# Concurrent Scientific Computing

## Sophie

## March 25, 2011

### Exercise 4:

Using  $N = 5 \times 10^7$  subdivisions of the interval [0,1], these are the timing

 Sequential (1P):
 5m12.060s

 Concurrent (1P):
 5m50.396s

 Concurrent (2P):
 2m59.318s

 Concurrent (4P):
 3m03.697s

That leads us to the following table

| Р | $T_P[\mathrm{ms}]$ | $S_P$ | $S_P^C$ |
|---|--------------------|-------|---------|
| S | 312060.0           |       |         |
| 1 | 350396.0           | 1.0   | 0.891   |
| 2 | 179318.0           | 1.954 | 1.740   |
| 4 | 183697.0           | 1.924 | 1.699   |

Finally we have the plots





### Exercise 6: Inner Product

These are the timing of the program which computes the dot product, using vectors of size 10000.

Sequential (1P): 36.615s Concurrent (1P): 44.861s Concurrent (2P): 42.263s Concurrent (4P): 119.875s

That leads us to the following table.

| Р | $T_P[\mathrm{ms}]$ | $S_P$ | $S_P^C$ |
|---|--------------------|-------|---------|
| S | 36.615             |       |         |
| 1 | 44.861             | 1.0   | 0.816   |
| 2 | 42.263             | 1.061 | 0.866   |
| 4 | 119.875            | 0.374 | 0.105   |

Finally we have the plots



