BAB 2

DATA, INFORMASI, SISTEM INFORMASI DAN SIG

2.1. DATA & INFORMASI

2.1.1. DEFINISI DASAR

Data :

- ✓ Bahasa atau symbol-simbol pengganti lain yang sudah disepakati secara umum didalam menggambarkan suatu obyek, manusia, peristiwa, aktivitas, konsep, atau obyek-obyek penting lainnya.
- ✓ Fakta-fakta berupa symbol, string alphabet atau kumpulan angka-angka hasil pencatatan suatu fenomena / kejadian.
- ✓ Merupakan suatu kenyataan apa adanya
- ✓ Suatu fakta-fakta tertentu sehingga menghasilkan suatu kesimpulan dalam menarik suatu keputusan

- Informasi:
 - ✓ Data yang telah diberi makna melalui konteks

Contoh:

- Dokumen berbentuk spredshed (mikrosoft excel) yg digunakan untuk membuat informasi dari data yang ada didalamnya.
- ▶ Laporan laba-rugi dan neraca → merupakan informasi, dan angka-angka di dalamnya merupakan angka yang sudah diberi konteks, sehingga menjadi mempunyai makna/manfaat.

INFORMASI FORMAL & NON-FORMAL

- Contoh-contoh Informasi Formal :
 - ✓ PP (<u>Peraturan Pemerintah</u>)
 - √ UU
 - ✓ SK
 - ✓ SP (Surat Perintah)
 - ✓ Surat perjanjian atau kontrak
 - ✓ Prosedur akutansi
 - ✓ Persyaratan perencanaan
 - ✓ Anggaran dasar organisasi
 - ✓ Permintaan pekerjaan (surat lamaran)
 - ✓ Kebutuhan-kebutuhan pengendalian dan control.
 - ✓ Proses-proses pengambilan keputusan yg umum

- Contoh-contoh nyata Informasi Formal dalam bentuk yang sudah terstruktur:
 - Surat bukti pembayaran/kuitansi ;
 - surat tagihan; faktur;
 - bon pembelian;
 - tiket;
 - PP nomor 10 tahun 2000.
- Contoh Informasi Non-Formal :
 - Pendapat-pendapat individu;
 - Pengesahan;
 - Intuisi; Firasat; Prasangka; Dugaan; Kabar; Isu; Desas-desus;
 - Pengalaman pribadi; selentingan; Gosip; Anggapan/asumsi.

- Informasi Formal → Memungkinkan para penggunanya untuk mengekstrak, memproses, mengkonversi, mentransformasikan untuk menghasilkan informasi dari data yang menjadi masukannya.
- Informasi Non-Formal
 - → Nilainya sangat tergantung pada daya interpretasi penggunanya, mau diterima / ditolak.
 - → Cenderung bersifat subyektif dan tidak terstruktur
- <u>Catatan</u>: Informasi Formal, merupakan satu-satunya output yang valid dari sebuah sistem informasi yang formal pula.

2.1.2. ATRIBUT INFORMASI

- Berikut ini adalah atribut-atribut informasi :
 - 1. Akurat : Derajat kebebasan informasi dari kesalahan
 - Presisi : Ukuran detil yang digunakan didalam penyediaan informasi.
 - Tepat Waktu : Penerimaan informasi masih dalam jangkauan waktu yang dibutuhkan oleh si penerima, tidak kadaluwarsa / terlambat.
 - Jelas : Derajat kebebasan informasi dari keraguan.
 - Dibutuhkan : Tingkat relevansi informasi yang bersangkutan dengan kebutuhan pengguna.
 - Quantifiable : Kemampuan menyatakan informasi dalam bentuk numerik.

