(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 17 October 2002 (17.10.2002)

PCT

(10) International Publication Number WO 02/081638 A2

(51) International Patent Classification7:

.

(21) International Application Number: PCT/US02/10824

(22) International Filing Date: 8 April 2002 (08.04.2002)

(25) Filing Language:

English

C12N

(26) Publication Language:

English

(30) Priority Data:

60/281,731 60/281,732 6 April 2001 (06.04.2001) US 6 April 2001 (06.04.2001) US

(71) Applicant (for all designated States except US): ORI-GENE TECHNOLOGIES, INC [US/US]; 6 Taft Court, Suite 100, Rockville, MD 20850 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): SUN, Zairen [CN/US]; 1083 Copperstone Court, Rockville, MD 20852 (US). JAY, Gilbert [US/US]; 5801 Nicholson Lane, North Bethesda, MD 20852 (US).
- (74) Agent: LEBOVITZ, Richard, M.; Origene Technologies, Inc., 6 Taft Court, Suite 100, Rockville, MD 20850 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,

GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, YT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)
- of inventorship (Rule 4.17(iv)) for US only

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PROSTATE CANCER EXPRESSION PROFILES

(57) Abstract: The present invention relates to all facets of novel polynucleotides, the polypeptides they encode, antibodies and specific binding partners thereto, and their applications to research, diagnosis, drub discovery, therapy, clinical medicine, forensic science and medicine, etc. The polynucleotides are differentially-regulated in prostate cancer and are therefore useful in variety of ways, including, but not limited to, as molecular markers, as drug targets, and for detecting, diagnosing, staging, monitoring, prognosticating, preventing or treating, determining predisposition to, etc., diseases and conditions, to prostate cancer.

-1-

PROSTATE CANCER EXPRESSION PROFILES

This application claims the benefit U.S. Provisional Application No. 60/281,731, filed April 6, 2001, and U.S. Provisional Application No. 60/281,732, filed April 6, 2001, which are hereby incorporated by reference in their entirety.

5

10

15

20

25

DESCRIPTION OF THE DRAWINGS

Tables 1 and 2 list genes differentially-regulated in prostate cancer. "DNA SEQ ID" and "Prt SEQ ID" refer to the corresponding DNA and protein sequences in the attached sequence listing. The genes can alternatively be referred to by GenBank accession number in the fifth column ("GI#") or the "identifier" in the third column. The genes listed in Table 1 are up-regulated, and those in Table 2 are down-regulated ("Exp" refers to the expression profile, U is up-regulated expression, and D is down-regulated expression). The characterization of the gene under the "description" heading is based on its listing in GenBank. 5', 3', genomic sequences, etc., which correspond to the genes can be retrieved routinely from Genbank, e.g., by searching the accession number. SEQ ID NOS 1-107 are DNA, and 108-211 are polypeptide. These sequences, and all information referenced to the accession number, are incorporated by reference in their entirety.

The polypeptide sequences was analyzed for the presence of functional domains using the publicly available Pfam program. This information is summarized in Table 3. Domains present in each polypeptide are listed under "domain." Any abbreviations are those used in Pfam. The start of the domain is indicated by "seq-f" and the end of the domain by "seq-t." The "score" is the statistical score of this match to the domain in bits. In general, a higher score indicates a better match. "E" is the statistical score of this match in Evalue (frequentist) approach. The smaller score in this case shows a better match between the domain and the query sequence. For more information on the program and scoring, see, e.g., Sonnhammer et al., *Proteins: Structure, Function and Genetics* 28:405-420 (1997); Sonnhammer et al., *Nucleic Acids Research*, 26:320-322 (1998); Bateman et al., *Nucleic Acids Research*, 27:260-262 (1999); Bateman et al., *Nucleic Acids Research*, 28:263-266 (2000).

10

15

20

25

30

DESCRIPTION OF THE INVENTION

The present invention relates to all facets of novel polynucleotides, the polypeptides they encode, antibodies and specific binding partners thereto, and their applications to research, diagnosis, drug discovery, therapy, clinical medicine, forensic science and medicine, etc. The polynucleotides are differentially regulated in prostate cancer and are therefore useful in variety of ways, including, but not limited to, as molecular markers, as drug targets, and for detecting, diagnosing, staging, monitoring, prognosticating, preventing or treating, determining predisposition to, etc., diseases and conditions,, especially relating to prostate cancer. The identification of specific genes, and groups of genes, expressed in pathways physiologically relevant to prostate cancer permits the definition of functional and disease pathways, and the delineation of targets in these pathways which are useful in diagnostic, therapeutic, and clinical applications. The present invention also relates to methods of using the polynucleotides and related products (proteins, antibodies, etc.) in business and computer-related methods, e.g., advertising, displaying, offering, selling, etc., such products for sale, commercial use, licensing, etc.

Prostate cancer is the most common form of cancer diagnosed in the American male, occurring predominantly in males over age 50. The number of men diagnosed with prostate cancer has steadily increased as a result of the increasing population of older men. The American Cancer Society estimates that in the year 2000, about 180,000 American men were diagnosed with prostate cancer and about 32,000 died from the disease. In comparison, 1998 estimates for lung cancer in men were 171,500 cases and 160,100 deaths, and for colorectal cancer, the estimates were 131,600 cases and 56,000 deaths. Despite these high numbers, 89 percent of men diagnosed with the disease will survive at least five years and 63 percent will survive at least 10 years.

Patients having prostate cancer display a wide range of phenotypes. In some men, following detection, the tumor remains a latent histological tumor and does not become clinically significant. However, in other men, the tumor progresses rapidly, metastasizing and killing the patient in a relatively short time. Prostate cancer can be cured if the tumor is confined to a small region of the gland and is discovered at early stage. In such cases, radiation or surgical removal often results in complete elimination of the disease. Frequently, however, the prostate cancer has already spread to surrounding tissue and metastasized to

-3-

remote locations. In these cases, radiation and other therapies, are less likely to effect a complete cure.

Androgen deprivation is a conventional therapy to treat prostate cancer. Androgen blockade can be achieved through several different routes. Androgen suppressive drugs include, e.g., Lupron (leuprolide acetate), Casodex (bicalutamide), Eulexin (flutamide), Nilandron (nilutamide), Zoladex (goserelin acetate implant), and Viadur (leuprolide acetate), which act through several different mechanisms. While these drugs may offer remission and tumor regression in many cases, often the therapeutic effects are only temporary. Prostate tumors lose their sensitivity to such treatments, and become androgen-independent. Thus, new therapies are clearly needed.

10

15

20

25

30

The first clinical symptoms of prostate cancer are typically urinary disturbances, including painful and more frequent urination. Diagnosis for prostate cancer is usually accomplished using a combination of different procedures. Since the prostate is located next to the rectum, rectal digital examination allows the prostate to be examined manually for the presence of hyperplasia and abnormal tissue masses. Usually, this is the first line of detection. If a palpable mass is observed, a blood specimen can be assayed for prostate-specific antigen (PSA). Very little PSA is present in the blood of a healthy individual, but BPH and prostate cancer can cause large amounts of PSA to be released into the blood, indicating the presence of diseased tissue. Definitive diagnosis is generally accomplished by biopsy of the prostate tissue.

No single gene or protein has been identified which is responsible for the etiology of all prostate cancers. Although PSA is widely used as a diagnostic reagent, it has limitations in its sensitivity and its ability to detect early cancers. It is estimated that approximately 20% to 30% of tumors will be missed when PSA is used alone. It is likely that diagnostic and prognostic markers for prostate cancer disease will involve the identification and use of many different genes and gene products to reflect its multifactorial origin.

A continuing goal is to characterize the gene expression patterns of the various prostate cancers to genetically differentiate them, providing important guidance in preventing and treating cancers. Molecular pictures of cancer, such as the pattern of differentially-regulated genes identified herein, provide an important tool for molecularly dissecting and classifying cancer, identifying drug targets, providing prognosis and therapeutic information, etc. For instance, an array of polynucleotides corresponding to genes differentially regulated in prostate cancer can be used to screen tissue samples for the existence of cancer, to

-4-

categorize the cancer (e.g., by the particular pattern observed), to grade the cancer (e.g., by the number of differentially-regulated genes and their amounts of expression), to identify the source of a secondary tumor, to screen for metastatic cells, etc. These arrays can be used in combination with other markers, e.g., PSA, PMSA (prostate membrane specific antigen), or

5 any of the grading systems used in clinical medicine.

As indicated by these studies, cancer is a highly diverse disease. Although all cancers share certain characteristics, the underlying cause and disease progression can differ significantly from patient to patient. So far, over a dozen distinct genes have been identified which, when mutant, result in a cancer. In breast cancer, alone, a handful of different genes have been isolated which either cause the cancer, or produce a predisposition to it. As a consequence, disease phenotypes for a particular cancer do not look all the same. In addition to the differences in the gene(s) responsible for the cancer, heterogeneity among individuals, e.g., in age, health, sex, and genetic background, can also influence the disease and its progression. Gene penetrance, in particular, can vary widely among population members. Recent studies have shown tremendous diversity in gene expression patterns among cancer patients. For these and other reasons, one gene/polypeptide target alone can be insufficient to diagnose or treat a cancer. Even a gene which is highly differentially-expressed and penetrant in cancer patients may not be so highly expressed in all patients and at all stages of the cancer. By selecting a set of genes and/or the polypeptides they encode, cancer diagnostics and therapeutics can be designed which effectively diagnose and treat a population of diseased individuals, rather than only a small handful when single genes are targeted.

Nucleic acids

10

15

20

25

30

In accordance with the present invention, genes have been identified which are differentially expressed in prostate cancer. Tables 1 and 2 list of genes which are differentially-regulated in the cancer. These genes can be further divided into groups based on additional characteristics of their expression and the tissues in which they are expressed. For instance, genes can be further subdivided based on the stage and/or grade of the cancer in which they are expressed. Genes can also be grouped based on their penetrance in a prostate cancer, e.g., expressed in all prostate cancer examined, expressed in a certain percentage of prostate cancer examined, etc. Additionally, genes can be categorized by their function and/or the polypeptides they encode. This includes, but is not limited to, cellular

WO 02/081638 PCT/US02/10824 -5-

localization, functional activity (e.g., kinase, cytoskeletal element, or transcriptional factor), functional pathway (e.g., protein manufacture, cell signaling, cell movement, cell adhesion, responsivity to cAMP, energy production, etc.), etc. These groupings do not restrict or limit the use such genes in therapeutic, diagnostic, prognostic, etc., applications. For instance, a gene which is expressed in only some cancers (e.g., incompletely penetrant) may be useful in therapeutic applications to treat a subset of cancers. Similarly, a co-penetrant gene, or a gene which is expressed in prostate cancer and other normal tissues, may be useful as a therapeutic or diagnostic, even if its expression pattern is not highly prostate specific. Thus, the uses of the genes or their products are not limited by their patterns of expression.

For genes which are differentially-regulated, gene and protein replacement therapies can be used therapeutically to restore expression levels to normal. When a protein product is to be administered, secreted proteins are more likely to be targets for replacement therapy than intracellular and membrane-bound proteins. For the latter classes, gene therapy may be a more effective means of delivery, e.g., administering a gene which is expressed inside a cell on or on its surface.

10

15

20

25

30

By the phrase "differential expression," it is meant that the levels of expression of a gene, as measured by its transcription or translation product, are different depending upon the specific cell-type or tissue (e.g., in an averaging assay that looks at a population of cells). There are no absolute amounts by which the gene expression levels must vary, as long as the differences are measurable.

The phrase "down-regulated" indicates that an mRNA transcript or other nucleic acid corresponding to a polynucleotide of the present invention is expressed in lower amounts in a cancer as compared to the same transcript expressed in normal cells from which the cancer was derived. In general, down-regulation can be assessed by any suitable method, including any of the nucleic acid detection and hybridization methods mentioned below, as well as polypeptide-based methods. Down-regulation also includes going from substantially no expression in a normal tissue, from detectable expression in a normal tissue, from significant expression in a normal tissue, to higher levels in the cancer.

The phrase "up-regulated" indicates that an mRNA transcript or other nucleic acid corresponding to a polynucleotide of the present invention is expressed in larger amounts in a cancer as compared to the same transcript expressed in normal cells from which the cancer was derived. For instance, a gene's up-regulation can be determined by comparing its abundance per gram of RNA (e.g., total RNA, polyadenylated mRNA, etc.) extracted from a

cancer tissue in comparison to the corresponding normal tissue. The normal tissue can be from the same or different individual or source. For convenience, it can be supplied as a separate component or in a kit in combination with probes and other reagents for detecting genes. The quantity by which a nucleic acid is up-regulated can be any value, e.g., more than 10%, 50%, 2-fold, 5-fold, 10-fold, etc. Up-regulation also includes going from substantially no expression, to detectable expression, to significant or highly restricted expression, etc.

5

10

15

20

25

30

Differential regulation can be determined by any suitable method, e.g., by comparing its abundance per gram of RNA (e.g., total RNA, polyadenylated mRNA, etc.) extracted from a prostate tissue in comparison to the corresponding normal tissue. The normal tissue can be from the same or different individual or source. For convenience, it can be supplied as a separate component or in a kit in combination with probes and other reagents for detecting genes. The quantity by which a nucleic acid is differentially-regulated can be any value, e.g., about 10% more or less of normal expression, about 50% more or less of normal expression, 2-fold more or less, 5-fold more or less, 10-fold more or less, etc.

The amount of transcript can also be compared to a different gene in the same sample, especially a gene whose abundance is known and substantially no different in its expression between normal and cancer cells (e.g., a "control" gene). If represented as a ratio, with the quantity of differentially-regulated gene transcript in the numerator and the control gene transcript in the denominator, the ratio would be larger, e.g., in breast cancer than in a sample from normal breast tissue.

Differential-regulation can arise through a number of different mechanisms. The present invention is not bound by any specific way through which it occurs. Differential-regulation of a polynucleotide can occur, e.g., by modulating (1) transcriptional rate of the gene (e.g., increasing its rate, inducing or stimulating its transcription from a basal, low-level rate, etc.), (2) the post-transcriptional processing of RNA transcripts, (3) the transport of RNA from the nucleus into the cytoplasm, (4) RNA nuclear and cytoplasmic turnover and polypeptide turnover (e.g., by virtue of having higher stability or resistance to degradation), and combinations thereof. See, e.g., Tollervey and Caceras, *Cell*, 103:703-709, 2000.

A differentially-regulated polynucleotide is useful in a variety of different applications as described in greater details below. Because it is more abundant in cancer, it and its expression products can be used in a diagnostic test to assay for the presence of cancer, e.g., in tissue sections, in a biopsy sample, in total RNA, in lymph, in blood, etc. Differentially-regulated polynucleotides and polypeptides can be used individually, or in

-7-

groups, to assess the cancer, e.g., to determine the specific type of cancer, its stage of development, the nature of the genetic defect, etc., or to assess the efficacy of a treatment modality. How to use polynucleotides in diagnostic and prognostic assays is discussed below. In addition, the polynucleotides and the polypeptides they encode, can serve as a target for therapy or drug discovery. A polypeptide, coded for by a differentially-regulated polynucleotide, which is displayed on the cell-surface, can be a target for immunotherapy to destroy, inhibit, etc., the diseased tissue. Differentially-regulated transcripts can also be used in drug discovery schemes to identify pharmacological agents which suppress, inhibit, etc., their differential-regulation, thereby preventing the phenotype associated with their expression. Thus, a differentially-regulated polynucleotide and its expression products of the present invention have significant applications in diagnostic, therapeutic, prognostic, drug development, and related areas.

5

10

15

20

25

30

The expression patterns of the differentially expressed genes disclosed herein can be described as a "fingerprint" in that they are a distinctive pattern displayed by a cancer. Just as with a fingerprint, an expression pattern can be used as a unique identifier to characterize the status of a tissue sample. The list of genes represented in Tables 1 and 2 provide an example of a cell expression profile for a prostate cancer. It can be used as a point of reference to compare and characterize unknown samples and samples for which further information is sought. Tissue fingerprints can be used in many ways, e.g., to classify an unknown tissue as being a prostate cancer, to determine the origin of a particular cancer (e.g., the origin of metastatic cells), to determine the presence of a cancer in a biopsy sample, to assess the efficacy of a cancer therapy in a human patient or a non-human animal model, to detect circulating cancer cells in blood or a lymph node biopsy, etc. While the expression profile of the complete gene set represented in Tables 1 and 2 may be most informative, a fingerprint containing expression information from less than the full collection can be useful, as well. In the same way that an incomplete fingerprint may contain enough of the pattern of whorls, arches, loops, and ridges, to identify the individual, a cell expression fingerprint containing less than the full complement may be adequate to provide useful and unique identifying and other information about the sample. Moreover, cancer is a multifactorial disease, involving genetic aberrations in more than gene locus. This multifaceted nature may be reflected in different cell expression profiles associated with breast cancers arising in different individuals, in different locations in the same individual, or even within the same cancer locus. As a result, a complete match with a particular cell expression profile, as

shown herein, is not necessary to classify a cancer as being of the same type or stage. Similarity to one cell expression profile, e.g., as compared to another, can be adequate to classify cancer types, grades, and stages. SEQ ID NOS 1-211 are referred to generally as "genes" to indicate that they represent specific gene loci, and are not limited to the particular nucleotide and polypeptide sequences disclosed herein. For example, fibronectin (SEQ ID NO 60 and 196) is up-regulated in prostate cancers. Probes to detect its up regulation can be selected from the attached specific sequences, as well as genomic, upstream, downstream, and intron sequences which are not in the attached sequence listing.

A mammalian polynucleotide, or fragment thereof, of the present invention is a polynucleotide having a nucleotide sequence obtainable from a natural source. It therefore includes naturally-occurring normal, naturally-occurring mutant, and naturally-occurring polymorphic alleles (e.g., SNPs), differentially-spliced transcripts, splice-variants, etc. By the term "naturally-occurring," it is meant that the polynucleotide is obtainable from a natural source, e.g., animal tissue and cells, body fluids, tissue culture cells, forensic samples.

Natural sources include, e.g., living cells obtained from tissues and whole organisms, tumors, cultured cell lines, including primary and immortalized cell lines. Naturally-occurring mutations can include deletions (e.g., a truncated amino- or carboxy-terminus), substitutions, inversions, or additions of nucleotide sequence. These genes can be detected and isolated by polynucleotide hybridization according to methods which one skilled in the art would know, e.g., as discussed below.

10

15

20

25

30

A polynucleotide according to the present invention can be obtained from a variety of different sources. It can be obtained from DNA or RNA, such as polyadenylated mRNA or total RNA, e.g., isolated from tissues, cells, or whole organism. The polynucleotide can be obtained directly from DNA or RNA, from a cDNA library, from a genomic library, etc. The polynucleotide can be obtained from a cell or tissue (e.g., from an embryonic or adult tissues) at a particular stage of development, having a desired genotype, phenotype, disease status, etc.

The genes described in Tables 1 and 2 can be partial sequences that correspond to full-length, naturally-occurring transcripts. The present invention includes, as well, full-length polynucleotides that comprise these partial sequences, e.g., genomic DNAs and polynucleotides comprising a start and stop codon, a start codon and a polyA tail, a transcription start and a polyA tail, etc. These sequences can be obtained by any suitable method, e.g., using a partial sequence as a probe to select a full-length cDNA from a library

containing full-length inserts. A polynucleotide which "codes without interruption" refers to a polynucleotide having a continuous open reading frame ("ORF") as compared to an ORF which is interrupted by introns or other noncoding sequences.

5 Genomic

10

15

20

25

30

The present invention also relates genomic DNA from which the polynucleotides of the present invention can be derived. A genomic DNA coding for a human, mouse, or other mammalian polynucleotide, can be obtained routinely, for example, by screening a genomic library (e.g., a YAC library) with a polynucleotide of the present invention, or by searching nucleotide databases, such as GenBank and EMBL, for matches. Promoter and other regulatory regions can be identified upstream of coding and expressed RNAs, and assayed routinely for activity, e.g., by joining to a reporter gene (e.g., CAT, GFP, alkaline phosphatase, luciferase, galatosidase). A promoter obtained from a prostate selective gene can be used, e.g., in gene therapy to obtain tissue-specific expression of a heterologous gene (e.g., coding for a therapeutic product or cytotoxin).

Constructs

A polynucleotide of the present invention can comprise additional polynucleotide sequences, e.g., sequences to enhance expression, detection, uptake, cataloging, tagging, etc. A polynucleotide can include only coding sequence; a coding sequence and additional non-naturally occurring or heterologous coding sequence (e.g., sequences coding for leader, signal, secretory, targeting, enzymatic, fluorescent, antibiotic resistance, and other functional or diagnostic peptides); coding sequences and non-coding sequences, e.g., untranslated sequences at either a 5' or 3' end, or dispersed in the coding sequence, e.g., introns.

A polynucleotide according to the present invention also can comprise an expression control sequence operably linked to a polynucleotide as described above. The phrase "expression control sequence" means a polynucleotide sequence that regulates expression of a polypeptide coded for by a polynucleotide to which it is functionally ("operably") linked. Expression can be regulated at the level of the mRNA or polypeptide. Thus, the expression control sequence includes mRNA-related elements and protein-related elements. Such elements include promoters, enhancers (viral or cellular), ribosome binding sequences, transcriptional terminators, etc. An expression control sequence is operably linked to a nucleotide coding sequence when the expression control sequence is positioned in such a

manner to effect or achieve expression of the coding sequence. For example, when a promoter is operably linked 5' to a coding sequence, expression of the coding sequence is driven by the promoter. Expression control sequences can include an initiation codon and additional nucleotides to place a partial nucleotide sequence of the present invention in-frame in order to produce a polypeptide (e.g., pET vectors from Promega have been designed to permit a molecule to be inserted into all three reading frames to identify the one that results in polypeptide expression). Expression control sequences can be heterologous or endogenous to the normal gene.

A polynucleotide of the present invention can also comprise nucleic acid vector sequences, e.g., for cloning, expression, amplification, selection, etc. Any effective vector can be used. A vector is, e.g., a polynucleotide molecule which can replicate autonomously in a host cell, e.g., containing an origin of replication. Vectors can be useful to perform manipulations, to propagate, and/or obtain large quantities of the recombinant molecule in a desired host. A skilled worker can select a vector depending on the purpose desired, e.g., to propagate the recombinant molecule in bacteria, yeast, insect, or mammalian cells. The following vectors are provided by way of example. Bacterial: pQE70, pQE60, pQE-9 (Qiagen), pBS, pD10, Phagescript, phiX174, pBK Phagemid, pNH8A, pNH16a, pNH18Z, pNH46A (Stratagene); Bluescript KS+II (Stratagene); ptrc99a, pKK223-3, pKK233-3, pDR54 0, pRIT5 (Pharmacia). Eukaryotic: PWLNEO, pSV2CAT, pOG44, pXT1, pSG (Stratagene), pSVK3, PBPV, PMSG, pSVL (Pharmacia), pCR2.1/TOPO, pCRII/TOPO, pCR4/TOPO, pTrcHisB, pCMV6-XL4, etc. However, any other vector, e.g., plasmids, viruses, or parts thereof, may be used as long as they are replicable and viable in the desired host. The vector can also comprise sequences which enable it to replicate in the host whose genome is to be modified.

25

30

10

15

20

Hybridization

Polynucleotide hybridization, as discussed in more detail below, is useful in a variety of applications, including, in gene detection methods, for identifying mutations, for making mutations, to identify homologs in the same and different species, to identify related members of the same gene family, in diagnostic and prognostic assays, in therapeutic applications (e.g., where an antisense polynucleotide is used to inhibit expression), etc.

-11-

The ability of two single-stranded polynucleotide preparations to hybridize together is a measure of their nucleotide sequence complementarity, e.g., base-pairing between nucleotides, such as A-T, G-C, etc. The invention thus also relates to polynucleotides, and their complements, which hybridize to a polynucleotide comprising a nucleotide sequence as set forth in Tables 1 and 2 and genomic sequences thereof. A nucleotide sequence hybridizing to the latter sequence will have a complementary polynucleotide strand, or act as a template for one in the presence of a polymerase (i.e., an appropriate polynucleotide synthesizing enzyme). The present invention includes both strands of polynucleotide, e.g., a sense strand and an anti-sense strand.

5

10

15

20

25

30

Hybridization conditions can be chosen to select polynucleotides which have a desired amount of nucleotide complementarity with the nucleotide sequences set forth in Tables 1 and 2 and genomic sequences thereof. A polynucleotide capable of hybridizing to such sequence, preferably, possesses, e.g., about 70%, 75%, 80%, 85%, 87%, 90%, 92%, 95%, 97%, 99%, or 100% complementarity, between the sequences. The present invention particularly relates to polynucleotide sequences which hybridize to the nucleotide sequences set forth in Tables 1 and 2 or genomic sequences thereof, under low or high stringency conditions. These conditions can be used, e.g., to select corresponding homologs in non-human species.

Polynucleotides which hybridize to polynucleotides of the present invention can be selected in various ways. Filter-type blots (i.e., matrices containing polynucleotide, such as nitrocellulose), glass chips, and other matrices and substrates comprising polynucleotides (short or long) of interest, can be incubated in a prehybridization solution (e.g., 6X SSC, 0.5% SDS, 100 μg/ml denatured salmon sperm DNA, 5X Denhardt's solution, and 50% formamide), at 22-68°C, overnight, and then hybridized with a detectable polynucleotide probe under conditions appropriate to achieve the desired stringency. In general, when high homology or sequence identity is desired, a high temperature can be used (e.g., 65 °C). As the homology drops, lower washing temperatures are used. For salt concentrations, the lower the salt concentration, the higher the stringency. The length of the probe is another consideration. Very short probes (e.g., less than 100 base pairs) are washed at lower temperatures, even if the homology is high. With short probes, formamide can be omitted. See, e.g., *Current Protocols in Molecular Biology*, Chapter 6, Screening of Recombinant Libraries; Sambrook et al., *Molecular Cloning*, 1989, Chapter 9.

10

15

20

25

30

For instance, high stringency conditions can be achieved by incubating the blot overnight (e.g., at least 12 hours) with a long polynucleotide probe in a hybridization solution containing, e.g., about 5X SSC, 0.5% SDS, 100 µg/ml denatured salmon sperm DNA and 50% formamide, at 42°C. Blots can be washed at high stringency conditions that allow, e.g., for less than 5% bp mismatch (e.g., wash twice in 0.1% SSC and 0.1% SDS for 30 min at 65°C), i.e., selecting sequences having 95% or greater sequence identity.

Other non-limiting examples of high stringency conditions includes a final wash at 65°C in aqueous buffer containing 30 mM NaCl and 0.5% SDS. Another example of high stringent conditions is hybridization in 7% SDS, 0.5 M NaPO₄, pH 7, 1 mM EDTA at 50°C, e.g., overnight, followed by one or more washes with a 1% SDS solution at 42°C. Whereas high stringency washes can allow for less than 5% mismatch, reduced or low stringency conditions can permit up to 20% nucleotide mismatch. Hybridization at low stringency can be accomplished as above, but using lower formamide conditions, lower temperatures and/or lower salt concentrations, as well as longer periods of incubation time.

Hybridization can also be based on a calculation of melting temperature (Tm) of the hybrid formed between the probe and its target, as described in Sambrook et al..

Generally, the temperature Tm at which a short oligonucleotide (containing 18 nucleotides or fewer) will melt from its target sequence is given by the following equation: Tm = (number of A's and T's) x 2°C + (number of C's and G's) x 4°C. For longer molecules, Tm = 81.5 + 16.6 log₁₀[Na⁺] + 0.41(%GC) - 600/N where [Na⁺] is the molar concentration of sodium ions, %GC is the percentage of GC base pairs in the probe, and N is the length. Hybridization can be carried out at several degrees below this temperature to ensure that the probe and target can hybridize. Mismatches can be allowed for by lowering the temperature even further.

Stringent conditions can be selected to isolate sequences, and their complements, which have, e.g., at least about 90%, 95%, or 97%, nucleotide complementarity between the probe (e.g., a short polynucleotide of Tables 1 and 2 or genomic sequences thereof) and a target polynucleotide.

Other homologs of polynucleotides of the present invention can be obtained from mammalian and non-mammalian sources according to various methods. For example, hybridization with a polynucleotide can be employed to select homologs, e.g., as described in Sambrook et al., *Molecular Cloning*, Chapter 11, 1989. Such homologs can have varying amounts of nucleotide and amino acid sequence identity and similarity to such

polynucleotides of the present invention. Mammalian organisms include, e.g., mice, rats, monkeys, pigs, cows, etc. Non-mammalian organisms include, e.g., vertebrates, invertebrates, zebra fish, chicken, Drosophila, C. elegans, Xenopus, yeast such as S. pombe, S. cerevisiae, roundworms, prokaryotes, plants, Arabidopsis, artemia, viruses, etc. The degree of nucleotide sequence identity between human and mouse can be about, e.g. 70% or more, 85% or more for open reading frames, etc.

Alignment

5

10

15

20

25

Alignments can be accomplished by using any effective algorithm. For pairwise alignments of DNA sequences, the methods described by Wilbur-Lipman (e.g., Wilbur and Lipman, Proc. Natl. Acad. Sci., 80:726-730, 1983) or Martinez/Needleman-Wunsch (e.g., Martinez, Nucleic Acid Res., 11:4629-4634, 1983) can be used. For instance, if the Martinez/Needleman-Wunsch DNA alignment is applied, the minimum match can be set at 9, gap penalty at 1.10, and gap length penalty at 0.33. The results can be calculated as a similarity index, equal to the sum of the matching residues divided by the sum of all residues and gap characters, and then multiplied by 100 to express as a percent. Similarity index for related genes at the nucleotide level in accordance with the present invention can be greater than 70%, 80%, 85%, 90%, 95%, 99%, or more. Pairs of protein sequences can be aligned by the Lipman-Pearson method (e.g., Lipman and Pearson, Science, 227:1435-1441, 1985) with k-tuple set at 2, gap penalty set at 4, and gap length penalty set at 12. Results can be expressed as percent similarity index, where related genes at the amino acid level in accordance with the present invention can be greater than 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, or more. Various commercial and free sources of alignment programs are available, e.g., MegAlign by DNA Star, BLAST (National Center for Biotechnology Information), BCM (Baylor College of Medicine) Launcher, etc.

Percent sequence identity can also be determined by other conventional methods, e.g., as described in Altschul et al., *Bull. Math. Bio.* 48: 603-616, 1986 and Henikoff and Henikoff, *Proc. Natl. Acad. Sci.* USA 89:10915-10919, 1992.

30 Specific polynucleotide probes

A polynucleotide of the present invention can comprise any continuous nucleotide sequence of Tables 1 and 2, sequences which share sequence identity thereto, or complements thereof. The term "probe" refers to any substance that can be used to detect,

WO 02/081638 PCT/US02/10824 -14-

identify, isolate, etc., another substance. A polynucleotide probe is comprised of nucleic acid can be used to detect, identify, etc., other nucleic acids, such as DNA and RNA.

These polynucleotides can be of any desired size that is effective to achieve the specificity desired. For example, a probe can be from about 7 or 8 nucleotides to several thousand nucleotides, depending upon its use and purpose. For instance, a probe used as a primer PCR can be shorter than a probe used in an ordered array of polynucleotide probes. Probe sizes vary, and the invention is not limited in any way by their size, e.g., probes can be from about 7-2000 nucleotides, 7-1000, 8-700, 8-600, 8-500, 8-400, 8-300, 8-150, 8-100, 8-75, 7-50, 10-25, 14-16, at least about 8, at least about 10, at least about 15, at least about 25, etc. The polynucleotides can have non-naturally-occurring nucleotides, e.g., inosine, AZT, 3TC, etc. The polynucleotides can have 100% sequence identity or complementarity to a sequence of Tables 1 and 2, or it can have mismatches or nucleotide substitutions, e.g., 1, 2, 3, 4, or 5 substitutions. The probes can be single-stranded or double-stranded.

5

10

15

20

25

30

In accordance with the present invention, a polynucleotide can be present in a kit, where the kit includes, e.g., one or more polynucleotides, a desired buffer (e.g., phosphate, tris, etc.), detection compositions, RNA or cDNA from different tissues to be used as controls, libraries, etc. The polynucleotide can be labeled or unlabeled, with radioactive or non-radioactive labels as known in the art. Kits can comprise one or more pairs of polynucleotides for amplifying nucleic acids specific for differentially-regulated genes of the present invention, e.g., comprising a forward and reverse primer effective in PCR. These include both sense and anti-sense orientations. For instance, in PCR-based methods (such as RT-PCR), a pair of primers are typically used, one having a sense sequence and the other having an antisense sequence.

Another aspect of the present invention is a nucleotide sequence that is specific to, or for, a selective polynucleotide. The phrases "specific for" or "specific to" a polynucleotide have a functional meaning that the polynucleotide can be used to identify the presence of one or more target genes in a sample. It is specific in the sense that it can be used to detect polynucleotides above background noise ("non-specific binding"). A specific sequence is a defined order of nucleotides which occurs in the polynucleotide, e.g., in the nucleotide sequences of Tables 1 and 2. A probe or mixture of probes can comprise a sequence or sequences that are specific to a plurality of target sequences, e.g., where the sequence is a consensus sequence, a functional domain, etc., e.g., capable of recognizing a family of related genes. Such sequences can be used as probes in any of the methods described herein or

incorporated by reference. Both sense and antisense nucleotide sequences are included. A specific polynucleotide according to the present invention can be determined routinely.

A polynucleotide comprising a specific sequence can be used as a hybridization probe to identify the presence of, e.g., human or mouse polynucleotide, in a sample comprising a mixture of polynucleotides, e.g., on a Northern blot. Hybridization can be performed under high stringent conditions (see, above) to select polynucleotides (and their complements which can contain the coding sequence) having at least 90%, 95%, 99%, etc., identity (i.e., complementarity) to the probe, but less stringent conditions can also be used. A specific polynucleotide sequence can also be fused in-frame, at either its 5' or 3' end, to various nucleotide sequences as mentioned throughout the patent, including coding sequences for enzymes, detectable markers, GFP, etc, expression control sequences, etc.

A polynucleotide probe, especially one that is specific to a polynucleotide of the present invention, can be used in gene detection and hybridization methods as already described. In one embodiment, a specific polynucleotide probe can be used to detect whether a particular tissue or cell-type is present in a target sample. To carry out such a method, a selective polynucleotide can be chosen which is characteristic of the desired target tissue. Such polynucleotide is preferably chosen so that it is expressed or displayed in the target tissue, but not in other tissues which are present in the sample. For instance, if detection of prostate is desired, it may not matter whether the selective polynucleotide is expressed in other tissues, as long as it is not expressed in cells normally present in blood, e.g., peripheral blood mononuclear cells. Starting from the selective polynucleotide, a specific polynucleotide probe can be designed which hybridizes (if hybridization is the basis of the assay) under the hybridization conditions to the selective polynucleotide, whereby the presence of the selective polynucleotide can be determined.

Probes which are specific for polynucleotides of the present invention can also be prepared using involve transcription-based systems, e.g., incorporating an RNA polymerase promoter into a selective polynucleotide of the present invention, and then transcribing antisense RNA using the polynucleotide as a template. See, e.g., U.S. Pat. No. 5,545,522.

Polynucleotide composition

10

15

20

25

30

A polynucleotide according to the present invention can comprise, e.g., DNA, RNA, synthetic polynucleotide, peptide polynucleotide, modified nucleotides, dsDNA, ssDNA, ssRNA, dsRNA, and mixtures thereof. A polynucleotide can be single- or double-stranded,

5

10

15

20

25

30

triplex, DNA:RNA, duplexes, comprise hairpins, and other secondary structures, etc. Nucleotides comprising a polynucleotide can be joined via various known linkages, e.g., ester, sulfamate, sulfamide, phosphorothioate, phosphoramidate, methylphosphonate, carbamate, etc., depending on the desired purpose, e.g., resistance to nucleases, such as RNAse H, improved in vivo stability, etc. See, e.g., U.S. Pat. No. 5,378,825. Any desired nucleotide or nucleotide analog can be incorporated, e.g., 6-mercaptoguanine, 8-oxo-guanine, etc.

Various modifications can be made to the polynucleotides, such as attaching detectable markers (avidin, biotin, radioactive elements, fluorescent tags and dyes, energy transfer labels, energy-emitting labels, binding partners, etc.) or moieties which improve hybridization, detection, and/or stability. The polynucleotides can also be attached to solid supports, e.g., nitrocellulose, magnetic or paramagnetic microspheres (e.g., as described in U.S. Pat. No. 5,411,863; U.S. Pat. No. 5,543,289; for instance, comprising ferromagnetic, supermagnetic, paramagnetic, superparamagnetic, iron oxide and polysaccharide), nylon, agarose, diazotized cellulose, latex solid microspheres, polyacrylamides, etc., according to a desired method. See, e.g., U.S. Pat. Nos. 5,470,967, 5,476,925, and 5,478,893.

Polynucleotide according to the present invention can be labeled according to any desired method. The polynucleotide can be labeled using radioactive tracers such as ³²P, ³⁵S, ³H, or ¹⁴C, to mention some commonly used tracers. The radioactive labeling can be carried out according to any method, such as, for example, terminal labeling at the 3' or 5' end using a radiolabeled nucleotide, polynucleotide kinase (with or without dephosphorylation with a phosphatase) or a ligase (depending on the end to be labeled). A non-radioactive labeling can also be used, combining a polynucleotide of the present invention with residues having immunological properties (antigens, haptens), a specific affinity for certain reagents (ligands), properties enabling detectable enzyme reactions to be completed (enzymes or coenzymes, enzyme substrates, or other substances involved in an enzymatic reaction), or characteristic physical properties, such as fluorescence or the emission or absorption of light at a desired wavelength, etc.

Nucleic acid detection methods

Another aspect of the present invention relates to methods and processes for detecting differentially-regulated genes of the present invention. Detection methods have a variety of applications, including for diagnostic, prognostic, forensic, and research applications. To

WO 02/081638

5

10

15

20

25

30

accomplish gene detection, a polynucleotide in accordance with the present invention can be used as a "probe." The term "probe" or "polynucleotide probe" has its customary meaning in the art, e.g., a polynucleotide which is effective to identify (e.g., by hybridization), when used in an appropriate process, the presence of a target polynucleotide to which it is designed. Identification can involve simply determining presence or absence, or it can be quantitative, e.g., in assessing amounts of a gene or gene transcript present in a sample. Probes can be useful in a variety of ways, such as for diagnostic purposes, to identify homologs, and to detect, quantitate, or isolate a polynucleotide of the present invention in a test sample.

-17-

Assays can be utilized which permit quantification and/or presence/absence detection of a target nucleic acid in a sample. Assays can be performed at the single-cell level, or in a sample comprising many cells, where the assay is "averaging" expression over the entire collection of cells and tissue present in the sample. Any suitable assay format can be used, including, but not limited to, e.g., Southern blot analysis, Northern blot analysis, polymerase chain reaction ("PCR") (e.g., Saiki et al., Science, 241:53, 1988; U.S. Pat. Nos. 4,683,195, 4,683,202, and 6,040,166; PCR Protocols: A Guide to Methods and Applications, Innis et al., eds., Academic Press, New York, 1990), reverse transcriptase polymerase chain reaction ("RT-PCR"), anchored PCR, rapid amplification of cDNA ends ("RACE") (e.g., Schaefer in Gene Cloning and Analysis: Current Innovations, Pages 99-115, 1997), ligase chain reaction ("LCR") (EP 320 308), one-sided PCR (Ohara et al., Proc. Natl. Acad. Sci., 86:5673-5677, 1989), indexing methods (e.g., U.S. Pat. No. 5,508,169), in situ hybridization, differential display (e.g., Liang et al., Nucl. Acid. Res., 21:3269-3275, 1993; U.S. Pat. Nos. 5,262,311, 5,599,672 and 5,965,409; WO97/18454; Prashar and Weissman, Proc. Natl. Acad. Sci., 93:659-663, and U.S. Pat. Nos. 6,010,850 and 5,712,126; Welsh et al., Nucleic Acid Res., 20:4965-4970, 1992, and U.S. Pat. No. 5,487,985) and other RNA fingerprinting techniques, nucleic acid sequence based amplification ("NASBA") and other transcription based amplification systems (e.g., U.S. Pat. Nos. 5,409,818 and 5,554,527; WO 88/10315), polynucleotide arrays (e.g., U.S. Pat. Nos. 5,143,854, 5,424,186; 5,700,637, 5,874,219, and 6,054,270; PCT WO 92/10092; PCT WO 90/15070), Qbeta Replicase (PCT/US87/00880), Strand Displacement Amplification ("SDA"), Repair Chain Reaction ("RCR"), nuclease protection assays, subtraction-based methods, Rapid-Scan™, etc. Additional useful methods include, but are not limited to, e.g., template-based amplification methods, competitive PCR (e.g., U.S. Pat. No. 5,747,251), redox-based assays (e.g., U.S. Pat. No. 5,871,918), Taqmanbased assays (e.g., Holland et al., Proc. Natl. Acad, Sci., 88:7276-7280, 1991; U.S. Pat. Nos.

WO 02/081638 PCT/US02/10824
-18-

5,210,015 and 5,994,063), real-time fluorescence-based monitoring (e.g., U.S. Pat. 5,928,907), molecular energy transfer labels (e.g., U.S. Pat. Nos. 5,348,853, 5,532,129, 5,565,322, 6,030,787, and 6,117,635; Tyagi and Kramer, *Nature Biotech.*, 14:303-309, 1996). Any method suitable for single cell analysis of gene or protein expression can be used, including in situ hybridization, immunocytochemistry, MACS, FACS, flow cytometry, etc. For single cell assays, expression products can be measured using antibodies, PCR, or other types of nucleic acid amplification (e.g., Brady et al., *Methods Mol. & Cell. Biol.* 2, 17-25, 1990; Eberwine et al., 1992, *Proc. Natl. Acad. Sci.*, 89, 3010-3014, 1992; U.S. Pat. No. 5,723,290). These and other methods can be carried out conventionally, e.g., as described in the mentioned publications.

5

10

15

20

25

30

Many of such methods may require that the polynucleotide is labeled, or comprises a particular nucleotide type useful for detection. The present invention includes such modified polynucleotides that are necessary to carry out such methods. Thus, polynucleotides can be DNA, RNA, DNA:RNA hybrids, PNA, etc., and can comprise any modification or substituent which is effective to achieve detection.

Detection can be desirable for a variety of different purposes, including research, diagnostic, prognostic, and forensic. For diagnostic purposes, it may be desirable to identify the presence or quantity of a polynucleotide sequence in a sample, where the sample is obtained from tissue, cells, body fluids, etc. In a preferred method as described in more detail below, the present invention relates to a method of detecting a polynucleotide comprising, contacting a target polynucleotide in a test sample with a polynucleotide probe under conditions effective to achieve hybridization between the target and probe; and detecting hybridization.

Any test sample in which it is desired to identify a polynucleotide or polypeptide thereof can be used, including, e.g., blood, urine, saliva, stool (for extracting nucleic acid, see, e.g., U.S. Pat. No. 6,177,251), swabs comprising tissue, biopsied tissue, tissue sections, cultured cells, etc.

Detection can be accomplished in combination with polynucleotide probes for other genes, e.g., genes which are expressed in other disease states, tissues, cells, such as brain, heart, kidney, spleen, thymus, liver, stomach, small intestine, colon, muscle, lung, testis, placenta, pituitary, thyroid, skin, adrenal gland, pancreas, salivary gland, uterus, ovary, prostate gland, peripheral blood cells (T-cells, lymphocytes, etc.), embryo, normal breast fat,

5

10

15

20

25

30

adult and embryonic stem cells, specific cell-types, such as endothelial, epithelial, myocytes, adipose, luminal epithelial, basoepithelial, myoepithelial, stromal cells, etc.

Polynucleotides can be used in wide range of methods and compositions, including for detecting, diagnosing, staging, grading, assessing, prognosticating, etc. diseases and disorders associated with differentially-regulated genes of the present invention, for monitoring or assessing therapeutic and/or preventative measures, in ordered arrays, etc. Any method of detecting genes and polynucleotides of Tables 1 and 2 can be used; certainly, the present invention is not to be limited how such methods are implemented.

Along these lines, the present invention relates to methods of detecting differentially-regulated genes described herein in a sample comprising nucleic acid. Such methods can comprise one or more the following steps in any effective order, e.g., contacting said sample with a polynucleotide probe under conditions effective for said probe to hybridize specifically to nucleic acid in said sample, and detecting the presence or absence of probe hybridized to nucleic acid in said sample, wherein said probe is a polynucleotide which is Tables 1 and 2, a polynucleotide having, e.g., about 70%, 80%, 85%, 90%, 95%, 99%, or more sequence identity thereto, effective or specific fragments thereof, or complements thereto. The detection method can be applied to any sample, e.g., cultured primary, secondary, or established cell lines, tissue biopsy, blood, urine, stool, and other bodily fluids, for any purpose.

Contacting the sample with probe can be carried out by any effective means in any effective environment. It can be accomplished in a solid, liquid, frozen, gaseous, amorphous, solidified, coagulated, colloid, etc., mixtures thereof, matrix. For instance, a probe in an aqueous medium can be contacted with a sample which is also in an aqueous medium, or which is affixed to a solid matrix, or vice-versa.

Generally, as used throughout the specification, the term "effective conditions" means, e.g., the particular milieu in which the desired effect is achieved. Such a milieu, includes, e.g., appropriate buffers, oxidizing agents, reducing agents, pH, co-factors, temperature, ion concentrations, suitable age and/or stage of cell (such as, in particular part of the cell cycle, or at a particular stage where particular genes are being expressed) where cells are being used, culture conditions (including substrate, oxygen, carbon dioxide, etc.). When hybridization is the chosen means of achieving detection, the probe and sample can be combined such that the resulting conditions are functional for said probe to hybridize specifically to nucleic acid in said sample.

The phrase "hybridize specifically" indicates that the hybridization between single-stranded polynucleotides is based on nucleotide sequence complementarity. The effective conditions are selected such that the probe hybridizes to a preselected and/or definite target nucleic acid in the sample. For instance, if detection of a gene set forth in Tables 1 and 2 is desired, a probe can be selected which can hybridize to such target gene under high stringent conditions, without significant hybridization to other genes in the sample. To detect homologs of a gene set forth in Tables 1 and 2, the effective hybridization conditions can be less stringent, and/or the probe can comprise codon degeneracy, such that a homolog is detected in the sample.

5

10

15

20

25

30

As already mentioned, the methods can be carried out by any effective process, e.g., by Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR, RACE PCR, *in situ* hybridization, etc., as indicated above. When PCR based techniques are used, two or more probes are generally used. One probe can be specific for a defined sequence which is characteristic of a selective polynucleotide, but the other probe can be specific for the selective polynucleotide, or specific for a more general sequence, e.g., a sequence such as polyA which is characteristic of mRNA, a sequence which is specific for a promoter, ribosome binding site, or other transcriptional features, a consensus sequence (e.g., representing a functional domain). For the former aspects, 5' and 3' probes (e.g., polyA, Kozak, etc.) are preferred which are capable of specifically hybridizing to the ends of transcripts. When PCR is utilized, the probes can also be referred to as "primers" in that they can prime a DNA polymerase reaction.

In addition to testing for the presence or absence of polynucleotides, the present invention also relates to determining the amounts at which polynucleotides of the present invention are expressed in sample and determining the differential expression of such polynucleotides in samples.. Such methods can involve substantially the same steps as described above for presence/absence detection, e.g., contacting with probe, hybridizing, and detecting hybridized probe, but using more quantitative methods and/or comparisons to standards.

The amount of hybridization between the probe and target can be determined by any suitable methods, e.g., PCR, RT-PCR, RACE PCR, Northern blot, polynucleotide microarrays, Rapid-Scan, etc., and includes both quantitative and qualitative measurements. For further details, see the hybridization methods described above and below. Determining by such hybridization whether the target is differentially expressed (e.g., up-regulated or

WO 02/081638

-21-

PCT/US02/10824

differentially-regulated) in the sample can also be accomplished by any effective means. For instance, the target's expression pattern in the sample can be compared to its pattern in a known standard, such as in a normal tissue, or it can be compared to another gene in the same sample. When a second sample is utilized for the comparison, it can be a sample of normal tissue that is known not to contain diseased cells. The comparison can be performed on samples which contain the same amount of RNA (such as polyadenylated RNA or total RNA), or, on RNA extracted from the same amounts of starting tissue. Such a second sample can also be referred to as a control or standard. Hybridization can also be compared to a second target in the same tissue sample. Experiments can be performed that determine a ratio between the target nucleic acid and a second nucleic acid (a standard or control), e.g., in a normal tissue. When the ratio between the target and control are substantially the same in a normal and sample, the sample is determined or diagnosed not to contain cells. However, if the ratio is different between the normal and sample tissues, the sample is determined to contain cancer cells. The approaches can be combined, and one or more second samples, or second targets can be used. Any second target nucleic acid can be used as a comparison, including "housekeeping" genes, such as beta-actin, alcohol dehydrogenase, or any other gene whose expression does not vary depending upon the disease status of the cell.

Methods of identifying polymorphisms, mutations, etc., of a differentially-regulated gene

20

25

30

10

15

Polynucleotides of the present invention can also be utilized to identify mutant alleles, SNPs, gene rearrangements and modifications, and other polymorphisms of the wild-type gene. Mutant alleles, polymorphisms, SNPs, etc., can be identified and isolated from cancers that are known, or suspected to have, a genetic component. Identification of such genes can be carried out routinely (see, above for more guidance), e.g., using PCR, hybridization techniques, direct sequencing, mismatch reactions (see, e.g., above), RFLP analysis, SSCP (e.g., Orita et al., *Proc. Natl. Acad. Sci.*, 86:2766, 1992), etc., where a polynucleotide having a sequence selected from Tables 1 and 2 is used as a probe, or genomic sequences thereof. The selected mutant alleles, SNPs, polymorphisms, etc., can be used diagnostically to determine whether a subject has, or is susceptible to a disorder associated with a differentially-regulated gene, as well as to design therapies and predict the outcome of the disorder. Methods involve, e.g., diagnosing a disorder associated with a differentially-regulated gene or determining susceptibility to a disorder, comprising, detecting the presence of a mutation in a gene selected from Tables 1 and 2. The detecting can be carried out by any

5

10

15

20

25

30

effective method, e.g., obtaining cells from a subject, determining the gene sequence or structure of a target gene (using, e.g., mRNA, cDNA, genomic DNA, etc), comparing the sequence or structure of the target gene to the structure of the normal gene, whereby a difference in sequence or structure indicates a mutation in the gene in the subject.

Polynucleotides can also be used to test for mutations, SNPs, polymorphisms, etc., e.g., using mismatch DNA repair technology as described in U.S. Pat. No. 5,683,877; U.S. Pat. No. 5,656,430; Wu et al., *Proc. Natl. Acad. Sci.*, 89:8779-8783, 1992.

The present invention also relates to methods of detecting polymorphisms in a differentially-regulated gene, comprising, e.g., comparing the structure of: genomic DNA comprising all or part of said gene, mRNA comprising all or part of said gene, cDNA comprising all or part of said gene, or a polypeptide comprising all or part of said gene, with the structure of said gene as set forth herein. The methods can be carried out on a sample from any source, e.g., cells, tissues, body fluids, blood, urine, stool, hair, egg, sperm, etc.

These methods can be implemented in many different ways. For example, "comparing the structure" steps include, but are not limited to, comparing restriction maps, nucleotide sequences, amino acid sequences, RFLPs, DNAse sites, DNA methylation fingerprints (e.g., U.S. Pat. No. 6,214,556), protein cleavage sites, molecular weights, electrophoretic mobilities, charges, ion mobility, etc., between a standard gene and a test gene. The term "structure" can refer to any physical characteristics or configurations which can be used to distinguish between nucleic acids and polypeptides. The methods and instruments used to accomplish the comparing step depends upon the physical characteristics which are to be compared. Thus, various techniques are contemplated, including, e.g., sequencing machines (both amino acid and polynucleotide), electrophoresis, mass spectrometer (U.S. Pat. Nos. 6,093,541, 6,002,127), liquid chromatography, HPLC, etc.

To carry out such methods, "all or part" of the gene or polypeptide can be compared. For example, if nucleotide sequencing is utilized, the entire gene can be sequenced, including promoter, introns, and exons, or only parts of it can be sequenced and compared, e.g., exon 1, exon 2, etc.

Mutagenesis

Mutated polynucleotide sequences of the present invention are useful for various

purposes, e.g., to create mutations of the polypeptides they encode, to identify functional regions of genomic DNA, to produce probes for screening libraries, etc. Mutagenesis can be carried out routinely according to any effective method, e.g., oligonucleotide-directed (Smith, M., Ann. Rev. Genet. 19:423-463, 1985), degenerate oligonucleotide-directed (Hill et al., Method Enzymology, 155:558-568, 1987), region-specific (Myers et al., Science, 229:242-246, 1985; Derbyshire et al., Gene, 46:145, 1986; Ner et al., DNA, 7:127, 1988), linkerscanning (McKnight and Kingsbury, Science, 217:316-324, 1982), directed using PCR, recursive ensemble mutagenesis (Arkin and Yourvan, Proc. Natl. Acad. Sci., 89:7811-7815, 1992), random mutagenesis (e.g., U.S. Pat. Nos. 5,096,815; 5,198,346; and 5,223,409), sitedirected mutagenesis (e.g., Walder et al., Gene, 42:133, 1986; Bauer et al., Gene, 37:73, 1985; Craik, Bio Techniques, January 1985, 12-19; Smith et al., Genetic Engineering: Principles and Methods, Plenum Press, 1981), phage display (e.g., Lowman et al., Biochem. 30:10832-10837, 1991; Ladner et al., U.S. Pat. No. 5,223,409; Huse, WIPO Publication WO 92/06204), etc. Desired sequences can also be produced by the assembly of target sequences using mutually priming oligonucleotides (Uhlmann, Gene, 71:29-40, 1988). For directed mutagenesis methods, analysis of the three-dimensional structure of a polypeptide can be used to guide and facilitate making mutants which effect polypeptide activity. Sites of substrate-enzyme interaction or other biological activities can also be determined by analysis of crystal structure as determined by such techniques as nuclear magnetic resonance, crystallography or photoaffinity labeling. See, for example, de Vos et al., Science 255:306-312, 1992; Smith et al., J. Mol. Biol. 224:899-904, 1992; Wlodaver et al., FEBS Lett. 309:59-64, 1992.

10

15

20

25

30

In addition, libraries of differentially-regulated genes and fragments thereof can be used for screening and selection of gene variants. For instance, a library of coding sequences can be generated by treating a double-stranded DNA with a nuclease under conditions where the nicking occurs, e.g., only once per molecule, denaturing the double-stranded DNA, renaturing it to for double-stranded DNA that can include sense/antisense pairs from different nicked products, removing single-stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting DNAs into an expression vectore. By this method, expression libraries can be made comprising "mutagenized" differentially-regulated genes. The entire coding sequence or parts thereof can be used.

-24-

Polynucleotide expression, polypeptides produced thereby, and specific-binding partners thereto.

5

10

15

20

25

30

A polynucleotide according to the present invention can be expressed in a variety of different systems, in vitro and in vivo, according to the desired purpose. For example, a polynucleotide can be inserted into an expression vector, introduced into a desired host, and cultured under conditions effective to achieve expression of a polypeptide coded for by the polynucleotide, to search for specific binding partners. Effective conditions include any culture conditions which are suitable for achieving production of the polypeptide by the host cell, including effective temperatures, pH, medium, additives to the media in which the host cell is cultured (e.g., additives which amplify or induce expression such as butyrate, or methotrexate if the coding polynucleotide is adjacent to a dhfr gene), cycloheximide, cell densities, culture dishes, etc. A polynucleotide can be introduced into the cell by any effective method including, e.g., naked DNA, calcium phosphate precipitation, electroporation, injection, DEAE-Dextran mediated transfection, fusion with liposomes, association with agents which enhance its uptake into cells, viral transfection. A cell into which a polynucleotide of the present invention has been introduced is a transformed host cell. The polynucleotide can be extrachromosomal or integrated into a chromosome(s) of the host cell. It can be stable or transient. An expression vector is selected for its compatibility with the host cell. Host cells include, mammalian cells, e.g., COS, CV1, BHK, CHO, HeLa, LTK, NIH 3T3, PC-3 (CRL-1435), LNCaP (CRL-1740), CA-HPV-10 (CRL-2220), PZ-HPV-7 (CRL-2221), MDA-PCa 2b (CRL-2422), 22Rv1 (CRL2505), NCI-H660 (CRL-5813), HS 804.Sk (CRL-7535), LNCaP-FGF (CRL-10995), RWPE-1 (CRL-11609), RWPE-2 (CRL-11610), PWR-1E (CRL 11611), rat MAT-Ly-LuB-2 (CRL-2376), and other prostate cells, insect cells, such as Sf9 (S. frugipeda) and Drosophila, bacteria, such as E. coli, Streptococcus, bacillus, yeast, such as Sacharomyces, S. cerevisiae, fungal cells, plant cells, embryonic or adult stem cells (e.g., mammalian, such as mouse or human).

Expression control sequences are similarly selected for host compatibility and a desired purpose, e.g., high copy number, high amounts, induction, amplification, controlled expression. Other sequences which can be employed include enhancers such as from SV40, CMV, RSV, inducible promoters, cell-type specific elements, or sequences which allow selective or specific cell expression. Promoters that can be used to drive its expression, include, e.g., the endogenous promoter, MMTV, SV40, trp, lac, tac, or T7 promoters for bacterial hosts; or alpha factor, alcohol oxidase, or PGH promoters for yeast. RNA

promoters can be used to produced RNA transcripts, such as T7 or SP6. See, e.g., Melton et al., *Polynucleotide Res.*, 12(18):7035-7056, 1984; Dunn and Studier. *J. Mol. Bio.*, 166:477-435, 1984; U.S. Pat. No. 5,891,636; Studier et al., *Gene Expression Technology, Methods in Enzymology*, 85:60-89, 1987. In addition, as discussed above, translational signals (including in-frame insertions) can be included.

When a polynucleotide is expressed as a heterologous gene in a transfected cell line, the gene is introduced into a cell as described above, under effective conditions in which the gene is expressed. The term "heterologous" means that the gene has been introduced into the cell line by the "hand-of-man." Introduction of a gene into a cell line is discussed above. The transfected (or transformed) cell expressing the gene can be lysed or the cell line can be used intact.

10

15

20

25

30

For expression and other purposes, a polynucleotide can contain codons found in a naturally-occurring gene, transcript, or cDNA, for example, e.g., as set forth in Tables 1 and 2, or it can contain degenerate codons coding for the same amino acid sequences. For instance, it may be desirable to change the codons in the sequence to optimize the sequence for expression in a desired host. See, e.g., U.S. Pat. Nos. 5,567,600 and 5,567,862.

A polypeptide according to the present invention can be recovered from natural sources, transformed host cells (culture medium or cells) according to the usual methods, including, detergent extraction (e.g., non-ionic detergent, Triton X-100, CHAPS, octylglucoside, Igepal CA-630), ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, hydroxyapatite chromatography, lectin chromatography, gel electrophoresis. Protein refolding steps can be used, as necessary, in completing the configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for purification steps. Another approach is express the polypeptide recombinantly with an affinity tag (Flag epitope, HA epitope, myc epitope, 6xHis, maltose binding protein, chitinase, etc) and then purify by anti-tag antibody-conjugated affinity chromatography.

The present invention also relates to antibodies, and other specific-binding partners, which are specific for polypeptides encoded by polynucleotides of the present invention.

Antibodies, e.g., polyclonal, monoclonal, recombinant, chimeric, humanized, single-chain, Fab, and fragments thereof, can be prepared according to any desired method. See, also, screening recombinant immunoglobulin libraries (e.g., Orlandi et al., *Proc. Natl. Acad. Sci.*,

5

10

15

20

25

30

86:3833-3837, 1989; Huse et al., *Science*, 256:1275-1281, 1989); in vitro stimulation of lymphocyte populations; Winter and Milstein, *Nature*, 349: 293-299, 1991. The antibodies can be IgM, IgG, subtypes, IgG2a, IgG1, etc. Antibodies, and immune responses, can also be generated by administering naked DNA See, e.g., U.S. Pat. Nos. 5,703,055; 5,589,466; 5,580,859. Antibodies can be used from any source, including, goat, rabbit, mouse, chicken (e.g., IgY; see, Duan, W0/029444 for methods of making antibodies in avian hosts, and harvesting the antibodies from the eggs). An antibody specific for a polypeptide means that the antibody recognizes a defined sequence of amino acids within or including the polypeptide. Other specific binding partners include, e.g., aptamers and PNA, can be prepared against specific epitopes or domains of differentially regulated genes.

The preparation of polyclonal antibodies is well-known to those skilled in the art. See, for example, Green et al., Production of Polyclonal Antisera, in IMMUNOCHEMICAL PROTOCOLS (Manson, ed.), pages 1-5 (Humana Press 1992); Coligan et al., Production of Polyclonal Antisera in Rabbits, Rats, Mice and Hamsters, in CURRENT PROTOCOLS IN IMMUNOLOGY, section 2.4.1 (1992). The preparation of monoclonal antibodies likewise is conventional. See, for example, Kohler & Milstein, Nature 256:495 (1975); Coligan et al., sections 2.5.1-2.6.7; and Harlow et al., ANTIBODIES: A LABORATORY MANUAL, page 726 (Cold Spring Harbor Pub. 1988).

Antibodies can also be humanized, e.g., where they are to be used therapeutically. Humanized monoclonal antibodies are produced by transferring mouse complementarity determining regions from heavy and light variable chains of the mouse immunoglobulin into a human variable domain, and then substituting human residues in the framework regions of the murine counterparts. The use of antibody components derived from humanized monoclonal antibodies obviates potential problems associated with the immunogenicity of murine constant regions. General techniques for cloning murine immunoglobulin variable domains are described, for example, by Orlandi et al., Proc. Nat 'l Acad. Sci. USA 86:3833 (1989), which is hereby incorporated in its entirety by reference. Techniques for producing humanized monoclonal antibodies are described, for example, in U.S. Pat. No. 6,054,297, Jones et al., Nature 321: 522 (1986); Riechmann et al., Nature 332: 323 (1988); Verhoeyen et al., Science 239: 1534 (1988); Carter et al., Proc. Nat'l Acad. Sci. USA 89: 4285 (1992); Sandhu, Crit. Rev. Biotech. 12: 437 (1992); and Singer et al., J. Immunol. 150: 2844 (1993).

Antibodies of the invention also may be derived from human antibody fragments isolated from a combinatorial immunoglobulin library. See, for example, Barbas et al.,

METHODS: A COMPANION TO METHODS IN ENZYMOLOGY, VOL. 2, page 119 (1991); Winter et al., Ann. Rev. Immunol. 12: 433 (1994). Cloning and expression vectors that are useful for producing a human immunoglobulin phage library can be obtained commercially, for example, from STRATAGENE Cloning Systems (La Jolla, Calif.).

5

In addition, antibodies of the present invention may be derived from a human monoclonal antibody. Such antibodies are obtained from transgenic mice that have been "engineered" to produce specific human antibodies in response to antigenic challenge. In this technique, elements of the human heavy and light chain loci are introduced into strains of mice derived from embryonic stem cell lines that contain targeted disruptions of the endogenous heavy and light chain loci. The transgenic mice can synthesize human antibodies specific for human antigens and can be used to produce human antibody-secreting hybridomas. Methods for obtaining human antibodies from transgenic mice are described, e.g., in Green et al., Nature Genet. 7:13 (1994); Lonberg et al., Nature 368:856 (1994); and Taylor et al., Int. Immunol. 6:579 (1994).

15

20

25

10

Antibody fragments of the present invention can be prepared by proteolytic hydrolysis of the antibody or by expression in E. coli of nucleic acid encoding the fragment. Antibody fragments can be obtained by pepsin or papain digestion of whole antibodies by conventional methods. For example, antibody fragments can be produced by enzymatic cleavage of antibodies with pepsin to provide a 5S fragment denoted F(ab').sub.2. This fragment can be further cleaved using a thiol reducing agent, and optionally a blocking group for the sulfhydryl groups resulting from cleavage of disulfide linkages, to produce 3.5S Fab' monovalent fragments. Alternatively, an enzymatic cleavage using pepsin produces two monovalent Fab' fragments and an Fc fragment directly. These methods are described, for example, by Goldenberg, U.S. Pat. No. 4,036,945 and No. 4,331,647, and references contained therein. These patents are hereby incorporated in their entireties by reference. See also Nisoiihoff et al., Arch. Biochem. Biophys. 89:230 (1960); Porter, Biochem. J. 73:119 (1959); Edelman et al., METHODS IN ENZYMOLOGY, VOL. 1, page 422 (Academic Press 1967); and Coligan et al. at sections 2.8.1-2.8.10 and 2.10.1-2.10.4.

30

Other methods of cleaving antibodies, such as separation of heavy chains to form monovalent light-heavy chain fragments, further cleavage of fragments, or other enzymatic, chemical, or genetic techniques can also be used. For example, Fv fragments comprise an association of V.sub.H and V.sub.L chains. This association may be noncovalent, as described in Inbar et al., Proc. Nat'l Acad. Sci. USA 69:2659 (1972). Alternatively, the

variable chains can be linked by an intermolecular disulfide bond or cross-linked by chemicals such as glutaraldehyde. See, e.g., Sandhu, supra. Preferably, the Fv fragments comprise V.sub.H and V.sub.L chains connected by a peptide linker. These single-chain antigen binding proteins (sFv) are prepared by constructing a structural gene comprising nucleic acid sequences encoding the V.sub.H and V.sub.L domains connected by an oligonucleotide. The structural gene is inserted into an expression vector, which is subsequently introduced into a host cell such as E. coli. The recombinant host cells synthesize a single polypeptide chain with a linker peptide bridging the two V domains. Methods for producing sFvs are described, for example, by Whitlow et al., METHODS: A COMPANION TO METHODS IN ENZYMOLOGY, VOL. 2, page 97 (1991); Bird etal., Science 242:423-426 (1988); Ladneret al., U.S. Pat. No. 4,946,778; Pack et al., Bio/Technology 11: 1271-77 (1993); and Sandhu, supra.

10

15

20

25

30

Another form of an antibody fragment is a peptide coding for a single complementarity-determining region (CDR). CDR peptides ("minimal recognition units") can be obtained by constructing genes encoding the CDR of an antibody of interest. Such genes are prepared, for example, by using the polymerase chain reaction to synthesize the variable region from RNA of antibody-producing cells. See, for example, Larrick et al., METHODS: A COMPANION TO METHODS IN ENZYMOLOGY, VOL. 2, page 106 (1991).

The term "antibody" as used herein includes intact molecules as well as fragments thereof, such as Fab, F(ab')2, and Fv which are capable of binding to an epitopic determinant present in Bin1 polypeptide. Such antibody fragments retain some ability to selectively bind with its antigen or receptor. The term "epitope" refers to an antigenic determinant on an antigen to which the paratope of an antibody binds. Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three dimensional structural characteristics, as well as specific charge characteristics. Antibodies can be prepared against specific epitopes or polypeptide domains.

Antibodies which bind to a differentially-regulated polypeptide of the present invention can be prepared using an intact polypeptide or fragments containing small peptides of interest as the immunizing antigen. For example, it may be desirable to produce antibodies that specifically bind to the N- or C-terminal domains of said polypeptide. The polypeptide or peptide used to immunize an animal which is derived from translated cDNA or chemically synthesized which can be conjugated to a carrier protein, if desired. Such commonly used

-29-

carriers which are chemically coupled to the immunizing peptide include keyhole limpet hemocyanin (KLH), thyroglobulin, bovine serum albumin (BSA), and tetanus toxoid.

Polyclonal or monoclonal antibodies can be further purified, for example, by binding to and elution from a matrix to which the polypeptide or a peptide to which the antibodies were raised is bound. Those of skill in the art will know of various techniques common in the immunology arts for purification and/or concentration of polyclonal antibodies, as well as monoclonal antibodies (See for example, Coligan, et al., Unit 9, *Current Protocols in Immunology*, Wiley Interscience, 1994, incorporated by reference).

Anti-idiotype technology can also be used to produce invention monoclonal antibodies which mimic an epitope. For example, an anti-idiotypic monoclonal antibody made to a first monoclonal antibody will have a binding domain in the hypervariable region which is the "image" of the epitope bound by the first monoclonal antibody.

Methods of detecting polypeptides

5

10

15

20

25

30

Polypeptides coded for by a differentially-regulated gene of the present invention can be detected, visualized, determined, quantitated, etc. according to any effective method. useful methods include, e.g., but are not limited to, immunoassays, RIA (radioimmunassay), ELISA, (enzyme-linked-immunosorbent assay), immunoflourescence, flow cytometry, histology, electron microscopy, light microscopy, in situ assays, immunoprecipitation, Western blot, etc.

Immunoassays may be carried in liquid or on biological support. For instance, a sample (e.g., blood, stool, urine, cells, tissue, body fluids, etc.) can be brought in contact with and immobilized onto a solid phase support or carrier such as nitrocellulose, or other solid support that is capable of immobilizing cells, cell particles or soluble proteins. The support may then be washed with suitable buffers followed by treatment with the detectably labeled differentially-regulated gene specific antibody. The solid phase support can then be washed with a buffer a second time to remove unbound antibody. The amount of bound label on solid support may then be detected by conventional means.

A "solid phase support or carrier" includes any support capable of binding an antigen, antibody, or other specific binding partner. Supports or carriers include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides, and magnetite. A support material can have any structural or physical configuration. Thus, the support configuration may be spherical, as in a bead, or cylindrical,

as in the inside surface of a test tube, or the external surface of a rod. Alternatively, the surface may be flat such as a sheet, test strip, etc. Preferred supports include polystyrene beads

5

10

15

20

25

30

One of the many ways in which gene peptide-specific antibody can be detectably labeled is by linking it to an enzyme and using it in an enzyme immunoassay (EIA). See, e.g., Voller, A., "The Enzyme Linked Immunosorbent Assay (ELISA)," 1978, Diagnostic Horizons 2, 1-7, Microbiological Associates Quarterly Publication, Walkersville, Md.); Voller, A. et al., 1978, J. Clin. Pathol. 31, 507-520; Butler, J. E., 1981, Meth. Enzymol. 73, 482-523; Maggio, E. (ed.), 1980, Enzyme Immunoassay, CRC Press, Boca Raton, Fla.. The enzyme which is bound to the antibody will react with an appropriate substrate, preferably a chromogenic substrate, in such a manner as to produce a chemical moiety that can be detected, for example, by spectrophotometric, fluorimetric or by visual means. Enzymes that can be used to detectably label the antibody include, but are not limited to, malate dehydrogenase, staphylococcal nuclease, delta-5-steroid isomerase, yeast alcohol dehydrogenase, .alpha.-glycerophosphate, dehydrogenase, triose phosphate isomerase, horseradish peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, .beta.galactosidase, ribonuclease, urease, catalase, glucose-6-phosphate dehydrogenase, glucoamylase and acetylcholinesterase. The detection can be accomplished by colorimetric methods that employ a chromogenic substrate for the enzyme. Detection may also be accomplished by visual comparison of the extent of enzymatic reaction of a substrate in comparison with similarly prepared standards.

Detection may also be accomplished using any of a variety of other immunoassays. For example, by radioactively labeling the antibodies or antibody fragments, it is possible to detect differentially-regulated peptides through the use of a radioimmunoassay (RIA). See, e.g., Weintraub, B., Principles of Radioimmunoassays, Seventh Training Course on Radioligand Assay Techniques, The Endocrine Society, March, 1986. The radioactive isotope can be detected by such means as the use of a gamma counter or a scintillation counter or by autoradiography.

It is also possible to label the antibody with a fluorescent compound. When the fluorescently labeled antibody is exposed to light of the proper wave length, its presence can then be detected due to fluorescence. Among the most commonly used fluorescent labeling compounds are fluorescein isothiocyanate, rhodamine, phycocrythrin, phycocyanin, allophycocyanin, o-phthaldehyde and fluorescamine. The antibody can also be detectably

-31-

labeled using fluorescence emitting metals such as those in the lanthanide series. These metals can be attached to the antibody using such metal chelating groups as diethylenetriaminepentacetic acid (DTPA) or ethylenediaminetetraacetic acid (EDTA).

The antibody also can be detectably labeled by coupling it to a chemiluminescent compound. The presence of the chemiluminescent-tagged antibody is then determined by detecting the presence of luminescence that arises during the course of a chemical reaction. Examples of useful chemiluminescent labeling compounds are luminol, isoluminol, theromatic acridinium ester, imidazole, acridinium salt and oxalate ester.

Likewise, a bioluminescent compound may be used to label the antibody of the present invention. Bioluminescence is a type of chemiluminescence found in biological systems in which a catalytic protein increases the efficiency of the chemiluminescent reaction. The presence of a bioluminescent protein is determined by detecting the presence of luminescence. Important bioluminescent compounds for purposes of labeling are luciferin, luciferase and aequorin.

15

20

25

30

10

5

Tissue and Disease

The prostate is a secretory organ surrounding the neck of the bladder and urethra. Its primary function is to produce fluids and other materials necessary for sperm transport and maintenance. Structurally, it has both glandular and nonglandular components. The glandular component is predominantly comprised of ducts and acini responsible for the production and transport prostatic fluids. Epithelial cells are the main identifiable cell found in these regions, primarily of the basal and secretory types, but also endocrine-paracrine and transitional epithelial. The non-glandular component contains the capsular and muscle tissues, which, respectively, hold the organ together and function in fluid discharge. See, e.g., Histology for Pathologists, Sternberg, S.S., editor, Raven Press, NY, 1992, Chapter 40.

The major diseases of the prostate include, e.g., prostatic hyperplasia (BPH), prostatitis, and prostate cancer (e.g., prostatic adenocarcinoma). BPH is a benign, proliferative disease of the prostatic epithelial cells. While it may cause urinary tract obstruction in some patients, for the most part, it is generally asymptomatic. Prostate cancer, on the other hand, is the most common form of cancer in white males in the United States, occurring predominantly in males over age 50. The prevalence of prostate diseases, such as prostate cancer, has made the discovery of prostate selective markers and gene expression patterns of great importance.

5

10

15

20

25

30

The most common scale of assessing prostate pathology is the Gleason grading system. See, e.g., Bostwick, *Am. J. Clin. Path.*, 102: s38-s56, 1994. Once the cancer is identified, staging can assess the size, location, and extent of the cancer. Several different staging scales are commonly used, including stages A-D, and Tumor-Nodes-Metastases (TNM). For treatment, diagnosis, staging, etc., of prostate conditions, methods can be carried out analogously to, and in combination with, U.S. Pat. Nos. 6,107,090; 6,057,116; 6,034,218; 6,004,267; 5,919,638; 5,882,864; 5,763,202; 5,747,264; 5,688,649; 5,552,277.

In addition, the present invention relates to methods of assessing a therapeutic or preventative intervention in a subject having a prostate cancer, comprising, e.g., detecting the expression levels of differentially-regulated target genes, wherein the target genes comprise a gene which is represented by a sequence selected from Tables 1 and 2, or, a gene represented by a sequence having 95% sequence identity or more to a sequence selected from Tables 1 and 2. By "therapeutic or preventative intervention," it is meant, e.g., a drug administered a patient, surgery, radiation, chemotherapy, and other measures taken to prevent a cancer or treat a cancer.

Grading, staging, comparing, assessing, methods and compositions

The present invention also relates to methods and compositions for staging and grading cancers. As already defined, staging relates to determining the extent of a cancer's spread, including its size and the degree to which other tissues, such as lymph nodes are involved in the cancer. Grading refers to the degree of a cell's retention of the characteristics of the tissue of its origin. A lower grade cancer comprises tumor cells that more closely resemble normal cells than a medium or higher grade cancer. Grading can be a useful diagnostic and prognostic tool. Higher grade cancers usually behave more aggressively than lower grade cancers. Thus, knowledge of the cancer grade, as well as its stage, can be a significant factor in the choice of the appropriate therapeutic intervention for the particular patient, e.g., surgery, radiation, chemotherapy, etc. Staging and grading can also be used in conjunction with a therapy to assess its efficacy, to determine prognosis, to determine effective dosages, etc.

Various methods of staging and grading cancers can be employed in accordance with the present invention. A "cell expression profile" or "cell expression fingerprint" is a representation of the expression of various different genes (e.g., polynucleotide sequences of SEQ ID NOS 1-107) in a given cell or sample comprising cells. These cell expression

WO 02/081638 PCT/US02/10824 -33-

profiles can be useful as reference standards. The cell expression fingerprints can be used alone for grading, or in combination with other grading methods.

5

10

15

20

25

30

The present invention also relates to methods and compositions for diagnosing a prostate cancer, or determining susceptibility to a prostate cancer, using polynucleotides, polypeptides, and specific-binding partners of the present invention to detect, assess, determine, etc., differentially-regulated genes of the present invention. In such methods, the gene can serve as a marker for prostate cancer, e.g., where the gene, when mutant, is a direct cause of the prostate cancer; where the gene is affected by another gene(s) which is directly responsible for the prostate cancer, e.g., when the gene is part of the same signaling pathway as the directly responsible gene; and, where the gene is chromosomally linked to the gene(s) directly responsible for the prostate cancer, and segregates with it. Many other situations are possible. To detect, assess, determine, etc., a probe specific for the gene can be employed as described above and below. Any method of detecting and/or assessing the gene can be used, including detecting expression of the gene using polynucleotides, antibodies, or other specific-binding partners.

The present invention relates to methods of diagnosing a disorder associated with prostate cancer, or determining a subject's susceptibility to such prostate cancer, comprising, e.g., assessing the expression of a differentially-regulated gene in a tissue sample comprising tissue or cells suspected of having prostate cancer (e.g., where the sample comprises prostate). The phrase "diagnosing" indicates that it is determined whether the sample has a prostate cancer cells. "Determining a subject's susceptibility to a prostate cancer" indicates that the subject is assessed for whether s/he is predisposed to get such a disease or disorder, where the predisposition is indicated by abnormal expression of the gene (e.g., gene mutation, gene expression pattern is not normal, etc.). Predisposition or susceptibility to a disease may result when a such disease is influenced by epigenetic, environmental, etc., factors.

By the phrase "assessing expression of a differentially-regulated gene," it is meant that the functional status of the gene is evaluated. This includes, but is not limited to, measuring expression levels of said gene, determining the genomic structure of said gene, determining the mRNA structure of transcripts from said gene, or measuring the expression levels of polypeptide coded for by said gene. Thus, the term "assessing expression" includes evaluating the all aspects of the transcriptional and translational machinery of the gene. For instance, if a promoter defect causes, or is suspected of

WO 02/081638 PCT/US02/10824 -34-

causing, the disorder, then a sample can be evaluated (i.e., "assessed") by looking (e.g., sequencing or restriction mapping) at the promoter sequence in the gene, by detecting transcription products (e.g., RNA), by detecting translation product (e.g., polypeptide). Any measure of whether the gene is functional can be used, including, polypeptide, polynucleotide, and functional assays for the gene's biological activity.

In making the assessment, it can be useful to compare the results to a normal gene, e.g., a gene which is not associated with the disorder. The nature of the comparison can be determined routinely, depending upon how the assessing is accomplished. If, for example, the mRNA levels of a sample is detected, then the mRNA levels of a normal can serve as a comparison, or a gene which is known not to be affected by the disorder. Methods of detecting mRNA are well known, and discussed above, e.g., but not limited to, Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR, RACE PCR, etc. Similarly, if polypeptide production is used to evaluate the gene, then the polypeptide in a normal tissue sample can be used as a comparison, or, polypeptide from a different gene whose expression is known not to be affected by the disorder. These are only examples of how such a method could be carried out.

10

15

20

25

30

Assessing the effects of therapeutic and preventative interventions (e.g., administration of a drug, chemotherapy, radiation, etc.) on prostate cancer is a major effort in drug discovery, clinical medicine, and pharmacogenomics. The evaluation of therapeutic and preventative measures, whether experimental or already in clinical use, has broad applicability, e.g., in clinical trials, for monitoring the status of a patient, for analyzing and assessing animal models, and in any scenario involving cancer treatment and prevention. Analyzing the expression profiles of polynucleotides of the present invention can be utilized as a parameter by which interventions are judged and measured. Treatment of a disorder can change the expression profile in some manner which is prognostic or indicative of the drug's effect on it. Changes in the profile can indicate, e.g., drug toxicity, return to a normal level, etc. Accordingly, the present invention also relates to methods of monitoring or assessing a therapeutic or preventative measure (e.g., chemotherapy, radiation, anti-neoplastic drugs, antibodies, etc.) in a subject having prostate cancer, or, susceptible to such a disorder, comprising, e.g., detecting the expression levels of one or more differentially-regulated genes of the present invention. A subject can be a cell-based assay system, non-human animal model, human patient, etc. Detecting can be accomplished as described for the methods above and below. By

-35-

"therapeutic or preventative intervention," it is meant, e.g., a drug administered to a patient, surgery, radiation, chemotherapy, and other measures taken to prevent, treat, or diagnose prostate cancer.

Expression can be assessed in any sample comprising any tissue or cell type, body fluid, etc., as discussed for other methods of the present invention, including cells from prostate can be used, or cells derived from prostate. By the phrase "cells derived from prostate," it is meant that the derived cells originate from prostate, e.g., when metastasis from a primary tumor site has occurred, when a progenitor-type or pluripotent cell gives rise to other cells, etc.

10

15

20

25

30

5

Identifying agent methods

The present invention also relates to methods of identifying agents, and the agents themselves, which modulate prostate cancer genes. These agents can be used to modulate the biological activity of the polypeptide encoded for the gene, or the gene, itself. Agents which regulate the gene or its product are useful in variety of different environments, including as medicinal agents to treat or prevent disorders associated with prostate cancer genes and as research reagents to modify the function of tissues and cell.

Methods of identifying agents generally comprise steps in which an agent is placed in contact with the gene, transcription product, translation product, or other target, and then a determination is performed to assess whether the agent "modulates" the target. The specific method utilized will depend upon a number of factors, including, e.g., the target (i.e., is it the gene or polypeptide encoded by it), the environment (e.g., in vitro or in vivo), the composition of the agent, etc.

For modulating the expression of a prostate cancer gene, a method can comprise, in any effective order, one or more of the following steps, e.g., contacting a prostate cancer gene (e.g., in a cell population) with a test agent under conditions effective for said test agent to modulate the expression of the prostate cancer, and determining whether said test agent modulates said gene. An agent can modulate expression of a gene at any level, including transcription, translation, and/or perdurance of the nucleic acid (e.g., degradation, stability, etc.) in the cell. For modulating the biological activity of prostate cancer polypeptides, a method can comprise, in any effective order, one or more of the following steps, e.g., contacting a polypeptide (e.g., in a cell, lysate, or isolated) with a test agent under conditions

WO 02/081638 PCT/US02/10824 -36-

effective for said test agent to modulate the biological activity of said polypeptide, and determining whether said test agent modulates said biological activity.

5

10

15

20

25

30

Contacting a gene or polypeptidewith the test agent can be accomplished by any suitable method and/or means that places the agent in a position to functionally control its expression or biological activity. Functional control indicates that the agent can exert its physiological effect on the gene or polypeptide through whatever mechanism it works. The choice of the method and/or means can depend upon the nature of the agent and the condition and type of environment in which the gene or polypeptide is presented, e.g., lysate, isolated, or in a cell population (such as, *in vivo*, *in vitro*, organ explants, etc.). For instance, if the cell population is an *in vitro* cell culture, the agent can be contacted with the cells by adding it directly into the culture medium. If the agent cannot dissolve readily in an aqueous medium, it can be incorporated into liposomes, or another lipophilic carrier, and then administered to the cell culture. Contact can also be facilitated by incorporation of agent with carriers and delivery molecules and complexes, by injection, by infusion, etc.

After the agent has been administered in such a way that it can gain access to the gene or polypeptide, it can be determined whether the test agent modulates the gene or polypeptide expression or biological activity. Modulation can be of any type, quality, or quantity, e.g., increase, facilitate, enhance, up-regulate, stimulate, activate, amplify, augment, induce, decrease, down-regulate, diminish, lessen, reduce, etc. The modulatory quantity can also encompass any value, e.g., 1%, 5%, 10%, 50%, 75%, 1-fold, 2-fold, 5-fold, 10-fold, 100-fold, etc. To modulate gene expression means, e.g., that the test agent has an effect on its expression, e.g., to effect the amount of transcription, to effect RNA splicing, to effect translation of the RNA into polypeptide, to effect RNA or polypeptide stability, to effect polyadenylation or other processing of the RNA, to effect post-transcriptional or post-translational processing, etc. To modulate biological activity means, e.g., that a functional activity of the polypeptide is changed in comparison to its normal activity in the absence of the agent. This effect includes, increase, decrease, block, inhibit, enhance, etc.

A test agent can be of any molecular composition, e.g., chemical compounds, biomolecules, such as polypeptides, lipids, nucleic acids (e.g., antisense to a polynucleotide sequence selected from Tables 1 and 2, or genomic sequences thereof), carbohydrates, antibodies, ribozymes, double-stranded RNA, aptamers, etc. For example, if a polypeptide to be modulated is a cell-surface molecule, a test agent can be an antibody that specifically recognizes it and, e.g., causes the polypeptide to be internalized, leading to its down

regulation on the surface of the cell. Such an effect does not have to be permanent, but can require the presence of the antibody to continue the down-regulatory effect. Antibodies can also be used to modulate the biological activity a polypeptide in a lysate or other cell-free form. Antisense can also be used as test agents to modulate gene expression.

5

10

15

20

Markers

The polynucleotides of the present invention can be used with other markers, especially prostate and prostate cancer markers to identity, detect, stage, diagnosis, determine, prognosticate, treat, etc., tissue, diseases and conditions, etc, of the prostate.

Markers can be polynucleotides, polypeptides, antibodies, ligands, specific binding partners, etc.

A number of genes and gene products have been identified which are associated with prostate cancer metastasis and/or progression, e.g., PSA, KAII (shows decreased expression in metastatic cells; Dong et al., *Science*, 268:884-6, 1995), D44 isoforms (differentially-regulated during carcinoma progression; Noordzij et al., *Clin. Cancer Res.*, 3:805-15, 1997), p53 (Effert et al., *J. Urol.*, 150:257-61, 1993), Rb, CDKN2, E-cadherin, PTEN (Hamilton et al., *Br. J. Cancer*, 82:1671-6, 2000; Dong et al., *Clin. Cancer Res.*, 7:304-308, 2001), bcl-2, prostatic acid phosphatase (PAP), prostate specific membrane antigen (e.g., U.S. Pat. Nos. 5,538,866 and 6,107,090), Smad3 (e.g., Kang et al., *Proc. Natl. Acad. Sci.*, 98:3018-3023, 2001), TGF-beta, and other oncogenes and tumor suppressor genes. See, also, Myers and Grizzle, *Eur. Urol.*, 30:153-166, 1996, for other biomarkers associated with prostatic carcinoma, such as PCNA, p185-erbB-2, p180erbB-3, TAG-72, nm23-H1 and FASE. Such markers can be used in combination with the methods of the present invention to facilitate identifying, grading, staging, prognostication, etc, of conditions and diseases of the prostate.

25

30

Therapeutics

Selective polynucleotides, polypeptides, and specific-binding partners thereto, can be utilized in therapeutic applications, especially to treat prostate cancer. Useful methods include, but are not limited to, immunotherapy (e.g., using specific-binding partners to polypeptides), vaccination (e.g., using a selective polypeptide or a naked DNA encoding such polypeptide), protein or polypeptide replacement therapy, gene therapy (e.g., germ-line correction, antisense), etc.

Various immunotherapeutic approaches can be used. For instance, unlabeled

-38-

antibody that specifically recognizes a tissue-specific antigen can be used to stimulate the body to destroy or attack the cancer, to cause down-regulation, to produce complement-mediated lysis, to inhibit cell growth, etc., of target cells which display the antigen, e.g., analogously to how c-erbB-2 antibodies are used to treat breast cancer. In addition, antibody can be labeled or conjugated to enhance its deleterious effect, e.g., with radionuclides and other energy emitting entitities, toxins, such as ricin, exotoxin A (ETA), and diphtheria, cytotoxic or cytostatic agents, immunomodulators, chemotherapeutic agents, etc. See, e.g., U.S. Pat. No. 6,107,090.

An antibody or other specific-binding partner can be conjugated to a second molecule, such as a cytotoxic agent, and used for targeting the second molecule to a tissue-antigen positive cell (Vitetta, E. S. et al., 1993, Immunotoxin therapy, in DeVita, Jr., V. T. et al., eds, Cancer: Principles and Practice of Oncology, 4th ed., J. B. Lippincott Co., Philadelphia, 2624-2636). Examples of cytotoxic agents include, but are not limited to, antimetabolites, alkylating agents, anthracyclines, antibiotics, anti-mitotic agents, radioisotopes and chemotherapeutic agents. Further examples of cytotoxic agents include, but are not limited to ricin, doxorubicin, daunorubicin, taxol, ethidium bromide, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicine, dihydroxy anthracin dione, actinomycin D, 1-dehydrotestosterone, diptheria toxin, Pseudomonas exotoxin (PE) A, PE40, abrin, elongation factor-2 and glucocorticoid. Techniques for conjugating therapeutic agents to antibodies are well.

10

15

20

25

30

In addition to immunotherapy, polynucleotides and polypeptides can be used as targets for non-immunotherapeutic applications, e.g., using compounds which interfere with function, expression (e.g., antisense as a therapeutic agent), assembly, etc. RNA interference can be used in vivtro and in vivo to silence differentially-expressed genes when its expression contributes to a disease (but also for other purposes, e.g., to identify the gene's function to change a developmental pathway of a cell, etc.). See, e.g., Sharp and Zamore, *Science*, 287:2431-2433, 2001; Grishok et al., *Science*, 287:2494, 2001.

Delivery of therapeutic agents can be achieved according to any effective method, including, liposomes, viruses, plasmid vectors, bacterial delivery systems, orally, systemically, etc. Therapeutic agents of the present invention can be administered in any form by any effective route, including, e.g., oral, parenteral, enteral, intraperitoneal, topical, transdermal (e.g., using any standard patch), ophthalmic, nasally, local, non-oral, such as aerosal, inhalation, subcutaneous, intramuscular, buccal, sublingual, rectal, vaginal, intra-

arterial, and intrathecal, etc. They can be administered alone, or in combination with any ingredient(s), active or inactive.

In addition to therapeutics, *per se*, the present invention also relates to methods of treating prostate cancer showing altered expression of differentially-regulated genes, such as Tables 1 and 2, comprising, e.g., administering to a subject in need thereof a therapeutic agent which is effective for regulating expression of said genes and/or which is effective in treating said disease. The term "treating" is used conventionally, e.g., the management or care of a subject for the purpose of combating, alleviating, reducing, relieving, improving the condition of, etc., of a disease or disorder. By the phrase "altered expression," it is meant that the disease is associated with a mutation in the gene, or any modification to the gene (or corresponding product) which affects its normal function. Thus, expression of a differentially-regulated gene refers to, e.g., transcription, translation, splicing, stability of the mRNA or protein product, activity of the gene product, differential expression, etc.

Any agent which "treats" the disease can be used. Such an agent can be one which regulates the expression of the gene. Expression refers to the same acts already mentioned, e.g. transcription, translation, splicing, stability of the mRNA or protein product, activity of the gene product, differential expression, etc. For instance, if the condition was a result of a complete deficiency of the gene product, administration of gene product to a patient would be said to treat the disease and regulate the gene's expression. Many other possible situations are possible, e.g., where the gene is aberrantly expressed, and the therapeutic agent regulates the aberrant expression by restoring its normal expression pattern.

25 Antisense

10

15

20

30

Antisense polynucleotide (e.g., RNA) can also be prepared from a polynucleotide according to the present invention, preferably an anti-sense to a gene of Tables 1 and 2. Antisense polynucleotide can be used in various ways, such as to regulate or modulate expression of the polypeptides they encode, e.g., inhibit their expression, for in situ hybridization, for therapeutic purposes, for making targeted mutations (in vivo, triplex, etc.) etc. For guidance on administering and designing anti-sense, see, e.g., U.S. Pat. Nos. 6,200,960, 6,200,807, 6,197,584, 6,190,869, 6,190,661, 6,187,587, 6,168,950, 6,153,595, 6,150,162, 6,133,246, 6,117,847, 6,096,722, 6,087,343, 6,040,296, 6,005,095, 5,998,383,

5,994,230, 5,891,725, 5,885,970, and 5,840,708. An antisense polynucleotides can be operably linked to an expression control sequence. A total length of about 35 bp can be used in cell culture with cationic liposomes to facilitate cellular uptake, but for *in vivo* use, preferably shorter oligonucleotides are administered, e.g. 25 nucleotides.

Antisense polynucleotides can comprise modified, nonnaturally-occurring nucleotides and linkages between the nucleotides (e.g., modification of the phosphate-sugar backbone; methyl phosphonate, phosphorothioate, or phosphorodithioate linkages; and 2'-O-methyl ribose sugar units), e.g., to enhance in vivo or in vitro stability, to confer nuclease resistance, to modulate uptake, to modulate cellular distribution and compartmentalization, etc. Any effective nucleotide or modification can be used, including those already mentioned, as known in the art, etc., e.g., disclosed in U.S. Pat. Nos. 6,133,438; 6,127,533; 6,124,445; 6,121,437; 5,218,103 (e.g., nucleoside thiophosphoramidites); 4,973,679; Sproat et al., "2'-O-Methyloligoribonucleotides: synthesis and applications," Oligonucleotides and Analogs A Practical Approach, Eckstein (ed.), IRL Press, Oxford, 1991, 49-86; Iribarren et al., "2'O-Alkyl Oligoribonucleotides as Antisense Probes," Proc. Natl. Acad. Sci. USA, 1990, 87, 7747-7751; Cotton et al., "2'-O-methyl, 2'-O-ethyl oligoribonucleotides and phosphorothioate oligodeoxyribonucleotides as inhibitors of the in vitro U7 snRNP-dependent mRNA processing event," Nucl. Acids Res., 1991, 19, 2629-2635.

20 Arrays

5

10

15

25

30

The present invention also relates to an ordered array of polynucleotide probes and specific-binding partners (e.g., antibodies) for detecting the expression of differentially-regulated genes in a sample, comprising, one or more polynucleotide probes or specific binding partners associated with a solid support, wherein each probe is specific for said genes, and the probes comprise a nucleotide sequence of Tables 1 and 2 which is specific for said gene, a nucleotide sequence having sequence identity to Tables 1 and 2 which is specific for said gene or polynucleotide, or complements thereto, or a specific-binding partner which is specific for said genes.

The phrase "ordered array" indicates that the probes are arranged in an identifiable or position-addressable pattern, e.g., such as the arrays disclosed in U.S. Pat. Nos. 6,156,501, 6,077,673, 6,054,270, 5,723,320, 5,700,637, WO09919711, WO00023803. The probes are associated with the solid support in any effective way. For instance, the probes can be bound to the solid support, either by polymerizing the probes on the substrate, or by attaching a

PCT/US02/10824

probe to the substrate. Association can be, covalent, electrostatic, noncovalent, hydrophobic, hydrophilic, noncovalent, coordination, adsorbed, absorbed, polar, etc. When fibers or hollow filaments are utilized for the array, the probes can fill the hollow orifice, be absorbed into the solid filament, be attached to the surface of the orifice, etc. Probes can be of any effective size, sequence identity, composition, etc., as already discussed.

-41-

Ordered arrays can further comprise polynucleotide probes or specific-binding partners which are specific for other genes, including genes specific for prostate or disorders associated with prostate, such as prostate cancer.

10 Transgenic animals

5

15

20

25

30

The present invention also relates to transgenic animals comprising differentially-regulated genes of the present invention. Such genes, as discussed in more detail below, include, but are not limited to, functionally-disrupted genes, mutated genes, ectopically or selectively-expressed genes, inducible or regulatable genes, etc. These transgenic animals can be produced according to any suitable technique or method, including homologous recombination, mutagenesis (e.g., ENU, Rathkolb et al., *Exp. Physiol.*, 85(6):635-644, 2000), and the tetracycline-regulated gene expression system (e.g., U.S. Pat. No. 6,242,667). The term "gene" as used herein includes any part of a gene, i.e., regulatory sequences, promoters, enhancers, exons, introns, coding sequences, etc. The nucleic acid present in the construct or transgene can be naturally-occurring wild-type, polymorphic, or mutated.

Along these lines, polynucleotides of the present invention can be used to create transgenic animals, e.g. a non-human animal, comprising at least one cell whose genome comprises a functional disruption of a differentially-regulated gene. By the phrases "functional disruption" or "functionally disrupted," it is meant that the gene does not express a biologically-active product. It can be substantially deficient in at least one functional activity coded for by the gene. Expression of a polypeptide can be substantially absent, i.e., essentially undetectable amounts are made. However, polypeptide can also be made, but which is deficient in activity, e.g., where only an amino-terminal portion of the gene product is produced.

The transgenic animal can comprise one or more cells. When substantially all its cells contain the engineered gene, it can be referred to as a transgenic animal "whose genome comprises" the engineered gene. This indicates that the endogenous gene loci of the animal has been modified and substantially all cells contain such modification.

WO 02/081638 PCT/US02/10824
-42-

Functional disruption of the gene can be accomplished in any effective way, including, e.g., introduction of a stop codon into any part of the coding sequence such that the resulting polypeptide is biologically inactive (e.g., because it lacks a catalytic domain, a ligand binding domain, etc.), introduction of a mutation into a promoter or other regulatory sequence that is effective to turn it off, or reduce transcription of the gene, insertion of an exogenous sequence into the gene which inactivates it (e.g., which disrupts the production of a biologically-active polypeptide or which disrupts the promoter or other transcriptional machinery), deletion of sequences from the a differentially-regulated gene, etc. Examples of transgenic animals having functionally disrupted genes are well known, e.g., as described in U.S. Pat. Nos. 6,239,326, 6,225,525, 6,207,878, 6,194,633, 6,187,992, 6,180,849, 6,177,610, 6,100,445, 6,087,555, 6,080,910, 6,069,297, 6,060,642, 6,028,244, 6,013,858, 5,981,830, 5,866,760, 5,859,314, 5,850,004, 5,817,912, 5,789,654, 5,777,195, and 5,569,824. A transgenic animal which comprises the functional disruption can also be referred to as a "knock-out" animal, since the biological activity of its a differentially-regulated gene has been "knocked-out." Knock-outs can be homozygous or heterozygous.

5

10

15

20

25

30

For creating functional disrupted genes, and other gene mutations, homologous recombination technology is of special interest since it allows specific regions of the genome to be targeted. Using homologous recombination methods, genes can be specifically-inactivated, specific mutations can be introduced, and exogenous sequences can be introduced at specific sites. These methods are well known in the art, e.g., as described in the patents above. See, also, Robertson, *Biol. Reproduc.*, 44(2):238-245, 1991. Generally, the genetic engineering is performed in an embryonic stem (ES) cell, or other pluripotent cell line (e.g., adult stem cells, EG cells), and that genetically-modified cell (or nucleus) is used to create a whole organism. Nuclear transfer can be used in combination with homologous recombination technologies.

For example, a differentially-regulated gene locus can be disrupted in mouse ES cells using a positive-negative selection method (e.g., Mansour et al., *Nature*, 336:348-352, 1988). In this method, a targeting vector can be constructed which comprises a part of the gene to be targeted. A selectable marker, such as neomycin resistance genes, can be inserted into a a differentially-regulated gene exon present in the targeting vector, disrupting it. When the vector recombines with the ES cell genome, it disrupts the function of the gene. The presence in the cell of the vector can be determined by expression of neomycin resistance. See, e.g., U.S. Pat. No. 6,239,326. Cells having at least one functionally disrupted gene can

5

10

15

20

25

30

be used to make chimeric and germline animals, e.g., animals having somatic and/or germ cells comprising the engineered gene. Homozygous knock-out animals can be obtained from breeding heterozygous knock-out animals. See, e.g., U.S. Pat. No. 6,225,525.

-43-

A transgenic animal, or animal cell, lacking one or more functional differentially-regulated genes can be useful in a variety of applications, including, as an animal model for cancer, for drug screening assays, as a source of tissues deficient in said gene activity, and any of the utilities mentioned in any issued U.S. Patent on transgenic animals, including, U.S. Pat. Nos. 6,239,326, 6,225,525, 6,207,878, 6,194,633, 6,187,992, 6,180,849, 6,177,610, 6,100,445, 6,087,555, 6,080,910, 6,069,297, 6,060,642, 6,028,244, 6,013,858, 5,981,830, 5,866,760, 5,859,314, 5,850,004, 5,817,912, 5,789,654, 5,777,195, and 5,569,824.

The present invention also relates to non-human, transgenic animal whose genome comprises recombinant a differentially-regulated gene nucleic acid operatively linked to an expression control sequence effective to express said coding sequence, e.g., in prostate. such a transgenic animal can also be referred to as a "knock-in" animal since an exogenous gene has been introduced, stably, into its genome.

A recombinant a differentially-regulated gene nucleic acid refers to a gene which has been introduced into a target host cell and optionally modified, such as cells derived from animals, plants, bacteria, yeast, etc. A recombinant a differentially-regulated gene includes completely synthetic nucleic acid sequences, semi-synthetic nucleic acid sequences, sequences derived from natural sources, and chimeras thereof. "Operable linkage" has the meaning used through the specification, i.e., placed in a functional relationship with another nucleic acid. When a gene is operably linked to an expression control sequence, as explained above, it indicates that the gene (e.g., coding sequence) is joined to the expression control sequence (e.g., promoter) in such a way that facilitates transcription and translation of the coding sequence. As described above, the phrase "genome" indicates that the genome of the cell has been modified. In this case, the recombinant a differentially-regulated gene has been stably integrated into the genome of the animal. The a differentially-regulated gene nucleic acid in operable linkage with the expression control sequence can also be referred to as a construct or transgene.

Any expression control sequence can be used depending on the purpose. For instance, if selective expression is desired, then expression control sequences which limit its expression can be selected. These include, e.g., tissue or cell-specific promoters, introns, enhancers, etc. For various methods of cell and tissue-specific expression, see, e.g., U.S. Pat.

Nos. 6,215,040, 6,210,736, and 6,153,427. These also include the endogenous promoter, i.e., the coding sequence can be operably linked to its own promoter. Inducible and regulatable promoters can also be utilized.

The present invention also relates to a transgenic animal which contains a functionally disrupted and a transgene stably integrated into the animals genome. Such an animal can be constructed using combinations any of the above- and below-mentioned methods. Such animals have any of the aforementioned uses, including permitting the knock-out of the normal gene and its replacement with a mutated gene. Such a transgene can be integrated at the endogenous gene locus so that the functional disruption and "knock-in" are carried out in the same step.

5

10

15

20

30

In addition to the methods mentioned above, transgenic animals can be prepared according to known methods, including, e.g., by pronuclear injection of recombinant genes into pronuclei of 1-cell embryos, incorporating an artificial yeast chromosome into embryonic stem cells, gene targeting methods, embryonic stem cell methodology, cloning methods, nuclear transfer methods. See, also, e.g., U.S. Patent Nos. 4,736,866; 4,873,191; 4,873,316; 5,082,779; 5,304,489; 5,174,986; 5,175,384; 5,175,385; 5,221,778; Gordon et al., Proc. Natl. Acad. Sci., 77:7380-7384, 1980; Palmiter et al., Cell, 41:343-345, 1985; Palmiter et al., Ann. Rev. Genet., 20:465-499, 1986; Askew et al., Mol. Cell. Bio., 13:4115-4124, 1993; Games et al. Nature, 373:523-527, 1995; Valancius and Smithies, Mol. Cell. Bio., 11:1402-1408, 1991; Stacey et al., Mol. Cell. Bio., 14:1009-1016, 1994; Hasty et al., Nature, 350:243-246, 1995; Rubinstein et al., Nucl. Acid Res., 21:2613-2617,1993; Cibelli et al., Science, 280:1256-1258, 1998. For guidance on recombinase excision systems, see, e.g., U.S. Pat. Nos. 5,626,159, 5,527,695, and 5,434,066. See also, Orban, P.C., et al., "Tissueand Site-Specific DNA Recombination in Transgenic Mice," Proc. Natl. Acad. Sci. USA, 89:6861-6865 (1992); O'Gorman, S., et al., "Recombinase-Mediated Gene Activation and Site-Specific Integration in Mammalian Cells," Science, 251:1351-1355 (1991); Sauer, B., et al., "Cre-stimulated recombination at loxP-Containing DNA sequences placed into the mammalian genome," Polynucleotides Research, 17(1):147-161 (1989); Gagneten, S. et al. (1997) Nucl. Acids Res. 25:3326-3331; Xiao and Weaver (1997) Nucl. Acids Res. 25:2985-2991; Agah, R. et al. (1997) J. Clin. Invest. 100:169-179; Barlow, C. et al. (1997) Nucl. Acids Res. 25:2543-2545; Araki, K. et al. (1997) Nucl. Acids Res. 25:868-872; Mortensen, R. N. et al. (1992) Mol. Cell. Biol. 12:2391-2395 (G418 escalation method); Lakhlani, P. P. et al. (1997) Proc. Natl. Acad. Sci. USA 94:9950-9955 ("hit and run"); Westphal and Leder

(1997) Curr. Biol. 7:530-533 (transposon-generated "knock-out" and "knock-in"); Templeton, N. S. et al. (1997) Gene Ther. 4:700-709 (methods for efficient gene targeting, allowing for a high frequency of homologous recombination events, e.g., without selectable markers); PCT International Publication WO 93/22443 (functionally-disrupted).

5

A polynucleotide according to the present invention can be introduced into any non-human animal, including a non-human mammal, mouse (Hogan et al., Manipulating the Mouse Embryo: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1986), pig (Hammer et al., Nature, 315:343-345, 1985), sheep (Hammer et al., Nature, 315:343-345, 1985), cattle, rat, or primate. See also, e.g., Church, 1987, Trends in Biotech. 5:13-19; Clark et al., Trends in Biotech. 5:20-24, 1987); and DePamphilis et al., BioTechniques, 6:662-680, 1988. Transgenic animals can be produced by the methods described in U.S. Pat. No. 5,994,618, and utilized for any of the utilities described therein.

Database

15

20

10

The present invention also relates to electronic forms of polynucleotides, polypeptides, etc., of the present invention, including computer-readable medium (e.g., magnetic, optical, etc., stored in any suitable format, such as flat files or hierarchical files) which comprise such sequences, or fragments thereof, e-commerce-related means, etc. Along these lines, the present invention relates to methods of retrieving gene sequences from a computer-readable medium, comprising, one or more of the following steps in any effective order, e.g., selecting a cell or gene expression profile, e.g., a profile that specifies that said gene is differentially expressed in prostate cancer, and retrieving said differentially expressed gene sequences, where the gene sequences consist of the genes represented by Tables 1 and 2.

25

30

A "gene expression profile" means the list of tissues, cells, etc., in which a defined gene is expressed (i.e, transcribed and/or translated). A "cell expression profile" means the genes which are expressed in the particular cell type. The profile can be a list of the tissues in which the gene is expressed, but can include additional information as well, including level of expression (e.g., a quantity as compared or normalized to a control gene), and information on temporal (e.g., at what point in the cell-cycle or developmental program) and spatial expression. By the phrase "selecting a gene or cell expression profile," it is meant that a user decides what type of gene or cell expression pattern he is interested in retrieving, e.g., he may require that the gene is differentially expressed in a tissue, or he may require that the

gene is not expressed in blood, but must be expressed in prostate cancer. Any pattern of expression preferences may be selected. The selecting can be performed by any effective method. In general, "selecting" refers to the process in which a user forms a query that is used to search a database of gene expression profiles. The step of retrieving involves searching for results in a database that correspond to the query set forth in the selecting step. Any suitable algorithm can be utilized to perform the search query, including algorithms that look for matches, or that perform optimization between query and data. The database is information that has been stored in an appropriate storage medium, having a suitable computer-readable format. Once results are retrieved, they can be displayed in any suitable format, such as HTML.

-46-

For instance, the user may be interested in identifying genes that are differentially expressed in a prostate cancer. He may not care whether small amounts of expression occur in other tissues, as long as such genes are not expressed in peripheral blood lymphocytes. A query is formed by the user to retrieve the set of genes from the database having the desired gene or cell expression profile. Once the query is inputted into the system, a search algorithm is used to interrogate the database, and retrieve results.

Advertising, licensing, etc., methods

The present invention also relates to methods of advertising, licensing, selling, purchasing, brokering, etc., genes, polynucleotides, specific-binding partners, antibodies, etc., of the present invention. Methods can comprises, e.g., displaying a a differentially-regulated gene gene, a differentially-regulated gene polypeptide, or antibody specific for a differentially-regulated gene in a printed or computer-readable medium (e.g., on the Web or Internet), accepting an offer to purchase said gene, polypeptide, or antibody.

25

30

5

10

15

20

Other

A polynucleotide, probe, polypeptide, antibody, specific-binding partner, etc., according to the present invention can be isolated. The term "isolated" means that the material is in a form in which it is not found in its original environment or in nature, e.g., more concentrated, more purified, separated from component, etc. An isolated polynucleotide includes, e.g., a polynucleotide having the sequenced separated from the chromosomal DNA found in a living animal, e.g., as the complete gene, a transcript, or a cDNA. This polynucleotide can be part of a vector or inserted into a chromosome (by

WO 02/081638 PCT/US02/10824 -47-

specific gene-targeting or by random integration at a position other than its normal position) and still be isolated in that it is not in a form that is found in its natural environment. A polynucleotide, polypeptide, etc., of the present invention can also be substantially purified. By substantially purified, it is meant that polynucleotide or polypeptide is separated and is essentially free from other polynucleotides or polypeptides, i.e., the polynucleotide or polypeptide is the primary and active constituent. A polynucleotide can also be a recombinant molecule. By "recombinant," it is meant that the polynucleotide is an arrangement or form which does not occur in nature. For instance, a recombinant molecule comprising a promoter sequence would not encompass the naturally-occurring gene, but would include the promoter operably linked to a coding sequence not associated with it in nature, e.g., a reporter gene, or a truncation of the normal coding sequence.

The term "marker" is used herein to indicate a means for detecting or labeling a target. A marker can be a polynucleotide (usually referred to as a "probe"), polypeptide (e.g., an antibody conjugated to a detectable label), PNA, or any effective material.

The topic headings set forth above are meant as guidance where certain information can be found in the application, but are not intended to be the only source in the application where information on such topic can be found.

Reference materials

5

10

15

20

25

30

For other aspects of the polynucleotides, reference is made to standard textbooks of molecular biology. See, e.g., Hames et al., <u>Polynucleotide Hybridization</u>, IL Press, 1985; Davis et al., <u>Basic Methods in Molecular Biology</u>, Elsevir Sciences Publishing, Inc., New York, 1986; Sambrook et al., <u>Molecular Cloning</u>, CSH Press, 1989; Howe, <u>Gene Cloning and Manipulation</u>, Cambridge University Press, 1995; Ausubel et al., <u>Current Protocols in Molecular Biology</u>, John Wiley & Sons, Inc., 1994-1998.

The preceding description, utilize the present invention to its fullest extent. The preceding preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limiting the remainder of the disclosure in any way whatsoever. The entire disclosure of all applications, patents and publications, cited above and in the figures are hereby incorporated by reference in their entirety.

-48-

Claims:

5

15

20

25

1. A method for diagnosing a prostate cancer in a sample comprising prostate tissue, comprising:

determining the number of target genes which are differentially-regulated in said sample, wherein said target genes are selected from SEQ ID NO 1-211 of claim 26, whereby said number is indicative of the probability that said sample comprises prostate cancer.

- A method of claim 1, wherein said determining is performed by Northern
 blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR, RACE PCR, or in situ hybridization using polynucleotide probes specific for genes selected from SEQ ID NO 1-211 of claim 26.
 - 3. A method of claim 1, wherein said determining is performed by: contacting said sample with a polynucleotide probe under conditions effective for said probe to hybridize specifically to a target nucleic acid in said sample, and detecting the amount of hybridization between said probe and target nucleic acid, and

comparing the amount of hybridization in said sample with the amount of hybridization of said probe in a second sample comprising normal prostate tissue.

4. A method of claim 1, wherein said determining is performed by: contacting said sample with a polynucleotide probe under conditions effective for said probe to hybridize specifically to a target nucleic acid in said sample, and detecting the amount of hybridization between said probe and target nucleic acid,

detecting the amount of hybridization between said probe and target nucleic acid

comparing the amount of hybridization in said sample with the amount of hybridization between a second probe and its corresponding second target nucleic acid in said sample.

-49-

- 5. A method of clam 2, wherein said probe is a contiguous sequence of at least 8 nucleotides selected from a polynucleotide sequence selected from SEQ ID NOS 1-107 of claim 26, or a complement thereto.
- 5 6. A method of assessing a therapeutic or preventative intervention in a subject having a prostate cancer, comprising,

determining the expression levels in a sample comprising prostate tissue of target genes which are differentially-regulated in prostate cancer,

wherein said target genes are selected from SEQ ID NO 1-211 of claim 26.

10

- 7. A method of claim 6, wherein the expression levels of at least 10 genes are determined.
- 8. A method of claim 6, wherein the determining is performed by Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR, RACE PCR, or in situ hybridization using polynucleotide probes specific for genes selected from SEQ IDS NO 1-211 of claim 26.
- 9. A method for identifying agents that modulate the expression of target polynucleotides differentially-regulated in prostate cancer cells, comprising,

contacting a prostate cell population with a test agent under conditions effective for said test agent to modulate the expression of a target polynucleotide in said cell population, and

- determining whether said test agent modulates said target polynucleotide expression, wherein said target polynucleotide is selected from SEQ ID NOS 1-107 of claim 26.
 - 10. A method of claim 9, wherein said agent is an antisense polynucleotide to said target polynucleotide sequence and which is effective to inhibit translation of said target polynucleotide.

25

11. A method for identifying agents that modulate a biological activity of a polypeptide differentially-regulated in prostate cancer cells, comprising,

contacting a polypeptide differentially-regulated in prostate cancer cells with a test agent under conditions effective for said test agent to modulate a biological activity of said polypeptide, and

determining whether said test agent modulates said biological activity, wherein said polypeptide is selected from SEQ ID NOS 108-211 of claim 26.

- 12. A method of treating prostate cancer, comprising,
- administering to a subject in need thereof a therapeutic agent which is effective for regulating expression of at least one sequence selected from SEQ ID NOS 1-211 of claim 26.
- 13. A method of claim 12, wherein said agent is an antibody or an antisense which is effective to inhibit translation of said gene.
 - 14. A method of diagnosing a prostate cancer comprising:

assessing the expression of at least one gene selected from SEQ ID NO 1-211 of claim 26, wherein said gene is differentially-regulated in said cancer.

20

15. A method of claim 14, wherein assessing is:

measuring mRNA expression levels of said or measuring the expression levels of polypeptide coded for by said gene.

25 16. A method of claim 14, further comprising:

comparing said expression to the expression of said polynucleotide in a known normal tissue.

-51-

- 17. A method of claim 14, wherein said assessing detecting is performed by: Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR, RACE PCR, or *in situ* hybridization, and
- using a polynucleotide probe specific for a polynucleotide sequence selected from SEQ ID NOS 1-107 of claim 26.
 - 18. A method of claim 14, wherein the expression of at least one up-regulated polynucleotide and at least one down-regulated polynucleotide are assessed.
- 19. A method of claim 14, wherein the expression of at least five up-regulated polynucleotides and at least five down-regulated polynucleotides are assessed.
 - 20. A method of retrieving prostate cancer differentially-regulated gene sequences from a computer-readable medium, comprising:

selecting a gene expression profile that specifies that said gene is differentiallyregulated in a prostate cancer, and retrieving prostate cancer differentially-regulated gene sequences,

where the gene sequences consist of genes selected from SEQ ID NO 1-211 of claim 26.

20

15

5

21. An ordered array of polynucleotide probes for detecting the expression of differentially-regulated prostate cancer genes in a sample, comprising:

polynucleotide probes associated with a solid support, wherein each probe is specific for a different differentially-regulated prostate cancer gene, and the probes are specific for genes selected from SEQ ID NO 1-211 of claim 26.

22. An array of claim 21, wherein said array comprises probes specific for upregulated and down-regulated polynucleotides.

30

25

23. A method of advertising for sale, commercial use, or licensing, comprising: displaying at least one polynucleotide or polypeptide sequence selected from

-52-

SEQ ID NO 1-211 of claim 26, or a complement thereto.

- 24. A non-human, transgenic mammal having a functional disruption in at least one gene selected from SEQ ID NO 1-211 of claim 26, and which is susceptible to prostate cancer.
- 25. A cell expression profile consisting of the expression pattern of a prostate cancer tissue sample for differentially-regulated genes of claim 26.
- 26. A plurality of genes which are differentially regulated in a prostate cancer, selected from:

up-regulated genes having SEQ ID NOS 1-75 and 140-211; and down-regulated genes having SEQ ID 76-107 and 108-139.

5

•	
<u>Φ</u>	
죠	
ø	
-	

19. ELUI DI INSTITUTO DE LA SONDA HUMBESZAA Human ribosomal protein S24 mRNA. Lean shame and bascaption 21. VIA DI COSCISSATIO UN STATEM HUMBESZAA Human ribosomal protein S24 mRNA. Lean shame and bascaption of the statement of the statement of the statement and bascaption of the statement of	DNA SEO	Prt	L			
141 PC010849U U 142 PC010839U U 143 PC010839U U 144 PC020728U U 146 PC020732U U 147 PC011348U U 148 PC040373U U 149 PC04039U U 140 PC04039U U 150 PC04044U U 151 PC04044U U 152 PC051210U U 153 PC05029U U 154 PC05029U U 155 PC05029U U 156 PC06043U U 157 PC06043U U 167 PC06043U U 168 PC07052U U 169 PC07053U U 161 PC06043U U 162 PC06043U U 163 PC06043U U 164 PC06043U U 165 PC06043U U 167 PC06043U U 167 PC06043U U 168 PC07053U U 169 PC07053U U 169 PC07053U U 169 PC07053U U 170 PC06147U U 171 PC06043U U 172 PC06147U U 173 PC06183U U 174 PC06183U U 175 PC06183U U 177 PC06084U U 177 PC08081U U 177 PC08081U U 178 PC07089U U 178 PC07089U U 178 PC07089U U 179 PC07089U U	2	25 DEC 10	DC03003111	<u> </u>		WIMPDC24A Himan ribosomal nortein C24 mBNA
142 PC010839U U 143 PC010957U U 144 PC020728U U 145 PC011342U U 146 PC020732U U 147 PC011348U U 148 PC040132U U 149 PC040132U U 149 PC040132U U 150 PC040132U U 151 PC04044U U 152 PC051210U U 153 PC050209U U 154 PC050209U U 155 PC050209U U 156 PC050131U U 157 PC05044U U 158 PC050209U U 158 PC050209U U 159 PC050209U U 159 PC050209U U 150 PC060441U U 150 PC060441U U 151 PC060441U U 161 PC060441U U 162 PC070132U U 163 PC050209U U 164 PC060441U U 165 PC070132U U 166 PC070132U U 167 PC060171U U 177 PC060177U U 177 PC060183U U 177 PC090842U U	2	14	PC010849U	حاد	3978243	AFORM 4 Through International Programmer Aformation and Aformation
143 PC010957U U 144 PC020728U U 145 PC021342U U 146 PC020732U U 147 PC041029U U 148 PC040132U U 148 PC040132U U 150 PC040158U U 151 PC040418U U 152 PC051210U U 153 PC05029U U 154 PC05029U U 155 PC05029U U 156 PC050131U U 157 PC050209U U 158 PC050209U U 158 PC050209U U 158 PC050209U U 159 PC050209U U 158 PC050209U U 159 PC05043U U 161 PC060441U U 162 PC060441U U 163 PC060441U U 164 PC060441U U 165 PC060441U U 166 PC060441U U 167 PC060430U U 168 PC060430U U 168 PC070534U U 169 PC070534U U 170 PC061179U U 171 PC060130U U 172 PC061179U U 173 PC061830U U 174 PC060842U U 175 PC08051U U 177 PC090842U U 177 PC090842U U 178 PC091089U U 177 PC090842U U 178 PC091089U U 178 PC091089U U 179 PC071089U U 179 PC071089U U	e.	142	PC010839U	٥	6912451	NM 012289.11 Homo sapiens Kelch-like ECH-associated protein 1 (KIAA0132).
144 PC020728U U 145 PC021342U U 146 PC030732U U 147 PC041039U U 148 PC030732U U 148 PC030732U U 149 PC050853U U 150 PC040158U U 151 PC040441U U 152 PC05029EU U 154 PC05029EU U 155 PC050151U U 156 PC050151U U 157 PC050202U U 158 PC05043U U 158 PC05043U U 159 PC05043U U 169 PC060441U U 161 PC060441U U 161 PC060441U U 162 PC060441U U 163 PC050202U U 164 PC060441U U 165 PC06043U U 166 PC06043U U 167 PC06043U U 167 PC06043U U 168 PC07034U U 177 PC06043U U 178 PC07089U U 178 PC07089U U 178 PC07089U U 179 PC07089U U	4	143	PC010957U	5	4557844	NM 001034.1 Homo sapiens ribonucleotide reductase M2 polypeptide (RRM2) mRNA
146 PC021342U U 147 PC041039U U 148 PC030732U U 148 PC041039U U 149 PC050853U U 149 PC050853U U 150 PC040158U U 151 PC040158U U 152 PC050209U U 153 PC050209U U 154 PC050209U U 155 PC050209U U 156 PC050149U U 157 PC050209U U 158 PC050443U U 158 PC050443U U 169 PC041338U U 169 PC041338U U 161 PC041338U U 168 PC050443U U 169 PC060443U U 169 PC060443U U 161 PC060443U U 161 PC060443U U 162 PC060443U U 163 PC060443U U 164 PC060443U U 165 PC060443U U 167 PC060441U U 168 PC070532U U 169 PC07053U U 170 PC061477U U 171 PC060842U U 172 PC061839U U 173 PC061839U U 174 PC080831U U 175 PC080831U U 177 PC080842U U 177 PC080842U U 178 PC080842U U 178 PC080831U U 178 PC080842U U 178 PC080842U U 178 PC070889U U 179 PC070889U U 177 PC080842U U	5	144	PC020728U	٥	4503478	NM 001960.1 Homo sapiens eukaryotic translation elongation factor 1 delta
146 PC030732U U 147 PC041039U U 148 PC040972U U 149 PC040972U U 149 PC040972U U 150 PC040972U U 151 PC04041U U 152 PC051210U U 153 PC051210U U 154 PC050295U U 156 PC050139U U 157 PC05029U U 158 PC050139U U 158 PC05039U U 159 PC05039U U 169 PC041338U U 160 PC041338U U 161 PC041338U U 162 PC060441U U 163 PC060441U U 164 PC060441U U 165 PC060441U U 167 PC060441U U 168 PC070534U U 169 PC06052U U 169 PC06051U U 169 PC06052U U 170 PC06177U U 171 PC06094U U 172 PC06177U U 173 PC06182U U 174 PC06084U U 175 PC06082U U 177 PC06082U U 177 PC06082U U 177 PC06082U U 178 PC07089U U 178 PC07089U U 178 PC07089U U 179 PC07089U U 177 PC06087U U 177 PC06087U U 178 PC07089U U 178 PC07089U U 178 PC07089U U 179 PC07089U U	9	145	PC021342U	L	340057	HUMUB Human poly-ubiquitin mRNA complete cds
PC011348U U 147 PC041029U U 148 PC0400372U U 148 PC0400372U U 150 PC040158U U 151 PC040158U U 152 PC051210U U 152 PC051210U U 153 PC050151U U 154 PC050296U U 155 PC050151U U 156 PC050151U U 157 PC052095U U 158 PC050030U U 158 PC050030U U 159 PC050474U U 160 PC041980U U 161 PC060441U U 162 PC060441U U 163 PC060441U U 164 PC060441U U 165 PC060441U U 167 PC060441U U 167 PC060441U U 168 PC070544U U 168 PC070541U U 169 PC070541U U 167 PC060471U U 167 PC060471U U 167 PC060471U U 168 PC070541U U 168 PC070541U U 169 PC070541U U 177 PC060470U U 177 PC060470U U 177 PC060470U U 177 PC060830U U 177 PC060830U U 177 PC060830U U 177 PC090842U U 178 PC091058U U 178 PC091058U U 179 PC091058U U 177 PC090842U U 178 PC0910780U U	_	146	PC030732U	5	4504374	Homo sapiens H factor 1 (complement) (HF1) mRNA
147 PC041029U U 148 PC040972U U 150 PC040158U U 151 PC040441U U 152 PC051210U U 153 PC05030U U 154 PC05029U U 155 PC050151U U 156 PC050151U U 157 PC050209U U 158 PC05044U U 169 PC05044U U 161 PC06043U U 165 PC06043U U 165 PC06043U U 167 PC06043U U 168 PC070152U U 169 PC070152U U 169 PC070152U U 170 PC06183U U 171 PC06084U U 171 PC06084U U 172 PC06183U U 173 PC06183U U 174 PC06183U U 175 PC06183U U 177 PC06084U U	80		PC011348U	٥	3093338	HSY17176 Homo sapiens mRNA from HIV-associated non-Hodgkin's lymphoma (clone hl2-264)
148 PC040972U U 150 PC04015BU U 151 PC040415BU U 152 PC051210U U 152 PC051210U U 153 PC05029BU U 154 PC05029BU U 155 PC050209BU U 156 PC05015BU U 157 PC05209BU U 158 PC050209BU U 158 PC050209BU U 158 PC050209BU U 169 PC04133BU U 161 PC04138BU U 162 PC060443U U 163 PC060443U U 164 PC060441U U 165 PC07033BU U 165 PC07013BU U 165 PC07033BU U 167 PC060147U U 168 PC07053BU U 168 PC07053BU U 169 PC07053BU U 170 PC061477U U 171 PC060147U U 172 PC061479U U 173 PC06183PU U 174 PC06183PU U 175 PC06183PU U 177 PC090842U U	6	147	PC041029U	_	4589595	AB023193 Homo sapiens mRNA for KIAA0976 protein complete cds
149 PC050853U U 150 PC040158U U 151 PC040411 U 152 PC051210U U 153 PC050296U U 154 PC050296U U 155 PC050151U U 156 PC050151U U 157 PC050209U U 158 PC05005U U 159 PC05005U U 159 PC05005U U 150 PC041338U U 150 PC041338U U 150 PC041338U U 151 PC060441U U 161 PC060441U U 162 PC060441U U 163 PC06052U U 164 PC060441U U 165 PC060441U U 167 PC060441U U 168 PC070348U U 169 PC070348U U 169 PC070348U U 169 PC070348U U 169 PC070348U U 170 PC061477U U 171 PC060842U U 172 PC061477U U 173 PC061839U U 174 PC060842U U 175 PC08051U U 177 PC080831U U 178 PC080531U U 178 PC080531U U 178 PC080531U U 179 PC070890U U 177 PC080842U U 177 PC080842U U 177 PC080842U U 178 PC070890U U 178 PC070890U U 179 PC070890U U	10	148	PC040972U	_	4885132	Homo sapiens centromere protein F (400kD) (CENPF) mRNA
150 PC040158U U 151 PC040441U U 152 PC05130U U 153 PC05131U U 155 PC050151U U 155 PC050151U U 156 PC050151U U 157 PC05020U U 158 PC050020U U 159 PC050020U U 159 PC050020U U 160 PC041338U U 161 PC041338U U 161 PC041338U U 162 PC060441U U 163 PC060441U U 164 PC060441U U 165 PC060441U U 166 PC070348U U 167 PC060441U U 168 PC070348U U 169 PC070349U U 170 PC061477U U 171 PC060940U U 172 PC061379U U 173 PC061821U U 174 PC060842U U 175 PC061821U U 177 PC060842U U 177 PC060842U U 178 PC08051U U 178 PC08051U U 178 PC08051U U 179 PC070890U U 177 PC080841U U 177 PC080842U U 177 PC080842U U 177 PC080842U U 178 PC070890U U 178 PC070890U U 179 PC070890U U 179 PC070890U U	=	149	PC050853U	_	4503724	NM 000801.1 Homo sapiens FK506-binding protein 1A (12kD) (FKBP1A) mRNA
151 PC040441U U 152 PC051210U U 153 PC050139U U 155 PC050151U U 156 PC050151U U 157 PC052095U U 158 PC052095U U 158 PC052095U U 159 PC050209U U 161 PC041338U U 161 PC041338U U 162 PC060474U U 163 PC060474U U 164 PC060431U U 165 PC060431U U 165 PC060431U U 167 PC060431U U 168 PC070544U U 167 PC060430U U 167 PC060430U U 177 PC060830U U 177 PC060830U U 177 PC061839U U 177 PC071851U U	12	150	PC040158U	∍	4826949	Homo sapiens kaliikrein 7 (chymotryptic stratum comeum) (KLK7) mRNA
152 PC051210U U 154 PC050296U U 155 PC050151U U 156 PC050151U U 157 PC0502095U U 158 PC0502095U U 158 PC0502095U U 158 PC0502091 U 169 PC050474U U 161 PC0614319 U 162 PC060471U U 164 PC060471U U 165 PC060471U U 166 PC060471U U 167 PC060471U U 167 PC060471U U 168 PC070544U U 167 PC060471U U 168 PC070541U U 170 PC061471U U 171 PC061471U U 172 PC061471U U 173 PC061471U U 174 PC061832U U 175 PC061832U U 177 PC060839U U 177 PC070830U U 177 PC070830U U 177 PC070830U U	13	151	PC040441U	2	4826879	Homo sapiens oxidase (cytochrome c) assembly 1-like (OXA1L) mRNA
154 PC050296U U 155 PC050151U U 156 PC050151U U 157 PC052095U U 158 PC052095U U 159 PC052095U U 159 PC052095U U 160 PC041338U U 161 PC041338U U 162 PC060431U U 163 PC060431U U 164 PC060441U U 165 PC060431U U 166 PC060431U U 166 PC060431U U 167 PC0601477U U 168 PC070343U U 170 PC061477U U 171 PC0601471U U 172 PC061471U U 173 PC061830U U 174 PC060841U U 175 PC090842U U 177 PC090842U U	4	152	PC051210U	5	4506056	NM 002731.1 Homo sapiens protein kinase, cAMP-dependent, catalytic, beta
155 PC050151U U 156 PC050149U U 157 PC052095U U 158 PC052095U U 159 PC052095U U 159 PC051338U U 160 PC041338U U 161 PC04138U U 162 PC060443U U 163 PC060443U U 164 PC060441U U 165 PC060441U U 165 PC060441U U 166 PC060529U U 166 PC060529U U 167 PC060441U U 167 PC060441U U 168 PC070534U U 170 PC061477U U 171 PC060940U U 172 PC061839U U 173 PC061839U U 174 PC060842U U 175 PC08054U U 177 PC08081U U 177 PC08081U U 178 PC08055U U 177 PC08081U U 178 PC08055U U 177 PC08081U U 178 PC08051U U 177 PC08081U U	15	154	PC050296U	5	5453633	Homo sapiens dynein cytoplasmic light intermediate polypeptide 2 (DNCLI2) mRNA
156 PC050149U U 157 PC052095U U 158 PC052095U U 158 PC052029U U 159 PC050050U U 160 PC041338U U 161 PC04138U U 162 PC060471U U 163 PC060471U U 164 PC060471U U 165 PC070152U U 166 PC070534U U 167 PC06041U U 168 PC07054U U 169 PC07054U U 170 PC061477U U 171 PC060940U U 172 PC061827U U 173 PC061821U U 174 PC060871U U 175 PC08051U U 177 PC060871U U 177 PC060872U U 177 PC060872U U 177 PC060872U U 178 PC07089U U 178 PC07089U U 179 PC07089U U 177 PC07089U U	16	155	PC050151U	5	6715599	NM 002078.2] Homo sapiens golgi autoantigen, golgin subfamily a, 4
157 PC052095U U 158 PC052095U U 159 PC052029U U 161 PC041338U U 161 PC041338U U 162 PC060443U U 163 PC060443U U 164 PC060443U U 165 PC060441U U 166 PC060529U U 166 PC060529U U 167 PC06044U U 167 PC06044U U 167 PC06143U U 177 PC06044U U 177 PC06040U U 177 PC06040U U 177 PC06040U U 177 PC061839U U 177 PC06051U U 177 PC07089U U 177 PC07089U U 177 PC07089U U	17	156	PC050149U	_	2217930	AB004884 Homo sapiens mRNA for PKU-alpha,
158 PC052029U U 169 PC050209U U 161 PC041338U U 161 PC041380U U 162 PC060474U U 163 PC060431 U 164 PC060431 U 165 PC060431 U 166 PC06059U U 167 PC06039U U 167 PC060340U U 168 PC070544U U 168 PC070541U U 167 PC061477U U 177 PC061479U U 177 PC06183U U 177 PC07089U U	18	157	PC052095U	_	641957	HUMMYOHCB Human nonmuscle myosin heavy chain-B (MYH10) mRNA partial cds
159 PC050620U U 160 PC041338U U 161 PC041938U U 162 PC06043U U 163 PC06043U U 164 PC06043U U 166 PC06038U U 166 PC060348U U 166 PC070534U U 167 PC060348U U 168 PC07054U U 170 PC061477U U 171 PC060940U U 172 PC061839U U 173 PC061839U U 174 PC061839U U 175 PC061839U U 177 PC06083U U 177 PC08091U U 177 PC090754U U	19	158	PC052029U	2	5803218	Homo sapiens serine protease inhibitor Kazal type 5 (SPINKS) mRNA
160 PCO41338U U 161 PCO41938U U 161 PCO6498U U 163 PCO60443U U 164 PCO60441U U 165 PCO70152U U 166 PC06053U U 166 PC070534U U 166 PC070534U U 167 PC061477U U 170 PC061477U U 171 PC06084U U 172 PC06183U U 174 PC06183U U 175 PC06183U U 177 PC06081U U 177 PC06081U U 177 PC08081U U 178 PC08081U U 177 PC08081U U 177 PC08081U U 178 PC08081U U 177 PC08081U U	20	159	PC050620U	n	4504580	NM_003641.1 Homo sapiens interferon Induced transmembrane protein 1, (IFITM1), mRNA
161 PC041980U U 162 PC060474U U 163 PC060443U U 164 PC060443U U 165 PC070152U U 166 PC060529U U 166 PC060529U U 167 PC060348U U 168 PC070343U U 170 PC061477U U 171 PC060940U U 172 PC061839U U 174 PC0601839U U 175 PC061839U U 177 PC0601839U U 178 PC061839U U 178 PC0701839U U 178 PC0701839U U 179 PC0701839U U 177 PC070899U U 177 PC070890U U 177 PC070890U U 177 PC070890U U 177 PC070890U U	21	160	PC041338U	D	8051620	Homo sapiens 2'5'-oligoadenylate synthetase 1 (OAS1) transcript variant E18 mRNA
162 PC060474U U 163 PC060443U U 164 PC060443U U 165 PC070152U U 166 PC060529U U 167 PC080348U U 168 PC070544U U 169 PC070343U U 170 PC061477U U 171 PC060801 U 171 PC0608179U U 172 PC061779U U 173 PC061839U U 174 PC061821U U 175 PC080511U U 177 PC080542U U	22	161	PC041980U	a	6735451	HSA271091 Homo sapiens mRNA for B-ind1 protein (B-ind1 gene)
163 PC060443U U 164 PC060441U U 165 PC060529U U 166 PC060529U U 167 PC060348U U 168 PC070544U U 169 PC070343U U 170 PC061477U U 171 PC06040U U 173 PC061779U U 174 PC061839U U 175 PC061839U U 177 PC06083U U 177 PC06083U U 177 PC06083U U 177 PC08051U U 177 PC08051U U 177 PC08051U U 177 PC08081U U	23	162	PC060474U	n	4759321	Homo sapiens wingless-type MMTV integration site family member 2B (WNT2B) mRNA
164 PC060441U U 165 PC070152U U 167 PC060348U U 168 PC070544U U 169 PC070544U U 170 PC061477U U 171 PC060940U U 172 PC061477U U 173 PC061839U U 174 PC061839U U 175 PC061839U U 177 PC060830U U 177 PC08051U U 177 PC08051U U 177 PC08051U U 177 PC08051U U 177 PC090754U U	24	163	PC060443U	n	4506730	Homo sapiens ribosomal protein S6 (RPS6) mRNA
166 PC070152U U 166 PC060529U U 167 PC060539U U 168 PC070544U U 169 PC070544U U 170 PC061477U U 171 PC060147U U 172 PC061839U U 174 PC061839U U 175 PC06182U U 177 PC090542U U 177 PC090542U U 177 PC090754U U 177 PC090754U U 177 PC090754U U 177 PC090754U U 177 PC090842U U	25	164	PC060441U	n	1688257	HSU78045 Human collagenase and stromelysin genes, complete cds, and metalloelastase gene, partial cds
166 PC060529U U 167 PC080348U U 168 PC070544U U 169 PC070343U U 170 PC061477U U 171 PC060940U U 172 PC061839U U 174 PC061837U U 175 PC08182TU U 175 PC08051U U 176 PC08051U U 177 PC08051U U	26	165	PC070152U	Э	4506712	Homo sapiens ribosomal protein S27a (RPS27A) mRNA
167 PC060348U U 168 PC070544U U 169 PC070343U U 171 PC06137U U 172 PC061779U U 173 PC061839U U 174 PC061839U U 175 PC080511U U 176 PC08051U U 177 PC080542U U	27	166	PC060529U	_	4503820	Homo sapiens FYN-binding protein (FYB-120130) (FYB) mRNA and translated products
168 PC070544U U 169 PC070343U U 170 PC060447U U 171 PC060347U U 172 PC061779U U 173 PC061839U U 174 PC061827U U 175 PC080511U U 176 PC08051U U 177 PC080842U U	28	167	PC080348U	_	9623360	AF261688 Homo sapiens DNA polymerase epsilon p12 subunit gene, complete cds
169 PC070343U U 170 PC061477U U 171 PC060390U U 173 PC061839U U 174 PC061827U U 175 PC080511U U 176 PC08051U U 177 PC08042U U 177 PC09042U U	29	168	PC070544U	2	1679960	S42658 S3 ribosomal protein (human colon mRNA 826 nt)
170 PC061477U U 171 PC060940U U 172 PC06179U U 173 PC061839U U 174 PC061827U U 175 PC080511U U 177 PC090754U U 177 PC090728U U 177 PC09082U U 177 PC07083U U	30	169	PC070343U	٦.	4507210	Homo sapiens signal recognition particle 14kD (homologous Alu RNA-binding protein) (SRP14) mRNA
171 PC060940U U 172 PC061779U U 173 PC061839U U 174 PC08182TU U 175 PC090754U U 177 PC090754U U 177 PC090754U U 177 PC09082U U 177 PC09082U U 177 PC07083U U 177 PC07083U U	31	170	PC061477U	_	4506386	Homo sapiens RAD23 (S. cerevisiae) homolog B (RAD23B) mRNA
172 PC061779U U 173 PC061839U U 174 PC061839U U 175 PC090851U U 176 PC090842U U 177 PC090842U U 178 PC091028U U 179 PC071851U U PC071851U U	32	17	PC060940U	_	5052074	Homo sapiens PAPS synthetase-2 (PAPSS2) mRNA
173 PC061839U U 174 PC061827U U 175 PC080511U U 177 PC090842U U 178 PC091028U U 178 PC091028U U 178 PC091028U U 179 PC071851U U PC071851U U	33	172	PC061779U	_	4504766	Homo sapiens integrin beta 1 (fibronectin receptor beta polypeptide antigen CD29 includes MDF2 MSK12) (ITGB1) mRNA
174 PC061827U U 175 PC08051U U 176 PC090754U U 177 PC090842U U 178 PC091028U U PC070890U U PC071851U U PC071851U U	34		PC061839U	_	8394498	Homo sapiens ubiquitin associated protein (UBAP) mRNA
175 PC080511U U 176 PC080542U U 177 PC080842U U 178 PC091028U U PC071028U U PC071028U U PC071851U U PC071851U U	35		I PC061827U	_	7382495	Homo sapiens p21Cdc42Rac1-activated kinase 1 (yeast Ste20-related) (PAK1) mRNA
176 PC090754U U 177 PC090842U U 178 PC091028U U PC070890U U PC071851U U	36	175	PC080511U	2	4504190	NM 000179.1] Homo sapiens mutS (E. coli) homolog 6 (MSH6),
177 PC090842U U 178 PC091028U U PC070890U U PC071851U U 179 PC070729U U	37		3 PC090754U	D	4503472	Homo sapiens eukaryotic translation elongation factor 1 alpha 1-like 14 (EEF1A1L14) mRNA
178 PC091028U U PC070890U U PC071851U U 179 PC070729U U	38		PC090842U	2	4557031	Homo sapiens lactate dehydrogenase B (LDHB) mRNA
PC070890U U PC071851U U 179 PC070729U U	39	178	PC091028U	_	7662425	Homo sapiens KiAA0976 protein (KiAA0976) mRNA
PC071851U U 179 PC070729U U	40		PC070890U	_	6531675	AF205588.1JAF205588 Homo sapiens ZNF01 and HUMORFKG1B genes
179 PC070729U U	41		PC071851U	_	3090894	AF052497 Homo sapiens clone B18 unknown mRNA
	42		PC070729U	ے	8923790	Homo sapiens rTS beta protein (HSRTSBETA) mRNA

<u> </u>
亙
ø
\vdash

T-UOZDEZIO BEZSENI FIORIO SAPERIS OVALIBRI CARGAT FIGURE OVA PAZZO CONTROLO FILI BEZSENI FIORIO SAPERIS OVALIBRI CARGAT FIGURE OVA PAZZONI FILI MOZDEZI I MORI PAZZONI NIM. DI TATZA 11 Homo sanjane hvonthetiral nnoleji FI. 120302 (FI. 120302)	
<u> </u>	153
211 PC020741U V 7657624 NM 014393.1 Homo sapiens staufen (Drosophila, RNA-binding protein) homolog 2	75 211
210 PC121671U 7661635 Homo sapiens DKFZP564O2082 protein (DKFZP564O2082) mRNA	
209 PC120331U 4504424 NM 002128.1 Homo sapiens high-mobility group (nonhistone chromosomal) protein 1	73 209
207 PC11116BU U 4759283 NM 004181.1J Homo sapiens ubiquitin carboxyl-terminal esterase L1	
205 PC091839U 7188646 AF222043 Homo sapiens ubiquitin-associated protein (NAG20) mRNA complete cds	֓֞֞֜֜֜֜֓֓֓֓֓֜֜֜֓֓֓֓֓֡
204 PC092052U U 4505634 Homo sapiens BH-protocadherin (brain-heart) (9999DHT) mRNA	
203 PC091853U U 31091 X16869.1 HSEF1AC Human mRNA for elongation factor 1-alpha	İ
202 PC091888U 4757809 Homo sap/ ATP synthase H+ transporting mito F1 complex alpha subunit isoform 1 cardiac muscle (ATP5A1) nuclear gene	66 202
201 PC092004U 8922823 NM 018300.1I Homo sapiens hypothetical protein FLJ11015 (FLJ11015)	
2	ŀ
_	
_	ļ
197 PC030454U 4506678 Homo sapiens ribosomal protein S10 (RPS10) mRNA	
196[PC030471U]U 31396[HSFIB1 Human mRNA for fibronectin (FN precursor)	
195 PC030247U 348706 HUMCACTHBS Homo sapiens cathepsin B mRNA 3' UTR with a stem-loop structure providing mRNA stability	
194 PC020162U 4507164 NM 003113.11 Homo sapiens nuclear antigen Sp100 (SP100) mRNA	
193 PC020185U 7669502 NM 013995.1 Homo sapiens lysosomal-associated membrane protein 2	
2	
191 PC010337U 6005813 Homo sapiens serine threonine protein kinase (NDR) mRNA	
190 PC010139U 7657203 Homo sapiens acidic 82 kDa protein mRNA (HSU15552) mRNA	54 190 F
189 PC010434U 4505374 NM 002499.1 Homo sapiens neogenin (chicken) homolog 1	
188 PC091425U 4732025 AF118569 Homo sapiens angiotensin I converting enzyme precursor	Ĺ
187 PC101430U 099453 M69199. 1 HUMG0S2A Human G0S2 protein gene, complete cds	
186 PC090625U 7706215 Homo sapiens H-2K binding factor-2 (LOC51580) mRNA	
185/PC101863U/U 35037/HSNFIV H.sapiens mRNA for nuclear factor IV	
=	L
_	
] 	
2	
180 PC080742U U 4507186 NM 003125.1 Homo sapiens small proline-rich protein 1B (cornifin)	43 180 P

•	•
4	υ
7	ã
•	Ū
۲	-

DNA	Pr		,		
250	35.	1dentiller	2		Cene Iname and Description
9/	801	PC040734D 1D	2	5174656	NM 006096.1 Homo sapiens differentiation-related gene I nickel-specific induction protein
77	109	PC040156D D	Ω	4505748	Homo sapiens phosphofructokinase muscle (PFKM) mRNA
78	110	PC051745D D	Q	4758751	Homo sapiens neuronal apoptosis inhibitory protein (NAIP) mRNA
62	111	PC042021D D	a	4505986	Homo sapiens PTPRF interacting protein binding protein 1 (liprin beta 1) (PPFIBP1) mRNA and translated products
08 08	112	PC060144D D	٥	4758199	NM 004415.1 Homo sapiens desmoplakin (DPI, DPII) (DSP) mRNA
81	113	PC080139D	q	7657159	NM 014362.1 Homo sapiens 3-hydroxyisobutyryl-Coenzyme A hydrolase (HIBCH), mRNA
82	114	PC080435D	Q	4758807	Homo sapiens ras GTPase activating protein-like (NGAP) mRNA
83	115	PC070436D	q	9790904	NM 001924.1 Homo sapiens growth arrest and DNA-damage-inducible
84	911	PC061342D	q	186485	HUMINT04 Human leukocyte adhesion protein p15095 alpha subunit gene exons 16 - 21
85	111	PC060793D	a	4507582	NM 000043.1 Homo sapiens tumor necrosis factor receptor superfamily
98	811	PC060743D	a	4557256	Homo sapiens adenylate cyclase 8 (brain) (ADCY8) mRNA
87	119	PC061528D D	Q	4506700	Homo sapiens ribosomal protein S23 (RPS23) mRNA
88	120	PC090788D	a	5031638	Homo sapiens cornichon-like (CNIL) mRNA
68	121	PC090722D	a	7670747	AF227906 Homo sapiens UDP-glucoseglycoprotein glucosyltransferase 2 precursor mRNA complete cds
8	122	PC071770D	Q	31441	HSFNRB Human mRNA for integrin beta 1 subunit
16	123	PC090677D	q	187701	HUMMHBA123 Human MHC protein homologous to chicken B complex protein mRNA complete cds
26	124	PC101847D	a	5902021	Homo sapiens PL6 protein (PL6) mRNA
93	125	PC090622D	Q	4506858	NM_002997.1J Homo sapiens syndecan 1 (SDC1) mRNA
94	126	PC010433D D	Q	4827043	Homo sapiens thyroid hormone receptor-associated protein 240 kDa subunit (TRAP240) mRNA
95	127	PC020238D D	a	4503090	NM 001893.1 Homo sapiens casein kinase 1, delta (CSNK1D) mRNA
96	128	PC030301D D	Q	4506728	Homo sapiens ribosomal protein S5 (RPS5) mRNA
25	129	PC110249D	Q	4759257	Homo sapiens Ac-like transposable element (ALTE) mRNA
86	130	PC110541D	D	5031778	Homo sapiens interferon gamma-inducible protein 16 (IFI16) mRNA
66		PC110431D	Q	3885367	AB019564 Homo sapiens mRNA expressed only in placental villi clone SMAP47
90	131	PC110940D D	D	4758949	NM 000942.1J Homo sapiens peptidylprolyl isomerase B (cyclophilin B)
101	132	PC111588D [D	a	4503412	Homo sapiens diphtheria toxin receptor (heparin-binding epidermal growth factor-like growth factor) (DTR) mRNA
102	133	PC111669D D	Q	7705822	Homo sapiens N-terminal acetyltransferase complex ard Isubunit (LOC51126) mRNA
103	134	PC032046D [D	a	7657325	NM 014623.1 Homo sapiens male-enhanced antigen (MEA).
104	135	PC120741D	D	5174388	NM 005891.1 Homo sapiens acetyl-Coenzyme A acetyltransferase 2
105	136	PC120740D D	Ω	311380	HSTCP1 Human t-complex polypeptide I gene
106	137	PC010853D	₽	4506660	Homo sapiens ribosomal protein L7a (RPL7A) mRNA
107	139	PC030968D	۵	4507668	Homo sapiens tumor protein translationally-controlled 1 (TPTI) mRNA
	138	PC031146D D	٥	8924228	NM 018636.1 Homo sapiens hypothetical protein PRO2987 (PRO2987)

			The second of the second		A A A A A A A A A A A A A A A A A A A		A second																	· · · · · · · · · · · · · · · · · · ·					子の名は本の大学による				State of the state										
-					STATE STATE					-			-	-+		1	1	_		4	-	1			$\frac{1}{2}$							_			4	-		_			_	4	_
f-nos	恩	7			_		_	6	1752		٤)	1044	2				۵		ħ	_	6	_		8	٥				Į			-		0		6				_	4		-
		197 217				329	MRNA	224 239	1735 17	_		954 10		662 676	を発送しる	53 598		_		٦	٦	٦	555 563		122 216			0 351	3112,264)	108				4 10		239				195 281	79 114		276 341
۲	10000000000000000000000000000000000000	2.70E-01 19	X 控制器		表面经验	8.30E-64 89	FRYAR240	3.50E-01 22	7.00E-01 17	_		7.70E-108 9			2)(2)	5.10E-79 5	1.40E-27 61	8.20E-01	pletecols	3.30E-116 258	П			8		2.60E-01 2	2) mRNA	1.70E-177 70	mal(clone	9.30E-07 82				_	图	2.60E-41 9			-				6.10E-50 2
12		2.70	THE DAY			8.30	subunit((3.50	7.00			7.7	1.20	9.4(d'A'AOIB	2.I	4.	8.2(NA COM	33	9.8	8.5(9.	2.6	de:(RRM	1.7	Shymphö	9.3	A		30.00						Riverta	3.0	E.	tein horr	6.1
Cross	RNAUGH	3.6	数は世間を		N CONTRACTOR	221.1	2401kDe	2.5	2.7			367.4	131.9	2.9	sein II (k	271.7	100.8	-21.1	IHG) mF	395.2	125.1	122.1	<u>-</u>		ad 103.9	-8.6	Olypepti	598.8	Hödikin	n 22.9	MENA		ne,proten	pr 767.3	D)TmRN	146.4	のである。		ionffacto	na 189.4	10.1	dingpro	175.1
	(HSU(5552))		THE NAME OF THE		e(NDR)TERNA		ocialed profeint	Sodium / potassium ATPase beta chain	Chalcone and stilbene synthases, C-te	Adenosine-deaminase (editase) domain	Ken)homologu	nain	u		H-associated pri			PI3-kinase family, p85-binding domain -21.1	sistprotein;10(M	domain	main	Zinc finger, C3HC4 type (RING finger)	vo domains)	A) INRINAKA	Ribosomal protein L7Ae/L30e/S12e/Gad 103.9		reductase M2kg	Ribonucleotide reductase, small chain	associated non;	NADH-Ubiquinone/plastoquinone (com/22.9	#1Sp1.001(Sp1.00		ociated membra	Lysosome-associated membrane glycopi 767.3	Hadeltal (GSNK)		IIII II 344 KETER		nslationfelongat	EF-1 guanine nucleotide exchange doma 189.4	5	Sphila RNA Bir	Double-stranded RNA binding motif
docoringion	professional	Ribosomal Proteins L2	in (PR00644)		Oproteinikinas	Protein kinase domain	nejreceptor <u>ass</u>	potassium AT	and stilbene s	ne-deaminase (neogenin/(chic	Fibronectin type III domain	Immunoglobulin domain	Ribosomal protein L23	Keich iikeeg	otif	BTB/POZ domain	se family, p85-	bilorofrapopio	Inhibitor of Apoptosis domain	Caspase recruitment domain	ter, C3HC4 typ	Zinc finger, C4 type (two domains)	ein istas (RRIS)	nal protein L7A	Ribosomal L39 protein	Fibonucleoride	leotide reducta	MAKEDINHIW	Ubiquinone/pla	nuclearantige		Nysosomal-ass	ne-associated n	casein kinaset	Protein kinase domain	601411MAGE		feukaryotictra	anine nucleotid	bZIP transcription factor	Istaufen (Drosc	stranded RNA
Domoin	82 kDar	Ribosom	644fprof		(threamin	Protein k	d hormo	Sodium	Chalcon	Adenosi	Sisapiens	Fibronec	Immuno	Riboson	Osapiens	Kelch motif	BTB/PO	PI3-kina	nensjinhi	Inhibitor	Caspase	Zinc fin	Zinc fin	omalipro	Riboson	Riboson	olsapiens	Ribonuc	piensimB	NADH	ojsapiens		Osapiens	Lysoson	o)sapiens	Protein	MGG		o sapiens	EF-1 gu	bZIP tra	ossapiens	Double-
Domoto	HOmosapiensacidio820kDaroreinmRNA(HSU/35523/mRNAWage) Persentas	Ribosomal L2	Hömössapiensiproodsiyiproteira (proodsis)imranaapia (m. propessa) keesiin seed (meessa)		Homoisapiensiseanephreanineproteinkinase(NDR)imRNAN KEGASARF Edinaria 1 1922 P. Edinaria	pkinase	Homotsapiens(thyroid/hormone)recep(or,essociated/protein)240[kDaisubumit(thRAP240]/mRNAABELS	Na K-ATPase	Chal stil syntC	A deamin	NWW002499441Homosapienshoogenin/Chicken)homologut	fn3	gi	Ribosomal L23	NMR0122893111HomorapienajkeichiikeleGH;associalediproteinfil (ki/AAOiB2)/KS.Z	Kelch	втв	PI3K p85B	/AE070674Homokapiensjinnibitorrorfapopiosisprotein;ff(AftHG):mRNA/complete:cas*/-ama	BIR	CARD	zf-C3HC4	zf-C4	Homo sapiens in bosomal profein that (RRLF/A) mRNA WHI	Ribosomal L7Ae	Ribosomal L39	NM (001034 Hill Hömögapi ensle bönüt leoride fredüt asel Malpolypepinde ((RRM2) mRNA	ribonuc red sm	HS:WinneGHOmosapienamBNIAMnomHIV. associated non-Hodikin silymphömal (clone ki 12:264)).	oxidored q1	NM 1003 1118 1 (14 form of sapients nuclear Jan 11 gent Sp. 100 (Sp. 100) mr. NAC. 44 Apr. 21 Commen		NM40199959[[Homosapiens]]ysosomal-associated/membrane/protein/26] Mesh. 44	Lamp	NMICO 1893/11Homo/sapiens/cascink/inaseHydelial(GSNK1D)/mRNAMR	pkinase	Homosapiens, clone MGG, 1661/411/MAGE, 4111/11/144/6/2012 Goald Beach		NM#001960:11/Homorsapiens/eukaryoficthranslafion/elongation/factor/lifdellateres	EFIBD	bZIP	NMX014393914 Homoisapiensistaureni (Drosophila RNA binding protein) inomologiza	dsrm
T# Classification	Т						Down-regulated																	Down-regulated											Down-regulated								
Date CIA		7657204	7662580	7662580	6005814	6005814	4827044	4827044	4827044	4827044	4505375	4505375	4505375	4505375	6912452	6912452	6912452	6912452	3978244	3978244	3978244	3978244	3978244	4506661	4506661	4506661	4557845	4557845	12005805	12005805	4507165	4507165	7669503	7669503	4503091	4503091	14424570	14424570	4503479	4503479	4503479	7657625	7657625
Francisco	U	n	2	n	Ω	Ω	۵	٥	۵	٥	D	Ω	n	Ω	Ω		n	D.	Ð	Ω	n	U	Ω	a	D	٥	Ω	<u> </u>	D	D	Ú	Ω	Ω	n	۵	D	Ω	O	D	Ω	U	n	n
Section No.	PC010139U	PC010139U	PC010336U	PC010336U	PC010337U	PC010337U	PC010433D	PC010433D D	PC010433D	PC010433D	PC010434U	PC010434U	PC010434U	PC010434U	PC010839U	PC010839U	PC010839U	PC010839U	PC010849U	PC010849U	PC010849U	PC010849U	PC010849U	PC010853D	PC010853D	PC010853D	PC010957U	PC010957U	PC011348U	PC011348U	PC020162U	PC020162U	PC020185U	PC020185U	PC020238D	PC020238D	PC020627U	PC020627U	PC020728U	PC020728U	PC020728U	PC020741U	PC020741U U
_	PC340	-	PC342		PC341		PC330	_		_	PC329		_		PC007				PC006					PCS05			PC013	$\overline{}$	PC042	$\overline{}$	PC353		PC350		PC358	_	PC367		PC022	т		PCS17	_

able 3

PC374 PP PC383 PP PC391 PP										
	PC021342U U	340058		ubiquitin	Ubiquitin family	529.9	9.20E-157 193	193 266	9	
	PC030247U U	291888		HUMGAGTHBS3H6	HUMGACGIH BSHGMUSEDIERSEBIERSEBIAREN NAVSBURAKAINBESER 1607)SINDEUTE FROYBINGER RAVASGEBIIN	uthia stem-16	op)structure	providing	mrayayatabilit	E
	PC030247U U	291888		Peptidase CI	Papain family cysteine protease	393.5	6.50E-119	80 329	6	
	PC030247U U	291888		Metallothio 2	Metallothionein			139	200	
	a 0106060034	4506729	Down-regulated	H6mo sapienstribos	Homosapiensfribosomaliproteintss((R.P.S.s.))mRNAvantagens Kalendara		起于温暖的	17888		
	PC030301D D	4506729		Ribosomal S7	Ribosomal protein S7p/S5e	245.5	3.90E-71	51 204	4	
1	PC030326U U	4507149		Homoisapiens isuper	Hemötsapiekistipetöxide-ut smussapisolubia(smyotophisalatetalisclerosisti kauit)/sodd imrny ki	बाद्मबाहिट ह्म	istik(adült)	r(Sodinim	RNA KELL	
-	PC030326U U	4507149		soden	Copper/zinc superoxide dismutase (SOD 339.5	339.5	2.50E-105	1 154	4	
PC392 P	PC030425U U	415819		HSMK167-H.Sapiens	HSMK167-H.Sapiensimki6787mRN/AX(15ng/type)Itorganti.gen[61fm8n6ci0nallantibc34)IK: 2678-38	(fmonoclonal	Fantibody K			
<u>d.</u>	PC030425U U	415819		FHA	FHA domain	83.5	2.20E-22	16 27		
Ь	PC030425U U	415819		Peptidase M10	Matrixin	-104.7		61 9081	1923	
ď	PC030425U U	415819		Sua5 yciO yrdC	yrdC domain	12-	4.10E-01	2335 24	2475	
<u>"</u>	PC030425U U	415819		Ribosomal S3 C	Ribosomal protein S3, C-terminal doma	2.5	7.30E-01	620 642	12	
<u>a.</u>	PC030425U U	415819		HMG14 17	HMG14 and HMG17	-12.8	9.10E-01	981 901	9	
PC386 P	PC030454U U	4506679		Homo sapiens ribos	Homosapiensitibosomai profeinis 10 (RPSII0) mRNAN COM				左下了,那么 "不是	Programme of the second
نه	PC030454U U	4506679								
PC384 P	PC030471U U	31397		HSFIBII Human mR	HSHIBII Human mRNA ffor fibronectini (FN precursor)	で 「	THE STATE OF	壁の対象	ALCOHOL: ALCOHOL	Transport of the Control of the Cont
<u> </u>	PC030471U U	31397		fn3	Fibronectin type III domain	1202.8	0.00E+00	2046	2123	
	PC030471U U	31397		lm]	Fibronectin type I domain		4.20E-250	2237 22	2272	
<u>-</u>	PC030471U U	31397		fn2	Fibronectin type II domain	194.4	1.60E-74	393 434	14	
	PC030471U U	31397		CXCXC	CXCXC repeat	5.7	6.30E-01		2264	
	PC030471U U	31397		vwc	von Willebrand factor type C domain	-16.7		2237 23	2313	
PC033 P	PC030732U U	4504375		Homogapiens/H.fac	HomosapiensH.factor/h:(complement).(HRII)ImRINARI			は時代記	SHOW SHOW THE SECOND	
ď	PC030732U U	4504375		sushi	Sushi domain (SCR repeat)	1149.3	0.00E+00	1167 112	1228	
PC003 P	PC030931U U	337506		HUMRRS24AHum	HUMRRS2474Humaniinbosomal prolein S24mRNAC TOTAL			機能機能	ELECTRIC CANADA	WATEL MAN TO THE
<u>a.</u>	PC030931U U	337506		Ribosomal S24e	Ribosomal protein S24e	194	1.20E-55	23 105		
PCS11 P	PC030968D D	4507669	Down-regulated	(Homolsapiensitumo	Homoisapiensitumor/protein/iranslationally.controlledliff(ail@it@it@it@it@it@it@it@it@it@it@it@it@it@		E SERVICE S	Daywork .		[七月次公司]
	PC030968D D	4207669		тстР	Translationally controlled tumor prot	375.5	2.80E-110	91	691	
4	PC030968D D	4507669		MethyltransfD12	D12 class N6 adenine-specific DNA med 3.5	13.5	3.005-01	74 99		
PC508 P		7959937	Down-regulated	Homolsapiens/PRO2	Homogapiensipk029874mRNAkcompletercdsteing	1	おり、	はいる	The same	(大学) (大学) (大学) (大学) (大学) (大学) (大学) (大学)
<u>-</u>	_	7959937								
PC468 P	PC032046D D	7657326	Down-regulated	NACIONAL STATEMENT	的对码的现在分词的时间,sapirers in all sein sen and being sen in a sen and sen and sen and sen and sen and sen as sen as s		多数要	はまます		
Ь	PC032046D D	7657326								
PC64 P	PC040156D D	4505749	Down-regulated	Momo sapiensiphos	Hamasapiensphosphofructokinaselmusclet(PRKW))mRNA					
4	PC040156D D	4505749		PFK	Phosphofructokinase	929.6		402		
PC062 P	PC040158U U	4826950		[Homosapiens]kalli	Homosapienskallikreinvi/ChymorypiickiiraiumicomeumijipkalkaijimRN/Alanseete	KEKEN)TERN	ALTERNATION	The same		
_	PC040158U U	4826950		trypsin	Trypsin	277	1.90E-88	30 245	15	
ď	PC040158U U	4826950		toxin 4	Anenome neurotoxin	-3.3	4.70E-01			
PC068 P	PC04041U U	4826880		H6mo(sapiens)oxid	H6majsapiensjoxidasej (cytochrome.c)jassemblyllelikej(@xexili9)mRyVAV E. 1. 25.13.	MIDITERNA		8		
П	PC040441U U	4826880	•	60КD ІМР	60Kd inner membrane protein	-2.6	4.30E-10		╗	
รู	_	5174657	Down-regulated	NMEGOSOSOSIIIHS	NMEGGGGGGGMITHGmossapiensfdifferentiation-related geneinfnickelispecifichinduction protein	ickel specific	Ainduction			
	_	5174657		Ndr	Ndr family	716	~	24	366	
ŀ	PC040734D D	5174657		abhydrolase	alpha/beta hydrolase fold	10.3	1.90E-03	89 30	309	

able

PC059	PC059 PC040972U	Ú		Homosapiensscentry	THOMOSeptemisterintomeresproteintel/400kD)(GENED)THEN/ARESTERFROM (BARCONTOMERS) (BERESTON (BERESTON DESTRUCTION DE LA CONTRACTION	NEW YORK	四班的	1.00 M	CONTROL BY AND	
	PC040972U	U 4885133		6ZIP	bZIP transcription factor	1.89	4.80E-19	2930	2962	
	PC040972U	U 4885133		W	M protein repeat	29.7	3.50E-06	2972	2992	
	PC040972U	U 4885133		KID repeat	KID repeat	26.6	3.10E-05	2938	2948	
	PC040972U	U 4885133		filament	Intermediate filament protein	13.2	8.80E-04	2810	2833	
	PC040972U	U 4885133		Trp repressor	Trp repressor protein	-16.9	5.50E-02	1065	1157	
	PC040972U	U 4885133		RNA pol L	RNA polymerases L / 13 to 16 kDa subul-28.7	-28.7	9.90E-02	840	923	
	PC040972U	U 4885133		Myosin tail	Myosin tail	4.3	1.40E-01	2283	2338	
	PC040972U	U 4885133		DUF164	Uncharacterized ACR, COG1579	1.16-	1.80E-01	2560	2797	
	PC040972U	U 4885133		HALZ	Homeobox associated leucine zipper	6	1.80E-01	2885	2928	
	PC040972U	U 4885133		OSCP	ATP synthase delta (OSCP) subunit	4.1	2.10E-01	2283	2294	
	PC040972U	U 4885133		K-box	K-bax region	40.4	3.10E-01	2440	2524	
	PC040972U U			HlyD	HlyD family secretion protein	-60.5	3.30E-01	2461	2730	
	PC040972U	U 4885133		DUF38	Domain of unknown function DUF38	3.9	4.00E-01	1888	1914	
	PC040972U	Ω		dynamin 2	Dynamin central region	-179.4	4.20E-01	991	1223	
	PC040972U	Ü		HRI	Hr1 repeat motif	4.4	4.70E-01	2201	2271	
	PC040972U	U 4885133		Apolipoprotein	Apolipoprotein A1/A4/E family	-118.2	4.90E-01	2295	2547	
	PC040972U	U 4885133		formyl transf	Formyl transferase	3	5.60E-01	3068	3081	
	PC040972U	U 4885133		ERM	Ezrin/radixin/moesin family	-227.4	6.50E-01	2028	2290	
	PC040972U	U 4885133		Tropomyosin	Tropomyosin	1.3	7.20E-01	2418	2451	
	PC040972U	U 4885133		Borrelia orfA	Borrelia ORF-A	-107.4	7.40E-01	417	744	
	PC040972U	U 4885133		PFEMP	Plasmodium falciparum erythrocyte men -89.6	-89.6	7.90E-01	2844	2950	
	PC040972U	U 4885133		BglG antitermin	Transcriptional antiterminator bglG f	4.4	8.40E-01	2891	2967	
	PC040972U	U 4885133		TFIIE beta	TFIIE beta subunit core domain	-15.1	8.40E-01	266	624	
	PC040972U	U 4885133		TarH	Tar ligand binding domain homologue	-28.4	8.80E-01	2666	2793	
	PC040972U	U 4885133		FliD	Flagellar hook-associated protein 2	-252.1	9.10E-01	2261		
PC057	PC041029U	U 4589596		REPORTED HIS COLOR OF THE PROPERTY OF THE PROP	ABQESIIGSIIHamaisspiensimRNAtionKIAA0978proteincampletecdsp.	oletecusion	to a market			
	PC041029U	U 4589596		Iaminin Nterm	Laminin N-terminal (Domain V1)	37	8.80E-14	20	295	
	PC041029U	U 4589596		laminin EGF	Laminin EGF-like (Domains III and V)	31.8	8.00E-07	297	341	
	PC041029U	U 4589596		EGF	EGF-like domain	3.9	5.20E-01	299		
PC194	PC041338U	U 8051621		oficial supides to more	Homossapiens 2,5120 iigoaden ylates ynthetasell ((OASII) transon plyatian il Bit Stri RNA)	napiliyariani	EI 8 THE NA			
	PC041338U	U 8051621		NTP transf 2	Nucleotidyltransferase domain	0.3	4.10E-02	53	142	
PC112	PC041980U	U 6735452		HSASAMOOMHOARSH	HSA99和09加HSmStapiens mRNANorB ind Ippotein(Beindubene) mental	Mene) Here		真然意		A September of the second
	PC041980U	Û								
<u>Ş</u>	PC042021D	D	Down-regulated	Homolsapiens/PPP	អ្នងការខានាក្រុកមានអ្នកមានអាក្សាក្រុកមានការប្រជាជាក្រុកបានជារប្រជាជាការបានការប្រជាជាការបានការបានការប្រការបានក្	printecall	(BREIBRI)	IMRNA P	At translated pro	ners
	PC042021D	D		SAM	SAM domain (Sterile alpha motif)	109.5	3.30E-30	11	774	
	PC042021D	D		integrase DNA	DNA binding domain of tn916 integrase 28.1	28.1	1.10E-05	187	251	
	PC042021D	D		WHEP-TRS	WHEP-TRS domain	15.9	1.20E-04	123	137	
	PC042021D	D		DUF16	Protein of unknown function DUF16	-22.2	1.40E-01	8	167	
	PC042021D	D 4505987		bZIP	bZIP transcription factor	5.2	3.20E-01	205	244	
	PC042021D	D		STAT	STAT protein, all-alpha domain	-71.8	5.40E-01		162	
PC088	PC050149U	Ú		AB0048849H5motse	ABOOA88AEHOmotsapiensfiiiRNAEforiPKO:alphaya.					
	PC050149U	U		pkinase	Protein kinase domain	245.9	2.90E-71	409	889	
	PC050149U	U [2217931		AZM	Alpha-2-macroglobulin family		2.40E-01	471	493	

