


```

251 GSGVGVPVG VPGVGVPKG VPGVGPGVGP GVPGVGPGKA GAGSGAGAGS
301 GAGAGSGAGA GSGVGVPVG VPGVGVPKG VPGVGPGVGP GVPGVGPGKA
351 GAGSGAGAGS GAGAGSGAGA GSGVGVPVG VPGVGVPKG VPGVGPGVGP
401 GVGPGVPGKA GAGSGAGAGS GAGAGSGAGA GSGVGVPVG VPGVGVPKG
451 VPGVGPGVGP GVPGVGPGKA GAGSGAGAGS GAGAGSGAGA GSGVGVPVG
501 VPGVGVPKG VPGVGPGVGP GVPGVGPGKA GAGAGSGAGA GAGAGSGAGA
551 GSGVGVPVG VPGVGVPKG VPGVGPGVGP GVPGVGPGKA GAGSGAGAGS
601 GAGAGSGAGA GSGVGVPVG VPGVGVPKG VPGVGPGVGP GVPGVGPGKA
651 GAGSGAGAGS GAGAGSGAGA GSGVGVPVG VPGVGVPKG VPGVGPGVGP
701 GVGPGVPGKA GAGSGAGAGS GAGAGSGAGA GSGVGVPVG VPGVGVPKG
751 VPGVGPGVGP GVPGVGPGKA GAGSGAGAGS

```

HITS AT: 1-780

RELATED SEQUENCES AVAILABLE WITH SEQLINK
ED Entered STN: 06 Oct 2004

L8 ANSWER 4 OF 4 REGISTRY COPYRIGHT 2005 ACS on STN

```

SEQ 1 GAGAGSGAGA GSGVGVPVG VPGVGVPKG VPGVGPGVGP GVPGVGPGKA
51 GAGSGAGAGS GAGAGSGAGA GSGVGVPVG VPGVGVPKG VPGVGPGVGP
101 GVGPGVPGKA GAGSGAGAGS GAGAGSGAGA GSGVGVPVG VPGVGVPKG
151 VPGVGPGVGP GVPGVGPGKA GAGSGAGAGS GAGAGSGAGA GSGVGVPVG
201 VPGVGVPKG VPGVGPGVGP GVPGVGPGKA GAGAGSGAGA GAGAGSGAGA
251 GSGVGVPVG VPGVGVPKG VPGVGPGVGP GVPGVGPGKA GAGSGAGAGS
301 GAGAGSGAGA GSGVGVPVG VPGVGVPKG VPGVGPGVGP GVPGVGPGKA
351 GAGSGAGAGS GAGAGSGAGA GSGVGVPVG VPGVGPGVGP VPGVGPGVGP
401 GVGPGVPGKA GAGSGAGAGS GAGAGSGAGA GSGVGVPVG VPGVGPGVGP
451 VPGVGPGVGP GVPGVGPGKA GAGSGAGAGS GAGAGSGAGA GSGVGVPVG
501 VPGVGVPKG VPGVGPGVGP GVPGVGPGKA GAGAGSGAGS GAGAGSGAGA
551 GSGVGVPVG VPGVGVPKG VPGVGPGVGP GVPGVGPGKA GAGSGAGAGS
601 GAGAGSGAGA GSGVGVPVG VPGVGVPKG VPGVGPGVGP GVPGVGPGKA
651 GAGSGAGAGS GAGAGSGAGA GSGVGVPVG VPGVGVPKG VPGVGPGVGP

```

PRIORITY: US 2003-PV470464 20030514.

L9 ANSWER 2 OF 4 HCPLUS COPYRIGHT 2005 ACS on STN
2004:999537 Document No. 141:427734 Controlled release of active
agents from personal care product compositions utilizing repeat sequence
protein polymers. Kumar, Manoj; Mazeaud, Isabelle; Christiano, Steven
Patrick (USA). U.S. Pat. Appl. Publ. US 2004228913 A1 20041118, 34 pp.
(English). CODEN: USXXCO. APPLICATION: US 2004-845775
20040514.

PRIORITY: US 2003-PV470465 20030514.

L9 ANSWER 3 OF 4 HCPLUS COPYRIGHT 2005 ACS on STN
2004:759607 Document No. 141:282398 Use of repeat sequence protein
polymers in personal care compositions. Kumar, Manoj; Cuevas, William A.
(USA). U.S. Pat. Appl. Publ. US 2004180027 A1 20040916, 50 pp.
(English). CODEN: USXXCO. APPLICATION: US 2004-800179 20040312. PRIORITY:
US 2003-PV454077 20030312.

L9 ANSWER 4 OF 4 HCPLUS COPYRIGHT 2005 ACS on STN
2003:950911 Document No. 140:14537 Synthesis of inorganic
structures using templation and catalysis by self assembled repeat protein
polymers. Kumar, Manoj (Dow Corning Corporation, USA; Genencor
International, Inc.). PCT Int. Appl. WO 2003099465 A1 20031204, 27 pp. DESIGNATED
STATES: W; AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD,
SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA,
ZM, ZW; RW; AT, BE, BF, BJ, CF, CG, CH, CI, CM, CY, DE, DK, ES, FI, FR,
GA, GB, GR, IE, IT, LU, MC, ML, MR, NE, NL, PT, SE, SN, TD, TG, TR.
(English). CODEN: PIXXD2. APPLICATION: WO 2003-US15757 20030520.
PRIORITY: US 2002-PV381913 20020520.

```

=> index medicine biosci prompt
FILE 'DRUGMONOG' ACCESS NOT AUTHORIZED
'PROMPT' IS NOT A VALID FILE NAME
ENTER A FILE NAME OR (IGNORE):prompt

```

701 GVGPGVPGKA GAGSGAGAGS GAGAGSGAGA GSGVGVPVG VPGVGVPKG

751 VPGVGPGVGP GVPGVGPGKA GAGSGAGAGS

HITS AT: 1-780

RELATED SEQUENCES AVAILABLE WITH SEQLINK
ED Entered STN: 22 Dec 2003

=> file hcplus	SINCE FILE
COST IN U.S. DOLLARS	ENTRY
TOTAL	
SESSION	
FULL ESTIMATED COST	246.75
246.96	

FILE 'HCPLUS' ENTERED AT 19:54:58 ON 18 JAN 2005
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2005 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 18 Jan 2005 VOL 142 ISS 4
FILE LAST UPDATED: 17 Jan 2005 (20050117/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> s 18
L9 4 L8

=> d 19 1-4 cbib

L9 ANSWER 1 OF 4 HCPLUS COPYRIGHT 2005 ACS on STN
2004:1019529 Document No. 142:2503 Conjugates of repeat sequence
protein polymers with bioactive agents. Collier, Katherine D.; Cuevas,
William A.; Kumar, Manoj (USA). U.S. Pat. Appl. Publ. US 2004234609 A1
20041125, 54 pp. (English). CODEN: USXXCO. APPLICATION: US 2004-845936
20040514.

'PROMPT' IS NOT A VALID FILE NAME
ENTER A FILE NAME OR (IGNORE):prompt
COST IN U.S. DOLLARS

TOTAL	SINCE FILE
SESSION	ENTRY
FULL ESTIMATED COST	9.30
256.26	
INDEX 'ADISCTI', ADISINSIGHT, ADISNEWS, BIOSIS, BIOTECHNO, CANCERLIT, CAPLUS, CEN, DDFB, DDFU, DGENE, DISSABS, DRUGB, DRUGMONOG2, DRUGU, EMBAL, EMBASE, EMBASE, IFIPAT, IMSDRUGNEWS, IMSPRODUCT, IPA, JICST-EPLUS, KOSMET, 'LIFESCI', MEDICONF, MEDLINE, NAPRALERT, ...' ENTERED AT 19:55:54 ON 18 JAN 2005	

78 FILES IN THE FILE LIST IN STNINDEX

Enter SET DETAIL ON to see search term postings or to view
search error messages that display as 0* with SET DETAIL OFF.

```

=> s selp47k
FILE 'ADISCTI'
    0 SELP47K
FILE 'ADISINSIGHT'
    0 SELP47K
FILE 'ADISNEWS'
    0 SELP47K
FILE 'BIOSIS'
    0 SELP47K
FILE 'BIOTECHNO'
    0 SELP47K
FILE 'CANCERLIT'
    0 SELP47K
FILE 'CAPLUS'
    4 SELP47K
FILE 'CEN'
    0 SELP47K
FILE 'DDFB'
    0 SELP47K
FILE 'DDFU'
    0 SELP47K
FILE 'DGENE'
    1 SELP47K
FILE 'DISSABS'
    0 SELP47K
FILE 'DRUGB'
    0 SELP47K
FILE 'DRUGMONOG2'
    0 SELP47K
FILE 'DRUGU'
    0 SELP47K
FILE 'EMBAL'
    0 SELP47K
FILE 'EMBASE'
    0 SELP47K

```

```

0 SELP47K
FILE 'ESBIOBASE' 0 SELP47K
FILE 'IFIPAT' 2 SELP47K
FILE 'IMSDRUGNEWS' 0 SELP47K
FILE 'IMSPRODUCT' 0 SELP47K
FILE 'IPA' 0 SELP47K
FILE 'JICST-EPLUS' 0 SELP47K
FILE 'KOSMET' 1 SELP47K
FILE 'LIFESCI' 0 SELP47K
FILE 'MEDICONF' 0 SELP47K
FILE 'MEDLINE' 0 SELP47K
FILE 'NAPRALERT' 0 SELP47K
FILE 'NLDB' 0 SELP47K
FILE 'NUTRACEUT' 0 SELP47K
FILE 'PASCAL' 0 SELP47K
FILE 'PCTGEN' 0 SELP47K
FILE 'PHARMAM' 0 SELP47K
FILE 'PHIC' 0 SELP47K
FILE 'PHIN' 0 SELP47K
FILE 'SCISEARCH' 0 SELP47K
FILE 'TOXCENTER' 1 SELP47K
FILE 'USPATFULL' 4 SELP47K
FILE 'USPAT2' 0 SELP47K
FILE 'AGRICOLA' 0 SELP47K
FILE 'ANABSTR' 0 SELP47K
FILE 'ANTE' 0 SELP47K
FILE 'AQUALINE' 0 SELP47K
FILE 'AQUASCI' 0 SELP47K
FILE 'BIOBUSINESS' 0 SELP47K

FILE 'BIOCOMMERCE' 0 SELP47K
FILE 'BIOENG' 0 SELP47K
FILE 'BIOTECHABS' 0 SELP47K
FILE 'BIOTECHDS' 0 SELP47K
FILE 'CABA' 0 SELP47K
FILE 'CEABA-VTB' 0 SELP47K
FILE 'CIN' 0 SELP47K
FILE 'CONFSCI' 0 SELP47K
FILE 'CROPB' 0 SELP47K
FILE 'CROPU' 0 SELP47K
FILE 'FEDRIP' 0 SELP47K
FILE 'FOMAD' 0 SELP47K
FILE 'FOREGE' 0 SELP47K
FILE 'FROSTI' 0 SELP47K
FILE 'FSTA' 0 SELP47K
FILE 'GENBANK' 0 SELP47K
FILE 'HEALSAFE' 0 SELP47K
FILE 'IMSRESEARCH' 0 SELP47K
FILE 'NIOSHTIC' 0 SELP47K
FILE 'NTIS' 0 SELP47K
FILE 'OCEAN' 0 SELP47K
FILE 'PHAR' 0 SELP47K
FILE 'PRONT' 0 SELP47K
FILE 'PROUSDDR' 0 SELP47K
FILE 'PS' 0 SELP47K
FILE 'RDISCLOSURE' 0 SELP47K
FILE 'SYNTHLINE' 0 SELP47K
FILE 'VETB' 0 SELP47K
FILE 'VETU' 0 SELP47K

```

```

FILE 'WATER' 0 SELP47K
FILE 'WPIDS' 0 SELP47K
FILE 'WPIFV' 2 SELP47K
FILE 'WPINDEX' 0 SELP47K
FILE 'WPINDEX' 2 SELP47K

L10 QUE SELP47K

=> d rank
DISPLAY L# IS NOT VALID IN STNINDEX
Answer set was created in a file. Enter DISPLAY HISTORY to see where
the answer set was created. Use the File command to change to that
file, then display the answer.

