Placa Base

Sistemas informáticos

Placa base. definición

La placa base, placa madre o tarjeta madre , es una placa formada por un circuito impreso y a la cual van conectados todos los componentes que conforman una computadora.

- La PB determina que componentes y periféricos se pueden conectar a nuestro ordenador.
- El factor de forma de la placa base nos indicará si la placa es adecuada o no para un chasis o unos requerimientos de ampliación determinados.
- El chipset determinara que tipo de componentes se pueden conectar a la placa y nos dará las limitaciones de la misma, tanto para la memoria como para el microprocesador y otros.

Si elegimos un equipo con una placa base H370 y un procesador Core i9 9900K, dicho equipo funcionará sin problemas, pero estará limitado, no le podremos sacar todo el rendimiento, esto es debido a que no podremos aprovechar el multiplicador desbloqueado del procesador y hacerle overclocking. Para ello necesitaríamos una placa base con chipset Z370, cuyo precio es superior al de los modelos con chipset H370.

Placa base. ¿Cómo elegir?

Nota: estamos a punto de obtener un nuevo zócalo AM5 de AMD, lo que significa que las CPU Zen 3 actuales son el final de la línea para el zócalo AM4. Habrá que tenerlo en cuenta también para nuestra futura placa base.

Placa base. Factor de forma

Factor de forma	Fabricante/Fecha	Dimensiones	Aplicaciones
Standard-ATX	Intel 1995	12" × 13" (305 x 330) (305x244)	Workstation/Escritorio
Micro-ATX	Intel 1997	9.6" × 9.6" (244 x 244)	Factor de forma pequeño
Mini-ITX	VIA 2001	6.7" × 6.7" (170 x 170)	Factor de forma pequeño
Nano-ITX	VIA 2003	4.7" × 4.7" (120 x 120)	Sistemas embebidos
Pico-ITX	VIA 2007	3.9" × 2.8" (100 x 70)	Sistemas embebidos
Mobile-ITX	VIA 2009	2.4" × 2.4" (60 × 60)	Sistemas embebidos

Standard-ATX

Micro-ATX

Mini-ITX

Placa base. sockets

- **PGA**: Pin Grid Array (**matriz de rejillas de pines**), la conexión se realiza mediante una matriz de pines instalados en la CPU. Estos pines deben ir encajados en los agujeros de zócalo de la placa base.
- LGA: Land Grid Array (matriz de contacto en rejilla), la conexión en este caso se basa en una matriz de pines instalados en el socket que hacen contacto con las superficies conductores del procesador.
- BGA: Ball Grid Array. En este caso tenemos en vez de unas pequeñas patitas de cobre, unas bolitas. Estas se sueldan directamente a la placa base. De esta forma no es necesario que exista un socket haciendo que sea más pequeño todo y reduciendo costes. Pero te cargas cualquier posibilidad de ampliación. Este sistema se utiliza mucho y lo puedes ver en gran variedad de chips que se encuentran sobre la placa base. Utilizado últimamente en los portátiles . Gen10 de Intel.

Placa base. sockets

LGA 1150	2013	Intel Core i3, i5 y i7 de 4ª y 5ª generación (Haswell y Broadwell)	1150	Usado para 4ª y 5ª gen de 14 nm de Intel
LGA 1151	2015 y actualidad	Intel Core i3, i5, i7 6000 y 7000 (6ª y 7ª generación Skylake y Kaby Lake) Intel Core i3, i5, i7 8000 y 9000 (8ª y 9ª generación Coffee Lake) Intel Pentium G y Celeron en sus respectivas generaciones	1151	Cuenta con dos revisiones incompatibles entre ellas, una para 6ª y 7ª Gen y otra para 8ª y 9ª Gen
LGA 2011	2011	Intel Core i7 3000 Intel Core i7 4000 Intel Xeon E5 2000/4000 Intel Xeon E5-2000/4000 v2	2011	Sandy Bridge-E/EP e Ivy Bridge-E/EP soportan 40 carriles en PCIe 3.0. Usados en Intel Xeon para Workstation
LGA 2066	2017	Intel Intel Skylake-X Intel Kaby Lake-X	2066	Para CPU Intel de 7ª Gen Workstation
LGA 1200	2020	Intel Core 19, 17, 15, 13, Pentium y Celeron (10 Generación Comet Lake-S) Intel Core 19, 17,15,13, Pentium y Celeron (11 Generación Rocket Lake - S)	1200	10 Generación Comet Lake-S, 14 nm de Intel, Soportan frecuencias memoria RAM más altas. 11 Generación Rocket Lake-S 14 nm / chipset 400 y 500 - PCI Express 4.0
LGA 1700	2022	Intel Core 19, 17, 15, 13, Pentium Gold (Serie G8xxx y G7xxx) y Celeron (Serie G6xxx) 12 Generación Alder Lake- S)	1700	12 Generación Alder Lake-S , Intel 7 (10 nm), Ram DDR5 y DDR4, Chipset 600

