L3 A, M363, contrôle 1 Février 2014

Exercice 1 Soit $(A_k)_{1 \le k \le n}$ une suite finie de parties d'un ensemble non vide X. Montrer que :

$$\mathbf{1}_{\bigcap\limits_{k=1}^{n}A_{k}}^{}=\prod\limits_{k=1}^{n}\mathbf{1}_{A_{k}}=\min\limits_{1\leq k\leq n}\mathbf{1}_{A_{k}}$$

$$\mathbf{1}_{\bigcup\limits_{k=1}^{n}A_{k}}=\max_{1\leq k\leq n}\mathbf{1}_{A_{k}}$$

et:

$$((A_k)_{1 \le k \le n} \text{ est une partition de } A) \Leftrightarrow \left(\mathbf{1}_A = \sum_{k=1}^n \mathbf{1}_{A_k}\right)$$

où A est une partie de X.

Solution. On vérifie facilement par récurrence sur $n \ge 1$ que :

$$\mathbf{1}_{igwedge_{k=1}^n A_k}^n = \prod_{k=1}^n \mathbf{1}_{A_k} = \min_{1 \leq k \leq n} \mathbf{1}_{A_k}$$

C'est vrai pour n=1 et n=2. En supposant le résultat acquis pour $n-1\geq 2$, on a :

$$\mathbf{1}_{igwedge_{k=1}^n A_k}^n = \mathbf{1}_{igwedge_{k=1}^n A_k}^{-1} \mathbf{1}_{A_n} = \prod_{k=1}^n \mathbf{1}_{A_k}$$

et on vérifie facilement que pour tout $x \in X$, on a :

$$\prod_{k=1}^{n} \mathbf{1}_{A_k} (x) = \min_{1 \le k \le n} \mathbf{1}_{A_k} (x)$$

Pour ce qui est de la réunion, on vérifie facilement que :

$$\mathbf{1}_{\bigcup_{k=1}^{n}A_{k}}=\max_{1\leq k\leq n}\mathbf{1}_{A_{k}}$$

En effet, soit $x \in X$. Si $x \in \bigcup_{k=1}^{n} A_k$, il existe alors un indice k tel que $x \in A_k$ et on a :

$$1 = \mathbf{1}_{\bigcup_{k=1}^{n} A_{k}}^{n}(x) = \mathbf{1}_{A_{k}}(x) = \max_{1 \le j \le n} \mathbf{1}_{A_{j}}(x)$$

Si $x \notin \bigcup_{k=1}^{n} A_k$, on a alors $x \notin A_k$ pour tout k comprisentre 1 et n et :

$$0 = \mathbf{1} \mathop{\bigcup}_{k=1}^{n} A_k (x) = \max_{1 \le j \le n} \mathbf{1}_{A_j} (x)$$

Supposons que $(A_k)_{1 \le k \le n}$ soit une partition de A, c'est-à-dire que $A = \bigcup_{k=1}^{n} A_k$, les A_k étant deux à deux disjoints.

Pour tout $x\in A$, il existe un unique j compris entre 1 et n tel que $x\in A_{j}$, donc $\mathbf{1}_{A_{k}}\left(x\right) =0$ pour $k\neq j$,

$$\mathbf{1}_{A_{j}}(x) = 1 \text{ et } 1 = \mathbf{1}_{A}(x) = \sum_{k=1}^{n} \mathbf{1}_{A_{k}}(x).$$

Pour $x \notin A$, x n'est dans aucun des A_k et $0 = \mathbf{1}_A(x) = \sum_{k=1}^n \mathbf{1}_{A_k}(x)$.

Réciproquement supposons que $\mathbf{1}_A = \sum_{k=1}^n \mathbf{1}_{A_k}$.

