"Life" (or Molecular biology) exists at low Reynolds number, in salty water, and in a thermal bath!

What is the consequence of molecular biology happening in salty water?

Nerve signals! And Coulomb's law is not the same!

Consider a cell separated by a semi-permeable membrane

Having two concentration of ions. Only [Na] can diffuse across the membrane. Cl-cannot

Charge neutral on both sides

Na will diffuse from higher concentration to lower concentration

CI- cannot diffuse through the pore

Opposite charges build up across the membrane

Opposite charges build up across the membrane

Some Na ions will be pulled back due to electrostatic potential difference

Two flows in the opposite direction

Pull back due to electrostatic forces

Pull back due to electrostatic forces

Diffsion flow
$$\vec{J}_D = -D \frac{\partial C}{\partial x} \hat{x}$$

Flow due to electrostatic potential $\vec{J}_E = c\vec{v} = c\frac{f}{6\pi\eta a}$

$$D\frac{\partial C}{\partial x} = c \frac{f}{6\pi \eta a}$$

$$D\frac{\partial C}{\partial x} = c\frac{f}{6\pi \eta a}$$

$$D\frac{\partial C}{\partial x} = c \frac{Q\frac{\partial V}{\partial x}}{6\pi \eta a}$$

$$D\frac{\partial C}{\partial x} = c\frac{q\frac{\partial V}{\partial x}}{6\pi\eta a}$$

$$\frac{dC}{C} = \frac{-q}{D6\pi\eta a} \frac{dV}{dx}$$

Integrate both sides

(Note: Converted the partial derivatives to ordinary derivatives because, at equilibrium, the system is independent time, and only position (x) matters)

$$D\frac{\partial C}{\partial x} = c\frac{q\frac{\partial V}{\partial x}}{6\pi\eta a}$$

$$\int_{x_1}^{x_2} \frac{dC}{C} = \int_{x_1}^{x_2} \frac{q}{D6\pi \eta a} \frac{dV}{dx}$$

$$\int_{x_1}^{x_2} \frac{dC}{C} = \int_{x_1}^{x_2} \frac{q}{D6\pi \eta a} \frac{dV}{dx}$$

$$\frac{k_B T}{q} \ln \frac{C_1}{C_2} = V_1 - V_2$$

Einstein,
$$D = \frac{k_B T}{6\pi \eta a}$$

At equilibrium, we get a potential difference across the membrane

$$V_2 - V_1 = \Delta V = \frac{k_B T}{q} \ln \frac{C_1^{eq}}{C_2^{eq}}$$

Nernst equation

"Resting" potential

Nernst equation gives the potential difference across a semipermeable cell membrane, at equilibrium ("Resting" potential)

$$V_1 - V_2 = \Delta V = \frac{k_B T}{q} \ln \frac{C_1^{eq}}{C_2^{eq}}$$

▲ Figure 28.3 How the resting potential is generated

Electrostatic potential difference across neuronal cell membrane

▲ Figure 28.3 How the resting potential is generated

Change in this potential is the "nerve signal"

Any stimulus — a sound, tap on the knee—can act as a stimulus.

They can open the ion gates and change the potential!

"Action potential" in neurons

More Na⁺ channels open; K⁺ channels remain closed; interior of cell becomes more positive. Membrane polarity becomes the reverse of resting state.

Depolarization: A stimulus opens some Na⁺ channels; if threshold is reached, an action potential is triggered.

1 Resting state: Voltage-gated Na⁺ and K⁺ channels are closed; resting potential is maintained by ungated channels (not shown).

4 Repolarization: Na⁺ channels close and inactivate; K⁺ channels open, and K⁺ rushes out; interior of cell becomes more negative than outside.

The K⁺ channels close relatively slowly, causing a brief undershoot.

Return to resting state.

See: Campbell, Chapter 28

The salty water consequence: Coulomb's law is nor more the same!

What is the interaction energy?

What is the interaction energy?

$$E = \frac{\mathcal{K}\mathcal{Q}_D\mathcal{Q}_P}{r}$$

Negatively charged protein

BUT, molecular biology is in salty water!

