IMT1001: Introducción a la Ingeniería Matemática

Modulo Análisis Numérico Profesor Manuel A. Sánchez manuel.sanchez@uc.cl

Análisis Numérico / Numerical Analysis

"Numerical Analysis is the study of algorithms for the problems of continuous Mechanics"

Trefethen & Bau, Numerical Linear Algebra

Scientific Computing / Numerical or Computational Mathematics

Análisis Numérico en la UC

Profesores:

- Federico Fuentes, IMC
- Manuel A. Sánchez, IMC
- Thomas Fuhrer, MAT
- Norbert Heuer, MAT

Profesores en areas cercanas

- Eduardo Cerpa, IMC
- Carlos Sing-Long, IMC
- Elwin van't Wout, IMC
- Daniel Hurtado, IBM
- Francisco Sahli, IBM

Cursos:

- Calculo Científico MAT2605
- Algebra Lineal Numérica, IMT2111
- Algoritmos paralelos en computacion científica IMT2112
- Análisis de Fourier Aplicado IMT2113
- Control de sistemas lineales IMT2115
- Métodos para Ecuaciones
 Diferenciales, IMT3410
- Aplicaciones de Análisis Funcional y Ecuaciones diferenciales parciales, IMT3130
- Elementos Finitos Lineales
- Elementos Finitos No Lineales
- Tópicos de Análisis Numérico IMT

Numerical analysis

- Map of Mathematics <u>link</u>
 Important Journals
- Acta Numerica link
- SIAM Numerical Analysis <u>link</u>
- SIAM Scientific Computing <u>link</u>
- Computer Methods in Applied Mechanics and Engineering <u>link</u>
- Mathematics of Computations <u>link</u>
- Numerische Mathematik <u>link</u>
- Journal of Computational Physics <u>link</u>
- IMA Numerical Analysis <u>link</u>

Bad numerics

- Tacoma narrows bridge <u>link</u>
- By Douglas Arnold UMN <u>link</u>
- By Todd Arbogast UTA <u>link</u>

Clase 1: Métodos numéricos para ecuaciones diferenciales ordinarias

Ecuaciones Diferenciales Ordinarias

Consideremos una ecuación diferencial ordinaria de primer orden con condición inicial, hallar $y:[t_0,T]\to\mathbb{R}$

$$\begin{cases} \frac{dy}{dt} &= f(t,y), \quad \forall t \in [t_0,T] \\ y(t_0) &= y_0 \end{cases}$$

Problema de Cauchy

- El intervalo $[t_0, T]$ es un dominio en \mathbb{R} .
- La función $f:[t_0,T]\to\mathbb{R}$ se asume contínua.
- y_0 se llama dato inicial.

Teorema de existencia y unicidad

Asumimos que f es Lipchitz contínua con respecto al segundo argumento, esto es, exite L>0 tal que

$$||f(t,y_1) - f(t,y_2)| \le L|y_2 - y_1|, \quad \forall t \in [t_0, T], \ \forall y_1, y_2 \in \mathbb{R}.$$

Entonces existe y = y(t), solución del problema de Cauchy, es úinca y pertenece a $C^1([t_0, T])$.

- Desafortunadamente soluciones explícitas están disponibles para casos muy especiales de EDOs.
- En algunos casos sólo se puede expresar la solución de forma implícita o en forma de serie.
- Buscamos métodos numéricos capaces de aproximar la solución del problema de Cauchy.

Metodos Numericos para EDOs, diferencias finitas

Discretización: Subdividimos el intervalo $[t_0, T]$ en N subintervalos del mismo tamaño, y definimos como nodos t_n a los extremos de estos intervalos, esto es

El problema numérico es encontrar una aproximación $y^n, n = 0, ..., N$ de los valores de la solución del problema de Cauchy en los nodos, esto es,

$$y^n \approx y(t_n)$$

Recordemos la expansión de Taylor en el punto t

$$y(t+h) = y(t) + h \underbrace{y'(t)}_{f(t,y(t))} + \frac{h^2}{2!}y''(t) + \frac{h^3}{3!}y^{(3)}(t) + \dots + \frac{t^n}{n!}y^{(n)}(t) + \dots$$

Método de Euler (1768)

Denotamos nuestra aproximación por y_h^n , n = 0, ..., N. Para el método de Euler explicito la definimos por:

$$y_h^0 = y_0$$

 $y_h^{n+1} = y_h^n + hf(t_n, y_h^n)$

para n = 1, ..., N - 1.

