Thermal Interaction in Spatial Augmented Reality

Justin Brennen YaDeau

Division of Science and Mathematics University of Minnesota, Morris Morris, Minnesota, USA

5 December 2015

Background

Background

- Virtual Reality
- Augmented Reality
- Spatial Augmented Reality
- ► 6DOF

Background

Virtual Reality

- Completely Virtual
- ► The Matrix
- ► Oculus Rift

Augmented Reality

Background

Spatial Augmented Reality

6DOF

Outline

Thermal interaction with mobile devices

Using spatial augmented reality for 3D data visualization

Conclusions

Outline

Thermal interaction with mobile devices

Hardware

Thermal Detection

Object Tracking

Applications

Using spatial augmented reality for 3D data visualization

Conclusions

Hardware

Hardware

La Thermal Detection

Thermal Detection

- Assumes a controlled environment
- Object-only, hand-only, obstruction-by-hand, and touch-by-hand
- Interactions leave thermal impressions on the object
- Using the OpenCV SimpleBlobDetector

☐ Thermal Detection

OpenCV SimpleBlobDetector

$$t_1 = (1 - \frac{1}{16})t_{min} + \frac{1}{16}t_{max}$$
 $t_2 = (1 - \frac{3}{8})t_{min} + \frac{3}{8}t_{max}$

- ▶ t₁ and t₂ is the expected temperature range of the interaction
- ▶ With a fixed size range of 0.32cm² and 1.54cm²

Object Tracking

Object Tracking

□ Applications

Applications

Applications that use thermal imaging with mobile technology

- "Spray on" graphical user interfaces (GUI)
- Augmented floor plans

- Applications

"Spray on" GUIs

- The screen displays a dial pad, but there is no dial pad on the surface
- Looking at the screen to interact with dial pad
- Devices without touch screens

☐ Applications

Augmented Floor Plans

- Similar interaction, different interface
- Using number sections as buttons

Outline

Thermal interaction with mobile devices

Using spatial augmented reality for 3D data visualization Visualizing Data Applications Limitations

Conclusions

└ Visualizing Data

Visualizing Data

- Representing data visually
- Examples: weather maps, pie and bar charts, etc
- The importance of visualizing data

Applications

Applications

Applications that use spatial augmented reality for 3D data visualization

- ▶ Table-Top
- CAVE

Applications

Table-Top

- Using a hand held pointing device a user can zoom in or out of the visualization
- Interactions happen inside the virtual volume

□ Applications

Table-Top

- Physical object represents the 3D space
- ▶ The display is a 2D representation of the 3D space

□ Applications

Table-Top

- Using a hand held pointing device a user can zoom in or out of the visualization
- Interactions happen inside the virtual volume

Using spatial augmented reality for 3D data visualization

☐ Applications

CAVE

- CAVE Cave Automatic Virtual Environment
- Larger area than the table-top method

Applications

CAVE

- ► Increase in collaborators/viewers
- Similar interactions as the table-top method

Limitations

Limitations

- Strength of the projectors
- Needing a controlled environment
- Solutions

Outline

Thermal interaction with mobile devices

Using spatial augmented reality for 3D data visualization

Conclusions

Conclusions

- Utilizing both of these approaches would make new applications possible
- Examples: education and transportation

Thanks!

Thank you for your time and attention!

Contact:

yadea003@morris.umn.edu

Any Questions?