EECS 545 Homework 1 Solution (F21)

1. Honor Code (3 pts each)

- (a) True
- (b) True
- (c) False

2. PSD matrices

(a) (3 points)

For any \boldsymbol{x} we have: $\boldsymbol{x}^T(\boldsymbol{A}^T\boldsymbol{A})\boldsymbol{x} = (\boldsymbol{A}\boldsymbol{x})^T(\boldsymbol{A}\boldsymbol{x}) = ||\boldsymbol{A}\boldsymbol{x}||_2^2 \geq 0$

(b) (3 points)

For any z, define $Y = (X - \mathbb{E}[X])^T z$.

By linearity of Expectation we have:

$$\boldsymbol{z}^T \mathbb{E}[(\boldsymbol{X} - \mathbb{E}[\boldsymbol{X}])(\boldsymbol{X} - \mathbb{E}[\boldsymbol{X}])^T] \boldsymbol{z} = \mathbb{E}[\boldsymbol{z}^T (\boldsymbol{X} - \mathbb{E}[\boldsymbol{X}])(\boldsymbol{X} - \mathbb{E}[\boldsymbol{X}])^T \boldsymbol{z}] = \mathbb{E}[Y^2] \geq 0$$

(c) (3 points)

Denote the Gram matrix as G, and define X as a matrix with x_i as its columns. i.e:

$$oldsymbol{X} = egin{pmatrix} \mid & \mid & \mid & \mid & \mid \ oldsymbol{x}_1 & oldsymbol{x}_2 & \ldots & oldsymbol{x}_d \ \mid & \mid & \mid & \mid \end{pmatrix}$$

Observe then $\mathbf{G} = \mathbf{X}^T \mathbf{X}$, by (a) it's PSD.

3. Probability

(a) (3 points)

Beginning from the right hand side, apply the definitions of conditional expectation and expectation:

$$E[E[X|Y]] = \sum_{y} \left(\sum_{x} x P(X = x | Y = y) \right) \cdot P(Y = y)$$

Next use definition of conditional probability to get joint distribution:

$$= \sum_{y} \sum_{x} xP(X = x, Y = y)$$
$$= \sum_{x} x \sum_{y} P(X = x, Y = y)$$
$$= \sum_{x} xP(X = x) = E[X]$$

Where the last step used the definition of a marginal PDF.

(b) (3 points)

Apply definition of expectation, where the indicator function is the random variable of interest:

$$E[I[X \in C]] = 1 \cdot P(X \in C) + 0 \cdot P(X \notin C)$$
$$= P(X \in C)$$

(c) (3 points)

Apply definition of expectation:

$$E[XY] = \sum_{x,y} xy P(X = x, Y = y)$$

Then using independence:

$$\begin{split} E[XY] &= \sum_{x,y} xy P(X=x) P(Y=y) \\ &= \left(\sum_{x} x P(X=x)\right) \left(\sum_{y} y P(Y=y)\right) \\ &= E[X] E[Y] \end{split}$$

(d) (3 points)

For $X, Y \in \{0, 1\}$, note that $E[X] = 0 \cdot P(X = 0) + 1 \cdot P(X = 1) = P(X = 1)$. Similarly, E[Y] = p(Y = 1).

Also observe that $E[XY] = \sum_{x,y \in \{0,1\}} xy P(X = x, Y = y) = P(X = 1, Y = 1)$. Then E[XY] = E[X]E[Y] implies P(X = 1, Y = 1) = P(X = 1)P(Y = 1).

To finish, take complements on events, showing independence for the remaining three situations, e.g.:

$$P(X = 0, Y = 0) = 1 - P(X = 1 \cup Y = 1)$$

$$= 1 - P(X = 1) - P(Y = 1) + P(X = 1, Y = 1)$$

$$= 1 - P(X = 1) - P(Y = 1) + P(X = 1)P(Y = 1)$$

$$= (1 - P(X = 1))(1 - P(Y = 1))$$

$$= P(X = 0)P(Y = 0)$$

It is also sufficient to explain that if two events are independent, then their complements are also independent.

4. Gaussian level sets (3 pts each)

(a) Observe U is the rotation matrix that rotates vectors counter-clockwise $\frac{-\pi}{4}$ with respect to the axis (equivalently, $\frac{\pi}{4}$ rotation clockwise), with U^T as its inverse.

Thus $\Sigma^{-1} = U \Lambda^{-1} U^T$.

Define $\mathbf{x}' = \mathbf{U}^T(\mathbf{x} - \mu)$. Then in terms \mathbf{x}' , we can write:

$$1 = (\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) = (\boldsymbol{x}')^T (\boldsymbol{\Lambda})^{-1} \boldsymbol{x}' = \frac{(x_1')^2}{5} + (x_2')^2$$

which is a Ellipse with lengths 1 and $\sqrt{5}$ for the semi-minor and semi-major axis respectively.

