Traffic Modelling and Simulation CEE 598 Assignment 5

Question 1:

Vissim Travel Time Simulation

Part 1

In the following table information about link is being provided using Vissim.

Count: 39	No	Name	LinkBehavType	DisplayType	Level	NumLanes	Length2D	IsConn	FromLink	ToLink	HasOvtLn
1	1		1: Urban (motorized)	1: Road gray	1: Base	1	183.702				
2	2		1: Urban (motorized)	1: Road gray	1: Base	2	272.597				
3	3		1: Urban (motorized)	1: Road gray	1: Base	1	216.197				
4	4		1: Urban (motorized)	1: Road gray	1: Base	2	355.162				
5	5		1: Urban (motorized)	1: Road gray	1: Base	1	235.738				
6	6		1: Urban (motorized)	1: Road gray	1: Base	1	196.614				
7	7		1: Urban (motorized)	1: Road gray	1: Base	1	137.410				
8	8		1: Urban (motorized)	1: Road gray	1: Base	2	160.107				
9	9		1: Urban (motorized)	1: Road gray	1: Base	2	159.804				
10	10		1: Urban (motorized)	1: Road gray	1: Base	2	67.732				
11	11		1: Urban (motorized)	1: Road gray	1: Base	1	85.468				
12	12		1: Urban (motorized)	1: Road gray	1: Base	1	227.695				
13	13		1: Urban (motorized)	1: Road gray	1: Base	2	145.528				
14	14		1: Urban (motorized)	1: Road gray	1: Base	1	179.486				
15	15		1: Urban (motorized)	1: Road gray	1: Base	3	239.438				
16	16		1: Urban (motorized)	1: Road gray	1: Base	2	280.253				
17	17		1: Urban (motorized)	1: Road gray	1: Base	2	241.751				

Snapshot showing Connector list

Count: 39	No	Name	LinkBehavType	DisplayType	Level	NumLanes	Length2D	IsConn	FromLink	ToLink	HasOvtLn
18	10000		1: Urban (motorized)	1: Road gray		1	63.155	V	1	17	
19	10001		1: Urban (motorized)	1: Road gray		1	35.451	V	12	1	
20	10002		1: Urban (motorized)	1: Road gray		1	91.384	V	4	5	
21	10003		1: Urban (motorized)	1: Road gray		1	64.998	V	4	6	
22	10004		1: Urban (motorized)	1: Road gray		2	51.519	V	10	8	
23	10005		1: Urban (motorized)	1: Road gray		2	55.205	V	10	9	
24	10006		1: Urban (motorized)	1: Road gray		1	37.581	V	8	11	
25	10007		1: Urban (motorized)	1: Road gray		2	141.049	V	2	17	
26	10008		1: Urban (motorized)	1: Road gray		1	59.707	V	12	13	
27	10009		1: Urban (motorized)	1: Road gray		1	62.750	V	12	13	
28	10010		1: Urban (motorized)	1: Road gray		2	125.689	V	13	16	
29	10011		1: Urban (motorized)	1: Road gray		1	131.447	V	12	7	
30	10012		1: Urban (motorized)	1: Road gray		1	27.166	V	2	3	
31	10013		1: Urban (motorized)	1: Road gray		1	55.210	V	5	7	
32	10014		1: Urban (motorized)	1: Road gray		2	132.320	V	4	16	
33	10015		1: Urban (motorized)	1: Road gray		1	117.547	V	6	15	
34	10016		1: Urban (motorized)	1: Road gray		1	72.036	V	3	15	
35	10017		1: Urban (motorized)	1: Road gray		1	61.094	V	2	14	
36	10018		1: Urban (motorized)	1: Road gray		2	132.022	V	8	15	
37	10019		1: Urban (motorized)	1: Road gray		1	46.212	V	11	16	
38	10020		1: Urban (motorized)	1: Road gray		2	108.967	V	9	17	
39	10021		1: Urban (motorized)	1: Road gray		1	133.550	V	14	7	

Figure Showing Vehicle Input Information:

Count: 4	No	Name	Link	Volume(0)	Volume(900)	Volume(1800)	Volume(2700)	VehComp(0)	VehComp(900)	VehComp(1800)	VehComp(2700)
1	2		10	282.0	282.0	282.0	282.0	1: Veh	1: Veh	1: Veh	1: Veh
2	3		4	164.0	164.0	164.0	164.0	1: Veh	1: Veh	1: Veh	1: Veh
3	4		12	682.0	682.0	682.0	682.0	1: Veh	1: Veh	1: Veh	1: Veh
4	5		2	135.0	135.0	135.0	135.0	1: Veh	1: Veh	1: Veh	1: Veh

Part 2:

Vehicle travel time evaluation results are shown in the following figures after successful running of the simulation.

Count: 3	SimRun	TimeInt	Vehicle Travel Time Measurement	Vehs(AII)	TravTm(All)	DistTrav(All)
1	1	0-600	1: North-South bound travel tim	37	16.02	384.54
2	1	0-600	2: North Bound through	21	6.12	133.30
3	1	0-600	3: West bound through	19	7.64	305.64

Question 2:

Deriving Greenberg's macroscopic model from GM-3 car-following model

GM-3 car-following model:

$$\ddot{x}_{n+1}(t+\Delta t) = \frac{\alpha_0}{x_n(t)-x_{n+1}(t)} [\dot{x}_n(t) - \dot{x}_{n+1}(t)]$$

Integrating both sides of the equation we get,

$$\dot{x}_{n+1} = \alpha_0 \ln(x_n(t) - x_{n+1}(t)) + C_1$$

Now,

$$x_n(t) - x_{n+1}(t)$$
 denotes the space between two vehicles, which we represent as $1/k$,

So, we re-write the equation as

$$u = \alpha_0 \ln(1/k) + C_1$$

Let constant \mathcal{C}_1 be substituted for $\alpha_0 ln \mathcal{C}_2$, then

$$u = \alpha_0 \ln(C_2/k)$$

Now, when $k=k_i$, u=0 (at jam density flow is 0)

We get,

$$0 = \alpha_0 \ln(C_2/k_i)$$

Solving we get,

$$C_2 = k_i$$

Finally, the equation can be written as

$$u = \alpha_0 \ln(k_i/k)$$

This is the Greenberg's macroscopic model logarithmic equation. (derived)

Question 3:

Deriving Q=KV from Little's law

We know Little's law is,

$$\bar{L}(t) = \tfrac{A(t)}{t} \times \overline{W}(t)$$

To derive the relationship, we take $\bar{L}(t)$ as number of vehicles on the roads, and $\bar{W}(t)$ as average travel time.

Assuming the length of the road is L, we get

$$\overline{L}(t)/L = \left(\frac{A(t)}{t} \times \overline{W}(t)\right)\!\!/L$$

By dividing both sides of the equation for Little's Law by ${\it L}$

Now,

$$\overline{L}(t)/L = K$$
,

where K denotes the density.

Again,

$$\frac{A(t)}{t}$$
 = Q , where Q denotes the arrival rate/flow of vehicles.

Again,

$$\overline{W}(t)/L = 1/V$$

where V means the average speed of all vehicles.

So, combining we obtain,

$$K = Q/V$$
, or

 $\mathbf{Q} = \mathbf{K}\mathbf{V}$.