Week 7 Spatiotemporal models

- Monitoring network such as LTERs
- General modeling

$$Y(s,t) = \mu(s,t) + \epsilon(s,t)$$

$$\mu(s,t) = x(s,t)\beta(s,t)$$

$$\epsilon = w(s,t) + e(s,t)$$
 Spatiotemporal process White noise
$$Y|\mu w \sim Normal(\mu+w,e)$$

model 1:

Additive
$$e(s,t) = \alpha(t) + w(s) + \epsilon(s,t)$$

model 2:

Temporal evolution at s
$$e(s,t) = \alpha_s(t) + \epsilon(s,t)$$

model 3:

structure at t

Spatial
$$e(s,t) = w_t(s) + \epsilon(s,t)$$

To illustrate a specific problem...

Environ Ecol Stat (2008) 15:59–70 DOI 10.1007/s10651-007-0040-1

A hierarchical Bayesian non-linear spatio-temporal model for the spread of invasive species with application to the Eurasian Collared-Dove

Mevin B. Hooten · Christopher K. Wikle

Fig. 1 Spread of ECD throughout the United States from 1986 through 2003 (points represent zero counts at sampled location, while circle size corresponds to non-zero count magnitude)

Fig. 2 Population growth of ECD in the United States from 1986 through 2003 (total counts over time)

Data model $n_{i,t}|\lambda_{i,t} \sim Pois(\lambda_{i,t}), \quad i = 1, ..., m \quad t = 1, ..., T.$

Model

Process Model $\log(\lambda_t) = \mathbf{K}_t \mathbf{u}_t + \boldsymbol{\varepsilon}_t, \quad \boldsymbol{\varepsilon}_t \sim N(\mathbf{0}, \sigma_{\varepsilon}^2 \mathbf{I}), \quad t = 1, \dots, T.$

reaction-diffusion equation
$$\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(\delta(x, y) \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(\delta(x, y) \frac{\partial u}{\partial y} \right) + \gamma_0 u \left(1 - \frac{u}{\gamma_1} \right),$$

Parameter model $\delta = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\xi}, \quad \boldsymbol{\xi} \sim N(\mathbf{0}, \sigma_{\delta}^2 \mathbf{R}(\theta)). \quad R(\theta, d) = exp(-\theta||d||).$

Results

Fig. 4 Posterior summary of δ and covariate. (a) Posterior mean of δ . (b) Posterior standard dev. of δ . (c) Human population covariate map (i.e., 2nd column of X)

Fig. 5 Posterior summary of λ and ξ . (a) Posterior mean (and 95% credible interval) of the Poisson intensity process at a South Florida location through time (represents ECD population growth). (b) Posterior covariogram with 95% credible intervals (i.e., covariance structure of ξ). Maximum distance in the covariogram equals maximum map distance

(a) Posterior mean for Poisson intensity prediction.

(b) Posterior standard deviation for Poisson intensity prediction.

Fig. 7 Posterior prediction of λ for 2004. (a) Posterior mean for Poisson intensity prediction. (b) Posterior standard deviation for Poisson intensity prediction