

CÉSAR VALLEJO

CÉSAR VALLEJO

QUÍMICA

Tema: Nomenclatura Inorgánica

I. OBJETIVOS

Los estudiantes, al término de la sesión de clases serán capaces de:

- 1. Interpretar el concepto de estado de oxidación y Aplicar las reglas para calcular su valor.
- 2. Reconocer los grupos funcionales para la identificación de la función química.
- **3. Determinar** la fórmula química de los óxidos, hidróxido, ácidos, sales y nombrarlos según los sistema de nomenclatura (clásica, stock y sistemática).

II. INTRODUCCIÓN

En el laboratorio se utilizan una gran variedad de sustancias para el análisis y estudio de los procesos químicos ,por lo que es importante conocer el nombre y la fórmula de las sustancias que se van a manipular para identificar sus propiedades.

Nombre: Sulfato cúprico

Fórmula : CuSO₄

El sulfato cúprico es un polvo cristalino azulado inodoro. Se utiliza como alguicida, fungicida, herbicida, aditivo alimentario y galvanoplastia.

III. NOMENCLATURA QUÍMICA

El fin principal de la nomenclatura química es simplemente proporcionar una metodología para asignar descriptores (fórmulas químicas y nombres) a las sustancias químicas, de manera que puedan identificar sin ambigüedad y de este modo facilitar la comunicación. La IUPAC (creada en 1919), se encarga de los métodos de la nomenclatura inorgánica y nomenclatura orgánica.

En nomenclatura inorgánica se frecuenta utilizar una fórmula química y tres nombres

Hay miles de compuestos químicos inorgánico (sustancia química), conocidos, de allí la importancia de emplear un método sistemático para darles nombre.

Ejemplo para los compuestos de carbono y

magnesio

 CO_2

Anhidrido carbónico

Óxido de carbono (IV)

Dióxido de carbono

Hidróxido de magnesio

Dihidróxido de magnesio

 $Mg(OH)_2$

IV. NÚMERO O ESTADO DE OXIDACIÓN (EO)

4.1. CONCEPTO

Es la carga relativa (real o aparente) que tiene **un átomo ionizado** de un elemento químico en un determinado compuesto o cualquier especie química.

Para elementos que forman:

Compuestos Iónicos Binarios

Indica la carga relativa que adopta cada ión (anión y catión). Esto según la cantidad de electrones ganados o perdidos.

Analizamos en la estructura Lewis

$$EO(Mg) = 2 + EO(O) = 2 -$$

Compuestos Covalentes

Indica la carga aparente que adopta cada átomo cuando se rompen hipotéticamente todos sus enlaces. Considerar las electronegatividades

Analizamos en la estructura Lewis

4.2. REGLAS GENERALES PARA DETERMINAR EL ESTADO DE OXIDACIÓN

1. Los átomos en todo elemento libre (no combinado con otro elemento), poseen:

$$EO = 0$$

Ejemplo: Para tres elementos químicos.

Cu

 H_2

2. Para cada átomo en compuestos químicos e iones poliatómicos.

- 2.1. Para el
- hidrógeno

2.2. Para el oxígeno

- En general: EO= 1+
- En hidruros metálicos: EO= 1-

Ejemplo: KH

- En general: EO= 2 -
- En peróxido: EO= 1-

Ejemplo:

Solo en OF₂: EO= 2+

2.3. para metales de **IA** (Li, Na, K,...) y Ag

2.4. para metales de **IIA** (Be, Mg, Ca,...), Zn y Cd

2.6. En compuesto químico

Ejemplo: Para Li₂SO₄ 1+ Li₂SO₄

EO= 2 + Ejemplo: Para ZnSO₄ 2+ Zn SO₄

• $\Sigma EO = 0$

Ejemplo: Para ZnSO₄

2+ x 2-Zn S O₄ 1(+2) + x + 4(-2) = 0 $\Rightarrow x = +6$

2.7. En ion poliatomico • Σ EO = carga de ion

Aplicación 1:

Determinar el EO de cada átomo en:

$$Na_2SeO_4$$
, $Ca_3(PO_4)_2$ y KN_3

$$1/3x = 0$$

$$X = -\frac{1}{3}$$

Aplicación 2:

