Estimación de *Múltiples* Direcciones de Arribo (Multi-DOA)

Preámbulo

- Este tema involucra conceptos profundos, que normalmente se ven en materias como:
 - Algebra lineal
 - Estadística
- Vamos a darle una revisada justamente suficiente para que puedan desarrollar estas técnicas de Multi-DOA en JACK, no más.

Preámbulo

- Por lo tanto, no voy a profundizar en las bases que involucran estas técnicas.
 - Esto no es un estudio extensivo de las bases.
- Les recomiendo darle una revisada a estos conceptos ya sea:
 - Por asesoría
 - Por lectura independiente

Técnicas de Multi-DOA

- "Parches" con Correlación Cruzada.
- MUltiple Signal Classification (MUSIC).
- Basado en Beamforming.

4to tipo de Técnicas de Multi-DOA

- Aprendizaje Automático/Profundo***
 - No están diseñados para trabajar en línea.
 - Se "aprenden" la geometría del arreglo.
 - Si hay cambio en la geometría, se requiere re-entrenar.
 - Son "caja negra", poco explicables.

Nos quedamos con estos 3 tipos de Técnicas de Multi-DOA

- "Parches" con Correlación Cruzada.
- MUltiple Signal Classification (MUSIC).
- Basado en Beamforming.

Técnica:

"Parches" con Correlación Cruzada

Correlación Cruzada

- ¿Que no dijimos que era para una sóla fuente?
 - Sí, pero podemos hacer un poco de trampa.

Correlación Cruzada

- Para visualizar esta "trampa", descarguen al mismo directorio:
 - multigcc.m
 - add_reverb.m
- Antes de correr octave, cambien de directorio a donde los descargaron.
 - Un archivo con terminación ".m" se convierten en un comando/función disponible para octave.
 - El script multigcc manda a llamar la función add reverb.
- Corran octave, y luego corran multigcc dentro de octave.

- Este script crea dos señales de origen.
 - Simulando las señales que emitieron las fuentes.
 - Se llaman "s1" y "s2".
- Después, desfaza cada señal de origen, les mete ruido y reverberación, y las suma.
 - Así simula las señales capturadas por los micrófonos.
 - Se llaman "x" y "y".
- Al final, calcula el CCV con Pearson y con GCC-PHAT, de forma de comparar ambas técnicas.

- También, crea tres figuras:
 - Figura 1: muestra las señales "x" y "y".
 - Figura 2: el CCV basado en Pearson.
 - Figura 3: el CCV basado en GCC-PHAT.
- Si quieren ver otras señales, pueden crear otra figura con:
 - figure()
 - Y luego mandar a llamar la función plot.

- Es posible modificar a multigcc por medio de abrir el archivo multigcc.m (es un archivo de texto).
- Así pueden cambiar el valor de:

```
noise_w: qué tanto ruido (0: nada, 1: mucho) reverb_w: qué tanta reverberación (0: nada, 1: mucho)
```

 Recuerden volver a correr multigcc dentro de octave al hacer cualquier cambio.

Prueben con:

```
noise_w = 0
reverb w = 0
```

• ¿Que ven en las Figuras 2 y 3?

Prueben con:

```
noise_w = 0
reverb_w = 0
```

- ¿Que ven en las Figuras 2 y 3?
- Con Pearson: aparecen picos adicionales y son más anchos.
- Con GCC-PHAT: los picos son más angostos, pero no están tan presentes.

• Prueben con:

```
noise_w = 0
reverb_w = 0.35
```

• ¿Que ven en las Figuras 1, 2 y 3?

Prueben con:

```
noise_w = 0
reverb w = 0.35
```

- ¿Que ven en las Figuras 1, 2 y 3?
- Las señales "capturadas" están mas gordas.
- Con Pearson: un pico casi desaparece.
- Con GCC-PHAT: los picos siguen presentes, aunque aparecen otros, pero ninguno más grande que los dos picos que andamos buscando.

• Prueben con:

```
noise_w = 0.35
reverb_w = 0
```

• ¿Que ven en las Figuras 1, 2 y 3?

Prueben con:

```
noise_w = 0.35
reverb_w = 0
```

- ¿Que ven en las Figuras 1, 2 y 3?
- Las señales "capturadas" están algo ruidosas.
- Con Pearson: casi no hay diferencia como cuando lo corrimos sin ruido y sin reverberación.
- Con GCC-PHAT: el pico más pronunciado ya está mas pequeño, el otro pico de interés se ha desparacido y una GRAN cantidad de más picos salieron.

- Cada técnica tiene un pico "preferido" diferente al otro.
 - Observen las señales de origen "s1" y "s2".
 - Una es más ancha que la otra.

- Pearson calcula la correlación basada en el producto punto, que está relacionada con la cantidad de la área bajo la curva que ambas señales comparten.
 - Por lo tanto, prefiere picos coincidentes anchos.
- GCC-PHAT, por quitar la magnitud en el dominio de la frecuencia, le pone más atención a los cambios fuertes (positivos y negativos) que ocurren a la vez en ambas señales.
 - Por lo tanto, prefiere picos coincidentes angostos.

- Pearson es más robusto ante el ruido que GCC-PHAT.
 - De nuevo, GCC-PHAT es más sensible a cambios en unísono, aun cuando son pequeños.
 - Estas correlaciones "pequeñas" son los picos que el ruido produce.
 - Corranlo de nuevo y verán que los picos de GCC-PHAT cambia cada vez.
 - El ruido es creado con números al azar.
 - Esto no ocurre con Pearson.

