Formelsammlung Physik

Version Juni 2015

Inhaltsverzeichnis

1	Physikalische Grössen	2
2	Geometrische Optik	4
3	Kraft (Statik)	4
4	Drehmoment	5
5	Energie, Arbeit, Leistung	5
6	Flüssigkeit und Gase	6
7	Kinematik	7
8	Dynamik	8
9	Wärmelehre	10
10	Schwingungen und Wellen	13
11	Elektrostatik	15
12	Stationäre Ströme	16
13	Magnetismus und Induktion	17
14	Mathematische Formelsammlung	18

1 Physikalische Grössen

Basisgrössen in SI-Einheiten:

Basisgrösse	Symbol	Basiseinheit	Abkürzung
Länge	$\ell\left(s,r ight)$	Meter	m
Zeit	t	Sekunde	s
Masse	m	Kilogramm	kg
Stromstärke	I	Ampere	A
Temperatur	T	Kelvin	К
Stoffmenge	n	Mol	mol
Lichtstärke	I_V	Candela	cd

Weitere Physikalische Grössen und ihre Einheiten:

Grösse	Symbol	Einheit	Abkürzung	Basiseinheit
Kraft	F	Newton	N	$\frac{\mathrm{kg}\cdot\mathrm{m}}{\mathrm{s}^2}$
Energie	E	Joule	J	${ m Nm}=rac{{ m kg}\cdot{ m m}^2}{{ m s}^2}$
Leistung	P	Watt	W	$Js^{-1} = \frac{kg \cdot m^2}{s^3}$
Druck	p	Pascal	Pa	$\frac{N}{m^{-2}} = \frac{kg}{m \cdot s^2}$
Ladung	Q	Coulomb	С	A· s
Spannung	U	Volt	V	$\frac{1}{C}$
Widerstand	R	Ohm	Ω	$\frac{V}{A}$
Magnetische Fluss- dichte	В	Tesla	Т	$\frac{V \cdot s}{m^2}$

Vorsatz	Kürzel	Potenz
Exa	Е	10^{18}
Peta	Р	10^{15}
Tera	Т	10^{12}
Giga	G	10 ⁹
Mega	M	10^{6}
Kilo	k	10^{3}
Hekto	h	10^{2}
Deka	da	10^{1}

Vorsatz	Kürzel	Potenz
Dezi	d	10^{-1}
Centi	c	10^{-2}
Milli	m	10^{-3}
Mikro	μ	10^{-6}
Nano	n	10-9
Pico	p	10^{-12}
Femto	f	10^{-15}
Atto	a	10 ⁻¹⁸

Griechisches Alphabet

Alpha	A	α
Beta	B	β
Gamma	Γ, Γ	γ
Delta	Δ, Δ	δ
Epsilon	E	$\epsilon, arepsilon$
Zeta	Z	ζ
Eta	H	η
Theta	Θ,Θ	heta,artheta
Iota	I	ι
Kappa	K	$\kappa, arkappa$
Lambda	Λ, Λ	λ
Mü	M	μ
Nü	N	ν
Xi	Ξ, \varXi	ξ
Omikron	0	0
Pi	Π, Π	π, ϖ
Rho	P	ho, arrho
Sigma	Σ, Σ	σ, ς
Tau	T	au
Ypsilon	Υ, \varUpsilon	v
Phi	Φ, Φ	$\phi, arphi$
Chi	X	χ
Psi	Ψ, Ψ	ψ
Omega	Ω, Ω	ω

2 Geometrische Optik

Reflexionsgesetz: $\alpha = \alpha'$

 α' : Reflexionswinkel/ Ausfalls-

winkel

Brechungsgesetz: $\frac{\sin \alpha}{\sin \beta} = \frac{n_2}{n_1}$

 β : Brechungswinkel,

 α : Einfallswinkel,

 n_1 : Vakuumsbrechungsindex

von Medium 1,

 n_2 : Vakuumsbrechungsindex von

Medium 2

Abbildungsgleichung $\frac{1}{a} + \frac{1}{b} = \frac{1}{f}$ (dünne Linse):

a: Gegenstandsweite ,

b: Bildweite, f: Brennweite

Vergrösserungsgleichung: $v = \frac{\overline{A'B'}}{\overline{AB}} = \frac{b}{a}$

v: Vergrösserung, $\overline{A'B'}$: Bildgrösse,

 \overline{AB} : Gegenstandsgrösse

Verschiedene Vakuumbrechungsindizes:

$Vakuum \rightarrow Medium$	n_{Medium}	$Vakuum \to Medium$	$n_{ m Medium}$
Vakuum	1	Eis	1.31
Luft	$1.0003\approx 1$	Plexiglas M222	1.491
Wasser	1.333000	$\ddot{\mathrm{A}}\mathrm{thanol}$	1.3617
Gläser	1.45 bis 1.93	Diamant	2.47

3 Kraft (Statik)

Gewichtskraft	$F_G = m \cdot g$	F_G : Gewichtskraft, m : Masse,
		g: Ortsfaktor (9.81 N/kg bei
		45°N), $[F] = \text{kg} \cdot \text{m/s}^2 = \text{N}$

