PTA 循环结构 H

rogeryoungh

2021年04月13日

景目

1	加点	加点优化									
	1.1	7-2 含 8 的数字的个数	1								
	1.2	7-5 输出 2 到 n 之间的全部素数	3								
	1.3	7-7 中国余数定理(1)	5								
	1.4	7-26 判断素数	7								

PTA 循环结构 HARD 部分, PDF。

1 加点优化

掌握一些常见的算法很有必要。 算法学习比较考验数学功底,可能理解起来会比较吃力。

1.1 7-2 含 8 的数字的个数

暴力是显然的,为 $O(n \log n)$ 。

假如输入的是 1 123456987,在我的电脑上大概需要运行 10 秒钟,用 PTA 在线测试则会超时。这里通过另一道题 P1980 计数问题,来引出 数位 DP。

在 [1,n] 的所有整数中,数码 x 出现了几次?

注意 888 在原题中算出现 1 次,在这题算出现 3 次。 利用小学奥数中的一些计数技巧,不用计算机我们也可以求出答案。

假设 n = 728, x = 7。

个位: 73 个, 7, 17, …, 727。

十位: 70 个, $70 \sim 79$, $170 \sim 179$, ..., $670 \sim 679$ 。

百位: 29 个, 700~728。

故总计为 73 + 70 + 29 = 172。

据此, 我们可以写出 $x \neq 0$ 的解。不难看出是 $O(\log n)$ 的。

```
int addup(int n, int x) {
        int ans = 0, m = 1;
        while(m <= n){</pre>
            int a=n/(m*10), b=n/m%10, c=n%m;
            if(b > x)
                ans += a * m + m;
            else if(b == x)
7
                ans += a * m + c + 1;
            else
10
                ans += a * m;
            m *= 10;
11
        }
12
13
        return ans;
14 }
```

回到原题,我们可以用同样的思想。记 $f_x(n) = f(x)$ 是 1 到 n 中数码 x 出现的次数,所求即 $f_8(b) - f_8(a-1)$ 。

第一步是预处理 $f(10^t)$, 后面将把任意的 n 分解为一系列 10^t 的组合。

- 首先 f(10) = 1。对于 $10 \sim 19$ 和 $20 \sim 29$,因为首位数不贡献,可把这些区间看作相似的。两位数中只有 $80 \sim 89$ 是特殊的。
- 对于 $f(10^2)$,除了特殊的 $80 \sim 89$,剩下都可看作相似的 $9 \uparrow f(10)$,共记 9f(10) + 10 = 19。
- 同样的对于 $f(10^3)$,除了特殊的 800 至 899,剩下都可看作相似的 9 个 $f(10^2)$,共记 $9f(10^2)+10^2=272$ 。 记 $a_i=f(10^i)$,可以抽象出递推关系,提前预处理

$$a_{i+1} = 9a_i + 10^i, a_1 = 1$$

假如要计算的 x = 123456987,从高到低位逐位分析,记中间变量为 ans,简记为 s。

- 首先, 最高位的 1 表示有 1 个 $f(10^8)$, 此时 s = f(100000000).
- 次高位的 2 表示有 2 个 $f(10^7)$, 此时 s = f(120000000).
- 接下来的 3 表示有 3 个 $f(10^6)$, 此时 s = f(123000000)。
- 对于当前位不为 8 的都做类似操作,直到 9,表示有 8 个 $f(10^2)$ 和特殊的 100 个 800 ~ 899,此时 s=f(123456900)。
- 接下来是 8 , 表示有 8 个 f(10) , 以及特殊且被截断的 $80 \sim 87$, 此时 s = f(123456987) 。
- 因为截断已经计数了, 计算完成, 跳出循环。

