Chapitre 10

Fonctions : définitions et résolutions

graphiques d'équations

Table 10.1 – Objectifs. À fin de ce chapitre 10...

	Pou	· <u>/</u> _	
Je dois connaître/savoir faire	۵	•	Ö
Approche numérique			
identifier une fonction		1	
déterminer les images et les antécédents à partir d'un tableau de valeurs		2, 3	
Approche par expression d'une fonction			
déterminer algébriquement une image		4, 5, 6	7
déterminer algébriquement les antécédents par résolution de l'équation $f(x)=k$		8, 9	
problèmes avec paramètres,		10, 11	
Approche par la représentation graphique d'une fonction	on		
déterminer par lecture graphique une image		12, 13, 14	
déterminer par lecture graphique les antécédents		16	
déterminer par lecture graphique (mélange)		19	
tracer la représentation graphique		20	
Bilan et approches multiples			
déterminer par l'expression des propriétés de la repré- sentation graphique		15, 17, 18	
Activité Sudomath d'entrainement			
Problème		21	

10.1 Fonctions : définitions et vocabulaire

Définition 10.1 — naive. Une fonction f est une relation (une règle d'association) entre nombres donnés en entrée, et des nombres

en sortie. On utilisera généralement la lettre x pour désigner une valeur donnée en entrée (variable libre), et y pour celle en sortie (variable liée).

Pour une fonction f, une valeur en entrée x est associée à 1 valeur unique pour y. On dira que « y est *l'image* de x » ou que « x est un antécédent de y »et on écrira :

Notation 1 « $f \colon x \mapsto y$ » lire « f qui à x associe y »

Notation 2 « y = f(x) » lire « y égal à f de x », notation due à Euler vers 1750

■ Exemple 10.1

1. La relation f est décrite par le tableau entrée-sortie ci-contre. Cette relation n'est pas une fonction, car

x	6	-7	0	6	4
y	10	3	4	-4	5

pour l'entrée x=6 on a deux valeurs possibles en sortie y=10 ou y=-4.

On ne peut ni écrire 16 10 ni 16 -4.

2. La relation g est décrite par le tableau entrée-sortie

ci-contre	est	une	fonction.

écriture correcte	écriture fausse
$g \colon 0 \mapsto -3 \text{ ou } g(0) = -3$	g(3) 0
$g: 2 \mapsto -3 \text{ ou } g(2) = -3$	g(3) 2
$g: 3 \mapsto 0$ ou $g(3) = 0$	200-3

x	-1	0	2	3	4
\overline{y}	0	-3	-3	0	5

Définition 10.2 Une *relation* est un *ensemble de couples* (x, y), x est l'abscisse, y est l'ordonnée. Pour un couple (x, y) donné, on dira que x et y sont associés.

■ Exemple 10.2 — déterminer l'image d'une valeur dans le cas d'une fonction définie numériquement.

La relation f entre l'heure x et la température y en degrés est donnée par les couples :

$$\{(1;9^\circ),\ (2;13^\circ),\ (3;15^\circ),\ (4;15^\circ),\ (5;12^\circ),\ (6;10^\circ)\}$$

C'est une fonction car aucun temps en abscisse n'est associé à deux valeurs de températures différentes en ordonnée.

L'abscisse 2 est associée à l'ordonnée 13	$f(\ldots) = \ldots$	L'image de est
L'ordonnée 15 est associée aux abscisses 3 et 4	$f(\ldots) = \ldots$	Les antécédents de
Lordonnee 15 est associee aux abscisses 5 et 4	$f(\ldots) = \ldots$	sont et

Définition 10.3 Une fonction f est un ensemble de couples (x,y), tel qu'il n'y ait pas 2 ordonnées différentes associées à une même abscisse x:

$$\operatorname{si}(x, y_1) \in f \operatorname{et}(x; y_2) \in f \operatorname{alors} y_1 = y_2$$

Une fonction peut être définie :

