Problemas Primera Sesión

1. Demuestra que

$$(ax + by)^2 \le ax^2 + by^2$$

para cualesquiera $x, y \in \mathbb{R}$ y cualesquiera $a, b \in \mathbb{R}$ con $a+b=1, a, b \geq 0$. ¿En qué casos se da la igualdad?

Solución 1. Nótese que

$$ax^{2} + by^{2} - (ax + by)^{2} = a(1 - a)x^{2} + b(1 - b)y^{2} - 2abxy = ab(x - y)^{2},$$

donde hemos usado que 1-a=b y 1-b=a. Esta expresión es claramente no negativa, siendo nula si y sólo si bien ab=0 (es decir, uno de entre a,b es 0 y el otro es 1), bien x=y.

Solución 2. Considérense los vectores $\left(\sqrt{a}, \sqrt{b}\right)$ y $\left(\sqrt{a}x, \sqrt{b}y\right)$, cuyo producto escalar es ax + by, y cuyos módulos son $\sqrt{a+b} = 1$ y $\sqrt{ax^2 + by^2}$. La desigualdad propuesta es equivalente a la desigualdad del producto escalar aplicada a estos vectores, y por lo tanto cierta, dándose la igualdad si y sólo si ambos vectores son proporcionales, cosa que puede pasar bien si una de sus coordenadas es nula (es decir, si a = 0 o b = 0), bien si ambas coordenadas son proporcionales cuando no son nulas, es decir, x = y.

Solución 3. La función $f(z) = z^2$ es claramente convexa, con lo que por la desigualdad de Jensen, para cualesquiera reales no negativos a, b, y cualesquiera reales x, y, se tiene

$$(ax + by)^2 = f(ax + by) \le \frac{af(x) + bf(y)}{a+b} = \frac{ax^2 + by^2}{a+b}.$$

Usando que a+b=1, se obtiene el resultado pedido, dándose la igualdad bien si uno de los dos puntos "desaparece" (es decir, a=0 o b=0), o en caso contrario si ambos puntos coinciden (es decir, x=y).

2. Sean r y s dos rectas paralelas, y A un punto fijo a igual distancia de ambas rectas. Para cada punto B de la recta r, sea C el punto de la recta s tal que $\angle BAC = 90^{\circ}$, y sea P el pie de la perpendicular desde A sobre la recta BC. Demuestra que, independientemente de qué punto B de la recta r tomemos, el punto P está sobre una circunferencia fija.

Solución 1. Sea Q el punto de r tal que AQ es perpendicular a r. Sea D el punto donde AC corta a r. Como A está a la misma distancia de las rectas r y s, AC = AD. Los triángulos ABC y ABD son ambos rectángulos en A, comparten el lado AB, y el lado AC es igual al lado AD. En consecuencia, ambos triángulos son iguales. Los pies de las alturas desde A en cada triángulo son P y Q, respectivamente, por lo que AP = AQ. Como Q no depende de B, la distancia AP = AQ es fija, y el punto P está

sobre la circunferencia fija de centro A, que es tangente simultáneamente a las rectas r y s.

Solución 2. Sea M el punto medio del segmento BC. Como el triángulo ABC es rectángulo en A, M es su circuncentro, es decir, AM = MB = MC. Llamando d a la distancia de A a las rectas r y s, nótese que la longitud de las alturas desde B y desde C sobre AM es d, con lo que las áreas de AMB y AMC son ambas iguales a $\frac{d \cdot AM}{2}$, y el área del triángulo ABC es $d \cdot AM$. Pero BC = MB + MC = 2AM, luego la longitud AP de la altura desde A sobre BC es $2\frac{d \cdot AM}{2AM} = d$, que es constante, concluyendo igual que en la solución anterior.