- GCC-PHAT es más robusto ante la reverberación que Pearson.
 - Resultado de haber quitado la magnitud en el dominio de la frecuencia.
 - Mientras que ambas señales hayan sido afectadas por la misma reverberación, los cambios fuertes serán iguales en ambas señales.
 - El área conjunta bajo la señal cambia, y si una señal es "tapada", Pearson no la va a "ver".

¿Entonces, cual es la trampa?

- Suponiendo que:
 - No hay mucho ruido.
 - No hay mucha reverberación.
- Podemos escoger los picos más altos y presentarlos como los desfases de las señales.

Trampa

- Pero, ¿cómo sabemos cuantos picos escoger?
 - Podemos suponer saberlo.
- Si no, otra forma de escogerlos es presentar todos los picos que estén arriba de un cierto umbral de correlación.

Trampa

- Aún así, habrán veces que ciertos picos no tengan un valor mayor al umbral, y se perderían.
- Podemos ir "acumulando" los picos, y sólo presentar los resultados tras una cierta cantidad de ventanas de tiempo.
- Los picos con alta correlación que hayan aparecido más veces son los que presentamos.

Trampa

- Pero, ¿tras cuántas ventanas presentamos los resultados?
- Y, ¿cuantas veces que hayan aparecido un pico lo consideramos para que lo presentemos como resultado?

- Como dije: es trampa, y no es una solución limpia.
 - Pero tiene sus usos.

Técnica:

MUltiple SIgnal Classification (MUSIC)

MUSIC

- Desarrollado por Ralph Schmidt en 1986:
 - Schmidt, R.O, "Multiple Emitter Location and Signal Parameter Estimation," IEEE Trans. Antennas Propagation, Vol. AP-34 (March 1986), pp.276-280.
 - Lo pueden descargar de la página del curso.
- Y la explicación de este método requiere de varios conceptos siendo explicados primero.

Conceptos Necesarios para MUSIC

- Desfase por medio de exponencial de números imaginarios.
 - También conocido como direction vector.
- Eigenvectores y eigenvalores.
- Matriz de Covariancia.

¿Listos?

Desfase por Medio de Exponencial Imaginaria

Señales Utilizadas para Ejemplos

- Para efectos de este tema, vamos a asumir que las señales que estamos manejando son señales de frecuencia única.
- Por lo que en algún momento tendremos que generalizar esto a todas las frecuencias.
 - Pero, comencemos sencillo.

$$g(t) = \sin(2\pi f t)$$

¿Para qué tanto lío? De nuevo...

- Además de poder estar desfasando a nivel inter-muestra.
- También así podemos insertar el acto de desfase directamente en una ecuación matemática...

Modelo de las Señales Capturadas

 Por la forma en que funcionan el producto entre dos matrices, se puede hacer lo siguiente:

$$\mathbf{A} = \begin{bmatrix} e^{-i2\pi f T_{1:1}} & e^{-i2\pi f T_{1:2}} & \cdots & e^{-i2\pi f T_{1:D}} \\ e^{-i2\pi f T_{2:1}} & e^{-i2\pi f T_{2:2}} & \cdots & e^{-i2\pi f T_{2:D}} \\ \vdots & \vdots & \ddots & \vdots \\ e^{-i2\pi f T_{M:1}} & e^{-i2\pi f T_{M:2}} & \cdots & e^{-i2\pi f T_{M:D}} \end{bmatrix}$$

$$\mathbf{S} = \begin{bmatrix} s_1(1) & s_1(2) & \cdots & s_1(N) \\ s_2(1) & s_2(2) & \cdots & s_2(N) \\ \vdots & \vdots & \ddots & \vdots \\ s_D(1) & s_D(2) & \cdots & s_D(N) \end{bmatrix}$$

$$X = S A$$

Donde:

s_d: es una señal de origen

N: tamaño de la señal (o de la ventana de la señal)

T_{m:d}: es el retraso recibido de la señal s_d en el micrófono m

A: es la matriz que contiene los vectores de dirección (direction vectors)

X: son las señales capturadas (en los micrófonos); cada renglón representa un micrófono

Modelo de las Señales Capturadas

 Por la forma en que funcionan el producto entre dos matrices, se puede hacer lo siguiente:

$$\mathbf{A} = \begin{bmatrix} e^{-i2\pi f T_{1:1}} & e^{-i2\pi f T_{1:2}} & \cdots & e^{-i2\pi f T_{1:D}} \\ e^{-i2\pi f T_{2:1}} & e^{-i2\pi f T_{2:2}} & \cdots & e^{-i2\pi f T_{2:D}} \\ \vdots & \vdots & \ddots & \vdots \\ e^{-i2\pi f T_{M:1}} & e^{-i2\pi f T_{M:2}} & \cdots & e^{-i2\pi f T_{M:D}} \end{bmatrix}$$

$$\mathbf{S} = \begin{bmatrix} s_1(1) & s_1(2) & \cdots & s_1(N) \\ s_2(1) & s_2(2) & \cdots & s_2(N) \\ \vdots & \vdots & \ddots & \vdots \\ s_D(1) & s_D(2) & \cdots & s_D(N) \end{bmatrix}$$

$$X = S A$$

Donde:

s_d: es una señal de origen

N: tamaño de la señal (o de la ventana de la señal)

 $T_{m\cdot d}$: es el retraso recibido de la señal s_d en el micrófono m

A: es la matriz que contiene los vectores de dirección (direction vectors)

X: son las señales capturadas (en los micrófonos); cada renglón representa un micrófono

Lo que nos interesa estimar.

iOJO!

