LIGHT UNFLAVORED MESONS (S = C = B = 0)

For I=1 (π, b, ρ, a) : $u\overline{d}$, $(u\overline{u}-d\overline{d})/\sqrt{2}$, $d\overline{u}$; for I=0 $(\eta, \eta', h, h', \omega, \phi, f, f')$: $c_1(u\overline{u}+d\overline{d})+c_2(s\overline{s})$

$$I^{G}(J^{P}) = 1^{-}(0^{-})$$

Mass
$$m=139.57039\pm0.00018$$
 MeV (S = 1.8) Mean life $\tau=(2.6033\pm0.0005)\times10^{-8}$ s (S = 1.2) $c\tau=7.8045$ m

$\pi^{\pm} \rightarrow \ell^{\pm} \nu \gamma$ form factors $^{[a]}$

$$F_V = 0.0254 \pm 0.0017$$

 $F_A = 0.0119 \pm 0.0001$

 F_{V} slope parameter $\mathit{a} = 0.10 \pm 0.06$

$$R = 0.059^{+0.009}_{-0.008}$$

 π^- modes are charge conjugates of the modes below.

For decay limits to particles which are not established, see the section on Searches for Axions and Other Very Light Bosons.

π^+ DECAY MODES	Fract	ion (Γ_i/Γ)	Confidence leve	<i>p</i> el (MeV/ <i>c</i>)
$\mu^+ u_\mu$	[b] (99	0.98770±0.000	004) %	30
$\mu^{\dot{+}} u_{\mu}\gamma$	[c] (2	± 0.25	$) \times 10^{-4}$	30
$e^+ \nu_e$	[b] (1	230 ±0.004	$\times 10^{-4}$	70
$e^+ u_{m{e}}\gamma$	[c] (7	± 0.05	$) \times 10^{-7}$	70
$e^+ \nu_e \pi^0$	(1	± 0.006	$(5) \times 10^{-8}$	4
$e^+ \nu_e e^+ e^-$	(3	± 0.5	,	70
$\mu^+ u_{\mu} u \overline{ u}$	< 9)	$\times 10^{-6} 90\%$	% 30
$e^+ \nu_e \nu \overline{\nu}$	< 1	6	$\times 10^{-7} 90\%$	6 70

Lepton Family number (LF) or Lepton number (L) violating modes

$\mu^+ \overline{ u}_e$	L	[d] < 1.5	$\times10^{-3}$ 90%	30
$\mu^+ u_e$	LF	[d] < 8.0	$\times 10^{-3} 90\%$	
$\mu^-e^+e^+\nu$	LF	< 1.6	$\times 10^{-6} 90\%$	30

$$I^{G}(J^{PC}) = 1^{-}(0^{-}+)$$

Mass $m = 134.9768 \pm 0.0005 \text{ MeV}$ (S = 1.1)

HTTP://PDG.LBL.GOV

Page 1

$$m_{\pi^\pm} - m_{\pi^0} = 4.5936 \pm 0.0005$$
 MeV Mean life $\tau = (8.43 \pm 0.13) \times 10^{-17}$ s $~(S=1.2)$ $c au = 25.3$ nm

For decay limits to particles which are not established, see the appropriate Search sections (A^0 (axion) and Other Light Boson (X^0) Searches, etc.).

π^0 DECAY MODES	Fraction (Γ_i/Γ_j)	Scale facto) Confidence le	,
2γ	(98.823±0.0	034) % S=1	L.5 67
$e^+e^-\gamma$	$(1.174\pm0.0$	035) % S=1	1.5 67
γ positronium	(1.82 ± 0.2	$29) \times 10^{-9}$	67
$e^{+} e^{+} e^{-} e^{-}$	(3.34 ± 0.1	16) \times 10 ⁻⁵	67
e^+e^-	(6.46 ± 0.3	$33) \times 10^{-8}$	67
4 γ	< 2	$\times 10^{-8} \text{ CL} = 90$	0% 67
invisible	< 4.4	$\times 10^{-9} \text{ CL} = 90$)% –
$ u_{\mathbf{e}} \overline{ u}_{\mathbf{e}}$	< 1.7	$\times 10^{-6} \text{ CL} = 90$	0% 67
$ u_{\mu}\overline{ u}_{\mu}$	< 1.6	$\times 10^{-6} \text{ CL} = 90$	0% 67
$ u_{ au} \overline{ u}_{ au}$	< 2.1	$\times 10^{-6} \text{ CL} = 90$	0% 67
$\gamma \overline{ u}$	< 1.9	$\times 10^{-7} \text{ CL} = 90$	0% 67

Charge conjugation (C) or Lepton Family number (LF) violating modes

3γ	С	< 3.1	$\times 10^{-8}$ CL=90%	67
$\mu^+\mathrm{e}^-$	LF	< 3.8	$ imes$ 10 $^{-10}$ CL=90%	26
$\mu^-\mathrm{e}^+$	LF	< 3.2	$\times10^{-10}$ CL=90%	26
$\mu^{+} e^{-} + \mu^{-} e^{+}$	LF	< 3.6	$\times 10^{-10}$ CL=90%	26

η

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m=547.862\pm0.017$ MeV Full width $\Gamma=1.31\pm0.05$ keV

C-nonconserving decay parameters

$$\begin{array}{ll} \pi^+\pi^-\pi^0 & \text{left-right asymmetry} = (0.09^{+0.11}_{-0.12}) \times 10^{-2} \\ \pi^+\pi^-\pi^0 & \text{sextant asymmetry} = (0.12^{+0.10}_{-0.11}) \times 10^{-2} \\ \pi^+\pi^-\pi^0 & \text{quadrant asymmetry} = (-0.09 \pm 0.09) \times 10^{-2} \\ \pi^+\pi^-\gamma & \text{left-right asymmetry} = (0.9 \pm 0.4) \times 10^{-2} \\ \pi^+\pi^-\gamma & \beta \; (\textit{D-wave}) = -0.02 \pm 0.07 \quad (\text{S} = 1.3) \end{array}$$

CP-nonconserving decay parameters

$$\pi^+\pi^-e^+e^-$$
 decay-plane asymmetry $A_\phi=(-0.6\pm3.1) imes10^{-2}$

Other decay parameters

$$\pi^0\pi^0\pi^0$$
 Dalitz plot $\alpha=-0.0288\pm0.0012$ (S = 1.1) Parameter Λ in $\eta\to\ell^+\ell^-\gamma$ decay = 0.716 \pm 0.011 GeV/ c^2

HTTP://PDG.LBL.GOV

Page 2

η DECAY MODES		Fraction (Γ_i/Γ)		Scale factor/ Ifidence level	
	Neutr	al modes			
neutral modes		(71.96 ± 0.30)) %	S=1.3	_
2γ		(39.36 ± 0.18)) %	S=1.1	274
$3\pi^{0}$		$(32.57 \pm 0.21$) %	S=1.2	179
$\pi^0 2\gamma$		$(2.55\pm0.22$			257
$2\pi^0 2\gamma$		< 1.2			238
4 γ		< 2.8	$\times 10^{-4}$	CL=90%	274
invisible		< 1.0	\times 10 ⁻⁴	CL=90%	_
	Charg	ed modes			
charged modes		(28.04 ± 0.30)) %	S=1.3	_
$\pi^{+}\pi^{-}\pi^{0}$		(23.02 ± 0.25)) %	S=1.2	174
$\pi^+\pi^-\gamma$		$(4.28\pm0.07$) %	S=1.1	236
$e^+e^-\gamma$		(6.9 ± 0.4	$) \times 10^{-3}$	S=1.2	274
$\mu^+\mu^-\gamma$		(3.1 ± 0.4	$) \times 10^{-4}$		253
e^+e^-		< 7	\times 10 ⁻⁷	CL=90%	274
$\mu^+\mu^-$		(5.8 ± 0.8	$) \times 10^{-6}$		253
$2e^{+}2e^{-}$		$(2.40\pm0.22$	$(1) \times 10^{-5}$		274
$\pi^{+}\pi^{-}e^{+}e^{-}(\gamma)$		$(2.68\pm0.11$			235
$e^{+}e^{-}\mu^{+}\mu^{-}$		< 1.6	$\times 10^{-4}$	CL=90%	253
$2\mu^{+}2\mu^{-}$		< 3.6	$\times 10^{-4}$	CL=90%	161
$\mu^{+} \mu^{-} \pi^{+} \pi^{-}$		< 3.6	$\times 10^{-4}$	CL=90%	113
$\pi^+e^-\overline{\nu}_e+$ c.c.		< 1.7	$\times 10^{-4}$	CL=90%	256
$\pi^+\pi^-2\gamma$		< 2.1	$\times 10^{-3}$		236
$\pi^+\pi^-\pi^0\gamma$		< 6	$\times 10^{-4}$	CL=90%	174
$\pi^0 \mu^+ \mu^- \gamma$		< 3	\times 10 ⁻⁶	CL=90%	210
	narge conjugat arge conjugation				
	Family numb			des	
$\pi^0\gamma$	C [e]	< 9	$\times 10^{-5}$	CL=90%	257
$\pi^+\pi^-$	P,CP	< 4.4	$\times 10^{-6}$		236
$2\pi^0$	P,CP	< 3.5	$\times 10^{-4}$		238
$2\pi^0\gamma$	C	< 5	$\times 10^{-4}$	CL=90%	238
$3\pi^0\gamma$	С	< 6	\times 10 ⁻⁵		179
3γ	C	< 1.6	\times 10 ⁻⁵		274
$4\pi^0$	P,CP	< 6.9	× 10 ⁻⁷		40
$\pi^{0} e^{+} e^{-}$		< 8	× 10 ⁻⁶		257
$\pi^{0} \mu^{+} \mu^{-}$		< 5	× 10 ⁻⁶		210
$\mu^{+}e^{-} + \mu^{-}e^{+}$	LF LF	< 6	× 10 ⁻⁶		264

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

also known as σ ; was $f_0(600)$

See the review on "Scalar Mesons below 1 GeV."

Mass (T-Matrix Pole \sqrt{s}) = (400–550)-i(200–350) MeV Mass (Breit-Wigner) = 400 to 800 MeV

Full width (Breit-Wigner) = 100 to 800 MeV

f ₀ (500) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi$	seen	_
$\gamma\gamma$	seen	_

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

See the review on "Spectroscopy of Light Meson Resonances."

T-Matrix Pole $\sqrt{s}=(761\text{--}765)-i~(71\text{--}74)~\text{MeV}$ Mass (Breit-Wigner) $=775.26\pm0.23~\text{MeV}$

Full width (Breit-Wigner) $= 149.1 \pm 0.8$ MeV

ρ(770) DECAY MODES	Fraction (Γ_i/Γ)		Scale factor/ Confidence level	-
p(110) DECAT WODES	Traction (1 ;/1)		Confidence level	(IVIEV/C)
$\pi\pi$	$\sim~100$	%		363
	$ ho$ (770) $^{\pm}$ de	ecays		
$\pi^{\pm}\gamma$	(4.5 ± 0.5	$) \times 10^{-4}$	S=2.2	375
$\pi^{\pm}\eta$	< 6	$\times 10^{-3}$	CL=84%	152
$\pi^{\pm}\pi^{+}\pi^{-}\pi^{0}$	< 2.0	$\times 10^{-3}$	CL=84%	254
	$ ho$ (770) 0 de	ecays		
$\pi^+\pi^-\gamma$	(9.9 ± 1.6)	$) \times 10^{-3}$		362
$\pi^{0}\gamma$	(4.7 ± 0.8	$) \times 10^{-4}$	S=1.7	376
$\eta \gamma$	$(3.00\pm0.21$	$) \times 10^{-4}$		194
$^{\eta\gamma}_{\pi^0\pi^0\gamma}$	(4.5 ± 0.8	$) \times 10^{-5}$		363
$\mu^+\mu^-$	[g] (4.55 ± 0.28)	$) \times 10^{-5}$		373
e^+e^-	[g] (4.72 ± 0.05)	$) \times 10^{-5}$		388
$\pi^+\pi^-\pi^0$	$(1.01^{+0.54}_{-0.36}$	$\pm 0.34) \times 10^{-4}$		323
$\pi^+\pi^-\pi^+\pi^-$	(1.8 ± 0.9	$) \times 10^{-5}$		251
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	(1.6 ± 0.8	_		257
$\pi^0 e^+ e^-$	< 1.2	× 10 ⁻⁵	CL=90%	376

$$\omega$$
(782)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=782.66\pm0.13~{\rm MeV}~{\rm (S}=2.0)$ Full width $\Gamma=8.68\pm0.13~{\rm MeV}$

		Scale factor/	
ω (782) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/ <i>c</i>)
$\pi^{+}\pi^{-}\pi^{0}$	(89.2 \pm 0.7) %		327
$\pi^0 \gamma$	$(8.35\pm0.27)\%$	S=2.2	380
$\pi^+\pi^-$	$(1.53^{+0.11}_{-0.13})\%$	S=1.2	366
neutrals (excluding $\pi^0 \gamma$)	(7 +8)×	10 ⁻³ S=1.1	_
$\eta\gamma$	(4.5 \pm 0.4) $ imes$	10^{-4} S=1.1	200
$\pi^{0} e^{+} e^{-}$	(7.7 \pm 0.6) $ imes$	10^{-4}	380
$\pi^{0} \mu^{+} \mu^{-}$	(1.34 ± 0.18) $ imes$	10^{-4} S=1.5	349
e^+e^-	$(7.38\pm0.22)\times$	10^{-5} S=1.9	391
$\pi^+\pi^-\pi^0\pi^0$	< 2 ×	10^{-4} CL=90%	262
$\pi^+\pi^-\gamma$	< 3.6 ×	10^{-3} CL=95%	366
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	< 1 ×	10^{-3} CL=90%	256
$\pi^0\pi^0\gamma$	(6.7 ± 1.1) $ imes$	10^{-5}	367
$\eta\pi^{0}\gamma$	< 3.3 ×	10^{-5} CL=90%	162
$\mu^+\mu^-$	(7.4 ± 1.8) $ imes$	10^{-5}	377
3γ	< 1.9 ×	10^{-4} CL=95%	391
Charge conjugation	on (C) violating n	nodes	
$\eta \pi^0$	< 2.1 ×	10^{-4} CL=90%	162
^	< 2.2 ×	10^{-4} CL=90%	367
$3\pi^0$		10^{-4} CL=90%	330
invisible	< 7 ×	10 ⁻⁵ CL=90%	_

$\eta'(958)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m=957.78\pm0.06~{
m MeV}$ Full width $\Gamma=0.188\pm0.006~{
m MeV}$

η' (958) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\pi^+\pi^-\eta$	$(42.5 \pm 0.5)\%$,)	232
$ ho^{f 0}\gamma$ (including non-resonant	(29.5 \pm 0.4) %	D	165
$\pi^+ \pi^- \gamma$)			
$\pi^0\pi^0\eta$	$(22.4 \pm 0.5)\%$, D	239
$\omega\gamma$	(2.52 ± 0.07) %	, D	159
$\omega e^+ e^-$	(2.0 \pm 0.4) $ imes$	10^{-4}	159
$\gamma\gamma$	$(2.307\pm0.033)\%$		479
$3\pi^0$	($2.50~\pm0.17$) $ imes$	10 ⁻³	430

HTTP://PDG.LBL.GOV

Page 5

_		1		
$\mu^+\mu^-\gamma$	(1.13 ± 0.28)			467
$\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	(2.0 ± 0.4)	$) \times 10^{-5}$		401
$\pi^{+}\pi^{-}\pi^{0}$	(3.61 ± 0.17)	$) \times 10^{-3}$		428
$(\pi^+\pi^-\pi^0)$ S-wave	(3.8 ± 0.5)	_		428
$\pi^{\mp} \rho^{\pm}$	(7.4 ± 2.3)	$) \times 10^{-4}$		106
$2(\pi^{+}\pi^{-})$	(8.4 ± 0.9)			372
$\pi^{+}\pi^{-}2\pi^{0}$	(1.8 ± 0.4)	$) \times 10^{-4}$		376
$2(\pi^+\pi^-)$ neutrals	< 1	%	95%	_
$2(\pi^{+}\pi^{-})\pi^{0}$	< 1.8	$\times 10^{-3}$	90%	298
$2(\pi^+\pi^-)2\pi^0$	< 1	%	95%	197
$3(\pi^{+}\pi^{-})$	< 3.1	$\times 10^{-5}$	90%	189
$\mathcal{K}^{\pm}\pi^{\mp}$	< 4	$\times 10^{-5}$	90%	334
$\pi^{+}\pi^{-}e^{+}e^{-}$	(2.42 ± 0.10)	$) \times 10^{-3}$		458
$\pi^+e^- u_e$ + c.c.	< 2.1	$\times 10^{-4}$	90%	469
$\gamma e^+ e^-$	(4.91 ± 0.27)	$) \times 10^{-4}$		479
$\pi^{0}\gamma\gamma$	(3.20 ± 0.24)	\cdot) \times 10 ⁻³		469
$\pi^0 \gamma \gamma$ (non resonant)	(6.2 ± 0.9	$) \times 10^{-4}$		_
$\eta\gamma\gamma$	< 1.33	$\times 10^{-4}$	90%	322
$4\pi^0$	< 4.94	$\times 10^{-5}$	90%	380
e^+e^-	< 5.6	$\times 10^{-9}$	90%	479
$e^{+}e^{-}e^{+}e^{-}$	(4.5 ± 1.1	$) \times 10^{-6}$		479
invisible	< 6		90%	_

Charge conjugation (C), Parity (P), Lepton family number (LF) violating modes

	•		_		
$\pi^+\pi^-$	P,CP	< 1.8	$\times10^{-5}$	90%	458
$\pi^0\pi^0$	P,CP	< 4	$\times10^{-4}$	90%	459
$\pi^{0} e^{+} e^{-}$	С	[f] < 1.4	$\times10^{-3}$	90%	469
$\pi^0 ho^0$	С	< 4	%	90%	111
$\eta e^+ e^-$	С	[f] < 2.4	$\times10^{-3}$	90%	322
3γ	С	< 1.0	$\times 10^{-4}$	90%	479
$\mu^+\mu^-\pi^0$	С	[f] < 6.0	$\times10^{-5}$	90%	445
$\mu^+\mu^-\eta$	С	[f] < 1.5	$\times10^{-5}$	90%	273
$e\mu$	LF	< 4.7	$\times10^{-4}$	90%	473

$f_0(980)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

See the review on "Scalar Mesons below 1 GeV."

T-matrix pole $\sqrt{s} = (980-1010) - i (20-35) \text{ MeV}^{[h]}$ Mass (Breit-Wigner) = $990 \pm 20 \text{ MeV}^{[h]}$ Full width (Breit-Wigner) = 10 to 100 MeV $^{[h]}$

f ₀ (980) DECAY MODES	Fraction (Γ	· _i /Γ)	p (MeV/c)
$\pi\pi$	seen		476
HTTP://PDG.LBL.GOV	Page 6	Created: 7/10/	⁷ 2023 15:48

$$\begin{array}{ccc} {\it K} \, \overline{\it K} & & {\rm seen} & & 36 \\ \gamma \, \gamma & & {\rm seen} & & 495 \end{array}$$

$$a_0(980)$$
 $I^G(J^{PC}) = 1^-(0^{++})$

See the review on "Scalar Mesons below 1 GeV."

T-matrix pole $\sqrt{s}=(960\text{--}1030)-i~(20\text{--}70)~\text{MeV}^{~[h]}$ Mass $m=980\pm20~\text{MeV}^{~[h]}$

Full width $\Gamma = 50$ to 100 MeV ^[h]

a ₀ (980) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta\pi$	seen	319
$K\overline{K}$	seen	†
$\eta^\prime \pi$	seen	†
$ ho\pi$	not seen	137
$\gamma \gamma$	seen	490

ϕ (1020)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m = 1019.461 \pm 0.016$ MeV Full width $\Gamma = 4.249 \pm 0.013$ MeV (S = 1.1)

((1000) DECAY MODES	E (E /E)	Scale factor/	
ϕ (1020) DECAY MODES	Fraction (I _i /I)	Confidence level	(MeV/ <i>c</i>)
K+K-	(49.1 ± 0.5)) % S=1.3	127
$K_L^0 K_S^0$	(33.9 ± 0.4)) % S=1.2	110
$\rho\pi$ + π + π - π 0	(15.4 ± 0.4)) % S=1.2	_
$\eta \gamma$	(1.301 ± 0.025	5) % S=1.2	363
$\pi^0 \gamma$	(1.32 ± 0.05	$) \times 10^{-3}$	501
$\ell^+\ell^-$	_		510
e^+e^-	(2.979 ± 0.033)	$(3) \times 10^{-4}$ S=1.3	510
$\mu^+\mu^-$	(2.85 ± 0.19	$) \times 10^{-4}$	499
$\eta e^+ e^-$	(1.08 ± 0.04	$) \times 10^{-4}$	363
$\pi^+\pi^-$	(7.3 ± 1.3	$) \times 10^{-5}$	490
$\omega \pi^0$	(4.7 ± 0.5	$) \times 10^{-5}$	171
$\omega \gamma$	< 5	% CL=84%	209
$ ho\gamma$	< 1.2	$\times 10^{-5}$ CL=90%	215
$\pi^+\pi^-\gamma$	(4.1 ± 1.3	$) \times 10^{-5}$	490
$f_0(980)\gamma$	(3.22 ± 0.19	$) \times 10^{-4}$ S=1.1	29
$\pi^0\pi^0\gamma$	(1.12 ± 0.06	$) \times 10^{-4}$	492
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	$(3.9 + 2.8 \\ -2.2$	$) \times 10^{-6}$	410
$\pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{0}$	< 4.6	$\times10^{-6}$ CL=90%	342

HTTP://PDG.LBL.GOV

Page 7

$\pi^0 e^+ e^-$	(1.33 $^{+0.07}_{-0.10}$) $ imes$ 10 ⁻⁵	501
$\pi^{0} \eta \gamma$	(7.27 ± 0.30) $\times 10^{-5}$ S=1.5	346
$a_0(980)\gamma$	$(7.6 \pm 0.6) \times 10^{-5}$	39
$K^0\overline{K}^0\gamma$	$< 1.9 \times 10^{-8} \text{ CL}=90\%$	110
$\eta'(958)\gamma$	(6.21 ± 0.21) $ imes 10^{-5}$	60
$\eta \pi^0 \pi^0 \gamma$	$< 2 \times 10^{-5} \text{ CL}=90\%$	293
$\mu^+\mu^-\gamma$	(1.4 ± 0.5) $ imes 10^{-5}$	499
$ ho\gamma\gamma$	$< 1.2 \times 10^{-4} \text{ CL}=90\%$	215
$\eta \pi^+ \pi^-$	$< 1.8 \times 10^{-5} \text{ CL}=90\%$	288
$\eta \mu^+ \mu^-$	$< 9.4 \times 10^{-6} \text{ CL}=90\%$	321
$\etaU ightarrow \eta \mathrm{e}^+ \mathrm{e}^-$	$<$ 1 \times 10 ⁻⁶ CL=90%	_
invisible	$< 1.7 \times 10^{-4} \text{ CL}=90\%$	_

Lepton Family number (LF) violating modes

 $e^{\pm}\mu^{\mp}$ LF < 2 \times 10⁻⁶ CL=90% 504

$h_1(1170)$

$$I^{G}(J^{PC}) = 0^{-}(1^{+})^{-}$$

Mass $m=1166\pm 6~{\rm MeV}$ Full width $\Gamma=375\pm 35~{\rm MeV}$

$h_1(1170)$ DECAY MODES

Fraction (Γ_i/Γ)

(MeV/c)

 $ho\pi$ seen 30.

$b_1(1235)$

$$I^{G}(J^{PC}) = 1^{+}(1^{+})^{-}$$

Created: 7/10/2023 15:48

Mass $m=1229.5\pm3.2$ MeV (S = 1.6) Full width $\Gamma=142\pm9$ MeV (S = 1.2)

b ₁ (1235) DECAY MODES	Fraction (Γ	$_{i}/\Gamma)$	Confidence level	(MeV/c)
$\frac{1}{\omega \pi}$ [D/S amplitude ratio = 0.2]	seen 277 ± 0.027]			348
$\pi^{\pm}\gamma$	$(1.6\pm0$.4) × 10	₎ –3	607
ηho	seen			†
$\pi^+\pi^+\pi^-\pi^0$	< 50	%	84%	535
$K^*(892)^{\pm}K^{\mp}$	seen			†
$(K\overline{K})^{\pm}\pi^{0}$	< 8	%	90%	248
$K_S^0 K_I^0 \pi^\pm$	< 6	%	90%	235
$K_{S}^{0}K_{L}^{0}\pi^{\pm}$ $K_{S}^{0}K_{S}^{0}\pi^{\pm}$	< 2	%	90%	235
$\phi\pi$	< 1.5	%	84%	147

a₁(1260) [i]

$$I^{G}(J^{PC}) = 1^{-}(1^{+})$$

T-Matrix Pole $\sqrt{s} = (1209 \pm 4^{+12}_{-9}) - i(288 \pm 6^{+45}_{-10})$ MeV Mass (Breit-Wigner) = 1230 ± 40 MeV $^{[h]}$ Full width (Breit-Wigner) = 250 to 600 MeV $^{[h]}$

Fraction (Γ_i/Γ)	p (MeV/c)
seen	577
seen	353
seen	353
seen	†
seen	†
seen	_
seen	179
seen	†
seen	†
seen	576
not seen	577
seen	250
seen	†
seen	608
	seen seen seen seen seen seen seen seen

$f_2(1270)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

T-Matrix Pole $\sqrt{s}=(1260\text{--}1283)-i~(90\text{--}110)~\text{MeV}$ Mass (Breit-Wigner) = 1275.4 \pm 0.8 MeV (S = 1.1) Full width (Breit-Wigner) = 186.6 \pm 2.3 MeV (S = 1.5)

f ₂ (1270) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	
$\pi\pi$	$(84.3 \begin{array}{c} +2.9 \\ -0.9 \end{array})$	% S=1.2	623
$\pi^{+}\pi^{-}2\pi^{0}$	$(7.7 \ ^{+1.1}_{-3.2})$	% S=1.2	563
$K\overline{K}$	(4.6 ± 0.4)	% S=2.7	404
$2\pi^+2\pi^-$	(2.8 ± 0.4)	% S=1.2	559
$\eta\eta_{_{-}}$	(4.0 ± 0.8):	$\times 10^{-3}$ S=2.1	326
$4\pi^0$	(3.0 ± 1.0):	$\times 10^{-3}$	565
$\gamma\gamma$	(1.42 ± 0.24)	$\times 10^{-5}$ S=1.4	638
$\eta\pi\pi$	< 8	$\times 10^{-3}$ CL=95%	478
$K^0 K^- \pi^+ + \text{c.c.}$	< 3.4	$\times 10^{-3}$ CL=95%	293
e ⁺ e ⁻	< 6	$\times 10^{-10}$ CL=90%	638

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Mass $m=1281.9\pm0.5$ MeV (S =1.8) Full width $\Gamma=22.7\pm1.1$ MeV (S =1.5)

		Scale factor/	-
<u>f</u> 1(1285) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/ <i>c</i>)
4π	$(32.7 \pm 1.9) \%$	S=1.2	568
$\pi^{0}\pi^{0}\pi^{+}\pi^{-}$	$(21.8 \pm \ 1.3) \%$	S=1.2	566
$2\pi^+2\pi^-$	$(10.9 \pm \ 0.6) \%$	S=1.2	563
$ ho^0\pi^+\pi^-$	$(10.9 \pm \ 0.6) \%$	S=1.2	336
$\rho^0 \rho^0$	seen		†
$4\pi^0$	< 7 × 1	0^{-4} CL=90%	568
$\eta\pi^+\pi^-$	$(35 \pm 15)\%$		479
$\eta\pi\pi$	$(52.2 \pm \ 2.0) \%$	S=1.2	482
$a_0(980)\pi$ [ignoring $a_0(980) ightarrow \mathcal{K}\overline{\mathcal{K}}]$	(38 ± 4) %		238
$\eta \pi \pi$ [excluding $a_0(980)\pi$]	$(14 \pm 4)\%$		482
$K\overline{K}\pi$	($9.0\pm~0.4)~\%$	S=1.1	308
$K\overline{K}^*$ (892)	not seen		†
$\pi^+\pi^-\pi^0$	$(3.0\pm~0.9)\times1$	0-3	603
$ ho^{\pm}\pi^{\mp}$	< 3.1 × 1	0^{-3} CL=95%	390
$\gamma ho^{f 0}$	($6.1\pm~1.0)~\%$	S=1.7	406
$\phi\gamma$	$(7.4\pm\ 2.6)\times 1$	0^{-4}	236
e^+e^-	< 9.4 × 1	0 ⁻⁹ CL=90%	641

$\eta(1295)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Created: 7/10/2023 15:48

See the review on "Spectroscopy of Light Meson Resonances."

Mass
$$m=1294\pm 4$$
 MeV (S $=1.6$)
Full width $\Gamma=55\pm 5$ MeV

η (1295) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta\pi^+\pi^-$	seen	487
$a_0(980)\pi \\ \eta \pi^0 \pi^0$	seen	248
$\eta \pi^0 \pi^0$	seen	490
$\eta(\pi\pi)_{S ext{-}wave}$	seen	_
$\frac{\sigma \eta}{K \pi}$	seen	_
$KK\pi$	seen	320

$$\pi$$
(1300)

$$I^{G}(J^{PC}) = 1^{-}(0^{-}+)$$

Mass $m=1300\pm 100$ MeV ^[h] Full width $\Gamma=200$ to 600 MeV ^[h]

π (1300) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\rho\pi$	seen	404
$\pi(\pi\pi)_{S extsf{-}wave}$	seen	-

a₂(1320)

$$I^{G}(J^{PC}) = 1^{-}(2^{+})$$

T-Matrix Pole $\sqrt{s}=(1305-1321)-i(52-58)$ MeV Mass (Breit-Wigner) = 1318.2 ± 0.6 MeV (S = 1.2) Full width (Breit-Wigner) = 107 ± 5 MeV [h]

a ₂ (1320) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>p</i> (MeV/ <i>c</i>)
3π	$(70.1 \pm 2.7)\%$	S=1.2	624
$\eta\pi$	(14.5 \pm 1.2) %		535
$\omega\pi\pi$	(10.6 \pm 3.2) %	S=1.3	366
$K\overline{K}$	(4.9 \pm 0.8) %		437
$\eta'(958)\pi$	(5.5 \pm 0.9) $ imes$ 1	0.0^{-3}	288
$\pi^{\pm}\gamma$	$(2.91\pm0.27)\times1$	0.0^{-3}	652
$\gamma\gamma$	(9.4 \pm 0.7) $ imes$ 1	0^{-6}	659
e^+e^-	< 5 × 1	0^{-9} CL=90%	659

$f_0(1370)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

See the review on "Spectroscopy of Light Meson Resonances." T-Matrix Pole $\sqrt{s}=(1250\text{-}1440)$ -i (60–300) MeV Mass (Breit-Wigner) = 1200 to 1500 MeV Full width (Breit-Wigner) = 200 to 500 MeV

f ₀ (1370) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi$	seen	672
4π	seen	617
$4\pi^0$	seen	617
$2\pi^+2\pi^-$	seen	612
$\pi^+\pi^-2\pi^0$	seen	615
ho ho	seen	†
$2(\pi\pi)_{S ext{-wave}}$	seen	_

HTTP://PDG.LBL.GOV

Page 11

π (1300) π	seen	†
$a_1(1260)\pi$	seen	35
$\eta \eta$	seen	411
Κ <u>Κ</u>	seen	475
$K\overline{K}n\pi$	not seen	†
6π	not seen	508
$\omega \omega$	not seen	†
$\gamma \gamma$	seen	685
e^+e^-	not seen	685

$\pi_1(1400)$

$$I^{G}(J^{PC}) = 1^{-}(1^{-+})$$

Coupled channel analyses favor the existence of only one broad 1 $^-$ + isovector state consistent with $\pi_1(1600)$ in the 1400–1600 MeV region. See the review on "Spectroscopy of Light Meson Resonances." See also $\pi_1(1600)$.

T-Matrix Pole
$$\sqrt{s} = (1405 \pm 4^{+15}_{-18}) - i (314 \pm 14^{+18}_{-69})$$
 MeV Mass (Breit-Wigner) = 1354 ± 25 MeV (S = 1.8)
Full width (Breit-Wigner) = 330 ± 35 MeV

π_1 (1400) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta\pi^0$	seen	557
$\eta\pi^-$	seen	556
$ ho$ (770) π	not seen	442

η (1405)

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

See the review on "Spectroscopy of Light Meson Resonances." See also $\eta(1475)$.

Mass
$$m=1408.8\pm 2.0$$
 MeV (S = 2.2)
Full width $\Gamma=50.1\pm 2.6$ MeV (S = 1.7)

$\eta(1405)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\overline{K}\overline{K}\pi$	seen		424
$\eta\pi\pi$	seen		562
$a_0(980)\pi$	seen		345
$\eta(\pi\pi)$ ş-wave	seen		_
$f_0(980)\pi^0 \to \pi^+\pi^-\pi^0$	not seen		_
$f_0(980)\eta$	seen		†
4π	seen		639
ho ho	<58 %	99.85%	†

HTTP://PDG.LBL.GOV

Page 12

$$ho^0 \gamma$$
 seen 491 $K^*(892) K$ seen 123

$h_1(1415)$

$$I^{G}(J^{PC}) = 0^{-}(1^{+})$$

was $h_1(1380)$

Mass
$$m=1409^{+9}_{-8}~{\rm MeV}~({\rm S}=1.9)$$

Full width $\Gamma=78\pm11~{\rm MeV}$

$f_1(1420)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

See the review on "Spectroscopy of Light Meson Resonances."

Mass
$$m = 1426.3 \pm 0.9 \text{ MeV}$$
 (S = 1.1)

Full width $\Gamma = 54.5 \pm 2.6$ MeV

f ₁ (1420) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{K}\overline{K}\pi$	seen	438
$K\overline{K}^{*}(892)+$ c.c.	seen	163
$\eta\pi\pi$	possibly seen	573
$\phi\gamma$	seen	349

ω (1420) [j]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=1410\pm 60$ MeV ^[h] Full width $\Gamma=290\pm 190$ MeV ^[h]

ω (1420) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$ ho\pi$	seen	480
$\omega\pi\pi$	seen	437
$b_1(1235)\pi$	seen	112
$e^+ e^-$	seen	705

$a_0(1450)$

$$I^{G}(J^{PC}) = 1^{-}(0^{+})$$

See the review on "Spectroscopy of Light Meson Resonances."

T-Matrix Pole $\sqrt{s} = (1290-1500) - i (30-140)$ MeV

 $\mathsf{Mass}\;(\mathsf{Breit\text{-}Wigner}) = 1439 \pm 34\;\mathsf{MeV} \quad (\mathsf{S} = 1.8)$

Full width (Breit-Wigner) = 258 \pm 14 MeV

HTTP://PDG.LBL.GOV

Page 13

Branching fractions are given relative to the one **DEFINED AS 1**.

a ₀ (1450) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\eta$	0.093 ± 0.020	607
$\pi \eta'(958)$ $K\overline{K}$	$0.033\!\pm\!0.017$	384
$K\overline{K}$	0.082 ± 0.028	523
$\omega\pi\pi$	DEFINED AS 1	458
$a_0(980)\pi\pi$	seen	310
$\gamma \gamma$	seen	719

ρ (1450)

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

See the review on "Spectroscopy of Light Meson Resonances."

Mass
$$m=1465\pm25$$
 MeV $^{[h]}$

Full width $\Gamma = 400 \pm 60 \text{ MeV}^{[h]}$

ρ (1450) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi$	seen	720
$\pi^+\pi^-$	seen	719
4π	seen	669
e^+e^-	seen	732
ηho	seen	311
$a_2(1320)\pi$	not seen	55
$K\overline{K}$	seen	541
K^+K^-	seen	541
$K\overline{K}^*(892) + \text{c.c.}$	possibly seen	229
$\pi^{0}\gamma$	seen	726
$\eta\gamma$	seen	630
$f_0(500)\gamma$	not seen	_
$f_0(980)\gamma$	not seen	398
$f_0(1370)\gamma$	not seen	92
$f_2(1270)\gamma$	not seen	177

η (1475)

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Created: 7/10/2023 15:48

See the review on "Spectroscopy of Light Meson Resonances." See also $\eta(1405)$.

Mass
$$m=1475\pm 4$$
 MeV (S $=1.4$) Full width $\Gamma=90\pm 9$ MeV (S $=1.6$)

η (1475) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{K}\overline{K}\pi$	seen	477
$K\overline{K}^*$ (892) $+$ c.c.	seen	244
$a_0(980)\pi$	seen	396
$\gamma \gamma$	seen	738
$K_S^0 K_S^0 \eta$	possibly seen	†
$\gamma \phi$ (1020)	possibly seen	385

$f_0(1500)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

See the review on "Spectroscopy of Light Meson Resonances." T-Matrix Pole $\sqrt{s}=(1430-1530)-i~(40-90)$ MeV Mass (Breit-Wigner) = 1522 \pm 25 MeV Full width (Breit-Wigner) = 108 \pm 33 MeV

f ₀ (1500) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor	<i>p</i> (MeV/ <i>c</i>)
$\pi\pi$	(34.5±2.2) %	1.2	749
$\pi^+\pi^-$	seen		748
$2\pi^0$	seen		749
4 π	$(48.9\pm3.3)\%$	1.2	700
$4\pi^0$	seen		700
$2\pi^+2\pi^-$	seen		696
$2(\pi\pi)_{S ext{-wave}}$	seen		_
ho ho	seen		†
$\pi(1300)\pi$	seen		163
$a_1(1260)\pi$	seen		234
$\eta\eta$	$(6.0\pm0.9)\%$	1.1	528
$\eta \eta'(958)$	$(2.2\pm0.8)\%$	1.4	107
$K\overline{K}$	$(8.5\pm1.0)\%$	1.1	579
$\gamma \gamma$	not seen		761

$f_2'(1525)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=1517.4\pm2.5$ MeV (S = 2.8) Full width $\Gamma=86\pm5$ MeV (S = 2.2)

f_2' (1525) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor	р (MeV/c)
κ κ	(87.6±2.2) %	1.1	576
$\eta\eta$	$(11.6\pm2.2)~\%$	1.1	525

HTTP://PDG.LBL.GOV

Page 15

$\pi\pi$	$(8.3\pm1.6)\times10^{-3}$		747
$\gamma\gamma$	$(9.5\pm1.1) imes 10^{-7}$	1.1	759

$$\pi_1(1600)$$
 $I^G(J^{PC}) = 1^-(1^{-+})$

See the review on "Spectroscopy of Light Meson Resonances" and a note in PDG 06, Journal of Physics **G33** 1 (2006). See also $\pi_1(1400)$.

Mass (T-Matrix Pole \sqrt{s}) = (1480–1680) -i (150–300) MeV Mass (Breit-Wigner) = 1661^{+15}_{-11} MeV (S = 1.2) Full width (Breit-Wigner) = 240 ± 50 MeV (S = 1.7)

π_1 (1600) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi\pi$	seen	803
$ ho^{0}\pi^{-}$	seen	641
$f_2(1270)\pi^-$	not seen	318
$b_1(1235)\pi$	seen	357
η^{\prime} (958) π^{-}	seen	543
$\eta \pi$	seen	734
$f_1(1285)\pi$	seen	314

$$a_1(1640)$$
 $I^G(J^{PC}) = 1^-(1^{++})$

Mass $m=1655\pm16$ MeV (S =1.2) Full width $\Gamma=254\pm40$ MeV (S =1.8)

a ₁ (1640) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi\pi$	seen	800
$f_2(1270)\pi$	seen	314
$\sigma\pi$	seen	_
$ ho\pi_{S-wave}$	seen	638
$ ho\pi_{D-wave}$	seen	638
$\omega \pi \pi$	seen	607
$f_1(1285)\pi$	seen	309
$a_1(1260)\eta$	not seen	†

$\eta_2(1645)$

$$I^{G}(J^{PC}) = 0^{+}(2^{-+})$$

Created: 7/10/2023 15:48

Mass $m=1617\pm 5~{\rm MeV}$ Full width $\Gamma=181\pm 11~{\rm MeV}$

HTTP://PDG.LBL.GOV

Page 16

η_2 (1645) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$a_2(1320)\pi$	seen	242
$K\overline{K}\pi$	seen	580
$K^*\overline{K}$	seen	404
$\eta \pi^+ \pi^-$	seen	685
$a_0(980)\pi$	seen	499
$f_2(1270)\eta$	not seen	†

ω (1650) [k]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=1670\pm30$ MeV $^{[h]}$ Full width $\Gamma=315\pm35$ MeV $^{[h]}$

ω (1650) DECAY MODES	Fraction (Γ_j/Γ)	p (MeV/c)
$ ho\pi$	seen	647
$ ho$ (1450) π	seen	145
$\omega \pi \pi$	seen	617
$\omega \eta$	seen	500
$\begin{array}{c} \omega\eta \\ e^+e^- \end{array}$	seen	835
$\pi^0\gamma$	not seen	830

ω_3 (1670)

$$I^{G}(J^{PC}) = 0^{-}(3^{-})$$

Mass $m=1667\pm 4~{\rm MeV}$ Full width $\Gamma=168\pm 10~{\rm MeV}$

ω_3 (1670) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\rho\pi$	seen	645
$\omega\pi\pi$	seen	615
$b_1(1235)\pi$	possibly seen	361

$\pi_2(1670)$

$$I^{G}(J^{PC}) = 1^{-}(2^{-+})$$

Mass $m=1670.6^{+2.9}_{-1.2}~\text{MeV}~~(\text{S}=1.3)$ Full width $\Gamma=258^{+8}_{-9}~\text{MeV}~~(\text{S}=1.2)$

π_2 (1670) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>р</i> (MeV/ <i>c</i>)
3π	(95.8±1.4) %		808
$f_2(1270)\pi$	(56.3±3.2) %		327

HTTP://PDG.LBL.GOV

Page 17

$ ho\pi$	(31 ±4) %		647
$\sigma\pi$	(10 ± 4) %		_
$\pi(\pi\pi)_{\mathcal{S}}$ -wave	(8.7±3.4) %		_
$\pi^{\pm}\pi^{+}\pi^{-}$	(53 ±4) %		806
$K\overline{K}^{*}(892) + \text{c.c.}$	(4.2±1.4) %		453
ωho	$(2.7\pm1.1$) %		302
$\pi^{\pm}\gamma$	$(7.0\pm1.2$	$) \times 10^{-4}$		829
$\gamma \gamma$	< 2.8	$\times 10^{-7}$	90%	835
$\eta\pi$	< 5	%		739
$\pi^\pm 2\pi^+ 2\pi^-$	< 5	%		735
$ ho$ (1450) π	< 3.6	$\times 10^{-3}$	97.7%	145
$b_1(1235)\pi$	< 1.9	$\times 10^{-3}$	97.7%	364
$f_1(1285)\pi$	possibly s	een		322
$a_2(1320)\pi$	not seen			291

ϕ (1680)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=1680\pm20$ MeV $^{[h]}$ Full width $\Gamma=150\pm50$ MeV $^{[h]}$

ϕ (1680) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\overline{K}^*(892) + c.c.$	seen	462
$K_S^0 K \pi$	seen	621
$K\overline{K}$	seen	680
e^+e^-	seen	840
$\omega\pi\pi$	not seen	623
$\mathcal{K}^+\mathcal{K}^-\pi^+\pi^-$	seen	544
$\eta\phi$	seen	290
$\eta\gamma$	seen	751
$f_2'(1525)\gamma$	not seen	155

ρ_3 (1690)

$$I^{G}(J^{PC}) = 1^{+}(3^{-})$$

$$\label{eq:mass_m} \begin{split} \text{Mass } m = 1688.8 \pm 2.1 \text{ MeV} \\ \text{Full width } \Gamma = 161 \pm 10 \text{ MeV} \quad \text{(S} = 1.5) \end{split}$$

$ ho_3$ (1690) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor (MeV/c)
4π	(71.1 \pm 1.9) %	790
$\pi^{\pm}\pi^{+}\pi^{-}\pi^{0}$	$(67 \pm 22)\%$	787
$\omega\pi$	(16 \pm 6) %	655
$\pi \pi_{\underline{}}$	(23.6 \pm 1.3) %	834
$K\overline{K}\pi$	(3.8 \pm 1.2) %	629

HTTP://PDG.LBL.GOV

Page 18

KK	($1.58\pm~0.26$) %	1.2	685
$\eta \pi^+ \pi^-$	seen		727
$ ho$ (770) η	seen		520
$\pi\pi ho$	seen		633
$a_2(1320)\pi$	seen		307
ho ho	seen		335

$\rho(1700)$

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

See the review on "Spectroscopy of Light Meson Resonances." Mass
$$m=1720\pm20$$
 MeV $^{[h]}$ ($\eta\,\rho^0$ and $\pi^+\,\pi^-$ modes) Full width $\Gamma=250\pm100$ MeV $^{[h]}$ ($\eta\,\rho^0$ and $\pi^+\,\pi^-$ modes)

ρ (1700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$2(\pi^{+}\pi^{-})$	seen	803
$ ho\pi\pi$	seen	653
$ ho^{0}\pi^{+}\pi^{-}$	seen	651
$ ho^{\pm}\pi^{\mp}\pi^{0}$	seen	652
$a_1(1260)\pi$	seen	404
$h_1(1170)\pi$	seen	450
π (1300) π	seen	349
ho ho	seen	372
$\pi^+\pi^-$	seen	849
$\pi \pi$	seen	849
$K\overline{K}^*(892)+$ c.c.	seen	496
ηho	seen	545
$a_2(1320)\pi$	not seen	334
$K\overline{K}$	seen	704
e^+e^-	seen	860
$\pi^0 \omega$	seen	674
$\pi^{0}\gamma$	not seen	855
$f_0(1500)\gamma$	not seen	187

*a*₂(1700)

$$I^{G}(J^{PC}) = 1^{-}(2^{+})$$

T-Matrix Pole $\sqrt{s} = (1630-1780) - i (60-250)$ MeV Mass $m=1706\pm14$ MeV (S = 1.2) Full width $\Gamma=378^{+60}_{-50}$ MeV (S = 3.9)

a ₂ (1700) DECAY MODES	Fraction (Γ_{i}	p (MeV/c)
$\eta\pi$	(2.5±0.6) %	758
$\eta'\pi$	seen	574
HTTP://PDG.LBL.GOV	Page 19	Created: 7/10/2023 15:48

853
669
357
695
639
347

$f_0(1710)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

See the review on "Spectroscopy of Light Meson Resonances."

T-matrix pole $\sqrt{s}=(1680-1820)-i~(50-180)~{\rm MeV}$ Mass (Breit-Wigner) = $1733^{+8}_{-7}~{\rm MeV}~(S=1.5)$ Full width (Breit-Wigner) = $150^{+12}_{-10}~{\rm MeV}~(S=1.3)$

f ₀ (1710) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
KK	seen	712
$\eta \eta$	seen	671
$\pi \pi$	seen	856
$\gamma \gamma$	seen	866
$\omega \omega$	seen	372

$\pi(1800)$

$$I^{G}(J^{PC}) = 1^{-}(0^{-}+)$$

Mass $m=1810^{+~9}_{-11}~{\rm MeV}~{\rm (S=2.2)}$ Full width $\Gamma=215^{+7}_{-8}~{\rm MeV}$

π (1800) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi^+\pi^-\pi^-$	seen	878
$f_0(500)\pi^-$	seen	_
$f_0(980)\pi^-$	seen	624
$f_0(1370)\pi^-$	seen	366
$f_0(1500)\pi^-$	not seen	232
$ ho\pi^-$	not seen	731
$\eta\eta\pi^-$	seen	660
$a_0(980)\eta$	seen	471
$a_2(1320)\eta$	not seen	†
$f_2(1270)\pi$	not seen	441
$f_0(1370)\pi^-$	not seen	366
$f_0(1500)\pi^-$	seen	232
$\eta \eta'(958)\pi^-$	seen	373

HTTP://PDG.LBL.GOV

Page 20

$K_0^*(1430)K^-$	seen	†
$K^*(892)K^-$	not seen	568

ϕ_3 (1850)

$$I^{G}(J^{PC}) = 0^{-}(3^{-})$$

Mass $m=1854\pm7~{
m MeV}$ Full width $\Gamma=87^{+28}_{-23}~{
m MeV}~({
m S}=1.2)$

ϕ_3 (1850) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
KK	seen	785
$K\overline{K}^*$ (892)+ c.c.	seen	602

$\eta_2(1870)$

$$I^{G}(J^{PC}) = 0^{+}(2^{-})$$

Mass $m=1842\pm 8~{\rm MeV}$ Full width $\Gamma=225\pm 14~{\rm MeV}$

η_2 (1870) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta\pi\pi$	seen	816
$a_2(1320)\pi$	seen	434
$f_2(1270)\eta$	seen	119
$a_0(980)\pi$	seen	651
$\gamma \gamma$	seen	921

$\pi_2(1880)$

$$I^{G}(J^{PC}) = 1^{-}(2^{-+})$$

Created: 7/10/2023 15:48

Mass $m=1874^{+26}_{-5}$ MeV (S = 1.6) Full width $\Gamma=237^{+33}_{-30}$ MeV (S = 1.2)

π_2 (1880) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\eta\eta\pi^-}$	seen	702
$a_0(980)\eta$	seen	528
$a_2(1320)\eta$	seen	76
$f_0(1500)\pi$	seen	294
$f_1(1285)\pi$	seen	485
$\omega \pi^- \pi^0$	seen	744

f₂(1950)

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

T-Matrix Pole $\sqrt{s}=(1830\text{--}2020)-i~(110\text{--}220)~\text{MeV}$ Mass (Breit-Wigner) = $1936\pm12~\text{MeV}~(\text{S}=1.3)$ Full width (Breit-Wigner) = $464\pm24~\text{MeV}$

f ₂ (1950) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{K^*(892)}\overline{K}^*(892)$	seen	377
$\pi^+\pi^-$	seen	958
$\pi^{0}\pi^{0}$	seen	959
4π	seen	921
$\eta\eta$	seen	798
$K\overline{K}$	seen	833
$\gamma \gamma$	seen	968
$ ho \overline{ ho}$	seen	238

a₄(1970)

$$I^{G}(J^{PC}) = 1^{-}(4^{+})$$

was $a_4(2040)$

Mass
$$m=1967\pm16$$
 MeV (S = 2.1) Full width $\Gamma=324^{+15}_{-18}$ MeV

a ₄ (1970) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
KK	seen	851
$\pi^+\pi^-\pi^0$	seen	959
$ ho\pi$	seen	825
$f_2(1270)\pi$	seen	559
$\omega\pi^-\pi^0$	seen	801
ωho	seen	601
$\eta\pi$	seen	902
$\eta'(958)\pi$	seen	743

f₂(2010)

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Created: 7/10/2023 15:48

Mass $m=2011^{+60}_{-80}~{
m MeV}$ Full width $\Gamma=202\pm60~{
m MeV}$

f ₂ (2010) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\phi\phi$	seen	†
KK	seen	876

$f_0(2020)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

T-Matrix Pole $\sqrt{s}=(1870-2080)-i~(120-240)~{\rm MeV}$ Mass (Breit-Wigner) = $1982^{+54.1}_{-3.0}~{\rm MeV}$ Full width (Breit-Wigner) = $436\pm50~{\rm MeV}$

f ₀ (2020) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$ ho\pi\pi$	seen	814
$ \frac{\rho \pi \pi}{\pi^0 \pi^0} $	seen	982
ho ho	seen	617
$\omega\omega$	seen	608
$\eta\eta$	seen	826
$\eta'\eta'$	seen	254

$f_4(2050)$

$$I^{G}(J^{PC}) = 0^{+}(4^{+})$$

Mass $m=2018\pm11$ MeV (S = 2.1) Full width $\Gamma=237\pm18$ MeV (S = 1.9)

f ₄ (2050) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\omega\omega$	seen	637
$\pi \pi$	(17.0 ± 1.5) %	1000
$K\overline{K}$	$(6.8^{+3.4}_{-1.8}) \times 10^{-3}$	880
$\eta\eta$	$(2.1\pm0.8)\times10^{-3}$	848
$\eta \eta \over 4\pi^0$	< 1.2 %	964
$\gamma \gamma$	seen	1009
$a_2(1320)\pi$	seen	567

ϕ (2170)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 7/10/2023 15:48

Mass $m=2163\pm7$ MeV $^{[h]}$ (S =1.1) Full width $\Gamma=103^{+28}_{-21}$ MeV $^{[h]}$ (S =2.2)

ϕ (2170) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
e^+e^-	seen	1082
$\phi\eta$	seen	727
$\omega \eta$	seen	848
$\phi\eta'$	seen	438

f₂(2300)

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=2297\pm28~{\rm MeV}$ Full width $\Gamma=149\pm40~{\rm MeV}$

f ₂ (2300) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\phi \phi \over K \overline{K}$	seen	529
$K\overline{K}$	seen	1037
$\frac{\gamma}{\Lambda}\frac{\gamma}{\Lambda}$	seen	1149
$\Lambda\Lambda$	seen	273

$f_2(2340)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m = 2346^{+21}_{-10} \text{ MeV}$ Full width $\Gamma = 331^{+27}_{-18} \text{ MeV}$

f ₂ (2340) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\phi\phi$	seen	580
$\eta \eta$	seen	1037
$\eta'\eta'$	seen	677

STRANGE MESONS $(S = \pm 1, C = B = 0)$

 $K^+=u\overline{s},~K^0=d\overline{s},~\overline{K}^0=\overline{d}\,s,~K^-=\overline{u}\,s,~$ similarly for K^* 's

Κ±

$$I(J^P) = \frac{1}{2}(0^-)$$

Created: 7/10/2023 15:48

Mass $m=493.677\pm0.016$ MeV $^{\text{[I]}}$ (S = 2.8) Mean life $au=(1.2380\pm0.0020)\times10^{-8}$ s (S = 1.8) c au=3.711 m

CPT violation parameters (Δ = rate difference/sum)

$$\Delta(K^{\pm} \to \mu^{\pm} \nu_{\mu}) = (-0.27 \pm 0.21)\%$$

 $\Delta(K^{\pm} \to \pi^{\pm} \pi^{0}) = (0.4 \pm 0.6)\%^{[n]}$

CP violation parameters (Δ = rate difference/sum)

$$\Delta(K^{\pm} \to \pi^{\pm} e^{+} e^{-}) = (-2.2 \pm 1.6) \times 10^{-2}$$

$$\Delta(K^{\pm} \to \pi^{\pm} \mu^{+} \mu^{-}) = 0.010 \pm 0.023$$

$$\Delta(K^{\pm} \to \pi^{\pm} \pi^{0} \gamma) = (0.0 \pm 1.2) \times 10^{-3}$$

$$\Delta(K^{\pm} \to \pi^{\pm} \pi^{+} \pi^{-}) = (0.04 \pm 0.06)\%$$

$$\Delta(K^{\pm} \to \pi^{\pm} \pi^{0} \pi^{0}) = (-0.02 \pm 0.28)\%$$

T violation parameters

$$K^+ \to \pi^0 \mu^+ \nu_{\mu}$$
 $P_T = (-1.7 \pm 2.5) \times 10^{-3}$ $K^+ \to \mu^+ \nu_{\mu} \gamma$ $P_T = (-0.6 \pm 1.9) \times 10^{-2}$ $K^+ \to \pi^0 \mu^+ \nu_{\mu}$ $Im(\xi) = -0.006 \pm 0.008$

Slope parameter $g^{[o]}$

(See Particle Listings for quadratic coefficients and alternative parametrization related to $\pi\pi$ scattering)

$$K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-} g = -0.21134 \pm 0.00017$$
 $(g_{+} - g_{-}) / (g_{+} + g_{-}) = (-1.5 \pm 2.2) \times 10^{-4}$
 $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0} g = 0.626 \pm 0.007$
 $(g_{+} - g_{-}) / (g_{+} + g_{-}) = (1.8 \pm 1.8) \times 10^{-4}$

K^{\pm} decay form factors [a,p]

Assuming μ -e universality

$$\lambda_{+}(K_{\mu 3}^{+}) = \lambda_{+}(K_{e3}^{+}) = (2.959 \pm 0.025) \times 10^{-2}$$

 $\lambda_{0}(K_{\mu 3}^{+}) = (1.76 \pm 0.25) \times 10^{-2} \quad (S = 2.7)$

Not assuming μ -e universality

$$\lambda_{+}(K_{e3}^{+}) = (2.956 \pm 0.025) \times 10^{-2}$$

 $\lambda_{+}(K_{\mu3}^{+}) = (3.09 \pm 0.25) \times 10^{-2} \quad (S = 1.5)$
 $\lambda_{0}(K_{\mu3}^{+}) = (1.73 \pm 0.27) \times 10^{-2} \quad (S = 2.6)$

 K_{e3} form factor quadratic fit

$$\lambda'_+$$
 (K^\pm_{e3}) linear coeff. = $(2.59\pm0.04)\times10^{-2}$ λ''_+ (K^\pm_{e3}) quadratic coeff. = $(0.186\pm0.021)\times10^{-2}$ λ'_+ (LINEAR $K^\pm_{\mu3}$ FORM FACTOR FROM QUADRATIC FIT) = $(24\pm4)\times10^{-3}$

$$\lambda''_{+} \text{ (QUADRATIC } K_{\mu 3}^{\pm} \text{ FORM FACTOR)} = (1.8 \pm 1.5) \times 10^{-3} \\ M_{V} \text{ (VECTOR POLE MASS FOR } K_{e3}^{\pm} \text{ DECAY)} = 890.3 \pm 2.8 \\ \text{ MeV} \\ M_{V} \text{ (VECTOR POLE MASS FOR } K_{\mu 3}^{\pm} \text{ DECAY)} = 878 \pm 12 \\ \text{ MeV} \\ M_{S} \text{ (SCALAR POLE MASS FOR } K_{\mu 3}^{\pm} \text{ DECAY)} = 1215 \pm 50 \\ \text{ MeV} \\ \Lambda_{+} \text{ (DISPERSIVE VECTOR FORM FACTOR IN } K_{e3}^{\pm} \text{ DECAY)} = (2.460 \pm 0.017) \times 10^{-2} \\ \Lambda_{+} \text{ (DISPERSIVE VECTOR FORM FACTOR IN } K_{\mu 3}^{\pm} \text{ DECAY)} = (25.4 \pm 0.9) \times 10^{-3} \\ \ln(C) \text{ (DISPERSIVE SCALAR FORM FACTOR in } K_{\mu 3}^{\pm} \text{ decays)} = (182 \pm 16) \times 10^{-3} \\ K_{e3}^{+} |f_{S}/f_{+}| = (-0.08_{-0.40}^{+0.34}) \times 10^{-2} \\ K_{e3}^{+} |f_{T}/f_{+}| = (-1.2_{-1.1}^{+1.3}) \times 10^{-2} \\ \end{cases}$$

$$\begin{array}{ll} = (182 \pm 16) \times 10^{-3} \\ K_{e3}^{+} & \left| f_{S}/f_{+} \right| = (-0.08^{+0.34}_{-0.40}) \times 10^{-2} \\ K_{e3}^{+} & \left| f_{T}/f_{+} \right| = (-1.2^{+1.3}_{-1.1}) \times 10^{-2} \\ K_{\mu3}^{+} & \left| f_{S}/f_{+} \right| = (0.2 \pm 0.6) \times 10^{-2} \\ K_{\mu3}^{+} & \left| f_{T}/f_{+} \right| = (-0.1 \pm 0.7) \times 10^{-2} \\ K^{+} & \rightarrow e^{+} \nu_{e} \gamma & \left| F_{A} + F_{V} \right| = 0.133 \pm 0.008 \quad (S = 1.3) \\ K^{+} & \rightarrow \mu^{+} \nu_{\mu} \gamma & \left| F_{A} + F_{V} \right| = 0.165 \pm 0.013 \\ K^{+} & \rightarrow e^{+} \nu_{e} \gamma & \left| F_{A} - F_{V} \right| < 0.49, \text{ CL} = 90\% \\ K^{+} & \rightarrow \mu^{+} \nu_{\mu} \gamma & \left| F_{A} - F_{V} \right| = -0.153 \pm 0.033 \quad (S = 1.1) \end{array}$$

Charge radius

$$\langle r \rangle = 0.560 \pm 0.031 \text{ fm}$$

Forward-backward asymmetry

$$A_{FB}(K_{\pi\mu\mu}^{\pm}) = \frac{\Gamma(\cos(\theta_{K\mu}) > 0) - \Gamma(\cos(\theta_{K\mu}) < 0)}{\Gamma(\cos(\theta_{K\mu}) > 0) + \Gamma(\cos(\theta_{K\mu}) < 0)} < 0.9 \times 10^{-2}, \text{ CL}$$

$$= 90\%$$

 K^- modes are charge conjugates of the modes below.

K+ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor Confidence lev	, .
	onic and semileptonic m	odes	
$e^+ u_e$	(1.582 ± 0.00)	$(07) \times 10^{-5}$	247
$e^{+}\nu_{e} \\ \mu^{+}\nu_{\mu} \\ \pi^{0}e^{+}\nu_{e}$	(63.56 ± 0.11	S=1.	2 236
$\pi^0 e^+ \nu_e$	(5.07 ± 0.04)	1)% S=2.	1 228
Called K_{e3}^+ .			
$\pi^0 \mu^+ u_\mu$	$(3.352\pm0.03$	33) % S=1.	9 215
Called $K_{\mu 3}^+$.			
$\pi^{0}\pi^{0}e^{+}\nu_{e}$	(2.55 ± 0.04)	1×10^{-5} S=1.	1 206
HTTP://PDG.LBL.GOV	Page 26	Created: 7/10/202	23 15:48

(()			
$\pi^+\pi^-e^+ u_e$	($4.247\pm0.024)\times10^{-5}$		203		
$\pi^{+}\pi^{-}\mu^{+}\nu_{\mu}$	`	1.4 ± 0.9) $\times 10^{-5}$		151		
$\pi^{0}\pi^{0}\pi^{0}e^{+\nu_{e}}$	<	3.5×10^{-6}	CL=90%	135		
	Hadronic	modes				
$\pi^+\pi^0$	(20.67 ±0.08) %	S=1.2	205		
$\pi^+\pi^0\pi^0$	(1.760±0.023) %	S=1.1	133		
$\pi^+\pi^+\pi^-$	(5.583±0.024) %		125		
Leptonic and	semilepton	ic modes with photon	S			
$\mu^+ u_\mu \gamma$	-	6.2 ± 0.8) $\times 10^{-3}$		236		
$\mu^+ \nu_\mu \gamma (SD^+)$		1.33 ± 0.22) $\times 10^{-5}$		_		
$\mu^+ \nu_{\mu} \gamma (SD^+ INT)$	[a,s] <	_	CL=90%	_		
$\mu^+ \nu_{\mu} \gamma (SD^- + SD^- INT)$	[a,s] <		CL=90%	_		
$e^+ \nu_e \gamma$		9.9 ± 1.0) $\times 10^{-6}$		247		
$\pi^0 e^{+\nu_e \gamma}$		$2.66 \pm 0.09 \times 10^{-4}$		228		
$\pi^0 e^+ \nu_e \gamma(SD)$	[a,s] <	_	CL=90%	228		
$\pi^0 \mu^+ \nu_\mu \gamma$	[q,r] ($1.25 \ \pm 0.25 \) \times 10^{-5}$		215		
$\pi^0\pi^0e^+ u_e\gamma$	<	6	CL=90%	206		
Hadronic m	nodes with	photons or $\ell \overline{\ell}$ pairs				
$\pi^+\pi^0\gamma(INT)$	(-	$\pm 4.2 \pm 0.9 \times 10^{-6}$		_		
$\pi^+\pi^0\gamma(DE)$	[q,t] (6.0 ± 0.4) $\times 10^{-6}$		205		
$\pi^+ \pi^0 e^+ e^-$	($4.24 \pm 0.14 \times 10^{-6}$		205		
$\pi^+\pi^0\pi^0\gamma$	[q,r] (7.6 $^{+6.0}_{-3.0}$) $\times 10^{-6}$		133		
$\pi^+\pi^+\pi^-\gamma$	[q,r] (7.1 ± 0.5) $\times 10^{-6}$		125		
$\pi^+ \gamma \gamma$		1.01 ± 0.06) $\times 10^{-6}$		227		
π^+ 3 γ	[q]	1.0×10^{-4}	CL=90%	227		
$\pi^+ e^+ e^- \gamma$	(1.19 ± 0.13) $\times 10^{-8}$		227		
Leptonic modes with $\ell \overline{\ell}$ pairs						
$e^+ u_e u_{\overline{ u}}$	<	6×10^{-5}	CL=90%	247		
$\mu^+ u_{\mu} u \overline{ u}$	<	1.0×10^{-6}	CL=90%	236		
$e^+ u_ee^+e^-$	($2.48 \pm 0.20) \times 10^{-8}$		247		
$\mu^+ u_\mu\mathrm{e}^+\mathrm{e}^-$	($7.06 \pm 0.31) \times 10^{-8}$		236		
$e^+ u_e \mu^+ \mu^-$	(1.7 ± 0.5) $\times 10^{-8}$		223		
$\mu^+ \nu_\mu \mu^+ \mu^-$	<	4.1×10^{-7}	CL=90%	185		

Lepton family number (LF), Lepton number (L), $\Delta S = \Delta Q$ (SQ) violating modes, or $\Delta S = 1$ weak neutral current (S1) modes

$\pi^+\pi^+e^-\overline{ u}_e$	SQ	<	1.3	$\times 10^{-8}$	CL=90%	203
$\pi^+\pi^+\mu^-\overline{\nu}_{\mu}$	SQ	<	3.0	$\times 10^{-6}$	CL=95%	151
$\pi^+ e^+ e^-$	<i>S</i> 1	(3.00 ±0	$0.09) \times 10^{-7}$		227
$\pi^+\mu^+\mu^-$	<i>S</i> 1	(9.17 ±0	$0.14) \times 10^{-8}$	S=1.8	172
$\pi^+ \nu \overline{\nu}$	S1	($1.14 \begin{array}{c} + 0 \\ - 0 \end{array}$	(0.40) $\times 10^{-10}$		227

HTTP://PDG.LBL.GOV

Page 27

$\pi^+\pi^0 u\overline{ u}$	<i>S</i> 1	<	4.3	× 10	0 ^{−5} CL=90%	205
$\mu^- u \mathrm{e}^+ \mathrm{e}^+$	LF	<	2.1	× 10	0 ^{−8} CL=90%	236
$\mu^+ u_{ m e}$	LF	[d]	4	× 10	$^{-3}$ CL=90%	236
$\pi^+\mu^+$ e $^-$	LF	<	1.3	\times 10	$^{-11}$ CL=90%	214
$\pi^+\mu^-\mathrm{e}^+$	LF	<	6.6	\times 10	$^{-11}$ CL $=90\%$	214
$\pi^-\mu^+\mathrm{e}^+$	L	<	4.2	\times 10	0^{-11} CL=90%	214
$\pi^-e^+e^+$	L	<	5.3		0^{-11} CL=90%	227
$\pi^{-}\mu_{-}^{+}\mu^{+}$	L	<	4.2		$^{-11}$ CL=90%	172
$\pi^-\pi^0e^+e^+$	L	<	8.5		$^{-10}$ CL=90%	205
$\mu^+ \overline{\nu}_e$	L	[d]	3.3		0^{-3} CL=90%	236
$\pi^0 e^+ \overline{\nu}_e$	L	<	3	\times 10	0^{-3} CL=90%	228
$\pi^+ \gamma$		[u] <	2.3	\times 10	0 ⁻⁹ CL=90%	227

K⁰

$$I(J^P) = \frac{1}{2}(0^-)$$

50%
$$K_{\rm S}$$
, 50% K_{L} Mass $m=497.611\pm0.013$ MeV (S = 1.2) $m_{K^0}-m_{K^\pm}=3.934\pm0.020$ MeV (S = 1.6)

Mean square charge radius

$$\langle r^2 \rangle = -0.077 \pm 0.010 \text{ fm}^2$$

T-violation parameters in K^0 - \overline{K}^0 mixing [p]

Asymmetry A_T in K^0 - \overline{K}^0 mixing = $(6.6 \pm 1.6) \times 10^{-3}$

CP-violation parameters

$$Re(\epsilon) = (1.596 \pm 0.013) \times 10^{-3}$$

CPT-violation parameters [p]

Re
$$\delta = (2.5 \pm 2.3) \times 10^{-4}$$

Im $\delta = (-1.5 \pm 1.6) \times 10^{-5}$
Re(y), K_{e3} parameter = $(0.4 \pm 2.5) \times 10^{-3}$
Re(x_), K_{e3} parameter = $(-2.9 \pm 2.0) \times 10^{-3}$
 $\left| m_{K^0} - m_{\overline{K}^0} \right| / m_{\text{average}} < 6 \times 10^{-19}$, CL = 90% [v] $(\Gamma_{K^0} - \Gamma_{\overline{K}^0}) / m_{\text{average}} = (8 \pm 8) \times 10^{-18}$

Tests of $\Delta S = \Delta Q$

$$Re(x_{+})$$
, K_{e3} parameter = $(-0.9 \pm 3.0) \times 10^{-3}$

K_S^0

$$I(J^P) = \frac{1}{2}(0^-)$$

Mean life
$$au=(0.8954\pm0.0004)\times10^{-10}$$
 s $(S=1.1)$ Assuming CPT Mean life $au=(0.89564\pm0.00033)\times10^{-10}$ s Not assuming CPT $c au=2.6844$ cm Assuming CPT

CP-violation parameters [x]

$$\operatorname{Im}(\eta_{+-0}) = -0.002 \pm 0.009$$
 $\operatorname{Im}(\eta_{000}) = -0.001 \pm 0.016$
 $|\eta_{000}| = |A(K_S^0 \to 3\pi^0)/A(K_L^0 \to 3\pi^0)| < 0.0088$, CL = 90%

CP asymmetry *A* in $\pi^{+}\pi^{-}e^{+}e^{-} = (-0.4 \pm 0.8)\%$

κ_S^0 DECAY MODE	S
-------------------------	---

Fraction (Γ_i/Γ)

Scale factor/ pConfidence level (MeV/c)

Created: 7/10/2023 15:48

	Hadronic modes	
$\pi^0\pi^0$	$(30.69\pm0.05)~\%$	209
$\pi^+\pi^-$	$(69.20\pm0.05)~\%$	206
$\pi^{+}\pi^{-}\pi^{0}$	$(3.5 \begin{array}{c} +1.1 \\ -0.9 \end{array}) \times 10^{-7}$	133

Modes with photons or $\ell \overline{\ell}$ pairs

Semileptonic modes

$$\pi^{\pm} e^{\mp} \nu_e$$
 [z] $(7.04 \pm 0.08) \times 10^{-4}$ 229

CP violating (CP) and $\Delta S = 1$ weak neutral current (S1) modes

$3\pi^{0}$	CP	< 2.6	$\times 10^{-8}$	CL=90%	139
$\mu^+\mu^-$	<i>S</i> 1	< 2.1	\times 10 ⁻¹⁰	CL=90%	225
e^+e^-	<i>S</i> 1	< 9	\times 10 ⁻⁹	CL=90%	249
$\pi^{0} e^{+} e^{-}$	S1	[y] (3.0 ⁺	$^{1.5}_{1.2}$) × 10 ⁻⁹		230
$\pi^0 \mu^+ \mu^-$	<i>S</i> 1	(2.9 +	$^{1.5}_{1.2}$) × 10 ⁻⁹		177

$$I(J^P) = \frac{1}{2}(0^-)$$

$$\begin{array}{l} m_{{\cal K}_L} - m_{{\cal K}_S} \\ = (0.5293 \pm 0.0009) \times 10^{10} \; \hbar \; {\rm s}^{-1} \quad ({\rm S} = 1.3) \quad {\rm Assuming} \; {\it CPT} \\ = (3.484 \pm 0.006) \times 10^{-12} \; {\rm MeV} \quad {\rm Assuming} \; {\it CPT} \\ = (0.5289 \pm 0.0010) \times 10^{10} \; \hbar \; {\rm s}^{-1} \quad {\rm Not} \; {\rm assuming} \; {\it CPT} \\ {\rm Mean} \; {\rm life} \; \tau = (5.116 \pm 0.021) \times 10^{-8} \; {\rm s} \quad ({\rm S} = 1.1) \\ c\tau = 15.34 \; {\rm m} \end{array}$$

Slope parameters [o]

(See Particle Listings for other linear and quadratic coefficients)

$$K_L^0 \rightarrow \pi^+\pi^-\pi^0$$
: $g = 0.678 \pm 0.008$ (S = 1.5)
 $K_L^0 \rightarrow \pi^+\pi^-\pi^0$: $h = 0.076 \pm 0.006$
 $K_L^0 \rightarrow \pi^+\pi^-\pi^0$: $k = 0.0099 \pm 0.0015$
 $K_L^0 \rightarrow \pi^0\pi^0\pi^0$: $h = (0.6 \pm 1.2) \times 10^{-3}$

K_L decay form factors [p]

Linear parametrization assuming μ -e universality

$$\lambda_{+}(K_{\mu 3}^{0}) = \lambda_{+}(K_{e3}^{0}) = (2.82 \pm 0.04) \times 10^{-2} \quad (S = 1.1)$$

 $\lambda_{0}(K_{\mu 3}^{0}) = (1.38 \pm 0.18) \times 10^{-2} \quad (S = 2.2)$

Quadratic parametrization assuming μ -e universality

$$\lambda'_{+}(K^{0}_{\mu 3}) = \lambda'_{+}(K^{0}_{e3}) = (2.40 \pm 0.12) \times 10^{-2} \quad (S = 1.2)$$
 $\lambda''_{+}(K^{0}_{\mu 3}) = \lambda''_{+}(K^{0}_{e3}) = (0.20 \pm 0.05) \times 10^{-2} \quad (S = 1.2)$
 $\lambda_{0}(K^{0}_{\mu 3}) = (1.16 \pm 0.09) \times 10^{-2} \quad (S = 1.2)$

Pole parametrization assuming μ -e universality

$$M_V^{\mu} (K_{\mu 3}^0) = M_V^e (K_{e 3}^0) = 878 \pm 6 \text{ MeV} \quad (S = 1.1)$$
 $M_S^{\mu} (K_{\mu 3}^0) = 1252 \pm 90 \text{ MeV} \quad (S = 2.6)$

Dispersive parametrization assuming μ -e universality

$$\Lambda_{+} = (2.51 \pm 0.06) \times 10^{-2} \quad (S = 1.5)$$

$$\ln(C) = (1.75 \pm 0.18) \times 10^{-1} \quad (S = 2.0)$$

$$K_{e3}^{0} \quad |f_{S}/f_{+}| = (1.5^{+1.4}_{-1.6}) \times 10^{-2}$$

$$K_{e3}^{0} \quad |f_{T}/f_{+}| = (5^{+4}_{-5}) \times 10^{-2}$$

$$K_{\mu 3}^{0} \quad |f_{T}/f_{+}| = (12 \pm 12) \times 10^{-2}$$

$$K_{L} \rightarrow \ell^{+}\ell^{-}\gamma, K_{L} \rightarrow \ell^{+}\ell^{-}\ell'^{+}\ell'^{-}: \alpha_{K^{*}} = -0.205 \pm 0.022 \quad (S = 1.8)$$

$$K_{L}^{0} \rightarrow \ell^{+}\ell^{-}\gamma, K_{L}^{0} \rightarrow \ell^{+}\ell^{-}\ell'^{+}\ell'^{-}: \alpha_{DIP} = -1.69 \pm 0.08 \quad (S = 1.7)$$

$$K_{L} \rightarrow \pi^{+}\pi^{-}e^{+}e^{-}: a_{1}/a_{2} = -0.737 \pm 0.014 \text{ GeV}^{2}$$

$$K_{L} \rightarrow \pi^{0}2\gamma: \qquad a_{V} = -0.43 \pm 0.06 \quad (S = 1.5)$$

CP-violation parameters [x]

$$A_L = (0.332 \pm 0.006)\%$$

 $|\eta_{00}| = (2.220 \pm 0.011) \times 10^{-3} \quad (S = 1.8)$
 $|\eta_{+-}| = (2.232 \pm 0.011) \times 10^{-3} \quad (S = 1.8)$

$$\begin{split} |\epsilon| &= (2.228 \pm 0.011) \times 10^{-3} \quad (S=1.8) \\ |\eta_{00}/\eta_{+-}| &= 0.9950 \pm 0.0007 \,^{[aa]} \quad (S=1.6) \\ \text{Re}(\epsilon'/\epsilon) &= (1.66 \pm 0.23) \times 10^{-3} \,^{[aa]} \quad (S=1.6) \\ \text{Assuming } \textit{CPT} \\ \phi_{+-} &= (43.51 \pm 0.05)^\circ \quad (S=1.2) \\ \phi_{00} &= (43.52 \pm 0.05)^\circ \quad (S=1.3) \\ \phi_{\epsilon} &= \phi_{\text{SW}} = (43.52 \pm 0.05)^\circ \quad (S=1.2) \\ \text{Im}(\epsilon'/\epsilon) &= -(\phi_{00} - \phi_{+-})/3 = (-0.002 \pm 0.005)^\circ \quad (S=1.7) \\ \text{Not assuming } \textit{CPT} \\ \phi_{+-} &= (43.4 \pm 0.5)^\circ \quad (S=1.2) \\ \phi_{00} &= (43.7 \pm 0.6)^\circ \quad (S=1.2) \\ \phi_{\epsilon} &= (43.5 \pm 0.5)^\circ \quad (S=1.3) \\ \textit{CP} \text{ asymmetry } \textit{A in } \textit{K}^0_L \rightarrow \pi^+\pi^-e^+e^- = (13.7 \pm 1.5)\% \\ \beta_{\textit{CP}} \text{ from } \textit{K}^0_L \rightarrow e^+e^-e^+e^- = -0.19 \pm 0.07 \\ \gamma_{\textit{CP}} \text{ from } \textit{K}^0_L \rightarrow e^+e^-e^+e^- = 0.01 \pm 0.11 \quad (S=1.6) \\ \textit{j for } \textit{K}^0_L \rightarrow \pi^+\pi^-\pi^0 = 0.0012 \pm 0.0008 \\ \textit{f for } \textit{K}^0_L \rightarrow \pi^+\pi^-\pi^0 = 0.004 \pm 0.006 \\ |\eta_{+-\gamma}| &= (2.35 \pm 0.07) \times 10^{-3} \end{split}$$

T-violation parameters

 $\phi_{+-\gamma} = (44 \pm 4)^{\circ}$

$${\rm Im}(\xi) \ {\rm in} \ K_{\mu 3}^0 = -0.007 \pm 0.026$$

 $|\epsilon'_{\perp}|_{\alpha}/\epsilon < 0.3$, CL = 90%

CPT invariance tests

$$\phi_{00} - \phi_{+-} = (0.34 \pm 0.32)^{\circ}$$
 $\text{Re}(\frac{2}{3}\eta_{+-} + \frac{1}{3}\eta_{00}) - \frac{A_L}{2} = (-3 \pm 35) \times 10^{-6}$

 $|g_{E1}|$ for $K_I^0 \to \pi^+\pi^-\gamma < 0.21$, CL = 90%

$\Delta S = -\Delta Q$ in $K_{\ell 3}^0$ decay

Re
$$x = -0.002 \pm 0.006$$

Im $x = 0.0012 \pm 0.0021$

				Scale factor/	
KL DECAY MODES		Fraction (Γ_i	/Γ) Co	onfidence level(MeV/ <i>c</i>)
	Semiler	otonic mod	les		
$\pi^{\pm} e^{\mp} \nu_{e}$				S=1.7	229
Called K_{e3}^0 .		(- ,		
$\pi^{\pm}\mu^{\mp} u_{\mu}$	[z]	(27.04 ±	0.07) %	S=1.1	216
Called $K_{\mu 3}^0$.					
$(\pi\mu {\sf atom}) u$		$(1.05 \pm)$	$0.11) \times 10^{-7}$		188
$\pi^0\pi^{\pm}e^{\mp}\nu$	[z]		0.11×10^{-5}		207
$\pi^{\pm} e^{\mp} \nu e^{+} e^{-}$	[z]	(1.26 ± 0	$0.04) \times 10^{-5}$		229
Hadronic modes, includi	ng Charge co	oniugation	×Parity Viola	ating (CPV)	modes
$3\pi^0$		(19.52 ± 0.00)	-	S=1.6	139
$\pi^+\pi^-\pi^0$		$(12.54 \pm)$	•		133
$\pi^+\pi^-$	CPV [bb]	(1.967±	$0.010) \times 10^{-3}$	S=1.5	206
$\pi^0\pi^0$	CPV	(8.64 ±	$0.06) \times 10^{-4}$	S=1.8	209
Se	emileptonic i	nodes with	h photons		
$\pi^{\pm} e^{\mp} \nu_e \gamma$	-		$0.06) \times 10^{-3}$		229
$\pi^{\pm}\mu^{\mp}\nu_{\mu}\gamma$	[.,_,_,	`	$0.23) \times 10^{-4}$		216
,			4 -		
	nic modes v		ns or $\ell \overline{\ell}$ pairs		
$\pi^0\pi^0\gamma$	г 1	< 2.43	_	CL=90%	209
$\pi^+\pi^-\gamma \ \pi^+\pi^-\gamma$ (DE)	[r,cc]	•	$0.15) \times 10^{-5}$ $0.11) \times 10^{-5}$	S=2.8 S=2.0	206 206
$\pi^0 2\gamma$	[cc]		$0.11^{\circ}) \times 10^{\circ}$ $0.033) \times 10^{-6}$	3—2.0	230
$\pi^0 \gamma e^+ e^-$	[cc]		$0.033) \times 10^{-8}$		230
,			_		
	er modes wi		or $\ell \overline{\ell}$ pairs 0.04) \times 10^{-4}	C 11	240
2γ		(5.47 ± 0 < 7.4	,	S=1.1 CL=90%	249
$\frac{3\gamma}{e^+e^-\gamma}$			$0.4) \times 10^{-6}$		249 249
$\mu^+\mu^-\gamma$			0.11×10^{-7}	S=1.3	225
$e^+e^-\gamma\gamma$	[cc]		$0.33) \times 10^{-7}$		249
$\mu^+\mu^-\gamma\gamma$			$0.8 \ 0.6$) $\times 10^{-8}$		225
r. r. II	[]	(0.6		
Charge conjugation	- •	•	· .		
violating modes,				S1) modes	
$\mu^+\mu^-$	S1	,	0.11×10^{-9}		225
e^+e^-	S1	(9 +	$^{6}_{4}$) × 10 ⁻¹	2	249
$\pi^{+}\pi^{-}e^{+}e^{-}$	S1 [cc]	(3.11 ±	$0.19) \times 10^{-7}$		206
$\pi^{0}\pi^{0}e^{+}e^{-}$			$\times 10^{-9}$	CL=90%	209
$\pi^{0}\pi^{0}\mu^{+}\mu^{-}$	<i>S</i> 1	< 9.2	$\times 10^{-1}$	1 CL=90%	57
$\mu^+\mu^-\mathrm{e}^+\mathrm{e}^-$	<i>S</i> 1	($2.69 \pm$	$0.27) \times 10^{-9}$		225
HTTP://PDG.LBL.GOV	/ Pa	age 32	Created:	7/10/2023	15:48

$e^{+}e^{-}e^{+}e^{-}$	<i>S</i> 1 (3.56 ± 0.21	$\times 10^{-8}$		249
$\pi^0 \mu^+ \mu^-$	CP, $S1[dd] <$	3.8	$\times 10^{-10}$	CL=90%	177
$\pi^{0} e^{+} e^{-}$	CP, $S1[dd] <$	2.8	$\times 10^{-10}$	CL=90%	230
$\pi^0 u \overline{ u}$	CP,S1 $[ee]<$	3.0	$\times 10^{-9}$	CL=90%	230
$\pi^0\pi^0 u\overline{\nu}$	<i>S</i> 1 <	8.1	$\times 10^{-7}$	CL=90%	209
$e^{\pm}\mu^{\mp}$	LF $[z]$ $<$	4.7	$\times 10^{-12}$	CL=90%	238
$e^\pme^\pm\mu^\mp\mu^\mp$	LF $[z]$ $<$	4.12	$\times 10^{-11}$	CL=90%	225
$\pi^0 \mu^\pm e^\mp$	LF $[z]$ $<$	7.6	$\times 10^{-11}$	CL=90%	217
$\pi^0\pi^0\mu^\pm e^\mp$	LF <	1.7	$\times 10^{-10}$	CL=90%	159

Lorentz invariance violating modes

 $\pi^{0}\gamma$ < 1.7 $\times 10^{-7}$ CL=90% 230

$K_0^*(700)$

$$I(J^P) = \frac{1}{2}(0^+)$$

also known as κ ; was $K_0^*(800)$

See the review on "Scalar Mesons below 1 GeV."