Gesetz von Hook $F_F = D \cdot s \qquad F_F \colon \text{Federkaft, } D \colon \text{Federkonstante in N/m, } s \colon \text{Federverlängerung}$

in m

Gleitreibungskraft $F_{GR} = \mu_G F_N$ μ_G : Gleitreibungskoeffizient,

 F_N : Normalkraft

Rollreibungskraft $F_{RR} = \mu_R F_N$ μ_R : Rollreibungskoeffizient

Haftreibungskraft $F_{HR} \leq \mu_H F_N$ μ_H : Hafttreibungskoeffizient

Typische Werte Gleit- und Haftreibungskoeffizienten:

Typische Werte Rollreibungskoeffizienten:

Stoffpaar	Gleitreibung μ_G	Haftreibung μ_H
Holz – Holz	0.3 ± 0.1	0.4 ± 0.2
Stahl-Stahl	0.42	0.78
Pneu – Strasse	0.65 ± 0.15	0.85 ± 0.15
Ski – Schnee	0.12 ± 0.08	0.2 ± 0.1
Gelenk – Gelenk	0.3 ± 0.15	

Stoffpaar	Rollreibung μ_R
Autoreifen – Asphalt	0.008 ± 0.002
Autoreifen – Schotter	0.02 ± 0.01
Eisenbahnrad – Schiene	0.0015 ± 0.0005
Veloreifen – Asphalt	0.007

4 Drehmoment

Drehmoment

 $M = a \cdot F$

a: Hebelarm in m

Momentensatz (im Gleichgewicht)

 $M_{total} = \sum_{i} M_i = 0$

5 Energie, Arbeit, Leistung

Mechanische Arbeit

 $W = \Delta E_{mech}$

 ΔE_{mech} : Energieänderung eines offenen Systems, W: Arbeit einer äusseren Kraft an diesem System. $[W] = [\Delta E] = [E] =$

Kilokalorie: 1 kcal = 4187 J

 $W = \Delta E = F_{||} \cdot \Delta s$

 $F_{||}$: Kraft entlang des Wegs, Δs : Wegänderung in m

Hubarbeit $W_{Hub} = \Delta E_{pot} = m \cdot g \cdot \Delta h$

h: Höhe in m

Lageenergie $E_{pot} = m \cdot g \cdot h$

wenn $E_{pot} = 0$ mit h = 0

Beschleunigungsarbeit

 $W_{kin} = \Delta E_{kin} = \frac{1}{2} \cdot m \cdot (v_2^2 - v_1^2)$

 v_1 : Anfangsgeschwindigkeit, v_2 : Endgeschwindigkeit, [v]=m/s

Kinetische Energie

 $E_{kin} = \frac{1}{2} \cdot m \cdot v^2$

wenn $E_{kin} = 0$ mit v = 0

Spannarbeit

 $W_{Spann} = \Delta E_{Spann} = \frac{1}{2} \cdot D \cdot (s_2^2 - s_1^2)$

D: Federkonstante, s_1/s_2 : Federveränderung am Anfang/Ende

Energie der gespannten Feder

 $E_{Spann} = \frac{1}{2} \cdot D \cdot s^2$

Reibarbeit

 $W_R = \Delta E_R = F_R \cdot \Delta s$

 F_R : Reibkraft

Änderung der Wärmeenergie

 $Q = \Delta E_{therm} = c \cdot m \cdot \Delta \vartheta$

c: spezifische Wärmekapazität in J/(kg·°C), $\Delta\vartheta$: Temperaturänderung in °C, Q: Wärme in

Pferdestärke: 1PS=735.5 W

J

Leistung

 $P = \frac{W}{\Delta t} = \frac{\Delta E}{\Delta t}$

P: Leistung in W

Wirkungsgrad

 $\eta = \frac{\Delta E_{genutzt}}{\Delta E_{aufgewendet}}$

Energieerhaltungssatz

 $E_{tot} = \sum_{i} E_{i} = \text{konst.}$ $E_{Anfang} = E_{Ende}$

 $\Delta E = \sum_{i} \Delta E_i = 0$

6 Flüssigkeit und Gase

Druck

 $p = \frac{F}{A}$

F: Kraft in N, A: Fläche in \mathbf{m}^2 ,

p: Druck in Pa

Atmosphärendruck: $p_0 = 1 \,\text{bar} = 105 \,\text{P}$

 $10^5\,\mathrm{Pa}$

Dichte

 $\varrho = \frac{m}{V}$

 $m\!\!:$ Masse in kg, $V\!\!:$ Volumen in

 m^3 , ϱ : Dichte in kg/m^3

Schweredruck

 $p = \varrho \cdot g \cdot h$

g: Ortsfaktor (9.81 N/kg)

Auftriebskraft

 $F_A = \varrho_{\rm F} \cdot g \cdot V_{\rm Ein}$

 $V_{\rm Ein}$: Volumen des eingetauchten Körpers, $\varrho_{\rm F}$: Dichte des umge-

benden Fluids

Tabelle: Dichte von Stoffen:

