Simple Linear Regression Model Inference

Module 3

DATA 5600 Introduction to Regression and Machine Learning for Analytics Marc Dotson

Introduction

Module Overview

- Confidence Interval for the Slope
- Hypothesis Test for the Slope
- Confidence Interval for the Mean
- Prediction Interval for Individual Observations
- Model Evaluation Metrics

Overview

- We can use a linear regression model for inference only after checking assumptions
- We are interested in inference for $\hat{\beta}_1$
- Recall:

$$y_{i} = \beta_{0} + \beta_{1}x_{i} + \epsilon_{i} \quad \text{where} \quad \epsilon_{i} \sim N(0, \sigma^{2})$$

$$\hat{\beta}_{1} = \frac{SS_{XY}}{SS_{XX}} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x}$$

$$s^{2} = MSE = \frac{SSE}{\text{degrees of freedom for error}}$$

$$= \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{n-2} = \frac{\sum_{i=1}^{n} e^{2}}{n-2}$$

Overview

- Mathematically, we can show the estimated slope β_1 from our least-squares regression fit is approximately normally distributed (under common circumstances assuming that the sample size is sufficiently large)
- The standard error of $\hat{\beta}_1$ is given by

s.e.
$$(\hat{\beta}_1) = \frac{S}{\sqrt{SS_{XX}}} = \frac{S}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

• Since we need to estimate the unknown model variance σ^2 with the MSE s^2 , we use a: t distribution for inference, with n-2 degrees of freedom.

Car Gas Mileage

- In a real analysis, we would use the log-transformed response model, but for the sake of this module, we will use the original non-transformed data for illustration.
- Recall for the Car Gas Mileage data set:

$$\hat{\beta}_1 = -0.0098$$
$$s^2 = 22.31$$

• The standard error of $\hat{\beta}_1$ is

s.e.
$$(\hat{\beta}_1) = \frac{\sqrt{22.31}}{\sqrt{(3436 - 2535)^2 + (3433 - 2535)^2 + \dots + (3449 - 2535)^2}}$$

= 0.0005749

Confidence Interval for the Slope

Confidence Interval for the Slope

• A $(1-\alpha)100\%$ confidence interval for β_1 is given by

$$\hat{\beta}_1 \pm t_{\alpha/2}$$
 s.e. $(\hat{\beta}_1)$,

where $t_{\alpha/2}$ represents the upper $\alpha/2$ critical value from the t distribution with n-2 degrees of freedom.

n = 289Introduction

Car Gas Mileage df = 287

$$df = 287$$

Alpha/2 = 0.025A 95% confidence interval for the slope is given by

$$\hat{\beta}_1 \pm t_{0.025}$$
s.e. $(\hat{\beta}_1)$
= $-0.0098 \pm (1.9683)(0.0005749)$
= $(-0.011, -0.009)$

Interpretation (including "significance"):

Hypothesis Test for the Slope

Hypothesis Test for the Slope

• To test H_0 : $\beta_1 = 0$, versus H_a : $\beta_1 \neq 0$, the t statistic is given by

$$t = \frac{\hat{\beta}_1 - 0}{\text{s.e.}(\hat{\beta}_1)}$$

where t = number of standard errors your value is from the null value.

- The p-value is computed as $p = 2P(t > |t_{obs}|)$, where t_{obs} is the observed value of the test statistic, and the tail probability is based on a t distribution with n-2 degrees of freedom.
- If we use a significance level of α , then we reject H_0 if $p < \alpha$. In other words, this indicates evidence at the α -level that there is a significant linear relationship between x and y.

p-Value

- Recall a p-value is the probability of seeing a result as or more "extreme" than what you observed, if there really is no difference (i.e., if the null hypothesis is true).
- In a hypothesis test for the slope, the p-value is the probability of having a slope as "steep" or steeper as the one our data produced, if the "truth" is that there is no linear association between x and y.
- Remember:
 - if p-value $< \alpha$, we "reject" the null hypothesis in favor of the alternative hypothesis
 - if p-value > α , we "fail to reject" the null hypothesis we do not "accept" the null hypothesis, we simply have insufficient evidence to accept the alternative hypothesis

