Interpretable Machine Learning

GAM & Boosting

Learning goals

- Generalized additive model
- Model-based boosting with simple base learners
- Feature effect and importance in model-based boosting

Interpretable Machine Learning

GAM & Boosting Interpretable Models 1

Learning goals

- Generalized additive model (GAM)
- Model-based boosting with simple base learners
- Feature effect and importance in model-based boosting

GENERALIZED ADDITIVE MODEL (GAM)

► Hastie and Tibshirani (1986)

Problem: LM not great if features act on outcome non-linearly

GENERALIZED ADDITIVE MODEL (GAM) • TIBSHIRANI_1986

Problem: LM not great if features act on outcome non-linearly

Interpretable Machine Learning - 1/6 Interpretable Machine Learning - 1/6

GENERALIZED ADDITIVE MODEL (GAM)

► Hastie and Tibshirani (1986)

Problem: LM not great if features act on outcome non-linearly

Workaround in LMs / GLMs:

- Feature transformations (e.g., exp or log)
- Including high-order effects
- Categorization of features (i.e., intervals/ buckets of feature values)

GENERALIZED ADDITIVE MODEL (GAM) TIBSHIRAN_1986

Problem: LM not great if features act on outcome non-linearly

Workaround in LMs / GLMs:

- Feature transformations (e.g., exp, log)
- Including high-order effects
- Categorization of features (i.e., intervals/ buckets of feature values)

Interpretable Machine Learning - 1/6 Interpretable Machine Learning - 1/6

GENERALIZED ADDITIVE MODEL (GAM)

► Hastie and Tibshirani (1986)

Problem: LM not great if features act on outcome non-linearly

Workaround in LMs / GLMs:

- Feature transformations (e.g., exp or log)
- Including high-order effects
- Categorization of features (i.e., intervals/ buckets of feature values)

Idea of GAMs:

• Instead of linear terms $\theta_i x_i$, use flexible functions $f_i(x_i) \rightsquigarrow$ splines

$$g(\mathbb{E}(y \mid \mathbf{x})) = \theta_0 + f_1(x_1) + f_2(x_2) + \ldots + f_p(x_p)$$

- Preserves additive structure and allows to model non-linear effects
- Splines have a smoothness parameter to control flexibility (prevent overfitting) → Needs to be chosen, e.g., via cross-validation

GENERALIZED ADDITIVE MODEL (GAM) • TIBSHIRANI_1986

Problem: LM not great if features act on outcome non-linearly

Workaround in LMs / GLMs:

- Feature transformations (e.g., exp, log)
- Including high-order effects
- Categorization of features (i.e., intervals/ buckets of feature values)

Idea of GAMs:

• Instead of linear terms $\theta_i x_i$, use flexible functions $f_i(x_i) \rightsquigarrow$ splines

$$g(\mathbb{E}(y \mid \mathbf{x})) = \theta_0 + f_1(x_1) + f_2(x_2) + \ldots + f_D(x_D)$$

- Preserves additive structure and allows to model non-linear effects
- Splines have smoothness param. to control flexibility (prevent overfitting) → Needs to be chosen, e.g., via cross-validation

Interpretable Machine Learning - 1/6 Interpretable Machine Learning - 1/6

GENERALIZED ADDITIVE MODEL (GAM) - EXAMPLE

Fit a GAM with smooth splines for four numeric features of bike rental data \leadsto more flexible and better model fit but less interpretable than LM

	edf	p-value
s(temp)	5.8	0.00
s(hum)	4.0	0.00
s(windspeed)	1.7	0.00
s(days_since_2011)	8.3	0.00

- Interpretation is performed visually and relative to average prediction
- ◆ Edf: effective degrees of freedom
 → represents degree of smoothness/complexity

GENERALIZED ADDITIVE MODEL (GAM) - EXAMPLE

Fit a GAM with smooth splines for four numeric features of bike rental data \leadsto more flexible and better model fit but less interpretable than LM

	edf	p-value
s(temp)	5.8	0.00
s(hum)	4.0	0.00
s(windspeed)	1.7	0.00
s(days_since_2011)	8.3	0.00

Interpretation

- Interpretation is done visually and relative to average prediction
- Edf: effective degrees of freedom
 → represents degree of smoothness/complexity

Interpretable Machine Learning - 2/6

days_since_2011

Interpretable Machine Learning - 2 / 6

MODEL-BASED BOOSTING Bühlmann, Yu 2003 Bühlmann, Hothorn 2008

- Boosting iteratively combines weak base learners to create powerful ensemble
- Idea: Use simple BLs (e.g univariate, with splines) to ensure interpretability
- Possible to combine BL of same type (with distinct parameters θ and θ^*):

$$b^{[j]}(\mathbf{x}, oldsymbol{ heta}) + b^{[j]}(\mathbf{x}, oldsymbol{ heta}^{\star}) = b^{[j]}(\mathbf{x}, oldsymbol{ heta} + oldsymbol{ heta}^{\star})$$

MODEL-BASED BOOSTING VU_2003 HOTHORN_2008

- Boosting iteratively combines weak base learners to create powerful ensemble
- Idea: Use simple BLs (e.g. univar., with splines) to ensure interpretability
- Possible to combine BL of same type (with distinct parameters θ and θ^*):

$$b^{[j]}(\mathbf{x}, oldsymbol{ heta}) + b^{[j]}(\mathbf{x}, oldsymbol{ heta}^{\star}) = b^{[j]}(\mathbf{x}, oldsymbol{ heta} + oldsymbol{ heta}^{\star})$$

MODEL-BASED BOOSTING Bühlmann, Yu 2003 Bühlmann, Hothorn 2008

- Boosting iteratively combines weak base learners to create powerful ensemble
- Idea: Use simple BLs (e.g univariate, with splines) to ensure interpretability
- Possible to combine BL of same type (with distinct parameters θ and θ^*):

$$b^{[j]}(\mathbf{x},oldsymbol{ heta}) + b^{[j]}(\mathbf{x},oldsymbol{ heta}^{\star}) = b^{[j]}(\mathbf{x},oldsymbol{ heta}+oldsymbol{ heta}^{\star})$$

$$\hat{f}^{[1]} = \hat{f}_0 + \nu b^{[3]}(\mathbf{x}_3, \boldsymbol{\theta}^{[1]})
\hat{f}^{[2]} = \hat{f}^{[1]} + \nu b^{[3]}(\mathbf{x}_3, \boldsymbol{\theta}^{[2]})
\hat{f}^{[3]} = \hat{f}^{[2]} + \nu b^{[1]}(\mathbf{x}_1, \boldsymbol{\theta}^{[3]})
= \hat{f}_0 + \nu \left(b^{[3]}(\mathbf{x}_3, \boldsymbol{\theta}^{[1]} + \boldsymbol{\theta}^{[2]}) + b^{[1]}(\mathbf{x}_1, \boldsymbol{\theta}^{[3]}) \right)
= \hat{f}_0 + \hat{f}_3(\mathbf{x}_3) + \hat{f}_1(\mathbf{x}_1)$$

