Групи. Теорема на Кейли.

Нека $G(G \neq \emptyset)$ е множество с въведена бинарна операция ·, т.е. на всеки два елемента $a \in G$ и $b \in G$ е съпоставен елемент $a \cdot b \in G^1$. Казваме, че G е $\mathit{групa}$, ако са изпълнени следните три аксиоми:

- 1. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ за всеки $a, b, c \in G$, т.е. въведената операция е acouuamusha;
- 2. Съществува елемент $e \in G$, наречен единичен елемент, такъв че $a \cdot e = e \cdot a = a$ за произволен елемент $a \in G$;
- 3. За всеки елемент $a \in G$ съществува елемент $a^{-1} \in G$, наречен обратен елемент, такъв че $a \cdot a^{-1} = a^{-1} \cdot a = e$.

Ако допълнително е изпълнено и

 $4. \ a \cdot b = b \cdot a$ за $\forall a, b \in G$, т.е. ако въведената операция е комутативна, то групата G се нарича абелева или комутативна.

Броят на елементите в G бележим с |G|. Ако елементите на G са краен брой, то групата е $\kappa paйнa$, а числото |G| се нарича ped на rpynama G. В противен случай G е безкрайна група и $|G| = \infty$.

Примери за групи:

- 1. Числовите множества $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ са групи спрямо операцията събиране на числа, която ще запишем адитивно с +. Наистина,
- 1) Асоциативността (a+b)+c=a+(b+c) е налице за всеки три числа.
 - 2) Имаме, че a + 0 = 0 + a = a за всяко число a, т.е. 0 играе ролята

 $^{^1}$ За удобство, на повечето места изпускаме знакът на операцията \cdot и вместо $a \cdot b$ пишем просто ab. Този запис на операцията се нарича мултипликативен. Ако вместо това е въведена операция със знак +, то записът се нарича adumuвeh. Разликата в тези два записа е чисто нотационна и няма отношение към същността на предмета.

на неутрален елемент.

3) За всяко число a знаем, че е изпълнено a+(-a)=-a+a=0, т.е. -a е противоположният елемент на a.

Още повече имаме, че числовите множества образуват абелеви групи, защото е изпълнено и

4) a + b = b + a за всеки две числа a и b.

По-общ пример е всяко числово поле $F, \mathbb{Z} \subseteq F \subseteq \mathbb{C}$ спрямо операцията събиране.

- 2. Нека F е числово поле и $F^* = F \setminus \{0\}$. Тогава F^* е абелева група относно умножението на числа · в F. Наистина
- 1) Асоциативността на умножението очевидно е изпълнена с (ab)c = a(bc) за $\forall a,b,c \in F$, а оттам и за $\forall a,b,c \in F^*$.
 - 2) Числото 1 играе ролята на единичен елемент.
- 3) За всяко число $a \in F*$ числото $\frac{1}{a} \in F*$ играе ролята на обратен елемент.
- 4) Знаем, че е налице комутативност на умножението в F, която се наследява и от F^* .
 - 3. Нека $n \in \mathbb{N}$. Разглеждаме множеството

$$\mathbb{C}_n = \{ z \in \mathbb{C} \mid z^n = 1 \},\$$

състоящо се от n-тите комплексни корени на единицата (уравнението $z^n=1$ има точно n на брой различни комплексни корена). Тогава \mathbb{C}_n е група относно операцията умножение \cdot на комплексни числа. Наистина, ако $z_1, z_2 \in \mathbb{C}_n$, това означава, че $z_1^n=1$ и $z_2^n=1$. Тогава за тяхното произведение z_1z_2 е в сила, че $(z_1z_2)^n=z_1^nz_2^n=1.1=1$, т.е. $z_1z_2\in\mathbb{C}_n$ и \mathbb{C}_n е затворено относно операцията \cdot в \mathbb{C} . Сега за трите аксиоми имаме

- 1) Асоциативността е наследена от асоциативността на \cdot в \mathbb{C} .
- 2) Единичният елемент на групата е $1 \in \mathbb{C}$.
- 3) За всеки елемент $z \in \mathbb{C}_n$ същестува съответен обратен елемент $\frac{1}{z} \in \mathbb{C}_n$, защото от $z^n = 1$ следва и че $\left(\frac{1}{z}\right)^n = \frac{1}{z^n} = \frac{1}{1} = 1$.

