Lecture 3

DJM

9 October 2018

Convex sets and functions

Definitions

Thanks: Much of this material is borrowed/copied from Ryan Tibshirani.

Set C is convex iff $\forall x, c \in C, \forall t \in [0;1]$ $tx + (1-t)y \in C$.

So C is convex iff for any two points in C their segment is also entirely in C.

Convex combination of set of points $x_1, \ldots, x_k \in \mathbb{R}^n$ is

$$\left\{ \sum_{i=1}^k \Theta_i x_i : \sum_{i=1}^k \Theta_i = 1, \ \forall i \ \Theta_i \in [0;1] \right\}.$$

Convex hull of any $C \in \mathbb{R}^n$, denoted conv(C) is a union of all convex combinations of different elements of C.

Some examples

- Empty set, point, line, segment.
- Norm ball: $\{x : ||x|| < r\}$.
- Hyperplane $\{x: a^{\top}x = b\}$, Affine space $\{x: Ax = b\}$.
- Hyperspace: $\{x : a^{\top}x \leq b\}$, Polyhedron $\{x : Ax \leq b\}$.
- Cone such that if $x_1, x_2 \in C$ then $t_1x_1 + t_2x_2 \in C \ \forall t_1, t_2 \geq 0$.

Cones

Set C is a cone iff $\forall t \geq 0, x \in C \implies t^{\top}x \in C$.

Type of cones:

- Norm cone: $\{(x,t): ||x|| \le t\}$.
- Normal cone for some C and $x \in C$: $N_C(x) = \{g : g^\top x \ge g^\top y \ \forall y \in C\}.$
- Positive semidefinite cone $S^n_+ = \{x \in S^n : x \succeq 0\}, \, S^n$ is Hilbert space.

Key properties of convex sets

- Separating hyperplane. A, B are convex, nonempty, disjoint. Then $\exists a, b: A \subseteq \{x: a^{\top}x \leq b\}, B \subseteq \{x: a^{\top} \geq b\}.$
- Supporting hyperplane. C nonempty, convex, $x_0 \in boundary(C)$. Then $\exists a: C \subseteq \{x: a^\top x \leq a^\top x_0\}$.

Operations preserving convexity

- Intersection.
- Scaling, translation. C is convex $\implies aC + b$ is convex.
- Affine image and preimage. f(x) = Ax + b, C is convex $\implies f(C), f^{-1}(C)$ are convex.
- Lots more (See (Boyd and Vandenberghe 2004), chapter 2).

$$A_1, \dots, A_k, B \in \mathbb{S}^n$$
 – symmetric matrices. Then $C = \left\{ x \in \mathbb{R}^k : \sum_{i=1}^k x_i A_i \leq B \right\}$.

 $f: \mathbb{R}^k \to \mathbb{S}^n$, $f(x) = B - \sum_{i=1}^k x_i A_i$. $C = f^{-1}(S^n_+)$ – affine preimage of convex cone.

Convex functions

Function $f: \mathbb{R}^n \to \mathbb{R}$ is *convex* iff dom $(f) \subseteq \mathbb{R}^n$ is convex and

$$\forall x, y \in \text{dom}(f), t \in [0; 1] \quad f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y)$$

Other definitions:

- f is concave iff -f is convex.
- f is strictly convex iff $\forall t \in (0;1)$ the inequality in definition is strict.
- f is $strongly\ convex\ with\ parameter\ au\ iff\ f(x) rac{ au}{2} \|x\|_2^2$ is convex.

Examples

- $f(x) = \frac{1}{x}$ is strictly convex, but not strongly.
- Univariate functions:
 - $-e^{ax}$ is convex $\forall a \in \mathbb{R}$ over \mathbb{R} .
 - $-x^a$ convex given $a \ge 1$ or $a \le 0$ over \mathbb{R}_+ .
 - $-\log x$ is concave over \mathbb{R}_+ .
- Affine $a^{\top}x + b$ is both convex and concave.
- Quadratic $\frac{1}{2}x^{\top}Qx + b^{\top}x + c$ is convex if $Q \succeq 0$.
- $||u Ax||_2^2$ convex since $A^\top A \succeq 0$.
- Norms: all vector norms and most matrix norms are convex.
- Indicator function is convex. C is a convex set, then $I_C(x) = \begin{cases} 0, & x \in C \\ \infty, otherwise \end{cases}$.

2

• Support function is convex $\forall C. \ I_C^*(x) = \max_{y \in C} x^\top y.$

Key properties

- f is convex iff its epigraph is convex, where $epi(f) = \{(x,t) \in \text{dom}(f) \times \mathbb{R} : f(x) \leq t\}$.
- f is convex \implies all its sublevel sets are convex. $C_t = \{x \in \text{dom}(f) : f(x) \le t\}$. The converse is false.
- Assume f is differentiable. Then f is convex iff dom(f) is convex and $\forall x, y \in dom(f)$ $f(y) \ge f(x) + \nabla f(x)^{\top} (y-x)$. Essentially, it means that f's graph is above any tangent plain.
- Assume f is twice differentiable. f is convex iff dom (f) is convex and $\forall x \in \text{dom}(f) \quad \nabla^2 f(x) \succeq 0$.