- 1. par une phrase décrivant comment obtenir l'image y à partir d'une abscisse x.
- 2. numériquement par un tableau de valeurs ou une liste de couples (cf. l'exemple 10.2).
- 3. algébriquement par une équation à deux variables ou une expression y = f(x) (une règle de calcul) pour calculer l'image y = f(x) connaissant la valeur de x. (cf. exemples 10.3 et 10.4).
- 4. par sa représentation graphique \mathscr{C}_f : y = f(x). (cf. exemples 10.5 et 10.6).
- Exemple 10.3 déterminer l'image d'une valeur connaissant l'expression algébrique.
- 1. f est la fontion définie par $f(x) = x^3 3x + 1$.
 - a) L'image de 0 par f est $f(0) = (0)^3 3(0) + 1 = 1$
 - b) L'image de -5 par f est $f(-5) = (...)^3 3(...) + 1 = ...$
- 2. Soit g est une fonction définie par g(x) = 2x + 3.
 - a) L'image de 0 par g est $g(0) = \dots$
 - b) L'image de -2 par g est g(...) = ...
 - c) L'image de a + 2 par g est g(a + 2) = 2(a + 2) + 3 = ...
- Exemple 10.4 déterminer le(s) antécédent(s) d'une valeur connaissant l'expression algébrique.
- 1. f est la fontion définie par $f(x) = x^2 5$.
 - a) Les antécédents de y=0 par f sont les solutions de l'équaiton -f(x)=0

$$x^2 - 5 = 0$$

$$x^2 = 5$$

$$x = \sqrt{5}$$
 ou $-\sqrt{5}$

y = 0 a pour antécédents $x = \sqrt{5}$ et $x = -\sqrt{5}$.

- 2. g est la fontion définie par g(x) = 3x 5.
 - a) Les antécédents de y=-2 par g sont les solutions de l'équaiton $g(x)=\dots$

$$3x - 5 = \dots$$

$$3x =$$

$$x =$$

L'antécédent de y = 0 est x =

Définition 10.4 La représentation graphique d'une fonction f dans le plan muni d'un repère est la courbe \mathscr{C}_f : y = f(x) (lire « d'éqution y égal f de x »).

Un point M(x ; y) est sur la courbe \mathscr{C}_f s.s.i ses coordonnées vérifient y = f(x).

Figure 10.1 – La représentation graphique d'une fonction \mathscr{C}_f : y=f(x) vérifie la règle de la *droite verticale* : \mathscr{C}_f ne peut pas avoir deux points ayant même abscisse et des ordonnées différentes.

■ Exemple 10.5 — déterminer par lecture graphique les images de valeurs d'une fonction f.

$$f(-4) = \dots \qquad \text{est l'image de} \ \dots$$

$$f(1) = \dots \qquad \text{est l'image de} \ \dots$$

$$f(\dots) = -1 \ \text{et} \ f(\dots) = -1$$

$$f(0) = \dots \qquad \text{est l'image de} \ \dots$$

$$f(\dots) = 0 \ \text{et} \ f(\dots) = 0$$

$$\dots \ \text{et} \ \dots \ \text{sont les zéros de} \ f.$$

■ Exemple 10.6 — tracer la représentation graphique de la fonction f. définie

par
$$f(x) = x^2 - 2$$
:

1. Determiner u pour quelques valeurs de x:

seterimier g pour queiques valeurs de w.									
x	-2	-1	-1 0		2	3			
$y = x^2 - 2$	2	-1	-2	-1	2	7			
(x ; y)	(-2; 2)	$(-1 \; ; \; -1)$	(0; 2)	(1; -1)	(2; 2)	(3; 7)			

2. Placer les points et les relier harmonieusement.

10.2 Activité Sudomaths : maitriser le vocabulaire des fonctions

Une fonction a typiquement 3 présentations : numérique par un tableau de valeurs, algébrique avec un domaine et une expression, et/ou graphique avec une courbe $\mathscr C$ regroupant tous les points dont les coordonnées (x ; y) vérifient l'équation à deux inconnues y = f(x).

■ Exemple 10.7 Soit la fonction f définie par \mathbb{R} par $f(x) = \frac{1}{10}(3x+4)(x-5)$. Elle est représentée ci-dessous par la courbe \mathscr{C}_f d'équation $y = \frac{1}{10}(3x+4)(x-5)$.

