微分積分学 B

2019 年度 1T23,24 担当: 久保

- 1. 評価の方法について
 - 小テスト: 20 点×3 回 定義の確認, 簡単な計算, 演習問題の簡単な問題など
 - 期末試験
- 2. 参考書

本講義では n 次元での話を展開するため、あまりよい参考書はないが参考として以下に提示する。

- 解析入門 II 小平邦彦 [岩波書店]
- ・ 続・微分積分読本(多変数) 小林昭七[裳華房]
- 解析入門 I(II)- 杉浦光夫 [東京大学出版]

注意 この講義ノートは、授業の板書をもとに編集者が勝手にレイアウトを変更している箇所があります。より実際の授業の板書に近いノートを他の方が別のファイル(2018 年度版)で上げていますので、そちらも合わせて見ていただいた方が良いかと思われます。なお、授業内容、板書は 2018 年度版と変化はありません。

目次

第1部	n 次元ユークリッド空間 \mathbb{R}^n	3
1	\mathbb{R}^n のノルムと内積	3
2	\mathbb{R}^n の開集合・閉集合・コンパクト集合	8
3	\mathbb{R}^n 上の関数と連続性	12
第2部	多変数関数の微分	14
4	微分 (全微分可能性)	14
5	合成関数の微分と積の微分	17

第1部

n 次元ユークリッド空間 \mathbb{R}^n

1 ℝⁿ のノルムと内積

$$\mathbb{R}^n := \{x = (x^1, x^2, \dots, x^k) : x^k \in \mathbb{R}(\forall k = 1, \dots, n)\}^{*1}$$

 \mathbb{R}^n は n 次元実線形空間である (ベクトル空間)。

V が線形空間であるとは、スカラー倍と和が定義された空間のことである。

例 $\forall x, \forall y \in V, \alpha, \beta \in \mathbb{R}$ とするとき $\alpha x \in V, x + y \in V, \alpha x + \beta y \in V$

■ノルム - norm ベクトル $x = (x^1, \dots, x^n)$ の長さの概念

$$|x|_n = |x| := \sqrt{(x^1)^2 + (x^2)^2 + \dots + (x^n)^2} *^2$$

定理 1.1 $x, y \in \mathbb{R}^n, a \in \mathbb{R}$ に対し

- 1. $|x| \ge 0$ であり |x| = 0 となるのは x = 0*3のみ。
- 2. $\left|\sum_{i=1}^{n} x^{i} y^{i}\right| \leq |x||y|$ が成り立つ。等号成立は $x \geq y$ が線形従属のときのみ。*⁴
- 3. $|x + y|_n \le |x|_n + |y|_n$
- 4. $|ax|_n = |a||x|_n$

証明

- 1. 明らか。
- 2. $x \ge y$ が線形従属ならば $x = \lambda y (\lambda \neq 0)$ とする。

$$\sum_{i=1}^{n} x^{i} y^{i} = \sum_{i=1}^{n} (\lambda y^{i}) y^{i}$$
$$= \lambda \sum_{i=1}^{n} (y^{i})^{2}$$
$$= \lambda |y|^{2}$$

 $^{*^1}$ 次元の x^k は $x^{(k)}$ 等と書くこともある。

 $^{^{*2}}$ l_2 norm といい, $||x||_2$ とも書く。なお l_1 norm は $\sum_{k=1}^n |x^k|_{\circ}$

$$|x| = |\lambda y|$$

$$= \sqrt{\sum_{i=1}^{n} (\lambda y^{i})^{2}}$$

$$= |\lambda| \sqrt{\sum_{i=1}^{n} (y^{i})^{2}}$$

$$= |\lambda| |y|$$

$$\left| \sum_{i=1}^{n} x^{i} y^{i} \right| = |\lambda| |y|^{2}$$
$$= |\lambda| |y| \cdot |y|$$
$$= |x| |y|$$

x と y が線形従属でないとき、 $\forall \lambda \in \mathbb{R}$ に対して $\lambda x - y \neq 0$ だから

$$0 < |\lambda y - x|^{2}$$

$$\sum_{i=1}^{n} (\lambda y^{i} - x^{i})^{2}$$

$$= \lambda^{2} \sum_{i=1}^{n} (y^{i})^{2} - 2\lambda \sum_{i=1}^{n} x^{i} y^{i} + \sum_{i=1}^{n} (x^{i})^{2}$$

となる。右辺の λ の 2 次方程式は実解を持たないので、判別式は負。

$$4\left(\sum_{i=1}^{n} x^{i} y^{i}\right)^{2} - 4\sum_{i=1}^{n} (x^{i})^{2} \sum_{i=1}^{n} (y^{i})^{2} < 0$$

3.

$$|x + y|^2 = \sum_{i=1}^n (x^i + y^i)^2$$

$$= \sum_{i=1}^n (x^i)^2 + \sum_{i=1}^n (y^i)^2 + 2\sum_{i=1}^n x^i y^i$$

$$\leq |x|^2 + |y|^2 + 2|x||y|$$

$$= (|x| + |y|)^2$$

4. 2. の途中で示した。

■内積 - inner product $x, y \in \mathbb{R}^n$ に対して $\langle x, y \rangle := \sum_{i=1}^n x^i y^i$ を $x \in y$ の内積という。

