

Présentation de l'étude

Contexte

Mission: étudier les émissions des bâtiments non destinés à l'habitation.

⇒ Des relevés minutieux des consommations électriques ont été ainsi effectués en 2015 et en 2016.

Problématique

Problématique: Relevés coûteux à obtenir

Objectifs: Etude de ces relevés

- Prédiction des émissions de CO2 et de la consommation totale d'énergie de bâtiments pour lesquels elles n'ont pas encore été mesurées.
- Evaluer l'intérêt de l'ENERGY STAR Score pour la prédiction d'émissions, qui est fastidieux à calculer.

Méthodologie

Traitements et Analyses des données

- Cleaning
- Exploration
- Feature engineering

Essais de différents modèles

- Simple → Complexe
- Evaluation de la pertinence de chaque modèle (R2, RMSE)
- Comparaison des modèles (R2, RMSE, temps d'apprentissage, temps de prédiction)

Finalisation de l'étude

- Sélection du modèle final
- Prédiction des émissions de CO2 et consommation totale en énergie
- Evaluation de l'importance d'ENERGY STAR SCORE

Traitements Analyses des données

Cleaning

2015 : (3340, 47)

2016 : (3376, 46)

data: (6716, 55)

data: (3318, 23)

data: (3077, 23)

data: (3077, 23)

data: (3077, 19)

Mise en forme des données

Renommage des variables communes

Extraction d'infos à partir de l'adresse : "nom de rue"

Concaténation des 2 années

1ère Selection des données

LIGNE : Bâtiment non résidentiel 'family' ∉ BuildingType

COLONNE:
- Selon la définition
- Selon le taux de remplissage (> 50%)

Traitement des outliers

Détection des outliers : |Zscore| < 3

Suppression des outliers

Traitements des valeurs manquantes

Variable catégorielle

→ "inconnu"

Variable numérique

→ Médiane de la
colonne en filtrant les
bâtiments du même
type

Selection finale des features

Corrélation avec les autres features < 0,8

Calumn

#	Column	Non-Null Count	Dtype
0	OSEBuildingID	3077 non-null	int64
1	BuildingType	3077 non-null	object
2	DataYear	3077 non-null	int64
3	Age	3077 non-null	float64
4	Street	3077 non-null	object
5	ZipCode	3064 non-null	float64
6	PrimaryPropertyType	3077 non-null	object
7	LargestPropertyUseType	3077 non-null	object
8	Neighborhood	3077 non-null	object
9	NumberofBuildings	3077 non-null	float64
10	NumberofFloors	3077 non-null	float64
11	PropertyGFAParking	3077 non-null	int64
12	PropertyGFABuilding(s)	3077 non-null	int64
13	ENERGYSTARScore	3077 non-null	float64
14	SiteEUI(kBtu/sf)	3077 non-null	float64
15	SiteEnergyUse(kBtu)	3077 non-null	float64
16	SteamUse(kBtu)	3077 non-null	float64
17	TotalGHGEmissions	3077 non-null	float64
18	GHGEmissionsIntensity	3077 non-null	float64

Non Null Count Dtune

Données: (3077, 19)

- 5 Variables catégorielles
- 15 Variables numériques
 - 2 Variables cibles

→ Variable catégorielle

Les bâtiments sont en grand nombre des bâtiments non residentielles. Les 5 premières utilisations sont des bureaux, des écoles et des utilisations mixtes. Le plus grand nombre de ces bâtiments sont localisés dans les quartiers : Greater Duwamish et Downtown.

→ Variable numérique

Les Bâtiments sont plutôt âgés (~ 40 ans), avec une superficie totale assez variante mais globalement inférieure à 100000, et un ENERGYSTARScore de 70 en moyenne.

Les émissions de CO2 et consommation d'énergie sont très variants mais dont les moyennes respectives sont de 98 et 4.8M.

→ Variable numérique

-0.50 Bien qu'on ait supprimé
certaines variables
fortement correlées, les
variables numériques
-0.25 restantes présentent
néanmoins une certaine
corrélation.

-1.00

-0.75

-1.00

Feature Engineering

Modèles testés

Modèles	Linéaire	Ridge	Lasso	Dummy	Random Forest	XGBoost
Type de prédiction	Fonction linéaire	Fonction linéaire avec régularisation de l'amplitude des poids	Fonction linéaire avec régularisation du nombre de variables utilisées	Stratégies simples	Ajustement d'ensemble d'arbres de décision	Ensemble construit à partir de modèles d'arbres de décision mais optimisé
Méthode	Moindres carrés	Contrainte quadratique	Contrainte linéaire	Ignore les données d'entrée	Apprentissage d'ensemble	Agrégation de modèles de manière séquentielle
Utilisation	Prédiction	Variables correlés	Variables correlés	Modèle de base (Comparaison avec d'autres modèles)	Precision de l'ajustement, Contrôle de l'over fitting	Ajustement et correction des erreurs

Paramètres d'évaluation des modèles

R2

Proportion expliquée de la variance de la variable cible Error (Mean / Std)

