Supplementary Materials for Turbo Autoencoder: Deep learning based channel code for point-to-point communication channels

Anonymous Author(s)

Affiliation Address email

TurboAE Design Analysis

1.1 Neural Architecture Design

1.1.1 Supporting code rates beyond 1/3

- In main text, only neural code for code rate R = 1/3 is shown. The TurboAE encoder and decoder
- for code rate 1/2 is shown in Figure 1. Still designed under 'Turbo principle', Turbo AE with code
- rate 1/2 shows impressive performance under low to moderate SNR, within block length 100. To
- generate code rates beyond 1/2, we can utilize puncturing.

Figure 1: The encoder structure (up left), decoder structure (down left), and BER performance (right) of code rate 1/2

1.1.2 CNN with Residual Connection

- The same shape property of 1D-CNN is preserved by setting odd kernel size k equals twice the
- zero-padding length minus one, as shown in Figure 2 left. The encoder simply use 1D-CNN as 10
- encoder blocks, while the decoder uses residual connection to bypass gradient on iterative decoding 11
- procedure to improve trainability [1], and also inspired by extrinsic information from Turbo code [2],
- shown in Figure 2 right. Adding residual connection improves training speed and improve final BER
- 13
- performance [3]. 14

1.1.3 Network Size

- In figure 3 left, we show the test loss trajectory of TurboAE with different network size. We keep
- both encoder and decoder with same number of filters. Larger network lead to faster training and
- better performance, with the cost of larger computation and memory usage. We take encoder and

Figure 2: 1D CNN visualization on 1 layer (left); CNN with residual connection (right).

decoder with 100 filters, which trains fast given limited computational resource (e.g., training 400 epochs takes 1 day on one Nvidia 1080Ti.)

Figure 3: Larger Network has better performance (left); Random interleaving array shows same performance (right).

1.1.4 Random Interleaving Array During Testing Phase

Given a fixed pseudo-random interleaving array, one concern is that TurboAE could overfit to specific interleaving array, and when both encoder and decoder change the interleaving array, TurboAE will have a degraded performance. However, empirically, we observe that TurboAE doesn't overfit to the training fixed pseudo-random interleaving array, as shown in Figure 3 right. The TurboAE is trained on one specific interleaving array, and tested on 3 random generated interleaving arrays. For TurboAE, whenever the interleaving array is pseudo-random, the neural encoder and decoder still learn without overfitting.

However, when the interleaving array is not random, e.g not applying interleaving as $y=\pi(x)$, termed as 'no interleaving', the performance degrades significantly.

31 1.2 Training Algorithms

21

32

39

1.2.1 Joint Training vs Separate Training

Empirically training encoder and decoder simultaneously is easier to get stuck in local optimum as shown in Figure 4 left. Training encoder and decoder separately is less likely to get stuck in local optimum [4] [5]. Training decoder more times than encoder, on the other hand, makes decoder better approximates optimal decoding algorithm of the encoder, which offers more accurate estimated gradient and stabilizes the training process [5]. We training encoder and decoder separately, with each epoch trains encoder 100 times and decoder 500 times.

1.2.2 Large Batch Size Improves Training Significantly

Large batch size helps training deep generative models such as Generative Adversarial Networks (GAN) [6] and Variantional Autoencoder (VAE) [7], and is also critical to training TurboAE. Figure 4 right shows that large batch size leads to significantly lower test BER.

Figure 4: Training encoder and decoder jointly gets stuck as local optimum (left). Large batch size improves training (right).

- The analysis is on AWGN channel by using the 1st order Taylor expansion on decoder $g_{\phi}(.)$ as:
- $\hat{u} = g_{\phi}(x+z) = g_{\phi}(x) + zg'_{\phi}(x) + O(z^2).$
- Taking gradient of both sides becomes: $\frac{\partial \hat{u}}{\partial x} \approx g_{\phi}'(x) + zg_{\phi}''(x)$ and $\frac{\partial \hat{u}}{\partial \phi} \approx \frac{\partial g_{\phi}(x)}{\partial \phi} + z\frac{\partial g_{\phi}'(x)}{\partial \phi}$
- AWGN channel has $\frac{\partial y}{\partial x} = 1$ with iid noise. Consider the normalization layer x = h(b), the gradient pass through normalization layer with batch size B is [8]:

$$\frac{\partial x_i}{\partial b_j} = \frac{1}{\sigma(b)} (\mathbb{1}(i=j) - \frac{1}{B} (1 + b_i b_j)) \tag{1}$$

