ELEKTRIKSEL POTANSIYEL

İÇERİK

- Elektriksel Potansiyel ve Potansiyel Farkı
- Düzgün Elektrik Alandaki Potansiyel Farkı
- Elektriksel Potansiyel ve Noktasal Yüklerin Oluşturduğu Potansiyel Enerji
- Elektriksel Potansiyelden Elektrik Alan Elde Edilmesi
- Sürekli Yük Dağılımının Oluşturduğu Elektriksel Potansiyel
- Yüklü Bir İletkenin Potansiyeli

▲ Processes occurring during thunderstorms cause large differences in electric potential between a thundercloud and the ground. The result of this potential difference is an electrical discharge that we call lightning, such as this display over Tucson, Arizona. (© Keith Kent/ Photo Researchers, Inc.)

http://en.wikipedia.org/wiki/Lightning

- •Yıldırımlar saniyede 10⁵ Coulomb'dan daha fazla bir elektriksel yükü bulutlardan yere aktarabilirler.
- •Bu olay sırasında 10⁷ J/C veya 10⁷ Voltluk bir elektriksel potansiyel oluşur.

- •Elektrik alanının içinde yüklü bir parçacık hareket ederse, elektrik alan parçacık üzerine bir kuvvet uygular ve iş yapar.
- Yapılan bu iş elektriksel potansiyel olarak ifade edilir.
- •Kütle-çekim potansiyel enerjisinin cismin yerden yüksekliğine bağlı olması gibi, elektriksel potansiyel de yüklü parçacığın elektrik alan içindeki konumuna bağlıdır.
- •Elektrik devrelerinde iki nokta arasındaki elektriksel potansiyel farkı "voltaj" olarak isimlendirilir.
- Potansiyel ve voltaj kavramları elektrik devrelerinin ve günlük hayatta kullandığımız bir çok temel elektrikli aletlerin nasıl çalıştığını anlamak için çok önemlidir.

ightharpoonup E elektrik alan içinde hareket eden q_0 deneme yüküne uygulanan kuvvet;

$$F=q_0E$$

➤Sonsuz küçük *ds* yerdeğiştirmesi için, yük üzerine alan tarafından yapılan iş;

$$F.ds = q_0 E.ds$$
 olur.

Elektrik alan tarafından bu kadar iş yapılırken, yük alan sisteminin potansiyel enerjisi;

$$dU=-q_0E.ds$$
 kadar azalır.

 $ightharpoonup q_0$ yükünün A ve B noktaları arasında sonlu bir yerdeğiştirmesi halinde, sistemin $\Delta U = U_B - U_A$ potansiyel enerji değişimi;

$$\Delta U = -q_0 \int_{A}^{B} \vec{E} \cdot d\vec{s}$$

Bir elektrik alan içinde A ve B gibi herhangi iki nokta arasındaki $\Delta V = V_B - V_A$ potansiyel farkı, sistemin potansiyel enerjisindeki değişimin q_0 deneme yüküne oranı olarak tanımlanır:

 $\Delta V = \frac{\Delta U}{q_0} = -\int_A^B \vec{E} . d\vec{s}$

- •Elektriksel potansiyel elektrik alanın skaler bir karakteristiğidir ve alan içinde bulunan yükten bağımsızdır.
- ■Potansiyel enerji ise alan-yük sistemini ifade eder.

Bir yükün potansiyel enerjisindeki değişim, elektriksel kuvvet tarafından yapılan işin negatifine eşittir. A ile B noktaları arasındaki potansiyel farkı, kinetik enerjide değişme olmaksızın, bir q_0 yükünü bir dış etken tarafından A noktasından B noktasına götürmek için birim yük başına yapılması gereken işe eşittir.

$$W_{A\rightarrow B}=U_A-U_B=-(U_B-U_A)=-\Delta U$$

Bir elektrik alan içindeli herhangi bir noktadaki potansiyel, pozitif deneme yükünü sonsuzdan bu noktaya getirmek için birim yük başına yapılan işe eşittir.

$$V_P = -\int_{\infty}^{P} E.ds$$

■Potansiyel farkı, birim yük başına enerjinin bir ölçüsüdür.

$$Volt(V)=1V=1 J/C$$

- •1V'luk potansiyel farkı boyunca 1 C'luk yükü götürmek için yapılması gereken iş 1J'dür.
- Potansiyel farkı aynı zamanda, elektrik alanla uzaklık birimlerinin çarpımına eşittir.

$$1 \text{ N/C=} 1 \text{ V/m}$$

•Elektron Volt: 1V büyüklüğündeki potansiyel farkı boyunca hareket eden bir elektron (veya proton) un kazandığı veya kaybettiği enerjisidir.

