Základy spojité optimalizace

Ladislav Láska

2. března 2010

Obsah

1	Úvo	od
	1.1	Úloha, cílová funkce, množina řešení
	1.2	Dělení na jednotlivé disciplíny optimalizace
	1.3	Motivační úloha
		1.3.1 Lineární programování
		1.3.2 Celočíslené programování
		1.3.3 Nelineární programování
		1.3.4 Parametrické programování
		1.3.5 Vícekriteriální programování
		1.3.6 Dynamické programování
2	Vol	ný extrém
	2.1	Postačující podmínka
	2.2	Penalizační metody
	2.3	Bariérové metody
	2.4	Penalizačně-bariérové (SUMT)
3	Met	ody hledání lokálního minima
	3.1	Gradientní
	3.2	Newtonova metoda
	3.3	Lemkeho metoda
4	Line	eární programování

1 Úvod

1.1 Úloha, cílová funkce, množina řešení

Definice Úloha matematického programování (optimalizace) rozumíme úlohu

$$\min_{x \in M} f(x)$$

kde $f: \mathbb{R}^n \to \mathbb{R}$.

Definice Funkci f(x) nazýváme **cílovou**, účelovou, kriteriální, objektivní funkcí.

Definice Množinu M nazýváme množinou přípustných řešení. Prvek $x \in M$ nazýváme přípustným řešením optimalizační úlohy. Prvek $x_0 \in M$ nazveme optimálním řešením.

1.2 Dělení na jednotlivé disciplíny optimalizace

- 1. Volný extrém $\min_M f(x)$
- 2. Vázaný extrém $\min_M f(x), M \subset \mathbb{R}^n$
 - (a) Lineární programování: $\min_{M} cx$, $M = \{x | A_x \{=, \leq, \geq\} b\}$, kde $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in b^m$
 - (b) Nelineární programování: $\min_M f(x), M = \{x|g_j(x) < 0 (j=1,...,m)\}, f,g_j: \mathbb{R}^n \to \mathbb{R}$
 - i. Konvexní a zobecněné konvexní programování f,g_j konvexní, dále pak kvadratické a hyperbolické programování
 - ii. Nekonvexní (speciální typy)
 - (c) Celočíselné programování: Lineární/nelineární programování, navíc podmínky pro celočíselnost Ax*b, aby $x\in\mathbb{N}.$
 - (d) Parametrické programování: Lineární/nelineární programování, navíc parametr $\min_{M(U)} c(\lambda)^T x,\ c(x) = c + C\lambda,\ M(U) = \{x|A(U)x*b(U)\}$
 - (e) Vícekriteriální (vektorové) programování: $\min_M f(x), f(x) = \{f_1(x), ..., f_s(x)\}$
 - (f) Dynamické programování hledání optimální strategie
 - (g) Spojité programování (optimalizační procesy)
 - (h) Teorie her optimální strategie dvou hráčů
 - (i) Semiinfinitní programování nekonečně mnoho podmínek

1.3 Motivační úloha

1.3.1 Lineární programování

 $V_1,...,V_n$ - výrobci vyrábějící výrobek V v množstvích $a_i>0$ $S_1,...,S_k$ - spotřebitelé požadující výrobek V v množstvích $b_j>0$. Známe cenu za dopravu jednotky výrobku V z V_i do S_j - $c_{i,j}\geq 0$.

Předpoklad: ceny za dopravu rostou lineárně.

Cíl: minimalizovat celkové náklady na dopravu.

Hledáme: množství $x_{i,j} \ge 0$ - kolik výrobce V_i dodá S_j .

Cílová funkce

$$f(x) = \sum_{i} \sum_{j} c_{i,j} x_{i,j} \tag{1}$$

na množině řešení

$$M = \{x_{i,j} | \sum_{i=1}^{m} x_{i,j} = b_j \forall j, \sum_{i=1}^{m} x_{i,j} = a_i \forall i, \sum_{i} a_i = \sum_{i} b_j, x_{i,j} \ge 0 \forall i \forall j \}$$
 (2)

Všechno je lineární - úloha lineárního programování.

1.3.2 Celočíslené programování

Pokud nelze položky libovolně dělit (například lidi), můžeme přidat celočíselnou podmínku do množiny řešení:

$$x_{i,j} \mathbb{N}_0 \forall i \forall j$$
 (3)

1.3.3 Nelineární programování

Zrušíme předpoklad lineárního růstu cen (tedy cena závisí na množství)

$$f(x) = \sum_{i} \sum_{j} c_{i,j}(x_{i,j}) x_{i,j}$$
(4)

$$c_{i,j} = C_{i,j} + c_{i,j} x_{i,j}$$

1.3.4 Parametrické programování

Produkce není pevná a závisí na parametru: $a_i = \lambda a'_i$. Ostatní vztahy můžou zůstat třeba jako u lineárního programování.

