1. Неинерциальные системы отсчёта

Неинерциальные системы отсчёта — это системы, которые движутся с ускорением относительно инерциальных систем отсчёта.

Особенности:

- В неинерциальных системах не выполняется первый закон Ньютона (закон инерции).
- Для описания движения в таких системах необходимо вводить **силы инерции**.

Примеры неинерциальных систем:

- Система, связанная с разгоняющимся или тормозящим автомобилем.
- Система, связанная с вращающейся каруселью.

2. Силы инерции

Силы инерции — это фиктивные силы, которые вводятся для описания движения в неинерциальных системах отсчёта. Они возникают из-за ускоренного движения системы.

Виды сил инерции:

1. Поступательные силы инерции:

- о Возникают в системах, движущихся с поступательным ускорением.
- о Формула:

$$F_{\text{\tiny NH}} = -ma$$
,

где:

- т масса тела,
- a ускорение системы.

2. Центробежная сила:

- о Возникает во вращающихся системах.
- о Формула:

$$F_{\text{II}} = m\omega^2 r$$
,

где:

- ω угловая скорость системы,
- r радиус-вектор тела относительно оси вращения.

3. Сила Кориолиса:

- о Возникает при движении тела во вращающейся системе.
- о Формула:

$$F_{\text{\tiny KOD}} = 2 \, m (v \times \omega),$$

где:

- *v* скорость тела относительно вращающейся системы,
- ω угловая скорость системы,
- × векторное произведение.

3. Примеры

Пример 1: Поступательная сила инерции

Автомобиль разгоняется с ускорением $a=2\,\mathrm{m/c^2}$. Найдём силу инерции, действующую на тело массой $m=5\,\mathrm{kr}$ внутри автомобиля:

$$F_{\text{\tiny NH}} = m \, a = 5 \cdot 2 = 10 \, \text{H}.$$

Эта сила направлена в сторону, противоположную ускорению автомобиля.

Пример 2: Центробежная сила

Тело массой $m=2\,\mathrm{kr}$ находится на расстоянии $r=1\,\mathrm{m}$ от оси вращения карусели, которая вращается с угловой скоростью $\omega=3\,\mathrm{pag/c}$. Найдём центробежную силу:

$$F_{\text{H}6} = m\omega^2 r = 2 \cdot 3^2 \cdot 1 = 18 \text{ H}.$$

Эта сила направлена от оси вращения.

Пример 3: Сила Кориолиса

Тело массой $m=1\,\mathrm{kr}$ движется со скоростью $v=4\,\mathrm{m/c}$ относительно вращающейся платформы с угловой скоростью $\omega=2\,\mathrm{pag/c}$. Найдём силу Кориолиса:

$$F_{\text{kop}} = 2 \, m \, v \, \omega = 2 \cdot 1 \cdot 4 \cdot 2 = 16 \, \text{H}.$$

Направление силы определяется правилом правого винта.

4. Итог

- **Неинерциальные системы отсчёта** системы, движущиеся с ускорением относительно инерциальных систем.
- Силы инерции фиктивные силы, вводимые для описания движения в неинерциальных системах:
 - о Поступательная сила инерции: $F_{\text{ин}} = -m a$.
 - о Центробежная сила: $F_{\mu 6} = m\omega^2 r$.
 - о Сила Кориолиса: $F_{\text{кор}} = 2 m (v \times \omega)$.

Эти понятия важны для анализа движения в ускоренных системах отсчёта.