School of Computing and Information Systems The University of Melbourne (Popular Technologies (Samustan 2, 201)

COMP90049 Knowledge Technologies (Semester 2, 2017) Workshop exercises: Week 8

- 1. What is **overfitting**? What does it mean for a classifier to **generalise**?
- 2. A **confusion matrix** is an indication of the performance of a classifier over a set of test data, by counting the various output instances:

		Actual			
		a	b	c	d
	a	10	2	3	1
Classified	b	2	5	3	1
	c	1	3	7	1
	d	3	0	3	5

- (a) Calculate the classification accuracy of the system. Find the error rate for the system.
- (b) Calculate the **precision**, **recall**, **F-score** (where $\beta = 1$), **sensitivity**, and **specificity** for class d. (Why can't we do this for the whole system? How can we consider the whole system?)
- 3. How is **holdout** evaluation different to **cross-validation** evaluation?
- 4. Revise linear regression.
 - (a) What are we attempting to model with linear regression? Why do we minimise "RSS"? What assumptions are we making?
- 5. For the following dataset:

$_apple$	ibm	lemon	sun	CLASS					
Training Instances									
4	0	1	1	FRUIT					
5	0	5	2	FRUIT					
2	5	0	0	COMPUTER					
1	2	1	7	COMPUTER					
Test Instances									
2	0	3	1	?					
1	0	1	0	?					

- (a) Using the Euclidean distance measure, classify the test instances using the 1-NN method.
- (b) Using the **cosine similarity** measure, classify the test instances using the 3-NN method. Extend this to the **weighted** 3-NN method.

6. For the following dataset:

_	apple	ibm	lemon	sun	CLASS				
_	Training Instances								
	Y	N	Y	Y	FRUIT FRUIT COMPUTER				
	Y	N	Y	Y					
	Y	Y	N	N					
	Y	Y	Y	Y	COMPUTER				
	Test Instances								
-	Y	N	Y	Y	?				
	Y	N	Y	N	?				

Use the method of **Naive Bayes** classification, as shown in lectures, to classify the test instances. Revise some of the assumptions that are built into the model.

7. [EXTENSION] Revise the **multinomial distribution**. Naive Bayes can be extended to account for integer frequencies in the data (like in Question 2) using this model. Read up on so-called **multinomial Naive Bayes**.