AGA KHAN UNIVERSITY EXAMINATION BOARD HIGHER SECONDARY SCHOOL CERTIFICATE

CLASS XI

MODEL EXAMINATION PAPER 2023 AND ONWARDS

INSTRUCTIONS

- 1. Read each question carefully.
- 2. Answer the questions on the separate answer sheet provided. DO NOT write your answers on the question paper.
- 3. There are 100 answer numbers on the answer sheet. Use answer numbers 1 to 30 only.
- 4. In each question, there are four choices A, B, C, D. Choose ONE. On the answer grid, black out the circle for your choice with a pencil as shown below.

Candidate's Signature

- 5. If you want to change your answer, ERASE the first answer completely with a rubber, before blacking out a new circle.
- 6. DO NOT write anything in the answer grid. The computer only records what is in the circles.
- 7. A formulae list is provided on page 2. You may refer to it during the paper, if you wish.
- 8. You may use a scientific calculator if you wish.

Aga Khan University Examination Board List of Formulae for Business Mathematics XI

Note:

- The symbols have their usual meanings.
- The same formulae list will be provided in annual and re-sit examinations.

Interest and Annuities

$$I = \frac{PTR}{100}$$

$$A = P \times \left(1 + \frac{r}{n}\right)^{nt}$$

$$R = \left(1 + \frac{i}{n}\right)^n - 1$$

$$j = \left(1 + \frac{r}{m}\right)^m - 1$$

Accumulating factor
$$=$$
 $\left(\frac{(1+i)^n-1}{i}\right)$ Annuity $= R \times \left(\frac{(1+i)^n-1}{i}\right)$

Annuity =
$$R \times \left(\frac{(1+i)^n - 1}{i}\right)$$

Linear Equations, Functions and their Graphs

The general form of linear equation is ax + by + c = 0

The intercepts form of the linear equation is $\frac{x}{a} + \frac{y}{b} = 1$ $a \neq 0$ and $b \neq 0$

Quadratic Equations, Functions and their Graphs

Quadratic Formula
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Derivative of Algebraic Functions

$$\frac{d}{dx}[c] = 0$$

$$\frac{d}{dx}[f(x)]^n = n[f(x)]^{n-1} \times f'(x)$$

$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x) \qquad \frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$$

$$\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$$

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{\left[g(x) \right]^2}$$

Sequence and Series

$$a_n = a_1 + (n-1)d$$

$$S_n = \frac{a_1 \left(1 - r^n \right)}{1 - r} \text{ if } \left| r \right| < 1$$

$$S_n = \frac{a_1(1-r^n)}{1-r}$$
 if $|r| < 1$ $S_n = \frac{a_1(r^n-1)}{r-1}$ if $|r| > 1$

$$S_n = \frac{n}{2} \left(2a_1 + (n-1)d \right)$$

$$a_n = a_1 r^{n-1}$$

Page 3 of 12

- 1. If a number is increased in a ratio of 5:3 and then the result is 15. The number is
 - A. 5
 - B. 8
 - C. 9
 - D. 15
- 2. If 16 workers can dig a trench in 9 hours, then the number of workers required to dig the same trench in 6 hours will be
 - A. 4
 - B. 11
 - C. 20
 - D. 24
- 3. In a sale, the marked price of goods is reduced by 25%. If the marked price of a diary in the sale was Rs 500, then its selling price will be Rs
 - A. 325
 - B. 375
 - C. 525
 - D. 575
- 4. A health supplement consists of vitamin *A* and *C*. In the health supplement of 250g, if vitamin *A* makes 70% of its weight, then the weight of vitamin *C* will be
 - A. 30 g.
 - B. 75 g.
 - C. 150 g.
 - D. 175 g.
- 5. The given table shows the relation between two quantities s and t.

