S4 TUKABEL

Tím 1: Erik Matejov, Tomáš Morvay, Peter Protuš, Matúš Križan

Tím 2: Patrik Dikant, Boris Žalman, Jaroslav Cút, Albert Prágai

ZADANIE

- S4 based SGSN/SGW
 - Doplnenie rozhrania S4 (signalizácia a používateľské dáta) do osmo-sgsn (GTPC/GTP-U)
 - Doplnenie rozhrania S4 (signalizácia a používateľské dáta) do openGGSN (GTPC/GTP-U)

Doplnenie rozhrania S4 (signalizácia a používateľské dáta) do nwEPC (GTPC/GTP-

U)

MOTIVÁCIA

- Zatiaľ neimplementované S4 rozhranie v riešeniach s voľne dostupným zdrojovým kódom openBSC a nwEPC
- Prechod z 2G/3G sietí do LTE siete (SGSN -> SGW)
- Urobiť poslednú skúšku ako sieťari ©

ZÁKLADNÉ KOMPONENTY

- SGSN (Service GPRS Support Node)
 - Tunelovanie IP paketov, detunelovanie GTP paketov
 - Manažment mobility (attach/detach), účtovanie používateľských dát
- GGSN (Gateway GPRS Support Node)
 - Spolupráca medzi GPRS sieťou a vonkajšou sieťou s prepínaním paketov
- SGW (Serving Gateway)
 - Bod ukotvenia medzi LTE a inými 3GPP technológiami
 - Ukončenie S4 rozhrania a spracovanie premávky medzi 2G/3G systémami a PGW
- PGW (Packet Data Network Gateway)
 - Poskytuje konektivitu UE k externým PDN

NÁVRH S4 ROZHRANIA

AKO SGSN VIE ŽE MÁ MS PRIPOJIŤ DO LTE?

- GPRS Mobility Management správa Attach Request
- MS odosiela do siete Attach Request z dôvodu vytvorenia spojenia
- Informačný element (IE) MS network capability
- V IE, v poli value, sa nachádza bit EPC capability -> indikuje podporu prístupu MS na EPC
 - 0 EPC nie je podporované
 - 1 EPC je podporované

8	7	6	5	4	3	2	1	
	octet 1							
	octet 2							
	octet 3-10							

EPC CAPABILITY

```
⊕ Frame 9: 105 bytes on wire (840 bits), 105 bytes captured (840 bits)

⊕ Ethernet II, Src: Vmware_fd:81:0b (00:0c:29:fd:81:0b), Dst: Vmware_00:0a:02 (00:50:56:00:0a:02)

⊕ Internet Protocol Version 4, Src: 172.16.48.41 (172.16.48.41), Dst: 172.16.47.51 (172.16.47.51)

⊕ GPRS Network Service, PDU type: NS_UNITDATA, BVCI 2

Base Station Subsystem GPRS Protocol
⊞ MS-SGSN LLC (Mobile Station - Serving GPRS Support Node Logical Link Control) SAPI: GPRS Mobility Management

    GSM A-I/F DTAP - Attach Request

⊕ Protocol Discriminator: GPRS mobility management messages (8)

    DTAP GPRS Mobility Management Message Type: Attach Request (0x01)

■ MS Network Capability

     Length: 3
      0... = GEA/1: Encryption algorithm not available
      .0.. .... = SM capabilities via dedicated channels: Mobile station does not support mobile terminated point to point SMS via dedicated signalling channels
      ..1. .... = SM capabilities via GPRS channels: Mobile station supports mobile terminated point to point SMS via GPRS packet data channels
      ...0 .... = UCS2 support: The ME has a preference for the default alphabet (defined in 3GPP TS 23.038 [8b]) over UCS2
      .... 00.. = SS Screening Indicator: Default value of phase 1 (0x00)
      .... .. O. = SoLSA Capability: The ME does not support SoLSA
      .... ... 0 = Revision level indicator: Used by a mobile station not supporting R99 or later versions of the protocol
      0... = PFC feature mode: Mobile station does not support BSS packet flow procedures
    .... ... 1 = LCS VA capability: LCS value added location request notification capability supported
      0... = PS inter-RAT HO from GERAN to UTRAN Iu mode capability: PS inter-RAT HO to UTRAN Iu mode not supported
      .0.. ... = PS inter-RAT HO from GERAN to E-UTRAN S1 mode capability: PS inter-RAT HO to E-UTRAN S1 mode not supported
      .... = EMM Combined procedures capability: Mobile station does not support EMM combined procedures
      ...0 .... = ISR support: The mobile station does not support ISR
      .... 1... = SRVCC to GERAN/UTRAN capability: SRVCC from UTRAN HSPA or E-UTRAN to GERAN/UTRAN supported
```

S4 ROZHRANIE

- Na S4 rozhraní sa používajú protokoly GTP-U pre používateľskú rovinu a GTPv2-C pre riadiacu rovinu
- GTPv2-C: signalizácia, úprava QoS, vytvorenie, správa a vymazanie GTP tunelov
- GTP-U: prenos používateľských dát cez GTP tunely
- Pre vytvorenie a vymazanie tunela 4 základné typy správ (GTPv2-C -> Message Type):
 - Create Session Request/Response
 - Delete Session Request/Response

