# Quantenradierer

## Michel Rausch, Michael Eliachevitch

## 2. November 2014

## Inhaltsverzeichnis

| 1 | Theoretische Überlegungen                                   | 1 |
|---|-------------------------------------------------------------|---|
|   | 1.1 Interferenz von Wellen, klassisch und quantenmechanisch | 1 |
|   | 1.2 "Welcher-Weg"-Information                               | 1 |
| 2 | Das Mach-Zehnder-Interferometer und dessen Aufbau           | 2 |
|   | 2.1 Aufbau eines einfachen Interferometers                  | 2 |
|   | 2.2 Quantenradierer                                         | 2 |
| 3 | Versuchsdurchführung                                        | 2 |
| 4 | Quellen                                                     | 3 |

## 1 Theoretische Überlegungen

- 1.1 Interferenz von Wellen, klassisch und quantenmechanisch
- 1.2 "Welcher-Weg"-Information



**Abbildung 1:** Einfaches Interferometer, zur Strahlteilung und -rekombination, mit dem Laufzeitunterschied  $\Delta z$  [1]



**Abbildung 2:** Skizze eines Mach-Zehnder-Interferomters mit Polarisatoren ( $45^{\circ}$  und  $-45^{\circ}$ ) [1]

#### 2 Das Mach-Zehnder-Interferometer und dessen Aufbau

#### 2.1 Aufbau eines einfachen Interferometers

Die theoretischen Überlegungen können in Interferometern geprüft werden. In einem einfachem Strahlteilungsinterferometer, wie in Abbildung 1 gezeigt. Eine planare Welle, hier Licht, wird mit einem halbtransparentem Spiegel in Wellen A und B aufgeteilt. Der Strahl A (rot im Bild) passiert den Strahlteiler und das Interferometer. Der zweite wird über Spiegel umgelenkt und erhält so eine längere Laufzeit, mit Gangunterschied  $\Delta z$ . Am zweiten Strahlteiler rekombinieren die Wellen. Dies wurde in 1.1 beschrieben.

#### 2.2 Quantenradierer

In diesen Versuch wird das Mach-Zehnder

#### 3 Versuchsdurchführung

## 4 Quellen

1. Vorbereitungsmappe