Module Interface Specification for Glass-BR

Spencer Smith

July 23, 2018

Contents

1	Intr	coduction	5			
2	2 Notation					
3 Module Hierarchy						
4	MIS	S of Control Module	7			
	4.1	Module	7			
	4.2	Uses	7			
	4.3	Syntax	7			
		4.3.1 Exported Constants	7			
		4.3.2 Exported Access Programs	7			
	4.4	Semantics	7			
		4.4.1 State Variables	7			
		4.4.2 Access Routine Semantics	7			
5	MIS	S of Input Module	9			
	5.1	Module	9			
	5.2	Uses	9			
	5.3	Syntax	9			
	5.4	Semantics	10			
		5.4.1 Environment Variables	10			
		5.4.2 State Variables	10			
		5.4.3 Assumptions	10			
		5.4.4 Access Routine Semantics	11			
	5.5	Considerations	12			
6	МТ	S of LoadASTM Module	13			
U	6.1	Module	13			
	6.2	Uses	13			
	6.3	Syntax	13			
	0.0	6.3.1 Exported Constants	13			
		6.3.2 Exported Access Programs	13			
	6.4	Semantics	13			
	0.4	6.4.1 Environment Variables	13			
		6.4.2 State Variables	13			
		6.4.3 State Invariant	13			
		6.4.4 Assumptions	13			
		6.4.5 Access Routine Semantics	13			
		U.4.0 ACCESS MULTITLE DEMAINING	ΤÛ			

7	MIS	of Ca	dc Module	
	7.1	Modul	e	
	7.2	Uses		
	7.3	Syntax	ς	
		7.3.1	Exported Constants	
		7.3.2	Exported Access Programs	
	7.4	Seman	tics	
		7.4.1	State Variables	
		7.4.2	State Invariant	
		7.4.3	Assumptions	
		7.4.4	Access Routine Semantics	
8	MIS	of Gl	assType ADT Module	
	8.1		ate Module	
	8.2			
	8.3		ς	
		8.3.1	Exported Constants	
		8.3.2	Exported Types	
		8.3.3	Exported Access Programs	
	8.4		tics	
		8.4.1	State Variables	
		8.4.2	State Invariant	
		8.4.3	Assumptions	
		8.4.4	Access Routine Semantics	
9	MIS	of Th	nickness ADT Module	
	9.1	Templa	ate Module	
	9.2	_		
	9.3		ς	
		~	Exported Constants	
		9.3.2	Exported Types	
		9.3.3	Exported Access Programs	
	9.4		tics	
		9.4.1	State Variables	
		9.4.2	State Invariant	
		9.4.3	Assumptions	
		9.4.4	Access Routine Semantics	
10			nctADT Module	
		_	ate Module	
	10.3		<u> </u>	
		10.3.1	Exported Constants	

