

74ACT244

OCTAL BUS BUFFER WITH 3 STATE OUTPUTS (NON INVERTED)

- HIGH SPEED: $t_{PD} = 4.6 \text{ ns}$ (TYP.) at $V_{CC} = 5V$
- LOW POWER DISSIPATION: $I_{CC} = 4 \mu A(MAX.)$ at $T_A=25$ °C
- COMPATIBLE WITH TTL OUTPUTS $V_{IH} = 2V \text{ (MIN.)}, V_{IL} = 0.8V \text{ (MAX.)}$
- 50Ω TRANSMISSION LINE DRIVING CAPABILITY
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 24mA (MIN)
- BALANCED PROPAGATION DELAYS:
 t_{PLH} ≅ t_{PHL}
- OPERATING VOLTAGE RANGE: V_{CC} (OPR) = 4.5V to 5.5V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 244
- IMPROVED LATCH-UP IMMUNITY

The 74ACT244 is an advanced high-speed CMOS OCTAL BUS BUFFER (3-STATE) fabricated with sub-micron silicon gate and double-layer metal wiring C²MOS tecnology.

The \overline{G} input controls four BUS BUFFERs.

This device is designed to be used with 3 state

ORDER CODES

PACKAGE	TUBE	T & R
DIP	74ACT244B	
SOP	74ACT244M	74ACT244MTR
TSSOP		74ACT244TTR

memory address drivers, etc.

The device is designed to interface directly High Speed CMOS systems with TTL, NMOS and CMOS output voltage levels.

All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

April 2001 1/9

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	1G	Output Enable Input
2, 4, 6, 8	1A1 to 1A4	Data Inputs
9, 7, 5, 3	2Y1 to 2Y4	Data Outputs
11, 13, 15, 17	2A1 to 2A4	Data Inputs
18, 16, 14, 12	1Y1 to 1Y4	Data Outputs
19	2G	Output Enable Input
10	GND	Ground (0V)
20	V _{CC}	Positive Supply Voltage

TRUTH TABLE

INP	UTS	OUTPUT
G	An	Yn
L	L	L
L	Н	Н
Н	X	Z

X : Don't Care

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Io	DC Output Current	± 50	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 400	mA
T _{stg}	Storage Temperature	-65 to +150	°C
T _L	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	4.5 to 5.5	V
V _I	Input Voltage	0 to V _{CC}	V
V _O	Output Voltage	0 to V _{CC}	V
T _{op}	Operating Temperature	-55 to 125	°C
dt/dv	Input Rise and Fall Time V _{CC} = 4.5 to 5.5V (note 1)	8	ns/V

¹⁾ V_{IN} from 0.8V to 2.0V

Z : High Impedance

DC SPECIFICATIONS

		-	Test Condition				Value				
Symbol	Parameter	V _{CC}		T _A = 25°C			-40 to	-40 to 85°C		-55 to 125°C	
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input	4.5	$V_0 = 0.1 \text{ V or}$	2.0	1.5		2.0		2.0		
	Voltage	5.5	V _{CC} -0.1V	2.0	1.5		2.0		2.0		V
V _{IL}	Low Level Input	4.5	$V_0 = 0.1 \text{ V or}$		1.5	0.8		0.8		0.8	
	Voltage	5.5	V _{CC} -0.1V		1.5	0.8		0.8		0.8	
V _{OH}	High Level Output	4.5	I _O =-50 μA	4.4	4.49		4.4		4.4		V
	Voltage	5.5	I _O =-50 μA	5.4	5.49		5.4		5.4		
		4.5	I _O =-24 mA	3.86			3.76		3.7		
		5.5	I _O =-24 mA	4.86			4.76		4.7		
V _{OL}	Low Level Output	4.5	I _O =50 μA		0.001	0.1		0.1		0.1	
	Voltage	5.5	I _O =50 μA		0.001	0.1		0.1		0.1	V
		4.5	I _O =24 mA			0.36		0.44		0.5	
		5.5	I _O =24 mA			0.36		0.44		0.5	
I _I	Input Leakage Cur- rent	5.5	$V_I = V_{CC}$ or GND			± 0.1		± 1		± 1	μΑ
I _{OZ}	High Impedance Output Leakege Current	5.5	$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = V_{CC} \text{ or GND}$			± 0.5		± 2.5		± 5	μΑ
I _{CCT}	Max I _{CC} /Input	5.5	$V_{I} = V_{CC} - 2.1V$		0.6			1.5		1.6	mA
I _{CC}	Quiescent Supply Current	5.5	$V_I = V_{CC}$ or GND			4		40		80	μΑ
I _{OLD}	Dynamic Output	5.5	V _{OLD} = 1.65 V max					75		50	mA
I _{OHD}	Current (note 1, 2)	5.5	V _{OHD} = 3.85 V min					-75		-50	mA