Feste Stoffe bei 20 °C	$\varrho \text{ in } 10^3 \text{ kg/m}^3$
Aluminium	2.70
Blei	11.34
Diamant	3.51
Eis bei 0 °C	0.917
Eisen	7.86
Fichtenholz	0.50
Glas	2.5
Gold	19.29
Graphit	2.24
Kork	0.2
Kupfer	8.92
Magnesium	1.74
Marmor	2.5
Messing	8.47
Platin	21.45
Silber	10.5
Stahl (unlegiert)	7.85
Styropor	0.017
Titan	4.50
Wolfram	19.27

 $(NTP \mbox{ steht für } Normtemperatur \mbox{ und } Normdruck: 0 \mbox{ °C}$ und $1.013 \cdot 10^5 \mbox{ Pa.})$

Flüssigkeiten bei NTP	ϱ in 10^3 kg/m^3
Wasser (H ₂ O)	1.000
Quecksilber (Hg)	13.595
Ethanol (C ₂ H ₅ OH) bei 20 °C	0.789
Benzin	0.70
Gase bei NTP	$arrho \ ext{in kg/m}^3$
Luft (Massenanteile: 23 % O ₂ ;	
76 % N ₂ ; 1 % Ar)	1.293
Kohlendioxid (CO_2)	1.977

0.0899

0.1785

1.748

1.428

1.250

Wasserstoff (H₂)

Sauerstoff (O_2)

Stickstoff (N_2)

Helium (He)

Argon (Ar)

7 Kinematik

Allgemeine Beschreibung von Bewegungen:

Mittlere Geschwindigkeit

$$\langle v \rangle = \frac{\Delta s}{\Delta t}$$

 Δs : Wegänderung/ Distanz in m, Δt : Zeitdauer/ Zeitintervall in s, [v]= m/s

Mittlere Beschleunigung

$$\langle a \rangle = \frac{\Delta v}{\Delta t}$$

 Δv : Geschwindigkeitsänderung, $[a] = \text{m/s}^2$

Momentangeschwindigkeit

$$v(t) = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t}$$

 $\boldsymbol{v}(t) \colon \mathbf{Geschwindigkeit}$ zum Zeitpunkt t

Momentanbeschleunigung

$$a(t) = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t}$$

 $\boldsymbol{a}(t)$: Beschleunigung zum Zeitpunkt t

Geradlinige, gleichförmige Bewegung (v=konst., a=0):

Geschwindigkeit

$$v = \frac{\Delta s}{\Delta t}$$

 Δs : Wegänderung, Δt : Zeitdauer

Geradlinige, gleichmässig beschleunigte Bewegung (a=konst.):

Beschleunigung

$$a = \frac{\Delta v}{\Delta t} = \frac{v(t) - v_0}{t}$$

 v_0 : Geschwindigkeit zum Zeitpunkt 0, v(t): Geschwindigkeit zum Zeitpunkt t

Geschwindigkeit zum Zeitpunkt \boldsymbol{t}

$$v(t) = v_0 + at$$

Ort zum Zeitpunkt t

$$s(t) = v_0 t + \frac{1}{2}at^2$$

Geschwindigkeit beim Ort s

$$v(s) = \sqrt{{v_0}^2 + 2as}$$

8 Dynamik

Grundgleichung der Mechanik:

Definition der Kraft

$$\vec{F} = m \cdot \vec{a}$$

$$[F] = \text{kg} \cdot \text{m/s}^2 = \text{N}$$

Kreisbewegung:

Geschwindigkeit Punkt auf Kreisbahn

$$v = \frac{2\pi r}{T} = \omega \cdot r$$

 $r \colon$ Radius in m, $T \colon$ Umlaufzeit in s, $\omega \colon$ Winkelgeschwindigkeit in s $^{-1}$

Winkelgeschwindigkeit

$$\omega = \frac{2\pi}{T} = \frac{\Delta\varphi}{r}$$

Winkelkoordinate

$$\varphi = \frac{b}{r}$$

b : Bogenlänge, $[\varphi] =$ rad

Frequenz

$$f = \frac{1}{T}$$

Zentripetalbeschleunigung

$$a_z = \frac{v^2}{r} = \omega^2 \cdot r$$

Zentripetalkraft

$$F_z = m \cdot a_z = m \cdot \frac{v^2}{r} = m \cdot \omega^2 \cdot r$$

Impuls:

Impuls

$$\vec{p} = m \cdot \vec{v}$$

Kraftstoss

$$F \cdot \Delta t = \Delta p$$

falls F konstant

Impulserhaltung

$$\vec{p}_{total} = \sum_{i=1}^{n} \vec{p}_i = \text{konstant}$$

 \vec{p}_{total} : Gesamtimpuls im abgeschlossenen System, \vec{p}_i : Einzelimpulse

 v_1 : Geschwindigkeit des Kör-

Vollständig elastischer Stoss:

Geschwindigkeit des Körpers 1 nach dem Stoss

$$v_1' = \frac{(m_1 - m_2)v_1 + 2m_2v_2}{m_1 + m_2}$$

pers 1 vor dem Stoss v_2 : Geschwindigkeit des Kör-

nach dem Stoss

bungsenergie

pers 2 vor dem Stoss

Geschwindigkeit des Körpers 2 nach dem Stoss

$$v_2' = \frac{2m_1v_1 + (m_2 - m_1)v_2}{m_1 + m_2}$$

 E_{kin} : kinetische Energie vor dem Stoss, E'_{kin} : kinetische Energie

Energieerhaltung elastischer Stoss

$$E_{kin} = E'_{kin}$$

 E_{Def} : Deformations- und Rei-

 $E_{Def} = 0$

Vollständig inelastischer Stoss:

$$v' = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$$

Energieerhaltung inelastischer Stoss

$$E_{kin} = E'_{kin} + E_{Def}$$

Keplersche Gesetze:

1. Gesetz Die Planeten bewegen sich auf el-

liptischen Bahnen, in deren einem gemeinsamen Brennpunkt die Son-

ne steht.

