CĂN BẬC 2 CỦA HOÁN VỊ

Cho n là một số tự nhiên và S là tập các số tự nhiên từ 1 tới n. Một song ánh

$$\pi: S \to S$$
$$i \mapsto \pi(i)$$

Được gọi là một hoán vị của tập S. Hoán vị này hoàn toàn xác định nếu ta biết được bộ ảnh: $\pi(1), \pi(2), ..., \pi(n)$. Ta cũng đồng nhất bộ ảnh của một hoán vị với chính hoán vị đó.

Bình phương của hoán vị π , ký hiệu π^2 cũng là một hoán vị cho bởi bộ ảnh:

$$\pi(\pi(1)), \pi(\pi(2)), ..., \pi(\pi(n))$$

Yêu cầu: Cho $P=(p_1,p_2,...,p_n)$ là một hoán vị của tập các số tự nhiên từ 1 tới n. Hãy cho biết có bao nhiêu hoán vị π mà $\pi^2=P$.

Dữ liệu: Vào từ file văn bản SQROOT.INP

- Dòng 1 chứa số nguyên dương $n \le 100$
- lacktriangle Dòng 2 chứa n số nguyên $p_1, p_2, ..., p_n$ cách nhau ít nhất một dấu cách

Kết quả: Ghi ra file văn bản SQROOT.OUT một số nguyên duy nhất là kết quả tìm được.

Ví dụ

SQROOT.INP	SQROOT.OUT
2	2
1 2	

DÃY CON TĂNG CHUNG DÀI NHẤT

Cho hai dãy số nguyên $A=(a_1,a_2,...,a_m)$ và $B=(b_1,b_2,...,b_n)$, hãy tìm một dãy số nguyên $\mathcal{C}=(c_1,c_2,...,c_p)$ thỏa mãn những điều kiện sau

- C là dãy đơn điệu tăng, tức là $c_1 < c_2 < ... < c_p$.
- $\begin{array}{lll} \bullet & \textit{C} & \text{là dãy con của cả hai dãy } A & \text{và } B \text{ , tức là tồn tại hai dãy chỉ số} \\ \begin{cases} 1 \leq i_1 < i_2 < \ldots < i_p \leq m \\ 1 \leq j_1 < j_2 < \ldots < j_p \leq n \end{cases} \text{để } \forall k = \overline{1,p} \text{, ta có } c_k = a_{i_k} = b_{j_k}. \end{array}$
- Độ dài của dãy C là lớn nhất có thể $(p \rightarrow max)$

Dữ liệu: Vào từ file văn bản LCIS.INP

- Dòng 1 chứa hai số nguyên dương $m, n \leq 3000$
- Dòng 2 chứa m số nguyên $a_1, a_2, ..., a_m (\forall i: |a_i| \le 10^9)$
- Dòng 3 chứa n số nguyên $b_1, b_2, ..., b_n \left(\forall j : \left| b_j \right| \le 10^9 \right)$

Kết quả: Ghi ra file văn bản LCIS.OUT

- Dòng 1 ghi số phần tử của dãy C tìm được (p)
- Dòng 2 ghi các giá trị $c_1, c_2, ... c_p$

Các số trên một dòng của Input/Output files được/phải ghi cách nhau ít nhất một dấu cách

Ví dụ

1	LCIS.INP							LCIS.OUT						
9	9	9								5				
9	9	2	7	4	5	6	1	8	3	2	4	5	6	8
2	2		9	7	5	6	8	1	3					

KẾ HOẠCH LÀM BÀI

Nobita được giao n bài tập về nhà đánh số từ 1 tới n. Mỗi bài cần đúng 1 đơn vị thời gian để làm và tại mỗi thời điểm, Nobita chỉ có thể làm một bài tập. Bài tập thứ i cần hoàn thành không muộn hơn thời điểm t_i và nếu bài thứ i bị nộp muộn thì Nobita sẽ bị thầy giáo cho p_i điểm 0.

Giả sử Nobita định làm bài tập từ thời điểm a tới hết thời điểm b. Hãy giúp Nobita lên kế hoạch làm bài tập để số điểm 0 phải nhận là ít nhất.

Dữ liệu: Vào từ file văn bản PENALTY.INP

- Dòng 1 chứa ba số nguyên dương $n \le 10^5$; $a < b \le 10^9$
- ullet n dòng tiếp theo, dòng thứ i chứa hai số nguyên dương $t_i, p_i \leq 10^9$

Kết quả: Ghi ra file văn bản PENALTY.OUT một số nguyên duy nhất là số điểm 0 tối thiểu phải nhận.

Ví dụ

PI	ENALTY.INP	PENALTY.OUT
5	1 4	25
2	100	
2	20	
4	5	
4	10	
4	6	

Giải thích: Phương án tối ưu là:

Làm bài 1 từ thời điểm 1 tới thời điểm 2

Làm bài 4 từ thời điểm 2 tới thời điểm 3

Làm bài 5 từ thời điểm 3 tới thời điểm 4

Bài 2 và bài 3 bị nộp muộn

Số GIẢ NGẪU NHIÊN

Năm 1946, Von Neumann để xuất phương pháp tạo 1 dãy số "giả ngẫu nhiên". Ý tưởng của ông là "bình phương – lấy chính giữa".

Nguyên tắc này như sau: Ông chọn một số chẵn n và một số tự nhiên a_0 có biểu diễn thập phân không quá n chữ số. Bình phương a_0 được số R và có thể thêm các chữ số 0 vào đầu biểu diễn thập phân của R để được dãy gồm 2n chữ số thập phân, n chữ số đứng chính giữa dãy này là biểu diễn thập phân xác định số a_1 . Lặp lại cách làm tương tự đối với a_1 ta thu được số a_2 , ...

Ví dụ: với n=4; $a_0=5555$; $a_0^2=30858025$; ta có $a_1=8580$; $a_2=6164$; $a_3=9948$

Yêu cầu: Cho trước giá trị $a_0 < 10^4$ và giá trị n = 4, hãy xác định xem có thể sinh nhiều nhất bao nhiêu số "giả ngẫu nhiên" khác nhau từ số a_0 dựa trên ý tưởng trên.

Dữ liệu: Vào từ file văn bản RANDOM.INP gồm duy nhất một số tự nhiên $a_0 < 10000$

Kết quả: Ghi ra file văn bản RANDOM.OUT một số nguyên duy nhất là kết quả tìm được

Ví dụ

RANDOM. INP	RANDOM.OUT
5555	32