Lecture 07

플립플롭(Flip-Flop)

플립플롭 및 래치

- 논리회로 종류
 - 조합회로 : 출력은 현재 입력의 조합에 의해서만 결정됨
 - 순서회로 : 출력은 현재 입력의 조합과 입력이 인가되는 시점의 회로 상태 에도 영향을 받아 결정됨
- 플립플롭 및 래치
 - 순서논리회로에서는 1비트를 기억하는 소자임
 - <mark>플립플롭</mark> : 클록 신호에 따라 정해진 시점에서의 입력을 샘플하여 출력에 저장하는 **동기식** 순서 논리 소자임
 - 래치 : 클록 신호에 관계없이 모든 입력을 계속 감시하다가 언제든지 출력을 변화시키는 비동기식 순서 논리 소자임
- 클록 신호
 - 상승 에지 : low to high
 - 하강 에지 : high to low

플립플롭 및 래치

■ 예, 플립플롭과 래치 동작 파형

■ SR 래치

- S(set)와 R(reset)로 표시된 2개의 입력과 Q와 \bar{Q} 로 표시된 2개의 출력이 있으며, Q와 \bar{Q} 의 상태는 서로 보수 상태가 되어야 정상 상태가 됨
- 조합논리회로와 달리 귀환(feedback)이 있음

- NOR 게이트로 구성된 SR 래치
 - Q(t)는 입력이 인가되기 이전 상태를 의미함
 - Q(t+1)은 입력이 인가된 이후의 상태를 의미함

S	R	Q(t+1)
0	0	Q(t)(불변)
0	1	0
1	0	1
1	1	부정

- NOR 게이트로 구성된 SR 래치
 - 입력 S = 0, R = 0일 때
 - ① 현재 출력 상태가 Q=0, $\bar{Q}=1$ 인 경우
 - Q = 0과 S = 0이 G_2 에 입력되면, 출력은 $\bar{Q} = 1$ 임
 - $\bar{Q} = 1$ 과 R = 0이 G_1 에 입력되면, 출력은 Q = 0임 s^0

- Q = 1과 S = 0이 G_2 에 입력되면, 출력은 $\bar{Q} = 0$ 임
- $\bar{Q} = 0$ 과 R = 0이 G_1 에 입력되면, 출력은 Q = 1임 s^0

- NOR 게이트로 구성된 SR 래치
 - 입력 S = 0, R = 1일 때
 - 입력 R=1이면 G_1 의 출력은 다른 입력인 \bar{Q} 상태에 관계없이 Q=0이 됨
 - Q = 0과 S = 0이 G_2 에 입력되면, 출력은 $\bar{Q} = 1$ 임
 - $\rightarrow S = 0$ 과 R = 1이 입력되면 Q의 이전 상태에 관계없이 출력은 **반드시** Q = 0, $\overline{Q} = 1$ 임

- NOR 게이트로 구성된 SR 래치
 - 입력 S = 1, R = 0일 때
 - 입력 S=1이면 G_2 의 출력은 다른 입력인 Q 상태에 관계없이 $\bar{Q}=0$ 이 됨
 - $\bar{Q} = 0$ 과 R = 0이 G_1 에 입력되면, 출력은 Q = 1임
 - $\rightarrow S = 1$ 과 R = 0이 입력되면 Q의 이전 상태에 관계없이 출력은 **반드시** Q = 1, $\overline{Q} = 0$ 임

- NOR 게이트로 구성된 SR 래치
 - 입력 S = 1, R = 1일 때
 - 입력 S=1이면 G_2 의 출력은 다른 입력인 Q 상태에 관계없이 $\bar{Q}=0$ 이 됨
 - 입력 R=1이면 G_1 의 출력은 다른 입력인 \bar{Q} 상태에 관계없이 Q=0이 됨
 - \rightarrow 출력 Q=0과 $\bar{Q}=0$ 이 되어 서로 보수가 아닌 부정 상태가 되어 정상 적으로 동작하지 못하므로 동시에 S=1과 R=1로 하는 것은 금지됨

10

■ NOR 게이트로 구성된 SR 래치

■ NAND 게이트로 구성된 SR 래치

\overline{S}	\overline{R}	Q(t+1)
0	0	부정
0	1	1
1	0	0
1	1	Q(t)(불변)

