Лабораторна робота №3

МЕТОДИ БЕЗУМОВНОГО МІНІМІЗАЦІЇ ФУНКЦІЙ БАГАТЬОХ ЗМІННИХ

Метод Хука - Дживса.

Метод Хука - Дживса здійснює два типи пошуку - досліджує пошук і пошук за зразком. Перші дві ітерації процедури показані на малюнку.

I –пошук за зразком;

2 – досліджує пошук вздовж координатних осей.

При заданому початковому векторі x1 досліджує пошук по координатним напрямками призводить в точку x2.

Подальший пошук за зразком в напрямку $x1 \rightarrow x2$ призводить в точку y. Потім який досліджує пошук, що починається з точки y, дає точку x3.

Наступний етап пошуку за зразком вздовж напрямку $x3 \rightarrow x2$ дає y^* . Потім процес повторюється.

Алгоритм Хука - Дживса з використанням одновимірної мінімізації.

Розглянемо варіант методу, який використовує одновимірну мінімізацію уздовж координатних напрямків d1, ..., dn і напрямків пошуку за зразком.

Початковий етап. Вибрати число *eps*> 0 для зупинки алгоритму. Вибрати початкову точку x_1 , покласти $y_1 = x_1$, k = j = 1 та перейти до основного етапу.

Основний етап.

Крок 1.Вичіліть *lym* $_{j}$ - оптимальне рішення задачі мінімізації $f(y_{j} + lym * d_{j})$ за умови *lym* належить E1.

Покласти $y_{j+1} = y_j + lymj * d_j$. Якщо j < n, то замінити j на j+1 та повернутися до кроку 1.

Якщо j = n, то покласти $x_{k+1} = y_n + 1$.

Якщо $||x_{k+1}-x_k|| < eps$, то зупинитися; в іншому випадку перейти до кроку 2.

Крок 2. Покласти $D = x_{k+1} - x_k$ та знайти lym - оптимальне рішення задачі мінімізації $f(x_{k+1} + lym * d)$ за умови lym належить E1.

Покласти $y_j = x_{k+1} + lym * d, j = 1$, замінити k на k+1 і перейти до Kpoky 1.

Завдання л.р.4

$$F_1(x_1, x_2) = (x_1 - 2 \times x_2)^2 + (3 \times x_2 - N)^2$$
 $F_2(x_1, x_2) = (3 \times N \times x_2 - x_1^2)^2 + (N - x_1)^2$
 $x_1 = -1.33 \times N, x_2 = 1.66 \times N$ -початкова точка N - номер в журналі
Інтервал зміни $x_1, x_2 = (-2 \times N, 2 \times N)$
 $eps = 0.001$
 $k_{max} = 30$

Кроки завдання:

- 1. Записати завдання для свого варіанту(! Без N).
- 2. Знайти аналітичні рішення $F^{opt^*}_{1,2}(x_1, x_2)$ та $x^{opt^*}_{1}, x^{opt^*}_{2}$.
- 3. Мінімізувати $F(x_1, x_2)$ методом Хука-Дживса з використанням одновимірного методу золотого перетину.

4. Побудувати для F_1 і F_2 таблиці k, x_1 , x_2 , F (x) за зразком.

4. Побудуван k	ги для <i>Гт гт г</i> таолицг <i>к, хл, х2, Г</i> <i>F1</i>			F2		
	x_I	<i>X</i> ₂	F	x_1	<i>X</i> ₂	F
0*						
$1 no x_1$						
$1 no x_2$						
1 3a						
напрямком						
2						
2						
2						

0* – початкова точка.

В таблиці для кожної ітерації окремо показати кроки по x_1 , x_2 , та за визначеним напрямком. Таким чином кожній ітерації мають відповідати три строки у таблиці.

Значення F послідовно має не збільшуватись.

- 5. Побудувати графік проєкції функції $F(x_1, x_2)$ на площині x_1, x_2 в лініях рівного рівня на інтервалі для $\underline{x_1, x_2} = (-2 * N, 2 * N)$. Кількість рівнів = 10.
- 6. Побудувати графіки k, x_1 , x_2 , $F_{1,2}$ (x_1 , x_2) поверх ліній рівного рівня для функцій F_1 та F_2 на інтервалі для $\underline{x_1}$, $\underline{x_2} = (-2 * N, 2 * N)$.
- 7. Описати аналіз результатів.

Додаткова інформація до лабораторної роботи Облік обмежень

Zj - точка перетину з обмеженнями X2 = X20 + (X1 - X10) * (X21 - X20) / (X11 - X10) -тобто вирішується завдання одномірної оптимізації вздовж напрямку D, коли значення X2 обчислюються через значення X1, а потім підставляються в функцію. Якщо X2 обчислене за формулою $\le c$, то X2 = c з і якщо $X2 \ge d$, то X2 = d.

Тоді треба перевизначити значення X1 по значенню X2 (= c чи = d) для прямої X2 = X20 + (X1 - X10) * (X21 - X20) / (X11 - X10).

Для поточного значення ΠIH вдовж напрямків потрібно знати координати Zk ($X1_{zk}$, $X2_{zk}$)

- 1. Якщо X2 > X1 & Y2 > Y1 & X2 (b) $\leq d$ то Z1
- 2. Якщо X2> X1 & Y2> Y1 & X2 (b)> d то Z2
- 3. Якщо X2 <X1 & Y2> Y1 & X2 (a)> d то Z3
- 4. Якщо X2 <X1 & Y2> Y1 & X2 (a) <d то Z4
- 5. Якщо X2 <X1 & Y2 <Y1 & X2 (a)> с то Z5
- 6. Якщо X2 <X1 & Y2 <Y1 & X2 (a) <c то Z6
- 7. Якщо X2 > X1 & Y2 < Y1 & X2 (b) < c то Z7
- 8. Якщо X2 > X1 & Y2 < Y1 & X2 (b)> с то Z8

