เอกสารประกอบการอบรม
เรื่อง Dynamic Programming Algorithms
ผู้ช่วยศาสตราจารย์ ดร.ณัฐพงศ์ ชินธเนศ
นำมาจาก Slide วิชา Algorithms
โดย รองศาสตราจารย์ ดร.สมชาย ประสิทธิ์จูตระกูล

Dynamic Programming

Dynamic Programming Slides

Easy

Edit Distance http://www.spoj.com/problems/EDIST/Matrix Chain http://www.spoj.com/problems/MIXTURES/Sucuba http://www.spoj.com/problems/SCUBADIV/

Problems for Discussion

<u>Star Adventure</u> https://www.topcoder.com/community/data-science/data-science-tutorials/dynamic-programming-from-novice-to-advanced/

Mini Paint https://community.topcoder.com/stat?c=problem_statement&pm=1996&rd=4710

Theater

Hard

Mars Stomatologyhttp://acm.sgu.ru/problem.php?contest=0&problem=304Bithttp://acm.sgu.ru/problem.php?contest=0&problem=269Fast Ridehttp://acm.sgu.ru/problem.php?contest=0&problem=317Mono chrome picturehttp://acm.sgu.ru/problem.php?contest=0&problem=458Journalhttp://acm.sgu.ru/problem.php?contest=0&problem=494

More problems http://codeforces.com/problemset/tags/dp/page/1?order=BY_SOLVED_DESC

การออกแบบอัลกอริทึม

กำหนดการพลวัต Dynamic Programming

ผศ.ดร. ณัฐพงศ์ ชินธเนศ นำมาจาก slides ของ รศ.ดร. สมชาย ประสิทธิ์จูตระกูล

หัวข้อ

- งใหญ่เป็นย่อย ถ้ามีปัญหาย่อยที่ซ้ำ จะช้า
- 💠 จำคำตอบไว้ใช้ในอนาคต → เร็ว
- ใช้กับการแก้ปัญหาได้ทั้งแบบ
 - top-down
 - bottom-up
- ❖ กำหนดการพลวัต (Dynamic Programming)
- ⋄ ตัวอย่าง

จำนวนฟิโบนักชี (Fibonacci)

$$f_{n} = f_{n-1} + f_{n-2}$$

$$f_{0} = 0, f_{1} = 1$$
Top-down
$$f(n) \{ if (n < 2) return n return f(n - 1) + f(n - 2) \}$$

เวลาการทำงาน

Intel P8400 2.26GHz, Java 6u14

วิเคราะห์เวลาการทำงาน

```
f( n ) {
   if (n < 2) return n
   return f(n - 1) + f(n - 2)
}</pre>
```

ให้ t(n) แทนจำนวนครั้งที่เรียก **f (n)** จะได้ t(n) = t(n-1) + t(n-2) + 1, t(0) = 1, t(1) = 1

$$n = 0$$
 1 2 3 4 5 6 7 8
 $f(n) = 0$ 1 2 3 5 8 13 21
 $f(n) = 1$ 1 3 5 9 15 25 41 67

$$f(n) = 2f(n+1) - 1 \qquad \Theta(\phi^n)$$

$$f(n) = \frac{\phi^n - (1-\phi)^n}{\sqrt{5}}, \ \phi = \frac{1+\sqrt{5}}{2} \approx 1.61803...$$

ช้าเพราะคำนวณซ้ำ ๆ

หลีกเลี่ยงการคำนวณซ้ำด้วยการจำ

```
f(n, F[0..n]) {
                                                           \Theta(n)
           if (n < 2) return n
           if (F[n] > 0) return F[n]
           return \mathbf{F}[n] = \mathbf{f}(n-1, \mathbf{F}) + \mathbf{f}(n-2, \mathbf{F})
Memoization
           f(3)
                                F
                                                      F[i] เก็บ f(i)
f(1)
         f(0)
```

แบบมีกับไม่มี memoization

เติมตารางอีกแบบ : Bottom-Up


```
f( n ) {
    F = new array[0..n]
    F[0] = 0; F[1] = 1
    for (i = 2; i <= n; i++) {
        F[i] = F[i - 1] + F[i - 2]
    }
    return F[n]
}</pre>
```

bottom-up

ลดขนาดของตารางเหลือแค่ 3 ตัว

```
f0 f1 f2
0 1 2
```

```
f( n ) {
  f0 = 0, f1 = 1, f2 = 1
  for (i = 2; i <= n; i++) {
    f2 = f0 + f1
    f0 = f1
    f1 = f2
  }
  return f2
}</pre>
```

C(n,k) : n เลือก k

```
[C(n-1,k)+C(n-1,k-1) \text{ if } 0 < k < n
C(n,k) = \begin{cases} 1 & \text{if } 1 \\ 1 & \text{if } 1 \end{cases}
                                     if k = 0 or k = n
                                         otherwise
     c(n, k) {
        if (k == 0 \text{ OR } k == n) \text{ return } 1
        if (k < 0 \text{ OR } k > n) \text{ return } 0
        return c(n-1, k) + c(n-1, k-1)
                         c(4,2)
                                                  Overlapping
                                                  Subproblems
                                        c(3,1)
         c(3,2)
   c(2,2) c(2,1)
                          c(2,1) c(2,0)
        c(1,1) c(1,0) c(1,1) c(1,0)
```

C(n, k) : เวลาการทำงาน

C(n,k): Top-down + Memoization

```
    c(10,5)

    ทำ 503 ครั้ง

    (n, k) {

    if (k == 0 OR k == n) return 1

    if (k < 0 OR k > n) return 0

    return c(n-1, k) + c(n-1, k-1)

    c(n, k, C[1..n][1..k]) {

    if (k == 0 OR k == n) return 1

    if (k < 0 OR k > n) return 0
```

return C[n][k] = c(n-1, k, C) + c(n-1, k-1, C)

if (C[n][k] > 0) return C[n][k]

แบบมีกับไม่มี memoization

C(n, k): Bottom-up

Bottom = หาคำตอบของกรณีเล็ก ๆ Up = หาคำตอบของกรณีใหญ่ขึ้น

โดยใช้คำตอบของกรณีเล็กที่รู้แล้ว

Pascal's Triangle : เขียนอีกแบบ

$$C(6,2) = 15$$

C(n, k): Bottom-up

$$C(n,k) = \begin{cases} C(n-1,k) + C(n-1,k-1) & \text{if } 0 < k < n \\ 1 & \text{if } k = 0 \text{ or } k = n \\ 0 & \text{otherwise} \end{cases}$$

n

ต้องการ C (6,2)

C(n, k): Bottom-up

```
c(n, k) {
  C = new array[0..n][0..k]
  for (i = 0; i \le n; i++) C[i][0] = 1
  for (i = 0; i \le k; i++) C[i][i] = 1
  for (i = 2; i \le n; i++)
    for (j = 1; j \le k \&\& j < i; j++)
      C[i][j] = C[i - 1][j] + C[i - 1][j - 1]
  return C[n][k];
              \Theta(nk)
```

Top-Down vs. Bottom-Up

Top-Down

- แบ่งปัญหาใหญ่เป็นปัญหาย่อย
- หาคำตอบของปัญหาย่อย
- 💠 นำคำตอบย่อย ๆ มารวมเป็นคำตอบของปัญหาใหญ่
- มักเขียนแบบ recursive
- แก้ปัญหาย่อยเท่าที่จำเป็น (แต่อาจแก้ซ้ำ แก้แล้วแก้อีก)
- ฉดการแก้ปัญหาย่อยซ้ำด้วย memoization

Bottom-Up

- เริ่มหาคำตอบของปัญหาเล็ก ๆ
- 💠 นำคำตอบของปัญหาเล็กมาหาคำตอบของปัญหาใหญ่ขึ้น
- มักเขียนแบบวงวน
- แก้ปัญหาย่อย ๆ ทุกปัญหา ปัญหาละครั้ง