Known $\hat{u} = sigmoid(q)$, as $q = g_{\phi}(h(f_{\theta}(u)) + z)$, the gradient of BCE loss with respect to logit q is $\frac{\partial BCE(u,\hat{u})}{\partial q} = \hat{u} - u$, the gradient of encoder is:

$$\frac{\partial BCE(u,\hat{u})}{\partial \theta} = \frac{\partial BCE(u,\hat{u})}{\partial q} \frac{\partial q}{\partial y} \frac{\partial y}{\partial x} \frac{\partial x}{\partial \theta} \frac{\partial b}{\partial \theta} = (\hat{u} - u)(g'_{\phi}(x) + zg''_{\phi}(x)) \frac{\partial x}{\partial \theta} \frac{\partial f_{\theta}(u)}{\partial \theta}$$
(2)

The gradient of decoder is:

52

53

54 55

56

57

58 59

60

61

63

$$\frac{\partial L}{\partial \phi} = \frac{\partial BCE(u, \hat{u})}{\partial q} \frac{\partial q}{\partial \phi} = (\hat{u} - u)(\frac{\partial g_{\phi}(x)}{\partial \phi} + z \frac{\partial g_{\phi}'(x)}{\partial \phi})$$
(3)

- The benefits of large batch size are as follows: 51
 - Less noisy gradient for encoder. The gradient passes through normalization layer is as shown in Equation (1). With large batch size B, the gradient passes through normalization reduces the noise introduced by $\frac{1}{B}(1+b_ib_j)$, making the gradient passed to encoder less
 - Larger batch size reduces gradient noise. Large batch size makes gradient estimation for both encoder and decoder more accurate, as the error term $zg''_{\phi}(x)$ in Equation (2) and $z \frac{\partial g'_{\phi}(x)}{\partial \phi}$ in Equation (3) can be reduced with large batch size with expectation E[z]=0. Better gradients for both encoder and decoder improve training.
 - More accurate statistics for normalization. With larger batch size, the mean and the standard deviation for normalization used in power normalization are more accurate, which introduces less noise.

1.2.3 **Training SNR**

Training noise level (SNR) is an critical parameter for training TurboAE. The training SNR analysis can be derived by the gradient analysis of section 1.2.2. The training noise has different effect on

encoder and decoder. The training noise affects decoder with noise term $z \frac{\partial g'_{\phi}(x)}{\partial \phi}$ in Equation (3). Given an fixed encoder, training decoder with different SNR results in different levels of regulariza-67 tion. For encoder there are two source of noise regularizations: (a) $zg''_{\phi}(x)$ in Equation (2,) and (b) 68 noise introduced by normalization layer in Equation (1). Training encoder with different SNR also 69 results in different levels of regularization, which differs from training decoders. 70 As the effect of decoder training noise has been studied in [9], in this section, we study the training 71 SNR of encoder, with fixing decoder training SNR to be 0dB as shown in Figure 5 left. We see 72 that the most reliable code can be learned when training SNR matches testing SNR. Throughout the paper, we make encoder training SNR equals the testing SNR, e.g we testing TurboAE performance at 2dB, we train TurboAE with encoder SNR at 2dB and decoder at 0dB. The BER curve shown in 75

main context is the lower envelope of all curves.

Figure 5: Encoder Training SNR has different coding gain effects (left); Training decoder more lead to faster convergence (right).

When encoder training SNR is larger than 1dB (e.g., 1dB, 2dB and 3dB), the BER curves remain nearly the same. Thus encoder training noise level for high SNR region shows diminishing effects on high SNR, which creates an error floor for TurboAE. In main context we state that neural code are suboptimal in high SNR region, since the error is hard to encounter (with probability less than 10^{-4}), which makes it hard to gather negative examples to train encoder. Improving high SNR region coding gain with data imbalance is an interesting future research direction.

1.2.4 Train decoder more than encoder

83

We argue that when the decoder is well-paired to the fixed encoder, the gradient passed to encoder is more accurate. Training decoder more times will improve performance, as shown in Figure 5 right. Training decoder more times lead to faster convergence.

87 1.2.5 Learning Rate and Batch Size Scheduling

Increasing batch size improve generalization rather than reducing learning rate [10]. To reduce computational expense, we start with batch size B=500, and double the batch size when the test loss saturates for 20 epochs till B=2000 which is our GPU memory limit. Figure ?? shows that there exists long 'fake saturating' points where the test loss saturates for over 20 epochs and then continue to drop. When B=2000, when saturates for longer than 20 epochs, the learning rate lr is reduced by 10 times till learning rate reaches lr=0.000001.