- NAND 게이트로 구성된 SR 래치
 - 입력 $\bar{S} = 0$, $\bar{R} = 0$ 일 때
 - 입력 $\bar{S}=0$ 이면 G_1 의 출력은 다른 입력인 \bar{Q} 상태에 관계없이 Q=1이 됨
 - 입력 $\bar{R}=1$ 이면 G_2 의 출력은 다른 입력인 Q 상태에 관계없이 $\bar{Q}=1$ 이 됨
 - \rightarrow 출력 Q=1과 $\bar{Q}=1$ 이 되어 서로 보수가 아닌 부정 상태가 되어 정상 적으로 동작하지 못하므로 동시에 $\bar{S}=0$ 과 $\bar{R}=0$ 로 하는 것은 금지됨

- NAND 게이트로 구성된 SR 래치
 - 입력 $\bar{S} = 0$, $\bar{R} = 1$ 일 때
 - 입력 $\bar{S}=0$ 이면 G_1 의 출력은 다른 입력인 \bar{Q} 상태에 관계없이 Q=1이 됨
 - Q=1과 $\bar{R}=1$ 이 G_2 에 입력되면, 출력은 $\bar{Q}=0$ 임
 - $\rightarrow \bar{S} = 0$ 과 $\bar{R} = 1$ 이 입력되면 Q의 이전 상태에 관계없이 출력은 **반드시** $Q = 1, \bar{Q} = 0$ 임

- NAND 게이트로 구성된 SR 래치
 - 입력 $\bar{S} = 1$, $\bar{R} = 0$ 일 때
 - 입력 $\bar{R}=0$ 이면 G_2 의 출력은 다른 입력인 Q 상태에 관계없이 $\bar{Q}=1$ 이 됨
 - $\bar{Q}=1$ 과 $\bar{S}=1$ 이 G_1 에 입력되면, 출력은 Q=0임
 - $\rightarrow \bar{S}=1$ 과 $\bar{R}=0$ 이 입력되면 Q의 이전 상태에 관계없이 출력은 **반드시** $Q=0, \bar{Q}=1$ 임

- NAND 게이트로 구성된 SR 래치
 - 입력 $\bar{S} = 1$, $\bar{R} = 1$ 일 때
 - ① 현재 출력 상태가 $Q=0, \bar{Q}=1$ 인 경우
 - Q=0과 $\bar{R}=1$ 이 G_2 에 입력되면, 출력은 $\bar{Q}=1$ 임
 - $\bar{Q}=1$ 과 $\bar{S}=1$ 이 G_1 에 입력되면, 출력은 Q=0임 $\bar{R}^{\frac{1}{2}}$

- Q=1과 $\bar{R}=1$ 이 G_2 에 입력되면, 출력은 $\bar{Q}=0$ 임
- $\bar{Q} = 0$ 과 $\bar{S} = 1$ 이 G_1 에 입력되면, 출력은 Q = 1임 \bar{R}_1

■ NAND 게이트로 구성된 SR 래치

- SR 래치를 이용하여 디바운싱(debouncing) 회로 설계
 - <mark>바운싱(bouncing) 현상</mark>: 농구공을 바닥에 한 번 튕기더라도 여러 번 진동 하는 것과 같은 현상으로, 기계적인 시위치가 내부에 존재하는 스프링의 탄성과 접점(contact) 면의 불균일성 때문에 시위치를 개폐하는 경우 여러 번 붙었다 떨어짐

- SR 래치를 이용하여 디바운싱(debouncing) 회로 설계
 - 스위치가 1의 위치에 있으면 $\bar{S} = 1$, $\bar{R} = 0$ 이므로 출력 Q = 0임
 - 스위치가 2의 위치에 있으면 $\bar{S} = 0$, $\bar{R} = 1$ 이므로 출력 Q = 1임
 - 1(2)의 위치에 2(1)의 위치로 이동하면 $\bar{S}=1$, $\bar{R}=1$ 이므로 출력의 이전 상태는 유지됨

- 기본적인 SR 래치
 - 클록 펄스(CP, clock pulse) 입력과 무관하게 동작하므로 비동기식 SR 플 립플롭이라고 할 수 있음
- SR 플립플롭
 - NOR 게이트를 이용한 SR 래치 회로 앞에 AND 게이트 2개를 연결하고 공통 단자에 클록 펄스를 인가하면 클록형 SR 플립플롭이 됨

- SR 플립플롭 동작
 - CP = 0인 경우 : S와 R의 입력에 관계없이 앞 단의 AND 게이트의 출력이 항상 0이므로 플립플롭의 출력 Q와 \bar{Q} 는 변하지 않음
 - *CP* = 1인 경우 : *S*와 *R*의 입력이 뒷단의 NOR 게이트의 입력으로 전달되어 SR 래치와 같은 동작을 함

