2.3.2 Método da Iteração Linear (MIL)

Seja f(x) uma função contínua em [a,b] com $\alpha \in [a,b]$ tal que $f(\alpha) = 0$. O Método de Iterações Lineares consiste em:

- a) transformar a equação f(x)=0 numa **função de iteração** $x=\varphi(x)$;
- b) adotar um valor inicial $x = x_a$;
- c) gerar uma sequência $\{x_k\}$ de aproximações para α pela relação $x_{k+1} = \varphi(x_k)$, pois a função $\varphi(x)$ é tal que $f(\alpha) = 0$ se e somente se $\alpha = \varphi(\alpha)$.

Exemplo: $f(x) = x^2 + x - 6$

A função de iteração em geral não é única. Para o exemplo tem-se como possíveis funções de iterações:

- a) $\varphi_1(x) = 6 x^2$;
- b) $\varphi_2(x) = \pm \sqrt{6-x}$;
- c) $\varphi_3(x) \frac{6}{x} 1;$
- d) $\varphi_4(x) = \frac{6}{x+1}$.

Interpretação Geométrica

Seja a função de iteração $x = \varphi(x)$. Fazendo $\varphi_1(x) = x$ e $\varphi_2(x) = \varphi(x)$.

Observe que nos dois exemplos dos gráficos anteriores o processo iterativo converge para a raiz.

Observe neste caso que o processo diverge.

Para uma função f(x)=0 pode existir mais de uma função de iteração $\varphi(x)$, contudo não é para qualquer $\varphi(x)$ que o processo $x_{k+1}=\varphi(x_k)$ gera uma sequência convergente para a raiz α .

Seja o exemplo:

$$f(x) = x^2 + x - 6$$

Esta função tem como raízes os valores 2 e -3.

Seja a função de iteração $\varphi_1(x) = 6 - x^2$.

Adotando como valor inicial $x_o = 1.5$ e o processo iterativo $x_{k+1} = \varphi(x_k)$, tem-se:

$$x_1 = 3,75$$
 $x_2 = -8,0625$ $x_3 = -59,003906$ $x_4 = -3475,4609$

Pode-se observar que, para esta função de iteração, o processo é divergente. Pode-se chegar a mesma conclusão a partir da análise gráfica.

Como pode ser observado na figura, o processo é divergente.

Tomando agora como função de iteração: $x = \varphi_2(x) = \sqrt{6-x}$ com $x_o = 1,5$, tem-se: $x_1 = 2,12132$ $x_2 = 1,96944$ $x_3 = 2,00763$ $x_4 = 1,99809$ $x_5 = 2,00048$

Para a nova função de iteração, o processo é convergente.

Estudo da Convergência

Teorema 3

Seja $\varphi(x)$ uma função de iteração para f(x)=0 e α uma raiz de f(x)=0 isolada no intervalo [a,b] e **centrada** em α . Se:

- 1) $\varphi(x)$ e $\varphi'(x)$ são contínuas em [a,b];
- 2) $|\varphi'(x)| \le M \le 1 \quad \forall x \in [a,b];$
- 3) $x_o \in [a,b]$

Então a sequência $\{x_o, x_1, x_2, ..., x_{k+1}\}$ gerado pela função de iteração $x_{k+1} = \varphi(x_k)$ converge para a raiz α .

Exemplos

Caso1:

Seja a função de iteração $\varphi_1(x) = 6 - x^2$ do exemplo anterior. O método de Iteração Linear converge para a raiz $\alpha = 2$?

De acordo com o Teorema 3, deve-se encontrar um intervalo [a,b], centrado em α , que satisfaça as condições 1 e 2 do teorema.

a) $\varphi_1(x) = 6 - x^2$ e $\varphi_1(x) = -2x$ são contínuas no conjunto dos números $\Re eais$.

b) $|\varphi_1(x)| < 1 \Rightarrow |2x| < 1 \Rightarrow \frac{-1}{2} < x < \frac{1}{2}$. Não existe um intervalo [a,b] centrado em 2, tal que $|\varphi_1(x)| < 1 \ \forall \ x \in [a,b]$, portanto $\varphi_1(x)$ não satisfaz a condição 2 do teorema 3.