```

```

=> d rank
F1 4 CAPLUS
F2 4 USPATFULL
F3 2 IFIPAT
F4 2 WPIDS
F5 2 WPINDEX
F6 1 DGENE
F7 1 KOSMET
F8 1 TOXCENTER

```

```

=> file f1-f8
COST IN U.S. DOLLARS SINCE FILE
TOTAL ENTRY
SESSION 1.18
FULL ESTIMATED COST 257.44

FILE 'CAPLUS' ENTERED AT 19:56:59 ON 18 JAN 2005
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2005 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'USPATFULL' ENTERED AT 19:56:59 ON 18 JAN 2005
CA INDEXING COPYRIGHT (C) 2005 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'IFIPAT' ENTERED AT 19:56:59 ON 18 JAN 2005
COPYRIGHT (C) 2005 IFI CLAIMS(R) Patent Services (IFI)

FILE 'WPIDS' ENTERED AT 19:56:59 ON 18 JAN 2005
COPYRIGHT (C) 2005 THE THOMSON CORPORATION

FILE 'WPINDEX' ACCESS NOT AUTHORIZED

FILE 'DGENE' ENTERED AT 19:56:59 ON 18 JAN 2005
COPYRIGHT (C) 2005 THE THOMSON CORPORATION

FILE 'KOSMET' ENTERED AT 19:56:59 ON 18 JAN 2005

```

```

COPYRIGHT (C) 2005 International Federation of the Societies of
Cosmetics Chemists
FILE 'TOXCENTER' ENTERED AT 19:56:59 ON 18 JAN 2005
COPYRIGHT (C) 2005 ACS
=> s l10
L11 15 L10
=> dup rem
ENTER L# LIST OR (END):l11
DUPLICATE IS NOT AVAILABLE IN 'DGENE, KOSMET'.
ANSWERS FROM THESE FILES WILL BE CONSIDERED UNIQUE
PROCESSING COMPLETED FOR L11
L12 7 DUP REM L11 (8 DUPLICATES REMOVED)
=> d l12 1-7 cbib kwic
L12 ANSWER 1 OF 7 CAPLUS COPYRIGHT 2005 ACS on STN DUPLICATE 1
2004:1019529 Document No. 142:2503 Conjugates of repeat sequence
protein
polymers with bioactive agents. Collier, Katherine D.; Cuevas,
William A.; Kumar, Manoj (USA). U.S. Pat. Appl. Publ. US 2004234609 A1
20041125, 54 pp. (English). CODEN: USXXCO. APPLICATION: US 2004-845936
20040514. PRIORITY: US 2003-PV470464 20030514.
IT 50-81-7DP, Ascorbic acid, conjugates with silk fibroin-elastin
SELP47K 1866-31-5DP, Allyl cinnamate, conjugates with silk
fibroin-elastin SELP47K 2897-60-1DP, (3-
Glycidoxypropyl)diethoxymethylsilane, conjugates with silk
fibroin-elastin
SELP47K 3327-22-8DP, Quat 188, conjugates with silk
fibroin-elastin SELP47K 7400-08-0DP, p-Hydroxycinnamic acid,
conjugates with silk fibroin-elastin SELP47K 18171-19-2DP,
3-Chloropropylmethyldimethoxysilane, conjugates with silk
fibroin-elastin
SELP47K 27072-45-3DP, FITC, conjugates with silk fibroin-
elastin
SELP47K 27668-52-6DP, DC5700, conjugates with silk
fibroin-elastin SELP47K 31900-57-9DP, Polydimethylsiloxane,
monocarboxydecyl-terminated, conjugates with silk fibroin-
elastin
SELP47K 184870-14-2DP, (3-
Glycidoxypropyl)dimethylethoxysilane,
conjugates with silk fibroin-elastin SELP47K
RL: COS (Cosmetic use); NUU (Other use, unclassified); SPN
(Synthetic preparation); THU (Therapeutic use); BIOL (Biological study);
PREP (Preparation); USES (Uses)
(conjugates of repeat sequence protein polymers with
bioactive agents)

L12 ANSWER 2 OF 7 CAPLUS COPYRIGHT 2005 ACS on STN DUPLICATE 2
2004:999537 Document No. 141:427734 Controlled release of active

```

agents from personal care product compositions utilizing repeat sequence protein polymers. Kumar, Manoj; Mazeaud, Isabelle; Christiano, Steven Patrick (USA). U.S. Pat. Appl. Publ. US 2004228913 A1 20041118, 34 pp. (English). CODEN: USXXCO. APPLICATION: US 2004-845775 20040514. PRIORITY: US 2003-PV470465 20030514.

AB . . . hair care compn., a skin care compn., a nail care compn., a cosmetic composition, or an over-the-counter pharmaceutical composition. Thus, SELP47K, a silk-elastin repeat sequence protein block copolymer, was expressed in transgenic *Escherichia coli*. The glass transition temperature and tensile strength of SELP47K were determined. SELP47K could be spun into a film composed of a non-woven web of nanofilaments 20-45 nm in diameter and 100 nm.

ST controlled release repeat sequence protein polymer; silk elastin repeat block copolymer protein personal care product; cosmetic repeat sequence protein polymer SELP47K

IT Proteins
RL: BPN (Biosynthetic preparation); COS (Cosmetic use); PRP (Properties); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES

(Uses) (SELP47K (silk-elastin like protein 47K); controlled release of active agents from personal care product compns. utilizing repeat sequence protein polymers)

L12 ANSWER 3 OF 7 CAPLUS COPYRIGHT 2005 ACS on STN DUPLICATE 3 2004:759607 Document No. 141:282398 Use of repeat sequence protein polymers in personal care compositions. Kumar, Manoj; Cuevas, William A. (USA). U.S. Pat. Appl. Publ. US 2004180027 A1 20040916, 50 pp. (English).

CODEN: USXXCO. APPLICATION: US 2004-800179 20040312. PRIORITY: US 2003-PV454077 20030312.

AB . . . hair care compn., a skin care compn., a nail care compn., a cosmetic composition, or an over-the-counter pharmaceutical composition. Thus, SELP47K, a silk-elastin repeat sequence protein block copolymer, was prepared with transgenic *Escherichia coli*. The glass transition temperature and tensile strength of SELP47K were determined. SELP47K could be spun into a film composed of a non-woven web of nanofilaments 20-45 nm in diameter and 100 nm.

ST silk elastin repeat block copolymer protein personal care product; cosmetic repeat sequence protein polymer SELP47K

L12 ANSWER 4 OF 7 USPATFULL on STN 2004:18884 Synthesis of inorganic structures using templation and

catalysis by self assembled repeat protein polymers. Kumar, Manoj; Fremont, CA, UNITED STATES US 2004014186 A1 20040122 APPLICATION: US 2003-441965 A1 20030520 (10) PRIORITY: US 2002-381913P 20020520 (60) DOCUMENT TYPE: Utility; APPLICATION. CAS INDEXING IS AVAILABLE FOR THIS PATENT. DETD [0078] A genetically engineered silk-elastin copolymer SELP47K (SEQ ID NO: 19) was isolated and purified from *E. coli* bacteria. The *E. coli* containing the SELP47K (SEQ ID NO: 19) recombinant DNA was obtained from Protein Polymer Technologies, Inc. of San Diego, Calif. The SELP47K (SEQ ID NO: 19) had a general structure of: head-[(GAGAGS).sub.2(GVGVP).sub.2.3GKGPV (SEQ ID NO: 19) (GVGP).sub.4(GAGAGS).sub.2].sub.13-tail. DETD [0080] Bovine albumin serum (BSA) was purchased from Sigma Aldrich, St. Louis, Mo. A 13% solution of SELP47K (SEQ ID NO: 19) in water was prepared. A 13% solution of BSA in water was prepared. A stainless steel coupon was spin coated with the SELP47K (SEQ ID NO: 19) solution to a thickness of 2 μ m to form a SELP47K (SEQ ID NO: 19) protein film. A stainless steel coupon was spin coated with the BSA solution to a thickness. DETD . . . buffer, pH 8.0, to prepare the assay solution. The TEOS assay solution was placed on the film of both the SELP47K (SEQ ID NO: 19) and BSA and in a corner of both steel coupons where no protein film was present. DETD [0082] It was observed that silica precipitation completed within one minute on the SELP47K (SEQ ID NO: 19) film. No silica precipitation was observed on the BSA film. Additionally, no silica precipitation was observed on the uncoated corners of the steel coupons. The SELP47K (SEQ ID NO: 19) film was analyzed to confirm the silica precipitation by removing the white solid precipitated over the SELP47K (SEQ ID NO: 19) film mechanically and dissolving the precipitated silica in NaOH and reacting the solution with molybdic acid. DETD [0083] A 10-20% solution of the SELP47K (SEQ ID NO: 19) obtained in Example 1 in water was prepared. A stainless steel coupon was spin coated with the SELP47K (SEQ ID NO: 19) solution to a thickness of 2 μ m to form a SELP47K (SEQ ID NO: 19) protein film. A yttrium ethoxide solution was placed on the film of the SELP47K (SEQ ID NO: 19). Yttria precipitation was observed

immediately on the protein polymer film whereas no such precipitation was seen when dropped directly on the metal coupon having no SELP47K (SEQ ID NO: 19) protein polymer film. DETD [0101] A CaCO₃ inorganic structure may be formed using SELP47K (SEQ ID NO: 19). The SELP47K (SEQ ID NO: 19) will be dissolved in 1 ml of 7.5 mM CaCl₂.sub.2 solution and this 1 ml SELP47K (SEQ ID NO: 19) solution in CaCl₂.sub.2 will be placed into a well containing a cover-slip and the whole set. . .

L12 ANSWER 5 OF 7 CAPLUS COPYRIGHT 2005 ACS on STN DUPLICATE 4 2004:61498 Document No. 141:301229 In vitro and in vivo evaluation of recombinant silk-elastin like hydrogels for cancer gene therapy. Megeed, Zaki; Haider, Mohamed; Li, Daqing; O'Malley, Bert W.; Cappello, Joseph; Ghandehari, Hamidreza (Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA). Journal of Controlled Release, 94(2-3), 433-445 (English) 2004. CODEN: JCREEC. ISSN: 0168-3659. Publisher: Elsevier.

ST SELP47K hydrogel gene therapy antitumor

L12 ANSWER 6 OF 7 DGENE COPYRIGHT 2005 The Thomson Corp on STN DESC Silk-elastin polymer SELP47K. AB . . . temperature), and does not have any chemical modifications of the protein. This is the amino acid sequence of silk-elastin polymer SELP47K that may be used as the repeat sequence protein polymer of the invention.

L12 ANSWER 7 OF 7 KOSMET COPYRIGHT 2005 IFSCC on STN AB . . . DNA sequences. Additionally, by properly choosing and engineering microbial production strains, we can achieve high expression of silk-elastin protein polymer (SELP47K), an example of RSPP products from these genes. For example, we use microorganisms deficient in the deletion mechanisms of homologous. . . and have molecular weights generally between 30 kD and 250 kD. For example, in silk-elastin protein polymer, a RSPP named SELP47K (Unit block structure: Figure 1), individual units are composed of silk fibroin (S = GAGAGS), and elastin (E = GVGVP). In this nomenclature, SELP47K (silk elastin like protein) consists of four silk repeat peptides, seven elastin repeat peptides, and one lysine modified elastin repeat peptide. Cross-linking functionality is provided to the SELP47K by

substitution of one of the amino acids, valine, for a lysine in one individual unit of elastin. This modification. . . applications in personal care using molecular biology, gene-expression methods, and modern fermentation engineering. Specifically, an example of silk-elastin protein polymer SELP47K is reported for its ease in manufacturability and key structural and mechanical properties relevant to personal care. Moreover, personal care. . .

=> d l12 1-7 ed
NO VALID FORMATS ENTERED FOR FILE 'USPATFULL'
In a multifeile environment, each file must have at least one valid format requested. Refer to file specific help messages or the STNGUIDE file for information on formats available in individual files.

