Cryptographie asymétrique

19 septembre 2023

1 Intro

L'asymétrique ne sert pas à chiffrer mais plutot aux echanges de clés, etc.. **Ansi** recommande

- Des clés de 80 à 100 bits pour un niveau moyen de sécu (données ne durant pas dans le temps \sim minutes)
- \bullet > 100 bits : forts

2 Arithmétique entiers

La complexité est calc en fonction de :

- La taille des données.
- ex : un entier n en représentation binaire est en $log_2(n) = log(n)$.

A regarder : table de soustraction binaire lol.

2.1 multiplication

$$11101 = a$$

$$\times 1101 = b$$

multiplication naive:

- Taille(b) additions d'elts de taille a.
- Complexité : Taille(a)*Taille(b)
- Memoire : Taille(a*b)=Taille(a)+Taille(b)

Méthode de Karatsuba : $a,b\in\mathbb{N}$ et k=log(a)=log(b). $a=\alpha 2^{k/2}+\beta,$ $b=\gamma 2^{k/2}+\delta.$ On écrit :

$$ab = \alpha \gamma 2^{k} + (\alpha \gamma + \beta \delta - (\alpha - \beta)(\gamma - \delta))2^{k/2} + \beta \delta$$

On remarque que ya 3 multiplication d'élts de taille k/2 et 6 soustr/add de taille k/2.

• Complexité : T(k) est donnée par

$$3T(k/2) + 6O(k/2) = 3^{T}(k/4) + 6 * 3O(k/4) + 6O(k/2)$$

$$= 3^{log(k)} + 2ck \sum_{i=1}^{log(k)} (3/2)^{i}$$

$$= 3^{log(k)} + 2Ck \frac{(3/2)^{log(k)} - 1}{(3/2) - 1}$$

$$= \dots$$

$$= O(k^{log(3)})$$

2.2 division

Division naive (euclidienne):

- Taille(a)-Taille(b)+1 soustraction de taille Taille(b).
- Complexité : O((taille(a)taille(b)+1)taille(b)).
- Mémoire : Taille(a)-Taille(b)+1 + taille(b).

2.3 algorithme d'euclide normal/etendu

Lemme 2.3.1. Avec $a = r_0$, $b = r_1$, $r_i = q_{i+2}r_{i+1} + r_{i+2}$. On a $r_{i+2} < r_i/2$. Sauf pour les derniers i.

D'ou

- Au plus log(a) divisions : i.e. $\sum_{i=0}^{k-1} (log(r_i) log(r_{i+1}+1)log(r_i)) \le log(a)(k+log(a))$
- Complexité en $log(a)^2$

Euclide étendu : $u_0 = 1$, $u_1 = 0$ et $v_0 = 0$, $v_1 = 1$ et on écrit

$$u_{i+2} = u_i - q_i u_{i+1}$$

$$v_{i+2} = v_i - q_i v_{i+1}$$

Pour calculer le pgcd :

• Complexité : $O(loq^2(a))$. (exo)

A montrer:

Lemme 2.3.2. n un entier, calcul de la racine carrée entière de n en

$$O(log^3n)$$

2.4 indicatrice d'euler/inversion

Proposition 2.4.1. $a^{-1} \mod n$ se calcule en

$$O(log^2(n))$$

grace a euclide

Definition 2.4.2. ϕ : $\mathbb{Z}/n\mathbb{Z} \to \#\{0 < i \leq n\}^*$

Proposition 2.4.3. On veut $\phi(1) = 1$ pour la récursion.

Proposition 2.4.4. $\sum_{d|n} \phi(d) = n$

Ca se prouve en posant $sum_{d|n}\phi(d)=f(n)$ alors :

$$f(mn) = \sum_{d|mn} \phi(d) = \sum_{d_1|n} \sum_{d_2|m} \phi(d_1 d_2) = f(m)f(n)$$

. On écrit du coup $f(n)=f(\prod p_i^{\alpha_i})$ et $f(p^\alpha)=\sum_{k<\alpha}\phi(p^k)=\sum_k p^k-p^{k-1}=p^\alpha$

Proposition 2.4.5. $p \neq q$ deux nombres premiers et n = pq. On retrouve p, q en $O(\log^3(n))$ avec $n, \phi(n)$.

3 corps finis

$$q = p^d$$

Proposition 3.0.1. • Complexité de l'addition/soustraction dans \mathbb{F}_q : $O(\log(q))$

 \bullet Complexité de la mult/l'inverse dans \mathbb{F}_q : $O(\log^2(q))$

Pour la multiplication : 2d - 2 calculs des sommes $\sum a_i b_{j-i}$ et d mults a chaque fois puis d additions. A la fin $O(\log^2(q))$.

Proposition 3.0.2. d = gcd(n, q - 1) racines n-emes de l'unité dans \mathbb{F}_q . \mathbb{F}_q admet une racine primitive ssi $n \mid q - 1$.