定理 1.2

1. 対称性: $\langle x, y \rangle = \langle y, x \rangle$

2. 双線形性: $\langle ax, y \rangle = \langle x, ay \rangle = a \langle x, y \rangle \langle x_1 + x_2, y \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle \langle x, y_1 + y_2 \rangle = \langle x, y_1 \rangle + \langle x, y_2 \rangle$

3. $\langle x, x \rangle \ge 0$ であり、 $\langle x, x \rangle = 0$ となるのは x = 0 のときのみ

4. $|x| = \sqrt{\langle x, x \rangle}$

5. 偏極等式: $\langle x, y \rangle = \frac{|x+y|^2 - |x-y|^2}{4} *5$

証明

1.

$$\langle x, y \rangle = \sum_{i=1}^{n} x^{i} y^{i} = \sum_{i=1}^{n} y^{i} x^{i} = \langle y, x \rangle$$

2.

$$\langle ax, y \rangle = \sum_{i=1}^{n} (ax^{i})y^{i} = a \sum_{i=1}^{n} x^{i}y^{i} = a \langle x, y \rangle$$

$$\langle x_1 + x_2, y \rangle = \sum_{i=1}^{n} (x_1^i + x_2^i) y^i = \sum_{i=1}^{n} x_1^i y^i + \sum_{i=1}^{n} x_2^i y^i = \langle x_1, y \rangle + \langle x_2, y \rangle$$

3. 明らか

4. 明らか

5.

$$\frac{|x+y|^2 - |x-y|^2}{4} = \frac{1}{4} \left(\langle x+y, x+y \rangle - \langle x-y, x-y \rangle \right)$$
$$= \frac{1}{4} \left\{ \langle x, x \rangle + 2 \langle x, y \rangle + \langle y, y \rangle - (\langle x, x \rangle - 2 \langle x, y \rangle + \langle y, y \rangle) \right\}$$
$$= \langle x, y \rangle$$

注意

- 零ベクトル $(0,0,\dots,0) \in \mathbb{R}^n$ を 0 と表記する。
- i 番目成分のみが 1 で他が 0 であるベクトル $e_i = (0, \cdots, 1, \cdots, 0)$ とすると, e_1, e_2, \cdots, e_n は \mathbb{R}^n の基底 (base) となる。

定義 ベクトル空間 V に対し、 $\{v_1, v_2, \cdots, v_n\}$ が基底であるとは、

- $-v_1,v_2,\cdots,v_n$ は線形独立
- $\forall x \in V$ に対して $\exists \alpha_1, \alpha_2, \cdots, \alpha_n \in \mathbb{R}$ s.t. $x = \sum_{i=1}^n \alpha_i v_i$
- $T: \mathbb{R}^n \to \mathbb{R}^n$:線形写像

$$\forall x, y \in \mathbb{R}$$
 に対して
$$\begin{cases} T(x+y) = T(x) + T(y) \\ T(\alpha x) = \alpha T(x) \end{cases}$$
*6

ある 1 つの行列 $A = (a_{ij}) (m \times n 行列)*⁷が存在して$

$$T(x) = Ax$$

と書ける。

$$T(b_i) = \sum_{i=1}^n a_{ji} e_j$$

ベクトル $T(b_i)$ は行列Aの第i列になっている。

 $S: \mathbb{R}^m \to \mathbb{R}^l$:線形写像の表現行列を $B(l \times n$ 行列)とすると、合成写像 $S \circ T(x) = S(T(x))$ の表現行列は BA となる。

- $x \in \mathbb{R}^n, y \in \mathbb{R}^m$ に対して $(x, y) \in \mathbb{R}^{n+m}$ で $(x^1, x^2, \cdots, x^n, y^1, y^2, \cdots, y^n) \in \mathbb{R}^{n+m}$ と表すものとする。
- **■点列の極限について** $\{x_m\}_{m=1}^{\infty} \subset \mathbb{R}^n$ を \mathbb{R}^n の点列とする。
 - $\{x_m\}_{m=1}^{\infty}$ が $x \in \mathbb{R}^n$ に収束する $\stackrel{def}{\Leftrightarrow} \lim_{m \to \infty} |x_m x|_n = 0$

注意
$$\lim_{m\to\infty} |x_m-x|=0 \Leftrightarrow \lim_{m\to\infty} \sqrt{\sum_{i=1}^n (x_m^i-x^i)^2}=0 \Leftrightarrow \lim_{m\to\infty} |x_m^i-x^i|=0 (\forall i)$$

- $\{x_m\}_{m=1}^{\infty}$ \forall Cauchy $\not\exists l$ $\Leftrightarrow \lim_{m,l\to\infty} |x_m-x_l|_n = 0 \Leftrightarrow \forall \epsilon > 0, \exists M \in \mathbb{N} \text{ s.t. } \forall m, \forall l > M \Rightarrow |x_m-x_l| < \epsilon$
- $\{x_m\}_{m=1}^{\infty} \subset \mathbb{R}^n$ が収束列であることと Cauchy 列であることは同値。

証明 上の注意を用いれば 1 次元 ℝ のときと同じなので OK (前期 Th3.8)

