List of Corrections	
---------------------	--

ratai: pius patcii	Fatal: plus patch		v
--------------------	-------------------	--	---

Mah Dissertat'n

Mark Pinese

 ${\it March 16, 2015} \quad {\it Build 0.0.1262}$

ORIGINALITY STATEMENT

'I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.'

Signed	
Date	

To my wife and daughter, as weak recompense for the time that I could not spend with them.

Acknowledgements

Da abstract.

Contents

Co	ontents	i
Li	st of Figures	ii
Li	st of Tables	iii
1	Identifying optimal biomarkers for the development of clin-	
	ical tests	1
	1.1 Introduction	1
	1.2 Results	5
	1.3 Discussion	5
	1.4 Methods	5
\mathbf{A}_{J}	ppendices	11
A	R code to calculate MSKCC nomogram survival estimates	11
В	Basis matrix \boldsymbol{W} for the six survival-associated metagenes	15
С	MSigDB signatures correlated with axis A1	26
D	MSigDB signatures correlated with axis A2	31
E	Approximate calculation of PARSE scores	33
G]	lossary	41
Re	eferences	42

List of Figures

1.1	The BestInterval algorithm		 •	•		E
E.1	Performance of the PARSE score approximation					34

List of Tables

C.1	MSigDB signatures correlated with axis A1	26
D.1	MSigDB signatures correlated with axis A2	31
E.1	Loading vector for the approximate PARSE score	35

List of Algorithms

1	MessinaCore																7
2	BestInterval																8

Software versions

Unless otherwise specified, the following versions of software were used in all work.

bamtools	2.2.2
bedtools	2.18.2
cd-hit	4.6.1 MP Fatal: plus patch
FastQC	0.10.1
GATK	3.1-1
julia	0.3.2
MSigDB	4.0
muTect	1.1.6-4-g69b7a37
ncbi-blast	2.2.29
picard-tools	1.109
PROVEAN	1.1.5
Python	2.7.8 / 3.4.1
R	3.1.1
ahaz	1.14
depmixS4	1.3-2
deSolve	1.11
doParallelMC	1.0.8
Exact	1.4
flexsurv	0.5
GSVA	1.14.1
illumina Humanv 4.db	1.24.0
lumi	2.18.0
lumidat	1.2.3
MASS	7.3-35
maxstat	0.7-22

muhaz	1.2.6
mvtnorm	1.0-1
nleqslv	2.5
NMF	0.20.5
nnls	1.4
${ m org.Hs.eg.db}$	3.0.0
pec	2.4.4
${\rm random} Forest$	4.6-10
${\bf random} {\bf ForestSRC}$	1.5.5
risksetROC	1.0.4
Rsolnp	1.14
survcomp	1.16.0
survival	2.37-7
shiny	0.10.2.2
timereg	1.8.6
samtools	1.0
SHRiMP	2.2.3
strelka	1.0.14
tabix	1.0
vcftools	0.1.10
VEP	76

Conventions

Unless otherwise specified, the following conventions are used throughout this dissertation.

- Indices in algorithm pseudocode are 1-based.
- Logarithms (log) and exponentiations (exp) are to base e.
- Square brackets around a predicate P denote the Iverson bracket: $[P] \Leftrightarrow$ 1 if P is true, else 0.
- Square brackets around a function-predicate pair $f(i) \mid P(i)$, indicate tuple builder notation: $[f(i) \mid P(i)]_{i=a}^b \Leftrightarrow [f(a), f(a+1), \dots, f(b)]$, where an element f(i) is only included in the tuple if P(i) is true.
- x_+ indicates the value of the ramp function at real $x, x_+ := \max(0, x)$.
- $\mathbf{0}^n$ denotes the vector in \mathbf{R}^n with all entries equal to zero.
- \mathbb{B} denotes the Boolean set true, false.

Chapter 1

Identifying optimal biomarkers for the development of clinical tests

Thesis: Decision stump classifiers can be efficiently trained on high-throughput biomarker data, and provide a principled way to translate large multi-measurement research data into simple but high-performance clinical tests.

Summary

1.1 Introduction

Research and molecular pathology laboratories take strikingly different approaches to the measurement of biomarkers in patient samples. Research work favours costly manual techniques, which quantify a large number of biomarkers in a relatively small number of samples. Conversely, pathology laboratories make extensive use of highly automated turnkey systems, to robustly measure a relatively small number of biomarkers in a large number of samples. In keeping with this divide, research and pathology laboratories often use very different technologies for the measurement of the same type of biomarker, such as RNA sequencing in research, and quantitative PCR in the clinical realm. This difference in base technology complicates the translation of discoveries in research into application in the clinic.

Unfortunately, this difficult translation of research discoveries into clinical practice is absolutely necessary. Although technologically not a perfect match, research and pathology techniques are complementary: biomarker discovery requires research techniques capable of interrogating a huge number of potential biomarkers, but the application of any discoveries needs pathology techniques that can reliably and economically handle a huge number of patient samples. The two approaches are inseparable, and so finding effective ways to translate research findings into clinical application is critically important. * How can we get around this? - We can harmonise techniques. Unfortunately, unlikely right now. OR... - We can find the best possible way to translate research -i, clinical.

Effective clinical tests must satisfy a number of requirements, which can be used to guide the translation of a research finding into a clinical test. Ideally, a clinical diagnostic or prognostic test should be based on the measurement of only a small number of biomarkers (). Additionally, it should be highly robust to technical effects, and the inevitable variation in sample quality and handling that comes with clinical specimens (). The results of most tests will be interpreted as a simple binary outcome, and the optimal detection performance of this binary variable will vary depending on the particular clinical application. Taking all these requirements into account, a technique to translate discovery biomarker measurements into a clinical test should identify a single biomarker that, when its level is thresholded, yields a specific class separation performance with maximal robustness.

- * Existing methods do not do this. * Consider common ML algos. They all benefit from many features (eg. SVM, PAM, RF). * Feature selection can be used to reduce feature count, obviously. * However, what we need is: A Cutting down all the way to just one feature B With defined separation performance C At maximal robustness. * There's nothing really out there to achieve that, because A is featsel, but B,C are class, and B is cost-sensitive.
- * There *is* evidence that it is possible. Cue small classifier papers.
- * Enter Messina. Single-feature cost-sensitive maximum-margin classifiers. * Maximum margin -¿ robustness (Vapnik) * Messina paper. * Messina in lit., comparisons. * Hook to limitations
- * Messina2 addresses limitations in 1. More general objective function Makes it possible to do prognostics as well
 - * Ok, now chapter outline: 1) Messina 2) Messina 3) Simulation Experi-

ments: A) Margin =¿ Perf robustness. Two expts: symbolic on class, simul on surv. B) Messina2 class better than competing approaches. C) Messina2 surv better than competing approaches. 4) Application example: MessinaSurv on APGI to find better biomarker leads. 5) Discussion 6) Methods (for sims only – cover algos in 1–2)

A core task in bioinformatics is identifying biomolecules that are differentially-expressed between experimental groups. When groups are homogeneous sets of replicates, all identical except for random measurement noise, the detection of differential expression is effectively addressed by techniques based in classical statistics. Unfortunately, this ideal laboratory situation rarely exists in clinical samples, such as the tumour samples collected as part of large-scale observational studies like the ICGC and TCGA.

The expression levels of biomolecules within clinical samples may vary widely within sample groups due to many factors, such as the presence of latent biological subtypes, different stages of disease, environmental factors, and a range of technical effects. The net result of this heterogeneity is increased within-group variance, leading to a reduction in the power of classical techniques to detect differential expression. Importantly, this reduction in power is strongest for biomolecules with the most intra-group expression variance. The levels of such high-variance molecules potentially reflect latent biological subtypes, and thus they are of great interest, yet are the most likely to be ignored by classical differential expression detection techniques. Consequently, a real need exists for methods to reliably identify differential expression in complex and poorly-controlled observational data, such as those generated by current disease genomics efforts.

Recently, a number of techniques have been reported for the identification of differential expression in the presence of outlier samples and expression heterogeneity (for overviews see for example Karrila et al. (2011) and Bottomly et al. (2013)). Of these, the Messina algorithm (Pinese et al., 2009) is unique in that it is tunable, allowing the user to smoothly trade robustness to outliers against sensitivity to subtle changes in expression. In the presence of outliers, Messina outperformed limma (Smyth, 2004) for the detection of differential expression, and has been recommended for this purpose in an independent comparison of existing methods (Karrila et al., 2011). However, Messina is only available as a standalone program, reducing its utility in bioinformatic pipelines, and, in common with other outlier-aware techniques, cannot identify

biomolecules associated with outcome.

Here we present Messina2, an enhanced version of Messina that is implemented as the messina R package, available in Bioconductor versions 2.14 and above. It contains all the original functionality of Messina, with the additional unique capability to identify biomolecules associated with a censored outcome variable. In the following we describe the Messina2 algorithm and demonstrate its application with case studies.

There are things on prognostic biomarkers that really should be here. Stuff on the ad-hoc nature of current approaches (eg. median split, or cutpoint optimization), and the general unsuitability of stats-based approaches (eg. Cox) for the generation of a good biomarker. Theres also the more general problem of cardinality most of the prognostic biomarker stuff out there is based on large signatures, because thats a way to get a good split from the kind of genes found by current methods. Theres very little on good ways to choose single-gene biomarkers. No room for all of that, though!

marcows idea for some intro text: "Two of the most common analytical scenarios for clinical samples are classification and survival; the former has been addressed by a number of methods, including Messina, in the context of heterogeneity, as reviewed by refs. Survival in the presence of heterogeneity remains largely unsolved. Here we extend Messina to solve survival in the context of hereogeneity and additionally extend the capabilities of the original Messina algorithm via R"

 $\label{lem:http://en.wikipedia.org/wiki/NanoString} http://en.wikipedia.org/wiki/Oncotype_D //en.wikipedia.org/wiki/Oncotype_D Xhttp://en.wikipedia.org/wiki/MammaPrinthttp://en.wikipedia.org/wiki/Symphony(Agendia)http://www.agendia.com/healthcare-professionals/colon-cancer/http://www.agendia.com/healthcare-professionals/breast-cancer/mammaprint/$

TODO: mention the preponderance of biomarkers that never get used? Sigs. especially!

A number of factors contribute to the divide in methodology between research and clinical laboratories. Relative to clinical tests, research techniques are labour-intensive, costly, likely less robust, and have low sample throughput. Being research methods, they are also not offered by manufacturers as validated and complete turnkey tests, and so require extensive work on in-house development and certification. These elements, combined with the noted inertia in the medical profession for adopting new techniques, combine

to make bespoke and complex research-grade methods

* Inertia – complex cert. process, doc uptake slow. * Development – no turn-key solns. Ties in with cert issues. * Cost – much higher for research methods. Also buy-in cost. * Scalability – disc. methods are low n, high p. Path. are high n, low p.

