Advanced Deep Learning: Three talks

Anders Søgaard

Course outline

Goal 1: Quick tour of recent developments in deep learning

Goal 2: Inspiration for thesis/research projects

Week	Lecturer	Subject	Literature	Assignment
1	Stefan	Introduction to Neural Networks.	d2l 2.1-2.5, 2.7, 11.5.1, slides	
2	Stefan	CNNs; FCNs; U-Nets. Data augmentation; invariance; regularization e.g. dropout	d2l 6, 7, 13.9-13.11, slides	Assignment 1 (May 10)
3	Anders/Phillip	May 9 (A): RNNs May 11 (P): Transformers	d2l 8 Transformers: d2l 10.5-10.7 + <u>Vaswani et al. (2017)</u> &	Assignment 2 (May 20)
4		May 16 (P): Representation and Adversarial Learning May 18 (A): A Learning Framework + Self-supervised Learning + Contrastive Learning	Autoencoders: <u>blog post</u> & GANs: <u>Goodfellow (2016)</u> & Self-supervised learning: <u>blog post</u> & Contrastive learning: <u>Dor et al. (2018)</u> & Adversarial examples: <u>Goodfellow et al. (2015)</u> &	
5	Anders	May 23: General Properties, e.g., Scaling Laws, Lottery Tickets, Bottleneck Phenomena May 25: Applications of Representation, Adversarial and Contrastive Learning	GANs: Lample et al. (2018) & Autoencoders: Chandar et al. (2011) & Contrastive learning: Yu et al. (2018) & DynaBench: Talk by Douwe Kiela & (Facebook, now HuggingFace) Scaling laws: Kaplan et al. (2020) &	Assignment 3 [MC on Representation Learning/1p Report on Lottery Ticket extraction] (June 3)
6	Anders	May 30: Interpretability, Transparency, and Trustworthiness & Deep Learning for Scientific Discovery June 1: Interpretability (Feature Attribution), including Guest Lecture by Stephanie Brandl	DL for Scientific Discovery: <u>Sullivan (2022)</u> & Interpretability/Background: <u>Søgaard (2022)</u> &	
7	Anders	June 6: Off (no teaching) June 8: Interpretability (Training Data Influence)	Literature: Feng and Boyd-Graber (2018) ♥; Jiang and Senge (2021) ♥	
8	Anders	June 13-15: Best Practices		Assignment 4 [MC on Interpretability; 1p Report on Best Practices] (June 21)

Architectures

Course outline

Goal 1: Quick tour of recent developments in deep learning

Goal 2: Inspiration for thesis/research projects

Framework

Fairness /

Explainable Al

Week	Lecturer	Subject	Literature	Assignment
1	Stefan	Introduction to Neural Networks.	d2l 2.1-2.5, 2.7, 11.5.1, slides	
2	Stefan	CNNs; FCNs; U-Nets. Data augmentation; invariance; regularization e.g. dropout	d2l 6, 7, 13.9-13.11, slides	Assignment 1 (May 10)
3	Anders/Phillip	May 9 (A): RNNs May 11 (P): Transformers	d2l 8 Transformers: d2l 10.5-10.7 + <u>Vaswani et al. (2017</u>) &	Assignment 2 (May 20)
	Dhillin (Andors	May 16 (P): Representation and Adversarial Learning	Autoencoders: <u>blog post</u> e GANs: <u>Goodfellow (2016)</u> e	
4	Phillip/Anders	May 18 (A): A Learning Framework + Self-supervised Learning + Contrastive Learning	Self-supervised learning: <u>blog post</u> e Contrastive learning: <u>Dor et al. (2018</u>) e Adversarial examples: <u>Goodfellow et al. (2015</u>) e	
5	Anders	May 23: General Properties, e.g., Scaling Laws, Lottery Tickets, Bottleneck Phenomena May 25: Applications of Representation, Adversarial and Contrastive Learning	GANs: <u>Lample et al.</u> (2018) ø Autoencoders: <u>Chandar et al.</u> (2011) ø Contrastive learning: <u>Yu et al.</u> (2018) ø DynaBench: <u>Talk by Douwe Kiela</u> ø (Facebook, now HuggingFace) Scaling laws: <u>Kaplan et al.</u> (2020) ø	Assignment 3 [MC on Representation Learning/1p Report on Lottery Ticket extraction] (June 3)
6	Anders	May 30: Interpretability, Transparency, and Trustworthiness & Deep Learning for Scientific Discovery June 1: Interpretability (Feature Attribution), including Guest Lecture by Stephanie Brandl	DL for Scientific Discovery: <u>Sullivan (2022)</u> ಆ Interpretability/Background: <u>Søgaard (2022)</u> ಆ	
7	Anders	June 6: Off (no teaching) June 8: Interpretability (Training Data Influence)	Literature: Feng and Boyd-Graber (2018) &; Jiang and Senge (2021) &	
8	Anders	June 13-15: Best Practices	Literature: <u>Dodge et al. (2019</u>) ဧ and <u>Raji et al. (2021</u>) ဧ	Assignment 4 [MC on Interpretability; 1p Report on Best Practices] (June 21)