Table 3

																							Same and contract of the				SAME							100 miles									Strong and
F					-																																						
	263		2215	2085	2014		1882	897	1775	578	1177	974	397		1980	1290	1698	1299	1422	2118	1635			11	162	74	(文)			105		298	330		8		921	346	658	964	602	483	
Г	128	Village 1		2 2065	2 2005	2 1263	1 1850	1 864	1 1559	1 553	1 725	916 1	1 363		1 1963	1601	1366	1 1177	1 1248	1 2103	1 1576	1150	N.A. CONTRACT			1 53	(I) 和R	_		5 11			\neg		3 4			4	П			1 465	
	8.40E-01			9.30E-12	4.20E-02	8.80E-02	1.00E-01	1.20E-01	1.20E-0	1.50E-01	2.20E-01	3.90E-01	5.00E-01	5.10E-01	5.90E-0	6.30E-0	7.40E-01	7.80E-01	8.00E-01	8.20E-01	9.60E-01	9.70E-01	U2)mR	6.60E-02	1.80E-01	2.20E-01	A CIETUR		A)TERN	6.30E-55	beta	1.50E-88	1.90E-08		2.20E-33	1.60E-01	4.	8.10E-104 281	4.00E-01	6.20E-01	6.40E-01	7.70E-01	100
	27.44	DilVZaX4	77.2	48.2	14	1.7-	3.1	6.7	-89.1	3.4	-123	-9.6	-3.8	-21.2	9.1-	1.98-	+101-4	9'01-	-167.8	3.4	-6.3	-21.9	idepar dang	5.7	99-	4.2	neprotein		р) ((БКВР)	179.2	it catalytic	303.4	27.4		120.1	-62	(NATE)THIRNALS	354.1	45.7	-0.4	-72.9	1.5	HENNA
	Uncharacterized ACK, COCIS/9	NATO2000889.0Homolsapiensagojejaanioanijeenseojejijaabianijvaskase	GRIP domain	M protein repeat	Involucrin repeat	Ribosomal L29 protein	rase IV, subunit		OG1579	Tropomyosin	Adhesin lipoprotein	Uncharacterized BCR, COG1937	UvrB/uvrC motif	ATP synthase alpha/beta chain, C term	Isocitrate lyase family	CagE, TrbE, VirB family, component of	Borrelia ORF-A	SEA domain	aknown function DUF28	Bacterial DNA-binding protein	Major surface glycoprotein	Transposase	Homosapiens dyncincy topias michightifice mediatepotypeptide 21 (DNGU2) im RNA	Cell division protein	ABC transporter	SRP54-type protein, GTPase domain	NMI 00364 [F] [Homosapienslinterferoninducedinansmembraneprotein] (* (1614 M.) Krinn M. Krinn (* 1616 M.)		N.M. 1000 801 All Hombisa piens HAKS 06-binding protein II.A. (nie ko.) (na KB.P. IV.) ym R.V.A.	FKBP-type peptidyl-prolyl cis-trans ison 179.2	NM 1002/100 (Homolsapiens protein kinase) CAMP-dependent caralytic, leta	Protein kinase domain	Protein kinase C terminal domain	Hömölsapiensfribosomaliproteintiff Af(R Pijf 4) im RMA	Ribosomal protein L14	Ribosomal L27e protein family	Homosapiensineuronaraboptosiisiinhibitosyproteini(NAIP)m	Inhibitor of Apoptosis domain	ATPase family associated with various	Thermophilic metalloprotease (M29)	ABC transporter	NB-ARC domain	Homosapiensiserine protessetinhibit 62-Kazatitypetsi(SEINKs) jim Rin Au
	DUF 164 Stathmin	NWE00203821015	GRIP	Σ	Involucrin	Ribosomal L29	DNA topoisolV	bZIP	DUF164	Tropomyosin	Lipoprotein 7	DUF156	UVR	ATP-synt ab C	וכר	Cage TrbE VirB	Borrelia orfA	SEA	DUF28	Bac DNA binding	MSG	Transposase 8	Homosapiensidyne	GTP_CDC	ABC tran	SRP54	NWE00364 FIFTH OF		HOHI 1810 08 000 MIN	FKBP	NM TOO 2/1/2/IN THOU	pkinase	pkinase C	(Homosapiens) nbo	Ribosomal L14e	Ribosomal L27e	Homosapiensineur	BIR	AAA	Peptidase M29	ABC tran	NB-ARC	Homolsapiensiserin
																																					Down-regulated						
	221/931	6715600	6715600	6715600	6715600	6715600	6715600	6715600	6715600	6715600	6715600	6715600	6715600	0095129	6715600	6715600	0095129	6715600	0095129	6715600	6715600	6715600	5453634	5453634	5453634	5453634	4504581	4504581	4503725	4503725	4506057	4506057	4506057	4506601	4506601	4506601	4758752	4758752	4758752	4758752	4758752	4758752	5803219
	0 100	<u> </u>	10 01	10 01	10 0	10 01	10 01	10 01	10 01	10 U	וט ט	10 U	10 01	10 01	10 01	10 0	10 U	0 01	0 01	າດ ດ	n n:	10 01	6U U	eu Ju	6U U	6U U	on [n	00 N	30 0	30 00	00 00	00 N	00 [U	ות תו	וח ח	10 0	a lo	SD D	SD D		a ds	3D D	0 D
	PC050149U	PC0501511	PC050151U	PC050151U	PC050151U	PC050151U	PC050151U	PC050151U	PC050151U	PC050151U	PC050151U	PC050151U	PC050151U	PC050151U	PC050151U	PC050151U	PC050151U	PC050151U	PC050151U	PC050151U	PC050151U	PC050151U	PC050296U	PC050296U	PC0502961	PC050296U	PC050620U	PC050620U	PC050853U	PC050853U	PC051210U	PC051210U	PC051210U	PC051231U	PC051231U	PC051231U	PC051745D	PC051745D	PC051745D	PC051745D	PC051745D	PC051745D D	PC100 PC052029U
		PC087	1																				PC085				PC101		PC060		PC076			PC083			PC90						PC100

be 3

																		*																									
L	-							-				_								_						-																	
1046	363	823			171	1631	8161	77	807	1318	1250	1817	425	1062	748	8681	608	1108	966	1684	1832	1548	1165	1220	1127	1077	1353	1534	1317		K	2768	1740	1082	1416	9681	· 8061	2352	1426	2413	8161	2736	1818
993		751	Γ		П	1073	8681	33 [7	3 282	1083	1018	1788	171	1 596	742	1863		1034	009				1062		П	╗					B	2724	П		1394	9281	1892	1779	1382	2401	1844	П	9991
3.70E-49	Г	6.50E-01	7.40E-01	Sparifile	0.00E+00	.20E-234	3.70E-20	2.40E-18	S.90E-04	6.60E-02	8.70E-02	8.80E-02	9.50E-02	1.20E-01	1.30E-01	1.80E-01	1.80E-01	2.10E-01	2.20E-01	2.70E-01		3.30E-01	4.00E-01	_		6.10E-01	7.30E-01			9.60E-01		4.50E-159			7.00E-03	3.10E-02	_	1.90E-01			7.40E-01		7.50E-01
172.5		_	-10.8	110) THEN	1495.3	788.7			22.3	9.86-	8 9'98-		-394.9	135.3				-0.6	414.1	-38.3	10.5		47.4			4.5	-36.2	-110.7	8		RNA	,				16.6		-263.9					-34.7
Kazal-type serine protease inhibitor 17	l		Hirudin -10	HUMINAKOHCB Human nonmuscie myösinheavyychän Blonnin 0) minnakamini jeds	Myosin head (motor domain)	Myosin tail 78	M protein repeat 76.1	Myosin N-terminal SH3-like domain 70.1	1Q calmodulin-binding motif [22]	Apolipoprotein A1/A4/E family -9	6	bZIP transcription factor 7.2		ion	Tub family 0.1	Tropomyosin 3.2	rotein		Hsp70 protein	ne efflux protein	Involucrin repeat 10	ain	KE2 family protein 4	HlyD family secretion protein -65	Nucleosome assembly protein (NAP) 2.5	UvrB/uvrC motif	5 protein	BAR domain -1	Transaldolase	Viral RNA dependent RNA polymerase [0.5]	NW 1004415. HH 3 more apiens (desmoplatin) (DRIP) DRIP (DSP) mRNA 1	Plectin repeat 53	bZIP transcription factor 23	Spectrin repeat 24	Myosin tail 9.3	M protein repeat	GGL domain 5.8	st complex subunit	pper	RNA polymerase beta subunit 0.2	Hr1 repeat motif -6.6	ymerase family B, exonuclease	Troponin -3
kazal	RNA POL M	DnaJ CXXCXGXG	Hirudin	наммионсв	myosin head	Myosin tail	Σ	Myosin N	ði	Apolipoprotein	DUF164	bZIP	Prismane	K-box	Tub	Tropomyosin	Lipoprotein 1	HRI	HSP70	OEP	Involucrin	kinesin	KE2	HIyD	NAP family	JUVR	Birna_VP5	BAR	Transaldolase	PV RdRp	Down-regulated NW 004415.14	Plectin_repeat	bZIP	spectrin	Myosin_tail	Ψ	G-gamma	Exo70	HALZ	RNA pol B	HRI	8	Troponin
5803219	5803219	5803219	5803219	641958	641958	641958	641958	641958	641958	641958	641958	641958	641958	641958	641958	641958	641958	641958	641958	641958	[641958	641958	641958	641958	641958	641958	641958	641958	641958	641958	4758200 Dow	4758200	4758200	4758200	4758200	4758200	4758200	4758200	4758200	4758200	4758200	4758200	4758200
PC052029U IU	PC052029U U	PC052029U U	PC052029U U	PC093 PC052095U U	PC052095U U	PC052095U U	PC052095U U	PC052095U U	PC052095U U	PC052095U U	PC052095U U	PC052095U· U	PC052095U U	PC052095U U	PC052095U U	PC052095U U	PC052095U U	PC052095U U	PC052095U U	PC052095U U	PC052095U U	PC052095U U	PC052095U U	PC052095U U	PC052095U U	PC052095U U	PC052095U U	PC052095U U	PC052095U U	PC052095U U	PC129 PC060144D D	PC060144D D	PC060144D D	PC060144D D	PC060144D D	PC060144D D	PC060144D D	PC060144D D	PC060144D D	PC060144D D	PC060144D D		PC060144D D

Table 3

	PC060144D	D 4758200		dilsold	Phospholipase A2	3	7.70E-01	2553	2566	
	PC060144D	D 4758200		Transposase 12	Transposase	-162.5	7.80E-01	1412	1720	
	PC060144D	D 4758200		integrase DNA	g domain of tn916 integrase	-7.2	8.80E-01	259	328	
	PC060144D	D 4758200		filament	Intermediate filament protein	8.1	9.80E-01	1552	1582	
	PC060144D	D 4758200		Translin	'	-86.4	10-306.6	1283	1438	
PC132	PC060441U	U 1688258		HSUMBOAS Humanyo	#S@ag(4S)Human(co)lagenaseand strome(ysin/genes)(comple	eteleds yandı	netalloelast	ascigence	erercusyandimetalioelastaseigerieppärtialiousiinen	San San San San
	PC060441U	U [1688258		Peptidase M10	Matrixin	415.2	3.10E-122	37	204	
	PC060441U	U 1688258		hemopexin	Hemopexin	222.2	3.80E-64		466	
	PC060441U	U 1688258		Astacin	Astacin (Peptidase family M12A)	-101.3	1.60E-02	7	264	
	PC060441U	U 1688258		PG_binding_1	Putative peptidoglycan binding domain	-3.3	2.60E-02		16	
	PC060441U	U 1688258		UDPGP	UTP-glucose-1-phosphate uridylyltran	1.9	8.40E-01	248	266	
PC130	PC060443U	U 4506731		Mondosapiens/ribos	Homosapiensfrihosomaliproteinis 6f(RPS6)mRN/Arconteg		Too! STATE			
	PC060443U	U 4506731		Ribosomal S6e	Ribosomal protein S6e	312.2	3.30E-91]	_	
PC124	PC060474U [1	U 4759322		#Hamolsapiens/wing	ilitamoisapiensiwinglesstypenMMTWintegrationkilitätamiliamembera Billyanita BilmRNA	nember/2BI((WINTED B) FILE	-		
	PC060474U	U 4759322		wnt	wnt family	656.5	1.00E-239 S2		361	
	PC060474U	U 4759322		Keratin B2	Keratin, high sulfur B2 protein	-87.2	8.50E-01		364	
PCI 52	PC060529U	U 4503821		M-cmo, sapiens (Fr.)	National sapiens Hava Leinding protein (HYB 1120160) (HAYB) Im Ray Ryand	Revisiyand (tra	(rranslated/products)		如底 到 在 国	Color of Constant Color
	PC060529U	U 4503821		SH3	SH3 domain	<i>L</i> -	3.10E-02	514	570	
	PC060529U	U 4503821		vATP-synt E	ATP synthase (E/31 kDa) subunit	-104.2	9.80E-01	464		
PC197	_	D 4557257	Down-regulated		(Homosapienstadenylaicicyclasess)(brain) ((Alocayas)) mRNA					
		D 4557257		guanylate cyc	Adenylate and Guanylate cyclase catal	632	1.80E-187	973	1172	
	PC060743D	D 4557257		Bac export 3	Bacterial export proteins, family 3	-39.6	3.80E-01	2	347	
		D 4557257		GARS	ylglycinamide synthetase,	-92.8	5.50E-01		320	
		D 4557257		prion	Prion protein	-98.1	7.50E-01		268	
		D 4557257		Тґкн	Sodium transport protein	-223.6	9.40E-01	42		
PC193	PC060793D	D 4507583	Down-regulated		NMR00004391/IHomolsapiensituinotinecrosis, factor receptorisuperfamily.	uperfamily	LACTOR SE	是是就	爾	ENTER CONTRACTOR
	PC060793D			TNFR c6	TNFR/NGFR cysteine-rich region	94.9	8.30E-26	129	165	
	PC060793D D	D 4507583		death	Death domain	70.7	1.60E-18	231		
PC199	PC060940U	U 5052075		H6m8IsapiensIPAPS	Hömörsapiensi Parsayni hetase 20 (PAPSS2) mayar and an analysis		THE PROPERTY OF	相邻的		
	PC060940U	U 5052075		ATP-sulfurylase	ATP-sulfurylase	683.7	4.70E-203	284	612	
	PC060940U	U 5052075		APS kinase	Adenylylsulfate kinase	395.1	3.60E-116	41	199	
	PC060940U	U 5052075		Thymidylate kin	Thymidylate kinase	-70	2.30E-01		207	
	PC060940U	U 5052075		6PF2K	6-phosphofructo-2-kinase	-123.6	3.20E-01		223	
	PC060940U	U 5052075		PRK	Phosphoribulokinase / Uridine kinase	3.1	3.90E-01		8	
PC188	PC061342D	D 386831	Down-regulated	H@MINITED HUMBY	HOM Ning Humanii eukocyte achesion protein pils 09 stabhasubuni i genete konsti 64 teish	Subunifigen	elexonsti 6	囊		
	PC061342D	D 386831		vwa	von Willebrand factor type A domain	239.3	2.80E-69		329	
	PC061342D	18898E Q		FG-GAP	FG-GAP repeat	200.6	1.30E-57	581	633	
	_	D 386831		integrin_A	Integrin alpha cytoplasmic region	30.6	1.90E-06	٦	1143	
	$\overline{}$	D 386831		Polyoma coat2	Polyomavirus coat protein	1.3	6.10E-01	522	-	
PC184	PC061477U	U 4506387		IH 6 molsapiens IRAD	KAID 28 ((SPECIEVISIAE) In Omologi BI (RAKID 28 B) Im RNA 12.	III RANAMA		の対対		
	PC061477U	U 4506387		ubiquitin	Ubiquilin family	105.2	3.20E-29	_	78	
	PC061477U	U 4506387		UBA	UBA/TS-N domain	71.5	9.40E-19		404	
	PC061477U	U 4506387		integrin B	Integrins, beta chain	6.2	4.10E-03	364		
PC213	PC061528D	D 4506701	Down-regulated	"Homoisapiensiribos	(Pitomoisapiensiri bösömälipiroiteini S229 (RRS28) imitavi Access (I consequenti Consequenti (I consequenti Co					

able :

	VEN PER SE																			The second second									EMPLY NEW YORK														and the second second
																																			THE STATE OF				-		-		
142	DF2WS i	464	630	94	20	299	高額税	521	135	250	386	(Table 1	498	医水型	74	147	156	Z) 計R	84		123		188	95		328	112	84	1991	464	630	91	20	299			No.	213	357		901	<u>8</u>	
1	CludesIM	34	889	56	2	594	A SECOND	270	75	228	261		459	2000	_	<u> </u>	103	in)(SRR	4	REMESSO.	21		104	47		161	6	54		34	665	26	2	594			THRIVE	42	205		39	55	
1.80E-81	1@D29/in	0.00E+00	1.20E-03	2.00E-02	.40E-01	1.70E-01	(II) Im RN	2.90E-91	1.80E-35	2.70E-01	1.00E+00	2017	3.50E-04	经营营营	2.40E-43	10E-33	9.70E-01	ding ibrote	2.10E-62		2.10E-19		.30E-35	.10E-04		2.40E-13	1.50E-05	.90E-01	西京大学	0.00E+00	1.20E-03	2.00E-02	1.40E-01	.70E-01			(HIBGH)	2.30E-16	4.50E-01	Elejcus	4.10E-03	1.10E-01	
179.8	idelantigen	1121.8	21.3			1 8-9-	lated)(PAI	312,4						西京学生学			-22.5	IRNA bin	216.4	erindücible#	.6	語を発言						_	はないと	1121.8	21.3			-	10000000000000000000000000000000000000		hydrolase!			enexcomp	4	_	PORTUGE B
Ribosomal S12 Ribosomal protein S12 27	<u> </u>	integrin B Integrins, beta chain	EGF-like domain	Plexin repeat Plexin repeat 7.7	PNTB NAD(P) transhydrogenase beta subunit 4.1	_	piensip2i (6dc42Raci factivated kinaseli (yeasi Sie20	pkinase Protein kinase domain 31	PBD P21-Rho-binding domain 127	kinesin Kinesin motor domain 3.4	ABC1 ABC1 family -57.	Homorsapienstubiquitinassociated protein (UBAR) mRNAC 1	UBA UBA/TS-N domain 23.1	(Homosapiensifibosomal profein S274 (RPS27A) THRNA BROWN	ubiquitin Ubiquitin family	Ribosomal S27 Ribosomal protein S27a [121	IBR domain -2	Homotopicassignatresogniton-particlestationomotognativationalidationalidation (18 RR14) HRNAR	SRP14 Signal recognition particle 14kD prot 21	NWII00019249111H6mortapiens:growth'arrestrand DNA-damag	Ribosomal L7Ae Ribosomal protein L7Ae/L30e/S12e/Gad73.6	SH26538[Saffibosomal protein human colon:mRNA4826fn;] parameters.	Ribosomal S3 C Ribosomal protein S3, C-terminal domai 112.8	KH-domain KH domain 24	Homosapiensanisticea protein (HSRTSBEITA) mRNAILE HINDING TO THE MANAGEMENT OF THE PROPERTY OF	MR MLE Mandelate racemase / muconate lactoni 44.5	MR_MLE_N Mandelate racemase / muconate lactoni 17	Peptidase S26 Signal peptidase I 3.8	HSENREIHEIMENATORINGENIDEIEESUPINI(接着数数数数数	integrin B Integrins, beta chain	EGF-like domain	Plexin repeat Plexin repeat 7.7		metalthio Metallothionein -6.8	ATOS 239 DH Omore pichis clone Bis anknown mRNA manage properties		led NWBOI4362MfHomorapiens19th Vdrox visobuly ry (Godizyme, Albydrolase) (H1BGH) The RNA (ECH Enoyt-CoA hydratase/isomerase family 63.6	RNase HII Ribonuclease HII9	AE2616883Homolsapiensi DNA polymerase epsilohip i 21subuningen excomplete cus	CBFD NFYB HMf Histone-like transcription factor (CBF/ 9.7	TAF TATA box binding protein associated fa-14.3	Down-regulated Homostapiens/ras/GTPase/activatingbrotein/like/NGAR)/mRNA-sampaga
																				Down-regulated									Down-regulated								Down-regulated						Down-regulat
4506701	4504767	4504767	4504767	4504767	4504767	4504767	7382496	7382496	7382496	7382496	7382496	8394499	8394499	4506713	4506713	4506713	4506713	4507211	4507211	4503287	4503287	7765076	7765076	7765076	8923791	8923791	8923791	8923791	31442	31442	31442	31442	31442	31442	15297004	15297004	7657160	7657160	7657160	9623361	9623361	1981	808
Q	D	Ŋ	Û	n	n N	[n	n	N.	n	n	Ω	n	U.	U	U	n	n	n.	n	О	o	U	n	n	n	n	n	n	a	D	a	D	D	۵	n	n	a	Q	0	n	n	Ŋ	<u>D</u>
PC061528D	PC061779U	PC061779U	PC061779U	PC061779U	PC061779U	PC061779U	PC061827U	PC061827U	PC061827U	PC061827U	PC061827U	PC061839U	PC061839U	PC070152U	PC070152U	PC070152U	PC070152U	PC070343U	PC070343U	PC070436D	PC070436D	PC070544U	PC070544U	PC070544U	PC070729U	PC070729U	PC070729U	PC070729U	PC071770D	PC071770D	PC07170D D	PC071770D	PC071770D	PC071770D	PC071851U	PC071851U	PC080139D	PC080139D	PC080139D	PC080348U	PC080348U	PC080348U	PC080435D
$\overline{}$	PC202						PC214					PC208		PC147				PC174	Ī	PC175		PC173			PC257				PC251					\neg	PC253		PC159			PC156			PC163

ble 3

17.000000000000000000000000000000000000		43670000		000000		Design D	CTDang against an and an and Libe	7	8 70E-11	248 IS	1 063	
Control 1985 Control 1985 Control 1987 Cont				47.58808			1		1		85	
Control Cont		DC000435D		4750000		1	Derminstern chain NADE dehadencenses	7 8	Т	Γ	05	
Variotatisty Vari		LC000433D		4170000		1	Acapitatoly-chain INADII denyonogenesa		Т	T		
Properties Pro		PC080435D	Ω	4758808		DEAD	AH box helicase	8.8	7		7,4	
Processist December Processis De		PC080435D		4758808		ប		-5.8	╗	Ì	2	
Process 11 U 4594 91 MNA DOD 1931 Hydric's tipic facing (Jee Cal) (1504 1316 1306 91 1316 1306 91 1504 1316 1306 91 1306 9				4758808		FliD	Flagellar hook-associated protein 2	-242			-	
Properties Conference Con				4504191		NW:0001793114Home	o sapiens mutSt(EPcoli))homologi6 (MSH	6) 440.445	45	X.		
PC050511 U 4504191 PNVPP PNVPPP PNVPP	_	_		4504191		MutS C	DNA mismatch repair proteins, mutS fa	322.1			316	
PC098311 U 4504191 SNF SNF SOUTH SNF SNF SOUTH SNF S		_		4504191		MutS N		216.6			177	
PC090311 U		PC080511U		4504191		PWWP	PWWP domain	127.1			62	
PC0003101 U 4501187		PC080511U		4504191		SNF	Sodium:neurotransmitter symporter fam	1.3	П		89,	
Procession 4507187		PC080511U		4504191		Luteo ORF3	Luteovirus (ORF3) RNA-directed RNA-	0.3			╗	
Comfine Comfine Comfine SAND Comfine Comfine SAND Comfine SAND Comfine SAND Comfine SAND Comfine SAND S		PC080742U		4507187		NM#00312551) Hom	o sapiens small proline inchiprote in 1916	ominn) 🚅	_			
PCO90230U U 3323911 APOS5221 Hearin's Sapiealists in OCHHOICE Enginerismi (SRI) (Dimetal Station) PCO90230U U 3323911 ASAND SAND domain International State (SIND) SAND (SIND)<		PC080742U	Ω	4507187		Comifin	Cornifin (SPRR) family	57	2.10E-14	_	17	
PC0901310 U 1225911 14406 box	PC299	PC090230U	n	3252911		AF0S6322 Homo sap	vienstSP/100*HMG/nuclear/autoantigent(St	P(00)TMRN	Acompleted			
PC090131U U 1372911 HMG Only HMG Only MOD Only 1183 170E-31 1566 873 PC090131U U 4504193 HWG Only ITUNGSERIENTS (MARCHING CARREST) 170E-31 18.00E-67 215 235 PC090233U U 4504193 INTRACTION GAST INTRACTION CARREST 18.00E-67 215 235 PC090233U U 4504193 INTRACTION CARREST INTRACTION CARREST 18.00E-67 215 235 PC090222U U 4504689 Down-regulated NYRIGORGOS/MIRTON CARREST 18.10E-20 94 200 PC090622U U 7706216 TO 1706216 170 18.00E-67 355 PC090622U U 7706216 TO 1706216 1706217 1706216 1706217 1706217 1706217 1706		PC090230U	Ω	3252911		SAND	SAND domain	180	2.10E-51		929	
PC0901331 U		PC090230U	ח	3252911		HMG_box	HMG (high mobility group) box	118.3			_	
PC090131U U 4504193 Iranscript fac2 Transcript fac2 Transcript fac2 31.1.1 28.6 8.06-6.7 21.5 28.5 PC090131U 4506439 Down-regulated NVR@10093640000000000000000000000000000000000	PC302	PC090233U	n	4504193		Homo sapiens gener	alitranscription/factoral/BI(Ginp2B)ImRN	A METICAL S		45.	4	
PC090233U U 4704193 Cyclin State of 4306839 Down-regulated NVR80099900000000000000000000000000000000		PC090233U	D	4504193		transcript fac2	Transcription factor TFIIB repeat	231.1			185	
PC090621D D 4506859 Down-regulated NN/Riscossystill/Riscossystil		PC090233U	n	4504193		cyclin	_					
PC090623U U 7706216 PROMINERARIO (MIGRATORIA) Syndecan domain Syndecan domain 134.3 6.00E-18.3 205.3 205.8 <	PC316		٥	4506859	-	NWEGO2997411 HEEM	okapienskyndecamin(sokunjim Rakami)		-			
PC090623U U 7706216 BNömrössprensit/kAkfrändingnacioningnamen (http://documental.com/documental.		PC090622D	a	4506859		Syndecan			6.50E-187	~	808	
PC090623U U 7706216 TIO IPT/TIC domain 15.5 6.20E-14 275 365 PC090623U J7706216 1706216 1706216 1706216 240E-03 165 221 220 <t< th=""><th>PC315</th><th>PC090625U</th><th>n</th><th>7706216</th><th></th><th>HomosapiensiH;2K</th><th></th><th></th><th></th><th>翻</th><th>TO AN EXPENSE</th><th></th></t<>	PC315	PC090625U	n	7706216		HomosapiensiH;2K				翻	TO AN EXPENSE	
PC090623 U 1706216 19 1906216 19 11 2.04.0.3 16.0.0.3 12.0.3 11 11 1.0.0.0.3 11 11 1.0.0.3 11 1.0.0.3 11 11 1.0.0.3 11 11 1.0.0.3 11 11 1.0.0.3 11 11 1.0.0.3 11 11 1.0.0.3 11 11 1.0.0.3 11 11 1.0.0.3 11 11 1.0.0.3 11 11 1.0.0.3		PC090625U	U	7706216		TIG		55.5	П		365	
PC090671D Down-regulated HVVM/HBR\(\text{PB}\(\text{PB}\)\(\text{PB}\)\(\text{PB}\(\text{PB}\)\(\text{PB}\(\text{PB}\)\(\text{PB}\)\(\text{PB}\(\text{PB}\)\(\text{PB}\(\text{PB}\)\(\text{PB}\)\(\text{PB}\(\text{PB}\)\(\text{PB}\)\(\text{PB}\(\text{PB}\)\(\text{PB}\)\(\text{PB}\(\text{PB}\)\(\text{PB}\)\(\text{PB}\(\text{PB}\)\(\text{PB}\)\(\text{PB}\(\text{PB}\)\(\text{PB}\)\(\text{PB}\)\(\text{PB}\(\text{PB}\)\(\text{PB}\)\(\text{PB}\(\text{PB}\)\		PC090625U		7706216		ig	Immunoglobulin domain	11.7	2.40E-03	165		
PC090677D D 397218 WDd domain, G-beta repeat 200.3 1.60E-57 275 311 Excession PC090672D D 7670448 Down-regulated WDd domain, G-beta repeat 200.3 1.60E-57 275 311 Excession PC090754U U 4503473 GTP EFTU GIPP EFTU D3 Elongation factor Tu C-terminal domai 201.1 8.80E-58 269 378 PC090754U U 4503473 GTP EFTU D3 Elongation factor Tu Green and domain 201.1 8.80E-58 269 378 PC090754U U 4503473 GTP EFTU D3 Elongation factor Tu Gomain 201.1 8.80E-58 269 378 PC09078BD D 5031639 GTP EFTU D2 Elongation factor Tu domain 201.1 8.80E-58 269 378 PC09078BD D 5031639 Down-regulated BGmcgapiensjeric(GNII)YmRNAScapensies and processes BGC-27 17.0E-86 169 373 PC09078BD D 5031639 Down-regulated BGGmcgapiensjeric(GNIII)YmRNAscapens	PC310	PC090677D	<u>ا</u>	307218	own-regulated	ниммнвиизяни	mani MHGproteinihomologoustotchicken	Boomplex	proteinImR	Arcomp		
PC09072U Down-regulated Algebrago (Homo) superior (H		PC090677D	Q	307218		WD40	WD domain, G-beta repeat	200.3	1.60E-57	275	=	
PC090734U U 4503473 Http://documents.com/documents/like/Politicity/Politi	PC239	PC090722D		7670748		Alega 7906 Homoisa	olens UDP-glucoseglycoprotein/glucosylu	rans rerase)2	precursorim	RNA con	pletecdskers	
PC090754U U 4503473 GTP EFTU Elongation factor Tu GTP binding doma 237.8 8.20E-65 4 175 PC090754U U 4503473 GTP EFTU D3 Elongation factor Tu C-terminal domai 201.1 8.80E-58 269 378 PC090754U U 4503473 GTP EFTU D3 Elongation factor Tu C-terminal domai 201.1 8.80E-58 269 378 PC090754D U 4503473 Down-regulated Elongation factor Tu domain Z 1.50E-27 187 265 PC090788D D 5031639 Down-regulated Elongation factor Tu domain Z 201.1 8.80E-27 1.20E-27 1.20E-27 PC090842U U 4557032 Elongation factor Tu domain Z 201.1 201.2 PC090842U U 4557032 Elongation factor Tu domain Z 201.1 201.2 PC090842U U 4557032 Elongation factor Tu domain Z 201.1 201.2 PC091028U U 4557032 Elongation factor Tu domain Z 201.1 PC091028U U 7662426 Elaminin Nterm Laminin EGF Laminin EGF	PC230	PC090754U	Ω	4503473		Homojsapiens(eukai	Jone translation elongation factora la ph a	NEIKENWO	EEUWIUN	MRNA		
PC090754U U 4503473 GTP EFTU D3 Elongation factor Tu C-terminal domai 201.1 8.80E-58 269 378 PC090754U U 4503473 GTP EFTU D2 Elongation factor Tu domain 2 98.6 1.50E-27 187 263 1.50E-28 1.50E-27 1.50		PC090754U	U	4503473		GTP EFTU	Elongation factor Tu GTP binding doma	237.8	8.20E-69	4	175	
PC090754U U 4503473 GTP EFTU D2 Elongation factor Tu domain 2 98.6 1.50E-27 187 26.3 PC09078BD 5031639 Down-regulated (H6m703mptens)Gemitchforfalte/(GHN1th/mRA/NEMBER) (H2m203c) (H2m203c) (H2m203c) BJOTTO (H2m203c) (H2m2		PC090754U	U	4503473		GTP EFTU D3	Elongation factor Tu C-terminal domai	201.1	Т		378	
PC090788D Down-regulated PEGNOTOSE PEGNOTOSE		PC090754U	U	4503473		GTP EFTU D2	Elongation factor Tu domain 2	98.6	1.50E-27	187		
PC09078BD D 5031639 BJG0TROSED (Colored Spring Strain Colored Spring Strain Colored Strain Color	PC220	PC090788D	D	5031639	Down-regulated	[Homosapiens/comi	chon-like (ONIL) THRNAST CONTROLLED		の一個			
PC090842U U 4557032 BJ6m06sapiens1actale delydrogenase, alpha/berla 197 1.20E-86 164 313 PC090842U U 4557032 Idh C Jactate/malate delydrogenase, alpha/berla 197 1.20E-86 164 313 PC091028U U 7662426 Idhmini Nierm Laminin Nierm Laminin Nierm Laminin Nierm Laminin Nierm Laminin Hormal (Domain VI) 31.8 8.00E-07 297 341 PC091028U U 7662426 EGF Laminin EGF Laminin Hormal (Domain VI) 31.8 8.00E-07 297 341 PC091028U U 7662426 EGF EGF EGF EGF-like (Domain VI) 31.8 8.00E-07 297 341 PC091028U U 7662426 EGF EGF EGF EGF-like domain 3.9 5.20E-01 299 326 PC091028U U 4732026 Peptidase M2 Angiotensin-converting enzyme 3415 0.00E+00 634 1228 PC091425U U 4732026 PupifyHypC family -34 5.00E-01 1231 1286		PC090788D	D	5031639					Name of the last o			
PC090842U U 4557032 Idh C Jactate/malate dehydrogenase, alpha/beta/297 1.20E-86 164 333 PC090843U U 4557032 Idh Jactate/malate dehydrogenase, NAD bind 284.4 7.30E-87 1.20E-86 164 333 PC091028U U 7662426 Haminin Nterm Laminin N-terminal (Domain VI) 37 8.80E-14 97 245 PC091028U U 7662426 Jaminin Nterm Laminin EGF-like (Domain III and V) 3.7 8.80E-14 97 341 PC091028U U 7662426 EGF EGF EGF EGF-like (Domain III and V) 3.18 8.00E-07 297 341 PC091028U U 7662426 Kyjill@is.69jif@mnisspiecens.converting enzyme 3.9 5.20E-01 299 336 PC091028U U 4732026 Kyjill@is.69jif@mnisspiecens.converting enzyme 3415 0.00E+00 634 1228 PC091425U U 4732026 HupF HypC HupF/HypC family 3415 1286 PC091425U U 4732026 HupF HypC HupF/HypC family 3415 1286 PC091425U U 4732026 HupF HypC HupF/HypC family 3415 1286 PC091425U U 4732026 HupF HypC family 134 1286 PC091425U U 4732026 HupF HypC family 134 1351 1286 PC091425U U 4732026 HupF HypC family 134 1351 1286 PC091425U U 4732026 HupF HypC family 134 1351 1286 PC091425U U 4732026 HupF HypC family 134 1351 1286 PC091425U U 4732026 HupF HypC family 134 1351 1286 PC091425U U 4732026 HupF HypC family 134 134 1351 1286 PC091425U U 4732026 HupF HypC family 134 134 134 1351 1286 PC091425U U 4732026 HupF HypC family 134 134 134 1351	PC233	PC090842U	ח	4557032		Momo(sapiens))actal	ie dehydrogenase BY (UDHB) im RN will an		Jan. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	2		
PC090842U U 4557032 Idh Iactate/malate dehydrogenase, NAD bind 284.4 7.30E-83 19 162 1		PC090842U	U	4557032		Idh C	lactate/malate dehydrogenase, alpha/beta	297	Ħ	T	333	
PC091028U U 7662426 HtomograpiersychyAooy76/profeiri/(Rt/Aooy76/profeiri/Rt/Aooy76/pr		PC090842U	Ω	4557032		ldh	lactate/malate dehydrogenase, NAD bind	284.4		<u></u>		
PC091028U U 7662426 laminin Nterm Laminin M-terminal (Domain VI) 37 8.80E-14 50 295 PC091028U U 7662426 laminin EGF Laminin EGF-like (Domains III and V) 31.8 8.00E-07 297 341 PC091028U U 7662426 EGF EGF-like domain 5.00E-01 297 341 PC091425U U 4732026 Walill@85QHGm0sspie/sfrighedenis/lichidenteringenzyme 3415 0.00E-06 654 1228 PC091425U U 4732026 Peptidase M2 Angiotensin-converting enzyme 3415 0.00E-06 654 1228 HupF HypC HupF/HypC family -34 5.00E-01 1231 1286	PC236	PC091028U	D	7662426		1Homo[sapiens]KI/A	40976 protein (KIAA0916) mRNAETED				_	
PC091028U U 7662426 laminin EGF Laminin EGF-like (Domains III and V) 31.8 8.00E-07 297 341 PC091028U U 7662426 EGF EGF-like domain 3.9 5.20E-01 299 326 PC091425U U 4712026 WEBIRGS GOBIEST GORDING STREET		PC091028U	Ω	7662426		laminin Nterm		37	7		295	
PC091028U U 7662426 EGF EGF-like domain 3.9 5.20E-01 299 326 PC091425U U 4712026 Whitescopies in graph of the properties in gr	L	PC091028U	Ω	7662426		laminin EGF		31.8	П		741	
PC091425U U 4712026 Winifigs.6Sgliff@mösspielers*ärrgiöfer		PC091028U	n	7662426		EGF	EGF-like domain	3.9				
U 4732026 Peptidase M2 Angiotensin-converting enzyme 3415 0.00E+00 634 U 4732026 HupF HypC HupF/HypC family -34 5.00E-01 1231	PC324		n	4732026		Whiliss 69 Hibmolsa	piens angiötensin/Il cohvertingtenzymelpre	curson				
U 4732026 HupF HypC HupF/HypC family -34 5.00E-01 [1231		PC091425U		4732026		Peptidase M2	Angiotensin-converting enzyme	3415	_	٦	1228	
		PC091425U	n	4732026		HupF HypC	HupF/HypC family	-34			1286	

aple

	STATE OF THE PARTY	INTERESTAL DESCRIPTION OF THE PROPERTY OF										ikisoform/ikardiacimuscie/(AliiR5AM)(nucleaggane(en												The state of the s		Charles In the Control of the Contro								100					-	The second secon			
22	September 1	N	404	254			239	442	327	286	182	N Cardiac	421	231	135	408		479	284	483	157	412	327	282		4	840	912	948	_		245	239		404	<u>6</u>	==	305					
9	44 201/00	400000	159	127			5	333	251	6	6	ilisoforn		423	67	230		457	246	431	8	354	289	122				873	552			õ	500	Snc h1252	112	_	32	126	-1				
7 70F-01	The Park	HKINAR	2.80E-93	9.10E-01	mplete cds	聚等的	3.00E-111	3.00E-61	3.80E-28	6.10E-01	9.80E-01	exfelphalsubuni	2.80E-164 138	1.40E-39	2.80E-20	9.90E-01	医医院验验 各种的	1.80E-134 457	2.00E-02	2.30E-01	2.70E-01	4.70E-01	4.90E-01	7.90E-01	8.20E-01	医学艺	1.40E-117	2.90E-01	3.90E-01	6.10E-01	me gene	1.90E-88	4.70E-01	phómarch	6.80E-101	5.80E-61	6.50E-01	7.50E-01	9.80E-01		4.00E-70		
0.0	100	MAREK	319	-51.4	FINRNATCO	hawana		212.7		-99.3	138.3	Complexia				97.9	ন্দ্রানাতা হ	455.9	4.8	-16.7			-6.9	-20.8	-11.8	NA数数	399.8	-2.9	-257.7	-23.5	trypticienz	277	-3.3	dekinisilym	344.3	211.7	-201.8	-101.5	-29.6	((cox+))	242.1	dellering	
Marhudand Co Lynniach	INCIDITIONAL PROPERTY OF THE P	1990ciated p	metallopeptidase family M24	PBP/GOBP family	APPOROVABIH omorsapienslubiquitin associated proteini (NAG20) im RNAI complete cus	XXX88691/HSEFIIIA/GHuman, mr NAVior elongation incorn salpha XXIIIIA MANAINI MANAINI MANAINI MANAINI MANAINI M	Elongation factor Tu GTP binding doma 378.7	Elongation factor Tu C-terminal domai 2	Elongation factor Tu domain 2	oxidor	Conserved hypothetical ATP binding pr [-138.3	Homorsapiens/Attrasynthase/H-Firansporting/Initochondrial/Fileompl	ATP synthase alpha/beta family, nucleo 554.9	ATP synthase alpha/beta chain, C termi 1140.6	ATP synthase alpha/beta family, beta-b	Tungsten formylmethanofuran dehydrog -97.9	NNMO 18300R H15m3/sapiens hypothetical protein Febril 01sf (FEB/14015).	Zinc finger, C2H2 type	BED zinc finger	LIM domain	in	MIZ zinc finger	ctor S-II (TFIIS)	PHD-finger	ANI-like Zinc finger	(Hömöjsapjensja Heprolöcadhenni(břáin hear), (9999DHn) mRNA開展期間	Cadherin domain	Adenovirus E3 region protein CR2	Alphaherpesvirus glycoprotein E	Cellulose binding domain	AEIX698019/alti/66330/Homorsapiens/stratum-comeum/chymotrypiic/enzyme/genera	Trypsin	Anenome neurotoxin	HSWANING Homorsapiens mRNAthom, HIV-associated non-Hodgkin shymphoma (Cloncini2:22) Kanas	NADH-Ubiquinone/plastoquinone (com/344.3	NADH-ubiquinone oxidoreductase chain 211.7	Sugar (and other) transporter	Cytochrome C biogenesis protein trans	Integral membrane protein DUF6	NMICONSCIPLINATION sapiens cytochrome croxidas etcubunianal (Goxe)	Cytochrome c oxidase subunit IV	M691.99MIHUMG0S2AtHumantG0S2Iproteinigenercompleteicdsing and	
MAN Cod mutoco	MINI CON INDIAN	thomo(sapiens)methi	Peptidase M24	PBP GOBP	KIRR22048Homo,sap	WP6869FIJHSEFIIMG	GTP_EFTU	GTP EFTU D3	GTP EFTU D2	pyr_redox	ATP-bind	Homojsapiens/Attra-	ATP-synt ab	ATP-synt ab C	ATP-synt ab N	FwdE	NV(E0,18900R) (H15m)	zf-C2H2	Zf-BED	LIM	BolA	zf-MIZ	TFIIS	рно	zf-AN1	(Homosapiens BH:p	cadherin	Adeno E3 CR2	Herpes gE	CBD 6	ME0863909 ME0663	trypsin	toxin 4	HSNAPINE Homolsa	oxidored q1	oxidored q5_N	sugar tr	DsbD	DUF6	NMIOODI8600 HAST	COX4	M69199911HUMG05	
AC00551	4/32020	5803092	5803092	5803092	7188647	31092	31092	31092	31092	31092	31092	4757810	4757810	4757810	4757810	4757810	8922824	8922824	8922824	8922824	8922824	8922824	8922824	8922824	8922824	4505635	4505635	4505635	4505635	4505635	5733684	5733684	5733684	13272790	13272790	13272790	13272790	13272790	13272790	4502981	4502981	182851	182851
11 1136110000	0 0024100	PC091527U U	PC091527U U	PC091527U U	PC091839U U	PC091853U U	PC091853U U	PC091853U U	PC091853U U	PC091853U U	PC091853U U	PC091888U U	PC091888U U	PC091888U U	PC091888U U	PC091888U U	PC092004U U	PC092004U U	PC092004U U	PC092004U U	PC092004U U	PC092004U U	PC092004U U	PC092004U U	PC092004U U	PC092052U U	PC092052U U	PC092052U U	PC092052U U	PC092052U U	PC100113U U	PC100113U U	PC100113U U	PC100356U U	PC100356U U	PC100356U U	PC100356U U	PC100356U [U	PC100356U U	PC100428U U	PC100428U U	PC323 PC101430U U	PC101430U U
	т	PC400			PC407	PC405						PC402					PC401									PC406					PC279			PC285						PC294		PC323	

able

	270202	201		Ī		Ī		l.	
D	5902022		OMPdecase	ñ			Ţ		
PC101847D D	5902022		Polysacc synt				10 289		-
n	35038		HSN BIWH Sapiensh	HSN BIVAH SapienstmiRNA from the lear traction of the same of the sapiens of the	G.A. A. A.				
D	35038		ku	KU domain	570	7.70E-169	1 467	,	
PC101863U U	35038		filament	Intermediate filament protein	2.8	5.40E-01	559 568	no	
PC110249D D	4759258	Down-regulated	HomorsapiensPAC-11	Homorsapiens RAC-11 keifransposable Pelement (Wishing) min NNAM SECT.		FH			2
PC110249D D	4759258		Zf-BED	BED zinc finger			23 72	_	
PC110541D D	5031779	Down-regulated	Homo Sapiens linier	Horno Sapiens finie free on gamma inducio i aprofeinu of (unido) im RN/ACT 200			解系列 即		
PC110541D D	5031779		NIH	HIN-200/IF120x domain	887.5	2.00E-264	518 685	S	
PC110541D D	5031779		PAAD DAPIN	PAAD/DAPIN/Pyrin domain	155.2	5.90E-44	3 88		
PC110541D D	5031779		lipocalin	d bind	8.8	1.20E-02	589 669	s T	
PC110541D D	5031779		pp-binding	Phosphopantetheine attachment site	3.9	1.00E+00			
PC110927U U	7020307		7020306ldbjjAK000	7020306 db AKQ00303R RKG00000B HG000555p EnstG0 NANGO00020165KC OnBH ER06648KL	120302FFS4	CISHENDE			
PC110927U IU	7020307		oxidored q1	NADH-Ubiquinone/plastoquinone (com/21.6	917	2.20E-06 674		2	
PC110940D D	4758950	Down-regulated	NATIO0009A2NINHSH	NMT00094944AHTHGmosspienspeptidyJpmiyAtsomenseJBI(Cyclophilin)B)V	lophilin(B)	多种性。" "	題		
PC1 10940D D	4758950		pro isomerase	Cyclophilin type peptidyl-prolyl cis-tr	395.4	3.00E-116	45 206	٦	
PC111168U U	4759284		NWGOOTHBIBLE	NMCOOMISHSHIP DENOISE piens obiqui in rearbox, il remina les reasolules	元司帅				
PC111168U U	4759284		псн		465	3.20E-137	_		
PCITIERU U	7416941		ATHR90741HT6molsa	A File 90 mil Homosa piensi Wisterim R.N. Ascomplete cds		限制期	はない。		
PC111181U U	7416941		Tim17	Mitochondrial import inner membrane t -59.6	-59.6	6.10E-02	59 210	0	
PC111181U U	7416941		Synapsin	Synapsin, N-terminal domain	7	1.90E-01	96 98		
PC111588D D	4503413	Down-regulated	Hömörsapiensidiphil	<u>ເຈົ້າວ່າ ເຈົ້າວ່າ ເປັນທີ່ ທີ່ທີ່ທີ່ທີ່ທີ່ທີ່ທີ່ທີ່ທີ່ ທີ່ ທີ່ </u>	enBligrowth	Mactor like	growth fac	or)K(D/IDR)TH	RNA - Assessment Section (1997)
PC111588D D	4503413		EGF	EGF-like domain	31	1.40E-06	108 143	3	
PC111669D D	7705823	Down-regulated	NM#0.1610091/HGP	NM*01.610091/H6m68saptensingterminalisterpirensisterassecomplexamitatudus estilioopminalist	nplexvardilsi	bunit (100G	S-11126)TmR	NAC CONTRACT	
PC111669D D	7705823	_	Acetyltransf	Acetyltransferase (GNAT) family	70.4	1.90E-18	45 129	6	
PC120136U U	7706729		Homosapiens Jil 8%	HomoisaniensijijBixofiisoprofeint(ijiBixofiiso)imRiNA			9		
PC120136U U	7706729		T-box	T-box	380.6	8.10E-112 240		9	
PC120331U IU	4504425		NWGOOPHE SUITHER	NWGODIPSUIIHTEMSSEDIERSINIPHEMODIIIIWENOODI(Indinisioneelinomosomalyiproteiniik-1442)	elchromosor	nalyprotein			
PC120331U U	4504425		HMG box	HMG (high mobility groap) box	161	1.50E-56		3	
PC120740D D	36796	Down-regulated	HSJI(GR)[HUman(re	HSJI(GRIJI) Umanitecomplex polypeptide il Vgenera and an extension			X		
PC120740D D	36796		cpn60 TCP1	TCP-1/cpn60 chaperonin family	808	9		5	
PC120740D D	36796		ATP-synt B	ATP synthase B/B' CF(0)	4	3.60E-01	_		
PC120741D D	5174389	Down-regulated	HORINITE SECTION OF THE PROPERTY OF THE PROPER	NME00589/HITHS morsapiens acety! Goenzymezavacety/transferase 22	ensept				
PC120741D D	5174389		thiolase	Thiolase, N-terminal domain	419.2	1.90E-123	1 268	8	
PC120741D D	5174389		thiolase C	Thiolase, C-terminal domain	250.2	╗	272 396	9	
PC120741D D	5174389		ketoacyl-synt	Beta-ketoacyl synthase, N-terminal do	-118	3.40E-01	5 154	4	
PC121671U U	7661636		Homosapiens IDKR	Homosapiensjip Krz Ps 64 O 2082 birone ii ii O Krz Ps 64 O 2082) min Na Krz Ma	TI BYANE				
PC121671U U	7661636								
	L					_	_		
	•								

able

SEQUENCE LISTING

<110>	OriGene Technol	ogies				
<120>	Prostate Cancer	Expression	Profiles			
<130>	9U 206 PCT					
<150> <151>	US 60/281,732 2001-04-06					
<150> <151>	US 60/281,731 2001-04-06					
<160>	211					
<170>	PatentIn versio	n 3.1				
<210> <211> <212> <213>	1 620 DNA Homo sapiens					
<400> gggttt	1 atcg gaaaatgtgt	ttattgagat	ggtttcccac	tcatcttgac	tcagagtgct	60
tttagt	gctg cttcctcctg	aaggaacatc	cttctgtaag	ccttgctttt	cctccttggc	120
tgtctg	aaga tagatcgcca	tcatgaacga	caccgtaact	atccgcacta	gaaagttcat	180
gaccaa	ccga ctacttcaga	ggaaacaaat	ggtcattgat	gtccttcacc	ccgggaaggc	240
gacagt	gcct aagacagaaa	ttcgggaaaa	actagccaaa	atgtacaaga	ccacaccgga	300
tgtcat	cttt gtatttggat	tcagaactca	ttttggtggt	ggcaagacaa	ctggctttgg	360
catgat	ttat gattccctgg	attatgcaaa	gaaaaatgaa	cccaaacata	gacttgcaag	420
acatgg	cctg tatgagaaga	aaaagacctc	aagaaagcaa	cgaaaggaac	gcaagaacag	480
aatgaa	gaaa gtcaggggga	ctgcaaaggc	caatgttggt	gctggcaaaa	agccgaagga	540
gtaaag	gtgc tgcaatgatg	ttagctgtgg	ccactgtgga	tttttcgcaa	gaacattaat	600
aaacta	aaaa cttcatgtgt					620
<210> <211> <212> <213>	2 5212 DNA Homo sapiens					
<400> ggccag	2 gcga caggtgtcgc	ttgaaaagac	tgggcttgtc	cttgctggtg	catgcgtcgt	60
cggcct	ctgg gcagcaggtt	tacaaaggag	gaaaacgact	tcttctagat	tttttttca	120
gtttct	tcta taaatcaaaa	catctcaaaa	tggagaccta	aaatccttaa	agggacttag	180
tctaat	ctcg ggaggtagtt	ttgtgcatgg	gtaaacaaat	taagtattaa	ctggtgtttt	240
actato	caaa gaatgctaat	tttataaaca	tgatcgagtt	atataaggta	taccataatg	300
agtttg	attt tgaatttgat	ttgtggaaat	aaaggaaaag	tgattctagc	tggggcatat	36
tgttaa	agca tttttttcag	agttggccag	gcagtctcct	actggcacat	tctcccatta	420
tgtaga	atag aaatagtacc	tgtgtttggg	aaagatttta	aaatgagtga	cagttatttg	48
gaacaa	agag ctaataatca	atccactgca	aattaaagaa	acatgcagat	gaaagttttg	54
acacat	taaa atacttctac	agtgacaaag	aaaaatcaag	aacaaagctt	tttgatatgt	60
gcaaca	aatt tagaggaagt	aaaaagataa	atgtgatgat	tggtcaagaa	attatccagt	66
tattta	caag gccactgata	ttttaaacgt	ccaaaagttt	gtttaaatgg	gctgttaccg	72
Ctgaga	atga tgaggatgag	aatgatggtt	gaaggttaca	ttttaggaaa	tgaagaaact	78

tagaaaatta	atataaagac	agtgatgaat	acaaagaaga	tttttataac	aatgtgtaaa	840
atttttggcc	agggaaagga	atattgaagt	tagatacaat	tacttacctt	tgagggaaat	900
aattgttggt	aatgagatgt	gatgtttctc	ctgccacctg	gaaacaaagc	attgaagtct	960
gcagttgaaa	agcccaacgt	ctgtgagatc	caggaaacca	tgcttgcaaa	ccactggtaa	1020
aaaaaaaaa	aaaaaaaaa	aaaaagccac	agtgacttgc	ttattggtca	ttgctagtat	1080
tatcgactca	gaacctcttt	actaatggct	agtaaatcat	aattgagaaa	ttctgaattt	1140
tgacaaggtc	tctgctgttg	aaatggtaaa	tttattattt	tttttgtcat	gataaattct	1200
ggttcaaggt	atgctatcca	tgaaataatt	tctgaccaaa	actaaattga	tgcaatttga	1260
ttatccatct	tagcctacag	atggcatctg	gtaacttttg	actgttttaa	aaataaatcc	1320
actatcagag	tagatttgat	gttggcttca	gaaacatttt	gaaaaacaaa	agttcaaaaa	1380
tgttttcagg	aggtgataag	ttgaataact	ctacaatgtt	agttctttga	gggggacaaa	1440
aaatttaaàa	tctttgaaag	gtcttattt	acagcccata	tctaaattat	cttaagaaaa	1500
ttttaacaa	agggaatgaa	atatatatca	tgattctctt	tttccaaaag	taacctgaat	1560
atagctatga	agttcagttt	tgttattggt	agtttgggca	gagtctcttt	ttgcagcacc	1620
tgttgtctac	cataattaca	gaggacattt	ccatgttcta	gccaagtata	ctattagaat	1680
aaaaaaactt	aacattgagt	tgcttcaaca	gcatgaaact	gagtccaaaa	gaccaaatga	1740
acaaacacat	taatctctga	ttatttattt	taaatagaat	atttaattgt	gtaagatcta	1800
atagtatcat	tatacttaag	caatcatatt	cctgatgatc	tatgggaaat	aactattatt	1860
taattaatat	tgaaaccagg	ttttaagatg	tgttagccag	tcctgttact	agtaaatctc	1920
tttatttgga	gagaaatttt	agattgttt	gttctcctta	ttagaaggat	tgtagaaaga	1980
aaaaaatgac	taattggaga	aaaattgggg	atatatcata	tttcactgaa	ttcaaaatgt	2040
cttcagttgt	aaatcttacc	attattttac	gtacctctaa	gaaataaaag	tgcttctaat	2100
taaaatatga	tgtcattaat	tatgaaatac	ttcttgataa	cagaagtttt	aaaatagcca	2160
tcttagaatc	agtgaaatat	ggtaatgtat	tattttcctc	ctttgagtta	ggtcttgtgc	2220
tttttttcc	tggccactaa	atttcacaat	ttccaaaaag	caaaataaac	atattctgaa	2280
tatttttgct	gtgaaacact	tgacagcaga	gctttccacc	atgaaaagaa	gcttcatgag	2340
tcacacatta	catctttggg	ttgattgaat	gccactgaaa	cattctagta	gcctggagaa	2400
gttgacctac	ctgtggagat	gcctgccatt	aaatggcatc	ctgatggctt	aatacacatc	2460
actcttctgt	gaagggtttt	aattttcaac	acagcttact	ctgtagcatc	atgtttacat	2520
tgtatgtata	aagattatac	aaaggtgcaa	ttgtgtattt	cttccttaaa	atgtatcagt	2580
ataggattta	gaatctccat	gttgaaactc	taaatgcata	gaaataaaaa	taataaaaaa	2640
tttttcattt	tggcttttca	gcctagtatt	aaaactgata	aaagcaaagc	catgcacaaa	2700
actacctccc	tagagaaagg	ctagtccctt	ttcttcccca	ttcatttcat	tatgaacata	2760
gtagaaaaca	gcatattctt	atcaaatttg	atgaaaagcg	cctacacgtt	tgaactgaaa	2820
tacgacttgt	catgtgaact	gtaccgaatg	tctacgtatt	ccacttttcc	tgctggggtt	2880
cctgtctcag	aaaggagtct	tgctcgtgct	ggtttctatt	acactggtgt	gaatgacaag	2940
gtcaaatgct	tctgttgtgg	cctgatgctg	gataactgga	aaagaggaga	cagtcctact	3000
gaaaagcata	aaaagttgta	tcctagctgc	agattcgttc	agagtctaaa	ttccgttaac	3060
aacttggaag	ctacctctca	gcctactttt	ccttcttcag	taacaaattc	cacacactca.	3120
ttacttccgg	gtacagaaaa	cagtggatat	ttccgtggct	cttattcaaa	ctctccatca	3180

3240

aatcctgtaa actccagagc aaatcaagat ttttctgcct tgatgagaag ttcctaccac

tgtgcaatga	ataacgaaaa	tgccagatta	cttacttttc	agacatggcc	attgactttt	3300
ctgtcgccaa	cagatetgge	aaaagcaggc	ttttactaca	taggacctgg	agacagagtg	3360
gcttgctttg	cctgtggtgg	aaaattgagc	aattgggaac	cgaaggataa	tgctatgtca	3420
gaacacctga	gacattttcc	caaatgccca	tttatagaaa	atcagcttca	agacacttca	3480
agatacacag	tttctaatct	gagcatgcag	acacatgcag	cccgctttaa	aacattcttt	3540
aactggccct	ctagtgttct	agttaatcct	gagcagcttg	caagtgcggg	tttttattat	3600
gtgggtaaca	gtgatgatgt	caaatgcttt	tgctgtgatg	gtggactcag	gtgttgggaa	3660
tctggagatg	atccatgggt	tcaacatgcc	aagtggtttc	caaggtgtga	gtacttgata	3720
agaattaaag	gacaggagtt	catccgtcaa	gttcaagcca	gttaccctca	tctacttgaa	3780
cagctgctat	ccacatcaga	cagcccagga	gatgaaaatg	cagagtcatc	aattatccat	3840
tttgaacctg	gagaagacca	ttcagaagat	gcaatcatga	tgaatacccc	tgtgattaat	3900
gctgccgtgg	aaatgggctt	tagtagaagc	ctggtaaaac	agacagttca	gagaaaaatc	3960
ctagcaactg	gagagaatta	tagactagtc	aatgatcttg	tgttagactt	actcaatgca	4020
gaagatgaaa	taagggaaga	ggagagagaa	agagcaactg	aggaaaaaga	atcaaatgat	4080
ttattattaa	tccggaagaa	tagaatggca	cttttcaac	atttgacttg	tgtaattcca	4140
atcctggata	gtctactaac	tgccggaatt	attaatgaac	aagaacatga	tgttattaaa	4200
cagaagacac	agacgtcttt	acaagcaaga	gaactgattg	atacgatttt	agtaaaagga	4260
aatattgcag	ccactgtatt	cagaaactct	ctgcaagaag	ctgaagctgt	gttatatgag	4320
catttatttg	tgcaacagga	cataaaatat	attcccacag	aagatgtttc	agatctacca	4380
gtggaagaac	aattgcggag	actacaagaa	gaaagaacat	gtaaagtgtg	tatggacaaa	4440
gaagtgtcca	tagtgtttat	tccttgtggt	catctagtag	tatgcaaaga	ttgtgctcct	4500
tctttaagaa	agtgtcctat	ttgtaggagt	acaatcaagg	gtacagttcg	tacatttctt	4560
tcatgaagaa	gaaccaaaac	atcatctaaa	ctttagaatt	aatttattaa	atgtattata	4620
actttaactt	ttatcctaat	ttggtttcct	taaaattttt	atttatttac	aactcaaaaa	4680
acattgtttt	gtgtaacata	tttatatatg	tatctaaacc	atatgaacat	atattttta	4740
gaaactaaga	gaatgatagg	cttttgttct	tatgaacgaa	aaagaggtag	cactacaaac	4800
acaatattca	atcaaaattt	cagcattatt	gaaattgtaa	gtgaagtaaa	acttaagata	4860
tttgagttaa	cctttaagaa	ttttaaatat	tttggcattg	tactaatacc	gggaacatga	4920
agccaggtgt	ggtggtatgt	gcctgtagtc	ccaggctgag	gcaagagaat	tacttgagcc	4980
caggagtttg	aatccatcct	gggcagcata	ctgagaccct	gcctttaaaa	acaaacagaa	5040
caaaaacaaa	acaccaggga	cacatttctc	tgtcttttt	gatcagtgtc	ctatacatcg	5100
aaggtgtgca	tatatgttga	atgacatttt	agggacatgg	tgtttttata	aagaattctg	5160
tgagaaaaaa	tttaataaag	caacaaaaat	tactcttaaa	aaaaaaaaa	aa	5212
	3 o sapiens	,			,	
<400> 3 cgcgcagcga	tggaggcgcc	ggggctcggg	cggtggaggc	ggagccggag	cgcggccatg	60
gcggggtccc	tgagtgccag	aggtggtggt	gttgcttatc	ttctggaacc	ccatgcagcc	, 120

agatcccagg cctagcgggg ctggggcctg ctgccgattc ctgcccctgc agtcacagtg 180 ccctgagggg gcaggggacg cggtgatgta cgcctccact gagtgcaagg cggaggtgac 240 gccctcccag catggcaacc gcaccttcag ctacaccctg gaggatcata ccaagcaggc 300 360 ctttggcatc atgaacgagc tgcggctcag ccagcagctg tgtgacgtca cactgcaggt 420 caagtaccag gatgcaccgg ccgcccagtt catggcccac aaggtggtgc tggcctcatc 480 cagccctgtt ttcaaggcca tgttcaccaa cgggctgcgg gagcagggca tggaggtggt 540 gtccattgag ggtatccacc ccaaggtcat ggagcgcctc attgaattcg cctacacggc ctccatctcc atgggcgaga agtgtgtcct ccacgtcatg aacggcgctg tcatgtacca 600 gategacage gttgteegtg cetgeagtga etteetggtg cageagetgg acceeageaa 660 tgccatcggc atcgccaact tcgctgagca gattggctgt gtggagttgc accagcgtgc 720 780 ccgggagtac atctacatgc attttgggga ggtggccaag caagaggagt tcttcaacct gtcccactgc caactggtga ccctcatcag ccgggacgac ctgaacgtgc gctgcgagtc 840 cgaggtcttc cacgcctgca tcaactgggt caagtacgac tgcgaacagc gacggttcta 900 cgtccaggcg ctgctgcggg ccgtgcgctg ccactcgttg acgccgaact tcctgcagat 960 1020 gcagctgcag aagtgcgaga tcctgcagtc cgactcccgc tgcaaggact acctggtcaa gatettegag gageteacce tgcacaagee caegeaggtg atgeeetgee gggegeeeaa 1080 1140 ggtgggccgc ctgatctaca ccgcgggcgg ctacttccga cagtcgctca gctacctgga 1200 ggcttacaac cccagtaacg gcacctggct ccggttggcg gacctgcagg tgccgcggag cggcctggcc ggctgcgtgg tgggcgggct gttgtacgcc gtgggcggca ggaacaactc 1260 geoegacgge aacaccgact ccagegeett ggactgttac aaccccatga ccaatcagtg 1320 gtcgccctgc gccccatga gcgtgccccg taaccgcatc ggggtggggg tcatcgatgg 1380 1440 ccacatctat gccgtcggcg gctcccacgg ctgcatccac cacaacagtg tggagaggta tgagccagag cgggatgagt ggcacttggt ggccccaatg ctgacacgaa ggatcggggt 1500 gggcgtggct gtcctcaatc gtctgcttta tgccgtgggg ggctttgacg ggacaaaccg 1560 1620 ccttaattca gctgagtgtt actacccaga gaggaacgag tggcgaatga tcacagcaat gaacaccatc cgaagcgggg caggcgtctg cgtcctgcac aactgtatct atgctgctgg 1680 gggctatgat ggtcaggacc agctgaacag cgtggagcgc tacgatgtgg aaacagagac 1740 1800 gtggactttc gtagccccca tgaagcaccg gcgaagtgcc ctggggatca ctgtccacca ggggagaatc tacgtccttg gaggctatga tggtcacacg ttcctggaca gtgtggagtg 1860 1920 ttacgaccca gatacagaca cctggagcga ggtgacccga atgacatcgg gccggagtgg ggtgggcgtg gctgtcacca tggagccctg ccggaagcag attgaccagc agaactgtac 1980 2040 ctgttgaggc acttttgttt cttgggcaaa aatacagtcc aatggggagt atcattgttt ttgtacaaaa accgggacta aaagaaaaga cagcactgca aataacccat cttccgggaa 2100 gggaggccag gatgcctcag tgttaaaatg acatctcaaa agaagtccaa agcgggaatc 2160 2220 atgtgcccct cagcggagcc ccgggagtgt ccaagacagc ctggctggga aagggggtgt 2280 ggaaagagca ggcttccagg agagaggccc ccaaaccctc tggccgggta ataggcctgg gtcccactca cccatgccgg cagctgtcac catgtgattt attcttggat acctgggagg gggccaatgg gggcctcagg gggaggcccc ctctggaaat gtggttccca gggatgggcc tgtacataga agccaccgga tggcacttcc ccaccggatg gacagttatt ttgttgataa 2460

gtaaccctgt	aattttccaa	ggaaaataaa	gaacagacta	actagtgtct	ttc	2513
<210> 4 <211> 250 <212> DNA <213> Hom	O sapiens					
<400> 4 cccaggcgca	gccaatggga	agggtcggag	gcatggcaca	gccaatggga	agggccgggg	60
caccaaagcc	aatgggaagg	gccgggagcg	cgcggcgcgg	gagatttaaa	ggctgctgga	120
gtgaggggtc	gcccgtgcac	cctgtcccag	ccgtcctgtc	ctggctgctc	gctctgcttc	180
gctgcgcctc	cactatgctc	tccctccgtg	tecegetege	gcccatcacg	gacccgcagc	240
agctgcagct	ctcgccgctg	aaggggctca	gcttggtcga	caaggagaac	acgccgccgg	300
ccctgagcgg	gacccgcgtc	ctggccagca	agaccgcgag	gaggatcttc	caggagccca	360
cggagccgaa	aactaaagca	gctgcccccg	gcgtggagga	tgagccgctg	ctgagagaaa	420
acccccgccg	ctttgtcatc	ttccccatcg	agtaccatga	tatctggcag	atgtataaga	480
aggcagaggc	ttccttttgg	accgccgagg	aggttgacct	ctccaaggac	attcagcact	540
gggaatccct	gaaacccgag	gagagatatt	ttatatccca	tgttctggct	ttctttgcag	600
caagcgatgg	catagtaaat	gaaaacttgg	tggagcgatt	tagccaagaa	gttcagatta	660
cagaagcccg	ctgtttctat	ggcttccaaa	ttgccatgga	aaacatacat	tctgaaatgt	720
atagtcttct	tattgacact	tacataaaag	atcccaaaga	aagggaattt	ctcttcaatg	780
ccattgaaac	gatgccttgt	gtcaagaaga	aggcagactg	ggccttgcgc	tggattgggg	840
acaaagaggc	tacctatggt	gaacgtgttg	tagcctttgc	tgcagtggaa	ggcattttct	900
tttccggttc	ttttgcgtcg	atattctggc	tcaagaaacg	aggactgatg	cctggcctca	960
cattttctaa	tgaacttatt	agcagagatg	agggtttaca	ctgtgatttt	gcttgcctga	1020
tgttcaaaca	cctggtacac	aaaccatcgg	aggagagagt	aagagaaata	attatcaatg	1080
ctgttcggat	agaacaggag	ttcctcactg	aggccttgcc	tgtgaagctc	attgggatga	1140
attgcactct	aatgaagcaa	tacattgagt	ttgtggcaga	cagacttatg	ctggaactgg	1200
gttttagcaa	ggttttcaga	gtagagaacc	catttgactt	tatggagaat	atttcactgg	1260
aaggaaagac	taacttcttt	gagaagagag	taggcgagta	tcagaggatg	ggagtgatgt	1320
caagtccaac	agagaattct	tttaccttgg	atgctgactt	ctaaatgaac	tgaagatgtg	1380
cccttacttg	gctgattttt	tttttccatc	tcataagaaa	aatcagctga	agtgttacca	1440
actagccaca	ccatgaattg	tccgtaatgt	tcattaacag	catctttaaa	actgtgtagc	1500
tacctcacaa	ccagtcctgt	ctgtttatag	tgctggtagt	atcacctttt	gccagaaggc	1560
ctggctggct	gtgacttacc	atagcagtga	caatggcagt	cttggcttta	aagtgagggg	1620
tgacccttta	gtgagcttag	cacagcggga	ttaaacagtc	ctttaaccag	cacagccagt	1680
taaaagatgc	agcctcactg	cttcaacgca	gattttaatg	tttacttaaa	tataaacctg	1740
gcactttaca	aacaaataaa	cattgttttg	tactcacggc	ggcgataata	gcttgattta	1800
tttggtttct	acaccaaata	cattctcctg	accactaatg	ggagccaatt	cacaattcac	1860
taagtgacta	aagtaagtta	aacttgtgta	gactaagcat	gtaatttta	agttttattt	1920
taatgaatta	aaatatttgt	taaccaactt	taaagtcagt	cctgtgtata	cctagatatt	1980
agtcagttgg	tgccagatag	aagacaggtt	gtgttttat	cctgtggctt	gtgtagtgtc	2040
ctgggattct	ctgccccctc	tgagtagagt	gttgtgggat	aaaggaatct	ctcagggcaa	2100

ggagettett aagttaaate aetagaaatt taggggtgat etgggeette atatgtgtga	2160
gaagccgttt cattttattt ctcactgtat tttcctcaac gtctggttga tgagaaaaaa	2220
ttcttgaaga gttttcatat gtgggagcta aggtagtatt gtaaaatttc aagtcatcct	2280
taaacaaaat gatccaccta agatcttgcc cctgttaagt ggtgaaatca actagaggtg	2340
gttcctacaa gttgttcatt ctagttttgt ttggtgtaag taggttgtgt gagttaattc	2400
atttatattt actatgtctg ttaaatcaga aatttttat tatctatgtt cttctagatt	2460
ttacctgtag ttcataaaaa aaaaaaaaaa aaaaaaaaaa	2500
<210> 5 <211> 991 <212> DNA <213> Homo sapiens	
<pre><400> 5 gggatcagte ttcccgcgte egecgattee teeteettgg tegecgegte ettggetgge</pre>	60
gtcagaaaaa tggctacaaa cttcctagca catgagaaga tctggttcga caagttcaaa	120
tatgacgacg cagaaaggag attctacgag cagatgaacg ggcctgtgcg aggtgcctcc	180
cgccaggaga acggcgccac ggtgatcctc cgtgacattg cgagagccag agagaacatc	240
cagaaatccc tggctggaag ctcaggcccc ggggcctcca gcggcaccag cggagaccac	300
ggtgageteg tegteeggat tgeeagtetg gaagtggaga accagagtet gegtggegtg	360
gtacaggagc tgcagcaggc catctccaag ctggaggccc ggctgaacgt gctggagaag	420
agetegeetg gecaceggge caeggeecca cagacecage aegtatetee catgegecaa	480
gtggagcccc cagccaagaa gccagccaca ccagcagagg atgacgagga tgatgacatt	540
gacctgtttg gcagtgacaa tgaggaggag gacaaggagg cggcacagct gcgggaggag	600
cggctacggc agtacgcgga gaagaaggcc aagaagcctg cactggtggc caagtcctcc	660
atcctgctgg atgtcaagcc ttgggatgat gagacggaca tggcccagct ggaggcctgt	720
gtgcgctcta tccagctgga cgggctggtc tggggggctt ccaagctggt gcccgtgggc	780
tacggtatcc ggaagctaca gattcagtgt gtggtggagg acgacaaggt ggggacagac	840
ttgctggagg aggagatcac caagtttgag gagcacgtgc agagtgtcga tatcgcagct	900
ttcaacaaga tctgaagcct gagtgtgtgt acgtgcgcgc gtgcgtgagg gccctgccac	960
gattaaagac tgagaccggc aaaaaaaaa a	991
<210> 6 <211> 824 <212> DNA <213> Homo sapiens <400> 6	
cetectgate ageagaggtt gatetttget gggaaacage tggaagatgg acgeaccetg	60
tctgactaca acatccagaa agagtccacc ctgcacctgg tgctccgtct tagaggtggg	120
atgcagatct tcgtgaagac cctgactggt aagaccatca ctctcgaagt ggagccgagt	180
gacaccattg agaatgtcaa ggcaaagatc caagacaagg aaggcatccc tcctgaccag	240
cagaggttga tctttgctgg gaaacagctg gaagatggac gcaccctgtc tgactacaac	300
atccagaaag agtccaccct gcacctggtg ctccgtctta gaggtgggat gcagatcttc	360
gtgaagaccc tgactggtaa gaccatcact ctcgaagtgg agccgagtga caccattgag	420
aatgtcaagg caaagatcca agacaaggaa ggcatccttc ctgaccagca gaggttgatc	480
tttgctggga aacagctgga agatggacgc accctgtctg actacaacat ccagaaagag	540

tccaccetge acetggtget ceg	ctcaga ggtgggatgc	agatettegt	gaagaccctg	600
actggtaaga ccatcaccct cgag	ggtggag cccagtgaca	ccatcgagaa	tgtcaaggca	660
aagatccaag ataaggaagg cato	ecctcct gatcagcaga	ggttgatctt	tgctgggaaa	720
cagctggaag atggacgcac cct	stotgac tacaacatco	agaaagagtc	cactctgcac	780
ttggtcctgc gcttgagggg ggg	gtctaa gtttcccctt	ttaa		824
<210> 7 <211> 3926 <212> DNA <213> Homo sapiens				
<400> 7 aattottgga agaggagaac tgga	ecgttgt gaacagagtt	agctggtaaa	tgtcctctta	60
aaagatccaa aaaatgagac ttct			_	120
tgtagcagaa gattgcaatg aact		-		180
ctggtctgac caaacatatc caga				240
tagatotott ggaaatgtaa taat		-		300
attaaggaaa tgtcagaaaa ggco				360
taccettaca ggaggaaatg tgtt				420
				480
ggggtatcaa ttgctaggtg agat				540
tgatattcct atatgtgaag ttgt				
aattgtcagt agtgcaatgg aacc				600
tgtatgtaac tcaggctaca agat				660
tttttggagt aaagagaaac caaa				720
aaatggatct cctatatctc agaa				780
atgtaacatg ggttatgaat acag				840
gcgtccgttg ccttcatgtg aaga				900
ctactcacct ttaaggatta aaca	cagaac tggagatgaa	atcacgtacc	agtgtagaaa	960
tggtttttat cctgcaaccc gggg	gaaatac agccaaatgc	acaagtactg	gctggatacc	1020
tgctccgaga tgtaccttga aacc	ttgtga ttatccagac	attaaacatg	gaggtctata	1080
tcatgagaat atgcgtagac cata	ctttcc agtagctgta	ggaaaatatt	actcctatta	1140
ctgtgatgaa cattttgaga ctcc	gtcagg aagttactgg	gatcacattc	attgcacaca	1200
agatggatgg tcgccagcag tacc	atgcct cagaaaatgt	tattttcctt	atttggaaaa	1260
tggatataat caaaatcatg gaag	aaagtt tgtacagggt	aaatctatag	acgttgcctg	1320
ccatcctggc tacgctcttc caaa	agcgca gaccacagtt	acatgtatgg	agaatggctg	1380
gtotoctact cocagatgoa toog	tgtcaa aacatgttcc	aaatcaagta	tagatattga	1440
gaatgggttt atttctgaat ctca	gtatac atatgcctta	aaagaaaaag	cgaaatatca	1500
atgcaaacta ggatatgtaa cago	agatgg tgaaacatca	ggatcaatta	gatgtgggaa	1560
agatggatgg tcagctcaac ccac	gtgcat taaatcttgt	gatatcccag	tatttatgaa	1620
tgccagaact aaaaatgact tcac	atggtt taagctgaat	gacacattgg	actatgaatg	1680
ccatgatggt tatgaaagca atac	tggaag caccactggt	tccatagtgt	gtggttacaa	1740
tggttggtct gatttaccca tatg	ttatga aagagaatgc	gaacttccta	aaatagatgt	1800
acacttagtt cctgatcgca agaa	agacca gtataaagtt	ggagaggtgt	tgaaattctc	1860
		Page 7		

```
ctgcaaacca ggatttacaa tagttggacc taattccgtt cagtgctacc actttggatt
                                                                    1920
gtctcctgac ctcccaatat gtaaagagca agtacaatca tgtggtccac ctcctgaact
                                                                    1980
cctcaatqqq aatqttaagg aaaaaacqaa aqaaqaatat ggacacagtg aaqtqqtqqa
                                                                    2040
atattattgc aatcctagat ttctaatgaa gggacctaat aaaattcaat gtgttqatqq
                                                                    2100
agagtggaca actttaccag tgtgtattgt ggaggagagt acctgtggag atatacctga
                                                                    2160
acttgaacat ggctgggccc agctttcttc ccctccttat tactatggag attcagtgga
                                                                    2220
attcaattgc tcagaatcat ttacaatgat tggacacaga tcaattacgt gtattcatgg
                                                                    2280
agtatggacc caacttcccc agtgtgtggc aatagataaa cttaagaagt gcaaatcatc
                                                                    2340
aaatttaatt atacttgagg aacatttaaa aaacaagaag gaattcgatc ataattctaa
                                                                    2400
cataaggtac agatgtagag gaaaagaagg atggatacac acagtctgca taaatggaag
                                                                    2460
atgggatcca gaagtgaact gctcaatggc acaaatacaa ttatgcccac ctccacctca
                                                                    2520
gattcccaat tctcacaata tgacaaccac actgaattat cgggatggag aaaaagtatc
                                                                    2580
tgttctttgc caagaaaatt atctaattca ggaaggagaa gaaattacat gcaaagatgg
                                                                    2640
aagatggcag tcaataccac tctgtgttga aaaaattcca tgttcacaac cacctcagat
                                                                    2700
agaacacqqa accattaatt catccaqqtc ttcacaaqaa aqttatqcac atqqqactaa
                                                                    2760
attgagttat acttgtgagg gtggtttcag gatatctgaa gaaaatgaaa caacatgcta
                                                                    2820
catgggaaaa tggagttctc cacctcagtg tgaaggcctt ccttgtaaat ctccacctga
                                                                    2880
gatttctcat ggtgttgtag ctcacatgtc agacagttat cagtatggag aagaagttac
                                                                    2940
gtacaaatgt tttgaaggtt ttggaattga tgggcctgca attgcaaaat gcttaggaga
                                                                    3000
aaaatggtct caccetccat catgcataaa aacagattgt ctcagtttac ctagctttga
                                                                    3060
aaatgccata cccatgggag agaagaagga tgtgtataag gcgggtgagc aagtgactta
                                                                    3120
cacttgtgca acatattaca aaatggatgg agccagtaat gtaacatgca ttaatagcag
                                                                    3180
atggacagga aggccaacat gcagagacac ctcctgtgtg aatccgccca cagtacaaaa
                                                                    3240
tgcttatata gtgtcgagac agatgagtaa atatccatct ggtgagagag tacgttatca
                                                                    3300
atgtaggagc ccttatgaaa tgtttgggga tgaagaagtg atgtgtttaa atggaaactg
                                                                    3360
gacggaacca cctcaatgca aagattctac aggaaaatgt gggccccctc cacctattga
                                                                    3420
caatggggac attacttcat tcccgttgtc agtatatgct ccagcttcat cagttgagta
                                                                    3480
ccaatgccag aacttgtatc aacttgaggg taacaagcga ataacatgta gaaatggaca
                                                                    3540
atggtcagaa ccaccaaaat gcttacatcc gtgtgtaata tcccgagaaa ttatggaaaa
                                                                    3600
ttataacata gcattaaggt ggacagccaa acagaagctt tattcgagaa caggtgaatc
                                                                    3660
agttgaattt gtgtgtaaac ggggatatcg tctttcatca cgttctcaca cattgcgaac
                                                                    3720
aacatgttgg gatgggaaac tggagtatcc aacttgtgca aaaagataga atcaatcata
                                                                    3780
aagtgcacac ctttattcag aactttagta ttaaatcagt tctcaatttc attttttatg
                                                                    3840
tattgtttta ctccttttta ttcatacgta aaattttgga ttaatttgtg aaaatgtaat
                                                                    3900
tataagctga gaccggtggc tctctt
                                                                    3926
```

cagtcattct cataatcgcc cacggactta catcctcatt actattctgc ctagcaaact

60

<210> 8

<211> 259 <212> DNA

<213> Homo sapiens

<400> 8

caaactacga	acgcactcac	agtcgcatca	taatcctctc	tcaaggactt	caaactctgc	120
tcccactaat	agctttttga	tgacttctag	caagcctcgc	taacctcgcc	ttacccccca	180
ctattaacct	actgggagaa	ctctctgtgc	tagtaaccac	gttctcctga	tcaaatagca	240
ctctccagcc	tctcaccgc					259
<210> 9 <211> 470 <212> DNA <213> Home	4 o sapiens					
<400> 9 ttattaatat	cactatattt	ttggagggag	aggcaccttt	ctcatcctct	cttcctctcc	60
gcccaccctt	actccctccc	cctcatctac	ctgtcaaagt	cactgatctt	ttgcatttcg	120
gaagaggacg	tcaacgggaa	ggaattcccc	ctctgggtgc	gggctccgag	agggggcgac	180
ttgcaggagg	ctcccccgg	gggcggaggc	gaagggtgtt	ggtgccagaa	gaaaagaatg	240
attgatggga	aacagacacc	gggctataga	cactcatcct	tttgcttcag	atactgatat	300
ctcagcctgc	ttgagcatcc	cttgtgagct	gtgaacattg	aggatcactc	agggttatcg	360
gatgtacaac	gggagagcca	tcgctttgct	aaattattat	ctgcaattgg	acatctttta	420
caaaaaccaa	actagacctg	agtctaatag	atatgttcta	agacaaagaa	aaagctgcaa	480
gttgttaacg	cctaacacac	aagtatgtta	ggcttccacc	aaagtcctca	atatacctga	540
atacgcacaa	tatcttaact	cttcatattt	ggttttggga	tctgctttga	ggtcccatct	600
tcatttaaaa	aaaaatacag	agacctacct	acccgtacgc	atacatacat	atgtgtatat	660
atatgtaaac	tagacaaaga	tcgcagatca	taaagcaagc	tctgctttag	tttccaagaa	720.
gattacaaag	aatttagaga	tgtatttgtc	aagattcctg	tcgattcatg	ccctttgggt	780
tacggtgtcc	tcagtgatgc	agccctaccc	tttggtttgg	ggacattatg	atttgtgtaa	840
gactcagatt	tacacggaag	aagggaaagt	ttgggattac	atggcctgcc	agccggaatc	900
cacggacatg	acaaaatatc	tgaaagtgaa	actcgatcct	ccggatatta	cctgtggaga	960
ccctcctgag	acgttctgtg	caatgggcaa	tccctacatg	tgcaataatg	agtgtgatgc	1020
gagtacccct	gagctggcac	accccctga	gctgatgttt	gattttgaag	gaagacatcc	1080
ctccacattt	tggcagtctg	ccacttggaa	ggagtatccc	aagcctctcc	aggttaacat	1140
cactctgtct	tggagcaaaa	ccattgagct	aacagacaac	atagttatta	cctttgaatc	1200
tgggcgtcca	gaccaaatga	tcctggagaa	gtctctcgat	tatggacgaa	catggcagcc	1260
ctatcagtat	tatgccacag	actgcttaga	tgcttttcac	atggatecta	aatccgtgaa	1320
ggatttatca	cagcatacgg	tcttagaaat	catttgcaca	gaagagtact	caacagggta	1380
tacaacaaat	agcaaaataa	tccactttga	aatcaaagac	aggttcgcgt	tttttgctgg	1440
acctcgccta	cgcaatatgg	cttccctcta	cggacagctg	gatacaacca	agaaactcag	1500
agatttcttt	acagtcacag	acctgaggat	aaggctgtta	agaccagccg	ttggggaaat	1560
atttgtagat	gagctacact	tggcacgcta	cttttacgcg	atctcagaca	taaaggtgcg	1620
aggaaggtgc	aagtgtaatc	tccatgccac	tgtatgtgtg	tatgacaaca	gcaaattgac	1680
atgcgaatgt	gagcacaaca	ctacaggtcc	agactgtggg	aaatgcaaga	agaattatca	1740
gggccgacct	tggagtccag	gctcctatct	ccccatcccc	aaaggcactg	caaatacctg	1800
tatccccagt	atttccagta	ttggtagtaa	gtaaaaacaa	aaacaaaaa	aacaccaaac	1860
caagtctagg	ctagctttgc	tttgttgttc	acctcctcag	atctattttc	ccagtgtcca	1920

tttctgatgt aatagggtat tttctttgtg aattgcattt ttgtgttggt tttctgcaca 1980 gatctggtga gaacacagat aaagtgatta tttgtgcata actccatgaa catggcagtg 2040 ctatgacttt tetgactact ettaaccagt gagggetace tagactcagg tgcaatteet 2100 tagataatca tcattcagga aaaatataag tagtcctatt tatccatact tagcaaccaa 2160 caaacaaatt gaactetete ttagactgga tttggatgte tgacataatt ttaaaaagca 2220 gaaaatgaaa gccaatgaat gccttgggta tatgcatcag aacccaagaa aaagtccatg 2280 ataccaaggg aagggaattt tgttaatgca ttaaattcta tgttttgtga aggcctgaaa 2340 caggcaaatt tgtgatcagt agtctctctg gagagataaa ggaaaaagag aatctgtaca 2400 ttcatttctc cttcctaaaa tacgatgatc tatgtcttct tgactactta gctttgagtt 2460 tgatatagaa agagtataaa aaatatgtgc agaatttggg agtgagagta ctagaaattc 2520 ctttaataaa tctgttagta tgaatccaag caattgaaga gaaaccgctc ttcaaccatc 2580 tgtagaacac ttccccggta tcactacaaa gaactttctt ccagctatca tgggagaacc 2640 2700 aggtgtagct cccgcttcat gtgtaaaata atgatgccct catgccaagc ctgaaattca cattaagaaa atgcccagta actttacaga gcaaaatttt aaatttttt tttatacatt 2760 gcacccttta tctctaatgg ctaaaatctt tgaacaacta ctaagtaact gattacaaat 2820 aaattaccga gaaagcaaga ttacgcatgg taagcggaga gaattttcac tgtagtgtca 2880 teceetcaca ggettgtgte ataggtgetg tgccaggeag ggtgategea gtgtaaatag 2940 3000 ccattgaatg attgcgattc ccagcatcca tctaaaaagc aatactctga taatttggat aaagcaactt cctgcttctt ataaatgcgc agtcaggtgt cccaatttat aaatcaaccc 3060 agtttacttg agcttgtgaa taggcctgga cactgatttg ttaagcgcta gatgtggtaa 3120 atgccatgaa aattggccac tttgtaaata gaagtagtgt tcacatccat ttagagatac 3180 cagcctaatg ctacagcatc ctctttgtga tcttgttgaa acagcatcag tgttaaaaac 3240 3300 ttgcaaatga aaaccttcag ctctaatagt ctaatttttc tgctttagta tcccccttgg catttgccta actgtatata taccccacaa tgtgctcctt tcaggccttg acaattgcat 3360 3420 ttgcacgtgc attttagtgc aacagggaag caagtagaag caagctgaca cagattattg aggctgctat agtgatctgg cctgtcagaa gtttcagaaa tggatggatg gaaaagtagt 3480 tctttggcgt tggggtgtct ttctgtttgg agtgtcagtt gtatgttgca tggcccctct 3540 aactgtactg ctcactcgac atcccattcg gccgcctcca ccacattccc catatctgag 3600 3660 gttttgtttt gaaatcagtg gtgacctgaa aggatgcttc gttgtgcctt tgaaaaaaat 3720 3780 atattaacct ttattatcga gaacctagga aaatttactc ctaataaaaa ccctctgact 3840 aaaagtgata ttttggactc tcccttcaat atgcctctgg ctgttccgct tagaatgcaa tgggtatttt ctcagatttc cagcaaacag gatgtaagag cttccagagg tcacccaaca 3900 3960 tcacacatga ctagcttacc tgtttcctgg cttttaaggt aaagagttac agtaaaacca tcaaacgtga ttgtatcttc taggctgctt taatggcatt cgaaagttcc ttctttgtgg 4020 gcttataagt tgctttttgc gtgcactcgt ggattccttt cccctccaaa gggcaagaat 4080 tcacacgtag acgacactgc cggttccaga gggcacggga atggggtttt caaggtgcaa 4140 gccagagaaa aggaagctgt ttggatattt agctaagtta tgggtgtttg ccagtgcttt 4200 ttgcattacc ccaaagaagg aatcaatgac tataattcca ctaactatat agaaagatac 4260

cattatagca gatgtaacac ccctgagacc ccgattatca cagcatagct caaggaaaat 4320

aaatgatgta tattatcgat gtagattatt gatgtatata accatcagtt tacatacata	4380
ttctgtatac acagtgatta aaggttttgg agccctaata aatttcagta tagatctcaa	4440
aatgccaacg cctgtattaa ggttcaaatg catggatagg gtggtcatcc tttccgatca	4500
tctgctaaaa atgtttttga aacaaatttc ccattaaggt cattcgtacc tgctgttgtc	4560
tatctattaa caaataggtt tcccataatc ctaaggatac ttgacttaga actcagtcat	4620
totgatotgo tttggccatg gotgaaaaaa tgotggtgat attgtcagca attaàtgaat	4680
cccaaaataa atctgtagcc tttg	4704
<210> 10 <211> 10096 <212> DNA <213> Homo sapiens	
<400> 10 ggagaagcgg gcgaattggg caccggtggc ggctgcgggc agtttgaatt agactctggg	60
ctccagcccg ccgaagccgc gccagaactg tactctccga gaggtcgttt tcccgtcccc	120
gagagcaagt ttätttacaa atgttggagt aataaagaag gcagaacaaa atgagctggg	180
ctttggaaga atggaaagaa gggctgccta caagaactct tcagaaaatt caagagcttg	240
aaggacaget tgacaaactg aagaaggaaa agcagcaaag gcagtttcag ettgacagte	300
tcgaggctgc gccgcagaag caaacacaga aggttgaaaa tgaaaaaacc gagggtacaa	360
acctgaaaag ggagaatcaa agattgatgg aaatatgtga aagtctggag aaaactaagc	420
agaagatttc tcatgaactt caagtcaagg agtcacaagt gaatttccag gaaggacaac	480
tgaattcagg caaaaaacaa atagaaaaac tggaacagga acttaaaagg tgtaaatctg	540
agcttgaaag aagccaacaa gctgcgcagt ctgcagatgt ctctctgaat ccatgcaata	600
caccacaaaa aatttttaca actccactaa caccaagtca atattatagt ggttccaagt	660
atgaagatct aaaagaaaaa tataataaag aggttgaaga acgaaaaaga ttagaggcag	.720
aggttaaagc cttgcaggct aaaaaagcaa gccagactct tccacaagcc accatgaatc	780
accgcgacat tgcccggcat caggcttcat catctgtgtt ctcatggcag caagagaaga	840
ccccaagtca tettteatet aatteteaaa gaacteeaat taggagagat ttetetgeat	900
cttacttttc tggggaacta gaggtgactc caagtcgatc aactttgcaa atagggaaaa	960
gagatgctaa tagcagtttc tttggcaatt ctagcagtcc tcatcttttg gatcaattaa	1020
aagcgcagaa tcaagagcta agaaacaaga ttaatgagtt ggaactacgc ctgcaaggac	1080
atgaaaaaga aatgaaaggc caagtgaata agtttcaaga actccaactc caactggaga	1140
aagcaaaagt ggaattaatt gaaaaagaga aagttttgaa caaatgtagg gatgaactag	1200
tgagaacaac agcacaatac gaccaggcgt caaccaagta tactgcattg gaacaaaaac	1260
tgaaaaaatt gacggaagat ttgagttgtc agcgacaaaa tgcagaaagt gccagatgtt	1320
ctctggaaca gaaaattaag gaaaaagaaa aggagtttca agaggagctc tcccgtcaac	1380
agcgttcttt ccaaacactg gaccaggagt gcatccagat gaaggccaga ctcacccagg	1440
agttacagca agccaagaat atgcacaacg teetgcagge tgaactggat aaactcacat	1500
cagtaaagca acagctagaa aacaatttgg aagagtttaa gcaaaagttg tgcagagctg	1560
aacaggcgtt ccaggcgagt cagatcaagg agaatgagct gaggagaagc atggaggaaa	1620
tgaagaagga aaacaacctc cttaagagtc actctgagca aaaggccaga gaagtctgcc	1680

acctggaggc	agaactcaag	aacatcaaac	agtgtttaaa	tcagagccag	aattttgcag	1740
aagaaatgaa	agcgaagaat	acctctcagg	aaaccatgtt	aagagatctt	caagaaaaaa	1800
taaatcagca	agaaaactcc	ttgactttag	aaaaactgaa	gcttgctgtġ	gctgatctgg	1860
aaaagcagcg	agattgttct	caagaccttt	tgaagaaaag	agaacatcac	attgaacaac	1920
ttaatgataa	gttaagcaag	acagagaaag	agtccaaagc	cttgctgagt	gctttagagt	1980
taaaaaagaa	agaatatgaa	gaattgaaag	aagagaaaac	tctgttttct	tgttggaaaa	2040
gtgaaaacga	aaaactttta	actcagatgg	aatcagaaaa	ggaaaacttg	cagagtaaaa	2100
ttaatcactt	ggaaacttgt	ctgaagacac	agcaaataaa	aagtcatgaa	tacaacgaga	2160
gagtaagaac	gctggagatg	gacagagaaa	acctaagtgt	cgagatcaga	aaccttcaca	2220
acgtgttaga	cagtaagtca	gtggaggtag	agacccagaa	actagcttat	atggagctac	2280
agcagaaagc	tgagttctca	gatcagaaac	atcagaagga	aatagaaaat	atgtgtttga	2340
agacttctca	gcttactggg	caagttgaag	atctagaaca	caagcttcag	ttactgtcaa	2400
atgaaataat	ggacaaagac	cggtgttacc	aagacttgca	tgccgaatat	gagagcctca	2460
gggatctgct	aaaatccaaa	gatgcttctc	tggtgacaaa	tgaagatcat	cagagaagtc	2520
ttttggcttt	tgatcagcag	cctgccatgc	atcattcctt	tgcaaatata	attggagaac	2580
aaggaagcat	gccttcagag	aggagtgaat	gtcgtttaga	agcagaccaa	agtccgaaaa	2640
attctgccat	cctacaaaat	agagttgatt	cacttgaatt	ttcattagag	tctcaaaaac	2700
agatgaactc	agacctgcaa	aagcagtgtg	aagagttggt	gcaaatcaaa	ggagaaatag	2760
aagaaaatct	catgaaagca	gaacagatgc	atcaaagttt	tgtggctgaa	acaagtcagc	2820
gcattagtaa	gttacaggaa	gacacttctg	ctcaccagaa	tgttgttgct	gaaaccttaa	2880
gtgcccttga	gaacaaggaa	aaagagctgc	aacttttaaa	tgataaggta	gaaactgagc	2940
aggcagagat	tcaagaatta	aaaaagagca	accatctact	tgaagactct	ctaaaggagc	3000
tacaactttt	atccgaaacc	ctaagcttgg	agaagaaaga	aatgagttcc	atcatttctt	3060
taaataaaag	ggaaattgaa	gagctgaccc	aagagaatgg	gactcttaag	gaaattaatg	3120
catccttaaa	tcaagagaag	atgaacttaa	tccagaaaag	tgagagtttt	gcaaactata	3180
tagatgaaag	ggagaaaagc	atttcagagt	tatctgatca	gtacaagcaa	gaaaaactta	3240
ttttactaca	aagatgtgaa	gaaaccggaa	atgcatatga	ggatcttagt	caaaaataca	3300
aagcagcaca	ggaaaagaat	tctaaattag	aatgcttgct	aaatgaatgc	actagtcttt	3360
gtgaaaatag	gaaaaatgag	ttggaacagc	taaaggaagc	atttgcaaag	gaacaccaag	3420
aattottaac	aaaattagca	tttgctgaag	aaagaaatca	gaatctgatg	ctagagttgg	3480
agacagtgca	gcaagctctg	agatctgaga	tgacagataa	ccaaaacaat	tctaagagcg	3540
aggctggtgg	tttaaagcaa	gaaatcatga	ctttaaagga	agaacaaaac	aaaatgcaaa	3600
aggaagttaa	tgacttatta	caagagaatg	aacagctgat	gaaggtaatg	aagactaaac	3660
atgaatgtca	aaatctagaa	tcagaaccaa	ttaggaactc	tgtgaaagaa	agagagagtg	3720
agagaaatca	atgtaatttt	aaacctcaga	tggatcttga	agttaaagaa	atttctctag	3780
atagttataa	tgcgcagttg	gtgcaattag	aagctatgct	aagaaataag	gaattaaaac	3840
ttcaggaaag	tgagaaggag	aaggagtgcc	tgcagcatga	attacagaca	attagaggag	3900
atcttgaaac	cagcaatttg	caagacatgc	agtcacaaga	aattagtggc	cttaaagact	3960
gtgaaataga	tgcggaagaa	aagtatattt	cagggcctca	tgagttgtca	acaagtcaaa	4020
acgacaatgo	acaccttcag	tgctctctgc	aaacaacaat	gaacaagctg	aatgagctag	4080
				Dago 12		

agaaaatatg tgaaatactg caggctgaaa agtatgaact cgtaactgag ctgaatgatt 4140 caaggtcaga atgtatcaca gcaactagga aaatggcaga agaggtaggg aaactactaa 4200 atgaagttaa aatattaaat gatgacagtg gtcttctcca tggtgagtta gtggaagaca 4260 taccaggagg tgaatttggt gaacaaccaa atgaacagca ccctgtgtct ttggctccat 4320 tggacgagag taattcctac gagcacttga cattgtcaga caaagaagtt caaatgcact 4380 ttgccgaatt gcaagagaaa ttcttatctt tacaaagtga acacaaaatt ttacatgatc 4440 agcactgtca gatgagctct aaaatgtcag agctgcagac ctatgttgac tcattaaagg 4500 4560 ccgaaaattt ggtcttgtca acgaatctga gaaactttca aggtgacttg gtgaaggaga tgcagctggg cttggaggag gggctcgttc catccctgtc atcctcttgt gtgcctgaca 4620 getetagtet tageagtttg ggagaeteet cettttaeag agetettta gaacagacag 4680 gagatatgtc tcttttgagt aatttagaag gggctgtttc agcaaaccag tgcagtgtag 4740 4800 atgaagtatt ttgcagcagt ctgcagacct atgttgactc attaaaggcc gaaaatttgg 4860 tcttgtcaac gaatctgaga aactttcaag gtgacttggt gaaggagatg cagctgggct 4920 tggaggaggg gctcgttcca tccctgtcat cctcttgtgt gcctgacagc tctagtctta gcagtttggg agactcctcc ttttacagag ctcttttaga acagacagga gatatgtctc 4980 ttttgagtaa tttagaaggg gttgtttcag caaaccagtg cagtgtagat gaagtatttt 5040 5100 gcagcagtct gcaggaggag aatctgacca ggaaagaaac cccttcggcc ccagcgaagg gtgttgaaga gcttgagtcc ctctgtgagg tgtaccggca gtccctcgag aagctagaag 5160 agaaaatgga aagtcaaggg attatgaaaa ataaggaaat tcaagagctc gagcagttat 5220 5280 taagttotga aaggoaagag ottgactgoo ttaggaagca gtatttgtoa gaaaatgaac agtggcaaca gaagctgaca agcgtgactc tggagatgga gtccaagttg gcggcagaaa 5340 agaaacagac ggaacaactg tcacttgagc tggaagtagc acgactccag ctacaaggtc 5400 5460 tggacttaag ttctcggtct ttgcttggca tcgacacaga agatgctatt caaggccgaa 5520 atgagagetg tgacatatea aaagaacata etteagaaac tacagaaaga acaccaaage atgatgttca tcagatttgt gataaagatg ctcagcagga cctcaatcta gacattgaga 5580 aaataactga gactggtgca gtgaaaccca caggagagtg ctctggggaa cagtccccag 5640 ataccaatta tgagcctcca ggggaagata aaacccaggg ctcttcagaa tgcatttctg 5700 aattgtcatt ttctggtcct aatgctttgg tacctatgga tttcctgggg aatcaggaag 5760 5820 atatccataa tottcaactq cqqqtaaaaq aqacatcaaa tgagaatttg agattacttc 5880 actcaaaact ccatttacag gaggtacaac taatgaccaa aattgaagca tgcatagaat 5940 6000 tggaaaaaat agttggggaa cttaagaaag aaaactcaga tttaagtgaa aaattggaat atttttcttg tgatcaccag gagttactcc agagagtaga aacttctgaa ggcctcaatt 6060 ctgatttaga aatgcatgca gataaatcat cacgtgaaga tattggagat aatgtggcca 6120 aggtgaatga cagctggaag gagagatttc ttgatgtgga aaatgagctg agtaggatca 6180 gateggagaa agetageatt gageatgaag eeetetaeet ggaggetgae ttagaggtag 6240 ttcaaacaga gaagctatgt ttagaaaaag acaatgaaaa taagcagaag gttattgtct 6300 gccttgaaga agaactctca gtggtcacaa gtgagagaaa ccagcttcgt ggagaattag 6360 atactatgtc aaaaaaaacc acggcactgg atcagttgtc tgaaaaaatg aaggagaaaa 6420

cacaagagct	tgagtctcat	caaagtgagt	gtctccattg	cattcaggtg	gcagaggcag	6480
aggtgaagga	aaagacggaa	ctccttcaga	ctttgtcctc	tgatgtgagt	gagctgttaa	6540
aagacaaaac	tcatctccag	gaaaagctgc	agagtttgga	aaaggactca	caggcactgt	6600
ctttgacaaa	atgtgagctg	gaaaaccaaa	ttgcacaact	gaataaagag	aaagaattgc	6660
ttgtcaagga	atctgaaagc	ctgcaggcca	gactgagtga	atcagattat	gaaaagctga	6720
atgtctccaa	ggccttggag	gccgcactgg	tggagaaagg	tgagttcgca	ttgaggctga	6780
gctcaacaca	ggaggaagtg	catcagctga	gaagaggcat	cgagaaactg	agagttcgca	6840
ttgaggccga	tgaaaagaag	cagctgcaca	tcgcagagaa	actgaaagaa	cgcgagcggg	6900
agaatgattc	acttaaggat	aaagttgaga	accttgaaag	ggaattgcag	atgtcagaag	6960
aaaaccagga	gctagtgatt	cttgatgccg	agaattccaa	agcagaagta	gagactctaa	7020
aaacacaaat	agaagagatg	gccagaagcc	tgaaagtttt	tgaattagac	cttgtcacgt	7080
taaggtctga	aaaagaaaat	ctgacaaaac	aaatacaaga	aaaacaaggt	cagttgtcag	7140
aactagacaa	gttactctct	tcatttaaaa	gtctgttaga	agaaaaggag	caagcagaga	7200
tacagatcaa	agaagaatct	aaaactgcag	tggagatgct	tcagaatcag	ttaaaggagc	7260
taaatgaggc	agtagcagcc	ttgtgtggtg	accaagaaat	tatgaaggcc	acagaacaga	7320
gtctagaccc	accaatagag	gaagagcatc	agctgagaaa	tagcattgaa	aagctgagag	7380
cccgcctaga	agctgatgaa	aagaagcagc	tctgtgtctt	acaacaactg	aaggaaagtg	7440
agcatcatgc	agatttactt	aagggtagag	tggagaacct	tgaaagagag	ctagagatag	7500
ccaggacaaa	ccaagagcat	gcagctcttg	aggcagagaa	ttccaaagga	gaggtagaga	7560
ccctaaaagc	aaaaatagaa	gggatgaccc	aaagtctgag	aggtctggaa	ttagatgttg	7620
ttactataag	gtcagaaaaa	gaagatctga	caaatgaatt	acaaaaagag	caagagcgaa	7680
tatctgaatt	agaaataata	aattcatcat	ttgaaaatat	tttgcaagaa	aaagagcaag	7740
agaaagtaca	gatgaaagaa	aaatcaagca	ctgccatgga	gatgcttcaa	acacaattaa	7800
aagagctcaa	tgagagagtg	gcagccctgc	ataatgacca	agaagcctgt	aaggccaaag	7860
agcagaatct	tagtagtcaa	gtagagtgtc	ttgaacttga	gaaggeteag	ttgctacaag	7920
gccttgatga	ggccaaaaat	aattatattg	ttttgcaatc	ttcagtgaat	ggcctcattc	7980
aagaagtaga	agatggcaag	cagaaactgg	agaagaagga	tgaagaaatc	agtagactga	8040
aaaatcaaat	tcaagaccaa	gagcagcttg	tctctaaact	gtcccaggtg	gaaggagagc	8100
accaactttg	gaaggagcaa	aacttagaac	tgagaaatct	gacagtggaa	ttggagcaga	8160
agatccaagt	gctacaatcc	aaaaatgcct	ctttgcagga	cacattagaa	gtgctgcaga	8220
gttcttacaa	gaatctagag	aatgagcttg	aattgacaaa	aatggacaaa	atgtcctttg	8280
ttgaaaaagt	aaacaaaatg	actgcaaagg	aaactgagct	gcagagggaa	atgcatgaga	8340
tggcacagaa	aacagcagag	ctgcaagaag	aactcagtgg	agagaaaaat	aggctagctg	8400
gagagttgca	gttactgttg	gaagaaataa	agagcagcaa	agatcaattg	aaggagctca	8460
cactagaaaa	tagtgaattg	aagaagagcc	tagattgcat	gcacaaagac	caggtggaaa	8520
aggaagggaa	agtgagagag	gaaatagctg	aatatcagct	acggcttcat	gaagctgaaa	8580
agaaacacca	ggctttgctt	ttggacacaa	acaaacagta	tgaagtagaa	atccagacat	8640
	attgacttct					8700
	tagtaaagaa					8760
aagaattgaa	gaaaaccaag	atggacaatc	taaaatatgt	aaatcagttg	aagaaggaaa	8820
				Dan- 14		

atgaacgtgc cca	gggaaa	atgaagttgt	tgatcaaatc	ctgtaaacag	ctggaagagg	8880
aaaaggagat act	gcagaaa	gaactctctc	aacttcaagc	tgcacaggag	aagcagaaaa	8940
caggtactgt tat	ggatacc	aaggtcgatg	aattaacaac	tgagatcaaa	gaactgaaag	9000
aaactcttga aga	aaaaacc	aaggaggcag	atgaatactt	ggataagtac	tgttccttgc	9060
ttataagcca tga	aaagtta	gagaaagcta	aagagatgtt	agagacacaa	gtggcccatc	9120
tgtgttcaca gca	atctaaa	caagattccc	gagggtctcc	tttgctaggt	ccagttgttc	9180
caggaccatc tcc	aatccct	tctgttactg	aaaagaggtt	atcatctggc	caaaataaag	9240
cttcaggcaa gag	gcaaaga	tccagtggaa	tatgggagaa	tggtggagga	ccaacacctg	9300
ctaccccaga gag	cttttct	aaaaaagca	agaaagcagt	catgagtggt	attcaccctg	9360
cagaagacac gga	aggtact	gagtttgagc	cagagggact	tccagaagtt	gtaaagaaag	9420
ggtttgctga cat	cccgaca	ggaaagacta	gcccatatat	cctgcgaaga	acaaccatgg	9480
caactcggac cag	ccccgc	ctggctgcac	agaagttagc	gctatcccca	ctgagtctcg	9540
gcaaagaaaa tct	tgcagag	tcctccaaac	caacagctgg	tggcagcaga	tcacaaaagg	9600
tcaaagttgc tca	gcggagc	ccagtagatt	caggcaccat	cctccgagaa	cccaccacga	9660
aatccgtccc agt	caataat	cttcctgaga	gaagtccgac	tgacagcccc	agagaggcc	9720
tgagggtcaa gcg	aggccga	cttgtcccca	gccccaaagc	tggactggag	tccaagggca	9780
gtgagaactg taa	ggtccag	tgaaggcact	ttgtgtgtca	gtacccctgg	gaggtgccag	9840
tcattgaata gat	aaggctg	tgcctacagg	acttctcttt	agtcagggca	tgctttatta	9900
gtgaggagaa aac	aattcct	tagaagtctt	aaatatattg	tactctttag	atctcccatg	99 e ô
tgtaggtatt gaa	aaagttt	ggaagcactg	atcacctgtt	agcattgcca	ttcctctact	10020
gcaatgtaaa tag	tataaag	ctatgtatat	aaagcttttt	ggtaatatgt	tacaattaaa	10080
atgacaagca cta	itat					10096
<210> 11 <211> 1532 <212> DNA <213> Homo sa	piens					
<400> 11 gaattcgggc cgc	cgccagg	tcgctgttgg	tccacgccgc	ccgtcgcgcc	gcccgcccgc	60
tcagcgtccg ccg	ccgccat	gggagtgcag	gtggaaacca	tctccccagg	agacgggcgc	120
accttcccca ago	geggeea	gacctgcgtg	gtgcactaca	ccgggatgct	tgaagatgga	180
aagaaatttg att	cctcccg	ggacagaaac	aagcccttta	agtttatgct	aggcaagcag	240
gaggtgatcc gag	gctggga	agaaggggtt	gcccagatga	gtgtgggtca	gagagccaaa	300
ctgactatat ctc	cagatta	tgcctatggt	gccactgggc	acccaggcat	catcccacca	3 60
catgccactc tcg	tcttcga	tgtggagctt	ctaaaactgg	aatgacagga	atggcctcct	420
cccttagctc cct	gttcttg	gatctgccat	ggagggatct	ggtgcctcca	gacatgtgca	480
catgagtcca tat	ggagctt	ttcctgatgt	tccactccac	tttgtataga	catctgccct	540
gactgaatgt gtt	ctgtcac	tcagctttgc	ttccgacacc	tctgtttcct	cttccccttt	600
ctcctcgtat gtg	tgtttac	ctaaactata	tgccataaac	ctcaagttat	tcattttatt	660
ttgttttcat ttt	ggggtga	agattcagtt	tcagtctttt	ggatataggt	ttccaattaa	720
gtacatggtc aag	tattaac	agcacaagtg	gtaggttaac	attagaatag	gaattggtgt	780
tgggggggg gtt	tgćaaga	atattttatt	ttaattttt	ggatgaaatt	tttatctatt	840
				20-0 15		

atatattaaa	cattcttgct	gctgcgctgc	aaagccatag	cagatttgag	gcgctgttga	900
ggactgaatt	actctccaag	ttgagagatg	tctttgggtt	aaattaaaag	ccctacctaa	960
aactgaggtg	gggatgggga	gagcctttgc	ctccaccatt	cccacccacc	ctccccttaa	1020
accctctgcc	tttgaaagta	gatcatgttc	actgcaatgc	tggacactac	aggtatctgt	1080
ccctgggcca	gcagggacct	ctgaagcctt	ctttgtggcc	tttttttt	ttcatcctgt	1140
ggtttttcta	atggactttc	aggaattttg	taatctcata	actttccaag	ctccaccact	1200
tcctaaatct	taagaacttt	aattgacagt	ttcaattgaa	ggtgctgttt	gtagacttaa	1260
cacccagtga	aagcccagcc	atcatgacaa	atccttgaat	gttctcttaa	gaaaatgatg	1320
ctggtcatcg	cagcttcagc	atctcctgtt	ttttgatgct	tggctccctc	tgctgatctc	1380
agtttcctgg	cttttcctcc	ctcagcccct	tctcacccct	ttgctgtcct	gtgtagtgat	1440
ttggtgagaa	atcgttgctg	caccettece	ccagcaccat	ttatgagtct	caagttttat	1500
tattgcaata	aaagtgcttt	atgcccgaat	tc			1532
<210> 12 <211> 969 <212> DNA <213> Home	o sapiens					
	gctccatggc	aagatccctt	ctcctgcccc	tgcagatcct	actgctatcc	60
ttagccttgg	aaactgcagg	agaagaagcc	cagggtgaca	agattattga	tggcgcccca	120
tgtgcaagag	gctcccaccc	atggcaggtg	gccctgctca	gtggcaatca	gctccactgc	180
ggaggcgtcc	tggtcaatga	gcgctgggtg	ctcactgccg	cccactgcaa	gatgaatgag	240
tacaccgtgc	acctgggcag	tgatacgctg	ggcgacagga	gagctcagag	gatcaaggcc	300
tcgaagtcat	tccgccaccc	cggctactcc	acacagaccc	atgttaatga	cctcatgctc	360
gtgaagctca	atagccaggc	caggctgtca	tccatggtga	agaaagtcag	gctgccctcc	420
cgctgcgaac	cccctggaac	cacctgtact	gtctccggct	ggggcactac	cacgagecea	480
gatgtgacct	ttccctctga	cctcatgtgc	gtggatgtca	agctcatctc	ccccaggac	540
tgcacgaagg	tttacaagga	cttactggaa	aattccatgc	tgtgcgctgg	catccccgac	600
tccaagaaaa	acgcctgcaa	tggtgactca	gggggaccgt	tggtgtgcag	aggtaccctg	660
caaggtctgg	tgtcctgggg	aactttccct	tgcggccaac	ccaatgaccc	aggagtctac	720
actcaagtgt	gcaagttcac	caagtggata	aatgacacca	tgaaaaagca	tcgctaacgc	780
cacactgagt	taattaactg	tgtgcttcca	acagaaaatg	cacaggagtg	aggacgccga	840
tgacctatga	agtcaaattt	gactttacct	ttcctcaaag	atatatttaa	acctcatgcc	900
ctgttgataa	accaatcaaa	ttggtaaaga	cctaaaacca	aaacaaataa	agaaacacaa	960
aaccctcaa						969
	8 o sapiens					
<400> 13 atggtaacgt	ggctttacag	atttttaccc	acttcaaata	tggccgccaa	gctccgttct	60
cttttaccgc	ctgatctacg	gctacaattc	tggcttcatg	cccgcctcca	aaagtgcttc	120
Chahamacaa	attataatta	*****	aacacaaaaa	casatootot	*******	190

240

atggcgatgg gactaatgtg cggacgccgg gagcttctgc gcttgctaca gtccgggcgt

		•				
cgggtccaca	gcgtcgcagg	gccctcgcaa	tggcttggga	aaccgctgac	cacacggctc	300
ctattcccag	tagccccgtg	ctgctgtcgc	ccacactacc	tcttccttgc	ggcttccggc	360
ccccgcagcc	tcagtacctc	tgctatctct	tttgcagaag	tccaggttca	ggcccctcct	420
gttgttgctg	caactccctc	acccacagca	gtacctgagg	tggcttctgg	agagactgca	480
gatgtagtcc	aaactgctgc	agagcagagc	ttcgctgaac	tggggctggg	gtcatacacc	540
ccagtgggac	tgatccagaa	tttactggaa	tttatgcatg	ttgatctggg	cctaccttgg	600
tggggggcca	ttgctgcatg	tacagtcttt	gcccgctgcc	tgatttttcc	tctcatcgtg	660
acgggccagc	gagaggcagc	caggatccac	aatcacttgc	cagagatcca	gaagttttcc	720
agtcgaatca	gagaggccaa	gttagcagga	gaccatattg	agtattacaa	ggcttcctcg	780
gagatggcac	tttaccagaa	aaaacatggt	attaaactct	ataaacctct	cattctccct	840
gtgactcagg	ccccaatctt	catctccttc	ttcattgctt	tgagagagat	ggccaacctt	900
cctgtgccca	gcctgcagac	aggtggcctc	tggtggttcc	aggatctcac	ggtatccgat	960
cccatctaca	tattaccact	ggcagtcact	gctacaatgt	gggctgttct	tgagctaggt	1020
gctgagacag	gtgtgcaaag	ttctgacctt	cagtggatga	gaaatgtcat	cagaatgatg	1080
cccctgataa	ccttgcccat	aaccatgcat	ttccccacgg	cagtgtttat	gtactggctc	1140
tcctccaatt	tgttttccct	ggtccaagta	tcctgtctcc	ggattccagc	agtacgcact	1200
gtacttaaaa	tcccccagcg	tgttgtacat	gacctggaca	aattacctcc	acgggaaggc	1260
ttcctagaga	gcttcaaaaa	aggctggaaa	aatgctgaaa	tgacgcgtca	gctgcgagag	1320
cgtgaacaac	gcatgcggaa	tcagttggag	ctagcagcca	ggggtccttt	acgacagacc	1380
tttacccaca	accetetect	acaacctgga	aaggataacc	ctcccaatat	ccctagcagc	1440
agcagcaaac	caaagtcaaa	gtatccctgg	cacgacacac	ttggctga		1488
	o o sapiens					
<400> 14 ccagccccc	ttcccttccc	tgaccccttc	ttgccatcgc	cccagacatg	gggaacgcgg	60
cgaccgccaa	gaaaggcagc	gaggtggaga	gcgtgaaaga	gtttctagcc	aaagccaaag	120
aagacttttt	gaaaaaatgg	gagaatccaa	ctcagaataa	tgccggactt	gaagattttg	180
aaaggaaaaa	aacccttgga	acaggttcat	ttggaagagt	catgttggta	aaacacaaag	240
ccactgaaca	gtattatgcc	atgaagatct	tagataagca	gaaggttgtt	aaactgaagc	300
aaatagagca	tactttgaat	gagaaaagaa	tattacaggc	agtgaatttt	cctttccttg	360
ttcgactgga	gtatgctttt	aaggataatt	ctaatttata	catggttatg	gaatatgtcc	420
ctgggggtga	aatgttttca	catctaagaa	gaattggaag	gttcagtgag	ccccatgcac	480
ggttctatgc	agctcagata	gtgctaacat	tcgagtacct	ccattcacta	gacctcatct	540
acagagatct	aaaacctgaa	aatctcttaa	ttgaccatca	aggctatatc	caggtcacag	600
actttgggtt	tgccaaaaga	gttaaaggca	gaacttggac	attatgtgga	actccagagt	660
atttggctcc	agaaataatt	ctcagcaagg	gctacaataa	ggcagtggat	tggtgggcat	720
taggagtgct	aatctatgaa	atggcagctg	gctatccccc	attctttgca	gaccaaccaa	780
						040

atctcaagga	ccttctacgg	aacctgctgc	aggtggattt	gaccaagaga	tttggaaatc	900
taaagaatgg	tgtcagtgat	ataaaaactc	acaagtggtt	tgccacgaca	gattggattg	960
ctatttacca	gaggaaggtt	gaagctccat	tcataccaaa	gtttagaggc	tctggagata	1020
ccagcaactt	tgatgactat	gaagaagaag	atatccgtgt	ctctataaca	gaaaaatgtg	1080
caaaagaatt	tggtgaattt	taaagaggaa	caagatgaca	tctgagctca	cactcagtgt	1140
ttgcactctg	ttgagagata	aggtagagct	gagaccgtcc	ttgttgaagc	agttacctag	1200
ttccttcatt	ccaacgactg	agtgaggtct	ttattgccat	catccgtgtg	cgcactctgc	1260
atccacctat	gtaacaaggc	accgctaagc	aagcattgtc	tgtgccataa	cacagtacta	1320
gaccactttc	ttacttctct	ttgggttgtc	tttctcctct	cctacatcca	tttcttcctt	1380
ttcaatttca	ttggttttct	ctaaacagtg	ctccatttta	ttttgttggt	gtttcagatg	1440
ggcagtgtta	tggctacgtg	atatttgaag	ggaaggataa	gtgttgcttt	cagtagttat	1500
tgccaatatt	gttgttggtc	aatggcttga	agataaactt	tctaataatt	attatttctt	1560
tgagtagctc	agacttggtt	ttgccaaaac	tcttggtaat	ttttgaagat	agactgtctt	1620
atcaccaagg	aaatttatac	aaattaagac	taactttctt	ggaattcact	attctggcaa	1680
taaattttgg	tagactaata	cagtacagct	agacccagaa	atttggaagg	ctgtagatca	1740
gaggttctag	ttccctttcc	ctccttttat	atcctcctct	ccttgagtaa	tgaagtgacc	1800
agcctgtgta	gtgtgacaaa	cgtgtctcat	tcagcaggaa	aaactaatga	tatggatcat	1860
cacccagatt	ctctcacttg	gtaccagcat	ttctgtaggt	attagagaag	agttctaagt	1920
tttctaaacc	ttaactgttc	cttaaggatt	ttagccagta	ttttaataga	acatgattaa	1980
tgaaagtgac	aaattttaaa	ttttctctaa	tagtcctcat	cataaacttt	ttaaaggaaa	2040
ataagcaaac	taaaaagaac	attggtttag	ataaatactt	atactttgca	aagtcaaaaa	2100
tggcttgatt	tttggaaaca	atatagaggt	attcatattt	aaatgagggt	ttacatttgt	2160
tttgttttgt	aaccgttaaa	aagaagttgt	ttccagctaa	ttattgtggt	gtactatatt	2220
tgtgagccta	gggtaggggc	actgctgcaa	cttctgcttt	catcccatgc	ctcatcaatg	2280
aggaaaggga	acaaagtgta	taaaacctgc	cacaattgta	ttttaatttt	gaggtatgat	2340
attttcagat	atttcataat	ttctaacctc	tgttctctca	gtaaacagaa	tgtctgatcg	2400
atcatgcaga	tacaatgttg	gtatttgaga	ggttagtttt	tttcctacac	tttttttgc	2460
caactgactt	aacaacattg	ctgtcaggtg	gaaatttcaa	gcacttttgc	acatttagtt	2520
cagtgtttgt	tgagaatcca	tggcttaacc	cacttgtttt	gctattttt	tctttgcttt	2580
taattttccc	catctgattt	tatctctgcg	tttcagtgac	ctaccttaaa	acaacacacg	2640
agaagagtta	aactgggttc	attttaatga	tcaatttacc	tgcatataaa	atttatttt	2700
aatcaagctg	atcttaatgt	atataatcat	tctatttgct	ttattatcgg	tgcaggtagg	2760
tcattaacac	cacttcttt	catctgtacc	acaccctggt	gaaacctttg	aagacataaa	2820
aaaaacctgt	ctgagatgtt	ctttctacca	atctatatgt	ctttcggtta	tcaagtgttt	2880
ctgcatggta	atgtcatgta	aatgctgata	ttgatttcac	tggtccatct	atatttaaaa	2940
cgtgc						2945

<210> 15 <211> 1622 <212> DNA <213> Homo sapiens

<400> 15

ggcaagatgg	cgccggtggg	ggtggagaag	aagctgctgc	taggtcccaa	cgggcccgcg	60
gtggcggccg	ccggcgacct	gaccagtgag	gaggaggaag	gccagagcct	atggtcctcc	120
attctgagcg	aagtgtccac	ccgcgccagg	tccaagctgc	cgtccggcaa	gaacatcctg	180
gtcttcggtg	aagatggttc	tggtaaaaca	accctcatga	ctaaactaca	aggagctgag	240
catggcaaaa	aaggaagagg	cctagaatat	ctctacctca	gtgtccatga	tgaggaccga	300
gatgatcaca	cgcgctgcaa	cgtgtggatt	ctggatggag	acttgtacca	caaaggcctg	360
ctgaaatttg	cagtttctgc	tgaatccttg	ccagagaccc	tcgtcatttt	tgttgcagac	420
atgtctagac	cttggactgt	gatggaatct	ctgcagaaat	gggctagtgt	tttacgtgag	480
cacattgata	aaatgaaaat	tccaccagaa	aaaatgaggg	agctggaacg	gaagtttgtg	540
aaagattttc	aagactatat	ggaacctgaa	gaaggttgtc	aaggttcccc	acagagaaga	600
ggccctctga	cctcaggctc	cgatgaagaa	aatgttgccc	tgcctctggg	tgacaatgtg	660
ctgactcata	acctggggat	cccggtgttg	gtggtgtgca	caaagtgtga	tgcggtgagt	720
gtcctggaga	aggagcacga	ttacagggat	gagcatttgg	actttatcca	gtcacacctg	780
cggaggttct	gccttcagta	tggagctgcc	ttgatttaca	catcagtgaa	agaagagaaa	840
aacctcgact	tgttgtataa	gtatattgtt	cataaaacat	acggtttcca	cttcaccaca	900
cctgccttag	ttgtggaaaa	ggatgccgtt	tttatacctg	caggctggga	caatgaaaag	960
aaaatagcta	ttttacatga	aaattttaca	accgtgaagc	cggaagatgc	atatgaagac	1020
tttattgtga	aacctcccgt	gagaaagctg	gtccacgaca	aagagttggc	agcagaagat	1080
gagcaggtgt	tcctaatgaa	gcaacagtca	ctccttgcca	agcaaccagc	cactcccacg	1140
agagcttctg	aatctcctgc	aagaggaccc	tctggctctc	caaggaccca	gggtcgggga	1200
gggccagcca	gtgtgcctag	ctcctcccca	ggcacgtcag	taaaaaagcc	ggacccaaac	1260
atcaaaaata	atgcagcaag	tgaaggggtg	ttggccagct	tcttcaacag	tctgttgagt	1320
aaaaagacag	gctctcctgg	aagtcctggt	gctggtgggg	tgcagagcac	agccaagaag	1380
tcaggacaaa	agactgtgtt	gtcaaatgtt	caggaagaac	tggatagaat	gactcgaaag	1440
ccagactcta	tggtaacaaa	ctcttcaaca	gaaaatgaag	cctgaacctc	cttaaaaagt	1500
gcatatgtcg	aatgaccaaa	taactatgta	tattgatctġ	ctaagaccag	gatttttctg	1560
atatggcaca	tgctatcagt	tttttggggc	aggggagatg	aactttaaaa	aaaaaaaaa	1620
aa						1622
<210> 16 <211> 7694	l.					
<212> DNA <213> Homo	sapiens					
<400> 16 gcaacgaagg	taccatggcc	gttgtcgtcg	ccgccgcggc	tecegggget	ggatgggggg	60
ccgaggccag	ccagtggcac	ccggaagaaa	gagacgcggc	ggcggcgacg	ccgacaccct	120
caggacgagt	gtccggactt	gcccacagcc	tcaaggagga	gacggcgagg	cccggccccc	180
gctgtccctg	gtgtaaagaa	gtcgccgtag	ccgtcgcggc	cgggactccc	cgggctctcg	240
cccttcaggt	ttcgttgaca	ctcaggaccg	tacgtacgct	gcgccatgtt	caagaaactg	300
aagcaaaaga	tcagcgagga	gcagcagcag	ctccagcagg	cgctggctcc	tgctcaggcg	360
tcctccaatt	cttcaacacc	aacaagaatg	aggagcagga	catcttcatt	tacagagcaa	420
cttgatgaag	gtacacccaa	tagagagtca	ggtgacacac	agtcttttgc	acagaagctc	480

cagctccggg	tgccctccgt	ggagtctttg	tttcgaagic	cyacaaagga	acccctattc	540
cggtcttctt	ctaaagagtc	tttggtacga	acatcttcca	gagaatccct	gaatcgactt	600
gacctggaca	gttctactgc	cagttttgat	ccaccctctg	atatggatag	cgaggctgaa	660
gacttggtag	ggaattcaga	cagtctcaac	aaagaacagt	tgattcagcg	gttgcgaaga	720
atggaacgaa	gcttaagtag	ctacagggga	aaatattctg	agcttgttac	agcttatcag	780
atgcttcaga	gagagaagaa	aaagctacaa	ggtatattaa	gtcagagtca	ggataaatca	840
cttcggagaa	tagcagaatt	aagagaggag	ctccaaatgg	accagcaggc	aaagaaacat	900
ctgcaagagg	agtttgatgc	atctttagag	gagaaagatc	agtatatcag	tgttctccaa	960
actcaggttt	ctctactgaa	acaacgatta	cgaaatggcc	cgatgaatgt	tgatgtactg	1020
aaaccacttc	ctcagctgga	accacagget	gaagtcttca	ctaaagaaga	gaatccagaa	1080
agtgatggag	agccagtagt	ggaagatgga	acttctgtaa	aaacactgga	aacactccag	1140
caaagagtga	agcgtcaaga	gaacctactt	aagcgttgta	aggaaacaat	tcagtcacat	1200
aaggaacaat	gtacactatt	aactagtgaa	aaagaagctc	tgcaagaaca	actggatgaa	1260
agacttcaag	aactagaaaa	gataaaggac	cttcatatgg	ccgagaagac	taaacttatc	1320
actcagttgc	gtgatgcaaa	gaacttaatt	gaacagcttg	aacaagataa	gggaatggta	1380
atcgcagaga	caaaacgtca	gatgcatgaa	accctggaaa	tgaaagaaga	agaaattgct	1440
caactccgta	gtcgcatcaa	acagatgact	acccagggag	aggaattacg	ggaacagaaa	1500
gaaaagtccg	aaagagctgc	ttttgaggaa	cttgaaaaag	ctttgagtac	agcccaaaaa	1560
acagaggaag	cacggagaaa	actgaaggca	gaaatggatg	aacaaataaa	aactatcgaa	1620
aaaacaagtg	aggaggaacg	catcagtctt	caacaggaat	taagtcgggt	gaaacaggag	1680
gttgttgatg	taatgaaaaa	atcctcagaa	gaacaaattg	ctaagctaca	gaagcttcat	1740
gaaaaggagc	tggccagaaa	agagcaggaa	ctgaccaaga	agcttcagac	ccgagaaagg	1800
gaatttcagg	aacaaatgaa	agtagctctt	gaaaagagtc	aatcagaata	tttgaagatc	1860
agccaagaaa	aagaacagca	agaatctttg	gccctagaag	agttagagtt	gcagaaaaaa	1920
gcaatcctca	cagaaagtga	aaataaactt	cgggaccttc	agcaagaagc	agagacttac	1980
agaactagaa	ttcttgaatt	ggaaagttct	ttggaaaaaa	gcttacaaga	aaacaaaaat	2040
cagtcaaaag	atttggctgt	tcatctggaa	gctgaaaaaa	ataagcacaa	taaggagatt	2100
acagtcatgg	ttgaaaaaca	caagacagaa	ttggaaagcc	ttaagcatca	gcaggatgcc	2160
ctttggactg	aaaaactcca	agtcttaaag	caacaatatc	agactgaaat	ggaaaaactt	2220
agggaaaagt	gtgaacaaga	aaaagaaaca	ttgttgaaag	acaaagagat	tatcttccag	2280
gcccacatag	aagaaatgaa	tgaaaagact	ttagaaaagc	ttgatgtgaa	gcaaacagaa	2340
ctagaatcat	tatcttctga	actgtcagaa	gtattaaaag	cccgtcacaa	actagaagag	2400
gaactttctg	ttctgaaaga	tcaaacagat	aaaatgaagc	aggaattaga	ggccaagatg	2460
gatgaacaga	aaaatcatca	ccagcagcaa	gttgacagta	tcattaaaga	acacgaggta	2520
tctatccaga	ggactgagaa	ggcattaaaa	gatcaaatta	atcaacttga	gcttctcttg	2580
aaggaaaggg	acaagcattt	gaaagagcat	caggctcatg	tagaaaattt	agaggcagat	2640
attaaaaggt	ctgaagggga	actccagcag	gcatctgcta	agctggacgt	ttttcagtct	2700
taccagagtg	ccacacatga	gcagacaaaa	gcatatgagg	aacagttggc	ccaattgcag	2760
cagaagttgt	tggatttgga	aacagaaaga	attettetta	ccaaacaggt	tgctgaagtt	2820
gaagcacaaa	agaaagatgt	ttgtactgag	ttagatgctc	acaaaatcca	ggtgcaggac	2880

:

ttaatgcagc aacttgaaaa acaaaatagt gaaatggagc aaaaagtaaa atctttaacc 2940 caagtctatg agtccaaact tgaagatggt aacaaagaac aggaacagac aaagcaaatc 3000 ttggtggaaa aggaaaatat gattttacaa atgagagaag gacagaagaa agaaattgag 3060 atactcacac agaaattgtc agccaaggag gacagtattc atattttgaa tgaggaatat 3120 gaaaccaaat ttaaaaacca agaaaaaaag atggaaaaag ttaagcagaa agcaaaggag 3180 atgcaagaaa cgttaaagaa aaaattactg gatcaggaag ccaaacttaa gaaagagctt 3240 gaaaatactg ctctagagct tagtcagaaa gaaaaacagt ttaatgccaa aatgctggaa 3300 atggcacagg ctaactcagc tggaatcagt gatgcagtgt caagactgga aacaaaccaa 3360 aaagaacaaa tagaaagtot tactgaggtt catcgacgag aactcaatga tgtcatatca 3420 3480 atctgggaaa agaaacttaa tcaqcaaqct qaagaacttc aggaaataca tgaaatccaa ttacaggaaa aagaacaaga ggtagcagaa ctgaaacaaa agatcctcct atttgggtgt 3540 gaaaaagaag agatgaacaa ggaaataaca tggctgaagg aagaaggtgt taagcaggat 3600 acaacattaa atgaattaca ggaacagtta aagcagaagt ctgcccatgt gaattctctt 3660 gcacaagatg aaactaaact gaaagctcat cttgaaaagc tagaggttga cttgaataag 3720 tctctgaagg aaaatacttt tcttcaagag cagctagttg aactgaagat gctggcagaa 3780 gaagataagc ggaaggtttc tgagttgact agcaagttga aaaccacaga tgaagaattc 3840 cagagtttga aatcttcaca tgaaaaaagt aacaaaagcc tagaggacaa gagcttggaa 3900 tttaaaaaac tgtctgagga actagcgatt cagctagata tttgctgtaa gaaaaccgaa 3960 gccttattag aagctaaaac aaatgagcta atcaacatta gtagtagtaa aactaatgcc 4020 attetteta ggatttetea ttgteageae egtaeaaeta aagttaagga ggeaetgtta 4080 attaaaactt gcacagtttc tgaattagaa gcacaactta gacagttgac agaggagcaa 4140 aatacactaa atatttettt teaacagget acteateagt tagaagaaaa agaaaateaa 4200 attaagagca tgaaggctga tattgaaagt cttgtaacag aaaaagaagc cttacagaag 4260 gaaggaggca atcagcaaca ggctgcttct gaaaaggagt cttgtataac acagttgaag 4320 aaagagttat ctgaaaacat caatgctgtc acattgatga aagaagagct taaagaaaaa 4380 aaagttgaga ttagcagtet tagtaaacaa ctaactgatt tgaatgttca gettcaaaat 4440 agcatcagcc tatccgaaaa agaagcagcc atttcatcac taagaaagca gtatgatgaa 4500 gaaaaatgtg aattgctgga tcaggtgcaa gatttatctt ttaaagttga cactctgagt 4560 aaagagaaaa tttctgctct tgagcaggta gatgactggt ccaataaatt ctcagaatgg 4620 aagaagaaag cacagtcaag atttacacag catcaaaaca ctgttaaaga attgcagatc 4680 cagcttgagt taaaatcaaa ggaagcttat gaaaaggatg agcagataaa tttattgaag 4740 gaagagcttg atcagcaaaa taaaagattt gattgtttaa agggtgaaat ggaagacgac 4800 aagagcaaga tggagaaaaa ggagtctaat ttagaaacag agttaaagtc tcaaacagca 4860 agaattatqq aattagagqa ccatattacc cagaaaacta ttqaaataqa qtccttaaat 4920 4980 gaagttotta aaaattacaa toaacaaaag gatattgaac acaaagaatt ggttoagaaa cttcaacatt ttcaagagtt aggagaagaa aaggacaaca gggttaaaga agctgaagaa 5040 aaaatcttaa cacttgaaaa ccaagtttat tccatgaaag ctgaacttga aactaagaag 5100 aaagaattag aacatgtgaa tttaagtgtg aaaagcaaag aggaggagtt aaaggcattg 5160 gaagataggc ttgagtcaga aaqtgctgca aaattagcag agttgaagag aaaagctgaa 5220

caaaaaattg	ctgccattaa	gaagcagttg	ttatctcaaa	tggaagagaa	agaagaacag	5280
tataaaaaag	gtacagaaag	ccatttgagt	gagctaaata	caaaattgca	ggaaagagaa	5340
agggaagttc	acatcttgga	agaaaaactt	aagtcagtgg	aaagttcaca	gtcagaaaca	5400
ttaattgtac	ccagatcagc	aaaaaatgtg	gcagcatata	ctgaacaaga	agaagcagat	5460
tcccaaggct	gtgtgcagaa	gacatatgaa	gaaaaaatca	gtgttttaca	aagaaactta	5520
actgaaaaag	aaaagctatt	gcagagggta	gggcaggaaa	aagaagagac	agtttcttct	5580
cattttgaaa	tgcgatgcca	ataccaggag	cgcttaataa	agctagaaca	tgctgaggca	5640
aagcaacatg	aagatcaaag	tatgataggt	catcttcaag	aggagcttga	agaaaaaaac	5700
aagaaatatt	ccttgatagt	agcccagcat	gtggaaaaag	aaggaggtaa	aaataacata	5760
caggcaaagc	aaaacttgga	aaatgtgttt	gacgacgtcc	agaaaaccct	ccaggagaag	5820
gaactaacct	gtcagatttt	ggagcaaaag	ataaaagagc	tggattcctg	cttagtaaga	5880
cagaaagaag	tacatagagt	tgaaatggaa	gagttgacct	caaaatatga	aaaattacag	5940
gctttacaac	agatggatgg	aagaaataaa	cccacagaac	ttttggaaga	aaacactgaa	6000
gaaaagtcca	aatcacattt	ggtccaaccc	aaattgctta	gtaacatgga	agcccagcac	6060
aatgatctgg	agtttaaatt	agccggggca	gaacgggaga	aacagaaact	gggcaaggag	6120
attgttagat	tgcagaaaga	ccttcgaatg	ttgagaaagg	agcatcagca	agaattggaa	6180
atactaaaga	aagaatatga	tcaagaaagg	gaagagaaaa	tcaaacagga	gcaggaagat	6240
cttgaactga	agcacaattc	cacattaaaa	cagctgatga	gggagtttaa	tacacagctg	6300
gcacaaaagg	aacaagagct	ggaaatgacc	ataaaagaaa	ctatcaataa	ggcccaggag	6360
gtggaggctg	aacttttaga	aagccatcaa	gaagagacaa	atcagttact	taaaaaaatt	6420
gctgagaaag	atgatgatct	aaaacgaaca	gccaaaagat	atgaagaaat	ccttgatgct	6480
cgtgaagaag	aaatgactgc	aaaagtaagg	gacctgcaga	ctcaacttga	ggagctgcag	6540
aagaaatacc	agcaaaagct	agagcaggag	gagaaccctg	gcaatgataa	tgtaacaatt	6600
atggagctac	agacacagct	agcacagaag	acgactttaa	tcagtgattc	gaaattgaaa	6660
gagcaagagt	tcagagaaca	gattcacaat	ttagaagacc	gtttgaagaa	atatgaaaag	6720
aatgtatatg	caacaactgt	ggggacacct	tacaaaggtg	gcaatttgta	ccatacggat	6780
gtctcactct	ttggagaacc	taccgaattt	gagtatttgc	gaaaagtgct	ttttgagtat	6840
atgatgggtc	gtgagactaa	gaccatggca	aaagttataa	ccaccgtact	gaagttccct	6900
gatgatcaga	ctcagaaaat	tttggaaaga	gaagatgctc	ggctgatgtt	tacttcacct	6960
cgcagtggta	tcttctgagt	aaaccatcag	tctgtgctta	gttaacatgt	gtcatggctc	7020
cgatcttcat	cttgaagaag	agtgacattg	ggtgactgct	gcttggaaaa	ctgtccacac	7080
ttgctactct	ttgagaatga	agttgtcatt	cagggcccct	catgtagcca	aaagaccaag	7140
aaaaatctgg	cccacagata	agttgcagac	tgcctttaaa	atagatttta	tcagtggaga	7200
aatggtgata	gtttttctt	cagttttctc	ttgggaagga	gttttatgtt	gtttaaaaga	7260
tattttgata	acttaacctg	ctttatgggc	ttacataata	ttcctttcat	ccattcttt	7320
taaagaacgg	cttacctttc	ctatttattt	ttagggtgat	tttttaaaaa	gacttgtgca	7380
atacattttg	aggtgaaact	tagtggattt	tttctgataa	attagagcat	ttaattgact	7440
attttattca	ggttgatctg	ttgaatattt	gctaaagacc	agttctttaa	gctaagacat	7500
gtaaaaaatc	ccaaatggca	gtacctcatt	gtttacttag	cttttgtact	tatattttc	7560
agaggaaaaa	acactactgt	aaattgtgaa	tagccaatac	ataactgtat	tgtatgcaaa	7620
				Dago 22		

tctgtgattg ttggcagtgt	catctctgag	aaacagataa	ataaagttta	tttactataa	7680
aaaaaaaaa aaaa					7694
<210> 17 <211> 3080 <212> DNA <213> Homo sapiens					
<400> 17 gaaataatgg aggaattgcg	tagcctggac	ccacgacggc	aggaattatt	agaggccagg	60
tttactggag taggtgttag	taagggacca	cttaatagtg	agtcttccaa	ccagagcttg	120
tgcagcgtcg gatccttgag	tgataaagaa	gtagagactc	ccgagaaaaa	gcagaatgac	180
cagcgaaatc ggaaaagaaa	agctgaacca	tatgaaacta	gccaagggaa	aggcactcct	240
aggggacata aaattagtga	ttactttgag	cgacgagtag	aacagcccct	ctatggttta	300
gatggcagtg ctgcaaagga	ggcaacggag	gagcagtctg	ctctgccaac	cctcatgtca	360
gtgatgctag ctaaacctcg	gcttgaccca	gagcagctgg	cgcaaagggg	agctggcctc	420
tgcttcactt ttgtttcagc	tcagcaaaac	agtccctcat	ctacgggatc	tggcaacaca	480
gagcattcct gcagctccca	aaaacagatc	tccatccagc	acagacagac	ccagtccgac	540
ctcacaatag aaaaaatatc	tgcactagaa	aacagtaaga	attctgactt	agagaagaag	600
gagggaagaa tagatgattt	attaagagcc	aactgtgatt	tgagacggca	gattgatgaa	660
cagcaaaaga tgctagagaa	atacaaggaa	cgattaaata	gatgtgtgac	aatgagcaag	720
aaactcctta tagaaaagtc	aaaacaagag	aagatggcgt	gtagagataa	gagcatgcaa	780
gaccgcttga gactgggcca	ctttactact	gtccgacacg	gagcctcatt	tactgaacag	840
tggacagatg gttatgcttt	tcagaatctt	atcaagcaac	aggaaaggat	aaattcacag	900
agggaagaga tagaaagaca	acggaaaatg	ttagcaaagc	ggaaacctcc	tgccatgggt	960
caggococto otgoaaccaa	tgagcagaaa	cagcggaaaa	gcaagaccaa	tggagctgaa	1020
aatgaaacgt taacgttagc	agaataccat	gaacaagaag	aaatcttcaa	actcagatta	1080
ggtcatctta aaaaggagga	agcagagatc	caggcagagc	tggagagact	agaaagggtt	1140
agaaatctac atatcaggga	actaaaaagg	atacataatg	aagataattc	acaatttaaa	1200
gatcatccaa cgctaaatga	cagatatttg	ttgttacatc	ttttgggtag	aggaggtttc	1260
agtgaagttt acaaggcatt	tgatctaaca	gagcaaagat	acgtagctgt	gaaaattcac	1320
cagttaaata aaaactggag	agatgagaaa	aaggagaatt	accacaagca	tgcatgtagg	1380
gaataccgga ttcataaaga	gctggatcat	cccagaatag	ttaagctgta	tgattacttt	1440
tcactggata ctgactcgtt	ttgtacagta	ttagaatact	gtgagggaaa	tgatctggac	1500
ttctacctga aacagcacaa	attaatctcg	gagaaagagg	cccggtccat	tatcatgcag	1560
attgtgaatg ctttaaagta	cttaaatgaa	ataaaacctc	ccatcataca	ctatgacctc	1620
aaaccaggta atattctttt	agtaaatggt	acagcgtgtg	gagagataaa	aattacagat	1680
tttggtcttt cgaagatcat	ggatgatgat	agctacaatt	cagtggatgg	catggagcta	1740
acatcacaag gtgctggtac	ttattggtat	ttaccaccag	agtgttttgt	ggttgggaaa	1800
gaaccaccaa agatctcaaa	taaagttgat	gtgtggtcgg	tgggtgtgat	cttctatcag	1860
tgtctttatg gaaggaagcc	ttttggccat	aaccagtctc	agcaagacat	cctacaagag	1920
aatacgattc ttaaagctac	tgaagtgcag	ttcccgccaa	agccagtagt	aacacctgaa	1980
gcaaaggcgt ttattcgacg	atgcttggcc	taccgaaagg	aggaccgcat	tgatgtccag	2040
			Page 23		

cagctggcct gtgatcccta cttgttgcct cacatccgaa agtcagtctc tacaagtagc 2100

cagetggeet gtgateeeta	cttgttgcct	cacateegaa	agteagtete	tacaagtagc	2100
cctgctggag ctgctattgc	atcaacctct	ggggcgtcca	ataacagttc	ttctaattga	2160
gactgactcc aaggccacaa	actgttcaac	acacacaaag	tggacaaatg	gcgttcagca	2220
gcgggtttgg aacatagcga	atccgaatgg	atctgatgaa	acctgtacca	ggtgctttta	2280
ttttcttgct tttttcccat	ccatagagca	tgacagcatc	gattctcatt	gaggagaaac	2340
cttgggcage teeggecagg	ccttgtagga	aaaggccccg	cccgaggttc	cagcgtcaac	2400
ggccactgtg tgtggctgct	ctgagtgagg	aaaaaattaa	aaagaaaaac	tggttccatg	2460
tactgtgaac ttgaaaactt	gcagactcag	gggggtccct	gatgcagtgc	ttcagatgaa	2520
gaatgtggac ttgaaaatac	agactgggct	agtccagtgt	ctatatttaa	acttgttctt	2580
ttcttttaat aaagtttagg	taacatctcc	tgaaaagctt	gtagcacaaa	ggctcagctg	2640
gggatggtgt ttgacttcgg	aggaaaaaag	ttgctattgc	ccgttaaagg	cactagagtt	2700
agtgttttat ccctaaataa	tttcaatttt	taaaaacatg	cagcttccct	ctccctttt	2760
ttatttttga aagaatacat	ttggtcataa	agtgaaaccc	gtattagcaa	gtacgtggca	2820
atgttcattc caatcagatg	cagctttctc	ctccgtctgg	tctcctgttt	gcaattgctt	2880
ccctcatctc agtagggaaa	aaattgagtg	ggagtactga	gatgtgtggg	tttttgccat	2940
tggacaaaga atgaggttag	aagactgcag	cttggagtct	ctctaggttt	tcaactattt	3000
cttcacaatt tgaacacttg	acggttgtcc	cttttaattt	atttgaagtg	ctatttttt	3060
aaataaaggt tcatctgtcc					3080
<210> 18 <211> 7596 <212> DNA <213> Homo sapiens					
<400> 18 gtggtcgcgg ctggggacgt	gcgcccgcgc	caccatcttc	ggctgaagag	gcaattgctt	60
ttggatcgtt ccatttacaa	tggcgcagag	aactggactc	gaggatccag	agaggtatct	120
ctttgtggac agggctgtca	tctacaaccc	tgccactcaa	gctgattgga	cagctaaaaa	180
gctagtgtgg attccatcag	aacgccatgg	ttttgaggca	gctagtatca	aagaagaacg	240
gggagatgaa gttatggtgg	agttggcaga	gaatggaaag	aaagcaatgg	tcaacaaaga	300
tgatattcag aagatgaacc	cacctaagtt	ttccaaggtg	gaggatatgg	cagaattgac	360
atgcttgaat gaagcttccg	ttttacataa	tctgaaggat	cgctactatt	caggactaat	420
ctatacttat tctggactct	tctgtgtagt	tataaaccct	tacaagaatc	ttccaattta	480
ctctgagaat attattgaaa	tgtacagagg	gaagaagcgt	catgagatgc	ctccacacat	540
ctatgctata tctgaatctg	cttacagatg	catgcttcaa	gatcgtgagg	accagtcaat	600
tctttgcacg ggtgagtcag	gtgctgggaa	gacagaaaat	acaaagaaag	ttattcagta	660
ccttgcccat gttgcttctt	cacataaagg	aagaaaggac	cataatattc	ctggggaact	720
tgaacggcag cttttgcaag	caaatccaat	tctcgaatca	tttggaaatg	cgaagactgt	780
gaaaaatgat aactcatctc	gttttggcaa	atttattcgg	atcaactttg	atgtaactgg	840
	*******	ccttctggaa	aagtetegtg	ctattcatca	900
ctatatcgtt ggggccaaca	ctyaaacata	• • • • • • • • • • • • • • • • • • • •			
ctatatcgtt ggggccaaca agcaaaagat gaacgtactt	•			_	960
	ttcatatctt	ttaccagttg	ttatctggag	caggagaaca	960 . 1020
agcaaaagat gaacgtactt	ttcatatctt	ttaccagttg taataactac	ttatctggag aggtttctct	caggagaaca	

cataatgggc ttctcccatg aagagattct gtcaatgctt aaagtagtat cttcagtgct acagtttgga aatatttctt tcaaaaagga gagaaatact gatcaagctt ccatgccaga 1200 aaatacagtt qcgcagaagc tctgccatct tcttgggatg aatgtgatgg agtttactcg 1260 ggccatcctg actccccgga tcaaggtcgg ccgagactat gtgcaaaaaag cccagaccaa 1320 agaacaggca gattttgcag tagaagcatt ggcaaaagct acctatgagc ggctctttcg 1380 ctggctcgtt catcgcatca ataaagctct ggataggacc aaacgtcagg gagcatcttt 1440 cattggaatc ctggatattg ctggatttga aatttttgag ctgaactcct ttgaacaact 1500 ttgcatcaac tacaccaatg agaagctgca gcagctgttc aaccacacca tgtttatcct 1560 agaacaagag gaataccagc gcgaaggcat cgagtggaac ttcatcgatt tcgggctgga 1620 totgcagoca tgcatogaco taatagagag acotgcgaac cotoctggtg tactggcoot 1680 1740 tttggatgaa gaatgctggt tccctaaagc cacagataaa acctttgttg aaaaactggt tcaagagcaa ggttcccact ccaagtttca gaaacctcga caattaaaag acaaagctga 1800 tttttgcatt atacattatg cagggaaggt ggactataag gcagatgagt ggctgatgaa 1860 gaatatggac cccctgaatg acaacgtggc cacccttttg caccagtcat cagacagatt 1920 1980 tgtggcagag ctttggaaag atgtggaccg tatcgtgggt ctggatcaag tcactggtat gactgagaca gcttttggct ccgcatataa aaccaagaag ggcatgtttc gtaccgttgg 2040 2100 gcaactctac aaagaatctc tcaccaagct gatggcaact ctccgaaaca ccaaccctaa 2160 ctttgttcgt tgtatcattc caaatcacga gaagagggct ggaaaattgg atccacacct agtoctagat cagottogot gtaatggtgt cotggaaggg atcogaatot gtogocaggg 2220 cttccctaac cgaatagttt tccaggaatt cagacagaga tatgagatcc taactccaaa 2280 2340 tqctattcct aaaqqtttta tqqatqqtaa acaggcctgt gaacgaatga tccgggcttt agaattggac ccaaacttgt acagaattgg acagagcaag atattttca gagctggagt 2400 tctggcacac ttagaggaag aaagagattt aaaaatcacc gatatcatta tcttcttcca 2460 ggccgtttgc agaggttgcc tggccagaaa ggcctttgcc aagaagcagc agcaactaag 2520 tgccttaaag gtcttgcagc ggaactgtgc cgcgtacctg aaattacggc actggcagtg 2580 2640 gtggcgagtc ttcacaaagg tgaagccgct tctacaagtg actcgccagg aggaagaact 2700 tcaggccaaa gatgaagagc tgttgaaggt gaaggagaag cagacaaagg tggaaggaga gctggaggag atggagcgga agcaccagca gcttttagaa gagaagaata tccttgcaga 2760 2820 acaactacaa gcagagactg agctctttgc tgaagcagaa gagatgaggg caagacttgc tgctaaaaag caggaattag aagagattct acatgacttg gagtctaggg ttgaagaaga 2880 agaagaaaga aaccaaatcc tccaaaatga aaagaaaaaa atgcaagcac atattcagga 2940 cctggaagaa cagctagacg aggaggaagg ggctcggcaa aagctgcagc tggaaaaggt 3000 gacagcagag gccaagatca agaagatgga agaggagatt ctgcttctcg aggaccaaaa 3060 ttccaagttc atcaaagaaa agaaactcat ggaagatcgc attgctgagt gttcctctca 3120 3180 gctggctgaa gaggaagaaa aggcgaaaaa cttggccaaa atcaggaata agcaagaagt 3240 gatgatotoa gatttagaag aacgottaaa gaaggaagaa aagactogto aggaactgga aaaggccaaa agaaaactcg acggggagac gaccgacctg caggaccaga tcgcagagct 3300 gcaggcgcag attgatgagc tcaagctgca gctggccaag aaggaggagg agctgcaggg 3360 cgcactggcc agaggtgatg atgaaacact ccataagaac aatgccctta aagttgtgcg 3420

agagctacaa	gcccaaattg	ctgaacttca	ggaayacııı	yaacccyaya	aggerreacg	3480
gaacaaggcc	gaaaagcaga	aaagggactt	gagtgaggaa	ctggaagctc	tgaaaacaga	3540
gctggaggac	acgctggaca	ccacggcagc	ccagcaggaa	ctacgtacaa	aacgtgaaca	3600
agaagtggca	gagctgaaga	aagctcttga	ggaggaaact	aagaaccatg	aagctcaaat	3660
ccaggacatg	agacaaagac	acgcaacagc	cctggaggag	ctctcagagc	agctggaaca	3720
ggccaagcgg	ttcaaagcaa	atctagagaa	gaacaagcag	ggcctggaga	cagataacaa	3780
ggagctggcg	tgtgaggtga	aggtcctgca	gcaggtcaag	gctgagtctg	agcacaagag	3840
gaagaagctc	gacgcgcagg	tccaggagct	ccatgccaag	gtctctgaag	gcgacaggct	3900
cagggtggag	ctggcggaga	aagcaagtaa	gctgcagaat	gagctagata	atgtctccac	3960
ccttctggaa	gaagcagaga	agaagggtat	taaatttgct	aaggatgcag	ctagtcttga	4020
gtctcaacta	caggatacac	aggagettet	tcaggaggag	acacgccaga	aactaaacct	4080
gagcagtcgg	atccggcagc	tggaagagga	gaagaacagt	cttcaggagc	agcaggagga	4140
ggaggaggag	gccaggaaga	acctggagaa	gcaagtgctg	gccctgcagt	cccagttggc	4200
tgataccaag	aagaaagtag	atgacgacct	gggaacaatt	gaaagtctgg	aagaagccaa	4260
gaagaagctt	ctgaaggacg	cggaggccct	gagecagege	ctggaggaga	aggcactggc	4320
gtatgacaaa	ctggagaaga	ccaagaaccg	cctgcagcag	gagctggacg	acctcacggt	4380
ggacctggac	caccagcgcc	aggtcgcctc	caacttggag	aagaagcaga	agaagtttga	4440
ccagctgtta	gcagaagaga	agagcatctc	tgctcgctat	gccgaagagc	gggaccgggc	4500
cgaagccgag	gccagagaga	aagaaaccaa	agccctgtca	ctggcccggg	ccctcgagga	4560
agccctggag	gccaaggagg	agtttgagag	gcagaacaag	cagctccgag	cagacatgga	4620
agacctcatg	agctccaaag	atgatgtggg	aaaaaacgtt	cacgaacttg	aaaaatccaa	4680
acgggcccta	gagcagcagg	tggaggaaat	gaggacccag	ctggaggagc	tggaagacga	4740
actccaggcc	acggaagatg	ccaagcttcg	tctggaggtc	aacatgcagg	ccatgaaggc	4800
gcagttcgag	agagacctgc	aaaccaggga	tgagcagaat	gaagagaaga	agcggctgct	4860
gatcaaacag	gtgcgggagc	tcgaggcgga	gctggaggat	gagaggaaac	agcgggcgct	4920
tgctgtagct	tcgaagaaaa	agatggagat	agacctgaag	gacctcgaag	cccaaatcga	4980
ggctgcgaac	aaagctcggg	atgaggtgat	taagcagctc	cgcaagctcc	aggctcagat	5040
gaaggattac	caacgtgaat	tagaagaagc	tcgtgcatcc	agagatgaga	tttttgctca	5100
atccaaagag	agtgaaaaga	aattgaagag	tctggaagca	gaaatccttc	aattgcagga	5160
ggaacttgcc	tcatctgagc	gagecegeeg	acacgccgag	caggagagag	atgagctggc	5220
ggacgagatc	accaacagcg	cctctggcaa	gtccgcgctg	ctggatgaga	agcggcgtct	5280
ggaagctcgg	atcgcacagc	tggaggagga	gctggaagag	gagcagagca	acatggagct	5340
gctcaacgac	cgcttccgca	agaccactct	acaggtggac	acactgaacg	ccgagctagc	5400
agccgagcgc	agcgccgccc	agaagagtga	caatgcacgc	cagcaactgg	agcggcagaa	5460
caaggagctg	aaggccaagc	tgcaggaact	cgagggtgct	gtcaagtcta	agttcaaggc	5520
caccatctca	gccctggagg	ccaagattgg	gcagctggag	gagcagcttg	agcaggaagc	5580
caaggaacga	gcagccgcca	acaaattagt	ccgtcgcact	gagaagaagc	tgaaagaaat	5640
cttcatgcag	gttgaggatg	agcgtcgaca	cgcggaccag	tataaagagc	agatggagaa	5700
ggccaacgct	cggatgaagc	agcttaaacg	ccagctggag	gaagcagaag	aagaagcgac	5760
gcgtgccaac	gcatctcggc	gtaaactcca	gcgggaactg	gatgatgcca	ccgaggccaa	5820

cgagggcctg agccgcgagg teagcaccct gaagaaccgg ctgaggcggg gtggccc	cat 5880
cagettetet tecageegat etggeeggeg eeagetgeac ettgaaggag etteeet	gga 5940
gctctccgac gatgacacag aaagtaagac cagtgatgtc aacgagacgc agccacc	cca 6000
gtcagagtaa agttgcagga agccagagga ggcaatacag tgggacagtt aggaatg	cac 6060
ccggggcctc ctgcagattt cggaaattgg caagctacgg gattccttcc tgaaaga	tca 6120
actgtgtctt aaggetetee ageetatgea taetgtatee tgetteagae ttaggtad	caa 6180
ttgctcccct ttttatatac agacacaca aggacacata tattaaacag attgttt	cat 6240
cattgcatct attttccata tagtcatcaa gagaccattt tataaaacat ggtaaga	ccc 6300
tttttaaaac aaactccagg cccttggttg cgggtcgctg ggttattggg gcagcgc	cgt 6360
ggtcgtcact cagtcgctct gcatgctctc tgtcatacag acaggtaacc tagttct	gtg 6420
ttcacgtggc coccgactcc tcagccacat caagtctcct agaccactgt ggactcta	aaa 6480
ctgcacttgt ctctctcatt tccttcaaat aatgatcaat gctatttcag tgagcaa	act 6540
gtgaaagggg ctttggaaag agtaggaggg gtgggctgga tcggaagcaa cacccat	ttg 6600
gggttaccat gtccatcccc caaggggggc cctcccctc gagtcgatgg tgtcccg	cat 6660
ctactcatgt gaactggcct tggcgagggc tggtctgtgc atagaaggga tagtggc	cac 6720
actgcagctg aggccccagg tggcagccat ggatcatgta gacttccaga tggtctc	ccg 6780
aaccgcctgg ctctgccggc gccctcctca cgtcaggagc aagcagccgt ggacccc	taa 6840
gccgagetgg tggaaggccc eteccegtcg ccagecggge ceteatgetg acettge	aaa 6900
ttcagccgct gctttgagcc caaaatggga atattggttt tgtgtccgag gcttgtt	cca 6960
agtttgtcaa tgaggtttat ggagceteca gaacagatge catetteetg aatgttg	aca 7020
tgccagtggg tgtgactcct tcatttttcc ttctcccttc cctttggaca gtgttac	agt 7080
gaacacttag catcctgttt ttggttggta gttaagcaaa ctgacattac ggaaagt	gcc 7140
ttagacacta cagtactaag acaatgttga atatatcatt cgcctctata acaattt	aat 7200
gtattcagtt ttgactgtgc ttcatatcat gtacctctct agtcaaagtg gtattac	aga 7260
cattcagtga caatgaatca gtgttaattc taaatccttg atcctctgca atgtgct	tga 7320
aaacacaaac cttttgggtt aaaagcttta acatctatta ggaagaattt gtcctgt	ggg 7380
tttggaatet tggattttee eeetttatga aetgtaetgg etgttgaeca eeagaca	cct 7440
gaccgcaaat atctttctt gtattcccat atttctagac aatgattttt gtaagac	aat 7500
aaatttatto attatagata tttgogootg ototgtttac ttgaagaaaa aagoaco	cgt 7560
ggagaataaa gagacctcaa taaacaaaaa aaaaaa	7596
<210> 19 <211> 3528 <212> DNA <213> Homo sapiens	
<400> 19	
tatgcatgga gtggacctgt aggcgacttg catcgtcttc aacatgaaga tagccac	
gtcagtgctt ctgcccttgg ctctttgcct catacaagat gctgccagta agaatga	
traggaaatg tgccatgaat ttraggratt tatgaaaaat ggaaaactgt trigtcc	
ggataagaaa ttttttcaaa gtcttgatgg aataatgttc atcaataaat gtgccac	
caaaatgata ctggaaaaag aagcaaaatc acagaagag gccaggcatt tagcaag.	
tcccaaggct actgccccaa cagagctgaa ttgtgatgat tttaaaaaag gagaaag	aga 360

tggggatttt	atctgtcctg	attattatga	agctgtttgt	ggcacagatg	ggaaaacata	420
tgacaacaga	tgtgcactgt	gtgctgagaa	tgcgaaaacc	gggtcccaaa	ttggtgtaaa	480
aagtgaaggg	gaatgtaaga	gcagtaatcc	agagcaggat	gtatgcagtg	cttttcggcc	540
ctttgttaga	gatggaagac	ttggatgcac	aagggaaaat	gatcctgttc	ttggtcctga	600
tgggaagacg	catggcaata	agtgtgcaat	gtgtgctgag	ctgtttttaa	aagaagctga	660
aaatgccaag	cgagagggtg	aaactagaat	tcgacgaaat	gctgaaaagg	atttttgcaa	720
ggaatatgaa	aaacaagtga	gaaatggaag	gcttttttgt	acacgggaga	gtgatccagt	780
ccgtggccct	gacggcagga	tgcatggcaa	caaatgtgcc	ctgtgtgctg	aaattttcaa	840
gcggcgtttt	tcagaggaaa	acagtaaaac	agatcaaaat	ttgggaaaag	ctgaagaaaa	900
aactaaagtt	aaaagagaaa	ttgtgaaact	ctgcagtcaa	tatcaaaatc	aggcaaagaa	960
tggaatactt	ttctgtacca	gagaaaatga	ccctattcgt	ggtccagatg	ggaaaatgca	1020
tggcaacttg	tgttccatgt	gtcaagtcta	cttccaagca	gaaaatgaag	aaaagaaaaa	1080
ggctgaagca	cgagctagaa	acaaaagaga	atctggaaaa	gcaacctcat	atgcagagct	1140
ttgcaatgaa	tatcgaaagc	ttgtgaggaa	cggaaaactt	gcttgcacca	gagagaacga	1200
tcctatccag	ggcccagatg	ggaaagtgca	cggcaacacc	tgctccatgt	gtgaggtctt	1260
cttccaagca	gaagaagaag	aaaagaaaaa	gaaggaaggc	gaatcaagaa	acaaaagaca	1320
atctaagagt	acagcttcct	ttgaggagtt	gtgtagtgaa	taccgcaaat	ccaggaaaaa	1380
cggacggctt	ttttgcacca	gagagaatga	ccccatccag	ggcccagatg	ggaaaatgca	1440
tggcaacacc	tgctccatgt	gtgaggcctt	ctttcaacaa	gaagaaagag	caagagcaaa	1500
ggctaaaaga	gaagctgcaa	aggaaatctg	cagtgaattt	cgggaccaag	tgaggaatgg	1560
aacacttata	tgcaccaggg	agcataatcc	tgtccgtgga	ccagatggca	aaatgcatgg	1620
aaacaagtgt	gccatgtgtg	ccagtgtgtt	caaacttgaa	gaagaagaga	agaaaaatga	1680
taaagaagaa	aaagggaaag	ttgaggctga	aaaagttaag	agagaagcag	ttcaggagct	1740
gtgcagtgaa	tatcgtcatt	atgtgaggaa	tggacgactc	ccctgtacca	gagagaatga	1800
tcctattgag	ggtctagatg	ggaaaatcca	cggcaacacc	tgctccatgt	gtgaagcctt	1860
cttccagcaa	gaagcaaaag	aaaaagaaag	agctgaaccc	agagcaaaag	tcaaaagaga	1920
agctgaaaag	gagacatgcg	atgaatttcg	gagacttttg	caaaatggaa	aacttttctg	1980
cacaagagaa	aatgatcctg	tgcgtggccc	agatggcaag	acccatggca	acaagtgtgc	2040
catgtgtaag	gcagtcttcc	agaaagaaaa	tgaggaaaga	aagaggaaag	aagaggaaga	2100
tcagagaaat	gctgcaggac	atggttccag	tggtggtgga	ggaggaaaca	ctcaggacga	2160
atgtgctgag	tatcaggaac	aaatgaaaaa	tggaagactc	agctgtactc	gggagagtga	2220
tcctgtacgt	gatgctgatg	gcaaatcgta	caacaatcag	tgtaccatgt	gtaaagcaaa	2280
attggaaaga	gaagcagaga	gaaaaaatga	gtattctcgc	tccagatcaa	atgggactgg	2340
atcagaatca	gggaaggata	catgtgatga	gtttagaagc	caaatgaaaa	atggaaaact	2400
tatctgcact	cgagaaagtg	accctgtccg	gggtccagat	ggcaagacac	atggtaataa	2460
gtgtactatg	tgtaaggaaa	aactggaaag	ggaagcagct	gaaaaaaaaa	agaaagagga	2520
tgaagacagg	agcaatacag	gagaaaggag	caatacagga	gaaaggagca	atgacaaaga	2580
ggatctgtgt	cgtgaatttc	gaagcatgca	gagaaatgga	aagcttatct	gcaccagaga	2640
aaataaccct	gttcgaggcc	catatggcaa	gatgcacatc	aataaatgtg	ctatgtgtca	2700

gagcatcttt	gatcgagaag	ctaatgaaag	aaaaayaaa	yaryaayaya	aarraaytag	2760
caagccctca	aataatgcaa	aggatgagtg	cagtgaattt	cgaaactata	taaggaacaa	2820
tgaactcatc	tgccctagag	agaatgaccc	agtgcacggt	gctgatggaa	agttctatac	2880
aaacaagtgc	tacatgtgca	gagctgtctt	tctaacagaa	gctttggaaa	gggcaaagct	2940
tcaagaaaag	ccatcccatg	ttagagcttc	tcaagaggaa	gacagcccag	actctttcag	3000
ttctctggat	tctgagatgt	gcaaagacta	ccgagtattg	cccaggatag	gctatctttg	3060
tccaaaggat	ttaaagcctg	tctgtggtga	cgatggccaa	acctacaaca	atccttgcat	3120
gctctgtcat	gaaaacctga	tacgccaaac	aaatacacac	atccgcagta	cagggaagtg	3180
tgaggagagc	agcaccccag	gaaccaccgc	agccagcatg	ccccgtctg	acgaatgaca	3240
ggaagattgt	tgaaagccat	gagggaaaaa	ataaacccca	gttctgaatc	acctaccttc	3300
accatctgta	tatacaaaga	attcttcgga	gcttgtctta	tttgctatag	aaaacaatac	3360
agagcttttg	ggaatggaat	cactgatttt	cagtcttttc	catttctttc	ctcctagaat	3420
ctgtgatctg	agggtataaa	gacatttcca	ccaagtttga	gccctcaaaa	tgtcctgatt	3480
acaatgctgt	ctgtccaact	gcctgttcaa	taaaagtaaa	ctcagcag		3528
	o sapiens					
<400> 20 gctcactgag	caccgtccca	gcatccggac	accacagcgg	cccttcgctc	cacgcagaaa	60
accacacttc	tcataccttc	actcaacact	tccttcccca	aagccagaag	atgcacaagg	120
aggaacatga	ggtggctgtg	ctgggggcac	ccccagcac	catccttcca	aggtccaccg	180
tgattaacat	ccacagcgag	acctccgtgc	ccgaccatgt	cgtctggtcc	ctgttcaaca	240
ccctcttctt	gaactggtgc	tgtctgggct	tcatagcatt	cgcctactcc	gtaaagtcta	300
gggacaggaa	gatggttggc	gacgtgaccg	gggcccaggc	ctatgcctcc	accgccaagt	360
gcctgaacat	ctgggccctg	attctgggca	tcctcatgac	cattggattc	atcctgttac	420
tggtattcgg	ctctgtaaca	gtctaccata	ttatgttaca	gataatacag	gaaaaacggg	480
gttactagta	gccgcccata	gcctgcaacc	tttgcactcc	actgtgcaat	gctggccctg	540
cacgctgggg	ctgttgcccc	tgcccccttg	gtcctgcccc	tagatacagc	agtttatacc	600
cacacacctg	tctacagtgt	cattcaataa	agtgcacgtg	cttgtga		647
<210> 21 <211> 159 <212> DNA <213> Home	O o sapiens			·		
<400> 21 gaggcagttc	tgttgccact	ctctctcctg	tcaatgatgg	atctcagaaa	taccccagcc	60
aaatctctgg	acaagttcat	tgaagactat	ctcttgccag	acacgtgttt	ccgcatgcaa	120
atcgaccatg	ccattgacat	catctgtggg	ttcctgaagg	aaaggtgctt	ccgaggtagc	180
tcctaccctg	tgtgtgtgtc	caaggtggtá	aagggtggct	cctcaggcaa	gggcaccacc	240
ctcagaggcc	gatctgacgc	tgacctggtt	gtcttcctca	gtcctctcac	cacttttcag	300
gatcagttaa	atcgccgggg	agagttcatc	caggaaatta	ggagacagct	ggaagcctgt	360
caaagagaga	gagcactttc	cgtgaagttt	gaggtccagg	ctccacgctg	gggcaacccc	420
cgtgcgctca	gcttcgtact	gagttcgctc	cagctcgggg	agggggtgga	gttcgatgtg	480

