

SparqIDQP Stay at EPCC & NeSC

Carlos Buil Aranda

Ontology Engineering Group Facultad de Informática Universidad Politécnica de Madrid cbuil@fi.upm.es 5th November 2009

Table of Contents

- Introduction
- OGSA-DAI & OGSA-DQP
- SparqIDQP
- Future work
- Way of working at
 - EPCC
 - NeSC
- Conclusions

Table of Contents

- Introduction
- OGSA-DAI & OGSA-DQP
- SparqIDQP
- Way of working at
 - EPCC
 - NeSC
- Conclusions

Introduction

- Can RDB2RDF Tools Feasibly Expose Large Science Archives for Data Integration?, ESWC 2009
 - No, among other reasons there is no research in Sparql Query Optimisation (authors dixit)
- Currently there are only a few approaches to federate SPARQL queries
 - Networked Graphs (Staab WWW2008)
 - Executing SPARQL Queries over the Web of Linked Data (Hartig, Bizer, Freytag, ISWC09)
 - DARQ (2006)
 - SemWIQ (Langegger, iiWAS2008)
- Problems from the previous approaches
 - They implement a basic system for optimising Sparql queries
 - They do not take into account blank nodes

Introduction

- Proposal: use existing techniques for SQL query optimisation in SPARQL
- Why?
 - A relational algebra for SPARQL, Richard Cyganiak (2005)
 - The expressive power of SPARQL, Renzo Angles and Claudio Gutierrez (2008)

```
SELECT ?name ?email
WHERE {
    ?person rdf:type foaf:Person .
    ?person foaf:name ?name .
OPTIONAL { ?person foaf:mbox ?email }
}
```


Table of Contents

- Introduction
- OGSA-DAI & OGSA-DQP
- SparqIDQP
- Reasoning Web Summer School
- Way of working at
 - EPCC
 - NeSC
- Conclusions

OGSA-DAI

- OGSA-DAI is
 - An extensible framework that allows to
 - Access, integrate, transform and deliver
 - Distributed and heterogeneous sources of data
 - Implements part of the WS-DAI specification
- OGSA-DAI key elements are
 - Resources (Data Resource)
 - Activities (=operations or named unit of functionality)
 - Workflows (=composition of activities)
 - Pipeline workflow (A set of chained activities executed in parallel with data flowing between the activities)
 - Sequence workflow
 - Parallel workflow
- OGSA-DAI provides indirect access to data resources

OGSA-DAI

OGSA-DQP

- OGSA-DQP
 - Developed by Universities of Manchester and Newcastle
 - Refactored for OGSA-DAI 3.0 by EPCC as part of the NextGrid project OGSA-DAI DQP package
- Multiple tables on multiple databases are exposed to clients as multiple tables in one "virtual database"
- Clients are unaware of the multiple databases
- Databases can be exposed
 - EITHER within one OGSA-DAI server
 - OR via multiple remote OGSA-DAI servers

OGSA-DQP

Table of Contents

- Introduction
- OGSA-DAI & OGSA-DQP
- RDF Resource & SparqIDQP
- Future work
- Way of working at
 - EPCC
 - NeSC
- Conclusions

RDF Resource

SparqIDQP

Proposal:

- Extend OGSA-DQP with a new query language: SPARQL
- SPARQL is "similar" to SQL
 - Both have the same expressive power
 - It is possible to use DQP operators for SPARQL
- Current status: optimising simple SPARQL queries

```
PREFIX p: <a href="http://dbpedia.org/property/">PREFIX p: <a href="http://dbpedia.org/property/">PREFIX p: <a href="http://dbpedia.org/sparq1/">PROM common common
```


SparqIDQP workflow

SparqIDQP workflow

Sparql Parser

- Based on Sparql-g Grammar (which is based on the WWW Sparql recommendation)
- Use of Antlr to create an AST from the grammar

SparqIDQP workflow

Sparql LQP Builder

- The LQP builder crawls the AST and builds an LQP
- The Sparql LQP builder uses OGSA-DQP operators
 - RDF Table Scan Operator (not DQP)
 - DQP (SQL) Select Operator
 - DQP (SQL) Project Operator
 - DQP (SQL) Inner theta join (with an equality) for triple patterns
 - DQP (SQL) Left Outer Join for OPTIONAL

Sparql LQP Builder Output

SparqIDQP workflow

Optimisers

- Configuration file in which the existing optimisers are defined
 - Executed in a specific order
 - Currently running
 - Query normaliser
 - Partitioning Optimiser
 - RDF Table Scan implosion optimiser
- RDF Table Scan implosion optimiser
 - Merges the initial RDF scan, select and project

SparqIDQP optimisations

Optimised LQP

SparqIDQP workflow

Partitioner

- Partitions the SparqILQP in the available nodes
- OGSA-DQP knows all the nodes
 - IP
 - Resources in the node
 - The partitioner is included in the optimisers chain
- OGSA-DQP knowing the LQP and the nodes creates an execution plan which is distributed across these nodes
- Important:
 - OGSA-DQP for SQL has a dictionary with the SQL database statistics
 - For SPARQL there are missing key statistics for improving the optimisations

SparqIDQP workflow

Workflow Builder

- At this stage an executable workflow is created
 - It is created from the optimised LQP
- It uses the OGSA-DAI activity SQLQueryActivity
 - We do not modify anything from this activity
 - The Sparql LQP is sent to the SQL activity
 - And a workflow is created
 - This is possible because the RDF resource (which runs the final query) is totally integrated within OGSA-DAI & DQP
 - Result formats between activities accessing resources are the same
 - Possibility of creating data workflows combining RDF data and SQL data