Dynamic Programming

- ทำงานแบบ bottom-up ด้วยการแก้ปัญหาย่อย จำคำตอบที่ได้ เพื่อนำไปใช้แก้ปัญหาใหญ่ขึ้น
- ❖ มักใช้กับ optimization problems
 - การหาเส้นทางสั้นสุด
 - การหาลำดับย่อยร่วมกันที่ยาวสุด
 - 💠 การเลือกของที่ได้มูลค่ารวมสูงสุด
 - 💠 การจัดเก็บข้อมูลในต้นไม้ค้นหาให้ค้นได้เร็วสุด
 - 💠 การหาลำดับการคูณเมทริกซ์ เพื่อให้คูณได้เร็วสุด

Richard Bellman นักคณิตศาสตร์ ผู้คิดวิธี Dynamic programming ในปี ค.ศ. 1953

Longest Common Subsequence

แฟ้มสองแฟ้มเหมือนกัน (ต่างกัน) ตรงใหนบ้าง

Longest Common Subsequence

วัดความคล้ายของ DNA sequences

ACCGGTCGAGTGCGCGGAAGCCGGCCGAA

GTCGTTCGGAATGCCGTTGCTCTGTAAA

Longest Common Subsequence

- - \diamond <H, E, L, L, O> \rightarrow <H, E>
 - \diamond <H, E, L, L, O> \rightarrow <H, E, O>

 - .
- Y = <H, E, R, O> มี subsequences
 - $\cdot \cdot < H$, E, R, O> $\rightarrow < H$, E>
 - \diamond <H, E, R, O> \rightarrow <H, R>
 - \diamond <H, E, R, O> \rightarrow <H, E, O>
 - ٠...
- * common subsequence(X, Y)
- longest common subsequence(X, Y)

นิยาม

$$\star X = \langle x_1, x_2, x_3, ..., x_m \rangle$$

$$\mathbf{Y} = \langle y_1, y_2, y_3, ..., y_n \rangle$$

$$X_i = \langle x_1, x_2, ..., x_i \rangle$$

$$Y_i = \langle y_1, y_2, ..., y_i \rangle$$

$$\star$$
 LCS(X_i, Y_j):

longest common subsequence ของ \mathbf{X}_i , \mathbf{Y}_j

$$\star LCS(X, Y) = LCS(X_m, Y_n)$$

❖
$$L(i,j)$$
 : ความยาวของ $LCS(X_i, Y_i)$

คำตอบใหญ่ได้จากคำตอบย่อย ๆ

คำตอบใหญ่ได้จากคำตอบย่อย ๆ LCS(COP, CEO) LCS(LCS(LCS(COP, CE) LCS(LCS(CO, CEO)

Recurrence ของ L(i, j)

$$L(i,j) = L(i-1,j-1)+1$$
 if $x_i = y_j$

$$\uparrow \qquad \uparrow$$
กุยาวของ LCS(X: 1, Y: 1) ตัวขวาที่เท่ากัน 1 ตั

ความยาวของ LCS(X_{i-1}, Y_{i-1}) ตัวขวาที่เท่ากัน 1 ตัว

Recurrence ของ L(i, j)

X_i		X_i
	Y_j	y_j

$$L(i, j) = \begin{cases} L(i-1, j-1) + 1 & \text{if } x_i = y_j \\ \max(L(i-1, j), L(i, j-1)) & \text{if } x_i \neq y_j \\ 0 & \text{if } i = 0 \text{ or } j = 0 \end{cases}$$

LCS: Top-down

```
L(i, j) = \begin{cases} L(i-1, j-1) + 1 & \text{if } x_i = y_j \\ \max(L(i-1, j), L(i, j-1)) & \text{if } x_i \neq y_j \\ 0 & \text{if } i = 0 \text{ or } j = 0 \end{cases}
```

หาความยาว LCS : เวลาการทำงาน

ลักษณะข้อมูลของกรณี worst case และ best case เป็นอย่างไร ? กรณี best case มีประสิทธิภาพเชิงเวลาอย่างไร ? ลองปรับด้วย memoization จะได้ผลอย่างไร ?

LCS: best cases

worst case เมื่อสองลำดับไม่เหมือนกันเลย best case เมื่อสองลำดับเหมือนกันหมด

Top-down + Memoization

```
L(i,j) = \begin{cases} L(i-1,j-1) + 1 & \text{if } x_i = y_j \\ \max \left( L(i-1,j), L(i,j-1) \right) & \text{if } x_i \neq y_j \\ 0 & \text{if } i = 0 \text{ or } j = 0 \end{cases}
```

LCS: memoization

LCS: Bottom-up

$$L(i, j) = \begin{cases} L(i-1, j-1) + 1 & \text{if } x_i = y_j \\ \max(L(i-1, j), L(i, j-1)) & \text{if } x_i \neq y_j \\ 0 & \text{if } i = 0 \text{ or } j = 0 \end{cases}$$

\ j						
i\		Н	Е	L	L	0
	0	0	0	0	0	0
Н	0	1	1	1	1	1
Е	0	1	2	2	2	2
R	0	1	2	2	2	2
Ο	0	1	2	2	2	3

LCS: Dynamic Prog.

```
L(i, j) = \begin{cases} L(i-1, j-1) + 1 & \text{if } x_i = y_j \\ \max(L(i-1, j), L(i, j-1)) & \text{if } x_i \neq y_j \\ 0 & \text{if } i = 0 \text{ or } j = 0 \end{cases}
```

```
LCS_Length(x[1..m], y[1..n]) {
    L = new array[0..m][0..n]
    for (i = 0; i <= m; i++) L[i][0] = 0
    for (j = 0; j <= n; j++) L[0][j] = 0
    for (i = 1; i <= m; i++)
        for (j = 1; j <= n; j++)
            if (x[i] == y[j])
            L[i][j] = L[i - 1][j - 1] + 1
            else
            L[i][j] = max(L[i - 1][j], L[i][j - 1])
        return L;
}
```

ต้องการ LCS : จำผลการตัดสินใจ

$$L(i,j) = \begin{cases} L(i-1,j-1) + 1 & \text{if } x_i = y_j \\ \max(L(i-1,j), L(i,j-1)) & \text{if } x_i \neq y_j \\ 0 & \text{if } i = 0 \text{ or } j = 0 \end{cases}$$

จำผลการตัดสินใจ

```
LCS(x[1..m], y[1..n]) {
  L = new array[0..m][0..n]
  D = new array[1..m][1..n]
  for (i = 0; i \le m; i++) L[i][0] = 0
  for (j = 0; j \le n; j++) L[0][j] = 0
  for (i = 1; i \le m; i++)
    for (j = 1; j \le n; j++)
      if(x[i] == y[j])
        L[i][j] = L[i - 1][j - 1] + 1
        D[i][j] = \mathbb{R}
      else
        if (L[i-1][j] > L[i][j-1])
          L[i][j] = L[i-1][j]
          D[i][j] = \mathbf{\uparrow}
        else
          L[i][j] = L[i][j-1]
          D[i][j] = ←
```

ใช้ผลการตัดสินใจสร้างคำตอบ

```
lcs = an empty sequence
i = n, j = m
while (i > 0 \text{ AND } j > 0) {
  switch( D[i][j] ) {
    case : K
       lcs = x[i] + lcs \setminus
       i--; i--
    case : 🗲
       i--
    case : 1
                            Н
      i --
                            F
                            R
return lcs
```

ต้องการประหยัด ไม่จำผลการตัดสินใจ

$$L(i, j) = \begin{cases} L(i-1, j-1) + 1 & \text{if } x_i = y_j \\ \max(L(i-1, j), L(i, j-1)) & \text{if } x_i \neq y_j \\ 0 & \text{if } i = 0 \text{ or } j = 0 \end{cases}$$

$$L(i, j) = \begin{cases} L(i-1, j-1) + 1 & \text{if } x_i = y_j \\ \max(L(i-1, j), L(i, j-1)) & \text{if } x_i \neq y_j \\ 0 & \text{if } i = 0 \text{ or } j = 0 \end{cases}$$

j		Н	Е	L	L	0
	0	0	0	0	0	0
Н	0	1	1	1	1	1
Ε	0	1	2	2	2	2
R	0	1	2	2	2	2
0	0	1	2	2	2	3

$$L(i, j) = \begin{cases} L(i-1, j-1) + 1 & \text{if } x_i = y_j \\ \max(L(i-1, j), L(i, j-1)) & \text{if } x_i \neq y_j \\ 0 & \text{if } i = 0 \text{ or } j = 0 \end{cases}$$

j		Н	Ε	L	L	0
	0	0	0	0	0	0
Н	0	1	1	1	1	1
E	0	1	2	2	2	2
R	0	1	2	2	2	2
0	0	1	2	2	2	3

$$L(i, j) = \begin{cases} L(i-1, j-1) + 1 & \text{if } x_i = y_j \\ \max(L(i-1, j), L(i, j-1)) & \text{if } x_i \neq y_j \\ 0 & \text{if } i = 0 \text{ or } j = 0 \end{cases}$$

j		Н	Е	L	L	0
	0	0	0	0	0	0
Н	0	1	1	1	1	1
E	0	1	2	2	2	2
R	0	1	2	2	2	2
0	0	1	2	2	2	3

$$L(i, j) = \begin{cases} L(i-1, j-1) + 1 & \text{if } x_i = y_j \\ \max(L(i-1, j), L(i, j-1)) & \text{if } x_i \neq y_j \\ 0 & \text{if } i = 0 \text{ or } j = 0 \end{cases}$$

$$L(i, j) = \begin{cases} L(i-1, j-1) + 1 & \text{if } x_i = y_j \\ \max(L(i-1, j), L(i, j-1)) & \text{if } x_i \neq y_j \\ 0 & \text{if } i = 0 \text{ or } j = 0 \end{cases}$$

j		H	E	L	L	0
	0	Ô	0	0	0	0
H	0	1	1	1	1	1
E	0	1	2	2	2	2
R	0	1	2	2	2	2
0	0	1	2	2	2	3

$$L(i,j) = \begin{cases} L(i-1,j-1) + 1 & \text{if } x_i = y_j \\ \max(L(i-1,j), L(i,j-1)) & \text{if } x_i \neq y_j \\ 0 & \text{if } i = 0 \text{ or } j = 0 \end{cases}$$

LCS_Soln(x, y, L)

```
LCS Soln(x[1..n], y[1..m], L[0..n][0..m]) {
  lcs = an empty sequence
  i = n, j = m
  while (i > 0 \text{ AND } j > 0) {
    if (x[i] == y[j]) {
      lcs = x[i] + lcs
      i--; j--
    } else {
      if (L[i][j-1] > L[i-1][j])
        i--
      e1se
        i --
  return 1cs
```

สามารถหา LCS ได้ด้วยเนื้อที่ O(n + m)

D. Hirschberg "A linear space algorithm for computing maximal common subsequences"

สะกดผิด : หาคำไกล้เคียง

Minimum Edit Distance

- ❖ เปลี่ยน HELLO ให้เป็น HERO เช่น
 - \leftrightarrow HELLO \rightarrow ELLO \rightarrow LO \rightarrow RO \rightarrow ERO \rightarrow HERO
 - HELLO → HELO → HERO
- ให้การแก้ไขสตริงประกอบด้วย
 - การลบอักขระหนึ่งตัว
 - การเพิ่มอักขระหนึ่งตัว
 - การแทนอักขระหนึ่งตัวด้วยอักขระอีกตัว
- ullet การแก้ไขมีต้นทุน $c_{
 m D}\,,\;c_{
 m I}\,,\;c_{
 m S}$
- ❖ Edit distance คือตันทุนการแก้ไขเพื่อเปลี่ยนสตริง
- ง ปัญหา : เปลี่ยนสตริง s ให้เป็น t อย่างไรให้มี minimum edit distance

ลองทำเอง คล้าย ๆ LCS

ลักษณะของปัญหา

• overlapping subproblems :

- ◆ ต้องแก้ปัญหาย่อย ๆ ซ้ำ ๆ หลายครั้ง การจำคำตอบจึงประหยัดเวลาการทำงานได้มาก
- 💠 ต้องมีจำนวนปัญหาย่อยทั้งหมดไม่มาก

• optimal substructures (principle of optimality) :

- ❖ คำตอบที่ดีสุดของปัญหาใหญ่ได้มาจาก คำตอบที่ดีสุดของปัญหาที่เล็กกว่า
- ทำให้เขียน recurrence ของคุณภาพของคำตอบได้
- 💠 คิด : ใช้คำตอบดีสุดของปัญหาเล็กใด และเลือกอย่างไร

$$L(i, j) = \begin{cases} L(i-1, j-1) + 1 & \text{if } x_i = y_j \\ \max(L(i-1, j), L(i, j-1)) & \text{if } x_i \neq y_j \\ 0 & \text{if } i = 0 \text{ or } j = 0 \end{cases}$$

Optimal Substructures

LCS("HELLO", "HERO") คือ LCS("HELL", "HER") ต่อด้วย "O"

ถ้าทางเดินสั้นสุดจาก 1 ไป 7 คือ $1 \rightarrow 2 \rightarrow 4 \rightarrow 6 \rightarrow 7$ แสดงว่า

ทางจาก 1 ไป 4 ซึ่งคือ $1 \rightarrow 2 \rightarrow 4$ ต้องสั้นสุดด้วย ทางจาก 1 ไป 6 ซึ่งคือ $1 \rightarrow 2 \rightarrow 4 \rightarrow 6$ ต้องสั้นสุดด้วย ทางจาก 2 ไป 6 ซึ่งคือ $2 \rightarrow 4 \rightarrow 6$ ต้องสั้นสุดด้วย ทางจาก 2 ไป 7 ซึ่งคือ $2 \rightarrow 4 \rightarrow 6 \rightarrow 7$ ต้องสั้นสดด้วย

ปัญหา optimization ไม่จำเป็นต้องมี optimal substructure เสมอไป

Longest Simple Path

O/1 Knapsack

- ❖ ของ n ชิ้นมีหมายเลข : 1, 2, 3, ..., n
- * แต่ละชิ้นหนัก : $w_1, w_2, w_3, ..., w_n$
- แต่ละชิ้นมีมูลค่า : $v_1, v_2, v_3, ..., v_n$
- ถุงเป็หนึ่งใบจุของได้หนักไม่เกิน W
- 💠 ปัญหา : จงเลือกของใส่ถุง เพื่อให้
 - 💠 ถุงไม่ขาด
 - ได้มูลค่ารวมมากสุด