- y=f(0) est l'ordonnée du point de \mathscr{C}_f d'abscisse 0 (point d'intersection avec l'axe des ordonnées).
- Les zéros de f, sont les solutions de l'équation f(x) = 0. Graphiquement, c'est les abscisses des points d'intersection de \mathscr{C}_f avec l'axe des abscisses.

	approche algébrique	approche numérique
questions se ramenant à une	recherche d'image $(x ; y =$	= f(x) = ?)
déterminer l'image de 4 par la fonction f	L'abscisse $x = 4$,	Lire l'ordonnée du
calculer $f(4)$,	
déterminer l'ordonnée du point de la	évaluer l'image	point de \mathscr{C}_f dont
courbe \mathscr{C}_f d'abscisse 4	$y = \frac{1}{10}(3x+4)(x-5)$	l'abscisse est $x = 4$
le point $A(4; -1)$ appartient-il à \mathscr{C}_f ?		
questions se ramenant à une re	cherche d'antécédent $(x =$	f(x) : y = f(x)
déterminer le(s) antécédent(s) de 3 par f	L'ordonnée $y = 3$,	Lire l'abscisse de(s)
résoudre l'équatiion $f(x) = 3$	résoudre l'équation	point(s) de \mathscr{C}_f dont
déterminer l'abscisse de(s) point(s) de la	$3 = \frac{1}{10}(3x+4)(x-5)$	l'ordonnée est $y = 3$.
courbe \mathscr{C}_f d'ordonnée 3	$0 - \frac{10}{10}(9x + 4)(x - 9)$	Torus $y = 0$.

Confusions et difficultées rencontrées

- 1. Le fait d'écrire « f(x)=3 » ne signifie que « pour tout x on a f(x)=3 ». La partie « pour tout x » est importante.
 - Dans la question 1.c) On propose de résoudre l'équation f(x)=3 d'inconnue x. Donc de trouver les valeurs de x pour lesquelles f(x)=3. Ici, la fonction f est toujours définie par « pour tout x on a f(x)=x-3 » du début de la question 1.
- 2. Bien comprendre comment déterminer graphiquement le domaine dans la question 2.a).
- 3. Faire lire les questions (nombre de solutions vs solution de)
- 4. Dans la question 3., ne pas mélanger les lectures d'images et d'antécédent dans le cas d'une fonction définie numériquement.

Figure 10.2 – Carte mentale :

10.3 Exercices

Exercice 1 Déterminer si le tableau donné représente une fonction.

1.	x	-2	-1	0	1	2
1.	y	-8	-1	0	1	8
2.	x	0	1	2	1	0
۷.	y	-4	-2	0	2	4

3.	x	10	7	4	7	10
Ο.	y	3	6	9	12	15
4.	x	0	3	9	12	15
4.	y	3	3	3	3	3

Exercice 2

Soit la fonction f donnée par le tableau de valeur ci-dessous. Compléter :

- 1. L'image de -15 est f(.....) =
- **2.** L'image de est..... f(8) =

x	19	-15	8	-3	9	0
f(x)	-15	-2	9	19	8	-3

- 3. L'image de est..... f(....) = 8
- 4. L'image de \dots est \dots $f: 9 \mapsto \dots$
- 5. L'image de est 19 $f: \ldots \mapsto \ldots$

Exercice 3

Soit la fonction f donnée par le tableau de valeur suivant :

x	0	-1	4	5	2	-2	8	3	-5	1
y	-4	0	0	8	6	-6	5	14	6	-6

Pour chaque question vous répondrez en précisant l'égalité f(...) = ... correspondante.

- 1. Donner un antécédent de 8......Quelle est l'image de 0?.....
- 2. Quelle est l'image de 4?......Donner un antécédent de 5.....
- 3. Y a-t-il un nombre du tableau égal à son image?.....
- 4. Citer des valeurs de x telles que f(x) = -6.....
- 5. Citer un nombre strictement négatif ayant un antécédent strictement positif......
- 6. Citer deux nombres opposés dont les images sont des nombres opposés.....

Exercice 4

Déterminer les images demandées à l'aide des expressions algébriques.

1. f définie par f(x) = 2x - 3.

- a) f(1)
- **b)** f(-3) **c)** f(x-1)

2. *g* définie par g(t) = 7 - 3t.

- **a)** g(0)
- **b)** $g(\frac{7}{3})$ **c)** g(-2)

3. h définie s par $h(t) = t^2 - t$.