S	2	4	12
t	60	Х	10

From the values in the given table, the value of x will be

- A. $\frac{1}{30}$
- B. $\frac{5}{6}$
- C. 30
- D. 120

Page 4 of 12

- 6. If the annual interest rate is 20 % and the interest is compounded semi-annually, then the interest rate per period will be
 - A. 5%.
 - B. 10%.
 - C. 20%.
 - D. 40%.
- 7. The sum of annuity for Rs 10,000 at interest rate of 10% compounded annually, will be Rs
 - A. 4,641
 - B. 6,105
 - C. 46,410
 - D. 61,051
- 8. Alam invested his savings of Rs 110,000 in two different banks. In ABC Bank, he invested Rs 50,000 at the rate of 6% per annum for three years. In PQR Bank, he invested Rs 60,000 at the rate of 5% per annum for three years.

The total amount of interest earned by Alam after three years will be Rs

- A. 6,000
- B. 6,050
- C. 18,000
- D. 18,150
- 9. Which of the following ordered pairs lies on y-axis?
 - I. (0, 3) and (0, -3)
 - II. (3,0) and (-3,0)
 - III. (0,0)
 - A. I only
 - B. II only
 - C. I and III
 - D. II and III
- 10. The equation 3x + y = 6 represents a straight line. The x-intercept of the line is
 - A. $\frac{1}{6}$
 - B. $\frac{1}{2}$
 - C. 2
 - D. 6

Page 5 of 12

Which of the following points does NOT lie on the line y - 4x = -1?

- A. (-1, -3)
- B. (0, -1)
- C. (3, 11)
- D. (1,3)

In the given graph, the x-intercept and the y-intercept respectively are

- 3 and $\frac{9}{2}$ A.
- B. $\frac{9}{2}$ and 3 C. (0,3) and $\left(\frac{9}{2},0\right)$
- $\left(0, \frac{9}{2}\right)$ and (3,0) D.

The solution set of a quadratic equation $x^2 + 2x = 0$ will be

- $\{0, 2\}.$ A.

- $D. \qquad \left\{0, -\frac{1}{2}\right\}.$

Page 6 of 12

14. The vertex of the parabola $y = x^2 - 2$ is

- A. (2,0).
- B. (0,2).
- C. (-2,0).
- D. (0, -2).

Use the given graph to answer Q.15. and Q.16.

Consider the given quadratic function.

- 15. The range of the quadratic function is all the
 - A. real numbers
 - B. real numbers less than -1
 - C. real numbers greater than -1
 - D. real numbers greater than -1 and less than -3
- 16. The y-intercept of the quadratic function is
 - A. –2
 - B. –3
 - C. -4
 - D. -16

Page 7 of 12

- 17. The solution set of the simultaneous equations x = y and x = -y, is
 - A. $\{(1,1)\}$.
 - B. $\{(0,0)\}$.
 - C. $\{(1,-1)\}$.
 - D. $\{(-1,1)\}$.
- 18. The given number line shows solution region of a linear inequality.

The given number line represents the inequality

- A. x < 3
- B. x > 3
- C. $x \le 3$
- D. $x \ge 3$
- 19. The given figure shows the solution region of inequalities.

Two of the inequalities satisfying the solution region are

- A. $x \le 4$ and $y \le 3$
- B. $x \le 3$ and $y \le 4$
- C. $x \ge 4$ and $y \ge 3$
- D. $x \ge 3$ and $y \ge 4$

Page 8 of 12

- If $L-M = \begin{bmatrix} -2 & 0 & 1 \end{bmatrix}$, then the order of matrix L
 - A. will be 1×1
 - В. will be 1×3
 - C. will be 3×1
 - cannot be determined
- For the matrices $X = \begin{bmatrix} a & b \end{bmatrix}$ and $Y = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, the matrix multiplication $X \times Y$ equals to 21.

 - A. $\begin{bmatrix} a \\ b \end{bmatrix}$.