ctgcctgcct ttgatgccct gggtcagttg actggcagct ataaacctaa cccccaaatc

tatgtcaagc tcatcgagga gtgcaccgac ctgcagaaag agggcgagtt ctccacctgc	600
ttcacagaac tacagagaga cttcctgaag cagcgcccca ccaagctcaa gagcctcatc	660
cgcctagtca agcactggta ccaaaattgt aagaagaagc ttgggaagct gccacctcag	720
tatgccctgg agctcctgac ggtctatgct tgggagcgag ggagcatgaa aacacatttc	780
aacacagccc aaggatttcg gacggtcttg gaattagtca taaactacca gcaactctgc	840
atctactgga caaagtatta tgactttaaa aaccccatta ttgaaaagta cctgagaagg	900
cageteacga aacceaggee tgtgateetg gacceggegg accetacagg aaacttgggt	960
ggtggagacc caaagggttg gaggcagctg gcacaagagg ctgaggcctg gctgaattac	1020
ccatgcttta agaattggga tgggtcccca gtgagctcct ggattctgct ggctgaaagc	1080
aacagtacag acgatgagac cgacgatece aggacgtate agaaatatgg ttacattgga	1140
acacatgagt acceteattt eteteataga eccageaege tecaggeage atecaeecea	1200
caggcagaag aggactggac ctgcaccatc ctctgaatgc cagtgcatct tgggggaaag	1260
ggctccagtg ttatctggac cagttccttc attttcaggt gggactcttg atccagagaa	1320
gacaaagctc ctcagtgagc tggtgtataa tccaagacag aacccaagtc tcctgactcc	1380
tggccttcta tgccctctat cctatcatag ataacattct ccacagcctc acttcattcc	1440
acctattctc tgaaaatatt ccctgagaga gaacagagag atttagataa gagaatgaaa	1500
ttccagcctt gactttcttc tgtgcacctg atgggagggt aatgtctaat gtattatcaa	1560
taacaataaa aataaagcaa ataccaaaaa	1590
<210> 22	
<211> 1113 <212> DNA <213> Homo sapiens	
<212> DNA	60
<212> DNA <213> Homo sapiens <400> 22	60 120
<212> DNA <213> Homo sapiens <400> 22 atggagaatc aggtgttgac gccgcatgtc tactgggctc agcgacaccg cgagctatat	
<212> DNA <213> Homo sapiens <400> 22 atggagaatc aggtgttgac gccgcatgtc tactgggctc agcgacaccg cgagctatat ctgcgcgtgg agctgagtga cgtacagaac cctgccatca gcatcactga aaacgtgctg	120
<212> DNA <213> Homo sapiens <400> 22 atggagaatc aggtgttgac gccgcatgtc tactgggctc agcgacaccg cgagctatat ctgcgcgtgg agctgagtga cgtacagaac cctgccatca gcatcactga aaacgtgctg catttcaaag ctcaaggaca tggtgccaaa ggagacaatg tctatgaatt tcacctggag	120 180
<212> DNA <213> Homo sapiens <400> 22 atggagaatc aggtgttgac gccgcatgtc tactgggctc agcgacaccg cgagctatat ctgcgcgtgg agctgagtga cgtacagaac cctgccatca gcatcactga aaacgtgctg catttcaaag ctcaaggaca tggtgccaaa ggagacaatg tctatgaatt tcacctggag ttcttagacc ttgtgaaacc agagcctgtt tacaaactga cccagaggca ggtaaacatt	120 180 240
<212> DNA <213> Homo sapiens <400> 22 atggagaatc aggtgttgac gccgcatgtc tactgggctc agcgacaccg cgagctatat ctgcgcgtgg agctgagtga cgtacagaac cctgccatca gcatcactga aaacgtgctg catttcaaag ctcaaggaca tggtgccaaa ggagacaatg tctatgaatt tcacctggag ttcttagacc ttgtgaaacc agagcctgtt tacaaactga cccagaggca ggtaaacatt acagtacaga agaaagtgag tcagtggtgg gagagactca caaagcagga aaagcgacca	120 180 240 300
<212> DNA <213> Homo sapiens <400> 22 atggagaatc aggtgttgac gccgcatgtc tactgggctc agcgacaccg cgagctatat ctgcgcgtgg agctgagtga cgtacagaac cctgccatca gcatcactga aaacgtgctg catttcaaag ctcaaggaca tggtgccaaa ggagacaatg tctatgaatt tcacctggag ttcttagacc ttgtgaaacc agagcctgtt tacaaactga cccagaggca ggtaaacatt acagtacaga agaaagtgag tcagtggtgg gagagactca caaagcagga aaagcgacca ctgtttttgg ctcctgactt tgatcgttgg ctggatgaat ctgatgcgga aatggagctc	120 180 240 300 360
<212> DNA <213> Homo sapiens <400> 22 atggagaatc aggtgttgac gccgcatgtc tactgggctc agcgacaccg cgagctatat ctgcgcgtgg agctgagtga cgtacagaac cctgccatca gcatcactga aaacgtgctg catttcaaag ctcaaggaca tggtgccaaa ggagacaatg tctatgaatt tcacctggag ttcttagacc ttgtgaaacc agagcctgtt tacaaactga cccagaggca ggtaaacatt acagtacaga agaaagtgag tcagtggtgg gagagactca caaagcagga aaagcgacca ctgtttttgg ctcctgactt tgatcgttgg ctggatgaat ctgatggcga aatggagctc agagctaagg aagaagagcg cctaaataaa ctccgactgg aaagcgaagg ctctcctgaa	120 180 240 300 360 420
<212> DNA <213> Homo sapiens <400> 22 atggagaatc aggtgttgac gccgcatgtc tactgggctc agcgacaccg cgagctatat ctgcgcgtgg agctgagtga cgtacagaac cctgccatca gcatcactga aaacgtgctg cattcaaag ctcaaggaca tggtgccaaa ggagacaatg tctatgaatt tcacctggag ttcttagacc ttgtgaaacc agagcctgtt tacaaactga cccagaggca ggtaaacatt acagtacaga agaaagtgag tcagtggtgg gagagactca caaagcagga aaagcgacca ctgttttgg ctcctgactt tgatcgttgg ctggatgaat ctgatgcgga aatggagctc agagctaagg aagaagagg cctaaataaa ctccgactgg aaagcgaagg ctctcctgaa actcttacaa acttaaggaa aggatacctg tttatgtata atcttgtgca attcttggga	120 180 240 300 360 420 480
<pre><212> DNA <213> Homo sapiens <400> 22 atggagaatc aggtgttgac gccgcatgtc tactgggctc agcgacaccg cgagctatat ctgcgcgtgg agctgagtga cgtacagaac cctgccatca gcatcactga aaacgtgctg catttcaaag ctcaaggaca tggtgccaaa ggagacaatg tctatgaatt tcacctggag ttcttagacc ttgtgaaacc agagcctgtt tacaaactga cccagaggca ggtaaacatt acagtacaga agaaagtgag tcagtggtgg gagagactca caaagcagga aaagcgacca ctgtttttgg ctcctgactt tgatcgttgg ctggatgaat ctgatggga aatggagctc agagctaagg aagaagagcg cctaaataaa ctccgactgg aaagcgaagg ctctcctgaa actcttacaa acttaaggaa aggatacctg tttatgtata atcttgtgca attcttggga ttctcctgga tctttgtcaa cctgactgt cgattctgta tcttgggaaa agagtccttt</pre>	120 180 240 300 360 420 480 540
<212> DNA <213> Homo sapiens <400> 22 atggagaatc aggtgttgac gccgcatgtc tactgggctc agcgacaccg cgagctatat ctgcgcgtgg agctgagtga cgtacagaac cctgccatca gcatcactga aaacgtgctg cattcaaag ctcaaggaca tggtgccaaa ggagacaatg tctatgaatt tcacctggag ttcttagacc ttgtgaaacc agagcctgtt tacaaactga cccagaggca ggtaaacatt acagtacaga agaaagtgag tcagtggtgg gagagactca caaagcagga aaagcgacca ctgttttgg ctcctgactt tgatcgttgg ctggatgaat ctgatgcgga aatggagctc agagctaagg aagaagagg cctaaataaa ctccgactgg aaagcgaagg ctctcctgaa actcttacaa acttaaggaa aggatacctg tttatgtata atcttgtgca attcttggga ttccctgga tctttgtcaa cctgactgtg cgattctgta tcttgggaaa agagtccttt tatgacacat tccatactgt ggctgacatg atgtattct gccagatgct ggcagttgtg	120 180 240 300 360 420 480 540
<pre><212> DNA <213> Homo sapiens <400> 22 atggagaatc aggtgttgac gccgcatgtc tactgggctc agcgacaccg cgagctatat ctgcgcgtgg agctgagtga cgtacagaac cctgccatca gcatcactga aaacgtgctg catttcaaag ctcaaggaca tggtgccaaa ggagacaatg tctatgaatt tcacctggag ttcttagacc ttgtgaaacc agagcctgtt tacaaactga cccagaggca ggtaaacatt acagtacaga agaaagtgag tcagtggtgg gagagactca caaagcagga aaagcgacca ctgtttttgg ctcctgactt tgatcgttgg ctggatgaat ctgatggga aatggagctc agagctaagg aagaagagcg cctaaataaa ctccgactgg aaagcgaagg ctctcctgaa actcttacaa acttaaggaa aggatacctg tttatgtata atcttgtgca attcttggga ttctcctgga tctttgtcaa cctgactgt cgattctgta tcttgggaaa agagtcctt tatgacacat tccatactgt ggctgacatg atgtattct gccagatgct ggcagttgtg gaaactatca atgcagcaat tggagtcact acgtcaccgg tgctgccttc tctgatccag</pre>	120 180 240 300 360 420 480 540 600
<212> DNA <213> Homo sapiens <400> 22 atggagaatc aggtgttgac gccgcatgtc tactgggctc agcgacaccg cgagctatat ctgcgcgtgg agctgagtga cgtacagaac cctgccatca gcatcactga aaacgtgctg catttcaaag ctcaaggaca tggtgccaaa ggagacaatg tctatgaatt tcacctggag ttcttagacc ttgtgaaacc agagcctgtt tacaaactga cccagaggca ggtaaacatt acagtacaga agaaagtgag tcagtggtgg gagagactca caaagcagga aaagcgacca ctgtttttgg ctcctgactt tgatcgttgg ctggatgaat ctgatgcgga aatggagctc agagctaagg aagaagagg cctaaataaa ctccgactgg aaagcgaagg ctctcctgaa actcttacaa acttaaggaa aggatacctg tttatgtata atcttgtgca attcttggga ttccctgga tctttgtcaa cctgactgtg cgattctgta tcttgggaaa agagtccttt tatgacacat tccatactgt ggctgacatg atgtattct gccagatgct ggcagttgtg gaaactatca atgcagcaat tggagtcact acgtcaccgg tgctgccttc tctgatccag cttcttggaa gaaattttat tttgtttatc atctttggca ccatggaaga aatgcagaac	120 180 240 300 360 420 480 540 660 720
<pre><212> DNA <213> Homo sapiens <400> 22 atggagaatc aggtgttgac gccgcatgtc tactgggctc agcgacaccg cgagctatat ctgcgcgtgg agctgagtga cgtacagaac cctgccatca gcatcactga aaacgtgctg catttcaaag ctcaaggaca tggtgccaaa ggagacaatg tctatgaatt tcacctggag ttcttagacc ttgtgaaacc agagcctgtt tacaaactga cccagaggca ggtaaacatt acagtacaga agaaagtgag tcagtggtgg gagagactca caaagcagga aaagcgacca ctgtttttgg ctcctgactt tgatcgttgg ctggatgaat ctgatggga aatggagctc agagctaagg aagaagagcg cctaaataaa ctccgactgg aaagcgaagg ctctcctgaa actcttacaa acttaaggaa aggatacctg tttatgtata atcttgtgca attcttggga ttctcctgga tctttgtcaa cctgactgt cgattctgta tcttgggaaa agagtcctt tatgacacat tccatactgt ggctgacatg atgtattct gccagatgct ggcagttgtg gaaactatca atgcagcaat tggagtcact acgtcaccgg tgctgccttc tctgatccag cttcttggaa gaaattttat tttgtttatc atctttggca ccatggaaga aatgcagaac aaagctgtgg ttttctttgt gttttatttg tggagtgcaa ttgaaattt caggtactct</pre>	120 180 240 300 360 420 480 540 660 720 780
<212> DNA <213> Homo sapiens <400> 22 atggagaatc aggtgttgac gccgcatgtc tactgggctc agcgacaccg cgagctatat ctgcgcgtgg agctgagtga cgtacagaac cctgccatca gcatcactga aaacgtgctg catttcaaag ctcaaggaca tggtgccaaa ggagacaatg tctatgaatt tcacctggag ttcttagacc ttgtgaaacc agagcctgtt tacaaactga cccagaggca ggtaaacatt acagtacaga agaaagtgag tcagtggtgg gagagactca caaagcagga aaagcgacca ctgtttttgg ctcctgactt tgatcgttgg ctggatgaat ctgatgcgga aatggagctc agagctaagg aagaagaggc cctaaataaa ctccgactgg aaagcgaagg ctctcctgaa actcttacaa acttaaggaa aggatacctg tttatgtata atcttgtgca attcttggga ttctcctgga tctttgtcaa cctgactgtg cgattctgta tcttgggaaa agagtccttt tatgacacat tccatactgt ggctgacatg atgtattct gccagatgct ggcagttgtg gaaactatca atgcagcaat tggagtcact acgtcaccgg tgctgccttc tctgatccag cttcttggaa gaaatttat tttgtttatc atctttggca ccatggaaga aatgcagaac aaagctgtgg ttttctttgt gttttatttg tggagtgcaa ttgaaattt caggtactct ttctacatgc tgacgtgcat tgacatggat tggaaggtgc tcacatggct tcgttacact ttctacatgc tgacgtgcat tgacatggat tggaaggtgc tcacatggct tcgttacact	120 180 240 300 360 420 480 540 660 720 780 840

ataaattttc gtcaccttta	taaacagcgc	agactgaaaa	tgagggcagg	cgcagtggct	1080
catgootgtg atcocagogo	tttgggaggc	tga			. 1113
<210> 23 <211> 2385 <212> DNA <213> Homo sapiens					
<400> 23 aaacccactc caccttacta	ccagacaacc	ttagccaaac	catttaccca	aataaagtat	60
aggcgataga aattgaaacc	tggcgcaata	gatatagtac	cgcaagggaa	agatgaaaaa	120
ttataaccaa gcataatata	gcaaggacta	acccctatac	cttctgcata	atgaattaac	180
tagaaataac tttgcaagga	gagtcaaagc	taaggccccc	gaaaccaggc	gagctaccta	240
agaacagcta aaagagcaca	cccgtctatg	tagcaaaata	gtgggaagat	ttataggtag	300
aggcgacaaa cctaccgagc	ctggtgatag	ctggttgtcc	aagatagaat	cttagttcaa	360
ctttaaattt gcccacagaa	ccctctaaat	ccccttgtaa	atttaactgt	tagtccaaag	420
aggaacagct ctttggacac	taggaaaaaa	ccttgtagag	agagtgtcag	cccaattcca	480
cacttttcca catgttggat	ggccttggag	tggtagccat	aagcattttt	ggaattcaac	540
taaaaactga aggatccttg	aggacggcag	tacctggcat	acctacacag	tcagcgttca	600
acaagtgttt gcaaaggtac	attggggcac	tgggggcacg	agtgatctgt	gacaatatcc	660
ctggtttggt gagccggcag	cggcagctgt	gccagcgtta	cccagacatc	atgcgttcag	720
tgggcgaggg tgcccgagaa	tggatccgag	agtgtcagca	ccaattccgc	caccaccgct	780
ggaactgtac caccctggac	cgggaccaca	ccgtctttgg	ccgtgtcatg	ctcagaagta	840
gccgagaggc agcttttgta	tatgccatct	catcagcagg	ggtgatccac	gctattactc	900
gcgcctgtag ccagggtgaa	ctgagtgtgt	gcagctgtga	cccctacacc	cgtggccgac	960
accatgacca gcgtgggact	tttgactggg	gtggctgcag	tgacaacatc	cactacggtg	1020
tccgttttgc caaggccttc	gtggatgcca	aggagaagag	gcttaaggat	gcccgggccc	1080
tcatgaactt acataataac	cgctgtggtc	gcacggctgt	gcggcggttt	gtcaagctgg	1140
agtgtaagtg ccatggcgtg	agtggttcct	gtactctgcg	cacctgctgg	cgtgcactct	1200
cagatttccg ccgcacaggt	gattacctgc	ggcgacgcta	tgatggggct	gtgcaggtga	1260
tggccaccca agatggtgcc	aacttcaccg	cagcccgcca	aggctatcgc	cgtgccaccc	1320
ggagtgatct tgtctacttt	gacaactctc	cagattactg	tgtcttggac	aaggctgcag	1380
gttccctagg cactgcaggc	cgtgtctgca	gcaagacatc	aaaaggaaca	gacggttgtg	1440
aaatcatgtg ctgtggccga	gggtacgaca	caactcgagt	cacccgtgtt	acccagtgtg	1500
agtgcaaatt ccactggtgc	tgtgctgtac	ggtgcaagga	atgcagaaat	actgtggacg	1560
tccatacttg caaagccccc a	aagaaggcag	agtggctgga	ccagacctga	acacacagat	1620
acctcactca tecetecaat	tcaagcctct	caactcaaaa	gcacaagatc	cttgcatgca	1680
caccttcctc caccctccac (cctgggctgc	taccgcttct	atttaaggat	gtagagagta	1740
atccataggg accatggtgt o	cctggctggt	tccttagccc	tgggaaggag	ttgtcagggg	1800
atataagaaa ctgtgcaagc	tccctgattt	cccgctctgg	agatttgaag	ggagagtaga	1860
agagataggg ggtctttaga (gtgaaatgag	ttgcactaaa	gtacgtagtt	gaggctcctt	1920
ttttctttcc tttgcaccag (cttcccgaca	cttcttggtg	tgcaagagga	agggtacctg	1980
tagagagett etttttgttt (ctacctggcc	aaagttagat	gggacaaaga	tgaatggcat	2040
			Page 31		

gtcccttctc tgaagtccgt	ttgagcagaa	ctacctggta	ccccgaaaga	aaaatcttag	2100
gctaccacat tctattattg	agageetgag	atgttagcca	tagtggacaa	ggttccattc	2160
acatgctcat atgtttataa	actgtgtttt	gtagaagaaa	aagaatcata	acaatacaaa	2220
cacacattca ttctctcttt	ttctctctac	cattctcaac	ctgtattgga	cagcactgcc	2280
tcttttgctt acttgctgcc	tgttcaaact	gaggtggaat	gcagtggttc	ccatgcttaa	2340
cagatcatta aaacacccta	gaacactcct	aggatagatt	aatgt		2385
<210> 24 <211> 814 <212> DNA <213> Homo sapiens					
<400> 24 cagtettgag catteageag	attcaagatg	aagctgaaca	teteetteee	agccactagc	60
					120
tgccagaaac tcattgaagt					180
atggccacag aagttgctgc					240
atcagtggtg ggaacgacaa					300
cgtgtccgcc tgctactgag					
agaaagagaa aatcagttcg					360
gttattgtaa aaaaaggaga					420
cgcctgggcc ccaaaagagc					480
gatgtccgcc agtatgttgt	aagaaagccc	ttaaataaag	aaggtaagaa	acctaggacc	540
aaagcaccca agattcagcg	tcttgttact	ccacgtgtcc	tgcagcacaa	acggcggcgt	600
attgctctga agcaacagcg	taccaagaaa	aataaagaag	aggctgcaga	atatgctaaa	660
cttttggcca agagaatgaa	ggaggctaag	gagaagcgcc	aggaacaaat	tgcgaagaga	720
cgcagacttt cctctctgcg	agcttctact	tctaagtctg	aatccagtca	gaaatagatt	780
ttttgagtaa gaaataaata	agatcagact	ctga			814
<210> 25 <211> 1434 <212> DNA <213> Homo sapiens					
<400> 25 atgaagagte ttecaateet	actgttgctg	tgcgtggcag	tttgctcagc	ctatccattg	60
gatggagctg caaggggtga	ggacaccagc	atgaaccttg	ttcagaaata	tctagaaaac	120
tactacgacc tcgaaaaaga	tgtgaaacag	tttgttagga	gaaaggacag	tggtcctgtt	180
gttaaaaaaa tccgagaaat	gcagaagttc	cttggattgg	aggtgacggg	gaagctggac	240
tccgacactc tggaggtgat	gcgcaagccc	aggtgtggag	ttcctgacgt	tggtcacttc	300
agaacctttc ctggcatccc	gaagtggagg	aaaacccacc	ttacatacag	gattgtgaat	360
tatacaccag atttgccaaa	agatgctgtt	gattctgctg	ttgagaaagc	tctgaaagtc	420
tgggaagagg tgactccact	cacattctcc	aggctgtatg	aaggagaggc	tgatataatg	480
atctcttttg cagttagaga	acatggagac	ttttaccctt	ttgatggacc	tggaaatgtt	540
ttggcccatg cctatgcccc	tgggccaggg	attaatggag	atgcccactt	tgatgatgat	600
gaacaatgga caaaggatac	aacagggacc	aatttatttc	tcgttgctgc	tcatgaaatt	660
ggccactccc tgggtctctt	tcactcagcc	aacactgaag	ctttgatgta	cccactctat	720

cactcactca cagacctgac toggttocgo otgeneous anymeneus nymenecag	780
tecetetatg gacetecece tgactecect gagacecece tggtacecae ggaacetgte	840
cctccagaac ctgggacgcc agccaactgt gatcctgctt tgtcctttga tgctgtcagc	900
actctgaggg gagaaatcct gatctttaaa gacaggcact tttggcgcaa atccctcagg	960
aagettgaac etgaattgca tttgatetet teattttgge eatetettee tteaggegtg	1020
gatgccgcat atgaagttac tagcaaggac ctcgttttca tttttaaagg aaatcaattc	1080
tgggccatca gaggaaatga ggtacgagct ggatacccaa gaggcatcca caccctaggt	1140
ttccctccaa ccgtgaggaa aatcgatgca gccatttctg ataaggaaaa gaacaaaaca	1200
tatttctttg tagaggacaa atactggaga tttgatgaga agagaaattc catggagcca	1260
ggctttccca agcaaatagc tgaagacttt ccagggattg actcaaagat tgatgctgtt	1320
tttgaagaat ttgggttctt ttatttcttt actggatctt cacagttgga gtttgaccca	1380
aatgcaaaga aagtgacaca cactttgaag agtaacagct ggcttaattg ttga	1434
<210> 26	
<pre><210> 26 <211> 540 <212> DNA</pre>	
<213> Homo sapiens	
<400> 26 cttttcgatc cgccatctgc ggtggagccg caaccaaaat gcagattttc gtgaaaaccc	60
	120
ttacggggaa gaccatcacc ctcgaggttg aaccctcgga tacgatagaa aatgtaaagg ccaagatcca ggataaggaa ggaattcctc ctgatcagca gagactgatc tttgctggca	180
agcagctaga agatggacgt actttgtctg actacaatat tcaaaaggag tctactcttc	240
atcttgtgtt gagacttcgt ggtggtgcta agaaaaggaa gaagaagtct tacaccactc	300
ccaagaagaa taagcacaag agaaagaagg ttaagctggc tgtcctgaaa tattataagg	360
tggatgagaa tggcaaaatt agtcgccttc gtcgagagtg cccttctgat gaatgtggtg	420
ctggggtgtt tatggcaagt cactttgaca gacattattg tggcaaatgt tgtctgactt	480
actgtttcaa caaaccagaa gacaagtaac tgtatgagtt aataaaagac atgaactaac	540
actyceteda conscension guesta care tycologiste databas actyoneed a	310
<210> 27 <211> 2400	
<pre><212> DNA <213> Homo sapiens</pre>	
<400> 27	
taggatggaa aggcagatgt aaagtccctc atggcgaaat ataacacggg gggcaacccg	60
acagaggatg totcagtoaa tagoogacco ttoagagtoa cagggocaaa otcatottoa	120
ggaatacaag caagaaagaa cttattcaac aaccaaggaa atgccagccc tcctgcagga	180
cccagcaatg tacctaagit tgggtcccca aagccacctg tggcagtcaa acettcttct	240
gaggaaaagc ctgacaagga acccaagccc ccgtttctaa agcccactgg agcaggccaa	300
agattcggaa caccagccag cttgaccacc agagaccccg aggcgaaagt gggatttctg	360
aaacctgtag gccccaagcc catcaacttg cccaaagaag attccaaacc tacatttccc	420
tggcctcctg gaaacaagcc atctcttcac agtgtaaacc aagaccatga cttaaagcca	480
ctaggcccga aatctgggcc tactcctcca acctcagaaa atgaacagaa gcaagcgttt	540
cccaaattga ctggggttaa agggaaattt atgtcagcat cacaagatct tgaacccaag	600
cccctcttcc ccaaacccgc ctttggccag aagccgcccc taagtaccga gaactcccat	660
gaagacgaaa gccccatgaa gaatgtgtct tcatcaaaag ggtccccagc tcccctggga	720

gtcaggtcca	aaagcggccc	tttaaaacca	gcaagggaag	actcagaaaa	taaagaccat	780
gcaggggaga	tttcaagttt	gccctttcct	ggagtggttt	tgaaacctgc	tgcgagcagg	840
ggaggcctag	gtctctccaa	aaatggtgaa	gaaaaaaagg	aagataggaa	gatagatgct	900
gctaagaaca	ccttccagag	caaaataaat	caggaagagt	tggcctcagg	gactcctcct	960
gccaggttcc	ctaaggcccc	ttctaagctg	acagtggggg	ggccatgggg	ccaaagtcag	1020
gaaaaggaaa	agggagacaa	gaattcagcc	accccgaaac	agaagccatt	gcctcccttg	1080
tttaccttgg	gtccacctcc	accaaaaccc	aacagaccac	caaatgttga	cctgacgaaa	1140
ttccacaaaa	cctcttctgg	aaacagtact	agcaaaggcc	agacgtctta	ctcaacaact	1200
tccctgccac	cacctccacc	atcccatccg	gccagccaac	caccattgcc	agcatctcac	1260
ccatcacaac	caccagtccc	aagcctacct	cccagaaaca	ttaaacctcc	gtttgaccta	1320
aaaagccctg	tcaatgaaga	caatcaagat	ggtgtcacgc	actctgatgg	tgctggaaat	1380
ctagatgagg	aacaagacag	tgaaggagaa	acatatgaag	acatagaagc	atccaaagaa	1440
agagagaaga	aaagggaaaa	ggaagaaaag	aagaggttag	agctggagaa	aaaggaacag	1500
aaagagaaag	aaaagaaaga	acaagaaata	aagaagaaat	ttaaactaac	aggccctatt	1560
caagtcatcc	atcttgcaaa	agcttgttgt	gatgtcaaag	gaggaaagaa	tgaactgagc	1620
ttcaagcaag	gagagcaaat	tgaaatcatc	cgcatcacag	acaacccaga	aggaaaatgg	1680
ttgggcagaa	cagcaagggg	ttcatatggc	tatattaaaa	caactgctgt	agagattgac	1740
tatgattctt	tgaaactgaa	aaaagactct	cttggtgccc	cttcaagacc	tattgaagat	1800
gaccaagaag	tatatgatga	tgttgcagag	caggatgata	ttagcagcca	cagtcagagt	1860
ggaagtggag	ggatattccc	tccaccacca	gatgatgaca	tttatgatgg	gattgaagag	1920
gaagatgctg	atgatggttt	ccctgctcct	cctaaacaat	tggacatggg	agatgaagtt	1980
tacgatgatg	tggatacctc	tgatttccct	gtttcatcag	cagagatgag	tcaaggaact	2040
aattttggaa	aagctaagac	agaagaaaag	gaccttaaga	agctaaaaaa	gcaggaaaaa	2100
gaagaaaaag	acttcaggaa	aaaatttaaa	tatgatggtg	aaattagagt	cctatattca	2160
actaaagtta	caacttccat	aacttctaaa	aagtggggaa	ccagagatct	acaggtaaaa	2220
cctggtgaat	ctctagaagt	tatacaaacc	acagatgaca	caaaagttct	ctgcagaaat	2280
gaagaaggga	aatatggtta	tgtccttcgg	agttacctag	cggacaatga	tggagagatc	2340
tatgatgata	ttgctgatgg	ctgcatctat	gacaatgact	agcactcaac	tttggtcatt	2400
(210) 20						
<210> 28 <211> 794						
<212> DNA <213> Hom	o sapiens					
<400> 28				2000025205	atatagasat	60
		gggtctgcgc				120
		gtccgggcag				
		cccgagagga				180
		gtgtgcctgg				240
		cagatecega				300
		aactgtttgt				360
		aaacccttca				420
tgtggatgaa	tttgcttttc	tggaaggtac	tttagattga	ttgccgagcg	gggcagtttt	480

gtgagcci	ttc	atctgaagcc	ttcagttcac	ccctctgcac	aggcctcagc	tttgaagaac	540
ggagtcti	ttg	cacttacaca	cactcttcct	gttctgcctt	cacctatgcc	gggataagca	600
gagatct	cat	caattagctc	ttctctgcaa	ggtcttccac	tatttctgtc	tgtcttccat	660
atcaagc	ctg	gatgcagctg	ctgctgctta	gagcagagat	gaagaaagtg	ttctgcataa	720
gtggctt	cct	gaatgatgag	gaccagaata	aaggtttttg	atcaacctca	aaaaaaaaa	780
aaaaaaa	aaa	aaaa					794
<211> 8 <212> 1	29 826 DNA Homo	sapiens		. ,			
	29 gat	ggcagtgcaa	atatccaaga	ggaggaagtt	tgtcgctgat	ggcatcttca	60
aagctgaa	act	gaatgagttt	cttactcggg	agctggctga	agatggctac	tctggagttg	120
aggtgcga	agt	tacaccaacc	aggacagaaa	tcattatctt	agccaccaga	acacagaatg	180
ttcttgg	tga	gaagggccgg	cggattcggg	aactgactgc	tgtagttcag	aagaggtttg	240
gctttcca	aga	gggcagtgta	gagctttatg	ctgaaaaggt	ggccactaga	ggtctgtgtg	300
ccattgc	cca	ggcagagtct	ctgcgttaca	aactcctagg	agggcttgct	gtgcggaggg	360
cctgctat	tgg	tgtgctgcgg	ttcatcatgg	agagtggggc	caaaggctgc	gaggttgtgg	420
tgtctgg	gaa	actccgagga	cagagggcta	aatccatgaa	gtttgtggat	ggcctgatga	480
tccacago	cgg	agaccctgtt	aactactacg	ttgacactgc	tgtgcgccac	gtgttgctca	540
gacaggg	tgt	gctgggcatc	aaggtgaaga	tcatgctgcc	ctgggaccca	actggtaaga	600
ttggccc	taa	gaagcccctg	cctgaccacg	tgagcattgt	ggaacccaaa	gatgagatac	660
tgcccaco	cac	ccccatctca	gaacagaagg	gtgggaagcc	agagccgcct	gccatgcccc	720
agccagto	ccc	cacagcataa	cagggtctcc	ttggcagctg	tattctggag	tctggatgtt	780
gctctcta	aaa	gacctttaat	aaaattttgt	acaaaggcgg	gaattc		826
<211> <212> I	30 721 DNA Homo	sapiens					
	30 agc	atcaccacaa	taatattatt	ggagagcgag	canttootga	cogagetgae	60
			•	cagcgtctat			120
				tactgtggag			180
				gaagaagatc			240
				aaacctcctt			300
				gaagaccaaa			360
				aacaacagca			420
agcacagt	taa	agggcataca	tttcctgctt	tcaccaatta	accactgaat	tgctatttt	480
tcctttt	ggc	cagatagcta	ggtttctggt	tcccccacag	taggtgtttt	cacataagat	540
tagggtco	ett	ttggaaagaa	tagttgcagt	gtttatagga	tagttgtggt	aagaatctag	600
tttattt	tgc	atttggctaa	ttggtctgtg	ctgcatggtt	atatactcct	ggattataga	660
ttaaaagt	tct	ctgtagacat	ctctqtqaaq	agcaagctat	cattaaacat	gtctgtttat	720

С

721

<210> 31 2905 <211> <212> DNA <213> Homo sapiens tagcgattcc ctgcttgtct cgccgacccc ctcgcgcctt ctgcagactc cgtggctggc 60 gctcggcgcg tgaggaagca cggcggcccg agttcgcggg gaaggccgca gtcgcggagg 120 180 cageggegeg gteeggggca egggetgggg gagaggeege teegetggge gaatgtgaca 240 agececcace eccacegeet tectecceag agegegagga gegegggega ecceggggee 300 cogcoagged adaptocog occagogged ageaccogge geaggeoogg cagoogaget gcgcggcggc accatgcagg tcaccctgaa gaccctccag cagcagacct tcaagataga 360 420 cattgacccc gaggagacgg tgaaagcact gaaagagaag attgaatctg aaaaggggaa agatgccttt ccagtagcag gtcaaaaatt aatttatgca ggcaaaatcc tcaatgatga 480 tactqctctc aaaqaatata aaattgatga gaaaaacttt gtggtggtta tggtgaccaa 540 acccaaagca gtgtccacac cagcaccagc tacaactcag cagtcagctc ctgccagcac 600 tacagcagtt acttecteca ceaccacaac tgtggetcag getceaacce etgtecetge 660 720 cttggccccc acttccacac ctgcatccat cactccagca tcagcgacag catcttctga 780 acctgcacct gctagtgcag ctaaacaaga gaagcctgca gaaaagccag cagagacacc agtggctact agcccaacag caactgacag tacatcgggt gattcttctc ggtcaaacct 840 900 ttttgaagat gcaacgagtg cacttgtgac gggtcagtct tacgagaata tggtaactga gatcatgtca atgggctatg aacgagagca agtaattgca gccctgagag ccagtttcaa 960 caaccctgac agagcagtgg agtatctttt aatgggaatc cctggagata gagaaagtca 1020 1080 qqctqtqqtt qaccccctc aagcagctag tactggggct cctcagtctt cagcagtggc tgcagctgca gcaactacga cagcaacaac tacaacaaca agttctggag gacatcccct 1140 1200 tgaattttta cggaatcagc ctcagtttca acagatgaga caaattattc agcagaatcc ttccttgctt ccagcgttac tacagcagat aggtcgagag aatcctcaat tacttcagca 1260 1320 aattagccaa caccaggagc attttattca gatgttaaat gaaccagttc aagaagctgg tggtcaagga ggaggaggtg gaggtggcag tggaggaatt gcagaagctg gaagtggtca 1380 1440 tatgaactac attcaagtaa cacctcagga aaaagaagct atagaaaggt taaaggcatt 1500 aggatttcct gaaggacttg tgatacaagc gtattttgct tgtgagaaga atgagaattt 1560 ggctgccaat tttcttctac agcagaactt tgatgaagat tgaaagggac ttttttatat ctcacacttc acaccagtgc attacactaa cttgttcact ggattgtctg ggatgacttg 1620 1680 1740 totaggatac agggcaggga taaatacagt gcatgtotgc ttcaattagc agatgccgca actccacaca gtgtgtaaaa tatatacaac caaaaatcag cttttgcagg tctttatttc 1800 1860 ttctgtaaaa cagtaggtaa cttttcctag gtttcactct ttttagtgta ctagatccag 1920 aaacttagtg taatgccctg ctttatatat ctttgactta acattggttt cagaaagaat cttagctacc tagaatttac agtctctgtt tcatggcaac actggataat ggctttgtga 1980 aatttaaaaa attttgtag cgactgtaaa cagaaatgcc aaattgatgg ttaattgttg 2040 ctgcttcaaa aataagtata aaattaatat gtaaggaagc ccattctttc atgttaaata 2100

2160 Cttggggtgg gaggggaqaa agggaacctt ttc..aaaa, yaaaa.aa.c ac.y..attt taaaatttct tgatcattga atgtgagacc cttctaacat gatttgagaa gctgtacaag 2220 tataggcaga gttattttcc tgtttacatt tttttttgt tttggggaaa aaattggtag 2280 gtgtctaatt actgtttact tcattgttat attgcagtaa aagttttaaa acaaccattg 2340 catgittgct titgatgiat cccttigiga aattagcact titggggcca atggagaaat 2400 gcagcattca ctctccctgt cttttcccct tccctcagca gaaacgtgtt tatcagcaag 2460 tcgtgagtca aactgctgcc ttttaaaaaaa cccacaaaat gctgattcag ttcaaaatta 2520 atgcaaatgt ttcaaaactg ggtttctgat atttgtaaat gtgtttcttt attagataag 2580 agtgtattac cattaaagtc attagtataa tattgctttc aaaaagaaat ggtagacaaa 2640 actataatcc agcatctttt attgcattgg aaagactggc aaagtctttt ggatgggttg 2700 ggagatgtgg ctggaaagta ctttggaaaa tatacaatca agatatctca tggcatatta 2760 aaagaaaaat cttaatagca gtgttggctt ttatttggat tttttcatct cagttttttc 2820 tgtggaatct ccttcattgg cattgttatt taatcataaa cggggcagat gtctacttgt 2880 2905 tcagtttttc aaatctgttt tcctg <210> 32 3774 <211> <212> DNA <213> Homo sapiens <400> 32 60 cegeegteec tgegteette ggtetetget eeegggaeee gggeteegee geageeagee agcatgtcgg ggatcaagaa gcaaaagacg gagaaccagc agaaatccac caatgtagtc 120 tatcaggccc accatgtgag caggaataag agagggcaag tggttggaac aaggggtggg 180 240 ttccqaqqat qtaccqtqtq qctaacaqqt ctctctqqtq ctqqaaaaac aacqataaqt tttgccctgg aggagtacct tgtctcccat gccatccctt gttactccct ggatgggac 300 aatgtccgtc atggccttaa cagaaatctc ggattctctc ctggggacag agaggaaaat 360 420 agetttattt etecattege aaaggategt gagaatgeee geaaaataca tgaateagea 480 540 gggctgccat tctttgaaat atttgtagat gcacctctaa atatttgtga aagcagagac 600 gtaaaaggcc tctataaaaa ggccagagct ggggagatta aaggatttac aggtattgat 660 totgattatg agaaacotga aactootgag ogtgtgotta aaaccaattt gtocacagtg agtgactgtg tccaccaggt agtggaactt ctgcaagagc agaacattgt accctatact 720 780 ataatcaaaq atatecacga actetttgtg ceggaaaaca aacttgacca egteegaget gaggetgaaa etetecette attateaatt actaagetgg atetecagtg ggtecaggtt 840 ttgagcgaag gctgggccac tcccctcaaa ggtttcatgc gggagaagga gtacttacag 900 gttatgcact ttgacaccct gctagatgat ggcgtgatca acatgagcat ccccattgta 960 1020 ctgcccgtct ctgcagagga taagacacgg ctggaagggt gcagcaagtt tgtcctggca catggtggac ggagggtagc tatcttacga gacgctgaat tctatgaaca cagaaaagag 1080 gaacgctgtt cccgtgtttg ggggacaaca tgtacaaaac acccccatat caaaatggtg 1140 atggaaagtg gggactggct ggttggtgga gaccttcagg tgctggagaa aataagatgg 1200 aatgatgggc tggaccaata ccgtctgaca cctctggagc tcaaacagaa atgtaaagaa 1260 atgaatgctg atgcggtgtt tgcattccag ttgcgcaatc ctgtccacaa tggccatgcc 1320

ctgttgatgc	aggacactcg	ccgcaggctc	Ctayuyuyyy	yetacuuycu	cccyyccata	1380
ctactacacc	ctctgggcgg	ctggaccaag	gatgacgatg	tgcctctaga	ctggcggatg	1440
aagcagcacg	cggctgtgct	cgaggaaggg	gtcctggatc	ccaagtcaac	cattgttgcc	1500
atctttccgt	ctcccatgtt	atatgctggc	cccacagagg	tccagtggca	ctgcaggtcc	1560
cggatgattg	cgggtgccaa	tttctacatt	gtggggaggg	accetgeagg	aatgccccat	1620
cctgaaacca	agaaggatct	gtatgaaccc	actcatgggg	gcaaggtctt	gagcatggcc	1680
cctggcctca	cctctgtgga	aatcattcca	ttccgagtgg	ctgcctacaa	caaagccaaa	1740
aaagccatgg	acttctatga	tctagcaagg	cacaatgagt	ttgacttcat	ctcaggaact	1800
cgaatgagga	agctcgcccg	ggaaggagag	aatcccccag	atggcttcat	ggcccccaaa	1860
gcatggaagg	tcctgacaga	ttattacagg	tccctggaga	agaactaagc	ctttggctcc	1920
agagtttctt	tctgaagtgc	tctttgatta	ccttttctat	ttttatgatt	agatgctttg	1980
tattaaattg	cttcctcaat	gatgcatttt	aacttttata	atgaagtaaa	agttgtgtct	2040
ataattaaaa	aaaaatatat	atatatacac	acacacatat	acatacaaag	tcaaactgaa	2100
gaccaaatct	tagcaggtaa	aagcaatatt	cttatacatt	tcataataaa	attagctcta	2160
tgtattttct	actgcacctg	agcaggcagg	tcccagattt	cttaaggctt	tgtttgacca	2220
tgtgtctagt	tacttgctga	aaagtgaata	tattttccag	catgtcttga	caacctgtac	2280
tcttccaatg	tcatttatca	gttgtaaaat	atatcagatt	gtgtcctctt	ctgtacaatt	2340
gacaaaaaaa	aattttttt	tctcactcta	aaagaggtgt	ggctcacatc	aagattcttc	2400
ctgatatttt	acctcatgct	gtacaagcct	taatgtgtaa	tcatatctta	cgtgttgaag	2460
acctgactgg	agaaacaaaa	tgtgcaataa	cgtgaatttt	atcttagaga	tctgtgcagc	2520
ctagatttta	cctcatgctg	tacaaagcct	taatgttgta	atcatatctt	acgtgttgag	2580
acctgactgg	agaaacaaaa	tgtgcaataa	cgtgaatttt	atcttagaga	tctgtgcagc	2640
ctattttctg	tcacaaaagt	tatattgtct	aataagagaa	gtcttaatgg	cctctgtgaa	2700
taatgtaact	cagttacacg	gtgactttta	atagcataca	gtgatttgat	gaaaggacgt	2760
caaacaatgt	ggcgatgtcg	tggaaagtta	tctttcccgc	tctttgctgt	ggtcattgtg	2820
tcttgcagaa	aggatggccc	tgatgcagca	gcagcgccag	ctgtaataaa	aaataattca	2880
cactatcaga	ctagcaaggc	actagaactg	gaaaagacca	cagaaaacaa	agaatccaac	2940
cctttcatct	tacaggtgaa	caaactgtga	tgatgcacat	gtatgtgttt	tgtaagctgt	3000
gagcaccgta	acaaaatgta	aatttgccat	tattaggaaa	gtąctągtąg	cagtgaagaa	3060
gcacccaggc	cacttgactc	ccagtctggt	gccctgtcta	caccagacaa	cacaggagct	3120
gggtcagatt	cccctcagct	gcttaacaaa	gttcctcgaa	cagaaagtgc	ttacaaagct	3180
gccttctcgg	atactgaaag	gtcgagtttt	ctgaactgca	ctgattttat	tgcagttgaa	3240
aaacccaaag	ctattccaaa	gatttcaagc	tgttctgaga	catcttctga	tggctttact	3300
tcctgagagg	caatgttttt	actttatgca	taattcattg	ttgccaagga	ataaagtgaa	3360
gaaacagcac	ctttttaata	tataggtctc	tctggaagag	acctaaattt	agaaagagaa	3420
aactgtgaca	attttcatat	tctcattctt	aaaaaacact	aatcttaact	aacaaaagtt	3480
cttttgagaa	taagttacac	acaatggcca	cagcagtttg	tctttaatag	tatagtgcct	3540
atactcatgt	aatcggttac	tcactactgc	ctttaaaaaa	aaccagcata	tttattgaaa	3600
acatgagaca	ggattatagt	gccttaaccg	atatattttg	tgacttaaaa	aatacattta	3660
aaactgctct	tctgctctag	taccatgctt	agtgcaaatg	attatttcta	tgtacaactg	3720
				2 20		

atgcttgttc ttattttaat	aaatttatca	gagtgaaaaa	aaaaaaaaa	aaaa	3774
<210> 33 <211> 3614 <212> DNA <213> Homo sapiens					
<400> 33	212555	202002000		ggggt . gg.	60
gtccgccaaa acctgcgcgg					60 120
acaagcctaa cgtccgctgg					180
tttctggatt ggactgatca					240
atgtttaaaa gcaaatgcca					300
gtggtgcaca aattcaacat					
tttagaagcc ttaaaaaaga					360
caaagatata aagaaaaata					420
caagccagag gatattcatc		•			480
ggagccacag acatttacat	taaaattcaa	gagagetgaa	gactatccca	ttgacctcta	540
ctaccttatg gacctgtctt	attcaatgaa	agacgatttg	gagaatgtaa	aaagtcttgg	600
aacagatctg atgaatgaaa	tgaggaggat	tacttcggac	ttcagaattg	gatttggctc	660
atttgtggaa aagactgtga	tgccttacat	tagcacaaca	ccagctaagc	tcaggaaccc	720
ttgcacaagt gaacagaact	gcaccacccc	atttagctac	aaaaatgtgc	tcagtcttac	780
taataaagga gaagtattta	atgaacttgt	tggaaaacag	cgcatatctg	gaaatttgga	840
ttctccagaa ggtggtttcg	atgccatcat	gcaagttgca	gtttgtggat	cactgattgg	900
ctggaggaat gttacacggc	tgctggtgtt	ttccacagat	gccgggtttc	actttgctgg	960
agatgggaaa cttggtggca	ttgttttacc	aaatgatgga	caatgtcacc	tggaaaataa	1020
tatgtacaca atgagccatt	attatgatta	tccttctatt	gctcaccttg	tccagaaact	1080
gagtgaaaat aatattcaga	caatttttgc	agttactgaa	gaatttcagc	ctgtttacaa	1140
ggagetgaaa aacttgatee	ctaagtcagc	agtaggaaca	ttatctgcaa	attctagcaa	1200
tgtaattcag ttgatcattg	atgcatacaa	ttccctttcc	tcagaagtca	ttttggaaaa	1260
cggcaaattg tcagaaggag	taacaataag	ttacaaatct	tactgcaaga	acggggtgaa	1320
tggaacaggg gaaaatggaa	gaaaatgttc	caatatttcc	attggagatg	aggttcaatt	1380
tgaaattagc ataacttcaa	ataagtgtcc	aaaaaaggat	tctgacagct	ttaaaattag ·	1440
gcctctgggc tttacggagg	aagtagaggt	tattcttcag	tacatctgtg	aatgtgaatg	1500
ccaaagcgaa ggcatccctg	aaagtcccaa	gtgtcatgaa	ggaaatggga	catttgagtg	1560
tggcgcgtgc aggtgcaatg	aagggcgtgt	tggtagacat	tgtgaatgca	gcacagatga	1620
agttaacagt gaagacatgg	atgcttactg	caggaaagaa	aacagttcag	aaatctgcag	1680
taacaatgga gagtgcgtct	gcggacagtg	tgtttgtagg	aagagggata	atacaaatga	1740
aatttattct ggcaaattct	gcgagtgtga	taatttcaac	tgtgatagat	ccaatggctt	1800
aatttgtgga ggaaatggtg	tttgcaagtg	tcgtgtgtgt	gagtgcaacc	ccaactacac	1860
tggcagtgca tgtgactgtt	ctttggatac	tagtacttgt	gaagccagca	acggacagat	1920
ctgcaatggc cggggcatct	gcgagtgtgg	tgtctgtaag	tgtacagatc	cgaagtttca	1980
agggcaaacg tgtgagatgt	gtcagacctg	ccttggtgtc	tgtgctgagc	ataaagaatg	2040
tgttcagtgc agagccttca	ataaaggaga	aaagaaagac	acatgcacac	aggaatgttc	2100
			Page 39		

ctattttaac attaccaagg tagaaagtcg ggacaaatta ccccagccgg tccaacc	tga 2160
tcctgtgtcc cattgtaagg agaaggatgt tgacgactgt tggttctatt ttacgta	attc 2220
agtgaatggg aacaacgagg tcatggttca tgttgtggag aatccagagt gtccca	etgg 2280
tocagacate attecaatty tagetggtgt ggttgetgga attgttetta ttggeet	tgc 2340
attactgctg atatggaagc ttttaatgat aattcatgac agaagggagt ttgctaa	aatt 2400
tgaaaaggag aaaatgaatg ccaaatggga cacgggtgaa aatcctattt ataagag	gtgc 2460
cgtaacaact gtggtcaatc cgaagtatga gggaaaatga gtactgcccg tgcaaa	ccc 2520
acaacactga atgcaaagta gcaatttcca tagtcacagt taggtagctt tagggca	aata 2580
ttgccatggt tttactcatg tgcaggtttt gaaaatgtac aatatgtata attttt	aaaa 2640
tgttttatta ttttgaaaat aatgttgtaa ttcatgccag ggactgacaa aagact	tgag 2700
acaggatggt tattcttgtc agctaaggtc acattgtgcc tttttgacct tttcttc	cctg 2760
gactattgaa atcaagctta ttggattaag tgatatttct atagcgattg aaaggg	caat 2820
agttaaagta atgagcatga tgagagtttc tgttaatcat gtattaaaac tgattt	ttag 2880
ctttacatat gtcagtttgc agttatgcag aatccaaagt aaatgtcctg ctagcta	agtt 2940
aaggattgtt ttaaatctgt tattttgcta tttgcctgtt agacatgact gatgaca	atat 3000
ctgaaagaca agtatgttga gagttgctgg tgtaaaatac gtttgaaata gttgat	ctac 3060
aaaggccatg ggaaaaattc agagagttag gaaggaaaaa ccaatagctt taaaacc	ctgt 3120
gtgccatttt aagagttact taatgtttgg taacttttat gccttcactt tacaaa	ttca 3180
agcettagat aaaagaaccg agcaatttte tgctaaaaag teettgattt agcact	attt 3240
acatacagge catactttac aaagtatttg ctgaatgggg accttttgag ttgaat	ttat 3300
tttattattt ttattttgtt taatgtctgg tgctttctat cacctcttct aatctt	ttaa 3360
tgtatttgtt tgcaattttg gggtaagact tttttatgag tactttttct ttgaag	tttt 3420
agcggtcaat ttgccttttt aatgaacatg tgaagttata ctgtggctat gcaaca	gctc 3480
tcacctacgc gagtcttact ttgagttagt gccataacag accactgtat gtttac	ttct 3540
caccatttga gttgcccatc ttgtttcaca ctagtcacat tcttgtttta agtgcc	ttta 3600
gttttaacag ttca	3614
<210> 34 <211> 2701 <212> DNA <213> Homo sapiens	
<220> <221> misc_feature <222> (1)(2701) <223> n=A,T,C, or G	
<400> 34 actggcggtg gcctacggtg agcggcctgg ccggagcgcg agagttggag gtggtg	gcgt 60
togetotoco taggggetgt egggagetea gegnggaeeg ageetgggag geegge	cggt 120
gccagcacct ttcggcttct gagacggcgg cacagcggca ttcaggttct aaatgg	cttc 180
taagaagttg ggtgcagatt ttcatgggac tttcagttac cttgatgatg tcccat	ttaa 240
gacaggagac aaattcaaaa caccagctaa agttggteta cetattgget teteet	tgcc 300
tgattgtttg caggttgtca gagaagtaca gtatgacttc tctttggaaa agaaaa	ccat 360

tgagtgggct gaagagatta agaaaatcga agaagccgag cgggaagcag agtgcaaaat

tgcggaagca gaagctaaag tgaattctaa gagtggccca gagggcgata gcaaaatgag 480 cttctccaag actcacagta cagccacaat gccacctcct attaacccca tcctcgccag 540 cttgcagcac aacagcatcc tcacaccaac tcgggtcagc agtagtgcca cgaaacagaa 600 agttctcagc ccacctcaca taaaggcgga tttcaatctt gctgactttg agtgtgaaga 660 720 agacccattt gataatctgg agttaaaaac tattgatgag aaggaagagc tgagaaatat tctggtagga accactggac ccattatggc tcagttattg gacaataact tgcccagggg 780 aggetetggg tetgtgttac aggatgagga ggteetggea teettggaac gggeaaceet 840 agatttcaaq cetettcata aacccaatgg etttataace ttaccacagt tgggcaactg 900 tgaaaagatg tcactgtctt ccaaagtgtc cctccccct atacctgcag taagcaatat 960 caaatccctg tctttcccca aacttgactc tgatgacagc aatcagaaga cagccaagct 1020 ggcgagcact ttccatagca catcctgcct ccgcaatggc acgttccaga attccctaaa 1080 gccttccacc caaagcagtg ccagtgagct caatgggcat cacactcttg ggctttcagc 1140 tttgaacttg gacagtggca cagagatgcc agccctgaca tcctcccaga tgccttccct 1200 ctctgttttg tctgtgtgca cagaggaatc atcacctcca aatactggtc ccacggtcac 1260 ccctcctaat ttctcagtgt cacaagtgcc caacatgccc agctgtcccc aggcctattc 1320 tgaactgcag atgctgtccc ccagcgagcg gcagtgtgtg gagacggtgg tcaacatggg 1380 1440 ctactcgtac gagtgtgtcc tcagagccat gaagaagaaa ggagagaata ttgagcagat tctcgactat ctctttgcac atggacagct ttgtgagaag ggcttcgacc ctcttttagt 1500 ggaagaggct ctggaaatgc accagtgttc agaagaaaag atgatggagt ttcttcagtt 1560 aatgagcaaa tttaaggaga tgqgctttqa qctgaaagac attaaggaag ttttgctatt 1620 acacaacaat gaccaggaca atgctttgga agacctcatg gctcgggcag gagccagctg 1680 agaccaggcc ctgcctaggc cctgccgcag aaccaccatc cctgggaggc cctgcagagc 1740 ccacctgtgg ggaaagagaa ggggcagctt ccggattttc ttttgggggt tagaaggtca 1800 ggtgtggaga ctgctcgcca gtctctgtga gcctaggccc tgagctgggg aggtggggaa 1860 gattcgggca tgtgagtgcc cccagaactg tcctggctcc ttccgtatta aacgcatttg 1920 cattttgaga agtgtccttc ccacttcagc cctccggaga gactacccta gtctttctgg 1980 2040 ggtgtttatg tcctcagctg aagcctggcc tagttgctga gaggggctgg ggagatgggg cgggagggcc agactcagtg ctgctgtgga gctaggtgct tcccccttcc cctgagactg 2100 gttgactgaa ctccagtcaa gttgagttca agtgaaagat tcttccaggg ttttattttt 2160 tcccctccta acaaagtctc atagtgttaa cactggttct gcaatatctc tgaggtgcaa 2220 agaatgcact tttccctatg gggcccagag tttgcctttt ctgccaggca gtcaccacgc 2280 ttccctaccc cagcctgttt cttttggctt ggtttggacc acagtcctct gctacccagg 2340 gttttagagc ccctgctcta ggaaacagtt taagaaatca ttggcccctt cccagcacat 2400 tgaatgggta agcagacagg ccatgattta gttggccagc actaactcca cctctgttct 2460 ccttgaacag cttcccctcc agcccactgc tttaggatga cacaatgaat aacacctagt 2520 2580 catagaaatc agtctctctg gtttgttttg tattatgttg tacatcatta aagatctaaa tacaaaggat atacagtott qaatotaaaa taatttgota actattttqa ttottcaqaq 2640 2700 2701

<210>

<211>

35

2318

<212> DNA <213> Homo sapiens <400> 35 gccacgaagg ccacagacgc cttccccctt ggactctcat tcccttttcc acggagcccc 60 gegetttegt gageceete gaggaacetg gteteegeat ecagttacea ceteetgeet 120 cagaggeeat etgageeett egeacetege eceteagtee eccettgeee eccegeggag 180 ategeotege tecetecege ecceecatea tecettecet egeagttece etgteetgag 240 300 ttggcctcac tcccggctag gcgcacccac ggggaggaga ggaggagccg agagagctga 360 gcagcgcgga agtagctgct gctggtggtg acaatgtcaa ataacggcct agacattcaa 420 gacaaacccc cagcccctcc gatgagaaat accagcacta tgattggagt cggcagcaaa 480 540 gatgctggaa ccctaaacca tggttctaaa cctctgcctc caaacccaga ggagaagaaa aagaaggacc gattttaccg atccatttta cctggagata aaacaaataa aaagaaagag 600 660 aaagagcggc cagagatttc tctcccttca gattttgaac acacaattca tgtcggtttt 720 gatgctgtca caggggagtt tacgggaatg ccagagcagt gggcccgctt gcttcagaca 780 tcaaatatca ctaagtcgga gcagaagaaa aacccgcagg ctgttctgga tgtgttggag ttttacaact cgaagaagac atccaacagc cagaaataca tgagctttac agataagtca 840 900 gctgaggatt acaattcttc taatgccttg aatgtgaagg ctgtgtctga gactcctgca gtgccaccag tttcagaaga tgaggatgat gatgatgatg atgctacccc accaccagtg 960 attgctccac gcccagagca cacaaaatct gtatacacac ggtctgtgat tgaaccactt 1020 1080 cctgtcactc caactcggga cgtggctaca tctcccattt cacctactga aaataacacc 1140 actccaccag atgctttgac ccggaatact gagaagcaga agaagaagcc taaaatgtct 1200 gatgaggaga tcttggagaa attacgaagc atagtgagtg tgggcgatcc taagaagaaa tatacacggt ttgagaagat tggacaaggt gcttcaggca ccgtgtacac agcaatggat 1260 1320 gtggccacag gacaggaggt ggccattaag cagatgaatc ttcagcagca gcccaagaaa 1380 qagctgatta ttaatgagat cctggtcatg agggaaaaca agaacccaaa cattgtgaat tacttggaca gttacctcgt gggagatgag ctgtgggttg ttatggaata cttggctgga 1440 1500 ggctccttga cagatgtggt gacagaaact tgcatggatg aaggccaaat tgcagctgtg tgccgtgagt gtctgcaggc tctggagttc ttgcattcga accaggtcat tcacagagac 1560 atcaagagtg acaatattct gttgggaatg gatggctctg tcaagctaac tgactttgga 1620 ttctgtgcac agataacccc agagcagagc aaacggagca ccatggtagg aaccccatac 1680 1740 tggatggcac cagaggttgt gacacgaaag gcctatgggc ccaaggttga catctggtcc ctgggcatca tggccatcga aatgattgaa ggggagcctc catacctcaa tgaaaaccct 1800 1860 ctgagagcct tgtacctcat tgccaccaat gggaccccag aacttcagaa cccagagaag ctgtcagcta tcttccggga ctttctgaac cgctgtctcg atatggatgt ggagaagaga 1920 ggttcagcta aagagctgct acagcatcaa ttcctgaaga ttgccaagcc cctctccagc 1980 ctcactccac tgattgctgc agctaaggag gcaacaaaga acaatcacta aaaccacact 2040 2100 caccccagcc tcattgtgcc aagctctgtg agataaatgc acatttcaga aattccaact 2160 cctgatgccc tcttctcctt gccttgcttc tcccatttcc tgatctagca ctcctcaaga

ctttgatcct tggaaaccgt gtgtccagca ttyuuyuyuu ceyeuuceyu as	cyaccaato 2220
agatgatggc catttctaaa taaggaattt cctcccaatt catggatatg ag	
atgattaagg gtttatataa ataaatgttt ctagtott	2318
<210> 36 <211> 4264 <212> DNA <213> Homo sapiens	
<400> 36 atttcccgcc agcaggagcc gcgcggtaga tgcggtgctt ttaggagctc cc	gtccgacag 60
aacggttggg ccttgccggc tgtcggtatg tcgcgacaga gcaccctgta ca	agcttcttc 120
cccaagtctc cggcgctgag tgatgccaac aaggcctcgg ccagggcctc ac	cgcgaaggc 180
ggccgtgccg ccgctgcccc cggggcctct ccttccccag gcggggatgc gg	gcctggagc 240
gaggetggge etgggeecag geeettggeg egateegegt cacegeecaa ge	gcgaagaac 300
ctcaacggag ggctgcggag atcggtagcg cctgctgccc ccaccagttg tg	gacttctca 360
ccaggagatt tggtttgggc caagatggag ggttacccct ggtggccttg to	ctggtttac 420
aaccacccct ttgatggaac attcatccgc gagaaaggga aatcagtccg to	gttcatgta 480
cagttttttg atgacagccc aacaaggggc tgggttagca aaaggctttt aa	aagccatat 540
acaggttcaa aatcaaagga agcccagaag ggaggtcatt tttacagtgc aa	aagcctgaa 600
atactgagag caatgcaacg tgcagatgaa gccttaaata aagacaagat ta	aagaggctt 660
gaattggcag tttgtgatga gccctcagag ccagaagagg aagaagagat gg	gaggtaggc 720
acaacttacg taacagataa gagtgaagaa gataatgaaa ttgagagtga ag	gaggaagta 780
cagcctaaga cacaaggatc taggcgaagt agccgccaaa taaaaaaacg aa	agggtcata 840
tcagattctg agagtgacat tggtggctct gatgtggaat ttaagccaga ca	actaaggag 900
gaaggaagca gtgatgaaat aagcagtgga gtgggggata gtgagagtga ag	ggcctgaac 960
agccctgtca aagttgctcg aaagcggaag agaatggtga ctggaaatgg ct	tctcttaaa 1020
aggaaaagct ctaggaagga aacgccctca gccaccaaac aagcaactag ca	atttcatca 1080
gaaaccaaga atactttgag agctttctct gcccctcaaa attctgaatc cc	caagcccac 1140
gttagtggag gtggtgatga cagtagtcgc cctactgttt ggtatcatga aa	actttagaa 1200
tggcttaagg aggaaaagag aagagatgag cacaggagga ggcctgatca co	cccgatttt 1260
gatgcatcta cactctatgt gcctgaggat ttcctcaatt cttgtactcc tg	gggatgagg 1320
aagtggtggc agattaagtc tcagaacttt gatcttgtca tctgttacaa gg	gtggggaaa 1380
ttttatgagc tgtaccacat ggatgctctt attggagtca gtgaactggg gc	ctggtattc 1440
atgaaaggca actgggccca ttctggcttt cctgaaattg catttggccg tt	tattcagat 1500
tccctggtgc agaagggcta taaagtagca cgagtggaac agactgagac to	ccagaaatg 1560
atggaggcac gatgtagaaa gatggcacat atatccaagt atgatagagt gg	gtgaggagg 1620
gagatetgta ggateattae caagggtaea eagaettaea gtgtgetgga ag	ggtgatccc 1680
totgagaact acagtaagta tottottago otcaaagaaa aagaggaaga tt	tcttctggc 1740
catactcgtg catatggtgt gtgctttgtt gatacttcac tgggaaagtt tt	ttcataggt 1800
cagttttcag atgatcgcca ttgttcgaga tttaggactc tagtggcaca ct	tatccccca 1860
gtacaagttt tatttgaaaa aggaaatctc tcaaaggaaa ctaaaacaat to	ctaaagagt 1920
tcattgtcct gttctcttca ggaaggtctg atacccggct cccagttttg gg	gatgcatcc 1980

aaaactttga	gaactctcct	tgaggaagaa	tat		cyccyycatt	2040
ggggtgatgt	taccccaggt	gcttaaaggt	atgacttcag	agtctgattc	cattgggttg	2100
acaccaggag	agaaaagtga	attggccctc	tctgctctag	gtggttgtgt	cttctacctc	2160
aaaaaatgcc	ttattgatca	ggagctttta	tcaatggcta	attttgaaga	atatattccc	2220
ttggattctg	acacagtcag	cactacaaga	tctggtgcta	tcttcaccaa	agcctatcaa	2280
cgaatggtgc	tagatgcagt	gacattaaac	aacttggaga	tttttctgaa	tggaacaaat	2340
ggttctactg	aaggaaccct	actagagagg	gttgatactt	gccatactcc	ttttggtaag	2400
cggctcctaa	agcaatggct	ttgtgcccca	ctctgtaacc	attatgctat	taatgatcgt	2460
ctagatgcca	tagaagacct	catggttgtg	cctgacaaaa	tctccgaagt	tgtagagctt	2520
ctaaagaagc	ttccagatct	tgagaggcta	ctcagtaaaa	ttcataatgt	tgggtctccc	2580
ctgaagagtc	agaaccaccc	agacagcagg	gctataatgt	atgaagaaac	tacatacagc	2640
aagaagaaga	ttattgattt	tetttetget	ctggaaggat	tcaaagtaat	gtgtaaaatt	2700
atagggatca	tggaagaagt	tgctgatggt	tttaagtcta	aaatccttaa	gcaggtcatc	2760
tctctgcaga	caaaaaatcc	tgaaggtcgt	tttcctgatt	tgactgtaga	attgaaccga	2820
tgggatacag	cctttgacca	tgaaaaggct	cgaaagactg	gacttattac	tcccaaagca	2880
ggctttgact	ctgattatga	ccaagctctt	gctgacataa	gagaaaatga	acagagcctc	2940
ctggaatacc	tagagaaaca	gcgcaacaga	attggctgta	ggaccatagt	ctattggggg	3000
attggtagga	accgttacca	gctggaaatt	cctgagaatt	tcaccactcg	caatttgcca	3060
gaagaatacg	agttgaaatc	taccaagaag	ggctgtaaac	gatactggac	caaaactatt	3120
gaaaagaagt	tggctaatct	cataaatgct	gaagaacgga	gggatgtatc	attgaaggac	3180
tgcatgcggc	gactgttcta	taactttgat	aaaaattaca	aggactggca	gtctgctgta	3240
gagtgtatcg	cagtgttgga	tgttttactg	tgcctggcta	actatagtcg	agggggtgat	3300
ggtcctatgt	gtcgcccagt	aattctgttg	ccggaagata	ccccccctt	cttagagctt	3360
aaaggatcac	gccatccttg	cattacgaag	acttttttg	gagatgattt	tattcctaat	3420
gacattctaa	taggctgtga	ggaagaggag	caggaaaatg	gcaaagccta	ttgtgtgctt	3480
gttactggac	caaatatggg	gggcaagtct	acgcttatga	gacaggctgg	cttattagct	3540
gtaatggccc	agatgggttg	ttacgtccct	gctgaagtgt	gcaggctcac	accaattgat	3600
agagtgttta	ctagacttgg	tgcctcagac	agaataatgt	caggtgaaag	tacattttt	3660
gttgaattaa	gtgaaactgc	cagcatactc	atgcatgcaa	cagcacattc	tctggtgctt	3720
gtggatgaat	taggaagagg	tactgcaaca	tttgatggga	cggcaatagc	aaatgcagtt	3780
gttaaagaac	ttgctgagac	tataaaatgt	cgtacattat	tttcaactca	ctaccattca	3840
ttagtagaag	attattctca	aaatgttgct	gtgcgcctag	gacatatggc	atgcatggta	3900
gaaaatgaat	gtgaagaccc	cagccaggag	actattacgt	tcctctataa	attcattaag	3960
ggagcttgtc	ctaaaagcta	tggctttaat	gcagcaaggc	ttgctaatct	cccagaggaa	4020
gttattcaaa	agggacatag	aaaagcaaga	gaatttgaga	agatgaatca	gtcactacga	4080
ttatttcggg	aagtttgcct	ggctagtgaa	aggtcaactg	tagatgctga	agctgtccat	4140
aaattgctga	ctttgattaa	ggaattatag	actgactaca	ttggaagctt	tgagttgact	4200
tctgaccaaa	ggtggtaaat	tcagacaaca	ttatgatcta	ataaacttta	tttttaaaa	4260
atga					•	4264

<210>

<211>

37

2106

<212> DNA <213> Homo sapiens <400> 37 gtatacgaaa tcataaaatc tcatagatgt atcctgagta gggcggggcc cgtgaaaccc 60 totgaatotg cggccaccac ccggtaaggc taaatactaa tcagacaccg atagtgaact 120 agtaccgtga gggaaaggtg aaaagaaccc gagaggggag tgaaatagat tctgaaacca 180 tttacttaca agtggtccat ttacttacaa gtgtcagagc acgttaaagt gtgatggcgt 240 acatettgca gtatgggccg gcgagttatg ttaatatgca aggttaagca gaaaaaagcg 300 gagccgtagg gaaaccgagt ctgaataggg cgactttagt atattggcat atacccgaaa 360 tcaggtgatc tatccatgag caggttgaag cttaggtaaa actaagtgga ggaccgaacc 420 gtagtacgct aaaaagtgcc cggatggact tgtggatagt ggtgaaattc caatcgaacc 480 tggagatagc tggttctctt cgaaatagct ttagggctag cgtatagtat tgtttaatgg 540 gggtagagca ctgaatgtgg aatggcggca tctagctgta ctgactataa tcaaactccg 600 aataccatta aaattaagct atgcagtcgg aacgtggtat caccattgat atctccttgt 660 ggaaatttga gaccagcaag tactatgtga ctatcattga tgccccagga cacagagact 720 ttatccaaaa catgattaca gggacctctc aggctgactg tgctgtcctg attgttgctg 780 ctgqtgttgg tgaatttgaa gctggtatct ccaagaatgg gcagacccga gagcatgccc 840 ttctggctta cacactgggt gtgaaacaac taattgtcgg tgttaacaaa atggattcca 900 960 ctgagccacc ctacagccag aagagatatg aggaaattgt taaggaagtc agcacttaca ttaagaaaat tggctacaac cccgacacag tagcatttgt gccaatttct ggttggaatg 1020 gtgacaacat gctggagcca agtgctaaca tgccttggtt caagggatgg aaagtcaccc 1080 gtaaggatgg caatgccagt ggaaccacgc tgcttgaggc tctggactgc atcctaccac 1140 caactcgtcc aactgacaag cccttgggcc tgcctctcca ggatgtctac aaaattggtg 1200 gtattggtac tgttcctgtt ggccgagtgg agactggtgt tctcaaaccc ggtatggtgg 1260 1320 tcacctttgg tccagtcaac gttacaacgg aagtaaaatc tgtcgaaatg caccatgaag 1380 ctttgggtga agctcttcct ggggacaatg tgggcttcaa tgtcaagaat gtgtctgtca aggatgttcg tcgtggcaac gttgctggtg acagcaaaaa tgacccacca atggaagcag 1440 ctggcttccc tgctcaggtg attatcctga accatccagg ccaaataagc gccggctatg 1500 cccctgtatt ggattgccac acggctcaca ttgcatgcaa qtttgctgag ctgaaggaaa 1560 1620 agattgatcg ccgttctggt aaaaagctgg aagatggccc taaattcttg aagtctggtg atgctgccat tgttgatatg gttcctggca agcccatgtg tgttgagagc ttctcagact 1680 atccaccttt gggctgcttt gctgttcgtg atatgagaca gacagttgcg gtgggtgtca 1740 tcaaagcagt ggacaagaag gctgctggag ctggcaaggt caccaagtct gcccagaaag 1800 ctcagaaggc taaatgaata ttatccctaa tcctcccacc ccactcttaa tcagtggtgg 1860 aagaccggtc tcagaactgt ttgtttcaat tgccatttaa gtttagtagt aaaagactgg 1920 ttaatgataa caatgcatcg taaaaccttt cagaaggaaa ggaqaatgtt ttgtggacac 1980 2040 gttggttttc ttttttgcgt gtggcagttt tagttattag tttttaaaat cagtactttt taatggaaac aacttgaccc ccaaatttgt cacagaattt tgggacccat taaaaggtta 2100 actggg 2106

<210> 38 <211> 1272 <212> DNA <213> Homo sapiens <400> 38 gccggaggag acgcacgcag ctgactttgt cttctccgca cgactgttac agaggtctcc 60 120 agageettet eteteetgtg caaaatggea actettaagg aaaaacteat tgeaceagtt qcggaagaag aggcaacagt tccaaacaat aagatcactg tagtgggtgt tggacaagtt 180 ggtatggcgt gtgctatcag cattctggga aagtctctgg ctgatgaact tgctcttgtg 240 gatgttttgg aagataagct taaaggagaa atgatggatc tgcagcatgg gagcttattt 300 cttcagacac ctaaaattgt ggcagataaa gattattctg tgaccgccaa ttctaagatt 360 gtagtggtaa ctgcaggagt ccgtcagcaa gaaggggaga gtcggctcaa tctggtgcag 420 480 agaaatgtta atgtcttcaa attcattatt cctcagatcg tcaagtacag tcctgattgc atcataattg tggtttccaa cccagtggac attcttacgt atgttacctg gaaactaagt 540 600 ggattaccca aacaccgcgt gattggaagt ggatgtaatc tggattctgc tagatttcgc taccttatgg ctgaaaaact tggcattcat cccagcagct gccatggatg gattttgggg 660 gaacatggcg actcaagtgt ggctgtgtgg agtggtgtga atgtggcagg tgtttctctc 720 caggaattga atccagaaat gggaactgac aatgatagtg aaaattggaa ggaagtgcat 780 aagatggtgg ttgaaagtgc ctatgaagtc atcaagctaa aaggatatac caactgggct 840 attggattaa gtgtggctga tcttattgaa tccatgttga aaaatctatc caggattcat 900 960 cccgtgtcaa caatggtaaa ggggatgtat ggcattgaga atgaagtctt cctgagcctt ccatgtatcc tcaatgcccg gggattaacc agcgttatca accagaagct aaaggatgat 1020 gaggttgctc agctcaagaa aagtgcagat accctgtggg acatccagaa ggacctaaaa 1080 gacctgtgac tagtgagete taggetgtag aaatttaaaa actacaatgt gattaacteg 1140 1200 agcctttagt tttcatccat gtacatggat cacagtttgc tttgatcttc ttcaatatgt 1260 gaatttgggc tcacagaatc aaagcctatg cttggtagct cttgaacaaa taaaattaac 1272 tattgtagtg tg <210> 39 <211> 4704 <212> DNA <213> Homo sapiens ttattaatat cactatattt ttggagggag aggcaccttt ctcatcctct cttcctctcc 60 gcccaccett actccctccc cctcatctac ctgtcaaagt cactgatctt ttgcatttcg 120 180 gaagaggacg tcaacgggaa ggaattcccc ctctgggtgc gggctccgag agggggggac ttgcaggagg ctccccccgg gggcggaggc gaagggtgtt ggtgccagaa gaaaagaatg 240 attgatggga aacagacacc gggctataga cactcatcct tttgcttcag atactgatat 300 ctcagcctgc ttgagcatcc cttgtgagct gtgaacattg aggatcactc agggttatcg 360 gatgtacaac gggagagcca tcgctttgct aaattattat ctgcaattgg acatctttta 420 caaaaaccaa actagacctg agtctaatag atatgttcta agacaaagaa aaagctgcaa 480 gttgttaacg cctaacacac aagtatgtta ggcttccacc aaagtcctca atatacctga 540 atacgcacaa tatcttaact cttcatattt ggttttggga tctgctttga ggtcccatct 600 660 tcatttaaaa aaaaatacag agacctacct acccgtacgc atacatacat atgtgtatat

atatgtaaac	tagacaaaga	tcgcagatca	taáuguuugu	conguencay	culculgaa	720
gattacaaag	aatttagaga	tgtatttgtc	aagattcctg	tcgattcatg	ccctttgggt	780
tacggtgtcc	tcagtgatgc	agccctaccc	tttggtttgg	ggacattatg	atttgtgtaa	840
gactcagatt	tacacggaag	aagggaaagt	ttgggattac	atggcctgcc	agccggaatc	900
cacggacatg	acaaaatatc	tgaaagtgaa	actcgatcct	ccggatatta	cctgtggaga	960
ccctcctgag	acgttctgtg	caatgggcaa	tccctacatg	tgcaataatg	agtgtgatgc	1020
gagtacccct	gagctggcac	acccccctga	gctgatgttt	gattttgaag	gaagacatcc	1080
ctccacattt	tggcagtctg	ccacttggaa	ggagtatccc	aagcctctcc	aggttaacat	. 1140
cactctgtct	tggagcaaaa	ccattgagct	aacagacaac	atagttatta	cctttgaatc	1200
tgggcgtcca	gaccaaatga	tcctggagaa	gtctctcgat	tatggacgaa	catggcagcc	1260
ctatcagtat	tatgccacag	actgcttaga	tgcttttcac	atggatccta	aatccgtgaa	1320
ggatttatca	cagcatacgg	tcttagaaat	catttgcaca	gaagagtact	caacagggta	1380
tacaacaaat	agcaaaataa	tccactttga	aatcaaagac	aggttcgcgt	tttttgctgg	1440
acctcgccta	cgcaatatgg	cttccctcta	cggacagctg	gatacaacca	agaaactcag	1500
agatttcttt	acagtcacag	acctgaggat	aaggctgtta	agaccagccg	ttggggaaat	1560
atttgtagat	gagctacact	tggcacgcta	cttttacgcg	atctcagaca	taaaggtgcg	1620
aggaaggtgc	aagtgtaatc	tccatgccac	tgtatgtgtg	tatgacaaca	gcaaattgac	1680
atgcgaatgt	gagcacaaca	ctacaggtcc	agactgtggg	aaatgcaaga	agaattatca	1740
gggccgacct	tggagtccag	gctcctatct	ccccatcccc	aaaggcactg	caaatacctg	1800
tatccccagt	atttccagta	ttggtagtaa	gtaaaaacaa	aaacaaaaaa	aacaccaaac	1860
caagtctagg	ctagctttgc	tttgttgttc	acctcctcag	atctattttc	ccagtgtcca	1920
tttctgatgt	aatagggtat	tttctttgtg	aattgcattt	ttgtgttggt	tttctgcaca	1980
gatctggtga	gaacacagat	aaagtgatta	tttgtgcata	actccatgaa	catggcagtg	2040
ctatgacttt	tctgactact	cttaaccagt	gagggctacc	tagactcagg	tgcaattcct	2100
tagataatca	tcattcagga	aaaatataag	tagtcctatt	tatccatact	tagcaaccaa	2160
caaacaaatt	gaactctctc	ttagactgga	tttggatgtc	tgacataatt	ttaaaaagca	2220
gaaaatgaaa	gccaatgaat	gccttgggta	tatgcatcag	aacccaagaa	aaagtccatg	2280
ataccaaggg	aagggaattt	tgttaatgca	ttaaattcta	tgttttgtga	aggcctgaaa	2340
caggcaaatt	tgtgatcagt	agtctctctg	gagagataaa	ggaaaaagag	aatctgtaca	2400
ttcatttctc	cttcctaaaa	tacgatgatc	tatgtcttct	tgactactta	gctttgagtt	2460
tgatatagaa	agagtataaa	aaatatgtgc	agaatttggg	agtgagagta	ctagaaattc	2520
ctttaataaa	tctgttagta	tgaatccaag	caattgaaga	gaaaccgctc	ttcaaccatc	2580
tgtagaacac	ttccccggta	tcactacaaa	gaactttctt	ccagctatca	tgggagaacc	2640
aggtgtagct	cccgcttcat	gtgtaaaata	atgatgccct	catgccaagc	ctgaaattca	2700
cattaagaaa	atgcccagta	actttacaga	gcaaaatttt	aaatttttt	tttatacatt	2760
gcacccttta	tctctaatgg	ctaaaatctt	tgaacaacta	ctaagtaact	gattacaaat	2820
aaattaccga	gaaagcaaga	ttacgcatgg	taagcggaga	gaattttcac	tgtagtgtca	2880
tececteaca	ggcttgtgtc	ataggtgctg	tgccaggcag	ggtgatcgca	gtgtaaatag	2940
ccattgaatg	attgcgattc	ccagcatcca	tctaaaaagc	aatactctga	taatttggat	3000
aaagcaactt	cctgcttctt	ataaatgcgc	agtcaggtgt	cccaatttat	aaatcaaccc	3060

3120

agtttacttg agcttgtgaa taggcctgga cactgatttg ttaagcgcta gatgtggtaa

```
atgccatgaa aattggccac tttgtaaata gaagtagtgt tcacatccat ttagagatac
                                                                  3180
cagcctaatg ctacagcatc ctctttgtga tcttgttgaa acagcatcag tgttaaaaac
                                                                  3240
ttgcaaatga aaaccttcag ctctaatagt ctaatttttc tgctttagta tcccccttgg
                                                                  3300
catttgccta actgtatata taccccacaa tgtgctcctt tcaggccttg acaattgcat
                                                                  3360
ttgcacgtgc attttagtgc aacagggaag caagtagaag caagctgaca cagattattg
                                                                  3420
aggotgotat agtgatotgg cotgtoagaa gtttoagaaa tggatggatg gaaaagtagt
                                                                  3480
                                                                  3540
tctttggcgt tggggtgtct ttctgtttgg agtgtcagtt gtatgttgca tggcccctct
aactgtactg ctcactcgac atcccattcg gccgcctcca ccacattccc catatctgag
                                                                  3600
3660
gttttgtttt gaaatcagtg gtgacctgaa aggatgcttc gttgtgcctt tgaaaaaaat
                                                                  3720
                                                                  3780
atattaacct ttattatcga gaacctagga aaatttactc ctaataaaaa ccctctgact
aaaagtgata ttttggactc tcccttcaat atgcctctgg ctgttccgct tagaatgcaa
                                                                  3840
                                                                  3900
tgggtatttt ctcagatttc cagcaaacag gatgtaagag cttccagagg tcacccaaca
tcacacatga ctagcttacc tgtttcctgg cttttaaggt aaagagttac agtaaaacca
                                                                  3960
tcaaacgtga ttgtatcttc taggctgctt taatggcatt cgaaagttcc ttctttgtgg
                                                                  4020
                                                                  4080
gcttataagt tgctttttgc gtgcactcgt ggattccttt cccctccaaa gggcaagaat
tcacacgtag acgacactgc cggttccaga gggcacggga atggggtttt caaggtgcaa
                                                                  4140
                                                                  4200
gccagagaaa aggaagctgt ttggatattt agctaagtta tgggtgtttg ccagtgcttt
ttgcattacc ccaaagaagg aatcaatgac tataattcca ctaactatat agaaagatac
                                                                  4260
                                                                  4320
cattatagea gatgtaacac ccctgagacc ccgattatca cagcataget caaggaaaat
                                                                  4380
aaatgatgta tattatcgat gtagattatt gatgtatata accatcagtt tacatacata
ttctgtatac acagtgatta aaggttttgg agccctaata aatttcagta tagatctcaa
                                                                  4440
aatgccaacg cctgtattaa ggttcaaatg catggatagg gtggtcatcc tttccgatca
                                                                  4500
tetgetaaaa atgttttga aacaaattte eeattaaggt cattegtace tgetgttgte
                                                                  4560
                                                                  4620
tatctattaa caaataggtt tcccataatc ctaaggatac ttgacttaga actcagtcat
                                                                  4680
totgatotgo tttggccatg gotgaaaaaa tgctggtgat attgtcagca attaatgaat
                                                                  4704
cccaaaataa atctgtagcc tttg
<210> 40
<211>
      573
<212>
      DNA
<213> Homo sapiens
<220>
      misc_feature
<221>
       (1)...(573)
<222>
<223> n=A,T,C, and G
<400> 40
cgaaggget ggctagetga ccaccaggge ccctgetgge tetgacegee etectatece
                                                                    60
aagtaattat ttacatgttt cgcgttcgct tatgtattat gtgtaatcat ggcacagtat
                                                                   120
cctgaagccg tcggagtctg tgtgctggtg caaggtctgg gacaaattta agaagagaga
                                                                   180
geteteette etecaetaag ageggaaaat gaacaaatee caggaacaag tgtcattcaa
                                                                   240
```

ggatgtatgt gtggacttca ctcaggaaga gtggtatctg ctggaccctg ctcagaagat

300

totatacaga gatgtgatco tggaaaatta 1	tagcaatctt gtctcagtag	ggtattgcat 36	0
tactanacca gaagtgatet ttaagategg a	agcaagggag aagagccctg	ggatattnga 42	0
aaaagggatt ccccaagccc agtgcccanc o	ccagaaaagg aaatggaaag	ttggatgaac 48	0
gtggttagag agcagcccag gaaaatgaag	atgneceatt tttggggage	ctcctattcc 54	0
cacaaccaac aaaacagtaa gtggttggaa a	aat	57	3
<210> 41 <211> 3306 <212> DNA <213> Homo sapiens			
<400> 41 gcagcgcctc cgcacctggt aggtgctcag	ttaacgtggg agaaatgaag	agtgaaggtg 6	0
ccgcacatct tggatattct ccaggacatg	gtgggcgggt gctatgagtt	ttcctgttct 12	0
gcagaatgaa gaggctgcgg ctcaggaata	tgaacaaccc ggccaaagcc	acaaaacaag 18	0
gaagcaccgg cagggccggg attcaggtct	gggtttgtct _, gactccagag	cccagtgcct 24	0
tgttctccat ggctgctgtg tgctacctct	ttgatgaaca tctagatttg	tgtccttctc 30	0
tgaggggtcc ccagatttca gcagttcgag	gccagctcag cttttccttt	caccaatggc 36	0
ctagaagagg ccaacaaggt agctttgagg	ctgccccaaa gtggagagtg	gcagtgaaac 42	0
attggacgcc agagtgaggg ccacagcgca	gtggcctata tgggtttaga	gcgtgaggcc 48	0
tccacgtgga cttgaatgca gaccccaggc	ctgcccgtgt tgaccttggg	caagtgactt 54	0
aacctctctg agcctccatt gccccacctg	taaaatgagg ggtttatagt	acctgcttca 60	0
taaagttgct atggagatga cacgagaagc	cataggaccc cggtgccatt	tggaggaccc 66	0
gtcgtggggg gcacttttcc caggccaggc	accccttca tcccggagcc	cctcagtggc 72	0
ttggaactcc tccgtctcag acccagcttc	aacagagtgg cccagggctg	ggtccgtaac 78	0
ctcccagagt ccgaggagct gtagccctag	cctgaatctt cagttcccca	gtctcggggg 84	0
cctggtaaca tccggagcca agacttgtgg	acagcacttc acagttgaag	aagggccttc 90	0
acacacaaaa cctgattgca aatggcttca	gaggtcacca agttcagtcg	tcccaaaaca 96	0
tgggtgtgtt tcaaaattac ctggggatgt	tgttccaaat ccagacaact	ggactgtccc 102	0
agacttgcag catcagagtc tcctgagtcg	aggaatctgt attattaata	gcaaccaggg 108	0
ccgggtgtcg tggctcacgc ctgtcatccc	agcactttgg gaggccgagg	caggaggatc 114	0
acctgaggtc aggagtttga gaccagtctg	gccaaaatag tggaaccccg	tcgctactaa 120	0
aaatacaaaa atgagtcgga catggtggtg	catgootgta atoocagota	cttgggaggc 126	0
tgagacagga gaatcacttg aactacgagg	cagaggttgc agtgagccga	gattgcgcca 132	0
ctgcacccca gcctggacaa cagagtgaga	ctccttctca aaagtaaata	aataaatagc 138	0
aaccagtact ccaggtgatt ccagcataac	ttatccatgg tttgtgtcat	taggagtcca 144	0
catecacace tetgetettt cetgtteetg	tagtgtacac tcccccggtg	acagggtgct 150	0
cactggcacc ccatcttcct gtgaataact	caaataatta gaaaatgttc	cttttactga 156	0
gatgcagttg gtcttcatct attcatgctc	taaacagttc ctaagcgctg	actgtgcgct 162	0
agacactgcc aggcccgggc ctcgaggagg	aaaagacagt agggaagaca	ttatagagca 168	0
tgaagtcacc ataattttcc ctaaagcatg	cttattgaca attgaggaac	aaagtgttgt 174	0
ggagcagaag aaggagteee teaccetagg	tgtgagatgg gattctggaa	gcttcctgaa 180	0
ggatttgagt gggaccttgt gggaggcgtg		gagggggagg 186	0
	Page 40		

gtatttctgg aaagtggacc agcatgtgca aaaatatgga actgagcacg ggtgcagggt 1920

gttctgcaga agggagaagg ctgtgctaga ggagccagtg agggccagca tgg	ggtgggc 1980
ttcactaagg aaatggggaa ggttttagtg atgggtcttg ctgggtgctg tgtg	ggggcgc 2040
atattggaga agggtaatgc cagaagccag gaagcctgca agggatgagg cca	gggaat 2100
ggagagaagg ggccacccac tgggcaccta acaggacagg	gcttatt 2160
aagattoott otttooacto cattttgago aggotgotta aagtggtggt gatg	gatgatg 2220
atgatgatgg cagctttata tcgagtgcct cagtgcttgg gctggtagta gtt	ctctac 2280
atatettatt tetaattete agaacaacee tgagagaaag atattgttgt eee	cacttta 2340
cagatgtgga tatttaggcc aaaaggagga agtgacttgt ccaggggcag acad	caaatg 2400
ggaatctgat tccagtggat gtctcttttc agtgcactgg gtggtcaatg ccca	actcgct 2460
ctgaaatcat ctgactgtga tgccctgcct tggagtttag aagttgagtg cag	gcttggg 2520
agtcagactg gatggggtag gttctaactc tgccactgct agccggatga acti	gagcaa 2580
gtcatttcac atetecgage etetgtttet ecaagtgtaa gatgaggaca agta	ataaaac 2640
ctcctttatg ggtttgttgt gaacacagtg cagggcacat ttataataag agc	cagtca 2700
atggtaggtt tcatgcaact gctgctctag gctggaaaag ttgttcttgc actg	ggatgca 2760
gcatgagaag ctggctgcta agatgtcact gggggtcact aaagctgaag cctg	gaaggaa 2820
agceteteat tgetgtagag etetecetge etetetetet ggggggegatg ggg	aaggtca 2880
ggagtccagc ccattcccag ggtgtgtggg atagcgattg cattttcctt ttg	ctctgga 2940
gtttcactcc ccttctgggt cccaagggcc caatggcctg acttttagaa ttg	cttgcaa 3000
ttggtgtttt ctcttgaatt tgggggctgc catttaaagc caggtttcca tgag	gctgaag 3060
accagccatt caagaatctg aaaagtagac aagaggacte cagttgcctc agg	ttggttc 3120
tgctgtgctc tggaaagtaa ctgcagccac caggtatgaa aaggagcctg gtg	gggagac 3180
cactgcaccc aaaacaaatc ctttcttctt ctgagaatgt gactttttct ggtg	gttgtaa 3240
aaaagaaaaa aaaaagaatg ctcattgtaa aaataaaaaa ataataataa aaaa	aaaaaaa 3300
aaaaaa	3306
<210> 42 <211> 1613 <212> DNA <213> Homo sapiens	
<400> 42 gccacggcgc ggacgccatg cacacggacc ctgactactc ggctgcctat gtc	tcatag 60
amactgatgc agaagatgga atcaaggggt gtggaattac cttcactctg ggaa	
ctgaagttgt tgtctgtgct gtgaatgccc tcgcccacca tgtgctcaac aagg	
aggacattgt tggtgacttc agaggcttct ataggcagct cacaagtgat ggg	
gatggattgg tccagaaaag ggcgtggtgc acctggcgac agcggccgtc cta	
tgtgggactt gtgggccaag caggagggaa agcctgtctg gaagttactt gtgg	
atcccaggat gctggtatcc tgcatagatt tcaggtacat cactgatgtc ctga	
aggatgccct agaaatactg cagaaaggtc aaattggtaa aaaagaaaga gaga	
tgctggcaca aggataccet gettacacga categtgege etggetgggg tact	1
acacgttgaa gcagctctgt gcccaggcgc tgaaggatgg ctggaccagg ttta	aagtaa 600
aggtgggtgc tgatctccag gatgacatgc gaagatgcca aatcatccga gaca	atgattg 660
Page 50	

	200
gacceggaaaa gactttgatg atggatgcca accagegetg ggatgtgcct gaggeggtgg	720
agtggatgtc caagetggcc aagttcaagc cattgtggat tgaggagcca acctecectg atgacattct ggggcacgcc accatttcca aggcactggt eccattagga attggcattg	780 840
ccacaggaga acagtgccac aatagagtga tatttaagca actcctacag gcgaaggccc	900
tgcagttcct ccagattgac agttgcagac tgggcagtgt caatgagaac ctctcagtat	960
tgctgatggc caaaaagttt gaaattcctg tttgccccca tgctggtgga gttggcctct	1020
gtgaactggt gcagcacctg attatatttg actacatatc agtttctgca agccttgaaa	1080
atagggtgtg tgagtatgtt gaccacctgc atgagcattt caagtatccc gtgatgatcc	1140
agegggette etacatgeet eccaaggate eeggetacte aacagaaatg aaggaggaat	1200
ctgtaaagaa acaccagtat ccagatggtg aagtttggaa gaaactcctt cctgctcaag	1260
aaaattaagt geteageeee aacaaetttt ttetttetga agtgaaaggg ettaaaattt	1320
cttggaaata gttttacaaa aatggattta aaaaatccta ccgatcaaga tgagttcagc	1380
tagaagtcat accaccetca ggaatcaget aagtaattat taettgatte ttttagcaaa	1440
tcaatgcacg ttatcctact taatccttaa ataagtttag atttaactaa cccaaagtcc	1500
aggaggatgt tettacaaaa atagetatat caagggetgg cacetagaca ttaaactgta	1560
ctttgaaaat aaaaaaaaaa aaaaaaaaaa aaaaaaaa	1613
<210> 43 <211> 619 <212> DNA <213> Homo sapiens <400> 43	
agcagtteta agggaceata cagagtatte etetetteae accaggacea gecaetgttg	60
	• • •
cagcatgagt teccageage agaageagee etgeatecea ecceeteage tteageagea	120
cagcatgagt teccageage agaageagee etgeateeea ecceeteage tteageagea	120
cagcatgagt teccageage agaageagee etgeateeca ecceeteage tecageagea geaggtgaaa eageettgee ageeteeace teaggaacea tgeateecea aaaceaagga	120 180
cagcatgagt teccageage agaageagee etgeateeca ecceeteage tteageagea geaggtgaaa eageettgee ageeteeace teaggaacea tgeateecea aaaceaagga geeetgeeac eccaaggtge etgageeetg ecaceecaaa gtgeetgage eetgeeagee	120 180 240
cagcatgagt teccageage agaageagee etgeateeca ecceeteage tecageageageaggeaggtgaaa eageettgee ageeteeace teaggaacea tgeateecea aaaceaagga geeetgeeae eccaaggtge etgageeetg ecaceecaaa gtgeetgage eetgeeagee eaagetteea gageeatgee acceeaaggt geetgageee tgeeetteaa tagteaetee	120 180 240 300
cagcatgagt teccageage agaageagee etgeateea eeceeteage tteageagea geaggtgaaa cageettgee ageeteeace teaggaacea tgeateeea aaaceaagga geeetgeeac eecaaggtge etgageeetg eeaceeaaa gtgeetgage eetgeeagee caagetteea gageeatgee acceeaaggt geetgageee tgeeetteaa tagteaetee ageaceagee cageagaaga eeaageagaa gtaatgtggt eeacageeat geeettgagg	120 180 240 300 360
cagcatgagt toccagcage agaagcagee etgeatecea ecceeteage treagcagea geaggtgaaa eageettgee ageeteeace teaggaacea tgeatecea aaaceaagga geeetgeeac eccaaggtge etgageeetg ecaeceeaaa gtgeetgage eetgeeagee eageetteea gageeatgee acceeaaggt geetgageee tgeeetteaa tagteaetee ageaceagee eageagaaga ecaageagaa gtaatgtggt ecaeageeat geeettgagg ageeggeeae eagatgetga ateceetate ecattetgtg tatgagteee atttgeettg	120 180 240 300 360 420
cagcatgagt teccageage agaageagee etgeateea eeeeteage tteageagea geaggtgaaa eageettgee ageeteeace teaggaacea tgeateecea aaaceaagga geeetgeeac eeeaaggtge etgageeetg eeaceecaaa gtgeetgage eetgeeagee eageeteea gageeatgee acceeaaggt geetgageee tgeeetteaa tagteaetee ageaceagee eageagaaga eeaageagaa gtaatgtggt eeacageeat geeettgagg ageeggeeae eagatgetga ateeeetate eeattetgtg tatgagteee atttgeettg eaattageat tetgteteee ecaaaaaaga atgtgetatg aagetttett teetacacae	120 180 240 300 360 420 480
cagcatgagt toccagcage agaagcagee etgeatecea ecceeteage treagcagea geaggtgaaa eageettgee ageeteeace teaggaacea tgeatecea aaaceaagga geeetgeeae eccaaggtge etgageeetg ecaeeceaaa gtgeetgage eetgeeagee eageatteea gageeatgee acceeaaggt geetgageee tgeeetteaa tagteaetee ageaceagee eageagaaga ecaageagaa gtaatgtggt ecaeageeat geeettgagg ageeggeeae eagatgetga atceeetate ecattetgtg tatgagteee atttgeettg eaattageat tetgteteee ecaaaaaaga atgtgetatg aagetttett teetacaeae tetgagteee tgaatgaage tgaaggtett agtaceagag etagtttea getgeteaga	120 180 240 300 360 420 480 540
cagcatgagt toccagcage agaagcagee etgeateeca ecceeteage treagcagea geaggtgaaa eageettgee ageeteeace teaggaacea tgeateecea aaaceaagga geeetgeeac eccaaggtge etgageeetg ecaceecaaa gtgeetgage eetgeeagee eageeteea gageeteea acceeaaggt geetgageee tgeeetteaa tagteaetee ageaceagee eageagaaga ecaageagaa gtaatgtggt ecacageeat geeettgagg ageeggeeae eagatgetga ateeeetate ecattetgtg tatgagteee atttgeettg eattageat tetgteteee ecaaaaaaga atgtgetatg aagetttett teetacacae tetgagtete tgaatgaage tgaaggtett agtaceagag etagtttea getgeteaga atteatetga agagagaett aagatgaaag eaaatgatte ageteeetta taceeceatt	120 180 240 300 360 420 480 540
cagcatgagt teccageage agaageagee etgeatecea ecceeteage tteageagea geaggtgaaa eageettgee ageeteeace teaggaacea tgeatecea aaaceaagga geeetgeeae eccaaggtge etgageeetg ecaceecaaa gtgeetgage eetgeeagee eageageatgee acceeaaggt geetgageee tgeeetteaa tagteaetee ageaceagee eageagaaga ecaageagaa gtaatgtggt ecacageeat geeettgagg ageeggeeae eagatgetga atceeetate ecattetgtg tatgagteee atttgeettg eaattageat tetgteteee ecaaaaaaga atgtgetatg aagetttett teetacacae tetgagtete tgaatgaage tgaaggtett agtaceagag etagtttea getgeteaga atteatetga agagagaett aagatgaaag eaaatgatte ageteeetta taceeeatt aaatteaett teaatteea <210> 44 <211> 762 <212> DNA <213> Homo sapiens <400> 44	120 180 240 300 360 420 480 540 600 619
cagcatgagt teccageage agaageagee etgeateea ecceeteage tteageagea geaggtgaaa eageettgee ageeteeace teaggaacea tgeateeca aaaceaagga geeetgeeae eecaaggtge etgageeetg eeaceeaaa gtgeetgage eetgeeagee eageageatgee acceeaaggt geetgageee tgeeetteaa tagteaetee ageaceagee eageagaaga eeaageagaa gtaatgtggt eeacageeat geeettgagg ageeggeeae eagatgetga atceeetate eeattetgtg tatgagteee atttgeettg eaattageat tetgteteee eeaaaaaaga atgtgetatg aagetttett teetacacae tetgagtete tgaatgaage tgaaggtett agtaceagag etagtttea getgeteaga atteatetga agagagaett aagatgaaag eaaatgatte ageteeetta taceeeatt aaatteaett teaatteea <210> 44 <211> 762 <212> DNA <213> Homo sapiens <400> 44 atggeaagat eeetteteet geeeetgeag atettaetge tateettage ettggaaact	120 180 240 300 360 420 480 540 600 619
cagcatgagt teccageage agaageagee etgeatecea ecceeteage tecageageageaggeaggeaggeagagaaa cagcettgee ageetecace teaggaacea tgeatecea aaaceaaggaageeetgeeeageeetgeeeageeetgeeet	120 180 240 300 360 420 480 540 600 619
cagcatgagt toccagcago agaagcagoo otgoatocca coccotcago ttoagcago goaggtgaaa cagcottgoo agootcoaco toaggaacoa tgoatoccaa aaaccaagga gooctgocao occaaggtgo otgagoootg coaccocaaa gtgootgago ootgocagoo caagottoca gagocatgoo accocaaggt gootgagooo tgoccttoaa tagtoactoo agoaccagoo cagcagaaga coaagcagaa gtaatgtggt coacagooat goocttgagg agooggocao cagatgotga atoocctato coattotggt tatgagtooc atttgoottg caattagoat totgootoo coaaaaaaga atgtgotatg aagottoott toctacacao totgagtoo tgaatgagoo tgaaggtott agtaccagag otagtttoo gotgotcaga attoatotga agagagactt aagatgaaag caaatgatto agotocotta taccoccatt aaattoactt toaattooa <210> 44 <211> 762 <212> DNA <213> Homo sapiens <400> 44 atggocaagat coottotoot goocctgoag atottactgo tatcottago ottggaaact goaggagaag aagoocaggg tgacaagatt attgatggog coccatggo aagaggotoo cacccatggo aggtggocot gotcagtgo aatcagotoo actgoggagg ogtoctggto	120 180 240 300 360 420 480 540 600 619
cagcatgagt teccageage agaageagee etgeatecea ecceeteage tecageageageaggeaggeaggeagagaaa cagcettgee ageetecace teaggaacea tgeatecea aaaceaaggaageeetgeeeageeetgeeeageeetgeeet	120 180 240 300 360 420 480 540 600 619

	actccacaca	gacccatgtt	aatyacccca	Lyctcytyaa	yuuaatago	360
caggccaggc	tgtcatccat	ggtgaagaaa	gtcaggctgc	cctcccgctg	cgaaccccct	420
ggaaccacct	gtactgtctc	cggctggggc	actaccacga	gcccagatgt	gacctttccc	480
tctgacctca	tgtgcgtgga	tgtcaagctc	atctccccc	aggactgcac	gaaggtttac	540
aaggacttac	tggaaaattc	catgctgtgc	gctggcatcc	ccgactccaa	gaaaaacgcc	600
tgcaatggtg	actcaggggg	accgttggtg	tgcagaggta	ccctgcaagg	tctggtgtcc	660
tggggaactt	tcccttgcgg	ccaacccaat	gacccaggag	tctacactca	agtgtgcaag	720
ttcaccaagt	ggataaatga	caccatgaaa	aagcatcgct	aa		762
<210> 45 <211> 322 <212> DNA <213> Hom	o sapiens					
<400> 45 atttaggtga	cactatagaa	tactcaagct	atgcatccaa	cgcgttggga	gctctcccat	60
atggtcgacc	tgcaggcggc	cgcactagtg	attaagctcc	aactgcctac	gacaaacaga	120
cccaaaatcg	ctcattgcat	actcttcaat	cagccacata	gccctcgtag	taacagccat	180
tctcatccaa	accccctgaa	gcttcaccgg	cgcagtcatt	ctcataatcg	cccacggact	240
tacatcctca	ttactattct	gcctagcact	ctccagcctc	tcaccgcacc	gccacaataa	300
agategeece	cacctccaaa	aa				322
<210> 46 <211> 799 <212> DNA						
<213> Hom	o sapiens					
<400> 46	-	ttttccgctc	cacggtgacc	teegtgegge	cgggtgcggg	60
<400> 46 cgacgttcgc	agcgctaccc					60 120
<400> 46 cgacgttcgc cggagtcttc	-	tggtgctccg	cggcgcggcc	ttgctctctt	ccggtcgcgg	
<400> 46 cgacgttcgc cggagtcttc gacaccgggt	agcgctaccc ctcgatcccg	tggtgctccg gtcgcggcgg	cggcgcggcc gcagtggcgg	ttgctctctt	ccggtcgcgg	120
<400> 46 cgacgttcgc cggagtcttc gacaccgggt tatttagcct	agcgctaccc ctcgatcccg gtagagggcg	tggtgctccg gtcgcggcgg cgagcaattt	cggcgcggcc gcagtggcgg ccacctctgt	ttgctctctt cagaatgttg gtgtgtacga	ccggtcgcgg gctaccaggg gctcatgaaa	120 180
<400> 46 cgacgttcgc cggagtcttc gacaccgggt tatttagcct gtgttgtgaa	agcgctaccc ctcgatcccg gtagagggcg agttggcaag	tggtgctccg gtcgcggcgg cgagcaattt ttttcgctcc	cggcgcggcc gcagtggcgg ccacctctgt cagcttatat	ttgctctctt cagaatgttg gtgtgtacga ggatcggcgt	ccggtcgcgg gctaccaggg gctcatgaaa gaccacccct	120 180 240
<400> 46 cgacgttcgc cggagtcttc gacaccgggt tatttagcct gtgttgtgaa tgccggaggt	agcgctaccc ctcgatcccg gtagagggcg agttggcaag gagcgaagac	tggtgctccg gtcgcggcgg cgagcaattt ttttcgctcc aagcacctgt	cggcgcggcc gcagtggcgg ccacctctgt cagcttatat ctgccagcca	ttgctctctt cagaatgttg gtgtgtacga ggatcggcgt gaaggcactg	ccggtcgcgg gctaccaggg gctcatgaaa gaccacccct aaggagaagg	120 180 240 300
<400> 46 cgacgttcgc cggagtcttc gacaccgggt tatttagcct gtgttgtgaa tgccggaggt agaaggcctc	agcgctaccc ctcgatcccg gtagagggcg agttggcaag gagcgaagac ggcccatgtc	tggtgctccg gtcgcggcgg cgagcaattt ttttcgctcc aagcacctgt ctctccatgg	cggcgcggcc gcagtggcgg ccacctctgt cagcttatat ctgccagcca atgagaaagt	ttgctctctt cagaatgttg gtgtgtacga ggatcggcgt gaaggcactg cgagttgtat	ccggtcgcgg gctaccaggg gctcatgaaa gaccacccct aaggagaagg cgcattaagt	120 180 240 300 360
<400> 46 cgacgttcgc cggagtcttc gacaccgggt tatttagcct gtgttgtgaa tgccggaggt agaaggcctc tcaaggagag	agcgctaccc ctcgatcccg gtagagggcg agttggcaag gagcgaagac ggcccatgtc ctggagcagc	tggtgctccg gtcgcggcgg cgagcaattt ttttcgctcc aagcacctgt ctctccatgg atgaacaggg	cggcgcggcc gcagtggcgg ccacctctgt cagcttatat ctgccagcca atgagaaagt gctcgaacga	ttgctctctt cagaatgttg gtgtgtacga ggatcggcgt gaaggcactg cgagttgtat gtggaagacg	ccggtcgcgg gctaccaggg gctcatgaaa gaccacccct aaggagaagg cgcattaagt gttgtgggcg	120 180 240 300 360 420
<400> 46 cgacgttcgc cggagtcttc gacaccgggt tatttagcct gtgttgtgaa tgccggaggt agaaggcctc tcaaggagag gtgccatgtt	agcgctaccc ctcgatcccg gtagagggcg agttggcaag gagcgaagac ggcccatgtc ctggagcagc ctttgctgag	tggtgctccg gtcgcggcgg cgagcaattt ttttcgctcc aagcacctgt ctctccatgg atgaacaggg ttcaccgcgc	cggcgcggcc gcagtggcgg ccacctctgt cagcttatat ctgccagcca atgagaaagt gctcgaacga tcgttatcat	ttgctctctt cagaatgttg gtgtgtacga ggatcggcgt gaaggcactg cgagttgtat gtggaagacg gtggcagaag	ccggtcgcgg gctaccaggg gctcatgaaa gaccacccct aaggagaagg cgcattaagt gttgtgggcg cactatgtgt	120 180 240 300 360 420
<400> 46 cgacgttcgc cggagtcttc gacaccgggt tatttagcct gtgttgtgaa tgccggaggt agaaggcctc tcaaggagag gtgccatgtt acggcccct	agcgctaccc ctcgatcccg gtagagggcg agttggcaag gagcgaagac ggcccatgtc ctggagcagc ctttgctgag	tggtgctccg gtcgcggcgattt ttttcgctcc aagcacctgt ctctccatgg atgaacaggg ttcaccgcgc	cggcgcggcc gcagtggcgg ccacctctgt cagcttatat ctgccagcca atgagaaagt gctcgaacga tcgttatcat agtgggtggc	ttgctctctt cagaatgttg gtgtgtacga ggatcggcgt gaaggcactg cgagttgtat gtggaagacg gtggcagaag caagcagacc	ccggtcgcgg gctaccaggg gctcatgaaa gaccacccct aaggagaagg cgcattaagt gttgtgggcg cactatgtgt aagaggatgc	120 180 240 300 360 420 480 540
<400> 46 cgacgttcgc cggagtcttc gacaccgggt tatttagcct gtgttgtgaa tgccggaggt agaaggcctc tcaaggagag gtgccatgtt acggcccct tggacatgaa	agcgctaccc ctcgatcccg gtagagggcg agttggcaag gagcgaagac ggcccatgtc ctggagcagc ctttgctgag ctttatcggt	tggtgctccg gtcgcggcgg cgagcaattt ttttcgctcc aagcacctgt ctctccatgg atgaacaggg ttcaccgcgc tttgacaaag	cggcgcggcc gcagtggcgg ccacctctgt cagcttatat ctgccagcca atgagaaagt gctcgaacga tcgttatcat agtgggtggc	ttgctctctt cagaatgttg gtgtgtacga ggatcggcgt gaaggcactg cgagttgtat gtggaagacg gtggcagaag caagcagacc	ccggtcgcgg gctaccaggg gctcatgaaa gaccacccct aaggagaagg cgcattaagt gttgtgggcg cactatgtgt aagaggatgc gaaaagaacg	120 180 240 300 360 420 480 540
<400> 46 cgacgttcgc cggagtcttc gacaccgggt tatttagcct gtgttgtgaa tgccggaggt agaaggcctc tcaaggagag gtgccatgtt acggcccct tggacatgaa agtggaagaa	agcgctaccc ctcgatcccg gtagagggcg agttggcaag gagcgaagac ggccatgtc ctggagcagc ctttgctgag cttcatcggt cccgcaaagc ggtgaacccc	tggtgctccg gtcgcggcgg cgagcaattt ttttcgctcc aagcacctgt ctctccatgg atgaacaggg ttcaccgcgc tttgacaaag atccagggct ctggcctgcg	cggcgcggcc gcagtggcgg ccacctctgt cagcttatat ctgccagcca atgagaaagt gctcgaacga tcgttatcat agtgggtggc tagcctccaa	ttgctctctt cagaatgttg gtgtgtacga ggatcggcgt gaaggcactg cgagttgtat gtggaagacg gtggcagaag caagcagacc gtgggactac cgcctggctc	ccggtcgcgg gctaccaggg gctcatgaaa gaccacccct aaggagaagg cgcattaagt gttgtgggcg cactatgtgt aagaggatgc gaaaagaacg	120 180 240 300 360 420 480 540 600
<400> 46 cgacgttcgc cggagtcttc gacaccgggt tatttagcct gtgttgtgaa tgccggaggt agaaggcctc tcaaggagag gtgccatgtt acggcccct tggacatgaa agtggaagaa	agcgctaccc ctcgatcccg gtagagggcg agttggcaag gagcgaagac ggcccatgtc ctggagcagc ctttgctgag cttcatcggt cccgcaaagc ggtgaacccc gtgagagatg atgcctattt	tggtgctccg gtcgcggcgg cgagcaattt ttttcgctcc aagcacctgt ctctccatgg atgaacaggg ttcaccgcgc tttgacaaag atccagggct ctggcctgcg	cggcgcggcc gcagtggcgg ccacctctgt cagcttatat ctgccagcca atgagaaagt gctcgaacga tcgttatcat agtgggtggc tagcctccaa	ttgctctctt cagaatgttg gtgtgtacga ggatcggcgt gaaggcactg cgagttgtat gtggaagacg gtggcagaag caagcagacc gtgggactac cgcctggctc	ccggtcgcgg gctaccaggg gctcatgaaa gaccacccct aaggagaagg cgcattaagt gttgtgggcg cactatgtgt aagaggatgc gaaaagaacg	120 180 240 300 360 420 480 540 660 720
<400> 46 cgacgttcgc cggagtcttc gacaccgggt tatttagcct gtgttgtgaa tgccggaggt agaaggcctc tcaaggagag gtgccatgtt acggcccct tggacatgaa agtggaagaa atgcaactcc taaatgacca <210> 47 <211> 357 <212> DNA	agcgctaccc ctcgatcccg gtagagggcg agttggcaag gagcgaagac ggcccatgtc ctggagcagc ctttgctgag cttcatcggt cccgcaaagc ggtgaacccc gtgagagatg atgcctattt gtttacctg	tggtgctccg gtcgcggcgg cgagcaattt ttttcgctcc aagcacctgt ctctccatgg atgaacaggg ttcaccgcgc tttgacaaag atccagggct ctggcctgcg	cggcgcggcc gcagtggcgg ccacctctgt cagcttatat ctgccagcca atgagaaagt gctcgaacga tcgttatcat agtgggtggc tagcctccaa	ttgctctctt cagaatgttg gtgtgtacga ggatcggcgt gaaggcactg cgagttgtat gtggaagacg gtggcagaag caagcagacc gtgggactac cgcctggctc	ccggtcgcgg gctaccaggg gctcatgaaa gaccacccct aaggagaagg cgcattaagt gttgtgggcg cactatgtgt aagaggatgc gaaaagaacg	120 180 240 300 360 420 480 540 660 720 780

caggaggctg	aatgaatgta	tttcaccagt	agcuuuuyuy		uccuycaca	120
cagccacgat	ttgcaaagga	tgttcacgga	agaccagggt	gtagatgaca	ggctgctcta	180
tgacattgta	ttcaagcact	tcaaaagaaa	taaggtggag	atttcaaatg	caataaaaa	240
gacatttcca	ttcctcgagg	gcctccgtga	tcgtgatctc	atcacaaata	aaatgtttga	300
agat.tctcaa	gattcttgta	gaaacctggt	ccctgtacag	agagtggtgt	acaatgttct	360
tagtgaactg	gagaagacat	ttaacctgcc	agttctggaa	gcactgttca	gcgatgtcaa	420
catgcaggaa	taccccgatt	taattcacat	ttataaaggc	tttgaaaatg	taatccatga	480
caaattgcct	ctccaagaaa	gtgaagaaga	agagagggag	gagaggtctg	gcctccaact	540
aagtcttgaa	caaggaactg	gtgaaaactc	ttttcgaagc	ctgacttggc	caccttcggg	600
ttccccatct	catgctggta	caaccccacc	tgaaaatgga	ctctcagagc	acccctgtga	660
aacagaacag	ataaatgcaa	agagaaaaga	tacaaccagt	gacaaagatg	attcgctagg	720
aagccaacaa	acaaatgaac	aatgtgctca	aaaggctgag	ccaacagagt	cctgcgaaca	780
aattgctgtc	caagtgaata	atggggatgc	tggaagggag	atgccctgcc	cgttgccctg	840
tgatgaagaa	agcccagagg	cagagetaca	caaccatgga	atccaaatta	attcctgttc	900
tgtgcgactg	gtggatataa	aaaaggaaaa	gccattttct	aattcaaaag	ttgagtgcca	960
agcccaagca	agaactcatc	ataaccaggc	atctgacata	atagtcatca	gcagtgagga	1020
ctctgaagga	tccactgacg	ttgatgagcc	cttagaagtc	ttcatctcag	caccgagaag	1080
tgagcctgtg	atcaataatg	acaacccttt	agaatcaaat	gatgaaaagg	agggccaaga	1140
agccacttgc	tcacgacccc	agattgtacc	agagcccatg	gatttcagaa	aattatctac	1200
attcagagaa	agttttaaga	aaagagtgat	aggacaagac	cacgactttt	cagaatccag	1260
tgaggaggag	gcgcccgcag	aagcctcaag	cggggcactg	agaagcaagc	atggtgagaa	1320
ggctcctatg	acttctagaa	gtacatctac	ttggagaata	cccagcagga	agagacgttt	1380
cagcagtagt	gacttttcag	acctgagtaa	tggagaagag	cttcaggaaa	cctgcagete	1440
atccctaaga	agagggtcag	gatcacagcc	acaagaacct	gaaaataaga	agtgctcctg	1500
tgtcatgtgt	tttccaaaag	gtgtgccaag	aagccaagaa	gcaaggactg	aaagtagtca	1560
agcatctgac	atgatggata	ccatggatgt	tgaaaacaat	tctactttgg	aaaaacacag	1620
tgggaaaaga	agaaaaaaga	gaaggcatag	atctaaagta	aatggtctcc	aaagagggag	1680
aaagaaagac	agacctagaa	aacatttaac	tctgaataac	aaagtccaaa	agaaaagatg	1740
gcaacaaaga	ggaagaaaag	ccaacactag	acctttgaaa	agaagaagaa	aaagaggtcc	1800
aagaattccc	aaagatgaaa	atattaattt	taaacaatct	gaacttcctg	tgacctgtgg	1860
tgaggtgaag	ggcactctat	ataaggagcg	attcaaacaa	ggaacctcaa	agaagtgtat	1920
acagagtgag	gataaaaagt	ggttcactcc	cagggaattt	gaaattgaag	gagaccgcgg	1980
agcatccaag	aactggaagc	taagtatacg	ctgcggtgga	tataccctga	aagtcctgat	2040
ggagaacaaa	tttctgccag	aaccaccaag	cacaagaaaa	aagagaatac	tggaatctca	2100
caacaatacc	ttagttgacc	cttgtgagga	gcataagaag	aagaacccag	atgcttcagt	2160
caagttctca	gagtttttaa	agaagtgctc	agagacatgg	aagaccattt	ttgctaaaga	2220
gaaaggaaaa	tttgaagata	tggcaaaggc	ggacaaggcc	cattatgaaa	gagaaatgaa	2280
aacctatatc	cctcctaaag	gggagaaaaa	aaagaagttc	aaggatccca	atgcacccaa	2340
gaggcctcct	ttggcctttt	tcctgttctg	ctctgagtat	cgcccaaaaa	tcaaaggaga	2400
acatcctggc	ctgtccattg	atgatgttgt	gaagaaactg	gcagggatgt	ggaataacac	2460

cgctgcagct gacaagcag	t tttatgaaaa	gaaggctgca	aagctgaagg	aaaaatacaa	2520
aaaggatatt gctgcatat	c gagctaaagg	aaagcctaat	tcagcaaaaa	agagagttgt	2580
caaggctgaa aaaagcaag	a aaaagaagga	agaggaagaa	gatgaagagg	atgaacaaga	2640
ggaggaaaat gaagaagat	g atgataaata	agttgcttct	agtgcagttt	ttttcttgtc	2700
tataaagcat ttaagctgc	c tgtacacaac	tcactccttt	taaagaaaaa	aacttcaacg	2760
taagactgtg taagatttg	t ttttaaaccg	tacactgtgt	ttttttgtat	agttaaccac	2820
taccgaatgt gtcttcaga	t agccctgtcc	tggtggtatt	tagccactaa	cctttgcctg	2880
gtacagtatg ggggttgta	a attggcatgg	aaatttaaag	caggttcttg	ttagtgcaca	2940
gcacaaatta gttgtatag	g aggatggtag	ttttttcacc	ttcagttgtc	tctgatgtag	3000
cttatacaaa acatttgtt	g ttctgttaac	tgaatgccac	tctgtaattg	саааааааа	3060
aaacagttgc agctgtttt	g ttgacattct	gaatgcttct	aagtaaatac	aatttttaaa	3120
aaaccgtatg agggaactg	t gtagacaagg	taccaggtca	gtcttcttcc	atgttctatt	3180
agctccacaa agccaatct	c aatccctcaa	aacaatcttg	tcatacttga	aaatatgaca	3240
ctctagtcaa agccttggt	a aaataatcag	tgtttccaat	ctgtcctgtt	acaaaagaaa	3300
cagattatta ttgaactta	t gcaaataacc	attgtcataa	gaatgtttat	gaatagtttc	3360
caaattatgg caaattcat	g tagagagaga	aaagtaactg	ttttggtttt	gctcacaaaa	3420
gtctacttta cctaagggc	t gtcagatata	agtaacttaa	aagaaagaga	agttttcttg	3480
acttttgaaa acaaaatat	g aaaagaatcg	gcaatgtttc	aaacaaaaag	tcataaaagt	3540
cactttattc ctccatcaa	a aaaaaaaaa	aaaaaaaa			3579
<210> 48 <211> 1594 <212> DNA <213> Homo sapiens					
<400> 48 ggaattcctc tctttattg	t cagggteete	tccctaggag	gcctgccccc	gctaaccggc	60
tttttgccca aatgggcca	t tatcgaagaa	ttcacaaaaa	acaatagcct	catcatcccc	120
accatcatag ccaccatca	c cctccttaac	ctctacttct	acctacgcct	aatctactcc	180
acctcaatca cactactcc	c catatotaac	aacgtaaaaa	taaaatgaca	gtttaacata	240
caaaacccac cccattcct	c cccacactca	tcgcccttac	cacgctactc	ctacctatct	300
ccccttttat actaataat	g tctgttgtgt	cttgttgcgg	gcaccgcagt	cgccgtgaag	360
atggcgtcta ccagccgtt	t ggatgctctt	ccaagagtca	catgtccaaa	ccatccagat	420
gcgattttag tggaggact	a cagagccggt	gatatgatct	gtcctgaatg	tggcttggtt	480
gtaggtgacc gggttattg	a tgtgggatct	gaatggcgaa	ctttcagcaa	tgacaaagca	540
acaaaagatc catctcgag	t tggagattct	cagaatcctc	ttctgagtga	tggagatttg	600
tctaccatga ttggcaagg	g cacaggagct	gcaagttttg	acgaatttgg	caattctaag	660
taccagaatc ggagaacaa	t gagcagttct	gatcgggcaa	tgatgaatgc	attcaaagaa	720
atcactacca tggcagaca	g aatcaatcta	cctcgaaata	tagttgatcg	aacaaataat	780
ttattcaagc aagtatatg	acagaagagc	ctgaagggaa	gagctaatga	tgctatagct	840
totgottgto totatattg	c ctgtagacaa	gaaggggttc	ctaggacatt	taaagaaata	900
tgtgccgtat cacgaattt	c taagaaagaa	attggtcggt	gttttaaact	tattttgaaa	960
tgtgccgtat cacgaattt gcgctagaaa ccagtgtgg					960 1020

aacctttgtc ttcctaaaca agtacagatg gcagctacac atatagcccg taaagctgt	g 1080
gaattggact tggttcctgg gaggagcccc atctctgtgg cagcggcagc tatttacat	g 1140
gcctcacagg catcagctga aaagaggacc caaaaagaaa ttggagatat tgctggtgt	t 1200
gctgatgtta caatcagaca gtcctataga ctgatctatc ctcgagcccc agatctgtt	t 1260
cctacagact tcaaatttga caccccagtg gacaaactac cacagctata aattgagge	a 1320
gctaacgtca aattcttgaa tacaaaactt tgcctgttgt acatagccta tacaaaatg	c 1380
tgggttgagc ctttcatgag gaaaaacaaa agacatggta cgcattccag ggctgaata	c 1440
tattgcttgg cattctgtat gtatatacta gtgaaacata tttaatgatt taaatttct	t 1500
atcaaatttc ttttgtagca atctaggaaa ctgtattttg gaagatattt gaaattatg	t 1560
aattottgaa taaaacattt ttoaaaacgg aatt	1594
<210> 49 <211> 2969 <212> DNA <213> Homo sapiens	
<400> 49 ggctgacttc ctggatgcac taatcgtgag catggatgtg attcaacatg aaacaatag	g 60 .
aaagaagttt gagaagaggc atattgaaat attcactgac ctcagcagcc gattcagca	a 120
aagtcagctg gatattataa ttcatagctt gaagaaatgt gacatctccc tgcaattct	t 180
cttgcctttc tcacttggca aggaagatgg aagtggggac agaggagatg gcccctttc	g 240
cttaggtggc catgggcctt cctttccact aaaaggaatt accgaacagc aaaaagaag	g 300
tottgagata gtgaaaatgg tgatgatato tttagaaggt gaagatgggt tggatgaaa	t 360
ttattcattc agtgagagtc tgagaaaact gtgcgtcttc aagaaaattg agaggcatt	c 420
cattcactgg ccctgccgac tgaccattgg ctccaatttg tctataagga ttgcagcct	a 480
taaatcgatt ctacaggaga gagttaaaaa gacttggaca gttgtggatg caaaaaccc	t 540
aaaaaaagaa gatatacaaa aagaaacagt ttattgctta aatgatgatg atgaaactg	a 600
agttttaaaa gaggatatta ttcaagggtt cctctatgga agtgatatag ttcctttct	c 660
taaagtggat gaggaacaaa tgaaatataa atcggagggg aagtgcttct ctgttttgg	rg 720
attttgtaaa tottotoagg ttoagagaag attottoatg ggaaatcaag ttotaaagg	t 780
ctttgcagca agagatgatg aggcagctgc agttgcactt tcctccctga ttcatgctt	t 840
ggatgactta gacatggtgg ccatagttcg atatgcttat gacaaaagag ctaatcctc	a 900
agtcggcgtg gcttttcctc atatcaagca taactatgag tgtttagtgt atgtgcagc	t 960
gcctttcatg gaagacttgc ggcaatacat gttttcatcc ttgaaaaaca gtaagaaat	a 1020
tgctcccacc gaggcacagt tgaatgctgt tgatgctttg attgactcca tgagcttgg	c 1080
aaagaaagat gagaagacag acaccettga agacttgttt ccaaccacca aaatcccaa	a 1140
tcctcgattt cagagattat ttcagtgtct gctgcacaga gctttacatc cccgggago	c 1200
tctaccccca attcagcagc atatttggaa tatgctgaat cctcccgctg aggtgacaa	c 1260
gaaaagtcag attcctctct ctaaaataaa gacccttttt cctctgattg aagccaaga	a 1320
aaaggatcaa gtgactgctc aggaaatttt ccaagacaac catgaagatg gacctacag	c 1380
taaaaaatta aagactgagc aagggggagc ccacttcagc gtctccagtc tggctgaag	g 1440
cagtgtcacc tetgttggaa gtgtgaatcc tgetgaaaac tteegtgtte tagtgaaac	a 1500
gaagaaggcc agctttgagg aagcgagtaa ccagctcata aatcacatcg aacagtttt	t 1560

ggatactaat gaaacaccgt attttatgaa gagcatagac tgcatccgag ccttccggga 1620 agaagccatt aagttttcag aagagcagcg ctttaacaac ttcctgaaag cccttcaaga 1680 gaaagtggaa attaaacaat taaatcattt ctgggaaatt gttgtccagg atggaattac 1740 1800 tctgatcacc aaagaggaag cctctggaag ttctgtcaca gctgaggaag ccaaaaagtt tctggcccc aaagacaaac caagtggaga cacagcagct gtatttgaag aaggtggtga 1860 tgtggacgat ttattggaca tgatataggt cgtggatgta tggggaatct aagagagctg 1920 1980 ccatcgctgt gatgctggga gttctaacaa aacaagttgg atgcggccat tcaaggggag 2040 ccaaaatctc aagaaattcc cagcaggtta cctgcaggcg gatcatctaa ttctctgtgg 2100 aatgaataca cacatatata ttacaaggga taatttagac cccatacaag tttataaaga qtcattqtta ttttctqqtt qqtqtattat tttttctqtq qtcttactqa tctttqtata 2160 2220 ttacatacat gctttgaagt ttctggaaag tagatctttt cttgacctag tatatcagtg acagttgcag cccttgtgat gtgattagtg tctcatgtgg aaccatggca tggttattga 2280 tgagtttctt aaccetttcc agagtcctcc tttgcctgat cctccaacag ctgtcacaac 2340 ttgtgttgag caagcagtag catttgcttc ctcccaacaa gcagctgggt taggaaaacc 2400 atgggtaagg acggactcac ttctctttt agttgaggcc ttctagttac cacattactc 2460 tgcctctgta tataggtggt tttctttaag tggggtggga aggggagcac aatttccctt 2520 catactcctt ttaagcagtg agttatggtg gtggtctcat gaagaaaaga ccttttggcc 2580 caatctctgc catatcagtg aacctttaga aactcaaaaa ctgagaaatt tactacagta 2640 2700 gttagaatta tatcacttca ctgttctcta cttgcaagcc tcaaagagag aaagtttcgt tatattaaaa cacttaggta acttttcgat ctttcccatt tctacctaag tcagctttca 2760 tetttgtgga tggtgtetee tttaetaaat aagaaaataa caaageeett attetetttt 2820 tttcttqtcc tcattcttqc cttqaqttcc aqttcctctt tqqtqtacaq acttcttqgt 2880 acccagtcac ctctgtcttc agcaccctca taagtcgtca ctaatacaca gttttgtaca 2940 tgtaacatta aaggcataaa tgactcaaa 2969 <210> 50 5360 <211> DNA <212> <213> Homo sapiens <400> 50 60 ttgaggtgca ttgaaatgtt ccaagctgtt acttacctta acatgttctt gaggtaccat ggcatggatt aaaaggaaat ttggtaagtg gcctccactt aaacgactta ctagggaagc 120 tatgtgaaat tatttaaaag ggcgagggga tcaaatagta cttatccttc atgcaaaagt 180 tgtacagaag tcatatggaa tgaaaaaggt tttttgccct cccccttgtg tatatcttat 240 gggcagtgga tggaagaaaa taaaattaca aatgaaatgc gatggttgtt ctgaacaagg 300 ctctcatcca tgtgcattta ttgggatagg aaatagtgac caagaaatgc agcagctaaa 360 cttggaagga aagaactatt gcacagccaa aacattgtac atatctgatt cagacaagca 420 aaagcacttc atgttgtctg taaaggtgtt ctatggcaac ggtgatgaca ttggtgttt 480 cctcagcaag tcgtccaaac cttccaaaaa gaagcagtca ttgaaaaatg ctgacttatg 540 cattggctca ggaacaaagg tggctctgtt taatcgacta cgatcccaga cagttagtac 600 cagatacttg catgtagaag gagggaattt tcatgccagt tcacagcagt ggggagcatt 660 tacattattc ttggatgatg atggatcaga aggagaagaa ttcacagtca gagatggcta 720

cattc	attat	ggacaaacag	tçaagcttgt	gtgctcagtt	actggcatgg	cactcccaag	780
attgai	taatt	aggaaagttg	ataagcagac	cacattattg	gatgcagatg	atcctgtgtc	840
acaact	tccat	aaatgtgcat	ttgaccttga	ggatacagaa	agaatgtact	tatgcctttc	900
tcaaga	aaaga	ataattcaat	ttcaggccac	tccatgccca	acagaaccaa	ataaagagat	960
gataaa	atgat	ggtgcttcct	gggcaatcat	tagcacacat	aaggcgaagt	atacatttta	1020
tgagag	gaatg	ggccctgtcc	ttgccctggt	catgcctatg	cctgtcgtag	agagccttaa	1080
gttgaa	atggc	ggtggggacg	aagcaatgct	tgaacttaca	ggacagaatt	tcactccaaa	1140
tttac	gagtg	tggtttgggg	atgtagaagc	tgaaactatg	tacaggtgtg	gagagagtat	1200
gctcc	gtgtt	gticcicagacg	ttctgcattc	tgagaaggtt	ggagatagtt	cccagcaacc	1260
agtcca	aggtt	tcagtaactt	tggtccgaaa	tgatggaatc	atatattcca	ccagccttac	1320
cttta	cctac	acaccagaag	cagggccgcg	gccacattgc	agtgtagcag	gcgcaatcct	1380
taagg	ccagt	tcaagccacg	tgccccctaa	tgaattaaac	acaaacagcg	atggaagtta	1440
cacaa	atgcc	agcacaaatt	caaccagtgt	cacatcatct	acaccaacag	tggtatcctg	1500
aacta	ccgtc	tttttgctaa	gactcaaacg	gcttgagtgc	agcaaaaagt	tgacaaaaaa	1560
ggaaa	aaaaa	atgaacagtc	ttttgtggtt	tattgggaaa	cttttcatac	caggtgatac	1620
tattc	taaaa	ccccgttgtc	tccctgcaag	tgctgatttg	aaatgcagaa	gccacagtaa	1680
aaaaa	aaaaa	aaaaaaaaa	aaaaaagaaa	aaaaaatcaa	aatgtataaa	tattggaaat	1740
caagt	ttttc	agctgttttg	ttggttggtt	ggttggtttt	tgtttggttt	tgtttaaagg	1800
gacaa	gaagt	aaataatgtg	gctggaatac	aagttgaaca	aactagaaga	cacaaatcta	1860
acata	gtttt	tatggaccaa	ggaacttgta	tattgtataa	gctttagtaa	aaggtacatt	1920
ttcac	catac	cttttttat	atcacggtat	tatagtacac	cttgttacca	ataggttgtt	1980
ctctt	cccca	ccctcctttg	agctttgctc	taaaatacat	tctggttcca	agcctgacca	2040
tcctt	gttta	atctatcata	ctcttccagg	tttttttt	tggtctaagg	ctggaacttt	2100
tttct	tttt	tttcagctga	agtcttatga	ctttttcatg	agtcaaaatt	gtttggattt	2160
cacga	agtca	aatcttgcaa	aggcctgcat	attttttta	agattatatg	aagtctgtgc	2220
aaaaa	gcttt	aaaaaattgc	ctctgccttg	cctgcataca	tgcaatgtat	gtaacttagt	2280
ctctct	ttctc	agacactgtt	gggtagttat	ttctgtgttt	tctttttta	aaaaaaata	2340
tggaci	ttatt	gtggtttatc	tgagaggttc	taacattcac	atgcaatttg	gtgtggcatt	2400
tagcta	attat	gagttattgg	cgcgaacttg	tttgatattt	gaagtgtctc	tccccttttc	2460
ccatga	acgta	atacataggt	gtgttccagg	atttgttcag	gtttttcccc	ccctcctaat	2520
cttgta	acata	acttgtattt	tgtgtaagtt	aaacatttta	tttgaacttg	gaatgttccc	2580
agtga	tttca	ttcagcaggg	tattttctgc	cttgttggca	agtagcaaaa	aatatgggaa	2640
gtatt	tgcta	ccagttgtta	gatggtgccc	cttattggta	gaatcaggaa	aatgtccgca	2700
aaagc	atgtt	ttattatctt	tacttttttg	gggggttgga	gggggtagcc	tagccagaca	2760
tcatgi	taatc	ttaaaacata	agatgctttt	attagatgat	caactaaaaa	tagctggaag	2820
acagta	acttt	agaaacaaaa	tagttagtaa	gatatataat	gcaaatgtaa	cttatgtttt	2880
cattti	tttc	tctgcctttt	ttttttgttt	ttttcttt	tttccagtac	tgagcatctc	2940
cacaa	atgtc	tcctactcag	aaaatgtttc	ttttctttca	gttgagattt	ggtgcattca	3000
gggtt	gtagg	ttggccttgc	ttgctaaccc	gccggtttta	ccgtgcttta	ttcctgaact	3060

3120 ttgtttatgc ctttgtttgg ttcttctgaa atlycaycay accearryyy cracaritag tacaggaacc acgtgtgtaa tgttatacaa cacagtcagt aatacaatca tccctcttag 3180 agtaaaaact acctctagat tgtgtaagct ttttactgtc cataaaacag gagccacagt 3240 accttatgaa tgcaaaactg taacttccta cagtgtttcc ccacagaaca ttgtctttct 3300 ggtgtctggg ctgtttttga aaaagtttcc attaatagac tttttagaaa ttattattag 3360 tagcattttt tttccagctt tgcgtcttca tcactcactc aagtgtcaga ctatgcactg 3420 taaatatctt cctaacatct ttaaatcgcc ttttcctcag ttttcaaggg gaaggtcatt 3480 tgtaaagcac gttaggtggt taaatcagtt attgcggttt tctcttacag caagcctttt 3540 taatcacccc caggotgcat tttattctat atcgcctttt ttcttcaaat ctgctccaat 3600 catccacttc tctcttataa gctattcctg cctcacacct aaatctgttt cagtgatcaa 3660 gggcagaact cattgtggcc ttatctttct ttgttgtaat tgttcactgt ctctttctta 3720 cagaccactt attctgagta gtagttattc ctccctatgg agtcatggca ggaatcatta 3780 3840 aagtttcctc cacttctcag gtttggtatt tagtaaggaa tcaattaaat taaccaataa 3900 caaaagagat acttttgaag aacaaactat tctttaccca ttttgtagct caaaaataat 3960 ttttcaagtt catgacctta ttaaaatgaa cttgtgtttt tttaacaaac gtctatttta 4020 ttttgatagt ttctttccga agataattga aatattatac tgtaaccctt ttctttctt 4080 ttttgaaaag tccaagaatg tacttataca ggatttttcc ccacctattt ttggccattc 4140 tcataccaca gacaaaagag tgaatgattg tcattgtagc ttattgttta tcagtagttc 4200 ttttgtagct gcttacattt tttctttcat ggtttgtgaa tcatttcagt atgtaattta 4260 taggaacctt gtcctctggt atagtagact gtgtgccctc ctccaggatg gcattattag 4320 4380 acatgctggt catttaccct cagaaagact ctcttataga atggtgagtg cttcagttat agtatgtttg aattttaaaa aattcctgtt tagaatgtat ctatgctctc atgactatgc 4440 agtttctaac atacacatag aagctgagtc tctgatccaa tatgttttta tttgttccat 4500 taatttatca catagattgg gaaggcaagc taaaagcctt aaaaatgccc tttatatttt 4560 4620 gagtgatttc agcgttgaac acagtatact atctaaattt gctgctcact ttcttaaact 4680 gttgcaatta aaggcatgtt tatacatgac taatcgtgaa atgtttgtca ctcttactgc 4740 aatgaatctg gtaccatctg tgctttcaca aaaaacttcc aatgccattt ttgagaacta 4800 acctaacagt catgctaacc agaaaatcca ctggggagga ggttcctttg aaacaaaatg 4860 ctgttcagtt agtaaccaag ttactttgat tgcaaaagca gctgtgtttc tgataagtac 4920 tgaacaaatg tgtgtaattt tctgtgccag acttatgact ttgttttcaa gcactgtaat 4980 gtgggatgga tggttagaaa caataatata tagggtttct gttaaccctt tcaggactca 5040 actgtatctc cttttgttaa ttttcccctg tgttgtgata aattgtttgc cagcattcag 5100 tactgtgttg gtgcagatga ggtttatatc tcattttagc ttatttcttg tacctttcag 5160 5220 catgcctacg cattcagtcc ttaaggggtt tattttacaa actgtgcgcc tgaagtttat tagcaataag atagaaaatg agcaagttta taccataatt ttgagaaaaa aagaatctgc 5280 tcagttccat atttcatccg tgaaaaactt gcaatacgag cagtttcaag gaataaataa 5340 5360 aaaggaaatg aaaccattgt

```
<210>
      51
<211>
      863
<212>
      DNA
      Homo sapiens
<400> 51
ggagtotoca actgggagag otgcagotgo ogagaggagg agaacgotga ggtoggtogg
                                                                      60
accaacggac gcgctgaccg ctgccaactg cagctcgcgc tgcctcctgc tcgcgccgtg
                                                                      120
ccactaaggt cactcccgcc tccgagagcc cagagccgag atggaaacgg tccaggagct
                                                                      180
gatececetg gecaaggaga tgatggeeca gaagegeaag gggaagatgg tgaagetgta
                                                                      240
                                                                      300
cgtgctgggc agcgtgctgg ccctcttcgg cgtggtgctc ggcctgatgg agactgtgtg
                                                                      360
cagccccttc acggccgcca gacgtctgcg ggaccaggag gcagccgtgg cggagctgca
ggccgccctg gagcgacagg ctctccagaa gcaagccctg caggagaaag gcaagcagca
                                                                      420
ggacacggtc ctcggcggcc gggccctgtc caaccggcag cacgcctcct aggaactgtg
                                                                      480
qqaqaccaqc qqaqtgggaq ggaqacqcaq tagacagaga cagaccgaga aggaagggag
                                                                      540
agacagaggg ggcgcgcgca caggagcctg actccgctgg gagagtgcag gagcacgtgc
                                                                      600
tgttttttat ttggacttaa cttcagagaa accgctgaca tctagaactg acctaccaca
                                                                      660
                                                                      720
agcatccacc aaaggagttt gggattgagt tttgctgctg tgcagcactg cattgtcatg
                                                                      780
acatttccaa cactgtgtga attatctaaa tgcgtctacc attttgcact agggaggaag
                                                                      840
gataaatgct ttttatgtta ttattattaa ttattacaat gaccaccatt ttgcatttg
                                                                      863
aaataaaaaa ctttttatac cat
<210> 52
      3921
<211>
<212>
       DNA
<213> Homo sapiens
atgggggccg cctcgggccg ccgggggccg gggctgctgc tgcccctgcc gctgctgttg
                                                                       60
ctgctgccgc cgcagcccgc cctggcgttg gaccccgggc tgcagcccgg caacttttct
                                                                      120
                                                                      180
gctgacgagg ccggggcgca gctcttcgcg cagagctaca actccagcgc cgaacaggtg
ctgttccaga gcgtggccgc cagctgggcg cacgacacca acatcaccgc ggagaatgca
                                                                      240
aggcgccagg aggaagcagc cctgctcagc caggagtttg cggaggcctg gggccagaag
                                                                      300
                                                                      360
gccaaggagc tgtatgaacc gatctggcag aacttcacgg acccgcagct gcgcaggatc
ateggagetg tgegeacect gggetetgee aacetgeece tggetaageg geageagtae
                                                                      420
aacgccctgc taagcaacat gagcaggatc tactccaccg ccaaggtctg cctccccaac
                                                                      480
                                                                      540
aagactgcca cctgctggtc cctggaccca gatctcacca acatcctggc ttcctcgcga
agctacgcca tgctcctgtt tgcctgggag ggctggcaca acgctgcggg catcccgctg
                                                                      600
aaaccgctgt acgaggattt cactgccctc agcaatgaag cctacaagca ggacggcttc
                                                                      660
acagacacgg gggcctactg gcgctcctgg tacaactccc ccaccttcga ggacgatctg
                                                                      720
gaacacetet accaacaget agageeeete tacetgaace tecatgeett egteegeege
                                                                      780
                                                                      840
gcactgcatc gccgatacgg agacagatac atcaacctca ggggacccat ccctgctcat
                                                                      900
ctgctgggag acatgtgggc ccagagctgg gaaaacatct acgacatggt ggtgcctttc
ccagacaagc ccaacctcga tgtcaccagt actatgctgc agcagggctg gaacgccacg
                                                                      960
cacatgttcc gggtggcaga ggagttcttc acctccctgg agctctcccc catgcctccc
                                                                     1020
gagttctggg aagggtcgat gctggagaag ccggccgacg ggcgggaagt ggtgtgccac
                                                                     1080
```

gcctcggctt gggacttcta caacaggaaa gacttcagga tcaagcagtg cacacgggtc 1140 acgatggacc agetetecac agtgcaccat gagatgggcc atatacagta etacetgcag 1200 tacaaggatc tgcccgtctc cctgcgtcgg ggggccaacc ccggcttcca tgaggccatt 1260 ggggacgtgc tggcgctctc ggtctccact cctgaacatc tgcacaaaat cggcctgctg 1320 gaccgtgtca ccaatgacac ggaaagtgac atcaattact tgctaaaaat ggcactggaa 1380 aaaattgcct tcctgccctt tggctacttg gtggaccagt ggcgctgggg ggtctttagt 1440 gggcgtaccc ccccttcccg ctacaacttc gactggtggt atcttcgaac caagtatcag 1500 gggatctgtc ctcctgttac ccgaaacgaa acccactttg atgctggagc taagtttcat 1560 gttccaaatg tgacaccata catcaggtac tttgtgagtt ttgtcctgca gttccagttc 1620 1680 catgaagccc tgtgcaagga ggcaggctat gagggcccac tgcaccagtg tgacatctac cggtccacca aggcagggc caageteegg aaggtgetge aggetggete etecaggeee 1740 tggcaggagg tgctgaagga catggtcggc ttagatgccc tggatgccca gccgctgctc 1800 1860 aagtacttcc agccagtcac ccagtggctg caggagcaga accagcagaa cggcgaggtc ctgggctggc ccgagtacca gtggcacccg ccgttgcctg acaactaccc ggagggcata 1920 gacctggtga ctgatgaggc tgaggccagc aagtttgtgg aggaatatga ccggacatcc 1980 2040 caggtggtgt ggaacgagta tgccgaggcc aactggaact acaacaccaa catcaccaca gagaccagca agattctgct gcagaagaac atgcaaatag ccaaccacac cctgaagtac 2100 ggcacccagg ccaggaagtt tgatgtgaac cagttgcaga acaccactat caagcggatc 2160 2220 ataaagaagg ttcaggacct agaacgggca gcactgcctg cccaggagct ggaggagtac 2280 aacaagatcc tgttggatat ggaaaccacc tacagcgtgg ccactgtgtg ccacccgaat 2340 ggcagctgcc tgcagctcga gccagatctg acgaatgtga tggccacatc ccggaaatat 2400 gaagacctgt tatgggcatg ggagggctgg cgagacaagg cggggagagc catcctccag ttttacccga aatacgtgga actcatcaac caggctgccc ggctcaatgg ctatgtagat 2460 qcaqqqqact cqtqqaqqtc tatqtacqaq acaccatccc tqqaqcaaqa cctqqaqcqq 2520 2580 ctcttccagg agctgcagcc actctacctc aacctgcatg cctacgtgcg ccgggccctg caccytcact acggggccca gcacatcaac ctggaggggc ccattcctgc tcacctgctg 2640 gggaacatgt gggcgcagac ctggtccaac atctatgact tggtggtgcc cttcccttca 2700 gcccctcga tggacaccac agaggctatg ctaaagcagg gctggacgcc caggaggatg 2760 2820 tttaaggagg ctgatgattt cttcacctcc ctggggctgc tgcccgtgcc tcctgagttc tggaacaagt cgatgctgga gaagccaacc gacgggcggg aggtggtctg ccacgcctcg 2880 2940 gcctgggact tctacaacgg caaggacttc cggatcaagc agtgcaccac cgtgaacttg 3000 gaggacctgg tggtggccca ccacgaaatg ggccacatcc agtatttcat gcagtacaaa gacttacetg tggccttgag ggagggtgcc aaccccggct tccatgaggc cattggggac 3060 gtgctagccc tctcagtgtc tacgcccaag cacctgcaca gtctcaacct gctgagcagt 3120 gagggtggca gcgacgagca tgacatcaac tttctgatga agatggccct tgacaagatc 3180 gcctttatcc ccttcagcta cctcgtcgat cagtggcgct ggagggtatt tgatggaagc 3240 atcaccaagg agaactataa ccaggagtgg tggagcctca ggctgaagta ccagggcctc 3300 tgcccccag tgcccaggac tcaaggtgac tttgacccag gggccaagtt ccacattcct 3360 tctagcgtgc cttacatcag gtacttcgtc agcttcatca tccagttcca gttccacgag 3420 gcactgtgcc aggcagctgg ccacacgggc cccctgcaca agtgtgacat ctaccagtcc 3480

aaggaggccg ggcagcgcct	ggcgaccgcc	atgaagctgg	gcttcagtag	gccgtggccg	3540
gaagccatgc agctgatcac	gggccagccc	aacatgagcg	cctcggccat	gttgagctac	3600
ttcaagccgc tgctggactg	gctccgcacg	gagaacgagc	tgcatgggga	gaagctgggc	3660
tggccgcagt acaactggac	gccgaactcc	gctcgctcag	aagggcccct	cccagacagc	3720
ggccgcgtca gcttcctggg	cctggacctg	gatgcgcagc	aggcccgcgt	gggccagtgg	3780
ctgctgctct tcctgggcat	cgccctgctg	gtagccaccc	tgggcctcag	ccagcggctc	3840
ttcagcatcc gccaccgcag	cctccaccgg	cactcccacg	ggccccagtt	cggctccgag	3900
gtggagctga gacactcctg	a				3921
<210> 53 <211> 5297 <212> DNA <213> Homo sapiens					
<400> 53 gggccgggcc gggctgggct	ggagcagcgg	cgcccgggag	ccgagcttgc	agcgagggac	60
cggctgaggc gcgcgggagg	gaaggaggca	agggctccgc	ggcgctgtcg	cgctgccgct	120
cactctcggg gaagagatgg	cggcggagcg	gggagcccgg	cgactcctca	gcaccccctc	180
cttctggctc tactgcctgc	tgctgctcgg	gcgccgggcg	ccgggcgccg	cggcggccag	240
gagcggctcc gcgccgcagt	ccccaggagc	cagcattcga	acgttcactc	cattttattt	300
tctggtggag ccggtggata	cactctcagt	tagaggctct	tctgttatat	taaactgttc	360
agcatattct gagccttctc	caaaaattga	atggaaaaaa	gatggaactt	ttttaaactt	420
agtatcagat gatcgacgcc	agcttctccc	ggatggatct	ttatttatca	gcaatgtggt	480
gcattccaaa cacaataaac	ctgatgaagg	ttattatcag	tgtgtggcca	ctgttgagag	540
tcttggaact attatcagta	gaacagcgaa	gctcatagta	gcaggtcttc	caagatttac	600
cagecaacca gaacetteet	cagtttatgc	tgggaacgga	gcaattctga	attgtgaagt	660
taatgcagat ttggtcccat	ttgtgaggtg	ggaacagaac	agacaacccc	ttcttctgga	720
tgatagagtt atcaaacttc	caagtggaat	gctggttatc	agcaatgcaa	ctgaaggaga	780
tggcgggctt tatcgctgcg	tagtggaaag	tggtgggcca	ccaaagtata	gtgatgaagt	840
tgaattgaag gttcttccag	atcctgaggt	gatatcagac	ttggtatttt	tgaaacagcc	900
ttctccctta gtcagagtca	ttggtcagga	tgtagtgttg	ccatgtgttg	cttcaggact	960
tcctactcca accattaaat	ggatgaaaaa	tgaggaggca	cttgacacag	aaagctctga	1020
aagattggta ttgctggcag	gtggtagcct	ggagatcagt	gatgttactg	aggatgatgc	1080
tgggacttat ttttgtatag	ctgataatgg	aaatgagaca	attgaagctc	aagcagagct	1140
tacagtgcaa gctcaacctg	aattcctgaa	gcagcctact	aatatatatg	ctcacgaatc	1200
tatggatatt gtatttgaat	gtgaagtgac	tggaaaacca	actccaactg	tgaagtgggt	1260
caaaaatggg gatatggtta	tcccaagtga	ttattttaag	attgtaaagg	aacataatct	1320
tcaagttttg ggtctggtga	aatcagatga	agggttctat	cagtgcattg	ctgaaaatga	1380
tgttggaaat gcacaagctg	gagcccaact	gataatcctt	gaacatgcac	cagccacaac	1440
gggaccactg ccttcagctc	ctcgggatgt	cgtggcctcc	ctggtctcta	cccgcttcat	1500
caaattgacg tggcggacac	ctgcatcaga	tcctcacgga	gacaacctta	cctactctgt	1560
gttctacacc aaggaaggga	ttgctaggga	acgtgttgag	aataccagtc	acccaggaga	1620
gatgcaagta accattcaaa	acctaatgcc	agcgaccgtg	tacatcttta	gagttatggc	1680

tcaaaataag	catggctcag	gagagagttc	agctccactg	cgagtagaaa	cacaacctga	1740
ggttcagctc	cctggcccag	cacctaacct	tcgtgcatat	gcagcttcgc	ctacctccat	1800
cactgttacg	tgggaaacac	cagtgtctgg	caatggggaa	attcagaatt	ataagttgta	1860
ctacatggaa	aaggggactg	ataaagaaca	ggatgttgat	gtttcaagtc	actcttacac	1920
cattaatggg	ttgaaaaaat	atacagagta	tagtttccga	gtggtggcct	acaataaaca	1980
tggtcctgga	gtttccacac	cagatgttgc	tgttcgaaca	ttgtcagatg	ttcccagtgc	2040
tgctcctcag	aatctgtcct	tggaagtgag	aaattcaaag	agtattatga	ttcactggca	2100
gccacctgct	ccagccacac	aaaatgggca	gattactggc	tacaagattc	gctaccgaaa	2160
ggcctcccga	aagagtgatg	tcactgagac	cttggtaagc	gggacacagc	tgtctcagct	2220
gattgaaggt	cttgatcggg	ggactgagta	taatttccga	gtggctgctc	taacaatcaa	2280
tggtacaggc	ccggcaactg	actggctgtc	tgctgaaact	tttgaaagtg	acctagatga	2340
aactcgtgtt	cctgaagtgc	ctagctctct	tcacgtacgc	ccgctcgtta	ctagcatcgt	2400
agtgagctgg	actcctccag	agaatcagaa	cattgtggtc	agaggttacg	ccattggtta	2460
tggcattggc	agccctcatg	cccagaccat	caaagtggac	tataaacagc	gctattacac	2520
cattgaaaat	ctggatccca	gctctcacta	tgtgattacc	ctgaaagcat	ttaataacgt	2580
gggtgaaggc	atccccctgt	atgagagtgc	tgtgaccagg	cctcacacag	acacttctga	2640
agttgattta	tttgttatta	atgctccata	cactccagtg	ccagatecca	ctcccatgat	2700
gccaccagtg	ggagttcagg	cttccattct	gagtcatgac	accatcagga	ttacgtgggc	2760
agacaactcg	ctgcccaagc	accagaagat	tacagactcc	cgatactaca	ccgtccgatg	2820
gaaaaccaac	atcccagcaa	acaccaagta	caagaatgca	aatgcaacca	ctttgagtta	2880
tttggtgact	ggtttaaagc	cgaatacact	ctatgaattc	tctgtgatgg	tgaccaaagg	2940
tcgaagatca	agtacatgga	gtatgacagc	ccatgggacc	acctttgaat	tagttccgac	3000
ttctccaccc	aaggatgtga	ctgttgtgag	taaagagggg	aaacctaaga	ccataattgt	3060
gaattggcag	cctccctctg	aagccaatgg	caaaattaca	ggttacatca	tatattacag	3120
tacagatgtg	aatgcagaga	tacatgactg	ggttattgag	cctgttgtgg	gaaacagact	3180
gactcaccag	atacaagagt	taactcttga	cacaccatac	tacttcaaaa	tccaggcacg	3240
gaactcaaag	ggcatgggac	ccatgtctga	agctgtccaa	ttcagaacac	ctaaagcgga	3300
ctcctctgat	aaaatgccta	atgatcaagc	ctcagggtct	ggagggaaag	gaagccggct	3360
gccagaccta	ggatccgact	acaaacctcc	aatgagcggc	agtaacagcc	ctcatgggag	3420
ccccacctct	cctctggaca	gtaatatgct	gctggtcata	attgtttctg	ttggcgtcat	3480
caccatcgtg	gtggttgtga	ttatcgctgt	cttttgtacc	cgtcgtacca	cctctcacca	3540
gaaaaagaaa	cgagctgcct	gcaaatcagt	gaatggctct	cataagtaca	aagggaattc	3600
caaagatgtg	aaacctccag	atctctggat	ccatcatgag	agactggagc	tgaaacccat	3660
tgataagtct	ccagacccaa	accccatcat	gactgatact	ccaattcctc	gcaactctca	3720
agatatcaca	ccagttgaca	actccatgga	cagcaatatc	catcaaaggc	gaaattcata	3780
cagagggcat	gagtcagagg	acagcatgtc	tacactggct	ggaaggcgag	gaatgagacc	3840
aaaaatgatg	atgccctttg	actcccagcc	accccagcct	gtgattagtg	cccatcccat	3900
ccattccctc	gataaccctc	accatcattt	ccactccagc	agcctcgctt	ctccagctcg	3960
cagtcatctc	taccacccgg	gcagcccatg	gcccattggc	acatccatgt	ccctttcaga	4020

cagggccaat tccacagaat ccgttcgaaa	tacccccage	accyacacca	ugecagectc	4080
ttcgtctcaa acatgctgca ctgatcacca	ggaccctgaa	ggtgctacca	gctcctctta	4140
cttggccagc tcccaagagg aagattcagg	ccagagtctt	cccactgccc	atgttcgccc	4200
ttcccaccca ttgaagagct tcgccgtgcc	agcaatcccg	cctccaggac	ctcccaccta	4260
tgatectgca ttgecaagea caccattact	gtcccagcaa	gctctgaacc	atcacattca	4320
ctcagtgaag acagcctcca tcgggactct	aggaaggagc	cggcctccta	tgccagtggt	4380
tgttcccagt gcccctgaag tgcaggagac	cacaaggatg	ttggaagact	ccgagagtag	4440
ctatgaacca gatgagctga ccaaagagat	ggcccacctg	gaaggactaa	tgaaggacct	4500
aaacgctatc -acaacagcat- gacgaccttc	accaggacct	gacttcaaac	ctgagtctgg	4560
aagtettgga acttaaceet tgaaaacaag	gaattgtaca	gagtacgaga	ggacagcact	4620
tgagaacaca gaatgagcca gcagactggc	cagcgcctct	gtgtagggct	ggctccaggc	4680
atggccacct gccttcccct ggtcagcctg	gaagaagcct	gtgtcgaggc	agcttccctt	4740
tgcctgctga tattctgcag gactgggcac	catgggccaa	aattttgtgt	ccagggaaga	4800
ggcgagaagt gcaacctgca tttcactttg	tggtcaggcc	gtgtctttgt	gctgtgactg	4860
catcaccttt atggagtgta gacattggca	tttatgtaca	attttatttg	tgtcttattt	4920
tattttacct tcaaaaacaa aaacgccatc	caaaaccaag	gaagtccttg	gtgttctcca	4980
caagtggttg acatttgact gcttgttcca	attatgtatg	gaaagtcttt	gacagtgtgg	5040
gtcgttcctg gggttggctt gttttttggt	ttcattttta	ttttttaatt	ctgagtcatt	5100
gcatcctcta ccagctgtta atccatcact	ctgaggggga	ggaaatgttg	cattgctgtt	5160
tgtaagcttt ttttattatt tttttattat	aattattaaa	ggcctgactc	tttcctctca	5220
tcactgtgag attacagatc tatttgaatt	gaatgaaatg	taacattgaa	aaaaaaaaa	5280
aaaaaaaa aaaaaaa				5297
<210> 54 <211> 2366 <212> DNA <213> Homo sapiens				
<pre><400> 54 ggcacgagcg agggagccgg aaagatggtg</pre>	gttaccagat	ctgcacgggc	taaggccagc	60
atccaagccg cgtcggctga aagttccggg	caaaagagtt	ttgctgctaa	tgggattcaa	120
gcgcatccag aaagtagtac tggatctgat	gcccgaacta	ctgatgaatc	acagaccact	180
gggaagcaaa gtttaatccc tagaactcct	aaagctagaa	agagtaagag	cagaactaca	240
ggctcactac caaaggggac tgaaccatct	acggatggag	agacctctga	ggcagagtca	300
aattattctg tgtctgagca ccatgatacc	attttaaggg	taactaggag	aaggcagatc	360
ttaattgcat gctccccagt gtccagtgtt	aggaaaaagc	cgaaagtaac	tccaacaaag	420
gagtettaca etgaagaaat agtgtetgaa	gcagaatctc	atgtttcagg	tatttctaga	480
attgtgcttc ctacagaaaa aactacagga	gccagaagaa	gtaaggctaa	atctctgaca	540
gatccaagcc aagaatctca tacagaagct	atatctgatg	ctgagacatc	aagctcagac	600
atttcattct ctggaattgc aactagaaga	accaggagta	tgcagaggaa	attaaaggca	660
caaactgaaa agaaagatag taagattgta	ccaggaaatg	agaaacagat	cgtgggtaca	720
cctgtgaatt cagaggattc agataccaga	caaacttccc	atttacaagc	aagatetett	780
tctgagataa ataagccaaa tttctataat	aatgactttg	atgatgattt	ctcccacaga	840

900

agttcagaaa atatattaac agtgcacgaa caggccaary rryaarcror radayadaca

agricagaaa	atatattaac	agtgcacgaa	caggecaatg	ttgaatetet	Ladayaaaca	900
aaacagaatt	gtaaggattt	ggatgaagat	gccaatggaa	taacagatga	ggggaaagaa	960
attaatgaga	aaagttctca	gctgaagaat	ctttctgaac	ttcaggacac	tagccttcaa	1020
cagttagttt	ctcagagaca	ttcaaccccc	caaaataaaa	atgctgtatc	agtgcactct	1080
aatctgaact	ctgaggctgt	aatgaaatca	ttaactcaaa	catttgcaac	tgtggaagta	1140
ggcagatgga	ataacaacaa	aaagagcccc	ataaaagcaa	gtgacttgac	aaagtttggt	1200
gattgtggtg	gtagtgatga	tgaagaagag	tccacagtta	taagtgtcag	tgaagacatg	1260
aacagtgaag	ggaatgtaga	ttttgaatgt	gataccaaac	tatacacgtc	tgcgcccaac	1320
acatctcagg	gtaaagataa	ttctgtctta	ctagttctca	gcagtgatga	aagccaacag	1380
tctgaaaaca	gtgagaatga	agaggatact	ttatgttttg	ttgaaaatag	tggccaaagg	1440
gagtcattaa	gtggagacac	aggaagtctg	tcatgtgaca	atgcattgtt	tgtaattgac	1500
acaactcctg	gaatgagtgc	tgataaaaat	ttttacttgg	aagaggaaga	caaggcaagt	1560
gaggttgcca	ttgaggaaga	aaaagaagag	gaagaggatg	aaaaaagtga	agaagattca	1620
tcagaccatg	acgaaaatga	agatgagttt	agtgatgaag	aagacttcct	aaatagcaca	1680
aaggctaaac	ttctgaagtt	gacaagcagc	agcatagacc	ctggtctgag	tatcaagcag	1740
ttgggtggtt	tgtatattaa	ttttaatgca	gataaactac	agtctaacaa	gagaacccta	1800
acacagatca	aggagaaaaa	gaaaaatgag	cttctgcaga	aagccgtcat	tacacctgat	1860
tttgaaaaaa	accactgtgt	tccaccatat	agtgaatcaa	agtatcaact	tcagaaaaaa	1920
cgcagaaaag	aacgacaaaa	aacagcaggg	gatggctggt	ttggtatgaa	agctccagaa	1980
atgacaaatg	aactgaaaaa	tgatctcaaa	gcactgaaga	tgagagccag	catggacccg	2040
aaaagatttt	acaagaaaaa	tgatagagat	ggcttcccca	agtacttcca	gattggaacc	2100
attgttgaca	atccagctga	tttctaccat	tcacgaattc	ccaagaagca	aaggaaaaga	2160
actattgtgg	aagactgctg	gctgattctg	aattcagaga	tacaaccgaa	ggaagtactc	2220
agagatcatg	gctgaaaaag	cagcaaatgc	agcaggaaaa	aagttccgaa	agaagaagaa	2280
atttcgcaat	taagatttac	caagcaaact	gcaacatttt	acattgctcc	tttatttact	2340
tattaaagac	gtttggaaaa	ctaaaa				2366
	8 o sapiens					
<400> 55 gaattccggg	ccaggcatgg	tagcgcatcg	ctgtaatccc	agctactcgg	gaaactgagg	60
tgggagaatc	gattgaacct	ggaagtggag	gttgcggtga	gccaagatca	tcctgtcgca	120
ctccagcctg	ggcaacaaga	gcgaaactcc	atctcaaaaa	gaaaaaaaaa	gatatatatg	180
tgtgacttac	aggtacaggt	aaagttgctt	ctggttttct	ggttgttgca	tggtatttcc	240
tatgcagcca	caggtcttta	ttttcttact	taagtgcctc	caacttccca	taacacaaat	300
taaggcatga	tgaacatcct	ctctgtgctg	aacatcctgt	gtatgtcact	tcagaagcct	360
gtgtgacggt	ttctttagtc	tttataccta	ggggtgggat	ttctgggtca	taggacagta	420
atttatattt	atttcactaa	gtattctctt	tctctggctt	ttgttacata	ttacctgttt	480
gtcctccaga	aaacttgcac	caatttacat	tcctaccaat	agggtaggag	agtgcacaat	540

gggtggattc taactccaaa tctaacacct cttctttct ttgtttctag cagccatggc

aatgacagge tcaacacett	gctcatccat	gagiaaccac	acaaayyaaa	gygugacaat	660
gaccaaagtg acactggaga	atttttatag	caaccttatc	gctcaacatg	aagaacgaga	720
aatgagacaa aagaagttag	aaaaggtgat	ggaagaagaa	ggcctaaaag	atgaggagaa	780
acgactccgg agatcagcac	atgctcggaa	ggaaacagag	tttcttcgtt	tgaagagaac	840
aagacttgga ttggaagatt	ttgagtcctt	aaaagtaata	ggcagaggag	catttggtga	900
ggtacggctt gttcagaaga	aagatacggg	acatgtgtat	gcaatgaaaa	tactccgtaa	960
agcagatatg cttgaaaaag	agcaggttgg	ccacattcgt	gcggagcgtg	acattctagt	1020
ggaggcagac agtttgtggg	ttgtgaaaat	gttctatagt	tttcaggata	agctaaaçct	1080
ctacctaatc atggagttcc	tgcctggagg	ggacatgatg	accttgttga	tgaaaaaaga	1140
cactctgaca gaagaggaga	ctcagtttta	tatagcagaa	acagtattag	ccatagactc	1200
tattcaccaa cttggattca	tccacagaga	catcaaacca	gacaaccttc	ttttggacag	1260
caagggccat gtgaaacttt	ctgactttgg	tctttgcaca	ggactgaaaa	aagcacatag	1320
gacagaattt tataggaatc	tgaaccacag	cctccccagt	gatttcactt	tccagaacat	1380
gaattccaaa aggaaagcag	aaacctggaa	aagaaataga	cgtcagctag	ccttctccac	1440
agtaggcact cctgactaca	ttgctcctga	ggtgttcatg	cagaccgggt	acaacaagct	1500
ctgtgattgg tggtcgcttg	gggtgatcat	gtatgagatg	ctcatcggct	acccaccttt	1560
ctgttctgag acccctcaag	agacatataa	gaaggtgatg	aactggaaag	aaactttgac	1620
ttttcctcca gaagttccca	tctctgagaa	agccaaggat	ctaattttga	ggttctgctg	1680
tgaatgggaa catagaattg	gagctcctgg	agttgaggaa	ataaaaagta	actcttttt	1740
tgaaggcgtt gactgggaac	atatcagaga	gagacctgct	gcaatatcta	ttgaaatcaa	1800
aagcattgat gatacctcaa	acttcgatga	gtttccagaa	tctgatattc	ttaagccaac	1860
agtggccaca agtaatcatc	ctgagactga	ctacaagaac	aaagactggg	tcttcatcaa	1920
ttacacgtac aagcgctttg	agggcctgac	tgcaaggggg	gcaatacctt	cctacatgaa	1980
agcagcaaaa tagtactctt	gccacggaat	cctatgtgga	gcagagttct	ttgtataaca	2040
tcatgctttt cctctcacac	tcttgaagag	cttccaagaa	gttgatggaa	cccaccaata	2100
tgtcatagta aagtctcctg	aaatgtggta	gtaagaggat	tttcttccat	aatgcatctg	2160
aaaaactgta aacaaagaca	accatttcta	ctacgtcggc	cataaacagc	tatcctgctt	2220
tggaagagaa gcatcatgag	ccaatttgat	aggtgtttta	aaaataactt	gagttttcct	2280
aagttcatca gaatgaaggg	gaaaaacagc	catcatccaa	cattattgag	attgtcgtgt	2340
atagtcatcg aatatcagcc	agttcctgta	attttgtgac	acgctctctg	ccaagcccac	2400
caagtatttc ctttatagct	aaaagttcca	tagtactaag	gaaataaagc	aataaagaca	2460
gtctcagcag ccaggattct	ggctgaagga	aatgatccgc	caccctgagg	gtggtgatgg	2520
tagtttctac ccatacctca	gcctcaggcg	agtggcttat	agcctccatt	catggtgcac	2580
tttatttatg gtactaagat	aaagactgtc	aatccattga	tttatctcct	cctgtccccc	2640
atctaaaata cccatgctgc	ttttctgagt	gttgatgggg	gttaccagct	tgatccactg	2700
ttgctcttag aaggcccaga	aagtctttgg	gcattgcaag	aaatcccgaa	ttatgtggaa	2760
aaccctcact ttctcttcac	ggctgtacca	gaaaatccct	aagacagatc	ttgccgtgga	2820
ctagcaatac ctgcaagtgc	tgccaatggg	aactcaattt	attcctggga	acctaacgag	2880
gagagcccag gcctaggcag	gaggcctgga	accctcttgg	ctaaggtgct	gttcctgttc	2940
ctgcaaggtc tccagaaccc	ctttggaaat	ggtgaaggaa	ccagcccaat	agaagtacag	3000

agccagctga cggaattc	3018
<210> 56 <211> 1846 <212> DNA <213> Homo sapiens	
<400> 56 cgctcatgga gccctggcat tgagtgtgag cacttcacac tctacctctc tcagttggcc	60
ctccgaaatg cctcaattta ggagtggtgc cccactgtgg agggtatttt caggaccatc	120
ttacaaatta ttgtgaagtg ttggaaacaa agagcttcct gcttctttc aacctggttc	180
taccatgttc caagetgtag ccaaaaggaa aataaatcag agettgaaac tageetttet	240
gatgggaata totatotggg acaccectee ettittgtet ettgececca taegteteet	300
cottacagoa caggotgttt gggaaggagg acaggatatg toatotaact tttttccato	360
cctagctgag tcactgatta aaaacaaatg aacaaacaaa aacctaaaaa accttccaga	420
aatacaaagg aaaagggttt gtttgttttt tattttaatt tttatttctg taggtttttg	480
gggaacagat ggtatttagt tacatgagaa agttatttag tggtgatttg tgagattctg	540
gtgcacccat cacccgagca gccttcactg tacccaatat gtagtctttt atccctcact	600
tacctcccac cctttcccct gagtccccaa agtccattgt gttattctta tgcctttgca	660
tecteatage tragetecea ettgtgagtg agaacatatg atgtttggtt trecatteet	720
gagttacttc acttagaata atagtctcca tccaggttgc tgcaaatgcc attaatttgt	780
tcttttttat ggctgagtag tattccatgg tgtatatata ccacaatttc tttatccact	840
cattgattga tgggcatttg ggctggttcc atatctttgc agctgtgaat tgtgctgcta	900
taaacatgcg tgtgcaagta tetttttcgt ataatgactt attttcctct gggtagatac	960
ccagtagtgg gattactgga tcaaatggta gttctttcta cttttagttc tttaaagaat	1020
ctccacattg ttttccatag tggttgtact agtttacatt cccaccagct gtgtaaacgt	1080
gttccttttt caccgcatcc acgccaacat ctgttatttt ttgatttttg gattaaggcc	1140
attettgegg agtaacgtgg tattgeattg tagttttgat ttgcatttee cagateatta	1200
gtgatgttga gcattttttc ctatatttgt tggccatttg tatatcttct tctgagaatt	1260
gtctactcat gtcctcagcc cagtttttga tgggattgtt tgttattttt tcttgctaat	1320
ttgtttgagt tccttgtaga ttatagatat tagtcctttg tcagatgtat agattgtgaa	1380
gattttctcc cactctgtgg gttgtctgtt tactctgctg actgttcctt ttgctgtgca	1440
gaagttttta tgaagcaagt ctttggggag gatattttgt ctcataaaag ttattacaaa	1500
catcaagaaa gtggattcca gccgggcgca gtggctcacg cctgtaatcc cagcactttg	1560
ggaggccaag acgggtggat cacgaggtca ggagatccag accatcctgg gtaacacggg	1620
gaaacctgtc tctactaaaa atacaaaaaa ttagctgggc atggtggcgg gcgcctgtag	1680
tcccagctac ttgggaggct gaggcaggag aatagcgtga acctgggagg tggagcttgc	1740
agtgagccga gattgtgcca ctgcactcca gcctggggga cagagcgaga ctctgtctca	1800
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaaa aaaaaa	1846
<210\ E7	

