"Progalap" komplex beadandó feladat

Készítette: Golyha Gergő Neptun-azonosító: A7MMZ1 E-mail: golyhagergo@gmail.com

Kurzuskód: K81DNC-PROG Gyakorlatvezető neve: Horváth Győző

2024. január 14.

Tartalom

Felhasználói dokumentáció	3
Feladat	3
Futási környezet	3
Használat	3
A program indítása	3
A program használata billentyűzetről való bevitel esetén	3
A program használata fájlból való bevitel esetén	4
A program kimenete	4
Minta bemenet és kimenet	4
Hibalehetőségek	5
Fejlesztői dokumentáció	6
Feladat	6
Tervezés	6
Specifikáció	6
Visszavezetés	6
Algoritmus	6
Fejlesztői környezet	7
Forráskód	7
Megoldás	8
Függvénystruktúra	8
A kód	8
Tesztelés	11
Érvényes tesztesetek	11
Érvénytelen tesztesetek	12
Feilesztési lehetőségek	12

Felhasználói dokumentáció

Feladat

Mindenhol meleg napok

A meteorológiai intézet az ország N településére adott M napos időjárás előrejelzést, az adott településen az adott napra várt legmagasabb hőmérsékletet.

Készíts programot, amely megadja azokat a napokat, amikor mindenhol 0 foknál melegebb várható!

Futási környezet

IBM PC, exe futtatására alkalmas, 64-bites operációs rendszer (pl. Windows 11). Nem igényel egeret.

Használat

A program indítása

 $A \quad program \quad a \quad \texttt{mindenholMelegNapok bin \ Debug \ net 8.0 \ mindenholMelegNapok . exe} \quad n\'{e}ven \quad tal\'alhat\'o a t\"om\"or\'itett \'allom\'anyban.$

A program használata billentyűzetről való bevitel esetén

A mindenholmelegNapok.exe fájl elindításával a program az adatokat a billentyűzetről olvassa be a következő sorrendben:

#	Adat	Magyarázat
1.	Települések száma (n)	Egész szám 1 és 1000 között
2.	Napok száma (m)	Egész szám 1 és 1000 között
3.	1. településen az 1. napra jósolt legmagasabb hőmérséklet	Egész szám -50 és 50 között innentől
4.	1. településen a 2. napra jósolt legmagasabb hőmérséklet	
•••		
	2. településen az 1. napra jósolt legmagasabb hőmérséklet	
	2. településen a 2. napra jósolt legmagasabb hőmérséklet	
	 n. településen az m. napra jósolt legmagasabb hőmérséklet	

A program használata fájlból való bevitel esetén

Lehetőségünk van az adatokat **fájl**ban is megadni. Ekkor a programot *parancssorban* a következőképpen kell indítani, feltételezve, hogy a bemeneti fájlok mellette helyezkednek el:

```
mindenholMelegNapok.exe < bel.txt</pre>
```

A fájl felépítésének a következő formai követelményei vannak. A fájl első sorában a települések száma (n) és a napok száma (m) van. A következő n sor mindegyikében m darab szám szerepel, közülük az i-edik sorban a j-edik szám az i-edik településen a j-edik napra jósolt legmagasabb hőmérséklet. Például:

```
2 4
10 15 12 -10
-11 11 11 11
```

A program kimenete

A program kiírja azoknak a napoknak a darabszámát és a sorszámait, amikor mindenhol 0 foknál melegebbet jósoltak, sorszám szerint növekvő sorrendben.

Minta bemenet és kimenet

```
C:\Users\golyh\OneDrive - Eotvos Lorand Tudomanyegyetem\Órai Any... — X

Települések száma: 2
Napok száma: 3
1. település 1. napi legmagasabb homérsékelte: 1
1. település 2. napi legmagasabb homérsékelte: 2
1. település 3. napi legmagasabb homérsékelte: 3
2. település 1. napi legmagasabb homérsékelte: 0
2. település 2. napi legmagasabb homérsékelte: 1
2. település 3. napi legmagasabb homérsékelte: 2

Mindenhol 0 foknál melegebb napok száma: 2

Ezeknek sorszáma: 2 3

Kérem, nyomjon ENTER-t a folytatáshoz!
```

Hibalehetőségek

Az egyes bemeneti adatokat a fenti mintának megfelelően kell megadni. Hiba, ha bármelyik megadandó adat nem egész szám vagy az adott intervallumon kívül esik. Hiba esetén a program azzal jelzi a hibát, hogy újra kérdezi azt.