Solución 3. Si h es la distancia entre A y las rectas r y s, podemos tomar un sistema de coordenadas cartesianas tales que $A \equiv (0,0)$, $r \equiv y = h$, $s \equiv y = -h$, y para cualquier punto $B \equiv (d,h)$, la recta AB tiene pendiente $\frac{h}{d}$, con lo que

$$AC \equiv y = -\frac{dx}{h}, \qquad \qquad C \equiv \left(\frac{h^2}{d}, -h\right), \qquad \qquad BC \equiv y = \frac{2hdx}{d^2 - h^2} - \frac{h\left(d^2 + h^2\right)}{\left(d^2 - h^2\right)}.$$

La ecuación de la recta AP es entonces $y=-\frac{d^2-h^2}{2hd}x$, con lo que podemos hallar P como la intersección de esta recta con la recta BC, resultando finalmente tras algo de álgebra en

$$P \equiv \left(\frac{2h^2d}{d^2 + h^2}, -\frac{h(d^2 - h^2)}{d^2 + h^2}\right), \qquad AP^2 = h^2 \frac{4h^2d^2 + (d^2 - h^2)^2}{(d^2 + h^2)^2} = h^2,$$

es decir AP = h, concluyéndose como en las soluciones anteriores.

3. Un campeonato de baloncesto se ha jugado por sistema de liga a dos vueltas (cada par de equipos se enfrentan dos veces) y sin empate (si el partido acaba en empate hay

prórrogas hasta que gane uno de los dos). El ganador del partido obtiene 2 puntos y el perdedor 1 punto. Al final del campeonato, la suma de de los puntos obtenidos por todos los equipos salvo el campeón es de 2015 puntos. ¿Cuántos partidos ha ganado el campeón?

Solución. Supongamos que el número de equipos es n. Entonces, se juegan un total de $2\binom{n}{2} = n^2 - n$ partidos en el campeonato por ser a doble vuelta. En cada partido se dan 3 puntos, por lo que $3n^2 - 3n$ es el número total de puntos dados. Si el campeón tiene P puntos, y los otros n-1 equipos tienen entre todos 2015 puntos, entonces

$$P = 3n^2 - 3n - 2015,$$

donde además $P > \frac{2015}{n-1}$ para poder ser el campeón. Para que se cumpla esto, ha de ser

$$3n^2 - 3n - 2015 > \frac{2015}{n-1},$$
 $3n(n-1) > \frac{2015n}{n-1},$ $n-1 > \sqrt{\frac{2015}{3}}.$

Como $25^2 = 625 < \frac{2015}{3}$, se tiene que n > 26, o $n \ge 27$.

Por otra parte, la puntuación máxima que ha podido obtener el ganador es 4(n-1), si ha ganado todos sus partidos (2 partidos con cada uno de los otros n-1 equipos), es decir,

$$3n^2 - 3n - 2015 \le 4(n-1),$$
 $(3n-4)(n-1) \le 2015.$

Ahora bien, si $n \ge 28$, entonces $3n-4 \ge 80$, $n-1 \ge 27$, y $80 \cdot 27 = 2160 > 2015$, luego ha de ser n < 27.

Luego n=27 es el número de equipos en el campeonato, el número de puntos obtenidos por el campeón es $3 \cdot 27^2 - 3 \cdot 27 - 2015 = 91$, y como estos puntos se han obtenido en $2 \cdot 26 = 52$ partidos, el número de partidos ganados (en los que se obtienen 2 puntos en lugar de 1) es claramente 91 - 52 = 39.

4. Los enteros positivos x, y, z cumplen

$$x + 2y = z$$
, $x^2 - 4y^2 + z^2 = 310$.

Halla todos los posibles valores del producto xyz.

Solución 1. Podemos despejar 2y de la primera ecuación y sustituir en la segunda, con lo que ha de cumplirse

$$310 = x^2 - (z - x)^2 + z^2 = 2zx,$$
 $zx = 155 = 5 \cdot 31.$

Luego al ser 5,31 primos, se tiene que z ha de tomar uno de los valores 155,31,5,1, tomando x respectivamente los valores 1,5,31,155. Como además z=x+2y>x, los dos últimos casos quedan descartados. En los dos primeros casos, se tiene que $y=\frac{z-x}{2}$ toma respectivamente los valores 77 y 13, resultando respectivamente en

$$xyz = 1 \cdot 77 \cdot 155 = 11935,$$
 $xyz = 5 \cdot 13 \cdot 31 = 2015.$

Solución 2. Como $x^2 - 4y^2 = (x - 2y)(x + 2y) = z(x - 2y)$, tenemos que z ha de dividir a $310 - z^2$, luego a 310. Además, z no puede ser par, pues en ese caso x también

