

ECE 8803

Approximate Inference in Graphical Models

Module 8: Part B Variational Inference via Loopy Belief Propagation

Faramarz Fekri
Center for Signal and Information Processing

Recall: Belief Propagation

BP Message-update Rules

$$M_{i \to j}(x_j) \propto \sum_{x_i} \psi_{ij}(x_i, x_j) \psi_i(x_i) \prod_k M_{k \to i}(x_i)$$
external evidence
Compatibilities (interactions)

$$b_i(x_i) \propto \psi_i(x_i) \prod_k M_k(x_k)$$

BP on trees always converges to exact marginals (e.g., Junction tree algorithm)

Beliefs and Messages in Factor Graph

Belief Propagation on Loopy Graphs

BP Message-update Rules

$$M_{i \to j}(x_j) \propto \sum_{x_i} \psi_{ij}(x_i, x_j) \psi_i(x_i) \prod_k M_{k \to i}(x_i)$$

$$external evidence$$
Compatibilities (interactions)

$$b_i(x_i) \propto \psi_i(x_i) \prod_k M_k(x_k)$$

May not converge or converge to a wrong solution

What if we don't have pairwise Markov nets? Transform to a pairwise MN

BP on Loopy Factor Graph

- Start with random initialization of messages and beliefs
 - While not converged do

$$b_i(x_i) \propto \prod_{a \in N(i)} m_{a \to i}(x_i)$$
 $b_a(X_a) \propto f_a(X_a) \prod_{i \in N(a)} m_{i \to a}(x_i)$

$$m_{i\to a}^{new}(x_i) = \prod_{c\in N(i)\setminus a} m_{c\to i}(x_i) \qquad m_{a\to i}^{new}(x_i) = \sum_{X_a\setminus x_i} f_a(X_a) \prod_{j\in N(a)\setminus i} m_{j\to a}(x_j)$$

- At convergence, stationarity properties are guaranteed
- However, not guaranteed to converge!
- Empirically, a good approximation is still achievable
 - Stop after fixed # of iterations
 - Stop when no significant change in beliefs
 - If solution is not oscillatory but converges, it usually is a good approximation

A fixed point iteration procedure that tries to minimize F_{bethe}

BP in a Cluster Graph with Loops

D_i: cluster i in the cluster graph

In Loopy BP, different cluster graphs can vary in both computational complexity and approximation quality (accuracy).

Desirable Cluster Graphs for Loopy BP

A generalized cluster graph K for factors F is an undirected graph

- Nodes are associated with a subset of variables $\mathbf{C}_{\mathbf{i}} \subseteq \mathbf{U}$
- The graph is family preserving: each factor φ∈F is associated with one node C_i such that Scope[φ]⊆C_i
- \bullet Each edge $\textbf{C}_i \!\!-\!\! \textbf{C}_j$ is associated with a subset $\textbf{S}_{i,j} \subseteq \textbf{C}_i \cap \textbf{C}_j$
 - A generalized cluster graph obeys the running intersection property if for each $X \subseteq C_i$ and $X \subseteq C_j$, there is exactly one path between C_i and C_j for which $X \subseteq S$ for each subset Salong the path.
 - All edges associated with X form a tree that spans all the clusters that contain X.
 - Note: some of these clusters may be connected with more than one path.

Lower graph is more desirable in case B and C are highly coupled since the upper graph will have implicit running intersection property in a loop.

Loopy Belief Propagation on Factor Graph

What is going on when we ran Loopy BP?

 Let focus on Loopy BP on factor graphs (similar conclusion exists for BP over loopy cluster graphs)

$$KL(Q \parallel P) = -H_{Q}(X) - \sum_{f_a \in F} E_{Q} \log f_a(X_a) + \log Z$$

$$F(P,Q)$$

Note that the "(Gibbs) Free energy" here in loopy BP is minus of the free energy formulation we had in Mean Field, ie., we are minimizing F rather than maximizing it

• Energy functional:
$$F(P,Q) = -H_Q(X) - \sum_{f_a \in F} E_Q \log f_a(X_a)$$

Approach: Approximate F(P,Q) with easy to compute F(P,Q)

Tree Energy Functionals

Consider a tree-structured distribution

- The probability can be written as: $b(\mathbf{x}) = \prod b_a(\mathbf{x}_a) \prod b_i(x_i)^{1-a_i}$
- $H_{tree} = -\sum_{a} \sum_{\mathbf{x}_{a}} b_{a}(\mathbf{x}_{a}) \ln b_{a}(\mathbf{x}_{a}) + \sum_{i} (d_{i} 1) \sum_{\mathbf{x}_{i}} b_{i}(\mathbf{x}_{i}) \ln b_{i}(\mathbf{x}_{i})$ $F_{Tree} = \sum_{a} \sum_{\mathbf{x}_{a}} b_{a}(\mathbf{x}_{a}) \ln \frac{b_{a}(\mathbf{x}_{a})}{f_{a}(\mathbf{x}_{a})} + \sum_{i} (1 d_{i}) \sum_{\mathbf{x}_{i}} b_{i}(\mathbf{x}_{i}) \ln b_{i}(\mathbf{x}_{i})$ $=F_{12}+F_{23}+..+F_{67}+F_{78}-F_{1}-F_{5}-F_{2}-F_{6}-F_{3}-F_{7}$
 - involves summation over edges and vertices and is therefore easy to compute

