2D and 3D quantum anomalous Hall insulators

In the last lecture, I meant to make a comment about QAH insulators in 2D and 3D concerning applications as magnetoelectrics:

Orbital MEC \Leftrightarrow Surface σ_{yx}

$$\alpha_{\rm orb} = \frac{dM_{\rm orb}}{d\mathcal{E}} = \frac{dK}{d\mathcal{E}} = \sigma_{yx}^{\rm surf}$$

How to build a magnetoelectric coupler

How to build a magnetoelectric coupler

$$lpha_{
m orb}\,=\,rac{dK}{d\mathcal{E}}\,=\,rac{e^2}{h}\,=\,rac{1}{2\pi}rac{1}{137}\,{
m g.u.}$$

For comparison, Cr_2O_3 has $\alpha \simeq 10^{-4}$ g.u.

How to build a magnetoelectric coupler

This can easily be 108 times that of Cr₂O₃!

2D quantum spin Hall insulators

Started introduction last Wednesday: Z_2 index is natural from point of view of edge states

$$Z_2 = N_{cross} \pmod{2} = Invariant$$

Z₂ Topological Insulator

Spin up, C = +1

Spin down, C = -1

Z₂ Topological Insulator

Spin dow6, = $\pm 1-1$

Obeys T symmetry

Turn on spin-orbit:

Z₂ Topological Insulator

Z₂ Topological Insulator (QSH)

Properties:

- Obeys *T* symmetry
- Total C=0
- Z₂ invariant is odd
- $(\sigma_{xy}^{spin} \text{ is not quantized})$

QAH: Hybrid WF centers $y(k_x)$

Z_2 QSH insulator: Hybrid WF centers $y(k_x)$

H, IN TIME-REVERSAL-INVARIANT SYSTEMS / TRI = TR INVARIANT TRB = TR - BROKEN) 2 TRIM TRB OD 2 TRIM, 4 TRI LINES, Kramers Theorem

Fermion cose, 6=-1 HO=OH => & H/4>= E/4> then H(6/4)= E(6/4>) to 10147 the same physical state as 147? assume yes: 014> = e'4 14> 0214> = 0 (eich 14>) = 6-14 (0/4) = e-sq esq (x) = (4) Inconsistent with 0=-1! > 14) and O147 form degenerate

"Kramers pair" or "Kramers doublet"

Kramers Theorem

Fermion cose, 6=-1 HO=OH => & H/4>= E/4> Also true for *H* → *PxP*So Wannier centers
are degenerate

hon H(6/4) = E(6/4)

So 6/47 the same physical state as 14>?

Downe yes: 014> = e : 4 14>

Inconsistent with 0=-1!

Figure 5.9

Fig. 5.9

No SOC

With SOC

(e)

(f)

(g)

(c)

(d)

C = 0

Methods for computing the Z2 invariant (see pp. 234-6)

If inversion symmetry is present

$$(-1)^{\nu} = \prod_{a=1}^{4} \prod_{m}^{N_{\text{occ}}/2} \xi_{am}$$
 My preferences

- If inversion symmetry is absent
 - Flow of Wannier bands
 - Flow of edge states
 - Flow of entanglement spectrum
 - Berry curvature vs. Berry phase

$$\nu = \frac{1}{2\pi} \left[\oint_{\partial \mathcal{B}} \mathbf{A} \cdot d\mathbf{l} - \int_{\mathcal{B}} \Omega \, d^2 k \right] \bmod 2$$

Pfaffian

Z₂ index from Berry curvature vs. Berry phase

$$\nu = \frac{1}{2\pi} \left[\oint_{\partial \mathcal{B}} \mathbf{A} \cdot d\mathbf{I} - \int_{\mathcal{B}} \Omega \, d^2k \right] \bmod 2$$
With TR-imposed gauge restriction on boundary

Wannier obstruction

If the Z_2 index is odd:

- There is no smooth and periodic gauge over the 2D Brillouin zone that also respects TR symmetry
- As a result, it is impossible to construct WFs that respect TR symmetry, i.e., that come in Kramers pairs:

$$\Theta | w_{1a} \rangle = | w_{1b} \rangle$$
 and $\Theta | w_{1b} \rangle = - | w_{1a} \rangle$

• However, if this symmetry restriction is lifted, then it is possible.

Soluyanov & Vanderbilt, 2011