## 1. Introduction: Features

Motion visibility is a key tool in cognitive neuroscience. How does the brain read out from visual cortex to support motion visibility perception?

### Contrast

The relative luminance to a gray background



#### Coherence

Coherence is the % of dots moving in sync



### Duration

The length of time the stimulus is visible



## 2 Cortical measurements



We fit a quantitative framework for motion visibility response to understand how sensitivity to different visibility features varied across cortex.

We assumed that the contrast response was a Naka-Rushton function and that coherence linear or saturating nonlinearity.







## 3 Behavior

We collected data on how well observers could discriminate small increments in the motion visibility features.







Observers performed the task at varying base stimulus strengths and showed a slight Weber-law like effect.



# 4. Readout model

To read out from visual cortex for perception, we performed a linear weighting of visual cortex responses.

The weighted output was compared for the left and right dot patches, subject to Gaussian noise.









## 6. Stability

Observers performed the task in the scanner to determine whether sensory responses were subject to enhancement or suppression during active viewing.