2. Gesetz $\frac{\Delta A}{\Delta t} = \frac{\pi ab}{T} = \text{konst.}$ ΔA : Überstrichene Fläche des

Fahrstrahls von m_z zu m, m_z : Zentralmasse (Sonne), m: kleinere Masse (Planet), a,b: Halbachsen (a > b), T: Umlaufzeit

3. Gesetz $\frac{a^3}{T^2} = \frac{Gm_z}{4\pi^2} = \text{konst.}$ G: Gravitationskonstante

 $G = 6.67 \cdot 10^{-11} \text{ Nm}^2 \text{kg}^{-2}$

Gravitation:

Gravitationskraft zwischen F = G

zwei Körper

 $F = G \cdot \frac{m_1 \cdot m_2}{r^2}$ r: Abstand der zwei Körper,

G: Gravitationskonstante, m_1, m_2 : Massen 1 und 2

Hubarbeit im Gravitations-

feld

 $\Delta E_{pot} = G \cdot m_1 \cdot m_2 \left(\frac{1}{r_1} - \frac{1}{r_2} \right) =$

 $r_1 \colon \mathsf{Anfangsabstand}, \, r_2 \colon \mathsf{Endab}$

stand

Astrophysikalische Daten:

Astronomische

 $1 AE \approx 1.495979 \cdot 10^{11} \,\mathrm{m}$

Einheit

Lichtjahr 1 ly = Weg des Lichts in einem Jahr

Erde: $5.974 \cdot 10^{24} \text{ kg}$

Radius Äquator: 6378 km polarer Radius: 6357 km mittlerer Radius (volumengleiche Kugel): 6371 km

Siderische Rotationsdauer: 23 h 56 min 04.1 s

= 23.9345 h

Siderische Umlaufszeit: 365.256 d

Sonne: Masse $1.989 \cdot 10^{30} \text{ kg}$

Radius: $6.960 \cdot 10^8 \text{ m}$ Entfernung von Erde: 150 Millionen Kilometer

Mond: Masse: $7.348 \cdot 10^{22} \text{ kg}$

Radius: $1.738 \cdot 10^6 \text{ m}$

Siderische Umlaufszeit: 27.3 d

Entfernung von Erde: 384 Tausend Kilometer

9 Wärmelehre

Kelvin- und Celsiustemperatur

$$\frac{T}{K} = \frac{\vartheta}{^{\circ}C} + 273$$

T: Temperatur in K, ϑ : Temperatur in $^{\circ}$ C

Celsius- und Fahrenheittemperatur

$$\frac{f}{^{\circ}\mathrm{F}} = 1.8 \cdot \frac{\vartheta}{^{\circ}\mathrm{C}} + 32$$

 $f \colon \mathsf{Temperatur}$ in °F (Fahrenheit)

Thermische Längenausdehnung

$$\Delta \ell = \ell_0 \cdot \alpha \cdot \Delta \vartheta$$

 $\Delta \ell$: Längenänderung in m, ℓ_0 : Anfangslänge in m, α : Längenausdehnungskoeffizient in ${}^{\circ}C^{-1}$,

 $\Delta \vartheta$: Temperaturänderung in °C

Thermische Volumenausdehnung

$$\Delta V = V_0 \cdot \gamma \cdot \Delta \vartheta$$

 ΔV : Volumenänderung, V_0 : Anfangsvolumen, γ : Volumenausdehnungskoeffizient

Allgemeine Gasgleichung des idealen Gases

$$\frac{p \cdot V}{T} = \text{konst.}$$

p: Druck in Pa, T: Temperatur in K

$$\frac{p}{T \cdot \varrho} = \text{konst.}$$

 ϱ : Dichte in kg/m³

Universelle Gasgleichung des idealen Gases

$$\frac{p\cdot V}{T}=n\cdot R$$

n: Stoffmenge in mol, Universelle Gaskonstante R=8.31 J mol⁻¹ K⁻¹

Teilchenzahl

$$N = n \cdot N_A$$

Avogadrokonstante $N_A = 6.022 \cdot 10^{23} \,\mathrm{mol}^{-1}$

Mittlere Translationsenergie eines Teilchens

$$E_k = \frac{1}{2}m\langle v\rangle^2 = \frac{2}{3}k \cdot T$$

k: Boltzmann-

Konstante: $1.38065 \cdot 10^{-23} \, \text{J/K}$

Innere Energie

$$U = E_{innen}$$

 $[U] = [E_{innen}] = J$

Erster Hauptsatz

$$\Delta U = Q + W$$

Q: Wärme in J, W: mechanische Arbeit in J

 $\Delta E_{innen} = \Delta E_{therm} + \Delta E_{mech}$

Änderung der Wärmeenergie (ohne Aggregatszustandsänderung):

$$Q = \Delta E_{therm} = c \cdot m \cdot \Delta T$$

 ΔE_{therm} : Änderung der inneren Energie in J, c: Wärmekapazität in J/(K·kg), m: Masse, ΔT : Temperaturänderung in K

