Numerical Optimization

Convex Sets

Shirish Shevade

Computer Science and Automation Indian Institute of Science Bangalore 560 012, India.

NPTEL Course on Numerical Optimization

Line and line segment

Let $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^n, \mathbf{x}_1 \neq \mathbf{x}_2$.

Line passing through x_1 and x_2 :

$$\{\mathbf{y} \in \mathbb{R}^n : \mathbf{y} = \lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2, \quad \lambda \in \mathbb{R}\}$$

Line Segment, $LS[\mathbf{x}_1, \mathbf{x}_2]$:

$$\{\mathbf{y} \in \mathbb{R}^n : \mathbf{y} = \lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2, \quad \lambda \in [0, 1]\}$$

Affine sets

Definition

A set $X \subseteq \mathbb{R}^n$ is affine if for any $\mathbf{x}_1, \mathbf{x}_2 \in X$, and $\lambda \in \mathbb{R}$,

$$\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 \in X.$$

If $X \subseteq \mathbb{R}^n$ is an affine set, $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k \in X$ and $\sum_i \lambda_i = 1$, then the point $\lambda_1 \mathbf{x}_1 + \lambda_2 \mathbf{x}_2 + \dots + \lambda_k \mathbf{x}_k \in X$.

Examples

- Solution set of linear equations: $\{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \mathbf{b}\}$ where $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m$.
- A subspace or a translated subspace

Result

If *X* is an affine set and $\mathbf{x}_0 \in X$, then $\{\mathbf{x} - \mathbf{x}_0 : \mathbf{x} \in X\}$ forms a subspace.

Proof.

Let $Y = \{\mathbf{x} - \mathbf{x}_0 : \mathbf{x} \in X\}$. To show that Y is a subspace, we need to show, $\alpha \mathbf{y}_1 + \beta \mathbf{y}_2 \in Y$ for any $\mathbf{y}_1, \mathbf{y}_2 \in Y$ and $\alpha, \beta \in \mathbb{R}$. Let $\mathbf{y}_1, \mathbf{y}_2 \in Y$ and $\alpha, \beta \in \mathbb{R}$.

Therefore, $\mathbf{y}_1 + \mathbf{x}_0 \in X$ and $\mathbf{y}_2 + \mathbf{x}_0 \in X$.

$$\alpha \mathbf{y}_1 + \beta \mathbf{y}_2 = \alpha (\mathbf{y}_1 + \mathbf{x}_0) + \beta (\mathbf{y}_2 + \mathbf{x}_0) - (\alpha + \beta) \mathbf{x}_0.$$

$$\alpha \mathbf{y}_1 + \beta \mathbf{y}_2 + \mathbf{x}_0 = \alpha (\mathbf{y}_1 + \mathbf{x}_0) + \beta (\mathbf{y}_2 + \mathbf{x}_0) + (1 - \alpha - \beta) \mathbf{x}_0.$$

Since *X* is an affine set, $\alpha \mathbf{y}_1 + \beta \mathbf{y}_2 + \mathbf{x}_0 \in X$.

Thus, $\alpha \mathbf{y}_1 + \beta \mathbf{y}_2 \in Y \Rightarrow Y$ is a subspace.

Definition

Let $X = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$. A point \mathbf{x} is said to be an affine combination of points in X if

$$\mathbf{x} = \sum_{i=1}^k \lambda_i \mathbf{x}_i, \quad \sum_{i=1}^k \lambda_i = 1.$$

Definition

Let $X \subseteq \mathbb{R}^n$. The set of all affine combinations of points in X is called the affine hull of X.

$$\operatorname{aff}(X) = \{ \sum_{i=1}^k \lambda_i \mathbf{x}_i : \mathbf{x}_1, \dots, \mathbf{x}_k \in X, \sum_i \lambda_i = 1 \}$$

Convex Sets

Definition

A set $C \subseteq \mathbb{R}^n$ is convex if for any $\mathbf{x}_1, \mathbf{x}_2 \in C$ and any scalar λ with $0 \le \lambda \le 1$, we have

$$\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 \in C.$$

Examples

• Some simple convex sets

Some examples of nonconvex sets

Convex sets

Examples:

- The empty set ϕ , any singleton set $\{\mathbf{x}_0\}$ and \mathbb{R}^n are convex subsets of \mathbb{R}^n .
- A closed ball in \mathbb{R}^n , $B[\mathbf{x}_0, r]$ and an open ball in \mathbb{R}^n , $B(\mathbf{x}_0, r)$, are convex sets.
- Any affine set is a convex set.
- A line segment is a convex set, but not an affine set.

