

planetmath.org

Math for the people, by the people.

derivation of zeroth weighted power mean

Canonical name DerivationOfZerothWeightedPowerMean

Date of creation 2013-03-22 13:10:29 Last modified on 2013-03-22 13:10:29

Owner pbruin (1001) Last modified by pbruin (1001)

Numerical id 6

Author pbruin (1001)
Entry type Derivation
Classification msc 26B99
Related topic PowerMean
Related topic GeometricMean

Related topic GeneralMeansInequality

 $Related\ topic \qquad Derivation Of Harmonic Mean As The Limit Of The Power Mean$

Let x_1, x_2, \ldots, x_n be positive real numbers, and let w_1, w_2, \ldots, w_n be positive real numbers such that $w_1 + w_2 + \cdots + w_n = 1$. For $r \neq 0$, the r-th weighted power mean of x_1, x_2, \ldots, x_n is

$$M_w^r(x_1, x_2, \dots, x_n) = (w_1 x_1^r + w_2 x_2^r + \dots + w_n x_n^r)^{1/r}.$$

Using the Taylor series expansion $e^t = 1 + t + \mathcal{O}(t^2)$, where $\mathcal{O}(t^2)$ is Landau notation for terms of order t^2 and higher, we can write x_i^r as

$$x_i^r = e^{r \log x_i} = 1 + r \log x_i + \mathcal{O}(r^2).$$

By substituting this into the definition of M_w^r , we get

$$M_w^r(x_1, x_2, \dots, x_n) = \left[w_1(1 + r \log x_1) + \dots + w_n(1 + r \log x_n) + \mathcal{O}(r^2) \right]^{1/r}$$

$$= \left[1 + r(w_1 \log x_1 + \dots + w_n \log x_n) + \mathcal{O}(r^2) \right]^{1/r}$$

$$= \left[1 + r \log(x_1^{w_1} x_2^{w_2} \cdots x_n^{w_n}) + \mathcal{O}(r^2) \right]^{1/r}$$

$$= \exp \left\{ \frac{1}{r} \log \left[1 + r \log(x_1^{w_1} x_2^{w_2} \cdots x_n^{w_n}) + \mathcal{O}(r^2) \right] \right\}.$$

Again using a Taylor series, this time $\log(1+t) = t + \mathcal{O}(t^2)$, we get

$$M_w^r(x_1, x_2, \dots, x_n) = \exp\left\{\frac{1}{r} \left[r \log(x_1^{w_1} x_2^{w_2} \cdots x_n^{w_n}) + \mathcal{O}(r^2)\right]\right\}$$
$$= \exp\left[\log(x_1^{w_1} x_2^{w_2} \cdots x_n^{w_n}) + \mathcal{O}(r)\right].$$

Taking the limit $r \to 0$, we find

$$M_w^0(x_1, x_2, \dots, x_n) = \exp \left[\log(x_1^{w_1} x_2^{w_2} \cdots x_n^{w_n})\right]$$

= $x_1^{w_1} x_2^{w_2} \cdots x_n^{w_n}$.

In particular, if we choose all the weights to be $\frac{1}{n}$,

$$M^0(x_1, x_2, \dots, x_n) = \sqrt[n]{x_1 x_2 \cdots x_n}$$

the geometric mean of x_1, x_2, \ldots, x_n .