		10.3.2 Exported Types	21
		10.3.3 Exported Access Programs	21
	10.4	Semantics	21
		10.4.1 State Variables	21
		10.4.2 State Invariant	22
		10.4.3 Assumptions	22
		10.4.4 Access Routine Semantics	22
	10.5	Considerations	22
11	MIS	of ContoursADT Module	23
	11.1	Template Module	23
	11.2	Uses	23
	11.3	Syntax	23
		11.3.1 Exported Constants	23
		11.3.2 Exported Types	23
		11.3.3 Exported Access Programs	23
	11.4	Semantics	23
		11.4.1 State Variables	$\frac{-3}{23}$
		11.4.2 State Invariant	23
		11.4.3 Assumptions	24
		11.4.4 Access Routine Semantics	24
12	MIS	of SeqServices Module	2 6
12		of SeqServices Module Module	26 26
12	12.1	· · · · · ·	_
12	12.1 12.2	Module	26
12	12.1 12.2	Module	26 26
12	12.1 12.2	Module	26 26 26
12	12.1 12.2 12.3	Module	26 26 26 26
12	12.1 12.2 12.3	Module Uses Syntax 12.3.1 Exported Constants 12.3.2 Exported Access Programs Semantics	26 26 26 26 26
12	12.1 12.2 12.3	Module	26 26 26 26 26 26
12	12.1 12.2 12.3	Module Uses Syntax 12.3.1 Exported Constants 12.3.2 Exported Access Programs Semantics 12.4.1 State Variables 12.4.2 State Invariant	26 26 26 26 26 26 26 26 26
12	12.1 12.2 12.3	Module Uses Syntax 12.3.1 Exported Constants 12.3.2 Exported Access Programs Semantics 12.4.1 State Variables 12.4.2 State Invariant 12.4.3 Assumptions	26 26 26 26 26 26
12	12.1 12.2 12.3	Module Uses Syntax 12.3.1 Exported Constants 12.3.2 Exported Access Programs Semantics 12.4.1 State Variables 12.4.2 State Invariant	26 26 26 26 26 26 26 26 26 26
	12.1 12.2 12.3 12.4	Module Uses Syntax 12.3.1 Exported Constants 12.3.2 Exported Access Programs Semantics 12.4.1 State Variables 12.4.2 State Invariant 12.4.3 Assumptions	26 26 26 26 26 26 26 26 26 26
	12.1 12.2 12.3 12.4 MIS	Module Uses Syntax 12.3.1 Exported Constants 12.3.2 Exported Access Programs Semantics 12.4.1 State Variables 12.4.2 State Invariant 12.4.3 Assumptions 12.4.4 Access Routine Semantics	26 26 26 26 26 26 26 26 26
	12.1 12.2 12.3 12.4 MIS 13.1	Module Uses Syntax 12.3.1 Exported Constants 12.3.2 Exported Access Programs Semantics 12.4.1 State Variables 12.4.2 State Invariant 12.4.3 Assumptions 12.4.4 Access Routine Semantics of Output Module	26 26 26 26 26 26 26 26 26 26
	12.1 12.2 12.3 12.4 MIS 13.1 13.2	Module . Uses Syntax 12.3.1 Exported Constants 12.3.2 Exported Access Programs Semantics 12.4.1 State Variables 12.4.2 State Invariant 12.4.3 Assumptions 12.4.4 Access Routine Semantics of Output Module Module Module	266 266 266 266 266 266 266 266 268 288
	12.1 12.2 12.3 12.4 MIS 13.1 13.2	Module Uses Syntax 12.3.1 Exported Constants 12.3.2 Exported Access Programs Semantics 12.4.1 State Variables 12.4.2 State Invariant 12.4.3 Assumptions 12.4.4 Access Routine Semantics of Output Module Module Uses Syntax	266 266 266 266 266 266 266 266 266 268 288 28
	12.1 12.2 12.3 12.4 MIS 13.1 13.2	Module Uses Syntax 12.3.1 Exported Constants 12.3.2 Exported Access Programs Semantics 12.4.1 State Variables 12.4.2 State Invariant 12.4.3 Assumptions 12.4.4 Access Routine Semantics of Output Module Module Module Uses	266 266 266 266 266 266 266 266 288 288
	12.1 12.2 12.3 12.4 MIS 13.1 13.2 13.3	Module Uses Syntax 12.3.1 Exported Constants 12.3.2 Exported Access Programs Semantics 12.4.1 State Variables 12.4.2 State Invariant 12.4.3 Assumptions 12.4.4 Access Routine Semantics of Output Module Module Uses Syntax 13.3.1 Exported Constants 13.3.2 Exported Access Programs	266 266 266 266 266 266 266 266 268 288 28
	12.1 12.2 12.3 12.4 MIS 13.1 13.2 13.3	Module Uses Syntax 12.3.1 Exported Constants 12.3.2 Exported Access Programs Semantics 12.4.1 State Variables 12.4.2 State Invariant 12.4.3 Assumptions 12.4.4 Access Routine Semantics of Output Module Module Uses Syntax 13.3.1 Exported Constants	266 266 266 266 266 266 266 268 288 288

		13.4.3 State Invariant	28
		13.4.4 Assumptions	28
		13.4.5 Access Routine Semantics	26
14	MIS	S of Constants Module	30
	14.1	Module	3(
	14.2	Uses	3(
	14.3	Syntax	3(
		14.3.1 Exported Constants	3(
		14.3.2 Exported Types	3(
			3(
	14.4		3(
		14.4.1 State Variables	3(
		14.4.2 State Invariant	31
15	MIS	of Hardware Module	32
			32
			32

1 Introduction

The following document details the Module Interface Specifications for the implemented modules in the program Glass-BR. It is intended to ease navigation through the program for design and maintenance purposes. Complementary documents include the System Requirement Specifications (SRS) and Module Guide (MG). The full documentation and implementation can be found at https://github.com/smiths/caseStudies/tree/master/CaseStudies/glass.