1.2 Results

1.3 Discussion

1.4 Methods

"How can we select markers that have the best possible chances of making it in the clinic?"

The Messina chapter. What is this all about? Selecting biomolecules. For what purpose? Differently how? What makes this special?

OK back up. Let's go back to basics. Consider this situation. There is a need to develop a diagnostic or prognostic test, for clinical application. What requirements does this test have? * High performance - But notably, performance can be nuanced, not simply correct – perhaps some errors are preferable to others. * Robustness (ie. performance is good, even in the face of: - cohort differences - technical differences (eg inter-lab) - sample handling differences (eg degradation, alternate storage or processing, sample age) * Ease of use - measures a small number of variables, as small as possible. * Translatability (can be easily moved to a clinical setting) - measures a small number of variables - uses existing technologies, as much as possible

Rolling all these together, it means we basically need an IHC- or ELISAbased measurement, on as few biomarkers as possible. Just one would be ideal.

So what do we know about IHC? * It's very nonlinear * It's protein level based * There can be significant differences between labs, due to tissue processing, AR, and staining. The latter two are less serious for clinical-grade stuff, but tissue processing is still a problem. Time before fixation, conditions before fixation, time in fixative, type of fixative, conditions of embedding, time in storage in paraffin. * There can be differences between pathologists re: scoring.

What we get from this is that we need a very robust marker. If we only have mRNA levels, then for starters the mRNA-protein correlation is only approximate. We want to stack the deck in our favour as much as we can, by choosing mRNAs with huge gaps between the expression levels of interest. Even if we have protein, all the other aspects again reinforce the need for a high-margin feature. The bigger the margin, the bigger the likely robustness to all the various sources of error.

Remember this is not a proof or guarantee that a given marker will make a good test. It's rather an answer to the question: "How can we select markers that have the best possible chances of making it in the clinic?"

Relevant literature ideas: * That Livermore paper on small cardinality classifiers * That reference on cutpoint searching =; high FDR * Something about margins and performance? Surely Vaponik's early stuff will cover this.

Bad practice: * Median cut: * Examples of use: - http://www.biomedcentral.com/1756-0500/7/546 - http://breast-cancer-research.com/content/12/5/r85 * "Optimal" cut: * Examples of use: - http://clincancerres.aacrjournals.org/content/10/21/7252.full - http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0051862 * Statistical corrections: - http://www.mayo.edu/research/documents/biostat-79pdf/doc-10027230 (also lots of useful refs here) - https://books.google.com.au/books?id=KSq0e-6VFJ0Cpg=PA273lpg=PA273dq=log+rank+cut+pointssource=blots=0c07185Yb1sig=Y7g8m9U0LFensa = $Xei = Lj_6VJII1OPwBY7ZgZgEved = 0CEEQ6AEwBgv = onepageq = log-https://www.fdm.uni-freiburg.de/publications-preprints/preprints/papers/pre73.pdf-https://books.google.com.au/books?id = C753uzZztPACpg = PA423lpg = PA423dq = log+rank+optimal+cut+pointssource = blots = ay7uRwZ4sig=e4IF1oKV71mw8XYU5qUiSl7JQUISl$

$$f_M(s,y) = [p_n \ge l_n \land p_c \ge l_c]$$

$$p_n = \frac{\sum_i [s_i \land y_i]}{\sum_i [y_i]}$$

$$p_c = \frac{\sum_i [\neg s_i \land \neg y_i]}{\sum_i [\neg y_i]}$$

$$f_C(s, y) = [p_f \ge l_f]$$

 $p_f = TODO$

Data: An *n*-tuple of covariate measurements x, an *n*-tuple of associated dependent values y, a *m*-vector of candidate cutpoints c, and an objective function $f:(\mathbb{B}^n, \mathbb{Y}^n) \to \mathbb{B}$. x and c are to be in ascending order. The domain of y is given as \mathbb{Y}^n , as it varies between modes of Messina.

Result: If the fit failed, \varnothing . Otherwise, a tuple of two real values: (optimal classifier threshold, resultant classifier margin).

```
begin
```

```
// Evaluate the objective f on each threshold in c
    for i \leftarrow 1 to m do
       o_i^+ \longleftarrow f\left( [x_j \ge c_i] \right]_{j=1}^n, y;
o_i^- \longleftarrow f\left( [x_j < c_i] \right]_{j=1}^n, y;
    // If no threshold passed f, return \varnothing
    if o^+ \vee o^- is all false then
        return \emptyset;
    end
    // Search o^+ and o^- for the widest margin contiguous
         interval that passes f
    (t^+, \Delta^+) \longleftarrow \text{BestInterval}(o^+, c);
    (t^-, \Delta^-) \longleftarrow \text{BestInterval}(o^-, c);
    // Return the best of the o^+ and o^- results
    if \Delta^+ > \Delta^- then
         return (t^+, \Delta^+);
    else
         return (t^-, \Delta^-);
    end
end
```

Algorithm 1: MessinaCore

$$\begin{split} f_{\tau}(s,y) &= [p_{\tau} \geq l_{\tau}] \\ p_{\tau} &= \frac{\tau_{c} + \frac{1}{2}\tau_{t}}{\tau_{c} + \tau_{d} + \tau_{t}} \\ \tau_{c} &= \sum_{i}^{n} \sum_{j=i+1}^{n} [\tau_{vi} \land \neg (s_{i} = s_{j} \lor y_{t,i} = y_{t,j}) \land s_{i} = 1] \\ \tau_{d} &= \sum_{i}^{n} \sum_{j=i+1}^{n} [\tau_{vi} \land \neg (s_{i} = s_{j} \lor y_{t,i} = y_{t,j}) \land s_{i} = 0] \\ \tau_{t} &= \sum_{i}^{n} \sum_{j=i+1}^{n} [\tau_{vi} \land (s_{i} = s_{j} \lor y_{t,i} = y_{t,j})] \\ \tau_{vi} &= (y_{e,i} = 1 \lor y_{e,j} = 1) \land (y_{t,i} \geq y_{t,j} \lor y_{e,i} = 1) \end{split}$$

```
Data: o \in \mathbf{B}^m, c \in \mathbf{R}^m, x \in \mathbf{R}^n
Result: (c^* \in \mathbf{R}, \Delta^* \in [0, \infty))
begin
      \Delta^* \longleftarrow 0;
      c^* \longleftarrow 0;
      i \leftarrow 1;
      while i \leq m do
             if o_i is true then
                   r_L \longleftarrow \sup\{x_k \mid x_k \le c_i \land k \in \mathbb{N}^+ \land k \le n\};
                   \mathbf{for}\ j \leftarrow i\ \mathbf{to}\ m\ \mathbf{do}
                         if o_j is true then
                               r_R \longleftarrow \sup\{x_k \mid x_k \le c_j \land k \in \mathbb{N}^+ \land k \le n\};
                          \mathbf{else}
                                break;
                          \mathbf{end}
                   end
                   \Delta \longleftarrow r_R - r_L;
                   if \Delta > \Delta^* then
                         \Delta^* \longleftarrow \Delta;
                         c^* \longleftarrow r_L + \frac{1}{2}\Delta;
                   \mathbf{end}
                   i \longleftarrow j;
             end
             i \leftarrow i + 1;
      return (c^*, \Delta^*);
\mathbf{end}
```

Algorithm 2: BestInterval

$$f_{\tau'}(s, y) = \left[p'_{\tau} \ge l'_{\tau}\right]$$
$$p_{\tau'} = \frac{\tau_c}{\tau_c + \tau_d}$$

Figure 1.1: Operation of the BestInterval algorithm. Example values of a binary objective function o(t) are shown for a range of input thresholds t. At discrete points defined by observed data values (shown as dots), this objective function can transition, as an observed data point changes its value relative to t, and therefore its assigned class. Two regions in which o(t) = true are shown. BestInterval locates all such regions, selects the one with largest measure on t (margin), and returns its centre and margin as (t^*, Δ^*) . In this example, the centre and margin of region 2 would be returned. To ensure that o(t) is sampled at sufficient density, candidate thresholds c_1, c_2, \ldots are defined between all consecutive values, and beyond the extrema, of x; these are indicated by small arrows. Each c_i is associated with an o_i , as $o_i = o(c_i)$.