O/1 Knapsack

- ❖ ของ n ชิ้นมีหมายเลข : 1, 2, 3, ..., n
- * แต่ละชิ้นหนัก : $w_1, w_2, w_3, ..., w_n$
- * แต่ละชิ้นมีมูลค่า : $v_1, v_2, v_3, ..., v_n$
- ถุงเป้หนึ่งใบจุของได้หนักไม่เกิน W
- * หา $< x_1, x_2, x_3, ..., x_n >$, $x_k = 0$ หรือ 1

maximize
$$\sum_{k=1}^{n} x_k v_k$$

subject to
$$\sum_{k=1}^{n} x_k w_k \le W$$

$$x_k \in \{0,1\}$$

แบ่งปัญหาใหญ่เป็นปัญหาย่อย

ปัญหาใหญ่ : ปัญหาย่อย

- *** LCS** : L(i,j)
 - ง ปัญหาใหญ่หรือเล็กขึ้นกับความยาวของลำดับ X₁ และ Y₁
- *** Edit distance :** D(i,j)
- ***** Knapsack : V(?)
 - 💠 ปัญหาใหญ่หรือเล็กขึ้นกับจำนวนของ และน้ำหนักที่ถุงรับได้
 - V(i,j) : มูลค่ารวมสูงสุดในการ
 - ❖ เลือกของชิ้นที่ 1, 2, 3, ..., i
 - ❖ ใส่ถุงเป้ที่รับน้ำหนักได้ไม่เกิน j

เขียน recurrence ของ V(i, j)

เขียน recurrence V(i, j)

V(i, j) แทนมูลค่าของการเลือกที่ดีสุดเมื่อ มีของให้เลือกชิ้นที่ 1, 2, ..., i ใส่ถุงเป้ที่จุได้หนัก j

$$V(i,j) = \begin{cases} \max(V(i-1,j), \ v_i + V(i-1,j-w_i)) & \text{if } i > 0 \text{ and } j \ge w_i \\ V(i-1,j) & \text{if } j < w_i \\ 0 & \text{if } i = 0 \text{ or } j = 0 \end{cases}$$

Knapsack: Top-down

```
V(i,j) = \begin{cases} \max(V(i-1,j), v_i + V(i-1,j-w_i)) & \text{if } i > 0 \text{ and } j \ge w_i \\ V(i-1,j) & \text{if } j < w_i \\ 0 & \text{if } i = 0 \text{ or } j = 0 \end{cases}
```

Top-down + Memoization

```
V(i, j) = \begin{cases} \max(V(i-1, j), v_i + V(i-1, j-w_i)) & \text{if } i > 0 \text{ and } j \ge w_i \\ V(i-1, j) & \text{if } j < w_i \\ 0 & \text{if } i = 0 \text{ or } j = 0 \end{cases}
```

O/1 Knapsack : Bottom-Up

$$V(i,j) = \begin{cases} \max(V(i-1,j), \ v_i + V(i-1,j-w_i)) & \text{if } i > 0 \text{ and } j \ge w_i \\ V(i-1,j) & \text{if } j < w_i \\ 0 & \text{if } i = 0 \text{ or } j = 0 \end{cases}$$

		j	0	1	2	3	4	5	6	7	8	9	10
v_i	w_i	0	0	0	0	0	0	0	0	0	0	0	0
20	2	1	0	0	20	20	20	20	20	20	20	20	20
30	2	2	0	0	30	30	50	50	50	50	50	50	50
66	3	3	0	0	30	66	66	96	96	116	116	116	116
40	4	4	0	0	30	66	66	96	96	116	116	136	136
60	5	5	0	0	30	66	66	96	96	116	126	136	156

$$W = 10$$

O/1 Knapsack : Bottom-Up

```
knapsack_Value(v[1..n], w[1..n], W) {
    V = new array[0..n][0..W]
    for (i = 0; i <= n; i++) V[i][0] = 0
    for (j = 0; j <= W; j++) V[0][j] = 0
    for (i = 1; i <= n; i++)
        for (j = 1; j <= W; j++)
            if (j < w[i])
            V[i][j] = V[i-1][j]
        else
            V[i][j] = max(V[i-1][j]), v[i]+V[i-1][j-w[i]])
    return V
}
```

```
V(i,j) = \begin{cases} \max(V(i-1,j), v_i + V(i-1,j-w_i)) & \text{if } i > 0 \text{ and } j \ge w_i \\ V(i-1,j) & \text{if } j < w_i \\ 0 & \text{if } i = 0 \text{ or } j = 0 \end{cases}
```

อยากรู้เลือกอะไร : จำผลการตัดสินใจ

$$V(i,j) = \begin{cases} \max(V(i-1,j), v_i + V(i-1,j-w_i)) & \text{if } i > 0 \text{ and } j \ge w_i \\ V(i-1,j) & \text{if } j < w_i \\ 0 & \text{if } i = 0 \text{ or } j = 0 \end{cases}$$

		į	0	1	2	3	4	5
v_i	W_i	0	0	0	0	0	0	0
20	2	1	0	0 🔀	20_	20	20_	20_
30	2	2	0	0 🗴	30 _~	30~	50√	50 _~
25	3	3	0	0 🗴	30 x	30 x	50 <mark>×</mark>	55 <mark>√</mark>

$$W = 5$$

ใช้ผลการตัดสินใจสร้างคำตอบ

O/1 Knapsack : จำการตัดสินใจ

```
knapsack(v[1..n], w[1..n], W) {
  V = new array[0..n][0..W]
  X = new array[1..n][1..W]
  for (i = 0; i \le n; i++) V[i][0] = 0
  for (i = 0; i \le W; i++) V[0][i] = 0
  for (i = 1; i \le n; i++)
    for (i = 1; i \le W; i++)
      if (i < w[i])
        V[i][j] = V[i-1][j]; X[i][j] = X
      else
        if (V[i-1][j]) > v[i]+V[i-1][j-w[i]])
          V[i][i] = V[i-1][i]
          X[i][j] = \mathbb{Z}
        } else {
          V[i][j] = v[i] + V[i-1][j - w[j]]
          X[i][i] = \mathbf{\nabla}
```

O/1 Knapsack : จำการตัดสินใจ

ต้องการประหยัด ไม่จำผลการตัดสินใจ

$$V(i,j) = \begin{cases} \max(V(i-1,j), v_i + V(i-1,j-w_i)) & \text{if } i > 0 \text{ and } j \ge w_i \\ V(i-1,j) & \text{if } j < w_i \\ 0 & \text{if } i = 0 \text{ or } j = 0 \end{cases}$$

		j	0	1	2	3	4	5	6	7	8	9	10		
v_i	w_i	0	0	0	0	0	0	0	0	0	0	0	0		
20	2	1	0	0	20	20	20	20	20	20	20	20	20		
30	2	2	0	0	30	30	50	50	50	50	50	50	50		
66	3	3	0	0	30	66	66	96	96	116	116	116	116		
40	4	4	0	0	30	66	66	96	96	116	116	136	136		
(60)	(5)	5	0	0	30	66	66	96	96	116	126	136	156		
i = 0 or j = 0?								→ false							
$j < w_i$?							→ false								

 $V(i,j) = v_i + V(i-1,j-w_i)$? \rightarrow true \rightarrow เลือกชิ้นที่ 5

แล้วเลือกของชิ้นใดบ้าง ?

$$V(i,j) = \begin{cases} \max(V(i-1,j), v_i + V(i-1,j-w_i)) & \text{if } i > 0 \text{ and } j \ge w_i \\ V(i-1,j) & \text{if } j < w_i \\ 0 & \text{if } i = 0 \text{ or } j = 0 \end{cases}$$

		j	0	1	2	3	4	(5)	6	7	8	9	10
v_i	W_i	0	0	0	0	0	0	0	0	0	0	0	0
20	2	1	0	0	20	20	20	20	20	20	20	20	20
30	2	2	0	0	30	30	50	50	50	50	50	50	50
66	3	3	0	(0)	30	66	66	96	96	116	116	116	116
40	(4)	(4)	0	0	30	66	66	96	96	116	116	136	136
60	5	5	0	0	30	66	66	96	96	116	126	136	156

$$i = 0 \text{ or } j = 0$$
?

$$j < w_i$$
?

$$V(i,j) = v_i + V(i-1,j-w_i)$$
 ? \rightarrow false

แล้วเลือกของชิ้นใดบ้าง ?