Observación

Alternativamente, podemos derivar la iteración usando el Teorema Fundamental del Cálculo

$$y(t^{n+1}) = y(t_n) + \int_{t_n}^{t_{n+1}} y'(t)dt = y(t_n) + \int_{t_n}^{t_{n+1}} f(t, y(t))dt$$

Obtenemos el método de Euler explícito usando la aproximación de la integral

$$hf(t_n, y(t_n)) \approx \int_{t_n}^{t_{n+1}} f(t, y(t)) dt$$

$$y_h^{n+1} = y_h^n + hf(t_n, y_h^n)$$

Si usamos otra aproximación de la integral podemos obtener otros método. Por ejemplo, si usamos

$$hf(t_{n+1}, y(t_{n+1})) \approx \int_{t_n}^{t_{n+1}} f(t, y(t)) dt$$

obtenemos el método de Euler implícito

$$y_h^0 = y_0$$

$$y_h^{n+1} = y_h^n + h f(t_{n+1}, y_h^{n+1})$$

para n=0,...,N-1. Observe que, en contraste con el método de Euler explícito, el método de Euler implícito requiere resolver un problema no lineal.

Ejemplo

Consideremos el siguiente problema de Cauchy, que modela el crecimiento de una población de bacterias

$$\frac{dy}{dt} = Cy(1 - \frac{y}{B})$$

donde B y C representan el máximo número de bacterias y la razón de crecimiento.

Iteración de Euler explícito:
$$y_h^{n+1} = y_h^n + h C y_h^n (1 - \frac{y_h^n}{B})$$

$$y_h^{n+1} = y_h^n + h C y_h^{n+1} \left(1 - \frac{y_h^{n+1}}{B}\right)$$

necesitamos resolver para
$$y$$

necesitamos resolver para
$$y_h^{n+1}$$
: $y_h^{n+1} - h C y_h^{n+1} (1 - \frac{y_h^{n+1}}{B}) = y_h^n$

Método de Newton para resolver problemas no lineales

Queremos calcular los ceros de una función real f, es decir encontrar

$$x \in \mathbb{R}, \ f(x) = 0$$

M'etodo de Newton. Si asumimos que f es diferenciable, podemos usar la recta tangente de f para generar una iteración.

Consideramos un punto inicial $x^{(0)}$, cercano al cero de f, y definimos la recta tangente L a f en el punto $(x^{(0)}, f(x^{(0)}))$

$$L(x) = f(x^{(0)}) + f'(x^{(0)})(x - x^{(0)})$$

Luego buscamos $x^{(1)}$ el cero de L y lo usamos como una nueva aproximación.

$$x^{(k+1)} = x^{(k)} - (f'(x^{(k)}))^{-1} f(x^{(k)})$$

Método de Newton para sistemas no lineales

Encontrar $\boldsymbol{x} \in \mathbb{R}^n$ tal que:

$$f(x) = \mathbf{0} \iff \begin{cases} f_1(x_1, x_2, ..., x_n) &= 0 \\ f_2(x_1, x_2, ..., x_n) &= 0 \\ \vdots & & & \\ f_n(x_1, x_2, ..., x_n) &= 0 \end{cases}$$
 Matriz Jacobiana:
$$(J_f)_{ij} = \frac{\partial f_i}{\partial x_j}, \quad i, j = 1, ..., n.$$

Dado $x^{(0)} \in \mathbb{R}^n$, calcular para k = 0, 1, 2, ...

Resolver sistema lineal:

$$J_{\boldsymbol{f}}(\boldsymbol{x}^{(k)}) \, \delta \boldsymbol{x}^{(k)} = -\boldsymbol{f}(\boldsymbol{x}^{(k)})$$

Calcular siguiente iteración:

$$oldsymbol{x}^{(k+1)} = oldsymbol{x}^{(k)} + \delta oldsymbol{x}^{(k)}$$

Análisis de convergencia y consistencia del método de Euler

<u>Definición</u>. Un método numérico que aproxima por y_h^n la solución del problema de Cauchy se dice convergente si exite C(h) > 0 tal que

$$|y(t_n) - y_h^n| \le C(h)$$
, para $n = 0, ..., N$

Si $C(h) = \mathcal{O}(h^p)$ para algún p > 0, entonces decimos que el método es convergent de orden p.

Análisis del método de **Euler explícito**. Sea y_h^n la aproximación por la iteración de Euler explícito y definamos el error por e^n . Entonces

$$e^n = y(t^n) - y_h^n = (y(t^n) - y_h^*) + (y_h^* - y_h^n)$$

donde $y_h^* = y(t^{n-1}) + hf(t_{n-1}, y(t_{n-1}))$ es aproximación de Euler explícito comenzando en $(t_{n-1}, y(t_{n-1}))$.

