Spectral Theory

Zhiyuan Zhan chaleszhan@gmail.com

August 26, 2025

Contents

1	Adjoint Operator	2
2	Closable Operator	3
3	Spectrum	5
4	Symmetric Operator	8
5	Resolution of Identity	12
6	Spectral Decomposition for Bounded Self-adjoint Operator	20
7	Spectral Measure	22

1 Adjoint Operator

Definition 1.1 (Unbounded Operator). \mathcal{H} is a Hilbert space.

- (1) $A: \mathcal{H} \to \mathcal{H}$ is called a linear operator if the domain $D(A) \subset \mathcal{H}$ is a linear subspace and $A: D(A) \to \mathcal{H}$ is linear, denoted by $A \in \mathcal{L}(\mathcal{H})$.
- (2) A is bounded if there is a c such that $||Ax|| \le c||x||$ for any $x \in D(A)$. In such case, D(A) can be extended to \mathcal{H} . Then A is viewed as a bounded operator on \mathcal{H} .
- (3) If $D(A) \subset \mathcal{H}$ is dense, A is called densely defined.

Remark 1.2. For $A, B \in \mathcal{L}(\mathcal{H})$, $A \subset B$ means that $D(A) \subset D(B)$ and Ax = Bx for $x \in D(A)$. It follows that $A \subset B$ and $B \subset A$ imply A = B. So $A \subset B$ and $D(B) \subset D(A)$ imply A = B.

Definition 1.3 (Adjoint Operator). Let $A: \mathcal{H} \to \mathcal{H}$ be densely defined. Let

$$D(A^*) := \{ y \in \mathcal{H} : x \mapsto \langle Ax, y \rangle \text{ is a bounded linear functional on } D(A) \}.$$

Because D(A) is dense, it can be extended on \mathcal{H} by the Hahn-Banach Theorem. Then by Riesz representation theorem, there is a $z \in \mathcal{H}$ such that

$$\langle Ax, y \rangle = \langle x, z \rangle = \langle x, A^*y \rangle$$

which is defined as A^*y .

Remark 1.4. Note that $D(A^*)$ may be not dense.

Proposition 1.5. For $A, B \in \mathcal{L}(\mathcal{H})$,

- (1) if A, B are densely defined and $A \subset B$, then $B^* \subset A^*$.
- (2) if $D(A+B) = D(A) \cap D(B)$ is dense, then

$$A^* + B^* \subset (A+B)^*,$$

where "=" if B is bounded.

(3) if D(BA) is dense, then

$$A^*B^* \subset (BA)^*$$

where "=" if B is bounded.

- *Proof.* (1) For $y \in D(B^*)$, $x \in D(B) \mapsto \langle Bx, y \rangle$ is bounded. So $x \in D(A) \mapsto \langle Ax, y \rangle$ is bounded, i.e. $y \in D(A^*)$. And $\langle Ax, y \rangle = \langle Bx, y \rangle$ implies that $A^*y = B^*y$.
 - (2) Fix $y \in D(A^*) \cap D(B^*)$. For any $x \in D(A) \cap D(B) = D(A+B)$,

$$\langle Ax, y \rangle + \langle Bx, y \rangle = \langle x, A^*y \rangle + \langle x, B^*y \rangle$$

i.e., $\langle (A+B)x,y\rangle = \langle x,(A+B)^*y\rangle$. It follows that $y\in D\left((A+B)^*\right)$ and $(A+B)^*y=A^*y+B^*y$.

Let B be bounded. Fix $y \in D((A+B)^*)$. For any $x \in D(A)$,

$$\langle Ax, y \rangle = \langle Ax + Bx, y \rangle - \langle Bx, y \rangle = \langle x, (A+B)^*y \rangle - \langle x, B^*y \rangle.$$

So $y \in D(A^*) = D(A^* + B^*)$.

(3) Let $y \in D(A^*B^*)$. For any $x \in D(BA)$,

$$\langle BAx, y \rangle = \langle x, A^*B^*y \rangle$$
.

So $y \in D((BA)^*)$ and $(BA)^*y = A^*B^*y$.

Let B be bounded. If $y \in D((BA)^*)$, for any $x \in D(A) = D(BA)$,

$$\langle Ax, B^*y \rangle = \langle BAx, y \rangle = \langle x, (BA)^*y \rangle.$$

So $B^*y \in D(A^*)$, i.e. $y \in D(A^*B^*)$.

2 Closable Operator

Definition 2.1 (Closed Operator). For $A \in \mathcal{L}(\mathcal{H})$, if the graph of A

$$G(A) := \{(x, Ax) : x \in D(A)\} \subset \mathcal{H} \oplus \mathcal{H}$$

is closed, then A is called closed.

Remark 2.2. (1) For any sequence (x_n, Ax_n) in G(A) such that

$$(x_n, Ax_n) \to (x, y),$$

because $(x, y) \in G(A)$, Ax = y.

(2) By the closed graph theorem, if A is closed and $D(A) = \mathcal{H}$, then A is bounded.

Proposition 2.3. Let $A, B \in \mathcal{L}(\mathcal{H})$.

- (1) If A is densely defined, then A^* is closed.
- (2) If A is closed and B is bounded, then A + B is closed.

Proof. (1) Let $y_n \in D(A^*)$ such that $y_n \to y$ and $A^*y_n \to z$. For $x \in D(A)$,

$$\langle Ax, y_n \rangle = \langle x, A^*y_n \rangle$$
.

As $n \to \infty$, $\langle Ax, y \rangle = \langle x, z \rangle$. Therefore, $y \in D(A^*)$ and $A^*y = z$. It follows that $G(A^*)$ is closed.

(2) Let x_n in D(A + B) = D(A) such that $x_n \to x$ and $(A + B)x_n \to y$. Because B is bounded, $Bx_n \to Bx$ and $Ax_n \to y - Bx$. Furthermore, since A is closed, $x \in D(A)$ and Ax = y - Bx. Therefore, $x \in D(A + B)$ and (A + B)x = y.

Definition 2.4 (Closable Operator). Let $A \in \mathcal{L}(\mathcal{H})$. A is called closable if there is a closed operator B such that $A \subset B$. In such case, B is called a closed extension of A.

Proposition 2.5. Let $A \in \mathcal{L}(\mathcal{H})$. A is closable if and only if for any sequence x_n in D(A) such that $x_n \to 0$ and $Ax_n \to y$, y = 0.

<u>Proof.</u> If A is closable, the statements are clearly true. Conversely, it is sufficient to prove that $\overline{G(A)}$ is a graph of some linear operator. Because the linearity of $\overline{G(A)}$ is clear, it is sufficient to prove y = y' for any $(x, y), (x, y') \in \overline{G(A)}$. Let x_n and x'_n be two sequences in $\overline{G(A)}$ such that

$$(x_n, Ax_n) \to (x, y), \quad (x'_n, Ax'_n) \to (x, y')$$

Because $x_n - x'_n \to 0$ and $Ax_n - Ax'_n \to y - y'$, y = y' by the assumption.

3

Definition 2.6 (Closure of Closable Operator). By above proposition, when $A \in \mathcal{L}(\mathcal{H})$ is closable, the closed operator whose graph is $\overline{G(A)}$ is called the closure of A, denoted by \overline{A} .

Proposition 2.7. Let $A, B \in \mathcal{L}(\mathcal{H})$.

(1) $A \subset B$ implies that $\overline{A} \subset \overline{B}$.

- (2) $\overline{\operatorname{Im}(\overline{A})} = \overline{\operatorname{Im}(A)}$.
- (3) If A is closable and B is bounded, then A + B is closable and

$$\overline{A+B} = \overline{A} + B$$

Proof. (1) It is clear.

- (2) Clearly, $\operatorname{Im}(\overline{A}) \supset \overline{\operatorname{Im}(A)}$. Let $y \in \operatorname{Im}(\overline{A})$, so by definition there is a sequence x_n in D(A) such that $Ax_n \to y$, i.e., $\operatorname{Im}(\overline{A}) \subset \overline{\operatorname{Im}(A)}$. Therefore, $\overline{\operatorname{Im}(\overline{A})} \subset \overline{\operatorname{Im}(A)}$.
- (3) Let x_n be a sequence in D(A+B)=D(A) such that $x_n\to 0$ and $(A+B)x_n\to y$. Because $Bx_n\to 0$, $Ax_n\to y$. Because A is closable, $Ax_n\to 0=y$. So A+B is closable. First, $A\subset \overline{A}$, so $A+B\subset \overline{A}+B$ and thus

$$\overline{A+B} \subset \overline{A}+B$$

Conversely, let $x \in D(\overline{A} + B) = D(\overline{A})$. Choose a sequence x_n in D(A) such that $x_n \to x$ and $Ax_n \to \overline{A}x$. Then

$$x_n \to x$$
, $(A+B)x_n \to \overline{A}x + Bx$.

Therefore, $x \in D(\overline{A+B})$ and $\overline{A+B} = \overline{A} + B$.