$$V(i,j) = \begin{cases} \max(V(i-1,j), v_i + V(i-1,j-w_i)) & \text{if } i > 0 \text{ and } j \ge w_i \\ V(i-1,j) & \text{if } j < w_i \\ 0 & \text{if } i = 0 \text{ or } j = 0 \end{cases}$$

		j	0	1	2	3	4	(5)	6	7	8	9	10
v_i	W_i	0	0	0	0	0	0	0	0	0	0	0	0
20	2	1	0	0	20	20	20	20	20	20	20	20	20
30	2	2	0	0	(30)	30	50	50	50	50	50	50	50
(66)	(3)	(3)	0	0	30	66	66	96	96	116	116	116	116
40	4	4	0	0	30	66	66	96	96	116	116	136	136
(60)	5	5	0	0	30	66	66	96	96	116	126	136	156
i = 0 or i = 0?)	fal	se		

$$i = 0 \text{ or } j = 0$$
? \rightarrow false $j < w_i$? \rightarrow false

$$V(i,j) = v_i + V(i-1,j-w_i)$$
 ? \rightarrow true \rightarrow เลือกชิ้นที่ 3

แล้วเลือกของชิ้นใดบ้าง ?

$$V(i,j) = \begin{cases} \max(V(i-1,j), v_i + V(i-1,j-w_i)) & \text{if } i > 0 \text{ and } j \ge w_i \\ V(i-1,j) & \text{if } j < w_i \\ 0 & \text{if } i = 0 \text{ or } j = 0 \end{cases}$$

	•	j	0	1	2	3	4	5	6	7	8	9	10
v_i	W_i	0	0	0	0	0	0	0	0	0	0	0	0
20	2	1	(0)	0	20	20	20	20	20	20	20	20	20
30	(2)	(2)	0	0	30	30	50	50	50	50	50	50	50
(30) (66)	3	3	0	0	30	66	66	96	96	116	116	116	116
40	4	4	0	0	30	66	66	96	96	116	116	136	136
(60)	5	5	0	0	30	66	66	96	96	116	126	136	156

$$i = 0 \text{ or } j = 0 ?$$

$$i = 0$$
 of $j = 0$
 $j < w_i$?

$$V(i,j) = v_i + V(i-1,j-w_i)$$
 ? \rightarrow true \rightarrow เลือกชิ้นที่ 2

ู้ แล้วเลือกของชิ้นใด<u>บ้าง</u> ?

$$V(i,j) = \begin{cases} \max(V(i-1,j), v_i + V(i-1,j-w_i)) & \text{if } i > 0 \text{ and } j \ge w_i \\ V(i-1,j) & \text{if } j < w_i \\ 0 & \text{if } i = 0 \text{ or } j = 0 \end{cases}$$

		j	0	1	2	3	4	5	6	7	8	9	10
v_i	w_i	0	0	0	0	0	0	0	0	0	0	0	0
20	2	(1)	(0)	0	20	20	20	20	20	20	20	20	20
(30) (66)	2	2	0	0	30	30	50	50	50	50	50	50	50
(66)	3	3	0	0	30	66	66	96	96	116	116	116	116
40	4	4	0	0	30	66	66	96	96	116	116	136	136
60	5	5	0	0	30	66	66	96	96	116	126	136	156

$$i = 0$$
 or $j = 0$?

knapsack_Soln(v, w, V)

```
knapsack Soln(v[1..n], w[1..n], V[0..n][0..W]) {
  S = an empty set
  i = n; j = W
  while (i > 0 \text{ AND } j > 0) {
    if (j \ge w[i] AND
       V[i][j] == v[i] + V[i-1][j - w[i]]) {
      S.add(i);
      j = j - w[i];
  return S:
```

ทอนเงิน

- ❖ มีเหรียญอยู่ n แบบ : 1, 2, 3, ..., n
- * แต่ละแบบมีค่า : $v_1, v_2, v_3, ..., v_n$
- ๑ ๓ํองการทอนเงินให้ลูกค้ามูลค่า
- ❖ โดยใช้เหรียญเป็นจำนวนน้อยสุด
 - (มีเหรียญแต่ละแบบจำนวนไม่จำกัด)
- 💠 ตัวอย่าง
 - 💠 มีเหรียญ : 1, 3, 4, 10
 - ต้องการทอนเงินมูลค่า 6
 - 💠 คำตอบ : 3, 3

ลองทำเอง คล้าย ๆ Knapsack

Sum of Subset

- กำหนดให้
 - ❖ S เป็นเซตของจำนวน
 - ♦ K เป็นจำนวน

ลองทำเอง คล้าย ๆ Knapsack

🌣 จงหาว่า

มีเซตย่อยของ S ที่ผลรวมของจำนวนมีค่าเท่ากับ K หรือไม่

💠 ตัวอย่าง

- ❖ S = {1, 3, 2, 9, 8}, K = 11 → คำตอบ : มี
- ❖ S = {1, 3, 2, 9, 8}, K = 7 → คำตอบ : ไม่มี

Maximum Contiguous Sum

กำหนดให้

A คือลำดับของจำนวน $a_1, a_2, ..., a_n > a_n$

🌣 จงหา

ช่วงของข้อมูลที่ติดกันใน A ที่ผลรวมมีค่ามากสุด

💠 ตัวอย่าง

$$A = <31, -41, 59, 26, -53, 58, 97, -93, -23, 84>$$

💠 แนวคิด

- ❖ ลุยทุกช่วงของข้อมูล มีทั้งหมด C(n,2) ช่วง ใช้เวลา Θ(n²)
- ใช้การแบ่งแยกและเอาชนะ
- ลองทำเอง 💠 แบ่งครึ่ง, หาฝั่งซ้าย, หาฝั่งขวา, หาข้ามฝั่ง
 - ❖ใช้เวลา Θ(n log n)

Dynamic Programming

❖ เขียน recurrence ของผลรวม

* P(i) คือผลรวมของข้อมูลที่ติดกันใน A ที่มีค่ามากสุดโดยให้ตัวท้ายสุดอยู่ที่ตำแหน่ง i

$$P(i) = \max(P(i-1)+a_i, a_i)$$
 $P(1) = a_1$

* S(i) คือผลรวมของข้อมูลที่ติดกันใน A[1..i] ที่มีค่ามากสุด (คำตอบก็คือ S(n))

$$S(i) = \max_{1 \le k \le i} \{ P(k) \} = \max(\max_{1 \le k \le i-1} \{ P(k) \}, P(i))$$

$$S(i) = \max(S(i-1), P(i))$$
 $S(1) = a_1$

$$A = \langle 2, 1, -4, 2 \rangle \rightarrow P(1) = 2, P(2) = 3, P(3) = -1, P(4) = 2$$

 $S(1) = 2, S(2) = 3, S(3) = 3, S(4) = 3$

Dynamic Programming

```
MCS Value(A[1..n]) {
                                P(i) = \max(P(i-1) + a_i, a_i)
  create S[1..n], P[1..n];
                                 S(i) = \max(S(i-1), P(i))
  P[1] = A[1]:
  for (i = 2; i \le n; i++)
    P[i] = max(P[i - 1] + A[i], A[i]);
  S[1] = A[1];
                                     ทำอย่างไร ถ้าต้องการ
  for (i = 2; i \le n; i++)
                                   ์ หาช่วงของ A ทีผลรวมมี
    S[i] = max(S[i - 1], P[i]);
  return S;
                                          ค่ามากสด
             MCS Value(A[1..n]) {
                P = A[1]; S = A[1];
                for (i = 2; i \le n; i++) {
                  P = \max(P + A[i], A[i]);
                  S = max(S, P);
               return S;
                                             \Theta(n)
```

