

Vidyavardhini's College of Engineering & Technology

Department of Electronics & Telecommunication Engineering

Experiment No. -

AIM: To implement CDMA system where 2 users, transmit data over single carrier by assigning unique orthogonal code to each user.

Theory:

In CDMA system, the narrowband information signal is multiplied by a very large bandwidth signal called as the spreading signal. The spreading signal is a pseudo code sequence, which is generated by using PN sequence generator. PN sequence is generated at a very high rate as compared to information signal. PN sequence provides orthogonality to user. Therefore, all users in a CDMA system can modulate same carrier frequency and may transmit simultaneously. The receiver performs a time correlation operation to detect only the specified user data. All other code words appear as noise due to decorrelation. For detection of message signal, the receiver needs to know the PN sequence used by the transmitter. Therefore, each user operates independently with no knowledge of other users. In CDMA, the power of multiple user at receiver determines the noise floor after decorrelation. If the power of each user within a cell is not controlled such that they do not appear equal at the base station receiver then, the near-far problem occurs.

Example: user 1 = 101user 2 = 110

PN sequence 1= 1010

PN sequ	ence 2= 1001				
User 1	1	0	1		
PN sequence 1	1010	1010	1010		
	1010	0101	1010		
User 2	1	1	0		
PN sequence 2	1001	1001	1001		
	1001	1001	0110		
User 1(vector)	1 -1 1 -1	-1 1 -1 1	1 -1 1 -1		
+ User 2(vector)	1 -1 -1 1	1 -1 -1 1	-1 1 1 -1		
Transmitted =	2 -2 0 0	0 0 -2 2	0 0 2 -2		
User 1 data decoding:					
Received	2 -2 0 0	0 0 -2 2	0 0 2 -2		
Multiply with	1 -1 1 -1	1 -1 1 -1	1 -1 1 -1		
PN sequence 1					
=	2 2 0 0	0 0 -2 -2	0022		
Add the bits	2+2+0+0=4	-2-2+0+0= -4	0+0+2+2=4		

Vidyavardhini's College of Engineering & Technology

Department of Electronics & Telecommunication Engineering

Divide the answer obtained	4/4= 1	-4/4= -1	4/4= 1		
by total no. of					
bits in PN					
sequence					
Converting to	1	0	1		
binary, we get					
User 2 data decoding:					
Received	2 -2 0 0	0 0 -2 2	0 0 2 -2		
Marlainales essiale	1 1 1 1	1 1 1 1	1 1 1 1		

Received	2 -2 0 0	0 0 -2 2	0 0 2 -2
Multiply with	1 -1 -1 1	1 -1 -1 1	1 -1 -1 1
PN sequence 2			
_=	2200	0022	0 0 -2 -2
Add the bits	2+2+0+0=4	-2-2+0+0=4	0+0-2-2=-4
Divide the	4/4= 1	4/4 = 1	-4/4= -1
answer obtained			
by total no. of			
bits in PN			
sequence			
Converting to	1	1	0
binary, we get			

Problem: user 1= 101

user 2= 111

PN sequence 1= 1001 PN sequence 2= 1010

Answer the

1. Compare FDMA, TDMA and SSMA.

following questions:

2. Advantages of CDMA over TDMA & FDMA

Result Analysis and

Conclusion: