MEEN 2450 Ryan Malby works Honework 5 Kyel $\frac{dT}{dx^2} = \frac{hP}{kA} \left(T - T_{\infty} \right)$ $\frac{dT}{dx} = Z \quad T(x=0) = 600$ $\frac{dZ}{dx} = \frac{hP}{kA} \left(\overline{1} - \overline{1}_{\infty} \right)$ Exercise! where $h=20 \frac{1}{20} \frac{1}{20} \frac{1}{200} \frac{1}{200} \frac{1}{200} \frac{1}{200} \frac{1}{200} \frac{1}{200} \frac{1}{200} \frac{1}{200} \frac{1}{200} \frac{1}{2000} \frac{1}{2000}$ dx [] = f(x, []) P = TD = T(0.1) = .314 m Cooling-fin: returns [2, dz] given [x, [Tiz], conshulf]

alkow: (con get dt over dz at a given T, Z (no dependent) which can then be used to get T of a given x (by steer suffer) using Runge Kutter solver for a system of Equations 2) 1=2.0 not notel 10m /4 nos 12/3m /4 nos 12/3 $\left|\frac{dT}{dx} = Z\right| \frac{d^2 - 4T - 1200}{dx} = \frac{T(x=0) = 600t}{2(x=0) = 8}$ $\frac{d2}{dy} = \frac{hP}{KA} (T - T_{\infty}) = \frac{(20)(.314)}{(300)(.00785)} (T - 300) = 4T - 1200$ Say BI = O find T (Bi) using Purnekulter 4 Z(0)=B1 n Th 2n K11 K12 K2P K22 K31 K32 K41 K42 Thy 2n11 100 per 900 200 400 17333 115,362266 9060 10320 X=0 906.17 1037,037 1037.037 2424.69 1845.26 3807.407 2306.17 4885.05 42937 8574.5 2421.02 4190.82 2 242102 4190.82 4190.82 8484.09 7018.86 14071.88 8881.4 178426 16085 20 32 15794.8 8207.4 157998 3

	ME EN2450			Fran Pulhy u 084847 Horenote 5 Page 2										
	Ex	ereih Sõ	2 (c	nhmul = 4		Z(0) = B2								
	n	Tr	zn	kli	1 1/2	2 12	(()	K31	K32	1 E41	K42	, T"	1 Zm/	
X=0	0	600	4	4	1200	0 404	pus.	405.8	1738.7	1163.1	2282.	904.6	1045.1	
$\chi = \frac{2}{3}$	1	904.63	1045.1	DUHSU	2438	18929	38324	9:333.4	4915.8	1322.3	3631.7	2 4349	4214,1	
X-43	2	243499	4319.1	4214.1	8539,9	7 7065.76	M165.44	8441.92	1746099)	3/93.1 32	382.4 8	260.1	15405.24	
x=7 [3 8	8260.0	15905	29		Tat 1	level)	showle be	3501	C	Jul	relixa	ct as accolumnate	
Now: $Z^{0} = \beta_{1} + \frac{\beta_{2} - \beta_{1}}{T_{1}^{2} B_{2} - T_{1}^{2}} (T_{1} - T_{1}^{2}) = 0 + \frac{4 - 0}{8260.05 - 82074} (350 - 82074)$ Since $Z^{0} = -596.771$														
Non can solve IVP knowing To=600 zo=-596,771 at x=0 Runge Kutth Hymin N Tn Zn KII KIZ KZI KZZ KZI KZZ KY/ KYZ [Tnt] Znt1														
x=0 0	7		1	2		-196.77				THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	THE OWNER OF THE OWNER OWNER OF THE OWNER OWNE	-		
X=2/3	39	0.4-1	68.78	168.78	361,78	-48,14	136.75	-123,20	247.525	29.56	33.23	336,84	-28.39	
X=413 2	. 33	6.84->	8.34 D	18.34	47.55	20.79	104.67	8.17	175.27	88.46	164.3	356	70.15	
X=13	32	0 /20	2.15	1	[43] [43	= 60 = 390 1=33)=33	0.44t 6.8 9 l	1	make and of the company of the Management of the		Commention manage (minima del Colonia)	·	dominal half proching to .	

Python 3.6.5 | Anaconda, Inc. | (default, Mar 29 2018, 13:32:41) [MSC v.1900 64 bit (AMD64)] Type "copyright", "credits" or "license" for more information.

IPython 6.4.0 -- An enhanced Interactive Python.

