Logistic Regression Demystified

From Linear Models to Probabilistic Classification

Noel Jeffrey Pinton CMSC 173 Machine Learning

Department of Computer Science University of the Philippines - Cebu

Today's Journey

? The Problem: Why Classification?

? The Solution: Sigmoid Function

☐ The Math: How It Works

The Learning: Training Process

The Assessment: Model Evaluation

The Classification Challenge

What is Classification?

Predicting **discrete categories** rather than continuous values:

■ Email: Spam or Not Spam?

V Medical: Benign or Malignant?

Lustomer: Will Buy or Won't Buy?

3

The Classification Challenge

What is Classification?

Predicting **discrete categories** rather than continuous values:

V Medical: Benign or Malignant?

Customer: Will Buy or Won't Buy?

▲ Why Linear Regression Fails

- Outputs any real number $(-\infty \text{ to } +\infty)$
- We need probabilities (0 to 1)
- Poor fit for binary outcomes
- Nonsensical predictions like 1.7 or -0.3

Figure 1: Linear vs. Logistic fit for binary classification

Linear Regression

Goal: Predict continuous values

Model:

$$y = \beta_0 + \beta_1 x_1 + \varepsilon$$

Output Range: $(-\infty, +\infty)$

Loss Function: Mean Squared Error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Best for: Predicting house prices, temperature, sales revenue

% Logistic Regression

Goal: Predict probabilities/categories

Model:

$$p = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1)}}$$

Output Range: [0,1]

Loss Function: Cross-Entropy

$$CE = -\frac{1}{n} \sum_{i=1}^{n} [y_i \ln(p_i) + (1 - y_i) \ln(1 - p_i)]$$

Best for: Medical diagnosis, spam detection, customer churn

₹ The key difference: Output constraints and loss functions

4

The Magic: Sigmoid Function

The Transformation

Step 1: Linear combination

$$z = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n$$

Step 2: Sigmoid transformation

$$p = \sigma(z) = \frac{1}{1 + e^{-z}}$$

Key Properties

- When $z = 0 \Rightarrow p = 0.5$
- When $z \to +\infty \Rightarrow p \to 1$
- When $z \to -\infty \Rightarrow p \to 0$
- S-shaped curve (monotonic)
- Smooth and differentiable

Figure 2: The Sigmoid Function: Mapping any real number to $\left[0,1\right]$

Interpreting Coefficients: The Odds Story

From Probabilities to Odds

The linear part gives us log-odds:

$$\ln\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n$$

⇄ Coefficient Interpretation

Odds Ratio: $OR = e^{\beta_i}$

• If OR > 1: Positive association (increases odds)

• If OR < 1: Negative association (decreases odds)

• If OR = 1: No association

Real Example

Scenario: Predicting exam success

Model: $\beta_0 = -2.5, \beta_1 = 0.8$ (hours studied)

Interpretation: $e^{0.8} = 2.23$

Each additional study hour multiplies the odds of passing by 2.23!

Figure 3: Visual representation of odds

Training: The Cost Function

Cross-Entropy Loss

$$J(\beta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \ln(p^{(i)}) + (1 - y^{(i)}) \ln(1 - p^{(i)}) \right]$$

When y = 1 (True Positive)

Cost: $-\ln(p)$

• If $p \approx 1$: Cost ≈ 0

• If $p \approx 0$: Cost $\rightarrow \infty$

Message: "Be confident when you're right!"

Figure 4: Cost when true class = 1

When y = 0 (True Negative)

Cost: $-\ln(1-p)$

• If $p \approx 0$: Cost ≈ 0

• If $p \approx 1$: Cost $\rightarrow \infty$

Message: "Don't be confident when you're wrong!"