REENTER DISPLAY FORMAT FOR ALL FILES (FILEDEFAULT):end

=> d l12 7 ibib abs

L12 ANSWER 7 OF 7 KOSMET COPYRIGHT 2005 IFSCC on STN
ACCESSION NUMBER: 31795 KOSMET Full-text
FILE SEGMENT: scientific, technical
TITLE: BIOTECHNOLOGY FOR PERSONAL CARE: A CASE
STUDY OF
AUTHOR: SILK-ELASTIN PROTEIN POLYMER
BIOCHEMISTRY KUMAR M (GENENCOR INTERNATIONAL, INC.,
CA, USA) DEPARTMENT, 925 PAGE MILL ROAD, PALO ALTO,
SOURCE: 23 RD IFSCC INTERNATIONAL CONGRESS,
"COSMETIC SCIENCE: REALITY", 24-27
UNLOCKING THE . . . MYSTERY, FANTASY,
HOTEL, OCTOBER 2004, ORLANDO, FLORIDA, USA, DOLPHIN
ROM ONLY, WALT DISNEY WORLD (R) RESORT, POSTERS ON CD
FEDERATION POSTER 99, 1-5, 10 REFS
24-26 Meeting Organizer: IFSCC - INTERNATIONAL
KINGDOM, SOCIETIES OF COSMETIC CHEMISTS, GT HOUSE,
EMAIL: ROTHSAW ROAD, LUTON, BEDS LU1 1QX, UNITED
COSMETIC TEL: +44-1582-726661, FAX: +44-1582-405217,
YORK, NY ifscsc.scs@btinternet.com ; SOCIETY OF
668-1504, CHEMISTS, 120 WALL STREET, SUITE 2400, NEW
10005, TEL: +1-212-668-1500, FAX: +1-212-

CHEMISTS,
10005, TEL:
EMAIL:
www.scconline.org
DOCUMENT TYPE: Conference; (POSTER)
LANGUAGE: English
AN 31795 KOSMET FS scientific, technical **full-text**
AB Designer Proteins are in need as active ingredients to perform a variety of functions and to impart desired characteristics to personal care product formulations. Advances in genetic engineering offer a unique opportunity to design specific, targeted properties, and production of consistent fermentation based protein polymers with desired properties that are important to provide specific benefits. Additionally, multiple protein motifs may be engineered to provide useful characteristics for a given personal care formulation. Thus, engineering of novel proteins with well-defined modular structures and properties for desired applications in personal care formulations is possible. Repeat sequence protein polymers (RSPP), produced through molecular biological design and fermentation targeted to incorporate the needed characteristics in personal care formulation are currently being investigated at Genencor International. We will present in this poster a case study of a repeat sequence protein for possible personal care applications using silk-elastin protein polymer as an example. Biotechnology based products for personal care applications are appearing on the market place. These products fall into three main categories, (i) peptides or small proteins, (ii) unique proteins and (iii) catalytic proteins: enzymes. This poster presentation will illustrate a new concept of hybrid proteins to deliver multifunctionality in personal care formulations using genetic and protein engineering techniques. Proteins have been widely used as ingredients in personal care products to perform a variety of functions and to impart desired characteristics to product formulations. For example, proteins have been used to impart manageability and strength to hair, to moisturize skin and hair, and to provide film formation to improve the appearance of skin and hair. Proteins have also been used to provide durability properties to many personal care products. However, such proteins may not exhibit all desired characteristics when used in personal care products. For example, natural silk proteins may impart durability but may also form tight, hard fibers that are not suitable for film formation. Also, many natural proteins have a low isoelectric point, which reduces the affinity of the protein for the negatively charged skin and hair. Additionally, when more than one protein is needed to impart all desired characteristics to a given formulation, the necessity of using more than one protein may increase the cost and production time for a given personal care product. Furthermore, proteins generally have poor solubility due to high molecular weight and

hydrophobicity. Commercially available proteins, including structural proteins such as silk and collagen, are typically chemically degraded giving a diverse mixture of molecular weight fragments with variable properties. As such, these proteins are often modified chemically to enhance solubility for inclusion in personal care products. However, even chemically modified proteins may not have all desired characteristics. Thus, there remains a need in the industry for personal care compositions that have desired characteristics without chemical modification of the proteins. Natural protein polymers such as silk fibroins have been utilized to deliver personal care attributes for some time. Protein-based biopolymers¹, 2 currently are made using recombinant DNA technology and fermentation. Recombinant biopolymers offer the ability to screen for desired properties utilizing the tremendous potential diversity of amino acid combinations, and fermentation allows for large-scale manufacturing with existing technology. Using recombinant DNA methods, one can precisely control the molecular weight, size, monodispersity, stereochemistry, and distribution of the biopolymer⁴ to create composite biopolymers simulating natural protein polymers⁵. Bio-based protein polymers also offer sustainable production and biodegradability. Using the twenty natural amino acids, one can create a protein polymer designed for a specific function. Representative examples of natural small peptide-based RSPP and their block copolymers (repeated amino acid sequences, using the one letter code, in parentheses), will include elastin (GVGVVP, APGVGV), silk fibroin (GAGAGS), byssus (PGGG), flagelliform silk (PGGX), dragline silk (GPQQQ), GPGGY, GGGPGGS, collagen (GAPGAPGSQAGPGLQ, GAPGTPGPGQLPGSP), and keratin (AKLKLAEAKLELA). The relative environmental stability of these families of structural proteins, in combination with their biocompatibility, unique mechanical properties, and leverage for genetic control of sequence, provide the foundation on which one may exploit naturally derived RSPPs for personal care. The presence of regularly repeated sequences also implies a propensity to adopt a regular structure and self-assemble. Such new generation RSPP biomaterials will by design, harness the power of surfaces and self-assembly to direct specific orientations desirable for skin, hair, and oral care. Surfaces of these newly designed materials are precisely defined at equilibrium and resistant to contamination. This is in contrast to present materials, which are amorphous or polycrystalline, drift in structure and composition with time, and suffer from uncontrolled contamination. The key elements in molecular self-assembly, a phenomenon ubiquitous in nature, are chemical and structural compatibility through non-covalent interactions. Silk-elastin protein polymer, relevant to this study, are simple, versatile, easy to produce, and self-assemble. Producing silk-elastin protein polymer requires an understanding of the protein structure, the ability to manipulate protein polymer structure through control of amino acid sequences, and an efficient method to synthesize sequences in a reproducible and precise fashion. Genencor has technology that allows us to produce and stably maintain repetitive genes and gene products in microorganisms by specifically designing the genes to avoid recombinational deletion. This process

includes exploiting the degeneracy of the genetic code such that adjacent, identical oligopeptide blocks can be encoded by non-identical DNA sequences. Additionally, by properly choosing and engineering microbial production strains, we can achieve high expression of silk-elastin protein polymer (SELP47K), an example of RSPP products from these genes. For example, we use microorganisms deficient in the deletion mechanisms of homologous recombination: DNA-modifying functions. Using precise sequence design and gene construction, we can stably maintain recombinant genes of over 5000 base pairs in E. coli. Thus, RSPPs are the result of knowledge-based polymer design that relies on the knowledge that repeated sequences adopt specific structural motifs that provide the basis for polymer formation. RSPPs are similar to a chemically polymerized block of copolymers but do not have any heterogeneity. They are unique, defined, monodispersed, and have molecular weights generally between 30 kD and 250 kD. For example, in silk-elastin protein polymer, a RSPP named SELP47K (Unit block structure: Figure 1), individual units are composed of silk fibroin (S = GAGAGS), and elastin (E = GVGV). In this nomenclature, SELP47K (silk elastin like protein) consists of four silk repeat peptides, seven elastin repeat peptides, and one lysine modified elastin repeat peptide. Cross-linking functionality is provided to the SELP47K by substitution of one of the amino acids, valine, for a lysine in one individual unit of elastin. This modification also increases the water solubility of the polymer. This research entails the study of the properties relevant to personal care applications of silk-elastin protein polymer. Results indicate that silk-elastin protein polymer offers unique properties that are desirable for possible hair and skin care applications. In conclusion, repeat sequence protein polymers genetically designed based on the combined benefits of natural proteins have been described in this work to offer biotechnological solutions in personal care. In this work, we have illustrated that Genencor International has developed tailor-design protein polymers for applications in personal care using molecular biology, gene-expression methods, and modern fermentation engineering. Specifically, an example of silk-elastin protein polymer SELP47K is reported for its ease in manufacturability and key structural and mechanical properties relevant to personal care. Moreover, personal care application data reported demonstrates the potential of repeat sequence protein polymers as key active ingredients in upcoming future cosmetic products.

=> FIL STNGUIDE
 COST IN U.S. DOLLARS
 TOTAL

SESSION
 FULL ESTIMATED COST
 284.51

DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS) SINCE FILE

TOTAL	ENTRY
SESSION CA SUBSCRIBER PRICE 1.46	-1.46 -
FILE 'STNGUIDE' ENTERED AT 19:59:04 ON 18 JAN 2005 USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT COPYRIGHT (C) 2005 AMERICAN CHEMICAL SOCIETY, JAPAN SCIENCE AND TECHNOLOGY CORPORATION, AND FACHINFORMATIONSZENTRUM KARLSRUHE	
FILE CONTAINS CURRENT INFORMATION. LAST RELOADED: Jan 14, 2005 (20050114/UP).	
> d his	
(FILE 'HOME' ENTERED AT 19:51:50 ON 18 JAN 2005)	
FILE 'REGISTRY' ENTERED AT 19:51:55 ON 18 JAN 2005	
L1 169 S {GAGAGS}{2}/SQSP	
L2 248 S {GVGV}{3}/SQSP	
L3 53 S L1&L2	
L4 830 S GKGV/SQSP	
L5 5 S L3&L4	
L6 4 S {GVGP}{4}/SQSP	
L7 4 L5 & L6	
L8 4 L7 & L1	
FILE 'HCPLUS' ENTERED AT 19:54:58 ON 18 JAN 2005	
L9 4 S L8	
INDEX 'ADISCTI, ADISINSIGHT, ADISNEWS, BIOSIS, BIOTECHNO, CANCERLIT, CAPLUS, CEN, DDFB, DDFU, DGENE, DISSABS, DRUGB, DRUGMONOG2, DRUGU, EMBAL, EMBASE, ESBIODEBASE, IFIPAT, IMSDRUGNEWS, IMSPRODUCT, IPA, JICST-EPLUS, KOSMET, LIFESCI, MEDICONF, MEDLINE, NAPRALERT, ..' ENTERED AT 19:55:54 ON 18 JAN 2005	
SEA SELP47K	

L10 4 FILE CAPLUS	
1 FILE DGENE	
2 FILE IFIPAT	
1 FILE KOSMET	
1 FILE TOXCENTER	
4 FILE USPATFULL	
2 FILE WPIDS	
2 FILE WPINDEX	
QUE SELP47K	

FILE 'CAPLUS, USPATFULL, IFIPAT, WPIDS, DGENE, KOSMET, TOXCENTER' ENTERED AT 19:56:59 ON 18 JAN 2005	
L11 15 S L10	

L12 7 DUP REM L11 (8 DUPLICATES REMOVED)

FILE 'STNGUIDE' ENTERED AT 19:59:04 ON 18 JAN 2005

=> index medicine biosci prompt
FILE 'DRUGMONOG' ACCESS NOT AUTHORIZED
COST IN U.S. DOLLARS SINCE FILE
TOTAL ENTRY
SESSION FULL ESTIMATED COST 0.18
284.69

DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS) SINCE FILE
TOTAL ENTRY
SESSION CA SUBSCRIBER PRICE 0.00 -
1.46

INDEX 'ADISCTI, ADISINSIGHT, ADISNEWS, BIOSIS, BIOTECHNO, CANCERLIT,
CAPLUS,
CEN, DDFB, DDFU, DGENE, DISSABS, DRUGB, DRUGMONOG2, DRUGU,
EMBAL,
EMBASE,
ESBIOSA, IFIPAT, IMSDRUGNEWS, IMSPRODUCT, IPA, JICST-EPLUS,
KOSMET,
LIFESCI, MEDICONF, MEDLINE, NAPRALERT, ...' ENTERED AT
20:00:59 ON 18 JAN 2005

78 FILES IN THE FILE LIST IN STNINDEX

Enter SET DETAIL ON to see search term postings or to view
search error messages that display as 0* with SET DETAIL OFF.