Appendices

Appendix A

R code to calculate MSKCC nomogram survival estimates

```
fit.mskcc = list(
        inputs = list(
        History.Diagnosis.AgeAt = list(
                margins = data.frame(value = 65, fraction = 1),
                scorefunc = function(x) { x = x; -2/15*pmin(pmax(
                   x, 0), 90) + 12 }),
        Patient.Sex = list(
                margins = data.frame(value = c("M", "F"),
                   fraction = c(0.501, 1-0.501),
                scorefunc = function(x) { 3*I(x == "M") }),
        Portal.Vein = list(
                margins = data.frame(value = c(TRUE, FALSE),
                   fraction = c(0.144, 1-0.144)),
                scorefunc = function(x) { 10*I(x == TRUE) }),
        Splenectomy = list(
                margins = data.frame(value = c(TRUE, FALSE),
                   fraction = c(0.099, 1-0.099)),
                scorefunc = function(x) { 62*I(x == TRUE) }),
        Treat.MarginPositive = list(
                margins = data.frame(value = c(TRUE, FALSE),
                    fraction = c(0.207, 1-0.207),
                scorefunc = function(x) { 4*I(x == TRUE) }),
       Path.LocationBody = list(
                margins = data.frame(value = c(FALSE, TRUE),
                   fraction = c(0.894, 1-0.894)),
                scorefunc = function(x) { 51*I(x == TRUE) }),
        Path.Differentiation = list(
```

```
margins = data.frame(value = c("1", "2", "3", "4"
           ), fraction = c(0.142, 0.564, 1-0.142-0.564,
           0)).
        scorefunc = function(x) { 14*I(x == "2") + 35*I(x
            == "3") + 35*I(x == "4") }),
           Undifferentiated (4) not covered by the MSKCC
            nomogram; here assign the same score as
           poorly differentiated (3)
Posterior.Margin = list(
        margins = data.frame(value = c(TRUE, FALSE),
           fraction = c(0.86, 1-0.86)),
        scorefunc = function(x) { 22*I(x == TRUE) }),
Path.LN.Involved = list(
        margins = data.frame(value = 2.1, fraction = 1),
        scorefunc = function(x) {
                x = pmin(40, pmax(x, 0))
                fitfun = splinefun(c(0, 1, 2, 3, 4, 10,
                   15, 20, 25, 30, 35, 40), c(0, 14.56,
                   24.64, 30.28, 33.00, 39.05, 43.89,
                   48.83, 53.77, 58.61, 63.55, 68.49),
                   method = "natural")
                fitfun(x)
        }),
Path.LN.Negative = list(
        margins = data.frame(value = 16.9, fraction = 1),
        scorefunc = function(x) { (pmin(pmax(x, 0), 90)
           -90)*-11/90 }),
Back.pain = list(
        margins = data.frame(value = c(TRUE, FALSE),
           fraction = c(0.137, 1-0.137)),
        scorefunc = function(x) { 15*I(x == TRUE) }),
Stage.pT.Simplified = list(
        margins = data.frame(value = c("T1", "T2", "T34")
            , fraction = c(0.037, 0.119, 1-0.037-0.119)),
        scorefunc = function(x) { 36*I(x == "T1") + 11*I(
           x == "T34") }),
        # The following matches the original Brennan
           nomogram, but was not used as there are too
        # tumours in either the NSWPCN *or* the MSKCC
           cohorts -- how the T4 coefficient was ever
            estimated,
        # I'll never know. The T34 coefficient of 11 was
            arrived at as (0.828*
```

```
10+(1-0.037-0.119-0.828)*63)/(1-0.037-0.119),
        # being a frequency-weighted average of the T3
            and T4 coefficients.
        \# margins = data.frame(value = c("T1", "T2", "T3")
            ", "T4"), fraction = c(0.037, 0.119, 0.828,
            1-0.037-0.119-0.828)),
        \# scorefunc = function(x) { 36*I(x == "T1") + 10*
           I(x == "T3") + 63*I(x == "T4") \}),
Weight.loss = list(
        margins = data.frame(value = c(TRUE, FALSE),
           fraction = c(0.537, 1-0.537)),
        scorefunc = function(x) { 3*I(x == TRUE) }),
Path.Size = list(
        margins = data.frame(),
        scorefunc = function(x) {
                x = pmin(16, pmax(x, 0))
                fitfun = splinefun(c(0, 1, 2, 3, 4, 6, 8,
                     10, 12, 14, 16), c(0, 29.74, 59.48,
                    86.70, 100, 97.29, 90.03, 82.77,
                    75.51, 68.25, 61.10), method = "
                    natural")
                fitfun(x)
        }) ),
outputs = list(
        DSS12mo = function(s) {
                x = pmax(50, pmin(350, s))
                fitfun = splinefun(c(79.0323, 115.02,
                    165.524, 197.278, 221.774, 242.339,
                    261.089, 279.839, 299.194, 323.992,
                    337.298), c(0.94, 0.9, 0.8, 0.7, 0.6,
                     0.5, 0.4, 0.3, 0.2, 0.1, 0.06)
                y = fitfun(x)
                pmax(0, pmin(1, y))
        },
        DSS24mo = function(s) {
                x = pmax(50, pmin(350, s))
                fitfun = splinefun(c(71.1694, 97.7823,
                    129.536, 153.73, 174.294, 193.347,
                    211.794, 231.452, 255.645, 303.125),
                    c(0.86, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3,
                     0.2, 0.1, 0.01))
                y = fitfun(x)
                pmax(0, pmin(1, y))
        },
```

```
DSS36mo = function(s) {
                         x = pmax(50, pmin(350, s))
                         fitfun = splinefun(c(69.3548, 101.109,
                             125.302, 145.867, 164.919, 183.367,
                             202.722, 226.915, 274.093), c(0.8,
                            0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1,
                             0.01))
                         y = fitfun(x)
                         pmax(0, pmin(1, y))
                })
        )
applyNomogram = function(nomogram, data)
        scores = rowSums(sapply(names(nomogram$inputs), function(
            input) {
                if (input %in% colnames(data)) {
                         return(nomogram$inputs[[input]]$scorefunc
                             (data[,input]))
                warning(sprintf("Marginalizing_{\sqcup}missing_{\sqcup}variable:_{\sqcup}
                    %s", input))
                margin_score = sum(nomogram$inputs[[input]]$
                    scorefunc(nomogram$inputs[[input]]$margins$
                    value) * nomogram$inputs[[input]]$margins$
                    fraction)
                return(rep(margin_score, nrow(data)))
        }))
        outputs = sapply(nomogram$outputs, function(f) f(scores))
        cbind(Score = scores, outputs)
}
```

Appendix B

Basis matrix W for the six survival-associated metagenes

	MG1	MG2	MG3	MG4	MG5	MG6
A4GALT	0.0295	0.0000	1.2977	0.0788	0.3625	0.5232
A4GNT	0.0000	0.7419	0.0483	0.0539	0.3720	0.0666
ABHD16A	0.6623	0.7249	0.0000	0.0000	0.5217	0.2210
ABHD5	0.1481	0.7473	0.0000	0.7478	0.3988	1.1727
ABLIM1	0.0145	0.9135	0.3159	0.0000	0.6066	0.3419
ACE	0.0333	0.8332	0.0536	0.0000	0.0000	0.1814
ACKR3	0.0029	0.0000	0.3821	0.3591	0.2080	0.5772
ACYP2	0.2481	0.8949	0.0000	0.2334	0.8454	0.4110
ADH1A	0.0730	0.4440	0.0052	0.1009	0.6614	0.0000
ADM	0.0000	0.0000	0.5168	0.5137	0.0000	0.3570
AGRP	0.0000	0.0000	0.0000	0.6786	0.0000	0.1744
AKIP1	0.6365	0.2394	0.6036	0.7118	0.7849	0.7168
AKR1A1	0.2470	1.0849	0.2633	0.2921	0.6588	0.4524
ALDH5A1	0.0988	0.9930	0.5463	0.0566	0.8968	0.2222
ALOX5AP	0.0525	0.0084	0.0147	1.2654	0.3441	0.7138
AMOT	0.0653	0.8246	0.1374	0.5176	0.4311	0.5705
ANGPTL2	0.0000	0.0000	0.3694	0.8726	0.1807	0.9222
ANGPTL4	0.1789	0.0000	0.4156	0.0461	0.0260	0.3906
ANKLE2	0.7503	0.1422	0.6238	0.5082	0.1879	0.3839
ANKRD22	0.4067	1.3536	0.1731	0.2672	0.0381	0.2229
ANKRD37	0.0562	0.1817	0.2150	0.7249	0.0129	0.5715

ANLN	1.1696	0.2368	0.0796	0.0772	0.0000	0.7203
APCDD1	0.0000	0.1375	0.1494	0.1308	0.5957	0.8366
APCS	0.0000	0.0306	0.1569	0.1001	0.1638	0.3521
ARFGAP3	0.0252	0.2988	0.5370	0.8377	0.4872	0.5353
ARHGAP24	0.0628	1.0614	0.0157	0.7487	1.1007	0.6209
ARHGEF19	0.0837	0.0833	1.2033	0.5242	0.4520	0.5071
ARL4C	0.0000	0.0171	0.3025	0.4910	0.2953	1.2264
ARSD	0.1550	1.2389	0.1919	0.0000	0.2154	0.1439
ASPM	1.1736	0.3897	0.2026	0.1743	0.0380	0.0396
ATAD2	0.9358	0.0696	0.1136	0.0265	0.1092	0.3070
ATF7IP2	0.0000	0.2019	0.1165	0.0000	0.0319	0.0000
ATL3	0.6429	0.0252	0.1566	0.4867	0.2467	0.2863
AURKB	1.0027	0.1107	0.1351	0.0000	0.0096	0.0000
AXIN2	0.0000	0.5221	0.4413	0.1313	0.8077	0.2911
B3GALTL	0.3601	0.3276	0.5636	0.3806	0.4898	0.7750
BAMBI	0.1091	0.0034	0.8430	0.3931	0.2428	0.1686
BBS2	0.2474	1.1417	0.0000	0.2202	1.0006	1.1598
BCKDK	0.2186	0.2923	0.8654	1.0655	0.4050	0.1090
BCL11B	0.1982	0.9231	0.2260	0.2401	0.4151	0.0000
BIRC5	1.3802	0.1694	0.3679	0.5452	0.0000	0.2427
BOC	0.0000	0.0000	0.3211	0.0000	1.6086	0.0000
BTN3A1	0.6641	0.7077	0.0729	0.2544	0.9928	0.2964
C1orf56	0.0000	0.8742	0.0000	0.3677	0.1145	0.3590
C1QTNF6	0.0000	0.0000	0.5885	0.6205	0.2234	0.9726
C2orf70	0.1081	1.0889	0.0206	0.0000	0.0000	0.0000
C5orf46	0.0000	0.0000	0.0000	1.0562	0.1278	1.0438
C9orf152	0.2087	1.3686	0.0000	0.3548	0.0206	0.0000
CA8	0.0000	0.6859	0.0502	0.0094	0.0536	0.0000
CACHD1	0.0000	0.6891	0.0153	0.0000	1.0768	0.4880
CADPS2	0.2591	1.2923	0.0000	0.5506	1.0209	0.5729
CAMK1G	0.0940	0.2377	0.0000	0.0316	0.8847	0.0000
CAPN6	0.0000	0.7541	0.0000	0.2282	0.6418	0.0000
CARHSP1	0.7535	0.5316	0.8652	0.8993	0.2633	0.0000
CATSPER1	0.1179	0.0000	0.9199	0.0000	0.0000	0.1046
CAV1	0.4195	0.0000	0.1925	0.0801	0.2714	0.8420
CCDC88A	0.0000	0.1729	0.4668	0.0109	0.8006	1.0201

CCL19	0.0000	0.0000	0.0000	0.0000	0.9529	0.0000
CCNB1	1.4334	0.4638	0.1274	0.2506	0.0155	0.3645
CCR7	0.0569	0.0000	0.0000	0.0000	1.0524	0.0000
CD70	0.0870	0.0000	0.2096	0.3612	0.0000	0.4343
CDA	0.2927	0.0000	0.3408	0.0000	0.0000	0.6991
CDC45	0.9608	0.0779	0.1086	0.3364	0.0336	0.0000
CDK12	0.1906	0.2755	0.0000	0.0788	0.8330	0.0000
CDK2	1.0635	0.2517	0.0111	0.5230	0.3310	0.3338
CEBPB	0.0729	0.0654	1.2909	0.5287	0.5065	0.8131
CEP55	1.4198	0.3340	0.0000	0.1690	0.0000	0.4555
CFDP1	0.3512	0.5466	0.7440	0.6706	0.0000	0.2594
CHAF1B	0.9890	0.2957	0.1997	0.0187	0.5165	0.0960
CHEK1	1.5161	0.1621	0.0000	0.0034	0.1080	0.2731
CHN2	0.0000	0.4963	0.0000	0.3389	0.4366	0.0000
CIDEC	0.0279	0.0000	0.4258	0.2777	0.0038	0.0000
CIDECP	0.1140	0.0232	0.5161	0.2795	0.1093	0.0000
CKAP2L	1.7829	0.2230	0.2724	0.0319	0.0000	0.0884
CLEC3B	0.0589	0.0691	0.1151	0.0110	0.8063	0.0000
CNIH3	0.0000	0.0591	0.0000	0.3178	0.0000	0.6014
CNNM1	0.0000	0.8666	0.4109	0.0000	0.0897	0.0000
COL12A1	0.0000	0.1328	0.0340	0.5329	0.1874	1.6461
COL5A3	0.0000	0.0000	0.1816	0.0351	0.0660	1.0286
COL7A1	0.0000	0.0000	0.5858	0.0000	0.0000	0.5878
COLGALT1	0.3987	0.1554	0.6227	0.4286	0.1646	0.8792
COLGALT2	0.0000	0.6011	0.0000	0.0199	0.0000	0.0000
COX4I2	0.0000	0.1744	0.0740	0.0000	0.9855	0.3346
CSNK1D	0.2122	0.3756	1.5627	0.4799	0.1570	0.2284
CST6	0.0651	0.0000	0.2022	0.0000	0.0690	0.6328
CTSL	0.3897	0.0000	0.1976	1.1757	0.4702	0.2240
CTSV	0.3015	0.0439	0.2623	0.0203	0.0194	0.1819
CYP2S1	0.3223	1.0232	0.1543	0.0000	0.0927	0.0000
DCAF8	0.0000	1.1369	0.4818	0.1094	0.5277	0.1875
DCBLD2	0.4024	0.0000	0.1236	0.0000	0.1426	0.8437
DCUN1D5	1.3599	0.0751	0.0000	0.8575	0.9561	0.7193
DENND1A	0.8191	0.0000	0.2458	0.1898	0.0000	0.1782
DERA	1.1839	0.1952	0.4571	0.6042	0.2890	0.3195