Spezifische Schmelz- bzw. Erstarrungswärme

$$Q = L_f \cdot m = \Delta E_{therm}$$

 L_f : spezifische Schmelzwärme in J/kg, m: Masse

Spezifische Verdampfungsbzw. Kondensationswärme

$$Q = L_v \cdot m = \Delta E_{therm}$$

 L_v : Spezifische Verdampfungswärme in J/kg

Mechanische Arbeit am Gas

$$W = \Delta E_{mech} = -p \cdot \Delta V$$

p: Druck, ΔV : Volumenänderung

Wirkungsgrad	$\eta = \frac{E_{ab}}{E_{zu}}$	E_{ab} : Nutzenergie, E_{zu} : Zugeführte Energie
Carnot-Wirkungsgrad	$\eta_C = \frac{T_1 - T_2}{T_1}$	T_1 : Temperatur des wärmeren Reservoirs, T_2 : Temperatur des kälteren Reservoirs
Erster Hauptsatz der Wär- melehre	$\Delta U = Q + W$ $\Delta E_{innen} = \Delta E_{therm} + \Delta E_{mech}$	$\Delta U = \Delta E_{innen}$: Änderung der inneren Energie, $Q > 0$: zugeführte Wärme, $W > 0$: am System verrichtete Arbeit
Entropie:		
Thermodynamische Entropie	$\Delta S = \frac{Q_{rev}}{T} = \frac{\Delta E_{therm,rev}}{T}$	$S \colon \text{Entropie in J/K},$ für reversible Prozesse
Statistische Entropie	$S = k \ln \Omega$	k : Boltzmann-Konstante 1.381 · $10^{26}~\mathrm{J/K},~\Omega$: Anzahl Zustände bei gegebener Gesamtenergie und Teilchenzahl
Zweiter Hauptsatz	$\Delta S \geq 0$	im abgeschlossenen System (für reversible Prozesse gilt $\Delta S=0$)
Wärmetransport:		
Stefan-Boltzmann-Gesetz	$P = \sigma \cdot A \cdot T^4$	P : thermische Strahlungsleistung eines schwarzen Körpers in W, σ : Stefan-Boltzmann-Konstante $\sigma = 5.670 \cdot 10^{-8} \frac{\text{W}}{\text{m}^2 \text{K}^4}$, T : Temperatur in K, A : Oberflächeninhalt in m ²
Strahlungsfluss	$\Phi = \frac{P}{A} = \sigma \cdot T^4$	$\Phi {:} Strahlungsfluss in W/m^2$
Wiensches Verschiebungsgesetz	$\lambda_{max} = \frac{2.896 \cdot 10^{-3} \text{K m}}{T}$	λ_{max} : Wellenlänge mit grösster thermischer Strahlungsleistung
Wärmestrom (Wärmeleitung)	$P_{therm} = \lambda \cdot \frac{A}{\ell} \cdot \Delta T$	P_{therm} : Wärmestrom in W, A : Querschnittsflächeninhalt in m^2 , ℓ : Länge in m, λ : Spezifische Wärmeleitfähigkeit in W/(mK)

Tabelle 1: Spezifische Wärmekapazität c von Flüssigkeiten (bei 0 °C und 1 bar Druck):

Flüssigkeit	$c \text{ in } \frac{J}{\text{kg·K}}$
Ethanol (Ethylalkohol)	2428
Methanol (Methylalkohol)	2470
Quecksilber	139
Wasser (bei 20 °C)	4187

Tabelle 2: Spezifische Wärmekapazität c_p und c_V von Gasen (bei 20 °C und 1 bar Druck):

Wärmeleitfähigkeit in W/(mK)

`		,
Gas	$c_p \text{ in } 10^3 \frac{\text{J}}{\text{kg·K}}$	c_V in $10^3 \frac{\text{J}}{\text{kg} \cdot \text{K}}$
Ammoniak	2.160	1.655
Helium	5.23	3.21
Kohlendioxid	0.837	0.647
Luft	1.005	0.717
Sauerstoff	0.917	0.656
Wasserdampf	1.038	0.741
Wasserstoff	14.32	10.2

Tabelle 3: Längenausdehnungskoeffizient α von festen Stoffen:

Feste Stoffe bei 20 °C	α in 10^{-6} (°C) ⁻¹
Aluminium (gewalzt)	23.2
Aluminium (rein)	23.0
$AlPO_4$ -17	-11.7
Beton	6 bis 14
Blei	29.3
Bronze	17.5
Eisen	12.2
Fensterglas	7.6
Glaskeramik (Ceran)	$ \alpha < 0.1$
Gold	14.2
Granit	3.0
Graphit	2.0
Holz (Eiche)	8.0
Kochsalz	40.0
Kupfer	16.5
Messing	18.4
Platin	9.0
Silber	19.5
Stahl (unlegiert)	13.0
Titan	10.8
Wolfram	4.5
Zink	26.3
Zinkcyanid	-18.1
Zinn	26.7
Zirconiumwolframat	-8.7

