File No. 4628 U.S. Pat. Appln. Ser. No. 09/890,011

IN THE CLAIMS:

1	1. (currently amended) An optical waveguide sensor comprising.
2	a housing, the housing having an interior and exterior surface, the exterior surface
3	having at least two layers, the first layer comprised of a low index of refraction material and the
4	second layer comprised of a highly reflective material;
5	a first optical fiber in communication with the housing;
6	a second optical fiber in communication with the housing; and
7	means for detecting the change in the intensity of light when light is passed
8	through the housing, reflected and refracted within the housing and received by the second
9	optical fiber, the optical wave guide sensor being capable of measuring up to at least 2000 με
0	when the housing is stressed.
1	2. (original) The optical waveguide sensor according to claim 1 wherein the housing
2	has first and second opposed ends, the first optical fiber in communication with the first end and
3	the second optical fiber in communication with the second end.
1	3. (original) The optical waveguide sensor according to claim 1 wherein the first layer
2	is comprised of polyimide.
1	4. (original) The optical waveguide sensor according to claim 1 or 3 wherein the
2	second layer is comprised of aluminum.
1	5. (original) The optical waveguide sensor according to claim 1 wherein the first layer
2	is selected from the group consisting of polyimide, silicon and germanium.
1	6. (original) The optical waveguide sensor according to claim 1 or 5 wherein the
2	second layer is selected from the group consisting of aluminum, silver, platinum and palladium.
2	
ì	7. (original) The optical waveguide sensor according to claim 1 wherein the sensor is
2	insensitive to temperatures in the range of about -20 to 50° C.

1	8. (original) The optical waveguide sensor according to claim 1 wherein the optical
2.	fibers are multimode.
1	9. (original) The optical waveguide sensor according to claim 1 wherein the housing is
2	comprised of glass.
1	10. (original) The optical waveguide sensor according to claim 9 wherein the housing is
2	cylindrical.
1	11. (original) The optical waveguide sensor according to claim 10 wherein the housing
2	has dimensions of 0.5mm inside diameter x 1mm outside diameter x 100mm long.
1	12. (original) The optical waveguide sensor according to claim 11 wherein the optical
2	waveguide sensor has a gage factor of 490.
1	13. (new) An optical wave guide sensor comprising:
2	a housing, the housing having an interior and an exterior surface, the exterior
3	surface having at least one layer;
4	a first optical fiber in communication with the housing;
5	a second optical fiber in communication with the housing; and
6	means for detecting the change in the intensity of light when the light is passed
7	through the first optical fiber, into the housing, reflected and refracted within the housing
8	and received by the second optical fiber, the optical wave guide sensor being capable of
9	measuring up to at least 2000 µE when the housing is stressed.
1	14. (new) The optical waveguide sensor according to claim 13 wherein the layer is
2	selected from the group consisting of polyimide, indium tin oxide, zinc oxide, silicon and
3	germanium.

15. (new) The optical waveguide sensor according to claim 14 wherein the layer is 1 comprised of polyimide. 2 16. (new) The optical waveguide sensor according to claim 15 wherein the housing is 1 comprised of glass. 2 17. (new) The optical waveguide sensor according to claim 16 wherein the thickness of 1 the layer is within the range of between 20 to 28 µm. 2 18. (new) The optical waveguide sensor according to claim 17 wherein the housing is 1 cylindrical and has an inside diameter within the range of between 0.518 and 0.542mm and a 2 thickness of within the range of between 0.073 and 0.097 μm . 3 19. (new) The optical waveguide sensor according to claim 18 wherein the optical 1 waveguide sensor is capable of measuring up to at least 5000 µE when the housing is stressed. 2 An optical wave guide which comprises: 1 20. (new) a housing, the housing having an interior and an exterior surface, the exterior 2 surface having at least one layer, the housing having first and second open ends; 3 a first optical fiber in communication with the first open end; and a second optical fiber in communication with the second end, wherein strain on the 5 housing of at least 2000 µE is capable of being measured when the change in the intensity 6 of light exiting the second open end is detected subsequent to the passage of light of a 7 known intensity through the first optical fiber and the housing, the change in the intensity 8 9 of light corresponding to the strain on the housing.

File No. 4628 U.S. Pat. Appln. Ser. No. 09/890,011

IN THE TITLE

Please delete the title and insert therefor the following:

"Intensity-based Optical Waveguide Sensor"