DHRS9	0.0000	0.0000	0.9957	0.3426	0.0000	0.1699
DKK1	0.4779	0.0000	0.2976	0.1847	0.0000	0.0242
DNAJC9	0.7779	0.1108	0.3734	0.1159	0.1329	0.1528
DPY19L1	0.3414	0.3625	0.2993	0.5360	0.0781	0.5087
DSG2	0.4320	0.5696	0.1794	0.5147	0.0387	0.7066
DSG3	0.1766	0.0000	0.2140	0.0000	0.0000	0.5384
DYNC2H1	0.0000	1.6131	0.1497	0.0000	0.7591	0.6693
E2F7	1.0366	0.0000	0.0315	0.0222	0.0000	0.5360
EDIL3	0.0000	0.0000	0.0000	0.8576	0.0121	0.8163
EIF2AK3	0.1806	1.2690	0.0000	0.3842	0.6143	0.3321
ELMOD3	0.0000	1.1608	0.6902	0.3859	0.5348	0.0874
EMP3	0.2499	0.0000	0.4619	0.1582	0.2170	0.5646
ENO2	0.3608	0.3375	0.7898	0.0339	0.0000	0.9442
EPHX2	0.0000	0.5912	0.1080	0.1660	0.6761	0.0000
ERRFI1	0.1599	0.0301	0.5475	0.3478	0.2866	0.7895
EXOSC8	0.9336	0.6010	0.2789	1.0216	0.3682	0.1481
EYA3	0.0000	0.0869	0.5323	0.0000	0.0000	0.9120
FAH	0.6763	0.4158	0.3555	0.2131	0.3240	0.3914
FAM120AOS	0.1803	1.0488	0.0000	0.2845	0.7143	0.5698
FAM134B	0.0000	0.8232	0.0000	0.2342	0.2083	0.0000
FAM189A2	0.0000	1.0020	0.0000	0.0213	0.1143	0.0000
FAM83A	0.2461	0.0000	0.1165	0.0000	0.0000	0.2211
FAM91A1	0.9811	0.1968	0.1603	0.7865	0.0000	0.2703
FBXO22	0.5017	0.3643	0.0000	0.5761	0.0000	0.3137
FBXW8	0.2492	0.2604	0.6553	0.9331	0.1844	0.3307
FEM1B	0.3031	0.3008	0.0000	0.0017	0.0838	1.4170
FER	0.4975	0.1005	0.1802	0.4440	0.1792	0.8664
FGB	0.0000	0.0000	0.0170	0.3212	0.0000	0.0818
FGD6	0.5544	0.0000	0.1308	0.1418	0.0000	0.4991
FGG	0.0548	0.0379	0.0000	0.1372	0.0068	0.2157
FHDC1	0.1771	1.2361	0.2174	0.0189	0.0000	0.0512
FLRT3	0.7913	0.1342	0.5121	0.2846	0.2220	0.3125
FRZB	0.0889	0.2374	0.0000	0.5404	1.4969	0.0017
FSCN1	0.3709	0.0737	1.0622	0.1342	0.1423	0.7358
FST	0.0000	0.0000	0.1578	0.0000	0.0414	0.4947
FYN	0.0127	0.5194	0.1203	0.1287	1.6862	0.8654

GAB2	0.0435	0.7351	0.3850	0.6361	1.3628	0.2664
GABPB1	0.7363	0.1963	0.0000	0.7422	0.2159	0.6724
GAPDH	0.4758	0.3945	0.8305	0.2369	0.0000	0.7231
GATA6	0.0534	0.8827	0.0860	0.1396	0.1932	0.0000
GATC	1.0220	0.1104	0.0000	0.4818	0.0723	0.4716
GIMAP2	0.1486	0.7215	0.0000	0.6567	0.7701	0.0000
GINS2	1.0803	0.1777	0.3933	0.0729	0.0000	0.0000
GNPAT	0.1710	0.9518	0.1369	0.4352	0.1758	0.1925
GOLM1	0.0000	0.7145	0.1203	0.0488	0.0000	0.0000
GPC3	0.0980	0.2322	0.0000	0.0000	1.2713	0.0000
GPR176	0.4324	0.3072	0.0000	0.7415	0.3745	0.5882
HIPK2	0.2587	1.2502	0.0694	0.2371	0.5213	0.0000
HJURP	1.3269	0.2436	0.2326	0.0210	0.0000	0.0000
HRASLS2	0.3273	0.0000	0.3045	0.2167	0.0000	0.0000
HSP90B1	0.5274	0.4642	0.7758	0.8972	0.2977	0.3795
HSPB6	0.0000	0.1493	0.1298	0.0000	1.3081	0.3131
ICAM2	0.5013	0.1959	0.4755	0.3105	0.4043	0.1342
IDH2	0.7131	0.4322	0.3970	0.2145	0.3314	0.2342
IFT140	0.0000	1.0890	0.5193	0.0000	0.2592	0.0662
IGFBP1	0.2708	0.0000	0.2323	0.0327	0.0000	0.0058
IGLL3P	0.1660	0.1496	0.0000	0.0000	0.7633	0.0000
IKBIP	0.2893	0.0000	0.3028	1.1219	0.1455	0.4694
IL1R2	0.0377	0.2543	0.4285	0.2301	0.0000	0.0605
IL20RB	0.2578	0.0000	0.3094	0.0000	0.0000	0.6805
IL33	0.2369	0.0436	0.0000	0.1304	0.6759	0.0000
ITGA5	0.0000	0.0000	0.4758	0.2666	0.1206	0.6815
ITPKB	0.0000	0.8315	0.6059	0.0000	1.1923	0.6724
KANK4	0.0000	0.0000	0.1981	0.4683	0.0000	1.2292
KCNQ3	0.0000	0.1296	0.1721	0.7768	0.0916	0.5160
KCTD10	0.3776	0.1324	0.2867	0.4387	0.5081	0.7943
KCTD5	0.3848	0.5133	1.1253	0.6056	0.0000	0.0000
KIAA0513	0.0828	1.0351	0.1715	0.3220	0.5910	0.0000
KIAA1549L	0.3755	0.0812	0.2646	0.6647	0.1501	0.6423
KIF14	1.1244	0.3648	0.1952	0.4293	0.0000	0.1264
KIF20A	1.3726	0.2864	0.2082	0.2320	0.0000	0.2888
KIF2C	0.7952	0.1329	0.1096	0.0074	0.0000	0.0000

KLHL5	0.4215	0.1645	0.0000	0.3538	0.6955	1.1410
KNTC1	1.0718	0.1383	0.4419	0.0827	0.1499	0.2787
KRT17	0.2860	0.0000	0.3863	0.1586	0.1201	0.5074
KRT6A	0.1386	0.0000	0.1202	0.0000	0.0000	0.4668
KRT6C	0.1187	0.0000	0.0000	0.0000	0.0000	0.1640
KRT7	0.4597	0.0020	0.5620	0.0000	0.1354	0.4370
KYNU	0.6104	0.0894	0.0693	0.5431	0.0000	0.2790
LAMA5	0.3670	0.0772	1.0234	0.0000	0.3418	0.1832
LCNL1	0.1072	0.2829	0.0115	0.2669	0.5289	0.0000
LDHA	0.6526	0.4664	0.0000	0.3186	0.0504	1.1696
LETM2	0.4402	0.0000	0.3924	0.0000	0.0000	0.2831
LGALS9B	0.1106	1.0239	0.0000	0.0000	0.3463	0.4913
LINC01184	0.6331	0.8045	0.0000	0.3418	0.8076	0.0000
LMO3	0.0000	0.1062	0.0000	0.0090	1.1796	0.0136
LMTK2	0.7364	0.3642	0.3100	0.5254	0.0204	0.2425
LOC100506562	0.5772	0.2935	0.6002	0.6045	0.1075	0.1108
LOX	0.2078	0.0000	0.0806	0.3896	0.0866	0.9212
LYNX1	0.0337	0.0000	0.2575	0.1651	0.0000	0.0951
MAP3K8	0.1984	0.0000	0.0681	0.3075	0.5588	0.4348
MARCKSL1	0.1504	1.3374	0.2978	0.0000	0.0000	0.2627
MARS2	0.7481	1.0181	0.0000	0.4007	0.4981	0.0000
MC1R	0.1042	0.1313	1.0794	0.8656	0.4740	0.1335
MCEMP1	0.0000	0.0000	0.0000	0.6056	0.0000	0.2992
MCM10	1.1446	0.1414	0.0000	0.0141	0.0000	0.0808
MCM4	1.2790	0.1411	0.3090	0.0254	0.0103	0.1276
MCOLN2	0.1988	0.2778	0.0000	0.0000	0.9442	0.0000
MELK	1.0177	0.2864	0.0000	0.2322	0.0133	0.2208
MEOX1	0.0000	0.0536	0.1642	0.0438	0.9639	0.0000
MIF	0.4348	0.3316	0.9576	0.4402	0.0008	0.6845
MIR99AHG	0.0371	0.2791	0.3859	0.4466	1.7947	0.2232
MME	0.0009	0.0000	0.0640	0.4532	0.0419	0.5791
MRAP2	0.0430	0.7825	0.0000	0.2177	0.2314	0.0000
MRPL24	0.1643	1.1324	0.2156	0.1207	0.2213	0.1778
MTRNR2L1	0.2795	0.5589	0.4897	0.0719	0.5523	0.0000
NACC2	0.5312	0.0000	0.7176	0.2474	0.0000	0.1055
NAMPT	0.3355	0.0000	0.0493	0.7543	0.3154	0.3500

