

IT2060/IE2061

Operating Systems and System Administration

Lecture 05

Introduction to CPU Scheduling

U. U. Samantha Rajapaksha

M.Sc.in IT, B.Sc.(Engineering) University of Moratuwa

Senior Lecturer SLIIT

Samantha.r@slit.lk

Chapter 6: CPU Scheduling

- Basic Concepts
- Scheduling Criteria
- Scheduling Algorithms
- Algorithm Evaluation

Basic Concepts

BURST IS THE AMOUNT OF TIME PROCESS USES THE PROCESS UNTL ITS NO LONGER READY

- Maximum CPU utilization obtained with multiprogramming
- CPU-I/O Burst Cycle –
 Process execution consists
 of a cycle of CPU execution
 and I/O wait
- CPU burst followed by I/O burst
- CPU burst distribution is of main concern

Long term scheduler does not have to be fast as Short term scheduler

CPU Scheduler

- ☐ Short-term scheduler selects from among the processes in ready queue, and allocates the CPU to one of them
 - ☐ Queue may be ordered in various ways
- ☐ CPU scheduling decisions may take place when a process:
 - 1. Switches from running to waiting state
 - 2. Switches from running to ready state
 - 3. Switches from waiting to ready
 - 4. Terminates
- ☐ Scheduling under 1 and 4 is nonpreemptive

☐ All other scheduling is **preemptive**

Execution does not suspend the process

This does suspend the process

Dispatcher

- Dispatcher module gives control of the CPU to the process selected by the short-term scheduler; this involves:
 - switching context
 - switching to user mode
 - jumping to the proper location in the user program to restart that program
- Dispatch latency time it takes for the dispatcher to stop one process and start another running

Scheduling Criteria

- CPU utilization keep the CPU as busy as possible
- Throughput # of processes that complete their execution per time unit
- Turnaround time amount of time to execute a particular process
- Waiting time amount of time a process has been waiting in the ready queue
- Response time amount of time it takes from when a request was submitted until the first response is produced, not output (for time-sharing environment)

Scheduling Algorithm Optimization Criteria

- Max CPU utilization
- Max throughput
- Min turnaround time
- Min waiting time
- Min response time

First-Come, First-Served (FCFS) Scheduling

<u>Process</u>	Burst Time	Burst time is the execution time
P_1	24	
P_2	3	
P_3	3	

• Suppose that the processes arrive in the order: P_1 , P_2 , P_3 This means in the ready queue, P1 is the first, then P2 and at last P3 The Gantt Chart for the schedule is:

	P ₁	P_{2}	P ₃
0	2	4)	7 30

- Waiting time for $P_1 = 0$; $P_2 = 24$; $P_3 = 27$
- Average waiting time: (0 + 24 + 27)/3 = 17

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

$$P_2$$
, P_3 , P_1

The Gantt chart for the schedule is:

- Waiting time for $P_1 = 6$; $P_2 = 0$, $P_3 = 3$
- Average waiting time: (6 + 0 + 3)/3 = 3
- Much better than previous case
- Convoy effect short process behind long process
 - Consider one CPU-bound and many I/O-bound processes

Shortest-Job-First (SJF) Scheduling

Connected with each process the length of its next CPU burst

- Associate with each process the length of its next CPU burst
 - Use these lengths to schedule the process with the shortest time

Using the lengths to analyze which one starts first if the length is shorter, shorter comes first

- SJF is optimal gives minimum average waiting time for a given set of processes
 - The difficulty is knowing the length of the next CPU request
 - Could ask the user

Example of SJF

<u>Process</u>	<u>Burst Time</u>
P_1	6
P_2	8
P_3	7
P_4	3

SJF scheduling chart

• Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

Example of Shortest-remaining-time-first

 Now we add the concepts of varying arrival times and preemption to the analysis

<u>Process</u>	<u>Arrival</u> Time	Burst Time
P_1	0	8
P_2	1	4
P_3	2	9
P_4	3	5

In this situation, P1 is the only process available in the schedule in 0th ms, therefore scheduler pass this process to the processor

But in 1th ms, P2 comes to the game and dispatcher switch understand that P2 is shorter and scheduler puts P2 by terminating the P1 program while the P1 only ran for 1 ms. and after considering whats on the plate, P1 will execute the remainder by reaching the PCB

Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 msec

Here 10 - 1 comes because, P1 initial execution went for 1ms and after that P1 had to wait until the process hits 10ms to go for the second execution.

1-1 because P2 came at ms 1 and executed at 1ms

Preemptive SJF Gantt Chart

Priority Scheduling

- A priority number (integer) is associated with each process
- The CPU is allocated to the process with the highest priority (smallest integer ≡ highest priority)
 - Preemptive
 - Nonpreemptive
- SJF is priority scheduling where priority is the inverse of predicted next CPU burst time
- Problem = Starvation low priority processes may never execute
- Solution ≡ Aging as time progresses increase the priority of the process

Example of Priority Scheduling

Process	Burst Time	Priority
P_1	10	3
P_2	1	1
P_3	2	4
P_4	1	5
P_5	5	2

Priority scheduling Gantt Chart

• Average waiting time = 8.2 msec

Round Robin (RR)

- Each process gets a small unit of CPU time (time quantum q), usually 10-100 milliseconds. After this time has elapsed, the process is preempted and added to the end of the ready queue.
- If there are *n* processes in the ready queue and the time quantum is *q*, then each process gets 1/*n* of the CPU time in chunks of at most *q* time units at once. No process waits more than (*n*-1)*q* time units.
- Timer interrupts every quantum to schedule next process
- Performance
 - $q \text{ large} \Rightarrow \text{FIFO}$
 - $q \text{ small} \Rightarrow q \text{ must be large with respect to context switch,}$ otherwise overhead is too high

Example of RR with Time Quantum = 4

<u>Process</u>	Burst Time
P_1	24
P_2	3
P_3	3

• The Gantt chart is:

- Typically, higher average turnaround than SJF, but better response
- q should be large compared to context switch time
- q usually 10ms to 100ms, context switch < 10 usec

Time Quantum and Context Switch Time

Multilevel Queue

- Ready queue is partitioned into separate queues, eg:
 - foreground (interactive) foreground is high priority background is low priority
 - background (batch)
- Process permanently in a given queue
- Each queue has its own scheduling algorithm:
 - foreground RR
 - background FCFS
- Scheduling must be done between the queues:
 - Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of starvation.
 - Time slice each queue gets a certain amount of CPU time which it can schedule amongst its processes; i.e., 80% to foreground in RR
 - 20% to background in FCFS

Multilevel Feedback Queue

- A process can move between the various queues; aging can be implemented this way
- Multilevel-feedback-queue scheduler defined by the following parameters:
 - number of queues
 - scheduling algorithms for each queue
 - method used to determine when to upgrade a process
 - method used to determine when to demote a process
 - method used to determine which queue a process will enter when that process needs service

Example of Multilevel Feedback Queue

Three queues:

- Q_0 RR with time quantum 8 milliseconds
- Q_1 RR time quantum 16 milliseconds
- $Q_2 FCFS$

Scheduling

- A new job enters queue Q₀ which is served FCFS
 - When it gains CPU, job receives 8 milliseconds
 - If it does not finish in 8 milliseconds, job is moved to queue Q₁
- At Q₁ job is again served FCFS and receives 16 additional milliseconds
 - If it still does not complete, it is preempted and moved to queue Q₂

Algorithm Evaluation

- How to select CPU-scheduling algorithm for an OS?
- Determine criteria, then evaluate algorithms
- Deterministic modeling
 - Type of analytic evaluation
 - Takes a particular predetermined workload and defines the performance of each algorithm for that workload
- Consider 5 processes arriving at time 0:

Process	Burst Time
P_1	10
P_2	29
P_3	3
P_4	7
P_5	12

Deterministic Evaluation

For each algorithm, calculate minimum average waiting time

Simple and fast, but requires exact numbers for input, applies only to those inputs

PCS is 28ms:

Non-preemptive SFJ is 13ms:

RR is 23ms:

Queueing Models

- Describes the arrival of processes, and CPU and I/O bursts probabilistically
 - Commonly exponential, and described by mean
 - Computes average throughput, utilization, waiting time, etc
- Computer system described as network of servers, each with queue of waiting processes
 - Knowing arrival rates and service rates
 - Computes utilization, average queue length, average wait time, etc

Little's Formula

- *n* = average queue length
- W = average waiting time in queue
- λ = average arrival rate into queue
- Little's law in steady state, processes leaving queue must equal processes arriving, thus:
 - $n = \lambda \times W$
 - Valid for any scheduling algorithm and arrival distribution
- For example, if on average 7 processes arrive per second, and normally 14 processes in queue, then average wait time per process = 2 seconds

Simulations

- Queueing models limited
- Simulations more accurate
 - Programmed model of computer system
 - Clock is a variable
 - Gather statistics indicating algorithm performance
 - Data to drive simulation gathered via
 - Random number generator according to probabilities
 - Distributions defined mathematically or empirically
 - Trace tapes record sequences of real events in real systems

Evaluation of CPU Schedulers by Simulation

Implementation

- Even simulations have limited accuracy
- Just implement new scheduler and test in real systems
 - High cost, high risk
 - Environments vary
- ☐ Most flexible schedulers can be modified per-site or per-system
- Or APIs to modify priorities
- But again environments vary