Lemma 2.8. Let $A \in \mathcal{L}(\mathcal{H})$ be densely defined.

$$G(A)^{\perp} = \{(-A^*y, y) \colon y \in D(A^*)\}.$$

Proof. For any $x \in D(A)$ and $y \in D(A^*)$,

$$(-A^*y,y) \perp (x,Ax)$$

in $\mathcal{H} \oplus \mathcal{H}$. So

$$G(A)^{\perp}\supset\left\{ \left(-A^{\ast}y,y\right) \colon y\in D(A^{\ast})\right\} .$$

Conversely, let $(x', y') \perp G(A)$. For any $x \in D(A)$, $(x, Ax) \perp (x', y')$ implies that

$$\langle x, x' \rangle = - \langle Ax, y' \rangle$$

Therefore, $y' \in D(A^*)$ and $A^*y' = -x'$. It follows that

$$G(A)^{\perp} \subset \left\{ (-A^*y, y) \colon y \in D(A^*) \right\}.$$

Theorem 2.9. Let $A \in \mathcal{L}(\mathcal{H})$ be densely defined. A is closable if and only if $D(A^*)$ is dense. In such case, we have

$$A^{**} = \overline{A}, \quad \overline{A}^* = A^*.$$

Proof. Assume A is closable. Let $z \in D(A^*)^{\perp}$. Then

$$(0,z) \in \{(-A^*y,y) \mid y \in D(A^*)\}^{\perp}$$

Therefore,

$$(0,z) \in G(A)^{\perp \perp} = \overline{G(A)} = G(\overline{A}),$$

which implies that z = 0. So $D(A^*)$ is dense.

Conversely, assume $D(A^*)$ is dense. Let $(0, z) \in \overline{G(A)}$. Then

$$(0,z) \in \{(-A^*y,y) \mid y \in D(A^*)\}^{\perp}$$

by above lemma. Therefore, $z \in D(A^*)^{\perp} = \{0\}$. It follows that A is closable.

In such case, $D(A^*)$ is dense, so it can consider A^{**} . By the similar prove of above lemma,

$$G(A)^{\perp \perp} = \{(-A^*y, y) : y \in D(A^*)\}^{\perp} = \{(z, A^{**}z) : z \in D(A^{**})\} = G(A^{**})$$

Therefore,

$$G(\overline{A}) = \overline{G(A)} = G(A)^{\perp \perp} = G(A^{**}),$$

i.e., $\overline{A} = A^{**}$.

Because

$$G(\overline{A})^{\perp} = G(A)^{\perp}$$

by above lemma, $G(A^*) = G(\overline{A}^*)$. So $A^* = \overline{A}^*$.

3 Spectrum

Definition 3.1 (Resolvent Set). Let $A \in \mathcal{L}(\mathcal{H})$ be densely defined. For $\lambda \in \mathbb{C}$, if

- (1) $A \lambda I$ is injective;
- (2) $ran(A \lambda I)$ is dense;
- (3) $(A \lambda I)^{-1}$ is bounded on ran $(A \lambda I)$,

then $\lambda \in \rho(A)$, which is called the resolvent set, and $\sigma(A) = \mathbb{C} \setminus \rho(A)$ is called the spectrum of A. Furthermore, $R_{\lambda}(A) = (A - \lambda I)^{-1}$.

Definition 3.2 (Spectrum). Let $A \in \mathcal{L}(\mathcal{H})$ be densely defined.

- (1) If $A \lambda I$ is not injective, then λ is called an eigenvalue of A, and the set $\sigma_p(A)$ of all eigenvalues is called the point spectrum of A.
- (2) If $A \lambda I$ is injective but $\operatorname{ran}(A \lambda I)$ is not dense, then the set $\sigma_r(A)$ of all such λ is called the residual spectrum of A.
- (3) If $A \lambda I$ is injective and ran $(A \lambda I)$ is dense, but $(A \lambda I)^{-1}$ is not bounded, then the set $\sigma_c(A)$ of all such λ is called the continuous spectrum of A.

Remark 3.3. Note that the spectrum of A

$$\sigma(A) = \sigma_p(A) \cup \sigma_c(A) \cup \sigma_r(A).$$

Proposition 3.4. Let $A \in \mathcal{L}(\mathcal{H})$ be densely defined. TFAE.

(1) $\lambda \in \sigma_c(A)$.

(2) $A - \lambda I$ is injective, $\overline{\text{Im}(A - \lambda I)} = \mathcal{H}$ and

$$\forall c > 0, \quad \exists x \in D(A) \setminus \{0\}, \quad \|(A - \lambda I)x\| \le c\|x\|.$$

Proof. (1) \Rightarrow (2): Assume that there is a c > 0 such that $||(A - \lambda I)x|| \le c||x||$ for all $x \in D(A) \setminus \{0\}$. Then for any $y \in \text{Im}(A - \lambda I)$, let $x \in D(A)$ be $y = (A - \lambda I)x$. So

$$\|(A - \lambda I)^{-1}y\| = \|x\| \le \frac{1}{c}\|y\|,$$

i.e., $(A - \lambda I)^{-1}$ is bounded, contradicting to $\lambda \in \sigma_c(A)$.

(2) \Rightarrow (1): Similarly as above, if $(A - \lambda I)^{-1}$ is bounded, $A - \lambda I$ is bounded below.

Proposition 3.5. Let $A \in \mathcal{L}(\mathcal{H})$ be densely defined and closable.

- (1) When $\lambda \in \rho(A)$, $\operatorname{Im}(\overline{A} \lambda I) = \mathcal{H}$.
- (2) $\rho(A) = \rho(\overline{A}).$
- (3) When $\lambda \in \rho(A)$, $\overline{R_{\lambda}(A)} = R_{\lambda}(\overline{A})$.

Proof. (1) Let $\lambda \in \rho(A)$ and $y \in \mathcal{H}$. Choose a sequence x_n in D(A) such that

$$y_n = (A - \lambda I)x_n \to y.$$

and so y_n is Cauchy. Because $(A - \lambda I)^{-1}$ is bounded,

$$x_n = (A - \lambda I)^{-1} y_n$$

is also Cauchy. So $x_n \to x$ for some x. Because $A - \lambda I$ is closable, $x \in D(\overline{A} - \lambda I) = D(\overline{A} - \lambda I)$. Therefore, $(\overline{A} - \lambda I)x = y$. Therefore, $\overline{A} - \lambda I$ is bijective.

(2) First, fix $\lambda \in \rho(A)$. Let $x \in \ker(\overline{A} - \lambda I)$ and choose x_n in D(A) such that $x_n \to x$ and $(A - \lambda I)x_n \to 0$. Because $(A - \lambda I)^{-1}$ is bounded, $x_n \to 0 = x$. So $\overline{A} - \lambda I$ is injective. By (1), $\overline{A} - \lambda I$ is surjective. Then the closedness $G(\overline{A} - \lambda I)$ implies that the closedness of $G((\overline{A} - \lambda I)^{-1})$. By the closed graph theorem, $(\overline{A} - \lambda I)^{-1}$ is bounded. Therefore, $\lambda \in \rho(\overline{A})$.

Conversely, for $\lambda \in \rho(\overline{A})$, by $A - \lambda I \subset \overline{A} - \lambda I$, the injectivity of $A - \lambda I$ and the boundedness of $(A - \lambda I)^{-1}$ are clear. Furthermore, $\overline{\text{Im}(A - \lambda I)} = \overline{\text{Im}(\overline{A} - \lambda I)} = \mathcal{H}$. So $\lambda \in \rho(A)$.

(3) For $\lambda \in \rho(A)$, it is because $\overline{R_{\lambda}(A)}$ and $R_{\lambda}(\overline{A})$ have same graphs.

Proposition 3.6. Let $A \in \mathcal{L}(\mathcal{H})$ be densely defined and closed. $\lambda \in \rho(A)$ if and only if $A - \lambda I : D(A) \to \mathcal{H}$ is bijective.

Proof. If $\lambda \in \rho(A)$, by above (1), $A - \lambda I$ is bijective.

Conversely, it is sufficient to prove $(A - \lambda I)^{-1}$ is bounded, i.e., its graph is closed by the closed graph theorem. It is because A is a closed operator.

Proposition 3.7. Let $A \in \mathcal{L}(\mathcal{H})$ be densely defined and closed. For $\lambda, \mu \in \rho(A)$,

$$R_{\lambda}(A) - R_{\mu}(A) = (\lambda - \mu)R_{\lambda}(A)R_{\mu}(A)$$

Proof. It is because

$$R_{\lambda}(A) - R_{\mu}(A) = R_{\lambda}(A)((A - \mu I) - (A - \lambda I))R_{\mu}(A). \qquad \Box$$

Proposition 3.8. Let $A \in \mathcal{L}(\mathcal{H})$ be densely defined and closed. Let $\lambda_0 \in \rho(A)$. For $\varepsilon = \|R_{\lambda_0}(A)\|^{-1}$,

$$B(\lambda_0, \varepsilon) \subset \rho(A),$$

i.e., $\rho(A)$ is open. Moreover, if $\lambda \in B(\lambda_0, \varepsilon)$,

$$R_{\lambda}(A) = \sum_{n=0}^{\infty} (\lambda - \lambda_0)^n R_{\lambda_0}(A)^{n+1}.$$

Proof. For $\lambda \in B(\lambda_0, \varepsilon)$, let

$$K_{\lambda} = (\lambda - \lambda_0) R_{\lambda_0}(A),$$

whose domain is \mathcal{H} by the definition. So

$$A - \lambda I = (I - K_{\lambda})(A - \lambda_0 I)$$

Moreover, because $||K_{\lambda}|| = |\lambda - \lambda_0| ||R_{\lambda_0}(A)|| < 1$,

$$(I - K_{\lambda})^{-1} = \sum_{n=0}^{\infty} K_{\lambda}^{n}$$

in norm convergence. Therefore, $I - K_{\lambda}$ is bijective from \mathcal{H} to \mathcal{H} . Because $A - \lambda_0 I$ is bijective from D(A) to \mathcal{H} , $A - \lambda I = (I - K_{\lambda})(A - \lambda_0 I)$ is also bijective from D(A) to \mathcal{H} . So $\lambda \in \rho(A)$ by above proposition. Then

$$(A - \lambda I)^{-1} = (A - \lambda_0 I)^{-1} (I - K_\lambda)^{-1} = R_{\lambda_0}(A) \sum_{n=0}^{\infty} (\lambda - \lambda_0)^n R_{\lambda_0}(A)^n.$$

Proposition 3.9. Let $A \in \mathcal{L}(\mathcal{H})$ be bounded.

$$\emptyset \neq \sigma(A) \subset \{\lambda \in \mathbb{C} | |\lambda| < ||A|| \}$$

Proof. If $|\lambda| > ||A||$,

$$(A - \lambda I)^{-1} = -\lambda^{-1} \left(I - \lambda^{-1} A \right)^{-1} = -\lambda^{-1} \sum_{n=0}^{\infty} \lambda^{-n} A^n,$$

which implies that $\lambda \notin \sigma(A)$.