- a) h(2)
- **b)** $h(\frac{3}{2})$ **c)** h(-2)

4.
$$f$$
 définie par $f(x) = \begin{cases} 2x+1 & \text{si } x < 0 \\ 2x+2 & \text{si } x \geqslant 0 \end{cases}$ a) $f(-1)$ b) $f(0)$ c) $f(2)$

5. f définie par $f(x) = \begin{cases} 4-5x & \text{si } x \leqslant -2 \\ 0 & \text{si } -2 < x < 2. \\ x^2+1 & \text{si } x \geqslant 2 \end{cases}$ a) $f(-3)$ b) $f(4)$ c) $f(-1)$

6. f définie par $f(x) = \begin{cases} x^2+2 & \text{si } x \leqslant 1 \\ 2x^2+2 & \text{si } x > 1 \end{cases}$ a) $f(-2)$ b) $f(1)$ c) $f(2)$

Exercice 5

Compléter les tableaux de valeurs de chaque fonction donnée par son expression. Vous donnerez la valeur exacte (en fraction ou avec terme radical si nécessaire).

- 1. f définie par $f(x) = x^2 3$
- 2. g définie par $g(x) = \sqrt{x-3}$
- 3. h définie par h(x) = 9x
- **4.** *u* définie par $u(x) = \frac{8}{1 4x}$
- 5. v définie par $v(x) = \begin{cases} 9 x^2 & \text{si } x < 3 \\ x 3 & \text{si } x \geqslant 3 \end{cases}$

x	-2	-1	0	1	2
f(x)					
x	3	4	5	6	7
g(x)					
x	-3	0	1	6	9
h(x)					
x	-2	-1	0	1	2
u(x)					
x	-1	0	2	3	4
v(x)					

Exercice 6

La distance de freinage d'un véhicule est la distance que le véhicule parcourt entre le moment où le conducteur commence à freiner et le moment où le véhicule est à l'arrêt. La distance de freinage d (mesurée en m) est fonction de sa vitesse v (en km/h). Sur route sèche, elle est donnée par la formule $d(v) = \frac{v^2}{155}$.

1. Complète la seconde ligne de ce tableau à l'aide du menu tableau de la calculette:

v en km/h	20	40	60	80	100	120	140	160
d(v)								

2. Par temps de pluie, la distance de freinage est doublée.

Quelle est la distance de freinage par temps de pluie pour un véhicule roulant à 90km/h?

Associer les fonctions définies par les expressions suivantes avec le bon tableau de valeur, et compléter les. Lesquels sont des tableaux de proportionnalités?

$$A(x) = \frac{x+6}{2}$$

$$B(x) = x^2 + 6$$

$$x - 8 \quad 0 \quad 1 \quad 2$$

$$y \quad 100$$

\boldsymbol{x}	-8	0	1	2	
y	100				
~	0	1	2	2	

\boldsymbol{x}	0	1	2	3	4	
y				81	144	1
x	-5	1	2	3	4	
y			10	12	14	

C(x) = 2(x + x))		E	(x) =	$3x^2$	
$D(x) = \frac{x}{2} +$	6			F	(x) =	(3x)	2
,	x	1	-	2	3	4	
	y	3			27	48	

x	0	1	2	3	4
y			4		5

G(x) =	$(x+6)^2$
H(x) =	$x^2 + 6^2$

x	1	2	3	4
y			81	100

y		10	15	22

x	1	2	3	4
y	6,5	7	7,5	8

Exercice 8

- 1. f définie par $f(x) = \frac{x}{2}$. Déterminer le(s) antécédents de -10.
- 2. f définie par f(x) = 2x 3. Déterminer le(s) antécédent(s) de 4.
- 3. f définie par f(x) = 5x + 1. Déterminer le(s) antécédents de -10.
- 4. f définie par $f(x) = x^2 + 3$. Déterminer le(s) antécédents de 12.

L'image de 0 est le nombre y = f(0).

Le(s) antécédent(s) de 0 sont le(s) solution(s) de f(x)=0. On dit aussi le(s) zéros de f.

Exercice 9

Déterminer le(s) antécédent(s) de 0 pour chacune des fonctions f suivantes :

1.
$$f(x) = 15 - 3x$$

3.
$$f(x) = x^2 - 9$$

$$5. \ f(x) = 4x^2 + 12x$$

2.
$$f(x) = \frac{3x-4}{5}$$

3.
$$f(x) = x^2 - 9$$

4. $f(x) = (5x + 1)(x + 7)$
5. $f(x) = 4x^2 + 12x$
6. $f(x) = x^3 - x$

6.
$$f(x) = x^3 - x$$

Exercice 10

Déterminer les solutions de l'équation f(x) = g(x) pour les fonctions définies par :

