2T Dr Christian Korff

Joao Almeida-Domingues*

University of Glasgow

January 13th, 2020 – March 25th, 2020

Contents

1	Permutations & Combinations	2
	1.1 Binomial Theorem : Combinational Proof	2

These lecture notes were collated by me from a mixture of sources , the two main sources being the lecture notes provided by the lecturer and the content presented in-lecture. All other referenced material (if used) can be found in the *Bibliography* and *References* sections.

The primary goal of these notes is to function as a succinct but comprehensive revision aid, hence if you came by them via a search engine, please note that they're not intended to be a reflection of the quality of the materials referenced or the content lectured.

Lastly, with regards to formatting, the pdf doc was typeset in LAT_EX, using a modified version of Stefano Maggiolo's <u>class</u>

^{*2334590}D@student.gla.ac.uk

1 Permutations & Combinations

1.1 definition. Arrangement selection of objects in a particular order

1.2 definition. k-Permutation The number of arrangements of k elements from a set of size n without repetition. ${}^nP_k = \frac{{}^nP_n}{n-k}$

1.3 notation. ${}^{n}P_{k}$

1.4 remark. When k = n, then we have the total number of permutations of the set

1.5 remark. with repetition, we have the total number of arrangements equal to n^r , i.e. the number of maps $A \to B$, with |A| = r |B| = n

1.6 definition. k-Combination the number of unordered selections of k-objects of a set A of size n without repetition, is equal to the number of subsets of size k

$$nC_r = \left| \left\{ B \in 2^A \middle| \middle| B \middle| = r \right\} \right| = \frac{n(n-1)\cdots(n+r)}{r(r-1)\cdots1} = \begin{pmatrix} n \\ r \end{pmatrix}$$

1.7 notation. $\binom{n}{k}$

1.8 definition. k-subsets of $A \binom{A}{k}$

1.9 definition. Power set of $A 2^A$

Hence, for a finite set A, we can also represent the k-subsets of A as $\binom{A}{k} \subset 2^A$

1.10 proposition. $\left|\binom{A}{k}\right| = \left(\binom{|A|}{k}\right)$

1.1 Binomial Theorem: Combinational Proof

1.11 definition. Binomial Theorem
$$(x+y)^n = \sum_{r=0}^n \binom{n}{r} x^r y^{n-r}$$

Proof.

For $(x+y)^n$ we have $(x+y)(x+y)\cdots(x+y)$, n times. Hence for the r^{th} term, we want the r-subset, i.e. given r factors we need all possible combinations of x,y. We count how many times we obtain x^ryn-r , and sum the individual r-subsets of n, to get the desired result

1.12 remark. Note that the symmetric nature of combinations, follows from the above. Since, the order does not matter, and given the commutative nature of multiplication; for example, for the x^2y^3 term in a $(x+y)^5$ expansion we can see it as either choosing x 2 times, or y 3 times, i.e $\binom{5}{2} = \binom{5}{3}$

1.13 definition. Combinatorial Proof : double counting or identity, is when one counts the same set in different ways

1.14 example.

$$2^n = \sum_{r=0}^n \left(\begin{array}{c} n \\ r \end{array}\right)$$

For an n-set, A, we have $2^A = \bigcup_{r=0}^n \binom{n}{r}$. Hence,

$$\left|2^{A}\right| = 2^{|A|} = \left|\bigcup_{r=0}^{n} \left(\begin{array}{c} A \\ r \end{array}\right)\right| = \sum_{r=0}^{n} \left|\left(\begin{array}{c} A \\ r \end{array}\right)\right| = \sum_{r=0}^{n} \left(\begin{array}{c} |A| \\ r \end{array}\right)$$

1.15 definition. Combinatorial Proof : bijective where two sets are shown to have the same cardinality by proving the existence of a bijection between them