Assume $\sigma(A) = \emptyset$. For $\lambda_0 \in \mathbb{C}$, when λ is closed to λ_0 ,

$$f(\lambda) := (R_{\lambda}(A)x, y) = \sum_{n=0}^{\infty} (\lambda - \lambda_0)^n \left(R_{\lambda_0}(A)^{n+1} x, y \right),$$

i.e., f is regular on \mathbb{C} . Moreover, for $\lambda > ||A||$,

$$|f(\lambda)| \le \sum_{n=0}^{\infty} |\lambda|^{-n-1} ||A||^n ||x|| ||y|| = |\lambda|^{-1} (1 - ||A||/|\lambda|)$$

Therefore, $f(\lambda) \to 0$ as $\lambda \to \infty$. By Liouville's Theorem, $f(\lambda) = 0$, i.e., $R_{\lambda}(A) = 0$, which induces a contradiction.

4 Symmetric Operator

Definition 4.1 (Symmetric Operator). Let $A \in \mathcal{L}(\mathcal{H})$ be densely defined. If for any $x, y \in D(A)$,

$$\langle Ax, y \rangle = \langle x, Ay \rangle$$
,

A is called symmetric or Hermitian.

Remark 4.2. Note that for densely defined A, it is symmetric if and only if $A \subset A^*$. So symmetric operators are closable.

Proposition 4.3. Let $A \in \mathcal{L}(\mathcal{H})$ be densely defined.

- (1) A is symmetric if and only if for any $x \in D(A)$, $\langle Ax, x \rangle \in \mathbb{R}$.
- (2) If A is symmetric, then A is closable and \overline{A} is also symmetric.
- (3) If A is symmetric and $D(A) = \mathcal{H}$, then A is bounded.

Proof. (1) If A is symmetric, $\langle Ax, x \rangle \in \mathbb{R}$ clearly. In converse, because $\langle Ax, x \rangle \in \mathbb{R}$,

$$\langle Ax, y \rangle = \sum_{k=0}^{3} i^{k} \langle A(x + i^{k}y), x + i^{k}y \rangle,$$

and

$$\sum_{k=0}^{3} i^{k} \left\langle x + i^{k} y, A\left(x + i^{k} y\right) \right\rangle = (x, Ay).$$

Therefore, $\langle Ax, y \rangle = \langle x, Ay \rangle$.

(2) If A is symmetric, $A \subset A^*$. Because D(A) is dense, A^* is closed. So A is closable. Moreover,

$$\overline{A} = A^{**} \subset A^* = \overline{A}^*.$$

So \overline{A} is symmetric.

(3) Because $A \subset A^*$ and $D(A) = \mathcal{H}$, $A = A^*$. Therefore, A is closed. By the closed graph theorem, A is bounded.

Proposition 4.4. Let A be symmetric.

- (1) $\sigma_p(A) \subset \mathbb{R}$.
- (2) For $\lambda, \mu \in \sigma_p(A)$ with $\lambda \neq \mu$, and $Ax = \lambda x$, $Ay = \mu y$, $\langle x, y \rangle = 0$.

Definition 4.5 (Order). Let A be symmetric. For $\alpha \in \mathbb{R}$, if

$$\alpha ||A||^2 \le \langle Ax, x \rangle, \quad \forall \ x \in D(A),$$

then $\alpha \leq A$.

Definition 4.6 (Self-adjoint Operator). Let A be densely defined. If $A = A^*$, then A is called self-adjoint.

Proposition 4.7. Let A be self-adjoint. If B is symmetric and $A \subset B$, then A = B.

Proof. It is because
$$A \subset B \subset B^* \subset A^* = A$$
.

Proposition 4.8. Let A be closed.

- (1) $\ker A$ is closed.
- (2) If A is dense, then

$$\mathcal{H} = \ker A \oplus \overline{\operatorname{Im} A^*}$$

Proof. (1) Let x_n be a sequence in ker A and $x_n \to x$. Then $x - x_n \to 0$ and $A(x - x_n) = Ax - Ax_n \to Ax$. Because A is closed, Ax = 0, i.e., $x \in \ker A$.

(2) Let $x \in \ker A$ and $y \in D(A^*)$. Because

$$0 = \langle Ax, y \rangle = \langle x, A^*y \rangle,$$

 $\ker A \perp \operatorname{Im} A^*$. Moreover, if $z \perp \operatorname{Im} A^*$ and $y \in D(A^*)$, i.e., $\langle z, A^*y \rangle = 0$, then $z \in D(A^{**}) = D(A)$. Furthermore, because $D(A^*)$ is dense, $Az = A^{**}z = 0$, i.e., $z \in \ker A$.

Lemma 4.9. Let A be a closed operator. The following statements are equivalent.

- (1) $\operatorname{Im} A$ is closed.
- (2) There exists C > 0 such that for all $x \in D(A) \cap (\ker A)^{\perp}$,

$$||Ax|| \ge C||x||.$$

Proof. Assume (1). Consider $A: D(A) \cap (\ker A)^{\perp} \to \operatorname{Im} A$. It is a bijection between Hilbert spaces $D(A) \cap (\ker A)^{\perp}$ and $\operatorname{Im} A$ by closedness. Then by the closed graph theorem, A^{-1} is bounded.

Conversely, assume (2). Choose $x_n \in D(A)$ such that $Ax_n \to y$. Let

$$x_n = x_n' + x_n''$$

with $x'_n \in D(A) \cap (\ker A)^{\perp}$ and $x''_n \in \ker A$. So $Ax'_n \to y$. By (2), x'_n is Cauchy, so $x'_n \to x \in \mathcal{H}$. Because G(A) is closed, $(x'_n, Ax'_n) \to (x, y) \in G(A)$. It follows that $Ax = y \in \operatorname{Im} A$.

Proposition 4.10. Let A be a symmetric operator.

(1) For $\lambda \in \mathbb{C} \backslash \mathbb{R}$ and $x \in D(A)$,

$$||(A - \lambda I)x|| \ge |\operatorname{Im} \lambda| \, ||x||.$$

(2) If $A \ge 0$ and $\lambda > 0$, then

$$||(A + \lambda I)x|| \ge \lambda ||x||.$$

- (3) If A is closed, for $\lambda \in \mathbb{C} \setminus \mathbb{R}$, $\operatorname{Im}(A \lambda I)$ is closed.
- (4) If A is closed and $A \ge 0$, for any $\lambda > 0$, then $\text{Im}(A + \lambda I)$ is closed.

Proof. (1) Let $\lambda = \alpha + \beta i$ for $\alpha, \beta \in \mathbb{R}$.

$$\langle (A - \lambda I)x, (A - \lambda I)x \rangle = \|(A - \alpha I)x\|^2 + \beta^2 \|x\|^2 > \beta^2 \|x\|^2$$

(2) It is because

$$\langle (A + \lambda I)x, (A + \lambda I)x \rangle = ||Ax||^2 + 2\lambda (Ax, x) + \lambda^2 ||x||^2 \ge \lambda^2 ||x||^2$$

- (3) It is by above $ker(A \lambda I) = 0$, (1), and above lemma.
- (4) It is by above $ker(A + \lambda I) = 0$, (2), and above lemma.

Theorem 4.11. Let A be self-adjoint.

- (1) $\sigma(A) \subset \mathbb{R}$.
- (2) For $\gamma \in \mathbb{R}$, if $A \geq \gamma$, $\sigma(A) \subset [\gamma, \infty)$.
- (3) $\sigma_r(A) = \emptyset$.
- (4) $\sigma(A) = \sigma_{ap}(A)$, where $\sigma_{ap}(A)$ is the approximated point spectrum of A, defined as

$$\sigma_{ap}(A) = \{ \lambda \in \mathbb{C} : \exists x_n \text{ with } ||x_n|| = 1 \text{ such that } (A - \lambda I)x_n \to 0 \}$$

Proof. (1) For $\lambda \in \mathbb{C}\backslash\mathbb{R}$, by (1) in the above proposition, $A - \lambda I$ is injective and its inverse is bounded. Because $A = A^*$,

$$\mathcal{H} = \ker(A - \overline{\lambda}I) \oplus \overline{\operatorname{Im}(A - \lambda I)}$$

So $\mathcal{H} = \overline{\mathrm{Im}(A - \lambda I)}$.