- 7. <u>Verifiable</u>: Tingkat <u>kesepakatan</u> / <u>kesamaan nilai sebagai hasil</u> <u>pengujian informasi yang sama oleh sejumlah pengguna</u>.
- 8. <u>Accessible</u>: Tingkat <u>kemudahan</u> <u>dan</u> <u>kecepatan</u> <u>dalam</u> memperoleh informasi yang bersangkutan.
- 9. Non-Bias : Derajat perubahan yang sengaja dibuat untuk mengubah/memodifikasi informasi dengan tujuan mempengaruhi para penerimanya.
- 10. Comprehensive: Tingkat kelengkapan Informasi.

2.1.3. MEMBUAT INFORMASI DARI DATA

- Setiap data <u>harus diproses</u> <u>terlebih dahulu sebelum " dianggap</u> informasi" oleh penerimanya.
- Jika prosesnya kompleks, maka prosesnya dapat dipecah menjadi beberapa sub proses yang lebih kecil dan sederhana(kopleksitasnya dapat direduksi).

- Ada 10 langkah pemrosesan atau operasi yang dapat dilakukan untuk mentransformasikan data sehingga menjadi sebuah informasi, yaitu:
 - Capturing : Merupakan proses perekaman data dari suatu: fenomena alam, peristiwa, kejadian ke dalam bentuk formulir, seperti →Formulir ukur/lapangan, slip penjualan, daftar isian data pribadi, pesanan pelanggan.

Contoh:

Saat surveyor melakukan pengukuran terestris / di lapangan dengan bantuan alat ukur theodolite, dan mencatat hasil-hasilnya di dalam formulir khusus

 Verifying : Pemeriksaan/validasi data untuk memastikan bahwa data tersebut telah direkam dengan benar.

Contoh:

Misal pada bidang Geodesi, verifying dilakukan dengan cara memeriksa formulir ukuran(sebaiknya dilakukan saat masih berada di lapangan):

- ✓ Apakah ada kesalahan penulisan / blunder.
- ✓ Apakah ada Salah ukur / salah baca,.....
- ✓Yang menyebabkan kesalahannya melebihi nilai toleransi yang dijinkan.

 Classifying : Menempatkan elemen-elemen data ke dalam kategori-kategori / klasifikasi tertentu, yang memberikan pengertian pada penggunanya.

Contoh:

Data penjualan, dapat diklasifikasikan menjadi : pelanggan, ukuran inventori/persediaan, salesperson, dll.

Arranging/Sorting : Menempatkan elemen-elemen data sesuai dengan urutan tertentu.

Contoh:

<u>Tabel inventori dapat diurutkan menurut</u>: field <u>kode</u>, <u>nilai</u>, <u>tingkat aktivitas</u>, <u>atribut-atribut</u> lain.

- Summarizing: Mengkombinasikan atau mengumpulkan beberapa elemen data ke dalam salah-satu cara (akan mengakumulasikan data secara matematis atau akan mereduksi data secara logis).
- Calculating: Melakukan proses pemanipulasian data secara aritmatik dan lojik, sehingga menghasilkan informasi dari hasil hitungan nilai-nilai data masukan.

Contoh:

Nilai akhir mahasiswa, diperoleh dengan melakukan hitungan berdasarkan nilai-nilai masukan : tugas, uts, uas.

 Storing: Menempatkan data pada media penyimpanan yang lain (media yg berbeda dengan media sumber datanya). Retrieving : Operasi ini memerlukan fasilitas akses ke elemenelemen data yang sebelumnya telah tersimpan di dalam media penyimpanan.

Contoh:

Pada bidang Geodesi, surveyor/operator memanggil kembali formulir ukur (telah terekam di suatu file), untuk : dilihat, diedit, atau dibaca oleh program aplikasi lain.

Reproducing: Menduplikasi data dari suatu media ke media lainnya (Termasuk : print file, copy file atau fotocopy berkas)

 Communicating / <u>Disseminating</u>: <u>Mentransfer</u> data <u>dari</u> <u>suatu</u> tempat ke tempat lain.

Contoh:

Pada bidang Geodesi & Kartografi → Pendistribusian data / bahkan peta ke pihak yang memerlukan (baik dengan cara online maupun offline / datang ke lokasi distributor.

