Package 'NPFD'

November 4, 2024

Title N-Power Fourier Deconvolution

Version 1.0.0

Description Provides tools for non-parametric Fourier deconvolution using the N-Power Fourier Deconvolution (NPFD) method. This package includes methods for density estimation (densprf()) and sample generation (createSample()), enabling users to perform statistical analyses on mixed or replicated data sets.	
Depends R (>= $3.5.0$)	
Imports siggenes, KernSmooth, splines, stats, graphics, VGAM	
License GPL-3	
Encoding UTF-8	
Suggests knitr, rmarkdown	
VignetteBuilder knitr	
RoxygenNote 7.3.2	
NeedsCompilation no	
Author Akin Anarat [aut, cre]	
Maintainer Akin Anarat <akin.anarat@hhu.de></akin.anarat@hhu.de>	
Repository CRAN	
Date/Publication 2024-11-04 11:10:04 UTC	
Contents	
createSample	
Index 8	

2 createSample

createSample

Create a Sample from a Centered Distribution

Description

This function creates a sample from a centered distribution based on replicates of mixed data.

Usage

```
createSample(z1, z2)
```

Arguments

- z1 A numeric vector where $z_1 = x_1 + y$.
- A numeric vector of the same length as z_1 where $z_2 = x_2 + y$.

Value

A numeric vector representing a sample from the centered distribution.

Examples

```
# Set seed for reproducibility
set.seed(123)
# Generate random data
x1 <- rnorm(1000)
x2 <- rnorm(1000)
y <- rgamma(1000, 10, 2)
z1 < -x1 + y
z2 < - x2 + y
# Use createSample to generate a sample
x <- createSample(z1, z2)</pre>
# Perform density estimation
f.x \leftarrow stats::density(x, adjust = 1.5)
x.x \leftarrow f.x$x
f \leftarrow dnorm(x.x)
# Plot the results
plot(NULL, xlim = range(f.x$x), ylim = c(0, max(f, f.x$y)), xlab = "x", ylab = "Density")
lines(x.x, f, col = "blue", lwd = 2)
lines(f.x, col = "orange", lwd = 2)
legend("topright", legend = c(expression(f), expression(f[x])), col = c("blue", "orange"), lwd = 2)
```

deconvolve 3

deconvolve

N-Power Fourier Deconvolution

Description

Estimates the density f_y , given vectors x and z, where f_z results from the convolution of f_x and f_y .

Usage

```
deconvolve(
 x = NULL
 mode = c("empirical", "denspr"),
 dfx = 5,
 dfz = 5,
 Lx = 10^2,
 Lz = 10^2,
 Ly = 10^2,
 N = 1:100,
 FT.grid = seq(0, 100, 0.1),
  lambda = 1,
  eps = 10^{-3},
  delta = 10^{-2},
  error = c("unknown", "normal", "laplacian"),
  sigma = NULL,
  calc.error = FALSE,
 plot = FALSE,
 legend = TRUE,
 positive = FALSE
)
```

Arguments

x	Vector of observations for x .
z	Vector of observations for z .
mode	Deconvolution mode (empirical or denspr). If empirical, the Fourier transforms of x and z are estimated using the empirical form. If denspr, they are calculated based on the density estimations using densprf (see the package siggenes).
dfx	Degrees of freedom for the estimation of f_x if mode is set to denspr.
dfz	Degrees of freedom for the estimation of f_z if mode is set to denspr.
Lx	Number of points for f_x -grid if mode is set to denspr.
Lz	Number of points for f_z -grid if mode is set to denspr.
Ly	Number of points for f_y -grid.
N	Possible power values.

4 deconvolve

FT.grid Vector of grid for Fourier transformation of f_x and f_z .

lambda Smoothing parameter.

eps Tolerance for convergence.

delta Small margin value.

error Error model (unknown, normal, laplacian). If unknown, the Fourier transform

of x is calculated based on the mode. If normal, the exact form of the Fourier transform of a centered normal distribution with standard deviation sigma is used for x. If laplacian, the exact form of the Fourier transform of a centered

Laplace distribution with standard deviation sigma is used for x.

sigma Standard deviation for normal or Laplacian error.

calc.error Logical indicating whether to calculate error (10 x ISE between f_z and $f_x * f_y$).

plot Logical indicating whether to plot f_z vs. $f_x * f_y$ if calc.error is TRUE.

legend Logical indicating whether to include a legend in the plot if calc.error is TRUE.

positive Logical indicating whether to enforce non-negative density estimation.

