

BABEŞ-BOLYAI UNIVERSITY Faculty of Computer Science and Mathematics

ARTIFICIAL INTELLIGENCE

Solving search problems

Informed local search strategies

Nature-inspired algorithms

Topics

A. Short introduction in Artificial Intelligence (AI)

A. Solving search problems

- A. Definition of search problems
- **B.** Search strategies
 - A. Uninformed search strategies
 - B. Informed search strategies
 - Local search strategies (Hill Climbing, Simulated Annealing, Tabu Search, Evolutionary algorithms, PSO, ACO)
 - D. Adversarial search strategies

c. Intelligent systems

- A. Rule-based systems in certain environments
- B. Rule-based systems in uncertain environments (Bayes, Fuzzy)
- c. Learning systems
 - A. Decision Trees
 - **B.** Artificial Neural Networks
 - c. Support Vector Machines
 - D. Evolutionary algorithms
- D. Hybrid systems

Useful information

- Chapter 16 of C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011
- James Kennedy, Russel Eberhart, Particle Swarm Optimisation, Proceedings of IEEE International Conference on Neural Networks. IV. pp. 1942-1948, 1995 (04_ACO_PSO/PSO_00.pdf)
- Marco Dorigo, Christian Blum, Ant colony optimization theory: A survey, Theoretical Computer Science 344 (2005) 243 - 27 (04_ACO_PSO/Dorigo05_ACO.pdf)

Local search

Typology

- Simple local search a single neighbor state is retained
 - □ Hill climbing → selects the best neighbor
 - □ Simulated annealing → selects probabilistic the best neighbor
 - □ Tabu search → retains the list of visited solutions
- Beam local search more states are retained (a population of states)
 - Evolutionary algorithms
 - Particle swarm optimisation
 - Ant colony optmisation

Nature-inspired algorithms

- Best method for solving a problem
 - Human brain
 - Has created the wheel, car, town, etc.
 - Mechanism of evolution
 - Has created the human brain
- Simulation of nature
 - By machines' help → the artificial neural networks simulate the brain
 - Flying vehicles, DNA computers, membrane-based computers
 - By algorithms' help
 - Evolutionary algorithms simulate the evolution of nature
 - Particle Swarm Optimisation simulates the collective and social behaviour
 - http://www.youtube.com/watch?feature=endscreen&v=JhZKc1Mgub8&NR=1
 - http://www.youtube.com/watch?v=ulucJnxT7B4&feature=related
 - Ant Colony Optimisation (ACO)
 - http://www.youtube.com/watch?v=jrW_TTxP1ow

Nature-inspired algorithms

- Swarm intelligence (collective intelligence)
 - A group of individuals that interact in order to achieve some objectives by collective adaptation to a global or local environment
 - A computational metaphor inspired by
 - Birds" flying (V shape)
 - Ants that are searching food
 - Bees" swarms that are constructing their nest
 - Schools of fish

Because:

- Control is distributed among more individuals
- Individuals local communicate
- system behaviour transcends the individual behaviour
- System is robust and can adapt to environment changes

Social insects (2% of total)

- Ants
 - 50% of social insects
 - 1 ant has ~ 1mg → total weight of ants ~ total weight of humans
 - Live for over 100 millions of years (humans live for over 50 000 years)
- Termites
- Bees

Nature-inspired algorithms

Swarm (Group)

- More individuals, apparently non-organized, that are moving in order to form a group, but each individual seems to move in a particular direction
- Inside the group can appear some social processes
- The collection is able to do complex tasks
 - Without a guide or an external control
 - Without a central coordination
- The collection can have performances better than the independent individuals

□ Collective adaptation → self-organisation

- Set of dynamic mechanisms that generates a global behaviour as a result of interaction among individual components
- Rules that specify this interaction are executed based on local information only, without global references
- Global behaviour is an emergent property of the system (and not one external imposed)

PSO

- Theoretical aspects
- Algorithm
- Example
- Properties
- Applications

- Proposed by
 - Kennedy and Eberhart in 1995 http://www.particleswarm.info/
 - Inspired by social behavior of bird swarms and school of fish
- Search is
 - Cooperative, guided by the relative quality of individuals
- Search operators
 - A kind of mutation

