

統計學(一)

第六章(續)抽樣分佈 (Sampling Distributions)

授課教師: 唐麗英教授

國立交通大學工業工程與管理學系

聯絡電話:(03)5731896

e-mail: litong@cc.nctu.edu.tw

2013

☆ 本講義未經同意請勿自行翻印 ☆

本課程內容參考書目

• 教科書

- Mendenhall, W., & Sincich, T. (2007). Statistics for engineering and the sciences, 5th Edition. Prentice Hall.

• 參考書目

- Berenson, M. L., Levine, D. M., & Krehbiel, T. C. (2009). Basic business statistics: Concepts and applications,
 11th Edition. Upper Saddle River, N.J.: Pearson Prentice Hall.
- Larson, H. J. (1982). *Introduction to probability theory and statistical inference*, 3rd Edition. New York: Wiley.
- Miller, I., Freund, J. E., & Johnson, R. A. (2000). Miller and Freund's Probability and statistics for engineers, 6th Edition. Upper Saddle River, NJ: Prentice Hall.
- Montgomery, D. C., & Runger, G. C. (2011). Applied statistics and probability for engineers, 5th Edition. Hoboken, NJ: Wiley.
- Watson, C. J. (1997). *Statistics for management and economics*, 5th Edition. Englewood Cliffs, N.J: Prentice Hall.
- 林惠玲、陳正倉(2009),「統計學:方法與應用」,第四版,雙葉書廊有限公司。
- 唐麗英、王春和(2013),「從範例學MINITAB統計分析與應用」,博碩文化公司。
- 唐麗英、王春和(2008),「SPSS統計分析14.0中文版」,儒林圖書公司。
- 唐麗英、王春和(2007),「Excel 2007統計分析」,第二版,儒林圖書公司。
- 唐麗英、王春和(2005),「STATISTICA6.0與基礎統計分析」,儒林圖書公司。
- 陳順宇(2004),「統計學」,第四版,華泰書局。
- 彭昭英、唐麗英(2010),「SAS123」,第七版,儒林圖書公司。

抽樣分佈 (Sampling Distributions)

Sampling Distributions

• Recall: Parameter and statistic (參數與統計量)

- A quantity computed from the observation in a population is called a parameter.
- A quantity computed from the observation in a sample is called a statistic.

Example:

- 1) μ and σ are parameters.
- 2) \overline{X} and S are statistics.

Sampling Distributions

• Def: Sampling Distribution 抽樣分佈

- The **probability distribution** of a **statistic** that results when random sample of size **n** are repeatedly drawn from a given population is called the **sampling distribution** of the **statistic**.
- 統計量之機率分佈稱為「抽樣分佈」

• Example:

- The distribution of sample mean \overline{X} is one type of sampling distribution. The distribution of sample proportion \hat{p} is another type of sampling distribution.

利用蒙地卡羅模擬法模擬抽樣分佈 (Approximating a Sampling Distribution by Monte Carlo Simulation)

Approximating a Sampling Distribution

• Example 1: See Example 6.18 on pages 238.

Simulate the sampling distribution of the sample mean

$$\overline{Y} = \frac{Y_1 + Y_2 + Y_3 + Y_4 + Y_5}{5}$$
 (n=5)

for a sample of n=5 observations drawn from the uniform probability distribution shown in Figure 6.12. Note that the uniform distribution has mean μ =0.5. Repeat the procedure for n=15, 25, 50, and 100.

Approximating a Sampling Distribution

Simulation procedure

– Use Minitab to obtain 10,000 random samples of size n=5 from the uniform probability distribution, over the interval (0,1), and compute $\overline{\mathbf{Y}}$ for each sample. Then, plot a histogram for the 10,000 values of $\overline{\mathbf{Y}}$. Repeat the procedure for n=15, 25, 50, and 100.

Simulated sampling distributions for means of uniform (0,1)

Approximating a Sampling Distribution

The **histogram** of the simulated **sampling distribution of** \overline{X} based on independent random samples from *Uniform* distribution is close to **Normal** distribution. Note that:

- 1) The values of \overline{X} tend to cluster(群聚) about the *mean* of the **uniform** distribution.
- As the sample size n increases, there is less variation in the sampling distribution of \overline{X} and the *shape* of the sampling distribution of \overline{X} tends toward the *shape* of the *Normal* distribution.