Placa base. sockets

PGA AM4	2016-2022	AMD Ryzen 3, 5 y 7 de 1 Gen , (Arquitectura Zen, 14 nm, serie 1000) , 2ª Gen, (Arquitectura Zen +, 12 nm, serie 2000), 3 Gen. (Arquitectura Zen 2 , 7 nm, serie 3000) Ryzen 9 disponible para 3 Gen (Arquitectura Zen 2, serie 3000, 7 nm) AMD Ryzen 3, 5, 7, 9 para Zen 3 serie 5000	1331	Compatible con todos los procesadores Ryzen hasta los nuevos Ryzen 3000, gracias a su sistema de estructura multicapa. Ryzen serie 5000
LGA AM5	2022	AMD Ryzen 3, 5, 7, 9 para Zen 4 serie 7000, chipset X670E, X670, B650E, B650	1718	Compatible sólo con AM5, serie 7000, PCIEx 5.0, DDR5
LGA TR4 (SP3 r2)	2017 - actualidad	AMD EPYC (Procesadores con arquitectura ZEN dirigido a servidores y sistemas embebidos, no hay chipset, todo está integrado en el microprocesador, uso de infinity fabric para interconexión multiples chips) y Ryzen Threadripper 1 y 2 Generación)	4094	Para procesadores Workstation de AMD y sistemas integrados para empresas AMD EPYC.
LGA sTRX4 (SP3 r3)	2019 - actualidad	Treadripper 3 Generación	4094	Los Procesadores para TR4 son incompatibles con STRX4 aunque los pines sean iguales. El número de

Es un conjunto de chips situados en la placa base que contienen los controladores y las rutinas para gestionar el flujo de información entre los distintos elementos que forman parte del ordenador. Estaba formado por dos chips diferenciados y conocidos como northbridge y southbridge.

Actualmente se ha redibujado el mapa del chipset, consiguiendo que el puente norte desaparezca y las conexiones que antes se hacían al puente norte ahora se hagan directamente al procesador. Esto consigue que los datos se transporten mucho más rápido y nuestro procesador esté menos tiempo ocioso. Por lo que el chipset está formado por lo que antes se conocía como puente sur y ahora como PCH (Platform Controller Hub, en Intel), y FCH (Concentrador Controlador de Fusión, en AMD).

El chipset es el responsable de los elementos a integrar en la Placa Base , así como de sus limitaciones.

Socket LGA	Socket LGA 1151 (Rev 2), 8 y 9 Generación (Coffee Lake, Coffee Lake Refresh), Serie 300						
Característica Chipset	<u>H310</u>	<u>B360</u>	<u>H370</u>	Q370	<u>z370</u>	<u>z390</u>	
Memoria	64 GB	64 GB	64 GB	64 GB	64 GB	64 GB	
Overclocking	CPU + GPU	CPU + GPU	CPU + GPU	CPU + GPU	CPU + GPU + RAM	CPU + GPU + RAM	
Max. con. USB	10	12	14	14	14	14	
SATA3	4	6	4	4	6	6	
USB 2.0	10	12	14	14	14	14	
USB 3.0	4	6	8	10	10	4	
USB 3.1		4	4	6		8	
RAID			0, 1, 5, 10	0, 1, 5, 10	0, 1, 5, 10	0, 1, 5, 10	
Pistas PCIe adicionales	6	12	20	24	24	24	

Socket LGA 1200 - 10° Generación (Comet Lake-S)						
Característica Chipset	<u>H410</u>	<u>B460</u>	<u>H470</u>	<u>Z490</u>		
Memoria	128 GB	128 GB	128 GB	128 GB		
Overclocking	CPU + GPU (cuidado)	CPU + GPU (cuidado)	CPU + GPU (cuidado)	CPU + GPU		
Max. con. USB	10	12	14	14		
SATA3	4	6	6	6		
USB 2.0	10	12	14	14		
USB 3.0	4	8	8	10		
USB 3.1			4	6		
RAID		0,1,5,10	0,1,5,10	0,1,5,10		
Pistas PCIe adicionales	6	16	20	24		

