Prova in itinere per l'esame di Algoritmi e Strutture Dati

Corso di Laurea in Informatica

6 Marzo 2012

Siano date n scatole B_1, \ldots, B_n . Ogni scatola B_i è descritta da una tripla (a_i, b_i, c_i) , le cui componenti denotano rispettivamente lunghezza, larghezza e altezza della scatola. La scatola B_i può essere inserita nella scatola B_j se e solo se $a_i < a_j$, $b_i < b_j$ e $c_i < c_j$; in particolare, le scatole non possono essere ruotate. Per brevità indichiamo con $B_i \subset B_j$ il fatto che la scatola B_i può essere inserita nella scatola B_j . Descrivere un algoritmo efficiente per determinare il massimo valore di k tale che esiste una sequenza B_{i_1}, \ldots, B_{i_k} che soddisfa le condizioni: $B_{i_1} \subset B_{i_2} \subset \cdots \subset B_{i_k}$ e $i_1 < i_2 < \cdots < i_k$ (ossia le scatole vanno scelte nell'ordine in cui compaiono).

- scrivere una funzione di programmazione dinamica che calcola la più lunga sequenza di scatole che possono essere inserite l'una dentro l'altra;
- determinare il tempo empirico che occorre per eseguire la procedura;
- scrivere in commento la complessità di tempo della procedura da voi scritta, in funzione del numero n delle scatole considerate.

Commentare opportunamente il codice implementato.

Suggerimento: Conviene costruire un array Z di lunghezza n tale che Z[i] indica la lunghezza della più lunga sottosequenza di scatole della sequenza B_1, B_2, \dots, B_i e che contiene B_i (ossia di cui B_i è la scatola più interna).

Fissato i, il valore di Z[i] è calcolato facendo la seguente considerazione: per ogni j < i, se $a_i < a_j$, $b_i < b_j$, $c_i < c_j$ allora la più lunga sottosequenza di scatole che termina con la scatola B_j può essere prolungata con la scatola B_i . La più lunga sottosequenza di scatole di B_1, B_2, \ldots, B_i che include la scatola B_i è ottenuto aggiungendo la scatola B_i alla più lunga sottosequenza di scatole che termina in un B_j con j < i. Quindi il problema è risolto dalla seguente equazione di ricorrenza:

$$Z[i] = \left\{ \begin{array}{l} 1 \quad \text{se } i = 1 \text{ oppure se } B[i] \text{ non può essere inserito in nessuna scatola precedente} \\ 1 + \left\{ \max_{0 \leq j < i} Z[j] \mid a_i < a_j, b_i < b_j, c_i < c_j \right\} \end{array} \right.$$