- (2) When $\lambda < \gamma$, by (2) in the above proposition, $A \lambda I$ is injective and its inverse is bounded. Similarly, $\mathcal{H} = \overline{\text{Im}(A \lambda I)}$.
- (3) For $\lambda \in \mathbb{R}$,

$$\mathcal{H} = \ker(A - \lambda I) \oplus \overline{\operatorname{Im}(A - \lambda I)}$$

Then if $\ker(A - \lambda I) = 0$, $\operatorname{Im}(A - \lambda I)$ is dense.

(4) Fix $\lambda \in \sigma(A)$. Assume there exits a C > 0 such that

$$||(A - \lambda I)x|| \ge C||x||, \quad \forall \ x \in D(A)$$

Therefore, $A - \lambda I$ is injective and its inverse is bounded. But because $\lambda \in \mathbb{R}$, by (3), $\text{Im}(A - \lambda I)$ is dense. $\lambda \in \rho(A)$, which induces a contradiction. So $\lambda \in \sigma_{ap}(A)$

Conversely, it is by the following remark.

Remark 4.12. (i) It is clear that $\sigma_p(A) \subset \sigma_{ap}(A)$.

(ii) $\sigma_c(A) \subset \sigma_{ap}(A)$: If $\lambda \in \sigma_c(A)$, for 1/n, choose x_n with $||x_n|| = 1$ such that

$$\|(A-\lambda)x_n\| \le \frac{1}{n}\|x_n\|.$$

So $\lambda \in \sigma_{ap}(A)$.

(iii) $\sigma_{ap}(A) \subset \sigma(A)$: If $\lambda \in \rho(A)$, then $(A - \lambda I)^{-1}$ is bounded, which implies that

$$\exists C > 0, \forall x \in D(A), \|(A - \lambda I)x\| \ge C\|x\|$$

It follows that $\lambda \notin \sigma_{ap}(A)$.

(iv) For self-adjoint operator, $\sigma = \sigma_p \cup \sigma_c = \sigma_{ap}$.

Theorem 4.13. Let A be a symmetric operator. TFAE.

- (1) A is self-adjoint.
- (2) A is closed and $ker(A^* \pm iI) = 0$.
- (3) $\operatorname{Im}(A \pm iI) = \mathcal{H}$.

Proof. (1) \Rightarrow (2): Clearly, A is closed. $\sigma_p(A) = \sigma_p(A^*) \subset \mathbb{R}$, so $\ker(A^* \pm iI) = 0$.

 $(2) \Rightarrow (3)$: Because A is closed, A^* is densely defined. And A^* is closed. So

$$\mathcal{H} = \ker (A^* \pm iI) \oplus \overline{\operatorname{Im} (A^{**} \mp iI)}.$$

Closedness of A implies that $A = \overline{A} = A^{**}$. So Im $(A \pm iI)$ is dense.

 $(3) \Rightarrow (1)$: It suffices to prove $D(A^*) \subset D(A)$. For any $x \in D(A^*)$, let $y \in D(A)$ such that

$$(A^* - iI)x = (A - iI)y.$$

Since
$$A \subset A^*$$
, $(A^* - iI)(x - y) = 0$. Because $\text{Im}(A + iI) = \mathcal{H}$ and $\ker(A^* - iI) \perp \text{Im}(A + iI)$, $\ker(A^* - iI) = 0$. Therefore, $x = y$.

Proposition 4.14. Let A be a closed and symmetric operator. TFAE.

- (1) A is self-adjoint.
- (2) $\sigma(A) \subset \mathbb{R}$.

Proof. (2) \Rightarrow (1): Because A is closed and $\pm i \in \rho(A)$, $\text{Im}(A \pm iI) = \mathcal{H}$. By above theorem, A is self-adjoint.

Definition 4.15 (Essentially Self-adjoint). Let A be a symmetric operator. If \overline{A} is self-adjoint, then A is called essentially self-adjoint.

Proposition 4.16. Let A be essentially self-adjoint. If $A \subset B$ and B is a closed symmetric operator, then $B = \overline{A}$.

Proof. $A \subset B$ implies that $\overline{A} \subset B$. Then

$$B \subset B^* \subset \overline{A}^* = \overline{A}$$

Therefore, $B = \overline{A}$.

Proposition 4.17. Let A be a symmetric operator. TFAE.

- (1) A is essentially self-adjoint.
- (2) $\ker(A^* \pm iI) = 0$.
- (3) $\overline{\text{Im}(A \pm iI)} = \text{H}.$

Proof. By replacing A with \overline{A} in the proof of above theorem, it can get the desired results. \square

5 Resolution of Identity

Definition 5.1 (Operator Topology). Consider $A_n \in \mathcal{B}(H)$, the space of bounded linear operators.

(1) Strong operator topology (SOT): $A_n \to A$ in SOT if

$$\forall x \in \mathcal{H}, \quad ||A_n x - Ax|| \to 0.$$

(2) Weak operator topology (WOT): $A_n \to A$ in WOT of

$$\forall x, y \in \mathcal{H}, \quad \langle A_n x, y \rangle \to \langle A x, y \rangle.$$

Remark 5.2. By the Cauchy-Schwarz inequality, convergence in SOT implies convergence in WOT.

Proposition 5.3. Let $A_n, B_n \in \mathcal{B}(\mathcal{H})$. Let $A, B \in \mathcal{B}(\mathcal{H})$.

- (1) If $A_n \to A$ and $B_n \to B$ in SOT, then $A_n B_n \to AB$ in SOT.
- (2) If $A_n \to A$ in WOT, $A_n^* \to A^*$ in WOT.

Proof. (1) For any $x \in \mathcal{H}$, because $\{A_n x\}$ is convergent, it is bounded. By the principle of uniform boundedness, $\{\|A_n\|\}$ is bounded. Then

$$||A_n B_n x - A B x|| \le ||A_n B_n x - A_n B x|| + ||A_n B x - A B x||$$

$$\le \left(\sup_n ||A_n||\right) ||B_n x - B x|| + ||A_n B x - A B x|| \to 0$$

(2) For $x, y \in H$,

$$\langle A_n^* x, y \rangle = \langle x, A_n y \rangle = \overline{\langle A_n y, x \rangle} \to \overline{\langle A y, x \rangle} = \langle x, A y \rangle = \langle A^* x, y \rangle.$$

Remark 5.4. Note that (1) is not true for WOT and (2) is not true for SOT.

Proposition 5.5. Let $\{P_n\}$ be a sequence of orthogonal projections and $P \in \mathcal{B}(\mathcal{H})$.

- (1) If $P_n \to P$ in SOT, then P is also an orthogonal projection.
- (2) If $P_n \to P$ in WOT and $P^2 = P$, then P is also an orthogonal projection and $P_n \to P$ in SOT.

Proof. (1) By above proposition, $P_n = P_n^* \to P^*$ in WOT, so $P = P^*$. Similarly, $P_n = P_n^2 \to P^2$ in SOT, so $P = P^2$.

(2) P is an orthogonal projection by similar reason as above. For $x \in \mathcal{H}$,

$$||P_n x - Px||^2 = (P_n x, x) - 2 \operatorname{Re}(P_n x, Px) + (Px, x)$$

$$\to (Px, x) - 2 \operatorname{Re}(Px, Px) + (Px, x) = 0$$

Proposition 5.6. Let $\{P_n\}$ be a sequence of orthogonal projections with $P_n \leq P_{n+1}$. Then there is a P such that $P_n \to P$ in SOT. It is also true when $P_n \geq P_{n+1}$.

Proof. For $x \in \mathcal{H}$, $\langle P_n x, x \rangle$ is a monotone increasing sequence with bound ||x||. Therefore, it has a limit. For m > n,

$$||P_m x - P_n x|| = \langle P_m x, x \rangle - \langle P_n x, x \rangle \to 0$$

Therefore, define $Px := \lim_{n} P_n x$, which is clearly a bounded linear operator, so it is an orthogonal projection by above proposition. The same results can be obtained for $P_n \ge P_{n+1}$.

Definition 5.7 (Resolution of Identity). Let $\{E(\lambda)\}_{\lambda\in\mathbb{R}}$ be a family of orthogonal projections such that

- (1) if $\lambda \leq \mu$, then $E(\lambda) \leq E(\mu)$,
- (2) when $\lambda \to \infty$, $E(\lambda) \to I$ in SOT, meanwhile $E(\lambda) \to 0$ as $\lambda \to -\infty$,
- (3) when $\varepsilon \to 0+$, $E(\lambda + \varepsilon) \to E(\lambda)$ in SOT.

Then it is called a resolution of the identity.

Remark 5.8. Note that if $\{E(\lambda)\}_{\lambda\in\mathbb{R}}$ is a resolution of the identity, then $E(\lambda-\varepsilon)$ is also convergent to an orthogonal projection as $\varepsilon\to 0+$.