Possible to construct new convex sets using given convex sets

Definition

Let $P \subset \mathbb{R}^n$, $Q \subset \mathbb{R}^n$, $\alpha \in \mathbb{R}$.

• The scalar multiple αP of the set P is defined as

$$\alpha P = \{ \mathbf{x} : \mathbf{x} = \alpha \mathbf{p}, \mathbf{p} \in P \}$$

• The sum of two sets P and Q is the set,

$$P + Q = \{\mathbf{x} : \mathbf{x} = \mathbf{p} + \mathbf{q}, \mathbf{p} \in P, \mathbf{q} \in Q\}.$$

Theorem

If $\{C_i\}$, $i \in A$, is any collection of convex sets, then $\cap_{i \in A} C_i$ is a convex set.

Proof.

Let $C = \bigcap_{i \in \mathcal{A}} C_i$.

Case 1. If C is *empty* or *singleton*, then clearly C is a convex set.

Case 2. To show that, for any $\mathbf{x}_1, \mathbf{x}_2 \in C$ and $\lambda \in [0, 1]$,

$$\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 \in C.$$

Let $\mathbf{x}_1, \mathbf{x}_2 \in C$. Clearly, $\mathbf{x}_1, \mathbf{x}_2 \in C_i$ for every $i \in A$. Since every C_i is convex,

$$\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 \in C_i, \ \forall i \in \mathcal{A}, \lambda \in [0, 1]$$

$$\Rightarrow \lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 \in \cap_{i \in \mathcal{A}} C_i, \ \forall \ \lambda \in [0, 1]$$

$$\Rightarrow \lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 \in C, \ \forall \ \lambda \in [0, 1].$$

Theorem

If C_1 and C_2 are convex sets, then $C_1 + C_2$ is a convex set.

Proof.

Let
$$\mathbf{x}_1, \mathbf{y}_1 \in C_1$$
 and $\mathbf{x}_2, \mathbf{y}_2 \in C_2$.
So, $\mathbf{x}_1 + \mathbf{x}_2, \mathbf{y}_1 + \mathbf{y}_2 \in C_1 + C_2$. We need to show, $\lambda(\mathbf{x}_1 + \mathbf{x}_2) + (1 - \lambda)(\mathbf{y}_1 + \mathbf{y}_2) \in C_1 + C_2 \ \forall \lambda \in [0, 1]$.
Since C_1 and C_2 are convex, $\mathbf{z}_1 = \lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{y}_1 \in C_1 \quad \forall \ \lambda \in [0, 1]$, and $\mathbf{z}_2 = \lambda \mathbf{x}_2 + (1 - \lambda)\mathbf{y}_2 \in C_2 \quad \forall \ \lambda \in [0, 1]$.
Thus, $\mathbf{z}_1 + \mathbf{z}_2 \in C_1 + C_2 \dots (1)$
Now, $\mathbf{x}_1 + \mathbf{x}_2 \in C_1 + C_2$ and $\mathbf{y}_1 + \mathbf{y}_2 \in C_1 + C_2$.
Therefore, from (1), $\mathbf{z}_1 + \mathbf{z}_2 = \lambda(\mathbf{x}_1 + \mathbf{x}_2) + (1 - \lambda)(\mathbf{y}_1 + \mathbf{y}_2) \in C_1 + C_2 \ \forall \lambda \in [0, 1]$.
Thus, $C_1 + C_2$ is a convex set.

Theorem

If C *is a convex set and* $\alpha \in \mathbb{R}$ *, then* αC *is a convex set.*

Proof.