Determinar el EO de cada átomo en:

$$(NH_4)^{1+}, (S_2O_7)^{2-}, [FeLi(OH)_3]^{1+}$$

$$(5_{2}0_{1})^{2}$$
, $2x-14=-2$, $x=+6$

$$X+1-6+3=+1$$

$$X = +3$$

Aplicación 1:

Determinar el EO de cada átomo en:

 Na_2SeO_4 , $Ca_3(PO_4)_2$ y KN_3

Aplicando las reglas para los siguientes Resolución 1: compuestos químicos

Na₂ Se O₄
$$2 (+1) + 1(X) + 4(-2) = 0 \rightarrow X = 6 +$$

$$2 + x 2 -$$

•
$$Ca_3(PO_4)_2$$
 \rightarrow 3 (+2) + 2(X) + 8(-2) = 0 \rightarrow X = 5 +

$$1+X$$

$$\cdot$$
 KN_3

•
$$\overline{K} \, \overline{N}_3$$
 1 (+1) + 3(X) = 0 \rightarrow $X = \frac{1}{3}$ -

Aplicación 2:

Determinar el EO de cada átomo en:

$$(NH_4)^{1+}, (S_2O_7)^{2-}, [FeLi(OH)_3]^{1+}$$

Resolución 2: Aplicamos la regla para ion poliatomico

• [Fe Li (OH)₃]¹⁺ 1 (X) + 1(+1) + 3(-1) = +1
$$\rightarrow$$
 X = 3 +

4.3. PRINCIPALES EO DE LOS ELEMENTOS QUÍMICOS

METALES	EO
IA, Ag	1+
IIA, Cd, Zn	2+
Al, Ga	3+
Au	1+, 3+
Cu, Hg	1+, 2+
Sn, Pb, Pt	2+, 4+
Fe, Co, Ni	2+, 3+

NO METALES	EO
В	3+
Si	4+
С	2+, 4+
N, As, Sb	3+, 5+
P	1+, 3+, 5+
S, Se, Te	2+, 4+, 6+
Cl, Br, I	1+, 3+, 5+, 7+

ELEMENTO METALICO	Forma óxido básico	Forma óxido ácido
Mn	2+, 3+	4+, 6+, 7+
Cr	2+, 3+	3+, 6+
V	2+, 3+	4+, 5+

V. FUNCIÓN QUÍMICA

Es el conjunto de compuestos químicos que presentan propiedades químicas similares debido a que poseen el mismo grupo funcional.

FUNCIÓN	GRUPO FUNCIONAL	EJEMPLOS
Óxido	O ²⁻ (ion óxido)	Mg 0 , C 0 y S 0 ₃
Peróxido	$(0_2^{1-})^{2-}$ (ion peróxido)	H ₂ O ₂ y Na ₂ O ₂
Hidróxido	(OH) ¹⁻ (ion hidróxido)	Na OH y Ca(OH) ₂
Ácido	H ¹⁺ (ion hidrógeno)	HCl, HNO ₂ y H ₃ PO ₄

Nota: El **grupo funcional** es el responsable de las propiedades químicas de los compuestos pertenecientes a una función química.

VI. SISTEMAS DE NOMENCLATURA

6.1. SISTEMA FUNCIONAL, CLÁSICO O TRADICIONAL

- El prefijo **HIPER o PER** se emplea solo cuando el EO=7+
- La raíz deriva del nombre del elemento en latín.

Elemento	Raíz
Hierro	Ferr
Cobre	Cupr
Plomo	Plumb
Oro	Aur
Plata	Argent
Sodio	Sod
Calcio	Calc
Estaño	Estann
Cloro	Clor
Magnesio	Magnes
Manganeso	Mangan
Azufre	Sulfur

Ejemplos:

6.2. SISTEMA STOCK

FUNCIÓN DE NOMBRE DEL (X)
QUÍMICA ELEMENTO

- X: Estado de oxidación del elemento en números romanos (I, II, III,), se omite cuando es único.
- El nombre del elemento se escribe en español.

Ejemplos:

6.3. SISTEMA IUPAC O SISTEMÁTICO

DDEEIIO	FUNCIÓN	DF	DDEEIIO	NOMBRE DEL ELEMENTO
PREFIJO	QUÍMICA		PREFIJO	ELEMENTO

N° átomos	1	2	3	4	5
PREFIJO	mono	di	tri	tetra	pent

NOTA: El prefijo mono suele omitirse, excepto en el caso del oxígeno (monóxido)

Ejemplos:

Na₂O : monóxido de disodio.