Düzgün Bir Elektrik Alandaki Potansiyel Farkları

Ref: University Physics, Young & Freedman, Pearson Addison Wesley

E elektrik alanı içinde artı yüklü plakadan eksi yüklü plakaya doğru $F=q_0E$ büyüklüğünde bir kuvvet etki eder. Yük a noktasından b noktasına hareket ederken yapılan pozitif bir iş yapılır;

$$W_{a\rightarrow b} = Fd = q_0 Ed$$

Elektriksel kuvvetin yalnızca y-bileşeni vardır.

$$F_y$$
=- q_0E
Bu kuvvet için potansiyel enerji;

Düzgün Bir Elektrik Alandaki Potansiyel Farkları

Yük y_a yüksekliğinden y_b yüksekliğine hareket ederse;

$$W_{a\to b} = -\Delta U = -(U_b - U_a) = -(q_0 E y_b - q_0 E y_a) = q_0 E (y_a - y_b)$$
 olur.

Ref: University Physics, Young & Freedman, Pearson Addison Wesley

E alanı ile aynı doğrultuda, pozitif bir yük hareket ederse (y_a>y_b), elektrik alanı yük üzerinde pozitif iş yapar ve U potansiyel enerjisi azalır.

E alanı ile ters doğrultuda, pozitif bir yük hareket ederse (y_a<y_b), elektrik alanı yük üzerinde negatif iş yapar ve U potansiyel enerjisi artar.

Düzgün Bir Elektrik Alandaki Potansiyel Farkları

Deneme yükünün pozitif veya negatif olması uygulanan kuralları değiştirmez!

Ref: University Physics, Young & Freedman, Pearson Addison Wesley

E alanı ile aynı doğrultuda, negatif bir yük hareket ederse (y_a>y_b), elektrik alanı yük üzerinde negatif iş yapar ve U potansiyel enerjisi artar. E alanı ile ters doğrultuda, negatif bir yük hareket ederse (y_a<y_b), elektrik alanı yük üzerinde pozitif iş yapar ve U potansiyel enerjisi azalır.

Düzgün Bir Elektrik Alandaki Potansiyel Farkları

- Pozitif bir yük elektrik alan doğrultusunda hareket ederse, elektriksel potansiyel enerji kaybeder.
- Negatif bir yük, elektrik alan doğrultusunda hareket ettiği zaman elektriksel potansiyel enerji kazanır.
- Aynı potansiyele sahip olan noktaların sürekli dağılımlarının oluşturduğu herhangi bir yüzeye eşpotansiyel yüzey adı verilir.

Ref: Fen ve Mühendislik için Fizik 2, Serway & Beichner

Bir proton, pozitif x ekseni doğrultusu boyunca yönelen 8,0x10⁴ V/m lik düzgün bir elektrik alan içinde durgun halden serbest bırakılıyor. Proton bu E elektrik alanın etkisiyle 0,50m yerdeğiştiriyor. (a) A ve B noktaları arasındaki elektriksel potansiyeldeki değişimi bulunuz. (b) Bu yerdeğiştirme için protonun potansiyel enerjisindeki değişimi bulunuz.

(c)

Ref: Fen ve Mühendislik için Fizik 2, Serway & Beichner

(a)
$$\Delta V = -Ed = -(8.0 \times 10^4 \text{ V/m})(0.50 \text{ m}) = -4.0 \times 10^4 \text{ V}$$

(b)
$$\Delta U = q_0 \ \Delta V = e \ \Delta V$$
$$= (1.6 \times 10^{-19} \ \text{C}) (-4.0 \times 10^4 \ \text{V})$$
$$= -6.4 \times 10^{-15} \ \text{J}$$

$$\Delta K + \Delta U = 0$$

$$(\frac{1}{2}mv^2 - 0) + e \Delta V = 0$$

$$v = \sqrt{\frac{-(2e\Delta V)}{m}}$$

$$= \sqrt{\frac{-2(1.6 \times 10^{-19} \text{ C})(-4.0 \times 10^4 \text{ V})}{1.67 \times 10^{-27} \text{ kg}}}$$