Final model is additive GAM, we can read off effect curves

MODEL-BASED BOOSTING YU_2003 HOTHORN_2008

- Boosting iteratively combines weak base learners to create powerful ensemble
- Idea: Use simple BLs (e.g. univar., with splines) to ensure interpretability
- Possible to combine BL of same type (with distinct parameters θ and θ^*):

$$b^{[j]}(\mathbf{x}, \boldsymbol{\theta}) + b^{[j]}(\mathbf{x}, \boldsymbol{\theta}^*) = b^{[j]}(\mathbf{x}, \boldsymbol{\theta} + \boldsymbol{\theta}^*)$$

• In each iteration, fit a set of BLs, add best one to model (with step-size ν):

$$\hat{f}^{[1]} = \hat{f}_0 + \nu b^{[3]}(\mathbf{x}_3, \boldsymbol{\theta}^{[1]})
\hat{f}^{[2]} = \hat{f}^{[1]} + \nu b^{[3]}(\mathbf{x}_3, \boldsymbol{\theta}^{[2]})
\hat{f}^{[3]} = \hat{f}^{[2]} + \nu b^{[1]}(\mathbf{x}_1, \boldsymbol{\theta}^{[3]})
= \hat{f}_0 + \nu \left(b^{[3]}(\mathbf{x}_3, \boldsymbol{\theta}^{[1]} + \boldsymbol{\theta}^{[2]}) + b^{[1]}(\mathbf{x}_1, \boldsymbol{\theta}^{[3]}) \right)
= \hat{f}_0 + \hat{f}_3(\mathbf{x}_3) + \hat{f}_1(\mathbf{x}_1)$$

• Final model is additive GAM, we can read off effect curves

MODEL-BASED BOOSTING - LINEAR EXAMPLE

Simple case: Use linear model with single feature (including intercept) as BL

$$b^{[j]}(x_j, \theta) = x_j \theta + \theta_0$$
 for $j = 1, \dots p$ \leadsto ordinary linear regression

- Here: Interpretation of weights as in LM
- After many iterations, it converges to same solution as LM

1000 iter. with $\nu=$ 0.1	Intercept	Weights
days_since_2011	-1791.06	4.9
hum	1953.05	-31.1
season	0	WINTER: -323.4 SPRING: 539.5 SUMMER: -280.2 FALL: 67.2
temp	-1839.85	120.4
windspeed	725.70	-56.9
offset	4504.35	

⇒ Converges to solution of LM

MODEL-BASED BOOSTING - LINEAR EXAMPLE

Simple case: Use linear model with single feature (including intercept) as BL

$$b^{[j]}(x_j, \theta) = x_j \theta + \theta_0$$
 for $j = 1, \dots p$ \rightsquigarrow ordinary linear regression

- Here: Interpretation of weights as in LM
- After many iterations, it converges to same solution as LM

D. I. I. (,		
Relative free	quency of se	elected BLs	across iteratio
		0.352	
Cumplated Value		0.355	Top 5 Base-Learner
Valu			a days_since_2011_li
D 88 0.2			a hum_linear
ad B		0.11	8 season_ridge
E 9 0.1		0.096	a temp_linear
0 5 01		0.038	3 windspeed_linear
9		0.08	2

1000 iter. with $\nu=0.1$	Intercept	Weights
days_since_2011	-1791.06	4.9
hum	1953.05	-31.1
season	0	WINTER: -323.4 SPRING: 539.5 SUMMER: -280.2 FALL: 67.2
temp	-1839.85	120.4
windspeed	725.70	-56.9
-114	4504.05	

⇒ Converges to solution of LM

			0.352	
		0.355		Top 5 Base-Learner
				a days_since_2011_linear
				a hum_linear
			0.115	a season_ridge
		0.00		a temp_linear
		0.08		3 windspeed_linear
			0.082	
250		750	1000	
	250		0335	0353 0353 0353 0003 200 750 1000

Interpretable Machine Learning - 4/6

Interpretable Machine Learning - 4/6

MODEL-BASED BOOSTING - LINEAR EXAMPLE

Simple case: Use linear model with single feature (including intercept) as BL

$$b^{[j]}(x_j, \theta) = x_j \theta + \theta_0$$
 for $j = 1, \dots p$ \leadsto ordinary linear regression

- Here: Interpretation of weights as in LM
- After many iterations, it converges to same solution as LM
- Early stopping allows feature selection & may prevent overfitting (regularization)

1000 iter. with $\nu=0.1$	Intercept	Weights
days_since_2011	-1791.06	4.9
hum	1953.05	-31.1
season	0	WINTER: -323.4 SPRING: 539.5 SUMMER: -280.2 FALL: 67.2
temp	-1839.85	120.4
windspeed	725.70	-56.9
offset	4504.35	

⇒ Converges to solution of LM

	20 iter, with $\nu=0.1$	Intercept	Weights
	days since 2011	-1210.27	3.3
	days_since_zerr	1210.27	WINTER: -276.9
	season	0	SPRING: 137.6
			SUMMER: 112.8
		1110.01	FALL: 20.3
	temp	-1118.94	73.2
	offset	4504.35	

⇒ 3 BLs selected after 20 iter. (feature selection)

MODEL-BASED BOOSTING - LINEAR EXAMPLE

Simple case: Use linear model with single feature (including intercept) as BL

$$b^{[j]}(x_j, \theta) = x_j \theta + \theta_0$$
 for $j = 1, \dots p$ \leadsto ordinary linear regression

- Here: Interpretation of weights as in LM
- After many iterations, it converges to same solution as LM
- Early stopping allows feature selection & may also prevent overfitting (regularization)

1000 iter. with $\nu=0.1$	Intercept	Weights
days_since_2011	-1791.06	4.9
hum	1953.05	-31.1
season	0	WINTER: -323.4 SPRING: 539.5 SUMMER: -280.2 FALL: 67.2
temp	-1839.85	120.4
windspeed	725.70	-56.9
offset	4504.35	

⇒ Converges to solution of LM

20 iter. with $\nu=0.1$	Intercept	Weights
days_since_2011	-1210.27	3.3
season	0	WINTER: -276.9 SPRING: 137.6 SUMMER: 112.8 FALL: 20.3
temp	-1118.94	73.2
offset	4504.35	

⇒ 3 BLs selected after 20 iter. (feature selection)

Interpretable Machine Learning - 4 / 6

ing - 4/6 © Interpretable Machine Learning - 4/6

LINEAR EXAMPLE: INTERPRETATION

Feature importance: aggregated change in risk in each iteration per feature

- E.g. iteration 1: days_since_2011 with risk reduction (MSE) of 140,782.94
- For every iteration the change in risk can be attributed to a feature

