第六周作业参考解答及补充

作业

1. (习题 2.3.2)

设 F 是一个域, $p(x) \in F[x]$ 不可约, 令 I = p(x)F[x] 表示由 p(x) 生成的理想, 试证明: 商环 F[x]/I 是一个域, 且环同态

$$\varphi: F[x] \to F[x]/I, \quad f(x) \mapsto \overline{f(x)}$$

诱导了域嵌入 $\varphi|_F: F \hookrightarrow F[x]/I, a \mapsto \bar{a}$ (如果将 F 与它的像等同,则 $\bar{x} \in F[\bar{x}] := F[x]/I$ 是 p(x) 在扩域 $F[\bar{x}]$ 中的一个根).

proof

2.2.6 注记的最后已经提到过, 这里再详细解释一下. 由于 F 是域, 因此 F[x] 是 PID, 因此若 p(x) 是不可约的, 则 I = p(x)F[x] 是极大理想. 因为不可约元按定义在所有主理想中是极大的, 这一点可以参考 2.2.2 的注记, 设 p 是不可约元就能得到

$$(p) \subseteq (p') \implies p' \mid p \implies p' \sim p \ \vec{\boxtimes} p' \sim 1 \implies (p') = (p) \ \vec{\boxtimes} (p') = (1)$$

. 因此由 2.1.6 知 F[x]/I 是域.

所谓的域嵌入 (embbeding) 在这里实际上就是单同态, 这其实就是同态复合了一下

$$F \longleftrightarrow F[x] \longrightarrow F[x]/I$$

这是域之间的同态, 因此一定是单的.

2. (习题 2.3.3)

设 F 是一个域, $K \subset F$ 是一个子域, $f(x), g(x) \in K[x]$. 试证明: f(x), g(x) 在 K[x] 中互素 $\Leftrightarrow f(x), g(x)$ 在 F[x] 中互素.

proof

利用 PID 上满足 Bézout Identity 立得. 注意到和 2.2.1 不同的是, 互素的时候两个条件等价.

3. (习题 2.3.4)

设 F 是特征零的域, $f(x) \in F[x]$ 不可约. 证明 f(x) 与 f'(x) 互素.

由于 $0 \leq \deg(f') < \deg(f)$ 且 f 不可约, 若有非单位的公因式 d(x), 则 $\deg(f) > \deg(f') \geqslant \deg(d) > 0$ 且 $d(x) \mid f(x)$ 与不可约矛盾.

特征零是为了排除 f'=0 的情况.

4. (习题 2.3.5)

设 $\mathbb{F}_2 = \mathbb{Z}/(2) = \{\bar{0}, \bar{1}\}$ 是一个二元域. 证明:

$$f(x) = x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n \in \mathbb{F}_2[x]$$

没有一次因子 (即不被一次多项式整除) $\Leftrightarrow a_n\left(1+\sum_{i=1}^n a_i\right)\neq 0$. 写出 $\mathbb{F}_2[x]$ 中所 有次数不超过3的所有不可约多项式.

 \mathbb{F}_2 只有两个一次多项式 x 和 x+1. 其中比较简单的是

$$x \mid f(x) \iff a_0 = 0,$$

$$x+1 \mid f(x) \iff f(x) = (x+1)g(x)$$

$$x+1 \mid f(x) \iff 0$$
 设 $g(x) = x^{n-1} + \dots + b_{n-1}$,对比系数 $a_n = b_{n-1}$, $a_{n-1} = b_{n-1}$

$$a_n = b_{n-1}, \ a_{n-1} = b_{n-1} + b_{n-2}, \ \cdots, \ a_1 = b_1 + 1$$

由于 \mathbb{F}_2 里 -1=1, 因此可以得到

$$b_1 = a_1 - 1 = a_1 + 1, b_2 = a_2 - b_1 = a_2 + a_1 + 1, \dots, a_n = b^{n-1} = 1 + \sum_{k=0}^{n-1} a_k$$

因此

$$x + 1 \mid f(x) \iff 1 + \sum_{k=1}^{n} = 2a_n = 0.$$

不过也可以不这么麻烦, 一次多项式对应 f(x) 的根, 所以 f(x) 无一次因子 等价于 $f(0) \neq 0$ 且 $f(1) \neq 0$, 即 $a_0 \neq 0$ 和 $1 + \sum_{k=0}^{n} a_k \neq 0$.