Thus $\mathcal C$ is simply a Ellipse specified above rotated clockwise $\frac{\pi}{4}$ and translated by vector $\mu = [-2\ 3]^T$

Figure 1: P3(a) plot

(b) [Method 1] Define $\mathbf{X}' = \mathbf{U}^T(\mathbf{X} - \mu)$, then by property¹ of Gaussian distribution $\mathbf{X}' \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}')$, where $\mathbf{\Sigma}' = \mathbf{U}^T \mathbf{\Sigma} \mathbf{U} = \mathbf{\Lambda}$, as $\mathbf{\Lambda}$ is diagonal X_1' and X_2' are independent Gaussian random variables with the same mean 0 and variance 5 and 1 respectively Define $R = (\mathbf{X}')^T \mathbf{\Lambda}^{-1} \mathbf{X}' = \frac{(X_1')^2}{5} + (X_2')^2$, notice that R follows a chi-square distribution with 2 degrees of freedom².

Observe $\{ \boldsymbol{x} \in \mathcal{C} \} = \{ (\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) \leq 1 \}$

Thus $\Pr(X \in \mathcal{C}) = \Pr(R \le 1) = F(1) = 0.3934$ where F denote the cdf of chi-square distribution with 2 degrees of freedom.

[Method 2] You can identify $\Sigma^{-1} = U\Lambda^{-1/2}\Lambda^{-1/2}U^T$, where $\Lambda^{-1/2} = diag(\frac{1}{\sqrt{5}}, 1)$. Then define $X' = A(X - \mu)'$ where $A = \Lambda^{-1/2}U^T$. Invoke the linear transformation property of Gaussian distribution, we can conclude $X' \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, where \mathbf{I} is the identity matrix. Hence, $R = (X')^T X'$ follows a Chi-square distribution with 2 degrees of freedom.

5. Unconstrained Optimization (3 points each)

(a) Let f, g be convex functions.

¹if $X \sim \mathcal{N}(\mu, \Sigma)$, for any matrix $A, Y = A(x - b) \sim \mathcal{N}(A(\mu - b), A\Sigma A^T)$

²A random variable Y follows a chi-square distribution if $Y = X_1^2 + X_2^2$ for X_1, X_2 that are independent Gaussian random variables with mean 0 and variance 1

Take two arbitrary points $x_1, x_2 \in \mathbb{R}^d$ and $t \in (0, 1)$, let $x = tx_1 + (1 - t)x_2$, then by convexity of f and g we have:

$$f(x) = f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$
(1)

$$g(x) = g(tx_1 + (1-t)x_2) \le tg(x_1) + (1-t)g(x_2)$$
(2)

sum Eq(1) and Eq(2) we have:

$$(f+g)(x) = f(x) + g(x)$$

$$\leq tf(x_1) + tg(x_1) + (1-t)f(x_2) + (1-t)g(x_2)$$

$$= t(f+g)(x_1) + (1-t)(f+g)(x_2)$$

(b) Let f, g be convex twice continuously differentiable functions. Then by the linearity of differentiation the Hessian of f + g is given by

$$\nabla^2(f+g) = \nabla^2 f + \nabla^2 g.$$

By Property 7 from the notes on unconstrained optimization, $\nabla^2 f$, $\nabla^2 g$ are PSD. Since the sum of two PSD matrices is clearly PSD, the Hessian of f + g is PSD so f + g is convex (also by property 7).

(c) Let $\mathbf{x} = [x_1, \dots, x_d]^T$, A_{ij} denote the (i,j)-th entry of matrix \mathbf{A} , and b_i denote the i-th entry of \mathbf{b} then the quadratic function $f(\mathbf{x})$ can be written explicitly as:

$$f(x) = \frac{1}{2}x^T A x + \mathbf{b}^T x + c = \frac{1}{2} \sum_{i=1}^d \sum_{j=1}^d A_{ij} x_i x_j + \sum_{i=1}^d b_i x_i + c$$
.

Applying the definition of the Hessian matrix, the (k,ℓ) -th entry of $\nabla^2 f(x)$ is given by:

$$\begin{split} \left[\nabla^2 f(\boldsymbol{x})\right]_{k,l} &= \frac{\partial^2 f(\boldsymbol{x})}{\partial x_k \partial x_\ell} \\ &= \frac{\partial^2}{\partial x_k \partial x_\ell} \left\{ \frac{1}{2} \sum_{i=1}^d \sum_{j=1}^d A_{ij} x_i x_j + \sum_{i=1}^d b_i x_i + c \right\} \\ &= \frac{\partial}{\partial x_k} \left\{ \frac{1}{2} \sum_{i=1}^d \sum_{j=1}^d A_{ij} \frac{\partial}{\partial x_\ell} x_i x_j + \sum_{i=1}^d \frac{\partial}{\partial x_\ell} b_i x_i \right\} \\ &= \frac{\partial}{\partial x_k} \left\{ \sum_{i=1}^d A_{i\ell} x_i + b_\ell \right\} \\ &= A_{k\ell} \,, \end{split}$$

thus the Hessian of f is A. The function f is convex when A is positive semi-definite, and strictly convex if A is positive definite.