Predictable Interest Rate Movements and Their Implications for Emerging Markets

Lei Li

Gabriel Mihalache

Stony Brook University

Stony Brook University

May 13, 2022

Motivation

- US FRB broadly *expected* to raise rates 6+ times in 2022, by 25-50bps each.
- Implications for emerging market borrowers? Perceived as *bad news*.

Motivation |

- US FRB broadly *expected* to raise rates 6+ times in 2022, by 25-50bps each.
- Implications for emerging market borrowers? Perceived as *bad news*.
- Evidence suggest that higher rates in financial center...
 - depress output, slow/reverse capital flows,
 - and increase spreads (Kalemli-Özcan 2019 Jackson Hole)

Motivation

- US FRB broadly *expected* to raise rates 6+ times in 2022, by 25-50bps each.
- Implications for emerging market borrowers? Perceived as *bad news*.
- Evidence suggest that higher rates in financial center...
 - depress output, slow/reverse capital flows,
 - and increase spreads (Kalemli-Özcan 2019 Jackson Hole)
- Our contribution: Sovereign default model with...
 - News about persistent dynamics of lenders' opportunity cost
 - Domestic financial frictions
- News of higher risk-free rates: recessionary, increase spreads
- Bonus: endogenously no "consumption boom before default" puzzle

Motivating Evidence

2013 "taper tantrum" and EMBI spread

Responses of 12-Month Government Bond Rate Differentials I

Source: Kalemli-Özcan (2019)

Simple Analytics of Risk-free Rate Movements in a Tractable Default Model

The Simplest Sovereign Default Model

Risk-free rate movements in a tractable model:

$$V(b) = \max_{b'} \left\{ u \left[\overline{y} - b + q(b')b' \right] + \beta \mathbf{E}_{\nu} \max \left[V(b'), V^d - \nu \right] \right\}$$
 (1)

with only iid default value shocks, ν with PDF ϕ and CDF Φ

The Simplest Sovereign Default Model

Risk-free rate movements in a tractable model:

$$V(b) = \max_{b'} \left\{ u \left[\overline{y} - b + q(b')b' \right] + \beta \mathbf{E}_{\nu} \max \left[V(b'), V^d - \nu \right] \right\}$$
 (1)

with only iid default value shocks, ν with PDF ϕ and CDF Φ

Default policy takes a threshold form:

$$u^*(b) \equiv V^d - V(b)$$

$$q(b') = \frac{1 - \Phi\left[\nu^*(b')\right]}{1 + r^{\text{rf}}}$$

The Simplest Sovereign Default Model, Continued

All together, a 1-equation default model...

$$V(b) = \max_{b'} u \left[\overline{y} - b + \frac{1 - \Phi\left[V^d - V(b')\right]}{1 + r^{\text{rf}}} b' \right]$$

$$+ \beta \left[\int_{-\infty}^{V^d - V(b')} \left(V^d - \nu\right) d\Phi(\nu) + \int_{V^d - V(b')}^{\infty} V(b') d\Phi(\nu) \right]$$

The Simplest Sovereign Default Model, Continued

All together, a 1-equation default model...

$$V(b) = \max_{b'} u \left[\overline{y} - b + \frac{1 - \Phi\left[V^d - V(b')\right]}{1 + r^{\text{rf}}} b' \right]$$
$$+ \beta \left[\int_{-\infty}^{V^d - V(b')} \left(V^d - \nu\right) d\Phi(\nu) + \int_{V^d - V(b')}^{\infty} V(b') d\Phi(\nu) \right]$$

FOC:

$$[1 - \underbrace{h\left(V^d - V(b')\right)}_{\text{Optimum default risk}} b'] \underbrace{\frac{u'(c)}{u'(c')}}_{\text{Smooth } c} = \beta \left(1 + r^{\text{rf}}\right)$$

where the *hazard function* is the ratio of PDF to complement of CDF...

$$h(\nu) \equiv \phi(\nu) / [1 - \Phi(\nu)]$$

Hazard Function

Hazard function for the Standard Normal distribution

The Linear Utility Case

Disable consumption smoothing motive with u(c) = c...

$$1 - h\left(V^d - V(b')\right)b' = \beta\left(1 + r^{\mathrm{rf}}\right)$$

The Linear Utility Case

Disable consumption smoothing motive with u(c) = c...

$$1 - h\left(V^d - V(b')\right)b' = \beta\left(1 + r^{\mathrm{rf}}\right)$$

Restrict attention to $h(\nu) > 0$ and $h'(\nu) \ge 0$. Then, can show...

