Activity 1: Building a force field file

Overview

In this exercise we will examine a simple fixed-charge force field (GAFF2) for a simple molecule (ethane) and see how it is "coded" into an XML file for OpenMM. You will then create an analogous XML file for simulating butane with OpenMM.

A brief recap of force fields

As we discussed, a great many fixed-charge force fields have used the following functional form to describe intra- and intermolecular interactions:

$$U = U_{bond} + U_{angle} + U_{torsion} + U_{elec} + U_{vdw}$$

where for individual bonds (between two atoms), angles (between atoms separated by two bonds), torsions (between atoms separated by three bonds), or atom pairs separated by three bonds/nonbonded atom pairs:

$$\begin{split} U_{bond} &= \tfrac{1}{2} k_l (l - l_{eq})^2 \;, \quad U_{angle} = \tfrac{1}{2} k_{\theta} (\theta - \theta_{eq})^2 \;, \quad U_{torsion} = \sum_{n=1}^{n_{max}} U_n [1 + cos(n\varphi - \gamma_n)] \\ U_{elec} &= k_e q_i q_j / r_{ij} \;, \quad U_{vdw} = 4 \varepsilon_{ij} [(\sigma_{ij} / r_{ij})^{12} - (\sigma_{ij} / r_{ij})^6] \end{split}$$

Worked application: ethane

To help make sense of these equations let's examine ethane (C₂H₆), which is perhaps the simplest molecule that requires all of these terms for accurate modeling.

From the 3D structure above (see also *ethane.pdb*) we can reason that in ethane there are two types of bonds (C-C and C-H), two types of angles (H-C-H and H-C-C), and one torsion (H-C-C-H). By examining the symmetry of this molecule, it is reasonable to assume that the

partial atomic charges (q_i) and van der Waals parameters (ε_i) and (σ_i) will be the same for both carbon atoms and likewise for all six hydrogen atoms. The GAFF2 force field assigns the following SI parameters for all of these interactions:

Interaction	Parameters		
C-C bond	$l_{eq} = 0.1538 \text{ nm}, k_l = 1.946 \times 10^6 \text{ kJ/mol} \cdot \text{nm}^2$		
C-H bond	$l_{eq} = 0.1097 \text{ nm}, \ k_l = 3.146 \text{ x } 10^6 \text{ kJ/mol} \cdot \text{nm}^2$		
H-C-H angle	θ_{eq} = 1.878 rad, k_{θ} = 326.0 kJ/mol·rad ²		
H-C-C angle	θ_{eq} = 1.916 rad, k_{θ} = 391.8 kJ/mol·rad ²		
H-C-C-H torsion	γ_3 = 0 rad, U_3 = 0.5021 kJ/mol		
C atom (nonbonded)	q_{C} = -0.0951e, σ_{C} = 0.3398 nm, ϵ_{C} = 0.4510 kJ/mol		
H atom (nonbonded)	q_{H} = 0.0317e, σ_{H} = 0.2600 nm, ϵ_{H} = 0.0870 kJ/mol		

If you examine the file *ethane.gaff2.xml*, you will first see that we define two types of atoms (0 for the C atoms and 1 for the H atoms). The next section describes which types apply to the atoms <u>in ethane</u>. In addition, much like a PDB file, this XML file conveys connectivity/topology information by describing which atoms are bonded to each other. Finally, you should see multiple sections that convey the force field information given above.

Your turn: butane

Now consider the slightly more complex molecule butane (C_4H_{10} ; see also *butane.pdb*):

From the 3D structure we can immediately see that the same types of bonds that are present in ethane (i.e., C-C and C-H) are also present in butane. Likewise, the same types of angles are also present, but in butane there is also a C-C-C angle. For torsions there are two new possibilities: H-C-C-C and C-C-C-C. Finally, we will assume (using chemical intuition) that the van der Waals parameters for the C and H atoms are the same as in ethane. However, the partial atomic charges of the two "outer" carbon atoms probably can't be the same as the two "inner" C atoms. The same is also true for the partial atomic charges of the six "outer" H atoms vs. those of the four "inner" H atoms. (Why?)

With all this in mind, use the parameters from *ethane.gaff2.xml*, the connectivity and atom names in *butane.pdb*, and the following information to complete the OpenMM force field file *butane.gaff2.xml*:

Interaction	Parameters		
C-C-C angle	θ_{eq} = 1.946 rad, k_{θ} = 543.0 kJ/mol·rad ²		
H-C-C-C torsion	γ_3 = 0 rad, U_3 = 0.3347 kJ/mol		
C-C-C torsion	γ_1 = 0 rad, U_1 = 0.4602 kJ/mol γ_2 = 3.1416 rad, U_2 = 1.2134 kJ/mol γ_3 = 0 rad, U_3 = 0.5439 kJ/mol		
"Outer" C atom (nonbonded)	q_C = -0.0932e, σ_C and ε_C same as ethane		
"Inner" C atom (nonbonded)	q_C = -0.0814 <i>e</i> , σ_C and ε_C same as ethane		
"Outer" H atom (nonbonded)	q_H = 0.0324 <i>e</i> , σ_H and ε_H same as ethane		
"Inner" H atom (nonbonded)	q_H = 0.0387 <i>e</i> , σ_H and ε_H same as ethane		