Cryptography from Rings

Chris Peikert

University of Michigan

HEAT Summer School 13 Oct 2015

Agenda

- 1 Polynomial rings, ideal lattices and Ring-LWE
- 2 Basic Ring-LWE encryption
- § Fully homomorphic encryption

Selected bibliography:

LPR'10 and '13 V. Lyubashevsky, C. Peikert, O. Regev.

"On Ideal Lattices and Learning with Errors Over Rings," Eurocrypt'10 and JACM'13.

"A Toolkit for Ring-LWE Cryptography," Eurocrypt'13.

BV'11 Z. Brakerski and V. Vaikuntanathan.

"Fully Homomorphic Encryption from Ring-LWE..." CRYPTO'11.

1996-97 Ajtai(-Dwork) worst-case/average-case reduction, one-way function & public-key encryption (very inefficient)

```
1996-97 Ajtai(-Dwork) worst-case/average-case reduction, one-way function & public-key encryption (very inefficient)
```

1996 NTRU efficient "ring-based" encryption (heuristic security)

- 1996-97 Ajtai(-Dwork) worst-case/average-case reduction, one-way function & public-key encryption (very inefficient)
 - 1996 NTRU efficient "ring-based" encryption (heuristic security)
 - 2002 Micciancio's ring-based one-way function with worst-case hardness from ideal lattices (no encryption)

- 1996-97 Ajtai(-Dwork) worst-case/average-case reduction, one-way function & public-key encryption (very inefficient)
 1996 NTRU efficient "ring-based" encryption (heuristic security)
 2002 Micciancio's ring-based one-way function with worst-case hardness from ideal lattices (no encryption)
 - 2005 Regev's LWE: encryption with worst-case hardness (inefficient)

```
1996-97 Ajtai(-Dwork) worst-case/average-case reduction,
        one-way function & public-key encryption (very inefficient)
   1996 NTRU efficient "ring-based" encryption (heuristic security)
  2002 Micciancio's ring-based one-way function with worst-case
        hardness from ideal lattices
                                                      (no encryption)
  2005 Regev's LWE: encryption with worst-case hardness
                                                          (inefficient)
 2008 – Countless applications of LWE
                                                      (still inefficient)
```

```
1996-97 Ajtai(-Dwork) worst-case/average-case reduction,
        one-way function & public-key encryption (very inefficient)
   1996 NTRU efficient "ring-based" encryption (heuristic security)
  2002 Micciancio's ring-based one-way function with worst-case
        hardness from ideal lattices
                                                      (no encryption)
  2005 Regev's LWE: encryption with worst-case hardness
                                                          (inefficient)
 2008 – Countless applications of LWE
                                                      (still inefficient)
   2010 Ring-LWE: very efficient encryption, worst-case hardness
```

▶ The mth cyclotomic ring is $R = \mathbb{Z}[\zeta]$ where $\zeta = \zeta_m$ has order m. I.e., $\zeta^m = 1$ and $\zeta^j \neq 1$ for 1 < j < m.

- ▶ The mth cyclotomic ring is $R = \mathbb{Z}[\zeta]$ where $\zeta = \zeta_m$ has order m.
 - I.e., $\zeta^m = 1$ and $\zeta^j \neq 1$ for 1 < j < m.
- ► Fact: $X^m 1 = \prod_{d|m} \Phi_d(X)$ for irreducible

$$\Phi_m(X) = \prod_{i \in \mathbb{Z}_m^*} (X - \omega^i) \in \mathbb{Z}[X], \quad \omega = \exp(2\pi\sqrt{-1}/m) \in \mathbb{C}.$$

- ► The *m*th cyclotomic ring is $R = \mathbb{Z}[\zeta]$ where $\zeta = \zeta_m$ has order m. I.e., $\zeta^m = 1$ and $\zeta^j \neq 1$ for 1 < j < m.
- ▶ Fact: $X^m 1 = \prod_{d|m} \Phi_d(X)$ for irreducible

$$\Phi_m(X) = \prod_{i \in \mathbb{Z}_m^*} (X - \omega^i) \in \mathbb{Z}[X], \quad \omega = \exp(2\pi\sqrt{-1}/m) \in \mathbb{C}.$$

