DEPARTMENT OF MATHEMATICS, IIT ROORKEE

MAB-103: Numerical Methods

Assignment-3

Non-Linear Equations

1. Solve by bisection method to obtain a root of the equation $3x^3 + 5x - 40 = 0$, correct to 3D.

Session: 2025-26

- 2. Use the method of bisection to obtain the smallest positive root of the equations
 - (i) $x^3 5x + 1 = 0$,
 - (ii) $\cos x = 3x 1$, correct to 3D.
- 3. Use Regula Falsi (Method of False Position),
 - (i) to find both the roots of the equation $3x^2 5x 7 = 0$, correct to 3D.
 - (ii) to find a positive root of the equation $\cos x xe^x = 0$, correct to 3D.
- 4. Apply the method of Regula Falsi to find the smallest positive root of $x^3 3x + 1 = 0$, correct to 3D.
- 5. Verifying the condition for convergence, find a positive root of the following equations, correct to 4 significant digits, using fixed point iteration method:
 - (i) $2x = \cos x + 3$,
 - (ii) $x^3 + x^2 100 = 0$,
 - (iii) $8e^{-x}\sin x 1 = 0$,
 - (iv) $\sin x + \cos(1+x^2) 1 = 0$.
- 6. Use the fixed point iteration method to find the root of the equation $x^3 + 3x^2 + 2 = 0$ near x = -3, correct to 5D.
- 7. (i) Find a real root of the equation $-4x + \cos x + 2 = 0$, by Newton Raphson method, correct to 5D.
 - (ii) Find the smallest positive root of (a) $e^x \sin x = 1$ and (b) $e^x = 4x$, by Newton-Raphson method, correct to 5D.
- 8. (i) Use Newton-Raphson method to derive the algorithm for computing
 - (a) \sqrt{q} , (b) $\sqrt[4]{q}$, $q \in \mathbb{R}_+$.
 - (ii) Use the algorithm to compute
 - (a) $\sqrt{10}$, correct to 3D.
 - (b) $\sqrt{21}$, correct to 5D.
 - (c) the fourth-root of 32, correct to 4D.
- 9. Solve the following system of nonlinear equations correct to 4D, by iteration method
 - (i) $x 3log_{10}x y^2 = 0$, $2x^2 xy 5x = 0$, when $x_0 = 3.4$, $y_0 = 2.2$.
 - (ii) $x^3 + 3y^2 20.92 = 0$, $x^2 + 2y + 1.958 = 0$, when x + 0 = 1.30, $y_0 = -2.00$.
- 10. Solve the following system of equations by Newton-Raphson method, correct to 3D:
 - (i) $x^2 + y^2 = 1.5$, xy = 0.4 when $x_0 = 1.5$, $y_0 = 0.5$.
 - (ii) $log_e(x^2 + y) 2 + y = 0$, $\sqrt{x} + xy = 0.4$ when $x_0 = 3$, $y_0 = 0$.

11. Determine the formula

$$n \ge \frac{\log(b_0 - a_0) - \log(\epsilon) - \log(a_0)}{\log 2} - 1$$

involving a_0 , b_0 and ϵ for the number of steps that should be taken in the bisection algorithm to ensure that the root is determined with relative accuracy $\leq \epsilon$. Assume $a_0 > 0$.

- 12. (a) Obtain the condition of convergence and the rate of convergence of the Fixed-Point iteration method.
 - (b) Obtain the condition of convergence and the rate of convergence of Newton Raphson's method.
- 13. Find the double root of the equation

$$x^4 - 6.75x^2 + 6.25x - 1.5 = 0,$$

correct to 4-decimal places, when

- (i) multiplipity is known;
- (ii) multiplicity is unknown.
- 14. If f(x) = 0 has a root α of multiplicity 2, then show that the Newton-Raphson iterative scheme is given by

$$x_{n+1} = x_n - 2\frac{f(x_n)}{f'(x_n)},$$

and has a quadratic rate of convergence.

15. If f(x) = 0 has a double root α , then show that the Newton-Raphson iterative scheme given by

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)},$$

has a linear rate of convergence.

Answers:

- (1) 2.138
- (2) (i) 0.202 (ii) 0.607
- (3) (i) 2.57, -0.907 (ii) 0.518
- (4) 0.347
- (5) (i) 1.524, (ii) 4.331, (iii) 1.989 (iv) 1.945
- (6) -3.1958
- (7) (i) 0.69243, (ii) (a) 0.58853, (b) 0.35740
- (8) (i) (a) $x_{n+1} = \frac{1}{2} \left(x_n + \frac{q}{x_n} \right)$, (b) $x_{n+1} = \frac{1}{4} \left(3x_n + \frac{q}{x_n^3} \right)$ (ii) (a) 3.162, (b) 4.58258, (c) 2.3784
- (9) (i) (3.1424, 1.2848) (ii) (1.6499, -2.3401)
- (10) (i) (1.177, 0.340) (ii) (3.422, -0.424)
- (13) 0.5000