Approximating a Sampling Distribution

- Example 2: See Example 6.19 on pages 239.
 - The histogram of the simulated sampling distribution of X̄ based on independent random samples from Exponential distribution is close to Normal distribution. 其餘結論與上例相同。

Simulated sampling distributions for means of exponential (β =1)

Approximating a Sampling Distribution

• Example 3: Normal distribution

The histogram of the simulated sampling distribution of X̄ based on independent random samples from Normal distribution is close to Normal distribution. 其餘結論與上例相同。

Simulated sampling distributions for means of normal (0,1)

抽樣分布的特性與樣本平均數 (The Sampling Distributions of Means and Sums)

1) What is the Sampling Distribution of the Sample Mean, \overline{X} (When σ is known) ?

- How the statistic \overline{X} behaves in repeated sampling?

• Example 1:

- Suppose a population consists of four numbers (N=4): 1,2,3,4
- Since the four values are distinct, the population probability distribution assigns an equal probability of 1/4 to each value of x in the population.

X	P(x)	x*P(x)	$x^2P(x)$
1	1/4	1/4	1/4
2	1/4	2/4	4/4
3	1/4	3/4	9/4
4	1/4	4/4	16/4

The **population mean** and **variance** are

$$\mu = \sum_{i=1}^{n} P(x_i) = 2.5 \qquad \qquad \sigma^2 = \sum_{i=1}^{N} x^2 P(x_i) - \mu^2 = 7.5 - 2.5^2 = 1.25$$

• Step 1: Now, take a random sample of size 2 with replacement from the population. How many possible samples are there?

4*4=16 possible samples

Sample	Sample Sample mean \overline{X}		Sample mean \overline{X}		
(1,1)	1	(3,1)	2		
(1,2)	1.5	(3,2)	2.5		
(1,3)	2	(3,3)	3		
(1,4)	2.5	(3,4)	3.5		
(2,1)	1.5	(4,1)	2.5		
(2, 2)	2	(4,2)	3		
(2,3)	2.5	(4,3)	3.5		
(2,4)	3	(4,4)	4		

• Step 2: Now construct the probability distribution for the sample mean \overline{X} .

$\bar{\mathbf{x}}$	P(X)	$\overline{X} * P(\overline{X})$	$\overline{X}^2 * P(\overline{X})$
1₽	1/16	1/16₽	1/16₽
1.5₽	2/16₽	3/16₽	4.5/16₽
2₽	3/16₽	6/16₽	12/16₽
2.50	4/16₽	10/16₽	25/16₽
3₽	3/16₽	9/16₽	27/16₽
3.5₽	2/16₽	7/16₽	24.5/16
4₽	1/16₽	4/16₽	16/16₽
4	1.0	40/16 4	110/16

For this probability distribution of \overline{X} , the <u>mean</u> of the <u>sample mean</u> \overline{X} and the **variance** of the sample mean \overline{X} are :

$$\mu_{\overline{X}} = \qquad \qquad \sigma^2_{\overline{X}} =$$

Conclusions :

1)
$$\mu_{\overline{X}} =$$

- 2) $\sigma_{\overline{X}}^2 = \underline{\hspace{1cm}}$, where **n** is the sample size.
- 3) Whether the distribution of the original population in normal or <u>not</u>, the distribution of the **sample mean** is close to **Normal**.

Central Limit Theorem 中央極限定理

• The Central Limit Theorem (C.L.T.) 中央極限定理

If random sample of n observations are drawn from a population with mean μ and standard deviation σ , then when \mathbf{n} is large $(n \geq 30)$, the sampling distribution of $\overline{\mathbf{X}}$ is approximately normally distributed with $\mu_{\overline{X}} = \mu$, and $\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$.

$$\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$$
, if $n \ge 30$

The **approximation** will become more and more **accurate** as **n** becomes large.

Remark: If the **population** is **normal**, then the distribution of the sample mean \overline{X} will always be **normal**, <u>regardless of the sample size</u> (n).

• Example 1:

– Suppose that X follows a distribution with mean μ =10 and variance σ^2 = 4. A sample of size 25 are drawn from this population. What is the distribution of \overline{X} ?