- La matriz A es para una sola frecuencia.
- De hecho, A es parte de un tensor de 3 dimensiones:

Tensor de Direction Vectors

Tensor de Direction Vectors

Modelo de las Señales Capturadas

 Por lo tanto, realmente tenemos que hacer esto para cada frecuencia:

$$\mathbf{A}_{\mathbf{f}} = \begin{bmatrix} e^{-i2\pi f T_{1:1}} & e^{-i2\pi f T_{1:2}} & \cdots & e^{-i2\pi f T_{1:D}} \\ e^{-i2\pi f T_{2:1}} & e^{-i2\pi f T_{2:2}} & \cdots & e^{-i2\pi f T_{2:D}} \\ \vdots & \vdots & \ddots & \vdots \\ e^{-i2\pi f T_{M:1}} & e^{-i2\pi f T_{M:2}} & \cdots & e^{-i2\pi f T_{M:D}} \end{bmatrix}$$

$$\mathbf{S} = \begin{bmatrix} s_1(1) & s_1(2) & \cdots & s_1(N) \\ s_2(1) & s_2(2) & \cdots & s_2(N) \\ \vdots & \vdots & \ddots & \vdots \\ s_D(1) & s_D(2) & \cdots & s_D(N) \end{bmatrix}$$

$$X_f = S A_f$$

Donde:

s_d: es una señal de origen

N: tamaño de la señal (o de la ventana de la señal)

T_{m:d}: es el retraso recibido de la señal s_d en el micrófono m

A_f: es la matriz que contiene los vectores de dirección *para la frecuencia f*

X_r: son las señales capturadas *en la frecuencia f*; cada renglón representa un micrófono

Direction Vector

- Enlista los desfases que sufre la señal de origen en cada micrófono.
- Se establece algún micrófono como "referencia" del cual se calculan los desfases relativos.
 - Normalmente es el primer micrófono.
- El direction vector para una señal, para una frecuencia, con D micrófonos:

$$\mathbf{A}_{1:f_{1}} = \begin{vmatrix} 1 \\ e^{-i2\pi f_{1}T_{2:1}} \\ e^{-i2\pi f_{1}T_{3:1}} \\ \vdots \\ e^{-i2\pi f_{1}T_{M:1}} \end{vmatrix}$$

Cálculo de Desfases para un Direction Vector

- Se asume que se conoce su dirección de arribo.
- Para encontrar el desfase que sufre del micrófono de diferencia, se puede utilizar el inverso del modelo del campo lejano:

```
t = d \sin(\theta) / V_{sound}
```

t: desfase entre micrófonos de la señal de interés

d: distancia entre micrófonos

V_{sound}: velocidad del sonido

θ: dirección de arribo de la señal

¿Cómo se mide el ángulo?

Para dos micrófonos

$$t_{2-1} = \frac{\sin(\theta)d}{V_{sound}}$$

Para tres micrófonos

$$t_{2-1} = \frac{\sin(\theta)d}{V_{sound}}$$

$$t_{3-1} = \frac{\sin(\theta)d*2}{V_{sound}}$$

$$t_{2-1} = -\frac{\sin(\theta)d}{V_{sound}}$$

$$t_{3-1} = ???$$

debe de entregar desfases positivos.

Marcos de Referencia y Modelo de Campo Lejano

- Esta forma de calcular los desfases asume un modelo de campo lejano.
 - Así, el marco de referencia del primero micrófono y el marco de referencia del arreglo de micrófonos comparten los mismos ángulos.
- Si no se cumple esta suposición, ésta forma de calcular desfases no es consistente con la realidad.
- Si sí se cumple, esta forma de cálculo es generalizable a cualquier posición de micrófono.

Eigenvectores y Eigenvalores

La idea es...

- Imaginen una matriz que normalmente es utilizada para transformar vectores.
- Por ejemplo, digamos que tenemos una matriz de transformación B, y un vector al que queremos transformar h a h_{trans}:

$$B = \begin{bmatrix} 1 & 0 \\ 1 & 3 \end{bmatrix} \qquad h = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$h_{trans} = Bh = \begin{bmatrix} 1 & 0 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 7 \end{bmatrix}$$

Este es el efecto de B en h

Pero...

- Hay vectores excepcionales que no les ocurre esto.
- Que al multiplicarlos por alguna B, su dirección no cambia.

Y sucede algo así

Eigenvector y Eigenvalores

- Estos vectores son los Eigenvectores de esa matriz.
 - También conocidos como "Vectores Característicos".
- Y los valores λ que les corresponde, son sus Eigenvalores.
 - También conocidos como "Valores Característicos".
- Dícese, v es un eigenvector de B, y λ su eigenvalor correspondiente si se cumple:

$$Bv = \lambda v$$

Y, ¿luego?

- Imaginen un pedazo de tela.
 - Cada nudo de la tela actúa como un posible vector.
- Ahora imaginen que estiran esa tela.
 - Esta acción es como aplicar la matriz B a ese conjunto de vectores.

Algo así...