Car Gas Mileage

 For the car gas mileage data, the test statistic for the slope is given by

$$t = \frac{\hat{\beta}_1 - 0}{\text{s.e.}(\hat{\beta}_1)} = \frac{-0.0098 - 0}{0.0005749} = -17.11(computer)$$

- The p-value is given by p = 2P(t > |-17.11|), based on a t distribution with 287 degrees of freedom. Using computer software, it turns out that $p = 1.04x10^{-45}$.
- Interpretation (including "significance"):

Confidence Intervals and Hypothesis Testing

- Two branches of statistical inference: confidence intervals and hypothesis testing, will always result in the same substantive conclusions.
- If a confidence interval does not contain the null value, then the hypothesis test will result in a "significant" p-value, and vice-versa.
- Often, a confidence interval is more useful for assessing the magnitude of an effect than a single p-value.
- Note: We could follow the exact same steps and get a confidence interval and do a hypothesis test for the intercept $\hat{\beta}_0$, but this is usually less interesting and unnecessary to the research question.

Confidence and Prediction Intervals

Recall...

 In Module 1, we used the linear regression model to predict the MPG for a car weighing 3000 lbs.

$$\hat{y}_{3000} = \hat{\beta}_0 + \hat{\beta}_1(3000)$$

= 51.59 - 0.0098(3000)
= 22.19 \approx 22.09 (Python result)

- If we took another sample of cars and fit a regression line, would this prediction be the same?
- How do we incorporate sampling variability (uncertainty) into our prediction of Y?

Two Types of Intervals

- There are two types of intervals that we can use to incorporate a measure of uncertainty into our predictions.
 - 1. Confidence intervals for the mean of *Y*
 - Interval for the <u>average</u> car's MPG
 - Predict the average MPG of cars weighing 3000 lbs.
 - Target is a fixed parameter $(E(Y|X=x_i^*))$
 - 2. Prediction intervals for individual observations
 - Interval for a new <u>single</u> car's MPG
 - Predict the MPG of a car weighing 3000 lbs.
 - Target is a random variable (y_i^*)

Cls for Mean(Y)

- We want to create an interval, or band, around our regression line that indicates the variability of our estimate of the line (average value of Y for a given x_i^*)
- The interval will be centered at the line $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i^*$
- The standard error for \hat{y}_i is given by

$$SE_{CI}(\hat{\beta}_0 + \hat{\beta}_1 x_i^*) = s \sqrt{\frac{1}{n} + \frac{(x_i^* - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}$$

• So, a $(1 - \alpha)$ -level confidence interval is

$$\left(\hat{\beta}_0 + \hat{\beta}_1 x_i^*\right) \pm t_{\alpha/2, n-2} SE_{CI} \left(\hat{\beta}_0 + \hat{\beta}_1 x_i^*\right)$$

Variability depends on where you are predicting

Recall s is the standard deviation of the residuals:

$$s = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n - 2}}$$

Cls for Mean(Y)

• CI for the average MPG of cars weighing $\mathbf{x}_i^* = 3000$ lbs.

$$\hat{y}_{3000} = 22.09$$

$$SE_{CI}(\hat{y}_{3000}) = \sqrt{22.31} \sqrt{\frac{1}{289} + \frac{(3000 - 2535)^2}{(3436 - 2535)^2 + \dots + (2720 - 2535)^2}}$$

= 0.3856

So, a 95% confidence interval is

$$22.09 \pm t_{0.025,287}$$
0.3856 = (21.33, 22.85)

Interpretation:

Cls for Mean(Y)

• What do you observe about the confidence interval?

Cls for Mean(*Y*)

 Using the appropriate logtransformed response model

• We just calculated a confidence interval for the mean of Y given x_i^* $\left(E(Y|X=x_i^*)\right)$

• What if instead of the mean we are now interested in predicting a <u>future value</u> of Y for a given x_i^* ?

 Would you expect there to be more uncertainty/variability around an <u>average</u> or a <u>specific</u> predicted value?