=> s seLP adj 47 adj K
FILE 'ADISCTI'
1 SELP
21 ADJ
14511 47
21 ADJ
6261 K
0 SELP ADJ 47 ADJ K
(SELP(W)ADJ(W)47(W)ADJ(W)K)
FILE 'ADISINSIGHT'
0 "SELP"
0 "ADJ"
649 "47"
3 "ADJ"
1098 "K"
0 SELP ADJ 47 ADJ K
(SELP(W)ADJ(W)47(W)ADJ(W)K)
FILE 'ADISNEWS'
0 SELP
0 ADJ
2195 47
0 ADJ
515 K
0 SELP ADJ 47 ADJ K
(SELP(W)ADJ(W)47(W)ADJ(W)K)
FILE 'DDFB'
4 SELP
84 ADJ
1 ADJS
85 ADJ
(ADJ OR ADJS)
4332 47
84 ADJ
1 ADJS
85 ADJ
(ADJ OR ADJS)
41964 K
0 SELP ADJ 47 ADJ K
(SELP(W)ADJ(W)47(W)ADJ(W)K)
FILE 'DGENE'
78 SELP
3 ADJ
14946 47
3 ADJ
123361 K
0 SELP ADJ 47 ADJ K
(SELP(W)ADJ(W)47(W)ADJ(W)K)
FILE 'DISSABS'
5 SELP
91 ADJ
1 ADJS
91 ADJ
(ADJ OR ADJS)
8344 47
91 ADJ
1 ADJS
91 ADJ
(ADJ OR ADJS)
46984 K
0 SELP ADJ 47 ADJ K
(SELP(W)ADJ(W)47(W)ADJ(W)K)
FILE 'DRUGB'
0 SELP
20 ADJ
1138 47
20 ADJ
9105 K
0 SELP ADJ 47 ADJ K
(SELP(W)ADJ(W)47(W)ADJ(W)K)
FILE 'DRUGMONOG2'
0 SELP
1 ADJ
11005 47
1 ADJ
1778 K
0 SELP ADJ 47 ADJ K
(SELP(W)ADJ(W)47(W)ADJ(W)K)
FILE 'DRUGU'
4 SELP
127 ADJ
0 SELP ADJ 47 ADJ K
(SELP(W)ADJ(W)47(W)ADJ(W)K)
FILE 'BIOSIS'
30 SELP
3 SELPS
31 SELP
(SELPS OR SELP)
318 ADJ
113682 47
318 ADJ
250863 K
0 SELP ADJ 47 ADJ K
(SELP(W)ADJ(W)47(W)ADJ(W)K)
FILE 'BIOTECHNO'
10 SELP
53 ADJ
19168 47
53 ADJ
84757 K
0 SELP ADJ 47 ADJ K
(SELP(W)ADJ(W)47(W)ADJ(W)K)
FILE 'CANCERLIT'
2 SELP
1 SELPS
3 SELP
(SELPS OR SELP)
186 ADJ
28729 47
186 ADJ
23574 K
0 SELP ADJ 47 ADJ K
(SELP(W)ADJ(W)47(W)ADJ(W)K)
FILE 'CAPLUS'
42 SELP
5 SELPS
43 SELP
(SELPS OR SELP)
216 ADJ
209884 47
216 ADJ
1298057 K
0 SELP ADJ 47 ADJ K
(SELP(W)ADJ(W)47(W)ADJ(W)K)
FILE 'CEN'
0 "SELP"
2 "ADJ"
500 "47"
2 "ADJ"
3438 "K"
0 SELP ADJ 47 ADJ K
(SELP(W)ADJ(W)47(W)ADJ(W)K)
FILE 'DDFU'
0 SELP
20 ADJ
1138 47
20 ADJ
9105 K
1 ADJS
127 ADJ
(ADJ OR ADJS)
45875 47
127 ADJ
1 ADJS
127 ADJ
(ADJ OR ADJS)
64385 K
0 SELP ADJ 47 ADJ K
(SELP(W)ADJ(W)47(W)ADJ(W)K)
FILE 'EMBAL'
0 SELP
4 ADJ
1226 47
4 ADJ
1849 K
0 SELP ADJ 47 ADJ K
(SELP(W)ADJ(W)47(W)ADJ(W)K)
FILE 'EMBASE'
16 "SELP"
2 "SELP"
17 "SELP"
("SELP" OR "SELP")
322 "ADJ"
77579 "47"
322 "ADJ"
245648 "K"
0 SELP ADJ 47 ADJ K
(SELP(W)ADJ(W)47(W)ADJ(W)K)
FILE 'ESBIOSA'
9 SELP
116 ADJ
37221 47
116 ADJ
109510 K
0 SELP ADJ 47 ADJ K
(SELP(W)ADJ(W)47(W)ADJ(W)K)
FILE 'IFIPAT'
15 SELP
109 ADJ
161333 47
109 ADJ
107027 K
0 SELP ADJ 47 ADJ K
(SELP(W)ADJ(W)47(W)ADJ(W)K)
FILE 'IMSDRUGNEWS'
0 "SELP"
1 "ADJ"
126 "47"
1 "ADJ"
157 "K"
0 SELP ADJ 47 ADJ K
(SELP(W)ADJ(W)47(W)ADJ(W)K)
FILE 'IMSPRODUCT'
0 "SELP"
0 "ADJ"

35 "47"
 0 "ADJ"
 2861 "K"
 0 SELP ADJ 47 ADJ K
 ("SELP"(W)"ADJ"(W)"47"(W)"ADJ"(W)"K")
 FILE 'IPA'
 2 SELP
 8 ADJ
 3165 47
 8 ADJ
 2276 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'JICST-EPLUS'
 5 SELP
 16 ADJ
 13724 47
 16 ADJ
 43949 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'KOSMET'
 0 SELP
 0 ADJ
 155 47
 0 ADJ
 320 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'LIFESCI'
 5 SELP
 81 "ADJ"
 14628 "47"
 81 "ADJ"
 84226 "K"
 0 SELP ADJ 47 ADJ K
 ("SELP"(W)"ADJ"(W)"47"(W)"ADJ"(W)"K")
 FILE 'MEDICONF'
 0 SELP
 0 ADJ
 59 47
 0 ADJ
 43 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'MEDLINE'
 18 SELP
 2 SELPS
 19 SELP
 (SELP OR SELPS)
 297 ADJ
 125909 47
 297 ADJ
 247145 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'NAPRALERT'

 0 SELP
 0 ADJ
 3 "47"
 0 ADJ
 17 "K"
 0 SELP ADJ 47 ADJ K
 ("SELP"(W)"ADJ"(W)"47"(W)"ADJ"(W)"K")
 FILE 'PHIN'
 0 SELP
 26 "ADJ"
 4640 "47"
 26 "ADJ"
 5462 "K"
 0 SELP ADJ 47 ADJ K
 ("SELP"(W)"ADJ"(W)"47"(W)"ADJ"(W)"K")
 FILE 'SCISEARCH'
 17 SELP
 2 SELPS
 18 SELP
 (SELP OR SELPS)
 361 ADJ
 101232 47
 361 ADJ
 582753 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'TOXCENTER'
 11 SELP
 259 ADJ
 56857 47
 259 ADJ
 146767 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'USPATFULL'
 177 SELP
 8 SELPS
 181 SELP
 (SELP OR SELPS)
 2660 ADJ
 13 ADJS
 2660 ADJ
 (ADJ OR ADJS)
 861809 47
 2660 ADJ
 13 ADJS
 2660 ADJ
 (ADJ OR ADJS)
 690048 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'USPATZ'
 9 SELP
 1 SELPS
 9 SELP
 (SELP OR SELPS)
 191 ADJ

 0 SELP
 5 "ADJ"
 177 "47"
 5 "ADJ"
 2198 "K"
 0 SELP ADJ 47 ADJ K
 ("SELP"(W)"ADJ"(W)"47"(W)"ADJ"(W)"K")
 FILE 'NLDB'
 3 "SELP"
 194 "ADJ"
 1 "ADJS"
 195 "ADJ"
 ("ADJ" OR "ADJS")
 73332 "47"
 194 "ADJ"
 1 "ADJS"
 195 "ADJ"
 ("ADJ" OR "ADJS")
 160853 "K"
 0 SELP ADJ 47 ADJ K
 ("SELP"(W)"ADJ"(W)"47"(W)"ADJ"(W)"K")
 FILE 'NUTRACEUT'
 0 SELP
 0 ADJ
 92 47
 0 ADJ
 70 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'PASCAL'
 9 SELP
 1 SELPS
 9 SELP
 (SELP OR SELPS)
 137 ADJ
 60560 47
 137 ADJ
 411194 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'PCTGEN'
 0 SELP
 0 ADJ
 1 47
 0 ADJ
 0 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'PHARMAML'
 0 SELP
 3 ADJ
 1037 47
 3 ADJ
 177 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'PHIC'