综上, 我们可以写出代码, 它的复杂度是 $O(\log n)$ 。

```
int aa[20] = \{0\};
 1
   int addup(int n, int x) {
        int m = 1, i = 0;
 4
        while(m <= n) {</pre>
 5
            i++; m *= 10;
 6
        }
 7
        int ans = 0;
 8
        while (m > 0) {
            int t = n / m;
10
            n = n \% m;
11
            if (t < x) {</pre>
12
                 ans += t * aa[i];
13
            } else if (t > x) {
14
                 ans += (t - 1) * aa[i] + m;
15
            } else {
                 ans += t * aa[i] + n + 1;
17
            }
18
            i--; m /= 10;
19
        }
20
21
        return ans;
22 }
23
   int main() {
24
25
        int a,b;
        scanf("%d %d", &a, &b);
26
        int m = 1;
        for(int i = 1; i <= 9; i++) {</pre>
28
            aa[i] = aa[i-1] * 9 + m;
29
            m *= 10;
30
        }
31
        int ans = addup(b,8) - addup(a-1, 8);
32
        printf("%d", ans);
33
        return 0;
34
35 }
```

1.2 7-5 输出 2 到 n 之间的全部素数

暴力试除法是能过的,为 $O(n\sqrt{n})$ 。

接下来介绍筛法,把 $1 \sim n$ 的所有数字对应到一个数组,在数组上做标记来表示这个数不是质数,即筛去。剩下的自然都是质数。

首先是埃氏筛, 它的复杂度是 $O(n \log \log n)$ 。我们从 2 开始, 将 2 的倍数筛去; 其次是 3, 将 3 的倍

数筛去; 4 已经被筛去了,接下来是 5,把 5 的倍数筛去……一直筛到 n。 放个维基的 GIF

	2	3	4	5	6	7	8	9	10	Prime numbers
11	12	13	14	15	16	17	18	19	20	
21	22	23	24	25	26	27	28	29	30	
31	32	33	34	35	36	37	38	39	40	
41	42	43	44	45	46	47	48	49	50	
51	52	53	54	55	56	57	58	59	60	
61	62	63	64	65	66	67	68	69	70	
71	72	73	74	75	76	77	78	79	80	
81	82	83	84	85	86	87	88	89	90	
91	92	93	94	95	96	97	98	99	100	
101	102	103	104	105	106	107	108	109	110	
111	112	113	114	115	116	117	118	119	120	

图 1: Eratosthenes

实现如下。

```
int notp[10000001];
   int prime[2000001], cnt;
   void init(int n) {
        for (int i = 2; i <= n; i++) {</pre>
            if (!notn[i]) {
                prime[++cnt] = i;
6
                int tn = n / i;
                for (int j = i; i <= tn; i++)</pre>
                    notn[i * j] = 1;
9
            }
10
11
        }
12 }
```

线性筛的复杂度更为优秀,是O(n),因为每个数只会被筛一次。我们更常用线性筛,线性筛例题P3383。

```
1 int notp[10000001];
   int prime[2000001], cnt;
   void init(int n) {
        for (int i = 2; i <= n; i++) {</pre>
            if (!notp[i])
                prime[++cnt] = i;
            int t = n / i;
7
            for (int j = 1; i <= cnt; i++) {</pre>
                 if(prime[j] > t)
                     break;
10
                notp[i * prime[j]] = 1;
11
                if (i%prime[j] == 0)
12
                     break;
13
            }
        }
15
16 }
```

更加深入的,质数的分布 $\pi(x) \sim \frac{x}{\ln x}(x \to \infty)$ 是亚线性的,于是还存在着一些亚线性的筛法,感兴趣的可以自行了解。

1.3 7-7 中国余数定理(1)

暴力是显然的。我在这里介绍一下数学做法。即求

$$\begin{cases} n \equiv b \pmod{3} \\ n \equiv c \pmod{5} \\ n \equiv a \pmod{7} \end{cases}$$

题目给了提示, "中国剩余定理 CRT"。

对于 3, 我们可以构造 $m_1 = 5 \times 7 = 35$, 其对 5 和 7 的模显然都是 0, 而对 3 的模是 2。

对于线性同余方程 $ax \equiv 1 \pmod{b}$,则称 x 为 a 在模 b 意义下的逆元,记作 a^{-1} 。可以由欧几里得算法推知 $\gcd(a,b)=1$ 是逆元存在的充要条件。求逆元例题 L2605,L110。