Fix $x,y\in\mathcal{H}$. Because $\lambda\mapsto\langle E(\lambda)x,x\rangle$ is monotone increasing and right-continuous, it can consider the Lebesgue-Stieltjes integral $\int_{\mathbb{R}}\cdot d\langle E(\lambda)x,x\rangle$, which can be extended to $\int_{\mathbb{R}}\cdot d\langle E(\lambda)x,y\rangle$ by the polarization

$$\langle E(\lambda)x, y \rangle = \frac{1}{4} \sum_{k=0}^{3} i^k \langle E(\lambda)(x + i^k y), x + i^k y \rangle.$$

For a complex-valued continuous function f, consider A(f), whose domain is defined as

$$D(A(f)) := \left\{ x \in \mathcal{H} \colon \int_{\mathbb{R}} |f(\lambda)| \, d \, \langle E(\lambda)x, x \rangle < \infty \right\}.$$

Theorem 5.9. As above settings,

- (1) D(A(f)) is a dense subspace of \mathcal{H} .
- (2) for $x \in D(A(f))$ and $y \in \mathcal{H}$, the operator A(f) is well-defined as

$$\langle A(f)x,y\rangle = \int_{\mathbb{R}} f(\lambda)d\langle E(\lambda)x,y\rangle.$$

(3) for $x \in D(A(f))$,

$$||A(f)x||^2 = \int_{\mathbb{T}} |f(\lambda)|^2 d\langle E(\lambda)x, x\rangle.$$

- (4) $E(\lambda)A(f) \subset A(f)E(\lambda)$.
- (5) $A(f)^* = A(\overline{f}).$
- (6) A(f) is closed.
- (7) if f is real-valued, then $A(f) = A(f)^*$.
- (8) if f is bounded, A(f) is bounded and $||A(f)|| \le ||f||_{\infty}$.

(9) if $|f(\lambda)| \equiv 1$, A(f) is a unitary.

Proof. (1) For $x \in D(A(f))$, it is clear $\alpha x \in D(A(f))$. For $x, y \in D(A(f))$,

$$\langle (E(\lambda) - E(\mu))(x+y), x+y \rangle \le 2 \langle (E(\lambda) - E(\mu))(x), x \rangle + 2 \langle (E(\lambda) - E(\mu))(y), y \rangle$$

Therefore, $x + y \in D(A(f))$. So D(A(f)) is a subspace.

For any $x \in \mathcal{H}$ and $n \in \mathbb{N}$, let $x_n = (E(n) - E(-n))x$. Then $x_n \in D(A(f))$ and $x_n \to x$. So D(A(f)) is dense.

(2) It is sufficient to prove that for a fixed $x \in D(A(f))$

$$y \mapsto \int_{\mathbb{D}} \overline{f(\lambda)} d\langle E(\lambda)y, x \rangle$$

is a linear functional. First, linearity is clear. For any $a, b \in \mathbb{R}$ and $y \in \mathcal{H}$, let $a = \lambda_0 < \cdots < \lambda_n = b$ be a partition of [a, b].

$$\left| \sum_{j=1}^{n} \overline{f(\lambda_{j})} \left\langle (E(\lambda_{j}) - E(\lambda_{j-1}))y, x \right\rangle \right|$$

$$\leq \sum_{j=1}^{n} |f(\lambda_{j})| \left| \left\langle (E(\lambda_{j}) - E(\lambda_{j-1}))y, x \right\rangle \right|$$

$$\leq \sum_{j=1}^{n} |f(\lambda_{j})| \left\| (E(\lambda_{j}) - E(\lambda_{j-1}))y \right\| \left\| (E(\lambda_{j}) - E(\lambda_{j-1}))x \right\|$$

$$\leq \sqrt{\sum_{j=1}^{n} |f(\lambda_{j})|^{2} \left\| (E(\lambda_{j}) - E(\lambda_{j-1}))x \right\|^{2}} \sqrt{\sum_{j=1}^{n} \left\| (E(\lambda_{j}) - E(\lambda_{j-1}))y \right\|^{2}}$$

$$\leq \sqrt{\sum_{j=1}^{n} |f(\lambda_{j})|^{2} \left\langle E(\lambda_{j}) - E(\lambda_{j-1})x, x \right\rangle \|y\|}$$

Therefore, we have

$$\left| \int_{a}^{b} \overline{f(\lambda)} d \langle E(\lambda) y, x \rangle \right| \leq \sqrt{\int_{a}^{b} |f(\lambda)|^{2} d \langle E(\lambda) x, x \rangle} \|y\|.$$

 $x \in D(A(f))$ implies that the right-hand side is bounded. So $y \mapsto \int_{\mathbb{R}} \overline{f(\lambda)} d\langle E(\lambda)y, x \rangle$ is bounded. By Riesz representation theorem, there is a unique element, defined as A(f)x, such that

$$\langle y, A(f)x \rangle = \int_{\mathbb{R}} \overline{f(\lambda)} d \langle E(\lambda)y, x \rangle,$$

which is clear linear in x.

(3) For $x \in D(A(f))$, let y = A(f)x. Then

$$||A(f)x||^2 = \int_{\mathbb{R}} f(\lambda)d\langle E(\lambda)x, A(f)x\rangle.$$

Furthermore,

$$\langle E(\lambda)x, A(f)x \rangle = \int_{\mathbb{R}} \overline{f(\mu)} d\langle E(\lambda)x, E(\mu)x \rangle = \int_{-\infty}^{\lambda} \overline{f(\mu)} d\langle E(\mu)x, x \rangle$$

Therefore, we have $||A(f)x||^2 = \int_{\mathbb{R}} |f(\mu)|^2 d\langle E(\lambda)x, x \rangle$.

(4) For $x \in D(A(f))$,

$$\int_{\mathbb{R}} |f(\mu)|^2 d \langle E(\mu)E(\lambda)x, E(\lambda)(x) \rangle = \int_{-\infty}^{\lambda} |f(\mu)|^2 d \langle E(\mu)x, x \rangle$$

$$\leq \int_{\mathbb{R}} |f(\mu)|^2 d \langle E(\mu)x, x \rangle < \infty.$$

So $E(\lambda)x \in D(A(f))$. Furthermore,

$$\langle E(\lambda)A(f)x,y\rangle = \int_{\mathbb{R}} f(\mu)d\langle E(\mu)x,E(\lambda)y\rangle = \int_{\mathbb{R}} f(\mu)d\langle E(\mu)E(\lambda)x,y\rangle$$
$$= \langle A(f)E(\lambda)x,y\rangle.$$

So $E(\lambda)A(f) \subset A(f)E(\lambda)$.

(5) Clearly, $D(A(f)) = D(A(\overline{f}))$. For any $x, y \in D(A(f))$,

$$\overline{\langle A(f)x,y\rangle} = \overline{\int_{\mathbb{R}} f(\lambda) d \, \langle E(\lambda)x,y\rangle} = \int_{\mathbb{R}} \overline{f(\lambda)} d \, \langle E(\lambda)y,x\rangle = \left\langle A(\overline{f})y,x\right\rangle$$

Therefore, $A(\overline{f}) \subset A(f^*)$. Conversely, for $x \in D(A(f^*))$, $y \in \mathcal{H}$, and $n \in \mathbb{N}$, let

$$x_n = (E(n) - E(-n))x, \quad y_n = (E(n) - E(-n))y.$$

Then

$$||A(f)^*x|| = \lim_{n \to \infty} ||(E(n) - E(-n))A(f)^*x||$$

$$= \lim_{n \to \infty} \sup_{\|y\| \le 1} |\langle (E(n) - E(-n))A(f)^*x, y \rangle|$$

$$= \lim_{n \to \infty} \sup_{\|y\| \le 1} |\langle A(f)^*x, y_n \rangle|$$

$$= \lim_{n \to \infty} \sup_{\|y\| \le 1} |\langle x, A(f)y_n \rangle|$$

$$= \lim_{n \to \infty} \sup_{\|y\| \le 1} |\langle A(\bar{f})x_n, A(f)y_n \rangle|$$

$$= \lim_{n \to \infty} \sup_{\|y\| \le 1} |\langle A(\bar{f})x_n, y \rangle|$$

$$= \lim_{n \to \infty} ||A(\bar{f})x_n||$$

$$= \lim_{n \to \infty} \sqrt{\int_{\mathbb{R}} |f(\lambda)|^2 d\langle x, E(\lambda)x_n \rangle}$$

$$= \lim_{n \to \infty} \sqrt{\int_{-n}^{n} |f(\lambda)|^2 d\langle x, E(\lambda)x_n \rangle}$$

Therefore, $x \in D(A(f)) = D(A(\overline{f}))$.

- (6) By (5), $A(f) = A(\overline{f})^*$ is closed.
- (7) It is also by (5).
- (8) It is by (3).
- (9) First, A(f) is bounded and $||A(f)x||^2 = ||x||^2$ by (3). So $A(f)^*A(f) = I$ and $A(\overline{f})^*A(\overline{f}) = I$, which implies that $A(f)A(f)^* = I$.

Such A(f) is denoted by

$$A(f) = \int_{\mathbb{R}} f(\lambda) dE(\lambda).$$

Remark 5.10. Note that if $A = \int_{\mathbb{R}} \lambda dE(\lambda)$, then one can see

$$A^2 = \int_{\mathbb{R}} \lambda^2 dE(\lambda)$$

So by induction, we have $A^n = \in \lambda^n dE(\lambda)$. So by linearity, for any analytic function $f(\lambda) = \sum_{n=0}^{\infty} a_n \lambda^n$,

$$A(f) = \sum_{n=0}^{\infty} a_n A^n.$$

Definition 5.11. Let $\{E(\lambda)\}_{\lambda \in \mathbb{R}}$ be a resolution of the identity. If there are λ_1, λ_2 such that $E(\lambda_1) = 0$ and $E(\lambda_2) = I$, then $\{E(\lambda)\}_{\lambda \in \mathbb{R}}$ is called bounded.

Proposition 5.12. $A = \int_{\mathbb{R}} \lambda dE(\lambda)$ is bounded if and only if $\{E(\lambda)\}_{\lambda \in \mathbb{R}}$ is bounded.