CP	S	R	Q(t+1)
0	X	X	<i>Q(t)</i> (불변)
1	0	0	<i>Q(t)</i> (불변)
1	0	1	0
1	1	0	1
1	1	1	부정

■ NAND 게이트를 이용한 SR 플립플롭

■ 예, SR 플립플롭 동작 파형

- 클록형 SR 플립플롭의 한정
 - 클록 펄스의 길이에 따라 동작하므로 클록 펄스의 지속 시간이 길게 되면 플립플롭은 여러 차례 동작이 수행될 수 있어서 예측하지 못한 동작을 할 여지가 충분함

- 에지 트리거 SR 플립플롭
 - **트리거(trigger)** : 장치가 입력을 받거나 출력을 변환시키는 경우를 나타내는데 사용하는 디지털 장치로의 입력 제어 신호
 - 레벨(level) 트리거 : 클록형 SR 플립플롭과 같이 클록이 1이면 계속해서 입력을 받아들여 동작함
 - 에지(edge) 트리거: 클록이 0에서 1로 변하거나 1에서 0으로 변하는 <mark>순간</mark> 에만 입력을 받아들여 동작함
 - 상승에지(positive edge) : 0에서 1로 변하는 순간
 - 하강에지(negative edge) : 1에서 0으로 변하는 순간

■ 에지 트리거 SR 플립플롭

■ 에지 트리거 SR 플립플롭 기호

상승 (ודוע			ᄑᄀ	ᄑᆯ
\sim	ЛΙΛΙ	- $ -$	$^{\prime 1}$ $>$ \aleph	= =	=-
\circ					

하강 에지 트리거 SR 플립플롭

CP	S	R	Q(t+1)
↑	0	0	Q(t) (불변)
↑	0	1	0
↑	1	0	1
↑	1	1	부정

CP	S	R	Q(t+1)
\	0	0	Q(t) (불변)
\downarrow	0	1	0
\downarrow	1	0	1
+	1	1	부정

■ 예, 상승 에지 트리거 SR 플립플롭 동작 파형

■ 에지 트리거 SR 플립플롭은 노이즈에 강인함

- 주종형(master-slave) SR 플립플롭
 - 레벨 트리거 플립플롭의 문제를 해결하기 위해 사용함

■ 주종형(master-slave) SR 플립플롭

- 클록형 D 플립플롭
 - SR 플립플롭에서 원하지 않은 상태(S = R = 1)를 제거하기 위한 방법임
 - D는 데이터(data)를 전달하는 것과 지연(delay)하는 역할에서 유래함

NAND 게이트로 구성된 클록형 D 플립플롭

클록형 D 플립플롭 기호

- 클록형 D 플립플롭 동작
 - CP = 1, D = 1이면 G_3 의 출력은 0, G_4 의 출력은 1이 됨에 따라 NAND 게이 트로 구성된 SR 래치의 입력은 $\bar{S} = 0$, $\bar{R} = 1$ 이 되므로 Q = 1를 얻음
 - CP = 1, D = 0이면 G_3 의 출력은 1, G_4 의 출력은 0이 됨에 따라 NAND 게이 트로 구성된 SR 래치의 입력은 $\bar{S} = 1$, $\bar{R} = 0$ 이 되므로 Q = 0를 얻음

진리표

CP	D	Q(t+1)
0	X	<i>Q(t)</i> (불변)
1	0	0
1	1	1

특성표

Q(t)	D	Q(t+1)
0	0	0
0	1	1
1	0	0
1	1	1

■ 예, 클록형 D 플립플롭 동작 파형

- 에지 트리거 D 플립플롭
 - 클록형 D 플립플롭의 클록 펄스 입력에 펄스 전이 검출기(edge detector) 를 추가하여 구성할 수 있음

- 에지 트리거 D 플립플롭
 - 클록형 D 플립플롭의 클록 펄스 입력에 펄스 전이 검출기(edge detector) 를 추가하여 구성할 수 있음

CP	D	Q(t+1)
↑	0	0
↑	1	1

CP	D	Q(t+1)
↓	0	0
<u></u>	1	1

■ 예, 에지 트리거 D 플립플롭 동작 파형

D 플립플롭

■ 주종형 D 플립플롭

D 플립플롭

■ 예, 주종형 D 플립플롭 동작 파형

- 클록형 JK 플립플롭
 - SR 플립플롭의 S = R = 1인 경우 출력 상태가 불안정하다는 문제점을 해결하는 방법임
 - J는 S(set)에, K는 R(reset)에 대응하는 입력임
 - J = K = 1인 경우 출력은 이전 출력의 보수 상태로 바뀐다는 특성이 있음