Si $x \in \bigcup_{k=1}^{n} A_k$, il existe un indice j compris entre 1 et n tel que $x \in A_j$, donc $\mathbf{1}_{A_j}(x) = 1$ et $\mathbf{1}_{A_j}(x) = 1$

 $\sum_{k=1}^{n}\mathbf{1}_{A_{k}}\left(x\right)\geq1,\text{ ce qui impose }\mathbf{1}_{A_{k}}\left(x\right)=0\text{ pour }k\neq j\text{ et }\mathbf{1}_{A}\left(x\right)=1,\text{ ce qui signifie que les }A_{k}\text{ sont deux à }$

deux disjoints et $\bigcup_{k=1}^{n} A_k \subset A$.

Pour $x \in A$, on a $1 = \mathbf{1}_{A}(x) = \sum_{k=1}^{n} \mathbf{1}_{A_{k}}(x)$, donc il existe un unique j compris entre 1 et n tel que $\mathbf{1}_{A_{j}}(x) = 1$,

ce qui signifie que x est dans un unique A_k et $x \in \bigcup_{k=1}^n A_k$, donc $A \subset \bigcup_{k=1}^n A_k$ et on a l'égalité $A = \bigcup_{k=1}^n A_k$, les A_k étant deux à deux disjoints.

Exercice 2 On rappelle que la mesure ℓ des intervalles réels se prolonge de manière unique en une mesure sur la tribu $\mathcal{B}(\mathbb{R})$ des boréliens, cette mesure étant invariante par translation. C'est la mesure de Lebesgue sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Nous allons vérifier que cette mesure ne peut pas se prolonger en une mesure invariante par translation sur $\mathcal{P}(\mathbb{R})$.

On désigne par C le groupe quotient \mathbb{R}/\mathbb{Q} .

1. Vérifier que, pour toute classe d'équivalence $c \in C$, on peut trouver un représentant x dans [0,1[.

Pour tout $c \in \mathcal{C}$, on se fixe un représentant x_c de c dans [0,1[(axiome du choix) et on désigne par A l'ensemble de tous ces réels x_c .

2. Montrer que les translatés r + A, où r décrit $[-1,1] \cap \mathbb{Q}$, sont deux à deux disjoints et que :

$$[0,1] \subset \bigcup_{r \in [-1,1] \cap \mathbb{Q}} (r+A) \subset [-1,2]$$

- 3. En déduire que A n'est pas borélien et que ℓ ne peut pas se prolonger en une mesure invariante par translation sur $\mathcal{P}(\mathbb{R})$ (on pourra raisonner par l'absurde).
- 4. Donner un exemple de fonction $f : \mathbb{R} \to \mathbb{R}$ non mesurable (\mathbb{R} étant muni de la tribu de Borel) telle que |f| soit mesurable.

Solution. La relation :

$$(x \mathcal{R} y) \Leftrightarrow (y - x \in \mathbb{Q})$$

est une relation d'équivalence puisque \mathbb{Q} est un sous-groupe additif de \mathbb{R} et l'ensemble quotient \mathbb{R}/\mathbb{Q} est un groupe puisque le groupe $(\mathbb{R}, +)$ est commutatif.

- 1. Soit $c = \overline{x} \in \mathcal{C}$. En désignant par $n = [x] \in \mathbb{Z}$ la partie entière de x, on a $0 \le x_c = x n < 1$ et $c = \overline{x_c}$ puisque $x x_c = n \in \mathbb{Q}$.
 - L'axiome du choix nous permet de choisir, pour toute classe d'équivalence un représentant $x_c \in [0, 1]$. Ces choix étant faits, on a c = c' dans C si, et seulement si $x_c = x_{c'}$.
- 2. Si r, r' dans $[-1, 1] \cap \mathbb{Q}$ sont tels que $(r + A) \cap (r' + A) \neq \emptyset$, il existe alors y dans $(r + A) \cap (r' + A)$, donc $y = r + x_c = r' + x_{c'}$ et $c = \overline{x_c} = \overline{x_{c'}} = c'$, ce qui nous donne $x_c = x_{c'}$ et r = r'. Donc les ensembles r + A, où r décrit $[-1, 1] \cap \mathbb{Q}$, sont deux à deux disjoints.

Comme
$$A \subset [0,1[$$
, on a $r+A \subset [-1,2]$ pour tout $r \in [-1,1] \cap \mathbb{Q}$ et $\bigcup_{r \in [-1,1] \cap \mathbb{Q}} (r+A) \subset [-1,2]$.

Pour tout $x \in [0,1]$ il existe $x_c \in A$ tel que $\overline{x} = \overline{x_c}$, donc il existe un rationnel r tel que $x = r + x_c$ et comme $|r| = |x - x_c| \le 1$ (x et x_c sont dans [0,1]), on a $r \in [-1,1] \cap \mathbb{Q}$. On a donc $[0,1] \subset \bigcup_{r \in [-1,1] \cap \mathbb{Q}} (r+A)$.

3. Si A est borélien, il en est alors de même de tous les r+A (image réciproque de A par l'application continue, donc mesurable, $x\mapsto x-r$) et la réunion dénombrable $\bigcup_{r\in [-1,1]\cap \mathbb{Q}} (r+A) \text{ est un borélien,}$ mais alors :

$$\ell\left([0,1]\right) = 1 \le \ell\left(\bigcup_{r \in [-1,1] \cap \mathbb{Q}} (r+A)\right) = \sum_{r \in [-1,1] \cap \mathbb{Q}} \ell\left(r+A\right) = \sum_{r \in [-1,1] \cap \mathbb{Q}} \ell\left(A\right) \le \ell\left([-1,2]\right) = 3$$

ce qui impose $\ell\left(A\right)>0$ et $\sum_{r\in[-1,1]\cap\mathbb{Q}}\ell\left(A\right)=+\infty,$ ce qui est impossible.

On a donc ainsi prouvé que l'ensemble A est donc borné et non borélien et que ℓ ne peut se prolonger à $\mathcal{P}(\mathbb{R})$.

4. La fonction $f = 2\mathbf{1}_A - 1$ définie par :

$$\forall x \in \mathbb{R}, \ f(x) = \begin{cases} 1 \text{ si } x \in A \\ -1 \text{ si } x \notin A \end{cases}$$

est non borélienne $(f^{-1}(\{1\}) = A \text{ est non borélien})$ et |f| = 1 est mesurable.

Exercice 3 [a,b] est un intervalle fermé borné fixé avec a < b réels.

1. Montrer que les fonctions en escaliers positives sur [a,b] sont exactement les fonctions du type :

$$\varphi = \sum_{k=1}^{n} a_k \mathbf{1}_{I_k}$$

où $n \in \mathbb{N}^*$, les a_k sont des réels positifs ou nuls et les I_k sont des intervalles contenus dans [a,b].

- 2. Montrer que si $(\varphi_k)_{1 \le k \le n}$ est une suite finie de fonctions en escaliers sur [a,b], alors la fonction $\varphi = \max_{1 \le k \le n} \varphi_k$ est aussi en escaliers.
- 3. Soit f une fonction réglée définie sur [a, b] et à valeurs positives.
 - (a) Montrer qu'il existe une suite $(\varphi_n)_{n\in\mathbb{N}}$ de fonctions en escaliers qui converge uniformément vers f sur [a,b] et telle que :

$$\forall n \in \mathbb{N}, \ \forall x \in [a, b], \ \varphi_n(x) \le f(x)$$

(b) On désigne par $(\psi_n)_{n\in\mathbb{N}}$ la suite de fonctions définie sur [a,b] par $\psi_0=0$ et pour tout $n\geq 1$:

$$\psi_n = \max(0, \varphi_1, \cdots, \varphi_n)$$

Monter que $(\psi_n)_{n\in\mathbb{N}}$ est une suite croissante de fonctions en escaliers qui converge uniformément vers f sur [a,b].

(c) Montrer qu'il existe une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions en escaliers à valeurs positives telle que la série $\sum f_n$ converge uniformément vers f sur [a,b].