- If $\beta(1 + r^{\text{rf}}) < 1$ the country borrows, b' > 0
- 2 An unexpected, 1-period increase in r^{rf} lowers b' and the spread
- 3 An unexpected, permanent increase in r^{rf} is *ambiguous* for spreads (wip)

Comparative Statics of Tractable Model

Default Probability ($\Phi(\nu^*(b'))$)

Borrowing Choice (b')

$$1 - h \left[K \left(r_{\text{future}}^{\text{rf}} \right) + b' \right] b' = \beta \left(1 + r_{\text{current}}^{\text{rf}} \right)$$

Time Series Model of Predictable Risk-free Rate Movements

Predictable Risk-free Rate Dynamics

Sample episode

Allow for slow-moving, predictable dynamics in the risk-free rate using regime-switching AR(1) with regime-specific intercept

$$r_{t+1}^{\text{rf}} = (1 - \rho_r)\nu_t + \rho_r r_t^{\text{rf}} + \sigma_{r,\varepsilon}\varepsilon_{t+1}$$
$$\nu_{t+1} \sim F(\nu_{t+1}|\nu_t)$$

 v_t : known at t, shifts mean from t + 1.

Predictable Risk-free Rate Dynamics

Sample episode

Allow for slow-moving, predictable dynamics in the risk-free rate using regime-switching AR(1) with regime-specific intercept

$$r_{t+1}^{\text{rf}} = (1 - \rho_r)\nu_t + \rho_r r_t^{\text{rf}} + \sigma_{r,\epsilon} \varepsilon_{t+1}$$
$$\nu_{t+1} \sim F(\nu_{t+1}|\nu_t)$$

 v_t : known at t, shifts mean from t + 1.

Long-term risk-free bond price:

$$q_t^{ ext{rf}} = rac{1}{1 + r_t^{ ext{rf}}} \left[\kappa + (1 - \delta) \, \mathbf{E}_t q_{t+1}^{ ext{rf}}
ight]$$

Preliminary Estimates

Using ex-ante real Fed Funds rate, MA $\mathbf{E}\pi$...

$$\begin{aligned} r_{t+1}^{\text{rf}} &= (1 - \rho_r)\nu_t + \rho_r r_t^{\text{rf}} + \sigma_{r,\varepsilon} \varepsilon_{t+1} \\ \nu_{t+1} &\sim F(\nu_{t+1} | \nu_t) \end{aligned}$$

$$\nu \in [-2\%, \quad 1.2\%, \quad 6\%]$$

$$F(\nu'|\nu) = \begin{bmatrix} 0.57 & 0.35 & 0.08\\ 0.03 & 0.96 & 0.01\\ 0.80 & 0.00 & 0.20 \end{bmatrix}$$

$$\rho_r = 0.94 \qquad \sigma_{r,\varepsilon} = 0.25\%$$

Quantitative Model

Model Outline

- Domestic Economy
 - Households: labor supply
 - Producers: labor demand, working capital demand
 - Domestic Financial Intermediaries: working capital supply
- Fiscal Authority (Sovereign)
 - Operates in international bond markets
 - Transfers net proceeds lump sum to household
 - Default: temporary exclusion, haircut/recovery, productivity loss
- International Financial Intermediaries
 - Stochastic & predictable opportunity cost of funds, r^{rf}

Domestic Economy: Households

Static labor supply problem

$$\max_{\ell_t} u\left(c_t, \ell_t\right) \text{ s.t. } c_t = w_t \ell_t + \Pi_t + \Pi_t^f + T_t$$

given

- \blacksquare wage rate w_t
- profits of producers Π_t
- lacksquare profits of domestic financial intermediaries π_t^f
- lump sum tax or transfer from fiscal authority T_t

Discount with β .

Domestic Economy: Producers

Hire labor subject to a working capital constraint

$$\Pi_t = \max_{\ell_t} \left\{ A_t \ell_t^{\alpha} - \left[(1 - \theta) w_t \ell_t + \theta (1 + i_t) w_t \ell_t \right] \right\}$$

given aggregate productivity level A_t , and where a share θ of the wage bill must be paid before production takes place. *Intra-period* loan rate i_t .

Compare to Mendoza Yue (2012) and Fuerst (1992).

Productivity penalty in default $A_t^d = h(A_t) \le A_t$.

Domestic Economy: Financial Intermediaries

Extend intra-period working capital loans

$$\Pi_t^f = -a_t + (1+i_t) a_t = i_t a_t,$$

and in equilibrium firms demand $a_t = \theta w_t \ell_t$.

Operate on behalf of their owners, the households, and use the *domestic interest rate*

$$i_t = \frac{u_c(c_t, \ell_t)}{\beta \mathbf{E}_t u_c(c_{t+1}, \ell_{t+1})} - 1$$

to price the loans. In equilibrium $\mathbf{E}_t u_{c,t+1}$ reflects default risk.

