PROJETO PARA GERAR MALHAS TRIANGULARES E QUADRADAS A PARTIR DE PONTOS DOCUMENTAÇÃO PARA O USUÁRIO

Autor: Luis Fernando Marin Sepulveda. **Email**: Ifmarins@tecgraf.puc-rio.br

O objetivo deste documento é instruir o usuário no uso do programa de geração de malha a partir de pontos no espaço 2D.

Contenido

1.	Instalação	. 1
	Create new point cloud	
	Delaunay Triangulation	
	Catmull-Clark-based quadrilaterals	
	First indirect method	
	Second indirect method plus catmull-clark	

1. Instalação

O programa desenvolvido foi projetado para ser executado em o prompt python através do uso do comando python MalhaPoligonal.py. Considerando o comportamento do python, as versões das bibliotecas necessárias para a execução do programa são apresentadas na Tabela 1.

Biblioteca	Versão		
python	3.8.3		
matplotlib	3.2.2		
glob2	0.7		
numpy	1.18.5		
pandas	1.0.5		
sympy	1.6.1		

Tabela 1. Versão das bibliotecas.

No endereço do github: https://github.com/lfmarins/malhas-poligonais/tree/main, está o programa, assim como um exemplo tanto dos arquivos de entrada quanto dos resultados, porém, só é necessário baixar o arquivo MalhaPoligonal.py, caso o usuário não tenha a lista dos pontos, caso contrário, na pasta "Files" o usuário pode colocar o arquivo com os novos pontos que deseja utilizar, respeitando apenas o formato estabelecido nos arquivos de exemplo.

Quando o programa é executado, ele apresenta um menu de opções, mostrado na Figura 1.

- 1. Create new point cloud
- 2. Delaunay Triangulation
- 3. Catmull-Clark-based quadrilaterals
- 4. First indirect method
- 5. Second indirect method plus catmull-clark
- 6. Exit

Figura 1. Menu principal.

2. Create new point cloud

Esta opção permite ao usuário criar aleatoriamente um novo conjunto de pontos que serão salvos na pasta "Files". Ao selecionar esta opção, o sistema pedirá ao usuário que insira a quantidade de pontos a serem criados, bem como os limites superior e inferior.

3. Delaunay Triangulation

Esta opção cria dois tipos diferentes de triangulação, o primeiro é conhecido como triangulação incremental, o segundo usa o algoritmo de Delaunay para criar uma nova triangulação a partir da triangulação incremental, as tabelas resultantes são salvas na pasta "Results" e as figuras Elas são armazenadas na pasta "Figures", a Figura 2 mostra um exemplo do resultado ao usar a opção na mesma nuvem de pontos.

a. Triangulação incremental.

b. Triangulação Delaunay.

Figura 2. Exemplo de triangulação.

4. Catmull-Clark-based quadrilaterals

Esta opção usa os arquivos resultantes da opção 2 para criar uma malha quadrilateral usando o algoritmo Catmull-clark, a Figura 3 mostra um exemplo do resultado ao usar a opção na mesma nuvem de pontos, que se baseia em diferentes triangulações iniciais.

a. Triangulação incremental.

b. Triangulação Delaunay.

Figura 3. Exemplo de malha quadrilateral.

5. First indirect method

Esta opção é baseada no método indireto de agrupamento, assim como a opção 2 usa o triângulo inicial resultante da opção 1, a Figura 4 mostra um exemplo do resultado ao usar a opção na mesma nuvem de pontos, que se baseia em diferentes triangulações iniciais.

a. Triangulação incremental.

b. Triangulação Delaunay.

Figura 4. Exemplo de malha quadrilateral baseada em cluster.

6. Second indirect method plus catmull-clark

Esta opção combina as opções 4 e 5, assim como a opção 2 usa o triângulo inicial resultante da opção 1, a Figura 5 mostra um exemplo do resultado ao usar a opção na mesma nuvem de pontos, que se baseia em diferentes triangulações iniciais.

Figura 5. Exemplo de malha quadrilateral baseada em Catmull-Clark mais Cluster.