NNTOOLBOX

FERRAMENTA DO MATLAB PARA REDES NEURONAIS

Conhecimento e Raciocínio DEIS/ISEC

Conhecimento e Raciocínio 2015/16

1

Neural Network ToolBox

- Ferramenta do Matlab com funções próprias para manipulação de redes neuronais
- Possui uma janela de edição que disponibiliza um interface gráfico para:
 - Criar, configurar, visualizar, treinar e testar redes neuronais
- As redes criadas e os resultados obtidos podem ser exportados para o workspace do Matlab.

Conhecimento e Raciocínio 2015/1

18

- Pode testar a rede para verificar se o erro é 0
 - Voltar ao interface principal e fazer duplo clique sobre o nome da rede
 - Na tab Simulate definir:
 - · Inputs: p
 - Outputs: XORNet_outputs_Sim (para n\u00e3o confundir com as sa\u00eddas produzidas durante o treino anteriormente executado)
 - Clicar Simulate Network no canto inferior direito e depois OK

Conhecimento e Raciocínio 2015/16

19

- No interface principal fazer duplo clique na variável XORNet_outputs_sim
 - As saídas previstas pela rede apresentam um formato diferente do perceptrão, já que se usou uma função de transferência diferente na camada de saída.
 - Isto exige o uso de uma regra simples para obter saídas binárias como desejado.
 - Por defeito o matlab considera um valor limite de 0.5. Assim, aplicando a condição "se saída>0.5 → saída = 1,e caso contrário saída = 0"
 - Exemplo: Se o vector for [0.98 0.077 0.53 0.01]
 - Então as saídas são [1 0 1 0]
 - Qual o vector de saídas que obteve?
 - Compare-o com o vector target [0 1 1 0] para avaliar o processo de treino
 - A aprendizagem decorreu da forma pretendida?