得分	教师签名	批改日期

深圳大学实验报告

课程名称:	大学	物理实验((<u> </u>		
实验名称:	阿贝瓦	<u>戈像原理与</u>	空间滤波		
学 院:	数	学与统计学	院		
指导教师 <u>:</u>	但	記燕翔、李	<u> </u>		
报告人:	王曦	组号: __	20)	_
学号 <u>202</u>	<u>1192010</u> 회	K验地点	致原	楼	
实验时间:	2022 年	11	月	03	日
提交时间,	2022	年11月16) H		

1

一、实验目的

- 1. 通过实验进一步加强对阿贝成像原理以及空间频率、傅里叶频谱空间滤波概念的理解.
- 2. 掌握空间滤波的光路调整方法(共轴调节、平珩光的调节)和基本的滤波方法(针孔滤波).
- 3. 了解光栅在空间图象处理中的作用;观察方向滤波、低通与高通滤波及空间滤波现象.
- 4. 学习 θ 调制与假彩色编码.

二、实验原理

2.1 阿贝成像原理:阿贝认为物体是由许多不同方位、不同空间频率的光栅构成的;其次,物体通过透镜成像的过程分为两步:

第 1 步:入射光经物平面发生夫琅禾费衍射,衍射光束被分解成为不同方向传播的多束平行光(每一束平行光相应于一定的空间频率,按衍射规律,物面上距离越近的,即空间频率越高的点其衍射角度越大),其作用是把光场分布转变为空间频率分布,即"分频".

第 2 步:衍射波被透镜接收,在透镜的焦平面上形成三个频率成分不同的衍射斑 S+1.So,S1,所以把所在的焦平面称为谱平面. S+1,So,S-1 . 可看成三个次波源,次波源发出的球面波在透镜的像平面发生相干迭加,不同空间频率的光束又复合成像,即"合成".

2.2 将一幅透明画拆分成三部分:房子、草地、天空,将这三部分分别刻在三片不同取向的光栅上,将光栅叠在一起作为物,此物叫调制片,用白光照明调制片,光束发生衍射,衍射光束经透镜后在其焦平面成像形成衍射谱(彩色光斑),如在谱平面上放置频谱滤波器(即能让一部分光通过的挡板),在房子谱方向只让红色光谱通过,在草地谱方向只让绿色通过,在天空谱方向只让蓝色谱通过,在像平面上将看到图像被"着上"不同颜色.

三、实验仪器:

3.1 空间滤波光路及仪器

空间滤波平台主要仪器及规格

He-Ne 激光器(632.8 <u>mm</u>)	二维调整架: SZ-07
扩束镜 L1: fi=4.5mm	白屏: SZ-13
准直镜 L ₂ : f ₂ =190mm	滑座
一维光栅 (25L/mm)	光学导轨
傅里叶透镜 L3: f3=150mm	可调单缝

3.2 θ调制仪器平台

θ调制实验平台仪器主要规格

带有毛玻璃的白炽灯光源 S	干板架: SZ-12		
准直镜 L ₁ : f ₁ =225mm	θ调制滤波器: SZ-40		
三维光栅(0调制板)	白屏: SZ-13		
傅里叶透镜 L2: f2=150mm	滑座		
傅里叶透镜 L3: f3=150mm	光学导轨		

四、实验内容:

4.1 光路系统的共轴调节

- 4.1.1 第一步粗调,使物、屏与透镜中心大致在一条直线上,让光斑、物、镜的几何中心在一条直线上,等高.
- 4.1.2 第二步细调,移动透镜,当两次成像的中心重合即达到共轴,若系统有两个以上的透镜,则 先加入一个透镜调节共轴,然后再依次加入透镜,使每次所加透镜都与原系统共轴.

4.2 θ 调制光路系统的搭建与调节

- 4.2.1 调节准直镜获平行光,准直后应达到的效果是,大距离移动光屏时光斑的大小不发生改变.
- 4.2.2 搭建时元件位置:光源与准直镜距离大约 f=225mm,调制片与准直镜距离大约 100mm 左右,调制片与第一傅里叶镜距离大约 f=150mm 左右.
- 4.2.3 调节两傅里叶镜在光屏成与原物差不多大小的清晰像.
- 4.2.4 在两傅里叶镜之间插入滤波器,对像进行色彩调节.

五、数据记录:

组号: ___20___; 姓名___王曦___

七、结果陈述:

成功将光屏上的物象调制为蓝色的天空、红色的天安门和绿色的草地.

八、实验总结与思考题

- 8.1 根据阿贝成像原理和你的实验经历,讨论哪些因素影响 θ 调制实验结果的形状和色彩准确效果.
 - ①各光学器件是否共轴:②光源是否是平行光:③光斑是否恰好穿过频谱滤波器的光栅刻痕分而不遮挡;
 - ④调制时所需的颜色的光是否恰好穿过频谱滤波器的小孔;⑤频谱滤波器是否晃动.
- 8.2 根据阿贝成像原理和你的实验经历,讨论本实验如何做得又快又好.
 - ①选用稳定不摇晃的频谱滤波器进行实验;②初始时调节各光学器件共轴;

(3)

8.3 根据成像效果推断房子、草地和天空的光栅刻痕方向.

北 巴 耂	누네표-	出い (立	坔	П
1百子名	נווע אַ:	批阅		ביולי

成绩评定:

预习 (20分)	操作及记录 (40 分)	数据处理与结果陈述 30 分	思考题 10 分	报告整体 印象	总分