Caso2:

Seja a função de iteração $\varphi_2(x) = \sqrt{6-x}$ do exemplo anterior. O método de Iteração Linear converge para a raiz $\alpha = 2$?

Novamente, de acordo com o Teorema 3, deve-se encontrar um intervalo [a,b], centrado em α , que satisfaça as condições 1 e 2 do teorema.

c)
$$\varphi_2(x) = \sqrt{6-x}$$
 e $\varphi_2(x) = \frac{-1}{2\sqrt{6-x}}$ são contínuas em $S = \{x \in \Re \text{ tal que } x < 6\}$.

d)
$$|\varphi_2(x)| < 1 \Rightarrow \left| \frac{1}{2\sqrt{6-x}} \right| < 1 \Rightarrow -5.75 < x < 5.75$$
. É possível obter-se um intervalo [a,b] centrado em 2, tal que $|\varphi_2(x)| < 1 \quad \forall \ x \in [a,b]$, portanto $\varphi_2(x)$ satisfaz a condição 2 do teorema 3 e o processo é convergente.

Caso3:

Seja a função de iteração $\varphi_3(x) = \frac{6}{x} - 1$ do exemplo anterior. O método de Iteração Linear converge para a raiz $\alpha = 2$?

Novamente, de acordo com o Teorema 3, deve-se encontrar um intervalo [a,b], centrado em α , que satisfação as condições 1 e 2 do teorema.

e)
$$\varphi_3(x) = \frac{6}{x} - 1$$
 e $\varphi_3(x) = \frac{-6}{x^2}$ são contínuas em \Re , para $x \neq 0$.

f)
$$|\varphi_3(x)| < 1 \Rightarrow \left| \frac{6}{x^2} \right| < 1 \Rightarrow x^2 > 6 \Rightarrow x < -\sqrt{6}$$
 $e \ x > \sqrt{6}$. Não é possível obterse um intervalo [a,b] centrado em 2, tal que $|\varphi_3| < 1 \quad \forall \ x \in [a,b]$, portanto $\varphi_3(x)$ não satisfaz a condição 2 do teorema 3 e o processo não converge. Entretanto, pode-se verificar que o processo converge para a raiz $\alpha = -3$. É possível encontrar-se um intervalo centrado em -3 que satisfaça todas as condições do teorema 3.

Os critérios de parada para o Método de Iteração Linear pode ser o mesmo utilizado no Método da Bissecção.

2.3.3 Método de Newton-Raphson (NR)

Descrição:

Seja f(x) uma função contínua no intervalo [a,b] e α o único zero da função no intervalo. A primeira derivada f'(x) e a segunda derivada f''(x) também são contínuas em [a,b].

- a) Escolhe-se uma solução $x_k = x_o$ para α (zero da função).
- b) Expande-se a função através da Série de Taylor em torno de x_k .

$$f(x_k + \Delta x_k) = f(x_k) + f'(x_k) \frac{\Delta x_k}{1!} + f''(x_k) \frac{\Delta x_k^2}{2!} + \dots$$

Considerando apenas os termos lineares:

$$f(x_k + \Delta x_k) = f(x_k) + f'(x_k) \frac{\Delta x_k}{11}$$

Esta equação representa a equação da reta tangente a função f(x) no ponto x_k . Igualando essa equação a zero, encontra-se o ponto onde essa reta corta o eixo das abscissas. Esse ponto é uma nova estimativa para o zero da função, ou seja:

$$f(x_k + \Delta x_k) = f(x_k) + f'(x_k) \frac{\Delta x_k}{1!} = 0$$

$$\Delta x_k = \frac{f(x_k)}{f'(x_k)}$$

c) Como $\Delta x_k = x_{k+1} - x_k$, chega-se a expressão:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

c) O processo é repetido até a convergência.

Interpretação Geométrica

A partir do triângulo retângulo formado pelos pontos x1, xo e f(xo), tem-se a seguinte relação:

$$tg(\theta) = \frac{f(x_o)}{x_o - x_1}$$

Entretanto, a partir da definição de derivada no ponto x_o , tem-se que $tg(\theta)=f^{'}(x_o)$, o que resulta na expressão do Método Newton-Raphson.

$$x_1 = x_o - \frac{f(x_o)}{f'(x_o)}$$

Esta interpretação geométrica pode ser estendida para as outras iterações do processo.