4. Montrer que les fonctions réglées à valeurs positives sur [a, b] sont exactement les fonctions de la forme :

$$f = \sum_{n=0}^{+\infty} a_n \mathbf{1}_{I_n}$$

où les $(a_n)_{n\in\mathbb{N}}$ est une suite de réels positifs ou nuls, $(I_n)_{n\in\mathbb{N}}$ est une suite d'intervalles contenus dans [a,b] et la série considérée converge uniformément sur [a,b].

Solution.

1. Si φ est une fonction en escaliers sur [a,b], il existe alors un entier $p \in \mathbb{N}^*$ et une subdivision :

$$\alpha_0 = a < \alpha_1 < \dots < \alpha_p = b$$

telle que φ soit constante sur chacun des intervalles $]\alpha_k, \alpha_{k+1}[$ $(0 \le k \le p-1),$ ce qui peut s'écrire :

$$\varphi = \sum_{k=1}^{n} a_k \mathbf{1}_{I_k}$$

où $(I_k)_{1 \leq k \leq n}$ est une partition de [a,b] en n intervalles (les I_k sont les $]\alpha_j,\alpha_{j+1}[$, pour j compris entre 0 et p-1 et les $\{\alpha_j\}=[\alpha_j,\alpha_j]$, pour j compris entre 0 et p, les a_k étant les valeurs constantes prises par φ sur chacun de ces intervalles).

Si φ est à valeurs positives, les a_k sont tous positifs ou nuls.

Réciproquement une telle fonction est en escaliers puisque l'ensemble des fonctions en escaliers sur [a,b] est un espace vectoriel et elle est à valeurs positives si les a_k sont tous positifs ou nuls (en dehors de la réunion des I_k , la fonction φ est nulle).

2. Si $\varphi = \sum_{k=1}^{n} a_k \mathbf{1}_{I_k}$ est une fonction en escaliers sur [a, b], alors la fonction $|\varphi| = \sum_{k=1}^{n} |a_k| \mathbf{1}_{I_k}$ est aussi en escaliers

Il en résulte que, si ψ est une autre fonction en escaliers sur [a,b], la fonction :

$$\max(\varphi, \psi) = \frac{\varphi + \psi}{2} + \frac{|\psi - \varphi|}{2}$$

en escaliers, puis par récurrence on en déduit que si $(\varphi_k)_{1 \le k \le n}$ est une suite de fonctions en escalier sur [a,b], alors la fonction $\max_{1 \le k \le n} \varphi_k$ est aussi en escaliers.

3.

(a) Comme f réglée sur [a, b], pour tout entier $n \in \mathbb{N}$, on peut trouver une fonction en escaliers f_n telle que :

$$\sup_{x \in [a,b]} \left| f\left(x\right) - f_n\left(x\right) \right| < \frac{1}{n+1}$$

La fonction $\varphi_n = f_n - \frac{1}{n+1}$ est aussi en escaliers et pour tout $x \in [a,b]$, on a :

$$-\frac{1}{n+1} < f(x) - f_n(x) < \frac{1}{n+1}$$

donc:

$$0 < f(x) - \varphi_n(x) < \frac{2}{n+1}$$

donc $\varphi_n < f$ et :

$$\sup_{x \in [a,b]} |f(x) - \varphi_n(x)| = \sup_{x \in [a,b]} (f(x) - \varphi_n(x)) \le \frac{2}{n+1}$$

ce qui signifie que $(\varphi_n)_{n\in\mathbb{N}^*}$ converge uniformément vers f par valeurs inférieures.

(b) Pour tout entier $n \in \mathbb{N}^*$, la fonction :

$$\psi_n = \max(0, \varphi_1, \cdots, \varphi_n)$$

est en escaliers et pour tout $x \in [a, b]$, on a :

$$\psi_0 = 0 \le \psi_n(x) \le \psi_{n+1}(x) < f(x)$$

(puisque $f \ge 0$ et $f \ge \varphi_k$ pour tout entier k) et :

$$0 < f(x) - \psi_n(x) \le f(x) - \varphi_n(x) < \frac{2}{n+1}$$

donc $(\psi_n)_{n\in\mathbb{N}}$ converge uniformément en croissant vers f sur [a,b] .