Application of the Central Limit Theorem

• **Example 2**:

- The **average** vitamin B-2 content of a certain brand of vitamins is **30** mg with a **standard deviation** of **2** mg. A quality control inspector selects **36** pills for testing. What is the probability that the **average** vitamin B-2 content of these 36 pills is **less than 28 mg**?

Application of the Central Limit Theorem

Example 3 :

- If a 1-gallon can of a certain kind of paint covers on the average 513.3 square feet with a standard deviation of 31.5 square feet, what is the probability that the mean area covered by a sample of 40 of these 1-gallon cans will be anywhere from 510.0 to 520.0 square feet?

Sampling Distribution of the Sample Proportion

• What is the Sampling Distribution of the Sample Proportion, \hat{p}

- p: Population Proportion
- p̂:Sample proportion = x/n = 成功次數/總試驗次數

• Theorem : Sampling Distribution of \hat{p}

When the sample size **n** is large, the sampling distribution of \widehat{p} is approximately normal with **mean** p and **standard deviation** $\sqrt{\frac{pq}{n}}$.

$$\hat{p} \sim N(p, \sqrt{\frac{pq}{n}})$$

Sampling Distribution of the Sample Proportion

• **Example 4**:

- A production line at a manufacturing company produces **10%** defective items. If a sample of n=64 items is taken, what is the probability that the **sample defective rate** is **less** than 8%?

Sampling Distribution of Sum

Theorem 6.10 on page 241

Sampling Distribution of Sum of Normal Random Variables

Let a_1, a_2, \dots, a_n be constants and let Y_1, Y_2, \dots, Y_n be n normally distributed random variables with $E(Y_i) = \mu_i$, $V(Y_i) = \sigma_i^2$, and $Cov(Y_i, Y_j) = \sigma_{ij}$ $(i = 1, 2, \dots, n)$. Then the sampling distribution of a linear combination of the normal random variables

$$\ell = a_1 Y_1 + a_2 Y_2 + \dots + a_n Y_n$$

possesses a normal density function with mean and variance

$$E(\ell) = \mu = a_1 \mu_1 + a_2 \mu_2 + \dots + a_n \mu_n$$

and

$$V(\ell) = a_1^2 \sigma_1^2 + a_2^2 \sigma_2^2 + \dots + a_n^2 \sigma_n^2$$

$$+ 2a_1 a_2 \sigma_{12} + 2a_1 a_3 \sigma_{13} + \dots + 2a_1 a_n \sigma_{1n}$$

$$+ 2a_2 a_3 \sigma_{23} + \dots + 2a_2 a_n \sigma_{2n}$$

$$+ \dots + 2a_{n-1} a_n \sigma_{n-1,n}$$

Sampling Distribution of Sum

Example 6.20 on page 241

Suppose you select independent random samples from two normal populations, n_1 observations from population 1 and n_2 observations from population 2. If the means and variances for populations 1 and 2 are (μ_1, σ_1^2) and (μ_2, σ_2^2) , respectively, and if \overline{Y}_1 and \overline{Y}_2 are the corresponding sample means, find the distribution of the difference $(\overline{Y}_1 - \overline{Y}_2)$.

Solution

The means and variances of the sample means are

$$E(\overline{Y}_i) = \mu_i$$
 and $V(\overline{Y}_i) = \frac{\sigma_i^2}{n_i}$ $(i = 1, 2)$

Then, $\ell = \overline{Y}_1 - \overline{Y}_2$ is a linear function of two normally distributed random variables, \overline{y}_1 and \overline{y}_2 . According to Theorem 6.10, ℓ will be normally distributed with

$$E(\ell) = \mu_{\ell} = E(\overline{Y}_1) - E(\overline{Y}_2) = \mu_1 - \mu_2$$

$$V(\ell) = \sigma_{\ell}^2 = (1)^2 V(\overline{Y}_1) + (-1)^2 V(\overline{Y}_2) + 2(1)(-1)Cov(\overline{Y}_1, \overline{Y}_2)$$

But, since the samples were independently selected, \overline{Y}_1 and \overline{Y}_2 are independent and $Cov(\overline{Y}_1, \overline{Y}_2) = 0$. Therefore,

$$V(\ell) = \sigma_1^2 / n_1 + \sigma_2^2 / n_2$$

We have shown that $(\overline{Y}_1 - \overline{Y}_2)$ is a normally distributed random variable with mean $(\mu_1 - \mu_2)$ and variance $(\sigma_1^2 / n_1 + \sigma_2^2 / n_2)$.

