CINEMÁTICA DIRETA

TRANSFORMAÇÕES DE ELOS E A SOLUÇÃO DO PROBLEMA DA CINEMÁTICA DIRETA

A Transformação de Elo

- Atribuindo referenciais aos elos de manipulador de acordo com a convenção Denavit-Hartenberg, é possível determinar sistematicamente as transformações de elos.
- Com esta sistemática, a transformação ⁱ⁻¹T_i que descreve a localização do elo {i} em relação ao elo anterior {i-1} pode ser obtida como uma concatenação de transformações simples de translação e rotação.
- Estes operadores de movimento simples dependem de quatro parâmetros, denominados Parâmetros Denavit-Hartenberg.
- Três desses parâmetros são constantes, relacionados à geometria do elo e da junta.
- Um parâmetro é variável (a variável de junta q_i).

Referenciais de Elos:

Parâmetros de Elo:

- Comprimento do elo i: a_i , distância entre z_i e z_{i+1} medida ao longo do eixo x_i .
- <u>ângulo de torção do elo i</u>: α_i , ângulo entre z_i e z_{i+1} medido em torno do eixo x_i .

Parâmetros de Junta:

- Deslocamento da junta i: d_i , distância entre x_{i-1} e x_i medida ao longo do eixo z_i .
- <u>Ângulo da junta i</u>: θ_i , ângulo entre x_{i-1} e x_i medido em trono do eixo z_i .

Translação ao longo de x_{i-1} :

Rotação em torno de x_{i-1} :

Translação ao longo de z_i:

Rotação em torno de z_i:

Transformação i-1T_i:

Transformações de Elo:

$$^{i-1}T_{i} = T(x_{i-1}, a_{i-1}).R(x_{i-1}, \alpha_{i-1}).T(z_{i}, d_{i}).R(z_{i}, \theta_{i})$$

onde,
$$c_{\theta} = \cos(\theta)$$
, $s_{\theta} = \sin(\theta)$, $c_{\alpha} = \cos(\alpha)$, $s_{\alpha} = \sin(\alpha)$

Solução do Problema da Cinemática Direta:

$${}^{0}T_{N} = {}^{0}T_{1}.{}^{1}T_{2}.{}^{2}T_{3}.........$$

Observações:

- A Transformação $^{i-1}T_i$ é função não linear de quatro parâmetros: a_{i-1} , a_{i-1} , d_i e θ_i .
- Três desses parâmetros são constantes, o outro é a variável da junta q_i.
- Se a junta for rotacional, quem varia é θ_i , consequentemente, a matriz de rotação ⁱ⁻¹ R_i varia com θ_i . o vetor $p_{i-1,i}$ é constante. A orientação do elo {i} varia em relação ao elo {i-1}).
- → Se a junta for prismática, quem varia é d_i, consequentemente, a matriz de rotação ⁱ⁻¹R_i é constante o vetor p_{i-1,i} varia com d_i. A posição do elo {i} varia em relação ao elo {i-1}).

Exemplo de cálculo de Cinemática Direta:

Manipulador Planar Articulado de três Graus de Liberdade

Parâmetros Denavit-Hartenberg:

i	a _{i-1}	$\alpha_{\iota-1}$	d _i	$\theta_{_{\mathrm{i}}}$
1	0	0	0	$\theta_{_1}$
2	L ₁	0	0	θ_2
3	L ₂	0	0	θ_3

Transformações de Elo:

$${}^{0}T_{1} = \begin{bmatrix} c_{\theta_{1}} & -s_{\theta_{1}} & 0 & 0 \\ s_{\theta_{1}} & c_{\theta_{1}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad {}^{1}T_{2} = \begin{bmatrix} c_{\theta_{2}} & -s_{\theta_{2}} & 0 & L_{1} \\ s_{\theta_{2}} & c_{\theta_{2}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad {}^{2}T_{3} = \begin{bmatrix} c_{\theta_{3}} & -s_{\theta_{3}} & 0 & L_{2} \\ s_{\theta_{3}} & c_{\theta_{3}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Cinemática Direta:

$${}^{0}T_{3} = \begin{bmatrix} c_{123} & -s_{123} & 0 & L_{1}c_{1} + L_{2}c_{12} \\ s_{123} & c_{123} & 0 & L_{1}s_{1} + L_{2}s_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Exemplo: Cinemática Direta do Manipulador PUMA

Parâmetros Denavit-Hartenberg:

i	a _{i-1}	$lpha_{_{i-1}}$	d _i	$\theta_{\rm i}$
1	0	0	0	θ_1
2	0	- π/2	L _b - L _d	θ_2
3	L_{c}	0	0	θ_3
4	L_{e}	- π/2	L_{f}	θ_4
5	0	$\pi/2$	0	θ_{5}
6	0	- π/2	0	θ_6