Special elements

- Optimisation method based on:
 - Populations (≈ EAs) of particles (≈ chromosomes) that search the optimal solution
 - Cooperation (instead of concurrence, like in EAs case)

Each particle

- moves (in the search space) and has a velocity (velocity ≈ movement, because the time is discrete)
- Retains the place where it has obtained the best results
- Has associated a neighbourhood of particles

Particles cooperate

- Exchange information among them (regarding the discovering performed in the places already visited)
- Each particle knows the fitness of neighbours such as it can use the position of the best neighbour for adjusting its velocity

Main idea: cognitive behaviour \rightarrow an individual remembers past knowledge (has memory)

Food: 100

Main idea: social behaviour \rightarrow an individual relies on the knowledge of other members of the group

General sketch

- 1. Creation of the initial population of particles
 - 1. Random positions
 - 2. Null/random velocities
- 2. Evaluation of particles
- 3. For each particle
 - Update the memory
 - Identify the best particle of the swarm (g_{Best}) / of the current neighborhood (I_{Best})
 - Identify the best position (with the best fitness) reached until now $-p_{Best}$
 - Update the velocity
 - Update the position
- 4. If the stop conditions are not satisfied, go back to step 2; otherwise STOP.

Creation of the initial population of particles

- Each particle has associated
 - A position possible solution of the problem
 - A velocity changes a position into another position
 - A quality function (fitness)
- Each particle has to:
 - Interact (exchange information) with its neighbour
 - Memorise a previous position
 - Use the information in order to take decisions
- Initialisation of particles
 - Random positions
 - Null/random velocities

- 2. Evaluation of particles
- Depends on problem

3. For each particle p_i

Update the memory

3. For each particle p_i

- Update the memory
 - □ Identify the best particle of the swarm $(g_{\textit{Best}})$ / of the current neighbourhood $(I_{\textit{Best}})$
 - $lue{}$ Identify the best position (with the best fitness) reached until now $-p_{{\scriptscriptstyle Best}}$

- 3. For each particle p_i
 - Update the velocity \mathbf{v}_i and position $\mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{iD})$ (on each dimension)
 - $v_{id} = w * v_{id} + c_1 * rand() * (p_{Best d} x_{id}) + c_2 * rand() * (g_{Best d} x_{id})$

 - where:
 - i=1,N (N total number of particles/swarm size);
 - d = 1,D
 - w inertia coefficient (Shi, Eberhart)
 - $w*v_{id}$ inertial factor \rightarrow forces the particle to move in the same direction until now (audacious)
 - Balance the search between global exploration (large w) and local exploration (small w)
 - Can be constant or descending (while the swarm is getting old)
 - c₁ cognitive learning coefficient
 - $c_1 * rand() * (p_{Best d} x_{id})$ cognitive factor \rightarrow forces the particle to move towards its best position (conservation)
 - c₂ social learning coefficient
 - $c_2* rand()*(g_{Bestd} x_{id})$ social factor \rightarrow forces the particle to move towards the best neighbour (follower)
 - c_1 and c_2 can be equal or different $(c_1 > c_2 \text{ si } c_1 + c_2 < 4 Carlise, 2001)$
 - 3. Each component of velocity vector must belong to a given range $[-v_{max}, v_{max}]$ in order to keep the particles inside the search space

PSO principles:

- Proximity the group has to performed computing in space and time
- Quality the group has to be able of answering to the quality of environment
- Stability the group has not to change its behaviour at each environment change
- Adaptability the group has to be able of changing its behaviour when the cost on change is not prohibit

Differences from EAs:

- There is no recombination operator information exchange takes place based on particle's experience and based on the best neighbour (not based on the parents selected based on quality only)
- Position update ~ mutation
- Selection is not utilised survival is not based on quality (fitness)

PSO versions

- PSO binary and discrete
- PSO with more social learning coefficients
- PSO with heterogeneous particles
- Hierarchic PSO

