## p8106\_hw1

Hao Zheng

2/20/2022

```
# Data import
train = read.csv("./data/housing_training.csv") %>% janitor::clean_names()
test = read.csv("./data/housing_test.csv") %>% janitor::clean_names()

train = na.omit(train)
test = na.omit(test)

x_train = model.matrix(sale_price~., train)[,-1]
y_train = train$sale_price

x_test <- model.matrix(sale_price~., test)[ ,-1]
y_test <- test$sale_price</pre>
```

Now, let's fit different models based on the dataset.

#### Linear model

```
set.seed(2022)
lm.fit = lm(sale_price ~ .,
           data = train,
            method = "lm",
            trControl = trainControl(method = "repeatedcv", number = 10))
## Warning in lm(sale_price ~ ., data = train, method = "lm", trControl =
## trainControl(method = "repeatedcv", : method = 'lm' is not supported. Using 'qr'
## Warning: In lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...) :
## extra argument 'trControl' will be disregarded
summary(lm.fit)
##
## Call:
## lm(formula = sale_price ~ ., data = train, method = "lm", trControl = trainControl(method = "repeate
      number = 10))
##
##
## Residuals:
```

```
10 Median
                           3Q
## -89864 -12424
                   416 12143 140205
##
## Coefficients: (1 not defined because of singularities)
                               Estimate Std. Error t value Pr(>|t|)
                             -4.985e+06 3.035e+06 -1.642 0.10076
## (Intercept)
## gr liv area
                              2.458e+01 1.393e+01
                                                    1.765
                                                            0.07778 .
## first_flr_sf
                              4.252e+01 1.409e+01
                                                     3.017
                                                            0.00260 **
## second flr sf
                              4.177e+01 1.379e+01
                                                     3.029
                                                            0.00250 **
## total_bsmt_sf
                              3.519e+01 2.744e+00 12.827
                                                            < 2e-16 ***
## low_qual_fin_sf
                                     NA
                                                NA
                                                        NA
                                                                 NA
                              1.202e+01
                                         4.861e+00
                                                     2.474
                                                            0.01350 *
## wood_deck_sf
                              1.618e+01
## open_porch_sf
                                        1.004e+01
                                                     1.611
                                                            0.10736
                                                            < 2e-16 ***
## bsmt_unf_sf
                             -2.087e+01
                                        1.723e+00 -12.116
                                                     2.473
## mas_vnr_area
                              1.046e+01 4.229e+00
                                                            0.01353 *
## garage_cars
                              4.229e+03
                                         1.893e+03
                                                     2.234
                                                            0.02563 *
                              7.769e+00 6.497e+00
                                                     1.196
                                                            0.23195
## garage_area
## year built
                              3.251e+02 3.130e+01 10.388
                                                            < 2e-16 ***
## tot_rms_abv_grd
                             -3.838e+03 6.922e+02 -5.545 3.51e-08 ***
## full bath
                             -4.341e+03
                                         1.655e+03 -2.622
                                                            0.00883 **
## overall_qualAverage
                             -5.013e+03 1.735e+03 -2.890 0.00391 **
## overall_qualBelow_Average -1.280e+04 2.677e+03 -4.782 1.92e-06 ***
## overall_qualExcellent
                              7.261e+04 5.381e+03 13.494 < 2e-16 ***
                                         5.240e+03 -2.127
## overall qualFair
                             -1.115e+04
                                                           0.03356 *
## overall_qualGood
                              1.226e+04 1.950e+03
                                                     6.287 4.30e-10 ***
## overall_qualVery_Excellent 1.304e+05 8.803e+03 14.810 < 2e-16 ***
## overall_qualVery_Good
                                         2.741e+03 13.852 < 2e-16 ***
                              3.798e+04
## kitchen_qualFair
                             -2.663e+04 6.325e+03 -4.210 2.71e-05 ***
                             -1.879e+04 4.100e+03 -4.582 5.01e-06 ***
## kitchen_qualGood
## kitchen_qualTypical
                             -2.677e+04 4.281e+03 -6.252 5.37e-10 ***
## fireplaces
                              1.138e+04
                                         2.257e+03
                                                     5.043 5.18e-07 ***
## fireplace_quFair
                             -7.207e+03
                                         6.823e+03 -1.056
                                                            0.29106
## fireplace_quGood
                              6.070e+02 5.833e+03
                                                     0.104
                                                            0.91713
                                                     0.539
## fireplace_quNo_Fireplace
                              3.394e+03 6.298e+03
                                                            0.59002
## fireplace_quPoor
                             -5.185e+03
                                         7.399e+03 -0.701
                                                            0.48362
## fireplace_quTypical
                             -6.398e+03 5.897e+03 -1.085
                                                            0.27814
## exter qualFair
                             -3.854e+04 8.383e+03 -4.598 4.66e-06 ***
## exter_qualGood
                             -1.994e+04
                                         5.585e+03 -3.569 0.00037 ***
## exter_qualTypical
                                         5.874e+03 -4.147 3.57e-05 ***
                             -2.436e+04
## lot_frontage
                              1.024e+02 1.905e+01
                                                     5.376 8.90e-08 ***
## lot area
                              6.042e-01 7.864e-02
                                                     7.683 2.91e-14 ***
## longitude
                                         2.537e+04
                                                   -1.372 0.17016
                             -3.481e+04
## latitude
                              5.874e+04 3.483e+04
                                                     1.686
                                                            0.09193
## misc_val
                              9.171e-01 1.003e+00
                                                     0.914 0.36071
## year_sold
                             -6.455e+02 4.606e+02 -1.401
                                                           0.16132
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 22190 on 1401 degrees of freedom
## Multiple R-squared: 0.9116, Adjusted R-squared: 0.9092
## F-statistic: 380.3 on 38 and 1401 DF, p-value: < 2.2e-16
pred.lm <- predict(lm.fit, newdata = test)</pre>
```

```
## Warning in predict.lm(lm.fit, newdata = test): prediction from a rank-deficient
## fit may be misleading
```

```
lm_mse = RMSE(pred.lm, test$sale_price); lm_mse
```

```
## [1] 21149.18
```

