Zhanqi (Victoria) Zhang

314-295-0396 | zhz091@ucsd.edu | https://zhanqizhang66.github.io

EDUCATION

• **Ph.D. Computer Science**, University of California San Diego

• M.S. Computer Science, Washington University in St. Louis, GPA: 4.0/4.0

• **B.S. Computer Science,** Washington University in St. Louis, **GPA: 3.95/4.0**

• B.S. Electrical Engineering, Washington University in St. Louis, GPA: 3.95/4.0

Expected June 2026

August 2020 - May 2021

August 2016 - May 2020

August 2016 - May 2020

RESEARCH EXPERIENCES

Graduate Research Student

September 2021 – Present

Co-advised by Dr. Gal Mishne and Dr. Mikio Aoi, University of California San Diego

- Analyzed a large human behavior video dataset of freely moving bipolar human participants for clinical assessment.
- Applied unsupervised quantification and machine learning approaches such as VAEs, clustering methods, latent representation learning, dimensionality reduction, and computer vision on bipolar behavior classification and increases the accuracy by 12%.
- Led a team to design a novel **transformer-based NLP generative model** that outperforms baseline image captioning models and leading to up to 63% higher scores on benchmarks.

Research Assistant December 2019 – August 2021

Advised by Dr. Carlos Ponce, Washington University School of Medicine, Harvard Medical School

- Developed human-subject and deep-learning based **semantic segmentation** pipelines in MATLAB and PyTorch.
- Discovered principles of information encoding in primate ventral streams with macaque monkey electrophysiological data.
- Designed methods to compare information encoding principles in primate brains and in **learning-based neural networks** models (ViTs, CNNs, RNNs) of the ventral stream.
- Collaborated with lab members to design optimizers for in silico experiments that use latent space computing.

Research Assistant May 2020 – August 2021

Advised by Dr. Bhooma Aravamuthan, Washington University School of Medicine

- Created an open field animal **pose tracking classification model** to classify mouse behaviors such as rearing with 83% accuracy.
- Designed a clinically feasible video-based dystonia identification model using deep learning.

Research Undergraduate

August 2019 - May 2020

Advised by Dr. Shantanu Chakrabartty, Washington University School of Engineering

- · Assisted lab members in building machine learning models to visualize high-dimensional sonic data.
- Utilized neural networks to recognize and classify hand-drawn shape images with 98% accuracy.

WORK EXPERIENCES

Meta Research Scientist Intern **June 2024 – September 2024**

- Developed EMG-CV multi-modality representation learning model for hand recognition with neural input wristbands and glasses.
- Initiated cross-functional collaborations and implemented backbones with a 20% increase in joint representation alignment.
- Developed **contextualized EMG-decoding** tasks, achieving gesture accuracy of 99.6% during training in real-world testing.
- Delivered a breakthrough in hand **pose estimation** by reducing decoding error to 4 degrees, enhancing decoding precision.

CONFERENCES PRESENTATIONS

- **Zhang, Z.**, Chou, C., Rosberg, H., Perry, W., Young, J., Minassian, A., Mishne, G., & Aoi, M. (2024). Unsupervised quantification and classification of free-moving human behavior in euthymic. *Computational and Systems Neuroscience (COSYNE)*
- **Zhang, Z.**, Yang, Y., Sheehan, T., Chou, C., Rosberg, H., Perry, W., Young, J., Minassian, A., Mishne, G., & Aoi, M. (2023). Semi-supervised quantification and interpretation of undirected human behavior. *Computational and Systems Neuroscience (COSYNE)*
- Zhang, Z., Rosberg, H., Perry, W., Young, J., Minassian, A., Mishne, G., & Aoi, M. (2022). Unsupervised quantification of undirected human behavior for bipolar disorder analysis. *IEEE Brain Discovery Neurotechnology Workshop (Spotlight)—Brain Mind Body Cognitive Engineering for Health and Wellness*
- **Zhang, Z.**, Rosberg, H., Perry, W., Young, J., Minassian, A., Mishne, G., & Aoi, M. (2022). Unsupervised quantification of undirected human behavior for bipolar disorder analysis. *Society for Neuroscience Conference*
- **Zhang, Z**., Hartmann, T. S., Livingstone, M. S., Born, R. T., & Ponce, C. R. (2022). Animal-feature Encoding in Macaque Brain and in Artificial Networks. *Society for Neuroscience Conference*
- **Zhang, Z.**, Ponce, C. R. (2022). Do you see what I see? Representations in brains and neural networks. Brain-Score and Beyond: Confronting Brain-like ANNs with Neuroscientific Data. *Computational and Systems Neuroscience (COSYNE) Workshops*.
- **Zhang, Z**., Hartmann, T. S., Livingstone, M. S., Born, R. T., & Ponce, C. R. (2021). The Macaque Ventral Stream Shows a Hierarchical Structure for Animal-feature Encoding. *Society for Neuroscience Conference*.
- **Zhang, Z.**, Hartmann, T. S., Livingstone, M. S., Born, R. T., & Ponce, C. R. (2021). A Hierarchical Structure for Animal-feature Encoding in The Macaque Ventral Stream. *Bernstein Conference*.