Tabelle 4: Spezifische Wärmekapazität c von festen Stoffen (bei 0 °C und 1 bar Druck):

Festkörper	$c \text{ in } \frac{J}{\text{kg} \cdot K}$
Aluminium	896
Beton	209
Blei	129
Eisen (rein)	439
Eis	2100
Fensterglas	800
Gold	130
Granit	790
Kohlenstoff (Diamant)	472
Kohlenstoff (Graphit)	715
Kupfer	381
Messing	389
Nickel	444
Platin	134
Silber	234
Stahl	477
Wolfram	134
Zink	389
Zinn	230

Tabelle 5: Volumenausdehnungskoeffizient γ von flüssigen Stoffen:

Flüssige Stoffe bei 20 °C	$\gamma \text{ in } 10^{-3} \ (^{\circ}\text{C})^{-1}$
Ethanol (Ethylalkohol)	1.10
Methanol (Methylalkohol)	1.20
Quecksilber	0.182
Wasser	0.207

Tabelle 6: Schmelzpunkt ϑ_f und spezifische Schmelzwärme L_f :

Material	ϑ_f in °C	$L_f \text{ in } 10^5 \frac{\text{J}}{\text{kg}}$
Aluminium	660.1	3.97
Blei	327.4	0.23
Eisen (rein)	1535	2.77
Gold	1063.0	0.64
Kupfer	1083	2.05
Messing	905	1.6
Platin	1769.3	1.11
Silber	960.8	1.045
Wolfram	3380	1.92
Zink	419.5	1.11
Zinn	231.9	0.596
Eis	0	3.338
Ethanol	-114.5	1.08
Methanol	-97.7	0.92
Quecksilber	-38.87	0.118

Tabelle 7: Siedepunkt ϑ_v und spezifische Verdampfungswärme L_v bei Normdruck:

Material	θ_v in °C	$L_v \text{ in } 10^5 \frac{\text{J}}{\text{kg}}$
Ethanol	78.33	8.40
Methanol	64.6	11.0
Quecksilber	356.58	2.85
Wasser	100.0	22.56

Tabelle 8: Spezifische Wärmeleitfähigkeit λ :

Stoff	$\lambda \text{ in Wm}^{-1}\text{K}^{-1}$
Aluminium	239
Eisen	80
Gold	312
Kupfer	384
Messing	100
Silber	428
Stahl (V 2 A)	15
Beton	1.0
Fensterglas	0.75
Tanne	0.3
Eis $(0^{\circ}C)$	2.2
Isoliermaterial	0.04
Baumwolle	0.06
Wolle	0.04
Luft (wenn Konvektion	
verhindert wird)	0.025

10 Schwingungen und Wellen

Harmonische Schwingung:

Auslenkung $y(t) = A \cdot \sin(\omega t + \Phi)$

y(t): y-Auslenkung zum Zeitpunkt t, A: Amplitude, ω : Winkelgeschwindigkeit,

Φ: Phase

Geschwindigkeit $v(t) = A \cdot \omega \cos(\omega t + \Phi)$

v(t): Geschwindigkeit zum Zeitpunkt t, mit $v_{max} = A \cdot \omega$

Beschleunigung $a(t) = -A \cdot \omega^2 \sin(\omega t + \Phi)$

a(t): Beschleunigung zum Zeitpunkt t, mit $a_{max} = A \cdot \omega^2$

Frequenz $f = \frac{1}{T} = \frac{\omega}{2\pi}$

T: Schwingungsdauer, Periode, f in $Hz=s^{-1}$

Kraftgesetz des harm. Oszillators

 $mit \ k = m \cdot \omega^2$

 $\vec{F} = -k \cdot \vec{\eta}$

k: Konstante, \vec{y} : Auslenkungsvektor in y-Richtung m: Masse

Schwingungszeit Federpendel $T = 2\pi \sqrt{\frac{m}{D}}$

D: Federkonstante

Schwingungszeit Mathematisches Pendel

 $T = 2\pi \sqrt{\frac{\ell}{g}}$

 ℓ : Länge des Pendels

Wellen:

Ausbreitungsgeschwindigkeit einer Welle

 $c = \lambda \cdot f$

 λ : Wellenlänge

Formeln zur zeitlichen Interferenz von zwei Wellen mit

 $f_{res} = \frac{f_1 + f_2}{2}$

 f_{res} : Frequenz des resultierenden Tons

Frequenz f_1 und f_2 $f_{Schweb.} = |f_1 - f_2|$

 f_{Schweb} : Frequenz der Schwebung

Wellengleichung Sinuswelle

 $f(x,t) = A \cdot \sin\left(\omega\left(t - \frac{x}{c}\right)\right)$

x: Ort

Wellengleichung stehende Welle

 $f(x,t) = 2A \cdot \sin(\omega t) \cdot \cos\left(\frac{\omega x}{c}\right)$

Beugung:

Interferenz von zwei Wellen

$$\Delta s_{max} = n \cdot \lambda$$

$$\Delta s_{min} = (2n - 1) \cdot \frac{\lambda}{2}$$
(mit $n \in \mathbb{Z}$)