Mass (T-Matrix Pole \sqrt{s}) = (630–730) -i (260–340) MeV

Mass (Breit-Wigner) $= 845 \pm 17 \text{ MeV}$

Full width (Breit-Wigner) = $468 \pm 30 \text{ MeV}$

K *(700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi$	100 %	256

K*(892)

$$I(J^P) = \frac{1}{2}(1^-)$$

Mass (T-Matrix Pole \sqrt{s}) = (890 \pm 14) -i (26 \pm 6) MeV $K^*(892)^\pm$ hadroproduced mass $m=891.67\pm0.26$ MeV $K^*(892)^\pm$ in τ decays mass $m=895.5\pm0.8$ MeV $K^*(892)^0$ mass $m=895.55\pm0.20$ MeV (S = 1.7) $K^*(892)^\pm$ hadroproduced full width $\Gamma=51.4\pm0.8$ MeV $K^*(892)^\pm$ in τ decays full width $\Gamma=46.2\pm1.3$ MeV $K^*(892)^0$ full width $\Gamma=47.3\pm0.5$ MeV (S = 1.9)

K*(892) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/ <i>c</i>)
$K\pi$	~ 100	%	289
$K^0\gamma$	(2.46 ± 0.21)	< 10 ⁻³	307
$\mathcal{K}^{\pm}\gamma$	(9.8 ± 0.9)	< 10 ⁻⁴	309
$K\pi\pi$	< 7	< 10 ⁻⁴ 95%	223

$K_1(1270)$

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass $m=1253\pm7$ MeV (S = 2.2) Full width $\Gamma=90\pm20$ MeV $^{[h]}$

K ₁ (1270) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor	<i>p</i> (MeV/ <i>c</i>)
$K\rho$	(38 ±13) %	2.2	†
$K_0^*(1430)\pi$	$(28 \pm 4)\%$		†
$K^{*}(892)\pi$	$(21 \pm 10)\%$	2.2	286
$K\omega$	$(11.0 \pm \ 2.0) \%$		†
$K f_0(1370)$ γK^0	($3.0\pm~2.0)$ %		†
γK^0	seen		528

$K_1(1400)$

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass $m=1403\pm7~{\rm MeV}$ Full width $\Gamma=174\pm13~{\rm MeV}~(S=1.6)$

K₁(1400) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$K^*(892)\pi$	(94 ±6)%	402	
$K \rho$	(3.0±3.0) %	293	
$K f_0(1370)$	(2.0±2.0) %	†	
$K\omega$	$(1.0\pm1.0)\%$	284	
$K_0^*(1430)\pi \ \gamma K^0$	not seen	†	
γK^0	seen	613	
$K\phi$	seen	†	

K*(1410)

$$I(J^P) = \frac{1}{2}(1^-)$$

Created: 7/10/2023 15:48

K*(1410) DECAY MODES	Fraction (I	$i/\Gamma)$	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$K^*(892)\pi$	> 40	%	95%	410
$K\pi$	(6.6±1	3) %		612
$K \rho \gamma K^0$	< 7	%	95%	305
$\gamma \mathcal{K}^0$	< 2.3	\times 10 ⁻²	90%	619
$K\phi$	seen			†

K*(1430)

$$I(J^P) = \frac{1}{2}(0^+)$$

Mass $m=1425\pm 50$ MeV ^[h] Full width $\Gamma=270\pm 80$ MeV ^[h]

K ₀ *(1430) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$K\pi$	(93 ±10)%	619	
$K\eta$	$(8.6^{+}_{-}$ $^{2.7}_{3.4})$ %	486	
$K \eta'(958)$	seen	†	

$K_2^*(1430)$

$$I(J^P) = \frac{1}{2}(2^+)$$

$$K_2^*(1430)^\pm$$
 mass $m=1427.3\pm1.5$ MeV (S = 1.3) $K_2^*(1430)^0$ mass $m=1432.4\pm1.3$ MeV $K_2^*(1430)^\pm$ full width $\Gamma=100.0\pm2.1$ MeV $K_2^*(1430)^0$ full width $\Gamma=109\pm5$ MeV (S = 1.9)

K*(1430) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>p</i> (MeV/ <i>c</i>)
$K\pi$	(49.9±1.2) %		620
$K^*(892)\pi$	$(24.7\pm1.5)~\%$		420
$K^*(892)\pi\pi$	(13.4 ± 2.2) %		373
$K \rho$	$(8.7\pm0.8)\%$	S=1.2	320
$K\omega$	$(2.9\pm0.8)\%$		313
$K^+\gamma$	$(2.4\pm0.5)\times1$	0^{-3} S=1.1	628
$K\eta$	$(1.5^{+3.4}_{-1.0}) \times 1$	S=1.3	488
$K\omega\pi$	< 7.2 × 1	0^{-4} CL=95%	106
$\kappa^0\gamma$	< 9 × 1	0^{-4} CL=90%	627

K(1460)

$$I(J^P) = \frac{1}{2}(0^-)$$

K(1460) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K^*(892)\pi$	seen	_
$K\rho$	seen	_
$K_0^*(1430)\pi$	seen	_
$K\phi$	seen	_

$K_1(1650)$

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass $m=1650\pm 50$ MeV Full width $\Gamma=150\pm 50$ MeV

K*(1680)

$$I(J^P) = \frac{1}{2}(1^-)$$

Mass $m=1718\pm18$ MeV Full width $\Gamma=322\pm110$ MeV (S = 4.2)

K*(1680) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$K\pi$	(38.7±2.5) %	782	
$K \rho$	$(31.4^{+5.0}_{-2.1})$ %	571	
$K^*(892)\pi$	$(29.9^{+2.2}_{-5.0})$ %	618	
$\mathcal{K}\phi$	seen	387	
$K\eta$	$(1.4^{+1.0}_{-0.8})\%$	683	

K₂(1770) [ff]

$$I(J^P) = \frac{1}{2}(2^-)$$

Mass $m=1773\pm 8~{\rm MeV}$ Full width $\Gamma=186\pm 14~{\rm MeV}$

K₂(1770) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$K\pi\pi$		794
$K_2^*(1430)\pi$	seen	287
$\mathcal{K}^*(892)\pi$	seen	654
$K f_2(1270)$	seen	53
$K\phi$	seen	441
$K\omega$	seen	607

K₃*(1780)

$$I(J^P) = \frac{1}{2}(3^-)$$

Mass $m=1779\pm 8$ MeV (S =1.2) Full width $\Gamma=161\pm 17$ MeV (S =1.1)

K*(1780) DECAY MODES	Frac	tion (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
Κρ Κ*(892)π	`	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		616 657
	5 0		. = /40 /000	

HTTP://PDG.LBL.GOV

Page 36

$K\pi$	(18.8 \pm	1.0) %		815
$K\eta$	(30 ± 1)	.3) %		721
$K_2^*(1430)\pi$	< 16	%	95%	292

K₂(1820) [ff]

$$I(J^P) = \frac{1}{2}(2^-)$$

Mass $m=1819\pm12~{\rm MeV}$ Full width $\Gamma=264\pm34~{\rm MeV}$

Fraction (Γ_i/Γ)	p (MeV/c)
seen	819
seen	328
seen	683
seen	191
seen	640
seen	483
	seen seen seen seen

$K_2^*(1980)$

$$I(J^P) = \frac{1}{2}(2^+)$$

Mass
$$m=1994^{+60}_{-50}$$
 MeV $~(S=2.8)$ Full width $\Gamma=348^{+50}_{-30}$ MeV $~(S=1.3)$

K [*] ₂ (1980) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K^*(892)\pi$	possibly seen	791
$K \rho$	possibly seen	762
$K f_2(1270)$	possibly seen	424
$K\phi$	seen	627
$K\eta$	seen	850

K₄(2045)

$$I(J^P) = \frac{1}{2}(4^+)$$

Mass
$$m=2048^{+8}_{-9}$$
 MeV (S $=1.1$)
Full width $\Gamma=199^{+27}_{-19}$ MeV

K [*] ₄ (2045) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi$	(9.9±1.2) %	960
$K^*(892)\pi\pi$	$(9 \pm 5)\%$	804
$K^*(892)\pi\pi\pi$	$(7 \pm 5)\%$	770
$ ho$ K π	(5.7±3.2) %	744

HTTP://PDG.LBL.GOV

Page 37

ω K π	(5.0±3.0) %	740
ϕ K π	$(2.8\pm1.4)~\%$	597
ϕK^* (892)	$(1.4\pm0.7)~\%$	368

CHARMED MESONS $(C = \pm 1)$

 $D^+=c\overline{d},\ D^0=c\overline{u},\ \overline{D}{}^0=\overline{c}\,u,\ D^-=\overline{c}\,d,$ similarly for D^* 's

D^{\pm}

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass $m=1869.66\pm0.05$ MeV Mean life $\tau=(1033\pm5)\times10^{-15}$ s $c\tau=309.8~\mu\mathrm{m}$

c-quark decays

 $\Gamma(c \to \ell^+ \text{ anything})/\Gamma(c \to \text{ anything}) = 0.096 \pm 0.004 ^{[gg]}$ $\Gamma(c \to D^*(2010)^+ \text{ anything})/\Gamma(c \to \text{ anything}) = 0.255 \pm 0.017$

CP-violation decay-rate asymmetries

$$A_{CP}(\mu^{\pm}\nu) = (8 \pm 8)\%$$

$$A_{CP}(K_{S}^{0}e^{\pm}\nu) = (-0.6 \pm 1.6)\%$$

$$A_{CP}(K_{S}^{0}\pi^{\pm}) = (-0.41 \pm 0.09)\%$$

$$A_{CP}(K_{L}^{0}K^{\pm}) \text{ in } D^{\pm} \rightarrow K_{L}^{0}K^{\pm} = (-4.2 \pm 3.4) \times 10^{-2}$$

$$A_{CP}(K^{\mp}2\pi^{\pm}) = (-0.18 \pm 0.16)\%$$

$$A_{CP}(K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{0}) = (-0.3 \pm 0.7)\%$$

$$A_{CP}(K_{S}^{0}\pi^{\pm}\pi^{0}) = (-0.1 \pm 0.7)\%$$

$$A_{CP}(K_{S}^{0}\pi^{\pm}\eta) \text{ in } D^{\pm} \rightarrow K_{S}^{0}\pi^{\pm}\eta = (-0.9 \pm 3.1) \times 10^{-2}$$

$$A_{CP}(K_{S}^{0}\pi^{\pm}\pi^{+}\pi^{-}) = (0.0 \pm 1.2)\%$$

$$A_{CP}(K^{\pm}\pi^{+}\pi^{-}\pi^{0}) \text{ in } D^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}\pi^{0} = -0.04 \pm 0.06$$

$$A_{CP}(K^{\pm}\pi^{0}) = (0.4 \pm 1.3)\% \quad (S = 1.7)$$

$$A_{CP}(\pi^{\pm}\eta) = (0.3 \pm 0.8)\% \quad (S = 1.2)$$

$$A_{CP}(\pi^{\pm}\eta) \text{ in } D^{\pm} \rightarrow \pi^{\pm}\pi^{0}\eta = (-6 \pm 7) \times 10^{-2}$$

$$A_{CP}(\pi^{\pm}\eta^{0}) \text{ in } D^{\pm} \rightarrow \pi^{\pm}\eta\eta = (8 \pm 9) \times 10^{-2}$$

$$A_{CP}(\pi^{\pm}\eta^{0}) \text{ in } D^{\pm} \rightarrow \pi^{\pm}\eta\eta = (8 \pm 9) \times 10^{-2}$$

$$A_{CP}(K_{S}^{0}K^{\pm}) = (-0.6 \pm 0.7)\%$$

$$A_{CP}(K_{S}^{0}K^{\pm}) = (0.11 \pm 0.17)\%$$

$$A_{CP}(K_{S}^{0}K^{\pm}) = (-0.01 \pm 0.07)\%$$

$$A_{CP}(K_{S}^{0}K^{\pm}\pi^{0}) \text{ in } D^{\pm} \rightarrow K_{S}^{0}K^{\pm}\pi^{0} = (1 \pm 4) \times 10^{-2}$$

$$A_{CP}(K_{L}^{0}K^{\pm}\pi^{0}) \text{ in } D^{\pm} \rightarrow K_{L}^{0}K^{\pm}\pi^{0} = (-1 \pm 4) \times 10^{-2}$$

$$A_{CP}(K_{L}^{0}K^{\pm}\pi^{0}) \text{ in } D^{\pm} \rightarrow K_{L}^{0}K^{\pm}\pi^{0} = (-1 \pm 4) \times 10^{-2}$$

$$A_{CP}(K_{L}^{0}K^{\pm}\pi^{0}) \text{ in } D^{\pm} \rightarrow K_{L}^{0}K^{\pm}\pi^{0} = (-1 \pm 4) \times 10^{-2}$$

$$A_{CP}(K_{L}^{0}K^{\pm}\pi^{0}) \text{ in } D^{\pm} \rightarrow K_{L}^{0}K^{\pm}\pi^{0} = (-1 \pm 4) \times 10^{-2}$$

$$A_{CP}(K_{L}^{0}K^{\pm}\pi^{0}) \text{ in } D^{\pm} \rightarrow K_{L}^{0}K^{\pm}\pi^{0} = (-1 \pm 4) \times 10^{-2}$$

$$A_{CP}(K_{L}^{0}K^{\pm}\pi^{0}) \text{ in } D^{\pm} \rightarrow K_{L}^{0}K^{\pm}\pi^{0} = (-1 \pm 4) \times 10^{-2}$$

$$A_{CP}(K_{L}^{0}K^{\pm}\pi^{0}) \text{ in } D^{\pm} \rightarrow K_{L}^{0}K^{\pm}\pi^{0} = (-1 \pm 4) \times 10^{-2}$$

$$A_{CP}(K_{L}^{0}K^{\pm}\pi^{0}) \text{ in } D^{\pm} \rightarrow K_{L}^{0}K^{\pm}\pi^{0} = (-1 \pm 4) \times 10^{-2}$$

$$A_{CP}(K_{L}^{0}K^{\pm}\pi^{0}) \text{ in } D^{\pm} \rightarrow K_{L}^{0}K^{\pm}\pi^{0} = (-1 \pm 4) \times 10^{-2}$$

$$A_{CP}(K_{L}^{0}K^{\pm}\pi^{0}) \text{ in } D^{\pm} \rightarrow K_{L}^{0}K^{\pm}\pi^{0} = (-1 \pm 4) \times 10^{-2}$$

$$A_{CP}(\phi \pi^{\pm}) = (0.01 \pm 0.09)\% \quad (S = 1.8)$$

$$A_{CP}(K^{\pm} K_0^* (1430)^0) = (8_{-6}^{+7})\%$$

$$A_{CP}(K^{\pm} K_2^* (1430)^0) = (43_{-26}^{+20})\%$$

$$A_{CP}(K^{\pm} K_0^* (700)) = (-12_{-13}^{+18})\%$$

$$A_{CP}(a_0 (1450)^0 \pi^{\pm}) = (-19_{-16}^{+14})\%$$

$$A_{CP}(\phi (1680) \pi^{\pm}) = (-9 \pm 26)\%$$

$$A_{CP}(\pi^{\pm} 2\pi^0) \text{ in } D^{\pm} \rightarrow \pi^{\pm} 2\pi^0 = (5.6 \pm 2.7)\%$$

$$A_{CP}(\pi^{+} \pi^{-} \pi^{\pm}) = (0.5 \pm 2.0)\%$$

$$A_{CP}(2\pi^{\pm} \pi^{\mp} \pi^0) \text{ in } D^{\pm} \rightarrow 2\pi^{\pm} \pi^{\mp} 2\pi^0 = (-4 \pm 4)\%$$

$$A_{CP}(2\pi^{\pm} \pi^{\mp} 2\pi^0) \text{ in } D^{\pm} \rightarrow 2\pi^{\pm} \pi^{\mp} 2\pi^0 = (-4 \pm 4)\%$$

$$A_{CP}(\pi^{+} \pi^{-} \pi^{\pm} \eta) \text{ in } D^{\pm} \rightarrow \pi^{+} \pi^{-} \pi^{\pm} \eta = (3 \pm 5) \times 10^{-2}$$

$$A_{CP}(K_S^0 K^{\pm} \pi^{+} \pi^{-}) = (-4 \pm 7)\%$$

$$A_{CP}(K^{\pm} \pi^0) = (-3 \pm 5)\%$$

$$A_{CP}(K^{\pm} \eta) \text{ in } D^{\pm} \rightarrow K^{\pm} \eta = (-6 \pm 11) \times 10^{-2}$$

χ^2 tests of *CP*-violation (*CPV*)

Local *CPV* in
$$D^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm} = 78.1\%$$

Local *CPV* in $D^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm} = 31\%$

CP violating asymmetries of P-odd (T-odd) moments

$$A_T(K_S^0 K^{\pm} \pi^+ \pi^-) = (-12 \pm 11) \times 10^{-3} [hh]$$

D^+ form factors

$$\begin{array}{l} f_{+}(0) \big| V_{cs} \big| \text{ in } \overline{K}^0 \, \ell^+ \, \nu_\ell = 0.719 \pm 0.011 \quad (\mathsf{S} = 1.6) \\ r_1 \equiv a_1/a_0 \text{ in } \overline{K}^0 \, \ell^+ \, \nu_\ell = -2.13 \pm 0.14 \\ r_2 \equiv a_2/a_0 \text{ in } \overline{K}^0 \, \ell^+ \, \nu_\ell = -3 \pm 12 \quad (\mathsf{S} = 1.5) \\ f_{+}(0) \big| V_{cd} \big| \text{ in } \pi^0 \, \ell^+ \, \nu_\ell = 0.1407 \pm 0.0025 \\ r_1 \equiv a_1/a_0 \text{ in } \pi^0 \, \ell^+ \, \nu_\ell = -2.00 \pm 0.13 \\ r_2 \equiv a_2/a_0 \text{ in } \pi^0 \, \ell^+ \, \nu_\ell = -4 \pm 5 \\ f_{+}(0) \big| V_{cd} \big| \text{ in } D^+ \rightarrow \eta \, \ell^+ \, \nu_\ell \, (\ell = e \text{ or } \nu) = (8.4 \pm 0.4) \times 10^{-2} \\ r_1 \equiv a_1/a_0 \text{ in } D^+ \rightarrow \eta \, e^+ \, \nu_e = -5.3 \pm 2.7 \quad (\mathsf{S} = 1.9) \\ r_v \equiv V(0)/A_1(0) \text{ in } D^+ \rightarrow \omega \, e^+ \, \nu_e = 1.24 \pm 0.11 \\ r_2 \equiv A_2(0)/A_1(0) \text{ in } D^+ \rightarrow \omega \, e^+ \, \nu_e = 1.64 \pm 0.16 \\ r_v \equiv V(0)/A_1(0) \text{ in } D^+, D^0 \rightarrow \rho \, e^+ \, \nu_e = 1.64 \pm 0.10 \quad (\mathsf{S} = 1.2) \\ r_2 \equiv A_2(0)/A_1(0) \text{ in } \overline{K}^*(892)^0 \, \ell^+ \, \nu_\ell = 0.84 \pm 0.06 \\ r_v \equiv V(0)/A_1(0) \text{ in } \overline{K}^*(892)^0 \, \ell^+ \, \nu_\ell = 0.802 \pm 0.021 \\ r_3 \equiv A_3(0)/A_1(0) \text{ in } \overline{K}^*(892)^0 \, \ell^+ \, \nu_\ell = 0.0 \pm 0.4 \\ \Gamma_L/\Gamma_T \text{ in } \overline{K}^*(892)^0 \, \ell^+ \, \nu_\ell = 1.13 \pm 0.08 \\ \Gamma_+/\Gamma_- \text{ in } \overline{K}^*(892)^0 \, \ell^+ \, \nu_\ell = 0.22 \pm 0.06 \quad (\mathsf{S} = 1.6) \\ \end{array}$$

Most decay modes (other than the semileptonic modes) that involve a neutral K meson are now given as K_S^0 modes, not as \overline{K}^0 modes. Nearly always it is a K_S^0 that is measured, and interference between Cabibbo-allowed and doubly Cabibbo-suppressed modes can invalidate the assumption that $2\Gamma(K_S^0)=\Gamma(\overline{K}^0)$.

		Scale factor/	р
D+ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/ <i>c</i>)
Incl	usive modes		
e^+ semileptonic	(16.07 ± 0.30)) %	_
μ^+ anything	(17.6 ± 3.2)) %	_
K^- anything	(25.7 ± 1.4)) %	_
$\overline{K}{}^0$ anything $+~K^0$ anything	(61 ± 5)) %	_
\mathcal{K}^+ anything	(5.9 ± 0.8) %	_
$K^*(892)^-$ anything	(6 ± 5)) %	_
$\overline{K}^*(892)^0$ anything	(23 ± 5)) %	_
$K^*(892)^0$ anything	< 6.6		_
η anything	(6.3 ± 0.7)		_
η' anything	(1.04 ± 0.18	,	_
ϕ anything	(1.12 ± 0.04)) %	_
Leptonic and	semileptonic mod	es	
$e^+\nu_e$	< 8.8		935
$\gamma e^+ \nu_e$	< 3.0		935
$\mu^+ u_\mu$	(3.74 ± 0.17)		932
	(1.20 ± 0.27)		90
$\frac{\tau^+ \nu_{\tau}}{K^0 e^+ \nu_{e}}$	(8.72 ± 0.09	•	869
$\overline{K}{}^0\mu^+\nu_{\mu}$	(8.76 ± 0.19)) %	865
$K^-\pi^+e^+\nu_e$	(4.02 ± 0.18)) % S=3.2	864
$\overline{\mathit{K}}^{*}(892)^{0}e^{+} u_{e}$, $\overline{\mathit{K}}^{*}(892)^{0} ightarrow$	(3.77 ± 0.17)		722
$(K^-\pi^+)_{[0.8-1.0]\text{GeV}} e^+ \nu_e$			
$(K^-\pi^+)$ [0.8–1.0]GeV $e^+ u_e$	(3.39 ± 0.09)) %	864
$(K^-\pi^+)_{S-wave} e^+ u_e$	(2.28 ± 0.11		_
$\overline{K}^*(1410)^0 e^+ \nu_e$,	< 6	$\times 10^{-3}$ CL=90%	_
$\overline{K}^*(1410)^0 \rightarrow K^-\pi^+$			
$\overline{K}_{2}^{*}(1430)^{0} e^{+} \nu_{e}$,	< 5	$\times 10^{-4}$ CL=90%	_
$\overline{\mathit{K}}_{2}^{*}(1430)^{0} \rightarrow \ \mathit{K}^{-}\pi^{+}$			
$K^-\pi^+e^+ u_e$ nonresonant	< 7	$\times 10^{-3}$ CL=90%	864
$\overline{K}^*(892)^0 e^+ \nu_e$	(5.40 ± 0.10)) % S=1.1	722
$K^-\pi^+\mu^+ u_\mu$	(3.65 ± 0.34)) %	851
$\overline{\mathit{K}}^{*}(892)^{0}\mu^{+} u_{\mu}$,	(3.52 ± 0.10) %	717
\overline{K}^* (892) ⁰ $\rightarrow K^-\pi^+$			
$\mathcal{K}^-\pi^+\mu^+ u_\mu$ nonresonant	(1.9 ± 0.5	$) \times 10^{-3}$	851
$\overline{K}^*(892)^0 \mu^+ \nu_{\mu}$	(5.27 ± 0.15) %	717
,			

Page 40

Created: 7/10/2023 15:48

HTTP://PDG.LBL.GOV

$K^{-}\pi^{+}\pi^{0}\mu^{+}\nu_{\mu}$		$\times 10^{-3}$ CL=90%	825
$\overline{K}_1(1270)^0 e^+ \nu_e, \ \overline{K}_1^0 \rightarrow$	(1.06 \pm	$0.15) \times 10^{-3}$	_
$rac{{\cal K}^-\pi^+\pi^0}{{\cal K}_0^*(1430)^0\mu^+ u_\mu}$	< 2.3	$\times 10^{-4}$ CL=90%	380
$\overline{K}^{0}(1680)^{0}\mu^{+}\nu_{\mu}$		$\times 10^{-3}$ CL=90%	105
$\pi^0 e^+ \nu_e$	($3.72 \pm$	$0.17) \times 10^{-3}$ S=2.0	930
$\pi^0 \mu^+ u_\mu$	`	$0.15) \times 10^{-3}$	927
$\eta e^+ \nu_e$	•	$0.07) \times 10^{-3}$	855
$\eta \mu^+ u_{\mu}$		$0.11) \times 10^{-3}$	851
$\pi^-\pi^+e^+ u_e$ $f_0(500)^0e^+ u_e$, $f_0(500)^0 o$		$0.11) \times 10^{-3} $ S=1.2 $0.6) \times 10^{-4}$	924
	(0.4 ±	0.0) × 10 ·	_
$\rho_{0}^{0}e^{+}\nu_{e}$		$0.10) \times 10^{-3}$ S=1.2	774
$\rho^0 \mu^+ \nu_\mu$		$0.4) \times 10^{-3}$	770
$\omega e^+_{\perp} \nu_e$		$0.11) \times 10^{-3}$	771
$\omega \mu^+ \nu_{\mu}$		$0.21) \times 10^{-3}$	767
$\eta'(958)e^+\nu_e$		$0.4) \times 10^{-4}$	690
$a(980)^0 e^+ \nu_e, \ a(980)^0 \to \ \eta \pi^0$		$\begin{array}{c} 0.8 \\ 0.7 \end{array}) \times 10^{-4}$	_
$b_1(1235)^0 e^+ \nu_e, \ b_1^0 \to \omega \pi^0$		$\times 10^{-4}$ CL=90%	-
$\phi e^+ u_e$ $D^0 e^+ u_e$	< 1.3	$\times 10^{-5}$ CL=90%	657
	< 1.0	$\times 10^{-4}$ CL=90%	5
Hauronic inc	odes with a <i>K</i> o	or KKK	
$K_S^0 \pi^+$	odes with a $\overline{\pmb{K}}$ o $(1.562\pm$		863
$egin{array}{c} \mathcal{K}_{\mathcal{S}}^0\pi^+ \ \mathcal{K}_{\mathcal{L}}^0\pi^+ \end{array}$		0.031) % S=1.7	863 863
$egin{array}{c} {\mathcal K}_{S}^{0} \pi^{+} \ {\mathcal K}_{L}^{0} \pi^{+} \ {\mathcal K}^{-} 2 \pi^{+} \end{array}$	($1.562\pm$	0.031) % S=1.7 0.05) %	
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K_{L}^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$	$\begin{array}{c} (\ 1.562\pm \\ (\ 1.46\ \pm \\ [ii] \ (\ 9.38\ \pm \\ (\ 7.52\ \pm \\ \end{array})$	0.031) % S=1.7 0.05) % 0.16) % S=1.6 0.17) %	863 846 846
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$,	$(1.562 \pm $ $(1.46 \pm $ $[ii] (9.38 \pm $	0.031) % S=1.7 0.05) % 0.16) % S=1.6 0.17) %	863 846
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave }\pi^{+}}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \rightarrow K^{-}\pi^{+}$	$(1.562 \pm $ $(1.46 \pm $ $[ii]$ $(9.38 \pm $ $(7.52 \pm $ $[jj]$ $(1.25 \pm $	0.031) % S=1.7 0.05) % 0.16) % S=1.6 0.17) % 0.06) %	863 846 846 382
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(892)^{0}\pi^{+}$,	$\begin{array}{c} (\ 1.562\pm \\ (\ 1.46\ \pm \\ [ii] \ (\ 9.38\ \pm \\ (\ 7.52\ \pm \\ \end{array})$	0.031) % S=1.7 0.05) % 0.16) % S=1.6 0.17) % 0.06) %	863 846 846
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(892)^{0}\pi^{+}$, $\overline{K}^{*}(892)^{0} \to K^{-}\pi^{+}$	$\begin{array}{c} (\ 1.562\pm \\ (\ 1.46\ \pm \\ [ii] \ (\ 9.38\ \pm \\ (\ 7.52\ \pm \\ [ij] \ (\ 1.25\ \pm \\ \end{array}$	0.031) % S=1.7 0.05) % 0.16) % S=1.6 0.17) % 0.06) %	863 846 846 382 714
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(892)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(892)^{0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1410)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1410)^{0}\pi^{+}$	$(1.562 \pm $ $(1.46 \pm $ $[ii]$ $(9.38 \pm $ $(7.52 \pm $ $[jj]$ $(1.25 \pm $	0.031) % S=1.7 0.05) % 0.16) % S=1.6 0.17) % 0.06) %	863 846 846 382
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(892)^{0}\pi^{+}$, $\overline{K}^{*}(892)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(1410)^{0}\pi^{+}$, $\overline{K}^{*0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(1430)^{0}\pi^{+}$,	$\begin{array}{c} (\ 1.562\pm \\ (\ 1.46\ \pm \\ [ii] \ (\ 9.38\ \pm \\ (\ 7.52\ \pm \\ [ij] \ (\ 1.25\ \pm \\ \end{array}$	0.031) % S=1.7 0.05) % 0.16) % S=1.6 0.17) % 0.06) % 0.12) %	863 846 846 382 714
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(892)^{0}\pi^{+}$, $\overline{K}^{*}(892)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(1410)^{0}\pi^{+}$, $\overline{K}^{*0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$	$(1.562 \pm $ $(1.46 \pm $ $[ii]$ $(9.38 \pm $ $(7.52 \pm $ $[jj]$ $(1.25 \pm $ $(1.04 \pm $ $not seen$ $[jj]$ $(2.3 \pm $	0.031) % S=1.7 0.05) % 0.16) % S=1.6 0.17) % 0.06) % 0.12) %	863 846 846 382 714 381
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(892)^{0}\pi^{+}$, $\overline{K}^{*}(892)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(1410)^{0}\pi^{+}$, $\overline{K}^{*0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1680)^{0}\pi^{+}$,	$(1.562 \pm $ $(1.46 \pm $ $[ii]$ $(9.38 \pm $ $(7.52 \pm $ $[jj]$ $(1.25 \pm $ $(1.04 \pm $ $not seen$ $[jj]$ $(2.3 \pm $	0.031) % S=1.7 0.05) % 0.16) % S=1.6 0.17) % 0.06) % 0.12) %	863 846 846 382 714 381
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(892)^{0}\pi^{+}$, $\overline{K}^{*}(892)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(1410)^{0}\pi^{+}$, $\overline{K}^{*0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1680)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1680)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1680)^{0} \to K^{-}\pi^{+}$	$\begin{array}{c} (\ 1.562 \pm \\ (\ 1.46\ \pm \\ [ii] \ (\ 9.38\ \pm \\ (\ 7.52\ \pm \\ [jj] \ (\ 1.25\ \pm \\ \\ (\ 1.04\ \pm \\ \\ \text{not seen} \\ \\ [jj] \ (\ 2.3\ \pm \\ \\ [jj] \ (\ 2.2\ \pm \\ \end{array}$	0.031) % S=1.7 0.05) % 0.16) % S=1.6 0.17) % 0.06) % 0.12) % 0.7) × 10 ⁻⁴ 1.1) × 10 ⁻⁴	863 846 846 382 714 381 371
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(892)^{0}\pi^{+}$, $\overline{K}^{*}(892)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(1410)^{0}\pi^{+}$, $\overline{K}^{*0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1680)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1680)^{0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1680)^{0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1680)^{0} \to K^{-}\pi^{+}$	$\begin{array}{c} (\ 1.562 \pm \\ (\ 1.46\ \pm \\ \\ [ii] \ (\ 9.38\ \pm \\ (\ 7.52\ \pm \\ \\ [ij] \ (\ 1.25\ \pm \\ \\ \ (\ 1.04\ \pm \\ \\ \ \text{not seen} \\ \\ [ij] \ (\ 2.3\ \pm \\ \\ [ij] \ (\ 2.2\ \pm \\ \ (\ 1.45\ \pm \\ \end{array}$	0.031) % S=1.7 0.05) % 0.16) % S=1.6 0.17) % 0.06) % 0.12) % 0.7) × 10 ⁻⁴ 1.1) × 10 ⁻⁴ 0.26) %	863 846 846 382 714 381 371 58
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(892)^{0}\pi^{+}$, $\overline{K}^{*}(892)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(1410)^{0}\pi^{+}$, $\overline{K}^{*0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1680)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1680)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1680)^{0} \to K^{-}\pi^{+}$	$\begin{array}{c} (\ 1.562\pm \\ (\ 1.46\ \pm \\ [ii] \ (\ 9.38\ \pm \\ (\ 7.52\ \pm \\ [ij] \ (\ 1.25\ \pm \\ \\ (\ 1.04\ \pm \\ \\ \text{not seen} \\ \\ [ij] \ (\ 2.3\ \pm \\ \\ [ij] \ (\ 2.2\ \pm \\ \\ [ii] \ (\ 7.36\ \pm \\ \\ \end{array}$	0.031) % S=1.7 0.05) % 0.16) % S=1.6 0.17) % 0.06) % 0.12) % 0.7) × 10 ⁻⁴ 1.1) × 10 ⁻⁴ 0.26) % 0.21) %	863 846 846 382 714 381 371 58 - 845
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(892)^{0}\pi^{+}$, $\overline{K}^{*}(892)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(1410)^{0}\pi^{+}$, $\overline{K}^{*0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1680)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1680)^{0} \to K^{-}\pi^{+}$	$\begin{array}{c} (\ 1.562\pm \\ (\ 1.46\ \pm \\ [ii] \ (\ 9.38\ \pm \\ (\ 7.52\ \pm \\ [ij] \ (\ 1.25\ \pm \\ \\ (\ 1.04\ \pm \\ \\ \text{not seen} \\ \\ [ij] \ (\ 2.3\ \pm \\ \\ [ij] \ (\ 2.2\ \pm \\ \\ [ii] \ (\ 7.36\ \pm \\ (\ 6.14\ + \\ \\ \end{array}$	0.031) % S=1.7 0.05) % 0.16) % S=1.6 0.17) % 0.06) % 0.12) % 0.7) × 10 ⁻⁴ 1.1) × 10 ⁻⁴ 0.26) % 0.21) % 0.60 0.35) %	863 846 846 382 714 381 371 58
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(892)^{0}\pi^{+}$, $\overline{K}^{*}(892)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(1410)^{0}\pi^{+}$, $\overline{K}^{*0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1680)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1680)^{0} \to K^{-}\pi^{+}$ $K^{-}(2\pi^{+})_{I=2}$ $K_{S}^{0}\pi^{+}\pi^{0}$ $K_{S}^{0}\rho^{+}$ $K_{S}^{0}\rho^{(1450)^{+}}$, $\rho^{+} \to \pi^{+}\pi^{0}$	$\begin{array}{c} (\ 1.562\pm \\ (\ 1.46\ \pm \\ [ii] \ (\ 9.38\ \pm \\ (\ 7.52\ \pm \\ [ij] \ (\ 1.25\ \pm \\ \\ (\ 1.04\ \pm \\ \\ \text{not seen} \\ \\ [ij] \ (\ 2.3\ \pm \\ \\ [ij] \ (\ 2.2\ \pm \\ \\ [ii] \ (\ 7.36\ \pm \\ (\ 6.14\ + \\ \\ \end{array}$	0.031) % S=1.7 0.05) % 0.16) % S=1.6 0.17) % 0.06) % 0.12) % 0.7) × 10 ⁻⁴ 1.1) × 10 ⁻⁴ 0.26) % 0.21) %	863 846 846 382 714 381 371 58 - 845
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(892)^{0}\pi^{+}$, $\overline{K}^{*}(892)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(1410)^{0}\pi^{+}$, $\overline{K}^{*0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1680)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1680)^{0} \to K^{-}\pi^{+}$	$\begin{array}{c} (\ 1.562\pm\\ (\ 1.46\ \pm\\ [ii] \ (\ 9.38\ \pm\\ (\ 7.52\ \pm\\ [ij] \ (\ 1.25\ \pm\\ \\ (\ 1.04\ \pm\\ \\ \text{not seen} \\ \\ [ij] \ (\ 2.3\ \pm\\ \\ [ij] \ (\ 2.2\ \pm\\ \\ [ii] \ (\ 7.36\ \pm\\ (\ 6.14\ +\\ \\ (\ 1.5\ +\\ \\ \end{array}$	0.031) % S=1.7 0.05) % 0.16) % S=1.6 0.17) % 0.06) % 0.12) % 0.7) × 10 ⁻⁴ 1.1) × 10 ⁻⁴ 0.26) % 0.21) % 0.60 0.35) %	863 846 846 382 714 381 371 58 — 845

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

Page 41

$\overline{K}_0^*(1430)^0\pi^+,\ \overline{K}_0^{*0} ightarrow K_0^0\pi^0$		(2.7	± 0.	9) × 10 ⁻³		_
$\overline{K}_0^*(1680)^0\pi^+, \ \overline{K}_0^{*0} o K_0^0\pi^0$		(10	+ 7 -10) × 10 ⁻⁴		_
$\overline{\kappa}^0\pi^+$, $\overline{\kappa}^0 o$ $K^0_S\pi^0$		(6	+ 5	$) \times 10^{-3}$		_
$K^0_S \pi^+ \pi^0$ nonresonant				$) \times 10^{-3}$		845
$K_S^0 \pi^+ \pi^0$ nonresonant and $\frac{\kappa^0}{\kappa^0} \pi^+$		(1.37	+ 0.1 - 0.	²¹ 40) %		-
$(\kappa_S^0 \pi^0)_{S-wave} \pi^+$		(1.27	+ 0.1 - 0.1	²⁷) %		845
$K_S^0\pi^+\omega$		(7.1	± 0.	$5) \times 10^{-3}$		606
$K_{S}^{0}\pi^{+}\eta$		(1.31	± 0.	05) %		722
$K_{S}^{0}\pi^{+}\eta'(958)$		(1.90	± 0.	$21) \times 10^{-3}$		481
$K^{-}2\pi^{+}\pi^{0}$	[<i>kk</i>]	(6.25	± 0.	18)%		817
$K_S^0 2\pi^+\pi^-$	[kk]	(3.10	± 0.	09)%		814
$K_{S}^{0}\pi^{+}2\pi^{0}$		(2.90	± 0.	11) %		817
$K^-2\pi^+\eta$		(1.35	± 0.	$12) \times 10^{-3}$		657
$K_S^0\pi^+\pi^0\eta$		(1.22	± 0.	$25) \times 10^{-3}$		657
$K^{-}3\pi^{+}\pi^{-}$	[<i>ii</i>]	(5.7	± 0.	$5) \times 10^{-3}$	S=1.1	772
$\overline{K}_{-}^{*}(892)^{0}2\pi^{+}\pi^{-}$,		(1.2	± 0.	4) \times 10 ⁻³		645
$\overline{K}^*(892)^0 \to K^-\pi^+ \ \overline{K}^*(892)^0 \rho^0\pi^+, \ \overline{K}^*(892)^0 \to K^-\pi^+$		(2.3	± 0.	4) × 10 ⁻³		239
$\overline{K}^*(892)^0 a_1(1260)^+$	[//]	(9.3	± 1.	9) $\times 10^{-3}$		†
$\mathcal{K}^- ho^0 2\pi^+$		(1.72	± 0.	28) \times 10 ⁻³		524
$K^-3\pi^+\pi^-$ nonresonant		(4.0	± 2.	9) \times 10 ⁻⁴		772
$K_{S}^{0} 2\pi^{+} \pi^{-} \pi^{0}$		(1.53	\pm 0.	08)%		773
$K_S^0 \pi^+ 3\pi^0$		(5.5	± 0.	$5) \times 10^{-3}$		776
$K^{-}2\pi^{+}2\pi^{0}$				$32) \times 10^{-3}$		776
$K^{+}2K_{S}^{0}$				$13) \times 10^{-3}$		545
$K^+K^-K^0_S\pi^+$		(2.4	± 0.	$5) \times 10^{-4}$		436
	Pionic	modes	:			
$\pi^+\pi^0$				$033) \times 10^{-3}$		925
$2\pi^{+}\pi^{-}$				$09) \times 10^{-3}$		909
$ ho^{f 0}\pi^+$		(8.3	± 1.	4) \times 10 ⁻⁴		767
$\pi^+(\pi^+\pi^-)_{S-wave}$				$14) \times 10^{-3}$		909
$\sigma\pi^+$, $\sigma ightarrow \ \pi^+\pi^-$				$10) \times 10^{-3}$		_
$f_0(980)\pi^+$,		(1.57	± 0.	$32) \times 10^{-4}$		669
$f_0(980) \rightarrow \pi^+\pi^-$				-		
$f_0(1370)\pi^+$,		8)	± 4	$) \times 10^{-5}$		_
$f_0(1370) ightarrow \pi^+ \pi^-$						

$f_2(1270)\pi^+$,		(5.0	\pm	$0.8) \times 10^{-4}$		485
$f_2(1270) \to \pi^+\pi^-$				_		
$ ho(1450)^0 \pi^+$,	<	8		$\times 10^{-5}$	CL=95%	338
$ ho(1450)^0 ightarrow \pi^+\pi^-$						
$f_0(1500)\pi^+$,		(1.1	\pm	$0.4) \times 10^{-4}$		_
$f_0(1500) \to \pi^+\pi^-$				_		
$f_0(1710)\pi^+$,	<	5		× 10 ⁻⁵	CL=95%	_
$f_0(1710) \to \pi^+\pi^-$				-		
$f_0(1790)\pi^+$,	<	7		× 10 ⁻⁵	CL=95%	_
$f_0(1790) \to \pi^+\pi^-$				4		
$(\pi^+\pi^+)_{S-wave}\pi^-$	<	1.2			CL=95%	909
$2\pi^+\pi^-$ nonresonant	<				CL=95%	909
$\pi^{+}2\pi^{0}$				$0.15) \times 10^{-3}$		910
$2\pi^{+}\pi^{-}\pi^{0}$		•		0.030) %		883
$\pi^{+}3\pi^{0}$				$0.26) \times 10^{-3}$		885
$\pi^{+}4\pi^{0}$		`		$0.4) \times 10^{-3}$		851
$2\pi^{+}\pi^{-}2\pi^{0}$		•		0.05)%		848
$3\pi^{+}2\pi^{-}$				$0.16) \times 10^{-3}$	S=1.1	845
$2\pi^{+}\pi^{-}3\pi^{0}$		•		$0.35) \times 10^{-3}$		803
$3\pi^{+}2\pi^{-}\pi^{0}$		`		$0.27) \times 10^{-3}$		799
$\eta \pi^+$		•		$0.09) \times 10^{-3}$		848
$\eta \pi^+ \pi^0$				$0.35) \times 10^{-3}$	S=2.2	831
$\eta 2\pi^+\pi^-$				0.20) \times 10 ⁻³		798
$\eta \pi^{+} 2\pi^{0}$				$0.33) \times 10^{-3}$		801
$\eta \pi^{+} 3 \pi^{0}$				0.5) \times 10 ⁻³		759
$\eta^{2}\pi^{+}\pi^{-}\pi^{0}$				$0.34) \times 10^{-3}$		755
$\eta\eta\pi^+$				$0.26) \times 10^{-3}$		700
$\omega \pi^+$				$0.6) \times 10^{-4}$		764
$\omega \pi^+ \pi^0$		•		0.9×10^{-3}		742
$\eta'(958)\pi^+$				$0.19) \times 10^{-3}$		681
$\eta'(958)\pi^{+}\pi^{0}$	4	(1.6	. ± . v	0.5) \times 10 ⁻³		654
Hadronic mod				_	6 00	700
$K_S^0 K^+$ $K_I^0 K^+$		•		$0.09) \times 10^{-3}$	S=2.2	793
		`		$0.16) \times 10^{-3}$		793
$K_S^0 K^+ \pi^0$		`		$0.30) \times 10^{-3}$		744
$K^*(892)^+ K^0_S$, $K^{*+} ightarrow$		(2.89	\pm	$0.30) \times 10^{-3}$		612
$\overline{K}^{+}\pi^{0}$ $\overline{K}^{*}(892)^{0}K^{+}, \overline{K}^{*0} \rightarrow$				4		
$K^*(892)^0 K^+, K^{*0} \rightarrow$		(5.2	\pm	1.4) \times 10 ⁻⁴		613
$\kappa_{S}^{0}\pi^{0}$ $\kappa_{L}^{0}\kappa^{+}\pi^{0}$				2		
				$0.31) \times 10^{-3}$		744
$K^+K^-\pi^+$	<i>i</i>]	(9.68	\pm	$0.18) \times 10^{-3}$		744
$K^{+}\overline{K}^{*}(892)^{0}$,		(2.49	+	$0.08_{0.13} \times 10^{-3}$		613
$\overline{K}^*(892)^0 \xrightarrow{f} K^- \pi^+$		•	_	0.13 /		

A few poorly measured branching fractions:

Doubly Cabibbo-suppressed modes

Boubly cubibbo	suppressed modes	
$K^+\pi^0$	$(2.08 \pm 0.21) \times 10^{-4}$ S=1.4	864
$K^+ \eta$	(1.25 ± 0.16) $\times 10^{-4}$ S=1.1	776
$K^+ \eta'(958)$	$(1.85 \pm 0.20) \times 10^{-4}$	571
$K^{+}2\pi^{0}$	$(2.1 \pm 0.4) \times 10^{-4}$	847
$K^*(892)^+\pi^0$	$(3.4 \pm 1.4) \times 10^{-4}$	714
$K^+\pi^+\pi^-$	$(4.91 \pm 0.09) \times 10^{-4}$	846
$K^+ \rho^0$	$(1.9 \pm 0.5) \times 10^{-4}$	679
$K^+ \eta \pi^0$	$(2.1 \pm 0.5) \times 10^{-4}$	726
$K^*(892)^+ \eta$	$(\begin{array}{ccc} 4.4 & + & 1.8 \\ - & 1.5 \end{array}) \times 10^{-4}$	586
$K^*(892)^0\pi^+$, $K^*(892)^0$ $ ightarrow$	$(2.3 \pm 0.4) \times 10^{-4}$	714
$K^{+}\pi^{-} \ K^{+}f_{0}(980)$, $f_{0}(980) ightarrow \pi^{+}\pi^{-}$	(4.4 \pm 2.6) \times 10 ⁻⁵	-
$K_2^*(1430)^0\pi^+$, $K_2^*(1430)^0 ightarrow$	(3.9 ± 2.7) \times 10^{-5}	_
$K^+\pi^-$		

$K^+\pi^+\pi^-$ nonresonant	not seen	846
$K^+\pi^+\pi^-\pi^0$	(1.21 \pm 0.09) \times 10 ⁻³	817
$K^+\pi^+\pi^-\pi^0$ nonresonant	$(1.10 \pm 0.07) \times 10^{-3}$	817
$K^+\omega$	$(5.7 + 2.5 \atop -2.1) \times 10^{-5}$	675
$2K^+K^-$	(6.14 \pm 0.11) \times 10 ⁻⁵	550
ϕ (1020) 0 K^{+}	$< 2.1 \times 10^{-5} CL = 90\%$	_
$K^+\phi$ (1020), $\phi ightarrow~K^+K^-$	$(4.4 \pm 0.6) \times 10^{-6}$	_
$K^+(K^+K^-)$ $_{S-wave}$	(5.77 \pm 0.12) \times 10 ⁻⁵	550

$\Delta C = 1$ weak neutral current (C1) modes, or Lepton Family number (LF), or Lepton number (L), or Baryon number (B) violating modes

• • • • • • • • • • • • • • • • • • •	` '	•	•	,	
$\pi^{+}e^{+}e^{-}$	C1	< 1.1		$\times 10^{-6}$ CL=90%	930
$\pi^{+}\pi^{0}e^{+}e^{-}$		< 1.4		\times 10 ⁻⁵ CL=90%	925
$\pi^+\phi$, ϕo e^+e^-		[nn] (1.7	$^{+}$ 1.4 $^{-}$ 0.9	$) \times 10^{-6}$	_
$\pi^{+} \mu^{+} \mu^{-}$	C1	< 6.7		$\times 10^{-8} CL = 90\%$	918
$\pi^+ \phi$, $\phi \rightarrow \mu^+ \mu^-$		[nn] (1.8	± 0.8	$) \times 10^{-6}$	_
$\rho^+\mu^+\mu^-$	C1	< 5.6		$\times 10^{-4}$ CL=90%	757
$K^+e^+e^-$		[oo] < 8.5		$\times 10^{-7}$ CL=90%	870
$K^+ \pi^0 e^+ e^-$		< 1.5		imes 10 ⁻⁵ CL=90%	864
$K_S^0 \pi^+ e^+ e^-$		< 2.6		$\times 10^{-5}$ CL=90%	_
$K_{S}^{0}K^{+}e^{+}e^{-}$		< 1.1		\times 10 ⁻⁵ CL=90%	792
$K^+\mu^+\mu^-$		[<i>oo</i>] < 5.4		$\times 10^{-8} CL = 90\%$	856
$\pi^{+}e^{+}\mu^{-}$	LF	< 2.1		$\times 10^{-7}$ CL=90%	927
$\pi^{+}e^{-}\mu^{+}$	LF	< 2.2		$\times 10^{-7}$ CL=90%	927
$K^+e^+\mu^-$	LF	< 7.5		$\times 10^{-8} CL = 90\%$	866
$K^{+}e^{-}\mu^{+}$	LF	< 1.0		\times 10 ⁻⁷ CL=90%	866
π^-2e^+	L	< 5.3		\times 10 ⁻⁷ CL=90%	930
$\pi^{-}2\mu^{+}$	L	< 1.4		$\times 10^{-8}$ CL=90%	918
$\pi^-e^+\mu^+$	L	< 1.3		$\times 10^{-7} \text{CL} = 90\%$	927
$\rho^- 2\mu^+$	L	< 5.6		$\times 10^{-4}$ CL=90%	757
K^-2e^+	L	< 9		\times 10 ⁻⁷ CL=90%	870
$K_S^0 \pi^- 2e^+$		< 3.3		$\times 10^{-6}$ CL=90%	863
$K^{-}\pi^{0}2e^{+}$		< 8.5		$\times 10^{-6}$ CL=90%	864
$\mathcal{K}^-2\mu^+$	L	< 1.0		$\times 10^{-5}$ CL=90%	856
$K^-e^+\mu^+$	L	< 1.9		$\times 10^{-6}$ CL=90%	866
$K^*(892)^- 2\mu^+$	L	< 8.5		\times 10 ⁻⁴ CL=90%	703
Λe ⁺	L,B	< 1.1		\times 10 ⁻⁶ CL=90%	602
$\overline{\Lambda}e^+$	L,B	< 6.5		\times 10 ⁻⁷ CL=90%	602
$\Sigma^0 e^+$	L,B	< 1.7		$\times 10^{-6}$ CL=90%	554
$\overline{\Sigma}{}^0 e^+$	L,B	< 1.3		\times 10 ⁻⁶ CL=90%	554
$\overline{n}e^+$		< 1.43	}	\times 10 ⁻⁵ CL=90%	699
ne ⁺		< 2.91		\times 10 ⁻⁵ CL=90%	699

$$D^0$$

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass
$$m=1864.84\pm0.05~{
m MeV}$$
 $m_{D^\pm}-m_{D^0}=4.822\pm0.015~{
m MeV}$ Mean life $\tau=(410.3\pm1.0)\times10^{-15}~{
m s}$ $c au=123.01~\mu{
m m}$

Mixing and related parameters

$$\begin{array}{l} \left|m_{D_1^0}-m_{D_2^0}\right| = (0.997\pm0.116)\times10^{10}~\hbar~\mathrm{s}^{-1}\\ \left(\Gamma_{D_1^0}-\Gamma_{D_2^0}\right)/\Gamma = 2y = (1.394\pm0.056)\times10^{-2}\\ \left|q/p\right| = 0.995\pm0.016\\ A_{\Gamma} = (0.089\pm0.113)\times10^{-3}\\ \phi^{K_S^0\pi\pi} = 0.02_{-0.05}^{+0.04}\\ K^+\pi^-~\mathrm{relative~strong~phase:~cos~}\delta = 0.990\pm0.025\\ K^-\pi^+\pi^0~\mathrm{coherence~factor~}R_{K\pi\pi^0} = 0.792\pm0.033\\ K^-\pi^+\pi^0~\mathrm{average~relative~strong~phase~}\delta^{K\pi\pi^0} = (198\pm10)^\circ\\ K^-\pi^-2\pi^+~\mathrm{coherence~factor~}R_{K3\pi} = 0.52_{-0.09}^{+0.10}\\ K^-\pi^-2\pi^+~\mathrm{average~relative~strong~phase~}\delta^{K3\pi} = (149_{-16}^{+26})^\circ~(S=1.4)\\ D^0\to K^-\pi^-2\pi^+,~R_{K3\pi}~(y~\mathrm{cos}\delta^{K3\pi}-\times\sin\delta^{K3\pi}) = (-3.0\pm0.7)\times10^{-3}~\mathrm{TeV}^{-1}\\ K_S^0K^+\pi^-~\mathrm{coherence~factor~}R_{K_S^0K\pi}^0 = 0.70\pm0.08\\ K_S^0K^+\pi^-~\mathrm{average~relative~strong~phase~}\delta^{K_S^0K\pi}^0 = (0\pm16)^\circ\\ K^*K~\mathrm{coherence~factor~}R_{K^*K}^0 = 0.94\pm0.12\\ K^*K~\mathrm{average~relative~strong~phase~}\delta^{K^*K}^0 = (-17\pm18)^\circ\\ \end{array}$$

CP-even fractions (labeled by the D^0 decay)

CP-even fraction in
$$D^0 \to K_S^0 \pi^+ \pi^- \pi^0$$
 decays = $(23.8 \pm 1.7)\%$ CP-even fraction in $D^0 \to \pi^+ \pi^- \pi^0$ decays = $(97.3 \pm 1.7)\%$ CP-even fraction in $D^0 \to \pi^+ \pi^- \pi^+ \pi^-$ decays = $(74.6 \pm 1.6)\%$ (S = 1.2)
CP-even fraction in $D^0 \to \pi^+ \pi^- 2\pi^0$ decays = 0.68 ± 0.08 CP-even fraction in $D^0 \to 2\pi^+ 2\pi^- \pi^0$ decays = 0.44 ± 0.10 CP-even fraction in $D^0 \to \pi^+ \pi^- 3\pi^0$ decays = $0.52^{+0.34}_{-0.27}$ CP-even fraction in $D^0 \to 2\pi^+ 2\pi^- 2\pi^0$ decays = 0.79 ± 0.26 CP-even fraction in $D^0 \to K^+ K^- \pi^0$ decays = $(73 \pm 6)\%$ CP-even fraction in $D^0 \to K^+ K^- \pi^+ \pi^-$ decays = $(75 \pm 4)\%$

Created: 7/10/2023 15:48

CP-violation decay-rate asymmetries (labeled by the D^0 decay)

$$A_{CP}(K^+K^-) = (-0.07 \pm 0.11)\%$$

```
A_{CP}(2K_S^0) = (-1.9 \pm 1.1)\% (S = 1.1)
A_{CP}(\pi^{+}\pi^{-}) = (0.13 \pm 0.14)\%
A_{CP}(\pi^0\pi^0) = (0.0 \pm 0.6)\%
A_{CP}(\rho \gamma) = (6 \pm 15) \times 10^{-2}
A_{CP}(\phi \gamma) = (-9 \pm 7) \times 10^{-2}
A_{CP}(\overline{K}^*(892)^0\gamma) = (-0.3 \pm 2.0) \times 10^{-2}
A_{CP}(\pi^+\pi^-\pi^0) = (0.4 \pm 0.4)\%
A_{CP}(\eta\pi^+\pi^-) in D^0, \overline{D}{}^0 \rightarrow \eta\pi^+\pi^- = (0.9 \pm 1.3) \times 10^{-2}
A_{CP}(\rho(770)^{+}\pi^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}) = (1.2 \pm 0.9)\%^{[pp]}
A_{CP}(\rho(770)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-3.1 \pm 3.0)\%^{[pp]}
A_{CP}(\rho(770)^-\pi^+ \to \pi^+\pi^-\pi^0) = (-1.0 \pm 1.7)\%^{[pp]}
A_{CP}(\rho(1450)^{+}\pi^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}) = (0 \pm 70)\%^{[pp]}
A_{CP}(\rho(1450)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-20 \pm 40)\%^{[pp]}
A_{CP}(\rho(1450)^-\pi^+ \to \pi^+\pi^-\pi^0) = (6 \pm 9)\%^{[pp]}
A_{CP}(\rho(1700)^+\pi^- \to \pi^+\pi^-\pi^0) = (-5 \pm 14)\%^{[pp]}
A_{CP}(\rho(1700)^0\pi^0 \to \pi^+\pi^-\pi^0) = (13 \pm 9)\%^{[pp]}
A_{CP}(\rho(1700)^-\pi^+ \to \pi^+\pi^-\pi^0) = (8 \pm 11)\%^{[pp]}
A_{CP}(f_0(980)\pi^0 \rightarrow \pi^+\pi^-\pi^0) = (0 \pm 35)\%^{[pp]}
A_{CP}(f_0(1370)\pi^0 \rightarrow \pi^+\pi^-\pi^0) = (25 \pm 18)\%^{[pp]}
A_{CP}(f_0(1500)\pi^0 \to \pi^+\pi^-\pi^0) = (0 \pm 18)\%^{[pp]}
A_{CP}(f_0(1710)\pi^0 \to \pi^+\pi^-\pi^0) = (0 \pm 24)\%^{[pp]}
A_{CP}(f_2(1270)\pi^0 \to \pi^+\pi^-\pi^0) = (-4 \pm 6)\%^{[pp]}
A_{CP}(\sigma(400)\pi^0 \to \pi^+\pi^-\pi^0) = (6 \pm 8)\%^{[pp]}
A_{CP} (nonresonant \pi^+\pi^-\pi^0) = (-13 \pm 23)\% [pp]
A_{CP}(\pi^+\pi^-2\pi^0) in D^0, \overline{D}{}^0 \rightarrow \pi^+\pi^-2\pi^0 = (-2.5 \pm 2.0)\%
A_{CP}(a_1(1260)^+\pi^- \rightarrow 2\pi^+2\pi^-) = (5 \pm 6)\%
A_{CP}(a_1(1260)^-\pi^+ \rightarrow 2\pi^+2\pi^-) = (14 \pm 18)\%
A_{CP}(\pi(1300)^+\pi^- \rightarrow 2\pi^+2\pi^-) = (-2 \pm 15)\%
A_{CP}(\pi(1300)^-\pi^+ \rightarrow 2\pi^+2\pi^-) = (-6 \pm 30)\%
A_{CP}(a_1(1640)^+\pi^- \rightarrow 2\pi^+2\pi^-) = (9 \pm 26)\%
A_{CP}(\pi_2(1670)^+\pi^- \rightarrow 2\pi^+2\pi^-) = (7 \pm 18)\%
A_{CP}(\sigma f_0(1370) \rightarrow 2\pi^+ 2\pi^-) = (-15 \pm 19)\%
A_{CP}(\sigma \rho(770)^0 \rightarrow 2\pi^+ 2\pi^-) = (3 \pm 27)\%
A_{CP}(2\rho(770)^0 \rightarrow 2\pi^+2\pi^-) = (-6 \pm 6)\%
A_{CP}(2f_2(1270) \rightarrow 2\pi^+ 2\pi^-) = (-28 \pm 24)\%
A_{CP}(\pi^+\pi^-\pi^0\eta) in D^0, \overline{D}{}^0 \to \pi^+\pi^-\pi^0\eta = (-6 \pm 6) \times 10^{-2}
A_{CP}(K^+K^-\pi^0) = (-1.0 \pm 1.7)\%
A_{CP}(K^*(892)^+K^- \to K^+K^-\pi^0) = (-0.9 \pm 1.3)\%^{[pp]}
A_{CP}(K^*(1410)^+K^- \to K^+K^-\pi^0) = (-21 \pm 24)\%^{[pp]}
A_{CP}((K^{+}\pi^{0})_{S-wave}K^{-} \rightarrow K^{+}K^{-}\pi^{0}) = (7 \pm 15)\%^{[pp]}
A_{CP}(\phi(1020)\pi^0 \to K^+K^-\pi^0) = (1.1 \pm 2.2)\%^{[pp]}
A_{CP}(f_0(980)\pi^0 \to K^+K^-\pi^0) = (-3 \pm 19)\%^{[pp]}
```

```
A_{CP}(a_0(980)^0\pi^0 \to K^+K^-\pi^0) = (-5 \pm 16)\%^{[pp]}
A_{CP}(f_2'(1525)\pi^0 \to K^+K^-\pi^0) = (0 \pm 160)\%^{[pp]}
A_{CP}(K^*(892)^-K^+ \rightarrow K^+K^-\pi^0) = (-5 \pm 4)\%^{[pp]}
A_{CP}(K^*(1410)^-K^+ \to K^+K^-\pi^0) = (-17 \pm 29)\%^{[pp]}
A_{CP}((K^-\pi^0)_{S-wave}K^+ \rightarrow K^+K^-\pi^0) = (-10 \pm 40)\% [pp]
A_{CP}(K^+K^-\eta) in D^0, \overline{D}{}^0 \to K^+K^-\eta = (-1.4 \pm 3.5) \times 10^{-2}
A_{CP}(\phi(1020)\eta \to K^+K^-\eta) \text{ in } D^0, \overline{D}{}^0 \to \phi(1020)\eta = (-2 \pm 1000)\eta
     4) \times 10^{-2}
A_{CP}(K_S^0\pi^0) = (-0.20 \pm 0.17)\%
A_{CP}(K_{S}^{0}\eta) = (0.5 \pm 0.5)\%
A_{CP}(K_S^0 \eta') = (1.0 \pm 0.7)\%
A_{CP}(K_S^{0}\phi) = (-3 \pm 9)\%
A_{CP}(K^{-}\pi^{+}) = (0.2 \pm 0.5)\%
A_{CP}(K^+\pi^-) = (-0.9 \pm 1.4)\%
A_{CP}(D_{CP(\pm 1)} \rightarrow K^{\mp} \pi^{\pm}) = (13.1 \pm 1.0)\%
A_{CP}(K^-\pi^+\pi^0) = (0.1 \pm 0.5)\%
A_{CP}(K^+\pi^-\pi^0) = (0 \pm 5)\%
A_{CP}(K_S^0\pi^+\pi^-) = (-0.1 \pm 0.8)\%
A_{CP}(K^{\mp}\pi^{\pm}\eta) in D^0, \overline{D}{}^0 \rightarrow K^{\mp}\pi^{\pm}\eta = (-1.9 \pm 1.6) \times 10^{-2}
A_{CP}(K_S^0 \pi^0 \eta) in D^0, \overline{D}{}^0 \to K_S^0 \pi^0 \eta = (-3.9 \pm 3.3) \times 10^{-2}
A_{CP}(K^{\mp}\pi^{\pm}\pi^{0}\eta) in D^{0}, \overline{D}^{0} \rightarrow K^{\mp}\pi^{\pm}\pi^{0}\eta = (-8 \pm 5) \times 10^{-2}
A_{CP}(K^*(892)^-\pi^+ \to K_5^0\pi^+\pi^-) = (0.4 \pm 0.5)\%
A_{CP}(K^*(892)^+\pi^- \to K_S^0\pi^+\pi^-) = (1 \pm 6)\%
A_{CP}(\overline{K}^{0}\rho^{0} \rightarrow K_{S}^{0}\pi^{+}\pi^{-}) = (-0.1 \pm 0.5)\%
A_{CP}(\overline{K}^0\omega \rightarrow K_S^0\pi^+\pi^-) = (-13 \pm 7)\%
A_{CP}(\overline{K}^0 f_0(980) \rightarrow K_S^0 \pi^+ \pi^-) = (-0.4 \pm 2.7)\%
A_{CP}(\overline{K}^0 f_2(1270) \to K_S^0 \pi^+ \pi^-) = (-4 \pm 5)\%
A_{CP}(\overline{\underline{K}}{}^{0}f_{0}(1370) \rightarrow K_{S}^{0}\pi^{+}\pi^{-}) = (-1 \pm 9)\%
A_{CP}(\overline{K}^0 \rho^0(1450) \to \overline{K}_S^0 \pi^+ \pi^-) = (-4 \pm 10)\%
A_{CP}(\overline{K}^0 f_0(600) \rightarrow K_S^0 \pi^+ \pi^-) = (-3 \pm 5)\%
A_{CP}(K^*(1410)^-\pi^+ \rightarrow K_S^0\pi^+\pi^-) = (-2 \pm 9)\%
A_{CP}(K_0^*(1430)^-\pi^+ \to K_S^0\pi^+\pi^-) = (4 \pm 4)\%
A_{CP}(K_0^*(1430)^+\pi^- \to K_S^0\pi^+\pi^-) = (12 \pm 15)\%
A_{CP}(K_2^*(1430)^-\pi^+ \to K_S^0\pi^+\pi^-) = (3 \pm 6)\%
A_{CP}(K_2^*(1430)^+\pi^- \to K_5^0\pi^+\pi^-) = (-10 \pm 32)\%
A_{CP}(K^{-}\pi^{+}\pi^{+}\pi^{-}) = (0.2 \pm 0.5)\%
A_{CP}(K^+\pi^-\pi^+\pi^-) = (-2 \pm 4)\%
A_{CP}(K^+K^-\pi^+\pi^-) = (1.3 \pm 1.7)\%
A_{CP}(K_1^*(1270)^+K^- \rightarrow K^+K^-\pi^+\pi^-) = (-2.3 \pm 1.7)\%
A_{CP}(K_1^*(1270)^+K^- \to K^{*0}\pi^+K^-) = (-1 \pm 10)\%
A_{CP}(K_1^*(1270)^-K^+ \rightarrow \overline{K}^{*0}\pi^-K^+) = (-10 \pm 32)\%
A_{CP}(K_1^*(1270)^-K^+ \rightarrow K^+K^-\pi^+\pi^-) = (1.7 \pm 3.5)\%
```

$$A_{CP}(K_1^*(1270)^+ K^- \to \rho^0 K^+ K^-) = (-7 \pm 17)\%$$

$$A_{CP}(K_1^*(1270)^- K^+ \to \rho^0 K^- K^+) = (10 \pm 13)\%$$

$$A_{CP}(K_1(1400)^+ K^- \to K^+ K^- \pi^+ \pi^-) = (-4.4 \pm 2.1)\%$$

$$A_{CP}(K^*(1410)^+ K^- \to K^{*0} \pi^+ K^-) = (-20 \pm 17)\%$$

$$A_{CP}(K^*(1410)^- K^+ \to \overline{K^{*0}} \pi^- K^+) = (-1 \pm 14)\%$$

$$A_{CP}(K^*(1680)^+ K^- \to K^+ K^- \pi^+ \pi^-) = (-17 \pm 29)\%$$

$$A_{CP}(K^*(1680)^+ K^- \to K^+ K^- \pi^+ \pi^-) = (-17 \pm 29)\%$$

$$A_{CP}(K^{*0} \overline{K^{*0}}) \text{ in } D^0, \overline{D^0} \to K^{*0} \overline{K^{*0}} = (-5 \pm 14)\%$$

$$A_{CP}(K^{*0} \overline{K^{*0}}) \text{ s-wave} = (-3.9 \pm 2.2)\%$$

$$A_{CP}(\phi \rho^0) \text{ in } D^0, \overline{D^0} \to \phi \rho^0 = (1 \pm 9)\%$$

$$A_{CP}(\phi \rho^0 D\text{-wave}) = (-37 \pm 19)\%$$

$$A_{CP}(\phi \rho^0 D\text{-wave}) = (-37 \pm 19)\%$$

$$A_{CP}(K^*(892)^0 (K^- \pi^+)_{S-wave}) = (-10 \pm 40)\%$$

$$A_{CP}(K^+ K^- \pi^+ \pi^- \text{non-resonant}) = (8 \pm 20)\%$$

$$A_{CP}(K^+ K^- \pi^+ \pi^- \text{non-resonant}) = (8 \pm 20)\%$$

$$A_{CP}(K^+ K^- \pi^+ \mu^-) \text{ in } D^0, \overline{D^0} \to K^+ K^- \mu^+ \mu^- = (-2 \pm 6)\%$$

$$A_{CP}(K^+ K^- \mu^+ \mu^-) \text{ in } D^0, \overline{D^0} \to \pi^+ \pi^- \mu^+ \mu^- = (2.9 \pm 2.1)\%$$

CP-violation asymmetry difference

$$\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = (-0.154 \pm 0.029)\%$$

χ^2 tests of *CP*-violation (*CPV*) p-values

Local *CPV* in
$$D^0$$
, $\overline{D}{}^0 \to \pi^+\pi^-\pi^0 = 4.9\%$
Local *CPV* in D^0 , $\overline{D}{}^0 \to \pi^+\pi^-\pi^+\pi^- = (0.6 \pm 0.2)\%$
Local *CPV* in D^0 , $\overline{D}{}^0 \to K_S^0\pi^+\pi^- = 96\%$
Local *CPV* in D^0 , $\overline{D}{}^0 \to K^+K^-\pi^0 = 16.6\%$
Local *CPV* in D^0 , $\overline{D}{}^0 \to K^+K^-\pi^+\pi^- = 9.1\%$

T-violation decay-rate asymmetry

$$A_T(K^+K^-\pi^+\pi^-) = (2.9 \pm 2.2) \times 10^{-3} \, [hh]$$

 $A_{\text{Tviol}}(K_S\pi^+\pi^-\pi^0) \text{ in } D^0, \, \overline{D}{}^0 \to K_S\pi^+\pi^-\pi^0 = (-0.3^{+1.4}_{-1.6}) \times 10^{-3}$

CPT-violation decay-rate asymmetry

$$A_{CPT}(K^{\mp}\pi^{\pm}) = 0.008 \pm 0.008$$

Form factors

Most decay modes (other than the semileptonic modes) that involve a neutral K meson are now given as K_S^0 modes, not as \overline{K}^0 modes. Nearly always it is a K_S^0 that is measured, and interference between Cabibbo-allowed and doubly Cabibbo-suppressed modes can invalidate the assumption that $2\Gamma(K_S^0)=\Gamma(\overline{K}^0)$.

D ⁰ DECAY MODES		Fraction ($(\Gamma_i,$	/Γ)	(ale factor/ dence leve(-
	Topolog	gical mo	ode	s				
0-prongs	-	(15		6) %			_
2-prongs		` (71			•			_
4-prongs	[<i>rr</i>]	•			,			_
6-prongs		(6.5			•	-4		_
	Inclus	ive mod	les					
e^+ anything		(6.49		0.11) %			_
μ^+ anything		(6.8	\pm	0.6) %			_
K^- anything		(54.7	\pm	2.8) %		S=1.3	_
\overline{K}^0 anything + K^0 anything		(47	\pm	4) %			_
K^+ anything		(3.4	\pm	0.4) %			_
$K^*(892)^-$ anything		(15	\pm	9) %			_
$\overline{K}^*(892)^0$ anything		(9	\pm	4) %			_
$K^*(892)^+$ anything		< 3.6			%		CL=90%	- - - - - -
$K^*(892)^0$ anything		(2.8	\pm	1.3) %			_
η anything		(9.5	\pm	0.9) %			_
η' anything		(2.48	\pm	0.27) %			_
ϕ anything		(1.08	\pm	0.04) %			_
invisibles		< 9.4			\times 10	-5	CL=90%	_
	Semilep	tonic m	ode	es				
$\mathit{K^-e^+}_{ u_e}$		(3.549)±	0.026	5) %		S=1.2	867
$K^-\mu^+ u_\mu$		(3.41	\pm	0.04) %			864
$K^*(892)^{-}e^{+}\nu_{e}$		(2.15	\pm	0.16) %			719
$K^*(892)^- \mu^+ \nu_\mu$		(1.89			,			714
$K^-\pi^0e^+\nu_e$		(1.6	+	1.3 0.5) %			861
$\overline{K}{}^0\pi^-e^+\nu_e$		(1.44	\pm	0.04) %			860
$(\overline{K}{}^0\pi^-)_{S-wave}e^+\nu_e$		•) × 10 ⁻	-4		860
$K^-\pi^+\pi^-e^+\nu_e$) × 10			843
$K_1(1270)^-e^+ u_e$		(1.01	\pm	0.18) × 10	-3		511
$\mathit{K}^-\pi^+\pi^-\mu^+ u_\mu$		< 1.3			\times 10	-3	CL=90%	821
$(\overline{K}^*(892)\pi)^{-}\mu^{+}\nu_{\mu}$		< 1.5			\times 10	-3	CL=90%	692
$\pi^-e^+ u_e$		(2.91	\pm	0.04) × 10	-3		927
$\pi^-\mu^+\nu_\mu$					$) \times 10^{-}$		S=1.3	924
$\pi^-\pi^0e^+\nu_e$) × 10		_	922
HTTP://PDG.LBL.GOV	Pa	ge 50		C	reated	: 7/	10/2023	15:48

$\rho^- e^+ \nu_e$		•			$0.12) \times 10^{-3}$	S=1.9	771
$\rho^- \mu^+ \nu_{\mu}$		•			$0.13) \times 10^{-3}$		767
$a(980)^-e^+\nu_e$, $a^-\to\eta\pi^-$					$0.34 \\ 0.30$) × 10 ⁻⁴		_
$b_1(1235)^- e^+ \nu_e, \ b_1^- \to \ \omega \pi^-$		<	1.12		× 10 ⁻⁴	CL=90%	_
Hadron	ic mo	ode	s wit	:h c	one \overline{K}		
$K^-\pi^+$		`			0.030) %	S=1.2	861
$egin{array}{c} \mathcal{K}_{\mathcal{S}}^0 \pi^0 \ \mathcal{K}_{L}^0 \pi^0 \end{array}$		•			0.022) %		860
		•			$0.32) \times 10^{-3}$		860
$K_L^0 \eta$		•			$0.16) \times 10^{-3}$	C 12	772
$K_L^0 \eta'$		•			$0.35) \times 10^{-3}$	S=1.3	565
$egin{array}{c} \mathcal{K}^0_L \omega \ \mathcal{K}^0_S \pi^+ \pi^- \end{array}$	F::1	•			0.04) %	C 11	670
J	[ii]	•			0.18)%	S=1.1	842
$K_S^0 \rho^0$					$\begin{array}{c} 0.6 \\ 0.8 \end{array}$) × 10 ⁻³		674
$K_{S}^{0}\omega, \ \omega \rightarrow \ \pi^{+}\pi^{-}$					0.6) \times 10 ⁻⁴		670
$K_{\mathcal{S}}^0(\pi^+\pi^-)_{\mathcal{S}-wave}$		(3.3	\pm	0.8) \times 10 ⁻³		842
$K_S^0 f_0(980), f_0 \to \pi^+ \pi^-$		(1.20	+	$_{0.23}^{0.40}) \times 10^{-3}$		549
$K_S^0 f_0(1370), f_0 \to \pi^+ \pi^-$	-	(2.8	+	$\begin{array}{c} 0.9 \\ 1.3 \end{array}) \times 10^{-3}$		†
$K_S^0 f_2(1270), f_2 \to \pi^+ \pi^-$		(9	+:	$^{10}_{6}$) × 10 ⁻⁵		262
$K^*(892)^-\pi^+, K^{*-} \rightarrow K^0_S\pi^-$		(1.64	+	0.14) %		711
$K_0^*(1430)^-\pi^+, \ K_0^{*-} ightarrow K_0^0\pi^-$		(2.67	+	$^{0.40}_{0.33}$) \times 10 ⁻³		378
$K_2^*(1430)^-\pi^+, K_2^{*-} \to K_5^0\pi^-$		(3.4	+	$^{1.9}_{1.0}$) × 10^{-4}		367
$K^*(1680)^-\pi^+, K^{*-} \rightarrow K_5^0\pi^-$		(4.4	\pm	3.5) × 10 ⁻⁴		46
$K^*(892)^+\pi^-, K^{*+} \rightarrow K_S^0\pi^+$	[<i>uu</i>]	(1.13	+	$^{0.60}_{0.34}$) \times 10 ⁻⁴		711
$K_0^*(1430)^+\pi^-, K_0^{*+} \rightarrow K_0^0\pi^+$	[uu]	<	1.4		× 10 ⁻⁵	CL=95%	-
$K_2^*(1430)^+\pi^-, K_2^{*+} \rightarrow K_5^0\pi^+$	[uu]	<	3.4		× 10 ⁻⁵	CL=95%	_
$K_S^0\pi^+\pi^-$ nonresonant		(2.5	+	$\begin{array}{c} 6.0 \\ 1.6 \end{array}$) × 10 ⁻⁴		842
$\kappa^-\pi^+\pi^0$					0.6) %	S=2.2	844
$K^-\rho^+$					0.7) %	J 2.2	675
$K^{-}\rho(1700)^{+}, \ \rho^{+} \rightarrow \ \pi^{+}\pi^{0}$		•			1.8) \times 10 ⁻³		†

$K^*(892)^-\pi^+$, $K^*(892)^-\to$		(2.31	+ 0.40 - 0.20) %		711
$\overline{K}^*(892)^0\pi^0$, $\overline{K}^*(892)^0 o$		(1.95	± 0.25) %		711
$K_0^-\pi^+ \ K_0^*(1430)^-\pi^+, \ K_0^{*-} ightarrow \ K^-\pi^0$		(4.8	± 2.2) × 10 ⁻³		378
$\overline{K}_0^*(1430)^0\pi^0$, $\overline{K}_0^{*0} o$		(5.9	+ 5.0 - 1.6	$) \times 10^{-3}$		379
$K^{-}\pi^{+}$ $K^{*}(1680)^{-}\pi^{+}$, $K^{*-}\to$ $K^{-}\pi^{0}$		(1.9	± 0.7	$) \times 10^{-3}$		46
$K^-\pi^+\pi^0$ nonresonant		(1.15	+ 0.60 - 0.20) %		844
$K_{S}^{0} 2\pi^{0}$		(0 1	+ 11	$) \times 10^{-3}$	S=2.2	843
$K_{I}^{0}\pi^{0}\pi^{0}$		•	± 0.06	*	5—2.2	
		•				843
$\frac{\mathcal{K}_{S}^{0}(2\pi^{0})_{S-wave}}{\mathcal{K}^{*}(892)^{0}\pi^{0}, \ \mathcal{K}^{*}^{*}0} \rightarrow \mathcal{K}_{S}^{0}\pi^{0}$				$) \times 10^{-3}$		
				$) \times 10^{-3}$		711
$\overline{\mathcal{K}}^*(1430)^0\pi^0,\;\;\overline{\mathcal{K}}^{*0} ightarrow \mathcal{K}^0_S\pi^0$		(4	±23) × 10 ⁻⁵		_
$\overline{\mathcal{K}}^*(1680)^0\pi^0, \ \overline{\mathcal{K}}^{*0} ightarrow \mathcal{K}^0_S\pi^0$		(1.0	± 0.4	$) \times 10^{-3}$		-
$K_S^0 f_2(1270), f_2 \rightarrow 2\pi^0$		(2.3	\pm 1.1	$) \times 10^{-4}$		_
$2 \overset{\circ}{K_{S}^{0}}$, one $\overset{\circ}{K_{S}^{0}} ightarrow 2 \pi^{0}$				$) \times 10^{-4}$		_
$K_5^0 3\pi^0$				$) \times 10^{-3}$		815
$K^{-}2\pi^{+}\pi^{-}$	[ii]	`	± 0.14	•	S=1.1	813
$K^-\pi^+\rho^0$ total	["]	•	± 0.14 ± 0.31	•	5-1.1	609
$K^-\pi^+\rho^0$ 3-body		•		$) \times 10^{-3}$		609
$\overline{K}^*(892)^0 \rho^0$, $\overline{K}^{*0} \rightarrow$		•	± 0.05	•		416
$\frac{K^-\pi^+}{K^*(892)^0} ho^0$ transverse, $\overline{K}^{*0} ightarrow K^-\pi^+$		(1.2	± 0.4) %		417
$K^{-}a_{1}(1260)^{+},~~a_{1}^{+} ightarrow ho^{0}\pi^{+}$		(4.32	± 0.32) %		327
$K_1(1270)^-\pi^+$, $K_1^- o$		(3.9	± 0.4	$) \times 10^{-3}$		_
$K^-\pi^+\pi^-$ total $K_1(1270)^-\pi^+, \ K_1^- ightarrow \overline{K}^*(892)^0\pi^-, \ \overline{K}^{*0} ightarrow$		(6.6	± 2.3) × 10 ⁻⁴		484
$\kappa^-\pi^+$						
$K^-2\pi^+\pi^-$ nonresonant		`	\pm 0.07	,		813
. 3	[vv]	`	\pm 0.6	,		813
$K^0_S \eta, \ \eta ightarrow \ \pi^+ \pi^- \pi^0$		`		$) \times 10^{-3}$		772
$K_{\mathcal{S}}^{0}\omega$, $\omega ightarrow~\pi^{+}\pi^{-}\pi^{0}$		(9.9	\pm 0.6	$) \times 10^{-3}$		670
$K^{-}\pi^{+}2\pi^{0}$		(8.86	± 0.23) %		815
$K^-\pi^+3\pi^0$		(9.5	\pm 0.4	$) \times 10^{-3}$		774
$K^-\pi^+\pi^-2\pi^0$		(1.27	± 0.06) %		773

Fractions of some of the following modes with resonances have already appeared above as submodes of particular charged-particle modes. These nine modes below are all corrected for unseen decays of the resonances.

Hadronic modes with three K's

Pionic modes

	i ionic modes		
$\pi^+\pi^-$	$(1.454 \pm 0.024) \times 10^{-3}$	S=1.4	922
$2\pi^0$	$(8.26 \pm 0.25) \times 10^{-4}$		923
$\pi^+\pi^-\pi^0$	(1.49 ± 0.07) %	S=2.3	907
$ ho^+\pi^-$	($1.01~\pm~0.05$) %		764
$ ho^0 \pi^0$	$(3.86 \pm 0.24) \times 10^{-3}$		764
$ ho^-\pi^+$	$(5.15 \pm 0.26) \times 10^{-3}$		764
$ ho(1450)^{+}\pi^{-}$, $ ho^{+} ightarrow \pi^{+}\pi^{0}$	(1.6 ± 2.1) $ imes 10^{-5}$		_
$ ho(1450)^0\pi^0$, $ ho^0 o \pi^+\pi^-$	(4.5 \pm 2.0) $ imes$ 10 ⁻⁵		_
$\rho(1450)^-\pi^+, \ \rho^- \to \ \pi^-\pi^0$	$(2.7 \pm 0.4) \times 10^{-4}$		_
$ ho(1700)^{+}\pi^{-}$, $ ho^{+} ightarrow \pi^{+}\pi^{0}$	$(6.1 \pm 1.5) \times 10^{-4}$		_
$\rho(1700)^0 \pi^0$, $\rho^0 \to \pi^+ \pi^-$	$(7.4 \pm 1.8) \times 10^{-4}$		_
$ ho(1700)^-\pi^+$, $ ho^- o \pi^-\pi^0$	$(4.8 \pm 1.1) \times 10^{-4}$		_
$f_0(980)\pi^0$, $f_0 \to \pi^+\pi^-$	$(3.7 \pm 0.9) \times 10^{-5}$		_
$f_0(500)\pi^0$, $f_0 \to \pi^+\pi^-$	(1.22 \pm 0.22) \times 10 ⁻⁴		_
$f_0(1370)\pi^0$, $f_0 o \pi^+\pi^-$	$(5.5 \pm 2.1) imes 10^{-5}$		_
$f_0(1500)\pi^0$, $f_0 ightarrow \pi^+\pi^-$	$(5.8 \pm 1.6) \times 10^{-5}$		_
$\mathit{f}_{0}(1710)\pi^{0}$, $\mathit{f}_{0} ightarrow \pi^{+}\pi^{-}$	$(4.6 \pm 1.6) \times 10^{-5}$		_
$f_2(1270)\pi^0$, $f_2 ightarrow~\pi^+\pi^-$	$(1.97 \pm 0.21) \times 10^{-4}$		_
$\pi^+\pi^-\pi^0$ nonresonant	$(1.3 \pm 0.4) \times 10^{-4}$		907
$3\pi^0$	$(2.0 \pm 0.5) \times 10^{-4}$		908
$2\pi^{+}2\pi^{-}$	$(7.56 \pm 0.20) \times 10^{-3}$		880

$a_1(1260)^+\pi^-$, $a_1^+ o$		(4.53	±	0.31) × 10 ⁻³		_
$2\pi^+\pi^-$ total $a_1(1260)^+\pi^-$, $a_1^+ o$		(3.13	\pm	0.21) × 10 ⁻³		_
$ ho^0\pi^+$ <i>S</i> -wave $a_1(1260)^+\pi^-$, $a_1^+ ightarrow$		(1.9	±	0.5) × 10 ⁻⁴		_
$ ho^0\pi^+$ D -wave $a_1(1260)^+\pi^-$, $a_1^+ ightarrow$		(6.4	\pm	0.7) × 10 ⁻⁴		_
$a_1(1260)^-\pi^+$, $a_1^- ightarrow$		(2.3	±	0.9) × 10 ⁻⁴		_
$ ho^0\pi^-$ <i>S</i> -wave $a_1(1260)^-\pi^+$, $a_1^- ightarrow~\sigma\pi^-$		(6.0	±	3.4) × 10 ⁻⁵		_
$\pi(1300)^{+}\pi^{-}$, $\pi(1300)^{+}\to$) × 10 ⁻⁴		_
$\pi(1300)^{-}\pi^{+}$, $\pi(1300)^{-}\to$		(2.3	±	2.2	$) \times 10^{-4}$		_
$a_1(1640)^+\pi^-, a_1^+ o$		(3.2	±	1.6	$)\times10^{-4}$		_
$ ho^0\pi^+$ <i>D</i> -wave $a_1(1640)^+\pi^-$, $a_1^+ o\sigma\pi^+$		(1 0		1 /) × 10 ⁻⁴		_
$\pi_2(1670)^+\pi^-, \ \pi_2^+ \to 0.8$		•				$) \times 10^{-4}$		_
$f_2(1270)^0 \pi^+, f_2^0 \rightarrow \pi^+ \pi^-$		(2.0		0.9) ~ 10		
$\pi_2(1670)^+\pi^-$, $\pi_2^+ o \sigma\pi^+$		(2.6	土	1.0) × 10 ⁻⁴		_
$2\rho^0$ total		•) × 10 ⁻³		518
$2\rho_{\rm o}^{0}$, parallel helicities		(8.3	\pm	3.2	$) \times 10^{-5}$		_
$2 ho^0$, perpendicular helici-		(4.8	\pm	0.6	$) \times 10^{-4}$		_
ties $2 ho^0$, longitudinal helicities		(1.27	\pm	0.10) × 10 ⁻³		_
$2\rho(770)^{0}$, <i>S</i> -wave) × 10 ⁻⁴		_
$2\rho(770)^0$, <i>P</i> -wave						$) \times 10^{-4}$		_
$2\rho(770)^0$, <i>D</i> -wave						$) \times 10^{-4}$		_
Resonant $(\pi^+\pi^-)\pi^+\pi^-$		(1.51	\pm	0.12	$) \times 10^{-3}$		_
3-body total						4		
$\sigma \pi^+ \pi^-$) × 10 ⁻⁴		_
$\sigma \rho (770)^0$						$) \times 10^{-4}$		_
$f_0(980)\pi^+\pi^-, f_0 \rightarrow$		(1.8	土	0.5	$) \times 10^{-4}$		_
$f_{2}(1270)\pi^{+}\pi^{-}, \ f_{2} ightarrow \pi^{+}\pi^{-}$		(3.7	±	0.6	$)\times10^{-4}$		_
$2f_2(1270), f_2 \rightarrow \pi^+\pi^-$		(1.6	\pm	1.8) × 10 ⁻⁴		_
$f_0(1370)\sigma$, $f_0 \rightarrow$		(1.6	\pm	0.5	$) \times 10^{-3}$		_
$\pi^{+}\pi^{-}2\pi^{0}$		1	1.002)	U U31	1) %		882
$4\pi^0$		•				$) \times 10^{-4}$		883
$\eta\pi^0$	[_{XX}]					$) \times 10^{-4}$	S=1.1	846
$\omega \pi^0$	[xx]					$) \times 10^{-4}$	J 1.1	761
		`						

HTTP://PDG.LBL.GOV

Page 55

$\omega\eta$	$(1.98 \pm 0.18) \times 10^{-3}$	S=1.1	648
$2\pi^{+}2\pi^{-}\pi^{0}$	$(3.46 \pm 0.21) \times 10^{-3}$		844
$\pi^{+}\pi^{-}3\pi^{0}$	$(1.53 \pm 0.21) \times 10^{-3}$		847
$2\pi^{+}2\pi^{-}2\pi^{0}$	$(4.8 \pm 0.4) \times 10^{-3}$		798
$\eta\pi^+\pi^-$	[xx] $(1.16 \pm 0.07) \times 10^{-3}$		827
$\omega \pi^+ \pi^-$	[xx] $(1.33 \pm 0.20) \times 10^{-3}$		738
$\omega \pi^0 \pi^0$	$< 1.10 \times 10^{-3}$	CL=90%	740
$\eta 2\pi^0$	$(3.8 \pm 1.3) \times 10^{-4}$		829
$\pi^+\pi^-\pi^0\eta$	$(3.23 \pm 0.22) \times 10^{-3}$		797
$\eta 3\pi^0$	$(2.36 \pm 0.28) \times 10^{-3}$		799
$\eta 2\pi^+ 2\pi^-$	$(6.0 \pm 1.2) \times 10^{-4}$		751
$3\pi^{+}3\pi^{-}$	$(4.3 \pm 1.2) \times 10^{-4}$		795
$\eta'(958)\pi^{0}$	$(9.2 \pm 1.0) \times 10^{-4}$		678
$\eta'(958)\pi^{+}\pi^{-}$	$(4.5 \pm 1.7) \times 10^{-4}$		650
2η	$(2.11 \pm 0.19) \times 10^{-3}$	S=2.2	754
$2\eta\pi^0$	$(7.3 \pm 2.2) \times 10^{-4}$		699
$2\eta\pi^+\pi^-$	$(8.5 \pm 1.4) \times 10^{-4}$		623
3η	$< 1.3 \times 10^{-4}$	CL=90%	421
$\eta \eta'(958)$	$(1.01 \pm 0.19) \times 10^{-3}$		537
	Hadronic modes with a $K\overline{K}$ pair		
K^+K^-	$(4.08 \pm 0.06) \times 10^{-3}$	S=1.6	791
$2K_{S}^{0}$	$(1.41 \pm 0.05) \times 10^{-4}$	S=1.1	789
$K_c^0K^-\pi^+$	$(3.3 \pm 0.5) \times 10^{-3}$	S=1.1	739

$K^*(892)^-K^+, K^{*-} ightarrow K^0_S\pi^-$	(6.2	± 1.0	$) \times 10^{-4}$	_
$K^*(1 ilde{4}10)^0K^0_{\mathcal S},\;\;K^{*0}$ $ ightarrow$	(5	± 8	$) \times 10^{-5}$	_
$egin{array}{cccc} {\mathcal K}^+\pi^+ \ {\mathcal K}^*(1410)^-{\mathcal K}^+, & {\mathcal K}^{*-} ightarrow \ {\mathcal K}^0_S\pi^- \end{array}$	(2.6	± 2.0	$) \times 10^{-4}$	_
$(K^{+}\pi^{-})_{S-wave}K_{S}^{0}$	(3.7	± 1.9	$) \times 10^{-4}$	739
$({\mathcal K}^0_{\mathcal S}\pi^-)_{{\mathcal S}-wave}{\mathcal K}^+$	(1.4	± 0.6	$) \times 10^{-4}$	739
$a_0(980)^+\pi^-$, $a_0^+ o K_S^0K^+$	(6	\pm 4	$) \times 10^{-4}$	_
$a_0(1450)^+\pi^-$, $a_0^+\to$			$) \times 10^{-5}$	_
$K_S^0K^+$	`		,	
$ ho$ (1700) $^+\pi^-$, $ ho^+ ightarrow~K^0_SK^+$	(1.1	± 0.6	$) \times 10^{-5}$	_
$K^+K^-\pi^0$	(3.42	± 0.1	$5) \times 10^{-3}$	743
$K^*(892)^+ K^-, \ K^*(892)^+ ightarrow K^+ \pi^0$			8) $\times 10^{-3}$	_
$K^*(892)^-K^+, K^*(892)^- \to K^-\pi^0$	(5.4	± 0.4	$) \times 10^{-4}$	_
$(K^{+}\pi^{0})_{S-wave}K^{-}$	(2.43	± 0.1	$8) \times 10^{-3}$	743
$(K^-\pi^0)_{S-wave}K^+$			$) \times 10^{-4}$	743
$f_0(980)\pi^0$, $f_0 \to K^+K^-$			$) \times 10^{-4}$	_
$\phi\pi^0$, $\phi o K^+K^-$			$) \times 10^{-4}$	_
$2K_S^0\pi^0$			$\times 10^{-4}$	CL=90% 740
$K^+K^-\eta$	(5.9	± 1.9	$) \times 10^{-5}$	514
ϕ (1020) η			$(2) \times 10^{-4}$	489
$K^+K^-\eta$ nonresonant) × 10 ⁻⁵	514
$2K_{S}^{0}\eta$	(1.3	± 0.6	$) \times 10^{-4}$	508
$K^+K^-\pi^0\pi^0$			$) \times 10^{-4}$	681
$K^+K^-\pi^+\pi^-$			$1) \times 10^{-3}$	
(++-)		⊥ ∪.1	T) X IO .	077
$\phi(\pi^+\pi^-)_{S-wave}, \ \phi \rightarrow$	(10		$) \times 10^{-5}$	677 614
K^+K^-	(10	± 5) × 10 ⁻⁵	614
$(\phi ho^0)_{S-wave}$, $\phi ightarrow~K^+K^-$	(10 (6.9	± 5 ± 0.6	$) \times 10^{-5}$ $) \times 10^{-4}$	
$(\phi ho^0)_{S-wave},\; \phi ightarrow\; K^+K^- \ (\phi ho^0)_{P-wave},\; \phi ightarrow\; K^+K^-$	(10 (6.9 (4.0	\pm 5 \pm 0.6 \pm 1.9	$) \times 10^{-5}$ $) \times 10^{-4}$ $) \times 10^{-5}$	614
$(\phi \rho^0)_{S-wave}, \ \phi \rightarrow K^+ K^- \ (\phi \rho^0)_{P-wave}, \ \phi \rightarrow K^+ K^- \ (\phi \rho^0)_{D-wave}, \ \phi \rightarrow K^+ K^-$	(10 (6.9 (4.0 (4.2	\pm 5 \pm 0.6 \pm 1.9 \pm 1.4	$) \times 10^{-5}$ $) \times 10^{-4}$ $) \times 10^{-5}$ $) \times 10^{-5}$	614
$K^{+}K^{-}$ $(\phi\rho^{0})_{S-wave}, \phi \to K^{+}K^{-}$ $(\phi\rho^{0})_{P-wave}, \phi \to K^{+}K^{-}$ $(\phi\rho^{0})_{D-wave}, \phi \to K^{+}K^{-}$ $(K^{*}(892)^{0}\overline{K}^{*}(892)^{0})_{S-wave},$	(10 (6.9 (4.0 (4.2	\pm 5 \pm 0.6 \pm 1.9 \pm 1.4	$) \times 10^{-5}$ $) \times 10^{-4}$ $) \times 10^{-5}$	614
$K^{+}K^{-}$ $(\phi \rho^{0})_{S-wave}, \phi \to K^{+}K^{-}$ $(\phi \rho^{0})_{P-wave}, \phi \to K^{+}K^{-}$ $(\phi \rho^{0})_{D-wave}, \phi \to K^{+}K^{-}$ $(K^{*}(892)^{0}\overline{K^{*}}(892)^{0})_{S-wave}, K^{*0} \to K^{\pm}\pi^{\mp}$ $(K^{*}(892)^{0}\overline{K^{*}}(892)^{0})_{P-wave}, K^{*0} \to K^{\pm}\pi^{\mp}$	(10 (6.9 (4.0 (4.2 (2.24	± 5 ± 0.6 ± 1.9 ± 1.4 ± 0.1	$) \times 10^{-5}$ $) \times 10^{-4}$ $) \times 10^{-5}$ $) \times 10^{-5}$	614
$K^{+}K^{-}$ $(\phi\rho^{0})_{S-wave}, \phi \to K^{+}K^{-}$ $(\phi\rho^{0})_{P-wave}, \phi \to K^{+}K^{-}$ $(\phi\rho^{0})_{D-wave}, \phi \to K^{+}K^{-}$ $(K^{*}(892)^{0}\overline{K}^{*}(892)^{0})_{S-wave},$ $K^{*0} \to K^{\pm}\pi^{\mp}$ $(K^{*}(892)^{0}\overline{K}^{*}(892)^{0})_{P-wave},$ $K^{*} \to K^{\pm}\pi^{\mp}$ $(K^{*}(892)^{0}\overline{K}^{*}(892)^{0})_{D-wave},$	(10 (6.9 (4.0 (4.2 (2.24 (1.20	± 5 ± 0.6 ± 1.9 ± 1.4 ± 0.1 ± 0.0	$) \times 10^{-5}$ $) \times 10^{-4}$ $) \times 10^{-5}$ $) \times 10^{-5}$ $) \times 10^{-4}$	614
$K^{+}K^{-}$ $(\phi\rho^{0})_{S-wave}, \phi \to K^{+}K^{-}$ $(\phi\rho^{0})_{P-wave}, \phi \to K^{+}K^{-}$ $(\phi\rho^{0})_{D-wave}, \phi \to K^{+}K^{-}$ $(K^{*}(892)^{0}\overline{K}^{*}(892)^{0})_{S-wave},$ $K^{*0} \to K^{\pm}\pi^{\mp}$ $(K^{*}(892)^{0}\overline{K}^{*}(892)^{0})_{P-wave},$ $K^{*} \to K^{\pm}\pi^{\mp}$ $(K^{*}(892)^{0}\overline{K}^{*}(892)^{0})_{D-wave},$ $K^{*} \to K^{\pm}\pi^{\mp}$ $K^{*}(892)^{0}(K^{-}\pi^{+})_{S-wave}$	(10 (6.9 (4.0 (4.2 (2.24 (1.20 (4.7	± 5 ± 0.6 ± 1.9 ± 1.4 ± 0.1 ± 0.0 ± 0.4	$) \times 10^{-5}$ $) \times 10^{-4}$ $) \times 10^{-5}$ $) \times 10^{-5}$ $) \times 10^{-4}$ $) \times 10^{-4}$	614
$K^{+}K^{-}$ $(\phi\rho^{0})_{S-wave}, \phi \to K^{+}K^{-}$ $(\phi\rho^{0})_{P-wave}, \phi \to K^{+}K^{-}$ $(\phi\rho^{0})_{D-wave}, \phi \to K^{+}K^{-}$ $(K^{*}(892)^{0}\overline{K}^{*}(892)^{0})_{S-wave},$ $K^{*0} \to K^{\pm}\pi^{\mp}$ $(K^{*}(892)^{0}\overline{K}^{*}(892)^{0})_{P-wave},$ $K^{*} \to K^{\pm}\pi^{\mp}$ $(K^{*}(892)^{0}\overline{K}^{*}(892)^{0})_{D-wave},$	(10 (6.9 (4.0 (4.2 (2.24 (1.20 (4.7 (1.4	± 5 ± 0.6 ± 1.9 ± 1.4 ± 0.1 ± 0.0 ± 0.4 ± 0.6	$) \times 10^{-5}$ $) \times 10^{-4}$ $) \times 10^{-5}$ $) \times 10^{-5}$ $3) \times 10^{-4}$ $8) \times 10^{-4}$ $) \times 10^{-5}$	614

Other $K\overline{K}X$ modes. They include all decay modes of the ϕ , η , and ω .

