Exercise 1
$$f(1) = \frac{1}{3} \times 1^2 - \frac{2}{1} = \frac{1}{3} - 2 = \frac{1}{3} - \frac{6}{3} = \left[-\frac{5}{3}\right]$$
 $f(-1) = \frac{1}{3} \times (-1)^2 - \frac{2}{-4} = \frac{1}{3} + 2 = \left[\frac{7}{3}\right]$
 $f(\frac{3}{2}) = \frac{1}{3} \times \left(\frac{3}{2}\right)^2 - \frac{2}{\frac{3}{2}} = \frac{3}{4} - 2 \times \frac{2}{3} = \frac{3}{4} - \frac{4}{3} = \left[\frac{7}{4}\right]$
 $f(\sqrt{3}) = \frac{1}{3} \cdot \left(\sqrt{3}\right)^2 - \frac{2}{\sqrt{3}} = \frac{3}{3} - \frac{2\sqrt{3}}{3} = 1 - \frac{2\sqrt{3}}{3}$.

Exercise 2 Sort $n \in \mathbb{R}$. On a les equivolenes:

$$f(n) = 2 \iff 3n+1 = 2 \iff 3n+1 = 10$$
 $\Rightarrow 3x = 9 \iff 2 = 3$.

Con en déduit que 2 a un unique antiedent fair f , qui est 3.

Exercise 4 1. L'avandle de définition de f lu graphiquement est $f(-\frac{1}{2}, 10)$
 $f(3) = 3/5$ $f(n) = 1 \iff n \in \{-2, 2, 2\}$ Les artécédents de 1 Aont donc -2 et $2/2$ (amim).

4. $f(n) \le 0 \iff n \in [-1, 2] - 5 = f(n) > 2 \iff n \in [-2, 4/2, 10]$

6. Four $f(n) \le 0 \iff n \in [-1, 2] - 5 = f(n) > 2 \iff n \in [-1, 10]$

Exercise 5 La Faun con four $x = 2$, $x \le 4$ mais $x = 6/4$. And whatein de $f(x) > 0$.

1.6 Vroi car si f(n) > 0, alors not solution done $n \in [3;4]$ done $x \le 4$, on $n \in [-2;1]$ done $n \le 1 \le 4$.

1-c Faux, n=2 m'est pos solution et n<4. 2- $f(n) \le 0 \iff x \in [1-\infty; -2[U]1; 3[U[4; +\infty[]$.