<210> 57 <211> 4006 <212> DNA <213> Homo sapiens

<400> 57

ccgattcctg	gcttttgcaa	ggctgtggtc	ggtyyccacc	agigololly	acccaygtee	60
agcgagcctt	ttccctggtg	ttgcagctgt	tgttgtaccg	ccgccgtcgc	cgccgtcgcc	120
gcctgctctg	cggggtcatg	gtgtgcttcc	gcctcttccc	ggttccgggc	tcagggctcg	180
ttctggtctg	cctagtcctg	ggagctgtgc	ggtcttatgc	attggaactt	aatttgacag	240
attcagaaaa	tgccacttgc	ctttatgcaa	aatggcagat	gaatttcaca	gtacgctatg	300
aaactacaaa	taaaacttat	aaaactgtaa	ccatttcaga	ccatggcact	gtgacatata	360
atggaagcat	ttgtggggat	gatcagaatg	gtcccaaaat	agcagtgcag	ttcggacctg	420
gcttttcctg	gattgcgaat	tttaccaagg	cagcatctac	ttattcaatt	gacagcgtct	480
cattttccta	caacactggt	gataacacaa	catttcctga	tgctgaagat	aaaggaattc	540
ttactgttga	tgaacttttg	gccatcagaa	ttccattgaa	tgaccttttt	agatgcaata	600
gtttatcaac	tttggaaaag	aatgatgttg	tccaacacta	ctgggatgtt	cttgtacaag	660
cttttgtcca	aaatggcaca	gtgagcacaa	atgagttcct	gtgtgataaa	gacaaaactt	720
caacagtggc	acccaccata	cacaccactg	tgccatctcc	tactacaaca	cctactccaa	780
aggaaaaacc	agaagctgga	acctattcag	ttaataatgg	caatgatact	tgtctgctgg	840
ctaccatggg	gctgcagctg	aacatcactc	aggataaggt	tgcttcagtt	attaacatca	900
accccaatac	aactcactcc	acaggcagct	gccgttctca	cactgctcta	cttagactca	960
atagcagcac	cattaagtat	ctagactttg	tctttgctgt	gaaaaatgaa	aaccgatttt	1020
atctgaagga	agtgaacatc	agcatgtatt	tggttaatgg	ctccgttttc	agcattgcaa	1080
ataacaatct	cagctactgg	gatgccccc	tgggaagttc	ttatatgtgc	aacaaagagc	1140
ágactgtttc	agtgtctgga	gcatttcaga	taaatacctt	tgatctaagg	gttcagcctt	1200
tcaatgtgac	acaaggaaag	tattctacag	cccaagagtg	ttcgctggat	gatgacacca	1260
ttctaatccc	aattatagtt	ggtgctggtc	tttcaggctt	gattatcgtt	atagtgattg	1320
cttacgtaat	tggcagaaga	aaaagttatg	ctggatatca	gactctgtaa	cactaatcaa	1380
tacgtgatct	ctgttacaaa	agaaaaaagc	aagtacaagt	tccaacatgc	aatactggtc	1440
aacttaaggt	atatttagtt	gcagtccagc	tctttagaat	gggtggtatg	ggggatttca	1500
aacttaaaca	aaaaactatc	aactacaaat	tagttgcctg	actttggttt	ttccaaccaa	1560
ggaatttaaa	actgttattt	ttacagcaaa	agatgtgcaa	aatcactgga	ttataagttc	1620
tattttactg	tcttgaatta	gtatttcagt	gttttcattt	tagacattca	gactaaaaat	1680
acaccgttta	gaaaaaacaa	tttttgaaaa	agagatttt	tttccctgca	ggtagttgag	1740
ttgaacaaca	tgttctaccg	tggatttgta	cttgctcctt	ttgctctttt	tgtgtgtgtg	1800
tgtgtgtgtg	tgtgtgtgtg	tgtgattttt	gtttgcaggt	taacttagct	actttggcat	1860
tgctgcatat	ttgacctttg	agagatataa	tagtagattt	gaacaggggc	tggtattatt	1920
ätgttcttag	caataaatgc	ttttctaatg	ccttttgaat	acatttgtat	ttatgtggct	1980
gtaatgacaa	aagatacaaa	agctttttaa	aatttagagt	aggtattaat	cttattgttt	2040
aatcttttt	ttaaaaaaac	tggatatttc	aatcttttaa	attgcaatat	ataagactat	2100
tccaactggg	catttcaatc	cattttttag	gtgctttaga	gataattgct	tgccagtgcc	2160
aattgagggc	attagtactt	tgtgctcata	aattggcctc	tgtatgcagt	actaaaatta	2220
atgcagattt	ctctttagcc	ttccaacatt	tcttgttgat	agtgatgtat	tttattattt	2280
tctttttctt	aagaaatgcc	agtgtgtcct	agaacctaga	taacgaagtg	cacttacact	2340
tataaaataa	cttgcatcta	ggctgggcgt	ggcggctcac	gcctgtaatc	ccagcacttt	2400

gggaggccga	agtgggtgga	tcacttgagg	ccaggagttt	gagaccagcc	tggccaacat	2460
ggtgaaaccc	catctctatc	agaaatacaa	aaaattagct	gggcatggtg	gtgggcgcct	2520
gtaatcccag	ttactcggga	ggctgaggca	ggagaatcac	ttgaacccgg	gaggcagagg	2580
ttgcggtgag	ccaagagcgc	accattgcac	tccagccttg	ggcgacaaaa	acgaaactcc	2640
atcttcaaaa	caaaacaaaa	caaaacaaac	aaacaaacaa	aacttgcatc	ttaaccaaaa	2700
gtcttggttt	tatcttaatc	cattaaaagt	tggtcttgtt	tccagcttgc	attgattgct	2760
acaacatcac	taatttggct	ttcacattta	aatggttctg	tgctaatcaa	aactttcgtt	2820
gttattattc	gttatggtag	aatcatttt	aattcacgtg	ctttgtgttc	agttttgtgg	2880
tctgagagat	gtaccaattg	tcaaattacc	gtgtaccacc	taatgtttat	aggagaaagc	2940
aaaatacatc	agcttggtag	ttaacacatc	aaatatttct	tgctgcttct	aggagaactt	3000
ttttggtgtg	tgttggaatg	gctgagcaaa	tattaaaatt	gttaatatgc	agccatatat	3060
ggaaggttcc	tgtggggttg	ttttttcgtg	tttttttt	ttgtggtggg	attatgtgcc	3120
tcccattcac	tagaaaatga	gaaaattgtc	tgggttccaa	aatattgaca	ttgaatggat	3180
caatacacac	acacagacat	atatatatat	atatgcacac	atatataggc	agttgcatgc	3240
ctagcatggg	tattttataa	ccatataact	gagttatatt	ggaattataa	atattttccg	3300
tcacttaaat	ttgttctttg	tttagcctga	aaacctttat	ggctcaagat	cágattoctg	3360
actaacccct	ctcttagagc	tacagcgagc	tgcattacca	gcttaaaaca	cttcttaggg	3420
attaaatata	gatgtaattt	ttcaaaatcg	tttttaattt	aaactgtgtt	ttagtgtaaa	3480
attgttaacc	ttgtaagatg	gataatgtgt	ataagaatgt	aggccttaac	tatttcacat	3540
gagtcaaaac	aaagcagctt	taaaaaaata	attggaagca	caatgcatgg	cactgactga	3600
atgctgttaa	tatttctaaa	agtttctaca	ttcagattat	atgcctgatt	catagtaaaa	3660
tacctctaat	aaacactgtt	ttatagaaaa	cctgacttca	gtgaatattt	ttgtatttta	3720
catgggccag	tttatatact	gctatttaca	ctattatttc	ctatagctac	atgttctttg	3780
taccttttgt	agttttattt	gtattactag	attcatacct	tgatggtaac	gctctatctg	3840
gttttgggtg	tttttcatgt	tttagcattt	gtataaagaa	actggtccat	gtaaatactt	3900
tccatgtttt	ttcttcaaat	gtttaaacca	ctagttgatg	tatggtatct	ttagatattt	3960
gcctgtctgt	ttgctcaaaa	ttgcttctaa	aacaataaag	attett		4006
<210> 58 <211> 187 <212> DNA <213> Hom <400> 58						
	cgcagggcct	agggtgggaa	gatggcaggt	gggggcggcg	acctgagcac	60
caggaggctg	aatgaatgta	tttcaccagt	agcaaatgag	atgaaccatc	ttcctgcaca	120
cagccacgat	ttgcaaagga	tgttcacgga	agaccagggt	gtagatgaca	ggctgctcta	180
tgacattgta	ttcaagcact	tcaaaagaaa	taaggtggag	atttcaaatg	caataaaaaa	240
gacatttcca	ttcctcgagg	gcctccgtga	tcgtgatctc	atcacaaata	aaatgtttga	300
agattctcaa	gattcttgta	gaaacctggt	ccctgtacag	agagtggtgt	acaatgttct	360
tagtgaactg	gagaagacat	ttaacctgcc	agttctggaa	gcactgttca	gcġatgtcaa	420
catgcaggaa	taccccgatt	taattcacat	ttataaaggc	tttgaaaatg	taatccatga	480
caaattgcct	ctccaagaaa	gtgaagaaga	agagaggag	gagaggtctg	gcctccaact	540

aagtcttgaa	caaggaactg	gtgaaaactc	ttttcgaagc	ctgacttggc	caccttcggg	600
ttccccatct	catgctggta	caaccccacc	tgaaaatgga	ctctcagagc	acccctgtga	660
aacagaacag	ataaatgcaa	agagaaaaga	tacaaccagt	gacaaagatg	attcgctagg	720
aagccaacaa	acaaatgaac	aatg t gctca	aaaggctgag	ccaacagagt	cctgcgaaca	780
aattgctgtc	caagtgaata	atggggatgc	tggaagggag	atgccctgcc	cgttgccctg	840
tgatgaagaa	agcccagagg	cagagetaca	caaccatgga	atccaaatta	attcctgttc	900
tgtgcgactg	gtggatataa	aaaaggaaaa	gccattttct	aattcaaaag	ttgagtgcca	960
agcccaagca	agaactcatc	ataaccaggc	atctgacata	atagtcatca	gcagtgagga	1020
ctctgaagga	tccactgacg	ttgatgagcc	cttagaagtc	ttcatctcag	caccgagaag	1080
tgagcctgtg	atcaataatg	acaacccttt	agaatcaaat	gatgaaaagg	agggccaaga	1140
agccacttgc	tcacgacccc	agattgtacc	agagcccatg	gatttcagaa	aattatctac	1200
attcagagaa	agttttaaga	aaagagtgat	aggacaagac	cacgactttt	cagaatccag	1260
tgaggaggag	gcgcccgcag	aagcctcaag	cggggcactg	agaagcaagc	atggtgagaa	1320
ggctcctatg	acttctagaa	gtacatctac	ttggagaata	cccagcagga	agagacgttt	1380
cagcagtagt	gacttttcag	acctgagtaa	tggagaagag	cttcaggaaa	cctgcagctc	1440
atccctaaga	agagggtcag	gtaaagaaga	ttaggatgcc	aagacttggc	ctgcagaatg	1500
tcaggaatgt	gaattaaaag	ctgctgtttc	cagacgcttt	ttattctgag	caccttcact	1560
accttgtatc	cagttcatct	gggaactcct	ttttgcattt	tagaaaatgg	aaagaggcag	1620
gaaattatga	taaactcatg	tttaacagaa	agagtttcac	tgactaaatg	tatgtaatta	1680
tattttgttg	ttgtagaaga	aataaatagc	aaatttgtgg	tattctttt	tttaaacctg	1740
ctctcattcc	tattaacact	aagatcttag	atttttatag	tgataaatgg	gttgacatca	1800
ttgtcgtttg	taattgtaaa	gcctcaaaag	acaactgttc	ctactatgta	attatagaca	1860
gaaataaaaa	cttcagatc					1879
<210> 59 <211> 2286 <212> DNA <213> Homo	sapiens					
<400> 59 cctqtqaqca	ccacqtcaac	ggctcccggc	ccccatgcac	qqqqqaqqqa	gataccccca	60
,	_	cctggctaca				120
		tccaatagcg			;	180
		ttctctgtgt				240
		gagatgatgg				300
		tactggctgg				360
acaatggctt	ctttaaaata	ctcagaggac	aggatcactg	tggaatcgaa	tcagaagtgg	420
tggctggaat	tccacgcacc	gatcagtact	gggaaaagat	ctaatctgcc	gtgggcctgt	480
					agttcacgta	540
agatacaagt	ttcagacagg	gtctgaagga	ctggattggc	caaacatcag	acctgtcttc	600
caaggagacc	aagtcctggc	tacatcccag	cctgtggtta	cagtgcagac	aggccatgtg	660
		agcgtccttc				720
gctgccccag	ctgactgtgg	cccctccgt	gatccatcca	tctccaggga	gcaagacaga	780
				Dama 60		

gacgcaggaa tggaaagcgg agttcctaac aggatgaaag ttcccccatc agttccc	cca 840
gtacctccaa gcaagtagct ttccacattt gtcacagaaa tcagaggaga gacggtg	ttg 900
gagecetttg gagaacgeca gteteceagg ecceetgeat etategagtt tgeaatg	tca 960
caacctctct gatcttgtgc tcagcatgat tctttaatag aagttttatt ttttcgt	gca 1020
ctctgctaat catgtgggtg agccagtgga acagcgggag acctgtgcta gttttac	aga 1080
ttgcctcctt atgacgcggc tcaaaaggaa accaagtggt caggagttgt ttctgac	cca 1140
ctgateteta etaceacaag gaaaatagtt taggagaaac cagettttae tgtttt	gaa 1200
aaattacagc ttcaccctgt caagttaaca aggaatgcct gtgccaataa aaggttt	cgg 1260
aattoogtoo ootttoaagt tttagggaaa tttaactgaa gtgtatacaa attagac	att 1320
gctaatatgt acaaaagtat tttatacggt ttttgaacga tctagctatt tgcaata	aac 1380
aggatgttac aaaaacagtc caataatgca tttcctatta agaagcacaa tacacaa	cat 1440
aattcaattt tattaaaaaa taacttcaaa atgtagaaca atccccttta ggaagaa	aag 1500
ctatttctgt agttcactct gtcagtaaac acacaagttg aacgctgcag cagaggg	ctg 1560
tccttttcca tggagaaaag aaatgaggct tctagggcct atctttctg ggtaaaa	att 1620
ccacctacag ctgagatggg cagttattgc ctgtggtagg cagaatttga aaatgcc	cct 1680
tccccctttc aatgagctaa tctccagaac ccgtgaatat gatgagatga	ctc 1740
ctgcaattat gttctatcgc acaatcaacc ttaaaatata tctgtgggct tgagcta	atc 1800
atatgcccct aaaacaggag gacgggagag agatatgaag catgagaaag agcagga	agg 1860
ctggtttgaa gctggagggg accacataag aaggaatgca ggcagccttg aggtgag	aga 1920
ggggcctcca gctgagagcc agcaaagaac tgaattccgc caacaacctg aatgaac	tta 1980
gaagcagatt cttccccaga gcctccatga aggaatgttg tcctgccaac ccttatt	tca 2040
gcctttaaga ccctgagcag agaatccagc cacactgtgc cagactcatg agctaca	gaa 2100
ctgctatggg tattgttttt taaactgcta aatttggggt aatttgtcac acagcaa	tag 2160
aaaactaata cactgcccaa gggtaacttt tcttaaccta attacatttg gcagttt	ctg 2220
cttgggttct gaatgcattt ttttacacaa agctctgctg gaaaaactga ataacgc	gct 2280
ggcagc	2286
<210> 60	
<211> 7680 <212> DNA	
<213> Homo sapiens	
<400> 60 gaagagcaag aggcaggete agcaaatggt teageeecag teeceggtgg etgteag:	tca 60
aagcaagccc ggttgttatg acaatggaaa acactatcag ataaatcaac agtggga	
gacctaccta ggtaatgtgt tggtttgtac ttgttatgga ggaagccgag gttttaa	
cgaaagtaaa cctgaagctg aagagacttg ctttgacaag tacactggga acactta	
agtgggtgac acttatgagc gtcctaaaga ctccatgatc tgggactgta cctgcate	
ggctgggcga gggagaataa gctgtaccat cgcaaaccgc tgccatgaag ggggtca	
ctacaagatt ggtgacacct ggaggagacc acatgagact ggtggttaca tgttaga	
tgtgtgtctt ggtaatggaa aaggagaatg gacctgcaag cccatagctg agaagtgi	
tgatcatgct gctgggactt cctatgtggt cggagaaacg tgggagaagc cctaccas	
ctggatgatg gtagattgta cttgcctggg agaaggcagc ggacgcatca cttgcac	tc 600

tagaaataga tgcaacgatc aggacacaag gacatcctat agaattggag acacctggag 660 caagaaggat aatcgaggaa acctgctcca gtgcatctgc acaggcaacg gccgaggaga 720 gtggaagtgt gagaggcaca cctctgtgca gaccacatcg agcggatctg gccccttcac 780 cgatgttcgt gcagctgttt accaaccgca gcctcacccc cagcctcctc cctatggcca 840 ctgtgtcaca gacagtggtg tggtctactc tgtggggatg cagtggttga agacacaagg 900 960 aaataagcaa atgetttgca cgtgcctggg caacggagte agetgccaag agacagetgt aacccagact tacggtggca acttaaatgg agagccatgt gtcttaccat tcacctacaa 1020 tggcaggacg ttctactcct gcaccacgga agggcgacag gacggacatc tttggtgcag 1080 cacaacttcg aattatgagc aggaccagaa atactctttc tgcacagacc acactgtttt 1140 1200 ggttcagact caaggaggaa attccaatgg tgccttgtgc cacttcccct tcctatacaa 1260 caaccacaat tacactgatt gcacttctga gggcagaaga gacaacatga agtggtgtgg 1320 gaccacacag aactatgatg ccgaccagaa gtttgggttc tgccccatgg ctgcccacga 1380 ggaaatctgc acaaccaatg aaggggtcat gtaccgcatt ggagatcagt gggataagca 1440 gcatgacatg ggtcacatga tgaggtgcac gtgtgttggg aatggtcgtg gggaatggac atgcattgcc tactcgcaac ttcgagatca gtgcattgtt gatgacatca cttacaatgt 1500 gaacgacaca ttccacaagc gtcatgaaga ggggcacatg ctgaactgta catgcttcgg 1560 tcagggtcgg ggcaggtgga agtgtgatcc cgtcgaccaa tgccaggatt cagagactgg 1620 1680 qacqttttat caaattggag attcatggga gaagtatgtg catggtgtca gataccagtg 1740 ctactgctat ggccgtggca ttggggagtg gcattgccaa cctttacaga cctatccaag ctcaagtggt cctgtcgaag tatttatcac tgagactccg agtcagccca actcccaccc 1800 1860 catccagtgg aatgcaccac agccatctca catttccaag tacattctca ggtggagacc taaaaattct gtaggeegtt ggaaggaage taccatacca ggccacttaa actcctacac 1920 catcaaaggc ctgaagcctg gtgtggtata cgagggccag ctcatcagca tccagcagta 1980 cggccaccaa gaagtgactc gctttgactt caccaccacc agcaccagca cacctgtgac 2100 cagcaacacc gtgacaggag agacgactcc cttttctcct cttgtggcca cttctgaatc tgtgaccgaa atcacagcca gtagctttgt ggtctcctgg gtctcagctt ccgacaccgt 2160 gtcgggattc cgggtggaat atgagctgag tgaggaggga gatgagccac agtacctgga 2220 tettecaage acagecaett etgtgaacat ceetgacetg etteetggee gaaaatacat 2280 2340 tgtaaatgtc tatcagatat ctgaggatgg ggagcagagt ttgatcctgt ctacttcaca aacaacageg cetgatgeec etectgacee gaetgtggae caagttgatg acaceteaat 2400 2460 tgttgttcgc tggagcagac cccaggctcc catcacaggg tacagaatag tctattcgcc 2520 atcagtagaa ggtagcagca cagaactcaa ccttcctgaa actgcaaact ccgtcaccct 2580 cagtgacttg caacctggtg ttcagtataa catcactatc tatgctgtgg aagaaaatca agaaagtaca cctgttgtca ttcaacaaga aaccactggc accccacgct cagatacagt 2700 gccctctccc agggacctgc agtttgtgga agtgacagac gtgaaggtca ccatcatgtg gacaccgcct gagagtgcag tgaccggcta ccgtgtggat gtgatccccg tcaacctgcc 2760 tggcgagcac gggcagaggc tgcccatcag caggaacacc tttgcagaag tcaccgggct 2820 gtcccctggg gtcacctatt acttcaaagt ctttgcagtg agccatggga gggagagcaa 2880 gcctctgact gctcaacaga caaccaaact ggatgctccc actaacctcc agtttgtcaa 2940

tgaaactgat	tctactgtcc	tggtgagatg	gactccacct	cgggcccaga	taacaggata	3000
ccgactgacc	gtgggcctta	cccgaagagg	ccagcccagg	cagtacaatg	tgggtccctc	3060
tgtctccaag	tacccctga	ggaatctgca	gcctgcatct	gagtacaccg	tatccctcgt	3120
ggccataaag	ggcaaccaag	agagccccaa	agccactgga	gtctttacca	cactgcagcc	3180
tgggagctct	attccacctt	acaacaccga	ggtgactgag	accaccatcg	tgatcacatg	3240
gacgcctgct	ccaagaattg	gttttaagct	gggtgtacga	ccaagccagg	gaggagaggc	3300
accacgagaa	gtgacttcag	actcaggaag	catcgttgtg	tccggcttga	ctccaggagt	3360
agaatacgtc	tacaccatcc	aagtcctgag	agatggacag	gaaagagatg	cgccaattgt	3420
aaacaaagtg	gtgacaccat	tgtctccacc	aacaaacttg	catctggagg	caaaccctga	3480
cactggagtg	ctcacagtct	cctgggagag	gagcaccacc	ccagacatta	ctggttatag	3540
aattaccaca	acccctacaa	acggccagca	gggaaattct	ttggaagaag	tggtccatgc	3600
tgatcagagc	tcctgcactt	ttgataacct	gagtcccggc	ctggagtaca	atgtcagtgt	3660
ttacactgtc	aaggatgaca	aggaaagtgt	ccctatctct	gataccatca	tcccagctgt	3720
tcctcctccc	actgacctgc	gattcaccaa	cattggtcca	gacaccatgc	gtgtcacctg	3780
ggctccaccc	ccatccattg	atttaaccaa	cttcctggtg	cgttactcac	ctgtgaaaaa	3840
tgaggaagat	gttgcagagt	tgtcaatttc	tccttcagac	aatgcagtgg	tcttaacaaa	3900
tctcctgcct	ggtacagaat	atgtagtgag	tgtctccagt	gtctacgaac	aacatgagag	3960
cacacctctt	agaggaagac	agaaaacagg	tcttgattcc	ccaactggca	ttgacttttc	4020
tgatattact	gccaactctt	ttactgtgca	ctggattgct	cctcgagcca	ccatcactgg	4080
ctacaggatc	cgccatcatc	ccgagcactt	cagtgggaga	cctcgagaag	atcgggtgcc	4140
ccactctcgg	aattccatca	ccctcaccaa	cctcactcca	ggcacagagt	atgtggtcag	4200
catcgttgct	cttaatggca	gagaggaaag	tcccttattg	attggccaac	aatcaacagt	4260
ttctgatgtt	ccgagggacc	tggaagttgt	tgctgcgacc	cccaccagcc	tactgatcag	4320
ctgggatgct	cctgctgtca	cagtgagata	ttacaggatc	acttacggag	aaacaggagg	4380
aaatagccct	gtccaggagt	tcactgtgcc	tgggagcaag	tctacagcta	ccatcagcgg	4440
ccttaaacct	ggagttgatt	ataccatcac	tgtgtatgct	gtcactggcc	gtggagacag	4500
ccccgcaagc	agcaagccaa	tttccattaa	ttaccgaaca	gaaattgaca	aaccatccca	4560
gatgcaagtg	accgatgttc	aggacaacag	cattagtgtc	aagtggctgc	cttcaagttc	4620
ccctgttact	ggttacagag	taaccaccac	tcccaaaaat	ggaccaggac	caacaaaaac	4680
taaaactgca	ggtccagatc	aaacagaaat	gactattgaa	ggcttgcagc	ccacagtgga	4740
gtatgtggtt	agtgtctatg	ctcagaatcc	aagcggagag	agtcagcctc	tggttcagac	4800
tgcagtaacc	aacattgatc	gccctaaagg	actggcattc	actgatgtgg	atgtcgattc	4860
catcaaaatt	gcttgggaaa	gcccacaggg	gcaagtttcc	aggtacaggg	tgacctactc	4920
gagccctgag	gatggaatcc	atgagctatt	ccctgcacct	gatggtgaag	aagacactgc	4980
agagctgcaa	ggcctcagac	cgggttctga	gtacacagtc	agtgtggttg	ccttgcacga	5040
tgatatggag	agccagcccc	tgattggaac	ccagtccaca	gctattcctg	caccaactga	5100
cctgaagttc	actcaggtca	cacccacaag	cctgagcgcc	cagtggacac	cacccaatgt	5160
				aagaccggac		5220
				ggacttatgg		5280
atatgaagtg	agtgtctatg	ctcttaagga	cactttgaca	agcagaccag	ctcagggtgt	5340

tgtcaccact ctggagaatg tcagcccacc aagaagggct cgtgtgacag atgctactga 5400 gaccaccatc accattagct ggagaaccaa gactgagacg atcactggct tccaagttga 5460 tgccgttcca gccaatggcc agactccaat ccagagaacc atcaagccag atgtcagaag ctacaccatc acaggittac aaccaggiac tgactacaag atctacctgt acaccitgaa 5580 tgacaatget eggageteec etgtggteat egacgeetee actgecattg atgeaceate 5640 caacctgcgt ttcctggcca ccacacccaa ttccttgctg gtatcatggc agccgccacg 5700 5760 tgccaggatt accggctaca tcatcaagta tgagaagcct gggtctcctc ccagagaagt ggtccctcgg ccccgccctg gtgtcacaga ggctactatt actggcctgg aaccgggaac 5820 5880 cgaatataca atttatgtca ttgccctgaa gaataatcag aagagcgagc ccctgattgg aaggaaaaag acagacgagc ttccccaact ggtaaccctt ccacacccca atcttcatgg 5940 accagagate ttggatgtte ettecaeagt teaaaagace cetttegtea eccaecetgg 6000 6060 gtatgacact ggaaatggta ttcagcttcc tggcacttct ggtcagcaac ccagtgttgg gcaacaaatg atctttgagg aacatggttt taggcggacc acaccgccca caacggccac 6120 ccccataagg cataggccaa gaccataccc gccgaatgta ggacaagaag ctctctctca 6180 6240 qacaaccatc tcatgggccc cattccagga cacttctgag tacatcattt catgtcatcc tgttggcact gatgaagaac ccttacagtt cagggttcct ggaacttcta ccagtgccac 6300 totgacaggo otcaccagag gtgccaccta caacatcata gtggaggcac tgaaagacca 6360 gcagaggcat aaggttcggg aagaggttgt taccgtgggc aactctgtca acgaaggctt 6420 6480 gaaccaacct acggatgact cgtgctttga cccctacaca gtttcccatt atgccgttgg 6540 agatgagtgg gaacgaatgt ctgaatcagg ctttaaactg ttgtgccagt gcttaggctt 6600 tggaagtggt catttcagat gtgattcatc tagatggtgc catgacaatg gtgtgaacta 6660 caagattgga gagaagtggg accgtcaggg agaaaatggc cagatgatga gctgcacatg tcttgggaac ggaaaaggag aattcaagtg tgaccctcat gaggcaacgt gttacgatga 6720 6780 tgggaagaca taccacgtag gagaacagtg gcagaaggaa tatctcggtg ccatttgctc 6840 ctgcacatgc tttggaggcc agcggggctg gcgctgtgac aactgccgca gacctggggg tgaacccagt cccgaaggca ctactggcca gtcctacaac cagtattctc agagatacca 6900 6960 tcagagaaca aacactaatg ttaattgccc aattgagtgc ttcatgcctt tagatgtaca 7020 ggctgacaga gaagattccc gagagtaaat catctttcca atccagagga acaagcatgt ctctctgcca agatccatct aaactggagt gatgttagca gacccagctt agagttcttc 7080 tttctttctt aagccctttg ctctggagga agttctccag cttcagctca actcacagct 7140 7200 tctccaagca tcaccctggg agtttcctga gggttttctc ataaatgagg gctgcacatt gcctgttctg cttcgaagta ttcaataccg ctcagtattt taaatgaagt gattctaaga 7260 7320 tttggtttgg gatcaatagg aaagcatatg cagccaacca agatgcaaat gttttgaaat 7380 gatatgacca aaattttaag taggaaagtc acccaaacac ttctgctttc acttaagtgt 7440 ctggcccgca atactgtagg aacaagcatg atcttgttac tgtgatattt taaatatcca cagtactcac tttttccaaa tgatcctagt aattgcctag aaatatcttt ctcttacctg 7500 ttatttatca atttttccca gtatttttat acggaaaaaa ttgtattgaa aacacttagt 7560 atgcagttga taagaggaat ttggtataat tatggtgggt gattattttt tatactgtat 7620 7680 gtgccaaagc tttactactg tggaaagaca actgttttaa taaaagattt acattccaca

<210>	61						
<211>	570						
<212>	DNA						
<213>	Homo	sapiens					
44005	٠,						
<400>	61	acaaaaatat	taatacctaa		attgccatct	atgaactcct	60
geetgea	gcc	gcagagacgc	tgatgeetaa	gaagaaccgg	accyccaccc	acquacteet	00
tttaag	gag	ggagtcatgg	tggccaagaa	ggatgtccac	atgcctaagc	acccggagct	120
ggcagac	aag	aatgtgccca	accttcatgt	catgaaggcc	atgcagtctc	tcaagtcccg	180
aggctac	gtg	aaggaacagt	ttgcctggag	acatttctac	tggtacctta	ccaatgaggg	240
tatccag	tat	ctccgtgatt	accttcatct	gcccccggag	attgtgcctg	ccaccctacg	300
ccgtage	cgt	ccagagactg	gcaggcctcg	gcctaaaggt	ctggagggtg	agcgacctgc	360
					cggagtgctg		420
					gaattccagt		480
					agaggattct		540
	-		-	,,,	-9-99		570
acaaact	tac	agccaaaaaa	CCCLAAGAA				3.0
<210>	62						
<211>	560						
<212>	DNA						
<213>	Homo	sapiens					
	c n						
<400> atggcga	62 icga	aggccgtgtg	cgtgctgaag	ggcgacggcc	cagtgcaggg	catcatcaat	60
ttcgagc	aga	aggaaagtaa	tggaccagtg	aaggtgtggg	gaagcattaa	aggactgact	120
gaaggco	tgc	atggattcca	tgttcatgag	tttggagata	atacggcagg	ctgtaccagt	180
gcaggto	ctc	actttaatcc	tctatccaga	aaacacggtg	ggccaaagga	tgaagagagg	240
catgttg	gag	acttgggcaa	tgtgactgct	gacaaagatg	gtgtggccga	tgtgtctatt	300
gaagatt	ctg	tgatctcact	ctcaggagac	cattgcatca	ttggccgcac	actggtggtc	360
catqaaa	aaq	cagatgactt	gggcaaaggt	ggaaatgaag	aaagtacaaa	gacaggaaac	420
=	_				aataaacatt		480
					gtagaaatgt		540
cageorg	1499		0000090000	,	gg	,	
acattaa	aca	ctgtaatctt					560
<210>	63						
<211> <212>	9771 DNA	L					
		sapiens					
		ouprec					
<400>	63						
atgtggc	cca	cgagacgcct	ggttactatc	aaaaggagcg	gggtcgacgg	tccccacttt	60
cccctga	gcc	tcagcacctg	cttgtttgga	aggggtattg	aatgtgacat	ccgtatccag	120
cttcctg	ittg	tgtcaaaaca	acattgcaaa	attgaaatcc	atgagcagga	ggcaatatta	180
cataatt	tca	gttccacaaa	tccaacacaa	gtaaatgggt	ctgttattga	tgagcctgta	240
cggctaa	aac	atggagatgt	aataactatt	attgatcgtt	ccttcaggta	tgaaaatgaa	300
agtcttc	aga	atggaaggaa	gtcaactgaa	tttccaagaa	aaatacgtga	acaggagcca	360
gcacgto	gtg	tctcaagatc	tagcttctct	tctgaccctg	atgagaaagc	tcaagattcc	420
aaggcct	att	caaaaatcac	tgaaggaaaa	gtttcaggaa	atcctcaggt	acatatcaag	480
aatotoa	aac	aagacagtac	cacaaataac	tcaaaanaca	atattactca	aggaacaact	540

aatgttcatt	cctcagaaca	tgctggacgt	aatyycayaa	augdagduga	recearitet	600
ggggatttta	aagaaatttc	cagcgttaaa	ttagtgagcc	gttatggaga	attgaagtct	660
gttcccacta	cacaatgtct	tgacaatagc	aaaaaaaatg	aatctccctt	ttggaagctt	720
tatgagtcag	tgaagaaaga	gttggatgta	aaatcacaaa	aagaaaatgt	cctacagtat	780
tgtagaaaat	ctggattaca	aactgattac	gcaacagaga	aagaaagtgc	tgatggttta	840
cagggggaga	cccaactgtt	ggtctcgcgt	aagtcaagac	caaaatctgg	tgggagcggc	900
cacgctgtgg	cagagcctgc	ttcacctgaa	caagagcttg	accagaacaa	ggggaaggga	960
agagacgtgg	agtctgttca	gactcccagc	aaggctgtgg	gcgccagctt	tcctctctat	1020
gagccggcta	aaatgaagac	ccctgtacaa	tattcacagc	aacaaaattc	tccacaaaaa	1080
cataagaaca	aagacctgta	tactactggt	agaagagaat	ctgtgaatct	gggtaaaagt	1140
gaaggcttca	aggctggtga	taaaactctt	actcccagga	agctttcaac	tagaaatcga	1200
acaccagcta	aagttgaaga	tgcagctgac	tctgccacta	agccagaaaa	tctctctcc	1260
aaaaccagag	gaagtattcc	tacagatgtg	gaagttctgc	ctacggaaac	tgaaattcac	1320
aatgagccat	ttttaactct	gtggctcact	caagttgaga	ggaagatcca	aaaggattcc	1380
ctcagcaagc	ctgagaaatt	gggcactaca	gctggacaga	tgtgctctgg	gttacctggt	1440
cttagttcag	ttgatatcaa	caactttggt	gattccatta	atgagagtga	gggaatacct	1500
ttgaaaagaa	ggcgtgtgtc	ctttggtggg	cacctaagac	ctgaactatt	tgatgaaaac	1560
ttgcctccta	atacgcctct	caaaagggga	gaagccccaa	ccaaaagaaa	gtctctggta	1620
atgcacactc	cacctgtcct	gaagaaaatc	atcaaggaac	agcctcaacc	atcaggaaaa	1680
caagagtcag	gttcagaaat	ccatgtggaa	gtgaaggcac	aaagcttggt	tataagccct	1740
ccagctccta	gtcctaggaa	aactccagtt	gccagtgatc	aacgccgtag	gtcctgcaaa	1800
acagcccctg	cttccagcag	caaatctcag	acagaggttc	ctaagagagg	aggagaaaga	1860
gtggcaacct	gccttcaaaa	gagagtgtct	atcagccgaa	gtcaacatga	tattttacag	1920
atgatatgtt	ccaaaagaag	aagtggtgct	tcggaagcaa	atctgattgt	tgcaaaatca	1980
tgggcagatg	tagtaaaact	tggtgcaaaa	caaacacaaa	ctaaagtcat	aaaacatggt	2040
cctcaaaggt	caatgaacaa	aaggcaaaga	agacctgcta	ctccaaagaa	gcctgtgggc	2100
gaagttcaca	gtcaatttag	tacaggccac	gcaaactctc	cttgtaccat	aataataggg	2160
aaagctcata	ctgaaaaagt	acatgtgcct	gctcgaccct	acagagtgct	caacaacttc	2220
atttccaacc	aaaaaatgga	ctttaaggáa	gatctttcag	gaatagctga	aatgttcaag	2280
accccagtga	aggagcaacc	gcagttgaca	agcacatgtc	acatcgctat	ttcaaattca	2340
gagaatttgc	ttggaaaaca	gtttcaagga	actgattcag	gagaagaacc	tetgetecce	2400
acctcagaga	gttttggagg	aaatgtgttc	ttcagtgcac	agaatgcagc	aaaacagcca	2460
tctgataaat	gctctgcaag	ccctccctta	agacggcagt	gtattagaga	aaatggaaac	2520
gtagcaaaaa	cgcccaggaa	cacctacaaa	atgacttctc	tggagacaaa	aacttcagat	2580
actgagacag	agccttcaaa	aacagtatcc	actgtaaaca	ggtcaggaag	gtctacagag	2640
ttcaggaata	tacagaagct	acctgtggaa	agtaagagtg	aagaaacaaa	tacagaaatt	2700
gttgagtgca	tcctaaaaag	aggtcagaag	gcaacactac	tacaacaaag	gagagaagga	2760
gagatgaagg	aaatagaaag	accttttgag	acatataagg	aaaatattga	attaaaagaa	2820
aacgatgaaa	agatgaaagc	aatgaagaga	tcaagaactt	gggggcagaa	atgtgcacca	2880
atgtctgacc	tgacagacct	caagagcttg	cctgatacag	aactcatgaa	agácacggca	2940
				D 76		

cgtggccaga atctcctcca aacccaagat catgccaagg caccaaagag tgagaaaggc 3000 aaaatcacta aaatgccctg ccagtcatta caaccagaac caataaacac cccaacacac 3060 acaaaacaac aqttgaaggc atccctgggg aaagtaggtg tgaaagaaga gctcctagca 3120 gtcggcaagt tcacacggac gtcaggggag accacgcaca cgcacagaga gccagcagga 3180 gatggcaaga gcatcagaac gtttaaggag tctccaaagc agatcctgga cccagcagcc 3240 cgtgtaactg gaatgaagaa gtggccaaga acgcctaagg aagaggccca gtcactagaa 3300 gacctggctg gcttcaaaga gctcttccag acaccaggtc cctctgagga atcaatgact 3360 gatgagaaaa ctaccaaaat agcctgcaaa tctccaccac cagaatcagt ggacactcca 3420 acaagcacaa agcaatggcc taagagaagt ctcaggaaag cagatgtaga ggaagaattc 3480 ttagcactca ggaaactaac accatcagca gggaaagcca tgcttacgcc caaaccagca 3540 ggaggtgatg agaaagacat taaagcattt atgggaactc cagtgcagaa actggacctg 3600 gcaggaactt tacctggcag caaaagacag ctacagactc ctaaggaaaa ggcccaggct 3660 ctagaagacc tggctggctt taaagagctc ttccagactc ctggtcacac cgaggaafta 3720 gtggctgctg gtaaaaccac taaaataccc tgcgactctc cacagtcaga cccagtggac 3780 3840 accccaacaa gcacaaagca acgacccaag agaagtatca ggaaagcaga tgtagaggga gaactettag egtgeaggaa tetaatgeea teageaggea aageeatgea eacgeetaaa 3900 ccatcagtag gtgaagagaa agacatcatc atatttgtgg gaactccagt gcagaaactg 3960 4020 gacctgacag agaacttaac cggcagcaag agacggccac aaactcctaa ggaagaggcc 4080 caggetetgg aagacetgae tggetttaaa gagetettee agaceeetgg teataetgaa 4140 gaagcagtgg ctgctggcaa aactactaaa atgccctgcg aatcttctcc accagaatca 4200 gcagacaccc caacaagcac aagaaggcag cccaagacac ctttggagaa aagggacgta cagaaggage teteageeet gaagaagete acacagacat caggggaaac cacacacaca 4260 4320 gataaagtac caggaggtga ggataaaagc atcaacgcgt ttagggaaac tgcaaaacag aaactggacc cagcagcaag tgtaactggt agcaagaggc acccaaaaac taaggaaaag 4380 gcccaacccc tagaagacct ggctggctgg aaagagctct tccagacacc agtatgcact 4440 gacaagecea egacteaega gaaaactaee aaaatageet geagateaea aceagaeeea 4500 4560 gtggacacac caacaagctc caagccacag tccaagagaa gtctcaggaa agtggacgta 4620 gaagaagaat tettegeact caggaaacga acaccatcag caggeaaage catgeacaca 4680 cccaaaccag cagtaagtgg tgagaaaaac atctacgcat ttatgggaac tccagtgcag 4740 aaactggacc tgacagagaa cttaactggc agcaagagac ggctacaaac tcctaaggaa aaggcccagg ctctagaaga cctggctggc tttaaagagc tcttccagac acgaggtcac 4800 actgaggaat caatgactaa cgataaaact gccaaagtag cctgcaaatc ttcacaacca 4860 4920 gacctagaca aaaacccagc aagctccaag cgacggctca agacatccct ggggaaagtg 4980 ggcgtgaaag aagagctcct agcagttggc aagctcacac agacatcagg agagactaca cacacacaca cagagccaac aggagatggt aagagcatga aagcatttat ggagtctcca 5040 5100 aagcagatct tagactcagc agcaagtcta actggcagca agaggcagct gagaactcct 5160 aagggaaagt ctgaagtccc tgaagacctg gccggcttca tcgagctctt ccagacacca agtcacacta aggaatcaat gactaatgaa aaaactacca aagtatccta cagagcttca 5220 cagccagacc tagtggacac cccaacaagc tccaagccac agcccaagag aagtctcagg 5280

aaagcagaca	ctgaagaaga	atttttagca	ttlayyaauu	BBBCYCCBCC	aycayycaaa	5340
gccatgcaca	cacccaaacc	agcagtaggt	gaagagaaag	acatcaacac	gtttttggga	5400
actccagtgc	agaaactgga	ccagccagga	aatttacctg	gcagcaatag	acggctacaa	5460
actcgtaagg	aaaaggccca	ggctctagaa	gaactgactg	gcttcagaga	gcttttccag	5520
acaccatgca	ctgataaccc	cacagctgat	gagaaaacta	ccaaaaaaat	actctgcaaa	5580
tctccgcaat	cagacccagc	ggacacccca	acaaacacaa	agcaacggcc	caagagaagc	5640
ctcaagaaag	cagacgtaga	ggaagaattt	ttagcattca	ggaaactaac	accatcagca	5700
ggcaaagcca	tgcacacgcc	taaagcagca	gtaggtgaag	agaaagacat	caacacattt	5760
gtggggactc	cagtggagaa	actggacctg	ctaggaaatt	tacctggcag	caagagacgg	5820
ccacaaactc	ctaaagaaaa	ggccaaggct	ctagaagatc	tggctggctt	caaagagctc	5880
ttccagacac	caggtcacac	tgaggaatca	atgaccgatg	acaaaatcac	agaagtatcc	5940
tgcaaatctc	cacaaccaga	cccagtcaaa	accccaacaa	gctccaagca	acgactcaag	6000
atatccttgg	ggaaagtagg	tgtgaaagaa	gaggtcctac	cagtcggcaa	gctcacacag	6060
acgtcaggga	agaccacaca	gacacacaga	gagacagcag	gagatggaaa	gagcatcaaa	6120
gcgtttaagg	aatctgcaaa	gcagatgctg	gacccagcaa	actatggaac	tgggatggag	6180
aggtggccaa	gaacacctaa	ggaagaggcc	caatcactag	aagacctggc	cggcttcaaa	6240
gagctcttcc	agacaccaga	ccacactgag	gaatcaacaa	ctgatgacaa	aactaccaaa	6300
atagcctgca	aatctccacc	accagaatca	atggacactc	caacaagcac	aaggaggcgg	6360
cccaaaacac	ctttggggaa	aagggatata	gtggaagagc	tctcagccct	gaagcagctc	6420
acacagacca	cacacacaga	caaagtacca	ggagatgagg	ataaaggcat	caacgtgttc	6480
agggaaactg	caaaacagaa	actggaccca	gcagcaagtg	taactggtag	caagaggcag	6540
ccaagaactc	ctaagggaaa	agcccaaccc	ctagaagact	tggctggctt	gaaagagctc	6600
ttccagacac	cagtatgcac	tgacaagccc	acgactcacg	agaaaactac	caaaatagcc	6660
tgcagatctc	cacaaccaga	cccagtgggt	accccaacaa	tcttcaagcc	acagtccaag	6720
agaagtctca	ggaaagcaga	cgtagaggaa	gaatccttag	cactcaggaa	acgaacacca	6780
tcagtaggga	aagctatgga	cacacccaaa	ccagcaggag	gtgatgagaa	agacatgaaa	6840
gcatttatgg	gaactccagt	gcagaaattg	gacctgccag	gaaatttacc	tggcagcaaa	6900
agatggccac	aaactcctaa	ggaaaaggcc	caggetetag	aagacctggc	tggcttcaaa	6960
gagctcttcc	agacaccagg	cactgacaag	cccacgactg	atgagaaaac	taccaaaata	7020
gcctgcaaat	ctccacaacc	agacccagtg	gacaccccag	caagcacaaa	gcaacggccc	7080
aagagaaacc	tcaggaaagc	agacgtagag	gaagaatttt	tagcactcag	gaaacgaaca	7140
ccatcagcag	gcaaagccat	ggacacccca	aaaccagcag	taagtgatga	gaaaaatatc	7200
aacacatttg	tggaaactcc	agtgcagaaa	ctggacctgc	taggaaattt	acctggcagc	7260
aagagacagc	cacagactcc	taaggaaaag	gctgaggctc	tagaggacct	ggttggcttc	7320
aaagaactct	tccagacacc	aggtcacact	gaggaatcaa	tgactgatga	caaaatcaca	7380
gaagtatcct	gtaaatctcc	acagccagag	tcattcaaaa	cctcaagaag	ctccaagcaa	7440
aggctcaaga	tacccctggt	gaaagtggac	atgaaagaag	agcccctagc	agtcagcaag	7500
ctcacacgga	catcagggga	gactacgcaa	acacacacag	agccaacagg	agatagtaag	7560
agcatcaaag	cgtttaagga	gtctccaaag	cagatcctgg	acccagcagc	aagtgtaact	7620
ggtagcagga	ggcagctgag	aactcgtaag	gaaaaggccc	gtgctctaga	agacctggtt	7680

gacttcaaag agctcttctc agcaccaggt cacactgaag agtcaatgac tattgacaaa 7740 aacacaaaaa ttccctgcaa atctccccca ccagaactaa cagacactgc cacgagcaca 7800 aagagatgcc ccaagacacg tcccaggaaa gaagtaaaag aggagctctc agcagttgag 7860 aggetcacge aaacatcagg geaaageaca cacacacaca aagaaccage aageggtgat 7920 gagggcatca aagtattgaa gcaacgtgca aagaagaaac caaacccagt agaagaggaa 7980 cccagcagga gaaggccaag agcacctaag gaaaaggccc aacccctgga agacctggcc 8040 ggottcacag agotototga aacatoaggt cacactoagg aatcactgac tgctggcaaa 8100 gccactaaaa taccctgcga atctccccca ctagaagtgg tagacaccac agcaagcaca 8160 aagaggcatc tcaggacacg tgtgcagaag gtacaagtaa aagaagagcc ttcagcagtc 8220 8280 aaqttcacac aaacatcagg ggaaaccacg gatgcagaca aagaaccagc aggtgaagat aaaggcatca aagcattgaa ggaatctgca aaacagacac cggctccagc agcaagtgta 8340 actggcagca ggagacggcc aagagcaccc agggaaagtg cccaagccat agaagaccta 8400 gctggcttca aagacccagc agcaggtcac actgaagaat caatgactga tgacaaaacc 8460 actaaaatac cctgcaaatc atcaccagaa ctagaagaca ccgcaacaag ctcaaagaga 8520 cggcccagga cacgtgccca gaaagtagaa gtgaaggagg agctgttagc agttggcaag 8580 ctcacacaaa cctcagggga gaccacgcac accgacaaag agccggtagg tgagggcaaa 8640 ggcacgaaag catttaagca acctgcaaag cggaacgtgg acgcagaaga tgtaattggc 8700 agcaggagac agccaagagc acctaaggaa aaggcccaac ccctggaaga cctggccagc 8760 8820 ttccaagagc tctctcaaac accaggccac actgaggaac tggcaaatgg tgctgctgat agctttacaa gcgctccaaa gcaaacacct gacagtggaa aacctctaaa aatatccaga 8880 8940 agagttette gggeeectaa agtagaacee gtgggagaeg tggtaageae cagagaeeet gtaaaatcac aaagcaaaag caacacttcc ctgccccac tgcccttcaa gaggggaggt 9000 9060 ggcaaagatg gaagcgtcac gggaaccaag aggctgcgct gcatgccagc accagaggaa attgtggagg agctgccagc cagcaagaag cagagggttg ctcccagggc aagaggcaaa 9120 tcatccgaac ccgtggtcat catgaagaga agtttgagga cttctgcaaa aagaattgaa 9180 cctgcggaag agctgaacag caacgacatg aaaaccaaca aagaggaaca caaattacaa 9240 9300 gactoggtoc otgaaaataa gggaatatoo otgogotoca gacgocaaga taagactgag 9360 gcagaacagc aaataactga ggtctttgta ttagcagaaa gaatagaaat aaacagaaat 9420 gaaaagaagc ccatgaagac ctccccagag atggacattc agaatccaga tgatggagcc 9480 cggaaaccca tacctagaga caaagtcact gagaacaaaa ggtgcttgag gtctgctaga cagaatgaga gctcccagcc taaggtggca gaggagagcg gagggcagaa gagtgcgaag 9540 9600 qttctcatqc aqaatcagaa agggaaagga gaagcaggaa attcagactc catgtgcctg agatcaagaa agacaaaaag ccagcctgca gcaagcactt tggagagcaa atctgtgcag 9660 agagtaacgc ggagtgtcaa gaggtgtgca gaaaatccaa agaaggctga ggacaatgtg 9720 9771 tgtgtcaaga aaataacaac cagaagtcat agggacagtg aagatatttg a

tecetegtet etetegggea acatggeggg egtggaggag gtageggeet eegggageea

<210> 64

²⁵⁶⁹ <211>

DNA <212>

<213> Homo sapiens

cctgaatggc	gacctggatc	cagacgacag	ggaagaagga	gctgcctcta	cggctgagga	120
agcagccaag	aaaaaaagac	gaaagaagaa	gaagagcaaa	gggccttctg	cagcagggga	180
acaggaacct	gataaagaat	caggagcctc	agtggatgaa	gtagcaagac	agttggaaag	240
atcagcattg	gaagataaag	aaagagatga	agatgatgaa	gatggagatg	gcgatggaga	300
tggagcaact	ggaaagaaga	agaaaaagaa	gaagaagaag	agaggaccaa	aagttcaaac	360
agaccctccc	tcagttccaa	tatgtgacct	gtatcctaat	ggtgtatttc	ccaaaggaca	420
agaatgcgaa	tacccaccca	cacaagatgg	gcgaacagct	gcttggagaa	ctacaagtga	480
agaaaagaaa	gcattagatc	aggcaagtga	agagatttgg	aatgattttc	gagaagctgc	540
agaagcacat	cgacaagtta	gaaaatacgt	aatgagctgg	atcaagcctg	ggatgacaat	600
gatagaaatc	tgtgaaaagt	tggaagactg	ttcacgcaag	ttaataaaag	agaatggatt	660
aaatgcaggc	ctggcatttc	ctactggatg	ttctctcaat	aattgtgctg	cccattatac	720
tcccaatgcc	ggtgacacaa	cagtattaca	gtatgatgac	atctgtaaaa	tagactttgg	780
aacacatata	agtggtagga	ttattgactg	tgcttttact	gtcactttta	atcccaaata	840
tgatacgtta	ttaaaagctg	taaaagatgc	tactaacact	ggaataaagt	gtgctggaat	900
tgatgttcgt	ctgtgtgatg	ttggtgaggc	catccaagaa	gttatggagt	cctatgaagt	960
tgaaatagat	gggaagacat	atcaagtgaa	accaatccgt	aatctaaatg.	gacattcaat	1020
tgggcaatat	agaatacatg	ctggaaaaac	agtgccgatt	gtgaaaggag	gggaggcaac	1080
aagaatggag	gaaggagaag	tatatgcaat	tgaaaccttt	ggtagtacag	gaaaaggtgt	1140
tgttcatgat	gatatggaat	gttcacatta	catgaaaaat	tttgatgttg	gacatgtgcc	1200
aataaggctt	ccaagaacaa	aacacttgtt	aaatgtcatc	aatgaaaact	ttggaaccct	1260
tgccttctgc	cgcagatggc	tggatcgctt	gggagaaagt	aaatacttga	tggctctgaa	1320
gaatctgtgt	gacttgggca	ttgtagatcc	atatccacca	ttatgtgaca	ttaaaggatc	1380
atatacagcg	caatttgaac	ataccatcct	gttgcgtcca	acatgtaaag	aagttgtcag	1440
cagaggagat	gactattaaa	cttagtccaa	agccacctca	acacctttat	tttctgagct	1500
ttgttggaaa	acatgatacc	agaattaatt	tgccacatgt	tgtctgtttt	aacagtggac	1560
ccatgtaata	cttttatcca	tgtttaaaaa	agaaggaatt	tggacaaagg	caaaccgtct	1620
aatgtaatta	accaacgaaa	aagctttccg	gacttttaaa	tgctaactgt	ttttcccctt	1680
cctgtctagg	aaaatgctat	aaagctcaaa	ttagttagga	atgacttata	cgttttgttt	1740
tgaataccta	agagatactt	tttggatatt	tatattgcca	tattcttact	tgaatgcttt	1800
gaatgactac	atccagttct	gcacctatac	cctctggtgt	tgctttttaa	ccttcctgga	1860
atccattttc	taaaaaataa	agacacattc	ttctcagcac	cacacaacac	ctattccaaa	1920
atcgaccaca	tatttggaag	taaagctctc	ctcagcaaat	gtaaaagaac	agaaattata	1980
acaaactgtc	tetcagacca	cagtataacc	aaactagaac	tcaggattaa	gaaactcact	2040
caaaaccaca	caactacatg	gaaactgaac	aacctgctcc	tgaatgacta	ctggatacat	2100
aacaaaatga	aggcagaaat	aaagatgttc	tttaaaacca	atgagaacaa	agacacaaca	2160
taccagaatc	tctgggacac	attcaaagca	gtgtgtagag	ggaaatttat	agcactaaat	2220
gcccacaaga	gaaagcagga	aatatctaaa	attgacaccc	taacatcaca	attaaaagaa	2280
ctagagaagc	aagagcaaac	acattgaaaa	gctaagagaa	ggcaagaaat	aactaagatc	2340
agagcagaac	tgaaggaaat	agagacacaa	aaaactcttc	aaaaaatcaa	tgaatccagg	2400

agctggtttt ttgaaacgat o	caacaaaatt	gatagacact	agcaagacta	acaaagaaga	2460
aaggagagaa gaatcaaata g	gaagcaataa	aaaatgataa	aggggatatc	accaccaatc	2520
ccacagaaat aaaccaccat o	cagagaatac	tacaaacacc	tctacgcaa		2569
<210> 65 <211> 2204 <212> DNA <213> Homo sapiens					
<400> 65 agaaaaatgt acatgactcc (cagtgtctgt	ggaaacatga	ttgaagacat	tataagcgag	60
tgcgtgtgac ctataaggaa a	agtctcattg	gtagaagaga	catgcatggt	agaaaggatg	120
atgcacaaaa gcagcctgtt a	aaaaatcagc	ttggattaaa	cccgcagtca	catctaccag	180
aactgcagct atttcaagct	gaagggaaaa	tatataaata	tgatcacatg	gaaaaatctg	240
tcaacagtag ttccttagtt (tccccacccc	aacgtatttc	ttctactgtc	aaaacccaca	300
tttctcatat atatgaatgt a	aattttgtgg	attcattatt	cacacaaaa	gagaaagcaa	360
atattgggac agaacactac	aaatgtaatg	agcgtggcaa	ggcctttcat	caaggcttac	420
attttactat acatcaaata	atccatacta	aagagacgca	atttaaatgt	gatatatgtg	480
gcaagatctt caataaaaaa 1	tcaaaccttg	caagtcatca	aagaattcat	actggagaga	540
agccatataa atgtaatgaa	tgtggcaagg	tcttccataa	tatgtcacac	cttgcacagc	600
atcgcaggat tcatactgga	gagaaaccat	ataaatgtaa	tgaatgtggc	aaggtcttta	660
atcaaatttc acaccttgca	caacatcaaa	gaattcatac	cggagagaaa	ccttataaat	720
gtaatgaatg tggaaaggtc	ttccatcaaa	tttcacacct	tgcacaacat	cggacaattc	780
atactggaga aaaaccttac	gaatgtaaca	aatgtggcaa	ggtgttcagt	cgcaattcct	840
accttgtaca acatctgatc	attcatactg	gagagaaacc	ttacagatgt	aatgtatgtg	900
gcaaggtctt cagtcacaag	tcatccctag	taaatcactg	gagaattcat	actggagaga	960
aaccttacaa atgtaatgag	tgtggcaagg	tcttcagtca	caagtcatcc	ctagtaaatc	1020
actggagaat ccacactgga	gagaaacctt	acaaatgtaa	tgaatgtggc	aaggtcttca	1080
gtcgcaattc ataccttgcc	caacatctga	taattcatgc	cggtgagaaa	ccttataagt	1140
gtgatgaatg tgacaaagca	ttcagtcaaa	attcacatct	tgtacaacat	cacagaatcc	1200
atactggaga gaaaccttac	aaatgtgatg	aatgtggcaa	agtcttcagt	caaaattcat	1260
accttgcata tcattggaga	attcatactg	gagaaaaagc	ttataaatgt	aatgaatgtg	1320
ggaaggtett eggtetaaac	tcatccctag	cacatcatcg	gaaaattcac	actggagaga	1380
aacctttcaa atgtaatgaa	tgtggcaaag	cttttagtat	gcgttcaagc	ctcactaatc	1440
atcatgcgat ccacactgga	gagaaacatt	tcaaatgtaa	tgaatgtggc	aaactcttcc	1500
gcgacaattc atatcttgta	cgtcatcaga	gatttcatgc	cggaaagaaa	tctaacacat	1560
gtaattaatg tggcagagtg	ttcagttagc	attaaagcct	tgtaagacat	acaataattt	1620
atactggaga aaaactttgc	aagtataatg	aatgtagcag	agcctttagt	ttttgttcaa	1680
ggcttaataa ccgttagcta	gaccatagag	gacagaaact	ttactaatgt	actgaatgtg	1740
gcaaggtctt aaggtaaaat	ctgagaccag	gatttttcaa	agaattcttg	ctggtgagaa	1800
acctaacaaa tgtaatgaat	gtggcaaggt	cttctggcac	aattctcaca	ttgtacaata	1860
ttgcaaaaat tcatgcttga	gagaaacaaa	aacactgaga	gtgggaaacc	attatgactt	1920
caaacattca tcaacatcag	agaatccata	ctaaagagca	tttataataa	ttatatgtga	1980

tagagatttt ccgcaggcca aa	agtotoact	aggcaccaaa	aacccccc	aryaaaccat	2040
acaaatgtaa cgtgcatgct ta	agctttta	cccaggcatc	aaaaccggaa	catcacaggg	2100
tttatacagg agagtaacta ca	acaaagata	atgtaataag	cctttcagtg	taatattcat	2160
gattttgtcg tgagagatcc ac	ctcaataaa	aaccaggcaa	atgt		2204
<210> 66 <211> 1883 <212> DNA <213> Homo sapiens					
<400> 66 gtcccagtca gtccggaggc tg	gcggctgca	gaagtaccgc	tgcggagtaa	ctgcaaagat	60
gctgtccgtg cgcgttgctg cg	gccgtggt	ccgcgccctt	cctcggcggg	ccggactggt	120
ctccagaaat gctttgggtt ca	stctttcat	tgctgcaagg	aacttccatg	cctctaacac	180
tcatcttcaa aagactggga ct	gctgagat	gtcctctatt	cttgaagagc	gtattcttgg	240
agctgatacc tctgttgatc tt	gaagaaac	tgggcgtgtc	ttaagtattg	gtgatggtat	300
tgcccgcgta catgggctga gg	gaatgttca	agcagaagaa	atggtagagt	tttcttcagg	360
cttaaagggt atgtccttga ac	ttggaacc	tgacaatgtt	ggtgttgtcg	tgtttggaaa	420
tgataaacta attaaggaag ga	agatatagt	gaagaggaca	ggagccattg	tggacgttcc	480
agttggtgag gagctgttgg gt	cgtgtagt	tgatgccctt	ggtaatgcta	ttgatggaaa	540
gggtccaatt ggttccaaga cg	gcgtaggcg	agttggtctg	aaagcccccg	gtatcattcc	600
tcgaatttca gtgcgggaac ca	aatgcagac	tggcattaag	gctgtggata	gcttggtgcc	660
aattggtcgt ggtcagcgtg aa	ctgattat	tggtgaccga	cagactggga	aaacctcaat	720
tgctattgac acaatcatta ac	ccagaaacg	tttcaatgat	ggatctgatg	aaaagaagaa	780
gctgtactgt atttatgttg ct	tattggtca	aaagagatcc	actgttgccc	agttggtgaa	840
gagacttaca gatgcagatg co	atgaagta	caccattgtg	gtgtcggcta	cggcctcgga	900
tgctgcccca cttcagtacc tg	gctcctta	ctctggctgt	tccatgggag	agtattttag	960
agacaatggc aaacatgctt tg	gatcatcta	tgacgactta	tccaaacagg	ctgttgctta	1020
ccgtcagatg tctctgttgc tc	ccgccgacc	ccctggtcgt	gaggcctatc	ctggtgatgt	1080
gttctaccta cactcccggt tg	gctggagag	agcagccaaa	atgaacgatg	cttttggtgg	1140
tggctccttg actgctttgc ca	agtcataga	aacacaggct	ggtgatgtgt	ctgcttacat	1200
tccaacaaat gtcatttcca to	cactgacgg	acagatette	ttggaaacag	aattgttcta	1260
caaaggtatc cgccctgcaa tt	taacgttgg	tctgtctgta	tctcgtgtcg	gatccgctgc	1320
ccaaaccagg gctatgaagc ag	ggtagcagg	taccatgaag	ctggaattgg	ctcagtatcg	1380
tgaggttgct gcttttgccc ag	gttcggttc	tgacctcgat	gctgccactc	aacaactttt	1440
gagtcgtggc gtgcgtctaa ct	gagttgct	gaagcaagga	cagtattctc	ccatggctat	1500
tgaagaacaa gtggctgtta tc	tatgcggg	tgtaagggga	tatcttgata	aactggagcc	1560
cagcaagatt acaaagtttg ag	gaatgcttt	cttgtctcat	gtcgtcagcc	agcaccaagc	1620
cttgttgggc actatcaggg ct	gatggaaa	gatctcagaa	caatcagatg	caaagctgaa	1680
agagattgta acaaatttct tg	gctggatt	tgaagcttaa	actcctgtgg	attcacatca	1740
aataccagtt cagttttgtc at	tgttctag	taaattagtt	ccatttgtaa	aagggttact	1800
ctcatactcc ttatgtacag aa	atcacatg	aaaaataaag	gttccataat	gcaaaaaaaa	1860
aaaaaaaaa aaaaaaaaaa aa	ıa				1883

<210> 67 <211> 1696 <212> DNA <213> Homo sapiens <400> 67 cacctaaaag ccaaaatggg aaaggaaaag actcatatca acattgtcgt cattggacac 60 gtagattcgg gcaagtccac cactactggc catctgatct ataaatgcgg tggcatcgac 120 aaaagaacca ttgaaaaatt tgagaaggag gctgctgaga tgggaaaggg ctccttcaag 180 tatgcctggg tcttggataa actgaaagct gagcgtgaac gtggtatcac cattgatatc 240 tccttgtgga aatttgagac cagcaagtac tatgtgacta tcattgatgc cccaggacac 300 agagacttta tcaaaaacat gattacaggg acatctcagg ctgactgtgc tgtcctgatt 360 gttgctgctg gtgttggtga atttgaagct ggtatctcca agaatgggca gacccgagag 420 catgcccttc tggcttacac actgggtgtg aaacaactaa ttgtcggtgt taacaaaatg 480 gattccactg agccacccta cagccagaag agatatgagg aaattgttaa ggaagtcagc 540 acttacatta agaaaattgg ctacaacccc gacacagtag catttgtgcc aatttctggt 600 660 tggaatggtg acaacatgct ggagccaagt gctaacatgc cttggttcaa gggatggaaa gtcacccgta aggatggcaa tgccagtgga accacgctgc ttgaggctgt ggactgcatc 720 780 ctaccaccaa ctcgtccaac tgacaagccc ttgcgcctgc ctctccagga tgtctacaaa attggtggta ttggtactgt tcctgttggc cgagtggaga ctggtgttct caaacccggt 840 atggtggtca cctttgctcc agtcaacgtt acaacggaag taaaatctgt cgaaatgcac 900 catgaagett tgagtgaage tetteetggg gacaatgtgg getteaatgt caagaatgtg 960 1020 tctqtcaaqq atqttcqtcg tggcaacgtt gctggtgaca gcaaaaatga cccaccaatg quaqcagetg getteactge teaggtgatt atcetgaace atceaggeea aataagegee 1080 ggctatgccc ctgtattgga ttgccacacg gctcacattg catgcaagtt tgctgagctg 1140 1200 aaggaaaaga ttgatcgccg ttctggtaaa aagctggaag atggccctaa attcttgaag 1260 tctggtgatg ctgccattgt tgatatggtt cctggcaagc ccatgtgtgt tgagagcttc tcagactatc cacctttggg tcgctttgct gttcgtgata tgagacagac agttgcggtg 1320 ggtgtcatca aagcagtgga caagaaggct gctggagctg gcaaggtcac caagtctgcc 1380 cagaaagctc agaaggctaa atgaatatta tccctaatac ctgccacccc actcttaatc 1440 1500 agtggtggaa gaacggtctc agaactgttt gtttcaattg gccatttaag tttagtagta 1560 aaaqactggt taatgataac aatgcatcgt aaaaccttca gaaggaaagg agaatgtttt 1620 gtggaccact ttggttttct tttttgcgtg tggcagtttt aagttattag tttttaaaat cagtactttt taatggaaac aacttgacca aaaatttgtc acagaatttt gagacccatt 1680 aaaaaagtta aatgag 1696 <210> 68 4648 <211> <212> DNA <213> Homo sapiens 60 gaatgcaggt gagaaaaggc acggactctg cggctgcgaa cccaaacttg ggcaccgcac 120 ggtgcgcact gctcagcctt cgccccgtg ggcgaaaggc tgctgcggtt tcaggcggct 180 gcttcgtgac taatgacctt gcgcagagtt gttaagaaaa aagagaaacc cgcgctctcc 240 ggggtgagaa gggactgact ctgggcgtct ctgaagatgg ctcgggcttc tctttggcgc

gccggggga	ccctgacact	gaccgctctg	tgacgcgagt	agtctcccct	gcaccgtgcc	300
cgaagcgacg	tgccggggga	tttttcattc	tcgatctgtt	gactggctcc	cccgctgcat	360
gagcagatcg	gagttgagac	tggcttgttg	ctggccccag	cgcctggtgc	aggaagcgac	420
tcacgtttgt	ctgggtggcc	ggagccggag	ccggagcaga	gctgggcttt	ggagtgagtg	480
cctggaacgt	gaattggact	caactcgagt	agcagcaaag	accagcgggc	tggcaggcgg	540
gggaggctgc	aggctcattc	cccacctctt	cccagcccca	ctgcccgtct	gccggagcgg	600
ttctggcccc	ttccgacaga	gcggggacta	gagccgggga	ttctccgccc	gctgagggga	660
tgactctggg	ttgggggagc	gccgaacccg	cggcgcgcag	tgtcccgtga	actgtgagta	. 720
ctgcgactga	acggcggcag	gcgagcgggc	gattagcacc	cattgcatga	attatgaaac	780
aataactttc	ggaagaagca	ggaggaaaaa	aagaagcatc	tatcgctgcc	ctcccacccc	840
cattcccggc	caactctcca	cgccgctttt	gececetece	tccctccct	ctcgctcctt	900
cctttccggg	agaggggaga	ggactcgggg	gagggcaggc	ggccggcccc	ggaggagggg	960
ggcgccgagg	gggctgtggt	tagaaggagc	agtagcagca	gcaggagaag	atgctgagga	1020
tgcggaccgc	gggatgggcg	cgcggctggt	gcttgggctg	ctgcctcctc	ctgccgctct	1080
cgttcagcct	ggcggccgcc	aagcagctcc	tccggtaccg	gctggccgag	gagggccccg	1140
ccgacgtccg	catcggcaac	gtggcttcag	acctgggcat	cgtgaccgga	tcgggtgagg	1200
tgactttcag	cctggagtcc	ggttccgagt	acctgaagat	cgacaacctc	actggcgagc	1260
tgagcacgag	cgagcggcgc	atcgaccgcg	agaagctgcc	ccagtgtcag	atgatcttcg	1320
acgagaacga	gtgcttcctg	gacttcgagg	tgtcggtgat	cgggccctcg	cagagctggg	1380
tggacctgtt	tgagggtcag	gtcatcgtgc	ttgacatcaa	cgacaacacg	cccaccttcc	1440
cgtcgcccgt	gctcacgctc	acggtggagg	agaatcggcc	ggtgggcaca	ctttacctgc	1500
tgcccacago	caccgaccgc	gacttcggcc	gcaacggcat	cgagcgctac	gagctgctcc	1560
aggagcccgg	aggcggcggc	agcggcggcg	agagccggcg	cgccggggcg	gccgacagcg	1620
ccccctaccc	cgggggcggc	gggaacggcg	cgagcggcgg	cggctcggga	ggctccaagc	. 1680
ggcggctgga	cgcatcagag	ggcggcggcg	gcaccaaccc	cggcggccgc	agcagcgtgt	1740
tcgagctgca	ggtggcggac	accccggacg	gcgagaagca	gccgcagctg	atcgtgaagg	1800
gggcgctgga	ccgcgagcag	cgcgactcct	acgagctgac	cctgcgagtg	cgcgacggcg	1860
gcgacccgcc	tegetecteg	caggccatcc	tacgggtcct	catcaccgac	gtgaacgaca	1920
acagcccccg	cttcgagaag	agcgtgtacg	aggccgactt	ggctgagaac	agcgccccgg	1980
ggacccccat	cctgcaactg	cgcgcagccg	acttggacgt	gggggtcaac	gggcagatcg	2040
aatacgtgtt	cggggcggcc	accgagtcgg	tgaggcggct	gctgcgcctt	gacgagacgt	2100
ccggctggct	cagcgtcctg	caccggatcg	accgcgagga	ggtgaaccag	ctgcgcttca	2160
cggtcatggc	ccgcgaccgc	gggcagcccc	ccaagaccga	caaggccacc	gtggtcctta	2220
acatcaaaga	cgagaacgac	aacgtgccgt	ccattgaaat	ccgcaagatt	gggcgcatcc	2280
ccctcaagga	cggggtggcc	aacgtggccg	aggacgttct	ggtcgacacc	cccatcgctc	2340
tggtgcaggt	gtccgaccga	gaccaaggcg	agaacggggt	ggtcacctgc	accgtggtgg	2400
gcgacgtgcc	cttccagctc	aagccagcca	gcgacaccga	gggcgaccag	aacaagaaaa	2460
agtacttctt	gcacacctcg	acccctctgg	actatgaggc	cacccgggag	ttcaacgtgg	2520
tcatcgtggc	ggtggactca	ggcagcccca	gcctctcgag	caagaactcc	ctgattgtca	2580

aggtgggaga	caccaacgac	aacccgccca	tgttcggcca	gtcggtggtg	gaggtttact	2640
tccctgagaa	caacatcccg	ggcgagaggg	tggccacggt	gctggcgaca	gacgcagaca	2700
gcggtaagaa	cgccgagatc	gcctactcgc	tggactcctc	tgtgatgggg	atctttgcca	2760
tcgatcccga	ttctggggac	atcctggtca	ataccgtgct	ggaccgcgag	cagactgaca	2820
ggtatgagtt	taaagttaac	gccaaagaca	aaggcatccc	cgtgctgcag	ggcagcacta	2880
cggtgattgt	gcaggtggct	gataaaaatg	acaatgaccc	taagtttatg	caggacgtct	2940
tcacctttta	tgtgaaagaa	aacttgcagc	ccaacagccc	tgtggggatg	gtcaccgtga	3000
tggatgctga	caaggggcgg	aatgcagaga	tgagcctgta	catagaggag	aacaataaca	3060
ttttttctat	tgaaaatgac	acggggacca	tttactccac	aatgtctttt	gaccgggaac	3120
atcagaccac	atacactttc	agagtcaagg	ctgtggatgg	gggagatcct	cccagatctg	3180
ccacagctac	agtctcgctt	tttgtgatgg	atgaaaatga	caatgctccc	acagttaccc	3240
ttcccaaaaa	catttcctac	actttactgc	caccttcgag	taatgtcagg	acagtagtag	3300
ctacagtgtt	ggcaacagac	agtgatgatg	gcatcaatgc	agacctgaac	tacagcattg	3360
tgggaggaaa	tcccttcaag	ctgtttgaaa	ttgatcccac	tagtggtgtg	gtttccttag	3420
tgggaaaact	cacccaaaag	cattatggct	tgcacaggtt	ggtggtgcaa	gtgaatgaca	3480
gtgggcagcc	ttcccagtcc	accacgactg	tggtgcacgt	gtttgtcaat	gaaagtgttt	3540
ctaatgcaac	tgcgattgac	tcccagatag	ctagaagttt	gcacatecea	ctcacccagg	3600
atatagctgg	tgacccaagc	tatgaaatta	gcaaacagag	actcagtatt	gtcattggcg	3660
tagttgctgg	cattatgacg	gtgattctaa	tcatcttaat	tgtagtgatg	gcaaggtact	3720
gcaggtccaa	aaataaaaat	ggctatgaag	ccggcaaaaa	agatcacgaa	gacttttta	3780
caccccaaca	gcatgacaaa	tctaaaaagc	ctaaaaagga	caagaaaaac	aaaaaatcta	3840
agcagcctct	ctacagcagc	attgtcactg	tggaggcttc	taagccaaat	ggacagaggt	3900
atgatagtgt	caatgagaag	ctgtcagaca	gcccaagcat	ggggcgatac	agatccgtta	3960
atggtgggcc	cggcagtcct	gacctggcaa	ggcattacaa	atctagttcc	ccattgccta	4020
ctgttcagct	tcatccccag	tcaccaactg	caggaaaaaa	acaccaggcc	gtacaagatc	4080
taccaccagc	caacacattt	gtgggagcag	gagacaacat	ttcaattgga	tcagatcact	4140
gctctgagta	cagctgtcaa	accaataaca	agtacagcaa	acagatgcgt	ctacatccat	4200
acattactgt	gtttggctga	attccactct	aatatgatgc	tccattatgc	accatactgt	4260
gatgaccttt	ctactccgaa	acctgctgga	gcctgccctt	ggccgtgggg	tgtcagccaa	4320
tcactgcttg	ttccacttgt	tgtacatttt	atttttgagt	ctttttcttt	ctcatataca	4380
gaaaaatagt	atgaaaataa	aataaatgta	tgaaacagta	ttaatgcaga	aatgtgctac	4440
taatggatgt	ctgagtcacc	agaaattcca	ttcttaaaga	ggcggttagc	acctattaga	4500
	-			caacaataag	-	4560
tgtgtgaaca	aagggaaatt	cagcctctta	tgtctttgtc	tttaatacat	taaatactga	4620
ttttgaataa	aaatctaaat	tgatcaat				4648

<210> 69 <211> 2386 <212> DNA <213> Homo sapiens

<400> 69
aagaattegg cacgaggatg acttetett ggaaaagaaa accattgagt gggetgaaga

gattaagaaa	atcgaagaag	ccgagcggga	agcayayıyı	aaaattycyg	aaycayaagc	120
taaagtgaat	tctaagagtg	gcccagaggg	cgatagcaaa	atgagcttct	ccaagactca	180
cagtacagcc	acaatgccac	ctcctattaa	ccccatcctc	gccagcttgc	agcacaacag	240
catcctcaca	ccaactcggg	tcagcagtag	tgccacgaaa	cagaaagttc	tcagcccacc	300
tcacataaag	gcggatttca	atcttgctga	ctttgagtgt	gaagaagacc	catttgataa	360
tctggagtta	aaaactattg	atgagaagga	agagctgaga	aatattctgg	taggaaccac	420
tggacccatt	atggctcagt	tattggacaa	taacttgccc	aggggaggct	ctgggtctgt	480
gttacaggat	gaggaggtcc	tggcatcctt	ggaacgggca	accctagatt	tcaagcctct	540
tcataaaccc	aatggcttta	taaccttacc	acagttgggc	aactgtgaaa	agatgtcact.	600
gtcttccaaa	gtgtccctcc	cccctatacc	tgcagtaagc	aatatcaaat	ccctgtcttt	660
ccccaaactt	gactctgatg	acagcaatca	gaagacagcc	aagctggcga	gcactttcca	720
tagcacatcc	tgcctccgca	atggcacgtt	ccagaattcc	ctaaagcctt	ccacccaaag	780
cagtgccagt	gagctcaatg	ggcatcacac	tcttgggctt	tcagctttga	acttggacag	840
tggcacagag	atgccagccc	tgacatcctc	ccagatgcct	tccctctctg	ttttgtctgt	900
gtgcacagag	gaatcatcac	ctccaaatac	tggtcccacg	gtcacccctc	ctaatttctc	• 960
agtgtcacaa	gtgcccaaca	tgcccagctg	tccccaggcc	tattctgaac	tgcagatgct	1020
gtcccccagc	gagcggcagt	gtgtggagac	ggtggtcaac	atgggctact	cgtacgagtg	1080
tgtcctcaga	gccatgaaga	agaaaggaga	gaatattgag	cagattctcg	actatctctt	1140
tgcacatgga	cagctttgtg	agaagggctt	cgaccctctt	ttagtggaag	aggctctgga	1200
aatgcaccag	tgttcagaag	aaaagatgat	ggagtttctt	cagttaatga	gcaaatttaa	1260
ggagatgggc	tttgagctga	aagacattaa	ggaagttttg	ctattacaca	acaatgacca	1320
ggacaatgct	ttggaagacc	tcatggctcg	ggcaggagcc	agctgagacc	aggccctgcc	1380
taggccctgc	cgcagaacca	ccatccctgg	gaggccctgc	agagcccacc	tgtggggaaa	1440
gagaaggggc	agcttccgga	ttttcttttg	ggggttagaa	ggtcaggtgt	ggagactgct	1500
cgccagtctc	tgtgagccta	ggccctgagc	tggggaggtg	gggaagattc	gggcatgtga	1560
gtgcccccag	aactgtcctg	gctccttccg	tattaaacgc	atttgcattt	tgagaagtgt	1620
ccttcccact	tcagccctcc	ggagagacta	ccctagtctt	tctggggtgt	ttatgtcctc	1680
agctgaagcc	tggcctagtt	gctgagaggg	gctggggaga	tggggcggga	gggccagact	1740
cagtgctgct	gtggagctag	gtgcttcccc	cttcccctga	gactggttga	ctgaactcca	1800
gtcaagttga	gttcaagtga	aagattcttc	cagggtttta	ttttttcccc	tcctaacaaa	1860
gtctcatagt	gttaacactg	gttctgcaat	atctctgagg	tgcaaagaat	gcacttttcc	1920
ctatggggcc	cagagtttgc	cttttctgcc	aggcagtcac	cacgcttccc	taccccagcc	1980
tgtttctttt	ggcttggttt	ggaccacagt	cctctgctac	ccagggtttt	agagcccctg	2040
ctctaggaaa	cagtttaaga	aatcattggc	cccttcccag	cacattgaat	gggtaagcag	2100
acaggccatg	atttagttgg	ccagcactaa	ctccacctct	gttctccttg	aacagcttcc	2160
cctccagccc	actgctttag	gatgacacaa	tgaataacac	ctagtcatag	aaatcagtct	2220
ctctggtttg	ttttgtatta	tgttgtacat	cattaaagat	ctaaatacaa	aggatataca	2280
gtcttgaatc	taaaataatt	tgctaactat	tttgattctt	cagagagaac	tactaataaa	2340
aatctaaaag	gtaaaaaaaa	aaaaaaaaa	aaaaaaaa	aaaaaa		2386

<210> 70 <211> 139 <212> DNA						
	o sapiens					
(222> (1)	c_feature (1399) ,T,C,or G					
<400> 70 gtcgtatttc	caaggactcc	aaagcgaggc	cggggactga	aggtgtgggt	gtcgagccct	60
ctggcagagg	gttaacctgg	gtcaaatgca	cggattctca	cctcgtacag	ttacgctctc	120
ccgcggcacg	tccgaaggat	ttggaagtcc	tgagcgctca	agtttgtccg	tagtcgagag	180
aaggccatgg	aggtgccgcc	accggacgcn	gggagctttc	tctgtagagc	attgtgccta	240
ttccccgag	tctttgctgc	cgaagctgtg	actgccgatt	cggaagtcct	tgaggagcgt	300
cagaagcggc	ttccctacgt	cccagagccc	tattacccgg	aatctggatg	ggaccgcctc	360
cgggagctgt	ttggcaaaga	tgaacagcag	agaatttcaa	aggaccttgc	taatatctgt	420
agacggcag	ctacagcagg	catcattggc	tgggtgtatg	ggggaatacc	agcttttatt	480
catgctaaac	aacaatacat	tgagcagagc	caggcagaaa	tttatcataa	ccggtttgat	540
gctgtgcaat	ctgcacatcg	tgctgccaca	cgaggcttca	ttcgttatgg	ctggcgctgg	600
ggttggagaa	ctgcagtgtt	tgtgactata	ttcaacacag	tgaacactag	tctgaatgta	660
caccgaaata	aagatgcctt	aagccatttt	gtaattgcag	gagctgtcac	gggaagtctt	720
ttaggataa	acgtaggcct	gcgtggcctg	gtggctggtg	gcataattgg	agccttgctg	780
ggcactcctg	taggaggcct	gctgatggca	tttcagaagt	actctggtga	gactgttcag	840
gaaagaaaac	agaaggatcg	aaaggcactc	catgagctaa	aactggaaga	gtggaaaggc	900
agactacaag	ttactgagca	cctccctgag	aaaattgaaa	gtagtttaca	ggaagatgaa	960
ctgagaatg	atgctaagaa	aattgaagca	ctgctaaacc	ttcctagaaa	cccttcagta	1020
atagataaac	aagacaagga	ctgaaagtgc	tctgaacttg	aaactcactg	gagagctgaa	1080
ggagctgcc	atgtccgatg	aatgccaaca	gacaggccac	tctttggtca	gcctgctgac	1140
aatttaagt	gctggtacct	gtggtggcag	tggcttgctc	ttgtcttttt	cttttcttt	1200
aactaagaa	tggggctgtt	gtactctcac	tttacttatc	cttaaattta	aatacatact	1260
atgtttgta	ttaatctatc	aatatatgca	tacatgaata	tatccaccca	cctagatttt	1320
agcagtaaa	taaaacattt	cgcaaaagat	taaagttgaa	ttttacagtt	aaaaaaaaa	1380
aaaaaaaa	aaaaaaaa					1399
(210> 71 (211> 101 (212> DNA (213> Hom						
(400> 71 Icagaaatag	cctagggaga	tcaaccccga	gatgctgaac	aaagtgctgt	cccaactaaa	60
		tcgtggacgt				120
		cgctgctgct				180
		aagagctgaa				240
		attcctgtgg			- '	300
				aaacagtttc		360

agagaaaatg tcccctgaag acagagcaaa atguuriyaa aayaaryayy ccaracaggc	420
agcccatgat gccgtggcac aggaaggcca atgtcgggta gatgacaagg tgaatttcca	480
ttttattctg tttaacaacg tggatggcca cctetatgaa cttgatggac gaatgccttt	540
tccggtgaac catggcgcca gttcagagga caccctgctg aaggacgctg ccaaggtgtg	600
cagagaattc accgagcgtg agcaaggaga agtccgcttc tctgccgtgg ctctctgcaa	660
ggcagcctaa tgctctgtgg gagggacttt gctgatttcc cctcttccct tcaacatgaa	720
aatatatacc ccccatgcag tctaaaatgc ttcagtactt gtgaaacaca gctgttcttc	780
tgttctgcag acacgccttc ccctcagcca cacccaggca cttaagcaca agcagagtgc	840
acagetgtcc actgggccat tgtggtgtga gcttcagatg gtgaagcatt ctccccagtg	900
tatgtcttgt atccgatatc taacgcttta aatggctact ttggtttctg tctgtaagtt	960
aagaccttgg atgtggttat gttgtcctaa agaataaatt ttgctgatag tagc	1014
<210> 72 <211> 3179 <212> DNA <213> Homo sapiens <400> 72	
ccccccttt ttgaaattat gtgctgctgt ttaaaacaac aaacaaaaaa aacaacaaaa	60
acacagcaac tgcggatttt gtccccggct ggagcccagc gccccgcctg gaatggatga	120
gcctctccat gagagatccg gtcattcctg ggacaagcat ggcctaccat ccgttcctac	180
ctcaccgggc gccggacttc gccatgagcg cggtgctggg tcaccagccg ccgttcttcc	240
ccgcgctgac gctgcctccc aacggcgcgg cggcgctctc gctgccgggc gccctggcca	300
agccgatcat ggatcaattg gtgggggggg ccgagaccgg catcccgttc tectecctgg	360
ggccccaggc gcatctgagg cetttgaaga ccatggagcc cgaagaagag gtggaggacg	420
accccaaggt gcacctggag gctaaagaac tttgggatca gtttcacaag cggggcaccg	480
agatggtcat taccaagtcg ggaaggcgaa tgtttcctcc atttaaagtg agatgttctg	540
ggctggataa aaaagccaaa tacattttat tgatggacat tatagctgct gatgactgtc	600
gttataaatt tcacaattct cggtggatgg tggctggtaa ggccgacccc gaaatgccaa	660
agaggatgta cattcacccg gacagccccg ctactgggga acagtggatg tccaaagtcg	720
tcactttcca caaactgaaa ctcaccaaca acatttcaga caaacatgga tttactttgg	780
ccttcccaag tgatcacgct acgtggcagg ggaattatag ttttggtact cagactatat	840
tgaactccat gcacaaatac cagccccggt tccacattgt aagagccaat gacatcttga	900
aactccctta tagtacattt cggacatact tgttccccga aactgaattc atcgctgtga	960
ctgcatacca gaatgataag ataacccagt taaaaataga caacaaccct tttgcaaaag	1020
gtttccggga cactggaaat ggccgaagag aaaaaagaca acagctcacc ctgcagtcca	1080
tgagggtgtt tgatgaaaga cacaaaaagg agaatgggac ctctgatgag tcctccagtg	1140
aacaagcagc tttcaactgc ttcgcccagg cttcttctcc agccgcctcc actgtaggga	1200
catcgaacct caaagattta tgtcccagcg agggtgagag cgacgccgag gccgagagca	1260
aagaggagca tggccccgag gcctgcgacg cggccaagat ctccaccacc acgtcggagg	1320
agccctgccg tgacaagggc agccccgcgg tcaaggctca ccttttcgct gctgagcggc	1380
cccgggacag cgggcggctg gacaaagcgt cgcccgactc acgccatagc cccgccacca	1440
tctcgtccag cactcgcggc ctgggcgcgg aggagcgcag gagcccggtt cgcgagggca	1500

cagcgccggc	caaqgtqqaa	gaggcgcgcg	cgcrocoyyy	caayyayyuu	Licycycege	1560
		gctcgcagct				1620
acaccatgcg	cccgcggctg	cgctacagcc	cctactccat	cccggtgccg	gtcccggacg	1680
gcagcagtct	gctcaccacc	gccctggccg	ccagcccggc	ctcggtggca	gtggactcgg	1740
gctctgaact	caacagccgc	tcctccacgc	tctcctccag	ctccatgtcc	ttgtcgccca	1800
aactctgcgc	ggagaaagag	gcggccacca	gcgaactgca	gagcatccag	cggttggtta	1860
gcggcttgga	agccaagccg	gacaggtccc	gcagcgcgtc	cccgtagacc	cgtcccagac	1920
acgtcttttc	attccagtcc	agttcaggct	gccgtgcact	ttgtcggata	taaaataaac	1980
cacgggcccg	ccatggcgtt	agcccttcct	tttgcagttg	cgtctgggaa	ggggccccgg	2040
actccctcga	gagaatgtgc	tagagacagc	ccctgtcttc	ttggcgtggt	ttatatgtcc	2100
gggatctgga	tcagattctg	ggggctcaga	aacgtcggtt	gcattgagct	actgggggta	2160
ggagttccaa	catttatgtc	cagagcaact	tccagcaagg	ctggtctggg	tctctgccac	2220
caggcgggga	ggtgttcaaa	gacatctcct	cagtgcggat	ttatatatat	attttcttc	2280
actgtgtcaa	agtggaaaca	aaaacaaaat	ctttcaaaaa	aaaaatccgg	acaagtgaac	2340
acattaacat	gattctgttt	gtgcagatta	aaaactttat	agggacttgc	attatcggtt	2400
ctcaataaat	tactgagcag	ctttgtttgg	ggagggaagt	ccctaccatc	cttgtttagt	2460
ctatattaag	aaaatctgtg	tctttttaat	attcttgtga	tgttttcaga	gccgctgtag	2520
gtctcttctt	gcatgtccac	agtaatgtat	ttgtggtttt	tattttgaac	gcttgctttt	2580
agagagaaaa	caatatagcc	ccctaccctt	ttcccaatcc	tttgccctca	aatcagtgac	2640
.ccaagggagg	gggggattta	aagggaagga	gtgggcaaaa	cacataaaat	gaatttatta	2700
tatctaagct	ctgtagcagg	attcatgtcg	ttctttgaca	gttctttctc	tttcctgtat	2760
atgcaataac	aaggttttaa	aaaaaaaaa	aaaaagtgag	actattagac	aaagtattta	2820
tgtaattatt	tgataactct	tgtaaatagg	tggaatatga	atgcttggaa	aattaaactt	2880
taatttattg	acattgtaca	tagctctgtg	taaatagaat	tgcaactgtc	aggttttgtg	2940
ttcttgtttt	cctttagttg	ggtttatttc	caggtcacag	aattgctgtt	aacactagaa	3000
aacacacttc	ctgcaccaac	accaataccc	tttcaaaaga	gttgtctgca	acatttttgt	3060
tttctttttt	aatgtccaaa	agtgggggaa	agtgctattt	cctattttca	ccaaaattgg	3120
ggaaggagtg	ccactttcca	gctccacttc	aaattcctta	aaatataact	gagattgct	3179
<210> 73 <211> 1009 <212> DNA <213> Homo	e sapiens					
<400> 73 gggggacggg	cactgggcga	ctctgtgcct	cgctgaggaa	aaataactaa	acatgggcaa	60
aggagatcct	aagaagccga	gaggcaaaat	gtcatcatat	gcatttttg	tgcaaacttg	120
tcgggaggag	cataagaaga	agcacccaga	tgcttcagtc	aacttctcag	agttttctaa	180
gaagtgctca	gagaggtgga	agaccatgtc	tgctaaagag	aaaggaaaat	ttgaagatat	240
ggcaaaagcg	gacaaggccc	gttatgaaag	agaaatgaaa	acctatatcc	ctcccaaagg	300
ggagacaaaa	aagaagttca	aggatcccaa	tgcacccaag	aggcctcctt	cggccttctt	360
cctcttctgc	tctgagtatc	gcccaaaaat	caaaggagaa	catcctggcc	tgtccattgg	420
tgatgttgcg	aagaaactgg	gagagatgtg	gaataacact	gctgcagatg	acaagcagcc	480

ttatgaaaag aaggctgcga agctgaagga aaaatacgaa aaggatatag Ctycatatcg	540
agctaaagga aagcctgatg cagcaaaaaa gggagttgtc aaggctgaaa aaagcaagaa	600
aaagaaggaa gaggaggaag atgaggaaga tgaagaggat gaggaggagg aggaagatga	660
agaagatgaa gatgaagaag aagatgatga tgatgaataa gttggttcta gcgcagtttt	720
ttttttcttg tctataaagc atttaacccc cctgtacaca actcactccc ttttaaagaa	780
aaaaattgaa atgtaaggct gtgtaagatt tgtttttaaa ctgtacagtg tctttttttg	840
tatagttaac acactaccga atgtgtcttt agatagccct gtcctggtgg tattttcaat	900
agccactaac cttgcctggt acagtatggg ggttgtaaat tggcatggaa atttaaagca	960
ggttcttgtt ggtgcacagc acaaattagt tatatatggg gatggtagt	1009
<210> 74 <211> 1344 <212> DNA <213> Homo sapiens	
<400> 74 agagagaaag gttgtgatgg cggctatagc tgcatccgag gtgctggtgg acagcgcgga	60
ggaggggtcc ctcgctgcgg cggcggagct ggccgctcag aagcgcgaac agagactgcg	120
caaattccgg gagctgcacc tgatgcggaa tgaagctcgt aaattaaatc accaggaagt	180
tgtggaagaa gataaaagac taaaattacc tgcaaattgg gaagccaaaa aagctcgttt	240
ggagtgggaa ctaaaggaag aggaaaagaa aaaggaatgt gcggcaagag gagaagacta	. 300
tgagaaagtg aagttgctgg agatcagtgc agaagatgca gaaagatggg agaggaaaaa	360
gaagaggaaa aaccctgatc tgggattttc agattatgct gctgcccagt tacgccagta	420
tcatcggttg accaagcaga tcaaacctga catggaaaca tatgagagac tgagagaaaa	480
acatggagaa gagtttttcc caacatccaa tagtcttctt catggaacac atgtgccttc	540
cacagaggaa attgacagga tggtcataga tctggaaaaa cagattgaaa aacgagacaa	600
atatagccgg agacgtcctt ataatgatga tgcagatatc gactacatta atgaaaggaa	660
tgccaaattc aacaagaaag ctgaaagatt ctatgggaaa tacacagctg aaattaaaca	720
gaatttggaa agaggaacag ctgtctaatc ccttcaagaa ctgtttatag aagcttgaga	780
atggggtaaa aatttctgct agcaaaatca agttcttttt gaaattttat cagtaatcca	840
gaatttagta gtccatgcct tctcactcag catttagaaa taaaaatgtg gtttcttaaa	900
cgtatatcct ttcatgtata tttccacatt tttgtgcttg gatataagat gtatttcttg	960
tagtgaagtt gttttgtaat ctactttgta tacattctaa ttatattatt tttctatgta	1020
ttttaaatgt atatggctgt ttaatctttg aagcattttg ggcttaagat tgccagcagc	1080
acacatcaga tgcagtcatt gttgctatca gtgtggaatt tgatagagtc tagactcggg	1140
ccacttggag ttgtgtactc caaagctaag gacagtgatg aggaagatgg cagtggccac	1200
eggaggactg gageagtece teeteatgge ggeetgtgae caaggteggg gaggagtgga	1260
gctatccttc catgatctga tcatgtacag ttcccttttt aaaaagcaat aaatgcttgg	1320
gattagaatt tctaaaaaaa aaaa	1344
<210> 75 <211> 4058 <212> DNA <213> Homo sapiens <400> 75 ccaatgttgg agccgtctgc aaagtgtccc cggcaagaag aggctgccta ccacaaggac	60
	00

tttagcttac tttttaaaga	ttgaagaaaa	aaaagaagac	agaaaaagaa	gaactcaaag	120
atacacaaag taatttgaac	caaggctcag	aagtttttgg	agccgtgagg	gatacagcag	180
tttggtcaat attgtcttaa	catgcttcaa	ataaatcaga	tgttctcagt	gcagctgagt	240
cttggtgagc agacatggga	atccgaaggc	agcagtataa	agaaggctca	gcaggctgtt	300
gccaataaag ctttgactga	atctacgctt	cccaaaccag	ttcagaagcc	acccaaaagt	360
aatgttaaca ataacccagg	cagtataact	ccaactgtgg	aactgaatgg	gcttgctatg	420
aaaaggggag agcctgccat	ctacaggcca	ttagatccaa	agccattccc	aaattataga	480
gctaattaca actttcgggg	catgtacaat	cagaggtatc	attgcccagt	gcctaagatc	540
ttttatgttc agctcactgt	aggaaataat	gaatttttg	gggaaggaaa	gactcgacaa	600
gctgctagac acaatgctgc	aatgaaagcc	ctccaagcac	tgcagaatga	acctattcca	660
gaaagatctc ctcagaatgg	tgaatcagga	aaggatatgg	atgatgacaa	agatgcaaat	720
aagtctgaga tcagcttagt	gtttgaaatt	gctctgaagc	gaaatatgcc	tgtcagtttt	780
gaggttatta aagaaagtgg	accaccacat	atgaaaagct	ttgttactcg	agtgtcagta	840
ggagagttct ctgcagaagg	agaaggaaat	agcaaaaaac	tctccaagaa	gcgcgctgcg	900
accaccgtct tacaggagct	taaaaaactt	ccacctcttc	ctgtggtgga	aaagccaaaa	960
ctattttta aaaaacgccc	taaaacaata	gtaaaggccg	gaccagaata	tggccaaggg	1020
atgaacccta ttagccgcct	ggcgcaaatt	caacaggcca	aaaaggaaaa	ggagccggat	1080
tatgttttgc tttcagaaag	aggaatgcct	cgacgtcgag	aatttgtgat	gcaggtgaag	1140
gtaggcaatg aagttgctac	aggaacagga	cctaataaaa	agatagccaa	aaaaaatgct	1200
gcagaagcaa tgctgttaca	acttggttat	aaagcatcca	ctaatcttca	ggatcaactt	1260
gagaagacag gggaaaacaa	aggatggagt	ggtccaaagc	ctgggtttcc	tgaaccaaca	1320
aataatactc caaaaggaat	tcttcatttg	tctcctgatg	tttatcaaga	gatggaagcc	1380
agccgccaca aagtaatctc	tggcactact	ctaggctatt	tgtcacccaa	agatatgaac	1440
caaccttcaa gctctttctt	cagtatatct	cccacatcga	atagttcagc	tacaattgcc	1500
agggaactcc ttatgaatgg	aacatcttct	acagctgaag	ccataggttt	aaaaggaagt	1560
tctcctactc ccccttgttc	tccagtacaa	ccttcaaaac	aactggaata	tttagcaagg	1620
attcaaggct ttcaggtatg	aattaaaagc	aaaaacaaaa	aacaaaacaa	ttcattagcc	1680
tcagattctt catctgtata	catcacaagg	ctcattcttg	cctgctagta	tggcctacat	1740
gccacttacg ttttaagtta	tttaggaaca	caaaggacag	acaaaaaagc	catatgcaca	1800
tgcctcattt tctcttattt	ttgatctatc	tagtaattct	tttgctgcct	gtctcttctc	1860
cattttcctt cttcttttt	aagcatttt	catattcttc	actgtcttct	atttggtctt	1920
gattaggtgc atctatctct	tcgctctgtc	ttccacaaac	aaaaattctg	ccttcagaca	1980
tttggtgtta gtatttcaca	ctcagttctc	cctttttta	cataaggatt	gagtttcttt	2040
ttatgatgat tttaccttta	tagcaatttt	gaattttgca	ttctgttgct	agtattgatt	2100
caggtacacc attaagatac	aacattctag	aagtctatta	ccttaggagt	taattaaaca	2160
tgatatttga agaataatga	aatgctttat	agttgtttga	ggcataacaa	tgtgtatttg	2220
ttttactgga tcatgttttg	aactgactag	ggagggtagc	acctgcctca	gatagtacca	2280
acaattctgt ttcactgggt	agtctaaaac	tagcttatag	tttaacttaa	cttgttgtgt	2340
atgtgaattt agggatggaa	acttttttc	ccctatttat	tctttgtttc	cttctgggaa	2400

aaaaccccac aaaaatcagc actcctttat ggalacally yayclliya aayaalcgta 2460

				• •	- •	
aactctagga a	aggggaaata	tctgtgtctt	gatttcttag	ttgccttgaa	aatcatgtac	2520
tgaactgtaa d	ccgctaactt	gactggatga	actagtttgc	ttgtgtgtag	agagtgtatt	2580
gcttcctcag a	atttcactgt	tttcatctcc	ttttccatct	tagtctttat	tccttaagac	2640
caaaaactgt a	aatatccttt	agaaatgctc	tagaagatct	gtattgtgta	gaatgatcat	2700
gtatttataa a	atattttaca	agtttagatt	ataaaatgaa	aaagaaggtc	atgtgttttg	2760
gggggtattt	tgcatgttcg	gattttttt	tcccttcacc	gaacccttct	gattctttca	2820
aactattgcc a	aggtagttgt	tagtgtttct	aattggactc	ttaatatgaa	cttcaagaag	2880
ctgttaccag (ttatcggctc	tgtcatctga	aattttaacc	acttaattta	aagttacaat	2940
tttagaattt	gtttttgttg	ttttacctta	agaaacacaa	taaatcactg	tttaaaaaag	3000
atctcaattt a	atataaagta	ctggaaaaaa	gctaagtaat	ttttagttct	atctataatc	3060
tccgtaggat	gaattagaaa	taaattgtga	tgaaaagaaa	ttaactgctt	atttatgaat	3120
ctaatcattt a	agaaatgtct	gagagtaaca	ctgcattctt	atagaaacaa	agcacaaatt	3180
gcattcaagc	tctgaattga	ttttttgctt	ggagctgttg	ttacagtagc	tgtaattttg	3240
ctaccagaat	gtcttaattt	tttaaatttg	tttttatttc	taagctcttg	gcaatgacaa	3300
taattataat	tttaacatat	cttcactgta	gtcaacatgt	agagictgct	tccctcatta	3360
ttgcattgct a	aaggcctttt	taaaaagctt	atgcttacat	aatatactct	tttttatgga	3420
cacgttatat (gtttccaaat	ctgtgtattg	tgatttttac	atactaatga	atataaacag	3480
gtgattttaa	aatattactg	tgcttctttg	gttgaatgag	ctggtattga	tgtaaaatac	3540
tctgtcattg	atggaccact	acctgcagct	aagcagtgag	cagaatetee	gggaaatgac	3600
ttagtctggc	cacatgcata	gcccatcttc	ataatgtcgc	agcagaaggt	tctttgtggt	3660
taaaagtttt	aaagcctatt	tctttatagg	taaccctctc	aggtatattt	acctggtaga	3720
aaaacatgta	gattgtttct	attacttaaa	tgttttaatt	ggactgtagt	ttagaaatta	3780
caggaccagc	ttgttacaga	ttatacacta	ttctgttact	tttatttctg	aaacttaaaa	3840
acaataaatt (ctttttctgt	gtttctaggt	tagaactttt	ttattttatt	gcacactgaa	3900
cagatactgt	tgcttattga	atattgtgta	aacccttctt	tggctttcct	tgcccattgc	3960
aatttgattt a	aagcctacta	gagccattgt	atgtgacagc	tatattgtat	tacaaagtaa	4020
aaatatatga	gtgtattgaa	aaaaaaaaa	aaaaaaa			4058
	sapiens					
<400> 76 tgaagctcgt	cagttcacca	tccgccctcg	gcttccgcgg	ggcgctgggc	cgccagcctc	60
ggcaccgtcc	tttcctttct	ccctcgcgtt	aggcaggtga	cagcagggac	atgtctcggg	120
agatgcagga 1	tgtagacctc	gctgaggtga	agcctttggt	ggagaaaggg	gagaccatca	180
ccggcctcct	gcaagagttt	gatgtccagg	agcaggacat	cgagacttta	catggctctg	240
ttcacgtcac (gctgtgtggg	actcccaagg	gaaaccggcc	tgtcatcctc	acctaccatg	300
acatcggcat (gaaccacaaa	acctgctaca	accccctctt	caactacgag	gacatgcagg	360
agatcaccca (gcactttgcc	gtctgccacg	tggacgcccc	tggccagcag	gacggcgcag	420
cctccttccc	cgcagggtac	atgtacccct	ccatggatca	gctggctgaa	atgcttcctg	480

gagtccttca	acagtttggg	ctgaaaagca	ttällyylai	yyyaavayya	ycayycycct	540
acaccctaac	tcgatttgct	ctaaacaacc	ctgagatggt	ggagggcctt	gtccttatca	600
acgtgaaccc	ttgtgcggaa	ggctggatgg	actgggccgc	ctccaagatc	tcaggatgga	660
cccaagctct	gccggacatg	gtggtgtccc	acctttttgg	gaaggaagaa	atgcagagta	720
acgtggaagt	ggtccacacc	taccgccagc	acattgtgaa	tgacatgaac	cccggcaacc	780
tgcacctgtt	catcaatgcc	tacaacagcc	ggcgcgacct	ggagattgag	cgaccaatgc	840
cgggaaccca	cacagtcacc	ctgcagtgcc	ctgctctgtt	ggtggttggg	gacagetege	900
ctgcagtgga	tgccgtggtg	gagtgcaact	caaaattgga	cccaacaaag	accactetee	960
tcaagatggc	ggactgtggc	ggcctcccgc	agatetecca	gccggccaag	ctcgctgagg	1020
ccttcaagta	cttcgtgcag	ggcatgggat	acatgccctc	ggctagcatg	acccgcctga	1080
tgcggtcccg	cacagcctct	ggttccagcg	tcacttctct	ggatggcacc	cgcagccgct	1140
cccacaccag	cgagggcacc	cgaagccgct	cccacaccag	cgagggcacc	cgcagccgct	1200
cgcacaccag	cgagggggcc	cacctggaca	tcacccccaa	ctcgggtgct	gctgggaaca	1260
gcgccgggcc	caagtccatg	gaggtetect	gctaggcggc	ctgcccagct	gccgcccccg	1320
gactctgatc	tctgtagtgg	cccctcctc	cccggcccct	tttcgccccc	tgcctgccat	1380
actgcgccta	actcggtatt	aatccaaagc	ttattttgta	agagtgagct	ctggtggaga	1440
caaatgaggt	ctattacgtg	ggtgccctct	ccaaaggcgg	ggtggcggtg	gaccaaagga	1500
aggaagcaag	catctccgca	tcgcatcctc	ttccattaac	cagtggccgg	ttgccactct	1560
cctcccctcc	ctcagagaca	ccaaactgcc	aaaaacaaga	cgcgtagcag	cacacacttc	1620
acaaagccaa	gcctaggccg	ccctgagcat	cctggttcaa	acgggtgcct	ggtcagaagg	1680
ccagccgccc	acttcccgtt	tcctctttaa	ctgaggagaa	gctgatccag	ctttccggaa	1740
acaaaatcct	tttcttcatt	tggggagggg	ggtaatagtg	acatgcaggc	acctctttta	1800
aacaggcaaa	acaggaaggg	ggaaaaggtg	ggattcatgt	cgaggctaga	ggcatttgga	1860
acaacaaatc	tacgtagtta	acttgaagaa	accgatttt	aaagttggtg	catctagaaa	1920
gctttgaatg	cagaagcaaa	caagcttgat	ttttctagca	tcctcttaat	gtgcagcaaa	1980
agcaggcaac	aaaatctcct	ggctttacag	acaaaaatat	ttcagcaaac	gttgggcatc	2040
atggtttttg	aaggctttag	ttctgctttc	tgcctctcct	ccacagecee	aacctcccac	2100
ccctgataca	tgagccagtg	attattcttg	ttcagggaga	agatcattta	gatttgtttt	2160
gcattcctta	gaatggaggg	caacattcca	cagctgccct	ggctgtgatg	agtgtccttg	2220
caggggccgg	agtaggagca	ctggggtggg	ggcggaattg	gggttactcg	atgtaaggga	2280
ttccttgttg	ttgtgttgag	atccagtgca	gttgtgattt	ctgtggatcc	cagcttggtc	2340
caggaatttt	gagagattgg	cttaaatcca	gttttcaatc	ttcgacagct	gggctggaac	2400
gtgaactcag	tagctgaacc	tgtctgaccc	ggtcacgttc	ttggatcctc	agaactcttt	2460
gctcttgtcg	gggtggggt	gggaactcac	gtggggagcg	gtggctgaga	aaatgtaagg	2520
attctggaat	acatattcca	tggactttcc	ttccctctcc	tgcttcctct	tttcctgctc	2580
cctaaccttt	cgccgaatgg	ggcagacaaa	cactgacgtt	tctgggtggc	cagtgcggct	2640
gccaggttcc	tgtactactg	ccttgtactt	ttcattttgg	ctcaccgtgg	attttctcat	2700
aggaagtttg	gtcagagtga	attgaatatt	gtaagtcagc	cactgggacc	cgaggatttc	2760
tgggaccccg	cagttgggag	gaggaagtag	tccagccttc	caggtgggcg	tgagaggcaa	2820
ţgactcgtta	cctgccgccc	atcaccttgg	aggccttccc	tggccttgag	tagaaaagtc	2880

ggggatcggg gcaagagagg	ctgagtacgg	atgggaaact	attgtgcaca	agtctttcca	2940
gaggagtttc ttaatgagat	atttgtattt	atttccagac	caataaattt	gtaactttgc	3000
aaaaaaaaa aaaaaaaaa					3020
<210> 77 <211> 2759 <212> DNA <213> Homo sapiens					
<400> 77	.				
gcctgactga gagtggatca		-			60
tggcaaagcc attgctgtct					120
cagggctgtg gttcgagttg					180
ttatcaaggc ctggtggatg	gtggagatca	catcaaggaa	gccacctggg	agagcgtttc	240
gatgatgctt cagctgggag	gcacggtgat	tggaagtgcc	cggtgcaagg	actttcggga	300
acgagaagga cgactccgag	ctgcctacaa	cctggtgaag	cgtgggatca	ccaatctctg	360
tgtcattggg ggtgatggca	gcctcactgg	ggctgacacc	ttccgttctg	agtggagtga	420
cttgttgagt gacctccaga	aagcaggtaa	gatcacagat	gaggaggcta	cgaagtccag	480
ctacctgaac attgtgggcc	tggttgggtc	aattgacaat	gacttctgtg	gcactgatat	540
gaccattggc actgactctg	ccctgcatcg	gatcatggaa	attgtagatg	ccatcactac	600
cactgcccag agccaccaga	ggacatttgt	gttagaagta	atgggccgcc	actgtggata	660
cctggccctt gtcacctctc	tgtcctgtgg	ggccgactgg	gtttttattc	ctgaatgtcc	720
accagatgac gactgggagg	aacacctttg	tcgccgactc	agcgagacaa	ggacccgtgg	780
ttctcgtctc aacatcatca	ttgtggctga	gggtgcaatt	gacaagaatg	gaaaaccaat	840
cacctcagaa gacatcaaga	atctggtggt	taagcgtctg	ggatatgaca	cccgggttac	900
tgtcttgggg catgtgcaga	ggggtgggac	gccatcagcc	tttgacagaa	ttctgggcag	960
caggatgggt gtggaagcag	tgatggcact	tttggagggg	accccagata	ccccagcctg	1020
tgtagtgagc ctctctggta	accaggctgt	gcgcctgccc	ctcatggaat	gtgtccaggt	1080
gaccaaagat gtgaccaagg	ccatggatga	gaagaaattt	gácgaagccc	tgaagctgag	1140
aggccggagc ttcatgaaca	actgggaggt	gtacaagctt	ctagctcatg	tcagaccccc	1200
ggtatctaag agtggttcgc	acacagtggc	tgtgatgaac	gtgggggctc	cggctgcagg	1260
catgaatgct gctgttcgct	ccactgtgag	gattggcctt	atccagggca	accgagtgct	1320
cgttgtccat gatggtttcg	agggcctggc	caaggggcag	atagaggaag	ctggctggag	1380
ctatgttggg ggctggactg	gccaaggtgg	ctctaaactt	gggactaaaa	ggactctacc	1440
caagaagagc tttgaacaga	tcagtgccaa	tataactaag	tttaacattc	agggccttgt	1500
catcattggg ggctttgagg					1560
gtttgatgag ctctgcatcc	catttgtggt	cattcctgct	acagtotoca	acaatgtccc	1620
tggctcagac ttcagcgttg	gggctgacac	agcactcaat	actatctgca	caacctgtga	1680
ccgcatcaag cagtcagcag					1740
tggctactgt ggctacctgg					1800
catttttgag gagcccttca			_	-	1860
aaagatgaaa acaactgtga					1920
ctataccact gacttcattt					1980
			Page 93		

caggaagaat gto	gcttggtc	acatgcagca	gggtgggagc	ccaaccccat	ttgataggaa	2040
ttttgccact aag	gatgggcg	ccaaggctat	gaactggatg	tctgggaaaa	tcaaagagag	2100
ttaccgtaat ggg	gcggatct	ttgccaatac	tccagattcg	ggctgtgttc	tggggatgcg	2160
taagagggct ctg	gtcttcc	aaccagtggc	tgagctgaag	gaccagacag	attttgagca	2220
tcgaatcccc aag	gaacagt	ggtggctgaa	actgaggccc	atcctcaaaa	tcctagccaa	2280
gtacgagatt gad	ttggaca	cttcagacca	tgcccacctg	gagcacatca	cccggaagcg	2340
gtccggggaa gct	gccgtct	aaacctctct	ggagtgaggg	gaatagatta	cctgatcatg	2400
gtcagctcac acc	ctaataa	gtccacatct	tctcagtgtt	ttagctgttt	ttttcattag	2460
gtttcctttt att	ctgtacc	ttgcagccat	gaccagttct	ggccaggagc	tggaggagca	2520
ggcagtgggt ggg	jagctcct	tttaggtaga	atttaacatg	acttctgccc	cagctttatc	2580
tgtcacacaa ggo	tgggcac	ctctagtgct	actgctagat	atcacttact	cagttagaat	2640
tttcctaaaa ata	agcttta	tttatttctt	tgtgataaca	aagagtcttg	gttcctctac	2700
tacttttact aca	igtgaçaa	attgtaacta	cactaataaa	tgccaactgg	tcactgtga	2759
<210> 78						
<211> 6133						
<212> DNA <213> Homo sa	apiens					
<400> 78						60
tgcatgaaga caa						120
acttostatt gg	-					180
acttcatatt ggg						240
tattttctca ctg						300
atggscasss age						360
atggccaccc ago						420
ccagagetgt etg						
gaggagcaga agg						480
gcaaaaaggt taa						540
atggcggccg ctg			-			600
agcctaatcc tct						6,60
catccagatt gtg						720
agggtgaaga ato						780
gctagacttg cgt					·	840
ctctcagagg ctc						900
ggtggatgtt tag	gaaattg:	ggaagaagga	gatgatcctt	ggaaggaaca	tgccaaatgg	960
ttccccaaat gto	jaatttct	tcggagtaag	aaatcctcag	aggaaattac	ccagtatatt	1020
caaagctaca ago	_j gatttgt	tgacataacg	ggagaacatt	ttgtgaattc	ctgggtccag	1080
agagaattac cta	itggcatc	agcttattgc	aatgacagca	tctttgctta	cgaagaacta	1140
cggctggact ctt	ttaagga	ctggccccgg	gaatcagctg	tgggagttgc	agcactggcc	1200
aaagcaggtc ttt	tctacac	aggtataaag	gacatcgtcc	agtgcttttc	ctgtggaggg	1260
tgtttagaga aat	:ggcagga	aggtgatgac	ccattagacg	atcacaccag	atgttttccc	1320
aattgtccat tto	tccaaaa	tatgaagtcc	tctgcggaag	tgactccaga	ccttcagagc	1380

cgtggtgaac tttgtgaatt actggaaacc acaagtgaaa gcaatcttga agattcaata gcagttggtc ctatagtgcc agaaatggca cagggtgaag cccagtggtt tcaagaggca 1500 aagaatetga atgageaget gagageaget tataceageg ceagttteeg ceacatgtet 1560 ttgcttgata tctcttccga tctggccacg gaccacttgc tgggctgtga tctgtctatt 1620 gcttcaaaac acatcagcaa acctgtgcaa gaacctctgg tgctgcctga ggtctttggc 1680 aacttgaact ctgtcatgtg tgtggagggt gaagctggaa gtggaaagac ggtcctcctg 1740 aagaaaatag cttttctgtg ggcatctgga tgctgtcccc tgttaaacag gttccagctg 1800 gttttctacc tctcccttag ttccaccaga ccagacgagg ggctggccag tatcatctgt 1860 gaccagetee tagagaaaga aggatetgtt actgaaatgt geatgaggaa cattateeag 1920 cagttaaaga atcaggtctt attcctttta gatgactaca aagaaatatg ttcaatccct 1980 caagtcatag gaaaactgat tcaaaaaaac cacttatccc ggacctgcct attgattgct 2040 gtccgtacaa acagggccag ggacatccgc cgatacctag agaccattct agagatcaaa 2100 gcatttccct tttataatac tgtctgtata ttacggaagc tcttttcaca taatatgact 2160 cgtctgcgaa agtttatggt ttactttgga aagaaccaaa gtttgcagaa gatacagaaa 2220 actoctetet ttgtggcggc gatetgtget cattggttte agtateettt tgacccatee 2280 tttgatgatg tggctgtttt caagtcctat atggaacgcc tttccttaag gaacaaagcg 2340 acagctgaaa ttctcaaagc aactgtgtcc tcctgtggtg agctggcctt gaaagggttt 2400 ttttcatgtt gctttgagtt taatgatgat gatctcgcag aagcaggggt tgatgaagat 2460 gaagatctaa ccatgtgctt gatgagcaaa tttacagccc agagactaag accattctac 2520 cggtttttaa gtcctgcctt ccaagaattt cttgcgggga tgaggctgat tgaactcctg 2580 · gattcagata ggcaggaaca tcaagatttg ggactgtatc atttgaaaca aatcaactca 2640 cccatgatga ctgtaagcgc ctacaacaat tttttgaact atgtctccag cctcccttca 2700 acaaaagcag ggcccaaaat tgtgtctcat ttgctccatt tagtggataa caaagagtca 2760 ttggagaata tatctgaaaa tgatgactac ttaaagcacc agccagaaat ttcactgcag 2820 atgcagttac ttaggggatt gtggcaaatt tgtccacaag cttacttttc aatggtttca 2880 gaacatttac tggttcttgc cctgaaaact gcttatcaaa gcaacactgt tgctgcgtgt 2940 3000 tetecatttg ttttgcaatt cetteaaggg agaacactga etttgggtge gettaaetta cagtactttt tcgaccaccc agaaagcttg tcattgttga ggagcatcca cttcccaata 3060 cgaggaaata agacatcacc cagagcacat ttttcagttc tggaaacatg ttttgacaaa 3120 tcacaggtgc caactataga tcaggactat gcttctgcct ttgaacctat gaatgaatgg 3180 gagcgaaatt tagctgaaaa agaggataat gtaaagagct atatggatat gcagcgcagg 3240 gcatcaccag accttagtac tggctattgg aaactttctc caaagcagta caagattccc 3300 tgtctagaag tcgatgtgaa tgatattgat gttgtaggcc aggatatgct tgagattcta 3360 atgacagttt tctcagcttc acagcgcatc gaactccatt taaaccacag cagaggcttt 3420 3480 atagaaagca tccgcccagc tcttgagctg tctaaggcct ctgtcaccaa gtgctccata 3540 agcaagttgg aactcagcgc agccgaacag gaactgcttc tcaccctgcc ttccctggaa tetettgaag teteagggae aateeagtea caagaceaaa tettteetaa tetggataag 3600 ttcctgtgcc tgaaagaact gtctgtggat ctggagggca atataaatgt tttttcagtc 3720 attoctgaag aatttocaaa ottocaccat atggagaaat tattgatoca aatttoagot

gagtatgatc	cttccaaact	agtaaaatta	attuaaaauu	Lillagalli	ccacycittc	3780
catctgaagt	gtaacttctt	ttcggatttt	gggtctctca	tgactatgct	tgtttcctgt	3840
aagaaactca	cagaaattaa	gttttcggat	tcatttttc	aagccgtccc	atttgttgcc	3900
agtttgccaa	attttatttc	tctgaagata	ttaaatcttg	aaggccagca	atttcctgat	3960
gaggaaacat	cagaaaaatt	tgcctacatt	ttaggttctc	ttagtaacct	ggaagaattg	4020
atccttccta	ctggggatgg	aatttatcga	gtggccaaac	tgatcatcca	gcagtgtcag	4080
cagcttcatt	gtctccgagt	cctctcattt	ttcaagactt	tgaatgatga	cagcgtggtg	4140
gaaattgcca	aagtagcaat	cagtggaggt	ttccagaaac	ttgagaacct	aaagctttca	4200
atcaatcaca	agattacaga	ggaaggatac	agaaatttct	ttcaagcact	ggacaacatg	4260
ccaaacttgc	aggagttgga	catctccagg	catttcacag	agtgtatcaa	agctcaggcc	4320
acaacagtca	agtctttgag	tcaatgtgtg	ttacgactac	caaggctcat	tagactgaac	4380
atgttaagtt	ggctcttgga	tgcagatgat	attgcattgc	ttaatgtcat	gaaagaaaga	4440
catcctcaat	ctaagtactt	aactattctc	cagaaatgga	tactgccgtt	ctctccaatc	4500
attcagaaat	aaaagattca	gctaaaaact	gctgaatcaa	taatttgtct	tggggcatat	4560
tgaggatgta	aaaaaagttg	ttgattaatg	ctaaaaacca	aattatccaa	aattatttta	4620
ttaaatattg	catacaaaag	aaaatgtgta	aggcttgcta	aaaaacaaaa	caaaacaaaa	4680
cacagtcctg	catactcacc	accaagetea	agaaataaat	catcaccaat	acctttgagg	4740
tccctgagta	atccacccca	gctaaaggca	aacccttcaa	tcaagtttat	acagcaaacc	4800
ctccattgtc	catggtcaac	agggaagggg	ttggggacag	gtctgccaat	ctatctaaaa	4860
gccacaatat	ggaagaagta	ttcaatttat	ataataaatg	gctaacttaa	cggttgaatc	4920
actttcatac	atggatgaaa	cgggtttaac	acaggatcca	catgaatctt	ctgtgggcca	4980
agagatgttc	cttaatcctt	gtagaacctg	ttttctatat	tgaactagct	ttggtacagt	5040
agagttaact	tactttccat	ttatccactg	ccaatataaa	gaggaaacag	gggttaggga	5100
aaaatgactt	cattccagag	gcttctcaga	gttcaacata	tgctataatt	tagaattttc	5160
ttatgaatcc	actctacttg	ggtagaaaat	attttatctc	tagtgattgc	atattatttc	5220
catatcatag	tatttcatag	tattatattt	gatatgagtg	tctatatcaa	tgtcagtgtc	5280
cagaatttcg	ttcctaccag	ttaagtagtt	ttctgaacgg	ccagaagacc	attcgaaatt	5340
catgatacta	ctataagttg	gtaaacaacc	atacttttat	cctcattttt	attctcacta	5400
agaaaaaagt	caactcccct	ccccttgccc	aagtatgaaa	tatagggaca	gtatgtatgg	5460
tgtggtctca	tttgtttaga	aaaccactta	tgactgggtg	cggtggctca	cacctgtaat	5520
cccagcactt	tgggaggctg	aggcgggcga	atcatttgag	gtgaggaatt	cgagaccagc	5580
ctggccagca	tggtgaaacc	ccatctctac	taaaaataca	aaaattagcc	aggtgtggtg	5640
gcacatgcct	gtagtcccag	ccactagggc	ggctgagacg	caagacttgc	ttgaacccgg	5700
gaggcagagg	ttgcagtgag	ccaagatggc	gccactgcat	tccagcctgg	gcaacagagc	5760
aagaccctgt	ctgtctcaaa	acaaaaaaca	aaaccactta	tattgctagc	tacattaaga	5820
atttctgaat	atgttactga	gcttgcttgt	ggtaaccatt	tataatatca	gaaagtatat	5880
gtacaccaaa	acatgttgaa	catccatgtt	gtacaactga	aatataaata	attttgtcaa	5940
ttatacctaa	ataaaactgg	aaaaaaattt	ctggaagttt	atatctaaaa	atgttaatag	6000
tgcgtacctc	taggaagtgg	gcctggaagc	cattcttact	tttcagtctc	tcccattctg	6060
tactgtttt	tgttttactt	tcgtgcctgc	attattttc	tatttaaaac	aaaaataaat	6120

ctagtttagc act	6133
<210> 79 <211> 4028 <212> DNA <213> Homo sapiens	
<400> 79 gaattccggc tcgtgtgctg cgagctggcg gccgggccgg	60
cgagaggagg tggaccagaa cttttggaac tagtgccggc ggctctccac cccccagtat	120
aaaagaacgt gtggatcact ttgctgagta catccaagat ttgaagaact gaaataaatc	180
agctttaaac ctgctfttta aaaatatctg ggttggaatt tgcccctgac aaataataaa	240
atgatgagtg atgcaagtga catgttggct gcagcgttgg agcagatgga tggtatcata	300
gcaggttcta aggctctgga atattccaat gggatttttg attgccaatc tcccacctct	360
ccattcatgg gaagtttgcg agctctgcac cttgtggaag acctgcgtgg attgttagag	420
atgatggaaa cagatgagaa agaaggcttg agatgccaga tcccagattc aacagcagaa	480
acgettgttg aatggettea gagteaaatg acaaatggac acctaccagg gaacggagat	540
gtgtatcaag aaaggctggc acgtttagaa aatgataaag aatccctcgt tcttcaggta	600
agtgtgttaa cagaccaggt ggaggctcag ggagagaaga ttcgagattt ggagtttgt	660
cttgaagagc acagagagaa gttgaatgcc acagaagaaa tgctgcagca ggagcttcta	720
agtaggacat cettagaaac teagaagttg gatetgatgg etgaaatate taacttgaag	780
ttgaaactga cagctgtaga gaaggacaga ttggattatg aagataagtt cagagacaca	840
gaggggctga ttcaggagat caatgatttg aggttaaaag ttagtgaaat ggacagtgag	900
agacttcagt atgaaaaaaa gcttaaatca accaaagatg aactggcatc tttaaaagaa	960
caactagaag aaaaggaatc tgaagtaaaa aggctacaag aaaaattggt ttgcaagatg	1020
aaaggagaag gggttgaaat tgttgataga gatgaaaatt ttaaaaagga gctcaaagaa	1080
aaaacatcg aagtacaaaa aatgaaaaaa gctgtggagt ccttgatggc agcaaatgaa	1140
gaaaaggatc ggaaaataga agatcttcga cagtgcctga acaggtacaa gaaaatgcaa	1200
gacacggtgg tactggccca aggtaaaaaa ggcaaagatg gagaatatga agagctgctc	1260
aattccagtt ccatctcctc tttgctggat gcacagggtt tcagtgatct ggagaaaagt	1320
ccatcacca ctccagtaat gggatctccc agttgtgacc catttaacac aagtgttccc	1380
gaagagttcc atactaccat cttgcaagtt tccatcctt cattattgcc agcaactgta	1440
agcatggaaa cttctgaaaa atcaaagttg actcctaagc cagagacttc atttgaagaa	1500
aatgatggaa acataatcct tggtgccact gttgataccc aactgcgtga taaactttta	1560
acttcaagtc tgcagaagtc cagcagcctg ggcaatctga agaaagagac atctgatggg	1620
gaaaaggaaa ctattcagaa gacttcagag gacagagctc Cggcagaaag caggccattt	1680
gggaccette eteccaggee eccagggeag gacaceteca tggatgacaa eccettegge	1740
actcgaaaag tcagatcttc ctttggccgg ggctttttta aaatcaaaag taacaagaga	1800
acagcaagtg caccaaactt agatcgtaaa cgaagtgcca gtgcacccac cctagctgaa	1860
acagaaaaag agacagcagc gcacctagat ctggctggtg cttcttctcg gccaaaagat	1920
tcacagagga acagtocott ccagatacog cotocatoto Cagattocaa aaagaaatoo	1980
agaggtatca tgaaactctt tggaaaactt aggagaagtc aatcaactac attcaaccca	2040
gatgacatgt ctgagcctga attcaaaaga ggagggacaa gggcaaccgc ggggccccga	2100
Page 97	

Page 97

ttaggttggt ctcgagactt	gggacagtct	aacagtgact	tggatatgcc	atttgccaag	2160
tggaccaagg agcaggtttg	caattggctg	atggaacagg	gcttgggctc	gtacctgaat	2220
tctggcaagc actggattgc	atctggccaa	acgcttttgc	aggcttctca	acaagatcta	2280
gagaaggaac ttggaatcaa	gcattcactt	catcgaaaga	aactccagct	agcactccaa	2340
gccctgggat ctgaagaaga	aaccaatcat	gggaagctgg	atttcaactg	ggtcactaga	2400
tggttggatg acattggcct	ccctcaatat	aagacccagt	ttgatgaagg	acgggttgat	2460
ggtcgaatgc tacattacat	gactgttgat	gacttactgt	ctctgaaggt	tgtaagtgtg	2520
ctacaccatc tcagtatcaa	aagggccatc	caggtcctga	ggatcaataa	ctttgaacca	2580
aactgtctac ggaggcggcc	atctgatgag	aataccatcg	ccccatcaga	agttcagaag	2640
tggactaacc atcgagtgat	ggagtggctg	cgctccgtgg	acttggcaga	atatgcgccc	2700
aatctcagag gcagtggtgt	ccatggtggg	ctcatggttc	tagagcctcg	ttttaacgta	2760
gaaacaatgg ctcagttatt	gaacatccca	cccaataaga	ctttgctgcg	aagacatttg	2820
gccactcatt tcaaccttct	gattggggct	gaggcacagc	accagaagcg	agatgccatg	2880
gagctgccgg_attatgtact	tctaacagct	actgccaaag	tgaagccaaa	gaaacttgcc	2940
tttagcaatt ttgggaattt	gagaaagaag	aaacaggaag	atggtgaaga	atatgtttgt	3000
ccaatggaat tgggacaggc	atcaggaagt	gcatctaaga	aaggatttaa	acctggtttg	3060
gatatgcgcc tgtatgagga	agatgatttg	gaccggttag	agcagatgga	agattcagaa	3120
gggacagtga gacagatagg	tgcattctct	gaaggcatca	acaatctgac	gcacatgtta	3180
aaagaagatg acatgtttaa	agattttgct	gcccgttccc	ccagtgccag	cattacagat	3240
gaagactcaa acgtttgacc	gtagcacctg	gatgaacatt	aggagtgctt	agtcttttt	3300
ctacttgctt ttccaaacac	tcacagtata	tacaacaggc	agcggattgt	ctattgtttg	3360
ttgttctaac ttctgctgtc	gagaagttta	aacagaaagc	aggagtaatg	tgccgattct	3420
gaagttgcca caaaaaataa	gacactggtg	aatgagagta	taattgtttt	tcttctattt	3480
aatgtaaaaa totgtgatat	attatattta	aagtgttgca	tttaagatga	gtattttacc	3540
agagtgtttc cattcatatc	cgcggtatgg	aggatttgag	gaacagtaac	caggatgtga	3600
atgattttgt tacatcagtg	ttcactgtag	ccacctaagt	aggacattat	atgatttcag	3660
aatcaatatg tggaacttct	ttaagcattc	agtgtgccca	ctaaatgcca	gccacacctc	3720
cacttgcctc ttattgtctt	atttttatat	atttttctaa	atatatgtat	atatacagta	3780
catagaaaat agaactttta	ttttgtgacc	taaggacgat	ggtgaaaaga	tcacgttttc	3840
aaaacaatct ggtgatcaga	atgttcatat	accagctggt	ttctgaagag	gtcagaatga	3900
tettteteea taetgaettt	taacaatgtt	gatcattgag	gctaaattaa	tatatatgaa	3960
atattccttt ttgatgacac	cacaaaattg	ttgaacagtt	taagaatttc	aaccttaatc	4020
ttggatcc					4028
<210> 80 <211> 9588					
<212> DNA <213> Homo sapiens					
<400> 80 ccgaccaaca ccaacaccca	gctccgacgc	agctcctctg	cgcccttgcc	gccctccgag	60
ccacagettt ectecegete	ctgcccccgg	cccgtcgccg	tctccgcgct	cgcagcggcc	120
tcgggagggc ccaggtagcg	agcagcgacc	tcgcgagcct	tccgcactcc	egeceggtte	180

cccggccgtc	cgcctatcct	tggccccctc	cgctttctcc	gcgccggccc	gcctcgctta	240
tgcctcggcg	ctgagccgct	ctcccgattg	cccgccgaca	tgagctgcaa	cggaggctcc	300
cacccgcgga	tcaacactct	gggccgcatg	atccgcgccg	agtctggccc	ggacctgcgc	360
tacgaggtga	ccagcggcgg	cgggggcacc	agcaggatgt	actattctcg	gcgcggcgtg	420
atcaccgacc	agaactcgga	cggctactgt	caaaccggca	cgatgtccag	gcaccagaac	480
cagaacacca	tccaggagct	gctgcagaac	tgctccgact	gcttgatgcg	agcagagctc	540
atcgtgcagc	ctgaattgaa	gtatggagat	ggaatacaac	tgactcggag	tcgagaattg	600
gatgagtgtt	ttgcccaggc	caatgaccaa	atggaaatcc	tcgacagctt	gatcagagag	660
atgcggcaga	tgggccagcc	ctgtgatgct	taccagaaaa	ggcttcttca	gctccaagag	720
caaatgcgag	ccctttataa	agccatcagt	gtccctcgag	tccgcagggc	cagctccaag	780
ggtggtggag	gctacacttg	tcagagtggc	tctggctggg	atgagttcac	caaacatgtc	840
accagtgaat	gtttggggtg	gatgaggcag	caaagggcgg	agatggacat	ggtggcctgg	900
ggtgtggacc	tggcctcagt	ggagcagcac	attaacagcc	accggggcat	ccacaactcc	960
atcggcgact	atcgctggca	gctggacaaa	atcaaagccg	acctgcgcga	gaaatctgcg	1020
atctaccagt	tggaggagga	gtatgaaaac	ctgctgaaag	cgtcctttga	gaggatggat	1080
cacctgcgac	agctgcagaa	catcattcag	gccacgtcca	gggagatcat	gtggatcaat	1140
gactgcgagg	aggaggagct	gctgtacgac	tggagcgaca	agaacaccaa	catcgctcag	1200
aaacaggagg	ccttctccat	acgcatgagt	caactggaag	ttaaagaaaa	agagctcaat	1260
aagctgaaac	aagaaagtga	ccaacttgtc	ctcaatcagc	atccagcttc	agacaaaatt	1320
gaggcctata	tggacactct	gcagacgcag	tggagttgga	ttcttcagat	caccaagtgc	1380
attgatgttc	atctgaaaga	aaatgctgcc	tactttcagt	tttttgaaga	ggcgcagtct	1440
actgaagcat	acctgaaggg	gctccaggac	tccatcagga	agaagtaccc	ctgcgacaag	1500
aacatgcccc	tgcagcacct	gctggaacag	atcaaggagc	tggagaaaga	acgagagaaa	1560
atccttgaat	acaagcgtca	ggtgcagaac	ttggtaaaca	agtctaagaa	gattgtäcag	1620
ctgaagcctc	gtaacccaga	ctacagaagc	aataaaccca	ttattctcag	agctctctgt	1680
gactacaaac	aagatcagaa	aatcgtgcat	aagggggatg	agtgtatcct	gaaggacaac	1740
aacgagcgca	gcaagtggta	cgtgacgggc	ccgggaggcg	ttgacatgct	tgttccctct	1800
gtggggctga	tcatccctcc	tccgaaccca	ctggccgtgg	acctctcttg	caagattgag	1860
cagtactacg	aagccatctt	ggctctgtgg	aaccagctct	acatcaacat	gaagagcctg	1920
gtgtcctggc	actactgcat	gattgacata	gagaagatca	gggccatgac	aatcgccaag	1980
ctgaaaacaa	tgcggcagga	agattacatg	aagacgatag	ccgaccttga	gttacattac	2040
caagagttca	tcagaaatag	ccaaggctca	gagatgtttg	gagatgatga	caagcggaaa	2100
atacagtctc	agttcaccga	tgcccagaag	cattaccaga	ccctggtcat	tcagctccct	2160
ggctatcccc	agcaccagac	agtgaccaca	actgaaatca	ctcatcatgg	aacctgccaa	2220
gatgtcaacc	ataataaagt	aattgaaacc	aacagagaaa	atgacaagca	agaaacatgg	2280
atgctgatgg	agctgcagaa	gattcgcagg	cagatagagc	actgcgaggg	caggatgact	2340
ctcaaaaacc	tccctctagc	agaccagggg	tcttctcacc	acatcacagt	gaaaattaac	2400
gagcttaaga	gtgtgcagaa	tgattcacaa	gcaattgctg	aggttctcaa	ccagcttaaa	2460
gatatgcttg	ccaacttcag	aggttctgaa	aagtactgct	atttacagaa	tgaagtattt	2520

ggactatttc agaaactgga aaatatcaat ggtyrracay aryycracri adarayctta 2580 tgcacagtaa gggcactgct ccaggctatt ctccaaacag aagacatgtt aaaggtttat 2640 gaagccaggc tcactgagga ggaaactgtc tgcctggacc tggataaagt ggaagcttac 2700 cgctgtggac tgaagaaaat aaaaaatgac ttgaacttga agaagtcgtt gttggccact 2760 atgaaqacaq aactacagaa agcccagcag atccactctc agacttcaca gcagtatcca 2820 ctttatgatc tggacttggg caagttcggt gaaaaagtca cacagctgac agaccgctgg 2880 2940 caaaggatag ataaacagat cgactttaga ttatgggacc tggagaaaca aatcaagcaa ttgaggaatt atcgtgataa ctatcaggct ttctgcaagt ggctctatga tcgtaaacgc 3000 cgccaggatt ccttagaatc catgaaattt ggagattcca acacagtcat gcggtttttg 3060 aatgagcaga agaacttgca cagtgaaata tctggcaaac gagacaaatc agaggaagta 3120 caaaaaattg ctgaactttg cgccaattca attaaggatt atgagctcca gctggcctca 3180 tacacctcag gactggaaac tctgctgaac atacctatca agaggaccat gattcagtcc 3240 ccttctgggg tgattctgca agaggctgca gatgttcatg ctcggtacat tgaactactt 3300 acaagatctg gagactatta caggttctta agtgagatgc tgaagagttt ggaagatctg 3360 aagctgaaaa ataccaagat cgaagttttg gaagaggagc tcagactggc ccgagatgcc 3420 3480 aactoggaaa actgtaataa gaacaaatto otggatoaga acctgcagaa ataccaggca 3540 gagtgttccc agttcaaagc gaagcttgcg agcctggagg agctgaagag acaggctgag 3600 ctggatggga agtcggctaa gcaaaatcta gacaagtgct acggccaaat aaaagaactc 3660 aatgagaaga tcacccgact gacttatgag attgaagatg aaaagagaag aagaaaatct gtggaagaca gatttgacca acagaagaat gactatgacc aactgcagaa agcaaggcaa 3720 tgtgaaaagg agaaccttgg ttggcagaaa ttagagtctg agaaagccat caaggagaag 3780 gagtacgaga ttgaaaggtt gagggttcta ctgcaggaag aaggcacccg gaagagagaa 3840 tatgaaaatg agctggcaaa ggtaagaaac cactataatg aggagatgag taatttaagg 3900 aacaagtatg aaacagagat taacattacg aagaccacca tcaaggagat atccatgcaa 3960 aaaqaqqatq attccaaaaa tcttagaaac cagcttgata gactttcaag ggaaaatcga 4020 4080 gatctgaagg atgaaattgt caggctcaat gacagcatct tgcaggccac tgagcagcga 4140 aggcgagctg aagaaaacgc ccttcagcaa aaggcctgtg gctctgagat aatgcagaag 4200 aagcagcatc tggagataga actgaagcag gtcatgcagc agcgctctga ggacaatgcc 4260 cggcacaagc agtccctgga ggaggctgcc aagaccattc aggacaaaaa taaggagatc 4320 gagagactca aagctgagtt tcaggaggag gccaagcgcc gctgggaata tgaaaatgaa ctgagtaagg taagaaacaa ttatgatgag gagatcatta gcttaaaaaaa tcagtttgag 4380 4440 accgagatca acatcaccaa gaccaccatc caccagetca ceatgeagaa ggaagaggat 4500 accagtggct accgggctca gatagacaat ctcacccgag aaaacaggag cttatctgaa gaaataaaga ggctgaagaa cactctaacc cagaccacag agaatctcag gagggtggaa 4560 gaagacatcc aacagcaaaa ggccactggc tctgaggtgt ctcagaggaa acagcagctg 4620 4680 gaggttgagc tgagacaagt cactcagatg cgaacagagg agagcgtaag atataagcaa 4740 tctcttgatg atgctgccaa aaccatccag gataaaaaca aggagataga aaggttaaaa caactgatcg acaaagaaac aaatgaccgg aaatgcctgg aagatgaaaa cgcgagatta 4800 caaagggtcc agtatgacct gcagaaagca aacagtagtg cgacggagac aataaacaaa 4860 ctgaaggttc aggagcaaga actgacacgc ctgaggatcg actatgaaag ggtttcccag 4920

gagaggactg	tgaaggacca	ggatatcacg	cggttccaga	actctctgaa	agagctgcag	4980
ctgcagaagc	agaaggtgga	agaggagctg	aatcggctga	agaggaccgc	gtcagaagac	5040
tcctgcaaga	ggaagaagct	ggaggaagag	ctggaaggca	tgaggaggtc	gctgaaggag	5100
caagccatca	aaatcaccaa	cctgacccag	cagctggagc	aggcatccat	tgttaagaag	5160
aggagtgagg	atgacctccg	gcagcagagg	gacgtgctgg	atggccacct	gagggaaaag	5220
cagaggaccc	aggaagagct	gaggaggctc	tcttctgagg	tcgaggccct	gaggcggcag	5280
ttactccagg	aacaggaaag	tgtcaaacaa	gctcacttga	ggaatgagca	tttccagaag	5340
gcgatagaag	ataaaagcag	aagcttaaat	gaaagcaaaa	tagaaattga	gaggctgcag	5400
tctctcacag	agaacctgac	caaggagcac	ttgatgttag	aagaagaact	gcggaacctg	5460
aggctggagt	acgatgacct	gaggagagga	cgaagcgaag	cggacagtga	taaaaatgca	5520
accatcttgg	aactaaggag	ccagctgcag	atcagcaaca	accggaccct	ggaactgcag	5580
gggctgatta	atgatttaca	gagagagagg	gaaaatttga	gacaggaaat	tgagaaattc	5640
caaaagcagg	ctttagaggc	atctaatagg	attcaggaat	caaagaatca	gtgtactcag	5700
gtggtacagg	aaagagagag	ccttctggtg	aaaatcaaag	tcctggagca	agacaaggca	5760
aggctgcaga	ggctggagga	tgagctgaat	cgtgcaaaat	caactctaga	ggcagaaacc	5820
agggtgaaac	agcgcctgga	gtgtgagaaa	cagcaaattc	agaatgacct	gaatcagtgg	5880
aagactcaat	attcccgcaa	ggaggaggct	attaggaaga	tagaatcgga	aagagaaaag	5940
agtgagagag	agaagaacag	tcttaggagt	gagatcgaaa	gactccaagc	agagatcaag	6000
agaattgaag	agaggtgcag	gcgtaagctg	gaggattcta	ccagggagac	acagtcacag	6060
ttagaaacag	aacgctcccg	atatcagagg	gagattgata	aactcagaca	gcgcccatat	6120
gggtcccatc	gagagaccca	gactgagtgt	gagtggaccg	ttgacacctc	caagctggtg	6180
tttgatgggc	tgaggaagaa	ggtgacagca	atgcagctct	atgagtgtca	gctgatcgac	6240
aaaacaacct	tggacaaact	attgaagggg	aagaagtcag	tggaagaagt	tgcttctgaa	6300
atccagccat	tccttcgggg	tgcaggatct	atcgctggag	catctgcttc	tcctaaggaa	6360
aaatactctt	tggtagaggc	caagagaaag	aaattaatca	gcccagaatc	cacagtcatg	6420
cttctggagg	cccaggcagc	tacaggtggt	ataattgatc	cccatcggaa	tgagaagctg	6480
actgtcgaca	gtgccatagc	tcgggacctc	attgacttcg	atgaccgtca	gcagatatat	6540
gcagcagaaa	aagctatcac	tggttttgat	gatccatttt	caggcaagac	agtatctgtt	6600
tcagaagcca	tcaagaaaaa	tttgattgat	agagaaaccg	gaatgcgcct	gctggaagcc	6660
cagattgctt	cagggggtgt	agtagaccct	gtgaacagtg	tctttttgcc	aaaagatgtc	6720
gccttggccc	gggggctgat	tgatagagat	ttgtatcgat	ccctgaatga	tccccgagat	6780
agtcagaaaa	actttgtgga	tccagtcacc	aaaaagaagg	tcagttacgt	gcagctgaag	6840
gaacggtgca	gaatcgaacc	acatactggt	ctgctcttgc	tttcagtaca	gaagagaagc	6900
atgtccttcc	aaggaatcag	acaacctgtg	accgtcactg	agctagtaga	ttctggtata	6960
ttgagaccgt	ccactgtcaa	tgaactggaa	tctggtcaga	tttcttatga	cgaggttggt	7020
gagagaatta	aggacttcct	ccagggttca	agctgcatag	caggcatata	caatgagacc	7080
acaaaacaga	agcttggcat	ttatgaggcc	atgaaaattg	gcttagtccg	acctggtact	7140
gctctggagt	tgctggaagc	ccaagcagct	actggcttta	tagtggatcc	tgttagcaac	7200
ttgaggttac	cagtggagga	agcctacaag	agaggtctgg	tgggcattga	gttcaaagag	7260

aagctcctgt	ctgcagaacg	agctgtcact	ggyraraary	attitigaaat	ayyaaacatc	7320
atctctttgt	tccaagccat	gaataaggaa	ctcatcgaaa	agggccacgg	tattcgctta	7380
ttagaagcac	agatcgcaac	cggggggatc	attgacccaa	aggagagcca	tcgtttacca	7440
gttgacatag	catataagag	gggctatttc	aatgaggaac	tcagtgagat	tctctcagat	7500
ccaagtgatg	ataccaaagg	attttttgac	cccaacactg	aagaaaatct	tacctatctg	7560
caactaaaag	aaagatgcat	taaggatgag	gaaacagggc	tctgtcttct	gcctctgaaa	7620
gaaaagaaga	aacaggtgca	gacatcacaa	aagaataccc	tcaggaagcg	tagagtggtc	7680
atagttgacc	cagaaaccaa	taaagaaatg	tctgttcagg	aggcctacaa	gaagggccta	7740
attgattatg	aaaccttcaa	agaactgtgt	gagcaggaat	gtgaatggga	agaaataacc	7800
atcacgggat	cagatggctc	caccagggtg	gtcctggtag	atagaaagac	aggcagtcag	7860
tatgatattc	aagatgctat	tgacaagggc	cttgttgaca	ggaagttctt	tgatcagtac	7920
cgatccggca	gcctcagcct	cactcaattt	gctgacatga	tctccttgaa	aaatggtgtc	7980
ggcaccagca	gcagcatggg	cagtggtgtc	agcgatgatg	tttttagcag	ctcccgacat	8040
gaatcagtaa	gtaagatttc	caccatatcc	agcgtcagga	atttaaccat	aaggagcagc	8100
tctttttcag	acaccctgga	agaatcgagc	cccattgcag	ccatctttga	cacagaaaac	8160
ctggagaaaa	tctccattac	agaaggtata	gagcggggca	tcgttgacag	catcacgggt	8220
cagaggette	tggaggctca	ggcctgcaca	ggtggcatca	tccacccaac	cacgggccag	8280
aagctgtcac	ttcaggacgc	agtctcccag	ggtgtgattg	accaagacat	ggccaccagc	8340
gtgaagcctg	ctcagaaagc	cttcataggc	ttcgagggtg	tgaagggaaa	gaagaagatg	8400
tcagcagcag	aggcagtgaa	agaaaaatgg	ctcccgtatg	aggctggcca	gcgcttcctg	8460
gagttccagt	acctcacggg	aggtcttgtt	gacccggaag	tgcatgggag	gataagcacc	8520
gaagaagcca	tccggaaggg	gttcatagat	ggccgcgccg	cacagaggct	gcaagacacc	8580
agcagctatg	ccaaaatcct	gacctgcccc	aaaaccaaat	taaaaatatc	ctataaggat	8640
gccataaatc	gctccatggt	agaagatatc	actgggctgc	gccttctgga	agccgcctcc	8700
gtgtcgtcca	agggcttacc	cagcccttac	aacatgtctt	cggctccggg	gtcccgctcc	8760
ggctcccgct	cgggatctcg	ctccggatct	cgctccgggt	cccgcagtgg	gtcccggaga	8820
ggaagctttg	acgccacagg	gaattcttcc	tactcttatt	cctactcatt	tagcagtagt	8880
tctattgggc	actagtagtc	agttgggagt	ggttgctata	ccttgacttc	atttatatga	8940
atttccactt	tattaaataa	tagaaaagaa	aatcccggtg	cttgcagtag	agtgatagga	9000
cattctatgc	ttacagaaaa	tatagccatg	attgaaatca	aatagtaaag	gctgttctgg	9060
ctttttatct	tcttagctca	tcttaaataa	gcagtacact	tggatgcagt	gcgtctgaag	9120
tgctaatcag	ttgtaacaat	agcacaaatc	gaacttagga	tttgtttctt	ctcttctgtg	9180
tttcgatttt	tgatcaattc	tttaattttg	gaagcctata	atacagtttt	ctattcttgg	9240
agataaaaat	taaatggatc	actgatattt	tagtcattct	gcttctcatc	taaatatttc	9300
catattctgt	attaggagaa	aattaccctc	ccagcaccag	ccccctctc	aaacccccaa	9360
cccaaaacca	agcattttgg	aatgagtctc	ctttagtttc	agagtgtgga	ttgtataacc	9420
catatactct	tcgatgtact	tgtttggttt	ggtattaatt	tgactgtgca	tgacagcggc	9480
aatcttttct	ttggtcaaag	ttttctgttt	attttgcttg	tcatattcga	tgtactttaa	9540
ggtgtcttta	tgaagtttgc	tattctggca	ataaactttt	agactttt		9588

```
<210>
       81
<211>
       1311
<212>
       DNA
      Homo sapiens
<400> 81
agtocgggag attotogoto tgotgottta gtttcggagt gtttggcgac ggggcagcgc
                                                                      60
gagatgtgga ggctcatgtc gaggtttaat gcattcaaaa ggactaatac catactgcac
                                                                     120
catttgagaa tgtccaagca cacagatgca gcagaagagg tgctattgga aaaaaaaggt
                                                                     180
tgcgcgggag tcataacact aaacagacca aagttcctca atgcactgac tcttaatatg
                                                                     240
attoggoaga tttatocaca gotaaagaag tgggaacaag atcotgaaac tttogtgato
                                                                     300
attataaagg gagcaggagg aaaggctttc tgtgccgggg gtgatatcag agtgatctcg
                                                                     360
gaagctgaaa aggcaaaaca gaagatagct ccagttttct tcagagaaga atatatgctg
                                                                      420
aataatgctg ttggttcttg ccagaaacct tatgttgcac ttattcatgg aattacaatg
                                                                      480
qqtqqqqqag ttqqtctctc aqtccatqqq caatttcqaq tgqctacaga aaaqtqtctt
                                                                      540
tttgctatgc cagaaactgc aataggactg ttccctgatg tgggtggagg ttatttcttt
                                                                      600
gccacgactc caaggaaaac ttggttactt ccttgcatta acggattcag actaaaagga
                                                                      660
agagatgtgt acagagcagg aattgctaca cactttgtag attctgaaaa gttggccatg
                                                                     720
ttagaggaag atttgttagc cttgaaatct ccttcaaaag aaaatattgc atctgtctta
                                                                     780
gaaaattacc atacagagtc taagattgat cgagacaagt cttttatact tgaggaacac
                                                                     840
atggacaaaa taaacagttg tttttcagcc aatactgtgg aagaaattat tgaaaactta
                                                                     900
                                                                     960
cagcaagatg gttcatcttt tgccctagag caattgaagg taattaataa aatgtctcca
acatetetaa agateacaet aaggeaaete atggaggggt etteaaagae ettgeaagaa
                                                                    1020
gtactaacta tggagtatcg gctaagtcaa gcttgtatga gaggtcatga ctttcatgaa
                                                                    1080
ggcgttagag ctgttttaat tgataaagac cagagtccaa aatggaaacc agctgatcta
                                                                    1140
aaagaagtta ctgaggaaga tttgaataat cactttaagt ctttgggaag cagtgatttg
                                                                    1200
aaattttgag gtgacaggct tttaaggtat attttgtagc atgggttggc aatctacagc
                                                                    1260
atgtgggcca aatccagcct gctgcctgtt tttatatacc ctgtaagcaa g
                                                                    1311
<210> 82
<211>
      4368
<212>
      DNA
<213>
      Homo sapiens
<400> 82
                                                                      60
cgaaatgaga gcaaaaaggg agagagcagg aaagcgagca caggcgagta cagtatacaa
agtgttttga gtttctgact ggcgtgccgg aaagatcatg ttagcacacc cagaaactcc
                                                                     120
acacgatgca gaccccagag gtaccagcag aaaggtcccc tcgtagacgg agtatctcag
                                                                     180
                                                                     240
ggaccagtac atcagagaaa cccaactcca tggacactgc aaatacctca cccttcaaag
taccaggatt cttcagcaag cgcctgaaag gctccatcaa gaggaccaaa agccagtcaa
                                                                     300
agettgacag aaacacgage ttteggette catecetteg cagtacagat gacaggtete
                                                                     360
                                                                     420
gtgggctgcc taaactaaaa gagtcacgtt cccatgaatc cttgctgagc ccatgcagca
                                                                     480
cagtggaatg totggatott ggtagagggg aacotgtato agtgaaacca ottoatagta
gcatccttgg acaagacttc tgctttgagg ttacctactt aagtggaagt aaatgcttca
                                                                     540
gctgtaattc tgcttctgag agagacaagt ggatggaaaa ccttcgcagg acagttcaac
                                                                      600
                                                                     660
ctaataagga caattgcagg cgagctgaaa atgttcttcg tttatggatc attgaagcca
```

aggaccttgc	ccctaaaaag	aaatatttct	gcgaactgtg	ccttgatgat	accerettg	720
ctcgtacaac	cagcaagacc	aaagcagaca	atattttctg	gggcgaacat	tttgaattct	780
tcagccttcc	acctcttcat	agtatcacag	ttcacattta	caaggatgtg	gaaaaaaaga	840
aaaaaagga	caagaataat	tatgtagggc	tagtcaacat	cccactgcc	agtgtgactg	900
gtcgccaatt	tgtagaaaag	tggtatccag	tgagtacacc	tacacccaac	aaaggaaaga	960
caggaggacc	ttctattcgg	attaaatcac	gtttccaaac	tatcaccatt	ctgcctatgg	1020
agcaatacaa	agaatttgca	gaatttgtca	ccagcaacta	caccatgctg	tgttctgtcc	1080
ttgagccagt	aattagtgtg	agaaataaag	aggagttggc	ttgtgcctta	gtgcacattc	1140
ttcaaagtac	tggcagagcc	aaggattttc	tgactgactt	ggtgatgtct	gaggtggatc	1200
gttgtggaga	gcatgatgtc	ttgatcttca	gagagaacac	tattgccacc	aaatccattg	1260
aggaatacct	caagttggtg	ggacaacagt	atcttcatga	cgcactgggg	gagtttatca	1320
aagctttgta	tgagtccgat	gagaactgtg	aagtggatcc	cagcaaatgt	tcatctagtg	1380
aactgataga	ccatcagagc	aacctgaaaa	tgtgctgtga	gctggctttc	tgcaagatca	1440
tcaactctta	ctgtgttttc	cctcgtgagt	tgaaagaagt	gtttgcatca	tggaagcagc	1500
agtgcctgaa	ccgtggcaag	caagacatca	gcgagaggct	catcagtgcc	tcattatttc	1560
tccgttttct	gtgtccagcc	attatgtctc	ccagtctttt	caaccttatg	caggagtatc	1620
ctgatgaccg	cacatctcgg	actctaactc	ttattgccaa	ggtcattcag	aacctggcca	1680
actttgccaa	gtttggtaac	aaagaggaat	acatggcatt	catgaatgat	tttttagaac	1740
atgaatgggg	tggaatgaag	cgctttcttt	tggagatctc	taatccagac	accatctcaa	1800
acaccccagg	ctttgatggt	tacattgatc	tgggccgaga	gctttcagtt	ttgcattcct	1860
tactgtggga	agtagtttcc	caacttgata	agggtgaaaa	ttccttccta	caggcgaccg	1920
tggcaaaatt	ggggcctctc	cctcgtgttc	ttgctgatat	taccaagtca	ttgactaatc	1980
ctacgccaat	acaacagcaa	ctgagacgct	tcactgaaca	taactccagt	ccaaatgtca	2040
gtggaagcct	ctcctctggg	ctgcagaaaa	tatttgaaga	ccccactgac	agtgatttgc	2100
ataaactaaa	atctccaagc	caggacaaca	cagacagcta	cttcagaggg	aaaacattat	2160
tgctggttca	gcaagcctcc	tctcagagca	tgacttattc	tgaaaaggat	gaaagggaaa	2220
gtagccttcc	taatggtcgg	agcgtctccc	tcatggacct	ccaggacact	catgctgctc	2280
aagtggagca	tgcatctgtc	atgcttgatg	tgcctatacg	cttgaccgga	agccagcttt	2340
ccataaccca	ggtggccagc	atcaaacagc	tgcgggaaac	ccagagcact	ccccaaagtg	2400
caccccaagt	gagaaggccc	ctgcacccag	ccttgaacca	gccaggtggc	cttcagccct	2460
tgtcgttcca	gaaccctgtc	tatcacctca	ataacccaat	tccagcaatg	ccaaaggcct	2520
ctatagattc	cagtttggag	aacctaagca	ctgccagttc	cagaagccaa	agtaacagtg	· 2580
aagacttcaa	gctcagtgga	cccagcaata	gcagcatgga	agatttcact	aaacgtagca	2640
ctcagagtga	ggacttctcc	aggcggcaca	cggtgccaga	tagacacata	cctcttgctt	2700
tgccacgaca	aaatagtact	gggcaggccc	agatccgaaa	agtggaccag	ggtgggttag	2760
gtgcccgagc	caaagcccca	ccatccctgc	cacacagtgc	ttctttacgt	agcaccggga	2820
gcatgtcagt	ggtgtccgca	gccctggtgg	ccgaacctgt	gcagaatggg	agccggtccc	2880
ggcagcagtc	ctcttcctcc	agagagagcc	ctgttcccaa	agttagagca	atccagagac	2940
aacagacaca	gcaggttcag	tcacctgtgg	actctgccac	aatgtcccca	gtagagagga	3000
cagcagcctg	ggttctgaac	aatgggcagt	atgaagagga	tgtggaagaa	actgagcaaa	3060

atctagatga agccaagcat gctgagaagt atgaacaaga aattactaaa ctgaaggagc 3120

acctagacga	agccaagcat	gergagaagr	atyaacaaya	anttactaaa	cryaayyayc	3120
gcctgagagt	ttccagccgg	cgactggagg	aatatgaacg	ccgcttgctg	gtgcaggagc	3180
agcagatgca	gaagctgctg	ctggaataca	aggcccgact	ggaggacagc	gaggagcggc	3240
tccgaagaca	gcaggaagaa	aaagatagcc	agatgaaaag	catcatcagc	aggctaatgg	3300
ctgtggaaga	ggaactgaag	aaggatcatg	ctgagatgca	agcagttatt	gatgcaaagc	3360
agaaaataat	tgatgcacag	gaaaaacgga	tegtgteect	ggattcagcc	aacaccagac	3420
tgatgagcgc	gctgacccaa	gtgaaggagc	ggtacagcat	gcaggtccgc	aatggcatct	3480
ccccaccaa	ccccaccaag	ctttccatca	cggagaatgg	tgaattcaaa	aacagcagct	3540
gctgacgggc	tttgtctgtg	gaaggagaca	gaaggaaatt	gacccactct	cctatctcca	3600
gacctttacc	tagcccctcc	aggtttacag	aatgttgcta	cttcacaatg	gcgatgtggt	3660
gagaaactcc	tgaatgaaga	aaggaacctt	gtctttcagg	gcataaggcg	gcgacttcca	3720
aggtcaatgc	ttttccccca	catctctatg	tacataggga	acttagttct	gggccatgta	3780
cagaaaatat	cactgtaata	taccaaaagg	aagttaataa	tgtagattac	ctttttgatt	3840
attgctattt	ttattattgt	tttcctcttg	ttgaaagcac	tgcagttgtt	acaggaagta	3900
aagtaggaat	gttgtgtgag	cgagacatga	gcctgtagtt	cagtaggtag	agaccaagca	3960
tctatctgat	agaacacatg	gagtgcaata	ggacattgtg	agaaggattt	ttcagggatt	4020
catctactag	tttaaaaacc	ccactctggc	cctcttgtcc	tttcagaaaa	catgcaaata	4080
ccaagatcca	tacaaaacaa	taatttattc	cactgatcaa	ccaagactgg	ttctggttgg	4140
acagctaatc	tgatttgggg	attcactgtt	tcagaggaca	cagacaaaag	ctgttgcatc	4200
aaaactggac	tttaggagta	atttctattg	aactcctgtc	aatatgttta	tttcctctgt	4260
ctacagcaga	tgggagtctt	ctcttttaga	caggggcttt	ttgtttttaa	ccccaattgt	4320
aataaagggt	gttcttttc	ctctttagaa	aaaaaaaaa	aaaaaaa		4368
	sapiens					
<400> 83 cagtggctgg	taggcagtgg	ctgggaggca	gcggcccaat	tagtgtcgtg	cggcccgtgg	60
cgaggcgagg	tccggggagc	gagcgagcaa	gcaaggcggg	aggggtggcc	ggagctgcgg	120
cggctggcac	aggaggagga	gcccgggcgg	gcgaggggcg	gccggagagc	gccagggcct	180
gägctgccgg	agcggcgcct	gtgagtgagt	gcagaaagca	ggcgcccgcg	cgctagccgt	240
ggcaggagca	gcccgcacgc	cgcgctctct	ccctgggcga	cctgcagttt	gcaatatgac	300
tttggaggaa	ttctcggctg	gagagcagaa	gaccgaaagg	atggataagg	tgggggatgc	360
cctggaggaa	gtgctcagca	aagccctgag	tcagcgcacg	atcactgtcg	gggtgtacga	420
agcggccaag	ctgctcaacg	tcgaccccga	taacgtggtg	ttgtgcctgc	tggcggcgga	480
cgaggacgac	gacagagatg	tggctctgca	gatccacttc	accetgatee	aggcgttttg	540
ctgcgagaac	gacatcaaca	tcctgcgcgt	cagcaacccg	ggccggctgg	cggagctcct	600
gctcttggag	accgacgctg	gccccgcggc	gagcgagggc	gccgagcagc	ccccggacct	660
gcactgcgtg	ctggtgacga	atccacattc	atctcaatgg	aaggatcctg	ccttaagtca	720
acttatttgt	ttttgccggg	aaagtcgcta	catggatcaa	tgggttccag	tgattaatct	780
ccctgaacgg	tgatggcatc	tgaatgaaaa	taactgaacc	aaattgcact	gaagtttttg	840

aaataccttt gtagttactc aa	gcagttac tccctacact	gatgcaagga t	ttacagaaac	900
tgatgccaag gggctgagtg ag	ttcaacta catgttctgg	gggcccggag a	atagatgact	960
ttgcagatgg aaagaggtga aaa	atgaagaa ggaagctgtg	ttgaaacaga a	aaaataagtc	1020
aaaaggaaca aaaattacaa aga	aaccatgc aggaaggaaa	actatgtatt a	aatttagaat	1080
ggttgagtta cattaaaata aad	ccaaatat gttaaagttt	aagtgtgcag (ccatagtttg	1140
ggtatttttg gtttatatgc cc	tcaagtaa aagaaaagcc	gaaagggtta a	atcatatttg	1200
aaaaccatat tttattgtat tt	tgatgaga tattaaattc	tcaaagtttt a	attataaatt	1260
ctactaagtt attttatgac at	gaaaagtt atttatgcta	taaattttt q	gaaacacaat	1320
acctacaata aactggtatg aa	taattgca tcatt			1355
<210> 84 <211> 2746 <212> DNA <213> Homo sapiens <400> 84				
gaattcctat cctgagcatg gc	taaactct gagctaatag	tatcattata (gaaagatgag	60
gaaacggagg cacagacaga tto	gagteett geecaeggee	tcgtggctca (tacgtggagg	120
agtcagaatt ggaactagag ac	tgatcgaa tgaatgacac	tcgggtcacc a	aggacacctt	180
cctatctcca ctcttacatc tg	tttcttag caatcatctc	ccaactccta	cctcctctt	240
tcaggttctt cttggtgaca tc	tgttacaa ctcacccctt	ctctcccttt	ccgatggtcc	300
tacctccata ttccccttgt tac	cttatttc caacttcttc	cctagtttcc a	atcttgattc	360
accettetet eetetggeea ge	ggatcgcg ggctcccagc	tctcctccag	gctgcagtat	420
tttgggcagg cactgagcgg gg	gtcaagac ctcacccagg	atggactggt (ggacctggct	480
gtgggggccc ggggccaggt gc	tcctgctc aggtgagagc	agactttctc a	agaggetece	540
catgtggtcc taggttcaga tg	ggggtgcc cacccacgtg	gtgctcccac	cagcgacggc	600
tgtcctcagc tcggtgctct gc	ccgcagac cagacctgtg	ctctgggtgg	gggtgagcat	660
gcagttcata cctgccgaga tc	cccaggtc tgcgtttgag	tgtcgggagc a	aggtggtctc	720
tgagcagacc ctggtacagt cc	aacatctg cctttacatt	gacaaacgtt	ctaagaacct	780
gcttgggagc cgtgagtccc ct	ccctcca acccaggaca	ccctgacctc 1	tggagtcccc	840
catcccaggc ccctgtctcc ca	ccctgctc attgtccacc	caaggagttc (ctgtctcaac	900
gccgtccctg cgaccgccta ca	ggtgacct ccaaagctct	gtgaccttgg a	acctggccct	960
cgaccctggc cgcctgagtc cc	cgtgccac cttccaggaa	acaaagaacc (ggagtctgag	1020
ccgagtccga gtcctcgggc tg	aaggcaca ctgtgaaaac	ttcaacctgc 1	tgctcccggt	1080
gcgtctgggc atgaacgtgg gt	ggcggccg cgctggggct	ggcagaaggc a	agggcaggga	1140
gagaacagge tgtgttccgg cc	tccctgtg gctcagccca	gcacaggacc a	agccatgcag	1200
gacgtgctta ctgcacgtta gc	cägtgagt gagtgagcga	gcaaacaagt (gatgagatcg	1260
totgcaattt coagggccac acc	gattggat ttcaggaaag	agaattgggc a	aacctgagag	1320
agetetggge ttacettetg ge	ttttcagg cattcactga	cagggttatc (gagctgctcc	1380
tggagacagc cttgcctggg cca				1440
aggtctgggg gggggaggaa aa	aaacaaag acaaacaagg	ggagaggaca	gagagggtgt	1500
cagggaggca tcctgaaggc gg				1560
ggagctgggc agaggcagga taa	agaactgc ggatgaggcc	gagcgcagct o	cttaccctcc	1620

ccttaccctc gct	ccccgcg acgcccgto	c cccagagetg	cgtggaggac	tctgtgaccc	1680
ccattacctt gcg	tctgaac ttcacgcto	g tgggcaagco	cctccttgcc	ttcagaaacc	1740
tgcggcctat gct	ggccgcc gatgctcac	a gatacttcac	ggcctccgtg	agtcctggca	1800
ctgggtctcc cag	agagggt gcacagcgt	g gggcctgggt	ctcggagaaa	acccccgtt	1860
gccttcccac gca	gctaccc tttgagaaq	a actgtggagc	cgaccatatc	tgccaggaca	1920
atctcggcat ctc	cttcagc ttcccagg	t gagcgcccca	ccttagatgc	cctactgccc	1980
cagcctcctt cctq	ggaatct gggactcct	g cctctgctct	ccctaacatt	gtctcatcct	2040
atagtcaaaa ccca	aggtgtc ttggctggg	c acagtggctc	actcctgtaa	tccagcactt	2100
tgggaggccg aggt	tgggagg acttttgaç	g ccaggagtta	gggttacgac	ctgggcaaca	2160
gagcgacacc cat	ttccaca aaaacaaaa	c aacaacaaca	acaacaacaa	caacaacaac	2220
aacaacatca ctto	gagtgtg gtagagcat	g cctatagtcc	cagctacttg	ggaggctgaa	2280
gcttaaggct tgc	ttgaget etggagtte	g aggtctgcag	tgagccataa	tcacaccact	2340
gcactccagc ctgg	ggtgaaa gagcaggad	t ctgtctctta	aaaaaaaaga	agaagaagaa	2400
gaagaagaag aaga	aacccag gggtccgtc	c cctgtctatc	teccaaatec	ccacccaccc	2460
cattttatcc caga	accattt ctagcctca	g tcacagaato	atcttatcct	ttccttcacc	2520
tgatacccag ctt	gaagtcc ctgctggtq	g ggagtaacct	ggagctgaac	gcagaagtga	2580
tggtgtggaa tgad	cggggaa gactcctad	g gaaccaccat	caccttctcc	caccccgcag	2640
gactgtccta ccg	ctacgtg gcagaggg	c aggtgcacct	ctggggaagg	aggaggaggc	2700
agggctgggc gtta	agcgtag attcccgto	c gggttcagaa	cccggg		2746
<210> 85 <211> 2551 <212> DNA <213> Homo sap	piens			·	
<400> 85 gcaagagtga caca	acaggtg ttcaaagad	g cttctgggga	gtgagggaag	cggtttacga	60
gtgacttggc tgga	agcetea ggggeggg	a ctggcacgga	acacaccctg	aggccagccc	120
tggctgccca ggcq	ggagetg cetettete	c cgcgggttgg	tggacccgct	cagtacggag	180
ttggggaagc tctt	ttcactt cggaggatt	g ctcaacaacc	atgctgggca	tctggaccct	240
cctacctctg gttc	cttacgt ctgttgcta	g attatcgtcc	aaaagtgtta	atgcccaagt	300
gactgacatc aact	tccaagg gattggaat	t gaggaagact	gttactacag	ttgagactca	360
gaacttggaa ggcd	ctgcatc atgatggco	a attctgccat	aagccctgtc	ctccaggtga	420
aaggaaagct aggg	yactgca cagtcaatç	g ggatgaacca	gactgcgtgc	cctgccaaga	480
agggaaggag taca	acagaca aagcccatt	t ttcttccaaa	tgcagaagat	gtagattgtg	540
tgatgaagga cato	ggcttag aagtggaaa	t aaactgcacc	cggacccaga	ataccaagtg	600
cagatgtaaa ccaa	actttt tttgtaact	c tactgtatgt	gaacactgtg	accettgcac	660
caaatgtgaa catg	ggaatca tcaaggaat	g cacactcacc	agcaacacca	agtgcaaaga	720
ggaaggatcc agat	ctaact tggggtggc	t ttgtcttctt	cttttgccaa	ttccactaat	780
tgtttgggtg aaga	agaaagg aagtacaga	a aacatgcaga	aagcacagaa	aggaaaacca	840
aggttctcat gaat	ctccaa ccttaaato	c tgaaacagtg	gcaataaatt	tatctgatgt	900
tgacttgagt aaat					0.00
.,	atatca ccactatto	e tggagtcacy	acactaagtc	aagttaaagg	960
	atatca ccactatto aatggtg tcaatgaag				1020

ccaagacaca	gcagaacaga	aagttcaact	gcttcgtaat	tggcatcaac	ttcatggaaa	1080
gaaagaagcg	tatgacacat	tgattaaaga	tctcaaaaaa	gccaatcttt	gtactcttgc	1140
agagaaaatt	cagactatca	tcctcaagga	cattactagt	gactcagaaa	attcaaactt	1200
cagaaatgaa	atccaaagct	tggtctagag	tgaaaaacaa	caaattcagt	tctgagtata	1260
tgcaattagt	gtttgaaaag	attcttaata	gctggctgta	aatactgctt	ggttttttac	1320
tgggtacatt	ttatcattta	ttagcgctga	agagccaaca	tatttgtaga	tttttaatat	1380
ctcatgattc	tgcctccaag	gatgtttaaa	atctagttgg	gaaaacaaac	ttcatcaaga	1440
gtaaatgcag	tggcatgcta	agtacccaaa	taggagtgta	tgcagaggat	gaaagattaa	1500
gattatgctc	tggcatctaa	catatgattc	tgtagtatga	atgtaatcag	tgtatgttag	1560
tacaaatgto	tatccacagg	ctaaccccac	tctatgaatc	aatagaagaa	gctatgacct	1620
tttgctgaaa	tatcagttac	tgaacaggca	ggccactttg	cctctaaatt	acctctgata	1680
attctagaga	ttttaccata	tttctaaact	ttgtttataa	ctctgagaag	atcatattta	1740
tgtaaagtat	atgtatttga	gtgcagaatt	taaataaggc	tctacctcaa	agacctttgc	1800
acagtttatt	ggtgtcatat	tatacaatat	ttcaattgtg	aattcacata	gaaaacatta	1860
aattataatg	tttgactatt	atatatgtgt	atgcatttta	ctggctcaaa	actacctact	1920
tctttctcag	gcatcaaaag	cattttgagc	aggagagtat	tactagagct	ttgccacctc	1980
tccatttttg	ccttggtgct	catcttaatg	gcctaatgca	ccccaaaca	tggaaatatc	2040
accaaaaaat	acttaatagt	ccaccaaaag	gcaagactgc	ccttagaaat	tctagcctgg	2100
tttggagata	ctaactgctc	tcagagaaag	tagctttgtg	acatgtcatg	aacccatgtt	2160
tgcaatcaaa	gatgataaaa	tagattctta	tttttccccc	acccccgaaa	atgttcaata	2220
atgtcccatg	taaaacctgc	tacaaatggc	agcttataca	tagcaatggt	aaaatcatca	2280
tctggattta	ggaattgctc	ttgtcatacc	cccaagtttc	taagatttaa	gattctcctt	2340
actactatco	tacgtttaaa	tatctttgaa	agtttgtatt	aaatgtgaat	tttaagaaat	2400
aatatttata	tttctgtaaa	tgtaaactgt	gaagatagtt	ataaactgaa	gcagatacct	2460
ggaaccacct	aaagaacttc	catttatgga	ggatttttt	gccccttgtg	tttggaatta	2520
taaaatatag	gtaaaagtac	gtaattaaat	a			2551
<210> 86 <211> 600 <212> DNA <213> Hom	-					
<400> 86	o sapiens					
	agccgcagtc	ttggtggagg	aggtggtgac	caccaccgct	cctccacctg	60
catccggctg	cgggactgcg	gcggccgcgt	ttgccctgca	gaccctgcac	cccgggacgc	120
ggctcatctg	tcattagcac	cggcactaag	ctcccaccgc	tcagcgactt	ggtccgccgc	180
aageteegee	gcaggctttg	tccgctagcg	ctcggctgag	tctgggcggg	cgggaaacct	240
gggctagggc	gaggcggggc	ccctggacat	gcctttctcc	acgtccgcct	cctcgaccct	300
attgtaagcg	gagaaactta	gtgtgcgagg	caggcagggg	acgtccccat	tttgatgtcc	360
cgtaccctcc	acccccttcg	gatcgaggta	gtaaagaggc	tcctgtagga	aactgactgc	420
ctctatgatt	gcggcctctt	gggggatttt	gcgtttagcc	cgaaagttgg	ctttgccaaa	480
agacgcacgg	gtaggaaggg	cgaaaaggaa	accctgtatt	ccgtcgcgct	gggctctccg	540
agtccgtgcg	caaagcggcc	tacgagtcct			caagagccaa	600
				Page 109		

tgcctaaaaa	agaacagcgg	aggaaccggc	tggcgcggcc	agctggaacg	ctggatcgca	660
gtgcgcccag	ggaaggccgg	gggcgcccgc	cggccctagc	cctcagtggt	cctctcccac	720
gccggcccgc	gcgtgcctct	gcctacaaga	cctggggcgt	cctggccaga	tctggatggc	780
aggtccctcc	gccacccccg	gcccggttcc	gggggcgtgg	cttggcgcgg	gggcgggttt	840
aagtcaccgc	gggtgtctga	ccactctgac	aggtctccaa	atttctccca	gtcgcctggc	900
gcccgcggtg	cgtttcagag	ctccagggtg	gcacgcggcg	gcgcttccct	agatccagag	960
gcgtctctgt	cgacttccac	gcggcctcgg	gcctcccttc	tcctccaaac	cttcgcctca	1020
tccgccaagc	ttcggttctc	agcctcagat	atccgcaccg	gcggcttctc	ttcgttctcg	1080
gagctcttgg	ctttggagcc	ctcaccactt	tttccttccc	ccgcctctcc	tgatcctcct	1140
agctccgagc	caaatggact	ccaaagaacg	aaataaaggg	gatgagaact	gtgtgctgcg	1200
acccttcgaa	agcacagetg	aaagcgttga	cctcgtctta	tagatcaggc	tgggaccctg	1260
gggcgagagt	ccccacaccc	cctccgggag	ggatgcttct	ggccagagcc	agcgctgcgc	1320
tgtcagtcct	tgctcccgaa	ctaggaaaga	gcctaggagg	gagecteage	ataccccttc	1380
ctccaaatta	actatttggt	gaattgttag	cgccgaggct	accacctctc	caaccctgtc	1440
gcggggcgcg	ccgccacctc	accgtgaccc	cctcctcctc	cttctttgcc	accgccccca	1500
gctccgcccc	tgctccccat	cccggcgcaa	tggagttctc	cgaagggcga	tgattccagc	1560
cacatctgct	aacttcgcac	ccatcgctgc	cgccggtcac	cgccggccag	gccccctgca	1620
gccgcggagc	agtgggcgtc	caaagcccag	tgcagcagcc	aggacccgcc	cgacgcgcag	1680
cagaagcacg	gcgcccaggc	gcttaggcgt	ctcttggaga	gcaaaggctg	cgccaaaacg	1740
ctgagcctag	aatcaaccaa	ggagcctgag	cccaggaagg	ggctgcgtgg	ctcacagcgc	1800
tgcggctcct	gaggacaaat	agccactgcc	gctgcgtacc	caagctgcgc	cggctggcgg	1860
gagagcagca	cgcaaggacg	ccgaggtccg	ccgcgatctt	ccaggtgccc	tttgcccctg	1920
ggcacagtat	gacccgacct	acagggagcc	ctagcgcagg	gctcctgcaa	cgggtcagcc	1980
taggataaaa	aggatccttg	ccaagctcct	accaggccgc	ctttgagtct	ttaggaaccc	2040
ctcctccggc	tgcctcccca	aggttctggg	cctccttccc	tgcggcccag	agccatggag	2100
ctctccgatg	tgcgctgcct	tacaggcagc	gaggaactct	acaccatcca	cccgacgccc	2160
ccggccggcg	acggcaggag	cgcctcccgg	ccgcagcggc	tgctgtggca	gacggcggtg	2220
cgacacatca	cggagcagcg	cttcattcac	gggcaccggg	gaggcagcgg	cagcgggagt	2280
ggaggctcgg	gcaaagcctc	ggaccctgcg	ggcggcggcc	ccaaccacca	cgcgccgcag	2340
ctgtcaggcg	actcggcgct	gcccctctac	tcgctgggcc	cgggagagcg	agcgcacagc	2400
acctgcggca	ccaaagtctt	cccggaacgc	agcgggagcg	gcagtgccag	cggcagcgga	2460
ggcgggggcg	acctgggctt	cctgcacctt	gactgtgccc	ctagcaactc	ggatttcttt	2520
cttaatgggg	gctatagcta	ccgaggggtc	attttcccca	ccctgcgcaa	ctccttcaaa	2580
tctcgggatt	tggaacgcct	ctaccagcgc	tatttcttgg	gccaaaggcg	caaatcggaa	2640
gtggtgatga	acgtgctgga	cgtgctgacc	aaactcactc	tcttggtcct	acacttgagc	2700
ctggcctcgg	ccccatgga	cccgctcaag	ggcatcctgc	tgggcttctt	caccggcatt	2760
gaggtagtga	tctgcgccct	ggtggtggtc	aggaaggaca	ccacctccca	cacgtacctg	2820
cagtacagcg	gcgtggtcac	ctgggtggcc	atgaccaccc	agatectgge	agcaggcctc	2880
ggctacgggc	tcctgggcga	cggcataggc	tacgtgctct	tcacgctctt	cgccacctac	2940

agtatgctgc	cgctgccgct	cacctgggcc	atcctggccg	gcctgggcac	ctcgctgctg	3000
caggtcatcc	tccaagtggt	cataccccgg	ctggcggtca	tttccatcaa	ccaggttgtg	3060
gcccaggcag	tgctattcat	gtgtatgaac	acagctggaa	tcttcatcag	ttacctgtca	3120
gaccgggccc	agcgccaagc	tttcctggag	actcggaggt	gtgtggaggc	caggctgcgc	3180
ctggagacag	agaaccaaag	acaggagcgg	ctcgtgcttt	ctgtgctccc	ccggtttgtt	3240
gtcctggaaa	tgatcaacga	catgaccaat	gtggaagatg	agcacctgca	gcaccagttc	3300
catcggatct	acatccatcg	ctatgagaac	gtcagtattc	tttttgcaga	tgttaaagga	3360
tttaccaacc	tctccacgac	cttgtctgct	caggagctgg	tcaggatgct	caacgagctc	3420
tttgccagat	ttgatcgact	ggcccatgag	catcactgcc	ttcgtattaa	aatcctgggg	3480
gactgctact	actgcgtgtc	tggacttcct	gagccccgcc	aggaccatgc	ccactgctgt	3540
gttgaaatgg	gtctcagcat	gatcaaaacc	atcaggtatg	tgcggtcaag	gacaaaacac	3600
gatgttgaca	tgaggattgg	aatccactcc	ggctcggtgc	tgtgcggtgt	tttgggacta	3660
cggaagtggc	agtttgatgt	ctggtcttgg	gatgtggata	ttgcaaacaa	actcgaatct	3720
ggaggaatcc	ccgggaggat	tcacatttcc	aaagccacgc	tggactgtct	caacggtgac	3780
tataacgtgg	aagagggcca	tggtaaagag	aggaatgaat	tcctgaggaa	gcataatatc	3840
gaaacttact	taattaagca	gcctgaggac	agtctgctgt	ccttgcctga	agatatcgtc	3900
aaggagtcag	tgagctcctc	agaccggaga	aacagtgggg	ccacattcac	tgaaggatcc	3960
tggagccctg	aactgccctt	tgataatatc	gtggggaaac	agaatactct	ggctgcccta	4020
acaagaaatt	caataaatct	gcttccaaac	catcttgcac	aagctttgca	tgtccagtct	4080
gggcctgagg	aaattaacaa	gagaatagaa	cataccatcg	acttgcggag	tggcgataaa	4140
ttgagaagag	agcatatcaa	gccattctca	ctgatgttta	aagactccag	cctggagcac	4200
aagtattctc	aaatgaggga	tgaagtgttc	aagtcaaact	tggtctgtgc	atttatcgtt	4260
cttctattta	tcacggcaat	acaaagtttg	cttccttctt	caagagtgat	gccaatgacc	4320
atccagttct	ccattctgat	tatgctgcac	tcggctctgg	tcctcatcac	cacagcagag	4380
gattataaat	gtttgcccct	catcctccgg	aaaacttgct	gttggattaa	tgagacctat	4440
ttggcccgga	acgtcatcat	ctttgcatcc	attttgatta	atttcctggg	tgccatctta	4500
aatatcctgt	ggtgtgattt	tgacaagtcg	atacccttga	agaacctgac	tttcaattcc	4560
tcagctgtgt	ttacagatat	ctgctcctac	ccagagtact	ttgtcttcac	gggggtgttg	4620
gccatggtga	cctgtgcagt	tttcctccgg	ctgaactccg	tcctgaagct	ggcagtgctg	4680
ctgatcatga	ttgccatcta	tgccctgctc	actgagaccg	tctacgcagg	cctctttctg	4740
cgttatgaca	acctcaacca	cagtggagaa	gatttcctgg	ggaccaagga	ggtatcactg	4800
ctactgatgg	ccatgttcct	cctggctgtg	ttctaccatg	gacagcagct	ggagtacaca	4860
gcccgcctgg	acttcctttg	gcgagtacag	gccaaagagg	agatcaatga	gatgaaggag	4920
ctgagggaac	acaatgagaa	catgctccgg	aatatcttac	ccagccatgt	ggcccgccat	4980
ttcctagaga	aggaccgaga	caatgaggag	ctgtattctc	aatcctatga	tgctgttggg	5040
gtgatgtttg	cctccatccc	aggatttgcg	gacttttact	ctcagactga	aatgaataac	5100
cagggagtgg	aatgcctgcg	cttgctcaat	gagatcattg	ctgacttcga	tgagttgctt	5160
ggtgaagacc	gatttcaaga	cattgaaaag	attaagacca	ttggcagcac	ctacatggcc	5220
gtgtcaggcc	tgtcacctga	aaaacagcaa	tgtgaagaca	agtggggaca	tttgtgtgct	5280
ctggctgact	tctcactcgc	cctgacagaa	agcatacagg	agatcaacaa	gcattcattc	5340

aacaattttg aactccggat	tggcatcagc	cacggctcag	tggtagctgg	cgttatcggc	5400
gctaagaaac cacagtatga	catttggggc	aaaactgtga	acctggcaag	ccgaatggac	5460
agcacggggg ttagtggccg	gatccaagtc	ccagaggaga	cctatctcat	cctgaaggac	5520
cagggctttg cctttgatta	ccgaggggag	atctatgtga	agggtatcag	tgaacaggaa	5580
ggaaaaatca aaacgtactt	tcttctggga	agagtccaac	ccaacccatt	catcttgccc	5640
ccaagaagac tgcctgggca	gtactccctg	gccgcggttg	tcctgggact	tgtccagtcc	5700
ctcaataggc aaaggcagaa	gcagctactc	aatgagaaca	acaacacagg	aatcatcaag	5760
ggtcattaca accggcggac	tttgttgtca	cccagcggca	cagagcctgg	agcccaggct	5820
gaaggcaccg acaaatctga	tttgccataa	aagcattttc	tttctgtttt	tttttttt	5880
tgtatttctt ttatatataa	aataaatata	ctaataaaaa	ggtttaattt	tttttagaac	5940
aaaaaaaaa aaaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaacccc	aaaaaaaaa	6000
aaaaa			•		6005
<210> 87 <211> 488 <212> DNA <213> Homo sapiens <400> 87					
tggcgccgac aggatgggca	agtgtcgtgg	acttcgtact	gctaggaagc	tccgtagtca	60
ccgacgagac cagaagtggc	atgataaaca	gtataagaaa	gctcatttgg	gcacagccct	120
aaaggccaac ccttttggag	gtgcttctca	tgcaaaagga	atcgtgctgg	aaaaagtagg	180
agttgaagcc aaacagccaa	attctgccat	taggaagtgt	gtaagggtcc	agctgatcaa	240
gaatggcaag aaaatcacag	cctttgtacc	caatgacggt	tgcttgaact	ttattgagga	300
aaatgatgaa gttctggttg	ctggatttgg	tcgcaaaggt	catgctgttg	gtgatattcc	360
tggagtccgc tttaaggttg	tcaaagtagc	caatgtttct	cttttggccc	tatacaaagg	420
caagaaggaa agaccaagat	cataaatatt	aatggtgaaa	acactgtagt	aataaatttt	480
catatgcc					488
<210> 88 <211> 1398 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)(1398) <223> n=A,T,C, or G					
<400> 88	~~~~~~~~	acast sessa	ctcctcctcc	ccaccataa	60
ctgcgccgcc tttctccgct cgttcacgtt cgcggccttc					120
tottogocat ttggcacatt	-				180
tagaccagtg taataccctg				-	240
totgtgtcat gtttctttgt	•				300
tggcatatca tatttggagg					360
accetacaac catcatgaat		-			420
aattagcttt ttatcttcta					480
,	,		,,		