Radiative modes

Doubly Cabibbo suppressed (DC) modes or $\Delta C = 2$ forbidden via mixing (C2M) modes

HTTP://PDG.LBL.GOV

Page 58

$\Delta C = 1$ weak neutral current (C1) modes, Lepton Family number (LF) violating modes, Lepton (L) or Baryon (B) number violating modes

Lopton (L)	J. Du	you (b) namber v	iolating moa	-	
$\gamma \gamma$	C1	< 8.5	$\times 10^{-7}$	CL=90%	932
e^+e^-	C1	< 7.9	$\times 10^{-8}$	CL=90%	932
$\mu^+\mu^-$	C1	< 6.2	$\times10^{-9}$	CL=90%	926
$\pi^{0}e^{+}e^{-}$	C1	< 4	$\times 10^{-6}$	CL=90%	928
$\pi^0\mu^+\mu^-$	C1	< 1.8	$\times10^{-4}$	CL=90%	915
$\pi^0 u \overline{ u}$		< 2.1	$\times10^{-4}$	CL=90%	928
ηe^+e^-	C1	< 3	$\times10^{-6}$	CL=90%	852
$\eta \mu^+ \mu^-$	C1	< 5.3	$\times10^{-4}$	CL=90%	838
$\pi^{+}\pi^{-}e^{+}e^{-}$	C1	< 7	$\times 10^{-6}$	CL=90%	922
$ ho^0e^+e^-$	C1	< 1.0	$\times 10^{-4}$	CL=90%	771
$\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	C1	$(9.6 \pm 1.$			894
$\pi^+\pi^-\mu^+\mu^-$ (non-res)		< 5.5	$\times 10^{-7}$	CL=90%	_
$ ho^0 \mu^+ \mu^-$	C1	< 2.2	$\times10^{-5}$	CL=90%	754
$\omega e^+ e^-$	C1	< 6	$\times 10^{-6}$	CL=90%	768
$\omega \mu^+ \mu^-$	C1	< 8.3	$\times10^{-4}$	CL=90%	751
$K^- K^+ e^+ e^-$	C1	< 1.1	$\times10^{-5}$	CL=90%	791
ϕe^+e^-	C1	< 5.2	$\times10^{-5}$	CL=90%	654
$\mathcal{K}^-\mathcal{K}^+\mu^+\mu^-$	C1	($1.54 \pm 0.$	$32) \times 10^{-7}$		710
$K^-K^+\mu^+\mu^-$ (non-res)		< 3.3	$\times10^{-5}$	CL=90%	_
$\phi \mu^+ \mu^-$	C1	< 3.1	$\times10^{-5}$	CL=90%	631
$\overline{K}^0 e^+ e^-$		[oo] < 2.4	$\times10^{-5}$	CL=90%	866
$\overline{K}{}^0\mu^+\mu^-$		[oo] < 2.6	$\times 10^{-4}$	CL=90%	852
$\mathit{K^-\pi^+e^+e^-}$, $675 <$		($4.0 \pm 0.$	5) \times 10 ⁻⁶		_
$m_{ee}~<$ 875 MeV					
$\mathit{K}^-\pi^+e^+e^-$, $1.005<$		< 5	\times 10 ⁻⁷	CL=90%	_
$m_{ee} < 1.035 \text{ GeV}$					
$\overline{K}^*(892)^0 e^+ e^-$		[oo] < 4.7	\times 10 ⁻⁵	CL=90%	719
$K^-\pi^+\mu^+\mu^-$	C1	< 3.59	$\times 10^{-4}$	CL=90%	829

$K^-\pi^+\mu^+\mu^-$, 675 $<$ $m_{\mu\mu}$ $<$ 875 MeV		(4	4.2 ± 0.4	$) \times 10^{-6}$		_
$K^*(892)^0 \mu^+ \mu^-$		[00] < 2	2.4	$\times 10^{-5}$	CL=90%	700
$\pi^{+}\pi^{-}\pi^{0}\mu^{+}\mu^{-}$	C1	< 8		× 10 ⁻⁴	CL=90%	863
$\mu^{\pm}e^{\mp}$	LF	[z] < 1	1.3	$\times 10^{-8}$	CL=90%	929
$\pi^0 e^{\pm} \mu^{\mp}$	LF	[z] < 8	8.0	$\times 10^{-7}$	CL=90%	924
$\etae^{\pm}\mu^{\mp}$.	LF	[z] < 2	2.25	$\times 10^{-6}$	CL=90%	848
$\pi^+\pi^-e^\pm\mu^\mp$	LF	[z] < 1	1.71	$\times 10^{-6}$	CL=90%	911
$ ho^0e^\pm\mu^\mp$	LF	[z] < 5	5.0	$\times 10^{-7}$	CL=90%	767
$\omega\mathrm{e}^{\pm}\mu^{\mp}$	LF	[z] < 1	1.71	\times 10 ⁻⁶	CL=90%	764
$K^-K^+e^\pm\mu^\mp$	LF	[z] < 1	1.00	\times 10 ⁻⁶	CL=90%	754
$\phi\mathrm{e}^{\pm}\mu^{\mp}$	LF	[z] < 5	5.1	\times 10 ⁻⁷	CL=90%	648
$\overline{K}^0 e^{\pm} \mu^{\mp}$	LF	[z] < 1	1.74	\times 10 ⁻⁶	CL=90%	863
$\mathit{K}^-\pi^+e^\pm\mu^\mp$	LF	[z] < 1	1.90	$\times 10^{-6}$	CL=90%	848
$\overline{\mathit{K}}^*$ (892) $^0e^\pm\mu^\mp$	LF	[z] < 1	1.25	$\times 10^{-6}$	CL=90%	714
$2\pi^{-}2e^{+}$	L	< 6	9.1	\times 10 ⁻⁷	CL=90%	922
$2\pi^{-}2\mu^{+}$	L	< 1	1.52	$\times 10^{-6}$	CL=90%	894
$\mathcal{K}^-\pi^-2e^+$	L	< ;	5.0	\times 10 ⁻⁷	CL=90%	861
$\mathcal{K}^-\pi^-2\mu^+$	L	< ;	5.3	$\times 10^{-7}$	CL=90%	829
$2K^{-}2e^{+}$	L	< 3	3.4	$\times 10^{-7}$	CL=90%	791
$2K^-2\mu^+$	L	< 1	1.0	$\times 10^{-7}$	CL=90%	710
$\pi^{-}\pi^{-}e^{+}\mu^{+}$	L	< 3	3.06	$\times 10^{-6}$	CL=90%	911
$\mathit{K}^-\pi^-e^+\mu^+$	L	< 2	2.10	$\times 10^{-6}$	CL=90%	848
$2K^{-}e^{+}\mu^{+}$	L	< !	5.8	$\times10^{-7}$	CL=90%	754
pe ⁻	L,B	< 2	2.2	$\times 10^{-6}$	CL=90%	696
$\frac{1}{p}e^+$	L,B	< 1	1.2	\times 10 ⁻⁶	CL=90%	696

$D^*(2007)^0$

$$I(J^P) = \frac{1}{2}(1^-)$$

I, J, P need confirmation.

Created: 7/10/2023 15:48

Mass
$$m=2006.85\pm0.05$$
 MeV (S = 1.1) $m_{D^{*0}}-m_{D^0}=142.014\pm0.030$ MeV (S = 1.5) Full width Γ < 2.1 MeV, CL = 90%

 $\overline{\it D}^*(2007)^0$ modes are charge conjugates of modes below.

<i>D</i> *(2007) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^0\pi^0$	(64.7 ±0.9) %	43
$D^0 \gamma$	(35.3 ± 0.9) %	137
$D^0 e^+ e^-$	$(3.91\pm0.33)\times10^{-3}$	137

 $D^*(2010)^{\pm}$

$$I(J^P) = \frac{1}{2}(1^-)$$

I, J, P need confirmation.

Mass $m = 2010.26 \pm 0.05 \text{ MeV}$

 $m_{D^*(2010)^+} - m_{D^+} = 140.603 \pm 0.015 \; {
m MeV}$

 $m_{D^*(2010)^+} - m_{D^0} = 145.4258 \pm 0.0017 \text{ MeV}$

Full width $\Gamma = 83.4 \pm 1.8 \text{ keV}$

 $D^*(2010)^-$ modes are charge conjugates of the modes below.

$D^*(2010)^{\pm}$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^0\pi^+$	(67.7±0.5) %	39
$D^+\pi^0$	(30.7±0.5) %	38
$D^+\gamma$	$(1.6\pm0.4)\%$	136

 $D_0^*(2300)$

$$I(J^P) = \frac{1}{2}(0^+)$$

was $D_0^*(2400)$

Mass
$$m=2343\pm 10$$
 MeV (S = 1.5)
Full width $\Gamma=229\pm 16$ MeV

D_0^* (2300)	DECAY	MODES
----------------	-------	-------

Fraction (Γ_i/Γ)

p (MeV/c)

Created: 7/10/2023 15:48

 $D\pi^{\pm}$

seen

411

D₁(2420)

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass
$$m=2422.1\pm0.6$$
 MeV (S = 1.7) $m_{D_1(2420)^0}-m_{D^{*+}}=411.8\pm0.6$ MeV (S = 1.7) $m_{D_1(2420)^\pm}-m_{D_1(2420)^0}=4\pm4$ MeV Full width $\Gamma=31.3\pm1.9$ MeV (S = 2.8)

 $\overline{D}_1(2420)$ modes are charge conjugates of modes below.

D ₁ (2420) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^*(2007)^0 \pi$	seen	359

 $D_1(2430)^0$

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass $m=2412\pm 9~\text{MeV}$ Full width $\Gamma=314\pm 29~\text{MeV}$

D_1 (2430) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^*(2010)^+\pi^-$	seen	345

 $D_2^*(2460)$

$$I(J^P) = \frac{1}{2}(2^+)$$

Mass
$$m=2461.1^{+0.7}_{-0.8}~{\rm MeV}~{\rm (S=6.2)}$$
 $m_{D_2^*(2460)^0}-m_{D^+}=591.5^{+0.7}_{-0.8}~{\rm MeV}~{\rm (S=5.9)}$ $m_{D_2^*(2460)^0}-m_{D^{*+}}=450.9^{+0.7}_{-0.8}~{\rm MeV}~{\rm (S=5.9)}$ $m_{D_2^*(2460)^\pm}-m_{D_2^*(2460)^0}=2.4\pm1.7~{\rm MeV}$ Full width $\Gamma=47.3\pm0.8~{\rm MeV}~{\rm (S=1.5)}$

 $\overline{D}_{2}^{*}(2460)$ modes are charge conjugates of modes below.

D *(2460) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D\pi^-$	seen	509
$D^*(2010)\pi^-$	seen	389

 $D_3^*(2750)$

$$I(J^P) = \frac{1}{2}(3^-)$$

Mass
$$m=2763.1\pm3.2~{\rm MeV}~{\rm (S=2.1)}$$

Full width $\Gamma=66\pm5~{\rm MeV}$

D ₃ *(2750) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D\pi$	seen	743
$D^+\pi^-$	seen	739
$D^0\pi^\pm$	seen	743
$D^*\pi$	seen	639
$D^{*+}\pi^-$	seen	639

CHARMED, STRANGE MESONS $(C = \pm 1, S = \pm 1)$ (including possibly non- $q\overline{q}$ states)

 $D_s^+ = c\overline{s}, \ D_s^- = \overline{c}s,$ similarly for D_s^* 's

 D_s^\pm

$$I(J^P) = 0(0^-)$$

Mass
$$m=1968.35\pm0.07$$
 MeV $m_{D_s^\pm}-m_{D^\pm}=98.69\pm0.05$ MeV Mean life $\tau=(504\pm4)\times10^{-15}$ s $~(S=1.2)$ $c au=151.2~\mu{\rm m}$

CP-violating decay-rate asymmetries

$$A_{CP}(\mu^{\pm}\nu) = (-0.2 \pm 2.5)\%$$

$$A_{CP}(\tau^{\pm}\nu) \text{ in } D_s^+ \to \tau^+\nu_{\tau}, D_s^- \to \tau^-\overline{\nu}_{\tau} = (3 \pm 5)\%$$

$$A_{CP}(K^{\pm}K_s^0) = (0.09 \pm 0.26)\%$$

$$A_{CP}(K^{\pm}K_s^0) = (-0.5 \pm 0.9)\%$$

$$A_{CP}(K^{\pm}K_s^0) = (-0.38 \pm 0.27)\%$$

$$A_{CP}(K^{\pm}K_s^0) = (-2 \pm 6)\%$$

$$A_{CP}(K^{\pm}K_s^0) = (-2 \pm 6)\%$$

$$A_{CP}(K^{\pm}K_s^0) = (3 \pm 5)\%$$

$$A_{CP}(K^{\pm}K_s^0) = (-2 \pm 6)\%$$

$$A_{CP}(K^$$

CP violating asymmetries of P-odd (T-odd) moments

$$A_T(K_S^0 K^{\pm} \pi^+ \pi^-) = (-14 \pm 8) \times 10^{-3} [hh]$$

$D_s^+ \to \phi \ell^+ \nu_\ell$ form factors

$$\begin{array}{l} r_2 = 0.84 \pm 0.11 \quad (\mathsf{S} = 2.4) \\ r_v = 1.80 \pm 0.08 \\ \hline \Gamma_L/\Gamma_T = 0.72 \pm 0.18 \\ f_+(0) \left| V_{cs} \right| \text{ in } D_s^+ \rightarrow \ \eta \, e^+ \nu_e = 0.446 \pm 0.007 \\ f_+(0) \left| V_{cs} \right| \text{ in } D_s^+ \rightarrow \ \eta' \, e^+ \nu_e = 0.48 \pm 0.05 \\ f_+(0) \left| V_{cd} \right| \text{ in } D_s^+ \rightarrow \ K^0 \, e^+ \nu_e = 0.162 \pm 0.019 \\ r_v \equiv V(0)/A_1(0) \text{ in } D_s^+ \rightarrow \ K^*(892)^0 \, e^+ \nu_e = 1.7 \pm 0.4 \\ r_2 \equiv A_2(0)/A_1(0) \text{ in } D_s^+ \rightarrow \ K^*(892)^0 \, e^+ \nu_e = 0.77 \pm 0.29 \\ f_{D_s^+} \left| V_{cs} \right| \text{ in } D_s^+ \rightarrow \ \mu^+ \nu_\mu = 243 \pm 5 \text{ MeV} \\ f_{D_s^+} \left| V_{cs} \right| \text{ in } D_s^+ \rightarrow \ \tau^+ \nu_\tau = 245.3 \pm 3.0 \text{ MeV} \end{array}$$

Unless otherwise noted, the branching fractions for modes with a resonance in the final state include all the decay modes of the resonance. D_s^- modes are charge conjugates of the modes below.

D^+	DECAY	MODES
	DECAI	IVIODES

Fraction (Γ_i/Γ)

Scale factor/ pConfidence level (MeV/c)

	Inclusi	ve n	node	2				
e^+ semileptonic	[zz]	(±0.15) %	6		_
π^+ anything		(1	19.3	± 1.4	,			_
π^- anything		(43.2	± 0.9) %	6		_
π^0 anything		(1	23	± 7) %	6		_
K^- anything		(18.7	± 0.5) %	6		_
K^+ anything		(28.9	± 0.7) %	6		_
K_S^0 anything		(19.0	± 1.1) %	6		_
η anything	[aaa]	(29.9	± 2.8) %	6		_
ω anything		(6.1	± 1.4) %	6		_
η' anything	[bbb]	(10.3	± 1.4) %	6	S=1.1	_
$\mathit{f}_0(980)$ anything, $\mathit{f}_0 ightarrow \ \pi^+\pi^-$		<	1.3		9	6	CL=90%	_
ϕ anything		(15.7	± 1.0) %	6		_
K^+K^- anything		(15.8	±0.7) %	6		_
$K_S^0 K^+$ anything		(5.8	± 0.5) %	6		_
$K_S^0 K^-$ anything		(1.9	± 0.4) %	6		_
$2K_S^0$ anything		(1.70	± 0.32) %	6		_
$2K^{+}$ anything		<	2.6		>	< 10 ⁻	⁻³ CL=90%	_
2K ⁻ anything		<	6		>	< 10 ⁻	⁻⁴ CL=90%	_

Leptonic and semileptonic modes

-		•		
$e^+ \nu_e$	<	8.3	$\times 10^{-5}$ CL=90%	984
$\mu^+ u_\mu$	(5.43 ± 0.15)	$) \times 10^{-3}$	981
$ au^+ u_ au$	(5.32 ± 0.11)) %	182
$\gamma e^+ \nu_e$	<	1.3	$\times 10^{-4}$ CL=90%	984
$K^+K^-e^+\nu_e$		_		851
$K_S^0 K_S^0 e^+ u_e$	<	3.8	$\times 10^{-4}$ CL=90%	849
$\phi_{ m e}^+ u_{ m e}$	[<i>ccc</i>] (2.39 ± 0.16) % S=1.3	720
$\phi \mu^+ u_{\mu}$	(1.9 ± 0.5) %	715
$\eta e^+ \nu_e + \eta'(958) e^+ \nu_e$	[<i>ccc</i>] (3.03 ± 0.24)) %	_
$\eta\mathrm{e^+} u_\mathrm{e}$	[<i>ccc</i>] (2.32 ± 0.08)) %	908
$\eta'(958)e^+\nu_e$	[<i>ccc</i>] (8.0 ± 0.7	$) \times 10^{-3}$	751
$\eta \mu^+ u_{\mu}$	(2.4 ± 0.5) %	905
$\eta'(958)\mu^+ u_\mu$	(1.1 ± 0.5) %	747
$\omega e^+ \nu_e$	[ddd] <	2.0	$\times 10^{-3}$ CL=90%	829
$K^0 e^+ \nu_e$	(3.4 ± 0.4	$) \times 10^{-3}$	921
$K^*(892)^0 e^+ \nu_e$	[<i>ccc</i>] (2.15 ± 0.28)	$\times 10^{-3}$ S=1.1	782
$f_0(500)e^+\nu_e$, $f_0 \to \pi^0\pi^0$	<	7.3	$\times 10^{-4}$ CL=90%	_
$f_0(980)e^+\nu_e$, $f_0 \to \pi^0\pi^0$	(7.9 ± 1.5	$) \times 10^{-4}$	_
$a_0(980)^0e^+ u_e,\;\;a_0(980)^0 ightarrow$	<	1.2	$\times 10^{-4}$ CL=90%	_
$\pi^0 \stackrel{\pi^+ \eta}{e^+ \nu_e}$	<	6.4	$\times10^{-5}\text{CL}{=}90\%$	980

Hadronic modes with a $K\overline{K}$ pair

	•	
$K^+K^0_S$	$(1.450\pm0.035)\%$	850
$K^+K_I^{0}$	(1.49 ± 0.06)%	850
$K^+\overline{K}^{ar{0}}$	(2.95 ± 0.14)%	850
$K^+K^-\pi^+$ [ii]	(5.37 \pm 0.10)% S=1.1	805
	(4.5 ± 0.4) %	712
$\phi\pi^+$, $\phi o K^+K^-$ [eee]	(2.21 ± 0.06) %	712
$K^{+}\overline{K}^{*}(892)^{0}$	$(\ 12.7 \ \ ^{+4.0}_{-3.1} \ \) \%$	685
$\mathit{K}^{+}\overline{\mathit{K}}^{*}(892)^{0}$, $\overline{\mathit{K}}^{*0}$ $ ightarrow$	(2.58 ± 0.06)%	416
$\mathcal{K}^{+} \frac{\mathcal{K}^{-} \pi^{+}}{\mathcal{K}^{*}} (892)^{0}, \ \ \overline{\mathcal{K}}^{*0} ightarrow \mathcal{K}^{0}_{S} \pi^{0}$	$(4.8 \pm 0.5) \times 10^{-3}$	_
$\mathit{f}_{0}(980)\pi^{+}$, $\mathit{f}_{0} ightarrow~\mathit{K}^{+}\mathit{K}^{-}$	(1.11 ± 0.19)%	732
$\mathit{f}_{0}(1370)\pi^{+}$, $\mathit{f}_{0} ightarrow~\mathit{K}^{+}\mathit{K}^{-}$	$(7.1 \pm 2.9) \times 10^{-4}$	_
$\mathit{f}_{0}(1710)\pi^{+}$, $\mathit{f}_{0} ightarrow \mathit{K}^{+}\mathit{K}^{-}$	$(6.7 \pm 2.8) \times 10^{-4}$	198
$a_0(980)^+\pi^0$, $a_0^+ o K^+K_S^0$	$(1.1 \pm 0.4) \times 10^{-3}$	_
$a_0(1710)^+\pi^0$, $a_0^+ o$	$(3.5 \pm 0.6) \times 10^{-3}$	_
$K^+K^0_S$		
$K^+ \overline{K}_0^* (1430)^0$, $\overline{K}_0^* ightarrow$	(1.76 ± 0.25) $\times 10^{-3}$	218
$\mathcal{K}^-\pi^+$		

 $\eta \pi^+$

$$\begin{array}{c} \eta(1405)\,\pi^{+}, \ \eta(1405) \rightarrow \\ a_{0}(980)^{-}\pi^{+}, \ a_{0}^{-} \rightarrow \\ \eta^{\pi} \\ \eta^{\pi} \\ \eta(1405)\,\pi^{+}, \ \eta(1405) \rightarrow \\ a_{0}(980)^{+}\pi^{-}, \ a_{0}^{+} \rightarrow \\ \eta^{\pi^{+}} \\ f_{1}(1420)\,\pi^{+}, \ f_{1} \rightarrow \\ a_{0}(980)^{-}\pi^{+}, \ a_{0}^{-} \rightarrow \\ \eta^{\pi^{+}} \\ f_{1}(1420)\,\pi^{+}, \ f_{1} \rightarrow \\ a_{0}(980)^{-}\pi^{+}, \ a_{0}^{-} \rightarrow \\ \eta^{\pi^{-}} \\ f_{1}(1420)\,\pi^{+}, \ f_{1} \rightarrow \\ a_{0}(980)^{+}\pi^{-}, \ a_{0}^{+} \rightarrow \\ \eta^{\pi^{+}} \\ 3\pi^{+}2\pi^{-}\pi^{0} \\ \omega^{2}\pi^{+}\pi^{-} \\ a_{0}(980)^{+}\pi^{-}, \ a_{0}^{+} \rightarrow \\ \eta^{2}\pi^{+} \\ 3\pi^{+}2\pi^{-}\pi^{0} \\ \omega^{2}\pi^{+}\pi^{-} \\ [ccc] \ (1.6 \pm 0.5) \% \\ \eta'(958)\,\pi^{+} \\ (958)\,\pi^{+} \\ [bbb,ccc] \ (3.94 \pm 0.25) \% \\ \eta'(958)\,\pi^{+}\pi^{0} \\ \eta'(958)\,\pi^{+}\pi^{0} \\ (6.08 \pm 0.29) \% \\ \eta'(958)\,\pi^{+}\pi^{0} \\ \eta'(958)\,\pi^{+}\pi^{0} \\ (1.09 \pm 0.05) \times 10^{-3} \\ K^{+}\pi \\ K^{+}\pi^{0} \\ K^{+}\pi^{0} \\ K^{+}\pi^{0} \\ K^{+}\eta'(958) \\ K^{+}\pi^{+}\pi^{-} \\ (1.09 \pm 0.05) \times 10^{-3} \\ K^{+}\rho^{0} \\ K^{+}\eta'(958) \\ K^{+}\pi^{+}\pi^{-} \\ (6.20 \pm 0.19) \times 10^{-3} \\ K^{+}\rho^{0} \\ K^{+}(1450)^{0}, \rho^{0} \rightarrow \pi^{+}\pi^{-} \\ K^{+}f_{0}(370), f_{0} \rightarrow \pi^{+}\pi^{-} \\ K^{+}f_{0}(3370), f_{0} \rightarrow \pi^{+}\pi^{-} \\ K^{+}f_{0}(1370), f_{0} \rightarrow \pi^{+}\pi^{-} \\ K^{+}\pi^{0} \\ K^{+}\pi^{-}\pi^{-} \\ K^{+}(1410)^{0}\pi^{+}, K^{*0} \rightarrow \\ K^{+}\pi^{-} \\ K^{+}\pi^{-}\pi^{-} \\ K^{+}(1430)^{0}\pi^{+}, K^{*0} \rightarrow \\ K^{+}\pi^{-} \\ K^{+}\pi^{-}\pi^{-} \\ K^{+}\pi^{-}\pi^{-} \\ (2.8 \pm 1.0) \times 10^{-3} \\ K^{+}\pi^{-}\pi^{-} \\ K^{+}\pi^{+}\pi^{-}\pi^{-} \\ (2.8 \pm 1.0) \times 10^{-3} \\ K^{+}\pi^{-}\pi^{-} \\ K^{+}\pi^{-}\pi^{-} \\ K^{+}\pi^{-}\pi^{-} \\ (2.8 \pm 1.0) \times 10^{-3} \\ K^{+}\pi^{-}\pi^{-} \\ K^{+}\pi^{-}\pi^{-} \\ (2.8 \pm 1.0) \times 10^{-3} \\ K^$$

HTTP://PDG.LBL.GOV

Page 68

Doubly Cabibbo-suppressed modes

$$2K^{+}\pi^{-}$$
 (1.274±0.031) × 10⁻⁴ 805
 $K^{+}K^{*}(892)^{0}$, $K^{*0} \rightarrow$ (6.0 ±3.4) × 10⁻⁵ –

Baryon-antibaryon mode

$$p\overline{p}$$
 (1.22 ±0.11)×10⁻³ 295
 $p\overline{p}e^{+}\nu_{e}$ < 2.0 ×10⁻⁴CL=90% 296

$\Delta C = 1$ weak neutral current (C1) modes, Lepton family number (LF), or Lepton number (L) violating modes

	_op.oa			0	.0400	
$\pi^+ e^+ e^-$		[00] <	5.5		\times 10 ⁻⁶ CL=90%	979
$\pi^+\phi$, $\phi \rightarrow e^+e^-$		[nn] (6	$^{+8}_{-4}$	$) \times 10^{-6}$	_
$\pi^+\mu^+\mu^-$		[00] <	1.8		\times 10 ⁻⁷ CL=90%	968
$K^{+} e^{+} e^{-}$	C1	<	3.7		$\times 10^{-6}$ CL=90%	922
$K^+\mu^+\mu^-$	C1	<	1.4		\times 10 ⁻⁷ CL=90%	909
$K^*(892)^+ \mu^+ \mu^-$	C1	<	1.4		\times 10 ⁻³ CL=90%	765
$\pi^+e^+\mu^-$	LF	<	1.1		$\times 10^{-6}$ CL=90%	976
$\pi^+e^-\mu^+$	LF	<	9.4		\times 10 ⁻⁷ CL=90%	976
$\mathit{K}^{+}\mathit{e}^{+}\mu^{-}$	LF	<	7.9		\times 10 ⁻⁷ CL=90%	919
$K^+e^-\mu^+$	LF	<	5.6		$\times 10^{-7} CL = 90\%$	919
π^-2e^+	L	<	1.4		$\times 10^{-6}$ CL=90%	979
$\pi^{-}2\mu^{+}$	L	<	8.6		$\times 10^{-8}$ CL=90%	968
$\pi^-e^+\mu^+$	L	<	6.3		\times 10 ⁻⁷ CL=90%	976
K^-2e^+	L	<	7.7		$\times 10^{-7} CL = 90\%$	922

$K^-2\mu^+$	L	< 2.6	\times 10 ⁻⁸ CL=90%	909
$K^-e^+\mu^+$	L	< 2.6	imes 10 ⁻⁷ CL=90%	919
$K^*(892)^- 2\mu^+$	L	< 1.4	\times 10 ⁻³ CL=90%	765

$$I(J^P) = 0(??)$$

 ${\stackrel{-}{J}}^P$ is natural, width and decay modes consistent with 1^- .

Mass
$$m=2112.2\pm0.4$$
 MeV $m_{D_s^{*\pm}}-m_{D_s^{\pm}}=143.8\pm0.4$ MeV Full width $\Gamma<1.9$ MeV, CL $=90\%$

 $D_{\it s}^{*-}$ modes are charge conjugates of the modes below.

D*+ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$D_s^+ \gamma$	(93.5±0.7) %	139	
$D_s^+ \gamma D_s^+ \pi^0$	(5.8 ± 0.7) %	48	
$D_s^+ e^+ e^-$	$(6.7\pm1.6)\times10^{-3}$	139	

$D_{s0}^*(2317)^{\pm}$

$$I(J^P) = 0(0^+)$$

J, P need confirmation.

 J^P is natural, low mass consistent with 0^+ .

See the review on "Heavy Non- $q\overline{q}$ Mesons."

Mass
$$m=2317.8\pm0.5~{
m MeV}$$
 $m_{D_{s0}^*(2317)^\pm}-m_{D_s^\pm}=349.4\pm0.5~{
m MeV}$ Full width $\Gamma~<~3.8~{
m MeV},~{
m CL}=95\%$

 $D_{s0}^*(2317)^-$ modes are charge conjugates of modes below.

D_{s0}^* (2317) $^{\pm}$ DECAY MODES	Fraction (I	Γ _i /Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$D_s^+\pi^0$	(100 ⁺ ₋₂	00) %		298
$D_s^+ \gamma$	< 5	%	90%	323
$D_{s}^{*}(2112)^{+}\gamma$	< 6	%	90%	_
$D_s^+ \gamma \gamma \ D_s^* (2112)^+ \pi^0$	< 18	%	95%	323
$D_s^*(2112)^+\pi^0$	< 11	%	90%	_
$D_{s}^{+}\pi^{+}\pi^{-}$ $D_{s}^{+}\pi^{0}\pi^{0}$	< 4	\times 10 ⁻³	90%	194
$D_s^+ \pi^0 \pi^0$	not see	en		205

$$D_{s1}(2460)^{\pm}$$

$$I(J^P) = 0(1^+)$$

See the review on "Heavy Non- $q\overline{q}$ Mesons."

Mass
$$m=2459.5\pm0.6$$
 MeV (S = 1.1) $m_{D_{s1}(2460)^{\pm}}-m_{D_{s}^{*\pm}}=347.3\pm0.7$ MeV (S = 1.2) $m_{D_{s1}(2460)^{\pm}}-m_{D_{s}^{\pm}}=491.1\pm0.6$ MeV (S = 1.1) Full width Γ < 3.5 MeV, CL = 95%

 $D_{\rm s1}(2460)^{-}$ modes are charge conjugates of the modes below.

D _{s1} (2460) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	•
$ \begin{array}{c} D_s^{*+} \pi^0 \\ D_s^{+} \gamma \\ D_s^{+} \pi^{+} \pi^{-} \end{array} $	(48 ±11)%		297
$D_s^+\gamma$	(18 \pm 4) %		442
$D_s^+ \pi^+ \pi^-$	$(4.3\pm~1.3)~\%$	S=1.1	363
$D_s^{*+}\gamma$	< 8 %	CL=90%	323
$D_{s0}^*(2317)^+ \gamma$	$(3.7^{+}_{-}\ \overset{5.0}{2.4})\ \%$		138

$D_{s1}(2536)^{\pm}$

$$I(J^P) = 0(1^+)$$

J, P need confirmation.

Mass
$$m=2535.11\pm0.06$$
 MeV $m_{D_{s1}(2536)^\pm}-m_{D_s^*(2111)}^{}=422.9\pm0.4$ MeV $m_{D_{s1}(2536)^\pm}-m_{D^*(2010)^\pm}^{}=524.85\pm0.04$ MeV $m_{D_{s1}(2536)^\pm}-m_{D^*(2007)^0}^{}=528.26\pm0.05$ MeV (S = 1.2) Full width $\Gamma=0.92\pm0.05$ MeV

Branching fractions are given relative to the one **DEFINED AS 1**. $D_{\rm S1}(2536)^-$ modes are charge conjugates of the modes below.

D _{s1} (2536) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$D^*(2010)^+ K^0$	0.85 ± 0.12		149
$(D^*(2010)^+ K^0)_{S-wave}$	$0.61\ \pm0.09$		149
$D^+\pi^-K^+$	$0.028 \!\pm\! 0.005$		176
$D^*(2007)^0 K^+$	DEFINED AS 1		167
$D^+ K^0$	< 0.34	90%	381
$D^0 K^+$	< 0.12	90%	391
$D_s^{*+}\gamma$	possibly seen		388
$D_s^{*+} \gamma$ $D_s^+ \pi^+ \pi^-$	seen		437

$$D_{s2}^*(2573)$$

$$I(J^P) = 0(2^+)$$

Mass $m=2569.1\pm0.8~{\rm MeV}~{\rm (S}=2.4)$ $m_{D_{s2}^*(2573)}-m_{D^0}=704\pm3.2~{\rm MeV}$ Full width $\Gamma=16.9\pm0.7~{\rm MeV}$

 $D_{\rm 52}^*(2573)^-$ modes are charge conjugates of the modes below.

D* _{\$2} (2573) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^0 K^+$	seen	431
$D^*(2007)^0 K^+$	not seen	238
$D^{+}K_{S}^{0}$ $D^{*+}K_{S}^{0}$	seen	422
$D^{*+}K^0_S$	seen	225

$D_{s1}^*(2700)^{\pm}$

$$I(J^P) = 0(1^-)$$

Mass $m=2714\pm 5~{\rm MeV}~{\rm (S}=1.5)$ Full width $\Gamma=122\pm 10~{\rm MeV}$

D_{s1}^* (2700) $^{\pm}$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
D^0K^+	seen	579
$D^{+} K^{0}_{S} \ D^{*0} K^{+}$	seen	573
	seen	438
$D^{*+}K^0_S$	seen	431

$D_{s3}^*(2860)^{\pm}$

$$I(J^P) = 0(3^-)$$

Mass $m=2860\pm7~{
m MeV}$ Full width $\Gamma=53\pm10~{
m MeV}$

D_{s3}^* (2860) $^{\pm}$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^0 K^+$	seen	710
$D^{+} {\cal K}^{0}_{S} \ D^{*0} {\cal K}^{+}$	seen	704
	seen	589
$D^{*+}K^0_S$	seen	584

BOTTOM MESONS $(B = \pm 1)$

 $B^+ = u\overline{b}$, $B^0 = d\overline{b}$, $\overline{B}{}^0 = \overline{d}b$, $B^- = \overline{u}b$, similarly for B^* 's

B-particle organization

Many measurements of B decays involve admixtures of B hadrons. Previously we arbitrarily included such admixtures in the B^\pm section, but because of their importance we have created two new sections: " B^\pm/B^0 Admixture" for $\Upsilon(4S)$ results and " $B^\pm/B^0/B_s^0/b$ -baryon Admixture" for results at higher energies. Most inclusive decay branching fractions and χ_b at high energy are found in the Admixture sections. $B^0-\overline{B}^0$ mixing data are found in the B^0 section, while $B_s^0-\overline{B}_s^0$ mixing data and $B-\overline{B}$ mixing data for a B^0/B_s^0 admixture are found in the B_s^0 section. CP-violation data are found in the B^\pm , B^0 , and B^\pm B^0 Admixture sections. b-baryons are found near the end of the Baryon section.

The organization of the B sections is now as follows, where bullets indicate particle sections and brackets indicate reviews.

- ullet B^{\pm} mass, mean life, CP violation, branching fractions
- B^0 mass, mean life, B^0 - $\overline{B}{}^0$ mixing, CP violation, branching fractions
- B^{\pm}/B^0 Admixtures CP violation, branching fractions
- $B^{\pm}/B^0/B_s^0/b$ -baryon Admixtures mean life, production fractions, branching fractions
- B^* , $B_1(5721)$, $B_2^*(5747)$, $B_J(5970)$ mass, width
- B_s^0 mass, mean life, B_s^0 - \overline{B}_s^0 mixing, CP violation, branching fractions
- B_s^* , $B_{s1}(5830)^0$, $B_{s2}^*(5840)^0$ mass, width

- B_c^{\pm} mass, mean life, branching fractions
- $B_c(2S)^{\pm}$ mass

At the end of Baryon Listings:

- Λ_b mass, mean life, branching fractions
- $\Lambda_b(5912)^0$, $\Lambda_b(5920)^0$, $\Lambda_b(6070)^0$, $\Lambda_b(6146)^0$, $\Lambda_b(6152)^0$ mass, width
- Σ_b
- Σ_b^* , $\Sigma_b(6097)^+$, $\Sigma_b(6097)^$ mass, width
- \equiv_b^0 , $\equiv_b^$ mass, mean life, branching fractions
- $\Xi_b'(5935)^-$, $\Xi_b(5945)^0$, $\Xi_b(5955)^-$, $\Xi_b(6100)^-$, $\Xi_b(6227)^-$, $\Xi_b(6227)^0$, $\Xi_b(6327)^0$, $\Xi_b(6333)^0$ mass, width
- Ω_b^- mass, mean life, branching fractions
- $\Omega_b(6316)^-$, $\Omega_b(6330)^-$, $\Omega_b(6340)^-$, $\Omega_b(6350)^-$ mass
- b-baryon Admixture mean life, branching fractions

 B^{\pm}

$$I(J^P) = \frac{1}{2}(0^-)$$

 \it{I} , \it{J} , \it{P} need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^\pm}=5279.34\pm0.12$$
 MeV Mean life $\tau_{B^\pm}=(1.638\pm0.004)\times10^{-12}$ s $c au=491.1~\mu{\rm m}$

CP violation

$$A_{CP}(B^+ \to J/\psi(1S)K^+) = (1.8 \pm 3.0) \times 10^{-3} \quad (S = 1.5)$$

 $A_{CP}(B^+ \to J/\psi(1S)\pi^+) = (1.8 \pm 1.2) \times 10^{-2} \quad (S = 1.3)$

```
A_{CP}(B^+ \to J/\psi \rho^+) = -0.05 \pm 0.05
A_{CP}(B^+ \rightarrow J/\psi K^*(892)^+) = -0.048 \pm 0.033
A_{CP}(B^+ \to \eta_c K^+) = 0.01 \pm 0.07 \quad (S = 2.2)
A_{CP}(B^+ \rightarrow \psi(2S)\pi^+) = 0.03 \pm 0.06
A_{CP}(B^+ \to \psi(2S)K^+) = 0.012 \pm 0.020 \quad (S = 1.5)
A_{CP}(B^+ \to \psi(2S)K^*(892)^+) = 0.08 \pm 0.21
A_{CP}(B^+ \to \chi_{c1}(1P)\pi^+) = 0.07 \pm 0.18
A_{CP}(B^+ \to \chi_{c0} K^+) = -0.20 \pm 0.18 (S = 1.5)
A_{CP}(B^+ \rightarrow \chi_{c1} K^+) = -0.009 \pm 0.033
A_{CP}(B^+ \to \chi_{c1} K^*(892)^+) = 0.5 \pm 0.5
A_{CP}(B^+ \to D^0 \ell^+ \nu_{\ell}) = (-0.14 \pm 0.20) \times 10^{-2}
A_{CP}(B^+ \to \overline{D}{}^0\pi^+) = (-3 \pm 5) \times 10^{-3}
A_{CP}(B^+ \to D_{CP(+1)}\pi^+) = -0.0080 \pm 0.0024
A_{CP}(B^+ \to D_{CP(-1)}\pi^+) = 0.017 \pm 0.026
A_{CP}([K^{\mp}\pi^{\pm}\pi^{+}\pi^{-}]D\pi^{+}) = 0.02 \pm 0.05
A_{CP}(B^+ \to [\pi^+\pi^+\pi^-\pi^-]_D K^+) = 0.10 \pm 0.04
A_{CP}(B^+ \to [\pi^+\pi^-\pi^+\pi^-]_D K^*(892)^+) = 0.02 \pm 0.11
A_{CP}(B^+ \to \overline{D}^0 K^+) = -0.017 \pm 0.005
A_{CP}([K^{\mp}\pi^{\pm}\pi^{+}\pi^{-}]_{D}K^{+}) = -0.31 \pm 0.11
A_{CP}(B^+ \to [\pi^+\pi^+\pi^-\pi^-]_D\pi^+) = (-4 \pm 8) \times 10^{-3}
A_{CP}(B^+ \to [K^-\pi^+]_D K^+) = -0.58 \pm 0.21
A_{CP}(B^+ \to [K^- \pi^+ \pi^0]_D K^+) = -0.27 \pm 0.27 \quad (S = 2.4)
A_{CP}(B^+ \to [K^+\pi^-\pi^0]_D K^+) = -0.024 \pm 0.013
A_{CP}(B^+ \to [K^+ K^- \pi^0]_D K^+) = 0.07 \pm 0.07
A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D K^+) = 0.11 \pm 0.04
A_{CP}(B^+ \to \overline{D}^0 K^*(892)^+) = -0.007 \pm 0.019
A_{CP}(B^+ \to [K^-\pi^+]_{\overline{D}}K^*(892)^+) = -0.75 \pm 0.16
A_{CP}(B^+ \to [K^-\pi^+\pi^-\pi^+]_{\overline{D}}K^*(892)^+) = -0.45 \pm 0.25
A_{CP}(B^+ \to [K^-\pi^+]_D\pi^+) = 0.00 \pm 0.09
A_{CP}(B^+ \to [K^-\pi^+\pi^0]_D\pi^+) = 0.08 \pm 0.09
A_{CP}(B^+ \to [K^+ K^- \pi^0]_D \pi^+) = -0.001 \pm 0.019
A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D\pi^+) = 0.001 \pm 0.010
A_{CP}(B^+ \to [K^-\pi^+]_{(D\pi)}\pi^+) = -0.09 \pm 0.27
A_{CP}(B^+ \to [K^- \pi^+]_{(D\gamma)} \pi^+) = -0.7 \pm 0.6
A_{CP}(B^+ \to [K^- \pi^+]_{(D\pi)} K^+) = 0.8 \pm 0.4
A_{CP}(B^+ \to [K^-\pi^+]_{(D\gamma)}K^+) = 0.4 \pm 1.0
A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D K^+) = -0.02 \pm 0.15
A_{CP}(B^+ \to [K_S^0 K^+ \pi^-]_D K^+) = 0.10 \pm 0.09
A_{CP}(B^+ \to [K_S^0 K^- \pi^+]_D K^+) = -0.04 \pm 0.08
A_{CP}(B^+ \to [K_S^0 K^- \pi^+]_D \pi^+) = 0.003 \pm 0.015
A_{CP}(B^+ \to [K_S^0 K^+ \pi^-]_D \pi^+) = -0.034 \pm 0.020
```

$$A_{CP}(B^{+} \rightarrow [K^{*}(892)^{-}K^{+}]_{D}K^{+}) = 0.08 \pm 0.05$$

$$A_{CP}(B^{+} \rightarrow [K^{*}(892)^{+}K^{-}]_{D}K^{+}) = 0.02 \pm 0.10$$

$$A_{CP}(B^{+} \rightarrow [K^{*}(892)^{+}K^{-}]_{D}\pi^{+}) = 0.007 \pm 0.017$$

$$A_{CP}(B^{+} \rightarrow [K^{*}(892)^{+}K^{-}]_{D}\pi^{+}) = -0.020 \pm 0.011$$

$$A_{CP}(B^{+} \rightarrow [K^{*}(892)^{+}K^{-}]_{D}\pi^{+}) = -0.020 \pm 0.011$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(+1)K^{+}) = 0.132 \pm 0.015 \quad (S = 1.8)$$

$$A_{ADS}(B^{+} \rightarrow D_{CP}(+1)K^{+}) = 0.132 \pm 0.015 \quad (S = 1.8)$$

$$A_{ADS}(B^{+} \rightarrow D^{*}(D\gamma)K^{+}) = -0.6 \pm 1.3$$

$$A_{ADS}(B^{+} \rightarrow D^{*}(D\gamma)K^{+}) = 0.72 \pm 0.29$$

$$A_{ADS}(B^{+} \rightarrow D^{*}(D\gamma)K^{+}) = 0.08 \pm 0.13$$

$$A_{ADS}(B^{+} \rightarrow D^{*}(D\gamma)K^{+}) = -0.14 \pm 0.06$$

$$A_{ADS}(B^{+} \rightarrow D^{*}(D\gamma)K^{+}) = -0.14 \pm 0.06$$

$$A_{ADS}(B^{+} \rightarrow D^{*}(D\gamma)K^{+}) = -0.10 \pm 0.07$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(-1)K^{+}) = -0.10 \pm 0.07$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(-1)K^{+}) = -0.10 \pm 0.07$$

$$A_{CP}(B^{+} \rightarrow [K^{+}K^{-}]_{D}K^{+}\pi^{-}\pi^{+}) = -0.04 \pm 0.06$$

$$A_{CP}(B^{+} \rightarrow [K^{+}K^{-}]_{D}K^{+}\pi^{-}\pi^{+}) = -0.04 \pm 0.06$$

$$A_{CP}(B^{+} \rightarrow [K^{+}K^{-}]_{D}K^{+}\pi^{-}\pi^{+}) = -0.013 \pm 0.023$$

$$A_{CP}(B^{+} \rightarrow [K^{+}K^{-}]_{D}K^{+}\pi^{-}\pi^{+}) = -0.013 \pm 0.023$$

$$A_{CP}(B^{+} \rightarrow [K^{+}K^{-}]_{D}\pi^{+}\pi^{-}\pi^{+}) = -0.013 \pm 0.019$$

$$A_{CP}(B^{+} \rightarrow [K^{-}\pi^{+}]_{D}\pi^{+}\pi^{-}\pi^{+}) = -0.002 \pm 0.011$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(+1))\pi^{+} = -0.0004 \pm 0.0021 \quad (S = 1.1)$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(+1))\pi^{+} = -0.009 \pm 0.05$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(+1))\pi^{+} = 0.012 \pm 0.010 \quad (S = 1.5)$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(+1))K^{+}(892)^{+} = 0.08 \pm 0.06$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(-1))K^{+}(892)^{+} = 0.02 \pm 0.01$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(-1))K^{+}(892)^{+} = -0.23 \pm 0.22$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(-1))K^{+}(892)^{+} = 0.03 \pm 0.01$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(-1))K^{+}(892)^{+} = 0.02 \pm 0.01$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(-1))K^{+}(892)^{+} = 0.02 \pm 0.01$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(-1))K^{+}(892)^{+} = -0.23 \pm 0.22$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(-1))K^{+}(892)^{+} = -0.26 \pm 0.27$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(-1))K^{+}(892)^{+} = -0.26 \pm 0.27$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(-1))K^{+}(892)^{+} = -0.26 \pm 0.27$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(-1)K^{+}(892)^{+}) = -0.26 \pm 0.27$$

$$\begin{array}{l} \mathbf{A_{CP}(B^{+} \to \eta K^{+})} = -0.37 \pm 0.08 \\ A_{CP}(B^{+} \to \eta K^{*}(892)^{+}) = 0.02 \pm 0.06 \\ A_{CP}(B^{+} \to \eta K_{0}^{*}(1430)^{+}) = 0.05 \pm 0.13 \\ A_{CP}(B^{+} \to \eta K_{2}^{*}(1430)^{+}) = -0.45 \pm 0.30 \\ A_{CP}(B^{+} \to \omega K^{+}) = -0.02 \pm 0.04 \\ A_{CP}(B^{+} \to \omega K^{*}) = -0.29 \pm 0.35 \\ A_{CP}(B^{+} \to \omega K^{*}) = -0.10 \pm 0.09 \\ A_{CP}(B^{+} \to \omega K_{2}^{*}(1430)^{+}) = 0.14 \pm 0.15 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = -0.04 \pm 0.09 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = -0.04 \pm 0.09 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = -0.03 \pm 0.21 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = -0.03 \pm 0.01 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = -0.08 \pm 0.09 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = -0.08 \pm 0.09 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.08 \pm 0.09 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.28 \pm 0.30 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.37 \pm 0.10 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.37 \pm 0.10 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.07 \pm 0.06 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.07 \pm 0.06 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.06 \pm 0.07 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.06 \pm 0.07 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.05 \pm 0.24 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.03 \pm 0.15 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.01 \pm 0.11 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.02 \pm 0.01 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.01 \pm 0.16 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.02 \pm 0.01 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.02 \pm 0.021 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.02 \pm 0.021 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.02 \pm 0.021 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.12 \pm 0.10 \\ A_{CP}(B^{+} \to \kappa^{+}(\pi^{-})) = 0.12 \pm 0.10 \\ A_{CP}(B^{+} \to \kappa^{+}(\pi^{-})) = 0.12 \pm 0.10 \\ A_{CP}(B^{+} \to \kappa^{+}(\pi^{-})) = 0.12 \pm 0.10 \\ A_{CP}(B^{+} \to \kappa^{+}(\kappa^{+}(\pi^{-}))) = 0.12 \pm 0.10 \\ A_{CP}(B^{+} \to \kappa^{+}(\kappa^{$$

```
A_{CP}(B^+ \to X_0(1550)K^+) = -0.04 \pm 0.07
A_{CP}(B^+ \to K^{*+}K^+K^-) = 0.11 \pm 0.09
A_{CP}(B^+ \to \phi K^*(892)^+) = -0.01 \pm 0.08
A_{CP}(B^+ \to \phi(K\pi)_0^{*+}) = 0.04 \pm 0.16
A_{CP}(B^+ \to \phi K_1(1270)^+) = 0.15 \pm 0.20
A_{CP}(B^+ \to \phi K_2^*(1430)^+) = -0.23 \pm 0.20
A_{CP}(B^+ \to K^+ \phi \phi) = -0.08 \pm 0.07
A_{CP}(B^+ \to K^+ [\phi \phi]_{\eta_c}) = 0.10 \pm 0.08
A_{CP}(B^+ \to K^*(892)^+ \gamma) = 0.014 \pm 0.018
A_{CP}(B^+ \to X_s \gamma) = 0.028 \pm 0.019
A_{CP}(B^+ \to \eta K^+ \gamma) = -0.12 \pm 0.07
A_{CP}(B^+ \to \phi K^+ \gamma) = -0.13 \pm 0.11 (S = 1.1)
A_{CP}(B^+ \to \rho^+ \gamma) = -0.11 \pm 0.33
A_{CP}(B^+ \rightarrow \pi^+ \pi^0) = 0.03 \pm 0.04
A_{CP}(B^+ \to \pi^+\pi^-\pi^+) = 0.057 \pm 0.013
A_{CP}(B^+ \to \rho^0 \pi^+) = 0.009 \pm 0.019
A_{CP}(B^+ \to f_2(1270)\pi^+) = 0.40 \pm 0.06
A_{CP}(B^+ \to \rho^0(1450)\pi^+) = -0.11 \pm 0.05
A_{CP}(B^+ \to \rho_3(1690)\pi^+) = -0.80 \pm 0.28
A_{CP}(B^+ \rightarrow f_0(1370)\pi^+) = 0.72 \pm 0.22
A_{CP}(B^+ \to \pi^+\pi^-\pi^+ \text{ nonresonant}) = -0.14^{+0.23}_{-0.16}
A_{CP}(B^+ \to \rho^+ \pi^0) = 0.02 \pm 0.11
A_{CP}(B^+ \rightarrow \rho^+ \rho^0) = -0.05 \pm 0.05
A_{CP}(B^+ \to \omega \pi^+) = -0.04 \pm 0.05
A_{CP}(B^+ \to \omega \rho^+) = -0.20 \pm 0.09
A_{CP}(B^+ \to \eta \pi^+) = -0.14 \pm 0.07 (S = 1.4)
A_{CP}(B^+ \to \eta \rho^+) = 0.11 \pm 0.11
A_{CP}(B^+ \to \eta' \pi^+) = 0.06 \pm 0.16
A_{CP}(B^+ \to \eta' \rho^+) = 0.26 \pm 0.17
A_{CP}(B^+ \rightarrow b_1^0 \pi^+) = 0.05 \pm 0.16
A_{CP}(B^+ \to p \overline{p} \pi^+) = 0.00 \pm 0.04
A_{CP}(B^+ \to p \overline{p} K^+) = 0.00 \pm 0.04 \quad (S = 2.2)
A_{CP}(B^+ \to p \overline{p} K^*(892)^+) = 0.21 \pm 0.16 \quad (S = 1.4)
A_{CP}(B^+ \rightarrow p\overline{\Lambda}\gamma) = 0.17 \pm 0.17
A_{CP}(B^+ \to p \overline{\Lambda} \pi^0) = 0.01 \pm 0.17
A_{CP}(B^+ \to K^+ \ell^+ \ell^-) = -0.02 \pm 0.08
A_{CP}(B^+ \to K^+ e^+ e^-) = 0.14 \pm 0.14
A_{CP}(B^+ \to K^+ \mu^+ \mu^-) = 0.011 \pm 0.017
A_{CP}(B^+ \to \pi^+ \mu^+ \mu^-) = -0.11 \pm 0.12
A_{CP}(B^+ \to K^{*+} \ell^+ \ell^-) = -0.09 \pm 0.14
A_{CP}(B^+ \to K^* e^+ e^-) = -0.14 \pm 0.23
A_{CP}(B^+ \to K^* \mu^+ \mu^-) = -0.12 \pm 0.24
```

$$\gamma = (65.9^{+3.3}_{-3.5})^{\circ}$$
 $r_{B}(B^{+} \rightarrow D^{0}K^{+}) = 0.0994 \pm 0.0026$
 $\delta_{B}(B^{+} \rightarrow D^{0}K^{+}) = (127.7^{+3.6}_{-3.9})^{\circ}$
 $r_{B}(B^{+} \rightarrow D^{0}K^{*+}) = 0.101^{+0.016}_{-0.034}$
 $\delta_{B}(B^{+} \rightarrow D^{0}K^{*+}) = (48^{+59}_{-16})^{\circ}$
 $r_{B}(B^{+} \rightarrow D^{*0}K^{+}) = 0.104^{+0.013}_{-0.014}$
 $\delta_{B}(B^{+} \rightarrow D^{*0}K^{+}) = (314.8^{+7.9}_{-9.9})^{\circ}$

 B^- modes are charge conjugates of the modes below. Modes which do not identify the charge state of the B are listed in the B^\pm/B^0 ADMIXTURE section.

The branching fractions listed below assume 50% $B^0\overline{B}^0$ and 50% B^+B^- production at the $\Upsilon(4S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\Upsilon(4S)$ production ratio to 50:50 and their assumed D, D_S , D^* , and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

For inclusive branching fractions, *e.g.*, $B \to D^{\pm} X$, the values usually are multiplicities, not branching fractions. They can be greater than one.

B+ DECAY MODES

Fraction (Γ_i/Γ)

Scale factor/ p Confidence level (MeV/c)

Semileptonic and leptonic modes

Semileptonic	na repronic modes	
$\ell^+ \nu_\ell X$ [ggg]	(10.99 ± 0.28) %	_
$e^+ \nu_e X_c$	(10.8 ± 0.4) %	_
$\ell^+ u_\ell X_{\scriptscriptstyle m{U}}$	(1.65 ± 0.21) \times 10	_3 _
$D\ell^+ u_\ell X$	$(9.6\pm0.7)\%$	_
	(2.30 ± 0.09) %	2310
$\overline{D}{}^0 au^+ u_ au$	$(7.7\pm2.5)\times10$	-3 ₁₉₁₁
$\overline{D}^*(2007)^0 \ell^+ \nu_\ell$ [ggg]	(5.58 \pm 0.22) %	2258
\overline{D}^* (2007) 0 $ au^+$ $ u_ au$	(1.88 ± 0.20) %	1839
$D^-\pi^+\ell^+ u_\ell$	$($ 4.4 \pm 0.4 $) imes 10$	-3 2306
$\overline{D}_0^*(2420)^0\ell^+ u_\ell,\;\;\overline{D}_0^{*0} ightarrow$	(2.5 \pm 0.5) $ imes$ 10	_3 _
$\overline{D}_{2}^{*}(2460)^{0}\ell^{+} u_{\ell},\ \overline{D}_{2}^{*0} ightarrow$	$(1.53 \pm 0.16) \times 10$	-3 2065
$D^-\pi^+$		
$D^{(*)}$ n $\pi \ell^+ u_\ell$ (n ≥ 1)	(1.85 ± 0.25) %	_
$D^{*-}_{-}\pi^{+}\ell^{+}\nu_{\ell}$	$(6.0 \pm 0.4) \times 10$	-3 2254
$\overline{D}_1(2420)^0\ell^+ u_\ell,\;\;\overline{D}_1^0 ightarrow$	(3.03 ± 0.20) \times 10	-3 2084
$D^{*-}\pi^+$		

HTTP://PDG.LBL.GOV

Page 79

$\overline{D}_1'(2430)^0 \ell^+ \nu_\ell, \ \overline{D}_1'^0 -$	\rightarrow	(2.7	±	0.6) × 10 ⁻³		_
$egin{array}{c} D^{*-}\pi^+ \ \overline{D}_2^*(2460)^0 \ell^+ u_\ell, \ \overline{D}_2^{*0} ightarrow D^{*-}\pi^+ \end{array}$		(1.01	\pm	0.24	$) \times 10^{-3}$	S=2.0	2065
$\overline{D}{}^0\pi^+\pi^-\ell^+ u_\ell$		(1.6	\pm	0.4) × 10 ⁻³		2301
$\overline{D}^{*0}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}$		() × 10 ⁻⁴		2248
$D_s^{(*)-}$ K $^+$ ℓ^+ $ u_\ell$		(6.1	\pm	1.0	$) \times 10^{-4}$		_
$D_s^- K^+ \ell^+ u_\ell$		(3.0	+	1.4 1.2) × 10 ⁻⁴		2242
$D_s^{*-}K^+\ell^+ u_\ell$		(2.9	\pm	1.9	$) \times 10^{-4}$		2185
$\pi^0\ell^+ u_\ell$		() × 10 ⁻⁵		2638
$\eta\ell^+ u_\ell$		($) \times 10^{-5}$		2611
$\eta'\ell^+_{\cdot} u_{\ell}$						$) \times 10^{-5}$		2553
$\omega \ell^+ u_\ell$	[ggg]					$) \times 10^{-4}$		2582
$ ho^0\ell^+ u_\ell$	[ggg]	($) \times 10^{-4}$		2583
$\pi^+\pi^-\ell^+ u_\ell$		() × 10 ⁻⁴		2636
$ ho \overline{ ho} \ell^+ u_\ell$		(2.5	$) \times 10^{-6}$		2467
$ ho \overline{ ho} \mu^+ u_{\mu}$		() × 10 ⁻⁶		2446
$p\overline{p}e^+\nu_e$		(8.2	+	4.0 3.3	$) \times 10^{-6}$		2467
$e^+ u_e$		<	9.8			$\times 10^{-7}$		2640
$\mu^+ u_{\mu}$		<	8.6			$\times 10^{-7}$	CL=90%	2639
$ au^+ u_ au$		(1.09	\pm	0.24	$) \times 10^{-4}$		2341
$\ell^+ u_\ell\gamma$		<	3.0				CL=90%	2640
$e^+ u_e\gamma$		<	4.3			\times 10 ⁻⁶		2640
$\mu^+ u_\mu\gamma$		<					CL=90%	2639
$\mu^+\mu^-\mu^+\nu_{\mu}$		<	1.6			× 10 ⁻⁸	CL=95%	2634
=0	Inclus							
$D^0 X$		•	8.6			*		-
$\overline{D}^0 X$		(79					_
D^+X		(2.5		0.5) %		_
D^-X		(1.2) %		_
$D_s^+ X$		(7.9) %		_
$D_s^- X$		(1.10	+	0.40 0.32) %		_
$\Lambda_c^+ X$		(2.1	+	0.9 0.6) %		_
$\overline{\Lambda}_c^- X$		(2.8	+	1.1 0.9) %		_
<u>c</u> X		(97	\pm	4) %		_
cX		(23.4	+	2.2 1.8) %		_
$c/\overline{c}X$		(1	20	±) %		_

D, D^* , or D_s modes $\overline{D}^0 \pi^+$ $(4.61 \pm 0.10) \times 10^{-3}$ 2308 $D_{CP(+1)}\pi^+$ $(2.03 \pm 0.19) \times 10^{-3}$ $D_{CP(-1)}\pi^+$ $(2.0 \pm 0.4) \times 10^{-3}$ $\overline{D}^0 \rho^+$ 1.34 ± 0.18) % 2237 \overline{D}^0K^+ $3.64 \pm 0.15 \times 10^{-4}$ 2281 $D_{CP(+1)}K^{+}$ $(1.80 \pm 0.08) \times 10^{-4}$ [hhh] $D_{CP(-1)}K^+$ $(1.96 \pm 0.18) \times 10^{-4}$ [hhh] $3.60 \pm 0.24 \times 10^{-6}$ 2281 $[K^{-}\pi^{+}]_{D}K^{+}$ $\times 10^{-7}$ CL=90% [iii] < $[K^{+}\pi^{-}]_{D}K^{+}$ $\times 10^{-5}$ CL=90% [iii] < 2.0 $[K^{-}\pi^{+}\pi^{0}]_{D}K^{+}$ $[K^{+}\pi^{-}\pi^{0}]_{D}K^{+}$ seen seen $[K^{-}\pi^{+}\pi^{+}\pi^{-}]_{D}K^{+}$ seen $[K^{+}\pi^{-}\pi^{+}\pi^{-}]_{D}K^{+}$ seen $[K^-\pi^+]_D\pi^+$ $\pm 1.1) \times 10^{-7}$ [iii] (6.3 $[K^{+}\pi^{-}]_{D}\pi^{+}$ \pm 0.4) × 10⁻⁴ (1.7 $[K^-\pi^+\pi^0]_D\pi^+$ $[K^+\pi^-\pi^0]_D\pi^+$ seen seen $[K^-\pi^+\pi^+\pi^-]_D\pi^+$ seen $[K^{+}\pi^{-}\pi^{+}\pi^{-}]_{D}\pi^{+}$ seen $[\pi^{+}\pi^{-}\pi^{0}]_{D}K^{-}$ $\pm 0.9) \times 10^{-6}$ (4.6 $[K_{S}^{0}K^{+}\pi^{-}]_{D}K^{+}$ seen $[K_{S}^{\bar{0}}K^{-}\pi^{+}]_{D}K^{+}$ seen $[K^*(892)^+K^-]_DK^+$ seen $[K_{S}^{0}K^{-}\pi^{+}]_{D}\pi^{+}$ seen $[K^*(892)^+K^-]_D\pi^+$ seen $[K_{S}^{0}K^{+}\pi^{-}]_{D}\pi^{+}$ seen $[K^*(892)^-K^+]_D\pi^+$ seen $\overline{D}{}^{0}K^{*}(892)^{+}$ $(5.3 \pm 0.4) \times 10^{-4}$ 2213 $D_{CP(-1)}K^*(892)^+$ \pm 0.8) × 10⁻⁴ [hhh](2.7 $D_{CP(+1)}K^*(892)^+$ $\pm 0.7 \times 10^{-4}$ [hhh] $+\ 1.8 \\ -\ 4.0$ $D^0 K^*(892)^+$ $) \times 10^{-6}$ 2213 $\overline{D}^0 K^+ \pi^+ \pi^ 5.2 \pm 2.1 \times 10^{-4}$ 2237 $\overline{D}^0 K^+ \overline{K}^0$ $5.5 \pm 1.6 \times 10^{-4}$ 2189 $\overline{D}^0 K^+ \overline{K}^* (892)^0$ $7.5 \pm 1.7 \times 10^{-4}$ 2072 $\overline{D}^0 \pi^+ \pi^+ \pi^ 5.5 \pm 2.0 \times 10^{-3}$ S = 3.62289 $\overline{D}{}^0\,\pi^+\pi^+\pi^-$ nonresonant $) \times 10^{-3}$ \pm 4 2289 $\overline{D}^0 \pi^+ \rho^0$ $4.2 \pm 3.0 \times 10^{-3}$ 2208 $\overline{D}{}^{0} a_{1}(1260)^{+}$ $) \times 10^{-3}$ \pm 4 2123 $\overline{D}^0 \omega \pi^+$ $(4.1 \pm 0.9) \times 10^{-3}$ 2206 $D^*(2010)^-\pi^+\pi^+$ $1.35 \pm 0.22 \times 10^{-3}$ 2247

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$D^*(2010)^- K^+ \pi^+$		() × 10 ⁻⁵		2206
$\begin{array}{llllllllllllllllllllllllllllllllllll$			(8.4	\pm	1.5	$) \times 10^{-4}$		2081
$\begin{array}{llllllllllllllllllllllllllllllllllll$. 2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(2260
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(6.1	土	2.4) × 10 ⁻⁶		_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(2.32	\pm	0.23	$) \times 10^{-5}$		-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(3.6	±	1.2) × 10 ⁻⁶		-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D^-\pi^+$		_	2.0			× 10 ⁻⁶	CI00%	2279
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								CL=90/6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			•					CI90%	2200
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D_{2}^{+}(2400) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			0.5			× 10	CL—90/0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D^{+}K^{*0}$		<	4.9			$\times 10^{-7}$	CL=90%	2211
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$D^+\overline{K}^{*0}$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\overline{D}^*(2007)^0\pi^+$		(
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\overline{D}_{CP(+1)}^{*0}\pi^+$	[<i>jiji</i>]							_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D_{CP(-1)}^{*0}\pi^{+}$	[jjj]	(2.6	\pm	1.0	$) \times 10^{-3}$		_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\overline{D}^*(2007)^0 \omega \pi^+$		(2149
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			(
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	• • •		`						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• •	[;;;]							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{D}{D} * 0 \qquad \kappa +$		ì				_		_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$CP(-1)^{N}$	ן עען	ì				_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			`						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							_	CL=90%	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,		(
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(•		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(· _		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(土	1.2			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								CL 000/	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						0.7		CL=90%	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(
$\overline{D}_{1}^{*}(2420)^{0}\pi^{+} \qquad (1.5 \pm 0.6) \times 10^{-3} \qquad S=1.3 \qquad 2081$ $\overline{D}_{1}(2420)^{0}\pi^{+} \times B(\overline{D}_{1}^{0} \rightarrow (2.5 + \frac{1.6}{1.4}) \times 10^{-4} \qquad S=3.8 \qquad 2081$		[1,1,1,1]	(•		2217
$\overline{D}_1(2420)^0 \pi^+ \times B(\overline{D}_1^0 \to (2.5 + 1.6 \times 1.4) \times 10^{-4} S = 3.8 2081$		[KKK]	(C_1 2	2001
· · · · · · · · · · · · · · · · · · ·	1 ' '		(•		
	$D_1(2420)^0\pi^+ imesB(D_1^0 o \overline{D}^0\pi^+\pi^-)$		(2.5	+	1.6) × 10 ⁻⁴	S=3.8	2081

$\overline{D}_1(2420)^0 \pi^+ \times B(\overline{D}_1^0 \to \overline{D}_1^0 \pi^+ \pi^- \text{(papersonant)})$	(2.2	\pm	0.9) × 10 ⁻⁴		2081
$\overline{D}{}^0\pi^+\pi^-$ (nonresonant)) $\overline{D}_1(2430)^0\pi^+$, $\overline{D}_1^0 o$ $D^*(2010)^-\pi^+$	(3.5	\pm	0.6	$) \times 10^{-4}$		2079
$\overline{D}(2550)^0 \pi^+, \ \overline{D}^0 \to D^*(2010)^- \pi^+$	(7.2	±	1.4	$) \times 10^{-5}$		-
$\overline{D}_{J}^{*}(2600)^{0}\pi^{+}, \overline{D}_{J}^{*0} \rightarrow D^{*}(2010)^{-}\pi^{+}$	(6.8	\pm	1.3) × 10 ⁻⁵		-
$\overline{D}_{2}^{*}(2462)^{0}\pi^{+}, \overline{D}_{2}^{*0} \rightarrow D^{-}\pi^{+}$	(3.56	\pm	0.24	$) \times 10^{-4}$		_
$\overline{D}_{2}^{*}(2462)^{0}\pi^{+}, \ \overline{D}_{2}^{*0}\rightarrow$	(2.2	\pm	1.0	$) \times 10^{-4}$		_
$ \overline{D}^{0}\pi^{-}\pi^{+} $ $ \overline{D}_{2}^{*}(2462)^{0}\pi^{+}, \overline{D}_{2}^{*0} \rightarrow $	<	1.6			× 10 ⁻⁴	CL=90%	_
$\overline{D}^0 \pi^- \pi^+ \text{(nonresonant)}$,	0.1		1.0	\10 - 4		
$\overline{D}_2^*(2462)^0\pi^+,\; \overline{D}_2^{*0} o D^*(2010)^-\pi^+$	(2.1	土	1.0) × 10 ⁻⁴		_
$\overline{D}_0^*(2400)^0\pi^+$	(6.4	+	1.4) × 10 ⁻⁴		2136
$\times \ B(\overline{D}_0^*(2400)^0 \to \ D^-\pi^+)$	(•••	_		, // =0		
$\overline{D}_1(2421)^0\pi^+, \ \overline{D}_1^0 \to \ D^{*-}\pi^+$	(7.4	土	1.0	$) \times 10^{-4}$		_
$\overline{D}_2^*(2462)^0\pi^+$, $\overline{D}_2^{*0}\to$	(1.98	\pm	0.30	$) \times 10^{-4}$		_
$\overline{D}_{1}^{*-}\pi^{+}$ $\overline{D}_{1}^{\prime0}(2427)^{0}\pi^{+}$, $\overline{D}_{1}^{\prime0}\to$	(3.5	土	0.9) × 10 ⁻⁴	S=1.5	_
$\overline{D}_{1}^{0}(2420)^{0}\pi^{+}\timesB(\overline{D}_{1}^{0}\to \overline{D}_{1}^{*0}\pi^{+}\pi^{-})$	<	6			× 10 ⁻⁶	CL=90%	2081
$\overline{D}_1(2420)^0\pi^+ imes B(\overline{D}_1^0 o \overline{D}^{*0}\pi^+\pi^-)$							
$\overline{D}_{1}(2420)^{0}\pi^{+}\timesB(\overline{D}_{1}^{0}\to \overline{D}^{*0}\pi^{+}\pi^{-}) \ \overline{D}_{1}^{*}(2420)^{0}\rho^{+}$	<	6 1.4 1.3			× 10 ⁻³	CL=90% CL=90% CL=90%	2081 1996 2063
$\overline{D}_{1}(\overline{2420})^{0}\pi^{+}\timesB(\overline{D}_{1}^{0}\to \overline{D}^{*0}\pi^{+}\pi^{-})$ $\overline{D}_{1}^{*}(2420)^{0}\rho^{+}$ $\overline{D}_{2}^{*}(2460)^{0}\pi^{+}$ $\overline{D}_{2}^{*}(2460)^{0}\pi^{+}\timesB(\overline{D}_{2}^{*0}\to \overline{D}_{2}^{*0}(2460)^{0}\pi^{+})$	<	1.4 1.3			$\times 10^{-3} \times 10^{-3}$	CL=90%	1996
$ \overline{D}_{1}(2420)^{0} \pi^{+} \times B(\overline{D}_{1}^{0} \to \overline{D}^{*0} \pi^{+} \pi^{-}) $ $ \overline{D}_{1}^{*0}(2420)^{0} \rho^{+} $ $ \overline{D}_{2}^{*}(2460)^{0} \pi^{+} $ $ \overline{D}_{2}^{*}(2460)^{0} \pi^{+} \times B(\overline{D}_{2}^{*0} \to \overline{D}^{*0} \pi^{+} \pi^{-}) $ $ \overline{D}_{1}^{*}(2680)^{0} \pi^{+}, \ \overline{D}_{1}^{*}(2680)^{0} \to $	< < <	1.4 1.3 2.2	±	2.1	$\times 10^{-3} \times 10^{-3}$	CL=90% CL=90%	1996 2063
$\begin{array}{c} \overline{D}_{1}(2420)^{0}\pi^{+}\timesB(\overline{D}_{1}^{0}\to\\ \overline{D}^{*0}\pi^{+}\pi^{-})\\ \overline{D}_{1}^{*}(2420)^{0}\rho^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}\timesB(\overline{D}_{2}^{*0}\to\\ \overline{D}^{*0}\pi^{+}\pi^{-})\\ \overline{D}_{1}^{*}(2680)^{0}\pi^{+},\;\; \overline{D}_{1}^{*}(2680)^{0}\to\\ \overline{D}^{-}\pi^{+}\\ \overline{D}(2740)^{0}\pi^{+},\;\; \overline{D}^{0}\to\\ \end{array}$	< < <	1.4 1.3 2.2 8.4			$\times 10^{-3} \\ \times 10^{-3} \\ \times 10^{-5}$	CL=90% CL=90%	1996 2063
$\begin{array}{c} \overline{D}_{1}(2420)^{0}\pi^{+}\times B(\overline{D}_{1}^{0}\to\\ \overline{D}^{*0}\pi^{+}\pi^{-})\\ \overline{D}_{1}^{*}(2420)^{0}\rho^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}\times B(\overline{D}_{2}^{*0}\to\\ \overline{D}^{*0}\pi^{+}\pi^{-})\\ \overline{D}_{1}^{*}(2680)^{0}\pi^{+},\ \overline{D}_{1}^{*}(2680)^{0}\to\\ D^{-}\pi^{+}\\ \overline{D}(2740)^{0}\pi^{+},\ \overline{D}^{0}\to\\ D^{*}(2010)^{-}\pi^{+}\\ \overline{D}_{3}^{*}(2750)^{0}\pi^{+},\ \overline{D}_{3}^{*0}\to\\ \end{array}$	< < < < < < < < < < < < < < < < < < <	1.4 1.3 2.2 8.4 3.3	±	1.5	$ \begin{array}{c} \times 10^{-3} \\ \times 10^{-3} \\ \times 10^{-5} \end{array} $ $ \begin{array}{c} \times 10^{-5} \\ \end{array} $	CL=90% CL=90%	1996 2063
$\begin{array}{c} \overline{D}_{1}(2420)^{0}\pi^{+}\timesB(\overline{D}_{1}^{0}\to\\ \overline{D}^{*0}\pi^{+}\pi^{-})\\ \overline{D}_{1}^{*}(2420)^{0}\rho^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}\timesB(\overline{D}_{2}^{*0}\to\\ \overline{D}^{*0}\pi^{+}\pi^{-})\\ \overline{D}_{1}^{*}(2680)^{0}\pi^{+},\ \overline{D}_{1}^{*}(2680)^{0}\to\\ \overline{D}^{-}\pi^{+}\\ \overline{D}(2740)^{0}\pi^{+},\ \overline{D}^{0}\to\\ D^{*}(2010)^{-}\pi^{+}\\ \overline{D}_{3}^{*}(2750)^{0}\pi^{+},\ \overline{D}_{3}^{*0}\to\\ D^{*}(2010)^{-}\pi^{+}\\ \overline{D}_{3}^{*}(2760)^{0}\pi^{+},\end{array}$	< < < < (((1.4 1.3 2.2 8.4 3.3	± ±	1.5 0.32	$\times 10^{-3}$ $\times 10^{-3}$ $\times 10^{-5}$) $\times 10^{-5}$	CL=90% CL=90%	1996 2063 2063 —
$\begin{array}{c} \overline{D}_{1}(2420)^{0}\pi^{+}\timesB(\overline{D}_{1}^{0}\to\\ \overline{D}^{*0}\pi^{+}\pi^{-})\\ \overline{D}_{1}^{*}(2420)^{0}\rho^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}\timesB(\overline{D}_{2}^{*0}\to\\ \overline{D}^{*0}\pi^{+}\pi^{-})\\ \overline{D}_{1}^{*}(2680)^{0}\pi^{+},\ \overline{D}_{1}^{*}(2680)^{0}\to\\ \overline{D}^{-}\pi^{+}\\ \overline{D}(2740)^{0}\pi^{+},\ \overline{D}^{0}\to\\ D^{*}(2010)^{-}\pi^{+}\\ \overline{D}_{3}^{*}(2750)^{0}\pi^{+},\ \overline{D}_{3}^{*0}\to\\ D^{*}(2010)^{-}\pi^{+}\\ \overline{D}_{3}^{*}(2760)^{0}\pi^{+},\ \overline{D}_{3}^{*0}(2760)^{0}\pi^{+},\\ \overline{D}_{2}^{*}(3000)^{0}\pi^{+},\end{array}$	< < < < < (((((((((((((((1.4 1.3 2.2 8.4 3.3 1.10	± ±	1.5 0.32 0.22	$\times 10^{-3}$ $\times 10^{-5}$ $\times 10^{-5}$ $\times 10^{-5}$ $\times 10^{-5}$ $\times 10^{-5}$	CL=90% CL=90%	1996 2063 2063 —
$\begin{array}{c} \overline{D}_{1}(2420)^{0}\pi^{+}\times B(\overline{D}_{1}^{0}\to\\ \overline{D}^{*0}\pi^{+}\pi^{-})\\ \overline{D}_{1}^{*}(2420)^{0}\rho^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}\times B(\overline{D}_{2}^{*0}\to\\ \overline{D}^{*0}\pi^{+}\pi^{-})\\ \overline{D}_{1}^{*}(2680)^{0}\pi^{+},\ \overline{D}_{1}^{*}(2680)^{0}\to\\ \overline{D}^{-}\pi^{+}\\ \overline{D}(2740)^{0}\pi^{+},\ \overline{D}^{0}\to\\ D^{*}(2010)^{-}\pi^{+}\\ \overline{D}_{3}^{*}(2750)^{0}\pi^{+},\ \overline{D}_{3}^{*0}\to\\ D^{*}(2010)^{-}\pi^{+}\\ \overline{D}_{3}^{*}(2760)^{0}\pi^{+},\ \overline{D}_{3}^{*}(2760)^{0}\pi^{+}\\ \overline{D}_{2}^{*}(3000)^{0}\pi^{+},\ \overline{D}_{2}^{*}(3000)^{0}\pi^{+}\\ \end{array}$	< < < < < < < < < < < < < < < < < < <	1.4 1.3 2.2 8.4 3.3 1.10 1.00	± ± ±	1.5 0.32 0.22 1.4	$\times 10^{-3}$ $\times 10^{-3}$ $\times 10^{-5}$) $\times 10^{-5}$	CL=90% CL=90% CL=90%	1996 2063 2063 — — 1913 —
$\begin{array}{c} \overline{D}_{1}(2420)^{0}\pi^{+}\timesB(\overline{D}_{1}^{0}\to\\ \overline{D}^{*0}\pi^{+}\pi^{-})\\ \overline{D}_{1}^{*}(2420)^{0}\rho^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}\timesB(\overline{D}_{2}^{*0}\to\\ \overline{D}^{*0}\pi^{+}\pi^{-})\\ \overline{D}_{1}^{*}(2680)^{0}\pi^{+},\ \overline{D}_{1}^{*}(2680)^{0}\to\\ \overline{D}^{-}\pi^{+}\\ \overline{D}(2740)^{0}\pi^{+},\ \overline{D}^{0}\to\\ D^{*}(2010)^{-}\pi^{+}\\ \overline{D}_{3}^{*}(2750)^{0}\pi^{+},\ \overline{D}_{3}^{*0}\to\\ D^{*}(2010)^{-}\pi^{+}\\ \overline{D}_{3}^{*}(2760)^{0}\pi^{+},\ \overline{D}_{3}^{*0}(2760)^{0}\pi^{+},\\ \overline{D}_{2}^{*}(3000)^{0}\pi^{+},\ \overline{D}_{2}^{*}(3000)^{0}\pi^{+}\to D^{-}\pi^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\rho^{+}\\ \end{array}$	< < < < < < < < < < < < < < < < < < <	1.4 1.3 2.2 8.4 3.3 1.10 1.00 2.0	± ± ±	1.5 0.32 0.22 1.4	$ \begin{array}{r} $	CL=90% CL=90% CL=90%	1996 2063 2063 — — 1913 — — 1977
$\begin{array}{c} \overline{D}_{1}(2420)^{0}\pi^{+}\timesB(\overline{D}_{1}^{0}\to\\ \overline{D}^{*0}\pi^{+}\pi^{-})\\ \overline{D}_{1}^{*}(2420)^{0}\rho^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}\timesB(\overline{D}_{2}^{*0}\to\\ \overline{D}^{*0}\pi^{+}\pi^{-})\\ \overline{D}_{1}^{*}(2680)^{0}\pi^{+},\ \overline{D}_{1}^{*}(2680)^{0}\to\\ \overline{D}^{*}(2740)^{0}\pi^{+},\ \overline{D}^{0}\to\\ D^{*}(2010)^{-}\pi^{+}\\ \overline{D}_{3}^{*}(2750)^{0}\pi^{+},\ \overline{D}_{3}^{*0}\to\\ D^{*}(2010)^{-}\pi^{+}\\ \overline{D}_{3}^{*}(2760)^{0}\pi^{+},\ \overline{D}_{3}^{*0}\to\\ \overline{D}_{2}^{*}(3000)^{0}\pi^{+},\ \overline{D}_{2}^{*}(3000)^{0}\pi^{+}\to\\ \overline{D}_{2}^{*}(2460)^{0}\rho^{+}\\ \overline{D}^{0}D_{s}^{+}\\ \end{array}$	< < < < < < < < < < < < < < < < < < <	1.4 1.3 2.2 8.4 3.3 1.10 1.00 2.0 4.7 9.0	± ± ±	1.5 0.32 0.22 1.4	$ \begin{array}{r} $	CL=90% CL=90% CL=90%	1996 2063 2063 — — 1913 —
$\begin{array}{c} \overline{D}_{1}(2420)^{0}\pi^{+}\timesB(\overline{D}_{1}^{0}\to\\ \overline{D}^{*0}\pi^{+}\pi^{-})\\ \overline{D}_{1}^{*}(2420)^{0}\rho^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}\timesB(\overline{D}_{2}^{*0}\to\\ \overline{D}^{*0}\pi^{+}\pi^{-})\\ \overline{D}_{1}^{*}(2680)^{0}\pi^{+},\ \overline{D}_{1}^{*}(2680)^{0}\to\\ \overline{D}^{-}\pi^{+}\\ \overline{D}(2740)^{0}\pi^{+},\ \overline{D}^{0}\to\\ D^{*}(2010)^{-}\pi^{+}\\ \overline{D}_{3}^{*}(2750)^{0}\pi^{+},\ \overline{D}_{3}^{*0}\to\\ D^{*}(2010)^{-}\pi^{+}\\ \overline{D}_{3}^{*}(2760)^{0}\pi^{+},\ \overline{D}_{3}^{*0}(2760)^{0}\pi^{+},\\ \overline{D}_{2}^{*}(3000)^{0}\pi^{+},\ \overline{D}_{2}^{*}(3000)^{0}\pi^{+}\to D^{-}\pi^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\rho^{+}\\ \end{array}$	< < < < < < < < < < < < < < < < < < <	1.4 1.3 2.2 8.4 3.3 1.10 1.00 2.0 4.7 9.0	± ± ±	1.5 0.32 0.22 1.4	$ \begin{array}{r} $	CL=90% CL=90% CL=90%	1996 2063 2063 — — 1913 — — 1977