Bethe Approximation to Gibbs Free Energy

• For a general graph, choose $\tilde{F}(P,Q) = F_{Betha}$

$$H_{Bethe} = -\sum_{a} \sum_{\mathbf{x}_{a}} b_{a}(\mathbf{x}_{a}) \ln b_{a}(\mathbf{x}_{a}) + \sum_{i} (d_{i} - \mathbf{1}) \sum_{\mathbf{x}_{i}} b_{i}(\mathbf{x}_{i}) \ln b_{i}(\mathbf{x}_{i})$$

$$F_{Bethe} = \sum_{a} \sum_{\mathbf{x}_{a}} b_{a}(\mathbf{x}_{a}) \ln \frac{b_{a}(\mathbf{x}_{a})}{f_{a}(\mathbf{x}_{a})} + \sum_{i} (\mathbf{1} - d_{i}) \sum_{\mathbf{x}_{i}} b_{i}(\mathbf{x}_{i}) \ln b_{i}(\mathbf{x}_{i}) = -\langle f_{a}(\mathbf{x}_{a}) \rangle - H_{betha}$$

Called "Bethe approximation" after the physicist Hans Bethe

$$F_{bethe} = F_{12} + F_{23} + ... + F_{67} + F_{78} - F_1 - F_5 - 2F_2 - 2F_6 ... - F_8$$

- Equal to the exact Gibbs free energy when the factor graph is a tree
- In general, H_{Bethe} is **not** the same as the H of a tree

Bethe Approximation

Pros:

 Easy to compute, since entropy term involves sum over pairwise and single variables

Cons:

- $F(P,Q) = F_{bethe}$ may or may not be well connected to F(P,Q)
- It could, in general, be greater, equal or less than F(P,Q)
- Optimize each $b(x_a)$'s.
 - For discrete belief, constrained opt. with Lagrangian multiplier
 - For continuous belief, not yet a general formula
 - Not always converge

Bethe Free Energy for Factor Graph

$$F_{Betha} = \sum_{a} \sum_{\mathbf{x}_{a}} b_{a}(\mathbf{x}_{a}) \ln \frac{b_{a}(\mathbf{x}_{a})}{f_{a}(\mathbf{x}_{a})} + \sum_{i} (\mathbf{1} - d_{i}) \sum_{\mathbf{x}_{i}} b_{i}(\mathbf{x}_{i}) \ln b_{i}(\mathbf{x}_{i})$$

$$H_{Bethe} = -\sum_{a} \sum_{\mathbf{x}_{a}} b_{a}(\mathbf{x}_{a}) \ln b_{a}(\mathbf{x}_{a}) + \sum_{i} (d_{i} - \mathbf{1}) \sum_{\mathbf{x}_{i}} b_{i}(\mathbf{x}_{i}) \ln b_{i}(\mathbf{x}_{i})$$

$$F_{Bethe} = -\langle f_a(\mathbf{x}_a) \rangle - H_{betha}$$

Constrained Minimization of the Bethe Free Energy

$$L = F_{Bethe} + \sum_{i} \gamma_i \{ \sum_{x_i} b_i(x_i) - 1 \}$$

$$+\sum_{a}\sum_{i\in N(a)}\sum_{x_i}\lambda_{ai}(x_i)\left\{\sum_{X_a\setminus x_i}b_a(X_a)-b_i(x_i)\right\}$$

$$\frac{\partial L}{\partial b_i(x_i)} = 0 \qquad \Longrightarrow \qquad b_i(x_i) \propto \exp\left(\frac{1}{d_i - 1} \sum_{a \in N(i)} \lambda_{ai}(x_i)\right)$$

$$\frac{\partial L}{\partial b_a(X_a)} = 0 \qquad \Longrightarrow \qquad b_a(X_a) \propto \exp\left(-E_a(X_a) + \sum_{i \in N(a)} \lambda_{ai}(x_i)\right)$$

Minimization of Bethe Energy = Loopy BP on FG

We had:

$$b_i(x_i) \propto \exp\left(\frac{1}{d_i - 1} \sum_{a \in N(i)} \lambda_{ai}(x_i)\right) \quad b_a(X_a) \propto \exp\left(-\log f_a(X_a) + \sum_{i \in N(a)} \lambda_{ai}(x_i)\right)$$

- Identify $\lambda_{ai}(x_i) = \log(m_{i \to a}(x_i)) = \log \prod_{b \in N(i) \neq a} m_{b \to i}(x_i)$
- to obtain BP equations:

$$b_a(X_a) \propto f_a(X_a) \prod_{i \in N(a)} \prod_{c \in N(i) \setminus a} m_{c \to i}(x_i)$$

The "belief" is the BP approximation of the marginal probability.

BP Message-update Rules

Using
$$b_{a \to i}(x_i) = \sum_{X_a \setminus X_i} b_a(X_a)$$
, we get

$$m_{a\to i}(x_i) = \sum_{X_a \setminus x_i} f_a(X_a) \prod_{j \in N(a) \setminus i} \prod_{b \in N(j) \setminus a} m_{b\to j}(x_j)$$

(A sum product algorithm)

Conclusion

Acknowledgement

The materials of the lecture was mostly from Xing.