- PSO discrete (binary)
 - PSO version for a discrete search space
 - Position of a particle
 - □ Possible solution of the problem → binary string
 - Changes based on the velocity of particle
 - Velocity of a particle
 - Element from a continuous space
 - Changes based on standard PSO principles
 - Can be viewed as changing probability of the corresponding bit from the particle's position

$$x_{ij} = \begin{cases} 1, & \text{if } \tau < s(v_{ij}) \\ 0, & \text{otherwise} \end{cases}, \text{ where } s(v_{ij}) = \frac{1}{1 + e^{-v_{ij}}}$$

□ Risks

- Particles has the trend to group in the same place
 - To rapid convergence and the impossibility to escape from local optima
 - Solution:
 - Re-initialization of some particles

Particles move through unfeasible regions

Analyses of PSO algorithm

- Dynamic behavior of the swarm can be analyzed by 2 index:
 - Dispersion index
 - Measures the spreading degree of particle around the best particle of the swarm
 - Average of absolute distances (on each dimension) between each particle and the best particle of the swarm
 - Explains the cover degree (small or spread) of the search space
 - Velocity index
 - Measures the moving velocity of the swarm into a iteration
 - Average of absolute velocities
 - Explain how the swarm moves (aggressive or slow)

PSO – applications

- Control and design of antenna
- Biological, medical and pharmaceutics applications
 - Analysis of tremor in Parkinson's disease
 - Cancer Classification
 - Prediction of protein structure
- Network communication
- Combinatorial optimisation
- Financial optimisation
- Image&video analyse
- Robotics
- Planning
- Network security, intrusion detection, cryptography
- Signal processing

ACO

- Theoretical aspects
- Algorithm
- Example
- Properties
- Applications

Proposed

- By Colorni and Dorigo in 1991 for solving discrete optimisation problems – TSP – as a comparison for EAs –
 - http://iridia.ulb.ac.be/~mdorigo/ACO/about.html
- Inspired by social behaviour of ants that search a path from their nest and food
- Why ants?
 - Colony system (from several ants to millions of ants)
 - Labor division
 - Social behaviour is very complex

Search

- Cooperative, guided by the relative quality of individuals
- Search operators
 - Constructive ones, adding elements in solution

Special elements

- The optimisation problem must be transformed into a problem of identifying the optimal path in an oriented graph
- Ants construct the solution by walking through the graph and put pheromones on some edges
- Optimisation method based on
 - Ant colonies (≈EAs) that search the optimal solution
 - Cooperation (instead of concurrence like in EAs)

Each ant:

- Moves (in the search space) and put some pheromones on its path
- Memorises the path
- Selects the path based on
 - The existing pheromones on that path
 - Heuristic information associated to that path
- Cooperates with other ants through the pheromone trail (that corresponds to a path) that
 - Depends on the solution quality
 - Evaporates while the time is passing

- Natural ants
 - An ant colony start to search some food

Natural ants

- An ant colony start to search some food
- At a moment, an obstacle appears

Natural ants

- An ant colony start to search some food
- At a moment, an obstacle appears
- The ants will surround the obstacle either on path A or path B

Natural ants

- An ant colony start to search some food
- At a moment, an obstacle appears
- The ants will surround the obstacle either on path A or path B
- Because the path A is shorter, the ants of this path will performed more rounds and, therefore, will put more pheromones
- Pheromone concentration will quickly increase on path A (relative to path B) such as the ants from path B will re-oriented to path A
- Because the ants do not follow path B and because the pheromone trail evaporates, the trail of ants from path B will disappear
- Therefore, the ants will take the shortest path (path A)

- Artificial ants look like natural ants
 - Walk from their nest towards food
 - Discover the shortest path based on pheromone trail
 - Each ant performed random moves
 - Each ant put some pheromone on its path
 - Each ant detects the path of "boss ant" and tends to follow it
 - Increasing the pheromone of a path will determine to increase the probability to follow that path by more ants
- But they have some improvements:
 - Has memory
 - Retains performed moves → has a proper state (retaining the history of decisions)
 - Can come back to their nest (based on pheromone trail)
 - Are not completely blind can appreciate the quality of their neighbour space
 - Perform move in a discrete space
 - Put pheromone based on the identified solution, also

- Pheromone trail plays the role of
 - A collective, dynamic and distributed memory
 - A repository of the most recent ants' experiences of searching food
- Ants can indirectly communicate and can influence each-other
 - By changing the chemical repository
 - In order to identify the shortest path from nest to food

