HW04 CoderBak

I. Celebrate and Remember Textiles

$$\begin{array}{cccc}
N \equiv 4 \pmod{7} \\
N \equiv 2 \pmod{4}
\end{array}$$

$$N \equiv 35k-3$$

$$N \equiv 2 \pmod{5}$$

$$35k-3 \equiv 2 \pmod{4}$$

$$35k-3 = 2 \pmod{4}$$

$$35k-3 = 2 \pmod{4}$$

II. Euler's Totient Theorem

(a). We claim that
$$(ami. n) = 1$$

Also $ami \neq amj \pmod{n}$. #

II., Sparsity of Primes

Prove: $\{y \mid k\}$, there exists k consecutive integers, none of them = p^{d} Construct n, $n+1 \sim n+k \neq p^{d}$ Select $p_i \cdot q_i > k$. $p_i \neq p_j \quad q_i \neq q_j$ $n+1 \equiv 0 \pmod{p_1 q_1}$ $n+2 \equiv 0 \pmod{p_2 q_2}$ $n = p^{d}$ CRT $n+2 \equiv 0 \pmod{p_2 q_2}$ $n = p^{d}$ $n = p^{d}$ Select $p_i \cdot q_i > k$. $p_i \neq p_j = q_i \neq q_j$ $p_i \neq q_j = q_j$

IV. RSA Practice.

(a)
$$N = 55$$
 $(p-1)(q-1) = 40$
 $q \cdot d = 1 \pmod{40}$ $d = 9$

(b)
$$4^9 \pmod{55} \equiv 14$$

(c)
$$4^9 \equiv 4 \pmod{55}$$

V. Tweaking RSA

(a)
$$D(E(X)) = X^{ed} = X \pmod{N}$$
.

$$=$$
) ed $\equiv 1 \pmod{p-1}$

Select e which sortisfies $(e, p_i) = 1$ then choose $d = e^{-1} \pmod{p_1}$

(c)
$$N = pqr$$
 $\varphi(N) = cp-1)(q-1)(r-1)$

ed = 1 (mod
$$(p(N) = (p-1)(q-1)(r-1))$$

Choose d= e- (mod (p-1)(q-1)(r-1))