wany connected energy of have local in nough some loral memonies

Pistnibuted Shaned Memony

-) provides a vintual address space

shaned among all nodes in DSM

what is mapping managen?

-> A layer of s/w, penhaps bundled with the

os on as a nuntime library routine.

-) When a process accesses data in the shaned address space, the mapping managen maps shaned memony address to physical memony (local or nemote)

Pros:

- 1) Easy Abstraction: Same address space
 - easy data mignation
 - simplen than RPC
 - 2) Easien pontability -> common intenface.
 - 3) Locality of data:
- -) data fetched in lange blocks

1

- need in future
- 4) Langer memony space: 7) Vaniables dinect share
- 5) Betten penfonmance
- 6) Flexible communication envinonment
- Cons: 1) For Access 2) Not efficient
 - 3) process cont nun simultaneously
 - 4) common bus -> mone traffic 5) communication
 - A Types of algo:
 - 1) central server 4) full neplication
 - 2) Data migration
 - 3) Read neplication

1) Central Senven Algorithm Central serven (CS) client 1

- -) CS maintains all the shaned data Swrite
- -> CBRS: penformance not good - not neliable
- soln: 1) Use a mapping function to distribute/1
 - 2) pantition shaned data between sevenal senvens.
- if time out nesend nequest *
- nepeated failure send it *
- + Detect duplicate unite nequests -) with associated sequence number

- 2) Mignation Algo.
 - -> mignate data olements on neguest

- -) TH block a data enter, is block a nequest onstate data mignate anso fon funthen access and processing
- -) only I node can access data at a time
- -) whole block is mignated to that node
- 3) Read neplication Algo:
 - neplicate data at multiple nodes for nead access
 - -> white: 1) invalidate all copies of shaned data at 2) update with modified value vanious nodes
 - low nead and high write cost

-) most updated value is neturned by nead In memony Cohenence: (expected)

-> control access

* sequential consistency: -> The nesult of any execution of openations of

all processors is the same as if they were executed in sequential orden.

* General consistency: All copies of mem loc contains same data aften unite by cpu complete

- * Processon consistercy: openations issued by processon are performed in the order they're issued.
- * Weak consistency: memony is consistent only after a synchronization operation.
- * Release consistency: -) further relaxation of weak consistency
 - acquire and nelease (unlock) (Lock)
- * Cohenerce protocol?
 - why needed:
 - -) all neplicas have same info · how ensure -

 - -) nodes not access state data
- types of pnotocols: (2)
- 1) wnite-invalidate protocol:
 - -) invalidates data of all copies except 1 before write

-) can't access invalidated data Ex: IVY, clouds, Dash

Pros! - locality of neference good performance
- som many updates in these

cons! inefficient

2) Unite - update protocol:

-> all copies data update

Cons: more complet

* Cache cohenance protocol : 2) PLUS system
2) Munin "