Segmentation and Clustering (part 4)

This Lecture

- Segmentation and grouping
 - Gestalt principles
 - Image segmentation
- Segmentation as clustering
 - k-Means
 - Feature spaces
- Probabilistic clustering
 - Mixture of Gaussians, EM
- Model-free clustering
 - Mean-Shift clustering
- Graph theoretic segmentation
 - Normalised cuts

Images as Graphs

- Node (vertex) for every pixel
- Link between every pair of pixels, (p,q)
- Affinity weight (cost) w_{pq} for each link (edge)
 - w_{pq} measures similarity
 - Similarity is *inversely proportional* to difference (in color and position...)

Segmentation by Graph Cuts

- Break Graph into Segments
 - Delete links that cross between segments

Segmentation by Graph Cuts

Break Graph into Segments

- Delete links that cross between segments
- Easiest to break links that have low similarity (low weight)
 - Similar pixels should be in the same segments
 - Dissimilar pixels should be in different segments

Graph Cut

Here, the cut is nicely defined by the block-diagonal structure of the affinity matrix.

Measuring Affinity

• Distance
$$aff(x, y) = \exp\left\{-\frac{1}{2\sigma_d^2} ||x - y||^2\right\}$$

• Intensity
$$aff(x, y) = \exp\left\{-\frac{1}{2\sigma_d^2} ||I(x) - I(y)||^2\right\}$$

• Color
$$aff(x, y) = \exp\left\{-\frac{1}{2\sigma_d^2} \underbrace{dist\left(c(x), c(y)\right)^2}\right\}$$
 (some suitable color space distance)

Scale Affects Affinity

- Small σ: group only nearby points
- Large σ: group far-away points

Image Source: Forsyth & Ponce

Cuts in a graph

Graph Cut

- Set of edges whose removal makes a graph disconnected
- Cost of a cut
 - Sum of weights of cut edges: $cut(A,B) = \sum_{p \in A, q \in B} w_{p,q}$

A graph cut gives us a segmentation

What is a "good" graph cut and how do we find one?

Source: Steve Seitz

Minimum Cut

Minimum Cut

- We can do segmentation by finding the minimum cut in a graph
 - Efficient algorithms exist for doing this
- But minimum cut is not always the best cut ...
 - Weight of cut proportional to number of edges in the cut
 - Minimum cut tends to cut off very small, isolated components

Normalized Cut (NCut)

- A minimum cut penalizes large segments
- This can be fixed by normalizing for size of segments
- The normalised cut cost is:

$$Ncut(A, B) = \frac{cut(A, B)}{assoc(A, V)} + \frac{cut(A, B)}{assoc(B, V)}$$

Where:

$$assoc(A,A) = \sum_{p \in A, q \in A} w_{p,q}$$
 is the $association$ (sum of all weights) within a cluster

$$assoc(\pmb{A}, \pmb{V}) = assoc(\pmb{A}, \pmb{A}) + cut(\pmb{A}, \pmb{B})$$
 is the sum of all the weights associated with nodes in \pmb{A}

Intuition: Big segments will have a large assoc(A,V), thus decreasing Ncut(A,B)

Finding the globally optimal cut is NP-complete,
 but a relaxed version can be solved using a generalized eigenvalue problem

For details, see

J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000

Color Image Segmentation with NCuts

NCuts Matlab code available at http://www.cis.upenn.edu/~jshi/software/

Summary: Normalized Cuts

- Pros:
 - Generic framework, flexible to choice of function that computes weights ("affinities") between nodes
 - Does not require any model of the data distribution

Cons:

Summary: Normalized Cuts

Pros:

- Generic framework, flexible to choice of function that computes weights ("affinities") between nodes
- Does not require any model of the data distribution

Cons:

- Time and memory complexity can be high
 - Dense, highly connected graphs ⇒ many affinity computations
 - Solving eigenvalue problem

Graph-cuts and GrabCut

GrabCut

Only user input is the box!

Rother et al., "Interactive Foreground Extraction with Iterated Graph Cuts," SIGGRAPH 2004

Combining region and boundary information

GrabCut

user input

result

regions & boundary

GrabCut: iterate between two steps

- 1. Segmentation using graph cuts
 - Requires having foreground model

- 2. Foreground-background modelling using unsupervised clustering
 - Requires having segmentation

GrabCut: Example Results

Improving Efficiency of Segmentation

- Problem: Images contain many pixels
 - Even with efficient graph cuts
- Efficiency trick: Superpixels
 - Group together similar-looking pixels for efficiency of further processing.
 - Cheap, local over-segmentation
- Several different approaches possible but Important to ensure that superpixels
 - Do not cross boundaries
 - Have similar size
 - Have regular shape
 - Algorithm has low complexity
- Superpixel code available here

http://www.cs.sfu.ca/~mori/research/superpixels/

Image source: Greg Mori

Last but not least ...

How to evaluate segmentation?

$$F = 2PR/(P+R)$$

- Precision P: the percentage of the marked boundary points that are real ones
- Recall R: the percentage of real boundary points that were marked

Reading

- Forsyth, Ponce: Computer Vision: A Modern Approach: A Modern Approach.
- J. Shi and J. Malik, Normalized cuts and image segmentation.
 PAMI 2000
- Y. Boykov and M. Jolly, Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images, ICCV 2001.
- Rother et al., "Interactive Foreground Extraction with Iterated Graph Cuts," SIGGRAPH 2004.