Let $\mathbf{x}_1, \mathbf{x}_2 \in C$.

Since C is convex, $\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 \in C \ \forall \ \lambda \in [0, 1].$

Also, $\alpha \mathbf{x}_1, \alpha \mathbf{x}_2 \in \alpha C$.

Therefore, $\lambda(\alpha \mathbf{x}_1) + (1 - \lambda)(\alpha \mathbf{x}_2) = \alpha(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2) \in \alpha C$ for any $\lambda \in [0, 1]$.

Therefore, αC is a convex set.

Hyperplane

Definition

Let $b \in \mathbb{R}$ and $\mathbf{a} \in \mathbb{R}^n$, $\mathbf{a} \neq 0$. Then, the set

$$H = \{\mathbf{x} : \mathbf{a}^T \mathbf{x} = b\}$$

is said to be a *hyperplane* in \mathbb{R}^n .

- **a** denotes the normal to the hyperplane *H*.
- If $\|\mathbf{a}\| = 1$, then |b| is the distance of H from the origin.
- In \mathbb{R}^2 , hyperplane is a line
- In \mathbb{R}^3 , hyperplane is a plane

Half-spaces

• The sets $H_+ = \{\mathbf{x} : \mathbf{a}^T \mathbf{x} \ge b\}$ and $H_- = \{\mathbf{x} : \mathbf{a}^T \mathbf{x} \le b\}$ are called closed positive and negative *half-spaces* generated by H.

Some more examples of convex sets

- $H = \{\mathbf{x} : \mathbf{a}^T \mathbf{x} = b\}$ is a convex set
- Let $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m \in \mathbb{R}^n$ and $b_1, b_2, \dots, b_m \in \mathbb{R}$

Define,
$$\mathbf{A} = \begin{pmatrix} \mathbf{a}_1^T \\ \mathbf{a}_2^T \\ \vdots \\ \mathbf{a}_m^T \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$

Then, $\{x : Ax = b\}$ is a convex set.

- $H_+ = \{ \mathbf{x} : \mathbf{a}^T \mathbf{x} \ge b \}$ and $H_- = \{ \mathbf{x} : \mathbf{a}^T \mathbf{x} \le b \}$ are convex sets.
- $\{x : Ax \le b\}$ and $\{x : Ax \ge b\}$ are convex sets.

Convex Hull

Definition

The *convex hull* of a set S is the intersection of all the convex sets which contain S and is denoted by conv(S).

Note: Convex Hull of a set S is the convex set.

• The smallest convex set that contains *S* is called the *convex hull* of the set *S*.

Examples:

- $conv({x, y}) = LS[x, y]$ where x and y are two points
- Let $S = \{(x, 0) : x \in \mathbb{R}\} \cup \{(0, y) : y \in \mathbb{R}\}$. Then $conv(S) = \mathbb{R}^2$.

•
$$S = \{(x_1, x_2) : x_2 = x_1^2\}$$

•
$$\operatorname{conv}(S) = \{(x_1, x_2) : x_2 \ge x_1^2\}$$

Theorem CS1

Let $S \subset \mathbb{R}^n$ be a nonempty, closed convex set and $\mathbf{y} \notin S$. Then there exists a unique point $\mathbf{x}_0 \in S$ with minimum distance from \mathbf{y} . Further, \mathbf{x}_0 is the minimizing point iff $(\mathbf{y} - \mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0) \leq 0$ for all $\mathbf{x} \in S$.

Proof Sketch

Given $S \subset \mathbb{R}^n$, a closed convex set and $\mathbf{y} \notin S$.

- First show that there exists a minimizing point \mathbf{x}_0 in S that is closest to \mathbf{y} .
- Let $\delta = \inf_{\mathbf{x} \in S} \|\mathbf{x} \mathbf{y}\|$.
- Note that S is not bounded.