 1 ADJS
 191 ADJ
 (ADJ OR ADJS)
 50250 47
 191 ADJ
 1 ADJS
 191 ADJ
 (ADJ OR ADJS)
 46732 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'AGRICOLA'
 2 SELP
 23 ADJ
 9383 47
 23 ADJ
 32359 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'ANABSTR'
 0 SELP
 0 ADJ
 3245 47
 0 ADJ
 10535 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'ANTE'
 0 SELP
 1 ADJ
 283 47
 1 ADJ
 2838 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'AQUALINE'
 0 SELP
 4 ADJ
 1420 47
 4 ADJ
 16002 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'AQUASCI'
 1 SELP
 18 "ADJ"
 4538 "47"
 18 "ADJ"
 22878 "K"
 0 SELP ADJ 47 ADJ K
 ("SELP"(W)"ADJ"(W)"47"(W)"ADJ"(W)"K")
 FILE 'BIOBUSINESS'
 0 SELP
 23 "ADJ"
 2215 "47"
 23 "ADJ"
 11842 "K"

```

0 SELP ADJ 47 ADJ K
  ("SELP"(W)"ADJ"(W)"47"(W)"ADJ"(W)"K")
FILE 'BIOCOMMERCE'
  0 SELP
  0 ADJ
  203 47
  0 ADJ
  2113 K
  0 SELP ADJ 47 ADJ K
    ("SELP(W)ADJ(W)47(W)ADJ(W)K")
FILE 'BIOENG'
  6 SELP
  11 ADJ
  3381 47
  11 ADJ
  13339 K
  0 SELP ADJ 47 ADJ K
    ("SELP(W)ADJ(W)47(W)ADJ(W)K")
FILE 'BIOTECHABS'
  6 SELP
  2 SELPS
  7 SELP
    (SELP OR SELPS)
  6 ADJ
  5374 47
  6 ADJ
  8074 K
  0 SELP ADJ 47 ADJ K
    ("SELP(W)ADJ(W)47(W)ADJ(W)K")
FILE 'BIOTECHDS'
  6 SELP
  2 SELPS
  7 SELP
    (SELP OR SELPS)
  6 ADJ
  5374 47
  6 ADJ
  8074 K
  0 SELP ADJ 47 ADJ K
    ("SELP(W)ADJ(W)47(W)ADJ(W)K")
FILE 'CABA'
  7 SELP
  73 ADJ
  56599 47
  73 ADJ
  110680 K
  0 SELP ADJ 47 ADJ K
    ("SELP(W)ADJ(W)47(W)ADJ(W)K")
FILE 'CEABA-VTB'
  0 SELP
  1 ADJ
  2021 47
  1 ADJ
  32740 K
  0 SELP ADJ 47 ADJ K
    ("SELP(W)ADJ(W)47(W)ADJ(W)K")
FILE 'CIN'
  1 SELP

  0 ADJ
  519 47
  0 ADJ
  3074 K
  0 SELP ADJ 47 ADJ K
    ("SELP(W)ADJ(W)47(W)ADJ(W)K")
FILE 'FSTA'
  0 SELP
  10 ADJ
  7420 47
  10 ADJ
  19075 K
  0 SELP ADJ 47 ADJ K
    ("SELP(W)ADJ(W)47(W)ADJ(W)K")
FILE 'GENBANK'
  604 "SELP"
  937 "ADJ"
  476285 "47"
  937 "ADJ"
  4092470 "K"
  0 SELP ADJ 47 ADJ K
    ("SELP"(W)"ADJ"(W)"47"(W)"ADJ"(W)"K")
FILE 'HEALSAFE'
  0 "SELP"
  9 "ADJ"
  773 "47"
  9 "ADJ"
  1614 "K"
  0 SELP ADJ 47 ADJ K
    ("SELP"(W)"ADJ"(W)"47"(W)"ADJ"(W)"K")
FILE 'IMSRSEARCH'
  0 "SELP"
  2 "ADJ"
  178 "47"
  2 "ADJ"
  443 "K"
  0 SELP ADJ 47 ADJ K
    ("SELP"(W)"ADJ"(W)"47"(W)"ADJ"(W)"K")
FILE 'NIOSHTIC'
  0 SELP
  1 ADJ
  2202 47
  1 ADJ
  1442 K
  0 SELP ADJ 47 ADJ K
    ("SELP(W)ADJ(W)47(W)ADJ(W)K")
FILE 'NTIS'
  5 SELP
  1 SELPS
  5 SELP
    (SELP OR SELPS)
  14 ADJ
  6590 47
  14 ADJ
  51773 K
  0 SELP ADJ 47 ADJ K
    ("SELP(W)ADJ(W)47(W)ADJ(W)K")

  0 "SELP"
  2 "ADJ"
  9203 "47"
  2 "ADJ"
  20607 "K"
  0 SELP ADJ 47 ADJ K
    ("SELP"(W)"ADJ"(W)"47"(W)"ADJ"(W)"K")
FILE 'CONFSCSI'
  0 "SELP"
  6 "ADJ"
  173 "47"
  6 "ADJ"
  6966 "K"
  0 SELP ADJ 47 ADJ K
    ("SELP"(W)"ADJ"(W)"47"(W)"ADJ"(W)"K")
FILE 'CROPB'
  0 SELP
  0 ADJ
  45 47
  0 ADJ
  988 K
  0 SELP ADJ 47 ADJ K
    ("SELP(W)ADJ(W)47(W)ADJ(W)K")
FILE 'CROPU'
  0 SELP
  2 ADJ
  3056 47
  2 ADJ
  6808 K
  0 SELP ADJ 47 ADJ K
    ("SELP(W)ADJ(W)47(W)ADJ(W)K")
FILE 'FEDRIP'
  1 SELP
  47 ADJ
  1339 47
  47 ADJ
  7272 K
  0 SELP ADJ 47 ADJ K
    ("SELP(W)ADJ(W)47(W)ADJ(W)K")
FILE 'FOMAD'
  0 SELP
  0 ADJ
  3919 47
  0 ADJ
  4983 K
  0 SELP ADJ 47 ADJ K
    ("SELP(W)ADJ(W)47(W)ADJ(W)K")
FILE 'FOREGE'
  0 SELP
  0 ADJ
  3 47
  0 ADJ
  1860 K
  0 SELP ADJ 47 ADJ K
    ("SELP(W)ADJ(W)47(W)ADJ(W)K")
FILE 'FROSTI'
  1 SELP

```

```

FILE 'OCEAN'
  0 "SELP"
  4 "ADJ"
  1511 "47"
  4 "ADJ"
  7147 "K"
  0 SELP ADJ 47 ADJ K
    ("SELP"(W)"ADJ"(W)"47"(W)"ADJ"(W)"K")
FILE 'PHAR'
  15 "SELP"
  5 "ADJ"
  411 "47"
  5 "ADJ"
  977 "K"
  0 SELP ADJ 47 ADJ K
    ("SELP"(W)"ADJ"(W)"47"(W)"ADJ"(W)"K")
FILE 'PROMT'
  12 "SELP"
  1123 "ADJ"
  10 "ADJS"
  1133 "ADJ"
    ("ADJ" OR "ADJS")
  190655 "47"
  1123 "ADJ"
  10 "ADJS"
  1133 "ADJ"
    ("ADJ" OR "ADJS")
  544529 "K"
  0 SELP ADJ 47 ADJ K
    ("SELP"(W)"ADJ"(W)"47"(W)"ADJ"(W)"K")
FILE 'PROUSDDR'
  0 "SELP"
  21 "ADJ"
  1034 "47"
  21 "ADJ"
  3014 "K"
  0 SELP ADJ 47 ADJ K
    ("SELP"(W)"ADJ"(W)"47"(W)"ADJ"(W)"K")
FILE 'PS'
  0 SELP
  0 ADJ
  0 47
  0 ADJ
  43 K
  0 SELP ADJ 47 ADJ K
    ("SELP(W)ADJ(W)47(W)ADJ(W)K")
FILE 'RDISCLOSURE'
  0 "SELP"
  3 ADJ
  822 47
  3 ADJ
  1509 K
  0 SELP ADJ 47 ADJ K
    ("SELP(W)ADJ(W)47(W)ADJ(W)K")
FILE 'SYNTHLINE'
  0 "SELP"
  0 "ADJ"

```

26 "47"
 0 "ADJ"
 268 "K"
 0 SELP ADJ 47 ADJ K
 ("SELP"(W)"ADJ"(W)"47"(W)"ADJ"(W)"K")
 FILE 'VETB'
 0 SELP
 0 ADJ
 38 47
 0 ADJ
 468 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'VETU'
 0 SELP
 4 ADJ
 2806 47
 4 ADJ
 2813 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'WATER'
 0 SELP
 15 ADJ
 2604 47
 15 ADJ
 10026 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'WPIDS'
 9 SELP
 603 ADJ
 65865 47
 603 ADJ
 121204 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'WPIFV'
 0 SELP
 2 ADJ
 194 47
 2 ADJ
 590 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'WPINDEX'
 COMMAND INTERRUPTED
 L13 QUE SELP ADJ 47 ADJ K
 If this message appears repeatedly, please notify the Help Desk.
 Enter "HELP STN" for information on contacting the nearest STN Help
 Desk by telephone or via SEND in the STNMAIL file.
 => d rank
 NO F-NUMBERS HAD GREATER THAN ZERO HITS

=> l13
 FILE 'ADISCTI'
 1 SELP
 21 ADJ
 14511 47
 21 ADJ
 6261 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'ADISINSIGHT'
 0 SELP
 5 ADJ
 649 "47"
 5 ADJ
 1098 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'ADISNEWS'
 0 SELP
 0 ADJ
 2195 47
 0 ADJ
 515 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'BIOSIS'
 30 SELP
 3 SELPS
 31 SELP
 (SELP OR SELPS)
 318 ADJ
 113682 47
 318 ADJ
 250863 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'BIOTECHNO'
 10 SELP
 53 ADJ
 19168 47
 53 ADJ
 84757 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'CANCERLIT'
 2 SELP
 1 SELPS
 3 SELP
 (SELP OR SELPS)
 186 ADJ
 28729 47
 186 ADJ
 23574 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'CAPLUS'
 42 SELP

5 SELPS
 43 SELP
 (SELP OR SELPS)
 216 ADJ
 209884 47
 216 ADJ
 129805 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'CEN'
 0 "SELP"
 2 "ADJ"
 500 "47"
 2 "ADJ"
 3438 "K"
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'DDFB'
 0 SELP
 20 ADJ
 1138 47
 20 ADJ
 9105 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'DDFU'
 4 SELP
 84 ADJ
 1 ADJS
 85 ADJ
 (ADJ OR ADJS)
 4332 47
 84 ADJ
 1 ADJS
 85 ADJ
 (ADJ OR ADJS)
 41964 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'DGENE'
 78 SELP
 3 ADJ
 14946 47
 3 ADJ
 123361 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'DISSABS'
 5 SELP
 91 ADJ
 1 ADJS
 91 ADJ
 (ADJ OR ADJS)
 8344 47
 91 ADJ
 1 ADJS
 91 ADJ

46984 K (ADJ OR ADJS)
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'DRUGB'
 0 SELP
 20 ADJ
 1138 47
 20 ADJ
 9105 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'DRUGMONOG2'
 0 SELP
 1 ADJ
 11005 47
 1 ADJ
 1778 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'DRUGU'
 4 SELP
 127 ADJ
 1 ADJS
 127 ADJ
 (ADJ OR ADJS)
 45875 47
 127 ADJ
 1 ADJS
 127 ADJ
 (ADJ OR ADJS)
 64385 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'EMBAL'
 0 SELP
 4 ADJ
 1226 47
 4 ADJ
 1849 K
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 FILE 'EMBASE'
 16 "SELP"
 2 "SELPS"
 17 "SELP"
 ("SELP" OR "SELPS")
 322 "ADJ"
 77579 "47"
 322 "ADJ"
 245648 "K"
 0 SELP ADJ 47 ADJ K
 ("SELP(W)ADJ(W)47(W)ADJ(W)K")
 -----User Break-----
 9 SELP
 SEARCH ENDED BY USER

2 SELP
 9383 47
 32359 K
 0 SELP (W) 47 (W) K
FILE 'ALUMINUM'
 0 SELP
 1047 47
 12138 K
 0 SELP (W) 47 (W) K
FILE 'ANABSTR'
 0 SELP
 3245 47
 10535 K
 0 SELP (W) 47 (W) K
FILE 'ANTE'
 0 SELP
 283 47
 2838 K
 0 SELP (W) 47 (W) K
FILE 'APOLLIT'
 1 SELP
 1 SELPS
 1 SELP
 (SELP OR SELPS)
 463 47
 7520 K
 0 SELP (W) 47 (W) K
FILE 'AQUALINE'
 0 SELP
 1420 47
 16002 K
 0 SELP (W) 47 (W) K
FILE 'AQUASCI'
 1 SELP
 4538 47
 22878 K
 0 SELP (W) 47 (W) K
FILE 'AQUIRE'
 0 SELP
 781 47
 8764 K
 0 SELP (W) 47 (W) K
FILE 'BABS'
 1 SELP
 4355 47
 80661 K
 0 SELP (W) 47 (W) K
FILE 'BIBLIODATA'
 4 SELP
 7028 47
 12062 K
 0 SELP (W) 47 (W) K
FILE 'BIOBUSINESS'
 0 SELP
 2215 47
 11842 K
 0 SELP (W) 47 (W) K

FILE 'CAOLD'
 0 SELP
 66 47
 25759 K
 0 SELP (W) 47 (W) K
FILE 'CAPLUS'
 42 SELP
 5 SELPS
 43 SELP
 (SELP OR SELPS)
 209914 47
 1298215 K
 2 SELP (W) 47 (W) K
FILE 'CASREACT'
 0 SELP
 8743 47
 13893 K
 0 SELP (W) 47 (W) K
FILE 'CBNB'
 0 SELP
 9483 47
 3777 K
 0 SELP (W) 47 (W) K
FILE 'CEABA-VTB'
 0 SELP
 2021 47
 32740 K
 0 SELP (W) 47 (W) K
FILE 'CEN'
 0 SELP
 500 47
 3438 K
 0 SELP (W) 47 (W) K
FILE 'CERAB'
 0 SELP
 892 47
 20435 K
 0 SELP (W) 47 (W) K
FILE 'CHEMINFORMRX'
 0 SELP
 248 47
 410 K
 0 SELP (W) 47 (W) K
FILE 'CHEMSAFE'
 0 SELP
 0 47
 0 K
 0 SELP (W) 47 (W) K
FILE 'CIN'
 0 SELP
 9203 47
 20607 K
 0 SELP (W) 47 (W) K
FILE 'CIVILENG'
 0 SELP
 795 47
 8131 K

