

Dimensionality Reduction: PCA

by Saturdays Al

Get ready for the future Al!

Why dimensionality reduction?

When data has a high dimension (many features), it is extremely complex to process due to inconsistencies in the features, which increase the computational time processing and requires more evoluted EDA (Exploratory Data Analysis).

Dimensionality Reduction, Overview

- Goal: reduce the number of features (dimensionality) by maximizing the explained variance, to obtaining a set of principal features.
- How does it work?: Transforming the data in the high-dimensional space to a space in fewer dimensions.

Advantages:

- Removes inconsistencies in the features
- Highlight relevant features, not all features are relevant to our problem
- Avoids overfitting due to strong correlations
- Reduces computational time and space complexity

Disadvantages

- More difficult to explain the meaning
- We fundamentally "miss" some dat

What is PCA?

Principal component analysis (PCA) is a dimensionality reduction technique that enables to identify correlations and patterns in a dataset so it can be transformed into a dataset of significant lower dimensions and keeping the most relevant information.

Se	epal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

	principal	component 1	principal component 2
0		-2.264542	0.505704
1		-2.086426	-0.655405
2		-2.367950	-0.318477
3		-2.304197	-0.575368
4		-2.388777	0.674767

What is PCA (math definition)?

Principal component analysis (PCA) is statistical procedure that uses an **orthogonal transformation** to convert a set of observations of possibly correlated variables into a set of values of **linearly uncorrelated variables** called principal components.

PCA basics

Let's practice with the Basic notebook: https://ja.cat/PCA basics

Standardize the data
Build the covariance matrix
Calculate the Eigenvectors and Eigenvalues
Compute Principal Components
Reduce the data dimensions

	Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Gene 1	10	11	8	3	2	1
Gene 2	6	4	5	3	2.8	1

Definition source: https://en.wikipedia.org/wiki/Principal component analysis Images source: StatQuest: PCA step by Step

Standardize the data

	Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Gene 1	10	11	8	3	2	1
Gene 2	6	4	5	3	2.8	1

Build the covariance matrix

Calculate the Eigenvectors and Eigenvalues

Orthogonal transformation feature 1

Orthogonal transformation feature 2

Images source: StatQuest: PCA step by Step

Compute Principal Components Reduce the data dimensions

Images source: StatQuest: PCA step by Step

Let's practice with the step by step notebook: https://ja.cat/PCA_steps

PCA summary

3. compute covariance matrix

h u
h 2.0 0.8 cov(h,u) =
$$\frac{1}{n} \sum_{i=1}^{n} h_i u_i$$

u 0.8 0.6

4. eigenvectors + eigenvalues

$$\begin{pmatrix}
2.0 & 0.8 \\
0.8 & 0.6
\end{pmatrix} \begin{pmatrix} e_h \\ e_u \end{pmatrix} = \lambda_e \begin{pmatrix} e_h \\ e_u \end{pmatrix}$$

$$\begin{pmatrix}
2.0 & 0.8 \\
0.8 & 0.6
\end{pmatrix} \begin{pmatrix} f_h \\ f_u \end{pmatrix} = \lambda_f \begin{pmatrix} f_h \\ f_u \end{pmatrix}$$

$$eig (cov (data))$$

pick m<d eigenvectors w. highest eigenvalues

6. project data points to those eigenvectors

Copyright @ 2011 Victor Lavrenko

7. uncorrelated low-d data

Source: <u>Dimensionality Reduction Using PCA</u>

Sklearn PCA

from sklearn.decomposition import PCA pca = PCA(...)Arguments in PCA: - n components = number of components - svd solver = # 'randomized' (eigenvalues and eigenvectors) - whiten = True $\#True\ or\ False \rightarrow For\ pixels\ (0-255)\ and\ image\ processing$ pca.fit(data) Attributes: - pca.explained variance ratio # np.cumsum(pca.explained variance ratio) - pca.components # coefficients of the linear transformation of the original data - pca.n_components_ # number of components

data pca = pca.transform(data) # data coordinates using the principal components