ACO – algorithm

- While iteration < maximum # of iterations</p>
 - 1. Initialisation
 - 2. While # of steps required to identify the optimal solution is not performed
 - For each ant of the colony
 - Increase the partial solution by an element (ant moves one step)
 - Change locally the pheromone trail based on the last element added in solution
 - 3. Change the pheromone trail on the paths traversed by
 - all ants/the best ant
 - 4. Return the solution identified by the best ant

ACO – algorithm

3 versions – differences:

- Rules for transforming a state into another state (moving rules for ants)
- Moment when the ants deposit pheromones
 - While the solution is constructed
 - At the end of solution's construction
- Which ant deposits pheromones
 - All the ants
 - The best ant only

Versions :

- Ant system (AS)
 - All the ants deposit pheromones after a solution is complete constructed (global collective update)
- MaxMin Ant System (MMAS) ≈ AS, but
 - The best ant only deposits pheromones after a solution is complete constructed (global update of the leader)
 - Deposited pheromones is **limited** to a given range
- Ant Colony System (ACO) ≈ AS, but
 - All the ants deposit pheromones at each step of solution construction (collective local update)
 - The best ant only deposits pheromone after the solution is complete constructed
 - (global update of the leader)

ACO – example

Travelling salesman problem - TSP

Finds the shortest path that visits only once all the n given

cities.

ACO – example

Initialisation:

- t := 0 (time)
- For each edge (i,j) 2 elements are initialised:
 - $\tau_{ij}^{(t)} = c$ (intensity of pheromone trail on edge (I,j) at time t)
 - $\Delta \tau_{ij} = 0$ (quantity of pheromone deposited on edge (i,j) by all the ants)
- m ants are randomly places in n city-nodes $(m \le n)$
- Each ant updates its memory (list of visited cities)
 - Adds in the list the starting city

- While # of steps required to identify the optimal solution is not performed (# of steps = n)
 - For each ant of the colony
 - Increase the partial solution by an element (ant moves one step)
 - Each ant k (from city i) selects the next city j:

- where:
 - q random uniform number from [0,1] //

Pseudo-random proportional rule

- q_0 parameter, $0 \le q_0 \le 1$ ($q_0 = 0 \rightarrow AS/MMAS$, otherwise ACO)
- J is a city selected by probability

$$p_{ij}^{k}(t) = \begin{cases} \frac{\left[\tau_{ij}^{(t)}\right]^{\alpha} \left[\eta_{ij}\right]^{\beta}}{\sum\limits_{s-allowed_{k}(t)} \left[\tau_{is}^{(t)}\right]^{\alpha} \left[\eta_{is}\right]^{\beta}}, & j-allowed\\ 0, & otherwise \end{cases}$$

where:

- p_{ii}^{k} probability of transition of ant k from city i to city j
- $\eta_{ij} = \frac{1}{d_{ii}}$ visibility from city I towards city j (attractive choice of edge (i,j))
- allowed_{\(\nu\)} cities that can be visited by ant k at time t
- a controls the trail importance (how many ants have visited that edge)
- β controls the visibility importance (how close is the next city)

- While # of steps required to identify the optimal solution is not performed
 - For each ant of the colony
 - Increase the partial solution by an element (ant moves one step)
 - Change locally the pheromone trail based on the last element added in solution

$$\tau_{ij}^{(t+1)} = (1 - \varphi)\tau_{ij}^{(t)} + \varphi * \tau_0$$

- where:
 - φ pheromone degradation coefficient; $\varphi \in [0,1]$; for $\varphi = 0 \rightarrow AS/MMAS$, otherwise ACO
 - τ_0 initial value of pheromone
 - (i,j) last edge visited by ant