- $\{x_m\}_{m=1}^{\infty}\subset\mathbb{R}^n$ が有界 $\stackrel{def}{\Leftrightarrow}\exists M>0 \ s.t. \ |x_m|< M \ (orall n)$
- Bolzano-Weierstrass の定理

 $\{x_m\}\subset\mathbb{R}^n$ が有界ならば $\{x_m\}_{m=1}^\infty$ は収束する部分列が選べる。

(i.e.
$$\exists \{x_{m_k}\}_{k=1}^{\infty} \subset \{x_m\} \text{ s.t. } x_{m_k} \to \exists x \ (k \to \infty)$$
)

^{*6} $\supset \sharp$) $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$

^{*7} T の表現行列という。

証明 $\{x_m\}$ は有界列なので各成分 $\{x_m^i\}_{m=1}^\infty\subset\mathbb{R}$ は \mathbb{R} の有界列となる。第 1 成分 $\{x_m^1\}_{m=1}^\infty\subset\mathbb{R}$ から \mathbb{R} で収束する部分列がとれる。その部分列から第 2 成分 $\{x_m^2\}$ が \mathbb{R} で収束する部分列が同様にとれる。これを繰り返す。

2 \mathbb{R}^n の開集合・閉集合・コンパクト集合

注意 本格的に勉強がしたければ、集合と位相の本をやるとよい。

 $A_m \subset \mathbb{R}^n \ (m=1,2,\cdots)$ とする。

• 和集合(合併)

$$\bigcup_{m=1}^{\infty} A_m := \{ x \in \mathbb{R}^n : \exists m \in \mathbb{N} \text{ s.t. } x \in A_m \}$$

• 共通部分

$$\bigcap_{m=1}^{\infty} A_m := \{ x \in \mathbb{R}^n : \forall m \in \mathbb{N}, x \in A_m \}$$

集合 $A \subset \mathbb{R}^m$ と $B \subset \mathbb{R}^n$ に対し,

$$A \times B := \{(x, y) \in \mathbb{R}^{m+n} : x \in A, y \in B\}$$

例

- $\mathbb{R}^{m+n} = \mathbb{R}^m \times \mathbb{R}^n$
- $[a,b] \times [c,d] = \{(x,y) \in \mathbb{R}^2 : x \in [a,b], y \in [c,d]\}$

注意 一般に

- $[a_1,b_1] \times [a_2,b_2] \times \cdots \times [a_n,b_n] \subset \mathbb{R}^n$ の形の集合を \mathbb{R}^n の閉方体という
- $(a_1,b_1)\times(a_2,b_2)\times\cdots\times(a_n,b_n)\subset\mathbb{R}^n$ の形の集合を \mathbb{R}^n の開方体という

定義 (開集合)

集合 $U \in \mathbb{R}^n$ が開集合 $\Leftrightarrow \forall x \in U$ に対して x を含み、かつ、U に含まれる開方体*8が存在する。

例

- 開方体は開集合
- $\{|x|<1\}$: ball は開集合(一般に集合 $\{x\in\mathbb{R}^n:|x-a|< r\}$ は開集合)
- ℝⁿ 全体は開集合

定義 (閉集合)

 $C \subset \mathbb{R}^n$ が閉集合 $\Leftrightarrow \mathbb{R}^n - C := \{x \in \mathbb{R}^n : x \notin C\}$ が開集合

^{*8} この開方体は x に依存する。

集合 $A \subset \mathbb{R}^n$ と点 $x \in \mathbb{R}^n$ の関係は次の 3 つのいずれかとなる。

- 1. $x \in B \subset A$ となる開方体 B が存在する。
- 2. $x \in B \subset \mathbb{R}^n A$ となる開方体 B が存在する。
- 3. $x \in B$ となる開方体は A の点と $\mathbb{R}^n A$ の点を少なくとも 1 つずつ含む。

集合 A に対し,

- 1. を満たす点全体を A の内部という。
- 2. を満たす点全体を A の外部という。
- 3. を満たす点全体を A の境界という。

注意 A の内部は開集合、A の外部は開集合となる。よってその残りである A の境界は閉集合となる。開集合 の和集合は開集合である。

 \mathcal{O} を開集合の族とする。(i.e. $\mathcal{O} = \{U_{\lambda} \subset \mathbb{R}^n : U_{\lambda} \text{ to open}, \lambda \in \Lambda\}$)

- 開被覆 (over covering) \mathcal{O} が $A \subset \mathbb{R}^n$ の開被覆 (open covering) であるとは、任意の $x \in A$ に対して \mathcal{O} の中の開集合 U_{λ} があって $x \in U_{\lambda}$ であることである。
- コンパクト (compact) 集合 $A \subset \mathbb{R}^n$ がコンパクト (compact) であるとは、A の任意の開被覆 \mathcal{O} に対 して Ø の中の有限個の開集合をうまく選べば、それだけで A を覆うことができることである。