ตัดข้อความเป็นคำ ๆ

❖ Input : ข้อความภาษาไทย

❖ Output : รายการสั้นสุดของคำที่ตัดจากข้อความ

นายกนกกรนดัง

นายกนกกร

นาย กนก กรน ดัง

นาย กนกกร

แบ่งคำโดยใช้พจนานุกรม

ตัดข้อความเป็นคำ ๆ : Top-Down

ตัดข้อความเป็นคำ ๆ : Top-Down นายกนกกร นายกนกกร นายกนกกร นายกนก นายกนก นาย นาย นายก นายก

ตัดข้อความเป็นคำ ๆ : Top-Down

```
12345678
              นายกนกกร
                           12345678
                           นายกนกก
    นายกนกกร
N(k)
           แทนสตริงของข้อความที่ได้รับ
  ให้ ร
     s(i,k) แทนสตริงย่อยตั้งแต่ตัวที่ i ถึง k
     N(k) แทนจำนวนคำน้อยสุดที่แบ่งได้จาก s(1, k)
```

ตัดข้อความเป็นคำ ๆ : Top-Down

```
N(k) = \min_{i \in \mathbb{N}} \{ N(i-1) + 1 \}, N(0) = 0
            s(i,k) \in Dict
N(dict, s[1..n], k) {
  if (k == 0) return 0
  minN = \infty
  for (i = 1; i < k; i++) {
    if (s[i..k] \in dict) {
      minN = min(minN, 1 + N(dict, s, i-1))
                        จำนวนคำน้อยสดที่
                         แบ่งจากข้อความ
  return minN
```

ต้องการรายการของคำ

```
WordSep(dict, s[1..n], k) {
  if (k == 0) return an empty list
 minN = \infty
 minWords = null
 for (i = 1; i < k; i++) {
    if (s[i..k] \in dict) {
      words = WordSep( dict, s, i-1 )
      if (words ≠ null) {
        words.add( s[i..k] )
        if (words.size() < minN ) {
          minN = words.size()
          minWords = words
                      Overlapping Subproblems
                           (ลองยกตัวอย่าง)
  return minWords
```

$$N(k) = \min_{\substack{1 \le i < k \\ s(i,k) \in Dict}} \{ N(i-1) + 1 \}, N(0) = 0$$

```
N(k) = \min_{\substack{1 \le i < k \\ s(i,k) \in Dict}} \{ N(i-1) + 1 \}, N(0) = 0
```

```
N(\ dict,\ s[1..n]\ ) {
N = new\ array[0..n]
N[0] = 0;\ N[1..n] = \infty
for(\ k = 2;\ k <= n;\ k++\ ) {
for(\ i = 1;\ i < k;\ i++
if(\ s[i..k] \in dict) {
N[k] = min(\ N[k],\ N[i-1]+1)
O(\ n^2)
}
}
return N
if(\ array a
```

ต้องการรายการของคำ

$$N(k) = \min_{\substack{1 \le i < k \\ s(i,k) \in Dict}} \{ N(i-1) + 1 \}, N(0) = 0$$

ที่แต่ละค่าของ k

ต้องจำว่า i ใดที่ได้ค่า N(i-1)+1 น้อยสุด

$$N(k) = \min_{\substack{1 \le i < k \\ s(i,k) \in Dict}} \left\{ N(i-1) + 1 \right\}, \ N(0) = 0$$

$$N(k) = \min_{\substack{1 \le i < k \\ s(i,k) \in Dict}} \left\{ N(i-1) + 1 \right\}, \ N(0) = 0$$

$$k = 8$$

$$s(i,k) \in Dict$$

$$0 - 1 1 1 1 2 2 3 - i = 6 u 1 u n u n$$

$$0 - 1 1 1 1 2 2 3 - i = 7 u 1 u n u n$$

$$i = 3 u 1 u n u n n s$$

$$i = 3 u 1 u n u n n s$$

$$0 - 1 1 1 1 2 2 3 2$$

$$i = 3 u 1 u n u n n s$$

$$0 - 1 1 1 1 2 2 3 2$$

$$i = 3 u 1 u n u n n s$$

$$0 - 1 1 1 1 2 2 3 3 - i = 5 u 1 u n u n s$$

```
N(k) = \min_{i=1}^{n} \{N(i-1)+1\}, N(0)=0
         s(i,k) \in Dict
WordSep(dict, s[1..n]) {
   N = new array[0..n]
   N[0] = 0; N[1..n] = \infty
   I = new array[1..n]
   for (k = 2; k \le n; k++)
     for (i = 1; i < k; i++)
       if (s[i..k] \in dict)
         if (N[i-1]+1 < N[k]) {
           N[k] = N[i-1]+1
           I[k] = i
                   91
                        દા
```



```
minWords = an empty list
k = n
while (k > 0) {
    minWords = s[ I[k], k ] ] + minWords
    k = I[k] - 1
}
return minWords
}
```

Longest Increasing Subsequence

กำหนดให้

❖ A คือลำดับของจำนวน $< a_1, a_2, ..., a_n >$

🍁 จงหา

❖ subsequence ที่ยาวสุดของ A ที่มีค่าเรียงจากน้อยไปมาก

ตัวอย่าง

- * *A* = <31,-41, 59,26, -53,58,97, -93, -23, 84>
- ❖ คำตอบคือ < -41, 26, 58, 97 >

ลองทำดู

Matrix-Chain Multiplication

 $A_1A_2A_3A_4$

 $(A_1(A_2(A_3A_4)))$ $(A_1((A_2A_3)A_4))$ $((A_1A_2)(A_3A_4))$ $(((A_1A_2)A_3)A_4)$

(((\n_1\n_2)\n3)\n4)

 $((\mathsf{A}_1(\mathsf{A}_2\mathsf{A}_3))\mathsf{A}_4)$

วงเล็บกำหนดลำดับการคูณ

ลำดับการคูณต่างกันใช้ เวลาคูณต่างกัน

จงหาวิธีการใส่วงเล็บ ที่ใช้เวลาการคูณเร็วสุด

Matrix Multiplication

```
\mathbf{C} = \mathbf{A} \times \mathbf{B} ต้องคูณด้วย * [\mathbf{p} \times \mathbf{r}] \quad [\mathbf{p} \times \mathbf{q}] \quad [\mathbf{q} \times \mathbf{r}] จำนวน pqr ครั้ง
```

```
\begin{array}{l} \text{mult}(\texttt{A}[\texttt{1..p}][\texttt{1..q}], \; \texttt{B}[\texttt{1..q}][\texttt{1..r}]) \; \{ \\ \text{create } \texttt{C}[\texttt{1..p}][\texttt{1..r}] \\ \text{for } (\texttt{i} = \texttt{1}; \; \texttt{i} <= \texttt{p}; \; \texttt{i++}) \; \{ \\ \text{for } (\texttt{j} = \texttt{1}; \; \texttt{j} <= \texttt{r}; \; \texttt{j++}) \; \{ \\ \texttt{C}[\texttt{i}][\texttt{j}] = \texttt{0} \\ \text{for } (\texttt{k} = \texttt{1}; \; \texttt{k} <= \texttt{q}; \; \texttt{k++}) \; \{ \\ \texttt{C}[\texttt{i}][\texttt{j}] += \texttt{A}[\texttt{i}][\texttt{k}] & \\ \texttt{B}[\texttt{k}][\texttt{j}]; \\ \end{cases} \\ \} \\ \texttt{return } \texttt{C}; \\ \end{cases}
```

ลำดับการคูณต่างกัน ใช้เวลาต่างกัน

```
* A<sub>1</sub> A<sub>2</sub> A<sub>3</sub> [10 x 100], [100 x 5], [5 x 50]
```

❖ คูณตามลำดับ ((A₁A₂)A₃)