- Consider the set $S \cap B[y, 2\delta]$.
- By Weierstrass' Theorem, there exists a minimizing point \mathbf{x}_0 in S that is closest to \mathbf{y} .

$$\mathbf{x}_0 = \operatorname{arg\,min}_{\mathbf{x} \in S \cap B[\mathbf{y}, 2\delta]} \|\mathbf{x} - \mathbf{y}\|$$

• Show uniqueness using triangle inequality Assume that there exists $\hat{\mathbf{x}} \in S$ such that

$$\|\mathbf{y} - \mathbf{x}_0\| = \|\mathbf{y} - \hat{\mathbf{x}}\| = \delta.$$

Since *S* is convex, $\frac{1}{2}(\mathbf{x}_0 + \hat{\mathbf{x}}) \in S$. Using triangle inequality,

$$2\|\mathbf{y} - \frac{(\mathbf{x}_0 + \hat{\mathbf{x}})}{2}\| \le \|\mathbf{y} - \mathbf{x}_0\| + \|\mathbf{y} - \hat{\mathbf{x}}\| = 2\delta$$

We have a contradiction if strict inequality holds.

• To show that \mathbf{x}_0 is the unique minimizing point iff $(\mathbf{y} - \mathbf{x}_0)^T(\mathbf{x} - \mathbf{x}_0) \le 0$ for all $\mathbf{x} \in S$. Let $\mathbf{x} \in S$. Assume $(\mathbf{y} - \mathbf{x}_0)^T(\mathbf{x} - \mathbf{x}_0) \le 0$.

$$||\mathbf{y} - \mathbf{x}||^2 = ||\mathbf{y} - \mathbf{x}_0 + \mathbf{x}_0 - \mathbf{x}||^2$$

= $||\mathbf{y} - \mathbf{x}_0||^2 + ||\mathbf{x}_0 - \mathbf{x}||^2 + 2(\mathbf{y} - \mathbf{x}_0)^T(\mathbf{x}_0 - \mathbf{x})$

• Using the assumption, $(\mathbf{y} - \mathbf{x}_0)^T (\mathbf{x}_0 - \mathbf{x}) \ge 0$, we get

$$\|\mathbf{y} - \mathbf{x}\|^2 \ge \|\mathbf{y} - \mathbf{x}_0\|^2$$

This implies that \mathbf{x}_0 is the minimizing point.

• Assume that \mathbf{x}_0 is the minimizing point, that is,

$$\|\mathbf{y} - \mathbf{x}_0\|^2 \le \|\mathbf{y} - \mathbf{z}\|^2 \ \forall \ \mathbf{z} \in S.$$

Consider any $\mathbf{x} \in S$. Since S is convex,

$$\lambda \mathbf{x} + (1 - \lambda) \mathbf{x}_0 \in S \ \forall \lambda \in [0, 1].$$

Therefore,
$$\|\mathbf{y} - \mathbf{x}_0\|^2 \le \|\mathbf{y} - \mathbf{x}_0 - \lambda(\mathbf{x} - \mathbf{x}_0)\|^2$$

That is,

$$\|\mathbf{y} - \mathbf{x}_0\|^2 \le \|\mathbf{y} - \mathbf{x}_0\|^2 + \lambda^2 \|\mathbf{x} - \mathbf{x}_0\|^2 - 2\lambda (\mathbf{y} - \mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0)$$
$$2(\mathbf{y} - \mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0) < \lambda \|\mathbf{x} - \mathbf{x}_0\|^2$$

Letting
$$\lambda \to 0^+$$
, the result follows.

Theorem CS1

Let $S \subset \mathbb{R}^n$ be a nonempty, closed convex set and $\mathbf{y} \notin S$. Then there exists a unique point $\mathbf{x}_0 \in S$ with minimum distance from \mathbf{y} . Further, \mathbf{x}_0 is the minimizing point iff $(\mathbf{y} - \mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0) \leq 0$ for all $\mathbf{x} \in S$.

Separating hyperplanes

Definition

Let S_1 and S_2 be nonempty subsets in \mathbb{R}^n and $H = \{\mathbf{x} : \mathbf{a}^T \mathbf{x} = b\}$ be a hyperplane.

