Interpolació polinomial

1 Interpolació.

1 Calculeu f(3) per interpolació quadràtica de la taula 4.1 utilitzant els punts 1, 2 i 4 en un primer càlcul i, desprès, els punts 2, 4, i 5, i compareu-ne els resultats. Calculeu f(3) per interpolació cúbica.

Taula 4.1				
x_k	1	2	4	5
y_k	0	2	12	21

2 Trobeu el polinomi d'interpolació a la taula 4.2 emprant el mètode de les diferències dividides de Newton.

Taula 4.2					
x_k	0	1	2	4	8
y_k	1	5	10	24	50

3 Feu un esquema de diferències dividides, per calcular el polinomi de grau 4 que satisfà la taula (4.1)

Taula 4.1					
x_k	-4	-1	0	2	5
y_k	1245	33	5	9	1335

4 Donada la taula de la funció $f(x) = e^x$ (taula 4.2)

a) Trobeu valors aproximats de $\sqrt[3]{e}$ per interpolació lineal i cúbica, emprant els mètodes de Lagrange i de Newton.

b) Doneu fites respectives dels errors deguts a la interpolació. Compareu les fites amb l'error exacte, sabent que $\sqrt[3]{e}$, = 1.395612425...

 x_k 0.0
 0.2
 0.4
 0.6

 f_k 1.0000
 1.2214
 1.4918
 1.8221

5 Interpolació inversa.

Trobeu una solució de l'equació $x - e^{-x} = 0$, sabent que

$$e^{-0.50} = 0.60653$$
, $e^{-0.55} = 0.57695$, i $e^{-0.60} = 0.54881$.

6 Fenòmen de Runge.

Construiu una taula per a la funció

$$f(x) = \frac{1}{1 + 25x^2}, \quad -1 \le x \le 1,$$

en $x=-0.9\div0.9\,(0.2)$. Calculeu els polinomis interpoladors de grau 3, 6 i 9 per la taula construida. Representeu graficament f(x) i els polinomis obtinguts. Avalueu l'error que es comet en $x=-1\div1$, (0.2). Què s'observa? .

7 Comproveu que la funció següent

$$S(x) = \begin{cases} 1 + x - x^2, & 0 \le x < 1, \\ 1 - 2(x - 1) - 3(x - 1)^2 + 4(x - 1)^3, & 1 \le x < 2, \\ 4(x - 2) + 9(x - 2)^2 - 3(x - 2)^3, & 2 \le x \le 2, \end{cases}$$

és l'spline cúbic natural que interpola en els punts (0,1), (1,1), (2,0), i (3,10).

2 Ajust de corbes - Mètode dels mínims quadrats.

8 Empreu una tècnica de mínims quadrats per ajustar la taula de dades:

X	0.25	0.50	0.75	1.00	1.25	1.50	1.75
Y	0.40	0.50	0.90	1.28	1.60	1.66	2.02

a funcions del tipus:

1. $y = a_0 + a_1 x$. Determineu a_0 i a_1 , doneu l'equació de la funció obtinguda i calculeu el vector residu en la solució.

2. $y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$. Determineu a_0 , a_1 , a_2 , a_3 i a_4 , doneu l'equació de la funció obtinguda i calculeu el vector residu en la solució.

3. $y = ax^{\alpha}$. Determineu a i α , doneu l'equació de la funció obtinguda i calculeu el vector residu en la solució.

4. Quin dels tipus sembla el més adient. Per què?

9 La taula següent ens dóna el nombre de bacteris per unitat de volum en funció del temps transcorregut:

Hores x	0	1	2	3	4	5	6
Bacteris y	32	47	65	92	132	190	275

Calculeu una corba del tipus $y = ab^x$ que aproximi aquest núvol de punts. Feu una predicció del nombre de bacteris al cap de 7 hores. Cal que feu us de la rutina svd del Matlab que dóna la descompossició en valors singulars.

10 La intesitat de radiació d'una font radioactiva ve donada per

$$I = I_0 e^{\alpha t}$$

Determineu les constants α i I_0 sabent que s'han fet les mesures següents:

		0.3					
I	3.16	2.38	1.75	1.34	1.00	0.74	0.56

3 D'examen.

11 Les dades de la taula següent estan relacionats amb l'esperança de vida al nèixer dels ciutadants de dos païssos

any	1975	1980	1985	1990	1995	2000	2005	2010
Grecia	72.3	73.6	75.1	77.0	77.6	77.9	79.2	80.4
Espanya	73.3	75.3	76.2	76.8	78.0	79.0	80.2	81.6

Es demana:

(a) Useu el polinomi interpolador de grau 7 per estimar l'esperança de vida els anys 1970, 1992, 2007 per cada pais. Compareu els valors obtinguts, amb les xifres oficials per cada pais, que són:

any	1970	1992	2007	2015
Grècia	70.9	77.4	79.4	81.6
Espanya	72.0	77.4	80.9	83.4

(b) Feu una gràfica on apareguin les dades (representats per una rodona) i les totes solucions trobades per pais.

Comentari: Numèricament és millor que considereu la taula inicial amb abscisses $0, 1, \dots, 7$., o que centreu les dades. Altrement els resultats no són correctes!!

12 Trobeu un polinomi de grau 2 que aproximi la funció 2^x en els punts $x_i = 0, 1, 2, 3, 4, 5$. Representeu gràficament el polinomi obtingut, els punts i la corba 2^x .