Lecture 13 (19 September 2024)

Some problems and In-class queries

Q) Let F_1 and F_2 be two cors such that $F_1(x) < F_2(x)$ for all $x \in R$, Assume that F_1 and F_2 are continuous and strictly increasing. Show that there exists RVS X_1 and X_2 with respective CDFS F_1 and F_2 defined on the same probability space such that $X_1 > X_2$,

Whong Solution: Let $x_1 \neq x_2$ $\Rightarrow x_1 \in x_1$ Chis step is not correct

$$F_{\chi_{2}}(x) = F_{L}(x)$$

$$= P(X_{L} \leq x)$$

$$\leq P(X_{l} \leq x)$$

$$= F_{\chi_{1}}(x) = F_{l}(x)$$

$$\therefore F_{L}(x) \geq F_{l}(x) - \text{a contradiction}$$

$$\therefore F_{L}(x) \geq F_{l}(x) - \text{a contradiction}$$

$$\therefore F_{L}(x) \leq F_{L}(x) + x \Rightarrow x_{l} > x_{L}.$$

$$\text{(of course this is wrong again)}$$

$$\text{The negation of } x_{l} > x_{L} \text{ i.e.,}$$

$$x_{l}(w) > x_{L}(w) + w \in -x_{L} \text{ is}$$

$$\exists w \leq t, x_{l}(w) \leq x_{L}(w)$$
but not

 $x,(\omega) \leq x_2(\omega) + \omega \in \mathbb{A}$

Correct Solution Consider a RV y with the following cof.

Given two cors F, & F, which are Continuous en 1 stoictly inedeasing,

Construct RV X, & X2 =3

$$X_i = F_i^{-1}(y)$$
 $X_L = F_L^{-1}(y)$

we claim that cop of Fi(x) is Fi,

$$P(x_{i} \leq x_{i}) = P(f_{i}^{-1}(x_{i}) \leq x_{i})$$

$$= P(y \leq f_{i}(x_{i}))$$

$$= f_{i}(x_{i}) \qquad j = 12$$

 $F_{1}(x) \subset F_{1}(x) \quad \forall x \implies F_{1}(y) > F_{1}(y) \quad \forall y \in [y]$ Suppose $x = F_{1}(y) \leq F_{2}(y) = x_{2}$. $y = F_{1}(x_{1}) > F_{1}(x_{2})$ $\Rightarrow F_{1}(x_{1})$ $\Rightarrow F_{1}(x_{1})$ $\Rightarrow F_{1}(x_{1})$

 $X_{1} = \mathcal{F}_{1}^{-1}(\gamma) > \mathcal{F}_{2}^{-1}(\gamma) = \chi_{2},$

Q) In class we defined conditional vaniance as

 $Vos(x|y=y) = E \left[(x-E[x|y=y])^{1} | y=y \right]$

The query is "why is the conditioning yet required after the square"?

Not required i.e. the expression

E[(x-E[x|y=y])]

is a well-defined quantity and it is a deal number.

However if we define variance in this way (without y=f) then we will not have

Van(x|y=y) = E[x|y=y] - E[x|y=y]analogus to $Van(x) = E[x^2] - E[x^2]$

(x-E(x)y=y) = E((x-E(x)y=y)) is apt.

9) What is the intuition for the law of total vorience? Van(x) = E[van(x|y)] + van(E[x|y]).Before we look at the intuition let us first recall the definitions of ELXIVI and var (XIV). $\mathbb{E}[x|y=y] = \sum_{x} x P_{x|y}[x|y]$ Let $\phi(y) = E[x|y=y]$.

 $E[x|y] = \psi(y) = \begin{cases} E[x|y=y_1] & \omega, \theta, P_y(y_1) \\ E[x|y=y_2] & \omega, \theta, P_y(y_2) \\ \vdots \end{cases}$

 $Van(x|y=y_1) \quad \omega_1 \ell_1 \quad P_{\ell_1} \ell_{31})$ $Van(x|y=y_2) \quad \omega_1 \ell_1 \quad P_{\ell_1} \ell_{31}$ \vdots

we understand the intuition through an example, consider students in three sections of below.

Section 1 Section 2 Section 3

Cet x = quiz score of a random student y = Section of random student $y \in \{123\}$ $x/y = \{123\}$

 $\begin{array}{c} S \neq 1 \\ S \neq 1 \\$

Var(xly=1) var(xly=2) var(xly=3) E[var(xly)] is the average of these variences

 $E[Van(x|x)] = P_y(1) Van(x|y=1) +$ $P_y(2) Van(x|y=2) +$ $P_y(3) Van(x|y=3)$

However this does not capture how the quiz scores vary across the sections. This is exactly captured by the second term in the law of total variance.

Recap of Last Lecture;

A RV x is soid to be continuous if its cor can be expressed of $F_{x}(x) = \int_{x}^{x} f_{x}(u) du$ at R

for some integrable function fixed (colled the probability density function (105),

$$f_{\chi}(x) = f_{\chi}(x)$$

$$= \lim_{x \to \infty} f_{\chi}(x + sx) - f_{\chi}(x)$$

$$= \int_{x} f_{\chi}(x) dx$$

 $P(x \in B) = \int f_{x}(x) dx$ $S = \int f_{x}(x) dx = \int f_{x}(x) dx$

$$E[x] = \int_{x} f_{x}(x) dx$$

If
$$x \ge 0$$
 then
$$E[x] = \int p(x>x) dx$$

$$E[g(x)] = \int g(x) f_x(x) dx$$

Uniform RV:

$$f_{\chi}(x) = \begin{cases} \frac{1}{(b-a)} & a \leq x \leq b \\ 0 & 0, w, \end{cases}$$

Exponential RV', $f_{\chi}(x) = Ae^{-Ax}$ 220,

Exercise. Show that for an exponential RU P(X>S+t/X>S) = P(X>t)

tor 5+20.