例

- 有限個の点の集合はコンパクト
- $-\left\{0 \ \, \frac{1}{n} \text{ odes } (n \text{ は自然数})\right\} \text{ は } \mathbb{R} \text{ odes } \text{ odes } \left(n \text{ は自然数}\right)$ $-\left\{\frac{1}{n} \text{ odes } (n \text{ は自然数})\right\} \text{ は } \mathbb{R} \text{ odes } \text{$
- 集合 $A \subset \mathbb{R}^n$ が有界である $\Leftrightarrow \exists M > 0$ s.t. $A \subset \{x \in \mathbb{R}^n : |x| < M\}$

定理 1.3 (Heine-Borel)

閉区間は compact である。

証明 \mathscr{O} を閉区間 [a,b] の開被覆とする。 $x \in [a,b]$ で [a,x] が \mathscr{O} の中の有限個だけで覆われるものの全体を A とする $(A := \{x \in [a,b] : [a,x]$ が \mathscr{O} の中の有限個で覆われる $\}$)。明らかに $a \in A$ であり,A は上に有界である (例えば b が一つの上界)。compact の定義より $b \in A$ を示せばよい。そこで,A の上限を α とし,

- 1. $\alpha \in A$
- 2. $b = \alpha$

を示せばよい。

- 1. \mathcal{O} は [a,b] の開被覆であり、 $a \leq b$ だから $a \in U$ となる開集合 $U \in \mathcal{O}$ が存在する。 α は A の上限なので、 α の十分近くに $\exists x \in A$ s.t. $x \in U$ となるものがある。 $x \in A$ より [a,x] は \mathcal{O} の中の有限個で覆われている。また $[x,\alpha]$ は 1 個の開集合 $U \in \mathcal{O}$ で覆われている。よって $[a,\alpha] = [a,x] \cup [x,\alpha]$ は \mathcal{O} の有限個で覆われる。したがって $\alpha \in A$
- 2. $\alpha < b$ と仮定する。このとき $\alpha < x' < b$ となる x' で U に属するものが存在する。 $\alpha \in A$ だから $[a,\alpha]$ は \emptyset の有限子で覆われている。 $[\alpha,x']$ も 1 個の開集合 $U \in \emptyset$ で覆われている。よって $x' \in A$ となり, α が A の上限であることに矛盾。したがって $\alpha = b$ 。
- $B \subset \mathbb{R}^m$ \mathbb{N} compact $\mathcal{C} x \in \mathbb{R}^n$ $\mathcal{C} \cap \mathcal{C} = \mathbb{R}^n$ $\mathcal{C} \cap \mathcal{C} = \mathbb{R}^n$ $\mathcal{C} \cap \mathcal{C} = \mathbb{R}^n$

定理 1.4 $B \subset \mathbb{R}^m$ は compact, 点 $x \in \mathbb{R}^n$ に対して \mathcal{O} を $\{x\} \times B \subset \mathbb{R}^{n+m}$ の開被覆とする。このとき、ある開集合 $U \subset \mathbb{R}^n$ であって $x \in U$ かつ $U \times B$ は \mathcal{O} の中の有限個で覆われるようなものが存在する。

証明 $\{x\} \times B$ が compact より,有限個の開被覆(\mathscr{O}' とする)を \mathscr{O} から選んで $\{x\} \times B$ がそれ(\mathscr{O})で覆える。 よって $U \times B$ が \mathscr{O}' で覆われるような開集合 U を見つければよい。 $\forall y \in B$ に対して $\exists W \in \mathscr{O}'$ s.t. $(x,y) \in W$ ($: (x,y) \in \{x\} \times B$)。 W は open より $\exists U_y \times V_y$: 開方体 s.t. $(x,y) \in U_y \times V_y \subset W$ 。 ここで $\{V_y\}_{y \in B}$ は B の開被覆で B は compact より有限個の V_y で B を覆うことができる。

$$B \subset V_{y_1} \cup V_{y_2} \cup \cdots \cup V_{y_k}$$

そこで $U := U_{y_1} \cap U_{y_2} \cap \cdots \cap U_{y_k}$ とおくと,U は開方体で, $\forall (x',y') \in U \times B$ に対して y' はある i に対して $y' \in V_{y_i}$ であり,かつ $x' \in U_{y_i}$ となる。よって $(x',y') \in U_{y_i} \times V_{y_i}$ となり, $U_{y_i} \times V_{y_i}$ はある $W \in \mathcal{O}'$ に含まれる。

系 1.5 $A \subset \mathbb{R}^n, B \subset \mathbb{R}^m$ が共に compact ならば $A \times B \subset \mathbb{R}^{m+n}$ も compact。

証明 \mathscr{O} を $A \times B$ の開被覆とすると、 $\forall x \in A$ に対し \mathscr{O} は $\{x\} \times B$ を覆う。定理 1.4 より $\exists U_x \subset \mathbb{R}^n$: open s.t. $x \in U_x$ かつ $U_x \times B$ は \mathscr{O} の有限個で覆われる。A は compact で $\{U_x\}_{x \in A}$ は A の開被覆だから、その中の有限 個 $U_{x_1}, U_{x_2}, \cdots, U_{x_k}$ がすでに A を覆う。各 $U_{x_i} \times B$ は \mathscr{O} の中の有限個で覆われるので、 $A \times B$ 全体が \mathscr{O} の中の有限個で覆われる。 $(A \subset U_{x_1} \cup U_{x_2} \cup \times \cup U_{x_k})$