2.1.4. SIKLUS DATA - INFORMASI

- Pada umumnya, aliran data mempunyai arah masuk ke dalam suatu elemen proses. Jadi data adalah sebagai suatu input.
- Lihat Gambar 2.1:

Gambar 2.1. Proses membuat informasi dari data

- Setelah aliran data diproses atau ditransformasikan sedemikian sehingga menghasilkan suatu aliran keluaran dalam bentuk baru yang lebih berarti dan bermanfaat, bentuk baru tsb dinamakan "... INFORMASI".
- Beberapa praktisi di bidang Geodesi dan Geomatika, dapat dibagi menjadi beberapa kelompok kerja, yaitu :
 - Kelompok Survei, bertugas :
 - a. Melakukan survey lapangan / terestris didalam area tertentu dengan bantuan alat-alat : theodolite, GPS (opsional), totalstation, waterpass.
 - b. Membuat sketsa lokasi dan progress kemajuan survey.
 - Menghitung koordinat-koordinat hasil ukuran.
 - d. Membuat peta manuskrip.

- Kelompok pengolahan citra digital, bertugas :
 - a. Melakukan survey koordinat-koordinat bagi proses georeferensi citra digital.
 - b. Melakukan proses-proses pengolahan citra digital / preprocessing sehingga lepas dari beberapa kesalahan dan mudah untuk diinterpretasi.
 - c. Melakukan interpretasi citra
 - d. Melakukan pemeriksaan hasil interpretasi (Sampling) d lapangan.

- 3. Kelompok Basisdata / Data automation, bertugas :
 - a. Mengimplementasikan / mengonversikan koordinat-koordinat dan peta-peta hasil survey dan hasil interpretasi citra digital, ke dalam bentuk layer-layer vector digital.
 - b. Merancang dan menyusun struktur-struktur tabel-tabel basis data terkait, selanjutnya memasukkan atribut-atribut yang relevan ke dalamnya.
 - c. Mengintegrasikan (dan mendefinisikan relasi-relasi terkait) layer-layer digital dengan layer-layer dan tabel-tabel basis data yg sudah ada didalam software DBMS-nya.

- Kelompok Kartografi, bertugas :
 - Mengumpulkan peta-peta manuskrip dan layer-layer peta digital yg ada.
 - Memilih sistem proyeksi, symbol, ukuran dan warna yang tepat untuk setiap komponen petanya.
 - c. Menyusun ke dalam komposisi peta / layout yang siap saji, baik di monitor computer (Softcopy) maupun di atas media kertas.
- Kelompok Jaringan, bertugas :
 - a. Merancang atau menentukan topologi jaringan yang efisien.
 - Mengimplementasikan perangkat jaringan computer untuk pekerjaan terkait.
 - Menentukan kewenangan atau preference setiap kelompok pekerjaan di dalam sistem komputer terkait.

Kelompok Aplikasi, bertugas : Menganalisis kebutuhan pengguna requirement atau software requirement merancang, mengimplementasikan, membuat sampel yang representative, menguji dan memelihara sistem aplikasi yang dikembangkan.

2.2. KONSEP SISTEM

Sistem :

- ✓ <u>Sekumpulan obyek</u>, ide, <u>dan saling keterkaitannya didalam</u> usaha mencapai tujuan tertentu.
- ✓ Kumpulan komponen (sub-sistem fisik dan non-fisik / logika) yang saling berhubungan satu sama lain, dan bekerja sama secara harmonis untuk mencapai suatu tujuan.
- Organisasi dapat dipandang sebagai suatu sistem, karena : mempunyai komponen-komponen yang saling terkait satu sama lain dan bekerja-sama untuk mencapai suatu tujuan.
- Pada beberapa kasus, organisasi dapat dianggap mempunyai 3 subsistem, yaitu: Operasi, Manajemen, Informasi.

