Métodos Quantitativos IV - Lista 5 (resolução)

Departamento de Ciência Política da FFLCH-USP

Luiz Henrique da Silva Batista (Número USP: 12687228)

2023-11-19

Exercício 1

O pacote PNADcIBGE permite importar bases de dados diretamente para o environment do R. Primeiro, instale e ative o pacote. Depois, importe os dados do último trimestre de 2017 (variáveis selecionadas) por meio do código abaixo.

```
# Ver: https://cran.r-project.org/web/packages/PNADcIBGE/PNADcIBGE.pdf
# Instale o pacote
# install.packages("PNADcIBGE")
# Carreque o pacote
library(PNADcIBGE)
# Importe os dados desejados
data <- get_pnadc(year=2017,</pre>
                  quarter=4,
                  selected=FALSE,
                  vars=c("Ano", "Trimestre", "UF", "V2007", "VD4020", "VD4035"),
                  design=FALSE,
                  savedir=tempdir()
# Por razões didáticas, selecionamos "design=FALSE" para ignorar o plano amostral.
# Não faça isso em sua pesquisa.
# Selecione apenas as variáveis úteis para esta lista:
library(tidyverse)
library(tidylog)
data <- data |>
  select(Ano, Trimestre, UF, V2007, VD4020, VD4035)
# Renomeie as variáveis:
data <- data |>
 rename(Sexo = V2007,
         Renda = VD4020,
         Horas_trabalhadas = VD4035)
```

Exercício 2

Utilize uma regressão linear simples para estimar a correlação entre a renda (variável dependente) e o sexo (variável independente).

```
# Transformando a v. sexo em dummy (0 e 1)
data <- data |>
  mutate(sexo_dummy = case_when(
    Sexo == "Homem" ~ 1,
    Sexo == "Mulher" ~ 0
    )
    )
    )

# Criando o modelo
modelo1 <- lm(Renda ~ sexo_dummy, data = data)</pre>
```

• Escreva a equação correspondente a essa regressão (OPCIONAL)

$$Renda = \alpha + \beta_1 X_{sexo}$$

• Interrete os coeficientes

```
modelo1 |>
  stargazer::stargazer(type = "latex")
```

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: dom, nov 19, 2023 - 21:39:04

Table 1:

	Dependent variable:	
	Renda	
sexo_dummy	357.173***	
	(13.127)	
Constant	1,720.783***	
	(10.077)	
Observations	228,116	
\mathbb{R}^2	0.003	
Adjusted R ²	0.003	
Residual Std. Error	3,084.290 (df = 228114)	
F Statistic	$740.367^{***} \text{ (df} = 1; 228114)$	
Note:	*p<0.1; **p<0.05; ***p<0.01	

O α (alpha) representa o ponto em que a nossa reta de regressão corta o eixo Y. Já o β (coeficiente angular da reta) fornece a inclinação da reta. Assim, podemos interpretá-lo como o quanto em média Y deve aumentar ou diminuir para cada aumento de uma unidade em X.

Em nosso exemplo, a renda estimada das mulheres (X=0) é igual a R\$ 1720.78 e a renda estimada dos homens (X=1) é cerca de R\$ 357.17 maior do que a das mulheres.

• Apresente os resultados da sua regressão em uma tabela utilizando a função "stargazer".

Table 2: Modelo 1

	Renda
sexo_dummy Constant	357.173*** (13.127) 1,720.783*** (10.077)
Observations	228,116
Note:	*p<0.1; **p<0.05; ***p<0.01

Exercício 3

Com base na questão anterior, qual é a renda média das mulheres? E a dos homens? Confirme que os resultados coincidem com o cálculo das médias para cada sexo utilizando a função "summarise".

A renda média das mulheres é R\$ 1720.78 e a renda média dos homens é R\$ 2077.95 (R\$ 1720.78 + R\$ 357.17).

Confirmando esses valores com a função summarise, temos:

Table 3: Renda média por sexo

Sexo	Total
Homem Mulher	2.077,956 1.720,783

Exercício 4

Utilize uma regressão linear simples para estimar a correlação entre a renda (variável dependente) e as horas trabalhadas (variável independente).

```
modelo2 <- lm(Renda ~ Horas_trabalhadas, data = data)</pre>
```

• Escreva a equação correspondente a essa regressão (OPCIONAL)

$$Renda = \alpha + \beta_1 X_{Horas\ trabalhadas}$$

• Inteprete os coeficientes

```
modelo2 |>
  stargazer::stargazer(type = "latex")
```

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: dom, nov 19, 2023 - 21:39:05

Table 4:

	$Dependent\ variable:$
	Renda
Horas_trabalhadas	28.901***
_	(0.453)
Constant	846.776***
	(18.185)
Observations	228,116
\mathbb{R}^2	0.017
Adjusted R ²	0.017
Residual Std. Error	3,062.150 (df = 228114)
F Statistic	$4,061.663^{***} \text{ (df} = 1; 228114)$
Note:	*p<0.1; **p<0.05; ***p<0.01

A renda estimada para um total de 0 (zero) horas trabalhadas é de R\$ 846.7765 e a nosso modelo estima cerca de R\$ 28.9 para cada hora a mais trabalhada.

• Qual é a renda prevista para uma pessoa que trabalha 40 horas por semana? Considere que a variável dependente refere-se à renda mensal

A renda prevista para uma pessoa que trabalha 40 por semana é de 2002.8125, conforme estimado pelo modelo:

$$Renda = 846.7765 + 28.9009 * 40$$

• Apresente os resultados da sua regressão em uma tabela utilizando a função "stargazer"

Table 5: Modelo 2

	Renda
Horas_trabalhadas Constant	28.901*** (0.453) 846.776*** (18.185)
Observations	228,116
Note:	*p<0.1; **p<0.05; ***p<0.01

Exercício 5

Calcule os intervalos de confiança para os coeficientes das duas regressões das questões anteriores ao nível de confiança de 95%.

Modelo 1: $Renda = \alpha + \beta_1 X_{sexo}$

Intervalo de confiança de 95% para α	Intervalo de confiança de 95% para β
(1700.64); (1740.96)	(330.91); (383.43)

Modelo 2: $Renda = \alpha + \beta_1 X_{Horas\ trabalhadas}$

Intervalo de confiança de 95% para α	Intervalo de confiança de 95% para β
(810.4073); (883.1457)	(27.9939); (29.8079)

• Explique o que representam os intervalos de confiança

Os intervalos de confiança representam o intervalo de valores que acreditamos conter o parâmetro populacional.

• O que eles informam a respeito da significância estatística (ao nível de 5%) dos coeficientes estimados?

Informam que existe uma probabilidade de 95% de que o parâmetro populacional está contido no intervalo. Podemos também dizer que existe uma probabilidade de 5% de que o parâmetro $\mathbf{n}\mathbf{\tilde{a}o}$ está contido no intervalo de confianca.

• O que significa dizer que os coeficientes são estatisticamente significantes ou insignificantes?

Significa dizer

Exercício 6

Apresente seus resultados em um arquivo PDF. Garanta que seu arquivo esteja limpo, contendo as respostas, os gráficos e as tabelas, mas não eventuais mensagens e erros. O arquivo PDF pode ser gerado diretamente a partir do R por meio do RMarkdown ou do RSweave. Para os alunos de graduação, isso é recomendado, mas não obrigatório. Adicionalmente, forneça o script para replicação.