2) What is the Sampling Distribution of the Sample Mean, \overline{X} (When σ is unknown)?

Theorem

– If \overline{X} is the mean of a random sample of size **n** taken from a **normal** population having the mean μ and the variance σ^2 , then the sample statistic

$$T = \frac{\overline{X} - \mu}{s / \sqrt{n}}$$

has a **T-distribution** with **degrees of freedom**(d.f. 自由度) ν = n-1.

Note: **T-distribution** is also called "**Student's T-distribution**"

Student's T Distribution

What is "Student's" T-Distribution?

The probability distribution of **T** statistic was first published in 1908 in a paper by **W.S. Gosset**. At the time, Gosset was employed by an Irish brewery (釀 酒場) that disallowed publication of research by members of its staff. To circumvent this restriction, he published his work secretly under the name "**Student**". Consequently, the distribution of **T** is usually called the **Student's T-distribution**, or simply the **T**-distribution.

Student in 1908

Born June 13, 1876

Canterbury, Kent, England

Died October 16, 1937 (aged 61)

Beaconsfield, Buckinghamshire, England

source:

http://en.wikipedia.org/wiki/William_Sealy_Gosset

Student's T Distribution

Properties of T-Distribution

- The **T**-distribution is very much like a **Z**-distribut

Comparison of T-distribution and Z-distribution

- 1) Both are **symmetric**, bell-shaped.
- 2) Both have a **mean** of 0.
- 3) T is **more variable** than Z in repeated sampling. (There is more area in the tails of the T-distribution, and the Z-distribution is higher in the middle).
- 4) As the number of **d.f.** increases (i.e., as **n** increases) without limit, the **T**-distribution approaches **Z**-distribution.

Degree of Freedom

What is the Degree of Freedom?

- We use the degrees of freedom as a measure of sample information.
- For example, we say that the \mathbf{T} statistic has degrees of freedom n-1.

• Why?

- There are **n** degrees of freedom or **independent pieces** of information in the random sample of size *n* from the normal distribution.
- In calculating $\mathbf{T} = \frac{\overline{X} \mu}{s_{/\sqrt{n}}}$, we **do not know σ** and need to use the sample data to estimate **σ**. When the data (the values in the sample) are used to compute the mean \overline{X} for obtaining $S^2 = \sum_{i=1}^n (x_i \overline{X})^2/(n-1)$, there is **1** less degree of freedom in the information used to estimate $\mathbf{\sigma}^2$.

Student's T Distribution

T-distribution table

- TABLE 7 in the Appendix B of the textbook (page 910) gives the value of t_{α} which locates an area of α in the <u>upper</u> tail of the T-distribution for various values of α and for **d.f.** ranging from 1 to ∞ .

Note

- When d.f. ≥ 29 or $\mathbf{n} \geq 30$, **Z**-distribution is very close to **T**-distribution.

ν	t _{.100}	t _{.050}	t _{.025}	t _{.010}	t _{.005}	t _{.001}	t _{.0005}
1	3.078	6.314	12.076	31.821	63.657	318.310	636.620
2	1.886	2.920	4.303	6.965	9.925	22.326	31.598
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	1.319	1.714	2.069	2.500	2.807	3.485	3.767
24	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	1.296	1.671	2.000	2.390	2.660	3.232	3.460
120	1.289	1.658	1.980	2.358	2.617	3.160	3.373
00	1.282	1.645	1.960	2.326	2.576	3.090	3.291

Student's T Distribution

• Example 1:

- Find t_{α} and $t_{\alpha/2}$ when α =0.05 and n=6.

• Solution:

ν	t _{.100}	t _{.050}	t _{.025}	t _{.010}	t _{.005}	t _{.001}	t _{.0005}
1	3.078	6.314	12.076	31.821	63.657	318.310	636.620
2	1.886	2.920	4.303	6.965	9.925	22.326	31.598
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869

- ANS: $t_{.05, 5} = 2.015$, $t_{.025, 5} = 2.571$

Student's T Distribution

Example 2:

- Find t_{α} and $t_{\alpha/2}$ when α =0.01 and n=20.

