Université Mohammed kheider Biskra Département de Mathématiques 1^{ième} année Master: 2020 - 2021

Module : Théorie des opérateurs T D : 1

Exercice 1 Déterminer si l'application $T:(E,N_1)\to (F,N_2)$ est continue dans les cas suivants

1.
$$E = C([0,1], \mathbb{R})$$
 muni de la norme $||f||_1 = \int_0^1 |f(t)| dt$, $T: (E, ||.||_1) \to (E, ||.||_1)$ et $f \longmapsto fg$ où $g \in E$ est fixé.

2.
$$E = C([0,1], \mathbb{R})$$
 muni de la norme $||f||_2 = \left(\int_0^1 |f(t)|^2 dt\right)^{\frac{1}{2}}$, $F = C([0,1], \mathbb{R})$ muni de la norme $||f||_1 = \int_0^1 |f(t)| dt$ et $T : (E, ||.||_2) \to (F, ||.||_1)$ $f \longmapsto fg$ où $g \in E$ est fixé.

3.
$$E = \mathbb{R}[X]$$
 muni de la norme $\left\| \sum_{k \geq 0} a_k x^k \right\| = \sum_{k \geq 0} |a_k|,$
 $T: (E, \|.\|) \to (E, \|.\|)$ et $p \longmapsto p'$

Exercice 2 Montrer que si l'espace vectoriel E est de dimension finie, alors tout opérateur linéaire $A: E \to F$ est borné.

Exercice 3 Soit $E = M_n(\mathbb{R})$ muni de la norme N définie pour tout $A = (a_{i,j})_{1 \leq i,j \leq n}$ par $N(A) = \sup_{i=1}^n \left\{ \sum_{j=1}^n |a_{i,j}| \right\}$ (on admet qu'il s'agit d'une norme) Démontrer que l'application trace $T_r : E \to \mathbb{R}$ est continue, et calculer sa norme.

Exercice 4 Soit E = C([0,1]) muni de $\|.\|_{\infty}$ et F = C([0,1]) muni de $\|f\|_F = \|f\|_{\infty} + \|f'.\|_{\infty}$. Soit $T : E \to F$ défini par $Tf(x) = \int_0^x f(t) dt$. Démontrer que T est continue et calculer sa norme.

Exercice 5 Montrer que si
$$A: E \to F$$
 est un opérateur linéaire borné alors, $\|A\| = \sup_{\|x\| \le 1} \|A(x)\| = \sup_{\|x\| \ne 0} \frac{\|A(x)\|}{\|x\|} = \sup_{\|x\| = 1} \|A(x)\|$

Exercice 6 Soit $E = l^2$, $(\lambda_n)_{n \ge 1}$ une suite bornée dans \mathbb{C} et $M = \sup_n |\lambda_n|$. Soit $T: l^2 \to l^2$ définie par :

$$Tx = y$$
, avec $y = (\lambda_n x_n)_{n \ge 1}$ si $x = (x_n)_{n \ge 1} \in E$.

 $Montrer \ que \ T \ est \ lin\'eaire, \ continue, \ et \ calculer \ sa \ norme$