Los vectores *azules*, aun cuando inician y terminan en el mismo punto de ambos planos cartesianos, tienen el mismo ángulo. Su única diferencia es en la magnitud.

Es un **eigenvector**, y la escala de la diferencia de magnitud es el **eigenvalor**.

Otra manera de verlo...

- Imaginen que ustedes tienen un líquido misterioso del cual desconocen de qué está compuesto.
- Al combinarlo con otras substancias (como agua), observan que hay reacciones químicas (burbujas, cambio de color, etc.).
- Pero también obervan que no hay reacción química con una substancia en específico (una eigen-substancia).
- Esto significa que es probable que el líquido misterioso esta compuesto, en parte, por esta eigen-substancia.

Entonces...

- Los eigenvectores describen, de cierta manera, las tendencias numéricas internas de la matriz.
- De hecho, la palabra "eigen" en alemán significa: "inherente, característico, propio".
 - También significa "peculiar".

Háganme el bendito favor...

 Pero, esto es importante recordarlo, ya que es un elemento crítico del algoritmo MUSIC.

Propiedades de Eigenvectores/Eigenvalores

- Los vectores y los valores son correspondientes.
 - Un eigenvalor por eigenvector.
- Se pueden calcular los eigenvectores/eigenvalores de una matriz, siempre y cuando ésta sea cuadrada.
 - Tantos renglones como columnas.
- La cantidad de eigenvectores/eigenvalores que contiene una matriz es el número de columnas o renglones.
 - B tiene 2 eigenvectores/eigenvalores.

$$B = \begin{bmatrix} 1 & 0 \\ 1 & 3 \end{bmatrix}$$

Propiedades de Eigenvectores/Eigenvalores

- Los eigenvectores calculados, son ortogonales entre sí.
 - Es decir, si B tiene dos eigenvectores v₁ y v₂.
 - Entonces:

$$v_1 \cdot v_2 = 0$$

Esto va a ser muy importante más adelante.

¿Cómo se calculan?

- Este proceso se le conoce como eigendescomposición.
- La idea es descomponer a B de tal forma que:

$$B = V \Lambda V^{-1}$$

$$V = \begin{bmatrix} v_1 & v_2 & \cdots & v_K \end{bmatrix}$$

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_K \end{bmatrix}$$

Donde:

V: es una matriz que contiene por cada columna un eigenvector de B

Λ: una matriz, en la que en su diagonal contenga los eigenvalores de B

K: es el número de columnas o renglones de B, también conocido como su tamaño

En Octave

• La función "eig" de octave hace la eigendescomposición:

```
B = [1 0; 1 3]
[e_vectors e_values] = eig(B)
```

En C/C++

- Una implementación popular está dentro la biblioteca de algebra lineal llamado Eigen.
 - Está en C++
 - Lo pueden instalar con:
 sudo apt-get install libeigen3-dev
 - Documentación: http://eigen.tuxfamily.org/dox/
 - Requiere añadir la ubicación de sus headers al compilar:
 - -I/usr/include/eigen3

Código Ejemplo con Eigen

```
#include <iostream>
#include <Eigen/Eigen>
int main() {
  Eigen::MatrixXd A(2,2);
 A(0,0) = 1; A(0,1) = 2; A(1,0) = 2; A(1,1) = 3;
  std::cout << "The matrix A:\n" << A << std::endl:
  Eigen::EigenSolver<Eigen::MatrixXd> es(A);
  std::cout << "The eigenvalues of A are:\n" << es.eigenvalues() << std::endl;
  std::cout << "The eigenvectors of A are:\n" << es.eigenvectors() << std::endl;
```

Eigen

- Hay mucho más que se puede hacer en Eigen:
 - Aritmética de matrices y vectores.
 - Transposición y conjugación.
 - Producto punto, inversa y determinante.
 - Etc.
- Material para clase: eigen_examples.cpp
 - Lo que se muestra en ese código es suficiente para llevar a cabo sus proyectos.
- Pero, la documentación de Eigen es muy completa.

https://eigen.tuxfamily.org/dox/

Eigen: Números Complejos

 Eigen utiliza la implementación estándar de números complejos de C++:

std::complex

- Por lo tanto, si se va a utilizar FFTw3, se requiere utilizar la función de reinterpret_cast para compatibilidad.
 - Ver jack_fft.cpp en la página del curso.

Covariancia

Recordemos

- Al centrar las señales antes de calcular el coeficiente Pearson, éste se convertía en:
 - La covariancia entre las señales, dividido entre sus desvaciones estándar.
- Entonces, la covariancia es también una medida de correlación entre las señales.
 - Nada más que sin desfasarlas primero.
 - Y no está normalizada.
 - Pero aún así indica una forma de correlación útil.

