Red Hat OpenShift Al

RHOAI Advanced Topics

Agenda

- Customizing Workbenches
- Pipelines
- LLM Serving
- Recommended Practices

Customizing Workbenches

Base Notebook Images

Reproducible and shareable environments for building, training and serving

- partner (Anaconda, Intel)
- you (custom notebooks)

Customizing the workbench

Adding packages on top of a good image

Just remember that they are removed when restarting the workbench*

Creating your own custom image with all dependencies you need

You can now version and maintain it according to your preferences

Notebook image

Image selection *

Pipelines

Data Science Pipeline Concepts

- ▶ **Pipeline** is a workflow definition containing the steps and their input and output artifacts.
- ▶ **Run** is a single execution of a pipeline whereas a recurring run is a scheduled, repeated execution of a pipeline.
- ▶ **Step** is a self-contained pipeline component that represents an execution stage in the pipeline.

Pipelines

A **Pipeline** is a **sequence of steps** that will be executed in defined order.

Each **Step** will execute some **code** that will be run into a single **container** using a defined **runtime**.

A Pipeline can be graphically created and submitted through a Workbench or through the Dashboard as a YAML file.

A submitted **Pipeline** is **executed** by the **Pipeline Server**, which will create and delete the steps containers.

Pipelines

Data Science Pipelines Technologies

- <u>Elyra Pipelines</u> A JupyterLab extension, which provides a visual editor for creating data science pipelines
- <u>Kubeflow Pipelines</u> Specialized data science pipelines engine which can translate an Elyra visual pipeline execution (or Kubeflow SDK calls) into a Tekton pipeline running in OpenShift.
- OpenShift Pipelines (based on <u>Tekton</u>, soon <u>Argo Workflows</u>) It executes each step in the pipeline as an individual container and ensures that each container gets allocated the resources (GPU, CPU, memory)
- OpenShift GitOps with ArgoCD for automated model deployments GitOps can be leveraged to push models to other OpenShift instances (including OpenShift Edge devices)

Kubeflow Pipelines Ecosystem

IDE Editor Orchestrator Runtime

Experiment tracking

Pipeline runs can be used as experiments, and the run view can be used to track those experiments.

Artifacts

Artifacts are stored in S3, it stores things such as:

- Logs
- Passed data
- Code and dependent files needed to run the pipeline
- (Soon) results

Passing Data

A few ways to pass data between steps:

- Small data:
 - Through parameters
- Large data:
 - Through volumes
 - Object storage

Automation

We see a pattern of pushing pipelines into production instead of models.

Why?

• Ability to automatically retrain a model on new data and get it served.

How?

- Data Science Pipelines as CI
- ArgoCD/Tekton as CD

LLM Serving

Generative vs Predictive models

AI ERA

Generative vs Predictive models

Bank is not only predictive

Predictive

Generative

What to think about when serving an LLM

RAG Example

OpenShift AI Chat (Experimental)

This is an example implementation only, based on partial documentation. Results may be incomplete, meaningless, or even totally wrong... Feedback welcome on rhoai-chatbot Slack channel

What is OpenShift AI? OpenShift AI is a self-managed Operator for Red Hat OpenShift Container Platform that integrates various components and services for data scientists and IT operations administrators. It provides features such as a dashboard, model serving, data science pipelines, and tools and applications for data scientists to organize their work and deploy trained machine learning models to serve intelligent applications in production. Sources: https://ai-on-openshift.io/getting-started/openshift/ · https://access.redhat.com/documentation/en-us/red hat openshift ai self-managed/2.6/html-single/introduction to red hat openshift ai/index https://ai-on-openshift.io/getting-started/openshift-ai/ • https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.6/html-single/installing_and_uninstalling_openshift_ai_self-managed in_a disconnected_environment/index Type a message... Submit

RAG Example

RAG Example

Recommended Practices

Some Recommended practices

- These are general recommended practices and are not all specific to OpenShift Al
- There can be exceptions and situations where other factors can overrule these recommendations

Version Control (code)

- Ensure that you use appropriate tools to version control and collaborate on code
- git-based version control is the standard
- All text-based code (*.ipynb, *.py, requirements.txt, *.pipeline, *.yaml) should be tracked with version control

Version Control (data)

- Ensure that data used for training is tracked in such a way that model training is a <u>reproducible</u> exercise.
 - code
 - container image
 - data
 - parameters
- Multiple approaches can be used to achieve this
 - DVC
 - S3-storage with versioning scheme
 - o etc...

"Off-Cluster" storage

- If all data/code/artifacts is stored off-cluster, it makes it easier to leverage the same code/data into multiple workbenches/projects/clusters.
 - git repo
 - s3 storage (or other)

Pinning versions

- All else being equal, ensure that you are very explicit in the exact versions of the packages you are using
- Good:

```
0 | 1xm1 = 2.3.4
```

Less stable over time:

```
0 lxml
0 lxml>=2.2.0
0 lxml>=2.2.0,<2.3.0</pre>
```

- See
 https://pip.pypa.io/en/stable/topics/repeatable-ins talls/
- pip freeze helps with pinning sub-dependencies

Use Custom Workbench/Runtime Images

- The default images provided as part of RHOAI
 - are starting points
 - are supported
 - will change over time
- The pace of change in these images may be faster or slower than what you need
- Their content may not be 100% of what you need
- As your projects mature, you may require more stability in these environments
- Custom versions of image give you complete and fine-grained control

Prototyping vs Production

- During the prototyping phase, velocity is key:
 - try out different things
 - explore, try, etc...
 - "inner" loop
 - GUI-driven
- When things get closer to production, stability will become key:
 - reproducibility
 - validation tests (confirm assumptions hold true)
 - stability
 - code-driven

Every artifacts created by the RHOAI user interface has a

YAML representation


```
Project: test ▼
InferenceServices > InferenceService details
(S) my-model
Details
           YAML
        apiVersion: serving.kserve.io/v1beta1
        kind: InferenceService
        metadata: --
        spec:
          predictor:
            maxReplicas: 2
            minReplicas: 2
   10
            model:
   11
              modelFormat:
   12
                name: onnx
   13
                version: '1'
   14
              name: ''
   15
              resources: {}
   16
              runtime: my-model
   17
              storage:
   18
                key: aws-connection-abc
   19
                path: mymodel/v01
                                                        Hat
   20 > status: ...
                                                       enShift
```

- This can be very useful:
- Large scale:
 - Script the creation of a large number of artifacts
 - (instead of having to manually create them in the GUI)
- Maintain State:
 - GitOps Principles

Model server replicas Number of model server replicas to deploy ③ - 2 +

- Actual examples are beyond the scope of this training
- Main Principle:
 - instead of relying on evolving user interactions (imperative)
 - rely on a declarative description of state
 - to ensure environment matches with declared state
- Be aware of these possibilities, and leverage them if/when appropriate

MLOps Mindset

- Assume that every action you take will have to be repeated
- And that it will have to yield the same result
- Codify your assumptions, then create checks that ensure assumptions remain unchanged
 - o "because the data is normally distributed, I will..."
- Move from an "artisan" mindset to a "factory" mindset
- Invest in automation
- Build it in such a way that it becomes a useful tool, and not an overhead

MLOps Flow

Your turn

- General discussion:
 - What other recommended practices do you follow internally?
 - How do you share/encourage/enforce these practices?

Roadmap

Link <u>here</u>

End of section

- in linkedin.com/company/red-hat
- youtube.com/user/RedHatVideos
- facebook.com/redhatinc
- twitter.com/RedHat