NCAPD2	1.3843	0.4110	0.1605	0.1233	0.2041	0.3231
NCAPG	1.6056	0.4449	0.0000	0.0000	0.0000	0.5243
NELFE	0.9382	0.2255	0.5894	0.8561	0.3602	0.0798
NEURL2	0.6888	0.1217	0.0000	0.2556	0.7216	0.4336
NFIA	0.1194	0.8389	0.0000	0.3854	1.5045	0.2708
NFIX	0.0000	0.8819	0.1383	0.0000	1.3919	0.7968
NMB	0.2126	0.1909	0.6634	0.7944	0.0000	0.3640
NPM1	0.0000	1.0465	0.0000	0.0029	0.0826	0.0446
NR0B2	0.0000	0.8362	0.0000	0.0000	0.1422	0.0000
NRP2	0.1462	0.0000	0.4996	0.0000	0.0000	0.0534
NUP155	1.1296	0.4140	0.0620	0.3285	0.2288	0.4554
OAZ1	0.8583	0.5931	0.6573	1.1219	0.5151	0.5871
ORC1	0.9777	0.3231	0.1638	0.9547	0.1157	0.0101
P2RY2	0.1789	0.0331	0.7738	0.2163	0.0000	0.5005
P2RY8	0.2334	0.0728	0.0000	0.2788	1.6555	0.0000
P4HA1	0.0430	0.1009	0.4121	0.8384	0.0000	0.5460
P4HA2	0.3225	0.1659	0.1245	0.5449	0.1088	0.7371
PAX8	0.7680	0.0000	0.5631	0.0000	0.0000	0.0000
PAX8-AS1	0.5656	0.0447	0.3435	0.0750	0.0071	0.0000
PBXIP1	0.0000	0.5144	0.4130	0.0000	0.4392	0.1667
PCDH20	0.0000	0.4318	0.0000	0.1465	0.0000	0.0000
PCF11	0.2613	0.9351	0.2527	0.0950	1.1086	0.4077
PCOLCE2	0.0000	0.0076	0.1188	0.5379	0.0000	0.0542
PDLIM7	0.1954	0.0000	0.4086	0.3731	0.1144	0.6779
PEX11B	0.1066	1.3518	0.0000	0.5264	0.2883	0.2455
PFKFB4	0.5485	0.2199	0.6769	0.4272	0.1428	0.2854
PGAM5	0.9213	0.0000	0.3859	0.4866	0.0000	0.0000
PGBD3	0.6174	0.3626	0.4335	0.2008	0.5630	0.7384
PHACTR3	0.1489	0.0000	0.3225	0.1416	0.0026	0.0728
PHLDA1	0.0838	0.1387	0.7170	0.1250	0.6249	1.5017
PHOSPHO2	0.3445	1.0681	0.0000	0.4652	0.4054	0.0514
PIGL	1.0637	0.1481	0.5587	0.3049	0.2423	0.0000
PLAC9	0.0707	0.0000	0.0000	0.1090	1.2901	0.0766
PLAU	0.2139	0.0000	0.2764	0.0000	0.0249	0.8793
PLEKHS1	0.0000	0.6411	0.3407	0.0862	0.2791	0.0176
PLIN2	0.3057	0.0000	0.0818	1.0167	0.4683	0.2095

PLIN3	0.3365	0.2607	0.9673	0.9320	0.1395	0.4103
PLOD1	0.0595	0.0000	1.2074	0.7504	0.3668	0.8026
PLOD2	0.1489	0.0922	0.2366	0.2919	0.1729	0.8899
POC1A	1.3753	0.3309	0.3179	0.4709	0.0000	0.0000
POLA2	0.8413	0.2234	0.3296	0.1331	0.2137	0.0000
POP5	0.5635	0.5070	1.5160	0.2263	0.1092	0.1799
POU2AF1	0.0611	0.4732	0.0000	0.0007	0.9240	0.0000
PP7080	0.1047	0.9680	0.0000	0.0371	0.0000	0.0000
PPAPDC1A	0.0000	0.0000	0.0000	0.7582	0.0000	1.2230
PPM1H	0.0000	0.8512	0.4600	0.2700	0.2363	0.0000
PPP1R12B	0.1652	0.3193	0.7825	0.6308	0.0253	0.4910
PPP1R14B	0.3673	0.2586	0.7846	0.0000	0.3651	0.5928
PPP1R3C	0.0000	0.0160	0.1325	0.3710	0.0256	0.2554
PPY	0.0000	0.4957	0.0000	0.0805	1.0771	0.0000
PRC1	0.9560	0.3521	0.0407	0.0375	0.0000	0.3200
PRDM16	0.0000	1.1224	0.0000	0.0000	0.5289	0.0867
PREP	0.0587	0.9830	0.3047	0.1977	0.0203	0.0000
PRKCDBP	0.2571	0.0000	1.0161	0.5090	0.2613	0.5936
PRMT7	0.1393	1.5003	0.4373	0.0000	0.1793	0.2230
PROSER2	0.9335	0.1760	0.4026	0.3736	0.2680	0.3965
PRR11	0.8207	0.0503	0.2272	0.0000	0.0000	0.0934
PTGES	0.5703	0.0160	0.5702	0.0681	0.0000	0.5634
PTPN21	0.2722	0.1714	0.3219	0.4864	0.2674	0.8423
PXDN	0.0000	0.0000	0.3795	0.5917	0.3108	1.1884
PYGL	0.0808	0.0000	0.3079	0.3384	0.1413	0.7445
RAB31	0.1110	0.0000	0.2586	0.8745	0.7552	1.1882
RACGAP1	1.3720	0.3729	0.1382	0.1936	0.0734	0.3348
RALGAPB	0.9974	0.5032	0.2879	0.7587	0.2585	0.7977
RAP1GAP	0.0000	1.0067	0.4657	0.2773	0.7542	0.0000
RASL11B	0.0000	0.1852	0.0682	0.2236	1.2121	0.3095
RAVER2	0.1985	0.9070	0.0534	0.0890	0.2667	0.0577
RBMS2	0.6118	0.1541	0.0000	0.4022	0.3184	0.8946
RERE	0.0485	0.7372	0.6212	0.0026	0.9874	0.4207
RERGL	0.2378	0.0000	0.0000	0.1054	1.1842	0.0000
RFC5	1.0809	0.2444	0.0000	0.5248	0.1556	0.3147
RFK	0.0000	0.6594	0.1169	0.0000	0.4342	0.2100

RFX2	0.0000	0.2219	0.2372	0.0000	0.4551	0.2959
RGS3	0.2370	0.1243	0.0000	0.8096	0.2269	0.3212
RGS5	0.0000	0.4317	0.0455	0.0788	0.5794	0.0934
RHOF	0.7466	0.1749	0.4760	0.1428	0.0000	0.5878
RMND5A	0.2696	0.1188	0.2601	0.7065	0.0000	0.0750
RNF103	0.0344	1.2504	0.1672	0.5545	0.2894	0.0635
RPA2	0.4727	0.6964	0.7005	0.4129	1.4239	0.2443
RPIA	0.4609	1.3515	0.2200	0.1918	0.4584	0.0000
SAMD5	0.1340	0.5397	0.0000	0.0000	0.0860	0.0000
SCGB2A1	0.0000	0.8288	0.0000	0.1826	0.1547	0.0000
SCYL2	0.7048	0.3901	0.0000	0.9782	0.4060	0.9614
SDIM1	0.0000	0.0455	0.2422	0.0000	0.5017	0.0000
SEC23IP	0.3380	1.2955	0.0000	0.5310	0.3578	0.4605
SELENBP1	0.0000	1.2032	0.3621	0.2011	0.2603	0.0000
SEPW1	0.0349	0.9518	1.2360	0.0000	0.6293	0.5568
SERPINB3	0.0000	0.0000	0.1755	0.1787	0.0000	0.0506
SERPINH1	0.0000	0.0115	0.3898	0.2169	0.4300	1.0203
SERTAD2	0.2931	0.1441	0.8991	0.9858	0.4859	0.4437
SGSM1	0.0000	0.9290	0.0817	0.0211	0.8410	0.0000
SH3GL1	0.1173	0.1075	1.0090	1.2494	0.2155	0.0000
SLAMF9	0.0435	0.0000	0.0000	0.6663	0.0000	0.0657
SLC12A2	0.0380	0.9089	0.3449	0.0968	0.4855	0.1821
SLC15A1	0.0000	0.0000	0.4779	0.0000	0.0569	0.0565
SLC16A3	0.1282	0.3828	1.1047	0.4222	0.0000	0.9957
SLC2A1	0.1786	0.1209	0.9980	0.4099	0.0000	0.7045
SLC2A3	0.0000	0.0000	0.3369	0.7592	0.3268	0.7204
SLC30A3	0.4502	0.5017	0.0822	0.2136	0.6568	0.0654
SLC40A1	0.0000	0.8927	0.0000	0.5789	0.2440	0.1550
SMOX	0.3692	0.2900	1.4313	0.9987	0.1840	0.0000
SNORA11D	0.0849	0.2729	0.4795	0.4375	0.0039	0.2687
SNRPB	0.9900	0.0786	0.4143	0.9037	0.0238	0.0000
SOBP	0.0000	0.1979	0.8103	0.1044	1.3581	0.0039
SOD2	0.5780	0.1207	0.0000	0.4656	0.4023	0.1652
SPHK1	0.2590	0.0000	0.2748	0.0907	0.6221	1.4095
SPIN4	0.8495	0.3236	0.7960	0.3855	0.2224	0.3985
SPOCD1	0.0000	0.0000	0.1782	0.2094	0.0000	0.7594