Освен това \mathbb{C}_n е абелева, т.к. операцията · в \mathbb{C}_n наследява комутативността на операцията · в \mathbb{C} . Ясно е също и че $|\mathbb{C}_n| = n$ е редът на \mathbb{C}_n и следователно \mathbb{C}_n е крайна група.

4. Нека F е произволно числово поле. Тогава множеството

$$GL_n(F) = \{ A \in F_{n \times n} \mid \det A \neq 0 \},\$$

състоящо се от всички неособени квадратни матрици от ред n с елементи от F, е група относно операцията умножение на матрици, наречена $\mathit{oбщa}$ $\mathit{линейнa}$ $\mathit{груna}^2$. Наистина, ясно е, че

- 1) (AB)C = A(BC) за произволни матрици $A, B, C \in GL_n(F)$, т.к. това е в сила изобщо за проиволни матрици от $F_{n \times n}$.
 - 2) Единичният елемент на групата е единичната матрица Е.
- 3) За всяка матрица $A \in GL_n(F)$ съществува обратна матрица $A^{-1} \in GL_n(F)$ (защото $\det A \neq 0$) с $\det A^{-1} = \frac{1}{\det A} \neq 0$, която играе ролята на съответстващия й обратен елемент.

Групата $GL_n(F)$ не е абелева, т.к. знаем, че в общия случай $AB \neq BA$ при n > 1.

Нека сега разгледаме множеството

$$SL_n(F) = \{ A \in F_{n \times n} \mid \det A = 1 \}.$$

То също е група относно умножението на матрици, наречена специална линейна група³. Наистина, $SL_n(F)$ е затворено относно посочената операция, т.к. за всеки две матрици $A, B \in SL_n(F)$ имаме, че $\det A = 1$ и $\det B = 1$, а оттам и за тяхното произведение AB следва, че $\det(AB) = \det A \det B = 1.1 = 1$ и следователно $AB \in SL_n(F)$. Свойствата от 1) до 3) се изпълняват по същия начин, както при $GL_n(F)$.

- 5. Нека Ω е някакво множество, а S_{Ω} е множеството на всички биекции на Ω върху себе си. За произволни биекции $f, g \in S_{\Omega}$ тяхното произведение $fg: \Omega \longrightarrow \Omega$, дефинирано чрез (fg)(x) = f(g(x)) за $\forall x \in \Omega$ също е биекция и следователно $fg \in S_{\Omega}$. Относно тази бинарна операция S_n е група, наречена симетрична група на множеството Ω , т.к. е изпълнено
 - 1) (fg)h = f(gh) за $\forall f, g, h \in S_{\Omega}$.
- 2) Единичен елемент на групата е идентитетът id : $\Omega \longrightarrow \Omega$, за който е изпълнено id(x)=x за $\forall x\in\Omega$. Оттук е ясно, че f.id = id.f=f за $\forall f\in S_{\Omega}$.

²General linear group

³Special linear group

3) За всяка биекция $f \in S_{\Omega}$ съществува обратно изображение f^{-1} , което също е биекция и следователно $f^{-1} \in S_{\Omega}$, така че е изпълнено $ff^{-1} = f^{-1}f = \mathrm{id}$.

Нека Ω е крайно множество с n елемента, т.е. мощността му е $|\Omega|=n$. Без ограничение може да считаме, че

$$\Omega = \{1, 2, \dots, n\}.$$

В такъв случай, за по-голяма яснота и удобство пишем S_n вместо S_Ω и наричаме S_n симетрична група от степен n. Нека $f \in S_n$ е такава биекция, че $f(k) = i_k \in \Omega$ за всеки елемент $k \in \Omega$, $1 \le k \le n$. Тогава записваме

$$f = \begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix},$$

където поредицата от числа i_1, i_2, \ldots, i_n представлява пермутация на числата $1, 2, \ldots, n$. Знаем, че борят на всички пермутации на числата от 1 до n е n! и следователно S_n е крайна група от ред $|S_n| = n!$, чиито елементи също наричаме пермутации. При $n \geq 3$ S_n е неабелева. Наистина,

$$S_{3} = \left\{ \underbrace{\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}}_{=\mathrm{id}}, \underbrace{\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}}_{=a}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \underbrace{\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}}_{=b} \right\}$$

