Ficha de Primitivas e Integrais

Ex. 1: Primitive as seguintes funções:

a.
$$x(1+3x)^{\frac{1}{2}};$$
 b. $\frac{1}{e^x+1};$

b.
$$\frac{1}{e^x+1}$$
;

c.
$$\frac{x}{\sqrt{2-4x^2}}$$
;

d.
$$\frac{1}{\sqrt{2-4x^2}}$$
; **e.** $\frac{x+1}{\sqrt{2-4x^2}}$; **f.** $\frac{x^2+1}{\sqrt{2-4x^2}}$;

e.
$$\frac{x+1}{\sqrt{2-4x^2}}$$

f.
$$\frac{x^2+1}{\sqrt{2-4x^2}}$$

g.
$$e^{3x}$$
sen x :

g.
$$e^{3x} \text{sen } x;$$
 h. $\frac{1}{\sqrt[3]{1+x}+\sqrt{1+x}};$ **i.** $\sqrt{x} \ln^2 x;$

i.
$$\sqrt{x} \ln^2 x$$

$$\mathbf{j} \cdot \frac{\cos x}{\sin^3 x}$$

j.
$$\frac{\cos x}{sen^3x}$$
; **k.** $\frac{1}{(x+1)\sqrt{1+\ln(3x+3)}}$; **l.** $\frac{tgx}{1+sen^2x}$;

$$1. \ \frac{tgx}{1+sen^2x};$$

m.
$$\frac{x - x \operatorname{arcsen}(2x^2)}{\sqrt{1 - 4x^4}}$$
; **n.** $\frac{e^{2x}}{\sqrt{e^{2x} + 1}}$;

n.
$$\frac{e^{2x}}{\sqrt{e^{2x}+1}}$$
;

$$\mathbf{O.} \ \frac{e^{2x}}{\sqrt{e^x+1}};$$

$$\mathbf{p.} \ \ \frac{x^2 + x - 1}{x^3 - 2x^2 - x + 2}; \qquad \qquad \mathbf{q.} \ \ \frac{1}{x^3 + 4x^2 + 4x};$$

$$\mathbf{q}. \ \frac{1}{x^3+4x^2+4x};$$

$$\mathbf{r.} \ \frac{3x^2+2x+5}{3x^3+2x^2+5x};$$

$$\mathbf{S.} \ \frac{3x^2 + 2x + 5}{x^3 + 2x^2 + 5x}.$$

Ex. 2: Justifique que

$$\int_{1}^{2} x^{3} e^{\sqrt{x} + x^{2}} dx \ge \int_{1}^{2} e^{x^{2}} dx \qquad e \qquad \int_{1}^{2} e^{x^{2}} dx \ge e^{2} - e.$$

$$\int_1^2 e^{x^2} dx \ge e^2 - e$$

(Sugestão: nem pense em calcular estes integrais!!!)

Ex. 3: Considere a função $f: [-1,2] \to R$, definida por :

$$f\left(x\right) =x^{2}+3x.$$

a. Justifique que f é integrável.

b. Mostre que o valor médio de f (neste intervalo) é $\frac{15}{6}$. c. Justifique (sem o calcular) que a equação $x^2 + 3x - \frac{15}{6}$ tem um zero neste intervalo.

Ex. 4: Considere a função definida por

$$f(x) = \int_{x^3}^{x^2} (1+t^4)^{-\frac{3}{2}} dt.$$

a. Justifique f é derivável em \mathbb{R} e calcule a sua derivada.

b. Mostre que:

• 0 e 1 são zeros de f;

• $f(x) \le 0$ em $[1, +\infty[$ e $f(x) \ge 0$ em $]-\infty, 1[$.

Ex. 5: Calcule, justificando, o seguinte limite:

$$\lim_{x \to 0} \frac{\int_0^x sen \ t^5 dt}{\int_0^{x^2} sen \ t^2 dt}.$$

Ex. 6: Determine os seguintes integrais:

a.
$$\int_{\pi}^{\pi^2} \frac{\cos\sqrt{x}}{\sqrt{x}} dx$$

a.
$$\int_{\pi}^{\pi^2} \frac{\cos \sqrt{x}}{\sqrt{x}} dx;$$
 b. $\int_{-1}^{1} x (2x+5)^4 dx;$ **c.** $\int_{\frac{e}{2}}^{\frac{e^2}{2}} \frac{\ln 2x}{x \ln 4x} dx;$

$$\mathbf{c.} \int_{\frac{e}{2}}^{\frac{e^2}{2}} \frac{\ln 2x}{x \ln 4x} dx$$

d.
$$\int_{1}^{4} \frac{1+\sqrt{x}}{x^2} dx$$

e.
$$\int_0^{\frac{\sqrt{2}}{2}} \arcsin x;$$

d.
$$\int_{1}^{4} \frac{1+\sqrt{x}}{x^{2}} dx$$
; **e.** $\int_{0}^{\frac{\sqrt{2}}{2}} \arcsin x$; **f.** $\int_{0}^{3} |5x-10| dx$.

Ex. 7:

a. Justifique que a seguinte função é impar:

$$f(x) = x^3 |sen(x^5 + x)| e^{x^2 + |x|}$$

b. Indique o valor de $\int_{-2}^{2} f(x) dx$.