 $\Delta s_{max}/\Delta s_{min}$: Gangdifferenz zweier Maxima / Minima, n: Beugungsordnung, λ : Wellenlänge

Beugung am Doppelspalt

$$\sin \alpha_{n.Hauptmax.} \approx \frac{\Delta s}{d} = \frac{n\lambda}{d}$$
(mit $n \in \mathbb{Z}$)

n: Beugungsordnung,

 $\alpha_{n.Hauptmax}$: Brechungswinkel bei Intensitätsmaxima, d: Gitterkonstante

Beugung am Strichgitter

Beugung an der Spaltblende

Beugung an der Kreisblende

$$\sin \alpha_{n.Hauptmax.} = \frac{n\lambda}{d}$$

1

$$\sin \alpha_{1.Min.} = \frac{\lambda}{b}$$

 $\sin \alpha_{1.Min.} \approx 1.22 \cdot \frac{\lambda}{d}$

b: Spaltbreite

 $\sin \alpha_{1.Max.} = \frac{3\lambda}{2b}$

Doppler-Effekt:

Bewegte Quelle, ruhender Beobachter:

(a)
$$\underline{v < c}$$

$$\lambda' = \lambda \left(1 \pm \frac{v}{c} \right)$$

v: Geschwindigkeit der Quelle, c: Ausbreitungsgeschwindigkeit der Welle,

$$+$$
 weg; $-$ zu

$$f' = \frac{f}{1 \pm \frac{v}{c}}$$

$$+$$
 weg; $-$ zu

(b)
$$\underline{v > c}$$

$$\sin \alpha = \frac{c}{v}$$

(α ist der halbe Öffnungswinkel des Machschen Kegels)

Bewegter Beobachter, ruhende Quelle

$$f' = f\left(1 \pm \frac{v}{c}\right)$$

$$+ zu; - weg$$

Dopplerradar, für $v \ll c$ gilt:

$$f_{Schweb.} = |f'' - f| \approx 2f \cdot \frac{v}{c}$$

Tabelle: Ausbreitungsgeschwindigkeiten:

Licht in	c in m/s	Schall in Medium	c in m/s
Vakuum	$3.00 \cdot 10^8$	Luft	340
Wasser	$2.25 \cdot 10^{8}$	Wasser	1483
Glas	$1.60 \cdot 10^8$	Stahl	5050

11 Elektrostatik

Elementarladung

$$e = 1.6 \cdot 10^{-19} \text{ C}$$

$$1 \text{ C} = 1 \text{ A} \cdot \text{s}$$

Masse des Elektrons

$$m_e = 9.11 \cdot 10^{-31} \text{ kg}$$

Masse des Protons

$$m_p = 1.67 \cdot 10^{-27} \text{ kg}$$

Coulombgesetz für Punktladungen

$$F = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q_1 Q_2}{r^2}$$

F: Kraft zwischen den Punktladungen Q_1 und Q_2 , r: Abstand

Influenzkonstante (elektrische

$$\varepsilon_0 = 8.85 \cdot 10^{-12} \text{ C}^2 \text{N}^{-1} \text{m}^{-2}$$

$$\mathrm{C^2N^{-1}m^{-2}} = \mathrm{A \cdot s}/(\mathrm{V \cdot m})$$

Elektrische Feldstärke

$$\vec{E} = \frac{\vec{F}}{q}$$

q: Probeladung

$$[E] = NC^{-1} = Vm^{-1}$$

Elektrisches Feld einer Punktladung

$$E = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q}{r^2}$$

r: Abstand vom Kugelzentrum

Elektrische Feldstärke im Plattenkondensator

$$E = \frac{1}{\varepsilon_0} \cdot \frac{Q}{A} = \frac{U}{d}$$

A: Flächeninhalt einer Platte, U: Spannung, d: Plattenabstand

Elektrisches Potential

$$\varphi(\vec{r}) = -\int_{\vec{r}_0}^{\vec{r}} \vec{E}(\vec{r}) \cdot d\vec{r}$$

$$\min \, \varphi(\vec{r}_0) = 0$$

Definition der Spannung

$$U_{AB} = \varphi_A - \varphi_B = \frac{\Delta E_{AB}}{q}$$

 ΔE_{AB} : die am System verrichtete Arbeit wenn Probeladung q von A nach B verschoben wird.

$$U_{AB} = \int_{\vec{r}_A}^{\vec{r}_B} \vec{E}(\vec{s}) \odot d\vec{s}$$

$$[U] = V, \, \vec{s} = \overrightarrow{AB}$$

Elektrische Arbeit

$$|\Delta E_{AB}| = |U_{AB} \cdot Q|$$

Kapazität

$$C = \frac{Q}{U}$$

$$[C] = F \text{ (Farad)} = \frac{C}{V}$$

Serieschaltung

$$\frac{1}{C_{tot}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots$$

Parallelschaltung

$$C_{tot} = C_1 + C_2 + C_3 + \dots$$

Kapazität des Plattenkondensators

$$C = \varepsilon_0 \cdot \frac{A}{d}$$

A: Flächeninhalt der Platte, d: Plattenabstand; $d \ll \sqrt{A}$

Energie des geladenen Plattenkondensators

$$E_P = \frac{1}{2} \cdot \frac{1}{\varepsilon_0} \cdot \frac{Q^2}{A} \cdot d = \frac{1}{2}CU^2$$

