Math 21-236, Mathematical Studies Analysis II, Spring 2012 Assignment 2

The due date for this assignment is Monday February 6.

1. Let $C \subseteq \mathbb{R}^N$ be a nonempty closed set and let $f : \mathbb{R}^N \to [0, \infty)$ be the distance function from C, that is,

$$f(\mathbf{x}) := \operatorname{dist}(\mathbf{x}, C) = \inf \{ \|\mathbf{x} - \mathbf{y}\| : \mathbf{y} \in C \}$$

for $\mathbf{x} \in \mathbb{R}^N$.

- (a) Prove that for every $\mathbf{x} \in \mathbb{R}^N$ there exists $\mathbf{y}_{\mathbf{x}} \in C$ such that $f(\mathbf{x}) = \|\mathbf{x} \mathbf{y}_{\mathbf{x}}\|$.
- (b) Prove that if $\mathbf{x} \in \mathbb{R}^N \setminus C$, then $f(\mathbf{z}) = \|\mathbf{z} \mathbf{y}_{\mathbf{x}}\|$ for all \mathbf{z} in the segment of endpoints \mathbf{x} and $\mathbf{y}_{\mathbf{x}}$.
- (c) Prove that f is Lipschitz continuous with Lipschitz constant at most 1 and deduce that if f is differentiable at $\mathbf{x} \in \mathbb{R}^N$, then

$$\|\nabla f(\mathbf{x})\| \le 1.$$

- (d) Assume that f is differentiable at $\mathbf{x} \in \mathbb{R}^N \setminus C$ and find $\nabla f(\mathbf{x})$.
- (e) Given $\mathbf{x} \in \mathbb{R}^N \setminus C$, prove that if there exist $\mathbf{y}, \mathbf{z} \in C$ with $\mathbf{y} \neq \mathbf{z}$ such that $f(\mathbf{x}) = \|\mathbf{x} \mathbf{y}\| = \|\mathbf{x} \mathbf{z}\|$, then f is not differentiable at \mathbf{x} .
- (f) Construct a set C for which f is not always differentiable.
- 2. Let $E \subseteq \mathbb{R}^N$ be a nonempty set. What is the relation between the following two properties?
 - (a) There exist two disjoint open sets U and V such that

$$E \subseteq U \cup V$$
, $E \cap U \neq \emptyset$, $E \cap V \neq \emptyset$.

(b) There exist two open sets U and V such that

$$E \subseteq U \cup V$$
, $E \cap U \neq \emptyset$, $E \cap V \neq \emptyset$, $E \cap U \cap V = \emptyset$.

3. Assume that $g:[a,b]\times\mathbb{R}\times\mathbb{R}\to\mathbb{R}$ is continuous and that all its partial derivatives exist and are continuous. Given the normed space $C^1([a,b])$ with the norm

$$||f|| := \max_{x \in [a,b]} |f(x)| + \max_{x \in [a,b]} |f'(x)|,$$

consider the functional $G:C^{1}\left(\left[a,b\right] \right) \rightarrow\mathbb{R}$ defined by

$$G(f) := \int_{a}^{b} g(x, f(x), f'(x)) dx, \quad f \in C^{1}([a, b]).$$

- (a) Prove that G is continuous.
- (b) Prove that for every $f \in C^1([a,b])$ and every direction $v \in C^1([a,b])$, there exists the directional derivative $\frac{\partial G}{\partial v}(f)$ and that

$$\frac{\partial G}{\partial v}\left(f\right) = \int_{a}^{b} \left[\frac{\partial g}{\partial y}\left(x, f\left(x\right), f'\left(x\right)\right) v\left(x\right) + \frac{\partial g}{\partial z}\left(x, f\left(x\right), f'\left(x\right)\right) v'\left(x\right)\right] dx,$$

where g = g(x, y, z).

(c) Given $\alpha, \beta \in \mathbb{R}$, let $X = \{f \in C^1([a,b]) : f(a) = \alpha, f(b) = \beta\}$. Prove that a necessary condition for $f_0 \in X$ to minimize G over X, that is,

$$\min_{f \in X} G\left(f\right) = G\left(f_0\right)$$

is that

$$\int_{a}^{b} \left[\frac{\partial g}{\partial y} \left(x, f_{0} \left(x \right), f'_{0} \left(x \right) \right) v \left(x \right) + \frac{\partial g}{\partial z} \left(x, f_{0} \left(x \right), f'_{0} \left(x \right) \right) v' \left(x \right) \right] dx = 0$$

for all $v \in C^1([a, b])$ such that v(a) = v(b) = 0.

(d) Given a function $h \in C([a, b])$ such that

$$\int_{a}^{b} h(x) v(x) dx = 0$$

for all $v \in C^{1}([a, b])$ such that v(a) = v(b) = 0, prove that h = 0.

4. Find the minimum of the following functionals

(a)
$$G(f) = \int_{a}^{b} (f'(x))^{2} dx, X = \{ f \in C^{1}([a, b]) : f(a) = 0, f(b) = L > 0 \},$$

(b)
$$G(f) = \int_0^1 \left[(f'(x))^2 + 2xf(x) \right] dx, X = \left\{ f \in C^1([0,1]) : f(0) = f(1) = 0 \right\},$$

(c)
$$G(f) = \int_0^1 \left[(f'(x))^2 - 2xf(x)f'(x) + e^x f(x) \right] dx, X = \left\{ f \in C^1([0,1]) : f(0) = f(1) = 0 \right\}.$$