Normalized metrics for means and variances of the size, shape, and orientation dimensions of a diffusion tensor distribution

variance of sizes	mean- square shape	root-mean- square shape	orientational order
$ ilde{\mu}_{2, ext{iso}}$	$\Delta \tilde{\mu}_2$	μFA	OP
$V_{\rm i}/{ m MD}^2$	$V_{\rm a}/{ m MD}^2$		
			\mathbf{S}
$C_{ m MD}$	C_{μ}		C_{C}
MK_I	MK_A		
$\frac{\mathrm{V}(D_{\mathrm{iso}})}{\langle D_{\cdot} \rangle^2}$	$\frac{\left\langle D_{\rm aniso}^2 \right\rangle}{\left\langle D_{\rm aniso} \right\rangle^2}$		$ S_{ZZ} $
	sizes $ ilde{\mu}_{2,\mathrm{iso}}$ $V_{\mathrm{i}}/\mathrm{MD}^{2}$ C_{MD} MK_{I}	sizessquare shape $\tilde{\mu}_{2,iso}$ $\Delta \tilde{\mu}_2$ V_i/MD^2 V_a/MD^2 C_{MD} C_{μ} MK_I MK_A $\frac{V(D_{iso})}{\langle D_{\mu} \rangle^2}$ $\frac{\langle D_{\text{aniso}}^2 \rangle}{\langle D_{\mu} \rangle^2}$	sizessquare shapesquare shape $\tilde{\mu}_{2,iso}$ $\Delta \tilde{\mu}_2$ μFA V_i/MD^2 V_a/MD^2 C_{MD} C_{μ} MK_I MK_A $\frac{V(D_{iso})}{\langle D_{iso} \rangle^2}$ $\frac{\langle D_{aniso}^2 \rangle}{\langle D_{iso} \rangle^2}$

References

- 1. S. Lasič, F. Szczepankiewicz, S. Eriksson, M. Nilsson, D. Topgaard. Microanisotropy imaging: quantification of microscopic diffusion anisotropy and orientational order parameter by diffusion MRI with magic-angle spinning of the *q*-vector. Front. Physics 2, 11 (2014).
- 2. F. Szczepankiewicz, S. Lasič, D. van Westen, P.C. Sundgren, E. Englund, C.-F. Westin, F. Ståhlberg, J. Lätt, D. Topgaard, M. Nilsson. Quantification of microscopic diffusion anisotropy disentangles effects of orientation dispersion from microstructure: Applications in healthy volunteers and in brain tumors. Neuroimage 104, 241-252 (2015).
- 3. D. Topgaard. Director orientations in lyotropic liquid crystals: Diffusion MRI mapping of the Saupe order tensor. Phys. Chem. Chem. Phys. 18, 8545-8553 (2016). 4. C.-F. Westin, H. Knutsson, O. Pasternak, F. Szczepankiewicz, E. Özarslan, D. van Westen, C. Mattisson, M. Bogren, L. O'Donnell, M. Kubicki, D. Topgaard, M. Nilsson. Q-space trajectory imaging for multidimensional diffusion MRI of the human brain. Neuroimage 135, 345-362 (2016).
- 5. F. Szczepankiewicz, D. van Westen, E. Englund, C.-F. Westin, F. Ståhlberg, J. Lätt, P.C. Sundgren, M. Nilsson. The link between diffusion MRI and tumor heterogeneity: Mapping cell eccentricity and density by diffusional variance decomposition (DIVIDE). Neuroimage, (Accepted).
- 6. D. Topgaard. NMR methods for studying microscopic diffusion anisotropy. In: R. Valiullin (Ed.) Diffusion NMR in confined systems: Fluid transport in porous solids and heterogeneous materials, New Developments in NMR 9, Royal Society of Chemistry, Cambridge, UK (2017).