Energiedichte des elektrischen Feldes

$$w = \frac{1}{2}\varepsilon_0 E^2$$

[w]:
$$J/m^3$$

12 Stationäre Ströme

Stromstärke
$$I = \frac{Q}{\Delta t}$$
 $[I] = A = Cs^{-1}$

Definition des Widerstands
$$R = \frac{U}{I}$$
 $[R] = \Omega = VA^{-1}$

Kabelwiderstand
$$R = \varrho \cdot \frac{\ell}{A}$$
 ϱ : Spezifischer Widerstand, ℓ : Länge,

Leistung
$$P = U \cdot I$$
 $[P] = W = J/s$

Serieschaltung
$$R_{tot} = R_1 + R_2 + R_3 + \dots$$

Parallelschaltung
$$\frac{1}{R_{tot}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

Kirchhoff'sche Gesetze

Knotenregel
$$\sum_k I_k = 0$$
 Für eine Stromverzweigung (Knoten), Vorzeichen von I_k festlegen

Maschenregel
$$\sum_{k} (I \cdot R)_{k} = \sum_{i} U_{i}$$
 Für jeden geschlossen Umlauf (Masche), Umlaufsinn festlegen,

 U_i : Spannungsquellen

Tabelle: Spezifische Widerstände (bei 20°):

Spezifischer Widerstand ϱ	$\Omega \mathrm{m}$
Kupfer ϱ_{Cu}	$1.68 \cdot 10^{-8}$
Aluminium ϱ_{Al}	$2.82 \cdot 10^{-8}$
Silber ϱ_{Ag}	$1.59 \cdot 10^{-8}$

13 Magnetismus und Induktion

Magnetisches Feld

 \vec{B}

 $[B] = T = 10^5 \text{ Gauss}$

Lorenzkraft

$$\vec{F}_L = q \cdot (\vec{v} \times \vec{B})$$

 \vec{v} : Geschwindigkeit, q: Probeladung

Kraft auf stromdurchflossenes

Leiterelement (Biot-Savart-Kraft)

$$d\vec{F} = I \cdot (d\vec{\ell} \times \vec{B})$$

 $d\vec{\ell}$: Leiterelement, I: Stromstärke

Magnetfeld eines Stromelements (Biot-Savart-Gesetz):

$$d\vec{B} = \frac{\mu_0 \cdot I}{4\pi} \cdot \frac{d\vec{\ell} \times \vec{e_r}}{r^2}$$

r : Abstand, $\vec{e_r} :$ Enheitsvektor von r

4 10-

Magnetische Feldkonstante

$$\mu_0 = 4\pi \cdot 10^{-7}$$

Magnetfeld eines unendlich langen und geraden stromdurchflossenen Leiters

$$B(r) = \mu_0 \cdot \frac{I}{2\pi r}$$

r: Abstand von Drahtachse

Magnetfeld im Zentrum eines Kreisstromes

$$B = \mu_0 \cdot \frac{I}{2r}$$

Magnetfeld einer langen, dünnen Spule

$$B\approx \mu_0\cdot I\cdot \frac{N}{\ell}$$
 für $\ell\gg d$

 $\ell :$ Spulenlänge, d : Spulendurchmesser, N : Anzahl Windungen

Magnetischer Fluss (homogen)

$$\phi = \vec{A}(t) \odot \vec{B}(t)$$

 \vec{A} : Flächenvektor (Normalenvektor der Fläche)

Induzierte Spannung

$$U_{ind} = -\frac{d \phi(t)}{d t} = -\phi'(t)$$

Transformator mit unendl. gr. Lastwiderstand

$$\frac{U_1}{U_2} = \frac{N_1}{N_2}$$

14 Mathematische Formelsammlung

Trigonometrie

Im rechtwinkligen Dreieck:

$$\sin(\alpha) = \frac{a}{c} = \frac{G}{H}$$
$$\cos(\alpha) = \frac{b}{c} = \frac{A}{H}$$
$$\tan(\alpha) = \frac{a}{b} = \frac{G}{A}$$

G: Gegenkathete A: Ankathete H: Hypotenuse

Im allgemeinen Dreieck:

Cosinussatz

$$c^2 = a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos(\gamma)$$

$$\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)} = 2r$$

r: Radius Dreiecksumkreis

Geometrie

Satz von Pythagoras (rechtwinkliges Dreieck)

$$a^2 + b^2 = c^2$$

a, b: Katheten, c: Hypotenuse

Umfang Kreis

$$U = 2\pi r$$

r: Radius

Flächeninhalt Kreis

$$A = \pi r^2$$

Volumen Kugel

$$V = \frac{4\pi}{3}r^3$$

Volumen Prisma, Zylinder

$$V = G \cdot h$$

G: Grundfläche, h: Höhe

Volumen Pyramide, Kegel

$$V = \frac{G \cdot h}{3}$$

Gleichungen

Lösungsformel für quadratische Gleichungen

$$ax^2 + bx + c = 0$$

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Statistik

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$