Proof. If A is bounded, for any $x \in \mathcal{H}$,

$$\int_{\mathbb{R}} \lambda^2 d \langle E(\lambda) x, x \rangle = ||Ax||^2 \le ||A||^2 ||x||^2.$$

Assume there is a sequence $\lambda_n < 0$ with $\lambda_n \to -\infty$ such that $E(\lambda_n) \neq 0$. Choose a sequence $x_n \in E(\lambda_n)\mathcal{H}$ with $||x_n|| = 1$.

$$\int_{\mathbb{R}} \lambda^2 d \langle E(\lambda) x_n, x_n \rangle = \int_{\mathbb{R}} \lambda^2 d \langle E(\lambda) E(\lambda_n) x_n, x_n \rangle$$
$$= \int_{-\infty}^{\lambda_n} \lambda^2 d \langle E(\lambda) x_n, x_n \rangle$$
$$\geq \lambda_n^2 \langle E(\lambda_n) x_n, x_n \rangle = \lambda_n^2,$$

which induces a contradiction. And the similar reasoning for $\lambda \to \infty$.

Conversely, if $E(\lambda_1) = 0$ and $E(\lambda_2) = I$, then

$$\int_{\mathbb{R}} \lambda^2 d \langle E(\lambda) x, x \rangle \le \int_{\lambda_1}^{\lambda_2} \lambda^2 d \langle E(\lambda) x, x \rangle \le \max \left\{ \lambda_1^2, \lambda_2^2 \right\} \|x\|^2.$$

Therefore, $D(A) = \mathcal{H}$ and $||A|| \leq \max\{|\lambda_1|, |\lambda_2|\}.$

Definition 5.13. Let $\{E(\lambda)\}_{\lambda\in\mathbb{R}}$ be a resolution of the identity.

$$E(\{\lambda\}) = E(\lambda) - E(\lambda - 0).$$

If $E(\{\lambda\}) \neq 0$, then $E(\lambda)$ is called uncontinuous at λ .

Proposition 5.14. Let $\{E(\lambda)\}_{\lambda\in\mathbb{R}}$ be a resolution of the identity and $A=\int_{\mathbb{R}}\lambda dE(\lambda)$.

- (1) $x \in \ker(A \mu I)$ if and only if the function $\lambda \mapsto ||E(\lambda)x||^2$ is constant except for $\lambda = \mu$.
- (2) $E(\{\mu\})$ is the orthogonal projection onto $\ker(A-\mu I)$.

Proof. (1) For $x \in D(A)$,

$$\|(A - \mu I)x\|^2 = \int_{\mathbb{R}} (\lambda - \mu)^2 d\langle E(\lambda)x, x\rangle.$$

(2) Let $x \in \ker(A - \mu I)$. By (1), when $\lambda < \mu$,

$$||E(\lambda)x|| = \lim_{\lambda \to -\infty} ||E(\lambda)x|| = 0,$$

and when $\lambda > \mu$,

$$\|E(\lambda)x\| = \lim_{\lambda \to \infty} \|E(\lambda)x\| = \|x\|^2.$$

Therefore, $E(\mu - 0)x = 0$ and $E(\mu)x = x$.

Conversely, for any $x \in \text{Im } E(\{\mu\})$,

$$E(\lambda)x = \begin{cases} x, & \lambda > \mu \\ 0, & \lambda < \mu. \end{cases}$$

Therefore, by (1), $x \in \ker(A - \mu I)$.

Lemma 5.15. For $a \ A \in \mathcal{B}(\mathcal{H})$, if $0 \le A \le 1$, then $||A|| \le 1$.

Proof. Because A is self-adjoint and $A \geq 0$, the Cauchy-Schwarz inequality implies that

$$\langle Ax, y \rangle \le \langle Ax, x \rangle^{\frac{1}{2}} \langle Ay, y \rangle^{\frac{1}{2}}$$

Choose y = Ax and $A \leq 1$,

$$\langle Ax, Ax \rangle = |\langle Ax, x \rangle|^{1/2} \left| \langle A^2x, Ax \rangle \right|^{1/2} \le |\langle x, x \rangle|^{1/2} |\langle Ax, Ax \rangle|^{1/2}$$

Therefore, $||Ax|| \le ||x||$.

Lemma 5.16. Let $\{A_n\}_{n\in\mathbb{N}}\in\mathcal{B}(\mathcal{H})$ and $A\in\mathcal{B}(\mathcal{H})$ such that

$$0 \le A_1 \le \dots \le A_n \le \dots \le A$$
.

Then A_n is convergent in SOT.

Proof. It can assume $A = \alpha I$. Furthermore, by replacing A_n by $\frac{1}{\alpha}A_n$, we can assume $\alpha = 1$. For $x \in \mathcal{H}$, $\{\langle A_n x, x \rangle\}_{n \in \mathbb{N}}$ is a bounded and monotone increasing sequence, so it converges. Furthermore, if m > n, by Cauchy-Schwarz inequality,

$$\langle (A_m - A_n)x, (A_m - A_n)x \rangle \leq \langle (A_m - A_n)x, x \rangle^{\frac{1}{2}} \langle (A_m - A_n)^2 x, (A_m - A_n)x \rangle^{\frac{1}{2}} \langle (A_m - A_n)x, (A_m - A_n)x \rangle^{\frac{1}{2}},$$

where the last inequality is because $A_m - A_n \leq 1$ and above lemma. Therefore,

$$||(A_m - A_n)x|| \le \langle (A_m - A_n)x, x \rangle^{\frac{1}{2}} \to 0,$$

and it is Cauchy. Let $Bx := \lim_{n \to \infty} A_n x$. Moreover, $||A_n x|| \le ||x||$ by above lemma implies that $||Bx|| \le ||x||$. So $B \in \mathcal{B}(\mathcal{H})$ and $A_n \to B$ in SOT.

Theorem 5.17. Let $A \in \mathcal{B}(\mathcal{H})$ with $A \geq 0$. Then there exists a unique $X \in \mathcal{B}(\mathcal{H})$ with $X \geq 0$ such that $X^2 = A$. Moreover, if AT = TA for $T \in \mathcal{B}(\mathcal{H})$, then XT = TX.

Proof. Constructing a sequence of polynomials $\{P_n(t)\}_{n\in\mathbb{N}}$ as $P_0(t)=0$ and $P_{n+1}(t)=(t+P_n(t)^2)/2$. Therefore,

$$P_{n+1}(t) - P_n(t) = (P_n(t) - P_{n-1}(t)) (P_n(t) + P_{n-1}(t)) / 2.$$

WLTG, assume $0 \le A \le 1$. Let B = I - A. Then $0 \le B \le 1$ and $B^{2k}, B^{2k+1} \ge 0$. Let $B_n = P_n(B) \ge 0$ and so $B_{n+1} - B_n = P_{n+1}(B) - P_n(B) \ge 0$. By

$$\langle B_{n+1}x, x \rangle = \frac{1}{2} \langle Bx, x \rangle + \frac{1}{2} \langle B_n x, B_n x \rangle \le \langle x, x \rangle,$$

 $B_n \leq 1$ and $||B_n|| \leq 1$. Therefore,

$$0 \le B_1 \le B_2 \le \cdots \le \cdots \le I$$

By above lemma, $B_n \to B_\infty$ in SOT and $0 \le B_\infty \le 1$. Let $X = I - B_\infty$. Because $B_\infty = (B_\infty + B_\infty^2)/2$,

$$X^{2} = (I - B_{\infty})^{2} = I - 2B_{\infty} + B_{\infty}^{2} = I - B_{\infty} = A.$$

Moreover, for any $T \in \mathcal{B}(\mathcal{H})$ with TA = AT, $TB_n = B_nT$ and so $TB_{\infty} = B_{\infty}T$ and XT = TX. If there is another $Y \geq 0$ such that $Y^2 = A$. Because YA = AY, XY = YX. Therefore, $(X + Y)(X - Y) = X^2 - Y^2 = 0$. Let $X = X_1^2$ and $Y = Y_1^2$ with $X_1, Y_1 \geq 0$. For $X \in \mathcal{H}$, let Y = (X - Y)X.

$$||X_1y||^2 + ||Y_1y||^2 = \langle (X_1^2 + Y_1^2)y, y \rangle = \langle (X+Y)(X-Y)x, y \rangle = 0.$$

So $X_1y = Y_1y = 0$ and Xy = Yy = 0. Then

$$||Xx - Yx||^2 = \langle y, (X - Y)x \rangle = \langle (X - Y)y, x \rangle = 0.$$

Therefore, X = Y.

Definition 5.18 (Root and Absolute). For $A \geq 0$, let $X = A^{\frac{1}{2}}$. For any $A \in \mathcal{B}(\mathcal{H})$, let $|A| = (A^*A)^{\frac{1}{2}}$.

Definition 5.19 (Partial Isometry). Let $U \in \mathcal{B}(\mathcal{H})$. If $U: (\ker U)^{\perp} \to \operatorname{Im} U$ is an isometry, then U is called a partial isometry.

Theorem 5.20 (Polar Decomposition). Let $A \in \mathcal{B}(\mathcal{H})$. Then there exists a unique partial isometry U such that $\ker U = \ker A = \ker |A|$, $\operatorname{Im} U = \overline{\operatorname{Im} A}$, and A = U |A|.