lo sería, y $x^2-4y^2+z^2$ sería múltiplo de 4, pero 310 no lo es. Luego z ha de dividir a $155=5\cdot 31$, es decir, z ha de tomar uno de los valores 1,5,31,155. Como z=x+2y, con x,y enteros positivos, es imposible que z=1, y si z=5, entonces bien x=3, y=1, bien x=1, y=2, que obviamente no satisfacen la segunda ecuación. Se tiene entonces que z=31 o z=155, tomando entonces respectivamente $2y-x=\frac{z^2-310}{z}$ los valores 21 y 153, que junto a 2y+x=z, nos permite hallar los mismos valores de x,y que por el método anterior, bastando multiplicarlos para hallar los dos mismos valores del producto xyz.

5. En una recta tenemos cuatro puntos A, B, C y D, en ese orden, de forma que AB = CD. E es un punto fuera de la recta tal que CE = DE. Demuestra que $\angle CED = 2\angle AEB$ si y sólo si AC = EC.

Solución 1. Sea F el punto tal que los triángulos ABF y CDE son iguales. Claramente un triángulo es el otro desplazado por AC, luego EF = AC y AF = CE = DE = BF. Trazamos la circunferencia de centro F que pasa por A y B, y como $\angle AFB = \angle CED$, por ser el ángulo central el doble del inscrito, $\angle AEB = 2\angle CED$ si y sólo si E está sobre la circunferencia que acabamos de trazar, es decir, si y sólo si EF = AF, y esto es equivalente a AC = EC.

Solución 2. Sean M el punto medio de CD, P el simétrico de E respecto de C, y Q el simétrico de E respecto de la recta CD.

El triángulo EPQ es el resultado de aplicar a ECM una homotecia de centro E y razón 2, con lo que EPQ es claramente rectángulo en Q, con PQ = 2CM = CD = AB, siendo además PQ paralelo a CD, luego a AB. Se tiene entonces que EP es diámetro de la circunferencia circunscrita a EPQ, que tiene por lo tanto centro en C y radio CE. Al mismo tiempo, al ser ABQP paralelogramo por ser AB = PQ paralelos, AP es paralela

a BQ, que es la simétrica de BE respecto a AD, mientras que AP es la simétrica de AE respecto a AD, luego $\angle PAQ = \angle AEB$. Se tiene entonces que $\angle CED = 2\angle AEB$ y CE = CA son ambos equivalentes a $\angle PAQ = \angle PEQ$, luego equivalentes entre sí, como queríamos demostrar.

Solución 3. Notemos en primer lugar que sólo es necesario demostrar que si AC = EC, entonces $\angle CED = 2\angle AEB$. Para ello, consideremos que A está a la izquierda de D sobre la recta horizontal AD, y AB está en una posición tal que $\angle AEB$ es la mitad de $\angle CED$. Si ahora desplazamos E hacia la derecha (equivalente a desplazar AB hacia la izquierda), $\angle AEB$ decrece (nos basta con considerar la circunferencia circunscrita a AEB en su posición inicial, y observar que E "sale" de la circunferencia). De forma análoga, si desplazamos E hacia la izquierda (equivalente a desplazar AB hacia la derecha), $\angle AEB$ crece (E "entra" en la circunferencia circunscrita a AEB). Luego existe a lo sumo una posición de AB sobre la recta AD a la izquierda de CD, tal que $\angle CED = 2\angle AEB$, y nos basta con demostrar que cuando AC = EC, AB está de hecho en tal posición.

Sea entonces un sistema de coordenadas con centro en C y tal que el eje horizontal coincide con la recta por A,B,C,D. Denotando por R a la distancia EC, y llamando $\angle CED = 2\alpha$ (con lo que α es claramente agudo), se tiene que $AB = CD = 2R\sin\alpha$, $A \equiv (-R,0)$ por ser AC = EC, $B \equiv (-R+2R\sin\alpha,0)$ y $E \equiv (R\sin\alpha,R\cos\alpha)$. Ahora bien,

$$\overrightarrow{AE} \equiv (R + R\sin\alpha, R\cos\alpha), \qquad \overrightarrow{BE} \equiv (R - R\sin\alpha, R\cos\alpha),$$