- (A₁A₂) ต้องคูณด้วย * จำนวน 10 x 100 x 5 = 5,000 ครั้ง
- ❖ ได้เมทริกซ์ A₁₂ ขนาด [10 x 5]
- (A₁₂ A₃) ต้องคูณด้วย * จำนวน 10 x 5 x 50 = 2,500 ครั้ง

❖ คูณตามลำดับ (A₁(A₂A₃))

- (A₂A₃) ต้องคูณด้วย * จำนวน 100 x 5 x 50 = 25,000 ครั้ง
- ❖ ได้เมทริกซ์ A₂₃ ขนาด [100 x 50]
- ❖ (A₁A₂₃) ต้องคูณด้วย * จำนวน 10 x 100 x 50 = 50,000 ครั้ง

ใส่วงเล็บได้กี่รูปแบบ

$$A_1$$
 A_2 A_3 A_4 A_5
 (A_1) $(A_2$ A_3 A_4 A_5) $\rightarrow 1 \times 5$
 $(A_1$ A_2) $(A_3$ A_4 A_5) $\rightarrow 1 \times 2$

$$(\mathbf{A}_1 \quad \mathbf{A}_2 \quad \mathbf{A}_3 \quad \mathbf{A}_4) \quad (\mathbf{A}_5) \quad \rightarrow 5 \times 1$$

C(n) คือจำนวนการใส่วงเล็บกรณีมี n ตัว

$$(\mathbf{A}_1 \quad \dots \quad \mathbf{A}_k) \quad (\mathbf{A}_{k+1} \quad \dots \quad \mathbf{A}_n)$$

$$C(k) \qquad C(n-k)$$

$$C(n) = \sum_{k=0}^{n-1} (C(k) C(n-k))$$

ใส่วงเล็บได้กี่รูปแบบ

ช้ามาก ๆ ถ้าต้องลองทุกรูปแบบ

นิยาม

- ❖ ต้องการหาวิธีใส่วงเล็บของ A₁ A₂ ... A๓
- ❖ A₁ มีขนาด p₀ x p₁
- ❖ A₂ มีขนาด p₁ x p₂

...

- ❖ A_n มีขนาด p_{n-1} x p_n
- ❖ A_i ... A_i มีขนาด p_{i-1} x p_i
- ยังไม่หาวิธีการใส่วงเล็บที่ดีสุด
- ขอหาจำนวนการคูณด้วย * ของการใส่วงเล็บที่ดีสุด
- か m(i, j) =จำนวน * น้อยสุดเพื่อหาผลคูณ A_i ... A_j
- ❖ m(1, n) คือคำตอบที่ต้องการ

จำนวนการคูณ

 $m(i,k) + m(k+1,j) + p_{i-1}p_kp_j$ จำนวนการคูณด้วย * น้อยสุด เมื่อแบ่งที่ k

จำนวนการคูณน้อยสุด

$$m(i,j)$$
 คือจำนวนการคูณด้วย * น้อยสุดของการคูณ $\mathbf{A_i}$ $\mathbf{A_{i+1}} \dots \mathbf{A_{j}}$ $\mathbf{A_{i}}$ $\mathbf{A_{i+1}} \dots \mathbf{A_{j}}$ $\mathbf{A_{i}}$ $\mathbf{A_{i}}$ $\mathbf{A_{i+1}} \dots \mathbf{A_{j}}$ $\mathbf{A_{i}}$ $\mathbf{A_{i}}$ $\mathbf{A_{i+1}} \dots \mathbf{A_{j}}$ $\mathbf{A_{i}}$ $\mathbf{A_{i}}$

MCM: Top-down

```
m(i,j) = \begin{cases} \min_{1 \le k \le j-1} \left\{ m(i,k) + m(k+1,j) + p_{i-1}p_k p_j \right\} & \text{if } i < j \\ 0 & \text{if } i = j \end{cases}
```

Top-down + Memoization

```
m(i,j) = \begin{cases} \min_{i \le k \le j-1} \left\{ m(i,k) + m(k+1,j) + p_{i-1}p_k p_j \right\} & \text{if } i < j \\ 0 & \text{if } i = j \end{cases}
```

MCM: Bottom-Up

$$m(i,j) = \begin{cases} \min_{i \le k \le j-1} \left\{ m(i,k) + m(k+1,j) + p_{i-1}p_k p_j \right\} & \text{if } i < j \\ 0 & \text{if } i = j \end{cases}$$

j	1	2	3	4	5
1					
2		m(2,2)	m(<mark>2</mark> ,3)	m(2,4)	m(<mark>2,5</mark>)
3					m(3, <mark>5</mark>)
4					m(4,5)
5					m(5, <mark>5</mark>)

คำตอบใหญ่ได้จากคำตอบย่อย

$$m(i,j) = \begin{cases} \min_{i \le k \le j-1} \left\{ m(i,k) + m(k+1,j) + p_{i-1}p_k p_j \right\} & \text{if } i < j \\ 0 & \text{if } i = j \end{cases}$$

j	1	2	3	4	5
1	m(1,1)	m(<mark>2,</mark> 2)	m(<mark>2,</mark> 3)	m(2,4)	m(1,5)
2					m(2,5)
3					m(3,5)
4					m(4,5)
5					m(5,5)

เติมตารางได้หลายรูปแบบ

เติมคำตอบเล็กก่อนคำตอบใหญ่

รูปแบบการเติมตารางคำตอบ

$$m(i,j) = \begin{cases} \min_{i \le k \le j-1} \left\{ m(i,k) + m(k+1,j) + p_{i-1}p_k p_j \right\} & \text{if } i < j \\ 0 & \text{if } i = j \end{cases}$$


```
for( i = 1; i <= n; i++ )
    m[i][i] = 0
for( j = 2; j <= n; j++ ) {
    for ( i = j-1; i >= 1; i-- ) {
        m[i][j] = ...
    }
}
```

ฐปแบบการเติมตารางคำตอบ

$$m(i,j) = \begin{cases} \min_{i \le k \le j-1} \left\{ m(i,k) + m(k+1,j) + p_{i-1}p_k p_j \right\} & \text{if } i < j \\ 0 & \text{if } i = j \end{cases}$$


```
for( i = 1; i <= n; i++ )
   m[i][i] = 0
for( i = n-1; i >= 1; i-- ) {
   for ( j = i+1; j <= n; j++ ) {
       m[i][j] = ...
   }
}</pre>
```

รูปแบบการเติมตารางคำตอบ

$$m(i,j) = \begin{cases} \min_{i \le k \le j-1} \left\{ m(i,k) + m(k+1,j) + p_{i-1}p_k p_j \right\} & \text{if } i < j \\ 0 & \text{if } i = j \end{cases}$$

$$m(i,j) = \begin{cases} \min_{i \le k \le j-1} \left\{ m(i,k) + m(k+1,j) + p_{i-1}p_k p_j \right\} & \text{if } i < j \\ 0 & \text{if } i = j \end{cases}$$

					A_5
10 ×	5 ×	1 ×	5 ×	10	× 2

j	1	2	3	4	5
1	0	50			
2		0	25		
3			0	50	
4				0	100
5					0

$$m(i,j) = \begin{cases} \min_{i \le k \le j-1} \left\{ m(i,k) + m(k+1,j) + p_{i-1}p_k p_j \right\} & \text{if } i < j \\ 0 & \text{if } i = j \end{cases}$$

$$A_1$$
 A_2 A_3 A_4 A_5 $10 \times 5 \times 10 \times 2$

$$0 + 25 + 10x5x5 = 275$$

 $50 + 0 + 10x1x5 = 100$

$$m(i,j) = \begin{cases} \min_{i \le k \le j-1} \left\{ m(i,k) + m(k+1,j) + p_{i-1}p_k p_j \right\} & \text{if } i < j \\ 0 & \text{if } i = j \end{cases}$$

$$A_1 A_2 A_3 A_4 A_5$$

10 × 5 × 10 × 2

/	1	2	3	4	5
1	0	50	100		
2		0	25	100	
3			0	50	
4				0	100
5					0

$$0 + 50 + 5x1x10 = 100$$

$$25 + 0 + 5x5x10 = 275$$

$$m(i,j) = \begin{cases} \min_{i \le k \le j-1} \left\{ m(i,k) + m(k+1,j) + p_{i-1}p_k p_j \right\} & \text{if } i < j \\ 0 & \text{if } i = j \end{cases}$$