2 Notation

The structure of the MIS for modules comes from Hoffman and Strooper (1995), with the addition that template modules have been adapted from Ghezzi et al. (2003). The mathematical notation comes from Chapter 3 of Hoffman and Strooper (1995). For instance, the symbol := is used for a multiple assignment statement and conditional rules follow the form $(c_1 \Rightarrow r_1|c_2 \Rightarrow r_2|...|c_n \Rightarrow r_n)$.

The following table summarizes the primitive data types used by Glass-BR

Data Type	Notation	Description
character	char	a single symbol or digit
integer	\mathbb{Z}	a number without a fractional component in $(-\infty, \infty)$
natural number	N	a number without a fractional component in $[1, \infty)$
real	\mathbb{R}	any number in $(-\infty, \infty)$
string	S	all finite sequences of symbols from the ASCII character set

The specification of Glass-BR uses some derived data types: sequences, strings, and tuples. Sequences are lists that represent a countable number of ordered values of the same data type, where the same value may occur more than once. Strings are sequences of characters. Tuples contain a list of values, potentially of different types. In addition, Glass-BR uses functions, which are defined by the data types of their inputs and outputs. Local functions are described by giving their type signature followed by their specification.

3 Module Hierarchy

To view the Module Hierarchy, see section 3 of the MG.

References

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.

Daniel M. Hoffman and Paul A. Strooper. Software Design, Automated Testing, and Maintenance: A Practical Approach. International Thomson Computer Press, New York, NY, USA, 1995. URL http://citeseer.ist.psu.edu/428727.html.

4 MIS of Control Module

4.1 Module

Control

4.2 Uses

Input (Section 5), LoadASTM (Section 6), Calc (Section 7), Output (Section 13)

4.3 Syntax

4.3.1 Exported Constants

```
sTSD = # String for path and filename for TSD file

sSDF = # String for path and filename for SDF file

sIn = # String for path and filename for Input file

sOut = # String for path and filename for Output file
```

4.3.2 Exported Access Programs

Name	In	Out	Exceptions
main	-	-	-

4.4 Semantics

4.4.1 State Variables

cTSD: ContoursT cSDF: ContoursT

 $q: \mathbb{R}$ $\hat{q}: \mathbb{R}$

 $J_{\mathrm{tol}}:\mathbb{R}$

 $J:\mathbb{R}$

 $\hat{q}_{\mathrm{tol}}:\mathbb{R}$

 $B:\mathbb{R}$

 $P_b: \mathbb{R}$ NFL: \mathbb{R}

 $LR : \mathbb{R}$

 $\begin{array}{l} is_safePb: \mathbb{B} \\ is_safeLR: \mathbb{B} \end{array}$

4.4.2 Access Routine Semantics

main():

- transition: Using the steps below, modify the state variables of this module, the state of the Input module, and the environment variable for the Output module.
 - cTSD = LoadASTM.LoadTSD(sTSD)
 - cSDF = LoadASTM.LoadSDF(sSDF)
 - Input.load_params(sIn)
 - q = cTSD.eval (Input.SD, Input.w * Input.TNT) # From SRS IM3
 - $-\hat{q} = \text{Calc.calc_q_hat}(q)$
 - $J_{\text{tol}} = \text{Calc.calc}_{\text{J-tol}}()$
 - $J = cSDF.evaly(Input.AR, \hat{q}) \# From SRS DD4$
 - $-\hat{q}_{\text{tol}} = \text{cSDF.eval}(\text{Input.AR}, J_{\text{tol}}) \# From SRS DD8$
 - $-B = \text{Calc.calc}_B(J)$
 - $-P_b = \text{Calc.calc.Pb}(B)$
 - $\text{ NFL} = \text{Calc.calc_NFL}(\hat{q}_{\text{tol}})$
 - $LR = Calc.calc_LR(NFL)$
 - $is_safePb = Calc.calc_is_safePb(P_b)$
 - $is_safeLR = Calc_calc_is_safeLR(LR, q)$
 - Output.output(sOut, is_safePb, is_safeLR, P_b , B, LR, q, J, NFL, \hat{q} , \hat{q}_{tol} , J_{tol})
 - print("Main has been executed and the results have been written to " + sOut)

5 MIS of Input Module

The secrets of this module are the data structure for input parameters, how the values are input and how the values are verified. The load and verify secrets are isolated to their own access programs. This module follows the singleton pattern; that is, there is only one instance of this module.

