I'm using the Arxiv version 5 Feb 2013

1 Spectral Categories

Summary

Important definitions

Definition	Page Number
Spectral category	8
DK equivalence	9
Module over a spectral category	10
Triangulated closure	10
Triangulated equivalence	11
Morita equivalence	11

Notation

- \bullet Cat_S is the category of small spectral categories and spectral functors.
- \bullet Cat_T is the category of small simplicial categories and simplicial functors.

Key results

1. There's a Quillen adjunction

$$Cat_S \xrightarrow{\Sigma_+^{\infty}} Cat_T$$

where $\Omega^{\infty}(F(A,B))$ is the zeroth space functor or equivalently the simplicial set $[n] \mapsto Hom_{Spt}(\mathbb{S} \otimes \Delta^n, F(A,B)) \cong Hom_{Spc}(\Delta^n, \Omega^{\infty}F(A,B)) \cong \Omega^{\infty}F(A,B)_n$. This is the main theorem of Tabuada's paper "Homotopy Theory of Spectral Categories".