Übung zur Vorlesung im WS 2010/2011 **Algorithmische Eigenschaften von Wahlsystemen I**

(Lösungsvorschläge) Blatt 1, Abgabe am Oktober 2010

Aufgabe 1 (Die Wahlsysteme Condorcet, Dodgson und Young): In einer Wahl, die unter dem Condorcet-, Dodgson- oder Young-Wahlsystem abgehalten wird, erstellt jeder Wähler eine vollständige Präferenzliste der Kandidaten. Stehen zum Beispiel 3 Kandidaten, a,b und c zur Wahl, so kann eine Stimme wie folgt aussehen: c>b>a. Für diesen Wähler ist Kandidat c der beste Kandidat, Kandidat c der zweitbeste und Kandidat c der schlechteste. Anders formuliert, schlägt Kandidat c in dieser Stimme sowohl Kandidat c als auch Kandidat c und Kandidat c schlägt Kandidat c. Die Gewinnerbestimmung erfolgt in den drei Wahlsystemen wie folgt:

- (a) *Condorcet:* Der Condorcet-Gewinner einer Wahl ist derjenige Kandidat, der jeden anderen Kandidaten im paarweisen Vergleich in mehr als der Hälfte der Stimmen schlägt.
- (b) *Dodgson:* Der sogenannte Dodgson-Score eines Kandidaten ist die kleinste Anzahl von Vertauschungen zweier benachbarter Kandidaten, die nötig sind, um den Kandidaten zu einem Condorcet-Gewinner zu machen. Der Kandidat mit dem niedrigsten Dodgson-Score ist der Dodgson-Gewinner.
- (c) *Young:* Der Young-Gewinner einer Wahl ist derjenige Kandidat, der durch das Löschen der wenigsten Stimmen zum Condorcet-Gewinner gemacht werden kann.

Gegeben seien die beiden Wahlen (C, V) und (C, W). Die Kandidatenmenge bestehe jeweils aus 4 Kandidaten, $C = \{a, b, c, d\}$, und die Präferenzen der Wähler seien wie folgt:

	V				W		
Wähler v_1 :	c > d >	a >	b	Wähler w_1 :	a > b >	c > d	
Wähler v_2 :	a > c >	b >	d	Wähler w_2 :	b > a >	d > c	
Wähler v_3 :	a > b >	c >	d	Wähler w_3 :	d > b >	c > a	
Wähler v_4 :	b > a >	c >	d	Wähler w_4 :	d > c >	b > a	

Bestimmen Sie in beiden Wahlen den Condorcet-Gewinner (soweit dieser existiert), den Dodgson- und den Young-Gewinner.

Lösungsvorschlag: Verhältnisse in (C, V):

	a	b	c	d
a	-	3:1	3:1	3:1
b	1:3	-	2:2	2:2
c	1:3	2:2	-	4:0
d	1:3	2:2	0:4	-

Damit ist Kandidat a der Condorcet-Gewinner in dieser Wahl. Daraus folgt, dass Kandidat a ebenso Dodgson-Gewinner ist (mit Score(a)=0) und auch Young-Gewinner, da kein Wähler entfernt werden muss, damit a zum Condorcet-Gewinner gemacht werden kann. **Verhältnisse in** (C, W):

In dieser Wahl gibt es keinen Condorcet-Gewinner.

- (a) Bestimmung der Dodgson-Scores (Da es keinen Condorcet-Gewinner gibt, ist der Dodgson-Score aller Kandidaten mindestens 1):
 - (a) Kandidat a: Damit a Condorcet-Gewinner werden kann, muss er/sie die Kandidaten c und d schlagen, d.h., dass mindestens zwei Vertauschungen vorgenommen werden müssen. Da aber a in den Stimmen, in denen er/sie hinter c bzw. d steht, auf dem letzten Platz platziert ist, und d in beiden Stimmen auf dem ersten Platz, müssen insgesamt 3 Vertauschungen vorgenommen werden, damit a zum Condorcet-Gewinner wird. Zum Beispiel: $w_3 \rightarrow w_3'$: a > d > b > c. \Rightarrow Score(a) = 3.
 - (b) Kandidat b: Damit b Condorcet-Gewinner werden kann, muss er/sie Kandidat d schlagen, d.h., es muss mindestens eine Vertauschung vorgenommen werden. Diese eine reicht auch aus, zum Beispiel: $w_3 \rightarrow w_3'$: b > d > c > a. \Rightarrow Score(b) = 1.
 - (c) Kandidat c: Damit c Condorcet-Gewinner werden kann, muss er/sie die Kandidaten a,b und d schlagen. Insgesamt sind also mindestens fünf Vertauschungen notwendig. Zum Beispiel: $w_2 \to w_2': c > b > a > d$ und $w_3 \to w_3': c > d > b > a$.
 - \Rightarrow Score(c) = 5.
 - (d) Kandidat d: Damit d zum Condorcet-Gewinner gemacht werden kann, muss er/sie die Kandidaten a und b schlagen. d muss in jeweils einer Stimme durch die Vertauschung vor a bzw. b stehen. Dementsprechend sind mindestens zwei Vertauschungen notwendig, zum Beispiel: $w_2 \rightarrow w_2'$: d > b > a > c.
 - \Rightarrow Score(d) = 2.