SELECTED PUBLICATIONS

- **Zhang, Z.**, Yang, Y., Sheehan, T., Chou, C., Rosberg, H., Perry, W., Young, J., Minassian, A., Mishne, G., & Aoi, M. (2024) (*medRxiv*) Semi-supervised quantification and interpretation of undirected human behavior.
- **Zhang, Z.**, Hartmann, T. S., Livingstone, M. S., Born, R. T., & Ponce, C. R. (2024) (*bioRxiv*). Heatmaps Reveal Encoding of Animal Features Across the Ventral Stream.
- Rosberg, H., Miranda, A., Holloway, B. M., **Zhang, Z.**, Peek, E., Sharp, R., Geyer, M., Young, J., & Perry, W., Minassian, A. (2024). (*in review*). Quantifying Exploratory Behavior in the Human Behavioral Pattern Monitor Using Automated Video Tracking.
- Raut, R.V., Rosenthal, Z. P., Wang, X., Miao, H., **Zhang, Z.**, Lee, J., Raichle M. E., Bauer, A.Q., Brunton, S. L., Brunton, B.W., and Kutz J. N. (2023) (*bioRxiv*) Arousal dynamics mirror spatiotemporal brain dynamics.
- **Zhang, Z.** (2021). Translating Convolutional Neural Networks Approach to the Ventral Pathway. *Washington University in St. Louis McKelvey School of Engineering Department of Computer Science Master Thesis Dissertation.* https://openscholarship.wustl.edu/eng_etds/574/.
- **Zhang, Z.**, Miao, H., & Liao, X. (2020). Shape Recognition in Ultrasound with Deep Learning. Washington University in St. Louis McKelvey School of Engineering Department of Electrical and Systems Engineering Undergraduate Capstone Thesis.

HONORS AND FELLOWSHIPS

COSYNE Travel Grants, University of California San Diego
 Febr

• Shenoy Research Mentor Fellowship in Neuroscience (SURFiN), University of California San Diego February 2022

• Halıcıoğlu Data Science Institute PhD Fellowship, University of California San Diego

• Dean's Selected PhD Fellowship, Washington University in St. Louis

• Summa Cum Laude (two degrees), Washington University in St. Louis

• Dean's List (all semesters), Washington University in St. Louis

• Emerging Voices Writing Award, Washington University in St. Louis

• Tau Beta Pi Engineering Honor Society (president), Washington University in St. Louis

• Lambda Sigma Honor Society, Washington University in St. Louis

February 2024

March 2021 October 2019

May 2020 September 2016 – May 2020

April 2017

October 2018 – August 2021 August 2017 – May 2018

MENTORING EXPERIENCES

Mentor, Simons Foundation

September 1, 2022 – Present

- Offering the mentee a collaborative role in research by analyzing data, co-authoring articles and identifying supplemental projects.
- Providing advice for strategies for handling difficult work situations, finding resources, and suggestions for balancing work and life.
- Advocating for the mentee's success by protecting research time, providing exposure to opportunities, and recognizing talents.

TEACHING EXPERIENCES

Teaching Assistant – Unsuervsied Learning, University of California San Diego

September 2024 - December 2024

- Assist in teaching topics such as descriptive statistics, clustering, singular value decomposition, spectral embedding, probability
 distributions, density estimation, graphical models, sparse coding, autoencoders, and self-supervised learning.
- Focused on explaining statistical and algorithmic characteristics, and addressing practical issues in data-driven modeling.

Teaching Assistant – Machine Learning, Washington University McKelvey School of Engineering

August 2018 – May 2021

- Instructed in machine learning, circuits, algorithms, and engineering math courses and received high ratings from course evaluations.
- Supported students via weekly office hours and grading lab reports and homework assignments.

Engineering Tutor - Washington University McKelvey School of Engineering

August 2018 – May 2020

- Organized weekly lesson plans for students in physic course and received high reviews in Engineering Student Services.
- Mentored 5 students each semester and provided professional resources and research opportunities.

OUTREACH

CSE DEI, University of California San Diego

December 2022 - Present

- Actively engaged in discussions promoting diversity, equity, and inclusion and hold weekly DEI office hours to answer questions.
- Contributed to conversations aimed at improving representation, creating inclusive academic environments, and addressing challenges faced by underrepresented groups in computer science..

Grocery Delivery Driver - Fit and Food Connection; St. Louis Housing Authority; Kindness Groceries April 2020 – September 2021

- Delivered groceries weekly from Fields Foods and Save-A-Lot program to 15-20 families in St. Louis affected by COVID-19.
- Prepared and delivered meals bi-weekly from Fit and Food Connection program to senior households affected by COVID-19.

SKILLS

- Programming: Python, PyTorch, Distributed Data Parallel (DDP), CUDA, C/C++, Java, JavaScript, Jupyter, MATLAB
- Machine Learning: Deep Learning (CNNs, RNN/LSTMs, VAEs, Transformer, LLMs), Self-supervised Learning, Muti-modality Representation Learning, Transfer Learning, Computer Vision (CV), Data Visualization, Statistical Inference and Modeling, Signal Processing, Optimization, Generative Models, Large-scale Data Pipelines
- Engineering: Control System, CAD, Solidworks, Circuits, Signals and Systems, Robotics