(c) On pose $f_0 = 0$ et $f_n = \psi_n - \psi_{n-1}$ pour tout $n \in \mathbb{N}^*$, ce qui définit une suite $(f_n)_{n \in \mathbb{N}}$ de fonctions en escaliers à valeurs positives.

Avec:

$$\sum_{k=0}^{n} f_k = \sum_{k=1}^{n} (\psi_k - \psi_{k-1}) = \psi_n - \psi_0 = \psi_n$$

on déduit que la série $\sum f_n$ converge uniformément vers f sur [a,b].

4. Si $f = \sum_{n=0}^{+\infty} a_n \mathbf{1}_{I_n}$, où la série est uniformément convergentes, les a_n sont positifs et les I_n des intervalles contenus dans [a, b], la fonction :

$$f = \lim_{n \to +\infty} \sum_{k=0}^{n} a_k \mathbf{1}_{I_k}$$

est alors limite uniforme d'une suite de fonctions réglées positives et en conséquence, elle est réglée positive.

Soit f une fonction réglée positive sur [a, b].

Il existe alors une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions en escaliers à valeurs positives telle que la série $\sum f_n$ converge uniformément vers f sur [a,b].

En écrivant chaque fonction en escaliers h_n sous la forme :

$$f_n = \sum_{k=1}^{p_n} a_{n,k} \mathbf{1}_{I_{n,k}}$$

où les $a_{n,k}$ sont des réels positifs ou nuls et les $I_{n,k}$ sont des intervalles contenus dans [a,b], en notant $p_0 = 0$, on utilise la partition :

$$\mathbb{N}^* = \bigcup_{n \ge 1} \{ p_1 + \dots + p_{n-1} + 1, \dots, p_1 + \dots + p_{n-1} + p_n \}$$

et le fait qu'il s'agit d'une séries de fonctions positives pour écrire que :

$$f = \sum_{j=1}^{+\infty} a_j \mathbf{1}_{I_j}$$

où pour $j = p_1 + \cdots + p_{n-1} + k$ avec $1 \le k \le p_n$, on note :

$$a_j \mathbf{1}_{I_j} = a_{n,k} \mathbf{1}_{I_{n,k}}$$

ce qui définit bien une suite $(a_j)_{j\in\mathbb{N}}$ de réels positifs ou nuls et une suite $(I_j)_{j\in\mathbb{N}}$ d'intervalles contenus dans [a,b].

A priori la convergence de cette série est simple.

Pour tout entier $m \ge 1$ il existe un unique entier $n \ge 1$ tel que $m \in \{p_1 + \dots + p_{n-1} + 1, \dots, p_1 + \dots + p_{n-1} + p_n\}$ et on a:

$$R_m = \sum_{j=m}^{+\infty} a_j \mathbf{1}_{I_j} \le \sum_{j=p_1+\dots+p_{n-1}+1}^{+\infty} a_j \mathbf{1}_{I_j} = \sum_{p=n}^{+\infty} f_p = R'_n$$

ce qui assure la convergence uniforme (pour $\varepsilon > 0$, il existe $n_{\varepsilon} \in \mathbb{N}^*$ tel que $R'_n < \varepsilon$ pour tout $n \ge n_{\varepsilon}$, donc pour tout $m \ge m_{\varepsilon} = p_1 + \dots + p_{n_{\varepsilon}-1} + 1$, on aura $R_m < \varepsilon$).

Exercice 4 Soit X un ensemble non vide. Quelle est la σ -algèbre engendrée par les singletons de X? (distinguer les cas X dénombrable et X non dénombrable).

Solution. Supposons X dénombrable.

Soit $\mathcal{A} \subset \mathcal{P}(X)$ la σ -algèbre engendrée par les singletons de X.

Tout $A \in \mathcal{P}(X)$ s'écrivant comme réunion dénombrable de singletons, il est dans \mathcal{A} , donc $\mathcal{P}(X) \subset \mathcal{A}$ et $\mathcal{A}\subset\mathcal{P}\left(X\right) .$

Supposons X non dénombrable.