1.3.5 Vícekriteriální programování

Minimalizovat ceny za dopravu, maximalizovat zisky Z.

$$\min\{f(x), g(x)\}\tag{5}$$

$$f(x) = \sum_{i} \sum_{j} c_{i,j} x_{i,j} \tag{6}$$

$$g(x) = -Z(x_{i,j}) \tag{7}$$

1.3.6 Dynamické programování

Ceny závisí na rozhodnutí.

2 Volný extrém

Hledání $\min f(x)$.

2.1 Postačující podmínka

Jestliže má funkce f(x) v $x_0 \in \mathbb{R}^n$ spojisté 2. parciální derivace, $\nabla f(x_0) = 0$, $\nabla^2 f(x_0)$ (Hessova matice) je pozitivně definitní, potom má reálná funkce f(x) v x_0 ostré lokální minimum.

2.2 Penalizační metody

Máme úlohu

$$\min_{M} f(x), \quad M = \{x | g_j(x) \le 0, j = 1, ..., n\}$$
(1)

Hledáme penalizační funkci p(x) vyjadřující pokutu za to, že pracujeme s $x \in M$. p(x) je vytvořená z podmínek g_i a řešíme posloupnost úloh na volný extrém:

$$\min\{f(x) + \alpha_k p(x)\}\tag{2}$$

Po p(x) požadujeme:

$$p(x) > 0: \quad x \notin M \tag{3}$$

$$p(x) = 0: \quad x \in M \tag{4}$$

$$p(x)$$
 spojitá (5)

Posloupnost takovýchto úloh za jistých okolností konverguje k optimálnímu řešení.

Příklad

$$\sum_{j=1}^{n} (g_j^+(x))^2, \quad g_j^+(x) = \max\{g_j(x), 0\}$$
 (6)

2.3 Bariérové metody

Hledáme bariérovou funkce b(x), která nám zabrání vystoupit z množiny M. Řešíme tedy posloupnost úloh:

$$\min\{f(x) + \frac{1}{\beta_k}b(x)\}, \quad \beta_k \to \infty$$
 (1)

A po funkce b(x) požadujeme:

$$b(x) \le 0: \quad x \in M \lim_{x \to \partial M} b(x) = \infty$$
 (2)

kde ∂M je hranice množiny.

Příklad

$$b(x) = -\sum_{j} \frac{1}{g_j(x)} \tag{3}$$

$$b(x) = -\sum_{j} \log(-g_j(x)) \tag{4}$$

2.4 Penalizačně-bariérové (SUMT)

Rozdělíme množinu $\{1 \dots m \}$ na I_1 disjunktní I_2 . Řešíme posloupnost úloh:

$$\min\{f(x) + \alpha_k \sum_{j \in I_1} \varphi(g_j(x)) + \frac{1}{\beta_k} \sum_{j \in I_2} \psi(g_j(x))\}$$
 (1)

3 Metody hledání lokálního minima

3.1 Gradientní

Podle věty o přírůstku funkce funkce roste nejvíce ve směru gradientu:

$$f(x) = f(x_0) + \nabla f(x_0 + \theta(x - x_0))^T (x - x_0)$$
(1)

Počítáme:

$$x_{k+1} = x_k - \zeta \nabla f(x_k)$$
, kde ζ je řešením (2)

$$\min_{\zeta < 0} f(x_k - \zeta \nabla f(x_k)) \tag{3}$$

3.2 Newtonova metoda

$$f(x) = f(x_k) + \nabla f(x_k)(x - x_k) + \frac{1}{2}(x - x_k)\nabla^2 f(x_k)(x - x_k)$$
 (1)

$$\nabla f(x) = 0 \tag{2}$$

$$0 + \nabla f(x_k) + \nabla^2 f(x_k)(x - x_k) - 0 \tag{3}$$

$$x_{k+1} = x_k - \nabla f(x_k)(\nabla^2 f(x_k))^2$$
 (4)

$$x_1 = 0 \tag{5}$$

3.3 Lemkeho metoda

Nápad: vezmeme výchozí řešení x a vzdálenost ρ , metodou půlení přibližujeme.

Požadavky: $\{x|f(x) \leq f(x_1)\}$ je omezená.

Problém vhodně zvolit x_1 .

