30-Day FreeRTOS Course for ESP32 Using ESP-IDF

(Day 6)

"Using vTaskDelay()
and vTaskDelayUntil()"

Table of Contents

- 1. Overview
- 2. How FreeRTOS Measures Time
- 3. vTaskDelay()
- 4. vTaskDelayUntil()
- 5. Practical Example, Comparing Both
- 6. Choosing the Right Delay Function
- 7. Best Practices
- 8. Summary
- 9. Challenge for Today

1. Overview

On Day 6, you'll learn:

- How FreeRTOS measures and manages time
- The difference between vTaskDelay() and vTaskDelayUntil()
- How to use these functions to implement periodic tasks
- When to choose one over the other
- Practical examples and timing considerations

By the end of this lesson, you'll know how to make your tasks run at precise intervals without wasting CPU time.

2. How FreeRTOS Measures Time

FreeRTOS uses ticks as its base time unit.

- A tick is a periodic interrupt generated by the system tick timer.
- The default tick rate in ESP-IDF is 100 Hz (1 tick = 10 ms), but this can be changed in:
 menuconfig → Component config →
 FreeRTOS→ Tick rate (Hz)

Use the macro pdMS_TO_TICKS(ms) to convert milliseconds to ticks.

Example:

```
vTaskDelay(pdMS_TO_TICKS(500)); // delay for 500 ms
```


3. vTaskDelay()

vTaskDelay() suspends a task for a given relative period.

Syntax:

```
void vTaskDelay(const TickType_t xTicksToDelay);
```

- Relative delay: The count starts when vTaskDelay() is called.
- Allows drift if the task execution time varies.

Example:

```
vTaskDelay(pdMS_TO_TICKS(1000)); // Wait 1 second
```

Best for: Non-critical periodic actions, or when exact timing is not essential.

4. vTaskDelayUntil()

vTaskDelayUntil() suspends a task until a specified absolute tick count.

Syntax:

```
void vTaskDelayUntil(TickType_t *pxPreviousWakeTime,
const TickType_t xTimeIncrement);
```

- Absolute delay: Keeps a fixed schedule, minimizing drift.
- Requires you to store and maintain the last wake time.

Example:

```
TickType_t last_wake_time = xTaskGetTickCount();
VTaskDelayUntil(&last_wake_time, pdMS_TO_TICKS(1000));
```

Best for: Periodic tasks that must run exactly every N milliseconds.

5. Practical Example, Comparing Both

```
1 #include <stdio.h>
2 #include "freertos/FreeRTOS.h"
  #include "freertos/task.h"
   void task delay(void *pvParameter) {
       while (1) {
           printf("vTaskDelay: %lu ms\n",
                 (unsigned long)(xTaskGetTickCount() * portTICK_PERIOD_MS));
           vTaskDelay(pdMS TO TICKS(1000)); // Delay 1s
10
11
  }
12
   void task delay until(void *pvParameter) {
13
       TickType t last wake = xTaskGetTickCount();
14
       while (1) {
15
           printf("vTaskDelayUntil: %lu ms\n",
               (unsigned long)(xTaskGetTickCount() * portTICK_PERIOD_MS));
17
           // Delay until next second
18
           vTaskDelayUntil(&last wake, pdMS TO TICKS(1000));
19
       }
20
21 }
22
23 void app main() {
       xTaskCreate(task delay, "TaskDelay", 2048, NULL, 5, NULL);
       xTaskCreate(task delay until, "TaskDelayUntil", 2048, NULL, 5, NULL);
25
26 }
27
```

5. Practical Example, Comparing Both

Expected Behavior

- vTaskDelay(): Each loop starts 1 second after the last one ended → small delays in execution accumulate over time.
- vTaskDelayUntil(): Each loop starts at fixed intervals regardless of execution time (as long as it's less than the interval).

6. Choosing the Right Delay Function

Function	Timing Type	Use Case
vTaskDelay()	Relative	General waits, non- critical timing
vTaskDelayUntil()	Absolute	Precise periodic scheduling

7. Best Practices

- Always use pdMS_TO_TICKS() for portability.
- Ensure your task's execution time is **less**than the delay period when using

 vTaskDelayUntil().
- Avoid using vTaskDelay(0) it does nothing; use taskYIELD() instead if you want to yield immediately.
- For very high timing precision, consider increasing tick rate or using hardware timers.

8. Summary

- vTaskDelay() → relative delay, simpler, may drift over time.
- vTaskDelayUntil() → absolute delay,
 consistent execution intervals.
- Use the right one depending on your application's timing needs.

9. Challenge for Today

- Create a sensor sampling task that reads data every 200 ms exactly, using vTaskDelayUntil().
- Add another task that blinks an LED every 1
 second using vTaskDelay() and observe the
 difference in timing stability.