Operations preserving function convexity

- Nonnegative linear combination.
- Pointwise maximum. $\forall s \in S \ f_s$ is convex $\implies f(x) = \max_{S} f_s(x)$ is also convex.
- Partial minimum. g(x,y) convex over variables x,y; C convex. Then $f(x) = \min_{y \in C} g(x,y)$ is also convex. E.g., $f(x) = \max_{y \in C} \|x y\|$ or $f(x) = \min_{y \in C} \|x y\|$.

Terminology

Optimization problem

A convex optimization problem (program)

$$\min_{x \in D} f(x)$$
subject to $g_i(x) \le 0 \quad \forall i \in [1:m]$

$$Ax - b$$
(1)

where f, g_i are convex and $D = \text{dom}(f) \cap \text{dom}(g_i)$.

Terms

$$\min_{x \in D} f(x)$$
subject to $g_i(x) \le 0 \quad \forall i \in [1:m]$

$$Ax = b$$
(2)

- f criteria or objective function.
- g_i inequality constraints.
- x is a feasible point if it satisfies the conditions, namely $x \in D$, $g_i(x) \leq 0$, and Ax = b.
- min f over feasible points points optimal value f^* .
- If x is feasible and $f(x) = f^*$ then x is an optimum (solution, minimizer).
- Feasible x is a local optimum if $\exists R > 0$ such that $\forall y \in B_R(x)$ $f(x) \leq f(y)$.
- If x is feasible and $f(x) \leq f^* + \varepsilon$ then x is ε -suboptimal.
- If x is feasible and $g_k(x) = 0$ then g_k is active at x (otherwise inactive).

Properties

- Solution set X_{opt} is convex.
- If f is strictly convex then the solution is unique.
- For convex optimization problems all local optima are global.
- The set of feasible points is convex.

Example: Lasso.

 $\min_{\beta} \|y - X\beta\|_2^2 \text{ subject to } \|\beta\|_1 \le s.$

- $g_1(\beta) = \|\beta\|_1 s$ convex, no equality constraints.
- X is $n \times p$ matrix
 - If $n \geq p$ and X is full rank then $\nabla^2 f(\cdot) = 2X^\mathsf{T} X$ is positive definite matrix. The function is strictly convex, therefore the solution is unique.
 - If p > n then $\exists \beta \neq 0$ such that $X\beta = 0 \implies$ multiple solutions.

First Order Condition

- \bullet convex problem with differentiable f
- a feasible x is optimal iff $\nabla f(x)^T(x-y) \geq 0, \forall$ feasible y
- if unconstrained, the condition reduces to $\nabla f(x) = 0$

$$\min_{x} \frac{1}{2} x^{T} Q x + b^{T} x + c, \qquad Q \succeq 0$$

- FOC: $\nabla f(x) = Q^T x + b = 0$
- if $Q \succ 0 \rightarrow x^* = -Q^{-1}b$
- if Q singular, $b \notin Col[Q] \to \text{no solution}$
- if Q singular, $b \in Col[Q] \to x^* = -Q^*b + z$ with $z \in null[Q]$

Projection onto convex C:

$$\min_{x} \|a - x\|_2^2 \qquad \text{s.t.} \qquad x \in C$$

-FOC:
$$\nabla f(x)^T (y-x) = (x-a)^T (y-x) \ge 0, \forall y \in C \Leftrightarrow a-x \in N_2(x)$$

Useful operations

Partial optimization

Recall: $h(x) = \min_{y \in C} f(x, y)$ is convex if f is convex, and C is convex.

$$\min_{x_1, x_2} \quad f(x_1, x_2) \qquad \min_{x_1} \qquad \tilde{f}(x_1)$$
s.t. $g_1(x_1) \le 0 \iff$ s.t. $g_1(x_1) \le 0$

$$g_2(x_2) \le 0$$

$$(3)$$

where $\tilde{f}(x_1) = \min \{ f(x_1, x_2) : g_2(x_2) \le 0 \}.$

• The right problem is convex if the left is (and vice versa)

Transformations

• We can use a monotone increasing transformation $h: \mathbb{R} \to \mathbb{R}$:

$$\min_{x \in C} f(x) \Rightarrow \min_{x \in C} h(f(x))$$

• We can use a change of variable transformation $\phi:\mathbb{R}^n \Rightarrow \mathbb{R}^m$:

$$\min_{x \in C} f(x) \Leftrightarrow \min_{\phi(y) \in C} f(\phi(y))$$

Example: Geometric Program

$$\min_{x \in C} f(x) = \sum_{k=1}^{p} \gamma_k x_1^{a_{k_1}} x_2^{a_{k_2}} ... x_n^{a_{k_n}}$$
 (posynomial)

