

Convolutional Neural Networks for Semantic Segmentation

10. November 2023

Semantic Segmentation

Image classification: classify entire images

Semantic segmentation: classify each pixel

Example: Medical Imaging

ISBI 2015 Challenge on Dental X-Ray Analysis

Example: Eczema Detection

Example: Autonomous vehicles

http://www.cvlibs.net/datasets/kitti/eval_semseg.php?benchmark=semantics2015

KITTI Dataset

200 train and 200 test images

36 classes

Cityscale Dataset

Fine annotations: 5000 images

Coarse annotations

CNNs for semantic segmentation

What are the building blocks of a convolutional neural network (CNN)?

How does a CNN for an image classification task look like?

What happens to the image while it traverses the network?

Fully Convolutional Neural Networks: Idea

Design a network as a bunch of convolutional layers to make predictions for pixels all at once!

Problem: Might need to be very deep or with large convolutional filters to have a sufficiently large receptive field

HSLU 10. November 2023 Page 8

FCNs with downsampling and upsampling

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

FCNs with downsampling and upsampling

Problem: How to do the upsampling

Remember: Pooling (Max/Avg)

Max Pooling

6 2 3 2 1 4 5 1 1 2 3 4 1 0 5 6

Average Pooling

6	2	3	2		
1	4	5	1	3	3
1	2	3	4	1	5
1	0	5	6		

Upsampling: Unpooling

Nearest Neighbor

Bed of Nails

Upsampling: Max Unpooling

Recall: Strided Convolution

Strided 3x3 convolution with stride = 2

Filter moves 2 positions in **input** for every position in **output**

Transposed convolution

Strided 3x3 transposed convolution with stride = 2

- Multiply input values with filter values
- Add result to output
- Learn filter values through training

Filter moves 2 positions in **output** for every poition in **input**

Transposed convolution

Strided 3x3 transposed convolution with stride = 2

- Multiply input value with filter values
- Add result to output
- Learn filter values

Summation of values where filter outputs overlap

FCS with downsampling and upsampling

Downsampling: Pooling, strided convolution

Input: 3 x H x W

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

Upsampling:
Unpooling or strided
transpose convolution

Predictions: H x W

Similar to encoder / decoder architecture

U-Net Architecture (Ronneberger et al. 2015)

- Down- and Up-sampling with max pooling
- Additional skip connections between early and late layers in the network

Summary

- Semantic segmentation:
 - pixel-wise classification problem
- Input and output shapes are (almost) identical
- Fully convolutional networks (almost) preserve shape, but may require many layers to reach sufficiently large receptive fields
- Downsampling (e.g., max-pooling) rapidly increases receptive field, but must be undone by an upsampling step (e.g., transposed convolution)
- Problems and techniques from classification apply (e.g., class-specific weighting of loss in case of imbalanced classes).