次数不超过3的多项式只有有限个,可以列举出来,去掉比较明显的可约多 项式

$$x, x + 1,$$

 $x^{2} + 1, x^{2} + x + 1$
 $x^{3} + 1, x^{3} + x + 1, x^{3} + x^{2} + 1$

注意 $x^2 + 1 = x^2 - 1 = (x - 1)(x + 1) = (x + 1)^2$ 可约, $x^3 + 1$ 同理, 其余五 个为不可约多项式.

5. (习题 2.3.6)

设 p 是素数, $\mathbb{Z} \to \mathbb{F}_p = \mathbb{Z}/(p)\mathbb{Z}$, $a \mapsto \bar{a}$, 是商同态. 证明:

(1) 映射

$$\phi_p : \mathbb{Z}[x] \to \mathbb{F}_p[x], \quad f(x) = \sum_{i=1}^n a_i x^i \mapsto \bar{f}(x) = \sum_{i=1}^n \bar{a}_i x^i$$

是环同态;

(2) 对于首项系数为 1 的多项式 $f(x) \in \mathbb{Z}[x]$, 如果存在素数 p 使 $\bar{f}(x)$ 在 $\mathbb{F}_p[x]$ 中不可约, 则 f(x) 在 $\mathbb{Z}[x]$ 中也不可约.

proof

- (1) 2.1.8 的注记或教材引理 2.3.2(原来教材有写延拓)
- (2) 用反证法, 假设 f(x) 可约, f(x) = g(x)h(x), 则 $\deg(g), \deg(h) > 0$ 且 g,h 都是首一的. 那么根据同态有 $\bar{f} = \bar{g}h$, 且 \bar{g} 和 \bar{h} 还是首一的次数大于 0 的多项式, 这和 \bar{f} 不可约矛盾.

6. (习题 2.3.7)

设 R,A 是两个环, $C(A) \subset A$ 是 A 的中心, $\psi: R \to C(A)$ 是一个环同态. 证明: $\forall u \in A$, 存在唯一环同态 $\psi_u: R[x] \to A$ 满足:

$$\psi_u(x) = u, \quad \psi_u(a) = \psi(a) \quad (\forall a \in R).$$

所以, $\forall f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \in R[x]$, 它在 ψ_u 下的像

$$\psi_u(f(x)) = \psi(a_n)u^n + \psi(a_{n-1})u^{n-1} + \dots + \psi(a_1)u + \psi(a_0) \in A$$

称为 f(x) 在 $u \in A$ 的取值, 记为 $f(u) := \psi_u(f(x))$.

proof

2.1.8 的注记. 在这里重新阐述的详细一点. 给定环同态 $\psi: R \to C(A)$, 我们可以指定一个集合的映射

$$f_u: \{1\} \to A, 1 \mapsto u$$

所谓的自由交换 R-代数的泛性质是指, 对任意给定的集合映射 f_u , 存在唯一

的同态 $\psi_u: R[x] \to A$ 使得图表交换:

其中 $i: R \to R[x], 1 \mapsto x$.

因为 $\psi(R) \subseteq C(A)$, 因此 ψ_u 才能保持乘法, 这在 2.1.8 的注记里已经证明. 验证了 ψ_u 是环同态就相当于证明了存在性, 而唯一性是根据定义就能得到, ψ_u 是被给定的 ψ 和 f_u 唯一确定的.

注:

这里 {1} 可以换成任意集合 S

7. (习题 2.3.8)

设 R 是一个交换环, $f(x) \in R[x]$. 证明: f(x) 是环 R[x] 中的零因子当且仅当 存在 $0 \neq r \in R$ 使得 $r \cdot f(x) = 0$.

proof

由于 $R \subseteq R[x]$, 只需证" \Longrightarrow "的方向. 记 $f(x) = \sum_{k=0}^{n} a_k x^k$,设存在 $g(x) = \sum_{k=0}^{m} b_k x^k \neq 0$ 使得 fg = 0,并要求 g(x)是次数最低的. 考虑最高次项, $a_n b_m = 0$. 那么 $a_n g(x)$ 是一个比 g(x) 次数 更小的多项式且 $f(x)(a_ng(x)) = a_nf(x)g(x) = 0$. 因此 $a_ng(x) = 0$, 从而 $a_n b_k = 0, 0 \leqslant k \leqslant m$. 那么此时 n + m - 1 项的系数变为 $a_{n-1} b_m = 0$, 于是可 以重复讨论. 根据归纳法最后得到 $a_ib_m=0, \forall i \perp b_m \neq 0$, 因此 $b_mf(x)=0$.

课上的补充内容

無い, たぶん...