Лабораторная работа 2.4.1

Определение теплоты испарения жидкости

Татаурова Юлия Романовна

25 марта 2024 г.

Цель работы:

- 1) измерение давления насыщенного пара жидкости при разной температуре;
- 2) вычисление по полученным данным теплоты испарения с помощью уравнения Клайперона-Клаузиуса.

Теоретические сведения

Теплоту парообразования вычислим по формуле Клайперона-Клазиуса:

$$\frac{dP}{dT} = \frac{L}{T(V_2 - V_1)}\tag{1}$$

где $V_2 = V$ - объем пара, V_1 - объем жидкости.

Запишем уравнение Ван-дер-Ваальса для насыщенного пара:

$$\left(P + \frac{a}{V^2}\right)(V - b) \tag{2}$$

 ${\bf C}$ учетом того, что b и a вносят небольшую погрешность, при данных давлениях и температурах можно записать:

$$V = \frac{RT}{P} \tag{3}$$

Однако с учетом того, что $V_1 \ll V_2$ получаем:

$$L = \frac{RT^2}{P} \frac{dP}{dT} = -R \frac{d(\ln P)}{d(1/T)} \tag{4}$$

Экспериментальная установка

Экспериментальная установка показана на рисунке ниже. В приборе 13 находится исследумая жидкость 14. Давление насыщенных паров определятеся по ртутному манометру 15.

Рис. 1: Схема установки для поределения теплоты испарения

Экспериментальные данные

$T^{\circ}C$	23.14	24	25	26	27	28	29	30	31	32	33	35	37	40
P, MM.PT.CT	17.35	18.3	13.9	24.55	21.5	23	24.25	25.6	27.8	29.7	32	36.3	41	48.55

Таблица 1: Зависимость P от T при нагревании жидкости

$T^{\circ}C$	37	35.75	34	32	30	28	26	24
P, MM.PT.CT	44.05	46.6	37.45	33.3	29.2	26	22.8	19.6

Таблица 2: Зависимость P от T при охлаждении жидкости

$$\sigma_P=0.5$$
 мм; $\sigma_T=0.01~{
m K}$

Рис. 3: Зависимоть $\ln(P)$ от $\frac{1}{T}$