$$= 2.8 \times 10^6 \text{ m/s}$$

Elektriksel Potansiyel ve Noktasal Yüklerin Oluşturduğu Potansiyel Enerji

Ref: Fen ve Mühendislik için Fizik 2, Serway & Beichner

- Yalıtılmış pozitif bir noktasal q yükü bulunduğu yerden dışarı doğru ışınsal olarak bir elektriksel alan meydana getirir.
- Yükten r uzaklıkta bir noktada elektriksel potansiyel;
 _B

$$V_A - V_B = -\int_A \vec{E} \cdot d\vec{s}$$

$$E.ds = k_e \frac{q}{r^2} \hat{r}.ds$$

$$V_{B} - V_{A} = -\int E_{r} dr = -k_{e} q \int_{r_{A}}^{r_{B}} \frac{dr}{r^{2}} = k_{e} q \left[\frac{1}{r_{B}} - \frac{1}{r_{A}} \right]$$

Elektriksel Potansiyel ve Noktasal Yüklerin Oluşturduğu Potansiyel Enerji

Ref: Fen ve Mühendislik için Fizik 2, Serway & Beichner

Elektriksel Potansiyel ve Noktasal Yüklerin Oluşturduğu Potansiyel Enerji

- •İki veya daha fazla yükün bir noktada oluşturduğu elektriksel potansiyel üst-üste binme ilkesi uygulanarak elde edilir.
- •Bir noktasal yük grubu için P noktasındaki toplam potansiyel;

$$V = k_e \sum_{i} \frac{q_i}{r_i}$$

 Üç yükün toplam potansiyel enerji her bir yük çifti için U ayrı ayrı hesaplanıp sonuç toplanır;

$$U = k_e \left(\frac{q_1 q_2}{r_{12}} + \frac{q_1 q_3}{r_{13}} + \frac{q_2 q_3}{r_{23}} \right)$$

Elektriksel Potansiyel ve Noktasal Yüklerin Oluşturduğu Potansiyel Enerji

Ref: University Physics, Young & Freedman, Pearson Addison Wesley

Şekilde görüldüğü gibi q₁=2,00 μC'luk yük orijinde, q₂=-6,00 μC'luk yük (0;3,00) m'dedir. a) Bu yüklerin (4,00;0) m koordinatındaki P noktasında oluşturduğu toplam elektriksel potansiyeli bulunuz. b) Sonsuzdan P noktasına

getirilen 3,00 µC'luk yükün potansiyel enerjisindeki

değişmeyi bulunuz.

Ref: Fen ve Mühendislik için Fizik 2, Serway & Beichner

(b)
$$\Delta U = q_3 V_P - 0 = (3.00 \times 10^{-6} \,\mathrm{C}) (-6.29 \times 10^3 \,\mathrm{V})$$

= $-1.89 \times 10^{-2} \,\mathrm{J}$

erjisindeki
(a)
$$V_P = k_e \left(\frac{q_1}{r_1} + \frac{q_2}{r_2} \right)$$

$$V_P = (8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2)$$

$$\times \left(\frac{2.00 \times 10^{-6} \text{ C}}{4.00 \text{ m}} - \frac{6.00 \times 10^{-6} \text{ C}}{5.00 \text{ m}} \right)$$

$$= -6.29 \times 10^3 \text{ V}$$

$$U = k_e \left(\frac{q_1 q_2}{r_{12}} + \frac{q_1 q_3}{r_{13}} + \frac{q_2 q_3}{r_{23}} \right)$$

$$= (8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2)$$

$$\times \left(\frac{(2.00 \times 10^{-6} \text{ C}) (-6.00 \times 10^{-6} \text{ C})}{3.00 \text{ m}} + \frac{(2.00 \times 10^{-6} \text{ C}) (3.00 \times 10^{-6} \text{ C})}{4.00 \text{ m}} + \frac{(3.00 \times 10^{-6} \text{ C}) (-6.00 \times 10^{-6} \text{ C})}{5.00 \text{ m}} \right)$$

$$= -5.48 \times 10^{-2} \text{ J}$$

Elektrik Alan Değerinin Elektriksel Potansiyelden Elde Edilmesi

Belirli bir bölgede elektriksel potansiyel biliniyorsa, elektrik alan hesaplanabilir.

$$dV = -\vec{E}.d\vec{s}$$

$$E_x = -\frac{dV}{dx}$$

Bir koordinat ekseni doğrultusundaki elektrik alanın büyüklüğü, bu koordinata göre elektriksel potansiyelin türevinin negatifine eşittir.

Elektrik alana dik doğrultulardaki herhangi bir yerdeğiştirmede elektriksel potansiyel değişmez.

Elektrik Alan Değerinin Elektriksel Potansiyelden Elde Edilmesi

Bir deneme yükü, eşpotansiyelli yüzeyde bir ds yerdeğiştirmesi yaptığında, dV=0 olur, çünkü eşpotansiyelli yüzeylerde potansiyel sabittir. O zaman, dV=-E.ds=0 olur. Bu da, eşpotansiyel yüzeylerin her zaman elektrik alan çizgilerine dik olduğunu gösterir.

Ref: Fen ve Mühendislik için Fizik 2, Serway & Beichner

Bir elektrik dipol , şekildeki gibi, birbirinden 2a uzaklığıyla ayrılmış bulunan eşit ve zıt işaretli iki yükten oluşur. Dipol, x ekseni boyunca uzamakta ve dipolün merkezi eksenlerin kesim noktasındadır. a) P noktasındaki elektriksel potansiyeli hesaplayınız. b) Dipolden çok uzak bir noktada V ve Ex'i hesaplayınız. c) P noktası, iki yük arasında herhangi bir yerde bulunuyorsa, E_x ve V'yi hesaplayınız.

Ref: Fen ve Mühendislik için Fizik 2, Serway & Beichner

(a)
$$V = k_{\epsilon} \sum \frac{q_{i}}{r_{i}} = k_{\epsilon} \left(\frac{q}{x-a} - \frac{q}{x+a} \right) = \frac{2k_{\epsilon}qa}{x^{2}-a^{2}}$$

$$V = k_{\varepsilon} \sum_{i=1}^{\infty} \frac{1}{r_{i}} = k_{\varepsilon} \left(\frac{1}{x-a} - \frac{1}{x+a} \right) = \frac{1}{x^{2}-a^{2}}$$

$$V \approx \frac{2k_e qa}{x^2}$$
 $(x >> a)$ $E_x = -\frac{dV}{dx} = \frac{4k_e qa}{x^3}$ $(x >> a)$

 $\mathbf{E} = -\nabla V = -\left(\hat{\mathbf{i}} \frac{\partial}{\partial x} + \hat{\mathbf{j}} \frac{\partial}{\partial y} + \hat{\mathbf{k}} \frac{\partial}{\partial z}\right)V$

(C)
$$V = k_e \sum \frac{q_i}{r_i} = k_e \left(\frac{q}{a-x} - \frac{q}{a+x} \right) = \frac{2k_e qx}{a^2 - x^2}$$

$$E_{x} = -\frac{dV}{dx} = -\frac{d}{dx} \left(\frac{2 k_{e} qx}{a^{2} - x^{2}} \right) = -2 k_{e} q \left(\frac{a^{2} + x^{2}}{(a^{2} - x^{2})^{2}} \right)$$

Sürekli Yük Dağılımının Oluşturduğu Elektriksel Potansiyel

Ref: Fen ve Mühendislik için Fizik 2, Serway & Beichner

Herhangi bir P noktasında dq yük elemanının oluşturduğu dV potansiyeli;

$$dV = k_e \frac{dq}{r}$$

Her bir yük elamanı P noktasından farklı uzaklıklarda ve k_e sabit olduğundan;

$$V = k_e \int \frac{dq}{r}$$

- a) Toplam yükü Q ve yarıçapı a olan düzgün yüklenmiş bir halkanın merkezinden geçen çapına dik eksen üzerindeki bir P noktasındaki elektriksel potansiyeli bulunuz.
- b) P noktasındaki elektrik alanın büyüklüğü için bir ifade bulunuz.

(a)
$$V = k_e \int \frac{dq}{r} = k_e \int \frac{dq}{\sqrt{x^2 + a^2}}$$

$$V = \frac{k_e}{\sqrt{x^2 + a^2}} \int dq = \frac{k_e Q}{\sqrt{x^2 + a^2}}$$

(b)
$$E_{x} = -\frac{dV}{dx} = -k_{\ell}Q \frac{d}{dx} (x^{2} + a^{2})^{-1/2}$$
$$= -k_{\ell}Q(-\frac{1}{2})(x^{2} + a^{2})^{-3/2} (2x)$$
$$E_{x} = \frac{k_{\ell}Qx}{(x^{2} + a^{2})^{3/2}}$$

Yüzeyindeki yük yoğunluğu o, yarıçapı a olan düzgün yüklenmiş bir diskin merkezinden dik geçen eksen boyunca a) Elektriksel potansiyeli, b) Elektrik alanının büyüklüğünü bulunuz.