540

tgagetetta gaacaacaca cagaagaatt ggteeagila agiyealgea aaaageeace

aaatgaaggg attctatcca gcaagatcct gtccaagagt agcctgtgga atctgatcag	600
ttactttaaa aaatgactcc ttattttta aatgtttcca catttttgct tgtggaaaga	660
ctgttttcca tatgttatac tcagataaag attttaaatg gtattacgta taaattaata	720
taaaatgatt acctctggtg ttgacaggtt tgaacttgca cttcttaagg aacagccata	780
atcctctgaa tgatgcatta attactgact gtcctagtac attggaagct tttgtttata	840
ggaacttgta gggctcattt tggtttcatt gaaacagtat ctaattataa attagctgta	900
gatatcaggt gcttctgatg aagtgaaaat gtatatctga ctagtgggaa acttcatggg	960
tttcctcatc tgtcatgtcg atgattatat atggatacat ttacaaaaat aaaaaaaaa	1020
gcgggaattt tcccttcgct tgaatattat ccctgtatat tgcatgaatg agagatttcc	1080
catatttcca tcagagtaat aaatatactt gctttaattn nttaagcata agtaaacatg	1140
atataaaaat atatgctgaa ttacttgtga agaatgcatt taaagctatt ttaaatgtgt	1200
ttttatttgt aagacattac ttattaagaa attggttatt atgcttactg ttctaatctg	1260
gtggtaaagg tattcttaag aatttgcagg tactacagat tttcaaaact gaatgagaga	1320
aaattgtata accatcctgc tgttccttta gtgcaataca ataaaactnt gaaattaaga	1380
aaaaaaaa aaaaaaaa	1398
<210> 89	
<211> 4848 <212> DNA	
<213> Homo sapiens	
<400> 89 gccggccgaa gcgtggcggc cacagactgt gggtaccggg tccgagggac tcgcgctttt	60
ctctccgtgc catggcgcca gcgaaagcca cgaacgtggt gcggctgcta ctaggctcca	120
cagcgctgtg gctttcgcag ctcggctccg ggacggtcgc cgcgtccaag tcggtgactg	180
cccacttggc cgcgaagtgg cccgagaccc cgctgctgct ggaggcaagt gaatttatgg	240
cagaagaaag taatgaaaaa ttttggcagt ttttggaaac tgtgcaagaa ttagcaattt	300
ataagcaaac agaatcagat tattottatt acaacttaat cotgaagaaa gotggacagt	360
ttctagacaa tttacacatc aaccttttaa agtttgcttt ctctataagg gcatactccc	420
ttctagacaa tttacacatc aaccttttaa agtttgcttt ctctataagg gcatactccc cagctattca gatgtttcag cagattgcag ctgatgagcc accaccagat ggttgtaatg	420 480
cagctattca gatgtttcag cagattgcag ctgatgagcc accaccagat ggttgtaatg	480
cagctattca gatgtttcag cagattgcag ctgatgagcc accaccagat ggttgtaatg catttgtggt tattcataag aagcacacct gtaaaattaa tgagattaaa aagctgctga	480 540
cagctattca gatgtttcag cagattgcag ctgatgagcc accaccagat ggttgtaatg catttgtggt tattcataag aagcacacct gtaaaattaa tgagattaaa aagctgctga agaaagctgc ttcaaggact agaccttatc tatttaaagg agatcacaaa tttcctacaa	480 540 600
cagctattca gatgtttcag cagattgcag ctgatgagcc accaccagat ggttgtaatg catttgtggt tattcataag aagcacacct gtaaaattaa tgagattaaa aagctgctga agaaagctgc ttcaaggact agaccttatc tatttaaagg agatcacaaa tttcctacaa acaaagagaa cttaccagtg gtgattctct atgccgaaat gggtactaga acatttagtg	480 540 600 660
cagctattca gatgtttcag cagattgcag ctgatgagcc accaccagat ggttgtaatg catttgtggt tattcataag aagcacacct gtaaaattaa tgagattaaa aagctgctga agaaagctgc ttcaaggact agaccttatc tatttaaagg agatcacaaa tttcctacaa acaaagagaa cttaccagtg gtgattctct atgccgaaat gggtactaga acatttagtg catttcacaa agtattgtct gaaaaagctc aaaatgagga aattctgtat gttcttcgcc	480 540 600 660 720
cagctattca gatgtttcag cagattgcag ctgatgagcc accaccagat ggttgtaatg catttgtggt tattcataag aagcacacct gtaaaattaa tgagattaaa aagctgctga agaaagctgc ttcaaggact agaccttatc tatttaaagg agatcacaaa tttcctacaa acaaagagaa cttaccagtg gtgattctct atgccgaaat gggtactaga acatttagtg catttcacaa agtattgtct gaaaaaagctc aaaatgagga aattctgtat gttcttcgcc attatattca gaaaccaagc tcacggaaaa tgtacttatc tgggtatggt gtggagctag	480 540 600 660 720 780
cagctattca gatgtttcag cagattgcag ctgatgagcc accaccagat ggttgtaatg catttgtggt tattcataag aagcacacct gtaaaattaa tgagattaaa aagctgctga agaaagctgc ttcaaggact agaccttatc tatttaaagg agatcacaaa tttcctacaa acaaagagaa cttaccagtg gtgattctct atgccgaaat gggtactaga acatttagtg catttcacaa agtattgtct gaaaaagctc aaaatgagga aattctgtat gttcttcgcc attatattca gaaaccaagc tcaccggaaaa tgtacttatc tgggtatggt gtggagctag caattaagag tacagaatac aaagcactgg atgataccca agttaaaact gtgactaata	480 540 600 660 720 780 840
cagctattca gatgtttcag cagattgcag ctgatgagcc accaccagat ggttgtaatg catttgtggt tattcataag aagcacacct gtaaaattaa tgagattaaa aagctgctga agaaagctgc ttcaaggact agaccttatc tatttaaagg agatcacaaa tttcctacaa acaaagagaa cttaccagtg gtgattctct atgccgaaat gggtactaga acatttagtg catttcacaa agtattgtct gaaaaaagctc aaaatgagga aattctgtat gttcttcgcc attatattca gaaaccaagc tcacggaaaa tgtacttatc tgggtatggt gtggagctag caattaagag tacagaatac aaagcactgg atgataccca agttaaaact gtgacaata ctactgtaga ggatgagact gaaacaaatg aagttcaagg atttctcttt gggaaactaa	480 540 600 660 720 780 840 900
cagctattca gatgtttcag cagattgcag ctgatgagcc accaccagat ggttgtaatg catttgtggt tattcataag aagcacacct gtaaaattaa tgagattaaa aagctgctga agaaagctgc ttcaaggact agaccttatc tatttaaagg agatcacaaa tttcctacaa acaaagagaa cttaccagtg gtgattctct atgccgaaat gggtactaga acatttagtg catttcacaa agtattgtct gaaaaaagctc aaaatgagga aattctgtat gttcttcgcc attatattca gaaaccaagc tcacggaaaa tgtacttatc tgggtatggt gtggagctag caattaagag tacagaatac aaagcactgg atgataccca agttaaaact gtgactaata ctactgtaga ggatgagact gaaacaaatg aagttcaagg atttctcttt gggaaactaa aagaaatata ttcagatctt agagataatc tgacagcatt ccataaatac ctgattgaga	480 540 600 660 720 780 840 900
cagctattca gatgtttcag cagattgcag ctgatgagcc accaccagat ggttgtaatg catttgtggt tattcataag aagcacacct gtaaaattaa tgagattaaa aagctgctga agaaagctgc ttcaaggact agaccttatc tatttaaagg agatcacaaa tttcctacaa acaaagagaa cttaccagtg gtgattctct atgccgaaat gggtactaga acatttagtg catttcacaa agtattgtct gaaaaagctc aaaatgagga aattctgtat gttcttcgcc attatattca gaaaccaagc tcacggaaaa tgtacttatc tgggtatggt gtggagctag caattaagag tacagaatac aaagcactgg atgataccca agtaaaact gtgactaata ctactgtaga ggatgagact gaaacaaatg aagttcaagg atttctcttt gggaaactaa aagaaatata ttcagatctt agagataatc tgacagcatt ccataaatac ctgattgaga gtaacaaaca aatgatgcct ttgaaagtct gggaactaca agatcttagt tttcaagcag	480 540 600 660 720 780 840 900 960

ctcgtctatt	tataaatggc	cttcgtgttg	atatggatgt	ttatgacgct	tttagtattt	1260
tggatatgct	gaaattagaa	ggaaaaatga	tgaatggcct	tcgcaatctt	gggatcaatg	1320
gggaagatat	gagcaaattt	ttaaaattaa	attcacacat	ttgggaatat	acttatgtat	1380
tagatattcg	acattcttct	ataatgtgga	ttaatgactt	agaaaatgat	gatttgtata	1440
ttacatggcc	tacaagttgc	cagaaacttc	tgaagccagt	atttcctgga	agtgtacctt	1500
ccataaggcg	caattttcat	aatttggttc	tgtttattga	tccggcccaa	gaatatacct	1560
tggattttat	aaaacttgct	gatgttttct	attctcacga	agttcctctt	agaattggtt	1620
ttgtgttcat	tcttaataca	gatgatgaag	ttgatggagc	aaatgatgct	ggagttgctc	1680
tctggcgagc	tttcaactat	attgcagaag	aatttgatat	atcagaagca	tttatttcta	1740
tagtacacat	gtaccaaaaa	gtgaagaagg	atcaaaatat	actcactgtg	gacaatgtga	1800
agagtgttct	ccaaaataca	tttcctcatg	ctaatatttg	ggatattttg	ggaattcatt	1860
ctaaatatga	tgaagaaaga	aaggctggag	caagctttta	taagatgact	ggcctgggtc	1920
ctttgcctca	agctctttat	aatggtgaac	cctttaaaca	tgaagagatg	aatattaaag	1980
aactaaaaat	ggctgttctt	caaagaatga	tggatgcatc	tgtatattta	caaagagaag	2040
tttttttggg	cacattaaat	gatcgcacga	atgcaattga	ttttctaatg	gataggaata	2100
atgttgtacc	ccgtataaat	actttgattt	tgcgtactaa	ccagcagtac	ctcaatttaa	2160
tatctacatc	agtaactgct	gatgttgaag	atttctctac	tttcttttc	ttggattcac	2220
aagataagag	tgctgtaatt	gcaaagaaca	tgtattattt	aacccaagac	gatgagagta	2280
taatttctgc	agtcactctc	tggattattg	cagattttga	taagccttct	gggagaaaac	2340
ttctttttaa	tgcattaaag	cacatgaaaa	caagtgttca	tagtcggttg	gggattattt	2400
ataatcctac	atcaaaaata	aatgaagaga	acacagctat	ttctagaggg	attttggcag	2460
cttttcttac	acagaagaac	atgtttttga	gaagctttct	tgggcaactg	gcaaaggaag	2520
aaattgctac	aactatttac	tctggagata	aaattaaaac	attccttatt	gaggggatgg	2580
ataagaatgc	ttttgagaaa	aaatataata	ctgttggagt	gaatatttt	cgaactcacc	2640
agttgttctg	tcaagatgta	cttaaattac	gtcctggaga	aatgggtatt	gtcagcaatg	2700
ggagattctt	aggaccttta	gatgaagatt	tttatgcaga	agatttttac	ttgttggaaa	2760
agataacatt	tagtaattta	ggagagaaaa	ttaaaggcat	tgttgaaaat	atgggaatca	2820
acgcaaataa	catgagtgac	tttattatga	aagttgatgc	ccttatgtcc	tctgtgccta	2880
agcgtgcatc	tcgatatgat	gtcacatttc	ttagggagaa	tcacagtgtt	ataaagacga	2940
atcctcaaga	gaatgatatg	ttcttcaatg	tcattgctat	tgttgatcta	ttggcaagag	3000
aagcacagaa	aatggcacag	ttgttggttg	tacttggcaa	gattatcaac	ctgaagataa	3060
agttgttcat	gaactgtagg	ggcaggcttt	cagaagcccc	tttagaaagc	ttttaccgtt	3120
ttgttctgga	accagaactg	atgtcagggg	ctaatgacgt	ttcttctctt	ggaccagtgg	3180
caaaattttt	ggatattcct	gaatcacccc	tcctaatcct	caacatgatt	actccagaag	3240
gctggttggt	tgaaacagtg	cacagcaact	gtgaccttga	taatattcac	ttaaaggata	3300
ctgagaaaac	cgctacagca	gġatatgaac	tagaatactt	actactggaa	ggacaatgct	3360
ttgataaagt	gacagaacag	cctcctcggg	gtctgcagtt	cacactaggc	acaaaaaata	3420
aacctgctgt	ggttgataca	atagtgatgg	cacatcatgg	gtattttcaa	ttaaaagcaa	3480
acccaggtgc	ttggatactg	aggttacacc	aaggaaaatc	tgaagatatt	tatcaaatag	3540
ttgggcatga	aggaactgac	tctcaagcag	acctagaaga	tatcattgtt	gtattaaaca	3600
				Dago 112		

gcttcaaaag caagatactc aaagtaaaag tgaaaaaaga aacagacaaa attaaggaag 3660

	addy cadgacact	aaaytaaaay	tyaaaaaaya	aacagacaaa	accaaggaag	3000
atatcc	ttac cgatgaagat	gaaaaaacaa	aaggactgtg	ggattccatt	aaaagtttca	3720
cagtaa	gctt gcataaagaa	aacaaaaagg	aaaaagatgt	cctaaacatt	ttttcagttg	3780
cttctg	gtca tttatatgaa	cgttttttaa	gaattatgat	gctttctgtt	ttgcgtaaca	3840
ccaaaa	cacc agtgaaatto	tggttgctaa	aaaattatct	ctcaccgaca	tttaaagaag	3900
taattc	ctca catggctaaa	gagtatggat	tccgatatga	actagttcaa	tataggtggc	3960
cccgtt	ggct tcgtcaacag	actgaaagac	agaggattat	ttggggttac	aaaattcttt	4020
tccttg	atgt tcttttccca	ctagcagtgg	acaaaatcat	ttttgttgat	gctgaccaga	4080
ttgtga	gaca tgatctaaaa	gaacttcgag	atttcgatct	ggatggagct	ccttatgggt	4140
atactc	catt ttgtgatago	cgcagggaaa	tggatggata	tcgtttctgg	aaaacaggat	4200
actggg	catc acatctttta	agacggaaat	accatatcag	tgctttatat	gtagtggatc	4260
tcaaga	agtt caggagaatt	ggagcaggtg	acaggctcag	gagccagtat	caagctctca	4320
gtcaag	atcc aaacagtctt	tcaaacctag	atcaggatct	ccccaataat	atgatttacc	4380
aagtcg	ccat taagtctctt	cctcaagact	ggctgtggtg	tgaaacctgg	tgtgatgatg	4440
aatcca	aaca aagagccaaa	acaattgatc	tgtgcaataa	tcccaaaaca	aaagaatcca	4500
aactaa	aagc tgctgccaga	attgtcccag	aatgggtgga	gtatgatgct	gagataagac	4560
aactat	taga tcatcttgaa	aacaagaagc	aagatacaat	tttgacacat	gatgaactct	4620
agcact	ggtg tatatgagaa	ggaaggcgaa	agcatgacag	gaaacctgcc	gcctgctggg	4680
gaagtc	tgga gcccctgctq	agacgatttg	gaagtctcgt	taagatcagt	gacatattct	4740
ttaatt	ttaa aaaattgtaa	ttatttaaaa	cagttattta	atgtattgaa	tgagtttaag	4800
ttatat	aata aatgaccatt	gagtatttaa	aaaaaaaaa	aaaaaaa		4848
<210> <211> <212> <213>	90 3614 DNA Homo sapiens	gagtatttaa	aaaaaaaaa	aaaaaaa		4848
<210><211><211><212><213>	90 3614 DNA				gccgtaccaa	4848
<210> <211> <212> <213> <400> gtccgc	90 3614 DNA Homo sapiens	atagggaaga	acagcacccc	ggcgccgatt		
<210> <211> <212> <213> <400> gtccgc	90 3614 DNA Homo sapiens 90 caaa acctgcgcgg	atagggaaga geeceggaeg	acagcacccc ccgcgcggaa	ggcgccgatt aagatgaatt	tacaaccaat	60
<210> <211> <211> <212> <213> <400> gtccgc acaagc	90 3614 DNA Homo sapiens 90 caaa acctgcgcgg	atagggaaga gccccggacg	acagcacccc ccgcgcggaa ctgtgtgttt	ggcgccgatt aagatgaatt gctcaaacag	tacaaccaat atgaaaatag	60 120
<210> <211> <212> <213> <400> gtccgc acaagc tttctg atgttt	90 3614 DNA Homo sapiens 90 caaa acctgcgcggctaa cgtccgctggggggatt ggactgatca	gatagggaaga gccccggacg gttcagtttg aatcatgtgg	acagcacccc ccgcgcggaa ctgtgtgttt agaatgtata	ggcgccgatt aagatgaatt gctcaaacag caagcagggc	tacaaccaat atgaaaatag caaattgtgg	60 120 180
<210> <211> <212> <213> <400> gtccgc acaagc tttctg atgttt gtggtg	90 3614 DNA Homo sapiens 90 caaa acctgegegg ctaa cgtccgctgg gatt ggactgatca	atagggaaga gccccggacg gttcagtttg aatcatgtgg	acagcacccc ccgcgcggaa ctgtgtgttt agaatgtata aggaatgcct	ggcgccgatt aagatgaatt gctcaaacag caagcagggc acttctgcac	tacaaccaat atgaaaatag caaattgtgg gatgtgatga	60 120 180 240
<210> <211> <212> <213> <400> gtccgc acaagc tttctg atgttt gtggtg tttaga	90 3614 DNA Homo sapiens 90 caaa acctgcgcgg ctaa cgtccgctgg gatt ggactgatca aaaa gcaaatgcca	atagggaaga gccccggacg gttcagtttg aatcatgtgg ttttacagga agggttgccc	acagcacccc ccgcgcggaa ctgtgtgttt agaatgtata aggaatgcct tccagatgac	ggcgccgatt aagatgaatt gctcaaacag caagcagggc acttctgcac atagaaaatc	tacaaccaat atgaaaatag caaattgtgg gatgtgatga ccagaggctc	60 120 180 240 300
<210> <211> <212> <213> <400> gtccgc acaagc tttctg atgttt gtggtg tttaga caaaga	90 3614 DNA Homo sapiens 90 caaa acctgegegg ctaa egteegetgg gatt ggaetgatea aaaa gcaaatgeea caca aattcaacat	atagggaaga gccccggacg gttcagtttg aatcatgtgg ttttacagga agggttgccc	acagcacccc ccgcgcggaa ctgtgtgttt agaatgtata aggaatgcct tccagatgac caaccgtagc	ggcgccgatt aagatgaatt gctcaaacag caagcagggc acttctgcac atagaaaatc aaaggaacag	tacaaccaat atgaaaatag caaattgtgg gatgtgatga ccagaggctc cagagaagct	60 120 180 240 300 360
<210> <211> <212> <213> <400> gtccgc acaagc tttctg atgttt gtggtg tttaga caaaga caagcc	90 3614 DNA Homo sapiens 90 caaa acctgcgcgg ctaa cgtccgctgg gatt ggactgatca aaaa gcaaatgcca caca aattcaacat agcc ttaaaaaaga tata aagaaaaata	atagggaaga gccccggacg gttcagtttg aatcatgtgg ttttacagga agggttgccc aaaatgtaac	acagcacccc ccgcgcggaa ctgtgtgttt agaatgtata aggaatgcct tccagatgac caaccgtagc acagcagttg	ggcgccgatt aagatgaatt gctcaaacag caagcagggc acttctgcac atagaaaatc aaaggaacag gttttgcgat	tacaaccaat atgaaaatag caaattgtgg gatgtgatga ccagaggctc cagagaagct taagatcagg	60 120 180 240 300 360 420
<210> <211> <212> <213> <400> gtccgc acaagc tttctg atgttt gtggtg tttaga caaaga caagcc ggagcc	90 3614 DNA Homo sapiens 90 caaa acctgegegg ctaa cgtccgctgg gatt ggactgatca aaaa gcaaatgcca caca aattcaacat agcc ttaaaaaaga tata aagaaaaata agag gatattcatca	atagggaaga gccccggacg gttcagtttg aatcatgtgg ttttacagga agggttgccc aaaatgtaac agatccaacc	acagcacccc ccgcgcggaa ctgtgtgttt agaatgtata aggaatgcct tccagatgac caaccgtagc acagcagttg gagagctgaa	ggcgccgatt aagatgaatt gctcaaacag caagcagggc acttctgcac atagaaaatc aaaggaacag gtttgcgat gactatccca	tacaaccaat atgaaaatag caaattgtgg gatgtgatga ccagaggctc cagagaagct taagatcagg ttgacctcta	60 120 180 240 300 360 420 480
<210> <211> <212> <213> <400> gtccgc acaagc tttctg atgttt gtggtg tttaga caaaga caagcc ggagcc ctacct	90 3614 DNA Homo sapiens 90 caaa acctgcgcgg ctaa cgtccgctgg gatt ggactgatca aaaa gcaaatgcca caca aattcaacat agcc ttaaaaaaga tata aagaaaaata agag gatattcatca acag acatttacat	atagggaaga gccccggacg gttcagtttg aatcatgtgg ttttacagga agggttgccc aaaatgtaac agatccaacc	acagcacccc ccgcgcggaa ctgtgtgttt agaatgtata aggaatgcct tccagatgac caaccgtagc acagcagttg gagagctgaa agacgatttg	ggcgccgatt aagatgaatt gctcaaacag caagcagggc acttctgcac atagaaaatc aaaggaacag gtttgcgat gactatccca	tacaaccaat atgaaaatag caaattgtgg gatgtgatga ccagaggctc cagagaagct taagatcagg ttgacctcta aaagtcttgg	60 120 180 240 300 360 420 480 540
<pre><210> <211> <212> <213> <400> gtccgc acaagc tttctg atgttt gtggtg tttaga caaaga caagcc ggagcc ctacct aacaga</pre>	90 3614 DNA Homo sapiens 90 caaa acctgegegg ctaa cgtccgctgg gatt ggactgatca aaaa gcaaatgcca caca aattcaacat agcc ttaaaaaaga tata aagaaaaata agag gatattcatca acag acatttacat tatg gacctgtctt	atagggaaga gccccggacg gttcagtttg aatcatgtgg ttttacagga agggttgccc aaaatgtaac agatccaacc taaaattcaa attcaatgaa	acagcacccc ccgcgcggaa ctgtgtgttt agaatgtata aggaatgcct tccagatgac caaccgtagc acagcagttg gagagctgaa agacgatttg tacttcggac	ggcgccgatt aagatgaatt gctcaaacag caagcagggc acttctgcac atagaaaatc aaaggaacag gttttgcgat gactatccca gagaatgtaa ttcagaattg	tacaaccaat atgaaaatag caaattgtgg gatgtgatga ccagaggctc cagagaagct taagatcagg ttgacctcta aaagtcttgg gatttggctc	60 120 180 240 300 360 420 480 540
<pre><210> <211> <212> <213> <400> gtccgc acaagc tttctg atgttt gtggtg tttaga caaaga caaagc ctacct aacaga atttgt</pre>	90 3614 DNA Homo sapiens 90 caaa acctgcgcgg ctaa cgtccgctgg gatt ggactgatca aaaa gcaaatgcca caca aattcaacat agcc ttaaaaaaga tata aagaaaaata agag gatattcatc acag acatttacat tatg gacctgtctt	atagggaaga gccccggacg gttcagtttg aatcatgtgg ttttacagga agggttgccc aaaatgtaac agatccaacc taaaattcaa attcaatgaa tgaggaggat	acagcacccc ccgcgcggaa ctgtgtgttt agaatgtata aggaatgcct tccagatgac caaccgtagc acagcagttg gagagctgaa agacgatttg tacttcggac tagcacaaca	ggcgccgatt aagatgaatt gctcaaacag caagcagggc acttctgcac atagaaaatc aaaggaacag gtttgcgat gactatccca gagaatgtaa ttcagaattg ccagctaagc	tacaaccaat atgaaaatag caaattgtgg gatgtgatga ccagaggctc cagagaagct taagatcagg ttgacctcta aaagtcttgg gatttggctc tcaggaaccc	60 120 180 240 300 360 420 480 540 600
<pre><210> <211> <212> <213> <400> gtccgc acaagc tttctg atgttt gtggtg tttaga caaaga caagcc ggagcc ctacct aacaga atttgt</pre>	90 3614 DNA Homo sapiens 90 caaa acctgegegg ctaa cgtccgctgg gatt ggactgatca aaaa gcaaatgcca caca aattcaacat agcc ttaaaaaaga tata aagaaaaata agag gatattcatc acag acatttacat tatg gacctgtctt tctg atgaatgaaa	atagggaaga gccccggacg gttcagtttg aatcatgtgg ttttacagga agggttgccc aaaatgtaac agatccaacc taaaattcaa attcaatgaa tgaggaggat tgccttacat	acagcacccc ccgcgcggaa ctgtgtgttt agaatgtata aggaatgcct tccagatgac caaccgtagc acagcagttg gagagctgaa agacgatttg tacttcggac tagcacaaca atttagctac	ggcgccgatt aagatgaatt gctcaaacag caagcagggc acttctgcac atagaaaatc aaaggaacag gttttgcgat gactatccca gagaatgtaa ttcagaattg ccagctaagc	tacaaccaat atgaaaatag caaattgtgg gatgtgatga ccagaggctc cagagaagct taagatcagg ttgacctcta aaagtcttgg gatttggctc tcaggaaccc tcaggaaccc	60 120 180 240 300 360 420 480 540 600 660 720
<pre><210> <211> <212> <213> <400> gtccgc acaagc tttctg atgttt gtggtg tttaga caaagac caaagcc tacat atttt ttgcgc tttctg atgttt ttaga caaagac ttacaaga atttgt ttgcac taataa</pre>	90 3614 DNA Homo sapiens 90 caaa acctgcgcgg ctaa cgtccgctgg gatt ggactgatca aaaa gcaaatgcca caca aattcaacat agcc ttaaaaaaga tata aagaaaaata agag gatattcat acag acatttacat tatg gacctgtctt tctg atgaatgaaa ggaa aagactgtga	atagggaaga gccccggacg gttcagtttg aatcatgtgg ttttacagga agggttgccc aaaatgtaac taaaattcaa attcaatgaa tgaggaggat tgccttacat gcaccacccc	acagcacccc ccgcgcggaa ctgtgtgttt agaatgtata aggaatgcct tccagatgac caaccgtagc acagcagttg gagagctgaa agacgatttg tacttcggac tagcacaaca atttagctac	ggcgccgatt aagatgaatt gctcaaacag caagcagggc acttctgcac atagaaaatc aaaggaacag gtttgcgat gactatcca gagaatgtaa ttcagaattg ccagctaagc aaaatgtgc cgcatatctg	tacaaccaat atgaaaatag caaattgtgg gatgtgatga ccagaggctc cagagaagct taagatcagg ttgacctcta aaagtcttgg gatttggctc tcaggaaccc tcagtcttac gaaatttgga	60 120 180 240 300 360 420 480 540 600 660 720 780

ctggaggaat g	gttacacggc	tgctggtgtt	ttccacagat	gccgggtttc	actttgctgg	960
agatgggaaa c	ttggtggca	ttgttttacc	aaatgatgga	caatgtcacc	tggaaaataa	1020
tatgtacaca a	atgagccatt	attatgatta	tccttctatt	gctcaccttg	tccagaaact	1080
gagtgaaaat a	aatattcaga	caatttttgc	agttactgaa	gaatttcagc	ctgtttacaa	1140
ggagctgaaa a	acttgatcc	ctaagtcagc	agtaggaaca	ttatctgcaa	attctagcaa	1200
tgtaattcag t	tgatcattg	atgcatacaa	ttccctttcc	tcagaagtca	ttttggaaaa	1260
cggcaaattg t	cagaaggag	taacaataag	ttacaaatct	tactgcaaga	acggggtgaa	1320
tggaacaggg g	gaaaatggaa	gaaaatgttc	caatatttcc	attggagatg	aggttcaatt	1380
tgaaattagc a	- ataacttcaa	ataagtgtcc	aaaaaaggat	tctgacagct	ttaaaattag	1440
gcctctgggc t	ttacggagg	aagtagaggt	tattcttcag	tacatctgtg	aatgtgaatg	1500
ccaaagcgaa g	ggcatccctg	aaagtcccaa	gtgtcatgaa	ggaaatggga	catttgagtg	1560
tggcgcgtgc a	aggtgcaatg	aagggcgtgt	tggtagacat	tgtgaatgca	gcacagatga	1620
agttaacagt g	gaagacatgg	atgcttactg	caggaaagaa	aacagttcag	aaatctgcag	1680
taacaatgga g	gagtgcgtct	gcggacagtg	tgtttgtagg	aagagggata	atacaaatga	1740
aatttattct g	ggcaaattct	gcgagtgtga	taatttcaac	tgtgatagat	ccaatggctt	1800
aatttgtgga g	ggaaatggtg	tttgcaagtg	tcgtgtgtgt	gagtgcaatc	ccaactacac	1860
tggcagtgca t	tgtgactgtt	ctttggatac	tagtacttgt	gaagccagca	acggacagat	1920
ctgcaatggc c	ggggcatct	gcgagtgtgg	tgtctgtaag	tgtacagatc	cgaagtttca	1980
agggcaaacg t	tgtgagatgt	gtcagacctg	ccttggtgtc	tgtgctgagc	ataaagaatg	2040
tgttcagtgc a	agagccttca	ataaaggaga	aaagaaagac	acatgcacac	aggaatgttc	2100
ctattttaac a	attaccaagg	tagaaagtcg	ggacaaatta	ccccagccgg	tccaacctga	2160
tcctgtgtcc c	cattgtaagg	agaaggatgt	tgacgactgt	tggttctatt	ttacgtattc	2220
agtgaatggg a	aacaacgagg	tcatggttca	tgttgtggag	aatccagagt	gtcccactgg	2280
tccagacatc a	attccaattg	tagctggtgt	ggttgctgga	attgttctta	ttggccttgc	2340
attactgctg a	atatggaagc	ttttaatgat	aattcatgac	agaagggagt	ttgctaaatt	2400
tgaaaaggag a	aaatgaatg	ccaaatggga	cacgggtgaa	aatcctattt	ataagagtgc	2460
cgtaacaact g	gtggtcaatc	cgaagtatga	gggaaaatga	gtactgcccg	tgcaaatccc	2520
acaacactga a	atgcaaagta	gcaatttcca	tagtcacagt	taggtagctt	tagggcaata	2580
ttgccatggt t	tttactcatg	tgcaggtttt	gaaaatgtac	aatatgtata	atttttaaaa	2640
tgttttatta t	tttgaaaat	aatgttgtaa	ttcatgccag	ggactgacaa	aagacttgag	2700
acaggatggt t	tattcttgtc	agctaaggtc	acattgtgcc	tttttgacct	tttcttcctg	2760
gactattgaa a	atcaagctta	ttggattaag	tgatatttct	atagcgattg	aaagggcaat	2820
agttaaagta a	atgagcatga	tgagagtttc	tgttaatcat	gtattaaaac	tgatttttag	2880
ctttacatat q	gtcagtttgc	agttatgcag	aatccaaagt	aaatgtcctg	ctagctagtt	2940
aaggattgtt t	ttaaatctgt	tattttgcta	tttgcctgtt	agacatgact	gatgacatat	3000
ctgaaagaca a	agtatgttga	gagttgctgg	tgtaaaatac	gtttgaaata	gttgatctac	3060
aaaggccatg g	ggaaaaattc	agagagttag	gaaggaaaaa	ccaatagctt	taaaacctgt	3120
gtgccatttt a	aagagttact	taatgtttgg	taacttttat	gccttcactt	tacaaattca	3180
agccttagat a	aaaagaaccg	agcaattttc	tgctaaaaag	tccttgattt	agcactattt	3240

acatacaggc catactttac aaagtatttg ctgaatgggg accttttgag ttgaatttat	3300
tttattattt ttattttgtt taatgtctgg tgctttctat cacctcttct aatcttttaa	3360
tgtatttgtt tgcaattttg gggtaagact tttttatgag tactttttct ttgaagtttt	3420
ageggteaat ttgcettttt aatgaacatg tgaagttata etgtggetat geaacagete	3480
tcacctacge gagtettact ttgagttagt gccataacag accaetgtat gtttacttet	3540
caccatttga gttgcccatc ttgtttcaca ctagtcacat tcttgtttta agtgccttta	3600
gttttaacag ttca	3614
<210> 91 <211> 1093 <212> DNA <213> Homo sapiens	
<400> 91 ctgcaaggcg gcggcaggag aggttgtggt gctagtttct ctaagccatc cagtgccatc	60
ctcgtcgctg cagcgacacc gctctcgccg ccgccatgac tgagcagatg accettcgtg	120
gcaccetcaa gggccacaac ggctgggtaa cccagatege tactaceeeg cagtteeegg	180
acatgatect eteegeetet egagataaga ceateateat gtggaaactg accagggatg	240
agaccaacta tggaattcca cagcgtgctc tgcggggtca ctcccacttt gttagtgatg	300
tggttatctc ctcagatggc cagtttgccc tctcaggctc ctgggatgga accctgcgcc	360
totgggatot cacaacgggc accaccacga ggcgatttgt gggccatacc aaggatgtgc	420
tgagtgtggc cttctcctct gacaaccggc agattgtctc tggatctcga gataaaacca	480
tcaagctatg gaataccctg ggtgtgtgca aatacactgt ccaggatgag agccactcag	540
agtgggtgtc ttgtgtccgc ttctcgccca acagcagcaa ccctatcatc gtctcctgtg	600
gctgggacaa gctggtcaag gtatggaacc tggctaactg caagctgaag accaaccaca	660
ttggccacac aggetatetg aacaeggtga etgtetetee agatggatee etetgtgett	720
ctggaggcaa ggatggccag gccatgttat gggatctcaa cgaaggcaaa cacctttaca	780
cgctagatgg tggggacatc atcaacgccc tgtgcttcag ccctaaccgc tactggctgt	840
gtgctgccac aggccccagc atcaagatct gggatttaga gggaaagatc attgtagatg	900
aactgaagca agaagttatc agtaccagca gcaaggcaga accaccccag tgcacttccc	960
tggcctggtc tgctgatggc cagactctgt ttgctggcta cacggacaac ctggtgcgag	1020
tgtggcaggt gaccattggc acacgctaga agtttatggc agagctttac aaataaaaaa	1080
aaaatggctt ttc	1093
<210> 92 <211> 1860 <212> DNA <213> Homo sapiens	
<400> 92 ggcgaggggc ctacgctgcg gcccggcaac aaggcccgac tcggcccctc gggaccagag	60
ccccacccga tcggaagcgg atcctttacc agggccatag gccagtgact aggccgggcc	120
tggacctccc atcggggccg gactaggacg aggccccggg gaggcccctg gcctaccaga	180
cccttttctc aggccgacag ccgccaggaa gatgcaacgt gccctgccag gcgcccgcca	240
gcacttgggg gccattctgg ccagcgccag cgtggtggtg aaggctctgt gtgcggcggt	300
actattcctc tacctgctct ccttcgccgt ggacacaggc tgcctggcgg tcaccccggg	360
ctacctcttt cctcccaact tctggatctg gaccctggcc acccatgggc tgatggagca	420

gcatgtgtgg gacgtggcca tcagcctgac aacggtggtg gtggccgggc gtttgctgga 480 gcccctctgg ggggccttgg agctgctcat cttcttctca gtggtgaatg tgtctgtagg 540 gctgctgggg gccttcgcct acctcctcac ctacatggct tccttcaacc tggtctacct 600 gttcactgtc cgtatccacg gcgccttggg cttcctaggt ggcgtcctgg tggcactcaa 660 720 gcaaaccatg ggggactgtg tggtcctgcg agtgccccag gtgcgcgtca gtgtgatgcc catgctgctg ctggcgctgc tgctcctgct gcggctcgcc acactgctcc agagcccggc 780 840 gctggcttcc tatggcttcg ggctgctctc cagttgggta tatcttcgct tctaccagcg ccatagooga ggccgagggg acatggotga ccactttgct ttcgccactt tcttccctga 900 gatcctgcag cctgtggtgg gtttgctggc gaacttggtg cacagcctcc tggtgaaggt 960 aaagatatgc cagaagacgg tgaagcgcta cgatgtgggt gccccatcct ccatcaccat 1020 1080 cagcetgeca ggcacagace etcaagacge egageggaga aggcaactgg ecetgaagge actcaatgag cggctgaaga gagtggaaga ccagtccatc tggcccagca tggatgatga 1140 tgaagaggag tetggggcca aggtggacag eccettgece teagacaaag eteceacace 1200 cccagggaag ggggctgccc cagaatccag tctaatcacc ttcgaggcag ctcccccgac 1260 gctgtaactc cagaccacct tgagtgtggc acctcccctc ccaagccccc cgttgacatc 1320 ctctcagcta ctccagggca cctgactgct ctgaggagag ggaagaaggc ctgctggggc 1380 tttccatggc cttctgctgt ttctcgccaa cactacccag gactcttgct acctggttcc 1440 1500 aactccagac aaccactatg ccaggcccgg agcctctgag gcatcggcca gtccaggccc tcatctgagg taagaatgta catcagctgg cagccccaag caagtggctg cagggacact 1560 1620 gatgccacag ctcctgggcc ggccctcaca tctgaaactg gttgccgaga gccctgagcc aaggcaagga tttgccaaaa atgttctggg ggcccagcaa atgcaggagc cgacctgggg 1680 ctgcacatcc ctgcccatcc ccagaaagac tgttcctgtc aggatttgtt tccctctgct 1740 gtggcggtga ctgcttctgg accagaacag ctccagctcc caggtatttt ctacaggacc 1800 acttgagtgg gcagccaagc ccaggctcgc agtatcaata aagcagttct ctgaggaatg 1860

<400> 93 ggagaggtgc gggccgaatc cgagccgagc gagaggaatc cggcagtaga gagcggactc 60 120 cagceggegg accetgeage cetegeetgg gacageggeg egetgggeag gegeecaaga gagcatcgag cagcggaacc cgcgaagccg gcccgcagcc gcgacccgcg cagcctgccg 180 ctctcccgcc gccggtccgg gcagcatgag gcgcgcggcg ctctggctct ggctgtgcgc 240 gctggcgctg agcctgcagc tggccctgcc gcaaattgtg gctactaatt tgccccctga 300 agatcaagat ggctctgggg atgactctga caacttctcc ggctcaggtg caggtgcttt 360 420 qcaaqatatc accttgtcac agcagacccc ctccacttgg aaggacacgc agctcctgac ggetattece acgtetecag aacceaeegg cetggagget acagetgeet ecacetecae 480 cctgccggct ggagaggggc ccaaggaggg agaggctgta gtcctgccag aagtggagcc 540

<210> 93 <211> 2402

<212> DNA <213> Homo sapiens

<220>

<221> misc_feature <222> (1)..(2402)

<223> n=A,T,C, or G

tggcctcacc	gcccgggagc	aggaggccac	ccccgaccc	agggagacca	cacageteee	600
gaccactcat	caggcctcaa	cgaccacagc	caccacggcc	caggagcccg	ccacctccca	660
ccccacagg	gacatgcagc	ctggccacca	tgagacctca	acccctgcag	gacccagcca	720
agctgacctt	cacactcccc	acacagagga	tggaggtcct	tctgccaccg	agagggctgc	780
tgaggatgga	gcctccagtc	agctcccagc	agcagagggc	tctggggagc	aggacttcac	840
ctttgaaacc	tcgggggaga	atacggctgt	agtggccgtg	gagcctgacc	gccggaacca	900
gtccccagtg	gatcaggggg	ccacgggggc	ctcacagggc	ctcctggaca	ggaaagaggt	960
gctgggaggg	gtcattgccg	.gaggcctcgt	ggggctcatc	tttgctgtgt	gcctggtggg	1020
tttcatgctg	taccgcatga	agaagaagga	cgaaggcagc	tactccttgg	aggagccgaa	1080
acaagccaac	ggcggggcct	accagaagcc	caccaaacag	gaggaattct	atgcctgacg	1140
cgggagccat	gcgccccctc	cgccctgcca	ctcactaggc	ccccacttgc	ctcttccttg	1200
aagaactgca	ggccctggcc	tcccctgcca	ccaggccacc	tccccagcat	tccagcccct	1260
ctggtcgctc	ctgcccacgg	agtcgtgggt	gtgctgggag	ctccactctg	cttctctgac	1320
ttctgcctgg	agacttaggg	caccaggggt	ttctcgcata	ggacctttcc	accacagcca	1380
gcacctggca	tcgcaccatt	ctgactcggt	ttctccaaac	tgaagcagcc	tctccccagg	1440
tccagctctg	gaggggaggg	ggatccgact	gctttggacc	taaatggcct	catgtggctg	1500
gaagatctgc	gggtggggct	tggggctcac	acacctgtag	cacttactgg	taggaccaag	1560
catcttgggg	gggtggccgc	tgagtggcag	ggacaggagt	cactttgttt	cgtggggagg	1620
tctaatctag	atatcgactt	gtttttgcac	atgtttcctc	tagttctttg	ttcatagccc	1680
agtagacctt	gttacttctg	aggtaagtta	agtaagttga	ttcggtatcc	ccccatcttg	1740
cttccctaat	ctatggtcgg	gagacagcat	cagggttaag	aagactttt	tttttttt	1800
ttaaactagg	agaaccaaat	ctggaagcca	aaatgtaggc	ttagtttgtg	tgttgtctct	1860
tgagtttgtc	gctcatgtgt	gcaacagggt	atggactatc	tgtctggtgg	ccccgtttct	1920
ggtggtctgt	tggcaggctg	gccagtccag	gctgccgtgg	ggccgccgcc	tctttcaagc	1980
agtcgtgcct	gtgtccatgc	gctcagggcc	atgctgaggc	ctgggccgct	gccacgttgg	2040
agaagcccgt	gtgagaagtg	aatgctggga	ctcagccttc	agacagagag	gactgtaggg	2100
agggcggcag	gggcctggag	atcctcctgc	agaccacncc	cgtcctgcct	gtgcgccgtc	2160
tccaggggct	gcttcctcct	ggaaattgac	gaggggtgtc	ttgggcagag	ctggctctga	2220
gcgcctccat	ccaaggccag	gttctccgtt	agctcctgtg	gccccaccct	gggccctggg	2280
ctggaatcag	gaatattttc	caaagagtga	tagtcttttg	cttttggcaa	aactctactt	2340
aatccaatgg	gtttttccct	gtacagtaga	ttttccaaat	gtaataaact	ttaatataaa	2400
gt						2402
<210> 94 <211> 738 <212> DNA <213> Hom						
<400> 94			.			60
-	_	gcggcggtaa				60
		agtgcctcct				120
•	-	ctggctgact				180
ggcaaggccc	aacttctgcc	cctattctgt			cccattttga	240
				Page 118		

gcagttttag tcgctgcctt aaggcagatg tacttggtgt ttggcggcga gatcaaagac 300 ctggaagaag agaattgtgg atattttggt ggggtgaaga cccagttttg ctgaccttat 360 tcaccatgac ttatcagaag aagaagatgg aatgtgggag aatggacttt cctatgaatg 420 ccgtactctg cttttccaaa gcagttcaca atctattgga acggtgttta atgaacagga 480 attttgtacg tattggcaag tggtttgtaa agccttatga aaaagatgaa aaacctataa 540 ataaaagtga acacttgtcc tgctccttca cctttttctt gcatggagac agcaatgttt 600 660 gtaccagtgt ggaaattaac caacatcaac ctgtatacct tctcagtgaa gagcatatca 720 cccttgctca acagtctaat agcccatttc aagttatctt atgcccattt ggactaaatg gcactctcac aggacaggca ttcaagatgt ctgattcagc tacaaaaaaa ttaattggtg 780 840 aatggaaaca gttctatcct atctcatgtt gcttgaagga gatgtctgaa gaaaaacagg aagatatgga ttgggaagat gattetttag etgeagtaga agttettgtt getggtgtee 900 gaatgatcta cccagcatgc tttgttctag tccctcagtc agacattcct actcctagcc 960 ctgtgggatc cactcactgt tcatcttctt gcttgggtgt ccaccaagtg cctgcttcca 1020 caagagatcc tgctatgtct tcggttacgc ttacaccacc tacgtctcct gaggaagtcc 1080 1140 aaacagttga tcctcagtct gtccagaagt gggtcaaatt ttcttcagta tctgatggct tcaactccga tagtactagc caccatggtg ggaaaatacc cagaaaatta gcaaatcatg 1200 1260 tggtggatag agtttggcaa gaatgcaata tgaacagagc acagaacaag aagaagtatt ctgcttcatc aggtggtcta tgcgaagaag cgacagctgc taaagtggca tcctgggatt 1320 1380 ttgttgaagc cacacaaaga acaaattgca gttgtttgag gcacaaaaat ctcaagtcaa 1440 gaaatgctgg acaacaagga caggcaccat ctttaggtca gcaacaacaa atacttccta 1500 agcacaagac caatgagaag caagaaaaga gtgaagagcc acagaaacgc cccttgactc cttttcacca tcgtgtgtct gttagtgatg atgttggcat ggacgcagat tcagccagcc 1560 aaagacttgt gatctctgct ccagacagtc aagtgagatt ttcaaatatc cgaactaatg 1620 atgtagcaaa gactcctcag atgcatggca ccgaaatggc aaattcacct caaccacccc 1680 cacttagtcc tcacccttgt gatgtggttg atgaaggagt gactaaaaca ccttcaactc 1740 1800 ctcagagtca acatttttat caaatgccaa caccagatcc cttggttcct tctaaaccaa 1860 tggaagatag gatagacagt ttgtcccagt ctttcccacc tcaatatcag gaagctgtag 1920 aacctacagt atatgttggt acagcagtaa acttggaaga agatgaagcc aatatagcct ggaagtatta caagttccca aagaaaaaag atgtagagtt tttaccacct caacttccaa 1980 2040 gtgataaatt caaggatgat ccagttggac cttttggaca ggaaagtgta acatcagtta cagagttaat ggtgcaatgt aagaaacctt taaaagtttc tgatgaatta gtgcagcaat 2100 atcaaattaa aaaccagtgt ctttcagcaa tagcatctga tgcagaacaa gaacctaaaa 2160 ttgatccata tgcatttgtt gaaggagatg aggaattcct ttttcctgat aaaaaagata 2220 2280 gacaaaatag tgagagagaa gctggaaaaa aacacaaggt agaagatggg acatctagtg 2340 taacaqtqtt atcacatgaa gaagatgcta tgtcattatt tagtccctct atcaagcaag 2400 atgetecacg cectactagt catgecegte etecateaac aagtitgatt tatgacteag 2460 acctggctgt ctcttatact gaccttgata atctcttcaa ttctgatgaa gatgaactaa 2520 cacctggatc taaaagatca gcaaatggat cagatgataa agccagctgc aaggaatcaa agacaggaaa totggacccg ttatottgca taagcactgc agatottcat aaaatgtato 2580

ctacaccacc	atcattggaa	caacatatta	tgggattttc	cccaatgaat	atgaataata	2640
aagaatatgg	tagtatggat	acaacacctg	gaggaactgt	tctagaagga	aatagttcta	2700
gtataggagc	gcagttcaaa	attgaggttg	atgagggatt	ctgtagcccc	aaaccttctg	2760
aaattaaaga	tttttcttat	gtctataagc	ctgaaaattg	tcaaattcta	gtgggatgtt	2820
ccatgtttgc	acctctaaaa	actctaccaa	gccaatatct	gccccttatc	aaattgccag	2880
aagagtgtat	ttaccgtcag	agttggactg	ttggaaaatt	ggaattgctt	tcttcagggc	2940
cttcaatgcc	attcatcaaa	gagggtgatg	gaagtaatat	ggatcaagaa	tatggcactg	3000
cttatacacc	tcaaactcat	acttcttgtg	ggatgcctcc	tagcagtgca	cctcctagta	3060
acagcggagc	aggaattctt	ccttctccat	ccacccctcg	gtttccaact	ccaaggactc	3120
caaggactcc	tcggactcct	cgtggagctg	gtggacctgc	tagtgctcaa	ggttcagtca	3180
aatatgaaaa	ttcagacttg	tattcaccag	cttctacccc	atctacatgc	agacccctta	3240
attctgttga	acctgcaact	gtcccttcca	tccctgaagc	acacagtctt	tatgtaaacc	3300
tcatcctttc	agaatcagtt	atgaatttgt	ttaaagactg	taactctgat	agttgttgca	3360
tctgtgtttg	caacatgaac	atcaagggtg	ccgatgttgg	agtttacatt	ccagatccaa	3420
cgcaggaagc	acaatatagg	tgtacctgtg	gcttcagtgc	tgtcatgaac	agaaaatttg	3480
gaaacaattc	aggattattt	cttgaagatg	aactagatat	cataggacgc	aatacagact	3540
gtggcaaaga	agcagaaaaa	cgttttgaag	ctctcagggc	tacctctgct	gaacatgtta	3600
atggaggact	aaaggaatct	gaaaaattat	ctgatgattt	gatattattg	ctacaagatc	3660
agtgcactaa	tttattttca	ccctttggag	cagcagacca	agatcctttt	cctaaaagtg	3720
gtgtaattag	caattgggta	cgtgttgaag	agcgtgactg	ttgcaatgac	tgctaccttg	3780
cattagaaca	tgggcgtcag	ttcatggata	acatgtcagg	aggaaaagtt	gatgaagcac	3840
ttgtgaaaag	ttcatgctta	cacccctggt	ccaaaagaaa	cgatgtgagt	atgcagtgct	3900
cacaggatat	acttcgaatg	ctcctctctc	ttcagccagt	tetteaggat	gccattcaga	3960
aaaaaagaac	agtaagacct	tggggtgttc	agggtcctct	cacttggcaa	caatttcata	4020
aaatggctgg	ccgaggctct	tatggaactg	atgaatcccc	agaaccactg	ccaatcccca	4080
catttttgtt	gggttatgat	tatgattatc	tggtgctttc	tccatttgct	cttccttatt	4140
gggagagact	tatgctggaa	ccctatggat	ctcaaagaga	tatagcctat	gttgtactgt	4200
gtccagaaaa	tgaagccttg	ttaaatggag	caaaaagctt	ttttagagat	cttactgcaa	4260
tatatgagtc	ctgtcgatta	ggtcaacata	gacctgtttc	tcgactgtta	acagatggga	4320
tcatgagagt	tggatctact	gcatcaaaga	aactatcaga	aaagttģgta	gcagaatggt	4380
tttctcaggc	agctgatggt	aacaatgaag	cattttctaa	actcaagctt	tatgcacaag	4440
tctgcagata	tgacctaggt	ccttatcttg	cttccctgcc	attggacago	tctctacttt	4500
cccagccaaa	tttagttgcc	cctacaagtc	agtctttgat	tactccacct	cagatgacaa	4560
atactggaaa	tgctaatact	ccatctgcca	ccttagcatc	tgcagcgagc	agcactatga	4620
cagtgacttc	aggtgttgcc	atatctactt	cagttgccac	agctaattca	actttgacca	4680
		tcatcctcca				4740
		ggcagtatga				4800
		ggtcagctag				4860
		tcttcacttc				4920
gcacgatgga	tcgggataaa	gtgggaatcc	ccacagatgg	tgattcacat	gcagtcacgt	4980

5040 atccacctgc aattgttgtt tatataattg atccttttac atacgaaaat acagacgaga gcactaactc ttctagtgtg tggacattgg ggctacttcg atgctttcta gaaatggtcc 5100 5160 agactettee tecteatate aagagtactg tttetgtaca gattatteet tgteagtace tgttgcaacc tgtgaagcat gaagatagag aaatctatcc ccagcattta aaatccctgg 5220 ctttttcggc ctttacccag tgtcggaggc cacttccaac atcaaccaat gtgaaaacat 5280 tgactggctt tggtccaggt ttagccatgg aaactgccct tagaagtcct gatagaccag 5340 5400 agtqtattcg actttatgca cctcctttta ttctggctcc agtgaaggac aaacagacag agctaggaga aacatttgga gaagctggac agaaatataa tgttcttttt gtgggatact 5460 gtttatcaca tgatcaaagg tggattcttg catcttgcac agatctatat ggagaacttt 5520 tagaaacttg tatcattaac atcgatgttc caaatagggc tcgtcggaaa aaaagttctg 5580 ctagaaaatt tggtctacag aaactttggg agtggtgctt aggacttgta caaatgagtt 5640 5700 cattgccatg gagagttgta attggtcgtc taggaaggat tggtcatgga gaattgaaag attggagctg tttgctgagt cgtcgaaact tgcagtctct aagtaaaagg ctcaaagaca 5760 5820 tgtgtagaat gtgtggtata tctgctgcag actcccctag cattctcagt gcttgcttgg tggcaatgga gccgcaaggc tcttttgtta ttatgccaga ttctgtgtca actggttctg 5880 tatttggaag aagcacgact ctaaatatgc agacatctca gctaaatacc ccacaggata 5940 catcatgtac tcatatactt gtgtttccta cttctgcttc tgtgcaagta gcttcagcta 6000 cttataccac tgaaaatttg gatttagctt tcaatcccaa caatgatgga gcagatggaa 6060 tgggtatctt tgatttgtta gacacaggag atgatcttga ccctgatatc attaatatcc 6120 6180 ttcctqcttc tccaactggt tctcctgtac attctccagg atctcattac ccccatggag 6240 gtgatgcggg caagggtcag agtactgatc ggctactatc aacagaacct catgaggaag 6300 tacctaatat tcttcagcaa ccattggccc ttggttactt tgtatcaact gccaaagcag 6360 gtccattacc tgactggttc tggtcagcat gtcctcaagc acaatatcag tgtccccttt ttcttaaggc ctctttgcac ctccacgtgc cttcagtgca atctgacgag ctgcttcaca 6420 gtaaacactc ccacccactt gactcaaatc agacttcaga tgtcctcagg tttgttttgg 6480 aacagtacaa tgcactctcc tggctaacct gtgaccctgc aacccaggac agacgctcat 6540 6600 gtctcccaat tcattttgtg gtgctgaatc agttatataa ctttattatg aatatgctgt gatetteatt tgatggaact gtgcaagaaa agaacaagga aaaatggatg tttegetgea 6660 ggattaagtt acaattatct totoagtgaa ggtcatttgt gatggggtct aattottatt 6720 6780 acttcaacaa atattgtttt gacttggggg gaggggctat aaccctgcta tttttcattg actotattga actotttagg atgatgactg atcatacaaa acgtattata acattttcgt 6840 6900 agcaaaatta acctttttt tttccagtca cagtatttgt gaaaagtaat gagccatagt 6960 acccagtcat gttaaatgaa tattaaaaagc atggagagga aacatgagga acaatgaatt tcaacatatg gcttcagaac atgaagatgt tcttgtatgg attatagtat ctagtattca 7020 aaaatgcctg catctcttct cttatttatt gtaagttttt aaatgtataa attgtcttat 7080 atttcttaac ctcttttata aaaattttcc tagaaggttt atactgcctt cttgctttaa 7140 7200 agcaattggt ctaaaatata tgtaatcgtc ttaattaaaa agttgcagta gggttgcttt 7260 tagagtatta ttttttgta agggggtggg tgggacagta aatttgtatt gtctcgatgt acagtttaac ggggatagag ggggaataat gtccatacca ttgtgtgtgg aggatttaca 7320

gctaagctgt agttgcagag	tacatgtaca	gtaatgaagt	tcactgtgtt	tataaattga	7380
aaaggtacc					7389
<210> 95 <211> 1911 <212> DNA <213> Homo sapiens					
<400> 95 gaattcccct gtgttagacg	gtacaggtgg	aagaagactg	ctgtgtgcag	gaggaatttg	60
cagtgagact tcaaggaaga	gaataagctc	gccacataaa	gaggaaacaa	agagcaaccc	120
agagttcaga cccaggaagc	ggccgggagg	gcaggagcga	atcgggccgc	cgccgccatg	180
gagctgagag tcgggaacag	gtaccggctg	ggccggaaga	tcggcagcgg	ctccttcgga	240
gacatctatc tcggtacgga	cattgctgca	ggagaagagg	ttgccatcaa	gcttgaatgt	300
gtcaaaacca aacaccctca	gctccacatt	gagagcaaaa	tctacaagat	gatgcaggga	360
ggagtgggca tccccaccat	cagatggtgt	ggggcagagg	gggactacaa	cgtcatggtg	420
atggagctgc tggggccaag	cctggaggac	ctcttcaact	tctgctccag	gaaattcagc	480
ctcaaaaccg tcctgctgct	tgctgaccaa	atgatcagtc	gcatcgaata	cattcattca	540
aagaacttca tccaccggga	tgtgaagcca	gacaacttcc	tcatgggcct	ggggaagaag	600
ggcaacctgg tgtacatcat	cgacttcggg	ctggccaaga	agtaccggga	tgcacgcacc	660
caccagcaca teceetateg	tgagaacaag	aacctcacgg	ggacggcgcg	gtacgcctcc	720
atcaacacgc accttggaat	tgaacaatcc	cgaagagatg	acttggagtc	tctgggctac	780
gtgctaatgt acttcaacct	ggġctctctc	ccctggcagg	ggctgaaggc	tgccaccaag	840
agacagaaat acgaaaggat	tagcgagaag	aaaatgtcca	cccccattga	agtgttgtgt	900
aaaggctacc cttccgaatt	tgccacatac	ctgaatttct	gccgttcctt	gcgttttgac	960
gacaagcctg actactcgta	cctgcggcag	cttttccgga	atctgttcca	tcgccagggc	1020
ttctcctatg actacgtgtt	cgactggaac	atgcttaaat	ttggtgccag	ccgggccgcc	1080
gatgacgccg agcgggagcg	cagggaccga	gaggagcggc	tgagacactc	gcggaacccg	1140
gctacccgcg gcctcccttc	cacagactcc	ggccggctgc	gggggacgca	ggaagtggct	1200
cccccacac ccctcacccc	tacctcacac	acggctaaca	cctcccccg	gcccgtctcc	1260
ggcatggaga gagaacggaa	agtgagtatg	cggctgcacc	gcggggcccc	cgtcaacatc	1320
tcctcgtccg acctcacagg	ccgacaagat	acctctcgca	tgtccacctc	acagattcct	1380
ggtcgggtgg cttccagtgg	tcttcagtct	gtcgtgcacc	gatgagaact	ctccttattg	1440
ctgtgaaggg cagacaatgc	atggctgatc	tactctgtta	ccaatggctt	tacctagtga	1500
cacgtccccc ggtctaggat	cgaaatgtta	acaccgggag	ctctccaggc	cactcaccca	1560
gcgacgctcg tgggggaaac	atactaaacg	gacagactcc	aagagctgcc	accgctgggg	1620
ctgcactgcg gcccccacg	tgaactcggt	tgtaacgggg	ctgggaagaa	aagcagagag	1680
agaattgcag agaatcagac	tccttttcca	gggcctcagc	tccctccagt	ggtggccgcc	1740
ctgtactccc tgacgattcc	actgtaacta	ccaatcttct	acttggttaa	gacagttttg	1800
tatcattttg ctaaaaatta	ttggcttaaa	tctgtgtaaa	gaaaatctgt	ctttttattg	1860
tttcttgtct gtttttgcag	tcttacaaaa	aaaatgttga	ctaaggaatt	С	1911
1010- 06					

<210> 96 <211> 705 <212> DNA

<213> Homo sapiens	
<400> 96 cgccgagtga cagagacgct caggctgtgt totcaggatg accgagtggg agacagcagc	60
accagcggtg gcagagaccc cagacatcaa gctctttggg aagtggagca ccgatgatgt	120
gcagatcaat gacatttccc tgcaggatta cattgcagtg aaggagaagt atgccaagta	180
cctccctcac agtgcagggc ggtatgccgc aaacgctttc cgcaaagctc agtgtcccat	240
tgtggagcgc ctcactaact ccatgatgat gcacggccgc aacaacggca agaagctcat	300
gactgtgcgc atcgtcaagc atgccttcga gatcatacac ctgctcacgg gcgagaaccc	360
tctgcaggtc ctggtgaacg ccatcatcaa cagtggtccc cgggaggact ccacacgcat	420
tgggcgcgcc gggactgtga gacgacaggc tgtggatgtg tcccccctgc gccgtgtgaa	480
ccaggccatc tggctgctgt gcacaggcgc tcgtgaggct gccttccgga acattaagac	540
cattgctgag tgcctggcag atgageteat caatgetgee aagggeteet egaacteeta	600
tgccattaag aagaaggacg agctggagcg tgtggccaag tccaaccgct gattttccag	660
ctgctgccca ataaacctgt ctgccctttg ggatcccagc caaaa	705
<210> 97 <211> 4485 <212> DNA <213> Homo sapiens	
<400> 97 cgcgggcggc gcggaagcgg cggcggcgcg gccggggcag ccatgtcgcc attgtctgcg	60
gcgcgggcgg ccctgcgggt ctacgcggta ggcgccgcgg tgatcctggc gcagctgctg	120
cggcgctgcc gcgggggctt cctggagcca ggtccccacg catgagcagc cgtccagcag	180
gcaggctccg gtggagaagc aatggagaat aaaagcctgg agagctccca gacagacctg	240
aagctggtgg cccacccccg cgccaagagc aaggtgtgga agtatttcgg cttcgacacc	300
aacgccgagg gatgcatcct gcagtggaag aaaatctact gccgcatctg catggcccag	360
ategeetact eeggaaacae etecaacetg teetaceace tggagaagaa eeaceeegag	420
gaattotgcg agttcgtcaa gagcaacacg gagcagatgc gtgaagcctt cgccaccgcc	480
ttctccaagc tgaagcccga gtcgtcccag cagcccgggc aggacgcgct ggccgtcaag	540
gccggccacg gctacgacag caagaagcag caggagctga cggccgccgt gctgggcctc	600
atctgcgagg ggctgtaccc agcctccatc gtggacgagc ccaccttcaa ggtgctgctg	660
aagacggccg acccccggta tgagctgccc agccggaagt acatctctac caaggccatc	720
cctgagaagt acggggccgt ccgggaggtg atcctgaagg agctggccga ggccacctgg	780
tgtggcatct ccaccgacat gtggaggagt gagaatcaga accgcgccta cgtcacgctg	840
gccgcccact tcctgggcct gggcgccccc aactgcctgt ccatgggctc ccgctgcctg	900
aagacetteg aggtgeeega agagaacaeg geggagaeea teaegegagt getetatgag	960
gtcttcatcg agtggggcat cagcgccaag gtcttcgggg ccaccaccaa ctatggcaag	1020
gacategtga aggegtgete cetgetggae gtegeagtge acatgecetg cetgggecae	1080
accttcaatg ccggcatcca gcaggccttc cagctcccga agctgggggc gctgctgtcg	1140
cgctgccgca aactggtgga gtacttccag cagtctgccg tggccatgta catgctctat	1200
gagaagcaga agcagcagaa cgtggcccac tgcatgctgg tgagcaaccg cgtctcctgg	1260
tgggggagca cgctggccat gctgcagcgc ctcaaggagc agcagttcgt catcgccggg	1320
gtcttggtgg aggacagcaa caaccaccac etcatgctgg aggccagcga gtgggccacc	1380

atcgaggggc	tggtggagct	cctgcagccc	ttcaagcagg	tggccgagat	gctgtcggcc	1440
tccaggtacc	ccaccatcag	catggtgaag	ccgctgctgc	acatgctcct	gaacaccacg	1500
ctcaacatca	aggagaccga	ctccaaggag	ctcagcatgg	ccaaggaggt	catcgccaag	1560
gagettteca	agacctacca	ggagacgccc	gagatcgaca	tgtttctcaa	cgtggccacc	1620
ttcctggacc	cccgctacaa	gaggctgccc	ttcctctccg	ccttcgagcg	gcagcaggtg	1680
gagaatcgcg	tggtggaaga	ggccaagggc	ctgctggaca	aggtcaaaga	cggcggctac	1740
cggccggctg	aggacaagat	cttcccggtg	cccgaggagc	ctcccgtcaa	gaagctcatg	1800
cggacatcca	cgccgccgcc	cgccagcgtc	atcaacaaca	tgctggccga	gatcttctgc	1860
cagacaggcg	gcgtggagga	ccaggaagag	tggcatgccc	aggtggtgga	ggagctgagc	1920
aacttcaagt	cccagaaggt	gcttggcctc	aacgaagacc	ccctcaagtg	gtggtcagac	1980
cgcctggccc	tcttccccct	gctgcccaag	gtgctgcaga	agtactggtg	cgtgacggcc	2040
acgcgcgtcg	cccctgagcg	tctcttcgga	tccgccgcca	acgtggtcag	cgccaagagg	2100
aaccggctgg	ctcccgcgca	cgtggacgag	caggtgtttc	tgtatgagaa	cgcccggagt	2160
ggggcagagg	cggaacccga	ggaccaggac	gagggggagt	ggggcctgga	ccaggagcag	2220
gtgttctcct	tgggggatgg	cgtcagcggc	ggtttctttg	gcattaggga	cagcagcttc	2280
ctgtagcgag	gaagcgtgtt	gtcttacaag	tcatccccgc	agcagcccat	tggatgcttt	2340
gctgtaaata	cttacccggt	cagcttggtt	ttgaacctca	gagaccatcc	actgtctttg	2400
acacctagaa	ggtggaaaaa	ggaaagagat	tcgagaagtg	agagagggtc	gggggcggtg	2460
gctcctgtct	ataatcgcag	cactttggga	ggccgaggtg	ggcagatcag	ctgaggtcag	2520
gagatcgaga	ccagcctggc	caacatggcg	aaaccccgtc	tctactaaaa	atacaaaaat	2580
tagccaggac	tgatggcatg	tgcctgtaat	cccagcttct	ggaggctgag	gccagagaat	2640
cgcttgaacc	tgggaggtgg	aggttgcagt	aagctgagat	cgctgcactc	cagcctgggc	2700
gacaagagcg	agactctctc	aaaaagaaaa	aagaagacac	aagagaggtg	gctttgagtg	2760
ggtttccttt	cctcccctat	tcccggggcc	cggacgactt	ctgcttggga	actgccaacg	2820
cttctgcttg	ggaattgcgt	gcagcagagc	ctagaggagc	tgttccttcc	ttcacagata	2880
cttaagacct	ccaccatgtc	tgattcgagt	tctccctggg	agggtttaga	agaaacgcag	2940
gaacattctg	ggtggcgtcg	aaggagcctt	tcccgatcat	catgtgtgac	ttctgcgagg	3000
tccagatcac	tgaattcatg	tttacattct	cgtgcaagca	gggacctctt	gcttctgaga	3060
aatggggaag	agacctttta	gccaaaatgc	ccttcttaaa	aagagagacc	tttttttta	3120
atgttcggtt	aaaaatgtga	cagatgagta	gaaaaatgca	gacacttaac	aaaaagcaaa	3180
cagaaaaaaa	agtgtggaat	gtgttgtatt	ttcgacaggt	tgctgccaga	gagcctgctt	3240
cctgctgcct	gccgaaattt	cactttgcgg	agttggtcct	taaaactggg	cggtggccgg	3300
gcgtggtggc	tcacgctgag	gtcaggagtt	cgagaccagc	ctggccaacc	aacatggtga	3360
aacctcgtgt	ctactaaaaa	tacaagaaac	tagccagatg	cggtggcacc	cgcctgtaat	3420
cccagctact	cgggaggctg	aggcggaaga	ttcgcttgag	cccaggaggt	ggaggttgca	3480
gtgagccaag	actacgccac	tgcactccag	cctggaggcc	agagtgagac	tccgtctcaa	3540
aacaaaacaa	aagtgggtgg	ctcactggtc	cggaggttat	gtcttcggtg	tctcagccct	3600
aaaagtccag	ttcccccgtg	cggccagctt	ttccacataa	ggtgtttttg	atttgattac	3660
cggaaaggac	tcttgattct	tctcttttaa	actgaatacc	ataggggaaa	tgaattttaa	3720

aatattgccc ccggaggggt	tttccgtggc	tggattcctg	cgagttgctt	tcagtcattc	3780
agggaaacag aaagacgttt	tccaacatgt	agaactgctt	tttaactgga	ggaaaaatac	3840
ttcaggaggc ttagcatatt	gcttggattc	tacgtgcagc	gggttctctg	cctccgtgaa	3900
gacaagctgg gctggggagg	acggtgtcta	ggagggatga	ccccactcag	ctccaggcag	3960
tgttctgccg agaccccaag	aactcggggt	gtcagagggc	aaaggaacta	cctgcctttc	4020
acggctgctg acttctcagg	gctgcaagca	gcacagaatg	ttatccttac	gtcctgagcc	4080
ggtttaagtc tgtggaaaag	gaagcacggg	agaaatccac	gtaacctttg	ctttctttt	4140
aagggaagcg gttccgccgt	gaacttggaa	ccctcagctc	cgggtgttct	cggcagaagg	4200
gcagctggaa gggacacagt	ggggcaggct	ttggggttgc	tccctgttct	gccccgaggc	4260
cggggacgca gggcagccca	cgcctccgtg	ggctccattc	tgtagcattg	ccagcgttct	4320
cttcacgtct ctaacaatcc	tttgcttttc	ctcactcacg	tggaaatgtg	aactgtcccg	4380
gctctgtctt catttttatt	tttaagccat	cgttcccctc	ctgaacggtt	gccccttatt	4440
taatgctgta aagttggact	gttgttcaat	aaaccagagc	aatgc		4485
<210> 98 <211> 2709					
<212> DNA				*	
<213> Homo sapiens					
<400> 98 gggaatagca gaataggagc	aagccagcac	tagtcagcta	actaagtgac	tcaaccaagg	60
cctttttcc ttgttatctt	tgcagatact	tcattttctt	agcgtttctg	gagattacaa	120
catcctgcgg ttccgtttct	gggaacttta	ctgatttatc	tccccctca	cacaaataag	180
cattgattcc tgcatttctg	aagatctcaa	gatctggact	actgttgaaa	aaatttccag	240
tgaggctcac ttatgtctgt	aaagatggga	aaaaaataca	agaacattgt	tctactaaaa	300
ggattagagg tcatcaatga	ttatcatttt	agaatggtta	agtccttact	gagcaacgat	360
ttaaaactta atttaaaaat	gagagaagag	tatgacaaaa	ttcagattgc	tgacttgatg	420
gaagaaaagt tccgaggtga	tgctggtttg	ggcaaactaa	taaaaatttt	cgaagatata	480
ccaacgcttg aagacctggc	tgaaactctt	aaaaaagaaa	agttaaaagt	aaaaggacca	540
gccctatcaa gaaagaggaa	gaaggaagtg	catgctactt	cacctgcacc	ctccacaagc	600
agcactgtca aaactgaagg	agcagaggca	actcctggag	ctcagaaaag	aaaaaaatca	660
accaaagaaa aggctggacc	caaagggagt	aaggtgtccg	aggaacagac	tcagcctccc	720
tctcctgcag gagccggcat	gtccacagcc	atgggccgtt	ccccatctcc	caagacctca	780
ttgtcagctc cacccaacag	ttcttcaact	gagaacccga	aaacagtggc	caaatgtcag	840
gtaactccca gaagaaatgt	tctccaaaaa	cgcccagtga	tagtgaaggt	actgagtaca	900
acaaagccat ttgaatatga	gaccccagaa	atggagaaaa	aaataatgtt	tcatgctaca	960
gtggctacac agacacagtt	cttccatgtg	aaggttttaa	acaccagett	gaaggagaaa	1020
ttcaatggaa agaaaatcat	catcatatca	gattatttgg	aatatgatag	tctcctagag	1080
gtcaatgaag aatctactgt	atctgaagct	ggtcctaacc	aaacgtttga	ggttccaaat	1140
aaaatcatca acagagcaaa	ggaaactctg	aagattgata	ttcttcacaa	acaagcttca	1200
ggaaatattg tatatggggt	atttatgcta	cataagaaaa	cagtaaatca	gaagaccaca	1260
atctacgaaa ttcaggatga	tagaggaaaa	atggatgtag	tggggacagg	acaatgtcac	1320
aatatcccct gtgaagaagg	agataagctc	cagcttttct	gctttcgact	tagaaaaaag	1380

aaccagatgt caaaactgat	ttcagaaatg	catagtttta	tccagataaa	gaaaaaaaca	1440
aacccgagaa acaatgaccc	caagagcatg	aagctacccc	aggáacagcg	tcagcttcca	1500
tateetteag aggeeageae	aaccttccct	gagagccatc	ttcggactcc	tcagatgcca	1560
ccaacaactc catccagcag	tttcttcacc	aagaaaagtg	aagacacaat	ctccaaaatg	1620
aatgacttca tgaggatgca	gatactgaag	gaagggagtc	attttccagg	accgttcatg	1680
accagcatag gcccagctga	gagccatccc	cacactcctc	agatgcctcc	atcaacacca	1740
agcagcagtt tcttaaccac	gttgaaacca	agactgaaga	ctgaacctga	agaagtttcc	1800
atagaagaca gtgcccagag	tgacctcaaa	gaagtgatgg	tgctgaacgc	aacagaatca	1860
tttgtatatg agcccaaaga	gcagaagaaa	atgtttcatg	ccacagtggc	aactgagaat	1920
gaagtettee gagtgaaggt	ttttaatatt	gacctaaagg	agaagttcac	cccaaagaag	1980
atcattgcca tagcaaatta	tgtttgccgc	aatgggttcc	tggaggtata	tcctttcaca	2040
cttgtggctg atgtgaatgc	tgaccgaaac	atggagatcc	caaaaggatt	gattagaagt	2100
gccagcgtaa ctcctaaaat	caatcagctt	tgctcacaaa	ctaaaggaag	ttttgtgaat	2160
ggggtgtttg aggtacataa	gaaaaatgta	aggggtgaat	tcacttatta	tgaaatacaa	2220
gataatacag ggaagatgga	agtggtggtg	catggacgac	tgaacacaat	caactgtgag	2280
gaaggagata aactgaaact	caccagcttt	gaattggcac	cgaaaagtgg	gaataccggg	2340
gagttgagat ctgtaattca	tagtcacatc	aaggtcatca	agaccaggaa	aaacaagaaa	2400
gacatactca atcctgattc	aagtatggaa	acttcaccag	actttttctt	ctaaaatctg	2460
gatgtcattg acgataatgt	ttatggagat	aaggtctaag	tccctaaaaa	aatgtacata	2520
tacctggttg aaatacaaca	ctatacatac	acaccaccat	atatactagc	tgttaatcct	2580
atggaatggg ggtattggga	gtgcttttt	aatttttcat	agttttttt	taataaaatg	2640
gcatattttg catctacaac	ttctataata	agaaaaaata	aataaacatt	atctttttg	2700
tgaaaaaa					2709
<210> 99 <211> 417 <212> DNA <213> Homo sapiens					
<400> 99 aaaaaccttg tagagagagt	aaaaaattta	acaccaacct	cqqccqcqac	cacqctqqcc	60
gcccgggcag gtaccgcaag					120
actaacccct ataccttctg					180
aagetaagae eeegaaace					240
tatgtagcaa aatagtggga	agatttatag	gtagaggcga	caaacctacc	gagcctggtg	300
atagctggtt gtccaagaga					360
atccccttgt aaatttaact	gttagtccaa	agaggaacag	ctctttggac	actagga	417
<210> 100 <211> 893 <212> DNA <213> Homo sapiens					•
<400> 100 gggtttegec teegeetgtg	gatgctgcgc	ctctccqaac	gcaacatgaa	ggtgctcctt	60
gccgccgccc tcatcgcggg					120
gatgagaaga agaaggggcc					180
U 9-9 9 9 9995	·	y 99 - 9 ·	,	- 3 33*	

gatgaagatg taggccgggt gatctttggt ctcttcggaa agactgttcc aaaaacagtg	240
gataattttg tggccttagc tacaggagag aaaggatttg gctacaaaaa cagcaaattc	300
catcgtgtaa tcaaggactt catgatccag ggcggagact tcaccagggg agatggcaca	360
ggaggaaaga gcatctacgg tgagcgcttc cccgatgaga acttcaaact gaagcactac	420
gggcctggct gggtgagcat ggccaacgca ggcaaagaca ccaacggctc ccagttcttc	480
atcacgacag tcaagacage etggetagat ggeaageatg tggtgtttgg caaagtteta	540
gagggcatgg aggtggtgcg gaaggtggag agcaccaaga cagacagccg ggataaaccc	600
ctgaaggatg tgatcatcgc agactgcggc aagatcgagg tggagaagcc ctttgccatc	660
gccaaggagt agggcacagg gacatettte tttgagtgac egtetgtgca ggceetgtag	720
tecgecacag ggetetgage tgeactggee eeggtgetgg catetggtgg ageggaceea	780
cteceetcae attecacagg eccatggact caettttgta acaaacteet accaacactg	840
accaataaaa aaaaatgtgg gtttttttt tttttaatat aaaaaaaccc ccc	893
<210> 101 <211> 2360 <212> DNA <213> Homo sapiens <400> 101	
getacgeggg ccacgetget ggetggeetg acetaggege geggggtegg geggeegege	60
gggcgggctg agtgagcaag acaagacact caagaagagc gagctgcgcc tgggtcccgg	120
ccaggettge acgeagagge gggeggeaga eggtgeeegg eggaatetee tgageteege	180
cgcccagctc tggtgccagc gcccagtggc cgccgcttcg aaagtgactg gtgcctcgcc	240
gcctcctctc ggtgcgggac catgaagctg ctgccgtcgg tggtgctgaa gctctttctg	300
gctgcagttc tctcggcact ggtgactggc gagagcctgg agcggcttcg gagagggcta	360
gctgctggaa ccagcaacce ggaccetece actgtateca eggaccaget gctaceceta	420
ggaggcggcc gggaccggaa agtccgtgac ttgcaagagg cagatctgga ccttttgaga	480
gtcactttat cctccaagcc acaagcactg gccacaccaa acaaggagga gcacgggaaa	540
agaaagaaga aaggcaaggg gctagggaag aagagggacc catgtcttcg gaaatacaag	600
gacttetgea tecatggaga atgeaaatat gtgaaggage teegggetee eteetgeate	660
tgccacccgg gttaccatgg agagaggtgt catgggctga gcctcccagt ggaaaatcgc	720
ttatatacct atgaccacac aaccatcctg gccgtggtgg ctgtggtgct gtcatctgtc	780
tgtctgctgg tcatcgtggg gcttctcatg tttaggtacc ataggagagg aggttatgat	840
gtggaaaatg aagagaaagt gaagttgggc atgactaatt cccactgaga gagacttgtg	900
ctcaaggaat cggctgggga ctgctacctc tgagaagaca caaggtgatt tcagactgca	960
gaggggaaag acttccatct agtcacaaag actccttcgt ccccagttgc cgtctaggat	1020
tgggcctccc ataattgctt tgccaaaata ccagagcctt caagtgccaa acagagtatg	1080
tccgatggta tctgggtaag aagaaagcaa aagcaaggga ccttcatgcc cttctgattc	1140
ccctccacca aaccccactt cccctcataa gtttgtttaa acacttatct tctggattag	1200
aatgccggtt aaattccata tgctccagga tctttgactg aaaaaaaaaa	1260
gaaggagagc aagaaggaaa gatttgtgaa ctggaagaaa gcaacaaaga ttgagaagcc	1320
atgtactcaa gtaccaccaa gggatctgcc attgggaccc tccagtgctg gatttgatga	1380
gttaactgtg aaataccaca agcetgagaa etgaattttg ggaettetae ecagatggaa	1440

aaataacaac tatttttgtt gttgttgttt gtaaatgcct cttaaattat atatttattt	1500
tattctatgt atgttaattt atttagtttt taacaatcta acaataatat ttcaagtgco	1560
tagactgtta ctttggcaat ttcctggccc tccactcctc atccccacaa tctggcttag	1620
tgccacccac ctttgccaca aagctaggat ggttctgtga cccatctgta gtaatttatt	1680
gtctgtctac atttctgcag atcttccgtg gtcagagtgc cactgcggga gctctgtatg	1740
gtcaggatgt aggggttaac ttggtcagag ccactctatg agttggactt cagtcttgc	1800
taggcgattt tgtctaccat ttgtgttttg aaagcccaag gtgctgatgt caaagtgtaa	1860
cagatateag tgteteeceg tgteetetee etgeeaagte teagaagagg ttgggettee	1920
atgcctgtag ctttcctggt ccctcacccc catggcccca ggccacagcg tgggaactca	1980
ctttcccttg tgtcaagaca tttctctaac tcctgccatt cttctggtgc tactccatg	2040
aggggtcagt gcagcagagg acagtctgga gaaggtatta gcaaagcaaa	2100
ggaacaggga acattggagc tgactgttct tggtäactga ttacctgcca attgctacc	2160
agaaggttgg aggtggggaa ggctttgtat aatcccaccc acctcaccaa aacgatgaag	2220
gtatgctgtc atggtccttt ctggaagttt ctggtgccat ttctgaactg ttacaacttg	2280
tatttccaaa cctggttcat atttatactt tgcaatccaa ataaagataa cccttattcc	2340
ataaaaaaaa aaaaaaaaaa	2360
<210> 102 <211> 1090 <212> DNA <213> Homo sapiens	
<400> 102 geteegggag actteeggea gggegggege ggggtettgg egaaeggtet teggaagegg	60
gctccgggag acttccggca gggcgggcgc ggggtcttgg cgaacggtct tcggaagcg	120
geteegggag actteeggea gggegggege ggggtettgg egaacggtet teggaageggeggggggggggggggggggggggg	120 180
gctccgggag acttccggca gggcgggcgc ggggtcttgg cgaacggtct tcggaagcgg cggcggcgc atgaccacgc tacgggcctt tacctgcgac gacctgttcc gcttcaacaa cattaacttg gatccactta cagaaactta tgggattcct ttctacctac aatacctcgc	120 180 240
gctccgggag acttccggca gggcgggcgc ggggtcttgg cgaacggtct tcggaagcgg cggcggcgcg atgaccacgc tacgggcctt tacctgcgac gacctgttcc gcttcaacaa cattaacttg gatccactta cagaaactta tgggattcct ttctacctac aatacctcgc ccactggcca gagtatttca ttgttgcaga ggcacctggt ggagaattaa tgggttatat	120 180 240 300
gctccgggag acttccggca gggcggcgc ggggtcttgg cgaacggtct teggaagegg cggcggcgc atgaccacgc tacgggcctt tacctgcgac gacctgttcc gcttcaacaa cattaacttg gatccactta cagaaactta tgggattcct ttctacctac aatacctcgc ccactggcca gagtatttca ttgttgcaga ggcacctggt ggagaattaa tgggttatat tatgggtaaa gcagaaggct cagtagctag ggaagaatgg cacgggcacg tcacagctct	120 180 240 300 360
geteeggaag actteeggea gggeggege ggggtettgg egaacggtet teggaagegg eggeggegeg atgaceacge taegggeett taeetgegae gaeetgttee getteaacaa cattaacttg gateeactta cagaaactta tgggatteet ttetaectae aatacetege ecaetggeea gagtatteea ttgttgeaga ggeacetggt ggagaattaa tgggttatat tatgggtaaa geagaagget eagtagetag ggaagaatgg eaegggeaeg teaeagetet gtetgttgee eeagaattte gaegeettgg tttggetget aaacttatgg agttaetaga	120 180 240 300 360 420
geteeggaag actteeggea gggeggege ggggtettgg egaacggtet teggaagegg eggeggegeg atgaceacge taegggeett taeetgegae gaeetgttee getteaacaa cattaacttg gatecactta cagaaactta tgggatteet ttetacetae aatacetege ecaetggeea gagtatttea ttgttgeaga ggeacetggt ggagaattaa tgggttatat tatgggtaaa geagaagget cagtagetag ggaagaatgg caegggeacg teaeagetet gtetgttgee ceagaattte gaegeettgg tttggetget aaacttatgg agttaetag ggagatttea gaaagaaagg gtggatttt tgtggatete tttgtaagag tatetaacea	120 180 240 300 360 420 480
gctccgggag acttccggca gggcgggcgc ggggtcttgg cgaacggtct tcggaagcgg cggcggcgcg atgaccacgc tacgggcctt tacctgcgac gacctgttcc gcttcaacaa cattaacttg gatccactta cagaaactta tgggattcct ttctacctac aatacctcgg ccactggcca gagtatttca ttgttgcaga ggcacctggt ggagaattaa tgggttatat tatgggtaaa gcagaaggct cagtagctag ggaagaatgg cacgggcacg tcacagctct gtctgttgcc ccagaatttc gacgccttgg tttggctgct aaacttatgg agttactagg ggagatttca gaaagaaagg gtggatttt tggtggatctc tttgtaagag tatctaacca agttgcagtt aacatgtaca agcagttggg ctacagtgta tataggacgg tcatagagta	120 180 240 300 360 420 480 540
geteeggaag actteeggea gggeggege ggggtettgg egaacggtet teggaagege eggeggegeg atgaceacge taegggeett taeetgegae gaeetgttee getteaacaa eattaaettg gateeactta cagaaaetta tgggatteet ttetaeetae aataeetege ecaetggeea gagtattea ttgttgeaga ggeaeetggt ggagaattaa tgggttatat tatgggtaaa geagaagget eagtagetag ggaagaatgg eaegggeaeg teaeagetet gtetgttgee eeagaattee gaegeettgg tttggetget aaaettatgg agttaetaggagatttea gaaagaaagg gtggatttt tggtggatete tttgtaagag taeeagagatgeetggggtaaegtgaggtaaeaggggaggatggaggatggaggatggaggatteet ettgtaagagg teatagagga eagttgeagtt aaeatgtaea ageagttggg etaeagtgta tataggaegg teatagagga eageaetteeggee ageaacgggg ageetgatga ggaegettat gatatgagga aageaettteeggee ageaacgggg ageetgatga ggaegettat gatatgagga aageaettteeggee	120 180 240 300 360 420 480 540
geteeggaag actteeggea gggeggege ggggtettgg egaacggtet teggaageggeegggggggggggggggggggggg	120 180 240 300 360 420 480 540 600
geteeggaag actteeggea gggeggege ggggtettgg egaacggtet teggaageggeeggegggeggggggggggggggg	120 180 240 300 360 420 480 540 600 660 720
getecgggag actteeggea gggeggege ggggtettgg egaacggtet teggaageggeeggegggeggggggggggggggg	120 180 240 300 360 420 480 540 600 660 720 780
getecgggag actteeggea gggeggege ggggtettgg egaacggtet teggaageggeeggeggggggggggggggggggg	120 180 240 300 360 420 480 540 600 720 780 840
getecgggag actteeggea gggeggege ggggtettgg egaacggtet teggaageggeeggegggeggggggggggggggg	120 180 240 300 360 420 480 540 600 720 780 840 900
getecgggag actteeggea gggeggege ggggtettgg egaacggtet teggaageggeeggeggggggggggggggggggg	120 180 240 300 360 420 480 540 660 720 780 840 900
getecgggag actteeggea gggeggege ggggtettgg egaacggtet teggaagegge eggeggegeg atgaceacge tacgggeett tacetgegae gacetgttee getteaacaa cattaacttg gatecactta cagaaactta tgggatteet ttetacetae aatacetegge ecactggeea gagtattea ttgttgeaga ggcacetggt ggagaattaa tgggttatat tatgggtaaa geagaagget cagtagetag ggaagaatgg cacgggeacg teacagetet gtetgttgee ecagaattee gacgeettgg tttggetget aaacttatgg agttactagg ggagattea gaaagaaagg gtggatttt tgtggateet tttgtaagag tactaagea agttgeagtt aacatgtaca ageagttggg etacagtgta tataggaegg teatagagta ecatteeggee ageaacgggg ageetgatga ggacgettat gatagagga aageacttee eagggataet gagaagaaat ecateataee attaceteat eetgtgagge etgaagacat ttteeatage atgatteegg ageetetatta ggagaaaagt aateattta tttteattgg atgattetgg ageetetatta ggagaaaagt aateattta ggtettaaagaa aatacaggtt ateaatttat tttaaatee attgtteea gttageaataa teaacetaa taaageeggt eattgtaaca aaatteaate aaaaaggeag etaggteagaaagaaacata eeaceteeteat ggtteatagt atteaetgta tgtatgetag ggaaaagaacat tgeteeagte teeteeteag ttetgtgeet gagaaceact getgeatata tttgttteea gttageaaaaagaagaaacata eeaceteeteag ggtteatagt atteaetgta tgtatgetag ggaaaagaacat tgeteeagte teeteeteag ttetgtgeet gagaaceact getgeatata tttgttteea	120 180 240 300 360 420 480 540 600 720 780 840 900 960 1020

<210> 103 <211> 832 <212> DNA <213> Homo sapiens	
<pre><400> 103 cgccgctqca gctqgggcca tttgagggga gcccatgggg cctgaaaggc atctgtcagg</pre>	60
cgccctgcc cggatggcaa cagtagttct aggaggagac accatgggcc ctgagcgtat	120
cttccccaat cagactgagg aactgggaca tcagggccct tcagaaggca ctggggattg	180
gagcagtgag gagcctgagg aagagcagga ggaaacgggg tcgggcccag ctggctactc	240
ctaccagece etgaaccaag atcetgaaca agaggaggtg gaactggcac cagtggggga	300
tggagatgta gttgctgaca tccaggatcg aatccaggcc ctggggcttc atttgccaga	360
cccaccatta gagagtgaag atgaagatga ggagggagct acagcgttga acaaccacag	420
ctctattccc atggacccag aacatgtaga gctggtgaaa aggacaatgg ctggagtaag	480
cctgcctgcg ccaggggttc ctgcctgggc tcgggagata tctgatgccc agtgggaaga	540
tgtggtacag aaagccctcc aagcccggca ggcatcccct gcctggaagt gaccacagtg	600
agagetgeet tatatteeta catteeagge cagaaceage acaggaetga acacateeet	660
ggttgtaatg tccatttcca tcttccccgt ctccctttcc acatcaaggc acatcagact	720
tctcagagac ccactttatt cagttctgta catatgggga catcggtcca agcccaacca	780
ccttagcatg tatcactctg tggagaataa agcacctatg tactgagcca aa	832
<210> 104 <211> 1490 <212> DNA <213> Homo sapiens	
<400> 104 ggggcagcgc agggcagacg gcggcaggag aagcaagatg aatgcaggct cagatcctgt	60
ggtcatcgtc tcggcggcgc ggaccatcat aggttccttc aatggtgcct tagctgctgt	120
tcctgtccag gacctgggct ccactgtcat caaagaagtc ttgaagaggg ccactgtggc	180
tccggaagat gtgtctgagg tcatctttgg acatgtcttg gcagcaggct gtgggcagaa	240
tcctgttaga caagccagtg tgggtgcagg aattccctac tctgttccag catggagctg	300
ccagatgatc tgtgggtcag gcctaaaagc tgtgtgcctt gcagtccagt caatagggat	360
${\tt aggagactcc} \ {\tt agcattgtgg} \ {\tt ttgcaggagg} \ {\tt cattggaaaat} \ {\tt atgagcaagg} \ {\tt ctcctcactt}$	420
ggcttacttg agaacaggag taaagatagg tgagatgcca ctgactgaca gtatactctg	480
tgatggtctt acagatgcat ttcacaactg tcatatgggt attacagctg aaaatgtagc	540
cacaaaatgg caagtgagta gagaagatca ggacaaggtt gcagttctgt cccagaacag	600
gacagagaat gcacagaaag ctggccattt tgacaaagag attgtaccag ttttggtgtc	660
aactagaaaa ggtcttattg aagttaaaac agatgagttt cctcgccatg ggagcaacat .	720
agaagccatg tccaagctaa agccttactt tcttactgat ggaacgggaa cagtcacccc	780
agccaatgct tcaggaataa atgatggtgc tgcagctgtt gcicttatga agaagtcaga	. 840
agccaatgct tcaggaataa atgatggtgc tgcagctgtt gctcttatga agaagtcaga agctgataaa cgtgggctta cacctttagc acggatagtt tcctggtccc aagtgggtgt	. 840 900
agctgataaa cgtgggctta cacctttagc acggatagtt tcctggtccc aagtgggtgt ggagccttcc attatgggaa taggaccaat tccagccata aagcaagctg ttacaaaagc	
agctgataaa cgtgggctta cacctttagc acggatagtt tcctggtccc aagtgggtgt	900 960 1020
agctgataaa cgtgggctta cacctttagc acggatagtt tcctggtccc aagtgggtgt ggagccttcc attatgggaa taggaccaat tccagccata aagcaagctg ttacaaaagc	900 960

cacactggag agaatgggca gaagtcgtgg tgttgcagcc ctgtgcattg ggggtgggat	1200
gggaatagca atgtgtgttc agagagaatg acaatgtgtg ttcagagaga atgaattgct	1260
taaactttga acaacctcaa tttcttttta aactaataaa gtactaggtt gcaatatgtg	1320
aaatcagagg accaaagtac agatggaaac catttectac atcacaaaaa cecaagttta	1380
cagcitgiac titacittaa igigtaalac icaacicacg giacaagaca aligcatita	1440
acattgttat aaataaaagg aacatcagat caatcattaa aaaaaaaaaa	1490
<210> 105 <211> 2019 <212> DNA <213> Homo sapiens	
<400> 105	
acgtgtatcg ctgccgtcaa gatggagggg cctttgtccg tgttcggtga ccgcagcact	60
ggggaaacga tccgctccca aaacgttatg gctgcagctt cgattgccaa tattgtaaaa	120
agttctcttg gtccagttgg cttggataaa atgttggtgg atgatattgg tgatgtaacc	180
attactaacg atggtgcaac catcctgaag ttactggagg tagaacatcc tgcagctaaa	240
gttctttgtg agctggctga tctgcaagac aaagaagttg gagatggaac tacttcagtg	300
gttattattg cagcagaact cctaaaaaat gcagatgaat tagtcaaaca gaaaattcat	360
cccacatcag ttattagtgg ctatcgactt gcttgcaagg aagcagtgcg ttatatcaat	420
gaaaacctaa ttgttaacac agatgaactg ggaagagatt gcctgattaa tgctgctaag	480
acatccatgt cttccaaaat cattgggata aatggtgatt tctttgctaa catggtagta	540
gatgctgtac ttgctattaa atacacagac ataagaggcc agccacgcta tccagtcaac	600
tctgttaata ttttgaaagc ccatgggaga agtcaaatgg agagtatgct catcagtggc	660
tatgcactca actgtgtggt gggatcccag ggcatgccca agagaatcgt aaatgcaaaa	720
attgcttgcc ttgacttcag cctgcaaaaa acaaaaatga agcttggtgt acaggtggtc	780
attacagacc ctgaaaaact ggaccaaatt agacagagag aatcagatat caccaaggag	840
agaattcaga agatcctggc aactggtgcc aatgttattc taaccactgg tggaattgat	900
gatatgtgtc tgaagtattt tgtggaggct ggtgctatgg cagttägaag agttttaaaa	960
agggacctta aacgcattgc caaagcttct ggagcaacta ttctgtcaac cctggccaat	1020
ttggaaggtg aagaaacttt tgaagctgca atgttgggac aggcagaaga agtggtacag	1080
gagagaattt gtgatgatga gctgatctta atcaaaaata ctaaggctcg tacgtctgca	1140
tegattatet taegtgggge aaatgattte atgtgtgatg agatggageg etetttaeat	1200
gatgcacttt gtgtagtgaa gagagttttg gagtcaaaat ctgtggttcc cggtgggggt	1260
gctgtagaag cagccctttc catatacctt gaaaactatg caaccagcat ggggtctcgg	1320
gaacagettg cgattgcaga gtttgcaaga tcacttcttg ttattcccaa tacactagca	1380
gttaatgctg cccaggactc cacagatctg gttgcaaaat taagagcttt tcataatgag	1440
gcccaggtta acccagaacg taaaaatcta aaatggattg gtcttgattt gagcaatggt	1500
aaacctcgag acaacaaaca agcaggggtg tttgaaccaa ccatagttaa agttaagagt	1560
ttgaaatttg caacagaagc tgcaatcacc attcttcgaa ttgatgatct tattaaatta	1620
catccagaaa tccttcggat taaacatgga agttatgaag atgctgttca ctctggagcc	1680
cttaatgatt gatctgatgt tccttttatt tataacaatg ttaaatgcaa tgtcttgtac	1740
cttgagttga gtattacaca ttaaagtaaa gtacaagctg taaacttggg tttttgtgat	1800
•	

gtaggaaatg	gtttccatct	gtactttggt	cctctgattt	cagatattgc	aacctagtac	1860
tttattagtt	taaaaagaaa	ttgaggttgt	tcaaagttta	agcaattcat	tctctctgaa	1920
cacacattgc	tattcccatc	ccacccccaa	tgcacagggc	tgcaacacca	cgacttctgc	1980
ccattctctc	cagtgtgtgt	aacagggtca	caagaattc			2019
<210> 106 <211> 891 <212> DNA <213> Homo	o sapiens					
<400> 106 ttttttttc	tetetectee	cgccgcccaa	gatgccgaaa	ggaaagaagg	ccaagggaaa	60
gaaggtggct	ccggccccag	ctgtcgtgaa	gaagcaggag	gctaagaaag	tggtgaatcc	120
cctgtttgag	aaaaggccta	agaattttgg	cattggacag	gacatccagc	ccaaaagaga	180
cctcacccgc	tttgtgaaat	ggccccgcta	tatcaggttg	cagcggcaga	gagccatcct	240
ctataagcgg	ctgaaagtgc	ctcctgcgat	taaccagttc	acccaggccc	tggaccgcca	300
aacagctact	cagctgctta	agctggccca	caagtacaga	ccagagacaa	agcaagagaa	360
gaagcagaga	ctgttggccc	gggccgagaa	gaaggctgct	ggcaaagggg	acgtcccaac	420
gaagagacca	cctgtccttc	gagcaggagt	taacaccgtc	accaccttgg	tggagaacaa	480
gaaagctcag	ctggtggtga	ttgcacacga	cgtggatccc	atcgagctgg	ttgtcttctt	540
gcctgccctg	tgtcgtaaaa	tgggggtccc	ttactgcatt	atcaagggaa	aggcaagact	600
gggacgtcta	gtccacagga	agacctgcac	cactgtcgcc	ttcacacagg	tgaactcgga	660
agacaaaggc	gctttggcta	agctggtgga	agctatcagg	accaattaca	atgacagata	720
cgatgagatc	cgccgtcact	ggggtggcaa	tgtcctgggt	cctaagtctg	tggctcgtat	780
cgccaagctc	gaaaaggcaa	aggctaaaga	acttgccact	aaactgggtt	aaatgtacac	840
tgttgagttt	tctgtacata	aaaataattg	aaataataca	aattttcctt	С	891
	o sapiens					
<400> 107 ccccccgag	cgccgctccg	gctgcaccgc	gctcgctccg	agtttcaggc	tcgtgctaag	60
ctagcgccgt	cgtcgtctcc	cttcagtcgc	catcatgatt	atctaccggg	acctcatcag	120
ccacgatgag	atgttctccg	acatctacaa	gatccgggag	atcgcggacg	ggttgtgcct	180
ggaggtggag	gggaagatgg	tcagtaggac	agaaggtaac	attgatgact	cgctcattgg	240
tggaaatgcc	tccgctgaag	gccccgaggg	cgaaggtacc	gaaagcacag	taatcactgg	300
tgtcgatatt	gtcatgaacc	atcacctgca	ggaaacaagt	ttcacaaaag	aagcctacaa	360
gaagtacatc	aaagattaca	tgaaatcaat	caaagggaaa	cttgaagaac	agagaccaga	420
aagagtaaaa	ccttttatga	caggggctgc	agaacaaatc	aagcacatcc	ttgctaattt	480
caaaaactac	cagttcttta	ttggtgaaaa	catgaatcca	gatggcatgg	ttgctctatt	540
ggactaccgt	gaggatggtg	tgaccccata	tatgattttc	tttaaggatg	gtttagaaat	600
ggaaaaatgt	taacaaatgt	ggcaattatt	ttggatctat	cacctgtcat	cataactggc	660
ttctgcttgt	catccacaca	acaccaggac	ttaagacaaa	tgggactgat	gtcatcttga	720
gctcttcatt	tattttgact	gtgatttatt	tggagtggag	gcattgtttt	taagaaaaac	780
atgtcatgta	ggttgtctaa	aaataaaatg	catttaaact	catttgagag		830
				D 101		

<210> 108

<211> 394

<212> PRT <213> Homo sapiens

Val Glu Lys Gly Glu Thr Ile Thr Gly Leu Leu Gln Glu Phe Asp Val $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Gln Glu Gln Asp Ile Glu Thr Leu His Gly Ser Val His Val Thr Leu $35 \hspace{1cm} 40 \hspace{1cm} 45$

Cys Gly Thr Pro Lys Gly Asn Arg Pro Val Ile Leu Thr Tyr His Asp 50 60

Ile Gly Met Asn His Lys Thr Cys Tyr Asn Pro Leu Phe Asn Tyr Glu 65 70 75 80

Asp Met Gln Glu Ile Thr Gln His Phe Ala Val Cys His Val Asp Ala 95 90 95

Pro Gly Gln Gln Asp Gly Ala Ala Ser Phe Pro Ala Gly Tyr Met Tyr 100 105 110

Pro Ser Met Asp Gln Leu Ala Glu Met Leu Pro Gly Val Leu Gln Gln 115 120 125

Phe Gly Leu Lys Ser Ile Ile Gly Met Gly Thr Gly Ala Gly Ala Tyr 130 140

Thr Leu Thr Arg Phe Ala Leu Asn Asn Pro Glu Met Val Glu Gly Leu 145 150 155 160

Val Leu Ile Asn Val Asn Pro Cys Ala Glu Gly Trp Met Asp Trp Ala 165 170 175

Ala Ser Lys Ile Ser Gly Trp Thr Gln Ala Leu Pro Asp Met Val Val 180 $$185\$

Ser His Leu Phe Gly Lys Glu Glu Met Gln Ser Asn Val Glu Val Val 195 200 205

His Thr Tyr Arg Gln His Ile Val Asn Asp Met Asn Pro Gly Asn Leu 210 215 220

His Leu Phe Ile Asn Ala Tyr Asn Ser Arg Arg Asp Leu Glu Ile Glu 225 230 235 240

Arg Pro Met Pro Gly Thr His Thr Val Thr Leu Gln Cys Pro Ala Leu 245 250 255

Leu Val Val Gly Asp Ser Ser Pro Ala Val Asp Ala Val Val Glu Cys 260 265 270

As Ser Lys Leu Asp Pro Thr Lys Thr Thr Leu Leu Lys Met Ala Asp 275 280 285

Cys Gly Gly Leu Pro Gln Ile Ser Gln Pro Ala Lys Leu Ala Glu Ala 290 295 300

Phe Lys Tyr Phe Val Gln Gly Met Gly Tyr Met Pro Ser Ala Ser Met 305 310 315 320

Thr Arg Leu Met Arg Ser Arg Thr Ala Ser Gly Ser Ser Val Thr Ser 325 330 335

Leu Asp Gly Thr Arg Ser Arg Ser His Thr Ser Glu Gly Thr Arg Ser $340 \ \ 345 \ \ 350$

Arg Ser His Thr Ser Glu Gly Thr Arg Ser Arg Ser His Thr Ser Glu 355 360 365

Gly Ala His Leu Asp Ile Thr Pro Asn Ser Gly Ala Ala Gly Asn Ser 370 380

Ala Gly Pro Lys Ser Met Glu Val Ser Cys 385 390

<210>

109 780 <211>

PRT

Homo sapiens

Met Thr His Glu Glu His His Ala Ala Lys Thr Leu Gly Ile Gly Lys 1 5 10 15

Ala Ile Ala Val Leu Thr Ser Gly Gly Asp Ala Gln Gly Met Asn Ala $20 \hspace{1cm} 25 \hspace{1cm} 30$

Ala Val Arg Ala Val Val Arg Val Gly Ile Phe Thr Gly Ala Arg Val 35 40 45

Phe Phe Val His Glu Gly Tyr Gln Gly Leu Val Asp Gly Gly Asp His 50 $$

Ile Lys Glu Ala Thr Trp Glu Ser Val Ser Met Met Leu Gln Leu Gly 65 70 75 80

Gly Thr Val IIe Gly Ser Ala Arg Cys Lys Asp Phe Arg Glu Arg Glu 85 90 95

Gly Arg Leu Arg Ala Ala Tyr Asn Leu Val Lys Arg Gly Ile Thr Asn 100 105 110

Leu Cys Val Ile Gly Gly Asp Gly Ser Leu Thr Gly Ala Asp Thr Phe 115 120 125

Arg Ser Glu Trp Ser Asp Leu Leu Ser Asp Leu Gln Lys Ala Gly Lys 130 135 140

Ile Thr Asp. Glu Glu Ala Thr Lys Ser Ser Tyr Leu Asn Ile Val Gly 145 150 150

Leu Val Gly Ser Ile Asp Asn Asp Phe Cys Gly Thr Asp Met Thr Ile 165 170 175

Gly Thr Asp Ser Ala Leu His Arg Ile Met Glu Ile Val Asp Ala Ile 180 $$185\$ Thr Thr Thr Ala Gln Ser His Gln Arg Thr Phe Val Leu Glu Val Met 195 200 Gly Arg His Cys Gly Tyr Leu Ala Leu Val Thr Ser Leu Ser Cys Gly 210 215 220 Ala Asp Trp Val Phe Ile Pro Glu Cys Pro Pro Asp Asp Asp Trp Glu 225 230 235 240 Glu His Leu Cys Arg Arg Leu Ser Glu Thr Arg Thr Arg Gly Ser Arg 245 250 250 255Leu Asn Ile Ile Ile Val Ala Glu Gly Ala Ile Asp Lys Asn Gly Lys $260 \hspace{1.5cm} 265 \hspace{1.5cm} 270 \hspace{1.5cm}$ Pro Ile Thr Ser Glu Asp Ile Lys Asn Leu Val Val Lys Arg Leu Gly 275 280 285Pro Ser Ala Phe Asp Arg Ile Leu Gly Ser Arg Met Gly Val Glu Ala 305 310 315 320 Val Met Ala Leu Leu Glu Gly Thr Pro Asp Thr Pro Ala Cys Val Val 325 330 335 Ser Leu Ser Gly Asn Gln Ala Val Arg Leu Pro Leu Met Glu Cys Val Gln Val Thr Lys Asp Val Thr Lys Ala Met Asp Glu Lys Lys Phe Asp 355 360 365Glu Ala Leu Lys Leu Arg Gly Arg Ser Phe Met Asn Asn Trp Glu Val 370 375 380Tyr Lys Leu Leu Ala His Val Arg Pro Pro Val Ser Lys Ser Gly Ser 385 390 395 400 His Thr Val Ala Val Met Asn Val Gly Ala Pro Ala Ala Gly Met Asn 405 410410 Ala Ala Val Arg Ser Thr Val Arg Ile Gly Leu Ile Gln Gly Asn Arg $420 \hspace{1.5cm} 425 \hspace{1.5cm} 430$ Val Leu Val Val His Asp Gly Phe Glu Gly Leu Ala Lys Gly Gln Ile 435 440 445Glu Glu Ala Gly Trp Ser Tyr Val Gly Gly Trp Thr Gly Gln Gly Gly 450 455 460Ser Lys Leu Gly Thr Lys Arg Thr Leu Pro Lys Lys Ser Phe Glu Gln 465 470 475 480 Ile Ser Ala Asn Ile Thr Lys Phe Asn Ile Gln Gly Leu Val Ile Ile

Page 134

485 490 495

Gly Gly Phe Glu Ala Tyr Thr Gly Gly Leu Glu Leu Met Glu Gly Arg 500 505 510

Lys Gln Phe Asp Glu Leu Cys Ile Pro Phe Val Val Ile Pro Ala Thr 515 520 525

Val Ser Asn Asn Val Pro Gly Ser Asp Phe Ser Val Gly Ala Asp Thr 530 535 540

Ala Leu Asn Thr Ile Cys Thr Thr Cys Asp Arg Ile Lys Gln Ser Ala 545 550 555

Ala Gly Thr Lys Arg Arg Val Phe Ile Ile Glu Thr Met Gly Gly Tyr 565 570 575

Cys Gly Tyr Leu Ala Thr Met Ala Gly Leu Ala Ala Gly Ala Asp Ala 580 585 590

Ala Tyr Ile Phe Glu Glu Pro Phe Thr Ile Arg Asp Leu Gln Ala Asn 595 600 605

Val Glu His Leu Val Gln Lys Met Lys Thr Thr Val Lys Arg Gly Leu 610 620

Val Leu Arg Asn Glu Lys Cys Asn Glu Asn Tyr Thr Thr Asp Phe Ile 625 630 635 640

Phe Asn Leu Tyr Ser Glu Glu Gly Lys Gly Ile Phe Asp Ser Arg Lys 645 650 655

Asn Val Leu Gly His Met Gln Gln Gly Gly Ser Pro Thr Pro Phe Asp 660 665 670

Arg Asn Phe Ala Thr Lys Met Gly Ala Lys Ala Met Asn Trp Met Ser $675 \hspace{1.5cm} 680 \hspace{1.5cm} 685$

Gly Lys Ile Lys Glu Ser Tyr Arg Asn Gly Arg Ile Phe Ala Asn Thr $690 \hspace{1.5cm} 695 \hspace{1.5cm} 700 \hspace{1.5cm}$

Pro Asp Ser Gly Cys Val Leu Gly Met Arg Lys Arg Ala Leu Val Phe 705 710710720715

Gln Pro Val Ala Glu Leu Lys Asp Gln Thr Asp Phe Glu His Arg Ile 725 730 735

Pro Lys Glu Gln Trp Trp Leu Lys Leu Arg Pro Ile Leu Lys Ile Leu 740 745 750

Ala Lys Tyr Glu Ile Asp Leu Asp Thr Ser Asp His Ala His Leu Glu 755 760 765

His Ile Thr Arg Lys Arg Ser Gly Glu Ala Ala Val 770 775 780

<210> 110

<211> 1403

<212> PRT

<213> Homo sapiens

<400> 110

Met Ala Thr Gln Gln Lys Ala Ser Asp Glu Arg Ile Ser Gln Phe Asp 1 5 10 15

His Asn Leu Leu Pro Glu Leu Ser Ala Leu Leu Gly Leu Asp Ala Val 20 25 30

Gln Leu Ala Lys Glu Leu Glu Glu Glu Glu Gln Lys Glu Arg Ala Lys $35 \hspace{1cm} 40 \hspace{1cm} 45$

Met Gln Lys Gly Tyr Asn Ser Gln Met Arg Ser Glu Ala Lys Arg Leu 50 60

Lys Thr Phe Val Thr Tyr Glu Pro Tyr Ser Ser Trp Ile Pro Glu Glu 65 70 75 80

Met Ala Ala Gly Phe Tyr Phe Thr Gly Val Lys Ser Gly Ile Gln 85 90 95

Cys Phe Cys Cys Ser Leu Ile Leu Phe Gly Ala Gly Leu Thr Arg Leu 100 105 110

Pro Ile Glu Asp His Lys Arg Phe His Pro Asp Cys Gly Phe Leu Leu 115 120 125

Asn Lys Asp Val Gly Asn Ile Ala Lys Tyr Asp Ile Arg Val Lys Asn 130 135 140

Leu Lys Ser Arg Leu Arg Gly Gly Lys Met Arg Tyr Gln Glu Glu 145 150 150 160

Ala Arg Leu Ala Ser Phe Arg Asn Trp Pro Phe Tyr Val Gln Gly Ile 165 170 170 175

Ser Pro Cys Val Leu Ser Glu Ala Gly Phe Val Phe Thr Gly Lys Gln 180 $$185\$

Asp Thr Val Gln Cys Phe Ser Cys Gly Gly Cys Leu Gly Asn Trp Glu 195 200 205

Glu Gly Asp Asp Pro Trp Lys Glu His Ala Lys Trp Phe Pro Lys Cys 210 215 220

Glu Phe Leu Arg Ser Lys Lys Ser Ser Glu Glu Ile Thr Gln Tyr Ile 225 230 235 240

Gln Ser Tyr Lys Gly Phe Val Asp Ile Thr Gly Glu His Phe Val Asn 245 250 255

Ser Trp Val Gln Arg Glu Leu Pro Met Ala Ser Ala Tyr Cys Asn Asp 260 265 270

Ser Ile Phe Ala Tyr Glu Glu Leu Arg Leu Asp Ser Phe Lys Asp Trp $275 \hspace{1cm} 280 \hspace{1cm} 285 \hspace{1cm}$

Pro Arg Glu Ser Ala Val Gly Val Ala Ala Leu Ala Lys Ala Gly Leu 290 295 300

Phe Tyr Thr Gly Ile Lys Asp Ile Val Gln Cys Phe Ser Cys Gly Gly 305 310 315 320

Cys Leu Glu Lys Trp Gln Glu Gly Asp Asp Pro Leu Asp Asp His Thr 325 330 335

Arg Cys Phe Pro Asn Cys Pro Phe Leu Gln Asn Met Lys Ser Ser Ala 340 345 350

Glu Val Thr Pro Asp Leu Gln Ser Arg Gly Glu Leu Cys Glu Leu Leu 355 360 365

Glu Thr Thr Ser Glu Ser Asn Leu Glu Asp Ser Ile Ala Val Gly Pro 370 380

Ile Val Pro Glu Met Ala Gln Gly Glu Ala Gln Trp Phe Gln Glu Ala 385 390 395 400

Lys Asn Leu Asn Glu Gln Leu Arg Ala Ala Tyr Thr Ser Ala Ser Phe 405 410 415

Arg His Met Ser Leu Leu Asp Ile Ser Ser Asp Leu Ala Thr Asp His 420 425 430

Leu Leu Gly Cys Asp Leu Ser Ile Ala Ser Lys His Ile Ser Lys Pro 435 440 445

Val Gln Glu Pro Leu Val Leu Pro Glu Val Phe Gly Asn Leu Asn Ser 450 455 460

Val Met Cys Val Glu Gly Glu Ala Gly Ser Gly Lys Thr Val Leu Leu 465 470 475 480

Lys Lys Ile Ala Phe Leu Trp Ala Ser Gly Cys Cys Pro Leu Leu Asn 485 490 495

Arg Phe Gln Leu Val Phe Tyr Leu Ser Leu Ser Ser Thr Arg Pro Asp 500 505 510

Glu Gly Leu Ala Ser Ile Ile Cys Asp Gln Leu Leu Glu Lys Glu Gly 515 520 525

Ser Val Thr Glu Met Cys Met Arg Asn Ile Ile Gln Gln Leu Lys Asn 530 540

Gln Val Leu Phe Leu Leu Asp Asp Tyr Lys Glu Ile Cys Ser Ile Pro 545 550 555

Gln Val Ile Gly Lys Leu Ile Gln Lys Asn His Leu Ser Arg Thr Cys 565 570 575

Leu Leu Ile Ala Val Arg Thr Asn Arg Ala Arg Asp Ile Arg Arg Tyr 580 585 590

Leu Glu Thr Ile Leu Glu Ile Lys Ala Phe Pro Phe Tyr Asn Thr Val 595 600 605

Cys Ile Leu Arg Lys Leu Phe Ser His Asn Met Thr Arg Leu Arg Lys 610 620

Phe Met Val Tyr Phe Gly Lys Asn Gln Ser Leu Gln Lys Ile Gln Lys 625 630 635 640

Thr Pro Leu Phe Val Ala Ala Ile Cys Ala His Trp Phe Gln Tyr Pro 645 650 655

Phe Asp Pro Ser Phe Asp Asp Val Ala Val Phe Lys Ser Tyr Met Glu 660 665 670

Arg Leu Ser Leu Arg Asn Lys Ala Thr Ala Glu Ile Leu Lys Ala Thr 675 680 685

Val Ser Ser Cys Gly Glu Leu Ala Leu Lys Gly Phe Phe Ser Cys Cys 690 695 700

Phe Glu Phe Asn Asp Asp Asp Leu Ala Glu Ala Gly Val Asp Glu Asp 705 710 715 720

Glu Asp Leu Thr Met Cys Leu Met Ser Lys Phe Thr Ala Gln Arg Leu 725 730 735

Arg Pro Phe Tyr Arg Phe Leu Ser Pro Ala Phe Gln Glu Phe Leu Ala 740 745 750

Gly Met Arg Leu Ile Glu Leu Leu Asp Ser Asp Arg Gln Glu His Gln $755 \hspace{1cm} 760 \hspace{1cm} 765$

Asp Leu Gly Leu Tyr His Leu Lys Gln Ile Asn Ser Pro Met Met Thr 770 780

Val Ser Ala Tyr Asn Asn Phe Leu Asn Tyr Val Ser Ser Leu Pro Ser 785 790 795 800

Thr Lys Ala Gly Pro Lys Ile Val Ser His Leu Leu His Leu Val Asp 805 810 815

Asn Lys Glu Ser Leu Glu Asn Ile Ser Glu Asn Asp Asp Tyr Leu Lys 820 825 830

His Gln Pro Glu Ile Ser Leu Gln Met Gln Leu Leu Arg Gly Leu Trp 835 840 845

Gln Ile Cys Pro Gln Ala Tyr Phe Ser Met Val Ser Glu His Leu Leu 850 855 860

Val Leu Ala Leu Lys Thr Ala Tyr Gln Ser Asn Thr Val Ala Ala Cys 865 870 875 880

Ser Pro Phe Val Leu Gln Phe Leu Gln Gly Arg Thr Leu Thr Leu Gly 885 890 895

Ala Leu Asn Leu Gln Tyr Phe Phe Asp His Pro Glu Ser Leu Ser Leu 900 905 910

Leu Arg Ser Ile His Phe Pro Ile Arg Gly Asn Lys Thr Ser Pro Arg 915 920 925

Ala His Phe Ser Val Leu Glu Thr Cys Phe Asp Lys Ser Gln Val Pro 930 935 940

Thr Ile Asp Gln Asp Tyr Ala Ser Ala Phe Glu Pro Met Asn Glu Trp 945 950 955 960

Glu Arg Asn Leu Ala Glu Lys Glu Asp Asn Val Lys Ser Tyr Met Asp 965 970 975

Met Gln Arg Arg Ala Ser Pro Asp Leu Ser Thr Gly Tyr Trp Lys Leu 980 985 990

Ser Pro Lys Gln Tyr Lys Ile Pro Cys Leu Glu Val Asp Val Asn Asp 995 1000 1005

Ile Asp Val Val Gly Gln Asp Met Leu Glu Ile Leu Met Thr Val 1010 1015 1020

Phe Ser Ala Ser Gln Arg Ile Glu Leu His Leu Asn His Ser Arg 1025 1030 1035

Gly Phe Ile Glu Ser Ile Arg Pro Ala Leu Glu Leu Ser Lys Ala 1040 1045 1050

Ser Val Thr Lys Cys Ser Ile Ser Lys Leu Glu Leu Ser Ala Ala 1055 1060 1065

Glu Gln Glu Leu Leu Leu Thr Leu Pro Ser Leu Glu Ser Leu Glu 1070 1075 1080

Val Ser Gly Thr Ile Gln Ser Gln Asp Gln Ile Phe Pro Asn Leu 1085 1090 1095

Asp Lys Phe Leu Cys Leu Lys Glu Leu Ser Val Asp Leu Glu Gly 1100 1105 1110

His His Met Glu Lys Leu Leu Ile Gln Ile Ser Ala Glu Tyr Asp 1130 1135 1140

Pro Ser Lys Leu Val Lys Leu Ile Gln Asn Ser Pro Asn Leu His 1145 1150 1155

Val Phe His Leu Lys Cys Asn Phe Phe Ser Asp Phe Gly Ser Leu 1160 1165 1170

Met Thr Met Leu Val Ser Cys Lys Leu Thr Glu Ile Lys Phe 1175 1180 1185

Ser Asp Ser Phe Phe Gln Ala Val Pro Phe Val Ala Ser Leu Pro 1190 1195 1200

Asn Phe Ile Ser Leu Lys Ile Leu Asn Leu Glu Gly Gln Gln Phe 1205 1210 1215

Pro Asp Glu Glu Thr Ser Glu Lys Phe Ala Tyr Ile Leu Gly Ser 1220 1225 1230

Leu Ser Asn Leu Glu Glu Leu Ile Leu Pro Thr Gly Asp Gly Ile

1235 1240 1245

Tyr Arg Val Ala Lys Leu Ile Ile Gln Gln Cys Gln Gln Leu His 1250 1255 1260

Cys Leu Arg Val Leu Ser Phe Phe Lys Thr Leu Asn Asp Asp Ser 1265 1270 1275

Val Val Glu Ile Ala Lys Val Ala Ile Ser Gly Gly Phe Gln Lys 1280 1285 1290

Leu Glu Asn Leu Lys Leu Ser Ile Asn His Lys Ile Thr Glu Glu 1295 $$ 1300 $$ 1305 $$

Gly Tyr Arg Asn Phe Phe Gln Ala Leu Asp Asn Met Pro Asn Leu 1310 1315 1320

Gln Glu Leu Asp Ile Ser Arg His Phe Thr Glu Cys Ile Lys Ala 1325 1330 1335

Gln Ala Thr Thr Val Lys Ser Leu Ser Gln Cys Val Leu Arg Leu 1340 1350

Asp Asp Ile Ala Leu Leu Asn Val Met Lys Glu Arg His Pro Gln 1370 1380

Ser Lys Tyr Leu Thr Ile Leu Gln Lys Trp Ile Leu Pro Phe Ser 1385 1390 1395

Pro Ile Ile Gln Lys 1400

<210> 111

<211> 1005

<211> 100.

<213> Homo sapiens

<400> 111

Met Met Ser Asp Ala Ser Asp Met Leu Ala Ala Ala Leu Glu Gln Met 1 5 10 15

Asp Gly Ile Ile Ala Gly Ser Lys Ala Leu Glu Tyr Ser Asn Gly Ile $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Phe Asp Cys Gln Ser Pro Thr Ser Pro Phe Met Gly Ser Leu Arg Ala 35 40 45

Leu His Leu Val Glu Asp Leu Arg Gly Leu Leu Glu Met Met Glu Thr 50 $\,$ 55 $\,$ 60 $\,$

Asp Glu Lys Glu Gly Leu Arg Cys Gln Ile Pro Asp Ser Thr Ala Glu 65 70 75 80

Thr Leu Val Glu Trp Leu Gln Ser Gln Met Thr Asn Gly His Leu Pro 85 90 95

Gly Asn Gly Asp Val Tyr Gln Glu Arg Leu Ala Arg Leu Glu Asn Asp

105

Lys Glu Ser Leu Val Leu Gln Val Ser Val Leu Thr Asp Gln Val Glu 115 120 125

Ala Gln Gly Glu Lys Ile Arg Asp Leu Glu Phe Cys Leu Glu Glu His 130 135 140

Arg Glu Lys Leu Asn Ala Thr Glu Glu Met Leu Gln Gln Glu Leu Leu 145 150 155 160

Ser Arg Thr Ser Leu Glu Thr Gln Lys Leu Asp Leu Met Ala Glu Ile 165 170 175

Ser Asn Leu Lys Leu Lys Leu Thr Ala Val Glu Lys Asp Arg Leu Asp 180 185 190

Tyr Glu Asp Lys Phe Arg Asp Thr Glu Gly Leu Ile Gln Glu Ile Asn 195 200 205

Asp Leu Arg Leu Lys Val Ser Glu Met Asp Ser Glu Arg Leu Gln Tyr 210 225 220

Glu Lys Lys Leu Lys Ser Thr Lys Asp Glu Leu Ala Ser Leu Lys Glu 225 230 240

Gln Leu Glu Glu Lys Glu Ser Glu Val Lys Arg Leu Gln Glu Lys Leu 245 250 255

Val Cys Lys Met Lys Gly Glu Gly Val Glu Ile Val Asp Arg Asp Glu 260 265 270

Lys Lys Ala Val Glu Ser Leu Met Ala Ala Asn Glu Glu Lys Asp Arg 290 . 295 300

Lys Ile Glu Asp Leu Arg Gln Cys Leu Asn Arg Tyr Lys Lys Met Gln 305 310 315 320

Asp Thr Val Val Leu Ala Gln Gly Lys Lys Gly Lys Asp Gly Glu Tyr 325 330 335

Glu Glu Leu Asn Ser Ser Ser Ile Ser Ser Leu Leu Asp Ala Gln 340 345 350

Gly Phe Ser Asp Leu Glu Lys Ser Pro Ser Pro Thr Pro Val Met Gly 355 360 .365

Ser Pro Ser Cys Asp Pro Phe Asn Thr Ser Val Pro Glu Glu Phe His 370 380

Thr Thr Ile Leu Gln Val Ser Ile Pro Ser Leu Leu Pro Ala Thr Val 385 390 395 400

Ser Met Glu Thr Ser Glu Lys Ser Lys Leu Thr Pro Lys Pro Glu Thr 405 410 415

Ser Phe Glu Glu Asn Asp Gly Asn Ile Ile Leu Gly Ala Thr Val Asp 420 425 430 Thr Gln Leu Arg Asp Lys Leu Leu Thr Ser Ser Leu Gln Lys Ser Ser 435 440 Ser Leu Gly Asn Leu Lys Lys Glu Thr Ser Asp Gly Glu Lys Glu Thr 450 460Ile Gln Lys Thr Ser Glu Asp Arg Ala Pro Ala Glu Ser Arg Pro Phe 465 470 475 480 Gly Thr Leu Pro Pro Arg Pro Pro Gly Gln Asp Thr Ser Met Asp Asp 495 495Asn Pro Phe Gly Thr Arg Lys Val Arg Ser Ser Phe Gly Arg Gly Phe 500 505 510Phe Lys Ile Lys Ser Asn Lys Arg Thr Ala Ser Ala Pro Asn Leu Asp 515 525Arg Lys Arg Ser Ala Ser Ala Pro Thr Leu Ala Glu Thr Glu Lys Glu 530 540 Thr Ala Ala His Leu Asp Leu Ala Gly Ala Ser Ser Arg Pro Lys Asp 545 550 560 Ser Gln Arg Asn Ser Pro Phe Gln Ile Pro Pro Pro Ser Pro Asp Ser 565 570 575Lys Lys Lys Ser Arg Gly Ile Met Lys Leu Phe Gly Lys Leu Arg Arg 580 585 590Ser Gln Ser Thr Thr Phe Asn Pro Asp Asp Met Ser Glu Pro Glu Phe 595 600 605 Lys Arg Gly Gly Thr Arg Ala Thr Ala Gly Pro Arg Leu Gly Trp Ser 610 620 Arg Asp Leu Gly Gln Ser Asn Ser Asp Leu Asp Met Pro Phe Ala Lys 625 630 635 640 Trp Thr Lys Glu Gln Val Cys Asn Trp Leu Met Glu Gln Gly Leu Gly 645 650 655Ser Tyr Leu Asn Ser Gly Lys His Trp Ile Ala Ser Gly Gln Thr Leu 660 665 670Leu Gln Ala Ser Gln Gln Asp Leu Glu Lys Glu Leu Gly Ile Lys His 675 680 685 Ser Leu His Arg Lys Lys Leu Gln Leu Ala Leu Gln Ala Leu Gly Ser 690 700Glu Glu Glu Thr Asn His Gly Lys Leu Asp Phe Asn Trp Val Thr Arg 705 710 715 720 Trp Leu Asp Asp Ile Gly Leu Pro Gln Tyr Lys Thr Gln Phe Asp Glu
725 730 735

Gly Arg Val Asp Gly Arg Met Leu His Tyr Met Thr Val Asp Asp Leu 740 745 750

Leu Ser Leu Lys Val Val Ser Val Leu His His Leu Ser Ile Lys Arg 755 760 765

Ala Ile Gln Val Leu Arg Ile Asn Asn Phe Glu Pro Asn Cys Leu Arg 770 780

Arg Arg Pro Ser Asp Glu Asn Thr Ile Ala Pro Ser Glu Val Gln Lys 785 790 795 800

Trp Thr Asn His Arg Val Met Glu Trp Leu Arg Ser Val Asp Leu Ala 805 610 815

Glu Tyr Ala Pro Asn Leu Arg Gly Ser Gly Val His Gly Gly Leu Met 820 825 830

Val Leu Glu Pro Arg Phe Asn $\dot{\text{Val}}$ Glu Thr Met Ala Gln Leu Leu Asn 835 840 845

Ile Pro Pro Asn Lys Thr Leu Leu Arg Arg His Leu Ala Thr His Phe 850 855 860

Asn Leu Leu Ile Gly Ala Glu Ala Gln His Gln Lys Arg Asp Ala Met 865 870 875 880

Glu Leu Pro Asp Tyr Val Leu Leu Thr Ala Thr Ala Lys Val Lys Pro 885 890 895

Lys Lys Leu Ala Phe Ser Asn Phe Gly Asn Leu Arg Lys Lys Gln $900 \hspace{1.5cm} 905 \hspace{1.5cm} 910$

Glu Asp Gly Glu Glu Tyr Val Cys Pro Met Glu Leu Gly Gln Ala Ser 915 920 925

Gly Ser Ala Ser Lys Lys Gly Phe Lys Pro Gly Leu Asp Met Arg Leu 930 940

Tyr Glu Glu Asp Asp Leu Asp Arg Leu Glu Glu Met Glu Asp Ser Glu 945 950 950 960

Gly Thr Val Arg Gln Ile Gly Ala Phe Ser Glu Gly Ile Asn Asn Leu 965 970 975

Thr His Met Leu Lys Glu Asp Asp Met Phe Lys Asp Phe Ala Ala Arg 980 985 990

Ser Pro Ser Ala Ser Ile Thr Asp Glu Asp Ser Asn Val 995 1000 1005

<210> 112

<211> 2871 <212> PRT

<213> Homo sapiens

<400> 112

Met Ser Cys Asn Gly Gly Ser His Pro Arg Ile Asn Thr Leu Gly Arg 1 10 15

Met Ile Arg Ala Glu Ser Gly Pro Asp Leu Arg Tyr Glu Val Thr Ser 20 25 30

Gly Gly Gly Thr Ser Arg Met Tyr Tyr Ser Arg Arg Gly Val Ile $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Thr Asp Gln Asn Ser Asp Gly Tyr Cys Gln Thr Gly Thr Met Ser Arg 50 60

His Gln Asn Gln Asn Thr Ile Gln Glu Leu Leu Gln Asn Cys Ser Asp 65 70 75 80

Cys Leu Met Arg Ala Glu Leu Ile Val Gln Pro Glu Leu Lys Tyr Gly 85 90 95

Asp Gly Ile Gln Leu Thr Arg Ser Arg Glu Leu Asp Glu Cys Phe Ala 100 105 110

Gln Ala Asn Asp Gln Met Glu Ile Leu Asp Ser Leu Ile Arg Glu Met 115 120 125

Arg Gln Met Gly Gln Pro Cys Asp Ala Tyr Gln Lys Arg Leu Leu Gln 130 135 140

Leu Gln Glu Gln Met Arg Ala Leu Tyr Lys Ala Ile Ser Val Pro Arg 145 150150155160

Val Arg Arg Ala Ser Ser Lys Gly Gly Gly Gly Tyr Thr Cys Gln Ser 165 170 175

Gly Ser Gly Trp Asp Glu Phe Thr Lys His Val Thr Ser Glu Cys Leu 180 $$185\$

Gly Trp Met Arg Gln Gln Arg Ala Glu Met Asp Met Val Ala Trp Gly 195 200 205

Val Asp Leu Ala Ser Val Glu Gln His Ile Asn Ser His Arg Gly Ile 210 215 220

His Asn Ser Ile Gly Asp Tyr Arg Trp Gln Leu Asp Lys Ile Lys Ala 225 230 240

Asp Leu Arg Glu Lys Ser Ala Ile Tyr Gln Leu Glu Glu Glu Tyr Glu 245 250250

Asn Leu Leu Lys Ala Ser Phe Glu Arg Met Asp His Leu Arg Gln Leu 260 265 270

Gln Asn Ile Ile Gln Ala Thr Ser Arg Glu Ile Met Trp Ile Asn Asp 275 280 285

Cys Glu Glu Glu Glu Leu Leu Tyr Asp Trp Ser Asp Lys Asn Thr Asn 290 295 300

Ile Ala Gln Lys Gln Glu Ala Phe Ser Ile Arg Met Ser Gln Leu Glu 305 310 315 320

Val Lys Glu Lys Glu Leu Asn Lys Leu Lys Gln Glu Ser Asp Gln Leu 325 330 335

Val Leu Asn Gln His Pro Ala Ser Asp Lys Ile Glu Ala Tyr Met Asp 340 345 350Thr Leu Gln Thr Gln Trp Ser Trp Ile Leu Gln Ile Thr Lys Cys Ile 355 360 365 Asp Val His Leu Lys Glu Asn Ala Ala Tyr Phe Gln Phe Phe Glu Glu 370 375 380 Ala Gln Ser Thr Glu Ala Tyr Leu Lys Gly Leu Gln Asp Ser Ile Arg 385 390 395 400 Lys Lys Tyr Pro Cys Asp Lys Asn Met Pro Leu Gln His Leu Leu Glu 405 410 415Gln Ile Lys Glu Leu Glu Lys Glu Arg Glu Lys Ile Leu Glu Tyr Lys 420 425 430Arg Gln Val Gln Asn Leu Val Asn Lys Ser Lys Lys Ile Val Gln Leu 435 440 445 Lys Pro Arg Asn Pro Asp Tyr Arg Ser Asn Lys Pro Ile Ile Leu Arg 450 455 460 Ala Leu Cys Asp Tyr Lys Gln Asp Gln Lys Ile Val His Lys Gly Asp 465 470 475 480 Glu Cys Ile Leu Lys Asp Asn Asn Glu Arg Ser Lys Trp Tyr Val Thr 485 490 495 Gly Pro Gly Gly Val Asp Met Leu Val Pro Ser Val Gly Leu Ile Ile 500 505 510 Pro Pro Pro Asn Pro Leu Ala Val Asp Leu Ser Cys Lys Ile Glu Gln 515 520 525Tyr Tyr Glu Ala Ile Leu Ala Leu Trp Asn Gln Leu Tyr Ile Asn Met 530 535 540Lys Ser Leu Val Ser Trp His Tyr Cys Met Ile Asp Ile Glu Lys Ile 545 550550555560 Arg Ala Met Thr Ile Ala Lys Leu Lys Thr Met Arg Gln Glu Asp Tyr 565 570 575Met Lys Thr Ile Ala Asp Leu Glu Leu His Tyr Gln Glu Phe Ile Arg 580 585 590Asn Ser Gln Gly Ser Glu Met Phe Gly Asp Asp Asp Lys Arg Lys Ile 595 600 605Gln Ser Gln Phe Thr Asp Ala Gln Lys His Tyr Gln Thr Leu Val Ile $610 \hspace{1.5cm} 615 \hspace{1.5cm} 620$ Gln Leu Pro Gly Tyr Pro Gln His Gln Thr Val Thr Thr Thr Glu Ile 625 630 635 640Thr His His Gly Thr Cys Gln Asp Val Asn His Asn Lys Val Ile Glu

Page 145

645 650 655

Thr Asn Arg Glu Asn Asp Lys Gln Glu Thr Trp Met Leu Met Glu Leu 660 665 670 Gln Lys Ile Arg Arg Gln Ile Glu His Cys Glu Gly Arg Met Thr Leu 675 680 685 Lys Asn Leu Pro Leu Ala Asp Gln Gly Ser Ser His His Ile Thr Val Lys Ile Asn Glu Leu Lys Ser Val Gln Asn Asp Ser Gln Ala Ile Ala 705 710 715 720 Glu Val Leu Asn Gln Leu Lys Asp Met Leu Ala Asn Phe Arg Gly Ser 725 730 735 Glu Lys Tyr Cys Tyr Leu Gln Asn Glu Val Phe Gly Leu Phe Gln Lys 740 745 750 Leu Glu Asn Ile Asn Gly Val Thr Asp Gly Tyr Leu Asn Ser Leu Cys 755 760 765Thr Val Arg Ala Leu Leu Gln Ala Ile Leu Gln Thr Glu Asp Met Leu 770 780 Lys Val Tyr Glu Ala Arg Leu Thr Glu Glu Glu Thr Val Cys Leu Asp 785 790 795 800 Leu Asp Lys Val Glu Ala Tyr Arg Cys Gly Leu Lys Lys Ile Lys Asn 805 810 815 Asp Leu Asn Leu Lys Lys Ser Leu Leu Ala Thr Met Lys Thr Glu Leu 820 825 830 Gln Lys Ala Gln Gln Ile His Ser Gln Thr Ser Gln Gln Tyr Pro Leu 835 840 845 Tyr Asp Leu Asp Leu Gly Lys Phe Gly Glu Lys Val Thr Gln Leu Thr 850 855 860 Asp Arg Trp Gln Arg Ile Asp Lys Gln Ile Asp Phe Arg Leu Trp Asp 865 870 875 880 Leu Glu Lys Gln Ile Lys Gln Leu Arg Asn Tyr Arg Asp Asn Tyr Gln 885 . 890 895 Ala Phe Cys Lys Trp Leu Tyr Asp Arg Lys Arg Arg Gln Asp Ser Leu 900 905 910 Glu Ser Met Lys Phe Gly Asp Ser Asn Thr Val Met Arg Phe Leu Asn 915 920 925 Glu Gln Lys Asn Leu His Ser Glu Ile Ser Gly Lys Arg Asp Lys Ser 930 935 940 Glu Glu Val Gln Lys Ile Ala Glu Leu Cys Ala Asn Ser Ile Lys Asp 945 950 955 960

Tyr Glu Leu Gln Leu Ala Ser Tyr Thr Ser Gly Leu Glu Thr Leu Leu 965 970 975

As nIle Pro Ile Lys Arg Thr Met Ile Gln Ser Pro Ser Gly Val Ile 980 985 990

Leu Gln Glu Ala Ala Asp Val His Ala Arg Tyr Ile Glu Leu Leu Thr 995 1000 1005

Arg Ser Gly Asp Tyr Tyr Arg Phe Leu Ser Glu Met Leu Lys Ser 1010 1015 1020

Leu Glu Asp Leu Lys Leu Lys Asn Thr Lys Ile Glu Val Leu Glu 1025 ${}^{\circ}$ 1030 ${}^{\circ}$ 1035 ${}^{\circ}$

Glu Glu Leu Arg Leu Ala Arg Asp Ala Asn Ser Glu Asn Cys Asn 1040 1045 1050

Lys Asn Lys Phe Leu Asp Gln Asn Leu Gln Lys Tyr Gln Ala Glu $1055 \hspace{1.5cm} 1060 \hspace{1.5cm} 1065$

Cys Ser Gln Phe Lys Ala Lys Leu Ala Ser Leu Glu Glu Leu Lys 1070 1075 1080

Arg Gln Ala Glu Leu Asp Gly Lys Ser Ala Lys Gln Asn Leu Asp 1085 1090 1095

Leu Thr Tyr Glu Ile Glu Asp Glu Lys Arg Arg Arg Lys Ser Val 1115 1120 1125

Glu Asp Arg Phe Asp Gln Gln Lys Asn Asp Tyr Asp Gln Leu Gln 1130 1140

Lys Ala Arg Gln Cys Glu Lys Glu Asn Leu Gly Trp Gln Lys Leu 1145 1150 1155

Glu Ser Glu Lys Ala Ile Lys Glu Lys Glu Tyr Glu Ile Glu Arg 1160 1165 1170

Leu Arg Val Leu Leu Gln Glu Glu Gly Thr Arg Lys Arg Glu Tyr 1175 1180 1185

Glu Asn Glu Leu Ala Lys Val \mbox{Arg} Asn His Tyr Asn Glu Glu Met 1190 1200

Ser Asn Leu Arg Asn Lys Tyr Glu Thr Glu Ile Asn Ile Thr Lys $1205 \hspace{1.5cm} 1210 \hspace{1.5cm} 1215$

Thr Thr Ile Lys Glu Ile Ser Met Gln Lys Glu Asp Asp Ser Lys 1220 1225 1230

Asn Leu Arg Asn Gln Leu Asp Arg Leu Ser Arg Glu Asn Arg Asp 1235 1240 1245

Leu Lys Asp Glu Ile Val Arg Leu Asn Asp Ser Ile Leu Gln Ala 1250 1260

Thr	Glu 1265		Arg	Arg	Arg	Ala 1270		Glu	Asn	Ala	Leu 1275	Gln	Gln	Lys
Ala	Cys 1280		Ser	Glu		Met 1285		Lys	Lys	Gln	His 1290	Leu	Glu	Ile
Glu	Leu 1295		Gln	Val		Gln 1300		Arg	Ser		Asp 1305		Ala	Arg
His	Lys 1310		Ser	Leu	Glu	Glu 1315	Ala	Ala	Lys	Thr	Ile 1320		Asp	Lys
Asn	Lys 1325	Glu	Ile	Glu	Arg	Leu 1330	Lys	Ala	Glu		Gln 1335		Glu	Ala
Lys	Arg 1340	Arg	Trp	Glu	Tyr	Glu 1345		Glu	Leu	Ser	Lys 1350	Val	Arg	Asn
Asn	Туг 1355		Glu	Glu		Ile 1360	Ser	Leu	Lys	Asn	Gln 1365		Glu	Thr
Glu	Ile 1370		Ile	Thr		Thr 1375		Ile	His		Leu 1380		Met	Gln
Lys	Glu 1385		Asp	Thr		Gly 1390		Arg	Ala	Gln	Ile 1395		Asn	Leu
Thr	Arg 1400		Asn	Arġ	Ser	Leu 1405	Ser	Glu	Glu		Lys 1410		Leu	Lys
Asn	Thr 1415		Thr	Gln	Thr	Thr 1420	Glu	Asn	Leu	Arg	Arg 1425	Val	Glu	Glu
Asp	Ile 1430	Gln	Gln	Gln		Ala 1435	Thr	Gly	Ser	Glu	Val 1440	Ser	Gln	Arg
	Gln 1445		Leu	Glu		Glu 1450		Arg	Gln		Thr 1455		Met	Arg
Thr	Glu 1460	Glu	Ser	Val	Arg	Tyr 1465	Lys	Gln	Ser	Leu	Asp 1470	Asp	Ala	Ala
Lys	Thr 1475	Ile	Gln	Asp	Lys	Asn 1480	Lys	Glu	Ile	Glu	Arg 1485	Leu	Lys	Gln
Leu	Ile 1490	Asp	Lys	Glu	Thr	Asn 1495	Asp	Arg	Lys	Cys	Leu 1500	Glu	Asp	Glu
Asn	Ala 1505	Arg	Leu	Gln	Arg	Val 1510	Gln	Tyr	Asp	Leu	Gln 1515	Lys	Ala	Asn
Ser	Ser 1520	Ala	Thr	Glu	Thr	Ile 1525	Asn	Lys	Leu	Lys	Val 1530	Gln	Glu	Gln
Glu	Leu 1535	Thr	Arg	Leu	Arg	Ile 1540	Asp	Tyr	Glu	Arg	Val 1545	Ser	Gln	Glu
Arg	Thr 1550	Val	Lys	Asp	Gln	Asp 1555	Ile	Thr	Arg		Gln 1560 de 14			Leu

Lys Glu Leu Gln Leu Gln Lys Gln Lys Val Glu Glu Glu Leu Asn 1565 1570 1575 Arg Leu Lys Arg Thr Ala Ser Glu Asp Ser Cys Lys Arg Lys Lys 1580 1585 Leu Glu Glu Glu Leu Glu Gly Met Arg Arg Ser Leu Lys Glu Gln 1595 1600 1605 Ala Ile Lys Ile Thr Asn Leu Thr Gln Gln Leu Glu Gln Ala Ser 1610 1620Ile Val Lys Lys Arg Ser Glu Asp Asp Leu Arg Gln Gln Arg Asp 1625 1630 Val Leu Asp Gly His Leu Arg Glu Lys Gln Arg Thr Gln Glu Glu 1640 1650Leu Arg Arg Leu Ser Ser Glu Val Glu Ala Leu Arg Arg Gln Leu 1655 1660 1665 Leu Gln Glu Gln Glu Ser Val Lys Gln Ala His Leu Arg Asn Glu 1670 1675 1680 His Phe Gln Lys Ala Ile Glu Asp Lys Ser Arg Ser Leu Asn Glu 1685 1690 1695 Ser Lys Ile Glu Ile Glu Arg Leu Gln Ser Leu Thr Glu Asn Leu 1700 1705 1710 Thr Lys Glu His Leu Met Leu Glu Glu Glu Leu Arg Asn Leu Arg 1715 1720 1725 Leu Glu Tyr Asp Asp Leu Arg Arg Gly Arg Ser Glu Ala Asp Ser 1730 1735 1740 Asp Lys Asn Ala Thr Ile Leu Glu Leu Arg Ser Gln Leu Gln Ile 1745 $$ 1750 $$ 1755 Ser Asn Asn Arg Thr Leu Glu Leu Gln Gly Leu Ile Asn Asp Leu 1760 1765 1770 Gln Arg Glu Arg Glu Asn Leu Arg Gln Glu Ile Glu Lys Phe Gln 1775 1780 1785 Lys Gln Ala Leu Glu Ala Ser Asn Arg Ile Gln Glu Ser Lys Asn 1790 1795 1800 Gln Cys Thr Gln Val Val Gln Glu Arg Glu Ser Leu Leu Val Lys 1805 1810 1815 Ile Lys Val Leu Glu Gln Asp Lys Ala Arg Leu Gln Arg Leu Glu 1820 1830 Asp Glu Leu Asn Arg Ala Lys Ser Thr Leu Glu Ala Glu Thr Arg 1835 1840 1845 Val Lys Gln Arg Leu Glu Cys Glu Lys Gln Gln Ile Gln Asn Asp Page 149

1850 1855 1860

Leu Asn Gln Trp Lys Thr Gln Tyr Ser Arg Lys Glu Glu Ala Ile 1865 1870

- Arg Lys Ile Glu Ser Glu Arg Glu Lys Ser Glu Arg Glu Lys Asn 1880 1885 1890
- Ser Leu Arg Ser Glu Ile Glu Arg Leu Gln Ala Glu Ile Lys Arg 1895 1900 1905
- Ile Glu Glu Arg Cys Arg Arg Lys Leu Glu Asp Ser Thr Arg Glu 1910 1915 1920
- Thr Gln Ser Gln Leu Glu Thr Glu Arg Ser Arg Tyr Gln Arg Glu 1925 1930 1935
- Ile Asp Lys Leu Arg Gln Arg Pro Tyr Gly Ser His Arg Glu Thr 1940 \$1940\$
- Gln Thr Glu Cys Glu Trp Thr Val Asp Thr Ser Lys Leu Val Phe 1955 1960 1965
- Asp Gly Leu Arg Lys Lys Val Thr Ala Met Gln Leu Tyr Glu Cys 1970 1980
- Gln Leu Ile Asp Lys Thr Thr Leu Asp Lys Leu Leu Lys Gly Lys 1985 1990 1995
- Lys Ser Val Glu Glu Val Ala Ser Glu Ile Gln Pro Phe Leu Arg 2000 2005 2010
- Gly Ala Gly Ser Ile Ala Gly Ala Ser Ala Ser Pro Lys Glu Lys 2015 2020 2025
- Tyr Ser Leu Val Glu Ala Lys Arg Lys Lys Leu Ile Ser Pro Glu 2030 2040
- Ser Thr Val Met Leu Leu Glu Ala Gln Ala Ala Thr Gly Gly Ile 2045 2055
- Ile Asp Pro His Arg Asn Glu Lys Leu Thr Val Asp Ser Ala Ile 2060 2065
- Ala Arg Asp Leu Ile Asp Phe Asp Asp Arg Gln Gln Ile Tyr Ala 2075 2080 2085
- Ala Glu Lys Ala Ile Thr Gly Phe Asp Asp Pro Phe Ser Gly Lys 2090 2095 2100
- Thr Val Ser Val Ser Glu Ala Ile Lys Lys Asn Leu Ile Asp Arg 2105 2110 2115
- Glu Thr Gly Met Arg Leu Leu Glu Ala Gln Ile Ala Ser Gly Gly 2120 2125 2130
- Val Val Asp Pro Val Asn Ser Val Phe Leu Pro Lys Asp Val Ala 2135 2140 2145

 Leu Ala 2150
 Arg Gly Leu Ile Asp 2155
 Arg Asp Leu Tyr Arg 2160
 Ser Leu Asn 2160

 Asp Pro 2165
 Arg Asp Ser Gln Lys 2170
 Asn Phe Val Asp Pro 2175
 Val Thr Lys 2180

 Lys Lys 2180
 Val Ser Tyr Val Gln 2185
 Leu Lys Glu Arg Cys 2190
 Arg Ile Glu 2180

 Pro His 2195
 Thr Gly Leu Leu Leu Leu Leu Ser Val Gln Lys 2205
 Arg Ser Met 2205

 Ser Phe 2195
 Gln Gly Ile Arg Gln Pro Val Thr Val Thr 2205
 Glu Leu Val 2215

 Asp Ser 2210
 Gly Ile Leu Arg Pro 22215
 Ser Thr Val Asn Glu 2235
 Leu Glu Ser 2225

 Gly Gln 210
 Ile Ser Tyr Asp Glu 2245
 Val Gly Glu Arg Ile 2255
 Lys Asp Phe 2255

 Leu Gln 2240
 Ser Ser Cys Ile 2260
 Ala Gly Ile Tyr Asn 2265
 Glu Thr Thr 2265

 Lys Gln 2270
 Lys Leu Gly Ile Tyr 2275
 Glu Ala Met Lys Ile 2280
 Gly Leu Val 2290

 Arg Pro 2285
 Gly Thr Ala Leu Glu Leu Leu Glu Ala Glu Ala Gly Ile Glu Pro Val Glu 2300
 Pro Val Glu 2310

 Gly Phe 2300
 Ile Val Asp Pro Val 2305
 Ser Asn Leu Arg Leu Pro 2310
 Pro Val Glu Lys 2325

 Leu Leu Leu Ser Ala Glu Arg Ala 2335
 Val Thr Gly Tyr Asn Asp Asp Pro Glu 2340

Ile Glu Lys Gly His Gly Ile Arg Leu Leu Glu Ala Gln Ile Ala 2360 2365 2370

Thr Gly Gly Ile Ile Asp Pro Lys Glu Ser His Arg Leu Pro Val 2375 2380 2380 2385

Asp Ile Ala Tyr Lys Arg Gly Tyr Phe Asn Glu Glu Leu Ser Glu 2390 2395 2400

Ile Leu Ser Asp Pro Ser Asp Asp Thr Lys Gly Phe Phe Asp Pro 2405 2415

Asn Thr Glu Glu Asn Leu Thr Tyr Leu Gln Leu Lys Glu Arg Cys 2420 2425 2430

Ile Lys Asp Glu Glu Thr Gly Leu Cys Leu Pro Leu Lys Glu 2435 2440 2445

Lys	Lys 2450		Gln	Val	Gln	Thr 2455	Ser	Gln	Lys	Asn	Thr 2460	Leu	Arg	Lys
Arg	Arg 2465	Val	Val	Ile	Val	Asp 2470	Pro	Glu	Thr	Asn	Lys 2475	Glu	Met	Ser
Val	Gln 2480	Glu	Ala	Tyr	Lys	Lys 2485	Gly	Leu	Ile	Asp	Tyr 2490	Glu	Thr	Phe
Lys	Glu 2495	Leu	Cys	Glu	Gln	Glu 2500	Cys	Glu	Trp	Glu	Glu 2505	Ile	Thr	Ile
Thr	Gly 2510	Ser	Asp	Gly	Ser	Thr 2515	Arg	Val	Val	Leu	Val 2520	Asp	Arg	Lys
Thr	Gly 2525		Gln	Tyr	Asp	Ile 2530		Asp	Ala	Ile	Asp 2535	Lys	Gly	Leu
Val	Asp 2540	Arg	Lys	Phe	Phe	Asp 2545	Gln	Tyr	Arg	Ser	Gly 2550	Ser	Leu	Ser
Leu	Thr 2555	Gln	Phe	Ala	Asp	Met 2560	Ile	Ser	Leu	Lys	Asn 2565	Gly	Val	Gly
Thr	Ser 2570		Ser	Met	Gly	Ser 2575	Gly	Val	Ser	Asp	Asp 2580	Val	Phe	Ser
Ser	Ser 2585	Arg	His	Glu	Ser	Val 2590	Ser	Lys	Ile	Ser	Thr 2595	Ile	Ser	Ser
Val	Arg 2600		Leu	Thr	Ile	Arg 2605	Ser	Ser	Ser	Phe	Ser 2610	Asp	Thr	Leu
Glu	Glu 2615		Ser	Pro	Ile	Ala 2620	Ala	Ile	Phe	Asp	Thr 2625	Glu	Asn	Leu
Glu	Lys 2630	Ile	Ser	Ile	Thr	Glu 2635	Gly	Ile	Glu	Arg	Gly 2640	Ile	Val	Asp
Ser	Ile 2645	Thr	Gly	Gln	Arg	Leu 2650	Leu	Glu	Ala	Gln	Ala 2655	Cys	Thr	Gly
Gly	Ile 2660		His	Pro	Thr	Thr 2665	Gly	Gln	Lys	Leu	Ser 2670	Leu	Gln	Asp
Ala	Val 2675	Ser	Gln	Gly	Val	Ile 2680		Gln	Asp	Met	Ala 2685	Thr	Ser	Val
Lys	Pro 2690		Gln	Гуз	Ala	Phe 2695	Ile	Gly	Phe	Glu	Gly 2700	Val	Lys	Gly
Lys	Lys 2705	Lys	Met	Ser	Ala	Ala 2710	Glu	Ala	Val	Lys	Glu 2715	Lys	Trp	Leu
Pro	Tyr 2720	Glu	Ala	Gly	Gln	Arg 2725		Leu	Glu	Phe	Gln 2730	Tyr	Leu	Thr
Gly	Gly 2735	Leu	Val	Asp	Pro	Glu 2740		His	Gly		Ile 2745 ge 15		Thr	Glu

Glu Ala Ile Arg Lys Gly Phe Ile Asp Gly Arg Ala Ala Gln Arg 2750 2755 2760

Leu Gln Asp Thr Ser Ser Tyr Ala Lys Ile Leu Thr Cys Pro Lys 2765 2770.