系 1.6 各 A_i が compact ならば $A_1 \times A_2 \times \cdots A_k$ も compact である。特に \mathbb{R}^k の閉方体は compact である。

系 1.7 \mathbb{R}^n の有界閉集合は compact (逆も成立)

証明 $A \subset \mathbb{R}^n$ が有界閉集合ならば A を含む閉方体 B が存在する。 \mathcal{O} を A の開被覆とすると, \mathcal{O} に $\mathbb{R}^n - A$ (これは open) を合わせたものは B を覆う。系 1.6 より B は compact であるのでその中の有限個 $U_1, U_2, \cdots, U_k, \mathbb{R}^n - A$ がすでに B を覆う。したがって U_1, U_2, \cdots, U_k は A を覆う。

3 ℝⁿ 上の関数と連続性

- $f: \mathbb{R}^n \to \mathbb{R}^m$ と書いた時、f は \mathbb{R}^n から \mathbb{R}^m への関数という。
- $A \subset \mathbb{R}^n$ に対して f が定義され, f(x) の値は $B \subset \mathbb{R}^m$ に入る時, $f: A \to B$ と書く。
- *A* を *f* の定義域 (domain) という。
- $f(A) := \{ f(x) \in \mathbb{R}^m : x \in A \}$ を値域 (range) という。
- $c \subset \mathbb{R}^m$ に対して $f^{-1}(c) := \{x \in A : f(x) \in c\}$

注意 f^{-1} は逆写像を用いて定めていない。逆関数の存在もいえない。

- $f: A \to B$ が単射である,もしくは 1 対 1 である $\stackrel{def}{\Leftrightarrow} [x, y \in A, x \neq y \Rightarrow f(x) \neq f(y)]$
- $f: A \to B$ が全射である、もしくは上への写像である $\stackrel{def}{\Leftrightarrow} [\forall z \in B, \exists x \in A \text{ s.t. } f(x) = z]$
- $A \subset \mathbb{R}^n$ とする。

 $f:A\to\mathbb{R}^m$: 単射 に対し、逆関数 f^{-1} は $f(A)\to\mathbb{R}^n$ が $z\in f(A)$ に対して f(x)=z となるただ 1 つの点 $x\in A$ を $f^{-1}(z)$ と定めることで定義される。

f(x) = z となるただ 1 つの点を定められないと仮定、すなわち $\exists x' \in A$ でも f(x') = z とすると、 $x \neq x'$ のとき、f は単射であるので $f(x) \neq f(x')$ 。このとき $z = f(x) \neq f(x') = z$ となり矛盾する。

注意 単射かつ全射, すなわち全単射のときは f は必ず逆関数をもつ。

(i.e. $f: A \to B$: 全単射 $\Rightarrow \exists f^{-1}: B \to A$)

• 関数の成分表示

 $f: A \to \mathbb{R}^n$ に対し

$$f(x) = (f^{1}(x), f^{2}(x), \cdots, f^{m}(x))$$

と書くことで m 個の成分表示

$$f^1, f^2, \cdots, f^m : A \to \mathbb{R}$$

が決まる。

• 関数の極限

 $f: A \to \mathbb{R}^m (A \subset \mathbb{R}^n)$ に対して

$$\lim_{x \to a} f(x) = b \stackrel{def}{\Leftrightarrow} \forall \epsilon > 0, \exists > 0 \text{ s.t. } |x - a| < \delta(x \in A) \Rightarrow |f(x) - b| < \epsilon$$

- 連続性
 - $f: A \to \mathbb{R}^m$ が $a \in A$ で連続である $\stackrel{def}{\Leftrightarrow} \lim_{x \to a} f(x) = f(a)$
 - f が A 上連続である $\stackrel{def}{\leftrightarrow} \forall a \in A$ で f が連続である

定理 1.8 $f: A \to \mathbb{R}^m (A \subset \mathbb{R}^n)$ が連続 $\Leftrightarrow \forall U \subset \mathbb{R}^m$:open に対して $\exists V \subset \mathbb{R}^n$:open s.t. $f^{-1}(U) = V \cap A^{*9}$

証明

(⇒について)

f: 連続とする。 $a\in f^{-1}(U)$ ならば $f(a)\in U$ 。U は open より, $\exists B_a$: openb lock(開方体) s.t. $f(a)\in B_a\subset U$ とできる。f: 連続ゆえ a を含む十分小さい open block C_a をとると, $x\in C_a\cap A$ ならば $f(x)\in B_a$ となる (これにより $a\in f^{-1}(U)\to C_a$ が定まった)。 $V:=\bigcup_{a\in f^{-1}(U)} C_a=\{x\in \mathbb{R}^n:\exists a\in f^{-1}(U) \text{ s.t. } x\in C_a\}$ とすると,

V :open で $f^{-1}(U) = V \cap A$ となる。 $*^{10}$

(←について)

