Liang Barskey Line Clipping Algorithm

Liang-barskey 알고리즘

- 매개변수 방정식을 이용하여 선분을 윈도우 경계에 대하여 자르는 알고리즘
 - 선을 나타내는 매개변수 방정식은

•
$$p(u) = (1 - u)p_1 + up_2$$

= $p_1 + u(p_2 - p_1)$ $0 <= u <= 1$
 $\stackrel{\triangle}{=}$, $x = x_1 + u(x_2 - x_1)$
 $y = y_1 + u(y_2 - y_1)$

- 끝점이 P1 = (x1, y1) P2 = (x2, y2) 인 선분일 때
 - 매개변수 방정식 사용하여 임의의 점 P (x, y) 을 표시

 $(y2 - y1 -> d_v)$

- 선분위에 있는 모든 점들은 아래의 조건을 만족
 - $x_{min} \le x \le x_{max}$ $y_{min} \le y \le y_{max}$

• 매개 변수 방정식으로 다시 작성하면

•
$$x_{min} \le x1 + d_x u \le x_{max}$$

•
$$y_{min} \le y1 + d_yu \le y_{max}$$

- 왼쪽 가장자리에 대하여
- 오른쪽 가장자리에 대하여
- ② 도 같은 방식으로 바꿀 수 있다.
 - 아래쪽 가장자리에 대하여
 - 위쪽 가장자리에 대하여

•
$$p_1 = -d_x$$

•
$$p_2 = d_x$$

•
$$p_3 = -d_y$$

•
$$p_4 = d_y$$

$$k = 1, 2, 3, 4$$

$$q_1 = x1 - x_{min}$$

•
$$p_2 = d_x$$
 $q_2 = x_{max} - x1$

•
$$p_3 = -d_y$$
 $q_3 = y1 - y_{min}$

$$q_4 = y_{max} - y1$$

$$(d_x = x2 - x1)$$

... ②
$$(d_y = y2 - y1)$$

$$-d_x u < x1 - x_{min}$$
$$d_x u < x_{max} - x1$$

$$-d_y u < y1 - y_{min}$$

$$d_y u < y_{max} - y1$$

bottom

top

- 1. p_k == 0 일 때,
 - p_k가 0 이면, k번째 가장자리와 평행
 - q_k < 0이면, 그 가장자리 영역 밖에 있다.

즉,
$$p_1 = -dx = -(x^2 - x^1) = 0$$
 → $x^2 = x^1$

- a. q₁ < 0 → q₁ = (x1 xmin) < 0 → x1 < xmin → 영역 밖에 있다.
- b. $q_2 < 0 \rightarrow q_2 = (xmax x1) < 0 \rightarrow xmax < x1 \rightarrow 영역 밖에 있다.$
- c. $q_3 < 0 \rightarrow q_3 = (y1 ymin) < 0 \rightarrow y1 < ymin \rightarrow 영역 밖에 있다.$
- d. q₄ < 0 → q₄ = (ymax y1) < 0 → ymax < y1 → 영역 밖에 있다.
- $p_k == 0$ 이고 $q_k < 0$ 이면, 영역 밖에 있으므로 안 그린다.

• $p_k = 0$ 이고, $q_k > 0$ 일 때

a.
$$q_1 > 0 \rightarrow q_1 = (x1 - xmin) > 0 \rightarrow x1 > xmin$$

b.
$$q_2 > 0 \rightarrow q_2 = (xmax - x1) > 0 \rightarrow xmax > x1$$

c.
$$q_3 > 0 \rightarrow q_3 = (y_1 - y_{min}) > 0 \rightarrow y_1 > y_{min}$$

d.
$$q_4 > 0 \rightarrow q_4 = (ymax - y1) > 0 \rightarrow ymax > y1$$

• 평행한 가장자리외의 가장자리와 만날 수 있다.

- 2. p_k!= 0 일 때,
 - p_k != 0이면, 선분이 경계선 중 하나와 평행하지 않다.
 - -> 그 선분의 무한한 연장선은 윈도우의 네 개의 경계선과 어디에선가 교차한다.
 - $p_k < 0$:
 - $p_1 < 0 \rightarrow p_1 = -dx = -(x^2 x^1) < 0 \rightarrow x^2 x^1 > 0 \rightarrow x^2 > x^1$
 - $p_1 < 0$ 이면 $p_2 = dx \rightarrow p_2 > 0$
 - $p_3 < 0 \rightarrow p_3 = -dy = -(y_2 y_1) < 0 \rightarrow y_2 y_1 > 0 \rightarrow y_2 > y_1$
 - $p_3 < 0$ 이면 $p_4 = dy \rightarrow p_4 > 0$
 - $p_k > 0$:
 - $p_1 > 0 \rightarrow p_1 = -dx = -(x^2 x^1) > 0 \rightarrow x^2 x^1 < 0 \rightarrow x^2 < x^1$
 - $p_1 > 0$ 이면 $p_2 = dx \rightarrow p_2 < 0$
 - $p_3 > 0 \rightarrow p_3 = -dy = -(y_2 y_1) > 0 \rightarrow y_2 y_1 < 0 \rightarrow y_2 < y_1$
 - $p_3 > 0$ 이면 $p_4 = dy \rightarrow p_4 < 0$

- 만약 p, < 0이면, 직선은 밖→ 안으로 진행
- 만약 p, > 0이면, 직선은 안 → 밖으로 진행
- 0이 아닌 p_k 에 대하여, 매개변수 u의 값으로 가장자리와의 교차점 을 찾을 수 있다. 즉,
 - $u_k = q_k / p_k$ (k = 1, 2, 3, 4)
 - k 에 대한 u의 값에 대하여,
 - $p_k < 0$ 이면, $u_{start} = max (u_k, 0)$
 - $p_k > 0$ 이면, $u_{end} = min(u_k, 1)$
 - 가장자리와의 교차점인 새로운 매개변수 u_{start} 와 u_{end} 에 대해서,
 - if $u_{start} > u_{end}$ reject
 - if u_{start} < u_{end} → 새로운 좌표값
 - $\text{new}_x 1 = x1 + u_{\text{start}} * dx$, $\text{new}_y 1 = y1 + u_{\text{start}} * dy$

•
$$\text{new}_x2 = x1 + u_{\text{end}} * dx$$
, $\text{new}_y2 = y1 + u_{\text{end}} * dy$

$$new_y2 = y1 + u_{end} * dy$$

• 예) 윈도우 영역 (5, 5) (10, 10), p1=(3, 8) p2=(12, 2)

• 예) 윈도우 영역 (5, 5) (10, 10), p1=(12, 9) p2=(2, 6)

• 예) 윈도우 영역 (5, 5) (10, 10), p1=(2, 6) p2=(8, 9)

• 예) 윈도우 영역 (5, 5) (10, 10), p1=(8, 9) p2=(2, 6)

• 예) 윈도우 영역 (5, 5) (10, 10), p1=(2, 9) p2=(8, 9)

• 예) 윈도우 영역 (5, 5) (10, 10), p1=(7, 2) p2=(7, 12)

• 예) 윈도우 영역 (5, 5) (10, 10), p1=(6, 3) p2=(9, 3)