SPOCK1	0.1196	0.0000	0.0293	0.5189	0.3390	1.2727
SPP1	0.0294	0.0805	0.0000	1.0413	0.3073	0.7357
ST3GAL2	0.3414	0.0000	0.8015	1.0746	0.4432	0.0000
ST6GAL1	0.1717	0.8423	0.0000	0.2289	0.6651	0.0916
ST6GALNAC1	0.0396	0.9957	0.0803	0.1154	0.0000	0.1050
STAT5B	0.0000	0.9053	0.3202	0.0618	1.3050	0.2213
STK39	0.1526	0.9966	0.2351	0.1373	0.0838	0.1226
SUGCT	0.0000	0.0321	0.0000	0.6297	0.1256	0.9331
SULF2	0.1725	0.1513	0.4552	0.1878	0.3858	0.7665
SYNE2	0.0000	0.8824	0.2432	0.0000	0.2767	0.2763
TAF5L	0.2232	1.0626	0.1753	0.2440	0.2327	0.2249
TARBP2	0.6779	0.3829	1.2178	0.6116	0.1843	0.0000
TCEA3	0.0000	0.8898	0.2645	0.0922	0.6204	0.0000
TCTA	0.0000	0.7508	0.8167	0.0875	0.9836	0.0178
TGFBI	0.1874	0.0000	0.1522	0.1879	0.0548	0.9986
THSD7B	0.0859	0.2031	0.0000	0.2900	0.9574	0.1114
TLE4	0.0509	0.8787	0.0746	0.3315	0.8984	0.4660
TM9SF3	0.0000	1.0785	0.2190	0.0000	0.1641	0.2114
TMED1	0.2561	0.3378	1.1457	0.8311	0.4929	0.2755
TMEM26	0.0407	0.0237	0.1028	0.4886	0.2223	1.4490
TMTC4	0.0000	1.2865	0.3348	0.2090	0.1995	0.2756
TNFRSF10D	0.1474	0.1117	0.6603	0.4579	0.0000	0.1751
TNFRSF17	0.0258	0.0455	0.0000	0.0803	0.5772	0.0000
TNFRSF6B	0.6268	0.0000	0.0684	0.1841	0.0000	0.3940
TOM1	0.0000	0.1032	1.4892	0.8140	0.6813	0.5236
TOM1L2	0.1892	0.0000	0.6276	0.3305	0.0489	0.2346
TOR2A	0.0000	0.9859	0.4755	0.2012	0.5273	0.0000
TPD52L2	0.6311	0.1617	1.3107	0.6501	0.4351	0.2322
TPX2	1.3192	0.1540	0.0351	0.1488	0.0392	0.1087
TRAPPC2	0.5080	1.0792	0.0000	0.4917	0.6155	0.1418
TREM1	0.0472	0.0000	0.0870	0.7055	0.0000	0.3006
TRERF1	0.4920	0.2861	0.3810	0.1345	0.0517	0.1346
TRIM2	0.1310	1.1544	0.3127	0.3092	0.3595	0.0000
TSTD1	0.1685	1.2229	0.4834	0.0685	0.4502	0.0191
TUBA1C	1.3100	0.5454	0.5360	0.5305	0.2711	0.5032
TWIST1	0.0000	0.0000	0.1970	0.9070	0.1202	1.2015

UFC1	0.0000	1.1861	0.2466	0.4651	0.2997	0.0000
UHRF2	0.1520	0.2931	0.3251	0.4968	0.6565	1.1025
UPP1	0.5505	0.0000	0.7864	0.4294	0.1567	0.1100
USP30	0.5449	0.1353	0.3862	0.0000	0.0771	0.0000
VPS35	0.3941	1.3902	0.0000	0.5311	0.0000	0.2457
VSTM2L	0.3176	0.0000	0.9398	0.0000	0.0509	0.0656
WNT2B	0.0885	0.1107	0.0000	0.0139	0.4530	0.0000
XXYLT1	0.2408	0.0000	1.0488	1.0782	0.4595	0.8654
ZBED2	0.1569	0.0000	0.1800	0.0000	0.0000	0.6435
ZFPM1	0.0000	1.2172	0.2917	0.0000	0.4340	0.1504
ZNF185	0.2542	0.1747	1.0210	0.4834	0.0000	0.7221
ZNF565	0.0701	0.2851	0.0717	0.0569	0.2393	0.0768
ZNF658	0.0000	0.8769	0.0000	0.0000	0.9099	0.2753
ZPLD1	0.0000	0.0000	0.1873	0.0325	0.0294	0.1074
ZSCAN16	0.3012	1.4502	0.0000	0.0175	0.5146	0.5090
ZSCAN32	0.3467	1.1558	0.4982	0.3027	0.7286	0.2378

Appendix C

MSigDB signatures correlated with axis A1

Table C.1: MSigDB signatures substantially correlated with activity of the prognostic axis A1.

MSigDB set	A1 correlation
c5.M_PHASE / c5.MITOSIS /	
$c5.M_PHASE_OF_MITOTIC_CELL_CYCLE$	0.689
$c5.REGULATION_OF_MITOSIS$	0.682
c4.GNF2_RFC3 / c4.GNF2_RFC4 / c4.GNF2_SMC2L1 /	
c4.GNF2_CKS1B / c4.GNF2_CKS2 / c4.GNF2_TTK	0.664
c5.CELL_CYCLE_PROCESS /	
c5.MITOTIC_CELL_CYCLE /	
c5.CELL_CYCLE_PHASE	0.653
c5.SPINDLE	0.644
c4.MORF_BUB1B	0.631
c6.CSR_LATE_UP.V1_SIGNED	0.630
c5.SPINDLE_POLE	0.628
c2.PID_PLK1_PATHWAY	0.626
c5.ORGANELLE_PART /	
$c5.INTRACELLULAR_ORGANELLE_PART$	0.624
$c2.REACTOME_CELL_CYCLE$ /	
c2.REACTOME_CELL_CYCLE_MITOTIC	0.622

Table C.1 – continued from previous page

Table C.1 – continued from previous page	
MSigDB set	A1 correlation
${\rm c2.REACTOME_CYCLIN_A_B1_ASSOCIATED_}$	
EVENTS_DURING_G2_M_TRANSITION	0.604
${\tt c2.REACTOME_MITOTIC_PROMETAPHASE}$	0.596
$c2.KEGG_CELL_CYCLE$	0.588
$c5.CHROMOSOME_SEGREGATION$	0.588
c4.MORF_FEN1	0.586
${\tt c2.REACTOME_G1_S_SPECIFIC_TRANSCRIPTION}$	0.585
${\rm c2.REACTOME_ACTIVATION_OF_THE_}$	
PRE_REPLICATIVE_COMPLEX /	
${\rm c2.REACTOME_ACTIVATION_OF_ATR_}$	
IN_RESPONSE_TO_REPLICATION_STRESS /	
${\rm c2.REACTOME_G2_M_CHECKPOINTS}$	0.583
$c2.REACTOME_E2F_ENABLED_INHIBITION_OF_$	
PRE_REPLICATION_COMPLEX_FORMATION	0.581
$c2.REACTOME_E2F_MEDIATED_REGULATION_OF_$	
DNA_REPLICATION	0.577
c5.CELL_CYCLE_GO_0007049	0.576
c2.REACTOME_KINESINS	0.575
c3.V\$ELK1_02	0.574
$c5.SPINDLE_MICROTUBULE$	0.573
c5.MITOTIC_CELL_CYCLE_CHECKPOINT	0.569
c2.REACTOME_CELL_CYCLE_CHECKPOINTS /	
c2.REACTOME_G1_S_TRANSITION /	
c2.REACTOME_SYNTHESIS_OF_DNA /	
c2.REACTOME_MITOTIC_G1_G1_S_PHASES /	
c2.REACTOME_MITOTIC_M_M_G1_PHASES /	
c2.REACTOME_DNA_REPLICATION /	
c2.REACTOME_S_PHASE	0.566
c4.MORF_ESPL1	0.566
c4.MORF_BUB1	0.565
c4.MORF_BUB3/c4.MORF_RAD23A	0.563
c5.CONDENSED_CHROMOSOME	0.562
c4.MORF_RFC4/c4.MORF_RRM1	0.561
C4.MOIII _1(1 O4/ C4.MOIII _1(1(MI	0.901

Table C.1 – continued from previous page

MSigDB set	A1 correlation
c2.BIOCARTA_G2_PATHWAY	0.559
$c3.SCGGAAGY_V\$ELK1_02$	0.558
c2.PID_AURORA_A_PATHWAY	0.556
${\tt c5.MITOTIC_SISTER_CHROMATID_SEGREGATION} \ / \\$	
$c5. SISTER_CHROMATID_SEGREGATION$	0.555
$c4.MORF_UNG$	0.554
c2.PID_FOXM1PATHWAY	0.551
c4.MORF_GSPT1	0.550
${\rm c2.REACTOME_METABOLISM_OF_NUCLEOTIDES}$	0.550
c2.PID_ATR_PATHWAY	0.547
c2.BIOCARTA_MCM_PATHWAY	0.546
c4.MORF_CCNF	0.544
$c5.CELL_CYCLE_CHECKPOINT_GO_0000075$	0.543
$c5.MITOTIC_SPINDLE_ORGANIZATION_AND_$	
BIOGENESIS /	
$c5. SPINDLE_ORGANIZATION_AND_BIOGENESIS$	0.542
c4.MORF_EI24	0.538
c5.DOUBLE_STRAND_BREAK_REPAIR	0.537
$c4.GNF2_PA2G4/c4.GNF2_RAN$	0.531
${\rm c2.REACTOME_G2_M_DNA_DAMAGE_CHECKPOINT}$	0.531
$c2.KEGG_PYRIMIDINE_METABOLISM$	0.531
c4.MORF_GMPS	0.528
c4.MORF_PRKDC	0.528
c2.PID_BARD1PATHWAY	0.528
c4.GNF2_MCM5	0.525
c4.MORF_DNMT1	0.524
c2.REACTOME_POL_SWITCHING	0.523
c4.GNF2_MSH2	0.521
c4.MORF_CSNK2B	0.520
c2.PID_AURORA_B_PATHWAY	0.520
c2.REACTOME_DESTABILIZATION_OF_MRNA_BY_KSRP	0.517
c5.DNA_METABOLIC_PROCESS	0.517
c4.MORF_PTPN11	0.516

Table C.1 – continued from previous page

MSigDB set	A1 correlation
$c5.REGULATION_OF_MITOTIC_CELL_CYCLE$	0.516
$c5.RESPONSE_TO_ENDOGENOUS_STIMULUS /$	
$c5.RESPONSE_TO_DNA_DAMAGE_STIMULUS$	0.515
c5.CHROMOSOMEPERICENTRIC_REGION $/$	
c5.KINETOCHORE	0.514
c6.MTOR_UP.V1_SIGNED	0.512
c2.REACTOME_APOPTOSIS	0.510
c4.MORF_PPP1CC	0.509
c5.PORE_COMPLEX/c5.NUCLEAR_PORE	0.508
c5.DNA_REPAIR	0.506
${\rm c2.REACTOME_CHROMOSOME_MAINTENANCE} \; / \;$	
${\rm c2.REACTOME_TELOMERE_MAINTENANCE}$	0.506
c5.MACROMOLECULAR_COMPLEX /	
c5.PROTEIN_COMPLEX	0.506
c4.MORF_XRCC5/c4.MORF_GNB1	0.504
c5.INTERPHASE /	
$c5.INTERPHASE_OF_MITOTIC_CELL_CYCLE$	0.503
$c5.NON_MEMBRANE_BOUND_ORGANELLE$ /	
${\tt c5.INTRACELLULAR_NON_}$	
${\tt MEMBRANE_BOUND_ORGANELLE}$	0.503
c6.GCNP_SHH_UP_EARLY.V1_SIGNED	0.503
c2.BIOCARTA_RANMS_PATHWAY	0.502
c2.KEGG_DNA_REPLICATION /	
${\rm c2.REACTOME_DNA_STRAND_ELONGATION}$	0.502
c4.MORF_SOD1	0.502
c5.NUCLEAR_MEMBRANE /	
c5.NUCLEAR_MEMBRANE_PART	0.501
c4.MORF_HDAC1	0.501
c2.REACTOME_HIV_LIFE_CYCLE /	
c2.REACTOME_LATE_PHASE_OF_HIV_LIFE_CYCLE	0.500
$c5. CHROMOSOMAL_PART/c5. CHROMOSOME$	0.500
c5.PHOSPHORIC_DIESTER_HYDROLASE_ACTIVITY	-0.502
c3.CTGCAGY_UNKNOWN	-0.505

Table C.1 – continued from previous page

MSigDB set	A1 correlation
c3.V\$OCT1_01	-0.509
$c3.\mathrm{V\$GATA_Q6}$	-0.515
$c5. CELL_SURFACE_RECEPTOR_LINKED_$	
$SIGNAL_TRANSDUCTION_GO_0007166$	-0.518
c4.GNF2_MAPT	-0.526
c3.V\$OCT1_04	-0.531
${\rm c2.REACTOME_G_ALPHA_S_SIGNALLING_EVENTS}$	-0.539
$c3.V\$OCT_C$	-0.544

Appendix D

MSigDB signatures correlated with axis A2

Table D.1: MSigDB signatures substantially correlated with activity of the prognostic axis A2.

