Question 1

Teng Long

February 10, 2017

proposition: $\neg(\exists m \in \mathbb{N})(\exists n \in \mathbb{N})(3m + 5n = 12)$

proof: prove by contradiction. The contradiction is, when 3m + 5n = 12 holds, m and n cannot be natural number at the same time.

- 1. Assume $(\exists m \in \mathbb{N})(\exists n \in \mathbb{N})(3m + 5n = 12)$
- 2. $\Leftrightarrow (\exists m \in \mathbb{N})(\exists n \in \mathbb{N})m = 4 \frac{5}{3}n$
- 3. if $n \in \mathbb{N}$ which means $n \geq 1$. To satisfy the equation above, we illustrate all possible n value.

 - 3.1. we have $m=\frac{7}{3}$ when n=1 and 3.2. $m=\frac{2}{3}$ when n=2. under both situation, m is not a natural number
 - 3.3. for $n \ge 3$, we will result a negative m which was not a natural number.
 - 4.therefore, m and n cannot be natural number at the same time. contradiction.

5.conclution: the assumption $(\exists m \in \mathbb{N})(\exists n \in \mathbb{N})(3m + 5n = 12)$ is false.