Cl₂O₅ : pentóxido de dicloro.

• I₂O₇ : **heptó**xido de **di**yodo.

Trióxido de dihierro (Fe_2O_3)

monóxido de plomo (PbO)

Dióxido de azufre (SO_2)

Fórmula química general, del óxido del elemento químico(E) con EO = X

7.1. ÓXIDO BÁSICO U ÓXIDO METÁLICO.

- Están formados por la combinación del oxígeno con metales.
- Son compuestos iónicos y a condiciones ambientales se encuentran en estado sólido.
- Al combinarse con el agua dan origen a los hidróxidos, que poseen propiedades básicas.
- FORMULACIÓN DIRECTA:

Donde x+ es el EO del metal E, en la fórmula química, solo se escribe el valor numérico de ambos EO, además si x es número par, se simplifica.

NOMENCLATURA

Le corresponde tres nombres

Ejemplos: Formular y nombrar al óxido que forma el cobalto cuando actúa con EO 3+ y al óxido que forma el magnesio.

• EO (Co)= 2+,(3+

Clásico: óxido cobáltico

Stock: óxido de cobalto (III)

Sistemático: trióxido de dicobalto

Clásico: óxido magnésico

• Stock: óxido de magnesio

Sistemático: monóxido de magnesio

7.2. ÓXIDO ÁCIDO U ÓXIDO NO METÁLICO.

- Están formados por la combinación del oxígeno con no metales.
- Son compuestos moleculares y a condiciones ambientales se pueden encontrar en estado sólido, líquido y gaseoso.
- Al combinarse con el agua dan origen a los ácidos oxácidos.
 - FORMULACIÓN DIRECTA:

Igual que el óxido básico

NOMENCLATURA

Para nombrarlos con la nomenclatura clásica ,se emplea el término **Anhídrido**

Ejemplos:

Formular y nombrar a los óxidos de carbono con EO = 4+ y manganeso con EO = 6+

• Clásico: Anhídrido carbónico

Stock: Óxido de carbono (IV)

Sistemático: Dióxido de carbono

Clásico: Anhídrido mangánico

Stock: Óxido de manganeso (VI)

Sistemático: Trióxido de manganeso

VIII. FUNCIÓN HIDRÓXIDO

- Compuestos ternarios: metal (E), O e H
- Grupo funcional: OH¹⁻ (ion hidróxido)
- Son compuestos iónicos.
- Son compuestos básicos

Formulación directa:

X: valor numérico del estado de oxidación del metal (E)

Obtención general:

Oxido metálico + Agua → Hidróxido

Ejemplo: $Na_2O + H_2O \rightarrow NaOH$

Nomenclatura:

Es similar a la de los óxidos metálicos o básicos, solo se cambia el término óxido por **hidróxido**.

Ejemplos: Nombrar los siguientes hidróxidos con los 3 sistemas de Nomenclatura

• EO (Co)= 2+(3+) • N. Clásico

N. Clásico: Hidróxido cobáltico

 $C_0^{3+}(OH)_3^{1-}$

N. Stock: Hidróxido de cobalto (III)

• N. Sistemático: Trihidróxido de cobalto

• EO (Mg)=(2+)

2+ 1
Mg(OH)₂

N. Clásico: Hidróxido magnésico

• N. Stock:

Hidróxido de magnesio

• EO (Cr)= 2+3+

N. Sistemático: Dihidróxido de magnesio

3+ 1-Cr(OH)₃

• N. Clásico:

Hidróxido crómico

• N. Stock:

Hidróxido de cromo (III)

• EO (Pb)= 2+4+

N. Sistemático:

Trihidróxido de cromo

4+ 1-Pb(OH)₄ N. Clásico:

Hidróxido plúmbico

N. Stock: Hidróxido de plomo (IV)

maroxido de piorrio (IV)

N. Sistemático: Tetrahidróxido de plomo

IX.FUNCIÓN ÁCIDO

- Son compuestos moleculares cuyo grupo funcional es el ion hidrógeno H⁺ en su estructura molecular.
- Se clasifica en ácidos hidrácidos y oxácidos.

Ácido clorhídrico **ÁCIDO HIDRÁCIDO**

Ácido sulfúrico

ÁCIDO OXÁCIDO

9.1 HIDRÁCIDOS

Son compuestos moleculares gaseosos polares muy solubles en el agua. Contienen al hidrógeno y a los elementos del grupo VIIA o VIA.