In-bag-risk: 434,686.0 OOB risk (10-fold CV): 446,450.0

In-bag-risk: 693,505.0 OOB risk (10-fold CV): 705,776.0

⇒ Difference in risk: 258,819.0 Difference in OOB risk: 259.326.0

LINEAR EXAMPLE: INTERPRETATION

Feature importance: aggregated change in risk in each iteration per feature

- E.g. iter. 1: days_since_2011 with risk reduction (MSE) of 140,782.94
- For every iteration the change in risk can be attributed to a feature

In-bag-risk: 693,505.0 OOB risk (10-fold CV): 705.776.0

⇒ Difference in risk: 258,819.0 Difference in OOB risk: 259.326.0

NON-LINEAR EXAMPLE: INTERPRETATION

- Fit model on bike data with different BL types (1000 iter.) Daniel Schalk et al. 2018
- BLs: linear and centered splines for numeric features, categorical for season

NON-LINEAR EXAMPLE: INTERPRETATION

- Fit model on bike data with different BL types (1000 iter.) Schalk 2018
- BLs: linear and centered splines for numeric feat., categorical for season

NON-LINEAR EXAMPLE: INTERPRETATION

• Fit model on bike data with different BL types (1000 iter.) Daniel Schalk et al. 2018

BLs: linear and centered splines for numeric features, categorical for season

- ⇒ In-bag-risk: 250,202.0 ; OOB risk (10-fold CV): 267,497.0 (difference to lin. example: 178,953.0)
- ⇒ In-bag-risk: 434,686.0; OOB risk (10-fold CV): 446,450.0 (previous lin. example with 1000 iter.)
- Feature importance (risk reduction over iter.)
 - → days_since_2011 most important
- Total effect for days_since_2011
- Combination of partial effects of linear BL and centered spline BL

NON-LINEAR EXAMPLE: INTERPRETATION

- Fit model on bike data with different BL types (1000 iter.)

 Schalk 2018
- BLs: linear and centered splines for numeric feat., categorical for season

- ⇒ In-bag-risk: 250,202.0; OOB risk (10-fold CV): 267,497.0 (difference to lin. example: 178,953.0) ⇒ In-bag-risk: 434.686.0 : OOB risk (10-fold CV): 446.450.0 (previous lin. example with 1000 iter.)
- Feature importance (risk reduction over iter.)
- → days_since_2011 most important
- Total effect for days_since_2011

Interpretable Machine Learning - 6 / 6 Interpretable Machine Learning - 6 / 6

Interpretable Machine Learning

Explainable Boosting Machines (EBM)

Learning goals

- Understand link between GAM and EBM
- Learn univariate EBMs
 GAM + boosting + shallow bagged trees
- Extend to GA2M: GAMs with selected pairwise interactions
- Detect interactions efficiently using FAST algorithm

Interpretable Machine Learning

Explainable Boosting Machines (EBM) Interpretable Models 1

Learning goals

- Understand link between GAM and EBM
- Learn univariate EBMs
 GAM + boosting + shallow bagged trees
- Extend to GA2M: GAMs with selected pairwise interactions
- Detect interactions efficiently using FAST algorithm

RECAP: SPLIT SELECTION DECISION TREE

• Impurity (Regression): Variance of target Y in a node:

$$Var(Y) = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - \bar{y})^2 = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)})^2 - \bar{y}^2$$

• Sum of squared errors (SSE) = residual sum of squares (RSS):

RSS =
$$n \cdot \text{Var}(Y) = \sum_{i=1}^{n} (y^{(i)} - \bar{y})^2 = \dots = \sum_{i=1}^{n} (y^{(i)})^2 - \frac{1}{n} \left(\sum_{i=1}^{n} y^{(i)} \right)^2$$

Hence:
$$|RSS = SS_n - \frac{S_n^2}{n}|$$
 with $S_n = \sum_{i=1}^n y^{(i)}, SS_n = \sum_{i=1}^n (y^{(i)})^2$

- Split criterion:
 - Minimize post-split RSS: $RSS_{split} = RSS_L + RSS_R$
 - Maximize reduction in RSS: $\triangle RSS = RSS_{parent} (RSS_L + RSS_R)$

RECAP: SPLIT SELECTION DECISION TREE

• **Impurity** (**Regression**): Variance of target *Y* in a node:

$$Var(Y) = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - \bar{y})^2 = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)})^2 - \bar{y}^2$$

• Sum of squared errors (SSE) = residual sum of squares (RSS):

RSS =
$$n \cdot \text{Var}(Y) = \sum_{i=1}^{n} (y^{(i)} - \bar{y})^2 = \dots = \sum_{i=1}^{n} (y^{(i)})^2 - \frac{1}{n} \left(\sum_{i=1}^{n} y^{(i)}\right)^2$$

Hence: RSS =
$$SS_n - \frac{S_n^2}{n}$$
 with $S_n = \sum_{i=1}^n y^{(i)}$, $SS_n = \sum_{i=1}^n (y^{(i)})^2$

- Split criterion:
 - Minimize post-split RSS: $RSS_{split} = RSS_I + RSS_B$
 - Maximize reduction in RSS: $\triangle RSS = RSS_{parent} (RSS_L + RSS_R)$

NAIVE SPLIT SELECTION: EXPLICIT COMPUTATION

- For a given feature X_i , sort the pairs $(x_i^{(i)}, y^{(i)})$ by increasing $x_i^{(i)}$.
- For each of the n-1 potential split points at $s_k = \frac{1}{2}(x_i^{(k)} + x_i^{(k+1)})$:
 - Define partitions: $\mathcal{I}_L = \{i : x^{(i)} \leq s_k\}, \quad \mathcal{I}_R = \{i : x^{(i)} > s_k\}$
 - Compute group means and counts after splitting at s_k:

$$\bar{y}_L = \frac{1}{N_L} \sum_{i \in \mathcal{I}_L} y^{(i)}, \quad \bar{y}_R = \frac{1}{N_R} \sum_{i \in \mathcal{I}_R} y^{(i)}, \text{ with } N_L = |\mathcal{I}_L|, \quad N_R = |\mathcal{I}_R|$$

Compute RSS after splitting at s_k:

$$\mathsf{RSS}_{\mathsf{split}}(s_k) = \mathsf{RSS}_{\mathsf{L}}(s_k) + \mathsf{RSS}_{\mathsf{R}}(s_k) = \sum_{i \in \mathcal{T}_{\mathsf{L}}} (y^{(i)} - \bar{y}_{\mathsf{L}})^2 + \sum_{i \in \mathcal{T}_{\mathsf{R}}} (y^{(i)} - \bar{y}_{\mathsf{R}})^2$$

- Select split point s_k that minimizes $RSS_{split}(s_k)$
- Computational cost: $O(n^2)$ per feature (recompute mean & RSS at each split)

NAIVE SPLIT SELECTION: EXPLICIT COMPUT.