Val Glu Asp Ile Thr Gly Leu Arg Leu Leu Glu Ala Ala Ser Val 2795 2800 2805

Ser Ser Lys Gly Leu Pro Ser Pro Tyr Asn Met Ser Ser Ala Pro 2810 2815 2820

Gly Ser Arg Ser Gly Ser Arg Ser Gly Ser Arg Ser Gly Ser Arg 2825 2830

Ser Gly Ser Arg Ser Gly Ser Arg Arg Gly Ser Phe Asp Ala Thr 2840

Gly Asn Ser Ser Tyr Ser Tyr Ser Tyr Ser Phe Ser Ser Ser Ser 2865

Ile Gly His 2870

<210> 113

<211> 381

<212> PRT

<213> Homo sapiens

<400> 113

Met Trp Arg Leu Met Ser Arg Phe Asn Ala Phe Lys Arg Thr Asn Thr 1 $$ 5 $$ 10 $$ 15

Val Leu Leu Glu Lys Lys Gly Cys Ala Gly Val Ile Thr Leu Asn Arg $35 \hspace{1cm} 40 \hspace{1cm} 45$

Pro Lys Phe Leu Asn Ala Leu Thr Leu Asn Met Ile Arg Gln Ile Tyr 50 60

Pro Gln Leu Lys Lys Trp Glu Gln Asp Pro Glu Thr Phe Val Ile Ile 65 70 75 80

Ile Lys Gly Ala Gly Gly Lys Ala Phe Cys Ala Gly Gly Asp Ile Arg 90 95

Val Ile Ser Glu Ala Glu Lys Ala Lys Gln Lys Ile Ala Pro Val Phe 100 105 110

Phe Arg Glu Glu Tyr Met Leu Asn Asn Ala Val Gly Ser Cys Gln Lys 115 120 125

Pro Tyr Val Ala Leu Ile His Gly Ile Thr Met Gly Gly Gly Val Gly 130 135 140

Leu Ser Val His Gly Gln Phe Arg Val Ala Thr Glu Lys Cys Leu Phe 145 150 155 160

Ala Met Pro Glu Thr Ala Ile Gly Leu Phe Pro Asp Val Gly Gly Gly 165 170 175

Tyr Phe Phe Ala Thr Thr Pro Arg Lys Thr Trp Leu Leu Pro Cys Ile 180 $$185\$

As nGly Phe Arg Leu Lys Gly Arg Asp Val Tyr Arg Ala Gly Ile Ala 195 200 205

Thr His Phe Val Asp Ser Glu Lys Leu Ala Met Leu Glu Glu Asp Leu 210 220

Leu Ala Leu Lys Ser Pro Ser Lys Glu Asn Ile Ala Ser Val Leu Glu 225 230 235 240

Asn Tyr His Thr Glu Ser Lys Ile Asp Arg Asp Lys Ser Phe Ile Leu 245 250 250

Glu Glu His Met Asp Lys Ile Asn Ser Cys Phe Ser Ala Asn Thr Val 260 265 270

Glu Glu Ile Ile Glu Asn Leu Gln Gln Asp Gly Ser Ser Phe Ala Leu 275 280 285

Glu Gln Leu Lys Val Ile Asn Lys Met Ser Pro Thr Ser Leu Lys Ile 290 295 300

Thr Leu Arg Gln Leu Met Glu Gly Ser Ser Lys Thr Leu Gln Glu Val 305 310 315 320

Leu Thr Met Glu Tyr Arg Leu Ser Gln Ala Cys Met Arg Gly His Asp 325 330 335

Phe His Glu Gly Val Arg Ala Val Leu Ile Asp Lys Asp Gln Ser Pro 340 345 350

Lys Trp Lys Pro Ala Asp Leu Lys Glu Val Thr Glu Glu Asp Leu Asn 355 360 365

Asn His Phe Lys Ser Leu Gly Ser Ser Asp Leu Lys Phe 370 380

<210> 114 <211> 1139 <212> PRT

<213> Homo sapiens

<400> 114

Met Gln Thr Pro Glu Val Pro Ala Glu Arg Ser Pro Arg Arg Arg Ser 1 5 10 15

Ile Ser Gly Thr Ser Thr Ser Glu Lys Pro Asn Ser Met Asp Thr Ala 20 25 30

Asn Thr Ser Pro Phe Lys Val Pro Gly Phe Phe Ser Lys Arg Leu Lys 35 40 45

Gly Ser Ile Lys Arg Thr Lys Ser Gln Ser Lys Leu Asp Arg Asn Thr 50 55 60 Ser Phe Arg Leu Pro Ser Leu Arg Ser Thr Asp Asp Arg Ser Arg Gly 65 70 75 80 Leu Pro Lys Leu Lys Glu Ser Arg Ser His Glu Ser Leu Leu Ser Pro 85 90 95 Cys Ser Thr Val Glu Cys Leu Asp Leu Gly Arg Gly Glu Pro Val Ser 100 105 110Val Lys Pro Leu His Ser Ser Ile Leu Gly Gln Asp Phe Cys Phe Glu 115 120 125Val Thr Tyr Leu Ser Gly Ser Lys Cys Phe Ser Cys Asn Ser Ala Ser 130 135 140 Glu Arg Asp Lys Trp Met Glu Asn Leu Arg Arg Thr Val Gln Pro Asn 145 150 155 160 Lys Asp Asn Cys Arg Arg Ala Glu Asn Val Leu Arg Leu Trp Ile Ile 165 170 175Glu Ala Lys Asp Leu Ala Pro Lys Lys Lys Tyr Phe Cys Glu Leu Cys 180 185 190 Leu Asp Asp Thr Leu Phe Ala Arg Thr Thr Ser Lys Thr Lys Ala Asp 195 200 205 Asn Ile Phe Trp Gly Glu His Phe Glu Phe Phe Ser Leu Pro Pro Leu 210 215 220 Lys Asp Lys Asn Asn Tyr Val Gly Leu Val Asn Ile Pro Thr Ala Ser $245 \hspace{1.5cm} 250 \hspace{1.5cm} 255$ Val Thr Gly Arg Gln Phe Val Glu Lys Trp Tyr Pro Val Ser Thr Pro $260 \hspace{1cm} 265 \hspace{1cm} 270 \hspace{1cm}$ Thr Pro Asn Lys Gly Lys Thr Gly Gly Pro Ser Ile Arg Ile Lys Ser 275 280 285 Arg Phe Gln Thr Ile Thr Ile Leu Pro Met Glu Gln Tyr Lys Glu Phe 290 300Ala Glu Phe Val Thr Ser Asn Tyr Thr Met Leu Cys Ser Val Leu Glu 305 310 315 320 Pro Val Ile Ser Val Arg Asn Lys Glu Glu Leu Ala Cys Ala Leu Val 325 330 335 His Ile Leu Gln Ser Thr Gly Arg Ala Lys Asp Phe Leu Thr Asp Leu 340 345 350Val Met Ser Glu Val Asp Arg Cys Gly Glu His Asp Val Leu Ile Phe Page 155

355 360 365

Arg Glu Asn Thr Ile Ala Thr Lys Ser Ile Glu Glu Tyr Leu Lys Leu $370 \hspace{1cm} 375 \hspace{1cm} 380$ Val Gly Gln Gln Tyr Leu His Asp Ala Leu Gly Glu Phe Ile Lys Ala 385 390 395 400 Leu Tyr Glu Ser Asp Glu Asn Cys Glu Val Asp Pro Ser Lys Cys Ser 405 410 415 Ser Ser Glu Leu Ile Asp His Gln Ser Asn Leu Lys Met Cys Cys Glu 420 425 430Leu Ala Phe Cys Lys Ile Ile Asn Ser Tyr Cys Val Phe Pro Arg Glu 435 440 445 Leu Lys Glu Val Phe Ala Ser Trp Lys Gln Gln Cys Leu Asn Arg Gly 450 455 460Lys Gln Asp Ile Ser Glu Arg Leu Ile Ser Ala Ser Leu Phe Leu Arg 465 470 475 480 Phe Leu Cys Pro Ala Ile Met Ser Pro Ser Leu Phe Asn Leu Met Gln 485 490 495 Glu Tyr Pro Asp Asp Arg Thr Ser Arg Thr Leu Thr Leu Ile Ala Lys 500 505 510Val Ile Gln Asn Leu Ala Asn Phe Ala Lys Phe Gly Asn Lys Glu Glu 515 520 525Tyr Met Ala Phe Met Asn Asp Phe Leu Glu His Glu Trp Gly Gly Met 530 540 Lys Arg Phe Leu Leu Glu Ile Ser Asn Pro Asp Thr Ile Ser Asn Thr 545 550 560 Pro Gly Phe Asp Gly Tyr Ile Asp Leu Gly Arg Glu Leu Ser Val Leu 565 570 575 His Ser Leu Leu Trp Glu Val Val Ser Gln Leu Asp Lys Gly Glu Asn 580 585 590Ser Phe Leu Gln Ala Thr Val Ala Lys Leu Gly Pro Leu Pro Arg Val 595 600 605Leu Ala Asp Ile Thr Lys Ser Leu Thr Asn Pro Thr Pro Ile Gln Gln 610 $\,$ 615 $\,$ 620 $\,$ Gln Leu Arg Arg Phe Thr Glu His Asn Ser Ser Pro Asn Val Ser Gly 625 630 635 640 Ser Leu Ser Ser Gly Leu Gln Lys Ile Phe Glu Asp Pro Thr Asp Ser 645 650 655 Asp Leu His Lys Leu Lys Ser Pro Ser Gln Asp Asn Thr Asp Ser Tyr $660 \hspace{1.5cm} 665 \hspace{1.5cm} 670 \hspace{1.5cm}$

- Phe Arg Gly Lys Thr Leu Leu Leu Val Gln Gln Ala Ser Ser Gln Ser 675 680 685
- Met Thr Tyr Ser Glu Lys Asp Glu Arg Glu Ser Ser Leu Pro Asn Gly 690 695 700
- Arg Ser Val Ser Leu Met Asp Leu Gln Asp Thr His Ala Ala Gln Val 705 710 715 720
- Glu His Ala Ser Val Met Leu Asp Val Pro Ile Arg Leu Thr Gly Ser 725 730 735
- Gin Leu Ser Ile Thr Gln Val Ala Ser Ile Lys Gln Leu Arg Glu Thr 740 745 750
- Gln Ser Thr Pro Gln Ser Ala Pro Gln Val Arg Arg Pro Leu His Pro 755 760 765
- Ala Leu Asn Gln Pro Gly Gly Leu Gln Pro Leu Ser Phe Gln Asn Pro 770 775 780
- Val Tyr His Leu Asn Asn Pro Ile Pro Ala Met Pro Lys Ala Ser Ile 785 790 795 800
- Asp Ser Ser Leu Glu Asn Leu Ser Thr Ala Ser Ser Arg Ser Gln Ser 805 810 815
- Asn Ser Glu Asp Phe Lys Leu Ser Gly Pro Ser Asn Ser Ser Met Glu 820 825 830
- Asp Phe Thr Lys Arg Ser Thr Gln Ser Glu Asp Phe Ser Arg Arg His 835 840
- Thr Val Pro Asp Arg His Ile Pro Leu Ala Leu Pro Arg Gln Asn Ser 850 855 860
- Thr Gly Gln Ala Gln Ile Arg Lys Val Asp Gln Gly Gly Leu Gly Ala 865 870 875 880
- Arg Ala Lys Ala Pro Pro Ser Leu Pro His Ser Ala Ser Leu Arg Ser 895
- Thr Gly Ser Met Ser Val Val Ser Ala Ala Leu Val Ala Glu Pro Val 900 905 910
- Gln Asn Gly Ser Arg Ser Arg Gln Gln Ser Ser Ser Ser Arg Glu Ser 915 920 925
- Pro Val Pro Lys Val Arg Ala Ile Gln Arg Gln Gln Thr Gln Gln Val 930 935 940
- Gln Ser Pro Val Asp Ser Ala Thr Met Ser Pro Val Glu Arg Thr Ala 945 950 955 960
- Ala Trp Val Leu Asn Asn Gly Gln Tyr Glu Glu Asp Val Glu Glu Thr 965 970 975
- Glu Gln Asn Leu Asp Glu Ala Lys His Ala Glu Lys Tyr Glu Glu 980 985 990

Ile Thr Lys Leu Lys Glu Arg Leu Arg Val Ser Ser Arg Arg Leu Glu 995 $$ 1000 $$ 1005

Glu Tyr Glu Arg Arg Leu Leu Val Gln Glu Gln Gln Met Gln Lys 1010 1020

Leu Leu Leu Glu Tyr Lys Ala Arg Leu Glu Asp Ser Glu Glu Arg 1025 1030 1035

Leu Arg Arg Gln Gln Glu Glu Lys Asp Ser Gln Met Lys Ser Ile 1040 1050

Ile Ser Arg Leu Met Ala Val Glu Glu Glu Leu Lys Lys Asp His 1055 1060 1065

Ala Glu Met Gln Ala Val Ile Asp Ala Lys Gln Lys Ile Ile Asp 1070 1075 1080

Ala Gln Glu Lys Arg Ile Val Ser Leu Asp Ser Ala Asn Thr Arg 1085 1090

Leu Met Ser Ala Leu Thr Gln Val Lys Glu Arg Tyr Ser Met Gln 1100 $$1105\$

Val Arg Asn Gly Ile Ser Pro Thr Asn Pro Thr Lys Leu Ser Ile 1115 $$1120\$

Thr Glu Asn Gly Glu Phe Lys Asn Ser Ser Cys 1130 1135

<210> 115 <211> 165

<212> PRT

<213> Homo sapiens

<400> 115

Met Thr Leu Glu Glu Phe Ser Ala Gly Glu Gln Lys Thr Glu Arg Met
1 5 10 15

Asp Lys Val Gly Asp Ala Leu Glu Glu Val Leu Ser Lys Ala Leu Ser 20 25 30

Gln Arg Thr Ile Thr Val Gly Val Tyr Glu Ala Ala Lys Leu Leu Asn $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Val Asp Pro Asp Asn Val Val Leu Cys Leu Leu Ala Ala Asp Glu Asp 50 60

Asp Asp Arg Asp Val Ala Leu Gln Ile His Phe Thr Leu Ile Gln Ala 65 70 75 80

Phe Cys Cys Glu Asn Asp Ile Asn Ile Leu Arg Val Ser Asn Pro Gly 85 90 95

Arg Leu Ala Glu Leu Leu Leu Clu Thr Asp Ala Gly Pro Ala Ala 100 105 110

Ser Glu Gly Ala Glu Gln Pro Pro Asp Leu His Cys Val Leu Val Thr 115 120 125

Asn Pro His Ser Ser Gln Trp Lys Asp Pro Ala Leu Ser Gln Leu Ile 130 135 140

Cys Phe Cys Arg Glu Ser Arg Tyr Met Asp Gln Trp Val Pro Val Ile 145 150 150 160

Asn Leu Pro Glu Arg 165

<210> 116

<211> 116

<212> PRT

<213> Homo sapiens

<400> 116

Met Thr Arg Thr Arg Ala Ala Leu Leu Leu Phe Thr Ala Leu Ala Thr 1 $$ 5 $$ 10 $$ 15

Ser Leu Gly Phe Asn Leu Asp Thr Glu Glu Leu Thr Ala Phe Arg Val $20 \hspace{1cm} 25 \hspace{1cm} 30$

Asp Ser Ala Gly Phe Gly Asp Ser Val Val Gln Tyr Ala Asn Ser Trp $35 \hspace{1cm} 40 \hspace{1cm} 45$

Val Val Val Gly Ala Pro Gln Lys Ile Thr Ala Ala Asn Gln Thr Gly 50 $\,$ 55 $\,$ 60 $\,$

Gly Leu Tyr Gln Cys Gly Tyr Ser Thr Gly Ala Cys Glu Pro IIe Gly 65 70 70 80

Leu Gln Val Pro Pro Glu Ala Val Asn Met Ser Leu Gly Leu Ser Leu 85 90 95

His His Glu Cys Gly Arg Asn Met Tyr Leu Thr Gly Leu Cys Phe Leu 115 120 125

Leu Gly Pro Thr Gln Leu Thr Gln Arg Leu Pro Val Ser Arg Gln Glu 130 135 140

Cys Pro Arg Gln Glu Gln Asp Ile Val Phe Leu Ile Asp Gly Ser Gly 145 150150155160

Ser Ile Ser Ser Arg Asn Phe Ala Thr Met Met Asn Phe Val Arg Ala 165 170 175

Val Ile Ser Gln Phe Gln Arg Pro Ser Thr Gln Phe Ser Leu Met Gln 180 185 190

Phe Ser Asn Lys Phe Gln Thr His Leu Thr Phe Glu Glu Phe Arg Arg 195 200 205

Thr Ser Asn Pro Leu Ser Leu Leu Ala Ser Val His Gln Leu Gln Gly 210 220

Phe Thr Tyr Thr Ala Thr Ala Ile Gln Asn Val Val His Arg Leu Phe 225 230 235 240

His Ala Ser Tyr Gly Ala Arg Arg Asp Ala Thr Lys Ile Leu Ile Val 245 250 255

Ile Thr Asp Gly Lys Lys Glu Gly Asp Thr Leu Asp Tyr Lys Asp Val 260 265 270

Ile Pro Met Ala Asp Ala Ala Gly Ile Ile Arg Tyr Ala Ile Gly Val $275 \hspace{1cm} 280 \hspace{1cm} 285$

Gly Leu Ala Phe Gln Asn Arg Asn Ser Trp Lys Glu Leu Asn Asp Ile 290 295 300

Ala Ser Lys Pro Ser Gln Glu His Ile Phe Lys Val Glu Asp Phe Asp 305 310 315 320

Ala Leu Lys Asp Ile Gln Thr Gln Leu Arg Glu Lys Ile Phe Pro Ile 325 . 330 . 335

Glu Gly Thr Glu Thr Thr Ser Ser Ser Ser Phe Glu Leu Glu Met Ala $340 \hspace{1.5cm} 345 \hspace{1.5cm} 350$

Gln Glu Gly Phe Ser Ala Val Phe Thr Pro Asp Gly Pro Val Leu Gly 355 360 365

Ala Val Gly Ser Phe Thr Trp Ser Gly Gly Ala Phe Leu Tyr Pro Pro 370 375 380

Asn Met Ser Pro Thr Phe Ile Asn Met Ser Gln Glu Asn Val Asp Met 385 390 395 400

Arg Asp Ser Tyr Leu Gly Tyr Ser Thr Glu Leu Ala Leu Trp Lys Gly 405 410415

Val Gln Ser Leu Val Leu Gly Ala Pro Arg Tyr Gln His Thr Gly Lys 420 425 430

Ala Val Ile Phe Thr Gln Val Ser Arg Gln Trp Arg Met Lys Ala Glu 435 440 445

Val Thr Gly Thr Gln Ile Gly Ser Tyr Phe Gly Pro Ser Leu Cys Ser 450 455 460

Val Asp Val Asp Ser Asp Gly Ser Thr Asp Leu Val Leu Ile Gly Pro 465 470 475 480

Pro His Tyr Tyr Glu Gln Thr Arg Gly Ala Gln Val Ser Val Cys Pro 485 490 495

Leu Pro Arg Gly Trp Arg Arg Trp Trp Cys Asp Ala Val Leu Tyr Gly 500 505 510

Glu Gln Gly His Pro Trp Gly Arg Phe Gly Ala Ala Leu Thr Val Leu 515 520 525

Gly Asp Val Asn Gly Asp Lys Leu Thr Asp Val Val Ile Gly Ala Pro 530 535 540

Gly Glu Glu Glu Asn Arg Gly Ala Val Tyr Leu Phe His Gly Val Leu 545 550 555 560

Gly Pro Ser Ile Ser Pro Ser His Ser Gln Arg Ile Ala Gly Ser Gln 565 570 575 Leu Ser Ser Arg Leu Gln Tyr Phe Gly Gln Ala Leu Ser Gly Gln 580 585 590 Asp Leu Thr Gln Asp Gly Leu Val Asp Leu Ala Val Gly Ala Arg Gly 595 600 605Gln Val Leu Leu Leu Arg Thr Arg Pro Val Leu Trp Val Gly Val Ser 610 615 620 Met Gln Phe Ile Pro Ala Glu Ile Pro Arg Ser Ala Phe Glu Cys Arg 625 630 635 640Glu Gln Val Val Ser Glu Gln Thr Leu Val Gln Ser Asn Ile Cys Leu $645 \hspace{1.5cm} 650 \hspace{1.5cm} 655$ Tyr Ile Asp Lys Arg Ser Lys Asn Leu Leu Gly Ser Arg Asp Leu Gln 660 665 670 Ser Ser Val Thr Leu Asp Leu Ala Leu Asp Pro Gly Arg Leu Ser Pro 675 680 685 Arg Ala Thr Phe Gln Glu Thr Lys Asn Arg Ser Leu Ser Arg Val Arg 690 695 700 Val Leu Gly Leu Lys Ala His Cys Glu Asn Phe Asn Leu Leu Leu Pro 705 710 715 720 Ser Cys Val Glu Asp Ser Val Thr Pro Ile Thr Leu Arg Leu Asn Phe 725 730 735 Thr Leu Val Gly Lys Pro Leu Leu Ala Phe Arg Asn Leu Arg Pro Met 740 745 750Leu Ala Ala Asp Ala Gln Arg Tyr Phe Thr Ala Ser Leu Pro Phe Glu $755 \hspace{1.5cm} 760 \hspace{1.5cm} 765$ Lys Asn Cys Gly Ala Asp His Ile Cys Gln Asp Asn Leu Gly Ile Ser 770 780 Phe Ser Phe Pro Gly Leu Lys Ser Leu Leu Val Gly Ser Asn Leu Glu 785 790 795 800 Leu Asn Ala Glu Val Met Val Trp Asn Asp Gly Glu Asp Ser Tyr Gly 805 810 815 Thr Thr Ile Thr Phe Ser His Pro Ala Gly Leu Ser Tyr Arg Tyr Val 820 825 830Ala Glu Gly Gln Lys Gln Gly Gln Leu Arg Ser Leu His Leu Thr Cys 835 840 845 Asp Ser Ala Pro Val Gly Ser Gln Gly Thr Trp Ser Thr Ser Cys Arg 850 855 860Ile Asn His Leu Ile Phe Arg Gly Gly Ala Gln Ile Thr Phe Leu Ala Page 161

865 870 875 880

Thr Phe Asp Val Ser Pro Lys Ala Val Leu Gly Asp Arg Leu Leu Leu 885 890 890

Thr Ala Asn Val Ser Ser Glu Asn Asn Thr Pro Arg Thr Ser Lys Thr 900 905 910

Thr Phe Gln Leu Glu Leu Pro Val Lys Tyr Ala Val Tyr Thr Val Val 915 920 925

Ser Ser His Glu Gln Phe Thr Lys Tyr Leu Asn Phe Ser Glu Ser Glu 930 940

Glu Lys Glu Ser His Val Ala Met His Arg Tyr Gln Val Asn Asn Leu 945 950 955 960

Gly Gln Arg Asp Leu Pro Val Ser Ile Asn Phe Trp Val Pro Val Glu 965 $\mathring{}$ 970 975

Leu Asn Gln Glu Ala Val Trp Met Asp Val Glu Val Ser Leu Pro Gln 980 985 990

Asn Pro Ser Leu Arg Cys Ser Ser Glu Lys Ile Ala Gly Pro Ala Ser 995 1000 1005

Asp Phe Leu Ala His Ile Gln Lys Asn Pro Val Leu Asp Cys Ser 1010 1015 1020

Ile Ala Gly Cys Leu Arg Phe Arg Cys Asp Val Pro Ser Phe Ser 1025 $$ 1030 $$ 1035

Val Gln Glu Glu Leu Asp Phe Thr Leu Lys Gly Asn Leu Ser Phe 1040 1050

Gly Trp Val Arg Gln Ile Leu Gln Lys Lys Val Ser Val Val Ser 1055 1060 1065

Val Ala Glu Ile Thr Phe Asp Thr Ser Val Tyr Ser Gln Leu Pro 1070 1075 1080

Gly Gln Glu Ala Phe Met Arg Ala Gln Thr Thr Thr Val Leu Glu 1085 $$ 1090 $$ 1095

Lys Tyr Lys Val His Asn Pro Thr Pro Leu Ile Val Gly Ser Ser 1100 $$1105\$

Ile Gly Gly Leu Leu Leu Leu Ala Leu Île Thr Ala Val Leu Tyr 1115 1120 1125

Lys Val Gly Phe Phe Lys Arg Gln Tyr Lys Glu Met Met Glu Glu 1130 1140

Ala Asn Gly Gln Ile Ala Pro Glu Asn Gly Thr Gln Thr Pro Ser 1145 1150 1155

Pro Pro Ser Glu Lys 1160

<210> 117 <211> 335

<212> PRT

<213> Homo sapiens

<400> 117

Met Leu Gly Ile Trp Thr Leu Leu Pro Leu Val Leu Thr Ser Val Ala 1 $$ 5 $$ 10 $$ 15

Arg Leu Ser Ser Lys Ser Val Asn Ala Gln Val Thr Asp Ile Asn Ser 20 25 30

Lys Gly Leu Glu Leu Arg Lys Thr Val Thr Thr Val Glu Thr Gln Asn $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Leu Glu Gly Leu His His Asp Gly Gln Phe Cys His Lys Pro Cys Pro 50 55 60

Pro Gly Glu Arg Lys Ala Arg Asp Cys Thr Val Asn Gly Asp Glu Pro 65 70 75 80

Asp Cys Val Pro Cys Gln Glu Gly Lys Glu Tyr Thr Asp Lys Ala His $85 \hspace{1cm} 90 \hspace{1cm} 95$

Phe Ser Ser Lys Cys Arg Arg Cys Arg Leu Cys Asp Glu Gly His Gly 100 105 110

Leu Glu Val Glu Ile Asn Cys Thr Arg Thr Gln Asn Thr Lys Cys Arg 115 120 125

Cys Lys Pro Asn Phe Phe Cys Asn Ser Thr Val Cys Glu His Cys Asp 130 135 140

Pro Cys Thr Lys Cys Glu His Gly Ile Ile Lys Glu Cys Thr Leu Thr 145 150 150 160

Ser Asn Thr Lys Cys Lys Glu Glu Gly Ser Arg Ser Asn Leu Gly Trp 165 170 175

Leu Cys Leu Leu Leu Leu Pro Ile Pro Leu Ile Val Trp Val Lys Arg 180 185 190

Lys Glu Val Gln Lys Thr Cys Arg Lys His Arg Lys Glu Asn Gln Gly 195 200 205

Ser His Glu Ser Pro Thr Leu Asn Pro Glu Thr Val Ala Ile Asn Leu 210 215 220

Ser Asp Val Asp Leu Ser Lys Tyr Ile Thr Thr Ile Ala Gly Val Met 225 230 235 240

Thr Leu Ser Gln Val Lys Gly Phe Val Arg Lys Asn Gly Val Asn Glu 245 250 250

Ala Lys Ile Asp Glu Ile Lys Asn Asp Asn Val Gln Asp Thr Ala Glu 260 265 270

Gln Lys Val Gln Leu Leu Arg Asn Trp His Gln Leu His Gly Lys Lys $275 \hspace{1cm} 280 \hspace{1cm} 285$

Glu Ala Tyr Asp Thr Leu Ile Lys Asp Leu Lys Lys Ala Asn Leu Cys 290 295 300

Thr Leu Ala Glu Lys Ile Gln Thr Ile Ile Leu Lys Asp Ile Thr Ser 305 310 315 320

Asp Ser Glu Asn Ser Asn Phe Arg Asn Glu Ile Gln Ser Leu Val 325 330 335

<210> 118

<211> 1251

<212> PRT

<213> Homo sapiens

<400> 118

Met Glu Leu Ser Asp Val Arg Cys Leu Thr Gly Ser Glu Glu Leu Tyr 1 $$ 5 $$ 10 $$ 15

Thr Ile His Pro Thr Pro Pro Ala Gly Asp Gly Arg Ser Ala Ser Arg $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Pro Gln Arg Leu Leu Trp Gln Thr Alá Val Arg His Ile Thr Glu Gln 35 40 45

Arg Phe Ile His Gly His Arg Gly Gly Ser Gly Ser Gly Ser Gly Gly 50 55 60

Ser Gly Lys Ala Ser Asp Pro Ala Gly Gly Gly Pro Asn His His Ala 65 70 75 80

Pro Gln Leu Ser Gly Asp Ser Ala Leu Pro Leu Tyr Ser Leu Gly Pro 90 95

Gly Glu Arg Ala His Ser Thr Cys Gly Thr Lys Val Phe Pro Glu Arg $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$

Ser Gly Ser Gly Ser Ala Ser Gly Ser Gly Gly Gly Gly Asp Leu Gly 115 120 125

Phe Leu His Leu Asp Cys Ala Pro Ser As
n Ser Asp Phe Phe Leu As
n 130 140

Gly Gly Tyr Ser Tyr Arg Gly Val Ile Phe Pro Thr Leu Arg Asn Ser 145 150 155 160

Phe Lys Ser Arg Asp Leu Glu Arg Leu Tyr Gln Arg Tyr Phe Leu Gly
165 170 175

Gln Arg Arg Lys Ser Glu Val Val Met Asn Val Leu Asp Val Leu Thr 180 185 190

Lys Leu Thr Leu Leu Val Leu His Leu Ser Leu Ala Ser Ala Pro Met 195 200 205

Asp Pro Leu Lys Gly Ile Leu Leu Gly Phe Phe Thr Gly Ile Glu Val 210 220

Val Ile Cys Ala Leu Val Val Val Arg Lys Asp Thr Thr Ser His Thr 225 230 235 240

Tyr Leu Gln Tyr Ser Gly Val Val Thr Trp Val Ala Met Thr Thr Gln 245 250 255

Ile Leu Ala Ala Gly Leu Gly Tyr Gly Leu Leu Gly Asp Gly Ile Gly 260 265 270

Tyr Val Leu Phe Thr Leu Phe Ala Thr Tyr Ser Met Leu Pro Leu Pro 275 280 285

Leu Thr Trp Ala Ile Leu Ala Gly Leu Gly Thr Ser Leu Leu Gln Val 290 295 300

Ile Leu Gln Val Val Ile Pro Arg Leu Ala Val Ile Ser Ile Asn Gln 305 310 315 320

Val Val Ala Gln Ala Val Leu Phe Met Cys Met Asn Thr Ala Gly Ile 325 330 335

Phe Ile Ser Tyr Leu Ser Asp Arg Ala Gln Arg Gln Ala Phe Leu Glu 340 345 . 350

Thr Arg Arg Cys Val Glu Ala Arg Leu Arg Leu Glu Thr Glu Asn Gln 355 360 365

Arg Gln Glu Arg Leu Val Leu Ser Val Leu Pro Arg Phe Val Val Leu 370 380

Glu Met Ilë Asn Asp Met Thr Asn Val Glu Asp Glu His Leu Gln His 385 $$ 390 $$ 395 $$ 400

Gln Phe His Arg Ile Tyr Ile His Arg Tyr Glu Asn Val Ser Ile Leu $405 \hspace{1.5cm} 410 \hspace{1.5cm} 415 \hspace{1.5cm}$

Phe Ala Asp Val Lys Gly Phe Thr Asn Leu Ser Thr Thr Leu Ser Ala 420 425 430

Gln Glu Leu Val Arg Met Leu Asn Glu Leu Phe Ala Arg Phe Asp Arg 435 440

Leu Ala His Glu His His Cys Leu Arg Ile Lys Ile Leu Gly Asp Cys 450 455 460

Tyr Tyr Cys Val Ser Gly Leu Pro Glu Pro Arg Gln Asp His Ala His 465 470 475 480

Cys Cys Val Glu Met Gly Leu Ser Met IÍe Lys Thr Ile Arg Tyr Val 485 490 495

Arg Ser Arg Thr Lys His Asp Val Asp Met Arg Ile Gly Ile His Ser 500 505 510

Gly Ser Val Leu Cys Gly Val Leu Gly Leu Arg Lys Trp Gln Phe Asp 515 520 525

Val Trp Ser Trp Asp Val Asp Ile Ala Asn Lys Leu Glu Ser Gly Gly 530 540

Ile Pro Gly Arg Ile His Ile Ser Lys Ala Thr Leu Asp Cys Leu Asn 545 550 555 560

Gly Asp Tyr Asn Val Glu Glu Gly His Gly Lys Glu Arg Asn Glu Phe $565 \hspace{1.5cm} 570 \hspace{1.5cm} 575$

Leu Arg Lys His Asn Ile Glu Thr Tyr Leu Ile Lys Gln Pro Glu Asp 580 585 590

Ser Leu Leu Ser Leu Pro Glu Asp Ile Val Lys Glu Ser Val Ser Ser 595 600 605

Ser Asp Arg Arg Asn Ser Gly Ala Thr Phe Thr Glu Gly Ser Trp Ser 610 615 620

Pro Glu Leu Pro Phe Asp Asn Ile Val Gly Lys Gln Asn Thr Leu Ala 625 630 635 640

Ala Leu Thr Arg Asn Ser Ile Asn Leu Leu Pro Asn His Leu Ala Gln 645 650 655

Ala Leu His Val Gln Ser Gly Pro Glu Glu Ile Asn Lys Arg Ile Glu 660 665 670

His Thr Ile Asp Leu Arg Ser Gly Asp Lys Leu Arg Arg Glu His Ile 675 680 . 685

Ser Gln Met Arg Asp Glu Val Phe Lys Ser Asn Leu Val Cys Ala Phe 705 710 715 720

Ile Val Leu Leu Phe Ile Thr Ala Ile Gln Ser Leu Leu Pro Ser Ser 725 730 735

Arg Val Met Pro Met Thr Ile Gln Phe Ser Ile Leu Ile Met Leu His 740 745 750

Ser Ala Leu Val Leu Ile Thr Thr Ala Glu Asp Tyr Lys Cys Leu Pro 755 760 765

Leu Ile Leu Arg Lys Thr Cys Cys Trp Ile Asn Glu Thr Tyr Leu Ala 770 780

Arg Asn Val Ile Ile Phe Ala Ser Ile Leu Ile Asn Phe Leu Gly Ala 785 790 795 800

Ile Leu Asn Ile Leu Trp Cys Asp Phe Asp Lys Ser Ile Pro Leu Lys 805 810 815

Asn Leu Thr Phe Asn Ser Ser Ala Val Phe Thr Asp Ile Cys Ser Tyr 820 825 830

Pro Glu Tyr Phe Val Phe Thr Gly Val Leu Ala Met Val Thr Cys Ala 835 840 845

Val Phe Leu Arg Leu Asn Ser Val Leu Lys Leu Ala Val Leu Leu Ile 850 860

Met Ile Ala Ile Tyr Ala Leu Leu Thr Glu Thr Val Tyr Ala Gly Leu 865 870 875 880

Phe Leu Arg Tyr Asp Asn Leu Asn His Ser Gly Glu Asp Phe Leu Gly 885 890 890 895

Thr Lys Glu Val Ser Leu Leu Leu Met Ala Met Phe Leu Leu Ala Val 900 905 910

Phe Tyr His Gly Gln Gln Leu Glu Tyr Thr Ala Arg Leu Asp Phe Leu 915 920 925

Trp Arg Val Gln Ala Lys Glu Glu Ile Asn Glu Met Lys Glu Leu Arg 930 935 940

Glu His Asn Glu Asn Met Leu Arg Asn Ile Leu Pro Ser His Val Ala 945 950 955 960

Arg His Phe Leu Glu Lys Asp Arg Asp Asn Glu Glu Leu Tyr Ser Gln 965 970 975

Ser Tyr Asp Ala Val Gly Val Met Phe Ala Ser Ile Pro Gly Phe Ala 980 985 990

Asp Phe Tyr Ser Gln Thr Glu Met Asn Asn Gln Gly Val Glu Cys Leu 995 1000 1005

Arg Leu Leu Asn Glu Ile Ile Ala Asp Phe Asp Glu Leu Leu Gly 1010 1020

Glu Asp Arg Phe Gln Asp Ile Glu Lys Ile Lys Thr \cdot Ile Gly Ser 1025 $$ 1035

Thr Tyr Met Ala Val Ser Gly Leu Ser Pro Glu Lys Gln Gln Cys 1040 1055 1050

Glu Asp Lys Trp Gly His Leu Cys Ala Leu Ala Asp Phe Ser Leu 1055 1060 1065

Ala Leu Thr Glu Ser Ile Gln Glu Ile Asn Lys His Ser Phe Asn 1070 1075 1080

Asn Phe Glu Leu Arg Ile Gly Ile Ser His Gly Ser Val Val Ala 1085 1090 1095

Gly Val Ile Gly Ala Lys Lys Pro Gln Tyr Asp Ile Trp Gly Lys 1100 1105 1110

Thr Val Asn Leu Ala Ser Arg Met Asp Ser Thr Gly Val Ser Gly 1115 1120 1125

Arg Ile Gln Val Pro Glu Glu Thr Tyr Leu Ile Leu Lys Asp Gln 1130 1140

Gly Phe Ala Phe Asp Tyr Arg Gly Glu Ile Tyr Val Lys Gly Ile 1145 1150 1155

Ser Glu Gln Glu Gly Lys Ile Lys Thr Tyr Phe Leu Leu Gly Arg 1160 1165 1170

Val Gln Pro Asn Pro Phe Ile Leu Pro Pro Arg Arg Leu Pro Gly Page 167

1175 1185 1180

Gln Tyr Ser Leu Ala Ala Val Val Leu Gly Leu Val Gln Ser Leu 1190 1195 1200

Asn Arg Gln Arg Gln Lys Gln Leu Leu Asn Glu Asn Asn Asn Thr 1205 1210 1215

Gly Ile Ile Lys Gly His Tyr Asn Arg Arg Thr Leu Leu Ser Pro 1220 1225 1230

Ser Gly Thr Glu Pro Gly Ala Gln Ala Glu Gly Thr Asp Lys Ser 1235 1240 1245

Asp Leu Pro 1250

<210> 119 <211> 143

<212> PRT

<213> Homo sapiens

<400> 119

Met Gly Lys Cys Arg Gly Leu Arg Thr Ala Arg Lys Leu Arg Ser His 1 10 15

Arg Arg Asp Gln Lys Trp His Asp Lys Gln Tyr Lys Lys Ala His Leu $20 \hspace{1cm} 25 \hspace{1cm} 30$

Gly Thr Ala Leu Lys Ala Asn Pro Phe Gly Gly Ala Ser His Ala Lys $35 \hspace{1cm} 40 \hspace{1cm} 45$

Gly Ile Val Leu Glu Lys Val Gly Val Glu Ala Lys Gln Pro Asn Ser 50 60

Ala Ile Arg Lys Cys Val Arg Val Gln Leu Ile Lys Asn Gly Lys Lys 65 70 75 80

Ile Thr Ala Phe Val Pro Asn Asp Gly Cys Leu Asn Phe Ile Glu Glu 85 90 95

Asn Asp Glu Val Leu Val Ala Gly Phe Gly Arg Lys Gly His Ala Val $100 \,$ $105 \,$ $110 \,$

Gly Asp Ile Pro Gly Val Arg Phe Lys Val Val Lys Val Ala Asn Val 115 120 125

Ser Leu Leu Ala Leu Tyr Lys Gly Lys Lys Glu Arg Pro Arg Ser 130 140

<210> 120

<211> 144

<212> PRT

<213> Homo sapiens

<400> 120

Met Ala Phe Thr Phe Ala Ala Phe Cys Tyr Met Leu Ala Leu Leu Leu 1 5 10 15

Thr Ala Ala Leu Ile Phe Phe Ala Ile Trp His Ile Ile Ala Phe Asp 20 25 30

Glu Leu Lys Thr Asp Tyr Lys Asn Pro Ile Asp Gln Cys Asn Thr Leu $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Asn Pro Leu Val Leu Pro Glu Tyr Leu Ile His Ala Phe Phe Cys Val 50 60

Met Phe Leu Cys Ala Ala Glu Trp Leu Thr Leu Gly Leu Asn Met Pro 65 70 75 80

Leu Leu Ala Tyr His Ile Trp Arg Tyr Met Ser Arg Pro Val Met Ser 85 90 95

Gly Pro Gly Leu Tyr Asp Pro Thr Thr Ile Met Asn Ala Asp Ile Leu $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$

Ala Tyr Cys Gl
n Lys Glu Gly Trp Cys Lys Leu Ala Phe Tyr Leu Leu 115 120 125

Ala Phe Phe Tyr Tyr Leu Tyr Gly Met Ile Tyr Val Leu Val Ser Ser 130 135 140

<210> 121

211> 1516

<212> PRT

<213> Homo sapiens

<400> 121

Met Ala Pro Ala Lys Ala Thr Asn Val Val Arg Leu Leu Gly Ser 1 5 10 15

Thr Ala Leu Trp Leu Ser Gln Leu Gly Ser Gly Thr Val Ala Ala Ser 20 25 30

Lys Ser Val Thr Ala His Leu Ala Ala Lys Trp Pro Glu Thr Pro Leu $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Leu Leu Glu Ala Ser Glu Phe Met Ala Glu Glu Ser Asn Glu Lys Phe 50 60

Trp Gln Phe Leu Glu Thr Val Gln Glu Leu Ala Ile Tyr Lys Gln Thr 65 70 75 80

Glu Ser Asp Tyr Ser Tyr Tyr Asn Leu Ile Leu Lys Lys Ala Gly Gln 85 90 95

Phe Leu Asp Asn Leu His Ile Asn Leu Leu Lys Phe Ala Phe Ser Ile 100 105 110

Arg Ala Tyr Ser Pro Ala Ile Gln Met Phe Gln Gln Ile Ala Ala Asp 115 120 125

Glu Pro Pro Pro Asp Gly Cys Asn Ala Phe Val Val Ile His Lys Lys 130 135 140

His Thr Cys Lys Ile Asn Glu Ile Lys Lys Leu Leu Lys Lys Ala Ala 145 150 150 155

Ser Arg Thr Arg Pro Tyr Leu Phe Lys Gly Asp His Lys Phe Pro Thr

Page 169

Asn Lys Glu Asn Leu Pro Val Val Ile Leu Tyr Ala Glu Met Gly Thr 180 185 190 Arg Thr Phe Ser Ala Phe His Lys Val Leu Ser Glu Lys Ala Gln Asn 195 200 205 Glu Glu Ile Leu Tyr Val Leu Arg His Tyr Ile Gln Lys Pro Ser Ser 210 220Arg Lys Met Tyr Leu Ser Gly Tyr Gly Val Glu Leu Ala Ile Lys Ser 225 230230235 Thr Thr Val Glu Asp Glu Thr Glu Thr Asn Glu Val Gln Gly Phe Leu 260 265 270Phe Gly Lys Leu Lys Glu Ile Tyr Ser Asp Leu Arg Asp Asn Leu Thr 275 280 285 Ala Phe His Lys Tyr Leu Ile Glu Ser Asn Lys Gln Met Met Pro Leu 290 295 300 Lys Val Trp Glu Leu Gln Asp Leu Ser Phe Gln Ala Ala Ser Gln Ile 305 310 315 320 Met Ser Thr Pro Val Tyr Asp Ala Ile Lys Leu Met Lys Asp Ile Ser 325 330 335 Gln Asn Phe Pro Ile Lys Ala Arg Ser Leu Thr Arg Ile Ala Val Asn 340 345 350Gln His Met Arg Glu Glu Ile Lys Glu Asn Gln Lys Asp Leu Gln Val 355 360 365 Arg Phe Lys Ile Gln Pro Gly Asp Ala Arg Leu Phe Ile Asn Gly Leu 370 380 Arg Val Asp Met Asp Val Tyr Asp Ala Phe Ser Ile Leu Asp Met Leu 385 390 395 400 Lys Leu Glu Gly Lys Met Met Asn Gly Leu Arg Asn Leu Gly Ile Asn 415

Tyr Thr Tyr Val Leu Asp Ile Arg His Ser Ser Ile Met Trp Ile Asn 435 440 445

Gly Glu Asp Met Ser Lys Phe Leu Lys Leu Asn Ser His Ile Trp Glu 420 425 430

Asp Leu Glu Asn Asp Asp Leu Tyr Ile Thr Trp Pro Thr Ser Cys Gln 450 455 460

Lys Leu Leu Lys Pro Val Phe Pro Gly Ser Val Pro Ser Ile Arg Arg 465 470 470 480

Asn Phe His Asn Leu Val Leu Phe Ile Asp Pro Ala Gln Glu Tyr Thr Page 170

485 490 495

Leu Asp Phe Ile Lys Leu Ala Asp Val Phe Tyr Ser His Glu Val Pro 500 505 510

Leu Arg Ile Gly Phe Val Phe Ile Leu Asn Thr Asp Asp Glu Val Asp 515 520 525

Gly Ala Asn Asp Ala Gly Val Ala Leu Trp Arg Ala Phe Asn Tyr Ile 530 535 540

Ala Glu Glu Phe Asp Ile Ser Glu Ala Phe Ile Ser Ile Val His Met 545 550 555 560

Tyr Gln Lys Val Lys Lys Asp Gln Asn Ile Leu Thr Val Asp Asn Val 565 570 575

Lys Ser Val Leu Gln Asn Thr Phe Pro His Ala Asn Ile Trp Asp Ile 580 585 590

Leu Gly Ile His Ser Lys Tyr Asp Glu Glu Arg Lys Ala Gly Ala Ser 595 600 605

Phe Tyr Lys Met Thr Gly Leu Gly Pro Leu Pro Gln Ala Leu Tyr Asn 610 615 620

Gly Glu Pro Phe Lys His Glu Glu Met Asn Ile Lys Glu Leu Lys Met 625 $\,$ 630 $\,$ 635 $\,$ 640

Ala Val Leu Gln Arg Met Met Asp Ala Ser Val Tyr Leu Gln Arg Glu 645 650 655

Val Phe Leu Gly Thr Leu Asn Asp Arg Thr Asn Ala Ile Asp Phe Leu 660 665 670

Met Asp Arg Asn Asn Val Val Pro Arg Ile Asn Thr Leu Ile Leu Arg 675 680 685

Thr Asn Gln Gln Tyr Leu Asn Leu Ile Ser Thr Ser Val Thr Ala Asp $690 \hspace{1.5cm} 695 \hspace{1.5cm} 700$

Val Glu Asp Phe Ser Thr Phe Phe Phe Leu Asp Ser Gln Asp Lys Ser 705 710710715720

Ala Val Ile Ala Lys Asn Met Tyr Tyr Leu Thr Gln Asp Asp Glu Ser $725 \hspace{1cm} 730 \hspace{1cm} 735$

Ile Ile Ser Ala Val Thr Leu Trp Ile Ile Ala Asp Phe Asp Lys Pro 740 745 750

Ser Gly Arg Lys Leu Leu Phe Asn Ala Leu Lys His Met Lys Thr Ser 755 760 765

Val His Ser Arg Leu Gly Ile Ile Tyr Asn Pro Thr Ser Lys Ile Asn $770 \hspace{1.5cm} 775 \hspace{1.5cm} 780$

Glu Glu Asn Thr Ala Ile Ser Arg Gly Ile Leu Ala Ala Phe Leu Thr 785 790 795 800

- Gln Lys Asn Met Phe Leu Arg Ser Phe Leu Gly Gln Leu Ala Lys Glu 805 810 815
- Glu Ile Ala Thr Thr Ile Tyr Ser Gly Asp Lys Ile Lys Thr Phe Leu 820 825 830
- Ile Glu Gly Met Asp Lys Asn Ala Phe Glu Lys Lys Tyr Asn Thr Val 835 $$ 840 $$ 845
- Gly Val Asn Ile Phe Arg Thr His Gln Leu Phe Cys Gln Asp Val Leu 850 855 860
- Lys Leu Arg Pro Gly Glu Met Gly Ile Val Ser Asn Gly Arg Phe Leu 865 870 880
- Gly Pro Leu Asp Glu Asp Phe Tyr Ala Glu Asp Phe Tyr Leu Leu Glu 885 890 895
- Lys Ile Thr Phe Ser Asn Leu Gly Glu Lys Ile Lys Gly Ile Val Glu 900 905 910
- Asn Met Gly Ile Asn Ala Asn Asn Met Ser Asp Phe Ile Met Lys Val 915 920 925
- Asp Ala Leu Met Ser Ser Val Pro Lys Arg Ala Ser Arg Tyr Asp Val 930 935 940
- Thr Phe Leu Arg Glu Asn His Ser Val Ile Lys Thr Asn Pro Gln Glu 945 950 950 960
- Asn Asp Met Phe Phe Asn Val Ile Ala Ile Val Asp Leu Leu Ala Arg 965 970 975
- Glu Ala Gln Lys Met Ala Gln Leu Leu Val Val Leu Gly Lys Ile Ile 980 985 990
- Asn Leu Lys Ile Lys Leu Phe Met $\mbox{\sc Asn}$ Cys Arg Gly Arg $\mbox{\sc Leu}$ Ser Glu $\mbox{\sc 995}$ $\mbox{\sc 1000}$
- Ala Pro Leu Glu Ser Phe Tyr Arg Phe Val Leu Glu Pro Glu Leu 1010 1015 1020
- Met Ser Gly Ala Asn Asp Val Ser Ser Leu Gly Pro Val Ala Lys 1025 1030 1035
- Phe Leu Asp Ile Pro Glu Ser Pro Leu Leu Ile Leu Asn Met Ile 1040 1050
- Thr Pro Glu Gly Trp Leu Val Glu Thr Val His Ser Asn Cys Asp 1055 1060 1065
- Leu Asp Asn Ile His Leu Lys Asp Thr Glu Lys Thr Ala Thr Ala 1070 1075 1080
- Gly Tyr Glu Leu Glu Tyr Leu Leu Glu Glu Gln Cys Phe Asp 1085 1090 1095
- Lys Val Thr Glu Gln Pro Pro Arg Gly Leu Gln Phe Thr Leu Gly 1100 1105 1110

Thr Lys Asn Lys Pro Ala Val Val Asp Thr Ile Val Met Ala His 1115 1120 1125

- His Gly Tyr Phe Gln Leu Lys Ala Asn Pro Gly Ala Trp Ile Leu 1130 1140
- Arg Leu His Gin Gly Lys Ser Glu Asp Ile Tyr Gln Ile Val Gly 1145 1150 1155
- His Glu Gly Thr Asp Ser Gln Ala Asp Leu Glu Asp Ile Ile Val 1160 1165 1170
- Val Leu Asn Ser Phe Lys Ser Lys Ile Leu Lys Val Lys Val Lys 1175 1180 1185
- Lys Glu Thr Asp Lys Ile Lys Glu Asp Ile Leu Thr Asp Glu Asp 1190 1195 1200
- Glu Lys Thr Lys Gly Leu Trp Asp Ser Ile Lys Ser Phe Thr Val 1205 1215
- Ser Leu His Lys Glu Asn Lys Lys Glu Lys Asp Val Leu Asn Ile 1220 1230
- Phe Ser Val Ala Ser Gly His Leu Tyr Glu Arg Phe Leu Arg Ile 1235 1240 1245
- Met Met Leu Ser Val Leu Arg Asn Thr Lys Thr Pro Val Lys Phe 1250 1255 1260
- Trp Leu Leu Lys Asn Tyr Leu Ser Pro Thr Phe Lys Glu Val Ile 1265 1270 1275
- Pro His Met Ala Lys Glu Tyr Gly Phe Arg Tyr Glu Leu Val Gln 1280 1285 1290
- Tyr Arg Trp Pro Arg Trp Leu Arg Gln Gln Thr Glu Arg Gln Arg 1295 1300 1305
- Ile Ile Trp Gly Tyr Lys Ile Leu Phe Leu Asp Val Leu Phe Pro 1310 1320
- Leu Ala Val Asp Lys Ile Ile Phe Val Asp Ala Asp Gln Ile Val 1325 $$ 1330 $$ 1335
- Arg His Asp Leu Lys Glu Leu Arg Asp Phe Asp Leu Asp Gly Ala 1340 1350
- Pro Tyr Gly Tyr Thr Pro Phe Cys Asp Ser Arg Arg Glu Met Asp 1355 1360 1365
- Gly Tyr Arg Phe Trp Lys Thr Gly Tyr Trp Ala Ser His Leu Leu 1370 1375 1380
- Arg Arg Lys Tyr His Ile Ser Ala Leu Tyr Val Val Asp Leu Lys 1385 1390 1395
- Lys Phe Arg Arg Ile Gly Ala Gly Asp Arg Leu Arg Ser Gln Tyr

Gln Ala Leu Ser Gln Asp Pro Asn Ser Leu Ser Asn Leu Asp Gln 1415 1420 1425

Asp Leu Pro Asn Asn Met Ile Tyr Gln Val Ala Ile Lys Ser Leu 1430 1440

Pro Gln Asp Trp Leu Trp Cys Glu Thr Trp Cys Asp Asp Glu Ser 1445 1450 1455

Lys Gln Arg Ala Lys Thr Ile Asp Leu Cys Asn Asn Pro Lys Thr 1460 1465 1470

Lys Glu Ser Lys Leu Lys Ala Ala Ala Arg Ile Val Pro Glu Trp 1475 $$ 1485

Val Glu Tyr Asp Ala Glu Ile Arg Gln Leu Leu Asp His Leu Glu 1490 1495 1500

Asn Lys Lys Gln Asp Thr Ile Leu Thr His Asp Glu Leu 1505 1510 1515

<210> 122

<211> 798

<212> PRT

<213> Homo sapiens

<400> 122

Met Asn Leu Gln Pro Ile Phe Trp Ile Gly Leu Ile Ser Ser Val Cys 1 $$ 5 $$ 10 $$ 15

Cys Val Phe Ala Gln Thr Asp Glu Asn Arg Cys Leu Lys Ala Asn Ala $20 \hspace{1cm} 25 \hspace{1cm} 30$

Lys Ser Cys Gly Glu Cys Ile Gln Ala Gly Pro Asn Cys Gly Trp Cys 35 40 45

Thr Asn Ser Thr Phe Leu Gln Glu Gly Met Pro Thr Ser Ala Arg Cys 50 60

Asp Asp Leu Glu Ala Leu Lys Lys Gly Cys Pro Pro Asp Asp Ile 65 70 75 80

Asn Arg Ser Lys Gly Thr Ala Glu Lys Leu Lys Pro Glu Asp Ile His 100 105 110

Gln Ile Gln Pro Gln Gln Leu Val Leu Arg Leu Arg Ser Gly Glu Pro 115 120 125

Gln Thr Phe Thr Leu Lys Phe Lys Arg Ala Glu Asp Tyr Pro Ile Asp 130 135 140

Leu Tyr Tyr Leu Met Asp Leu Ser Tyr Ser Met Lys Asp Asp Leu Glu 145 150 155 160

Asn Val Lys Ser Leu Gly Thr Asp Leu Met Asn Glu Met Arg Arg Ile 165 170 175

Met Pro Tyr Ile Ser Thr Thr Pro Ala Lys Leu Arg Asn Pro Cys Thr 195 200 205Ser Glu Gln Asn Cys Thr Thr Pro Phe Ser Tyr Lys Asn Val Leu Ser 210 215 220 Leu Thr Asn Lys Gly Glu Val Phe Asn Glu Leu Val Gly Lys Gln Arg 225 230 235 240 Ile Ser Gly Asn Leu Asp Ser Pro Glu Gly Gly Phe Asp Ala Ile Met 245 250 255Gln Val Ala Val Cys Gly Ser Leu Ile Gly Trp Arg Asn Val Thr Arg $260 \hspace{1.5cm} 265 \hspace{1.5cm} 270 \hspace{1.5cm}$ Leu Leu Val Phe Ser Thr Asp Ala Gly Phe His Phe Ala Gly Asp Gly 275 280 285Lys Leu Gly Gly Ile Val Leu Pro Asn Asp Gly Gln Cys His Leu Glu 290 295 300 Asn Asn Met Tyr Thr Met Ser His Tyr Tyr Asp Tyr Pro Ser Ile Ala 305 310 315 320His Leu Val Gln Lys Leu Ser Glu Asn Asn Ile Gln Thr Ile Phe Ala 325 330 335 Val Thr Glu Glu Phe Gln Pro Val Tyr Lys Glu Leu Lys Asn Leu Ile 340 345 350 Pro Lys Ser Ala Val Gly Thr Leu Ser Ala Asn Ser Ser Asn Val Ile 355 360 365 Gln Leu Ile Ile Asp Ala Tyr Asn Ser Leu Ser Ser Glu Val Ile Leu 370 375 380 Glu Asn Gly Lys Leu Ser Glu Gly Val Thr Ile Ser Tyr Lys Ser Tyr 385 390 395 400Cys Lys Asn Gly Val Asn Gly Thr Gly Glu Asn Gly Arg Lys Cys Ser $405 \ \ 410 \ \ \ 415$ Asn Ile Ser Ile Gly Asp Glu Val Gln Phe Glu Ile Ser Ile Thr Ser 420 425 430 Asn Lys Cys Pro Lys Lys Asp Ser Asp Ser Phe Lys Ile Arg Pro Leu 435 440 445 Gly Phe Thr Glu Glu Val Glu Val Ile Leu Gln Tyr Ile Cys Glu Cys 450 455 460Glu Cys Gln Ser Glu Gly Ile Pro Glu Ser Pro Lys Cys His Glu Gly 465 470 475 480 Asn Gly Thr Phe Glu Cys Gly Ala Cys Arg Cys Asn Glu Gly Arg Val

Page 175

485 490 495

Gly Arg His Cys Glu Cys Ser Thr Asp Glu Val Asn Ser Glu Asp Met 500 505 510

Asp Ala Tyr Cys Arg Lys Glu Asn Ser Ser Glu Ile Cys Ser Asn Asn 515 520 525

Gly Glu Cys Val Cys Gly Gln Cys Val Cys Arg Lys Arg Asp Asn Thr 530 535 540

As n Glu Ile Tyr Ser Gly Lys Phe Cys Glu Cys As p As n Phe As n Cys 545 550 555 560

Asp Arg Ser Asn Gly Leu Ile Cys Gly Gly Asn Gly Val Cys Lys Cys 565 570 575

Arg Val Cys Glu Cys Asn Pro Asn Tyr Thr Gly Ser Ala Cys Asp Cys 580 585 590

Ser Leu Asp Thr Ser Thr Cys Glu Ala Ser Asn Gly Gln Ile Cys Asn 595 600 605

Gly Arg Gly Ile Cys Glu Cys Gly Val Cys Lys Cys Thr Asp Pro Lys $610 \hspace{1.5cm} 620$

Phe Gln Gly Gln Thr Cys Glu Met Cys Gln Thr Cys Leu Gly Val Cys 625 630 635 640

Ala Glu His Lys Glu Cys Val Gln Cys Arg Ala Phe Asn Lys Gly Glu 645 $\,$ 650 $\,$ 655

Lys Lys Asp Thr Cys Thr Gln Glu Cys Ser Tyr Phe Asn Ile Thr Lys 660 665 670

Val Glu Ser Arg Asp Lys Leu Pro Gln Pro Val Gln Pro Asp Pro Val 675 680 685

Tyr Ser Val Asn Gly Asn Asn Glu Val Met Val His Val Val Glu Asn 705 710 715 720

Pro Glu Cys Pro Thr Gly Pro Asp Ile Ile Pro Ile Val Ala Gly Val 725 730 735

Val Ala Gly Ile Val Leu Ile Gly Leu Ala Leu Leu Leu Ile Trp Lys 740 745 750

Leu Leu Met Ile Ile His Asp Arg Arg Glu Phe Ala Lys Phe Glu Lys 765 760 765

Glu Lys Met Asn Ala Lys Trp Asp Thr Gly Glu Asn Pro Ile Tyr Lys 770 775 780

Ser Ala Val Thr Thr Val Val Asn Pro Lys Tyr Glu Gly Lys 785 790 795

<210> 123

<212> PRT

<213> Homo sapiens

<400> 123

Met Thr Glu Gln Met Thr Leu Arg Gly Thr Leu Lys Gly His Asn Gly 1 $$ 5 $$ 10 $$ 15

Trp Val Thr Gln Ile Ala Thr Thr Pro Gln Phe Pro Asp Met Ile Leu 20 25 30

Ser Ala Ser Arg Asp Lys Thr Ile Ile Met Trp Lys Leu Thr Arg Asp $35 \hspace{1cm} 40 \hspace{1cm} 45$

Glu Thr Asn Tyr Gly Ile Pro Gln Arg Ala Leu Arg Gly His Ser His 50 55 60

Phe Val Ser Asp Val Val Ile Ser Ser Asp Gly Gln Phe Ala Leu Ser 65 70 75 80

Gly Ser Trp Asp Gly Thr Leu Arg Leu Trp Asp Leu Thr Thr Gly Thr 85 90 95

Thr Thr Arg Arg Phe Val Gly His Thr Lys Asp Val Leu Ser Val Ala $100 \hspace{1.5cm} 105 \hspace{1.5cm} 105$

Phe Ser Ser Asp Asn Arg Gln Ile Val Ser Gly Ser Arg Asp Lys Thr $115 \ 120 \ 125$

Ile Lys Leu Trp Asn Thr Leu Gly Val Cys Lys Tyr Thr Val Gln Asp 130 $$135\$

Glu Ser His Ser Glu Trp Val Ser Cys Val Arg Phe Ser Pro Asn Ser 145 150 150 155 160

Ser Asn Pro Ile Ile Val Ser Cys Gly Trp Asp Lys Leu Val Lys Val 165 170 175

Trp Asn Leu Ala Asn Cys Lys Leu Lys Thr Asn His Ile Gly His Thr 180 185 190

Gly Tyr Leu Asn Thr Val Thr Val Ser Pro Asp Gly Ser Leu Cys Ala 195 200205

Ser Gly Gly Lys Asp Gly Gln Ala Met Leu Trp Asp Leu Asn Glu Gly 210 215 220

Lys His Leu Tyr Thr Leu Asp Gly Gly Asp Ile Ile Asn Ala Leu Cys 225 230 235 240

Phe Ser Pro Asn Arg Tyr Trp Leu Cys Ala Ala Thr Gly Pro Ser Ile 245 250 255

Lys Ile Trp Asp Leu Glu Gly Lys Ile Ile Val Asp Glu Leu Lys Gln 260 265 . 270

Glu Val Ile Ser Thr Ser Ser Lys Ala Glu Pro Pro Gln Cys Thr Ser $275 \hspace{1.5cm} 280 \hspace{1.5cm} 285$

Leu Ala Trp Ser Ala Asp Gly Gln Thr Leu Phe Ala Gly Tyr Thr Asp 290 295 300

Asn Leu Val Arg Val Trp Gln Val Thr Ile Gly Thr Arg 305 310 315

<210> 124 <211> 351

<212> PRT

<213> Homo sapiens

<400> 124

Met Gln Arg Ala Leu Pro Gly Ala Arg Gln His Leu Gly Ala Ile Leu 1 10 15

Ala Ser Ala Ser Val Val Val Lys Ala Leu Cys Ala Ala Val Leu Phe 20 25 30

Leu Tyr Leu Leu Ser Phe Ala Val Asp Thr Gly Cys Leu Ala Val Thr 35 40 45

Pro Gly Tyr Leu Phe Pro Pro Asn Phe Trp Ile Trp Thr Leu Ala Thr 50 60

His Gly Leu Met Glu Gln His Val Trp Asp Val Ala Ile Ser Leu Thr 65 70 75 80

Thr Val Val Val Ala Gly Arg Leu Leu Glu Pro Leu Trp Gly Ala Leu 95 90 95

Glu Leu Leu Ile Phe Phe Ser Val Val As
n Val Ser Val Gly Leu Leu 100 105 110

Gly Ala Phe Ala Tyr Leu Leu Thr Tyr Met Ala Ser Phe Asn Leu Val 115 120 125

Tyr Leu Phe Thr Val Arg Ile His Gly Ala Leu Gly Phe Leu Gly Gly 130 135 140

Val Leu Val Ala Leu Lys Gln Thr Met Gly Asp Cys Val Val Leu Arg 145 150 155 160

Val Pro Gln Val Arg Val Ser Val Met Pro Met Leu Leu Leu Ala Leu 165 170 175

Leu Leu Leu Arg Leu Ala Thr Leu Leu Gln Ser Pro Ala Leu Ala 180 185 190

Ser Tyr Gly Phe Gly Leu Leu Ser Ser Trp Val Tyr Leu Arg Phe Tyr 195 200 205

Gln Arg His Ser Arg Gly Arg Gly Asp Met Ala Asp His Phe Ala Phe 210 215 220

Ala Thr Phe Phe Pro Glu Ile Leu Gln Pro Val Val Gly Leu Leu Ala 225 230 235 240

Asn Leu Val His Ser Leu Leu Val Lys Val Lys Ile Cys Gln Lys Thr 245 250 255

Val Lys Arg Tyr Asp Val Gly Ala Pro Ser Ser Ile Thr Ile Ser Leu 260 265 270

Pro Gly Thr Asp Pro Gln Asp Ala Glu Arg Arg Arg Gln Leu Ala Leu 275 280 285

Lys Ala Leu Asn Glu Arg Leu Lys Arg Val Glu Asp Gln Ser Ile Trp 290 295 300

Pro Ser Met Asp Asp Asp Glu Glu Glu Ser Gly Ala Lys Val Asp Ser 305 310 315 320

Pro Leu Pro Ser Asp Lys Ala Pro Thr Pro Pro Gly Lys Gly Ala Ala 325 330 335

Pro Glu Ser Ser Leu Ile Thr Phe Glu Ala Ala Pro Pro Thr Leu 340 345345 350

<210> 125

<211> 310

<212> PRT

<213> Homo sapiens

<400> 125

Met Arg Arg Ala Ala Leu Trp Leu Trp Leu Cys Ala Leu Ala Leu Ser 1 $$ 5 $$ 10 $$ 15

Leu Gln Leu Ala Leu Pro Gln Ile Val Ala Thr Asn Leu Pro Pro Glu 20 25 30

Asp Gln Asp Gly Ser Gly Asp Asp Ser Asp Asn Phe Ser Gly Ser Gly 35 40 45

Ala Gly Ala Leu Gln Asp Ile Thr Leu Ser Gln Gln Thr Pro Ser Thr 50 60

Trp Lys Asp Thr Gln Leu Leu Thr Ala Ile Pro Thr Ser Pro Glu Pro 65 70 75 80

Thr Gly Leu Glu Ala Thr Ala Ala Ser Thr Ser Thr Leu Pro Ala Gly $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Glu Gly Pro Lys Glu Gly Glu Ala Val Val Leu Pro Glu Val Glu Pro 100 105 110

Gly Leu Thr Ala Arg Glu Gln Glu Ala Thr Pro Arg Pro Arg Glu Thr 115 120 125

Thr Gln Leu Pro Thr Thr His Gln Ala Ser Thr Thr Thr Ala Thr Thr 130 $$135\$

Ala Gln Glu Pro Ala Thr Ser His Pro His Arg Asp Met Gln Pro Gly 145 150 155 160

His His Glu Thr Ser Thr Pro Ala Gly Pro Ser Gln Ala Asp Leu His 165 170 175

Thr Pro His Thr Glu Asp Gly Gly Pro Ser Ala Thr Glu Arg Ala Ala 180 $$185\$

Glu Asp Gly Ala Ser Ser Gln Leu Pro Ala Ala Glu Gly Ser Gly Glu 195 200 205

Gln Asp Phe Thr Phe Glu Thr Ser Gly Glu Asn Thr Ala Val Val Ala 210 215 220

Val Glu Pro Asp Arg Arg Asn Gln Ser Pro Val Asp Gln Gly Ala Thr 225 230 235 240

Gly Ala Ser Gln Gly Leu Leu Asp Arg Lys Glu Val Leu Gly Gly Val 255

Ile Ala Gly Gly Leu Val Gly Leu Ile Phe Ala Val Cys Leu Val Gly 260 265 270

Phe Met Leu Tyr Arg Met Lys Lys Lys Asp Glu Gly Ser Tyr Ser Leu 275 280 285

Glu Glu Pro Lys Gln Ala Asn Gly Gly Ala Tyr Gln Lys Pro Thr Lys 290 295 300

Gln Glu Glu Phe Tyr Ala 305 310

<210>

<211> 2174 <212> PRT

<213> Homo sapiens

<400> 126

Met Ser Ala Ser Phe Val Pro Asn Gly Ala Ser Leu Glu Asp Cys His 1 $$ 5 $$ 10 $$ 15

Cys Asn Leu Phe Cys Leu Ala Asp Leu Thr Gly Ile Lys Trp Lys Lys 20 25 30

Tyr Val Trp Gln Gly Pro Thr Ser Ala Pro Ile Leu Phe Pro Val Thr 35 40 45

Glu Glu Asp Pro Ile Leu Ser Ser Phe Ser Arg Cys Leu Lys Ala Asp 50 55

Val Leu Gly Val Trp Arg Arg Asp Gln Arg Pro Gly Arg Arg Glu Leu 65 70 75 80

Trp Ile Phe Trp Gly Glu Asp Pro Val Leu Leu Thr Leu Phe Thr 85 90 95

Met Thr Tyr Gln Lys Lys Met Glu Cys Gly Arg Met Asp Phe Pro 100 105 110

Met Asn Ala Val Leu Cys Phe Ser Lys Ala Val His Asn Leu Leu Glu 115 120 125

Arg Cys Leu Met Asn Arg Asn Phe Val Arg Ile Gly Lys Trp Phe Val

Lys Pro Tyr Glu Lys Asp Glu Lys Pro Ile Asn Lys Ser Glu His Leu 145 150 155 160

Ser Cys Ser Phe Thr Phe Phe Leu His Gly Asp Ser Asn Val Cys Thr

Ser Val Glu Ile Asn Gln His Gln Pro Val Tyr Leu Leu Ser Glu Glu 180° 185 190

His Ile Thr Leu Ala Gln Gln Ser Asn Ser Pro Phe Gln Val Ile Leu 195 200 205

Cys Pro Phe Gly Leu Asn Gly Thr Leu Thr Gly Gln Ala Phe Lys Met 210 225 220

Ser Asp Ser Ala Thr Lys Lys Leu Ile Gly Glu Trp Lys Gln Phe Tyr 225 230 235 240

Pro Ile Ser Cys Cys Leu Lys Glu Met Ser Glu Glu Lys Gln Glu Asp 245 250 255

Met Asp Trp Glu Asp Asp Ser Leu Ala Ala Val Glu Val Leu Val Ala 260 265 270

Gly Val Arg Met Ile Tyr Pro Ala Cys Phe Val Leu Val Pro Gln Ser 275 280 285

Asp Ile Pro Thr Pro Ser Pro Val Gly Ser Thr His Cys Ser Ser Ser 290 300

Cys Leu Gly Val His Gln Val Pro Ala Ser Thr Arg Asp Pro Ala Met 305 310 315 320

Ser Ser Val Thr Leu Thr Pro Pro Thr Ser Pro Glu Glu Val Gln Thr 325 $^{\circ}$ 330 $^{\circ}$ 335

Val Asp Pro Gln Ser Val Gln Lys Trp Val Lys Phe Ser Ser Val Ser 340 345 350

Asp Gly Phe Asn Ser Asp Ser Thr Ser His His Gly Gly Lys Ile Pro 355 360 365

Arg Lys Leu Ala Asn His Val Val Asp Arg Val Trp Gln Glu Cys Asn 370 380

Met Asn Arg Ala Gln Asn Lys Lys Lys Tyr Ser Ala Ser Ser Gly Gly 385 390 395 400

Leu Cys Glu Glu Ala Thr Ala Ala Lys Val Ala Ser Trp Asp Phe Val 405 410 415

Glu Ala Thr Gln Arg Thr Asn Cys Ser Cys Leu Arg His Lys Asn Leu 420 425 430

Lys Ser Arg Asn Ala Gly Gln Gln Gly Gln Ala Pro Ser Leu Gly Gln 435 445

Gln Gln Gln Ile Leu Pro Lys His Lys Thr Asn Glu Lys Gln Glu Lys 450 455 460

Ser Glu Glu Pro Gln Lys Arg Pro Leu Thr Pro Phe His His Arg Val 465 470 475 480

Ser Val Ser Asp Asp Val Gly Met Asp Ala Asp Ser Ala Ser Gln Arg 485 490 495

Leu Val Ile Ser Ala Pro Asp Ser Gln Val Arg Phe Ser Asn Ile Arg $500 \hspace{1.5cm} 505 \hspace{1.5cm} 510$

Thr Asn Asp Val Ala Lys Thr Pro Gln Met His Gly Thr Glu Met Ala 515 520 525

Asn Ser Pro Gln Pro Pro Pro Leu Ser Pro His Pro Cys Asp Val Val 530 535 540

Asp Glu Gly Val Thr Lys Thr Pro Ser Thr Pro Gln Ser Gln His Phe 545 550 560

Tyr Gln Met Pro Thr Pro Asp Pro Leu Val Pro Ser Lys Pro Met Glu 565 570 575

Asp Arg Ile Asp Ser Leu Ser Gln Ser Phe Pro Pro Gln Tyr Gln Glu 580 585 590

Ala Val Glu Pro Thr Val Tyr Val Gly Thr Ala Val Asn Leu Glu Glu 595 $$ 600 $$ 605

Asp Glu Ala Asn Ile Ala Trp Lys Tyr Tyr Lys Phe Pro Lys Lys Lys 610 615 620

Asp Val Glu Phe Leu Pro Pro Gln Leu Pro Ser Asp Lys Phe Lys Asp 625 630 635 640

Asp Pro Val Gly Pro Phe Gly Gln Glu Ser Val Thr Ser Val Thr Glu 645 650 655

Leu Met Val Gln Cys Lys Lys Pro Leu Lys Val Ser Asp Glu Leu Val 660 665 670

Gln Gln Tyr Gln Ile Lys Asn Gln Cys Leu Ser Ala Ile Ala Ser Asp 675 680 685

Ala Glu Gln Glu Pro Lys Ile Asp Pro Tyr Ala Phe Val Glu Gly Asp 690 695 700

Glu Glu Phe Leu Phe Pro Asp Lys Lys Asp Arg Gln Asn Ser Glu Arg 705 710 715 720

Glu Ala Gly Lys Lys His Lys Val Glu Asp Gly Thr Ser Ser Val Thr 725 730 735

Val Leu Ser His Glu Glu Asp Ala Met Ser Leu Phe Ser Pro Ser Ile 740 745 750

Lys Gln Asp Ala Pro Arg Pro Thr Ser His Ala Arg Pro Pro Ser Thr 755 760 765

Ser Leu Ile Tyr Asp Ser Asp Leu Ala Val Ser Tyr Thr Asp Leu Asp 770 780

Asn Leu Phe Asn Ser Asp Glu Asp Glu Leu Thr Pro Gly Ser Lys Arg 785 790 795 800

Ser Ala Asn Gly Ser Asp Asp Lys Ala Ser Cys Lys Glu Ser Lys Thr 805 810 815

Gly Asn Leu Asp Pro Leu Ser Cys Ile Ser Thr Ala Asp Leu His Lys 820 825 830

Met Tyr Pro Thr Pro Pro Ser Leu Glu Gln His Ile Met Gly Phe Ser 835 840 845

Pro Met Asn Met Asn Asn Lys Glu Tyr Gly Ser Met Asp Thr Thr Pro 850 $\,$ 860

Gly Gly Thr Val Leu Glu Gly Asn Ser Ser Ser Ile Gly Ala Gln Phe 865 870 875 880

Lys Ile Glu Val Asp Glu Gly Phe Cys Ser Pro Lys Pro Ser Glu Ile 885 890 895

Lys Asp Phe Ser Tyr Val Tyr Lys Pro Glu Asn Cys Gln Ile Leu Val $900 \hspace{1.5cm} 905 \hspace{1.5cm} 910$

Gly Cys Ser Met Phe Ala Pro Leu Lys Thr Leu Pro Ser Gln Tyr Leu 915 920 925

Pro Leu Ile Lys Leu Pro Glu Glu Cys Ile Tyr Arg Gln Ser Trp Thr 930 935 940

Val Gly Lys Leu Glu Leu Leu Ser Ser Gly Pro Ser Met Pro Phe Ile 945 950 955 960

Lys Glu Gly Asp Gly Ser Asn Met Asp Gln Glu Tyr Gly Thr Ala Tyr 965 970 970 975

Thr Pro Gln Thr His Thr Ser Cys Gly Met Pro Pro Ser Ser Ala Pro 980 985 990

Pro Ser Asn Ser Gly Ala Gly Ile Leu Pro Ser Pro Ser Thr Pro Arg 995 1000 1005

Phe Pro Thr Pro Arg Thr Pro Arg Thr Pro Arg Thr Pro Arg Gly 1010 1015 1020

Ala Gly Gly Pro Ala Ser Ala Gln Gly Ser Val Lys Tyr Glu Asn 1025 1030 1035

Ser Asp Leu Tyr Ser Pro Ala Ser Thr Pro Ser Thr Cys Arg Pro 1040 $1040\,$

Leu Asn Ser Val Glu Pro Ala Thr Val Pro Ser Ile Pro Glu Ala 1055 1060 1065

His Ser Leu Tyr Val Asn Leu Ile Leu Ser Glu Ser Val Met Asn 1070 1075 1080

Leu Phe Lys Asp Cys Asn Ser Asp Ser Cys Cys Ile Cys Val Cys 1085 1095 1095

Asn Met Asn Ile Lys Gly Ala Asp Val Gly Val Tyr Ile Pro Asp Page 183

1110

Pro Th	r Gln	Glu A	Ala G	ln :	Tyr	Arg	Cys	Thr	Cys	Gly	Phe	Ser	Ala
						-	-		-				

1105

1100

1113

Val Met Asn Arg Lys Phe Gly Asn Asn Ser Gly Leu Phe Leu Glu 1130 1140

Asp Glu Leu Asp Ile Ile Gly Arg Asn Thr Asp Cys Gly Lys Glu 1145 1150 1155

Ala Glu Lys Arg Phe Glu Ala Leu Arg Ala Thr Ser Ala Glu His 1160 $\,$ 1170

Val Asn Gly Gly Leu Lys Glu Ser Glu Lys Leu Ser Asp Asp Leu 1175 1180 1185

Ile Leu Leu Gln Asp Gln Cys Thr Asn Leu Phe Ser Pro Phe 1190 1195 1200

Asn Trp Val Arg Val Glu Glu Arg Asp Cys Cys Asn Asp Cys Tyr 1220 1225

Leu Ala Leu Glu His Gly Arg Gln Phe Met Asp Asn Met Ser Gly 1235 1240 1245

Gly Lys Val Asp Glu Ala Leu Val Lys Ser Ser Cys Leu His Pro $1250 \hspace{1.5cm} 1260$

Trp Ser Lys Arg Asn Asp Val Ser Met Gln Cys Ser Gln Asp Ile 1265 1270 1275

Leu Arg Met Leu Leu Ser Leu Gln Pro Val Leu Gln Asp Ala Ile 1280 1285 1290

Gln Lys Lys Arg Thr Val Arg Pro Trp Gly Val Gln Gly Pro Leu 1295 1300 1305

Thr Trp Gln Gln Phe His Lys Met Ala Gly Arg Gly Ser Tyr Gly 1310 1315 1320

Thr Asp Glu Ser Pro Glu Pro Leu Pro Ile Pro Thr Phe Leu Leu 1325 1330 1335

Gly Tyr Asp Tyr Asp Tyr Leu Val Leu Ser Pro Phe Ala Leu Pro 1340 1350

Tyr Trp Glu Arg Leu Met Leu Glu Pro Tyr Gly Ser Gln Arg Asp 1355 1360 1365

Ile Ala Tyr Val Val Leu Cys Pro Glu Asn Glu Ala Leu Leu Asn 1370 1375 1380

Gly Ala Lys Ser Phe Phe Arg Asp Leu Thr Ala Ile Tyr Glu Ser 1385 1390 1395

Cys	Arg 1400		Gly	Gln		Arg 1405		Val	Ser	Arg	Leu 1410		Thr	Asp
Gly	Ile 1415	Met	Arg	Val	Gly	Ser 1420	Thr	Ala	Ser	Lys	Lys 1425		Ser	Glu
Lys	Leu 1430	Val	Ala	Glu	Trp	Phe 1435	Ser	Ģln	Ala	Ala	Asp 1440	Gly	Asn	Asn
Glu	Ala 1445	Phe	Ser	Lys	Leu	Lys 1450	Leu	Tyr	Ala	Gln	Val 1455	Cys	Arg	Tyr
Asp	Leu 1460	Gly	Pro	Tyr	Leu	Ala 1465	Ser	Leu	Pro	Leu	Asp 1470		Ser	Leu
Leu	Ser 1475	Gln	Pro	Asn	Leu	Val 1480	Ala	Pro	Thr	Ser	Gln 1485	Ser	Leu	Ile
Thr	Pro 1490		Gln	Met	Thr	Asn 1495		Gly	Asn	Ala	Asn 1500	Thr	Pro	Ser
Ala	Thr 1505		Ala	Ser	Ala	Ala 1510		Ser	Thr	Met	Thr 1515		Thr	Ser
Gly	Val 1520	Ala	Ile	Ser	Thr	Ser 1525	Val	Ala	Thr	Ala	Asn 1530	Ser	Thr	Leu
Thr	Thr 1535	Ala	Ser	Thr	Ser	Ser 1540		Ser	Ser	Ser	Asn 1545	Leu	Asn	Ser
Gly	Val 1550	Ser	Ser	Asn		Leu 1555	Pro	Ser	Phe	Pro	Pro 1560	Phe	Gly	Ser
Met	Asn 1565		Asn	Ala		Gly 1570		Met	Ser		Gln 1575		Asn	Thr
Val	Gln 1580		Gly	Gln	Leu	Gly 1585		Gln	Gln	Thr	Ser 1590	Ala	Leu	Gln
Thr	Ala 1595	Gly	Ile	Ser	Gly	Glu 1600	Ser	Ser	Ser	Leu	Pro 1605	Thr	Gln	Pro
His	Pro 1610	Asp	Val	Ser	Glu	Ser 1615	Thr	Met	Asp	Arg	Asp 1620	Lys	Val _	Gly
Ile	Pro 1625	Thr	Asp	Gly	Asp	Ser 1630	His	Ala	Val	Thr	Туг 1635	Pro	Pro	Ala
Ile	Val 1640	Val	Tyr	Ile	Ile	Asp 1645	Pro	Phe	Thr	Tyr	Glu 1650	Asn	Thr	Asp
Glu	Ser 1655	Thr	Asn	Ser	Ser	Ser 1660	Val	Trp	Thr	Leu	Gly 1665	Leu	Leu	Arg
Cys	Phe 1670	Leu	Glu	Met	Val	Gln 1675	Thr	Leu	Pro	Pro	His 1680	Ile	Lys	Ser

Thr Val Ser Val Gln Ile Ile Pro Cys Gln Tyr Leu Leu Gln Pro 1685 1690 1695

Val	Lys 1700	His	Glu	Asp	Arg	Glu 1705	Ile	Tyr	Pro	Gln	His 1710	Leu	Lys	Ser
	Ala 1715	Phe	Ser	Ala	Phe	Thr 1720	Gln	Суз	Arg	Arg	Pro 1725	Leu	Pro	Thr
Ser	Thr 1730	Asn	Val	Lys	Thr	Leu 1735	Thr	Gly	Phe	Gly	Pro 1740	Gly	Leu	Ala
Met	Glu 1745	Thr	Ala	Leu	Arg	Ser 1750	Pro	Asp	Arg	Pro	Glu 1755	Cys	Ile	Arg
Leu	Tyr 1760	Ala	Pro	Pro	Phe	Ile 1765	Leu	Ala	Pro		Lys 1770		Lys	Gln
Thr	Glu 1775	Leu	Gly	Glu	Thr	Phe 1780	Gly	Glu	Ala	Gly	Gln 1785	Lys	Tyr	Asn
Vál	Leu 1790		Val	Gly		Cys 1795		Ser	His		Gln 1800	Arg	Trp	Ile
Leu	Ala 1805		Cys	Thr	Asp	Leu 1810		Gly	Glu	Leu	Leu 1815	Glu	Thr	Cys
Ile	Ile 1820		Ile	Asp	Val	Pro 1825		Arg	Ala	Arg	Arg 1830		Lys	Ser
Ser	Ala 1835	Arg	Lys	Phe	Gly	Leu 1840	Gln	Lys	Leu	Trp	Glu 1845		Cys	Leu
Gly	Leu 1850		Gln	Met	Ser	Ser 1855	Leu	Pro	Trp	Arg	Val 1860	Val	Ile	Gly
Arg	Leu 1865	Gly	Arg	Ile	Gly	His 1870		Glu	Leu	Lys	Asp 1875		Ser	Cys
Leu	Leu 1880		Arg	Arg	Asn	Leu 1885		Ser	Leu	Ser	Lys 1890		Leu	Lys
Asp	Met 1895	Суз	Arg	Met	Cys	Gly 1900	Ile	Ser	Ala	Ala	Asp 1905	Ser	Pro	Ser
Ile	Leu 1910	Ser	Ala	Суз	Leu	Val 1915		Met	Glu	Pro	Gln 1920	Gly	Ser	Phe
Val	Ile 1925	Met	Pro	Asp	Ser	Val 1930	Ser	Thr	Gly	Ser	Val 1935		Gly	Arg
Ser	Thr 1940		Leu	Asn	Met	Gln 1945		Ser	Gln	Leu	Asn 1950		Pro	Gln
Asp	Thr 1955	Ser	Cys	Thr	His	Ile 1960		Val	Phe	Pro	Thr 1965		Ala	Ser
Val	Gln 1970		Ala	Ser	Ala	Thr 1975		Thr	Thr	Glu	Asn 1980		Asp	Leu
Ala	Phe 1985	Asn	Pro	Asn	Asn	Asp 1990		Ala	Asp	_	Met 1995 ge 18		Ile	Phe

Asp Leu Leu Asp Thr Gly Asp Asp Leu Asp Pro Asp Ile Ile Asn 2000 2005

Ile Leu Pro Ala Ser Pro Thr Gly Ser Pro Val His Ser Pro Gly 2015 2020

Ser His Tyr Pro His Gly Gly Asp Ala Gly Lys Gly Gln Ser Thr 2030 2040

Asp Arg Leu Leu Ser Thr Glu Pro His Glu Glu Val Pro Asn Ile 2045 2055

Leu Gln Gln Pro Leu Ala Leu Gly Tyr Phe Val Ser Thr Ala Lys 2060 2065 2070

Ala Gly Pro Leu Pro Asp Trp Phe Trp Ser Ala Cys Pro Gln Ala 2075 $$ 2080 $$ 2080 $$ 2085 $$

Gln Tyr Gln Cys Pro Leu Phe Leu Lys Ala Ser Leu His Leu His 2090 2095 2100

Val Pro Ser Val Gln Ser Asp Glu Leu Leu His Ser Lys His Ser 2105 2110 2115

His Pro Leu Asp Ser Asn Gln Thr Ser Asp Val Leu Arg Phe Val 2120 2125 2130

Leu Glu Gln Tyr Asn Ala Leu Ser Trp Leu Thr Cys Asp Pro Ala 2135 2140 2145

Thr Gln Asp Arg Arg Ser Cys Leu Pro Ile His Phe Val Val Leu 2150 2155 2160

Asn Gln Leu Tyr Asn Phe Ile Met Asn Met Leu 2165 2170

<210> 127 <211> 415

<211> 415 <212> PRT

<213> Homo sapiens

<400> .127

Met Glu Leu Arg Val Gly Asn Arg Tyr Arg Leu Gly Arg Lys Ile Gly 1 5 10 15

Ser Gly Ser Phe Gly Asp Ile Tyr Leu Gly Thr Asp Ile Ala Ala Gly 20 25 30

Glu Glu Val Ala Ile Lys Leu Glu Cys Val Lys Thr Lys His Pro Gln $35 \hspace{1cm} 40 \hspace{1cm} 45$

Leu His Ile Glu Ser Lys Ile Tyr Lys Met Met Gln Gly Gly Val Gly 50 $\,$

Ile Pro Thr Ile Arg Trp Cys Gly Ala Glu Gly Asp Tyr Asn Val Met 65 70 75 80

Val Met Glu Leu Leu Gly Pro Ser Leu Glu Asp Leu Phe Asn Phe Cys 85 90 95

Ser Arg Lys Phe Ser Leu Lys Thr Val Leu Leu Leu Ala Asp Gln Met 100 105 110Ile Ser Arg Ile Glu Tyr Ile His Ser Lys Asn Phe Ile His Arg Asp 115 120 125 Val Lys Pro Asp Asn Phe Leu Met Gly Leu Gly Lys Lys Gly Asn Leu 130 140 Val Tyr Ile Ile Asp Phe Gly Leu Ala Lys Lys Tyr Arg Asp Ala Arg 145 150 155 160 Thr His Gln His Ile Pro Tyr Arg Glu Asn Lys Asn Leu Thr Gly Thr 165 170 175Ala Arg Tyr Ala Ser Ile Asn Thr His Leu Gly Ile Glu Gln Ser Arg $180 \\ \hspace*{1.5cm} 185 \\ \hspace*{1.5cm} 190 \\ \hspace*{1.5cm}$ Arg Asp Asp Leu Glu Ser Leu Gly Tyr Val Leu Met Tyr Phe Asn Leu 195 200 205 Gly Ser Leu Pro Trp Gln Gly Leu Lys Ala Ala Thr Lys Arg Gln Lys 210 215 220 Tyr Glu Arg Ile Ser Glu Lys Lys Met Ser Thr Pro Ile Glu Val Leu 225 230 240 Cys Lys Gly Tyr Pro Ser Glu Phe Ala Thr Tyr Leu Asn Phe Cys Arg 245 250 255 Ser Leu Arg Phe Asp Asp Lys Pro Asp Tyr Ser Tyr Leu Arg Gln Leu 260 265 270Phe Arg Asn Leu Phe His Arg Gln Gly Phe Ser Tyr Asp Tyr Val Phe 275 280 285 Asp Trp Asn Met Leu Lys Phe Gly Ala Ser Arg Ala Ala Asp Asp Ala 290 295 300 Glu Arg Glu Arg Arg Asp Arg Glu Glu Arg Leu Arg His Ser Arg Asn 305 310 315 320 Pro Ala Thr Arg Gly Leu Pro Ser Thr Asp Ser Gly Arg Leu Arg Gly 325 330 335 Thr Gln Glu Val Ala Pro Pro Thr Pro Leu Thr Pro Thr Ser His Thr 340 345 350Ala Asn Thr Ser Pro Arg Pro Val Ser Gly Met Glu Arg Glu Arg Lys 355 360 365Val Ser Met Arg Leu His Arg Gly Ala Pro Val Asn Ile Ser Ser Ser 370 380 Asp Leu Thr Gly Arg Gln Asp Thr Ser Arg Met Ser Thr Ser Gln Ile 385 390 395 400 Pro Gly Arg Val Ala Ser Ser Gly Leu Gln Ser Val Val His Arg Page 188

405 410 415

<210> 128

<211> 204

<212> PRT

<213> Homo sapiens

<400> 128

Met Thr Glu Trp Glu Thr Ala Ala Pro Ala Val Ala Glu Thr Pro Asp 1 10 15

Ile Lys Leu Phe Gly Lys Trp Ser Thr Asp Asp Val Gln Ile Asn Asp 20 25 30

Ile Ser Leu Gln Asp Tyr Ile Ala Val Lys Glu Lys Tyr Ala Lys Tyr 35 40 45

Leu Pro His Ser Ala Gly Arg Tyr Ala Ala Asn Ala Phe Arg Lys Ala 50 60

Gln Cys Pro Ile Val Glu Arg Leu Thr Asn Ser Met Met His Gly 65 70 75 80

Arg Asn Asn Gly Lys Lys Leu Met Thr Val Arg Ile Val Lys His Ala 85 90 95

Phe Glu Ile Ile His Leu Leu Thr Gly Glu Asn Pro Leu Gln Val Leu 100 105 110

Val Asn Ala Ile Ile Asn Ser Gly Pro Arg Glu Asp Ser Thr Arg Ile 115 120 125

Gly Arg Ala Gly Thr Val Arg Arg Gln Ala Val Asp Val Ser Pro Leu 130 135 140

Arg Arg Val Asn Gln Ala Ile Trp Leu Leu Cys Thr Gly Ala Arg Glu 145 $$ 150 $$ 150 $$ 155 $$ 160

Ala Ala Phe Arg Asn Ile Lys Thr Ile Ala Glu Cys Leu Ala Asp Glu 165 170 175

Leu Ile Asn Ala Ala Lys Gly Ser Ser Asn Ser Tyr Ala Ile Lys Lys 180 185 190

Lys Asp Glu Leu Glu Arg Val Ala Lys Ser Asn Arg 195 200

<210> 129

<211> 694

<212> PRT

<213> Homo sapiens

<400> 129

Met Glu Asn Lys Ser Leu Glu Ser Ser Gln Thr Asp Leu Lys Leu Val 1 $$ 10 $$ 15

Ala His Pro Arg Ala Lys Ser Lys Val Trp Lys Tyr Phe Gly Phe Asp $20 \hspace{1cm} 25 \hspace{1cm} 30$

Thr Asn Ala Glu Gly Cys Ile Leu Gln Trp Lys Lys Ile Tyr Cys Arg $35 \hspace{1cm} 40 \hspace{1cm} 45$

Ile Cys Met Ala Gln Ile Ala Tyr Ser Gly Asn Thr Ser Asn Leu Ser 50 60Tyr His Leu Glu Lys Asn His Pro Glu Glu Phe Cys Glu Phe Val Lys 65 70 75 80 Ser Asn Thr Glu Gln Met Arg Glu Ala Phe Ala Thr Ala Phe Ser Lys 85 90 95 Leu Lys Pro Glu Ser Ser Gln Gln Pro Gly Gln Asp Ala Leu Ala Val 100 105 110Lys Ala Gly His Gly Tyr Asp Ser Lys Lys Gln Gln Glu Leu Thr Ala 115 120 125Ala Val Leu Gly Leu Ile Cys Glu Gly Leu Tyr Pro Ala Ser Ile Val 130 135 140 Asp Glu Pro Thr Phe Lys Val Leu Leu Lys Thr Ala Asp Pro Arg Tyr 145 150 150 155 160 Glu Leu Pro Ser Arg Lys Tyr Ile Ser Thr Lys Ala Ile Pro Glu Lys 165 170 175Tyr Gly Ala Val Arg Glu Val Ile Leu Lys Glu Leu Ala Glu Ala Thr $180 \,\,\,$ Trp Cys Gly Ile Ser Thr Asp Met Trp Arg Ser Glu Asn Gln Asn Arg 195 200 205 Ala Tyr Val Thr Leu Ala Ala His Phe Leu Gly Leu Gly Ala Pro Asn 210 215 220Cys Leu Ser Met Gly Ser Arg Cys Leu Lys Thr Phe Glu Val Pro Glu 225 230 235 240 Glu Asn Thr Ala Glu Thr Ile Thr Arg Val Leu Tyr Glu Val Phe Ile 245 250 255 Glu Trp Gly Ile Ser Ala Lys Val Phe Gly Ala Thr Thr Asn Tyr Gly 260 265 270Lys Asp Ile Val Lys Ala Cys Ser Leu Leu Asp Val Ala Val His Met 275 280 285 Pro Cys Leu Gly His Thr Phe Asn Ala Gly Ile Gln Gln Ala Phe Gln 290 300 Leu Pro Lys Leu Gly Ala Leu Leu Ser Arg Cys Arg Lys Leu Val Glu 305 310 315 320 Tyr Phe Gln Gln Ser Ala Val Ala Met Tyr Met Leu Tyr Glu Lys Gln 325 330 335 Lys Gln Gln Asn Val Ala His Cys Met Leu Val Ser Asn Arg Val Ser 340 345 350Trp Trp Gly Ser Thr Leu Ala Met Leu Gln Arg Leu Lys Glu Gln Gln Page 190

355 360 34

Phe Val Ile Ala Gly Val Leu Val Glu Asp Ser Asn Asn His His Leu 370 375 380

Met Leu Glu Ala Ser Glu Trp Ala Thr Ile Glu Gly Leu Val Glu Leu 385 390 395 400

Leu Gln Pro Phe Lys Gln Val Ala Glu Met Leu Ser Ala Ser Arg Tyr 405 410 415

Pro Thr Ile Ser Met Val Lys Pro Leu Leu His Met Leu Leu Asn Thr 420 425 430

Thr Leu Asn Ile Lys Glu Thr Asp Ser Lys Glu Leu Ser Met Ala Lys $435 \hspace{1.5cm} 440 \hspace{1.5cm} 445$

Glu Val Ile Ala Lys Glu Leu Ser Lys Thr Tyr Gln Glu Thr Pro Glu 450 45550460

Ile Asp Met Phe Leu Asn Val Ala Thr Phe Leu Asp Pro Arg Tyr Lys 465 470 475 480

Arg Leu Pro Phe Leu Ser Ala Phe Glu Arg Gln Gln Val Glu Asn Arg 485 490 495

Val Val Glu Glu Ala Lys Gly Leu Leu Asp Lys Val Lys Asp Gly Gly 500 505 510

Tyr Arg Pro Ala Glu Asp Lys Ile Phe Pro Val Pro Glu Glu Pro Pro 515 520 525

Val Lys Lys Leu Met Arg Thr Ser Thr Pro Pro Pro Ala Ser Val Ile 530 540

Asn Asn Met Leu Ala Glu Ile Phe Cys Gln Thr Gly Gly Val Glu Asp 545 550 555 560

Gln Glu Glu Trp His Ala Gln Val Val Glu Glu Leu Ser Asn Phe Lys 565 570 575

Ser Gln Lys Val Leu Gly Leu Asn Glu Asp Pro Leu Lys Trp Trp Ser 580 585 590

Asp Arg Leu Ala Leu Phe Pro Leu Leu Pro Lys Val Leu Gin Lys Tyr 595 600 605

Trp Cys Val Thr Ala Thr Arg Val Ala Pro Glu Arg Leu Phe Gly Ser 610 615 620

Ala Ala Asn Val Val Ser Ala Lys Arg Asn Arg Leu Ala Pro Ala His 625 630 635 640

Val Asp Glu Gln Val Phe Leu Tyr Glu Asn Ala Arg Ser Gly Ala Glu 645 650 655

Ala Glu Pro Glu Asp Gln Asp Glu Gly Glu Trp Gly Leu Asp Gln Glu 660 665 670

Gln Val Phe Ser Leu Gly Asp Gly Val Ser Gly Gly Fine Fine Gly 11e 675 680 685

Arg Asp Ser Ser Phe Leu 690

<210> 130

<211> 729 <212> PRT

<213> Homo sapiens

<400> 130

Met Gly Lys Lys Tyr Lys Asn Ile Val Leu Leu Lys Gly Leu Glu Val 1 5 5 10 10 15

Ile Asn Asp Tyr His Phe Arg Met Val Lys Ser Leu Leu Ser Asn Asp 20 25 30

Leu Lys Leu Asn Leu Lys Met Arg Glu Glu Tyr Asp Lys Ile Gln Ile $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Ala Asp Leu Met Glu Glu Lys Phe Arg Gly Asp Ala Gly Leu Gly Lys 50 60

Leu Ile Lys Ile Phe Glu Asp Ile Pro Thr Leu Glu Asp Leu Ala Glu 65 70 75 80

Thr Leu Lys Lys Glu Lys Leu Lys Val Lys Gly Pro Ala Leu Ser Arg 85 90 95

Lys Arg Lys Glu Val His Ala Thr Ser Pro Ala Pro Ser Thr Ser 100 \$105\$

Ser Thr Val Lys Thr Glu Gly Ala Glu Ala Thr Pro Gly Ala Gln Lys 115 120 125

Arg Lys Lys Ser Thr Lys Glu Lys Ala Gly Pro Lys Gly Ser Lys Val

Ser Glu Glu Gln Thr Gln Pro Pro Ser Pro Ala Gly Ala Gly Met Ser 145 150 150 155 160

Thr Ala Met Gly Arg Ser Pro Ser Pro Lys Thr Ser Leu Ser Ala Pro 165 170 175

Pro Asn Ser Ser Ser Thr Glu Asn Pro Lys Thr Val Ala Lys Cys Gln 180 185 190

Val Thr Pro Arg Arg Asn Val Leu Gln Lys Arg Pro Val Ile Val Lys 195 200 205

Val Leu Ser Thr Thr Lys Pro Phe Glu Tyr Glu Thr Pro Glu Met Glu 210 215 220

Lys Lys Ile Met Phe His Ala Thr Val Ala Thr Gln Thr Gln Phe Phe 225 230 235 240

His Val Lys Val Leu Asn Thr Ser Leu Lys Glu Lys Phe Asn Gly Lys 245 250 255

- Lys Ile Ile Ile Ser Asp Tyr Leu Giu Tyr Asp Ser Leu Leu Giu 260 265 270
- Val Asn Glu Glu Ser Thr Val Ser Glu Ala Gly Pro Asn Gln Thr Phe 275 280 285
- Glu Val Pro Asn Lys Ile Ile Asn Arg Ala Lys Glu Thr Leu Lys Ile 290 295 300
- Asp Ile Leu His Lys Gln Ala Ser Gly Asn Ile Val Tyr Gly Val Phe 305 310 315 320
- Met Leu His Lys Lys Thr Val Asn Gln Lys Thr Thr Ile Tyr Glu Ile 325 330 335
- Gln Asp Asp Arg Gly Lys Met Asp Val Val Gly Thr Gly Gln Cys His $340 \hspace{1.5cm} 345 \hspace{1.5cm} 350$
- Asn Ile Pro Cys Glu Glu Gly Asp Lys Leu Gln Leu Phe Cys Phe Arg $355 \hspace{1cm} 360 \hspace{1cm} 365$
- Leu Arg Lys Lys Asn Gln Met Ser Lys Leu Ile Ser Glu Met His Ser 370 380
- Phe Ile Gln Ile Lys Lys Lys Thr Asn Pro Arg Asn Asn Asp Pro Lys 385 390 395 400
- Ser Met Lys Leu Pro Gln Glu Gln Arg Gln Leu Pro Tyr Pro Ser Glu 405 410 415
- Ala Ser Thr Thr Phe Pro Glu Ser His Leu Arg Thr Pro Gln Met Pro 420 425 430
- Pro Thr Thr Pro Ser Ser Ser Phe Phe Thr Lys Lys Ser Glu Asp Thr 435 440 445
- Ile Ser Lys Met Asn Asp Phe Met Arg Met Gln Ile Leu Lys Glu Gly 450 455 460
- Ser His Phe Pro Gly Pro Phe Met Thr Ser Ile Gly Pro Ala Glu Ser 465 470 475 480
- His Pro His Thr Pro Gln Met Pro Pro Ser Thr Pro Ser Ser Ser Phe 485 490 495
- Leu Thr Thr Leu Lys Pro Arg Leu Lys Thr Glu Pro Glu Glu Val Ser 500 505 510
- Ile Glu Asp Ser Ala Gln Ser Asp Leu Lys Glu Val Met Val Leu Asn 515 525 525
- Ala Thr Glu Ser Phe Val Tyr Glu Pro Lys Glu Gln Lys Lys Met Phe 530 540
- His Ala Thr Val Ala Thr Glu Asn Glu Val Phe Arg Val Lys Val Phe 545 550 560
- Asn Ile Asp Leu Lys Glu Lys Phe Thr Pro Lys Lys Ile Ile Ala Ile 565 570 575

Ala Asn Tyr Val Cys Arg Asn Gly Phe Leu Glu Val Tyr Pro Phe Thr 580 . 585 585

Leu Val Ala Asp Val Asn Ala Asp Arg Asn Met Glu Ile Pro Lys Gly 595 600 605

Leu Ile Arg Ser Ala Ser Val Thr Pro Lys Ile Asn Gln Leu Cys Ser 610 615 620

Gln Thr Lys Gly Ser Phe Val Asn Gly Val Phe Glu Val His Lys Lys 625 630 635 640

Asn Val Arg Gly Glu Phe Thr Tyr Tyr Glu Ile Gln Asp Asn Thr Gly 645 650 655

Lys Met Glu Val Val Val His Gly Arg Leu Asn Thr Ile Asn Cys Glu $660 \hspace{1.5cm} 665 \hspace{1.5cm} 670 \hspace{1.5cm}$

Glu Gly Asp Lys Leu Lys Leu Thr Ser Phe Glu Leu Ala Pro Lys Ser 675 $\,$ 680 $\,$ 685

Gly Asn Thr Gly Glu Leu Arg Ser Val Ile His Ser His Ile Lys Val $690 \hspace{1.5cm} 695 \hspace{1.5cm} 700$

Ile Lys Thr Arg Lys Asn Lys Lys Asp Ile Leu Asn Pro Asp Ser Ser 705 710 715 720

Met Glu Thr Ser Pro Asp Phe Phe Phe 725

<210>

<211> 216

<212> PRT

<213> Homo sapiens

<400> 131

Met Leu Arg Leu Ser Glu Arg Asn Met Lys Val Leu Leu Ala Ala Ala 1 5 10 15

Leu Ile Ala Gly Ser Val Phe Phe Leu Leu Leu Pro Gly Pro Ser Ala 20 25 30

Ala Asp Glu Lys Lys Lys Gly Pro Lys Val Thr Val Lys Val Tyr Phe $35 \hspace{1cm} 40 \hspace{1cm} 45$

Asp Leu Arg Ile Gly Asp Glu Asp Val Gly Arg Val Ile Phe Gly Leu 50 60

Phe Gly Lys Thr Val Pro Lys Thr Val Asp Asn Phe Val Ala Leu Ala 65 70 75 80

Thr Gly Glu Lys Gly Phe Gly Tyr Lys Asn Ser Lys Phe His Arg Val 85 90 95

Ile Lys Asp Phe Met Ile Gln Gly Gly Asp Phe Thr Arg Gly Asp Gly 100 105 110

Thr Gly Gly Lys Ser Ile Tyr Gly Glu Arg Phe Pro Asp Glu Asn Phe 115 120 125

Lys Leu Lys His Tyr Gly Pro Gly Trp Val Ser Met Ala Asn Ala Gly 130 135 140

Lys Asp Thr Asn Gly Ser Gln Phe Phe Ile Thr Thr Val Lys Thr Ala 145 150 155 160

Trp Leu Asp Gly Lys His Val Val Phe Gly Lys Val Leu Glu Gly Met 165 170 175

Glu Val Val Arg Lys Val Glu Ser Thr Lys Thr Asp Ser Arg Asp Lys 180 185 190

Pro Leu Lys Asp Val Ile Ile Ala Asp Cys Gly Lys Ile Glu Val Glu 195 200 205

Lys Pro Phe Ala Ile Ala Lys Glu 210 215

<210> 132

211> 208

<212> PRT

<213> Homo sapiens

<400> 132

Met Lys Leu Leu Pro Ser Val Val Leu Lys Leu Phe Leu Ala Ala Val 1 10 15

Leu Ser Ala Leu Val Thr Gly Glu Ser Leu Glu Arg Leu Arg Gly 20 25. 30

Leu Ala Ala Gly Thr Ser Asn Pro Asp Pro Pro Thr Val Ser Thr Asp $35 \ \ \, 40 \ \ \, 45$

Gln Leu Leu Pro Leu Gly Gly Gly Arg Asp Arg Lys Val Arg Asp Leu 50 55 60

Gln Glu Ala Asp Leu Asp Leu Leu Arg Val Thr Leu Ser Ser Lys Pro 65 70 75 80

Gln Ala Leu Ala Thr Pro Asn Lys Glu Glu His Gly Lys Arg Lys Lys 85 90 95

Lys Gly Lys Gly Leu Gly Lys Lys Arg Asp Pro Cys Leu Arg Lys Tyr 100 105 110

Lys Asp Phe Cys Ile His Gly Glu Cys Lys Tyr Val Lys Glu Leu Arg 115 120 125

Ala Pro Ser Cys Ile Cys His Pro Gly Tyr His Gly Glu Arg Cys His 130 135 140

Gly Leu Ser Leu Pro Val Glu Asn Arg Leu Tyr Thr Tyr Asp His Thr 145 150 155 160

Thr Ile Leu Ala Val Val Ala Val Val Leu Ser Ser Val Cys Leu Leu 165 170 175

Val Ile Val Gly Leu Leu Met Phe Arg Tyr His Arg Arg Gly Gly Tyr 180 185 190

Asp Val Glu Asn Glu Glu Lys Val Lys Leu Gly Met Thr Asn Ser His 195 200 205

<210> 13

<211> 178 <212> PRT

<213> Homo sapiens

<400> 133

Met Thr Thr Leu Arg Ala Phe Thr Cys Asp Asp Leu Phe Arg Phe Asn 1 $$ 10 $$ 15

Leu Gln Tyr Leu Ala His Trp Pro Glu Tyr Phe Ile Val Ala Glu Ala . 35 40 40 45

Pro Gly Gly Glu Leu Met Gly Tyr Ile Met Gly Lys Ala Glu Gly Ser 50 60

Val Ala Arg Glu Glu Trp His Gly His Val Thr Ala Leu Ser Val Ala 65 70 75 80

Pro Glu Phe Arg Arg Leu Gly Leu Ala Ala Lys Leu Met Glu Leu Leu 95 90 95

Glu Glu Ile Ser Glu Arg Lys Gly Gly Phe Phe Val Asp Leu Phe Val 100 105 110

Arg Val Ser Asn Gln Val Ala Val Asn Met Tyr Lys Gln Leu Gly Tyr 115 120 125

Ser Val Tyr Arg Thr Val Ile Glu Tyr Tyr Ser Ala Ser Asn Gly Glu 130 $\,$ 140

Pro Asp Glu Asp Ala Tyr Asp Met Arg Lys Ala Leu Ser Arg Asp Thr 145 150 150 155 160

Glu Lys Lys Ser Ile Ile Pro Leu Pro His Pro Val Arg Pro Glu Asp 165 170 175

Ile Glu

<210> 134

<211> 185

<213> Homo sapiens

<400> 134

Met Gly Pro Glu Arg His Leu Ser Gly Ala Pro Ala Arg Met Ala Thr 1 $$ 5 $$ 10 $$ 15

Val Val Leu Gly Gly Asp Thr Met Gly Pro Glu Arg Ile Phe Pro Asn $20 \hspace{1cm} 25 \hspace{1cm} 30$

Gln Thr Glu Glu Leu Gly His Gln Gly Pro Ser Glu Gly Thr Gly Asp $35 \hspace{1cm} 40 \hspace{1cm} 45$

Trp Ser Ser Glu Glu Pro Glu Glu Glu Gin Giu Giu Thr Giy Ser Giy 50 . 55 60

Pro Ala Gly Tyr Ser Tyr Gln Pro Leu Asn Gln Asp Pro Glu Gln Glu 65 70 75 80

Glu Val Glu Leu Ala Pro Val Gly Asp Gly Asp Val Val Ala Asp Ile 85 90 95

Gln Asp Arg Ile Gln Ala Leu Gly Leu His Leu Pro Asp Pro Pro Leu 100 105 110

Glu Ser Glu Asp Glu Asp Glu Glu Glu Gly Ala Thr Ala Leu Asn Asn His 115 120 125

Met Ala Gly Val Ser Leu Pro Ala Pro Gly Val Pro Ala Trp Ala Arg 145 150 150 155 160

Glu Ile Ser Asp Ala Gln Trp Glu Asp Val Val Gln Lys Ala Leu Gln 165 170 175

Ala Arg Gln Ala Ser Pro Ala Trp Lys 180 185

<210> 135 <211> 397

PRT Homo sapiens

Met Asn Ala Gly Ser Asp Pro Val Val Ile Val Ser Ala Ala Arg Thr 1 $$ 5 $$ 10 $$ 15

Ile Ile Gly Ser Phe Asn Gly Ala Leu Ala Ala Val Pro Val Gln Asp $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Leu Gly Ser Thr Val Ile Lys Glu Val Leu Lys Arg Ala Thr Val Ala 35 404045

Pro Glu Asp Val Ser Glu Val Ile Phe Gly His Val Leu Ala Ala Gly 50 55

Cys Gly Gln Asn Pro Val Arg Gln Ala Ser Val Gly Ala Gly IIe Pro 65 70 75 80

Tyr Ser Val Pro Ala Trp Ser Cys Gln Met Ile Cys Gly Ser Gly Leu 85 90 95

Lys Ala Val Cys Leu Ala Val Gln Ser Ile Gly Ile Gly Asp Ser Ser 100 105 110

Ile Val Val Ala Gly Gly Met Glu Asn Met Ser Lys Ala Pro His Leu 115 120 125

Ala Tyr Leu Arg Thr Gly Val Lys Ile Gly Glu Met Pro Leu Thr Asp 130 135 140

Ser Ile Leu Cys Asp Gly Leu Thr Asp Ala Phe His Asn Cys His Met 145 150 160

Gly Ile Thr Ala Glu Asn Val Ala Thr Lys Trp Gln Val Ser Arg Glu 165 170 175

Asp Gln Asp Lys Val Ala Val Leu Ser Gln Asn Arg Thr Glu Asn Ala 180 185 190

Gln Lys Ala Gly His Phe Asp Lys Glu Ile Val Pro Val Leu Val Ser 195 200 205

Thr Arg Lys Gly Leu Ile Glu Val Lys Thr Asp Glu Phe Pro Arg His 210 215 220

Gly Ser Asn Ile Glu Ala Met Ser Lys Leu Lys Pro Tyr Phe Leu Thr 225 230 235 240

Asp Gly Thr Gly Thr Val Thr Pro Ala Asn Ala Ser Gly Ile Asn Asp 245 250 255

Gly Ala Ala Ala Val Ala Leu Met Lys Lys Ser Glu Ala Asp Lys Arg 260 265 270

Gly Leu Thr Pro Leu Ala Arg Ile Val Ser Trp Ser Gln Val Gly Val $275 \hspace{1cm} 280 \hspace{1cm} 285$

Glu Pro Ser Ile Met Gly Ile Gly Pro Ile Pro Ala Ile Lys Gln Ala 290 295 300

Val Thr Lys Ala Gly Trp Ser Leu Glu Asp Val Asp Ile Phe Glu Ile 305 310 315 320

Asn Glu Ala Phe Ala Ala Val Ser Ala Ala Ile Val Lys Glu Leu Gly 325 330330335

Leu Asn Pro Glu Lys Val Asn Ile Glu Gly Gly Ala Ile Ala Leu Gly 340 345 350

His Pro Leu Gly Ala Ser Gly Cys Arg Ile Leu Val Thr Leu Leu His $355 \hspace{1.5cm} 360 \hspace{1.5cm} 365$

Thr Leu Glu Arg Met Gly Arg Ser Arg Gly Val Ala Ala Leu Cys Ile 370 380

Gly Gly Gly Met Gly Ile Ala Met Cys Val Gln Arg Glu 385 $$ 390 $$ 395

Z2105 136

<211> 556

<213> Homo sapiens

<400> 136

Met Glu Gly Pro Leu Ser Val Phe Gly Asp Arg Ser Thr Gly Glu Thr 1 5 10 15

Ile Arg Ser Gln Asn Val Met Ala Ala Ala Ser Ile Ala Asn Ile Val 20 25 30 Lys Ser Ser Leu Gly Pro Val Gly Leu Asp Lys Met Leu Val Asp Asp 35 40 45

Ile Gly Asp Val Thr Ile Thr Asn Asp Gly Ala Thr Ile Leu Lys Leu 50 60

Leu Glu Val Glu His Pro Ala Ala Lys Val Leu Cys Glu Leu Ala Asp 65 70 75 80

Leu Gln Asp Lys Glu Val Gly Asp Gly Thr Thr Ser Val Val Ile Ile 85 90 95

Ala Ala Glu Leu Leu Lys Asn Ala Asp Glu Leu Val Lys Gln Lys Ile 100 105 110

His Pro Thr Ser Val Ile Ser Gly Tyr Arg Leu Ala Cys Lys Glu Ala 115 120 125

Val Arg Tyr Ile Asn Glu Asn Leu Ile Val Asn Thr Asp Glu Leu Gly 130 135 140

Arg Asp Cys Leu Ile Asn Ala Ala Lys Thr Ser Met Ser Ser Lys Ile 145 : 150 : 155 : 160

Ile Gly Ile Asn Gly Asp Phe Phe Ala Asn Met Val Val Asp Ala Val 165 170 175

Leu Ala Ile Lys Tyr Thr Asp Ile Arg Gly Gln Pro Arg Tyr Pro Val

Asn Ser Val Asn Ile Leu Lys Ala His Gly Arg Ser Gli Met Glu Ser 195 200 205

Met Leu Ile Ser Gly Tyr Ala Leu Asn Cys Val Val Gly Ser Gln Gly 210 215 220

Met Pro Lys Arg Ile Val Asn Ala Lys Ile Ala Cys Leu Asp Phe Ser 225 230 235 240

Leu Gln Lys Thr Lys Met Lys Leu Gly Val Gln Val Val Ile Thr Asp 245 $$ 250 $$ 255

Pro Glu Lys Leu Asp Gln Ile Arg Gln Arg Glu Ser Asp Ile Thr Lys 260 265 270

Glu Arg Ile Gln Lys Ile Leu Ala Thr Gly Ala Asn Val Ile Leu Thr $275 \hspace{1.5cm} 280 \hspace{1.5cm} 285$

Thr Gly Gly Ile Asp Asp Met Cys Leu Lys Tyr Phe Val Glu Ala Gly 290 295 300

Ala Met Ala Val Arg Arg Val Leu Lys Arg Asp Leu Lys Arg Ile Ala 305 310 315 320

Lys Ala Ser Gly Ala Thr Ile Leu Ser Thr Leu Ala Asn Leu Glu Gly 325 330 335

Glu Glu Thr Phe Glu Ala Ala Met Leu Gly Gln Ala Glu Glu Val Val 340 345 350

Gln Glu Arg Ile Cys Asp Asp Glu Leu Ile Leu Ile Lys Asn Thr Lys 355 360 365

Ala Arg Thr Ser Ala Ser Ile Ile Leu Arg Gly Ala Asn Asp Phe Met 370 380

Cys Asp Glu Met Glu Arg Ser Leu His Asp Ala Leu Cys Val Val Lys 385 390 395 400

Arg Val Leu Glu Ser Lys Ser Val Val Pro Gly Gly Gly Ala Val Glu 405 410 415

Ala Ala Leu Ser Ile Tyr Leu Glu Asn Tyr Ala Thr Ser Met Gly Ser 420 425 430

Arg Glu Gln Leu Ala Ile Ala Glu Phe Ala Arg Ser Leu Leu Val Ile 435 440 445

Ala Lys Leu Arg Ala Phe His Asn Glu Ala Gln Val Asn Pro Glu Arg 465 470 480

Lys Asn Leu Lys Trp Ile Gly Leu Asp Leu Ser Asn Gly Lys Pro Arg 485 490 490 495

Asp Asn Lys Gln Ala Gly Val Phe Glu Pro Thr Ile Val Lys Val Lys 500 505 510

Ser Leu Lys Phe Ala Thr Glu Ala Ala Ile Thr Ile Leu Arg Ile Asp 515 520 525

Asp Leu Ile Lys Leu His Pro Glu Ile Leu Arg Ile Lys His Gly Ser 530 540

Tyr Glu Asp Ala Val His Ser Gly Ala Leu Asn Asp 545 555 555

<210> 137

<211> 266

<212> PRT <213> Homo sapiens

<400> 137

Met Pro Lys Gly Lys Lys Ala Lys Gly Lys Lys Val Ala Pro Ala Pro 1 5 10 15

Ala Val Val Lys Lys Gln Glu Ala Lys Lys Val Val Asn Pro Leu Phe 20 25 30

Glu Lys Arg Pro Lys Asn Phe Gly Ile Gly Gln Asp Ile Gln Pro Lys $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Arg Asp Leu Thr Arg Phe Val Lys Trp Pro Arg Tyr Ile Arg Leu Gln 50 60

Arg Gln Arg Ala Ile Leu Tyr Lys Arg Leu Lys Val Pro Pro Ala Ile 65 70 75 80

Asn Gln Phe Thr Gln Ala Leu Asp Arg Gln Thr Ala Thr Gln Leu Leu 85 90 95

Lys Leu Ala His Lys Tyr Arg Pro Glu Thr Lys Gln Glu Lys Lys Gln 100 105 110

Arg Leu Leu Ala Arg Ala Glu Lys Lys Ala Ala Gly Lys Gly Asp Val 115 120 125

Pro Thr Lys Arg Pro Pro Val Leu Arg Ala Gly Val Asn Thr Val Thr 130 135 140

Thr Leu Val Glu Asn Lys Lys Ala Gln Leu Val Val Ile Ala His Asp 145 150 155 160

Val Asp Pro Ile Glu Leu Val Val Phe Leu Pro Ala Leu Cys Arg Lys 165 170 175

Met Gly Val Pro Tyr Cys Ile Ile Lys Gly Lys Ala Arg Leu Gly Arg 180 185 190

Leu Val His Arg Lys Thr Cys Thr Thr Val Ala Phe Thr Gln Val Asn 195 200

Ser Glu Asp Lys Gly Ala Leu Ala Lys Leu Val Glu Ala Ile Arg Thr 210 215 220

Asn Tyr Asn Asp Arg Tyr Asp Glu Ile Arg Arg His Trp Gly Gly Asn 225 230 235 240

Val Leu Gly Pro Lys Ser Val Ala Arg Ile Ala Lys Leu Glu Lys Ala 245 250 255

Lys Ala Lys Glu Leu Ala Thr Lys Leu Gly 260 265

<210> 138

<211> 160

<212> PRT

<213> Homo sapiens

<400> 138

Met Asp Cys Gln Asn Gly His Gln His Ile Ser Gln Glu Leu Glu Val 1 5 10 15

Leu Arg Ile His Met Gln Leu Val Thr Val Gln Phe Thr Gln Leu Gly 20 25 30

Lys Gly Ala Leu Glu Ile Ile Gln Val Leu Cys Gly Ile Ser Gln Gly $35 \hspace{1cm} 40 \hspace{1cm} 45 \hspace{1cm}$

Ser Gln His Leu Leu Ala Met Cys Leu Asp Phe Gly Val Ala His Asp 50 60

Gly Arg Gly Arg Gln Val Ala Lys Ala Val Lys Glu Pro Leu Gly 65 70 75 80

Pro Trp Val Asp Asn Gln Glu Pro Ser Gln Gly Phe Ser Ser Ser Ile $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Phe His Ile His Leu Ala Pro Gln Ala Cys Asp Ser Ser Leu Val Leu 100 105 110

Leu Cys Glu Met Thr His Gly Val Trp Thr Arg Ser Leu Leu Ile Thr 115 $$\rm 120$$

Ser Asp Val Pro Glu Ala Ser Val Thr Gln Ile Leu Leu Cys Ala Met 130 135 140

Trp Thr Leu Pro Ser His Ala Thr Thr Arg Glu Leu Thr Gln Trp Val 145 150150155160

<210> 139

<211> 172

<212> PRT

<213> Homo sapiens

<400> 139

Met Ile Ile Tyr Arg Asp Leu Ile Ser His Asp Glu Met Phe Ser Asp 1 10 15

Gly Lys Met Val Ser Arg Thr Glu Gly Asn Ile Asp Asp Ser Leu Ile $35 \hspace{1cm} 40 \hspace{1cm} 45$

Gly Gly Asn Ala Ser Ala Glu Gly Pro Glu Gly Glu Gly Thr Glu Ser 50

Thr Val Ile Thr Gly Val Asp Ile Val Met Asn His His Leu Gln Glu 65 70 75 80

Thr Ser Phe Thr Lys Glu Ala Tyr Lys Lys Tyr Ile Lys Asp Tyr Met $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Lys Ser Ile Lys Gly Lys Leu Glu Glu Gln Arg Pro Glu Arg Val Lys 100 105 110

Pro Phe Met Thr Gly Ala Ala Glu Gln Ile Lys His Ile Leu Ala Asn 115 120 125

Phe Lys Asn Tyr Gln Phe Phe Ile Gly Glu Asn Met Asn Pro Asp Gly 130 135 140

Met Val Ala Leu Leu Asp Tyr Arg Glu Asp Gly Val Thr Pro Tyr Met 145 150 150 160

Ile Phe Phe Lys Asp Gly Leu Glu Met Glu Lys Cys 165 170

<210> 140

<211> 133 <212> PRT

<213> Homo sapiens

<400> 140

Leu Leu Gln Arg Lys Gln Met Val Ile Asp var Leu His Pro Gry Lys 20 25 30

Ala Thr Val Pro Lys Thr Glu Ile Arg Glu Lys Leu Ala Lys Met Tyr $35 \hspace{1cm} 40 \hspace{1cm} 45$

Lys Thr Thr Pro Asp Val Ile Phe Val Phe Gly Phe Arg Thr His Phe 50 55 60

Gly Gly Gly Lys Thr Thr Gly Phe Gly Met Ile Tyr Asp Ser Leu Asp 65 70 80

Tyr Ala Lys Lys Asn Glu Pro Lys His Arg Leu Ala Arg His Gly Leu 85 90 95

Tyr Glu Lys Lys Lys Thr Ser Arg Lys Gln Arg Lys Glu Arg Lys Asn 100 105 110

Arg Met Lys Lys Val Arg Gly Thr Ala Lys Ala Asn Val Gly Ala Gly 115 120 125

Lys Lys Pro Lys Glu 130

<210> 141

211> 604

<212> PRT <213> Homo sapiens

<400> 141

Met Asn Ile Val Glu Asn Ser Ile Phe Leu Ser Asn Leu Met Lys Ser 1 10 15

Ala Tyr Thr Phe Glu Leu Lys Tyr Asp Leu Ser Cys Glu Leu Tyr Arg 20 25 30

Met Ser Thr Tyr Ser Thr Phe Pro Ala Gly Val Pro Val Ser Glu Arg 35 40 45

Ser Leu Ala Arg Ala Gly Phe Tyr Tyr Thr Gly Val Asn Asp Lys Val 50 $\,$ 60 \cdot

Lys Cys Phe Cys Cys Gly Leu Met Leu Asp Asn Trp Lys Arg Gly Asp 65 70 75 80

Ser Pro Thr Glu Lys His Lys Lys Leu Tyr Pro Ser Cys Arg Phe Val 85 90 95

Phe Pro Ser Ser Val Thr Asn Ser Thr His Ser Leu Leu Pro Gly Thr 115 125

Glu Asn Ser Gly Tyr Phe Arg Gly Ser Tyr Ser Asn Ser Pro Ser Asn 130 135 140

Pro Val Asn Ser Arg Ala Asn Gln Asp Phe Ser Ala Leu Met Arg Ser 145 150 155 160 Ser Tyr His Cys Ala Met Asn Asn Glu Asn Ala Arg Leu Leu Thr Phe 165 170 175

Gln Thr Trp Pro Leu Thr Phe Leu Ser Pro Thr Asp Leu Ala Lys Ala 180 185 190

Gly Phe Tyr Tyr Ile Gly Pro Gly Asp Arg Val Ala Cys Phe Ala Cys 195 200 205

Gly Gly Lys Leu Ser Asn Trp Glu Pro Lys Asp Asn Ala Met Ser Glu 210 225 220

His'Leu Arg His Phe Pro Lys Cys Pro Phe Ile Glu Asn Gln Leu Gln 225 230 240

Asp Thr Ser Arg Tyr Thr Val Ser Asn Leu Ser Met Gln Thr His Ala 245 250 255

Ala Arg Phe Lys Thr Phe Phe Asn Trp Pro Ser Ser Val Leu Val Asn 260 265 270

Pro Glu Gln Leu Ala Ser Ala Gly Phe Tyr Tyr Val Gly Asn Ser Asp 275 280 285

Asp Val Lys Cys Phe Cys Cys Asp Gly Gly Leu Arg Cys Trp Glu Ser 290 300

Gly Asp Asp Pro Trp Val Gln His Ala Lys Trp Phe Pro Arg Cys Glu 305 310 315 320

Tyr Leu Ile Arg Ile Lys Gly Gln Glu Phe Ile Arg Gln Val Gln Ala 325 330 335

Ser Tyr Pro His Leu Leu Glu Gln Leu Leu Ser Thr Ser Asp Ser Pro 340 345 350

Gly Asp Glu Asn Ala Glu Ser Ser Ile Ile His Phe Glu Pro Gly Glu 355 360365

Asp His Ser Glu Asp Ala Ile Met Met Asn Thr Pro Val Ile Asn Ala 370 375375

Ala Val Glu Met Gly Phe Ser Arg Ser Leu Val Lys Gln Thr Val Gln 385 390 395 400

Arg Lys Ile Leu Ala Thr Gly Glu Asn Tyr Arg Leu Val Asn Asp Leu 405 410 415

Val Leu Asp Leu Leu Asn Ala Glu Asp Glu Ile Arg Glu Glu Glu Arg 420 425 430

Glu Arg Ala Thr Glu Glu Lys Glu Ser Asn Asp Leu Leu Leu Ile Arg 435 440 445

Lys Asn Arg Met Ala Leu Phe Gln His Leu Thr Cys Val Ile Pro Ile 450 455 460

Leu Asp Ser Leu Leu Thr Ala Gly Ile Ile Asn Glu Gln Glu His Asp 465 470 475 480

Val Ile Lys Gln Lys Thr Gln Thr Ser Leu Gln Ala Arg Glu Leu Ile 485 $^{\circ}$ 490 $^{\circ}$ 495

Asp Thr Ile Leu Val Lys Gly Asn Ile Ala Ala Thr Val Phe Arg Asn $500 \hspace{1.5cm} 505 \hspace{1.5cm} 510$

Ser Leu Gln Glu Ala Glu Ala Val Leu Tyr Glu His Leu Phe Val Gln $515 \hspace{1.5cm} 525 \hspace{1.5cm}$

Gln Asp Ile Lys Tyr Ile Pro Thr Glu Asp Val Ser Asp Leu Pro Val 530 535 540

Glu Glu Gln Leu Arg Arg Leu Gln Glu Glu Arg Thr Cys Lys Val Cys 545 550 555 560

Met Asp Lys Glu Val Ser Ile Val Phe Ile Pro Cys Gly His Leu Val 565 570 575

Val Cys Lys Asp Cys Ala Pro Ser Leu Arg Lys Cys Pro Ile Cys Arg 580 585 590

Ser Thr Ile Lys Gly Thr Val Arg Thr Phe Leu Ser 595 600

<210> 142

<211> 624

<212> PRT

<213> Homo sapiens

<400> 142

Met Gln Pro Asp Pro Arg Pro Ser Gly Ala Gly Ala Cys Cys Arg Phe 1 5 10 15

Leu Pro Leu Gln Ser Gln Cys Pro Glu Gly Ala Gly Asp Ala Val Met $20 \hspace{1cm} 25 \hspace{1cm} 30$

Tyr Ala Ser Thr Glu Cys Lys Ala Glu Val Thr Pro Ser Gln His Gly $35 \hspace{1cm} 40 \hspace{1cm} 45$

As Arg Thr Phe Ser Tyr Thr Leu Glu Asp His Thr Lys Gln Ala Phe 50 $\,$ 60 $\,$

Gly Ile Met Asn Glu Leu Arg Leu Ser Gln Gln Leu Cys Asp Val Thr 65 70 75 80

Leu Gln Val Lys Tyr Gln Asp Ala Pro Ala Ala Gln Phe Met Ala His 90 90 95

Lys Val Val Leu Ala Ser Ser Ser Pro Val Phe Lys Ala Met Phe Thr $100 \hspace{1cm} 105 \hspace{1cm} 110$

Asn Gly Leu Arg Glu Gln Gly Met Glu Val Val Ser Ile Glu Gly Ile 115 120 125

His Pro Lys Val Met Glu Arg Leu Ile Glu Phe Ala Tyr Thr Ala Ser 130 135 140

Ile Ser Met Gly Glu Lys Cys Val Leu His Val Met Asn Gly Ala Val 145 150150155

Met Tyr Gln Ile Asp Ser Val Val Arg Ala Cys Ser Asp Phe Leu Val 165 170 175Gln Gln Leu Asp Pro Ser Asn Ala Ile Gly Ile Ala Asn Phe Ala Glu 180 185 190 Gln Ile Gly Cys Val Glu Leu His Gln Arg Ala Arg Glu Tyr Ile Tyr 195 200 205 Met His Phe Gly Glu Val Ala Lys Gln Glu Glu Phe Phe Asn Leu Ser 210 215 220 His Cys Gln Leu Val Thr Leu Ile Ser Arg Asp Asp Leu Asn Val Arg 225 230 235 240 Cys Glu Ser Glu Val Phe His Ala Cys Ile Asn Trp Val Lys Tyr Asp $245 \hspace{1.5cm} 250 \hspace{1.5cm} 255 \hspace{1.5cm}$ Cys Glu Gln Arg Arg Phe Tyr Val Gln Ala Leu Leu Arg Ala Val Arg 260 265 270Cys His Ser Leu Thr Pro Asn Phe Leu Gln Met Gln Leu Gln Lys Cys 275 280 285Glu Ile Leu Gln Ser Asp Ser Arg Cys Lys Asp Tyr Leu Val Lys Ile 290 295 300 Phe Glu Glu Leu Thr Leu His Lys Pro Thr Gln Val Met Pro Cys Arg 305 310 315 320 Ala Pro Lys Val Gly Arg Leu Ile Tyr Thr Ala Gly Gly Tyr Phe Arg 325 330 335 Gln Ser Leu Ser Tyr Leu Glu Ala Tyr Asn Pro Ser Asn Gly Thr Trp 340 345 350Leu Arg Leu Ala Asp Leu Gln Val Pro Arg Ser Gly Leu Ala Gly Cys 355 360 365Val Val Gly Gly Leu Leu Tyr Ala Val Gly Gly Arg Asn Asn Ser Pro 370 375 380 Asp Gly Asn Thr Asp Ser Ser Ala Leu Asp Cys Tyr Asn Pro Met Thr 385 390 395 400

Gly Val Gly Val Ile Asp Gly His Ile Tyr Ala Val Gly Gly Ser His
420 425 430

Asn Gln Trp Ser Pro Cys Ala Pro Met Ser Val Pro Arg Asn Arg Ile 405 410 415

Gly Cys Ile His His Asn Ser Val Glu Arg Tyr Glu Pro Glu Arg Asp 435 440 445

Glu Trp His Leu Val Ala Pro Met Leu Thr Arg Arg Ile Gly Val Gly 450 455 460

Val Ala Val Leu Asn Arg Leu Leu Tyr Ala Val Gly Gly Phe Asp Gly 465 470 475 480

Thr Asn Arg Leu Asn Ser Ala Glu Cys Tyr Tyr Pro Glu Arg Asn Glu
485 490 495

Trp Arg Met Ile Thr Ala Met Asn Thr Ile Arg Ser Gly Ala Gly Val $500 \hspace{1.5cm} 505 \hspace{1.5cm} 510$

Cys Val Leu His Asn Cys Ile Tyr Ala Ala Gly Gly Tyr Asp Gly Gln $515 \hspace{1.5cm} 520 \hspace{1.5cm} 525$

Asp Gln Leu Asn Ser Val Glu Arg Tyr Asp Val Glu Thr Glu Thr Trp 530 540

Thr Phe Val Ala Pro Met Lys His Arg Arg Ser Ala Leu Gly Ile Thr 545 550 555 560

Val His Gln Gly Arg Ile Tyr Val Leu Gly Gly Tyr Asp Gly His Thr 565 570 575

Phe Leu Asp Ser Val Glu Cys Tyr Asp Pro Asp Thr Asp Thr Trp Ser 580 585 590

Glu Val Thr Arg Met Thr Ser Gly Arg Ser Gly Val Gly Val Ala Val 595 600 605

Thr Met Glu Pro Cys Arg Lys Gln Ile Asp Gln Gln Asn Cys Thr Cys 610 620

<210> 143

<211> 389

<212> PRT

<213> Homo sapiens

<400> 143

Met Leu Ser Leu Arg Val Pro Leu Ala Pro Ile Thr Asp Pro Gln Gln 1 10 15

Leu Gln Leu Ser Pro Leu Lys Gly Leu Ser Leu Val Asp Lys Glu Asn $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Thr Pro Pro Ala Leu Ser Gly Thr Arg Val Leu Ala Ser Lys Thr Ala 35 40 45

Arg Arg Ile Phe Gln Glu Pro Thr Glu Pro Lys Thr Lys Ala Ala Ala 50 55 60

Pro Gly Val Glu Asp Glu Pro Leu Leu Arg Glu Asn Pro Arg Arg Phe 65 70 75 80

Val Ile Phe Pro Ile Glu Tyr His Asp Ile Trp Gln Met Tyr Lys Lys 85 90 95

Ala Glu Ala Ser Phe Trp Thr Ala Glu Glu Val Asp Leu Ser Lys Asp 100 105 110

Ile Gln His Trp Glu Ser Leu Lys Pro Glu Glu Arg Tyr Phe Ile Ser 115 120 125

His Val Leu Ala Phe Phe Ala Ala Ser Asp Gly Ile Val Asn Glu Asn 130 135 140

Leu Val Glu Arg Phe Ser Gln Glu Val Gln Ile Thr Glu Ala Arg Cys 145 150 155 160

Phe Tyr Gly Phe Gln Ile Ala Met Glu Asn Ile His Ser Glu Met Tyr 165 170 175

Ser Leu Leu Ile Asp Thr Tyr Ile Lys Asp Pro Lys Glu Arg Glu Phe 180 185 190

Leu Phe Asn Ala Ile Glu Thr Met Pro Cys Val Lys Lys Lys Ala Asp 195 200 205

Trp Ala Leu Arg Trp Ile Gly Asp Lys Glu Ala Thr Tyr Gly Glu Arg 210 215 220

Val Val Ala Phe Ala Ala Val Glu Gly Ile Phe Phe Ser Gly Ser Phe 225 230 235 240

Ala Ser Ile Phe Trp Leu Lys Lys Arg Gly Leu Met Pro Gly Leu Thr 245 250 255

Phe Ser Asn Glu Leu Ile Ser Arg Asp Glu Gly Leu His Cys Asp Phe 260 265 270

Ala Cys Leu Met Phe Lys His Leu Val His Lys Pro Ser Glu Glu Arg 275 280 285

Val Arg Glu Ile Ile Asn Ala Val Arg Ile Glu Gln Glu Phe Leu 290 295 300

Thr Glu Ala Leu Pro Val Lys Leu Ile Gly Met Asn Cys Thr Leu Met 305 310 315 320

Lys Gln Tyr Ile Glu Phe Val Ala Asp Arg Leu Met Leu Glu Leu Gly 325 335

Phe Ser Lys Val Phe Arg Val Glu Asn Pro Phe Asp Phe Met Glu Asn 340 345

Ile Ser Leu Glu Gly Lys Thr Asn Phe Phe Glu Lys Arg Val Gly Glu 355 360

Tyr Gln Arg Met Gly Val Met Ser Ser Pro Thr Glu Asn Ser Phe Thr 370 380

Leu Asp Ala Asp Phe

<210> 144

<211> 281

<212> PRT <213> Homo sapiens

<400> 144

Met Ala Thr Asn Phe Leu Ala His Glu Lys Ile Trp Phe Asp Lys Phe 1 5 10 15

Lys Tyr Asp Asp Ala Glu Arg Arg Phe Tyr Glu Gln Met Asn Gly Pro $20 \\ 25 \\ 30$

Val Arg Gly Ala Ser Arg Gln Glu Asn Gly Ala Thr Val Ile Leu Arg 35 40 45

Asp Ile Ala Arg Ala Arg Glu Asn Ile Gln Lys Ser Leu Ala Gly Ser 50 55 60

Ser Gly Pro Gly Ala Ser Ser Gly Thr Ser Gly Asp His Gly Glu Leu 65 70 75 80

Val Val Arg Ile Ala Ser Leu Glu Val Glu Asn Gln Ser Leu Arg Gly 85 90 95

Val Val Gln Glu Leu Gln Gln Ala Ile Ser Lys Leu Glu Ala Arg Leu 100 105 110

Asn Val Leu Glu Lys Ser Ser Pro Gly His Arg Ala Thr Ala Pro Gln 115 120 125

Thr Gln His Val Ser Pro Met Arg Gln Val Glu Pro Pro Ala Lys Lys 130 135 140

Pro Ala Thr Pro Ala Glu Asp Asp Glu Asp Asp Asp Ile Asp Leu Phe 145 150150155

Gly Ser Asp Asn Glu Glu Glu Asp Lys Glu Ala Ala Gln Leu Arg Glu 165 170 175

Glu Arg Leu Arg Gln Tyr Ala Glu Lys Lys Ala Lys Lys Pro Ala Leu 180 185 190

Val Ala Lys Ser Ser Ile Leu Leu Asp Val Lys Pro Trp Asp Asp Glu 195 200 205

Thr Asp Met Ala Gln Leu Glu Ala Cys Val Arg Ser Ile Gln Leu Asp $210 \hspace{1.5cm} 215 \hspace{1.5cm} 220 \hspace{1.5cm}$

Gly Leu Val Trp Gly Ala Ser Lys Leu Val Pro Val Gly Tyr Gly Ile 225 230 235 240

Arg Lys Leu Gln Ile Gln Cys Val Val Glu Asp Asp Lys Val Gly Thr 245 $$ 255

Asp Leu Leu Glu Glu Glu Ile Thr Lys Phe Glu Glu His Val Gln Ser 260 265 270

Val Asp Ile Ala Ala Phe Asn Lys Ile 275 280

<210> 145

<211> 269

<212> PRT

<213> Homo sapiens

<400> 145

Pro Pro Asp Gln Gln Arg Leu Ile Phe Ala Gly Lys Gln Leu Glu Asp 1. 5 10 15

Gly Arg Thr Leu Ser Asp Tyr Asn Ile Gln Lys Glu Ser Thr Leu His $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30 \hspace{1.5cm}$

Leu Val Leu Arg Leu Arg Gly Gly Met Gln Ile Phe Val Lys Thr Leu $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Thr Gly Lys Thr Ile Thr Leu Glu Val Glu Pro Ser Asp Thr Ile Glu 50 60

Asn Val Lys Ala Lys Ile Gln Asp Lys Glu Gly Ile Pro Pro Asp Gln 65 70 75 80

Gln Arg Leu Ile Phe Ala Gly Lys Gln Leu Glu Asp Gly Arg Thr Leu $85 \hspace{1cm} 90 \hspace{1cm} 95$

Ser Asp Tyr Asn Ile Gln Lys Glu Ser Thr Leu His Leu Val Leu Arg 100 105 110

Leu Arg Gly Gly Met Gln Ile Phe Val Lys Thr Leu Thr Gly Lys Thr 115 \$120\$

Ile Thr Leu Glu Val Glu Pro Ser Asp Thr Ile Glu Asn Val Lys Ala 130 135 140

Lys Ile Gln Asp Lys Glu Gly Ile Pro Pro Asp Gln Gln Arg Leu Ile 145 150 155 160

Phe Ala Gly Lys Gln Leu Glu Asp Gly Arg Thr Leu Ser Asp Tyr Asn $165 \hspace{1.5cm} 170 \hspace{1.5cm} 175$

Ile Gln Lys Glu Ser Thr Leu His Leu Val Leu Arg Leu Arg Gly Gly 180 185 190

Met Gln Ile Phe Val Lys Thr Leu Thr Gly Lys Thr Ile Thr Leu Glu 195 200205

Val Glu Pro Ser Asp Thr Ile Glu Asn Val Lys Ala Lys Ile Gln Asp 210 215 220

Lys Glu Gly Ile Pro Pro Asp Gln Gln Arg Leu Ile Phe Ala Gly Lys 225 230 235 240

Gln Leu Glu Asp Gly Arg Thr Leu Ser Asp Tyr Asn Ile Gln Lys Glu 245 250 255

Ser Thr Leu His Leu Val Leu Arg Leu Arg Gly Gly Val $260 \ \ 265$

<210> 146

<211> 1231

<212> PRT

<213> Homo sapiens

<400> 146

Met Arg Leu Leu Ala Lys Ile Ile Cys Leu Met Leu Trp Ala Ile Cys 1 10 15

Val Ala Glu Asp Cys Asn Glu Leu Pro Pro Arg Arg Asn Thr Glu Ile $20 \hspace{1cm} 25 \hspace{1cm} 30$

Leu Thr Gly Ser Trp Ser Asp Gln Thr Tyr Pro Glu Gly Thr Gln Ala 35 40 45

Ile Tyr Lys Cys Arg Pro Gly Tyr Arg Ser Leu Gly Asn Val Ile Met 50 60 Val Cys Arg Lys Gly Glu Trp Val Ala Leu Asn Pro Leu Arg Lys Cys 65 70 75 80 Gln Lys Arg Pro Cys Gly His Pro Gly Asp Thr Pro Phe Gly Thr Phe
85 90 95 Thr Cys Asn Glu Gly Tyr Gln Leu Leu Gly Glu Ile Asn Tyr Arg Glu 115 120 125Cys Asp Thr Asp Gly Trp Thr Asn Asp Ile Pro Ile Cys Glu Val Val 130 \$135\$Lys Cys Leu Pro Val Thr Ala Pro Glu Asn Gly Lys Ile Val Ser Ser 145 150150155160 Ala Met Glu Pro Asp Arg Glu Tyr His Phe Gly Gln Ala Val Arg Phe 165 170 175Val Cys Asn Ser Gly Tyr Lys Ile Glu Gly Asp Glu Glu Met His Cys 180 185 190 Ser Asp Asp Gly Phe Trp Ser Lys Glu Lys Pro Lys Cys Val Glu Ile 195 200 205 Ser Cys Lys Ser Pro Asp Val Ile Asn Gly Ser Pro Ile Ser Gln Lys 210 215 220 Ile Ile Tyr Lys Glu Asn Glu Arg Phe Gln Tyr Lys Cys Asn Met Gly 225 230 235 240 Tyr Glu Tyr Ser Glu Arg Gly Asp Ala Val Cys Thr Glu Ser Gly Trp $245 \hspace{1.5cm} 250 \hspace{1.5cm} 255 \hspace{1.5cm}$ Arg Pro Leu Pro Ser Cys Glu Glu Lys Ser Cys Asp Asn Pro Tyr Ile 260 265 270 Pro Asn Gly Asp Tyr Ser Pro Leu Arg Ile Lys His Arg Thr Gly Asp 275 280 285 Glu Ile Thr Tyr Gln Cys Arg Asn Gly Phe Tyr Pro Ala Thr Arg Gly 290 295 300 As Thr Ala Lys Cys Thr Ser Thr Gly Trp Ile Pro Ala Pro Arg Cys 305 310315320 Thr Leu Lys Pro Cys Asp Tyr Pro Asp Ile Lys His Gly Gly Leu Tyr 325 330 335His Glu Asn Met Arg Arg Pro Tyr Phe Pro Val Ala Val Gly Lys Tyr 340 345 350Tyr Ser Tyr Tyr Cys Asp Glu His Phe Glu Thr Pro Ser Gly Ser Tyr 355 360 30

Trp Asp His Ile His Cys Thr Gln Asp Gly Trp Ser Pro Ala Val Pro 370 375 380

Cys Leu Arg Lys Cys Tyr Phe Pro Tyr Leu Glu Asn Gly Tyr Asn Gln 385 390 395 400

Asn His Gly Arg Lys Phe Val Gln Gly Lys Ser Ile Asp Val Ala Cys $405 \hspace{1.5cm} 410 \hspace{1.5cm} 415 \hspace{1.5cm}$

His Pro Gly Tyr Ala Leu Pro Lys Ala Gln Thr Thr Val Thr Cys Met 420 425 430

Glu Asn Gly Trp Ser Pro Thr Pro Arg Cys Ile Arg Val Lys Thr Cys 435 440 445

Ser Lys Ser Ser Ile Asp Ile Glu Asn Gly Phe Ile Ser Glu Ser Gln 450 455 460

Tyr Thr Tyr Ala Leu Lys Glu Lys Ala Lys Tyr Gln Cys Lys Leu Gly 465 470 475 480

Tyr Val Thr Ala Asp Gly Glu Thr Ser Gly Ser Ile Arg Cys Gly Lys $485 \hspace{1cm} 490 \hspace{1cm} 495 \hspace{1cm}$

Asp Gly Trp Ser Ala Gln Pro Thr Cys Ile Lys Ser Cys Asp Ile Pro $500 \hspace{1.5cm} 505 \hspace{1.5cm} 510 \hspace{1.5cm}$

Val Phe Met Asn Ala Arg Thr Lys Asn Asp Phe Thr Trp Phe Lys Leu 515 520 525

Gly Ser Thr Thr Gly Ser Ile Val Cys Gly Tyr Asn Gly Trp Ser Asp 545 550 555 560

Leu Pro Ile Cys Tyr Glu Arg Glu Cys Glu Leu Pro Lys Ile Asp Val565 570 575

His Leu Val Pro Asp Arg Lys Lys Asp Gln Tyr Lys Val Gly Glu Val 580 585 590

Leu Lys Phe Ser Cys Lys Pro Gly Phe Thr Ile Val Gly Pro Asn Ser $595 \hspace{1.5cm} 600 \hspace{1.5cm} 605$

Val Gln Cys Tyr His Phe Gly Leu Ser Pro Asp Leu Pro Ile Cys Lys 610 615 620

Glu Gln Val Gln Ser Cys Gly Pro Pro Pro Glu Leu Leu Asn Gly Asn 625 630 635 640

Val Lys Glu Lys Thr Lys Glu Glu Tyr Gly His Ser Glu Val Val Glu 645 650 655

Tyr Tyr Cys Asn Pro Arg Phe Leu Met Lys Gly Pro Asn Lys Ile Gln 660 665 670

Cys Val Asp Gly Glu Trp Thr Thr Leu rio vai Cys lie vai Giu Giu Giu

Ser Thr Cys Gly Asp Ile Pro Glu Leu Glu His Gly Trp Ala Gln Leu 690 695 700

Ser Ser Pro Pro Tyr Tyr Tyr Gly Asp Ser Val Glu Phe Asn Cys Ser 705 710 715 720

Glu Ser Phe Thr Met Ile Gly His Arg Ser Ile Thr Cys Ile His Gly 725 730 735

Val Trp Thr Gln Leu Pro Gln Cys Val Ala Ile Asp Lys Leu Lys Lys 740 745 750

Cys Lys Ser Ser Asn Leu Ile Ile Leu Glu Glu His Leu Lys Asn Lys 755 760 765

Lys Glu Phe Asp His Asn Ser Asn Ile Arg Tyr Arg Cys Arg Gly Lys 770 780

Glu Gly Trp Ile His Thr Val Cys Ile Asn Gly Arg Trp Asp Pro Glu 785 790 795 800

Val Asn Cys Ser Met Ala Gln Ile Gln Leu Cys Pro Pro Pro Gln 805 810 815

Ile Pro Asn Ser His Asn Met Thr Thr Thr Leu Asn Tyr Arg Asp Gly 820 825 830

Glu Lys Val Ser Val Leu Cys Gln Glu Asn Tyr Leu Ile Gln Glu Gly 835 840 845

Glu Glu Ile Thr Cys Lys Asp Gly Arg Trp Gln Ser Ile Pro Leu Cys 850 855 860

Val Glu Lys Ile Pro Cys Ser Gln Pro Pro Gln Ile Glu His Gly Thr 865 870 875 880

Ile Asn Ser Ser Arg Ser Ser Gln Glu Ser Tyr Ala His Gly Thr Lys 885 890 895

Leu Ser Tyr Thr Cys Glu Gly Gly Phe Arg Ile Ser Glu Glu Asn Glu 900 905 910

Thr Thr Cys Tyr Met Gly Lys Trp Ser Ser Pro Pro Gln Cys Glu Gly 915 920 925

Leu Pro Cys Lys Ser Pro Pro Glu Ile Ser His Gly Val Val Ala His 930 935 940

Met Ser Asp Ser Tyr Gln Tyr Gly Glu Glu Val Thr Tyr Lys Cys Phe 945 950 950 960

Glu Gly Phe Gly Ile Asp Gly Pro Ala Ile Ala Lys Cys Leu Gly Glu 965 970 975

Lys Trp Ser His Pro Pro Ser Cys Ile Lys Thr Asp Cys Leu Ser Leu 980 985 990

Pro Ser Phe Glu Asn Ala Ile Pro Met Gly Glu Lys Lys Asp Val Tyr 995 1000 1005

- Lys Ala Gly Glu Gln Val Thr Tyr Thr Cys Ala Thr Tyr Tyr Lys 1010 1015 1020
- Met Asp Gly Ala Ser Asn Val Thr Cys Ile Asn Ser Arg Trp Thr $1025 \\ 1030 \\ 1035$
- Gly Arg Pro Thr Cys Arg Asp Thr Ser Cys Val Asn Pro Pro Thr 1040 1045 1050
- Val Gln Asn Ala Tyr Ile Val Ser Arg Gln Met Ser Lys Tyr Pro 1055 1060 1065
- Ser Gly Glu Arg Val Arg Tyr Gln Cys Arg Ser Pro Tyr Glu Met 1070 1080
- Phe Gly Asp Glu Glu Val Met Cys Leu Asn Gly Asn Trp Thr Glu 1085 1090 1095
- Pro Pro Gln Cys Lys Asp Ser Thr Gly Lys Cys Gly Pro Pro 1100 1110 1110
- Pro Ile Asp Asn Gly Asp Ile Thr Ser Phe Pro Leu Ser Val Tyr 1115 1120 1125
- Ala Pro Ala Ser Ser Val Glu Tyr Gln Cys Gln Asn Leu Tyr Gln 1130 1140
- Leu Glu Gly Asn Lys Arg Ile Thr Cys Arg Asn Gly Gln Trp Ser 1145 1150 1155
- Glu Pro Pro Lys Cys Leu His Pro Cys Val Ile Ser Arg Glu Ile 1160 1165 1170
- Met Glu Asn Tyr Asn Ile Ala Leu Arg Trp Thr Ala Lys Gln Lys 1175 1180 1185
- Leu Tyr Ser Arg Thr Gly Glu Ser Val Glu Phe Val Cys Lys Arg 1190 1195 1200
- Gly Tyr Arg Leu Ser Ser Arg Ser His Thr Leu Arg Thr Thr Cys 1205 1210 1215
- Trp Asp Gly Lys Leu Glu Tyr Pro Thr Cys Ala Lys Arg 1220 1225 1230

- <210> 147 <211> 364 <212> PRT <213> Homo sapiens
- <400> 147
- Met Tyr Leu Ser Arg Phe Leu Ser Ile His Ala Leu Trp Val Thr Val 1 5 10 15
- Ser Ser Val Met Gln Pro Tyr Pro Leu Val Trp Gly His Tyr Asp Leu $20 \hspace{1cm} 25 \hspace{1cm} 30$

Leu Asp Pro Pro Asp Ile Thr Cys Gly Asp Pro Pro Glu Thr Phe Cys 65 70 75 80

Ala Met Gly Asn Pro Tyr Met Cys Asn Asn Glu Cys Asp Ala Ser Thr $85 \hspace{1cm} 90 \hspace{1cm} 95$

Pro Glu Leu Ala His Pro Pro Glu Leu Met Phe Asp Phe Glu Gly Arg 100 105 110

His Pro Ser Thr Phe Trp Gln Ser Ala Thr Trp Lys Glu Tyr Pro Lys 115 120 125

Pro Leu Gln Val Asn Ile Thr Leu Ser Trp Ser Lys Thr Ile Glu Leu 130 135 140

Thr Asp Asn Ile Val Ile Thr Phe Glu Ser Gly Arg Pro Asp Gln Met 145 150150155

Ile Leu Glu Lys Ser Leu Asp Tyr Gly Arg Thr Trp Gln Pro Tyr Gln 165 170 175

Tyr Tyr Ala Thr Asp Cys Leu Asp Ala Phe His Met Asp Pro Lys Ser 180 185 190

Val Lys Asp Leu Ser Gln His Thr Val Leu Glu Ile Ile Cys Thr Glu 195 200 205

Glu Tyr Ser Thr Gly Tyr Thr Thr Asn Ser Lys Ile Ile His Phe Glu 210 215 220

Ile Lys Asp Arg Phe Ala Phe Phe Ala Gly Pro Arg Leu Arg Asn Met 225 230230235240

Ala Ser Leu Tyr Gly Gln Leu Asp Thr Thr Lys Lys Leu Arg Asp Phe \$250\$

Phe Thr Val Thr Asp Leu Arg Ile Arg Leu Leu Arg Pro Ala Val Gly 260 265 270

Glu Ile Phe Val Asp Glu Leu His Leu Ala Arg Tyr Phe Tyr Ala Ile 275 280 285

Ser Asp Ile Lys Val Arg Gly Arg Cys Lys Cys Asn Leu His Ala Thr 290 295 300

Val Cys Val Tyr Asp Asn Ser Lys Leu Thr Cys Glu Cys Glu His Asn 305 310 315 320

Thr Thr Gly Pro Asp Cys Gly Lys Cys Lys Lys Asn Tyr Gln Gly Arg 325 330 335

Pro Trp Ser Pro Gly Ser Tyr Leu Pro Ile Pro Lys Gly Thr Ala Asn 340 345 350

Thr Cys Ile Pro Ser Ile Ser Ser Ile Gly Ser Lys 355 360

<210> 148

<211> 3210

<212> PRT

<213> Homo sapiens

<400> 148

Met Ser Trp Ala Leu Glu Glu Trp Lys Glu Gly Leu Pro Thr Arg Thr 1 $$ 5 $$ 10 $$ 15

Leu Gln Lys Ile Gln Glu Leu Glu Gly Gln Leu Asp Lys Lys Lys 20 25 30

Glu Lys Gln Gln Arg Gln Phe Gln Leu Asp Ser Leu Glu Ala Ala Pro $35 \hspace{1cm} 40 \hspace{1cm} 45$

Gln Lys Gln Thr Gln Lys Val Glu Asn Glu Lys Thr Glu Gly Thr Asn 50 60

Leu Lys Arg Glu Asn Gln Arg Leu Met Glu Ile Cys Glu Ser Leu Glu 65 70 75 80

Lys Thr Lys Gln Lys Ile Ser His Glu Leu Gln Val Lys Glu Ser Gln 85 90 95

Val Asn Phe Gln Glu Gly Gln Leu Asn Ser Gly Lys Lys Gln Ile Glu 100 105 110

Lys Leu Glu Gln Glu Leu Lys Arg Cys Lys Ser Glu Leu Glu Arg Ser 115 120 125

Gln Gln Ala Ala Gln Ser Ala Asp Val Ser Leu Asn Pro Cys Asn Thr 130 140

Pro Gln Lys Ile Phe Thr Thr Pro Leu Thr Pro Ser Gln Tyr Tyr Ser 145 150 155 160

Gly Ser Lys Tyr Glu Asp Leu Lys Glu Lys Tyr Asn Lys Glu Val Glu 165 170 175

Glu Arg Lys Arg Leu Glu Ala Glu Val Lys Ala Leu Gln Ala Lys Lys 180 185 190

Ala Ser Gln Thr Leu Pro Gln Ala Thr Met Asn His Arg Asp Ile Ala 195 200 205

Arg His Gln Ala Ser Ser Ser Val Phe Ser Trp Gln Gln Glu Lys Thr 210 225 220

Pro Ser His Leu Ser Ser Asn Ser Gln Arg Thr Pro Ile Arg Arg Asp 225 230 235 240

Phe Ser Ala Ser Tyr Phe Ser Gly Glu Leu Glu Val Thr Pro Ser Arg 245 250 255

Ser Thr Leu Gln Ile Gly Lys Arg Asp Ala Asn Ser Ser Phe Phe Gly 260 265 270

Asn Ser Ser Fro His Leu Leu Asp Gln Leu Lys Ala Gln Asn Gln 275 280 285 Glu Leu Arg Asn Lys Ile Asn Glu Leu Glu Leu Arg Leu Gln Gly His 290 295 300Glu Lys Glu Met Lys Gly Gln Val Asn Lys Phe Gln Glu Leu Gln Leu 305 310 315 320 Gln Leu Glu Lys Ala Lys Val Glu Leu Ile Glu Lys Glu Lys Val Leu 325 $$ 330 $$ 335 Asn Lys Cys Arg Asp Glu Leu Val Arg Thr Thr Ala Gln Tyr Asp Gln 340 345 350 Ala Ser Thr Lys Tyr Thr Ala Leu Glu Gln Lys Leu Lys Leu Thr 355 360 365 Glu Asp Leu Ser Cys Gln Arg Gln Asn Ala Glu Ser Ala Arg Cys Ser 370 375 380Leu Glu Gln Lys Ile Lys Glu Lys Glu Lys Glu Phe Gln Glu Glu Leu 385 390 395 400 Ser Arg Gln Gln Arg Ser Phe Gln Thr Leu Asp Gln Glu Cys Ile Gln 405 410 415Met Lys Ala Arg Leu Thr Gln Glu Leu Gln Gln Ala Lys Asn Met His 420 425 430Asn Val Leu Gln Ala Glu Leu Asp Lys Leu Thr Ser Val Lys Gln Gln 435 440 445Leu Glu Asn Asn Leu Glu Glu Phe Lys Gln Lys Leu Cys Arg Ala Glu 450 455 460 Gln Ala Phe Gln Ala Ser Gln Ile Lys Glu Asn Glu Leu Arg Arg Ser 465 470 475 480 Met Glu Glu Met Lys Lys Glu Asn Asn Leu Leu Lys Ser His Ser Glu 485 490 495Gln Lys Ala Arg Glu Val Cys His Leu Glu Ala Glu Leu Lys Asn Ile 500 505 510Lys Gln Cys Leu Asn Gln Ser Gln Asn Phe Ala Glu Glu Met Lys Ala 515 520 525 Lys Asn Thr Ser Gln Glu Thr Met Leu Arg Asp Leu Gln Glu Lys Ile $530 \hspace{1.5cm} 535 \hspace{1.5cm} 540$ Asn Gln Glu Asn Ser Leu Thr Leu Glu Lys Leu Lys Leu Ala Val 545 550 555 560 Ala Asp Leu Glu Lys Gln Arg Asp Cys Ser Gln Asp Leu Leu Lys Lys 565 570 575 Arg Glu His His Ile Glu Gln Leu Asn Asp Lys Leu Ser Lys Thr Glu Page 217

580 585 590

Lys Glu Ser Lys Ala Leu Leu Ser Ala Leu Glu Leu Lys Lys Glu 595 $\,$ 600 $\,$ 605

Tyr Glu Glu Leu Lys Glu Glu Lys Thr Leu Phe Ser Cys Trp Lys Ser 610 615 620

Glu Asn Glu Lys Leu Leu Thr Gln Met Glu Ser Glu Lys Glu Asn Leu 625 $$ 630 $$ 635 $$ 640

Gln Ser Lys Ile Asn His Leu Glu Thr Cys Leu Lys Thr Gln Gln Ile $645 \hspace{1.5cm} 650 \hspace{1.5cm} 655$

Lys Ser His Glu Tyr Asn Glu Arg Val Arg Thr Leu Glu Met Asp Arg $660 \hspace{1.5cm} 665 \hspace{1.5cm} 670$

Glu Asn Leu Ser Val Glu Ile Arg Asn Leu His Asn Val Leu Asp Ser 675 680 685

Lys Ser Val Glu Val Glu Thr Gln Lys Leu Ala Tyr Met Glu Leu Gln 690 700

Gln Lys Ala Glu Phe Ser Asp Gln Lys His Gln Lys Glu Ile Glu Asn 705 710 715 720

Met Cys Leu Lys Thr Ser Gln Leu Thr Gly Gln Val Glu Asp Leu Glu 725 $$ 730 $$ 735

His Lys Leu Gln Leu Leu Ser Asn Glu Ile Met Asp Lys Asp Arg Cys 740 745 750

Tyr Gln Asp Leu His Ala Glu Tyr Glu Ser Leu Arg Asp Leu Leu Lys 755 760 765

Ser Lys Asp Ala Ser Leu Val Thr Asn Glu Asp His Gln Arg Ser Leu $770 \hspace{1.5cm} 780$