Formulación:

Ejemplos:

En general:

HIDRÁCIDO	EN MEDIO ACUOSO	
H ₂ S _(g) : Sulfuro de hidrógeno	H ₂ S _(ac) : Ácido Sulf <mark>hídrico</mark>	
H ₂ Se _(g) : Seleni <mark>uro</mark> de hidrógeno	H ₂ Se _(ac) : Ácido Selen <mark>hídrico</mark>	
H ₂ Te _(g) : Telururo de hidrógeno	H ₂ Te _(ac) : Ácido Telur <mark>hídrico</mark>	
HF _(g) : Fluor <mark>uro</mark> de hidrógeno	HF _(ac) : Ácido Fluor <mark>hídrico</mark>	
HCl _(g) : Cloruro de hidrógeno	HCl _(ac) : Ácido Clor <mark>hídrico</mark>	
HBr _(g) : Bromuro de hidrógeno	HBr _(ac) : Ácido Brom <mark>hídrico</mark>	
HI _(g) : Yod <mark>uro</mark> de hidrógeno	HI _(ac) : Ácido Yodhídrico	

9.2 ÁCIDOS OXÁCIDOS (H_nEO_m)

Son compuestos moleculares ternarios que contienen hidrógeno, un elemento no metálico (E) y oxígeno.

Obtención:

Anhídrido + Agua → Acido Oxácido

Nombre clásico: ácido prefijo elemento sufijo

$$\overset{6+}{S} O_3 + H_2 O \rightarrow H_2 S O_4$$

Anhídrido Sulfúr**ico** Ácido Sulfúr**ico**

Anhídrido Nítr**ico** Ácido Nítr**ico**

Formulación:

X = EO(E)	H_nEO_m
Impar	$HEO_{\frac{X+1}{2}}$
Par	$H_2EO_{\frac{X+2}{2}}$
B, P, As y Sb	$H_3EO_{\underline{x+3}}$

• Nitrógeno(N) → EO= +3, +5

$$HNO_{\frac{5+1}{2}}$$

 HNO_3

Ácido nítrico

$$HNO_{\frac{3+1}{2}}$$

 HNO_2

Ácido nitroso

APLICACIÓN 1. Formular a los siguientes ácidos

• Ácido cloroso (((1, 3, 5, 7)

Ácido carbónico (2,4)

$$H_2CO_{4+2} = H_2CO_3$$

• Ácido bórico $\beta(3)$

$$H_3BO_{3+3} = H_3BO_3$$

APLICACIÓN 2. Nombrar el siguiente ácido oxácido según la nomenclatura funcional clásico

•
$$\frac{14 \times 2^{-}}{\text{HBrO}_{4}} \Rightarrow 1 + \times -8 = 0$$
Br (1, 3, 5, \frac{7}{2}) \times = +7

- · CLASICO: ACIDO PERBROMICO
- · STOCK: Acido TETRAOXOBROMICO (VII)
- · SISTEMATICA: TETRAOXOBROMATO (VII)

 DE HIDROGENO

APLICACIÓN 1. Formular a los siguientes ácidos

- Ácido cloroso U(1,3,5,7) $U_2O_3 + 1H_2O \rightarrow H_2U_2O_4 = HUO_2$
- Ácido carbónico C(2, 4) $CO_2 + 1H_2O \rightarrow H_2CO_3$
- Ácido bórico 3 (3)

APLICACIÓN 1. Formular a los siguientes ácidos

- Ácido cloroso EO(Cl) = 1+, 3+, 5+ y 7+ $HClO_{1+3} \implies HClO_2$
- Ácido carbónico EO(C) = 2+ y 4+

$$H_2CO_{\frac{2+4}{2}} \implies H_2CO_3$$

Ácido bórico EO(B) = 3+ (único valor)

$$H_3BO_{\frac{3+3}{2}} \Rightarrow H_3BO_3$$

APLICACIÓN 2. Nombrar el siguiente ácido oxácido según la nomenclatura funcional clásico

•
$$HBrO_4$$
 <> $HBrO_4$ Ácido perbrómico

EO(Br):

1+: hipo _oso

3+: oso

5+: ico

7+: per_ico

Se necesita:

- Conocer el EO del elemento central.
- EO (H) = 1+ y EO(O) =2-
- ΣEO=0
- Para ácidos oxácidos también se usan la nomenclatura: clásico, Stock y sistemático.

