Introduction to Recurrent Neural Networks (RNNs)

Outline

- What are RNNs?
- RNN units/cells
 - Vanilla RNN unit
 - Long Short-Term Memory (LSTM) unit
- RNN structures
 - Stacked LSTM
 - Bidirectional RNN
 - Hierarchical RNN
- Applications
 - Machine translation
 - Image captioning
 - Visual Question Answering
 - Visual Dialog

Fundamental neural networks

What are RNNs?

h: hidden state

Weights are kept the same in Unit/Cell A.

- The hidden state at time t has some historical information about the happenings before time t.
- RNNs are useful as their intermediate state can store information about past inputs.

What are RNNs?

The Vanilla RNN Unit/Cell

W is the weights that the RNN needs to learn. For Vanilla RNN cell, the hidden state h is its output.

The Vanilla RNN Forward

- Note that the weights are shared over time.
- Essentially, copies of the RNN cell are made over time, with different inputs at different time steps

$$h_{t} = \tanh W \begin{pmatrix} x_{t} \\ h_{t-1} \end{pmatrix}$$

$$y_{t} = F(h_{t})$$

$$C_{t} = Loss(y_{t}, GT_{t})$$

---- indicates shared weights

Sentiment Classification

Classify a restaurant review from Yelp! OR movie review from IMDB OR ...
 as positive or negative

- **Inputs:** Multiple words, one or more sentences
- Outputs: Positive / Negative classification

- "The food was really good"
- "The chicken crossed the road because it was uncooked"

Sentiment Classification

Sentiment Classification

Backpropagation

We compute gradients through back propagation, similar to normal deep learning

Difference: weights are shared!

How can we update the weights when they are shared?

BackPropagation Through Time (BPTT)

- One of the methods used to train RNNs
- RNN network accepts the whole time series as input
- The weight updates are computed for each cell in the network, then summed (or averaged) and then applied to the weights

What is the difference with normal deep learning BP?

BackPropagation Revision

$$y = f(x; W)$$

$$C = \text{Loss}(y, y_{GT})$$

SGD Update

$$W \leftarrow W - \eta \frac{\partial C}{\partial W}$$

$$\frac{\partial C}{\partial W} = \left(\frac{\partial C}{\partial y}\right) \left(\frac{\partial y}{\partial W}\right)$$

Chain Rule for Gradient Computation

Given:
$$\left(\frac{\partial C}{\partial y}\right)$$

We are interested in computing: $\left(\frac{\partial C}{\partial W}\right), \left(\frac{\partial C}{\partial x}\right)$

Intrinsic to the layer are:

$$\uparrow \qquad \left(\frac{\partial y}{\partial W}\right) - \text{How does output change due to params}$$

 $\left(\frac{\partial y}{\partial x}\right)$ – How does output change due to inputs

$$\left(\frac{\partial C}{\partial W}\right) = \left(\frac{\partial C}{\partial y}\right) \left(\frac{\partial y}{\partial W}\right) \quad \left(\frac{\partial C}{\partial x}\right) = \left(\frac{\partial C}{\partial y}\right) \left(\frac{\partial y}{\partial x}\right)$$

BackPropagation of The Vanilla RNN

The Identity Relationship

• Recall
$$\frac{\partial C_t}{\partial h_1} = \left(\frac{\partial C_t}{\partial y_t}\right) \left(\frac{\partial y_t}{\partial h_1}\right)$$

$$= \left(\frac{\partial C_t}{\partial y_t}\right) \left(\frac{\partial y_t}{\partial h_t}\right) \left(\frac{\partial h_t}{\partial h_{t-1}}\right) \cdots \left(\frac{\partial h_2}{\partial h_1}\right)$$
• < 1 vanishing gradients
• > 1 exploding gradients

$$h_{t} = \tanh W \begin{pmatrix} x_{t} \\ h_{t-1} \end{pmatrix}$$

$$y_{t} = F(h_{t})$$

$$C_{t} = Loss(y_{t}, GT_{t})$$

Consider a long sentence

 Suppose that instead of a matrix multiplication, we had an identity relationship between the hidden states

$$h_{t} = h_{t-1} + F(x_{t})$$

$$\Rightarrow \left(\frac{\partial h_{t}}{\partial h}\right) = 1$$

 The gradient does not decay as the error is propagated all the way back aka "Constant Error Flow"

Long Short-Term Memory (LSTM)

 The LSTM uses this idea of "Constant Error Flow" for RNNs to create a "Constant Error Carousel" (CEC) which ensures that gradients don't decay

- The key component is a memory cell (*C*) that acts like an accumulator (contains the identity relationship) over time
- Instead of computing new state as a matrix product with the old state, LSTM computes the difference between them. Gradients are better behaved

$$h_{t} = \tanh W \begin{pmatrix} x_{t} \\ h_{t-1} \end{pmatrix} \times$$

The idea of LSTM

$$c_{t} = c_{t-1} + \tanh W \begin{pmatrix} x_{t} \\ h_{t-1} \end{pmatrix} \qquad h_{t} = \tanh c_{t}$$

The Original LSTM Cell

$$c_t = c_{t-1} + i_t \otimes \tanh W \begin{pmatrix} x_t \\ h_{t-1} \end{pmatrix} \quad h_t = o_t \otimes \tanh c_t \quad i_t = \sigma \left(W_i \begin{pmatrix} x_t \\ h_{t-1} \end{pmatrix} + b_i \right) \quad \text{Similarly for } o_t$$

The Popular LSTM Cell

⊗: element-wise multiplication

 σ : sigmoid function

Stacked RNN

RNN is made of cells. In this case, a cell is an LSTM cell

Bidirectional RNN

Hierarchical Recurrent Neural Network

Applications

Machine learning theories Machine learning applications

- Computer vision
- Natural language processing (NLP)
- Speech processing

Machine Translation

我爱机器学习—I love machine learning

Preprocessing						
ID	vocabulary	one-hot vector	ID	vocabulary	one-hot vector	
0	我	100000 —	0	<g0></g0>	100000 —	_
1	爱	010000 —————	1	<eos></eos>	010000	_
2	机	001000	2	I	001000	_
3	器	000100	3	love	000100	_
4		000010	4	machine	000010 ————	_
5	\supset	000001	5	learning	000001————	_

Machine Translation

Vision and Language

Captioning

Two people are in a wheelchair and one is holding a racket.

Visual Dialog

Q: How many people are on wheelchairs?

A: Two

Q: What are their genders?

A: One male and one female

Q: Which one is holding a racket?

A: The woman

Visual Dialog

Q: What is the gender of the one in the white shirt?

A: She is a woman

Q: What is she doing?

A: Playing a Wii game

Q: Is that a man to her right

A: No, it's a woman

VQA

Q: How many people on wheelchairs?

A: Two

Q: How many wheelchairs?

A: One

Image Captioning

Visual Question Answering (VQA)

Visual Dialog

References

- http://slazebni.cs.illinois.edu/spring17/lec02 rnn.pdf
- http://colah.github.io/posts/2015-08-Understanding-LSTMs/
- http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

Thanks!