7.1 Let $[a,b] \subseteq \mathbb{R}$ be a closed interval and let $(a,b) \subseteq \mathbb{R}$ be an open interval. We would like to show that [a,b] and (a,b) are non-homeomorphic topological spaces. The idea of a proof of this fact is as follows. Assume that there exists a homeomorphism

$$f: [a, b] \rightarrow (a, b)$$

Recall that by Proposition 6.10 for any $Y \subseteq [a,b]$ the function $f|_Y \colon Y \to f(Y)$ also would be a homeomorphism. If we take $Y = [a,b] \setminus \{a\} = (a,b]$ then

$$f(Y) = f([a,b]) \setminus \{f(a)\} = (a,b) \setminus \{f(a)\}$$

Intuitively the spaces Y and f(Y) are different in an essential way since Y comes in one piece while f(Y) is split into two pieces by removal of the point f(a):

For this reason we can expect that the spaces are Y and f(Y) are not homeomorphic, and that, as a consequence, [a, b] and (a, b) are not homeomorphic as well.

In order to make this intuitive argument into a rigorous proof we need to define precisely what it means that a topological space is "in one piece" and then show that this feature is preserved by homeomorphisms. The property of being "in one piece" is captured by the definition of a connected space:

7.2 Definition. A topological space X is *connected* if for any two open sets $U, V \subseteq X$ such that $U \cup V = X$ and $U, V \neq \emptyset$ we have $U \cap V \neq \emptyset$.

7.3 Definition. If X is a topological space and $U, V \subseteq X$ are non-empty open sets such that $U \cap V = \emptyset$ and $U \cup V = X$ then we say that $\{U, V\}$ is a *separation* of X.

Thus, a space X is connected if there does not exists a separation of X.

- **7.4 Example.** For a < b take $(a, b) \subseteq \mathbb{R}$ and let $c \in (a, b)$. The space $X = (a, b) \setminus \{c\}$ is not connected. Indeed, the sets U = (a, c) and V = (c, b) form a separation of X.
- **7.5 Proposition.** Let a < b. The intervals (a, b), [a, b], (a, b], and [a, b) are connected topological spaces.

Proof. Assume first that [a,b] is a closed interval and that that $U,V\subseteq [a,b]$ are open sets such $a\in U$, $b\in V$, and $U\cup V=[a,b]$. We will show that $U\cap V\neq\varnothing$. Let $x_0=\inf V$. There are two possibilities: either $x_0\notin U$ or $x_0\in U$. In the first case $x_0\in V$ and $x_0>a$. Since V is an open set there exists $\varepsilon>0$ such that $(x_0-\varepsilon,x_0+\varepsilon)\subseteq V$. This implies that there is $x\in V$ such that $x< x_0$ which is impossible by the definition of x_0 .

Thus the only possible option is $x_0 \in U$. Since U is an open set there exists $\varepsilon' > 0$ such that $[x_0, x_0 + \varepsilon') \subseteq U$. On the other hand, by the definition of x_0 we have $[x_0, x_0 + \varepsilon') \cap V \neq \emptyset$. Therefore $U \cap V \neq \emptyset$.

Assume now that I is an interval (either closed, open, or half-open) and that $U, V \subseteq I$ are non-empty open sets such that $U \cup V = I$. We will show that $U \cap V \neq \emptyset$. Let $c, d \in I$ be points such that $c \in U$ and $d \in V$. We can assume that c < d. Take $U' = U \cap [c, d]$ and $V' = V \cap [c, d]$. The sets U', V' are open in [c, d], $c \in U'$, $d \in V'$, and $U' \cup V' = [c, d]$. By the observation above we have $U' \cap V' \neq \emptyset$, and so $U \cap V \neq \emptyset$.

One can show that intervals are in fact the only subspaces of $\mathbb R$ that are connected:

7.6 Proposition. If X is a connected subspace of \mathbb{R} then X is an interval (either open, closed, or half-closed, finite or infinite).

Proof. Exercise. □

7.7 Going back to the argument outlined in 7.1, by Proposition 7.5 we get that the space Y = (a, b] is connected, and the space $f(Y) = (a, b) \setminus f(a)$ is not connected by Example 7.4. We still need to show however that a connected space cannot be homeomorphic to one that is not connected. In fact a stronger statement is true:

Proof. Exercise.