Por ejemplo

$$H_3PO_4 <> H_3PO_4$$

- Ácido fosfórico (ácido ortofosfórico)
- Ácido tetraoxofosfórico(V)
- Tetraoxofosfato (V) de hidrógeno

EO(P):

1+: Hipo_oso

3+: oso

5+ : ico

X. IONES

- Son especie químicas con carga electrica positiva (catión) o negativa (anión).
- Pueden ser monoatómicos o poliatómicos

10.1. CATIÓN

- H30+: ION Hibronio
- Se encuentra generalmente en óxidos básicos, hidróxido y sales (el catión esta unido al anión).
- Trataremos de cationes que provienen de hidróxidos, al disolverse en agua líquida(el hidróxido se disocia).
- Le corresponde 2 nomenclaturas (Clásico y Stock).

$$Co(OH)_2 \xrightarrow{H_2O_{(1)}} Co^{2+} + 2(OH)^{1-}$$

Hidróxido cobaltoso ion cobaltoso

Hidróxido de cobalto (II) ion de cobalto (II)

CATIONES USUALES

CATIÓN	CLÁSICO	STOCK
Al ³⁺	Ion Alumínico	Ion Aluminio
Fe ²⁺	Ion Ferroso	Ion Hierro (II)
Fe ³⁺	Ion Férrico	Ion Hierro (III)
Cu ¹⁺	Ion Cuproso	Ion Cobre (I)
Cu ²⁺	Ion Cúpr <mark>ico</mark>	Ion Cobre (II)
Pt ⁴⁺	Ion Platínico	Ion Platino (IV)
Pt ²⁺	Ion Platinoso	Ion Platino (II)
Pb ²⁺	Ion Plumboso	Ion Plomo (II)
Pb ⁴⁺	Ion Plúmbico	Ion Plomo (IV)
Ag ¹⁺	Ion Argéntico	Ion Plata

También existe catión poliatomico

$$NH_4OH \longrightarrow NH_4^{1+} + OH^{1-}$$
Hidróxido de amonio ion amonio

10.2. ANIONES

Son iones que poseen carga eléctrica neta negativa, se obtienen a partir de los ácidos cuando pierden iones (H⁺).

Para la nomenclatura se debe tener en cuenta:

ÁCIDO	TERMINACIÓN EN EL ÁCIDO	TERMINACIÓN EN EL ANIÓN
Hidrácido	hídrico	uro
Oxácido	oso ico	ito ato

Ejemplos:

$$H_2S \xrightarrow{-2H^+} S^{2-}$$

Ácido sulfhídrico Sulfuro

$$HCI \xrightarrow{-1H^+} CI^1$$

Ácido clorhídrico Cloruro

$$HNO_2 \xrightarrow{-1H^+} NO_2^{1-}$$

Ácido nitroso

$$HNO_3 \xrightarrow{-1H^+} NO_3^{1-}$$

Ácido nítrico

Nitrato

$$H_2SO_4$$
 $2H^+$ SO_4^{2-} Ácido sulfúrico Sulfato

 $HCIO_4$ $1H^+$ CIO_4^{1-} Ácido perclórico Perclorato

 $HCIO$ $1H^+$ CIO^{1-} Ácido hipocloroso Hipoclorito

 H_2CO_3 $2H^+$ CO_3^{2-} Ácido carbónico Carbonato

ANIONES ÁCIDOS

Resultan cuando los ácidos sustituyen parcialmente sus iones hidrógenos H¹⁺.

Ejemplos:

•
$$H_2S_{(ac)} \xrightarrow{-1H^+} HS^{1-}$$

Ácido sulfhídrico

bisulfuro
Sulfuro ácido
hidrógeno sulfuro

•
$$H_2CO_3 \xrightarrow{-1H^+} (HCO_3)^{1-}$$

Ácido carbónico

bicarbonato
Carbonato ácido
hidrógeno carbonato

•
$$H_3PO_4$$
 $\xrightarrow{-1H^+}$ $(H_2PO_4)^{1-}$ Ácido fosfórico

Fosfato diácido dihidrógeno fosfato

XI. FUNCIÓN SAL

- Son compuestos inorgánicos iónicos.
- Son generalmente compuestos binarios o ternarios.
- No poseen grupo funcional específico.