Modelo	Núcleos / Hilos	E-Cores	P-Cores	L2 + L3	iGPU	PBP / MTP
i9-12900K	8P+8E/24T	2.4 / 3.9 GHz	3.2 / 5.2 GHz	14 + 30 MB	UHD770	125 / 241 W
i9-12900KF	8P+8E/24T	2.4 / 3.9 GHz	3.2 / 5.2 GHz	14 + 30 MB	-	125 / 241 W
i9-12900	8P+8E/24T	1.8 / TBC GHz	2.4 / 5.1 GHz	14 + 30 MB	UI ID770	65 / TBC W
i9-12900F	8P+8F/24T	1.8 / TRC GHz	2.4 / 5.2 GHz	14 + 30 MB	-	65 / TBC W
19-12900T	8P+8E/24T	TBC	TBC / 4.9 GHz	14 + 30 MB	UHD770	35 / TBC W
i7 12700K	8P+4E/20T	2.7 / 3.8 GHz	3.6 / 5.0 GHz	12 + 25 MB	UHD770	125 / 190W
i7-12700KF	8P+4E/20T	2.7 / 3.8 GHz	3.6 / 5.0 GHz	12 + 25 MB	_	125 / 190W
i7-12700	8P+4E/20T	1.6 / TBC GHz	2.1 / 4.9 GHz	12 + 25 MB	UHD770	65 / TBC W
i7-12700F	8P+4E/20T	1.6 / TBC GHz	2.1 / 4.9 GHz	12 + 25 MB	_	65 / TBC W
17-12 7 00T	8P+4E/20T	TBC	TBC / 4.7 GHz	12 + 25 MB	UHD770	35 / TBC W
i5 12600K	6P+4E/16T	2.8 / 3.6 GHz	3.7 / 4.9 GHz	9.5 + 20 MB	UHD770	125 / 150W
i5-12600KF	6P+4E/16T	2.8 / 3.6 GHz	3.7 / 4.9 GHz	9.5 + 20 MB	-	125 / 150W
i5-12600	6P+0E/12T	TBC	3.3 / TBC GHz	7.5 + TBC MB	UHD770	125? / TBC W
i5-12600T	6P+0E/12T	TBC	TBC	7.5 + TBC MB	UHD770	35 / TBC W
15-12500	6P+0E/121	IBC	IRC	7.5 + TBC MB	UHD/30	65 / TBC W
i5-12500T	6P+0E/12T	TBC	TBC / 4.4 GI Iz	7.5 + TBC MB	UHD730	35 / TBC W
i5-12400	6P+0E/12T	TBC	2.5 / 4.4 GHz	7.5 + 18 MB	UHD730	65 / TBC W
i5-12400F	6P+0E/12T	TBC	2.5 / 4.4 GHz	7.5 + 18 MB	-	65 / TBC W
i5-12400T	6P+0E/12T	TBC	TBC / 4.2 GHz	7.5 + 18 MB	UHD730	35 / TBC W
i3-12300	4P+0E/81	IBC	IRC	5 + TBC MB	UHD/30	65 / TBC W
i3-12300T	4P+0E/8T	TBC	TBC / 4.2 GI Iz	5 I TBC MB	UHD730	35 / TBC W
i3-12100	4P+0E/8T	TBC	TBC	5 + TBC MB	UHD730	65 / TBC W
i3-12100T	4P+0E/8T	TBC	TBC / 4.1 GHz	5 + TBC MB	UHD730	35 / TBC W
Pentium G7400	2P+0E/4T	TBC	TBC	2.5 + TBC MB	TBC	TBC

INTEL 12 GENERACIÓN Alder Lake-S 1700

En el socket LGA 1700

- 7690
- B660
- H670
- H610

Chipset	Z690	H670	B660	H640
Soporta overclock CPU	SI	NO	NO	NO
Soporta overclock Memorias RAM	SI	SI	SI	NO
Canales de memoria	2	2	2	1
PCIe 4.0	Hasta 12	Hasta 12	Hasta 6	0
PCIe 3.0	Hasta 16	Hasta 12	Hasta 8	8
Puertos SATA 3	Hasta 8	Hasta 8	4	4
Puertos USB (Incluye USB 2.0)	14	14	12	10
Puertos USB 3.2 Gen2 (20Gbps)	4	2	2	0
Puertos USB 3.2 Gen2 (10Gbps)	10	4	4	2
Puertos USB 3.2 Gen2 (5Gbps)	10	8	6	4
Soporte RAID	SI	SI	NO	NO

Proposa doros para sobremesa Alder Lake S

Zócalo TR4 y sTR4X, Ryzen Threadripper , disponen de 60 pistas PCIe.						
Característica Chipset	<u>X399</u>	<u>TRX40</u>				
Memoria	128 GB	256 GB				
Overclocking	CPU+GPU+RAM	CPU+GPU+RAM				
SATA2						
SATA3	6	4				
USB 2.0	6	4				
USB 3.0	10					
RAID	0,1,10	0,1,10				