- Sub-Sistem Manajemen mencakup :
 - ✓ Personil dan aktifitas-aktifitas yg secara langsung direlasikan untuk menentukan proses : perencanaan, pengendalian, pengambilan keputusan aspek-aspek operasi yg terdapat didalam setiap sub-sistem.
 - ✓ Tugas-tugas anggota sub-sistem: Menentukan layanan-layanan yang perlu diberikan, memutuskan berapa jumlah gudang yang diperlukan dan dimana lokasinya, Menentukan tanggung-jawab dan wewenang setiap anggota, menentukan komposisi panitia/pengarah, dll.

- Sub-Sistem Operasi, mencakup :
 - ✓ Semua aktifitas, aliran material, dan tenaga kerja yang secara langsung dikaitkan dengan masalah-masalah dalam menjalankan fungsi-fungsi utama organisasi.
 - ✓ Tugas utama Sub-sistem Operasi : Menjual produk barang dan jasa, Melakukan produksi barang-barang, Melakukan inventarisasi dan administrasi pergudangan, Melakukan penerimaan pelayanan kesehatan, Melakukan perancangan produk, Melakukan pembelian bahan-baku, dll.

 Sub-Sistem Informasi : Sekumpulan tenaga kerja, mesin, ide dan aktifitas-aktifitas yang keberadaannya ditujukan untuk mengumpulkan memproses data sehingga dapat memenuhi kebutuhandan kebutuhan informasi bagi organisasi yang bersangkutan.

2.3. KONSEP SISTEM INFORMASI

Sistem Informasi :

- ✓ Suatu sistem (gabungan) manusia-mesin yang terpadu, untuk menyajikan informasi guna mendukung fungsi operasi, manajemen, dan pengambilan keputusan dalam organisasi.
- ✓ Sekumpulan komponen-komponen yang saling berhubungan dan bekerja sama untuk mengumpulkan, memproses, menyimpan, dan mendistribusikan informasi terkait, untuk mendukung proses pengambilan keputusan, koordinasi dan pengendalian.

SISTEM INFORMASI

Gambar 2.2.Contoh Tampilan Struktur Logika SI

Gambar 2.2 di atas, memperlihatkan Struktur Logika Sistem Informasi dalam bentuk blok-blok.

- ✓ Terdiri dari 12 blok, yang dikelompokkan menjadi 2 kolom, yaitu : perancangan dan permintaan.
- ✓ Blok Perancangan → Merepresentasikan sumber daya fisik dan logika yang harus disusun atau diolah untuk menghasilkan informasi dari data masukan.
- ✓ Blok Permintaan → Mewakili alasan-alasan atau sebab-sebab yang harus dipertimbangkan pada saat penyusunan rancangan blok-blok sistem informasi tsb.
- Jadi → Sebelum sistem informasi dapat dirancang / penyusunan rancangan blok, maka kebutuhan organisasi (: nilai-nilai khusus dari blok-blok permintaan) harus ditentukan/dipastikan terlebih dahulu.

Input:

- 1. Transaksi
- Ekspektasi
- 3. Query
- 4. Instruksi

Pemrosesan:

- 1. Instruksi prosedural
- Model logika matematis
- Kriteria keputusan
- Pengurutan perintah

Basisdata:

- File logika
- 2. File fisik

Pengendalian:

- 1. Input
- 2. Pemrosesan
- 3. Basisdata
- Prosedural
- Output
- Dokumentasi
- 7. Security

Output (memerlukan form dan isian yg. disusun berdasarkan):

- 1. Filtering
- Variabel kunci
- Monitoring
- 4. Model
- 5. Interrogative
- Pusat keputusan strategis

Sumberdaya pemrosesan data:

- 1. Data
- 2. Hardware
- 3. Software
- Manusia

Gambar 2.3. Contoh Tampilan Komponen-komponen Detail Blok

Rancangan

- Gambar 2.3 → Merupakan perluasan dari konsep blok perancangan dengan contoh entitas yang lebih detil.
 - ✓ Input → Blok input memberi ilustrasi mengenai berbagai data yang menjadi masukan sistem informasi
 - ✓ Pemrosesan → Blok ini dirujuk sebagai operasi data
 - ✓ <u>Basis data</u> → <u>Sebagai tempat penyimpanan</u>/repository data yang <u>diperlukan</u>.
 - File Logika → Merujuk pada relasi-relasi yang terimplikasi diantara elemen-elemen data yang bersangkutan.
 - File Fisik → Merujuk pada cara data yang bersangkutan diorganisasikan secara fisik didalam media/tempat penyimpanan tertentu.

- ✓ Pengendalian → Blok pengendalian dapat merepresentasikan: konsep, teknik dan perangkat yang digunakan untuk memastikan integritas operasi SI yang bersangkutan.
 - Pada beberapa SI, blok pengendalian digunakan sebagai filter yang mencegah kesalahan masukan yang akan diproses sistem.
 - Pada SI lain, <u>blok</u> <u>pengendalian</u> <u>digunakan</u> <u>sebagai</u> <u>pemberi sinyal adanya suatu kesalahan</u>.
- ✓ Output → Blok ini mengacu pada bentuk dan isi informasi actual yang diberikan kepada pengguna SI.
- ✓ Sumber daya pemrosesan data → Implementasi fisik dari blok ini adalah : sekumpulan data, perangkat keras, perangkat lunak, manusia.

Atribut informasi:

- Tepat waktu
- 2. Presisi
- 3. Akurat
- 4. Quantifiable
- 5. Verifiable
- 6. Accessible
- 7. Non-bias
- 8. Comprehensive
- 9. Diperlukan
- 10. Jelas

Kebutuhan pemrosesan data:

- 1. Volume
- 2. Kompleksitas
- 3. Waktu
- Komputasional

Kebutuhan sistem:

- 1. Reliability
- 2. Biaya
- Jadwal instalasi
- 4. Fleksibilitas
- 5. Usia harapan
- 6. Potensi pertumbuhan
- 7. Kemampuan pemeliharaan

Faktor organisasi:

- Sifat/nature
- 2. Ukuran
- Struktur
- Management style

Cost/effectivenees demands:

- Direct costs
- 2. Indirect costs
- 3. Direct benefits
- 4. Indirect benefits

Kebutuhan kelayakan:

- 1. Teknis
- Ekonomis
- Legal
- Operasional
- Penjadwalan

Gambar 2.4. Contoh Tampilan Komponen-komponen Detail Blok

Permintaan

- Gambar 2.4 → Memperjelas konsep yang terdapat di blok permintaan menjadi lebih detil
- Keterangan dari Gambar 2.4 :
 - ✓ <u>Atribut Informasi</u> → Permintaan terpenting didalam SI adalah <u>kebutuhan pengguna</u>. Kebutuhan pengguna dinyatakan dalam atribut-atribut informasi di atas.
 - ✓ <u>Kebutuhan Pemrosesan Data</u> → <u>Mengimplikasikan adanya</u> alternative <u>untuk memenuhi kebutuhan informasi (baik individu</u> maupun organisasi) secara efektif-efisien.
 - ✓ <u>Kebutuhan Sistem</u> → <u>Kebutuhan sistem mengenali : struktur</u>

 dinamis organisasi & SI-nya , serta biaya sumber daya pemrosesan datanya.

- ✓ Faktor Organisasi → Setiap organisasi mengembangkan dan mengoperasikan SI-nya untuk memenuhi kebutuhan informasinya.
- ✓ Coss/effectivenees Demands → Perlu untuk mengidentifikasi biaya dan keuntungan yang akan diperoleh/diturunkan sebelum melakukan sejumlah pengeluaran/pembelanjaan dana untuk pengembangan SI.
- ✓ <u>Kebutuhan Kelayakan</u> → <u>Semua nilai</u> yang <u>terdapat didalam</u> <u>blok-blok permintaan dinyatakan dalam kebutuhan kelayakan</u>.