11.1. OBTENCIÓN GENERAL:

POR NEUTRALIZACIÓN

Hidróxido + Ácido
$$\longrightarrow$$
 Sal + Agua \longrightarrow aporta el anión (A^{m-}). \longrightarrow aporta el catión (C^{n+}).

Ejemplos : Dado el hidróxido y ácido, obtener la fórmula de la sal.

$$N_{a}^{1+}OH + HCI^{1-} \longrightarrow NaCI + H_{2}O$$

$$1+ KOH + HNO_{3}^{1-} \longrightarrow KNO_{3} + H_{2}O$$

POR DESPLAZAMIENTO SIMPLE

Ejemplo: Dado el metal de IIA y ácido, obtener la fórmula de la sal

$$Ca + HCl \longrightarrow CaCl_2 + H_2$$

Nomenclatura: puede ser Clásico o Stock

clásico: nombre del **anión** nombre del **catión** (oso/ico)

♦Stock: nombre del **anión de** nombre del **catión** (EO)

INTENSIVO UNI

Ejemplos: Directamente formular y nombrar la sal, desde los iones indicados.

$$Cu^{2+} \longrightarrow Cu \mathring{B} r_2 , Cu (1, 2)$$

- · BROHURO CUPRICO
- . BROMURO DE COBRE (II)

- · SULFURD ESTANNOSO
- * SULFURO DE ESTANO (II)

$$Ag^{1+} \longrightarrow Ag(l), Ag(l^{+})$$

- · CLORURO ARGENTICO
- · CLORURO DEPLATA

•
$$Fe^{3+}$$
 Se^{2-} $F_{\alpha_2}S_3$, $F_{\alpha}(2,3)$

- · SULFURO FERRICO
- · JULFUZO DE HIERRO (III)

11.2. TIPOS DE SALES:

Existen diversos criterios para clasificar a las sales:

Según el origen del anión

- El anión deriva de un ácido hidrácido y por ello no posee oxígeno.
- En general son compuestos binarios.

Ejemplos. nombrar la sal obtenida

NaOH + HBr
$$\longrightarrow$$
 NaBr + H₂O
Ácido bromuro
bromhídrico sódico

Ca(OH)₂ + HCl \longrightarrow CaCl₂ + H₂O
Ácido cloruro
clorhídrico cálcico

Ejemplos: Directamente formular y nombrar la sal, desde los iones indicados.

Sulfuro de estaño (II)

SAL OXISAL

- El anión deriva del ácido oxácido y por ello posee oxígeno.
- En general son compuestos ternario.

Ejemplo: nombrar la sal obtenida

$$Mg(OH)_2 + HNO_3 \longrightarrow Mg(NO_3)_2 + H_2O$$
Hidróxido Ácido Nitrato magnésico magnésico

Ejemplos: Directamente formular y nombrar la sal, desde los iones indicados.

$$EO(Cr) = 2 + y 3 +$$

Según su constitución

Pueden ser: neutra, ácida o básica.

- Las anteriores son sales neutras (no poseen H ni OH^{1-})
- Sal ácida (el anión posee aún H sustituible).

Ejemplo

INTENSIVO UNI

Ejemplos: Directamente formular y nombrar la sal, desde los iones indicados. (2,3)

•
$$Cr^{2+}$$
 $(ClO_3)^{1-}$ $Cr(UO_3)_2$ $CLOPATO CROMOSO$

•
$$Co^{2+}$$
 $(PO_4)^{3-}$ \longrightarrow $Co_3(PO_4)_2$
COBALTOSO FOSFATO COBALTOSO

•
$$Ca^{2+}$$
 $(CO_3)^{2-}$ $Ca(CO_3)$ CALCICO CARBONATO CÁLCICO

XII. BIBLIOGRAFÍA

- ☐ Chang, R. y Goldsby, K. (2017). **Química**. Duodécima ed. México. McGraw Hill Interamericana Editores.
- ☐ McMurry, J.E y Fay, R.C (2009). **Química General**. Quinta ed.. México. Pearson Educación.
- ☐ Brown T. L., H. Eugene L., Bursten B.E., Murphy C.J., Woodward P.M. (2014). **Química, la ciencia central.** decimosegunda ed.. México. Pearson Educación.
- ☐ Asociación Fondo de Investigación y Editores, Ponte W.H (2019). **Química.** Fundamentos y aplicaciones. Primera edición. Perú. Lumbreras editores.