$\overline{D}^*(2007)^0 D_s^{*+}$	(1.71	\pm	0.24) %		1651
$D^{(*)} + \overline{D}^{**0}$	(2.7	\pm	1.2) %		_
$\overline{D}^{s}(2007)^{0} D^{*}(2010)^{+}$	(8.1) × 10 ⁻⁴		1713
$\overline{D}{}^{0}D^{*}(2010)^{+}+$	<	1.30			%	CL=90%	1792
$\overline{D}^*(2007)^0 D^+$							
$\overline{D}{}^{0}D^{*}(2010)^{+}$	(3.9	\pm	0.5	$) \times 10^{-4}$		1792
$\overline{D}{}^0D^+$	($) \times 10^{-4}$		1866
$\overline{D}{}^0D^+K^0$	($) \times 10^{-3}$		1571
$D^{+}\overline{D}^{*}(2007)^{0}$	(6.3			$) \times 10^{-4}$		1791
$\overline{D}^*(2007)^0 D^+ K^0$	(2.1			$) \times 10^{-3}$		1475
$\overline{D}^0 D^* (2010)^+ K^0$	(3.8			$) \times 10^{-3}$		1476
$\overline{D}^*(2007)^0 D^*(2010)^+ K^0$ $\overline{D}^0 D^0 K^+$	($) \times 10^{-3}$		1362
	($) \times 10^{-3}$	S=2.6	1577
$\overline{D}^*(2007)^0 D^0 K^+ \overline{D}^0 D^*(2007)^0 K^+$	($) \times 10^{-3}$		1481
$\overline{D}^*(2007)^0 D^*(2007)^0 K^+$	(6.3			$) \times 10^{-3}$		1481
$D = D + K^{+}$	(0.13	•		1368
$X_0(2900)D^+, X_0 \rightarrow$	($) \times 10^{-4}$		1571
$\lambda_0(2900)D^+, \lambda_0 \rightarrow D^-K^+$	(1.2	土	0.5) × 10 ⁻⁵		_
$X_1(2900)D^+, X_1 o D^-K^+$	(6.7	±	2.3) × 10 ⁻⁵		-
$D^-D^+K^+$ nonresonant	(5.3	\pm	1.8	$) \times 10^{-5}$		1571
$D^-D^*(2010)^+K^+$	(6.3			$) \times 10^{-4}$		1475
$D^*(2010)^- D^+ K^+$	(6.0			$) \times 10^{-4}$		1475
$D^*(2010)^- D^*(2010)^+ K^+$	(1.32	\pm	0.18	$) \times 10^{-3}$		1363
$(\overline{D} + \overline{D}^*)(D + D^*)K$	(4.05	\pm	0.30) %		_
$D_s^+\pi^0$	(1.6	\pm	0.5	$) \times 10^{-5}$		2270
$D_{-}^{*+}\pi^{0}$	<	2.6			$\times 10^{-4}$	CL=90%	2215
$D_s^* \eta$	<	4			$\times 10^{-4}$	CL=90%	2235
	<	6			$\times10^{-4}$	CL=90%	2178
$D_{\rho}^{+}\rho^{0}$	<	3.0			$\times10^{-4}$	CL=90%	2197
$D^{*+}\rho^{0}$	<	4			$\times 10^{-4}$	CL=90%	2138
$D^+\omega$	<	4				CL=90%	2195
$D^{*+}\omega$	<	6				CL=90%	2136
D^{+} 31 (1260)0	<	1.8				CL=90%	2079
$D_s^{*+} = (1260)^0$						CL=90%	
$D_s = a_1(1200)$	<	1.3				CL=90%	2015
D_s^+ K^+ K^-	(7.2	土	1.1	$) \times 10^{-6}$	- 0/	2149
$D_{s}^{\dagger}\phi$	<	4.2				CL=90%	2141
$D_{s}^{*} \overline{\phi}$	<	1.2				CL=90%	2079
$D_s^+ K^0$	<	8				CL=90%	2242
$D_s^{*+} K^0$	<	9			\times 10 ⁻⁴	CL=90%	2185
$D_{s}^{*} \eta$ $D_{s}^{+} \rho^{0}$ $D_{s}^{*+} \rho^{0}$ $D_{s}^{+} \omega$ $D_{s}^{*+} \omega$ $D_{s}^{+} a_{1}(1260)^{0}$ $D_{s}^{+} K^{+} K^{-}$ $D_{s}^{+} \phi$ $D_{s}^{+} \phi$ $D_{s}^{+} \overline{K}^{0}$ $D_{s}^{+} \overline{K}^{*}(892)^{0}$	<	4.4			\times 10 ⁻⁶	CL=90%	2172

$D_s^+ K^{*0}$	<	3.5	$\times 10^{-6}$	CL=90%	2172
$D_s^{*+}\overline{K}^*(892)^0$	<	3.5	$\times 10^{-4}$	CL=90%	2112
$D_s^-\pi^+K^+$	($1.80 ~\pm~ 0.22$	$) \times 10^{-4}$		2222
$D_s^{*-}\pi^+K^+$	($1.45 ~\pm~ 0.24$	$) \times 10^{-4}$		2164
$D_s^- \pi^+ K^* (892)^+$	<	5	$\times 10^{-3}$	CL=90%	2138
$D_s^{*-}\pi^+K^*(892)^+$	<	7	$\times 10^{-3}$	CL=90%	2076
$D_s^- K^+ K^+$	(9.7 ± 2.1	$) \times 10^{-6}$		2149
$D_s^{*-} K^+ K^+$	<	1.5	$\times 10^{-5}$	CL=90%	2088

Charmonium modes

$X(4020)^0K^+$, $X^0 ightarrow$		<	1.6			$\times 10^{-5}$	CL=90%	_
$\chi_{c1}(3872)K^*(892)^+$		<	6			× 10 ⁻⁴	CL=90%	940
$\chi_{c1}(3872)^+ K^0, \ \chi_{c1}^+ \rightarrow$	[///]	<					CL=90%	_
$J/\psi(1S)\pi^+\pi^0$	[,,,]		0.1			× 10	CL-3070	
$\chi_{c1}(3872)K^0\pi^+$		(2.8	+ -	1 2) × 10 ⁻⁴		1085
$Z_c(4430)^+ K^0, Z_c^+ \rightarrow J/\psi \pi^+$		<				× 10 ⁻⁵	CI -05%	1005
$Z_c(4430)^+ K^0, Z_c^+ \rightarrow$						× 10 × 10 ⁻⁵		
$\psi(2S)\pi^+$		<	4.7			× 10	CL=95%	_
$Z_c(4430)^0 K^+, Z_c^0 \rightarrow J/\psi \eta$		<	1.27			$\times10^{-6}$	CL=90%	_
$\psi(4230)^{0}K^{+}, \ \psi^{0} \rightarrow$		<	1.56				CL=95%	_
$J/\psi \pi^+ \pi^-$								
$\psi(4230)K^+, \ \psi \rightarrow \ J/\psi \eta$		<	3.9			$\times10^{-7}$	CL=90%	_
$\psi(4360)K^+, \ \psi \rightarrow J/\psi \eta$		<	1.24			$\times 10^{-6}$	CL=90%	_
ψ (4390) K^+ , $\psi \rightarrow J/\psi \eta$		<	2.41			$\times 10^{-6}$	CL=90%	_
$\chi_{c0}(3915)K^+$, $\chi_{c0} \rightarrow J/\psi \gamma$		<	1.4			$\times10^{-5}$	CL=90%	_
$\chi_{c0}(3915)K^+$, $\chi_{c0} ightarrow$		<	3.8			$\times10^{-5}$	CL=90%	_
$\chi_{c1}(1P)\pi^{0}$								
$X(3930)^0 K^+, X^0 \to J/\psi \gamma$		<	2.5			$\times 10^{-6}$	CL=90%	_
$J/\psi(1S)K^+$		(1.020	0± (0.019	$(9) \times 10^{-3}$		1684
$J/\psi(1S)K^0\pi^+$		(1.14	± (0.11	$) \times 10^{-3}$		1651
$J/\psi(1S)K^{+}\pi^{+}\pi^{-}$		(8.1	± :	1.3	$) \times 10^{-4}$	S=2.5	1612
$J/\psi(1S) K^+ K^- K^+$		($) \times 10^{-5}$		1252
$\chi_{c0}(3915){ m K}^+$, $\chi_{c0} ightarrow~{ m p}{\overline { m p}}$		<	7.1			$\times 10^{-8}$	CL=95%	_
$J/\psi(1S)K^*(892)^+$		(1.43	± (80.0	$) \times 10^{-3}$		1571
$J/\psi(1S)K(1270)^+$		(1.8	± (0.5	$) \times 10^{-3}$		1402
$J/\psi(1S)K(1400)^+$		<	5			$\times 10^{-4}$	CL=90%	1308
$J/\psi(1S)\etaK^+$		(1.24	± (0.14	$) \times 10^{-4}$		1510
$\chi_{c1-odd}(3872)K^{+}$,		<	3.8			$\times 10^{-6}$	CL=90%	_
$\chi_{c1-odd} o J/\psi \eta$								
ψ (4160) K^+ , $\psi o extit{J}/\psi\eta$		<	8.7				CL=90%	_
$J/\psi(1\mathcal{S})\eta^\prime\mathcal{K}^+$		<	8.8				CL=90%	1273
$J/\psi(1S)\phi K^+$		(5.0	± (0.4	$) \times 10^{-5}$		1227
$J/\psi(1S) K_1(1650), \;\; K_1 ightarrow \phi K^+$		(6	+10) 6	$) \times 10^{-6}$		_
$J/\psi(1S) K^*(1680)^+, K^* \rightarrow \phi K^+$		(3.4	+ 1	1.9 2.2	$) \times 10^{-6}$		_
$J/\psi(1S) K_2^*(1980), K_2^* \rightarrow \phi K^+$		(1.5	+ (0.9 0.5	$)\times10^{-6}$		-
$J/\psi(1S)K(1830)^+,\ K(1830)^+ o \phiK^+$		(1.3	+ 1	1.3 1.1	$)\times10^{-6}$		-

$\chi_{c1}(4140)K^+,~\chi_{c1} ightarrow J/\psi(1S)\phi$	(10	±	4) × 10 ⁻⁶		-
$\chi_{c1}(4274)K^+, \chi_{c1} \rightarrow J/\psi(1S)\phi$	(3.6	+	2.2 1.8	$) \times 10^{-6}$		_
$\chi_{c0}(4500)K^+, \ \chi_{c0} \rightarrow J/\psi(1S)\phi$	(3.3	+	2.1 1.7	$) \times 10^{-6}$		_
$\chi_{c0}(4700)K^+, \ \chi_{c0} \rightarrow J/\psi(1S)\phi$	(6	+	5 4) × 10 ⁻⁶		_
$J/\psi(1S)\omegaK^+$	(3.20	+	0.60 0.32	$) \times 10^{-4}$		1388
$\chi_{c0}(3915)K^+,~\chi_{c0} ightarrow J/\psi\omega$	(3.0	+	0.9 0.7) × 10 ⁻⁵		1103
$J/\psi(1S)\pi^+$	(3.92	\pm	0.08	$) \times 10^{-5}$		1728
$J/\psi(1S)\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	(1.17	\pm	0.13	$) \times 10^{-5}$		1635
$\psi(2S)\pi^{+}\pi^{+}\pi^{-}$	($) \times 10^{-5}$		1304
$J/\psi(1\mathcal{S}) ho^+$	(4.1	\pm	0.5	$) \times 10^{-5}$	S=1.4	1611
$J/\psi(1\mathcal{S})\pi^+\pi^0$ nonresonant	<				$\times 10^{-6}$		1717
$J/\psi(1S)a_1(1260)^+$	<	1.2			$\times 10^{-3}$	CL=90%	1415
$J/\psi(1\mathcal{S}) ho\overline{\overline{ ho}}\pi^+$	<				$\times 10^{-7}$	CL=90%	643
$J/\psi(1S)\underline{\rho}\overline{\Lambda}$	(1.46			$) \times 10^{-5}$		567
$J/\psi(1S)\overline{\Sigma}^0 p$	<	1.1			$\times 10^{-5}$		_
$J/\psi(1S)\underline{D}^+$	<					CL=90%	871
$J/\psi(1S)\overline{D}{}^0\pi^+$	<					CL=90%	665
$\psi(2S)\pi^+$					$) \times 10^{-5}$		1347
$\psi(2S)K^{+}$					$) \times 10^{-4}$		1284
$\psi(2S) K^*(892)^+$	($) \times 10^{-4}$	S=1.3	1116
$\psi(2S) K^{+} \pi^{+} \pi^{-}$	($) \times 10^{-4}$		1179
$\psi(2S)\phi(1020)K^{+}$	($) \times 10^{-6}$		418
$\psi(3770)K^{+}$	($) \times 10^{-4}$	C 1.4	1218
$\psi(3770)K+,\psi\to D^0\overline{D}^0$ $\psi(3770)K+,\psi\to D^+D^-$	($) \times 10^{-4}$ $) \times 10^{-5}$	S=1.4	1218
$\psi(3770)K^+, \ \psi \rightarrow \ p\overline{p}$	<				$\times 10^{-7}$	CI -05%	1218
$\psi(3770)K^+, \ \psi \rightarrow J/\psi \eta$	<				× 10 × 10 ⁻⁷		_
$\psi(4040)K^+$	($) \times 10^{-3}$	CL-3070	1003
$\psi(4040)K^{+}, \ \psi \rightarrow D^{+}D^{-}$	($) \times 10^{-5}$		_
$\psi(4160)K^{+}$	(5.1	±	2.7	$) \times 10^{-4}$		868
$\psi(4160)K^+, \ \psi \rightarrow \ \overline{D}{}^0D^0$	() × 10 ⁻⁵		_
$\psi(4160)K^+, \ \psi \rightarrow D^+D^-$	($) \times 10^{-5}$		_
ψ (4415) K^+ , $\psi \rightarrow D^+D^-$	($) \times 10^{-5}$		_
ψ (4415) K^+ , $\psi o extit{J}/\psi\eta$	<	9.6			$\times 10^{-7}$	CL=90%	_
$\chi_{c0}\pi^+, \chi_{c0} \rightarrow \pi^+\pi^-$	<	1			\times 10 ⁻⁷	CL=90%	1531
$\chi_{c0}\mathrm{K}^+$	(1.51	+	0.15	$) \times 10^{-4}$		1478
$\chi_{c0} K^*(892)^+$	<					CL=90%	1341
HTTP://PDG.LBL.GOV	Page 8	38		Cr	eated: 7	/10/2023	15:48

$v_{-1}(1P)\pi^{+}$					E		
$\chi_{c1}(1P)\pi^{+}$	(\times 10 ⁻⁵		1468
$\chi_{c1}(1P)K^+$	(4.74	\pm	0.22)	$\times 10^{-4}$		1412
$\chi_{c1}(1P)K^*(892)^+$	(3.0	\pm	0.6)	\times 10 ⁻⁴	S=1.1	1265
$\chi_{c1}(1P) K^0 \pi^+$	(5.8	\pm	0.4)	$\times 10^{-4}$		1370
$\chi_{c1}(1P)K^{+}\pi^{0}$	($\times 10^{-4}$		1373
$\chi_{c1}(1P)K^{+}\pi^{+}\pi^{-}$	(,	$\times10^{-4}$		1319
$\chi_{c1}(2P)K^+, \ \chi_{c1}(2P) \rightarrow$	<					CL=90%	_
$\pi^{+}\pi^{-}\chi_{c1}(1P)$							
$\chi_{c2}K^{+}$	(1 1	_	04)	$\times 10^{-5}$		1379
$\chi_{c2}K^+, \chi_{c2} \rightarrow p\overline{p}\pi^+\pi^-$	<		_		× 10 × 10 ⁻⁷		1319
$\chi_{c2}N$, $\chi_{c2} \rightarrow \rho\rho n$ n						CL=90%	1000
$\chi_{c2} K^*(892)^+$	<	1.2			_	CL=90%	1228
$\chi_{c2} K^0 \pi^+$	(土	0.25)	$\times 10^{-4}$	GL 000/	1336
$\chi_{c2} K^+ \pi^0$	< ,	6.2				CL=90%	1339
$\chi_{c2} K^+ \pi^+ \pi^-$	(\times 10 ⁻⁴		1284
$\chi_{c2}(3930)K^+, \ \chi_{c2} \rightarrow D^+D^-$	(,	\times 10 ⁻⁵		_
$\chi_{c2}(3930)\pi^{+}, \ \chi_{c2} \rightarrow \pi^{+}\pi^{-}$	<					CL=90%	1437
$h_c(1P)K^+$	($\times 10^{-5}$		1401
$h_c(1P)K^+$, $h_c o ho\overline{ ho}$	<	6.4			$\times 10^{-8}$	CL=95%	_
		_					
	· K*	mode	_		E		
$K^0\pi^+$	(\times 10 ⁻⁵		2614
$K^+\pi^0$	(\times 10 ⁻⁵		2615
η^\prime K $^+$	(7.04	\pm	0.25)	\times 10 ⁻⁵		2528
$\eta' K^*(892)^+$	(/ Q	+	1.8	$\times 10^{-6}$		0.470
	(4.0	_	1.6	/\ _ 0		2472
$\eta' K_0^* (1430)^+$	(2472
$\eta' K_0^* (1430)^+$ $\eta' K_0^* (1430)^+$	(5.2	±	2.1)	$\times10^{-6}$		_
$\eta' K_2^{\circ}(1430)^+$	(5.2 2.8	± ±	2.1) 0.5)	$^{\times10^{-6}}_{\times10^{-5}}$	S—1.7	– 2346
$\eta' K_2^* (1430)^+ $ ηK^+	(5.2 2.8 2.4	± ± ±	2.1) 0.5) 0.4)	$\times 10^{-6} \\ \times 10^{-5} \\ \times 10^{-6}$	S=1.7	– 2346 2588
$\eta' K_{2}^{*}(1430)^{+}$ ηK^{+} $\eta K^{*}(892)^{+}$	(5.2 2.8 2.4 1.93	± ± ±	2.1) 0.5) 0.4) 0.16)	$\times 10^{-6} \\ \times 10^{-5} \\ \times 10^{-6} \\ \times 10^{-5}$	S=1.7	– 2346
$\eta' K_{2}^{*}(1430)^{+}$ ηK^{+} $\eta K^{*}(892)^{+}$ $\eta K_{0}^{*}(1430)^{+}$	(5.2 2.8 2.4 1.93 1.8	± ± ± ±	2.1) 0.5) 0.4) 0.16) 0.4)	$\times 10^{-6}$ $\times 10^{-5}$ $\times 10^{-6}$ $\times 10^{-5}$ $\times 10^{-5}$	S=1.7	- 2346 2588 2534 -
$\eta' K_{2}^{*}(1430)^{+}$ ηK^{+} $\eta K^{*}(892)^{+}$		5.2 2.8 2.4 1.93 1.8 9.1	± ± ± ± ±	2.1) 0.5) 0.4) 0.16) 0.4) 3.0)	$\times 10^{-6} \\ \times 10^{-5} \\ \times 10^{-6} \\ \times 10^{-5}$	S=1.7	– 2346 2588
$\eta' K_{2}^{*}(1430)^{+}$ ηK^{+} $\eta K^{*}(892)^{+}$ $\eta K_{0}^{*}(1430)^{+}$ $\eta K_{2}^{*}(1430)^{+}$ $\eta (1295) K^{+} \times B(\eta(1295) \rightarrow$		5.2 2.8 2.4 1.93 1.8	± ± ± ± ±	2.1) 0.5) 0.4) 0.16) 0.4) 3.0)	$\times 10^{-6}$ $\times 10^{-5}$ $\times 10^{-6}$ $\times 10^{-5}$ $\times 10^{-5}$	S=1.7	- 2346 2588 2534 -
$ \eta' K_{2}^{*}(1430)^{+} $ $ \eta K^{+} $ $ \eta K^{*}(892)^{+} $ $ \eta K_{0}^{*}(1430)^{+} $ $ \eta K_{2}^{*}(1430)^{+} $ $ \eta(1295) K^{+} \times B(\eta(1295) \rightarrow \eta \pi \pi) $		5.2 2.8 2.4 1.93 1.8 9.1 2.9	± ± ± ± ±	2.1) 0.5) 0.4) 0.16) 0.4) 3.0)	$\times 10^{-6}$ $\times 10^{-5}$ $\times 10^{-6}$ $\times 10^{-5}$ $\times 10^{-5}$ $\times 10^{-6}$ $\times 10^{-6}$		- 2346 2588 2534 - 2414 2455
$ \eta' K_{2}^{*}(1430)^{+} $ $ \eta K^{+} $ $ \eta K^{*}(892)^{+} $ $ \eta K_{0}^{*}(1430)^{+} $ $ \eta K_{2}^{*}(1430)^{+} $ $ \eta(1295) K^{+} \times B(\eta(1295) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow \Pi) $		5.2 2.8 2.4 1.93 1.8 9.1 2.9	± ± ± ± ±	2.1) 0.5) 0.4) 0.16) 0.4) 3.0)	$\times 10^{-6}$ $\times 10^{-5}$ $\times 10^{-6}$ $\times 10^{-5}$ $\times 10^{-5}$ $\times 10^{-6}$ $\times 10^{-6}$	S=1.7 CL=90%	- 2346 2588 2534 - 2414
$ \eta' K_{2}^{*}(1430)^{+} $ $ \eta K^{+} $ $ \eta K^{*}(892)^{+} $ $ \eta K_{0}^{*}(1430)^{+} $ $ \eta K_{2}^{*}(1430)^{+} $ $ \eta(1295) K^{+} \times B(\eta(1295) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow \eta \pi \pi) $		5.2 2.8 2.4 1.93 1.8 9.1 2.9	± ± ± ± ±	2.1) 0.5) 0.4) 0.16) 0.4) 3.0)	$ \times 10^{-6} $ $ \times 10^{-5} $ $ \times 10^{-6} $ $ \times 10^{-5} $ $ \times 10^{-6} $ $ \times 10^{-6} $	CL=90%	- 2346 2588 2534 - 2414 2455
$ \eta' K_{2}^{*}(1430)^{+} $ $ \eta K^{+} $ $ \eta K^{*}(892)^{+} $ $ \eta K_{0}^{*}(1430)^{+} $ $ \eta K_{2}^{*}(1430)^{+} $ $ \eta(1295) K^{+} \times B(\eta(1295) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow \Pi) $		5.2 2.8 2.4 1.93 1.8 9.1 2.9	± ± ± ± ±	2.1) 0.5) 0.4) 0.16) 0.4) 3.0)	$ \times 10^{-6} $ $ \times 10^{-5} $ $ \times 10^{-6} $ $ \times 10^{-5} $ $ \times 10^{-6} $ $ \times 10^{-6} $		- 2346 2588 2534 - 2414 2455
$ \eta' K_{2}^{*}(1430)^{+} $ $ \eta K^{+} $ $ \eta K^{*}(892)^{+} $ $ \eta K_{0}^{*}(1430)^{+} $ $ \eta K_{2}^{*}(1430)^{+} $ $ \eta(1295) K^{+} \times B(\eta(1295) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow \eta \pi \pi) $	((((((((((((((((((((5.2 2.8 2.4 1.93 1.8 9.1 2.9	± ± ± ± ±	2.1) 0.5) 0.4) 0.16) 0.4) 3.0)	$ \times 10^{-6} $ $ \times 10^{-5} $ $ \times 10^{-6} $ $ \times 10^{-5} $ $ \times 10^{-6} $ $ \times 10^{-6} $	CL=90%	- 2346 2588 2534 - 2414 2455
$ \eta' K_{2}^{*}(1430)^{+} $ $ \eta K^{+} $ $ \eta K^{*}(892)^{+} $ $ \eta K_{0}^{*}(1430)^{+} $ $ \eta K_{2}^{*}(1430)^{+} $ $ \eta(1295) K^{+} \times B(\eta(1295) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow K^{*} K) $	((((((((((((((((((((5.2 2.8 2.4 1.93 1.8 9.1 2.9 1.3	± ± ± ± ± +-	2.1) 0.5) 0.4) 0.16) 0.4) 3.0) 0.8)	$ \times 10^{-6} $ $ \times 10^{-5} $ $ \times 10^{-6} $ $ \times 10^{-5} $ $ \times 10^{-6} $ $ \times 10^{-6} $ $ \times 10^{-6} $	CL=90%	- 2346 2588 2534 - 2414 2455 2425
$ \eta' K_{2}^{*}(1430)^{+} $ $ \eta K^{+} $ $ \eta K^{*}(892)^{+} $ $ \eta K_{0}^{*}(1430)^{+} $ $ \eta K_{2}^{*}(1430)^{+} $ $ \eta(1295) K^{+} \times B(\eta(1295) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow K^{*} K) $ $ \eta(1475) K^{+} \times B(\eta(1475) \rightarrow K^{*} K) $	((((((((((((((((((((5.2 2.8 2.4 1.93 1.8 9.1 2.9 1.3	± ± ± ± ± +-	2.1) 0.5) 0.4) 0.16) 0.4) 3.0) 0.8)	$ \times 10^{-6} $ $ \times 10^{-5} $ $ \times 10^{-6} $ $ \times 10^{-5} $ $ \times 10^{-6} $ $ \times 10^{-6} $	CL=90%	- 2346 2588 2534 - 2414 2455
$ \eta' K_{2}^{*}(1430)^{+} $ $ \eta K^{+} $ $ \eta K^{*}(892)^{+} $ $ \eta K_{0}^{*}(1430)^{+} $ $ \eta K_{2}^{*}(1430)^{+} $ $ \eta(1295) K^{+} \times B(\eta(1295) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow K^{*} K) $ $ \eta(1475) K^{+} \times B(\eta(1475) \rightarrow K^{*} K) $	((((((((((((((((((((5.2 2.8 2.4 1.93 1.8 9.1 2.9 1.3 1.2	± ± ± ± ± +-	2.1) 0.5) 0.4) 0.16) 0.4) 3.0) 0.8)	$ \begin{array}{r} \times 10^{-6} \\ \times 10^{-5} \\ \times 10^{-6} \\ \times 10^{-5} \\ \times 10^{-6} \\ \times 10^{-6} \\ \times 10^{-6} \\ \times 10^{-5} \end{array} $	CL=90% CL=90%	- 2346 2588 2534 - 2414 2455 2425 2425
$ \eta' K_{2}^{*}(1430)^{+} $ $ \eta K^{+} $ $ \eta K^{*}(892)^{+} $ $ \eta K_{0}^{*}(1430)^{+} $ $ \eta K_{2}^{*}(1430)^{+} $ $ \eta(1295) K^{+} \times B(\eta(1295) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow K^{*} K) $ $ \eta(1475) K^{+} \times B(\eta(1475) \rightarrow K^{*} K) $ $ \eta(1475) K^{+} \times B(\eta(1475) \rightarrow K^{*} K) $ $ \eta(1475) K^{+} \times B(\eta(1475) \rightarrow K^{*} K) $	((((((((((((((((((((5.2 2.8 2.4 1.93 1.8 9.1 2.9 1.3 1.2	± ± ± ± ± +-	2.1) 0.5) 0.4) 0.16) 0.4) 3.0) 0.8)	$ \begin{array}{r} \times 10^{-6} \\ \times 10^{-5} \\ \times 10^{-5} \\ \times 10^{-5} \\ \times 10^{-6} \\ \times 10^{-6} \\ \times 10^{-6} \\ \times 10^{-5} \\ \times 10^{-5} \\ \end{array} $	CL=90% CL=90%	- 2346 2588 2534 - 2414 2455 2425 2425 2425
$ \eta' K_{2}^{*}(1430)^{+} $ $ \eta K^{+} $ $ \eta K^{*}(892)^{+} $ $ \eta K_{0}^{*}(1430)^{+} $ $ \eta K_{2}^{*}(1430)^{+} $ $ \eta(1295) K^{+} \times B(\eta(1295) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow K^{*} K) $ $ \eta(1475) K^{+} \times B(\eta(1475) \rightarrow K^{*} K) $ $ \eta(1475) K^{+} \times B(\eta(1475) \rightarrow K^{*} K) $ $ \eta(1475) K^{+} \times B(\eta(1475) \rightarrow K^{*} K) $ $ \eta(1420) K^{+} \times B(\eta(1420) \rightarrow K^{*} K) $	((((((((((((((((((((5.2 2.8 2.4 1.93 1.8 9.1 2.9 1.3 1.2	± ± ± ± ± +-	2.1) 0.5) 0.4) 0.16) 0.4) 3.0) 0.8)	$ \begin{array}{r} \times 10^{-6} \\ \times 10^{-5} \\ \times 10^{-5} \\ \times 10^{-5} \\ \times 10^{-6} \\ \times 10^{-6} \\ \times 10^{-6} \\ \times 10^{-5} \\ \times 10^{-5} \\ \end{array} $	CL=90% CL=90%	- 2346 2588 2534 - 2414 2455 2425 2425
$ \eta' K_{2}^{*}(1430)^{+} $ $ \eta K^{+} $ $ \eta K^{*}(892)^{+} $ $ \eta K_{0}^{*}(1430)^{+} $ $ \eta K_{2}^{*}(1430)^{+} $ $ \eta(1295) K^{+} \times B(\eta(1295) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow K^{*} K) $ $ \eta(1475) K^{+} \times B(\eta(1475) \rightarrow K^{*} K) $ $ \eta(1475) K^{+} \times B(\eta(1475) \rightarrow K^{*} K) $ $ \eta(1420) K^{+} \times B(\eta(1420) \rightarrow \eta \pi \pi) $	((((((((((((((((((((5.2 2.8 2.4 1.93 1.8 9.1 2.9 1.3 1.2 2.0 2.9	± ± ± ± ± +-	2.1) 0.5) 0.4) 0.16) 0.4) 3.0) 0.8) 0.7)	$ \begin{array}{r} \times 10^{-6} \\ \times 10^{-5} \\ \times 10^{-5} \\ \times 10^{-5} \\ \times 10^{-6} \\ \times 10^{-6} \\ \times 10^{-6} \\ \times 10^{-6} \\ \times 10^{-5} \\ \times 10^{-6} \\ $	CL=90% CL=90% CL=90% CL=90%	- 2346 2588 2534 - 2414 2455 2425 2425 2425 2427 2458 2420
$ \eta' K_{2}^{*}(1430)^{+} $ $ \eta K^{+} $ $ \eta K^{*}(892)^{+} $ $ \eta K_{0}^{*}(1430)^{+} $ $ \eta K_{2}^{*}(1430)^{+} $ $ \eta(1295) K^{+} \times B(\eta(1295) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow K^{*} K) $ $ \eta(1475) K^{+} \times B(\eta(1475) \rightarrow K^{*} K) $ $ \eta(1475) K^{+} \times B(\eta(1475) \rightarrow K^{*} K) $ $ \eta(1475) K^{+} \times B(\eta(1475) \rightarrow K^{*} K) $ $ \eta(1420) K^{+} \times B(\eta(1420) \rightarrow K^{*} K) $	((((((((((((((((((((5.2 2.8 2.4 1.93 1.8 9.1 2.9 1.3 1.2	± ± ± ± ± +-	2.1) 0.5) 0.4) 0.16) 0.4) 3.0) 0.8) 0.7)	$ \begin{array}{r} \times 10^{-6} \\ \times 10^{-5} \\ \times 10^{-5} \\ \times 10^{-5} \\ \times 10^{-6} \\ \times 10^{-6} \\ \times 10^{-6} \\ \times 10^{-6} \\ \times 10^{-5} \\ \times 10^{-6} \\ $	CL=90% CL=90%	- 2346 2588 2534 - 2414 2455 2425 2425 2425

ϕ (1680) $K^+ \times B(\phi$ (1680) $ o$ $K^*K)$	<	3.4			× 10 ⁻⁶	CL=90%	2344
$f_0(1500)K^+$	(3.7	±	2.2) × 10 ⁻⁶		2393
ωK^+	($) \times 10^{-6}$		2558
$\omega K^*(892)^+$	<	7.4				CL=90%	2503
$\omega(\kappa \pi)_0^{*+}$	(\pm	0.4	$) \times 10^{-5}$		_
$\omega K_0^* (1430)^+$	(2.4) × 10 ⁻⁵		_
$\omega K_2^*(1430)^+$	(2.1) × 10 ⁻⁵		2379
$a_0(980)^+ K^0 \times B(a_0(980)^+ \rightarrow$	<	3.9	_	0		CL=90%	
$\eta \pi^+$)		3.3			× 10	CL-3070	
$a_0(980)^{0}K^{+}{ imes}{ m B}(a_0(980)^{0} ightarrow$	<	2.5			\times 10 ⁻⁶	CL=90%	_
$\eta \pi^0$)	,				\ .a_5		
$K^*(892)^0 \pi^+$	($) \times 10^{-5}$		2562
$K^*(892)^+\pi^0$ $K^+\pi^-\pi^+$	($) \times 10^{-6}$		2563
	($) \times 10^{-5}$		2609
$K^+\pi^-\pi^+$ nonresonant	(1.63	+	0.21	$) \times 10^{-5}$		2609
ω (782) K^+	(6	\pm	9	$) \times 10^{-6}$		2558
${\mathcal K}^+ extit{f}_0(980) imes {\mathsf B}(extit{f}_0(980) ightarrow \pi^+ \pi^-)$	(9.4	+	1.0 1.2) × 10 ⁻⁶		2522
$f_2(1270)^0 K^+$	(1 07	+	0.27) × 10 ⁻⁶		_
$f_0(1370)^0 K^+ \times$	<				× 10 ⁻⁵	CI =90%	_
$B(f_0(1370)^0 \to \pi^+\pi^-)$		1.01			× 10	CL-3070	
$\rho^{0}(1450)K^{+}\times$	<	1.17			× 10 ⁻⁵	CL=90%	_
$B(\rho^0(1450) \to \pi^+\pi^-)$					/\ 0	32 30,0	
$f_2'(1525)K^+ \times$	<	3.4			$\times 10^{-6}$	CL=90%	2394
$B(f_2'(1525) \to \ \pi^+\pi^-)$							
$K^{+}\rho^{0}$	(3.7	+	0.5) × 10 ⁻⁶		2559
$K_0^*(1430)^0\pi^+$	(S=1.4	2445
	`				$) \times 10^{-5}$	3=1.4	2443
$K_2^*(1430)^0\pi^+$	(5.6	+	2.2 1.5	$) \times 10^{-6}$		2445
$K^*(1410)^0\pi^+$	<	4.5				CL=90%	2448
$K^*(1680)^0\pi^+$	<	1.2			$\times 10^{-5}$	CL=90%	2358
$K^+\pi^{0}\pi^{0}$	(1.62	\pm	0.19	$) \times 10^{-5}$		2610
$f_0(980) K^+ imes B(f_0 o \pi^0 \pi^0)$	(2.8	\pm	8.0	$) \times 10^{-6}$		2522
$K^-\pi^+\pi^+$	<	4.6			$\times 10^{-8}$	CL=90%	2609
$\mathcal{K}^-\pi^+\pi^+$ nonresonant	<	5.6				CL=90%	2609
$K_1(1270)^0\pi^+$	<	4.0				CL=90%	2489
$K_{1}(1400)^{0}\pi^{+}$	<	3.9			$\times 10^{-5}$		2451
$K^0\pi^+\pi^0$	<	6.6			$\times 10^{-5}$	CL=90%	2609
$K_0^*(1430)^+\pi^0$	(1.19	+	0.20 0.23	$)\times10^{-5}$		_
$\kappa^0 ho^+$	(7.3	+	1.0 1.2	$) \times 10^{-6}$		2558

$K^*(892)^+\pi^+\pi^-$	(7.5			$) \times 10^{-5}$		2557
$K^*(892)^+ \rho^0$	(4.6		1.1			2504
$K^*(892)^+ f_0(980)$	(4.2			$) \times 10^{-6}$		2466
$a_1^+ K^0$	(3.5		0.7	•		_
$b_1^+ K^0 imes B(b_1^+ o \omega \pi^+)$	(9.6	\pm	1.9	$) \times 10^{-6}$		_
$K^*(892)^0 \rho^+$	(9.2	\pm	1.5	$) \times 10^{-6}$		2504
$K_1(1400)^+ ho^0$	<	7.8			$\times 10^{-4}$	CL=90%	2388
$K_2^*(1430)^+ \rho^0$	<	1.5			$\times 10^{-3}$	CL=90%	2381
$b_1^{\overline{0}} K^+ imes B(b_1^0 o \ \omega \pi^0)$	(9.1	\pm	2.0	$) \times 10^{-6}$		_
$b_1^{ar{+}} K^{*0} imes B(ar{b}_1^+ o \ \omega \pi^+)$	<	5.9			$\times 10^{-6}$	CL=90%	_
$b_1^{ar{0}} K^{*+} imes B(b_1^{ar{0}} o \ \omega \pi^0)$	<	6.7			$\times 10^{-6}$	CL=90%	_
$K^+ \overline{K}^0$	(1.31	\pm	0.17	$) \times 10^{-6}$	S=1.2	2593
$\overline{K}{}^0K^+\pi^0$	<	2.4			$\times 10^{-5}$		2578
$K^{+}K_{S}^{0}K_{S}^{0}$	(1.05	\pm	0.04	\times) \times 10 ⁻⁵		2521
$f_0(980)K^+, f_0 \rightarrow K_S^0K_S^0$	() × 10 ⁻⁵		_
$f_0(1710)K^+, f_0 \rightarrow K_S^0K_S^0$	(4.8	+	4.0	$) \times 10^{-7}$		_
$K^+K^0_SK^0_S$ nonresonant	($) \times 10^{-5}$		2521
$K_{S}^{0}K_{S}^{0}\pi^{+}$	<	5.1			$\times 10^{-7}$	CL=90%	2577
$K^{+}K^{-}\pi^{+}$	(5.2	\pm	0.4	$) \times 10^{-6}$		2578
$K^+K^-\pi^+$ nonresonant	() × 10 ⁻⁶		2578
$K^{+}\overline{K}^{*}(892)^{0}$	(5.9) × 10 ⁻⁷		2540
$K^{+}\overline{K}_{0}^{*}(1430)^{0}$	(3.8) × 10 ⁻⁷		2421
$\pi^{+}(K^{+}K^{-})^{'}_{S-wave}$	(8.5			$) \times 10^{-7}$		2578
$K^+K^+\pi^-$	<	1.1			× 10 ⁻⁸	CL=90%	2578
$K^+K^+\pi^-$ nonresonant	<	8.79			$\times10^{-5}$		2578
$f_2'(1525)K^+$	(_	S=1.1	2394
$K^{*+}\pi^{+}K^{-}$	<	1.18				CL=90%	2524
$K^*(892)^+ K^*(892)^0$	(2.9	$) \times 10^{-7}$		2485
$K^{*+}K^{+}\pi^{-}$	<				× 10 ⁻⁶	CL=90%	2524
$K^+K^-K^+$	(\times) \times 10 ⁻⁵		2523
$\mathcal{K}^+\phi$) × 10 ⁻⁶	S=1.1	2516
$f_0(980)K^+ imes {\sf B}(f_0(980) o$				0.0	$) \times 10^{-6}$		2522
K^+K^-)	(J. T		5.2) ~ 10		2322
$a_2(1320) K^+ \times$	<	1.1			$\times 10^{-6}$	CL=90%	2449
$B(a_2(1320) \to K^+ K^-)$							
$X_0(1550)K^+ imes$	(4.3	\pm	0.7	$) \times 10^{-6}$		_
$B(X_0(1550) \to K^+K^-)$							
ϕ (1680) $K^+ imes B(\phi(1680) ightarrow$	<	8			$\times 10^{-7}$	CL=90%	2344
K^+K^-)					_		
$f_0(1710) K^+ \times B(f_0(1710) \rightarrow$	(1.1	\pm	0.6	$) \times 10^{-6}$		2327
$K^+K^-)$							

$K^+K^-K^+$ nonresonant	(2.38	+	0.28) × 10 ⁻⁵		2523
$K^*(892)^+ K^+ K^-$	(3.6		0.00) × 10 ⁻⁵		2466
$K^*(892)^+ \phi$	(10.0		2.0	$) \times 10^{-6}$	S=1.7	2460
$\phi(K\pi)_0^{*+}$	(8.3	\pm	1.6	$) \times 10^{-6}$		_
$\phi K_1(1270)^+$	(6.1	\pm	1.9	$) \times 10^{-6}$		2380
$\phi K_1(1400)^+$	<	3.2				CL=90%	2339
$\phi K^*(1410)^+$	<	4.3			_	CL=90%	_
$\phi K_0^*(1430)^+$	(7.0			$) \times 10^{-6}$		_
$\phi K_2^*(1430)^+$	(8.4	±	2.1	$) \times 10^{-6}$		2332
$\phi K_2^*(1770)^+$	<	1.50				CL=90%	_
$\phi K_2^*(1820)^+$	<	1.63				CL=90%	_
$a_1^+ K^{*0}$	< ,	3.6				CL=90%	_
$K^+ \phi \phi \ \eta' \eta' K^+$	(4.2	±	0.8	$) \times 10^{-6}$	S=2.2	2306
$\frac{\eta}{\omega}\frac{\eta}{\phi}K^+$	<	2.5 1.9			_	CL=90% CL=90%	2338 2374
$X(1812)K^+ \times B(X \rightarrow \omega \phi)$	<	3.2			_	CL=90%	2314
$K^*(892)^+ \gamma$	(\pm	0.22	$) \times 10^{-5}$	S=1.7	2564
$K_1(1270)^+\gamma$	(4.4		0.7 0.6) × 10 ⁻⁵		2491
$\eta K^+ \gamma$	(7.9		0.9) × 10 ⁻⁶		2588
$\eta' K^+ \gamma$	(2.9		1.0 0.9) × 10 ⁻⁶		2528
$\phi K^+ \gamma$	(2.7) × 10 ⁻⁶	S=1.2	2516
$K^+\pi^-\pi^+\gamma$	(2.58	\pm		$) \times 10^{-5}$	S=1.3	2609
$K^*(892)^0\pi^+\gamma$	(2.33			$) \times 10^{-5}$		2562
$K^+ ho^0 \gamma$	(8.2	\pm	0.9	$) \times 10^{-6}$		2559
$(K^+\pi^-)_{NR}\pi^+\gamma$	(9.9	+	1.7 2.0	$) \times 10^{-6}$		2609
$K^0\pi^+\pi^0\gamma$	(4.6	\pm	0.5	$) \times 10^{-5}$		2609
$K_1(1400)^+ \gamma$	(10	+	5 4	$)\times10^{-6}$		2453
$K^*(1410)^+ \gamma$	(2.7	+	0.8 0.6	$)\times 10^{-5}$		_
$K_0^*(1430)^0\pi^+\gamma$	(1.32	+	0.26 0.32	$) \times 10^{-6}$		2445
$K_2^*(1430)^+ \gamma$	(1.4	\pm	0.4	$) \times 10^{-5}$		2447
$K^*(1680)^+ \gamma$	() × 10 ⁻⁵		2360
$K_3^*(1780)^+ \gamma$	<				$\times10^{-5}$	CL=90%	2340
$K_4^{(2045)} + \gamma$	<	9.9				CL=90%	2242
·					_		
Light unfla $ ho^+\gamma$					\times 10 ⁻⁷		2503
$\frac{\rho \cdot \gamma}{\pi + \pi^0}$	($) \times 10^{-6}$	S=1.2	2583 2636
$\pi^+\pi^+\pi^-$	($) \times 10^{-5}$	J—1.2	2630
$\rho^0\pi^+$	($) \times 10^{-6}$		2581
•	`				•		

Charged particle (h^{\pm}) modes

$$h^{\pm} = K^{\pm} \text{ or } \pi^{\pm}$$

HTTP://PDG.LBL.GOV

Page 93 Created: 7/10/2023 15:48

Baryon modes

	Daryon n	nodes	5				
$ ho \overline{ ho} \pi^+$	(1.62	\pm	0.20	$) \times 10^{-6}$		2439
$ ho\overline{p}\pi^+$ nonresonant	<	5.3			$\times 10^{-5}$	CL=90%	2439
$p\overline{p}\pi^+\pi^0$	(4.6	\pm	1.3	$) \times 10^{-6}$		2407
$p\overline{p}K^+$	($) \times 10^{-6}$	S=1.5	2348
$\Theta(1710)^{++}\overline{\rho}, \ \Theta^{++} \rightarrow$	[nnn] <	9.1			$\times 10^{-8}$		_
pK^{+}							
$f_J(2220)K^+$, $f_J o p\overline{p}$	[nnn] <	4.1			$\times10^{-7}$	CL=90%	2135
$p\overline{\lambda}(1520)$	(0.6	$) \times 10^{-7}$		2322
$p\overline{p}K^+$ nonresonant	<	8.9			$\times 10^{-5}$	CL=90%	2348
$p \overline{p} K^*(892)^+$	(+) × 10 ⁻⁶		2215
$f_J(2220)K^{*+}, f_J \rightarrow p\overline{p}$	<	7.7	_		× 10 ⁻⁷	CL=90%	2059
$p\overline{\Lambda}$	(2.4	+	1.0) × 10 ⁻⁷		2430
· <u>_</u>							
$p\overline{\Lambda}\gamma$	(2.4	_	0.4) × 10 ⁻⁶		2430
$ ho \overline{\Lambda} \pi^0$	(3.0	+	0.7 0.6	$) \times 10^{-6}$		2402
$\rho \overline{\Sigma} (1385)^0$	<	4.7			$\times 10^{-7}$	CL=90%	2362
$\Delta^+ \overline{\varLambda}$	<	8.2			$\times 10^{-7}$	CL=90%	_
$p\overline{\Sigma}\gamma$	<	4.6			$\times 10^{-6}$	CL=90%	2413
$p \overline{\Lambda} \pi^+ \pi^-$	(1.13	\pm	0.13	$) \times 10^{-5}$		2367
$p\overline{\Lambda}\pi^+\pi^-$ nonresonant	(5.9			$) \times 10^{-6}$		2367
$\rho \overline{\Lambda} \rho^0$, $\rho^0 \rightarrow \pi^+ \pi^-$	(4.8			$) \times 10^{-6}$		2214
$p\overline{\Lambda}f_2(1270), f_2 \rightarrow \pi^+\pi^-$	(2.0			$) \times 10^{-6}$		2026
$p\overline{\dot{\Lambda}}K^{+}K^{-}$	Ì	4.1			$) \times 10^{-6}$		2132
$p\overline{\Lambda}\phi$	Ì	8.0			$) \times 10^{-7}$		2119
$\overline{\rho}\dot{\Lambda}K^{+}K^{-}$, (3.7) × 10 ⁻⁶		2132
$\Lambda \overline{\Lambda} \pi^+$	<				$\times 10^{-7}$	CL=90%	2358
$\Lambda \overline{\Lambda} K^+$	(\pm		$) \times 10^{-6}$		2251
$\Lambda \overline{\Lambda} K^{*+}$	() × 10 ⁻⁶		2098
$\Lambda(1520)\overline{\Lambda}K^{+}$	•				$) \times 10^{-6}$		2126
$\Lambda \overline{\Lambda}(1520)K^+$	<	2.08		0.7	× 10 ⁻⁶		2126
$\overline{\Delta}^0 p$	<	1.38			_	CL=90%	2403
$\Delta \stackrel{p}{\rightarrow} \Delta^{++} \overline{p}$		1.30				CL=90%	2403
$D^+ p \overline{p}$	<	1.4				CL=90% CL=90%	
$D^*(2010)^+ p \overline{p}$	<					CL=90% CL=90%	1860
	<	1.5		0.07		CL=90%	1786
$\overline{D}^0 p \overline{p} \pi^+$	($) \times 10^{-4}$		1789
$\overline{D}^{*0} p \overline{p} \pi^+$	($) \times 10^{-4}$		1709
$D^- p \overline{p} \pi^+ \pi^-$	($) \times 10^{-4}$		1705
$D^{*-} p \overline{p} \pi^+ \pi^- p \overline{\Lambda}^0 \overline{D}^0$	($) \times 10^{-4}$		1621
	(±	0.32	$) \times 10^{-5}$	CL 000/	_
$p \overline{\Lambda}^{0} \overline{D}^{*} (2007)^{0}$	<	5				CL=90%	_
$\overline{\Lambda}_c^- p \pi^+$	(2.3	\pm	0.4	$) \times 10^{-4}$	S=2.4	1980

$\overline{\Lambda}_c^- \Delta(1232)^{++}$	<	1.9			$\times10^{-5}$	CL=90%	1928
$\overline{\varLambda}_c^- \Delta_X(1600)^{++}$	(4.7	\pm	1.0	$) \times 10^{-5}$		_
$\overline{\Lambda}_c^- \Delta_X(2420)^{++}$	(3.8	\pm	8.0	$) \times 10^{-5}$		_
$(\overline{\Lambda}_c^- p)_s \pi^+$	[000] (3.1	\pm	0.7	$) \times 10^{-5}$		_
$\sum_{c} (2520)^{0} p$					$\times 10^{-6}$	CL=90%	1904
$\overline{\Sigma}_c(2800)^0 p$	(2.7	\pm	0.9	$) \times 10^{-5}$		_
$\overline{\Lambda}_c^- p \pi^+ \pi^0$	(1.8	\pm	0.6	$) \times 10^{-3}$		1935
$\overline{\Lambda}_c^- \rho \pi^+ \pi^+ \pi^-$	(2.2	\pm	0.7	$) \times 10^{-3}$		1880
$\overline{\Lambda}_c^- \rho \pi^+ \pi^+ \pi^- \pi^0$	<	1.34			%	CL=90%	1823
$\Lambda_c^+ \Lambda_c^- K^+$	(4.9	\pm	0.7	$) \times 10^{-4}$		739
$\Xi_c(2930)\Lambda_c^+, \ \Xi_c ightarrow \ K^+\Lambda_c^-$. (1.7	\pm	0.5	$) \times 10^{-4}$		_
$\overline{\Sigma}_c(2455)^0 p$	(3.0	\pm	0.7	$) \times 10^{-5}$		1938
$\overline{\Sigma}_c(2455)^0 p \pi^0$	(3.5	\pm	1.1	$) \times 10^{-4}$		1896
$\overline{\Sigma}_c(2455)^0 p\pi^-\pi^+$	(3.5	\pm	1.1	$) \times 10^{-4}$		1845
$\sum_{c} (2455)^{} p \pi^{+} \pi^{+}$	($) \times 10^{-4}$		1845
$\overline{\Lambda}_{c}(2593)^{-}/\overline{\Lambda}_{c}(2625)^{-}p\pi^{+}$	<	1.9			$\times 10^{-4}$	CL=90%	_
$\overline{\Xi}_c^0 \Lambda_c^+$	(9.5	\pm	2.3	$) \times 10^{-4}$		1144
$\overline{\Xi}^0_c \Lambda^+_c$, $\overline{\Xi}^0_c o \overline{\Xi}^+ \pi^-$	(1.76	\pm	0.29	$) \times 10^{-5}$		1144
$\overline{\Xi}_{c}^{0}\Lambda_{c}^{+}, \ \overline{\Xi}_{c}^{0} \rightarrow \Lambda K^{+}\pi^{-}$	(1.14	\pm	0.26	$) \times 10^{-5}$		1144
$ \overline{\Xi}_{c}^{c} \Lambda_{c}^{+}, \overline{\Xi}_{c}^{0} \to \overline{\Xi}_{c}^{+} \pi^{-} $ $ \overline{\Xi}_{c}^{0} \Lambda_{c}^{+}, \overline{\Xi}_{c}^{0} \to \Lambda K^{+} \pi^{-} $ $ \overline{\Xi}_{c}^{0} \Lambda_{c}^{+}, \overline{\Xi}_{c}^{0} \to \rho K^{-} K^{-} \pi^{+} $	(5.5	\pm	1.9	$) \times 10^{-6}$		_
$ \Lambda_{c}^{+} = 0 $ $ \Lambda_{c}^{+} = 0 $	<				× 10 ⁻⁴	CL=90%	1023
$\Lambda_c^+ = \overline{\Xi}_c(2645)^0$	<	7.9			$\times10^{-4}$	CL=90%	_
$\Lambda_c^{c} = \overline{\Xi}_c(2790)^0$	() × 10 ⁻³		_
•							

Lepton Family number (LF) or Lepton number (L) or Baryon number (B) violating modes, or/and $\Delta B = 1$ weak neutral current (B1) modes

•				•	•	
$\pi^+\ell^+\ell^-$	B1	<	4.9	$\times 10^{-8}$	CL=90%	2638
$\pi^+e^+e^-$	B1	<	8.0	$\times 10^{-8}$	CL=90%	2638
$\pi^+\mu^+\mu^-$	B1	($1.78 ~\pm~ 0.23$	$) \times 10^{-8}$		2634
$\pi^+ u \overline{ u}$	B1	<	1.4	$\times 10^{-5}$	CL=90%	2638
$K^+\ell^+\ell^-$	B1	[ggg] ($4.7 \pm \ 0.5$	$) \times 10^{-7}$	S=2.3	2617
$\mathit{K}^{+}e^{+}e^{-}$	B1	(5.6 ± 0.6	$) \times 10^{-7}$		2617
$\mathcal{K}^+\mu^+\mu^-$	B1	(4.53 ± 0.35	$) \times 10^{-7}$	S=1.8	2612
${\it K}^+\mu^+\mu^-$ nonreso-	B1	(4.37 ± 0.27	$) \times 10^{-7}$		2612
nant						
$K^+ au^+ au^-$	B1	<	2.25	$\times 10^{-3}$	CL=90%	1687
$K^+\overline{ u} u$	B1	<	1.6	$\times 10^{-5}$	CL=90%	2617
$\rho^+ u \overline{ u}$	B1	<	3.0	$\times10^{-5}$	CL=90%	2583
$K^*(892)^+ \ell^+ \ell^-$	B1	[ggg] ($1.01 ~\pm~ 0.11$	$) \times 10^{-6}$	S=1.1	2564
$K^*(892)^+ e^+ e^-$	В1	($1.55 \begin{array}{c} + & 0.40 \\ - & 0.31 \end{array}$	$) \times 10^{-6}$		2564
$K^*(892)^+\mu^+\mu^-$	B1	($9.6~\pm~1.0$	$) \times 10^{-7}$		2560
$K^*(892)^+ \nu \overline{\nu}$	B1	<	4.0	$\times 10^{-5}$	CL=90%	2564

$K^+\pi^+\pi^-\mu^+\mu^-$	B1	(4.3	± 0.4) × 10 ⁻⁷		2593
$\phi K^+ \mu^+ \mu^-$	B1	(7.9	$^{+}$ 2.1 $^{-}$ 1.7	$) \times 10^{-8}$		2490
$\overline{\Lambda} p \nu \overline{\nu}$		<	3.0		$\times10^{-5}$	CL=90%	2430
$\pi^{+}e^{+}\mu^{-}$	LF	<	6.4			CL=90%	2637
$\pi^{+}e^{-\mu^{+}}$	LF	<	6.4			CL=90%	2637
$\pi^+ e^{\pm} \mu^{\mp}$	LF	<	1.7			CL=90%	2637
$\pi^{+}e^{+}\tau^{-}$	LF	<	7.4			CL=90%	2338
$\pi^+e^-\tau^+$	LF	<	2.0		$\times10^{-5}$	CL=90%	2338
$\pi^+ e^{\pm} au^{\mp}$	LF	<	7.5		$\times10^{-5}$	CL=90%	2338
$\pi^+\mu^+\tau^-$	LF	<	6.2		$\times10^{-5}$	CL=90%	2334
$\pi^+\mu^-\tau^+$	LF	<	4.5		$\times10^{-5}$	CL=90%	2334
$\pi^+\mu^{\pm}\tau^{\mp}$	LF	<	7.2		$\times10^{-5}$	CL=90%	2334
$K^+e^+\mu^-$	LF	<	7.0		$\times10^{-9}$	CL=90%	2616
$K^{+}e^{-}\mu^{+}$	LF	<	6.4		$\times 10^{-9}$	CL=90%	2616
$\mathit{K}^{+}\mathit{e}^{\pm}\mu^{\mp}$	LF	<	9.1			CL=90%	2616
$K^+ e^+ au^-$	LF	<	4.3		$\times10^{-5}$	CL=90%	2312
$K^+e^- au^+$	LF	<	1.5		$\times10^{-5}$	CL=90%	2312
$\mathit{K}^{+}e^{\pm} au^{\mp}$	LF	<	3.0			CL=90%	2312
$K^+\mu^+ au^-$	LF	<	4.5		$\times10^{-5}$	CL=90%	2298
$K^+\mu^- au^+$	LF	<	2.8		$\times10^{-5}$	CL=90%	2298
$\mathcal{K}^+ \mu^\pm au^\mp$	LF	<	4.8		$\times10^{-5}$	CL=90%	2298
$K^*(892)^+ e^+ \mu^-$	LF	<	1.3		$\times10^{-6}$	CL=90%	2563
$K^*(892)^+e^-\mu^+$	LF	<	9.9		$\times10^{-7}$	CL=90%	2563
$K^*(892)^+ e^{\pm} \mu^{\mp}$	LF	<	1.4		$\times10^{-6}$	CL=90%	2563
$\pi^-e^+e^+$	L	<	2.3			CL=90%	2638
$\pi^-\mu^+\mu^+$	L	<	4.0		$\times10^{-9}$	CL=95%	2634
$\pi^-e^+\mu^+$	L	<	1.5		$\times 10^{-7}$	CL=90%	2637
$\rho^{-}e^{+}e^{+}$	L	<	1.7		$\times 10^{-7}$	CL=90%	2583
$\rho^-\mu^+\mu^+$	L	<	4.2		$\times10^{-7}$	CL=90%	2578
$ ho^-$ e $^+$ μ^+	L	<	4.7		$\times 10^{-7}$	CL=90%	2582
$K^{-}e^{+}e^{+}$	L	<	3.0		$\times 10^{-8}$	CL=90%	2617
$\mathcal{K}^-\mu^+\mu^+$	L	<	4.1		$\times 10^{-8}$	CL=90%	2612
$K^-e^+\mu^+$	L	<	1.6		$\times 10^{-7}$	CL=90%	2616
$K^*(892)^-e^+e^+$	L	<	4.0		$\times 10^{-7}$	CL=90%	2564
$K^*(892)^- \mu^+ \mu^+$	L	<	5.9		$\times 10^{-7}$	CL=90%	2560
$K^*(892)^-e^+\mu^+$	L	<	3.0		$\times 10^{-7}$	CL=90%	2563
$D^{-}e^{+}e^{+}$	L	<	2.6		$\times 10^{-6}$	CL=90%	2309
$D^-e^+\mu^+$	L	<	1.8		$\times10^{-6}$	CL=90%	2307
$D^{-}\mu^{+}\mu^{+}$	L	<	6.9		$\times10^{-7}$	CL=95%	2303
$D^{*-}\mu^{+}\mu^{+}$	L	<	2.4		$\times 10^{-6}$	CL=95%	2251
$D_{\underline{s}}^{-}\mu^{+}\mu^{+}$	L	<	5.8		$\times10^{-7}$	CL=95%	2267
$\overline{D}^{0}\pi^{-}\mu^{+}\mu^{+}$	L	<	1.5			CL=95%	2295
$\Lambda^0 \mu^+$	L,B	<	6			CL=90%	_
•	•						

$$B^0$$

$$I(J^P) = \frac{1}{2}(0^-)$$

I, *J*, *P* need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^0}=5279.66\pm0.12$$
 MeV $m_{B^0}-m_{B^\pm}=0.32\pm0.05$ MeV Mean life $\tau_{B^0}=(1.519\pm0.004)\times10^{-12}$ s $c\tau=455.4~\mu{\rm m}$ $\tau_{B^+}/\tau_{B^0}=1.076\pm0.004$ (direct measurements)

B^0 - \overline{B}^0 mixing parameters

$$\begin{array}{l} \chi_d \; (B^0\text{-}\overline{B}{}^0 \; \text{mixing probability}) = 0.1858 \pm 0.0011 \\ \Delta m_{B^0} = m_{B_H^0} - m_{B_L^0} = (0.5065 \pm 0.0019) \times 10^{12} \; \hbar \; \text{s}^{-1} \\ & = (3.334 \pm 0.013) \times 10^{-10} \; \text{MeV} \\ \chi_d = \Delta m_{B^0}/\Gamma_{B^0} = 0.769 \pm 0.004 \\ \text{Re} \big(\lambda_{CP} \; / \; \big| \lambda_{CP} \big| \big) \; \text{Re}(\mathbf{z}) = 0.047 \pm 0.022 \\ \Delta \Gamma \; \text{Re}(\mathbf{z}) = -0.007 \pm 0.004 \; \text{ps}^{-1} \\ \text{Re}(\mathbf{z}) = (-4 \pm 4) \times 10^{-2} \quad (\mathbf{S} = 1.4) \\ \text{Im}(\mathbf{z}) = (-0.8 \pm 0.4) \times 10^{-2} \end{array}$$

CP violation parameters

$$\begin{split} &\text{Re}(\epsilon_{B^0})/(1+\big|\epsilon_{B^0}\big|^2) = (-0.5\pm0.4)\times10^{-3} \\ &A_{T/CP}(B^0\leftrightarrow\overline{B}^0) = 0.005\pm0.018 \\ &A_{CP}(B^0\to D^*(2010)^+D^-) = 0.013\pm0.014 \\ &A_{CP}(B^0\to \overline{D}^0\pi^0) = (0.4\pm2.4)\times10^{-2} \\ &A_{CP}(B^0\to [K^+K^-]_DK^*(892)^0) = -0.05\pm0.10 \\ &A_{CP}(B^0\to [K^+\pi^-]_DK^*(892)^0) = 0.047\pm0.029 \\ &A_{CP}(B^0\to [K^+\pi^-\pi^+\pi^-]_DK^*(892)^0) = 0.037\pm0.034 \\ &A_{CP}(B^0\to [K^-\pi^+]_DK^*(892)^0) = 0.19\pm0.19 \\ &A_{CP}(B^0\to [K^-\pi^+\pi^+\pi^-]_DK^*(892)^0) = -0.01\pm0.24 \\ &R_d^+=\Gamma(B^0\to [\pi^+K^-]_DK^{*0}) / \Gamma(B^0\to [\pi^-K^+]_DK^{*0}) = \\ &0.064\pm0.021 \\ &R_d^-=\Gamma(\overline{B}^0\to [\pi^-K^+]_DK^{*0}) / \Gamma(\overline{B}^0\to [\pi^+K^-]_DK^{*0}) = \\ &0.095\pm0.021 \\ &A_{CP}(B^0\to [\pi^+\pi^-]_DK^*(892)^0) = -0.18\pm0.14 \\ &A_{CP}(B^0\to [\pi^+\pi^-\pi^+\pi^-]_DK^*(892)^0) = -0.03\pm0.15 \\ \end{split}$$

$$\begin{split} R_d^+ &= \Gamma(B^0 \to [\pi^+ K^- \pi^+ \pi^-]_D K^{*0}) / \Gamma(B^0 \to [\pi^- K^+ \pi^+ \pi^-]_D K^{*0}) = 0.074 \pm 0.026 \\ R_d^- &= \Gamma(\overline{B}^0 \to [\pi^- K^+ \pi^+ \pi^-]_D K^{*0}) / \Gamma(\overline{B}^0 \to [\pi^+ K^- \pi^+ \pi^-]_D K^{*0}) = 0.072 \pm 0.025 \\ \textbf{ACP} (\textbf{B}^0 \to \textbf{K}^+ \pi^-) = -0.0834 \pm 0.0032 \\ A_{CP} (B^0 \to \eta' K^*(892)^0) = -0.07 \pm 0.18 \\ A_{CP} (B^0 \to \eta' K^*(1430)^0) = -0.19 \pm 0.17 \\ A_{CP} (B^0 \to \eta' K^*(1430)^0) = 0.14 \pm 0.18 \\ \textbf{ACP} (B^0 \to \eta K^*(1430)^0) = 0.19 \pm 0.05 \\ A_{CP} (B^0 \to \eta K^*(1430)^0) = 0.06 \pm 0.13 \\ A_{CP} (B^0 \to \eta K^*(1430)^0) = -0.07 \pm 0.19 \\ A_{CP} (B^0 \to \eta K^*(1430)^0) = -0.07 \pm 0.19 \\ A_{CP} (B^0 \to \eta K^*(1430)^0) = -0.07 \pm 0.19 \\ A_{CP} (B^0 \to \psi K^*(1430)^0) = -0.07 \pm 0.09 \\ A_{CP} (B^0 \to \psi K^*(1430)^0) = -0.07 \pm 0.09 \\ A_{CP} (B^0 \to \psi K^*(1430)^0) = -0.37 \pm 0.17 \\ A_{CP} (B^0 \to \psi K^*(1430)^0) = -0.37 \pm 0.17 \\ A_{CP} (B^0 \to \psi K^*(1430)^0) = -0.37 \pm 0.17 \\ A_{CP} (B^0 \to \psi K^*(1430)^0) = -0.01 \pm 0.03 \\ A_{CP} (B^0 \to \psi K^*(1450)^0 K^*) = -0.10 \pm 0.33 \\ A_{CP} (B^0 \to \psi K^*(1450)^0 K^*) = -0.10 \pm 0.18 \\ A_{CP} (B^0 \to K^*(1450)^0 K^*) = -0.01 \pm 0.05 \\ \textbf{ACP} (B^0 \to K^*(1430)^0 \pi^-) = -0.27 \pm 0.04 \\ A_{CP} (B^0 \to K^*(1680)^0 \pi^-) = -0.15 \pm 0.11 \\ A_{CP} (B^0 \to K^*(1680)^0 \pi^-) = -0.15 \pm 0.11 \\ A_{CP} (B^0 \to K^*(1680)^0 \pi^-) = -0.15 \pm 0.11 \\ A_{CP} (B^0 \to K^*(1680)^0 \pi^+) = -0.07 \pm 0.15 \\ A_{CP} (B^0 \to K^*(1680)^0 \pi^-) = -0.15 \pm 0.11 \\ A_{CP} (B^0 \to K^*(1680)^0 \pi^+) = -0.07 \pm 0.15 \\ A_{CP} (B^0 \to K^*(1680)^0 \pi^+) = -0.05 \pm 0.13 \\ A_{CP} (B^0 \to K^*(1680)^0 \pi^+) = -0.05 \pm 0.13 \\ A_{CP} (B^0 \to K^*(1680)^0 \pi^+) = -0.05 \pm 0.13 \\ A_{CP} (B^0 \to K^*(1680)^0 \pi^+) = -0.01 \pm 0.05 \\ A_{CP} (B^0 \to K^*(1680)^0 \pi^+) = -0.01 \pm 0.05 \\ A_{CP} (B^0 \to K^*(1680)^0 \pi^+) = 0.01 \pm 0.05 \\ A_{CP} (B^0 \to K^*(1680)^0 \pi^+) = 0.01 \pm 0.05 \\ A_{CP} (B^0 \to K^*(1680)^0 \pi^+) = 0.01 \pm 0.05 \\ A_{CP} (B^0 \to K^*(1680)^0 \pi^+) = 0.01 \pm 0.05 \\ A_{CP} (B^0 \to K^*(1680)^0 \pi^+) = 0.00 \pm 0.01 \\ A_{CP} (B^0 \to K^*(1680)^0 \pi^+) = 0.00 \pm 0.01 \\ A_{CP} (B^0 \to K^*(1680)^0 \pi^+) = 0.00 \pm 0.01 \\ A_{CP} (B^0 \to K^*(1680)^0 \pi^+) = 0.00 \pm 0.01 \\ A_{CP} (B^0 \to K^*(1680)^0 \pi^+) = 0.00 \pm 0$$

$$A_{CP}(B^0 \to \rho^+ \pi^-) = 0.13 \pm 0.06 \quad (S = 1.1)$$

$$A_{CP}(B^0 \to \rho^- \pi^+) = -0.08 \pm 0.08$$

$$A_{CP}(B^0 \to a_1(1260)^{\pm} \pi^+) = -0.07 \pm 0.06$$

$$A_{CP}(B^0 \to b_1^- \pi^+) = -0.05 \pm 0.10$$

$$A_{CP}(B^0 \to b_1^- \pi^+) = -0.05 \pm 0.10$$

$$A_{CP}(B^0 \to \rho^- K^*(892)^0) = 0.05 \pm 0.12$$

$$A_{CP}(B^0 \to \rho^- K^*(892)^0) = 0.05 \pm 0.12$$

$$A_{CP}(B^0 \to K^{*0} \ell^+ \ell^-) = -0.05 \pm 0.10$$

$$A_{CP}(B^0 \to K^{*0} \ell^+ \ell^-) = -0.03 \pm 0.01$$

$$A_{CP}(B^0 \to K^{*0} \mu^+ \mu^-) = -0.034 \pm 0.024$$

$$C_{D^*-D^+}(B^0 \to D^*(2010)^- D^+) = -0.02 \pm 0.08$$

$$S_{D^*-D^+}(B^0 \to D^*(2010)^+ D^-) = -0.03 \pm 0.09 \quad (S = 1.1)$$

$$S_{D^*+D^-}(B^0 \to D^*(2010)^+ D^-) = -0.03 \pm 0.09 \quad (S = 1.1)$$

$$S_{D^*+D^-}(B^0 \to D^*(2010)^+ D^-) = -0.80 \pm 0.09$$

$$C_{D^{*+}D^{*-}}(B^0 \to D^* D^* D^+) = -0.01 \pm 0.09 \quad (S = 1.6)$$

$$S_{D^*+D^*}(B^0 \to D^* D^* D^+) = -0.01 \pm 0.09 \quad (S = 1.6)$$

$$S_{D^*+D^*}(B^0 \to D^* D^* D^*) = -0.01 \pm 0.09 \quad (S = 1.6)$$

$$S_{D^*+D^*}(B^0 \to D^* D^* D^*) = -0.03 \pm 0.09$$

$$C_{C}(B^0 \to D^* D^* D^*) = -0.03 \pm 0.10 \quad (S = 1.6)$$

$$S_{D^*+D^*}(B^0 \to D^* D^*) = -0.03 \pm 0.10 \quad (S = 1.6)$$

$$S_{D^*+D^*}(B^0 \to D^* D^*) = -0.01 \pm 0.10 \quad (S = 1.6)$$

$$S_{D^*+D^*}(B^0 \to D^* D^*) = -0.11 \pm 1.6 \quad (S = 3.5)$$

$$C(B^0 \to D^*(2010)^+ D^*(2010)^- K_S^0) = 0.01 \pm 0.29$$

$$S(B^0 \to D^*(2010)^+ D^*(2010)^- K_S^0) = 0.01 \pm 0.29$$

$$S(B^0 \to D^*(2010)^+ D^*(2010)^- K_S^0) = 0.11 \pm 0.4$$

$$C_{D^+D^-}(B^0 \to D^+D^-) = -0.22 \pm 0.24 \quad (S = 2.5)$$

$$S_{D^+D^-}(B^0 \to D^+D^-) = -0.06 \pm 0.06$$

$$S(B^0 \to J/\psi(1S)\rho^0) = -0.06 \pm 0.06$$

$$S(B^0 \to J/\psi(1S)\rho^0) = -0.06 \pm 0.06$$

$$S(B^0 \to J/\psi(1S)\rho^0) = -0.06 \pm 0.12$$

$$C_{D^*D^0}(B^0 \to K^0\pi^0) = 0.09 \pm 0.13 \quad (S = 1.4)$$

$$S_{C^0P^0}(B^0 \to K^0\pi^0) = 0.53 \pm 0.17 \quad (S = 1.5)$$

$$S_{C^0P^0}(B^0 \to K^0\pi^0) = 0.53 \pm 0.17$$

$$C_{I'(958)K_S^0}(B^0 \to I'^{(958)K_S^0}) = -0.04 \pm 0.20 \quad (S = 2.5)$$

$$S_{I'(958)K_S^0}(B^0 \to I'^{(958)K_S^0}) = 0.43 \pm 0.17 \quad (S = 1.5)$$

$$C_{I'(958)K_S^0}(B^0 \to I'^{(958)K_S^0}) = 0.43 \pm 0.17 \quad (S = 1.5)$$

$$C_{I'(958)K_S^0}(B^0 \to I'^{(958)K_S^0}) = 0.43 \pm 0.17 \quad (S = 1.5)$$

$$C_{I'(958)K_S^0}(B^0 \to I'^{(958)K_S^0}) = 0.04 \pm 0.20 \quad (S = 2.5)$$

$$S_{I'(958)K_S^0}(B^0 \to I'^{(958)K_S^0}) = 0.04 \pm$$

$$\begin{split} &S(B^0 \to K_{\circ}^0 \rho^0 \gamma) = -0.04 \pm 0.23 \\ &C(B^0 \to \rho^0 \gamma) = 0.4 \pm 0.5 \\ &S(B^0 \to \rho^0 \gamma) = -0.8 \pm 0.7 \\ &C_{\pi\pi}(B^0 \to \pi^+\pi^-) = -0.314 \pm 0.030 \\ &S_{\pi\pi}(B^0 \to \pi^+\pi^-) = -0.670 \pm 0.030 \\ &C_{\pi^0,\pi^0}(B^0 \to \pi^0\pi^0) = -0.33 \pm 0.22 \\ &C_{\rho\pi}(B^0 \to \rho^+\pi^-) = -0.03 \pm 0.07 \quad (S = 1.2) \\ &S_{\rho\pi}(B^0 \to \rho^+\pi^-) = 0.05 \pm 0.07 \\ &\Delta C_{\rho\pi}(B^0 \to \rho^+\pi^-) = 0.01 \pm 0.08 \\ &C_{\rho^0,\pi^0}(B^0 \to \rho^+\pi^-) = 0.01 \pm 0.08 \\ &C_{\rho^0,\pi^0}(B^0 \to \rho^0\pi^0) = 0.27 \pm 0.24 \\ &S_{\rho^0,\pi^0}(B^0 \to \rho^0\pi^0) = 0.23 \pm 0.34 \\ &C_{a_1\pi}(B^0 \to a_1(1260)^+\pi^-) = -0.05 \pm 0.11 \\ &S_{a_1\pi}(B^0 \to a_1(1260)^+\pi^-) = -0.2 \pm 0.4 \quad (S = 3.2) \\ &\Delta C_{a_1\pi}(B^0 \to a_1(1260)^+\pi^-) = -0.11 \pm 0.12 \\ &C(B^0 \to b_1^-K^+) = -0.22 \pm 0.24 \\ &\Delta C(B^0 \to b_1^-K^+) = -1.04 \pm 0.24 \\ &C_{\rho^0,\rho^0}(B^0 \to \rho^0\rho^0) = 0.3 \pm 0.7 \\ &C_{\rho\rho}(B^0 \to \rho^+\rho^-) = 0.00 \pm 0.09 \\ &S_{\rho\rho}(B^0 \to \rho^+\rho^-) = -0.14 \pm 0.13 \\ &|\lambda|(B^0 \to J/\psi K^*(892)^0) < 0.25, \text{CL} = 95\% \\ &\cos 2\beta(B^0 \to J/\psi K^*(892)^0) = 1.7^{+0.7}_{-0.9} \quad (S = 1.6) \\ &\cos 2\beta(B^0 \to [K_S^0\pi^+\pi^-]_{D(*)}h^0) = 0.91 \pm 0.25 \\ &(S_+ S_-)/2(B^0 \to D^{*-}\pi^+) = -0.039 \pm 0.011 \\ &(S_- S_+)/2(B^0 \to D^{*-}\pi^+) = -0.046 \pm 0.023 \\ &(S_- S_+)/2(B^0 \to D^{*-}\pi^+) = -0.024 \pm 0.032 \\ &S_-(B^0 \to D^+\pi^-) = 0.038 \pm 0.021 \\ &S_+(B^0 \to D^-\pi^+) = 0.038 \pm 0.021 \\ &(S_+ S_-)/2(B^0 \to D^-\pi^+) = -0.024 \pm 0.032 \\ &(S_- S_+)/2(B^0 \to D^-\pi^+) = -0.024 \pm 0.032 \\ &(S_- S_+)/2(B^0 \to D^-\rho^+) = -0.10 \pm 0.06 \\ &C_{\eta_c K_S^0}(B^0 \to \eta_c K_S^0) = 0.93 \pm 0.17 \\ &C_{c\overline{c}K^0}(*)^0(B^0 \to C\overline{c}K^0)^0 = (-0.8 \pm 1.7) \times 10^{-2} \\ &sin(2\beta) = 0.699 \pm 0.017 \\ &C_{J/\psi(nS)K^0}(B^0 \to J/\psi(nS)K^0) = (-0.8 \pm 1.7) \times 10^{-2} \\ &S_{J/\psi(nS)K^0}(B^0 \to J/\psi(nS)K^0) = (-0.8 \pm 1.7) \times 10^{-2} \\ &S_{J/\psi(nS)K^0}(B^0 \to J/\psi(nS)K^0) = (-0.8 \pm 1.7) \times 10^{-2} \\ &S_{J/\psi(nS)K^0}(B^0 \to J/\psi(nS)K^0) = (-0.8 \pm 1.7) \times 10^{-2} \\ &S_{J/\psi(nS)K^0}(B^0 \to J/\psi(nS)K^0) = (-0.701 \pm 0.017 \\ &S_{J/\psi(nS)K^0}(B^0 \to J/\psi(nS)K^$$

$$C_{J/\psi K^{*0}} (B^{0} \rightarrow J/\psi K^{*0}) = 0.03 \pm 0.10$$

$$S_{J/\psi K^{*0}} (B^{0} \rightarrow J/\psi K^{*0}) = 0.60 \pm 0.25$$

$$C_{\chi_{c0} K_{S}^{0}} (B^{0} \rightarrow \chi_{c0} K_{S}^{0}) = -0.3^{+0.5}_{-0.4}$$

$$S_{\chi_{c0} K_{S}^{0}} (B^{0} \rightarrow \chi_{c0} K_{S}^{0}) = -0.7 \pm 0.5$$

$$C_{\chi_{c1} K_{S}^{0}} (B^{0} \rightarrow \chi_{c1} K_{S}^{0}) = 0.06 \pm 0.07$$

$$S_{\chi_{c1} K_{S}^{0}} (B^{0} \rightarrow \chi_{c1} K_{S}^{0}) = 0.63 \pm 0.10$$

$$\sin(2\beta_{\text{eff}})(B^{0} \rightarrow \phi K^{0}) = 0.22 \pm 0.30$$

$$\sin(2\beta_{\text{eff}})(B^{0} \rightarrow \phi K_{0}^{*}(1430)^{0}) = 0.97^{+0.03}_{-0.52}$$

$$\sin(2\beta_{\text{eff}})(B^{0} \rightarrow K^{+} K^{-} K_{S}^{0}) = 0.77^{+0.13}_{-0.12}$$

$$\sin(2\beta_{\text{eff}})(B^{0} \rightarrow [K_{S}^{0} \pi^{+} \pi^{-}]_{D^{(*)}} h^{0}) = 0.80 \pm 0.16$$

$$\beta_{\text{eff}} (B^{0} \rightarrow [K_{S}^{0} \pi^{+} \pi^{-}]_{D^{(*)}} h^{0}) = (22 \pm 5)^{\circ}$$

$$2\beta_{\text{eff}} (B^{0} \rightarrow J/\psi \rho^{0}) = (42^{+10}_{-11})^{\circ}$$

$$|\lambda| (B^{0} \rightarrow [K_{S}^{0} \pi^{+} \pi^{-}]_{D^{(*)}} h^{0}) = 1.01 \pm 0.08$$

$$|\sin(2\beta + \gamma)| > 0.40, \text{ CL} = 90\%$$

$$2\beta + \gamma = (83 \pm 60)^{\circ}$$

$$\alpha = (85.2^{+4.8}_{-4.3})^{\circ}$$

$$x_{+}(B^{0} \rightarrow D K^{*0}) = 0.04 \pm 0.17$$

$$x_{-}(B^{0} \rightarrow D K^{*0}) = -0.16 \pm 0.14$$

$$y_{+}(B^{0} \rightarrow D K^{*0}) = -0.26 \pm 0.22$$

$$y_{-}(B^{0} \rightarrow D K^{*0}) = 0.20 \pm 0.25 \quad (S = 1.2)$$

$$r_{B0}(B^{0} \rightarrow D K^{*0}) = 0.257^{+0.021}_{-0.023}$$

$$\delta_{B0}(B^{0} \rightarrow D K^{*0}) = (194.1^{+9.6}_{-8.8})^{\circ}$$

 \overline{B}^0 modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing. Modes which do not identify the charge state of the B are listed in the B^\pm/B^0 ADMIXTURE section.

The branching fractions listed below assume 50% $B^0\overline{B}^0$ and 50% B^+B^- production at the $\Upsilon(4S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\Upsilon(4S)$ production ratio to 50:50 and their assumed D, D_S , D^* , and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

For inclusive branching fractions, e.g., $B \to D^{\pm} X$, the values usually are multiplicities, not branching fractions. They can be greater than one.