Soit $\mathcal{A} \subset \mathcal{P}(X)$ la σ -algèbre engendrée par les singletons de X.

On note:

$$\mathcal{B} = \{ A \in \mathcal{P}(X) \mid A \text{ ou } X \setminus A \text{ est dénombrable} \}$$

On vérifie que \mathcal{B} est une σ -algèbre sur X qui contient les singletons de X, donc $\mathcal{A} \subset \mathcal{B}$.

Comme \emptyset est dénombrable, il est dans \mathcal{B} .

Soit $A \in \mathcal{B}$. Si A est dénombrable, alors $X \setminus A$ est de complémentaire dénombrable, donc $X \setminus A \in \mathcal{B}$, sinon $X \setminus A$ est dénombrable et $X \setminus A \in \mathcal{B}$.

La famille \mathcal{B} est donc stable par passage au complémentaire.

Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'éléments de \mathcal{A} . On a :

$$A = \bigcup_{n \in \mathbb{N}} A_n = \bigcup_{\substack{n \in \mathbb{N} \\ A_n \text{ dénombrable}}} A_n \cup \bigcup_{\substack{n \in \mathbb{N} \\ X \setminus A_n \text{ dénombrable}}} A_n = B \cup C$$

avec B dénombrable et C de complémentaire dénombrable $(X \setminus C = \bigcap_{\substack{n \in \mathbb{N} \\ X \setminus A_n \text{ dénombrable}}} (X \setminus A_n))$. Si $C = \emptyset$, on a alors $A = B \in \mathcal{B}$, sinon $X \setminus A = (X \setminus B) \cap (X \setminus C) \subset X \setminus C$ est dénombrable, donc $A \in \mathcal{B}$. Un singleton qui est dénombrable est dans \mathcal{B} .

Soit $A \in \mathcal{B}$. Si A est dénombrable, il est alors réunion dénombrable de singletons, donc dans \mathcal{A} , sinon c'est $X \setminus A$ qui est dans A et $A = X \setminus (X \setminus A)$ est aussi dans A.

On a donc $\mathcal{B} \subset \mathcal{A}$ et $\mathcal{A} = \mathcal{B}$.

Exercice 5 Soient f, g deux fonctions continues de \mathbb{R} dans \mathbb{R} (\mathbb{R} étant muni de la tribu borélienne). Montrer que f est égale à q presque partout si, et seulement si, f = q.

Solution. Si f = g, on a alors f = g presque partout.

Réciproquement si f = g presque partout, il existe alors un borélien A de mesure nulle tel f = g sur $\mathbb{R} \setminus A$. Comme $\mathcal{O} = \{x \in \mathbb{R} \mid f(x) \neq g(x)\}$ est un ouvert qui est contenu dans A, il est vide (un ouvert non vide contient un intervalle $|x-\varepsilon,x+\varepsilon|$ donc est de mesure non nulle), ce qui signifie que f=g.

Exercice 6 On se place sur $(X, \mathcal{P}(X))$ muni d'une mesure de Dirac $\mu = \delta_x$, où $x \in X$ est fixé. Calculer $\int_{\mathbb{R}} f d\mu$ pour toute fonction $f: X \to \overline{\mathbb{R}^+}$.

Solution. Toute fonction $f: X \to \mathbb{R}$ est mesurable car pour tout borélien B de \mathbb{R} , on a $f^{-1}(B) \in \mathcal{P}(X)$. Pour toute fonction $f: X \to \mathbb{R}^+$, il existe une suite $(a_n)_{n \in \mathbb{N}}$ de réels positifs et une suite $(A_n)_{n \in \mathbb{N}}$ de parties de X telles que $f = \sum_{n \in \mathbb{N}} a_n \mathbf{1}_{A_n}$ et on a par définition de l'intégrale :

$$\int_{X} f d\mu = \sum_{n \in \mathbb{N}} a_{n} \delta_{x} (A_{n}) = \sum_{n \in \mathbb{N}} a_{n} \mathbf{1}_{A_{n}} (x) = f (x)$$