5.1 Module

Input

5.2 Uses

GlassTypeADT (Section 8), ThicknessADT (Section 9), Constants (Section 14), Hardware (Section 15)

5.3 Syntax

Name	In	Out	Exceptions
load_params	string	-	FileError
$verify_params$	-	-	ValueError
a	-	\mathbb{R}	
b	-	\mathbb{R}	
w	-	\mathbb{R}	
$P_{b_{ m tol}}$	-	\mathbb{R}	
TNT	-	\mathbb{R}	
SD_x	-	\mathbb{R}	
SD_y	-	\mathbb{R}	
SD_z	-	\mathbb{R}	
g	-	GlassTypeT	
t	-	ThicknessT	
m	-	\mathbb{R}	
k	-	\mathbb{R}	
E	-	\mathbb{R}	
t_d	-	\mathbb{R}	
LDF	-	\mathbb{R}	
LSF	-	\mathbb{R}	
h	-	\mathbb{R}	
GTF	-	\mathbb{R}	
SD	-	\mathbb{R}	
AR	-	\mathbb{R}	

5.4 Semantics

5.4.1 Environment Variables

inputFile: sequence of string #f[i] is the ith string in the text file f

5.4.2 State Variables

```
# From SRS R1
a: \mathbb{R}
b: \mathbb{R}
w: \mathbb{R}
P_{b_{\text{tol}}}: \mathbb{R}
TNT: \mathbb{R}
SD_x: \mathbb{R}
SD_y: \mathbb{R}
SD_z: \mathbb{R}
g: GlassTypeT
t: ThicknessT
\# From SRS R2
m: \mathbb{R}
k \colon \mathbb{R}
E: \mathbb{R}
t_d: \mathbb{R}
LDF: \mathbb{R}
LSF: \mathbb{R}
h: \mathbb{R}
GTF: \mathbb{R}
SD: \mathbb{R}
AR: \mathbb{R}
```

5.4.3 Assumptions

- load_params will be called before the values of any state variables will be accessed.
- The file contains the string equivalents of the numeric values for each input parameter in order, each on a new line. The order is the same as in the table in R1 of the SRS. Any comments in the input file should be denoted with a '#' symbol.

5.4.4 Access Routine Semantics

a:

• output: out := a

• exception: none

b:

• output: out := b

• exception: none

...

GTF:

• output: out := GTF

• exception: none

$load_params(s)$:

- transition: The filename s is first associated with the file f. inputFile is used to modify the state variables using the following procedural specification:
 - 1. Read data sequentially from inputFile to populate the state variables from SRS R1 (a to w).
 - 2. Calculate the derived quantities (all other state variables, from SRS R2) as follows:
 - $-m, k, E, t_d$, LSF as defined in Constants (Section 14)
 - LDF = $(\frac{t_d}{60})^{m/16}$ # From SRS DD3
 - -h = t.toMinThick() (Section 9)
 - GTF = g.GTF() (Section 8)
 - $SD = \sqrt{SD_x^2 + SD_y^2 + SD_z^2} \# From SRS DD10$
 - AR = a/b # From SRS DD11
 - 3. verify_params()
- exception: exc := a file name s cannot be found OR the format of inputFile is incorrect \Rightarrow FileError

verify_params():

• out: out := none

• exception: exc := # From the SRS Table 2, R3

```
\neg (a > 0)
                                \Rightarrow ValueError("dimension a must be positive")
\neg (AR \ge 0)
                                \Rightarrow ValueError("a must be equal to, or greater than, b")
\neg (d_{\min} \le a \le d_{\max})
                                \Rightarrow ValueError("a too large or small")
\neg (AR < AR_{max})
                                ⇒ ValueError("Allowable aspect ratio exceeded")
\neg (b > 0)
                                \Rightarrow ValueError("dimension b must be positive")
\neg (d_{\min} \le b \le d_{\max})
                                \Rightarrow ValueError("b too large or small")
\neg (0 < P_{b_{\text{tol}}} < 1)
                                \Rightarrow ValueError("P_{b_{\text{tol}}} must lie between 0 and 1")
\neg (w \ge 0)
                                \Rightarrow ValueError("charge weight w must be greater or equal to zero")
\neg (w_{\min} < w < w_{\max})
                                \Rightarrow ValueError("charge weight w is too small or too large")
\neg (TNT > 0)
                                ⇒ ValueError("TNT must be positive")
\neg (SD > 0)
                                ⇒ ValueError("stand off distance (SD) must be positive")
\neg (SD_{\min} < SD < SD_{\max})
                                ⇒ ValueError("stand off distance (SD) is too small or too large")
```

5.5 Considerations

The value of each state variable can be accessed through its name (getter). An access program is available for each state variable. There are no setters for the state variables, since the values will be set and checked by load params and not changed for the life of the program.