- 클록형 JK 플립플롭 동작
 - J = 0, K = 0이면 G_3 과 G_4 의 출력이 모두 0이 되므로 G_1 과 G_2 로 구성된 SR 래치는 출력이 변하지 않음
 - J = 0, K = 1이면 G_4 의 출력은 0이 되고, G_3 의 출력은 $Q(t) \cdot K \cdot CP$ 인데 K = 1, CP = 1이므로 Q(t)가 됨.

CP	Q(t)	G_3 의 출력	SR 래치 입력	Q(t+1)
1	0	0	S = 0, R = 0	Q(t) = 0
1	1	1	S = 0, R = 1	0

■ J = 1, K = 0이면 G_3 의 출력은 0이 되고, G_4 의 출력은 $\bar{Q}(t) \cdot J \cdot CP$ 인데 J = 1, CP = 1이므로 $\bar{Q}(t)$ 가 됨.

CP	$ar{m{Q}}(t)$	G_4 의 출력	SR 래치 입력	Q(t+1)
1	0	0	S = 0, R = 0	Q(t) = 1
1	1	1	S = 1, R = 0	1

- 클록형 JK 플립플롭 동작
 - J=1, K=1이면 G_3 의 출력은 $Q(t)\cdot K\cdot CP$ 이며, G_4 의 출력은 $\bar{Q}(t)\cdot J\cdot CP$ 가 됨.

CP	Q(t)	$\overline{m{Q}}(t)$	G_3 의 출력	G_4 의 출력	SR 래치 입력	Q(t+1)
1	0	1	0	1	S = 1, R = 0	1
1	1	0	1	0	S = 0, R = 1	0

:	#
Ī	Ū
ī	7]

CP	J	K	Q(t+1)
0	X	X	の(+) (早田)
1	0	0	<i>Q(t)</i> (불변)
1	0	1	0
1	1	0	1
1	1	1	$\bar{Q}(t)$ (toggle)

馬성田

2024. 03. 04.

41

■ NAND 게이트로 구성된 클록형 JK 플립플롭 동작

■ 예, 클록형 JK 플립플롭 동작 파형

- 에지 트리거 JK 플립플롭
 - 클록형 JK 플립플롭의 클록 펄스 입력에 펄스 전이 검출기(edge detector) 를 추가하여 구성할 수 있음

- 에지 트리거 JK 플립플롭
 - 클록형 JK 플립플롭의 클록 펄스 입력에 펄스 전이 검출기(edge detector) 를 추가하여 구성할 수 있음

CP	J	K	Q(t+1)
↑	0	0	Q(t) (불변)
↑	0	1	0
↑	1	0	1
<u> </u>	1	1	$ar{Q}(t)$ (toggle)

CP	J	K	Q(t+1)
\	0	0	Q(t) (불변)
\	0	1	0
<u></u>	1	0	1
	1	1	$ar{Q}(t)$ (toggle)

■ 예, 에지 트리거 JK 플립플롭 동작 파형

■ 주종형 JK 플립플롭

■ 예, 주종형 JK 플립플롭 동작 파형

T플립플롭

- 클록형 T 플립플롭
 - JK 플립플롭의 J와 K 입력을 묶어서 한 입력 신호 T로 동작시킴
 - 토글(toggle) 플립플롭이라고 함

T 플립플롭

■ 클록형 T 플립플롭 동작

CP	T	Q(t+1)
0	X	0(+) (早田)
1	0	Q(t) (불변)
1	1	$ar{Q}(t)$ (toggle)

Q(t)	T	Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

T플립플롭

■ 에지 트리거 T 플립플롭

T 플립플롭

■ 에지 트리거 T 플립플롭

CP	T	Q(t+1)
↑	0	Q(t)
↑	1	$ar{Q}(t)$

CP	T	Q(t+1)
\	0	Q(t)
	1	$ar{Q}(t)$

비동기 입력

- 설명한 SR, D, JK, T 플립플롭은 클록 펄스가 동작하는 동 안에만 플립플롭이 동작하며, 입력 데이트는 클록 펄스에 동기되어 출력에 전달되므로 **동기 입력**(synchronous input)라고 함
- 클록 펄스와 관계없이 플립플롭의 상태를 비동기식으로 변화시킬 수 있는 비동기 입력인 preset(\overline{PR})와 clear(\overline{CLR}) 입력이 있음