La Matriz de Covariancia

 Una forma rápida de calcular la covariancia entre varias señales, es calculando su matriz de covariancia, por medio de:

$$R = XX^H$$

Donde:

R: es la matriz de covariancia

X: es la matriz de las señales capturadas

^H: es la operación de transposición conjugada de matrices (Hermitiana)

$$\begin{bmatrix} 1+i1 & 2-i2 \\ 3+i3 & 4-i4 \end{bmatrix}^{H} = \begin{bmatrix} 1-i1 & 3-i3 \\ 2+i2 & 4+i4 \end{bmatrix}$$

Recordatorio

- X es la matriz de las señales capturadas.
 - 1 renglón por micrófono.
- La podemos modelar como: X = SA

$$\mathbf{S} = \begin{bmatrix} s_1(1) & s_1(2) & \cdots & s_1(N) \\ s_2(1) & s_2(2) & \cdots & s_2(N) \\ \vdots & \vdots & \ddots & \vdots \\ s_D(1) & s_D(2) & \cdots & s_D(N) \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} e^{-i2\pi f T_{1:1}} & e^{-i2\pi f T_{1:2}} & \cdots & e^{-i2\pi f T_{1:D}} \\ e^{-i2\pi f T_{2:1}} & e^{-i2\pi f T_{2:2}} & \cdots & e^{-i2\pi f T_{2:D}} \\ \vdots & \vdots & \ddots & \vdots \\ e^{-i2\pi f T_{M:1}} & e^{-i2\pi f T_{M:2}} & \cdots & e^{-i2\pi f T_{M:D}} \end{bmatrix}$$

Donde:

X: es la matriz de las señales capturadas; cada renglón representa un micrófono s_d : es una señal de origen

A: es la matriz que contiene los vectores de dirección (direction vectors)

 $T_{m:d}$: es el retraso recibido de la señal s_d en el micrófono m

N: tamaño de la señal (o de la ventana de la señal)

Matriz de Covariancia

- Es una matriz cuadrada de tamaño del número de micrófonos.
- En el caso de 2 micrófonos, tiene la forma de:

$$R = \begin{bmatrix} cov(x_{1}, x_{1}) & cov(x_{1}, x_{2}) \\ cov(x_{2}, x_{1}) & cov(x_{2}, x_{2}) \end{bmatrix}$$

- La covariancia normalmente se calcula con ventanas completas de las señales.
- Pero, es útil utilizar la información de covariancia de sólo una frecuencia para saber como las señales co-varían en dicha frecuencia.

$$\mathbf{X} = \begin{bmatrix} x_1(1) & x_1(2) & \cdots & x_1(N) \\ x_2(1) & x_2(2) & \cdots & x_2(N) \\ \vdots & \vdots & \ddots & \vdots \\ x_M(1) & x_M(2) & \cdots & x_M(N) \end{bmatrix}$$

 Si X está en el dominio de la frecuencia, y queremos calcular la covariancia de la segunda frecuencia (R_{f2}):

$$X = \begin{bmatrix} x_{1}(1) & x_{1}(2) & \cdots & x_{1}(N) \\ x_{2}(1) & x_{2}(2) & \cdots & x_{2}(N) \\ \vdots & \vdots & \ddots & \vdots \\ x_{M}(1) & x_{M}(2) & \cdots & x_{M}(N) \end{bmatrix}$$

$$X_{f_{2}} = \begin{bmatrix} x_{1}(2) \\ x_{2}(2) \\ \vdots \\ x_{M}(2) \end{bmatrix}$$

$$R_{f_{2}} = X_{f_{2}} X_{f_{2}}^{H}$$

- Pero esto sólo utiliza la información de la frecuencia en un momento en el tiempo
- Esto no entrega una matriz de covariancia "confiable", ya que no es posible observar una varianza sin más muestras.
- Por lo tanto, al calcular la matriz de covariancia de una frecuencia es importante que se utilicen varias muestras de dicha frecuencia a lo largo del tiempo.
- Es decir...

$$X_{1} = \begin{bmatrix} x_{1:1}(1) & x_{1:1}(2) & \cdots & x_{1:1}(N) \\ x_{1:2}(1) & x_{1:2}(2) & \cdots & x_{1:2}(N) \\ \vdots & \vdots & \ddots & \vdots \\ x_{1:M}(1) & x_{1:M}(2) & \cdots & x_{1:M}(N) \end{bmatrix}$$

$$X_{2} = \begin{bmatrix} x_{2:1}(1) & x_{2:1}(2) & \cdots & x_{2:1}(N) \\ x_{2:2}(1) & x_{2:2}(2) & \cdots & x_{2:2}(N) \\ \vdots & \vdots & \ddots & \vdots \\ x_{2:M}(1) & x_{2:M}(2) & \cdots & x_{2:M}(N) \end{bmatrix}$$

$$X_{3} = \begin{bmatrix} x_{3:1}(1) & x_{3:1}(2) & \cdots & x_{3:1}(N) \\ x_{3:2}(1) & x_{3:2}(2) & \cdots & x_{3:2}(N) \\ \vdots & \vdots & \ddots & \vdots \\ x_{3:M}(1) & x_{3:2}(2) & \cdots & x_{3:M}(N) \end{bmatrix}$$

$$X_{3} = \begin{bmatrix} x_{3:1}(1) & x_{3:1}(2) & \cdots & x_{3:1}(N) \\ x_{3:2}(1) & x_{3:2}(2) & \cdots & x_{3:M}(N) \\ \vdots & \vdots & \ddots & \vdots \\ x_{3:M}(1) & x_{3:M}(2) & \cdots & x_{3:M}(N) \end{bmatrix}$$

$$X_{1} = \begin{bmatrix} x_{1:1}(2) & x_{2:1}(2) & x_{3:1}(2) \\ x_{1:2}(2) & x_{2:2}(2) & x_{3:2}(2) \\ \vdots & \vdots & \vdots & \vdots \\ x_{1:M}(2) & x_{2:M}(2) & x_{3:M}(2) \end{bmatrix}$$

