1 Лабораторная работа №2

1.1 Оценки математического ожидания, дисперсии, медианы

Пусть случайная величина ξ имеет распределение, задаваемое плотностью $f_{\xi}(x) = \theta^2 x e^{-\theta x}$. Для каждого $\theta \in \{0.5, 2, 8\}$:

- 1. (a) Аналитически вычислить математическое ожидание, дисперсию и математическое ожидание квадрата ξ . Привести в отчет.
 - (b) Для $k \in \{2^4, 2^5, \dots, 2^{15}\}$ построить выборку из k элементов. Для каждой из них посчитать оценки: математического ожидания, дисперсии и квадрата математического ожидания параметра из варианта. Для каждой из выборок и оценок визуализировать это все на графиках (для каждой оценки свой график), где по вертикальной оси оценка, а по горизонтальной k, плюс, добавьте горизонтальную линию, отвечающую за аналитически полученную оценку.
- 2. Дана плотность распределения случайной величины ξ :

$$f_{\xi}^{\lambda,a}(x) = \begin{cases} \lambda e^{-\lambda(x-a)}, & x \ge a \\ 0, & else \end{cases}$$

Пусть $(\lambda, a) = (2, 2)$

- (а) Аналитически вычислите значение моды, математического ожидания и медианы.
- (b) Создайте две выборки: одну довольно большого размера (10000 наблюдений, например), а вторую маленькую (например, 20). Постройте оценки моды, математического жидания и медианы.
- (c) Постройте для первой выборки на одном графике: гистограмму распределения значений из выборки и три вертикальных линии оценок моды, математического ожидания и медианы. Для второй выборки сделайте то же самое. Постройте ещё график рядом для первой выборки, но с функцией распределения плотности и аналитическими значениями мод, математического жидания и медианы. То же самое, для второй.
- (d) Попробуйте поизменять размер выборки и посмотреть на то, например, сходится ли медиана к математическому ожиданию, или нет.

1.2 Моделирование совместного распределения двух СВ

Пусть совместное распределение двух случайных величин задано таблицей

$\xi \backslash \eta$	1	2	3	
-1	2 1	2 1	2 1	
	$\overline{5} \cdot \overline{2^1}$	$\frac{\overline{5} \cdot \overline{2^2}}{5}$	$\frac{\overline{5} \cdot \overline{2^3}}{5}$	• • •
0	$\mid 1 \mid 1$	$\mid 1 \mid 1$	1 1	
	$\frac{1}{5}$ $\frac{1}{2^1}$	$\frac{\overline{5}}{5}$ $\frac{\overline{2^2}}{2}$	$\frac{1}{5} \cdot \frac{1}{2^3}$	• • •
1	2 1	2 1	2 1	
	$\frac{1}{5} \cdot \frac{1}{2^1}$	$\frac{1}{5} \cdot \frac{1}{2^2}$	$\frac{1}{5} \cdot \frac{1}{2^3}$	• • •

где η принимает все значения из \mathbb{N} . Вычислить корреляционую матрицу аналитически и приближенно (на основе моделирования).