- The hyperplane H is said to *separate* S_1 and S_2 , if $\mathbf{a}^T \mathbf{x} \ge b \ \forall \ \mathbf{x} \in S_1$ and $\mathbf{a}^T \mathbf{x} \le b \ \forall \ \mathbf{x} \in S_2$.
- ② If $\mathbf{a}^T \mathbf{x} > b \ \forall \ \mathbf{x} \in S_1$ and $\mathbf{a}^T \mathbf{x} < b \ \forall \ \mathbf{x} \in S_2$, then the hyperplane H is said to *strictly separate* S_1 and S_2 .
- **3** The hyperplane *H* is said to *strongly separate* S_1 and S_2 if $\mathbf{a}^T \mathbf{x} \ge b + \epsilon \ \forall \ \mathbf{x} \in S_1$ and $\mathbf{a}^T \mathbf{x} \le b \ \forall \ \mathbf{x} \in S_2$ where ϵ is a positive scalar.

H: Separating hyperplane

The hyperplane $H = \{\mathbf{x} : \mathbf{a}^T \mathbf{x} = b\}$ is said to *separate* S_1 and S_2 , if $\mathbf{a}^T \mathbf{x} \ge b \ \forall \ \mathbf{x} \in S_1$ and $\mathbf{a}^T \mathbf{x} \le b \ \forall \ \mathbf{x} \in S_2$.

H: Strictly separating hyperplane

If $\mathbf{a}^T \mathbf{x} > b \ \forall \ \mathbf{x} \in S_1$ and $\mathbf{a}^T \mathbf{x} < b \ \forall \ \mathbf{x} \in S_2$, then the hyperplane $H = \{\mathbf{x} : \mathbf{a}^T \mathbf{x} = b\}$ is said to *strictly separate* S_1 and S_2 .

H: Strongly separating hyperplane

The hyperplane $H = \{\mathbf{x} : \mathbf{a}^T \mathbf{x} = b\}$ is said to *strongly separate* S_1 and S_2 if $\mathbf{a}^T \mathbf{x} \ge b + \epsilon \ \forall \ \mathbf{x} \in S_1$ and $\mathbf{a}^T \mathbf{x} \le b \ \forall \ \mathbf{x} \in S_2$ where ϵ is a positive scalar.

Separation of a closed convex set and a point

Result

Let *S* be a nonempty closed convex set in \mathbb{R}^n and $\mathbf{y} \notin S$. Then there exists a nonzero vector \mathbf{a} and a scalar b such that $\mathbf{a}^T\mathbf{y} > b$ and $\mathbf{a}^T\mathbf{x} \leq b \ \forall \ \mathbf{x} \in S$.

Proof.

By Theorem CS1, there exists a unique minimizing point $\mathbf{x}_0 \in S$ such that $(\mathbf{x} - \mathbf{x}_0)^T (\mathbf{y} - \mathbf{x}_0) \leq 0$ for each $\mathbf{x} \in S$. Letting $\mathbf{a} = (\mathbf{y} - \mathbf{x}_0)$ and $b = \mathbf{a}^T \mathbf{x}_0$, we get $\mathbf{a}^T \mathbf{x} \leq b$ for each $\mathbf{x} \in S$ and $\mathbf{a}^T \mathbf{y} - b = (\mathbf{y} - \mathbf{x}_0)^T (\mathbf{y} - \mathbf{x}_0) > 0$ (since $\mathbf{y} \neq \mathbf{x}_0$).

Cone

Definition

A set $K \subseteq \mathbb{R}^n$ is called a *cone* if for every $\mathbf{x} \in K$ and $\lambda \ge 0$, we have $\lambda \mathbf{x} \in K$.

• K is a convex cone if it is convex and a cone.

Some examples of cones

Farkas' Lemma

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{c} \in \mathbb{R}^n$. Then, exactly one of the following two systems has a solution:

- (I) $\mathbf{A}\mathbf{x} \leq \mathbf{0}, \mathbf{c}^T\mathbf{x} > 0$ for some $\mathbf{x} \in \mathbb{R}^n$
- (II) $\mathbf{A}^T \mathbf{y} = \mathbf{c}, \mathbf{y} \ge \mathbf{0}$ for some $\mathbf{y} \in \mathbb{R}^m$.

