Intégration et théorie de la mesure

Théorie de la mesure

Question 1/12

Espace mesuré

Réponse 1/12

$$(X, \mathcal{A}, \mu)$$

Question 2/12

$$\sigma(C)$$

Réponse 2/12

$$\bigcap_{\substack{\mathcal{A} \text{ tribu} \\ C \subset \mathcal{A}}} (\mathcal{A})$$

Question 3/12

Mesure σ -finie

Réponse 3/12

$$\exists (X_n) \in \mathcal{A}^{\mathbb{N}}, X = \bigcup_{n \in \mathbb{N}} (A_n) \text{ et } \forall n \in \mathbb{N},$$

$$\mu(A_n) < +\infty$$

Question 4/12

Espace mesurable

Réponse 4/12

$$(X,\mathcal{A})$$

Question 5/12

Tribu borélienne

Réponse 5/12

Tribu engendrée par les ouverts

Question 6/12

Limites de fonctions mesurables

Réponse 6/12

```
Si (f_n) est une suite de fonctions mesurables
alors \sup_{n\in\mathbb{N}}(f_n), \inf_{n\in\mathbb{N}}(f_n), \limsup_{n\in\mathbb{N}}(f_n) et
\liminf_{n\in\mathbb{N}}(f_n) sont mesurables
```

Question 7/12

$$\sigma$$
-algèbre (ou tribu)

Réponse 7/12

$$\mathcal{A}$$
 est une σ -algèbre si $\varnothing \in \mathcal{A}$, $\forall A \in \mathcal{A}$, $A^{\complement} \in \mathcal{A}$ et $\forall (A_n) \in \mathcal{A}^{\mathbb{N}}$, $\bigcup (A_n) \in \mathcal{A}$

 $n \in \mathbb{N}$

Question 8/12

Mesure finie

Réponse 8/12

$$\mu(X) < +\infty$$

Question 9/12

Mesure (positive)

Réponse 9/12

$$\mu: \mathcal{A} \to \mathbb{R}_+$$
 est une mesure si $\mu(\emptyset) = 0$ et pour tout $(A_n) \in \mathcal{A}^{\mathbb{N}}$ vérifiant $i \neq j \Rightarrow A_i \cap A_j = \emptyset$ alors $\mu\left(\bigcup_{n \in \mathbb{N}} (A_n)\right) = \sum_{n \in \mathbb{N}} (\mu(A_n))$

Question 10/12

Fonction mesurable

Réponse 10/12

$$f:(X,\mathcal{A})\to (Y,\mathcal{B})$$
 est mesurable si $f^{-1}(\mathcal{B})\subset \mathcal{A}$

Question 11/12

Algèbre (de Boole)

Réponse 11/12

$$\mathcal{A}$$
 est une algèbre si $\varnothing \in \mathcal{A}, \forall A \in \mathcal{A}, A^{\complement} \in \mathcal{A}$ et $\forall (A, B) \in \mathcal{A}^2, A \cup B \in \mathcal{A}$

Question 12/12

Intersection de tribus

Réponse 12/12

Toute intersection de tribus est une tribu