1.2.6 Block Error Rate Performance comparison

The loss function used is Binary Cross-Entropy (BCE), which minimizes average cross entropy for all bits along the block, aiming at minimizing BER. Optimizing BER doesn't necessarily result in optimizing block error rate (BLER), as shown in Figure 6. TurboAE-binary shows better performance comparing to Turbo code in BER sense under all SNR points, the BLER performance is worse than Turbo code.

Figure 6: TurboAE BER (left) and BLER (right) performance

2 Complexity Comparison

100

Neural networks are known to have high implementation complexity than canonical algorithms. CNN structure is more favorable than RNN since it is of less complexity and easier to run in parallel.

We compare the inference complexity between TurboAE with CNN and GRU implementations (with similar performance), as well as canonical Turbo decoder in this section. The neural network computation is measured via float-point operations (FLOP) in one block. Turbo's encoder and decoder complexity is computed in elementary math operations (EMO), which are are in Table 1:

ĺ	Metric	CNN encoder	CNN decoder	GRU encoder	GRU decoder	Turbo encoder	Turbo decoder
Ì	FLOP/EMO	1.8M	294.15M	334.4M	6.7G	104k	408k
	Parameters	152.4k	2.45M	1.14M	2.714M	N/A	N/A

Table 1: FLOP and number of parameter comparison on block length 100 and 6 iterations

107 CNN encoder and decoder are considered as small, comparing to typical deep learning models which 108 take about 1G FLOP per instance. GRU has much larger FLOP comparing to CNN. Empirically us-109 ing GRU takes 10x GPU memory and is 10x slower to train. However comparing to canonical Turbo 110 encoder and decoder, FLOP of TurboAE with CNN is still much larger than canonical decoders.

We are expecting continuing research would lead to smaller FLOP, as well as the advance of AI-chips will increase the performance when applying CNN to TurboAE.

Due to TurboAE complexity and flexibility, and superior performance on moderate block length on low-to-moderate SNR, the best application area for TurboAE is on dynamical environment (e.g operating on moderate block length and channel with uncertainty) such as low latency code and control plane. On high throughput data plane where canonical codes such as LDPC and Turbo, or neural decoder can be the best method with low complexity and high reliability. In the future, combining both adaptive neural code and human-designed capacity-approaching codes will give more seamless and high reliable communication experience.

120 3 TurboAE Performance

121 3.1 Benchmarks

123

125

We use MATLAB-based Vienna 5G simulator and Python-based Commpy [12] as our benchmarks.

3.1.1 Vienna 5G simulator

The detailed implementation details of Vienna 5G are:

• LDPC code with PWL-Min-Sum decoding algorithm, with 32 decoding iterations.

- Polar code with CRC-List-SC decoding algorithm, with list size 32.
 - Turbo code with Linear-Log-MAP decoding algorithm, with 6 decoding iterations.
 - TBCC code with MAX-Log-MAP decoding algorithm.

Turbo AE and Turbo code uses the same number of iterations. Turbo codes simulation results are different between Commpy and Vienna 5G simulator, since Commpy implements vanilla Turbo code, and Vienna 5G simulator implements more advanced coding Turbo schemes. We use Commpy Turbo code as our benchmark. Note that Commpy shows better performance than Vienna 5G, but shows less coding gain on high SNR. We use Commpy as the benchmark, which is the same as [9].

For Vienna 5G simulator, we find that the code rate for each channel coding is not enforced, e.g when setting code rate R = 1/3 with block length K = 100, the encoder not necessarily outputs codeword with block length N = 384. To make

- when setting code rate K=1/3 with block length K=100, the encoder not necessarily outputs codeword with block length N=300, but rather outputs longer block length N=384. To make a fair comparison, we tune the code rate to enforce the output of encoder to have block length N=300, which results in a different setup code rate:
 - Polar code: for code rate R=1/2, the setup code rate is R=0.62; for code rate R=1/3, the setup code rate is R=0.415.
 - TBCC Code: for code rate R=1/2, the setup code rate R=0.64, for code rate R=1/3, the setup code rate R=0.4275.
 - Turbo Code: for code rate R=1/2, the setup code rate R=0.62, for code rate R=1/3, the setup code rate R=0.4175.
 - LDPC code: for code rate R=1/2, the setup code rate R=0.705, for code rate R=1/3, the setup code rate R=0.522.
- 147 Interested reader can contact Vienna 5G simulator's authors to get access to the code.

