Mathematical Building Blocks for AI and DS

DR. SHAILESH SIVAN DCS, CUSAT

EQUATION OF A LINE

VECTORS AND VECTORSPACE

A vector is a quantity or phenomenon that has two independent properties: magnitude and direction.

Vector Notation

Parallelogram Law of Vector Addition

Triangle Law of Vector Addition

Euclidean Distance

P(2, 3, 5)

Cosine Similarity

n-Dimensional Vectors and Points

$$v = (v_1, v_2, \dots, v_n)$$

$$\lceil v_1 \rceil$$

$$v' = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

Equal Vectors Unequal Vectors

VECTORS AND VECTORSPACE

Magma

Binary Operation

Closure

Semigroup

Associativity

Monoid Identity Element

Group

Inverse

Semiring

Additive monoid & multipcative monoid

Ring

Integral Domain Commutative ring with unity and no zero divisors

Commutative ring with unity & cancellation property (in which every non-zero element is a unit

Infinite number of such vectors in this 2D space

Vector Space

Vectors over a field vector & field(scalars) addition with scalar multipication a(v+u) = a v + a u (a+b) v = a v + b v a (b v) = (a b) v1 v = v

$$v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad v_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Basis of R^2

LINE AND NORMAL

The line ax + by + c = 0and the vector (a, b)

 $\vec{v} = (a, b)$ is always normal to ax + by + c = 0

FUNCTIONS

A function relates every element in a set to exactly one element in another

A function which has either or one of its subsets as its range is called a **real valued function**. Further, if its domain is also either R or a subset of R, it is called a **real function**

LIMIT OF A FUNCTION

$$\lim_{X \to a} \widehat{f(x)} = \underline{L}$$
"What is the y-value getting closer to?"

along the x-axis"

The **limit** of a function at a point a in its domain (if it exists) is the value that the function approaches as its argument approaches a

$$\lim_{x \to c^{-}} f(x) = \lim_{h \to 0} f(x - h) \qquad \qquad \lim_{x \to c^{+}} f(x) = \lim_{h \to 0} f(x + h)$$

Left Hand Limit

$$\lim_{x \to c^{+}} f(x) = \lim_{h \to 0} f(x+h)$$

Right Hand Limit

The limit of a function exists if and only if the left-hand limit is equal to the right-hand limit.

$$\lim_{x \to c^{-}} f(x) = \lim_{x \to c^{+}} f(x) = L$$

$$\lim_{x \to 5} f(x) = x + 4 = 9$$

LIMIT OF A FUNCTION

<i>x</i> ⁻	$f(x^{-})$	<i>x</i> ⁺	$f(x^+)$
1	2	3	2
1.5	1.25	2.5	1.25
<u> </u>	1.01	2.1	1.01
1.99	1.0001	2.01	1.0001
1.999	1.000001	2.001	1.000001
1.9999	1.00000001	2.0001	1.00000001

<i>x</i> ⁻	$f(x^{-})$	<i>x</i> ⁺	$f(x^+)$
1	1	3	6
1.5	2.25	2.5	5.5
1.9	3.61	2.1	5.1
1.99	3.9601	2.01	5.01
1.999	3.996001	2.001	5.001
1.9999	3.99960001	2.0001	5.0001

LIMIT OF A FUNCTION

х	sin(x)/x	x	sin(x)/x
π	0.0	-π	0.0
1.0000	0.8414710	-1.0000	0.8414710
0.1000	0.9983342	-0.1000	0.9983342
0.0010	0.999998	-0.0010	0.999998
0.0001	1.0000000	-0.0001	1.0000000

x→2¯	f(x)	x→2 ⁺	f(x)
1.50000	1.80000	2.50000	1.57143
1.75000	1.72727	2.25000	1.61538
1.90000	1.68966	2.10000	1.64516
1.95000	1.67797	2.05000	1.65574
1.99000	1.66890	2.01000	1.66445
1.99900	1.66689	2.00100	1.66644
1.99990	1.66669	2.00010	1.66664
1.99999	1.66667	2.00001	1.66666

CONTINUITY

These three together will make the function f(x) continous at x = a

$$\therefore \begin{bmatrix} \lim_{x \to a} f(x) = f(a) \end{bmatrix} \Rightarrow \begin{cases} f(x) \text{ is continuous} \\ \text{at } x = a \end{cases}$$

Check the continuity of the function f given by f(x) = 2x + 3 at x = 1.

$$f(x)$$
 is continuous at $x = 1$

if
$$\lim_{x\to 1} f(x) = f(1)$$

L.H.S	R.H.S
$\lim_{\mathbf{x}\to1}f(\mathbf{x})$	<i>f</i> (1)
$= \lim_{x \to 1} (2x + 3)$ $= 2 \times 1 + 3$ $= 2 + 3$	= $2 \times 1 + 3$ = $2 + 3$ = 5
= 5	

Since, L.H.S = R.H.S

: Function is continuous.