$$X_{1} = \begin{bmatrix} x_{1:1}(2) & x_{2:1}(2) & x_{3:1}(2) \\ x_{1:M}(2) & x_{2:M}(2) & x_{3:M}(2) \end{bmatrix}$$

$$X_{2} = \begin{bmatrix} x_{1:1}(2) & x_{2:1}(2) & x_{2:1}(2) & x_{3:1}(2) \\ \vdots & \vdots & \vdots & \vdots \\ x_{1:M}(2) & x_{2:M}(2) & x_{3:M}(2) \end{bmatrix}$$

$$X_{2} = \begin{bmatrix} x_{1:1}(2) & x_{2:1}(2) & x_{2:1}(2) & x_{3:1}(2) \\ \vdots & \vdots & \vdots & \vdots \\ x_{1:M}(2) & x_{2:M}(2) & x_{3:M}(2) \end{bmatrix}$$

$$X_{3} = \begin{bmatrix} x_{3:1}(1) & x_{3:1}(2) & \cdots & x_{3:M}(N) \\ \vdots & \vdots & \ddots & \vdots \\ x_{3:M}(1) & \vdots & \ddots & \vdots \\ x_{3:M}(1) & \vdots & \ddots & \vdots \\ x_{3:M}(2) & \cdots & x_{3:M}(N) \end{bmatrix}$$

$$X_{1} = \begin{bmatrix} x_{1:1}(2) & x_{2:1}(2) & x_{3:1}(2) \\ \vdots & \vdots & \vdots \\ x_{1:M}(2) & x_{2:M}(2) & x_{3:M}(2) \end{bmatrix}$$

$$X_{2} = \begin{bmatrix} x_{1:1}(2) & x_{2:1}(2) & x_{3:1}(2) \\ \vdots & \vdots & \vdots \\ x_{1:M}(2) & x_{2:M}(2) & x_{3:M}(2) \end{bmatrix}$$

$$X_{3} = \begin{bmatrix} x_{1:1}(2) & x_{2:1}(2) & x_{3:1}(2) \\ \vdots & \vdots & \vdots \\ x_{1:M}(2) & x_{2:M}(2) & x_{3:M}(2) \end{bmatrix}$$

$$X_{3} = \begin{bmatrix} x_{1:1}(2) & x_{2:1}(2) & x_{3:1}(2) \\ \vdots & \vdots & \vdots \\ x_{1:M}(2) & x_{2:M}(2) & x_{3:M}(2) \end{bmatrix}$$

$$X_{3} = \begin{bmatrix} x_{1:M}(1) & x_{1:M}(2) & x_{1:M}(2)$$

¿Para qué es útil?

Ya estamos listos...

MUSIC

(ahora sí)

Premisa de MUSIC

- ¿Que sucedería si le sacamos los eigenvalores a la matriz de covariancia?
- ¿Que simbolizarían los eigenvectores?
 - Los vectores que describen la manera en la que la covariancia (o la correlación) entre las señales se comporta.

Eigenvectores de Covariancia

• Estos estarían MUY relacionados con los vectores de dirección (direction vectors) con los cuales modelamos nuestras señales capturadas. X = S A

$$\mathbf{S} = \begin{bmatrix} s_{1}(1) & s_{1}(2) & \cdots & s_{1}(N) \\ s_{2}(1) & s_{2}(2) & \cdots & s_{2}(N) \\ \vdots & \vdots & \ddots & \vdots \\ s_{D}(1) & s_{D}(2) & \cdots & s_{D}(N) \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} e^{-i2\pi f T_{1:1}} & e^{-i2\pi f T_{1:2}} & \cdots & e^{-i2\pi f T_{1:D}} \\ e^{-i2\pi f T_{2:1}} & e^{-i2\pi f T_{2:2}} & \cdots & e^{-i2\pi f T_{2:D}} \\ \vdots & \vdots & \ddots & \vdots \\ e^{-i2\pi f T_{M:1}} & e^{-i2\pi f T_{M:2}} & \cdots & e^{-i2\pi f T_{M:D}} \end{bmatrix}$$

Donde:

X: es la matriz de las señales capturadas; cada renglón representa un micrófono s_d : es una señal de origen

A: es la matriz que contiene los vectores de dirección (direction vectors)

 $T_{m:d}$: es el retraso recibido de la señal s_d en el micrófono m

N: tamaño de la señal (o de la ventana de la señal)

Direction Vectors

- Recordemos que esto es lo que queremos estimar.
- El direction vector dictamina el desfase temporal que tiene cada señal de origen en cada micrófono.
- Desfase ==> Dirección de Arribo.

Direction Vectors

- Desgraciadamente los eigenvectores NO son los direction vectors.
 - Son sólo una versión de ellos, proyectados de otro espacio matemático.
 - Recordemos que λvm puede tener infinitas combinaciones.

 $^{\circ}_{1}$, $^{\circ}_{2}$, $^{\circ}_{\min}$ ARE THE EIGENVECTORS OF S CORRESPONDING TO EIGENVALUES $\lambda_{1} > \lambda_{2} > \lambda_{\min} > 0$

1. 2 SPAN THE SIGNAL SUBSPACE

 $al\theta_1$), $al\theta_2$ l are the incident signal mode vectors

¡¿Entonces?! ¡¿Todo esto para nada?!

• No necesariamente.

Ejemplo

- Asumamos que tenemos 2 señales de origen y 3 micrófonos.
 - Más micrófonos que señales.
- La matriz de covariancia R será de tamaño 3.
- Lo cual significa que vamos a calcular 3 eigenvectores.