GTP-U

- Všeobecný formát hlavičky
- Tu nás zaujíma iba TEID

	Bits									
Octets	8	7	6	5	4	3	2	1_		
1		Version		PT	(*)	E	S	PN		
2	Message Type									
3	Length (1 st Octet)									
4	Length (2 nd Octat)									
5	Tunnel Endpoint Identifier (1 st Octet)									
6	Tunnel Endpoint Identifier (2 nd Octet)									
7	Tunnel Endpoint Identifier (3 rd Octet)									
8	Tunnel Endpoint Identifier (4 th Octet)									
9	Sequence Number (1 Octet)									
10	Sequence Number (2 nd Octet) ^{1) 4)}									
11	N-PDU Number ^{2) 4)}									
12	Next Extension Header Type ^{3) 4)}									

VYTVORENIE GTP TUNELA (V LTE)

UE -> eNodeB

eNodeB -> SGW

SGW -> PGW

PGW -> PDN

PROCES VÝMENY TEID

- Hodnoty TEID v Create Session Request
 - TEID v GTP hlavičke= 0
 - TEID v IE "Sender F-TEID for Control Plane" = 3
 - TEID v IE "Bearer Context to be created" = 3
- Hodnoty TEID v Create Session Response
 - TEID v GTP hlavičke= 3
 - TEID v IE "Sender F-TEID for Control Plane" = 14
 - TEID v IE "Bearer Context to be created" = 14

NAVRHNUTÉ VYTVORENIE GTP TUNELA

KNIŽNICA NwGTPv2

ODOSLANIE PRÁZDNEJ GTPV2-C SPRÁVY

ODOSLANIE CREATE SESSION REQUEST

```
<0011> gprs bssgp.c:377 BSSGP TLLI=0x9dbf7f23 Rx UPLINK-UNITDATA
<0012> gprs llc parse.c:74 LLC SAPI=1 C FCS=0xbeea02CMD=UI DATA
<0002> gprs gmm.c:797 MM(/c3743a89) -> GMM IDENTITY RESPONSE: mi_type=0x02 MI(352019066269310)
<0002> gprs gmm.c:424 MM(/c3743a89) <- GPRS IDENTITY REQUEST: mi type=01</pre>
<0010> gprs ns.c:547 NSEI=101 Timer expired in mode tns-test (30 seconds)
<0010> gprs ns.c:490 NSEI=101 Tx NS ALIVE (NSVCI=101)
<0010> qprs ns.c:529 NSEI=101 Starting timer in mode tns-alive (3 seconds)
<0010> gprs ns.c:529 NSEI=101 Starting timer in mode tns-test (30 seconds)
<0010> gprs ns.c:503 NSEI=101 Tx NS ALIVE ACK (NSVCI=101)
<0011> gprs bssgp.c:795 BSSGP BVCI=2 Rx Flow Control BVC
<0011> gprs bssqp.c:377 BSSGP TLLI=0x9dbf7f23 Rx UPLINK-UNITDATA
<0012> gprs llc parse.c:74 LLC SAPI=1 C FCS=0x793b16CMD=UI DATA
<0002> gprs gmm.c:797 MM(/c3743a89) -> GMM IDENTITY RESPONSE: mi type=0x01 MI(231020108352794)
<0002> sgsn_auth.c:157 MM(231020108352794/c3743a89) Requesting authorization
<0002> sgsn_auth.c:216 MM(231020108352794/c3743a89) Updating authorization (unknown -> accepted)
<0002> sgsn auth.c:245 MM(231020108352794/c3743a89) Got authorization update: state unknown -> accepted
<0002> gprs gmm.c:721 Authorized, continuing procedure, IMSI=231020108352794
<0002> qprs qmm.c:311 MM(231020108352794/c3743a89) <- GPRS ATTACH ACCEPT (new P-TMSI=0xc3743a89)</p>
<0011> gprs bssgp.c:377 BSSGP TLLI=0xc3743a89 Rx UPLINK-UNITDATA
<0012> gprs llc parse.c:74 LLC SAPI=1 C FCS=0xea1c55CMD=UI DATA
<0002> gprs gmm.c:1357 MM(231020108352794/c3743a89) -> ATTACH COMPLETE
<0011> gprs_bssgp.c:377 BSSGP TLLI=0xc3743a89 Rx UPLINK-UNITDATA
<0012> gprs llc parse.c:74 LLC SAPI=1 C FCS=0x57316aCMD=UI DATA
<0002> gprs gmm.c:1856 MM(231020108352794/c3743a89) EPC capable message msg type= 65
Sending 157 bytes of data to 127.0.0.41:2123
<0002> sgsn s4.c:217 MM(231020108352794/c3743a89) -> CREATE SESSION REQ: IMSI=231020108352794 <TUKABEL>
<0002> gprs gmm.c:1656 MM(231020108352794/c3743a89) -> ACTIVATE PDP CONTEXT REQ: SAPI=3 NSAPI=5 IETF IPv4
<0002> gprs sgsn.c:723 MM(231020108352794/c3743a89) Found GGSN 0 for APN 'internet' (requested 'internet')
<0002> gprs gmm.c:1748 MM(231020108352794/c3743a89) Using GGSN 0
<000f> sgsn libgtp.c:131 Create PDP Context
<001c> pdp.c:214 Begin pdp tidset tid = 5497253801020132
<001c> pdp.c:223 End pdp tidset
<000f> sgsn libgtp.c:451 libgtp cb conf(type=16, cause=128, pdp=0xb7302840, cbp=0x88c1db0)
<000f> sgsn libgtp.c:315 PDP(231020108352794/0) Received CREATE PDP CTX CONF, cause=128(Request accepted)
```

CREATE SESSION REQUEST / RESPONSE

DEMO

ĎAKUJEME