SparqIDQP execution

The results

 Problems with the results retrieved from DBPedia: I do not get all of them, limited to a certain amount, solution on its way

Results

```
Results:
player - club -
http://dbpedia.org/resource/Jarle_Flo - null -
http://dbpedia.org/resource/H%C3%A5vard_Flo - null -
http://dbpedia.org/resource/Tore_Andr%C3%A9_Flo - null -
http://dbpedia.org/resource/Jostein_Flo - Strømsgodset (director
of football) -
http://dbpedia.org/resource/Per_Egil_Flo - null -
```


Table of Contents

- Introduction
- OGSA-DAI & OGSA-DQP
- RDF Resource & SparqIDQP
- Future work
- Way of working at
 - EPCC
 - NeSC
- Conclusions

Future work (I)

- Improve the operators used by Sparql DQP
 - isURI
 - Regex
 - notBound
 - etc.
- Solve DBPedia problem
- Add statistics to SparqIDQP
- Use several RDF repositories
 - Currently only using DBPedia
 - Use Web services like http://sameas.org/ to obtain and link several RDF repositories
- Complete the SPARQL grammar

Future Work (II)

- Study the semantics of Sparql to create new optimisers
- Create new optimisers based:
 - On SPARQL
 - How SQL optimisers work in SPARQL?
- Create data workflows using other OGSA-DAI resources
- Integrate in one single query queries to RDF stores and SQL DB?

Future work (III)

- Solve problems with blank nodes
 - Example: query several foaf profiles
 - Blank nodes used as identifiers
 - Claudio Gutierrez's group is working in exactly this problem
 - Already contacted for information

Table of Contents

- Introduction
- OGSA-DAI & OGSA-DQP
- RDF Resource & SparqIDQP
- Future work
- Way of working at
 - EPCC
 - NeSC
- Conclusions

Way of working at EPCC

- EPCC (Edinburgh Parallel Computing Centre)
- Is a software production centre mainly
- OGSA-DAI example
 - The team is focused on a product
 - The leader of the team (Ally Hume) specifies a set of actions
 - The team executes the actions
 - Example: performance was poor in a specific type of query (median filter)
 - Yourkit4java for performance measures
 - Find the problem
 - Try to solve it
 - All the team (about 6 people working on that) was very united

Way of working at NeSC

- National eScience Centre
- More academic focused than EPCC
- Every week session on what papers are we going to publish, ideas, papers published and deadlines
- More research focused
 - Example: talking to people from different groups
 - EPCC focused on the poor performance of the automatic composition of data mining workflows in ADMIRE
 - There are going to be many problems there
 - NeSC focused on wow! We are getting nice results and we will publish them!

Table of Contents

- Introduction
- OGSA-DAI & OGSA-DQP
- RDF Resource & SparqIDQP
- Future work
- Way of working at
 - EPCC
 - NeSC
- Conclusions

Conclusions

- Created a OGSA-DAI resource for accessing RDF data
- Created a Sparql query processor
 - Which distributes and optimises queries
- Used equivalence with SQL operators
 - A complete set of test must be performed
- Found problems using blank nodes
- For optimising Sparql queries is mandatory to understand the semantics of Sparql
- Organisations: Two different ways of working
 - EPCC: production focused
 - NeSC: research/academic focused

SparqIDQP Stay at EPCC & NeSC

Carlos Buil Aranda

Ontology Engineering Group
Facultad de Informática
Universidad Politécnica de Madrid
cbuil@fi.upm.es
5th November 2009

SparqIDQP Features

- Adapted SPARQL grammar for distributed SPARQL
 - SELECT ?dbpedia.person FROM dbpedia WHERE {...}
- Query plan similar to SQL query plans
 - SQL optimisations can be applied to them
- Current Optimisers
 - Query Normaliser
 - Partitioner
 - RDF Table Scan Implosion
- Automatic creation of data workflows
- Distribution across the OGSA-DAI nodes

Sample Queries

```
PREFIX p: <http://dbpedia.org/property/>
SELECT ?dbpediaResource.player ?RDFResource.club
FROM dbpediaResource: <a href="http://dbpedia.org/sparql">http://dbpedia.org/sparql</a>
FROM RDFResource: <http://dbpedia.org/sparql>
WHERE{
            ?dbpediaResource.player p:cityofbirth <a href="http://dbpedia.org/resource/Stryn">http://dbpedia.org/resource/Stryn</a>.
    ?dbpediaResource.player p:countryofbirth <a href="http://dbpedia.org/resource/Norway">http://dbpedia.org/resource/Norway</a>>
            OPTIONAL {?RDFResource.player p:currentclub ?RDFResource.club}}
 PREFIX p: <http://dbpedia.org/property/>
 SELECT ?dbpediaResource.player ?RDFResource.club
FROM dbpediaResource: <a href="http://dbpedia.org/sparql">http://dbpedia.org/sparql</a>
 FROM RDFResource: <http://dbpedia.org/sparql>
WHERE{" +
             ?dbpediaResource.player p:cityofbirth <a href="http://dbpedia.org/resource/Dublin">http://dbpedia.org/resource/Dublin</a>.
             OPTIONAL {?RDFResource.player p:currentclub ?RDFResource.club}}
```


Way of working at EPCC

- Software production Centre
 - Focused on a software product
 - High performance test