- ► The *m*th cyclotomic ring is $R = \mathbb{Z}[\zeta]$ where $\zeta = \zeta_m$ has order m. I.e., $\zeta^m = 1$ and $\zeta^j \neq 1$ for 1 < j < m.
- ▶ Fact: $X^m 1 = \prod_{d|m} \Phi_d(X)$ for irreducible

$$\Phi_m(X) = \prod_{i \in \mathbb{Z}_+^*} (X - \omega^i) \in \mathbb{Z}[X], \quad \omega = \exp(2\pi\sqrt{-1}/m) \in \mathbb{C}.$$

Therefore, $\mathbb{Z}[\zeta] \cong \mathbb{Z}[X]/\Phi_m(X)$ via $\zeta \leftrightarrow X$.

 $\Phi_9(X) = 1 + X^3 + X^6$

- ▶ The mth cyclotomic ring is $R = \mathbb{Z}[\zeta]$ where $\zeta = \zeta_m$ has order m. I.e., $\zeta^m = 1$ and $\zeta^j \neq 1$ for 1 < j < m.
- ▶ Fact: $X^m 1 = \prod_{d|m} \Phi_d(X)$ for irreducible

$$\Phi_m(X) = \prod_{i \in \mathbb{Z}_m^*} (X - \omega^i) \in \mathbb{Z}[X], \quad \omega = \exp(2\pi\sqrt{-1}/m) \in \mathbb{C}.$$

Therefore, $\mathbb{Z}[\zeta] \cong \mathbb{Z}[X]/\Phi_m(X)$ via $\zeta \leftrightarrow X$.

We have $\deg(R) = \deg(\Phi_m) = n := \varphi(m)$, and R has a \mathbb{Z} -basis $\{\zeta^0, \zeta^1, \dots, \zeta^{n-1}\}$: the power basis. This corresponds to $\mathbb{Z}[X]/\Phi_m(X)$ representation.

- ▶ The mth cyclotomic ring is $R = \mathbb{Z}[\zeta]$ where $\zeta = \zeta_m$ has order m. I.e., $\zeta^m = 1$ and $\zeta^j \neq 1$ for 1 < j < m.
- ▶ Fact: $X^m 1 = \prod_{d|m} \Phi_d(X)$ for irreducible

$$\Phi_m(X) = \prod_{i \in \mathbb{Z}_m^*} (X - \omega^i) \in \mathbb{Z}[X], \quad \omega = \exp(2\pi\sqrt{-1}/m) \in \mathbb{C}.$$

Therefore, $\mathbb{Z}[\zeta] \cong \mathbb{Z}[X]/\Phi_m(X)$ via $\zeta \leftrightarrow X$.

- We have $\deg(R) = \deg(\Phi_m) = n := \varphi(m)$, and R has a \mathbb{Z} -basis $\{\zeta^0, \zeta^1, \dots, \zeta^{n-1}\}$: the power basis. This corresponds to $\mathbb{Z}[X]/\Phi_m(X)$ representation.
- ▶ There are other \mathbb{Z} -bases, e.g., $\{\zeta_p^0, \ldots \zeta_p^{k-1}, \zeta_p^{k+1}, \ldots, \zeta_p^{p-1}\}$.

Key Facts

1 For prime $p: \Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$.

Key Facts

- **1** For prime p: $\Phi_p(X) = 1 + X + X^2 + \cdots + X^{p-1}$.
- **2** For $m = p^e$: $\Phi_m(X) = \Phi_p(X^{m/p}) = 1 + X^{m/p} + \dots + X^{m-m/p}$.

Key Facts

- **1** For prime $p: \Phi_p(X) = 1 + X + X^2 + \cdots + X^{p-1}$.
- **2** For $m = p^e$: $\Phi_m(X) = \Phi_p(X^{m/p}) = 1 + X^{m/p} + \dots + X^{m-m/p}$.
- X Otherwise, $\Phi_m(X)$ is less "regular" and more "dense." So it can be cumbersome to work with $\mathbb{Z}[X]/\Phi_m(X)$.