The test MSE for the least square method is  $2.1149176 \times 10^4$ . Potential disadvantage of the linear model: 1. There may be too many predictors, which could cause problems such as corlinearity among predictors, large variance; 2. The model is too complex and there exist over-fitting problems.

#### Lasso model

using glmnet

```
set.seed(2022)

lasso.fit <- cv.glmnet(
    x = x_train,
    y = y_train,
    alpha = 1,
    lambda = exp(seq(8, 3, length = 100))
)

plot(lasso.fit)</pre>
```



plot\_glmnet(lasso.fit\$glmnet.fit)



```
# Look at the 1SE coefficient for lasso
predict(lasso.fit, s = "lambda.1se", type = "coefficients")
```

```
## 40 x 1 sparse Matrix of class "dgCMatrix"
                                  lambda.1se
##
## (Intercept)
                               -3.411186e+06
## gr_liv_area
                                5.916147e+01
## first flr sf
                                9.908879e-01
## second_flr_sf
## total_bsmt_sf
                                3.660286e+01
## low_qual_fin_sf
                               -3.110661e+01
## wood_deck_sf
                                9.211416e+00
## open_porch_sf
                                1.040501e+01
## bsmt_unf_sf
                               -2.036685e+01
## mas_vnr_area
                                1.368374e+01
                                3.296289e+03
## garage_cars
                                1.014693e+01
## garage_area
## year_built
                                3.116010e+02
## tot_rms_abv_grd
                               -2.051953e+03
## full_bath
                               -3.535970e+02
## overall_qualAverage
                               -3.577405e+03
## overall_qualBelow_Average
                              -1.014004e+04
## overall_qualExcellent
                                9.096805e+04
## overall_qualFair
                               -7.842522e+03
## overall qualGood
                                1.067898e+04
## overall_qualVery_Excellent
                               1.608334e+05
```

```
## overall_qualVery_Good
                              3.716056e+04
## kitchen_qualFair
                             -7.690510e+03
## kitchen qualGood
                             -1.468331e+03
## kitchen_qualTypical
                             -1.076409e+04
## fireplaces
                              7.195489e+03
## fireplace_quFair
                             -1.473565e+03
## fireplace_quGood
                              3.625170e+03
## fireplace_quNo_Fireplace
## fireplace_quPoor
## fireplace_quTypical
                             -2.188237e+03
## exter_qualFair
                             -1.590797e+04
## exter_qualGood
## exter_qualTypical
                             -4.741677e+03
                              8.043093e+01
## lot_frontage
## lot_area
                              5.822890e-01
## longitude
                             -1.729013e+04
## latitude
                              2.980870e+04
## misc val
                              2.214766e-02
## year_sold
                             -1.300149e+01
```

When the 1SE rule is applied, we can see there are 35 predictors included in the model.

```
y_pred <- predict(lasso.fit, newx = x_test, s = "lambda.min", type = "response")
lasso_mse <- mean(RMSE(y_pred, y_test)^2); lasso_mse</pre>
```

```
## [1] 440064267
```

The test MSE for Lasso model (1SE) is  $4.4006427 \times 10^8$ .

