8.1.8 Si afegim 0.269 g de HNO₃ a 36.3 ml de HNO₃ 1.18 M, quina serà la concentració final de H⁺ i NO₃⁻ suposant que no varia el volum de la solució?

Tenim dos fons diferents de HNO₃:

i) 0.269 g de $HNO_3 \times 1 \text{ mol}$ de $HNO_3 / 63 \text{ g}$ de $HNO_3 = 4.27 \times 10^{-3} \text{ mols}$ de HNO_3

ii) 36.3 ml de HNO₃ \times 1 litre de HNO₃ / 1000 ml de HNO₃ \times 1.18 mols de HNO₃ / 1 litre de HNO₃ = 4.28×10^{-2} mols de HNO₃

Sabem que HNO₃ és un àcid molt fort, i per tant e podem considerar totalment dissociat.

$$HNO_3 \rightarrow H^+ + NO_3^-$$

 $1 \text{ mol} \rightarrow 1 \text{ mol} + 1 \text{ mol}$

Per tant $[H^{+}] = [NO_{3}^{-}]$

$$\left[H^{+}\right] = \frac{4.27 \times 10^{-3} mols + 4.28 \times 10^{-2} mols}{0.0363 \ litres} = 1.296M$$

 $[NO_3^-] = 1.296 M$

8.1.10 Tenim dues dissolucions, una de $CaCl_2$ 0.15 M i l'altra de $HgCl_2$ 0.15 M. Considerant que $CaCl_2$ és un electròlit fort i que $HgCl_2$ és feble, amb $K_{dis} = 3.3 \cdot 10^{-7}$ ($HgCl_2 \leftrightarrow HgCl^+ + Cl^-$), calcular la relació entre les concentracions de Cl^- en les dues dissolucions.

CaCl₂ és un electròlit fort.

$$CaCl_2 \rightarrow Ca^{2+} + 2Cl^{-}$$

 $0.15 \text{ M} \rightarrow 0.15 \text{ M} + 2 \times 0.15 \text{ M}$

$$[Cl^{-}] = 0.30 \text{ M}$$

HgCl₂ és un electròlit feble

$$K_{dis} = \frac{\left[\text{HgCl}^{+} \right] \left[\text{Cl}^{-} \right]}{\left[\text{HgCl}_{2} \right]}$$

$$\rightarrow 3.3 \times 10^{-7} = \frac{x^{2}}{0.15 - x} \approx \frac{x^{2}}{0.15}$$

$$\rightarrow x = 2.22 \times 10^{-4}$$

[Cl⁻] = 2.22×10⁻⁴ M, i per tant l'aproximació que hem fet en l'equació és correcte.

Relació = $0.30 / 2.22 \times 10^{-4} = 1351$