 $y(t_n) - y_h^*$: error por un paso del método de Euler explícito

 $y_h^{\star} - y_h^n$: propagación del error acumulado en el paso t_{n-1} desde t_{n-1} a t_n

El método convergerá si ambos términos van a cero cuando $h \to 0^+$. Definimos el error de truncación local por $\tau_n(h)$ y el error de truncación global $\tau(h)$ por

$$\tau_n(h) = \frac{y(t_n) - y_h^*}{h}, \qquad \tau(h) = \max_n |\tau_n(h)|$$

Observemos que

$$\tau_n(h) = \frac{1}{h} \left(y(t_n) - (y(t_{n-1}) + hf(t_{n-1}, y(t_{n-1}))) \right) \approx \frac{h}{2} y''(\xi_n); \quad \xi_n \in (t_{n-1}, t_n)$$

$$\tau(h) \leq \max_{t \in [t_0, T]} |y''(t)| \frac{h}{2} \leq Ch \xrightarrow[h \to 0^+]{} 0$$

 $\frac{Definición.}{\text{lema de Cauchy se dice consistente si }\tau(h)\xrightarrow[h\to 0]{} 1 \text{ la solución del problema de Cauchy se dice consistente si }\tau(h)\xrightarrow[h\to 0]{} 1$

Hasta ahora hemos probado que el método de Euler explícito es consistente con $\tau(h) \approx \mathcal{O}(h)$.

Por otro lado tenemos que

$$y_h^* - y_h^n = (y(t_{n-1}) + hf(t_{n-1}, y(t_{n-1}))) - (y_h^{n-1} + hf(t_{n-1}, y_h^{n-1}))$$
$$= e^{n-1} + h(f(t_{n-1}, y(t_{n-1})) - f(t_{n-1}, y_h^{n-1}))$$

Como f es Lipschitz contínua con respecto a su segundo argumento y con constante L, tenemos que

$$|y_h^{\star} - y_h^n| = |e^{n-1}| + h |f(t_{n-1}, y(t_{n-1})) - f(t_{n-1}, y_h^{n-1})|$$

$$\leq |e^{n-1}| + h L |y(t_{n-1}) - y_h^{n-1}|$$

$$\leq (1 + h L)|e^{n-1}|$$

Entonces, juntando ambas estimaciones obtenemos

$$|e^{n}| = |y(t_{n}) - y_{h}^{n}| \le |y(t_{n}) - y_{h}^{*}| + |y_{h}^{*} - y_{h}^{n}|$$

$$\le h \tau(h) + (1 + h L)|e^{n-1}|$$

$$\le h \tau(h) + (1 + h L)(h\tau(h) + (1 + h L)|e^{n-2}|)$$

$$\le \left(1 + (1 + h L) + \dots + (1 + h L)^{n-1} + (1 + h L)^{n}|e^{0}|\right)h\tau(h)$$

$$\le \sum_{k=0}^{n-1} (1 + h L)^{k} h \tau(h)$$

$$\le \left(\frac{(1 + h L)^{n} - 1}{h L}\right) h \tau(h)$$

Notemos que

$$(1 + h L) \le \exp(h L) \longrightarrow (1 + h L)^n \le \exp(n h L) = \exp((t_n - t_0)L)$$

Se sigue que

$$|e^n| \le \frac{1}{L} (\exp(t_n - t_0) L) \tau(h) \le CMh; \quad M = \max_t |y''(t)|$$

Por lo tanto, el método de Euler explícito converge con orden p = 1.

Para el método de Euler implícito, tenemos el siguiente estimación del error de truncación

$$\tau_n(h)\frac{1}{h}(y(t_n) - y(t_{n-1}) - hf(t_n, y_h^n)) = -\frac{h}{2}y''(\xi_n), \quad \xi_n \in (t_{n-1}, t_n)$$

Así el método de Euler implícito es consistente y convergente de orden p=1.

El método de Crank-Nicolson

Volvemos a la integral ...

$$\int_{t_n}^{t_{n+1}} f(t, y(t)) dt \approx \frac{h}{2} \Big(f(t_n, y(t_n)) + f(t_{n+1}, y(t_{n+1})) \Big)$$

Así obtenemos el método de Crank-Nicolson

$$y_h^0 = y_0$$

$$y_h^{n+1} = y_h^n + \frac{h}{2} \left(f(t_n, y_h^n) + f(t_{n+1}, y_h^{n+1}) \right)$$

para n = 0, ..., N - 1.