B ⁰ DECAY MODES	I	Frac	tion (Γ _i ,	/Γ)		ale factor/ dence level	
$\ell^+ u_\ell X$	[ggg]	(10.33±	0.28) %	6		_
$e^{+}\nu_{e}X_{c}$	[000]	`	10.1 ±	,			_
$\ell^+ \nu_\ell X_{\mu}$		($1.51 \pm$	0.19) >	< 10 ⁻³		_
$D\ell^+ u_\ell X$		($9.3~\pm$	0.8)%	6		_
$D^-\ell^+ u_\ell$	[ggg]	($2.24\pm$	0.09) %	6		2309
$D^- au^+ u_ au$		($1.05\pm$	0.23) %	6		1909
$D^*(2010)^-\ell^+ u_\ell$	[ggg]	($4.97\pm$	0.12) %	6		2257
$D^*(2010)^- \tau^+ \nu_{\tau}$		•	$1.58\pm$,		S=1.1	1838
$\overline{D}{}^0\pi^-\ell^+ u_\ell$		(4.1 \pm		_		2308
$D_0^*(2300)^- \ell^+ \nu_\ell, \ D_0^{*-} = \overline{D}^0 \pi^-$	\rightarrow	(3.0 ±	1.2) >	< 10 ⁻³	S=1.8	_
$D_2^*(2460)^-\ell^+\nu_\ell$, D_2^{*-}	\rightarrow	($1.21\pm$	0.33) >	< 10 ⁻³	S=1.8	2065
$\overline{\it D}^{(*)} {\sf n} \pi^{-} \ \overline{\it D}^{(*)} {\sf n} \pi \ell^{+} u_{\ell} ({\sf n} \ \geq \ 1)$		($2.3~\pm$	0.5) %	6		_
$\overline{D}^{*0}\pi^-\ell^+ u_\ell$		(5.8 ±	0.8) >	< 10 ⁻³	S=1.4	2256
$D_1(2420)^-\ell^+ u_\ell, \ D_1^\overline{D}^{*0}\pi^-$	>	(2.80±	0.28) >	< 10 ⁻³		-
$D_1'(2430)^-\ell^+ u_\ell, \ D_1'^\overline{D}^{*0}\pi^-$	\rightarrow	(3.1 ±	0.9)>	< 10 ⁻³		_
$D_2^*(2460)^- \ell^+ \nu_\ell$, D_2^{*-}	\rightarrow	(6.8 ±	1.2) >	< 10 ⁻⁴		2065
$D^{*0}\pi^- \over D^{*0}\pi^- \ell^+ u_\ell$		(1.3 ±	0.5) >	< 10 ^{−3}		2299
$D^{*-}\pi^{+}\pi^{-}\ell^{+}\overset{\circ}{ u_{\ell}}$			1.4 ±				2247
$ ho^-\ell^+ u_\ell$	[ggg]		$2.94\pm$				2583
$\pi^-\ell^+ u_\ell$	[ggg]	($1.50\pm$	0.06) >	< 10 ⁻⁴		2638
$\pi^- \tau^+ \nu_{ au}$		<	2.5			CL=90%	2339
$K^{\pm}X$	Inclusi			0) 0	,		
K + X $D^0 X$		`	78 ±	,			_
$\frac{D^0 X}{D^0 X}$			8.1 ±				_
D^+X		`	47.4 ±	,		CL 000/	_
D^-X		< ,			6	CL=90%	_
			36.9 ±				_
$D_s^+ X$		(10.3 +	1.8)	%		_
$D_s^- X$		<	2.6	9	6	CL=90%	_
$\Lambda_c^{+} X$		<	3.1	0	6	CL=90%	_
$\overline{\Lambda}_{c}^{-}X$		(5.0 ⁺	2.1	/o		_
C				1.0			
$\overline{c}X$		•	95 ±	,			_
c X			24.6 ±				_
\overline{c}/cX		(1	.19 ±	0) %	0		_
HTTP://PDG.LBL.GOV	Pag	e 10	03	Cre	ated:	7/10/202	3 15:48

D, D^* , or D_s modes

D, D	, or <i>D</i>	5 IIIOUES	
$D^-\pi^+$	($2.51\pm 0.08) \times 10^{-3}$	2306
$D^- \rho^+$	($7.6 \pm 1.2 \times 10^{-3}$	2235
$D^ K^0$ π^+	($4.9 \pm 0.9 \times 10^{-4}$	2259
$D^-K^*(892)^+$	($4.5 \pm 0.7 \times 10^{-4}$	2211
$D^-\omega\pi^+$	($2.8 \pm 0.6 \times 10^{-3}$	2204
D^-K^+	($2.05\pm 0.08) \times 10^{-4}$	2279
$D^{-}K^{+}\pi^{+}\pi^{-}$	($3.5 \pm 0.8 \times 10^{-4}$	2236
$D^-K^+\overline{K}^0$	<	3.1×10^{-4} (CL=90% 2188
$D^{-}K^{+}\overline{K}^{*}(892)^{0}$	($8.8 \pm 1.9) \times 10^{-4}$	2070
$\overline{D}{}^0\pi^+\pi^-$	($8.8 \pm 0.5) \times 10^{-4}$	2301
$D^*(2010)^-\pi^+$	($2.74\pm 0.13) \times 10^{-3}$	2255
$\overline{D}{}^0K^+K^-$	($6.1 \pm 0.5 \times 10^{-5}$	2191
$D^-\pi^+\pi^+\pi^-$	($6.0 \pm 0.6 \times 10^{-3}$	2287
$(D^-\pi^+\pi^+\pi^-)$ nonresonant	($3.9 \pm 1.9 \times 10^{-3}$	2287
$D^-\pi^+\rho^0$	($1.1 \pm 1.0 \times 10^{-3}$	2206
$D^{-}a_{1}^{-}(1260)^{+}$	($6.0 \pm 3.3 \times 10^{-3}$	2121
$D^*(2010)^{-}\pi^+\pi^0$	(1.5 ± 0.5) %	2248
$\hat{D}^*(2010)^- \rho^+$	($6.8 \pm 0.9 \times 10^{-3}$	2180
$D^*(2010)^{-1}K^{+1}$	($2.12\pm 0.15) \times 10^{-4}$	2226
$D^*(2010)^- K^0 \pi^+$	($3.0 \pm 0.8 \times 10^{-4}$	2205
$\hat{D}^*(2010)^- K^*(892)^+$	($3.3 \pm 0.6 \times 10^{-4}$	2155
$D^*(2010)^{-1}K^+\overline{K}^0$	<	4.7×10^{-4} (
$D^*(2010)^- K^+ \overline{K}^* (892)^0$	($1.29 \pm 0.33) \times 10^{-3}$	2007
$D^*(2010)^-\pi^+\pi^+\pi^-$	•	$7.21\pm 0.29) \times 10^{-3}$	2235
$(D^*(2010)^-\pi^+\pi^+\pi^-)$ non-	($0.0 \pm 2.5 \times 10^{-3}$	2235
resonant	•	,	
$D^*(2010)^- \pi^+ ho^0$	($5.7 \pm 3.2 \times 10^{-3}$	2150
$D^*(2010)^- a_1(1260)^+$	(1.30 ± 0.27) %	2061
$\overline{D}_1(2420)^0\pi^-\pi^+$, \overline{D}_1^0 $ ightarrow$	($1.47 \pm 0.35) \times 10^{-4}$	_
$D^{*-}\pi^{+}$			
$D^*(2010)^- K^+ \pi^- \pi^+$	($4.7 \pm 0.4 \times 10^{-4}$	2181
$D^*(2010)^-\pi^+\pi^+\pi^-\pi^0$		$1.76 \pm 0.27) \%$	2218
$D^{*-}3\pi^{+}2\pi^{-}$	($4.7 \pm 0.9 \times 10^{-3}$	2195
$D^*(2010)^- \omega \pi^+$	($2.46 \pm 0.18) \times 10^{-3}$	S=1.2 2148
$\overline{D}_1(2430)^0 \omega, \ \overline{D}_1^0 \rightarrow$	($2.7 \begin{array}{c} + 0.8 \\ - 0.4 \end{array}) \times 10^{-4}$	1992
$D^{*-}\pi^{+}$	(- 0.4 / ^ 20	1332
-	,	1.07 + 0.40 \ 1.0-3	
$D^{*-}\rho(1450)^+, \ \rho^+ \to \ \omega \pi^+$		$1.07^{+}_{-} \begin{array}{l} 0.40 \\ 0.34 \end{array}) \times 10^{-3}$	_
$\overline{D}_1(2420)^0\omega,\ \overline{D}_1^0 ightarrow$	($7.0 \pm 2.2 \times 10^{-5}$	1995
$\overline{D}_2^{*-}\pi^+ \over \overline{D}_2^*(2460)^0\omega$, $\overline{D}_2^0 ightarrow$		-	
	($4.0 \pm 1.4 \times 10^{-5}$	1975
$D^{*-}\pi^{+}$		F	
$D^{*-}b_1(1235)^+, b_1^+ \rightarrow$	<	7×10^{-5}	CL=90% -
$\omega\pi^+$			

$\overline{D}^{**-}\pi^+$	[kkk] ($1.9 \pm 0.9) \times 10^{-3}$	_
$D_1(2420)^-\pi^+$, $D_1^-\to$	($9.9 {}^{+}_{-} {}^{2.0}_{2.5}) imes 10^{-5}$	_
$D^-\pi^+\pi^-$ $D_1(2420)^-\pi^+, D_1^- \to$	<	3.3×10^{-5}	CL=90% -
$\overline{D}_{2}^{*-}\pi^{+}\pi^{-}$ $\overline{D}_{2}^{*}(2460)^{-}\pi^{+}, D_{2}^{*-} \rightarrow$	($2.38\pm\ 0.16)\times10^{-4}$	2062
$\overline{D}_0^0(2400)^-\pi^+, \ D_0^{*-} \to D^0\pi^-$	($7.6 \pm 0.8) \times 10^{-5}$	2090
$D_{2}^{*}(2460)^{-}\pi^{+}, D_{2}^{*-} \rightarrow D_{2}^{*-}\pi^{+}\pi^{-}$	<	2.4×10^{-5}	CL=90% -
$\overline{D}_{2}^{*}(2460)^{-} \rho^{+}$ $D^{0} \overline{D}^{0}$		4.9×10^{-3}	
		$1.4 \pm 0.7 \times 10^{-5}$	1868
$D^{*0}\overline{D}^{0}$		2.9×10^{-4}	CL=90% 1794
D^-D^+	($2.11\pm 0.18) \times 10^{-4}$	1864
$D^{\pm}D^{*\mp}$ (CP -averaged)	($6.1 \pm 0.6) \times 10^{-4}$	_
$D^-D_s^+$		$7.2 \pm 0.8 \times 10^{-3}$	1812
$D^*(2010)^-D_s^+$		$8.0 \pm 1.1 \times 10^{-3}$	1735
$D^{-}D_{s}^{*+}$		$7.4 \pm 1.6 \times 10^{-3}$	1732
	•	· ·	
$D^*(2010)^- D_s^{*+}$	•	1.77± 0.14) %	1649
$D_{s0}(2317)^- K^+, \ D_{s0}^- o D_s^- \pi^0$	($4.2 \pm 1.4 \times 10^{-5}$	2097
$D_{s0}(2317)^-\pi^+, \ D_{s0}^- \to$	<	2.5×10^{-5}	CL=90% 2128
$D_s^-\pi^0$			
$D_{sJ}(2457)^- K^+, D_{sJ}^- \rightarrow D_s^- \pi^0$	<	9.4 $\times 10^{-6}$	CL=90% -
D_{sJ} (2457) $^-\pi^+$, $D_{sJ}^- ightarrow$	<	4.0 × 10 ⁻⁶	CL=90% -
$D_{s_{\cdot}}^{-}\pi^{0}$			
$D_s^- D_s^+$	<	3.6×10^{-5}	CL=90% 1759
$D_{s}^{*-}D_{s}^{+}$	<	1.3×10^{-4}	CL=90% 1674
$D_{s}^{*-}D_{s}^{+}$ $D_{s}^{*-}D_{s}^{*+}$	<	2.4×10^{-4}	CL=90% 1583
$D_{s0}^{*}(2317)^{+}D^{-}, D_{s0}^{*+} \rightarrow$		$1.06\pm 0.16) \times 10^{-3}$	
$D_{s0}^+ \pi^0$	(1.00± 0.10) × 10 °	5=1.1 1002
$D_{s0}(2317)^+ D^-, D_{s0}^+ \rightarrow D_{s}^{++} \gamma$	<	9.5×10^{-4}	CL=90% -
$D_{s0}(2317)^+ D^*(2010)^-,$ $D_{s0}^+ \to D_s^+ \pi^0$	($1.5 \pm 0.6) \times 10^{-3}$	1509
$D_{s,I}(2457)^+D^-$	($3.5 \pm 1.1) \times 10^{-3}$	_
,			
$D_{sJ}(2457)^+D^-, D_{sJ}^+ ightarrow D_s^+ \gamma$	($6.5 \begin{array}{c} + & 1.7 \\ - & 1.4 \end{array}) \times 10^{-4}$	_

$D_{sJ}(2457)^+D^-, \ D_{sJ}^+ o$	<	6.0	× 10 ⁻⁴	CL=90%	-
$D_s^{*+} \gamma \ D_{sJ}(2457)^+ D^-, \ D_{sJ}^+ o$	<	2.0	× 10 ⁻⁴	CL=90%	_
$D_{sJ}^{+}\pi^{+}\pi^{-}$ $D_{sJ}(2457)^{+}D^{-}, D_{sJ}^{+} \rightarrow$	<	3.6	× 10 ⁻⁴	CL=90%	_
$D_s^+ \pi^0 \ D^*(2010)^- D_{sJ}(2457)^+$	(9.3 ±	2.2) × 10 ⁻³		_
$D_{sJ}(2457)^+ D^*(2010), \;\; D_{sJ}^+ ightarrow \ D_s^+ \gamma$	(2.3 +	$\begin{array}{c} 0.9 \\ 0.7 \end{array}) \times 10^{-3}$		-
$D^{-}D_{s1}(2536)^{+}, D^{+}_{s1} \rightarrow D^{*0}K^{+} + D^{*+}K^{0}$	(2.8 ±	$0.7) \times 10^{-4}$		1444
$D^{+}K^{+} + D^{+}K^{+}$ $D^{-}D_{s1}(2536)^{+}, D^{+}_{s1} \rightarrow D^{*0}K^{+}$	(1.7 ±	0.6) × 10 ⁻⁴		1444
$D^{*0}K^{+}$ $D^{-}D_{s1}(2536)^{+}, D^{+}_{s1} \rightarrow D^{*+}K^{0}$	(2.6 ±	1.1) × 10 ⁻⁴		1444
$D^{*}(2010)^{-}D_{s1}(2536)^{+},$ $D_{s1}^{+} \rightarrow D^{*0}K^{+} + D^{*+}K^{0}$	(5.0 ±	1.4) × 10 ⁻⁴		1336
$D^{*}(2010)^{-}D_{s1}(2536)^{+}$,	(3.3 ±	1.1) × 10 ⁻⁴		1336
$D_{s1}^{+} ightarrow\ D^{*0}\ K^{+} \ D^{*-}D_{s1}(2536)^{+},\ D_{s1}^{+} ightarrow$	(5.0 ±	1.7) × 10 ⁻⁴		1336
$D^{*+} K^0$ $D^- D_{sJ}(2573)^+, D_{sJ}^+ o$	(3.4 ±	1.8) × 10 ⁻⁵		1414
$D^0 K^+$ $D^*(2010)^- D_{sJ}(2573)^+,$	<	2	× 10 ⁻⁴	CL=90%	1304
$D_{sJ}^{+} ightarrow D^{0} K^{+} \ D^{-} D_{sJ}^{sJ} (2700)^{+}, \ D_{sJ}^{+} ightarrow$	(7.1 ±	1.2) × 10 ⁻⁴		_
$D^{0}K^{+}$ $D^{+}\pi^{-}$	(7.3 ±	1.2) × 10 ⁻⁷		2306
$D_s^+\pi^-$			$0.18) \times 10^{-5}$		2270
$D_s^{*+}\pi^-$	(2.1 ±	$0.4) \times 10^{-5}$	S=1.4	2215
$D_{\varepsilon}^{+}\rho^{-}$	<	2.4	× 10 ⁻⁵	CL=90%	2197
$D_{s}^{s+}\pi^{-}$ $D_{s}^{+}\rho^{-}$ $D_{s}^{s+}\rho^{-}$ $D_{s}^{+}a_{0}^{-}$	(4.1 ±	$1.3) \times 10^{-5}$		2138
$D_{c}^{+}a_{0}^{-}$	<	1.9	× 10 ⁻⁵	CL=90%	_
$D_{s}^{3+}a_{0}^{-}$	<	3.6	\times 10 ⁻⁵	CL=90%	_
$D_{s}^{+}a_{1}(1260)^{-}$	<	2.1	\times 10 ⁻³	CL=90%	2080
$D_s^{s+1} a_1(1260)^-$	<	1.7	× 10 ⁻³	CL=90%	2015
$D_s^+ a_2^-$	<	1.9		CL=90%	_
$D^{*+} \stackrel{2}{a_{2}}$		2.0		CL=90%	_
$D^{s}_{-}K^{2}_{+}$			$0.5) \times 10^{-5}$		2242
$D_{s}^{s+2} - D_{c}^{-1} K^{+}$ $D_{s}^{s-1} K^{+}$	•		$0.30) \times 10^{-5}$		2185
$D_s^* K^*(892)^+$			$1.0) \times 10^{-5}$		2172
	(5.5 ±	1.0 / \ 10	_ /4 & /	2112

HTTP://PDG.LBL.GOV

Page 106

$D_s^{*-} K^*(892)^+$	($3.2 \ + \ 1.5 \) \times$	10^{-5}		2112
$D_s^-\pi^+K^0$	(9.7 ± 1.4) ×	10-5		2222
$D_s^{s-}\pi^+K^0$		1.10 ×		CI =90%	2164
$D_s^s K^+ \pi^+ \pi^-$		1.7 ± 0.5) ×		CL-3070	2198
$D_s^- \pi^+ K^* (892)^0$				CL 000/	
$D_s^* = \pm (*(92)^0)$	<	3.0 ×			2138
$\frac{D_s^{*-}\pi^+K^*(892)^0}{\overline{D}^0K^0}$	<			CL=90%	2076
		5.2 ± 0.7) \times	_		2280
$\overline{D}^0 K^+ \pi^-$	•	8.8 ± 1.7) \times			2261
$\overline{D}^{0} K^{*}(892)^{0}$	(4.5 \pm 0.6) \times	_		2213
$\frac{\overline{D}^0}{\overline{D}^0} K^*(1410)^0$	<	6.7 ×		CL=90%	2062
$\overline{D}{}^{0}_{0}K_{0}^{*}(1430)^{0}_{0}$		7 ± 7)×	_		2058
$\overline{D}{}^0 K_2^*(1430)^0$	($2.1~\pm~0.9$) $ imes$	10^{-5}		2057
$D_0^*(2300)^-{\cal K}^+,\ D_0^{*-} ightarrow $	(1.9 \pm 0.9) \times	10 ⁻⁵		_
$D_2^*(2460)^- K^+, \ D_2^{*-} o$	(2.03± 0.35) ×	10-5		2029
$\overline{D}{}^0\pi^- \ D_3^*(2760)^- K^+, \ D_3^{*-} ightarrow$	<	1.0 ×	₁₀ -6	CL=90%	_
$\frac{1}{\overline{D}}$ 0 π^-					
$\overline{D}{}^0\pi^- \over \overline{D}{}^0K^+\pi^-$ nonresonant	<	3.7 ×	10^{-5}	CL=90%	2261
$[K^+K^-]_D K^*(892)^0$	(4.2 ± 0.7) ×			_
$[\pi^{+}\pi^{-}]_{D}K^{*}(892)^{0}$	(6.0 ± 1.1) $ imes$			_
$[\pi^{+}\pi^{-}\pi^{+}\pi^{-}]_{D}K^{*0}$	(4.6 ± 0.9) ×			_
$\overline{D}^0 \pi^0$	(2.67± 0.09) ×			2308
$\overline{D}{}^0 \rho^0$	(3.21± 0.21) ×			2237
$\overline{D}^0 f_2$	(1.56± 0.21) ×	10^{-4}		_
$\overline{D}{}^0\eta$	(2.36± 0.32) ×		S=2.5	2274
$\overline{D}{}^0\eta'$	(1.38± 0.16) ×		S=1.3	2198
$\overline{D}{}^0\omega$	(2.54± 0.16) ×			2235
$D^0 \phi$	<	2.3 ×		CL=95%	2183
$D^0 K^+ \pi^-$	(5.3 ± 3.2) ×	10^{-6}		2261
$D^0 K^*(892)^0$	(3.0 ± 0.6) \times	10^{-6}		2213
$\overline{D}^{*0}\gamma$	<			CL=90%	2258
$\overline{D}^*(2007)^0\pi^0$	($2.2~\pm~0.6$) $ imes$	10^{-4}	S=2.6	2256
$\overline{D}^*(2007)^0 \rho^0$	<	5.1 ×	10^{-4}	CL=90%	2182
$\overline{D}^*(2007)^0 \eta$	($2.3~\pm~0.6$) $ imes$	10^{-4}	S=2.8	2220
$\overline{D}^*(2007)^0 \eta'$	(1.40± 0.22) ×			2141
$\overline{D}^*(2007)^0\pi^+\pi^-$	(6.2 ± 2.2) \times	10^{-4}		2249
$\overline{D}^*(2007)^0 K^+ \pi^-$	(5.2 ± 1.9) ×			2207
$\overline{D}^*(2007)^0 K^0$	(3.6 ± 1.2) $ imes$	10^{-5}		2227
$\overline{D}^*(2007)^0 K^*(892)^0$	<			CL=90%	2157
$D^*(2007)^0 K^*(892)^0$	<	4.0 ×	10^{-5}	CL=90%	2157
$D^*(2007)^0 \pi^+ \pi^+ \pi^- \pi^-$	($2.7~\pm~0.5$) $ imes$	10^{-3}		2219
$D^*(2010)^+D^*(2010)^-$	($8.0~\pm~0.6$) \times			1711

$\overline{D}^*(2007)^0 \omega$	($3.6 \pm 1.1) \times 10^{-4}$ S=3.1	2180
$D^*(2010)^+D^-$		6.1 ± 1.5) $\times 10^{-4}$ S=1.6	1790
$D^*(2007)^0 \overline{D}^*(2007)^0$		9 $\times 10^{-5} \text{ CL}=90\%$	1715
$D^{-}D^{0}K^{+}$		$1.07 \pm 0.11) \times 10^{-3}$	1574
$D^- D^* (2007)^0 K^+$		$3.5 \pm 0.4 \times 10^{-3}$	1478
$D^*(2010)^- D^0 K^+$	($2.47 \pm 0.21) \times 10^{-3}$	1479
$D^*(2010)^- D^*(2007)^0 K^+$	•	1.06± 0.09) %	1366
$D^-D^+K^0$		$7.5 \pm 1.7 \times 10^{-4}$	1568
$D^*(2010)^- D^+ K^0 +$	($6.4 \pm 0.5 \times 10^{-3}$	1473
$D^-D^*(2010)^+K^0$		2	
$D^*(2010)^- D^*(2010)^+ K^0$		$8.1 \pm 0.7 \times 10^{-3}$	1360
$D^{*-}D_{s1}(2536)^{+}, D_{s1}^{+} \rightarrow$	($8.0 \pm 2.4 \times 10^{-4}$	1336
$\frac{D^{*+} K^0}{D^0 K^0}$	(27 11) × 10-4	157/
$D^0 \overline{D}^0 K^+ \pi^-$		$2.7 \pm 1.1) \times 10^{-4}$ $3.5 \pm 0.5) \times 10^{-4}$	1574 1476
$\frac{D}{D^0}D^*(2007)^0K^0 +$	(1.1 ± 0.5) × 10^{-3}	1478
$\overline{D}^*(2007)^0 D^0 K^0$	(1.1 ± 0.3 / × 10	1470
$\overline{D}^*(2007)^0 D^*(2007)^0 K^0$	($2.4 \pm 0.9 \times 10^{-3}$	1365
$(\overline{D} + \overline{D}^*)(D + D^*)K$	(3.68 ± 0.26) %	_
Charman	·		
$\eta_c K^0$		modes $8.2 \pm 1.1) \times 10^{-4}$	1751
$\eta_c(1S)K^+\pi^-$		$6.4 \pm 0.7 \times 10^{-4}$	1722
$\eta_c(1S)K^+\pi^-(NR)$	($6.6 \pm 1.4 \times 10^{-5}$	_
$X(4100)^-K^+, X^- \rightarrow$	($2.1 \pm 1.1 \times 10^{-5}$	_
$\eta_c \pi^-$	`	,	
$\eta_c(1S) K^*(1410)^0$	($2.0 \pm 1.6 \times 10^{-4}$	1395
$\eta_c(1S) K_0^*(1430)^0$	($1.8 \pm 0.4 \times 10^{-4}$	1388
$\eta_c(1S) K_2^*(1430)^0$	($5.3 \begin{array}{l} + & 2.4 \\ - & 2.9 \end{array}) \times 10^{-5}$	1386
$\eta_c(1S) K^*(1680)^0$	($4 \pm 4) \times 10^{-5}$	1166
	($4.7 + 3.2 \\ -4.0) \times 10^{-5}$	
$\eta_c(1S) K_0^* (1950)^0$			_
$\eta_c K^*(892)^0$	($5.2 \ ^{+}_{-} \ 0.8_{-} \) \times 10^{-4} \ \ S=1.6$	1646
$\eta_c(2S)K_S^0$, $\eta_c \to p\overline{p}\pi^+\pi^-$	($4.2 \begin{array}{c} + & 1.4 \\ - & 1.2 \end{array}) \times 10^{-7}$	_
$\eta_c(2S)K_s^{*0}$		$3.9 \times 10^{-4} \text{ CL} = 90\%$	1150
$h_c(1P)K_S^0$		1.4×10^{-5}	1159 1401
$h_c(1P)K^{*0}$		$\times 10^{-4} \text{ CL} = 90\%$	1253
$J/\psi(1S)K^0$		$8.91\pm 0.21) \times 10^{-4}$	1683
$J/\psi(1S)K^+\pi^-$		$1.15 \pm 0.05) \times 10^{-3}$	1652
$J/\psi(1S)K^*(892)^0$		$1.27\pm 0.05) \times 10^{-3}$	1572
$J/\psi(1S)\eta K_S^0$		$5.4 \pm 0.9 \times 10^{-5}$	1508
$J/\psi(1S)\eta'K_S^0$		$\times 10^{-5} \text{ CL}=90\%$	1271
$J/\psi(1S)\phi K^0$		$4.9 \pm 1.0) \times 10^{-5}$ S=1.3	1224
	,	, , , , , , , , , , , , , , , , , , , ,	

$J/\psi(1S)\omegaK^0$	($2.3 \pm 0.4) \times 1$	10^{-4}		1386
χ_{c0} (3915), $\chi_{c0} ightarrow J/\psi \omega$		$2.1~\pm~0.9~) \times 1$			1102
$J/\psi(1S) K(1270)^0$	(1.3 ± 0.5) \times			1402
$J/\psi(1S)\pi^0$	($1.66 \pm 0.10) \times 1$			1728
$J/\psi(1S)\eta$	(1.08± 0.23) × 1		S=1.5	1673
$J/\psi(1S)\pi^{+}\pi^{-}$	($4.00 \pm 0.15) \times 1$			1716
$J/\psi(1S)\pi^+\pi^-$ nonresonant	<	1.2 ×		CL=90%	1716
$J/\psi(1S) f_0(500), f_0 \to \pi \pi$	($8.8 \ + \ 1.2 \) \times$	10^{-6}		_
$J/\psi(1S) f_2$	($3.3 \begin{array}{c} + & 0.5 \\ - & 0.6 \end{array}$) \times	10 ⁻⁶	S=1.5	_
$J/\psi(1S) ho^0$	($2.55^{+}_{-} {\stackrel{0.18}{_{0.16}}}) imes$	10^{-5}		1612
$J/\psi(1S) f_0(980), f_0 \to$	<	1.1 ×	10^{-6}	CL=90%	_
$\pi^+\pi^-$					
$J/\psi(1S) \rho(1450)^0, \ \rho^0 \to$	($2.9 {}^{+}_{-} {}^{1.6}_{0.7}$) $ imes$	10^{-6}		_
$J/\psi \rho (1700)^0$, $\rho^0 \to \pi^+ \pi^-$	(2.0 ± 1.3) ×	10-6		_
$J/\psi(1S)\omega$	($1.8 \frac{+}{-} \frac{0.7}{0.5}) \times$	10^{-5}		1609
$J/\psi(1S)K^+K^-$		$2.54\pm 0.35) \times 1$	_		1534
$J/\psi(1S) a_0(980), \ a_0 \rightarrow$	(•	_		_
K+K-	`				
$J/\psi(1S)\phi$		1.1 ×	_	CL=90%	1520
$J/\psi(1S)\eta'(958)$		7.6 \pm 2.4) \times	_		1546
$J/\psi(1S) K_0^0 \pi^+ \pi^-$	($4.5 \pm 0.4 \times 1$			1611
$J/\psi(1S)K^{0}K^{-}\pi^{+}$ + c.c.	<		_	CL=90%	1467
$J/\psi(1S) K^0 K^+ K^-$		$2.5 \pm 0.7) \times 1$	_	S=1.8	1249
$J/\psi(1S)K^0 ho^0$		$5.4 \pm 3.0 \times 1$	_		1390
$J/\psi(1S)K^*(892)^+\pi^-$	•	$8 \pm 4) \times 1$			1515
$J/\psi(1S)\pi^+\pi^-\pi^+\pi^-$	($1.44 \pm 0.12) \times 1$			1670
$J/\psi(1S) f_1(1285)$	(8.4 \pm 2.1) \times			1385
$J/\psi(1S) K^*(892)^0 \pi^+ \pi^-$	($6.6 \pm 2.2) \times 1$			1447
$\eta_{c2}(1D)K_S^0$, $\eta_{c2} \rightarrow h_c \gamma$				CL=90%	_
$\eta_{c2}(1D)\pi^-K^+, \ \eta_{c2} \rightarrow \ h_c\gamma$				CL=90%	- - -
$\chi_{c1}(3872)^-K^+$		5 × 1			_
$\chi_{c1}(3872)^-K^+$,	[III] <	4.2 ×	10^{-6}	CL=90%	_
$\chi_{c1}(3872)^- \rightarrow$					
$J/\psi(1S)\pi^{-}\pi^{0}$					
$\chi_{c1}(3872)K^{0}$		$1.1~\pm~0.4~) imes 1$			1140
$\chi_{c1}(3872) K^*(892)^0$		$1.0~\pm~0.5~) \times 1$			940
$\chi_{c1}(3872)K^{+}\pi^{-}$	($2.1~\pm~0.8~) \times 1$	10 ⁻⁴		1087
$\chi_{c1}(3872)\gamma$		1.3 ×		CL=90%	1220
$Z_c(4430)^{\pm} K^{\mp}, \ Z_c^{\pm} \rightarrow$	($6.0 \ ^{+} \begin{array}{l} 3.0 \\ - \end{array}) imes$	10^{-5}		583
ψ (2S) π^\pm		·			

$Z_c(4430)^{\pm} K^{\mp}, \ Z_c^{\pm} ightarrow$	(5.4 +	$\frac{4.0}{1.2}$) × 10 ⁻⁶		583
$J/\psi \pi^\pm$					
$Z_c(3900)^{\pm} K^{\mp}, \ Z_c^{\pm} \rightarrow$	<	9	\times 10 ⁻⁷		_
$J/\psi \pi^{\pm}$					
$Z_c(4200)^\pm K^\mp,~X^\pm ightarrow$	(22 +	$^{1.3}_{0.8}$) × 10 ⁻⁵		_
$J/\psi \pi^{\pm}$	(0.8 / / 23		
$J/\psi(1S) p \overline{p}$	(4.5 ±	$0.6) \times 10^{-7}$		862
$J/\psi(1S)\gamma$			× 10 ⁻⁶	CL=90%	1732
$J/\psi \mu^+ \mu^-$, $J/\psi \rightarrow \mu^+ \mu^-$	<	1.0	$\times 10^{-9}$	CL=95%	_
$J/\psi(1S)\overline{D}{}^0$	<	1.3	$\times 10^{-5}$	CL=90%	877
$\psi(2S)\pi^0$	($1.17\pm$	$0.19) \times 10^{-5}$		1348
$\psi(2S)K^0$	(5.8 ±	$0.5) \times 10^{-4}$		1283
$\psi(2S) K^0 \pi^+ \pi^-$	($2.81\pm$	$0.30) \times 10^{-4}$		1177
$\psi(3770) K^0$, $\psi ightarrow \overline{D}{}^0 D^0$	<		$\times 10^{-4}$		1217
$\psi(3770) K^0$, $\psi \to D^- D^+$	<	1.88	$\times 10^{-4}$	CL=90%	1217
$\psi(2S)\pi^+\pi^-$	($2.24\pm$	$0.35) \times 10^{-5}$		1332
$\psi(2S)K^+\pi^-$	•		$0.4) \times 10^{-4}$		1239
$\psi(2S) K^*(892)^0$			$0.4) \times 10^{-4}$		1116
$\chi_{c0} K^0$			$0.4) \times 10^{-4}$		1477
$\chi_{c0} K_{c0}^* (892)^0$			$0.4) \times 10^{-4}$		1342
$\chi_{c1}\pi^0$			$0.28) \times 10^{-5}$		1468
$\chi_{c1}K^0$	•		$0.27) \times 10^{-4}$		1411
$\chi_{c1}\pi^-K^+$			$0.30) \times 10^{-4}$		1371
$\chi_{c1} K^* (892)^0$	(2.38±	$0.19) \times 10^{-4}$	S=1.2	1265
$X(4051)^-K^+,~X^- ightarrow$	(3.0 +	$^{4.0}_{1.8}$) × 10 ⁻⁵		_
$\chi_{c1}\pi^-$					
$X(4248)^-K^+$, $X^- ightarrow$	(4.0 +	$^{20.0}_{1.0}$) × 10 ⁻⁵		_
$\chi_{c1}\pi^{-}$			1.0		
$\chi_{c1} \pi^{+} \pi^{-} K^{0}$	($3.2~\pm$	$0.5) \times 10^{-4}$		1318
$\chi_{c1} \pi^{-} \pi^{0} K^{+}$	($3.5~\pm$	$0.6) \times 10^{-4}$		1321
$\chi_{c2}K^0$			$\times 10^{-5}$		1379
$\chi_{c2} K^* (892)^0$			1.2) \times 10 ⁻⁵	S=1.1	1228
$\gamma_{a2}\pi^{-}K^{+}$	•		$1.0) \times 10^{-5}$		1338
$\chi_{c2} \pi^{+} \pi^{-} K^{0}$			× 10 ⁻⁴		1282
$\chi_{c2}\pi^-\pi^0K^+$			$\times 10^{-5}$		1286
$\psi(4660)K^0$, $\psi \rightarrow \Lambda_c^+ \Lambda_c^-$	<	2.3	$\times 10^{-4}$		_
$\psi(4230)^{0}K^{0}, \ \psi^{0} \rightarrow$	<	1.7	$\times 10^{-5}$	CL=90%	_
$J/\psi \pi^+ \pi^-$					
K or	<i>K</i> * r	nodes			
$K^+\pi^-$	($0.05) \times 10^{-5}$		2615

$K^+\pi^-$	($1.96 \pm 0.05) \times 10^{-5}$		2615
$K^0\pi^0$	($9.9 \pm 0.5) \times 10^{-6}$		2615
$\eta' K^0$	(6.6 \pm 0.4) \times 10 ⁻⁵	S=1.4	2528

HTTP://PDG.LBL.GOV

Page 110

$\eta' K^* (892)^0$	($2.8~\pm~0.6~) imes 10^{-1}$	-6	2472
$\eta' K_0^* (1430)^0$	(6.3 ± 1.6) $ imes 10^{-1}$	-6	2346
$\eta' K_2^* (1430)^0$	($1.37 \pm 0.32) \times 10^{-2}$	-5	2346
ηK^0	($1.23 + 0.27 \times 10^{-2}$	-6	2587
$\eta K^*(892)^0$	($1.59\pm \ 0.10) \times 10^{-1}$	-5	2534
$\eta K_0^* (1430)^0$	($1.10\pm 0.22) \times 10^{-1}$	_	2415
$\eta K_2^*(1430)^0$	($9.6 \pm 2.1 \times 10^{-1}$		2414
ωK^0	($4.8 \pm 0.4 \times 10^{-1}$		2557
$a_0(980)^0 K^0$, $a_0^0 \to \eta \pi^0$	<		-6 CL=90%	_
$b_1^0 K^0$, $b_1^0 \rightarrow \omega \pi^0$	<		-6 CL=90%	_
$a_0(980)^{\pm}K^{\mp}, \ a_0^{\pm} \rightarrow \ \eta \pi^{\pm}$	<		-6 CL=90%	- - - - -
$b_1^-K^+, b_1^- \rightarrow \omega\pi^-$	($7.4 \pm 1.4 \times 10^{-1}$		_
$b_1^0K^{*0},\;b_1^0 ightarrow\omega\pi^0$	<		-6 CL=90%	_
± ±			-6 CL=90%	
$b_1^- K^{*+}, b_1^- \to \omega \pi^-$	<			_
$a_0(1450)^{\pm} K^{\mp}, \ a_0^{\pm} \rightarrow \eta \pi^{\pm}$	<		-6 CL=90%	_
$K_S^0 X^0$ (Familon)	<		-5 CL=90%	_
$\omega K^*(892)^0$		$2.0 \pm 0.5 \times 10^{-1}$	_	2503
$\omega(K\pi)_0^{*0}$		$1.84 \pm 0.25) \times 10^{-1}$		_
$\omega K_0^* (1430)^0$	($1.60 \pm 0.34) \times 10^{-1}$	-5	2380
$\omega K_2^* (1430)^0$	($1.01\pm \ 0.23) \times 10^{-}$	-5	2380
$\omega K^{+}\pi^{-}$ nonresonant	(5.1 ± 1.0) $ imes 10^{-1}$	-6	2542
$K^+\pi^-\pi^0$	($3.78\pm\ 0.32)\times 10^{-1}$		2609
$\mathcal{K}^+ ho^-$	($7.0~\pm~0.9~) imes 10^{-}$		2559
$\mathcal{K}^+ ho$ (1450) $^-$	($2.4 \pm 1.2 \times 10^{-2}$	-6	_
$\mathcal{K}^+ ho$ (1700) $^-$	($6 \pm 7) \times 10^{-1}$	-7	_
$(\mathit{K}^{+}\pi^{-}\pi^{0})$ nonresonant	($2.8~\pm~0.6~) imes 10^{-1}$	-6	2609
$(K\pi)_0^{*+}\pi^-, \ (K\pi)_0^{*+} \to$	(3.4 ± 0.5) \times 10^{-1}	-5	_
$\stackrel{{\cal K}^+\pi^0}{(\kappa\pi)^{*0}_0\pi^0},\;\;(\kappa\pi)^{*0}_0 o$	($8.6 \pm 1.7) \times 10^{-1}$	-6	_
$K^{+}\pi^{-}$ $K_{2}^{*}(1430)^{0}\pi^{0}$				
$K_2^*(1430)^0\pi^0$	<		-6 CL=90%	2445
$K^{\overline{*}}(1680)^0 \pi^0$			-6 CL=90%	2358
$K_{\times}^{*0}\pi^{0}$	[ppp] ($6.1~\pm~1.6~) imes10^-$	-6	_
$K^0\pi^+\pi^-$	($4.97 \pm 0.18) \times 10^{-1}$	-5	2609
$K^0\pi^+\pi^-$ nonresonant	(1.39^{+}_{-} $\stackrel{0.26}{0.18}$) \times 10^{-}	-5 S=1.6	2609
$K^0 \rho^0$	($3.4 \pm 1.1 \times 10^{-1}$	-6 S=2.3	2558
$K^*(892)^+\pi^-$	($7.5 \pm 0.4 \times 10^{-1}$	-6	2563
$K_0^*(1430)^+\pi^-$	•	$3.3 \pm 0.7 \times 10^{-1}$	_	_
$K_{\star}^{\star+}\pi^{-}$		$5.1 \pm 1.6 \times 10^{-1}$		_
$K^*(1410)^+\pi^-$, $K^{*+} o$		3.8 × 10 ⁻		_
$\kappa^0\pi^+$	`	. 10	3370	
•				

$(K\pi)_0^{*+}\pi^-$, $(K\pi)_0^{*+}\to$	(1.62± 0.1	$3) \times 10^{-5}$		_
$f_0^0(980)K^0$, $f_0 \rightarrow \pi^+\pi^-$	(8.1 ± 0.8) × 10 ⁻⁶	S=1.3	2522
$K^0 f_0(500)$		1.6 + 2.5 $1.6 - 1.6$		3-1.5	_
$K^0 f_0(1500)$		$1.3 - 1.6$ 1.3 ± 0.8	_		2393
$f_2(1270)K^0$,	2.7 + 1.3 $2.7 - 1.2$,		2459
$f_{x}(1300)K0, f_{x} \rightarrow \pi^{+}\pi^{-}$	(1.8 ± 0.7			
$K^*(892)^0 \pi^0$	(3.3 ± 0.6			2563
$K_2^*(1430)^+\pi^-$	(3.65 ± 0.3			2445
$K^*(1680)^+\pi^-$	(1.41± 0.1	_		2358
$K^+\pi^-\pi^+\pi^-$	[qqq] <	2.3	$\times 10^{-4}$	CL=90%	2600
$ ho^0$ K $^+$ π^-	($2.8~\pm~0.7$	$) \times 10^{-6}$		2543
$f_0(980)K^+\pi^-$, $f_0\to \pi\pi$	($1.4 \begin{array}{c} + & 0.5 \\ - & 0.6 \end{array}$	$) \times 10^{-6}$		2506
$K^+\pi^-\pi^+\pi^-$ nonresonant	<		\times 10 ⁻⁶	CL=90%	2600
$K^*(892)^0 \pi^+ \pi^-$		5.5 ± 0.5			2557
$K^*(892)^0 \rho^0$	(2504
$K^*(892)^0 f_0(980), f_0 \rightarrow \pi \pi$	($3.9 + 2.1 \\ - 1.8$			2466
$K_1(1270)^+\pi^-$	<	3.0		CL=90%	2489
$K_1(1400)^+\pi^-$		2.7		CL=90%	2451
$a_1(1260)^- K^+$		1.6 ± 0.4			2471
$K^*(892)^+ \rho^-$		1.03± 0.2			2504
$K_0^*(1430)^+ \rho^-$	(2.8 ± 1.2		CI 000/	-
$K_1(1400)^0 \rho^0$ $K_0^*(1430)^0 \rho^0$	< _		$\times 10^{-3}$	CL=90%	2388
0		2.7 ± 0.6			2381
$K_0^*(1430)^0 f_0(980), f_0 \rightarrow \pi \pi$ $K_2^*(1430)^0 f_0(980), f_0 \rightarrow \pi \pi$		2.7 ± 0.9			_
$K_2(1450)^{-1}0(900), 1_0 \rightarrow \pi\pi$ K^+K^-	(8.6 ± 2.0			2502
$K^0\overline{K}^0$	(7.8 ± 1.5			2593 2593
$K^0K^-\pi^+$	(1.21 ± 0.1 6.7 ± 0.5			2578
	<		× 10 ⁻⁷	CI =90%	2540
$\frac{K^*(892)^{\pm} K^{\mp}}{\overline{K}^{*0} K^0 + K^{*0} \overline{K}^0}$			× 10 ⁻⁷		_
$K^+K^-\pi^0$		2.2 ± 0.6			2579
$K_{S}^{0}K_{S}^{0}\pi^{0}$			$\times 10^{-7}$	CL=90%	2578
$K_{S}^{0}K_{S}^{0}\pi^{0}$ $K_{S}^{0}K_{S}^{0}\eta$ $K_{S}^{0}K_{S}^{0}\eta'$ $K_{S}^{0}K_{K}^{+}K^{-}$	<	1.0	$\times 10^{-6}$	CL=90%	2515
$K_{S}^{0}K_{S}^{0}\eta'$	<	2.0	$\times 10^{-6}$	CL=90%	2453
$K^{\bar{0}}K^{+}K^{-}$	(2.68± 0.1	$1) \times 10^{-5}$		2522
$\mathcal{K}^{0}\phi$	($7.3~\pm~0.7$	$) \times 10^{-6}$		2516
$f_0(980) K^0$, $f_0 \to K^+ K^-$	($7.0 \begin{array}{c} + & 3.5 \\ - & 3.0 \end{array}$	$) \times 10^{-6}$		_
$f_0(1500) K^0$	($1.3 \begin{array}{c} + & 0.7 \\ - & 0.5 \end{array}$	$) \times 10^{-5}$		2393

(/ (1505))) //)	,	- + 5 7		
$f_2'(1525)^0 K^0$	($\begin{array}{ccc} 3 & + & 5 \\ - & 4 \end{array}) \times 10^{-7}$		_
$f_0(1710) {\it K}^0$, $f_0 ightarrow {\it K}^+ {\it K}^-$	(4.4 \pm 0.9) \times 10 ⁻⁶		_
$K^0K^+K^-$ nonresonant	($3.3~\pm~1.0~)\times10^{-5}$		2522
$K_S^0 K_S^0 K_S^0$	($6.0 \pm 0.5) \times 10^{-6}$	S=1.1	2521
$f_0(980)K^0$, $f_0 \to K_S^0K_S^0$	($2.7 \pm 1.8) \times 10^{-6}$		_
$f_0(1710)K^0$, $f_0 \to K_S^0 K_S^0$	($5.0 \ ^{+}_{-}\ ^{5.0}_{2.6}\) imes 10^{-7}$		_
$f_2(2010)K^0$, $f_2 \to K_S^0 K_S^0$	($5 \pm 6) \times 10^{-7}$		_
$K_S^0 K_S^0 K_S^0$ nonresonant	($1.33\pm 0.31) \times 10^{-5}$		2521
$K_{S}^{0}K_{S}^{0}K_{I}^{0}$	<	•	CL=90%	2521
$K^*(892)^0K^+K^-$	(F		2467
$K^*(892)^0 \phi$	($1.00\pm 0.05) \times 10^{-5}$		2460
$K^+K^-\pi^+\pi^-$ nonresonant	<		CL=90%	2559
$K^*(892)^0 K^- \pi^+$	($4.5 \pm 1.3) \times 10^{-6}$		2524
$K^*(892)^0 \overline{K}^*(892)^0$	($8.3 \pm 2.4 \times 10^{-7}$	S=1.5	2485
$K^+K^+\pi^-\pi^-$ nonresonant	<		CL=90%	2559
$K^*(892)^0 K^+ \pi^-$	<		CL=90%	2524
$\hat{K}^*(892)^0 K^*(892)^0$	<		CL=90%	2485
K*(892)+ K*(892)-	<		CL=90%	2485
$K_1(1400)^0 \phi$	<		CL=90%	2339
$\phi(K\pi)_0^{*0}$	($4.3 \pm 0.4) \times 10^{-6}$		_
$\phi(K\pi)_0^{*0}$ (1.60< $m_{K\pi}$ <2.15) [rrr]	· <		CL=90%	_
$K_0^*(1430)^0 K^- \pi^+$	<		CL=90%	2403
$K_0^*(1430)^0 \overline{K}^*(892)^0$	<	3.3×10^{-6}	CL=90%	2360
$\kappa_0^{(1430)^0} \overline{\kappa}_0^{(1430)^0}$	<		CL=90%	2222
$K_0^*(1430)^0 \phi$	($3.9 \pm 0.8 \times 10^{-6}$	32 33,0	2333
$K_0^*(1430)^0 K^*(892)^0$	<	2	CL=90%	2360
$K_0^{(1130)} K_0^{(32)}$ $K_0^{*}(1430)^0 K_0^{*}(1430)^0$	<		CL=90%	2222
$K^*(1680)^0 \phi$	<		CL=90%	2238
$K^*(1780)^0 \phi$			CL=90%	
$K^*(2045)^0 \phi$,		CL=90%	_
$K_{2}^{(1430)} \rho^{0}$	<		CL=90%	2381
$K_2^*(1430)^0 \phi$		$6.8 \pm 0.9 \times 10^{-6}$		2332
$K_2(1430) \ \varphi$ $K^0 \phi \phi$		$3.7 \pm 0.7 \times 10^{-6}$		
$\eta' \eta' K^0$	(S=1.3 CL=90%	2305 2337
$\eta K^0 \gamma$	<	$7.6 \pm 1.8 \times 10^{-6}$	CL=90%	2537 2587
$\eta' K^0 \gamma$	<		CL=90%	2528
$K^0 \phi \gamma$		$2.7 \pm 0.7 \times 10^{-6}$	CL=90/0	2526 2516
$K + \pi - \gamma$	•	$4.6 \pm 1.4 \times 10^{-6}$		2615
$K^*(892)^0 \gamma$	`	$4.0 \pm 1.4 \times 10^{-5}$ $4.18 \pm 0.25 \times 10^{-5}$	S=2.1	2565
$K^*(1410)\gamma$	(,	3=2.1 CL=90%	2451
$K^+\pi^-\gamma$ nonresonant	<		CL=90%	2615
A A I HOITI COOTIAITE	_	2.0 ^ 10	CL-90/0	2013

$K^*(892)^0 X(214), X \to$	[sss] <	2.26	$\times10^{-8}$ CL=90%	_
$\mu^+\mu^-$			_	
$K^0\pi^+\pi^-\gamma$	(1.99 ± 0.18	$(3) \times 10^{-5}$	2609
$K^+\pi^-\pi^0\gamma$	($4.1\ \pm\ 0.4$	$) \times 10^{-5}$	2609
$K_1(1270)^0 \gamma$	<	5.8	$\times 10^{-5}$ CL=90%	2491
$K_1(1400)^0 \gamma$	<	1.2	$\times10^{-5}$ CL=90%	2454
$K_2^*(1430)^0 \gamma$	(1.24 ± 0.24	$(1) \times 10^{-5}$	2447
$K^{*}(1680)^{0}\gamma$	<	2.0	$\times10^{-3}$ CL=90%	2360
$K_3^*(1780)^0 \gamma$	<	8.3	$\times 10^{-5}$ CL=90%	2340
$K_{4}^{*}(2045)^{0}\gamma$	<	4.3	$\times10^{-3}$ CL=90%	2243

Light unflavored meson modes

HTTP://PDG.LBL.GOV

Page 114

			•		
$\phi\phi$	<	2.7		CL=90%	2435
$a_0(980)^{\pm}\pi^{\mp}, \ a_0^{\pm} \rightarrow \ \eta\pi^{\pm}$	<	3.1	\times 10 ⁻⁶	CL=90%	_
$a_0(1450)^{\pm}\pi^{\mp}, \ a_0^{\pm} \to \ \eta\pi^{\pm}$	<	2.3	$\times 10^{-6}$	CL=90%	_
$\pi^{+}\pi^{-}\pi^{0}$	<	7.2	× 10 ⁻⁴	CL=90%	2631
$\rho^0 \pi^0$	($0.5) \times 10^{-6}$	0_ 00,0	2581
$\rho^{\mp}\pi^{\pm}$	•		$0.23) \times 10^{-5}$		2581
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	< -			CL=90%	2621
$\rho^0 \pi^+ \pi^-$	<		× 10 ⁻⁶		2575
$\rho^0 \rho^0$	(1.5) \times 10 ⁻⁷	0_ 00,0	2523
$f_0(980)\pi^+\pi^-, f_0 \to$	<		× 10 ⁻⁶	CI = 90%	
		0.0	/\ 	0_ 00,0	
$ ho^0 f_0(980), \ f_0 ightarrow \ \pi^+ \pi^-$	(7.8 ±	$2.5) \times 10^{-7}$		2486
$f_0(980) f_0(980), f_0 \rightarrow$	<	1.9	× 10 ⁻⁷	CL=90%	2447
$\pi^+\pi^-$, $f_0 \rightarrow \pi^+\pi^-$					
$f_0(980) f_0(980), f_0 \rightarrow \pi^+ \pi^-,$	<	2.3	\times 10 ⁻⁷	CL=90%	2447
$f_0 \rightarrow K^+ K^-$					
$a_1(1260)^{\mp}\pi^{\pm}$	[z] ($2.6~\pm$	$0.5) \times 10^{-5}$	S=1.9	2494
$a_2(1320)^{\mp}\pi^{\pm}$	[z] <	6.3	× 10 ⁻⁶	CL=90%	2473
$\pi^+\pi^-\pi^0\pi^0$	<	3.1		CL=90%	2622
$\rho^+ \rho^-$	($2.77\pm$	$0.19)\times10^{-5}$		2523
$a_1(1260)^0\pi^0$	<	1.1		CL=90%	2495
$\omega \pi^0$	<	5	\times 10 ⁻⁷	CL=90%	2580
$\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	<	9.0	$\times 10^{-3}$	CL=90%	2609
$a_1(1260)^+ ho^-$	<	6.1	$\times 10^{-5}$	CL=90%	2433
$a_1(1260)^0 \rho^0$	<	2.4		CL=90%	2433
$b_1^{\mp}\pi^{\pm}$, $b_1^{\mp} ightarrow \omega\pi^{\mp}$	($1.09\pm$	$0.15) \times 10^{-5}$		_
$b_1^0 \pi^0$, $b_1^0 \to \omega \pi^0$	<	1.9		CL=90%	_
$b_1^- \rho^+, b_1^- \rightarrow \omega \pi^-$	<	1.4		CL=90%	_
$b_1^0 ho^0$, $b_1^0 ightarrow \omega \pi^0$	<	3.4		CL=90%	_
$\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-$				CL=90%	2502
	<	3.0	_	CL=90%	2592
$a_1(1260)^+ a_1(1260)^-, a_1^+ \rightarrow$	(1.18±	$0.31) \times 10^{-5}$		2336
$2\pi^{+}\pi^{-}, a_{1}^{-} \rightarrow 2\pi^{-}\pi^{+}$					
$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{0}$	<	1.1	%	CL=90%	2572
F	Baryon m	odes			
p p	_		0.32) × 10 ⁻⁸		2467
$p\overline{p}\pi^+\pi^-$			$0.32) \times 10^{-6}$ $0.19) \times 10^{-6}$		2406
$p\overline{p}K^{+}\pi^{-}$			$0.19) \times 10^{-6}$ $0.5) \times 10^{-6}$		2306
$p\overline{p}K^0$			0.3°) × 10 0.32) × 10^{-6}		2347
$\Theta(1540)^+\overline{p},~\Theta^+ o~pK^0_S$	[ttt] <	∠.00 <u></u>	$\times 10^{-8}$	CI —an%	2318
$f_I(2220)K^0, f_I \rightarrow p\overline{p}$			\times 10 \times 10 -7		
3 ()				CL=90%	2135
p p K*(892) ⁰	(1.24 +	$\binom{0.28}{0.25} \times 10^{-6}$		2216
$f_J(2220)K_0^*,\;\;f_J ightarrow\; ho\overline{p}$	<	1.5	$\times10^{-7}$	CL=90%	_
3. 7 0. 3 77					

HTTP://PDG.LBL.GOV

Page 115

$p\overline{p}K^+K^-$	($1.21 \pm$	$0.32) \times 10^{-7}$		2179
$ \rho \overline{\rho} \pi^0 $	(5.0 ±	1.9) \times 10 ⁻⁷		2440
p <u>p</u> pp	<			CL=90%	1735
$p\underline{\Lambda}\pi^-$	($0.29) \times 10^{-6}$		2401
$p\Lambda\pi^-\gamma$	<	6.5		CL=90%	2401
$p\overline{\Sigma}(1385)^-$	<	2.6		CL=90%	2363
$\Delta (1232)^{+} \overline{p} + \Delta (1232)^{-} p$	<	1.6	$\times 10^{-6}$	GL 000/	_
$\Delta^0 \overline{\Lambda}$	<	9.3		CL=90%	2364
p <u>Λ</u> K− p <u>Λ</u> D−		8.2		CL=90%	2308
pΛD*-	(0.4) \times 10 ⁻⁵ 0.8) \times 10 ⁻⁵		1765 1685
$p\overline{\nabla}^0\pi^-$	(3.4 ±		CL=90%	2383
$\frac{\rho}{\Lambda} \overline{\Sigma}{}^{0} \pi^{-}$	<	3.2		CL=90%	2392
$\overline{\Lambda}\Lambda K^0$			$\begin{array}{c} 1.0 \\ 0.9 \end{array}) \times 10^{-6}$	CL—9070	2250
<i>ĀΛK</i> * ⁰			$\begin{array}{c} 0.9 \\ 0.8 \\ 0.8 \end{array}) \times 10^{-6}$		2098
	(0.0		
$\overline{\Lambda}\Lambda D^0$	($0.30 \\ 0.26) \times 10^{-5}$		1662
$D^0 \Sigma^0 \overline{\Lambda} + \text{c.c.}$	<	3.1		CL=90%	1611
$\Delta^0 \overline{\Delta}{}^0$		1.5		CL=90%	2335
$\Delta^{++}\overline{\Delta}^{}$	<	1.1		CL=90%	2335
$\overline{D}^0 p \overline{p}$			$0.07) \times 10^{-4}$		1863
$D_{\overline{A}}^{-} \overline{A} p$			$0.9) \times 10^{-5}$		1710
$\overline{D}^*(2007)^0 p \overline{p}$	(1.1) \times 10 ⁻⁵		1788
$D^*(2010)^- p \overline{n}$	($0.4) \times 10^{-3}$		1785
$D^{-}p\overline{p}\pi^{+}$	($0.31) \times 10^{-4}$	6 10	1786
$rac{D^*(2010)^- ho\overline{ ho}\pi^+}{\overline{D}^0 ho\overline{ ho}\pi^+\pi^-}$			$0.5) \times 10^{-4}$	S=1.2	1708
$D^{\circ}pp\pi^{+}\pi$ $D^{*}0 = + -$	($0.5) \times 10^{-4}$		1708
$\overline{D}^{*0} p \overline{p} \pi^+ \pi^-$	($0.5) \times 10^{-4} \times 10^{-6}$	CL 000/	1623
$\Theta_c \overline{p} \pi^+, \; \Theta_c \to D^- p$ $\Theta_c \overline{p} \pi^+, \; \Theta_c \to D^{*-} p$	<		\times 10 $^{\circ}$ \times 10 $^{-5}$		_
$ \frac{\Theta_c \overline{p} \pi^+, \ \Theta_c \rightarrow D^{*-} p}{\overline{\Sigma}_c^{} \Delta^{++}} $		1.4 8		CL=90% CL=90%	1839
$\frac{\mathcal{L}_c}{\Lambda^-} \frac{\Delta}{n \pi^+ \pi^-}$			$0.14) \times 10^{-3}$		1934
$\frac{\Lambda_c}{\Lambda} = \frac{\rho \Lambda}{\rho}$	($0.14) \times 10^{-5}$ $0.18) \times 10^{-5}$	5—1.5	2021
$\frac{\overline{\Lambda}_{c}^{c} p \pi^{+} \pi^{-}}{\overline{\Lambda}_{c}^{-} p \pi^{0}}$ $\overline{\Lambda}_{c}^{c} p \pi^{0}$	($0.18) \times 10^{-4}$		1982
$\Sigma_c(2455)^{-}p$	<	2.4	× 10 ⁻⁵		_
$\frac{\Sigma_c(2455)^- p}{\Lambda_c^- p \pi^+ \pi^- \pi^0}$	<	5.07	2	CL=90%	1883
$\frac{1}{\Lambda_{C}} p_{\pi} + \pi^{-} \pi^{+} \pi^{-}$	<	2.74	$\times10^{-3}$	CL=90%	1821
$\overline{\Lambda}_c^- p \pi^+ \pi^-$ (nonresonant)	(5.5 ±	$1.0\)\times 10^{-4}$	S=1.3	1934
$\overline{\Sigma}_c(2520)^{} \rho \pi^+$	($1.02\pm$	$0.18) \times 10^{-4}$		1860
$\overline{\Sigma}_c(2520)^0 p \pi^-$	<	3.1	$\times10^{-5}$	CL=90%	1860
$\overline{\Sigma}_c(2455)^0 p\pi^-$	($1.08\pm$	$0.16) \times 10^{-4}$		1895
$\overline{\Sigma}_c(2455)^0 N^0$, $N^0 \rightarrow$	(6.4 ±	$1.7) \times 10^{-5}$		_
$oldsymbol{ ho}\pi^-$					

HTTP://PDG.LBL.GOV Page 116

Lepton Family number (LF) or Lepton number (L) or Baryon number (B) violating modes, or/and $\Delta B = 1$ weak neutral current (B1) modes

1101211118 1110235, 01/2				carrons (22) mouse	
$\gamma \gamma$	B1	<	3.2	$\times 10^{-7}$ CL=90%	2640
e^+e^-	B1	<	2.5	$\times10^{-9}$ CL=90%	2640
$e^+e^-\gamma$	В1	<	1.2	$\times10^{-7}$ CL=90%	2640
$\mu^+\mu^-$	B1	(7	$) \times 10^{-11}$ S=1.8	2638
$\mu^{+} \mu^{-} \mu^{+} \mu^{-}$	B1	<	1.8	$ imes$ 10 $^{-10}$ CL=95%	2629
SP, $S ightarrow \ \mu^+ \mu^-$,	B1	[vvv] <	6.0	$\times10^{-10}$ CL=95%	_
$P ightarrow~\mu^+\mu^-$					
aa, a $ ightarrow$ $\mu^+\mu^-$		<	2.3	imes 10 ^{-10} CL=95%	_
$ au^+ au^-$	B1	<	2.1	$\times 10^{-3}$ CL=95%	1952
$\pi^0\ell^+\ell^-$	B1	<	5.3	$\times 10^{-8}$ CL=90%	2638
$\pi^0e^+e^-$	B1	<	8.4	$\times 10^{-8}$ CL=90%	2638
$\pi^0\mu^+\mu^-$	B1	<	6.9	$\times 10^{-8}$ CL=90%	2634
$\eta \ell^+ \ell^-$	B1	<	6.4	$\times 10^{-8}$ CL=90%	2611
ηe^+e^-	B1	<	1.08	$\times 10^{-7}$ CL=90%	2611
$\eta\mu^+\mu^-$	B1	<	1.12	$\times 10^{-7}$ CL=90%	2607
$\pi^0 u \overline{ u}$	B1	<	9	$\times10^{-6}$ CL=90%	2638
$\kappa^0\ell^+\ell^-$	В1	[ggg] (3.3 ± 0	6) \times 10 ⁻⁷	2616
$K^0 e^+ e^-$	B1	(2.5 + 1.0	$_{9}^{1}$) × 10 ⁻⁷ S=1.3	2616
$K^0 \mu^+ \mu^-$	B1	(3.39± 0	35) \times 10 ⁻⁷ S=1.1	2612
$K^0 u \overline{ u}$	B1	<	2.6	$\times 10^{-5}$ CL=90%	2616
$ ho^0 u \overline{ u}$	B1	<	4.0	$\times10^{-5}$ CL=90%	2583

$K^*(892)^0 \ell^+ \ell^-$	31 [gg	gg]	(9.9 + 1.5	2 1)×	10 ⁻⁷		2565
` /	31		($1.03^{+}_{-} \stackrel{0.}{0.}$	19 17) ×	10-6		2565
$K^*(892)^0 \mu^+ \mu^-$	31		(9.4 ± 0.	5)×	10^{-7}		2560
, , , , , , , , , , , , , , , , , , ,	31		(2.1 ± 0.1	5)×	10^{-8}		2626
$K^*(892)^0 \nu \overline{\nu}$	31	<	<	1.8	×	10^{-5}	CL=90%	2565
invisible B	31	<	<	2.4	×	10^{-5}	CL=90%	_
$ u \overline{ u} \gamma$	31	<	<	1.6			CL=90%	2640
$\phi \mu^+ \mu^-$		<	<	3.2	×	10^{-9}	CL=90%	2537
7	31	<	<	1.27			CL=90%	2541
,	.F	[z] <	<	1.0	×	10^{-9}	CL=90%	2639
<i>I</i>	.F	<	<	1.4	×	10^{-7}	CL=90%	2637
- <i> </i>	.F	<	<	3.8	×	10^{-8}	CL=90%	2615
() -	.F	<	<	1.6	×	10^{-7}	CL=90%	2563
- () - /	.F	<	<	1.2	×	10^{-7}	CL=90%	2563
$K^*(892)^0 e^{\pm} \mu^{\mp}$.F	<	<	1.8	×	10^{-7}	CL=90%	2563
	.F	[z] <	<	1.6	×	10^{-5}	CL=90%	2341
	.F	[z] <	<	1.4	×	10^{-5}	CL=95%	2340
$\Lambda_c^+ \mu^-$.,B	<	<	1.4	×	10^{-6}	CL=90%	2143
$\Lambda_c^+ \mu^-$ L $\Lambda_c^+ e^-$ L	.,B	<	<	4	×	10-6	CL=90%	2145

B^{\pm}/B^0 ADMIXTURE

CP violation

$$\begin{array}{l} A_{CP}(B\to K^*(892)\gamma) = -0.003 \pm 0.011 \\ A_{CP}(B\to s\gamma) = 0.015 \pm 0.011 \\ A_{CP}(B\to (s+d)\gamma) = 0.010 \pm 0.031 \\ A_{CP}(B\to X_s\ell^+\ell^-) = 0.04 \pm 0.11 \\ A_{CP}(B\to X_s\ell^+\ell^-) & (1.0 < q^2 < 6.0 \ \text{GeV}^2/\text{c}^4) = -0.06 \pm 0.22 \\ A_{CP}(B\to X_s\ell^+\ell^-) & (10.1 < q^2 < 12.9 \ \text{or} \ q^2 > 14.2 \ \text{GeV}^2/\text{c}^4) \\ = 0.19 \pm 0.18 \\ A_{CP}(B\to K^*e^+e^-) = -0.18 \pm 0.15 \\ A_{CP}(B\to K^*\mu^+\mu^-) = -0.03 \pm 0.13 \\ A_{CP}(B\to K^*\ell^+\ell^-) = -0.04 \pm 0.07 \\ A_{CP}(B\to \eta \text{anything}) = -0.13^{+0.04}_{-0.05} \\ \Delta A_{CP}(X_s\gamma) = A_{CP}(B^\pm \to X_s\gamma) - A_{CP}(B^0 \to X_s\gamma) = \\ 0.041 \pm 0.023 \\ \overline{A}_{CP}(B\to X_s\gamma) = (A_{CP}(B^+ \to X_s\gamma) + A_{CP}(B^0 \to X_s\gamma))/2 = 0.009 \pm 0.012 \\ \Delta A_{CP}(B\to K^*\gamma) = A_{CP}(B^+ \to K^{*+}\gamma) - A_{CP}(B^0 \to K^{*0}\gamma) = 0.024 \pm 0.028 \\ \overline{A}_{CP}(B\to K^*\gamma) = (A_{CP}(B^+ \to K^{*+}\gamma) + A_{CP}(B^0 \to K^{*0}\gamma))/2 = -0.001 \pm 0.014 \\ \end{array}$$

The branching fraction measurements are for an admixture of B mesons at the $\Upsilon(4S)$. The values quoted assume that B($\Upsilon(4S) \rightarrow B\overline{B}$) = 100%.

For inclusive branching fractions, e.g., $B \to D^\pm$ anything, the treatment of multiple D's in the final state must be defined. One possibility would be to count the number of events with one-or-more D's and divide by the total number of B's. Another possibility would be to count the total number of D's and divide by the total number of B's, which is the definition of average multiplicity. The two definitions are identical if only one D is allowed in the final state. Even though the "one-or-more" definition seems sensible, for practical reasons inclusive branching fractions are almost always measured using the multiplicity definition. For heavy final state particles, authors call their results inclusive branching fractions while for light particles some authors call their results multiplicities. In the B sections, we list all results as inclusive branching fractions, adopting a multiplicity definition. This means that inclusive branching fractions can exceed 100% and that inclusive partial widths can exceed total widths, just as inclusive cross sections can exceed total cross section.

 \overline{B} modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing.

B DECAY MODES

Fraction (Γ_i/Γ)

Scale factor/ p Confidence level (MeV/c)

Created: 7/10/2023 15:48

Semileptonic and leptonic modes

```
\ell^+ \nu_\ell anything
                                                                  10.84 \pm 0.16) %
                                           [ggg,xxx]
   D^-\ell^+\nu_\ell anything
                                                                    2.6 \pm 0.5 ) %
                                                 [ggg]
   \overline{D}^0 \ell^+ \nu_{\ell} anything
                                                                    7.3 \pm 1.5) %
                                                 [ggg]
   \overline{D}\ell^+\nu_\ell
                                                                    2.42 \pm 0.12)%
                                                                                                                         2310
   D^{*-}\ell^{+}\nu_{\ell} anything
                                                 [yyy]
                                                                           \pm 1.3 \times 10^{-3}
   \overline{D}^* \ell^+ \nu_{\ell}
                                                                    4.95 \pm 0.11)%
                                                                                                                         2257
                                                  [zzz]
   \overline{D}^{**}\ell^+\nu_{\ell}
                                                                    2.7 \pm 0.7 ) %
                                          [ggg,aaaa]
       \overline{D}_1(2420)\ell^+\nu_\ell anything
                                                                          \pm 1.3 \times 10^{-3}
                                                                    3.8
                                                                                                           S = 2.4
       \overline{D}\pi\ell^+\nu_\ell anything +
                                                                           \pm 0.5 )%
                                                                                                           S=1.5
             \overline{D}^*\pi\ell^+\nu_\ell anything
       \overline{D}\pi\ell^+\nu_\ell anything
                                                                         \pm 0.6
                                                                                      ) %
       \overline{D}^* \pi \ell^+ \nu_\ell anything
                                                                    1.9 \pm 0.4 ) %
       \overline{D}_{2}^{*}(2460)\ell^{+}\nu_{\ell} anything
                                                                    4.4 \pm 1.6 \times 10^{-3}
       D^{*-}\pi^{+}\ell^{+}\nu_{\ell} anything
                                                                    1.00 \pm 0.34 ) %
   \overline{D}\pi^+\pi^-\ell^+\nu_\ell
                                                                    1.62 \pm 0.32 \times 10^{-3}
                                                                                                                         2301
   \overline{D}^* \pi^+ \pi^- \ell^+ \nu_\ell
                                                                    9.4 \pm 3.2 \times 10^{-4}
                                                                                                                         2247
   D_s^- \ell^+ \nu_\ell anything
                                                                                          \times 10^{-3} CL=90%
                                                 [ggg] <
       D_s^- \ell^+ \nu_\ell K^+ anything
                                                                                          \times 10^{-3} CL=90%
                                                 [ggg] <
       D_s^- \ell^+ \nu_\ell K^0 anything
                                                                                          \times 10^{-3} CL=90%
                                                 [ggg] <
   X_c \ell^{\stackrel{s}{+}} \nu_{\ell}
                                                                  10.65 \pm 0.16) %
   X_{u}\ell^{+}\nu_{\ell}
                                                                   1.91 \pm 0.27 ) \times 10^{-3}
       X_{\mu}e^{+}\nu_{e}
                                                                    1.57 \pm 0.19 \times 10^{-3}
```

$X_{\mu}\mu^{+}\nu_{\mu}$		(1.62	\pm	0.21	$) \times 10^{-3}$		_
$K^+\ell^+ u_\ell$ anything	[ggg]	(6.3			′		_
$K^-\ell^+ u_\ell$ anything	[ggg]	($) \times 10^{-3}$		_
$K^0/\overline{K}{}^0\ell^+ u_\ell$ anything	[ggg]	(4.6			,		_
$\overline{D}\tau^+\nu_{\tau}$	[000]	($) \times 10^{-3}$		1911
$\overline{D}^* \tau^+ \nu_{\tau}$		(0.08			1838
,	D D*	`	D ===	طم		•		
D^\pm anything	<i>D</i> , <i>D</i>	, or	D_s mo) 0/		
D^{-1} anything D^{0}/\overline{D}^{0} anything		(23.1 61.6			,	C 12	_
$D^*(2010)^{\pm}$ anything		(22.5			,	S=1.3	_
$\overline{D}^*(2007)^0$ anything		(26.0			•		
D_s^{\pm} anything	[-1	(′		
	[z]	(,		_
$D_s^{*\pm}$ anything		(1.0	,		_
$D_s^{*\pm}\overline{D}^{(*)}$		(3.4	\pm	0.6) %		_
$\frac{DD_{s0}(2317)}{2}$			seen					1605
$\overline{D}D_{sJ}(2457)$			seen					_
$D^{(*)} \overline{D}^{(*)} K^0 +$	[z,bbaa]	(7.1	+	2.7) %		_
$D^{(*)}\overline{D}^{(*)} \mathcal{K}^\pm$					1.7			
$b \to c \overline{c} s$		(22	\pm	4) %		_
	[z,bbaa]	(3.9	\pm	0.4	,		_
$D^*D^*(2010)^{\pm}$	[z]	<	5.9				CL=90%	1711
$DD^*(2010)^{\pm} + D^*D^{\pm}$	[z]	<					CL=90%	_
DD^{\pm}	[z]	<	3.1			$\times 10^{-3}$	CL=90%	1866
$D_s^{(*)\pm}\overline{D}^{(*)}X(n\pi^{\pm})$	[z,bbaa]	(9	+	5 4) %		_
$\overline{D}^*(2010)\gamma$		<	1.1			$\times10^{-3}$	CL=90%	2257
$D_{s}^{+}\pi^{-}$, $D_{s}^{*+}\pi^{-}$, $D_{s}^{+}\rho^{-}$,	[z]	<	4			$\times 10^{-4}$	CL=90%	_
$D_{s}^{*+}\rho^{-}$, $D_{s}^{+}\pi^{0}$, $D_{s}^{*+}\pi^{0}$								
$D_{s}^{+}\eta$, $D_{s}^{*+}\eta$, $D_{s}^{+}\rho^{0}$,	. ,							
3								
$D_{s}^{*+}\rho^{0}$, $D_{s}^{+}\omega$, $D_{s}^{*+}\omega$						2		
$D_{s1}(2536)^+$ anything		<	9.5			\times 10 ⁻³	CL=90%	_
	Charm	oni	um mo	des	;			
$J/\psi(1S)$ anything		(0.032	•	S=1.1	_
$J/\psi(1S)$ (direct) anythin	g	($) \times 10^{-3}$	S=1.1	_
$\psi(2S)$ anything		($) \times 10^{-3}$		_
$\chi_{c1}(1P)$ anything		($) \times 10^{-3}$	S=1.3	_
$\chi_{c1}(1P)$ (direct) anything	g	($) \times 10^{-3}$		_
$\chi_{c2}(1P)$ anything		($) \times 10^{-4}$	S=1.6	_
$\chi_{c2}(1P)$ (direct) anything	g	(7.5	\pm	1.1	$) \times 10^{-4}$		_
$\eta_{m{c}}(1S)$ anything		<	9			× 10 ⁻³	CL=90%	_

K ₂ (2972)	(2.2		0.7) × 10-4		1141
$K\chi_{c1}(3872)$ $KX(3940), X \to D^{*0}D^0$	(2.3 6.7	工	0.7	$) \times 10^{-4}$	CL=90%	1084
$K\chi_{c0}(3915), \chi_{c0} \rightarrow \omega J/v$			+	3 4		CL—90/0	1103
(3313), (2313)				J. 1) / 10		1105
<i>v</i> +	K or K				\ 0 /		
K^{\pm} anything	[z] (78.9		2.5) %		_
K^+ anything	(66	±) %		_
K^- anything K^0/\overline{K}^0 anything	[z] (13 64	± ±) %) %		_
$K^*(892)^{\pm}$ anything	[z] (18	±) %		_
$K^*(892)^0 / \overline{K}^*(892)^0$ anythin	ng [z] (2.6) %		_
$K^*(892)\gamma$	(4.2		0.6	$) \times 10^{-5}$		2565
$\eta K \gamma$	(8.5		1.8 1.6	•		2588
$K_1(1400)\gamma$	<	1.27	_	1.0		CL=90%	2454
-			+	0.6		CL-90/0	
$K_2^*(1430)\gamma$	(1.7	_	0.6 0.5	$) \times 10^{-5}$		2447
$K_2(1770)\gamma$	<	1.2				CL=90%	2342
$K_3^*(1780)\gamma$	<	3.7				CL=90%	2340
$K_4^*(2045)\gamma$	<	1.0				CL=90%	2243
$K \eta'(958)$	(8.3		1.1	· _		2528
$K^*(892)\eta'(958)$	(4.1	±	1.1	$) \times 10^{-6}$	GL 000/	2472
Kη K*(802) _m	<	5.2		0 E		CL=90%	2588
$K^*(892)\eta$ $K\phi\phi$	(1.8 2.3		0.5	$) \times 10^{-5}$ $) \times 10^{-6}$		2534 2306
$\frac{\kappa}{b} \stackrel{\varphi \varphi}{ o} \overline{s} \gamma$	($) \times 10^{-4}$		2300
$\frac{b}{b} \rightarrow \frac{b}{d} \gamma$	(9.2			$) \times 10^{-6}$		_
$\frac{\overline{b}}{\overline{b}} \rightarrow \overline{s}$ gluon	<	6.8			%	CL=90%	_
η anything	(2.6	+	0.5 0.8) × 10 ⁻⁴		_
η' anything	(4.2			$) \times 10^{-4}$		_
K^+ gluon (charmless)	<	1.87				CL=90%	_
K^0 gluon (charmless)	(0.7	$) \times 10^{-4}$		_
Ligh	t unflavore						
$ ho\gamma$	t uilliavoie) × 10 ⁻⁶	S=1.2	2583
$\rho/\omega\gamma$	($) \times 10^{-6}$		2303
	[z,ddaa] (358			,	0 1.1	_
π^0 anything	(235) %		_
η anything	(17.6	\pm	1.6) %		_
$ ho^{f 0}$ anything	(21	\pm	5) %		-
ω anything	<	81			%	CL=90%	_
ϕ anything	(3.43	\pm	0.12			-
$\phi K^*(892)$	<	2.2				CL=90%	2460
π^+ gluon (charmless)	(3.7	\pm	8.0	$) \times 10^{-4}$		_

Baryon modes

$\Lambda_c^+ / \overline{\Lambda}_c^-$ anything	(3.6 ± 0.4) %		_
Λ_c^+ anything	<	1.3	%	CL=90%	_
$\overline{\Lambda}_c^-$ anything	<	7	%	CL=90%	_
$\overline{\Lambda}_c^- \ell^+$ anything	<	9	$\times10^{-4}$	CL=90%	_
$\overline{\Lambda}_{c}^{-}e^{+}$ anything	<	1.8	$\times10^{-3}$	CL=90%	_
$\overline{\Lambda}_{c}^{c}\mu^{+}$ anything	< -	1.4	\times 10 ⁻³	³ CL=90%	_
$\overline{\Lambda}_{c}^{-}$ p anything	($2.05 ~\pm~ 0.3$	3)%		_
$\overline{\Lambda}_c^c p e^+ \nu_e$	<	8	$\times10^{-4}$	CL=90%	2021
$\overline{\Sigma}_{c}^{}$ anything	(3.4 ± 1.7	$) \times 10^{-3}$		_
$\overline{\Sigma}_{c}^{c}$ anything	<	8	$\times10^{-3}$	CL=90%	_
$\overline{\Sigma}_{c}^{0}$ anything	(3.7 ± 1.7	$) \times 10^{-3}$		_
$\overline{\Sigma}_{c}^{0} N(N = p \text{ or } n)$	<	1.2	$\times10^{-3}$	CL=90%	1938
Ξ_c^0 anything, $\Xi_c^0 ightarrow \Xi^- \pi^+$	($1.93~\pm~0.3$	0) $\times 10^{-4}$	S=1.1	_
$\Xi_c^+, \ \Xi_c^+ \rightarrow \ \Xi^-\pi^+\pi^+$	($\begin{array}{cccc} 4.5 & + & 1.3 \\ - & 1.2 \end{array}$	$) \times 10^{-4}$		_
$ ho/\overline{ ho}$ anything	[z] (8.0 ± 0.4) %		_
p/\overline{p} (direct) anything	[z] (5.5 ± 0.5			_
$\overline{p}e_{\underline{}}^{+}\nu_{e}$ anything	<	5.9	$\times 10^{-4}$	CL=90%	_
$\Lambda/\overline{\Lambda}$ anything	[z] (4.0 ± 0.5) %		_
Λ anything	S	een			_
$\overline{\Lambda}$ anything	S	een			_
$\overline{\Xi}^-/\overline{\overline{\Xi}}^+$ anything	[z] (2.7 \pm 0.6	$) \times 10^{-3}$		_
baryons anything	(6.8 ± 0.6) %		_
$p\overline{p}$ anything	($2.47\ \pm\ 0.2$	3)%		_
$\Lambda \overline{ ho}/\overline{\Lambda} ho$ anything	[z] (2.5 ± 0.4) %		_
$\Lambda \overline{\Lambda}$ anything	<	5	$\times 10^{-3}$	CL=90%	_

Lepton Family number (LF) violating modes or $\Delta B = 1$ weak neutral current (B1) modes

				_,		
se^+e^-	B1	($6.7 \pm 1.$	$(7) \times 10^{-6}$	S=2.0	_
$s\mu^+\mu^-$	B1	($4.3 \pm 1.$	$0) \times 10^{-6}$		_
$s\ell^+\ell^-$	B1	[ggg] ($5.8 \pm 1.$	$3) \times 10^{-6}$	S=1.8	_
$\pi \ell^+ \ell^-$	B1	<	5.9	$\times 10^{-8}$	CL=90%	2638
πe^+e^-	B1	<	1.10	\times 10 ⁻⁷	CL=90%	2638
$\pi \mu^+ \mu^-$	B1	<	5.0	\times 10 ⁻⁸	CL=90%	2634
$K e^+ e^-$	B1	($4.4 \pm 0.$	$6) \times 10^{-7}$		2617
$K^*(892)e^+e^-$	B1	($1.19~\pm~0.$	$(20) \times 10^{-6}$	S=1.2	2565
$K\mu^+\mu^-$	B1	($4.4 \pm 0.$	$4) \times 10^{-7}$		2612
$K^*(892)\mu^+\mu^-$	B1	($1.06 \pm 0.$	$09) \times 10^{-6}$		2560
$K\ell^+\ell^-$	B1	($4.8 \pm 0.$	$4) \times 10^{-7}$		2617
$K^*(892)\ell^+\ell^-$	B1	($1.05 \pm 0.$	$10) \times 10^{-6}$		2565
$K \nu \overline{\nu}$	B1	<	1.6	\times 10 ⁻⁵	CL=90%	2617

$K^* u \overline{ u}$	B1	<	2.7	$\times10^{-5}$ CL=90%	_
$\pi \nu \overline{\nu}$	B1	<	8	$\times10^{-6}$ CL=90%	2638
$\rho \nu \overline{\nu}$	B1	<	2.8	$\times10^{-5}$ CL=90%	2583
$se^{\pm}\mu^{\mp}$	LF	[z]	2.2	$\times10^{-5}$ CL=90%	_
$\pie^{\pm}\mu^{\mp}$	LF	<	9.2	$\times 10^{-8}$ CL=90%	2637
$ hoe^\pm\mu^\mp$	LF	<	3.2	$\times 10^{-6}$ CL=90%	2582
K $e^{\pm}\mu^{\mp}$	LF	<	3.8	$\times 10^{-8}$ CL=90%	2616
$K^*(892) e^{\pm} \mu^{\mp}$	LF	<	5.1	$\times 10^{-7} \text{ CL}=90\%$	2563

$B^{\pm}/B^{0}/B_{s}^{0}/b$ -baryon ADMIXTURE

These measurements are for an admixture of bottom particles at high energy (LHC, LEP, Tevatron, $Sp\overline{p}S$).

Mean life
$$au=(1.5673\pm0.0029)\times10^{-12}$$
 s Mean life $au=(1.72\pm0.10)\times10^{-12}$ s Charged b -hadron admixture Mean life $au=(1.58\pm0.14)\times10^{-12}$ s Neutral b -hadron admixture
$$au_{\rm charged} = (1.58\pm0.14)\times10^{-12} \, {\rm s} = 1.09\pm0.13$$

$$au_{\rm charged} = (1.58\pm0.14)\times10^{-12} \, {\rm s} = 1.09\pm0.13$$

$$au_{\rm charged} = (1.58\pm0.14)\times10^{-12} \, {\rm s} = 1.09\pm0.13$$

$$au_{\rm charged} = (1.58\pm0.14)\times10^{-12} \, {\rm s} = 1.09\pm0.13$$

The branching fraction measurements are for an admixture of B mesons and baryons at energies above the $\Upsilon(4S)$. Only the highest energy results (LHC, LEP, Tevatron, $Sp\,\overline{p}S$) are used in the branching fraction averages. In the following, we assume that the production fractions are the same at the LHC, LEP, and at the Tevatron.

For inclusive branching fractions, e.g., $B \to D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

The modes below are listed for a \overline{b} initial state. b modes are their charge conjugates. Reactions indicate the weak decay vertex and do not include mixing.

T DECAY MODES

Created: 7/10/2023 15:48

PRODUCTION FRACTIONS

The production fractions for weakly decaying b-hadrons at high energy have been calculated from the best values of mean lives, mixing parameters, and branching fractions in this edition by the Heavy Flavor Averaging Group (HFLAV) as described in the note " B^0 - \overline{B}^0 Mixing" in the B^0 Particle Listings. We no longer provide world averages of the b-hadron production fractions, where results from LEP, Tevatron and LHC are averaged together; indeed the available data (from CDF and LHCb) shows that the fractions depend on the kinematics (in particular the p_T) of the

produced b hadron. Hence we would like to list the fractions in Z decays instead, which are well-defined physics observables. The production fractions in $p\overline{p}$ collisions at the Tevatron are also listed at the end of the section. Values assume

$$\begin{array}{ll} \mathsf{B}(\overline{b}\to B^+) = \mathsf{B}(\overline{b}\to B^0) \\ \mathsf{B}(\overline{b}\to B^+) + \mathsf{B}(\overline{b}\to B^0) + \mathsf{B}(\overline{b}\to B^0_s) + \mathsf{B}(b\to b\text{-baryon}) = 100\%. \end{array}$$

The correlation coefficients between production fractions are also reported:

cor(
$$B_s^0$$
, b-baryon) = 0.064
cor(B_s^0 , $B^{\pm} = B^0$) = -0.633
cor(b-baryon, $B^{\pm} = B^0$) = -0.813.

The notation for production fractions varies in the literature $(f_d, d_{B^0}, f(b \to \overline{B}^0), \operatorname{Br}(b \to \overline{B}^0))$. We use our own branching fraction notation here, $\operatorname{B}(\overline{b} \to B^0)$.

Note these production fractions are b-hadronization fractions, not the conventional branching fractions of b-quark to a B-hadron, which may have considerable dependence on the initial and final state kinematic and production environment.

B^+	$(40.8 \pm 0.7)\%$
B^0	(40.8 ± 0.7) %
B_s^0	(10.0 ± 0.8) %
<i>b</i> -baryon	$(8.4 \pm 1.1)\%$

DECAY MODES

Semileptonic and leptonic modes

u anything		(23.1 ± 1.5) %	_
$\ell^+ u_\ell$ anything	[ggg]	($10.69\pm\ 0.22$) %	_
$e^+ u_e$ anything		($10.86\pm\ 0.35)\ \%$	_
$\mu^+ u_\mu$ anything		$(\ 10.95 ^{+}_{-}\ 0.25 ^{+})\ \%$	_
$D^-\ell^+ u_\ell$ anything	[ggg]	(2.2 ± 0.4) % S=1.9	_
$D^-\pi^+\ell^+ u_\ell$ anything		$(4.9 \pm 1.9) \times 10^{-3}$	_
$D^-\pi^-\ell^+ u_\ell$ anything		$(2.6 \pm 1.6) \times 10^{-3}$	_
$\overline{D}{}^0\ell^+ u_\ell$ anything	[ggg]	(6.79 ± 0.34) %	_
$\overline{\it D}{}^0\pi^-\ell^+ u_\ell$ anything		(1.07 ± 0.27) %	_
$\overline{\it D}{}^0\pi^+\ell^+ u_\ell$ anything		$(2.3 \pm 1.6) \times 10^{-3}$	_
$D^{*-}\ell^+ u_\ell$ anything	[ggg]	$(2.75\pm\ 0.19)\ \%$	_
$D^{*-}\pi^-\ell^+ u_\ell$ anything		$(6 \pm 7) \times 10^{-4}$	_
$D^{*-}\pi^+\ell^+ u_\ell$ anything		$(4.8 \pm 1.0) \times 10^{-3}$	_
$\overline{D}^0_i \ell^+ u_\ell$ anything $ imes$	[ggg,eeaa]	$(2.6 \pm 0.9) \times 10^{-3}$	_
$B(\overline{D}_j^0 o \ D^{*+}\pi^-)$			

Charmonium modes

$J/\psi(1S)$ anything ($1.16 \pm 0.10) \%$	_
$\psi(2S)$ anything ($3.06 \pm 0.30) \times 10^{-3}$	_
$\chi_{c0}(1P)$ anything (1.5 \pm 0.6) %	_
$\chi_{c1}(1P)$ anything (1.4 \pm 0.4) %	_
$\chi_{c2}(1P)$ anything ($6.2 \pm 2.9) \times 10^{-3}$	_
$\chi_c(2P)$ anything, $\chi_c o \phi \phi$ <	$2.8 \times 10^{-7} \text{ CL}=95\%$	_
$\eta_c(1S)$ anything ($5.6 \pm 0.9) \times 10^{-3}$	_
$\eta_c(2S)$ anything, $\eta_c o \phi \phi$ ($3.5 \pm 1.3) \times 10^{-7}$	_
$\chi_{c1}(3872)$ anything, $\chi_{c1} ightarrow <$	$4.5 \times 10^{-7} \text{ CL}=95\%$	_
$\phi\phi$		
$\chi_{c0}(3915)$ anything, $\chi_{c0} ightarrow <$	$3.1 \times 10^{-7} \text{ CL}=95\%$	_
$\phi\phi$		

K or K* modes

$\overline{s}\gamma$		$(3.1 \pm 1.1) \times 10^{-4}$	_
$\overline{S}\overline{\nu}\nu$	B1	$<$ 6.4 $\times 10^{-4}$ CL=90%	_
K^{\pm} anything		$(74 \pm 6)\%$	_
K_S^0 anything		(29.0 ± 2.9) %	_

Pion modes

π^\pm anything		$(397 \pm 21)\%$	_
π^0 anything	[ddaa]	$(278 \pm 60)\%$	_
ϕ anything		(2.82± 0.23) %	_

Baryon modes

p/\overline{p} anything	(13.1 ± 1.1) %	_
$\Lambda/\overline{\Lambda}$ anything	(5.9 ± 0.6) %	_
b-baryon anything	(10.2 ± 2.8) %	-

Other modes

charged anything
$$[ddaa] \quad (497 \quad \pm \quad 7 \quad) \ \% \qquad \qquad -$$

$$\text{hadron}^+ \text{ hadron}^- \qquad \qquad (\quad 1.7 \ \frac{+}{-} \ \frac{1.0}{0.7} \) \times 10^{-5} \qquad \qquad -$$

$$\text{charmless} \qquad \qquad (\quad 7 \quad \pm 21 \quad) \times 10^{-3} \qquad \qquad -$$

$\Delta B = 1$ weak neutral current (B1) modes

```
\mu^+\mu^- anything B1 < 3.2 \times 10<sup>-4</sup> CL=90%
```

B*

$$I(J^P) = \frac{1}{2}(1^-)$$

I, J, P need confirmation.

Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^*}=5324.71\pm0.21~{
m MeV}$$
 $m_{B^*}-m_B=45.21\pm0.21~{
m MeV}$ $m_{B^{*+}}-m_{B^+}=45.37\pm0.21~{
m MeV}$

B* DECAY MODES

Fraction
$$(\Gamma_i/\Gamma)$$

p (MeV/c)

$$B\gamma$$

seen

45

 $B_1(5721)$

$$I(J^P) = \frac{1}{2}(1^+)$$

I, J, P need confirmation.

$$B_1(5721)^+$$
 mass $= 5725.9^{+2.5}_{-2.7}$ MeV $m_{B_1^+} - m_{B^{*0}} = 401.2^{+2.4}_{-2.7}$ MeV $B_1(5721)^0$ mass $= 5726.1 \pm 1.3$ MeV (S $= 1.2$) $m_{B_1^0} - m_{B^+} = 446.7 \pm 1.3$ MeV (S $= 1.2$) $m_{B_1^0} - m_{B^{*+}} = 401.4 \pm 1.2$ MeV (S $= 1.2$) Full width $\Gamma(B_1(5721)^+) = 31 \pm 6$ MeV (S $= 1.1$) Full width $\Gamma(B_1(5721)^0) = 27.5 \pm 3.4$ MeV (S $= 1.1$)

B₁ (5721) DECAY MODES

Fraction
$$(\Gamma_i/\Gamma)$$

p (MeV/c)

$$B^*\pi$$

seen

365

 $B_2^*(5747)$

$$I(J^P) = \frac{1}{2}(2^+)$$

I, J, P need confirmation.

$$B_2^*(5747)^+$$
 mass $= 5737.2 \pm 0.7$ MeV $m_{B_2^{*+}} - m_{B^0} = 457.5 \pm 0.7$ MeV $B_2^*(5747)^0$ mass $= 5739.5 \pm 0.7$ MeV $(S = 1.4)$ $m_{B_2^{*0}} - m_{B_1^0} = 13.4 \pm 1.4$ MeV $(S = 1.3)$ $m_{B_2^{*0}} - m_{B^+} = 460.2 \pm 0.6$ MeV $(S = 1.4)$ Full width $\Gamma(B_2^*(5747)^+) = 20 \pm 5$ MeV $(S = 2.2)$ Full width $\Gamma(B_2^*(5747)^0) = 24.2 \pm 1.7$ MeV

B *(5747) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$B\pi$	seen	420
$B^*\pi$	seen	376

B_J(5970)

$$I(J^P) = \frac{1}{2}(?^?)$$

I, J, P need confirmation.

$$B_J(5970)^+$$
 mass $m=5964\pm 5$ MeV $m_{B_J(5970)^+}-m_{B^0}=685\pm 5$ MeV $B_J(5970)^0$ mass $m=5971\pm 5$ MeV $m_{B_J(5970)^0}-m_{B^+}=691\pm 5$ MeV $B_J(5970)^+$ full width $\Gamma=62\pm 20$ MeV $B_J(5970)^0$ full width $\Gamma=81\pm 12$ MeV

B _J (5970) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$B\pi$	possibly seen	633
$B^*\pi$	seen	592

BOTTOM, STRANGE MESONS $(B = \pm 1, S = \mp 1)$

 $B_s^0 = s\overline{b}, \ \overline{B}_s^0 = \overline{s}\,b, \quad \text{similarly for } B_s^*\text{'s}$

 B_s^0

$$I(J^P) = 0(0^-)$$

I, J, P need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B_s^0}=5366.92\pm0.10$$
 MeV $m_{B_s^0}-m_B=87.42\pm0.14$ MeV Mean life $\tau=(1.521\pm0.005)\times10^{-12}$ s $c\tau=456.0~\mu\mathrm{m}$ $\Delta\Gamma_{B_s^0}=\Gamma_{B_{sL}^0}-\Gamma_{B_{sH}^0}=(0.083\pm0.005)\times10^{12}~\mathrm{s}^{-1}$ (S = 1.7)

$B_{\epsilon}^0 - \overline{B}_{\epsilon}^0$ mixing parameters

$$\Delta m_{B_s^0} = m_{B_{sH}^0} - m_{B_{sL}^0} = (17.765 \pm 0.006) \times 10^{12} \ \hbar \ \text{s}^{-1}$$

$$= (1.1693 \pm 0.0004) \times 10^{-8} \ \text{MeV}$$

$$x_s = \Delta m_{B_s^0} / \Gamma_{B_s^0} = 27.03 \pm 0.09$$

$$\chi_s \ (B_s^0 - \overline{B}_s^0 \ \text{mixing parameter}) = 0.499319 \pm 0.000005$$

CP violation parameters in B_s^0

$$\text{Re}(\epsilon_{B_s^0}) \ / \ (1 + |\epsilon_{B_s^0}|^2) = (-0.15 \pm 0.70) \times 10^{-3}$$

HTTP://PDG.LBL.GOV

Page 128

$$C_{KK}(B_s^0 \to K^+K^-) = 0.162 \pm 0.035$$

$$S_{KK}(B_s^0 \to K^+K^-) = 0.14 \pm 0.05 \quad (S = 1.3)$$

$$r_B(B_s^0 \to D_s^\mp K^\pm) = 0.37^{+0.10}_{-0.09}$$

$$r_B(B_s^0 \to D_s^\mp K^\pm \pi^\pm \pi^\mp) = 0.47 \pm 0.08$$

$$\delta_B(B_s^0 \to D_s^\pm K^\mp) = (358 \pm 14)^\circ$$

$$\delta_B(B_s^0 \to D_s^\pm K^\mp \pi^\pm \pi^\mp) = (-6^{+10}_{-13})^\circ$$

$$CP \text{ Violation phase } \beta_s = (2.5 \pm 1.0) \times 10^{-2} \text{ rad}$$

$$|\lambda| (B_s^0 \to J/\psi(1S)\phi) = 1.001 \pm 0.018 \quad (S = 1.2)$$

$$|\lambda| = 0.999 \pm 0.017$$

$$A, CP \text{ violation parameter } = -0.79 \pm 0.08$$

$$C, CP \text{ violation parameter } = 0.19 \pm 0.06$$

$$S, CP \text{ violation parameter } = 0.17 \pm 0.06$$

$$A_{CP}^L(B_s \to J/\psi \overline{K}^*(892)^0) = -0.05 \pm 0.06$$

$$A_{CP}^L(B_s \to J/\psi \overline{K}^*(892)^0) = -0.05 \pm 0.10$$

$$A_{CP}(B_s \to J/\psi \overline{K}^*(892)^0) = -0.05 \pm 0.10$$

$$A_{CP}(B_s \to J/\psi \overline{K}^*(892)^0) = -0.04 \pm 0.07$$

$$A_{CP}(B_s^0 \to [K^+K^-]_D \overline{K}^*(892)^0) = -0.04 \pm 0.07$$

$$A_{CP}(B_s^0 \to [\pi^+\pi^-]_D K^*(892)^0) = -0.01 \pm 0.04$$

$$A_{CP}(B_s^0 \to [\pi^+\pi^-]_D K^*(892)^0) = 0.06 \pm 0.13$$

$$S(B_s^0 \to \phi \gamma) = 0.43 \pm 0.32$$

$$C(B_s^0 \to \phi \gamma) = 0.11 \pm 0.31$$

$$A^{\Delta}(B_s^0 \to \phi \gamma) = -0.7 \pm 0.4$$

$$\Delta_{a_{\perp}} < 1.2 \times 10^{-12} \text{ GeV}, \text{ CL} = 95\%$$

$$\Delta_{a_{\parallel}} = (-0.9 \pm 1.5) \times 10^{-14} \text{ GeV}$$

$$\Delta_{a_{\chi}} = (1.0 \pm 2.2) \times 10^{-14} \text{ GeV}$$

$$\Delta_{a_{\chi}} = (1.0 \pm 2.2) \times 10^{-14} \text{ GeV}$$

$$Re(\xi) = -0.022 \pm 0.033$$

$$Im(\xi) = 0.004 \pm 0.011$$

These branching fractions all scale with $B(\overline{b} \to B_c^0)$.

The branching fraction B($B_s^0 o D_s^- \ell^+ \nu_\ell$ anything) is not a pure measurement since the measured product branching fraction B($\overline{b} o B_s^0$) imes B($B_s^0 o D_s^- \ell^+ \nu_\ell$ anything) was used to determine B($\overline{b} o B_s^0$), as described in the note on " B^0 - \overline{B}^0 Mixing"

For inclusive branching fractions, e.g., $B\to D^\pm$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

B _s DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ p Confidence level (MeV/ c)
D_s^- anything	(62 ± 6) %	6 –
HTTP://PDG.LBL.GOV	Page 129 Cre	eated: 7/10/2023 15:48

	$(9.6 \pm 0.8)\%$		_
	$(9.1 \pm 0.8)\%$		- - - -
	(10.2 \pm 1.0) %		_
[ffaa]	(8.1 ± 1.3) %		_
	(5.4 \pm 1.1) %		_
	($2.44\pm~0.23)~\%$		2321
	(5.3 ± 0.5) %		2266
	$(2.7 \pm 0.7) \times 10^{-3}$		_
	$(4.4 \pm 1.3) \times 10^{-3}$		-
	$(2.7 \pm 1.0) \times 10^{-3}$		_
	$(1.06\pm\ 0.09)\times10^{-4}$		2660
			2320
			2249
			2301
	$(2.4 \pm 0.8) \times 10^{-5}$		_
	$(2.25\pm 0.12) \times 10^{-4}$		2293
			2249
			1824
			1875
			1925
	$(1.9 \pm 0.5) \times 10^{-4}$		1930
	$(1.9 \ ^{+}_{-} \ ^{0.5}_{0.4} \) \times 10^{-3}$		2265
	$(1.32^{+}_{-0.32}) \times 10^{-4}$		_
	$(9.5 \pm 2.0) \times 10^{-3}$		2191
	$(~1.39\pm~0.17)~\%$		1742
	$(1.44\pm\ 0.21)\ \%$	S=1.1	1655
	(4.5 ± 1.4) %		_
			1801
			2278
	$(4.3 \pm 0.9) \times 10^{-4}$		2330
	$(1.04\pm\ 0.13)\times10^{-3}$		2312
	$(7.3 \pm 2.6) \times 10^{-4}$		2259
	$(4.4 \pm 0.6) \times 10^{-4}$		2264
			2117
			2113
	$(1.1 \pm 0.4) \times 10^{-4}$		2112
	[ffaa]	$(9.1 \pm 0.8) \%$ $(10.2 \pm 1.0) \%$ $(8.1 \pm 1.3) \%$ $(5.4 \pm 1.1) \%$ $(2.44 \pm 0.23) \%$ $(5.3 \pm 0.5) \%$ $(2.7 \pm 0.7) \times 10^{-3}$ $(4.4 \pm 1.3) \times 10^{-3}$ $(1.06 \pm 0.09) \times 10^{-4}$ $(2.98 \pm 0.14) \times 10^{-3}$ $(6.1 \pm 1.0) \times 10^{-3}$ $(6.1 \pm 1.0) \times 10^{-3}$ $(2.4 \pm 0.8) \times 10^{-5}$ $(2.25 \pm 0.12) \times 10^{-4}$ $(3.2 \pm 0.6) \times 10^{-4}$ $(4.4 \pm 0.5) \times 10^{-3}$ $(2.8 \pm 0.5) \times 10^{-4}$ $(4.4 \pm 0.5) \times 10^{-4}$ $(1.9 \pm 0.5) \times 10^{-3}$ $(1.32 \pm 0.40) \times 10^{-4}$ $(9.5 \pm 2.0) \times 10^{-3}$ $(1.44 \pm 0.21) \%$ $(4.5 \pm 1.4) \%$ $(3.9 \pm 0.8) \times 10^{-4}$ $(2.8 \pm 1.1) \times 10^{-4}$ $(4.3 \pm 0.9) \times 10^{-4}$ $(1.04 \pm 0.13) \times 10^{-3}$ $(7.3 \pm 2.6) \times 10^{-4}$	$ (9.1 \pm 0.8) \% $ $ (10.2 \pm 1.0) \% $ $ (8.1 \pm 1.3) \% $ $ (5.4 \pm 1.1) \% $ $ (2.44 \pm 0.23) \% $ $ (5.3 \pm 0.5) \% $ $ (2.7 \pm 0.7) \times 10^{-3} $ $ (4.4 \pm 1.3) \times 10^{-3} $ $ (1.06 \pm 0.09) \times 10^{-4} $ $ (2.98 \pm 0.14) \times 10^{-3} $ $ (6.8 \pm 1.4) \times 10^{-3} $ $ (6.1 \pm 1.0) \times 10^{-3} $ $ (2.4 \pm 0.8) \times 10^{-5} $ $ (2.25 \pm 0.12) \times 10^{-4} $ $ (3.2 \pm 0.6) \times 10^{-4} $ $ (4.4 \pm 0.5) \times 10^{-3} $ $ (2.8 \pm 0.5) \times 10^{-4} $ $ (2.2 \pm 0.6) \times 10^{-4} $ $ (1.9 \pm 0.5) \times 10^{-4} $ $ (1.9 \pm 0.5) \times 10^{-4} $ $ (1.9 \pm 0.5) \times 10^{-3} $ $ (1.32 + 0.40) \times 10^{-3} $ $ (1.32 + 0.40) \times 10^{-3} $ $ (1.39 \pm 0.17) \% $ $ (1.44 \pm 0.21) \% $ $ (3.9 \pm 0.8) \times 10^{-4} $ $ (4.5 \pm 1.4) \% $ $ (3.9 \pm 0.8) \times 10^{-4} $ $ (4.3 \pm 0.9) \times 10^{-4} $ $ (4.3 \pm 0.9) \times 10^{-4} $ $ (4.4 \pm 0.6) \times 10^{-4} $ $ (4.4 \pm 0.6) \times 10^{-4} $ $ (4.4 \pm 0.6) \times 10^{-4} $ $ (3.9 \pm 3.5) \times 10^{-4} $ $ (3.9 \pm 3.5) \times 10^{-4} $ $ (3.0 \pm 0.7) \times 10^{-4} $ $ (3.0 \pm 0.7) \times 10^{-4} $

$rac{\overline{D}^0}{\overline{D}^0} rac{\overline{K}^*(1680)}{\overline{K}^*_0(1950)} \ rac{\overline{D}^0}{\overline{K}^*_3(1780)}$	< 7.8 < 1.1	$\times10^{-4}$	CL=90% CL=90% CL=90%	1997 1890
$\frac{D}{D^0} \frac{K_3(1760)}{K_4^*(2045)}$	< 2.6 < 3.1	\times 10 \times 10 \times 10 \times		1970 1835
$\overline{D}^0 K^- \pi^+$ (non-resonant)	(2.1 ± 0.8)		CL—90/0	2312
$D_{s2}^*(2573)^-\pi^+, D_{s2}^* \rightarrow \overline{D}^0\kappa^-$	(2.6 ± 0.4)			-
$D_{s_1}^*(2700)^-\pi^+,\;\;D_{s_1}^* ightarrow \overline{D}{}^0\kappa^-$	(1.6 ± 0.8	$)\times 10^{-5}$		_
$D_{s1}^*(2860)^-\pi^+$, $D_{s1}^* o \overline{D}{}^0\kappa^-$	(5 ± 4	$)\times10^{-5}$		-
$D_{s3}^{*}(2860)^{-}\pi^{+}, D_{s3}^{*} \rightarrow \overline{D}^{0}K^{-}$	(2.2 ± 0.6	$)\times10^{-5}$		_
$\overline{D}{}^0K^+K^-$	(5.6 ± 0.9	$) \times 10^{-5}$		2243
$\overline{D}^0 f_0(980)$	< 3.1	\times 10 ⁻⁶	CL=90%	2242
$\overline{D}{}^{0}\phi$	(3.0 ± 0.5	_		2235
$\overline{D}^{*0}\phi$	(3.7 ± 0.6)	•		2178
$D^{*\mp}\pi^{\pm}$	< 6.1		CL=90%	_
$\eta_c \phi$	(5.0 ± 0.9)			1663
$\eta_c \pi^+ \pi^ J/\psi(1S) \phi$	$(1.8 \pm 0.7 \ (1.04 \pm 0.04)$			1840
				1588
$J/\psi(1S)\phi\phi$	(1.20 + 0.14)	-		764
$J/\psi(1S)\pi^0$	< 1.2		CL=90%	1787
$J/\psi(1S)\eta$	(4.0 ± 0.7)	_	S=1.4	1733
$J/\psi(1S)K_S^0$	$(1.92\pm\ 0.14)$	_		1743
$J/\psi(1S)\overline{K}^*(892)^0$	(4.1 ± 0.4)	· .		1637
$J/\psi(1S)\eta'$	(3.3 ± 0.4)	•	C 17	1612
$J/\psi(1S)\pi^+\pi^- \ J/\psi(1S)f_0(500), \ f_0 \rightarrow$	(2.02± 0.17 < 4	$\times 10^{-6}$	S=1.7	1775
$\frac{3}{\pi^{+}}\frac{\psi(13)}{\pi^{0}}\frac{1}{300}, \eta_{0} \rightarrow 0$	< 4	X 10	CL=90/0	_
$J/\psi(1S)\rho$, $\rho \to \pi^+\pi^-$	< 3.4	$\times 10^{-6}$	CL=90%	_
$J/\psi(1S) f_0(980), f_0 \to$	($1.24\pm~0.15$	$(5) \times 10^{-4}$	S=2.1	_
$J/\psi(1S) f_2(1270), \;\; f_2 ightarrow \pi^+ \pi^-$	(1.0 ± 0.4	$)\times10^{-6}$		_
$J/\psi(1S) f_2(1270)_0, \ f_2 \rightarrow \pi^+\pi^-$	(7.3 ± 1.7	$) \times 10^{-7}$		_
$J/\psi(1S) f_2(1270)_{\parallel}, f_2 \rightarrow \pi^+\pi^-$	(1.05± 0.33	$3) \times 10^{-6}$		-
$J/\psi(1S) f_2(1270)_{\perp}, \ f_2 ightarrow \pi^+\pi^-$	(1.3 ± 0.7	$)\times 10^{-6}$		_
$J/\psi(1S) f_0(1370), f_0 \rightarrow \pi^+\pi^-$	$(4.4 \begin{array}{c} + & 0.6 \\ - & 4.0 \end{array})$	$)\times10^{-5}$		_

$J/\psi(1S)f_0(1500), f_0 \to$	$(2.04^{+}_{-0.24}) \times 10^{-5}$		_
$J/\psi(1S)f_2'(1525)_0, \ f_2' ightarrow \pi^+\pi^-$	$(1.03\pm\ 0.22)\times 10^{-6}$		-
$J/\psi(1S)f_2'(1525)_{\parallel}, \ f_2' \rightarrow$	(1.2 $^+$ $^ ^ ^ ^ ^ ^-$) $ imes$ 10 $^-$ 7		-
$J/\psi(1S)f_2'(1525)_{\perp}, \ f_2' ightarrow \pi^+\pi^-$	$(5 \pm 4) \times 10^{-7}$		-
$J/\psi(1S) f_0(1790), f_0 \rightarrow \pi^+ \pi^-$	(4.9 $^{+10.0}_{-1.0}$) \times 10 ⁻⁶		-
$J/\psi(1S)\pi^+\pi^-$ (nonresonant)	$(1.74^{+}_{-0.34}^{1.10}) \times 10^{-5}$		1775
$J/\psi(1S)\overline{K}{}^0\pi^+\pi^-$	$< 4.4 \times 10^{-5}$	CL=90%	1675
$J/\psi(1S)K^+K^-$	$(7.9 \pm 0.7) \times 10^{-4}$		1601
$J/\psi(1S) K^0 K^- \pi^+ + { m c.c.}$	$(9.5 \pm 1.3) \times 10^{-4}$		1538
$J/\psi(1S)\overline{K}{}^0K^+K^-$	$< 1.2 \times 10^{-5}$	CL=90%	1333
$J/\psi K^*(892)^0 \overline{K}^*(892)^0$	$(1.10\pm\ 0.09)\times10^{-4}$		1083
$J/\psi(1S) f_2'(1525)$	$(2.6 \pm 0.6) \times 10^{-4}$		1310
$J/\psi(1S) ho\overline{ ho}$	$(3.6 \pm 0.4) \times 10^{-6}$		982
$J/\psi(1S)\gamma$	$< 7.3 \times 10^{-6}$	CL=90%	1790
$J/\psi \mu^+ \mu^-, J/\psi \rightarrow \mu^+ \mu^-$	$< 2.6 \times 10^{-9}$	CL=95%	_
$J/\psi(1S)\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	$(7.5 \pm 0.8) \times 10^{-5}$		1731
$J/\psi(1S) f_1(1285)$	$(7.2 \pm 1.4) \times 10^{-5}$		1460
$\psi(2S)\eta$	$(3.3 \pm 0.9) \times 10^{-4}$		1338
$\psi(2S)\eta'$	$(1.29\pm 0.35) \times 10^{-4}$		1158
$\psi(2S)\pi^{+}\pi^{-}$	$(6.9 \pm 1.2) \times 10^{-5}$		1397
$\psi(2S)\phi$	$(5.2 \pm 0.4) \times 10^{-4}$		1120
$\psi(2S)K^0$	$(1.9 \pm 0.5) \times 10^{-5}$		1352
$\psi(2S)K^{-}\pi^{+}$	$(3.1 \pm 0.4) \times 10^{-5}$		1310
$\psi(2S)\overline{K}^*(892)^0$	$(3.3 \pm 0.5) \times 10^{-5}$		1196
$\chi_{c1}\phi$	$(1.97\pm 0.25) \times 10^{-4}$		1274
$\chi_{c1}(3872)\phi$	$(1.1 \pm 0.4) \times 10^{-4}$		936
$\chi_{c1}(3872)(K^+K^-)_{non-\phi}$	$(8.6 \pm 3.5) \times 10^{-5}$		961
$\pi^{+} \pi^{-} \\ \pi^{0} \pi^{0}$	$(7.0 \pm 1.0) \times 10^{-7}$	CI 000/	2680
	$< 2.1 \times 10^{-4}$	CL=90%	2680
$\eta \pi^0$	$< 1.0 \times 10^{-3}$		2654
$\eta \eta$ $\rho^0 \rho^0$	< 1.43	CL=90% CL=90%	2627
$\eta' K_S^0$	$< 3.20 \times 10^{-4} $ $< 8.16 \times 10^{-6}$	CL=90% CL=90%	2569 2573
$\eta' \eta$	-	CL=90% CL=90%	
$\eta'\eta'$	$< 6.5 \times 10^{-5}$ $(3.3 \pm 0.7) \times 10^{-5}$	CL=90%	2568 2507
$\eta' \phi$	$(3.3 \pm 0.7) \times 10^{-7}$	CL=90%	2495
$\phi f_0(980), f_0(980) \rightarrow \pi^+ \pi^-$	$(1.12\pm 0.21) \times 10^{-6}$	CL—30/0	<u>_</u>

$\phi f_2(1270), f_2(1270) \rightarrow$	(6.1 $^+$ 1.8) $\times10^{-7}$		_
$\phi \rho^0$	$(2.7 \pm 0.8) \times 10^{-7}$		2526
$\phi \pi^+ \pi^-$	$(3.5 \pm 0.5) \times 10^{-6}$		2579
$\phi \phi$	$(1.85\pm 0.14) \times 10^{-5}$		2482
$\phi \phi \phi$	$(2.2 \pm 0.6) \times 10^{-6}$		2165
π^+K^-	$(5.8 \pm 0.7) \times 10^{-6}$		2659
K^+K^-	$(2.66\pm\ 0.22)\times10^{-5}$		2638
$K^0\overline{K}^0$	$(1.76\pm0.31)\times10^{-5}$		2637
$K^0\pi^+\pi^-$	$(9.5 \pm 2.1) \times 10^{-6}$		2653
$K^0 K^{\pm} \pi^{\mp}$	$(8.4 \pm 0.9) \times 10^{-5}$		2622
$K^*(892)^-\pi^+$	$(2.9 \pm 1.1) \times 10^{-6}$		2607
$K^*(892)^{\pm}K^{\mp}$	$(1.9 \pm 0.5) \times 10^{-5}$		2585
$K_0^*(1430)^\pmK^\mp$	$(3.1 \pm 2.5) \times 10^{-5}$		_
$K_2^*(1430)^\pm K^\mp$	$(1.0 \pm 1.7) \times 10^{-5}$		_
$K^{*}(892)^{0}\overline{K}^{0}+$ c.c.	(2.0 ± 0.6) $\times 10^{-5}$		2585
$K_0^*(1430)\overline{K}^0+$ c.c.	$(3.3 \pm 1.0) \times 10^{-5}$		2468
$K_2^*(1430)^0\overline{K}^0+\text{c.c.}$	(1.7 \pm 2.2) \times 10 ⁻⁵		2467
$K_{S}^{0} \overline{K}^{*} (892)^{0} + \text{c.c.}$	(1.6 \pm 0.4) \times 10 ⁻⁵		2585
$K^{0}K^{+}K^{-}$	$(1.3 \pm 0.6) \times 10^{-6}$		2568
$\overline{K}^*(892)^0 \rho^0$	$< 7.67 \times 10^{-4}$	CL=90%	2550
$\overline{K}^*(892)^0 K^*(892)^0$	$(1.11\pm 0.27) \times 10^{-5}$		2531
$\phi K^* (892)^0$	$(1.14\pm\ 0.30)\times10^{-6}$		2507
<i>p</i> p	$< 1.5 \times 10^{-8}$	CL=90%	2514
$p\overline{p}K^+K^-$	$(4.5 \pm 0.5) \times 10^{-6}$		2231
$p\overline{p}K^{+}\pi^{-}$	$(1.39\pm\ 0.26)\times10^{-6}$		2355
$ ho \overline{\overline{p}} \pi^+ \pi^-$	$(4.3 \pm 2.0) \times 10^{-7}$		2454
$p\overline{\Lambda}K^-$ + c.c.	$(5.5 \pm 1.0) \times 10^{-6}$		2358
$\Lambda_c^- \Lambda_\pi^+$	$(3.6 \pm 1.6) \times 10^{-4}$		1979
$\Lambda_c^- \Lambda_c^+$	$< 8.0 \times 10^{-5}$	CL=95%	1405

Lepton Family number (LF) violating modes or $\Delta B = 1$ weak neutral current (B1) modes

					, ,		
γ	γ	B1	<	3.1	$\times10^{-6}$	CL=90%	2683
ϕ	γ	B1	($3.4~\pm$	$0.4) \times 10^{-5}$		2587
	$^{+}\mu^{-}$	B1	($3.01\pm$	$0.35) \times 10^{-9}$		2681
e^{-}	$^+e^-$	B1	<	9.4	\times 10 ⁻⁹	CL=90%	2683
$ au^{-}$	$^+ au^-$	B1	<	6.8	\times 10 ⁻³	CL=95%	2011
	$^{+}\mu^{-}\gamma$		<	2.0	\times 10 ⁻⁹		2681
μ	$^{+}\mu^{-}\mu^{+}\mu^{-}$	B1	<	8.6	\times 10 ⁻¹⁰	CL=95%	2673
	SP , $S \rightarrow \mu^{+}\mu^{-}$,	B1	[vvv] <	2.2	\times 10 ⁻⁹	CL=95%	_
	$P ightarrow \ \mu^+ \mu^-$						
	aa, a $ ightarrow$ $\mu^+\mu^-$		<	5.8	$\times10^{-10}$	CL=95%	_

ϕ (1020) $\mu^{+}\mu^{-}$	B1	$(8.4 \pm 0.4) \times 10^{-7}$	2582
$f_2'(1525)\mu^+\mu^-$		$(1.62\pm\ 0.22)\times10^{-7}$	2464
$\overline{K}^*(892)^0 \mu^+ \mu^-$	B1	$(2.9 \pm 1.1) \times 10^{-8}$	2605
$\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	B1	$(8.4 \pm 1.7) \times 10^{-8}$	2670
$\phi \nu \overline{\nu}$	B1	$< 5.4 \times 10^{-3}$	CL=90% 2587
$e^{\pm}\mu^{\mp}$	LF	$[z] < 5.4 \times 10^{-9}$	CL=90% 2682
$\mu^{\pm} \tau^{\mp}$	LF	$< 4.2 \times 10^{-5}$	CL=95% 2388

$$I(J^P) = 0(1^-)$$

I, J, P need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m=5415.4^{+1.8}_{-1.5}~{\rm MeV}~{\rm (S=2.9)}$$
 $m_{B_s^*}-m_{B_s}=48.5^{+1.8}_{-1.5}~{\rm MeV}~{\rm (S=2.9)}$

B* DECAY MODES

Fraction (Γ_i/Γ)

(MeV/c)

$$B_{m s} \gamma$$

seen

$$B_{s1}(5830)^0$$

$$I(J^P) = 0(1^+)$$

I, J, P need confirmation.

Mass
$$m=5828.70\pm0.20$$
 MeV $m_{B_{s1}^0}-m_{B^{*+}}=503.99\pm0.17$ MeV Full width $\Gamma=0.5\pm0.4$ MeV

$B_{s1}(5830)^0$ DECAY MODES

Fraction (Γ_i/Γ)

(MeV/c)

$$B^{*+}K^{-}$$

seer

97

$$B_{s2}^*(5840)^0$$

$$I(J^P) = 0(2^+)$$

I, J, P need confirmation.

Mass
$$m=5839.86\pm0.12$$
 MeV $m_{B_{s2}^{*0}}-m_{B^{+}}=560.52\pm0.14$ MeV Full width $\Gamma=1.49\pm0.27$ MeV

Branching fractions are given relative to the one **DEFINED AS 1**.

B* _{s2} (5840) DECAY MODES	Fraction (Γ	_i /Γ)	<i>p</i> (MeV/ <i>c</i>)
B^+K^-	DEFINE	AS 1	252
$B^{*+}K^-$	0.093 ± 0.0	18	141
HTTP://PDG.LBL.GOV	Page 134	Created: 7/10/2	023 15:48

$$B^0 K_S^0$$
 0.43 ±0.11 245 $B^{*0} K_S^0$ 0.04 ±0.04 -

BOTTOM, CHARMED MESONS $(B = C = \pm 1)$

 $B_c^+ = c\overline{b}, B_c^- = \overline{c}b,$ similarly for B_c^* 's

HTTP://PDG.LBL.GOV

$$I(J^P) = 0(0^-)$$

I, J, P need confirmation.

Quantum numbers shown are quark-model predictions.

Mass
$$m=6274.47\pm0.32$$
 MeV $m_{B_c^+}-m_{B_s^0}=907.8\pm0.5$ MeV Mean life $\tau=(0.510\pm0.009)\times10^{-12}$ s

 $\boldsymbol{B}_{\boldsymbol{C}}^{-}$ modes are charge conjugates of the modes below.

B_c^+ DECAY MODES \times B($\overline{b} \rightarrow B_c$)	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$J/\psi(1S)\ell^+ u_\ell$ anything	seen		_
$J/\psi(1S)\mu^+\nu_\mu$	seen		2372
$J/\psi(1S) au^+ u_{ au}$	seen		1932
$J/\psi(1S)\pi^+$	seen		2370
$J/\psi(1S)K^+$	seen		2341
$J/\psi(1S)\pi^+\pi^+\pi^-$	seen		2350
$J/\psi(1S)a_1(1260)$	not seen		2169
$J/\psi(1S)K^+K^-\pi^+$	seen		2203
$J/\psi(1S)\pi^+\pi^+\pi^+\pi^-\pi^-$	seen		2309
$\psi(2S)\pi^+$	seen		2051
$J/\psi(1S)D^0K^+$	seen		1539
$J/\psi(1S) D^*(2007)^0 K^+$	seen		1411
$J/\psi(1S) D^*(2010)^+ K^{*0}$	seen		919
$J/\psi(1S)D^+K^{*0}$	seen		1122
$J/\psi(1S)D_S^+$	seen		1821
$J/\psi(1S)D_{s}^{*+}$	seen		1727
$J/\psi(1S) p \overline{\overline{p}} \pi^+$	seen		1791
$\chi_{c0}\pi^{+}$	$(2.4^{+0.9}_{-0.8}) \times 10^{-1}$	-5	2205
$ ho \overline{ ho} \pi^+$	not seen		2970
$D^0 K^+$	seen		2837

Page 135

$D^0\pi^+$	not see	n		2858
$D^{*0}\pi^{+}$	not see			2814
$D^{*0}K^{+}$	not see			2792
$D_s^+ \overline{D}_s^0$	< 7.2	$\times10^{-4}$	90%	2483
$D_s^{+}D_s^{0}$	< 3.0	$\times10^{-4}$	90%	2483
$D^{\stackrel{s}{+}} \overline{D}{}^{0}$	< 1.9	$\times10^{-4}$	90%	2521
$D^{+}D^{0}$	< 1.4	$\times 10^{-4}$	90%	2521
$D_c^{*+}\overline{D}^0$	< 5.3	\times 10 ⁻⁴	90%	2425
$D_s^{+} \overline{D}^* (2007)^0$ $D_s^{*+} D^0$	< 4.6	$\times10^{-4}$	90%	2427
$D_{\bullet}^{*+}D^{0}$	< 9	$\times10^{-4}$	90%	2425
$D_s^{s} D^* (2007)^0$	< 6.6	$\times10^{-4}$	90%	2427
$D^{*}(2010)^{+} \overline{D}^{0}$	< 3.8	$\times10^{-4}$	90%	2467
$\stackrel{\frown}{D}{}^*(2010)^+\overline{D}{}^0$, $D^{*+}\to$	not see	n		_
$D^+\pi^0/\gamma$				
$D^{+}\overline{D}^{*}(2007)^{0}$	< 6.5	\times 10 ⁻⁴	90%	2466
$D^*(2007)^+D^0$	< 2.0	\times 10 ⁻⁴	90%	_
$D^*(2010)^+D^0$, $D^{*+} o$	not see	n		2467
$D^+\pi^0/\gamma$				
$D^+D^*(2007)^0$	< 3.7	\times 10 ⁻⁴	90%	2466
$D_s^{*+} \overline{D}^* (2007)^0$	< 1.3	$\times 10^{-3}$	90%	2366
$D_s^{*+} D^* (2007)^0$	< 1.3	\times 10 ⁻³	90%	2366
$D^*(2010)^+ \overline{D}^*(2007)^0$	< 1.0	$\times10^{-3}$	90%	2410
$D^*(2010)^+ D^*(2007)^0$	< 7.7	\times 10 ⁻⁴	90%	2410
$D^{+} K^{*0}$	not see	n		2783
$D^+\overline{K}^{*0}$	not see	n		2783
$D_s^+ K^{*0}$	not see	n		2751
$D_s^+ \overline{K}^{*0}$	not see	n		2751
$D_{\varepsilon}^+\phi$	not see	n		2727
$D_{s}^{+} K^{*0}$ $D_{s}^{+} \overline{K}^{*0}$ $D_{s}^{+} \phi$ $K^{+} K^{0}$	not see	n		3098
$B_s^0\pi^+/\ B(\overline{b} o\ B_s)$	seen			_

 $B_c(2S)^{\pm}$

$$I(J^P)=0(0^-)$$

Created: 7/10/2023 15:48

Mass $m=6871.2\pm1.0~{
m MeV}$

$B_c(2S)^{\pm}$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$B_c^+\pi^+\pi^-$	seen	504

$c\overline{c}$ MESONS (including possibly non- $q\overline{q}$ states)

 $\eta_c(15)$

HTTP://PDG.LBL.GOV

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m=2983.9\pm0.4$ MeV (S = 1.2) Full width $\Gamma=32.0\pm0.7$ MeV

 $\eta_c(1S)$ DECAY MODES Fraction (Γ_i/Γ) Confidence level (MeV/c)Decays involving hadronic resonances $\eta'(958)\pi\pi$ $(1.87\pm0.26)\%$ 1323 $\eta'(958)K\overline{K}$ $(1.61\pm0.25)\%$ 1131 (1.5 ± 0.4) % 1275 $\rho \rho$ $K^*(892)^0 K^- \pi^+ + \text{c.c.}$ $(1.5 \pm 0.5)\%$ 1278 $K^*(892)\overline{K}^*(892)$ $(6.3 \pm 1.2) \times 10^{-3}$ 1196 $K^*(892)^0 \overline{K}^*(892)^0 \pi^+ \pi^ (1.1 \pm 0.5)\%$ 1073 $\phi K^+ K^ (2.9 \pm 1.4) \times 10^{-3}$ 1104 $\phi \phi$ $(1.58\pm0.19)\times10^{-3}$ 1089 $\phi 2(\pi^{+}\pi^{-})$ 90% 1251 $a_0(980)\pi$ 1327 seen $K^*(892)K + c.c.$ < 1.28 90% 1310 $f_{2}(1270)\eta$ 1145 seen $f_2(1270)\eta'$ 984 seen $(2.1 \pm 0.5) \times 10^{-3}$ $\omega \omega$ 1270 $\omega \phi$ 90% 1185 $f_{5}(1270)f_{5}(1270)$ $(9.7 \pm 2.5) \times 10^{-3}$ 774 $f_2(1270) f_2'(1525)$ $(9.1 \pm 3.0) \times 10^{-3}$ 524 $f_0(500)\eta$ seen $f_0(500) \eta'$ seen $f_0(980)\eta$ seen 1264 $f_0(980)\eta'$ seen 1130 $f_0(1500)\eta$ 1016 seen $f_0(1710)\eta'$ 623 seen $f_0(2100)\eta'$ seen † $f_0(2200)\eta$ 498 seen $a_0(1320)\pi$ seen $a_0(1450)\pi$ 1140 seen $a_0(1700)\pi$ seen $a_0(1950)\pi$ 860 seen $K_0^*(1430)\overline{K}$ seen $K_{2}^{*}(1430)\overline{K}$ seen

Page 137

 $K_0^*(1950)\overline{K}$ seen

Decays into stable hadrons

$K\overline{K}\pi$	(7.0 \pm 0.4) %		1381
$K\overline{K}\eta$	$(1.32\pm0.15)\%$		1265
$\eta \pi^+ \pi^-$	(1.7 ± 0.5) %		1428
$\eta 2(\pi^+\pi^-)$	(4.6 ± 1.4) %		1386
$K^+K^-\pi^+\pi^-$	$(6.5 \pm 1.0) \times 10^{-3}$		1345
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	(3.4 ± 0.5) %		1304
$K^0 K^- \pi^+ \pi^- \pi^+ + \text{c.c.}$	(5.7 ± 1.6)%		_
$K^+K^-2(\pi^+\pi^-)$	$(7.6 \pm 2.4) \times 10^{-3}$		1254
$2(K^{+}K^{-})$	$(1.38\pm0.29)\times10^{-3}$		1056
$\pi^+\pi^-\pi^0$	$< 5 \times 10^{-4}$	90%	1476
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	(4.8 ± 1.1) %		1460
$2(\pi^{+}\pi^{-})$	$(8.7 \pm 1.1) \times 10^{-3}$		1459
$2(\pi^{+}\pi^{-}\pi^{0})$	(16.2 \pm 2.1) %		1409
$3(\pi^+\pi^-)$	(1.8 ± 0.4) %		1407
p p	$(1.35\pm0.13)\times10^{-3}$		1160
$p\overline{p}\pi^0$	$(3.6 \pm 1.4) \times 10^{-3}$		1101
$\Lambda \overline{\Lambda}$	$(1.02\pm0.23)\times10^{-3}$		991
$K^+ \overline{p} \Lambda + \text{c.c.}$	$(2.5 \pm 0.4) \times 10^{-3}$		772
$\overline{\Lambda}(1520)\Lambda$ + c.c.	$(3.1 \pm 1.3) \times 10^{-3}$		694
$\Sigma^{+}\overline{\Sigma}^{-}$	$(2.1 \pm 0.6) \times 10^{-3}$		901
<u>=-</u> =+	$(9.0 \pm 2.6) \times 10^{-4}$		692
$\pi^+\pi^- ho\overline{ ho}$	$(5.5 \pm 1.9) \times 10^{-3}$		1027

Radiative decays

$$\gamma\gamma$$
 ($1.68\pm0.12)\times10^{-4}$ 1492

Charge conjugation (C), Parity (P), Lepton Family number (LF) violating modes

$\pi^+\pi^-$	P,CP	<	1.1	$\times 10^{-4}$	90%	1485
$\pi^0\pi^0$	P,CP	<	4	\times 10 ⁻⁵	90%	1486
K^+K^-	P,CP	<	6	\times 10 ⁻⁴	90%	1408
$K_S^0 K_S^0$	P,CP	<	3.1	$\times 10^{-4}$	90%	1407

$J/\psi(1S)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=3096.900\pm0.006$ MeV Full width $\Gamma=92.6\pm1.7$ keV (S = 1.1)

$J/\psi(1S)$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ p Confidence level (MeV/ c)
$\begin{matrix} \\ hadrons \\ virtual \gamma \to hadrons \end{matrix}$	$(87.7 \pm 0.5) \%$ $(13.50 \pm 0.30) \%$	_ _

HTTP://PDG.LBL.GOV

Page 138

ggg	(6	54.1	\pm	1.0) %		_		
γ gg	(8.8	\pm	1.1) %		_		
e^+e^-	(5.971	L±	0.032	2) %		1548		
	a] (8.8	\pm	1.4	$) \times 10^{-3}$		1548		
$\mu^+\mu^-$	(5.961	L±	0.033	3) %		1545		
Decays involving hadronic resonances									
$ ho\pi$	_			0.15		S=2.4	1448		
$\rho^0\pi^0$	•) × 10 ⁻³		1448		
$a_2(1320)^0\pi^+\pi^- \to$) × 10 ⁻³		_		
$2(\pi^{+}\pi^{-})\pi^{0}$. 2				
$a_2(1320)^+\pi^-\pi^0 + \text{c.c} \rightarrow 2(\pi^+\pi^-)\pi^0$	(3.7	±	0.7) × 10 ⁻³		_		
$a_2(1320)\rho$	(1.09	\pm	0.22) %		1123		
$\eta \pi^+ \pi^-$	•				$) \times 10^{-4}$		1487		
$\eta \pi^+ \pi^- \pi^0$	(1.17	\pm	0.20) %		1470		
$\eta \pi^{+} \pi^{-} 3 \pi^{0}$	(4.9	\pm	1.0	$) \times 10^{-3}$		1419		
ηho	(1.93	\pm	0.23	$) \times 10^{-4}$		1396		
$\eta \phi(2170) \rightarrow \eta \phi f_0(980) \rightarrow$	(1.2	\pm	0.4	$) \times 10^{-4}$		628		
$\eta\phi\pi^+\pi^-$									
$\eta \phi$ (2170) $ ightarrow$	<	2.52			$\times 10^{-4}$	CL=90%	_		
$\eta K^*(892)^0 \overline{K}^*(892)^0$									
$\eta K^{\pm} K_S^0 \pi^{\mp}$ [[z] (2.2	\pm	0.4	$) \times 10^{-3}$		1278		
$\eta K^*(892)^0 \overline{K}^*(892)^0$	(1.15	\pm	0.26	$) \times 10^{-3}$		1003		
$\rho \eta'(958)$	(8.1	\pm	8.0	$) \times 10^{-5}$	S=1.6	1281		
$\rho^{\pm}\pi^{\mp}\pi^{+}\pi^{-}2\pi^{0}$	(2.8	\pm	8.0) %		1364		
$\rho^{+} \rho^{-} \pi^{+} \pi^{-} \pi^{0}$	(6	\pm	4	$) \times 10^{-3}$		1186		
$\rho^{+} K^{+} K^{-} \pi^{-} + \text{c.c} \rightarrow$	(3.5	\pm	8.0	$) \times 10^{-3}$		_		
$\kappa^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$ $\rho^{\mp} K^{\pm} K^{0}_{S}$	(1.9	\pm	0.4) × 10 ⁻³		1269		
$\rho(1450)\pi \to \pi^{+}\pi^{-}\pi^{0}$) × 10 ⁻³		_		
$ ho(1450)^{\pm}\pi^{\mp} \rightarrow K_S^0 K^{\pm}\pi^{\mp}$) × 10 ⁻⁴		_		
$\rho(1450)^0 \pi^0 \rightarrow K^+ K^- \pi^0$) × 10 ⁻⁴		_		
$\rho(1450)\eta'(958) \rightarrow$					$) \times 10^{-6}$		_		
$\pi^{+}\pi^{-}\eta'(958)$	(0.0	_	0.1) / 20				
$\rho(1700)\pi \to \pi^{+}\pi^{-}\pi^{0}$	(1.7	+	1.1	$) \times 10^{-4}$		_		
$\rho(2150)\pi \to \pi^{+}\pi^{-}\pi^{0}$) × 10 ⁻⁶		_		
$\omega \pi^0$					$) \times 10^{-4}$	S=1.4	1446		
$\omega \pi^0 \rightarrow \pi^+ \pi^- \pi^0$) × 10 ⁻⁵		_		
$\omega \pi^+ \pi^-$	(8.5	\pm	1.0) × 10 ⁻³	S=1.3	1435		
$\omega \pi^0 \pi^0$	(3.4	\pm	0.8) × 10 ⁻³		1436		
$\omega 3\pi^0$	(1.9	±	0.6) × 10 ⁻³		1419		
$\omega f_2(1270)$	(4.3	\pm	0.6) × 10 ⁻³		1142		
$\omega \eta$) × 10 ⁻³	S=1.6	1394		
$\omega \pi^{+} \pi^{-} \pi^{0}$) × 10 ⁻³		1418		
	`				•				

HTTP://PDG.LBL.GOV

Page 139

$\omega \pi^0 \eta$	((3.4	\pm	1.7	$) \times 10^{-4}$		1363
$\omega \pi^+ \pi^+ \pi^- \pi^-$	((8.5	\pm	3.4	$) \times 10^{-3}$		1392
$\omega \pi^+ \pi^- 2\pi^0$		•			0.5	•		1394
$\omega \eta' \pi^+ \pi^-$	((1.12	\pm	0.13	$) \times 10^{-3}$		1173
$\omega \eta'(958)$						$) \times 10^{-4}$		1279
$\omega f_0(980)$	((1.4	\pm	0.5	$) \times 10^{-4}$		1267
$\omega f_0(1710) \rightarrow \omega K \overline{K}$						$) \times 10^{-4}$		878
$\omega f_1(1420)$	((6.8	\pm	2.4	$) \times 10^{-4}$		1062
$\omega f_2'(1525)$	<		2.2			$\times 10^{-4}$	CL=90%	1007
$\omega X(1835) \rightarrow \omega \rho \overline{\rho}$	<		3.9			$\times 10^{-6}$	CL=95%	_
$\omega X(1835), X \to \eta' \pi^+ \pi^-$	<		6.2			$\times 10^{-5}$		_
$\omega K^+ K^-$						$) \times 10^{-3}$		1268
$\omega K^{\pm} K_S^0 \pi^{\mp}$	[z] ((3.4	\pm	0.5	$) \times 10^{-3}$		1210
$\omega K \overline{K}$	((1.9	\pm	0.4	$) \times 10^{-3}$		1268
$\omega K^*(892)\overline{K} + \text{c.c.}$	((6.1	\pm	0.9	$) \times 10^{-3}$		1097
$\eta' K^{* \pm} K^{\mp}$						$) \times 10^{-3}$		_
$\eta' K^{*0} \overline{K}^0 + \text{c.c.}$						$) \times 10^{-3}$		1000
$\eta'h_1(1415) ightarrow~\eta'K^*\overline{K}+ ext{c.c.}$						$) \times 10^{-4}$		_
$\eta^{\prime}h_1(1415) ightarrow \eta^{\prime}{\it K}^{*\pm}{\it K}^{\mp}$	((1.51	\pm	0.23	$) \times 10^{-4}$		_
$\eta'h_1(1415) ightarrow \gamma \eta'\eta'$	((4.7	+	1.1 2.0	$) \times 10^{-7}$		_
$\overline{K}K^*(892) + \text{c.c.} o$					-	$) \times 10^{-3}$		_
$K_{\mathbf{S}}^{\mathbf{O}}K_{\mathbf{S}}^{\pm}\pi^{\mp}$	·	`				,		
$K^+K^*(892)^- + \text{c.c.}$		(6.0	+	0.8) × 10 ⁻³	S=2.9	1373
					1.0		3-2.3	13/3
$K^+K^*(892)^- + \text{c.c.} \rightarrow$	((2.69	+	0.13	$) \times 10^{-3}$		_
$K^{+}K^{-}\pi^{0}$,	2.0		0.4	\1o=3		
$K^+K^*(892)^-+ ext{ c.c.} ightarrow K^0K^\pm\pi^\mp+ ext{ c.c.}$	((3.0	土	0.4	$) \times 10^{-3}$		_
$K^{0}\overline{K}^{*}(892)^{0} + \text{c.c.}$,	(12	+	0.4) × 10 ⁻³		1373
$K^{0}\overline{K}^{*}(892)^{0} + \text{c.c.} \rightarrow$						$) \times 10^{-3}$		1373
$K^{0}K^{\pm}\pi^{\mp}+\text{c.c.}$	'	(5.2	_	0.4) ^ 10		
$\overline{K}^*(892)^0 K^+ \pi^- + \text{c.c.}$	((5.7	\pm	0.8	$) \times 10^{-3}$		1343
$K^*(892)^{\pm}K^{\mp}\pi^0$) × 10 ⁻³		1344
$K^*(892)^+ K_5^0 \pi^- + \text{c.c.}$) × 10 ⁻³		1342
$K^*(892)^+ K_5^0 \pi^- + \text{c.c.} \rightarrow$) × 10 ⁻⁴		_
$K_{S}^{0}K_{S}^{0}\pi^{+}\pi^{-}$	`	(0.,	_) / 10		
$K^*(892)^0 K^- \pi^+ + \text{c.c.} \rightarrow$,	(20		0.5) × 10 ⁻³		_
$K^{+}K^{-}\pi^{+}\pi^{-}$,	(3.0		0.5) × 10		
$K^*(892)^0 K_S^0 \rightarrow \gamma K_S^0 K_S^0$,	(63	+	0.6	$) \times 10^{-6}$		_
3 3								
$K^*(892)^0 K_S^0 \pi^0$						$) \times 10^{-4}$		1343
$K^*(892)^{\pm} K^*(700)^{\mp}$	((1.1	+	1.0 0.6	$) \times 10^{-3}$		_
$K^*(892)^0 \overline{K}^*(892)^0$	((2.3	\pm	0.6	$)\times10^{-4}$		1266

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$K^*(892)^{\pm}K^*(892)^{\mp}$	$(1.00 \ ^{+} \ ^{0.22}_{-} \) \times 10^{-3}$	1266
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$K_1(1400)^{\pm}K^{\mp}$	$(3.8 + 1.4) \times 10^{-3}$	1170
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$K^{\pm}K^{\mp}\pi^{0}$	(' = ') ' = '	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$K^*(1410)\overline{K}+ { m c.c.} ightarrow$	$(8 \pm 6) \times 10^{-5}$	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$K^0_S K^\pm \pi^\mp$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$K_2^*(1430)\overline{K} + \text{c.c.} \rightarrow$	$(1.0 \pm 0.5) \times 10^{-4}$	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$K_2^*(1430)\overline{K}+ ext{ c.c.} ightarrow$	$(4.0 \pm 1.0) \times 10^{-4}$	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$K^0_S K^\pm \pi^\mp$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\overline{K}_{2}^{*}(1430)K + \text{c.c.}$	$< 4.0 \times 10^{-3}$	CL=90% 1158
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$K_{*}^{*}(1430)^{+}K^{-} + cc \rightarrow$	$(2.69 + 0.25) \times 10^{-4}$	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 * * * * * * * * * * * * * * * * * * *	$(2.09 - 0.19) \times 10$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$K_{2}^{*}(1430)^{0}K^{-}\pi^{+} + \text{c.c.} \rightarrow$	$(2.6 \pm 0.9) \times 10^{-3}$	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(= = = = ,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$(3.6 \pm 1.8) \times 10^{-3}$	1116
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1011
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-		1011
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- • • • • • • • • • • • • • • • • • • •		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(1 = 1) // 20	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$< 2.9 \times 10^{-3}$	CL=90% 601
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(3.3 ± 3.3) × 23	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	$(110 \pm 0.60) \times 10^{-5}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$(1.10 \pm 0.14) \times 10^{-3}$	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$		± 70 6	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		$(6.2 + 2.9 \times 10^{-6}) \times 10^{-6}$	_
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$K^{+}K^{-}\pi^{0}$	2.0	- CL 00% 1240
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$K_1(1270)^{\pm} K^{\mp}$	< 3.0 × 10 ⁻³	CL=90% 1240
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$K_1(1270)^{\pm} K^{\mp} $ $K_1(1270) K_S^0 \rightarrow \gamma K_S^0 K_S^0$	$< 3.0 \times 10^{-3}$ ($8.5 \pm 2.5) \times 10^{-7}$	_
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$K_1(1270)^{\pm} K^{\mp}$ $K_1(1270) K_S^0 \rightarrow \gamma K_S^0 K_S^0$ $a_2(1320)^{\pm} \pi^{\mp}$	$< 3.0 \times 10^{-3}$ $(8.5 \pm 2.5) \times 10^{-7}$ $[z] < 4.3 \times 10^{-3}$	- CL=90% 1263
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$K_{1}(1270)^{\pm} K^{\mp}$ $K_{1}(1270) K_{S}^{0} \rightarrow \gamma K_{S}^{0} K_{S}^{0}$ $a_{2}(1320)^{\pm} \pi^{\mp}$	$< 3.0 \times 10^{-3}$ $(8.5 \pm 2.5) \times 10^{-7}$ $[z] < 4.3 \times 10^{-6} \text{ or } 1 \times 10^{-7}$	CL=90% 1263 1377
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$K_{1}(1270)^{\pm} K^{\mp} \ K_{1}(1270) K_{S}^{0} \rightarrow \gamma K_{S}^{0} K_{S}^{0} \ a_{2}(1320)^{\pm} \pi^{\mp} \ \phi \pi^{0} \ \phi \pi^{+} \pi^{-}$	$< 3.0 \times 10^{-3}$ $(8.5 \pm 2.5) \times 10^{-7}$ $[z] < 4.3 \times 10^{-3}$ $3 \times 10^{-6} \text{ or } 1 \times 10^{-7}$ $(9.4 \pm 1.5) \times 10^{-4}$	CL=90% 1263 1377 S=1.7 1365
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$K_{1}(1270)^{\pm} K^{\mp}$ $K_{1}(1270) K_{S}^{0} \rightarrow \gamma K_{S}^{0} K_{S}^{0}$ $a_{2}(1320)^{\pm} \pi^{\mp}$ $\phi \pi^{0}$ $\phi \pi^{+} \pi^{-}$ $\phi \pi^{0} \pi^{0}$	$< 3.0 \times 10^{-3}$ $(8.5 \pm 2.5) \times 10^{-7}$ $(z] < 4.3 \times 10^{-3}$ $3 \times 10^{-6} \text{ or } 1 \times 10^{-7}$ $(9.4 \pm 1.5) \times 10^{-4}$ $(5.0 \pm 1.0) \times 10^{-4}$	CL=90% 1263 1377 S=1.7 1365 1366
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$K_{1}(1270)^{\pm} K^{\mp}$ $K_{1}(1270) K_{S}^{0} \rightarrow \gamma K_{S}^{0} K_{S}^{0}$ $a_{2}(1320)^{\pm} \pi^{\mp}$ $\phi \pi^{0}$ $\phi \pi^{+} \pi^{-}$ $\phi \pi^{0} \pi^{0}$ $\phi 2(\pi^{+} \pi^{-})$	$< 3.0 \times 10^{-3}$ $(8.5 \pm 2.5) \times 10^{-7}$ $[z] < 4.3 \times 10^{-3}$ $3 \times 10^{-6} \text{ or } 1 \times 10^{-7}$ $(9.4 \pm 1.5) \times 10^{-4}$ $(5.0 \pm 1.0) \times 10^{-4}$ $(1.60 \pm 0.32) \times 10^{-3}$	CL=90% 1263 1377 S=1.7 1365 1366 1318
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$K_{1}(1270)^{\pm} K^{\mp}$ $K_{1}(1270) K_{S}^{0} \rightarrow \gamma K_{S}^{0} K_{S}^{0}$ $a_{2}(1320)^{\pm} \pi^{\mp}$ $\phi \pi^{0}$ $\phi \pi^{+} \pi^{-}$ $\phi \pi^{0} \pi^{0}$ $\phi 2(\pi^{+} \pi^{-})$	$< 3.0 \times 10^{-3}$ $(8.5 \pm 2.5) \times 10^{-7}$ $[z] < 4.3 \times 10^{-3}$ 3×10^{-6} or 1×10^{-7} $(9.4 \pm 1.5) \times 10^{-4}$ $(5.0 \pm 1.0) \times 10^{-4}$ $(1.60 \pm 0.32) \times 10^{-3}$ $(7.4 \pm 0.6) \times 10^{-4}$	CL=90% 1263 1377 S=1.7 1365 1366 1318 S=1.2 1320
$\phi f_0(980) \rightarrow \phi \pi^+ \pi^- $ (2.60 ± 0.34) × 10 ⁻⁴ – $\phi f_0(980) \rightarrow \phi \pi^0 \pi^0$ (1.8 ± 0.5) × 10 ⁻⁴ –	$K_{1}(1270)^{\pm} K^{\mp}$ $K_{1}(1270) K_{S}^{0} \rightarrow \gamma K_{S}^{0} K_{S}^{0}$ $a_{2}(1320)^{\pm} \pi^{\mp}$ $\phi \pi^{0}$ $\phi \pi^{+} \pi^{-}$ $\phi \pi^{0} \pi^{0}$ $\phi 2(\pi^{+} \pi^{-})$ $\phi \eta'(958)$	<3.0 $\times 10^{-3}$ $(8.5 \pm 2.5) \times 10^{-7}$ $(z) < 4.3$ $\times 10^{-3}$ 3×10^{-6} or 1×10^{-7} $(9.4 \pm 1.5) \times 10^{-4}$ $(5.0 \pm 1.0) \times 10^{-4}$ $(1.60 \pm 0.32) \times 10^{-3}$ $(7.4 \pm 0.6) \times 10^{-4}$ $(4.6 \pm 0.5) \times 10^{-4}$	CL=90% 1263 1377 S=1.7 1365 1366 1318 S=1.2 1320 S=2.2 1192
$\phi f_0(980) \rightarrow \phi \pi^0 \pi^0$ (1.8 ± 0.5) × 10 ⁻⁴	$K_{1}(1270)^{\pm} K^{\mp}$ $K_{1}(1270) K_{S}^{0} \rightarrow \gamma K_{S}^{0} K_{S}^{0}$ $a_{2}(1320)^{\pm} \pi^{\mp}$ $\phi \pi^{0}$ $\phi \pi^{+} \pi^{-}$ $\phi \pi^{0} \pi^{0}$ $\phi^{2}(\pi^{+} \pi^{-})$ $\phi \eta$ $\phi \eta'(958)$ $\phi \eta \eta'$	<3.0 $\times 10^{-3}$ $(8.5 \pm 2.5) \times 10^{-7}$ $[z] < 4.3$ $\times 10^{-3}$ 3×10^{-6} or 1×10^{-7} $(9.4 \pm 1.5) \times 10^{-4}$ $(5.0 \pm 1.0) \times 10^{-4}$ $(1.60 \pm 0.32) \times 10^{-3}$ $(7.4 \pm 0.6) \times 10^{-4}$ $(4.6 \pm 0.5) \times 10^{-4}$ $(2.32 \pm 0.17) \times 10^{-4}$	CL=90% 1263 1377 S=1.7 1365 1366 1318 S=1.2 1320 S=2.2 1192 885
	$K_{1}(1270)^{\pm} K^{\mp}$ $K_{1}(1270) K_{S}^{0} \rightarrow \gamma K_{S}^{0} K_{S}^{0}$ $a_{2}(1320)^{\pm} \pi^{\mp}$ $\phi \pi^{0}$ $\phi \pi^{+} \pi^{-}$ $\phi \pi^{0} \pi^{0}$ $\phi 2(\pi^{+} \pi^{-})$ $\phi \eta'$ $\phi \eta'$ $\phi f_{0}(980)$	<3.0 $\times 10^{-3}$ $(8.5 \pm 2.5) \times 10^{-7}$ $(z) < 4.3$ $\times 10^{-3}$ 3×10^{-6} or 1×10^{-7} $(9.4 \pm 1.5) \times 10^{-4}$ $(5.0 \pm 1.0) \times 10^{-4}$ $(1.60 \pm 0.32) \times 10^{-3}$ $(7.4 \pm 0.6) \times 10^{-4}$ $(4.6 \pm 0.5) \times 10^{-4}$ $(2.32 \pm 0.17) \times 10^{-4}$ $(3.2 \pm 0.9) \times 10^{-4}$	CL=90% 1263 1377 S=1.7 1365 1366 1318 S=1.2 1320 S=2.2 1192 885
$\phi \pi^0 f_0(980) \rightarrow \phi \pi^0 \pi^+ \pi^- $ (4.5 ± 1.0) × 10 ⁻⁶	$K_{1}(1270)^{\pm} K^{\mp}$ $K_{1}(1270) K_{S}^{0} \rightarrow \gamma K_{S}^{0} K_{S}^{0}$ $a_{2}(1320)^{\pm} \pi^{\mp}$ $\phi \pi^{0}$ $\phi \pi^{+} \pi^{-}$ $\phi \pi^{0} \pi^{0}$ $\phi 2(\pi^{+} \pi^{-})$ $\phi \eta$ $\phi \eta'(958)$ $\phi \eta \eta'$ $\phi f_{0}(980) \rightarrow \phi \pi^{+} \pi^{-}$	<3.0 $\times 10^{-3}$ $(8.5 \pm 2.5) \times 10^{-7}$ 3×10^{-6} or 1×10^{-7} $(9.4 \pm 1.5) \times 10^{-4}$ $(5.0 \pm 1.0) \times 10^{-4}$ $(1.60 \pm 0.32) \times 10^{-3}$ $(7.4 \pm 0.6) \times 10^{-4}$ $(4.6 \pm 0.5) \times 10^{-4}$ $(2.32 \pm 0.17) \times 10^{-4}$ $(3.2 \pm 0.9) \times 10^{-4}$ $(2.60 \pm 0.34) \times 10^{-4}$	CL=90% 1263 1377 S=1.7 1365 1366 1318 S=1.2 1320 S=2.2 1192 885

$\phi \pi^0 f_0(980) \to \phi \pi^0 p^0 \pi^0$		(1.7	_	0.6) × 10 ⁻⁶		1045
$\phi f_0(980) \eta \rightarrow \eta \phi \pi^+ \pi^-$		`	3.2			$) \times 10^{-4}$		1045
$\phi a_0(980)^0 \rightarrow \phi \eta \pi^0$		•	4.4			$) \times 10^{-6}$		_
$\phi f_2(1270)$		•				$) \times 10^{-4}$		1036
$\phi f_1(1285)$						$) \times 10^{-4}$		1030
$\phi f_1(1285) \rightarrow$			9.4			_		952
$\phi \eta_1(1205) \rightarrow \phi \pi^0 f_0(980) \rightarrow$		(9.4	工	2.0) × 10		952
$\phi \pi^0 \eta^0 \eta^+ \pi^-$								
$\phi f_1(1285) \rightarrow$		(2 1	+	2.2) × 10 ⁻⁷		955
$\phi \pi^0 f_0(980) \rightarrow \phi 3\pi^0$		(2.1	_	2.2) ^ 10		933
$\phi \eta (1405) \rightarrow \phi \eta \pi^+ \pi^-$		(2.0	+	1.0) × 10 ⁻⁵		946
$\phi f'_{2}(1525)$						$) \times 10^{-4}$	S=2.7	877
$\phi X(1835) \rightarrow \phi p \overline{p}$		<			7	× 10 ⁻⁷	CL=90%	-
$\phi X(1835) \rightarrow \phi \rho \rho$ $\phi X(1835) \rightarrow \phi \eta \pi^+ \pi^-$			2.1			\times 10 \times 10 ⁻⁴	CL=90% CL=90%	578
$\phi X(1870) \rightarrow \phi \eta \pi^+ \pi^-$			6.13			\times 10 \times 10 ⁻⁵	CL=90%	376
$\phi K(\overline{K}) \rightarrow \psi \eta \pi^{-\eta} \pi^{-\eta}$					0.16			1170
ϕKK $\phi f_0(1710) \rightarrow \phi K\overline{K}$						$) \times 10^{-3}$ $) \times 10^{-4}$	S=1.3	1179
$\phi K^+ K^-$						$) \times 10^{-4}$		875 1179
$\phi K_S^0 K_S^0$		•				$) \times 10$ $) \times 10^{-4}$		1179
$\phi K_{S}K_{S}$ $\phi K^{\pm}K_{S}^{0}\pi^{\mp}$	r_1							
9	[z]					$) \times 10^{-4}$		1114
$\phi K^*(892) \overline{K} + \text{c.c.}$						$) \times 10^{-3}$		969
$b_1(1235)^{\pm}\pi^{\mp}$	[z]					$) \times 10^{-3}$		1300
$b_1(1235)^0\pi^0$						$) \times 10^{-3}$		1300
$f_2'(1525)K^+K^-$				±	0.35	$) \times 10^{-3}$		897
$\Delta(1232)^+\overline{p}$		< ,				$\times 10^{-4}$	CL=90%	1100
$\Delta(1232)^{++} \bar{p} \pi^{-}$						$) \times 10^{-3}$		1030
$\Delta(1232)^{++}\overline{\Delta}(1232)^{}$						$) \times 10^{-3}$		938
$\overline{\Sigma}(1385)^{0} p K^{-}$				\pm	3.2	$) \times 10^{-4}$		646
$\Sigma(1385)^{0}\overline{\Lambda} + \text{c.c.}$			8.2			$\times 10^{-6}$	CL=90%	911
$\Sigma(1385)^{-}\overline{\Sigma}^{+}$ (or c.c.)						$) \times 10^{-4}$		855
$\Sigma(1385)^{-}\overline{\Sigma}(1385)^{+}$ (or c.c.)	[z]					$) \times 10^{-3}$		697
$\Sigma(1385)^{0}\overline{\Sigma}(1385)^{0}$				±	0.08	$) \times 10^{-3}$		697
$\Lambda(1520)\overline{\Lambda} + \text{c.c.} \rightarrow \gamma \Lambda \overline{\Lambda}$			4.1			$\times 10^{-6}$	CL=90%	_
$ \overline{\Lambda}(1520)\Lambda + \text{c.c.} $ =0 =0			1.80			\times 10 ⁻³	CL=90%	807
– –						$) \times 10^{-3}$		818
$\Xi(1530)^{-}\overline{\Xi}^{+}$ + c.c.						$) \times 10^{-4}$		600
$\Xi(1530)^0 \overline{\Xi}{}^0$				±	1.4	$) \times 10^{-4}$		608
$\Theta(1540)\overline{\Theta}(1540) \rightarrow$	[hhaa]	<	1.1			\times 10 ⁻⁵	CL=90%	-
$K_S^0 p K^- \overline{n} + \text{c.c.}$						F		
$\Theta(1540) K^{-} \overline{n} \rightarrow K_{S}^{0} p K^{-} \overline{n}$						$\times 10^{-5}$	CL=90%	_
$\underline{\Theta}(1540)K_{\underline{S}}^{0}\overline{p} \rightarrow K_{\underline{S}}^{0}\overline{p}K^{+}n$			1.6			\times 10 ⁻⁵	CL=90%	-
$\overline{\Theta}(1540)K^+ n \rightarrow K_S^0 \overline{p}K^+ n$			5.6			$\times 10^{-5}$	CL=90%	-
$\overline{\Theta}(1540)K_S^0 p \rightarrow K_S^0 p K^- \overline{n}$	[hhaa]	<	1.1			$\times 10^{-5}$	CL=90%	_

Decays into stable hadrons

Decay	s into stable nadrons		
$2(\pi^{+}\pi^{-})\pi^{0}$	$(4.2 \pm 0.4)\%$	S=2.1	1496
$3(\pi^{+}\pi^{-})\pi^{0}$	$(2.9 \pm 0.6)\%$		1433
$\pi^{+}\pi^{-}3\pi^{0}$	(1.9 ± 0.9) %		1497
$\pi^+\pi^-$ 4 π^0	$(6.5 \pm 1.3) \times 10^{-3}$		1470
$ ho^{\pm}\pi^{\mp}\pi^{0}\pi^{0}$	(1.41 ± 0.22) %		1421
$ ho^+ ho^- \pi^0$	$(6.0 \pm 1.1) \times 10^{-3}$		1298
$\pi + \pi - \pi^0$	($2.10~\pm~0.08$) %	S=1.6	1533
$2(\pi^+\pi^-\pi^0)$	($1.61~\pm~0.20$) %		1468
$\pi^+\pi^-\pi^0$ K $^+$ K $^-$	(1.52 ± 0.27) %	S=1.4	1368
$\pi^+\pi^-$	$(1.47 \pm 0.14) \times 10^{-4}$		1542
$2(\pi^{+}\pi^{-})$	$(3.20 \pm 0.25) \times 10^{-3}$	S=1.2	1517
$3(\pi^+\pi^-)$	$(4.3 \pm 0.4) \times 10^{-3}$		1466
$2(\pi^+\pi^-)3\pi^0$	$(6.2 \pm 0.9)\%$		1435
$4(\pi^{+}\pi^{-})\pi^{0}$	$(9.0 \pm 3.0) \times 10^{-3}$		1345
$2(\pi^+\pi^-)\eta$	$(2.29 \pm 0.28) \times 10^{-3}$		1446
$3(\pi^+\pi^-)\eta$	$(7.2 \pm 1.5) \times 10^{-4}$		1379
$2(\pi^{+}\pi^{-}\pi^{0})\eta$	$(1.6 \pm 0.5) \times 10^{-3}$		1381
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}\eta$	$(2.4 \pm 0.5) \times 10^{-3}$		1448
$ ho^{\pm}\pi^{\mp}\pi^{f 0}\eta$	$(1.9 \pm 0.8) \times 10^{-3}$		1326
K^+K^-	$(2.86 \pm 0.21) \times 10^{-4}$		1468
$K_S^0 K_L^0$	$(1.95 \pm 0.11) \times 10^{-4}$	S=2.4	1466
$K_{S}^{0}K_{L}^{0}$ $K_{S}^{0}K_{S}^{0}$	$< 1.4 \times 10^{-8}$	CL=95%	1466
$K\overline{K}\pi$	(6.1 \pm 1.0) \times 10 ⁻³		1442
$\mathcal{K}^+ \mathcal{K}^- \pi^0$	$(2.88 \pm 0.12) \times 10^{-3}$		1442
$K^0_S K^\pm \pi^\mp$	$(5.6 \pm 0.5) \times 10^{-3}$		1440
$K_S^0 \breve{K}_I^0 \pi^0$	$(2.06 \pm 0.26) \times 10^{-3}$		1440
$K^*(892)^0\overline{K}^0+\text{c.c.} ightarrow$	$(1.21 \pm 0.18) \times 10^{-3}$		_
$K_{S}^{0}K_{L}^{0}\pi^{0}$	(= ,		
$K_2^*(1430)^0\overline{K}^0+ ext{c.c.} ightarrow$	$(4.3\pm1.3)\times10^{-4}$		_
$\kappa_0^0 \kappa_0^0 \pi^0$	(= 2.0) // 20		
$K^+K^-\pi^+\pi^-$	$(7.0\pm1.0)\times10^{-3}$		1407
$K + K - \pi^0 \pi^0$	$(2.13 \pm 0.22) \times 10^{-3}$		1410
$\kappa^0 \kappa^0 \pi^+ \pi^-$	$(3.8 \pm 0.6) \times 10^{-3}$		1406
$K_{S}^{0}K_{L}^{0}\pi^{+}\pi^{-}$ $K_{S}^{0}K_{L}^{0}\pi^{0}\pi^{0}$ $K_{S}^{0}K_{L}^{0}\eta$ $K_{S}^{0}K_{S}^{0}\pi^{+}\pi^{-}$			
$K_{S}K_{L}^{N}$ N	$(1.9 \pm 0.4) \times 10^{-3}$		1408
$\kappa_{S}^{\circ}\kappa_{L}^{\circ}\eta$	$(1.45 \pm 0.33) \times 10^{-3}$		1328
$K_S^{\circ}K_S^{\circ}\pi^{+}\pi$	$(1.68 \pm 0.19) \times 10^{-3}$		1406
$K^{\mp}K^0_S\pi^{\pm}\pi^0$	$(5.7 \pm 0.5) \times 10^{-3}$		1408
$K^{+}K^{-}2(\pi^{+}\pi^{-})$	$(3.1 \pm 1.3) \times 10^{-3}$		1320
$K^+K^-\pi^+\pi^-\eta$	$(4.7 \pm 0.7) \times 10^{-3}$		1221
$2(K^+K^-)$	$(7.2 \pm 0.8) \times 10^{-4}$		1131
$K^{+} K^{-} K^{0}_{5} K^{0}_{5}$	$(4.2 \pm 0.7) \times 10^{-4}$		1127
$p\overline{p}$	$(2.120\pm\ 0.029)\times10^{-3}$		1232

$ ho \overline{ ho} \pi^0$		(1.19 \pm	0.08	$) \times 10^{-3}$	S=1.1	1176
$p\overline{p}\pi^+\pi^-$		(6.0 \pm	0.5	$) \times 10^{-3}$	S=1.3	1107
$p\overline{p}\pi^{+}\pi^{-}\pi^{0}$	[iiaa]	(2.3 \pm	0.9	$) \times 10^{-3}$	S=1.9	1033
$ ho \overline{ ho} \eta$		($2.00 \pm$	0.12	$) \times 10^{-3}$		948
$p\overline{p}\rho$		< 3.1		\times 10 ⁻⁴	CL=90%	774
$p \overline{p} \omega$		(9.8 \pm	1.0	$) \times 10^{-4}$	S=1.3	768
$ \rho \overline{\rho} \eta'(958) $		($1.29 \pm$	0.14	$) \times 10^{-4}$	S=2.0	596
$ ho \overline{ ho} a_0(980) ightarrow ho \overline{ ho} \pi^0 \eta$		(6.8 \pm	1.8	$) \times 10^{-5}$		_
$oldsymbol{ ho} \overline{oldsymbol{ ho}} \phi$		(5.19 \pm	0.33	$) \times 10^{-5}$		527
$ ho \overline{n} \pi^-$		(2.12 \pm	0.09	$) \times 10^{-3}$		1174
n n		($2.09 \pm$	0.16	$) \times 10^{-3}$		1231
$n\overline{n}\pi^+\pi^-$		$(4 \pm$	4	$) \times 10^{-3}$		1106
nN(1440)		seen				978
n N(1520)		seen				928
nN(1535)		seen				917
$\Lambda \overline{\Lambda}$				$) \times 10^{-3}$	S=2.8	1074
$\Lambda \overline{\Lambda} \pi^0$				$) \times 10^{-5}$		998
$\Lambda \overline{\Lambda} \pi^+ \pi^-$				$) \times 10^{-3}$		903
$\Lambda \overline{\Lambda} \eta$				$) \times 10^{-4}$		672
$\Lambda \overline{\Sigma}^- \underline{\pi}^+ ext{(or c.c.)}$	[z]			$) \times 10^{-4}$	S=1.2	950
$pK^{-}\overline{\Lambda}$ +c.c.				$) \times 10^{-4}$		876
$pK^{-}\overline{\Sigma}^{0}$				$) \times 10^{-4}$		819
$\overline{\Lambda}_{n}K_{S}^{0}+\text{c.c.}$				$) \times 10^{-4}$		872
$\Lambda\Sigma$ + c.c.				$) \times 10^{-5}$		1034
$\Sigma^{+} \overline{\Sigma}^{-}$				$) \times 10^{-3}$		992
$\sum_{i=1}^{0} \overline{\sum_{i=1}^{0}}$				$(2) \times 10^{-3}$	S=1.4	988
$\Sigma^{+} \overline{\underline{\Sigma}}^{-} \eta$				$) \times 10^{-5}$		498
<u>=</u> - <u>=</u> +		$(9.7 \pm$	8.0	$) \times 10^{-4}$	S=1.4	807
R	Radia [.]	tive decay	'S			
$\gamma \eta_c(1S)$		$(1.7 \pm$) %	S=1.5	111
		`		,		
$\gamma \eta_c(1S) \rightarrow 3\gamma$			1.0	$) \times 10^{-6}$	S=1.1	_
$\gamma \eta_{c}(1S) ightarrow \gamma \eta \eta \eta'$		•		$) \times 10^{-5}$		_
3γ			0.22	$) \times 10^{-5}$		1548
$\frac{4}{7}$		< 9		$\times 10^{-6}$	CL=90%	1548
5γ		< 1.5		$\times 10^{-5}$	CL=90%	1548
$\gamma \pi^0$				$) \times 10^{-5}$		1546
$\gamma \pi^0 \pi^0$				$) \times 10^{-3}$		1543
$\gamma 2\pi^{+}2\pi^{-}$		(2.8 ±	0.5	$) \times 10^{-3}$	S=1.9	1517
$\gamma f_2(1270) f_2(1270)$		(9.5 ±	1.7	$) \times 10^{-4}$		878
$\gamma f_2(1270) f_2(1270)$ (non reso-		(8.2 ±	1.9	$) \times 10^{-4}$		_
nant) $a_{0} = \frac{1}{2} - \frac{1}{2} = 0$		(0 2 -	2.1) 10-3		1510
$\gamma \pi^{+} \pi^{-} 2\pi^{0}$				$) \times 10^{-3}$		1518
YNSNS		(δ.1 ±	∪.4) × 10 ,		1400
$\gamma K_S^0 K_S^0$				$) \times 10^{-4}$		1466

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

Page 144

D.C.			
$\gamma(K\overline{K}\pi)[J^{PC}=0^{-+}]$	$(7 \pm 4) \times 10^{-4}$	S=2.1	1442
$\gamma K^+ K^- \pi^+ \pi^-$	$(2.1 \pm 0.6) \times 10^{-3}$		1407
$\gamma K^*(892)\overline{K}^*(892)$	$(4.0 \pm 1.3) \times 10^{-3}$		1266
$\gamma\eta$	$(1.085\pm 0.018) \times 10^{-3}$		1500
$\gamma \eta \pi^0$	$(2.14 \pm 0.31) \times 10^{-5}$		1497
$\gamma a_0 (980)^0 \rightarrow \gamma \eta \pi^0$	$< 2.5 \times 10^{-6}$	CL=95%	_
$\gamma a_2(1320)^0 \rightarrow \gamma \eta \pi^0$	$< 6.6 \times 10^{-6}$	CL=95%	_
$\gamma \eta \pi \pi$	$(6.1 \pm 1.0) \times 10^{-3}$		1487
$\gamma \eta_2(1870) \rightarrow \gamma \eta \pi^+ \pi^-$	$(6.2 \pm 2.4) \times 10^{-4}$		_
$\gamma \eta'(958)$	$(5.25 \pm 0.07) \times 10^{-3}$	S=1.3	1400
$\gamma \rho \rho$	$(4.5 \pm 0.8) \times 10^{-3}$	5. 5.0 /	1340
$\gamma \rho \omega$	$< 5.4 \times 10^{-4}$	CL=90%	1338
$\gamma ho\phi$	$< 8.8 \times 10^{-5}$	CL=90%	1258
$\gamma \omega \omega$	$(1.61 \pm 0.33) \times 10^{-3}$		1336
$\gamma \phi \phi$	$(4.0 \pm 1.2) \times 10^{-4}$	S=2.1	1166
$\gamma \eta (1405/1475) \rightarrow \gamma K K \pi$	$(2.8 \pm 0.6) \times 10^{-3}$	S=1.6	1223
$\gamma \eta (1405/1475) \rightarrow \gamma \gamma \rho^0$	$(7.8 \pm 2.0) \times 10^{-5}$	S=1.8	1223
$\gamma \eta (1405/1475) \rightarrow \gamma \eta \pi^+ \pi^-$	$(3.0 \pm 0.5) \times 10^{-4}$	2 1 2	-
$\gamma \eta (1405/1475) \rightarrow \gamma \rho^0 \rho^0$	$(1.7 \pm 0.4) \times 10^{-3}$	S=1.3	1223
$\gamma \eta (1405/1475) \rightarrow \gamma \gamma \phi$	$< 8.2 \times 10^{-5}$	CL=95%	_
$\gamma \eta (1405) \rightarrow \gamma \gamma \gamma$	$< 2.63 \times 10^{-6}$	CL=90%	_
$\gamma \eta(1475) \rightarrow \gamma \gamma \gamma$	$< 1.86 \times 10^{-6}$	CL=90%	1040
$\gamma \eta(1760) \rightarrow \gamma \rho^0 \rho^0$	$(1.3 \pm 0.9) \times 10^{-4}$		1048
$\gamma \eta(1760) \rightarrow \gamma \omega \omega$	$(1.98 \pm 0.33) \times 10^{-3}$	CI 000/	_
$\gamma \eta(1760) \rightarrow \gamma \gamma \gamma$	$< 4.80 \times 10^{-6}$	CL=90%	_
$\gamma \eta$ (2225)	$(3.14 \ ^{+}_{-} \ 0.50 \) \times 10^{-4}$		752
$\gamma f_2(1270)$	$(1.63 \pm 0.12) \times 10^{-3}$	S=1.3	1286
$\gamma f_2(1270) \rightarrow \gamma K_S^0 K_S^0$	($2.58 \ ^{+} \ ^{0.60} _{-} \) imes 10^{-5}$		_
$\gamma f_1(1285)$	(6.1 \pm 0.8) $ imes$ 10 ⁻⁴		1283
$\gamma f_0(1370) \rightarrow \gamma K \overline{K}$	$(4.2 \pm 1.5) \times 10^{-4}$		_
$\gamma f_0(1370) \rightarrow \gamma K_S^0 K_S^0$	$(1.1 \pm 0.4) \times 10^{-5}$		_
$\gamma f_1(1420) \rightarrow \gamma K \overline{K} \pi$	$(7.9 \pm 1.3) \times 10^{-4}$		1220
$\gamma f_0(1500) \rightarrow \gamma \pi \pi$	$(1.09 \pm 0.24) \times 10^{-4}$		1183
$\gamma f_0(1500) \rightarrow \gamma \eta \eta$	$(1.7 + 0.6 \\ -1.4) \times 10^{-5}$		_
$\gamma f_0(1500) \rightarrow \gamma K_S^0 K_S^0$	$(1.59 \ ^{+} \ 0.24 \ 0.60 \) \times 10^{-5}$		_
$\gamma f_1(1510) \rightarrow \gamma \eta \pi^+ \pi^-$	$(4.5 \pm 1.2) \times 10^{-4}$		_
$\gamma f_2'(1525)$	$(5.7 \begin{array}{cc} + & 0.8 \\ - & 0.5 \end{array}) \times 10^{-4}$	S=1.5	1177
$\gamma f_2'(1525) \rightarrow \gamma K_S^0 K_S^0$	$(8.0 \ + \ 0.7 \) \times 10^{-5}$		_
$\gamma f_2'(1525) \rightarrow \gamma \eta \eta$	$(3.4 \pm 1.4) \times 10^{-5}$		_
$\gamma f_2(1640) \rightarrow \gamma \omega \omega$	$(2.8 \pm 1.8) \times 10^{-4}$		_
$772(1040) \rightarrow 7\omega\omega$	(2.0 ± 1.0) × 10		_

$\gamma f_0(1710) \rightarrow \gamma \pi \pi$	(3.8	\pm	0.5	$)\times10^{-4}$		_
$\gamma f_0(1710) \rightarrow \gamma K \overline{K}$	(9.5	+	1.0 0.5	$) \times 10^{-4}$	S=1.5	1075
$\gamma f_0(1710) \rightarrow \gamma \omega \omega$	(3.1	\pm	1.0	$)\times10^{-4}$		_
$\gamma f_0(1710) \rightarrow \gamma \eta \eta$	(2.4	+	1.2 0.7	$) \times 10^{-4}$		_
$\gamma f_0(1710) \rightarrow \gamma \omega \phi$	(2.5	\pm	0.6	$)\times10^{-4}$		_
$\gamma f_0(1770) \rightarrow \gamma K_S^0 K_S^0$	(1.11	+	0.20 0.33	$)\times 10^{-5}$		_
$\gamma f_2(1810) \rightarrow \gamma \eta \eta$	(5.4	+	3.5 2.4	$)\times10^{-5}$		_
$\gamma \eta_1(1855) \rightarrow \gamma \eta \eta'$	(2.7	+	0.4 0.5) × 10 ⁻⁶		_
$\gamma f_2(1910) \rightarrow \gamma \omega \omega$	(2.0	\pm	1.4	$) \times 10^{-4}$		_
$\gamma f_2(1950) \rightarrow K^*(999)$	(7.0	\pm	2.2	$) \times 10^{-4}$		_
$\gamma K^*(892)\overline{K}^*(892)$				U 35			
$\gamma f_0(2020) \rightarrow \gamma \eta' \eta'$) × 10 ⁻⁴		_
$\gamma f_4(2050)$					$) \times 10^{-3}$		891
$\gamma f_0(2100) \rightarrow \gamma \eta \eta$) × 10 ⁻⁴		_
$\gamma f_0(2100) \rightarrow \gamma \pi \pi$,				$) \times 10^{-4}$		_
$\gamma f_0(2200) \rightarrow \gamma K K$) × 10 ⁻⁴		_
$\gamma f_0(2200) \rightarrow \gamma K_S^0 K_S^0$	(2.72	+	0.19) × 10 ⁻⁴		_
$\gamma f_J(2220) \rightarrow \gamma \pi \pi$	<				$\times 10^{-5}$	CL=90%	_
$\gamma f_J(2220) \rightarrow \gamma K \overline{K}$	<			0.0	$\times 10^{-5}$) $\times 10^{-5}$	CL=90%	_
$\gamma f_J(2220) ightarrow \gamma p \overline{p} \ \gamma f_0(2330) ightarrow \gamma K_S^0 K_S^0$					$) \times 10^{-5}$		_
$\gamma f_0(2330) \rightarrow \gamma \eta' \eta'$		6.1) × 10 ⁻⁶		_
$\gamma f_2(2340) \rightarrow \gamma \eta \eta$				_) × 10 ⁻⁵		_
$\gamma f_2(2340) \rightarrow \gamma K_S^0 K_S^0$) × 10 ⁻⁵		_
$\gamma f_2(2340) \rightarrow \gamma \eta' \eta'$				_	$) \times 10^{-6}$		_
,							
$\gamma f_0(2470) \rightarrow \gamma \eta' \eta'$) × 10 ⁻⁷		_
$\gamma X(1835) \rightarrow \gamma \pi^+ \pi^- \eta'$				0.0) × 10 ⁻⁴	S=1.6	1006
$\gamma X(1835) \rightarrow \gamma p \overline{p}$	(7.7	+	1.5 0.9	$) \times 10^{-5}$		-
$\gamma X(1835) \rightarrow \gamma K_S^0 K_S^0 \eta$	(3.3	+	2.0 1.3	$) \times 10^{-5}$		_
$\gamma X(1835) \rightarrow \gamma \gamma \gamma$	<	3.56			\times 10 ⁻⁶	CL=90%	_
$\gamma X(1835) \rightarrow \gamma 3(\pi^+\pi^-)$	(2.4	+	0.7 0.8	$) \times 10^{-5}$		- - - -
$\gamma X(2370) \rightarrow \gamma K^+ K^- \eta'$					$) \times 10^{-5}$		_
$\gamma X(2370) \rightarrow \gamma K_S^0 K_S^0 \eta'$				0.5	$) \times 10^{-5}$		_
$\gamma X(2370) \rightarrow \gamma \eta \eta \eta'$	<	9.2			× 10 ⁻⁶	CL=90%	_
					_		

Page 146

Created: 7/10/2023 15:48

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

$\begin{array}{l} \gamma\rho\overline{\rho}\\ \gamma\rho\overline{\rho}\pi^+\pi^-\\ \gamma\Lambda\overline{\Lambda}\\ \gammaA^0\to \ \gamma\text{invisible}\\ \gammaA^0\to \ \gamma\mu^+\mu^- \end{array}$	$(3.8 \pm 1.$ < 7.9 < 1.3 $[ijaa] < 1.7$ $[kkaa] < 7.8$	$0) \times 10^{-4} \\ \times 10^{-4} \\ \times 10^{-4} \\ \times 10^{-6} \\ \times 10^{-7}$	CL=90% CL=90% CL=90% CL=90%	1232 1107 1074 —
	Dalitz decays			
$\pi^0 e^+ e^-$	($7.6 \pm 1.$	4) \times 10 ⁻⁷		1546
$\eta e^+ e^-$	`	08) \times 10 ⁻⁵		1500
$\eta'(958)e^+e^-$	($6.59 \pm 0.$			1400
$X(1835)e^+e^-, X ightarrow \pi^+\pi^-\eta^\prime$	(3.58 ± 0.	25) × 10 ⁻⁶		_
$X(2120)e^{+}e^{-}, X \rightarrow \pi^{+}\pi^{-}\eta^{\prime}$	(8.2 ± 1.	3) \times 10 ⁻⁷		_
$X(2370)e^{+}e^{-}, X \rightarrow \pi^{+}\pi^{-}\eta'$	(1.08 ± 0.	17) × 10 ⁻⁶		_
$\eta U \rightarrow \eta e^+ e^-$	[<i>llaa</i>] < 9.11	\times 10 ⁻⁷	CL=90%	_
$\eta'(958) U \rightarrow \eta'(958) e^+ e^-$	[<i>Ilaa</i>] < 2.0	\times 10 ⁻⁷	CL=90%	_
$\phi e^+ e^-$	< 1.2	\times 10 ⁻⁷	CL=90%	1381
	Weak decays			
$D^{-}e^{+}\nu_{e}^{}+$ c.c.	< 7.1	× 10 ⁻⁸	CL=90%	984
$\overline{D}^0 e^+ e^- + \text{c.c.}$	< 8.5	× 10 × 10 ⁻⁸	CL=90% CL=90%	987
$D_{s}^{-}e^{+}\nu_{e}+\text{c.c.}$	< 1.3	× 10 × 10 ⁻⁶	CL=90% CL=90%	923
$D_{s}^{*-}e^{+}\nu_{e}+\text{c.c.}$	< 1.8	× 10 ⁻⁶	CL=90%	828
$D^-\pi^+$ + c.c.	< 7.5	× 10 ⁻⁵	CL=90%	977
$\frac{D}{D^0}\frac{\pi}{K^0}$ + c.c.	< 1.7	× 10 × 10 ⁻⁴	CL=90% CL=90%	898
$\frac{D}{D^0}\frac{K}{K^{*0}}$ + c.c.	< 2.5	× 10 × 10 ⁻⁶	CL=90% CL=90%	670
$D_s^-\pi^+$ + c.c.	< 1.3	× 10 × 10 −4	CL=90%	915
$D_s^- \rho^+ + \text{c.c.}$	< 1.3	× 10 ⁻⁵	CL=90%	663
$D_s \rho$ c.e.	\ 1.5	× 10	CL—9070	003
	onjugation (C) , Pa			
	y number (<i>LF</i>) viol			
$\gamma\gamma$	< 2.7	$\times 10^{-7}$	CL=90%	1548
$\gamma \phi$ C	< 1.4	$\times 10^{-6}$	CL=90%	1381
$e^{\pm} \mu^{+}$ LF	< 1.6	× 10 ⁻⁷	CL=90%	1547
$\begin{array}{cccc} \gamma \phi & & & C \\ e^{\pm} \mu^{\mp} & & LF \\ e^{\pm} \tau^{\mp} & & LF \\ \mu^{\pm} \tau^{\mp} & & LF \end{array}$	< 7.5	$\times 10^{-8}$	CL=90%	1039
$\mu^{\pm} \tau^{+}$ LF $\Lambda_{c}^{+} e^{-} + \text{c.c.}$	< 2.0	$\times 10^{-6} \times 10^{-8}$	CL=90%	1035
11 _c = +c.c.	< 6.9	× 10 °	CL=90%	_
	Other decays			
invisible	< 7	× 10 ⁻⁴	CL=90%	_