con lo que

$$\overrightarrow{AE} \cdot \overrightarrow{BE} = R^2 - R^2 \sin^2 \alpha + R^2 \cos^2 \alpha = 2R^2 \cos^2 \alpha,$$

$$\left| \overrightarrow{AE} \right| = \sqrt{R^2 + 2R^2 \sin \alpha + R^2 \sin^2 \alpha + R^2 \cos^2 \alpha} = R\sqrt{2 + 2\sin \alpha},$$

$$\left| \overrightarrow{AE} \right| = \sqrt{R^2 - 2R^2 \sin \alpha + R^2 \sin^2 \alpha + R^2 \cos^2 \alpha} = R\sqrt{2 - 2\sin \alpha},$$

y como

$$\sqrt{2 + 2\sin\alpha} \cdot \sqrt{2 - 2\sin\alpha} = 2\sqrt{1 - \sin^2\alpha} = 2\cos\alpha,$$

tenemos que

$$\cos \angle AEB = \frac{\overrightarrow{AE} \cdot \overrightarrow{BE}}{\left|\overrightarrow{AE}\right| \cdot \left|\overrightarrow{BE}\right|} = \frac{2R^2 \cos^2 \alpha}{2R^2 \cos \alpha} = \cos \alpha,$$

y queda concluída la demostración.

También es posible completar la demostración sin realizar la observación inicial, tomando $A \equiv (-d,0)$, donde hemos de demostrar que d=AC si y sólo si $\cos \angle AEB=\cos \alpha$. La segunda condición se traduce, tras algo de álgebra, en la relación

$$(d^{2} - R^{2}) (d^{2} + R^{2} + 2R^{2} \cos(2\alpha)) \sin^{2} \alpha = 0,$$

donde el segundo y el tercer factores son claramente positivos (usamos para ello que d > R para que B esté a la izquierda de C), con lo que esta relación es en efecto equivalente a d = R, como queríamos demostrar.

6. Halla todas las ternas de reales positivos (x, y, z) que cumplan el sistema

$$2x\sqrt{x+1} - y(y+1) = 1,$$

$$2y\sqrt{y+1} - z(z+1) = 1,$$

$$2z\sqrt{z+1} - x(x+1) = 1.$$

Solución 1. Nótese que, por la desigualdad entre medias aritmética y geométrica, se tiene que

$$x^{2} + x + 1 \ge 2\sqrt{x^{2}(x+1)} = 2x\sqrt{x+1}$$

con igualdad si y sólo si $x^2 = x + 1$, es decir si y sólo si x es una raíz de la ecuación $r^2 - r - 1 = 0$. Se tiene entonces de la primera ecuación que

$$y^2 + y + 1 = 2x\sqrt{x+1} \le x^2 + x + 1$$
,

y de forma similar para las otras dos, con lo que

$$x^{2} + x + 1 \ge y^{2} + y + 1 \ge z^{2} + z + 1 \ge x^{2} + x + 1$$

con lo que se ha de dar la igualdad en las tres desigualdades, es decir, x, y, z son soluciones de la ecuación $r^2 - r - 1 = 0$. El producto de las dos raíces de esta ecuación es -1, luego exactamente una de ellas es negativa, y x, y, z son iguales entre sí e iguales a la raíz positiva, es decir, la única solución es

$$x = y = z = \frac{1 + \sqrt{5}}{2}.$$

Solución 2. Supongamos que x < y, luego de la primera ecuación obtenemos

$$2x\sqrt{x+1} = y^2 + y + 1 > x^2 + x + 1,$$

o tras elevar al cuadrado y reagrupar términos,

$$0 > x^4 - 2x^3 - x^2 + 2x + 1 = (x^2 - x - 1)^2$$

claramente falso, luego $x \ge y$, con x = y si y sólo si son iguales a la raíz positiva de $r^2 - r - 1 = 0$. De forma similar, obtenemos de la segunda ecuación que $y \ge z$, y de la tercera que $z \ge x$, con análogas condiciones de igualdad. Luego $x \ge y \ge z \ge x$, con igualdad si y sólo si x, y, z son la raíz positiva de la ecuación $r^2 - r - 1 = 0$, obteniéndose la misma única solución que por el método anterior.