Pls for Individual Obs

Prediction Intervals for Individual Observations

- We want to create an interval, or band, around our regression line that indicates the variability of our estimate of the value of Y at a specific x_i^*
- The interval will be centered at the line $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i^*$
- The standard error for \hat{y}_i is given by

$$SE_{PI}(\hat{\beta}_0 + \hat{\beta}_1 x_i^*) = s\sqrt{1 + \frac{1}{n} + \frac{(x_i^* - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}$$

• So, a $(1 - \alpha)$ -level confidence interval is

$$\left(\hat{\beta}_0 + \hat{\beta}_1 x_i^*\right) \pm t_{\alpha/2, n-2} SE_{PI} \left(\hat{\beta}_0 + \hat{\beta}_1 x_i^*\right)$$

Variability depends on where you are predicting

Recall s is the standard deviation of the residuals:

$$s = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n - 2}}$$

• PI for the MPG of a car weighing $x_i^* = 3000$ lbs.

$$\hat{y}_{3000} = 22.09$$

$$SE_{PI}(\hat{y}_{3000}) = \sqrt{22.31} \sqrt{1 + \frac{1}{289} + \frac{(3000 - 2535)^2}{(3436 - 2535)^2 + \dots + (2720 - 2535)^2}}$$

= 4.7391

So, a 95% confidence interval is

$$22.09 \pm t_{0.025,287} 4.7391 = (12.76, 31.41)$$

• Interpretation:

- What do you observe about the prediction interval?
- How does it compare to the confidence interval?

 Using the appropriate logtransformed response model

Model Evaluation Metrics

Inference

 Statistical inference has to do with the "usefulness" of a model: is X useful at predicting Y?

 There are other methods of assessing this (in addition to hypothesis tests, confidence intervals, and prediction intervals)

Mean Squared Error (MSE)

For the cars data set: MSE = 22.31

•
$$MSE = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n-2} = \frac{\sum_{i=1}^{n} e_i^2}{n-2} = \hat{\sigma}^2 = s^2$$

- $0 \le MSE < \infty$ The lower the MSE, the better the model
- Our best estimate of the true error variance
- Average squared distance between the observed outcome and the predicted outcome from the model (measures the amount of spread in the residuals)
- Pros: Easy to work with mathematically
- Cons: Not very interpretable since the units are squared, highly influenced by outliers, adding more variables in model always lowers MSE

Root Mean Squared Error (RMSE) For the cars data

For the cars data set: RMSE = 4.72

- $RMSE = \sqrt{MSE} = \sqrt{\hat{\sigma}^2}$
- $0 \le RMSE < \infty$ The lower the RMSE, the better the model
- Average error performed by the model in predicting the outcome (measures the amount of spread in the residuals)
- Pros: More interpretable than the MSE since it is on the scale of the data
- Cons: Slightly less mathematically friendly, highly susceptible to outliers, adding more variables in model always lowers RMSE

Mean Absolute Error (MAE)

For the cars data set: MAE = 3.64

$$MAE = \frac{\sum_{i=1}^{n} |y_i - \hat{y}_i|}{n-2}$$

- $0 \le MAE < \infty$
- The lower the MAE, the better the model
- Average absolute difference between the outcome and the model prediction of the outcome
- Pros: Less susceptible to outliers than RMSE
- Cons: Harder to work with mathematically (not differentiable) than RMSE, and adding more variables in model always lowers MAE

Multiple R-Squared (R^2) (a.k.a. the Metrics Coefficient of Determination)

•
$$R^2 = \frac{\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2} = r^2$$

- $0 \le R^2 \le 1$
- The proportion of total variation in Y explained by the predictor(s) (X) in the model
- The higher R^2 , the better the model
- Pros:
- Cons:

Adjusted R-Squared (R^2)

- $R_{adj}^2 = 1 \left[\frac{(1-R^2)(n-1)}{n-k-1}\right]$ (k is the number of predictors in the model)
- $0 \le R_{adj}^2 \le 1$
- The proportion of total variation in Y explained by the predictor(s) (X) in the model, adjusted for the number of variables in the model
- $R_{adj}^2 \le R^2$
- Pros:
- Cons:

F-Statistic & p-value

•
$$F = \frac{\frac{\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2}{\frac{2-1}{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}}}{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n-2}}$$

- The test statistic for H_0 : the predictor(s) in the model have no linear association with Y
- The further the F-statistic is from 1, the more evidence to reject H_0 (the associated p-value can be used to determine if there is *significant* evidence)