Real Time

Supply

Demand

Hardware Problems

Congestion

Weather

Electricity prices are inherently fickle

- The prices we use are a combination of forecasts and estimates through the New York ISO

As renewable energy penetration increases, grid scale batteries allow

- Operators to stabilize electricity supply
- Consumers to profit off of hourly price differences

We're a contractor supplying batteries to a <u>single</u> generator in the New York Hudson Valley

There are a number of battery types and storage options to choose from, which vary according to the following parameters:

- Round Trip Efficiency
- Rate of discharge in an hour (Battery State of Charge)
- Maximum energy stored
- Size of the Battery
- Cost of the Battery

Optimization Formulation

BUY

Energy Prices are Available for 24 hours - Buying and Selling

Jolton Shenergy Inc.

What to do?

Energy Prices are Available for 24 hours - Buying and Selling

SELL

Prices

Buy/Sell Plan:

Time:	Decision:	Total Profit:
12 pm	Buy 100 MH	-\$200
1 pm	Buy 50 MH	-\$75
2 pm	Sell 150 MH	+\$400
		Total: \$125

Energy Prices are Available for 24 hours - Buying and Selling

Energy Prices are Available for 24 hours - Buying and Selling

Rented Warehouse 1

... etc

Warehouse 2

Warehouse 3

Energy Prices are Available for 24 hours - Buying and Selling

Decision Variables:

- Number of Warehouses to rent
- Number of Batteries to Rent of each type
- Amount of power to buy/sell for each battery type at each time

Warehouse 3

How to choose long term investments?

- Price data: **released daily**
- Warehouses and batteries: rented monthly
- How many to rent?

Investments ?		
Item:	Cost	
Num Warehouses: 3	\$270K	
Num Battery A: 10	\$1000K	
Num Battery B: 20	\$2500K	
Num Battery C: 15	\$3000K	
TOTAL:	\$6700K	

How to choose long term investments?

Solution:

- Look at one month historical data
- Optimize over that period
- Use the warehouse & battery numbers to guide future investment decisions

- Optimal Warehouse #
- Optimal Battery #

Objective Function: 1st stage: investment

Backwards Looking Monthly Optimization to determine Fixed Investments

$$\max_{S_{t,b},B_{t,b},N_b,W} \sum_{t=1}^T \sum_{b=1}^B \left[\text{Arbitrage Profits} \right] - \sum_{b=1}^B \text{Battery Costs} - \sum_{w=1}^W \text{Warehouse Costs}$$

Objective Function:1st stage: investment

Backwards Looking Monthly Optimization to determine Fixed Investments

$$\max_{S_{t,b},B_{t,b},N_b,W} \sum_{t=1}^{T} \sum_{b=1}^{B} \left[\text{Arbitrage Profits} \right] - \sum_{b=1}^{B} \text{Battery Costs} - \sum_{w=1}^{W} \text{Warehouse Costs}$$

$$= \max_{S_{t,b},B_{t,b},N_b,W} \sum_{t=1}^{T} \sum_{b=1}^{B} \left[(S_{t,b} - B_{t,b}) * P_t \right] - \sum_{b=1}^{B} N_b C_b - \sum_{w=1}^{W} Z_w C_w$$

$$\text{Choose Optimal Investments}$$

$$\text{where: } C_b \text{ is the cost of a battery type } b$$

$$Z_w \text{ is a binary auxiliary variable equal to 1 if we rented warehouse } w$$

$$C_w \text{ is the cost of warehouse } w$$

$$P_t \text{ is the price of power at time } t$$

Objective Function:

2nd stage: Real Time Arbitrage

Daily Optimization with Fixed Investments

$$\max_{S_{t,b},B_{t,b}} \sum_{t=1}^{T} \sum_{b=1}^{B} \left[\text{Arbitrage Profits} \right] - \sum_{b=1}^{B} \sum_{S_{t} \in \mathcal{S}_{t}} C_{ts} - \bigcup_{w} C_{ts}$$

$$= \max_{S_{t,b},B_{t,b}} \sum_{t=1}^{24} \sum_{b=1}^{B} [(S_{t,b} - B_{t,b}) * P_t]$$

where: C_b is the cost of a battery type b

 Z_w is a binary auxiliary variable equal to 1 if we rented warehouse w

 C_w is the cost of warehouse w

 P_t is the price of power at time t

Constraints

Consider:

- Space capacity of warehouses
- Charge capacity of batteries
- Charging/Discharge rate of batteries

Constraints

Consider:

- Space capacity of warehouses
- Charge capacity of batteries
- Charging/Discharge rate of batteries

3.3 Constraints

Charge Flow:
$$0 \le \sum_{0}^{t} [L_b B_{t,b} - S_{t,b}] \le N_b A_b \quad \forall b \in B, \quad \forall t \in T$$