The GHH Domestic Economy, Summary

In good credit standing...

$$\left[c_t - \psi \frac{\ell_t^{1+\mu}}{1+\mu}\right]^{-\sigma} = \beta(1+i_t) \underbrace{\mathbf{E}_t u_c \left(c_{t+1}, \ell_{t+1}\right)}_{H_t(b_{t+1})}$$

where

$$c_t = A_t \ell_t^{\alpha} + T_t(b_{t+1})$$

and

$$\ell_t = \left[rac{lpha}{\psi} \cdot rac{A_t}{1 + heta_{i_t}}
ight]^{1/(1 - lpha + \mu)}.$$

In default, same, except $T_t^d = 0$ and productivity loss $A_t^d = h(A_t) \le A_t$.

Fiscal Authority

Conditional on not defaulting, chooses b_{t+1} and thus determines

$$T_t = -\kappa b_t + q_t [b_{t+1} - (1 - \delta) b_t]$$

Understands how b_{t+1} choice impacts

- \blacksquare the bond price q_t
- this period's domestic economy c_t , ℓ_t , i_t , w_t , ...
- next period's domestic economy, for $\mathbf{E}_t u_{c,t+1}$ purposes.

In default: $T_t^d = 0$ and productivity penalty $A_t^d = h(A_t) \le A_t$.

Centralized borrowing, centralized default. Market segmentation.

International Financial Intermediaries

Bond prices in good credit standing

$$q_{t} = \frac{1}{1 + r_{t}^{\text{rf}}} \mathbf{E}_{t} \left\{ (1 - d_{t+1}) \left[\kappa + (1 - \delta) q_{t+1} \right] + d_{t+1} q_{t+1}^{d} \right\}$$

and secondary market value in default

$$q_{t}^{d} = \frac{1}{1 + r_{t}^{\text{rf}}} \mathbf{E}_{t} \left\{ (1 - \lambda) \, q_{t+1}^{d} + \lambda \phi \left[d_{t+1} q_{t+1}^{d} + (1 - d_{t+1}) \left(\kappa + (1 - \delta) q_{t+1} \right) \right] \right\}$$

The risk-free rate in the financial center $r_{t+1}^{\rm rf} = (1 - \rho_r)\nu_t + \rho_r r_t^{\rm rf} + \sigma_{r,\varepsilon} \varepsilon_{t+1}$

Yield-to-maturity spreads $\kappa/q_t - \kappa/q_t^{\rm rf}$, but also in default, with q_t^d

Work in Progress

Skipped today...

- Recursive formulation with states $\langle s = \langle A, r^{\text{rf}}, \nu \rangle, b \rangle$, sov choice b'
- Markov Perfect Equilibrium definition
- Calibration
- Methods for construction of stochastic IRFs (Koop et al., 1996)

Coming up...

- IRFs for A_t , r_t^{rf} , and v_t shocks
- Policies, as functions of b_{t+1} , counterfactual capital flows
- \blacksquare Policies, as functions of b_t , indebtedness and default risk on eq'm path

IRF: Productivity Shock $A \downarrow$

Standard behavior

- Low output and consumption
- Depressed labor input
- Tight domestic financial conditions
- CA reversal
- High spread

IRF: Risk-free Rate Shock $r^{rf} \uparrow$

Recession, high spreads

- Low output and consumption
- Depressed labor input
- Tight domestic financial conditions
- CA reversal
- High spread

Fairly transitory.

IRF: Risk-free Rate *News* Shock ν ↑

Recession, high spreads

- Low output and consumption
- Depressed labor input
- Tight domestic financial conditions
- CA reversal
- High spread

Persistent. Predictable.

Policy Functions, the Role of b_{t+1}

Expansionary capital inflows.

Counterfactual $b_{t+1} \uparrow$

- Higher output and consumption
- Higher labor supply
- Looser domestic financial frictions
- Higher expected MU next period
- Higher default risk

Policy Functions, the Role of b_t

On the equilibrium path, higher debt implies

- Low output and consumption
- Depressed labor input
- Tight domestic financial conditions
- Lower capital inflows
- High yields

No "Consumption Boom Before Default" aka "Full Dilution"

In standard models, with recovery, instead of defaulting today

- Choose $b_{t+1} \rightarrow \infty$ (highest on grid)
- Lenders transfer to you now $q_t b_{t+1} \rightarrow \text{NPV}$ of eventual recovery (level)
- Default next period with probability 1

Some proposed fixes: underwriting standards ($q_t \ge q$), portfolio adjustment costs

Not needed in our model. Domestic labor market distortions discipline borrowing.

Tentative Conclusions

A near-standard sovereign default model with production exhibits

- low output & high spread in response to (expected) risk-free rate movements
- standard productivity shock dynamics
- expansionary capital inflows
- domestic financial frictions mirror international conditions in eq′m

Missing so far

- Quantitative analysis
- Role of ν persistence
- Limitations of the standard model ($r^{\text{rf}} \uparrow \Rightarrow \text{spread} \downarrow$)