

Metagenomics Summer School 2022

Day 1

Introduction to Bash scripting Decision tree Quality filtering WGS data Genome assembly Assembly evaluation

Welcome!

- Housekeeping
- Etherpad for collaborative Q&A/comments
 - https://tinyurl.com/mgss2022etherpad
- Overview of attendees
 - Where are we from?
 - How experienced are we?
- Any questions?

WiFi

Wifi Name: UoA-Guest-WiFI

Username: workshop@uoawifi.com

Password: eQ2D8dYf

Where are we from?

How experienced are we?

Genomics Aotearoa - Resources

Genomics Aotearoa – GitHub repositories

https://github.com/GenomicsAotearoa/

- Metagenomics Summer School material
- RNA seq workshop
- Environmental metagenomics
 - Metagenomic annotation and binning
- Methods and musings
 - Bin cluster refinement
 - Genome assembly ont
 - Metagenomic ont

Starting each session

- 1. Log in to the NeSI Jupyter hub via a browser
- 1. Open the workshop exercise materials on GitHub
- 1. Optional: Open a (plain text) text editor for taking notes

Bash scripting

Task: Bash scripting

Go to Github MGSS webpage

Tasks:

- Introduction to shell
- Introduction to HPC & HPC job

Metagenomic decision tree(s)

Our goal: genome recovery

Decision tree

- Starts with experimental design
- DNA extraction
- WGS library prep
- Amount of sequencing

DNA input

 Very low inputs (e.g. nanograms) for Nextera library prep = enzymatic fragmentation with broad size
 distributions

 High inputs (e.g. 100s ng) for TruSeq = physical fragmentation with defined size selection

Genome recovery per environment

Estimate sequencing depth

Community structure matters

Estimate sequencing depth

- Estimate generously
- Determine/guesstimate relative abundance of rarest target organism
- Determine/guesstimate the average genome size
- Factor in larger eukaryote genomes
- Decide the minimum desired coverage (e.g. 30x)

e.g., 5% relative abundance = 5% of sequence data

Prokaryotic genome sizes

Fig. 1. Ranges of bacterial and archaeal genome sizes. Abscissa shows genome size, Mbp; ordinate shows number of genomes; solid line indicates bacterial genomes; dashed line indicates archaeal genomes; A, C. ruddii genome; B, N. equitans genome; C, minimal size for free-living microorganisms; D, major peak for genome sizes of bacterial and archaeal genomes; E, minor peak for bacterial genomes; F, Nostoc punctiforme genome; G, Sorangium cellulosum genome; and H, Van Nimwegen limit.

Estimate sequencing depth

- Estimate generously
- Determine/guesstimate relative abundance of rarest target organism
- Determine/guesstimate the average genome size
- Factor in larger eukaryote genomes
- Decide the minimum desired coverage (e.g. 30x)

e.g., 5% relative abundance = 5% of sequence data

Mock parameters:

- Bacterial genome 5 Mbp long
- 5% abundance (need 100/5 or 20x)
- 30x coverage

5 Mbp x 20 x 30 = 3,000 Mbp (or 3 Gbp)

When you have so many genomes

You need a:

- Clear goal
- Question
- Hypothesis to test

Q&A

Approaches to metagenomics analyses, e.g.

- Short read vs long read sequencing
- Assembled genomes vs unbinned reads/contigs

Quality control/filtering raw reads

The FastQ data format

```
@SEQUENCE 1"
ATCGATCGATCG
4:<ATTTFTTTT
@SEQUENCE 2
AATGATCCATG
@SEQUENCE 3
TGTGTGACATG
BBGBBCIFIII
```

Each sequence is represented by four lines

- 1. Sequence name
- 2. Sequence content
- 3. Spacer line (+, or +Sequence name)
- 4. Quality information