$\chi_{c0}(1P)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass $m=3414.71\pm0.30~{\rm MeV}$ Full width $\Gamma=10.8\pm0.6~{\rm MeV}$

$\chi_{c0}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	
Had	Ironic decays		
$2(\pi^{+}\pi^{-})$	$(2.34\pm0.18)\%$		1679
$\rho^0 \pi^+ \pi^-$	$(9.1 \pm 2.9) \times 10^{-2}$	0-3	1607
$f_0(980)f_0(980)$	$(6.6 \pm 2.1) \times 10^{-2}$	0-4	1391
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	$(3.3 \pm 0.4)\%$		1680
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$ $\rho^{+}\pi^{-}\pi^{0}$ + c.c. $4\pi^{0}$	(2.9 \pm 0.4) %		1607
	$(3.3 \pm 0.4) \times 10$	0-3	1681
$\pi^+\pi^-K^+K^-$	(1.81 ± 0.14) %		1580
${m extstyle K}_0^*(1430)^0 \overline{m K}_0^*(1430)^0 ightarrow \ {}_{m \pi}^+ {}_{m \pi}^- {}_{m K}^+ {}_{m K}^-$	$(9.8 \ ^{+4.0}_{-2.8}) \times 10^{-1}$	0 ⁻⁴	_
$K_0^*(1430)^0\overline{K}_2^*(1430)^0 + \text{c.c.} \rightarrow$	$(8.0 \begin{array}{c} +2.0 \\ -2.4 \end{array}) \times 10^{-1}$	0-4	_
$\pi^{+}\pi^{-}K^{+}K^{-}$ $K_{1}(1270)^{+}K^{-}+\text{c.c.} \rightarrow$	$(6.3 \pm 1.9) \times 10^{-2}$	0-3	_
$\pi^+\pi^ K^+$ $K^ K_1(1400)^+$ K^- + c.c. $ ightarrow$ $\pi^+\pi^ K^+$ K^-	< 2.7 × 10	0 ⁻³ CL=90%	_
$f_0(980) f_0(980)$	$(1.6 \ ^{+1.0}_{-0.9} \) imes 1$	0-4	1391
$f_0(980) f_0(2200)$	$(7.9 \ ^{+2.0}_{-2.5}) \times 10^{-1}$	0^{-4}	586
$f_0(1370) f_0(1370)$	< 2.7 × 10	$^{0-4}$ CL=90%	1019
$f_0(1370) f_0(1500)$	$< 1.7 \times 10$	0^{-4} CL=90%	907
$f_0(1370) f_0(1710)$	$(6.7 \ ^{+3.5}_{-2.3}) \times 10^{-1}$	0^{-4}	709
$f_0(1500) f_0(1370)$	< 1.3 × 10		907
$f_0(1500) f_0(1500)$	< 5 × 10		774
$f_0(1500) f_0(1710)$	< 7 × 10		515
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	$(8.6 \pm 0.9) \times 10^{-2}$		1545
$K_{S}^{0}K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$	$(4.2 \pm 0.4) \times 10^{-2}$		1543
$K^{+}K^{-}\pi^{0}\pi^{0}$	(5.6 \pm 0.9) \times 10	0-3	1582
$K^+\pi^-\overline{K}^0\pi^0$ + c.c.	(2.49 ± 0.33) %		1581
$\rho^{+} K^{-} K^{0} + \text{c.c.}$	$(1.21\pm0.21)~\%$	2	1458
$K^*(892)^- \frac{K^+ \pi^0}{K^0 \pi^0 + \text{c.c.}}$	$(4.6 \pm 1.2) \times 10^{-2}$	ე—3	_
$K_{S}^{0}K_{S}^{0}\pi^{+}\pi^{-}$	$(5.7 \pm 1.1) \times 10$	0-3	1579
$K^{+}K^{-}\eta\pi^{0}$	$(3.0 \pm 0.7) \times 10$	0-3	1468
$3(\pi^{+}\pi^{-})$	(1.20 ± 0.18) %		1633
$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}+\text{c.c.}$	$(7.5 \pm 1.6) \times 10^{-2}$	ე—3	1523

16* (222) 0 16 * (222) 0			
$K^*(892)^0 \overline{K}^*(892)^0$	$(1.7 \pm 0.6) \times 10^{-3}$		1456
$\pi\pi$	$(8.51\pm0.33)\times10^{-3}$		1702
$\pi_{0}^{0}\eta$	$< 1.8 \times 10^{-4}$		1661
$\pi^0 \eta'$	$< 1.1 \times 10^{-3}$		1570
$\pi^0 \eta_c$	$< 1.6 \times 10^{-3}$	CL=90%	383
$\eta\eta$	$(3.01\pm0.19)\times10^{-3}$		1617
$\eta\eta'$	$(9.1 \pm 1.1) \times 10^{-5}$		1521
$\eta' \eta'$	$(2.17\pm0.12)\times10^{-3}$		1413
$\omega\omega$	$(9.7 \pm 1.1) \times 10^{-4}$		1517
$\omega \phi$	$(1.41\pm0.13)\times10^{-4}$		1447
$\omega K^+ K^-$	$(1.94\pm0.21)\times10^{-3}$		1457
K^+K^-	$(6.05\pm0.31)\times10^{-3}$		1634
$K_S^0 K_S^0$	$(3.16\pm0.17)\times10^{-3}$		1633
$\pi^{+}\pi^{-}\eta$	$< 2.0 \times 10^{-4}$	CL=90%	1651
$\pi^+\pi^-\eta'$	$< 4 \times 10^{-4}$	CL=90%	1560
$\overline{K}^0 K^+ \pi^- + \text{c.c.}$	$< 9 \times 10^{-5}$	CL=90%	1610
$K^+K^-\pi^0$	$< 6 \times 10^{-5}$	CL=90%	1611
$K^+K^-\eta$	$< 2.3 \times 10^{-4}$	CL=90%	1512
$K^{+}K^{-}K_{S}^{0}K_{S}^{0}$	$(1.4 \pm 0.5) \times 10^{-3}$		1331
$K_{S}^{0}K_{S}^{0}K_{S}^{0}K_{S}^{0}$	$(5.8 \pm 0.5) \times 10^{-4}$		1327
$K^+K^-K^+K^-$	$(2.82\pm0.29)\times10^{-3}$		1333
$K^+K^-\phi$	$(9.7 \pm 2.5) \times 10^{-4}$		1381
$\overline{K}^0 K^+ \pi^- \phi + \text{c.c.}$	$(3.7 \pm 0.6) \times 10^{-3}$		1326
$K^+K^-\pi^0\phi$	$(1.90\pm0.35)\times10^{-3}$		1329
$\phi \pi^+ \pi^- \pi^0$	$(1.18\pm0.15)\times10^{-3}$		1525
$\phi\phi$	$(8.0 \pm 0.7) \times 10^{-4}$		1370
$\stackrel{\prime}{\phi}\stackrel{\prime}{\phi}\eta$	$(8.4 \pm 1.0) \times 10^{-4}$		1100
$p\overline{p}$	$(2.21\pm0.08)\times10^{-4}$		1426
$p \overline{p} \pi^0$	$(7.0 \pm 0.7) \times 10^{-4}$	S=1.3	1379
$p\overline{p}\eta$	$(3.5 \pm 0.4) \times 10^{-4}$		1187
$p\overline{p}\omega$	$(5.2 \pm 0.6) \times 10^{-4}$		1043
$p\overline{p}\phi$	$(6.0 \pm 1.4) \times 10^{-5}$		876
$p \overline{p} \pi^+ \pi^-$	$(2.1 \pm 0.7) \times 10^{-3}$	S=1.4	1320
$p \overline{p} \pi^0 \pi^0$	$(1.04\pm0.28)\times10^{-3}$	_	1324
$p\overline{p}K^+K^-$ (non-resonant)	$(1.22\pm0.26)\times10^{-4}$		890
$p\overline{p}K_S^0K_S^0$	$< 8.8 \times 10^{-4}$	CL=90%	884
$p\overline{n}\pi^-$	$(1.27\pm0.11)\times10^{-3}$		1376
$\frac{\overline{p}}{\overline{n}}\pi^+$	$(1.37\pm0.12)\times10^{-3}$		1376
$p \overline{n} \pi^{-} \pi^{0}$	$(2.34\pm0.21)\times10^{-3}$		1321
$\frac{\overline{p}}{\overline{p}}n\pi^{+}\pi^{0}$	$(2.21\pm0.18)\times10^{-3}$		1321
$\Lambda \overline{\Lambda}$	$(3.59\pm0.15)\times10^{-4}$		1292
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	$(3.33\pm0.13)\times10^{-3}$ $(1.18\pm0.13)\times10^{-3}$		1153
$\Lambda \overline{\Lambda} \pi^+ \pi^-$ (non-resonant)	$< 5 \times 10^{-4}$	CL=90%	1153
$\Lambda \overline{\Lambda} \eta$	$(2.3 \pm 0.4) \times 10^{-4}$	CL .50/0	979
, ,	(2.3 ±0.7) ∧ 10		519

. _				
$\Sigma(1385)^+\overline{\varLambda}\pi^-+$ c.c.	< 5	$\times 10^{-4}$	CL=90%	1083
$\Sigma(1385)^-\overline{\varLambda}\pi^++$ c.c.	< 5	\times 10 ⁻⁴	CL=90%	1083
$K^{+}\overline{p}\Lambda$ + c.c.	$(1.25\pm 0$	$0.12) \times 10^{-3}$	S=1.3	1132
$nK_{S}^{0}\overline{\Lambda}+{ m c.c.}$	(6.6 ± 0.0)	$0.5) \times 10^{-4}$		1129
$K^*(892)^+ \overline{p} \Lambda + \text{c.c.}$	(4.8 ± 0.00)	$0.9) \times 10^{-4}$		845
$K^{+} \overline{p} \Lambda(1520) + \text{c.c.}$	(2.9 ± 0.00)	$0.7) \times 10^{-4}$		859
$\Lambda(1520)\overline{\Lambda}(1520)$	(3.1 ± 3)	$1.2) \times 10^{-4}$		780
$\sum_{i=0}^{\infty} \overline{\sum_{i=0}^{\infty}}$	(4.68±0	$0.32) \times 10^{-4}$		1222
$\Sigma^+ \overline{p} K_S^0 + \text{c.c.}$	(3.52±0	$(0.27) \times 10^{-4}$		1089
$\Sigma^0 \overline{ ho} K^{+} + ext{c.c.}$	(3.03±0	$0.20) \times 10^{-4}$		1090
$\Sigma^{+} \overline{\Sigma}^{-}$	(4.6 ± 0.0)	$0.8) \times 10^{-4}$	S=2.6	1225
$\Sigma^{-}\overline{\Sigma}^{+}$	(5.1 ± 0)	$0.5) \times 10^{-4}$		1217
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$	(1.6 ± 0)	$0.6) \times 10^{-4}$		1001
$\Sigma(1385)^{-}\overline{\Sigma}(1385)^{+}$	(2.3 ± 0.00)	$0.7) \times 10^{-4}$		1001
$K - \Lambda \overline{\Xi} + c.c.$	(1.94±0	$(0.35) \times 10^{-4}$		873
<u>=</u> 0 <u>=</u> 0	(4.5 ±0	$0.5) \times 10^{-4}$	S=1.7	1089
<i>Ξ-Ξ</i> +	(4.45±0	$0.19) \times 10^{-4}$		1081
$\eta_c \pi^+ \pi^-$	< 7	× 10 ⁻⁴	CL=90%	307
Rad	liative decay	S		

$\gamma J/\psi(1S)$	(1.40 ± 0.05)	%		303
$\gamma \rho^{0}$	< 9	$\times 10^{-6}$	CL=90%	1619
$\gamma \omega$	< 8	$\times 10^{-6}$	CL=90%	1618
$\gamma\phi$	< 6	$\times 10^{-6}$	CL=90%	1555
$\gamma \gamma$	(2.04 ± 0.09)	$\times 10^{-4}$		1707
$e^+e^-J/\psi(1S)$	(1.33 ± 0.29)	$\times 10^{-4}$		303
$\mu^+\mu^-J/\psi(1S)$	< 1.9	$\times 10^{-5}$	CL=90%	226

$\chi_{c1}(1P)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Mass $m=3510.67\pm0.05~{\rm MeV}~{\rm (S}=1.2)$ Full width $\Gamma=0.84\pm0.04~{\rm MeV}$

$\chi_{c1}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)		cale factor/ idence level	-
e^+e^-	$(1.4 \begin{array}{c} +1.5 \\ -1.0 \end{array})$) × 10 ⁻⁷		1755
н	adronic decays			
$3(\pi^{+}\pi^{-})$	(5.8 ± 1.4	$) \times 10^{-3}$	S=1.2	1683
$2(\pi^{+}\pi^{-})$	(7.6 ± 2.6	$) \times 10^{-3}$		1728
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	(1.19 ± 0.15) %		1729
$ ho^{+}\pi^{-}\pi^{0}+$ c.c.	$(1.45\pm0.24$) %		1658
$ ho^+\pi^-\pi^0+$ c.c. $ ho^0\pi^+\pi^ 4\pi^0$	(3.9 ± 3.5	$) \times 10^{-3}$		1657
$4\pi^0$	(5.4 ± 0.8	$) \times 10^{-4}$		1729
HTTP://PDG.LBL.GOV	Page 150	Created:	7/10/2023	3 15:48

$\pi^+\pi^-$ K $^+$ K $^-$	(4.5 ± 1.0) $\times 10^{-3}$		1632
$K^{+}K^{-}\pi^{0}\pi^{0}$	$(1.12\pm0.27)\times10^{-3}$		1634
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	$(1.15\pm0.13)\%$		1598
$K_S^0 K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	$(7.5 \pm 0.8) \times 10^{-3}$		1596
$K^{+}\pi^{-}\overline{K}^{0}\pi^{0}$ + c.c.	$(8.6 \pm 1.4) \times 10^{-3}$		1632
$ ho^ K^+$ $\overline{K}{}^0$ $+$ c.c.	$(5.0 \pm 1.2) \times 10^{-3}$		1514
$K^*(892)^0 \overline{K}{}^0 \pi^0 \rightarrow$	$(2.3 \pm 0.6) \times 10^{-3}$		_
$K^{+}\pi^{-}\overline{K}{}^{0}\pi^{0}$ + c.c.	2		
$K^+K^-\eta\pi^0$	$(1.12\pm0.34)\times10^{-3}$		1523
$\pi^+\pi^-K^0_SK^0_S$	$(6.9 \pm 2.9) \times 10^{-4}$		1630
$K^+K^-\eta$	$(3.2 \pm 1.0) \times 10^{-4}$		1566
$\overline{K}^0 K^+ \pi^- + \text{c.c.}$	$(7.0 \pm 0.6) \times 10^{-3}$		1661
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	$(10 \pm 4) \times 10^{-4}$		1602
$K^*(892)^+K^- + \text{c.c.}$	$(1.4 \pm 0.6) \times 10^{-3}$		1602
$K_J^*(1430)^0\overline{K}^0+\text{c.c.} \rightarrow$	$<$ 8 \times 10 ⁻⁴	CL=90%	_
$K_S^0 K^+ \pi^- + \text{c.c.}$			
$K_J^*(1430)^+ K^- + \text{c.c.} \rightarrow$	$< 2.1 \times 10^{-3}$	CL=90%	-
$K_S^0 K^+ \pi^- + \text{c.c.}$			
$K^+K^-\pi^0$	$(1.81\pm0.24)\times10^{-3}$		1662
$\eta \pi^+ \pi^-$	$(4.62\pm0.23)\times10^{-3}$		1701
$a_0(980)^+\pi^- + { m c.c.} o \eta \pi^+\pi^-$	$(3.2 \pm 0.4) \times 10^{-3}$	S=2.2	_
$a_2(1320)^+\pi^- + \text{c.c.} \to \eta \pi^+\pi^-$	$(1.76\pm0.24)\times10^{-4}$		_
$a_2(1700)^+\pi^- + \text{c.c.} \to \eta \pi^+\pi^-$	$(4.6 \pm 0.7) \times 10^{-5}$		_
$f_2(1270)\eta \rightarrow \eta \pi^+ \pi^-$	$(3.5 \pm 0.6) \times 10^{-4}$		_
$f_4(2050)\eta \rightarrow \eta \pi^+ \pi^-$	$(2.5 \pm 0.9) \times 10^{-5}$		_
$\pi_1(1400)^+\pi^-+$ c.c. $ ightarrow$	$< 5 \times 10^{-5}$	CL=90%	-
$\eta \pi^+ \pi^-$	E		
$\pi_1(1600)^+\pi^- + {\rm c.c.} o$	$< 1.5 \times 10^{-5}$	CL=90%	_
$\eta \pi^{+} \pi^{-}$	10-6	CL 000/	
$\pi_1(2015)^+\pi^- + \text{c.c.} \rightarrow$	$< 8 \times 10^{-6}$	CL=90%	_
$\eta\pi^+\pi^ f_2(1270)\eta$	$(6.7 \pm 1.1) \times 10^{-4}$		1467
$\frac{12(1270)\eta}{\pi^{+}\pi^{-}\eta'}$	$(0.7 \pm 1.1) \times 10$ $(2.2 \pm 0.4) \times 10^{-3}$		1467 1612
$K + K - \eta'$ (958)	$(8.8 \pm 0.9) \times 10^{-4}$		1461
, , ,			1401
$K_0^*(1430)^+ K^- + \text{c.c.}$	$(6.4 \begin{array}{c} +2.2 \\ -2.8 \end{array}) \times 10^{-4}$		_
$f_0(980)\eta'(958)$	($1.6 \ ^{+1.4}_{-0.7}$) $ imes 10^{-4}$		1460
$f_0(1710)\eta'(958)$	$(7 {}^{+7}_{-5}) \times 10^{-5}$		1100
$f_2'(1525)\eta'(958)$	$(9 \pm 6) \times 10^{-5}$		1229
$\pi^0 f_0(980) \rightarrow \pi^0 \pi^+ \pi^-$			1229
$K^{+} \overline{K}^{*} (892)^{0} \pi^{-} + \text{c.c.}$	$(3.5 \pm 0.9) \times 10^{-7}$ $(3.2 \pm 2.1) \times 10^{-3}$		- 1577
$K^*(892)^0 \overline{K}^*(892)^0$	$(3.2 \pm 2.1) \times 10^{-3}$ $(1.4 \pm 0.4) \times 10^{-3}$		1512
$K^{+}K^{-}K_{S}^{0}K_{S}^{0}$	$(1.4 \pm 0.4) \times 10^{-4}$	CL=90%	1390
N NSNS	× 4 × 10 ·	CL—9070	1390

$K_{S}^{0}K_{S}^{0}K_{S}^{0}K_{S}^{0}$	(3.5 ± 1.0) $\times 10^{-5}$		1387
$K^+K^-K^+K^-$	(5.4 ± 1.1) \times 10 ⁻⁴		1393
$K^+K^-\phi$	$(4.1 \pm 1.5) \times 10^{-4}$		1440
$\overline{K}{}^{0}K^{+}\pi^{-}\phi + \text{c.c.}$	$(3.3 \pm 0.5) \times 10^{-3}$		1387
$K^+K^-\pi^0\phi$	$(1.62\pm0.30)\times10^{-3}$		1390
$\phi \pi^{+} \pi^{-} \pi^{0}$	$(7.5 \pm 1.0) \times 10^{-4}$		1578
$\omega\omega$	$(5.7 \pm 0.7) \times 10^{-4}$		1571
$\omega K^+ K^-$	$(7.8 \pm 0.9) \times 10^{-4}$		1513
$\omega \phi$	$(2.7 \pm 0.4) \times 10^{-5}$		1503
$\phi \phi$	$(4.2 \pm 0.5) \times 10^{-4}$		1429
$\phi\phi\eta$	$(3.0 \pm 0.5) \times 10^{-4}$		1172
$p\overline{p}$	$(7.60\pm0.34)\times10^{-5}$		1484
$p\overline{p}\pi^0$	$(1.55\pm0.18)\times10^{-4}$		1438
$p\overline{p}\eta$	$(1.45\pm0.25)\times10^{-4}$		1254
$p\overline{p}\omega$	$(2.12\pm0.31)\times10^{-4}$		1117
$p\overline{p}\phi$	$< 1.7 \times 10^{-5}$	CL=90%	962
$p\overline{p}\pi^+\pi^-$	$(5.0 \pm 1.9) \times 10^{-4}$		1381
$p\overline{p}\pi^0\pi^0$	$< 5 \times 10^{-4}$	CL=90%	1385
$p\overline{p}K^+K^-$ (non-resonant)	$(1.27\pm0.22)\times10^{-4}$		974
$p\overline{p}K_S^0K_S^0$	$< 4.5 \times 10^{-4}$	CL=90%	968
$p\overline{n}\pi^{-}$	$(3.8 \pm 0.5) \times 10^{-4}$		1435
$\overline{p}n\pi^+$	$(3.9 \pm 0.5) \times 10^{-4}$		1435
$p \overline{n} \pi^- \pi^0$	$(1.03\pm0.12)\times10^{-3}$		1383
$\frac{1}{p}n\pi^+\pi^0$	$(1.01\pm0.12)\times10^{-3}$		1383
$\Lambda \overline{\Lambda}$	$(1.27\pm0.08)\times10^{-4}$		1355
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	$(2.9 \pm 0.5) \times 10^{-4}$		1223
$\Lambda \overline{\Lambda} \pi^+ \pi^-$ (non-resonant)	$(2.5 \pm 0.6) \times 10^{-4}$		1223
$\Lambda \overline{\Lambda} \eta$	$(5.9 \pm 1.5) \times 10^{-5}$		1059
Σ (1385) $^+\overline{\Lambda}\pi^-+$ c.c.	$< 1.3 \times 10^{-4}$	CL=90%	1157
$\Sigma(1385)^-\overline{\Lambda}\pi^++$ c.c.	$< 1.3 \times 10^{-4}$	CL=90%	1157
$K^+ \stackrel{\frown}{p} \Lambda + c.c.$	(4.2 ± 0.4) \times 10 ⁻⁴	S=1.2	1203
$nK_{S}^{O}\overline{\Lambda}$ + c.c.	$(1.66\pm0.17)\times10^{-4}$		1200
$K^*(892)^+ \overline{p} \Lambda + \text{c.c.}$	$(4.9 \pm 0.7) \times 10^{-4}$		935
$K^{+}\overline{\rho}\Lambda(1520)$ + c.c.	$(1.7 \pm 0.4) \times 10^{-4}$		951
$\Lambda(1520)\overline{\Lambda}(1520)$	$< 9 \times 10^{-5}$	CL=90%	880
$\sum_{i} \sum_{j} \sum_{i} \sum_{j} 0$	$(4.2 \pm 0.6) \times 10^{-5}$		1288
$\Sigma^+ \overline{p} K_S^0 + \text{c.c.}$	$(1.53\pm0.12)\times10^{-4}$		1163
$\Sigma^0 \overline{p} K^+ + \text{c.c.}$	$(1.46\pm0.10)\times10^{-4}$		1163
$\sum + \overline{\sum} -$	$(3.6 \pm 0.7) \times 10^{-5}$		1291
$\frac{\overline{\Sigma}}{\Sigma} + \frac{\overline{\Sigma}}{\Sigma}$	$(5.7 \pm 1.5) \times 10^{-5}$		1283
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$	$< 9 \times 10^{-5}$	CL=90%	1081
$\Sigma(1385)^{-}\frac{\Sigma(1385)^{+}}{\Sigma(1385)^{+}}$	$< 5 \times 10^{-5}$	CL=90%	1081
$K^-\Lambda \overline{\Xi}^+ + \text{c.c.}$	$(1.35\pm0.24)\times10^{-4}$	J_ 30/0	963
=0 = 0	$(7.5 \pm 1.3) \times 10^{-5}$		1163
- -	(±1.3) ∧ 10		1100

$ \Xi^{-}\overline{\Xi}^{+} $ $ \pi^{+}\pi^{-} + K^{+}K^{-} $ $ K_{S}^{0}K_{S}^{0} $ $ \eta_{c}\pi^{+}\pi^{-} $	$(6.0 \pm 0.6) \times 10^{-5}$ $< 2.1 \times 10^{-3}$ $< 6 \times 10^{-5}$ $< 3.2 \times 10^{-3}$	CL=90% CL=90%	1155 - 1683 413
	Radiative decays		
$\gamma J/\psi(1S)$	(34.3 ± 1.0) %		389
$\gamma \rho^{0}$	$(2.16\pm0.17)\times10^{-4}$		1670
$\gamma \omega$	$(6.8 \pm 0.8) \times 10^{-5}$		1668
$\gamma\phi$	$(2.4 \pm 0.5) \times 10^{-5}$		1607
$\gamma \gamma$	$< 6.3 \times 10^{-6}$	CL=90%	1755
$e^+e^-J/\psi(1S)$	$(3.46\pm0.22)\times10^{-3}$		389
$\mu^+\mu^-J/\psi(1\mathcal{S})$	$(2.33\pm0.29)\times10^{-4}$		335

$h_c(1P)$

$$I^{G}(J^{PC}) = 0^{-}(1^{+})^{-}$$

Mass $m=3525.37\pm0.14$ MeV (S =1.2) Full width $\Gamma=0.78\pm0.28$ MeV

h _c (1P) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$J/\psi(1S)\pi^0$	< 5 × 10	-4 90%	382
$J/\psi(1S)\pi\pi$	not seen		312
$J/\psi(1S)\pi^+\pi^-$	< 2.7 × 10	−3 90%	305
$p\overline{p}$	< 1.7 × 10	-4 90%	1492
$ ho \overline{ ho} \pi^0$	< 8 × 10	-4 90%	1447
$\rho \overline{\rho} \pi^+ \pi^-$	$(3.3\pm0.6) \times 10$	-3	1390
$\rho \overline{\rho} \pi^0 \pi^0$	< 6 × 10	-4 90%	1394
$ ho \overline{ ho} \pi^+ \pi^- \pi^0$	$(4.4\pm1.3) \times 10$		1331
$p\overline{p}\eta$	$(7.4\pm2.2)\times10$	-4	1264
$\pi^{+}\pi^{-}\pi^{0}$	$(1.9\pm0.5) \times 10$		1749
$\pi^+\pi^-\pi^0\eta_{\perp}$	$(8.3\pm2.4) \times 10$		1695
$2\pi^{+}2\pi^{-}\pi^{0}$	$(9.4\pm1.7) \times 10$	-3	1716
$3\pi^{+}3\pi^{-}\pi^{0}$	< 1.0 %	90%	1661
$K^{+}K^{-}\pi^{+}\pi^{-}$	< 7 × 10	-4 90%	1640
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	$(3.8\pm0.8) \times 10$		1606
$K^+K^-\pi^+\pi^-\eta$	< 2.7 × 10		1480
$K^{+}K^{-}\pi^{0}$	< 6 × 10		1670
$\mathit{K^{+}K^{-}\pi^{0}\eta}$	< 2.4 × 10		1532
$K^+K^-\eta$	< 1.0 × 10		1574
$2K^{+}2K^{-}\pi^{0}$	< 2.8 × 10	-4 90%	1339
$K_S^0K^\pm\pi^\mp$	< 6 × 10	-4 90%	1668
$K_{\mathcal{S}}^{0}K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$	$(3.2\pm1.0)\times10$	-3	1604

Radiative decays

$\gamma\eta$	$(4.7\pm2.1)\times10^{-4}$	1720
$\gamma \eta'$ (958)	$(1.5\pm0.4)\times10^{-3}$	1633
$\gamma \eta_c(1S)$	(57 ±5) %	500

$\chi_{c2}(1P)$

HTTP://PDG.LBL.GOV

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=3556.17\pm0.07$ MeV Full width $\Gamma=1.97\pm0.09$ MeV

$\chi_{c2}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/ <i>c</i>)
	ronic decays		
$2(\pi^+\pi^-) \atop \pi^+\pi^-\pi^0\pi^0$	$(1.02\pm0.09)\%$		1751
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	$(1.83\pm0.23)\%$		1752
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$ $\rho^{+}\pi^{-}\pi^{0}+\text{c.c.}$ $4\pi^{0}$	$(2.19\pm0.34)\%$		1682
	(1.11 ± 0.15) $ imes$	₁₀ -3	1752
$K^{+}K^{-}\pi^{0}\pi^{0}$	(2.1 \pm 0.4) $ imes$	10^{-3}	1658
$K^+\pi^-\overline{K}{}^0\pi^0+$ c.c.	$(1.38\pm0.20)\%$		1657
$ ho^ K^+$ $\overline{K}{}^0$ $+$ c.c.	(4.1 ± 1.2) $ imes$	10^{-3}	1540
$K^*(892)^0 K^- \pi^+ \rightarrow$	(2.9 \pm 0.8) $ imes$	10^{-3}	_
$K^{-}\pi^{+}K^{0}\pi^{0}$ + c.c. $K^{*}(892)^{0}\overline{K}^{0}\pi^{0} \to 0$		_	
$K^*(892)^0 \underbrace{K^0 \pi^0}_{} \rightarrow$	(3.8 \pm 0.9) \times	10^{-3}	_
$K^{+}\pi^{-}\overline{K}^{0}\pi^{0} + \text{c.c.}$		2	
$K^*(892)^- K^+ \pi^0 \rightarrow$	(3.7 \pm 0.8) \times	10-3	_
$K^+\pi^-\overline{K}^0\pi^0 + \text{c.c.}$ $K^*(892)^+\overline{K}^0\pi^- \rightarrow$	($2.9~\pm0.8$) $ imes$	10-3	_
$K + \pi \overline{K^0 \pi^0} + \text{c.c.}$	(2.9 ±0.6) x	10	
$K^+K^-\eta\pi^0$	(1.3 ± 0.4) $ imes$	10-3	1549
$K^+K^-\pi^+\pi^-$	(8.4 ±0.9)×		1656
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	(1.17±0.13) %		1623
$K^0_S K^{\pm} \pi^{\mp} \pi^+ \pi^-$	(7.3 \pm 0.8) \times	10^{-3}	1621
$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}+$ c.c.	(2.1 ± 1.1) $ imes$	10-3	1602
$K^*(892)^0 \overline{K}^*(892)^0$	(2.3 \pm 0.4) \times	10^{-3}	1538
$3(\pi^{+}\pi^{-})$	($8.6~\pm1.8$) $ imes$		1707
$\phi \phi$	(1.06 ± 0.09) $ imes$	₁₀ -3	1457
$\phi\phi\eta$	(5.3 \pm 0.6) $ imes$	10^{-4}	1206
$\omega\omega$	(8.4 ± 1.0) $ imes$		1597
$\omega K^+ K^-$	(7.3 \pm 0.9) \times		1540
$\omega \phi$	(9.6 ± 2.7) $ imes$		1529
$\pi\pi$	(2.23 ± 0.09) $ imes$		1773
$\rho^0 \pi^+ \pi^-$	(3.7 ± 1.6) \times		1682
$\pi^+\pi^-\pi^0$ (non-resonant)	(2.0 \pm 0.4) \times		1765
$ ho$ (770) $^{\pm}\pi^{\mp}$	(6 ± 4) \times	10 ⁻⁶	_

Page 154

$\pi^+\pi^-\eta$	$(4.8 \pm 1.3) \times 10^{-4}$		1724
$\pi^+\pi^-\eta'$	$(5.0 \pm 1.8) \times 10^{-4}$		1636
$\eta\eta$	$(5.4 \pm 0.4) \times 10^{-4}$		1692
K^+K^-	$(1.01\pm0.06)\times10^{-3}$		1708
$K_S^0 K_S^0$	$(5.2 \pm 0.4) \times 10^{-4}$		1707
$K^*(892)^{\pm}K^{\mp}$	$(1.44\pm0.21)\times10^{-4}$		1627
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	$(1.24\pm0.27)\times10^{-4}$		1627
$K_2^*(1430)^{\pm} K^{\mp}$	$(1.48\pm0.12)\times10^{-3}$		_
$K_2^{\overline{*}}(1430)^0 \overline{K}^0 + \text{c.c.}$	$(1.24\pm0.17)\times10^{-3}$		1443
$K_3^{\bar{*}}(1780)^{\pm}K^{\mp}$	$(5.2 \pm 0.8) \times 10^{-4}$		_
$K_3^*(1780)^0 \overline{K}^0 + \text{c.c.}$	(5.6 ± 2.1) $\times 10^{-4}$		1274
$a_2(1320)^0 \pi^0$	$(1.29\pm0.34)\times10^{-3}$		_
$a_2(1320)^{\pm}\pi^{\mp}$	$(1.8 \pm 0.6) \times 10^{-3}$		1530
$\frac{a_2}{K^0}(1320)^{\pm}\pi^{\mp}$ $\frac{a_2}{K^0}K^{+}\pi^{-} + \text{c.c.}$	$(1.28\pm0.18)\times10^{-3}$		1685
$K^+K^-\pi^0$	$(3.0 \pm 0.8) \times 10^{-4}$		1686
$K^+K^-\eta$	$< 3.2 \times 10^{-4}$	90%	1592
$K^{+}K^{-}\eta'(958)$	$(1.94\pm0.34)\times10^{-4}$		1488
$\eta \eta'$	$(2.2 \pm 0.5) \times 10^{-5}$		1600
$\eta'\eta'$	$(4.6 \pm 0.6) \times 10^{-5}$		1498
$\pi^+\pi^-K^0_SK^0_S$	$(2.2 \pm 0.5) \times 10^{-3}$		1655
$K^{+}K^{-}K_{S}^{0}K_{S}^{0}$	< 4 × 10 ⁻⁴	90%	1418
$K_S^0 K_S^0 K_S^0 K_S^0$	$(1.13\pm0.18)\times10^{-4}$	30,0	1415
K+K-K+K-	$(1.65\pm0.20)\times10^{-3}$		1421
$K^+K^-\phi$	$(1.42\pm0.29)\times10^{-3}$		1468
$\frac{K}{K^0}K^+\pi^-\phi$ + c.c.	$(4.8 \pm 0.7) \times 10^{-3}$		1416
$K^+K^-\pi^0\phi$	$(2.7 \pm 0.5) \times 10^{-3}$		1419
$\phi \pi^+ \pi^- \pi^0$	$(9.3 \pm 1.2) \times 10^{-4}$		1603
$p\overline{p}$	$(7.33\pm0.33)\times10^{-5}$		1510
$p \overline{p} \pi^0$	$(4.7 \pm 0.4) \times 10^{-4}$		1465
$p\overline{p}\eta$	$(1.74\pm0.25)\times10^{-4}$		1285
$p\overline{p}\omega$	$(3.6 \pm 0.4) \times 10^{-4}$		1152
$p\overline{p}\phi$	$(2.8 \pm 0.9) \times 10^{-5}$		1002
$p\overline{p}\pi^+\pi^-$	$(1.32\pm0.34)\times10^{-3}$		1410
$p \overline{p} \pi^0 \pi^0$	$(7.8 \pm 2.3) \times 10^{-4}$		1414
$p\overline{p}K^+K^-$ (non-resonant)	$(1.91\pm0.32)\times10^{-4}$		1013
$p\overline{p}K_S^0K_S^0$	< 7.9 × 10 ⁻⁴	90%	1007
$p\overline{n}\pi^-$	$(8.5 \pm 0.9) \times 10^{-4}$		1463
$\frac{\overline{p}}{\overline{p}}n\pi^+$	$(8.9 \pm 0.8) \times 10^{-4}$		1463
$p \overline{n} \pi^- \pi^0$	$(2.17\pm0.18)\times10^{-3}$		1411
$\frac{p}{p}n\pi^+\pi^0$	$(2.11\pm0.18)\times10^{-3}$		1411
$\Lambda \overline{\Lambda}$	$(1.83\pm0.16)\times10^{-4}$		1384
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	$(1.25\pm0.15)\times10^{-3}$		1255
$\Lambda \overline{\Lambda} \pi^+ \pi^-$ (non-resonant)	$(6.6 \pm 1.5) \times 10^{-4}$		1255
(11211 1 222 1121)	(= = =) // = = =		

4 -		. 4		
$\Lambda \overline{\Lambda} \eta$,	$(0.26) \times 10^{-4}$		1096
$\Sigma(1385)^+\overline{\Lambda}\pi^- + \text{c.c.}$	< 4	× 10 ⁻⁴	90%	1192
$\Sigma(1385)^-\overline{\Lambda}\pi^++\text{ c.c.}$	< 6	× 10 ⁻⁴	90%	1192
$K^+ \overline{p} \Lambda + c.c.$		$0.5) \times 10^{-4}$		1236
$nK_S^0\overline{\Lambda} + \text{c.c.}$		$(0.28) \times 10^{-4}$		1233
$K^*(892)^+ \overline{p} \Lambda + \text{c.c.}$	(8.2 ± 1	$1) \times 10^{-4}$		976
$K^+\overline{p}\Lambda(1520)+$ c.c.	(2.8 ± 0	$0.7) \times 10^{-4}$		992
$\Lambda(1520)\overline{\Lambda}(1520)$	(4.6 ± 1	$5) \times 10^{-4}$		924
$\sum_{i=0}^{\infty} \overline{\sum_{i=0}^{\infty}}$	(3.7 ± 0)	$0.6) \times 10^{-5}$		1319
$\Sigma^+ \overline{p} K_S^0 + \text{c.c.}$		$0.9) \times 10^{-5}$		1197
$\Sigma^0 \overline{ ho} K^{+} + \text{c.c.}$	($9.1~\pm 0$	$0.8) \times 10^{-5}$		1197
$\Sigma + \overline{\Sigma} -$		$(0.7) \times 10^{-5}$		1322
$\Sigma - \overline{\Sigma} +$		$8) \times 10^{-5}$		1314
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$	< 1.6	$\times 10^{-4}$	90%	1118
$\Sigma(1385)^{-}\overline{\Sigma}(1385)^{+}$	< 8	$\times 10^{-5}$	90%	1118
$K \stackrel{\sim}{} \Lambda \overline{\Xi} \stackrel{\leftarrow}{+} + \text{c.c.}$	(1.76±0	$0.32) \times 10^{-4}$		1004
<u>=</u> 0 <u>=</u> 0		$(0.22) \times 10^{-4}$		1197
<u>=-</u> =+		$(0.12) \times 10^{-4}$		1189
$J/\psi(1S)\pi^+\pi^-\pi^0$	< 1.5	%	90%	185
$\pi^0 \eta_c$	< 3.2	$\times 10^{-3}$	90%	511
$\eta_c(1S)\pi^+\pi^-$	< 5.4	$\times 10^{-3}$	90%	459
	Padiativa dagava			
- 1/s//1C)	Radiative decays	N.F. N.O./		420
$\gamma J/\psi(1S)$	(19.0 ± 0)	,	000/	430
$\gamma \rho^0$	< 1.9	$\times 10^{-5}$	90%	1694
$\gamma \omega$	< 6	$\times 10^{-6}$	90%	1692
$\gamma\phi$	< 7	_	90%	1632
$\gamma \gamma$	•	$0.10) \times 10^{-4}$		1778
$e^{+}e^{-}J/\psi(1S)$	`	$0.14) \times 10^{-3}$		430
$\mu^+\mu^-J/\psi(1S)$	(2.02±0	$(0.33) \times 10^{-4}$		381

$\eta_c(2S)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Quantum numbers are quark model predictions.

Mass
$$m=3637.7\pm1.1~{\rm MeV}~{\rm (S}=1.2)$$
 Full width $\Gamma=13.9\pm2.6~{\rm MeV}$

$\eta_{\mathcal{C}}(2S)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
hadrons	not seen		_
$K\overline{K}\pi$	$(1.9\pm1.2)\%$		1729
$K\overline{K}\eta$	$(5 \pm 4) imes 10$	_3	1637
$2\pi^{+}2\pi^{-}$	< 2.1 %	90%	1792
$ ho^0 ho^0$	< 1.9 × 10	-3 90%	1645

HTTP://PDG.LBL.GOV

Page 156

$3\pi^{+}3\pi^{-}$	(1.3 ± 0.9)	9) %		1749
$K^+K^-\pi^+\pi^-$	< 1.4	%	90%	1700
$K^{*0}\overline{K}^{*0}$	< 2.9	$\times 10^{-3}$	90%	1585
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	$(1.4\pm1.0$)) %		1668
$K^+K^-2\pi^+2\pi^-$	< 1.4	%	90%	1627
$K_S^0 K^- 2\pi^+ \pi^- + \text{c.c.}$	$(1.0\pm0.8$	3) %		1666
$2K^{+}2K^{-}$	< 1.3	$\times 10^{-3}$	90%	1470
$\phi\phi$	< 1.1	$\times 10^{-3}$	90%	1506
$p\overline{p}$	< 2.0	$\times 10^{-3}$	90%	1558
$ ho \overline{ ho} \pi^+ \pi^-$	seen			1461
$\gamma\gamma$	$(1.6\pm1.0$	$(1) \times 10^{-4}$		1819
$\gamma J/\psi(1S)$	< 1.4	%	90%	501
$\pi^+\pi^-\eta$	< 6	$\times 10^{-3}$	90%	1766
$\pi^+\pi^-\eta'$	(2.6 ± 1.9	$(9) \times 10^{-3}$		1680
$\pi^+\pi^-\eta_c(1S)$	< 25	%	90%	538

ψ (2S)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=3686.10\pm0.06~{\rm MeV}~{\rm (S}=5.9)$ Full width $\Gamma=294\pm8~{\rm keV}$

$\psi(2S)$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	
hadrons	(97.85 ± 0.13)) %	
virtual $\gamma ightarrow $ hadrons	(1.73 ± 0.14) % S=1.5	_
ggg	(10.6 ± 1.6)) %	_
γ g g	(1.03 ± 0.29) %	_
light hadrons	(15.4 ± 1.5)) %	_
K^0_S anything	$(16.0 \pm 1.1$) %	_
e^+e^-	(7.93 ± 0.17)	$) \times 10^{-3}$	1843
$\mu^+\mu^-$	(8.0 ± 0.6)	$) \times 10^{-3}$	1840
$\tau^+\tau^-$	(3.1 ± 0.4	$) \times 10^{-3}$	489
Decays into J_i	$/\psi(1\mathcal{S})$ and anyt	hing	
$J/\psi(1S)$ anything	(61.4 ± 0.6)) %	_
$J/\psi(1S)$ neutrals	(25.38 ± 0.32)) %	_
$J/\psi(1S)\pi^+\pi^-$	(34.68 ± 0.30)) %	477
$J/\psi(1S)\pi^0\pi^0$	(18.24 ± 0.31)) %	481
$J/\psi(1S)\eta$	(3.37 ± 0.05)) %	199
$J/\psi(1S)\pi^0$	(1.268 ± 0.032	$) \times 10^{-3}$	528
Hadı	onic decays		
$\pi^+\pi^-$	(7.8 ± 2.6)	$) \times 10^{-6}$	1838
$\pi^+\pi^-\pi^0$	(2.01 ± 0.17	$) \times 10^{-4}$ S=1.7	1830

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

Page 157

$\rho(770)\pi \rightarrow \pi^{+}\pi^{-}\pi^{0}$	(3.2	±1.2	$) \times 10^{-5}$	S=1.8	_
$ ho$ (2150) $\pi ightarrow \pi^+\pi^-\pi^0$	(1.9	+1.2	$) \times 10^{-4}$		_
$2(\pi^{+}\pi^{-})$	(2.4	±0.6	$) \times 10^{-4}$	S=2.2	1817
$\rho^0 \pi^+ \pi^-$	(2.2) × 10 ⁻⁴	S=1.4	1750
$2(\pi^{+}\pi^{-})\pi^{0}$	(2.9	± 1.0	$) \times 10^{-3}$	S=4.7	1799
$\rho a_2(1320)$	(2.6) × 10 ⁻⁴		1500
$\pi + \pi^{-1} \pi^{0} \pi^{0} \pi^{0}$	(5.3	± 0.9) × 10 ⁻³		1800
$\pi^{+}\pi^{-}4\pi^{0}$	(1.4	± 1.0	$) \times 10^{-3}$		1778
$ ho^{\pm}\pi^{\mp}\pi^{0}\pi^{0}$	< 2.7			CL=90%	1737
$3(\pi^{+}\pi^{-})$	(3.5	± 2.0	$) \times 10^{-4}$	S=2.8	1774
$2(\pi^{+}\pi^{-}\pi^{0})$	(4.8		$) \times 10^{-3}$		1776
$3(\pi^+\pi^-)\pi^0$	(3.5	± 1.6	$) \times 10^{-3}$		1746
$2(\pi^{+}\pi^{-})3\pi^{0}$	•	±0.31	,		1748
$\eta \pi^+ \pi^-$	< 1.6		,	CL=90%	1791
$\eta_{\pi}^{+} + \pi^{-} \pi^{0}$	(9.5	± 1.7	$) \times 10^{-4}$		1778
$\eta^{2}(\pi^{+}\pi^{-})$	(1.2		$) \times 10^{-3}$		1758
$\eta \pi + \pi - \pi^0 \pi^0$	< 4		$\times 10^{-4}$	CL=90%	1760
$\eta \pi^{+} \pi^{-} 3 \pi^{0}$	< 2.1		$\times 10^{-3}$	CL=90%	1736
$\eta^{2}(\pi^{+}\pi^{-}\pi^{0})$	< 2.1		$\times 10^{-3}$	CL=90%	1705
$ ho\eta$	(2.2	± 0.6	$) \times 10^{-5}$	S=1.1	1717
$\eta'\pi^+\pi^-\pi^0$	(4.5		$) \times 10^{-4}$		1692
$\eta' ho$	(1.9	$+1.7 \\ -1.2$	$) \times 10^{-5}$		1625
$\omega\pi^0$	(2.1) × 10 ⁻⁵		1757
$\omega \pi^+ \pi^-$	(7.3	± 1.2	$) \times 10^{-4}$	S=2.1	1748
$\omega \pi^+ \pi^- 2\pi^0$	(8.7	± 2.4	$) \times 10^{-3}$	U 1 .1	1715
$b_1^{\pm} \pi^{\mp}$	(4.0	± 0.6	$) \times 10^{-4}$	S=1.1	1635
$\omega f_2(1270)$	`) × 10 ⁻⁴		1515
$\omega \pi^0 \pi^0$	`		$) \times 10^{-3}$		1749
$\omega 3\pi^0$	< 8			CL=90%	1736
$b_1^0 \pi^0$		± 0.6	$) \times 10^{-4}$		_
$\omega \eta$			$\times 10^{-5}$		1715
$\omega \eta'$	(3.2	+2.5	$) \times 10^{-5}$		1623
$\phi \pi^0$		2.1	× 10 ⁻⁷	CI =90%	1699
$\phi \pi^+ \pi^-$			$\times 10^{-4}$		1690
$\phi f_0(980) \to \pi^+ \pi^-$			$) \times 10^{-5}$		_
$\phi \eta$)×10 ⁻⁵		1654
$\eta \phi(2170), \ \ \phi(2170) \to$	< 2.2		_	CL=90%	_
$\phi f_0(980), f_0 \to \pi^+\pi^-$					
$\phi \eta'$	(1.54	±0.20	$) \times 10^{-5}$		1555
$\phi f_1(1285)$	•		$) \times 10^{-5}$		1436
$\phi \eta (1405) \rightarrow \phi \pi^+ \pi^- \eta$) × 10 ⁻⁶		_
$\phi f_2^{\prime}(1525)$			$) \times 10^{-5}$		1325
· · · · · · · · · · · · · · · · · · ·	•		-		

K ⁺ K ⁻	$(7.5 \pm 0.5) \times 10^{-5}$	1776
$K^+K^-\pi^+$	$(7.3 \pm 0.5) \times 10^{-4}$	1754
$K^+K^-\pi^0$	$(4.07 \pm 0.31) \times 10^{-5}$	1754
$K_S^0 K_S^0$	$< 4.6 \times 10^{-6}$	1775
$K_{S}^{0}K_{I}^{0}$	$(5.34 \pm 0.33) \times 10^{-5}$	1775
$K_S^0 K_L^0 \pi^0$	$< 3.0 \times 10^{-4} \text{ CL} = 90\%$	1753
$\kappa^+ \kappa^- \pi^0 \pi^0$	$(2.6 \pm 1.3) \times 10^{-4}$	1728
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	$(1.26 \pm 0.09) \times 10^{-3}$	1694
$\omega f_0(1710) ightarrow \omega K^+ K^-$	$(5.9 \pm 2.2) \times 10^{-5}$	_
$K^*(892)^0 K^- \pi^+ \pi^0 + \text{c.c.}$	$(8.6 \pm 2.2) \times 10^{-4}$	_
$K^*(892)^+K^-\pi^+\pi^- + \text{ c.c.}$	$(9.6 \pm 2.8) \times 10^{-4}$	_
$K^*(892)^+ K^- \rho^0 + \text{c.c.}$	$(7.3 \pm 2.6) \times 10^{-4}$	_
$K^*(892)^0 K^- \rho^+ + \text{c.c.}$	$(6.1 \pm 1.8) \times 10^{-4}$	_
$K_S^0 K_S^{0} \pi^{+'} \pi^{-}$	$(2.2 \pm 0.4) \times 10^{-4}$	1724
$\kappa_S^0 \kappa_L^0 \pi^0 \pi^0$	$(1.3 \pm 0.6) \times 10^{-3}$	1726
$K_{S}^{0}K_{I}^{0}\eta$	$(1.3 \pm 0.5) \times 10^{-3}$	1661
$K^+K^-\rho^0$	$(2.2 \pm 0.4) \times 10^{-4}$	1616
$K^*(892)^0 \overline{K}_2^*(1430)^0$	$(1.9 \pm 0.5) \times 10^{-4}$	1417
$K^{+}K^{-}\pi^{+}\pi^{-}\eta$	$(1.3 \pm 0.3) \times 10^{-3}$	1574
$K + K - 2(\pi + \pi^{-})$	$(1.9 \pm 0.9) \times 10^{-3}$	1654
$K + K - 2(\pi + \pi^{-})\pi^{0}$	$(1.9 \pm 0.9) \times 10$ $(1.00 \pm 0.31) \times 10^{-3}$	1611
$K + K^*(892)^- + \text{c.c.}$	$(2.9 \pm 0.4) \times 10^{-5}$ S=1.2	1698
$2(K^+K^-)$	$(6.3 \pm 1.3) \times 10^{-5}$	1499
$2(K^+K^-)\pi^0$	$(0.3 \pm 1.3) \times 10$ $(1.10 \pm 0.28) \times 10^{-4}$	1440
$K^+K^-\phi$	$(7.0 \pm 0.20) \times 10^{-5}$	1546
$K_1(1270)^{\pm}K^{\mp}$	$(1.00 \pm 0.28) \times 10^{-3}$	1588
$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}+\text{c.c.}$	$(6.7 \pm 2.5) \times 10^{-4}$	1674
$\eta K^+ K^-$, no $\eta \phi$	$(3.49 \pm 0.17) \times 10^{-5}$	1664
$X(1750)\eta \rightarrow K^+K^-\eta$	$(4.8 \pm 2.8) \times 10^{-6}$	_
$K_1(1400)^{\pm}K^{\mp}$	$< 3.1 \times 10^{-4} \text{ CL} = 90\%$	1532
$K_2^*(1430)^{\pm} K^{\mp}$	$(7.1 \begin{array}{c} +1.3 \\ -0.9 \end{array}) \times 10^{-5}$	_
2	0.5	
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	$(1.09 \pm 0.20) \times 10^{-4}$	1697
$\omega K^+ K^-$	$(1.62 \pm 0.11) \times 10^{-4}$ S=1.1	1614
$\omega K_S^0 K_S^0$	$(7.0 \pm 0.5) \times 10^{-5}$	1612
$\omega K^*(892)^+ K^- + \text{c.c.}$	$(2.07 \pm 0.26) \times 10^{-4}$	1482
$\omega K_2^*(1430)^+ K^- + \text{c.c.}$	$(6.1 \pm 1.2) \times 10^{-5}$	1252
$\omega \overline{K}^*(892)^0 K^0$	$(1.68 \pm 0.30) \times 10^{-4}$	1481
$\omega \overline{K}_{2}^{*}(1430)^{0} K^{0}$	$(5.8 \pm 2.2) \times 10^{-5}$	1250
$\omega X(1440) \rightarrow \omega K_S^0 K^- \pi^+ +$	$(1.6 \pm 0.4) \times 10^{-5}$	_
$\omega X (1440) ightarrow \omega K^+ K^- \pi^0$	(1.09 ± 0.26) $\times 10^{-5}$	_
$\omega K(1440) \rightarrow \omega K^{-}K^{-}\pi^{+} + \omega f_1(1285) \rightarrow \omega K_S^{0}K^{-}\pi^{+} + \omega f_2(1285) \rightarrow \omega K_S^{0}K^{-}\pi^{+} + \omega f_1(1285) \rightarrow \omega K_S^{0}K^{-}\pi^{+} + \omega f_2(1285) \rightarrow \omega K_S^{0}K^{0}K^{0}K^{-}\pi^{+} + \omega f_2(1285) \rightarrow \omega K_S^{0}K^{0}K^{0}K^{0}K^{0}K^{0}K^{0}K^{0}K$	$(3.0 \pm 1.0) \times 10^{-6}$	_
C.C.	(3.0 ±1.0) × 10	
5.5.		

$\omega f_1(1285) \rightarrow \omega K^+ K^- \pi^0$	(1.2	± 0.7) $\times 10^{-6}$		_
$p\overline{p}$	•	± 0.08) $\times 10^{-4}$		1586
$n\overline{n}$	•	± 0.15) $\times 10^{-4}$		1586
$p\overline{p}\pi^0$	(1.53	± 0.07) $\times 10^{-4}$		1543
$N(940)\overline{p}+$ c.c. $ ightarrow p\overline{p}\pi^0$	(6.4	$^{+1.8}_{-1.3}$) × 10 ⁻⁵		_
$N(1440)\overline{p}+ \text{c.c.} \rightarrow p\overline{p}\pi^0$	(7.3	$^{+1.7}_{-1.5}$) × 10 ⁻⁵	S=2.5	_
$N(1520)\overline{p}+ ext{c.c.} ightarrow \ p\overline{p}\pi^0$	(6.4	$^{+2.3}_{-1.8}$) \times 10 ⁻⁶		_
$N(1535)\overline{p}+$ c.c. $ ightarrow \; p\overline{p}\pi^0$	(2.5	± 1.0) $\times 10^{-5}$		_
$N(1650)\overline{p}+ ext{c.c.} ightarrow \ p\overline{p}\pi^0$	(3.8	$^{+1.4}_{-1.7}$) $ imes$ 10 ⁻⁵		_
$N(1720)\overline{p}+ \text{c.c.} \rightarrow p\overline{p}\pi^0$	(1.79	$^{+0.26}_{-0.70}$) \times 10 ⁻⁵		_
$N(2300)\overline{p}+ { m c.c.} ightarrow p\overline{p}\pi^0$	(2.6	$^{+1.2}_{-0.7}$) × 10 ⁻⁵		_
$N(2570)\overline{p}+ \text{c.c.} \rightarrow p\overline{p}\pi^0$	(2.13	$^{+0.40}_{-0.31}$) \times 10 ⁻⁵		_
$\rho \overline{\rho} \pi^+ \pi^-$	(6.0	± 0.4) $\times 10^{-4}$		1491
$p\overline{p}K^+K^-$		± 0.7) $\times 10^{-5}$		1118
$p\overline{p}\eta$	(6.0	± 0.4) $\times 10^{-5}$		1373
$N(1535)\overline{p}+ { m c.c.} ightarrow p\overline{p}\eta$	(4.5	$^{+0.7}_{-0.6}$) \times 10 ⁻⁵		_
$p\overline{p}\pi^+\pi^-\pi^0$	(7.3	± 0.7) × 10 ⁻⁴		1435
$p\overline{p}\rho^0$	•	± 2.2) × 10 ⁻⁵		1252
$p\overline{p}\omega$	•	± 2.1) × 10 ⁻⁵		1247
$p\overline{p}\eta'$		± 0.13) $\times 10^{-5}$		1141
$p\overline{p}\phi$		± 0.6) $\times 10^{-6}$		1109
$\phi X(1835) ightarrow ho \overline{ ho} \phi$	< 1.82	_	CL=90%	_
$p\overline{n}\pi^-$ or c.c. $p\overline{n}\pi^-\pi^0$	•	± 0.17) $\times 10^{-4}$		1400
$\frac{\rho m}{\Lambda \overline{\Lambda}}$	•	± 0.7) × 10 ⁻⁴ ± 0.13) × 10 ⁻⁴		1492 1467
$\Lambda \overline{\Lambda} \pi^0$		± 0.13) × 10 ± 0.7) × 10 ⁻⁶		1407
$\Lambda \overline{\Lambda} \eta$	•	± 0.32) × 10 ⁻⁵		1197
$\Lambda(1670)\overline{\Lambda} \rightarrow \Lambda \overline{\Lambda} \eta$		± 0.32) $\times 10^{-5}$		_
$\Lambda \overline{\Lambda} \omega$ (782)	(3.3	± 0.4) × 10 ⁻⁵		1037
$\Lambda \overline{\Lambda} \pi^+ \pi^-$		± 0.6) × 10 ⁻⁴		1346
$\Lambda \overline{p} K^+$	•	± 0.14) $\times 10^{-4}$		1327
$\Lambda \overline{p} K^* (892)^+ + \text{c.c.}$		± 0.7) $\times 10^{-5}$		1087
$\Lambda \overline{p} K^+ \pi^+ \pi^-$		± 0.4) $\times 10^{-4}$		1167
$\overline{\Lambda}nK_S^0$ + c.c.	(8.1	± 1.8) × 10 ⁻⁵		1324
$\Delta^{++}\overline{\Delta}^{}$	(1.28	± 0.35) $\times 10^{-4}$		1371
$\Lambda \overline{\Sigma}^+ \pi^- + \text{c.c.}$		± 0.13) $\times 10^{-4}$		1376
$\Lambda \overline{\Sigma}^- \pi^+ + \text{c.c.}$	•	± 0.14) $\times 10^{-4}$		1379
$\Lambda \overline{\Sigma}^0 + \text{c.c.}$	•	± 0.7) $\times 10^{-6}$		1437
$\Sigma^0 \overline{p} K^+ + \text{c.c.}$	(1.67	$\pm 0.18) \times 10^{-5}$		1291

$\Sigma^{+}\overline{\Sigma}^{-}$	(2.43	± 0.10) × 10 ⁻⁴	S=1.4	1408
$\sum_{i=0}^{\infty} \overline{\sum_{i=0}^{\infty}} 0$	(2.35	± 0.09) × 10 ⁻⁴	S=1.1	1405
$\Sigma^{-}\overline{\underline{\Sigma}}^{+}$,			$) \times 10^{-4}$		1401
$\Sigma^{+}\overline{\Sigma}^{-}\eta$				$) \times 10^{-6}$		1108
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$				$) \times 10^{-5}$		1218
$\Sigma(1385)^{-}\overline{\Sigma}(1385)^{+}$				$) \times 10^{-5}$		1218
$\Sigma (1385)^0 \overline{\Sigma} (1385)^0$				$) \times 10^{-5}$		1218
<u>=</u> - = + =0 = 0				$) \times 10^{-4}$	S=1.1	1284
				$) \times 10^{-4}$	S=4.2	1291
$\Xi(1530)^0 \overline{\Xi}(1530)^0$				$) \times 10^{-5}$		1025
$\Lambda \overline{\Xi}^{+} K^{-} + \text{c.c.}$				$) \times 10^{-5}$		1114
$\Xi(1530)^{-}\overline{\Xi}(1530)^{+}$				$) \times 10^{-4}$		1025
$\Xi(1530)^{-}\overline{\Xi}^{+}$ $\Xi(1530)^{0}\overline{\Xi}^{0}$				$) \times 10^{-6}$ $) \times 10^{-6}$		1165
$\Xi(1690)^-\overline{\Xi}^+ \rightarrow K^-\Lambda\overline{\Xi}^+$	($) \times 10^{-6}$		1169
C C		3.2	± 1.0) × 10		
$\Xi(1820)^{-}\overline{\Xi}^{+} \rightarrow K^{-}\Lambda\overline{\Xi}^{+}$	+ (1.20	±0.32) × 10 ⁻⁵		-
$\Sigma^0 = C.c.$ $\Sigma^0 = K^- + c.c.$	(3.7	± 0.4	$) \times 10^{-5}$		1060
$\Omega^{-}\overline{\Omega}{}^{+}$				$) \times 10^{-5}$	S=1.3	774
$\eta_c \pi^+ \pi^- \pi^0$	<	1.0		$\times 10^{-3}$	CL=90%	512
$h_c(1P)\pi^0$	(7.4	±0.5	$) \times 10^{-4}$		85
$\Lambda_c^+ \overline{p} e^+ e^- + \text{c.c.}$				\times 10 ⁻⁶		830
$\Theta(1540)\overline{\Theta}(1540) ightarrow$	$[\mathit{hhaa}] <$	8.8		$\times 10^{-6}$	CL=90%	_
$K_S^0 p K^- \overline{n} + \text{c.c.}$						
$\Theta(1540) K^- \overline{n} o K_S^0 \rho K^- \overline{n}$	$[\mathit{hhaa}] <$	1.0		\times 10 ⁻⁵	CL=90%	_
$\Theta(1540) K_S^0 \overline{p} \rightarrow K_S^{0} \overline{p} K^+ n$	$[\mathit{hhaa}] <$	7.0		$\times 10^{-6}$	CL=90%	_
	$[\mathit{hhaa}] <$	2.6		$\times 10^{-5}$	CL=90%	_
$\overline{\Theta}(1540)K_S^0 p \rightarrow K_S^{0} p K^{-} \overline{n}$	$[\mathit{hhaa}] <$	6.0		\times 10 ⁻⁶	CL=90%	_
	Radiative	deca	ys			
$\gamma \chi_{c0}(1P)$	(9.79	± 0.20) %		261
$\gamma \chi_{c1}(1P)$	(9.75	± 0.24) %		171
$\gamma \chi_{c2}(1P)$			± 0.20			128
$\gamma \eta_c(1S)$				$) \times 10^{-3}$	S=1.3	635
$\gamma \eta_{c}(2S)$,			$) \times 10^{-4}$		48
$\gamma \pi^0$,			$) \times 10^{-6}$	S=1.4	1841
$\gamma 2(\pi^{+}\pi^{-})$) × 10 ⁻⁴		1817
$\gamma 3(\pi^{+}\pi^{-})$		1.7			CL=90%	1774
$\gamma \eta'(958)$) × 10 ⁻⁴		1719
$\gamma f_2(1270)$			00) × 10 ⁻⁴	S=1.8	1622
$\gamma f_0(1370) \rightarrow \gamma K \overline{K}$				$) \times 10^{-5}$		1588
$\gamma f_0(1500)$				$) \times 10^{-5}$		1529
$\gamma f_2'(1525)$	(3.3	± 0.8	$) \times 10^{-5}$		1531

$\gamma f_0(1710) \rightarrow \gamma \pi \pi$	(3.5	± 0.6	$) \times 10^{-5}$		_
$\gamma f_0(1710) \rightarrow \gamma K K$	(6.6		$) \times 10^{-5}$		_
$\gamma f_0(2100) \rightarrow \gamma \pi \pi$	(4.8		$) \times 10^{-6}$		1244
$\gamma f_0(2200) \rightarrow \gamma K \overline{K}$	(3.2	± 1.0	$) \times 10^{-6}$		1193
$\gamma f_J(2220) \rightarrow \gamma \pi \pi$	<	5.8			CL=90%	1168
$\gamma f_J(2220) \rightarrow \gamma K \overline{K}$		9.5			CL=90%	1168
$\gamma\eta$	($) \times 10^{-7}$		1802
$\gamma \eta \pi^+ \pi^-$	(8.7	± 2.1	$) \times 10^{-4}$		1791
$\gamma \eta (1405) \rightarrow \gamma K \overline{K} \pi$		9			CL=90%	1569
$\gamma \eta(1405) \rightarrow \gamma \eta \pi^+ \pi^-$		3.6		$) \times 10^{-5}$		_
$\gamma \eta(1405) ightarrow \gamma f_0(980) \pi^0 ightarrow \gamma \pi^+ \pi^- \pi^0$	• <	5.0		× 10 ⁻⁷	CL=90%	_
$\gamma \eta($ 1475 $) ightarrow \gamma K \overline{K} \pi$	<	1.4			CL=90%	_
$\gamma \eta$ (1475) $ ightarrow \gamma \eta \pi^+ \pi^-$	<	8.8		$\times 10^{-5}$	CL=90%	_
$\gamma K^{*0} K^{+} \pi^{-} + \text{c.c.}$	(3.7	±0.9	$) \times 10^{-4}$		1674
$\gamma K^{*0} \overline{K}^{*0}$	(2.4	±0.7	$) \times 10^{-4}$		1613
$\gamma K_{S}^{0} K^{+} \pi^{-} + \text{c.c.}$	(2.6	±0.5	$) \times 10^{-4}$		1753
$\gamma K^+ K^- \pi^+ \pi^-$	(1.9	±0.5	$) \times 10^{-4}$		1726
$\gamma K^+ K^- 2 (\pi^+ \pi^-)$		2.2			CL=90%	1654
$\gamma 2(K^+K^-)$	<	4		$\times 10^{-5}$	CL=90%	1499
$\gamma p \overline{p}$	(3.9	±0.5	$) \times 10^{-5}$	S=2.0	1586
$\gamma f_2(1950) ightarrow \gamma ho \overline{ ho}$	(1.20	±0.22	$) \times 10^{-5}$		_
$\gamma f_2(2150) \rightarrow \gamma \rho \overline{\rho}$	(7.2	± 1.8	$) \times 10^{-6}$		_
$\gamma X(1835) \rightarrow \gamma \rho \overline{\rho}$	(4.6	$^{+1.8}_{-4.0}$	$) \times 10^{-6}$		_
$\gamma X \rightarrow \gamma p \overline{p}$	[nnaa] <	2		$\times 10^{-6}$	CL=90%	_
$\gamma \rho \overline{\rho} \pi^+ \pi^-$				$) \times 10^{-5}$		1491
$\gamma \gamma$				\times 10 ⁻⁴	CL=90%	1843
$\gamma\gamma$ J/ ψ	(3.1	$^{+1.0}_{-1.2}$) × 10 ⁻⁴		542
$e^+e^-\eta'$	(1.90	± 0.26	$) \times 10^{-6}$		1719
$e^+e^-\eta_c(1S)$	(3.8	± 0.4	$) \times 10^{-5}$		635
$e^+e^-\chi_{c0}(1P)$				$) \times 10^{-3}$		261
$e^+e^-\chi_{c1}(1P)$	(8.5	± 0.6	$) \times 10^{-4}$		171
$e^{+}e^{-}\chi_{c2}(1P)$	(7.0	± 0.8	$) \times 10^{-4}$		128
	Weak de	ecavs				
$D^0 e^+ e^- + \text{c.c.}$		1.4		× 10 ⁻⁷	CL=90%	1371
$\Lambda_c^+ \overline{\Sigma}^- + \text{c.c.}$		1.4			CL=90%	586
c - '					33,0	220
	Other de	-	1			
invisible	<	1.6		%	CL=90%	_

 ψ (3770)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=3773.7\pm0.4$ MeV (S = 1.4) Full width $\Gamma=27.2\pm1.0$ MeV

run widin i — 27	.2 <u>+</u> 1.0 NICV	-		
JUSTON DECAY MODES	Γυο ation (Γ /Γ		cale factor/	p (Ma)//a)
ψ (3770) DECAY MODES	Fraction (Γ_i/Γ_i)) Cont	idence level	(iviev/c)
$D\overline{D}$	$(93 \begin{array}{cc} +8 \\ -9 \end{array}$) %	S=2.0	287
$D^0 \overline{D}{}^0$	$(52 \begin{array}{cc} +4 \\ -5 \end{array}$) %	S=2.0	287
D^+D^-	(41 ± 4)) %	S=2.0	254
$J/\psi X$	(5.0 ±2.2	$) \times 10^{-3}$		_
$J/\psi \pi^+ \pi^-$	(1.93±0.2			561
$J/\psi \pi^0 \pi^0$	(8.0 ±3.0	$) \times 10^{-4}$		565
$J/\psi \eta$		$) \times 10^{-4}$		361
$J/\psi \pi^0$	< 2.8	$\times 10^{-4}$	CL=90%	604
$e^{+}e^{-}$	(9.6 \pm 0.7	$) \times 10^{-6}$	S=1.3	1887
De	cays to light hadron	ıs		
$b_1(1235)\pi$	< 1.4	$\times 10^{-5}$	CL=90%	1684
$\phi \eta'$	< 7	\times 10 ⁻⁴	CL=90%	1607
$\omega \eta'$	< 4	$\times 10^{-4}$	CL=90%	1672
$ ho^{O'}\eta'$	< 6	$\times 10^{-4}$	CL=90%	1674
$\phi\eta$	(3.1 ± 0.7			1703
$\omega\eta$	< 1.4	$\times 10^{-5}$	CL=90%	1762
$ ho^0 \eta$	< 5	$\times 10^{-4}$	CL=90%	1764
$\phi\pi^{f 0}$	< 3	$\times 10^{-5}$	CL=90%	1746
$\omega \pi^0$	< 6	$\times 10^{-4}$	CL=90%	1803
$\pi^+\pi^-\pi^0$	< 5	\times 10 ⁻⁶	CL=90%	1874
$ ho\pi$	< 5	\times 10 ⁻⁶	CL=90%	1805
$K^*(892)^+ K^- + \text{c.c.}$	< 1.4	\times 10 ⁻⁵	CL=90%	1745
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	< 1.2	\times 10 ⁻³	CL=90%	1745
$K_S^0 K_L^0$	< 1.2	$\times 10^{-5}$	CL=90%	1820
$2(\pi^{+}\pi^{-})$	< 1.12	$\times 10^{-3}$	CL=90%	1861
$2(\pi^{+}\pi^{-})\pi^{0}$	< 1.06	\times 10 ⁻³	CL=90%	1844
$2(\pi^{+}\pi^{-}\pi^{0})$	< 5.85	%	CL=90%	1821
$\omega \pi^+ \pi^-$	< 6.0	\times 10 ⁻⁴	CL=90%	1794
$3(\pi^{+}\pi^{-})$	< 9.1	\times 10 ⁻³		1820
$3(\pi^{+}\pi^{-})\pi^{0}$	< 1.37	%	CL=90%	1792
$3(\pi^+\pi^-)2\pi^0$	< 11.74	%	CL=90%	1760
$\eta \pi^+ \pi^-$	< 1.24	$\times 10^{-3}$		1836
$\pi^{+}\pi^{-}2\pi^{0}$	< 8.9		CL=90%	1862
$ ho^0 \pi^+ \pi^-$	< 6.9	$\times 10^{-3}$		1796
$\eta 3\pi$	< 1.34		CL=90%	1824
$\eta 2(\pi^+\pi^-)$	< 2.43	%	CL=90%	1804
HTTP://PDG.LBL.GOV	Page 163	Created:	7/10/202	3 15:48

$\eta ho^{0} \pi^{+} \pi^{-}$	<	1.45	%	CL=90%	1708
η' 3 π	<	2.44	$\times 10^{-3}$	CL=90%	1741
$K^+K^-\pi^+\pi^-$	<	9.0	\times 10 ⁻⁴	CL=90%	1773
$\phi \pi^+ \pi^-$	<	4.1	$\times 10^{-4}$	CL=90%	1737
$K^+K^-2\pi^0$	<	4.2	\times 10 ⁻³	CL=90%	1774
$4(\pi^{+}\pi^{-})$	<	1.67	%	CL=90%	1757
$4(\pi^{+}\pi^{-})\pi^{0}$	<	3.06	%	CL=90%	1720
$\phi f_0(980)$	<	4.5	$\times 10^{-4}$	CL=90%	1597
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	<	2.36	$\times 10^{-3}$	CL=90%	1741
$K^+K^- ho^0\pi^0$	<	8	$\times 10^{-4}$	CL=90%	1624
$K^+K^- ho^+\pi^-$	<	1.46	%	CL=90%	1623
$\omega K^+ K^-$	<	3.4	$\times 10^{-4}$	CL=90%	1664
$\phi \pi^+ \pi^- \pi^0$	<	3.8	$\times 10^{-3}$	CL=90%	1723
$K^{*0}K^{-}\pi^{+}\pi^{0}$ + c.c.	<	1.62	%	CL=90%	1694
$K^{*+}K^{-}\pi^{+}\pi^{-}+$ c.c.	<	3.23	%	CL=90%	1693
$K^{+}K^{-}\pi^{+}\pi^{-}2\pi^{0}$	<	2.67	%	CL=90%	1705
$K^{+}K^{-}2(\pi^{+}\pi^{-})$	<	1.03	%	CL=90%	1702
$K^+ K^- 2(\pi^+ \pi^-) \pi^0$	<	3.60	%	CL=90%	1661
$\eta K^+ K^-$	<	4.1	\times 10 ⁻⁴	CL=90%	1712
$\eta K^+ K^- \pi^+ \pi^-$	<	1.24	%	CL=90%	1624
$ ho^0$ K $^+$ K $^-$	<	5.0	$\times 10^{-3}$	CL=90%	1666
$2(K^{+}K^{-})$	<	6.0	\times 10 ⁻⁴	CL=90%	1552
$\phi K^+ K^-$	<	7.5	\times 10 ⁻⁴	CL=90%	1598
$2(K^+K^-)\pi^0$	<	2.9	\times 10 ⁻⁴	CL=90%	1494
$2(K^{+}K^{-})\pi^{+}\pi^{-}$	<	3.2	$\times 10^{-3}$	CL=90%	1426
$K_S^0 K^- \pi^+$	<	3.2	$\times 10^{-3}$	CL=90%	1799
$K_{S}^{0}K^{-}\pi^{+}\pi^{0}$	<	1.33	%	CL=90%	1773
$K_{S}^{0}K^{-}\rho^{+}$	<	6.6	$\times 10^{-3}$	CL=90%	1665
$K_{S}^{0}K^{-}2\pi^{+}\pi^{-}$	<	8.7	$\times 10^{-3}$	CL=90%	1740
$K_{S}^{0}K^{-}\pi^{+}\rho^{0}$	<	1.6	%	CL=90%	1621
$K_{S}^{0}K^{-}\pi^{+}\eta$	<	1.3	%	CL=90%	1670
$K_{S}^{0}K^{-}2\pi^{+}\pi^{-}\pi^{0}$		4.18	%	CL=90%	1703
$K_{S}^{0}K^{-}2\pi^{+}\pi^{-}\eta$		4.8	%	CL=90%	1570
$K_{S}^{0}K^{-}\pi^{+}2(\pi^{+}\pi^{-})$		1.22	%	CL=90%	1658
$K_0^0 K^- \pi^+ 2\pi^0$		2.65	%	CL=90%	1742
$K_0^{S}K^{-}K^{+}K^{-}\pi^{+}$					
		4.9	× 10 ⁻³	CL=90%	1491
$K_{S}^{0}K^{-}K^{+}K^{-}\pi^{+}\pi^{0}$		3.0	%	CL=90%	1427
$K_{S}^{0}K^{-}K^{+}K^{-}\pi^{+}\eta$		2.2	%	CL=90%	1214
$K^{*0}K^{-}\pi^{+}$ + c.c.		9.7	\times 10 ⁻³	CL=90%	1722
$p\overline{p}\pi^0$		4	\times 10 ⁻⁵		1595
$p\overline{p}\pi^+\pi^-$		5.8	\times 10 ⁻⁴	CL=90%	1544
$\Lambda \overline{\Lambda}$		1.2	\times 10 ⁻⁴		1522
$p\overline{p}\pi^+\pi^-\pi^0$	<	1.85	\times 10 ⁻³	CL=90%	1490

$\omega \underline{p} \overline{p}$	< 2.9	$\times 10^{-4}$	CL=90%	1310
$\Lambda \overline{\Lambda} \pi^0$	< 7	$\times 10^{-5}$	CL=90%	1469
$p\overline{p}2(\pi^+\pi^-)$	< 2.6	$\times 10^{-3}$	CL=90%	1426
$\eta p \overline{p}$	< 5.4	$\times 10^{-4}$	CL=90%	1431
$\eta p \overline{p} \pi^+ \pi^-$	< 3.3	$\times 10^{-3}$	CL=90%	1284
$\rho^{0} p \overline{p}$	< 1.7	$\times 10^{-3}$	CL=90%	1314
p p K+K−	< 3.2	$\times 10^{-4}$	CL=90%	1186
$\eta p \overline{p} K^+ K^-$	< 6.9	$\times 10^{-3}$	CL=90%	737
$\pi^0 p \overline{p} K^+ K^-$	< 1.2	$\times 10^{-3}$	CL=90%	1094
$\phi p \overline{p}$	< 1.3	$\times 10^{-4}$	CL=90%	1178
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	< 2.5	$\times 10^{-4}$	CL=90%	1405
$\Lambda \overline{p} K^+$	< 2.8	$\times 10^{-4}$	CL=90%	1387
$\Lambda \overline{p} K^+ \pi^+ \pi^-$	< 6.3	$\times 10^{-4}$	CL=90%	1234
$\Lambda \overline{\Lambda} \eta$	< 1.9	$\times 10^{-4}$	CL=90%	1263
$\Sigma^{+}\overline{\Sigma}^{-}$	< 1.0	$\times 10^{-4}$	CL=90%	1465
$\sum_{0} \frac{\overline{\Sigma}_{0}}{\overline{\Sigma}_{0}}$ $= + \frac{\overline{\Xi}_{0}}{\overline{\Xi}_{0}}$	< 4	$\times 10^{-5}$	CL=90%	1462
<u>=</u> † <u>=</u> -	< 1.5	$\times 10^{-4}$	CL=90%	1347
=0 $=0$	< 1.4	$\times 10^{-4}$	CL=90%	1353
	Radiative decays			
$\gamma \chi_{c2}$	< 6.4	× 10 ⁻⁴	CL=90%	211
$\gamma \chi_{c1}$	(2.49±0.2		GE 3070	254
$\gamma \chi_{c0}$	(6.9 ± 0.6)	_		342
$\gamma \eta_c$	< 7	× 10 ⁻⁴	CL=90%	707
$\gamma \eta_c(2S)$	< 9	× 10 ⁻⁴	CL=90%	134
$\gamma \eta'$	< 1.8	\times 10 ⁻⁴	CL=90%	1765
$\gamma \eta$	< 1.5	× 10 ⁻⁴	CL=90%	1847
$\gamma \pi^0$	< 2	× 10 ⁻⁴	CL=90%	1884

ψ_2 (3823)

$$I^G(J^{PC}) = 0^-(2^{--})$$

I, J, P need confirmation.

was $\psi(3823)$, X(3823)

Mass
$$m=3823.5\pm0.5$$
 MeV (S = 1.4) Full width Γ < 2.9 MeV, CL = 90%

Branching fractions are given relative to the one **DEFINED AS 1**.

ψ_2 (3823) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$J/\psi(1S)\pi^+\pi^-$	< 0.06	90%	607
$J/\psi(1S)\pi^0\pi^0$	< 0.11	90%	610
$J/\psi(1S)\pi^0$	< 0.030	90%	646
$J/\psi(1S)\eta$	< 0.14	90%	431
$\chi_{c0}\gamma$	< 0.24	90%	387
$\chi_{c1}\gamma$	DEFINED AS 1		300

HTTP://PDG.LBL.GOV

Page 165

 $\chi_{c2}\gamma$

$$0.28 \begin{array}{l} +0.14 \\ -0.11 \end{array}$$

258

$$\psi_{3}(3842)$$

$$I^G(J^{PC}) = 0^-(3^{--})$$

J, P need confirmation.

Seen by a single experiment only.

Mass
$$m=3842.71\pm0.20$$
 MeV Full width $\Gamma=2.8\pm0.6$ MeV

ψ_3 (3842) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
D^+D^-	seen	443
$D^0 \overline{D}{}^0$	seen	463

$$\chi_{c1}(3872)$$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

also known as X(3872)

Mass
$$m=3871.65\pm0.06~{
m MeV}$$
 $m_{\chi_{c1}(3872)}-m_{J/\psi}=775\pm4~{
m MeV}$ Full width $\Gamma=1.19\pm0.21~{
m MeV}~{
m (S}=1.1)$

χ_{c1} (3872) DECAY MODES	Fraction (Γ_i /	Fraction (Γ_i/Γ) Confid		<i>p</i> (MeV/ <i>c</i>)
e^+e^-	< 2.8	× 10 ⁻⁶	90%	1936
$\pi^+\pi^-\pi^0$	< 9	$\times10^{-3}$	90%	1924
$\pi^+\pi^-J/\psi(1S)$	(3.8± 1.	2) %		650
$\pi^{+}\pi^{-}\pi^{0}J/\psi(1S)$	not seen			588
$\omega \eta_c(1S)$	< 33	%	90%	368
$\omega J/\psi(1S)$	(4.3± 2.	1) %		†
$\phi\phi$	not seen			1646
$D^0 \overline{D}{}^0 \pi^0$	$(49 \begin{array}{c} +18 \\ -20 \end{array}$) %		116
$\overline{D}^{*0} D^0$	(37 ± 9)) %		†
$\frac{\gamma \gamma}{D^0 \overline{D}^0}$	< 11	%	90%	1936
	< 29	%	90%	519
D^+D^-	< 19	%	90%	502
$\pi^0 \chi_{c2}$	< 4	%	90%	273
$\pi^0 \chi_{c1}$	(3.4± 1.	6) %		319
$\pi^0 \chi_{c0}$	< 14	%	90%	_
$\pi^{+}\pi^{-}\eta_{c}(1S)$	< 14	%	90%	745
$\pi^0\pi^0\chi_{c0}$	< 7	%	90%	347
$\pi^+\pi^-\chi_{c0}$	< 2.1	%	90%	340
$\pi^+\pi^-\chi_{c1}$	< 7	$\times 10^{-3}$	90%	218
p p	< 2.4	$\times 10^{-5}$	95%	1693
HTTD://DDC.LBL.COV	Dago 166	Crostodi	7/10/202	2 15.40

HTTP://PDG.LBL.GOV

Page 166

Rad	liativ	e de	cays
i vau	iia ti v	c uc	Cayo

$\gamma D^+ D^-$	< 4	%	90%	502
$\gamma \overline{D}{}^0 D^0$	< 6	%	90%	519
γ J/ψ	(8 ± 4	$) \times 10^{-3}$		697
$\gamma \chi_{c1}$	< 9	$\times 10^{-3}$	90%	344
$\gamma \chi_{c2}$	< 3.2	%	90%	303
$\gamma \psi$ (2S)	(4.5± 2.	0) %		181
	C-violating decays			
$\eta J/\psi$	< 1.8	%	90%	491

$$\chi_{c0}(3915)$$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

was X(3915)

Mass
$$m=3921.7\pm1.8~{\rm MeV}~{\rm (S}=1.5)$$
 Full width $\Gamma=18.8\pm3.5~{\rm MeV}$

χ_{c0} (3915) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\frac{\omega J/\psi}{D^{*0} D^0}$	seen	231
$\overline{D}^{*0} D^0$	not seen	312
D^+D^-	seen	591
$\pi^+\pi^-\eta_c(1S)$	not seen	788
$\eta_{c}\eta_{c}$	not seen	668
$ \eta_c \eta \eta_c \pi^0 K K $	not seen	817
$K\overline{K}$	not seen	1898
$\gamma \gamma$	seen	1961
$\pi^0 \chi_{c1}$	not seen	368

$\chi_{c2}(3930)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass
$$m=3922.5\pm1.0$$
 MeV (S $=1.7$) Full width $\Gamma=35.2\pm2.2$ MeV (S $=1.2$)

χ_{c2} (3930) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\gamma\gamma}$	seen	1961
$D\overline{D}$	seen	607
D^+D^-	seen	592
$D^0 \overline{D}{}^0$	seen	607
$\pi^+\pi^-\eta_c(1S)$	not seen	788
KK	not seen	1898

$$\psi$$
(4040) $^{[ooaa]}$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=4039\pm 1~{\rm MeV}$ Full width $\Gamma=80\pm 10~{\rm MeV}$

Due to the complexity of the $c\overline{c}$ threshold region, in this listing, "seen" ("not seen") means that a cross section for the mode in question has been measured at effective \sqrt{s} near this particle's central mass value, more (less) than 2σ above zero, without regard to any peaking behavior in \sqrt{s} or absence thereof. See mode listing(s) for details and references.

ψ(4040) DECAY MODES	Fraction (Γ_{i}	/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
e^+e^-	$(1.07 \pm 0.1$.6) × 10 ⁻	-5	2019
$D\overline{D}$	seen	•		775
$D^0 \overline{D}{}^0$	seen			775
D^+D^-	seen			763
$D^*\overline{D}$ + c.c.	seen			569
$D^*(2007)^0\overline{D}{}^0+{ m c.c.}$	seen			575
$D^*(2010)^+ D^- + \text{c.c.}$	seen			561
$D^*\overline{D}^*$	seen			193
$D^*(2007)^0 \overline{D}^*(2007)^0$	seen			226
$D_{0}^{*}(2010)^{+}D^{*}(2010)^{-}$	seen			193
$D^0 D^- \pi^+ + \text{c.c.}$ (excl.	not seen			_
$D^*(2007)^0 \overline{D}{}^0 + \text{c.c.},$				
$D^*(2010)^+D^- + c.c.$				
$D\overline{D}^*\pi$ (excl. $D^*\overline{D}^*$)	not seen			_
$D^0 \overline{D}^{*-} \pi^+ + \text{c.c.}$ (excl.	seen			_
$D^*(2010)^+ D^*(2010)^-)$				
$D_s^+D_s^-$	seen		2	452
$J/\psi \pi^+ \pi^-$	< 4	× 10 ⁻		794
$J/\psi \pi^0 \pi^0$	< 2	× 10 ⁻		797
$J/\psi \eta$	(5.2 ± 0.7)			675
$J/\psi \pi^0$	< 2.8	× 10 ⁻		823
$J/\psi \pi^+\pi^-\pi^0$	< 2	× 10 ⁻		746
$\chi_{c1}\gamma$	< 3.4	× 10 ⁻		494
$\chi_{c2}\gamma$	< 5	× 10		454
$\chi_{c1} \pi^{+} \pi^{-} \pi^{0}$	< 1.1	%	90%	306
$\chi_{c2} \pi^{+} \pi^{-} \pi^{0}$ $h_{c}(1P) \pi^{+} \pi^{-}$	< 3.2	% × 10 ⁻	90%	233
$\phi \pi^+ \pi^-$	< 3	× 10 × 10 ⁻		403
$\frac{\phi \pi}{\Lambda \overline{\Lambda} \pi^+ \pi^-}$	< 3	× 10 × 10 ⁻		1880
$\Lambda \overline{\Lambda} \pi^0$	< 2.9 < 9	× 10 × 10 ⁻		1578 1636
$\Lambda \overline{\Lambda} \eta$	< 9 < 3.0	× 10 × 10		1452
$A\overline{A}$	< 3.0 < 6	× 10 × 10 ⁻		1683
/1/1	< 0	× 10	90%	1003

$\Sigma^{+}\overline{\Sigma}^{-}$	< 1.3	$\times 10^{-4}$	90%	1632
$\sum_{i} 0 \overline{\sum_{i}} 0$	< 7	$\times10^{-5}$	90%	1630
<u>=</u> + <u>=</u> -	< 1.6	$\times 10^{-4}$	90%	1527
<u>=</u> 0 <u>=</u> 0	< 1.8	$\times 10^{-4}$	90%	1533
$\mu^+\mu^-$	(9 ± 6)	$) \times 10^{-6}$		2017

$$\chi_{c1}(4140)$$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

was X(4140)

Mass
$$m=4146.5\pm3.0~{
m MeV}~{
m (S}=1.3)$$
 Full width $\Gamma=19^{+7}_{-5}~{
m MeV}$

χ_{c1} (4140) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$J/\psi\phi$	seen	216
$\gamma \gamma$	not seen	2073

ψ (4160) [00aa]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass
$$m=4191\pm 5~{
m MeV}$$

Full width $\Gamma=70\pm 10~{
m MeV}$

Due to the complexity of the $c\overline{c}$ threshold region, in this listing, "seen" ("not seen") means that a cross section for the mode in question has been measured at effective \sqrt{s} near this particle's central mass value, more (less) than 2σ above zero, without regard to any peaking behavior in \sqrt{s} or absence thereof. See mode listing(s) for details and references.