- 3. Change the pheromone trail from
- Paths covered by all ants (AS)
 - For each edge
 - Compute the unit quantity of pheromones put by the kth ant on edge (i,j)
 - $\Delta \tau_{ij}^{k} = \begin{cases} \frac{Q}{L_{k}} & \text{- if the } k^{\text{th}} \text{ ant used the edge } (i,j) \\ 0 & \text{-} \end{cases}$
 - Q quantity of pheromone deposited by an ant.
 - L_k length (cost) of tour performed by the k^{th} ant
 - Compute the total quantity of pheromone from edge (ij) $\Delta \tau_{ij} = \sum_{k=1}^{m} \Delta \tau_{ij}^{k}$
 - Compute the intensity of pheromone trail as a sum of old pheromone evaporation and the new deposited pheromone

$$\tau_{ij}^{(t+n)} = (1-\rho) * \tau_{ij}^{(t)} + \Delta \tau_{ij}$$

3. Where ρ (0< ρ <1) – evaporation coefficient of pheromone trail from a complete tour to another complete tour

- 3. Change the pheromone trail from
 - The best path (ACO)
 - The best path of the best ant (MMAS)
 - For each edge of the best path
 - Compute the unit quantity of pheromone deposited by the best ant on edge (ij) $\Delta \tau_{ij} = \frac{1}{I}$
 - L_{best} length (cost) of the best path
 - Of current iteration
 - Over all executed iteration (until that time)
 - Compute the intensity of pheromone trail as sum of old pheromone evaporation and the new deposited pheromone

$$\tau_{ij}^{(t+n)} = \left[(1-\rho) * \tau_{ij}^{(t)} + \rho * \Delta \tau_{ij}^{best} \right]_{\tau_{\min}}^{r_{\max}}$$

- 3. Where ρ (0< ρ <1) evaporation coefficient of pheromone trail from a complete tour to another complete tour
- τ_{min} şi τ_{max} limits (inferior and superior) of pheromone;
 - For τ_{min} = -∞ and τ_{max} = +∞ → ACO, otherwise MMAS

ACO – properties

Properties

- Iterative algorithm
- Algorithm that progressively constructs the solution based on
 - Heuristic information
 - Pheromone trail
- Stochastic algorithm

Advantages

- Run continuous and real-time adaptive change input
 - Ex. for TSP the graph can be dynamically changed
- Positive feedback helps to quickly discovering of solution
- Distribute computing avoids premature convergence
- Greedy heuristic helps to identify an acceptable solution from the first stages of search
- Collective interaction of individuals

Disadvantages

- Slowly convergence vs other heuristic search
- For TSP instances with more than 75 cities it finds weak solutions
- In AS there is no central process to guide the search towards good solutions

ACO – applications

- Optimal paths in graphs
 - Ex. Traveling Salesman Problem
- Problems of quadratic assignments
- Problems of network optimisation

Transport problems

Review

PSO

- Beam local search
- Possible solutions → particles that have:
 - A position in the search space
 - A velocity
- Cooperative and perturbative search based on:
 - Position of the best particle of the swarm
 - Best position of particle (particle has memory)

ACO

- Beam local search
- Possible solutions > ants that have:
 - Memory retain steps of solution construction
 - Smell take decisions based on pheromones deposited by other ants (social, collective, collaborative behaviour)
- Cooperative and constructive search

Next lecture

A. Short introduction in Artificial Intelligence (AI)

A. Solving search problems

- **A.** Definition of search problems
- **B.** Search strategies
 - A. Uninformed search strategies
 - B. Informed search strategies
 - c. Local search strategies (Hill Climbing, Simulated Annealing, Tabu Search, Evolutionary algorithms, PSO, ACO)
 - D. Adversarial search strategies

c. Intelligent systems

- A. Rule-based systems in certain environments
- B. Rule-based systems in uncertain environments (Bayes, Fuzzy)
- c. Learning systems
 - A. Decision Trees
 - **B.** Artificial Neural Networks
 - c. Support Vector Machines
 - D. Evolutionary algorithms
- D. Hybrid systems

Next lecture – useful information

- Chapter II.5 of S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995
- Chapter 6 of H.F. Pop, G. Şerban, Inteligenţă artificială, Cluj Napoca, 2004
- Documents from folder 05_adversial_minimax

- Presented information have been inspired from different bibliographic sources, but also from past AI lectures taught by:
 - PhD. Assoc. Prof. Mihai Oltean www.cs.ubbcluj.ro/~moltean
 - PhD. Assoc. Prof. Crina Groşan www.cs.ubbcluj.ro/~cgrosan
 - PhD. Prof. Horia F. Pop www.cs.ubbcluj.ro/~hfpop