ASSIGNMENT IV MSO 202 A

IDENTITY THEOREM, ZEROS OF A HOLOMORPHIC FUNCTION, POLES

Exercises 0.1-0.4 rely on the Identity Theorem: If F is an entire function such that there exists a convergent sequence $\{z_n\}$ such that $F(z_n) = 0$ then F(z) = 0 for all $z \in \mathbb{C}$.

Exercise 0.1: Let f, g be entire functions such that f(z) = g(z) for all $z = x \in (0, 1)$. Show that f(z) = g(z) for all $z \in \mathbb{C}$.

Exercise 0.2: Does there exist an entire function f such that $f(z) = |z|^3$ for all z = x + iy, $x \in (-1, 1)$?

Exercise 0.3: Assuming $\sin(2x) = 2\sin(x)\cos(x)$ for all $x \in \mathbb{R}$, show that $\sin(2z) = 2\sin(z)\cos(z)$ for all $z \in \mathbb{C}$.

Remark 0.4: One can prove similarly that

$$\cos(z) = \frac{e^{iz} + e^{-i\pi z}}{2}$$

Exercise 0.5: Let f be a non-zero entire function. Show that for any R > 0, f can have finitely many zeros in the closed disc $\overline{\mathbb{D}_R(0)}$ centred 0 and of radius R.

Exercise 0.6: Show that all zeros of $\cos(\frac{\pi}{2}z)$ are at odd integers. Show further that all zeros are simple.

Exercise 0.7: Show that all poles of $\tan(\frac{\pi}{2}z)$ are at odd integers. Show further that all poles are simple.