Table of Contents

lw5	1	ļ
lear recent data	1	
nitialization	1	
PSK	1	
PSK Plot	4	ļ
OOK2	4	Į
OOK		
lotting OOK		
Sinary Orthogonal	7	1
lotting Binary_Orthogonal	. 10)
lotting All of them	. 10)

Hw₅

Teacher: Dr.Emadi Author: [SeyedAli] - [SeyedHosseini] E-mail: [alishosseini79@aut.ac.ir]

```
%Student-Number : [9723042]
% University: Amirkabir University of Technology
```

clear recent data

```
clc;
close all;
clear ;
```

Initialization

```
N = 1e5 ; % # of bits data = randi(2,[1 , N]) - 1 ; % random Numbers between 1 and 2 step = 0.1; % Intervals for Eb/N0 EbN0 = 0 : step : 13 ; % Eb / N0 sequence E = 2*10.^{(EbN0/10)}; % Energy for each EbN0 E = E'; M = 10 ; % Sample per Symbol (SPS)
```

BPSK

```
clc;
[bpsk_optimum, bpsk_theory, bpsk_unideal] = BPSK(N, data, E,
   M); %Function We defined
```


BPSK Plot

```
clc;
figure(11)
semilogy(EbN0,bpsk_optimum,"-- r");hold on;
semilogy(EbN0,bpsk_theory,"-. b");hold on;
semilogy(EbN0,bpsk_unideal,"- g");
title("BER")
legend('Optimum bpsk', 'Theory BPSK','UnIdeal BPSK')
legend('Location','southwest')
xlabel('EbN0')
ylabel('Pe')
grid ('Minor');
```


OOK2

clc; [ook_optimum, ook_theory] = OOK2(N, data, E, M);

OOK

```
[ook_optimum, ook_theory, ook_unideal] = OOK(N, data, E, M);
```


Plotting OOK

```
figure(12)
semilogy(EbN0,ook_optimum,"+ r");hold on;
semilogy(EbN0,ook_theory,"* b");
semilogy(EbN0,ook_unideal,"x g");
title("BER")
legend('Optimum OOK' , 'Theory OOK','Unideal OOK')
legend('Location','southwest')
xlabel('EbN0')
ylabel('Pe')
grid ('Minor');
```


Binary Orthogonal

[Bin_Or_optimum, Bin_Or_theory, Bin_Or_unideal] = Bin_Or(N, data, E,
M);

Plotting Binary_Orthogonal

```
figure(13)
semilogy(EbN0,Bin_Or_optimum,"s r");hold on;
semilogy(EbN0,Bin_Or_theory,"d b");
semilogy(EbN0,Bin_Or_unideal,"o g");
title("BER")
legend('Optimum Orthogonal' , 'Theory Orthogonal','Unideal
    Orthogonal')
legend('Location','southwest')
xlabel('EbN0')
ylabel('Pe')
grid ('Minor');
```


Plotting All of them

```
figure(14)
semilogy(EbN0,bpsk_optimum,"-- r");hold on;
semilogy(EbN0,bpsk_theory,"-. b");hold on;
semilogy(EbN0,bpsk_unideal,"- g");hold on;
semilogy(EbN0,ook_optimum,"+ r");hold on;
semilogy(EbN0,ook_theory,"* b");hold on;
semilogy(EbN0,ook_unideal,"x g");hold on;
semilogy(EbN0,Bin_Or_optimum,"s r");hold on;
semilogy(EbN0,Bin_Or_theory,"d b");hold on;
```


Published with MATLAB® R2020b