- C: involves (convex) inequalities in some form and equalities are affine.
- We can change above non-convex problem to the following convex problem by letting $y_i = \log x_i$

Eliminate equality constraints

$$\min_{x} f(x)$$
s.t. $g_{i}(x) \leq 0$

$$Ax = b$$
(4)

- x feasible means $\exists M : col[M] = null[A]$ and $x_0s.t.Ax_0 = b$
- Let $x = My + x_0$

Then the following is an equivalent problem:

$$\min_{y} f(My + x_0)$$
s.t. $g_i(My + x_0) \le 0$ (5)

Introduce slack variables

$$\min_{x} f(x)$$
s.t. $g_{i}(x) \leq 0$

$$Ax = b$$
(6)

• Can add equality constraints:

$$\min_{x,s} f(x)$$
s.t. $g_i(x) + s_i = 0$

$$s_i \ge 0$$

$$Ax = b$$
(7)

• But this is nonconvex unless g_i are affine

Relaxation

We can relax nonaffine constraints

$$\min_{x \in C} f(x) \Rightarrow \min_{x \in \tilde{C}} f(x)$$

with $C \subset \tilde{C}$

• In this case optimum of new problem is smaller or equal to the optimum of the original problem.

Standard problems (with examples)

LP (Linear Programs)

$$\min_{x} c^T x$$

with affine constraints

- Basis Pursuit $\min_{\beta} \|\beta_0\| \text{ s.t. } X\beta = y$
- Above problem can be relaxed to : $\min_{\beta} \|\beta\|_1 \text{ s.t. } X\beta = y.$
- This relaxation can be reformulated to a LP problem: $\min_{\beta} 1^T z$ s.t. $z \ge \beta, z \ge -\beta, X\beta = y$
- Dantzig selector $\min_{\beta} \|\beta\|_{1} \text{ s.t. } \|x^{T}(y X\beta)\|_{\infty} \leq \lambda$

QP (Quadratic program)

Lasso, ridge regression, OLS, Portfolio Optimization

SDP (Semi-Definite program)

$$\min_{X \in S_n} tr(C^T X)$$
s.t.
$$tr(A_i^\top X) = b_i$$

$$X \succeq 0$$
(8)

Conic program

$$\min_{x} c^{\top} x$$
s.t. $Ax = b$

$$D(x) + d \in K$$

$$(9)$$

D a linear mapping, K a closed convex cone.

• Very similar to an LP

Relations

 $LP \subset QP \subset SOCP \subset SDP \subset CP(ConicProgramming)$

Duality

Introduction

- Suppose we want to Lower bound our convex program
- Find $B \leq \min_x f(x)$, $x \in C$.

Example:

$$\begin{aligned} & \underset{x,y}{\min} & & x+y \\ & \text{s.t.} & & x+y \geq 2 \\ & & & x,y \geq 0 \end{aligned}$$

$$(10)$$

• What is B?

Harder

Example:

$$\begin{aligned} & \underset{x,y}{\min} & & x+3y \\ & \text{s.t.} & & x+y \geq 2 \\ & & & x,y \geq 0 \end{aligned} \tag{11}$$

• What is B?

Why?

Example:

$$\min_{\substack{x,y\\ \text{s.t.}}} x + 3y \qquad \min_{\substack{x,y\\ \text{s.t.}}} (x+y) + 2y$$

$$\text{s.t.} \quad x + y \ge 2 \iff \text{s.t.} \quad x + y \ge 2$$

$$x, y \ge 0 \qquad x, y \ge 0$$

$$(12)$$

• What is B?

Harderer

Example:

$$\begin{aligned} & \underset{x,y}{\min} & px + qy \\ & \text{s.t.} & x + y \geq 2 \\ & & x, y \geq 0 \end{aligned}$$
 (13)

• What is B?