(a)
$$dq = \sigma dA = \sigma 2\pi r dr.$$

$$dV = \frac{k_e dq}{\sqrt{r^2 + x^2}} = \frac{k_e \sigma 2\pi r \, dr}{\sqrt{r^2 + x^2}}$$

$$V = \pi \, k_e \, \sigma \, \int_0^a \frac{2r \, dr}{\sqrt{r^2 + x^2}} = \pi \, k_e \, \sigma \, \int_0^a \, (r^2 + x^2)^{-1/2} \, 2r \, dr$$

$$V = 2\pi k_e \sigma \left[(x^2 + a^2)^{1/2} - x \right]$$

(b)
$$E_x = -\frac{dV}{dx} = 2\pi k_e \sigma \left(1 - \frac{x}{\sqrt{x^2 + a^2}}\right)$$

ÖRNEK: Sonlu Çizgisel Yükün Potansiyeli

Ref: Fen ve Mühendislik için Fizik 2, Serway & Beichner

l uzunluklu bir çubuk, x ekseni boyunca yerleştiriliyor. Çubuktaki toplam yük Q'dur ve yük, birim uzunluk başına düzgün olarak dağılmıştır. Y-ekseni boyunca, orijinden d uzaklıktaki bir P noktasında elektriksel potansiyeli bulunuz.

Not: İntegrali çözmek için ilk önce x=atan θ dönüşümü yapılır. Sonra çıkan sonuçta t=tan(θ /2) dönüşümü yapılır. $\cos\theta$ =(1+t²)/(1-t²) ve sin θ =2t/(1-t²)=x/a trigonometrik ifadeler kullanılır.

rnek

Düzgün dağılmış pozitif bir yük yoğunluğuna sahip, toplam yükü Q olan R yarıçaplı yalıtılmış bir küre veriliyor. a) Kürenin dışındaki bir noktada, yani r>R de elektriksel potansiyeli bulunuz. (r=∞ da potansiyeli sıfır olarak alınız) b) Yüklü kürenin içindeki bir noktada elektriksel potansiyeli bulunuz. Ref: Fen ve Mühendislik için Fizik 2, Serway & Beichner

$$V_0 = \frac{3k_eQ}{2R}$$

$$V_0 = \frac{k_eQ}{2R} \left(3 - \frac{r^2}{R^2}\right)$$

$$V_0 = \frac{k_eQ}{2R} \left(3 - \frac{r^2}{R^2}\right)$$

$$V_0 = \frac{k_eQ}{r}$$

$$V_0 = \frac{k_eQ}{r}$$

$$V_0 = \frac{k_eQ}{r}$$

(a)
$$E_r = k_e \frac{Q}{r^2} \quad (\text{for } r > R)$$

$$V_B - V_A = k_e Q \left[\frac{1}{r_B} - \frac{1}{r_A} \right]$$

$$V_B - 0 = k_e Q \left[\frac{1}{r_B} - 0 \right]$$

$$V_B = k_e \frac{Q}{r} \quad (\text{for } r > R)$$

Kürenin yüzeyinde ise
$$V_C = k_e \frac{Q}{R}$$
 (for $r = R$)

olur.

(b)
$$E_r = \frac{k_e Q}{R^3} r$$
 (for $r < R$) $V_D - V_C = -\int_R^r E_r dr = -\frac{k_e Q}{R^3} \int_R^r r dr = \frac{k_e Q}{2R^3} (R^2 - r^2)$

Yüklü Bir İletkenin Potansiyeli

- Elektrostatik denge durumundaki bir iletkenin taşıdığı net yük daima dış yüzeyinde toplanır.
- Denge durumundaki herhangi bir yüklü iletkenin yüzeyi, eşpotansiyel yüzeydir.
- •İletkenin içindeki her yerde E_r=-dV/dr bağıntısından, potansiyel sabit ve yüzeydeki değere eşittir.

Ref: Fen ve Mühendislik için Fizik 2, Serway & Beichner

İki iletken küre etrafındaki elektrik alan ve eşpotansiyel çizgileri

Ref: Fen ve Mühendislik için Fizik 2, Serway & Beichner

Yarıçapları r_1 ve r_2 olan iki iletken küre, her ikisinin yarıçapından daha büyük bir uzaklıkta, birbirlerinden ayrılmıştır. Küreler şekildeki gibi, bir iletken telle birbirlerine bağlıdır. Denge durumunda küreler üzerindeki düzgün dağılmış yükler sırayla q_1 ve q_2 ise, kürelerin yüzeyindeki elektrik alan şiddetinin oranını bulunuz.