• Let $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_m \in \mathbb{R}^n$.

• Define,
$$\mathbf{A} = \begin{pmatrix} \mathbf{a}_1^T \\ \mathbf{a}_2^T \\ \vdots \\ \mathbf{a}_m^T \end{pmatrix}$$
.

For example,

Farkas' Lemma (Geometrical Interpretation)

Exactly one of the following two systems has a solution:

- (I) $\mathbf{A}\mathbf{x} \leq \mathbf{0}, \mathbf{c}^T\mathbf{x} > 0$ for some $\mathbf{x} \in \mathbb{R}^n$
- (II) $\mathbf{A}^T \mathbf{y} = \mathbf{c}, \mathbf{y} \ge \mathbf{0}$ for some $\mathbf{y} \in \mathbb{R}^m$

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{c} \in \mathbb{R}^n$. Then, exactly one of the following two systems has a solution:

- (I) $\mathbf{A}\mathbf{x} \leq \mathbf{0}, \mathbf{c}^T\mathbf{x} > 0$ for some $\mathbf{x} \in \mathbb{R}^n$
- (II) $\mathbf{A}^T \mathbf{y} = \mathbf{c}, \mathbf{y} \ge \mathbf{0}$ for some $\mathbf{y} \in \mathbb{R}^m$

Proof of Farkas' Lemma

(a) Suppose, system (II) has a solution.

Therefore, $\exists y \geq 0$ such that $\mathbf{c} = \mathbf{A}^T \mathbf{y}$.

Consider $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{A}\mathbf{x} \leq \mathbf{0}$.

So,
$$\mathbf{c}^T \mathbf{x} = \mathbf{y}^T \mathbf{A} \mathbf{x} \leq 0$$
.

That is, System I has no solution.

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{c} \in \mathbb{R}^n$. Then, exactly one of the following two systems has a solution:

- (I) $\mathbf{A}\mathbf{x} \leq \mathbf{0}, \mathbf{c}^T\mathbf{x} > 0$ for some $\mathbf{x} \in \mathbb{R}^n$
- (II) $\mathbf{A}^T \mathbf{y} = \mathbf{c}, \mathbf{y} \ge \mathbf{0}$ for some $\mathbf{y} \in \mathbb{R}^m$

Proof of Farkas' Lemma (continued)

(b) Suppose, system (II) has no solution.

Let $S = \{\mathbf{x} : \mathbf{x} = \mathbf{A}^T \mathbf{y}, \mathbf{y} \ge 0\}$, a closed convex set and $\mathbf{c} \notin S$.

Therefore, $\exists \mathbf{p} \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$ such that

$$\mathbf{p}^T \mathbf{x} \leq \alpha \ \forall \ \mathbf{x} \in S \text{ and } \mathbf{c}^T \mathbf{p} > \alpha.$$

This means, $\alpha \geq 0$ (Since $\mathbf{0} \in S$) $\Rightarrow \mathbf{c}^T \mathbf{p} > 0$.

Also,
$$\alpha \geq \mathbf{p}^T \mathbf{A}^T \mathbf{y} = \mathbf{y}^T \mathbf{A} \mathbf{p} \ \forall \ \mathbf{y} \geq \mathbf{0}$$
.

Since $y \ge 0$, $Ap \le 0$ (as y can be made arbitrarily large).

Thus, $\exists \mathbf{p} \in \mathbb{R}^n$ such that $\mathbf{A}\mathbf{p} \leq \mathbf{0}, \mathbf{c}^T\mathbf{p} > 0 \Rightarrow \text{System (I) has a solution.}$

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{c} \in \mathbb{R}^n$. Then, exactly one of the following two systems has a solution:

- (I) $\mathbf{A}\mathbf{x} \leq \mathbf{0}, \mathbf{c}^T\mathbf{x} > 0$ for some $\mathbf{x} \in \mathbb{R}^n$
- (II) $\mathbf{A}^T \mathbf{y} = \mathbf{c}, \mathbf{y} \ge \mathbf{0}$ for some $\mathbf{y} \in \mathbb{R}^m$.

