Assignment 2 CS374

Harsh Patel(201701021) Viraj Patel(201701439)

Assigned by:

Prof. Arnab Kumar

August 29, 2019

Contents

1	Par	$\mathbf{t} \; \mathbf{A}$	4
	1.1	Equation	4
	1.2	Graphs	4
		1.2.1 First Order Polynomial	4
			5
		· · · · · · · · · · · · · · · · · · ·	6
	1.3	· · · · · · · · · · · · · · · · · · ·	7
2	Par	\mathbf{B}	8
	2.1	Equation	8
	2.2		8
		2.2.1 First Order Polynomial	8
			9
		2.2.3 Third Order Polynomial	0
	2.3		1
3	Par	1	${f 2}$
	3.1	Equation	2
	3.2		2
			2
			3
		· · · · · · · · · · · · · · · · · · ·	4
	3.3		5
4	Par	t D 1	6
	4.1	Equation	6
	4.2	-	6
		-	6
			7
		· ·	8

CS374	A	ssignmen	ι 2
4.3	Observations	• • .	19

1 Part A

1.1 Equation

$$y = e^x \tag{1}$$

$$y = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$
 (2)

1.2 Graphs

 $y = e^x$ and First order Taylor Polynomial

Error

 $y = e^x$ and Second order Taylor Polynomial

Error

 $y = e^x$ and Third order Taylor Polynomial

Error

1.3 Observations

- 1. The first order Taylor series expansion of $y = e^x$ is equal to 1. Hence, a straight line y = 1 is observed. Therefore, the error function is $y = e^x$ shifted by a single unit towards negative Y axis as demonstrated in the graph.
- 2. The second order Taylor series expansion of $y = e^x$ is equal to 1 + x. Hence, a straight line y = x is observed. Therefore, for values in the range [0, 1], the error count decreases to almost zero whereas, increase in error can be observed for values greater than 1.
- 3. The third order Taylor series expansion of $y = e^x$ is $y = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}$. Thus, the effect of quadratic term can be observed in the demonstrated results. The Taylor series expansion now starts to inhibit the properties of the function $y = e^x$ and so the error is decreased to zero for small values of x and for larger values of x it deviates.

2 Part B

2.1 Equation

$$y = \ln x \tag{3}$$

$$y = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \dots$$
 (4)

2.2 Graphs

 $y = \ln x$ and First order Taylor Polynomial

Error

 $y = \ln x$ and Second order Taylor Polynomial

 $y = \ln x$ and Third order Taylor Polynomial

2.3 Observations

1. The first order Taylor series expansion of $\ln x$ is equal to x-1. Hence, a straight line y=x-1 is observed. Therefore, for values near x=1, the error count is very low whereas for values far from x=1, increase in error can be observed.

Error

- 2. The second order Taylor series expansion of $\ln x$ is equal to $y = (x-1) \frac{(x-1)^2}{2}$. For $x \in [0,1]$, x-1 term dominates but for larger values of x i.e. x > 1 the negative quadratic term dominates and so the curve of p_2x shifts "downwards" and error increases continuously.
- 3. The third order Taylor series expansion of $\ln x$ is $y = (x 1) \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3}$. For $x \in [0,1]$, x-1 term dominates but for larger values of x now the positive cubic term dominates over negative quadratic term and so the curve of $p_2(x)$ shifts "upwards" and error increases.

3 Part C

3.1 Equation

$$y = \sin x \tag{5}$$

$$y = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$
(6)

3.2 Graphs

 $y = \sin x$ and First order Taylor Polynomial

Error

 $y = \sin x$ and Second order Taylor Polynomial

Error

 $y = \sin x$ and Third order Taylor Polynomial

3.3 Observations

- 1. The first order Taylor series expansion of $\sin x$ is equal to x. Hence, a straight line y=x is observed. Therefore, for values near x=0, the error count is very low whereas for values of x>1, larger positive or negative values of error can be observed.
- 2. The second order Taylor series expansion of $\sin x$ is equal to x. Hence, same results as in the case of first order Taylor series can be observed.
- 3. The third order Taylor series expansion of $\sin x$ is equal to $x \frac{x^3}{3!}$. Thus, the effect of cubic term being subtracted from x can be observed in the shown results. The Taylor series expansion now starts to inhibit the properties of $\sin x$ and so the error is decreased in the $x \in [-\pi, \pi]$ drastically as compared to the first two cases but after that the error increases as the Taylor Polynomial deviates from $\sin x$.

4 Part D

4.1 Equation

$$y = \cos x \tag{7}$$

$$y = 1 - \frac{x^2}{2!} + \frac{x^3}{3!} - \dots {8}$$

4.2 Graphs

 $y = \cos x$ and First order Taylor Polynomial

Error

 $y = \cos x$ and Second order Taylor Polynomial

Error

 $y = \cos x$ and Third order Taylor Polynomial

4.3 Observations

- 1. The first order Taylor series expansion of $\cos x$ is equal to 1. Hence, a straight line y=1 is observed. Therefore, the error function is the $\cos x$ curve shifted by a single unit towards negative Y axis as demonstrated in the graph.
- 2. The second order Taylor series expansion of $\cos x$ is equal to $1 + \frac{x^2}{2!}$. Thus, the effect of quadratic term can be observed in the demonstrated results. The Taylor series expansion now starts to inhibit the properties of $\cos x$ for values of x near to x = 0 and so the error is decreased near the values of x close to zero.
- 3. The third order Taylor series expansion of $\cos x$ is also equal to $1 + \frac{x^2}{2!}$. Hence, same results as in the case of second order Taylor series can be observed.