- For a given feature X_i , sort the pairs $(x_i^{(i)}, y^{(i)})$ by increasing $x_i^{(i)}$.
- For each of the n-1 potential split points at $s_k = \frac{1}{2}(x_i^{(k)} + x_i^{(k+1)})$:
 - Define partitions: $\mathcal{I}_L = \{i : x^{(i)} \le s_k\}, \quad \mathcal{I}_R = \{i : x^{(i)} > s_k\}$
 - Compute group means and counts after splitting at s_k :

$$\bar{y}_L = \frac{1}{N_L} \sum_{i \in \mathcal{I}_L} y^{(i)}, \quad \bar{y}_R = \frac{1}{N_R} \sum_{i \in \mathcal{I}_R} y^{(i)}, \text{ with } N_L = |\mathcal{I}_L|, \quad N_R = |\mathcal{I}_R|$$

Compute RSS after splitting at s_k:

$$\mathsf{RSS}_{\mathsf{split}}(s_k) = \mathsf{RSS}_L(s_k) + \mathsf{RSS}_R(s_k) = \sum_{i \in \mathcal{T}_L} (y^{(i)} - \bar{y}_L)^2 + \sum_{i \in \mathcal{T}_D} (y^{(i)} - \bar{y}_R)^2$$

- Select split point s_k that minimizes $RSS_{split}(s_k)$
- Compute cost: $O(n^2)$ per feat. (recompute mean & RSS at each split)

 $\mathcal{O}(n^2)$ operations (recompute for each split s_i per feature)

EFFICIENT SPLIT SELECTION

- **Setup:** For feature X_j , sort the data $(x_i^{(i)}, y^{(i)})_{i=1}^n$ by increasing $x_i^{(i)}$
- Define group statistics (cumulative sums) after split at s_k :

$$S_L = \sum_{i \in \mathcal{I}_L} y^{(i)}, \qquad SS_L = \sum_{i \in \mathcal{I}_L} (y^{(i)})^2, \qquad N_L = |\mathcal{I}_L|$$

 $S_R = S_R - S_L, \qquad SS_R = SS_R - SS_L, \qquad N_R = n - N_L$

$$\mathsf{RSS}_L(s_k) = SS_L - rac{S_L^2}{N_L}, \mathsf{RSS}_R(s_k) = SS_R - rac{S_R^2}{N_R}, \mathsf{RSS}_{\mathsf{parent}} = SS_L + SS_R - rac{S_n^2}{n}$$

EFFICIENT SPLIT SELECTION

- **Setup:** For feature X_i , sort the data $(x_i^{(i)}, y^{(i)})_{i=1}^n$ by increasing $x_i^{(i)}$
- Define group statistics (cumulative sums) after split at s_k :

$$S_L = \sum_{i \in \mathcal{I}_L} y^{(i)}, \qquad SS_L = \sum_{i \in \mathcal{I}_L} (y^{(i)})^2, \qquad N_L = |\mathcal{I}_L|$$

 $S_R = S_R - S_L, \qquad SS_R = SS_R - SS_L, \qquad N_R = n - N_L$

• RSS for child nodes and parent node:

$$\mathsf{RSS}_L(s_k) = SS_L - \frac{S_L^2}{N_L}, \mathsf{RSS}_R(s_k) = SS_R - \frac{S_R^2}{N_R}, \mathsf{RSS}_{\mathsf{parent}} = SS_L + SS_R - \frac{S_n^2}{n}$$

HB

EFFICIENT SPLIT SELECTION

- **Setup:** For feature X_j , sort the data $(x_i^{(i)}, y^{(i)})_{i=1}^n$ by increasing $x_i^{(i)}$
- Define group statistics (cumulative sums) after split at s_k :

$$S_L = \sum_{i \in \mathcal{I}_L} y^{(i)}, \qquad SS_L = \sum_{i \in \mathcal{I}_L} (y^{(i)})^2, \qquad N_L = |\mathcal{I}_L|$$

 $S_R = S_n - S_L, \qquad SS_R = SS_n - SS_L, \qquad N_R = n - N_L$

$$\mathsf{RSS}_L(s_k) = SS_L - rac{S_L^2}{N_L}, \mathsf{RSS}_R(s_k) = SS_R - rac{S_R^2}{N_R}, \mathsf{RSS}_\mathsf{parent} = SS_L + SS_R - rac{S_n^2}{n}$$

Reduction in RSS:

$$\Delta \mathsf{RSS}(s_k) = \mathsf{RSS}_{\mathsf{parent}} - (\mathsf{RSS}_L + \mathsf{RSS}_R) = \frac{S_L^2}{N_L} + \frac{S_R^2}{N_R} - \frac{S_n^2}{n}$$

All squared-target terms SS_L , SS_R cancel. Only first-order sums are needed.

- Search: Choose best split $s_k^* = \arg \max_{s_k} \Delta RSS(s_k)$
- Complexity per feature: $O(n \log n)$ (sorting) + O(n) (cumulative sums & scan)

НВ

EFFICIENT SPLIT SELECTION

- **Setup:** For feature X_i , sort the data $(x_i^{(i)}, y^{(i)})_{i=1}^n$ by increasing $x_i^{(i)}$
- Define group statistics (cumulative sums) after split at s_k :

$$S_L = \sum_{i \in \mathcal{I}_L} y^{(i)}, \qquad SS_L = \sum_{i \in \mathcal{I}_L} (y^{(i)})^2, \qquad N_L = |\mathcal{I}_L|$$

 $S_R = S_n - S_L, \qquad SS_R = SS_n - SS_L, \qquad N_R = n - N_L$

• RSS for child nodes and parent node:

$$\mathsf{RSS}_L(s_k) = SS_L - rac{S_L^2}{N_L}, \mathsf{RSS}_R(s_k) = SS_R - rac{S_R^2}{N_R}, \mathsf{RSS}_\mathsf{parent} = SS_L + SS_R - rac{S_n^2}{n}$$

• Reduction in RSS:

$$\Delta \mathsf{RSS}(s_k) = \mathsf{RSS}_\mathsf{parent} - (\mathsf{RSS}_L + \mathsf{RSS}_R) = rac{S_L^2}{N_L} + rac{S_R^2}{N_D} - rac{S_n^2}{n}$$

All squared-target terms SS_L , SS_R cancel. Only first-order sums needed.

- All squared-target terms 30L, 30R cancer. Only his
- **Search:** Choose best split $s_k^{\star} = \arg\max_{s_k} \Delta RSS(s_k)$
- Complexity per feature: $O(n \log n)$ (sorting) + O(n) (cumulative sums and scan)

HB

Interpretable Machine Learning - 3/20 © Interpretable Machine Learning - 3/20

EFFICIENT SPLIT SELECTION - EXAMPLE

$$y^{(1)} = 1.2, y^{(2)} = 2.0, y^{(3)} = 1.5, y^{(4)} = 3.2, y^{(5)} = 2.8, y^{(6)} = 4.1$$
 $(x_j^{(1)} \le \dots \le x_j^{(6)})$

- G(k) omits $-S_n^2/n$ (identical for all splits \Rightarrow does not affect arg max).
- Only cumulative sums S_k are required, no SS_k is stored or updated.
- $\mathcal{O}(1)$ per split $\Rightarrow \mathcal{O}(n)$ per feature.

