http://godot-bloggy.tech/

EDUCATION

Hong Kong University of Science and Technology Clear Water Bay, Hong Kong Master of Philosophy - Mechanical Engineering (Aerospace); CGGA: 3.5/4.3 Sep. 2018 - Sep. 2020

Manipal Institute of Technology

Bachelor of Technology - Aerospace Engineering; CGPA: 7.59/10.00

Symbiosis International School

International Baccalaureate - Diploma Programme; Results: 37/45 Aug. 2011 - May. 2013

Symbiosis International School

IGCSE, Cambridge; Percentage: 88% (Distinction Awarded)

Pune, India Aug. 2010 - May. 2011

Manipal, India

Pune, India

Aug. 2014 - May 2018

EXPERIENCE

OCTAD Lab, Hong Kong University of Science and Technology

M.Phil Researcher under Professor Rhea LIEM, Ph.D

Clear Water Bay, Hong Kong Sep. 2018 - Sep. 2020

Email: aseth@connect.ust.hk

- o Amphibious Aircraft Design Framework:
 - * Developing a conceptual design and sizing framework beyond existing literature.
 - * Investigating and optimising aircraft stability, especially within the takeoff regime.
 - * Minimising hull drag for takeoffs, possibly with the use of hydrofoils.

Hong Kong University of Science and Technology

Research Intern under Professor Rhea LIEM, Ph.D

Clear Water Bay, Hong Kong Feb. 2018 - Jun. 2018

- o Investigation of Hydrofoils for Amphibious Aircraft:
 - * Developing code for takeoff analysis of amphibious aircraft in Python.
 - * Performing automation of CFD analyses of hydrofoils for amphibious aircraft using ANSYS Fluent and OpenFOAM.
 - * Performing aerostructural analyses of wings for amphibious aircraft.

Centre for Avionics, Manipal Academy of Higher Education

Head of Aircraft Design

Manipal, India Aug. 2016 - Dec. 2017

- VTOL-Hybrid Aircraft Design: Responsible for technical design of Micro Air Vehicles (MAVs) to match specific and complex requirements for government-funded projects. Responsibilities:
 - * Designing an autonomous, high endurance, long-range radio-controlled quadcopter-airplane hybrid aircraft for vertical flight (VTOL) and forward flight.
 - * Developing code in MATLAB to retrieve aircraft performance characteristics from automated radio-controlled flights using autopilots such as Pixhawk. Generating CAD models in CATIA, performing CFD analyses using ANSYS Fluent and structural analyses using ANSYS Mechanical for prototyping.

AeroMIT - Aeromodelling Team, Manipal Institute of Technology

Manipal, India

Head of Aerodynamics

Apr. 2016 - Apr. 2017

- o SAE Aero Design (Micro Class), international competition sponsored by Lockheed Martin: Development of a small, radio-controlled aircraft with a high payload fraction that fits into a cylinder of 6 inches in diameter. Scoring is based on maximising payload fraction, minimising cylinder length and optimising aircraft endurance. Responsibilities:
 - * Aircraft Design Dimensioning and configuration.
 - * Optimising aircraft performance parameters such as payload carrying capacity and endurance.
 - * Computational fluid dynamics analyses on high-lift airfoils/wings.
 - * Optimising flight dynamics and stability by running simulations using MATLAB and Simulink.
 - * Developing mathematical models for structural analyses using MATLAB, Python and ANSYS Mechanical.
 - * Preparing a technical design report and presentation on the developed aircraft.
 - * Teaching aerodynamics, flight dynamics, aircraft design and CFD to juniors of the team.

2018 East Results: Rank 1 in Design and Rank 3 in Technical Presentation.
2017 West Results: Rank 1 in Highest Payload Lifted, Rank 2 in Highest Payload Fraction, Rank 4 Overall.
2016 East Results: Rank 3 in Highest Payload Lifted, Rank 4 in Highest Payload Fraction, Rank 5 in Design and Overall.

- TATA Protean UAV Challenge 2016-17: This national competition's aim is to develop a multi-rotor drone that is able to switch between quad, hex and octo configurations while midair with stability.
 - * Developed the mathematical model to ensure stability between configurations using MATLAB and Simulink.
 - * Performed computational structural analyses to ensure rigidity and minimise vibrations.

Results: Awarded 1st position with prize money.

SOFTWARE EXPERTISE

- Software: ANSYS, CATIA, SolidWorks, OpenFOAM, MATLAB, XFLR5
- Languages: Python, Haskell, Lua, Bash, C++, MEX

PROJECTS

- Computational Fluid Dynamics: Personal research into CFD techniques with various applications.
 - Automated CFD routines in Python using various solvers for generation of surrogate models to obtain aerodynamic coefficients for airfoils with varying angles of attack and Reynolds numbers.
 - o Automated meshing routines in Python to generate high-quality O-grid and C-grid meshes in 2D and 3D for airfoils and wings using ANSYS ICEM CFD: http://godot-bloggy.tech/post/o-grid-c-grid-comparison/
 - Performed flow analyses over various airfoils, and complex wing geometries with aerodynamic devices such as winglets and flaps, including cavitation studies using ANSYS ICEM CFD, ANSYS Mesh, Fluent and OpenFOAM.
 - Programming CFD codes by using and independently developing Prof. Lorena Barba's '12 Steps to Navier Stokes'
 CFDPython course as a reference: http://godot-bloggy.tech/post/cfd-python/
- Dubby Pendy: A double pendulum simulator programmed in Lua using the LÖVE 2D framework for graphics to analyse phase spaces and develop an understanding of dynamical systems.
- **Bloggy**: A technical blog to post personal project developments and academic discoveries. Research topics include mathematics, physics, aerodynamics, and music. Some notable posts:
 - o Calculus of Variations Induced Drag Over a Wing
 - Academics Physics and Mathematics
 - o Investigation The Roots of Unity
- Workshop on XFLR5 and Aerodynamics, IE Aerospace:
 - Demonstrated the use of XFLR5 in elementary aerodynamic analyses such as airfoil and wing design to freshman engineering students.
 - Taught introductory aerodynamics and introduced computational fluid dynamics as a tool for aerodynamic analysis using ANSYS Fluent.