Variabile Aleatoria

Lorenzo Vaccarecci

14 Marzo 2024

1 Variabili Casuali

Una variabile casuale è una funzione a valori reali definita sullo spazio campionario. $X: S \to \{x_1, \dots, x_n\}$

1.1 Esempio

X somma del lancio di due dadi.

2 Funzione di probabilità di massa

Nel caso di una variabile X a valori discreti x_i con i = 1, 2, ..., n, la funzione di probabilità di massa $p(\cdot)$ definita sulla retta reale, o pmf o anche solo funzione di probabilità, contiene tutta l'informazione necessaria per descrivere completamente X.

Si ha che
$$p(x_i) = P(X = x_i) \ge 0$$
 con $\sum_{i=1}^{n} p(x_i) = 1$.
La notazione corretta sarebbe $p(\{x_i\})$

2.1 Esempio continuato

$$\begin{array}{l} x_1=2, x_2=3, x_3=4, x_4=5, x_5=6, x_6=7, x_7=8, x_8=9, x_9=10, x_{10}=11, x_{11}=12\\ p_1=\frac{1}{36}, p_2=\frac{2}{36}, p_3=\frac{3}{36}, p_4=\frac{4}{36}, p_5=\frac{5}{36}, p_6=\frac{6}{36}, p_7=\frac{5}{36}, p_8=\frac{4}{36}, p_9=\frac{3}{36}, p_{10}=\frac{2}{36}, p_{11}=\frac{1}{36}, p_{11}=\frac{1}{36}, p_{12}=\frac{1}{36}, p_{13}=\frac{1}{36}, p_{14}=\frac{1}{36}, p_{15}=\frac{1}{36}, p_{16}=\frac{1}{36}, p_{17}=\frac{1}{36}, p_{18}=\frac{1}{36}, p_{18}=\frac{1}{36}, p_{18}=\frac{1}{36}, p_{18}=\frac{1}{36}, p_{19}=\frac{1}{36}, p_{19}=\frac$$

3 Funzione di probabilità cumulata

Ordiniamo i valori x_i in modo tale che $x_1 < x_2 < \cdots < x_i < \cdots < x_n$ e introduciamo la funzione di probabilità cumulata F(a), o cdf, definita come

$$F(a) = \sum_{x_i \le a} p(x_i)$$

L'i-esimo gradino è localizzato nel punto x_i e il salto corrispondente vale $P(x_i)$. La somma di tutti i gradini, ovviamente, è sempre 1.

3.1 Valore atteso (o Speranza, Espettazione)

Il valore atteso μ di una variabile casuale X è indicato con $\mathbb{E}[X]$ ed è la media pesata dei valori x_i che può assumere X. Ogni x_i è pesato con la sua probabilità $p(x_i)$ e quindi si ha

$$\mu = \mathbb{E}[X] = \sum_{i=1}^{n} x_i p_i$$

Il valore atteso di una variabile casuale non è casuale!

4 Varianza

Una seconda quantità che cattura proprietà importanti di una variabile casuale X è la varianza Var(X) definita come $Var(X) = E[(X - \mu)^2]$.

In parole povere è la dispersione dei valori intorno al valore medio.

4.1 Deviazione standard

Una quantità molto usata è la radice quadrata della varianza, nota come deviazione standard, o

$$SD(X) = \sqrt{Var(X)}$$

5 Funzione di variabile aleatoria discreta

$$g:\{x_1,\ldots,x_n\}\to\mathbb{R}$$

$$\mathbb{E}\left[g(x)\right] = \sum_{i=1}^{n} g(x_i) p_i$$

5.1 Esempio

$$g(x) = 5X + 3 \to \mathbb{E}[g(x)] = \sum_{i=1}^{n} (5x_i + 3)p_i = \sum_{i=1}^{n} 5x_i p_i + \sum_{i=1}^{n} 3p_i = 5\sum_{i=1}^{n} x_i p_i + 3\sum_{i=1}^{n} p_1 = 5\mathbb{E}[X] + 3$$