EFFICIENT SPLIT SELECTION - EXAMPLE

$$y^{(1)} = 1.2, y^{(2)} = 2.0, y^{(3)} = 1.5, y^{(4)} = 3.2, y^{(5)} = 2.8, y^{(6)} = 4.1$$
 $(x_j^{(1)} \le \cdots \le x_j^{(6)})$

- G(k) omits $-S_n^2/n$ (identical for all splits \Rightarrow does not affect arg max).
- Only cumulative sums S_k are required, no SS_k is stored or updated.
- $\mathcal{O}(1)$ per split $\Rightarrow \mathcal{O}(n)$ per feature.

Interpretable Machine Learning - 4/20 © Interpretable Machine Learning - 4/20

EXPLAINABLE BOOSTING MACHINES (EBM)

Recall GAM:

$$g(\mathbb{E}[y \mid \mathbf{x}]) = \theta_0 + f_1(x_1) + f_2(x_2) + \ldots + f_p(x_p),$$

- One shape function f_j per feature x_j
- → Feature-level interpretability
- Captures non-linear univariate effects
 - → Better performance / more flexible than GLMs

Idea of EBM: GAMs trained with gradient boosting over shallow bagged trees

- **GAMs** provide feature-wise interpretability via separate shape functions $f_j(x_j)$ \rightsquigarrow Potentially include pairwise interactions manually
- **Gradient Boosting** incrementally fits residuals to improve predictive performance while retaining additivity
- Shallow Bagged Trees low-depth trees (2–4 leaves) reduce variance and create interpretable shape functions

EXPLAINABLE BOOSTING MACHINES (EBM)

Recall GAM:

$$g(\mathbb{E}[y \mid \mathbf{x}]) = \theta_0 + f_1(x_1) + f_2(x_2) + \ldots + f_p(x_p),$$

- One shape function f_j per feature x_j
 - → Feature-level interpretability
- Captures non-linear univariate effects
 - **→ Better performance / more flexible than GLMs**

EBM idea: GAMs train with gradient boosting over shallow bagged trees

- **GAMs** feature-wise interpretability via separate shape functions $f_j(x_j)$ \rightsquigarrow Potentially include pairwise interactions manually
- **Gradient Boosting** incrementally fits residuals to improve predictive performance while retaining additivity
- Shallow Bagged Trees low-depth trees (2–4 leaves) reduce variance and create interpretable shape functions

Interpretable Machine Learning - 5/20 © Interpretable Machine Learning - 5/20

EBM - TWO-STAGE MODEL CONSTRUCTION

- Stage 1: Fit Main Effects (Univariate Terms) Lou et al. 2012
 - Train EBM using only feature-wise shape functions $f_j(x_j)$
 - Freeze the univariate model after convergence
- ② Stage 2: Add Selected Pairwise Interactions ► Lou et al. 2013
 - Apply **FAST** to rank all $O(p^2)$ feature pairs by potential reduction in RSS
 - Select top K pairwise interactions and store them in K
 - Use boosting to fit pairwise interaction terms $f_{ij}(x_i, x_i)$ on residuals
 - Final model: $\hat{f}(\mathbf{x}) = \sum_{i=1}^{p} f_i(x_i) + \sum_{(i,j) \in \mathcal{K}} f_{ij}(x_i, x_j)$

EBM - TWO-STAGE MODEL CONSTRUCTION

- Stage 1: Fit Main Effects (Univariate Terms) ► Lou 2012
 - Train EBM using only feature-wise shape functions $f_j(x_j)$
 - Freeze the univariate model after convergence
 - ② Stage 2: Add Selected Pairwise Interactions ▶ Lou 2013
 - Apply **FAST** to rank all $O(p^2)$ feat pairs by potential reduction in RSS
 - Select top K pairwise interactions and store them in K
 - Use boosting to fit pairwise interaction terms $f_{ij}(x_i, x_i)$ on residuals
 - Final model: $\hat{f}() = \sum_{i=1}^{p} f_i(x_i) + \sum_{(i,j) \in \mathcal{K}} f_{ij}(x_i, x_j)$

Interpretable Machine Learning - 6/20

UNIVARIATE EBM - INITIALIZATION

Set all shape functions to zero:

$$f_i^{[0]}(x_j) = 0$$
 for all $j = 1, ..., p$

Compute initial model prediction:

$$\hat{y}^{[0]} = \sum_{j=1}^{p} f_j^{[0]}(x_j) = 0$$

• Compute initial pseudo-residuals (e.g., for squared loss):

$$\tilde{r}^{[0]} = -\frac{\partial L}{\partial \hat{\mathbf{y}}} = \mathbf{y} - \hat{\mathbf{y}}^{[0]} = \mathbf{y}$$

UNIVARIATE EBM - INITIALIZATION

• Set all shape functions to zero:

$$f_j^{[0]}(x_j) = 0$$
 for all $j = 1, ..., p$

• Compute initial model prediction:

$$\hat{y}^{[0]} = \sum_{j=1}^{p} f_j^{[0]}(x_j) = 0$$

• Compute initial pseudo-residuals (e.g., for squared loss):

$$\tilde{r}^{[0]} = -\frac{\partial L}{\partial \hat{\mathbf{y}}} = \mathbf{y} - \hat{\mathbf{y}}^{[0]} = \mathbf{y}$$

UNIVARIATE EBM – FIRST FEATURE UPDATE

Iteration feat_1 $feat_2$ $feat_3$ $feat_p$ _res.

• Update first shape function with learning rate η :

$$f_1^{[1]}(x_1) = f_1^{[0]}(x_1) + \eta \cdot T_1^{[1]}(x_1)$$

Update prediction:

$$\hat{y}^{[1]} = \sum_{i=1}^{p} f_j^{[1]}(x_j)$$

Recompute pseudo-residuals:

$$ilde{r}^{[1]} = -rac{\partial L}{\partial \hat{v}} = y - \hat{y}^{[1]}$$

UNIVARIATE EBM FIRST FEATURE UPDATE

 $feat_3$ feat_n Iteration feat_1 $feat_2$

- Fit shallow bagged tree $T_1^{[1]}$ (2–4 leaves) to training data $\left\{ \left(x_1, \tilde{r}^{[0]} \right)^{(i)} \right\}_{i=1}^n$ \rightsquigarrow Use only feature x_1 as input and $\tilde{r}^{[0]}$ as target
- Update first shape function with learning rate η :

$$f_1^{[1]}(x_1) = f_1^{[0]}(x_1) + \eta \cdot T_1^{[1]}(x_1)$$

Update prediction:

$$\hat{y}^{[1]} = \sum_{i=1}^{p} f_{j}^{[1]}(x_{j})$$

Recompute pseudo-residuals:

$$\tilde{r}^{[1]} = -\frac{\partial L}{\partial \hat{\mathbf{y}}} = \mathbf{y} - \hat{\mathbf{y}}^{[1]}$$

UNIVARIATE EBM – CYCLE THROUGH FEATURES

- 1st boosting iteration:
 - Cycle through each feature j = 2, ..., p:
 - Fit shallow bagged tree $T_i^{[1]}$ using feature x_i and previous residual $\tilde{r}^{[j-1]}$
 - Update f_i : $f_i^{[1]}(x_i) = f_i^{[0]}(x_i) + \eta \cdot T_i^{[1]}(x_i)$
 - Recompute \hat{y} and residuals: $\tilde{r}^{[j]} = y \hat{y}^{[j]}$
- After one full pass over features, we complete one boosting iteration

UNIVARIATE EBM CYCLE THROUGH FEATURES

Iteration	$feat_1$		$feat_2$		$feat_3$	 feat_p
1	\Rightarrow	res.	Δ	res.		

