Math. - CC 2 - S2 - Géométrie

vendredi 21 avril 2017 - Durée 1 h

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

EXERCICE 1 (sur 10 points)

Soit (P) la parabole d'équations paramétriques : $\begin{cases} x(t) = \frac{t^2}{2} \\ y(t) = t \end{cases}$

- 1. Déterminer la famille des tangentes à (P) et en déduire la famille des normales à (P) puis sa développée (D).
- 2. Déterminer le rayon de courbure de (P) pour un t quelconque et retrouver le résultat précédent.
- **3.** Déterminer l'intersection de (P) et de (D).
- **4.** Tracer (P) et sa développée (D) sur un même dessin.

EXERCICE 2 (questions 1 à 3 sur 10 points et questions 4 et 5 en bonus de 5 points)

On note M(t) le point de paramètre t de la courbe paramétrée Γ d'équations :

$$\begin{cases} x(t) = \int_0^t \cos(u^2) du \\ y(t) = \int_0^t \sin(u^2) du \end{cases} t \in \mathbb{R}.$$

- **1. a.** La courbe Γ a-t-elle des éléments de symétrie?
 - b. Etudier les points de Γ à tangente verticale, les points à tangente horizontale.
 - c. Etudier Γ au voisinage du point M(0) (on fera également un dessin).
- 2. On oriente Γ suivant les « t croissants » et on prend M(0) comme origine des abscisses curvilignes.
 - **a.** Calculer l'abscisse curviligne s(t) du point M(t).
 - **b.** Déterminer le repère de Frénet et le rayon de courbure R(t) au point M(t).
 - c. Trouver une relation simple entre R et s et interpréter géométriquement ce résultat.
- **3.** Etudier les variations de x(t) et y(t) sur l'intervalle $[0, \sqrt{2\pi}]$.
- **4. a.** Montrer que pour tout entier naturel n non nul on a : $\frac{1}{\sqrt{(n+1)\pi}} \leqslant \int_0^\pi \frac{\sin v}{2\sqrt{v+n\pi}} dv \leqslant \frac{1}{\sqrt{n\pi}}.$
 - **b.** Montrer que la suite de terme général $\int_0^\pi \frac{\sin v}{2\sqrt{v+n\pi}} dv$ est décroissante.
- 5. Soit $a_n = \int_0^{\sqrt{n\pi}} \sin(u^2) du$.
 - **a.** Etudier les signes de $a_{n+1}-a_n$, de $a_{2p+2}-a_{2p}$, et de $a_{2p+1}-a_{2p-1}$.
 - **b.** En déduire que la suite (a_n) converge. On appellera L sa limite.
 - c. Pour $t \in \mathbb{R}_+$, on note n(t) la partie entière de $\frac{t^2}{\pi}$. Montrer que $\int_{\sqrt{\pi n(t)}}^t \sin(u^2) du$ tend vers 0 quand t tend vers l'infini et en déduire que $\lim_{t \to +\infty} y(t) = L$, puis donner l'allure de la courbe Γ , en admettant que x(t) a également une limite L' quand t tend vers $+\infty$ et que $L = L' \cong 0,63$.

Fin de l'énoncé de géométrie