DERIVATIVE OF A FUNCTION

$$f'(x) = \frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x}$$

Slope of Secant =
$$\frac{f(x+h) - f(x)}{h}$$

("Difference quotient")

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
(if limit exists)

DERIVATIVE OF A FUNCTION

f(x) = 2x + 1	$\frac{d}{dx}f(x) = 2$
	ax

$$\frac{d}{dx} f(x) = \frac{5-3}{2-1} = \frac{2}{1} = 2$$

$$\frac{d}{dx} f(x) = \frac{7-5}{3-2} = \frac{2}{1} = 2$$

$$\frac{d}{dx} f(x) = \frac{9-3}{4-1} = \frac{6}{3} = 2$$

$$\frac{d}{dx} f(x) = \frac{17 - 9}{8 - 4} = \frac{8}{4} = 2$$

DERIVATIVE OF A FUNCTION

$$f(x) = x^2 \qquad \frac{d}{dx} f(x) = 2x$$

1	3	5	7	9
$\frac{(1+3)^{2}}{2}$	$\frac{(3+1)}{2} = 2 \frac{(3+1)}{2}$	$\frac{(5+7)}{2} = 4 \frac{(5+7)}{2}$	$\frac{7}{2} = 6 \frac{(7+2)^{2}}{2}$	9) = 8
1	1	1	1	
1	2	3	4	

so the derivative of
$$f(x) = x^2$$

$$\frac{d}{dx}f(x)=2x$$

 $f(x) = x^2 \qquad \qquad \frac{d}{dx} f(x) = 2x$

	1
	1
1	_

	x	f(x)	$\frac{df}{dx} = \frac{f(x_0) - f(x)}{x_0 - x}$		х	f(x)	$\frac{df}{dx} = \frac{f(x_0) - f(x)}{x_0 - x}$		х	f(x)	$\frac{df}{dx} = \frac{f(x_0) - f(x)}{x_0 - x}$
x_0^-	0	0	1		1	1	3		2	4	5
7.0	0.1	0.01	1.1		1.1	1.21	3.1		2.1	4.41	5.1
	0.5	0.25	1.5		1.5	2.25	3.5		2.5	6.25	5.5
	0.9	0.81	1.9		1.9	3.61	3.9		2.9	8.41	5.9
	0.99	0.9801	1.99		1.99	3.9601	3.99		2.99	8.9401	5.99
	0.999	0.998001	1.999		1.999	3.99600 1	3.999		2.999	8.99400 1	5.999
x_0	1	1	2		2	4	4		3	9	6
	1.001	1.002001	2.001		2.001	4.00400 1	4.001		3.001	9.00600	6.001
	1.01	1.0201	2.01		2.01	4.0401	4.01		3.01	9.0601	6.01
	1.1	1.21	2.1		2.1	4.41	4.1		3.1	9.61	6.1
	1.5	2.25	2.5		2.5	6.25	4.5		3.5	12.25	6.5
	1.9	3.61	2.9		2.9	8.41	4.9		3.9	15.21	6.9
x_0^+	2	4	3		3	9	5		4	16	7

WHY DERIVATIVE EXSIST AND NOT EXSIST ?

$$f(x) = 1 - |x|$$

$$\frac{d}{dx} f(x) = \begin{cases} -1 & \text{if } x > 0\\ 1 & \text{if } x < 0 \end{cases}$$

h	$\underline{f(x-h)-f(x)}$	$\frac{\mathbf{f}(\mathbf{x}+\boldsymbol{h})-\mathbf{f}(\mathbf{x})}{}$		
	_h	h		
1	1	-1		
0.1	1	-1		
0.01	1	-1		
0.001	1	-1		
0.0001	1	-1		
0.00001	1	-1		
0.000001	1	-1		

$$f(x) = x^3 \qquad \frac{d}{dx} f(x) = 2x^2$$

h	$\frac{f(x-h)-f(x)}{-h}$	$\frac{f(x+h)-f(x)}{h}$
1	1	1
0.1	0.1	0.1
0.01	0.01	0.01
0.001	0.001	0.001
0.0001	0.0001	0.0001
0.00001	0.00001	0.00001
0.000001	0.000001	0.000001

FUNCTION OF SEVERAL REAL VARIABLES

A **real-valued function of** *n* **real variables** is a <u>function</u> that takes as input *n* <u>real numbers</u>, commonly represented by the <u>variables</u> $x_1, x_2, ..., xn$ for producing another real number, the *value* of the function, commonly

$$y = f(x_1, x_2)$$

$$y = f(x_1, x_2, x_3)$$

$$(x,y)$$

denoted $f(x_1, x_2, ..., xn)$.

