Analyse avancée II Mathématiques 1^{ère} année Enseignant : Fabio Nobile

Série 12 du mercredi 31 mars 2021

Exercice 1.

Soit $x \in]0, +\infty[$. Calculer

$$\int_0^{\pi/2} \ln(x^2 \cos^2(t) + \sin^2(t)) dt =: g(x).$$
 (1)

Justifier toutes les étapes.

Indication. Calculer g' et en déduire g, en observant que g(1) = 0.

Exercice 2.

Définissons $f: \mathbb{R} \to \mathbb{R}$ par

$$\forall x \in \mathbb{R}, \quad f(x) = \int_0^x \sin\left(x\sqrt{1+t^2}\right) dt. \tag{2}$$

Montrer que f admet un minimum local en 0.

Exercice 3.

Définissons, pour tout $x \in \mathbb{R}_+^*$,

$$\Gamma(x) := \int_0^{+\infty} t^{x-1} e^{-t} dt. \tag{3}$$

1) Montrer que Γ est définie sur \mathbb{R}_+^* ; que $\Gamma \in \mathcal{C}^{\infty}(\mathbb{R}_+^*)$; et que, $\forall x \in \mathbb{R}_+^*$, $\forall k \in \mathbb{N}$,

$$\Gamma^{(k)}(x) = \int_{0}^{+\infty} \ln^{k}(t) t^{x-1} e^{-t} dt.$$
 (4)

- 2) Soit $x \in \mathbb{R}_+^*$.
 - a) Montrer que $\forall x \in \mathbb{R}_+^*$, $\Gamma(x+1) = x\Gamma(x)$.
 - b) En déduire que $\forall n \in \mathbb{N}, \ \Gamma(n+1) = n!$; i.e. Γ permet de généraliser la notion de factorielle à des arguments non entiers.

Exercice 4.

Calculer

$$I = \int_0^{+\infty} \frac{\sin(t)}{t} \, \mathrm{d}t \tag{5}$$

par la méthode suivante. Pour $x\geqslant 0$, notons $g(x)=\int_0^{+\infty}e^{-xt}\frac{\sin(t)}{t}\,\mathrm{d}t$. Calculer g'(x) pour x>0, puis en déduire I=g(0). Justifier soigneusement la continuité de g en 0 et la différentiabilité de g sur $]0,+\infty[$.