Socket PGA	Socket PGA AM4						
Característica Chipset	<u>x570</u>	<u>B550</u>	<u> X470</u>	<u>X370</u>	<u>B450</u>	<u>B350</u>	<u>A320</u>
Memoria	128 GB	128 GB	128 GB	64 GB	128 GB	64 GB	64 GB
Overclocking	CPU+GPU+RAM	CPU+GPU+RAM	CPU+GPU+RAM	CPU+GPU+RAM	CPU+GPU+RAM	CPU+GPU+RAM	GPU+RAM
SATA3	6	4	6	6	4	4	4
USB 2.0	4	6	6	6	6	6	6
USB 3.0	10	2	10	10	6	6	6
RAID	0, 1, 10	0,1,10	0,1,10	0,1,10	0,1,10	0,1,10	0,1,10
M.2	2	2	2	2	2	2	1
SATA Express	2	2	2	2	2	2	2
Pistas PCIe adicionales	8	6	8	8	6	6	4
CrossFire	true	true	true	true	true	true	false
SLI	true	false	true	true	false	false	false

Chipset AM5

Modelo	Núcleos / Hilos	Base / Turbo Frecuencias	TDP	Caché (L2+L3)
Ryzen 9 7950X	16N/32H	4,50/5,70 GHz	170W	80MB (16+64)
Ryzen 9 7900X	12N/24H	4,70/5,60 GHz	170W	76MB (12+64)
Ryzen 7 7700X	8N/16H	4,50/5,40 GHz	105W	40MB (8+32)
Ryzen 5 7600X	6N/12H	4,70/5,30 GHz	105W	38MB (6+32)

Placa base. Chip super I/O

Super I/O es el nombre dado a un tipo de circuito integrado que controla las entradas y salidas de la placa madre; comenzó a ser utilizado a finales de 1980 en las computadoras personales. Su origen proviene de unir en un solo chip lo que antes se hacía con varias tarjetas controladoras independientes. Este chip se **encarga de controlar funciones de baja demanda o de baja velocidad y está** subordinado al puente sur, también se conoce como **"chip ayudante"** (helper chip).

Generalmente provee entrada/salida para:

- Un controlador de disquetera de discos flexibles.
- Un puerto paralelo.
- · Uno o más puertos seriales.
- · Una interfaz de teclado y ratón.

También el Super I/O puede tener otras interfaces como puertos para joystick o infrarrojos

Placa base. Conectores

https://hardwaresfera.com/articulos/conectores-pc-placa-base/

Placa base. Ranuras para la memoria

La memoria, al igual que el micro, iba soldada a la placa base en un principio, pero actualmente existen zócalos (slots) o Bancos individuales y de diferentes formatos como SIMM (Single In-line Memory Module), **DIMM** (Dual In-line Memory Module, traducible como «módulo de **memoria** de dos líneas), DDR (Double Data Rate), DDR2, DDR3 y DDR4, La placa base (Chipset) determina el máximo de memoria que podremos poner al sistema. En ocasiones ocurre que, aunque tengamos muchos zócalos, no pueden emplearse todas a la vez, ya que son para distintos tipos de memoria incompatibles entre sí.

Placa base. Ranuras de expansión

Hoy en día las placas base incorporan los controladores para manejar los periféricos básicos como el teclado, ratón, disco duro, etc. Los que no estén, y necesitemos, deberemos agregarlos mediante tarjetas en las ranuras de expansión, aún se siguen incorporando por motivos de compatibilidad algunas ranuras PCI. Ahora la mayoría son PCI Express.

- Ranura PCI Express, este tipo de bus fue pensado para reemplazar todos los buses internos de un ordenador, como el PCI y el AGP. Por lo que existen varias versiones (1X, 2X, 4X, 8X, 12X, 16X y 32 X) según el número de conectores de línea de que dispone. Permite velocidades comprendidas entre 250 MB/s y los 8 GB/s, cuatro veces la velocidad máxima de los puertos AGP 8x. La ranura PCIExpres (16x), es la que ha sustituido a la AGP.
- PCI (Peripheral Component Interconnect) /ISA (Industry Standard Architecture): Estos eran los conectores estándar utilizados para tarjetas de expansión. Los ISA están totalmente extinguidos debido a su escasa productividad (16 bits). Los PCI (32 bits) se siguen incorporando todavía, cada vez menos, con el fín de mantener la compatibilidad con algunos elementos antiguos que utilizan todavía este conector. Nos permitía conectar tarjetas de sonido, tarjetas de red, ampliación de puertos USB o Firewire, etc.

