

Management of Scientific Data - Prüfung

Korrelation zwischen Testhäufigkeit und Anzahl der COVID-19 Fällen

19.07.2025

Inhalt

- Szenario & Forschungsfrage
- Data Lifecycle
- FAIR Analyse
- Live Demo

Szenario

- Datensätze:
 - COVID-19 Fälle und Tode ca. 12600 Einträge
 - COVID-19 Testhäufigkeit ca. 6100 Einträge
- Thema betrifft nach wie vor viele Menschen
- Relativ aktuelle Daten (Anfang 2020 Ende 2023)

Forschungsfrage

Korreliert die Testhäufigkeit mit der Anzahl gemeldeter COVID-19-Fälle?

- Relativ triviale Forschungsfrage
- Bietet trotzdem genug Möglichkeiten der Datenverarbeitung und Analyse
- Fokus dieser Ausarbeitung liegt auf Management der Daten, nicht auf Analyse
- Hypothese: Die Anzahl der COVID-19-Fälle korreliert mit der Testhäufigkeit

Data Lifecycle

Plan

Data Management Plan

- Horizon Template als Vorlage
- Schneller und strukturierter Projektstart
- Dokumentation nach der Idee eines "living document"
 - GitHub Repository mit README & Open Source Lizenz MIT Lizenz
 - Workflow: Stufe des Data Life Cycle abarbeiten -> Informationen einfügen -> Nächste Stufe -> bei evtl. späteren Änderungen Dokumentation aktualisieren

Collect

- Die Daten sind strukturiert, offiziell und quantitative
- Daten sind in g\u00e4ngigen Formaten verf\u00fcgbar (CSV, JSON, XML, XLSX)
- Automatisches web-scraping der ECDC
- Eindeutigkeit geht beim Herunterladen verloren -> Bezeichnung immer "data.csv
- Auf Europa beschränkt, daher nicht unbedingt repräsentativ

Collect

- Datenquellen
 - Primär: European Surveillance System (TESSy)
 - Sekundär: Öffentliche online Quellen -> Kein Hinweis zur Datenqualität

Assure

Completeness

- 7.63% aller Einträge des Deaths/Cases Datensatz haben NaN Werte
- Bei Testing Datensatz: 18.86%

Uniqueness

Sortierung nach Land und Datum stellt Einzigartigkeit sicher

Timeliness

- Pro Land repräsentativ
- Während Pandemie schwierig eine 100% Garantie zu geben

Assure

Validity

- Spalten sind valide, konkret und selbsterklärend
- Bei fehlenden Werten wird konstant NA

Accuracy

- Keine Duplikate
- Alle Spalten enthalten vernünftige/erwartbare Werte

Consistency

- Gute Konsistenz
- Kleinere Inkonsistenzen zwischen Datensätzen (Ländercodes: AUT/AT, ...)

Describe

- Website bietet f
 ür Deaths/Cases Dataset wenig Informationen
- Testing Volume Dataset enthielt deutlich mehr Metadaten
- GitHub Repository enthält keine Metadaten -> ausführliche README oder Dokumentation wäre hilfreich
- Aber: Daten sind meist selbsterklärend, selbst für Menschen ohne medizinischen Hintergrund -> Arbeit mit Daten ist gut möglich

Preserve

- Daten redundant auf Website & GitHub gespeichert -> gut
- Zusätzlicher Upload auf Zenodo o.ä. Wünschenswert
- Keine Verbindung zu einem Artikel & keine Quality Features angegeben
- DOI oder andere PID fehlen
- Keine Autoren, aber Accounts bei GitHub auffindbar

Preserve

- Metadata ist teilweise vorhanden
- Öffentlicher Zugriff auf Daten
- Keine direkte Lizenz, aber Verweis auf ECDC Copyright (CC BY 4.0)
- Kein Überblick auf die Daten/Struktur von der Website aus
- Archive von früheren Zeitpunkten vorhanden (Juni 2022)
- Website wurde indiziert und ist gut durch Suchmaschinen zu finden

Discover

- Viele COVID-19 Datensätze verfügbar auf Zenodo o.ä.
 - Öffentliche Datensätze schränken die Anzahl stark ein
 - Regionale Probleme -> Viele Daten sind nur für spezifische Regionen
- Daten unseres ReproHack-Projekt könnten genutzt werden
- Mehr Informationen dann in Live Demo

Integrate

- Datensätze waren gut zu kombinieren
- Vorverarbeitung:
 - Anpassung des Datum-Formats
 - Zusammenführung der Datensätze
 - Entfernung nicht nötiger und redundanten Spalten
 - Entfernung aller Spalten mit NaN Werten
 - Export nach Land
- Hilfe von Al bei Entwicklung hatte positiven Einfluss

Analyze

- Arbeitsschritte:
 - Iteration über alle vorverarbeiteten Länder-Daten
 - Aufteilung in "Cases" und "Deaths"
 - Generation der Plots in Kombination mit der Test-Rate
 - Überprüfung ob Abhängigkeit besteht

Analyze

FAIR

Findable

- (Meta)data are assigned a globally unique and persistent identifier
- Data are described with rich metadata
- Metadata clearly and explicitly include in the identifier of the data it describes
- (Meta)data are registered or indexed in a searchable resource

63.33%

Accessible

- (Meta)data are retrievable by their identifier using a standardized protocol
- The protocol is open, free and universal
- The protocol allows for authentication and authorization, as needed
- Metadata are accessible, even when the data are no longer available

Interoperable

- (Meta)data use a formal, accessible, shared and broadly applicable language
- (Meta)data use vocabularies that follow FAIR principles
- (Meta)data include qualified references to other (meta)data

Reusable

- (Meta)data are richly described with a plurality of accurate and relevant attributes
- (Meta)data are released with a clear and accessible data usage licence
- (Meta)data are associated with a detailed provenance
- (Meta)data meet domain-relevant community standards

"The only relevant test of the validity of a hypothesis is comparison of prediction with experience."

- Milton Friedman -

Vielen Dank für Ihre Aufmerksamkeit!

Justin Bergmann