AC ELECTRICAL CHARACTERISTICS (C $_L$ = 50 pF, R_L = 500 $\Omega,$ Input t_r = t_f = 3ns $\,$)

		Test Condition		Value							
Symbol	ymbol Parameter	V _{CC}		T _A = 25°C			-40 to	85°C	-55 to 125°C		Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{PLH} t _{PHL}	Propagation Delay Time	5.0 ^(*)		1.5	4.6	9.0	1.5	10.0	1.5	11	ns
t _{PZL} t _{PZH}	Output Enable Time	5.0 ^(*)		1.5	5.7	9.5	1.5	10.5	1.5	11	ns
t _{PLZ} t _{PHZ}	Output Disable Time	5.0 ^(*)		1.5	6.4	10.0	1.5	11.0	1.5	11.5	ns

^(*) Voltage range is $5.0\text{V} \pm 0.5\text{V}$

57

¹⁾ Maximum test duration 2ms, one output loaded at time
2) Incident wave switching is guaranteed on transmission lines with impedances as low as 50Ω

CAPACITIVE CHARACTERISTICS

	Symbol Parameter		Test Condition		Value						
Symbol			V _{CC}		T _A = 25°C			-40 to 85°C		-55 to 125°C	
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
C _{IN}	Input Capacitance	5.0			4						pF
C _{OUT}	Output Capacitance	5.0			8						pF
C _{PD}	Power Dissipation Capacitance (note 1)	5.0	f _{IN} = 10MHz		24						pF

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/n$ (per circuit)

TEST CIRCUIT

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	2V _{CC}
t _{PZH} , t _{PHZ}	Open

 C_L = 50pF or equivalent (includes jig and probe capacitance) R_L = R_1 = 500 Ω or equivalent R_T = Z_{OUT} of pulse generator (typically 50 Ω)

WAVEFORM 1: PROPAGATION DELAYS (f=1MHz; 50% duty cycle)

WAVEFORM 2: OUTPUT ENABLE AND DISABLE TIME (f=1MHz; 50% duty cycle)

57

Plastic DIP-20 (0.25) MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.254			0.010		
В	1.39		1.65	0.055		0.065
b		0.45			0.018	
b1		0.25			0.010	
D			25.4			1.000
E		8.5			0.335	
е		2.54			0.100	
e3		22.86			0.900	
F			7.1			0.280
I			3.93			0.155
L		3.3			0.130	
Z			1.34			0.053

SO-20 MECHANICAL DATA

DIM.		mm			inch	
DIWI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			2.65			0.104
a1	0.10		0.20	0.004		0.007
a2			2.45			0.096
b	0.35		0.49	0.013		0.019
b1	0.23		0.32	0.009		0.012
С		0.50			0.020	
c1			45	(typ.)		
D	12.60		13.00	0.496		0.512
Е	10.00		10.65	0.393		0.419
е		1.27			0.050	
e3		11.43			0.450	
F	7.40		7.60	0.291		0.299
L	0.50		1.27	0.19		0.050
М			0.75			0.029
S			8 (r	nax.)		

TSSOP20 MECHANICAL DATA

DIM.		mm					
J	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			1.1			0.433	
A1	0.05	0.10	0.15	0.002	0.004	0.006	
A2	0.85	0.9	0.95	0.335	0.354	0.374	
b	0.19		0.30	0.0075		0.0118	
С	0.09		0.2	0.0035		0.0079	
D	6.4	6.5	6.6	0.252	0.256	0.260	
Е	6.25	6.4	6.5	0.246	0.252	0.256	
E1	4.3	4.4	4.48	0.169	0.173	0.176	
е		0.65 BSC			0.0256 BSC		
К	0°	4°	8°	0°	4°	8°	
L	0.50	0.60	0.70	0.020	0.024	0.028	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com