Mintafutás hibás bemeneti adatok esetén:

Fejlesztői dokumentáció

Feladat

Mindenhol meleg napok

A meteorológiai intézet az ország N településére adott M napos időjárás előrejelzést, az adott településen az adott napra várt legmagasabb hőmérsékletet.

Készíts programot, amely megadja azokat a napokat, amikor mindenhol 0 foknál melegebb várható!

Tervezés

Specifikáció

```
Be: n \in \mathbb{N}, m \in \mathbb{N}, idojaras \in \mathbb{Z}[1..n, 1..m]

Ki: db \in \mathbb{N}, y \in \mathbb{N}[1..db]

Fv: folott: \mathbb{N} \to \mathbb{L}, folott(x) = MIND(i=1..n, idojaras[i,x] > 0)

Ef: -

Uf: (db,y) = KIV \land LOGAT(i=1..m, folott(i), i)
```

Visszavezetés

Kiválogatás

```
e..u ~ 1..m
T(i) ~ folott(i)
f(i) ~ i
```

Mind eldöntés (folott)

```
e..u ~ 1..n
T(i) ~ idojaras[i,x]>0
```

Algoritmus

folott(x: Egész): Logikai Változó i:Egész, mind: Logikai

i:=	1	
j<:	=n és idojaras[i,x]>0	
	i:=i+1	
mir	mind:=i>n	
fold	folott:=mind	

Fejlesztői környezet

IBM PC, exe futtatására alkalmas operációs rendszer (pl. Windows 11 Home). Visual Studio 2022 (Version 17.8.1) fejlesztői környezet.

Forráskód

A teljes fejlesztői anyag –kicsomagolás után– a mindenholMelegNapok nevű könyvtárban található meg. A fejlesztés során használt könyvtár-struktúra:

Állomány	Magyarázat
<pre>mindenholMelegNapok\bin\Debug\net8.0\minden holMelegNapok.exe</pre>	futtatható kód (a futtatáshoz szükséges fájlokkal)
mindenholMelegNapok\obj\	mappa fordításhoz szükséges kódokkal
mindenholMelegNapok\Program.cs	C# forráskód
mindenholMelegNapok\be1.txt	teszt-bemeneti fájl ₁
mindenholMelegNapok\be2.txt	teszt-bemeneti fájl ₂
mindenholMelegNapok\be3.txt	teszt-bemeneti fájl ₃
mindenholMelegNapok\be4.txt	teszt-bemeneti fájl ₄
mindenholMelegNapok\be5.txt	teszt-bemeneti fájl ₅
mindenholMelegNapok\KBeadandó 2 fázis.pdf	dokumentációk (ez a fájl)