Negatively charged protein

The ions "screen" the effective interaction between **DNA** and protein

Positively charged protein

Negatively charged protein

$$\overrightarrow{\nabla} \cdot \overrightarrow{E} = \frac{-\rho}{\epsilon_0 \epsilon_r}$$

$$\overrightarrow{E} = -\overrightarrow{\nabla}V$$

$$\nabla^2 V = \frac{\rho}{\epsilon_0 \epsilon_r}$$

 ρ = density of charged particles = probability of finding charged particles

Positively charged protein

Negatively charged protein

$$\overrightarrow{\nabla} \cdot \overrightarrow{E} = \frac{\rho}{\epsilon_0 \epsilon_r}$$

$$\overrightarrow{E} = -\overrightarrow{\nabla}V$$

$$\nabla^2 V = \frac{-\rho}{\epsilon_0 \epsilon_r}$$

 ρ = density or concentration of charged particles = $\sum_{i} q_{i}P_{i}$

Positively charged protein

$$\nabla^2 V = \frac{-\rho}{\epsilon_0 \epsilon_r}$$

$$\rho = \sum_{i} q_{i}P_{i}$$

$$P_i = A \exp\left(\frac{-q_i V}{k_B T}\right)$$

$$\exp\left(-\frac{q_i V}{k_B T}\right) \approx 1 - \frac{q_i V}{k_B T}$$

Positively charged protein

Negatively charged protein

$$\nabla^2 V = \frac{-\rho}{\epsilon_0 \epsilon_r}$$

$$\rho = \sum_{i} q_{i}P_{i}$$

$$\nabla^2 V = \frac{-A}{\epsilon_0 \epsilon_r} \sum_{i} q_i \left(1 - \frac{q_i V}{k_B T} \right)$$

Overall system is charge neutral $\Rightarrow \sum_{i} q_i = 0$

Positively charged protein

Negatively charged protein

$$\lambda_D = \sqrt{\sum_{i} \frac{\epsilon_0 \epsilon_r}{A} \frac{k_B T}{q_i^2}}$$

$$\nabla^2 V = \frac{-A}{\epsilon_0 \epsilon_r} \sum_i q_i \left(1 - \frac{q_i V}{k_B T} \right)$$

Overall system is charge neutral $\Rightarrow \sum_{i} q_i = 0$

$$\nabla^2 V = \frac{A}{\epsilon_0 \epsilon_r} \sum_{i} \left(\frac{q_i^2 V}{k_B T} \right)$$

$$\nabla^2 V = \left(\frac{1}{\lambda_D^2}\right) V$$

Screened electrostatic potential

Positively charged protein

Negatively charged protein

$$\nabla^2 V = \left(\frac{1}{\lambda_D^2}\right) V$$

$$V = V_0 \exp\left(\frac{-r}{\lambda_D}\right)$$

$$\lambda_D = \sqrt{\sum_{i} \frac{\epsilon_0 \epsilon_r}{A} \frac{k_B T}{q_i^2}}$$

Boundary condition etc gives, $V_0 \propto \frac{1}{r}$

Screened electrostatic potential or screened-Coulomb potential

Positively charged protein

$$V = \frac{B}{r} \exp\left(\frac{-r}{\lambda_D}\right)$$

$$\lambda_D = \sqrt{\sum_i \frac{\epsilon_0 \epsilon_r}{A} \frac{k_B T}{q_i^2}}$$

Negatively charged protein

$$\lambda_D$$
 = Debye length $\approx 1 \text{nm}$

Negligible electrostatic interaction when distance >> 1nm

Other interaction energies

Inter-molecular effective potential

Lennard-Jones energy

$$V_{
m LJ}(r) = 4arepsilon \left[\left(rac{\sigma}{r}
ight)^{12} - \left(rac{\sigma}{r}
ight)^{6}
ight],$$

3-body, 4-body potentials

Curvature

Twist

By looking at microscopic images of bio-filaments (like actin or even DNA), can we say something about their properties?

By looking at microscopic images of bio-filaments (like actin or even DNA), can we say something about their properties?

Can the thermal fluctuations make them bend?

By looking at microscopic images of bio-filaments (like actin or even DNA), can we say something about their properties?

Can the thermal fluctuations make them bend?

Elasticity Bendability, rigidity

Will affect force generation

Summary

- lons channels across membranes lead to electrostatic potential difference
- Nernst equation
- Neurons: propagation of signal. Action potential
- Interaction between two charged macro-molecules like DNA and protein
- Screened due to the presence of ions
- Screened electrostatic potential falls exponential. Negligible beyond 1nm
- Other interaction energies in biology