Value

A list with the following components:

x A vector of x-values of the resulting density estimation.

y A vector of y-values of the resulting density estimation.

N The power used in the deconvolution process.

error The calculated error if calc.error = TRUE.

Author(s)

Akin Anarat <akin.anarat@hhu.de>

References

Anarat A., Krutmann, J., and Schwender, H. (2024). A nonparametric statistical method for deconvolving densities in the analysis of proteomic data. Submitted.

Examples

```
# Deconvolution when mixed data and data from an independent experiment are provided:
set.seed(123)
x <- rnorm(1000)
y <- rgamma(1000, 10, 2)
z <- x + y

f <- function(x) dgamma(x, 10, 2)
independent.x <- rnorm(100)

fy.NPFD <- deconvolve(independent.x, z, calc.error = TRUE, plot = TRUE)
x.x <- fy.NPFD$x</pre>
```

deconvolve 5

```
fy \leftarrow f(x.x)
# Check power and error values
fy.NPFD$N
fy.NPFD$error
# Plot density functions
plot(NULL, xlim = range(y), ylim = c(0, max(fy, fy.NPFD$y)), xlab = "x", ylab = "Density")
lines(x.x, fy, col = "blue", lwd = 2)
lines(fy.NPFD, col = "orange", lwd = 2)
legend("topright", \ legend = c(expression(f[y]), \ expression(f[y]^{NPFD})),\\
       col = c("blue", "orange"), lwd = c(2, 2))
# For replicated mixed data:
set.seed(123)
x1 <- VGAM::rlaplace(1000, 0, 1/sqrt(2))</pre>
x2 <- VGAM::rlaplace(1000, 0, 1/sqrt(2))
y < - rgamma(1000, 10, 2)
z1 <- z <- x1 + y
z2 < - x2 + y
x <- createSample(z1, z2)</pre>
fy.NPFD <- deconvolve(x, z, mode = "denspr", calc.error = TRUE, plot = TRUE)</pre>
x.x \leftarrow fy.NPFD$x
fy \leftarrow f(x.x)
# Check power and error values
fy.NPFD$N
fy.NPFD$error
# Plot density functions
plot(NULL, xlim = range(y), ylim = c(0, max(fy, fy.NPFD$y)), xlab = "x", ylab = "Density")
lines(x.x, fy, col = "blue", lwd = 2)
lines(fy.NPFD, col = "orange", lwd = 2)
legend("topright", legend = c(expression(f[y]), expression(f[y]^{NPFD})),
       col = c("blue", "orange"), lwd = c(2, 2))
\# When the distribution of x is asymmetric and the sample size is very small:
set.seed(123)
x < - rgamma(5, 4, 2)
y <- rgamma(1000, 10, 2)
z \leftarrow x + y
fy.NPFD <- deconvolve(x, z, mode = "empirical", lambda = 2)</pre>
x.x \leftarrow fy.NPFD$x
fy \leftarrow f(x.x)
# Check power value
fy.NPFD$N
# Plot density functions
plot(NULL, xlim = range(y), ylim = c(0, max(fy, fy.NPFD$y)), xlab = "x", ylab = "Density")
```

6 densprf

densprf

Density Estimation Function

Description

This function estimates the density using a Poisson GLM with natural splines.

Usage

```
densprf(
    x,
    n.interval = NULL,
    df = 5,
    knots.mode = TRUE,
    type.nclass = c("wand", "scott", "FD"),
    addx = FALSE
)
```

Arguments

x	Input data vector.
n.interval	Number of intervals (optional).
df	Degrees of freedom for the splines.
knots.mode	Boolean to determine if quantiles should be used for knots.
type.nclass	Method for determining number of classes.
addx	Add x values (optional).

Details

densprf is a modification of the denspr function from the siggenes package.

For more details, see the documentation in the siggenes package.

Value

The function densprf(x) returns a function that, for a given input z, computes the estimated density evaluated at the position values of z as a result.

densprf 7

Examples

```
# Set seed for reproducibility
set.seed(123)

# Generate random data
z <- rnorm(1000)

# Apply densprf function
f <- densprf(z)

# Define sequences for evaluation
x1 <- seq(-4, 4, 0.5)
x2 <- seq(-5, 5, 0.1)

# Evaluate the density function at specified points
f1 <- f(x1)
f2 <- f(x2)</pre>
```

Index

```
createSample, 2
deconvolve, 3
densprf, 6
```