In [1]: runfile('C:/Users/hoops/OneDrive/Documents/School/ME EN 2450 Numerical Methods/
HW5/HW5b.py', wdir='C:/Users/hoops/OneDrive/Documents/School/ME EN 2450 Numerical Methods/
HW5')

In [2]:

```
Created on Tue Mar 19 15:56:27 2019
HW5b
@author: Ryan Dalby
import math
import numpy as np
import matplotlib.pyplot as plt
From cooling_fin import cooling_fin
import scipy.integrate as integrate
import pandas as pd
ef runge_kutta_four(func, yInitial, xInitial, xFinal, numSteps):
   Given a function(dy[]/dx = func(x,y[])) and yInitial[] values at an xInitial will find
   y[] at xFinal with a given number of steps between xInitial and xFinal
   h = abs(xFinal - xInitial) / numSteps
   x = xInitial
   y = yInitial
    row = np.empty(13)
   for i in range(numSteps):
        row[0] = i
       k1 = func(x, y)
        row[4] = k1[1]
       k2 = func(x + h/2, y + k1*h/2)
        row[6] = k2[1]
       k3 = func(x + h/2, y + k2*h/2)
        row[8] = k3[1]
       k4 = func(x + h, y + k3*h)
        row[9] = k4[0]
        row[10] = k4[1]
       y = y + (k1 + 2*k2 + 2*k3 + k4)/6 * h
       x = x + h
        row[11] = y[0]
        row[12] = y[1]
    print(x,y)
   return v
##Define test ODE
#f = Lambda t,y: 2 * (325/850) * (math.sin(t)**2) - (200*(1+y)**(3/2))/850
#print(rungeKutta4(f, 2, 0, 10, 50))
```

```
#w = integrate.solve ivp(f, (0.0,10.0), np.array([2]))
#print(w)
ef shootingMethodForCooling_fin(func, firstx, firstT, secondx, secondT, numberOfNodes, beta1, beta
   From cooling fin(passed in as func) which represents two linear ODEs say dT/dx = f(z) and dz/dx
   and two boundary conditions (x1, T1) and (x2, T2), and number of nodes(essentially how many ste
   and beta1 and beta2 guesses for a IVP that will satisfy a BVP
   Will return the z(firstx) that allows problem to be IVP and yet satisfies BVP
   xInitial = firstx #initial x value
   xFinal = secondx #x value we will integrate to
   z1Initial = beta1 \#z = dT/dx; first quess for our IVP; z(firstx) = beta1
   z2Initial = beta2 \#z = dT/dx; second quess for our IVP; z(firstx) = beta2
   Tb = firstT #K temperature at beginning
   Te = secondT #K temperature at end
   T1Final, = runge_kutta_four(func, np.array([Tb, z1Initial]), xInitial, xFinal, numberOfNodes-
    print()
   T2Final, = runge_kutta_four(func, np.array([Tb, z2Initial]), xInitial, xFinal, numberOfNodes-1
    print(T1Final, T2Final)
   zInitial = z1Initial + ((z2Initial - z1Initial) / (T2Final - T1Final)) * (Te - T1Final) #Now we
   return zInitial
lef find_temperature_profile_shooting(firstx, firstT, secondx, secondT, numberOfNodes, shouldPlot =
   From cooling_fin which represents two linear ODEs say dT/dx = f(z) and dz/dx = f(T)
   and two boundary conditions (x1, T1) and (x2, T2), and number of nodes(essentially how many ste
   and an xDesired where the temperature will be calcuated at
   Will display a plot of T vs x(if indicated to do so) and return np arrays of the x values and t
   This is essentially a driver for shootingMethodForCooling fin
   d = 0.1 \# m
   h = 20 \#W/m^2*K
   k = 200 \#W/m * K
   Too = 300 #K surrounding temperature, time at t = infinity
   func = lambda x,y: cooling_fin(x, y, d, h, k, Too) #Cooling fin returns [dT/dx,
```

```
zInitialAtfirstx = shootingMethodForCooling_fin(func, 0, 600, 2.0, 350, numberOfNodes, 0, 4) #l
xVals = np.linspace(firstx, secondx, numberOfNodes)
TVals = []
solverIterations = 30 #how many iterations our solver will take per value it is solving for
for xVal in xVals:
```

```
TVal, _= runge_kutta_four(func, [firstT, zInitialAtfirstx], firstx, xVal, solverIterations]
    TVals.append(TVal)

# print(table.to_string())

if(shouldPlot):
    fig, ax = plt.subplots()
    ax.plot(xVals, TVals)
    ax.set_title("Shooting Method temperature vs x solution")
    ax.set_xlabel("x(m)")
    ax.set_ylabel("Temperature(K)")

return xVals, TVals

shootingx, shootingT = find_temperature_profile_shooting(0, 600, 2.0, 350, 51, shouldPlot=True)
```