

2. W=11

item	No	Weight	(kgs)	Value	Value/weight
1		10		60	6
2		٦		28	4
3		ц		10	5
4		2		2 lu	12

$$u_0 = V + (\mathbf{W} - \omega) \left[(v_{i+1}) (\omega_{i+1}) \right]$$

$$u_0 = 0 + (11)(6) = 66$$

 $N_1: T=1, w=10, v:60 \Rightarrow 60 + (11-10)(u) = 64$

V	1.	2	3	4	5	6	٦	8
d	1	2	3	4	٦	8	5	6
V d	1	1	1	3	3	3	4	4

To find articulation point:

10 find articula

Articulation pts one 3,4-

Biconnected Components

4. Algorithm for Branch & Bound:

Branch 2 bound is an algorithm design Solving Combinational Optimization Problems. These problems are Expectly exponential in Lemms of time Complexity & May require explore all possible Permutation in worst case. The Branch & Bound Algorithm technique Solves there problems relatively juickly.

Connected - components (G) for each vertex VEN 1-=[1] ppt Count = 0 for NEO LON L' y (flag [v] = -1) (DFS (Vifag) Count ++; DES (V. th) Print U; For each adj node u of V if (flag [v]==-1) DPS (U, Hay)

Polynomial time Exponential Time

Linear Search-n

Binary Search-logn

Travelig 8.p-2.

Non-deterministic Algorithm:

Algorithm Alsearch (A. n. xey)

L Jechoice();

y key=A[J ->1

write(J)

Success () -)1

2

write (0)

Failure(); -> (

2

0(1)

Prob of linear Search & binary search etc.

Non-deterministic Algorithm for exponential time

Eg: 0/1 Knapsack, Hamilton etc..

Pin Subset of NP

$$2C_{1} = \{x_{1}, x_{2}, x_{3}\}$$

$$CNF = \{x_{1} \lor x_{2} \lor x_{3}\} \land \{\overline{x}_{1} \lor x_{2} \lor \overline{x}_{3}\}$$

$$C_{1}$$

$$x_1$$
 x_2 x_3 x_{00} x

0/1 Knapsack

NP - hard:

Satisfiability is NP hard. & If it solves any other problem then It also becomes NP-hard.

Both problems has different formulae I, & I2

y II is reducable to I2. The I2 problem becomes NP-hand

y I I I X I (it means I reduces Is) I also becomes NP-hard

To convert formula I, to Iz it takes polynomial time

MP-complete

Satisfability SNP hard

If the problem has NP-hard as well as non-Deterministic Alg. then it is known to be NP complete.

Po Deterministic Alg NPO Non Deterministic Alg

if we are sore that NP-non deterministic Algorithm

Converted or prove to be P-Deterministic Alg. infuture the

the remarch will be Successful

Eg: cook's PENP P=NP