Proof. For $x, y \in \mathcal{H}$, by

$$\langle Ax, Ay \rangle = \langle |A| x, |A| y \rangle,$$

 $\ker A = \ker |A|$. Define U_0 : $\operatorname{Im} |A| \to \operatorname{Im} A$ by

$$U_0 |A| x = Ax.$$

So it is well-defined and inner product-preserving. Then it can be extended to $U \colon \operatorname{Im} |A| \to \overline{\operatorname{Im} A}$. Moreover, let $U|_{\overline{\operatorname{Im} |A|}^{\perp}} = 0$. So U is a partial isometry and $\operatorname{Im} U = \overline{\operatorname{Im} A}$. Because

$$\overline{\operatorname{Im}|A|}^{\perp} = \ker|A| = \ker A,$$

 $\ker U = \ker A$. So A = U|A|. The uniqueness is obvious.

Definition 5.21. Let $A \in \mathcal{B}(\mathcal{H})$. Let $K \subset \mathcal{H}$ be a closed subspace and P is the orthogonal projection onto K. If $PD(A) \subset D(A)$ and $PA \subset AP$, then P (or K) is called reducing A.

Remark 5.22. In such case, $(I-P)A \subset A(I-P)$, i.e., K reducing A is equivalent to K^{\perp} reducing A. Then consider $A_K : D(A_K) \to K$ for $D(A_K) = D(A) \cap K$, which is a linear operator on K.

Proposition 5.23. Let $A \in \mathcal{B}(\mathcal{H})$. Let $K \subset \mathcal{H}$ be a closed subspace and P is the orthogonal projection onto K. If K reduces A, the the following statements are true.

- (1) If A is closed, then A_K is closed.
- (2) If D(A) is dense in \mathcal{H} , then $D(A_K)$ is dense in K. In such case, $(A^*)_K = (A_K)^*$.
- (3) If A is unitary, then A_K is unitary.
- (4) If A is self-adjoint, then A_K is self-adjoint.
- (5) $\sigma(A) = \sigma(A_K) \cup \sigma(A_{K^{\perp}}).$
- *Proof.* (1) Let $x_n \in K \cap D(A)$ with $x_n \to x$ and $Ax_n \to y$. Because K is closed, $x, y \in K$. Furthermore, because A is closed, Ax = y.
 - (2) Let $x \in K$. There exists $x_n \in D(A)$ such that $x_n \to x$ and so $Px_n \to x$. Because $Px_n \in D(A_K)$, $D(A_K)$ is dense.

 $PA \subset AP$ implies that $PA^* \subset A^*P$. For $x \in D((A_K)^*) \subset K$ and $y \in D(A)$,

$$\langle (A_K)^*x, y \rangle = \langle (A_K)^*x, Py \rangle = \langle x, A_K Py \rangle = \langle x, APy \rangle = \langle x, PAy \rangle = \langle x, Ay \rangle$$

Therefore, $x \in D(A^*) \cap K$ and $(A_K)^* \subset (A^*)_K$.

Conversely, if $x \in D(A^*) \cap K$, for any $y \in D(A_K)$,

$$\langle (A^*)_K x, y \rangle = \langle A^* x, y \rangle = \langle x, Ay \rangle = \langle x, A_K y \rangle,$$

so $x \in D((A_K)^*)$.

- (3) It is directly by (2).
- (4) It is by (2).
- (5) Let $\lambda \in \rho(A)$. Then $A_K \lambda I_K$ and $A_{K^{\perp}} \lambda I_{K^{\perp}}$ are injective. For any $y \in \mathcal{H}$, let $x_n \in D(A)$ with $(A \lambda I)x_n \to y$. If $y \in K$, because $PA \subset AP$, $(A \lambda I)Px_n \to Py = y$. So $\overline{\text{Im}(A_K \lambda I_K)} = K$. Similarly, $\overline{\text{Im}(A_{K^{\perp}} \lambda I_{K^{\perp}})} = K^{\perp}$. Moreover, let $\|(A \lambda)^{-1}\| = C$. Therefore, it is clearly

$$\|(A_K - \lambda I_K) x\| \ge C \|x\|, \quad \forall \ x \in D(A_K),$$

 $\|(A_{K^{\perp}} - \lambda I_{K^{\perp}}) x\| \ge C \|x\|, \quad \forall \ x \in D(A_{K^{\perp}}),$

It follows that $\rho(A) \subset \rho(A_K) \cap \rho(A_{K^{\perp}})$.

Conversely, let $\lambda \in \rho(A_K) \cap \rho(A_{K^{\perp}})$. Then $A_K - \lambda I_K$ and $A_{K^{\perp}} - \lambda I_{K^{\perp}}$ are injective. So $A - \lambda I$ is also injective. For any $y \in \mathcal{H}$, there exist $x'_n \in D(A) \cap K$ such that $(A - \lambda I)x'_n \to Py$, and $x''_n \in D(A) \cap K^{\perp}$ such that $(A - \lambda I)x''_n \to (I - P)y$. Therefore, $x_n = x'_n + x''_n \in D(A)$ and $(A - \lambda I)x_n \to y$. It follows that $\overline{\operatorname{Im}(A - \lambda I)} = \mathcal{H}$. Furthermore, let $C_1 = \|(A_K - \lambda I_K)^{-1}\|$ and $C_2 = \|(A_{K^{\perp}} - \lambda I_{K^{\perp}})^{-1}\|$. Then

$$||(A - \lambda I)x||^2 \ge C_1^2 ||Px||^2 + C_2^2 ||(I - P)x||^2,$$

which implies that $(A - \lambda I)^{-1}$ is bounded.

6 Spectral Decomposition for Bounded Self-adjoint Operator

Theorem 6.1. Let $A \in \mathcal{B}(\mathcal{H})$ be self-adjoint and A = U|A| be its polar decomposition.

- (1) Im $A = \text{Im} |A| \text{ and } U = U^*$.
- (2) If A is commutative with all bounded operators, so is U.
- (3) Therefore are reducing spaces \mathcal{H}_{\pm} such that

$$\mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_- \oplus \ker A$$

and $A_{+} \geq 0$ and $A_{-} \leq 0$.

(4) If K reduces A and $A_K \geq 0$, then $K \subset \mathcal{H}_+ \oplus \ker A$. So is \mathcal{H}_- .

Proof. (1) $A = A^* = |A| U^*$. So Im $A \subset \text{Im } |A|$. Conversely,

$$A^{2} = AA^{*} = U |A|^{2} U^{*} = (U |A| U^{*})^{2}$$

By the uniqueness of root, $|A| = U |A| U^* = AU^*$. So Im $|A| \subset \text{Im } A$.

Furthermore, we have

$$U^*|A| = U^*U|A|U^* = |A|U^*$$

and

$$\ker U^* = (\operatorname{Im} U)^{\perp} = (\operatorname{Im} A)^{\perp} = \ker A.$$

So by the uniqueness of the polar decomposition, $U = U^*$.

(2) If AB = BA, then |A|B = B|A| because A is self-adjoint. So

$$BU|A| = U|A|B.$$

Therefore, BU = UB on Im |A|. On the other hand, for any $x \in \ker |A| = (\text{Im } |A|)^{\perp}$, because $\ker |A| = \ker U$, BUx = 0. Moreover, ABx = BAx = 0, i.e., $Bx \in \ker A = \ker U$. It follows that UBx = 0. Therefore, UB = BU.

(3) First, $\mathcal{H} = \ker A \oplus \overline{\operatorname{Im} A}$. $U^2 = U^*U$ is the identity on $\overline{\operatorname{Im} A}$. Let \mathcal{H}_+ be the image of (I + U)/2 on $\overline{\operatorname{Im} A}$ and \mathcal{H}_- be the image of (I - U)/2 on $\overline{\operatorname{Im} A}$. It follows that $\mathcal{H}_- \perp \mathcal{H}_+$, and $\overline{\operatorname{Im} A} = \mathcal{H}_+ \oplus \mathcal{H}_-$. Because UA = AU, \mathcal{H}_\pm reduces A. For $x \in \mathcal{H}_+$, Ux = x, so

$$Ax = U |A| x = |A| Ux = |A| x$$

and for $x \in \mathcal{H}_-$, Ux = -x, so

$$Ax = U |A| x = |A| Ux = -|A| x.$$

(4) Let Q and P_{\pm} be the corresponding orthogonal projections onto K and \mathcal{H}_{\pm} respectively. Because AQ = QA, UQ = QU, i.e., P_{\pm} also commutative with Q. So QP_{-} is also an orthogonal projection and it suffices to show $QP_{-} = 0$. For any $x \in \text{Im } QP_{-} = \text{Im } P_{-}Q$,

$$\langle Ax, x \rangle \ge 0, \quad \langle Ax, x \rangle \le 0,$$

so $\langle Ax, x \rangle = 0$. On K, because $A_K \geq 0$, Cauchy-Schwarz inequality implies that

$$\langle Ax, Ax \rangle \le \langle Ax, x \rangle^{\frac{1}{2}} \langle A^2x, Ax \rangle^{\frac{1}{2}} = 0$$

It follows that $x \in \ker A \cap \mathcal{H}_{=}0$.

Theorem 6.2. Let $A \in \mathcal{B}(\mathcal{H})$ be self-adjoint. There is a unique resolution of the identity $\{E(\lambda)\}$ such that

$$A = \int_{-\infty}^{\infty} \lambda dE(\lambda).$$

Furthermore, when $\lambda < -\|A\|$, $E(\lambda) = 0$, and $E(\lambda) = I$ for $\lambda > \|A\|$.