- 1st boosting iteration:
 - Cycle through each feature j = 2, ..., p:
 - Fit shallow bagged tree $T_j^{[1]}$ using feature x_j and previous residual $\tilde{r}^{[j-1]}$
 - Update f_i : $f_i^{[1]}(x_i) = f_i^{[0]}(x_i) + \eta \cdot T_i^{[1]}(x_i)$
 - Recompute $\hat{\mathbf{y}}$ and residuals: $\tilde{r}^{[j]} = \mathbf{y} \hat{\mathbf{y}}^{[j]}$
- After one full pass over features, we complete one boosting iteration

UNIVARIATE EBM – ITERATE BOOSTING PROCESS

Iteration	$feat_1$		$feat_2$		$feat_3$		feat_p	
1	*	$\stackrel{res.}{\longrightarrow}$	\Diamond	res.	res.	res.	\Rightarrow	res.
2	*	res.	\Rightarrow	res.	$\stackrel{res.}{\longrightarrow}$	res.	Δ	res.
3	\Rightarrow	res.	\Rightarrow	res.	res.	res.	\Rightarrow	res.
÷	•		•		•		•	
M	• • • • • • • • • • • • • • • • • • • •	res.	~ }	res.	$\stackrel{\text{res.}}{\longrightarrow}$	res.	•	res.

- Repeat feature-wise updates for M boosting iterations (e.g., M = 10000)
- In each boosting iteration:
 - Cycle over all features j = 1, ..., p individually
 - Update only one f_i at a time using residuals from previous state
- Use small learning rate η to ensure smooth updates and order-invariance

UNIVARIATE EBM ITERATE BOOSTING PROCESS

Iteration	$feat_1$		$feat_2$		$feat_3$		feat_p	
1	\Diamond	res.	\Rightarrow	$\stackrel{res.}{\longrightarrow}$	res.	res.	Δ	res.
2	Δ	res.	Δ	res.	res.	res.	Δ	res.
3	\Diamond	res.	\Rightarrow	res.	↑ res.	res.	Δ	res.
:								
М	Δ	res.	Δ	res,	$\stackrel{\text{res.}}{\longrightarrow}$	res.	*	res.

- Repeat feature-wise updates for M boosting iterations (e.g., M = 10000)
- In each boosting iteration:
 - Cycle over all features j = 1, ..., p individually
 - Update only one f_i at a time using residuals from previous state
- Use small learning rate η to ensure smooth updates and order-invariance

UNIVARIATE EBM - PREDICTION & INTERPRETABILITY

• Final model consists of *M* shallow trees per feature:

EBM Model =
$$\sum_{i=1}^{p} \sum_{m=1}^{M} \eta \cdot T_{j}^{[m]}(x_{j})$$

$$\hat{f}_j(x_j) = \sum_{m=1}^M \eta \cdot T_j^{[m]}(x_j)$$

- Plot $\hat{f}_i(x_i)$ vs. $x_i \rightsquigarrow$ Shows univariate marginal effect of feature i
- One plot per feature \leadsto Model is fully explainable via p additive plots

UNIVARIATE EBM - PREDICTION & INTERPRETABILITY

• Final model consists of *M* shallow trees per feature:

EBM Model =
$$\sum_{i=1}^{p} \sum_{m=1}^{M} \eta \cdot T_{j}^{[m]}(x_{j})$$

$$\hat{f}_j(x_j) = \sum_{m=1}^M \eta \cdot T_j^{[m]}(x_j)$$

- Plot $\hat{f}_i(x_i)$ vs. $x_i \rightsquigarrow$ Shows univariate marginal effect of feature j
- One plot per feature → Model is fully explainable via p additive plots

EBM WITH PAIRWISE INTERACTIONS

Generalized Additive Models plus Interactions (GA2M):

$$g(\mathbb{E}[y \mid \mathbf{x}]) = \theta_0 + \sum_{j=1}^p f_j(x_j) + \sum_{i < j} f_{ij}(x_i, x_j)$$

- Challenge: $O(p^2)$ potential pairwise interactions \rightsquigarrow often infeasible
- Solution FAST algorithm Lou et al. 2013 :
 - Efficiently estimates importance of all feature pairs
 - Ranks pairs by reduction in residual sum of squares (RSS)
 - Avoids fitting EBM with each pairwise interaction
- Result: Add only top-ranked interactions f_{ij} via a second-stage boosting step
 → Performed after the univariate EBM has been trained
- Interpretability preserved: Each $f_{ii}(x_i, x_i)$ visualized as a 2D heatmap

EBM WITH PAIRWISE INTERACTIONS

Generalized Additive Models plus Interactions (GA2M):

$$g(\mathbb{E}[y \mid]) = \theta_0 + \sum_{i=1}^{p} f_i(x_i) + \sum_{i < j} f_{ij}(x_i, x_j)$$

- Motivation: Univariate EBM does not model interactions
- Challenge: $O(p^2)$ potential pairwise interactions \rightsquigarrow often infeasible
- Solution FAST algorithm ► Lou 2013 :
 - Efficiently estimates importance of all feature pairs
 - Ranks pairs by reduction in residual sum of squares (RSS)
 - Avoids fitting EBM with each pairwise interaction
- Result:

Add only top-ranked interactions f_{ij} via asecond-stage boosting step

- → Performed after the univariate EBM has been trained
- Interpretability preserved: Each $f_{ij}(x_i, x_i)$ visualized as a 2D heatmap

Interpretable Machine Learning - 12 / 20 © Interpretable Machine Learning - 12 / 20

FAST: PAIR-WISE INTERACTION STRENGTH

We evaluate a 4-leaf, axis-aligned tree T_{ij} over the 2D feature projection (x_i, x_j) .

tree T_{ii} with 4 leaves

×

① Discretize: Map each axis to $b \le 256$ ordered bins (quantile or equal-width).

FAST: PAIR-WISE INTERACTION STRENGTH

We evaluate a 4-leaf, axis-aligned tree T_{ij} over the 2D feature projection (x_i, x_j) .

tree T_{ij} with 4 leaves

Discretize: Map each axis to $b \le 256$ ordered bins (quantile or equal-width).