Différence entre les observations et les prédictions RMSE

Erreur
quadratique
moyenne entre
les observations
et les
prédictions

Fit time

Temps que l'algorithme a mis pour l'apprentissage Prediction time

Temps que l'algorithme a mis pour la prediction

→ Qualité de la régression

→ Qualité de l'algorithme

→ Variable cible : **TotalGHGEmissions**

→ Comparaison des modèles testés

model	r2	mean error	std error	rmse	fit time	pred time	r2_cv		
linear	-4.633807e+10	-16669.205414	290376.413869	290854.472444	0 days 00:00:00.103882	0 days 00:00:00.006677	[-29224941333747.402, 0.8060308539902012, 0.78	\	R2 non conforme
ridge	7.968787e-01	0.017684	0.596694	0.596956	0 days 00:00:00.014094	0 days 00:00:00.000512	[0.7444219696445493, 0.6870970906237612, 0.818		
lasso	2.302582e-01	-0.064158	1.174432	1.176183	0 days 00:00:00.010845	0 days 00:00:00.000571	[0.28994356812044986, 0.23238159716207996, 0.2	/	R2 faible
dummy	-1.499404e-03	-0.050547	1.305374	1.306352	0 days 00:00:00.000453	0 days 00:00:00.000099	[-0.002846875597795062, < -0.0029456956502962317	/	R2 très faible
randomforest	9.806254e-01	-0.007276	0.185636	0.185778	0 days 00:00:03.193553	0 days 00:00:00.038594	[0.9758453137296385, 0.9843439407115906, 0.982		
XGBoost	9.817005e-01	-0.005098	0.180795	0.180867	0 days 00:00:22.594098	0 days 00:00:00.016033	[0.9763055316694904, 0.9763437127902298, 0.960		16

→ Régularisation du modèle Ridge

ridge coefficients en fonction de la régularisation

Alpha diminue les poids des paramètres de la régression jusqu'à une stabilisation

Evaluation du modèle ridge regression avec differents alphas

- R2 training set a une tendance décroissante

- R2 test set a une tendance croissante

Erreur faible

→ R2 plus faible que pour RF et XG

→ Optimisation de paramètres pour random forest et xgboost : Max_depth & N_estimator

→ Evaluation des modèles random forest et xgboost optimisés

model	r2	mean error	std error	rmse	fit time	pred time	r2_cv
randomforest	0.920893	0.007233	0.362379	0.362452	0 days 00:00:01.102934	0 days 00:00:00.009551	[0.9838605641225466, 0.9773075795078823, 0.976
XGBoost	0.982240	-0.019180	0.160848	0.161987	0 days 00:00:00.853205	0 days 00:00:00.005448	[0.9822076439393237, 0.9359328323096218, 0.981

⇒ XGBoost meilleur

Modelisation de la Consommation d'énergie

→ Variable cible : **SiteEnergyUse**

→ Comparaison des modèles testés

model	r2	mean error	std error	rmse	fit time	pred time	r2_cv	
linear	-1.089801e+09	-2743.170011	59022.439439	59086.151839	0 days 00:00:00.043161	0 days 00:00:00.015698	[0.6871740245589335, -251194852581.39627, 0.43	R2 non conforme
ridge	4.777843e-01	-0.053327	1.086438	1.087746	0 days 00:00:00.017793	0 days 00:00:00.001481	[0.43834514467231334, 0.40982257709607817, 0.5	R2 moyen
lasso	1.543760e-01	0.007837	1.555125	1.555145	0 days 00:00:00.015785	0 days 00:00:00.007080	[0.30226149967181815, 0.040965781518480404, 0	R2 très faible
dummy	-1.182469e-03	-0.044402	1.291252	1.292015	0 days 00:00:00.000533	0 days 00:00:00.000103	[-0.0023429349213355266 -0.001605872824299359	R2 très faible
randomforest	9.898144e-01	0.000383	0.173552	0.173552	0 days 00:00:03.178424	0 days 00:00:00.033756	[0.9821910088565635, 0.9822443672393822, 0.984	
XGBoost	9.414576e-01	-0.013676	0.350379	0.350646	0 days 00:00:01.090498	0 days 00:00:00.006045	[0.9804390320201267, 0.9870484222395715, 0.987	20

Modelisation de la Consommation d'énergie

→ Optimisation de paramètres pour random forest et xgboost : Max_depth & N_estimator

Modelisation dela Consommation d'énergie

→ Optimisation de paramètres pour random forest et xgboost

model	r2	mean error	std error	rmse	fit time	pred time	r2_cv
randomforest	0.973724	-0.001537	0.230648	0.230653	0 days 00:00:00.902245	0 days 00:00:00.011565	[0.786819083734008, 0.939314668510721, 0.97590
XGBoost	0.983897	-0.024431	0.164917	0.166716	0 days 00:00:02.167755	0 days 00:00:00.005814	[0.9658100342291462, 0.93614107551718, 0.97255

⇒ XGBoost meilleur

Prédiction de les émissions de CO2

- Modèle XGBoost
- ~80% variance des émissions de CO2 est expliquée l'intensité d'utilisation de l'énergie du site et de la surperficie des bâtiment
- L'importance de l'ENERGYSTARScore dans la prédiction est minime : ~0.12%

Prédiction de la consommation d'énergie

- Modèle XGBoost
- ~80% variance de la consommation totale d'énergie est expliquée par l'intensité d'utilisation de l'énergie du site et de la surperficie des bâtiment
- L'importance de l'ENERGYSTARScore dans la prédiction est minime : ~0.07%

Améliorations

Cleaning

- Réduire la corrélation des variables
- Ne garder qu'une donnée par bâtiment (~95% des bâtiments ont des données en 2015 et en 2016)

Feature engineering

 Essayer de regrouper les variables catégorielles avant la transformation One Hot Encoding

Optimisation

- Choisir des nombres d'estimateurs plus grands
- Essayer d'autres paramètres

MERCI

Questions

