Capacitación en Estadística 2024

Estadística - Estadística Descriptiva

Ing. Industrial Never Alberto Urueta Peñata

Esp. en alta gerencia Mgtr. en Estadística aplicada Invima - Uniremington Biolab Laboratorio Metrológico S.A.S.

July 4, 2024

Conceptos

Población estadística

Poblaciór

Conjunto de sujetos con varias características que se quieren medir o estudiar

Parámetros. Característica medible de la población: μ, σ

Muestra

Subconjunto de la población

Conceptos

Población estadística

Población

Conjunto de sujetos con varias características que se quieren medir o estudiar

Parámetros. Característica medible de la población: μ, σ

Muestra

Subconjunto de la población

Conceptos

Población estadística

Población

Conjunto de sujetos con varias características que se quieren medir o estudiar

Parámetros. Característica medible de la población: μ, σ

Muestra

Subconjunto de la población

Conceptos

Población estadística

Población

Conjunto de sujetos con varias características que se quieren medir o estudiar

Parámetros. Característica medible de la población: μ, σ

Muestra

Subconjunto de la población

Conceptos

Población estadística

Población

Conjunto de sujetos con varias características que se quieren medir o estudiar

Parámetros. Característica medible de la población: μ, σ

Muestra

Subconjunto de la población

Estadísticos. Característica medible de la muestra: \bar{x} . s²

July 4, 2024

Conceptos

Estadística descriptiva

Se ocupa del análisis de los datos sin utilizar muestras para hacer inferencias

Conceptos

Estadística descriptiva

Se ocupa del análisis de los datos sin utilizar muestras para hacer inferencias

Estadística inferencial

Se ocupa del análisis de las muestras obtener conclusiones (inferencias acerca de la población de donde se obtienen los datos)

Conceptos

Variable. Característica que se mide al hacer determinadas observaciones.

Cualitativos.

Identifican atributos

- Ordinales
- Nominales

Cuantitativos.

Medición

Conceptos

Medidas de localización

Media muestral Simplemente un promedio númerico

$$\bar{x} = \sum_{i=1}^{n} \frac{x_i}{n} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Medidas de localización

Media muestral Simplemente un promedio númerico

$$\bar{x} = \sum_{i=1}^{n} \frac{x_i}{n} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Mediana

Valor que ocupa el lugar central en una serie ordenada

$$\tilde{x} = \begin{cases} x_{(n+1)/2}, & \text{si } n \text{ es impar,} \\ \frac{1}{2}(x_{n/2} + x_{n/2+1}), & \text{si } n \text{ es par.} \end{cases}$$

Medidas de localización

Media muestral Simplemente un promedio númerico

$$\bar{x} = \sum_{i=1}^{n} \frac{x_i}{n} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Mediana

Valor que ocupa el lugar central en una serie ordenada

$$\tilde{x} = \begin{cases} x_{(n+1)/2,} & \text{si } n \text{ es impar,} \\ \frac{1}{2}(x_{n/2} + x_{n/2+1}), & \text{si } n \text{ es par.} \end{cases}$$

Moda

Valor que más se repite, es decir, aquel que tiene una mayor frecuencia

5/16

Medidas de localización

Percentiles

El percentil p es un valor tal que por lo menos p por ciento de las observaciones son menores o iguales que este valor y por lo menos (100 - p) por ciento de las observaciones son mayores o iguales que este valor

Medidas de localización

Percentiles

El percentil p es un valor tal que por lo menos p por ciento de las observaciones son menores o iguales que este valor y por lo menos (100 - p) por ciento de las observaciones son mayores o iguales que este valor

Deciles

Medidas de localización

Percentiles

El percentil p es un valor tal que por lo menos p por ciento de las observaciones son menores o iguales que este valor y por lo menos (100 - p) por ciento de las observaciones son mayores o iguales que este valor

Deciles

Cuartiles

Ejemplo 1

Se registran las siguientes mediciones para el tiempo de secado (en horas) de cierta marca de pintura esmaltada.

Encuentre las medidas estudiadas, entre ellas el tercer cuartil y el tercer decil

Medidas de variabilidad

Rango

RANGO

 $Rango = Valor\ mayor - Valor\ menor$

Medidas de variabilidad

Rango

RANGO

Rango = Valor mayor - Valor menor

Varianza

VARIANZA POBLACIONAL

$$\sigma^2 = \frac{\Sigma (x_i - \mu)^2}{N}$$

VARIANZA MUESTRAL

$$s^2 = \frac{\sum (x_i - \bar{x})^2}{n - 1}$$

Medidas de variabilidad

Rango

RANGO

Rango = Valor mayor - Valor menor

Varianza

VARIANZA POBLACIONAL

$$\sigma^2 = \frac{\sum (x_i - \mu)^2}{N}$$

VARIANZA MUESTRAL

$$s^2 = \frac{\sum (x_i - \bar{x})^2}{n - 1}$$

Desviación estándar

DESVIACIÓN ESTÁNDAR

Desviación estándar muestral = $s = \sqrt{s^2}$ Desviación estándar poblacional = $\sigma = \sqrt{\sigma^2}$

Medidas de variabilidad

Rango

RANGO

 $Rango = Valor\ mayor - Valor\ menor$

Varianza

VARIANZA POBLACIONAL

$$\sigma^2 = \frac{\sum (x_i - \mu)^2}{N}$$

VARIANZA MUESTRAL

$$s^2 = \frac{\sum (x_i - \bar{x})^2}{n - 1}$$

Desviación estándar

DESVIACIÓN ESTÁNDAR

Desviación estándar muestral = $s = \sqrt{s^2}$ Desviación estándar poblacional = $\sigma = \sqrt{\sigma^2}$

Coeficiente de variación

COEFICIENTE DE VARIACIÓN

 $\left(\frac{\text{Desviación estándar}}{\text{Media}} \times 100\right)\%$

Ejemplo 2

Para el conjunto de mediciones para el tiempo de secado (en horas) de cierta marca de pintura esmaltada, realizar el calculo de las medidas de variación.

Análisis exploratorio - Diagramas de dispersión

Análisis exploratorio - Diagramas de dispersión

Análisis exploratorio - Histogramas

Análisis exploratorio - Histogramas

Simétrica

Análisis exploratorio - Diagrama de caja y bigote

Análisis exploratorio - Diagrama de caja y bigote

Ejemplo 4

Se midió el contenido de nicotina en una muestra aleatoria de 40 cigarrillos. Realice un diagrama de caja y bigote

Valores de nicotina							
1.09	1.92	2.31	1.79	2.28	1.74	1.47	1.97
0.85	1.24	1.58	2.03	1.70	2.17	2.55	2.11
1.86	1.90	1.68	1.51	1.64	0.72	1.69	1.85
1.82	1.79	2.46	1.88	2.08	1.67	1.37	1.93
1.40	1.64	2.09	1.75	1.63	2.37	1.75	1.69