Ex. 8: Mostre que, se f é uma função continua no intervalo [0,T] e auma constante real não nula, então

$$\int_0^T f(at) dt = \frac{1}{a} \int_0^{aT} f(t) dt.$$

Ex. 9: Determine as áreas das regiões limitadas pelas curvas:

a.
$$y = x^2$$
 e $y = \sqrt{|x|}$;

a.
$$y = x^2$$
 e $y = \sqrt{|x|}$;
b. $x = y^2 - 4$ e $x = 2 - y^2$;
c. $y = x^3 - x$ e $y = 0$.

c.
$$y = x^3 - x$$
 e $y = 0$.

10: Determine o volume dos sólidos de revolução gerados pela rotação da região limitada pelas curvas

$$y = x^2$$
, $y = 2$ e $x = 2$,

em torno dos eixos dos xx e em torno dos eixos dos yy.

Ex. 11: Determine o comprimento de linha da curva $y = \ln x$, entre os pontos (1,0) e $(3, \ln 3)$.

2

(Sugestão: no integral faça a mudança de variável $t = \sqrt{x^2 + 1}$.)

Soluções da ficha de Primitivas e Integrais

Ex. 1:

a.
$$\frac{2}{9}x(1+3x)^{\frac{3}{2}} - \frac{4}{135}x(1+3x)^{\frac{5}{2}} + C;$$
 b. $-\ln(1+e^{-x}) + C = \ln\frac{e^x}{e^x+1} + C;$

c.
$$-\frac{1}{4}\sqrt{2-4x^2}+C$$
; **d.** $\frac{1}{2}arcsen(\sqrt{2}x)+C$;

e.
$$-\frac{1}{4}\sqrt{2-4x^2} + \frac{1}{2}arcsen(\sqrt{2}x) + C;$$

f.
$$\frac{5}{8}arcsen(\sqrt{2}x) - \frac{1}{8}x\sqrt{2-4x^2} + C;$$

g.
$$-\frac{1}{10}e^{3x}\cos x + \frac{3}{10}e^{3x}senx + C;$$

h.
$$2\sqrt{1+x}-3\sqrt[3]{1+x}+6\sqrt[6]{1+x}-6\ln(\sqrt[6]{1+x}+1)+C$$
;

i.
$$\frac{2}{3}x\sqrt{x}\ln^2 x - \frac{8}{9}x\sqrt{x}\ln x + \frac{16}{27}x\sqrt{x} + C$$
; j. $-\csc^2 x + C$;

k.
$$2\sqrt{1+\ln(3x+3)}+C$$
; **l.** $\ln\left(\sqrt[4]{1+2\lg^2x}\right)+C=\frac{1}{4}\ln\left(\frac{1+sen^2x}{1-sen^2x}\right)+C$;

m.
$$\frac{1}{4}\arcsin{(2x^2)} - \frac{1}{8}\arcsin^2{(2x^2)} + C;$$

n.
$$\sqrt{e^{2x}+1}+C$$
; **o.** $\frac{2}{3}e^x\sqrt{e^x+1}-\frac{4}{3}\sqrt{e^x+1}+C$;

p.
$$-\frac{1}{2}\ln|x-1| - \frac{1}{6}\ln|x+1| + \frac{5}{3}\ln|x-2| + C = \ln\left(\frac{\sqrt[3]{|x-2|^5}}{\sqrt{|x-1|}}\right) + C;$$

q.
$$\frac{1}{4} \ln \left| \frac{x}{x+2} \right| + \frac{1}{2x+4} + C;$$
 r. $\ln |x| + C;$

s.
$$\ln |x| + \ln (x^2 + 2x + 5) - \arctan \left(\frac{x+1}{2}\right) + C$$
.

Ex. 2 a 4: -

Ex. 5: $\frac{1}{2}$.

Ex. 6: **a.**
$$-2\sin\sqrt{\pi}$$
; **b.** $\frac{7^5}{24} + \frac{3^5}{8} = \frac{2192}{3}$; **c.** $1 - \ln 2 \cdot \ln\left(\frac{\ln 2 + 2}{\ln 2 + 1}\right)$; **d.** $\frac{7}{4}$; **e.** $\frac{1}{8}\sqrt{2}\pi + \frac{\sqrt{2}}{2} - 1$; **f.** $\frac{25}{2}$.

d.
$$\frac{7}{4}$$
; **e.** $\frac{1}{8}\sqrt{2}\pi + \frac{\sqrt{2}}{2} - 1$; **f.** $\frac{25}{2}$

Ex. 7: a. -; b. 0.

Ex. 8: -

Ex. 9: a.
$$\frac{2}{3}$$
; b. $8\sqrt{3}$; c. $\frac{1}{2}$.

Ex. 10: em torno dos eixos dos $xx: \frac{32}{5}\pi$; em torno dos eixos dos yy: 8π .

Ex. 11:
$$\sqrt{10} - \sqrt{2} + \frac{1}{2} \ln \left(\frac{\sqrt{10} - 1}{\sqrt{10} + 1} \frac{\sqrt{2} + 1}{\sqrt{2} - 1} \right) = \sqrt{10} - \sqrt{2} + \frac{1}{2} \ln \left(\frac{\left(11 - 2\sqrt{10}\right)\left(3 + 2\sqrt{2}\right)}{9} \right)$$
.