 $\forall \epsilon > 0$ に対して $U := \{y \in \mathbb{R}^m : |y - f(a) < \epsilon|\}$ とする。このとき U は open set なので $\exists V \subset \mathbb{R}^n$: open set s.t. $f^{-1}(U) = V \cap A$ とできる。V は \mathbb{R}^n の open set であり, $a \in V \cap A$ であるから $\exists \delta > 0$ s.t. $\{x \in A : |x - a| < \delta\} \subset V \cap A$ 。ゆえに, $f(\{x \in A : |x - a| < \delta\}) \subset U$ となり $*^{11}$,f は A で連続である。 $*^{12}$

定理 1.9 $f: A \to \mathbb{R}^m (A \subset \mathbb{R}^n)$ が連続で A が compact ならば $f(A) \subset \mathbb{R}^m$ は compact である。

証明 \mathscr{O} を f(A) の開被覆とする。 \mathscr{O} 中の各開集合 U に対し \mathbb{R}^n の開集合 V_U で $f^{-1}(U) = V_U \cap A$ となるものが存在する。 $\mathscr{O}' := \{V_U \subset \mathbb{R}^n : U \in \mathscr{O}\}$ とすると \mathscr{O}' は A の開被覆。A は compact より \mathscr{O}' 中の有限個 $V_{U_1}, V_{U_2}, \cdots, V_{U_k}$ がすでに覆っている,よって f(A) は U_1, U_2, \cdots, U_k で覆われる。

^{*&}lt;sup>9</sup> f:連続 ⇔open set の逆像が open set。

ある写像が連続であることとその映った先の開集合の引き戻しが開集合であることは同値である。

 $^{*^{10}}$ $f^{-1}(U)$ $\subset V \cap A$ は定義より明らか。 $V \cap A \subset f^{-1}(U)$ について、 $\forall x \in V \cap A$ に対して $\exists a \in f^{-1}(U)$ s.t. $x \in C_a \cap A$ 。このとき $f(x) \in B_a \subset U$ より $x \in f^{-1}(U)$ 。

 $^{*^{11}}$:: $\{x \in A : |x - a| < \delta\} \subset V \cap A = f^{-1}(U)$

第2部

多変数関数の微分

4 微分(全微分可能性)

■一変数の微分 $f: \mathbb{R} \to \mathbb{R}$ の微分

$$\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}=f'(a)$$

(言い換え) $a \in \mathbb{R}$ で微分可能とは、

$$\exists \lambda: \mathbb{R} \to \mathbb{R}:$$
線形写像 $s.t. \lim_{h \to 0} \frac{f(a+h) - f(a) - \lambda(h)}{h} = 0$

*13

定理 2.1 (全微分)

関数 $f: \mathbb{R}^n \to \mathbb{R}^m$ が点 $a \in \mathbb{R}^n$ で微分可能(全微分可能)とは、

$$\exists \lambda: \mathbb{R}^n \to \mathbb{R}^m:$$
線形写像 s.t. $\lim_{h\to 0} \frac{|f(a+h)-f(a)-\lambda(h)|}{|h|}=0$

分母は \mathbb{R}^n の norm,分子は \mathbb{R}^m の norm であることに注意。 λ は一次元での微分係数の一般化。この λ を Df(a) と書く。

 $^{*^{13}}$ 線形写像なら $\lambda(h) = f'(a)h$ y = px みたいな

定理 2.2 $f: \mathbb{R}^n \to \mathbb{R}^m$ が $a \in \mathbb{R}^n$ で全微分可能のとき、 \mathbb{R}^n から \mathbb{R}^m の線形写像 λ で $\lim_{h\to 0} \frac{|f(a+h)-f(a)-\lambda(h)|}{|h|} = 0$ を満たすものは 1 つしかない。

*14

証明 線形写像 $\mu: \mathbb{R}^n \to \mathbb{R}^m$ も $\lim_{h\to 0} \frac{|f(a+h)-f(a)-\lambda(h)|}{|h|} = 0$ を満たすとする。

$$\begin{split} \lim_{h \to 0} \frac{|\lambda(h) - \mu(h)|}{|h|} &= \lim_{h \to 0} \frac{|\lambda(h) - \{f(a+h) - f(a)\} + \{f(a+h) - f(a)\} - \mu(h)|}{|h|} \\ &\leq \lim_{h \to 0} \frac{|f(a+h) - f(a) - \lambda(h)|}{|h|} + \lim_{h \to 0} \frac{|f(a+h) - f(a) - mu(h)|}{|h|} *^{15} \\ &= 0 *^{16} \end{split}$$

よって

$$\lim_{h \to 0} \frac{|\lambda(h) - \mu(h)|}{|h|} = 0$$

よって、 $\forall x \in \mathbb{R}^n$ に対し $t \to 0$ のとき $tx \to 0$ となるので、 $\forall x \neq 0$ に対し上式より(h = tx として)

$$0 = \lim_{t \to 0} \frac{|\lambda(tx) - \mu(tx)|}{tx}$$
$$= \lim_{t \to 0} \frac{|\lambda(x) - \mu(x)|}{|x|} *^{17}$$
$$= \frac{|\lambda(x) - \mu(x)|}{|x|}$$

よって $\lambda(x) = \mu(x)(\forall x \in \mathbb{R}^n)$ となる。

*18

^{*14} 一意性の証明は2つ持ってきて矛盾させる。

^{*16} norm の三角不等式。

^{*16} 微分の定義と仮定から。

^{*&}lt;sup>17</sup> 線形写像 $\lambda(h)=Ah$ は $\lambda(tx)=t\lambda(x),\lambda(0)=0$