148 3.1.2 Commpy on Turbo Code

127

128

139

140

141

142

143

144

145

146

152

153

154

155

160

165

RSC code with generating function $(1, \frac{f_1(x)}{f_2(x)})$ is the component code for Turbo code. The generating function of Turbo's RSC affects the performance. Two commonly used configurations of RSC are implemented in Commpy:

- code rate R = 1/3, with $f_1(x) = 1 + x^2$ and $f_2(x) = 1 + x + x^2$, which is denoted as Turbo-757.
- code rate R = 1/3, with $f_1(x) = 1 + x^2 + x^3$ and $f_2(x) = 1 + x + x^3$, which is standard Turbo code used in LTE system, denoted as Turbo-LTE.

In main context, the benchmarks are using with Turbo-757, while the performance comparison between Turbo-757 and Turbo-LTE are shown in Figure 7. The performance trend are the same, while Turbo-LTE shows slightly better performance. The same claim in main text on Turbo-757, works for Turbo-LTE.

3.2 Continuous Channels

Continuous channel refers to the channel where the received signal y can is continuous, where both TurboAE-continuous and Turbo-binary can be supported. We discussed short block performance on AWGN and non-AWGN channels, and in this section we discuss the longer block length, and other channels.

3.2.1 Scale to Long Code Block Length is hard

Figure 8 left shows that after fine-tuning at block length 1000, fine-tuned TurboAE shows improved performance comparing to TurboAE trained on block length 100 and tested on block length 1000. However, TurboAE-continuous shows worse performance comparing to canonical Turbo code. As shown in main context, TurboAE's coding gain on long block length is smaller than Turbo code due to trainability and computation issues. Improving performance on long block length is an interesting future research direction.

Figure 7: Commpy TurboAE with different trellis performance BER (left), and BLER (right)

3.2.2 TurboAE on iid Rayleigh Fading Channel

172

181

182

183

184

185

186

187

188

189

190

Non-coherent Rayleigh Fading Channel is defined as $y_i = h_i x_i + z_i$, where iid $z_i \sim N(0, \sigma^2)$, 173 and h_i is normalized iid Rayleigh distribution fading noise as $h_i \sim \frac{\sqrt{U^2+V^2}}{\sqrt{\pi/2}}$, while U and V174 are IID unit Gaussian variables. Non-coherent setting means the decoder doesn't know h_i : the 175 benchmarks (canonical decoders include Turbo, TBCC, and LDPC) are not aware of the fading 176 component by still taking log-likelihood as decoder input, while TurboAE is not further trained to 177 learn h_i . The performance of Non-coherent Rayleigh Fading Channel are shown in Figure 8 right. 178 On Non-coherent Rayleigh Fading Channel, TurboAE-binary and TurboAE-continuous outperforms 179 LDPC, TBCC and Turbo code in a wide SNR region. 180

Figure 8: TurboAE performance on block length 1000 (left) and TurboAE on Rayleigh Fading Channel (right)

3.2.3 TurboAE-continuous combines Modulation and Coding

In the main context, we show that on ATN channel, TurboAE-continuous outperforms TurboAE-binary. TurboAE-continuous outperforms TurboAE-binary significantly at high SNR since TurboAE-continuous jointly learns modulating and coding in continuous value domain, which has better advantage at high SNR schemes.

To investigate the fundamental coding gain of TurboAE-continuous in high SNR schemes, we investigate the channel capacity of non-AWGN channel (take ATN as example) and AWGN channel, as shown in Figure 9 right. Binary-AWGN and Continuous-AWGN refers to the channel capacity where code x is binary and continuous at AWGN channel, respectively. Binary-ATN and Continuous-ATN refers to the channel capacity where code x is binary and continuous at ATN channel capacity where code x is binary at x in the capacity where x is binary at x in the capacity capacity where x is binary at x in the capacity capacity capacity x in

nel. We use estimated Mutual Information (MI) via KSG estimator [13] as the surrogate measure for channel capacity, as there is no close-form channel capacity for ATN channel.

Under the SNR range where most channel coding operates around (0dB), the MI between Binary-AWGN and Continuous-AWGN is very close, thus applying continuous coding doesn't improve coding gain significantly on AWGN channel. However, the MI between binary-ATN and Continuous-ATN is significant, thus applying continuous code can further increase the channel capacity comparing to using binary code on non-AWGN channel. Moreover, at high SNR, the capacity of continuous code is much larger than binary code, which shows that Turbo-AE, as a method to learn continuous code, has theoretical advantage on high SNR schemes.