因此 35 在模 3 意义下的逆元是 2, 于是有

$$b \times 35 \times 2 \equiv b \pmod{3}$$

同理,对于5可以得到21和其逆元1,于是有

$$c \times 21 \times 1 \equiv c \pmod{5}$$

最后,对于7可以得到15和其逆元1,于是有

$$a \times 15 \times 1 \equiv a \pmod{7}$$

注意到我们每次计算时都已经排除其他变量的干扰,因此将全部结果累加也同样具有这些性质

```
n \equiv 70b + 21c + 15a \pmod{105}
```

从而写出程序

```
int main() {
   int a,b,c;
   while (scanf("%d%d%d", &a, &b, &c) != EOF) {
      int ans = b*70 + c*21 + a*15;
      ans = (ans-1+105)%105+1;
      printf("%d\n", ans);
   }
   return 0;
}
```

一般的,若 n_i 中任意两个互质,求方程组

$$\begin{cases} x \equiv a_1 & \pmod{n_1} \\ x \equiv a_2 & \pmod{n_2} \\ & \vdots \\ x \equiv a_k & \pmod{n_k} \end{cases}$$

的解。对于第 i 项, 我们可以构造数

$$m_i = \frac{1}{n_i} \prod_{j=1}^k n_j$$

它对除了 n_i 以外的数 n 模都是 0, 再求 m_i 对 n_i 逆元

$$a_i m_i m_i^{-1} \equiv a_i \pmod{n_i}$$

对所有的解累加求和得到全部的解

$$x \equiv \sum_{i=1}^{k} a_i m_i m_i^{-1} \pmod{\prod_{j=1}^{k} n_j}$$

中国剩余定理(CRT)例题 P1495。

```
1 ll china_crt(int* aa, int* nn, int n) {
2     ll prod = 1;
3     ll rst = 0;
4     for (int i = 1; i <= n; i++)
5         prod *= nn[i];
6     for (int i = 1; i <= n; i++) {
7         ll m = prod / nn[i];
8         rst += aa[i] * m * inv(m, nn[i]);
9         rst %= prod;
10     }</pre>
```

```
11    return rst;
12 }
```

对于 n_i 不互质的情况,可以使用 exgcd 对问题进行转换。EXCRT 例题 P4777。

1.4 7-26 判断素数

试除法不再详述。

常见的素性测试方法还有 Miller-Rabbin 方法。

费马小定理: 如果 p 是素数, a 是小于 p 的正整数, 那么 $a^{p-1} \mod p = 1$ 。

尽管费马小定理的逆定理并不成立,但是它几乎都是对的,特别是再与二次探测定理结合: 如果 p 是素数, x 是小于 p 的正整数,且 $x^2 \mod p = 1$ 。

据此可以加强命题:

尽可能提取 p-1 中 2 的因子,使得 $p-1=d\cdot 2^r$ 。如果 p 是一个素数:

- 1. 要么 $a^d \mod p = 1$
- 2. 要么存在 $0 \le i < r$ 使得 $a^{d \cdot 2^i} \mod p = p 1$ 。

选取 a=2,7,61 为基分别测试,那么在 2^{32} 范围内逆命题都是对的。更多特殊基的情况见 Link。于是可以写出来 $O(\log n)$ 的算法

```
1 ll power(ll a, ll b, ll p) {
        11 rst = 1 % p;
       for (; b > 0; b >>= 1) {
            a = a * a % p;
            if (b & 1)
                rst = a * rst % p;
7
        }
       return rst;
8
9
  }
10
11
   int miller_rabbin(int n) {
       if (n < 3)
12
            return (n == 2);
13
       int a = n - 1, b = 0;
14
        while (1 - (a & 1)) {
15
            a >>= 1;
16
            ++b;
17
        int prime[10] = {2, 7, 61};
19
        for (int i = 0; i <= 2; i++) {</pre>
20
            int x = prime[i];
21
            if (n == x)
22
                return 1;
23
            11 v = power(x, a, n);
```

```
if (v == 1 || v == n - 1)
25
26
              continue;
27
           int j;
           for (j = 0; j < b; j++) {</pre>
28
             v = v * v % n;
               if (v == n - 1)
                  break;
31
           }
32
           if (j >= b)
33
              return 0;
34
       return 1;
36
37 }
```