 $_{*^{18}}\lambda:\mathbb{R}^{n}\rightarrow\mathbb{R}^{m}\Leftrightarrow A:m\times n$ 行列 $\lambda(x)=Ax$

■ $Df(a): \mathbb{R}^n \to \mathbb{R}^m$ **について** これは \mathbb{R}^n から \mathbb{R}^m への線形写像なので \mathbb{R}^n と \mathbb{R}^m の標準基底に関する表現行列 $(m \times n$ 行列) を用いると具体的に表せる。この $m \times n$ 行列を f の a でのヤコピ行列といい, f'(a) とかく。 $f: \mathbb{R}^n \to \mathbb{R}^m, \ x = (x^1, x^2, \cdots, x^n) f = {}^t(f^1, f^2, \cdots, f^m)$

$$Df(a) = f'(a) = \begin{pmatrix} u_{11} & u_{12} & \cdots & \cdots & a_{1n} \\ u_{21} & u_{22} & & & a_{2n} \\ \vdots & & \ddots & & \vdots \\ \vdots & & & u_{ij} & \vdots \\ \vdots & & & \ddots & \vdots \\ u_{m1} & u_{m2} & \cdots & \cdots & a_{mn} \end{pmatrix}$$

ただし $u_{ij} = \frac{\partial f^i}{\partial x^j}(a)$ である。

注意

- 関数 f が \mathbb{R}^n の点 a を含むある開集合上だけで定義されている場合でも Df(a) は定義できる。 $(Df(a):\mathbb{R}^n \to \mathbb{R}^m: linear)$
- 関数 $f:A\to\mathbb{R}^m$ が A だけでしか定義されていない場合は f が A を含むある開集合上の可微分関数に拡張できる時, f は A 上微分可能という。
- 全微分可能ならば連続である。

例 $f(x,y) = {}^{t}(f^{1}(x,y), f^{2}(x,y)) = {}^{t}(xy,x+y)$ これを(x,y) = (a,b) で微分 $(a,b) \rightarrow (a+h,b+k)$

$$\lim_{\binom{h}{k} \to \binom{0}{0}} \frac{\left| \binom{(a+h)(b+k)}{(a+h)+(b+k)} - \binom{ab}{a+b} - \binom{b}{1} \cdot \binom{a}{k} \right|}{\left| \binom{h}{k} \right|} = \lim_{\binom{h}{k} \to \binom{0}{0}} \frac{\left| \binom{hk}{0} \right|}{\left| \binom{h}{k} \right|} = \lim_{\binom{h}{k} \to \binom{0}{0}} \frac{\left| \binom{hk}{0} \right|}{\sqrt{h^2 + k^2}} \to 0$$

*19

$*19$
 $\begin{pmatrix} ak+bh+hk\\h+k \end{pmatrix} = \begin{pmatrix} b & a\\1 & 1 \end{pmatrix} \begin{pmatrix} h\\k \end{pmatrix} + \begin{pmatrix} h,k & \mathcal{O}\\$ 二次以上

5 合成関数の微分と積の微分

定理 2.3 $f:\mathbb{R}^n \to \mathbb{R}^m$ が $a \in \mathbb{R}^n$ で全微分可能, $g:\mathbb{R}^m \to \mathbb{R}^l$ が f(a) で全微分可能ならば, $g \circ f:\mathbb{R}^n \to \mathbb{R}^l$ は $a \in \mathbb{R}^n$ で全微分可能で

$$D(g \circ f)(a) = Dg(f(a)) \circ Df(a)$$

(これは $(g \circ f)'(a) = g'(f(a)) \cdot f'(a)$ と行列の積の形でもかける。) (f(a) = b とすれば $Dg(b) \circ Df(a)$)

証明 b := f(a), $\lambda = Df(a)$, $\mu := Dg(f(a))$ とおき,

$$\phi(x) := f(x) - f(a) - \lambda(x - a) \tag{1}$$

$$\psi(x) := g(y) - g(b) - \mu(y - b) \tag{2}$$

$$\rho(x) := g \circ f(x) - g \circ f(a) - \mu \circ \lambda(x - a) \tag{3}$$

とおく。f と g は全微分可能より

$$\lim_{x \to a} \frac{|\phi(x)|}{|x - a|} = 0 \tag{4}$$

*20

$$\lim_{y \to b} \frac{|\psi(x)|}{|y - b|} = 0 \tag{5}$$

 $_{*^{21}}$ このとき $\lim_{x \to a} \frac{|\rho(x)|}{|x-a|} = 0$ を示せばよい。 $_{*^{22}}$

$$\begin{split} \rho(x) &= g(f(x)) - g(b) - \mu(\lambda(x - a)) \\ &= g(f(x)) - g(b) - \mu(f(x) - f(a) - \phi(x)) \\ &= \{g(f(x)) - g(b) - \mu(f(x) - f(a))\} + \mu(\phi(x))^{*23} \\ &= \psi(f(x)) + \mu(\phi(x)) \end{split}$$