\overline{PR}	CLR	CP	J	K	Q(t+1)
0	1	X	X	Χ	1
1	0	X	Х	X	0
1	1	\downarrow	0	0	불변
1	1	\downarrow	0	1	0
1	1	\downarrow	1	0	1
1	1	\downarrow	1	1	토글

비동기 입력

■ Preset 입력과 clear 입력이 있는 JK 플립플롭의 논리회로

비동기 입력

■ Preset 입력과 clear 입력이 있는 JK 플립플롭의 동작 파형

- 전파 지연 시간(propagation delay time)
 - *t_{PLH}* : 논리 0에서 논리 1까지의 시간

■ *t_{PHL}* : 논리 1에서 논리 0까지의 시간

- 설정 시간(set-up time)
 - 클록 펄스의 트리거 에지 전이 전에 입력값은 일정 시간 동안 유지해 주어야 하는데 이 때 필요한 시간 간격을 설정 시간이라고 함

- 유지 시간(hold time)
 - 플립플롭의 정상적인 동작을 위해서 클록 펄스가 트리거 에지 전이 후에 도 입력값이 변하면 안 되는 일정한 시간이 있는데, 이 때 필요한 시간 간 격을 유지 시간이라고 함

- 펄스 폭(pulse width)
 - 플립플롭이 정확하게 동작하기 위해서 클록 펄스의 상승 에지 또는 하강 에지의 펄스 폭이 어느 정도 유지되어 야 함
 - 플립플롭이 정확하게 동작하기 위한 최소 펄스 폭 (t_w) 은 플립플롭의 preset과 clear 입력의 펄스로 규정함
- 최대 클록 주파수(maximum clock frequency)
 - 플립플롭이 안전하게 동작할 수 있는 최대 주파수임

- 전력 소모(power dissipation)
 - 플립플롭이 동작하는 데 필요한 전체 전력을 나타냄
 - 플립플롭의 공급 전압 V_{CC} 와 평균 공급 전류 I_{CC} 의 곱으로 정의됨

$$P = V_{CC} \times I_{CC}$$

- 기타 특성
 - 플립플롭이 디지털 논리 게이트와 동일하게 다음과 같은 특성을 갖음
 - 잡음 여유도
 - 팬-아웃(fanout)
 - 팬-인(fanin)

■ 예, MM74C74 : CMOS D 플립플롭

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
C _{IN}	Input Capacitance	Any Input (Note 4)		5.0		pF	
t _{pd}	Propagation Delay Time to a	V _{CC} = 5V		180	300	ns	
	Logical "0" t _{pd0} or Logical "1"	V _{CC} = 10V		70	110		
	t _{pd1} from Clock to Q or Q						
t _{pd}	Propagation Delay Time to a	V _{CC} = 5V		180	300	ns	
	Logical "0" from Preset or Clear	V _{CC} = 10V		70	110		
t _{pd}	Propagation Delay Time to a	V _{CC} = 5V		250	400	ns	
	Logical "1" from Preset or Clear	V _{CC} = 10V		100	150		
t _{S0} , t _{S1}	Time Prior to Clock Pulse that	V _{CC} = 5V	100	50		ns	
	Data Must be Present t _{SETUP}	V _{CC} = 10V	40	20			
t _{H0} , t _{H1}	Time after Clock Pulse that	V _{CC} = 5V		-20	0	ns	
	Data Must be Held	V _{CC} = 10V		-8.0	0		
t _{PW1}	Minimum Clock Pulse	V _{CC} = 5V		100	250	ns	
	Width $(t_{WL} = t_{WH})$	V _{CC} = 10V		40	100		
t _{PW2}	Minimum Preset and	V _{CC} = 5V		100	160	ns	
	Clear Pulse Width	V _{CC} = 10V		40	70		
t _r , t _f	Maximum Clock Rise	V _{CC} = 5V	15.0		αs		
	and Fall Time	V _{CC} = 10V	5.0			0.5	
f _{MAX}	Maximum Clock Frequency	V _{CC} = 5V	2.0	3.5		MHz	
		V _{CC} = 10V	5.0	8.0			
C _{PD}	Power Dissipation Capacitance	(Note 5)		40		pF	

Source: Fairchild Semiconductor, Datasheet, https://www.alldatasheet.com/datasheet-pdf/view/53720/ (accessed on 2024.08.05).