ψ (4160) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
e^+e^-	$(6.9 \pm 3.3) \times 10$	-6	2096
$\mu^+\mu^-$	seen		2093
$D\overline{D}$	seen		956
$D^0 \overline{D}{}^0$	seen		956
D^+D^-	seen		947
$D^*\overline{D}$ + c.c.	seen		798
$D^*(2007)^0 \overline{D}{}^0 + { m c.c.}$	seen		802
$D^*(2010)^+D^-+$ c.c.	seen		792
$D^* \overline{D}^*$	seen		592
$D^*(2007)^0 \overline{D}^*(2007)^0$	seen		604
$D^*(2010)^+ D^*(2010)^-$	seen		592
$D^0 D^- \pi^+ + \text{c.c.}$ (excl.)	not seen		_
$D^*(2007)^0 \overline{D}^{0} + c.c.,$			
$D^*(2010)^+D^- + c.c.$			

HTTP://PDG.LBL.GOV

Page 169

$D\overline{D}^*\pi + \text{c.c.}$ (excl. $D^*\overline{D}^*$)	seen			_
$D^0 D^{*-} \pi^+ + c.c.$ (excl.	not seen			_
$D^*(2010)^+ D^*(2010)^-)$				
$D_s^+D_s^-$	not seen			719
$D_s^{*+}D_s^- + \text{c.c.}$	seen			385
$J/\psi \pi^+\pi^-$	< 3	$\times10^{-3}$	90%	919
$J/\psi \pi^0 \pi^0$	< 3	$\times10^{-3}$	90%	922
$J/\psi K^+ K^-$	< 2	$\times10^{-3}$	90%	407
$J/\psi\eta$	< 8	$\times10^{-3}$	90%	822
$J/\psi \pi^0$	< 1	$\times10^{-3}$	90%	944
$J/\psi\eta'$	< 5	$\times 10^{-3}$	90%	457
$J/\psi \pi^+\pi^-\pi^0$	< 1	$\times 10^{-3}$	90%	879
$\psi(2S)\pi^+\pi^-$	< 4	$\times 10^{-3}$	90%	396
$\chi_{c1}\gamma$	< 5	$\times 10^{-3}$	90%	625
$\chi_{c2}\gamma$	< 1.3	%	90%	587
$\chi_{c1} \pi^+ \pi^- \pi^0$	< 2	$\times 10^{-3}$	90%	496
$\chi_{c2}\pi^+\pi^-\pi^0$	< 8	\times 10 ⁻³	90%	445
$h_c(1P)\pi^+\pi^-$	< 5	\times 10 ⁻³	90%	556
$h_c(1P)\pi^0\pi^0$	< 2	$\times 10^{-3}$	90%	560
$h_c(1P)\eta$	< 2	$\times 10^{-3}$	90%	348
$h_c(1P)\pi^0$	< 4	\times 10 ⁻⁴	90%	600
$\phi\pi^+\pi^-$	< 2	$\times 10^{-3}$	90%	1961
$\gamma \chi_{c1}$ (3872)	< 1.8	$\times 10^{-3}$	90%	308
$\gamma \chi_{c0}(3915) \rightarrow \gamma J/\psi \pi^+ \pi^-$	< 1.36	\times 10 ⁻⁴	90%	_
$\gamma X(3930) \rightarrow \gamma J/\psi \pi^+ \pi^-$	< 1.18	\times 10 ⁻⁴	90%	_
$\gamma X(3940) \rightarrow \gamma J/\psi \pi^+ \pi^-$	< 1.47	\times 10 ⁻⁴	90%	_
$\gamma \chi_{c0}$ (3915) $\rightarrow \gamma \gamma J/\psi$	< 1.26	\times 10 ⁻⁴	90%	_
$\gamma X(3930) \rightarrow \gamma \gamma J/\psi$	< 8.8	\times 10 ⁻⁵	90%	_
$\gamma X(3940) \rightarrow \gamma \gamma J/\psi$	< 1.79	\times 10 ⁻⁴	90%	_
$\omega\pi^0$	not seen			2020
$\omega\eta$	not seen			1984
p <u>p</u> p <u>p</u>	not seen	_		834
$\Lambda\Lambda$	< 1.5	\times 10 ⁻⁶	90%	1774

ψ (4230)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

also known as Y(4230); was $\psi(4260)$

Mass $m=4222.5\pm2.4$ MeV (S = 1.7) Full width $\Gamma=48\pm8$ MeV (S = 3.6)

ψ (4230) DECAY MODES	Fraction (Γ	$_{i}/\Gamma)$	p (MeV/c)
$\mu^+\mu^-$	(3.2±2.9)	× 10 ⁻⁵	2107
$\eta_c(1S)\pi^+\pi^-$	not seen		1027
HTTP://PDG.LBL.GOV	Page 170	Created:	7/10/2023 15:48

$\eta_c(1S)\pi^+\pi^-\pi^0$	seen	992
$J/\psi \pi^+ \pi^-$	seen	942
$J/\psi f_0(980), f_0(980) \rightarrow \pi^+ \pi$		
$Z_c(3900)^{\pm}\pi^{\mp}, Z_c^{\pm} \rightarrow J/\psi\pi$		_
$J/\psi \pi^0 \pi^0$	seen	944
$J/\psi K^+ K^-$	seen	460
$J/\psi K_S^0 K_S^0$	not seen	447
$J/\psi \eta$		848
$J/\psi \pi^0$	seen	966
$J/\psi \eta'$	not seen seen	504
$J/\psi \pi^+ \pi^- \pi^0$	not seen	904
$J/\psi \eta \pi^0$	not seen	770
$J/\psi \eta \eta$	not seen	211
$\psi(2S)\pi^+\pi^-$		426
$\psi(2S)\eta$	seen	
	not seen	†
$\frac{\chi_{c0}\omega}{\chi_{c1}\pi^{+}\pi^{-}\pi^{0}}$	seen	171
$\frac{\chi_{c1}\pi + \pi - \pi}{\chi_{c2}\pi + \pi - \pi^0}$	not seen	527
$h_c(1P)\pi^+\pi^-$	not seen	477
7 1	seen	583
$\phi\pi^+\pi^- \ \phi f_0(980) o \phi\pi^+\pi^- \ D\overline{D}$	not seen	1976
$\varphi_{10}(900) \rightarrow \varphi_{\pi} \cdot \pi$	not seen	
$D^0 \overline{D}{}^0$	not seen	987
D+ D-	not seen	987
	not seen	978
$D^*\overline{D}+c.c.$	not seen	887
$D^*(2007)^0 \overline{D}{}^0 + \text{c.c.}$	not seen	_
$D^*(2010)^+D^-+c.c.$	not seen	_
$D^*(2007)^0 \overline{D}^*(2007)^0$	not seen	652
$D^*(2010)^+D^*(2010)^-$	not seen	641
$D^0D^-\pi^+ + \text{c.c.}$ (excl.	not seen	_
$D^*(2007)^0 \overline{D}^{*0} + \text{c.c.},$		
$D^*(2010)^+D^- + c.c.$		
$D\overline{D}^*\pi$ +c.c. (excl. $D^*\overline{D}^*$)	not seen	723
$D^0 D^{*-} \pi^+ + \text{c.c.}$ (excl.	not seen	_
$D^*(2010)^+D^*(2010)^-)$		
$D^0D^*(2010)^-\pi^+ + \text{c.c.}$	seen	716
$D_1(2420)\overline{D} + \text{c.c.}$	not seen	†
$D^*\overline{D}^*\pi$	not seen	367
$D_s^+D_s^-$	not seen	760
$D_{s}^{*+}D_{s}^{-}+\text{c.c.}$	not seen	615
$D_{s}^{*+}D_{s}^{-}$ +c.c. $D_{s}^{*+}D_{s}^{*-}$	not seen	†
$p\frac{3}{p}$	not seen	1890
$ \rho \overline{\rho} $ $ \rho \overline{\rho} \pi^0 $	not seen	1854
$p\overline{p}\eta$	not seen	1712
HTTP://PDG.LBL.GOV	Page 171	Created: 7/10/2023 15:48

$p \overline{p} \omega$	not seen	1610
<u>=</u> - <u>=</u> +	not seen	1645
$\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	not seen	2087
$\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	not seen	2071
$\omega \pi^0$	not seen	2035
$\omega \eta$	not seen	1999
$K^0_S K^\pm \pi^\mp$	not seen	2032
$egin{array}{l} {\mathcal K}_{S}^{0} {\mathcal K}^{\pm} \pi^{\mp} \ {\mathcal K}_{S}^{0} {\mathcal K}^{\pm} \pi^{\mp} \pi^{0} \ {\mathcal K}_{S}^{0} {\mathcal K}^{\pm} \pi^{\mp} \eta \end{array}$	not seen	2009
$K^0_SK^\pm\pi^\mp\eta$	not seen	1917
$\kappa^+\kappa^-\pi^0$	not seen	2033
$K^+K^-\pi^+\pi^-$	not seen	2008
$K^+K^-\pi^+\pi^-\pi^0$	not seen	1981
$K^+K^+K^-K^-$	not seen	1813
$K^+K^+K^-K^-\pi^0$	not seen	1762
$\rho \overline{\rho} \pi^+ \pi^-$	not seen	1810
$p\overline{p}\pi^+\pi^-\pi^0$	not seen	1764
ρ <u></u>	not seen	864
$\Lambda \overline{\Lambda}$	not seen	1791

Radiative decays

$\eta_c(1S)\gamma$	possibly seen	1055
$\eta_c(1S)\pi^0\gamma$	not seen	1049
$\chi_{c1}\gamma$	not seen	650
$\chi_{c2}\gamma$	not seen	612
$\chi_{c1}(3872)\gamma$	seen	334

$\chi_{c1}(4274)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

was X(4274)

Mass
$$m=4286^{+8}_{-9}~{\rm MeV}~{\rm (S}=1.7)$$
 Full width $\Gamma=51\pm7~{\rm MeV}$

χ_{c1} (4274) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$J/\psi\phi$	seen	522

ψ (4360)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 7/10/2023 15:48

also known as Y(4360); was X(4360)

$$\psi$$
(4360) MASS = 4374 \pm 7 MeV (S = 2.4) ψ (4360) WIDTH = 118 \pm 12 MeV (S = 2.1)

ψ (4360) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$h_c \pi^+ \pi^-$	seen	723
$\psi(2S)\pi^+\pi^-$	seen	579
ψ (3770) $\pi^{+}\pi^{-}$	possibly seen	495
$\psi_2(3823)\pi^+\pi^-$	seen	444
$J/\psi\eta$	seen	983
$D^{+}D^{-}\pi^{+}\pi^{-}$	seen	862
$D_1(2420)\overline{D}+ ext{c.c.}$	possibly seen	431
$\omega \pi^0$	not seen	2115
$\omega \eta$	not seen	2080
$p\overline{p}\eta$	not seen	1806
$p\overline{p}\omega$	not seen	1708

ψ (4415) $^{[ooaa]}$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=4421\pm4~{\rm MeV}$ Full width $\Gamma=62\pm20~{\rm MeV}$

Due to the complexity of the $c\overline{c}$ threshold region, in this listing, "seen" ("not seen") means that a cross section for the mode in question has been measured at effective \sqrt{s} near this particle's central mass value, more (less) than 2σ above zero, without regard to any peaking behavior in \sqrt{s} or absence thereof. See mode listing(s) for details and references.

ψ (4415) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/ <i>c</i>)
$D\overline{D}$	seen		1187
$D^0 \overline{D}{}^0$	seen		1187
D^+D^-	seen		1179
$D^*\overline{D}$ + c.c.	seen		1063
$D^*(2007)^0\overline{D}{}^0+ ext{c.c.}$	seen		1067
$D^*(2010)^+D^-+$ c.c.	seen		1059
$D^*\overline{D}^*$	seen		919
$D^*(2007)^0 \overline{D}{}^*(2007)^0 + { m c.c.}$	seen		927
$D^*(2010)^+ D^*(2010)^- + \text{c.c.}$	seen		919
$D^0 D^- \pi^+ ({ m excl.} \ D^* (2007)^0 \overline{D}{}^0$	< 2.3 %	90%	_
$+$ c.c., $D^*(2010)^+D^- +$ c.c.			
$D\overline{D}_{2}^{*}(2460) \rightarrow D^{0}D^{-}\pi^{+}+c.c.$	$(10 \pm 4)\%$		_
$D^0 \bar{D}^{*-} \pi^+ + \text{c.c.}$	< 11 %	90%	926
$D_1(2420)\overline{D}+$ c.c.	possibly seen		537
$D_s^+ D_s^-$	not seen		1006
$\omega\chi_{c2}$	possibly seen		330
$D_s^{*+}D_s^- + \text{c.c.}$	seen		_

$D_s^{*+}D_s^{*-}$	not seer	า		652
$\psi_2(3823)\pi^+\pi^-$	possibly	seen		492
ψ (3770) $\pi^{+}\pi^{-}$	possibly	seen		541
$J/\psi\eta$	< 6	$\times 10^{-3}$	90%	1022
$\chi_{c1}\gamma$	< 8	\times 10 ⁻⁴	90%	817
$\chi_{\underline{c2}}\gamma$	< 4	$\times 10^{-3}$	90%	780
$\Lambda \overline{\Lambda}_{\perp}$	< 3.1	$\times 10^{-6}$	90%	1908
$\omega \pi^0$	not seer	า		2139
$\omega \eta$	not seer	า		2105
e^+e^-	(9.4±3	$(.2) \times 10^{-6}$		2210
$\mu^+\mu^-$	(2.0 ± 1	$.0) \times 10^{-5}$		2208

ψ (4660)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

also known as Y(4660); was X(4660)

$$\psi$$
(4660) MASS = 4630 \pm 6 MeV (S = 1.4) ψ (4660) WIDTH = 72^{+14}_{-12} MeV (S = 1.7)

ψ (4660) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
e^+e^-	not seen	2315
ψ (2S) $\pi^+\pi^-$	seen	809
$J/\psi\eta$	not seen	1192
$D^0 D^{*-} \pi^+$	not seen	1153
$\psi_2(3823)\pi^+\pi^-$	seen	691
$\chi_{c1}\gamma$	not seen	984
$\chi_{c2}\gamma$	not seen	949
$\Lambda_c^+ \Lambda_c^-$	seen	363
$\Lambda_c^+ \Lambda_c^- D_s^+ D_{s1} (2536)^-$	seen	534
$\omega \pi^0$	not seen	2247
$\omega \eta$	not seen	2215

$b\overline{b}$ MESONS (including possibly non- $q\overline{q}$ states)

 $\eta_b(1S)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m=9398.7\pm2.0~{\rm MeV}~{\rm (S}=1.5)$ Full width $\Gamma=10^{+5}_{-4}~{\rm MeV}$

$\eta_b(1S)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
hadrons	seen		_
$3h^{+}3h^{-}$	not seen		4672
$2h^{+}2h^{-}$	not seen		4689
$4h^{+}4h^{-}$	not seen		4648
$\gamma\gamma$	not seen		4699
$\gamma \gamma \ \mu^+ \mu^- \ \tau^+ \tau^-$	$< 9 \times 10^{-3}$	90%	4698
$\tau^+\tau^-$	<8 %	90%	4350

T(15)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 7/10/2023 15:48

Mass $m=9460.40\pm0.10$ MeV Full width $\Gamma=54.02\pm1.25$ keV

r(1s) decay modes	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	-
$\tau^+\tau^-$	(2.60 ± 0.10)) %	4384
e^+e^-	(2.39 ± 0.08) %	4730
$\mu^+\mu^-$	(2.48 ± 0.04)) %	4729
	Hadronic decays		
ggg	(81.7 ± 0.7)) %	_
$\gamma g g$	(2.2 ± 0.6) %	_
$\eta'(958)$ anything	(2.94 ± 0.24)) %	_
$J/\psi(1S)$ anything	(5.4 ± 0.4)	$) \times 10^{-4}$ S=1.4	4223
$J/\psi(1S)\eta_c$	< 2.2	$\times10^{-6}$ CL=90%	3623
$J/\psi(1S)\chi_{c0}$	< 3.4	$\times10^{-6}$ CL=90%	3429
$J/\psi(1S)\chi_{c1}$	(3.9 ± 1.2	$) \times 10^{-6}$	3382
$J/\psi(1S)\chi_{c2}$	< 1.4	$\times10^{-6}$ CL=90%	3359
$J/\psi(1S)\eta_{c}(2S)$	< 2.2	$\times10^{-6}$ CL=90%	3317
$J/\psi(1S)X(3940)$	< 5.4	$\times10^{-6}$ CL=90%	3148
$J/\psi(1S)X(4160)$	< 5.4	$\times 10^{-6}$ CL=90%	3020

HTTP://PDG.LBL.GOV

Page 175

$X(4350)$ anything, $X \rightarrow$	< 8.1	$\times10^{-6}$ CL=90%	_
$J/\psi(1S)\phi \ Z_c(3900)^\pm$ anything, $Z_c ightarrow$	< 1.3	$\times10^{-5}$ CL=90%	_
$J/\psi(1S)\pi^\pm \ Z_c(4200)^\pm$ anything, $Z_c o$	< 6.0	$\times10^{-5}$ CL=90%	_
$J/\psi(1S)\pi^\pm \ Z_c(4430)^\pm$ anything, $Z_c o$	< 4.9	$\times10^{-5}$ CL=90%	_
$J/\psi(1S)\pi^\pm \ X_{cs}^\pm$ anything, $X ightarrow $	< 5.7	$\times10^{-6}$ CL=90%	_
$J/\psi K^\pm \ \psi$ (4230) anything, ψo	< 3.8	$\times 10^{-5} \text{ CL}=90\%$	_
$J/\psi(1S)\pi^+\pi^-$			
ψ (4230) anything, $\psi ightarrow$ $J/\psi(1S) K^+ K^-$	< 7.5	$\times 10^{-6} \text{ CL}=90\%$	_
χ_{c1} (4140) anything, $\chi_{c1} ightarrow J/\psi(1S) \phi$	< 5.2	$\times 10^{-6} \text{ CL}=90\%$	_
χ_{c0} anything	< 4	$\times 10^{-3} \text{ CL} = 90\%$	_
χ_{c1} anything	(1.90 =	$\pm 0.35) \times 10^{-4}$	_
$\chi_{c1}(1P)X_{tetra}$	< 3.78	$\times 10^{-5}$ CL=90%	_
χ_{c2} anything	(2.8 =	± 0.8) $\times 10^{-4}$	_
$\psi(2S)$ anything		± 0.20) $\times 10^{-4}$	_
$\psi(2S)\eta_c$	< 3.6	$\times 10^{-6}$ CL=90%	3345
$\psi(2S)\chi_{c0}$	< 6.5	$\times10^{-6}$ CL=90%	3124
$\psi(2S)\chi_{c1}$	< 4.5	$\times 10^{-6}$ CL=90%	
$\psi(2S)\chi_{c2}$	< 2.1	$\times 10^{-6} \text{ CL} = 90\%$	
$\psi(2S)\eta_c(2S)$	< 3.2	$\times 10^{-6}$ CL=90%	
$\psi(2S)X(3940)$	< 2.9	$\times 10^{-6} \text{ CL} = 90\%$	
$\psi(2S)X(4160)$	< 2.9	$\times 10^{-6} \text{ CL} = 90\%$	
ψ (4230) anything, $\psi \rightarrow$	< 7.9	$\times 10^{-5} \text{ CL}=90\%$	
$\psi(2S)\pi^+\pi^-$	\ 1.5	× 10 CL=3070	
ψ (4360) anything, $\psi \to \psi$ (2 S) $\pi^+\pi^-$	< 5.2	$\times10^{-5}$ CL=90%	_
ψ (4660) anything, $\psi ightarrow$	< 2.2	$\times10^{-5}$ CL=90%	_
$\psi(2S)\pi^+\pi^-$ $X(4050)^\pm$ anything, $X \to +$	< 8.8	$\times10^{-5}$ CL=90%	_
$\psi(2S)\pi^{\pm}$ $Z_c(4430)^{\pm}$ anything, $Z_c \rightarrow$	< 6.7	$\times10^{-5}$ CL=90%	_
$\psi(2S)\pi^{\pm}$		1	
$\chi_{c1}(3872)$ anything	< 2.5	$\times 10^{-4}$ CL=90%	_
$Z_c(4200)^+ Z_c(4200)^-$	< 2.23	$\times 10^{-5}$ CL=90%	_
$Z_c(3900)^{\pm} Z_c(4200)^{\mp}$	< 8.1	$\times 10^{-6}$ CL=90%	_
$Z_c(3900)^+ Z_c(3900)^-$	< 1.8	$\times 10^{-6}$ CL=90%	_
X(4050) ⁺ X(4050) ⁻	< 1.58	$\times 10^{-5}$ CL=90%	_
$X(4250)^+ X(4250)^-$	< 2.66	$\times 10^{-5} \text{ CL}=90\%$	_

$X(4050)^{\pm} X(4250)^{\mp}$	< 4.42	$\times10^{-5}$ CL=90%	_
$Z_c(4430)^+ Z_c(4430)^-$	< 2.03	$\times10^{-5}$ CL=90%	_
$X(4055)^{\pm}X(4055)^{\mp}$	< 2.33	$\times10^{-5}$ CL=90%	_
$X(4055)^{\pm} Z_c(4430)^{\mp}$	< 4.55	$\times10^{-5}$ CL=90%	_
$ ho\pi$	< 3.68	$\times10^{-6}$ CL=90%	4697
$\omega \pi^0$	< 3.90	$\times 10^{-6}$ CL=90%	4697
$\pi^+\pi^-$	< 5	$\times 10^{-4}$ CL=90%	4728
K^+K^-	< 5	$\times 10^{-4} \text{ CL} = 90\%$	4704
$p\overline{p}$	< 5	$\times 10^{-4} \text{ CL}=90\%$	4636
$\pi^{+}\pi^{-}\pi^{0}$	$(2.1 \pm 0.$		4725
$\phi K^+ K^-$	$(2.4 \pm 0.$	5) \times 10 ⁻⁶	4623
$\omega \pi^+ \pi^-$	$(4.5 \pm 1.$,	4694
$K^*(892)^0 K^- \pi^+ + \text{c.c.}$	$(4.4 \pm 0.$	$8) \times 10^{-6}$	4667
$\phi f_2'(1525)$	< 1.63	$\times 10^{-6}$ CL=90%	4551
$\omega f_2(1270)$	< 1.79	$\times 10^{-6}$ CL=90%	4611
$\rho(770)a_2(1320)$	< 2.24	$\times 10^{-6}$ CL=90%	4605
$K^*(892)^0 \overline{K}_2^*(1430)^0 + \text{c.c.}$	$(3.0 \pm 0.$	$8) \times 10^{-6}$	4579
$K_1(1270)^{\pm} \bar{K}^{\mp}$	< 2.41	$\times10^{-6}$ CL=90%	4634
$K_1(1400)^\pmK^\mp$	$(1.0 \pm 0.$	4) \times 10 ⁻⁶	4613
$b_1(1235)^{\pm}\pi^{\mp}$	< 1.25	$\times 10^{-6}$ CL=90%	4649
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	($1.28 \pm 0.$	30) \times 10 ⁻⁵	4720
$K_S^0 K^+ \pi^- + \text{c.c.}$	$(1.6 \pm 0.$	4) \times 10 ⁻⁶	4696
$K^{*}(892)^{0}\overline{K}^{0}+\text{c.c.}$	$(2.9 \pm 0.$	9) \times 10 ⁻⁶	4675
$K^*(892)^-K^+ + \text{c.c.}$	< 1.11	$\times10^{-6}$ CL=90%	4675
$f_1(1285)$ anything	$(4.6 \pm 3.$	1) \times 10 ⁻³	_
$D^*(2010)^\pm$ anything	(2.52 ± 0 .	20) %	_
$f_1(1285)X_{tetra}$	< 6.24	$\times 10^{-5}$ CL=90%	_
$\overline{^2H}$ anything	(2.85 ± 0 .	25) \times 10 ⁻⁵	_
Sum of 100 exclusive modes	(1.200 ± 0 .	017) %	_

Radiative decays

-			, -			
$\gamma \pi^+ \pi^-$	(6.3	± 1.8	$) \times 10^{-5}$		4728
$\gamma \pi^0 \pi^0$	(1.7	±0.7	$) \times 10^{-5}$		4728
$\gamma\pi\pi$ (S-wave)	(4.6	±0.7	$) \times 10^{-5}$		4728
$\gamma \pi^0 \eta$	<	2.4		$\times 10^{-6}$	CL=90%	4713
γ K ⁺ K ⁻	[ppaa] (1.14	±0.13	$) \times 10^{-5}$		4704
$\gamma p \overline{p}$	[qqaa] <	6		$\times 10^{-6}$	CL=90%	4636
$\gamma 2h^+2h^-$	(7.0	±1.5	$) \times 10^{-4}$		4720
$\gamma 3h^+3h^-$	(5.4	±2.0	$) \times 10^{-4}$		4703
γ 4 h^+ 4 h^-	(7.4	± 3.5	$) \times 10^{-4}$		4679
$\gamma \pi^+ \pi^- K^+ K^-$	(2.9	±0.9	$) \times 10^{-4}$		4686
$\gamma 2\pi^+ 2\pi^-$	(2.5	± 0.9	$) \times 10^{-4}$		4720
γ 3 π^+ 3 π^-	(2.5	± 1.2	$) \times 10^{-4}$		4703
$\gamma 2\pi^+ 2\pi^- K^+ K^-$	(2.4	± 1.2	$) \times 10^{-4}$		4659

$\gamma \pi^+ \pi^- \rho \overline{\rho}$	(1.5		$) \times 10^{-4}$		4604
$\gamma 2\pi^+ 2\pi^- \rho \overline{\rho}$	(4		$) \times 10^{-5}$		4563
$\gamma 2K^+2K^-$	(2.0	±2.0	$) \times 10^{-5}$		4601
$\gamma \eta'$ (958)	<	1.9			CL=90%	4682
$\gamma \eta$	<	1.0			CL=90%	4714
$\gamma f_0(980)$	<	3		$\times 10^{-5}$	CL=90%	4678
$\gamma f_2'(1525)$	(2.9	± 0.6	$) \times 10^{-5}$		4609
$\gamma f_2(1270)$	(1.01	± 0.06	$) \times 10^{-4}$		4644
$\gamma\eta($ 1405 $)$	<	8.2		$\times 10^{-5}$	CL=90%	4625
$\gamma f_0(1500)$	<	1.5		$\times 10^{-5}$	CL=90%	4608
$\gamma f_0(1500) \rightarrow \gamma K^+ K^-$	(1.0	± 0.4	$) \times 10^{-5}$		_
$\gamma f_0(1710)$	<	2.6		$\times 10^{-4}$	CL=90%	4571
$\gamma f_0(1710) \rightarrow \gamma K^+ K^-$	(1.01	±0.32	$) \times 10^{-5}$		_
$\gamma f_0(1710) \rightarrow \gamma \pi^+ \pi^-$	(5.3	±2.0	$) \times 10^{-6}$		_
$\gamma f_0(1710) \rightarrow \gamma \pi^0 \pi^0$	<	1.4			CL=90%	_
$\gamma f_0(1710) \rightarrow \gamma \eta \eta$	<	1.8			CL=90%	_
$\gamma f_4(2050)$	<	5.3		$\times 10^{-5}$	CL=90%	4515
$\gamma f_0(2200) \rightarrow \gamma K^+ K^-$	<	2		$\times 10^{-4}$	CL=90%	4475
$\gamma f_J(2220) \rightarrow \gamma K^+ K^-$	<	8			CL=90%	4469
$\gamma f_J(2220) \rightarrow \gamma \pi^+ \pi^-$	<	6		$\times 10^{-7}$	CL=90%	_
$\gamma f_J(2220) \rightarrow \gamma p \overline{p}$	<	1.1		$\times 10^{-6}$	CL=90%	_
$\gamma \eta$ (2225) $ ightarrow \gamma \phi \phi$	<	3		$\times 10^{-3}$	CL=90%	4469
$\gamma \eta_c(1S)$	<	2.9			CL=90%	4260
$\gamma \eta_c(2S)$	<	4			CL=90%	4031
$\gamma \chi_{c0}$	<	6.6		$\times 10^{-5}$	CL=90%	4114
$\gamma \chi_{c1}$	(4.7	$+2.4 \\ -1.9$	$) \times 10^{-5}$		4079
$\gamma \chi_{c2}$	<	7.6	1.5	$\times 10^{-6}$	CL=90%	4062
$\gamma \chi_{c1}$ (3872)		4			CL=90%	3938
$\gamma \chi_{c1}$ (3872), $\chi_{c1} \rightarrow$		2.8			CL=90%	_
$\pi^+\pi^-\pi^0J/\psi$						
$\gamma \chi_{c0}(3915) \rightarrow \omega J/\psi$	<	3.0		$\times 10^{-6}$	CL=90%	_
$\gamma \chi_{c1}(4140) \rightarrow \phi J/\psi$		2.2			CL=90%	_
$\gamma X \overline{X} (m_X < 3.1 \text{ GeV})$	[rraa] <	1			CL=90%	_
$\gamma X \overline{X} (m_X < 4.5 \text{ GeV})$	[ssaa] <			$\times 10^{-4}$	CL=90%	_
$\gamma X \rightarrow \gamma + \geq 4 \text{ prongs}$	[ttaa] <			$\times 10^{-4}$	CL=95%	_
$\gamma A^0 \rightarrow \gamma \mu^+ \mu^-$	[uuaa] <			$\times 10^{-6}$	CL=90%	_
$\gamma A^0 \rightarrow \gamma \tau^+ \tau^-$	[ppaa] <			$\times 10^{-4}$	CL=90%	- - - -
$\gamma A^0 \rightarrow \gamma g g$	[vvaa] <	1		%	CL=90%	_
$\gamma A^0 \rightarrow \gamma s \overline{s}$	[vvaa] <	1		$\times 10^{-3}$	CL=90%	_
1 F 1		(15)	اعدادان		_	
Lepton Family	number	(LF)	violati	ng modes	5	

$e^{\pm}\mu^{\mp}$	LF	< 3.9	$\times 10^{-7}$ CL=90%	4730
$\mu^{\pm} \tau^{\mp}$	LF	< 2.7	$\times10^{-6}$ CL=90%	4563
$e^{\pm} au^{\mp}$	LF	< 2.7	$\times 10^{-6}$ CL=90%	4563

$$\chi_{b0}(1P)$$
 [xxaa]

$$I^G(J^{PC}) = 0^+(0^{++})$$

J needs confirmation.

Mass $m = 9859.44 \pm 0.42 \pm 0.31 \; \text{MeV}$

$\chi_{b0}(1P)$ DECAY MODES	Fraction (Γ_{i}	/Γ) Cor	nfidence level	<i>p</i> (MeV/ <i>c</i>)
$\gamma \ \varUpsilon(1S)$	(1.94 ± 0.6)	.27) %		391
$D^0 X$	< 10.4	%	90%	_
$\pi^+\pi^-$ K $^+$ K $^-\pi^0$	< 1.6	$\times 10^{-4}$	90%	4875
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 5	$\times 10^{-5}$	90%	4875
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S} \ 2\pi^{+}\pi^{-}K^{-}K^{0}_{S} 2\pi^{0}$	< 5	$\times 10^{-4}$	90%	4846
$2\pi^{+}2\pi^{-}2\pi^{0}$	< 2.1	$\times 10^{-4}$	90%	4905
$2\pi^{+}2\pi^{-}K^{+}K^{-}$	(1.1 ± 0	.6) \times 10 ⁻⁴		4861
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}\pi^{0}$	< 2.7	$\times 10^{-4}$	90%	4846
$2\pi^{+}2\pi^{-}K^{+}K^{-}2\pi^{0}$	< 5	$\times 10^{-4}$	90%	4828
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	< 1.6	$\times 10^{-4}$	90%	4827
$3\pi^{+}3\pi^{-}$	< 8	$\times10^{-5}$	90%	4904
$3\pi^{+}3\pi^{-}2\pi^{0}$	< 6	$\times 10^{-4}$	90%	4881
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	(2.4 ± 1	$.2) \times 10^{-4}$		4827
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	< 1.0	$\times 10^{-3}$	90%	4808
$4\pi^+4\pi^-$	< 8	$\times 10^{-5}$	90%	4880
$4\pi^{+}4\pi^{-}2\pi^{0}$	< 2.1	$\times 10^{-3}$	90%	4850
$J/\psiJ/\psi$	< 7	$\times 10^{-5}$	90%	3836
$J/\psi\psi(2S)$	< 1.2	$\times 10^{-4}$	90%	3571
$\psi(2S)\psi(2S)$	< 3.1	$\times 10^{-5}$	90%	3273
$J/\psi(1S)$ anything	< 2.3	\times 10 ⁻³	90%	-

 $\chi_{b1}(1P)^{[xxaa]}$

$$I^G(J^{PC}) = 0^+(1^{++})$$

J needs confirmation.

Mass $m = 9892.78 \pm 0.26 \pm 0.31 \text{ MeV}$

$\chi_{b1}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\gamma \gamma (1S)$	$(35.2 \pm 2.0) \%$		423
$D^0 X$	$(12.6 \pm 2.2) \%$		_

HTTP://PDG.LBL.GOV

Page 179

$\pi^+\pi^-$ K $^+$ K $^-\pi^0$	(2.0 ± 0	$(0.6) \times 10^{-4}$		4892
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	(1.3 ± 0	$(0.5) \times 10^{-4}$		4892
$2\pi^{+}\pi^{-}K^{-}K_{5}^{0}2\pi^{0}$	< 6	$\times 10^{-4}$	90%	4863
$2\pi^{+}2\pi^{-}2\pi^{0}$	(8.0 ± 2	$(0.5) \times 10^{-4}$		4921
$2\pi^{+}2\pi^{-}K^{+}K^{-}$		$(0.5) \times 10^{-4}$		4878
$2\pi^+2\pi^-{\it K}^+{\it K}^-\pi^0$		$(.2) \times 10^{-4}$		4863
$2\pi^{+}2\pi^{-}K^{+}K^{-}2\pi^{0}$		$(0.2) \times 10^{-4}$		4845
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	(9.3 ± 3)	$(3.3) \times 10^{-4}$		4844
$3\pi^{+}3\pi^{-}$	($1.9~\pm 0$	$(0.6) \times 10^{-4}$		4921
$3\pi^{+}3\pi^{-}2\pi^{0}$		$(0.5) \times 10^{-3}$		4898
$3\pi^{+}3\pi^{-}K^{+}K^{-}$		$(0.8) \times 10^{-4}$		4844
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	(7.5 ± 2)	$(.6) \times 10^{-4}$		4825
$4\pi^{+}4\pi^{-}$	(2.6 ± 0)	$(0.9) \times 10^{-4}$		4897
$4\pi^{+}4\pi^{-}2\pi^{0}$	(1.4 ± 0	$(0.6) \times 10^{-3}$		4867
ω anything	(4.9 ± 1	.4) %		_
ωX_{tetra}	< 4.44	$\times 10^{-4}$	90%	_
$J/\psi J/\psi$	< 2.7	\times 10 ⁻⁵	90%	3857
$J/\psi \psi(2S)$	< 1.7	\times 10 ⁻⁵	90%	3594
$\psi(2S)\psi(2S)$	< 6	\times 10 ⁻⁵	90%	3298
$J/\psi(1S)$ anything	< 1.1	$\times 10^{-3}$	90%	_
$J/\psi(1S)X_{tetra}$	< 2.27	\times 10 ⁻⁴	90%	_

$h_b(1P)$

$$I^{G}(J^{PC}) = 0^{-}(1^{+})^{-}$$

Mass $m=9899.3\pm0.8~\mathrm{MeV}$

h _b (1P) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$\eta_b(1S)\gamma$	(52 ⁺⁶ ₋₅) %	488	

$$\chi_{b2}(1P)^{[xxaa]}$$

$$I^G(J^{PC}) = 0^+(2^{++})$$

J needs confirmation.

Mass $m = 9912.21 \pm 0.26 \pm 0.31 \; \text{MeV}$

$\chi_{b2}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\gamma \gamma (1S)$	(18.0±1.0) %		442
D^0X	< 7.9 %	90%	_
$\pi^{+}\pi^{-}K^{+}K^{-}\pi^{0}$	$(8 \pm 5) \times 10^{-5}$	-5	4902
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 1.0 × 10	-4 90%	4901
$2\pi^{+}\pi^{-}$ K^{-} K_{S}^{0} $2\pi^{0}$	$(5.3\pm2.4)\times10^{-2}$	-4	4873
$2\pi^{+}2\pi^{-}2\pi^{0}$	$(3.5\pm1.4)\times10^{-1}$	-4	4931

HTTP://PDG.LBL.GOV

Page 180

$2\pi^{+}2\pi^{-}$ K^{+} K^{-}	$(1.1\pm0.4)\times10^{-4}$		4888
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}\pi^{0}$	$(2.1\pm0.9)\times10^{-4}$		4872
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}2\pi^{0}$	$(3.9\pm1.8)\times10^{-4}$		4855
$3\pi^{+}2\pi^{-}\mathit{K}^{-}\mathit{K}^{0}_{S}\pi^{0}$	$< 5 \times 10^{-4}$	90%	4854
$3\pi^{+}3\pi^{-}$	$(7.0\pm3.1)\times10^{-5}$		4931
$3\pi^{+}3\pi^{-}2\pi^{0}$	$(1.0\pm0.4)\times10^{-3}$		4908
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	$<$ 8 $\times 10^{-5}$	90%	4854
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	$(3.6\pm1.5)\times10^{-4}$		4835
$4\pi^+4\pi^-$	$(8 \pm 4) \times 10^{-5}$		4907
$4\pi^{+}4\pi^{-}2\pi^{0}$	$(1.8\pm0.7)\times10^{-3}$		4877
$J/\psiJ/\psi$	$<$ 4 \times 10 ⁻⁵	90%	3869
$J/\psi\psi$ (2 S)	$< 5 \times 10^{-5}$	90%	3608
$\psi(2S)\psi(2S)$	$< 1.6 \times 10^{-5}$	90%	3313
$J/\psi(1S)$ anything	$(1.5\pm0.4)\times10^{-3}$		_

T(25)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=10023.4\pm0.5$ MeV $m_{\Upsilon(3S)}-m_{\Upsilon(2S)}=331.50\pm0.13$ MeV Full width $\Gamma=31.98\pm2.63$ keV

r(2 s) DECAY MODES	Fraction (Γ_i/Γ)		ale factor/ lence level	-
$\Upsilon(1S)\pi^+\pi^-$	(17.85± 0.26) 9	%		475
$\Upsilon(1S)\pi^0\pi^0$	(8.6 ± 0.4)	%		480
$\tau^+\tau^-$	$(2.00\pm\ 0.21)^{\circ}$	%		4686
$\mu^+\mu^-$	$(1.93\pm\ 0.17)^{\circ}$	%	S=2.2	5011
e^+e^-	$(1.91\pm\ 0.16)^{\circ}$	%		5012
$\Upsilon(1S)\pi^0$	< 4	× 10 ⁻⁵	CL=90%	531
$\Upsilon(1S)\eta$	(2.9 ± 0.4)	× 10 ⁻⁴	S=2.0	126
$J/\psi(1\mathcal{S})$ anything	< 6	× 10 ⁻³	CL=90%	4533
$J/\psi(1S)\eta_{m c}$	< 5.4	× 10 ⁻⁶	CL=90%	3984
$J/\psi(1S)\chi_{c0}$	< 3.4	× 10 ⁻⁶	CL=90%	3808
$J/\psi(1S)\chi_{c1}$	< 1.2	× 10 ⁻⁶	CL=90%	3765
$J/\psi(1S)\chi_{c2}$	< 2.0	× 10 ⁻⁶	CL=90%	3745
$J/\psi(1S)\eta_{m c}(2S)$	< 2.5	× 10 ⁻⁶	CL=90%	3707
$J/\psi(1S)X(3940)$	< 2.0	× 10 ⁻⁶	CL=90%	3555
$J/\psi(1S)X(4160)$	< 2.0	× 10 ⁻⁶	CL=90%	3442
χ_{c1} anything	(2.2 ± 0.5)	× 10 ⁻⁴		_
$\chi_{c1}(1P)^0 X_{tetra}$	< 3.67	× 10 ⁻⁵	CL=90%	_
χ_{c2} anything	(2.3 ± 0.8)	× 10 ⁻⁴		_
$\psi(2S)\eta_c$	< 5.1	× 10 ⁻⁶	CL=90%	3732
$\psi(2S)\chi_{c0}$	< 4.7	× 10 ⁻⁶	CL=90%	3536
$\psi(2S)\chi_{c1}$	< 2.5	× 10 ⁻⁶	CL=90%	3488

HTTP://PDG.LBL.GOV

Page 181

$\psi(2S)\chi_{c2}$	< 1.9	$\times 10^{-6}$	CL=90%	3464
$\psi(2S)\eta_c(2S)$	< 3.3	$\times 10^{-6}$	CL=90%	3422
$\psi(2S)X(3940)$	< 3.9	$\times 10^{-6}$	CL=90%	3250
$\psi(2S)X(4160)$	< 3.9	$\times 10^{-6}$	CL=90%	3120
$Z_c(3900)^+ Z_c(3900)^-$	< 1.0	$\times 10^{-6}$	CL=90%	_
$Z_c(4200)^+ Z_c(4200)^-$	< 1.67	$\times 10^{-5}$	CL=90%	_
$Z_c(3900)^{\pm} Z_c(4200)^{\mp}$	< 7.3	$\times 10^{-6}$	CL=90%	_
$X(4050)^+ X(4050)^-$	< 1.35	$\times 10^{-5}$	CL=90%	_
$X(4250)^+ X(4250)^-$	< 2.67	$\times 10^{-5}$	CL=90%	_
$X(4050)^{\pm} X(4250)^{\mp}$	< 2.72	$\times 10^{-5}$	CL=90%	_
$Z_c(4430)^+ Z_c(4430)^-$	< 2.03	$\times 10^{-5}$	CL=90%	_
$X(4055)^{\pm} X(4055)^{\mp}$	< 1.11	$\times 10^{-5}$	CL=90%	_
$X(4055)^{\pm} Z_c(4430)^{\mp}$	< 2.11	$\times 10^{-5}$	CL=90%	_
$\overline{^2H}$ anything	$(2.78^{+}_{-0.2})^{0.3}$	$(20.6) \times 10^{-5}$	S=1.2	_
hadrons	(94 ± 11)) %		_
ggg	(58.8 ± 1.2)	!)%		_
γ g g	($1.87\pm~0.2$.8) %		_
ϕ K ⁺ K ⁻	(1.6 ± 0.4	·) × 10 ⁻⁶		4910
$\omega \pi^+ \pi^-$	< 2.58	$\times 10^{-6}$	CL=90%	4977
$K^*(892)^0 K^- \pi^+ + \text{c.c.}$	(2.3 ± 0.7	$() \times 10^{-6}$		4952
$\phi f_2'(1525)$	< 1.33	$\times 10^{-6}$	CL=90%	4843
$\omega f_2(1270)$	< 5.7	$\times 10^{-7}$	CL=90%	4899
$\rho(770) a_2(1320)$	< 8.8	$\times 10^{-7}$	CL=90%	4894
$K^*(892)^0 \overline{K}_2^*(1430)^0 + \text{c.c.}$	(1.5 ± 0.6	$(5) \times 10^{-6}$		4869
$K_1(1270)^{\pm} { ilde K}^{\mp}$	< 3.22	$\times 10^{-6}$	CL=90%	4921
$K_1(1400)^{\pm} K^{\mp}$	< 8.3	$\times 10^{-7}$	CL=90%	4901
$b_1(1235)^{\pm}\pi^{\mp}$	< 4.0	$\times 10^{-7}$	CL=90%	4935
$ ho\pi$	< 1.16	$\times 10^{-6}$	CL=90%	4981
$\pi^+\pi^-\pi^0$	< 8.0	$\times 10^{-7}$	CL=90%	5007
$\omega \pi^0$	< 1.63	$\times 10^{-6}$	CL=90%	4980
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	($1.30\pm~0.2$	$(8) \times 10^{-5}$		5002
$K_{S}^{0}K^{+}\pi^{-}+\text{c.c.}$	($1.14\pm~0.3$			4979
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	< 4.22	$\times 10^{-6}$	CL=90%	4959
$K^*(892)^-K^+ + \text{c.c.}$	< 1.45	$\times 10^{-6}$	CL=90%	4960
$f_1(1285)$ anything	(2.2 ± 1.6	_		_
$f_1(1285)X_{tetra}$	< 6.47	,	CL=90%	_
Sum of 100 exclusive modes	(2.90± 0.3	$(30) \times 10^{-3}$		_
	`	,		
	Radiative decays			
$\gamma \chi_{b1}(1P)$	(6.9 ± 0.4)	*		130
$\gamma \chi_{b2}(1P)$	(7.15± 0.3	•		111
$\gamma \chi_{b0}(1P)$	(3.8 ± 0.4	· .		163
$\gamma f_0(1710)$	< 5.9	_		4862
$\gamma f_2'(1525)$	< 5.3	× 10 ⁻⁴	CL=90%	4897

HTTP://PDG.LBL.GOV Page 182 Created: 7/10/2023 15:48

$\gamma f_2(1270)$	<	2.41	$\times 10^{-4}$	CL=90%	4931
$\gamma \eta_c(1S)$	<	2.7	$\times 10^{-5}$	CL=90%	4568
$\gamma \chi_{c0}$	<	1.0	$\times 10^{-4}$	CL=90%	4430
$\gamma \chi_{c1}$	<	3.6		CL=90%	4397
$\gamma \chi_{c2}$	<	1.5	$\times 10^{-5}$	CL=90%	4381
$\gamma \chi_{c1}(3872)$	<	2.1	$\times 10^{-5}$	CL=90%	4264
$\gamma \chi_{c1}$ (3872), $\chi_{c1} \rightarrow$	<	2.4	\times 10 ⁻⁶	CL=90%	_
$\pi^+\pi^-\pi^0 J/\psi$					
$\gamma \chi_{c0}(3915) \rightarrow \omega J/\psi$	<	2.8	$\times 10^{-6}$	CL=90%	_
$\gamma \chi_{c1}(4140) \rightarrow \phi J/\psi$	<	1.2	$\times 10^{-6}$	CL=90%	_
$\gamma X(4350) \rightarrow \phi J/\psi$	<	1.3	\times 10 ⁻⁶	CL=90%	_
$\gamma \eta_b(1S)$	($5.5 \begin{array}{c} + & 1.1 \\ - & 0.9 \end{array}$	$\times 10^{-4}$	S=1.2	605
$\gamma \eta_b(1S) ightarrow \gamma$ Sum of 26 exclu-	<	3.7		CL=90%	_
$\gamma \eta_b(1S) ightarrow \gamma { m Sum} { m of} 26 { m exclusive} \ { m sive} { m modes} \ \gamma { m X}_{b \overline{b}} ightarrow \gamma { m Sum} { m of} 26 { m exclusive} \ { m modes} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		3.7 4.9	\times 10 ⁻⁶		- -
sive modes $\gamma X_{b\overline{b}} \rightarrow \gamma \text{Sum of 26 exclusive}$	<	4.9	$\times 10^{-6}$ $\times 10^{-6}$	CL=90%	- - -
sive modes $\gamma X_{b\overline{b}} \rightarrow \gamma \text{Sum of 26 exclusive}$ modes	<	4.9	$\times 10^{-6}$ $\times 10^{-6}$ $\times 10^{-4}$	CL=90% CL=90%	- - -
sive modes $\gamma X_{b\overline{b}} \rightarrow \gamma \text{Sum of 26 exclusive}$ modes $\gamma X \rightarrow \gamma + \geq 4 \text{ prongs}$ [yyaa]	< < <	4.9 1.95	$\times 10^{-6}$ $\times 10^{-6}$ $\times 10^{-4}$ $\times 10^{-5}$	CL=90% CL=90% CL=95%	- - - -
sive modes	< < < < <	4.9 1.95 8 8.3	$\times 10^{-6}$ $\times 10^{-6}$ $\times 10^{-4}$ $\times 10^{-5}$ $\times 10^{-6}$	CL=90% CL=90% CL=95% CL=90% CL=90%	- - - -

$\Upsilon_2(1D)$

$$I^{G}(J^{PC}) = 0^{-}(2^{-})$$

was $\Upsilon(1D)$

 $\mathsf{Mass}\ m = 10163.7 \pm 1.4\ \mathsf{MeV}\quad (\mathsf{S} = 1.7)$

$ au_2(1D)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\gamma \gamma \Upsilon(1S)$	seen	679
$\gamma \chi_{bJ}(1P)$	seen	300
$\eta \ \varUpsilon(1S)$	not seen	426
$\pi^+\pi^- \Upsilon(1S)$	$(6.6\pm1.6)\times10^{-3}$	623

$$\chi_{b0}(2P)^{[xxaa]}$$

$$I^G(J^{PC}) = 0^+(0^{++})$$

J needs confirmation.

Mass $m=10232.5\pm0.4\pm0.5~\mathrm{MeV}$

$\chi_{b0}(2P)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\gamma \gamma (2S)$	$(1.38\pm0.30)~\%$		207
$\gamma \ \varUpsilon(1S)$	$(3.8 \pm 1.7) \times 10^{-2}$	0-3	743
HTTP://PDG.LBL.GOV	Page 183 Cre	eated: 7/10/202	3 15:48

$D^0 X$	< 8.2	%	90%	_
$\pi^+\pi^-$ K $^+$ K $^-\pi^0$	< 3.4	\times 10 ⁻⁵	90%	5064
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 5	\times 10 ⁻⁵	90%	5063
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	< 2.2	\times 10 ⁻⁴	90%	5036
$2\pi^{+}2\pi^{-}2\pi^{0}$	< 2.4	\times 10 ⁻⁴	90%	5092
$2\pi^{+}2\pi^{-}K^{+}K^{-}$	< 1.5	\times 10 ⁻⁴	90%	5050
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}\pi^{0}$	< 2.2	\times 10 ⁻⁴	90%	5035
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}2\pi^{0}$	< 1.1	\times 10 ⁻³	90%	5019
$3\pi^{+}2\pi^{-}\mathit{K}^{-}\mathit{K}^{0}_{S}\pi^{0}$	< 7	\times 10 ⁻⁴	90%	5018
$3\pi^{+}3\pi^{-}$	< 7	\times 10 ⁻⁵	90%	5091
$3\pi^{+}3\pi^{-}2\pi^{0}$	< 1.2	$\times 10^{-3}$	90%	5070
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	< 1.5	\times 10 ⁻⁴	90%	5017
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	< 7	\times 10 ⁻⁴	90%	4999
$4\pi^+4\pi^-$	< 1.7	\times 10 ⁻⁴	90%	5069
$4\pi^{+}4\pi^{-}2\pi^{0}$	< 6	$\times 10^{-4}$	90%	5039

$$\chi_{b1}(2P)^{[xxaa]}$$

$$I^G(J^{PC}) = 0^+(1^{++})$$

J needs confirmation.

Mass
$$m=10255.46\pm0.22\pm0.50~{
m MeV}$$
 $m_{\chi_{b1}(2P)}-m_{\chi_{b0}(2P)}=23.5\pm1.0~{
m MeV}$

$\chi_{b1}(2P)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\omega \ \varUpsilon(1S)$	$(1.63^{+0.40}_{-0.34})\%$	134
$\gamma \ \varUpsilon (2S)$	(18.1 ±1.9) %	229
$\gamma \Upsilon(1S)$	$(9.9 \pm 1.0)\%$	764
$\pi\pi\chi_{b1}(1P)$	$(9.1 \pm 1.3) \times 10^{-3}$	238
$D^0 X$	($8.8~\pm1.7$) %	_
$\pi^+\pi^-$ K $^+$ K $^ \pi^0$	$(3.1 \pm 1.0) \times 10^{-4}$	5075
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	$(1.1 \pm 0.5) \times 10^{-4}$	5075
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	$(7.7 \pm 3.2) \times 10^{-4}$	5047
$2\pi^{+}2\pi^{-}2\pi^{0}$	$(5.9 \pm 2.0) \times 10^{-4}$	5104
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}$	$(10 \pm 4) \times 10^{-5}$	5062
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}\pi^{0}$	$(5.5 \pm 1.8) \times 10^{-4}$	5047
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}2\pi^{0}$	$(10 \pm 4) \times 10^{-4}$	5030
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	$(6.7 \pm 2.6) \times 10^{-4}$	5029
$3\pi^{+}3\pi^{-}$	$(1.2 \pm 0.4) \times 10^{-4}$	5103
$3\pi^{+}3\pi^{-}2\pi^{0}$	$(1.2 \pm 0.4) \times 10^{-3}$	5081
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	$(2.0 \pm 0.8) \times 10^{-4}$	5029
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	$(6.1 \pm 2.2) \times 10^{-4}$	5011
$4\pi^{+}4\pi^{-}$	$(1.7 \pm 0.6) \times 10^{-4}$	5080
$4\pi^{+}4\pi^{-}2\pi^{0}$	$(1.9 \pm 0.7) \times 10^{-3}$	5051

$$h_b(2P)$$

$$I^{G}(J^{PC}) = 0^{-}(1^{+})^{-}$$

Mass $m = 10259.8 \pm 1.2 \text{ MeV}$

h _b (2P) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
hadrons	not seen	_
$\eta_b(1S)\gamma$	(22 ± 5) %	825
$\eta_b(2S)\gamma$	(48±13) %	257

$\chi_{b2}(2P)^{[xxaa]}$

$$I^G(J^{PC}) = 0^+(2^{++})$$

J needs confirmation.

Mass
$$m=10268.65\pm0.22\pm0.50$$
 MeV $m_{\chi_{b2}(2P)}-m_{\chi_{b1}(2P)}=13.10\pm0.24$ MeV

χ_{b2} (2P) DECAY MODES	Fraction (Γ_{i}	/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\omega \ \varUpsilon(1S)$	$(1.10^{+0.3}_{-0.3}$	⁴ ₀) %		194
$\gamma \ \varUpsilon(2S)$	(8.9 ± 1.2)) %		242
$\gamma \Upsilon(1S)$	(6.6 ± 0.8)) %		776
$\pi \pi \chi_{b2}(1P)$	(5.1 ± 0.9)) × 10	-3	229
$D^0 X$	< 2.4	%	90%	_
$\pi^{+}\pi^{-}K^{+}K^{-}\pi^{0}$	< 1.1	\times 10 ⁻	-4 90%	5082
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 9	× 10 ⁻	-5 90%	5082
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	< 7	× 10	-4 90%	5054
$2\pi^{+}2\pi^{-}2\pi^{0}$	(3.9 ± 1.6)) × 10 ⁻	-4	5110
$2\pi^{+}2\pi^{-}K^{+}K^{-}$	(9 ± 4)) × 10 ⁻¹	-5	5068
$2\pi^{+}2\pi^{-}$ K^{+} K^{-} π^{0}	(2.4 ± 1.1)) × 10 ⁻¹	-4	5054
$2\pi^{+}2\pi^{-}$ K^{+} K^{-} $2\pi^{0}$	(4.7 ± 2.3)) × 10	-4	5037
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	< 4	× 10 ⁻	-4 90%	5036
$3\pi^{+}3\pi^{-}$	(9 ± 4)) × 10 ⁻¹	-5	5110
$3\pi^{+}3\pi^{-}2\pi^{0}$	(1.2 ± 0.4)) × 10	-3	5088
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	(1.4 ± 0.7)) × 10	-4	5036
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	(4.2 ± 1.7)) × 10	-4	5017
$4\pi^{+}4\pi^{-}$	(9 ± 5)) × 10 ⁻	-5	5087
$4\pi^{+}4\pi^{-}2\pi^{0}$	(1.3 ± 0.5)) × 10 ⁻	-3	5058

T(35)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=10355.1\pm0.5$ MeV $m_{\Upsilon(3S)}-m_{\Upsilon(2S)}=331.50\pm0.13$ MeV Full width $\Gamma=20.32\pm1.85$ keV

HTTP://PDG.LBL.GOV

Page 185

r(3 s) DECAY MODES	Fraction (Γ_j/Γ) Co	Scale factor/ nfidence level	
$\Upsilon(2S)$ anything	(10.6 ± 0.8) %		296
$\Upsilon(2S)\pi^{+}\pi^{-}$	(2.82± 0.18) %	S=1.6	176
$\Upsilon(2S)\pi^0\pi^0$	(1.85± 0.14) %		190
Υ (2S) $\gamma\gamma$	$(5.0 \pm 0.7)\%$		326
$\Upsilon(2\dot{S})\pi^{0}$	< 5.1 × 10 ⁻	4 CL=90%	298
$\gamma(1S)\pi^+\pi^-$	(4.37± 0.08) %		813
$\Upsilon(1S)\pi^0\pi^0$	($2.20\pm~0.13)~\%$		816
$\Upsilon(1S)\eta$	< 1 × 10	4 CL=90%	677
$\Upsilon(1S)\pi^0$	< 7 × 10	⁵ CL=90%	846
$h_b(1P)\pi^0$	$<$ 1.2 \times 10	3 CL=90%	426
$h_b(1P)\pi^0 \rightarrow \gamma \eta_b(1S)\pi^0$	(4.3 ± 1.4) $ imes 10^-$		_
$h_{b}(1P)\pi^{+}\pi^{-}$	$<$ 1.2 \times 10 ⁻	4 CL=90%	352
$\tau^+\tau^-$	$(2.29\pm\ 0.30)\ \%$		4863
$\mu^+\mu^-$	($2.18\pm~0.21)~\%$	S=2.1	5176
e^+e^-	(2.18± 0.20) %		5178
hadrons	$(93 \pm 12)\%$		_
ggg	$(35.7 \pm 2.6)\%$	2	_
$\frac{\gamma g}{2\pi}g$	$(9.7 \pm 1.8) \times 10^{-1}$	_	_
$\frac{1}{2}H$ anything	$(2.33\pm\ 0.33)\times 10^{-1}$	5	_
	Radiative decays		
$\gamma \chi_{b2}(2P)$	(13.1 \pm 1.6) %	S=3.4	86
$\gamma \chi_{b1}(2P)$	(12.6 \pm 1.2) %	S=2.4	99
$\gamma \chi_{b0}(2P)$	($5.9~\pm~0.6$) %	S=1.4	122
$\gamma \chi_{b2}(1P)$	(10.0 \pm 1.0) \times 10 $^-$		433
$\gamma \chi_{b1}(1P)$	$(9 \pm 5) \times 10^{-1}$	_	452
$\gamma \chi_{b0}(1P)$	$(2.7 \pm 0.4) \times 10^{-1}$	4	484
$\gamma \eta_b(2S)$	< 6.2 × 10		350
$\gamma \eta_b(1S)$	$(5.1 \pm 0.7) \times 10^{-}$		912
$\gamma A^0 \rightarrow \gamma$ hadrons		5 CL=90%	_
		4 CL=95%	_
$ \gamma A^0 \to \gamma \mu^+ \mu^- \gamma A^0 \to \gamma \tau^+ \tau^- $		6 CL=90%	_
,		4 CL=90%	_
⊥ -	number (<i>LF</i>) violating mo		
$e^{\pm} au^{\mp}$ LF			5025
$e^{\pm}_{\mu}^{\mp}$ LF	< 3.6 × 10 ⁻		5177
$\mu^{\pm} \tau^{\mp}$ LF	< 3.1 × 10 ⁻	6 CL=90%	5025

$$\chi_{b1}(3P)^{[xxaa]}$$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})^{+}$$

J needs confirmation.

Mass $m=10513.4\pm0.7~\mathrm{MeV}$

$\chi_{b1}(3P)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\gamma(1S)\gamma$	seen	1000
Υ (2 S) γ	seen	479
$\Upsilon(3S)\gamma$	seen	157

$$\chi_{b2}(3P)^{[xxaa]}$$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

J needs confirmation.

Mass $m = 10524.0 \pm 0.8 \; \text{MeV}$

$\chi_{b2}(3P)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$r(3S)\gamma$	seen	168

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

also known as $\Upsilon(10580)$

Mass $m=10579.4\pm1.2~\mathrm{MeV}$

Full width $\Gamma=20.5\pm2.5~\text{MeV}$

T(4S) DECAY MODES	Fraction (Γ_i/I)	Γ) Conf	idence level	<i>p</i> (MeV/ <i>c</i>)
$B\overline{B}$	> 96	%	95%	326
B^+B^-	(51.4 ± 0.6)	i) %		331
$D_{\underline{s}}^+$ anything $+$ c.c. $B^0\overline{B}^0$	(17.8 ± 2.6)	i) %		_
$B^0\overline{\overline{B}}{}^0$	(48.6 ± 0.6)	5)%		326
$J/\psi K_S^0 + (J/\psi, \eta_c) K_S^0$	< 4	$\times 10^{-7}$	90%	_
non- $B\overline{B}$	< 4	%	95%	_
e^+e^-	$(1.57\pm0.0$	$(8) \times 10^{-5}$		5290
$ ho^+ ho^-$	< 5.7	\times 10 ⁻⁶	90%	5233
$K^*(892)^0 \overline{K}^0$	< 2.0	\times 10 ⁻⁶	90%	5240
$J/\psi(1S)$ anything	< 1.9	\times 10 ⁻⁴	95%	_
D^{st+} anything $+$ c.c.	< 7.4	%	90%	5099
ϕ anything	(7.1 ± 0.6	i) %		5240
$\phi\eta$	< 1.8	\times 10 ⁻⁶	90%	5226
$\phi \eta'$	< 4.3	$\times 10^{-6}$	90%	5196
$ ho\eta$	< 1.3	\times 10 ⁻⁶	90%	5247
HTTP://PDG.LBL.GOV	Page 187	Created:	7/10/2023	3 15:48

$ ho\eta'$	< 2.5	\times 10 ⁻⁶	90%	5217
$\varUpsilon(1S)$ anything	< 4	\times 10 ⁻³	90%	1053
$\varUpsilon(1S)\pi^+\pi^-$	(8.2 ± 0	$(.4) \times 10^{-5}$		1026
\varUpsilon (1 S) η	(1.81 ± 0	$(.18) \times 10^{-4}$		924
$\Upsilon(1S)\eta'$	(3.4 ± 0	$(.9) \times 10^{-5}$		_
$\Upsilon(2S)\pi^+\pi^-$	(8.2 ± 0	$(.8) \times 10^{-5}$		468
$h_b(1P)\pi^+\pi^-$	not seen			600
$h_b(1P)\eta$	(2.18±0	$(.21) \times 10^{-3}$		390
$\eta_b(1S)\omega$	< 1.8	\times 10 ⁻⁴	90%	_
2H anything	< 1.3	\times 10 ⁻⁵	90%	_

Double Radiative Decays

$$\gamma \gamma \Upsilon(\mathsf{D}) \rightarrow \gamma \gamma \eta \Upsilon(1S)$$
 < 2.3 × 10⁻⁵ 90% -

$\Upsilon(10860)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=10885.2^{+2.6}_{-1.6}$ MeV Full width $\Gamma=37\pm4$ MeV

au(10860) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/ <i>c</i>)
$B\overline{B}X$	$(76.2 \begin{array}{c} +2.7 \\ -4.0 \end{array})\%$		_
В <u>Т</u>	(5.5 ±1.0) %		1322
$B\overline{B}^*$ + c.c.	$(13.7 \pm 1.6)\%$		_
$B^*\overline{B}^*$	(38.1 ± 3.4) %		1127
$B\overline{B}^{(*)}\pi$	< 19.7 %	90%	1015
$B\overline{B}\pi$	(0.0 ± 1.2) %		1015
$B^* \overline{B} \pi + B \overline{B}^* \pi$	(7.3 \pm 2.3) %		_
$\underline{B}^*\overline{B}^*\pi$	(1.0 ± 1.4) %		739
$BB\pi\pi$	< 8.9 %	90%	551
$B_s^{(*)} \overline{B}_s^{(*)} B_s \overline{B}_s$	(20.1 \pm 3.1) %		905
$B_s \overline{B}_s$	$(5 \pm 5) \times 3$	10^{-3}	905
$B_s \overline{B}_s^* + \text{c.c.}$	(1.35 ± 0.32) %		_
$B_s^* \overline{B}_s^*$	(17.6 \pm 2.7) %		543
no open-bottom	$(3.8 \begin{array}{c} +5.0 \\ -0.5 \end{array}) \%$		_
e^+e^-	(8.3 ± 2.1) \times 3	10^{-6}	5443
$K^*(892)^0 \overline{K}{}^0$	< 1.0 ×	10^{-5} 90%	5395
\varUpsilon (1S) $\pi^+\pi^-$	(5.3 \pm 0.6) \times 3	10^{-3}	1306
\varUpsilon (1 ${\cal S}$) η	(8.5 ± 1.7) \times 3	10^{-4}	1229
$\Upsilon(1S)\eta'$	< 6.9 × 3	10^{-5} 90%	985
$\Upsilon(2S)\pi^+\pi^-$	(7.8 \pm 1.3) \times 1		783
Υ (2S) η	(4.1 \pm 0.6) \times 1	10^{-3}	639
$\Upsilon(3S)\pi^+\pi^-$	(4.8 $^{+1.9}_{-1.7}$) $ imes$	10 ⁻³	440

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

Page 188

$\Upsilon(1S) K^+ K^-$	(6.1 ±1	.8) \times 10 ⁻⁴		959
$\eta \Upsilon_J(1D)$	(4.8 ±1	1.1×10^{-3}		_
$h_b(1P)\pi^+\pi^-$	($3.5 \begin{array}{c} +1 \\ -1 \end{array}$	$\frac{10}{3}$) × 10 ⁻³		903
$h_b(2P)\pi^+\pi^-$	($5.7 \begin{array}{c} +1 \\ -2 \end{array}$	$^{7}_{1}$) × 10 ⁻³		544
$\chi_{bJ}(1P)\pi^{+}\pi^{-}\pi^{0}$	(2.5 ±2	$.3) \times 10^{-3}$		894
$\chi_{b0}(1P)\pi^{+}\pi^{-}\pi^{0}$	<	6.3	\times 10 ⁻³	90%	894
$\chi_{b0}(1P)\omega$	<	3.9	\times 10 ⁻³	90%	631
$\chi_{b0}(1P)(\pi^{+}\pi^{-}\pi^{0})_{non-\omega}$	<	4.8	\times 10 ⁻³	90%	_
$\chi_{b1}(1P)\pi^{+}\pi^{-}\pi^{0}$	(1.85 ± 0	$.33) \times 10^{-3}$		861
$\chi_{b1}(1P)\omega$	(1.57 ± 0	$.30) \times 10^{-3}$		582
$\chi_{b1}(1P)(\pi^+\pi^-\pi^0)_{non-\omega}$	(5.2 ±1	$.9) \times 10^{-4}$		_
$\chi_{b2}(1P)\pi^{+}\pi^{-}\pi^{0}$	(1.17 ± 0	$(30) \times 10^{-3}$		841
$\chi_{b2}(1P)\omega$	(6.0 ± 2	$.7) \times 10^{-4}$		552
$\chi_{b2}(1P)(\pi^+\pi^-\pi^0)_{non-\omega}$	(6 ± 4	$) \times 10^{-4}$		_
$\gamma X_b \rightarrow \gamma \Upsilon(1S) \omega$	<	3.8	$\times10^{-5}$	90%	_
$\eta_b(1S)\omega$	<	1.3	$\times10^{-3}$	90%	1177
$\eta_b(2S)\omega$	<	5.6	$\times 10^{-3}$	90%	399

Inclusive Decays.

These decay modes are submodes of one or more of the decay modes above.

ϕ anything	$(13.8 \begin{array}{c} +2.4 \\ -1.7 \end{array})\%$
D^0 anything $+$ c.c.	(108 ±8)%
D_s anything $+$ c.c.	(46 ±6) %
J/ψ anything	(2.06±0.21) %
B^0 anything $+$ c.c.	(77 ±8) %
B^+ anything $+$ c.c.	$(72 \pm 6)\%$

γ(11020)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 7/10/2023 15:48

Mass $m=11000\pm 4$ MeV Full width $\Gamma=24^{+8}_{-6}$ MeV

au(11020) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
e^+e^-	$(5.4^{+1.9}_{-2.1}) \times 10^{-6}$	5500
$\chi_{bJ}(1P)\pi^+\pi^-\pi^0$	$(9 \begin{array}{c} +9 \\ -8 \end{array}) \times 10^{-3}$	1007
$\chi_{b1}(1P)\pi^{+}\pi^{-}\pi^{0}$	seen	975
$\chi_{b2}(1P)\pi^{+}\pi^{-}\pi^{0}$	seen	956

OTHER MESONS

 $Z_c(3900)$

$$I^{G}(J^{PC}) = 1^{+}(1^{+})$$

was X(3900)

Mass $m=3887.1\pm2.6$ MeV (S = 1.7) Full width $\Gamma=28.4\pm2.6$ MeV

Z_c (3900) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$J/\psi \pi \ h_{c} \pi^{\pm}$	seen	699
$h_c\pi^\pm$	not seen	318
$\eta_c \pi^+ \pi^-$	not seen	759
$(DD^*)^{\pm}$	seen	_
$D^0 D^{*-} + \text{c.c.}$	seen	152
$D^{-}D^{*0}$ + c.c.	seen	143
$\omega \pi^{\pm}$	not seen	1862
$J/\psi\eta$	not seen	510
$D^{+}D^{*-}$ + c.c	seen	_
$D^0 \overline{D}^{*0} + \text{c.c}$	seen	_

X(4020)±

$$I^{G}(J^{PC}) = 1^{+}(?^{?-})$$

Mass $m=4024.1\pm1.9~{
m MeV}$ Full width $\Gamma=13\pm5~{
m MeV}~({
m S}=1.7)$

X(4020) [±] DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$h_c(1P)\pi$ $D^*\overline{D}^*$	seen	450
$D^*\overline{D}^*$	seen	85
$D\overline{D}^*+$ c.c.	not seen	542
$\eta_{\scriptscriptstyle \mathcal{C}} \pi^+ \pi^- \ J/\psi(1S) \pi^\pm$	not seen	872
$J/\psi(1S)\pi^\pm$	not seen	811

$Z_c(4430)$

$$I^G(J^{PC}) = 1^+(1^{+-})$$

G, C need confirmation.

was $X(4430)^{\pm}$

Quantum numbers not established.

Mass $m=4478^{+15}_{-18}~{
m MeV}$ Full width $\Gamma=181\pm31~{
m MeV}$

HTTP://PDG.LBL.GOV

Page 190

Z_c (4430) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi^+\psi(2S)$	seen	711
$\pi^+ J/\psi$	seen	1162

$Z_b(10610)$

$$I^{G}(J^{PC}) = 1^{+}(1^{+})$$

was X(10610)

Mass $m=10607.2\pm 2.0$ MeV Full width $\Gamma=18.4\pm 2.4$ MeV

<i>Z_b</i> (10610) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\varUpsilon(1S)\pi^+$	$(5.4^{+1.9}_{-1.5}) \times 10^{-3}$	1077
$\Upsilon(1S)\pi^0$	not seen	1077
$\Upsilon(2S)\pi^+$	$(3.6^{+1.1}_{-0.8})\%$	551
$\Upsilon(2S)\pi^0$	seen	552
$\Upsilon(3S)\pi^+$	$(2.1^{+0.8}_{-0.6})\%$	207
$\Upsilon(3S)\pi^0$	seen	210
$h_b(1P)\pi^+$	$(3.5^{+1.2}_{-0.9})\%$	671
$h_b(2P)\pi^+$	$(4.7^{+1.7}_{-1.3})\%$	313
$B^{+}\overline{B}{}^{0}$	not seen	505
$B^+\overline{B}^{*0} + B^{*+}\overline{B}^{0}$	$(85.6^{+2.1}_{-2.9})\%$	_

$Z_b(10650)$

$$I^G(J^{PC}) = 1^+(1^{+-})$$

I, G, C need confirmation.

was $X(10650)^{\pm}$

Mass $m=10652.2\pm1.5~{\rm MeV}$ Full width $\Gamma=11.5\pm2.2~{\rm MeV}$

 $Z_h(10650)^-$ decay modes are charge conjugates of the modes below.

Z _b (10650) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
\varUpsilon (1S) π^+	$(1.7^{+0.8}_{-0.6}) \times 10^{-3}$	1117
$\Upsilon(2S)\pi^+$	$(1.4^{+0.6}_{-0.4})\%$	595
$\Upsilon(3S)\pi^+$	$(1.6^{+0.7}_{-0.5})\%$	259

HTTP://PDG.LBL.GOV

Page 191

$h_b(1P)\pi^+$	(8.4 + 2.9) %	714
$h_b(2P)\pi^+$	(15 ±4)%	360
$B^{+}\overline{B}{}^{0}$	not seen	703
$B^+ \overline{B}^{*0} + B^{*+} \overline{B}^{0}$	not seen	_
$B^{*+}\overline{B}^{*0}$	$(74 \begin{array}{cc} +4 \\ -6 \end{array}) \%$	122

NOTES

- [a] See the review on "Form Factors for Radiative Pion and Kaon Decays" for definitions and details.
- [b] Measurements of $\Gamma(e^+\nu_e)/\Gamma(\mu^+\nu_\mu)$ always include decays with γ 's, and measurements of $\Gamma(e^+\nu_e\gamma)$ and $\Gamma(\mu^+\nu_\mu\gamma)$ never include lowenergy γ 's. Therefore, since no clean separation is possible, we consider the modes with γ 's to be subreactions of the modes without them, and let $[\Gamma(e^+\nu_e) + \Gamma(\mu^+\nu_\mu)]/\Gamma_{\rm total} = 100\%$.
- [c] See the π^\pm Particle Listings for the energy limits used in this measurement; low-energy γ 's are not included.
- [d] Derived from an analysis of neutrino-oscillation experiments.
- [e] Forbidden by angular momentum conservation.
- [f] C parity forbids this to occur as a single-photon process.
- [g] The $\omega \rho$ interference is then due to $\omega \rho$ mixing only, and is expected to be small. If $e\mu$ universality holds, $\Gamma(\rho^0 \to \mu^+ \mu^-) = \Gamma(\rho^0 \to e^+ e^-) \times 0.99785$.
- [h] Our estimate. See the Particle Listings for details.
- [i] See the "Note on $a_1(1260)$ " in the $a_1(1260)$ Particle Listings in PDG 06, Journal of Physics **G33** 1 (2006).
- [j] See also the $\omega(1650)$.
- [k] See also the $\omega(1420)$.
- [/] See the note in the K^{\pm} Particle Listings.
- [n] Neglecting photon channels. See, *e.g.*, A. Pais and S.B. Treiman, Phys. Rev. **D12**, 2744 (1975).
- [o] The definition of the slope parameters of the $K \to 3\pi$ Dalitz plot is as follows (see also "Note on Dalitz Plot Parameters for $K \to 3\pi$ Decays" in the K^{\pm} Particle Listings):

$$|M|^2 = 1 + g(s_3 - s_0)/m_{\pi^+}^2 + \cdots$$

- [p] For more details and definitions of parameters see the Particle Listings.
- [q] See the K^{\pm} Particle Listings for the energy limits used in this measurement.

- [r] Most of this radiative mode, the low-momentum γ part, is also included in the parent mode listed without γ 's.
- [s] Structure-dependent part.
- [t] Direct-emission branching fraction.
- [u] Violates angular-momentum conservation.
- [v] Derived from measured values of ϕ_{+-} , ϕ_{00} , $|\eta|$, $|m_{K_L^0} m_{K_S^0}|$, and $\tau_{K_S^0}$, as described in the introduction to "Tests of Conservation Laws."
- [x] The *CP*-violation parameters are defined as follows (see also "Note on *CP* Violation in $K_S \to 3\pi$ " and "Note on *CP* Violation in K_L^0 Decay" in the Particle Listings):

$$\begin{split} \eta_{+-} &= |\eta_{+-}| \mathrm{e}^{i\phi_{+-}} = \frac{A(K_L^0 \to \pi^+ \pi^-)}{A(K_S^0 \to \pi^+ \pi^-)} = \epsilon + \epsilon' \\ \eta_{00} &= |\eta_{00}| \mathrm{e}^{i\phi_{00}} = \frac{A(K_L^0 \to \pi^0 \pi^0)}{A(K_S^0 \to \pi^0 \pi^0)} = \epsilon - 2\epsilon' \\ \delta &= \frac{\Gamma(K_L^0 \to \pi^- \ell^+ \nu) - \Gamma(K_L^0 \to \pi^+ \ell^- \nu)}{\Gamma(K_L^0 \to \pi^- \ell^+ \nu) + \Gamma(K_L^0 \to \pi^+ \ell^- \nu)} \;, \\ \mathrm{Im}(\eta_{+-0})^2 &= \frac{\Gamma(K_S^0 \to \pi^+ \pi^- \pi^0)^{CP \text{ viol.}}}{\Gamma(K_L^0 \to \pi^+ \pi^- \pi^0)} \;, \\ \mathrm{Im}(\eta_{000})^2 &= \frac{\Gamma(K_S^0 \to \pi^0 \pi^0 \pi^0)}{\Gamma(K_L^0 \to \pi^0 \pi^0 \pi^0)} \;. \end{split}$$

where for the last two relations *CPT* is assumed valid, *i.e.*, $\text{Re}(\eta_{+-0}) \simeq 0$ and $\text{Re}(\eta_{000}) \simeq 0$.

- [y] See the K_S^0 Particle Listings for the energy limits used in this measurement.
- [z] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [aa] $\text{Re}(\epsilon'/\epsilon) = \epsilon'/\epsilon$ to a very good approximation provided the phases satisfy *CPT* invariance.
- [bb] This mode includes gammas from inner bremsstrahlung but not the direct emission mode $K_I^0 \to \pi^+\pi^-\gamma(DE)$.
- [cc] See the K_L^0 Particle Listings for the energy limits used in this measurement.
- [dd] Allowed by higher-order electroweak interactions.
- [ee] Violates *CP* in leading order. Test of direct *CP* violation since the indirect *CP*-violating and *CP*-conserving contributions are expected to be suppressed.

- [ff] See our minireview under the $K_2(1770)$ in the 2004 edition of this *Review*.
- [gg] This result applies to $Z^0 \to c\overline{c}$ decays only. Here ℓ^+ is an average (not a sum) of e^+ and μ^+ decays.
- [hh] See the Particle Listings for the (complicated) definition of this quantity.
- [ii] The branching fraction for this mode may differ from the sum of the submodes that contribute to it, due to interference effects. See the relevant papers in the Particle Listings.
- [jj] These subfractions of the $K^-2\pi^+$ mode are uncertain: see the Particle Listings.
- [kk] See the listings under " $D \to K\pi\pi\pi$ partial wave analyses" and our 2008 Review (Physics Letters **B667** 1 (2008)) for measurements of submodes of this mode.
- [//] The unseen decay modes of the resonances are included.
- [nn] This is not a test for the $\Delta C=1$ weak neutral current, but leads to the $\pi^+\ell^+\ell^-$ final state.
- [oo] This mode is not a useful test for a ΔC =1 weak neutral current because both quarks must change flavor in this decay.
- [pp] In the 2010 Review, the values for these quantities were given using a measure of the asymmetry that was inconsistent with the usual definition.
- [qq] This value is obtained by subtracting the branching fractions for 2-, 4- and 6-prongs from unity.
- [rr] This is the sum of our $K^-2\pi^+\pi^-$, $K^-2\pi^+\pi^-\pi^0$, $\overline{K}^02\pi^+2\pi^-$, $K^+2K^-\pi^+$, $2\pi^+2\pi^-$, $2\pi^+2\pi^-\pi^0$, $K^+K^-\pi^+\pi^-\pi^0$, branching fractions.
- [ss] This is the sum of our $K^-3\pi^+2\pi^-$ and $3\pi^+3\pi^-$ branching fractions.
- [tt] The branching fractions for the $K^-e^+\nu_e$, $K^*(892)^-e^+\nu_e$, $\pi^-e^+\nu_e$, and $\rho^-e^+\nu_e$ modes add up to 6.17 \pm 0.17 %.
- [uu] This is a doubly Cabibbo-suppressed mode.
- [vv] Submodes of the $D^0 oup K^0_S \pi^+ \pi^- \pi^0$ mode with a K^* and/or ρ were studied by COFFMAN 92B, but with only 140 events. With nothing new for 18 years, we refer to our 2008 edition, Physics Letters **B667** 1 (2008), for those results.
- [xx] This branching fraction includes all the decay modes of the resonance in the final state.
- [yy] This limit assumes the average of B($D^0 \to K^- e^+ \nu_e$) and B($D^0 \to K^- \mu^+ \nu_\mu$) for the B($D^0 \to K^- \ell^+ \nu_\ell$) value.

- [zz] This is the purely e^+ semileptonic branching fraction: the e^+ fraction from τ^+ decays has been subtracted off. The sum of our (non- τ) e^+ exclusive fractions an $e^+\nu_e$ with an $\eta,~\eta',~\phi,~K^0,~{\rm or}~K^{*0}$ is 5.99 \pm 0.31 %.
- [aaa] This fraction includes η from η' decays.
- [bbb] The sum of our exclusive η' fractions $\eta' e^+ \nu_e$, $\eta' \mu^+ \nu_\mu$, $\eta' \pi^+$, $\eta' \rho^+$, and $\eta' K^+$ is $11.8 \pm 1.6\%$.
- [ccc] This branching fraction includes all the decay modes of the final-state resonance.
- [ddd] A test for $u\overline{u}$ or $d\overline{d}$ content in the D_s^+ . Neither Cabibbo-favored nor Cabibbo-suppressed decays can contribute, and $\omega-\phi$ mixing is an unlikely explanation for any fraction above about 2×10^{-4} .
- [eee] We decouple the $D_s^+ o \phi \pi^+$ branching fraction obtained from mass projections (and used to get some of the other branching fractions) from the $D_s^+ o \phi \pi^+$, $\phi o K^+ K^-$ branching fraction obtained from the Dalitz-plot analysis of $D_s^+ o K^+ K^- \pi^+$. That is, the ratio of these two branching fractions is not exactly the $\phi o K^+ K^-$ branching fraction 0.491.
- [fff] This is the average of a model-independent and a K-matrix parametrization of the $\pi^+\pi^-$ S-wave and is a sum over several f_0 mesons.
- [ggg] An ℓ indicates an e or a μ mode, not a sum over these modes.
- [hhh] An $CP(\pm 1)$ indicates the CP=+1 and CP=-1 eigenstates of the D^0 $\overline{D}{}^0$ system.
 - [iii] D denotes D^0 or \overline{D}^0 .
 - [jjj] D^{*0}_{CP+} decays into $D^0\pi^0$ with the D^0 reconstructed in CP-even eigenstates K^+K^- and $\pi^+\pi^-$.
- [kkk] \overline{D}^{**} represents an excited state with mass $2.2 < M < 2.8 \text{ GeV/c}^2$.
 - [///] $\chi_{c1}(3872)^+$ is a hypothetical charged partner of the $\chi_{c1}(3872)$.
- [nnn] $\Theta(1710)^{++}$ is a possible narrow pentaquark state and G(2220) is a possible glueball resonance.
- [ooo] $(\overline{\varLambda}_c^-p)_s$ denotes a low-mass enhancement near 3.35 GeV/c².
- [ppp] Stands for the possible candidates of $K^*(1410)$, $K_0^*(1430)$ and $K_2^*(1430)$.
- $[qqq] \ B^0$ and B^0_s contributions not separated. Limit is on weighted average of the two decay rates.
- [rrr] This decay refers to the coherent sum of resonant and nonresonant J^P = 0^+ $K\pi$ components with $1.60 < m_{K\pi} < 2.15$ GeV/c².
- [sss] X(214) is a hypothetical particle of mass 214 MeV/c² reported by the HyperCP experiment, Physical Review Letters **94** 021801 (2005)

- [ttt] $\Theta(1540)^+$ denotes a possible narrow pentaquark state.
- [uuu] ψ_{DS} is a GeV-scale dark sector antibaryon (mass range 1–3.9 GeV/c²).
- [vvv] Here S and P are the hypothetical scalar and pseudoscalar particles with masses of 2.5 GeV/c^2 and 214.3 MeV/c^2 , respectively.
- [xxx] These values are model dependent.
- [yyy] Here "anything" means at least one particle observed.
- [zzz] This is a B($B^0 o D^{*-} \ell^+ \nu_\ell$) value.
- [aaaa] D^{**} stands for the sum of the $D(1\,{}^{1}\!P_{1})$, $D(1\,{}^{3}\!P_{0})$, $D(1\,{}^{3}\!P_{1})$, $D(1\,{}^{3}\!P_{2})$, $D(2\,{}^{1}\!S_{0})$, and $D(2\,{}^{1}\!S_{1})$ resonances.
- [bbaa] $D^{(*)}\overline{D}^{(*)}$ stands for the sum of $D^*\overline{D}^*$, $D^*\overline{D}$, $D\overline{D}^*$, and $D\overline{D}$.
- [ccaa] X(3915) denotes a near-threshold enhancement in the $\omega J/\psi$ mass spectrum.
- [ddaa] Inclusive branching fractions have a multiplicity definition and can be greater than 100%.
- [eeaa] D_j represents an unresolved mixture of pseudoscalar and tensor D^{**} (P-wave) states.
- [ffaa] Not a pure measurement. See note at head of B_s^0 Decay Modes.
- [ggaa] For $E_{\gamma} > 100$ MeV.
- [hhaa] $\Theta(1540)$ is a hypothetical pentaquark state of 1.54 GeV/c² mass and a width of less than 25 MeV/c².
 - [iiaa] Includes $p\overline{p}\pi^+\pi^-\gamma$ and excludes $p\overline{p}\eta$, $p\overline{p}\omega$, $p\overline{p}\eta'$.
- [jjaa] For a narrow state A with mass less than 960 MeV.
- [kkaa] For a narrow scalar or pseudoscalar A^0 with mass 0.21–3.0 GeV.
- [\emph{Ilaa}] For a dark photon \emph{U} with mass between 100 and 2100 MeV.
- [nnaa] For a narrow resonance in the range 2.2 < M(X) < 2.8 GeV.
- [ooaa] J^{PC} known by production in e^+e^- via single photon annihilation. I^G is not known; interpretation of this state as a single resonance is unclear because of the expectation of substantial threshold effects in this energy region.
- [ppaa] $2m_{\tau} < M(\tau^{+}\tau^{-}) < 9.2 \text{ GeV}$
- [qqaa] 2 GeV $< m_{K^+K^-} < 3$ GeV
- [rraa] $X\overline{X}$ = vectors with m < 3.1 GeV
- [ssaa] X and \overline{X} = zero spin with m < 4.5 GeV
- [ttaa] $1.5 \text{ GeV} < m_X < 5.0 \text{ GeV}$
- [uuaa] 201 MeV < M($\mu^+\mu^-$) < 3565 MeV
- [vvaa] 0.5 GeV $< m_X <$ 9.0 GeV, where m_X is the invariant mass of the hadronic final state.

[xxaa] Spectroscopic labeling for these states is theoretical, pending experimental information.

[yyaa]
$$1.5 \text{ GeV} < m_X < 5.0 \text{ GeV}$$

[zzaa]
$$1.5 \text{ GeV} < m_X < 5.0 \text{ GeV}$$

[aabb] For $m_{\tau^+\,\tau^-}$ in the ranges 4.03–9.52 and 9.61–10.10 GeV.