Leu Ala Phe Asp Gln Gln Pro Ala Met His His Ser Phe Ala Asn Ile 785 790 795 800

Ile Gly Glu Gln Gly Ser Met Pro Ser Glu Arg Ser Glu Cys Arg Leu 805 810 815

Glu Ala Asp Gln Ser Pro Lys Asn Ser Ala Ile Leu Gln Asn Arg Val 820 825 830

Asp Ser Leu Glu Phe Ser Leu Glu Ser Gln Lys Gln Met Asn Ser Asp 835 840 845

Leu Gln Lys Gln Cys Glu Glu Leu Val Gln Ile Lys Gly Glu Ile Glu 850 855 860

Glu Asn Leu Met Lys Ala Glu Gln Met His Gln Ser Phe Val Ala Glu 865 870 875 880

Thr Ser Gln Arg Ile Ser Lys Leu Gln Glu Asp Thr Ser Ala His Gln 895 $$

Asn Val Val Ala Glu Thr Leu Ser Ala Leu Glu Asn Lys Glu Lys Glu 900 905 910

Leu Gln Leu Leu Asn Asp Lys Val Glu Thr Glu Gln Ala Glu Ile Gln 915 920 925

Glu Leu Lys Lys Ser Asn His Leu Leu Glu Asp Ser Leu Lys Glu Leu 930 935 940

Gln Leu Leu Ser Glu Thr Leu Ser Leu Glu Lys Lys Glu Met Ser Ser 945 950 950 960

Ile Ile Ser Leu Asn Lys Arg Glu Ile Glu Glu Leu Thr Gln Glu Asn 965 970 975

Gly Thr Leu Lys Glu Ile Asn Ala Ser Leu Asn Gln Glu Lys Met Asn 980 985 990

Leu Ile Gln Lys Ser Glu Ser Phe Ala Asn Tyr Ile Asp Glu Arg Glu 995 1000 1005

Lys Ser Ile Ser Glu Leu Ser Asp Gln Tyr Lys Gln Glu Lys Leu 1010 1015 1020

Ile Leu Leu Gln Arg Cys Glu Glu Thr Gly Asn Ala Tyr Glu Asp 1025 1030

Leu Ser Gln Lys Tyr Lys Ala Ala Gln Glu Lys Asn Ser Lys Leu 1040 1050

Glu Cys Leu Leu Asn Glu Cys Thr Ser Leu Cys Glu Asn Arg Lys $1055 \hspace{1.5cm} 1060 \hspace{1.5cm} 1065$

Asn Glu Leu Glu Gln Leu Lys Glu Ala Phe Ala Lys Glu His Gln 1070 \$1075\$

Leu Met Leu Glu Leu Glu Thr Val Gln Gln Ala Leu Arg Ser Glu 1100 1105 1110

Met Thr Asp Asn Gln Asn Asn Ser Lys Ser Glu Ala Gly Gly Leu 1115 1120 1125

Lys Gln Glu Ile Met Thr Leu Lys Glu Glu Gln Asn Lys Met Gln 1130 1140

Lys Glu Val Asn Asp Leu Leu Gln Glu Asn Glu Gln Leu Met Lys 1145 1150 1155

Val Met Lys Thr Lys His Glu Cys Gln Asn Leu Glu Ser Glu Pro 1160 $$1165\$

Ile Arg Asn Ser Val Lys Glu Arg Glu Ser Glu Arg Asn Gln Cys 1175 1180 1185

Asn Phe Lys Pro Gln Met Asp Leu Glu Val Lys Glu Ile Ser Leu 1190 1195 1200

	1205	Tyr	Asn	Ala	Gln	Leu 1210		Gln	Leu	Glu	Ala 1215	Met	Leu	Arg
Asn	Lys 1220		Leu	Lys	Leu	Gln 1225	Glu	Ser	Glu	Lys	Glu 1230	Lys	Glu	Cys
Leu	Gln 1235	His	Glu	Leu	Gln	Thr 1240	Ile	Arg	Gly		Leu 1245	Glu	Thr	Ser
Asn	Leu 1250		Asp	Met	Gln	Ser 1255	Gln	Glu	Ile	Ser	Gly 1260	Leu	Lys	Asp
Суз	Glu 1265	Ile	Asp	Ala	Glu	Glu 1270		Tyr	Ile		Gly 1275	Pro	His	Glu
Leu	Ser 1280	Thr	Ser	Gln	Asn	Asp 1285		Ala	His	Leu	Gln 1290		Ser	Leu
Gln	Thr 1295	Thr	Met	Asn	Lys	Leu 1300		Glu	Leu	Glu	Lys 1305	Ile	Cys	Glu
Ile	Leu 1310	Gln	Ala	Glu	Lys	Tyr 1315	Glu	Leu	Val	Thr	Glu 1320	Leu	Asn	Asp
Ser	Arg 1325		Glu	Суз	Ile	Thr 1330	Ala	Thr	Arg	Lys	Met 1335	Ala	Glu	Glu
Val	Gly 1340		Leu	Leu	Asn	Glu 1345		Lys	Ile	Leu	Asn 1350	Asp	Asp	Ser
Gly	Leu 1355		His	Gly	Glu	Leu 1360		Glu	Asp	Ile	Pro 1365		Gly	Glu
Phe	Gly 1370		Gln	Pro	Asn	Glu 1375	Gln	His	Pro	Val	Ser 1380	Leu	Ala	Pro
Leu	Asp 1385	Glu	Ser	Asn	Ser	Туг 1390	Glu	His	Leu	Thr	Leu 1395	Ser	Asp	Lys
Glu	Val 1400	Gln	Met	His	Phe	Ala 1405	Glu	Leu	Gln	Glu	Lys 1410	Phe	Leu	Ser
Leu	Gln 1415	Ser	Glu	His	Lys	Ile 1420	Leu	His	Asp	Gln	His 1425	Cys	Gln	Met
Ser	Ser 1430	Lys	Met	Ser	Glu	Leu 1435	Gln	Thr	Tyr	Val	Asp 1440	Ser	Leu	Lys
Ala	Glu 1445	Asn	Leu	Val	Leu	Ser 1450		Asn	Leu	Arg	Asn 1455	Phe	Gln	Gly
Asp	Leu 1460	Val	Lys	Glu	Met	Gln 1465	Leu	Gly	Leu	Glu	Glu 1470	Gly	Leu	Val
Pro	Ser 1475	Leu	Ser	Ser	Ser	Cys 1480	Val	Pro	Asp	Ser	Ser 1485	Ser	Leu	Ser
Ser	Leu 1490	Gly	Asp	Ser	Ser	Phe 1495		Arg	Ala	Leu	Leu 1500	Glu	Gln	Thr

Gly Asp Met Ser Leu Leu Ser Asn Leu Glu Gly Ala Val Ser Ala 1505 1510 1515 Tyr Val Asp Ser Leu Lys Ala Glu Asn Leu Val Leu Ser Thr Asn 1535 $$ 1545 $$ Leu Arg Asn Phe Gln Gly Asp Leu Val Lys Glu Met Gln Leu Gly 1550 1560 Leu Glu Glu Gly Leu Val Pro Ser Leu Ser Ser Ser Cys Val Pro 1565 1570 1575Asp Ser Ser Ser Leu Ser Ser Leu Gly Asp Ser Ser Phe Tyr Arg 1580 1585 1590 Ala Leu Leu Glu Gln Thr Gly Asp Met Ser Leu Leu Ser Asn Leu 1595 1600 1605 Glu Gly Val Val Ser Ala Asn Gln Cys Ser Val Asp Glu Val Phe 1610 1615 1620Cys Ser Ser Leu Gln Glu Glu Asn Leu Thr Arg Lys Glu Thr Pro $1625 \hspace{1.5cm} 1630 \hspace{1.5cm} 1635$ Ser Ala Pro Ala Lys Gly Val Glu Glu Leu Glu Ser Leu Cys Glu 1640 1650 Val Tyr Arg Gln Ser Leu Glu Lys Leu Glu Glu Lys Met Glu Ser 1655 1660 1665 Gln Gly Ile Met Lys Asn Lys Glu Ile Gln Glu Leu Glu Gln Leu 1670 1675 1680 Leu Ser Ser Glu Arg Gln Glu Leu Asp Cys Leu Arg Lys Gln Tyr 1685 1690 1695 Leu Ser Glu Asn Glu Gln Trp Gln Gln Lys Leu Thr Ser Val Thr 1700 1705 1710 Leu Glu Met Glu Ser Lys Leu Ala Ala Glu Lys Lys Gln Thr Glu 1715 1720 1725 Gln Leu Ser Leu Glu Leu Glu Val Ala Arg Leu Gln Leu Gln Gly 1730 1740 Leu Asp Leu Ser Ser Arg Ser Leu Leu Gly Ile Asp Thr Glu Asp 1745 1755Ala Ile Gln Gly Arg Asn Glu Ser Cys Asp Ile Ser Lys Glu His 1760 1765 1770 Thr Ser Glu Thr Thr Glu Arg Thr Pro Lys His Asp Val His Gln $1775 \,$ $1780 \,$ $1785 \,$ Ile Cys Asp Lys Asp Ala Gln Gln Asp Leu Asn Leu Asp Ile Glu Page 221

1800

Lys	Ile 1805	Glu	Thr	Gly	Ala 1810		Lys	Pro	Thr	Gly 1815	Glu	Cys	Ser
Gly	Glu 1820	Ser	Pro	Asp	Thr 1825	Asn	Tyr	Glu	Pro	Pro 1830	Gly	Glu	Asp
Lys	Thr 1835	Gly	Ser	Ser	Glu 1840		Ile	Ser	Glu	Leu 1845	Ser	Phe	Ser
Gly	Pro 1850	Ala	Leu	Val	Pro 1855	Met	Asp	Phe	Leu	Gly 1860	Asn	Gln	Ģlu
Asp	Ile 1865	Asn	Leu	Gln	Leu 1870		Val	Lуs	Glu	Thr 1875	Ser	Asn	Glu
Asn	Leu 1880	Leu	Leu	His	Val 1885	Ile	Glu	Asp	Arg	Asp 1890	Arg	Lys	Val
Glu	Ser 1895	Leu	Asn	Glu	Met 1900		Glu	Leu	Asp	Ser 1905	Lys	Leu	His

1795

1790

Leu Gln Glu Val Gln Leu Met Thr Lys Ile Glu Ala Cys Ile Glu 1910 1915 1920

Leu Glu Lys Ile Val Gly Glu Leu Lys Lys Glu Asn Ser Asp Leu 1925 1930

Ser Glu Lys Leu Glu Tyr Phe Ser Cys Asp His Gln Glu Leu Leu 1940 1945 1950

Gln Arg Val Glu Thr Ser Glu Gly Leu Asn Ser Asp Leu Glu Met 1955 1960 1965

His Ala Asp Lys Ser Ser Arg Glu Asp Ile Gly Asp Asn Val Ala 1970 1975 1980

Lys Val Asn Asp Ser Trp Lys Glu Arg Phe Leu Asp Val Glu Asn 1985 1990 1995

Glu Leu Ser Arg Ile Arg Ser Glu Lys Ala Ser Ile Glu His Glu 2000 2010

Ala Leu Tyr Leu Glu Ala Asp Leu Glu Val Val Gln Thr Glu Lys 2015 2020 2025

Leu Cys Leu Glu Lys Asp Asn Glu Asn Lys Gln Lys Val Ile Val 2030 2035 2040

Cys Leu Glu Glu Glu Leu Ser Val Val Thr Ser Glu Arg Asn Gln 2045 2055

Leu Arg Gly Glu Leu Asp Thr Met Ser Lys Lys Thr Thr Ala Leu 2060 2065 2065

Asp Gln Leu Ser Glu Lys Met Lys Glu Lys Thr Gln Glu Leu Glu 2075 2080 2085

Ser His Gln Ser Glu Cys Leu His Cys Ile Gln Val Ala Glu Ala 2090 2095 2100

- Glu Val Lys Glu Lys Thr Glu Leu Leu Gln Thr Leu Ser Ser Asp $2105 \hspace{1.5cm} 2110 \hspace{1.5cm} 2115$
- Val Ser Glu Leu Leu Lys Asp Lys Thr His Leu Gln Glu Lys Leu 2120 2125 2130
- Gln Ser Leu Glu Lys Asp Ser Gln Ala Leu Ser Leu Thr Lys Cys 2135 2140 2145
- Glu Leu Glu Asn Gln Ile Ala Gln Leu Asn Lys Glu Lys Glu Leu 2150 . 2160
- Leu Val Lys Glu Ser Glu Ser Leu Gln Ala Arg Leu Ser Glu Ser 2165 2170 2175
- Asp Tyr Glu Lys Leu Asn Val Ser Lys Ala Leu Glu Ala Ala Leu 2180 2185 2190
- Val Glu Lys Gly Glu Phe Ala Leu Arg Leu Ser Ser Thr Gln Glu 2195 2200 2205
- Glu Val His Gln Leu Arg Arg Gly Ile Glu Lys Leu Arg Val Arg 2210 2215 2220
- Ile Glu Ala Asp Glu Lys Lys Gln Leu His Ile Ala Glu Lys Leu 2225 2230 2235
- Lys Glu Arg Glu Arg Glu Asn Asp Ser Leu Lys Asp Lys Val Glu 2240 2245
- Asn Leu Glu Arg Glu Leu Gln Met Ser Glu Glu Asn Gln Glu Leu 2255 2260 2265
- Val Ile Leu Asp Ala Glu Asn Ser Lys Ala Glu Val Glu Thr Leu 2270 2280

- Gln Ile Gln Glu Lys Gln Gly Gln Leu Ser Glu Leu Asp Lys Leu 2315 2320 2325
- Leu Ser Ser Phe Lys Ser Leu Leu Glu Glu Lys Glu Gln Ala Glu 2330 2340
- Ile Gln Ile Lys Glu Glu Ser Lys Thr Ala Val Glu Met Leu Gln 2345 2350 2355
- Asn Gln Leu Lys Glu Leu Asn Glu Ala Val Ala Ala Leu Cys Gly 2360 2365 2370
- Asp Gln Glu Ile Met Lys Ala Thr Glu Gln Ser Leu Asp Pro Pro 2375 2380 2385

								. ~						
Ile	Glu 2390	Glu	Glu	His	Gln	Leu 2395	Arg	Asn	Ser	Ile	Glu 2400	Lys	Leu	Arg
Ala	Arg 2405	Leu	Glu	Ala	Asp	Glu 2410	Lys	Lys	Gln	Leu	Cys 2415	Val	Leu	Gln
Gln	Leu 2420	Lys	Glu	Ser		His 2425	His	Ala	Asp	Leu	Leu 2430	Lys	Gly	Arg
Val	Glu 2435	Asn	Leu	Glu		Glu 2440	Leu	Glu	Ile	Ala	Arg 2445	Thr	Asn	Gln
Glu	His 2450	Ala	Ala	Leu	Glu	Ala 2455	Glu	Asn	Ser	Lys	Gly 2460	Glu	Val	Glu
	Leu 2465	Lys	Ala	Lys		Glu 2470	Gly	Met	Thr	Gln	Ser 2475	Leu	Arg	Gly
Leu	Glu 2480	Leu	Asp	Val	Val	Thr 2485	Ile	Arg	Ser	Glu	Lys 2490	Glu	Asp	Leu
Thr	Asn 2495		Leu	Gln		Glu 2500		Glu	Arg	Ile	Ser 2505	Glu	Leu	Glu
Ile	Ile 2510	Asn	Ser	Ser	Phe	Glu 2515	Asn	Ile	Leu	Gln	Glu 2520	Lys	Glu	Gln
Glu	Lys 2525		Gln	Met	Lys	Glu 2530	Lys	Ser	Ser	Thr	Ala 2535	Met	Glu	Met
Leu	Gln 2540		Gln	Leu	Lys	Glu 2545		Asn	Glu	Arg	Val 2550	Ala	Ala	Leu
His	Asn 2555		Gln	Glu	Ala	Cys 2560		Ala	Lys	Glu	Gln 2565	Asn	Leu	Ser
Ser	Gln 2570		Glu	Cys	Leu	Glu 2575		Glu	Lys	Ala	Gln 2580	Leu	Leu	Gln
Gly	Leu 2585		Glu	Ala	Lys	Asn 2590	Asn	Tyr	Ile	Val	Leu 2595	Gln	Ser	Ser
Val	Asn 2600		Leu	Ile	Gln *	Glu 2605	Val	Glu	Asp	Gly	Lys 2610	Gln	Lys	Leu
Glu	Lys 2615		Asp	Glu	Glu	Ile 2620		Arg	Leu	Lys	Asn 2625	Gln	Ile	Gln
Asp	Gln 2630		Gln	Leu	Val	Ser 2635		Leu	Ser	Gln	Val 2640	Glu	Gly	Glu
His	Gln 2645		Trp	Lys	Glu	Gln 2650		Leu	Glu	Leu	Arg 2655	Asn	Leu	Thr
Val	Glu 2660		Glu	Gln	Lys	Ile 2665		Val	Leu	Gln	Ser 2670		Asn	Ala
Ser	Leu 2675		Asp	Thr	Leu	Glu 2680		Leu	Gln		Ser 2685		Lys	Asn
										ra	ge 22	. 4		

Leu	Glu 2690		Glu	Leu	Glu	Leu 2695		Lys	Met		Lys 2700		Ser	Phe
Val	Glu 2705	Lys	Val	Asn		Met 2710		Ala	Lys	Glu	Thr 2715	Glu	Leu	Gln
Arg	Glu 2720	Met	His	Glu	Met	Ala 2725	Gln	Lys	Thr	Ala	Glu 2730	Leu	Gln	Glu
Glu	Leu 2735	Ser	Gly	Glu		Asn 2740	Arg	Leu	Ala	Gly	Glu 2745	Leu	Gln	Leu
Leu	Leu 2750		Glu	lle		Ser 2755		Lys	Asp	Gln	Leu 2760	Lys	Glu	Leu
Thr	Leu 2765		Asn	Ser	Glu	Leu 2770		Lys	Ser	Leu	Asp 2775	Cys	Met	His
Lys	Asp 2780		Val	Glu		Glu 2785		Lys	Val	Arg	Glu 2790	Glu	Ile	Ala
Glu	Tyr 2795		Leu	Arg	Leu	His 2800		Ala	Glu	Lys	Lys 2805	His	Gln	Ala
Leu	Leu 2810	Leu	Asp	Thr	Asn	Lys 2815	Gln	Tyr	Glu	Val	Glu 2820	Ile	Gln	Thr
	Arg 2825		Lys	Leu		Ser 2830		Glu	Glu		Leu 2835		Ser	Gln
Lys	Leu 2840		Ile	Asp	Leu	Leu 2845		Ser	Ser	Lys	Glu 2850		Leu	Asn
Asn	Ser 2855	Leu	Lys	Ala	Thr	Thr 2860	Gln		Leu	Glu	Glu 2865	Leu	Lys	Lys
Thr	Lys 2870		Asp	Asn		Lys 2875		Val	Asn	Gln	Leu 2880		Lys	Glu
Asn	Glu 2885	Arg	Ala	Gln	Gly	Lys 2890	Met	Lys	Leu	Leu	Ile 2895	Lys	Ser	Cys
Lys	Gln 2900	Leu	Glu	Glu	Glu	Lys 2905	Glu	Ile	Leu	Gln	Lys 2910	Glu	Leu	Ser
Gln	Leu 2915		Ala	Ala	Gln	Glu 2920		Gln	Lys	Thr	Gly 2925		Val	Met
Asp	Thr 2930		Val	Asp	Glu	Leu 2935		Thr	Glu	Ile	Lys 2940		Leu	Lys
Glu	Thr 2945	Leu	Glu	Glu	Lys	Thr 2950		Glu	Ala	Asp	Glu 2955		Leu	Asp
Lys	Туг 2960		Ser	Leu	Leu	Ile 2965	Ser	His	Glu	Lys	Leu 2970		Lys	Ala
Lys	Glu	Met	Leu	Glu	Thr	Gln	Val	Ala	His		Cys ge 22		Gln	Gln

2980 2975 2985 Ser Lys Gln Asp Ser Arg Gly Ser Pro Leu Leu Gly Pro Val Val 2990 . 2995 Pro Gly Pro Ser Pro Ile Pro Ser Val Thr Glu Lys Arg Leu Ser 3005 3010 3015Ser Gly Gln Asn Lys Ala Ser Gly Lys Arg Gln Arg Ser Ser Gly 3020 3025 3030 Ile Trp Glu Asn Gly Gly Gly Pro Thr Pro Ala Thr Pro Glu Ser 3035 3040 Phe Ser Lys Lys Ser Lys Lys Ala Val Met Ser Gly Ile His Pro 3050 3055 Ala Glu Asp Thr Glu Gly Thr Glu Phe Glu Pro Glu Gly Leu Pro 3065 3070 3075Glu Val Val Lys Lys Gly Phe Ala Asp Ile Pro Thr Gly Lys Thr 3080 \$3085\$Ser Pro $\,$ Tyr Ile Leu Arg Arg $\,$ Thr Thr Met Ala Thr $\,$ Arg Thr Ser $\,$ 3095 $\,$ $\,$ 3100 $\,$ Pro Arg Leu Ala Ala Gln Lys Leu Ala Leu Ser Pro Leu Ser Leu 3110 $$ 3115 $$ 3120 Gly Lys Glu Asn Leu Ala Glu Ser Ser Lys Pro Thr Ala Gly Gly 3125 3130 3135 Ser Arg Ser Gln Lys Val Lys Val Ala Gln Arg Ser Pro Val Asp 3140 3145 3150Ser Gly Thr Ile Leu Arg Glu Pro Thr Thr Lys Ser Val Pro Val 3155 3160 Pro Thr Thr Lys Ser Val Pro Val Asn Asn Leu Pro Glu Arg Ser Pro Thr Asp Ser Pro Arg Glu Gly 3170 3180 Leu Arg Val Lys Arg Gly Arg Leu Val Pro Ser Pro Lys Ala Gly 3185 3190 3195 Leu Glu Ser Lys Gly Ser Glu Asn Cys Lys Val Gln 3205 <210> 149 <211> 108 <212> PRT <213> Homo sapiens <400> 149 Met Gly Val Gln Val Glu Thr Ile Ser Pro Gly Asp Gly Arg Thr Phe 1 $$ 10 $$ 15

Pro Lys Arg Gly Gln Thr Cys Val Val His Tyr Thr Gly Met Leu Glu $20 \hspace{1cm} 25 \hspace{1cm} 30$

Asp Gly Lys Lys Phe Asp Ser Ser Arg Asp Arg Asn Lys Pro Phe Lys Page 226

35 40 45

Phe Met Leu Gly Lys Gln Glu Val Ile Arg Gly Trp Glu Glu Gly Val 50 $\,$

Ala Gln Met Ser Val Gly Gln Arg Ala Lys Leu Thr Ile Ser Pro Asp 65 70 75 80

Tyr Ala Tyr Gly Ala Thr Gly His Pro Gly Ile Ile Pro Pro His Ala 85 90 95

Thr Leu Val Phe Asp Val Glu Leu Leu Lys Leu Glu 100 105

<210> 150

<211> 253

<212> PRT

<213> Homo sapiens

<400> 150

Met Ala Arg Ser Leu Leu Leu Pro Leu Gln Ile Leu Leu Leu Ser Leu 1 5 10 15

Ala Leu Glu Thr Ala Gly Glu Glu Ala Gln Gly Asp Lys Ile Ile Asp 20 25 30

Gly Ala Pro Cys Ala Arg Gly Ser His Pro Trp Gln Val Ala Leu Leu $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Ser Gly Asn Gln Leu His Cys Gly Gly Val Leu Val Asn Glu Arg Trp 50 60

Val Leu Thr Ala Ala His Cys Lys Met Asn Glu Tyr Thr Val His Leu 65 70 75 80

Gly Ser Asp Thr Leu Gly Asp Arg Arg Ala Gln Arg Ile Lys Ala Ser $85 \\ 90 \\ 95$

Lys Ser Phe Arg His Pro Gly Tyr Ser Thr Gln Thr His Val Asn Asp $100 \hspace{1.5cm} 105 \hspace{1.5cm} 105 \hspace{1.5cm} 110 \hspace{1.5cm}$

Leu Met Leu Val Lys Leu Asn Ser Gln Ala Arg Leu Ser Ser Met Val 115 120 125

Lys Lys Val Arg Leu Pro Ser Arg Cys Glu Pro Pro Gly Thr Thr Cys 130 135 140

Thr Val Ser Gly Trp Gly Thr Thr Thr Ser Pro Asp Val Thr Phe Pro 145 150 155 160

Ser Asp Leu Met Cys Val Asp Val Lys Leu Ile Ser Pro Gln Asp Cys 165 170 175

Thr Lys Val Tyr Lys Asp Leu Leu Glu Asn Ser Met Leu Cys Ala Gly 180 185 190

Ile Pro Asp Ser Lys Lys Asn Ala Cys Asn Gly Asp Ser Gly Gly Pro 195 200 205

Leu Val Cys Arg Gly Thr Leu Gln Gly Leu Val Ser Trp Gly Thr Phe

210 215 220

Pro Cys Gly Gln Pro Asn Asp Pro Gly Val Tyr Thr Gln Val Cys Lys 225 230 235

Phe Thr Lys Trp Ile Asn Asp Thr Met Lys Lys His Arg $245 \hspace{1cm} 250 \hspace{1cm}$

<210> 151

<211> 49

<212> PRT

<213> Homo sapiens

<400> 151-

Met Val Thr Trp Leu Tyr Arg Phe Leu Pro Thr Ser Asn Met Ala Ala 1 $$ 10 $$ 15

Lys Leu Arg Ser Leu Leu Pro Pro Asp Leu Arg Leu Gln Phe Trp Leu 20 25 30

His Ala Arg Leu Gln Lys Cys Phe Leu Ser Arg Gly Cys Gly Ser Tyr 35 40 45

Cys Ala Gly Ala Lys Ala Ser Pro Leu Pro Gly Lys Met Ala Met Gly $50 \hspace{1cm} 55$

Leu Met Cys Gly Arg Arg Glu Leu Leu Arg Leu Leu Gln Ser Gly Arg 65 70 75 80

Arg Val His Ser Val Ala Gly Pro Ser Gln Trp Leu Gly Lys Pro Leu 85 90 90 95

Thr Thr Arg Leu Leu Phe Pro Val Ala Pro Cys Cys Cys Arg Pro His $100 \,$ $\,$ $105 \,$ $\,$ $110 \,$

Tyr Leu Phe Leu Ala Ala Ser Gly Pro Arg Ser Leu Ser Thr Ser Ala 115 120 125

Ile Ser Phe Ala Glu Val Gln Val Gln Ala Pro Pro Val Val Ala Ala 130 135 140

Thr Pro Ser Pro Thr Ala Val Pro Glu Val Ala Ser Gly Glu Thr Ala 145 150150155

Asp Val Val Gln Thr Ala Ala Glu Gln Ser Phe Ala Glu Leu Gly Leu 165 170

Gly Ser Tyr Thr Pro Val Gly Leu Ile Gln Asn Leu Leu Glu Phe Met 180 185 190

His Val Asp Leu Gly Leu Pro Trp Trp Gly Ala Ile Ala Ala Cys Thr 195 200 205

Val Phe Ala Arg Cys Leu Ile Phe Pro Leu Ile Val Thr Gly Gln Arg 210 215 220

Glu Ala Ala Arg Ile His Asn His Leu Pro Glu Ile Gln Lys Phe Ser 225 230 235 240

Ser Arg Ile Arg Glu Ala Lys Leu Ala Gly Asp His Ile Glu Tyr Tyr Page 228

245 250 255

Lys Ala Ser Ser Glu Met Ala Leu Tyr Gln Lys Lys His Gly Ile Lys $260 \hspace{1.5cm} 265 \hspace{1.5cm} 265$

Leu Tyr Lys Pro Leu Ile Leu Pro Val Thr Gln Ala Pro Ile Phe Ile 275 280 285

Ser Phe Phe Ile Ala Leu Arg Glu Met Ala Asn Leu Pro Val Pro Ser 290 295 300

Leu Gln Thr Gly Gly Leu Trp Trp Phe Gln Asp Leu Thr Val Ser Asp 305 310 315 320

Pro Ile Tyr Ile Leu Pro Leu Ala Val Thr Ala Thr Met Trp Ala Val 325 330 335

Leu Glu Leu Gly Ala Glu Thr Gly Val Gln Ser Ser Asp Leu Gln Trp 340 345 350

Met Arg Asn Val Ile Arg Met Met Pro Leu Ile Thr Leu Pro Ile Thr 355 360 365

Met His Phe Pro Thr Ala Val Phe Met Tyr Trp Leu Ser Ser Asn Leu 370 380

Phe Ser Leu Val Gln Val Ser Cys Leu Arg Ile Pro Ala Val Arg Thr 385 390 395 400

Val Leu Lys Ile Pro Gln Arg Val Val His Asp Leu Asp Lys Leu Pro 405 410 415

Pro Arg Glu Gly Phe Leu Glu Ser Phe Lys Lys Gly Trp Lys Asn Ala 420 425 430

Glu Met Thr Arg Gln Leu Arg Glu Arg Glu Gln Arg Met Arg Asn Gln 435 440 445

Leu Glu Leu Ala Ala Arg Gly Pro Leu Arg Gln Thr Phe Thr His Asn 450 455 460

Pro Leu Leu Gln Pro Gly Lys Asp Asn Pro Pro Asn Ile Pro Ser Ser 465 470 475 480

Ser Ser Lys Pro Lys Ser Lys Tyr Pro Trp His Asp Thr Leu Gly 485 490 495

<210> 152

<211> 351

<212> PRT

<213> Homo sapiens

<400> 152

Met Gly Asn Ala Ala Thr Ala Lys Lys Gly Ser Glu Val Glu Ser Val 1 5 10 15

Lys Glu Phe Leu Ala Lys Ala Lys Glu Asp Phe Leu Lys Lys Trp Glu 20 25 30

Asn Pro Thr Gln Asn Asn Ala Gly Leu Glu Asp Phe Glu Arg Lys Lys Page 229

35 40 45

Thr Leu Gly Thr Gly Ser Phe Gly Arg Val Met Leu Val Lys His Lys 50 60

Ala Thr Glu Gln Tyr Tyr Ala Met Lys Ile Leu Asp Lys Gln Lys Val 65 70 80

Val Lys Leu Lys Gln Ile Glu His Thr Leu Asn Glu Lys Arg Ile Leu 85 90 95

Gln Ala Val Asn Phe Pro Phe Leu Val Arg Leu Glu Tyr Ala Phe Lys 100 105 110

Asp Asn Ser Asn Leu Tyr Met Val Met Glu Tyr Val Pro Gly Gly Glu 115 120 125

Met Phe Ser His Leu Arg Arg Ile Gly Arg Phe Ser Glu Pro His Ala 130 135 140

Arg Phe Tyr Ala Ala Gln Ile Val Leu Thr Phe Glu Tyr Leu His Ser 145 150 155 160

Leu Asp Leu Ile Tyr Arg Asp Leu Lys Pro Glu Asn Leu Leu Ile Asp 165 170 175

His Gln Gly Tyr Ile Gln Val Thr Asp Phe Gly Phe Ala Lys Arg Val 180 $$180\$

Lys Gly Arg Thr Trp Thr Leu Cys Gly Thr Pro Glu Tyr Leu Ala Pro 195 200 205

Glu Ile Ile Leu Ser Lys Gly Tyr Asn Lys Ala Val Asp Trp Trp Ala 210 215 220

Leu Gly Val Leu Ile Tyr Glu Met Ala Ala Gly Tyr Pro Pro Phe Phe 225 230 235 240

Ala Asp Gln Pro Ile Gln Ile Tyr Glu Lys Ile Val Ser Gly Lys Val $245 \hspace{1cm} 250 \hspace{1cm} 255 \hspace{1cm}$

Arg Phe Pro Ser His Phe Ser Ser Asp Leu Lys Asp Leu Leu Arg Asn 260 265 270

Leu Leu Gln Val Asp Leu Thr Lys Arg Phe Gly Asn Leu Lys Asn Gly 275 280 285

Val Ser Asp Ile Lys Thr His Lys Trp Phe Ala Thr Thr Asp Trp Ile 290 295

Ala Ile Tyr Gln Arg Lys Val Glu Ala Pro Phe Ile Pro Lys Phe Arg 305 310 315 320

Gly Ser Gly Asp Thr Ser Asn Phe Asp Asp Tyr Glu Glu Glu Asp Ile 325 330 335

Arg Val Ser Ile Thr Glu Lys Cys Ala Lys Glu Phe Gly Glu Phe 340 $$ 345 $$ 350

<210> PRT <213> Homo sapiens <400> 153 Met Val Phe Arg Arg Phe Val Glu Val Gly Arg Val Ala Tyr Val Ser 1 5 10 15 Phe Gly Pro His Ala Gly Lys Leu Val Ala Ile Val Asp Val Ile Asp $20 \hspace{1cm} 25 \hspace{1cm} 30$ Gln Asn Arg Ala Leu Val Asp Gly Bro Cys Thr Gln Val Arg Arg Gln 35 40 45Ala Met Pro Phe Lys Cys Met Gln Leu Thr Asp Phe Ile Leu Lys Phe 50 60Leu His Ser Ala His Gln Lys Tyr Val Arg Gln Ala Trp Gln Lys Ala 65 70 75 80 Asp Ile Asn Thr Lys Trp Ala Ala Thr Arg Trp Ala Lys Lys Ile Glu 85 90 95 Ala Arg Glu Arg Lys Ala Lys Met Thr Asp Phe Asp Arg Phe Lys Val 100 105 110Met Lys Ala Lys Lys Met Arg Asn Arg Ile Ile Lys Asn Glu Val Lys 115 120 125Lys Leu Gln Lys Ala Ala Leu Leu Lys Ala Ser Pro Lys Lys Ala Pro 130 135 140 Ala Ala Ala Lys Val Pro Ala Lys Lys Ile Thr Ala Ala Ser Lys 165 170 175Lys Ala Pro Ala Gln Lys Val Pro Ala Gln Lys Ala Thr Gly Gln Lys 180 185 190 Ala Ala Pro Ala Pro Lys Ala Gln Lys Gly Gln Lys Ala Pro Ala Gln 195 200 205

Lys Ala Pro Ala Pro Lys Ala Ser Gly Lys Lys Ala 210 215 220

<210> 154 <211> 492 <212> PRT <213> Homo sapiens

<400> 154

Met Ala Pro Val Gly Val Glu Lys Lys Leu Leu Leu Gly Pro Asn Gly 1 5 10 15

Pro Ala Val Ala Ala Ala Gly Asp Leu Thr Ser Glu Glu Glu Gly 20 2530

Gln Ser Leu Trp Ser Ser Ile Leu Ser Glu Val Ser Thr Arg Ala Arg Page 231 35 40 45

Ser Lys Leu Pro Ser Gly Lys Asn Ile Leu Val Phe Gly Glu Asp Gly 50 60

Ser Gly Lys Thr Thr Leu Met Thr Lys Leu Gln Gly Ala Glu His Gly 65 70 75 80

Lys Lys Gly Arg Gly Leu Glu Tyr Leu Tyr Leu Ser Val His Asp Glu 85 90 95

Asp Arg Asp Asp His Thr Arg Cys Asn Val Trp Ile Leu Asp Gly Asp $100 \hspace{1cm} 105 \hspace{1cm} 110$

Leu Tyr His Lys Gly Leu Leu Lys Phe Ala Val Ser Ala Glu Ser Leu 115 120 125

Pro Glu Thr Leu Val Ile Phe Val Ala Asp Met Ser Arg Pro Trp Thr 130 135 140

Val Met Glu Ser Leu Gln Lys Trp Ala Ser Val Leu Arg Glu His Ile 145 150150155

Asp Lys Met Lys Ile Pro Pro Glu Lys Met Arg Glu Leu Glu Arg Lys $165 \hspace{1.5cm} 170 \hspace{1.5cm} 175 \hspace{1.5cm}$

Phe Val Lys Asp Phe Gln Asp Tyr Met Glu Pro Glu Glu Gly Cys Gln 180 185 190

Gly Ser Pro Gln Arg Arg Gly Pro Leu Thr Ser Gly Ser Asp Glu Glu 195 200 . 205

Asn Val Ala Leu Pro Leu Gly Asp Asn Val Leu Thr His Asn Leu Gly 210 215 220

Glu Lys Glu His Asp Tyr Arg Asp Glu His Leu Asp Phe Ile Gln Ser 245 250 255

His Leu Arg Arg Phe Cys Leu Gln Tyr Gly Ala Ala Leu Ile Tyr Thr 260 265 270

Ser Val Lys Glu Glu Lys Asn Leu Asp Leu Leu Tyr Lys Tyr Ile Val 275 280 285

His Lys Thr Tyr Gly Phe His Phe Thr Thr Pro Ala Leu Val Val Glu 290 295 300

Lys Asp Ala Val Phe Ile Pro Ala Gly Trp Asp Asn Glu Lys Lys Ile 305 310 315 320

Ala Ile Leu His Glu Asn Phe Thr Thr Val Lys Pro Glu Asp Ala Tyr 325 330 335

Glu Asp Phe Ile Val Lys Pro Pro Val Arg Lys Leu Val His Asp Lys 340 345 350

Glu Leu Ala Ala Glu Asp Glu Gln Val Phe Leu Met Lys Gln Gln Ser 355 360 365

Ala Arg Gly Pro Ser Gly Ser Pro Arg Thr Gln Gly Arg Gly Gly Pro 385 390 395 400

Ala Ser Val Pro Ser Ser Ser Pro Gly Thr Ser Val Lys Lys Pro Asp $405 \hspace{1.5cm} 410 \hspace{1.5cm} 415 \hspace{1.5cm}$

Pro Asn Ile Lys Asn Asn Ala Ala Ser Glu Gly Val Leu Ala Ser Phe $420 \hspace{1.5cm} 425 \hspace{1.5cm} 430$

Phe Asn Ser Leu Leu Ser Lys Lys Thr Gly Ser Pro Gly Ser Pro Gly 435 440 445

Ala Gly Gly Val Gln Ser Thr Ala Lys Lys Ser Gly Gln Lys Thr Val $_{\rm 450}$

Leu Ser Asn Val Glu Glu Leu Asp Arg Met Thr Arg Lys Pro Asp 465 470 475 480

Ser Met Val Thr Asn Ser Ser Thr Glu Asn Glu Ala 485 490

(210> 155

<211> 2230

<212> PRT

<213> Homo sapiens

<400> 155

Met Phe Lys Lys Leu Lys Gln Lys Ile Ser Glu Glu Gln Gln Gln Leu 1 5 10 15

Gln Gln Ala Leu Ala Pro Ala Gln Ala Ser Ser Asn Ser Ser Thr Pro 20 25 30

Thr Arg Met Arg Ser Arg Thr Ser Ser Phe Thr Glu Gln Leu Asp Glu 35 40 45

Gly Thr Pro Asn Arg Glu Ser Gly Asp Thr Gln Ser Phe Ala Gln Lys 50 60

Leu Gln Leu Arg Val Pro Ser Val Glu Ser Leu Phe Arg Ser Pro Ile 65 . 70 80

Lys Glu Ser Leu Phe Arg Ser Ser Ser Lys Glu Ser Leu Val Arg Thr 85 90 95

Ser Ser Arg Glu Ser Leu Asn Arg Leu Asp Leu Asp Ser Ser Thr Ala 100 105 110

Ser Phe Asp Pro Pro Ser Asp Met Asp Ser Glu Ala Glu Asp Leu Val 115 120 125

Gly Asn Ser Asp Ser Leu Asn Lys Glu Gln Leu Ile Gln Arg Leu Arg 130 135 140 Arg Met Glu Arg Ser Leu Ser Ser Tyr Arg Gly Lys Tyr Ser Glu Leu 145 150 155 160

Val Thr Ala Tyr Gln Met Leu Gln Arg Glu Lys Lys Lys Leu Gln Gly
165 170 175

Ile Leu Ser Gln Ser Gln Asp Lys Ser Leu Arg Arg Ile Ala Glu Leu 180 185 190

Arg Glu Glu Leu Gln Met Asp Gln Gln Ala Lys Lys His Leu Gln Glu 195 200 205

Glu Phe Asp Ala Ser Leu Glu Glu Lys Asp Gln Tyr Ile Ser Val Leu 210 220

Gln Thr Gln Val Ser Leu Leu Lys Gln Arg Leu Arg Asn Gly Pro Met 225 230 235 240

Asn Val Asp Val Leu Lys Pro Leu Pro Gln Leu Glu Pro Gln Ala Glu 245 250 250

Val Phe Thr Lys Glu Glu Asn Pro Glu Ser Asp Gly Glu Pro Val Val 260 265 270

Glu Asp Gly Thr Ser Val Lys Thr Leu Glu Thr Leu Gln Gln Arg Val 275 280 285

Lys Arg Gln Glu Asn Leu Leu Lys Arg Cys Lys Glu Thr Ile Gln Ser 290

His Lys Glu Gln Cys Thr Leu Leu Thr Ser Glu Lys Glu Ala Leu Gln 305 310 315 320

Glu Gln Leu Asp Glu Arg Leu Gln Glu Leu Glu Lys Ile Lys Asp Leu 325 330 330 335

His Met Ala Glu Lys Thr Lys Leu Ile Thr Gln Leu Arg Asp Ala Lys $340 \hspace{1.5cm} 345 \hspace{1.5cm} 350 \hspace{1.5cm}$

Asn Leu Ile Glu Gln Leu Glu Gln Asp Lys Gly Met Val Ile Ala Glu 355 360

Thr Lys Arg Gln Met His Glu Thr Leu Glu Met Lys Glu Glu Glu Ile 370 380

Ala Gln Leu Arg Ser Arg Ile Lys Gln Met Thr Thr Gln Gly Glu Glu 385 390 395 400

Leu Arg Glu Gln Lys Glu Lys Ser Glu Arg Ala Phe Glu Glu Leu 405 410 415

Glu Lys Ala Leu Ser Thr Ala Gln Lys Thr Glu Glu Ala Arg Arg Lys 420 425 430

Leu Lys Ala Glu Met Asp Glu Gln Ile Lys Thr Ile Glu Lys Thr Ser $435 \hspace{1.5cm} 440 \hspace{1.5cm} 445$

Glu Glu Glu Arg Ile Ser Leu Gln Gln Glu Leu Ser Arg Val Lys Gln 450 455 460

Glu Val Val Asp Val Met Lys Lys Ser Ser Glu Glu Gln Ile Ala Lys 465 470 475 480

Leu Gln Lys Leu His Glu Lys Glu Leu Ala Arg Lys Glu Gln Glu Leu 485 490 495

Thr Lys Lys Leu Gln Thr Arg Glu Arg Glu Phe Gln Glu Gln Met Lys 500 505 510

Val Ala Leu Glu Lys Ser Gln Ser Glu Tyr Leu Lys Ile Ser Gln Glu 515 520 525

Lys Glu Gln Gln Glu Ser Leu Ala Leu Glu Glu Leu Glu Leu Gln Lys 530 535 540

Lys Ala Ile Leu Thr Glu Ser Glu Asn Lys Leu Arg Asp Leu Gln Gln 545 550 555 560

Glu Ala Glu Thr Tyr Arg Thr Arg Ile Leu Glu Leu Glu Ser Ser Leu 565 570 575

Glu Lys Ser Leu Gln Glu Asn Lys Asn Gln Ser Lys Asp Leu Ala Val580 585 595

His Leu Glu Ala Glu Lys Asn Lys His Asn Lys Glu Ile Thr Val Met $595 \hspace{1.5cm} 600 \hspace{1.5cm} 605$

Val Glu Lys His Lys Thr Glu Leu Glu Ser Leu Lys His Gln Gln Asp 610 615 620

Ala Leu Trp Thr Glu Lys Leu Gln Val Leu Lys Gln Gln Tyr Gln Thr 625 630 635 640

Glu Met Glu Lys Leu Arg Glu Lys Cys Glu Gln Glu Lys Glu Thr Leu 645 650 655

Leu Lys Asp Lys Glu Ile Ile Phe Gln Ala His Ile Glu Glu Met Asn 660 665 670

Glu Lys Thr Leu Glu Lys Leu Asp Val Lys Gln Thr Glu Leu Glu Ser 675 680 685

Leu Ser Ser Glu Leu Ser Glu Val Leu Lys Ala Arg His Lys Leu Glu 690 695 700

Glu Glu Leu Ser Val Leu Lys Asp Gln Thr Asp Lys Met Lys Gln Glu 705 710 715 720

Leu Glu Ala Lys Met Asp Glu Gln Lys Asn His His Gln Gln Gln Val $725 \hspace{1cm} 730 \hspace{1cm} 735$

Asp Ser Ile Ile Lys Glu His Glu Val Ser Ile Gln Arg Thr Glu Lys $740 \hspace{1cm} 745 \hspace{1cm} 750$

Ala Leu Lys Asp Gln Ile Asn Gln Leu Glu Leu Leu Leu Lys Glu Arg 755 760 765

Asp Lys His Leu Lys Glu His Gln Ala His Val Glu Asn Leu Glu Ala 770 775 780

Asp Ile Lys Arg Ser Glu Gly Glu Leu Gln Gln Ala Ser Ala Lys Leu 785 790 795 800

Asp Val Phe Gln Ser Tyr Gln Ser Ala Thr His Glu Gln Thr Lys Ala 805 810 815

Tyr Glu Glu Gln Leu Ala Gln Leu Gln Gln Lys Leu Leu Asp Leu Glu 820 825 830

Thr Glu Arg Ile Leu Leu Thr Lys Gln Val Ala Glu Val Glu Ala Gln 835 840 845

Lys Lys Asp Val Cys Thr Glu Leu Asp Ala His Lys Ile Gln Val Gln 850 855 860

Asp Leu Met Gln Gln Leu Glu Lys Gln Asn Ser Glu Met Glu Gln Lys 865 870 875 880

Val Lys Ser Leu Thr Gln Val Tyr Glu Ser Lys Leu Glu Asp Gly Asn 885 890 895

Lys Glu Gln Glu Gln. Thr Lys Gln Ile Leu Val Glu Lys Glu Asn Met 900 910

Ile Leu Gln Met Arg Glu Gly Gln Lys Lys Glu Ile Glu Ile Leu Thr 915 920 925

Gln Lys Leu Ser Ala Lys Glu Asp Ser Ile His Ile Leu Asn Glu Glu 930 $\cdot935$ 940

Tyr Glu Thr Lys Phe Lys Asn Gln Glu Lys Lys Met Glu Lys Val Lys 945 950 955 960

Gln Lys Ala Lys Glu Met Gln Glu Thr Leu Lys Lys Lys Leu Leu Asp 965 970 975

Gln Glu Ala Lys Leu Lys Lys Glu Leu Glu Asn Thr Ala Leu Glu Leu 980 985 990

Ser Gln Lys Glu Lys Gln Phe Asn Ala Lys Met Leu Glu Met Ala Gln 995 1000 1005

Ala Asn Ser Ala Gly Ile Ser Asp Ala Val Ser Arg Leu Glu Thr 1010 1015 1020

Asn Gln Lys Glu Gln Ile Glu Ser Leu Thr Glu Val His Arg Arg 1025 1030 1035

Glu Leu Asn Asp Val Ile Ser Ile Trp Glu Lys Lys Leu Asn Gln $1040 \,$ 1045 $\,$ 1050

Gln Ala Glu Glu Leu Gln Glu Ile His Glu Ile Gln Leu Gln Glu 1055 1060 1065

Lys Glu Gln Glu Val Ala Glu Leu Lys Gln Lys Ile Leu Leu Phe 1070 $\,\,$ 1075 $\,\,$ 1080

Gly Cys Glu Lys Glu Glu Met Asn Lys Glu Ile Thr Trp Leu Lys Page 236 1085 1090 1095

Glu Glu Gly Val Lys Gln Asp Thr Thr Leu Asn Glu Leu Gln Glu 1100 1105 1110

- Gln Leu Lys Gln Lys Ser Ala His Val Asn Ser Leu Ala Gln Asp 1115 1120 1125
- Glu Thr Lys Leu Lys Ala His Leu Glu Lys Leu Glu Val Asp Leu 1130 1140
- Asn Lys Ser Leu Lys Glu Asn Thr Phe Leu Gln Glu Gln Leu Val 1145 1150 1155
- Glu Leu Lys Met Leu Ala Glu Glu Asp Lys Arg Lys Val Ser Glu 1160 1165 1170
- Leu Thr Ser Lys Leu Lys Thr Thr Asp Glu Glu Phe Gln Ser Leu 1175 1180 1185
- Lys Ser Ser His Glu Lys Ser Asn Lys Ser Leu Glu Asp Lys Ser 1190 1195 1200
- Leu Glu Phe Lys Lys Leu Ser Glu Glu Leu Ala Ile Gln Leu Asp 1205 1210 1215
- Ile Cys Cys Lys Lys Thr Glu Ala Leu Leu Glu Ala Lys Thr Asn 1220 1225 1230
- Glu Leu Ile Asn Ile Ser Ser Ser Lys Thr Asn Ala Ile Leu Ser 1235 1240 1245
- Arg Ile Ser His Cys Gln His Arg Thr Thr Lys Val Lys Glu Ala 1250 1255 1260
- Leu Leu Ile Lys Thr Cys Thr Val Ser Glu Leu Glu Ala Gln Leu 1265 1270 1275
- Arg Gln Leu Thr Glu Glu Gln Asn Thr Leu Asn Ile Ser Phe Gln 1280 1285 1290
- Gln Ala Thr His Gln Leu Glu Glu Lys Glu Asn Gln Ile Lys Ser 1295 1300 1305
- Met Lys Ala Asp Ile Glu Ser Leu Val Thr Glu Lys Glu Ala Leu 1310 1315 1320
- Gln Lys Glu Gly Gly Asn Gln Gln Gln Ala Ala Ser Glu Lys Glu 1325 1330 1335
- Ser Cys Ile Thr Gln Leu Lys Lys Glu Leu Ser Glu Asn Ile Asn 1340 1350
- Ala Val Thr Leu Met Lys Glu Glu Leu Lys Glu Lys Lys Val Glu 1355 1360 1365
- Ile Ser Ser Leu Ser Lys Gln Leu Thr Asp Leu Asn Val Gln Leu 1370 1375 1380

Gin Asn	Ser	Ile	Ser	Leu	Ser	Glu	Lys	Glu	ATa	ATA	тте	Ser	ser
1385					1390		•			1395			

- Leu Arg Lys Gln Tyr Asp Glu Glu Lys Cys Glu Leu Leu Asp Gln 1400 1405 1410
- Val Gln Asp Leu Ser Phe Lys Val Asp Thr Leu Ser Lys Glu Lys 1415 1420 1425
- Ile Ser Ala Leu Glu Gln Val Asp Asp Trp Ser Asn Lys Phe Ser 1430 1435 1440
- Glu Trp Lys Lys Lys Ala Gln Ser Arg Phe Thr Gln His Gln Asn 1445 \$1450\$
- Thr Val Lys Glu Leu Gln Ile Gln Leu Glu Leu Lys Ser Lys Glu 1460 1465 1470
- Ala Tyr Glu Lys Asp Glu Gln Ile Asn Leu Leu Lys Glu Glu Leu 1475 1480 1485
- Asp Gln Gln Asn Lys Arg Phe Asp Cys Leu Lys Gly Glu Met Glu 1490 1495 1500
- Asp Asp Lys Ser Lys Met Glu Lys Lys Glu Ser Asn Leu Glu Thr $1505 \\ \hspace*{1.5cm} 1510 \\ \hspace*{1.5cm} \hspace*{1.5cm} 1515 \\ \hspace*{1.5cm} \hspace*{1.5cm}$
- Glu Leu Lys Ser Gln Thr Ala Arg Ile Met Glu Leu Glu Asp His 1520 1530
- Ile Thr Gln Lys Thr Ile Glu Ile Glu Ser Leu Asn Glu Val Leu 1535 1540 1545
- Lys Asn Tyr Asn Gln Gln Lys Asp Ile Glu His Lys Glu Leu Val 1550 $$ 1555
- Gln Lys Leu Gln His Phe Gln Glu Leu Gly Glu Glu Lys Asp Asn 1565 1570 1575
- Arg Val Lys Glu Ala Glu Glu Lys Ile Leu Thr Leu Glu Asn Gln 1580 $$1585\ \ \]$
- Val Tyr Ser Met Lys Ala Glu Leu Glu Thr Lys Lys Lys Glu Leu 1595 1600 1605
- Glu His Val Asn Leu Ser Val Lys Ser Lys Glu Glu Glu Leu Lys $1610 \hspace{1.5cm} 1615 \hspace{1.5cm} 1620 \hspace{1.5cm}$
- Ala Leu Glu Asp Arg Leu Glu Ser Glu Ser Ala Ala Lys Leu Ala 1625 1630 1635
- Glu Leu Lys Arg Lys Ala Glu Gln Lys Ile Ala Ala Ile Lys Lys 1640 1645 1650
- Gln Leu Leu Ser Gln Met Glu Glu Lys Glu Glu Gln Tyr Lys Lys 1655 1660 1665
- Gly Thr Glu Ser His Leu Ser Glu Leu Asn Thr Lys Leu Gln Glu 1670 1675 1680

Arg Glu Arg Glu Val His Ile Leu Glu Glu Lys Leu Lys Ser Val 1685 1690 1695

Glu Ser Ser Gln Ser Glu Thr Leu Ile Val Pro Arg Ser Ala Lys $1700 \hspace{1.5cm} 1705 \hspace{1.5cm} 1710$

Asn Val Ala Ala Tyr Thr Glu Glu Glu Ala Asp Ser Gln Gly 1715 1720 1725

Cys Val Gln Lys Thr Tyr Glu Glu Lys Ile Ser Val Leu Gln Arg 1730 1735 1740

Asn Leu Thr Glu Lys Glu Lys Leu Leu Gln Arg Val Gly Gln Glu 1745 1750 1755

Lys Glu Glu Thr Val Ser Ser His Phe Glu Met Arg Cys Gln Tyr 1760 1765 1770

Gln Glu Arg Leu Ile Lys Leu Glu His Ala Glu Ala Lys Gln His 1775 1780 1785

Glu Asp Gln Ser Met Ile Gly His Leu Gln Glu Glu Leu Glu Glu 1790 1795 1800

Lys Asn Lys Lys Tyr Ser Leu Ile Val Ala Gln His Val Glu Lys 1805 1810 1815

Glu Gly Gly Lys Asn Asn Ile Gln Ala Lys Gln Asn Leu Glu Asn 1820 1830

Val Phe Asp Asp Val Gln Lys Thr Leu Gln Glu Lys Glu Leu Thr 1835 1840 1845

Cys Gln Ile Leu Glu Gln Lys Ile Lys Glu Leu Asp Ser Cys Leu 1850 1860

Val Arg Gln Lys Glu Val His Arg Val Glu Met Glu Glu Leu Thr 1865 1870 1875

Ser Lys Tyr Glu Lys Leu Gln Ala Leu Gln Gln Met Asp Gly Arg 1880 1890

Asn Lys Pro Thr Glu Leu Leu Glu Glu Asn Thr Glu Glu Lys Ser 1895 1900 1905

Lys Ser His Leu Val Gln Pro Lys Leu Leu Ser Asn Met Glu Ala 1910 1915 1920

Gln His Asn Asp Leu Glu Phe Lys Leu Ala Gly Ala Glu Arg Glu 1925 1930 1935

Lys Gln Lys Leu Gly Lys Glu Ile Val Arg Leu Gln Lys Asp Leu 1940 1945 1950

Arg Met Leu Arg Lys Glu His Gln Gln Glu Leu Glu Ile Leu Lys 1955 1960 1965

Lys Glu Tyr Asp Gln Glu Arg Glu Glu Lys Ile Lys Gln Glu Gln 1970 1975 1980

Page 239

Glu Asp Leu Glu Leu Lys His Asn Ser Thr Leu Lys Gln Leu Met 1985 1990 1995 Arg Glu Phe Asn Thr Gln Leu Ala Gln Lys Glu Gln Glu Leu Glu 2000 2005 2010 Met Thr Ile Lys Glu Thr Ile Asn Lys Ala Glu Glu Val Glu Ala 2015 2020 2025 Glu Leu Leu Glu Ser His Gln Glu Glu Thr Asn Gln Leu Leu Lys 2030 2040 Lys Ile Ala Glu Lys Asp Asp Asp Leu Lys Arg Thr Ala Lys Arg 2045 2055 .Tyr Glu Glu Ile Leu Asp Ala Arg Glu Glu Met Thr Ala Lys $2060 \hspace{1.5cm} 2065 \hspace{1.5cm} 2070$ Val Arg Asp Leu Gln Thr Gln Leu Glu Glu Leu Gln Lys Lys Tyr 2075 2080 2085 Gln Gln Lys Leu Glu Gln Glu Glu Asn Pro Gly Asn Asp Asn Val 2090 2095 2100 Thr Ile Met Glu Leu Gln Thr Gln Leu Ala Gln Lys Thr Thr Leu 2105 2110 2115 Ile Ser Asp Ser Lys Leu Lys Glu Glu Glu Phe Arg Glu Gln Ile 2120 2125 2130 His Asn Leu Glu Asp Arg Leu Lys Lys Tyr Glu Lys Asn Val Tyr 2135 2140 2145 Ala Thr Thr Val Gly Thr Pro Tyr Lys Gly Gly Asn Leu Tyr His 2150 2160 Thr Asp Val Ser Leu Phe Gly Glu Pro Thr Glu Phe Glu Tyr Leu 2165 2170 2175 Met Ala Lys Val Ile Thr Thr Val Leu Lys Phe Pro Asp Asp Gln 2195 2200 2205 Thr Gln Lys Ile Leu Glu Arg Glu Asp Ala Arg Leu Met Phe Thr 2210 2215 2220

Ser Pro Arg Ser Gly Ile Phe 2225 2230

<210> 156 <211> 719 <212> PRT <213> Homo sapiens

<400> 156

Glu Ile Met Glu Glu Leu Arg Ser Leu Asp Pro Arg Arg Gln Glu Leu

Leu Glu Ala Arg Phe Thr Gly Val Gly Val Ser Lys Gly Pro Leu Asn 20 25 30 .

Ser Glu Ser Ser Asn Gln Ser Leu Cys Ser Val Gly Ser Leu Ser Asp 35 40 45

Lys Glu Val Glu Thr Pro Glu Lys Lys Gln Asn Asp Gln Arg Asn Arg 50 60

Lys Arg Lys Ala Glu Pro Tyr Glu Thr Ser Gln Gly Lys Gly Thr Pro 65 70 75 80

Arg Gly His Lys Ile Ser Asp Tyr Phe Glu Arg Arg Val Glu Gln Pro 85 90 95

Leu Tyr Gly Leu Asp Gly Ser Ala Ala Lys Glu Ala Thr Glu Glu Gln $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110 \hspace{1.5cm}$

Ser Ala Leu Pro Thr Leu Met Ser Val Met Leu Ala Lys Pro Arg Leu 115 120 125

Val Ser Ala Gln Gln Asn Ser Pro Ser Ser Thr Gly Ser Gly Asn Thr 145 150 150 160

Glu His Ser Cys Ser Ser Gln Lys Gln Ile Ser Ile Gln His Arg Gln 165 170 175

Thr Gln Ser Asp Leu Thr Ile Glu Lys Ile Ser Ala Leu Glu Asn Ser 180 185 190

Lys Asn Ser Asp Leu Glu Lys Lys Glu Gly Arg Ile Asp Asp Leu Leu 195 200 205

Arg Ala Asn Cys Asp Leu Arg Arg Gln Ile Asp Glu Gln Gln Lys Met 210 215 220

Leu Glu Lys Tyr Lys Glu Arg Leu Asn Arg Cys Val Thr Met Ser Lys 225 230 235

Lys Leu Leu Ile Glu Lys Ser Lys Gln Glu Lys Met Ala Cys Arg Asp $245 \hspace{1cm} 250 \hspace{1cm} 250 \hspace{1cm} 255 \hspace{1cm}$

Lys Ser Met Gln Asp Arg Leu Arg Leu Gly His Phe Thr Thr Val Arg 260 265 270

His Gly Ala Ser Phe Thr Glu Gln Trp Thr Asp Gly Tyr Ala Phe Gln 275 280 285

Asn Leu Ile Lys Gln Gln Glu Arg Ile Asn Ser Gln Arg Glu Glu Ile 290 295 300

Glu Arg Gln Arg Lys Met Leu Ala Lys Arg Lys Pro Pro Ala Met Gly 305 310 . 315 920

Gln Ala Pro Pro Ala Thr Asn Glu Gln Lys Gln Arg Lys Ser Lys Thr Page 241

325 330 335

Asn Gly Ala Glu Asn Glu Thr Leu Thr Leu Ala Glu Tyr His Glu Gln 340 345 350

Glu Glu Ile Phe Lys Leu Arg Leu Gly His Leu Lys Lys Glu Glu Ala 355 360 365

Glu Ile Gln Ala Glu Leu Glu Arg Leu Glu Arg Val Arg Asn Leu His 370 380

Ile Arg Glu Leu Lys Arg Ile His Asn Glu Asp Asn Ser Gln Phe Lys 385 390 395 400

Asp His Pro Thr Leu Asn Asp Arg Tyr Leu Leu Leu His Leu Leu Gly 405 410 415

Arg Gly Gly Phe Ser Glu Val Tyr Lys Ala Phe Asp Leu Thr Glu Gln 420 425 430

Arg Tyr Val Ala Val Lys Ile His Gln Leu Asn Lys Asn Trp Arg Asp 435 440 445

Glu Lys Lys Glu Asn Tyr His Lys His Ala Cys Arg Glu Tyr Arg Ile 450 455 460

His Lys Glu Leu Asp His Pro Arg Ile Val Lys Leu Tyr Asp Tyr Phe 465 470 475 480

Ser Leu Asp Thr Asp Ser Phe Cys Thr Val Leu Glu Tyr Cys Glu Gly 485 490 495

Asn Asp Leu Asp Phe Tyr Leu Lys Gln His Lys Leu Ile Ser Glu Lys 500 505 510

Glu Ala Arg Ser Ile Ile Met Gln Ile Val Asn Ala Leu Lys Tyr Leu 515 520 525

Asn Glu Ile Lys Pro Pro Ile Ile His Tyr Asp Leu Lys Pro Gly Asn 530 540

Ile Leu Leu Val Asn Gly Thr Ala Cys Gly Glu Ile Lys Ile Thr Asp 545 550 555 560

Phe Gly Leu Ser Lys Ile Met Asp Asp Asp Ser Tyr Asn Ser Val Asp 565 570 575

Gly Met Glu Leu Thr Ser Gln Gly Ala Gly Thr Tyr Trp Tyr Leu Pro 580 585 590

Pro Glu Cys Phe Val Val Gly Lys Glu Pro Pro Lys Ile Ser Asn Lys 595 600 605

Val Asp Val Trp Ser Val Gly Val Ile Phe Tyr Gln Cys Leu Tyr Gly 610 620

Arg Lys Pro Phe Gly His Asn Gln Ser Gln Gln Asp Ile Leu Gln Glu 625 630 635 640

Asn Thr Ile Leu Lys Ala Thr Glu Val Gln Phe Pro Pro Lys Pro Val 645 650 655

Val Thr Pro Glu Ala Lys Ala Phe Ile Arg Arg Cys Leu Ala Tyr Arg 660 665 670

Lys Glu Asp Arg Ile Asp Val Gln Gln Leu Ala Cys Asp Pro Tyr Leu 675 680 685

Leu Pro His Ile Arg Lys Ser Val Ser Thr Ser Ser Pro Ala Gly Ala $690 \hspace{1.5cm} 695 \hspace{1.5cm} 700$

Ala Ile Ala Ser Thr Ser Gly Ala Ser Asn Asn Ser Ser Ser Asn 705 710 715

<210> 157

<211> 1976

<212> PRT

<213> Homo sapiens

<400> 157

Met Ala Gln Arg Thr Gly Leu Glu Asp Pro Glu Arg Tyr Leu Phe Val 1 $$ 10 $$ 15

Asp Arg Ala Val Ile Tyr Asn Pro Ala Thr Gln Ala Asp Trp Thr Ala $20 \hspace{1cm} 25 \hspace{1cm} 30$

Lys Lys Leu Val Trp Ile Pro Ser Glu Arg His Gly Phe Glu Ala Ala $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Ser Ile Lys Glu Glu Arg Gly Asp Glu Val Met Val Glu Leu Ala Glu 50 60

Asn Gly Lys Lys Ala Met Val Asn Lys Asp Asp Ile Gln Lys Met Asn 65 70 75 80

Pro Pro Lys Phe Ser Lys Val Glu Asp Met Ala Glu Leu Thr Cys Leu 85 90 95

Asn Glu Ala Ser Val Leu His Asn Leu Lys Asp Arg Tyr Tyr Ser Gly 100 105 110

Leu Ile Tyr Thr Tyr Ser Gly Leu Phe Cys Val Val Ile Asn Pro Tyr 115 120 125

Lys Asn Leu Pro Ile Tyr Ser Glu Asn Ile Ile Glu Met Tyr Arg Gly 130 135 140

Lys Lys Arg His Glu Met Pro Pro His Ile Tyr Ala Ile Ser Glu Ser 145 150 155 160

Ala Tyr Arg Cys Met Leu Gln Asp Arg Glu Asp Gln Ser Ile Leu Cys 165 170 175

Thr Gly Glu Ser Gly Ala Gly Lys Thr Glu Asn Thr Lys Lys Val Ile $180 \hspace{1cm} 185 \hspace{1cm} 190$

Gln Tyr Leu Ala His Val Ala Ser Ser His Lys Gly Arg Lys Asp His 195 200 205

- Asn Ile Pro Gly Glu Leu Glu Arg Gln Leu Leu Gln Ala Asn Pro Ile 210 215 220
- Leu Glu Ser Phe Gly Asn Ala Lys Thr Val Lys Asn Asp Asn Ser Ser 225 230 230 235
- Arg Phe Gly Lys Phe Ile Arg Ile Asn Phe Asp Val Thr Gly Tyr Ile 245 250 255
- Val Gly Ala Asn Ile Glu Thr Tyr Leu Leu Glu Lys Ser Arg Ala Val 260 265 270
- Arg Gln Ala Lys Asp Glu Arg Thr Phe His Ile Phe Tyr Gln Leu Leu 275 280 285
- Ser Gly Ala Gly Glu His Leu Lys Ser Asp Leu Leu Glu Gly Phe 290 295 300
- Asn Asn Tyr Arg Phe Leu Ser Asn Gly Tyr Ile Pro Ile Pro Gly Gln 305 310 315 320
- Gln Asp Lys Asp Asn Phe Gln Glu Thr Met Glu Ala Met His Ile Met 325 330 335
- Gly Phe Ser His Glu Glu Ile Leu Ser Met Leu Lys Val Val Ser Ser 340 345 350
- Val Leu Gln Phe Gly Asn Ile Ser Phe Lys Lys Glu Arg Asn Thr Asp 355 360 365
- Gln Ala Ser Met Pro Glu Asn Thr Val Ala Gln Lys Leu Cys His Leu 370 375 380
- Leu Gly Met Asn Val Met Glu Phe Thr Arg Ala Ile Leu Thr Pro Arg 385 390 395 400
- Ala Asp Phe Ala Val Glu Ala Leu Ala Lys Ala Thr Tyr Glu Arg Leu 420 425 430
- Phe Arg Trp Leu Val His Arg Ile Asn Lys Ala Leu Asp Arg Thr Lys 435 440 445
- Arg Gln Gly Ala Ser Phe Ile Gly Ile Leu Asp Ile Ala Gly Phe Glu 450 460
- Ile Phe Glu Leu Asn Ser Phe Glu Gln Leu Cys Ile Asn Tyr Thr Asn 465 \cdot 470 \cdot 475 \cdot 480
- Glu Lys Leu Gln Gln Leu Phe Asn His Thr Met Phe Ile Leu Glu Gln 485 490 495
- Glu Glu Tyr Gln Arg Glu Gly Ile Glu Trp Asn Phe Ile Asp Phe Gly 500 505 510
- Leu Asp Leu Gln Pro Cys Ile Asp Leu Ile Glu Arg Pro Ala Asn Pro 515 520 525

Pro Gly Val Leu Ala Leu Leu Asp Glu Glu Cys Trp Phe Pro Lys Ala 530 540

Thr Asp Lys Thr Phe Val Glu Lys Leu Val Gln Glu Gln Gly Ser His 545 550 555 560

Ser Lys Phe Gln Lys Pro Arg Gln Leu Lys Asp Lys Ala Asp Phe Cys 565 570 575

Ile Ile His Tyr Ala Gly Lys Val Asp Tyr Lys Ala Asp Glu Trp Leu $580 \hspace{1.5cm} 595 \hspace{1.5cm} 595$

Met Lys Asn Met Asp Pro Leu Asn Asp Asn Val Ala Thr Leu Leu His 595 600 605

Gln Ser, Ser Asp Arg Phe Val Ala Glu Leu Trp Lys Àsp Val Asp Arg 610 620

Ile Val Gly Leu Asp Gln Val Thr Gly Met Thr Glu Thr Ala Phe Gly 625 630 635 640

Ser Ala Tyr Lys Thr Lys Lys Gly Met Phe Arg Thr Val Gly Gln Leu 645 650 655

Tyr Lys Glu Ser Leu Thr Lys Leu Met Ala Thr Leu Arg Asn Thr Asn $660 \hspace{1.5cm} 665 \hspace{1.5cm} 665$

Pro Asn Phe Val Arg Cys Ile Ile Pro Asn His Glu Lys Arg Ala Gly 675 680 685

Lys Leu Asp Pro His Leu Val Leu Asp Gln Leu Arg Cys Asn Gly Val $690 \hspace{1cm} 695 \hspace{1cm} 700 \hspace{1cm}$

Leu Glu Gly Ile Arg Ile Cys Arg Gln Gly Phe Pro Asn Arg Ile Val 705 710 715 720

Phe Gln Glu Phe Arg Gln Arg Tyr Glu Ile Leu Thr Pro Asn Ala Ile 725 730 735

Pro Lys Gly Phe Met Asp Gly Lys Gln Ala Cys Glu Arg Met Ile Arg 740 745 750

Ala Leu Glu Leu Asp Pro Asn Leu Tyr Arg Ile Gly Gln Ser Lys Ile 755 760 765

Phe Phe Arg Ala Gly Val Leu Ala His Leu Glu Glu Glu Arg Asp Leu 770 780

Lys Ile Thr Asp Ile Ile Ile Phe Phe Gln Ala Val Cys Arg Gly Cys 785 790 795 800

Leu Ala Arg Lys Ala Phe Ala Lys Lys Gln Gln Gln Leu Ser Ala Leu 805 810 815

Lys Val Leu Gln Arg Asn Cys Ala Ala Tyr Leu Lys Leu Arg His Trp 820 825 830

Gln Trp Trp Arg Val Phe Thr Lys Val Lys Pro Leu Gln Val Thr 835 840 845

Page 245

Arg Gln Glu Glu Leu Gln Ala Lys Asp Glu Glu Leu Lys Val 850 855 860

Lys Glu Lys Gln Thr Lys Val Glu Gly Glu Leu Glu Glu Met Glu Arg 865 870 870 885

Lys His Gln Gln Leu Leu Glu Glu Lys Asn Ile Leu Ala Glu Gln Leu 885 890 895

Gln Ala Glu Thr Glu Leu Phe Ala Glu Ala Glu Glu Met Arg Ala Arg 900 905 910

Leu Ala Ala Lys Lys Gln Glu Leu Glu Glu Ile Leu His Asp Leu Glu 915 920 925

Ser Arg Val Glu Glu Glu Glu Glu Arg Asn Gln Ile Leu Gln Asn Glu 930 935 940

Lys Lys Lys Met Gln Ala His Ile Gln Asp Leu Glu Glu Gln Leu Asp 945 950 955 960

Glu Glu Glu Gly Ala Arg Gln Lys Leu Gln Leu Glu Lys Val Thr Ala 965 970 975

Glu Ala Lys Ile Lys Lys Met Glu Glu Glu Ile Leu Leu Glu Asp 980 985 990

Gln Asn Ser Lys Phe Ile Lys Glu Lys Lys Leu Met Glu Asp Arg Ile 995 1000 1005

Ala Glu Cys Ser Ser Gln Leu Ala Glu Glu Glu Glu Lys Ala Lys 1010 1015 1020

Asn Leu Ala Lys Ile Arg Asn Lys Gln Glu Val Met Ile Ser Asp 1025 1030 1035

Leu Glu Glu Arg Leu Lys Lys Glu Glu Lys Thr Arg Gln Glu Leu 1040 1050 1055

Glu Lys Ala Lys Arg Lys Leu Asp Gly Glu Thr Thr Asp Leu Gln 1055 $1060\,$ 1065

Asp Gln Ile Ala Glu Leu Gln Ala Gln Ile Asp Glu Leu Lys Leu 1070 1075 1080

Gln Leu Ala Lys Lys Glu Glu Glu Leu Gln Gly Ala Leu Ala Arg 1085 1090 1095

Gly Asp Asp Glu Thr Leu His Lys Asn Asn Ala Leu Lys Val Val 1100 $$1105\$

Arg Glu Leu Gln Ala Gln Ile Ala Glu Leu Gln Glu Asp Phe Glu 1115 1120 1125

Ser Glu Lys Ala Ser Arg Asn Lys Ala Glu Lys Gln Lys Arg Asp 1130 1135 1140

Leu Ser Glu Glu Leu Glu Ala Leu Lys Thr Glu Leu Glu Asp Thr

	1145					1150					1155			
Leu	Asp 1160	Thr	Thr	Ala	Ala	Gln 1165		Glu	Leu	Arg	Thr 1170		Arg	Glu
Gln	Glu 1175	Val	Ala	Glu		Lys 1180		Ala	Leu	Glu	Glu 1185	Glu	Thr	Lys
Asn	Ніs 1190	Glu	Ala	Gln	Ile	Gln 1195	Asp	Met	Arg	Gln	Arg 1200	His	Ala	Thr
Ala	Leu 1205	Glu	Glu	Leu		Glu 1210		Leu	Glu	Gln	Ala 1215		Arg	Phe
Lys	Ala 1220	Asn	Leu	Glu		Asn 1225		Gln	Gly		Glu 1230		Asp	Asn
Lys	Glu 1235	Leu	Ala	Cys	Glu	Val 1240		Val	Leu	Gln	Gln 1245		Lys	Ala
Glu	Ser 1250	Glu	His	Lys	Arg	Lys 1255	Lys	Leu	Asp	Ala	Gln 1260	Val	Gln	Glu
Leu	His 1265	Ala	Lys	Val	Ser	Glu 1270		Asp	Arg	Leu	Arg 1275	Val	Glu	Leu
Ala	Glu 1280	Lys	Ala	Ser		Leu 1285		Asn	Glu	Leu	Asp 1290		Val	Ser
	Leu 1295		Glu	Glu		Glu 1300		Lys	Gly	Ile	Lys 1305	Phe	Ala	Lys
Asp	Ala 1310	Ala	Ser	Leu	Glu	Ser 1315	Gln	Leu	Gln	Asp	Thr 1320		Glu	Leu
Leu	Gln 1325		Glu	Thr		Gln 1330		Leu	Asn	Leu	Ser 1335		Arg	Ile
Arg	Gln 1340		Glu	Glu		Lys 1345	Asn	Ser	Leu	Gln	Glu 1350	Gln	Gln	Glu
											Gln 1365		Leu	Ala
Leu	Gln 1370	Ser	Gln	Leu	Ala	Asp 1375	Thr	Lys	Lys	Lys	Val 1380	Asp	Asp	Asp
Leu	Gly 1385	Thr	Ile	Glu	Ser	Leu 1390	Glu	Glu	Ala	Lys	Lys 1395	Lys	Leu	Leu
Lys	Asp 1400	Ala	Glu	Ala	Leu	Ser 1405	Gln	Arg	Leu	Glu	Glu 1410	Lys	Ala	Leu
Ala	Tyr 1415	Asp	Lys	Leu	Glu	Lys 1420	Thr	Lys	Asn	Arg	Leu 1425	Gln	Gln	Glu

Leu Asp Asp Leu Thr Val Asp Leu Asp His Gln Arg Gln Val Ala 1430

Ser	Asn 1445	Leu	Glu	Lys	Lys	Gln 1450		Lys	Phe		Gln 1455	Leu	Leu	Ala
Glu	Glu 1460	Lys	Ser	Ile		Ala 1465		Tyr		Glu	Glu 1470	Arg	Asp	Arg
Ala	Glu 1475	Ala	Glu	Ala	Arg	Glu 1480		Glu	Thr		Ala 1485	Leu	Ser	Leu
Ala	Arg 1490	Ala	Leu	Glu	Glu	Ala 1495	Leu	Glu	Ala	Lys	Glu 1500	Glu	Phe	Glu
Arg	Gln 1505	Asn	Lys	Gln		Arg 1510		Asp	Met	Glu	Asp 1515	Leu	Met	Ser
Ser	Lys 1520	Asp	Asp	Val	Gly	Lys 1525	Asn	Val	His	Glu	Leu 1530	Glu	Lys	Ser
Lys	Arg 1535	Ala	Leu	Glu		Gln 1540		Glu	Glu	Met	Arg 1545		Gln	Leu
Glu	Glu 1550		Glu	Asp		Leu 1555		Ala	Thr	Glu	Asp 1560		Lys	Leu
Arg	Leu 1565	Glu	Val	Asn	Met	Gln 1570	Ala	Met	Lys	Ala	Gln 1575	Phe	Glu	Arg
Asp	Leu 1580	Gln	Thr	Arg		Glu 1585		Asn	Glu	Glu	Lys 1590	Lys	Arg	Leu
Leu	Ile 1595		Gln	Val	Arg	Glu 1600		Glu	Al'a	Glu	Leu 1605		Asp	Glu
Arg	Lys 1610	Gln	Arg	Ala	Leu	Ala 1615	Val	Ala	Ser	Lys	Lys 1620	Lys	Met	Glu
Ile	Asp 1625		Lys	Asp		Glu 1630		Gln	Ile	Glu	Ala 1635		Asn	Lys
Ala	Arg 1640	Asp	Glu	Val	Ile	Lys 1645	Gln	Leu	Arg	Lys	Leu 1650	Gln	Ala	Gln
Met	Lys 1655	Asp	туг	Gln	Arg	Glu 1660	Leu	Glu	Glu	Ala	Arg 1665	Ala	Ser	Arg
Asp	Glu 1670	Ile	Phe	Ala	Gln	Ser 1675	Lys	Glu	Ser	Glu	Lys 1680		Leu	Lys
Ser	Leu 1685	Glu	Ala	Glu	Ile	Leu 1690	Gln	Leu	Gln	Glu	Glu 1695		Ala	Ser
Ser	Glu 1700	Arg	Ala	Arg	Arg	His 1705	Ala	Glu	Gln	Glu	Arg 1710		Glu	Leu
Ala	Asp 1715	Glu	Ile	Thr	Asn	Ser 1720		Ser	Gly	Lys	Ser 1725	Ala	Leu	Leu
Asp	Glu 1730	Lys	Arg	Arg	Leu	Glu 1735		Arg	Ile	Ala	Gln 1740		Glu	Glu

Glu Leu Glu Glu Glu Gln Ser Asn Met Glu Leu Leu Asn Asp Arg 1745 1750 1755

Phe Arg Lys Thr Thr Leu Gln Val Asp Thr Leu Asn Ala Glu Leu 1760 1765 1770

Ala Ala Glu Arg Ser Ala Ala Gln Lys Ser Asp Asn Ala Arg Gln 1775 1780 1785

Gln Leu Glu Arg Gln Asn Lys Glu Leu Lys Ala Lys Leu Gln Glu 1790 1795 1800

Leu Glu Gly Ala Val Lys Ser Lys Phe Lys Ala Thr Ile Ser Ala 1805 1810 1815

Leu Glu Ala Lys Ile Gly Gln Leu Glu Glu Gln Leu Glu Glu Glu Gln Glu 1820 1830

Ala Lys Glu Arg Ala Ala Ala Asn Lys Leu Val Arg Arg Thr Glu 1835 1840 1845

Lys Lys Leu Lys Glu Ile Phe Met Gln Val Glu Asp Glu Arg Arg 1850 1860

His Ala Asp Gln Tyr Lys Glu Gln Met Glu Lys Ala Asn Ala Arg 1865 1870 1875

Met Lys Gln Leu Lys Arg Gln Leu Glu Glu Ala Glu Glu Glu Ala 1880 1885 1890

Thr Arg Ala Asn Ala Ser Arg Arg Lys Leu Gln Arg Glu Leu Asp 1895 1900 1905

Asp Ala Thr Glu Ala Asn Glu Gly Leu Ser Arg Glu Val Ser Thr 1910 1915 1920

Leu Lys Asn Arg Leu Arg Arg Gly Gly Pro Ile Ser Phe Ser Ser 1925 1930 1935

Ser Arg Ser Gly Arg Arg Gln Leu His Leu Glu Gly Ala Ser Leu 1940 1950 1950

Glu Leu Ser Asp Asp Asp Thr Glu Ser Lys Thr Ser Asp Val Asn 1955 1960 1965

Glu Thr Gln Pro Pro Gln Ser Glu

<210> 158 <211> 1064

<212> PRT

<213> Homo sapiens

<400> 158

Met Lys Ile Ala Thr Val Ser Val Leu Leu Pro Leu Ala Leu Cys Leu 1 5 10 15

Ile Gln Asp Ala Ala Ser Lys Asn Glu Asp Gln Glu Met Cys His Glu 20 2530

Phe Gln Ala Phe Met Lys Asn Gly Lys Leu Phe Cys Pro Gln Asp Lys 35 40 45

Lys Phe Phe Gln Ser Leu Asp Gly Ile Met Phe Ile Asn Lys Cys Ala 50 60

Thr Cys Lys Met Ile Leu Glu Lys Glu Ala Lys Ser Gln Lys Arg Ala 65 70 75 80

Arg His Leu Ala Arg Ala Pro Lys Ala Thr Ala Pro Thr Glu Leu Asn 85 90 95

Asp Tyr Tyr Glu Ala Val Cys Gly Thr Asp Gly Lys Thr Tyr Asp Asn $115 \hspace{1.5cm} 120 \hspace{1.5cm} 125 \hspace{1.5cm}$

Arg Cys Ala Leu Cys Ala Glu Asn Ala Lys Thr Gly Ser Gln Ile Gly 130 135 140

Val Lys Ser Glu Gly Glu Cys Lys Ser Ser Asn Pro Glu Gln Asp Val 145 150 155 160

Cys Ser Ala Phe Arg Pro Phe Val Arg Asp Gly Arg Leu Gly Cys Thr 165 170 175

Arg Glu Asn Asp Pro Val Leu Gly Pro Asp Gly Lys Thr His Gly Asn 180 185 190

Lys Cys Ala Met Cys Ala Glu Leu Phe Leu Lys Glu Ala Glu Asn Ala 195 200 205

Lys Arg Glu Gly Glu Thr Arg Ile Arg Arg Asn Ala Glu Lys Asp Phe 210 225 220

Cys Lys Glu Tyr Glu Lys Gln Val Arg Asn Gly Arg Leu Phe Cys Thr 225 230 235 Phe Cys Thr 240

Arg Glu Ser Asp Pro Val Arg Gly Pro Asp Gly Arg Met His Gly Asn 245 250 250 255

Lys Cys Ala Leu Cys Ala Glu Ile Phe Lys Arg Arg Phe Ser Glu Glu 260 265 270

As Ser Lys Thr Asp Gln Asn Leu Gly Lys Ala Glu Glu Lys Thr Lys 275 280 285

Val Lys Arg Glu Ile Val Lys Leu Cys Ser Gln Tyr Gln Asn Gln Ala 290 295 300

Lys Asn Gly Ile Leu Phe Cys Thr Arg Glu Asn Asp Pro Ile Arg Gly 305 310 315 320

Pro Asp Gly Lys Met His Gly Asn Leu Cys Ser Met Cys Gln Val Tyr 325 330 335

Phe Gln Ala Glu Asn Glu Glu Lys Lys Lys Ala Glu Ala Arg Ala Arg 340 345 350

Page 250

Asn Lys Arg Glu Ser Gly Lys Ala Thr Ser Tyr Ala Glu Leu Cys Asn 355 360 365

Glu Tyr Arg Lys Leu Val Arg Asn Gly Lys Leu Ala Cys Thr Arg Glu 370 375 380

Asn Asp Pro Ile Gln Gly Pro Asp Gly Lys Val His Gly Asn Thr Cys 385 390 395 400

Ser Met Cys Glu Val Phe Phe Gln Ala Glu Glu Glu Glu Lys Lys Lys 405 410 415

Lys Glu Gly Glu Ser Arg Asn Lys Arg Gln Ser Lys Ser Thr Ala Ser 420 425 430

Phe Glu Glu Leu Cys Ser Glu Tyr Arg Lys Ser Arg Lys Asn Gly Arg 435 440 445

Leu Phe Cys Thr Arg Glu Asn Asp Pro Ile Gln Gly Pro Asp Gly Lys 450 455 460

Glu Arg Ala Arg Ala Lys Ala Lys Arg Glu Ala Ala Lys Glu Ile Cys 485 490 495

Ser Glu Phe Arg Asp Gln Val Arg Asn Gly Thr Leu Ile Cys Thr Arg $500 \hspace{1.5cm} 505 \hspace{1.5cm} 510$

Glu His Asn Pro Val Arg Gly Pro Asp Gly Lys Met His Gly Asn Lys 515 520 525

Cys Ala Met Cys Ala Ser Val Phe Lys Leu Glu Glu Glu Glu Lys Lys 530 535 540

Asn Asp Lys Glu Glu Lys Gly Lys Val Glu Ala Glu Lys Val Lys Arg 545 550 560

Glu Ala Val Gln Glu Leu Cys Ser Glu Tyr Arg His Tyr Val Arg Asn 565 570 575

Gly Arg Leu Pro Cys Thr Arg Glu Asn Asp Pro Ile Glu Gly Leu Asp 580 585 590

Gly Lys Ile His Gly Asn Thr Cys Ser Met Cys Glu Ala Phe Phe Gln 595 600 605

Gln Glu Ala Lys Glu Lys Glu Arg Ala Glu Pro Arg Ala Lys Val Lys 610 615 620

Arg Glu Ala Glu Lys Glu Thr Cys Asp Glu Phe Arg Arg Leu Leu Gln 625 630 635

Asn Gly Lys Leu Phe Cys Thr Arg Glu Asn Asp Pro Val Arg Gly Pro 645 650 655

Asp Gly Lys Thr His Gly Asn Lys Cys Ala Met Cys Lys Ala Val Phe Page 251 660 665 670

Gln Lys Glu Asn Glu Glu Arg Lys Arg Lys Glu Glu Glu Asp Gln Arg 675

Asn Ala Ala Gly His Gly Ser Ser Gly Gly Gly Gly Gly Asn Thr Gln 690

Asp Glu Cys Ala Glu Tyr Gln Glu Gln Met Lys Asn Gly Arg Leu Ser 720

Cys Thr Arg Glu Ser Asp Pro Val Arg Asp Ala Asp Gly Lys Ser Tyr 735

Arg Lys Asn Glu Tyr Ser Arg Ser Arg Ser Asn Gly Thr Gly Ser Glu 755 760 765

Ser Gly Lys Asp Thr Cys Asp Glu Phe Arg Ser Gln Met Lys Asn Gly $770 \hspace{1cm} 775 \hspace{1cm} 780$

Lys Leu Ile Cys Thr Arg Glu Ser Asp Pro Val Arg Gly Pro Asp Gly 785 $790790795795795795795790795$

Gly Glu Arg Ser Asn Thr Gly Glu Arg Ser Asn Asp Lys Glu Asp Leu 835 840 845

Cys Arg Glu Phe Arg Ser Met Gln Arg Asn Gly Lys Leu Ile Cys Thr 850 860

Arg Glu Asn Asn Pro Val Arg Gly Pro Tyr Gly Lys Met His Ile Asn 865 870 870 875

Lys Cys Ala Met Cys Gln Ser Ile Phe Asp Arg Glu Ala Asn Glu Arg 885 890 895

Lys Lys Lys Asp Glu Glu Lys Ser Ser Ser Lys Pro Ser Asn Asn Ala 900 905 910

Lys Asp Glu Cys Ser Glu Phe Arg Asn Tyr Ile Arg Asn Asn Glu Leu 915 920 925

Ile Cys Pro Arg Glu Asn Asp Pro Val His Gly Ala Asp Gly Lys Phe 930 940

Tyr Thr Asn Lys Cys Tyr Met Cys Arg Ala Val Phe Leu Thr Glu Ala 945 950 955 960

Leu Glu Arg Ala Lys Leu Gln Glu Lys Pro Ser His Val Arg Ala Ser 965 970 970 975

Gln Glu Glu Asp Ser Pro Asp Ser Phe Ser Ser Leu Asp Ser Glu Met 980 985 990

Cys Lys Asp Tyr Arg Val Leu Pro Arg Ile Gly Tyr Leu Cys Pro Lys 995 1000 1005

Asp Leu Lys Pro Val Cys Gly Asp Asp Gly Gln Thr Tyr Asn Asn 1010 1020

Pro Cys Met Leu Cys His Glu $\mbox{ Asn Leu Ile Arg Gln }\mbox{ Thr Asn Thr} \mbox{ 1025} \mbox{ 1030}$

His Ile Arg Ser Thr Gly Lys Cys Glu Glu Ser Ser Thr Pro Gly 1040 1045

Thr Thr Ala Ala Ser Met Pro Pro Ser Asp Glu 1055 $\,$ 1060

<210> 159

<211> 125 <212> PRT

<213> Homo sapiens

<400> 159

Met His Lys Glu Glu His Glu Val Ala Val Leu Gly Ala Pro Pro Ser

Thr Ile Leu Pro Arg Ser Thr Val Ile Asn Ile His Ser Glu Thr Ser 20 25 30

Val Pro Asp His Val Val Trp Ser Leu Phe Asn Thr Leu Phe Leu Asn $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Trp Cys Cys Leu Gly Phe Ile Ala Phe Ala Tyr Ser Val Lys Ser Arg 50 60

Asp Arg Lys Met Val Gly Asp Val Thr Gly Ala Gln Ala Tyr Ala Ser 65 70 75 80

Thr Ala Lys Cys Leu Asn Ile Trp Ala Leu Ile Leu Gly Ile Leu Met 85 90 95

Thr Ile Gly Phe Ile Leu Leu Leu Val Phe Gly Ser Val Thr Val Tyr $100 \hspace{1cm} 105 \hspace{1cm} 105 \hspace{1cm} 110 \hspace{1cm}$

His Ile Met Leu Gln Ile Ile Gln Glu Lys Arg Gly Tyr 115 120 125

<213> Homo sapiens

<400> 160

Met Met Asp Leu Arg Asn Thr Pro Ala Lys Ser Leu Asp Lys Phe Ile 1 10 15

Glu Asp Tyr Leu Leu Pro Asp Thr Cys Phe Arg Met Gln Ile Asp His $20 \hspace{1cm} 25 \hspace{1cm} 30$

Ala Ile Asp Ile Ile Cys Gly Phe Leu Lys Glu Arg Cys Phe Arg Gly Page 253

ar.	40	45
35	40	7.5

Phe Leu Ser Pro Leu Thr Thr Phe Gln Asp Gln Leu Asn Arg Arg Gly 85 90 95

Glu Phe Ile Gln Glu Ile Arg Arg Gln Leu Glu Ala Cys Gln Arg Glu 100 105 110

Arg Ala Leu Ser Val Lys Phe Glu Val Gln Ala Pro Arg Trp Gly Asn $115 \hspace{1.5cm} 120 \hspace{1.5cm} 125$

Pro Arg Ala Leu Ser Phe Val Leu Ser Ser Leu Gln Leu Gly Glu Gly 130 135 140

Val Glu Phe Asp Val Leu Pro Ala Phe Asp Ala Leu Gly Gln Leu Thr 145 150 150 160

Gly Ser Tyr Lys Pro Asn Pro Gln Ile Tyr Val Lys Leu Ile Glu Glu 165 170 175

Cys Thr Asp Leu Gln Lys Glu Glu Glu Phe Ser Thr Cys Phe Thr Glu 180 185 190

Leu Gln Arg Asp Phe Leu Lys Gln Arg Pro Thr Lys Leu Lys Ser Leu 195 200 205

Ile Arg Leu Val Lys His Trp Tyr Gln Asn Cys Lys Lys Lys Leu Gly 210 215 220

Lys Leu Pro Pro Gln Tyr Ala Leu Glu Leu Leu Thr Val Tyr Ala Trp 225 230 235 240

Glu Arg Gly Ser Met Lys Thr His Phe Asn Thr Ala Gln Gly Phe Arg 245 250 255

Thr Val Leu Glu Leu Val Ile Asn Tyr Gln Gln Leu Cys Ile Tyr Trp $260 \hspace{1cm} 265 \hspace{1cm} 265 \hspace{1cm} 270 \hspace{1cm}$

Thr Lys Tyr Tyr Asp Phe Lys Asn Pro Ile Ile Glu Lys Tyr Leu Arg 275 280 285

Arg Gln Leu Thr Lys Pro Arg Pro Val Ile Leu Asp Pro Ala Asp Pro 290 295 300

Thr Gly Asn Leu Gly Gly Gly Asp Pro Lys Gly Trp Arg Gln Leu Ala 305 310 315 320

Gln Glu Ala Glu Ala Trp Leu Asn Tyr Pro Cys Phe Lys Asn Trp Asp 325 330 335

Gly Ser Pro Val Ser Ser Trp Ile Leu Leu Ala Glu Ser Asn Ser Thr 340 345 350

Asp Asp Glu Thr Asp Asp Pro Arg Thr Tyr Gln Lys Tyr Gly Tyr Ile $355 \hspace{1.5cm} 360 \hspace{1.5cm} 365$

Gly Thr His Glu Tyr Pro His Phe Ser His Arg Pro Ser Thr Leu Gln 370 375 380

Ala Ala Ser Thr Pro Gln Ala Glu Glu Asp Trp Thr Cys Thr Ile Leu 385 390 395 400

<210> 161

<211> 370

<212> PRT

<213> Homo sapiens

<400> 161

Met Glu Asn Gln Val Leu Thr Pro His Val Tyr Trp Ala Gln Arg His 1 5 10 15

Arg Glu Leu Tyr Leu Arg Val Glu Leu Ser Asp Val Gln Asn Pro Ala $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30 \hspace{1.5cm}$

Ile Ser Ile Thr Glu Asn Val Leu His Phe Lys Ala Gln Gly His Gly 35 40 45

Ala Lys Gly Asp Asn Val Tyr Glu Phe His Leu Glu Phe Leu Asp Leu 50 60

Val Lys Pro Glu Pro Val Tyr Lys Leu Thr Gln Arg Gln Val Asn Ile 65 70 75 80

Thr Val Gln Lys Lys Val Ser Gln Trp Trp Glu Arg Leu Thr Lys Gln 85 90 90 95

Glu Lys Arg Pro Leu Phe Leu Ala Pro Asp Phe Asp Arg Trp Leu Asp $100 \hspace{1cm} 105 \hspace{1cm} 110$

Glu Ser Asp Ala Glu Met Glu Leu Arg Ala Lys Glu Glu Glu Arg Leu 115 120 125

Asn Lys Leu Arg Leu Glu Ser Glu Gly Ser Pro Glu Thr Leu Thr Asn 130 $$135\$

Leu Arg Lys Gly Tyr Leu Phe Met Tyr Asn Leu Val Gln Phe Leu Gly 145 150150155

Phe Ser Trp Ile Phe Val Asn Leu Thr Val Arg Phe Cys Ile Leu Gly 165 170 175

Lys Glu Ser Phe Tyr Asp Thr Phe His Thr Val Ala Asp Met Met Tyr 180 195 190

Phe Cys Gln Met Leu Ala Val Val Glu Thr Ile Asn Ala Ala Ile Gly 195 200 205

Val Thr Thr Ser Pro Val Leu Pro Ser Leu Ile Gln Leu Leu Gly Arg 210 215 220

Asn Phe Ile Leu Phe Ile Ile Phe Gly Thr Met Glu Glu Met Gln Asn 225 230 235 240

Lys Ala Val Val Phe Phe Val Phe Tyr Leu Trp Ser Ala Ile Glu Ile 245 250 255

Phe Arg Tyr Ser Phe Tyr Met Leu Thr Cys Ile Asp Met Asp Trp Lys 260 265 270

Val Leu Thr Trp Leu Arg Tyr Thr Leu Trp Ile Pro Leu Tyr Pro Leu 275 280 285

Gly Cys Leu Ala Glu Ala Val Ser Val Ile Gln Ser Ile Pro Ile Phe 290 295 300

Asn Glu Thr Gly Arg Phe Ser Phe Thr Leu Pro Tyr Pro Val Lys Ile 305 310 315 320

Lys Val Arg Phe Ser Phe Phe Leu Gln Ile Tyr Leu Ile Met Ile Phe 325 330 335

Leu Gly Leu Tyr Ile Asn Phe Arg His Leu Tyr Lys Gln Arg Arg Leu 340 345 350

Gly Gly 370

<210> 162

<211> 372

<212> PRT

<213> Homo sapiens

<400> 162

Met Leu Asp Gly Leu Gly Val Val Ala Ile Ser Ile Phe Gly Ile Gln 1 $$ 10 $$ 15

Leu Lys Thr Glu Gly Ser Leu Arg Thr Ala Val Pro Gly Ile Pro Thr $20 \hspace{1cm} 25 \hspace{1cm} 30$

Gln Ser Ala Phe Asn Lys Cys Leu Gln Arg Tyr Ile Gly Ala Leu Gly 35 40 45

Ala Arg Val Ile Cys Asp Asn Ile Pro Gly Leu Val Ser Arg Gln Arg 50 60

Gln Leu Cys Gln Arg Tyr Pro Asp Ile Met Arg Ser Val Gly Glu Gly 65 70 75 80

Ala Arg Glu Trp Ile Arg Glu Cys Gln His Gln Phe Arg His His Arg 85 90 95

Trp Asn Cys Thr Thr Leu Asp Arg Asp His Thr Val Phe Gly Arg Val 100 105 110

Met Leu Arg Ser Ser Arg Glu Ala Ala Phe Val Tyr Ala Ile Ser Ser 115 120 125

Ala Gly Val Ile His Ala Ile Thr Arg Ala Cys Ser Gln Gly Glu Leu 130 135 140

Ser Val Cys Ser Cys Asp Pro Tyr Thr Arg Gly Arg His His Asp Gln 145 150 155 160

Arg Gly Thr Phe Asp Trp Gly Gly Cys Ser Asp Asn Ile His Tyr Gly 165 170 175

Val Arg Phe Ala Lys Ala Phe Val Asp Ala Lys Glu Lys Arg Leu Lys 180 185 190

Asp Ala Arg Ala Leu Met Asn Leu His Asn Asn Arg Cys Gly Arg Thr 195 200 205

Ala Val Arg Arg Phe Val Lys Leu Glu Cys Lys Cys His Gly Val Ser 210 220

Gly Ser Cys Thr Leu Arg Thr Cys Trp Arg Ala Leu Ser Asp Phe Arg 225 230 240

Arg Thr Gly Asp Tyr Leu Arg Arg Arg Tyr Asp Gly Ala Val Gln Val 245 250 250

Met Ala Thr Gln Asp Gly Ala Asn Phe Thr Ala Ala Arg Gln Gly Tyr 260 265 270

Arg Arg Ala Thr Arg Ser Asp Leu Val Tyr Phe Asp Asn Ser Pro Asp 275 280 285

Tyr Cys Val Leu Asp Lys Ala Ala Gly Ser Leu Gly Thr Ala Gly Arg 290 295 300

Val Cys Ser Lys Thr Ser Lys Gly Thr Asp Gly Cys Glu Ile Met Cys 305 310315315

Cys Gly Arg Gly Tyr Asp Thr Thr Arg Val Thr Arg Val Thr Gln Cys 325 330 335

Glu Cys Lys Phe His Trp Cys Cys Ala Val Arg Cys Lys Glu Cys Arg 340 345 350

As nThr Val Asp Val His Thr Cys Lys Ala Pro Lys Lys Ala Glu Trp 355 360 365

Leu Asp Gln Thr 370

(210> 163

<211> 249

<211> 243 <212> PRT

<213> Homo sapiens

<400> 163

Met Lys Leu Asn Ile Ser Phe Pro Ala Thr Gly Cys Gln Lys Leu Ile 1 10 15

Glu Val Asp Asp Glu Arg Thr Leu Arg Thr Phe Tyr Glu Lys Arg Met 20 25 30

Ala Thr Glu Val Ala Ala Asp Ala Leu Gly Glu Glu Trp Lys Gly Tyr $35 \hspace{1cm} 40 \hspace{1cm} 45$

Val Val Arg Ile Ser Gly Gly Asn Asp Lys Gln Gly Phe Pro Met Lys 50 60

Gln Gly Val Leu Thr His Gly Arg Val Arg Leu Leu Ser Lys Gly 65 70 75 80

His Ser Cys Tyr Arg Pro Arg Arg Thr Gly Glu Arg Lys Arg Lys Ser 85 90 95

Val Arg Gly Cys Ile Val Asp Ala Asn Leu Ser Val Leu Asn Leu Val 100 105 110

Ile Val Lys Lys Gly Glu Lys Asp Ile Pro Gly Leu Thr Asp Thr Thr $115 \hspace{1.5cm} 120 \hspace{1.5cm} 125$

Val Pro Arg Arg Leu Gly Pro Lys Arg Ala Ser Arg Ile Arg Lys Arg 130 135 140

Phe Asn Leu Ser Lys Glu Asp Asp Val Arg Gln Tyr Val Val Arg Lys 145 150 150 160

Pro Leu Asn Lys Glu Gly Lys Lys Pro Arg Thr Lys Ala Pro Lys Ile $165 \\ 170 \\ 170 \\ 175$

Gln Arg Leu Val Thr Pro Arg Val Leu Gln His Lys Arg Arg Arg Ile 180 185 190

Ala Leu Lys Gln Gln Arg Thr Lys Lys Asn Lys Glu Glu Ala Ala Glu 195 200 205

Tyr Ala Lys Leu Leu Ala Lys Arg Met Lys Glu Ala Lys Glu Lys Arg 210 215 220

Gln Glu Gln Ile Ala Lys Arg Arg Arg Leu Ser Ser Leu Arg Ala Ser 225 230 230 235

Thr Ser Lys Ser Glu Ser Ser Gln Lys 245

<210> 164

<211> 469

<212> PRT <213> Homo sapiens

<400> 164

Met His Ser Phe Pro Pro Leu Leu Leu Leu Phe Trp Gly Val Val 1 10 15

Ser His Ser Phe Pro Ala Thr Leu Glu Thr Gln Glu Gln Asp Val Asp $20 \hspace{1cm} 25 \hspace{1cm} 30$

Leu Val Gln Lys Tyr Leu Glu Lys Tyr Tyr Asn Leu Lys Asn Asp Gly 35 40 45

Arg Gln Val Glu Lys Arg Arg Asn Ser Gly Pro Val Val Glu Lys Leu $50 \hspace{1cm} 55 \hspace{1cm} 60$

Lys Gln Met Gln Glu Phe Phe Gly Leu Lys Val Thr Gly Lys Pro Asp 65 70 75 80

Ala Glu Thr Leu Lys Val Met Lys Gln Pro Arg Cys Gly Val Pro Asp $85 \hspace{1cm} 90 \hspace{1cm} 95$

Val Ala Gln Phe Val Leu Thr Glu Gly Asn Pro Arg Trp Glu Gln Thr 100 105 110

His Leu Thr Tyr Arg Ile Glu Asn Tyr Thr Pro Asp Leu Pro Arg Ala 115 120 125

Asp Val Asp His Ala Ile Glu Lys Ala Phe Gln Leu Trp Ser Asn Val 130 135 140

Thr Pro Leu Thr Phe Thr Lys Val Ser Glu Gly Gln Ala Asp Ile Met 145 150150155160

Ile Ser Phe Val Arg Gly Asp His Arg Asp Asn Ser Pro Phe Asp Gly 165 170 175

Pro Gly Gly Asn Leu Ala His Ala Phe Gln Pro Gly Pro Gly Ile Gly 180 $$185\$

Gly Asp Ala His Phe Asp Glu Asp Glu Arg Trp Thr Asn Asn Phe Arg 195 200 205

Glu Tyr Asn Leu His Arg Val Ala Ala His Glu Leu Gly His Ser Leu 210 215 220

Gly Leu Ser His Ser Thr Asp Ile Gly Ala Leu Met Tyr Pro Ser Tyr 225 230 235 240

Thr Phe Ser Gly Asp Val Gln Leu Ala Gln Asp Asp Ile Asp Gly Ile $245 \hspace{1.5cm} 250 \hspace{1.5cm} 255$

Gln Ala Ile Tyr Gly Arg Ser Gln Asn Pro Val Gln Pro Ile Gly Pro 260 265 270

Gln Thr Pro Lys Ala Cys Asp Ser Lys Leu Thr Phe Asp Ala Ile Thr 275 280 285

Thr Ile Arg Gly Glu Val Met Phe Phe Lys Asp Arg Phe Tyr Met Arg 290 295 300

Thr Asn Pro Phe Tyr Pro Glu Val Glu Leu Asn Phe Ile Ser Val Phe 305 310 315 320

Trp Pro Gln Leu Pro Asn Gly Leu Glu Ala Ala Tyr Glu Phe Ala Asp $325 \hspace{1cm} 330 \hspace{1cm} 335$

Arg Asp Glu Val Arg Phe Phe Lys Gly Asn Lys Tyr Trp Ala Val Gln 340 345 350

Gly Gln Asn Val Leu His Gly Tyr Pro Lys Asp Ile Tyr Ser Ser Phe 355 360 365

Gly Phe Pro Arg Thr Val Lys His Ile Asp Ala Ala Leu Ser Glu Glu 370 380

Asn Thr Gly Lys Thr Tyr Phe Phe Val Ala Asn Lys Tyr Trp Arg Tyr 385 390 395 400

Asp Glu Tyr Lys Arg Ser Met Asp Pro Gly Tyr Pro Lys Met Ile Ala 405 410 415

His Asp Phe Pro Gly Ile Gly His Lys Val Asp Ala Val Phe Met Lys 420 425 430

Asp Gly Phe Phe Tyr Phe Phe His Gly Thr Arg Gln Tyr Lys Phe Asp $435 \hspace{1.5cm} 440 \hspace{1.5cm} 445$

Pro Lys Thr Lys Arg Ile Leu Thr Leu Gln Lys Ala Asn Ser Trp Phe 450 455 460

Asn Cys Arg Lys Asn

<212> PRT

<213> Homo sapiens

<400> 165

Val Glu Pro Ser Asp Thr Ile Glu Asn Val Lys Ala Lys Ile Gln Asp 20 25 30

Lys Glu Gly Ile Pro Pro Asp Gln Gln Arg Leu Ile Phe Ala Gly Lys 35 40 45

Gln Leu Glu Asp Gly Arg Thr Leu Ser Asp Tyr Asn Ile Gln Lys Glu 50 60

Ser Thr Leu His Leu Val Leu Arg Leu Arg Gly Gly Ala Lys Lys Arg 65 70 75 80

Lys Lys Lys Ser Tyr Thr Thr Pro Lys Lys Asn Lys His Lys Arg Lys 85 90 95

Lys Val Lys Leu Ala Val Leu Lys Tyr Tyr Lys Val Asp Glu Asn Gly $100 \hspace{1cm} 105 \hspace{1cm} 110$

Lys Ile Ser Arg Leu Arg Arg Glu Cys Pro Ser Asp Glu Cys Gly Ala 115 120 125

Gly Val Phe Met Ala Ser His Phe Asp Arg His Tyr Cys Gly Lys Cys 130 135 140

Cys Leu Thr Tyr Cys Phe Asn Lys Pro Glu Asp Lys 145 150 155

<210> 166 <211> 783 <212> PRT

<213> Homo sapiens

<400> 166

Met Ala Lys Tyr Asn Thr Gly Gly Asn Pro Thr Glu Asp Val Ser Val 1 10 15

As Ser Arg Pro Phe Arg Val Thr Gly Pro As Ser Ser Ser Gly Ile $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Gln Ala Arg Lys Asn Leu Phe Asn Asn Gln Gly Asn Ala Ser Pro Pro 35 40 45

Ala Gly Pro Ser Asn Val Pro Lys Phe Gly Ser Pro Lys Pro Pro Val 50 60

Ala Val Lys Pro Ser Ser Glu Glu Lys Pro Asp Lys Glu Pro Lys Pro 65 70 75 80

Pro Phe Leu Lys Pro Thr Gly Ala Gly Gln Arg Phe Gly Thr Pro Ala 85 90 95

Ser Leu Thr Thr Arg Asp Pro Glu Ala Lys Val Gly Phe Leu Lys Pro 100 105 110

Val Gly Pro Lys Pro Ile Asn Leu Pro Lys Glu Asp Ser Lys Pro Thr 115 120 125

Phe Pro Trp Pro Pro Gly Asn Lys Pro Ser Leu His Ser Val Asn Gln 130 135 140

Asp His Asp Leu Lys Pro Leu Gly Pro Lys Ser Gly Pro Thr Pro Pro 145 150 160

Thr Ser Glu Asn Glu Gln Lys Gln Ala Phe Pro Lys Leu Thr Gly Val 165 170 175

Lys Gly Lys Phe Met Ser Ala Ser Gln Asp Leu Glu Pro Lys Pro Leu 180 185 190

Phe Pro Lys Pro Ala Phe Gly Gln Lys Pro Pro Leu Ser Thr Glu Asn 195 200 205

Ser His Glu Asp Glu Ser Pro Met Lys Asn Val Ser Ser Ser Lys Gly 210 215 220

Ser Pro Ala Pro Leu Gly Val Arg Ser Lys Ser Gly Pro Leu Lys Pro 225 230 230 240

Ala Arg Glu Asp Ser Glu Asn Lys Asp His Ala Gly Glu Ile Ser Ser 245 250 255

Leu Pro Phe Pro Gly Val Val Leu Lys Pro Ala Ala Ser Arg Ġly Gly 260 265 270

Leu Gly Leu Ser Lys Asn Gly Glu Glu Lys Lys Glu Asp Arg Lys Ile $275 \hspace{1.5cm} 280 \hspace{1.5cm} 285$

Asp Ala Ala Lys Asn Thr Phe Gln Ser Lys Ile Asn Gln Glu Glu Leu 290 295 300

Ala Ser Gly Thr Pro Pro Ala Arg Phe Pro Lys Ala Pro Ser Lys Leu 305 310 315 320

Thr Val Gly Gly Pro Trp Gly Gln Ser Gln Glu Lys Glu Lys Gly Asp 325 330 335

Lys Asn Ser Ala Thr Pro Lys Gln Lys Pro Leu Pro Pro Leu Phe Thr 340 345 350

Leu Gly Pro Pro Pro Pro Lys Pro Asn Arg Pro Pro Asn Val Asp Leu 355 360 365

Thr Lys Phe His Lys Thr Ser Ser Gly Asn Ser Thr Ser Lys Gly Gln 370 375 380

Thr Ser Tyr Ser Thr Thr Ser Leu Pro Pro Pro Pro Pro Ser His Pro 385 390 395 400

Ala Ser Gln Pro Pro Leu Pro Ala Ser His Pro Ser Gln Pro Pro Val405 410 415

Pro Ser Leu Pro Pro Arg Asn Ile Lys Pro Pro Phe Asp Leu Lys Ser 420 425 430

Pro Val Asn Glu Asp Asn Gln Asp Gly Val Thr His Ser Asp Gly Ala 435 440 445

Gly Asn Leu Asp Glu Glu Gln Asp Ser Glu Gly Glu Thr Tyr Glu Asp 450 460

Ile Glu Ala Ser Lys Glu Arg Glu Lys Lys Arg Glu Lys Glu Glu Lys 465 470 480

Lys Arg Leu Glu Leu Glu Lys Lys Glu Gln Lys Glu Lys Glu Lys Lys 485 490 490 495

Glu Gln Glu Ile Lys Lys Phe Lys Leu Thr Gly Pro Ile Gln Val $500 \ \ 505 \ \ \ 510$

Ile His Leu Ala Lys Ala Cys Cys Asp Val Lys Gly Gly Lys Asn Glu 515 520 525

Leu Ser Phe Lys Gln Gly Glu Gln Ile Glu Ile Ile Arg Ile Thr Asp 530 535 540

Asn Pro Glu Gly Lys Trp Leu Gly Arg Thr Ala Arg Gly Ser Tyr Gly 545 550 560

Tyr Ile Lys Thr Thr Ala Val Glu Ile Asp Tyr Asp Ser Leu Lys Leu 565 570 575

Lys Lys Asp Ser Leu Gly Ala Pro Ser Arg Pro Ile Glu Asp Asp Gln $580 \,$ $585 \,$ 590

Glu Val Tyr Asp Asp Val Ala Glu Gln Asp Asp Ile Ser Ser His Ser 595 600 605

Gln Ser Gly Ser Gly Gly Ile Phe Pro Pro Pro Pro Asp Asp Asp Ile 610 615 620

Tyr Asp Gly Ile Glu Glu Glu Asp Ala Asp Asp Gly Phe Pro Ala Pro 625 630 635 640

Pro Lys Gln Leu Asp Met Gly Asp Glu Val Tyr Asp Asp Val Asp Thr $645 \hspace{1cm} 650 \hspace{1cm} 655$

Ser Asp Phe Pro Val Ser Ser Ala Glu Met Ser Gln Gly Thr Asn Phe $660 \hspace{1.5cm} 665 \hspace{1.5cm} 670$

Gly Lys Ala Lys Thr Glu Glu Lys Asp Leu Lys Lys Leu Lys Lys Gln 675 680 685

Glu Lys Glu Glu Lys Asp Phe Arg Lys Lys Phe Lys Tyr Asp Gly Glu 690 695 700

Ile Arg Val Leu Tyr Ser Thr Lys Val Thr Thr Ser Ile Thr Ser Lys 705 710 715 720

Lys Trp Gly Thr Arg Asp Leu Gln Val Lys Pro Gly Glu Ser Leu Glu 725 730 735

Val \lambda Ile Gln Thr Thr Asp Asp Thr Lys Val Leu Cys Arg Asn Glu Glu 740 745 750

Gly Lys Tyr Gly Tyr Val Leu Arg Ser Tyr Leu Ala Asp Asn Asp Gly $755 \hspace{1cm} 760 \hspace{1cm} 765$

Glu Ile Tyr Asp Asp Ile Ala Asp Gly Cys Ile Tyr Asp Asn Asp 770 $$ 775 $$ 780

<210> 167

<211> 117

<212> PRT <213> Homo sapiens

<400> 167

Met Ala Ala Ala Ala Ala Gly Ser Gly Thr Pro Arg Glu Glu Glu 1 10 15

Val Pro Ala Gly Glu Ala Ala Ala Ser Gln Pro Gln Ala Pro Thr Ser 20 25 30

Val Pro Gly Ala Arg Leu Ser Arg Leu Pro Leu Ala Arg Val Lys Ala 35 40 45

Leu Val Lys Ala Asp Pro Asp Val Thr Leu Ala Gly Gln Glu Ala Ile 50 60

Phe Ile Leu Ala Arg Ala Ala Glu Leu Phe Val Glu Thr Ile Ala Lys 65 70 75 80

Asp Ala Tyr Cys Cys Ala Gln Gln Gly Lys Arg Lys Thr Leu Gln Arg 85 90 95

Arg Asp Leu Asp Asn Ala Ile Glu Ala Val Asp Glu Phe Ala Phe Leu $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$

Glu Gly Thr Leu Asp 115

<210> 168 <211> 243

<211> 243 <212> PRT

<213> Homo sapiens

<400> 168

Met Ala Val Gln Ile Ser Lys Arg Arg Lys Phe Val Ala Asp Gly Ile

Phe Lys Ala Glu Leu Asn Glu Phe Leu Thr Arg Glu Leu Ala Glu Asp 20 25 30

Gly Tyr Ser Gly Val Glu Val Arg Val Thr Pro Thr Arg Thr Glu Ile $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Ile Ile Leu Ala Thr Arg Thr Gln Asn Val Leu Gly Glu Lys Gly Arg 50 55 60

Arg Ile Arg Glu Leu Thr Ala Val Val Gln Lys Arg Phe Gly Phe Pro 65 70 75 80

Glu Gly Ser Val Glu Leu Tyr Ala Glu Lys Val Ala Thr Arg Gly Leu $85 \hspace{1cm} 90 \hspace{1cm} 95$

Cys Ala Ile Ala Gln Ala Glu Ser Leu Arg Tyr Lys Leu Leu Gly Gly 100 105 110

Leu Ala Val Arg Arg Ala Cys Tyr Gly Val Leu Arg Phe Ile Met Glu 115 120 125

Ser Gly Ala Lys Gly Cys Glu Val Val Val Ser Gly Lys Leu Arg Gly 130 135 140

Gln Arg Ala Lys Ser Met Lys Phe Val Asp Gly Leu Met Ile His Ser 145 150 155 160

Gly Asp Pro Val Asn Tyr Tyr Val Asp Thr Ala Val Arg His Val Leu 165 170 175

Leu Arg Gln Gly Val Leu Gly Ile Lys Val Lys Ile Met Leu Pro Trp

Asp Pro Thr Gly Lys Ile Gly Pro Lys Lys Pro Leu Pro Asp His Val

Ser Ile Val Glu Pro Lys Asp Glu Ile Leu Pro Thr Thr Pro Ile Ser 210 215 220

Glu Gln Lys Gly Gly Lys Pro Glu Pro Pro Ala Met Pro Gln Pro Val 225 230 235 240

Pro Thr Ala

<210> 169

<211> 136 <212> PRT

<213> Homo sapiens

<400> 169

Met Val Leu Leu Glu Ser Glu Gln Phe Leu Thr Glu Leu Thr Arg Leu 1 $\overset{\circ}{}$ 10 15

Phe Gln Lys Cys Arg Thr Ser Gly Ser Val Tyr Ile Thr Leu Lys Lys 20 25 30

Tyr Asp Gly Arg Thr Lys Pro Ile Pro Lys Lys Gly Thr Val Glu Gly $35 \hspace{1cm} 40 \hspace{1cm} 45$

Phe Glu Pro Ala Asp Asn Lys Cys Leu Leu Arg Ala Thr Asp Gly Lys 50 60

Lys Lys Ile Ser Thr Val Val Ser Ser Lys Glu Val Asn Lys Phe Gln 65 70 75 80

Met Ala Tyr Ser Asn Leu Leu Arg Ala Asn Met Asp Gly Leu Lys Lys 85 90 95

Arg Asp Lys Lys Asn Lys Thr Lys Lys Thr Lys Ala Ala Ala Ala Ala 100 105 110

Ala Ala Ala Ala Pro Ala Ala Ala Ala Thr Ala Ala Thr Thr Ala Ala 115 120 125

Thr Thr Ala Ala Thr Ala Ala Gln 130 135

<210> 170

<211> 409

<212> PRT

<213> Homo sapiens

<400> 170

Glu Lys Gly Lys Asp Ala Phe Pro Val Ala Gly Gln Lys Leu Ile Tyr $35 \hspace{1cm} 40 \hspace{1cm} 45$

Ala Gly Lys Ile Leu Asn Asp Asp Thr Ala Leu Lys Glu Tyr Lys Ile 50 60

Asp Glu Lys Asn Phe Val Val Val Met Val Thr Lys Pro Lys Ala Val 65 70 75 80

Ser Thr Pro Ala Pro Ala Thr Thr Gln Gln Ser Ala Pro Ala Ser Thr 85 90 95

Thr Ala Val Thr Ser Ser Thr Thr Thr Thr Val Ala Gln Ala Pro Thr 100 \$105\$

Pro Val Pro Ala Leu Ala Pro Thr Ser Thr Pro Ala Ser Ile Thr Pro 115 120 125

Ala Ser Ala Thr Ala Ser Ser Glu Pro Ala Pro Ala Ser Ala Ala Lys 130 135 140

Gln Glu Lys Pro Ala Glu Lys Pro Ala Glu Thr Pro Val Ala Thr Ser 145 150 155 160

Pro Thr Ala Thr Asp Ser Thr Ser Gly Asp Ser Ser Arg Ser Asn Leu 165 170 175 Phe Glu Asp Ala Thr Ser Ala Leu Val Thr Gly Gln Ser Tyr Glu Asn 180 $$185\mathcharpoons$

Met Val Thr Glu Ile Met Ser Met Gly Tyr Glu Arg Glu Gln Val Ile 195 200 205

Ala Ala Leu Arg Ala Ser Phe Asn Asn Pro Asp Arg Ala Val Glu Tyr 210 215 220

Leu Leu Met Gly Ile Pro Gly Asp Arg Glu Ser Gln Ala Val Val Asp 225 230 235 240

Pro Pro Gln Ala Ala Ser Thr Gly Ala Pro Gln Ser Ser Ala Val Ala 245 250 255

Ala Ala Ala Ala Thr Thr Thr Ala Thr Thr Thr Thr Thr Ser Ser Gly $260 \hspace{1.5cm} 265 \hspace{1.5cm} 270 \hspace{1.5cm}$

Arg Gln Ile Ile Gln Gln Asn Pro Ser Leu Leu Pro Ala Leu Leu Gln 290 295 300

Gln Ile Gly Arg Glu Asn Pro Gln Leu Leu Gln Gln Ile Ser Gln His 305 310 315 320

Gln Glu His Phe Ile Gln Met Leu Asn Glu Pro Val Gln Glu Ala Gly 325 330 335

Gly Gln Gly Gly Gly Gly Gly Gly Ser Gly Gly Ile Ala Glu Ala 340 \$345\$

Gly Ser Gly His Met Asn Tyr Ile Gln Val Thr Pro Gln Glu Lys Glu 355 360 365

Ala Ile Glu Arg Leu Lys Ala Leu Gly Phe Pro Glu Gly Leu Val Ile 370 375 380

Gln Ala Tyr Phe Ala Cys Glu Lys Asn Glu Asn Leu Ala Ala Asn Phe 385 390 395 400

Leu Leu Gln Gln Asn Phe Asp Glu Asp 405

<210> 171 <211> 614

<212> PRT

<213> Homo sapiens

Met Ser Gly Ile Lys Lys Gln Lys Thr Glu Asn Gln Gln Lys Ser Thr 1 5 10 15

Asn Val Val Tyr Gln Ala His His Val Ser Arg Asn Lys Arg Gly Gln $20 \hspace{1cm} 25 \hspace{1cm} 30$

Val Val Gly Thr Arg Gly Gly Phe Arg Gly Cys Thr Val Trp Leu Thr 35 40 45

Gly Leu Ser Gly Ala Gly Lys Thr Thr Ile Ser Phe Ala Leu Glu Glu 50 $\,$ 55 $\,$ 60 $\,$

Tyr Leu Val Ser His Ala Ile Pro Cys Tyr Ser Leu Asp Gly Asp Asn 65 70 75 80

Val Arg His Gly Leu Asn Arg Asn Leu Gly Phe Ser Pro Gly Asp Arg 85 90 95

Glu Glu Asn Ile Arg Arg Ile Ala Glu Val Ala Lys Leu Phe Ala Asp $100 \hspace{1.5cm} 105 \hspace{1.5cm} 105$

Ala Gly Leu Val Cys Ile Thr Ser Phe Ile Ser Pro Phe Ala Lys Asp 115 120 125

Arg Glu Asn Ala Arg Lys Ile His Glu Ser Ala Gly Leu Pro Phe Phe 130 135 140

Glu Ile Phe Val Asp Ala Pro Leu Asn Ile Cys Glu Ser Arg Asp Val 145 150 155 160

Lys Gly Leu Tyr Lys Lys Ala Arg Ala Gly Glu Ile Lys Gly Phe Thr $165 \ \ 170 \ \ 175$

Gly Ile Asp Ser Asp Tyr Glu Lys Pro Glu Thr Pro Glu Arg Val Leu $180 \hspace{1cm} 185 \hspace{1cm} 195 \hspace{1cm}$

Lys Thr Asn Leu Ser Thr Val Ser Asp Cys Val His Gln Val Val Glu 195 200

Leu Leu Gln Glu Gln Asn Ile Val Pro Tyr Thr Ile Ile Lys Asp Ile 210 215 220

His Glu Leu Phe Val Pro Glu Asn Lys Leu Asp His Val Arg Ala Glu 225 230 230 235 240

Ala Glu Thr Leu Pro Ser Leu Ser Ile Thr Lys Leu Asp Leu Gln Trp 245 250 255

Val Gln Val Leu Ser Glu Gly Trp Ala Thr Pro Leu Lys Gly Phe Met 260 265 270

Arg Glu Lys Glu Tyr Leu Gln Val Met His Phe Asp Thr Leu Leu Asp 275 280 285

Asp Gly Val Ile Asn Met Ser Ile Pro Ile Val Leu Pro Val Ser Ala 290 295 300

Glu Asp Lys Thr Arg Leu Glu Gly Cys Ser Lys Phe Val Leu Ala His 305 310 315 320

Gly Gly Arg Arg Val Ala Ile Leu Arg Asp Ala Glu Phe Tyr Glu His 325 330 335

Arg Lys Glu Glu Arg Cys Ser Arg Val Trp Gly Thr Thr Cys Thr Lys 340 345 350

His Pro His Ile Lys Met Val Met Glu Ser Gly Asp Trp Leu Val Gly 355 360 365

Gly Asp Leu Gln Val Leu Glu Lys Ile Arg Trp Asn Asp Gly Leu Asp 370 375 380

Gln Tyr Arg Leu Thr Pro Leu Glu Leu Lys Gln Lys Cys Lys Glu Met 385 390 395 400

Asn Ala Asp Ala Val Phe Ala Phe Gln Leu Arg Asn Pro Val His Asn 405 410410

Gly His Ala Leu Leu Met Gln Asp Thr Arg Arg Arg Leu Leu Glu Arg 420 425 430

Gly Tyr Lys His Pro Val Leu Leu Leu His Pro Leu Gly Gly Trp Thr $435 \hspace{1.5cm} 440 \hspace{1.5cm} 445$

Lys Asp Asp Asp Val Pro Leu Asp Trp Arg Met Lys Gln His Ala Ala 450 455

Val Leu Glu Glu Gly Val Leu Asp Pro Lys Ser Thr Ile Val Ala Ile 465 470 475 480

Phe Pro Ser Pro Met Leu Tyr Ala Gly Pro Thr Glu Val Gln Trp His 485 490 495

Cys Arg Ser Arg Met Ile Ala Gly Ala Asn Phe Tyr Ile Val Gly Arg 500 505 510

Asp Pro Ala Gly Met Pro His Pro Glu Thr Lys Lys Asp Leu Tyr Glu 515 520 525

Pro Thr His Gly Gly Lys Val Leu Ser Met Ala Pro Gly Leu Thr Ser 530 535 540

Val Glu Ile Ile Pro Phe Arg Val Ala Ala Tyr Asn Lys Ala Lys Lys 545 550 560

Ala Met Asp Phe Tyr Asp Leu Ala Arg His Asn Glu Phe Asp Phe Ile 565 570 575

Ser Gly Thr Arg Met Arg Lys Leu Ala Arg Glu Gly Glu Asn Pro Pro 580 585 590

Asp Gly Phe Met Ala Pro Lys Ala Trp Lys Val Leu Thr Asp Tyr Tyr 595 600 605

Arg Ser Leu Glu Lys Asn 610

210> 172

<211> 798 <212> PRT

<213> Homo sapiens

<400> 172

Met Asn Leu Gln Pro Ile Phe Trp Ile Gly Leu Ile Ser Ser Val Cys 1 $$ 5 $$ 10 $$ 15

Cys Val Phe Ala Gln Thr Asp Glu Asn Arg Cys Leu Lys Ala Asn Ala 20 25 30

Lys Ser Cys Gly Glu Cys Ile Gln Ala Gly Pro Asn Cys Gly Trp Cys $35 \hspace{1cm} 40 \hspace{1cm} 45$ Thr Asn Ser Thr Phe Leu Gln Glu Gly Met Pro Thr Ser Ala Arg Cys 50 60 Asp Asp Leu Glu Ala Leu Lys Lys Gly Cys Pro Pro Asp Asp Ile 65 70 75 80 Glu Asn Pro Arg Gly Ser Lys Asp Ile Lys Lys Asn Lys Asn Val Thr 85 90 95 Asn Arg Ser Lys Gly Thr Ala Glu Lys Leu Lys Pro Glu Asp Ile His $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$ Gln Ile Gln Pro Gln Gln Leu Val Leu Arg Leu Arg Ser Gly Glu Pro 115 120 125 Gln Thr Phe Thr Leu Lys Phe Lys Arg Ala Glu Asp Tyr Pro Ile Asp 130 135 140 Leu Tyr Tyr Leu Met Asp Leu Ser Tyr Ser Met Lys Asp Asp Leu Glu 145 150 155 160 Asn Val Lys Ser Leu Gly Thr Asp Leu Met Asn Glu Met Arg Arg Ile 165 170 175Thr Ser Asp Phe Arg Ile Gly Phe Gly Ser Phe Val Glu Lys Thr Val 180 $$185\$ Met Pro Tyr Ile Ser Thr Thr Pro Ala Lys Leu Arg Asn Pro Cys Thr 195 200 205 Ser Glu Gln Asn Cys Thr Thr Pro Phe Ser Tyr Lys Asn Val Leu Ser 210 225 220 Leu Thr Asn Lys Gly Glu Val Phe Asn Glu Leu Val Gly Lys Gln Arg 225 230 235 240 Ile Ser Gly Asn Leu Asp Ser Pro Glu Gly Gly Phe Asp Ala Ile Met 245 250 255 Gln Val Ala Val Cys Gly Ser Leu Ile Gly Trp Arg Asn Val Thr Arg 260 265 270Leu Leu Val Phe Ser Thr Asp Ala Gly Phe His Phe Ala Gly Asp Gly 275 280 280 285 Lys Leu Gly Gly Ile Val Leu Pro Asn Asp Gly Gln Cys His Leu Glu 290 295 300 Asn Asn Met Tyr Thr Met Ser His Tyr Tyr Asp Tyr Pro Ser Ile Ala 305 310 315 320 His Leu Val Gln Lys Leu Ser Glu Asn Asn Ile Gln Thr Ile Phe Ala 325 330 335 Val Thr Glu Glu Phe Gln Pro Val Tyr Lys Glu Leu Lys Asn Leu Ile Page 269

340 345 350

Pro Lys Ser Ala Val Gly Thr Leu Ser Ala Asn Ser Ser Asn Val Ile 355 360 365 Gln Leu Ile Ile Asp Ala Tyr Asn Ser Leu Ser Ser Glu Val Ile Leu $370 \hspace{1cm} 375 \hspace{1cm} 380$ Glu Asn Gly Lys Leu Ser Glu Gly Val Thr Ile Ser Tyr Lys Ser Tyr 385 390 395 400 Cys Lys Asn Gly Val Asn Gly Thr Gly Glu Asn Gly Arg Lys Cys Ser 405 410 415Asn Ile Ser Ile Gly Asp Glu Val Gln Phe Glu Ile Ser Ile Thr Ser 420 425 430 Asn Lys Cys Pro Lys Lys Asp Ser Asp Ser Phe Lys Ile Arg Pro Leu 435 440 445 Gly Phe Thr Glu Glu Val Glu Val Ile Leu Gln Tyr Ile Cys Glu Cys 450 455 460 Glu Cys Gln Ser Glu Gly Ile Pro Glu Ser Pro Lys Cys His Glu Gly 465 470 475 480 Asn Gly Thr Phe Glu Cys Gly Ala Cys Arg Cys Asn Glu Gly Arg Val 485 490 495 Gly Arg His Cys Glu Cys Ser Thr Asp Glu Val Asn Ser Glu Asp Met 500 505 510 Asp Ala Tyr Cys Arg Lys Glu Asn Ser Ser Glu Ile Cys Ser Asn Asn 515 520 525 Gly Glu Cys Val Cys Gly Gln Cys Val Cys Arg Lys Arg Asp Asn Thr 530 535 540 Asn Glu Ile Tyr Ser Gly Lys Phe Cys Glu Cys Asp Asn Phe Asn Cys 545 550 560 Asp Arg Ser Asn Gly Leu Ile Cys Gly Gly Asn Gly Val Cys Lys Cys 565 570 575 Arg Val Cys Glu Cys Asn Pro Asn Tyr Thr Gly Ser Ala Cys Asp Cys 580 585 590 Ser Leu Asp Thr Ser Thr Cys Glu Ala Ser Asn Gly Gln Ile Cys Asn 595 600 605 Gly Arg Gly Ile Cys Glu Cys Gly Val Cys Lys Cys Thr Asp Pro Lys 610 620 Phe Gln Gly Gln Thr Cys Glu Met Cys Gln Thr Cys Leu Gly Val Cys 625 630 635 640

Ala Glu His Lys Glu Cys Val Gln Cys Arg Ala Phe Asn Lys Gly Glu 645 650 655

Lys Lys Asp Thr Cys Thr Gln Glu Cys Ser Tyr Phe Asn Ile Thr Lys $660 \hspace{1.5cm} 665 \hspace{1.5cm} 670 \hspace{1.5cm}$

Val Glu Ser Arg Asp Lys Leu Pro Gln Pro Val Gln Pro Asp Pro Val 675 680 685

Ser His Cys Lys Glu Lys Asp Val Asp Asp Cys Trp Phe Tyr Phe Thr 690 700

Tyr Ser Val Asn Gly Asn Asn Glu Val Met Val His Val Val Glu Asn 705 710 715 720

Pro Glu Cys Pro Thr Gly Pro Asp Ile Ile Pro Ile Val Ala Gly Val 725 730 735

Val Ala Gly Ile Val Leu Ile Gly Leu Ala Leu Leu Leu Ile Trp Lys 740 745 750

Leu Leu Met Ile Ile His Asp Arg Arg Glu Phe Ala Lys Phe Glu Lys $755 \hspace{1.5cm} 760 \hspace{1.5cm} 765$

Glu Lys Met Asn Ala Lys Trp Asp Thr Gly Glu Asn Pro Ile Tyr Lys 770 780

Ser Ala Val Thr Thr Val Val Asn Pro Lys Tyr Glu Gly Lys 785 790 795

<210> 173

<211> 502

<212> PRT

<213> Homo sapiens

<400> 173

Met Ala Ser Lys Lys Leu Gly Ala Asp Phe His Gly Thr Phe Ser Tyr 1 10 15

Leu Asp Asp Val Pro Phe Lys Thr Gly Asp Lys Phe Lys Thr Pro Ala 20 25 30

Lys Val Gly Leu Pro Ile Gly Phe Ser Leu Pro Asp Cys Leu Gln Val 35 40 45

Val Arg Glu Val Gln Tyr Asp Phe Ser Leu Glu Lys Lys Thr Ile Glu 50 55 60

Trp Ala Glu Glu Ile Lys Lys Ile Glu Glu Ala Glu Arg Glu Ala Glu 65 70 75 80

Cys Lys Ile Ala Glu Ala Glu Ala Lys Val Asn Ser Lys Ser Gly Pro $85 \hspace{1cm} 90 \hspace{1cm} 95$

Glu Gly Asp Ser Lys Met Ser Phe Ser Lys Thr His Ser Thr Ala Thr $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110 \hspace{1.5cm} .$

Met Pro Pro Pro Ile Asn Pro Ile Leu Ala Ser Leu Gln His Asn Ser 115 120 125

Ile Leu Thr Pro Thr Arg Val Ser Ser Ser Ala Thr Lys Gln Lys Val

Leu Ser Pro Pro His Ile Lys Ala Asp Phe Asn Leu Ala Asp Phe Glu 145 150 155 160

Cys Glu Glu Asp Pro Phe Asp Asn Leu Glu Leu Lys Thr Ile Asp Glu 165 170 175

Lys Glu Glu Leu Arg Asn Ile Leu Val Gly Thr Thr Gly Pro Ile Met 180 $$185\$

Ala Gln Leu Leu Asp Asn Asn Leu Pro Arg Gly Gly Ser Gly Ser Val

Leu Gln Asp Glu Glu Val Leu Ala Ser Leu Glu Arg Ala Thr Leu Asp 210 215 220

Phe Lys Pro Leu His Lys Pro Asn Gly Phe Ile Thr Leu Pro Gln Leu 225 230 230 240

Gly Asn Cys Glu Lys Met Ser Leu Ser Ser Lys Val Ser Leu Pro Pro 245 250 255

Ile Pro Ala Val Ser Asn Ile Lys Ser Leu Ser Phe Pro Lys Leu Asp 260 265 270

Ser Asp Asp Ser Asn Gln Lys Thr Ala Lys Leu Ala Ser Thr Phe His 275 280 285

Ser Thr Ser Cys Leu Arg Asn Gly Thr Phe Gln Asn Ser Leu Lys Pro 290 295 300

Ser Thr Gln Ser Ser Ala Ser Glu Leu Asn Gly His His Thr Leu Gly 305 310 315 320

Leu Ser Ala Leu Asn Leu Asp Ser Gly Thr Glu Met Pro Ala Leu Thr $325 \hspace{1.5cm} 330 \hspace{1.5cm} 335$

Ser Ser Gln Met Pro Ser Leu Ser Val Leu Ser Val Cys Thr Glu Glu 340 345 350

Val Ser Gln Val Pro Asn Met Pro Ser Cys Pro Gln Ala Tyr Ser Glu 370 375 380

Leu Gln Met Leu Ser Pro Ser Glu Arg Gln Cys Val Glu Thr Val Val 385 390395395

Asn Met Gly Tyr Ser Tyr Glu Cys Val Leu Arg Ala Met Lys Lys Lys 405 410 415

Gly Glu Asn Ile Glu Gln Ile Leu Asp Tyr Leu Phe Ala His Gly Gln 420 425 430

Leu Cys Glu Lys Gly Phe Asp Pro Leu Leu Val Glu Glu Ala Leu Glu 435 440 445

Ser Lys Phe Lys Glu Met Gly Phe Glu Leu Lys Asp Ile Lys Glu Val 465 470 475 480

Leu Leu His Asn Asn Asp Gln Asp Asn Ala Leu Glu Asp Leu Met 485 490 495

Ala Arg Ala Gly Ala Ser 500

<210>

<213> Homo sapiens

Met Ser Asn Asn Gly Leu Asp Ile Gln Asp Lys Pro Pro Ala Pro Pro 1 $$ 5 $$ 10 $$ 15

Met Arg Asn Thr Ser Thr Met Ile Gly Val Gly Ser Lys Asp Ala Gly 20 25 30

Thr Leu Asn His Gly Ser Lys Pro Leu Pro Pro Asn Pro Glu Glu Lys 35 40 45

Lys Lys Lys Asp Arg Phe Tyr Arg Ser Ile Leu Pro Gly Asp Lys Thr 50 60

Asn Lys Lys Glu Lys Glu Arg Pro Glu Ile Ser Leu Pro Ser Asp 65 70 75 80

Phe Glu His Thr Ile His Val Gly Phe Asp Ala Val Thr Gly Glu Phe 85 90 95

Thr Gly Met Pro Glu Gln Trp Ala Arg Leu Leu Gln Thr Ser Asn Ile 100 105 110

Thr Lys Ser Glu Gln Lys Lys Asn Pro Gln Ala Val Leu Asp Val Leu 115 120 125

Glu Phe Tyr Asn Ser Lys Lys Thr Ser Asn Ser Gln Lys Tyr Met Ser 130 $^{\circ}$ 135 $^{\circ}$ 140

Phe Thr Asp Lys Ser Ala Glu Asp Tyr Asn Ser Ser Asn Ala Leu Asn 145 150 160

Val Lys Ala Val Ser Glu Thr Pro Ala Val Pro Pro Val Ser Glu Asp 165 170 175

Glu Asp Asp Asp Asp Asp Asp Ala Thr Pro Pro Pro Val Ile Ala Pro 180 185 190

Arg Pro Glu His Thr Lys Ser Val Tyr Thr Arg Ser Val Ile Glu Pro 195 200

Leu Pro Val Thr Pro Thr Arg Asp Val Ala Thr Ser Pro Ile Ser Pro 210 215 220

Thr Glu Asn Asn Thr Thr Pro Pro Asp Ala Leu Thr Arg Asn Thr Glu 225 230 235 240

Lys Gln Lys Lys Lys Pro Lys Met Ser Asp Glu Glu Ile Leu Glu Lys 245 250 255

Leu Arg Ser Ile Val Ser Val Gly Asp Pro Lys Lys Lys Tyr Thr Arg 260 265 270

Phe Glu Lys Ile Gly Gln Gly Ala Ser Gly Thr Val Tyr Thr Ala Met 275 280 285

Asp Val Ala Thr Gly Gln Glu Val Ala le Lys Gln Met Asn Leu Gln 290 295 300

Gln Gln Pro Lys Lys Glu Leu Ile Ile Asn Glu Ile Leu Val Met Arg 305 310 315 320

Glu Asn Lys Asn Pro Asn Ile Val Asn Tyr Leu Asp Ser Tyr Leu Val 325 330 335

Gly Asp Glu Leu Trp Val Val Met Glu Tyr Leu Ala Gly Gly Ser Leu 340 345 350

Thr Asp Val Val Thr Glu Thr Cys Met Asp Glu Gly Gln Ile Ala Ala 355 360 365

Val Cys Arg Glu Cys Leu Gln Ala Leu Glu Phe Leu His Ser Asn Gln 370 375 380

Val Ile His Arg Asp Ile Lys Ser Asp Asn Ile Leu Leu Gly Met Asp 385 390 400

Gly Ser Val Lys Leu Thr Asp Phe Gly Phe Cys Ala Gln Ile Thr Pro 405 410 415

Glu Gln Ser Lys Arg Ser Thr Met Val Gly Thr Pro Tyr Trp Met Ala 420 425 430

Pro Glu Val Val Thr Arg Lys Ala Tyr Gly Pro Lys Val Asp Ile Trp 435 440 445

Ser Leu Gly Ile Met Ala Ile Glu Met Ile Glu Gly Glu Pro Pro Tyr 450 460

Leu Asn Glu Asn Pro Leu Arg Ala Leu Tyr Leu Ile Ala Thr Asn Gly 465 470 475 480

Thr Pro Glu Leu Gln Asn Pro Glu Lys Leu Ser Ala Ile Phe Arg Asp 485 490 495

Phe Leu Asn Arg Cys Leu Asp Met Asp Val Glu Lys Arg Gly Ser Ala 500 505 510

Lys Glu Leu Leu Gln His Gln Phe Leu Lys Ile Ala Lys Pro Leu Ser 515 520 525

Ser Leu Thr Pro Leu Ile Ala Ala Ala Lys Glu Ala Thr Lys Asn Asn 530 540

545

<210> 175

<211> 1366 <212> PRT

<213> Homo sapiens

<400> 175

Met Ser Arg Gln Ser Thr Leu Tyr Ser Phe Phe Pro Lys Ser Pro Ala $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Leu Ser Asp Ala Asn Lys Ala Ser Ala Arg Ala Ser Arg Glu Gly Gly 20 25 30

Arg Ala Ala Ala Pro Gly Ala Ser Pro Ser Pro Gly Gly Asp Ala 35 40 45

Ala Trp Ser Glu Ala Gly Pro Gly Pro Arg Pro Leu Ala Arg Ser Ala 50 55 60

Ser Pro Pro Lys Ala Lys Asn Leu Asn Gly Gly Leu Arg Arg Ser Val 65 70 75 80

Ala Pro Ala Ala Pro Thr Ser Cys Asp Phe Ser Pro Gly Asp Leu Val $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Trp Ala Lys Met Glu Gly Tyr Pro Trp Trp Pro Cys Leu Val Tyr Asn $100 \hspace{1.5cm} 105 \hspace{1.5cm} 105$

His Pro Phe Asp Gly Thr Phe Ile Arg Glu Lys Gly Lys Ser Val Arg 115 120 125

Val His Val Gln Phe Phe Asp Asp Ser Pro Thr Arg Gly Trp Val Ser 130 140

Lys Arg Leu Leu Lys Pro Tyr Thr Gly Ser Lys Ser Lys Glu Ala Gln 145 150 160

Lys Gly Gly His Phe Tyr Ser Ala Lys Pro Glu Ile Leu Arg Ala Met 165 170 175

Gln Arg Ala Asp Glu Ala Leu Asn Lys Asp Lys Ile Lys Arg Leu Glu 180 185 190

Leu Ala Val Cys Asp Glu Pro Ser Glu Pro Glu Glu Glu Glu Glu Met 195 200 205

Glu Val Gly Thr Thr Tyr Val Thr Asp Lys Ser Glu Glu Asp Asn Glu 210 215 220

Ile Glu Ser Glu Glu Glu Val Gln Pro Lys Thr Gln Gly Ser Arg Arg 225 230 240

Ser Ser Arg Gln Ile Lys Lys Arg Arg Val Ile Ser Asp Ser Glu Ser 245 250 255

Asp Ile Gly Gly Ser Asp Val Glu Phe Lys Pro Asp Thr Lys Glu Glu 260 265 270

Gly Ser Ser Asp Glu Ile Ser Ser Gly Val Gly Asp Ser Glu Ser Glu 275 280 285

Page 275

Gly Leu Asn Ser Pro Val Lys Val Ala Arg Lys Arg Lys Arg Met Val 290 295 300 Thr Gly Asn Gly Ser Leu Lys Arg Lys Ser Ser Arg Lys Glu Thr Pro 305 310 315 320 Ser Ala Thr Lys Gln Ala Thr Ser Ile Ser Ser Glu Thr Lys Asn Thr 325 330 335Thr Leu Glu Trp Leu Lys Glu Glu Lys Arg Arg Asp Glu His Arg Arg 370 375 380Arg Pro Asp His Pro Asp Phe Asp Ala Ser Thr Leu Tyr Val Pro Glu 385 390 395 400 Asp Phe Leu Asn Ser Cys Thr Pro Gly Met Arg Lys Trp Trp Gln Ile 405 410 415 Tyr Glu Leu Tyr His Met Asp Ala Leu Ile Gly Val Ser Glu Leu Gly 435 $$ 440 $$ 445 Leu Val Phe Met Lys Gly Asn Trp Ala His Ser Gly Phe Pro Glu Ile 450 455 460 Ala Phe Gly Arg Tyr Ser Asp Ser Leu Val Gln Lys Gly Tyr Lys Val 465 470 480 Ala Arg Val Glu Gln Thr Glu Thr Pro Glu Met Met Glu Ala Arg Cys 485 490 495Arg Lys Met Ala His Ile Ser Lys Tyr Asp Arg Val Val Arg Arg Glu
500 505 510 Ile Cys Arg Ile Ile Thr Lys Gly Thr Gln Thr Tyr Ser Val Leu Glu 515 520 525 Gly Asp Pro Ser Glu Asn Tyr Ser Lys Tyr Leu Leu Ser Leu Lys Glu 530 535 540 Lys Glu Glu Asp Ser Ser Gly His Thr Arg Ala Tyr Gly Val Cys Phe 545 550 560 Val Asp Thr Ser Leu Gly Lys Phe Phe Ile Gly Gln Phe Ser Asp Asp 565 570 575 Arg His Cys Ser Arg Phe Arg Thr Leu Val Ala His Tyr Pro Pro Val 580 585 590Gln Val Leu Phe Glu Lys Gly Asn Leu Ser Lys Glu Thr Lys Thr Ile Page 276

600 60

Leu Lys Ser Ser Leu Ser Cys Ser Leu Gln Glu Gly Leu Ile Pro Gly 610 620 Ser Gln Phe Trp Asp Ala Ser Lys Thr Leu Arg Thr Leu Leu Glu Glu 625 630 635 640 Glu Tyr Phe Arg Glu Lys Leu Ser Asp Gly Ile Gly Val Met Leu Pro 645 650 655 Gln Val Leu Lys Gly Met Thr Ser Glu Ser Asp Ser Ile Gly Leu Thr $660 \hspace{1.5cm} 665 \hspace{1.5cm} 670 \hspace{1.5cm}$ Pro Gly Glu Lys Ser Glu Leu Ala Leu Ser Ala Leu Gly Gly Cys Val675 $$ 685 $$ 685 Phe Tyr Leu Lys Lys Cys Leu Ile Asp Gln Glu Leu Leu Ser Met Ala 690 695 700 Asn Phe Glu Glu Tyr Ile Pro Leu Asp Ser Asp Thr Val Ser Thr Thr 705 710 715 720Arg Ser Gly Ala Ile Phe Thr Lys Ala Tyr Gln Arg Met Val Leu Asp 725 730 735Ala Val Thr Leu Asn Asn Leu Glu Ile Phe Leu Asn Gly Thr Asn Gly 740 745 750Ser Thr Glu Gly Thr Leu Leu Glu Arg Val Asp Thr Cys His Thr Pro $755 \hspace{1.5cm} 760 \hspace{1.5cm} 765$ Phe Gly Lys Arg Leu Leu Lys Gln Trp Leu Cys Ala Pro Leu Cys Asn 770 775 780 His Tyr Ala Ile Asn Asp Arg Leu Asp Ala Ile Glu Asp Leu Met Val 785 790 795 800 Val Pro Asp Lys Ile Ser Glu Val Val Glu Leu Leu Lys Lys Leu Pro 805 810 815 Asp Leu Glu Arg Leu Leu Ser Lys Ile His Asn Val Gly Ser Pro Leu 820 825 830 Lys Ser Gln Asn His Pro Asp Ser Arg Ala Ile Met Tyr Glu Glu Thr 835 840 845 Thr Tyr Ser Lys Lys Lys Ile Ile Asp Phe Leu Ser Ala Leu Glu Gly 850 855 860 Phe Lys Val Met Cys Lys Ile Ile Gly Ile Met Glu Glu Val Ala Asp 865 870 875 880 Gly Phe Lys Ser Lys Ile Leu Lys Gln Val Ile Ser Leu Gln Thr Lys 885 890 895 Asn Pro Glu Gly Arg Phe Pro Asp Leu Thr Val Glu Leu Asn Arg Trp 900 905 910

Asp Thr Ala Phe Asp His Glu Lys Ala Arg Lys Thr Gly Leu Ile Thr 915 920 925

Pro Lys Ala Gly Phe Asp Ser Asp Tyr Asp Gln Ala Leu Ala Asp Ile 930 940

Arg Glu Asn Glu Gln Ser Leu Leu Glu Tyr Leu Glu Lys Gln Arg Asn 945 950 955 960

Arg Ile Gly Cys Arg Thr Ile Val Tyr Trp Gly Ile Gly Arg Asn Arg 965 970 975

Tyr Gln Leu Glu Ile Pro Glu Asn Phe Thr Thr Arg Asn Leu Pro Glu 980 985 990

Glu Tyr Glu Leu Lys Ser Thr Lys Lys Gly Cys Lys Arg Tyr Trp Thr 995 1000 1005

Lys Thr Ile Glu Lys Lys Leu Ala Asn Leu Ile Asn Ala Glu Glu 1010 1015 1020

Arg Arg Asp Val Ser Leu Lys Asp Cys Met Arg Arg Leu Phe Tyr 1025 1035

Asn Phe Asp Lys Asn Tyr Lys Asp Trp Gln Ser Ala Val Glu Cys 1040 1050

Ile Ala Val Leu Asp Val Leu Leu Cys Leu Ala Asn Tyr Ser Arg 1055 1066

Gly Gly Asp Gly Pro Met Cys Arg Pro Val Ile Leu Leu Pro Glu 1070 1075 1080

Asp Thr Pro Pro Phe Leu Glu Leu Lys Gly Ser Arg His Pro Cys 1085 1095

Ile Thr Lys Thr Phe Phe Gly Asp Asp Phe Ile Pro Asn Asp Ile 1100 $$1105\$

Leu Ile Gly Cys Glu Glu Glu Glu Glu Glu Asn Gly Lys Ala Tyr 1115 1120 1125

Cys Val Leu Val Thr Gly Pro Asn Met Gly Gly Lys Ser Thr Leu 1130 1140

Met Arg Gln Ala Gly Leu Leu Ala Val Met Ala Gln Met Gly Cys 1145 1150 1155

Tyr Val Pro Ala Glu Val Cys Arg Leu Thr Pro Ile Asp Arg Val 1160 $\dot{}^{\circ}$ 1165 1170

Phe Thr Arg Leu Gly Ala Ser Asp Arg Ile Met Ser Gly Glu Ser 1175 1180 1185

Thr Phe Phe Val Glu Leu Ser Glu Thr Ala Ser Ile Leu Met His 1190 1195 1200

Ala Thr Ala His Ser Leu Val Leu Val Asp Glu Leu Gly Arg Gly 1205 1210 1215

Thr Ala Thr Phe Asp Gly Thr Ala Ile Ala Asn Ala Val Val Lys $1220 \hspace{1.5cm} 1225 \hspace{1.5cm} 1230$

Glu Leu Ala Glu Thr Ile Lys Cys Arg Thr Leu Phe Ser Thr His 1235 1240 1245

Tyr His Ser Leu Val Glu Asp Tyr Ser Gln Asn Val Ala Val Arg 1250 1255 1260

Leu Gly His Met Ala Cys Met Val Glu Asn Glu Cys Glu Asp Pro 1265 1270 1275

Ser Gln Glu Thr Ile Thr Phe Leu Tyr Lys Phe Ile Lys Gly Ala 1280 1285 1290

Cys Pro Lys Ser Tyr Gly Phe Asn Ala Ala Arg Leu Ala Asn Leu 1295 1300 1305

Pro Glu Glu Val Ile Gln Lys Gly His Arg Lys Ala Arg Glu Phe 1310 1315 1320

Glu Lys Met Asn Gln Ser Leu Arg Leu Phe Arg Glu Val Cys Leu 1325 1330 1335

Ala Ser Glu Arg Ser Thr Val Asp Ala Glu Ala Val His Lys Leu 1340 1350 1350

Leu Thr Leu Ile Lys Glu Leu 1355 136

<210> 176 <211> 398 <212> PRT

<213> Homo sapiens

<400> 176

Met Gln Ser Glu Arg Gly Ile Thr Ile Asp Ile Ser Leu Trp Lys Phe 1 $$ 5 $$ 10 $$ 15

Glu Thr Ser Lys Tyr Tyr Val Thr Ile Ile Asp Ala Pro Gly His Arg $20 \hspace{1cm} 25 \hspace{1cm} 30$

Asp Phe Ile Gln Asn Met Ile Thr Gly Thr Ser Gln Ala Asp Cys Ala 35 404045

Val Leu Ile Val Ala Ala Gly Val Gly Glu Phe Glu Ala Gly Ile Ser 50 60

Lys Asn Gly Gln Thr Arg Glu His Ala Leu Leu Ala Tyr Thr Leu Gly 65 70 75 80

Val Lys Gln Leu Ile Val Gly Val Asn Lys Met Asp Ser Thr Glu Pro 85 90 95

Pro Tyr Ser Gln Lys Arg Tyr Glu Glu Ile Val Lys Glu Val Ser Thr $100 \hspace{1.5cm} 105 \hspace{1.5cm} 105$

Tyr Ile Lys Lys Ile Gly Tyr Asn Pro Asp Thr Val Ala Phe Val Pro 115° 120 125

Ile Ser Gly Trp Asn Gly Asp Asn Met Leu Glu Pro Ser Ala Asn Met
130 135

Pro Trp Phe Lys Gly Trp Lys Val Thr Arg Lys Asp Gly Asn Ala Ser 145 $$ 150 $$ 155 $$ 160

Gly Thr Thr Leu Leu Glu Ala Leu Asp Cys Ile Leu Pro Pro Thr Arg 165 170 175

Pro Thr Asp Lys Pro Leu Gly Leu Pro Leu Gln Asp Val Tyr Lys Ile 180 $$185\$

Gly Gly Ile Gly Thr Val Pro Val Gly Arg Val Glu Thr Gly Val Leu 195 200 205

Lys Pro Gly Met Val Val Thr Phe Gly Pro Val Asn Val Thr Thr Glu 210 215 220

Val Lys Ser Val Glu Met His His Glu Ala Leu Gly Glu Ala Leu Pro 225 230 235 240

Gly Asp Asn Val Gly Phe Asn Val Lys Asn Val Ser Val Lys Asp Val 245 250 255

Arg Arg Gly Asn Val Ala Gly Asp Ser Lys Asn Asp Pro Pro Met Glu 260 265 270

Ala Ala Gly Phe Pro Ala Gln Val Ile Ile Leu Asn His Pro Gly Gln 275 280 285

Ile Ser Ala Gly Tyr Ala Pro Val Leu Asp Cys His Thr Ala His Ile 290 295 300

Ala Cys Lys Phe Ala Glu Leu Lys Glu Lys Ile Asp Arg Arg Ser Gly 305 310 315 320

Lys Lys Leu Glu Asp Gly Pro Lys Phe Leu Lys Ser Gly Asp Ala Ala 325 330 335

Ile Val Asp Met Val Pro Gly Lys Pro Met Cys Val Glu Ser Phe Ser 340 345 350

Asp Tyr Pro Pro Leu Gly Cys Phe Ala Val Arg Asp Met Arg Gln Thr 355 360 365

Val Ala Val Gly Val Ile Lys Ala Val Asp Lys Lys Ala Ala Gly Ala 370 375 380

Gly Lys Val Thr Lys Ser Ala Gln Lys Ala Gln Lys Ala Lys 385 390 395

<210> 177

<211> 334 <212> PRT

<213> Homo sapiens

<400> 177

Met Ala Thr Leu Lys Glu Lys Leu Ile Ala Pro Val Ala Glu Glu Glu 1 5 10 15

Ala Thr Val Pro Asn Asn Lys Ile Thr Val Val Gly Val Gly Gln Val $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$

Gly Met Ala Cys Ala Ile Ser Ile Leu Gly Lys Ser Leu Ala Asp Glu 35 40 45

Leu Ala Leu Val Asp Val Leu Glu Asp Lys Leu Lys Gly Glu Met Met 50 60

Asp Leu Gln His Gly Ser Leu Phe Leu Gln Thr Pro Lys Ile Val Ala 65 70 75 80

Asp Lys Asp Tyr Ser Val Thr Ala Asn Ser Lys Ile Val Val Thr 85 90 95

Ala Gly Val Arg Gln Gln Glu Gly Glu Ser Arg Leu Asn Leu Val Gln $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110 \hspace{1.5cm}$

Arg Asn Val Asn Val Phe Lys Phe Ile Ile Pro Gln Ile Val Lys Tyr $115 \ \ 125 \ \ \ 125$

Ser Pro Asp Cys Ile Ile Ile Val Val Ser Asn Pro Val Asp Ile Leu 130 135 140

Thr Tyr Val Thr Trp Lys Leu Ser Gly Leu Pro Lys His Arg Val Ile 145 150150155

Gly Ser Gly Cys Asn Leu Asp Ser Ala Arg Phe Arg Tyr Leu Met Ala 165 170 175

Glu Lys Leu Gly Ile His Pro Ser Ser Cys His Gly Trp Ile Leu Gly $180 \hspace{1cm} 185 \hspace{1cm} 190$

Glu His Gly Asp Ser Ser Val Ala Val Trp Ser Gly Val Asn Val Ala * 195 200 205

Gly Val Ser Leu Gln Glu Leu Asn Pro Glu Met Gly Thr Asp Asn Asp 210 215 220

Ser Glu Asn Trp Lys Glu Val His Lys Met Val Val Glu Ser Ala Tyr 225 230 235 240

Glu Val Ile Lys Leu Lys Gly Tyr Thr Asn Trp Ala Ile Gly Leu Ser 245 250 255

Val Ala Asp Leu Ile Glu Ser Met Leu Lys Asn Leu Ser Arg Ile His 260 265 270

Pro Val Ser Thr Met Val Lys Gly Met Tyr Gly Ile Glu Asn Glu Val 275 280 285

Phe Leu Ser Leu Pro Cys Ile Leu Asn Ala Arg Gly Leu Thr Ser Val 290 295 300

Ile Asn Gln Lys Leu Lys Asp Asp Glu Val Ala Gln Leu Lys Lys Ser 305 310 315

Ala Asp Thr Leu Trp Asp Ile Gln Lys Asp Leu Lys Asp Leu 325 330

<210> 178

<211> 364

212> PRT

<213> Homo sapiens

<400> 178

Met Tyr Leu Ser Arg Phe Leu Ser Ile His Ala Leu Trp Val Thr Val 1 5 10 15

Ser Ser Val Met Gln Pro Tyr Pro Leu Val Trp Gly His Tyr Asp Leu 20 25 30

Cys Lys Thr Gln Ile Tyr Thr Glu Glu Gly Lys Val Trp Asp Tyr Met $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Ala Cys Gln Pro Glu Ser Thr Asp Met Thr Lys Tyr Leu Lys Val Lys 50 60

Leu Asp Pro Pro Asp Ile Thr Cys Gly Asp Pro Pro Glu Thr Phe Cys 65 70 . 80

Ala Met Gly Asn Pro Tyr Met Cys Asn Asn Glu Cys Asp Ala Ser Thr 85 90 95

Pro Glu Leu Ala His Pro Pro Glu Leu Met Phe Asp Phe Glu Gly Arg 100 105 110

His Pro Ser Thr Phe Trp Gln Ser Ala Thr Trp Lys Glu Tyr Pro Lys 115 120 125

Pro Leu Gln Val Asn Ile Thr Leu Ser Trp Ser Lys Thr Ile Glu Leu 130 135 140

Thr Asp Asn Ile Val Ile Thr Phe Glu Ser Gly Arg Pro Asp Gln Met 145 150150155

Ile Leu Glu Lys Ser Leu Asp Tyr Gly Arg Thr Trp Gln Pro Tyr Gln 165 170 175

Tyr Tyr Ala Thr Asp Cys Leu Asp Ala Phe His Met Asp Pro Lys Ser 180 185 190

Val Lys Asp Leu Ser Gln His Thr Val Leu Glu Ile Ile Cys Thr Glu 195 200 205

Glu Tyr Ser Thr Gly Tyr Thr Thr Asn Ser Lys Ile Ile His Phe Glu 210 215 220

Ile Lys Asp Arg Phe Ala Phe Phe Ala Gly Pro Arg Leu Arg Asn Met 225 230 235 240

Ala Ser Leu Tyr Gly Gln Leu Asp Thr Thr Lys Lys Leu Arg Asp Phe 245

Phe Thr Val Thr Asp Leu Arg Ile Arg Leu Leu Arg Pro Ala Val Gly 260 265 270

Glu Ile Phe Val Asp Glu Leu His Leu Ala Arg Tyr Phe Tyr Ala Ile $275 \hspace{1.5cm} 280 \hspace{1.5cm} 285$

Ser Asp Ile Lys Val Arg Gly Arg Cys Lys Cys Asn Leu His Ala Thr 290 300 .