Figure 9: KSG estimated Mutual Information for AWGN and ATN channel

3.3 Binary Channels

200

203

204

205

206

Binary channels restrict the decoder input to be binary, which only supports binary operations. Only TurboAE-binary is supported. We use the following canonical binary channels:

- iid Binary Symmetric Channel (BSC), $x \in \{-1, +1\}$ and $y \in \{-1, +1\}$, flip rate $P(y \neq x) = p_{bsc}$, and $P(y = x) = 1 p_{bsc}$.
- iid Binary Erasure Channel(BEC), $x \in \{-1, +1\}$ and $y \in \{-1, 0, +1\}$, while y = 0 represents erasure. Erasure rate $P(y = 0) = p_{bec}$, and $P(y = x) = 1 p_{bec}$.

Figure 10: BEC and BSC performance

On BSC channel, TurboAE-binary and Turbo works nearly the same, which implies that AWGN-trained TurboAE can generalize to BSC channel.

On BEC channel, TurboAE-binary trained on AWGN works worse than Turbo, since on AWGN channel there doesn't exist erasure. However TurboAE fine-tuning on BEC channel still has gap comparing to Turbo. The result shows that the trainability of TurboAE still needs improvement.

3.4 Interleaved Encoding Visualization

212

We test the random coding effect of interleaved encoder with 2 same message, u_1 and u_2 , and perturb at position index 20, which makes the only difference between u_1 and u_2 is $s_1[20] = 1.0$ and $s_1[20] = 0.0$. We plot the absolute maximized code difference $|f_{\theta}(s_1) - f_{\theta}(s_2)|$ for all three encoding blocks. With interleaved encoder, one single message bit change (at code bit 20) can cause random non-adjacent bits (at code bit 75) to change, which adds encoding randomness, shown in Figure 11.

Figure 11: Randomness added via interleaving

References

219

- [1] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in *Proceedings of the IEEE conference on computer vision and pattern recognition*, 2016, pp. 770–778.
- [2] J. Hagenauer, "The turbo principle: Tutorial introduction and state of the art," in *Proc. International Symposium on Turbo Codes and Related Topics*, 1997, pp. 1–11.
- [3] Y. Jiang, H. Kim, S. Kannan, S. Oh, and P. Viswanath, "Deepturbo: Deep turbo decoder," 2019.
- [4] F. A. Aoudia and J. Hoydis, "End-to-end learning of communications systems without a channel model," in 2018 52nd Asilomar Conference on Signals, Systems, and Computers. IEEE, 2018, pp. 298–303.
- [5] Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, and P. Viswanath, "Learn codes: Inventing low-latency codes via recurrent neural networks," *arXiv preprint arXiv:1811.12707*, 2018.
- [6] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, "Generative adversarial nets," in *Advances in neural information processing systems*, 2014, pp. 2672–231 2680.
- [7] D. P. Kingma and M. Welling, "Auto-encoding variational bayes," arXiv preprint arXiv:1312.6114, 2013.
- [8] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, "How does batch normalization help optimization?" in Advances in Neural Information Processing Systems, 2018, pp. 2483–2493.
- [9] H. Kim, Y. Jiang, R. Rana, S. Kannan, S. Oh, and P. Viswanath, "Communication algorithms via deep learning," in *The International Conference on Representation Learning (ICLR 2018) Proceedings*. Vancouver, 2018.
- 238 [10] S. L. Smith, P.-J. Kindermans, C. Ying, and Q. V. Le, "Don't decay the learning rate, increase the batch size," *The International Conference on Representation Learning (ICLR 2018) Proceedings*, 2018.

- [11] M. K. Muller, F. Ademaj, T. Dittrich, A. Fastenbauer, B. R. Elbal, A. Nabavi, L. Nagel, S. Schwarz, and
 M. Rupp, "Flexible multi-node simulation of cellular mobile communications: the Vienna 5G System
 Level Simulator," EURASIP Journal on Wireless Communications and Networking, vol. 2018, no. 1,
 p. 17, Sep. 2018.
- 244 [12] V. Taranalli, "Commpy: Digital communication with python, version 0.3.0. available at https://github.com/veeresht/commpy," 2015.
- 246 [13] A. Kraskov, H. Stögbauer, and P. Grassberger, "Estimating mutual information," *Physical review E*, vol. 69, no. 6, p. 066138, 2004.