Figure 5: Cost when true class = 0

Worked Example: Step by Step

Dataset

Problem: Predict exam pass/fail based on study hours

Hours	0.5	1.5	2.5	3.5	4.5	5.5	6.5
Pass	0	0	0	1	1	1	1

Ⅲ Calculations

Initial guess: $\beta_0 = -2, \beta_1 = 0.6$

For student with 3.5 hours (y=1):

Step 1:
$$z = -2 + 0.6(3.5) = 0.1$$

Step 2:
$$p = \frac{1}{1+e^{-0.1}} = 0.525$$

Step 3: $Cost = -1 \cdot ln(0.525) = 0.645$

Interpretation: 52.5

 $\textbf{Figure 6:} \ \ \mathsf{Model} \ \ \mathsf{prediction} \ \ \mathsf{for} \ \ \mathsf{our} \ \ \mathsf{example}$

Learning Algorithm: Gradient Descent

S The Journey to Optimization

Goal: Find β that minimizes $J(\beta)$

Method: Follow the steepest descent

Update Rule:

$$\beta_j := \beta_j - \alpha \frac{\partial J}{\partial \beta_j}$$

where $\boldsymbol{\alpha}$ is the learning rate

X1 The Gradient

For logistic regression:

$$\frac{\partial J}{\partial \beta_j} = \frac{1}{m} \sum_{i=1}^{m} (p^{(i)} - y^{(i)}) x_j^{(i)}$$

Intuition: Adjust based on prediction errors!

Figure 7: Gradient descent finds the minimum cost

Q Algorithm Steps

- 1. Initialize $oldsymbol{eta}$ randomly
- 2. Calculate predictions $p^{(i)}$
- 3. Compute cost $J(\beta)$
- 4. Update parameters using gradients
- 5. Repeat until convergence

9

Model Evaluation: Beyond Accuracy

Ш Key Metrics

Accuracy: TP+TN Total

Overall correctness

Precision: $\frac{TP}{TP+FP}$

"Of my positive predictions, how many were right?"

Recall: $\frac{TP}{TP+FN}$

"Of all actual positives, how many did I find?"

F1-Score: 2×Precision×Recall
Precision+Recall

Figure 8: ROC Curve shows trade-off at all classification thresholds

O Which Metric to Choose?

- Medical diagnosis: High Recall (catch all diseases)
- Spam detection: High Precision (avoid blocking good emails)
- Balanced problems: F1-Score or AUC

ROC Curve & AUC Explained

What is ROC Curve?

ROC = Receiver Operating Characteristic

Purpose: Shows classifier performance across all classification thresholds

Axes:

- X-axis: False Positive Rate = $\frac{FP}{FP+TN}$
- ullet Y-axis: True Positive Rate $=\frac{TP}{TP+FN}$

i Understanding AUC

 $\mathbf{AUC} = \mathsf{Area} \ \mathsf{Under} \ \mathsf{the} \ \mathsf{Curve}$

Interpretation:

- AUC = 1.0: Perfect classifier
- AUC = 0.5: Random guessing
- ullet AUC < 0.5: Worse than random (invert predictions!)
- AUC > 0.8: Generally good model

Intuition: Probability that model ranks a random positive example higher than a random negative example

 $\textbf{Figure 9:} \ \, \mathsf{Different} \ \, \mathsf{classifier} \ \, \mathsf{performances} \ \, \mathsf{on} \ \, \mathsf{ROC} \ \, \mathsf{space}$

Why AUC is Useful

- Threshold-independent: Single number summary
- Scale-invariant: Measures prediction quality
- Class-imbalance robust: Works with unequal classes

Creating ROC Curve: Step-by-Step Process

∃ Steps to Build ROC Curve

- Train your logistic regression model and get predicted probabilities
- 2. Sort predictions by probability (highest to lowest)
- 3. Initialize TPR = 0, FPR = 0, start with threshold = 1.0
- 4. For each unique threshold (probability value):
 - Classify: if $p \ge threshold$ then positive, else negative
 - Calculate confusion matrix (TP, FP, TN, FN)
 - Compute TPR = $\frac{TP}{TP+FN}$ and FPR = $\frac{FP}{FP+TN}$
 - Plot point (FPR, TPR)
- 5. Connect the points to form the ROC curve
- 6. Calculate AUC using trapezoidal rule

Example Data

Sample	True	Prob	Rank
A	1	0.95	1
В	1	0.85	2
C	0	0.75	3
D	1	0.65	4
E	0	0.45	5
F	0	0.25	6