Kandidat b ist also der Dodgson-Gewinner mit einem Score von 1 in der Wahl (C, W).

- (b) Bestimmung des Young-Gewinners (Da es keinen Condorcet-Gewinner gibt, muss mindestens immer ein Wähler gelöscht werden.):
 - (a) Kandidat a: Damit a nicht von Kandidat b geschlagen wird (oder Gleichstand mit diesem erzielt), müssen mindestens 3 Wähler entfernt werden. Da es nur 4 Wähler gibt, muss a in einer Stimme auf dem ersten Platz eingeordnet sein, damit a nach dem Löschen von 3 Wählern Condorcet-Gewinner sein kann. Dies ist der Fall, lösche also w_2, w_3, w_3 .
 - ⇒ Es müssen 3 Wähler gelöscht werden.
 - (b) Kandidat b: Damit b Condorcet-Gewinner wird, reicht es, nur einen Wähler zu löschen, der d vor b platziert. Da b sowohl vor a als auch vor c zwei Punkte Vorsprung hat, kann frei gewählt werden, ob w_3 oder w_4 entfernt wird.
 - ⇒ Es muss 1 Wähler gelöscht werden.
 - (c) Kandidat c: In Analogie zu Kandidat a müssten auch für Kandidat c mindestens 3 Wähler entfernt werden. Da aber Kandidat c in keiner Stimme auf Platz 1 einsortiert ist, kann c selbst dann kein Condorcet-Gewinner sein.
 - (d) Kandidat d: Kandidat d muss die Gleichstände mit den Kandidaten a und b auflösen. Da es eine Stimme gibt, in der sowohl a als auch b vor d platziert ist, kann durch das Löschen eben dieser (w_1 oder w_2), Kandidat d zum Condorcet-Gewinner gemacht werden.
 - ⇒ Es muss 1 Wähler gelöscht werden.

Damit sind also die Kandidaten b und c Young-Gewinner in der Wahl (C, W).

Aufgabe 2 (\leq_m^p -Reduzierbarkeit): Für zwei Mengen $A, B \subseteq \Sigma^*$ gilt $A \leq_m^p B$, wenn es eine in Polynomialzeit berechenbare Funktion f gibt, so dass für alle Elemente $x \in \Sigma^*$ gilt:

$$x \in A \Leftrightarrow f(x) \in B$$
.

Zeigen Sie die folgende Aussage:

Aus
$$A \leq_m^p B$$
 folgt $\overline{A} \leq_m^p \overline{B}$,

wobei das Komplement einer Menge A definiert ist durch: $\overline{A} = \{x \in \Sigma^* \mid x \not\in A\}.$

Lösungsvorschlag: Aus der Voraussetzung folgt, dass es ein in Polynomialzeit berechenbares f gibt, so dass für alle $x \in \Sigma^*$ gilt:

$$x \in A \Leftrightarrow f(x) \in B$$

$$\Leftrightarrow x \notin A \Leftrightarrow f(x) \notin B$$

$$\Leftrightarrow x \in \overline{A} \Leftrightarrow f(x) \in \overline{B}$$

Also gilt $\overline{A} \leq_m^p \overline{B}$.

Aufgabe 3 (NP-Härte): Eine Menge B heißt NP-hart, falls $A \leq_m^p B$ für alle Mengen $A \in$ NP gilt. Um die NP-Härte einer Menge zu zeigen, kann die folgende Aussage herangezogen werden:

Ist A NP-hart und gilt $A \leq_m^p B$, dann ist auch B NP-hart.

Beweisen Sie diese Aussage.

Hinweis: Verwenden Sie die Definition der NP-Härte und die Transitivität der \leq_m^p -Reduzierbarkeit (aus $A \leq_m^p B$ und $B \leq_m^p C$ folgt $A \leq_m^p C$).

Lösungsvorschlag:

Aus der NP-Härte von A folgt, dass $D \leq_m^p A$ gilt für alle $D \in \text{NP}$. Da nun $A \leq_m^p B$ gilt, folgt mit der Transistivität der \leq_m^p -Reduzierbarkeit, dass $D \leq_m^p B$ gilt. Und zwar für alle $D \in \text{NP}$. Damit ist B NP-hart.