Pour le deuxieme truc $(g^j)^n = 1$ ssi $q - 1 \mid nj$ d'ou $q - 1/d \mid j$ et on a d valeurs possibles pour j.

3.1 résidus quadratiques

On prend $p \neq 2$:

Proposition 3.1.1. $x \mapsto (x^{p-1/2})$ donne l'indice de \mathbb{F}_p^{*2} et deux non résidus sont des puissances impaires donc le produit est une puissance paire.

Proposition 3.1.2. C'est un morphisme de groupe.

Maintenant on remplace $x\mapsto x^{p-1/2}$ par l'unique caractère abélien dans $\{\pm\}$ (Jacobi).

3.2 Calcul de racine carrée, algo de shanks tonelli

On réduit ca à un calcul de racine 2^{α} -eme de l'unité!

- 1. On écrit $p-1=2^{\alpha}*s$, s impair.
- 2. $r = a^{(s+1)/2}$
- 3. on résoud $x^2a^{-1} \equiv 1 \mod p$
- 4. En gros : $1 \equiv a^{(p-1)/2} \equiv a^{2^{\alpha-1}s} \equiv (r^2a^{-1})^{2^{\alpha-1}} \mod p$
- 5. D'ou on cherche une racine de l'unité, z, alors $z^2 \equiv y$ avec $y = r^2 a^{-1}$.

6.
$$z^2y \equiv y^{2^{\alpha-1}} \mod p$$
 d'ou $(z^2y^{1-2^{\alpha-1}})^{2^{\alpha-1}} \equiv z^{2^{\alpha}}(y^{2^{\alpha-1}})^{1-2^{\alpha-1}} \equiv z^{2^{\alpha}} \equiv 1 \mod p$

7. D'ou il faut trouver une racine 2^{α} -eme de l'unité.

Determination de la racine 2^{α} -eme de l'unité :

1. Pour
$$\left(\frac{n}{p}\right) = -1$$
 on pose $b = n^s$

2. Alors $|b|^{2^{\alpha}}$.

On cherche ensuite le b^j tel que $b^{2j}r^2a^{-1}\equiv 1\ mod\ p,$ on écrit $j=j_0+2j_1+\ldots+2^{\alpha-1}j_\{\alpha-1\}$:

1.
$$b^{2j}r^2a^{-1} \equiv b^{2j_0+\dots+2^{\alpha}j_{\alpha-1}} \equiv b^{2j_0+\dots+2^{\alpha-1}j_{\alpha-2}} \mod p$$

2. On regarde
$$(b^{2j}r^2a^{-1})^{2^{\alpha-2}} \equiv (b^{2^{\alpha-1}})^{j_0}a^{2^{\alpha-2}s} \mod p$$

3. Comme
$$b^{2^{\alpha-1}} \equiv n^{(p-1)/2} \equiv -1 \mod p$$

4. Alors pour avoir
$$(b^{2j}r^2a^{-1})^{2^{\alpha-2}}\equiv 1$$
 il faut prendre $j_0=0$ ssi $(r^2a^{-1})^{2^{\alpha-1}}$

Maintenant pour les autres coeffs que j_0 , on suppose qu'on connait les $l < \alpha - 2$ premiers tq $((b^{j_0+\ldots+2^lj_l})r^2a^{-1})^{2^{\alpha-2-l}} \mod p$ on cherche j_{l+1} tq :

1.
$$((b^{j_0+\dots+2^lj_l})r^2a^{-1})^{2^{\alpha-2-l}} \mod p$$

2. On a
$$(b^j)^{2^{\alpha-2-l}}(r^2a^{-1})^{2^{\alpha-2-l-1}} \equiv b^{2^{\alpha-2-l}(j_0+2j_1+\ldots+2^lj_l)}b^{2\alpha-1j_{l+1}}b^{2^{\alpha}(\ldots)}\ldots \bmod p$$

3. A nouveau on a
$$b^{2^{\alpha-1}j_{l+1}} \equiv (-1)^{j_{l+1}}$$

4. Et donc on pose
$$j_{l+1} = 0$$
 ssi $((b^{j_0 + \dots + 2^l j_l})^2 r^2 a^{-1})^{2^{\alpha - 2 - l - 1}} \equiv 1 \mod p$

4 Protocoles de cryptographie à clef publique

Basé sur le principe de Kerkhoff.

