Roll	No.										

1535

Printed Pages: 2

BCA/M-16 MATHEMATICAL FOUNDATIONS-II Paper-BCA-123

Time allowed: 3 hours]

[Maximum marks: 80

Note: Attempt five questions in all. Selecting at least one question from each unit. Question No. 9 is compulsory.

Unit-I

- 1. (a) Show that $[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$ is a tautology.
 - (b) Prove that $3^n > 2^n$ by P.M.I. for all $n \in \mathbb{N}$.
- 2. (a) Prove that n(n+1)(n+2) is a multiple of 6 by using P.M.I. for all $n \in \mathbb{N}$.
 - (b) Show that $\sim (p \leftrightarrow q) \equiv (\sim p) \leftrightarrow q = p \leftrightarrow \sim q$.

= A mintage and at Unit-II

- 3. (a) Prove that a group of four elements is an abelian group. 8
 - (b) Define Ring with example.
- 4. (a) Prove that the intersection to two subring is a ring. 8
 - (b) Prove that $[\{0, 1, 2, 3, 4\}, +_5, \times_5]$ is a field. 8

Unit-III

5. (a) If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{bmatrix}$$
, show that $A^3 - 23A - 40I = 0$. 8

(b) For
$$A = \begin{bmatrix} 3 & 1 \\ 7 & 5 \end{bmatrix}$$
, find x and y so that $A^2 + xI = yA$. 8

6. (a) Solve
$$x + 2y = 4$$
; $2x + 5y = 9$ by Matrix Method. 8

(b) If
$$A = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 1 \\ 2 & 4 \end{bmatrix}$ prove that $(AB)^{-1} = B^{-1} A^{-1}$.

Unit-IV

7. Find eigen values and eigen vectors of matrix

$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$
 16

8. Verify Cayley-Hamilton theorem for matrix
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 3 & 1 & 0 \\ -2 & 1 & 4 \end{bmatrix}$$

and hence find A^{-1} .

Unit-V (Compulsory)

- 9. (a) Define Group with example.
 - (b) Define Prime ideal of ring.
 - (c) Define characteristic equation of a square matrix.
 - (d) Define Rank of a Matrix.

(e) If
$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 1 & 0 \end{bmatrix}$ find AB.

- (f) Define symmetric matrix with example.
- (g) Define subgroup.