и нека разгледаме произведенията *ab* и *ba*.

$$ab = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}.$$

Това означава, че b(1) = 2 а след това a(2) = 3 и така ab(1) = 3; b(2) = 3, а след това a(3) = 2 и следователно ab(2) = 2; b(3) = 1, а след това a(1) = 1 и следователно ab(1) = 1. По този начин намерихме, че

$$ab = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}.$$

От друга страна

$$ba = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}.$$

Това означава, че a(1) = 1, а след това b(1) = 2 и следователно ba(1) = 2; a(2) = 3, а след това b(3) = 1 и следователно ba(2) = 1; a(3) = 2, а след това b(2) = 3 и следователно ba(3) = 3. И така намерихме, че

$$ba = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}.$$

Сега вече е ясно, че $ab \neq ba$ и няма как S_3 да е абелева.

Следствия от аксиомите:

- а) Елементът e е единствен. Наистина, нека $e' \in G$ е такъв, че ae' =e'a=a за $\forall a\in G$. Тогава при a=e имаме ee'=e'e=e. Но e е единичен елемент и следователно ee' = e'e = e. Следователно e = e'.
- б) За всеки елемент $a \in G$ елементът a^{-1} е единствен. Наистина, нека $a' \in G$ е такъв, че aa' = a'a = e. Тогава имаме, че $a' = ea' = (a^{-1}a)a' = ea'$ $a^{-1}(aa') = a^{-1}e = a^{-1}$.
- в) Нека $a, b, c \in G$. От асоциативността на операцията (аксиома 1) имаме, че (ab)c = a(bc) и следователно можем да запишем просто abc. По-общо, ако $a_1, a_2, \ldots, a_k \in G$, то елементът $a_1 a_2 \ldots a_k \in G$ е еднозначно определен.
- г) За $a \in G$ и $k \in \mathbb{N}$ дефинираме $a^k = \underbrace{aa \dots a}$. Лесно се вижда, че са в сила свойствата $a^ka^l=a^{k+l}$ и $(a^k)^l=a^{kl}$ за $\forall k,l\in\mathbb{N}.$ Считаме, че $a^0=e$ и дефинираме $a^{-k}=(a^{-1})^k=(a^k)^{-1}$ за произволно $k\in\mathbb{N}.$ В такъв случай свойствата $a^k a^l = a^{k+l}$ и $(a^k)^l = a^{kl}$ се обобщават за произволни $k,l\in\mathbb{Z}$. Ако групата G е записана адитивно чрез операцията събиране +, то вместо a^k пишем $ka = \underbrace{a + a + \cdots + a}_{k \text{ пъти}}$ за $k \in \mathbb{N}$. По-общо, в сила са свойствата ka + la = (k+l)a и k(la) = (kl)a за $\forall k, l \in \mathbb{Z}$.

Нека множеството G е група относно операцията \cdot , а множеството G'е група относно операцията * и $\varphi: G \longrightarrow G'$ е изображение (т.е. на всеки елемент $q \in G$ е съпоставен единствен елемент $\varphi(g) \in G'$. Изображението φ е хомоморфизъм на групи, ако

$$\varphi(a\cdot b)=\varphi(a)*\varphi(b)\quad \forall a,b\in G.$$

Свойства:

1. Ако e е единичният елемент на G, а e' е единичният елемент на G', TO $\varphi(e) = e'$.

2.
$$\varphi(a^{-1}) = (\varphi(a))^{-1}$$
 sa $\forall a \in G$.

Ако $\varphi: G \longrightarrow G'$ е хомоморфизъм на групи и освен това φ е биекция на G върху G', то казваме, че φ е изоморфизъм на групи. В такъв случай казваме, че групите G и G' са изоморфии и пишем $G \cong G'$. Това означава, че G и G' имат едни и същи свойства като групи и често биват отъждествявани.