Solution

$$\min_{\substack{x,y\\ \text{s.t.}}} px + qy \qquad \min_{\substack{x,y\\ x,y}} px + qy$$

$$\text{s.t.} ax + ay \ge 2a$$

$$bx, cy \ge 0$$

$$a, b, c \ge 0$$
(14)

• Adding implies

$$(a+b)x + (a+c)y \ge 2a$$

• Set p = (a + b) and q = (a + c) we get that B = 2a

Better

• We can make this lower bound bigger by maximizing:

$$\max_{a,b,c} 2a$$
s.t. $a+b=p$

$$a+c=q$$

$$a,b,c \ge 0$$
(15)

• This is the **Dual** of the **Primal** LP

$$\min_{x,y} \quad px + qy$$
s.t. $x + y \ge 2$

$$x, y \ge 0$$
(16)

• Note that the number of Dual variables (3) is the number of Primal constraints

General LP

(P) (D)
$$\min_{x} c^{\top}x \qquad \max_{u,v} -b^{\top}u - h^{\top}v$$
s.t $Ax = b$ s.t $-A^{\top}u - G^{\top}v = c$

$$Gx \le h \qquad v \ge 0$$
(17)

Exercise

Alternate derivation

$$\min_{x} c^{\top} x$$
s.t $Ax = b$

$$Gx \le h$$
(18)

- Suppose that some x is feasible.
- Then, for that x,

$$c^{\top}x \ge c^{\top}x + u^{\top}(Ax - b) + v^{\top}(Gx - h) =: L(x, u, v).$$

as long as $v \geq 0$ and u is anything.

• We call L(x, u, v) the **Lagrangian**.

Now, suppose C is the feasible set, and f^* is the optimum

$$f^* \geq \min_{x \in C} L(x, u, v) \geq \min_{x} L(x, u, v) =: g(u, v)$$

• We call g(u, v) the Lagrange Dual Function

Weak duality

Consider the generic (primal) convex program

$$\min_{x} f(x)$$
s.t $l_{i}(x) = 0$

$$h_{i}(x) \leq 0$$
(19)

• For feasible $x, v \ge 0$

$$f(x) \ge f(x) + u^{\top} h(x) + v^{\top} l(x) \ge \min_{x} L(x, u, v) = g(u, v).$$

• Therefore,

$$f^* \ge \max_{\forall u, v > 0} g(u, v) = g^*.$$

- This is weak duality.
- Note that the Dual Program is always convex even if P is not (pointwise max of linear functions)

Strong duality

$$f^* = q^*$$

- Sufficient conditions for strong duality: Slater's conditions
- If P is convex and there exists x such that for all i, $h_i(x) < 0$ (strictly feasible), then we have strong duality. (Extension: strict inequalities for i when h_i not affine.)
- Sufficient conditions for strong duality of an LP: strong duality if either P or D is feasible. (Dual of D = P)

Example

Dual for Support Vector Machine

(P) (D)
$$\min_{\xi,\beta,\beta_0} \frac{1}{2} \|\beta\|_2^2 + C \mathbb{F}^{\mathsf{T}} \xi \qquad \max_{w} -\frac{1}{2} w^{\mathsf{T}} \tilde{X}^{\mathsf{T}} \tilde{X} w + \mathbb{F}^{\mathsf{T}} w$$
s.t $\xi_i \ge 0$ s.t $0 \le w \le C \mathbb{F}$

$$y_i (x_i^{\mathsf{T}} \beta + \beta_0) \ge 1 - \xi_i \qquad w^{\mathsf{T}} y = 0$$
(20)

where $\tilde{X} = \text{diag}(y)X$.

- w = 0 is Dual feasible.
- Rewrite $0 \le w \le C \mathbb{K}$ as w > 0, $w_i C \le 0$.
- Thus, w = 0 is strictly feasible.
- We have strong duality by Slater's conditions.

KKT conditions

- 1. Stationarity: $0 \in \partial (f(x) + u^T h(x) + v^T l(x))$: For some pair (u, v), x minimizes the Lagrangian.
- 2. Complementary slackness: $u_i h_i(x) = 0$, $\forall i$
- 3. Primal feasibility: $h_i(x) \leq 0$, $l_i(x) = 0$
- 4. Dual feasibility: $u \ge 0$

Theorem: Solutions x^* and (u^*, v^*) Primal-Dual optimal and $f^* = g^*$, then they satisfy the KKT conditions.

Theorem: Solutions x^* and (u^*, v^*) that satisfy the KKT conditions are Primal-Dual optimal.

Example (SVM cont.)

- 1. Stationarity: $w^{\top}y = 0$, $\beta = w^{\top}\tilde{X}$, w = C1 v
- 2. CS: $v_i \zeta_i = 0$, $w_i (1 \zeta_i y_i (x_i^{\top} \beta + \beta_0)) = 0$
- 3. Clear.
- 4. Clear.

Constraints and Lagrangians

When are the two following forms equivalent?

constrained form (C):

$$\min f(x)$$
s.t. $h(x) \le t$

Lagrangian form (L):

$$\min f(x) + \lambda h(x)$$

When C is strictly feasible, strong duality holds. So there exists λ such that for each x that solves C those x minimize L.

Now, if x^* solves L, then KKT condition for C hold by taking $t = h(x^*)$ and so x^* is a solution of C.

Algorithms

References

Boyd, S.P., and L. Vandenberghe. 2004. Convex Optimization. Cambridge, UK: Cambridge Univ Press.