1.
$$f(x) = 8x$$
 et $g(x) = 2x - 1$

3.
$$f(x) = x^2 + 2x + 1$$
 et $g(x) = x^2 - 3x + 5$

2.
$$f(x) = 2x + 3$$
 et $g(x) = -3x + 1$

4.
$$f(x) = x^2 + 5$$
 et $g(x) = 3x + 5$

Exercice 11

- 1. La fonction f est définie par f(x) = ax 3. Sachant que f(2) = 0, déterminer la valeur de a.
- 2. La fonction g est définie par g(x) = 2ax + x. Sachant que f(4) = 7, déterminer la valeur de a.
- 3. La fonction h est définie par $h(x) = x^2 ax + 1$. Déterminer a sachant que f(2) = -1.

- 1. Quelle est la température la plus froide de la journée?
- 2. Quelle est la température la plus chaude de la journée?.....
- 3. À quelle heure fait-il le plus chaud?........... À quelle heure fait-il le plus froid?..........
- 5. (Vrai ou faux?) « Le graphique représente l'heure en fonction de la température ».
- 6. Par lecture graphique déterminer l'image de 4 et compléter : $f\colon 4\mapsto\ldots$; $f(4)=\ldots$
- 7. Par lecture graphique déterminer les antécédents de 4 et compléter : $f\colon\ldots\mapsto\ldots;\,f\colon\ldots\mapsto\ldots$
- 8. Avec la précision permise par le graphique compléter les pointillés :

a)
$$f: 0 \mapsto \dots$$
 $f: 0 \mapsto \dots \mapsto 0$ $f: \dots \mapsto 0$.

b)
$$f(...) = 0$$
 $f(...) = 0$ $f(0) = ...$ $f(0) = ...$

c)
$$f(4) = \dots$$
 $f(4) = \dots$ $f(\dots) = 4$ $f(\dots) = 4$

d)
$$f(7) = \dots$$
 $f(\dots) = 7$ $f(-5) = \dots$ $f(\dots) = -5$

- e) f(10) = f(...) f(5,5) = f(...) (compléter avec un nombre différent)
- f) Donner un nombre qui n'admet pas d'image.....
- h) Donner un nombre qui admet un unique antécédent.....

10.3 Exercices 11

Exercice 13

La fonction f est donnée par sa représentation graphique ci-dessous :

L'image de 2 est $\dots f(\dots) =$

L'image de 3 est $\dots f(\dots) =$

L'image de est 3 f(...) =

L'image de -2 est $\dots f(\dots) =$

L'image de 0 est $\dots f(\dots) =$

L'image de -3 est $\dots f(\dots) =$

L'image de 4 est $\dots f(\dots) =$

L'image de -4 est $f(\ldots)$

Exercice 14

Ci-dessous les représentations graphiques des fonctions f, g et h.

- 1. Déterminer par lecture graphique les images de -3, de 2 et de 4 par la fonction f.
- 2. Déterminer par lecture graphique les images de -3, de 0 et de 3 par la fonction g.
- 3. Déterminer par lecture graphique les images de -2, de 0 et de 4 par la fonction h.

Exercice 15

- 1. \mathscr{C}_f est la représentation de la fonction f définie par $f(x)=-11x^2-3x$. Quelle est l'ordonnée du point d'abscisse -1?
- 2. \mathscr{C}_g est la représentation de la fonction g définie par $g(x)=(-2x+3)^2$. Quelle est l'ordonnée du point d'abscisse 1?
- 3. \mathscr{C}_h est la représentation de la fonction h définie par $h(x) = \frac{7x+1}{3x+8}$. Quelles sont les coordonnées du point d'intersection de \mathscr{C}_h avec l'axe des ordonnées ?

Ci-dessous les représentations graphiques des fonctions f, g et h.

- 1. Déterminer par lecture graphique le (ou les) antécédent(s) de -1 par f.
- 2. Déterminer par lecture graphique le (ou les) antécédent(s) de 1 par g.
- 3. Déterminer par lecture graphique le (ou les) antécédent(s) de 3 par h.