Key Facts

- **1** For prime $p: \Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$.
- **2** For $m = p^e$: $\Phi_m(X) = \Phi_p(X^{m/p}) = 1 + X^{m/p} + \dots + X^{m-m/p}$.
- X Otherwise, $\Phi_m(X)$ is less "regular" and more "dense." So it can be cumbersome to work with $\mathbb{Z}[X]/\Phi_m(X)$.

Reduction to the Prime-Power Case

▶ Say m has prime-power factorization $m_1 \cdots m_\ell$.

Key Facts

- **1** For prime $p: \Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$.
- **2** For $m = p^e$: $\Phi_m(X) = \Phi_p(X^{m/p}) = 1 + X^{m/p} + \dots + X^{m-m/p}$.
- X Otherwise, $\Phi_m(X)$ is less "regular" and more "dense." So it can be cumbersome to work with $\mathbb{Z}[X]/\Phi_m(X)$.

Reduction to the Prime-Power Case

▶ Say m has prime-power factorization $m_1 \cdots m_\ell$. By $\zeta_{m_i} \leftrightarrow \zeta_m^{m/m_i}$,

$$R = \mathbb{Z}[\zeta_m] \cong \mathbb{Z}[\underline{\zeta_{m_1}}, \ldots, \underline{\zeta_{m_\ell}}].$$

Key Facts

- **1** For prime $p: \Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$.
- **2** For $m = p^e$: $\Phi_m(X) = \Phi_p(X^{m/p}) = 1 + X^{m/p} + \dots + X^{m-m/p}$.
- $m{X}$ Otherwise, $\Phi_m(X)$ is less "regular" and more "dense." So it can be cumbersome to work with $\mathbb{Z}[X]/\Phi_m(X)$.

Reduction to the Prime-Power Case

▶ Say m has prime-power factorization $m_1 \cdots m_\ell$. By $\zeta_{m_i} \leftrightarrow \zeta_m^{m/m_i}$,

$$R = \mathbb{Z}[\zeta_m] \cong \mathbb{Z}[\underline{\zeta_{m_1}}, \ldots, \underline{\zeta_{m_\ell}}].$$

ightharpoonup R has powerful \mathbb{Z} -basis $\{\zeta_{m_1}^{j_1}\cdots\zeta_{m_\ell}^{j_\ell}\}=igotimes\{\zeta_{m_i}^{j_i}\},\ 0\leq j_i<arphi(m_i).$

Key Facts

- **1** For prime $p: \Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$.
- **2** For $m = p^e$: $\Phi_m(X) = \Phi_p(X^{m/p}) = 1 + X^{m/p} + \dots + X^{m-m/p}$.
- $m{X}$ Otherwise, $\Phi_m(X)$ is less "regular" and more "dense." So it can be cumbersome to work with $\mathbb{Z}[X]/\Phi_m(X)$.

Reduction to the Prime-Power Case

▶ Say m has prime-power factorization $m_1 \cdots m_\ell$. By $\zeta_{m_i} \leftrightarrow \zeta_m^{m/m_i}$,

$$R = \mathbb{Z}[\zeta_m] \cong \mathbb{Z}[\underline{\zeta_{m_1}}, \ldots, \underline{\zeta_{m_\ell}}].$$

▶ R has powerful \mathbb{Z} -basis $\{\zeta_{m_1}^{j_1}\cdots\zeta_{m_\ell}^{j_\ell}\}=\bigotimes\{\zeta_{m_i}^{j_i}\},\ 0\leq j_i<\varphi(m_i).$ In general, powerful basis \neq power basis $\{\zeta_m^j\},\ 0\leq j<\varphi(m).$

Key Facts

- **1** For prime p: $\Phi_p(X) = 1 + X + X^2 + \cdots + X^{p-1}$.
- **2** For $m = p^e$: $\Phi_m(X) = \Phi_p(X^{m/p}) = 1 + X^{m/p} + \dots + X^{m-m/p}$.
- X Otherwise, $\Phi_m(X)$ is less "regular" and more "dense." So it can be cumbersome to work with $\mathbb{Z}[X]/\Phi_m(X)$.

