Let P be the set of propositions.

Definition 1. $E \cup \{ \not \}$ is the set of atomic propositions hereby called events or actions. The internal action is ε . The action $\not \subseteq$ is program termination.

Definition 2. A programming language is a quintuple $(\mathcal{P}, \vdash_{w}, \stackrel{e}{\hookrightarrow}, \blacktriangleright\blacktriangleleft)$ s.t.:

P: Set - is a set of admissible, partial programs.

 $\vdash_{w}: \mathcal{P} \rightarrow \mathbf{P}$ - a judgement that holds iff a program is not partial.

 $\stackrel{e}{\hookrightarrow}: \mathcal{W} \to E \cup \{ \not i \} \to \mathcal{W}$ - a step relation, where $\mathcal{W} = \{ w \in \mathcal{P} \mid \vdash_w w \}$. For $e \in E \cup \{ \not i \}$ and $p, p' \in \mathcal{W}$ we say for $p \stackrel{e}{\hookrightarrow} p'$ that program p performs a step with action e to program p'. If $e = \varepsilon$, we write $p \hookrightarrow p'$. In case $e = \not i$, we write $p \Downarrow$.

 $\mathcal{P} \to \mathcal{P} \to \mathcal{P}$ - links two partial programs together in some way, resulting in a new partial program.

Let S, I, and T be any programming language.

Definition 3. A trace $\overline{\tau}$ is an infinite sequence of events that results from the relation $\stackrel{e}{\hookrightarrow}$. That is, we obtain the trace $\overline{\tau} = e_0 e_1 \dots$ for the execution sequence $p \stackrel{e_0}{\hookrightarrow} p' \stackrel{e_1}{\hookrightarrow} \dots$ and write $p \leadsto \overline{\tau}$. The set of all traces is Traces.

We assume ξ to occur at most once in the trace and if it does occur, an infinite sequence of ε follows.

Definition 4. A finite sequence of events m is a finite trace prefix of $\overline{\tau}$ iff it satisfies the following judgement. We write the empty, finite trace prefix as \cdot .

$$\frac{m \leq \overline{\tau}}{em \leq e\overline{\tau}}$$

Definition 5. The behavior of a whole program p is a set of all traces it produces, i.e. $Behav(p) = \{\overline{\tau} \mid p \leadsto \overline{\tau}\}.$

Definition 6. A property π is a set of admissible traces. Thus, if p satisfies π (written $p \models \pi$), then $Behav(p) \subseteq \pi$.

Definition 7. A hyperproperty H is a set of sets of admissible traces. Thus, if p satisfies π (also written $p \models H$), then $Behav(p) \in H$.

Definition 8. A program p robustly satisfies a property π , written $p \vDash_R \pi$, iff $\forall C \in \mathcal{P}, C \bowtie p \vDash \pi$. The same notation is used for robust hyperproperty satisfaction.

Definition 9. A (hyper-)property class is a set of (hyper-)properties.

Definition 10. The class of safety properties contains all properties that can be refuted with a finite trace prefix:

 $Safety = \{ \pi \mid \forall \overline{\tau} \in Traces, t \notin \pi \text{ iff } \exists m \geq \overline{\tau}, \forall \overline{\tau}' \in Traces, m \leq \overline{\tau}' \implies \overline{\tau}' \notin \pi \}$

Definition 11. A compiler between languages S and T is a partial function $\llbracket \bullet \rrbracket^{S \to T}$ from \mathcal{P} to \mathcal{P} .

Definition 12. For a given class \mathbb{C} , a compiler from language S to T robustly preserves \mathbb{C} iff

$$\forall \pi \in \mathbb{C}, \forall \mathsf{p} \in \mathcal{P}, \mathsf{p} \vDash \pi \implies \llbracket \mathsf{p} \rrbracket^{\mathsf{S} \to \mathbf{T}} \vDash \pi$$

We write $\vdash \llbracket \bullet \rrbracket^{\mathsf{S} \to \mathbf{T}} : \mathbb{C}$.

Definition 13. Given two compilers $\llbracket \bullet \rrbracket^{S \to I}$ and $\llbracket \bullet \rrbracket^{I \to T}$, their composition is $\llbracket \bullet \rrbracket^{S \to I \to T} = \llbracket \llbracket \bullet \rrbracket^{S \to I} \rrbracket^{I \to T}$.

Definition 14. The conjunctive composition of two properties π_1, π_2 is the set-intersection $\pi_1 \cap \pi_2$

Definition 15. The conjunctive composition of two classes of properties $\mathbb{C}_1, \mathbb{C}_2$ is the set-intersection $\mathbb{C}_1 \cap \mathbb{C}_2$.

Lemma 1. Given $\vdash \llbracket \bullet \rrbracket^{S \to I} : \mathbb{C}_1 \text{ and } \vdash \llbracket \bullet \rrbracket^{I \to \mathbf{T}} : \mathbb{C}_2, \text{ then } \vdash \llbracket \bullet \rrbracket^{S \to I \to \mathbf{T}} : \mathbb{C}_1 \cap \mathbb{C}_2.$