The FastQ data format

- What does the quality score even mean?
 - It represents the probability of a nucleotide position being incorrectly called

$$Q = -10 \log_{10} p$$

Q	р	Prob. correct
0	1	0
10	0.1	0.9
20	0.01	0.99
30	0.001	0.999
40	0.0001	0.9999

How each Q value is encoded varies between sequencing platforms

Generally we work with the **Illumina 1.8+** (Phred+33) standard

Quality filtering WGS data

- Remove barcode and adapter regions
- Remove low-quality regions of reads
- Identify potential problems that occurred during sequencing
 - Deciphering 'aberrant' metrics in FastQC
 - e.g. Adapter read-through
 - e.g. Rapid drop off in sequence quality

Quality filtering WGS data

- Remove barcode and adapter regions
- Remove low-quality regions of reads
- Identify potential problems that occurred during sequencing
 - Deciphering 'aberrant' metrics in FastQC
 - e.g. Adapter read-through
 - e.g. Rapid drop off in sequence quality

Task: Quality filtering

Go to Github MGSS webpage

Tasks:

- Visualisation with FastQC
 - Inspecting FASTQ files
 - Identifying regions of concern
- Read trimming and adapter removal with Trimmomatic
 - Removing adapter sequences
 - Removing low-quality regions
- Diagnosing poor libraries
- (Optional) Filtering out host DNA

Common issues with WGS data

Common issues with WGS data

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3%20Analysis%20Modules/

Filtering out host DNA

Metagenome data derived from microbial communities associated with a host should ideally be filtered to remove any reads originating from host DNA. This may improve the quality and efficiency of downstream data processing

Important for submission to databases e.g. NCBI

- Ethics for human host DNA
- Taonga species in Aotearoa

Task: Quality filtering

Go to Github MGSS webpage

Tasks:

- ✓ Visualisation with FastQC
 - Inspecting FASTQ files
 - Identifying regions of concern
- Read trimming and adapter removal with Trimmomatic
 - Removing adapter sequences
 - Removing low-quality regions
- Diagnosing poor libraries
 - (Optional) Filtering out host DNA

Assembly

Overlap-Consensus-Layout (OCL) assembly

Overlap-Consensus-Layout (OCL) assembly

TTGAAGAGTT

GGCTCAGATT

TTTGATCATG

AAGAGTTTGA

AACGCTGGCG

GATTGAACGC

CTCAGATTGA

TGAAGAGTTT

ACGCTGGCGC

TCATGGCTCA

Overlap-Consensus-Layout (OCL) assembly

The problem for de novo assembly?

N. comparisons =
$$\frac{(n)(n-1)}{2} = \frac{(10)(10-1)}{2} = 45$$

De Bruijn graph assembly

Break reads into shorter k-mers

Number kmers per sequence = (L-k)+1k = k-mer length L = sequence length

TTGA TGAA GAAG AAGA AGAG GAGT AGTT

De Bruijn graph assembly

Identify sequences of shared *k*-mers

TTGAAGAGTT

TTGA TGAA GAAG AAGA AGAG GAGT AGTT GTTT TTTG TTGA

De Bruijn graph assembly

Identify sequences of shared *k*-mers

TTGA TGAA GAAG <mark>AAGA AGAG GAGT AGTT</mark> GTTT TTTG TTGA

TTGAAGAGTTTGA

De Bruijn graph assembly

Problem #1 - k-mers are short?

```
TTGAAGAGTTTGATCATGGCTCAGATTGAACGCTGGCGC
TTG TTG TTG TGG

TGA TGA GGC GGC

GAA

TCA TCA CGC CGC
```


De Bruijn graph assembly

Problem #1 - k-mers are short?

TTGAAGAGTTTGATCATGGCTCAGATTGAACGCTGGCGC

GAA

De Bruijn graph assembly

Problem #2 - k-mers are long?