CÉSAR VALLEJO

PRÁCTICA DIRIGIDA

CÉSAR VALLEJO

INTENSIVO UNI Determine el valor del estado de oxidación del elemento nitrógeno, en el orden dado, en los siguientes compuestos: I. LiNO₃ II. NaN_3 III. $Cu(NO_2)_2$ A) +5, -1, +3 B) $+3, -\frac{1}{3}, +5$ C) $+5, -\frac{1}{3}, +3$ D) $+3, -\frac{1}{2}, +1$ E) +5, -3, +3**RESOLUCIÓN**

$$\begin{array}{c}
17 \times 2 \\
0 \text{ Li NO}_{3}, \\
17 \times -6 = 0 \\
0 \times = +5
\end{array}$$

$$\begin{array}{c}
17 \times -6 = 0 \\
0 \times = +5
\end{array}$$

$$\begin{array}{c}
17 \times -6 = 0 \\
0 \times = +5
\end{array}$$

$$\begin{array}{c}
0 \times = -1/3 \\
0 \times = -1/3
\end{array}$$

$$\begin{array}{c}
0 \times -4 = -1 \\
0 \times -4 = -1
\end{array}$$

$$\begin{array}{c}
0 \times -4 = -1 \\
0 \times -4 = -1
\end{array}$$

$$\begin{array}{c}
0 \times -4 = -1 \\
0 \times -4 = -1
\end{array}$$

$$\begin{array}{c}
0 \times -4 = -1 \\
0 \times -4 = -1
\end{array}$$

$$\begin{array}{c}
0 \times -4 = -1 \\
0 \times -4 = -1
\end{array}$$

$$\begin{array}{c}
0 \times -4 = -1 \\
0 \times -4 = -1
\end{array}$$

$$\begin{array}{c}
0 \times -4 = -1 \\
0 \times -4 = -1
\end{array}$$

$$\begin{array}{c}
0 \times -4 = -1 \\
0 \times -4 = -1
\end{array}$$

$$\begin{array}{c}
0 \times -4 = -1 \\
0 \times -4 = -1
\end{array}$$

$$\begin{array}{c}
0 \times -4 = -1 \\
0 \times -4 = -1
\end{array}$$

$$\begin{array}{c}
0 \times -4 = -1 \\
0 \times -4 = -1
\end{array}$$

$$\begin{array}{c}
0 \times -4 = -1 \\
0 \times -4 = -1
\end{array}$$

$$\begin{array}{c}
0 \times -4 = -1 \\
0 \times -4 = -1$$

$$\begin{array}{c}
0 \times -4 = -1 \\
0 \times -4 = -1
\end{array}$$

$$\begin{array}{c}
0 \times -4 = -1 \\
0 \times -4 = -1
\end{array}$$

$$\begin{array}{c}
0 \times -4 = -1 \\
0 \times -4 = -1$$

$$\begin{array}{c}
0 \times -4 = -1 \\
0 \times -4 = -1
\end{array}$$

$$\begin{array}{c}
0 \times -4 = -1 \\
0 \times -4 = -1$$

$$\begin{array}{c}
0 \times -4 = -1 \\
0 \times -4 = -1
\end{array}$$

INTENSIVO UNI					
7. Con respe	cto a la nomencl	atura inorgánica,	in-		
_	alor de verdad d	le cada proposici			
_	•	o, principal comp	O-		
	le la caliza, se cla	asifica como una			
		o, compuesto cor	10-		
cido po		l, se clasifica cor			
III. El dióxi	do de carbono, pr	incipal contribuye			
al calen	tamiento global, e	es un óxido básico.			
A) VVF D) FVV	B) VFV	C) FFV E) FVF			
D) I V V		E) I VI			
RESOLUCIÓN					
				CLAY/	
			_	CLAVE	CÉSAR VALLEJO

INTENSIVO UNI							
Q El pr	acces de petal	hiligación del eg	a tiona va	7			
_	•	bilización del agu una de ellas cor					
	0	del sulfato cúprio	•				
	_	ar el incremento tapa es la floculac		7 <u>4</u>			
	•	e aluminio para d					
turbi	dez del agua.	Marque la alter	nativa que				
		idad de la parte : Iguicida y la fórr					
	al usada en la f	-	nuia de la				
A) 6	A1 (CO)						
	y Al ₂ (SO ₄) ₃ y Al ₂ (SO ₄) ₃						
	y Al(SO ₄) ₃						
	$y Al_2(SO_4)_3$						
E) 6	y AlSO ₄						
RESOLUC	ION						
						CLAVE: A	
							CÉSAR VALLEJO