Ref: Fen ve Mühendislik için Fizik 2, Serway & Beichner Her iki küre aynı elektrik potansiyele sahip olmalıdır. Çünkü bir iletken tel ile bağlıdırlar.

$$V = k_{\epsilon} \frac{q_1}{r_1} = k_{\epsilon} \frac{q_2}{r_2}$$

Bu yüzden, yüklerin oranı

$$\frac{q_1}{q_2} = \frac{r_1}{r_2}$$
 (1)

olur. Yüzeylerindeki yük dağılımları düzgün olduğu için yüzeylerindeki elektrik alanların büyüklükleri

$$E_1 = k_{\ell} \frac{q_1}{r_1^2}$$
 ve $E_2 = k_{\ell} \frac{q_2}{r_2^2}$

bulunur. Bu iki alanın oranından

$$\frac{E_1}{E_2} = \frac{r_2}{r_1}$$
 (2) elde edilir.

Şekilde görüldüğü gibi düzgün yüklü ince çubuğun çizgisel yük yoğunluğu λdır. P noktasında elektriksel potansiyel için bir ifade bulunuz.

Ref: Fen ve Mühendislik için Fizik 2, Serway & Beichner

$$V = k_e \int_{a}^{a+L} \frac{\lambda dx}{\sqrt{x^2 + b^2}} = k_e \lambda \ln \left[x + \sqrt{(x^2 + b^2)} \right]_{a}^{a+L} = k_e \lambda \ln \left[\frac{a + L + \sqrt{(a+L)^2 + b^2}}{a + \sqrt{a^2 + b^2}} \right]$$

Örnek (2.yol): Düzgün dağılmış pozitif yük yoğunluğuna sahip toplam yükü Q olan R yançaplı izole edilmiş bir kürenin

a) r = ∞'da potansiyeli sıfır alarak dışındaki bir noktada, yani r>R'de

b) içindeki bir noktada, yani r≤R'de elektriksel potansiyelini bulunuz.

Cözüm:

a)
$$\Phi_{C} = \oint E dA = \oint E dA = \frac{q_{i\varphi}}{\epsilon_{0}}$$

Gauss yüzeyi olarak kürenin yüzeyini seçersek $\int dA = 4\pi r^2$ olur.

$$E \oint dA = \frac{q_{ij}}{\epsilon_0} \qquad \Rightarrow \qquad E = k \frac{Q}{r^2}$$

$$V_B = -\int\limits_{\infty}^{x} E_x dr = -kQ \int\limits_{\infty}^{x} \frac{dr}{r^2} = kQ \left(\frac{1}{r}\bigg|_{\infty}^{x}\right)$$

$$V_B = k \frac{Q}{r}$$
 (r>R için)

$$V_c = k \frac{Q}{R}$$
 (r=R için)

b)
$$\Phi_{C} = \oint E.dA = \oint EdA = \frac{q_{i\phi}}{\epsilon_{0}}$$

$$q_{\hat{\boldsymbol{x}}_{\boldsymbol{i}}} = \rho V^r = \rho(\frac{4}{3}\pi r^3)$$

$$E \oint dA = \frac{q_{ij}}{\epsilon_0} \implies E.4\pi r^2 = \frac{\rho\left(\frac{4}{3}\pi r^3\right)}{\epsilon_0} \implies E = \frac{1}{3}\frac{\rho r}{\epsilon_0}$$

$$\rho = \frac{Q}{V} = \frac{Q}{\frac{4}{3}\pi R^3}$$

$$\rho = \frac{Q}{V} = \frac{Q}{\pm \pi R^3}$$
 olduğundan $E = k \frac{Qr}{R^3}$ bulunur.

