BT5420: Computer Simulations of Biomolecular Systems July – Nov 2020 Semester Take Home Exam

Instructions:

- Submit the scanned copy of the hand written answer sheet as a pdf file on Moodle by 24th Nov 2020
- The answer sheet should include only a maximum of 6 pages
- Write your name, roll number and page number in each page of your answer sheet
- The first page should include the following oath with your name and signature: "I understand that it is a take home exam, not an assignment, and I am aware that disciplinary action would be taken if I am found to be involved in any form of malpractice."
- 1. Compare and contrast the explicit water models TIP3P, TIP4P and TIP5P. Also discuss about the variants of each water model. (8 marks)
- 2. What is an *.itp file? Discuss all the possible entries in an *.itp file for a molecule, say urea. How it is related to a system *.top file? (7 marks)
- 3. Consider a two-particle system with masses m_1 and m_2 , positions r_1 and r_2 , and velocities \dot{r}_1 and \dot{r}_2 subject to a potential U that is a function of only the distance $|r_1 r_2|$ between them. This is typical of a diatomic molecule. (10 marks)
 - i. Write down the Lagrangian of the system.
- ii. Define new variables $R = \frac{m_1 r_1 + m_2 r_2}{M}$, and $r = r_1 r_2$. R corresponds to the coordinates of the center of Mass and r is called the relative coordinate. Let's define new mass variables: total mass, $M = m_1 + m_2$, and reduced mass, $\mu = m_1 m_2/M$. Write down the Lagrangian of the system using the new variables.
- iii. Which set of variables is suitable for this problem and why?

4. Derive the ideal gas equation of state from grand canonical partition function *i.e.* prove (5 marks)

$$\frac{PV}{kT} = \ln \Xi = \frac{V\zeta}{\lambda^3} = \langle N \rangle$$

5. Write a brief note on

(10 marks)

- i. Site-site radial distribution function
- ii. Hydrogen bond life time analysis based on autocorrelation function