となるので、次の2つが示されればよい。

$$\lim_{x \to a} \frac{|\phi(f(x))|}{|x - a|} = 0 \tag{6}$$

$$\lim_{x \to a} \frac{|\mu(\phi(x))|}{|x - a|} = 0 \tag{7}$$

(7) は(4)と演習問題1の1より明らか。

 μ :linear ならば $\mu(h) \leq \exists M|h|$ が成立する。

$$\frac{|\mu(\phi(x))|}{|x-a|} \le \frac{\exists M|\phi(x)|}{|x-a|} \to 0 \ (x \to a)$$

$$\lim_{x \to a} \frac{|f(x) - f(a) - \lambda(x - a)|}{|x - a|} = 0$$

$$\lim_{y \to b} \frac{|g(y) - g(b) - \mu(y - b)|}{|y - b|} = 0$$

$$\lim_{x \to a} \frac{|g \circ f(x) - g \circ f(a) - \mu \circ \lambda(x - a)|}{|x - a|} = 0$$

(6) については、 $\forall \epsilon > 0$ と、(5) によって $\exists \delta > 0$ を選んで

$$|f(x) - b| < \delta \Rightarrow |\psi(f(x))| < \epsilon |f(x) - b|$$

さらに f: 全微分可能より、f は連続なので $\exists \delta_1 > 0$ s.t. $|x-a| < \delta_1 \Rightarrow |f(x)-b| < \delta$ とできる。 よって

$$\begin{aligned} |\psi(f(x))| &< \epsilon |f(x) - b| \\ &= \epsilon |\phi(x) + \lambda (x - a)|^{*24} \\ &\le \epsilon |\phi(x)| + \epsilon M |x - a|^{*25} \end{aligned}$$

ゆえに

$$|x - a| < \delta_1 \Rightarrow \frac{|\psi(f(x))|}{|x - a|} < \epsilon \frac{|\phi(x)|}{|x - a|} + \epsilon M$$

*26よって

$$\lim_{x \to a} \frac{|\psi(f(x))|}{|x - a|} = 0$$

^{*&}lt;sup>25</sup> $|\lambda(x-a)| \le \exists M |x-a|$ (演習問題 1[1]a より) *²⁶ $\frac{|\phi(x)|}{|x-a|}$ は (4) より十分小

定理 2.4

1. $f: \mathbb{R}^n \to \mathbb{R}^m$: 定数値関数 $\Rightarrow Df(a) = 0 \ (\forall a \in \mathbb{R}^n)$

2. $f: \mathbb{R}^n \to \mathbb{R}^m$:線形写像 $\Rightarrow Df(a) = f \ (\forall a \in \mathbb{R}^n)$

3. $f: \mathbb{R}^n \to \mathbb{R}^m$ が a で全微分可能 \Leftrightarrow 各成分関数 f^i が a で全微分可能 $(\forall i=1,2,\cdots,m)$ このとき $Df(a)={}^t(Df^1(a),Df^2(a),\cdots,Df^m(a))$

証明

1. f(x) = b (=Const.) とすると

$$\lim_{h \to 0} \frac{|f(a+h) - f(a)|}{|h|} = \lim_{h \to 0} \frac{|b - b - 0|}{h} = 0$$

2. *f* が linear のとき

$$\lim_{h \to 0} \frac{|f(a+h) - f(a) - f(h)|}{|h|} = \lim_{h \to 0} \frac{|f(a) + f(h) - f(a) - f(h)|}{|h|} = 0$$

3. 各 f' が a で全微分可能のとき、 $\lambda := {}^t(Df^1(a), Df^2(a), \cdots, Df^m(a))$ とおく。 $*^{27}$

$$f(a+h) - f(a) - \lambda(h)$$

$$= {}^{t} \left(f^{1}(a+h) - f^{1}(a) - Df^{1}(a)(h), \dots, f^{m}(a+h) - f^{m}(a) - Df^{m}(a)(h) \right)$$

したがって

$$\lim_{h \to 0} \frac{|f(a+h) - f(a) - \lambda(h)|}{|h|} \le \lim_{h \to 0} \sum_{i=1}^{m} \frac{|f^{i}(a+h) - f^{i}(a) - Df^{i}(a)(h)|}{|h|} = 0^{*28}$$

逆に f が a で全微分可能のとき (2) と定理 2.3 より $f^i=\pi^i\circ f$ も a で全微分可能。 ただし, π は $\pi^i:\mathbb{R}^m\to\mathbb{R}:x=(x^1,x^2\cdots,x^m)$ に対して $\pi^i(x)=x^i$ という線形写像(座標関数という)。

系 2.5 $f,g:\mathbb{R}^n \to \mathbb{R}$ が a で全微分可能ならば、f+g と fg も a で全微分可能で

$$\begin{cases} D(f+g)(a) &= Df(a) + Dg(a) \\ D(fg)(a) &= g(a)Df(a) + f(a)Dg(a) \end{cases}$$

^{*&}lt;sup>27</sup> こうすることで m×n 行列をつくる。

 $_{*^{28}}$ 一般に $z\in\mathbb{R}^m$ に対して $\sqrt{\sum_{i=1}^m|z^i|^2}=|z|_m\leq\sum_{i=1}^m|z_i|$