$$V_{\mathbf{D}} - V_{\mathbf{C}} = - \int\limits_{\mathbf{R}}^{\mathbf{r}} E_{\mathbf{r}} d\mathbf{r} = - \frac{kQ}{R^3} \int\limits_{\mathbf{R}}^{\mathbf{r}} \mathbf{r} d\mathbf{r} = - \frac{kQ}{R^3} \left(\frac{\mathbf{r}^2}{2} \int\limits_{\mathbf{R}}^{\mathbf{r}} \right) \\ \Rightarrow V_{\mathbf{D}} - V_{\mathbf{C}} = \frac{kQ}{2R^3} \left(R^2 - \mathbf{r}^2 \right) \\ \Rightarrow V_{\mathbf{D}} - V_{\mathbf{C}} = \frac{kQ}{2R} - \frac{kQ\mathbf{r}^2}{2R^3} \left(R^2 - \mathbf{r}^2 \right) \\ \Rightarrow V_{\mathbf{D}} - V_{\mathbf{C}} = \frac{kQ}{2R} - \frac{kQ\mathbf{r}^2}{2R^3} \left(R^2 - \mathbf{r}^2 \right) \\ \Rightarrow V_{\mathbf{D}} - V_{\mathbf{C}} = \frac{kQ}{2R} - \frac{kQ\mathbf{r}^2}{2R^3} \left(R^2 - \mathbf{r}^2 \right) \\ \Rightarrow V_{\mathbf{D}} - V_{\mathbf{C}} = \frac{kQ}{2R} - \frac{kQ\mathbf{r}^2}{2R^3} \left(R^2 - \mathbf{r}^2 \right) \\ \Rightarrow V_{\mathbf{D}} - V_{\mathbf{C}} = \frac{kQ}{2R} - \frac{kQ\mathbf{r}^2}{2R^3} \left(R^2 - \mathbf{r}^2 \right) \\ \Rightarrow V_{\mathbf{D}} - V_{\mathbf{C}} = \frac{kQ}{2R} - \frac{kQ\mathbf{r}^2}{2R^3} \left(R^2 - \mathbf{r}^2 \right) \\ \Rightarrow V_{\mathbf{D}} - V_{\mathbf{C}} = \frac{kQ}{2R} - \frac{kQ\mathbf{r}^2}{2R^3} \left(R^2 - \mathbf{r}^2 \right) \\ \Rightarrow V_{\mathbf{D}} - V_{\mathbf{C}} = \frac{kQ}{2R} - \frac{kQ\mathbf{r}^2}{2R^3} \left(R^2 - \mathbf{r}^2 \right) \\ \Rightarrow V_{\mathbf{D}} - V_{\mathbf{C}} = \frac{kQ}{2R} - \frac{kQ\mathbf{r}^2}{2R^3} \left(R^2 - \mathbf{r}^2 \right) \\ \Rightarrow V_{\mathbf{D}} - V_{\mathbf{C}} = \frac{kQ}{2R} - \frac{kQ\mathbf{r}^2}{2R^3} \left(R^2 - \mathbf{r}^2 \right) \\ \Rightarrow V_{\mathbf{D}} - V_{\mathbf{C}} = \frac{kQ}{2R} - \frac{kQ\mathbf{r}^2}{2R^3} \left(R^2 - \mathbf{r}^2 \right) \\ \Rightarrow V_{\mathbf{D}} - V_{\mathbf{C}} = \frac{kQ}{2R} - \frac{kQ\mathbf{r}^2}{2R^3} \left(R^2 - \mathbf{r}^2 \right) \\ \Rightarrow V_{\mathbf{D}} - V_{\mathbf{C}} = \frac{kQ}{2R} - \frac{kQ\mathbf{r}^2}{2R^3} \left(R^2 - \mathbf{r}^2 \right) \\ \Rightarrow V_{\mathbf{D}} - V_{\mathbf{C}} = \frac{kQ}{2R} - \frac{kQ\mathbf{r}^2}{2R^3} \left(R^2 - \mathbf{r}^2 \right) \\ \Rightarrow V_{\mathbf{D}} - V_{\mathbf{C}} = \frac{kQ}{2R} - \frac{kQ\mathbf{r}^2}{2R^3} \left(R^2 - \mathbf{r}^2 \right) \\ \Rightarrow V_{\mathbf{D}} - V_{\mathbf{C}} = \frac{kQ\mathbf{r}^2}{2R} - \frac{$$

$$\mathbb{V}_{\mathbb{C}} = k \frac{Q}{R} \qquad \Rightarrow \qquad \mathbb{V}_{\mathbb{D}} = \frac{kQ}{R} + \frac{kQ}{2R} - \frac{kQr^2}{2R^3} = \frac{kQ}{2R} \left(3 - \frac{r^2}{R^2} \right) \qquad \qquad (r < R \ i cin)$$

SORULAR

Dört tane yük şekildeki gibi bir dikdörtgenin köşelerine yerleştirilmiştir. İki tane 4 μC'luk yükü yerlerinden ayırarak sonsuza götürmek için ne kadarlık bir enerji harcanır?

