	TP1 Debit - Vasapolli_Bichon	Pt	A B C D	Note
ı	Préparation du travail			
1	Compléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.	2	A	2
2	Quel est le nom de la grandeur réglée ?	1	Α	0,5
3	Quel est le principe utilisé pour mesurer la grandeur réglée ?	1	C	0,175
4	Quelle est la grandeur réglante ?	1	Α	0,5
5	Donner une grandeur perturbatrice.	1	D	0,025
6 II.	Etablir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs, alimentations, générateurs nécessaires. Faire apparaître les polarités. Etude du procédé	1	А	1
1	Paramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés.	1	A	1
2	Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de température et niveau).	1	А	1
3	En déduire le gain statique du procédé autour du point de fonctionnement.	1	В	0,75
4	En déduire le sens d'action à régler sur le régulateur.	1	Α	1
5	Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.	3	Α	3
III.	Etude du régulateur			_
1	Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.	2	D	0,075
2	En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.	2	Α	1,5
IV.	Performances et optimisation			
1	Programmer votre régulateur pour assurer le fonctionnement de la régulation.	1	X	0
2	Mesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de réponse à 10%, la valeur du premier dépassement et la précision relative.	2	X	0
3	Améliorer votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des paramètres modifiés.	1	Х	0
4	Mesurer à nouveau les performances de votre régulation, comparer les avec celles obtenues à la question précédente.	2	X	0
			Note sur : 20	12,5

I. Préparation du travail

1.

2. La grandeur réglé est le débit Qs

3. Le débit passe par le débitmétre a flotteur, il indique le débit grace au flotteur qui monte ou descend dans le tube.

4. Grandeur réglante : Section ouverture vanne

5. Perturbatrice : Vanne Vs et Vanne Ve

II. Etude du procédé

Y	X
0	1
20	47
40	65
60	70
80	75
100	90

- 3. $K = \Delta S/\Delta E = (90-1)/(100-0) = 0.89$ Il faut calculer le gain autour du point de fonctionnement.
- **4.** Quand on augmente la commande , la mesure augmente , donc sens d'action direct , régulateur inverse.

$$K = 0.89$$

 $40\% \text{ de } X = 35.6\%$ $T2=38:52.5$
 $28\% \text{ de } X = 24.9 \%$ $T1=38:52$
 $T = 2.8 (52-49)-1.8(52.5-49)$
 $T=2.1$
 $To=5.5(52.5-52)$
 $To=2.75$
 $H(p)=(0.89*e^-2.1p)/(1+2.75p)$

III. Etude du régulateur

1. Structure mixte (Cours : Les régulateurs éléctroniques (tous ceux de la salle de travaux pratiques) ont une structure mixte.

2. kr =
$$T/t = 2,1/2,75 = 0,8$$
 (On prend PID)

Pour A =
$$100/XP$$
 A= $(0,83/0,89)*((1/0,8)+0,4) = 1,54$ XP=64,9 Ti = $2,75+0,4*2,1=3,59$ Td = $2,1/(0,8+2,5) = 0,64$

IV. Performances et optimisation