Charge can't be negative or exceed capacity

Charging Rate:
$$L_b B_{t,b} \leq M_b \quad \forall b \in B, \quad \forall t \in T$$

Cannot charge faster than capacity

Discharge Rate:
$$S_{t,b} \leq N_b \quad \forall b \in B, \quad \forall t \in T$$

Cannot discharge faster than capacity

Warehouse Capacity:
$$W * f \ge \sum_{b=1}^{B} V_b N_b$$

Cannot store more batteries than we have warehouse space

Auxiliary Vars:
$$W = \sum_{z=1}^{Z} Z_w$$

Constraint for auxiliary vars

Where constants above are:

- A_b : Is the charge capacity of battery type b
- L_b : Is the charging efficiency of battery type b
- M_b : Is the maximum charge amount in one time period for battery type b
- N_b : Is the maximum discharge amount in one time period for battery type b
- V_b : Is the space (square feet) taken up for battery type b
- f: Is the amount of square feet provided by a warehouse

And decision variables (again) are:

- N_b : The number of batteries to rent of type b
- W: The number of warehouses to rent
- Z_b : Whether or not to rent warehouse b specifically binary auxiliary variable
- $B_{t,b}$: The amount of power to purchase at time t for batteries b
- $S_{t,b}:$ The amount of power to sell at time t from batteries \boldsymbol{b}

Code

Web Scrape the NY ISO for next month's prices and 30 days before

- 1. Optimize Based on Params for 30 days of historical data
- 2. Get optimal battery_counts for each type of battery
- 3. Optimize again with battery-counts set


```
parameters = {
    'name': 'ElectricityArbitrage',
    'generator_name': 'ADK HUDSON___FALLS',
    'date_range': None,
    'num_markets': 1,
    'battery_types': {
        'lithium': {
            'size': 22.1,
            'capacity': 100,
            'charge_loss': 0.75,
            'max_charge': 40,
            'max discharge': 15,
            'cost': 12500
        'lead': {
            'size': 20.3,
            'capacity': 350,
            'charge_loss': 0.68,
            'max_charge': 10,
            'max_discharge': 40,
            'cost': 11000
        'palladium': {
            'size': .1,
            'capacity': 5,
            'charge_loss': 0.33,
            'max_charge': 5,
            'max_discharge': 5,
            'cost': 50
    'battery_types_used': ['lithium', 'lead', '|
```

Create buying and selling decision variables for each time period and each type of battery.

```
for battery_type in battery_types_used:
    for key in [f'{battery_type}_buy', f'{battery_type}_sell']:
        decision_var_dict[key] = model.addVars(num_periods, vtype=GRB.CONTINUOUS, name=key, lb=0)
```

Loop over every time period, calculate a current level of charge across batteries, and check constraints using that level.

```
for p in range(num_periods):
    current_level = gp.quicksum(charge_loss * buy[p_] - sell[p_] for p_ in range(p + 1))

if not carry_over and p % 24 == 0:
    model.addConstr(current_level <= 0, 'CarryOverConstraint')

model.addConstr(current_level <= capacity * battery_count, f'CapacityConstraint_period_{p+1}')
model.addConstr(current_level >= 0, f'SupplyConstraint_period_{p+1}')
model.addConstr(buy[p] * charge_loss <= max_charge * battery_count, f'ChargeConstraint_period_{p+1}')
model.addConstr(sell[p] <= max_discharge * battery_count, f'DischargeConstraint_period_{p+1}')</pre>
```

Optimization Results

First Stage

Warehouses:	3 / 5
Lithium batteries:	8
Lead Batteries:	6
Palladium Batteries:	14

Optimization Results

123% of investment returned

Warehouses:	3/5	- \$180K
Lithium batteries:	8	-\$100K
Lead Batteries:	6	-\$66K
Palladium Batteries:	14	-\$700
Profit from Arbitrage:		\$429K
TOTAL:		\$83K

OPTIGUIDE

For optiguide, we alter the conditions that affect cost and revenue

What if every 14 periods, we can't sell electricity to the grid?

```
for p in range(num_periods):
    if p%14 == 0:
        model.addConstr(sell[p] = 0, f'DischargeConstraint_period_{p+1}')
```

What if we have a minimum charge at all times of 20%?

```
Answer Code:
for p in range(num_periods):
    model.addConstr(charge_loss * buy[p_] - sell[p_] for p_ in range(p + 1) >= 0.2 * capacity)
```

What if you added a vanadium flow battery and knew the specs as follows?

Disclaimer:

Due to our web scraper + optiguide bugs, we don't have working optiguide output at the moment

The end