Proof. For $\lambda \in \mathbb{R}$, let

$$A - \lambda I = U(\lambda) |A - \lambda I|$$

be the polar decomposition and let

$$\mathcal{H} = \mathcal{H}_{+}(\lambda) \oplus \mathcal{H}_{-}(\lambda) \oplus \ker(A - \lambda I).$$

Denote $A_{\pm}(\lambda)$ be $A|_{\mathcal{H}_{\pm}}$, and thus $A_{+}(\lambda) \geq \lambda$ and $A_{-}(\lambda) \leq \lambda$. Denote $P_{0}(\lambda)$ and $P_{\pm}(\lambda)$ be orthogonal projections onto $\ker(A - \lambda I)$ and $\mathcal{H}_{\pm}(\lambda)$. Let $E(\lambda) := P_{0}(\lambda) + P_{-}(\lambda)$.

$$H(\lambda) := E(\lambda)H = H_{-}(\lambda) \oplus \ker(A - \lambda I).$$

and so $H(\lambda)$ reduces A.

- (1) For $x \in \mathcal{H}(\lambda)$, if $\lambda < \mu$, by $\langle (A \lambda I)x, x \rangle \leq 0$, $\langle (A \mu I)x, x \rangle \leq 0$. Therefore, $E(\lambda) \leq E(\mu)$ by (4) in above theorem.
- (2) If $\lambda < -\|A\|$, for $x \in \mathcal{H}$ with $x \neq 0$,

$$\langle (A - \lambda I)x, x \rangle > \langle Ax, x \rangle + ||A|| ||x||^2 \ge \langle Ax, x \rangle + |\langle Ax, x \rangle| \ge 0,$$

which implies that $E(\lambda) = 0$. Similarly, $\lambda > ||A||$ implies that $E(\lambda) = I$.

(3) When $\lambda < \mu$, by $(A - \mu I)E(\mu) \le 0$ and $(A - \lambda I)(I - E(\lambda)) \ge 0$,

$$(A - \mu I)(E(\mu) - E(\lambda)) \le 0,$$

$$(A - \lambda I)(E(\mu) - E(\lambda)) \ge 0.$$

It follows that

$$\lambda(E(\mu) - E(\lambda)) \le A(E(\mu) - E(\lambda)) \le \mu(E(\mu) - E(\lambda)).$$

As
$$\mu \to \lambda + 0$$
, $(A - \lambda I)(E(\lambda + 0) - E(\lambda)) = 0$. So

$$(E(\lambda + 0) - E(\lambda))\mathcal{H} \subset \ker(A - \lambda I) \subset E(\lambda)\mathcal{H},$$

which implies that $E(\lambda + 0) - E(\lambda) = 0$.

(4) choose $\lambda_0 < -\|A\|$, $\lambda_n > \|A\|$, and $\lambda_0 < \lambda_1 < \cdots < \lambda_n$, by above

$$\sum_{k=1}^{n} \lambda_{k-1} \left(E\left(\lambda_{k}\right) - E\left(\lambda_{k-1}\right) \right) \leq \sum_{k=1}^{n} A\left(E\left(\lambda_{k}\right) - E\left(\lambda_{k-1}\right) \right) = A$$

$$\leq \sum_{k=1}^{n} \lambda_{k} \left(E\left(\lambda_{k}\right) - E\left(\lambda_{k-1}\right) \right).$$

Then, for $\lambda'_k \in (\lambda_{k-1}, \lambda_k]$ and $x \in \mathcal{H}$,

$$-\sum_{k=1}^{n} (\lambda'_{k} - \lambda_{k-1}) \left\langle \left(E\left(\lambda_{k}\right) - E\left(\lambda_{k-1}\right)\right) x, x\right\rangle \leq \left\langle \left(A - \sum_{k=1}^{n} \lambda'_{k} \left(E\left(\lambda_{k}\right) - E\left(\lambda_{k-1}\right)\right)\right) x, x\right\rangle$$
$$\leq \sum_{k=1}^{n} (\lambda_{k} - \lambda'_{k}) \left\langle \left(E\left(\lambda_{k}\right) - E\left(\lambda_{k-1}\right)\right) x, x\right\rangle.$$

Let $\Delta = \max_{1 \le k \le n} |\lambda_k - \lambda_{k-1}|$. So

$$-\Delta ||x||^{2} \le \left\langle A - \sum_{k=1}^{n} \lambda'_{k} (E(\lambda_{k}) - E(\lambda_{k-1})) x, x \right\rangle \le \Delta ||x||^{2}.$$

It follows that

$$A = \int_{-\infty}^{\infty} \lambda dE(\lambda).$$

(5) If $A = \int_{-\infty}^{\infty} \lambda dF(\lambda)$ for another $F(\lambda)$. Let

$$A_{\lambda} = \int_{-\infty}^{\infty} |\mu - \lambda| \, dF(\mu).$$

Then we have

$$\langle A_{\lambda}^{2}x, x \rangle = \langle A_{\lambda}x, A_{\lambda}x \rangle = \int_{-\infty}^{\infty} |\mu - \lambda|^{2} d \langle F(\mu)x, x \rangle$$
$$= \langle (A - \lambda I)x, (A - \lambda I)x \rangle = \langle (A - \lambda I)^{2}x, x \rangle$$

Therefore, $A_{\lambda}^2 = (A - \lambda I)^2$. Because $A_{\lambda} \ge 0$, by the uniqueness of root, $A_{\lambda} = |A - \lambda I|$. Let $V(\lambda) = I - F(\lambda) - F(\lambda - 0)$. For $x, y \in \mathcal{H}$,

$$\langle V(\lambda)A_{\lambda}x,y\rangle = \int_{\mu<\lambda} |\mu-\lambda|d\langle F(\mu)x, (I-F(\lambda)-F(\lambda-0))y\rangle$$

$$+ \int_{\mu>\lambda} |\mu-\lambda|d\langle F(\mu)x, (I-F(\lambda)-F(\lambda-0))y\rangle$$

$$= -\int_{\mu<\lambda} (\lambda-\mu)d\langle F(\mu)x,y\rangle + \int_{\mu>\lambda} (\mu-\lambda)d\langle F(\mu)x,y\rangle$$

$$= \langle (A-\lambda I)x,y\rangle.$$

So $A - \lambda I = V(\lambda)A_{\lambda}$. Furthermore,

$$V(\lambda)^2 = I - F(\lambda) + F(\lambda - 0) = I - F(\{\lambda\})$$

is a projection, $V(\lambda)$ is a partial isometry. Because $\ker(A - \lambda I) = F(\{\lambda\}) = \ker V(\lambda)$, $A - \lambda I = V(\lambda) |A - \lambda I|$ is the polar decomposition. So $U(\lambda) = V(\lambda)$ and thus $E(\lambda) = F(\lambda)$.

7 Spectral Measure

Definition 7.1 (Spectral Measure). Let \mathcal{H} be a Hilbert space and $(\mathbb{R}^d, \mathcal{B}^d)$ be the Borel measure space. If a family of orthogonal projections $\{E(B)\}_{B \in \mathcal{B}^d}$ satisfies

- (1) $E(\emptyset) = 0$ and $E(\mathbb{R}^d) = I$,
- (2) for $B_1, B_2 \in \mathcal{B}^d$, $E(B_1)E(B_2) = E(B_1 \cap B_2)$,
- (3) for disjoint $\{B_n\}_{n\in\mathbb{N}}\subset\mathcal{B}^d$,

$$\sum_{n=1}^{N} E(B_n) \to E(\cup_n B_n)$$

in SOT as $N \to \infty$,

then E is called a d-dimensional spectral measure.

Remark 7.2. By (2), $\sum_{n=1}^{N} E(B_n)$ is still an orthogonal projection. By (3), for $B_1 \subset B_2$, $E(B_2) = E(B_1) + E(B_2 \backslash B_1)$, so $E(B_1) \leq E(B_2)$.

Proposition 7.3. Let E be a 1-dimensional spectral measure. Then denote $E(\lambda) = E((-\infty, \lambda])$, which is a resolution of the identity. Furthermore, the integral with respect to $\langle E(\lambda)x, x \rangle$ is as same as $\langle E(B)x, x \rangle$.

Proposition 7.4. For $F: \mathcal{H} \to \mathbb{R}$, if it satisfies

- (1) there exists C such that $|F(x)| \le C||x||^2$,
- (2) F(x+y) + F(x-y) = 2F(x) + 2F(y),
- (3) for $\alpha \in \mathbb{C}$ and $x \in \mathcal{H}$, $F(\alpha x) = |\alpha|^2 F(x)$,

then there exists $A \in \mathcal{B}(\mathcal{H})$ that is self-adjoint such that $F(x) = \langle Ax, x \rangle$.

Proof. For $x, y \in \mathcal{H}$,

$$B(x,y) = \frac{1}{4} \sum_{k=0}^{3} i^{k} F(x + i^{k} y),$$

which implies that $B(y,x) = \overline{B(x,y)}$ and B(x,0) = 0. By (2) and (3),

$$F(x + \alpha y) + F(x + \alpha z) = \frac{1}{2}(F(2x + \alpha(y + z)) + F(\alpha(y - z)))$$

Choose $\alpha = \pm 1, \pm i$ and add them all, we get

$$4B(x,y) + 4B(x,z) = 2(B(2x,y+z) + B(0,y-z)) = 2B(2x,y+z).$$

Let z = 0, so 2B(x, y) = B(2x, y) and

$$B(x,y) + B(x,z) = B(x,y+z).$$

Furthermore, it can be extended to