Deep Koopman

Partie 2 : Architecture + Loss

Architecture

Architectures des réseaux de Koopman

Objectifs:

- Apprendre les fonctions propres de Koopman
 - I.e apprendre espace latent ;
 - Apprendre des fonctions propres inversibles.
- Apprendre les valeurs propres de l'opérateur
 - Ou apprendre la matrice de l'opérateur

Simple Koopman Autoencoder

a

Simple Koopman Autoencoder

b Prediction: $\varphi^{-1}(\mathbf{K}\varphi(\mathbf{x}_k)) = \mathbf{x}_{k+1}$

Simple Koopman Autoencoder

Fonctions Loss

Quelles fonctions de pertes optimiser?

Objectifs:

- Structure d'Auto-encodeur
- Objectif de prédiction
- Objectif de linéarité

Structure d'Auto-Encodeur

Loss de reconnaissance :

- Mesurer l'écart entre l'input x_k et l'autoencoding en sortie du réseau φ⁻¹(φ (x_k))
- Loss utilisée : MSE

Structure d'Auto-Encodeur

Loss de reconnaissance :

- Mesurer l'écart entre l'input x_k et l'autoencoding en sortie du réseau φ⁻¹(φ (x_k))
- Loss utilisée : MSE

$$\mathcal{L}_{ ext{recon}} = \left\| \mathbf{x}_1 - arphi^{-1}(arphi(\mathbf{x}_1))
ight\|_{ ext{MSE}}$$

Loss de prédiction :

Objectif : Prévoir l'instant suivant x_{k+1} à partir d'un instant x_k

- Objectif : Prévoir l'instant suivant x_{k+1} à partir d'un instant x_k
 - Loss utilisée : MSE
 - o Loss = $||x_{k+1} \phi^{-1}(\mathbf{K}\phi(x_k))||_{MSE}$

- Objectif : Prévoir l'instant suivant x_{k+1} à partir d'un instant x_k
 - o Loss utilisée : MSE
 - $\sum ||x_{k+1} \varphi^{-1}(\mathbf{K}\varphi(x_k))||_{MSE}$
- Amélioration : Prévoir une trajectoire de plusieurs pas à partir d'un instant initial x₁

- Objectif : Prévoir l'instant suivant x_{k+1} à partir d'un instant x_k
 - Loss utilisée : MSE
 - o Loss = $||x_{k+1} \phi^{-1}(\mathbf{K}\phi(x_k))||_{MSE}$
- Amélioration : Prévoir une trajectoire de plusieurs pas à partir d'un instant initial x₁
 - On a la relation : $x_{m+1} = \varphi^{-1}(\mathbf{K}^m \varphi(x_1))$
 - Hyper paramètre supplémentaire :
 Longueur de la trajectoire prédite S_p

- Objectif : Prévoir l'instant suivant x_{k+1} à partir d'un instant x_k
 - o Loss utilisée : MSE
 - Loss = $||x_{k+1} \phi^{-1}(\mathbf{K}\phi(x_k))||_{MSE}$
- Amélioration : Prévoir une trajectoire de plusieurs pas à partir d'un instant initial x₁
 - On a la relation : $x_{m+1} = \varphi^{-1}(\mathbf{K}^m \varphi(x_1))$
 - Hyper paramètre supplémentaire :
 Longueur de la trajectoire prédite S_p
- Loss Finale :

$$\mathcal{L}_{ ext{pred}} = rac{1}{S_p} \sum_{m=1}^{S_p} \left\| \mathbf{x}_{m+1} - arphi^{-1}(K^m arphi(\mathbf{x}_1))
ight\|_{ ext{MSE}}$$

Loss de linéarité :

 Objectif : apprendre l'opérateur de Koopman K

- Objectif : apprendre l'opérateur de Koopman K
 - Loss utilisée : MSE
 - $\qquad \text{Loss} = ||\phi(x_{k+1}) \mathbf{K}\phi(x_k)||_{MSE}$

- Objectif : apprendre l'opérateur de Koopman K
 - Loss utilisée : MSE
 - $\qquad \text{Loss} = ||\phi(x_{k+1}) \mathbf{K}\phi(x_k)||_{MSE}$
- Amélioration : Prédiction linéaire sur toute la trajectoire