\ i					
i	1	2	3	4	5
1	0	50	100		
2		0	25	100	
3			0	50	70
4				0	100

$$0 + 100 + 1x5x2 = 110$$

$$50 + 0 + 1x10x2 = 70$$

$$m(i,j) = \begin{cases} \min_{i \le k \le j-1} \left\{ m(i,k) + m(k+1,j) + p_{i-1} p_k p_j \right\} & \text{if } i < j \\ 0 & \text{if } i = j \end{cases}$$

	1	2	3	4	5
1	0	50	100	200	
2		0	25	100	
3			0	50	70
4				0	100
5					0

$$0 + 100 + 10x5x10 = 600$$

$$50 + 50 + 10x1x10 = 200$$

$$100 + 0 + 10x5x10 = 600$$

$$m(i,j) = \begin{cases} \min_{i \le k \le j-1} \left\{ m(i,k) + m(k+1,j) + p_{i-1}p_k p_j \right\} & \text{if } i < j \\ 0 & \text{if } i = j \end{cases}$$

228 / 498

$$10 \times \begin{bmatrix} A_1 & A_2 & A_3 & A_4 & A_5 \\ 5 \times & & & 2 \end{bmatrix}$$

i	1	2	3	4	5
1	0	50	100	200	
2		0	25	100	80
3			0	50	70
4				0	100
5					(0)

$$0 + 70 + 5x1x2 = 80$$

 $25 + 100 + 5x5x2 = 175$

$$25 + 100 + 5x5x2 = 175$$

 $100 + 0 + 5x10x2 = 200$

$$m(i,j) = \begin{cases} \min_{i \le k \le j-1} \left\{ m(i,k) + m(k+1,j) + p_{i-1}p_k p_j \right\} & \text{if } i < j \\ 0 & \text{if } i = j \end{cases}$$

	A_1	\mathbf{A}_2	A_3	A_4	A_5
10 ×					2

$$0 + 80 + 10x5x2 = 180$$

$$50 + 70 + 10x1x2 = 140$$

$$100 + 100 + 10x5x2 = 300$$

$$200 + 0 + 10x10x2 = 400$$

วงวนการเติมตารางคำตอบ

$$m(i,j) = \begin{cases} \min_{i \le k \le j-1} \left\{ m(i,k) + m(k+1,j) + p_{i-1}p_k p_j \right\} & \text{if } i < j \\ 0 & \text{if } i = j \end{cases}$$

```
for (i = 1; i \le n; i++) M[i][i]=0
                                     1,1 1,2 1,3 1,4 1,5
for (d = 1; d < n; d++)
  for (i = 1; i \le n-d; i++) {
                                         2,2 2,3 2,4 2,5
    i = i + d:
                                              3,3 3,4 3,5
    for (k = i; k < j; k++) {
      M[i][j] = ...
                                                  4,4 4,5
                                    d = 4
              d = 1 \quad d = 2 \quad d = 3
              i, j | i, j | i, j | i, j
              1, 2 1, 3 1, 4 1, 5
              2, 3 2, 4 2, 5
3, 4 3, 5
```

MCM: Bottom-up

```
m(i,j) = \begin{cases} \min_{1 \le k \le j-1} \left\{ m(i,k) + m(k+1,j) + p_{i-1}p_k p_j \right\} & \text{if } i < j \\ 0 & \text{if } i = j \end{cases}
```

```
mcm Value(p[0..n]) {
 M = new array[1..n][1..n]
  for( i = 1; i \le n; i++ ) M[i][i] = 0
  for (d = 1; d < n; d++)
    for (i = 1; i \le n-d; i++) {
      i = i + d;
     M[i][j] = \infty
      for (k = i; k < j; k++) {
       M[i][j] = min(M[i][j],
           M[i][k] + M[k+1][j] + p[i-1]*p[k]*p[j]);
  return M:
```

จำจุดแบ่ง k ที่ได้ค่าน้อยสุด

$$(A_i \ldots A_k) (A_{k+1} \ldots A_j)$$

$$m(i,j) = \left\{ \begin{array}{l} \min_{i \le k \le j-1} m(i,k) + m(k+1,j) + p_{i-1}p_k p_j \\ 0 \end{array} \right\} \text{ if } i < j$$
 if $i = j$

การใส่วงเล็บที่คูณเร็วสุด

$$[3,4] \rightarrow 3 \quad ((A_1) (A_2)) (((A_3) (A_4)) (A_5))$$

จำจุดแบ่ง matrix chain

```
mcm Order ( p[0..n] ) {
  M = new Array[1..n][1..n]
  K = new Array[1..n][1..n]
  for (d = 1; d < n; d++) {
    for (i = 1; i \le n-d; i++) {
      i = i + d:
      M[i][i] = \infty
      for (k = i; k < j; k++) {
        t = M[i][k] + M[k+1][j] + p[i-1]*p[k]*p[j];
        if (t < M[i][j]) {
          M[i][i] = t;
         K[i][j] = k;
                  (A_i \ldots A_k) (A_{k+1} \ldots A_i)
  return K;
```

MCM : គូณเลย

```
mcm Mult( A[1..n], p[0..n] ) {
        K = mcm Order(p); <</pre>
        return mcm Mult( A, K, 1, n );
mcm Mult( A[1..n], K[1..n][1..n], i, j ) {
  if (i == j) return A[i];
  X = mcm Mult(A, K, i, K[i][i]);
  Y = mcm Mult(A, K, K[i][1]+1, i);
  return mult(X, Y);
      (A_i \ldots A_k^{\checkmark}) (A_{k+1}^{\checkmark} \ldots A_j)
X \times Y
```

Binary Search Tree

- ๑ ต้องการสร้าง binary search tree เพื่อเก็บ keywords ที่เป็น primitive data types ของจาวา
 - boolean, byte, char, double, float, int, long, short

Binary Search Tree

- 💠 เตี้ย ≠ ดี เสมอไป : ถ้าพิจารณาความถี่ของคำ
- ๑๐งนับ primitive data types ที่ใช้ใน source codes ของ java.util.* (jdk1.6.0_14) พบว่า

	ปรากฏ	2,274 ครั้ง	58.76%
boolean	11	661 "	17.08%
long	11	450 "	11.63%
char	11	217 "	5.61%
byte	11	78 "	2.02%
double	11	66 "	1.71%
float	11	64 "	1.65%
short	11	60 "	1.55%

Binary Search Tree

int	boolean	long	char	byt	:e	double	float	short
58.8%	17.1%	11.6%	5.6%	2.0) 응	1.7%	1.7%	1.6%
boolea 3×0.171 $\sum_{k=1}^{n} p_k e$ $p_k = e$	byte ×0.02 an cho 3×0.0	double 1×0.017 ar floa 56 3×0.0	long 2×0.116 at sho 017 3×0 int ×0.588	ort		boolear 2×0.171	int ×0.588 lor 2×0.	ng 116 \ short 3×0.016

Optimal Binary Search Tree

- input
 - เชตของคำ และความถี่ในการใช้งานของแต่ละคำ
- * output
 - \diamond binary search tree ที่มี $\sum_{i=1}^{n} p_{i}d_{i}$ น้อยสุด

ลองทำเอง คล้าย ๆ MCM

๙ เมษายน ๒๕๕๓