Interpretable Machine Learning - 13 / 20

Interpretable Machine Learning - 13 / 20

0

FAST: PAIR-WISE INTERACTION STRENGTH

 $\Rightarrow RSS_2$

We evaluate a 4-leaf, axis-aligned tree T_{ii} over the 2D feature projection (x_i, x_i) .

 \Rightarrow

 \Rightarrow

АВ

A B

- 2 Iterate over b^2 candidate cuts (c_i, c_i) .
- **3** Fit: For each cut, assign a constant
- $\hat{y}_r = \text{mean}(y \in r) \text{ to } r \in \{A, B, C, D\}.$
- Compute RSS summed over all regions:

$$\mathsf{RSS}(c_i, c_j) = \sum_r \sum_{(x, y) \in r} (y - \hat{y}_r)^2$$

$$= \sum_r \left(\sum_r y^2 - \frac{1}{n_r} \left(\sum_r y \right)^2 \right)$$

Select: Keep the split with minimal RSS. → largest RSS drop = strongest interaction.

FAST: PAIR-WISE INTERACTION STRENGTH

We evaluate a 4-leaf, axis-aligned tree T_{ii} over the 2D feature projection (x_i, x_j) .

Select: Keep the split with minimal RSS. → largest RSS drop = strongest interaction.

FAST: USE RSS DROP

To evaluate a cut pair (c_i, c_i) , we use precomputed per-region statistics:

• For each region $r \in \{A, B, C, D\}$, compute:

$$S_r = \sum_{(x,y) \in r} y, \quad n_r = |\{(x,y) \in r\}|, \quad \hat{y}_r = S_r/n_r$$

• Plug into RSS summed over all regions:

$$RSS(c_i, c_j) = \sum_r \left(\sum_{(x,y) \in r} y^2 - \frac{1}{n_r} \left(\sum_{(x,y) \in r} y \right)^2 \right) = \sum_r \sum_{(x,y) \in r} y^2 + \sum_r \frac{S_r^2}{n_r}$$

• For a candidate cut, compute RSS drop:

$$\Delta ext{RSS}(c_i, c_j) = ext{RSS}_{ ext{parent}} - ext{RSS}(c_i, c_j)$$

$$= \left(\sum_{i=1}^n \left(y^{(i)}\right)^2 - \frac{S_n^2}{n}\right) - \sum_{r} \sum_{i=1}^n y^2 + \sum_{r} \frac{S_r^2}{n_r}$$

FAST: USE RSS DROP

To evaluate a cut pair (c_i, c_i) , we use precomputed per-region statistics:

• For each region $r \in \{A, B, C, D\}$, compute:

$$S_r = \sum_{r \in \mathcal{S}_r} y, \quad n_r = |\{(x,y) \in r\}|, \quad \hat{y}_r = S_r/n_r$$

Plug into RSS summed over all regions:

$$RSS(c_i, c_j) = \sum_{r} \left(\sum_{(x, y) \in r} y^2 - \frac{1}{n_r} \left(\sum_{(x, y) \in r} y \right)^2 \right) = \sum_{r} \sum_{(x, y) \in r} y^2 + \sum_{r} \frac{S_r^2}{n_r}$$

• For a candidate cut, compute RSS drop:

$$\Delta \text{RSS}(c_i, c_j) = \text{RSS}_{\text{parent}} - \text{RSS}(c_i, c_j)$$

$$= \left(\sum_{i=1}^n \left(y^{(i)}\right)^2 - \frac{S_n^2}{n}\right) - \sum_r \sum_{(x,y) \in r} y^2 + \sum_r \frac{S_r^2}{n_r}$$

Interpretable Machine Learning - 14 / 20 © Interpretable Machine Learning - 14 / 20

FAST: USE RSS DROP

Because $\sum_{i=1}^{n} (y^{(i)})^2 = \sum_{r} \sum_{(x,y) \in r} y^2$, all squared target terms cancel:

$$\Delta ext{RSS}(c_i, c_j) = \sum_r rac{S_r^2}{n_r} - rac{S_n^2}{n}$$

Why is this efficient?

- Precompute cummulative sums of y and counts across the binned grid
- Enables fast lookup of region statistics S_r , n_r for any cut
- No additional data scan or recomputation needed across the b^2 candidate cuts
- For the best cut: Compare and select the largest $\Delta RSS(c_i, c_i)$.

FAST: USE RSS DROP

Because $\sum_{i=1}^{n} (y^{(i)})^2 = \sum_{i} \sum_{(x,y) \in I} y^2$, all squared target terms cancel:

$$\Delta \text{RSS}(c_i, c_j) = \sum_r \frac{S_r^2}{n_r} - \frac{S_n^2}{n}$$

The parent term S_n^2/n is constant across all cuts. Hence

Why is this efficient?

- Precompute cummulative sums of y and counts across the binned grid
- Enables fast lookup of region statistics S_r , n_r for any cut
- No additional data scan or recomputation needed across the b² candidate cuts
- For the best cut: Compare and select the largest $\Delta RSS(c_i, c_i)$.

EBM - BOOSTING PAIRWISE INTERACTIONS

- **Goal:** Fit each selected interaction $f_{ij}(x_i, x_j)$ on residuals from main effects
- Use tree-like predictor, inspired by FAST
 - Use two axis-aligned cuts (c_i, c_i)
 - Plus one refinement cut to increase flexibility while keeping interpretability
- Reuse region-wise sums from FAST lookup tables
- Greedy search for cut configuration minimizing RSS

EBM - BOOSTING PAIRWISE INTERACTIONS

- **Goal:** Fit each selected interaction $f_{ij}(x_i, x_j)$ on residuals from main effects
- Use tree-like predictor, inspired by FAST
 - Use two axis-aligned cuts (c_i, c_i)
 - Plus one refinement cut to increase flexibility while keeping interpretability
- Reuse region-wise sums from FAST lookup tables
- Greedy search for cut config minimizing RSS

Interpretable Machine Learning - 16 / 20 © Interpretable Machine Learning - 16 / 20

EBM - PREDICTION WITH PAIRWISE INTERACTIONS

- Each selected pair (x_i, x_j) is modeled by M boosted predictors trained on their residual interaction
- These are aggregated into a single bivariate function $f_{ij}(x_i, x_j)$
- The function is visualized as a 2D heatmap:
 - Axes: feature values of x_i and x_i
 - Color: contribution to the final prediction
 - Preserves human interpretability
- One heatmap is generated per selected pairwise interaction

EBM - PREDICTION WITH PAIRWISE INTERACTIONS

- Each selected pair (x_i, x_j) is modeled by M boosted predictors trained on their residual interaction
- These are aggregated into a single bivariate function $f_{ii}(x_i, x_i)$
- The function is visualized as a 2D heatmap:
 - Axes: feature values of x_i and x_i
 - Color: contribution to the final prediction
 - Preserves human interpretability
- One heatmap is generated per selected pairwise interaction