MSigDB set	A2 correlation
c2.PID_INTEGRIN1_PATHWAY	0.654
c2.PID_INTEGRIN3_PATHWAY	0.637
$c2.PID_UPA_UPAR_PATHWAY$	0.597
c4.GNF2_PTX3	0.593
${\rm c2.KEGG_ECM_RECEPTOR_INTERACTION}$	0.582
${ m c2.PID_INTEGRIN5_PATHWAY}$	0.577
c4.GNF2_MMP1	0.575
${\rm c2.REACTOMe_EXTRACELLULAR_MATRIX_}$	
ORGANIZATION /	
${\rm c2.REACTOME_COLLAGEN_FORMATION}$	0.572
$c5.AXON_GUIDANCE$	0.571
$c2.KEGG_FOCAL_ADHESION$	0.567
$c2.PID_SYNDECAN_1_PATHWAY$	0.552
$c2.REACTOME_CELL_EXTRACELLULAR_$	
MATRIX_INTERACTIONS	0.538
c2.PID_INTEGRIN_CS_PATHWAY	0.536
c5.TISSUE_DEVELOPMENT	0.536

Table D.1 – continued from previous page

MSigDB set	A2 correlation
c5.COLLAGEN	0.531
c6.CORDENONSI_YAP_CONSERVED_SIGNATURE	0.526
c6.LEF1_UP.V1_SIGNED	0.519
${\rm c2.REACTOME_INTEGRIN_CELL_SURFACE_}$	
INTERACTIONS	0.518
c5.AXONOGENESIS /	
$c5.CELLULAR_MORPHOGENESIS_$	
DURING_DIFFERENTIATION	0.515
c6.STK33_NOMO_SIGNED	0.507
c7.GSE17721_CTRL_VS_CPG_12H_BMDM_SIGNED	-0.508
${\rm c7.GSE1460_INTRATHYMIC_T_PROGENITOR_VS_}$	
$THYMIC_STROMAL_CELL_SIGNED$	-0.508

Appendix E

Approximate calculation of PARSE scores

Exact calculation of prognostic axis risk stratification estimate (PARSE) score requires the solution of a number of non-negative least squares (NNLS) problems, which complicates application. The NNLS solutions can be approximated with conventional least squares solutions, ultimately transforming the calculation of an approximate PARSE score into a simple weighted sum of gene expression measurements.

Recall that non-negative matrix factorization (NMF) finds factorizations of the form A=WH, with all elements of A,W, and H, being non-negative. In the reverse problem of PARSE calculation, A and \widehat{W} are supplied, and H is to be estimated. I propose an approximation that removes the requirement that H be non-negative, $H\approx \widehat{W}^+A$, where \widehat{W}^+ is the Moore-Penrose pseudoinverse of \widehat{W} . By combining this approximation with the linear combination of metagene coefficients that forms the PARSE score, we can approximate PARSE as a simple weighted sum of gene expression measurements:

$$P = LH (E.1)$$

$$\approx L\widehat{W}^+ A$$
 (E.2)

$$=kA$$
 (E.3)

where P is the vector of PARSE score values, L is the metagene loadings for the PARSE score, $L = (1.354 - 1.548 \ 0 \ 0 - 1.354 \ 1.548)$, and k is a row vector of gene loadings for calculation of an approximate PARSE score. Approximation of P by kA appears excellent; when tested on Australian Pancreatic Cancer

Figure E.1: The linear PARSE score approximation $P \approx kA$ closely matches the exact version calculated using NNLS, when evaluated on APGI gene expression (GEX) data.

Genome Initiative (APGI) gene expression measurements, the approximation closely matched the more laborious exact NNLS solution (Figure E.1).

To use the approximation in practice, perform the following steps:

- 1. Prepare a gene \times sample matrix of linear expression estimates A, in which values for each row (gene) have been scaled to encompass the range 0 to 1.
- 2. Subset A to only the genes present in the k vector (Table E.1), and arrange rows of A so that they exactly match the order of k. If genes present in k are missing from A, insert all-zero rows for these genes into A.
- 3. Calculate approximate PARSE scores P as P = kA. This is equivalent to, for each column (sample) of A, multiplying each entry of the column of A with the corresponding entry of k, and summing the results.

The loading vector for the calculation of approximate PARSE score, k^T , is given in Table E.1.

Table E.1: Loading vector for the approximate PARSE score. For brevity and to assist interpretation, this has been split by sign into two columns, but in use both columns should be combined to form a single row vector k.

Gene symbol	Loading	Gene symbol	Loading
FEM1B	0.04785	GAB2	-0.03742
NCAPG	0.04487	FRZB	-0.03715
ANLN	0.04364	MIR99AHG	-0.03712
COL12A1	0.04098	RAP1GAP	-0.03483
LDHA	0.04004	NFIA	-0.03387
E2F7	0.03923	TCTA	-0.03326
SPHK1	0.03861	ELMOD3	-0.03300
CEP55	0.03755	SOBP	-0.03269
CHEK1	0.03669	GIMAP2	-0.03176
TMEM26	0.03659	STAT5B	-0.03172
CKAP2L	0.03545	UFC1	-0.03123
DCBLD2	0.03351	BOC	-0.03047
PHLDA1	0.03330	P2RY8	-0.03043
KANK4	0.03261	RNF103	-0.03019
TGFBI	0.03259	KIAA0513	-0.02989
PLAU	0.03213	SGSM1	-0.02933
COL5A3	0.03177	TOR2A	-0.02926
CCNB1	0.03071	PPY	-0.02787
SPOCK1	0.03046	SH3GL1	-0.02784
ENO2	0.02998	RPA2	-0.02756
CAV1	0.02989	SELENBP1	-0.02707
KIF20A	0.02967	TRIM2	-0.02689
RACGAP1	0.02957	TCEA3	-0.02679
PPAPDC1A	0.02867	HIPK2	-0.02620
RBMS2	0.02834	CAPN6	-0.02615
RHOF	0.02828	ARHGAP24	-0.02524
CDA	0.02792	TSTD1	-0.02503
NCAPD2	0.02756	ALDH5A1	-0.02452

Table E.1 – continued from previous page

Gene symbol Loading Gene symbol Loading MCM4 0.02708 BCKDK -0.02452 LOX 0.02695 GPC3 -0.02419 PTGES 0.02681 EPHX2 -0.02392 FER 0.02675 DCAF8 -0.02374 EYA3 0.02671 PPM1H -0.02311 IL20RB 0.02671 PRDM16 -0.02289 GATC 0.02661 MC1R -0.02281 KLHL5 0.02641 PEX11B -0.02280 ARL4C 0.02609 SMOX -0.02258 ATAD2 0.02602 LMO3 -0.02246 TPX2 0.02590 RPIA -0.02226 FGD6 0.02545 POU2AF1 -0.02222 PRC1 0.02492 ST3GAL2 -0.02187
LOX 0.02695 GPC3 -0.02419 PTGES 0.02681 EPHX2 -0.02392 FER 0.02675 DCAF8 -0.02374 EYA3 0.02671 PPM1H -0.02311 IL20RB 0.02671 PRDM16 -0.02289 GATC 0.02661 MC1R -0.02281 KLHL5 0.02641 PEX11B -0.02280 ARL4C 0.02609 SMOX -0.02258 ATAD2 0.02602 LMO3 -0.02246 TPX2 0.02590 RPIA -0.02226 FGD6 0.02545 POU2AF1 -0.02222 PRC1 0.02492 ST3GAL2 -0.02187
PTGES 0.02681 EPHX2 -0.02392 FER 0.02675 DCAF8 -0.02374 EYA3 0.02671 PPM1H -0.02311 IL20RB 0.02671 PRDM16 -0.02289 GATC 0.02661 MC1R -0.02281 KLHL5 0.02641 PEX11B -0.02280 ARL4C 0.02609 SMOX -0.02258 ATAD2 0.02602 LMO3 -0.02246 TPX2 0.02590 RPIA -0.02226 FGD6 0.02545 POU2AF1 -0.02222 PRC1 0.02492 ST3GAL2 -0.02187
FER 0.02675 DCAF8 -0.02374 EYA3 0.02671 PPM1H -0.02311 IL20RB 0.02671 PRDM16 -0.02289 GATC 0.02661 MC1R -0.02281 KLHL5 0.02641 PEX11B -0.02280 ARL4C 0.02609 SMOX -0.02258 ATAD2 0.02602 LMO3 -0.02246 TPX2 0.02590 RPIA -0.02226 FGD6 0.02545 POU2AF1 -0.02222 PRC1 0.02492 ST3GAL2 -0.02187
EYA3 0.02671 PPM1H -0.02311 IL20RB 0.02671 PRDM16 -0.02289 GATC 0.02661 MC1R -0.02281 KLHL5 0.02641 PEX11B -0.02280 ARL4C 0.02609 SMOX -0.02258 ATAD2 0.02602 LMO3 -0.02246 TPX2 0.02590 RPIA -0.02226 FGD6 0.02545 POU2AF1 -0.02222 PRC1 0.02492 ST3GAL2 -0.02187
IL20RB 0.02671 PRDM16 -0.02289 GATC 0.02661 MC1R -0.02281 KLHL5 0.02641 PEX11B -0.02280 ARL4C 0.02609 SMOX -0.02258 ATAD2 0.02602 LMO3 -0.02246 TPX2 0.02590 RPIA -0.02226 FGD6 0.02545 POU2AF1 -0.02222 PRC1 0.02492 ST3GAL2 -0.02187
GATC 0.02661 MC1R -0.02281 KLHL5 0.02641 PEX11B -0.02280 ARL4C 0.02609 SMOX -0.02258 ATAD2 0.02602 LMO3 -0.02246 TPX2 0.02590 RPIA -0.02226 FGD6 0.02545 POU2AF1 -0.02222 PRC1 0.02492 ST3GAL2 -0.02187
KLHL5 0.02641 PEX11B -0.02280 ARL4C 0.02609 SMOX -0.02258 ATAD2 0.02602 LMO3 -0.02246 TPX2 0.02590 RPIA -0.02226 FGD6 0.02545 POU2AF1 -0.02222 PRC1 0.02492 ST3GAL2 -0.02187
ARL4C 0.02609 SMOX -0.02258 ATAD2 0.02602 LMO3 -0.02246 TPX2 0.02590 RPIA -0.02226 FGD6 0.02545 POU2AF1 -0.02222 PRC1 0.02492 ST3GAL2 -0.02187
ATAD2 0.02602 LMO3 -0.02246 TPX2 0.02590 RPIA -0.02226 FGD6 0.02545 POU2AF1 -0.02222 PRC1 0.02492 ST3GAL2 -0.02187
TPX2 0.02590 RPIA -0.02226 FGD6 0.02545 POU2AF1 -0.02222 PRC1 0.02492 ST3GAL2 -0.02187
FGD6 0.02545 POU2AF1 -0.02222 PRC1 0.02492 ST3GAL2 -0.02187
PRC1 0.02492 ST3GAL2 -0.02187
3.603.610
MCM10 0.02451 ZSCAN32 -0.02184
BIRC5 0.02419 ZFPM1 -0.02180
ZBED2 0.02396 BCL11B -0.02161
KNTC1 0.02375 C9orf152 -0.02152
NUP155 0.02330 SLC40A1 -0.02146
TNFRSF6B 0.02308 CADPS2 -0.02136
HJURP 0.02296 PHOSPHO2 -0.02129
PXDN 0.02281 ST6GAL1 -0.02118
$\begin{array}{cccc} \text{COLGALT1} & 0.02272 & & \text{PLAC9} & -0.02093 \end{array}$
PLOD2 0.02261 EIF2AK3 -0.02073
TWIST1 0.02246 IFT140 -0.02068
RALGAPB 0.02214 CHN2 -0.02051
FSCN1 0.02159 ZNF658 -0.01988
SPOCD1 0.02117 MEOX1 -0.01961
SERPINH1 0.02086 FAM134B -0.01945
GAPDH 0.02073 THSD7B -0.01931
DSG3 0.02070 TRAPPC2 -0.01920
MELK 0.02067 ADH1A -0.01845
DCUN1D5 0.02056 LINC01184 -0.01837
TUBA1C 0.02053 SLC12A2 -0.01821