TTGAAGAG TGAAGAGT GAAGAGTT

AAGAGTTT AGAGTTTG GAGTTTGA

De Bruijn graph assembly

We want a range of k-mer sizes

- Short k-mers yield higher coverage
- Long k-mers assemble longer contigs (jump repeat regions)

Other considerations for picking *k*-mer sizes

- Size cannot be longer than read length
- Always pick odd k-mer sizes
- The more sizes you use, the longer assembly will take

K-mers	N. contigs	Longest contig	N50 >2kbp	L50 >2kbp
21, 33, 55	4,239,806	660,812	6,782	12,906
43, 55, 77, 99, 121	2,519,669	1,022,083	7,990	12,673
21, 43, 55, 77, 99, 121	3,388,682	1,022,083	7,789	13,327

Outcomes vary by dataset.

Assembly optimization generally requires empirically testing:

- Assemblers
- Parameters

There are three good options

- SPAdes
- MegaHIT
- IDBA-UD

There are three good options

- SPAdes
- MegaHIT
- IDBA-UD

In conclusion, it can be said that the choice of assembler should depend on the data at hand and on the exact research question asked. Generally, the best assembly is performed by multi k-mer assemblers such as metaSPAdes, Megahit and IDBA-UD. If micro diversity is not a major issue, and the primary research goal is to bin and reconstruct representative bacterial genomes from a given environment, metaSPAdes should clearly be the assembler of choice. This assembler yields the best contig size statistics while capturing a high degree of community diversity, even at high complexity and low read coverage. If mico diversity is however an issue, or if the degree of captured diversity is far more important than contig lengths, then IDBA-UD or Megahit should be preferred.

There are three good options

- SPAdes
- MegaHIT
- IDBA-UD

In conclusion, it can be said that the choice of assembler should depend on the data at hand and on the exact research question asked. Generally, the best assembly is performed by multi k-mer assemblers such as metaSPAdes, Megahit and IDBA-UD. If micro diversity is not a major issue, and the primary research goal is to bin and reconstruct representative bacterial genomes from a given environment, metaSPAdes should clearly be the assembler of choice. This assembler yields the best contig size statistics while capturing a high degree of community diversity, even at high complexity and low read coverage. If mico diversity is however an issue, or if the degree of captured diversity is far more important than contig lengths, then IDBA-UD or Megahit should be preferred.

What are some key considerations?

Biological

- 1. What is your hypothesis?
- 2. What do you want from the data?

Computational and resource

- 1. How much data do you have?
- 2. What are your computational resources?
- 3. What are your *time* resources?

What are some key considerations?

Too much data?

- Consider testing sub-samples when coverage is very high, e.g. 100s or 1000s
- Example: abundant groundwater genome at 2000x coverage in full dataset
- Empirical testing of subsample sizes identified assembly sweet spot

Task: Assembly

Go to Github MGSS webpage

Tasks:

- Preparing data for assembly (Run IDBA_UD assembly)
- Exploring assembler options
 - O Configure the basic parameters for assembly
- Submitting jobs to NeSI via slurm
 - Prepare an assembly job to run under slurm
- Run SPAdes and IDBA_UD assembly
- (Optional) Submitting variant assemblies to NeSI

Future considerations and Assembly evaluation

Future considerations

Future considerations

Assembly options:

- Assemble each community separately
- Combine reads and assemble all together (co-assembly)
- Combine only reads from the same season (mini co-assemblies)

Future considerations: rRNA genes

SSU rRNA reference guided and iterative assembly

Future considerations: rRNA genes

Future considerations: rRNA genes

Metatranscriptomics

Assembly evaluation

Parameters to use in evaluation:

- Total length of contigs (= amount assembled)
- Total length of contigs usable (e.g. >1,000 bp)
- Number of contigs (less is more)
- N50 (minimum contig length at 50% of the total genome length)
- Length distribution of contigs
- Recovery of particular genomes (determined at later stage)

Task: Assembly evaluation

Go to Github MGSS webpage

Tasks:

- Assembly evaluation
- Short contig removal

