

welcome to ML Study Jam session #3

Google Developer Student Clubs Simon Fraser University

Timeline

Computer Vision

Computer Vision

Quick Recap 1

Deep Learning: training neural networks with multiple layers to learn and extract intricate patterns from data.

Key Concepts:

- Neuron: A basic unit in a neural network that processes inputs, applies a mathematical operation, and produces an output using an activation function.
- Neural Network: A computational model composed of interconnected layers of artificial neurons.
- Weights: Numeric parameters that determine the strength of connections between neurons in a neural network.
- Bias: An additional input that allows it to shift the activation function's output, providing flexibility in fitting the data.

Quick Recap 2

More Key Concepts:

- Feedforward Neural Networks: Information flows in one direction, from input to output, without loops or feedback.
- Backpropagation: Training algorithm that adjusts network weights based on the prediction error to minimize the loss function.
- Activation Functions: Functions applied to the output of neurons to introduce non-linearity and capture complex relationships.
- Loss Function: A measure of how well a model's predictions align with the actual values, used to guide the learning process.
- Optimization Function: Algorithm used to adjust the model's parameters to minimize the loss function and improve performance.

Computer Vision

Introduction to Computer Vision

Teaching machines to "see" and understand visual data such as images and videos

CV Key Concepts

Convolutional Neural Networks (CNNs)

- Convolutional Layers
- Pooling Layers
- Fully Connected Layers
- ReLU

Common CV architectures

1. Image Classification:

 ResNet: Known for introducing residual connections to tackle the vanishing gradient problem, enabling training of even deeper networks.

2. Object Detection:

 R-CNN: Combines region proposal techniques with CNNs to detect objects within region proposals, pioneering the field of object detection.

3. Image Segmentation:

U-Net: Designed for biomedical image segmentation, utilizes a U-shaped architecture with skip connections for accurate and precise segmentations.

Computer Vision

Intro to Natural Language Processing

Enabling machines to understand, interpret, and generate human language.

Key Concepts

- Tokenization: Breaking text into smaller units, such as words or subwords.
- Word Embeddings: Vector representations of words that capture semantic relationships.
- Context Information: surrounding a word or phrase that influences its meaning.
- Encoder: Converts input text into fixed-dimensional representation
- Decoder: Converts encoded representation to an output sequence

- Recurrent Neural Networks (RNNs): Effective for sequential and contextual tasks.
- Long Short-Term Memory (LSTM): A type of RNN that can handle long-term dependencies.
- Gated Recurrent Units (GRUs): Another type of RNN that simplifies the architecture.

Exercise Time

https://colab.research.google.com/drive/1VgMM_U3ks7aZbF1Bx0Xl8P5udT1kO77k?usp=sharing

Kaggle Resources

- https://www.kaggle.com/learn/intro-to-deep-learning
- https://www.kaggle.com/learn/computer-vision
- https://www.kaggle.com/learn/intro-to-game-ai-and-reinforc ement-learning

Thank you!

Google Developer Student Clubs Simon Fraser University