Table E.1 – continued from previous page

<u>Table E.1 –</u>	continued fron	n previous page	
Gene symbol	Loading	Gene symbol	Loading
CST6	0.02032	MRAP2	-0.01810
GABPB1	0.01929	RASL11B	-0.01808
KRT7	0.01916	RERGL	-0.01801
DENND1A	0.01898	PREP	-0.01799
AURKB	0.01869	TMTC4	-0.01797
PRR11	0.01859	TMED1	-0.01796
RFC5	0.01848	TLE4	-0.01794
SLC16A3	0.01842	CAMK1G	-0.01790
SUGCT	0.01833	GATA6	-0.01780
SCYL2	0.01826	CCR7	-0.01775
KRT6A	0.01795	SCGB2A1	-0.01773
P4HA2	0.01770	CCL19	-0.01715
PROSER2	0.01761	PCF11	-0.01710
PTPN21	0.01723	FAM189A2	-0.01692
PYGL	0.01714	MCOLN2	-0.01684
GINS2	0.01713	PLEKHS1	-0.01672
PGBD3	0.01700	PRMT7	-0.01665
COL7A1	0.01688	AXIN2	-0.01658
LETM2	0.01687	TOM1	-0.01640
PDLIM7	0.01678	RERE	-0.01635
KRT17	0.01644	A4GNT	-0.01632
ERRFI1	0.01597	CDK12	-0.01624
ASPM	0.01593	CNNM1	-0.01611
C1QTNF6	0.01572	HSPB6	-0.01586
DERA	0.01568	LCNL1	-0.01571
MIF	0.01560	MTRNR2L1	-0.01563
C5orf46	0.01559	DYNC2H1	-0.01537
EMP3	0.01550	NPM1	-0.01520
CDK2	0.01546	CARHSP1	-0.01515
POC1A	0.01507	RGS5	-0.01505
FST	0.01504	CLEC3B	-0.01500
KCTD10	0.01501	NR0B2	-0.01468
SULF2	0.01494	ARSD	-0.01466

Table E.1 – continued from previous page

	continued from		
Gene symbol	Loading	Gene symbol	Loading
CCDC88A	0.01480	GNPAT	-0.01458
KIF14	0.01477	MARS2	-0.01442
DSG2	0.01463	KCTD5	-0.01440
UHRF2	0.01445	MRPL24	-0.01395
ZNF185	0.01435	ABLIM1	-0.01392
SLC2A1	0.01424	ITPKB	-0.01390
KIF2C	0.01417	FHDC1	-0.01380
FLRT3	0.01416	C2orf70	-0.01360
CNIH3	0.01413	RAVER2	-0.01352
ITGA5	0.01407	AKR1A1	-0.01321
DNAJC9	0.01385	CACHD1	-0.01313
ANGPTL4	0.01365	ACYP2	-0.01298
${\rm KIAA1549L}$	0.01354	CTSL	-0.01263
PPP1R14B	0.01352	TM9SF3	-0.01255
PAX8	0.01350	PP7080	-0.01242
FAM91A1	0.01341	IGLL3P	-0.01241
EDIL3	0.01326	ST6GALNAC1	-0.01232
RAB31	0.01316	VPS35	-0.01219
P2RY2	0.01288	TAF5L	-0.01213
CDC45	0.01256	STK39	-0.01196
SPIN4	0.01254	NFIX	-0.01186
APCDD1	0.01244	TNFRSF17	-0.01180
ABHD5	0.01227	PBXIP1	-0.01174
ANKLE2	0.01205	PLIN2	-0.01174
FAM83A	0.01202	GOLM1	-0.01171
KYNU	0.01181	SEPW1	-0.01161
ANGPTL2	0.01178	FYN	-0.01133
B3GALTL	0.01113	CA8	-0.01129
MME	0.01102	CSNK1D	-0.01128
FAH	0.01035	SLC30A3	-0.01126
NEURL2	0.01012	SEC23IP	-0.01125
CTSV	0.00987	RFK	-0.01090
PGAM5	0.00973	SDIM1	-0.01083

Table E.1 – continued from previous page

Table E.1 –	continued from	n previous page		
Gene symbol	Loading	Gene symbol	Loading	
ATL3	0.00972	ARFGAP3	-0.01070	
CD70	0.00954	CYP2S1	-0.01044	
CHAF1B	0.00920	TARBP2	-0.01019	
PIGL	0.00833	SERTAD2	-0.00995	
PAX8-AS1	0.00830	IL33	-0.00991	
LMTK2	0.00804	FAM120AOS	-0.00980	
ACKR3	0.00802	SYNE2	-0.00968	
KRT6C	0.00798	COX4I2	-0.00943	
PRKCDBP	0.00755	ANKRD22	-0.00941	
DPY19L1	0.00749	COLGALT2	-0.00903	
NACC2	0.00733	FBXW8	-0.00891	
POLA2	0.00692	MARCKSL1	-0.00884	
DKK1	0.00649	BTN3A1	-0.00868	
FBXO22	0.00649	C1orf56	-0.00865	
USP30	0.00629	PCDH20	-0.00861	
APCS	0.00602	EXOSC8	-0.00850	
BBS2	0.00587	AMOT	-0.00825	
TRERF1	0.00581	WNT2B	-0.00812	
GPR176	0.00563	SLAMF9	-0.00761	
FGG	0.00548	PCOLCE2	-0.00752	
AKIP1	0.00545	ZSCAN16	-0.00720	
IDH2	0.00528	CIDECP	-0.00684	
PFKFB4	0.00525	BAMBI	-0.00680	
ANKRD37	0.00474	IL1R2	-0.00660	
SLC2A3	0.00438	SAMD5	-0.00655	
IGFBP1	0.00427	HSP90B1	-0.00641	
A4GALT	0.00418	CFDP1	-0.00617	
CEBPB	0.00404	RMND5A	-0.00614	
PLOD1	0.00369	CIDEC	-0.00596	
VSTM2L	0.00352	TPD52L2	-0.00579	
XXYLT1	0.00341	ZNF565	-0.00565	
MAP3K8	0.00338	ACE	-0.00556	
SNRPB	0.00276	AGRP	-0.00509	

Table E.1 – continued from previous page

Table E.1 –	continued from p	revious page	
Gene symbol	Loading	Gene symbol	Loading
TOM1L2	0.00266	PLIN3	-0.00506
NRP2	0.00250	ARHGEF19	-0.00476
P4HA1	0.00225	DHRS9	-0.00454
HRASLS2	0.00196	ATF7IP2	-0.00405
UPP1	0.00182	NELFE	-0.00390
SPP1	0.00175	RGS3	-0.00319
LAMA5	0.00174	TNFRSF10D	-0.00315
PHACTR3	0.00172	LOC100506562	-0.00290
ZPLD1	0.00165	RFX2	-0.00264
CATSPER1	0.00163	SNORA11D	-0.00256
ABHD16A	0.00143	FGB	-0.00252
PPP1R3C	0.00125	ICAM2	-0.00232
ADM	0.00122	LGALS9B	-0.00232
SOD2	0.00120	POP5	-0.00224
PPP1R12B	0.00096	NMB	-0.00205
NAMPT	0.00071	SERPINB3	-0.00201
KCNQ3	0.00040	ORC1	-0.00199
MCEMP1	0.00025	ALOX5AP	-0.00179
LYNX1	0.00001	SLC15A1	-0.00139
		OAZ1	-0.00134
		TREM1	-0.00073
		IKBIP	-0.00033

Glossary

APGI Australian Pancreatic Cancer Genome Initiative. 33, 34

GEX gene expression. 34

MSigDB molecular signatures database. i, iii, 26, 31

MSKCC Memorial Sloan-Kettering Cancer Center. i, 11

 ${\bf NMF}\,$ non-negative matrix factorization. 33

NNLS non-negative least squares. 33, 34

PARSE prognostic axis risk stratification estimate. i–iii, 33–35

References