6 MIS of LoadASTM Module

6.1 Module

LoadASTM

6.2 Uses

FunctADT (Section 10), ContoursADT (Section 11)

6.3 Syntax

6.3.1 Exported Constants

None

6.3.2 Exported Access Programs

Routine name	In	Out	Exceptions
LoadTSD	s: string	ContoursT	FileError
LoadSDF	s: string	ContoursT	FileError

6.4 Semantics

6.4.1 Environment Variables

infile: two dimensional sequence of text characters

6.4.2 State Variables

None

6.4.3 State Invariant

None

6.4.4 Assumptions

The input file will match the given specification.

6.4.5 Access Routine Semantics

LoadTSD(s)

- output: Create *out* following the following steps. Read data from the file infile associated with the string s. Use this data to create a ContoursT object. For each value of w create an object of FunctT and add it to the ContoursT object. Each of the FunctT objects will consist of q versus SD data. The first row of the TSD file contains the values of w. The subsequent columns are grouped in pairs. Each pair corresponds to a column of SD data and a column of q data. There is a pair of columns in this pattern for each value of w.
- exception: exc := a file name s cannot be found OR the format of inputFile is incorrect \Rightarrow FileError

LoadSDF(s)

- output: Create out following the following steps. Read data from the file infile associated with the string s. Use this data to create a ContoursT object. For each value of J create an object of Funct T and add it to the ContoursT object. Each of the FunctT objects will consist of q^* versus AR data. The first row of the SDF file contains the values of J. The subsequent columns are grouped in pairs. Each pair corresponds to a column of AR data and a column of q^* data. There is a pair of columns in this pattern for each value of J.
- exception: exc := a file name s cannot be found OR the format of inputFile is incorrect \Rightarrow FileError

7 MIS of Calc Module

7.1 Module

Calc

7.2 Uses

Input (Section 5), ContoursADT (Section 11), Constants (Section 14)

7.3 Syntax

7.3.1 Exported Constants

None

7.3.2 Exported Access Programs

Routine name	In	Out	Exceptions
calc_q_hat	$q:\mathbb{R}$	\mathbb{R}	-
calc_J_tol		\mathbb{R}	-
calc_Pb	$B:\mathbb{R}$	\mathbb{R}	InvalidOutput
calc_B	$J:\mathbb{R}$	\mathbb{R}	-
calc_NFL	$\hat{q}_{ ext{tol}}: \mathbb{R}$	\mathbb{R}	-
calc_LR	$\mathrm{NFL}:\mathbb{R}$	\mathbb{R}	-
calc_is_safePb	$P_b:\mathbb{R}$	\mathbb{B}	-
calc_is_safeLR	$\operatorname{LR}:\mathbb{R},q:\mathbb{R}$	\mathbb{B}	-

7.4 Semantics

7.4.1 State Variables

None

7.4.2 State Invariant

None

7.4.3 Assumptions

7.4.4 Access Routine Semantics

 $calc_q_hat(q) \# From SRS DD7 Dimensionless Load (\hat{q})$

- output: $out := \frac{q(ab)^2}{Eh^4GTF}$
- exception: None

calc_J_tol() # From SRS DD9 Tolerable Stress Distribution Factor (J_{tol})

- output: $out := \ln[\ln(\frac{1}{1 P_{b_{\text{tol}}}}) \frac{(a \times b)^{m-1}}{k(Eh^2)^m \text{LDF}}]$
- exception: None

 $calc_Pb(B) \# From SRS IM1 Probability of Glass Breakage$

- output: $out := 1 e^{-B}$
- exception: $\neg (0 < (1 e^{-B}) < 1) \Rightarrow$ InvalidOutput # From SRS Table 3, Output Variables

 $calc_B(J) \# From SRS DD1 Risk of Failure (B)$

- output: $out := \frac{k}{(a \times b)^{m-1}} (Eh^2)^m \times LDF \times e^J$
- exception: None

calc_NFL(\hat{q}_{tol}) # From SRS DD5 Non-Factored Load

- output: $out := \frac{\hat{q}_{\text{tol}}Eh^4}{(ab)^2}$
- exception: None

calc_LR(NFL) # From SRS IM2 Calculation of Capacity (LR)

- output: $out := NFL \times GTF \times LSF$
- exception: None

calc_is_safePb(P_b) # From SRS T1 Safety Req-Pb)

- output: $out := P_b < P_{b_{\text{tol}}}$
- exception: None

calc_is_safeLR(LR, q) # From SRS T2 Safety Req-LR)

- output: out := LR > q
- ullet exception: None

8 MIS of GlassType ADT Module

From DD6 (Glass Type Factor (GTF))

8.1 Template Module

 ${\it GlassTypeADT}$

8.2 Uses

None

8.3 Syntax

8.3.1 Exported Constants

None

8.3.2 Exported Types

GlassTypeT = ?

