножество на второто.

Задача 8 (4 точки). Какъв е резултатът от изпълнението на програмата?

```
#include <iostream>
                                                  func: x = -2
using namespace std;
                                                  func: y = 5
                                                  func: *z = 11
void func(int x, int& y, int* z)
                                                  func: a = 7
{ int a = 7;
                                                  func: b = 11
  int b = 1;
                                                  main: a = 5
  b = a + y;
                                                  main: b = 6
  y = x + a;
  z = \&b;
  cout << "func: x = " << x << endl;</pre>
  cout << "func: y = " << y << endl;</pre>
  cout << "func: *z = " << *z
```

Задача 9 (4 точки). Да се напише булева функция, която проверява дали естествено число е просто.

```
bool isPrime(int n) {
    for(size_t i=2; i <= sqrt(n); i++) {
        if(n%i==0) {
            return true;
        }
    }
    return false; //може и без този ред
}
```

Задача 10 (4 точки). Да се напише булева функция, която проверява дали редица от числа съдържа число, което е просто. За целта да се използва функцията, дефинирана в задача 9.

```
//нека редицата e arr, с дължина n
bool containsSuch(int* arr, int n) {
    for(int i = 0; i < n; i++) {
        if(isPrime(arr[i])) {
            return true;
        }
    }
    return false; //може и без този ред;
}
```

Задача 11 (6 точки). Да се дефинира функция, която извежда на екрана елементите на квадратна матрица като ги обхожда по диагонали, успоредни на главния диагонал, започвайки от долния ляв ъгъл.

```
 \begin{array}{l} \mbox{void print(int** matrix, int n) } \{ \\ \mbox{for (int } k = n - 1; \, k > = -(n - 1); \, k - -) \; \{ \\ \mbox{for (int } i = n - 1; \, i > = 0; \, i - -) \; \{ \\ \mbox{for (int } j = 0; \, j < n; \, j + +) \; \{ \\ \mbox{if } (i - j = k) \; \{ \\ \mbox{cout} << \, matrix[i][j] << \, '' \; "; \\ \mbox{} \} \\ \mbox{} \} \\ \mbox{} \mbox{cout} << \, endl; \\ \mbox{} \} \\ \mbox{} \\ \mbox{} \end{array}
```

Задача 12 (6 точки). Да се дефинира **рекурсивна** функция, която проверява дали редица от числа съдържа елемент, който е принадлежи на интервала [a, b].

```
bool contains(int* arr, int n, int a, int b) {  if \ (n == 1) \ \{ \\ return \ arr[0] >= a \ \&\& \ arr[0] <= b; \\ \} \\ return \ arr[n - 1] >= a \ \&\& \ arr[n-1] <= b \ || \ contains(arr, n - 1, a, b); \\ \}
```