Methodology

Three talks

- a) We Need to Talk About Random Splits (EACL 2021) External PDF
- b) Locke's Holiday (EMNLP 2021)
- c) Square One Bias (ACL 2022) External PDF

Locke's Holiday: Belief Bias in Machine Reading

Anders Søgaard

Motivation

Context: It is rarely the case that a buddhist meditates. Instead he plays drums.

Question: What does a buddhist do?

Answer: plays drums

Prediction: meditates

Explanation: Coreference or lexical association?

Context: James is not a fan of U2, but of carrots.

Question: What is James a fan of?

Answer: carrots

Prediction: U2

Explanation: Ellipsis or lexical association?

Context: London stinks of smog. Dublin stinks of people.

Question: Why does Dublin stink?

Answer: people

Prediction: smog

Explanation: Lexical association?

Context: Washington is a number. Boston is a city.

Question: What is Washington?

Answer: a number

Prediction: a city

Explanation: Lexical association?

Talk

Outline

Sample bias	Social bias	Guideline bias (Hansen & Søgaard, 2021)
Inductive bias	Label bias	Exposure bias (Ranzato et al., 2016)
Anchoring bias (Berzak et al., 2016)	Leakage	Metric misalignment

Blind spot bias	Clustering illusion	Belief bias
Bandwagon effect	Reactive devaluation	Endowment effect
Anchoring bias (Berzak et al., 2016)	Courtesy bias	Status quo bias

Blind spot bias	Clustering illusion	Belief bias
Bandwagon effect	Reactive devaluation	Endowment effect
Anchoring bias (Berzak et al., 2016)	Courtesy bias	Status quo bias

Belief Bias

- Psychology: When prior beliefs distorts reasoning process.
- Machine reading: The unwillingness to let context information override prior beliefs.
- If the prediction is a reasonable answer to the question in isolation, but clearly false in context, the effect can be attributed to belief bias.

Question (real-life)

Context: Indonesia is the Germany of the Asean. So then, Malaysia is the France.

Question: What country is Indonesia similar to?

Answer: Germany

Prediction: Malaysia

Dataset Construction

- Create 20 examples by hand (see above examples). All examples require little or no reasoning.
- Verification that the 20 examples are solvable by humans. No errors when crowdsourcing.
- Identify variable phrases in each example.
- Replace the phrase in focus (using WordNet to ensure grammaticality) and populate the remaining by nearest neighbors in GloVe space.
- Create 11,699 examples this way (some phrases were not in GloVe).

Question (Auto-Locke)

WordNet WordNet GloVe GloVe

Context: A ranch is a lobe. A vineyard is an inn.

Question: What is a ranch?

Answer: lobe

Prediction:?

F1

Analysis

- Performance drops dramatically in spite of the examples being short and requiring no or limited inference.
- NAQANet drops 71% F1 (absolute).
- Equally poor performance if using random phrases instead of nearest neighbors, e.g., Context: Bondsman is a winning post. Megillah is a giantism. Question: What is a bondsman? So effect not explained by distractors.
- Also, true answers are in different positions. So performance not explained by recency either.