Megoldás

Függvénystruktúra

A kód

```
A Program.cs fájl tartalma:
/*
    Készítette: Golyha Gergő
    Neptun: A7MMZ1
    E-mail: golhyagergo@gmail.com
    Feladat: Időjárás előrejelzés: Mindenhol meleg napok
using System;
using System.Collections.Generic;
namespace mindenholMelegNapok
    internal class Program
        static void Main(string[] args)
            //deklarásál bemenet
            int[,] idojaras;
            //deklarálás kimenet
            List<int> y;
            idojaras = beolvasas();
            y = feldolgozas(idojaras);
            kiiras(y);
        }
```

```
static int[,] beolvasas()
        {
            int[,] idojaras;
            if (Console.IsInputRedirected) idojaras = beolvasas_biro();
            else idojaras = beolvasas_kezi();
            return idojaras;
        static int[,] beolvasas_kezi()
            int n, m;
            int[,] idojaras;
            bool jo;
            do
            {
                Console.Write("Települések száma: ");
                 jo = int.TryParse(Console.ReadLine(), out n) && n >= 1 && n <= 1000;</pre>
                if (!jo) Console.WriteLine("Egész szám kell 1 és 1000 között!");
            } while (!jo);
            do
            {
                Console.Write("Napok száma: ");
                jo = int.TryParse(Console.ReadLine(), out m) && m >= 1 && m <= 1000;</pre>
                if (!jo) Console.WriteLine("Egész szám kell 1 és 1000 között!");
            } while (!jo);
            idojaras = new int[n, m];
            for (int i = 0; i < n; i++)</pre>
                for (int j = 0; j < m; j++)</pre>
                     do
                     {
                         Console.Write("{0}. település {1}. napi legmagasabb
hőmérsékelte: ", i + 1, j + 1);
                         jo = int.TryParse(Console.ReadLine(), out idojaras[i, j]) &&
idojaras[i, j] >= -50 && idojaras[i, j] <= 50;
                         if (!jo) Console.WriteLine("Egész szám kell -50 és 50
között!");
                     } while (!jo);
                }
            }
            return idojaras;
        }
        static int[,] beolvasas_biro()
            int n, m;
            int[,] idojaras;
            string[] be1 = Console.ReadLine().Split(" ");
            n = int.Parse(be1[0]);
            m = int.Parse(be1[1]);
            idojaras = new int[n, m];
            for (int i = 0; i < n; i++)</pre>
                 string[] be2 = Console.ReadLine().Split(" ");
                for (int j = 0; j < m; j++) idojaras[i, j] = int.Parse(be2[j]);</pre>
            return idojaras;
        }
```

```
static List<int> feldolgozas(int[,] idojaras)
        {
            bool folott(int x)
            {
                bool mind;
                int i = 0;
                while (i < idojaras.GetLength(0) && idojaras[i, x] > 0) i++;
                mind = i == idojaras.GetLength(0);
                return mind;
            }
            List<int> y = new List<int>();
            for (int i = 0; i < idojaras.GetLength(1); i++) if (folott(i)) y.Add(i +</pre>
1);
            return y;
        }
        static void kiiras(List<int> y)
            if (Console.IsOutputRedirected)
                Console.Write(y.Count);
                foreach (var item in y) Console.Write($" {item}");
            }
            else
            {
                if (y.Count == 0)
                    Console.WriteLine("\nNincs olyan nap, amikor mindenhol 0 foknál
melegebb van");
                }
                else
                {
                    Console.Write($"\nMindenhol 0 foknál melegebb napok száma:
{y.Count}\nEzeknek sorszáma:");
                    foreach (var item in y) Console.Write($" {item}");
                Console.WriteLine("\n\nKérem, nyomjon ENTER-t a folytatáshoz!");
                Console.ReadLine();
            }
        }
    }
}
```

Tesztelés

Érvényes tesztesetek

1. teszteset: be1.txt

Bemenet – 1 település, 1 nap		
1 1		
1		
Kimenet		
1 1		

2. teszteset: be2.txt

Bemenet – 2 település, 3 nap		
2 3		
1 2 3 0 1 0		
0 1 0		
Kimenet		
1 2		

3. teszteset: be3.txt

Bemenet – 3 település, 5 nap		
3 5		
10 15 12 -10 10		
-11 11 11 11 20		
-12 16 16 16 20		
Kimenet		
3 2 3 5		

4. teszteset: be4.txt

Bemenet – 2 település, 10 nap		
2 10		
15 -10 -30 12 -7 -36 -39 -7 -8 -22		
46 16 14 48 -29 -39 44 -42 9 -17		
Kimenet		
2 1 4		

5. teszteset: be5.txt

```
Bemenet – 3 település, 25 nap

3 25
-11 22 -18 -48 -50 -3 -21 8 -41 18 -35 -23 -17 -10 48 -2 -37 10 -34 49 14 -8 36 46 -14
-12 1 18 31 11 -46 0 2 -41 -27 8 28 20 -27 -8 -23 27 13 4 -21 6 39 43 44 -29
-26 -8 -31 23 -31 -16 6 32 32 39 -2 -16 -5 33 -34 15 8 -44 -48 -26 33 -35 37 -33 -5

Kimenet

3 8 21 23
```

Érvénytelen tesztesetek

Billentyűzetes bevitel esetén

6. teszteset

Bemenet – szöveges adat		
N = tizenegy		
Kimenet		
Újrakérdezés:		
N =		

7. teszteset

Bemenet – túl nagy szám		
N = 10000		
Kimenet		
Újrakérdezés:		
N =		

8. teszteset

Bemenet – negatív szám		
N = -1		
Kimenet		
Újrakérdezés:		
N =		

9. teszteset

Bemenet – nem egész szám		
N = 1.30		
Kimenet		
Újrakérdezés:		
N =		

Fejlesztési lehetőségek

- 1. Grafikus visszajelzés a számolás lépéseiről
- 2. Többszöri futtatás megszervezése
- 3. Települések nevének megadása
- 4. Tetszőleges minimumhőmérséklet megadása
- 5. Mindenhol hideg változat