Нека например разгледаме множеството \mathbb{R}^+ на реалните положителни числа и множеството \mathbb{R} на всички реални числа. \mathbb{R}^+ е група спрямо умножението на реални числа, а \mathbb{R} е група спрямо събирането на реални числа. Търсим изображение

$$\varphi: \mathbb{R}^+ \longrightarrow \mathbb{R},$$

такова че $\varphi(ab)=\varphi(a)+\varphi(b)$ за $\forall a,b\in\mathbb{R}^+$ и φ да е биекция на \mathbb{R}^+ върху \mathbb{R} . Такова изображение е например функцията $\ln x$. Наистина, ако $\varphi=\ln$, то φ е биекция и освен това имаме, че $\varphi(ab)=\ln(ab)=\ln a+\ln b=\varphi(a)+\varphi(b)$. По този начин φ е изоморфизъм на групи и $\mathbb{R}^+\cong\mathbb{R}$.

Нека G е група и $H\subseteq G$ ($H\neq\varnothing$) е някакво непразно нейно подмножество. Казваме, че H е noderpyna на G, ако за $\forall a,b\in H\Rightarrow ab\in H$ и $\forall a\in H\Rightarrow a^{-1}\in H$. С други думи, H е такова подмножество на G, че е затворено спрямо груповата операция в G и освен това съдържа обратните на всички свои елементи. Означаваме $H\leq G$ или H< G, когато имаме строгото включване $H\subset G$. Нека $a\in H$. Тогава по дефиниция $a^{-1}\in H$ и $aa^{-1}=e\in H$. По този начин H е група спрямо същата бинарна операция в G.

Ще отбележим още, че сечението на подгрупи на G също е подгрупа на G.

Примери:

- 1. За всяка група G е очевидно, че $G \leq G$ и $\{e\} \leq G$ и това са тривиалните подгрупи на G.
 - 2. \mathbb{R} е подгрупа на \mathbb{C} относно операцията събиране.
 - 3. $SL_n(F) < GL_n(F)$.
 - 4. В множеството на целите числа \mathbb{Z} , което е група относно операция-

та събиране, за произволно цяло число $m \in \mathbb{Z}$ разглеждаме множеството

$$m\mathbb{Z} = \{ mz \mid z \in \mathbb{Z} \}.$$

При m=0, имаме че $m\mathbb{Z}=\{0\}$, а при $m=\pm 1$ очевидно $m\mathbb{Z}=\mathbb{Z}$. За всички останали $m\in\mathbb{Z}\backslash\{0,\pm 1\}$ се получават нетривиални подгрупи на \mathbb{Z} . Например при m=2 имаме, че $m\mathbb{Z}=\{$ всички четни числа $\}$. И така, за провизолно $m\in\mathbb{Z}$ и проиволно $mz\in m\mathbb{Z}$ имаме, че $-mz=m\underbrace{(-z)}_{\in\mathbb{Z}}$

 $m\mathbb{Z}$; за провизолни $mz_1, mz_2 \in m\mathbb{Z}$ имаме, че $mz_1 + mz_2 = m(\underbrace{z_1 + z_2}_{\in \mathbb{Z}}) \in$

 $m\mathbb{Z}$ и следователно $m\mathbb{Z} \leq \mathbb{Z}$.

5. Знаем че $\mathbb{C}_n = \{z \in \mathbb{C} \mid z^n = 1\}$ е абелева група от ред n спрямо умножението на комплексни числа. Нека $d \in \mathbb{N}$ и разгледаме множеството $\mathbb{C}_d = \{z \in \mathbb{C} \mid z^d = 1\}$. Ако $d \mid n$, то за произволен елемент $z \in \mathbb{C}_d$ имаме, че $z^d = 1$ и след повдигане на двете страни на степен $\frac{n}{d}$ получаваме, че $z^n = 1$, т.е. $z \in \mathbb{C}_n$. По този начин видяхме, че ако $d \mid n$, то $\mathbb{C}_d \subseteq \mathbb{C}_n$. Оттук директно се проверява и че $\mathbb{C}_d \leq \mathbb{C}_n$.