8.3.3 Exported Access Programs

Routine name	In	Out	Exceptions
new GlassTypeT	S	GlassTypeT	ValueError
GTF		\mathbb{R}	
toString		S	

8.4 Semantics

8.4.1 State Variables

 $g: \{AN, FT, HS\}$

8.4.2 State Invariant

None

8.4.3 Assumptions

8.4.4 Access Routine Semantics

new GlassTypeT(s):

- output: out := self
- exception: $(\neg(s \in \{\text{``AN"}, \text{``FT"}, \text{``HS"}\}) \Rightarrow \text{ValueError})$

GTF():

- output: $out := (g = AN \Rightarrow 1.0|g = FT \Rightarrow 4.0|g = HS \Rightarrow 2.0)$
- exception: None

toString():

- output: $out := (g = AN \Rightarrow "AN" | g = FT \Rightarrow "FT" | g = HS \Rightarrow "HS")$
- exception: None

9 MIS of Thickness ADT Module

From DD2 (Minimum Thickness from Nominal Thickness)

9.1 Template Module

 ${\bf Thickness ADT}$

9.2 Uses

None

9.3 Syntax

9.3.1 Exported Constants

None

9.3.2 Exported Types

ThicknessT = ?

9.3.3 Exported Access Programs

Routine name	In	Out	Exceptions
new ThicknessT	\mathbb{R}	ThicknessT	ValueError
toMinThick		\mathbb{R}	
toFloat		\mathbb{R}	

9.4 Semantics

9.4.1 State Variables

 $t: T \text{ where } T = \{2.5, 2.7, 3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 16.0, 19.0, 22.0\}$

9.4.2 State Invariant

None

9.4.3 Assumptions

9.4.4 Access Routine Semantics

new ThicknessT(x):

- transition: t := x
- output: out := self
- exception: $(\neg(x \in T) \Rightarrow \text{ValueError})$

toMinThick():

out :=
$$(t = 2.5 \Rightarrow 2.16 \mid t = 2.7 \Rightarrow 2.59 \mid t = 3.0 \Rightarrow 2.92 \mid t = 4.0 \Rightarrow 3.78 \mid t = 5.0 \Rightarrow 4.57 \mid t = 6.0 \Rightarrow 5.56 \mid t = 8.0 \Rightarrow 7.42 \mid t = 10.0 \Rightarrow 9.02 \mid t = 12.0 \Rightarrow 11.91 \mid t = 16.0 \Rightarrow 15.09 \mid t = 19.0 \Rightarrow 18.26 \mid t = 22.0 \Rightarrow 21.44$$

• exception: None

toFloat():

- output: out := t
- exception: None

10 MIS of FunctADT Module

10.1 Template Module

FunctADT

10.2 Uses

SeqServices (Section 12)

10.3 Syntax

10.3.1 Exported Constants

 $MAX_ORDER = 2$

10.3.2 Exported Types

FunctT = ?

10.3.3 Exported Access Programs

Routine name	In	Out	Exceptions
new FunctT	$X_{\mathrm{in}}:\mathbb{R}^n,Y_{\mathrm{in}}:\mathbb{R}^n,i:\mathbb{N}$	FunctT	IndepVarNotAscending,
			SeqSizeMismatch,
			InvalidInterpOrder,
			TooFewDataPts
minD		\mathbb{R}	
maxD		\mathbb{R}	
order		N	
eval	$x:\mathbb{R}$	\mathbb{R}	OutOfDomain

10.4 Semantics

10.4.1 State Variables

 $X: \mathbb{R}^n$

 $Y: \mathbb{R}^n$

 $\text{minx: } \mathbb{R}$

 $\max x \colon\thinspace \mathbb{R}$

o: \mathbb{N}

10.4.2 State Invariant

None

10.4.3 Assumptions

None

10.4.4 Access Routine Semantics

new Funct $T(X_{in}, Y_{in}, i)$:

- transition: $X, Y, \min x, \max, o := X_{\text{in}}, Y_{\text{in}}, X_{\text{in}}[0], X_{\text{in}}[|X|-1], i$
- output: out := self
- exception: $(\neg isAscending(X_{in}) \Rightarrow IndepVarNotAscending||X_{in}| \neq |Y_{in}| \Rightarrow SeqSizeMismatch|i \notin [1..MAX_ORDER] \Rightarrow InvalidInterpOrder||X_{in}| < 3 \Rightarrow TooFewDataPts)$

 $\min D()$:

- output: out := minx
- exception: None

 $\max D()$:

- output: $out := \max x$
- exception: None

order():

- output: out := o
- exception: None

eval(x):

 \bullet output: out :=

$$(o = 1 \Rightarrow \operatorname{interpLin}(X_i, Y_i, X_{i+1}, Y_{i+1}, x) | o = 2 \Rightarrow \operatorname{interpQuad}(X_{i-1}, Y_{i-1}, X_i, Y_i, X_{i+1}, Y_{i+1}, x))$$

where $i = \operatorname{index}(X, x)$

• exception: $(\neg(\min X \le x \le \max X) \Rightarrow \text{OutOfDomain})|\neg(1 \le \operatorname{index}(X, x) \le |X| - 2) \Rightarrow \text{OutOfDomain}) \# \text{first check if within domain, then make sure not too close to edge, so quadratic interpolation is defined}$

10.5 Considerations

For simplicity the function evaluation is not defined within one step of the boundaries. By considering the special cases it would be possible to get right to the edge.

11 MIS of ContoursADT Module

11.1 Template Module

ContoursADT

11.2 Uses

FunctADT (Section 10) for FunctT

11.3 Syntax

11.3.1 Exported Constants

 $MAX_{-}ORDER = 2$

11.3.2 Exported Types

ContoursT = ?

11.3.3 Exported Access Programs

Routine name	In	Out	Exceptions
new ContoursT	$i:\mathbb{R}$		InvalidInterpOrder
add	s: FunctT, $z : \mathbb{R}$		IndepVarNotAscending
getC	$i:\mathbb{N}$		InvalidIndex
eval	$x: \mathbb{R}, z: \mathbb{R}$		OutOfDomain
evaly	$x: \mathbb{R}, y: \mathbb{R}$		OutOfDomain
slice	$x: \mathbb{R}, \text{flip}: \mathbb{B}$	FunctT	

11.4 Semantics

11.4.1 State Variables

S: sequence of FunctT

Z: sequence of $\mathbb R$

o: \mathbb{N}

11.4.2 State Invariant

11.4.3 Assumptions

None

11.4.4 Access Routine Semantics

new ContoursT(i):

- transition: S, Z, o := <>, <>, i
- exception: $(i \notin [1..MAX_ORDER] \Rightarrow InvalidInterpOrder)$

add(s, z):

- transition: $S, Z := S|| \langle s \rangle, Z|| \langle z \rangle$
- exception: $exc := (|Z| > 0 \land z \le Z_{|Z|-1} \Rightarrow \text{IndepVarNotAscending})$

getC(i):

- output: out := S[i]
- exception: $exc := (\neg (0 \le i < |S|) \Rightarrow \text{InvalidIndex})$

eval(x, z):

- output: out := self.slice(x, False).eval(z)
- exception: none # appropriate exceptions are generated by slice and eval evaly(x, y):
 - output: out := self.slice(x, True).eval(y)
- exception: none # appropriate exceptions are generated by slice and eval slice(x, flip):
 - output and exception:

```
Zdef = []
F = []
for i in [0 .. |S|-1]:
    try y = S[i].eval(x):
        Zdef.append(Z[i])
        F.append(y)
    except OutOfDomain:
        pass
if |Zdef| > 0:
```

```
if flip:
    return FunctT(F, Zdef, o)
    else:
    return FunctT(Zdef, F, o)
else:
    raise OutOfDomain
```