 B. $\begin{bmatrix} a & b \end{bmatrix}$.

 C. $\begin{bmatrix} a+b \end{bmatrix}$.

 D. $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$.
- $\begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix} X = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 0 & 2 \end{bmatrix}, \text{ the value of matrix } X \text{ is}$ In the matrix equation $\begin{bmatrix} 2 & 3 & 1 \\ 2 & 3 & 1 \\ 2 & 3 & 1 \end{bmatrix} - X =$ 22.

 - A. $\begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix}.$ B. $\begin{bmatrix} 1 & 3 & -1 \\ 1 & 3 & -1 \\ 1 & 3 & -1 \end{bmatrix}.$
 - C. $\begin{bmatrix} -1 & -3 & 1 \\ -1 & -3 & 1 \\ -1 & -3 & 1 \end{bmatrix}$.

On solving the simultaneous linear equations 5y - 2x = 11 and x - 3y = 5 using Cramer's rule, the value of y will be

A.
$$\begin{vmatrix} -2 & 5 \\ 1 & -3 \end{vmatrix}$$

B.
$$\begin{vmatrix} 5 & 5 \\ 11 & -3 \end{vmatrix}$$
.

C.
$$\begin{vmatrix} -2 & 11 \\ 1 & 5 \end{vmatrix}$$

D.
$$\begin{vmatrix} 5 & 5 \\ 11 & 11 \end{vmatrix}$$

 $\begin{vmatrix} x - \overline{b} \\ x \end{vmatrix} \text{ is equal to}$ A. $\frac{1}{2} \left(\frac{ax - b}{a} \right)^{\frac{1}{2}}$ 3. $\frac{1}{2a} \left(\frac{ax - b}{a} \right)^{\frac{1}{2}}$ $\frac{1}{2} \left(\frac{ax - r}{a} \right)^{\frac{1}{2}}$ 24.

A.
$$a^2 + b^2$$

B.
$$a^2 + b^2$$

C.
$$b^2 - a^2$$

D.
$$-b^2 - a^2$$

A.
$$\frac{1}{2} \left(\frac{ax - b}{a} \right)^{\frac{1}{2}}$$

B.
$$\frac{1}{2a} \left(\frac{ax-b}{a} \right)^{\frac{1}{2}}$$

$$C. \qquad \frac{1}{2} \left(\frac{ax - b}{a} \right)^{-\frac{1}{2}}$$

D.
$$\frac{1}{2a} \left(\frac{ax - b}{a} \right)^{-\frac{1}{2}}$$

The first derivative of the function $y = 1 - x^{-n}$ is 26.

A.
$$nx^{-n-1}$$

B.
$$-nx^{-n-1}$$

C.
$$n(1-x)^{-n-1}$$

D.
$$-n(1-x)^{-n-1}$$

Page 10 of 12

- 27. If $f(x) = \sqrt[3]{x}$, then f'(x) will be
 - $A. \qquad \frac{1}{3} \left(x^{-\frac{1}{2}} \right).$
 - $B. \qquad \frac{1}{3} \left(x^{-\frac{2}{3}} \right).$
 - $C. \qquad \frac{1}{6} \left(x^{-\frac{1}{2}} \right).$
 - $D. \qquad \frac{1}{6} \left(x^{-\frac{2}{3}} \right).$
- 28. The equation for the gradient (slope) of the tangent to the curve $y = (ax + bx)^{-2}$ will be
 - A. $-2(ax+bx)^{-3}$
 - B. $-2(ax+bx)^{-1}$
 - C. $-2(ax+bx)^{-3}(a+b)$
 - D. $-2(ax+bx)^{-1}(a+b)$
- 29. If 2^{6-n} is the n^{th} term of a geometric sequence, then the common ratio will be
 - A. 2
 - B. $-\frac{1}{2}$
 - C. $\frac{1}{2}$
 - D. 2
- 30. If the 23rd term of an arithmetic progression is 46 and the common difference is 2, then the 1st term will be
 - A. 2
 - B. 0
 - C. 1
 - D. 2

Please use this page for rough work

Model Linds Teathing Outh