Metoda K x_1 sestavíme $x_1 + \rho e^i$ pro $\rho > 0$ a spočítáme funkční hodnoty $f(x_1 + \rho e_i)$ a porovnáme s funkční hodnotou v x_1 . Pokud:

1.
$$f((x_1 + \rho e_i) \ge f(x_1) \quad \forall i \quad \Rightarrow \quad \rho = \frac{\rho}{2}$$

2.
$$\exists j: y := f(x_1 + \rho e_j) < f(x_1) \implies \text{opakujeme pro } y$$

4 Lineární programování

Definice Úlohou pro lineární programování v rovnicovém tvaru rozumíme úlohu:

$$\min_{M} c^{T} x, \quad M = \{x | Ax = b, x \ge o\},\tag{1}$$

kde
$$A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, c \in \mathbb{R}^n, \operatorname{rank}(A) = m, 1 \le m < n, b \ge 0$$
 (2)

Definice Úlohou lineárního programování normálním tvaru rozumíme

$$\min_{M} c^{T} x, M = \{ x | Ax \le b, x \ge 0 \}, \tag{3}$$

kde
$$A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, c \in \mathbb{R}^n, n, m \ge 1$$
 (4)

4.1 Podprostor

Tvrzení Množina

$$R = \{x \in \mathbb{R}^n | a^T x = b, a \neq 0\}$$

$$\tag{1}$$

představuje podprostor dimenze n-1 nazývaný **nadrovinou**.

Důkaz Protože $a \neq 0 \Rightarrow \exists a_1 \neq 0 \Rightarrow x_1 = \frac{b}{a_1} - \sum_{i=1}^n \frac{a_i}{a_1} x_i$. Tedy máme n-1 LN vektorů v R.

Tvrzení Množina $R^{n-\alpha}=\{x\in\mathbb{R}^n|a_i^Tx=b_i,i+1...\alpha\}$ představuje podprostor R^n dimenze $n-\alpha$.

4.2 Poloprostor

Definice Pro libovolnou nadrovinu $R = \{x \in \mathbb{R}^n | a^Tx = b, a \neq b\}$ nazýváme:

- 1. $H^+=\{x\in\mathbb{R}^n|a^Tx>b\}$ otevřeným kladným (pravým) poloprostorem \mathbb{R}^n příslušným R
- 2. $H^+ = \{x \in \mathbb{R}^n | a^Tx < b\}$ otevřeným záporným (levým) poloprostorem \mathbb{R}^n příslušným R.
- 3. $\overline{H^+}=\{x\in\mathbb{R}^n|a^Tx\geq b\}$ uzavřeným kladným (pravým) poloprostorem \mathbb{R}^n příslušným R.
- 4. $\overline{H^+}=\{x\in\mathbb{R}^n|a^Tx\leq b\}$ uzavřeným záporným (levým) poloprostorem \mathbb{R}^n příslušným R.

Tvrzení Platí:

1.
$$H^+ \cup H^- \cup R = \mathbb{R}^n$$

2.
$$\overline{H^{+}} = H^{+} \cup R$$
. $\overline{H^{-}} = H^{-} \cup R$

3.
$$H^+ \cap H^- = H^+ \cap R = H^- \cap R = \emptyset$$

Tvrzení Platí:

$$\dim \mathcal{H}_i^+ = \dim \overline{\mathcal{H}_i^+} = n \tag{1}$$

$$kde \mathcal{H}_i^+ = \{ x \in \mathbb{R}^n | x_i > 0 \}$$
 (2)

$$\overline{\mathcal{H}_i^+} = \{ x \in \mathbb{R}^n | x_i \ge 0 \} \tag{3}$$

Důkaz V každém takovém prostoru leží všechny jednotkové vektory.

Tvrzení Platí:

$$\dim \bigcap_{i=1}^{n} \overline{\mathcal{H}_{i}^{+}} = \dim \bigcap_{i=1}^{n} \mathcal{H}_{i}^{+} = n \tag{4}$$

Důsledek Množina přípustných řešení lineárního programování:

$$M = \{x | Ax = b, x \ge 0\} \tag{5}$$

kde $b(A) = m, a \le m < n$.

Taktéž lze zapsat jako:

$$M = \mathbb{R}^n - m \cap \bigcap_{i=1}^n \overline{\mathcal{H}_i^+}$$
 (6)

Definice Každou množinu $M \subset \mathbb{R}^n$, která se deá popsat jako průnik konečného počtu nadrovin a uzavřených poloprostorů nazýváme konvexním polyedrem.