#### Elastic Net model

```
## alpha lambda
## 95 0.05 970.2473
```

The selected tuning parameter lambda = 970.247332, alpha = 0.05. Then we visualize the elastic net result.



#### coef(enet.fit\$finalModel, enet.fit\$bestTune\$lambda)

```
## 40 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept)
                              -5.172951e+06
## gr_liv_area
                                3.812434e+01
## first_flr_sf
                                2.637357e+01
## second_flr_sf
                                2.480921e+01
## total_bsmt_sf
                                3.473579e+01
## low_qual_fin_sf
                              -1.604315e+01
## wood_deck_sf
                                1.252592e+01
## open_porch_sf
                                1.727662e+01
## bsmt_unf_sf
                              -2.057836e+01
## mas_vnr_area
                                1.235856e+01
## garage_cars
                                3.958861e+03
## garage_area
                                9.528576e+00
                                3.152748e+02
## year_built
## tot_rms_abv_grd
                              -3.197583e+03
## full bath
                              -3.313259e+03
## overall_qualAverage
                              -5.160203e+03
## overall_qualBelow_Average
                              -1.263204e+04
## overall_qualExcellent
                                7.695123e+04
## overall_qualFair
                              -1.165139e+04
## overall_qualGood
                                1.174884e+04
## overall_qualVery_Excellent 1.386447e+05
```

```
## overall_qualVery_Good
                             3.733755e+04
## kitchen_qualFair
                             -2.220863e+04
## kitchen_qualGood
                             -1.475407e+04
## kitchen_qualTypical
                             -2.285583e+04
## fireplaces
                              1.053606e+04
## fireplace_quFair
                             -8.000449e+03
## fireplace_quGood
                             6.186069e+01
## fireplace_quNo_Fireplace 1.117703e+03
## fireplace_quPoor
                             -5.936463e+03
## fireplace_quTypical
                             -7.046712e+03
## exter_qualFair
                             -3.077995e+04
## exter_qualGood
                             -1.239462e+04
## exter_qualTypical
                             -1.717937e+04
                              9.877631e+01
## lot_frontage
## lot_area
                              6.017072e-01
## longitude
                             -3.534682e+04
## latitude
                              5.708440e+04
## misc val
                              8.336667e-01
## year_sold
                             -5.374119e+02
```

Next, we calculate the test MSE on our test dataset.

```
# Elastic net test MSE
enet_pred <- predict(enet.fit, newdata = x_test)</pre>
enet_mse <- mean(RMSE(enet_pred, y_test)^2); enet_mse</pre>
```

```
## [1] 434592441
```

##

## CV

The test error for Elastics net model is  $4.3459244 \times 10^8$ .

## Cross-validated using 10 random segments.

33432

73685

### Partial Least Square model

```
set.seed(2022)
pls.fit <- plsr(sale_price~.,</pre>
                data = train,
                scale = TRUE,
                validation = "CV")
summary(pls.fit)
## Data:
            X dimension: 1440 39
## Y dimension: 1440 1
## Fit method: kernelpls
## Number of components considered: 39
## VALIDATION: RMSEP
```