7.15 Proposition. Let X be a topological space and for $i \in I$ let Y_i be a subspace of X. Assume that $\bigcup_{i \in I} Y_i = X$ and $\bigcap_{i \in I} Y_i \neq \emptyset$. If Y_i is connected for each $i \in I$ then X is also connected.

Proof. Let $D = \{0,1\}$ be a space with the discrete topology and let $f: X \to D$ be a continuous function. By Proposition 7.14 it is enough to show that f is a constant function. Let $x_0 \in \bigcap_{i \in I} Y_i$. We can assume that $f(x_0) = 0$. For any $i \in I$ the function $f|_{Y_i}: Y_i \to D$ is constant since Y_i is connected. Since $x_0 \in Y_i$ and $f(x_0) = 0$ we get that f(x) = 0 for all $x \in Y_i$. Since this applies to all subspaces Y_i we obtain that f(x) = 0 for all $x \in \bigcup_{i \in I} Y_i = X$.

7.16 Corollary. The space \mathbb{R}^n is connected for all $n \geq 1$.

Proof. For $0 \neq x \in \mathbb{R}^n$ let $L_x \subseteq \mathbb{R}^n$ be the line passing through x and the origin:

$$L_x = \{tx \in \mathbb{R}^n \mid t \in \mathbb{R}\}$$

For every $x \in \mathbb{R}^n$ consider the continuous function $f_x \colon \mathbb{R} \to \mathbb{R}^n$ given by $f_x(t) = tx$. Since \mathbb{R} is connected and $f_x(\mathbb{R}) = L_x$ if follows that L_x is connected. We have $\mathbb{R}^n = \bigcup_{x \in \mathbb{R}^n} L_x$ and $\bigcap_{x \in \mathbb{R}^n} L_x = \{0\}$. Therefore by Proposition 7.15 the space \mathbb{R}^n is connected.

- **7.17 Definition.** Let X be a topological space. A *connected component* of X is a subspace $Y \subseteq X$ such that
 - 1) Y is connected
 - 2) if $Y \subseteq Z \subseteq X$ and Z is connected then Y = Z.
- **7.18 Proposition.** Let X be a topological space.
 - 1) For every point $x_0 \in X$ there exist a connected component $Y \subseteq X$ such that $x_0 \in Y$.
 - 2) If Y, Y' are connected components of X then either $Y \cap Y' = \emptyset$ or Y = Y'.

Proof. 1) Given a point $x_0 \in X$ let $\{C_i\}_{i \in I}$ be the collection of all subspaces of X such that $x_0 \in C_i$ and C_i is connected. Define $Y := \bigcup_{i \in I} C_i$. We have $x_0 \in Y$. Also, since $x_0 \in \bigcap_{i \in I} C_i$ by Proposition

7.15 we obtain that Y is connected. If $Y \subseteq Z \subseteq X$ and Z is connected then $Z = C_{i_0}$ for some $i_0 \in I$, and so Z = Y. Therefore Y is a connected component of X.

2) Let Y, Y' be two connected components of X. Assume that $Y \cap Y' \neq \emptyset$. By Proposition 7.15 we get then that $Y \cup Y'$ is connected. Since $Y \subseteq Y \cup Y'$ we must have $Y = Y \cup Y'$. By the same argument we obtain that $Y' = Y \cup Y'$. Therefore Y = Y'

7.19 Corollary. Let X be a topological space. If $Z \subseteq X$ is a connected subspace then there exists a connected component $Y \subseteq X$ such that $Z \subseteq Y$.

Proof. Exercise. □

7.20 Corollary. Let $f: X \to Y$ be a continuous function. If X is a connected space then there exists a connected component $Z \subseteq Y$ such that $f(X) \subseteq Z$.