Probar que el error de truncación del método de Crank-Nicolson es $\tau_n(h) = -\frac{h^2}{12}y^{(3)}(\xi_n), \, \xi_n \in (t_n, t_{n+1}).$

Estabilidad

Definición. Un método numérico para la aproximación del problema de Cauchy en $I = [t_0, T]$ se dice cero-estable si existen $h_0 > 0$, C > 0tales que para todo $h \in (0, h_0]$, y para todo $\varepsilon > 0$ suficientemente pequeño,

si
$$|\rho_n| \le \varepsilon$$
, entonces $|z_h^n - y_h^n| \le C\varepsilon$

para n=0,1,...,N. Donde z_h^n es la solución aproximada por el método numérico aplicada a un problema perturbado, con ρ_n el tamaño de esta perturbación en el paso n y ε tamaño maximo de la perturbación.

Teorema de equivalencia de Lax - Ritchmyer

Todo método consistente es convergente si y sólo si es cero -estable.

Estabilidad en intervalos no acotados

Considere el el siguiente problema:
$$\begin{cases} \frac{dy}{dt} &= \lambda y, \ t \in [0, \infty) \\ y(0) &= 1 \end{cases}$$

Sabemos que la solución exacta del problema de Cauchy es $y(t) = \exp(\lambda t)$. Si suponemos que $\lambda < 0$ entonces $y(t) \to 0$ cuando $t \to \infty$. Cuando nuestros métodos numéricos satisfacen esta condición?

Ver ejemplo de inestabilidad en jupyter notebook.

Definición. Un método numérico con aproximación y_h^n del problema de estabilidad se dice que tiene estabilidad absoluta si

$$\lim_{n \to \infty} y_h^n = 0$$

Consideramos el método de Euler explícito, con h fijo, para aproximar el problema modelo de estabilidad. Entonces, tenemos que

$$y_h^0 = 1$$

 $y_h^{n+1} = y_h^n + h \lambda y_h^n = (1 + h \lambda)^{n+1}$

Entonces,

$$\lim_{n \to \infty} y_h^n = 0 \quad \Longleftrightarrow \quad |1 + h\lambda| < 1$$

Métodos numéricos de orden mas alto.

Métodos de Runge-Kutta de s-stages.

$$y_h^{n+1} = y_h^n + h \sum_{i=1}^s b_i k_i$$
$$k_i = f(t_n + c_i h, y_h^n + h \sum_{j=1}^s a_{ij} k_j),$$

Tabla de Butcher

$$\begin{array}{c|cccc} c_1 & a_{11} & \dots & a_{1s} \\ \vdots & \vdots & \ddots & \vdots \\ \hline c_s & a_{s1} & \dots & a_{ss} \\ \hline & b_1 & \dots & b_s \end{array}$$

para i = 1, ..., s

Si los coeficientes de un método de Runge-Kutta $a_{ij} = 0$ si j > i, para i, j = 1, ..., s entonces el método es expl'icito.

Ejemplos:

1. Método de Euler explícito.

$$y_h^{n+1} = y_h^n + hf(t_n, y_h^n)$$

$$\begin{array}{c|c}
1 & 0 \\
\hline
& 1
\end{array}$$

2. Método de Crank - Nicolson.

$$y_h^{n+1} = y_h^n + h(b_1k_1 + b_2k_2)$$

$$k_1 = f(t_n + c_1h, y_h^n + h(a_{11}k_1 + a_{12}k_2))$$

$$k_1 = f(t_n + c_2h, y_h^n + h(a_{21}k_1 + a_{22}k_2))$$

$$\begin{array}{c|cccc}
0 & 0 & 0 \\
1 & 1/2 & 1/2 \\
\hline
& 1/2 & 1/2
\end{array}$$

Reemplazamos los coeficientes de la tabla

$$y_h^{n+1} = y_h^n + h(k_1/2 + k_2/2)$$

$$k_1 = f(t_n + 0h, y_h^n + h(0k_1 + 0k_2))$$

$$k_2 = f(t_n + 1h, y_h^n + h(k_1/2 + k_2/2))$$

$$y_h^{n+1} = y_h^n + \frac{h}{2}(f(t_n, y_h^n) + f(t_{n+1}, y_h^{n+1}))$$

Ejemplos:

3. Runge-Kutta explícito de orden 2 (método de Heun).

$$\begin{array}{c|cccc}
0 & 0 & 0 \\
1 & 1 & 0 \\
\hline
& 1/2 & 1/2
\end{array}$$

4. Runge-Kutta explícito de orden 3 .

5. Runge-Kutta explícito de orden 4.