Transformações de Elo:

$${}^{0}T_{1} = \begin{pmatrix} c\theta_{1} & -s\theta_{1} & 0 & 0 \\ s\theta_{1} & c\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${}^{0}T_{1} = \begin{pmatrix} c\theta_{1} & -s\theta_{1} & 0 & 0 \\ s\theta_{1} & c\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${}^{1}T_{2} = \begin{pmatrix} c\theta_{2} & -s\theta_{2} & 0 & 0 \\ 0 & 0 & 1 & L_{b}-L_{d} \\ -s\theta_{2} & -c\theta_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${}^{2}T_{3} = \begin{pmatrix} c\theta_{3} & -s\theta_{3} & 0 & L_{c} \\ s\theta_{3} & c\theta_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${}^{2}T_{3} = \begin{pmatrix} c\theta_{3} & -s\theta_{3} & 0 & L_{c} \\ s\theta_{3} & c\theta_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${}^{3}T_{4} = \begin{pmatrix} c\theta_{4} & -s\theta_{4} & 0 & L_{e} \\ 0 & 0 & 1 & L_{f} \\ -s\theta_{4} & -c\theta_{4} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${}^{4}T_{5} = \begin{pmatrix} c\theta_{5} & -s\theta_{5} & 0 & 0\\ 0 & 0 & -1 & 0\\ s\theta_{5} & \theta_{5} & 0 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${}^{4}T_{5} = \begin{pmatrix} c\theta_{5} & -s\theta_{5} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ s\theta_{5} & \theta_{5} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${}^{5}T_{6} = \begin{pmatrix} c\theta_{6} & -s\theta_{6} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s\theta_{6} & -c\theta_{6} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Cinemática Direta:

$$\begin{split} R_{11} &= c_1 [c_{23} (c_4 c_5 c_6 - s_4 s_6) - s_{23} s_5 c_6] + s_1 [s_4 c_5 c_6 + c_4 s_6] \\ R_{12} &= c_1 [-c_{23} (c_4 c_5 s_6 + s_4 c_6) + s_{23} s_5 s_6] - s_1 [s_4 c_5 s_6 - c_4 c_6] \\ R_{13} &= -c_1 [c_{23} c_4 s_5 + s_{23} c_5] - s_1 s_4 s_5 \\ R_{21} &= s_1 [c_{23} (c_4 c_5 c_6 - s_4 s_6) - s_{23} s_5 c_6] - c_1 [s_4 c_5 c_6 + c_4 s_6] \\ R_{22} &= s_1 [-c_{23} (c_4 c_5 s_6 + s_4 c_6) + s_{23} s_5 s_6] + c_1 [s_4 c_5 s_6 - c_4 c_6] \\ R_{23} &= -s_1 [c_{23} c_4 s_5 + s_{23} c_5] + c_1 s_4 s_5 \\ R_{31} &= -s_{23} (c_4 c_5 c_6 - s_4 s_6) - c_{23} s_5 c_6 \\ R_{32} &= s_{23} (c_4 c_5 s_6 + s_4 c_6) + c_{23} s_5 s_6 \\ R_{33} &= s_{23} (c_4 c_5 s_6 + s_4 c_6) + c_{23} s_5 s_6 \\ R_{33} &= s_{23} (c_4 c_5 s_6 + s_4 c_6) + c_{23} s_5 s_6 \\ R_{34} &= s_{23} (c_4 c_5 s_6 + s_4 c_6) + c_{23} s_5 s_6 \\ R_{35} &= s_{23} (c_4 c_5 s_6 + s_4 c_6) + c_{23} s_5 s_6 \\ R_{36} &= s_{23} (c_4 c_5 s_6 + s_4 c_6) + c_{23} s_5 s_6 \\ R_{37} &= s_{27} (c_5 c_6 - c_5 c_5 c_5) + c_1 (c_5 c_6 - c_5 c_5 c_5) \\ R_{38} &= s_{29} (c_5 c_6 - c_5 c_5 c_5) + c_1 (c_5 c_6 - c_5 c_5 c_5) \\ R_{39} &= s_2 (c_5 c_6 - c_5 c_5 c_5) + c_1 (c_5 c_6 - c_5 c_5 c_5) \\ R_{39} &= s_2 (c_5 c_6 - c_5 c_5 c_5) + c_1 (c_5 c_6 - c_5 c_5 c_5) \\ R_{39} &= s_2 (c_5 c_6 - c_5 c_5 c_5) + c_1 (c_5 c_6 - c_5 c_5 c_5) \\ R_{39} &= s_2 (c_5 c_6 - c_5 c_5 c_5) + c_1 (c_5 c_6 - c_5 c_5 c_5) \\ R_{39} &= s_2 (c_5 c_6 - c_5 c_5 c_5) + c_1 (c_5 c_6 - c_5 c_5 c_5) \\ R_{39} &= s_2 (c_5 c_6 - c_5 c_5 c_5) + c_1 (c_5 c_6 - c_5 c_5 c_5) + c_1 (c_5 c_6 - c_5 c_5 c_5) \\ R_{39} &= s_2 (c_5 c_6 - c_5 c_5 c_5) + c_1 (c_5 c_6 - c_5 c_5 c_5) + c_1 (c_5 c_6 - c_5 c_5 c_5) \\ R_{39} &= s_2 (c_5 c_6 - c_5 c_5 c_5) + c_1 (c_5 c_6 - c_5 c_5 c_5) + c_1 (c_5 c_6 - c_5 c_5 c_5) + c_1 (c_5 c_6 - c_5 c_5 c_5) + c_2 (c_5 c_6 - c_5 c_5 c_5 c_5) + c_2 (c_5 c_6 - c_5 c_5 c_5 c_5) + c_2 (c_5 c_6 - c_5 c_5 c_5 c_5) + c_2 (c_5 c_6 - c_5 c_5 c_5 c_5) + c_2 (c_5 c_6 - c_5 c_5 c_5 c_5$$

CINEMÁTICA DIRETA

TRANSFORMAÇÕES DE ELOS E A SOLUÇÃO DO PROBLEMA DA CINEMÁTICA DIRETA