Свойство:

 $\overline{\text{Нека }G}$ е група, $H \leq G$ и $a,b \in G$. Тогава, ако $ab \in H$ и $a \in H$, то $b \in H$. Наистина, щом $a \in H$, то тогава $a^{-1} \in H$. Оттук $a^{-1}(ab) \in H$ и $(a^{-1}a)b \in H$, което просто означава, че $eb = b \in H$. Аналогино се проверява и че, ако $ab \in H$ и $b \in H$, то $a \in H$.

Теорема на Кейли. Всяка група от ред n е изоморфна на подгрупа на симетричната група S_n .

Доказателство. Нека G е група от ред |G| = n. По-точно

$$G = \{q_1, q_2, \dots, q_n\}.$$

Ще докажем, че G е подгрупа на S_G (симетричната група на множеството G) и от факта, че отъждествяваме S_G с S_n , теоремата ще бъде доказана. Нека $a \in G$ е произволен елмент. Разглеждаме иображението

$$L_a: G \longrightarrow G$$
,

за което $L_a(x) = ax$ за $\forall x \in G$.

 L_a е биекция на G върху G. Наистина, нека $y \in G$ е прозиволен елемент. Тогава $x = a^{-1}y \in G$ и имаме, че $L_a(x) = ax = a(a^{-1}y) = y$, т.е. всеки елемент $y \in G$ е образ на елемента $x \in G$ и по този начин L_a е сюрекция. Нека $x_1, x_2 \in G$ са такива, че $x_1 \neq x_2$. Ако допуснем, че $L_a(x_1) = L_a(x_2)$, то имаме че $ax_1 = ax_2$ и след ляво умножение с a^{-1} достигаме до противоречието, че $x_1 = x_2$. Следователно $L_a(x_1) \neq L_a(x_2)$ и L_a е инекция.

Сега ще докажем, че $G \leq S_G$. Ако $a,b \in G$, то имаме $(L_aL_b)(x) = L_a(L_b(x)) = L_a(bx) = a(bx) = (ab)x = L_{ab}(x)$. За $\forall a \in G$ е изпълнено, че $L_aL_{a^{-1}}(x) = L_{aa^{-1}}(x) = (aa^{-1})x = x$, т.е. $L_{aa^{-1}} = \operatorname{id}$ и $(L_a)^{-1} = L_{a^{-1}}$. Така $L_a \in S_G$ за $\forall a \in G$. Нека $G' = \{L_a \mid a \in G\}$. Тогава $G' \subseteq S_G$, $L_aL_b = L_{ab}$ (затвореност на G' относно композицията на изображения) и $(L_a)^{-1} = L_{a^{-1}} \in G'$ (затвореност относно обръщането на елементи) и следователно $G' \leq S_G$.

Нека разгледаме изображението

$$\varphi: G \longrightarrow G'$$
,

за което $\varphi(a) = L_a$. От това, което видяхме досега имаме, че $\varphi(ab) = L_{ab} = L_a L_b = \varphi(a) \varphi(b)$ за $\forall a,b \in G$. Това означава, че φ е хомоморфизъм на групи. Ще видим още, че φ е биекция. Наистина, всеки елемент $L_a \in G'$ е образ на елемента $a \in G$ под действието на φ и φ е сюрекция. Ако $a,b \in G$ са такива, че $a \neq b$, то допускането $\varphi(a) = \varphi(b)$ означава, че $L_a = L_b$ като изображения. Тогава $L_a(x) = L_b(x)$ за $\forall x \in G$ и в частност при x = e имаме, че $L_a(e) = L_b(e)$, което води до противоречието a = b. Следователно $L_a \neq L_b$, а оттам и $\varphi(a) \neq \varphi(b)$ и φ е инекция. Дотук видяхме, че φ е хомоморфизъм на групи и φ е биекция, което означава, че φ е изоморфизъм на групи. Така $G \cong G'$, но $G' \leq S_G$. Така може да считаме, че $G \leq S_G$, а т.к. $S_G \cong S_n$ и че $G \leq S_n$. По този начин доказахме, че G е подгрупа на S_n .