FILE 'BIOCOMMERCE'
 0 SELP
 203 47
 2113 K
 0 SELP (W) 47 (W) K
FILE 'BIOENG'
 6 SELP
 3381 47
 13339 K
 0 SELP (W) 47 (W) K
FILE 'BIOSIS'
 30 SELP
 3 SELPS
 31 SELP
 (SELP OR SELPS)
 113682 47
 250863 K
 0 SELP (W) 47 (W) K
FILE 'BIOTECHARS'
 6 SELP
 2 SELPS
 7 SELP
 (SELP OR SELPS)
 5374 47
 8074 K
 0 SELP (W) 47 (W) K
FILE 'BIOTECHDS'
 6 SELP
 2 SELPS
 7 SELP
 (SELP OR SELPS)
 5374 47
 8074 K
 0 SELP (W) 47 (W) K
FILE 'BIOTECHNO'
 10 SELP
 19168 47
 84757 K
 0 SELP (W) 47 (W) K
FILE 'BLldb'
 0 SELP
 9 47
 741 K
 0 SELP (W) 47 (W) K
FILE 'CABA'
 7 SELP
 56599 47
 110680 K
 0 SELP (W) 47 (W) K
FILE 'CANCERLIT'
 2 SELP
 1 SELPS
 3 SELP
 (SELP OR SELPS)
 28729 47
 23574 K
 0 SELP (W) 47 (W) K

0 SELP (W) 47 (W) K
FILE 'COMPINDEX'
 11 SELP
 22653 47
 246002 K
 0 SELP (W) 47 (W) K
FILE 'COMPUAEB'
 2 SELP
 174 47
 8288 K
 0 SELP (W) 47 (W) K
FILE 'COMPUSCIENCE'
 0 SELP
 491 47
 19916 K
 0 SELP (W) 47 (W) K
FILE 'CONFSCI'
 0 SELP
 173 47
 6966 K
 0 SELP (W) 47 (W) K
FILE 'COPPERLIT'
 0 SELP
 63 47
 2207 K
 0 SELP (W) 47 (W) K
FILE 'CORROSION'
 0 SELP
 186 47
 2637 K
 0 SELP (W) 47 (W) K
FILE 'CROPB'
 0 SELP
 45 47
 988 K
 0 SELP (W) 47 (W) K
FILE 'CROPU'
 0 SELP
 3056 47
 6808 K
 0 SELP (W) 47 (W) K
FILE 'CSNB'
 0 SELP
 342 47
 263 K
 0 SELP (W) 47 (W) K
FILE 'DDFB'
 0 SELP
 1138 47
 9105 K
 0 SELP (W) 47 (W) K
FILE 'DDFU'
 4 SELP
 4332 47
 41964 K
 0 SELP (W) 47 (W) K
FILE 'DETERM'

0 SELP	FILE 'ENERGY'
10 47	3 SELP
7833 K	17005 47
0 SELP (W) 47 (W) K	231841 K
FILE 'DGENE'	0 SELP (W) 47 (W) K
78 SELP	FILE 'ENTEC'
14946 47	0 SELP
123361 K	1454 47
0 SELP (W) 47 (W) K	16812 K
FILE 'DISSABS'	0 SELP (W) 47 (W) K
5 SELP	FILE 'ENVIROENG'
8344 47	0 SELP
46984 K	765 47
0 SELP (W) 47 (W) K	5287 K
FILE 'DKF'	0 SELP (W) 47 (W) K
0 SELP	FILE 'EPFULL'
434 47	3 SELP
1259 K	43489 47
0 SELP (W) 47 (W) K	33674 K
FILE 'DPCI'	0 SELP (W) 47 (W) K
0 SELP	FILE 'ESBIOBASE'
59 47	9 SELP
1446 K	37221 47
0 SELP (W) 47 (W) K	109510 K
FILE 'DRUGB'	0 SELP (W) 47 (W) K
0 SELP	FILE 'FOMAD'
1138 47	0 SELP
9105 K	3919 47
0 SELP (W) 47 (W) K	4983 K
FILE 'DRUGU'	0 SELP (W) 47 (W) K
4 SELP	FILE 'FORIS'
45875 47	0 SELP
64385 K	70 47
0 SELP (W) 47 (W) K	156 K
FILE 'ELCOM'	0 SELP (W) 47 (W) K
3 SELP	FILE 'FRANCEPAT'
277 47	2 SELP
10488 K	2277 47
0 SELP (W) 47 (W) K	2250 K
FILE 'EMA'	0 SELP (W) 47 (W) K
0 SELP	FILE 'FRFULL'
633 47	9 SELP
7637 K	51984 47
0 SELP (W) 47 (W) K	75264 K
FILE 'EMBAL'	0 SELP (W) 47 (W) K
0 SELP	FILE 'FROSTI'
1264 47	1 SELP
1897 K	519 47
0 SELP (W) 47 (W) K	3074 K
FILE 'EMBASE'	0 SELP (W) 47 (W) K
16 SELP	FILE 'FSTA'
2 SELPS	0 SELP
17 SELP	7420 47
(SELP OR SELPS)	19075 K
77579 47	0 SELP (W) 47 (W) K
245648 K	FILE 'GENBANK'
0 SELP (W) 47 (W) K	604 SELP

476285 47	0 SELP (W) 47 (W) K
4092470 K	FILE 'INVESTEXT'
0 SELP (W) 47 (W) K	16 SELP
FILE 'GEOREF'	1191643 47
0 SELP	890246 K
2530 47	0 SELP (W) 47 (W) K
55368 K	FILE 'IPA'
0 SELP (W) 47 (W) K	2 SELP
FILE 'HEALSAFE'	3165 47
0 SELP	2276 K
773 47	0 SELP (W) 47 (W) K
1614 K	FILE 'ITRD'
0 SELP (W) 47 (W) K	0 SELP
FILE 'ICONDA'	953 47
0 SELP	3779 K
282 47	0 SELP (W) 47 (W) K
3007 K	FILE 'JAPIO'
0 SELP (W) 47 (W) K	3 SELP
FILE 'IFICL3'	38275 47
0 SELP	64641 K
69 47	0 SELP (W) 47 (W) K
35 K	FILE 'JICST-EPLUS'
0 SELP (W) 47 (W) K	5 SELP
FILE 'IFIPAT'	13724 47
15 SELP	43949 K
161333 47	0 SELP (W) 47 (W) K
107027 K	FILE 'KOREAPAT'
0 SELP (W) 47 (W) K	2 SELP
FILE 'IMSDRUGNEWS'	2775 47
0 SELP	2455 K
126 47	0 SELP (W) 47 (W) K
157 K	FILE 'KOSMET'
0 SELP (W) 47 (W) K	0 SELP
FILE 'INFODATA'	155 47
0 SELP	320 K
100 47	0 SELP (W) 47 (W) K
1084 K	FILE 'LIFESCI'
0 SELP (W) 47 (W) K	0 SELP
FILE 'INIS'	5 SELP
0 SELP	14628 47
10304 47	84226 K
189135 K	0 SELP (W) 47 (W) K
0 SELP (W) 47 (W) K	FILE 'LISA'
FILE 'INPADOC'	0 SELP
14 SELP	400 47
7499 47	2313 K
25352 K	0 SELP (W) 47 (W) K
0 SELP (W) 47 (W) K	FILE 'MATBUS'
FILE 'INSPEC'	0 SELP
11 SELP	1013 47
18240 47	1345 K
428325 K	0 SELP (W) 47 (W) K
0 SELP (W) 47 (W) K	FILE 'MATH'
FILE 'INSPHYS'	0 SELP
0 SELP	4855 47
1308 47	156278 K
35032 K	0 SELP (W) 47 (W) K
FILE 'MATHDI'	

0 SELP	3013 47
61 47	4850 K
1538 K	0 SELP (W) 47 (W) K
FILE 'MECHENG'	FILE 'PASCAL'
0 SELP	9 SELP
1031 47	1 SELPS
9932 K	9 SELP
0 SELP (W) 47 (W) K	(SELP OR SELPS)
FILE 'MEDLINE'	60560 47
18 SELP	411194 K
2 SELPS	0 SELP (W) 47 (W) K
19 SELP	FILE 'PATDD'
(SELP OR SELPS)	0 SELP
125909 47	59 47
247145 K	1867 K
0 SELP (W) 47 (W) K	0 SELP (W) 47 (W) K
FILE 'METADEX'	FILE 'PATDPA'
0 SELP	1 SELP
3306 47	11757 47
51292 K	17073 K
0 SELP (W) 47 (W) K	0 SELP (W) 47 (W) K
FILE 'NAPRAALERT'	FILE 'PATDPAFULL'
0 SELP	35 SELP
177 47	162973 47
2198 K	159653 K
0 SELP (W) 47 (W) K	0 SELP (W) 47 (W) K
FILE 'NIOSHTIC'	FILE 'PCTFULL'
0 SELP	81 SELP
2202 47	8 SELPS
1442 K	87 SELP
0 SELP (W) 47 (W) K	(SELP OR SELPS)
FILE 'NLDB'	227738 47
3 SELP	257925 K
73342 47	1 SELP (W) 47 (W) K
160886 K	FILE 'PCTGEN'
0 SELP (W) 47 (W) K	0 SELP
FILE 'NTIS'	1 47
5 SELP	0 K
1 SELPS	0 SELP (W) 47 (W) K
5 SELP	FILE 'PHARMAML'
(SELP OR SELPS)	0 SELP
6590 47	1037 47
51773 K	177 K
0 SELP (W) 47 (W) K	0 SELP (W) 47 (W) K
FILE 'NUTRACEUT'	FILE 'PHIC'
0 SELP	0 SELP
92 47	3 47
70 K	17 K
0 SELP (W) 47 (W) K	0 SELP (W) 47 (W) K
FILE 'OCEAN'	FILE 'PHIN'
0 SELP	0 SELP
1511 47	4640 47
7147 K	5462 K
0 SELP (W) 47 (W) K	0 SELP (W) 47 (W) K
FILE 'PAPERCHEM2'	FILE 'PIRA'
0 SELP	0 SELP
	1209 47

4539 K	56857 47
0 SELP (W) 47 (W) K	146767 K
FILE 'POLLUAB'	1 SELP (W) 47 (W) K
0 SELP	FILE 'TRIBO'
1155 47	0 SELP
7795 K	67 47
0 SELP (W) 47 (W) K	720 K
FILE 'PROMT'	0 SELP (W) 47 (W) K
12 SELP	FILE 'TULSA'
190768 47	0 SELP
544783 K	1235 47
0 SELP (W) 47 (W) K	10339 K
FILE 'RAPRA'	0 SELP (W) 47 (W) K
0 SELP	FILE 'TULSA2'
1751 47	0 SELP
5352 K	57 47
0 SELP (W) 47 (W) K	5205 K
FILE 'RSWB'	0 SELP (W) 47 (W) K
0 SELP	FILE 'UFORDAT'
813 47	0 SELP
4584 K	84 47
0 SELP (W) 47 (W) K	454 K
FILE 'SCISEARCH'	0 SELP (W) 47 (W) K
17 SELP	FILE 'ULIDAT'
2 SELPS	0 SELP
18 SELP	921 47
(SELP OR SELPS)	3332 K
101232 47	0 SELP (W) 47 (W) K
582753 K	FILE 'USPATEFUL'
0 SELP (W) 47 (W) K	177 SELP
FILE 'SOLIDSTATE'	8 SELPS
1 SELP	181 SELP
342 47	(SELP OR SELPS)
25107 K	861809 47
0 SELP (W) 47 (W) K	690048 K
FILE 'SOLIS'	1 SELP (W) 47 (W) K
1 SELP	FILE 'USPATZ'
1694 47	9 SELP
3979 K	1 SELPS
0 SELP (W) 47 (W) K	9 SELP
FILE 'SYNTHLINE'	(SELP OR SELPS)
0 SELP	50250 47
26 47	46732 K
268 K	0 SELP (W) 47 (W) K
0 SELP (W) 47 (W) K	FILE 'VETB'
FILE 'TEMA'	0 SELP
2 SELP	38 47
6478 47	468 K
71660 K	0 SELP (W) 47 (W) K
0 SELP (W) 47 (W) K	FILE 'VETU'
FILE 'TEXTILETECH'	0 SELP
0 SELP	2806 47
483 47	2813 K
1994 K	0 SELP (W) 47 (W) K
0 SELP (W) 47 (W) K	FILE 'WATER'
FILE 'TOXCENTER'	0 SELP
11 SELP	2604 47

10026 K
 0 SELP (W) 47 (W) K
 FILE 'WELDSEARCH'
 0 SELP
 828 47
 2179 K
 0 SELP (W) 47 (W) K
 FILE 'WPIDS'
 9 SELP
 65865 47
 121204 K
 0 SELP (W) 47 (W) K
 FILE 'WPIFV'
 0 SELP
 194 47
 590 K
 0 SELP (W) 47 (W) K
 FILE 'WPINDEX'
 9 SELP
 65865 47
 121204 K
 0 SELP (W) 47 (W) K
 FILE 'WSCA'
 0 SELP
 734 47
 6818 K
 0 SELP (W) 47 (W) K
 FILE 'WTTEXTILES'
 0 SELP
 211 47
 1351 K
 0 SELP (W) 47 (W) K
 L1 QUE SELP (W) 47 (W) K
 => d rank 11
 'FULL' IS NOT VALID IN THE CURRENT FILE
 This option is not valid in the current file. Enter the command without the option at the arrow prompt (=>). Or, first enter the file in which the saved item created. Then enter the command and option at an arrow prompt in the file.
 => d 11
 DISPLAY L# IS NOT VALID IN STNINDEX
 Answer set was created in a file. Enter DISPLAY HISTORY to see where the answer set was created. Use the File command to change to that file, then display the answer.
 => file caplus toxcenter uspatfull pctfull
 COST IN U.S. DOLLARS SINCE FILE
 TOTAL ENTRY
 SESSION 3.54
 FULL ESTIMATED COST
 3.75
 FILE 'CAPLUS' ENTERED AT 08:32:11 ON 19 JAN 2005

nanofilaments.
 spin-coated on to the surface of a plasma-treated wafer (hydrophilic surface) for examination. Figs. 2 and 3 illustrate microscopy pictures of SELP 47-K film showing self assembly into nanofilaments.