- Objectif : apprendre l'opérateur de Koopman K
 - Loss utilisée : MSE
 - $\qquad \text{Loss} = ||\phi(x_{k+1}) \mathbf{K}\phi(x_k)||_{MSE}$
- Amélioration : Prédiction linéaire sur toute la trajectoire
 - Relation $\varphi(x_{m+1}) = \mathbf{K}^m \varphi(x_1)$
 - Longueur de la trajectoire T (fixée)

- Objectif : apprendre l'opérateur de Koopman K
 - Loss utilisée : MSE
 - $\qquad \text{Loss} = ||\phi(x_{k+1}) \mathbf{K}\phi(x_k)||_{MSE}$
- Amélioration : Prédiction linéaire sur toute la trajectoire
 - Relation $\varphi(x_{m+1}) = \mathbf{K}^m \varphi(x_1)$
 - Longueur de la trajectoire T (fixée)
- Loss finale :

$$\mathcal{L}_{ ext{lin}} = rac{1}{T-1} \sum_{m=1}^{T-1} \left\| arphi(\mathbf{x}_{m+1}) - K^m arphi(\mathbf{x}_1)
ight\|_{ ext{MSE}}$$

Loss additionnelles

- Pas d'outliers dans les données
- Ajout d'une loss infinie pour pénaliser le plus grand écart sur les loss de reconnaissances et prédictions

$$\mathcal{L}_{\infty} = \left\|\mathbf{x}_1 - arphi^{-1}(arphi(\mathbf{x}_1))
ight\|_{\infty} + \left\|\mathbf{x}_2 - arphi^{-1}(Karphi(\mathbf{x}_1))
ight\|_{\infty}$$

Pour éviter l'overfitting : Ajout d'une Loss l² sur les poids du modèle ||w||₂²

Loss additionnelles

- Pas d'outliers dans les données
- Ajout d'une loss infinie pour pénaliser le plus grand écart sur les loss de reconnaissances et prédictions

$$\mathcal{L}_{\infty} = \left\|\mathbf{x}_1 - arphi^{-1}(arphi(\mathbf{x}_1))
ight\|_{\infty} + \left\|\mathbf{x}_2 - arphi^{-1}(Karphi(\mathbf{x}_1))
ight\|_{\infty}$$

• Pour éviter l'overfitting : Ajout d'une Loss l^2 sur les poids du modèle $\|\mathbf{w}\|_2^2$

Loss finale : Combinaison linéaire des Loss précédentes

3 Hyperparamètres supplémentaires

$$\mathcal{L} = lpha_1 (\mathcal{L}_{ ext{recon}} + \mathcal{L}_{ ext{pred}}) + \mathcal{L}_{ ext{lin}} + lpha_2 \mathcal{L}_{\infty} + lpha_3 \|\mathbf{W}\|_2^2$$

Variation de l'autoencodeur de Koopman

Une méthode plus générale

Objectifs:

- Cas où le spectre de valeurs propres est continu
 - Comment représenter la matrice de Koopman ?

Auto Encodeur de Koopman Complet

- Apprentissage directe des valeurs propres de l'opérateur K par un réseau auxiliaire
 - o Réinjection dans le réseau directement

Auto Encodeur de Koopman Complet

- Apprentissage directe des valeurs propres de l'opérateur K par un réseau auxiliaire
 - Réinjection dans le réseau directement
- Avantages :
 - Permet de réduire la dimension de l'espace latent;
 - Permet de considérer le cas où le spectre de valeurs propres est continu;
 - Englobe le cas simple (Pas de perte de généralisation)

Auto Encodeur de Koopman Complet

- Apprentissage directe des valeurs propres de l'opérateur K par un réseau auxiliaire
 - Réinjection dans le réseau directement

Avantages :

- Permet de réduire la dimension de l'espace latent;
- Permet de considérer le cas où le spectre de valeurs propres est continu;
- Englobe le cas simple (Pas de perte de généralisation)

• Structure et Loss?

- Paramétrisation de K par un réseau MLP auxiliaire
- Pas de changements de Loss