Pero...

- Son sólo 2 señales.
- Realmente nada más 2 de esos eigenvectores están relacionados con los direction vectors.
- El otro vector es... ¿ruido?
 - No necesariamente describe el ruido.
 - Pero está describiendo un subespacio "ruidoso".

 $^{\circ}_{1}$, $^{\circ}_{2}$, $^{\circ}_{\min}$ ARE THE EIGENVECTORS OF S CORRESPONDING TO EIGENVALUES $\lambda_{1} > \lambda_{2} > \lambda_{\min} > 0$

01. 02 SPAN THE SIGNAL SUBSPACE

 $al\theta_1$), $al\theta_2$ l are the incident signal mode vectors

La Parte Crítica

- Este eigenvector adicional es ortogonal a los otros eigenvectors.
- Mejor dicho, este eigenvector "ruidoso" es ortogonal a los direction vectors.

Entonces

- Podemos probar con varios direction vectors potenciales.
 - Cada uno apuntando a las diferentes direcciones que queramos que tenga el espectro MUSIC.
 - Tantas como queramos.
- Y en cada prueba, sacarle el producto punto con el eigenvector "ruidoso".
- Si el producto punto es cercano a 0, significa que es ortogonal a éste.
- Lo cual significa que es un direction vector relacionado con los eigenvectores de las direcciones de la señales.

Y, ¿como sabemos cuáles son ruidosos y cuáles no?

- Por medio de sus eigenvalores.
- Se ordenan los eigenvectores de acuerdo a su eigenvalor.
- Se escogen los que tienen los eigenvalores más grandes.
 - Y los que tienen los eigenvalores más bajos, por ser "ruidosos", tendrán el mismo valor, y uno muy cercano a 0.

Otra forma...

- Recuerden que el eigenvalor es la cantidad de información de la matriz que representa el eigenvector.
- Por lo tanto:
 - Se ordenan los eigenvectores de manera acumulativa, divididos por su suma:
 - Si E es el arreglo de eigenvalores ordenados: plot(sumcum(E/sum(E))
 - Se busca algo cercano a un punto de inflexión.

Presentación de Eigenvalores

Presentación de Eigenvalores

Presentación de Eigenvalores

¿En serio?

- Desgraciadamente, la decisión de cuántos eigenvectores utilizar es un tanto abierto.
- Y esto no es el único lugar que vamos a tener que lidiar con esta decisión.

En resumen

Reordenamos a V de acuerdo a los valores en A

Decidimos cuáles son los eigenvectores "ruidosos"

Calculamos el producto punto con varios potenciales direction vectors, para producir el espectro de MUSIC.

$$P_{music}(T) = \frac{1}{a_{pot}(T)' * Qn * Qn' * a_{pot}(T)}$$

T: dirección a probar $a_{pot}(T)$: direction vector a probar ligado a T

 $\dot{Q_n}$: matriz que contiene los eigenvectors ruidosos

 $P_{\text{music}}(T)$: valor en el espectro de MUSIC

Notas

- El producto punto está en el denominador para que, cuando dé 0, se obtengan valores grandes y se parezca a los CCVs que hemos estado utilizando.
- El producto punto se calcula así porque la cantidad de eigenvectores es posible que no sea mayor a uno.
 - Así se saca la ortogonalidad de un vector vs. a varios.

Notas

 Claro está, entre más vectores "ruidosos" mayor posibilidad de que la ortogonalidad calculada sea más cercana a la realidad.

Prueba en Octave

- Descarguen:
 - music_complete.m
 - music_multicomplete.m

Ojo

 En estos ejemplos se utilizan señales con frecuencia única.

 Se utiliza toda la señal para hacer la matriz de covariancia, en vez de sólo los valores de su frecuencia.

music_complete

- Crea una señal y la emula entrando en dos micrófonos.
- Calcula el vector MUSIC de -90 a 90 grados, con un incremento de 0.1 grados.
- Presenta dos figuras:
 - Figura 1: la señales capturadas.
 - Figura 2: el espectro MUSIC calculado

music_multicomplete

- Crea dos señales y las emula entrando en tres micrófonos en un arreglo linear.
- Calcula el vector MUSIC de -90 a 90 grados, con un incremento de 0.1 grados.
- Presenta dos figuras:
 - Figura 1: la señales capturadas.
 - Figura 2: el espectro MUSIC calculado

Ruido

 En ambos se puede incrementar el ruido cambiando el valor de:

```
noise_w
```

- Cámbienlo, y corran los scripts varias veces.
 - Recuerden que el ruido se crean con un generador de números al azar.
- ¿El ruido impacta a MUSIC?

Ruido

- En ambos se puede incrementar el ruido cambiando el valor de: noise_w
- Cámbienlo, y corran los scripts varias veces.
 - Recuerden que el ruido se crean con un generador de números al azar.
- ¿El ruido impacta a MUSIC?
- No mucho. De vez en cuando algunos picos no aparecen o aparecen picos no esperados, pero es bastante clara la presencia de las señales aún con ruido.

Ojo... de nuevo

- En estos ejemplos se utilizan señales con frecuencia única.
- Generalizar MUSIC a aplicarse a todas las frecuencias es parte de los problemas a vencer si se quieren usar señales complicadas.
 - Como voz.

