ANOVA in R

Kaloyan Ganev

2022/2023

Lecture contents

1 Introductory notes

2 Basics of One-way ANOVA

Basics of Non-parametric ANOVA

Introductory notes

What is ANOVA?

- Decrypted as "Analysis of Variance"
- A class of statistical models designed to study the existence of significant differences between means of groups of data
- In this respect it is analogical to the t-test
- Also, it generalizes the essence of the t-test to more than two groups
- However, it differs in an important aspect: to test the significance of this difference, a comparison of variances is made

What is ANOVA? (2)

- Main idea: to model a random variable
- However, modelling is not carried out through estimating the parameters of its conditional distribution
- Instead, it is carried out through using known covariates
- Three or more groups of data are needed to perform the analysis
- Usually populations are assumed to be normally distributed but this is not mandatory
- An F-statistic is used to make inference

Basics of One-way ANOVA

The ANOVA Null Hypothesis

- Assume there is a single quantitative (i.e. non-qualitative) variable
- Also called response variable
- There are many samples on this variable, say k
- Each sample either possesses a quality/is subject to a treatment or not¹
- The goal is to test the hypothesis that the populations from which the samples are drawn have equal means
- Formally written,

 H_0 : $\mu_1 = \mu_2 = \dots = \mu_k$ H_1 : At least one μ is different

Kaloyan Ganev ANOVA in R 2022/2023 7/19

¹This implies a quality, or factor variable.

Within and Between Estimation

- Key requirement for the validity of the test: All populations have the same variance!
- This variance is unknown and has to be estimated first before used in hypothesis testing
- Two methods are used for the purpose: within and between estimation
- Within estimation is used to produce a valid estimate of the unknown common variance irrespective of whether the population means are equal or not
- Between estimation explicitly assumes equality of population means and also aims at such an estimate

Within and Between Estimation (2)

After the two types of estimates are produced, their ratio is calculated

$$Ratio = \frac{Between \ estimate}{Within \ estimate}$$

- Under the null hypothesis, this ratio has the F distribution
- When the means are not equal, the ratio will have a large value
- As a consequence, the null will be rejected
- Since the ratio is always positive (why?), this is a one-tailed test

Kaloyan Ganev ANOVA in R 2022/2023 9/19

The Within Method

- In this method, each observation is compared with its own sample's mean
- To formalize, denote by n the number of observations in each sample
- Denote by X_{ij} the ith observation (i = 1, 2, ..., n) from sample j, j = 1, 2, ..., k
- Denote by \overline{X}_j the mean of sample j, j = 1, 2, ..., k
- Then, the within estimator of the variance is

$$s_w^2 = \frac{\sum_{j=1}^k \left[\frac{1}{n-1} \sum_{i=1}^n (X_{ij} - \overline{X}_j)^2 \right]}{k}$$

The Within Method (2)

- Note that I wrote the formula in an a bit awkward way so that you grasp the essence better
- Usually it is written as

$$s_w^2 = \frac{\sum_{j=1}^k \sum_{i=1}^n (X_{ij} - \overline{X}_j)^2}{k(n-1)}$$

• The sum in the numerator is called the sum of squares within, i.e.

$$SS_w = \sum_{j=1}^{k} \sum_{i=1}^{n} (X_{ij} - \overline{X}_j)^2$$

• The denominator contains the degrees of freedom (k samples/groups times n-1 degrees of freedom in each of them)

Kaloyan Ganev ANOVA in R 2022/2023 11/19

The Between Method

- Recall the Central Limit Theorem
- It states that the distribution of sample means tends to the normal distribution as sample size grows
- ullet The parameters of the normal distribution are respectively μ and $rac{\sigma^2}{n}$
- The variance, $\frac{\sigma^2}{n}$, measures the variability of values of the means of the samples around the true population mean

The Between Method (2)

- \bullet The first step in the between method is to estimate the population mean; denote it by $\overline{\overline{X}}$
- The latter is also called the grand mean
- This is done by using all observations from all samples/groups
- The estimator of the variance of the sample mean is

$$s_{\overline{X}}^{2} = \frac{\sum_{j=1}^{k} (\overline{X}_{j} - \overline{\overline{X}})^{2}}{k-1}$$

• The sum in the numerator is called the sum of squares between, i.e.

$$SS_b = \sum_{i=1}^k (\overline{X}_j - \overline{\overline{X}})^2$$

Kaloyan Ganev ANOVA in R 2022/2023 13/19

The Between Method (3)

- We know that the true $\sigma_{\overline{X}}^2 = \frac{\sigma^2}{n}$
- From this follows

$$\sigma^2 = n\sigma_{\overline{X}}^2$$

In the sample context, this becomes

$$s^2 = ns_{\overline{X}}^2$$

Thus, the between estimator of the variance is

$$s_b^2 = \frac{n\sum\limits_{j=1}^k (\overline{X}_j - \overline{\overline{X}})^2}{k-1}$$

Kaloyan Ganev ANOVA in R 2022/2023 14/19

The ANOVA F test

Formed as:

$$F = \frac{s_b^2}{s_w^2} \sim F(k - 1, k(n - 1))$$

- The computed value of the statistic (the estimate) is then compared to the critical value from the F table
- If the critical value is exceeded, the null hypothesis is rejected
- We will take an example in R

Basics of Non-parametric ANOVA

Non-parametric ANOVA: The Kruskal-Wallis Test

- Assume that there are *k* groups of data (treatment levels)
- Assume also that in each group the data have (approximately) equal variances
- However, the distribution of the data is not normal
- Suppose that those data cannot be transformed in a sensible way so that they become normal
- In such a situation, classical ANOVA would not be appropriate
- The Kruskal-Wallis test is the alternative that can be used
- (The test extends the two-sample Wilcoxon test)

Non-parametric ANOVA: The Kruskal-Wallis Test (2)

- Let the total number of observations be n
- There are k groups, and n_j , $j=1,2,\ldots,k$, observations in each of them
- Obviously, $n = \sum_{j} n_{j}$
- The Kruskal-Wallis test statistic is²

$$H = \frac{12}{n(n+1)} \sum_{j=1}^{k} \frac{R_j^2}{n_j} - 3(n+1)$$

where R_i is the sum of the ranks for group j

• The statistic is valid only if less than 1/4 of the observations are ties.³

Kaloyan Ganev ANOVA in R 2022/2023 18/19

²A correction to this formula is applied if there are ties. See https:

^{//}en.wikipedia.org/wiki/Kruskal-Wallis_one-way_analysis_of_variance.

³Explanation of ties will follow.

Non-parametric ANOVA: The Kruskal-Wallis Test (3)

- To determine ranks, all observations are sorted in an ascending order; ranks match orderings
- If two values are equal, the ranks they occupy are summed and then the sum is divided by the number of values
- For example, if the smallest two values are 2 and 2, the sum of their ranks is 3, therefore each receives a rank of 1.5
- The null hypothesis is the same as in standard ANOVA
- If $n_i \ge 5$, $\forall j$, under the null, the distribution of the test statistic is

$$H \sim \chi^2(k-1)$$

- If the computed statistic exceeds the critical value under the chosen level of significance, the null is rejected
- An example in R follows

Kaloyan Ganev ANOVA in R 2022/2023 19/19