Instructions:

- Unless otherwise stated, all answers must be mathematically justified.
- Partial answers will be graded.
- Your submission has to be uploaded to Gradescope. In Gradescope, indicate the page on which each problem is written.
- You can work in groups but each student must write his/her/their own solution based on his/her/their own understanding of the problem. Please list on your submission the students you work with for the homework (this will not affect your grade).
- Problems with a (*) are extra credit, they will not (directly) contribute to your score of this homework. However, for every 4 extra credit questions successfully answered your lowest homework score get replaced by a perfect score.
- If you have any questions, feel free to ask them on Ed Discussion (so that everyone can benefit from the answer) or stop at the office hours.

Problem 4.1 (2.5 points). Given $x \in \mathbb{R}^n$, define

$$N(x) := \max\{|x_1|, |x_2|, ..., |x_n|\}.$$

- (a) Show that this defines a valid norm, i.e., verify that $N(\cdot)$ satisfies the three norm properties.
- (b) Let x = (10,0) and y = (9,9). Using the norm $N(\cdot)$, which of x and y has bigger norm? Using the Euclidean norm, which of x and y has bigger norm?
- (c) Show that N(x) > 1 implies the Euclidean norm of x is also greater than 1, i.e., $||x||_2 > 1$.

Problem 4.2 (2 points). Decide whether each of the following functions $N(\cdot)$ is a valid norm. If yes, you do not have to justify your answer. If no, then provide an explicit counterexample and state which norm property is violated.

(a)
$$x \in \mathbb{R}^2$$
. $N(x) := x^{\top} A x$, where $A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \in \mathbb{R}^{2 \times 2}$.

(b)
$$x \in \mathbb{R}^2$$
. $N(x) := x^{\top} A x$, where $A = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} \in \mathbb{R}^{2 \times 2}$.

(c)
$$x \in \mathbb{R}^3$$
. $N(x) := 2|x_1| + \max\{|x_2|, |x_3|\}$.

(d)
$$x \in \mathbb{R}^n$$
. $N(x) := (\prod_{i=1}^n |x_i|)^{1/n} + \max_{i \in [n]} \{|x_i|\}$.

Problem 4.3 (1 point). Show that for any vector $x \in \mathbb{R}^n$,

$$\left(\sum_{k=1}^{n} x_k\right)^2 \le n \sum_{k=1}^{n} x_k^2.$$

Hint: use Cauchy-Schwarz.

Problem 4.4 (1.5 points). Consider the set V of random variables (on a probability space Ω) with a finite second moment (i.e., for $X \in V$, $\mathbb{E}[X^2] < \infty$), with the inner product $\langle X, Y \rangle = \mathbb{E}[XY]$. Prove the Cauchy-Schwarz inequality:

$$|\mathbb{E}[XY]| \le \sqrt{\mathbb{E}[X^2]\mathbb{E}[Y^2]}.$$

Hint: given constants $a, b \ge 0$, evaluate the expression $\mathbb{E}[(aX - bY)^2]$. Then find appropriate values of a, b to prove the statement.

Problem 4.5 (3 points). Let S be a subspace of \mathbb{R}^n with $x \mapsto P_S(x)$ the orthogonal projector of all $x \in \mathbb{R}^n$. We will use the Euclidean dot product as our inner product $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$. Show that for any $x \in \mathbb{R}^n$,

- (a) $\langle x, y \rangle = \langle P_S(x), y \rangle$, for any vector y in S.
- (b) $x P_S(x)$ is orthogonal to S,
- (c) $||P_S(x)|| \le ||x||$, and the equality holds when $x \in S$.

Hint: express y in terms of the orthonormal basis of S: $(v_1, v_2, ..., v_k)$.

Problem 4.6 (*). Given $x \in \mathbb{R}^n$ and $p \in (1, \infty)$, define the ℓ_p -norm as

$$||x||_p := \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}.$$

Prove that the ℓ_p -norm satisfies the triangle inequality, that is, for any $x, y \in \mathbb{R}^n$, show that

$$||x+y||_p \le ||x||_p + ||y||_p.$$

You may use the following inequality, known as Hölder's inequality, without proof: for any $x, y \in \mathbb{R}^n$, and constants $p, q \in \mathbb{R}_+$ satisfying $\frac{1}{p} + \frac{1}{q} = 1$, we have

$$\sum_{i=1}^{n} |x_i y_i| \le ||x||_p ||y||_q.$$