

CORPORACION UNIVERSITARIA DEL HUILA CORHUILA FACULTAD DE INGENIERIA LEY DE COULOMB FUERZAS ELECTRICAS

LABORATORIO 3: POTENCIAL ELÉCTRICO

- Calcular el potencial eléctrico, la diferencia de potencial y la energía potencial de partículas.
- Calcular la Diferencia de potencial de dos o más cargas con respecto a un punto.
- Hallar la energía que se requiere para trasladar una partícula de un punto a otro.

Acceda al simulador en:

https://phet.colorado.edu/sims/html/charges-and-fields/latest/charges-and-fields en.html .

Procedimiento:

- 1. Ahora se va a hacer uso del sensor de superficies equipotenciales, para ello ubique una carga positiva de 5 nc en el centro del entorno de trabajo, luego habilite la opción "mostrar números" posteriormente ubique el sensor de superficies equipotenciales y muévalo a algún punto de la pantalla de trabajo y presione dibujar superficie equipotencial, indique cómo es la superficie encontrada, desplácese sobre la misma e indique que observa en el dato numérico.
- 2. Reinicie la simulación y ubique un dipolo eléctrico una carga positiva de 5 nC y otra de 5 nC sobre una misma línea recta, separadas 2 cuadriculas, Anexe la imagen obtenida mostrando la intensidad y dirección del campo eléctrico, dibuje 5 superficies equipotenciales alrededor de cada carga, y haga un testeo con un sensor de campo moviéndolo sobre una superficie equipotencial, qué observo y que concluye en esta situación.

PARTE II: Relación entre campo y potencial

1. Reinicie la simulación, habilite las opción "rejilla" y "Mostrar números" y ubique una carga positiva de 1nC en el vértice de un recuadro, posteriormente a una distancia de 2 cuadrillas dibuje una superficie equipotencial ubique el valor mostrado en la tabla 1. Y sobre ese mismo punto ubique un sensor de campo eléctrico E. Manteniendo la distancia constante sobre ponga otra carga de 1nC y repita el ejercicio hasta llegar a una carga de 8 nC.

TABLA 1: Relación entre V y E

d= 2 m	V (voltios)	4.5	9	13.5	18	22.5	27	31.5	36	40.5	45
	E (V/m)	2.24	4.48	6.72	8.96	11.2	13.5	15.7	17.9	20.2	22.4

Con los datos encontrados en la tabla 1. Realice la gráfica de Campo eléctrico E (eje y) vs V (eje x) y concluya que significan este gráfico.

2. Reinicie la simulación, habilite las opción "rejilla" y "Mostrar números" y ubique una carga negativa de -1 nC en el vértice de un recuadro, posteriormente a una distancia de 2

8.

cuadrillas dibuje una superficie equipotencial ubique el valor mostrado en la tabla 2. Y sobre ese mismo punto ubique un sensor de campo eléctrico E. Manteniendo la

CORPORACION UNIVERSITARIA DEL HUILA CORHUILA FACULTAD DE INGENIERIA LEY DE COULOMB FUERZAS ELECTRICAS

distancia constante sobre ponga otra carga de -1nC y repita el ejercicio hasta llegar a una carga de -8 nC.

TABLA 1: Relación entre V y E

d= 2 m	V (voltios)	-4.5	-9	-13.5	-18	-22.5	-27.1	31.6	-36	-40.6	-45.1
	E (V/m)	2.26	4.51	6.77	9.04	11.3	13.6	15.8	18.1	20.3	22.6

Con los datos encontrados en la tabla 2. Realice la gráfica de Campo eléctrico E (eje y) vs V (eje x) y concluya que significan este gráfico.

PARTE III: Relación entre campo y potencial vs r.

1.	Coloque seis cargas de +1 nC una encima de la otra en algún lugar	r	<i>E</i> (V/m)	
	del lado izquierdo de la pantalla. (Puede ir a cualquier lugar, pero	(m)		
	debe haber suficiente espacio para medir 8 m de distancia).	1	52.6	
		2	13.5	
2.	Desde el cuadro en la parte inferior, arrastre un Sensor y colóquelo 1	3	6.02	
	m a la derecha de su carga. Este sensor mide el campo E en el lugar	4	3.36	
	de su colocación. En la tabla de la derecha, registre la magnitud del	5	2.16	
	campo E a una distancia r de 1 m. Ignora los grados.	6	1.50	
3.	Arrastre el sensor a las otras distancias que se muestran en la tabla,	7	1.10	
	luego registre las medidas del campo E.	8	0.85	
4.	Ahora usando el voltímetro, registre el potencial V dibujando una lín	ea r (m) V(V)	
	para cada distancia. Completa la tabla del extremo derecho.	1	53.69	
		2	27.04	
5.	Escriba la ecuación para el campo eléctrico a cualquier distancia r	de 3	18.07	
	una carga puntual $q:$ E= k* q /r^2_	- 4	13.47	
6.	Escriba la ecuación para el potencial a cualquier distancia <i>r</i> de una car	5	10.80	
0.	puntual q : $V = k*q/r$	ga 6	9.013	
7.	Usando la tabla anterior, haga un gráfico en Excel del campo eléctric	co 7	7.71	
	E y la distancia r para determinar la constante k de usando la línea de		6.76	
	tendencia apropiada. Halle el porcentaje de error de k o el porcentaje	de difere	encia (el que	
	sea más apropiado)?			

Usando la tabla anterior, haz un gráfico en Excel del voltaje V y la distancia r para para

determinar q. Relacione el valor de q con el suministrado.