INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4012B gates Dual 4-input NAND gate

Product specification
File under Integrated Circuits, IC04

January 1995

Dual 4-input NAND gate

HEF4012B gates

DESCRIPTION

The HEF4012B provides the positive dual 4-input NAND function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

see Family Specifications

14 13 12 11 10 9 8 V_{DD} O₂ I₈ I₇ I₆ I₅ n.c. HEF4012B O₁ I₁ I₂ I₃ I₄ n.c. V_{SS} 1 2 3 4 5 6 7 7269480 Fig.2 Pinning diagram.

HEF4012BP(N): 14-lead DIL; plastic

(SOT27-1)

HEF4012BD(F): 14-lead DIL; ceramic (cerdip)

(SOT73)

HEF4012BT(D): 14-lead SO; plastic

(SOT108-1)

(): Package Designator North America

Philips Semiconductors Product specification

Dual 4-input NAND gate

HEF4012B gates

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	TYP	MAX		TYPICAL EXTRAPOLATION FORMULA
Propagation delays						
$I_n \to O_n$	5		70	135	ns	43 ns $+$ (0,55 ns/pF) C_L
HIGH to LOW	10	t _{PHL}	25	50	ns	14 ns $+$ (0,23 ns/pF) C_L
	15		20	35	ns	12 ns + (0,16 ns/pF) C_L
	5		70	140	ns	43 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	30	60	ns	19 ns $+$ (0,23 ns/pF) C_L
	15		25	50	ns	17 ns + (0,16 ns/pF) C_L
Output transition times	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}	30	60	ns	9 ns $+$ (0,42 ns/pF) C_L
	15		20	40	ns	6 ns $+$ (0,28 ns/pF) C_L
	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	30	60	ns	9 ns $+$ (0,42 ns/pF) C_L
	15		20	40	ns	6 ns $+$ (0,28 ns/pF) C_L

	V _{DD}	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	1100 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	4400 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	12 900 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_0C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.