Solution:

F-		1						
	ν	t _{.100}	<i>t</i> _{.050}	t _{.025}	t _{.010}	t _{.005}	<i>t</i> _{.001}	t _{.0005}
	1	3.078	6.314	12.076	31.821	63.657	318.310	636.620
	2	1.886	2.920	4.303	6.965	9.925	22.326	31.598
	3	1.638	2.353	3.182	4.541	5.841	10.213	12.924
	4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
	5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
	• • •			• •				
	16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
	17	1.333	1.740	2.110	2.567	2.898	3.646	3.965
	18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
	19	1.328	1.729	2.093	2.539	2.861	3.579	3.883
	20	1.325	1.725	2.086	2.528	2.845	3.552	3.850
-		-						

- ANS: $t_{.01, 19} = 2.539$, $t_{.005, 19} = 2.861$

Student's T Distribution

• **Example 3**:

- Find t_{α} and $t_{\alpha/2}$ when α =0.10 and n=42.

• Solution:

ν	t _{.100}	t _{.050}	t _{.025}	t _{.010}	t _{.005}	t _{.001}	t _{.0005}
1	3.078	6.314	12.076	31.821	63.657	318.310	636.620
2	1.886	2.920	4.303	6.965	9.925	22.326	31.598
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
• • • •	ı			• •			'
40	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	1.296	1.671	2.000	2.390	2.660	3.232	3.460
120	1.289	1.658	1.980	2.358	2.617	3.160	3.373
∞	1.282	1.645	1.960	2.326	2.576	3.090	3.291

- ANS:
$$t_{.10, \infty} = 1.282$$
 , $t_{.05, \infty} = 1.645$

The Sampling Distributions Related to the Normal Distribution

1. χ^2 -Distribution

- If s^2 is the variance of a random sample of size **n** taken from a *Normal* population having the variance σ^2 , then

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2}$$

has a (Greek letter, Chi) distribution with the d.f. = v = n-1

- **TABLE 8 on pages 911-912** of the Appendix gives the value of χ^2_{α} which locates an area of **α** in the **upper** tail of the χ^2 -distribution for various values of **α** and **d.f**.

χ^2 -Distribution Table

• Example 1:

- If n= 20, use TABLE 8 (p.911) to determine $\chi^2_{0.05} = ?$

df	$\chi^{2}_{.995}$	$\chi^{2}_{.990}$	$\chi^2_{.975}$	$\chi^{2}_{.950}$	$\chi^{2}_{.900}$	$\chi^{2}_{.100}$	$\chi^{2}_{.050}$	$\chi^{2}_{.025}$	$\chi^{2}_{.010}$	$\chi^{2}_{.005}$
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.819
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.718
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.582
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997

- Example 2: See Example 6.24 on page 249
 - Consider a cannery that produces 8-ounce cans of processed corn. Quality control engineers have determined that process is operating properly when the true variation σ^2 of the fill amount per can is less than 0.0025. A random sample of n=10 cans is selected from a day's production, and the fill amount (in ounces) recorded for each. Of interest is the sample variance, S^2 . If, in fact, σ^2 =0.001, find the probability that S^2 exceeds 0.0025. Assume that the fill amounts are normally distributed.

• **Solution** (1/2)

We want to calculate $P(S^2 > 0.0025)$. Assume the sample of 10 fill amount is selected from a normal distribution. Theorem 6.11 states that the statistic

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2}$$

has a chi-square probability distribution with v=(n-1) degrees of freedom. Consequently, the probability we seek can be written

$$P(S^{2} > 0.0025) = P\left[\frac{(n-1)S^{2}}{\sigma^{2}} > \frac{(n-1)(0.0025)}{\sigma^{2}}\right] = P\left[\chi^{2} > \frac{(n-1)(0.0025)}{\sigma^{2}}\right]$$

Substituting n = 10 and σ^2 = 0.001, we have

$$P(S^2 > 0.0025) = P\left[\chi^2 > \frac{9(0.0025)}{0.001}\right] = P(\chi^2 > 22.5)$$

• **Solution** (2/2)

Then, we want to find the probability α such that $\chi_{\alpha}^2 > 22.5$

for
$$n=10 (v=9)$$
, we find that

$$\chi_{0.01}^2 = 21.666$$
 and $\chi_{0.005}^2 = 23.589$

i.e.,
$$0.005 < P(\chi^2 > 22.5) < 0.01$$

df	$\chi^{2}_{.995}$	$\chi^{2}_{.990}$	$\chi^2_{.975}$	$\chi^{2}_{.950}$	$\chi^{2}_{.900}$	$\chi^{2}_{.100}$	$\chi^{2}_{.050}$	$\chi^{2}_{.025}$	$\chi^{2}_{.010}$	$\chi^{2}_{.005}$
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188

Thus, the probability that the variance of the sample fill amounts exceeds 0.0025 is small (between 0.005 and 0.01) when the true population variance σ^2 equals 0.001.