Crypto symétrique

Crypto asymétrique

+ rapide

+lent

1 clef partagée

2 clefs

X

Mise en reseau facile

Taille de clef petite

Taille de clé grande

Probleme de la crypto sym : nombre quadratique de clé par rapport au nb de personnes face a linéaire pour l'asym. (+ faut pouvoir échanger les clés)

Cryptographie asymétrique :

- 1. Authentification
- 2. Echange de clefs
- 3. Signature

Etant donné une fct de chiffrement asym f:

- $f(m, k_{pub}) = c$
- $f^{-1}(c, k_{priv}) = m$

Authentification par challenge :

- $\bullet \ f(challenge,k_{pub}) \to c$ un challenge est donné et doit être dechiffré
- $challenge = m \leftarrow f^{-1}(c, k_{priv})$

Echange de clefs:

- $\bullet\,$ k la clef de session qu'on veut partager
- $f(k, k_{pub}) \to c$
- $k = f^{-1}(c, k_{priv})$

Signature d'un message :

• $f^{-1}(m, k_{priv}) = sign$

• $f(sign, k_{pub}) = m$

Propriétés d'une signature :

- 1. Non-répudiable (irrévocable, on peut pas dire qu'on l'a pas signé)
- 2. Le message est non-modifiable : inaltérable
- 3. Authentique
- 4. Non-réutilisable
- 5. Infalsifiable

4.1 RSA

Décrit ici. On regarde des attaques sur RSA, les p, q doivent être tous achetés!

Definition 4.1.1. Attaque par module commun

Etant donné une communauté de k personnes ayant tous tes p * q = n. Chaque utilisateurs recoit $(N, e_i(publique), d_i(privee))$. Si on connait e_i, d_i alors on sait que $e_i d_i \equiv 1 \mod \phi(n)$ d'ou $e_i d_i = 1 + k\phi(n)$.

On pose $m = e_i d_i - 1 = k\phi(n)$ d'ou $\forall a \in (\mathbb{Z}/N\mathbb{Z})^{\times}$,

$$a^m \equiv 1 \mod \phi(n)$$

Or $4 \mid \phi(n) \text{ donc } 4 \mid m$.

Donc/etant donné

$$a^m \equiv 1 \bmod n$$

- . On a $a^{m/2}$ est une racine carrée de 1 mod n(y) en a 4). Si $a^{m/2} \equiv \alpha \neq \pm 1 \mod n$ alors $(\alpha 1)(\alpha + 1) \equiv 0 \mod N$ et $\gcd(\alpha 1, n) \neq 1$ et $\gcd(\alpha 1, n) = p$. Soit $a \in (\mathbb{Z}/n\mathbb{Z})^{\times}$. On pose : $m = 2^t s$
 - On calc $a^s \mod n$, si = $\pm 1 \mod n$ on change a.
 - Sinon on calc successivement $a^{2^i s} \mod n$. Et on s'arrete des qu'on trouve 1.
 - Si a l'étape d'avant on change a.
 - sinon on a trouvé α .

Autre attaque : Si on chiffre m pour deux destinataire :

- $c_1 \equiv r^{e_1} \mod n$
- $c_2 \equiv r^{e_2} \mod n$

Si $gcd(e_1, e_2) = 1$ alors $\exists u, v \in \mathbb{Z}$ to $ue_1 + ve_2 = 1$. Donc $c_1^u * c_2^v = m \mod n$.

• Besoin d'une fonction de hachage pour la signature

Alice ne veut pas signer m, Marvin choisit $r \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ et calcule $m' = m * r^e \mod n$. Alice signe m', donc Marvin obtient $sign(m') \equiv m'^d \equiv (mr^e) \equiv m^d r$.

Nouvelle attaque

Definition 4.1.2. par exposant publique petit :

On propose que tout le monde utilise le même e petit pour accélerer le chiffre-

ment: m est chiffré par k utilisateurs differents: $\begin{cases} c_1 \equiv m^e \mod n_1 \\ \vdots \\ c_k \equiv m^e \mod n_k \end{cases}$ Soit les n_i sont $c_k \equiv m^e \mod n_k$

premiers entre eux et on fait un lemme chinois, si e < k, $m^e < \prod_i n_i$. Si pas premiers entre eux : gros pb.

Definition 4.1.3. Attaque par petit exposant privé, but : améliorer la vitesse de déchiffrement.

Théorème 4.1.4. Soit N = pq avec $q et <math>d = 1/3\sqrt[4]{n}$. Etant donné le couple (n, e) avec $ed \equiv 1 \mod \phi(n)$, on peut retrouver efficacement d.

Preuve: On pose $ed - k\phi(n) = 1$. D'ou $\frac{e}{\phi(n)} - \frac{k}{d} = \frac{1}{d\phi(n)}$. On approche $\phi(n)$ par n et en utilisant le fait $d < 1/3\sqrt[4]{n}$ on a :

$$|\frac{e}{n} - \frac{k}{d}| < \frac{1}{2d^2}$$

En passant par un dév en fractions continues à la bonne précision on retrouve k/d. \square RSA est pas indistinguable.(exponentiation binaire est rapide)

4.2 Probleme de log discret

Securité dépend du groupe dans lequel on travaille : Si on prend $G = (\mathbb{Z}/p\mathbb{Z}, +)$ et $h = gx \mod p$ alors $x = hg^{-1}$, une étape.

Definition 4.2.1. Problème de Diffie-Hellman(DHP): Etant donnés g, g^a, g^b peut-on trouver g^{ab} .

Definition 4.2.2. Signature d'El Gamal : k doit être secret et d'usage unique.

- \bullet k doit être secret : a faire
- k doit être d'usage unique : pareil