 $y = f(x_1, x_2, x_3, \dots, x_n)$

PARTIAL DERIVATIVES

Partial derivatives of a function of two variables states that if z = f(x, y), then the first order partial derivatives of f with respect to x and y, provided the limits exist and are finite, are:

$$egin{aligned} rac{\partial f}{\partial x} &= f_x(x,y) = \lim_{\Delta x o 0} rac{f(x + \Delta x,y) - f(x,y)}{\Delta x} \ rac{\partial f}{\partial y} &= f_y(x,y) = \lim_{\Delta y o 0} rac{f(x,y + \Delta y) - f(x,y)}{\Delta y} \end{aligned}$$

$$z = xy^2 - y\sin(x)$$

$$\frac{\partial z}{\partial x} = y^2 - y \cos(x)$$

$$\frac{\partial y}{\partial x} = 2xy - \sin(x)$$

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$$

Isolating Independent Effects: When a function depends on multiple variables, partial derivatives allow us to isolate the effect of changing one variable while holding the others constant. This is crucial for understanding how different factors interact and contribute to the overall behavior of the function

Local Sensitivity Analysis: Partial derivatives measure the instantaneous rate of change of a function with respect to each variable at a specific point. This provides insights into

 how sensitive the function is to small changes in each variable locally.

$$z = f(x, y) = 2x + 3y$$

$$\frac{\partial z}{\partial x} = 2 \quad \frac{\partial z}{\partial y} = 3$$

$$f(1,0) = 2 \rightarrow f(3,4) = 18$$

$$\Delta f = 18 - 2 = 16$$

$$\Delta x = 2 \ \Delta y = 4$$

$$\Delta f = \Delta x \cdot 2 + \Delta y \cdot 3 = 16$$

$$\Delta f = \Delta x \, \frac{\partial z}{\partial x} + \Delta y \, \frac{\partial z}{\partial y} = 16$$

£		У							
f		0 1 2 3 4							
	0	0	З	6	9	12			
	1	2	5	8	11	14			
X	2	4	7	10	13	16			
	3	6	9	12	15	18			
	4	8	11	14	17	20			

DERIVATIVES AND OPTIMIZATION

Here
$$\theta_p < \theta_Q \Leftrightarrow tan(\theta_P) < tan(\theta_Q)$$
; we know, $-$

$$\frac{dy}{dx}$$
 at $P = tan(\theta_P)$; $\frac{dy}{dx}$ at $Q = tan(\theta_Q)$

What is the angle of tangent at M?

$$\theta_m = 0 \Rightarrow \tan(\theta_m) = 0 \Rightarrow \frac{dy}{dx} = 0 \text{ at } M$$

Derivative at a point x_c is $0 \Rightarrow x_c$ is an extremum point which is a maximum or minimum, then it can be used for

DERIVATIVES AND OPTIMIZATION

Gradient of a function

$$\nabla f(x_1, x_2, x_3, \dots, x_n) = \begin{bmatrix} \frac{\delta}{\delta x_1}(f) \\ \frac{\delta}{\delta x_2}(f) \\ \frac{\delta}{\delta x_3}(f) \\ \vdots \\ \frac{\delta}{\delta x_n}(f) \end{bmatrix}$$

Find the extrema of $f(x,y) = x^2 + 2y^2 - 4(x+y)$

To find optimal points of a function $f(x_0, x_1, x_2, x_n)$:

1. Gradient:

$$\nabla f = (2x - 4, 4y - 4)$$

Calculate ∇f

Find x_0, x_1, \dots, x_n where $\nabla f(x_0, x_1, x_2, \dots, x_n) = 0$

2. Critical point: (2, 1)

Linear Regression

$$\hat{y} = mx + b$$

$$J = \sum (y - \hat{y})^2 = \sum (y - mx - b)^2 = J(m, b)$$

Dr. Shailesh Sivan

+91 8907230664

shaileshsivan@cusat.ac.in

https://shaileshsivan.info