Interpretable Machine Learning - 17/20

Interpretable Machine Learning - 17/20

EBM - FINAL MODEL STRUCTURE

- Main effects: One shape function $f_i(x_i)$ per feature (visualized as 1D plots)
- Pairwise interactions: Selected functions $f_{ij}(x_i, x_j)$ added for top K pairs (visualized as 2D heatmaps)
- Prediction: Additive sum of all univariate and selected bivariate contributions

EBM - FINAL MODEL STRUCTURE

- Main effects: One shape function $f_j(x_j)$ per feature (visualized as 1D plots)
- Pairwise interactions: Selected functions $f_{ij}(x_i, x_j)$ added for top K pairs (visualized as 2D heatmaps)
- Prediction: Additive sum of all univariate and selected bivariate contributions

Interpretable Machine Learning - 18 / 20 © Interpretable Machine Learning - 18 / 20

Base learner

- **EBM**: bagged 2–4-leaf trees, *one feature* per tree \Rightarrow step-function shape f_j • Lou et al. 2012
- **MB-boost**: user chooses component-wise learner (linear term, P-spline, tree, random effect, ...) Bühlmann & Hothorn 2007

EBM VS. MODEL-BASED BOOSTING

Base learner

- **EBM**: bagged 2–4-leaf trees, *one feature* per tree \Rightarrow step-function shape f_i Lou 2012
- **MB-boost**: user chooses component-wise learner (linear term, P-spline, tree, random effect, ...) Hothorn 2007

Interpretable Machine Learning - 19 / 20

Base learner

- EBM: bagged 2–4-leaf trees, one feature per tree ⇒ step-function shape f_j
 Lou et al. 2012
- **MB-boost**: user chooses component-wise learner (linear term, P-spline, tree, random effect, ...) Bühlmann & Hothorn 2007

Iteration policy

- **EBM**: round-robin $(\forall i)$ each boosting pass; tiny learning rate $\eta \approx 0.01$.
- **MB-boost**: greedy; update the *single* component that yields the largest loss reduction.

EBM VS. MODEL-BASED BOOSTING

Base learner

- **EBM**: bagged 2–4-leaf trees, *one feature* per tree ⇒ step-function shape f_i ► Lou 2012
- MB-boost: user chooses component-wise learner (linear term, P-spline, tree, random effect, . . .)

Iteration policy

- **EBM**: round-robin $(\forall j)$ each boosting pass; tiny learning rate $\eta \approx 0.01$.
- **MB-boost**: greedy; update the *single* component that yields the largest loss reduction.

Base learner

- EBM: bagged 2–4-leaf trees, one feature per tree ⇒ step-function shape f_j
 Lou et al. 2012
- **MB-boost**: user chooses component-wise learner (linear term, P-spline, tree, random effect, ...) Bühlmann & Hothorn 2007

- **EBM**: round-robin $(\forall i)$ each boosting pass; tiny learning rate $\eta \approx 0.01$.
- MB-boost: greedy; update the single component that yields the largest loss reduction.

Regularisation

- **EBM**: many iterations *M* (5–10k); early stopping via *internal* CV on out-of-bag samples; bagging further lowers variance.
- **MB-boost**: shrinkage $\nu \in (0,1]$; early stop by CV/AIC; component selection acts like an L_0/L_1 penalty \rightarrow sparsity.

EBM VS. MODEL-BASED BOOSTING

Base learner

- **EBM**: bagged 2–4-leaf trees, *one feature* per tree \Rightarrow step-function shape f_i Lou 2012
- MB-boost: user chooses component-wise learner (linear term, P-spline, tree, random effect, . . .)

- **EBM**: round-robin $(\forall j)$ each boosting pass; tiny learning rate $\eta \approx 0.01$.
- **MB-boost**: greedy; update the *single* component that yields the largest loss reduction.

Regularisation

- **EBM**: many iterations *M* (5–10k); early stopping via *internal* CV on out-of-bag samples; bagging further lowers variance.
- **MB-boost**: shrinkage $\nu \in (0, 1]$; early stop by CV/AIC; component selection acts like an L_0/L_1 penalty \rightarrow sparsity.

Interactions

- **EBM**: FAST ranks and selects top-*K* interaction pairs, fitted as bivariate trees ⇒ GA2M ► Lou et al. 2013
- MB-boost: interactions are modelled only when the user supplies dedicated interaction base learners; no automatic pairwise search

EBM VS. MODEL-BASED BOOSTING

Interactions

- EBM: FAST ranks and selects top-K interaction pairs, fitted as bivariate trees ⇒ GA2M Lou 2013
- MB-boost: interactions are modelled only when the user supplies dedicated interaction base learners; no automatic pairwise search

Interpretable Machine Learning - 20 / 20 © Interpretable Machine Learning - 20 / 20

Interactions

- EBM: FAST ranks and selects top-K interaction pairs, fitted as bivariate trees ⇒ GA2M ► Lou et al. 2013
- MB-boost: interactions are modelled only when the user supplies dedicated interaction base learners; no automatic pairwise search

- EBM:
 - one 1-D step plot for each fi
 - small number of 2-D heat-maps for selected fij
- **MB-boost**: depends on selected learner: linear coefficients, smooth splines, random-effect curves, etc.

EBM VS. MODEL-BASED BOOSTING

Interactions

- EBM: FAST ranks and selects top-K interaction pairs, fitted as bivariate trees ⇒ GA2M → Lou 2013
- **MB-boost**: interactions are modelled only when the user supplies dedicated interaction base learners; no automatic pairwise search

- EBM:
 - one 1-D step plot for each f_i
 - small number of 2-D heat-maps for selected f_{ii}
- MB-boost: depends on selected learner: linear coefficients, smooth splines, random-effect curves, etc.

Interpretable Machine Learning - 20 / 20

Interpretable Machine Learning − 20 / 20 ©

Interactions

- EBM: FAST ranks and selects top-K interaction pairs, fitted as bivariate trees ⇒ GA2M ► Lou et al. 2013
- MB-boost: interactions are modelled only when the user supplies dedicated interaction base learners; no automatic pairwise search

- EBM:
 - one 1-D step plot for each fi
 - small number of 2-D heat-maps for selected fij
- **MB-boost**: depends on selected learner: linear coefficients, smooth splines, random-effect curves, etc.

Take-away

- EBM provides fast, interpretable, and interaction-sparse models
- MB-boost offers flexible statistical modelling with built-in variable selection

EBM VS. MODEL-BASED BOOSTING

Interactions

- EBM: FAST ranks and selects top-K interaction pairs, fitted as bivariate trees ⇒ GA2M Lou 2013
- **MB-boost**: interactions are modelled only when the user supplies dedicated interaction base learners; no automatic pairwise search

- EBM:
 - one 1-D step plot for each f_i
 - small number of 2-D heat-maps for selected f_{ii}
- MB-boost: depends on selected learner: linear coefficients, smooth splines, random-effect curves, etc.

Take-away

- EBM provides fast, interpretable, and interaction-sparse models
- MB-boost offers flexible stat modeling with built-in variable selection