T-Distribution

2. T-Distribution

- <u>Definition</u>: Let Z be a **standard Normal** random variable and χ^2 be a Chi-square random variable with degrees of freedom v, then

$$T = \frac{Z}{\sqrt{\chi^2/\nu}}$$

has a **T** distribution with v numerator d.f. (分子自由度) and v_2 denominator d.f. (分母自由度)

Theorem :

- If \overline{X} is the mean of a random sample of size **n** taken from a **normal** population having the mean μ and the variance σ^2 , then the sample statistic

$$T = \frac{X - \mu}{s / \sqrt{n}}$$

has a **T-distribution** with **degrees of freedom** (**d.f.**) (自由度) v = n-1.

T-Distribution

- Example 3: See Example 6.25 on page 251
 - Suppose the random variables \overline{Y} and S^2 are the mean and variance of a random sample of n observations from a normally distributed population with mean μ and variance σ^2 . It can be shown that \overline{Y} and S^2 are statistically independent when the sampled population has a normal distribution. Use this result to show that

$$T = \frac{\overline{Y} - \mu}{s / \sqrt{n}}$$

possesses a T distribution with v=(n-1) degrees of freedom.

T-Distribution

Solution

We know from Theorem 6.10 that \overline{Y} is normally distributed with μ and variance σ^2/n . Therefore,

$$Z = \frac{Y - \mu}{\sigma / \sqrt{n}}$$

is a standard normal random variable. We also know from Theorem 6.11 that

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2}$$

is a χ^2 random variable with ν =(n-1) degree of freedom. Then, using Definition 6.15 and the information that \bar{Y} and S^2 are independent, we conclude that

$$T = \frac{Z}{\sqrt{\chi^2/\nu}} = \frac{\frac{Y-\mu}{\sigma/\sqrt{n}}}{\sqrt{\frac{(n-1)S^2}{\sigma^2}/(n-1)}} = \frac{\overline{Y}-\mu}{S/\sqrt{n}}$$

has a Student's T distribution with v=(n-1) degrees of freedom.

F-Distribution

3. F-Distribution

- <u>Definition</u>: Let χ_1^2 and χ_2^2 be two **independent chi-square** random variables with v_1 and v_2 degrees of freedom, respectively, then

$$F = \frac{\chi_1^2 / \nu_1}{\chi_2^2 / \nu_2}$$

has a **F** distribution with v_1 numerator d.f. (分子自由度) and v_2 denominator d.f. (分母自由度)

Theorem :

- If s_1^2 and s_2^2 are the variances of a random sample of size n_1 and n_2 taken from two normal population having the same variances, then

$$F = \frac{s_1^2}{s_2^2}$$

has a **F** distribution with **d**. **f**. = $(v_1, v_2) = (n_1 - 1, n_2 - 1)$.

F-Distribution Table

F-Distribution Table

- TABLE 9 on pages 913-916 of the Appendix gives the value of F_{α} which locates an area of α in the **upper** tail of the F-distribution for various values of α and **d.f.**
- Example: If $n_1 = 7$, $n_2 = 13$, use TABLE 9 to determine $F_{.01} = ?$

	$\mathbf{v_1}$	Numerator Degrees of Freedom								
\mathbf{v}_2		1	2	3	4	5	6	7	8	
	1	4052.2	4999.5	5403.4	5624.6	5763.7	5859.0	5928.4	5981.1	
я	2	98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37	
dor	3	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	
Freedom	4	21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	
	5	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	
\mathbf{of}	6	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	
egrees	7	12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	
ğ	8	11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	
	9	10.56	8.02	6.99	6.42	6.06	5.80	5.61	5.47	
or	10	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	
na(11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	
Denominator	12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	
ou;	13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	
De	14	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	
	15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	

本單元結束

50

統計學(一)唐麗英老師上課講義