24011

23369

23171

(Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 25125

27986

```
## adiCV
                73685
                         33426
                                  27949
                                           25054
                                                    23942
                                                              23303
                                                                       23113
##
          7 comps 8 comps 9 comps 10 comps 11 comps 12 comps 13 comps
            23078
## CV
                     23036
                              23033
                                        23027
                                                  23027
                                                                       23009
                                                             23014
## adjCV
            23022
                     22982
                              22977
                                        22969
                                                  22967
                                                             22955
                                                                       22950
                                        17 comps
          14 comps
                    15 comps
                              16 comps
                                                  18 comps
                                                             19 comps
                                                                       20 comps
## CV
             23013
                       23020
                                 23021
                                           23025
                                                     23030
                                                                23027
                                                                          23032
                                                      22969
                                                                22966
## adjCV
             22954
                       22960
                                 22961
                                           22965
                                                                          22971
                                                            26 comps
          21 comps 22 comps
                                                  25 comps
##
                              23 comps
                                        24 comps
                                                                       27 comps
## CV
             23032
                       23032
                                 23032
                                           23032
                                                      23032
                                                                23032
                                                                          23034
## adjCV
             22971
                       22971
                                 22971
                                           22971
                                                     22971
                                                                22971
                                                                          22973
##
          28 comps 29 comps
                              30 comps 31 comps
                                                  32 comps
                                                            33 comps
                                                                       34 comps
             23034
                       23034
                                           23034
                                                     23034
                                                                23034
                                                                          23034
## CV
                                 23034
## adiCV
             22973
                       22973
                                 22973
                                           22973
                                                      22973
                                                                22973
                                                                          22973
##
          35 comps 36 comps
                              37 comps 38 comps
                                                  39 comps
## CV
             23034
                       23034
                                 23034
                                           23034
                                                     24005
             22973
## adjCV
                       22973
                                 22973
                                           22973
                                                     23330
##
## TRAINING: % variance explained
##
               1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps
                 20.02
                          25.93
                                   29.67
                                            33.59
                                                     37.01
                                                               40.03
                                                                        42.49
## X
## sale_price
                 79.73
                          86.35
                                   89.36
                                            90.37
                                                     90.87
                                                               90.99
                                                                        91.06
               8 comps 9 comps 10 comps 11 comps 12 comps 13 comps 14 comps
                 45.53
                          47.97
                                    50.15
                                              52.01
                                                        53.69
                                                                   55.35
                                                                             56.86
## X
## sale_price
                 91.08
                          91.10
                                    91.13
                                              91.15
                                                        91.15
                                                                   91.16
                                                                             91.16
##
               15 comps 16 comps 17 comps 18 comps 19 comps 20 comps
## X
                  58.64
                            60.01
                                      62.18
                                                63.87
                                                           65.26
                                                                     67.10
## sale_price
                  91.16
                            91.16
                                      91.16
                                                91.16
                                                           91.16
                                                                     91.16
##
               21 comps
                         22 comps 23 comps 24 comps
                                                       25 comps 26 comps
## X
                  68.44
                            70.12
                                      71.72
                                                73.35
                                                           75.20
                                                                     77.27
                  91.16
                            91.16
                                      91.16
                                                91.16
                                                           91.16
                                                                     91.16
## sale_price
##
               27 comps
                         28 comps 29 comps 30 comps
                                                       31 comps
                                                                 32 comps
## X
                  78.97
                            80.10
                                      81.83
                                                83.55
                                                           84.39
                                                                     86.34
## sale_price
                  91.16
                            91.16
                                      91.16
                                                91.16
                                                           91.16
                                                                     91.16
               33 comps
                         34 comps
                                  35 comps 36 comps
                                                       37 comps 38 comps
                            90.79
                                      92.79
## X
                  88.63
                                                95.45
                                                           97.49
                                                                   100.00
## sale_price
                  91.16
                            91.16
                                      91.16
                                                91.16
                                                          91.16
                                                                     91.16
##
               39 comps
## X
                 100.67
                  91.16
## sale_price
```

validationplot(pls.fit, val.type="MSEP", legendpos = "topright")

# sale\_price



```
# Calculate the number of component in the model
cv.mse <- RMSEP(pls.fit)
ncomp.cv <- which.min(cv.mse$val[1,,]) - 1; ncomp.cv

## 13 comps
## 13
pls_pred <- predict(pls.fit, newdata = x_test, ncomp = ncomp.cv)
pls_mse <- mean(RMSE(y_test, pls_pred)^2); pls_mse</pre>
```

## [1] 448737340

There are 13 component in pls model, and the test error (MSE) is  $4.4873734 \times 10^8$ .

## Comparing different models

```
name <- c("lm", "lasso 1se", "elastic net", "pls")
MSE <- c(lm_mse, lasso_mse, enet_mse, pls_mse)
comparison <- cbind(name, MSE)
comparison <- as.data.frame(comparison)</pre>
```

Now, let's compare the test MSE of the above 4 models, as we have mentioned before, linear model may have many disadvantages, so here though he test MSE for linear model is the lowest, we may tend to choose

| other models.<br>net model. | Therefore, | we may | choose | the model | with | the lowest | MSE | besides | the linear | model: | elastic |
|-----------------------------|------------|--------|--------|-----------|------|------------|-----|---------|------------|--------|---------|
|                             |            |        |        |           |      |            |     |         |            |        |         |
|                             |            |        |        |           |      |            |     |         |            |        |         |
|                             |            |        |        |           |      |            |     |         |            |        |         |
|                             |            |        |        |           |      |            |     |         |            |        |         |
|                             |            |        |        |           |      |            |     |         |            |        |         |