Lecture 2

Machine Learning: Foundations and Applications

Transcribed by Vibhu N. Deo (vibhund@gmail.com)

Supervised Learning

- Comprises of two phases:
 - Training Phase
 - Input-Output Pairs are provided
 - A function $f(\overrightarrow{X}_i)$ is generated that links the input to the output
 - Testing Phase
 - An input is provided to the function $f(\overrightarrow{X_i})$ which finds the corresponding output $\overrightarrow{y_i}$

Supervised Learning

- N = number of training examples
- The "input" is a D dimensional vector \overrightarrow{X}_i where $i=1,2,\ldots,N$
- $\overrightarrow{X_i}$ is a vector of Real number components. It is also called the **feature vector**.
- The "output" is also called the **label vector.** It is denoted by $\overrightarrow{y_i}$ where $i=1,2,\ldots,N$

- The label vector can belong to any of the following spaces:
 - Binary Space
 - E.g. ['cat', 'dog'], [0,1]
 - Occurs in Classification problems
 - Discrete Space
 - E.g. ['cat', 'dog', 'bird',...,(k values)]
 - Occurs in Classification problems (k space classification)
 - Real Numbers $\mathbb R$
 - Occurs in Regression problems
 - Structured Output
 - Structured depend on the problem or the context
 - Occurs in Structured Prediction problems

Classification

- Input = $[(\overrightarrow{X_i}, \overrightarrow{y_i})]_N$, where $\overrightarrow{X_i}$ is a D dimensional feature vector and $\overrightarrow{y_i}$ is the label vector
- Training:
 - We try to find a function f such that $f: \mathcal{X} \to \mathcal{Y}$, where \mathcal{X} is the feature space and \mathcal{Y} is the label space
 - Depending on the algorithm used, \overline{f} is created.
- Testing:
 - We apply f on $\overrightarrow{X}_{test} \in \mathcal{X}$
 - We get $f(\overrightarrow{X}_{test}) = \overrightarrow{y}_{pred}$

Loss Function

- Used to estimate how much "loss" we have incurred from our prediction in comparison to the actual value
- The lower the value of the Loss Function L, the greater the correctness of the prediction.

•
$$L = L(\overrightarrow{y}_{pred}, \overrightarrow{y}_{test})$$

Types of Loss Functions

- Binary Loss Function: (0,1)
- Confusion Matrix or Loss Matrix

Prediction/ Test	0	1
0	0	Small value
1	Large value	0

• This is an example for a 2×2 matrix. There can be a $k \times k$ matrix also for a discrete space of k elements.

- In case of Regressions, the label space consists of Real numbers.
- Hence, a Binary Loss Function or Confusion Matrices are not applicable.
- Instead, we use the squared errors:

$$L(y_{pred}, y_{test}) = (y_{pred} - y_{test})^2$$

 We use squared error because these values are always positive.

Test Loss =
$$\sum_{i=1}^{N} L(y_i^{pred}, y_i^{test})$$

- Questions
 - How to convert an input into a feature vector?
 - There is no standard answer. It is dependant on the context of the problem.
 - How to find f?
 - There are some algorithms present to help us find a suitable *f*.

Thank you