Proof. Exercise. □

Exercises to Chapter 7

- **E7.1 Exercise.** Let X be a topological space and let $Y \subseteq X$ be a subspace. Show that if Y is a connected space and Y is dense in X then X is connected.
- **E7.2** Exercise. Prove Proposition 7.6.
- **E7.3 Exercise.** Show that the sphere S^n is connected for all $n \ge 1$.
- **E7.4 Exercise.** Let a < b. Show that the closed interval $[a, b] \subseteq \mathbb{R}$ is not homeomorphic to the half-closed interval (a, b].
- **E7.5 Exercise.** A function $f: \mathbb{R} \to \mathbb{R}$ is *strictly increasing* is for all $x, y \in \mathbb{R}$ such that x > y we have f(x) > f(y), and is it *strictly decreasing* is for all $x, y \in \mathbb{R}$ such that x > y we have f(x) < f(y). Show that if $f: \mathbb{R} \to \mathbb{R}$ is a continuous 1-1 function then f is either strictly increasing or strictly decreasing.
- **E7.6 Exercise.** Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function such that $f(x) \cdot f(f(x)) = 1$ for all $x \in \mathbb{R}$ and that f(10) = 9. Find the value of f(5). Justify your answer.
- **E7.7 Exercise.** Let $f: S^n \to \mathbb{R}$ be a continuous function. Show that there exists a point $x \in S^n$ such that f(x) = f(-x). Here if $x = (x_1, \dots, x_n) \in S^n$ then $-x = (-x_1, \dots, -x_n)$.
- **E7.8 Exercise.** Let a < b. Show that there does not exist a continuous bijection $f: (a, b) \to [a, b]$. Remember that a continuous bijection need not be a homeomorphism since the inverse function may be

not continuous (see 6.11).

E7.9 Exercise. Prove Proposition 7.14.

E7.10 Exercise. Let X be a topological space. Show that the following conditions are equivalent:

- 1) *X* is connected
- 2) if $A \subseteq X$ is any set such that $A \neq X$ and $A \neq \emptyset$ then $Bd(A) \neq \emptyset$.

E7.11 Exercise. Let X be a topological space. Show that every connected component of X is closed in X.

E7.12 Exercise. Let (X, ϱ) be a metric space. Assume for some $x_0 \in X$ and r > 0 the open ball $B(x_0, r)$ consists of countably many points. Show that X is not connected.

E7.13 Exercise. Let X be the subspace of \mathbb{R}^2 consisting of the positive x-axis and of the graph of the function $f(x) = \frac{1}{x}$ for x > 0:

$$X := \{(x,0) \in \mathbb{R}^2 \mid x \ge 0\} \cup \{(x,\tfrac{1}{x}) \in \mathbb{R}^2 \mid x > 0\}$$

Show that *X* is not connected.

E7.14 Exercise. The *topologist's sine curve* is the subspace Y of \mathbb{R}^2 that consists of a segment of the y-axis and of the graph of the function $f(x) = \sin(\frac{1}{x})$:

$$Y := \{(0, y) \in \mathbb{R}^2 \mid -1 \le y \le 1\} \cup \{(x, \sin(\frac{1}{x})) \in \mathbb{R}^2 \mid x > 0\}$$

Show that *Y* is connected.

E7.15 Exercise. Let $f, g: \mathbb{R} \to \mathbb{R}$ be continuous functions such that g(x) < f(x) for all $x \in \mathbb{R}$. Let Z be the subspace of \mathbb{R}^2 given by

$$Z = \{(x, y) \mid g(x) \le y \le f(x)\}$$

Show that Z is connected.

E7.16 Exercise. Consider the unit circle $S^1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$. Let $p \colon \mathbb{R} \to S^1$ denote the function given by $p(t) = (\sin 2\pi t, \cos 2\pi t)$. Geometrically speaking this function wraps \mathbb{R} infinitely many times around the circle:

Show that there does not exist a continuous function $g \colon S^1 \to \mathbb{R}$ such that $pg = \mathrm{id}_{S^1}$.

E7.17 Exercise. A space X is *totally disconnected* if every connected component of X consists of a single point. Obviously every discrete topological space is totally disconnected. Consider the set ot rational numbers $\mathbb Q$ as a subspace of $\mathbb R$. Show that $\mathbb Q$ is totally disconnected. Note that by Exercise 6.1 $\mathbb Q$ is not a discrete space.

E7.18 Exercise. Show that metrizability is a topological invariant. That is, it X and Y are homeomorphic spaces, and X metrizable then so is Y.