L3 ANSWER 3 OF 4 CAPLUS COPYRIGHT 2005 ACS on STN
 2004:74606 Document No. 140:309200 Thermal Analysis of Water in Silk-Elastin-like Hydrogels by Differential Scanning Calorimetry. Megeed,
 Zaki; Cappello, Joseph; Ghandehari, Hamidreza (Department of Pharmaceutical Sciences and Greenebaum Cancer Center, University of Maryland, Baltimore, MD, 21201, USA). Biomacromolecules, 5(3), 793-797 (English) 2004. CODEN: BOMAF6. ISSN: 1525-7797. Publisher: American Chemical Society.
 AB DSC studies showed that up to 27 wt.% nonfreezable water exists in SELP-47 K (a copolymer with four silk-like blocks and 7 elastin-like blocks in its primary repetitive sequence) hydrogels.
 IT 7732-18-5, Water, properties 676292-96-9, SELP-47 K
 RL: PRP (Properties)
 (thermal anal. of water in silk-elastin-like hydrogels by DSC)

L3 ANSWER 4 OF 4 CAPLUS COPYRIGHT 2005 ACS on STN DUPLICATE 1
 2004:61498 Document No. 141:301229 In vitro and in vivo evaluation of recombinant silk-elastin like hydrogels for cancer gene therapy. Megeed,
 Zaki; Haider, Mohamed; Li, Daqing; O'Malley, Bert W.; Cappello, Joseph;
 Ghandehari, Hamidreza (Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA). Journal of Controlled Release, 94(2-3), 433-445 (English) 2004. CODEN: JCREEC.
 ISSN: 0168-3659. Publisher: Elsevier.
 IT 676292-96-9, SELP-47 K
 RL: THU (therapeutic use); BIOL (Biological study); USES (Uses)
 (recombinant silk-elastinlike hydrogels for cancer gene therapy)

=> s silk (W) elastin (W) polymer
 L4 13 SILK (W) ELASTIN (W) POLYMER

=> 14 not 13
 L5 11 L4 NOT L3

USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
 PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
 COPYRIGHT (C) 2005 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'TOXCENTER' ENTERED AT 08:32:11 ON 19 JAN 2005
 COPYRIGHT (C) 2005 ACS

FILE 'USPATFULL' ENTERED AT 08:32:11 ON 19 JAN 2005
 CA INDEXING COPYRIGHT (C) 2005 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'PCTFULL' ENTERED AT 08:32:11 ON 19 JAN 2005
 COPYRIGHT (C) 2005 Univentio

=> S 11
 L2 5 L1
 => dup rem 12
 PROCESSING COMPLETED FOR L2
 L3 4 DUP REM L2 (1 DUPLICATE REMOVED)

=> d L3 1-4 ed
 NO VALID FORMATS ENTERED FOR FILE 'USPATFULL'
 In a multifeile environment, each file must have at least one valid format requested. Refer to file specific help messages or the STNGUIDE file for information on formats available in individual files.
 REENTER DISPLAY FORMAT FOR ALL FILES (FILEDEFAULT):cbib kwic

L3 ANSWER 1 OF 4 USPATFULL on STN
 2004:232956 Use of repeat sequence protein polymers in personal care compositions.
 Kumar, Manoj; Fremont, CA, UNITED STATES
 Cuevas, William A., San Francisco, CA, UNITED STATES
 US 2004180027 A1 20040916
 APPLICATION: US 2004-800179 A1 20040312 (10)
 PRIORITY: US 2003-454077P 20030312 (60)
 DOCUMENT TYPE: Utility; APPLICATION.
 CAS INDEXING IS AVAILABLE FOR THIS PATENT.
 DRWD [0013] FIG. 2 illustrate AFM image of SELP 47-K film showing self assembly into nanofilaments.
 DRWD [0014] FIG. 3 illustrates SEM image of SELP 47-K film showing self assembly into nanofilaments.
 DETD (hydrophilic) . . . on to the surface of a plasma-treated wafer (hydrophilic surface) for examination. FIGS. 2 and 3 illustrate microscopy pictures of SELP 47-K film showing self assembly into nanofilaments.

L3 ANSWER 2 OF 4 PCTFULL COPYRIGHT 2005 Univentio on STN
 DETD Fig. 2 illustrate AFM image of SELP 47-K film showing self assembly into nanofilaments.
 Fig. 3 illustrates SEM image of SELP 47-K film showing self assembly into

=> d 15 1-11 cbib kwic

L5 ANSWER 1 OF 11 USPATFULL on STN
 2004:298746 Repeat sequence protein polymer active agent conjugates, methods and uses.
 Collier, Katherine D., Hillsborough, CA, UNITED STATES
 Cuevas, William A., San Francisco, CA, UNITED STATES
 Kumar, Manoj, Fremont, CA, UNITED STATES
 US 2004234609 A1 20041125
 APPLICATION: US 2004-845936 A1 20040514 (10)
 PRIORITY: US 2003-470464P 20030514 (60)
 DOCUMENT TYPE: Utility; APPLICATION.
 CAS INDEXING IS AVAILABLE FOR THIS PATENT.
 SUMM . . . of a repeat sequence protein polymer and at least one active agent, wherein the repeat sequence protein polymer comprises a silk elastin polymer and the at least one active agent comprises a protein or peptide, and further wherein the conjugation product comprises a. . . by B or B' in the above formula. Preferred polymers are combinations of silk units and elastin units to provide silk-elastin polymers having properties distinctive from polymers having only the same monomeric unit.
 DETD . . . impart durability due to the silk repeating units and to impart flexibility due to the elastin repeating units. Additionally, the silk-elastin polymer may exhibit other desirable properties such as good clear film and hydrogel formation, which the individual monomeric units may not exhibit. The silk-elastin polymer may be hydrophilic and water soluble. The silk-elastin polymer may also exhibit a high cloud temperature which is desirable in heat sensitive applications. The silk-elastin polymer may have a high isoelectric point which may make the polymer more substantive to skin and hair. The silk-elastin polymer may further exhibit self assembly into fibers and films which may be desirable in some applications.
 DETD [0079] A genetically engineered silk-elastin polymer (SELP47K) was isolated and purified from E. coli bacteria. The E. coli containing the SELP47K recombinant DNA was obtained from. . . The E. coli may be prepared in accordance with the methods described in U.S. Pat. Nos. 5,243,038 and 6,355,776. The silk-elastin polymer SELP47K had a general structure of: head-[GAGAGS].sub.2(GVGP).sub.3(GKGP(GVGP).sub.4(GAGAGS).sub.2].sub.13-tail (SEQ ID NO. 19). The polymer contained 886 amino

CLM acids, with 780 amino. . . .
What is claimed is:
26. The biomolecular conjugate as recited in claim 1 wherein
the repeat sequence protein polymer comprises a silk elastin
polymer and the at least one active agent comprises a protein
or peptide, and further wherein the conjugation product comprises
a.
27. The biomolecular conjugate as recited in claim 26 wherein
the silk elastin polymer comprises SELP47K (SEQ.
ID. NO. 19), and the protein or peptide comprises any protein
or peptide suitable for a desired.
. . . of a repeat sequence protein polymer and at least one
active agent, wherein the repeat sequence protein polymer comprises a silk
elastin polymer and the at least one active agent
comprises a protein or peptide, and further wherein the
conjugation product comprises a.
. . . of a repeat sequence protein polymer and at least one
active agent, wherein the repeat sequence protein polymer comprises a silk
elastin polymer and the active agent comprises a
protein or peptide, and further wherein the conjugation
product comprises a fusion protein.

LS ANSWER 2 OF 11 USPATFULL on STN
2004:291832 Controlled release of active agents utilizing repeat sequence
protein polymers.
Kumar, Manoj, Fremont, CA, UNITED STATES
Mazeaud, Isabelle, Chatellerault, FRANCE
Christiano, Steven Patrick, Midland, MI, UNITED STATES
US 2004228913 A1 20041118
APPLICATION: US 2004-845775 A1 20040514 (10)
PRIORITY: US 2003-470465P 20030514 (60)
DOCUMENT TYPE: Utility; APPLICATION.
CAS INDEXING IS AVAILABLE FOR THIS PATENT.
DETQ . . . impart durability due to the silk repeating units and
to impart flexibility due to the elastin repeating units. Additionally,
the silk-elastin polymer may exhibit other
desirable properties such as good clear film and hydrogel
formation, which the individual monomeric units may not.
DETQ [0078] In accordance with an embodiment of the present
invention a silk-elastin polymer SELP47K (SEQ ID NO. 19)
may be used as the repeat sequence protein polymer of the
present invention. The SELP47K. . . .

LS ANSWER 3 OF 11 USPATFULL on STN
2004:166481 Slide and lock stent and method of manufacture from a
single piece shape.

Padilla, Orlando, Laguna Niguel, CA, UNITED STATES
Esser, Keith, San Diego, CA, UNITED STATES
Zeltinger, Joan, Encinitas, CA, UNITED STATES
US 2004127971 A1 20040701
APPLICATION: US 2003-655338 A1 20030904 (10)
PRIORITY: US 2002-408409P 20020904 (60)
DOCUMENT TYPE: Utility; APPLICATION.
SUMM . . . of polyarylates (L-tyrosine-derived), free acid
polyarylates, polycarbonates (L-tyrosine-derived), poly(ester-amides),
lysine-containing poly(ester-amides), polyhydroxyalkanoates,
poly(propylene fumarate-co-ethylene glycol) copolymer,
polyanhydride esters, polyanhydrides, polyorthoesters, silk-elastin
polymers, amino acid-containing polymers or corrodible calcium
phosphate and magnesium alloys. In another preferred
variation, the material may further comprise a.
DETQ . . . PTDTC, poly(ester-amides), poly(propylene fumarate-
co-ethylene glycol) copolymer (i.e., fumarate anhydrides), polyanhydride
esters (mechanically stronger) and polyanhydrides (mechanically
weaker), polyorthoesters, ProLastin or silk-elastin
polymers (SELP), calcium phosphate (BIOGLASS), magnesium
alloys, and a composition of PLA, PCL, PGA ester commercial polymers
used singularly or in.
CLM What is claimed is:
. . . of polyarylates (L-tyrosine-derived), free acid
polyarylates, polycarbonates (L-tyrosine-derived), poly(ester-amides),
lysine-containing poly(ester-amides), polyhydroxyalkanoates,
polyanhydride esters, polyanhydrides, polyorthoesters, silk-elastin
polymers, amino acid-containing polymers and corrodible
calcium phosphate and magnesium alloys.