Recordatorio: Direction Vectors

 Los direction vectors se basan en desfases en el dominio de la frecuencia, y sólo son de UNA frecuencia.

$$X = S A$$

$$\mathbf{S} = \begin{bmatrix} s_{1}(1) & s_{1}(2) & \cdots & s_{1}(N) \\ s_{2}(1) & s_{2}(2) & \cdots & s_{2}(N) \\ \vdots & \vdots & \ddots & \vdots \\ s_{D}(1) & s_{D}(2) & \cdots & s_{D}(N) \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} e^{-i2\pi f T_{1:1}} & e^{-i2\pi f T_{1:2}} & \cdots & e^{-i2\pi f T_{1:D}} \\ e^{-i2\pi f T_{2:1}} & e^{-i2\pi f T_{2:2}} & \cdots & e^{-i2\pi f T_{2:D}} \\ \vdots & \vdots & \ddots & \vdots \\ e^{-i2\pi f T_{M:1}} & e^{-i2\pi f T_{M:2}} & \cdots & e^{-i2\pi f T_{M:D}} \end{bmatrix}$$

Donde:

X: es la matriz de las señales capturadas; cada renglón representa un micrófono s_d : es una señal de origen

A: es la matriz que contiene los vectores de dirección (direction vectors)

 $T_{m.d}$: es el retraso recibido de la señal s_d en el micrófono m

N: tamaño de la señal (o de la ventana de la señal)

Resumen de

$$\begin{array}{c} \textbf{MUSIC para una Frecuencia} \\ R = XX^H \\ R = V\Lambda V^{-1} \end{array} \begin{array}{c} \text{Se calcula R con datos} \\ \text{de una frecuencia.} \\ V = \begin{bmatrix} v_1 & v_2 & \cdots & v_K \end{bmatrix} & \Lambda = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_K \end{bmatrix}$$

Reordenamos a V de acuerdo a los valores en A

Decidimos cuáles son los eigenvectores "ruidosos"

Calculamos el producto punto con varios potenciales direction vectors, para producir el espectro de MUSIC.

$$P_{music}(T) = \frac{1}{a_{pot}(T)' * Qn * Qn' * a_{pot}(T)}$$

T: dirección a probar $a_{pot}(T)$: direction vector a probar ligado a T

Q_n: matriz que contiene los eigenvectors ruidosos

P_{music}(T): valor en el espectro de MUSIC

MUSIC de Banda Ancha

- Normalmente se escoge un rango de frecuencias y se lleva a cabo MUSIC para cada una de las frecuencias en ese rango.
- Después se hace un promedio a través de las frecuencias por cada direction vector, "aplastando" los diferentes espectros MUSIC en uno sólo.
 - Se puede utilizar los máximos en vez del promedio.

Problema en Línea

- ¿Creen que se pueda correr MUSIC en línea?
 - La matriz de covariancia se puede crear rápido.
 - Dos for's anidados.
 - Pero se tiene que hacer para cada frecuencia.
 - La eigendescomposición es normalmente lenta.
 - Pero no tanto que sea limitante (Eigen es eficiente).
 - Depende de la computadora.
 - Se puede acelerar utilizando la descomposición generalizada de valor singular.
 - Es una generalización de la eigendescomposición pero para matrices rectangulares. También impone restricciones que la hacen eficiente.

Problema en Línea

- Continuación...
 - La búsqueda de direction vectors puede ser lenta si se quiere un espectro MUSIC con alta resolución.
 - Pero esto lo podemos calibrar si fuera necesario.
 - Llevar a cabo MUSIC por cada frecuencia puede elevar mucho el costo computacional.
 - Pero seleccionando las frecuencias apropiadas puede amortiguar dicho costo.

Problema en Línea

- Un problema principal de esta técnica es el requerimiento de recursos de computación elevados para llevar a cabo en línea.
 - Pero "elevados" a finales de los 80's ya no debería ser un problema ahora.

Técnica:

Basado en Beamforming.

Beamforming

- Este tema está muy relacionado con el tema que veremos después en el curso:
 - Separación de Fuentes por medio Beamforming
- Pero es importante hacerle mención aquí ya que es una forma bastante viable de estimación de dirección de arribo.
 - De hecho, mata a dos pájaros de un tiro.

Beamforming

- Entraré en más detalle después, pero...
- Es una forma de filtrado direccional:
 - Dado una dirección deseada, la técnica reduce las interferencias que provengan de otras direcciones.

¿Dirección Deseada?

- Pero este tema habla de estimar esa dirección.
- Este filtro requiere de esta estimación inicialmente.

 Por eso este tema se ve después, pero, tomando inspiración de MUSIC...

Exploración

- Si tenemos un sistema que pretende obtener la información de audio que proviene de una dirección,
- Podríamos probar diferentes direcciones, y medir la energía del audio que proviene de dicha dirección.
- Si la energía del audio es alta, probablemente ahí hay un señal de origen.

Espectro Beamforming

- De manera similar que con MUSIC.
- Por cada dirección potencial:
 - Se crea un filtro direccional
 - Se mide la energía del audio en esa dirección
- Creando así un espectro beamforming, parecido a los CCVs y espectro MUSIC que hemos estado viendo.

Pero...

- Ya que para poder implementarlo requerimos conocer los conceptos de beamforming, dejaremos los detalles de su implementación para cuando lleguemos al tema de:
 - Separación de Fuentes por medio de Beamforming

Siguiente Clase:

Bases de Separación de Fuentes