Exercice 17

- 1. \mathscr{C}_f est la représentation de la fonction f définie par f(x) = 11x 3. Quelles sont les l'abcisses de(s) point(s) de \mathscr{C}_f d'ordonnée -1?
- 2. \mathscr{C}_g est la représentation de la fonction g définie par $g(x) = x^2 3$. Quelles sont les l'abcisses de(s) point(s) de \mathscr{C}_g d'ordonnée 1?
- 3. \mathscr{C}_h est la représentation de la fonction h définie par h(x)=(3x-2)(5x+1). Quelles sont les coordonnées des points d'intersection de \mathscr{C}_h avec l'axe des abscisses?

Exercice 18

La fonction f est définie par $f(x) = (x+2)(x-1)^2$.

Sa représentation \mathcal{C}_f est donnée ci-contre.

- a) f(-1)
- **b)** f(2)
- c) f(1)
- **d)** f(0)
- 2. Déterminer par lecture graphique :
 - a) les antécédents de 4.
 - b) les solutions de l'équation f(x) = 0.
- 3. Déterminer à l'aide de l'expression :
 - a) l'image de 4
 - b) l'ordonnée du point de la courbe d'abscisse $\frac{1}{3}$.
 - c) les solutions de l'équation f(x) = 0.

1. Quelle est l'image de 3? de 0?

Réponse : $f(\underline{\hspace{0.2cm}}) = \underline{\hspace{0.2cm}}$ et $f(\underline{\hspace{0.2cm}}) = \underline{\hspace{0.2cm}}$

2. Donner un antécédent de −2? un antécédent de 0?

Réponse: $f(\underline{\hspace{0.3cm}}) = \underline{\hspace{0.3cm}}$ et $f(\underline{\hspace{0.3cm}}) = \underline{\hspace{0.3cm}}$

3. Citer deux nombres ayant la même image.

Réponses: $f(\underline{\hspace{0.2cm}}) = \underline{\hspace{0.2cm}} \text{ et } f(\underline{\hspace{0.2cm}}) = \underline{\hspace{0.2cm}}$

4. Citer deux nombres égaux à leur image.

Réponses : $f(\underline{\hspace{0.3cm}}) = \underline{\hspace{0.3cm}}; \quad f(\underline{\hspace{0.3cm}}) = \underline{\hspace{0.3cm}};$

5. Citer des antécédents de 5

Réponses : $f(\underline{\hspace{0.3cm}}) = \underline{\hspace{0.3cm}}$ et $f(\underline{\hspace{0.3cm}}) = \underline{\hspace{0.3cm}}$

6. Citer un nombre strictement négatif ayant une image strictement positive

Réponses : $f(\underline{\hspace{1em}}) = \underline{\hspace{1em}}$

Pour chaque fonction, compléter le tableau puis utiliser les points obtenus pour tracer la représentation graphique de la courbe donnée.

x	-3	-2	-1	0	1	2
f(x) = 4x + 1						
$P(x ; y) \in \mathscr{C}_1$						
x	-2	-1	0	1	2	3
f(x) = 5x - 6						
$P(x ; y) \in \mathscr{C}_2$						

x	-3	-2	-1	0	1	2	3
f(x) = -3x + 4							
$P(x ; y) \in \mathscr{C}_3$							

x		-2	-1	0	0,5	1	1,5	2	3
$f(x) = -x^2 + x - x^2 + $	+ 6								
$P(x ; y) \in \mathscr{C}_4$									
x	_	-1	0	1	1,5	2	2,5	3	4
$f(x) = (x-2)^2$									
$P(x ; y) \in \mathscr{C}_5$					-				

10.3 Exercices 15

x	-3	-2	-1	0	1	2	3
$f(x) = 5 - x^2$							
$P(x ; y) \in \mathscr{C}_6$							
8	. A . <i>y</i>	•	10	y		,	10. A. y
Ť			T	<u>i</u> i			
			8				.8
6	†						
			6				6
4							
			4				4
						<u>.</u>	.2
$egin{array}{cccccccccccccccccccccccccccccccccccc$			2				
			x				
	+	<u> </u>	→ ゛L		x	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>1</u> <u>2</u>
-3 -2 -1	1	2 3 4	-1	i ż	3 4		-2

Exercice 21

Des enseignants souhaitent créer un potager pédagogique dans la cour de leur école, en voici un plan ci-après (qui n'est pas à l'échelle).

Le potager AEFG doit respecter les contraintes suivantes :

- être de forme rectangulaire,
- avoir une aire de 90 m^2 ,
- être le long des murs d'enceinte [DA] et [AB],
- être bordé par un grillage le long des deux autres côtés,
- disposer d'une porte de 1 m de large.
- le coté [AG] mesure entre 5 m et 20 m.
- l'ouverture pour la porte correspond au segment [GP].

