Decomposition of Graphs: Computing Strongly Connected Components

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Graph Algorithms

Data Structures and Algorithms

Learning Objectives

Efficiently compute the strongly connected components of a directed graph.

Last Time

- Connectivity in directed graphs.
- Strongly connected components.
- Metagraph.

Problem

Strongly Connected Components

Input: A directed graph G

Output: The strongly connected

components of G.

Easy Algorithm

EasySCC(G)

```
for each vertex \mathbf{v}:
  run explore(v) to determine
     vertices reachable from v \stackrel{\text{Lets name this}}{\text{list as X}}
for each vertex v:
  find the u reachable from v that
                              From the list X
     can also reach v
these are the SCCs
```

Runtime $O(|V|^2 + |V||E|)$. Want faster.

Outline

1 Sink Components

2 Algorithm

Sink Components

Idea: If v is in a sink SCC, explore(v) finds vertices reachable from v. This is exactly the SCC of v.

Finding Sink Components

Need a way to find a sink SCC.

Theorem

Theorem

If $\mathcal C$ and $\mathcal C'$ are two strongly connected components with an edge from some vertex of $\mathcal C$ to some vertex of $\mathcal C'$, then largest post in $\mathcal C$ bigger than largest post in $\mathcal C'$.

Proof

Cases:

- Visit C before visit C'
- Visit C' before visit C

Case I

Visit \mathcal{C} first

- lacksquare Can reach everything in \mathcal{C}' from \mathcal{C} .
- **Explore** all of C' while exploring C.
- $lue{\mathcal{C}}$ has largest post.

Case II

Visit C' first

- \blacksquare Cannot reach $\mathcal C$ from $\mathcal C'$
- Must finish exploring C' before exploring C
- lacksquare C has largest post.

Conclusion

The vertex with the largest postorder number is in a source component!

Problem: We wanted a sink component.

Reverse Graph

Let G^R be the graph obtained from G by reversing all of the edges.

Reverse Graph Components

- lacksquare G^R and G have same SCCs.
- Source components of G^R are sink components of G.

Find sink components of G by running DFS on G^R .

Problem

Which of the following is true?

- The vertex with largest postorder in G^R is in a sink SCC of G.
- The vertex with the largest preorder in *G* is in a sink SCC of *G*.
- The vertex with the smallest postorder in *G* is in a sink SCC of *G*.

Solution

Which of the following is true?

- The vertex with largest postorder in G^R is in a sink SCC of G.
- The vertex with the largest preorder in *G* is in a sink SCC of *G*.
- The vertex with the smallest postorder in G is in a sink SCC of G.

Outline

1 Sink Components

2 Algorithm

Basic Algorithm

SCCs(G)

```
run DFS(G^R)
let v have largest post number
run Explore(v)
vertices found are first SCC
Remove from G and repeat
```


This is G while the numberings are GR

Improvement

- Don't need to rerun DFS on G^R .
- Largest remaining post number comes from sink component.

New Algorithm

SCCs(G)

```
Run DFS(G^R) And Mark all the pre and post order numbers for v \in V in reverse postorder: if not visited(v):

Explore(v) Now Run DFS on G

mark visited vertices

as new SCC
```

Kosaraju's algo is exactly similar to this algo but post order is found on G and connected components is found on GR in reverse post order of G

Notice that these numberings are postorder numbers obtained by DFS on GR

Runtime

- \blacksquare Essentially DFS on G^R and then on G.
- Runtime O(|V| + |E|).

Because this is just two DFS first on Gr and then on G the run time is O(|V| + |E|) + O(|V| + |E|) = O(|V| + |E|)