Corollary

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then exactly one of the following systems has a solution:

- (I) $\mathbf{A}\mathbf{x} < \mathbf{0}$ for some $\mathbf{x} \in \mathbb{R}^n$
- (II) $\mathbf{A}^T \mathbf{y} = \mathbf{0}, \mathbf{y} \ge \mathbf{0}$ for some nonzero $\mathbf{y} \in \mathbb{R}^m$.

Corollary

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then exactly one of the following systems has a solution:

- (I) $\mathbf{A}\mathbf{x} < \mathbf{0}$ for some $\mathbf{x} \in \mathbb{R}^n$
- (II) $\mathbf{A}^T \mathbf{y} = \mathbf{0}, \mathbf{y} \ge \mathbf{0}$ for some nonzero $\mathbf{y} \in \mathbb{R}^m$.

Proof.

We can write system I as

$$\mathbf{A}\mathbf{x} + z\mathbf{e} \leq \mathbf{0}$$
 for some $\mathbf{x} \in \mathbb{R}^n, z > 0$

where e is a m-dimensional vector containing all 1's. That is,

$$(\mathbf{A} \ \mathbf{e}) \begin{pmatrix} \mathbf{x} \\ z \end{pmatrix} \leq \mathbf{0}, \ (0, \dots, 0, 1) \begin{pmatrix} \mathbf{x} \\ z \end{pmatrix} > 0$$

for some $(\mathbf{x} \ z)^T \in \mathbb{R}^{n+1}$

Proof. (continued)

Recall Farkas' Lemma.

Therefore, System II is

$$\begin{pmatrix} \mathbf{A}^T \\ \mathbf{e}^T \end{pmatrix} \mathbf{y} = (0, \dots, 0, 1)^T, \mathbf{y} \geq \mathbf{0} \text{ for some } \mathbf{y} \in \mathbb{R}^m.$$

That is $\mathbf{A}^T \mathbf{y} = 0$, $\mathbf{e}^T \mathbf{y} = 1$ and $\mathbf{y} \ge 0$ for some $\mathbf{y} \in \mathbb{R}^m$. Using Farkas' Lemma, the result follows.

Supporting Hyperplanes of sets at boundary points

Definition

Let $S \subset \mathbb{R}^n$, $S \neq \phi$. Let \mathbf{x}_0 be a boundary point of S. A hyperplane $H = \{\mathbf{x} : \mathbf{a}^T(\mathbf{x} - \mathbf{x}_0) = 0\}$ is called a *supporting hyperplane* of S at \mathbf{x}_0 , if either

$$S \subseteq H_+$$
 (that is, $\mathbf{a}^T(\mathbf{x} - \mathbf{x}_0) \ge 0 \ \forall \ \mathbf{x} \in S$), or

$$S \subseteq H_{-}$$
 (that is, $\mathbf{a}^{T}(\mathbf{x} - \mathbf{x}_{0}) \leq 0 \ \forall \ \mathbf{x} \in S$).

Theorem

Let S be a nonempty convex set in \mathbb{R}^n and \mathbf{x}_0 be a boundary point of S. Then, there exists a hyperplane that supports S at \mathbf{x}_0 .

Theorem

Let S_1 and S_2 be two nonempty disjoint convex sets in \mathbb{R}^n . Then, there exists a hyperplane that separates S_1 and S_2 .

Proof.

Consider the set $S = S_1 - S_2 = \{\mathbf{x}_1 - \mathbf{x}_2 : \mathbf{x}_1 \in S_1, \mathbf{x}_2 \in S_2\}.$

Note that *S* is a convex set and $0 \notin S$.

Thus, we have a convex set and a point not in that set.

So, there exists a vector **a** such that $\mathbf{a}^T \mathbf{x} < 0 \ \forall \ \mathbf{x} \in S$.

In other words, $\mathbf{a}^T \mathbf{x}_1 \leq \mathbf{a}^T \mathbf{x}_2 \ \forall \ \mathbf{x}_1 \in S_1, \mathbf{x}_2 \in S_2$.