LS ANSWER 4 OF 11 USPATFULL on STN
2003:283625 Expandable stent with sliding and locking radial
elements.
Steinke, Thomas A., San Diego, CA, UNITED STATES
Koenig, Donald H., San Diego, CA, UNITED STATES
Zeltinger, Joan, Encinitas, CA, UNITED STATES
US 2003199969 A1 20031023
APPLICATION: US 2003-452954 A1 20030603 (10)
DOCUMENT TYPE: Utility; APPLICATION.
SUMM . . . group consisting of polyarylates (L-tyrosine-

derived), free acid polyarylates, polycarbonates (L-tyrosine-derived),
poly(ester-amides), poly(propylene fumarate-co-ethylene
glycol) copolymer, polyanhydride esters, polyanhydrides,
polyorthoesters, and silk-elastin polymers, calcium phosphate,
magnesium alloys or blends thereof.
DETQ . . . (L-tyrosine-derived), poly(ester-amides),
poly(propylene fumarate-co-ethylene glycol) copolymer (i.e., fumarate
anhydrides), polyanhydride esters (mechanically stronger) and
polyanhydrides (mechanically weaker), polyorthoesters, ProLastin or silk-
elastin polymers (SELP), calcium phosphate (BIOGLASS),
magnesium alloys, and a composition of PLA, PCL, PGA ester
commercial polymers used singularly or in.
CLM What is claimed is:
. . . the group consisting of polyarylates (L-tyrosine-derived),
free acid polyarylates, polycarbonates (L-tyrosine-derived), poly(ester-
amides), poly(propylene fumarate-co-ethylene glycol) copolymer,
polyanhydride esters, polyorthoesters, silk-elastin
polymers, calcium phosphate and magnesium alloys.

LS ANSWER 5 OF 11 USPATFULL on STN
2002:192451 Protective coating for stent.
Steinke, Tom, San Diego, CA, UNITED STATES
US 2002103526 A1 20020801
APPLICATION: US 2001-17341 A1 20011213 (10)
PRIORITY: US 2000-255995P 20001215 (60)
DOCUMENT TYPE: Utility; APPLICATION.
DETQ . . . group consisting of polyarylates (L-tyrosine-
derived), free acid polyarylates, polycarbonates (L-tyrosine-derived),
poly(ester-amides), polypropylene fumarate-co-ethylene glycol)
copolymer, polyanhydride esters, polyanhydrides, polyorthoesters, and
silk -elastin polymers, calcium phosphate, magnesium
alloys or blends thereof.
DETQ . . . (e.g., NOOC or NOOC-G), collagen, fibrin or
fibrinogen, hyaluronic acid, hydroxy acids (i.e. lactide, glycolide,
hydroxybutyrate), lactone-based polymers, or even silk-
elastin polymers.

LS ANSWER 6 OF 11 USPATFULL on STN
2001:212652 Expandable stent with sliding and locking radial
elements.
Steinke, Thomas A., San Diego, CA, United States
Koenig, Donald H., San Diego, CA, United States

US 2001044651 A1 20011122
APPLICATION: US 2000-739552 A1 20001214 (9)
DOCUMENT TYPE: Utility; APPLICATION.
SUMM . . . group consisting of polyarylates (L-tyrosine-
derived), free acid polyarylates, polycarbonates (L-tyrosine-derived),
poly(ester-amides), poly(propylene fumarate-co-ethylene
glycol) copolymer, polyanhydride esters, polyanhydrides,
polyorthoesters, and silk-elastin polymers, calcium phosphate,
magnesium alloys or blends thereof.
DETQ . . . (L-tyrosine-derived), poly(ester-amides),
poly(propylene fumarate-co-ethylene glycol) copolymer (i.e., fumarate
anhydrides), polyanhydride esters (mechanically stronger) and
polyanhydrides (mechanically weaker), polyorthoesters, ProLastin or silk-
elastin polymers (SELP), calcium phosphate (BIOGLASS),
magnesium alloys, and a composition of PLA, PCL, PGA ester
commercial polymers used singularly or in.
CLM What is claimed is:
. . . the group consisting of polyarylates (L-tyrosine-derived),
free acid polyarylates, polycarbonates (L-tyrosine-derived), poly(ester-
amides), poly(propylene fumarate-co-ethylene glycol) copolymer,
polyanhydride esters, polyanhydrides, polyorthoesters, silk-elastin
polymers, calcium phosphate and magnesium alloys.

LS ANSWER 7 OF 11 PCTFULL COPYRIGHT 2005 Univentio on STN
DETQ . . . to impart durability due to the silk repeating units
and to impart flexibility due to the elastin repeating units.
Additionally, the
silk-elastin polymer
may exhibit other desirable properties such as good clear film
and hydrogel formation,
which the individual monomeric units may not exhibit.. The.
silk In accordance with an embodiment of the present invention a
-elastin polymer
SELP47K (SEQ ID NO. 19) may be used as the repeat sequence
protein polymer of the
present invention. The SELP47K is a.
LS ANSWER 8 OF 11 PCTFULL COPYRIGHT 2005 Univentio on STN

DETD . . . conjugation product of a repeat sequence protein polymer and at least one active agent, wherein the repeat sequence protein polymer comprises a silk elastin polymer and the at least one active agent comprises a protein or peptide, and further wherein the conjugation product comprises a fusion protein, . . . sequences represented by B or B' in the above formula. Preferred polymers are combinations of silk units and elastin units to provide silk-elastin polymers having properties distinctive from polymers having only the same monomeric unit. . . to impart durability due to the silk repeating units and to impart flexibility due to the elastin repeating units. Additionally, the silk-elastin polymer may exhibit other desirable properties such as good clear film and hydrogel formation, which the individual monomeric units may not exhibit. The silk-elastin polymer may be hydrophilic and water soluble. The silk-elastin polymer may also exhibit a high cloud temperature which is desirable in heat sensitive applications. The silk-elastin polymer may have a high isoelectric point which may make the polymer more substantive to skin and hair. The silk-elastin polymer may further exhibit self assembly into fibers and films which may be desirable in some applications.

EXAMPLE I
A genetically engineered silk-elastin polymer (SELP47K) was isolated and purified from E. coli bacteria. The E. coli containing the SELP47K recombinant DNA was obtained from Protein Polymer. . .
5,243,038 and 6,355,776. The silk-elastin polymer SELP47K had a general structure of head-[GAGAGS]2(GVGVP)3GKGVP(GVG)4(GAGAGS)2113-taiI (SEQ ID NO. 19).

CLMEN 26 The biomolecular conjugate as recited in claim 1 wherein the repeat sequence protein polymer comprises a silk elastin

polyanhydride esters (mechanically stronger) and polyanhydrides (mechanically weaker), polyorthoesters, ProLastin or silk-elastin polymers (SELP), calcium phosphate (BIOGLASS), magnesium alloys, and a composition of PLA, PCL, PGA ester commercial polymers used singularly or in any mixture.

CLMEN . . . group consisting of polyarylates (L-tyrosine-derived), free acid polyarylates, polycarbonates (L-tyrosine-derived), poly(ester-amides), lysine-containing poly(ester-amides), polyhydroxyalcanoates, poly(propylene fumarate-co-ethylene glycol) copolymer, polyanhydride esters, polyanhydrides, polyorthoesters, silk-elastin polymers, amino acid-containing polymers and corrodible calcium phosphate and magnesium alloys.

L5 ANSWER 10 OF 11 PCTFULL COPYRIGHT 2005 Univentio on STN
DETD . . . selected from the group consisting of polyarylates (L-tyrosine-derived), free acid polyarylates, polycarbonates (L-tyrosine-derived), poly(ester-amides), poly(propylene fumarate-co-ethylene glycol) copolymer, polyanhydride esters, polyanhydrides, polyorthoesters, and silk-elastin polymers, calcium phosphate, magnesium alloys or blends thereof. . . polymers, chitosan (e.g., NOOC or NOOC-G), collagen, fibrin or fibrinogen, hyaluronic acid, hydroxy acids (i.e., lactide, glycolide, hydroxybutyrate), lactone-based polymers, or even silk-elastin polymers.

L5 ANSWER 11 OF 11 PCTFULL COPYRIGHT 2005 Univentio on STN
DETD . . . selected from the group consisting of polyarylates (L-tyrosine-derived), free acid polyarylates, polycarbonates (L-tyrosine-derived), poly(ester-amides), poly(propylene fumarate-co-ethylene glycol) copolymer, polyanhydride esters, polyanhydrides, polyorthoesters, and silk-elastin polymers, calcium phosphate, magnesium alloys or blends thereof. . . polycarbonates (L-tyrosine-derived), poly(ester-amides), poly(propylene

polymer and the at least one active agent comprises a protein or peptide, and further wherein the conjugation product comprises a fusion protein.

27 The biomolecular conjugate as recited in claim 26 wherein the silk elastin polymer comprises SELP47K (SEQ. ID. NO. 19), and the protein comprises any protein or peptide suitable for a desired application.

active product of a repeat sequence protein polymer and at least one active agent, wherein the repeat sequence protein polymer comprises a silk elastin polymer and the at least one active agent comprises a protein or peptide, and farther wherein the conjugation product comprises a fusion.

conjugation product of a repeat sequence protein polymer and at least one active agent, wherein the repeat sequence protein polymer comprises a silk elastin polymer and the active agent comprises a protein or peptide, and further wherein the conjugation product comprises a fusion protein.

L5 ANSWER 9 OF 11 PCTFULL COPYRIGHT 2005 Univentio on STN

DETD . . . the group consisting of polyarylates (L-tyrosine-derived), free acid polyarylates, polycarbonates (L-tyrosine-derived), poly(ester-amides), lysine-containing poly(ester-amides), polyhydroxyalcanoates, poly(propylene fumarate-co-ethylene glycol) copolymer, polyanhydride esters, polyanhydrides, polyorthoesters, silk-elastin polymers, amino acid-containing polymers or corrodible calcium phosphate and magnesium alloys. In another preferred variation, the material may further comprise a biologically responsive.

including PDPEC or PDTEQ, poly(ester-amides), poly(propylene fumarate-co-ethylene glycol) copolymer (i.e., fumarate anhydrides),

fumarate-co-ethylene glycol) copolymer (i.e., fumarate anhydrides), polyanhydride esters (mechanically stronger) and polyanhydrides (mechanically weaker), polyorthoesters, ProLastin or silk-elastin polymers (SELP), calcium phosphate (BIOGLASS), magnesium alloys, and a composition of PLA, PCL, PGA ester commercial polymers used singularly or in any mixture.

CLMEN . . . selected from the group consisting of polyarylates (L-tyrosine-derived), free acid polyarylates, polycarbonates (L-tyrosine-derived), poly(ester-amides), poly(propylene fumarate-co-ethylene glycol) copolymer, polyanhydride esters, polyanhydrides, polyorthoesters, silk-elastin polymers, calcium phosphate and magnesium alloys.

=> file reg		SINCE FILE
COST IN U.S. DOLLARS		
TOTAL		ENTRY
SESSION		
FULL ESTIMATED COST	47.31	
51.06		
DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)		SINCE FILE
TOTAL		ENTRY
SESSION		
CA SUBSCRIBER PRICE	-0.73	
0.73		

FILE 'REGISTRY' ENTERED AT 08:36:51 ON 19 JAN 2005
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2005 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 17 JAN 2005 HIGHEST RN 815574-28-8
DICTIONARY FILE UPDATES: 17 JAN 2005 HIGHEST RN 815574-28-8

TSCA INFORMATION NOW CURRENT THROUGH MAY 21, 2004

Please note that search-term pricing does apply when conducting SmartSELECT searches.

Crossover limits have been increased. See HELP CROSSOVER for


```

=> LOG Y

COST IN U.S. DOLLARS          SINCE FILE
TOTAL

SESSION                         ENTRY
FULL ESTIMATED COST          17.43
96.85

DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS) SINCE FILE
TOTAL

SESSION                         ENTRY
CA SUBSCRIBER PRICE           0.00
0.73

```

STN INTERNATIONAL LOGOFF AT 08:39:56 ON 19 JAN 2005