Example 3.2. Let $x_1(t) = \sin(\pi t)$ and $x_2(t) = \sin t$. Determine whether the function $y = x_1 + x_2$ is periodic.

Solution. Denote the fundamental periods of x_1 and x_2 as T_1 and T_2 , respectively. We then have

$$T_1 = \frac{2\pi}{\pi} = 2$$
 and $T_2 = \frac{2\pi}{1} = 2\pi$.

Here, we used the fact that the fundamental period of $\sin(\alpha t)$ is $\frac{2\pi}{|\alpha|}$. Thus, we have

$$\frac{T_1}{T_2} = \frac{2}{2\pi} = \frac{1}{\pi}.$$

Since π is an irrational number, $\frac{T_1}{T_2}$ is not rational. Therefore, y is not periodic.

Example 3.4. Let $x_1(t) = \cos(6\pi t)$ and $x_2(t) = \sin(30\pi t)$. Determine if the function $y = x_1 + x_2$ is periodic, and if it is, find its fundamental period.

Solution. Let T_1 and T_2 denote the fundamental periods of x_1 and x_2 , respectively. We have

$$T_1 = \frac{2\pi}{6\pi} = \frac{1}{3}$$
 and $T_2 = \frac{2\pi}{30\pi} = \frac{1}{15}$.

Thus, we have

$$\frac{T_1}{T_2} = (\frac{1}{3})/(\frac{1}{15}) = \frac{15}{3} = \frac{5}{1}$$
 5 and 1 are coprime

Since $\frac{T_1}{T_2}$ is a rational number, y is periodic. Let T denote the fundamental period of y. Since 5 and 1 are coprime, we have

$$T = 1T_1 = 5T_2 = \frac{1}{3}$$
.

Example 3.8 (Sifting property example). Evaluate the integral

$$\int_{-\infty}^{\infty} [\sin t] \delta(t - \pi/4) dt.$$

Solution. Using the sifting property of the unit impulse function, we have

in this example, $x(t) = \sin t$ and $t_0 = \frac{\pi}{4}$

Example 3.9 (Sifting property example). Evaluate the integral does not have form of Sifting property due to "4"
$$\int_{-\infty}^{\infty} [\sin(2\pi t)] \delta(4t-1) dt.$$

$$\int_{-\infty}^{\infty} [\sin(2\pi t)] \delta(4t-1) dt$$

Solution. First, we observe that the integral to be evaluated does not quite have the same form as (3.24). So, we need to perform a change of variable. Let $\tau = 4t$ so that $t = \tau/4$ and $dt = d\tau/4$. Performing the change of variable, we obtain

$$\int_{-\infty}^{\infty} [\sin(2\pi t)] \delta(4t-1) dt = \int_{-\infty}^{\infty} \frac{1}{4} [\sin(2\pi \tau/4)] \delta(\tau-1) d\tau$$

$$= \int_{-\infty}^{\infty} \left[\frac{1}{4} \sin(\pi \tau/2) \right] \delta(\tau-1) d\tau.$$
Now the integral has the desired form, and we can use the sifting property of the unit-impulse function to write

$$\int_{-\infty}^{\infty} [\sin(2\pi t)] \delta(4t-1) dt = \left[\frac{1}{4}\sin(\pi\tau/2)\right]_{\tau=1}$$

$$= \frac{1}{4}\sin(\pi/2)$$

$$= \frac{1}{4}.$$
In this example, $\chi(T) = \frac{1}{4}\sin(\frac{\pi}{2}T)$ and $t_0 = \frac{1}{4}\sin(\frac{\pi}{2}T)$