⊞ Key Thresholds

- Threshold 1.0: All negative TPR=0, FPR=0
- Threshold 0.9: A positive TPR=1/3, FPR=0
- Threshold 0.8: A,B positive TPR=2/3, FPR=0
- Threshold 0.7: A,B,C positive TPR=2/3, FPR=1/3
- Threshold 0.0: All positive TPR=1, FPR=1

Performance Metrics: The Complete Picture

Primary Metrics

Accuracy: $\frac{TP+TN}{TP+TN+FP+FN}$

- Overall correctness
- Good for balanced datasets
- Can be misleading with imbalanced data

Precision (Positive Predictive Value): $\frac{TP}{TP+FP}$

- "When I predict positive, how often am I right?"
- Important when false positives are costly

Recall (Sensitivity/True Positive Rate): $\frac{TP}{TP+FN}$

- "Of all actual positives, how many did I catch?"
- Important when false negatives are costly

Ш Composite Metrics

F1-Score: $\frac{2 \times Precision \times Recall}{Precision + Recall}$

- Harmonic mean of precision and recall
- Balances both false positives and negatives
- Good single metric for imbalanced data

Specificity (True Negative Rate): $\frac{TN}{TN+FP}$

- "Of all actual negatives, how many did I correctly identify?"
- Complement of False Positive Rate

Choosing the Right Metric

Medical Screening: Maximize Recall (don't miss diseases)

Spam Detection: Balance Precision and Recall (F1-Score)

Fraud Detection: Maximize Precision (minimize false alarms)

Balanced Data: Accuracy and AUC work well

Example 1: Student Exam Success Prediction

Dataset: Predicting Pass/Fail based on Study Hours

Student	А	В	С	D	Е	F	G	Н	П
Hours Studied	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
Actual Result	0	0	0	1	0	1	1	1	1
Predicted Prob	0.12	0.18	0.27	0.38	0.51	0.63	0.74	0.83	0.89

Figure 11: Logistic Regression Curve

Confusion Matrix (Threshold = 0.5)

		Predicted		
		Pass	Fail	
nal	Pass	4	1	
Act	Fail	1	3	
Ă.	I all			

Predictions: Students E,F,G,H,I predicted to pass (prob

 $\geq 0.5)$

Errors: Student E (FP), Student D (FN)

Performance Metrics

Accuracy: $\frac{4+3}{9} = 0.78 (78\%)$

F1-Score: $\frac{2 \times 0.8 \times 0.8}{0.8 + 0.8} = 0.80 (80\%)$

Precision: $\frac{4}{4+1} = 0.80 (80\%)$

Recall: $\frac{4}{4+1} = 0.80 (80\%)$

Example 2: Medical Diagnosis - Tumor Classification

Dataset: Predicting Malignant/Benign based on Tumor Size (cm)

Patient	1	2	3	4	5	6	7	8	9
Tumor Size	1.2	1.8	2.1	2.5	2.9	3.2	3.6	4.1	4.5
Actual (1=Malignant)	0	0	0	0	1	1	1	1	1
Predicted Prob	0.08	0.15	0.21	0.32	0.48	0.67	0.81	0.92	0.96

Figure 12: Tumor Classification Curve

Confusion Matrix (Threshold = 0.5)

		Predic	ted
		Malignant	Benign
nal	Malignant	4	1
Act	Benign	0	4

Predictions: Patients 6,7,8,9 predicted malignant (prob \geq 0.5) **Error:** Patient 5 missed (FN) - concerning in medical context!

Performance Metrics

Accuracy: $\frac{4+4}{9} = 0.89$ **Precision:** $\frac{4}{4+0} = 1.00$ **Recall:** $\frac{4}{4+1} = 0.80$ **F1-Score:** $\frac{2 \times 1.0 \times 0.8}{1.0 + 0.8} = 0.89$

▲ Medical Context

High precision (no false alarms) but concerning recall (missed 20% of malignant cases). In medical diagnosis, we typically prioritize high recall to avoid missing diseases.

