TX FIR Equalizer – CML mode

12 Gbps

(Final Report)

Muhammad Aldacher

Outline

- 1. Background
- 2. Implementation
- 3. Schematics
- 4. Design Steps
- 5. Simulation Results
 - a) Pulse Response
 - b) Eye Diagram
 - c) Transient Waveforms

Background

- "TX FIR equalization" is the technique in which a transmitter applies a Finite Impulse Response (FIR) filter to pre-distort the signal before sending it.
- This is to compensate for the distortions introduced by the transmission channel, thus improving signal quality at the receiver by mitigating intersymbol interference (ISI).

Background

Time Domain

Output Pulse Response

Background

TX data **z**-1 z⁻¹ **z**-1

Freq Domain

Implementation

• For CML driver: Pre-Cursor 1 data-in Main Cursor Post-Cursor 1 Post-Cursor 2

Implementation

B) CML Driver:

C) Channel & Load:

Design Steps

- Design the Tx-Driver at a low data-rate & without equalization as shown in this project (Tx-Driver Design)
- 2. Find the **pulse response** of this Tx-Driver at the desired data-rate.
- 3. Calculate the **pre & post cursors** from the pulse response.
- 4. Modify the Tx-Driver design by adding **weighted taps** based on the cursors' values.
- 5. Find the eye diagram to see how much the eye opening improved.

A) Pulse Response:

(Without Equalization)

	Pre-	Main-	Post-	Post-
	Cursor1	Cursor	Cursor1	Cursor2
Adjusted	(18 / 303) * 500 mV	(303 / 303) * 500 mV	(88 / 303) * 500 mV	(42 / 303) * 500 mV
Vswing(PK2PK)	= 29.7 mV	= 500 mV	= 145.2 mV	= 69.3 mV
Equivalent	29.7 mV / 50 Ohms	500 mV / 50 Ohms	145.2 mV / 50 Ohms	69.3 mV / 50 Ohms
IBIAS	= 0.6 mA	= 10 mA	= 2.9 mA	= 1.4 mA
# of fingers	(m = 12)	(m = 200)	(m = 58)	(m = 28)

A) Pulse Response:

(With Equalization)

B) Eye Diagram:

(Without Equalization)

B) Eye Diagram:

(With Equalization)

Simulation Results B) Eye Diagram:

	No Equalization	With Equalization (4-tap)
Eye Height (Max)	103.1 mV	223.3 mV
Eye Width (Max)	38.69 ps	73.38 ps
Swing (PK2PK)	500 mV (–250mV ~ +250mV)	328 mV (–164mV ~ +164mV)

C) Transient Waveforms:

(Without Equalization)

C) Transient Waveforms:

(With Equalization)

C) Transient Waveforms:

(With Equalization)

Conclusion

- This project shows the design procedure of a TX FIR Equalizer for a 12 Gb/s input & a channel of 12-inch FR4.
- It also shows how the equalization improves the eye opening of the output, while paying the price of lower swing amplitude & increased latency.