TUJUAN & AKTIFITAS SI

 Tujuan SI: Untuk menyediakan dan mensistematikkan informasi, yang merefleksikan seluruh kejadian / kegiatan yang diperlukan (mengolah, menyimpan dan menyampaikan informasi) untuk mengendalikan operasi suatu organisasi.

KRITERIA UMUM SI

- Kriteria SI: Variabel keluaran sistem yang dianggap sebagai ukuran unjuk kerja, diantaranya:
 - a. Debit : Jumlah data dan informasi yang mengalir per satuan waktu.
 - b. Response <u>Time</u>: <u>Waktu antar</u> event, <u>yaitu reaksi terhadap</u> event <u>sampai dengan</u> proses <u>terhadap</u> event <u>selesai dilakukan</u>.
 - c. Cost : Biaya yang dikeluarkan untuk memperoleh informasi dari data.
 - d. Pemenuhan Fungsi → Fungsi-fungsi yang didefinisikan harus dapat dijalankan seperti yang direncanakan.

2.4. SI BERBASIS KOMPUTER VS TAK BERBASIS KOMPUTER

2.4.1. SI TAK BERBASIS KOMPUTER

- Konsep mengenai SI sudah ada sebelum teknologi Sistem Komputer berkembang seperti sekarang.

 — yang disebut dengan SI tak berbasis computer.
- Tak semua SI yang tak berbasis computer bisa diadaptasikan dengan sistem computer, karena hal-hal berikut ini:
 - ✓ Jumlah SI yang cukup banyak,
 - ✓ Dana yang sangat terbatas,
 - ✓ Karakteristik SI yang masih sederhana / kompleksitasnya masih relative rendah.

- ✓ Jumlah pengguna SI yang relative rendah,
- ✓ Kecepatan akses data tidak menjadi kebutuhan prioritas.
- ✓ Kompleksitas organisasi rendah,
- ✓ SI cenderung bersifat manual,
- Cenderung mempertahankan tenaga manusia.

- Ciri-ciri SI yang tak berbasis Komputer:
 - a. Data disimpat didalam media yang dapat dibaca oleh manusia.
 - b. Penelusuran data dilakukan oleh manusia, kecepatan penelusuran relative rendah.
 - c. Makin <u>besar/kompleks</u> <u>organisasi</u> <u>terkait</u>, <u>makin sulit untuk</u> <u>memperoleh gambaran yang lengkap dengan cepat</u>.
 - d. Kecepatan pengolahan data sangat ditentukan oleh kecepatan petugas terkait dalam menghitung, menyusun tabel/laporan serta menggandakannya.

- e. Pengiriman data dan informasi, sebagian besar memerlukan fasilitas transportasi fisik dari media yang digunakan.
- Penggunaan sarana telekomunikasi msh sangat terbatas.
- g. Terdapat delay/keterlambatan informasi yang besar, sebagai akibat dari keterbatasan-keterbatasan kecepatan : penelusuran, pemrosesan dan transmisi data.

2.4.2. SI DENGAN DUKUNGAN KOMPUTER

- Sistem Informasi yang berbasis computer mempunyai ciri-ciri sbb :
 - a. Data tersimpan didalam media yang dapat dibaca oleh mesin / komputer, dimana sekumpulan data berukuran besar bisa disimpan di 1 lokasi dan analisis terhadap sekumpulan data tersebut sehingga memperoleh gambaran yang lengkap lebih mudah untuk dilakukan.
 - b. Kecepatan pengolahan data sangat tinggi.