INTENSIVO UNI													
11. ¿Que	é óxido t	iene la ma	ayor ato	micida	d?								
A) a	nhídrido	fosforoso				10							
-		sulfuroso			- M	IA							
	nhídrido xido de :	nítrico selenio (I\	Δ										
		manganes	_										
RESOLUC	CIÓN												
						27.							
									CI AV	/ F_ 6			
									CLA	/E: C		CÉSA VA	R LLEJO

INTENSIVO UNI														
	ativo,	forma	tálico M un óxio mula de	do de	atomic	idad	5.							
met	al?													
	И(ОН) ₃ И(ОН) ₄		М(ОН)) MOH) M ₂ (C									
	-()4)2(0	/3								
RESOLUC	IÓN													
										CLA	/E: A		— ACADES	
													CÉSA VA	R LLEJO

INTENSIVO UNI					
19. Las sales son compuestos id	ónicos que gene-				
ralmente se obtienen de la i					
tralización, ¿Qué fórmulas de propuestos son correctas?	CNO SEMOS E	4 4			
I. Nitrito de mercurio(I): Hg ₂	$(NO_2)_2$				
II. Sulfato de cesio: Cs ₂ S ₃					
III. Fosfato de calcio: Ca ₃ (PO ₄	-				
IV. Dicromato de potasio: K ₂ C	$I_2 O_7$				
A) I y II B) II y III	C) I y IV				
D) I, III y IV	E) II y IV				
RESOLUCIÓN					
			CLA	VE: D	
			CLA	VL. D	CÉSAR VALLEJO

INTENSIVO UNI	
23. Indique la relación correcta entre el compues-	
to químico y el nombre que le corresponde.	
A) CuSO ₄ : sulfato cuproso B) H ₂ S : ácido sulfúrico	
C) Fe ₂ O ₃ : óxido férrico D) HClO ₂ : ácido perclórico	
E) HIO : ácido yodoso	
RESOLUCIÓN	
	CLAVE: C
	CLAVE. CESAR CÉSAR VALLEJO

INTENSIVO UNI	
25. El SnO ₂ se emplea como catalizador con la fi-	
nalidad de acelerar un fenómeno químico; el	
P ₂ O ₅ reacciona con suma facilidad con el agua	
mientras que el Cl ₂ O ₃ es un sólido de color marrón altamente explosivo. ¿Qué proposicio-	V 1/A
nes son incorrectas respecto a los compuestos	
mencionados?	
I. El nombre clásico del catalizador es óxido estánnico.	
II. El nombre del sólido de color marrón es an-	
hídrido hipocloroso.	
III. El nombre Stock del compuesto heptatómi-	
co es óxido de fósforo (V).	
A) I y III B) solo I C) solo III	
D) I y II E) solo II	
RESOLUCIÓN	
	CLAVE: E
	CÉSAR VALLEJO

INTENSIVO UNI		
26. El <u>hidróxido férrico</u> se puede emplear para eli-		
minar del agua al cromo hexavalente y al arsé-		
nico que son muy peligrosos para la salud hu-		
mana; el <u>hidróxido de magnesio</u> se utiliza para tratar el estreñimiento ocasional de corto pla-		
zo y el <u>hidróxido cobaltoso</u> es utilizado como		
agente de secado de pinturas y barnices. Mar-		
que la alternativa que contenga la fórmula de los compuestos subrayados.		
A) Fe(OH) ₃ ;Mg(OH) ₂ ;Co(OH) ₃		
B) Fe(OH) ₃ ;Mg(OH) ₂ ;Co(OH) ₂		
C) $Fe(OH)_2;Mg(OH)_2;Co(OH)_2$ D) $Fe(OH)_3;Mg(OH)_3;Co(OH)_2$		
E) $Fe(OH)_2$; $Mg(OH)_2$; $Co(OH)_3$		
RESOLUCIÓN		
	CLAVE, D	
	CLAVE: B	•

CÉSAR VALLEJO

EVALUACIÓN VIRTUAL

CÉSAR VALLEJO

GRACIAS

academiacesarvallejo.edu.pe