Example 3: Email Spam Detection

Dataset: Spam Classification based on Number of Suspicious Words

Email	1	2	3	4	5	6	7	8	9	10
Suspicious Words	0	1	1	2	3	3	4	5	6	7
Actual (1=Spam)	0	0	0	0	0	1	1	1	1	1
Predicted Prob	0.05	0.12	0.12	0.27	0.47	0.47	0.73	0.88	0.95	0.98

Confusion Matrix (Threshold = 0.5)

		cted
	Spam	Ham
Spam	4	1
Ham	1	4
	Spam Ham	Spam 4

Predictions: Emails 7,8,9,10 + Email 5 predicted spam

 $(\mathsf{prob} \geq 0.5)$

Errors: Email 5 (FP), Email 6 (FN)

Figure 13: Spam Detection Curve

Performance Metrics

Accuracy: $\frac{4+4}{10} = 0.80$ Precision: $\frac{4}{4+1} = 0.80$ Recall: $\frac{4}{4+1} = 0.80$ F1-Score: $\frac{2 \times 0.8 \times 0.8}{0.8 + 0.8} = 0.80$ (

■ Email Context

Balanced performance. False positive (legitimate email marked spam) can be as problematic as false negative (spam in inbox). F1-Score provides good overall assessment.

Threshold Selection: Making the Right Trade-offs

The Threshold Dilemma

Default threshold = 0.5, but this may not always be optimal!

Lower Threshold (e.g., 0.3):

- More positive predictions
- Higher Recall (catch more positives)
- Lower Precision (more false alarms)
- Good when missing positives is costly

Higher Threshold (e.g., 0.7):

- Fewer positive predictions
- Higher Precision (fewer false alarms)
- Lower Recall (miss more positives)
- Good when false alarms are costly

0.8 0.8 0.8 0.8 0.9 0.0 0.2 0.2 0.4 0.6 0.8 Threshold

Figure 14: Precision-Recall trade-off vs. threshold

Domain-Specific Threshold Selection

- Cancer Screening: Use low threshold (0.2-0.3) to maximize recall
- Fraud Detection: Use high threshold (0.7-0.8) to minimize false alarms
- Marketing Campaigns: Use moderate threshold (0.4-0.6) for balanced approach
- A/B Testing: Optimize threshold based on business metrics

Practical Considerations & Tips

9 Common Pitfalls

- Perfect Separation: When classes are perfectly separable, coefficients explode
- Multicollinearity: Highly correlated features cause instability
- Sample Size: Need adequate samples per feature
- Outliers: Can strongly influence the model

X Best Practices

- Feature Scaling: Standardize continuous variables
- Regularization: Use L1/L2 to prevent overfitting
- Cross-validation: Always validate on unseen data
- Feature Selection: Remove irrelevant variables

Quick Implementation

Python (sklearn):

from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report

- # Create and train model
 model = LogisticRegression()
 model.fit(X_train, y_train)
- # Make predictions
 y_pred = model.predict(X_test)
 probabilities = model.predict_proba(X_test)
- # Evaluate
 print(classification_report(y_test, y_pred))

Extensions

- Multinomial: Multiple classes (2)
- Ordinal: Ordered categories
- Regularized: Ridge/Lasso logistic regression

Key Takeaways

What We've Learned

- 1. Purpose: Binary classification with probabilistic output
- Mechanism: Sigmoid function maps linear combinations to [0,1]
- 3. Training: Minimize cross-entropy loss using gradient descent
- 4. Interpretation: Coefficients represent log-odds ratios
- 5. **Evaluation:** Multiple metrics beyond accuracy
- 6. ROC/AUC: Threshold-independent performance assessment
- 7. Trade-offs: Precision vs. Recall based on domain needs

The Big Picture

Logistic regression is the **foundation** of many machine learning techniques:

- Neural networks use sigmoid activations
- Maximum likelihood estimation principles
- Probabilistic thinking in ML

• From linear thinking to probabilistic reasoning

? Questions?

in /in/njpinton

= Further Reading

Books:

• Pattern Recognition and Machine Learning by Christopher Bishop

Online:

- Coursera ML Course
- Kaggle Learn

Thank you for your attention!