12 MIS of SeqServices Module

12.1 Module

SeqServices

12.2 Uses

None

12.3 Syntax

12.3.1 Exported Constants

None

12.3.2 Exported Access Programs

Routine name	In	Out	Exceptions
isAscending	$X:\mathbb{R}^n$	\mathbb{B}	
interpLin	$x_1: \mathbb{R}, y_1: \mathbb{R}, x_2: \mathbb{R}, y_2: \mathbb{R}, x: \mathbb{R}$	\mathbb{R}	
interpQuad	$x_0: \mathbb{R}, y_0: \mathbb{R}, x_1: \mathbb{R}, y_1: \mathbb{R}, x_2: \mathbb{R}, y_2: \mathbb{R}, x: \mathbb{R}$	\mathbb{R}	
index	$X:\mathbb{R}^n, x:\mathbb{R}$	N	

12.4 Semantics

12.4.1 State Variables

None

12.4.2 State Invariant

None

12.4.3 Assumptions

None, unless noted with a particular access program

12.4.4 Access Routine Semantics

isAscending(X)

- output: $out := \neg \exists (i | i \in [0..|X| 2] : X_{i+1} < X_i)$
- exception: none

 $\mathrm{interpLin}(x_1,y_1,x_2,y_2,x) \ \# \ assuming \ is Ascending \ is \ True$

• output:
$$out := \frac{(y_2 - y_1)}{(x_2 - x_1)}(x - x_1) + y_1$$

• exception: none

 $interpQuad(x_0,y_0,x_1,y_1,x_2,y_2,x) \ \# \ assuming \ is Ascending \ is \ True$

• output:
$$out := y_1 + \frac{y_2 - y_0}{x_2 - x_0}(x - x_1) + \frac{y_2 - 2y_1 + y_0}{2(x_2 - x_1)^2}(x - x_1)^2$$

• exception: none

index(X, x) # assuming is Ascending is True and that x is within bounds

- output: out := i such that $X_i \le x < X_{i+1}$
- exception: none

13 MIS of Output Module

13.1 Module

Output

13.2 Uses

Input (Section 5), ThicknessADT (Section 9), GlassTypeADT (Section 8), Hardware (Section 15)

13.3 Syntax

13.3.1 Exported Constants

None

13.3.2 Exported Access Programs

Routine name	In	Out	Exceptions
output	$s: \mathbb{S}$, is_safePb: \mathbb{B} , is_safeLR: \mathbb{B} , $P_b: \mathbb{R}$, $B: \mathbb{R}$, LR: \mathbb{R} ,	-	-
	$q:\mathbb{R},\ J:\mathbb{R},\ ext{NFL:}\ \mathbb{R},\ \hat{q}:\mathbb{R},\ \hat{q}_{ ext{tol}}:\mathbb{R},\ J_{ ext{tol}}:\mathbb{R}$		

13.4 Semantics

13.4.1 Environment Variables

outfile: two dimensional sequence of text characters

13.4.2 State Variables

None

13.4.3 State Invariant

None

13.4.4 Assumptions

13.4.5 Access Routine Semantics

output(s, is_safePb, is_safeLR, P_b , B, LR, q, J, NFL, \hat{q} , \hat{q}_{tol} , J_{tol})

- transition: write data to the file outfile associated with the string s. The data to output follows:
 - From SRS R4: values from SRS R1 $(a, b, g, P_{b_{tol}}, SD_x, SD_y, SD_z, t, TNT, w)$, values from SRS R2 $(m, k, E, t_d, LDF, LSF, h, GTF, SD, AR)$
 - From SRS R5: (is_safePB \land is_safeLR \Rightarrow "For the given input parameters, the glass is considered safe" | True \Rightarrow "For the given input parameters, the glass is NOT considered safe")
 - From SRS R6 $(P_b, B, LR, q, J, NFL, \hat{q}, \hat{q}_{tol}, J_{tol})$
- exception: None

14 MIS of Constants Module

14.1 Module

Constants

14.2 Uses

N/A

14.3 Syntax

14.3.1 Exported Constants

From Table 8 in SRS

m := 7

 $k := 2.86 \times 10^{-53}$

 $E:=7.17\times 10^7$

 $t_d := 3$

LSF := 1

 $d_{\rm max} := 5.0$

 $d_{\min} := 0.1$

 $AR_{max} := 5.0$

 $w_{\rm max} := 910.0$

 $w_{\min} := 4.5$

 $SD_{\min} := 6.0$

 $SD_{max} := 130.0$

14.3.2 Exported Types

None

14.3.3 Exported Access Programs

None

14.4 Semantics

14.4.1 State Variables

14.4.2 State Invariant

15 MIS of Hardware Module

This module hides the underlying hardware for I/O (to the screen, or file, or other device). In general it will be provided by the selected programming language and operating system.

15.1 Module

Hardware

15.2 Uses