Le potager est donc le rectangle AEFG où E est un point du segment [AB] et G est un point du segment [AD] avec 5 m $\leqslant AG \leqslant 20$ m.

Pour des raisons de coût, les enseignants cherchent à déterminer les dimensions du potager afin que la longueur totale du grillage soit la plus petite possible.

- 1. a) Vérifier que si $AG=5\ \mathrm{m}$, alors la longueur de grillage est de 22 m.
 - b) On suppose maintenant que AG = 7.5 m. Calculer la longueur du grillage nécessaire.
- 2. Dans la suite, on note x la longueur de [AG], exprimée en mètre. x est compris entre 5 et 20

- a) Sachant que l'aire de AEFG est 90, exprimer AE à l'aide de x.
- b) On appelle L(x) la longueur du grillage, exprimée en mètre, nécessaire pour clôturer le potager. Justifier que $L(x)=x+\frac{90}{x}-1$.
- 3. On souhaite compléter le tableau de valeurs suivant à l'aide d'un tableur.

	Α	В	С	D	Е	F	G	Н	I	J	K
1	x	5	6	8	10	12	14	16	18	20	22
2	L(x)	22									

- a) Quelle formule a été écrite dans la cellule B2 avant de l'étendre jusqu'à la cellule J2?
- b) Compléter le tableau à l'aide de votre calculatrice.
- c) Quelle semble être la valeur de AG pour laquelle la longueur du grillage est minimale?
- 4. Ci dessous la représentation graphique de la fonction L. Déterminer graphiquement :

- a) la longueur de grillage lorsque AB = 18 m
- b) les valeurs possibles de AG lorsque la longueur de grillage est de 20 m.
- c) la valeur de AG pour que la longueur de grillage soit minimale

10.4 Exercices : solutions et éléments de réponse

solution de l'exercice 1.	•
solution de l'exercice 2 .	-
solution de l'exercice 3 .	-
solution de l'exercice 4 .	-
solution de l'exercice 5.	-
solution de l'exercice 6.	•
solution de l'exercice 7.	-
solution de l'exercice 8 .	-
solution de l'exercice 9.	-
solution de l'exercice 10 .	•
solution de l'exercice 11.	•
solution de l'exercice 12.	•
solution de l'exercice 13.	•
solution de l'exercice 14.	•
solution de l'exercice 15.	•
solution de l'exercice 17.	•
solution de l'exercice 18.	•
solution de l'exercice 19.	-

solution de l'exercice 20.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	x
$P(x; y) \in \mathcal{C}_{1}$ $x $	x
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x -
$f(x) = 5x - 6$ $P(x; y) \in \mathcal{C}_{2}$ $x $	x
$P(x ; y) \in \mathcal{C}_{2}$ $x -3 -2 -1 0 1 2 3$ $f(x) = -3x + 4$ $P(x ; y) \in \mathcal{C}_{3}$ $y 10 y y$ $-8 -8 -12 -1$ $-6 -8 -12 -1$ $-4 -3 -2 -1 1 2 3$ $-2 -1 -2 -1$ $-4 -3 -2 -1 1 2 3$	x
$x -3 -2 -1 0 1 2 3$ $f(x) = -3x + 4$ $P(x; y) \in \mathcal{C}_3$ $x -3 -2 -1 0 1 2 3$ $x -4 -3 -2 -1 1 2 3$ $x -4 -3 -2 -1 1 1 2 3$	x -
$f(x) = -3x + 4$ $P(x; y) \in \mathcal{C}_3$	x
$P(x \; ; \; y) \in \mathscr{C}_3$	x -
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	x
	<i>x</i>
	<i>x</i>
	<i>x</i>
	x
-2 -4 -4 -3 -2 -1 1 2 3	<i>x</i>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.
<i>j</i> -10	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$f(x) = -x^2 + x + 6$	
$P(x ; y) \in \mathscr{C}_4$	
x -1 0 1 1,5 2 2,5 3 4	
$f(x) = (x-2)^2$	
$P(x ; y) \in \mathscr{C}_5$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$f(x) = 5 - x^2$	
$P(x ; y) \in \mathscr{C}_6$	

solution de l'exercice 21.