- c. <u>Transmisi</u> data <u>dapat</u> <u>dilakukan</u> <u>melalui</u> <u>sarana</u> <u>telekomunikasi</u> (<u>kabel</u>, microwave).
- d. Delay/keterlambatan yang ada di aliran data dan informasi relative kecil, karena proses penelusuran, pengolahan dan transmisi data dapat dilakukan dengan cepat.
- e. Lokasi-lokasi pengembangan dan pengoperasian SI yang tersebar di banyak tempat, tidak mengganggu kemudahan dalam memonitor dan mengkoordinasikan semua aktivitas yang terkait.

 Jika melihat cara kerjanya, SI berbasis computer dibedakan menjadi 2 sub-sistem :

a. Sistem Transaksi

✓ Transaksi dalam mode online, merupakan input ke dalam Sistem Komputer yg digunakan untuk : meng-update file-file / basis data.

✓ Contoh Transaksi:

- Rekaman data penjualan/bon di supermarket.
- Penarikan/penyimpanan uang di bank.
- Pemesanan tiket

- ✓ Sistem Transaksi, berkonsentrasi pada proses perekaman aktivitas-aktivitas yg telah terdefinisi dengan baik di dalam suatu organisasi.
- b. Sistem Pendukung Keputusan→ Digunakan untuk menolong penggunanya dalam membuat keputusan yang komplek.

SISTEM PENGOLAHAN DATA (SPD)

- Pencatatan / perekaman data : Proses memasukkan data ke dalam media SPD.
- Jika SPD berbasis sistem computer, maka proses pencatatan data dilakukan dengan perangkat: keyboard, mouse, scanner, digitizer.
- Hasil perekaman data disimpan di hard-disk.
- Pelaporan Informasi → Merupakan proses ekstraksi informasi dari rekaman data yang tersimpan di dalam SPD.
- PENGOLAHAN Data → Merupakan proses pemberlakuan operasi matematis dan logika terhadap data yang tersimpan.

- Yang termasuk ke dalam proses pengolahan data :
 - ✓ Verifikasi
 - ✓ Pengorganisasian data
 - ✓ Pencarian kembali
 - ✓ Transformasi
 - ✓ Pengurutan
 - ✓ Penggabungan
 - ✓ Perhitungan
 - ✓ Ekstraksi data untuk membentuk informasi
 - ✓ Pembentukan pengetahuan.

- SPD : Sistem yang mampu melakukan pengolahan data.
- SPD mempunyai 4 kelompok sub-sistem :
 - a. Input
 - b. Pengolahan/proses
 - c. Output
 - d. Memori

3 sub-sistem pertama : digunakan untuk melakukan aktivitas, sub-sistem Memori : digunakan untuk menyimpan hasil-hasil terkait.

SISTEM INFORMASI GEOGRAFIS (SIG)

- SIG : Suatu sistem yang menekankan pada unsur " informasi geografis".
- Informasi Geografis: Informasi mengenai tempat-tempat yang terletak di permukaan bumi, pengetahuan mengenai posisi di mana suatu obyek terletak di permukaan bumi, atau informasi mengenai keterangan-keterangan / atribut obyek penting yang terdapat di permukaan bumi, yang posisinya diketahui atau diberikan.
- Jadi SIG dapat dikatakan sebagai "Suatu kesatuan formal yang terdiri dari berbagai sumber daya fisik dan logika yang berkenaan dengan obyek-obyek penting yang terdapat di permukaan bumi.

- Jadi SIG merupakan " Sejenis perangkat lunak, perangkat keras (manusia, prosedur, basis data, dan fasilitas jaringan komunikasi) yang digunakan untuk memfasilitasi proses pemasukan, dapat penyimpanan, manipulasi, menampilkan, dan keluaran data/ informasi geografis berikut atribut-atribut terkait ".
- SIG merupakan salah-satu tipe CBIS yang sangat populer pada saat ini.

TUGAS: Tulis paper mengenai: Sistem Informasi Manajemen (SIM), Sistem Pendukung Keputusan (SPK), Sistem Informasi Akutansi (SIA), Sistem Informasi Produksi (SIP), Sistem Informasi Eksekutif (SIE)