Val Cys Val Tyr Asp Asn Ser Lys Leu Thr Cys Glu Cys Glu His Asn 305 310 315 320

Thr Thr Gly Pro Asp Cys Gly Lys Cys Lys Lys Asn Tyr Gln Gly Arg 325 330 335

Pro Trp Ser Pro Gly Ser Tyr Leu Pro Ile Pro Lys Gly Thr Ala Asn 340 345 350

Thr Cys Ile Pro Ser Ile Ser Ser Ile Gly Ser Lys 355 360

<210> 179

<211> 416

<212> PRT <213> Homo sapiens

<400> 179

Met His Thr Asp Pro Asp Tyr Ser Ala Ala Tyr Val Val Ile Glu Thr 1 $$ 5 $$ 10 $$ 15

Asp Ala Glu Asp Gly Ile Lys Gly Cys Gly Ile Thr Phe Thr Leu Gly 20 25 30

Lys Gly Thr Glu Val Val Val Cys Ala Val Asn Ala Leu Ala His His $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Val Leu Asn Lys Asp Leu Lys Asp Ile Val Gly Asp Phe Arg Gly Phe 50 60

Tyr Arg Gln Leu Thr Ser Asp Gly Gln Leu Arg Trp Ile Gly Pro Glu 65 70 70 75 80

Lys Gly Val Val His Leu Ala Thr Ala Ala Val Leu Asn Ala Val Trp $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Asp Leu Trp Ala Lys Gln Glu Gly Lys Pro Val Trp Lys Leu Leu Val 100 105 110

Asp Met Asp Pro Arg Met Leu Val Ser Cys Ile Asp Phe Arg Tyr Ile 115 120 125

Thr Asp Val Leu Thr Glu Glu Asp Ala Leu Glu Ile Leu Gln Lys Gly 130 135 140

Gln Ile Gly Lys Lys Glu Arg Glu Lys Gln Met Leu Ala Gln Gly Tyr 145 150 155 160

Pro Ala Tyr Thr Ser Cys Ala Trp Leu Gly Tyr Ser Asp Asp Thr 165 170 175

Leu Lys Gln Leu Cys Ala Gln Ala Leu Lys Asp Gly Trp Thr Arg Phe 180 185 190

Lys Val Lys Val Gly Ala Asp Leu Gln Asp Asp Met Arg Arg Cys Gln 195 200 205

Ile Ile Arg Asp Met Ile Gly Pro Glu Lys Thr Leu Met Met Asp Ala 210 215 220

Ala Lys Phe Lys Pro Leu Trp Ile Glu Glu Pro Thr Ser Pro Asp Asp 245 250 255

Ile Leu Gly His Ala Thr Ile Ser Lys Ala Leu Val Pro Leu Gly Ile 260 265 270

Gly Ile Ala Thr Gly Glu Gln Cys His Asn Arg Val Ile Phe Lys Gln 275 280 285

Leu Leu Gln Ala Lys Ala Leu Gln Phe Leu Gln Ile Asp Ser Cys Arg 290 295 300

Leu Gly Ser Val Asn Glu Asn Leu Ser Val Leu Leu Met Ala Lys Lys 305 310 315 320

Leu Val Gln His Leu Ile Ile Phe Asp Tyr Ile Ser Val Ser Ala Ser 340 345

Leu Glu Asn Arg Val Cys Glu Tyr Val Asp His Leu His Glu His Phe 355 360 365

Lys Tyr Pro Val Met Ile Gln Arg Ala Ser Tyr Met Pro Pro Lys Asp 370 375 380

Pro Gly Tyr Ser Thr Glu Met Lys Glu Glu Ser Val Lys Lys His Gln 385 390 400

Tyr Pro Asp Gly Glu Val Trp Lys Lys Leu Leu Pro Ala Gln Glu Asn 405 410 415

<210> 180

<211> 89

<212> PRT

<213> Homo sapiens

<400> 180

Met Ser Ser Gln Gln Gln Lys Gln Pro Cys Ile Pro Pro Pro Gln Leu 1 5 10 15

Gln Gln Gln Val Lys Gln Pro Cys Gln Pro Pro Pro Gln Glu Pro 20 25 30

Cys Ile Pro Lys Thr Lys Glu Pro Cys His Pro Lys Val Pro Glu Pro 35 40 40 45

Cys His Pro Lys Val Pro Glu Pro Cys Gln Pro Lys Leu Pro Glu Pro 50 60

Cys His Pro Lys Val Pro Glu Pro Cys Pro Ser Ile Val Thr Pro Ala 65 70 75 80

Page 284

Pro Ala Gln Gln Lys Thr Lys Gln Lys 85

<210> 181

<211> 25

<212> PRT

<213> Homo sapiens

<400> 181

Met Ala Arg Ser Leu Leu Pro Leu Gln Ile Leu Leu Leu Ser Leu 1 10 15

Ala Leu Glu Thr Ala Gly Glu Glu Ala Gln Gly Asp Lys Ile Ile Asp 20 25 30

Gly Ala Pro Cys Ala Arg Gly Ser His Pro Trp Gln Val Ala Leu Leu $35 \hspace{1cm} 40 \hspace{1cm} 45$

Ser Gly Asn Gln Leu His Cys Gly Gly Val Leu Val Asn Glu Arg Trp 50 60

Val Leu Thr Ala Ala His Cys Lys Met Asn Glu Tyr Thr Val His Leu 65 70 75 80

Gly Ser Asp Thr Leu Gly Asp Arg Arg Ala Gln Arg Ile Lys Ala Ser 90 95

Lys Ser Phe Arg His Pro Gly Tyr Ser Thr Gln Thr His Val Asn Asp $100 \hspace{1.5cm} 105 \hspace{1.5cm} 105$

Leu Met Leu Val Lys Leu Asn Ser Gln Ala Arg Leu Ser Ser Met Val 115 120 125

Lys Lys Val Arg Leu Pro Ser Arg Cys Glu Pro Pro Gly Thr Thr Cys 130 135 140

Thr Val Ser Gly Trp Gly Thr Thr Thr Ser Pro Asp Val Thr Phe Pro 145 150 150 155 160

Ser Asp Leu Met Cys Val Asp Val Lys Leu Ile Ser Pro Gln Asp Cys 165 170 175

Thr Lys Val Tyr Lys Asp Leu Leu Glu Asn Ser Met Leu Cys Ala Gly 180 185 190

Ile Pro Asp Ser Lys Lys Asn Ala Cys Asn Gly Asp Ser Gly Gly Pro 195 $$

Leu Val Cys Arg Gly Thr Leu Gln Gly Leu Val Ser Trp Gly Thr Phe 210 220

Pro Cys Gly Gln Pro Asn Asp Pro Gly Val Tyr Thr Gln Val Cys Lys 225 230 235 240

Phe Thr Lys Trp Ile Asn Asp Thr Met Lys Lys His Arg 245 250

<210> 182 <211> 169

<212> PRT

<213> Homo sapiens

<400> 182

Met Leu Ala Thr Arg Val Phe Ser Leu Val Gly Lys Arg Ala Ile Ser 1 5 10 15

Thr Ser Val Cys Val Arg Ala His Glu Ser Val Val Lys Ser Glu Asp $20 \hspace{1cm} 25 \hspace{1cm} 30$

Phe Ser Leu Pro Ala Tyr Met Asp Arg Arg Asp His Pro Leu Pro Glu 35 40 45

Val Ala His Val Lys His Leu Ser Ala Ser Gln Lys Ala Leu Lys Glu 50 60

Lys Glu Lys Ala Ser Trp Ser Ser Leu Ser Met Asp Glu Lys Val Glu 65 70 75 80

Leu Tyr Arg Ile Lys Phe Lys Glu Ser Phe Ala Glu Met Asn Arg Gly $85 \hspace{0.5cm} 90 \hspace{0.5cm} 95$

Ser Asn Glu Trp Lys Thr Val Val Gly Gly Ala Met Phe Phe Ile Gly 100 105 110

Phe Thr Ala Leu Val Ile Met Trp Gln Lys His Tyr Val Tyr Gly Pro 115 125 125

Leu Pro Gln Ser Phe Asp Lys Glu Trp Val Ala Lys Gln Thr Lys Arg 130 135 140

Met Leu Asp Met Lys Val Asn Pro Ile Gln Gly Leu Ala Ser Lys Trp 145 150 155 160

Asp Tyr Glu Lys Asn Glu Trp Lys Lys 165

<210> 183

<211> 879 <212> PRT

<213> Homo sapiens

<400> 183

Met Ala Gly Gly Gly Asp Leu Ser Thr Arg Arg Leu Asn Glu Cys 1 5 10 15

Ile Ser Pro Val Ala Asn Glu Met Asn His Leu Pro Ala His Ser His 20 25 30

Asp Leu Gln Arg Met Phe Thr Glu Asp Gln Gly Val Asp Asp Arg Leu 35 40 45

Leu Tyr Asp Ile Val Phe Lys His Phe Lys Arg Asn Lys Val Glu Ile 50 60

Ser Asn Ala Ile Lys Lys Thr Phe Pro Phe Leu Glu Gly Leu Arg Asp 65 70 75 80

Arg Asp Leu Ile Thr Asn Lys Met Phe Glu Asp Ser Gln Asp Ser Cys 85 90 95

 Arg Asn Leu Val Pro Val Gln Arg Val Val Tyr Asn Val Leu Ser Glu 100

 Leu Glu Lys Thr Phe Asn Leu Pro Val Leu Glu Ala Leu Phe Ser Asp 115

Val Asn Met Gln Glu Tyr Pro Asp Leu Ile His Ile Tyr Lys Gly Phe 130 140

Glu Asn Val Ile His Asp Lys Leu Pro Leu Gln Glu Ser Glu Glu Glu 145 150 155 160

Glu Arg Glu Glu Arg Ser Gly Leu Gln Leu Ser Leu Glu Gln Gly Thr

Gly Glu Asn Ser Phe Arg Ser Leu Thr Trp Pro Pro Ser Gly Ser Pro 180 185 190

Ser His Ala Gly Thr Thr Pro Pro Glu Asn Gly Leu Ser Glu His Pro $195 \hspace{1.5cm} 200 \hspace{1.5cm} 205 \hspace{1.5cm}$

Cys Glu Thr Glu Gln Ile Asn Ala Lys Arg Lys Asp Thr Thr Ser Asp 210 215 220

Lys Asp Asp Ser Leu Gly Ser Gln Gln Thr Asn Glu Gln Cys Ala Gln 225 230 235 240

Lys Ala Glu Pro Thr Glu Ser Cys Glu Gln Ile Ala Val Gln Val Asn $245 \hspace{1.5cm} 255 \hspace{1.5cm}$

Asn Gly Asp Ala Gly Arg Glu Met Pro Cys Pro Leu Pro Cys Asp Glu 260 265 270

Glu Ser Pro Glu Ala Glu Leu His Asn His Gly Ile Gln Ile Asn Ser 275 280 285

Cys Ser Val Arg Leu Val Asp Ile Lys Lys Glu Lys Pro Phe Ser Asn 290 295 300

Ser Lys Val Glu Cys Gln Ala Gln Ala Arg Thr His His Asn Gln Ala 305 310315320

Ser Asp Ile Ile Val Ile Ser Ser Glu Asp Ser Glu Gly Ser Thr Asp 325 330 335

Val Asp Glu Pro Leu Glu Val Phe Ile Ser Ala Pro Arg Ser Glu Pro 340 345 350

Val Ile Asn Asn Asp Asn Pro Leu Glu Ser Asn Asp Glu Lys Glu Gly $355 \hspace{1cm} 360 \hspace{1cm} 365$

Gln Glu Ala Thr Cys Ser Arg Pro Gln Ile Val Pro Glu Pro Met Asp 370 . 375 380

Phe Arg Lys Leu Ser Thr Phe Arg Glu Ser Phe Lys Lys Arg Val Ile 385 390 395 400

Gly Gln Asp His Asp Phe Ser Glu Ser Ser Glu Glu Glu Ala Pro Ala 415

Glu Ala Ser Ser Gly Ala Leu Arg Ser Lys His Gly Glu Lys Ala Pro $420 \hspace{1cm} 425 \hspace{1cm} 430 \hspace{1cm}$ Met Thr Ser Arg Ser Thr Ser Thr Trp Arg Ile Pro Ser Arg Lys Arg 435 440 445 Arg Phe Ser Ser Ser Asp Phe Ser Asp Leu Ser Asn Gly Glu Glu Leu 450 455 460 Gln Glu Thr Cys Ser Ser Ser Leu Arg Arg Gly Ser Gly Ser Gln Pro 465 470 480 Gln Glu Pro Glu Asn Lys Lys Cys Ser Cys Val Met Cys Phe Pro Lys 485 490 495Gly Val Pro Arg Ser Gln Glu Ala Arg Thr Glu Ser Ser Gln Ala Ser 500 505 510Asp Met Met Asp Thr Met Asp Val Glu Asn Asn Ser Thr Leu Glu Lys 515 525His Ser Gly Lys Arg Arg Lys Lys Arg Arg His Arg Ser Lys Val Asn 530 540 Gly Leu Gln Arg Gly Arg Lys Lys Asp Arg Pro Arg Lys His Leu Thr 545 550 555 560 Leu Asn Asn Lys Val Gln Lys Lys Arg Trp Gln Gln Arg Gly Arg Lys 565 570 575 Ala Asn Thr Arg Pro Leu Lys Arg Arg Arg Lys Arg Gly Pro Arg Ile 580 585 590Pro Lys Asp Glu Asn Ile Asn Phe Lys Gln Ser Glu Leu Pro Val Thr 595 600 605 Cys Gly Glu Val Lys Gly Thr Leu Tyr Lys Glu Arg Phe Lys Gln Gly 610 620Thr Ser Lys Lys Cys Ile Gln Ser Glu Asp Lys Lys Trp Phe Thr Pro 625 630 635 640 Arg Glu Phe Glu Ile Glu Gly Asp Arg Gly Ala Ser Lys Asn Trp Lys 645 650 655Leu Ser Ile Arg Cys Gly Gly Tyr Thr Leu Lys Val Leu Met Glu Asn 660 665 670 Lys Phe Leu Pro Glu Pro Pro Ser Thr Arg Lys Lys Arg Ile Leu Glu 675 680 685 Ser His Asn Asn Thr Leu Val Asp Pro Cys Glu Glu His Lys Lys 690 695 700 Asn Pro Asp Ala Ser Val Lys Phe Ser Glu Phe Leu Lys Lys Cys Ser 705 710 715 720 Glu Thr Trp Lys Thr Ile Phe Ala Lys Glu Lys Gly Lys Phe Glu Asp Page 288

725 730 735

Met Ala Lys Ala Asp Lys Ala His Tyr Glu Arg Glu Met Lys Thr Tyr 740 745 750

The Pro Pro Lys Gly Glu Lys Lys Lys Lys Phe Lys Asp Pro Asn Ala 755 760 765

Pro Lys Arg Pro Pro Leu Ala Phe Phe Leu Phe Cys Ser Glu Tyr Arg 770 780

Pro Lys Ile Lys Gly Glu His Pro Gly Leu Ser Ile Asp Asp Val Val 785 790 795 800

Lys Lys Leu Ala Gly Met Trp Asn Asn Thr Ala Ala Ala Asp Lys Gln 805 810 815

Phe Tyr Glu Lys Lys Ala Ala Lys Leu Lys Glu Lys Tyr Lys Lys Asp 820 825 830

Ile Ala Ala Tyr Arg Ala Lys Gly Lys Pro Asn Ser Ala Lys Lys Arg 835 840 845

Val Val Lys Ala Glu Lys Ser Lys Lys Lys Lys Glu Glu Glu Glu Asp 850 855 860

Glu Glu Asp Glu Glu Glu Glu Glu Asn Glu Glu Asp Asp Asp Lys 865 870 875

<210> 184

<211> 316

<212> PRT

<213> Homo sapiens

<400> 184

Asn His Pro Asp Ala Ile Leu Val Glu Asp Tyr Arg Ala Gly Asp Met 20 25 30

Ile Cys Pro Glu Cys Gly Leu Val Val Gly Asp Arg Val Ile Asp Val 35 40 45

Gly Ser Glu Trp Arg Thr Phe Ser Asn Asp Lys Ala Thr Lys Asp Pro 50 60

Ser Arg Val Gly Asp Ser Gln Asn Pro Leu Leu Ser Asp Gly Asp Leu 65 70 75 80

Ser Thr Met Ile Gly Lys Gly Thr Gly Ala Ala Ser Phe Asp Glu Phe $85 \hspace{1cm} 90 \hspace{1cm} 95$

Gly Asn Ser Lys Tyr Gln Asn Arg Arg Thr Met Ser Ser Ser Asp Arg

Ala Met Met Asn Ala Phe Lys Glu Ile Thr Thr Met Ala Asp Arg Ile 115 120 125

Asn Leu Pro Arg Asn Ile Val Asp Arg Thr Asn Asn Leu Phe Lys Gln

130 135 14

Val Tyr Glu Gln Lys Ser Leu Lys Gly Arg Ala Asn Asp Ala Ile Ala 145 150 155 160

Ser Ala Cys Leu Tyr Ile Ala Cys Arg Gln Glu Gly Val Pro Arg Thr 165 170 175

Phe Lys Glu Ile Cys Ala Val Ser Arg Ile Ser Lys Lys Glu Ile Gly 180 185 190

Arg Cys Phe Lys Leu Ile Leu Lys Ala Leu Glu Thr Ser Val Asp Leu 195 200 205

Ile Thr Thr Gly Asp Phe Met Ser Arg Phe Cys Ser Asn Leu Cys Leu 210 215 220

Pro Lys Gln Val Gln Met Ala Ala Thr His Ile Ala Arg Lys Ala Val 225 230 235 240

Glu Leu Asp Leu Val Pro Gly Arg Ser Pro Ile Ser Val Ala Ala Ala 245 250 255

Ala Ile Tyr Met Ala Ser Gln Ala Ser Ala Glu Lys Arg Thr Gln Lys 260 265 270

Glu Ile Gly Asp Ile Ala Gly Val Ala Asp Val Thr Ile Arg Gln Ser $275 \hspace{1.5cm} 280 \hspace{1.5cm} 285$

Tyr Arg Leu Ile Tyr Pro Arg Ala Pro Asp Leu Phe Pro Thr Asp Phe 290 295 300

Lys Phe Asp Thr Pro Val Asp Lys Leu Pro Gln Leu 305 310 315

<210> 185

211> 628

<212> PRT

<213> Homo sapiens

<400> 185

Ala Asp Phe Leu Asp Ala Leu Ile Val Ser Met Asp Val Ile Gln His 1 $$ 10 $$ 15

Glu Thr Ile Gly Lys Lys Phe Glu Lys Arg His Ile Glu Ile Phe Thr 20 25 30

Asp Leu Ser Ser Arg Phe Ser Lys Ser Gln Leu Asp Ile Ile Ile His $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45 \hspace{1.5cm}$

Ser Leu Lys Lys Cys Asp Ile Ser Leu Gln Phe Phe Leu Pro Phe Ser 50 60

Leu Gly Lys Glu Asp Gly Ser Gly Asp Arg Gly Asp Gly Pro Phe Arg 65 70 75 80

Leu Gly Gly His Gly Pro Ser Phe Pro Leu Lys Gly Ile Thr Glu Gln $85 \hspace{1cm} 90 \hspace{1cm} 95$

Gln Lys Glu Gly Leu Glu Ile Val Lys Met Val Met Ile Ser Leu Glu

100 105 110

Gly Glu Asp Gly Leu Asp Glu Ile Tyr Ser Phe Ser Glu Ser Leu Arg 125

Lys Leu Cys Val Phe Lys Lys Ile Glu Arg His Ser Ile His Trp Pro 130

Cys Arg Leu Thr Ile Gly Ser Asn Leu Ser Ile Arg Ile Ala Ala Tyr 145

Lys Ser Ile Leu Gln Glu Arg Val Lys Lys Thr Trp Thr Val Val Asp 165 . . 170 175

Ala Lys Thr Leu Lys Lys Glu Asp Ile Gln Lys Glu Thr Val Tyr Cys 180 185 190

Leu Asn Asp Asp Asp Glu Thr Glu Val Leu Lys Glu Asp Ile Ile Gln 195 200 205

Gly Phe Leu Tyr Gly Ser Asp Ile Val Pro Phe Ser Lys Val Asp Glu 210 215 220

Glu Gln Met Lys Tyr Lys Ser Glu Gly Lys Cys Phe Ser Val Leu Gly 225 230 235 240

Phe Cys Lys Ser Ser Gln Val Gln Arg Arg Phe Phe Met Gly Asn Gln 245 250 255

Val Leu Lys Val Phe Ala Ala Arg Asp Asp Glu Ala Ala Ala Val Ala 260 265 270

Leu Ser Ser Leu Ile His Ala Leu Asp Asp Leu Asp Met Val Ala Ile 275 280 285

Val Arg Tyr Ala Tyr Asp Lys Arg Ala Asn Pro Gln Val Gly Val Ala 290 295 300

Phe Pro His Ile Lys His Asn Tyr Glu Cys Leu Val Tyr Val Gln Leu 305 310 315 320

Pro Phe Met Glu Asp Leu Arg Gln Tyr Met Phe Ser Ser Leu Lys Asn 325 330 335

Ser Lys Lys Tyr Ala Pro Thr Glu Ala Gln Leu Asn Ala Val Asp Ala 340 345 350

Leu Ile Asp Ser Met Ser Leu Ala Lys Lys Asp Glu Lys Thr Asp Thr 355 360 365

Leu Glu Asp Leu Phe Pro Thr Thr Lys Ile Pro Asn Pro Arg Phe Gln 370 375 380

Arg Leu Phe Gln Cys Leu Leu His Arg Ala Leu His Pro Arg Glu Pro 385 390 395 400

Leu Pro Pro Ile Gln Gln His Ile Trp Asn Met Leu Asn Pro Pro Ala 405 410 415

Glu Val Thr Thr Lys Ser Gln Ile Pro Leu Ser Lys Ile Lys Thr Leu $420 \hspace{1.5cm} 425 \hspace{1.5cm} 430$

Phe Pro Leu Ile Glu Ala Lys Lys Lys Asp Gln Val Thr Ala Gln Glu 435 440

Ile Phe Gln Asp Asn His Glu Asp Gly Pro Thr Ala Lys Lys Leu Lys 450 455 460

Thr Glu Gln Gly Gly Ala His Phe Ser Val Ser Ser Leu Ala Glu Gly 465 470 475 480

Ser Val Thr Ser Val Gly Ser Val Asn Pro Ala Glu Asn Phe Arg Val 485 490 495

Leu Val Lys Gln Lys Lys Ala Ser Phe Glu Glu Ala Ser Asn Gln Leu 500 505 510

Ile Asn His Ile Glu Gln Phe Leu Asp Thr Asn Glu Thr Pro Tyr Phe 515 520 525

Met Lys Ser Ile Asp Cys Ile Arg Ala Phe Arg Glu Glu Ala Ile Lys 530 535 540

Phe Ser Glu Glu Gln Arg Phe Asn Asn Phe Leu Lys Ala Leu Gln Glu 545 550 560

Lys Val Glu Ile Lys Gln Leu Asn His Phe Trp Glu Ile Val Val Gln 565 570 575

Thr Ala Glu Glu Ala Lys Lys Phe Leu Ala Pro Lys Asp Lys Pro Ser $595 \hspace{1.5cm} 600 \hspace{1.5cm} 605$

Gly Asp Thr Ala Ala Val Phe Glu Glu Gly Gly Asp Val Asp Asp Leu 610 620

Leu Asp Met Ile

<210> 186

<211> 420 <212> PRT

<213> Homo sapiens

<400> 186

Met Gly Ser Gly Trp Lys Lys Ile Lys Leu Gln Met Lys Cys Asp Gly 1 5 10 15

Cys Ser Glu Gln Gly Ser His Pro Cys Ala Phe Ile Gly Ile Gly Asn 20 25 30

Ser Asp Gln Glu Met Gln Gln Leu Asn Leu Glu Gly Lys Asn Tyr Cys $35 \hspace{1cm} 40 \hspace{1cm} 45$

Thr Ala Lys Thr Leu Tyr Ile Ser Asp Ser Asp Lys Gln Lys His Phe 50 60

Met Leu Ser Val Lys Val Phe Tyr Gly Asn Gly Asp Asp Ile Gly Val 65 70 75 80

Phe Leu Ser Lys Ser Ser Lys Pro Ser Lys Lys Lys Gln Ser Leu Lys 85 90 95

Asn Ala Asp Leu Cys Ile Gly Ser Gly Thr Lys Val Ala Leu Phe Asn 100 105 110

Arg Leu Arg Ser Gln Thr Val Ser Thr Arg Tyr Leu His Val Glu Gly 115 120 125

Gly Asn Phe His Ala Ser Ser Gln Gln Trp Gly Ala Phe Thr Leu Phe 130 135 140

Leu Asp Asp Asp Gly Ser Glu Gly Glu Glu Phe Thr Val Arg Asp Gly 145 150150155160

Tyr Ile His Tyr Gly Gln Thr Val Lys Leu Val Cys Ser Val Thr Gly 165 170 175

Met Ala Leu Pro Arg Leu Ile Ile Arg Lys Val Asp Lys Gln Thr Thr 180 185 190

Leu Leu Asp Ala Asp Asp Pro Val Ser Gln Leu His Lys Cys Ala Phe 195 200 205

Asp Leu Glu Asp Thr Glu Arg Met Tyr Leu Cys Leu Ser Gln Glu Arg $210 \hspace{1.5cm} 215 \hspace{1.5cm} 220 \hspace{1.5cm}$

Ile Ile Gln Phe Gln Ala Thr Pro Cys Pro Thr Glu Pro Asn Lys Glu 225 230 230 235

Met Ile Asn Asp Gly Ala Ser Trp Ala Ile Ile Ser Thr His Lys Ala 245 250 255

Lys Tyr Thr Phe Tyr Glu Arg Met Gly Pro Val Leu Ala Leu Val Met 260 265 270

Pro Met Pro Val Val Glu Ser Leu Lys Leu Asn Gly Gly Gly Asp Glu 275 280 285

Ala Met Leu Glu Leu Thr Gly Gln Asn Phe Thr Pro Asn Leu Arg Val 290 300

Trp Phe Gly Asp Val Glu Ala Glu Thr Met Tyr Arg Cys Gly Glu Ser 305 310 315 320

Met Leu Arg Val Val Pro Asp Val Leu His Ser Glu Lys Val Gly Asp 325 330 335

Ser Ser Gln Gln Pro Val Gln Val Ser Val Thr Leu Val Arg Asn Asp 340 345 350

Gly Ile Ile Tyr Ser Thr Ser Leu Thr Phe Thr Tyr Thr Pro Glu Ala 355 360 365

Gly Pro Arg Pro His Cys Ser Val Ala Gly Ala Ile Leu Lys Ala Ser 370 380

Ser Ser His Val Pro Pro Asn Glu Leu Asn Thr Asn Ser Asp Gly Ser 385 390 395 400

Tyr Thr Asn Ala Ser Thr Asn Ser Thr Ser Val Thr Ser Ser Thr Pro 405 $$ 410 $$ 415

Thr Val Val Ser 420

<210> 187

<211> 10

<212> PRT

<213> Homo sapiens

<400> 187

Met Glu Thr Val Glu Leu Ile Pro Leu Ala Lys Glu Met Met Ala 1 5 10 15

Gln Lys Arg Lys Gly Lys Met Val Lys Leu Tyr Val Leu Gly Ser Val 20 25 30

Leu Ala Leu Phe Gly Val Val Leu Gly Leu Met Glu Thr Val Cys Ser 35 40 45

Pro Phe Thr Ala Ala Arg Arg Leu Arg Asp Gln Glu Ala Ala Val Ala 50 55 60

Glu Leu Gln Ala Ala Leu Glu Arg Gln Ala Leu Gln Lys Gln Ala Leu 65 70 75 80

Gln Glu Lys Gly Lys Gln Gln Asp Thr Val Leu Gly Gly Arg Ala Leu 85 90 95

Ser Asn Arg Gln His Ala Ser 100

<210> 188

<211> 1306

<212> PRT

<213> Homo sapiens

<400> 188

Met Gly Ala Ala Ser Gly Arg Arg Gly Pro Gly Leu Leu Pro Leu 1 5 10 15

Pro Leu Leu Leu Leu Pro Pro Gln Pro Ala Leu Ala Leu Asp Pro 20 25 30

Gly Leu Gln Pro Gly Asn Phe Ser Ala Asp Glu Ala Gly Ala Gln Leu $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Phe Ala Gln Ser Tyr Asn Ser Ser Ala Glu Gln Val Leu Phe Gln Ser 50 60

Val Ala Ala Ser Trp Ala His Asp Thr Asn Ile Thr Ala Glu Asn Ala 65 70 75 80

Arg Arg Gln Glu Glu Ala Ala Leu Leu Ser Gln Glu Phe Ala Glu Ala 85 90 95

Trp Gly Gln Lys Ala Lys Glu Leu Tyr Glu Pro Ile Trp Gln Asn Phe $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$

Thr Asp Pro Gln Leu Arg Arg Ile Ile Gly Ala Val Arg Thr Leu Gly 115 120 125

Ser Ala Asn Leu Pro Leu Ala Lys Arg Gln Gln Tyr Asn Ala Leu Leu 130 135 140

Ser Asn Met Ser Arg Ile Tyr Ser Thr Ala Lys Val Cys Leu Pro Asn 145 150 155 160

Lys Thr Ala Thr Cys Trp Ser Leu Asp Pro Asp Leu Thr Asn Ile Leu 165 170 175

Ala Ser Ser Arg Ser Tyr Ala Met Leu Leu Phe Ala Trp Glu Gly Trp 180 185 190

His Asn Ala Ala Gly Ile Pro Leu Lys Pro Leu Tyr Glu Asp Phe Thr

Ala Leu Ser Asn Glu Ala Tyr Lys Gln Asp Gly Phe Thr Asp Thr Gly 210 215 220

Ala Tyr Trp Arg Ser Trp Tyr Asn Ser Pro Thr Phe Glu Asp Asp Leu 225 230 230 235

Glu His Leu Tyr Gln Gln Leu Glu Pro Leu Tyr Leu Asn Leu His Ala 245 250 250 255

Phe Val Arg Arg Ala Leu His Arg Arg Tyr Gly Asp Arg Tyr Ile Asn 260 265 270

Ser Trp Glu Asn Ile Tyr Asp Met Val Val Pro Phe Pro Asp Lys Pro 290 300

Asn Leu Asp Val Thr Ser Thr Met Leu Gln Gln Gly Trp Asn Ala Thr 305 310 315 320

His Met Phe Arg Val Ala Glu Glu Phe Phe Thr Ser Leu Glu Leu Ser 325 335

Pro Met Pro Pro Glu Phe Trp Glu Gly Ser Met Leu Glu Lys Pro Ala 340 345 350

Asp Gly Arg Glu Val Val Cys His Ala Ser Ala Trp Asp Phe Tyr Asn 355 360 365

Arg Lys Asp Phe Arg Ile Lys Gln Cys Thr Arg Val Thr Met Asp Gln 370 380

Leu Ser Thr Val His His Glu Met Gly His Ile Gln Tyr Tyr Leu Gln 385 390 395 400

Tyr Lys Asp Leu Pro Val Ser Leu Arg Arg Gly Ala Asn Pro Gly Phe 405 410 415

His Glu Ala Ile Gly Asp Val Leu Ala Leu Ser Val Ser Thr Pro Glu 420 425 430

His Leu His Lys Ile Gly Leu Leu Asp Arg Val Thr Asn Asp Thr Glu 435 440 445

Leu Pro Phe Gly Tyr Leu Val Asp Gln Trp Arg Trp Gly Val Phe Ser 465 470 475 480

Gly Arg Thr Pro Pro Ser Arg Tyr Asn Phe Asp Trp Trp Tyr Leu Arg 485 490 495

Thr Lys Tyr Gln Gly Ile Cys Pro Pro Val Thr Arg Asn Glu Thr His $500 \hspace{1.5cm} 505 \hspace{1.5cm} 510$

Phe Asp Ala Gly Ala Lys Phe His Val Pro Asn Val Thr Pro Tyr Ile 515 520 525

Arg Tyr Phe Val Ser Phe Val Leu Gln Phe Gln Phe His Glu Ala Leu 530 540

Cys Lys Glu Ala Gly Tyr Glu Gly Pro Leu His Gln Cys Asp Ile Tyr 545 550 555 560

Arg Ser Thr Lys Ala Gly Ala Lys Leu Arg Lys Val Leu Gln Ala Gly 565 570 575

Ser Ser Arg Pro Trp Gln Glu Val Leu Lys Asp Met Val Gly Leu Asp 580 595 595

Ala Leu Asp Ala Gln Pro Leu Leu Lys Tyr Phe Gln Pro Val Thr Gln 595 605 605

Trp Leu Gln Glu Gln Asn Gln Gln Asn Gly Glu Val Leu Gly Trp Pro 610 615 620

Glu Tyr Gln Trp His Pro Pro Leu Pro Asp Asn Tyr Pro Glu Gly Ile 625 630 635 640

Asp Leu Val Thr Asp Glu Ala Glu Ala Ser Lys Phe Val Glu Glu Tyr $645 \hspace{1cm} 650 \hspace{1cm} 655$

Asp Arg Thr Ser Gln Val Val Trp Asn Glu Tyr Ala Glu Ala Asn Trp 660 665 670

Asn Tyr Asn Thr Asn Ile Thr Thr Glu Thr Ser Lys Ile Leu Leu Gln 675 680 685

Lys Asn Met Gln Ile Ala Asn His Thr Leu Lys Tyr Gly Thr Gln Ala 690 695 700

Arg Lys Phe Asp Val Asn Gln Leu Gln Asn Thr Thr Ile Lys Arg Ile 705 710 715 720

Ile Lys Lys Val Gln Asp Leu Glu Arg Ala Ala Leu Pro Ala Gln Glu 725 730 735

Leu Glu Glu Tyr Asn Lys Ile Leu Leu Asp Met Glu Thr Thr Tyr Ser 740 745 750

Val Ala Thr Val Cys His Pro Asn Gly Ser Cys Leu Gln Leu Glu Pro $755 \hspace{1.5cm} 760 \hspace{1.5cm} 765$

Asp Leu Thr Asn Val Met Ala Thr Ser Arg Lys Tyr Glu Asp Leu Leu 770 780

Trp Ala Trp Glu Gly Trp Arg Asp Lys Ala Gly Arg Ala Ile Leu Gln 785 790 795 800

Phe Tyr Pro Lys Tyr Val Glu Leu Ile Asn Gln Ala Ala Arg Leu Asn 815

Ser Leu Glu Gln Asp Leu Glu Arg Leu Phe Gln Glu Leu Gln Pro Leu 835 840 845

Tyr Leu Asn Leu His Ala Tyr Val Arg Arg Ala Leu His Arg His Tyr 850 855 860

Gly Ala Gln His Ile Asn Leu Glu Gly Pro Ile Pro Ala His Leu Leu 865 870 875 880

Gly Asn Met Trp Ala Gln Thr Trp Ser Asn Ile Tyr Asp Leu Val Val 885 890 895

Pro Phe Pro Ser Ala Pro Ser Met Asp Thr Thr Glu Ala Met Leu Lys 900 905 910

Gln Gly Trp Thr Pro Arg Arg Met Phe Lys Glu Ala Asp Asp Phe Phe 915 920 925

Thr Ser Leu Gly Leu Leu Pro Val Pro Pro Glu Phe Trp Asn Lys Ser 930 935 940

Met Leu Glu Lys Pro Thr Asp Gly Arg Glu Val Val Cys His Ala Ser 945 950 955 960

Ala Trp Asp Phe Tyr Asn Gly Lys Asp Phe Arg Ile Lys Gln Cys Thr 965 970 975

Thr Val Asn Leu Glu Asp Leu Val Val Ala His His Glu Met Gly His $980 \hspace{1.5cm} 985 \hspace{1.5cm} 990$

Ile Gln Tyr Phe Met Gln Tyr Lys Asp Leu Pro Val Ala Leu Arg Glu 995 1000 1005

Gly Ala Asn Pro Gly Phe His Glu Ala Ile Gly Asp Val Leu Ala 1010 1020

Leu Ser Val Ser Thr Pro Lys His Leu His Ser Leu Asn Leu Leu 1025 1030 1035

Ser Ser Glu Gly Gly Ser Asp Glu His Asp Ile Asn Phe Leu Met Page 297

1040 1045 1050

Lys Met Ala Leu Asp Lys Ile Ala Phe Ile Pro Phe Ser Tyr Leu 1055 1060 1065

Val Asp Gln Trp Arg Trp Arg Val Phe Asp Gly Ser Ile Thr Lys 1070 1075 1080

Glu Asn Tyr Asn Gln Glu Trp Trp Ser Leu Arg Leu Lys Tyr Gln 1085 1090 1095

Gly Leu Cys Pro Pro Val Pro Arg Thr Gln Gly Asp Phe Asp Pro 1100 1105 1110

Gly Ala Lys Phe His Ile Pro Ser Ser Val Pro Tyr Ile Arg Tyr 1115 1120 1125

Phe Val Ser Phe Ile Ile Gln Phe Gln Phe His Glu Ala Leu Cys 1130 1140

Gln Ala Ala Gly His Thr Gly Pro Leu His Lys Cys Asp Ile Tyr 1145 1150 1155

Gln Ser Lys Glu Ala Gly Gln Arg Leu Ala Thr Ala Met Lys Leu 1160 1165 1170

Gly Phe Ser Arg Pro Trp Pro Glu Ala Met Gln Leu Ile Thr Gly 1175 1180 1185

Gln Pro Asn Met Ser Ala Ser Ala Met Leu Ser Tyr Phe Lys Pro 1190 1195 1200

Leu Leu Asp Trp Leu Arg Thr Glu Asn Glu Leu His Gly Glu Lys 1205 1210 1215

Leu Gly Trp Pro Gln Tyr Asn Trp Thr Pro Asn Ser Ala Arg Ser 1220 1225

Glu Gly Pro Leu Pro Asp Ser Gly Arg Val Ser Phe Leu Gly Leu 1235 1240 1245

Asp Leu Asp Ala Gln Gln Ala Arg Val Gly Gln Trp Leu Leu Leu 1250 1260

Phe Leu Gly Ile Ala Leu Leu Val Ala Thr Leu Gly Leu Ser Gln 1265 . 1270 1275

Arg Leu Phe Ser Ile Arg His Arg Ser Leu His Arg His Ser His 1280 1285 1290

Gly Pro Gln Phe Gly Ser Glu Val Glu Leu Arg His Ser 1295 1300 1305

<210> 189 <211> 1461

<212> PRT

<213> Homo sapiens

<400> 189

Met Ala Ala Glu Arg Gly Ala Arg Arg Leu Leu Ser Thr Pro Ser Phe

1 5 10 15

Trp Leu Tyr Cys Leu Leu Leu Gly Arg Arg Ala Pro Gly Ala Ala 20 25 30

Ala Ala Arg Ser Gly Ser Ala Pro Gln Ser Pro Gly Ala Ser Ile Arg $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Thr Phe Thr Pro Phe Tyr Phe Leu Val Glu Pro Val Asp Thr Leu Ser 50

Val Arg Gly Ser Ser Val Ile Leu Asn Cys Ser Ala Tyr Ser Glu Pro 65 70 75 80

Ser Pro Lys Ile Glu Trp Lys Lys Asp Gly Thr Phe Leu Asn Leu Val

Ser Asp Asp Arg Gln Leu Leu Pro Asp Gly Ser Leu Phe Ile Ser 100 105 110

Asn Val Val His Ser Lys His Asn Lys Pro Asp Glu Gly Tyr Tyr Gln 115 120 125

Cys Val Ala Thr Val Glu Ser Leu Gly Thr Ile Ile Ser Arg Thr Ala 130 $$135\$

Lys Leu Ile Val Ala Gly Leu Pro Arg Phe Thr Ser Gln Pro Glu Pro 145 $$ 150 $$ 155 $$ 160

Ser, Ser Val Tyr Ala Gly Asn Gly Ala Ile Leu Asn Cys Glu Val Asn 165 170 175

Ala Asp Leu Val Pro Phe Val Arg Trp Glu Gln Asn Arg Gln Pro Leu 180 185 190

Leu Leu Asp Asp Arg Val Ile Lys Leu Pro Ser Gly Met Leu Val Ile 195 200 205

Ser Asn Ala Thr Glu Gly Asp Gly Gly Leu Tyr Arg Cys Val Val Glu 210 215 220

Ser Gly Gly Pro Pro Lys Tyr Ser Asp Glu Val Glu Leu Lys Val Leu 225 230 235

Pro Asp Pro Glu Val Ile Ser Asp Leu Val Phe Leu Lys Gln Pro Ser 245 250

Pro Leu Val Arg Val Ile Gly Gln Asp Val Val Leu Pro Cys Val Ala 260 265 270

Ser Gly Leu Pro Thr Pro Thr Ile Lys Trp Met Lys Asn Glu Glu Ala 275 280285

Leu Asp Thr Glu Ser Ser Glu Arg Leu Val Leu Leu Ala Gly Gly Ser 290 295 300

Leu Glu Ile Ser Asp Val Thr Glu Asp Asp Ala Gly Thr Tyr Phe Cys 305 310 315 320

Ile Ala Asp Asn Gly Asn Glu Thr Ile Glu Ala Gln Ala Glu Leu Thr 325 330 335

Val Gln Ala Gln Pro Glu Phe Leu Lys Gln Pro Thr Asn Ile Tyr Ala 340 345 350

His Glu Ser Met Asp Ile Val Phe Glu Cys Glu Val Thr Gly Lys Pro $355 \hspace{1.5cm} 360 \hspace{1.5cm} 365$

Thr Pro Thr Val Lys Trp Val Lys Asn Gly Asp Met Val Ile Pro Ser 370 380

Asp Tyr Phe Lys Ile Val Lys Glu His Asn Leu Gln Val Leu Gly Leu 385 390 395 400

Val Lys Ser Asp Glu Gly Phe Tyr Gln Cys Ile Ala Glu Asn Asp Val 405 410 415

Gly Asn Ala Gln Ala Gly Ala Gln Leu Ile Ile Leu Glu His Ala Pro $420 \hspace{1.5cm} 425 \hspace{1.5cm} 430$

Ala Thr Thr Gly Pro Leu Pro Ser Ala Pro Arg Asp Val Val Ala Ser $435 \ \ \, 440 \ \ \, 445$

Leu Val Ser Thr Arg Phe Ile Lys Leu Thr Trp Arg Thr Pro Ala Ser 450 455 460

Asp Pro His Gly Asp Asn Leu Thr Tyr Ser Val Phe Tyr Thr Lys Glu 465 470 475 480

Gly Ile Ala Arg Glu Arg Val Glu Asn Thr Ser His Pro Gly Glu Met 485 490 495

Gln Val Thr Ile Gln Asn Leu Met Pro Ala Thr Val Tyr Ile Phe Arg 500 505 510

Val Met Ala Gln Asn Lys His Gly Ser Gly Glu Ser Ser Ala Pro Leu 515 520 525

Arg Val Glu Thr Gln Pro Glu Val Gln Leu Pro Gly Pro Ala Pro Asn 530 535 540

Leu Arg Ala Tyr Ala Ala Ser Pro Thr Ser Ile Thr Val Thr Trp Glu 545 550 555 560

Thr Pro Val Ser Gly Asn Gly Glu Ile Gln Asn Tyr Lys Leu Tyr Tyr 565 570 575

Met Glu Lys Gly Thr Asp Lys Glu Gln Asp Val Asp Val Ser Ser His 580 585 590

Ser Tyr Thr Ile Asn Gly Leu Lys Lys Tyr Thr Glu Tyr Ser Phe Arg $595 \hspace{1.5cm} 600 \hspace{1.5cm} 605$

Val Val Ala Tyr Asn Lys His Gly Pro Gly Val Ser Thr Pro Asp Val 610 620

Ala Val Arg Thr Leu Ser Asp Val Pro Ser Ala Ala Pro Gln Asn Leu 625 630 635 640

Ser Leu Glu Val Arg Asn Ser Lys Ser Ile Met Ile His Trp Gln Pro 645 650 655

Pro Ala Pro Ala Thr Gln Asn Gly Gln Ile Thr Gly Tyr Lys Ile Arg
660 665 670

Tyr Arg Lys Ala Ser Arg Lys Ser Asp Val Thr Glu Thr Leu Val Ser 675 680 685

Gly Thr Gln Leu Ser Gln Leu Ile Glu Gly Leu Asp Arg Gly Thr Glu 690 695 700

Tyr Asn Phe Arg Val Ala Ala Leu Thr Ile Asn Gly Thr Gly Pro Ala 705 710 715 720

Thr Asp Trp Leu Ser Ala Glu Thr Phe Glu Ser Asp Leu Asp Glu Thr 725 730 730 735

Arg Val Pro Glu Val Pro Ser Ser Leu His Val Arg Pro Leu Val Thr $740 \hspace{1.5cm} 745 \hspace{1.5cm} 750$

Ser Ile Val Val Ser Trp Thr Pro Pro Glu Asn Gln Asn Ile Val Val 755 $$ 760 $$ 765

Arg Gly Tyr Ala Ile Gly Tyr Gly Ile Gly Ser Pro His Ala Gln Thr 770 . 780

Ile Lys Val Asp Tyr Lys Gln Arg Tyr Tyr Thr Ile Glu Asn Leu Asp 785 790 795 800

Pro Ser Ser His Tyr Val Ile Thr Leu Lys Ala Phe Asn Asn Val Gly 805 810 810

Glu Gly Ile Pro Leu Tyr Glu Ser Ala Val Thr Arg Pro His Thr Asp 820 825 830

Thr Ser Glu Val Asp Leu Phe Val Ile Asn Ala Pro Tyr Thr Pro Val 835 840

Leu Ser His Asp Thr Ile Arg Ile Thr Trp Ala Asp Asn Ser Leu Pro 865 870 875 880

Lys His Gln Lys Ile Thr Asp Ser Arg Tyr Tyr Thr Val Arg Trp Lys 885 890 895

Thr Asn Ile Pro Ala Asn Thr Lys Tyr Lys Asn Ala Asn Ala Thr Thr $900 \hspace{1.5cm} 905 \hspace{1.5cm} 910$

Leu Ser Tyr Leu Val Thr Gly Leu Lys Pro Asn Thr Leu Tyr Glu Phe 915 920 925

Ser Val Met Val Thr Lys Gly Arg Arg Ser Ser Thr Trp Ser Met Thr 930 940

Ala His Gly Thr Thr Phe Glu Leu Val Pro Thr Ser Pro Pro Lys Asp 945 950 950 960

Val Thr Val Val Ser Lys Glu Gly Lys Pro Lys Thr Ile Ile Val Asn 965 970 975

Trp Gln Pro Ser Glu Ala Asn Gly Lys Ile Thr Gly Tyr Ile Ile 980 985 990

Tyr Tyr Ser Thr Asp Val Asn Ala Glu Ile His Asp Trp Val Ile Glu 995 1000 1005

Pro Val Val Gly Asn Arg Leu Thr His Gln Ile Gln Glu Leu Thr 1010 1020

Leu Asp Thr Pro Tyr Tyr Phe Lys Ile Gln Ala Arg Asn Ser Lys 1025 1035

Gly Met Gly Pro Met Ser Glu Ala Val Gln Phe Arg Thr Pro Lys $1040 \hspace{1.5cm} 1045 \hspace{1.5cm} 1050$

Ala Asp Ser Ser Asp Lys Met Pro Asn Asp Gln Ala Ser Gly Ser 1055 1060 1065

Pro Pro Met Ser Gly Ser Asn Ser Pro His Gly Ser Pro Thr Ser 1085 1090 1095

Pro Leu Asp Ser Asn Met Leu Leu Val Ile Ile Val Ser Val Gly 1100 1105 1110

Val Ile Thr Ile Val Val Val Val Ile Ile Ala Val Phe Cys Thr 1115 1120 1125

Arg Arg Thr Thr Ser His Gln Lys Lys Lys Arg Ala Ala Cys Lys 1130 1135 1140

Ser Val Asn Gly Ser His Lys Tyr Lys Gly Asn Ser Lys Asp Val 1145 1150 1155

Lys Pro Pro Asp Leu Trp Ile His His Glu Arg Leu Glu Leu Lys 1160 $$1165\ \ \ \ \, 1170\ \ \ \,$

Pro Ile Asp Lys Ser Pro Asp Pro Asn Pro Ile Met Thr Asp Thr 1175 1180 Pro Ile Met Thr Asp Thr

Pro Ile Pro Arg Asn Ser Gln Asp Ile Thr Pro Val Asp Asn Ser 1190 1195 1200

Met Asp Ser Asn Ile His Gln Arg Arg Asn Ser Tyr Arg Gly His 1205 1210 1215

Glu Ser Glu Asp Ser Met Ser Thr Leu Ala Gly Arg Arg Gly Met 1220 1230

Arg Pro Lys Met Met Met Pro Phe Asp Ser Gln Pro Pro Gln Pro 1235 1240

Val Ile Ser Ala His Pro Ile His Ser Leu Asp Asn Pro His His Page 302

1250 1255

His Phe His Ser Ser Ser Leu Ala Ser Pro Ala Arg Ser His Leu 1265 1270 1275

Tyr His Pro Gly Ser Pro Trp Pro Ile Gly Thr Ser Met Ser Leu 1280 1285 1290

Ser Asp Arg Ala Asn Ser Thr Glu Ser Val Arg Asn Thr Pro Ser 1295 $$ 1300 $$ 1305

Thr Asp Thr Met Pro Ala Ser Ser Ser Gln Thr Cys Cys Thr Asp 1310 - - 1315 1320

His Gln Asp Pro Glu Gly Ala Thr Ser Ser Ser Tyr Leu Ala Ser 1325 1330 1335

Ser Gln Glu Glu Asp Ser Gly Gln Ser Leu Pro Thr Ala His Val 1340 1345 1350

Arg Pro Ser His Pro Leu Lys Ser Phe Ala Val Pro Ala Ile Pro 1355 1360 1365

Pro Pro Gly Pro Pro Thr Tyr Asp Pro Ala Leu Pro Ser Thr Pro 1370 1375 1380

Leu Leu Ser Gln Gln Ala Leu Asn His His Ile His Ser Val Lys 1390

Thr Ala Ser Ile Gly Thr Leu Gly Arg Ser Arg Pro Pro Met Pro 1400 1405 1410

Val Val Val Pro Ser Ala Pro Glu Val Gln Glu Thr Thr Arg Met 1415 1420 1425

Leu Glu Asp Ser Glu Ser Ser Tyr Glu Pro Asp Glu Leu Thr Lys 1430 $$1435\$

Glu Met Ala His Leu Glu Gly Leu Met Lys Asp Leu Asn Ala Ile 1445 1450 1455

Thr Thr Ala 1460

<210> 190 <211> 736 <212> PRT

<213> Homo sapiens

<400> 190

Met Val Val Thr Arg Ser Ala Arg Ala Lys Ala Ser Ile Gln Ala Ala 1 5 10 15

Ser Ala Glu Ser Ser Gly Gln Lys Ser Phe Ala Ala Asn Gly Ile Gln 20 25 30

Ala His Pro Glu Ser Ser Thr Gly Ser Asp Ala Arg Thr Thr Asp Glu 35 40 45

Ser Gln Thr Thr Gly Lys Gln Ser Leu Ile Pro Arg Thr Pro Lys Ala Page 303

50 55

Arg Lys Ser Lys Ser Arg Thr Thr Gly Ser Leu Pro Lys Gly Thr Glu 65 70 75 80

Pro Ser Thr Asp Gly Glu Thr Ser Glu Ala Glu Ser Asn Tyr Ser Val $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Ser Glu His His Asp Thr Ile Leu Arg Val Thr Arg Arg Arg Gln Ile $100 \hspace{1cm} 105 \hspace{1cm} 105$

Leu Ile Ala Cys Ser Pro Val Ser Ser Val Arg Lys Lys Pro Lys Val 115 120 125

Thr Pro Thr Lys Glu Ser Tyr Thr Glu Glu Ile Val Ser Glu Ala Glu 130 135 140

Ser His Val Ser Gly Ile Ser Arg Ile Val Leu Pro Thr Glu Lys Thr 145 150150155155

Thr Gly Ala Arg Arg Ser Lys Ala Lys Ser Leu Thr Asp Pro Ser Gln 165 170 175

Glu Ser His Thr Glu Ala Ile Ser Asp Ala Glu Thr Ser Ser Ser Asp 180 185 190

Ile Ser Phe Ser Gly Ile Ala Thr Arg Arg Thr Arg Ser Met Gln Arg 195 200 205

Lys Leu Lys Ala Gln Thr Glu Lys Lys Asp Ser Lys Ile Val Pro Gly 210 215 220

Asn Glu Lys Gln Ile Val Gly Thr Pro Val Asn Ser Glu Asp Ser Asp 225 230 235 240

Thr Arg Gln Thr Ser His Leu Gln Ala Arg Ser Leu Ser Glu Ile Asn 245 250 255

Lys Pro Asn Phe Tyr Asn Asn Asp Phe Asp Asp Asp Phe Ser His Arg 260 265 270

Ser Ser Glu Asn Ile Leu Thr Val His Glu Gln Ala Asn Val Glu Ser $275 \hspace{1.5cm} 280 \hspace{1.5cm} 285 \hspace{1.5cm}$

Leu Lys Glu Thr Lys Gln Asn Cys Lys Asp Leu Asp Glu Asp Ala Asn 290 295 300

Gly Ile Thr Asp Glu Gly Lys Glu Ile Asn Glu Lys Ser Ser Gln Leu 305 310 315 320

Lys Asn Leu Ser Glu Leu Gln Asp Thr Ser Leu Gln Gln Leu Val Ser 325 330 335

Gln Arg His Ser Thr Pro Gln Asn Lys Asn Ala Val Ser Val His Ser 340 345 350

Asn Leu Asn Ser Glu Ala Val Met Lys Ser Leu Thr Gln Thr Phe Ala 355 360365

Thr Val Glu Val Gly Arg Trp Asn Asn Asn Lys Lys Ser Pro Ile Lys 370 375 380

Ala Ser Asp Leu Thr Lys Phe Gly Asp Cys Gly Gly Ser Asp Asp Glu 385 390 395 400

Glu Glu Ser Thr Val Ile Ser Val Ser Glu Asp Met Asn Ser Glu Gly 405 410 415

Asn Val Asp Phe Glu Cys Asp Thr Lys Leu Tyr Thr Ser Ala Pro Asn 420 425 430

Thr Ser Gln Gly Lys Asp Asn Ser Val Leu Leu Val Leu Ser Ser Asp 435 440 445

Glu Ser Gln Gln Ser Glu Asn Ser Glu Asn Glu Glu Asp Thr Leu Cys 450 455 460

Phe Val Glu Asn Ser Gly Gln Arg Glu Ser Leu Ser Gly Asp Thr Gly 465 470 475 480

Ser Leu Ser Cys Asp Asn Ala Leu Phe Val Ile Asp Thr Thr Pro Gly 485 490 495

Met Ser Ala Asp Lys Asn Phe Tyr Leu Glu Glu Glu Asp Lys Ala Ser 500 505 510

Glu Val Ala Ile Glu Glu Glu Lys Glu Glu Glu Glu Asp Glu Lys Ser 515 520 525

Glu Glu Asp Ser Ser Asp His Asp Glu Asn Glu Asp Glu Phe Ser Asp 530 535 540

Glu Glu Asp Phe Leu Asn Ser Thr Lys Ala Lys Leu Leu Lys Leu Thr 545 550 560

Ser Ser Ser Ile Asp Pro Gly Leu Ser Ile Lys Gln Leu Gly Gly Leu 565 570 575

Tyr Ile Asn Phe Asn Ala Asp Lys Leu Gln Ser Asn Lys Arg Thr Leu 580 585 590

Thr Gln Ile Lys Glu Lys Lys Lys Asn Glu Leu Leu Gln Lys Ala Val 595 600 605

Ile Thr Pro Asp Phe Glu Lys Asn His Cys Val Pro Pro Tyr Ser Glu 610 615 620

Ser Lys Tyr Gln Leu Gln Lys Lys Arg Arg Lys Glu Arg Gln Lys Thr 625 630 635 640

Ala Gly Asp Gly Trp Phe Gly Met Lys Ala Pro Glu Met Thr Asn Glu 645 650 655

Leu Lys Asn Asp Leu Lys Ala Leu Lys Met Arg Ala Ser Met Asp Pro 660 665 670

Lys Arg Phe Tyr Lys Lys Asn Asp Arg Asp Gly Phe Pro Lys Tyr Phe 675 680 685

Gln Ile Gly Thr Ile Val Asp Asn Pro Ala Asp Phe Tyr His Ser Arg $690 \hspace{1.5cm} 695 \hspace{1.5cm} 700$

Ile Pro Lys Lys Gln Arg Lys Arg Thr Ile Val Glu Asp Cys Trp Leu 705 $$ 710 $$ 720

Ile Leu Asn Ser Glu Ile Gln Pro Lys Glu Val Leu Arg Asp His Gly 725 730 735

<210> 191

<211> 465

<212> PRT

<213> Homo sapiens

<400> 191

Met Ala Met Thr Gly Ser Thr Pro Cys Ser Ser Met Ser Asn His Thr 1 10

Lys Glu Arg Val Thr Met Thr Lys Val Thr Leu Glu Asn Phe Tyr Ser 20

Asn Leu Ile Ala Gln His Glu Glu Arg Glu Met Arg Gln Lys Lys Leu $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Glu Lys Val Met Glu Glu Glu Glu Lys Asp Glu Glu Lys Arg Leu 50 $\,$ 55 $\,$ 60 $\,$

Arg Arg Ser Ala His Ala Arg Lys Glu Thr Glu Phe Leu Arg Leu Lys 65 70 75 80

Arg Thr Arg Leu Gly Leu Glu Asp Phe Glu Ser Leu Lys Val Ile Gly 85 90 95

Arg Gly Ala Phe Gly Glu Val Arg Leu Val Gln Lys Lys Asp Thr Gly $100 \hspace{1cm} 105 \hspace{1cm} 110$

His Val Tyr Ala Met Lys Ile Leu Arg Lys Ala Asp Met Leu Glu Lys 115 120 125

Glu Gln Val Gly His Ile Arg Ala Glu Arg Asp Ile Leu Val Glu Ala 130 135 140

Asp Ser Leu Trp Val Val Lys Met Phe Tyr Ser Phe Gln Asp Lys Leu 145 150 155 160

Asn Leu Tyr Leu Ile Met Glu Phe Leu Pro Gly Gly Asp Met Met Thr 165 170 . 175

Leu Leu Met Lys Lys Asp Thr Leu Thr Glu Glu Glu Thr Gln Phe Tyr 180 185 190

Ile Ala Glu Thr Val Leu Ala Ile Asp Ser Ile His Gln Leu Gly Phe 195 200 205

Ile His Arg Asp Ile Lys Pro Asp Asn Leu Leu Leu Asp Ser Lys Gly 210 215 220

His Val Lys Leu Ser Asp Phe Gly Leu Cys Thr Gly Leu Lys Lys Ala 225 230 235 240

His Arg Thr Glu Phe Tyr Arg Asn Leu Asn His Ser Leu Pro Ser Asp 245 250 255

Phe Thr Phe Gln Asn Met Asn Ser Lys Arg Lys Ala Glu Thr Trp Lys 260 265 270

Arg Asn Arg Arg Gln Leu Ala Phe Ser Thr Val Gly Thr Pro Asp Tyr 275 280 285

Ile Ala Pro Glu Val Phe Met Gln Thr Gly Tyr Asn Lys Leu Cys Asp 290 295 300

Trp Trp Ser Leu Gly Val Ile Met Tyr Glu Met Leu Ile Gly Tyr Pro 305 310 315 320

Pro Phe Cys Ser Glu Thr Pro Gln Glu Thr Tyr Lys Lys Val Met Asn 325 330 335

Trp Lys Glu Thr Leu Thr Phe Pro Pro Glu Val Pro Ile Ser Glu Lys 340 345 350

Ala Lys Asp Leu Ile Leu Arg Phe Cys Cys Glu Trp Glu His Arg Ile 355 360 365

Gly Ala Pro Gly Val Glu Glu Ile Lys Ser Asn Ser Phe Phe Glu Gly 370 375 380

Val Asp Trp Glu His Ile Arg Glu Arg Pro Ala Ala Ile Ser Ile Glu 385 390 395 400

Ile Lys Ser Ile Asp Asp Thr Ser Asn Phe Asp Glu Phe Pro Glu Ser 405 410 415

Asp Ile Leu Lys Pro Thr Val Ala Thr Ser Asn His Pro Glu Thr Asp 420 425 430

Tyr Lys Asn Lys Asp Trp Val Phe Ile Asn Tyr Thr Tyr Lys Arg Phe 435 440 445

Glu Gly Leu Thr Ala Arg Gly Ala Ile Pro Ser Tyr Met Lys Ala Ala 450 455

<210> 192

PRT

<213> Homo sapiens

Met Thr Tyr Phe Pro Leu Gly Arg Tyr Pro Val Val Gly Leu Leu Asp 1 $$ 10 $$ 15

Gln Met Val Val Leu Ser Thr Phe Ser Ser Leu Lys Asn Leu His Ile $20 \hspace{1cm} 25 \hspace{1cm} 30$

Val Phe His Ser Gly Cys Thr Ser Leu His Ser His Gln Leu Cys Lys $35 \hspace{1cm} 40 \hspace{1cm} 45$

Arg Val Pro Phe Ser Pro His Pro Arg Gln His Leu Leu Phe Phe Asp 50 55 60

Phe Trp Ile Lys Ala Ile Leu Ala Glu 65 70

<210> 193

<211> 410 <212> PRT

<213> Homo sapiens

<400> 193

Met Val Cys Phe Arg Leu Phe Pro Val Pro Gly Ser Gly Leu Val Leu 1 5 5 10 15

Val Cys Leu Val Leu Gly Ala Val Arg Ser Tyr Ala Leu Glu Leu Asn 20 25 30

Leu Thr Asp Ser Glu Asn Ala Thr Cys Leu Tyr Ala Lys Trp Gln Met 35 45

Asn Phe Thr Val Arg Tyr Glu Thr Thr Asn Lys Thr Tyr Lys Thr Val 50 60

Thr Ile Ser Asp His Gly Thr Val Thr Tyr Asn Gly Ser Ile Cys Gly 65 70 75 80

Asp Asp Gln Asn Gly Pro Lys Ile Ala Val Gln Phe Gly Pro Gly Phe 85 90 95

Ser Val Ser Phe Ser Tyr Asn Thr Gly Asp Asn Thr Thr Phe Pro Asp 115 120 125

Ala Glu Asp Lys Gly Ile Leu Thr Val Asp Glu Leu Leu Ala Ile Arg 130 135 140

Ile Pro Leu Asn Asp Leu Phe Arg Cys Asn Ser Leu Ser Thr Leu Glu 145 150 150 160

Lys Asn Asp Val Val Gln His Tyr Trp Asp Val Leu Val Gln Ala Phe 165 170 175

Val Gln Asn Gly Thr Val Ser Thr Asn Glu Phe Leu Cys Asp Lys Asp 180 185 190

Lys Thr Ser Thr Val Ala Pro Thr Ile His Thr Thr Val Pro Ser Pro $195 \ \ \, 200 \ \ \, 205$

Thr Thr Thr Pro Thr Pro Lys Glu Lys Pro Glu Ala Gly Thr Tyr Ser 210 215 220

Val Asn Asn Gly Asn Asp Thr Cys Leu Leu Ala Thr Met Gly Leu Gln 225 230 235 240

Leu Asn Ile Thr Gln Asp Lys Val Ala Ser Val Ile Asn Ile Asn Pro 245 250 255

Asn Thr Thr His Ser Thr Gly Ser Cys Arg Ser His Thr Ala Leu Leu 260 265 270

Arg Leu Asn Ser Ser Thr Ile Lys Tyr Leu Asp Phe Val Phe Ala Val 275 280 285

Lys Asn Glu Asn Arg Phe Tyr Leu Lys Glu Val Asn Ile Ser Met Tyr 290 295 300

Leu Val Asn Gly Ser Val Phe Ser Ile Ala Asn Asn Asn Leu Ser Tyr 305 310 315 320

Trp Asp Ala Pro Leu Gly Ser Ser Tyr Met Cys Asn Lys Glu Gln Thr 325 330 335

Val Ser Val Ser Gly Ala Phe Gln Ile Asn Thr Phe Asp Leu Arg Val $340 \hspace{1.5cm} 345 \hspace{1.5cm} 350 \hspace{1.5cm}$

Gln Pro Phe Asn Val Thr Gln Gly Lys Tyr Ser Thr Ala Gln Glu Cys 355 360 365

Ser Leu Asp Asp Asp Thr Ile Leu Ile Pro Ile Ile Val Gly Ala Gly 370 375 380

Leu Ser Gly Leu Ile Ile Val Ile Val Ile Ala Tyr Val Ile Gly Arg 385 390 395 400

Arg Lys Ser Tyr Ala Gly Tyr Gln Thr Leu 405 410

194 480

<211> PRT

Homo sapiens

Met Ala Gly Gly Gly Asp Leu Ser Thr Arg Arg Leu Asn Glu Cys 1 $$ 5 $$ 10 $$ 15

Ile Ser Pro Val Ala Asn Glu Met Asn His Leu Pro Ala His Ser His 20 25 30

Asp Leu Gln Arg Met Phe Thr Glu Asp Gln Gly Val Asp Asp Arg Leu $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Leu Tyr Asp Ile Val Phe Lys His Phe Lys Arg Asn Lys Val Glu Ile 50 $$ 55 $$ 60

Ser Asn Ala Ile Lys Lys Thr Phe Pro Phe Leu Glu Gly Leu Arg Asp 65 70 75 80

Arg Asp Leu Ile Thr Asn Lys Met Phe Glu Asp Ser Gln Asp Ser Cys 85 90 95

Arg Asn Leu Val Pro Val Gln Arg Val Val Tyr Asn Val Leu Ser Glu 100 105 110

Leu Glu Lys Thr Phe Asn Leu Pro Val Leu Glu Ala Leu Phe Ser Asp 115 120 125

Val Asn Met Gln Glu Tyr Pro Asp Leu Ile His Ile Tyr Lys Gly Phe 130 140

Glu Asn Val Ile His Asp Lys Leu Pro Leu Gln Glu Ser Glu Glu 145 150 150 155 160

Glu Arg Glu Glu Arg Ser Gly Leu Gln Leu Ser Leu Glu Gln Gly Thr \$165\$ \$170\$ 175

Gly Glu Asn Ser Phe Arg Ser Leu Thr Trp Pro Pro Ser Gly Ser Pro 180 185 190

Ser His Ala Gly Thr Thr Pro Pro Glu Asn Gly Leu Ser Glu His Pro 195 200 205

Cys Glu Thr Glu Gln Ile Asn Ala Lys Arg Lys Asp Thr Thr Ser Asp 210 215 220

Lys Asp Asp Ser Leu Gly Ser Gln Gln Thr Asn Glu Gln Cys Ala Gln 225 230 235 240

Lys Ala Glu Pro Thr Glu Ser Cys Glu Gln Ile Ala Val Gln Val Asn $245 \hspace{1.5cm} 250 \hspace{1.5cm} 255 \hspace{1.5cm}$

Asn Gly Asp Ala Gly Arg Glu Met Pro Cys Pro Leu Pro Cys Asp Glu 260 265 270

Glu Ser Pro Glu Ala Glu Leu His Asn His Gly Ile Gln Ile Asn Ser $275 \hspace{1.5cm} 280 \hspace{1.5cm} 285 \hspace{1.5cm}$

Cys Ser Val Arg Leu Val Asp Ile Lys Lys Glu Lys Pro Phe Ser Asn 290 295 300

Ser Lys Val Glu Cys Gln Ala Gln Ala Arg Thr His His Asn Gln Ala 305 310 310 320

Ser Asp Ile Ile Val Ile Ser Ser Glu Asp Ser Glu Gly Ser Thr Asp 325 330 335

Val Asp Glu Pro Leu Glu Val Phe Ile Ser Ala Pro Arg Ser Glu Pro 340 345 350

Val Ile Asn Asn Asp Asn Pro Leu Glu Ser Asn Asp Glu Lys Glu Gly 355 360 365

Gln Glu Ala Thr Cys Ser Arg Pro Gln Ile Val Pro Glu Pro Met Asp 370 375 380

Phe Arg Lys Leu Ser Thr Phe Arg Glu Ser Phe Lys Lys Arg Val 1le 385 390 395 400

Gly Gln Asp His Asp Phe Ser Glu Ser Ser Glu Glu Glu Ala Pro Ala 415

Glu Ala Ser Ser Gly Ala Leu Arg Ser Lys His Gly Glu Lys Ala Pro $420 \hspace{1.5cm} 425 \hspace{1.5cm} 430$

Met Thr Ser Arg Ser Thr Ser Thr Trp Arg Ile Pro Ser Arg Lys Arg 435 440 445

Arg Phe Ser Ser Ser Asp Phe Ser Asp Leu Ser Asn Gly Glu Glu Leu 450 460

Gln Glu Thr Cys Ser Ser Ser Leu Arg Arg Gly Ser Gly Lys Glu Asp 465 470 475 480

210> 195

<211> 339 <212> PRT

<213> Homo sapiens

<400> 195

Met Trp Gln Leu Trp Ala Ser Leu Cys Cys Leu Leu Val Leu Ala Asn 1 5 10 15

Ala Arg Ser Arg Pro Ser Phe His Pro Leu Ser Asp Glu Leu Val Asn 20 25 30

Tyr Val Asn Lys Arg Asn Thr Thr Trp Gln Ala Gly His Asn Phe Tyr $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Asn Val Asp Met Ser Tyr Leu Lys Arg Leu Cys Gly Thr Phe Leu Gly 50 60

Gly Pro Lys Pro Pro Gln Arg Val Met Phe Thr Glu Asp Leu Lys Leu 65 70 70 75 80

Pro Ala Ser Phe Asp Ala Arg Glu Gln Trp Pro Gln Cys Pro Thr Ile $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Lys Glu Ile Arg Asp Gln Gly Ser Cys Gly Ser Cys Trp Ala Phe Gly 100 $\,$ 105 $\,$ 110 $\,$

Ala Val Glu Ala Ile Ser Asp Arg Ile Cys Ile His Thr Asn Ala His 115 $$ 120 $$ 125

Val Ser Val Glu Val Ser Ala Glu Asp Leu Leu Thr Cys Cys Gly Ser 130 $$135\$

Met Cys Gly Asp Gly Cys Asn Gly Gly Tyr Pro Ala Glu Ala Trp Asn 145 150 150 155 160

Phe Trp Thr Arg Lys Gly Leu Val Ser Gly Gly Leu Tyr Glu Ser His 165 170 175

Val Gly Cys Arg Pro Tyr Ser Ile Pro Pro Cys Glu His His Val Asn 180 185 190

Gly Ser Arg Pro Pro Cys Thr Gly Glu Gly Asp Thr Pro Lys Cys Ser 195 200 205

Tyr Gly Tyr Asn Ser Tyr Ser Val Ser Asn Ser Glu Lys Asp Ile Met 225 230 240

Ala Glu Ile Tyr Lys Asn Gly Pro Val Glu Gly Ala Phe Ser Val Tyr 245 250 255

Ser Asp Phe Leu Leu Tyr Lys Ser Gly Val Tyr Gln His Val Thr Gly 260 265 270

Glu Met Met Gly Gly His Ala Ile Arg Ile Leu Gly Trp Gly Val Glu 275 280 285

Asn Gly Thr Pro Tyr Trp Leu Val Ala Asn Ser Trp Asn Thr Asp Trp 290 295 300

Gly Asp Asn Gly Phe Phe Lys Ile Leu Arg Gly Gln Asp His Cys Gly 305 310 315 320

Ile Glu Ser Glu Val Val Ala Gly Ile Pro Arg Thr Asp Gln Tyr Trp 325 330 335

Glu Lys Ile

210> 196

<211> 2328

<212> PRT

<213> Homo sapiens

<400> 196

Lys Ser Lys Arg Gln Ala Gln Gln Met Val Gln Pro Gln Ser Pro Val 1 5 10 15

Ala Val Ser Gln Ser Lys Pro Gly Cys Tyr Asp Asn Gly Lys His Tyr 20 25 30

Gln Ile Asn Gln Gln Trp Glu Arg Thr Tyr Leu Gly Asn Val Leu Val 35 40 45

Cys Thr Cys Tyr Gly Gly Ser Arg Gly Phe Asn Cys Glu Ser Lys Pro 50 60

Glu Ala Glu Glu Thr Cys Phe Asp Lys Tyr Thr Gly Asn Thr Tyr Arg 65 70 75 80

Val Gly Asp Thr Tyr Glu Arg Pro Lys Asp Ser Met Ile Trp Asp Cys 85 90 95

Thr Cys Ile Gly Ala Gly Arg Gly Arg Ile Ser Cys Thr Ile Ala Asn $100 \hspace{1cm} 105 \hspace{1cm} 105$

Arg Cys His Glu Gly Gly Gln Ser Tyr Lys Ile Gly Asp Thr Trp Arg 115 120 125

Arg Pro His Glu Thr Gly Gly Tyr Met Leu Glu Cys Val Cys Leu Gly 130 135 140

Asn Gly Lys Gly Glu Trp Thr Cys Lys Pro Ile Ala Glu Lys Cys Phe 145 150 150 160

Asp His Ala Ala Gly Thr Ser Tyr Val Val Gly Glu Thr Trp Glu Lys 165 170 175

Pro Tyr Gln Gly Trp Met Met Val Asp Cys Thr Cys Leu Gly Glu Gly 180 185 190

Ser Gly Arg Ile Thr Cys Thr Ser Arg Asn Arg Cys Asn Asp Gln Asp 195 200 205 Thr Arg Thr Ser Tyr Arg Ile Gly Asp Thr Trp Ser Lys Lys Asp Asn 210 215 220 Arg Gly Asn Leu Leu Gln Cys Ile Cys Thr Gly Asn Gly Arg Gly 225 230 235 240 Trp Lys Cys Glu Arg His Thr Ser Val Gln Thr Thr Ser Ser Gly Ser 245 250 255 Gly Pro Phe Thr Asp Val Arg Ala Ala Val Tyr Gln Pro Gln Pro His $260 \hspace{1.5cm} 265 \hspace{1.5cm} 270 \hspace{1.5cm}$ Pro Gln Pro Pro Pro Tyr Gly His Cys Val Thr Asp Ser Gly Val Val 275 280 285 Tyr Ser Val Gly Met Gln Trp Leu Lys Thr Gln Gly Asn Lys Gln Met 290 295 300 Leu Cys Thr Cys Leu Gly Asn Gly Val Ser Cys Gln Glu Thr Ala Val 305 310 315 320 Thr Gln Thr Tyr Gly Gly Asn Leu Asn Gly Glu Pro Cys Val Leu Pro 325 330 335 Phe Thr Tyr Asn Gly Arg Thr Phe Tyr Ser Cys Thr Thr Glu Gly Arg 340 345 350Gln Asp Gly His Leu Trp Cys Ser Thr Thr Ser Asn Tyr Glu Gln Asp $355 \hspace{1cm} 360 \hspace{1cm} 365$ Gln Lys Tyr Ser Phe Cys Thr Asp His Thr Val Leu Val Gln Thr Gln 370 \$375\$Gly Gly Asn Ser Asn Gly Ala Leu Cys His Phe Pro Phe Leu Tyr Asn 385 390 395 400 Asn His Asn Tyr Thr Asp Cys Thr Ser Glu Gly Arg Arg Asp Asn Met $405 \hspace{1.5cm} 410 \hspace{1.5cm} 415$ Lys Trp Cys Gly Thr Thr Gln Asn Tyr Asp Ala Asp Gln Lys Phe Gly 420 425 430Phe Cys Pro Met Ala Ala His Glu Glu Ile Cys Thr Thr Asn Glu Gly 435 440 445 Val Met Tyr Arg Ile Gly Asp Gln Trp Asp Lys Gln His Asp Met Gly 450 460 His Met Met Arg Cys Thr Cys Val Gly Asn Gly Arg Gly Glu Trp Thr 465 470 475 480 Cys Ile Ala Tyr Ser Gln Leu Arg Asp Gln Cys Ile Val Asp Asp Ile 485 490 495 Thr Tyr Asn Val Asn Asp Thr Phe His Lys Arg His Glu Glu Gly His

Page 313

500 505 510

Met Leu Asn Cys Thr Cys Phe Gly Gln Gly Arg Gly Arg Trp Lys Cys 515 520 525

Asp Pro Val Asp Gln Cys Gln Asp Ser Glu Thr Gly Thr Phe Tyr Gln 530 535 540

Ile Gly Asp Ser Trp Glu Lys Tyr Val His Gly Val Arg Tyr Gln Cys 545 550 555 560

Tyr Cys Tyr Gly Arg Gly Ile Gly Glu Trp His Cys Gln Pro Leu Gln 565 570 575

Thr Tyr Pro Ser Ser Ser Gly Pro Val Glu Val Phe Ile Thr Glu Thr 580 585 590

Pro Ser Gln Pro Asn Ser His Pro Ile Gln Trp Asn Ala Pro Gln Pro 595 600 605

Ser His Ile Ser Lys Tyr Ile Leu Arg Trp Arg Pro Lys Asn Ser Val 610 615 620

Gly Arg Trp Lys Glu Ala Thr Ile Pro Gly His Leu Asn Ser Tyr Thr 625 $\,$ 630 $\,$ 635 $\,$ 640

Ile Lys Gly Leu Lys Pro Gly Val Val Tyr Glu Gly Gln Leu Ile Ser 645 650 655

Ile Gln Gln Tyr Gly His Gln Glu Val Thr Arg Phe Asp Phe Thr Thr $660 \hspace{1.5cm} 665 \hspace{1.5cm} 670$

Thr Ser Thr Ser Thr Pro Val Thr Ser Asn Thr Val Thr Gly Glu Thr 675 $\,$ 680 $\,$ 685

Thr Pro Phe Ser Pro Leu Val Ala Thr Ser Glu Ser Val Thr Glu Ile 690 695 700

Thr Ala Ser Ser Phe Val Val Ser Trp Val Ser Ala Ser Asp Thr Val 705 710 715 720

Ser Gly Phe Arg Val Glu Tyr Glu Leu Ser Glu Glu Gly Asp Glu Pro $725 \hspace{1cm} 730 \hspace{1cm} 735$

Gln Tyr Leu Asp Leu Pro Ser Thr Ala Thr Ser Val Asn Ile Pro Asp $740 \hspace{1.5cm} 745 \hspace{1.5cm} 750$

Leu Leu Pro Gly Arg Lys Tyr Ile Val Asn Val Tyr Gln Ile Ser Glu $755 \hspace{1.5cm} 760 \hspace{1.5cm} 765$

Asp Gly Glu Gln Ser Leu Ile Leu Ser Thr Ser Gln Thr Thr Ala Pro 770 780

Asp Ala Pro Pro Asp Pro Thr Val Asp Gln Val Asp Asp Thr Ser Ile 785 790 795 800

Val Val Arg Trp Ser Arg Pro Gln Ala Pro Ile Thr Gly Tyr Arg Ile 805 810 815

Val Tyr Ser Pro Ser Val Glu Gly Ser Ser Thr Glu Leu Asn Leu Pro 820 825 830

Glu Thr Ala Asn Ser Val Thr Leu Ser Asp Leu Gln Pro Gly Val Gln 835 840 845

Tyr Asn Ile Thr Ile Tyr Ala Val Glu Glu Asn Gln Glu Ser Thr Pro 850 860

Val Val Ile Gln Gln Glu Thr Thr Gly Thr Pro Arg Ser Asp Thr Val 865 870 875 880

Pro Ser Pro Arg Asp Leu Gln Phe Val Glu Val Thr Asp Val Lys Val 885 890 895

Thr Ile Met Trp Thr Pro Pro Glu Ser Ala Val Thr Gly Tyr Arg Val 900 905 910

Asp Val Ile Pro Val Asn Leu Pro Gly Glu His Gly Gln Arg Leu Pro 915 920 925

Ile Ser Arg Asn Thr Phe Ala Glu Val Thr Gly Leu Ser Pro Gly Val 930 935 940

Thr Tyr Tyr Phe Lys Val Phe Ala Val Ser His Gly Arg Glu Ser Lys 945 950 955 960

Pro Leu Thr Ala Gln Gln Thr Thr Lys Leu Asp Ala Pro Thr Asn Leu 965 970 975

Gln Phe Val Asn Glu Thr Asp Ser Thr Val Leu Val Arg Trp Thr Pro 980 985 990

Pro Arg Ala Gln Ile Thr Gly Tyr Arg Leu Thr Val Gly Leu Thr Arg 995 1000 1005

Arg Gly Gln Pro Arg Gln Tyr Asn Val Gly Pro Ser Val Ser Lys 1010 1015 1020

Tyr Pro Leu Arg Asn Leu Gln Pro Ala Ser Glu Tyr Thr Val Ser 1025 1030 1035

Leu Val Ala Ile Lys Gly Asn Gln Glu Ser Pro Lys Ala Thr Gly 1040 1045

Val Phe Thr Thr Leu Gln Pro Gly Ser Ser Ile Pro Pro Tyr Asn 1055 1060 1065

Pro Arg Ile Gly Phe Lys Leu Gly Val Arg Pro Ser Gln Gly Gly 1085 1090 1095

Glu Ala Pro Arg Glu Val Thr Ser Asp Ser Gly Ser Ile Val Val 1100 $$1105\$

Ser Gly Leu Thr Pro Gly Val Glu Tyr Val Tyr Thr Ile Gln Val 1115 1120 1125

Leu Arg Asp Gly Gln Glu Arg Asp Ala Pro Ile Val Asn Lys Val 1130 1140

Val Thr Pro Leu Ser Pro Pro Thr Asn Leu His Leu Glu Ala Asn 1145 1150 1155

Pro Asp Thr Gly Val Leu Thr Val Ser Trp Glu Arg Ser Thr Thr 1160 $\,$ 1170

Pro Asp Ile Thr Gly Tyr Arg Ile Thr Thr Thr Pro Thr Asn Gly 1175 1180 1185

Gln Gln Gly Asn Ser Leu Glu Glu Val Val His Ala Asp Gln Ser 1190 . 1195 1200

Ser Cys Thr Phe Asp Asn Leu Ser Pro Gly Leu Glu Tyr Asn Val 1205 1210 1215

Ser Val Tyr Thr Val Lys Asp Asp Lys Glu Ser Val Pro Ile Ser 1220 1225

Asp Thr Ile Ile Pro Ala Val Pro Pro Pro Thr Asp Leu Arg Phe 1235 1240 1245

Thr Asn Ile Gly Pro Asp Thr Met Arg Val Thr Trp Ala Pro Pro 1250 1260

Pro Ser Ile Asp Leu Thr Asn Phe Leu Val Arg Tyr Ser Pro Val 1265 1270 1275

Lys Asn Glu Glu Asp Val Ala Glu Leu Ser Ile Ser Pro Ser Asp 1280 1285 1290

Asn Ala Val Val Leu Thr Asn Leu Leu Pro Gly Thr Glu Tyr Val 1295 1300 1305

Val Ser Val Ser Ser Val Tyr Glu Gln His Glu Ser Thr Pro Leu 1310 1315 1320

Arg Gly Arg Gln Lys Thr Gly Leu Asp Ser Pro Thr Gly Ile Asp 1325 1330 1335

Phe Ser Asp Ile Thr Ala Asn Ser Phe Thr Val His Trp Ile Ala 1340 1345 1350

Pro Arg Ala Thr Ile Thr Gly Tyr Arg Ile Arg His His Pro Glu 1355 1360 1365

His Phe Ser Gly Arg Pro Arg Glu Asp Arg Val Pro His Ser Arg 1370 1375 1380

Asn Ser Ile Thr Leu Thr Asn Leu Thr Pro Gly Thr Glu Tyr Val 1385 1390 1395

Val Ser Ile Val Ala Leu Asn Gly Arg Glu Glu Ser Pro Leu Leu 1400 1405 1410

Ile Gly Gln Gln Ser Thr Val Ser Asp Val Pro Arg Asp Leu Glu 1415 1420 1425

Val Val 7	Ala Al	a Thr	Pro	Thr 1435	Ser	Leu	Leu	Ile	Ser 1440	Trp	Asp	Ala
Pro Ala 1445	Val Th	r Val		Tyr 1450		Arg	Ile	Thr	Tyr 1455	Gly	Glu	Thr
Gly Gly 1	Asn Se	r Pro		Gln 1465		Phe	Thr		Pro 1470	Gly	Ser	Lys
Ser Thr 1 1475	Ala Th	r Ile	Ser	Gly 1480	Leu	Lys	Pro	Gly	Val 1485	Asp	Туr	Thr
Ile Thr 1	Val Ty	r Ala		Thr 1495		Arg	Gly		Ser 1500	Pro	Ala	Ser
Ser Lys 1505	Pro Il	e Ser	Ile	Asn 1510		Arg	Thr	Glu	Ile 1515	Asp	Lys	Pro
Ser Gln I 1520	Met Gl	n Val		Asp 1525		Gln	Asp		Ser 1530	Ile	Ser	Val
Lys Trp 1	Leu Pr	o Ser	Ser	Ser 1540	Pro	Val	Thr	Gly	Туг 1545	Arg	Val	Thr
Thr Thr 1550	Pro Ly	s Asn	Gly	Pro 1555		Pro	Thr	Lys	Thr 1560		Thr	Ala
Gly Pro 1565	Asp Gl	n Thr		Met 1570	Thr	Ile	Glu	Gly	Leu 1575	Gln	Pro	Thr
Val Glu 1 1580	Tyr Va	l Val	Ser	Val 1585		Ala	Gln	Asn	Pro 1590	Ser	Gly	Glu
Ser Gln 1595	Pro Le	u Val	Gln	Thr 1600		Val	Thr	Asn	Ile 1605	Asp	Arg	Pro
Lys Gly 1	Leu Al	a Phe	Thr	Asp 1615	Val	Asp	Val		Ser 1620		Lys	Ile
Ala Trp 1625	Glu Se	r Pro	Gln	Gly 1630		Val	Ser	Arg	Tyr 1635	Arg	Val	Thr
Tyr Ser 1640	Ser Pr	o Glu	Asp	Gly 1645	Ile	His	Glu	Leu	Phe 1650		Ala	Pro
Asp Gly (Glu Gl	u Asp	Thr	Ala 1660	Glu	Leu	Gln	Gly	Leu 1665	Arg	Pro	Gly
Ser Glu ' 1670	Tyr Th	r Val	Ser	Val 1675		Ala	Leu	His	Asp 1680	Asp	Met	Glu
Ser Gln 1 1685	Pro Le	u Ile	Gly	Thr 1690	Gln	Ser	Thr	Ala	Ile 1695	Pro	Ala	Pro
Thr Asp 1 1700	Leu Ly	s Phe	Thr	Gln 1705		Thr	Pro	Thr	Ser 1710	Leu	Ser	Ala
Gln Trp	Thr Pr	o Pro	Asn	Val	Gln	Leu	Thr	-	Tyr ge 31	-	Val	Arg

1715 1720 1725

Val Thr Pro Lys Glu Lys Thr Gly Pro Met Lys Glu Ile Asn Leu 1730 1740

Ala Pro Asp Ser Ser Ser Val Val Val Ser Gly Leu Met Val Ala 1745 1750 1755

Thr Lys Tyr Glu Val Ser Val Tyr Ala Leu Lys Asp Thr Leu Thr 1760 1765

Ser Arg Pro Ala Gln Gly Val Val Thr Thr Leu Glu Asn Val Ser 1775 1780 1785

Pro Pro Arg Arg Ala Arg Val Thr Asp Ala Thr Glu Thr Thr Ile 1790 1795 1800

Thr Ile Ser Trp Arg Thr Lys Thr Glu Thr Ile Thr Gly Phe Gln 1805 1810 1815

Val Asp Ala Val Pro Ala Asn Gly Gln Thr Pro Ile Gln Arg Thr 1820 1830

Ile Lys Pro Asp Val Arg Ser Tyr Thr Ile Thr Gly Leu Gln Pro 1835 $$ 1840 .

Gly Thr Asp Tyr Lys Ile Tyr Leu Tyr Thr Leu Asn Asp Asn Ala 1850 1860

Arg Ser Ser Pro Val Val Ile Asp Ala Ser Thr Ala Ile Asp Ala 1865 1870 1875

Pro Ser Asn Leu Arg Phe Leu Ala Thr Thr Pro Asn Ser Leu Leu 1880 1885

Val Ser Trp Gln Pro Pro Arg Ala Arg Ile Thr Gly Tyr Ile Ile 1895 1900 1905

Lys Tyr Glu Lys Pro Gly Ser Pro Pro Arg Glu Val Val Pro Arg 1910 1915 1920

Pro Arg Pro Gly Val Thr Glu Ala Thr Ile Thr Gly Leu Glu Pro 1925 1930 1935

Gly Thr Glu Tyr Thr Ile Tyr Val Ile Ala Leu Lys Asn Asn Gln 1940 1950

Lys Ser Glu Pro Leu Ile Gly Arg Lys Lys Thr Asp Glu Leu Pro 1955 1960 1965

Gln Leu Val Thr Leu Pro His Pro Asn Leu His Gly Pro Glu Ile 1970 1975 1980

Leu Asp Val Pro Ser Thr Val Gln Lys Thr Pro Phe Val Thr His 1985 1995

Pro Gly Tyr Asp Thr Gly Asn Gly Ile Gln Leu Pro Gly Thr Ser 2000 2005 2010

Gly	Gln 2015	Gln	Pro	Ser	Val	Gly 2020	Gln	Gln	Met		rne 2025	GIU	GIU	Hls
Gly	Phe 2030	Arg	Arg	Thr	Thr	Pro 2035	Pro	Thr	Thr	Ala	Thr 2040	Pro	Ile	Arg
His	Arg 2045	Pro	Arg	Pro	Tyr	Pro 2050	Pro	Asn	Val		Gln 2055	Glu	Ala	Leu
Ser	Gln 2060	Thr	Thr	Ile	Ser	Trp 2065	Ala	Pro	Phe		Asp 2070	Thr	Ser	Glu
Tyr	Ile 2075	Ile	Ser	Cys	His	Pro 2080	Val	Gly	Thr		Glu 2085	Glu	Pro	Leu
Gln	Phe 2090	Arg	Val	Pro	Gly	Thr 2095	Ser	Thr	Ser		Thr 2100	Leu	Thr	Gly
Leu	Thr 2105	Arg	Gly	Ala	Thr	туг 2110	Asn	Ile	Ile	Val	Glu 2115	Ala	Leu	Lys
Asp	Gln 2120	Gln	Arg	His	Lys	Val 2125	Arg	Glu	Glu		Val 2130	Thr	Val	Gly
Asn	Ser 2135	Val	Asn	Glu	Gly	Leu 2140	Asn	Gln	Pro	Thr	Asp 2145	Asp	Ser	Cys
Phe	Asp 2150		Tyr	Thr	Val	Ser 2155	His	туг	Ala	Val	Gly 2160	Asp	Glu	Trp
Glu	Arg 2165		Ser	Glu	Ser	Gly 2170		Lys	Leu		Cys 2175	Gln	Cys	Leu
Gly	Phe 2180	Gly	Ser	Gly	His	Phe 2185	Arg	Cys	Asp	Ser	Ser 2190	Arg	Trp	Cys
His	Asp 2195		Gly	Val	Asn	Tyr 2200		Ile	Gly	Glu	Lys 2205	Trp	Asp	Arg
Gln	Gly 2210	Glu	Asn	Gly	Gln	Met 2215	Met	Ser	Cys	Thr	Cys 2220	Leu	Gly	Asn
Gly	Lys 2225	Gly	Glu	Phe	Lys	Cys 2230	Asp	Pro	His	Glu	Ala 2235	Thr	Cys	Tyr
Asp	Asp 2240	Gly	Lys	Thr	Tyr	His 2245	Val	Gly	Glu	Gln	Trp 2250	Gln	Lys	Glu
Tyr	Leu 2255	Gly	Ala	Ile	Cys	Ser 2260		Thr	Суз	Phe	Gly 2265	Gly	Gln	Arg
Gly	Trp 2270	Arg	Cys	Asp	Asn	Cys 2275	Arg	Arg	Pro	Gly	Gly 2280	Glu	Pro	Ser
Pro	Glu 2285	Gly	Thr	Thr	Gly	Gln 2290		Tyr	Asn	Gln	Tyr 2295	Ser	Gln	Arg
Tyr	His 2300	Gln	Arg	Thr	Asn	Thr 2305	Asn	Val	Asn	Cys	Pro 2310	Ile	Glu	Cys

Phe Met Pro Leu Asp Val Gln Ala Asp Arg Glu Asp Ser Arg Glu 2315 2320 2325

<210> 197

<211> 165 <212> PRT

<213> Homo sapiens

<400> 197

Met Leu Met Pro Lys Lys Asn Arg Ile Ala Ile Tyr Glu Leu Leu Phe 1 $$ 5 $$ 10 $$ 15

Lys Glu Gly Val Met Val Ala Lys Lys Asp Val His Met Pro Lys His 20 25 30

Pro Glu Leu Ala Asp Lys Asn Val Pro Asn Leu His Val Met Lys Ala 35 40 45

Met Gln Ser Leu Lys Ser Arg Gly Tyr Val Lys Glu Gln Phe Ala Trp 50 55 60

Arg His Phe Tyr Trp Tyr Leu Thr Asn Glu Gly Ile Gln Tyr Leu Arg 65 70 75 80

Asp Tyr Leu His Leu Pro Pro Glu Ile Val Pro Ala Thr Leu Arg Arg 85 90 95

Ser Arg Pro Glu Thr Gly Arg Pro Arg Pro Lys Gly Leu Glu Glu Glu 100 \$105\$

Arg Pro Ala Arg Leu Thr Arg Gly Glu Ala Asp Arg Asp Thr Tyr Arg 115 120 125

Arg Ser Ala Val Pro Pro Gly Ala Asp Lys Lys Ala Glu Ala Gly Ala 130 135 140

Gly Ser Ala Thr Glu Phe Gln Phe Arg Gly Gly Phe Gly Arg Gly Arg 145 150 155 160

Gly Gln Pro Pro Gln 165

<210> 198

<211> 154 <212> PRT

<213> Homo sapiens

<400> 198

Met Ala Thr Lys Ala Val Cys Val Leu Lys Gly Asp Gly Pro Val Gln 1 $$ 10 $$ 15

Gly Ile Ile Asn Phe Glu Gln Lys Glu Ser Asn Gly Pro Val Lys Val $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$

Trp Gly Ser Ile Lys Gly Leu Thr Glu Gly Leu His Gly Phe His Val $35 \hspace{1cm} 40 \hspace{1cm} 45$

His Glu Phe Gly Asp Asn Thr Ala Gly Cys Thr Ser Ala Gly Pro His 50 60

Phe Asn Pro Leu Ser Arg Lys His Gly Gry Pro Lys Asp Gru Gru Arg 65 70 75 80

His Val Gly Asp Leu Gly Asn Val Thr Ala Asp Lys Asp Gly Val Ala 85 90 95

Asp Val Ser Ile Glu Asp Ser Val Ile Ser Leu Ser Gly Asp His Cys 100 ' 105 110

Ile Ile Gly Arg Thr Leu Val Val His Glu Lys Ala Asp Asp Leu Gly 115 120 125

Lys Gly Gly Asn Glu Glu Ser Thr Lys Thr Gly Asn Ala Gly Ser Arg 130 135 140

Leu Ala Cys Gly Val Ile Gly Ile Ala Gln 145

<210> 199

<211> 3256

<212> PRT

<213> Homo sapiens

<400> 199

Met Trp Pro Thr Arg Arg Leu Val Thr Ile Lys Arg Ser Gly Val Asp 1 $$ 5 $$ 10 $$ 15

Gly Pro His Phe Pro Leu Ser Leu Ser Thr Cys Leu Phe Gly Arg Gly 20 25 30

Ile Glu Cys Asp Ile Arg Ile Gln Leu Pro Val Val Ser Lys Gln His $35 \hspace{1cm} 40 \hspace{1cm} 45$

Ser Thr Asn Pro Thr Gln Val Asn Gly Ser Val Ile Asp Glu Pro Val 65 70 75 80

Arg Leu Lys His Gly Asp Val Ile Thr Ile Ile Asp Arg Ser Phe Arg 85 90 95

Tyr Glu Asn Glu Ser Leu Gln Asn Gly Arg Lys Ser Thr Glu Phe Pro $100\,$

Arg Lys Ile Arg Glu Gln Glu Pro Ala Arg Arg Val Ser Arg Ser Ser 115 120 125

Phe Ser Ser Asp Pro Asp Glu Lys Ala Gln Asp Ser Lys Ala Tyr Ser 130 135 140

Lys Ile Thr Glu Gly Lys Val Ser Gly Asn Pro Gln Val His Ile Lys 145 150 150 160

Asn Val Lys Glu Asp Ser Thr Ala Asp Asp Ser Lys Asp Ser Val Ala 165 170 175

Gln Gly Thr Thr Asn Val His Ser Ser Glu His Ala Gly Arg Asn Gly 180 185 190

Arg Asn Ala Ala Asp Pro Ile Ser Gly Asp rne Lys Giu ile ser ser 195 200 205

Val Lys Leu Val Ser Arg Tyr Gly Glu Leu Lys Ser Val Pro Thr Thr 210 215 220

Gln Cys Leu Asp Asn Ser Lys Lys Asn Glu Ser Pro Phe Trp Lys Leu 225 230 235 240

Tyr Glu Ser Val Lys Lys Glu Leu Asp Val Lys Ser Gln Lys Glu Asn 245 250 255

Val Leu Gln Tyr Cys Arg Lys Ser Gly Leu Gln Thr Asp Tyr Ala Thr 260 265 270

Glu Lys Glu Ser Ala Asp Gly Leu Gln Gly Glu Thr Gln Leu Leu Val $275 \hspace{1.5cm} 280 \hspace{1.5cm} 285$

Ser Arg Lys Ser Arg Pro Lys Ser Gly Gly Ser Gly His Ala Val Ala 290 295 300

Glu Pro Ala Ser Pro Glu Glu Glu Leu Asp Gln Asn Lys Gly Lys Gly 305 310 315 320

Arg Asp Val Glu Ser Val Gln Thr Pro Ser Lys Ala Val Gly Ala Ser 325 330

Phe Pro Leu Tyr Glu Pro Ala Lys Met Lys Thr Pro Val Gln Tyr Ser $340 \hspace{1.5cm} 345 \hspace{1.5cm} 350 \hspace{1.5cm}$

Gln Gln Gln Asn Ser Pro Gln Lys His Lys Asn Lys Asp Leu Tyr Thr $355 \ \ 360 \ \ \ 365$

Thr Gly Arg Arg Glu Ser Val Asn Leu Gly Lys Ser Glu Gly Phe Lys 370 380

Ala Gly Asp Lys Thr Leu Thr Pro Arg Lys Leu Ser Thr Arg Asn Arg 385 390 395 400

Thr Pro Ala Lys Val Glu Asp Ala Ala Asp Ser Ala Thr Lys Pro Glu $405 \hspace{0.25cm} 410 \hspace{0.25cm} 410 \hspace{0.25cm} 415 \hspace{0.25cm}$

Asn Leu Ser Ser Lys Thr Arg Gly Ser Ile Pro Thr Asp Val Glu Val 420 425 430

Leu Pro Thr Glu Thr Glu Ile His Asn Glu Pro Phe Leu Thr Leu Trp 435 440

Leu Thr Gln Val Glu Arg Lys Ile Gln Lys Asp Ser Leu Ser Lys Pro 450 455 460

Glu Lys Leu Gly Thr Thr Ala Gly Gln Met Cys Ser Gly Leu Pro Gly 465 470 475 480

Leu Ser Ser Val Asp Ile Asn Asn Phe Gly Asp Ser Ile Asn Glu Ser 485 490 495

Glu Gly Ile Pro Leu Lys Arg Arg Arg Val Ser Phe Gly Gly His Leu 500 505 510

Arg Pro Glu Leu Phe Asp Glu Asn Leu Pro Pro Asn Thr Pro Leu Lys 515 525

Arg Gly Glu Ala Pro Thr Lys Arg Lys Ser Leu Val Met His Thr Pro 530 540

Pro Val Leu Lys Lys Ile Ile Lys Glu Gln Pro Gln Pro Ser Gly Lys 545 550 550 560

Gln Glu Ser Gly Ser Glu Ile His Val Glu Val Lys Ala Gln Ser Leu 565 570 575

Asp Gln Arg Arg Ser Ser Cys Lys Thr Ala Pro Ala Ser Ser Ser Lys 595 600 605

Ser Gln Thr Glu Val Pro Lys Arg Gly Glu Glu Arg Val Ala Thr Cys 610 620

Leu Gln Lys Arg Val Ser Ile Ser Arg Ser Gln His Asp Ile Leu Gln 625 630 635 640

Met Ile Cys Ser Lys Arg Arg Ser Gly Ala Ser Glu Ala Asn Leu Ile 645 650 655

Val Ala Lys Ser Trp Ala Asp Val Val Lys Leu Gly Ala Lys Gln Thr $660 \hspace{1.5cm} 665 \hspace{1.5cm} 670$

Gln Thr Lys Val Ile Lys His Gly Pro Gln Arg Ser Met Asn Lys Arg 675 680 685

Gln Arg Arg Pro Ala Thr Pro Lys Lys Pro Val Gly Glu Val His Ser 690 695 700

Gln Phe Ser Thr Gly His Ala Asn Ser Pro Cys Thr Ile Ile Ile Gly 705 710 715 720

Lys Ala His Thr Glu Lys Val His Val Pro Ala Arg Pro Tyr Arg Val 725 730 735

Leu Asn Asn Phe Ile Ser Asn Gln Lys Met Asp Phe Lys Glu Asp Leu 740 745 750

Ser Gly Ile Ala Glu Met Phe Lys Thr Pro Val Lys Glu Gln Pro Gln 755 760 765

Leu Thr Ser Thr Cys His Ile Ala Ile Ser Asn Ser Glu Asn Leu Leu 770 780

Gly Lys Gln Phe Gln Gly Thr Asp Ser Gly Glu Glu Pro Leu Leu Pro 785 790 795 800

Thr Ser Glu Ser Phe Gly Gly Asn Val Phe Phe Ser Ala Gln Asn Ala $805 \circ$ 810 815

Ala Lys Gln Pro Ser Asp Lys Cys Ser Ala Ser Pro Pro Leu Arg Arg 820 825 830

Gln Cys Ile Arg Glu Asn Gly Asn Val Ala Lys Thr Pro Arg Asn Thr 835 840 845

Tyr Lys Met Thr Ser Leu Glu Thr Lys Thr Ser Asp Thr Glu Thr Glu 850 860

Pro Ser Lys Thr Val Ser Thr Val Asn Arg Ser Gly Arg Ser Thr Glu 865 870 880

Phe Arg Asn Ile Gln Lys Leu Pro Val Glu Ser Lys Ser Glu Glu Thr 885 890 895

As nThr Glu Ile Val Glu Cys Ile Leu Lys Arg Gly Gln Lys Ala Thr 900 905 910

Leu Leu Gln Gln Arg Arg Glu Gly Glu Met Lys Glu Ile Glu Arg Pro $915 \hspace{1.5cm} 920 \hspace{1.5cm} 925$

Phe Glu Thr Tyr Lys Glu Asn Ile Glu Leu Lys Glu Asn Asp Glu Lys 930 935 940

Met Lys Ala Met Lys Arg Ser Arg Thr Trp Gly Gln Lys Cys Ala Pro 945 950 955 960

Met Ser Asp Leu Thr Asp Leu Lys Ser Leu Pro Asp Thr Glu Leu Met 965 970 975

Lys Asp Thr Ala Arg Gly Gln Asn Leu Leu Gln Thr Gln Asp His Ala $980 \hspace{1.5cm} 990 \hspace{1.5cm} 995$

Lys Ala Pro Lys Ser Glu Lys Gly Lys Ile Thr Lys Met Pro Cys Gln 995 1000 1005

Ser Leu Gln Pro Glu Pro Ile Asn Thr Pro Thr His Thr Lys Gln 1010 1015 1020

Gln Leu Lys Ala Ser Leu Gly Lys Val Gly Val Lys Glu Glu Leu 1025 1030 1035

Leu Ala Val Gly Lys Phe Thr Arg Thr Ser Gly Glu Thr Thr His 1040 1045 1050

Thr His Arg Glu Pro Ala Gly Asp Gly Lys Ser Ile Arg Thr Phe $1055 \hspace{1.5cm} 1060 \hspace{1.5cm} 1065$

Lys Glu Ser Pro Lys Gln Ile Leu Asp Pro Ala Ala Arg Val Thr 1070 1075 1080

Gly Met Lys Lys Trp Pro Arg Thr Pro Lys Glu Glu Ala Gln Ser 1085 1090 1095

Leu Glu Asp Leu Ala Gly Phe Lys Glu Leu Phe Gln Thr Pro Gly 1100 \$1100\$

Pro Ser Glu Glu Ser Met Thr Asp Glu Lys Thr Thr Lys Ile Ala 1115 1120 1125

Cys Lys Ser Pro Pro Pro Glu Ser Val Asp Thr Pro Thr Ser Thr

1130 1135 1140

Lys Gln Trp Pro Lys Arg Ser Leu Arg Lys Ala Asp Val Glu Glu 1145 1150 1155

Glu Phe Leu Ala Leu Arg Lys Leu Thr Pro Ser Ala Gly Lys Ala 1160 1165 1170

Met Leu Thr Pro Lys Pro Ala Gly Gly Asp Glu Lys Asp Ile Lys 1175 1180 1185

Ala Phe Met Gly Thr Pro Val Gln Lys Leu Asp Leu Ala Gly Thr 1190 1195 1200

Leu Pro Gly Ser Lys Arg Gln Leu Gln Thr Pro Lys Glu Lys Ala 1205 1210 1215

Gln Ala Leu Glu Asp Leu Ala Gly Phe Lys Glu Leu Phe Gln Thr 1220 1225 1230

Pro Gly His Thr Glu Glu Leu Val Ala Ala Gly Lys Thr Thr Lys 1235 1240 1245

Ile Pro Cys Asp Ser Pro Gln Ser Asp Pro Val Asp Thr Pro Thr 1250 1260

Ser Thr Lys Gln Arg Pro Lys Arg Ser Ile Arg Lys Ala Asp Val 1265 1270 1275

Glu Gly Glu Leu Leu Ala Cys Arg Asn Leu Met Pro Ser Ala Gly 1280 1285 1290

Ile Ile Ile Phe Val Gly Thr Pro Val Gln Lys Leu Asp Leu Thr 1310 \$1315\$

Glu Asn Leu Thr Gly Ser Lys Arg Arg Pro Gln Thr Pro Lys Glu 1325 1330 1335

Glu Ala Gln Ala Leu Glu Asp Leu Thr Gly Phe Lys Glu Leu Phe 1340 1350

Gln Thr Pro Gly His Thr Glu Glu Ala Val Ala Ala Gly Lys Thr 1355 1360 1365

Thr Lys Met Pro Cys Glu Ser Ser Pro Pro Glu Ser Ala Asp Thr 1370 1375 1380

Pro Thr Ser Thr Arg Arg Gln Pro Lys Thr Pro Leu Glu Lys Arg 1385 1390 1395

Asp Val Gln Lys Glu Leu Ser Ala Leu Lys Lys Leu Thr Gln Thr 1400 1405 1410

Ser Gly Glu Thr Thr His Thr Asp Lys Val Pro Gly Gly Glu Asp 1415 1420 1425

Lys	Ser 1430		Asn	Ala	Phe	Arg 1435		Thr	Ala	гуз	G1N 1440	гуя	ьeu	Asp
Pro	Ala 1445	Ala	Ser	Val	Thr	Gly 1450		Lys	Arg	His	Pro 1455		Thr	Lys
Glu	Lys 1460	Ala	Gln	Pro	Leu	Glu 1465	Asp	Leu	Ala	Gly	Trp 1470	Lys	Glu	Leu
Phe	Gln 1475	Thr	Pro	Val	Cys	Thr 1480		Lys	Pro	Thr	Thr 1485	His	Glu	Lys
Thr	Thr 1490	Lys	Ile	Ala	Cys	Arg 1495	Ser	Gln	Pro	Asp	Pro 1500	Val	Asp	Thr
Pro	Thr 1505	Ser	Ser	Lys	Pro	Gln 1510		Lys	Arg		Leu 1515	Arg	Lys	Val
Asp	Val 1520	Glu	Glu	Glu	Phe	Phe 1525	Ala	Leu	Arg		Arg 1530		Pro	Ser
Ala	Gly 1535		Ala	Met	His	Thr 1540		Lys	Pro		Val 1545		Gly	Glu
Lys	Asn 1550	Ile	Tyr	Ala	Phe	Met 1555		Thr	Pro	Val	Gln 1560	Lys	Leu	Asp
Leu	Thr 1565	Glu	Asn	Leu	Thr	Gly 1570		Lys	Arg	Arg	Leu 1575	Gln	Thr	Pro
Lys	Glu 1580		Ala	Gln		Leu 1585		Asp	Leu	Ala	Gly 1590		Lys	Glu
Leu	Phe 1595	Gln	Thr	Arg	Gly	Ніs 1600		Glu	Glu	Ser	Met 1605	Thr	Asn	Asp
Lys	Thr 1610	Ala	Lys	Val		Cys 1615		Ser	Ser	Gln	Pro 1620	Asp	Leu	Asp
Lys	Asn 1625	Pro	Ala	Ser	Ser	Lys 1630	Arg	Arg	Leu	Lys	Thr 1635	Ser	Leu	Gly
Lys	Val 1640	Gly	Val	Lys	Glu	Glu 1645	Leu	Leu	Ala	Val	Gly 1650	Lys	Leu	Thr
Gln	Thr 1655	Ser	Gly	Glu	Thr	Thr 1660	His	Thr	His	Thr	Glu 1665	Pro	Thr	Gly
Asp	Gly 1670	Lys	Ser	Met	Lys	Ala 1675	Phe	Met	Glu	Ser	Pro 1680	Lys	Gln	Ile
Leu	Asp 1685	Ser	Ala	Ala	Ser	Leu 1690	Thr	Gly	Ser	Lys	Arg 1695	Gln	Leu	Arg
Thr	Pro 1700	Lys	Gly	Lys	Ser	Glu 1705	Val	Pro	Glu	Asp	Leu 1710	Ala	Gly	Phe
Ile	Glu 1715	Leu	Phe	Gln	Thr	Pro 1720	Ser	His	Thr	Lys	Glu 1725	Ser	Met	Thr

Asn Glu Lys Thr Thr Lys Val Ser Tyr Arg Ala Ser Gln Pro Asp 1730 1735 1740

Leu Val Asp Thr Pro Thr Ser Ser Lys Pro Gln Pro Lys Arg Ser 1745 1750 1755

Leu Arg Lys Ala Asp Thr Glu Glu Glu Phe Leu Ala Phe Arg Lys 1760 1765 1770

Gln Thr Pro Ser Ala Gly Lys Ala Met His Thr Pro Lys Pro Ala 1775 1780 1785

Val Gly Glu Glu Lys Asp Ile Asn Thr Phe Leu Gly Thr Pro Val 1790 1800

Gln Lys Leu Asp Gln Pro Gly Asn Leu Pro Gly Ser Asn Arg Arg 1805 1810 1815

Leu Gln Thr Arg Lys Glu Lys Ala Gln Ala Leu Glu Glu Leu Thr 1820 1830

Ala Asp Glu Lys Thr Thr Lys Lys Ile Leu Cys Lys Ser Pro Gln 1850 1860

Arg Ser Leu Lys Lys Ala Asp Val Glu Glu Glu Phe Leu Ala Phe 1880 1885

Arg Lys Leu Thr Pro Ser Ala Gly Lys Ala Met His Thr Pro Lys $1895 \ \ \, 1900 \ \ \, 1905$

Ala Ala Val Gly Glu Glu Lys Asp Ile Asn Thr Phe Val Gly Thr 1910 1915 1920

Pro Val Glu Lys Leu Asp Leu Leu Gly Asn Leu Pro Gly Ser Lys 1925 1930 1935

Arg Arg Pro Gln Thr Pro Lys Glu Lys Ala Lys Ala Leu Glu Asp 1940 1945 1950

Leu Ala Gly Phe Lys Glu Leu Phe Gln Thr Pro Gly His Thr Glu 1955 1965

Glu Ser Met Thr Asp Asp Lys Ile Thr Glu Val Ser Cys Lys Ser 1970 1975 1980

Pro Gln Pro Asp Pro Val Lys Thr Pro Thr Ser Ser Lys Gln Arg 1985 1990 1995

Leu Lys Ile Ser Leu Gly Lys Val Gly Val Lys Glu Glu Val Leu 2000 2005

Pro Val Gly Lys Leu Thr Gln Thr Ser Gly Lys Thr Thr Gln Thr 2015 2025

His	Arg 2030		Thr	Ala	Gly	Asp 2035		Lys	Ser	Ile	Lys 2040	Ala	Phe	Lys
Glu	Ser 2045	Ala	Lys	Gln		Leu 2050		Pro	Ala	Asn	Tyr 2055		Thr	Gly
Met	Glu 2060	Arg	Trp	Pro	Arg	Thr 2065		Lys	Glu	Glu	Ala 2070	Gln	Ser	Leu
Glu	Asp 2075		Ala	Gly		Lys 2080		Leu	Phe	Gln	Thr 2085	Pro	Asp	His
Thr	Glu 2090	Glu	Ser	Thr	Thr	Asp 2095		Lys	Thr	Thr	Lys 2100	Ile	Ala	Cys
Lys	Ser 2105	Pro	Pro	Pro	Glu	Ser 2110	Met	Asp	Thr	Pro	Thr 2115	Ser	Thr	Arg
Arg	Arg 2120		Lys	Thr		Leu 2125		Lys	Arg	Asp	Ile 2130		Glu	Glu
Leu	Ser 2135	Ala	Leu	Lys	Gln	Leu 2140		Gln	Thr	Thr	His 2145	Thr	Asp	Lys
Val	Pro 2150		Asp	Glu		Lys 2155		Ile	Asn	Val	Phe 2160		Glu	Thr
Ala	Lys 2165	Gln	Lys	Leu	Asp	Pro 2170	Ala	Ala	Ser	Val	Thr 2175	Gly	Ser	Lys
Arg	Gln 2180	Pro	Arg	Thr	Pro	Lys 2185	Gly	Lys	Ala	Gln	Pro 2190	Leu	Glu	Asp
	Ala 2195		Leu	Lys		Leu 2200		Gln	Thr	Pro	Val 2205		Thr	Asp
Lys	Pro 2210		Thr	His	Glu	Lys 2215	Thr	Thr	Lys	Ile	Ala 2220		Arg	Ser
Pro	Gln 2225		Asp	Pro		Gly 2230		Pro	Thr	Ile	Phe 2235		Pro	Gln
Ser	Lys 2240	Arg	Ser	Leu	Arg	Lys 2245	Ala	Asp	Val	Glu	Glu 2250	Glu	Ser	Leu
Ala	Leu 2255	Arg	Lys	Arg	Thr	Pro 2260		Val	Gly	Lys	Ala 2265	Met	Asp	Thr
Pro	Lys 2270	Pro	Ala	Gly	Gly	Asp 2275	Glu	Lys	Asp	Met	Lys 2280	Ala	Phe	Met
Gly	Thr 2285	Pro	Val	Gln	Lys	Leu 2290		Leu	Pro	Gly	Asn 2295	Leu	Pro	Gly
Ser	Lys 2300	Arg	Trp	Pro	Gln	Thr 2305	Pro	Lys	Glu	Lys	Ala 2310	Gln	Ala	Leu
Glu	Asp	Leu	Ala	Gly	Phe	Lys	Glu	Leu	Phe		Thr ge 32		Gly	Thr

	2315					2320					دعدي			
Asp	Lys 2330	Pro	Thr	Thr	Asp	Glu 2335	Lys	Thr	Thr	Lys	11e 2340	Ala	Cys	Lys
Ser	Pro 2345	Gln	Pro	Asp	Pro	Val 2350	Asp	Thr	Pro	Ala	Ser 2355	Thr	Lys	Gln
Arg	Pro 2360	Lys	Arg	Asn	Leu	Arg 2365	Lys	Ala	Asp	Val	Glu 2370	Glu	Glu	Phe
Leu	Ala 2375	Leu	Arg	Lys	Arg	Thr 2380	Pro	Ser	Ala	Gly	Lys 2385	Ala	Met	Asp
Thr	Pro 2390		Pro	Ala		Ser 2395		Glu	Lys	Asn	Ile 2400	Asn	Thr	Phe
Val	Glu 2405	Thr	Pro	Val	Gln	Lys 2410	Leu	Asp	Leu	Leu	Gly 2415	Asn	Leu	Pro
Gly	Ser 2420		Arg	Gln		Gln 2425		Pro	Lys	Glu	Lys 2430	Ala	Glu	Ala
Leu	Glu 2435		Leu	Val	Gly	Phe 2440		Glu	Leu	Phe	Gln 2445	Thr	Pro	Gly
His	Thr 2450		Glu	Ser	Met	Thr 2455	Asp	Asp	Lys	Ile	Thr 2460	Glu	Val	Ser
Cys	Lys 2465		Pro	Gln	Pro	Glu 2470		Phe	Lys	Thr	Ser 2475	Arg	Ser	Ser
Lys	Gln 2480		Leu	Lys	Ile	Pro ' 2485		Val	Lys	Val	Asp 2490		Lys	Glu
Glu	Pro 2495	Leu	Ala	Val	Ser	Lys 2500	Leu	Thr	Arg	Thr	Ser 2505	Gly	Glu	Thr
Thr	Gln 2510		His	Thr	Glu	Pro 2515	Thr	Gly	Asp	Ser	Lys 2520	Ser	Ile	Lys
	Phe 2525	Lys	Glu	Ser		Lys 2530		Ile			Pro 2535		Ala	Ser
Val	Thr 2540		Ser	Arg	Arg	Gln 2545		Arg	Thr	Arg	Lys 2550		Lys	Ala
Arg	Ala 2555		Glu	Asp	Leu	Val 2560		Phe	Lys	Glu	Leu 2565	Phe	Ser	Ala
Pro	Gly 2570		Thr	Glu	Glu	Ser 2575	Met	Thr	Ile	Asp	Lys 2580	Asn	Thr	Lys
Ile	Pro 2585		Lys	Ser	Pro	Pro 2590		Glu	Leu	Thr	Asp 2595	Thr	Ala	Thr
Ser	Thr 2600		Arg	Cys	Pro	Lys 2605		Arg	Pro	Arg	Lys 2610		Val	Lys

Glu	Glu 2615	Leu	Ser	Ala	Val	Glu 2620	Arg	Leu	rnr		rnr 2625	ser	GТĀ	Gin
Ser	Thr 2630	His	Thr	His		Glu 2635	Pro	Ala	Ser	Gly	Asp 2640	Glu	Gly	Ile
Lys	Val 2645		Lys	Gln		Ala 2650		Lys	Lys	Pro	Asn 2655	Pro	Val	Glu
Glu	Glu 2660		Ser	Arg	Arg	Arg 2665	Pro	Arg	Ala	Pro	Lys 2670	Glu	Lys	Ala
Gln	Pro 2675	Leu	Glu	Asp	Leu	Ala 2680		Phe	Thr		Leu 2685	Ser	Glu	Thr
Ser	Gly 2690		Thr	Gln	Gl u	Ser 2695	Leu	Thr	Ala	Gly	Lys 2700	Ala	Thr	Lys
Ile	Pro 2705	Cys	Glu	Ser		Pro 2710	Leu	Glu	Val		Asp 2715		Thr	Ala
Ser	Thr 2720		Arg	His	Leu	Arg 2725	Thr	Arg	Val		Lys 2730		Gln	Val
Lys	Glu 2735		Pro	Ser	Ala	Val 2740		Phe	Thr	Gln	Thr 2745		Gly	Glu
Thr	Thr 2750		Ala	Asp		Glu 2755		Ala	Gly	Glu	Asp 2760		Gly	Ile
Lys	Ala 2765		Lys	Glu	Ser	Ala 2770		Gln	Thr	Pro	Ala 2775	Pro	Ala	Ala
Ser	Val 2780		Gly	Ser	Arg	Arg 2785		Pro	Arg		Pro 2790	Arg	Glu	Ser
Ala	Gln 2795		Ile	Glu		Leu 2800		Gly	Phe		Asp 2805		Ala	Ala
Gly	His 2810	Thr	Glu	Glu	Ser	Met 2815	Thr	Asp	Asp	Lys	Thr 2820	Thr	Lys	Ile
Pro	Cys 2825		Ser	Ser	Pro	Glu 2830		Glu	Asp	Thr	Ala 2835	Thr	Ser	Ser
Lys	Arg 2840	Arg	Pro	Arg	Thr	Arg 2845	Ala	Gln	Lys	Val	Glu 2850	Val	Lys	Glu
Glu	Leu 2855	Leu	Ala	Val	GТĀ	Lys 2860	Leu	Thr	Gln	Thr	Ser 2865	Gly	Glu	Thr
Thr	His 2870	Thr	Asp	Lys	Glu	Pro 2875	Val	Gly	Glu	Gly	Lys 2880		Thr	Lys
Ala	Phe 2885	Lys	Gln	Pro	Ala	Lys 2890		Asn	Val	Asp	Ala 2895		Asp	Val
Ile	Gly 2900	Ser	Arg	Arg	Gln	Pro 2905	Arg	Ala	Pro	Lys	Glu 2910		Ala	Gln

Pro	Leu 2915	Glu	Asp	Leu	Ala	Ser 2920	Phe	Gln	Glu	Leu	Ser 2925	Gln	Thr	Pro
Gly	His 2930	Thr	Glu	Glu	Leu	Ala 2935	Asn	Gly	Ala		Asp 2940	Ser	Phe	Thr
Ser	Ala 2945	Pro	Lys	Gln	Thr	Pro 2950	Asp	Ser	Gly	Lys	Pro 2955	Leu	Lys	Ile
Ser	Arg 2960	Arg	Val	Leu	Arg	Ala 2965	Pro	Lys	Val	Glu	Pro 2970	Val	Gly	Asp
Val	Val 2975	Ser	Thr	Arg	Asp	Pro 2980	Val	Lys	Ser		Ser 2985	Lys	Ser	Asn
Thr	Ser 2990	Leu	Pro	Pro	Leu	Pro 2995	Phe	Lys	Arg	Gly	Gly 3000	Gly	Lys	Asp
Gly	Ser 3005	Val	Thr	Gly	Thr	Lys 3010		Leu	Arg		Met 3015	Pro	Ala	Pro
Glu	Glu 3020		Val	Glu	Glu	Leu 3025	Pro	Ala	Ser	Lys	Lys 3030	Gln	Arg	Val
Ala	Pro 3035		Ala	Arg	Gly	Lys 3040	Ser	Ser	Glu	Pro	Val 3045	Val	Ile	Met
Lys	Arg 3050		Leu	Arg	Thr	Ser 3055	Ala	Lys	Arg	Ile	Glu 3060	Pro	Ala	Glu
Glu	Leu 3065		Ser	Asn	Asp	Met 3070		Thr	Asn	Lys	Glu 3075	Glu	His	Lys
Leu	Gln 3080	Asp	Ser	Val	Pro	Glu 3085		Lys	Gly	Ile	Ser 3090	Leu	Arg	Ser
Arg	Arg 3095		Asp	Lys	Thr	Glu 3100		Glu	Gln	Gln	Ile 3105	Thr	Glu	Val
Phe	Val 3110	Leu	Ala	Glu	Arg	Ile 3115	Glu	Ile	Asn	Arg	Asn 3120	Glu	Lys	Lys
Pro	Met 3125	Lys	Thr	Ser	Pro	Glu 3130	Met	Asp	Ile	Gln	Asn 3135	Pro	Asp	Asp
Gly	Ala 3140	Arg	Lys	Pro	Ile	Pro 3145	Arg	Asp	Lys	Val	Thr 3150	Glu	Asn	Lys
Arg	Cys 3155		Arg	Ser	Ala	Arg 3160		Asn	Glu	Ser	Ser 3165	Gln	Pro	Lys
Val	Ala 3170	Glu	Glu	Ser	Gly	Gly 3175		Lys	Ser	Ala	Lys 3180		Leu	Met
Gln	Asn 3185	Gln	Lys	Gly	Lys	Gly 3190		Ala	Gly	Asn	Ser 3195	Asp	Ser	Met
Суз	Leu 3200	Arg	Ser	Arg	Lys	Thr 3205	Lys	Ser	Gln		Ala 3210		Ser	Thr
										Pa	ge 33	1		

Leu Glu Ser Lys Ser Val Gln Arg Val Thr Arg Ser Val Lys Arg 3215 $$ 3220 $$ 3225

Cys Ala Glu Asn Pro Lys Lys Ala Glu Asp Asn Val Cys Val Lys 3230 3235 3240

Lys Ile Thr Thr Arg Ser His Arg Asp Ser Glu Asp Ile 3245 3250 3255

<210> 200

<211> 47

<212> PRT

<213> Homo sapiens

<400> 200

Asp Leu Asp Pro Asp Asp Arg Glu Glu Gly Ala Ala Ser Thr Ala Glu 20 25 30

Glu Ala Ala Lys Lys Lys Arg Arg Lys Lys Lys Lys Ser Lys Gly Pro $35 \hspace{1cm} 40 \hspace{1cm} 45$

Ser Ala Ala Gly Glu Gln Glu Pro Asp Lys Glu Ser Gly Ala Ser Val $50 \\ 0 \\ 0 \\ 0$

Asp Glu Val Ala Arg Gln Leu Glu Arg Ser Ala Leu Glu Asp Lys Glu 65 70 75 80

Arg Asp Glu Asp Asp Glu Asp Gly Asp Gly Asp Gly Asp Gly Ala Thr 85 90 95

Gly Lys Lys Lys Lys Lys Lys Lys Lys Lys Arg Gly Pro Lys Val Gln 100 105 110

Thr Asp Pro Pro Ser Val Pro Ile Cys Asp Leu Tyr Pro Asn Gly Val 115 125 125

Phe Pro Lys Gly Gln Glu Cys Glu Tyr Pro Pro Thr Gln Asp Gly Arg 130 135 140

Thr Ala Ala Trp Arg Thr Thr Ser Glu Glu Lys Lys Ala Leu Asp Gln 145 $$ 150 $$ 155 $$ 160

Ala Ser Glu Glu Ile Trp Asn Asp Phe Arg Glu Ala Ala Glu Ala His 165 170 175

Arg Gln Val Arg Lys Tyr Val Met Ser Trp Ile Lys Pro Gly Met Thr 180 $$185\$

Met Ile Glu Ile Cys Glu Lys Leu Glu Asp Cys Ser Arg Lys Leu Ile 195 200 . 205

Lys Glu Asn Gly Leu Asn Ala Gly Leu Ala Phe Pro Thr Gly Cys Ser 210 225 220

Leu Asn Asn Cys Ala Ala His Tyr Thr Pro Asn Ala Gly Asp Thr Thr 225 230 235 240

Val Leu Gln Tyr Asp Asp Ile Cys Lys Ile Asp Phe Gly Thr His Ile 245 250 250

Ser Gly Arg Ile Ile Asp Cys Ala Phe Thr Val Thr Phe Asn Pro Lys $260 \hspace{1.5cm} 265 \hspace{1.5cm} 270 \hspace{1.5cm}$

Tyr Asp Thr Leu Leu Lys Ala Val Lys Asp Ala Thr Asn Thr Gly Ile 275 280 285

Lys Cys Ala Gly Ile Asp Val Arg Leu Cys Asp Val Gly Glu Ala Ile 290 295 300

Gln Glu Val Met Glu Ser Tyr Glu Val Glu Ile Asp Gly Lys Thr Tyr 305 310 315 320

Gln Val Lys Pro Ile Arg Asn Leu Asn Gly His Ser Ile Gly Gln Tyr \$325\$

Arg Ile His Ala Gly Lys Thr Val Pro Ile Val Lys Gly Glu Ala 340 345 350

Thr Arg Met Glu Glu Gly Glu Val Tyr Ala Ile Glu Thr Phe Gly Ser 355 360 365

Thr Gly Lys Gly Val Val His Asp Asp Met Glu Cys Ser His Tyr Met 370 375 380

Lys Asn Phe Asp Val Gly His Val Pro Ile Arg Leu Pro Arg Thr Lys 385 390 395 400

His Leu Leu Asn Val Ile Asn Glu Asn Phe Gly Thr Leu Ala Phe Cys 405 410 415

Arg Arg Trp Leu Asp Arg Leu Gly Glu Ser Lys Tyr Leu Met Ala Leu 420 425 430

Lys Asn Leu Cys Asp Leu Gly Ile Val Asp Pro Tyr Pro Pro Leu Cys 435 440 445

Asp Ile Lys Gly Ser Tyr Thr Ala Gln Phe Glu His Thr Ile Leu Leu 450 455 460

Arg Pro Thr Cys Lys Glu Val Val Ser Arg Gly Asp Asp Tyr 465 470 475

<210> 201

<211> 488

<212> PRT <213> Homo sapiens

<400> 201

Met His Gly Arg Lys Asp Asp Ala Gln Lys Gln Pro Val Lys Asn Gln l 10 15

Leu Gly Leu Asn Pro Gln Ser His Leu Pro Glu Leu Gln Leu Phe Gln 20 25 30

Ala Glu Gly Lys Ile Tyr Lys Tyr Asp His Met Glu Lys Ser Val Asn 35 40 45

Ser Ser Ser Leu Val Ser Pro Pro Gln Arg Ile Ser Ser Thr Val Lys 50 60 Thr His Ile Ser His Ile Tyr Glu Cys Asn Phe Val Asp Ser Leu Phe 65 70 75 80 Thr Gln Lys Glu Lys Ala Asn Ile Gly Thr Glu His Tyr Lys Cys Asn 85 90 95 Glu Arg Gly Lys Ala Phe His Gln Gly Leu His Phe Thr Ile His Gln 100 105 110 Ile Ile His Thr Lys Glu Thr Gln Phe Lys Cys Asp Ile Cys Gly Lys 115 120 125Ile Phe Asn Lys Lys Ser Asn Leu Ala Ser His Gln Arg Ile His Thr 130 135 140Gly Glu Lys Pro Tyr Lys Cys Asn Glu Cys Gly Lys Val Phe His Asn 145 150150155 Met Ser His Leu Ala Gln His Arg Arg Ile His Thr Gly Glu Lys Pro 165 170 175Tyr Lys Cys Asn Glu Cys Gly Lys Val Phe Asn Gln Ile Ser His Leu 180 $$185\$ Ala Gln His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Asn 195 200 205Glu Cys Gly Lys Val Phe His Gln Ile Ser His Leu Ala Gln His Arg 210 215 220Thr Ile His Thr Gly Glu Lys Pro Tyr Glu Cys Asn Lys Cys Gly Lys 225 230 235 240 Val Phe Ser Arg Asn Ser Tyr Leu Val Gln His Leu Ile Ile His Thr 245 250 255Gly Glu Lys Pro Tyr Arg Cys Asn Val Cys Gly Lys Val Phe Ser His 260 265 270Lys Ser Ser Leu Val Asn His Trp Arg Ile His Thr Gly Glu Lys Pro 275 280 285 Tyr Lys Cys Asn Glu Cys Gly Lys Val Phe Ser His Lys Ser Ser Leu 290 295 300 Val Asn His Trp Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Asn 305 310 315 320Ile Ile His Ala Gly Glu Lys Pro Tyr Lys Cys Asp Glu Cys Asp Lys 340 345 350Ala Phe Ser Gln Asn Ser His Leu Val Gln His His Arg Ile His Thr

Page 334

ەد 355

Gly Glu Lys Pro Tyr Lys Cys Asp Glu Cys Gly Lys Val Phe Ser Gln 370 375 380

Asn Ser Tyr Leu Ala Tyr His Trp Arg Ile His Thr Gly Glu Lys Ala 385 390 395 400

Tyr Lys Cys Asn Glu Cys Gly Lys Val Phe Gly Leu Asn Ser Ser Leu $405 \hspace{1.5cm} 410 \hspace{1.5cm} 415 \hspace{1.5cm}$

Ala His His Arg Lys Ile His Thr Gly Glu Lys Pro Phe Lys Cys Asn 420 425 430

Glu Cys Gly Lys Ala Phe Ser Met Arg Ser Ser Leu Thr Asn His His 435 440 445

Ala Ile His Thr Gly Glu Lys His Phe Lys Cys Asn Glu Cys Gly Lys 450 455 460

Leu Phe Arg Asp Asn Ser Tyr Leu Val Arg His Gln Arg Phe His Ala 465 470 475 480

Gly Lys Lys Ser Asn Thr Cys Asn 485

<210> 202

(211> 553

<212> PRT

<213> Homo sapiens

<400> 202

Met Leu Ser Val Arg Val Ala Ala Ala Val Val Arg Ala Leu Pro Arg 1 5 10 15

Arg Ala Gly Leu Val Ser Arg Asn Ala Leu Gly Ser Ser Phe Ile Ala $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Ala Arg Asn Phe His Ala Ser Asn Thr His Leu Gln Lys Thr Gly Thr 35 40

Ala Glu Met Ser Ser Ile Leu Glu Glu Arg Ile Leu Gly Ala Asp Thr 50 60

Ser Val Asp Leu Glu Glu Thr Gly Arg Val Leu Ser Ile Gly Asp Gly 65 70 75 80

Ile Ala Arg Val His Gly Leu Arg Asn Val Gln Ala Glu Glu Met Val 85 90 95

Glu Phe Ser Ser Gly Leu Lys Gly Met Ser Leu Asn Leu Glu Pro Asp 100 105 110

Asn Val Gly Val Val Val Phe Gly Asn Asp Lys Leu Ile Lys Glu Gly 115 120 125

Asp Ile Val Lys Arg Thr Gly Ala Ile Val Asp Val Pro Val Gly Glu 130 $$135\$

Glu Leu Leu Gly Arg Val Val Asp Ala Leu Gly Asn Ala Ile Asp Gly

145 150 100

Lys Gly Pro Ile Gly Ser Lys Thr Arg Arg Arg Val Gly Leu Lys Ala 165 170 175

Pro Gly Ile Ile Pro Arg Ile Ser Val Arg Glu Pro Met Gln Thr Gly 180 185 190

Ile Lys Ala Val Asp Ser Leu Val Pro Ile Gly Arg Gly Gln Arg Glu 195 200 205

Leu Ile Ile Gly Asp Arg Gln Thr Gly Lys Thr Ser Ile Ala Ile Asp 210 215 220

Thr Ile Ile Asn Gln Lys Arg Phe Asn Asp Gly Ser Asp Glu Lys Lys 225 230 230 235

Lys Leu Tyr Cys Ile Tyr Val Ala Ile Gly Gln Lys Arg Ser Thr Val 245 250 255

Ala Gln Leu Val Lys Arg Leu Thr Asp Ala Asp Ala Met Lys Tyr Thr 260 265 270

Ile Val Val Ser Ala Thr Ala Ser Asp Ala Ala Pro Leu Gln Tyr Leu 275 280 285

Ala Pro Tyr Ser Gly Cys Ser Met Gly Glu Tyr Phe Arg Asp Asn Gly 290 295 300

Lys His Ala Leu Ile Ile Tyr Asp Asp Leu Ser Lys Gln Ala Val Ala 305 310 315 320

Tyr Arg Gln Met Ser Leu Leu Leu Arg Arg Pro Pro Gly Arg Glu Ala 325 330 335

Tyr Pro Gly Asp Val Phe Tyr Leu His Ser Arg Leu Leu Glu Arg Ala $340 \hspace{1.5cm} 345 \hspace{1.5cm} 350$

Ala Lys Met Asn Asp Ala Phe Gly Gly Gly Ser Leu Thr Ala Leu Pro 355 360 365

Val Ile Glu Thr Gln Ala Gly Asp Val Ser Ala Tyr Ile Pro Thr Asn 370 375 380

Val Ile Ser Ile Thr Asp Gly Gln Ile Phe Leu Glu Thr Glu Leu Phe 385 390395400

Tyr Lys Gly Ile Arg Pro Ala Ile Asn Val Gly Leu Ser Val Ser Arg 405 410 415

Val Gly Ser Ala Ala Gln Thr Arg Ala Met Lys Gln Val Ala Gly Thr $420 \hspace{1.5cm} 425 \hspace{1.5cm} 430$

Met Lys Leu Glu Leu Ala Gln Tyr Arg Glu Val Ala Ala Phe Ala Gln 435 440 445

Phe Gly Ser Asp Leu Asp Ala Ala Thr Gln Gln Leu Leu Ser Arg Gly 450 455 460

Val Arg Leu Thr Glu Leu Leu Lys Gln Giy Gin Tyr Ser Pro Met Ala 465 470 475 480

Ile Glu Glu Gln Val Ala Val Ile Tyr Ala Gly Val Arg Gly Tyr Leu 485 490 495

Asp Lys Leu Glu Pro Ser Lys Ile Thr Lys Phe Glu Asn Ala Phe Leu 500 505 510

Ser His Val Val Ser Gln His Gln Ala Leu Leu Gly Thr Ile Arg Ala 515 520 525

Asp Gly Lys Ile Ser Glu Gln Ser Asp Ala Lys Leu Lys Glu Ile Val 530 535 540

Thr Asn Phe Leu Ala Gly Phe Glu Ala 545 550

<210> 203

<211> 46

<213> Homo sapiens

<400> 203

Asp Ser Gly Lys Ser Thr Thr Thr Gly His Leu Ile Tyr Lys Cys Gly $20 \hspace{1cm} 25 \hspace{1cm} 30$

Gly Ile Asp Lys Arg Thr Ile Glu Lys Phe Glu Lys Glu Ala Ala Glu 35 40 45

Met Gly Lys Gly Ser Phe Lys Tyr Ala Trp Val Leu Asp Lys Leu Lys 50 60

Ala Glu Arg Glu Arg Gly Ile Thr Ile Asp Ile Ser Leu Trp Lys Phe 65 70 75 80

Glu Thr Ser Lys Tyr Tyr Val Thr Ile Ile Asp Ala Pro Gly His Arg $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Asp Phe Ile Lys Asn Met Ile Thr Gly Thr Ser Gln Ala Asp Cys Ala $100 \hspace{1.5cm} 105 \hspace{1.5cm} 105$

Val Leu Ile Val Ala Ala Gly Val Gly Glu Phe Glu Ala Gly Ile Ser 115 120 125

Lys Asn Gly Gln Thr Arg Glu His Ala Leu Leu Ala Tyr Thr Leu Gly 130 135 140

Val Lys Gln Leu Ile Val Gly Val Asn Lys Met Asp Ser Thr Glu Pro 145 150 150 160

Pro Tyr Ser Gln Lys Arg Tyr Glu Glu Ile Val Lys Glu Val Ser Thr 165 170 175

Tyr Ile Lys Lys Ile Gly Tyr Asn Pro Asp Thr Val Ala Phe Val Pro 185 185

Ile Ser Gly Trp Asn Gly Asp Asn Met Leu Glu Fro Ser Ala Ash Met 195 200 205

Pro Trp Phe Lys Gly Trp Lys Val Thr Arg Lys Asp Gly Asn Ala Ser 210 215 220

Gly Thr Thr Leu Leu Glu Ala Val Asp Cys Ile Leu Pro Pro Thr Arg 225 230 235 240

Pro Thr Asp Lys Pro Leu Arg Leu Pro Leu Gln Asp Val Tyr Lys Ile 245 250 255

Gly Gly Ile Gly Thr Val Pro Val Gly Arg Val Glu Thr Gly Val Leu $260 \hspace{1.5cm} 265 \hspace{1.5cm} 261 \hspace{1.5cm} 270 \hspace{1.5cm}$

Val Lys Ser Val Glu Met His His Glu Ala Leu Ser Glu Ala Leu Pro 290 300

Gly Asp Asn Val Gly Phe Asn Val Lys Asn Val Ser Val Lys Asp Val 305 310 315 320

Arg Arg Gly Asn Val Ala Gly Asp Ser Lys Asn Asp Pro Pro Met Glu 325 . 330 335

Ile Ser Ala Gly Tyr Ala Pro Val Leu Asp Cys His Thr Ala His Ile 355 360

Ala Cys Lys Phe Ala Glu Leu Lys Glu Lys Ile Asp Arg Arg Ser Gly 370 375 380

Lys Lys Leu Glu Asp Gly Pro Lys Phe Leu Lys Ser Gly Asp Ala Ala 385 390 395 400

Ile Val Asp Met Val Pro Gly Lys Pro Met Cys Val Glu Ser Phe Ser 415

Asp Tyr Pro Pro Leu Gly Arg Phe Ala Val Arg Asp Met Arg Gln Thr $420 \hspace{1.5cm} 425 \hspace{1.5cm} 430$

Val Ala Val Gly Val Ile Lys Ala Val Asp Lys Lys Ala Ala Gly Ala 435 440 445

Gly Lys Val Thr Lys Ser Ala Gln Lys Ala Gln Lys Ala Lys 450 460

<210> 204 <211> 1069 <212> PRT

<213> Homo sapiens

<400> 204

Met Leu Arg Met Arg Thr Ala Gly Trp Ala Arg Gly Trp Cys Leu Gly
1 5 10 15

Cys Cys Leu Leu Leu Pro Leu Ser Phe Ser Leu Ala Ala Ala Lys Gin 20 25 30

Leu Leu Arg Tyr Arg Leu Ala Glu Glu Gly Pro Ala Asp Val Arg Ile $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Gly Asn Val Ala Ser Asp Leu Gly Ile Val Thr Gly Ser Gly Glu Val 50 $\,$

Thr Phe Ser Leu Glu Ser Gly Ser Glu Tyr Leu Lys Ile Asp Asn Leu 65 70 75 80

Thr Gly Glu Leu Ser Thr Ser Glu Arg Arg Ile Asp Arg Glu Lys Leu 85 90 95

Pro Gln Cys Gln Met Ile Phe Asp Glu Asn Glu Cys Phe Leu Asp Phe 100 105 105

Glu Val Ser Val Ile Gly Pro Ser Gln Ser Trp Val Asp Leu Phe Glu 115 120 125

Gly Gln Val Ile Val Leu Asp Ile Asn Asp Asn Thr Pro Thr Phe Pro 130 135 140

Ser Pro Val Leu Thr Leu Thr Val Glu Glu Asn Arg Pro Val Gly Thr 145 150 155 160

Leu Tyr Leu Leu Pro Thr Ala Thr Asp Arg Asp Phe Gly Arg Asn Gly 165 170 175

Ile Glu Arg Tyr Glu Leu Leu Gln Glu Pro Gly Gly Gly Ser Gly 180 185 190

Gly Glu Ser Arg Arg Ala Gly Ala Ala Asp Ser Ala Pro Tyr Pro Gly 195 200 205

Gly Gly Gly Asn Gly Ala Ser Gly Gly Gly Ser Gly Gly Ser Lys Arg 210 215 220

Arg Leu Asp Ala Ser Glu Gly Gly Gly Gly Thr Asn Pro Gly Gly Arg 225 230 235 240

Ser Ser Val Phe Glu Leu Gln Val Ala Asp Thr Pro Asp Gly Glu Lys 245 250 255

Gln Pro Gln Leu Ile Val Lys Gly Ala Leu Asp Arg Glu Gln Arg Asp 260 265 270

Ser Tyr Glu Leu Thr Leu Arg Val Arg Asp Gly Gly Asp Pro Pro Arg 275 280 285

Ser Ser Gln Ala Ile Leu Arg Val Leu Ile Thr Asp Val Asn Asp Asn 290 295 300

Ser Pro Arg Phe Glu Lys Ser Val Tyr Glu Ala Asp Leu Ala Glu Asn 305 310 315 320

Ser Ala Pro Gly Thr Pro Ile Leu Gln Leu Arg Ala Ala Asp Leu Asp 325 330 335

Val Gly Val Asn Gly Gln Ile Glu Tyr Val Phe Gly Ala Ala Thr Glu 340 345 350Ser Val Arg Arg Leu Leu Arg Leu Asp Glu Thr Ser Gly Trp Leu Ser 355 360 365Val Leu His Arg Ile Asp Arg Glu Glu Val Asn Gln Leu Arg Phe Thr 370 380Val Met Ala Arg Asp Arg Gly Gln Pro Pro Lys Thr Asp Lys Ala Thr 385 390 395 400 Val Val Leu Asn Ile Lys Asp Glu Asn Asp Asn Val Pro Ser Ile Glu 405 410 415Ile Arg Lys Ile Gly Arg Ile Pro Leu Lys Asp Gly Val Ala Asn Val 420 425 430 Ala Glu Asp Val Leu Val Asp Thr Pro Ile Ala Leu Val Gln Val Ser 435 440 445 Asp Arg Asp Gln Gly Glu Asn Gly Val Val Thr Cys Thr Val Val Gly 450 460 Asp Val Pro Phe Gln Leu Lys Pro Ala Ser Asp Thr Glu Gly Asp Gln 465 470 475 480 Ala Thr Arg Glu Phe Asn Val Val Ile Val Ala Val Asp Ser Gly Ser 500 505 510 Pro Ser Leu Ser Ser Lys Asn Ser Leu Ile Val Lys Val Gly Asp Thr 515 520 525Asn Asp Asn Pro Pro Met Phe Gly Gln Ser Val Val Glu Val Tyr Phe 530 535 540 Pro Glu Asn Asn Ile Pro Gly Glu Arg Val Ala Thr Val Leu Ala Thr 545 550 555 560Asp Ala Asp Ser Gly Lys Asn Ala Glu Ile Ala Tyr Ser Leu Asp Ser 565 570 575 Ser Val Met Gly Ile Phe Ala Ile Asp Pro Asp Ser Gly Asp Ile Leu 580 585 590Val Asn Thr Val Leu Asp Arg Glu Gln Thr Asp Arg Tyr Glu Phe Lys 595 600 605

Val Ile Val Gln Val Ala Asp Lys Asn Asp Asn Asp Pro Lys Phe Met 625 630 635 635

Val Asn Ala Lys Asp Lys Gly Ile Pro Val Leu Gln Gly Ser Thr Thr 610 620

Gln Asp Val Phe Thr Phe Tyr Val Lys Glu Asn Leu Gln Pro Asn Ser 645 650 655

Pro Val Gly Met Val Thr Val Met Asp Ala Asp Lys Gly Arg Asn Ala 660 665 670 • Glu Met Ser Leu Tyr Ile Glu Glu Asn Asn Asn Ile Phe Ser Ile Glu 675 680 685Asn Asp Thr Gly Thr Ile Tyr Ser Thr Met Ser Phe Asp Arg Glu His Gln Thr Thr Tyr Thr Phe Arg Val Lys Ala Val Asp Gly Gly Asp Pro 705 710 715 720 Pro Arg Ser Ala Thr Ala Thr Val Ser Leu Phe Val Met Asp Glu Asn 725 730 735 Asp Asn Ala Pro Thr Val Thr Leu Pro Lys Asn Ile Ser Tyr Thr Leu 740 745 750Leu Pro Pro Ser Ser Asn Val Arg Thr Val Val Ala Thr Val Leu Ala 755 760 765Thr Asp Ser Asp Asp Gly Ile Asn Ala Asp Leu Asn Tyr Ser Ile Val Gly Gly Asn Pro Phe Lys Leu Phe Glu Ile Asp Pro Thr Ser Gly Val 785 790 795 800 Val Ser Leu Val Gly Lys Leu Thr Gln Lys His Tyr Gly Leu His Arg 805 810 815 Leu Val Val Gln Val Asn Asp Ser Gly Gln Pro Ser Gln Ser Thr Thr 820 825 830 Thr Val Val His Val Phe Val Asn Glu Ser Val Ser Asn Ala Thr Ala 835 840 845 Ile Ala Gly Asp Pro Ser Tyr Glu Ile Ser Lys Gln Arg Leu Ser Ile 865 870 875 880 Val Ile Gly Val Val Ala Gly Ile Met Thr Val Ile Leu Ile Ile Leu 885 $890\,$ 895 Ile Val Val Met Ala Arg Tyr Cys Arg Ser Lys Asn Lys Asn Gly Tyr 900 905 910 Glu Ala Gly Lys Lys Asp His Glu Asp Phe Phe Thr Pro Gln Gln His 915 920 925 Asp Lys Ser Lys Lys Pro Lys Lys Asp Lys Lys Asn Lys Lys Ser Lys 930 935 940 Gln Pro Leu Tyr Ser Ser Ile Val Thr Val Glu Ala Ser Lys Pro Asn 945 950 950 955 Gly Gln Arg Tyr Asp Ser Val Asn Glu Lys Leu Ser Asp Ser Pro Ser-

Page 341

סוע טוע

Met Gly Arg Tyr Arg Ser Val Asn Gly Gly Pro Gly Ser Pro Asp Leu 980 985 990

Ala Arg His Tyr Lys Ser Ser Ser Pro Leu Pro Thr Val Gln Leu His 995 1000 1005

Pro Gln Ser Pro Thr Ala Gly Lys Lys His Gln Ala Val Gln Asp 1010 1015 1020

Leu Pro Pro Ala Asn Thr Phe Val Gly Ala Gly Asp Asn Ile Ser \cdot 1025 \cdot 1030 \cdot 1035

Ile Gly Ser Asp His Cys Ser Glu Tyr Ser Cys Gln Thr Asn Asn 1040 1045 1050

Lys Tyr Ser Lys Gln Met Arg Leu His Pro Tyr Ile Thr Val Phe 1055 $$ 1060 $$ 1065

Gly

<210> 205

<211> 401

<212> PRT

<213> Homo sapiens

<400> 205

Met Ser Phe Ser Lys Thr His Ser Thr Ala Thr Met Pro Pro Pro Ile 1 $$ 5 $$ 10 $$ 15

Asn Pro Ile Leu Ala Ser Leu Gln His Asn Ser Ile Leu Thr Pro Thr $20 \hspace{1cm} 25 \hspace{1cm} 30$

Arg Val Ser Ser Ser Ala Thr Lys Gln Lys Val Leu Ser Pro Pro His $35 \hspace{1cm} 40 \hspace{1cm} 45$

Ile Lys Ala Asp Phe Asn Leu Ala Asp Phe Glu Cys Glu Glu Asp Pro $50 \hspace{1cm} 60$

Phe Asp Asn Leu Glu Leu Lys Thr Ile Asp Glu Lys Glu Glu Leu Arg 65 70 75 80

Asn Ile Leu Val Gly Thr Thr Gly Pro Ile Met Ala Gln Leu Leu Asp 85 90 95

Asn Asn Leu Pro Arg Gly Gly Ser Gly Ser Val Leu Gln Asp Glu Glu 100 105 110

Val Leu Ala Ser Leu Glu Arg Ala Thr Leu Asp Phe Lys Pro Leu His 115 120 125

Lys Pro Asn Gly Phe Ile Thr Leu Pro Gln Leu Gly Asn Cys Glu Lys 130 135 140

Met Ser Leu Ser Ser Lys Val Ser Leu Pro Pro Ile Pro Ala Val Ser 145 150 160

Asn Ile Lys Ser Leu Ser Phe Pro Lys Leu Asp Ser Asp Ser Asn

165 1/0 1/3

Gln Lys Thr Ala Lys Leu Ala Ser Thr Phe His Ser Thr Ser Cys Leu 180 195 190

Arg Asn Gly Thr Phe Gln Asn Ser Leu Lys Pro Ser Thr Gln Ser Ser 195 200 205

Ala Ser Glu Leu Asn Gly His His Thr Leu Gly Leu Ser Ala Leu Asn 210 215 220

Leu Asp Ser Gly Thr Glu Met Pro Ala Leu Thr Ser Ser Gln Met Pro 225 230 240

Ser Leu Ser Val Leu Ser Val Cys Thr Glu Glu Ser Ser Pro Pro Asn 245 250 255

Thr Gly Pro Thr Val Thr Pro Pro Asn Phe Ser Val Ser Gln Val Pro 260 265 270

Asn Met Pro Ser Cys Pro Gln Ala Tyr Ser Glu Leu Gln Met Leu Ser 275 280 285

Pro Ser Glu Arg Gln Cys Val Glu Thr Val Val Asn Met Gly Tyr Ser 290 300

Tyr Glu Cys Val Leu Arg Ala Met Lys Lys Lys Gly Glu Asn Ile Glu 305 310310315

Gln Ile Leu Asp Tyr Leu Phe Ala His Gly Gln Leu Cys Glu Lys Gly 325 330 335

Phe Asp Pro Leu Leu Val Glu Glu Ala Leu Glu Met His Gln Cys Ser 340 345 350

Glu Glu Lys Met Met Glu Phe Leu Gln Leu Met Ser Lys Phe Lys Glu 355 360 365

Met Gly Phe Glu Leu Lys Asp Ile Lys Glu Val Leu Leu His Asn 370 375 380

Asn Asp Gln Asp Asn Ala Leu Glu Asp Leu Met Ala Arg Ala Gly Ala 385 390 395 400

Ser

<210> 206

<211> 285

<212> PRT

<213> Homo sapiens

<400> 206

Met Glu Val Pro Pro Pro Asp Ala Gly Ser Phe Leu Cys Arg Ala Leu 1 5 10 15

Cys Leu Phe Pro Arg Val Phe Ala Ala Glu Ala Val Thr Ala Asp Ser $20 \hspace{1cm} 25 \hspace{1cm} 30$

Glu Val Leu Glu Glu Arg Gln Lys Arg Leu Pro Tyr Val Pro Glu Pro

35 40 45

Tyr Tyr Pro Glu Ser Gly Trp Asp Arg Leu Arg Glu Leu Phe Gly Lys 50 . 55 60

Asp Glu Gln Gln Arg Ile Ser Lys Asp Leu Ala Asn Ile Cys Lys Thr 65 70 75 \cdot 80

Ala Ala Thr Ala Gly Ile Ile Gly Trp Val Tyr Gly Gly Ile Pro Ala $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Phe Ile His Ala Lys Gln Gln Tyr Ile Glu Gln Ser Gln Ala Glu Ile 100 \$105\$

Tyr His Asn Arg Phe Asp Ala Val Gln Ser Ala His Arg Ala Ala Thr 115 120 125

Phe Val Thr Ile Phe Asn Thr Val Asn Thr Ser Leu Asn Val Tyr Arg 145 150 155 160

Asn Lys Asp Ala Leu Ser His Phe Val Ile Ala Gly Ala Val Thr Gly 165 170 175

Ser Leu Phe Arg Ile Asn Val Gly Leu Arg Gly Leu Val Ala Gly Gly 180 185 190

Ile Ile Gly Ala Leu Leu Gly Thr Pro Val Gly Gly Leu Leu Met Ala 195 200205

Phe Gln Lys Tyr Ser Gly Glu Thr Val Gln Glu Arg Lys Gln Lys Asp 210 220

Arg Lys Ala Leu His Glu Leu Lys Leu Glu Glu Trp Lys Gly Arg Leu 225 230 235 240

Gln Val Thr Glu His Leu Pro Glu Lys Ile Glu Ser Ser Leu Gln Glu 245 250250

Asp Glu Pro Glu Asn Asp Ala Lys Lys Ile Glu Ala Leu Leu Asn Leu 260 265 270

Pro Arg Asn Pro Ser Val Ile Asp Lys Gln Asp Lys Asp 275 280 280

<210> 207

211> 212

<212> PRT

<213> Homo sapiens

<400> 207

Met Leu Asn Lys Val Leu Ser Arg Leu Gly Val Ala Gly Gln Trp Arg 1 5 10 15

Ala Pro Ala Cys Ala Leu Leu Leu Phe Pro Leu Thr Ala Gln His

35 40 45

Glu Asn Phe Arg Lys Lys Gln Ile Glu Glu Leu Lys Gly Gln Glu Val 50 55 60

Ser Pro Lys Val Tyr Phe Met Lys Gln Thr Ile Gly Asn Ser Cys Gly 65 70 75 80

Thr Ile Gly Leu Ile His Ala Val Ala Asn Asn Gln Asp Lys Leu Gly 85 90 95

Phe Glu Asp Gly Ser Val Leu Lys Gln Phe Leu Ser Glu Thr Glu Lys

Met Ser Pro Glu Asp Arg Ala Lys Cys Phe Glu Lys Asn Glu Ala Ile 115 120 125

Gln Ala Ala His Asp Ala Val Ala Gln Glu Gly Gln Cys Arg Val Asp 130 135 140

Asp Lys Val Asn Phe His Phe Ile Leu Phe Asn Asn Val Asp Gly His 145 150150155160

Leu Tyr Glu Leu Asp Gly Arg Met Pro Phe Pro Val Asn His Gly Ala 165 170 175

Ser Ser Glu Asp Thr Leu Leu Lys Asp Ala Ala Lys Val Cys Arg Glu 180 185 190

Phe Thr Glu Arg Glu Gln Gly Glu Val Arg Phe Ser Ala Val Ala Leu 195 200 205

Cys Lys Ala Ala 210

<210> 208

211> 596

<212> PRT

<213> Homo sapiens

<400> 208

Met Ser Leu Ser Met Arg Asp Pro Val Ile Pro Gly Thr Ser Met Ala 1 $$ 10 $$ 15

Tyr His Pro Phe Leu Pro His Arg Ala Pro Asp Phe Ala Met Ser Ala 20 25 30

Val Leu Gly His Gln Pro Pro Phe Phe Pro Ala Leu Thr Leu Pro Pro 35 40 45

Asn Gly Ala Ala Ala Leu Ser Leu Pro Gly Ala Leu Ala Lys Pro Ile 50 60

Met Asp Gln Leu Val Gly Ala Ala Glu Thr Gly Ile Pro Phe Ser Ser 65 70 75 80

Leu Gly Pro Gln Ala His Leu Arg Pro Leu Lys Thr Met Glu Pro Glu 95

Glu Glu Val Glu Asp Asp Pro Lys Val His Leu Glu Ala Lys Glu Leu

100 105 110

Trp Asp Gln Phe His Lys Arg Gly Thr Glu Met Val Ile Thr Lys Ser 115 120 125

Gly Arg Arg Met Phe Pro Pro Phe Lys Val Arg Cys Ser Gly Leu Asp 130 135 140

Lys Lys Ala Lys Tyr Ile Leu Leu Met Asp Ile Ile Ala Ala Asp Asp 145 150150155160

Cys Arg Tyr Lys Phe His Asn Ser Arg Trp Met Val Ala Gly Lys Ala 165 170 175

Asp Pro Glu Met Pro Lys Arg Met Tyr Ile His Pro Asp Ser Pro Ala 180 185 190

Thr Gly Glu Gln Trp Met Ser Lys Val Val Thr Phe His Lys Leu Lys 195 200 205

Leu Thr Asn Asn Ile Ser Asp Lys His Gly Phe Thr Leu Ala Phe Pro 210 220

Ser Asp His Ala Thr Trp Gln Gly Asn Tyr Ser Phe Gly Thr Gln Thr 225 230 240

Ile Leu Asn Ser Met His Lys Tyr Gln Pro Arg Phe His Ile Val Arg 245 250

Ala Asn Asp Ile Leu Lys Leu Pro Tyr Ser Thr Phe Arg Thr Tyr Leu 260 265 270

Phe Pro Glu Thr Glu Phe Ile Ala Val Thr Ala Tyr Gln Asn Asp Lys $275 \hspace{1.5cm} 280 \hspace{1.5cm} 285$

Ile Thr Gln Leu Lys Ile Asp Asn Asn Pro Phe Ala Lys Gly Phe Arg 290 295 300

Asp Thr Gly Asn Gly Arg Arg Glu Lys Arg Gln Gln Leu Thr Leu Gln 305 310 315 320

Ser Met Arg Val Phe Asp Glu Arg His Lys Lys Glu Asn Gly Thr Ser 325 330 335

Asp Glu Ser Ser Ser Glu Gln Ala Ala Phe Asn Cys Phe Ala Gln Ala 340 345 350

Ser Ser Pro Ala Ala Ser Thr Val Gly Thr Ser Asn Leu Lys Asp Leu 355 360 365 .

Cys Pro Ser Glu Gly Glu Ser Asp Ala Glu Ala Glu Ser Lys Glu Glu 370 380

His Gly Pro Glu Ala Cys Asp Ala Ala Lys Ile Ser Thr Thr Ser 385 390 400

Glu Glu Pro Cys Arg Asp Lys Gly Ser Pro Ala Val Lys Ala His Leu 405 410 415

Phe Ala Ala Glu Arg Pro Arg Asp Ser Gly Arg Leu Asp Lys Ala Ser 420 425 430

Pro Asp Ser Arg His Ser Pro Ala Thr Ile Ser Ser Ser Thr Arg Gly 435 440445

Leu Gly Ala Glu Glu Arg Arg Ser Pro Val Arg Glu Gly Thr Ala Pro 450 460

Ala Lys Val Glu Glu Ala Arg Ala Leu Pro Gly Lys Glu Ala Phe Ala 465 470 475 480

Pro Leu Thr Val Gln Thr Asp Ala Ala Arg Ser Ser Val His Arg His 485 490 495

Pro Phe Arg Asn Leu Asn Thr Met Arg Pro Arg Leu Arg Tyr Ser Pro 500 505 510

Tyr Ser Ile Pro Val Pro Val Pro Asp Gly Ser Ser Leu Leu Thr Thr 515 520 525

Ala Leu Ala Ala Ser Pro Ala Ser Val Ala Val Asp Ser Gly Ser Glu 530 540

Leu Asn Ser Arg Ser Ser Thr Leu Ser Ser Ser Ser Met Ser Leu Ser 545 550 555 560

Pro Lys Leu Cys Ala Glu Lys Glu Ala Ala Thr Ser Glu Leu Gln Ser $565 \hspace{1.5cm} 570 \hspace{1.5cm} 575$

Ile Gln Arg Leu Val Ser Gly Leu Glu Ala Lys Pro Asp Arg Ser Arg 580 585 590

Ser Ala Ser Pro 595

<210> 209

211> 215 212> PRT

<213> Homo sapiens

<400> 209

Met Gly Lys Gly Asp Pro Lys Lys Pro Arg Gly Lys Met Ser Ser Tyr 1 $$ 5 $$ 10 $$ 15

Ala Phe Phe Val Gln Thr Cys Arg Glu Glu His Lys Lys Lys His Pro $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm} .$

Asp Ala Ser Val Asn Phe Ser Glu Phe Ser Lys Lys Cys Ser Glu Arg 35 40 45

Trp Lys Thr Met Ser Ala Lys Glu Lys Gly Lys Phe Glu Asp Met Ala 50 60

Lys Ala Asp Lys Ala Arg Tyr Glu Arg Glu Met Lys Thr Tyr Ile Pro 65 70 75 80

Pro Lys Gly Glu Thr Lys Lys Lys Phe Lys Asp Pro Asn Ala Pro Lys 85 90 95

Arg Pro Pro Ser Ala Phe Phe Leu Phe Cys Ser Glu Tyr Arg Pro Lys 100 105 110

Ile Lys Gly Glu His Pro Gly Leu Ser Ile Gly Asp Val Ala Lys Lys 115 120 125

Leu Gly Glu Met Trp Asn Asn Thr Ala Ala Asp Asp Lys Gln Pro Tyr 130 135 140

Glu Lys Lys Ala Ala Lys Leu Lys Glu Lys Tyr Glu Lys Asp Ile Ala 145 150 155 160

Ala Tyr Arg Ala Lys Gly Lys Pro Asp Ala Ala Lys Lys Gly Val Val 165 170 175

Lys Ala Glu Lys Ser Lys Lys Lys Glu Glu Glu Glu Asp Glu Glu 180 185 190

Asp Glu Glu Asp Glu Glu Glu Glu Glu Asp Glu Asp Glu Asp Glu Asp Glu 195 200 205

Glu Glu Asp Asp Asp Asp Glu 210 215

<210> 210

<211> 243

<212> PRT

<213> Homo sapiens

<400> 210

Met Ala Ala Ile Ala Ala Ser Glu Val Leu Val Asp Ser Ala Glu Glu 1 10 15

Gly Ser Leu Ala Ala Ala Ala Glu Leu Ala Ala Gln Lys Arg Glu Gln $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$

Arg Leu Arg Lys Phe Arg Glu Leu His Leu Met Arg Asn Glu Ala Arg 35 40 45

Lys Leu Asn His Gln Glu Val Val Glu Glu Asp Lys Arg Leu Lys Leu 50 60

Pro Ala Asn Trp Glu Ala Lys Lys Ala Arg Leu Glu Trp Glu Leu Lys 65 70 75 80

Glu Glu Lys Lys Lys Glu Cys Ala Ala Arg Gly Glu Asp Tyr Glu 85 90 95

Lys Val Lys Leu Leu Glu Ile Ser Ala Glu Asp Ala Glu Arg Trp Glu 100 105 110

Arg Lys Lys Arg Lys Asn Pro Asp Leu Gly Phe Ser Asp Tyr Ala 115 120 125

Ala Ala Gln Leu Arg Gln Tyr His Arg Leu Thr Lys Gln Ile Lys Pro 130 135 140

Asp Met Glu Thr Tyr Glu Arg Leu Arg Glu Lys His Gly Glu Glu Phe 145 150 150 160

Phe Pro Thr Ser Asn Ser Leu Leu His Gly Thr His Val Pro Ser Thr 165 170 170 175

Glu Glu Ile Asp Arg Met Val Ile Asp Leu Glu Lys Gln Ile Glu Lys 180 185 190

Arg Asp Lys Tyr Ser Arg Arg Arg Pro Tyr Asn Asp Asp Ala Asp Ile 195 200 205

Asp Tyr Ile Asn Glu Arg Asn Ala Lys Phe Asn Lys Lys Ala Glu Arg 210 215 220

Phe Tyr Gly Lys Tyr Thr Ala Glu Île Lys Gln Asn Leu Glu Arg Gly 225 230 230 235

Thr Ala Val

<210> 211

<211> 479

<212> PRT

<213> Homo sapiens

<400> 211

Met Leu Gln Ile Asn Gln Met Phe Ser Val Gln Leu Ser Leu Gly Glu 1 10 15

Gln Thr Trp Glu Ser Glu Gly Ser Ser Ile Lys Lys Ala Gln Gln Ala 20 25 30

Val Ala Asn Lys Ala Leu Thr Glu Ser Thr Leu Pro Lys Pro Val Gln 35 40 45

Lys Pro Pro Lys Ser Asn Val Asn Asn Asn Pro Gly Ser Ile Thr Pro 50 60

Thr Val Glu Leu Asn Gly Leu Ala Met Lys Arg Gly Glu Pro Ala Ile 65 70 80

Tyr Arg Pro Leu Asp Pro Lys Pro Phe Pro Asn Tyr Arg Ala Asn Tyr 85 90 95

Asn Phe Arg Gly Met Tyr Asn Gln Arg Tyr His Cys Pro Val Pro Lys 100 105 110

Ile Phe Tyr Val Gln Leu Thr Val Gly Asn Asn Glu Phe Phe Gly Glu 115 120 125

Gly Lys Thr Arg Gln Ala Ala Arg His Asn Ala Ala Met Lys Ala Leu 130 135 140

Gln Ala Leu Gln Asn Glu Pro Ile Pro Glu Arg Ser Pro Gln Asn Gly 145 $$ 150 $$ 150 $$ 155 $$ 160

Glu Ser Gly Lys Asp Met Asp Asp Asp Lys Asp Ala Asn Lys Ser Glu 165 170 175

Ile Ser Leu Val Phe Glu Ile Ala Leu Lys Arg Asn Met Pro Val Ser 180 $$185\$

- Phe Glu Val Ile Lys Glu Ser Gly Pro Pro His Met Lys Ser Phe Val
- Thr Arg Val Ser Val Gly Glu Phe Ser Ala Glu Gly Glu Gly Asn Ser 210 215 220
- Lys Lys Leu Ser Lys Lys Arg Ala Ala Thr Thr Val Leu Gln Glu Leu 225 230 235 240
- Lys Lys Leu Pro Pro Leu Pro Val Val Glu Lys Pro Lys Leu Phe Phe 245 250 255
- Lys Lys Arg Pro Lys Thr Ile Val Lys Ala Gly Pro Glu Tyr Gly Gln $260 \hspace{1.5cm} 265 \hspace{1.5cm} 270 \hspace{1.5cm}$
- Gly Met Asn Pro Ile Ser Arg Leu Ala Gln Ile Gln Gln Ala Lys Lys $275 \hspace{1.5cm} 280 \hspace{1.5cm} 285$
- Glu Lys Glu Pro Asp Tyr Val Leu Leu Ser Glu Arg Gly Met Pro Arg 290 295 300
- Arg Arg Glu Phe Val Met Gln Val Lys Val Gly Asn Glu Val Ala Thr 305 310 315 320
- Gly Thr Gly Pro Asn Lys Lys Ile Ala Lys Lys Asn Ala Ala Glu Ala 325 330 335
- Met Leu Gun Leu Gly Tyr Lys Ala Ser Thr Asn Leu Gln Asp Gln 340 345 350
- Leu Glu Lys Thr Gly Glu Asn Lys Gly Trp Ser Gly Pro Lys Pro Gly 355 360 365
- Phe Pro Glu Pro Thr Asn Asn Thr Pro Lys Gly Ile Leu His Leu Ser 370 375 380
- Pro Asp Val Tyr Gln Glu Met Glu Ala Ser Arg His Lys Val Ile Ser 385 390395400
- Gly Thr Thr Leu Gly Tyr Leu Ser Pro Lys Asp Met Asn Gln Pro Ser 405 410 415
- Ser Ser Phe Phe Ser Ile Ser Pro Thr Ser Asn Ser Ser Ala Thr Ile 420 425 430
- Ala Arg Glu Leu Leu Met Asn Gly Thr Ser Ser Thr Ala Glu Ala Ile 435 440 445
- Gly Leu Lys Gly Ser Ser Pro Thr Pro Pro Cys Ser Pro Val Gln Pro 450 455 460
- Ser Lys Gln Leu Glu Tyr Leu Ala Arg Ile Gln Gly Phe Gln Val 465 470 475

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 17 October 2002 (17.10.2002)

(10) International Publication Number WO 02/081638 A3

GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent

(51) International Patent Classification7: C12N 15/12, 15/11, C12Q 1/68, G01N 33/53, 33/48, C07K 16/00, A01N 43/04, A61K 38/00, A01K 67/00

(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(21) International Application Number: PCT/US02/10824

(22) International Filing Date: (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

8 April 2002 (08.04.2002)

60/281,731 6 April 2001 (06.04.2001) 60/281,732 6 April 2001 (06.04.2001)

(71) Applicant (for all designated States except US): ORI-GENE TECHNOLOGIES, INC [US/US]; 6 Taft Court, Suite 100, Rockville, MD 20850 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): SUN, Zairen [CN/US]; 1083 Copperstone Court, Rockville, MD 20852 (US). JAY, Gilbert [US/US]; 5801 Nicholson Lane, North Bethesda, MD 20852 (US).
- (74) Agent: LEBOVITZ, Richard, M.; Origene Technologies, Inc., 6 Taft Court, Suite 100, Rockville, MD 20850 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA,
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)
- of inventorship (Rule 4.17(iv)) for US only

Published:

with international search report

(88) Date of publication of the international search report: 27 February 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PROSTATE CANCER EXPRESSION PROFILES

(57) Abstract: The present invention relates to all facets of novel polynucleotides, the polypeptides they encode, antibodies and specific binding partners thereto, and their applications to research, diagnosis, drub discovery, therapy, clinical medicine, forensic science and medicine, etc. The polynucleotides are differentially-regulated in prostate cancer and are therefore useful in variety of ways, including, but not limited to, as molecular markers, as drug targets, and for detecting, diagnosing, staging, monitoring, prognosticating, preventing or treating, determining predisposition to, etc., diseases and conditions, to prostate cancer.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/10824

A. CLASSIFICATION OF SUBJECT MATTER							
IPC(7) : ¢12N 15/12, 15/11; C12Q 1/68; G01N 33/53, 33/48; C07K 16/00; A01N 43/04; A61K 38/00; A01K 67/00							
	US CL : \$36/23.5, 23.1; 435/6, 7.1, 91.2; 514/12, 44; 530/387.1; 800/9						
	According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED						
11 5 - 5	cumentation searched (classification system followed 36/23.5, 23.1; 435/6, 7.1, 91.2; 514/12, 44; 530/387	by classification symbols)					
0.5 5	30/23.3, 23.1, 433/0, 7.1, 91.2, 314/12, 44, 330/36/	.1; 800/9					
							
Documentati	on searched other than minimum documentation to the	e extent that such documents are included	in the fields searched				
Electronic de	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)						
	nucleic acid and amino acid sequence databases): SEO		caren terms used)				
. • • •		. —					
C. DOC	UMENTS CONSIDERED TO BE RELEVANT						
Category *		managed of the relevant managed	Dalaman a dalam Na				
X	Citation of document, with indication, where ap HORREVOETS et al, Vascular endothelial genes th		Relevant to claim No.				
•	factor alpha in vitro are expressed in atherosclerotic		26				
	apoptosis protein-1, stamin, and two novel genes, I						
	pages 3418-3431, see entire document.	,,,,,,,					
			,				
	ì						
	į.						
	1						
	!						
		•					
			(
	i '						
			1				
	·]				
			·				
Burthe	r documents are listed in the continuation of Box C.	Sag patent family apper					
	Special categories of cited documents:	See patent family annex.					
i		priority date and not in conflict with	the application but cited to				
"A" document	at defining the general state of the art which is not considered to ricular relevance	understand the principle or theory u	nderlying the invention				
•		"X" document of particular relevance; th					
date	pplication or patent published on or after the international filing	considered novel or cannot be consi step when the document is taken alo					
"L" documen	it which may throw doubts on priority claim(s) or which is cited	"Y" document of particular relevance; th	a delegat invention connect be				
to establ	ish the publication date of another citation or other special reason	considered to involve an inventive a	tep when the document is				
(as speci	lice)	combined with one or more other su combination being obvious to a per					
"O" documen	"O" document referring to an oral disclosure, use, exhibition or other means						
"P" document published prior to the international filing date but later than the							
nrimint dae claimeil							
Date of the actual completion of the international search 15 July 2002 (15.07.2002) Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Date of mailing of the international search report Authorized officer Facility Bell Howe for							
15 July 2002 (15.07.2002)							
Name and mailing address of the ISA/US Authorized officer Authorized officer							
Bo	mmissioner of Patents and Trademarks	James Martinell Sell - Nauros fr					
Washington, D.C. 20231							
Facsimile No. (703)305-3230 Telephone No. (703) 308-0196							

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

Form PCT/ISA/210 (continuation of first sheet(1)) (July 1998)

International application No.

PCT/US02/10824

Box 1	Obser	rvations v	where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This i	nternatio	onal report	t has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	\boxtimes	because th	s.: 23 and 25 sey relate to subject matter not required to be searched by this Authority, namely: s and 25 are drawn to displays of information.
2.	\boxtimes	such an ex	s.: ney relate to parts of the international application that do not comply with the prescribed requirements to keep that no meaningful international search can be carried out, specifically: ne claims depends from a plurality of other claims and not in the alternative.
3.	6.4(a).		os.: 2,5,8 and 17 hey are dependent claims and are not drafted in accordance with the second and third sentences of Rule
Box	II Ob	servation	s where unity of invention is lacking (Continuation of Item 2 of first sheet)
		ional Searc ontinuation	ching Authority found multiple inventions in this international application, as follows: n Sheet
1. 2. 3.		As all se payment As only	quired additional search fees were timely paid by the applicant, this international search report covers all le claims. archable claims could be searched without effort justifying an additional fee, this Authority did not invite of any additional fee. some of the required additional search fees were timely paid by the applicant, this international search wers only those claims for which fees were paid, specifically claims Nos.:
4.		is restric Sheet	ired additional search fees were timely paid by the applicant. Consequently, this international search report ted to the invention first mentioned in the claims; it is covered by claims Nos.: Please See Continuation
Kem	iark on	Protest	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

1		International application No.			
INTE	RNATIONAL SEARCH REPORT				
ļ		PCT/US02/10824			
,					
i		•			
	•				
BOX II. OBSERVA	TIONS WHERE UNITY OF INVENTION IS LAC	CKING			
This application contain	ins the following inventions or groups of inventions which a	re not so linked as to form a single general			
be paid.	PCT Rule 13.1. In order for all inventions to be examine	ed, the appropriate additional examination fees must			
oc patu.	į				
The claims are directe	d to 211 independent, distinct, and unrelated nucleic acid a	nd polypeptide sequences that do not share a			
common technical feat	ure. Accordingly, there are 211 Groups of inventions, one	for each independent, distinct, and unrelated			
nucleic acid and polyp	eptide sequence.				
		Į.			
The inventions listed a	s Groups1-211 do not relate to a single general inventive co	oncept under PCT Rule 13.1 because, under PCT			
kme 13.2, they lack the	ne same or corresponding special technical features for the	following reasons: the application does not disclose			
now any or the sequen	ces relates to any of the other sequences.				
	:				
		•			
	1				
	•				
Continuation of Bo	x II Item 4:				
1, 3, 4, 7, 9-16, 18-22	2, 24, and 26 insofar as they relate to SEQ ID NOs: 2 and 1	41.			
	1				
•					
	,				
	i				
	·				
	į				
	1				
	{				
	1				
	1				
	T				

Form PCT/ISA/210 (second sheet) (July 1998)