Cözüm:

 $4 \, \mu C$ 'luk yükün birini sonsuza götürmek için ΔU_1 :

$$\Delta U_1 = k \frac{q_1 q_2}{r_{12}} + k \frac{q_1 q_3}{r_{13}} + k \frac{q_1 q_4}{r_{14}}$$

$$\Delta U_1 = 9.10^9 \left(\frac{4.8.10^{-12}}{0.03} + \frac{4.4.10^{-12}}{\sqrt{45.10^{-2}}} + \frac{4.2.10^{-12}}{0.06} \right)$$

$$\Delta U_1 = 12,95 \text{ J}$$

 $4~\mu C$ 'luk yükün diğerini sonsuza götürmek için ΔU_2 :

$$\Delta U_2 = k \frac{q_3 q_4}{r_{34}} + k \frac{q_3 q_2}{r_{32}}$$

$$\Delta U_2 = 9.10^9 \left(\frac{4.2.10^{-12}}{0.03} + \frac{4.8.10^{-12}}{0.06} \right)$$

$$\Delta U_2 = 7.2 J$$

$$\Delta U = \Delta U_1 + \Delta U_2 = 20,15 J$$

2) Sol ucu orijinde olan x ekseni boyunca uzanmış L uzunluklu bir çubuğun üzerinde düzgün olmayan λ = αx yük yoğunluğu bulunmaktadır. Çubuğun sol ucundan d uzaklıktaki bir A noktasında elektriksel potansiyeli hesaplayınız.

Cözüm: $V = k \int \frac{dq}{x} = k \int \frac{\lambda dx}{x}$ $V = k \int_{a}^{L} \frac{\alpha x dx}{d + x}$ $V = k\alpha \int_{-1}^{1} \frac{x dx}{d + x}$ d + x = u \Rightarrow x = u - d \Rightarrow dx = du $V = k\alpha \int_{a}^{L} \frac{u - d}{u} du = k\alpha \left[\int_{a}^{L} du - d \int_{a}^{L} \frac{du}{u} \right]$ $V = k\alpha \left[\mathbf{u} \Big|_{\alpha}^{\mathbf{L}} - \mathbf{d} \left[\boldsymbol{\ell} \mathbf{n} \mathbf{u} \Big|_{\alpha}^{\mathbf{L}} \right] \right]$ $V = k\alpha \left[(d + x) \right]_0^L - d \left[\ln(d + x) \right]_0^L$ $V = k\alpha((d+L-d)-d(\ell n(d+L)-\ell nd))$ $V = k\alpha \left[L - d \left(\ln \frac{d + L}{L} \right) \right]$

3) R yançaplı düzgün yüklü yalıtkanın içindeki elektriksel potansiyel $V = \frac{kQ}{2R} \left(3 - \frac{r^2}{R^2} \right)$, dışındaki potansiyel $V = \frac{kQ}{r}$ ifadeleriyle veriliyor. Kürenin içinde ve dışında elektrik alan ifadele rini bulunuz.

$$\mbox{K\"{u}re\,nin\,ic\,inde;} \qquad \mbox{ } \mbox{$$

$$E_{x} = -\frac{dV}{dr} = \frac{kQr}{R^{3}}$$

Kürenin dışında;
$$V = \frac{kQ}{r}$$

$$V = \frac{kQ}{r}$$

$$E_{x} = -\frac{dV}{dr} = \frac{kQ}{r^{2}}$$

4) Yançapı 0,25 m olan içi dolu bir kürenin merkezinden 0,5 uzaklıktaki potansiyel 1800 V ise, içi dolu kürenin σ (C/m 2) yüzeyce yük yoğunluğu hesaplayınız.

Cözüm:

$$V = k \frac{q}{r}$$

$$\Rightarrow$$

$$V = k \frac{q}{r}$$
 \Rightarrow $q = \frac{Vr}{k} = \frac{1800.0,5}{9.10^9} = 10^{-7} C$

$$\sigma = \frac{q}{A} = \frac{q}{4\pi d^2}$$

$$\sigma = \frac{10^{-7}}{4\pi(0.25)^2}$$
 \Rightarrow $\sigma = \frac{4.10^{-7}}{\pi} \text{C/m}^2$

$$\sigma = \frac{4.10^{-7}}{\rm C/r}$$