Reduction to the Prime-Power Case

▶ Say m has prime-power factorization $m_1 \cdots m_\ell$. By $\zeta_{m_i} \leftrightarrow \zeta_m^{m/m_i}$,

$$R = \mathbb{Z}[\zeta_m] \cong \mathbb{Z}[\underline{\zeta_{m_1}}, \ldots, \underline{\zeta_{m_\ell}}].$$

- ightharpoonup R has powerful \mathbb{Z} -basis $\{\zeta_{m_1}^{j_1}\cdots\zeta_{m_\ell}^{j_\ell}\}=\bigotimes\{\zeta_{m_i}^{j_i}\},\ 0\leq j_i<\varphi(m_i).$
 - In general, powerful basis \neq power basis $\{\zeta_m^j\}$, $0 \leq j < \varphi(m)$.
- ▶ Bottom line: we can efficiently reduce operations in R to independent operations in prime-power cyclotomics $\mathbb{Z}[\zeta_{m_i}]$.

► Need a geometry and notion of "short" for ring elements. Use coefficient vector w.r.t. a Z-basis? Which basis to use?

Need a geometry and notion of "short" for ring elements.
Use coefficient vector w.r.t. a Z-basis? Which basis to use? None!

- Need a geometry and notion of "short" for ring elements.
 Use coefficient vector w.r.t. a Z-basis? Which basis to use? None!
- ▶ $R = \mathbb{Z}[\zeta_m]$ has $n = \varphi(m)$ ring embeddings into \mathbb{C} , given by mapping ζ_m to each primitive mth root of unity:

$$\sigma_i(\zeta_m) = \omega_m^i \in \mathbb{C}, \ i \in \mathbb{Z}_m^*.$$

- Need a geometry and notion of "short" for ring elements.
 Use coefficient vector w.r.t. a Z-basis? Which basis to use? None!
- ▶ $R = \mathbb{Z}[\zeta_m]$ has $n = \varphi(m)$ ring embeddings into \mathbb{C} , given by mapping ζ_m to each primitive mth root of unity:

$$\sigma_i(\zeta_m) = \omega_m^i \in \mathbb{C}, \ i \in \mathbb{Z}_m^*.$$

► The canonical embedding $\sigma \colon R \to \mathbb{C}^n$ is $\sigma(a) = (\sigma_i(a))_{i \in \mathbb{Z}_m^*}$. Canonical because it is independent of representation (basis) of R.

- Need a geometry and notion of "short" for ring elements.
 Use coefficient vector w.r.t. a Z-basis? Which basis to use? None!
- ▶ $R = \mathbb{Z}[\zeta_m]$ has $n = \varphi(m)$ ring embeddings into \mathbb{C} , given by mapping ζ_m to each primitive mth root of unity:

$$\sigma_i(\zeta_m) = \omega_m^i \in \mathbb{C}, \ i \in \mathbb{Z}_m^*.$$

- ► The canonical embedding $\sigma \colon R \to \mathbb{C}^n$ is $\sigma(a) = (\sigma_i(a))_{i \in \mathbb{Z}_m^*}$. Canonical because it is independent of representation (basis) of R.
- ▶ Define all geometric quantities using σ : e.g., $||a||_2 := ||\sigma(a)||_2$.

- Need a geometry and notion of "short" for ring elements.
 Use coefficient vector w.r.t. a Z-basis? Which basis to use? None!
- ▶ $R = \mathbb{Z}[\zeta_m]$ has $n = \varphi(m)$ ring embeddings into \mathbb{C} , given by mapping ζ_m to each primitive mth root of unity:

$$\sigma_i(\zeta_m) = \omega_m^i \in \mathbb{C}, \ i \in \mathbb{Z}_m^*.$$

- ► The canonical embedding $\sigma \colon R \to \mathbb{C}^n$ is $\sigma(a) = (\sigma_i(a))_{i \in \mathbb{Z}_m^*}$. Canonical because it is independent of representation (basis) of R.
- ▶ Define all geometric quantities using σ : e.g., $||a||_2 := ||\sigma(a)||_2$.

Nice Properties

✓ Under σ , both + and · are coordinate-wise: $\sigma(a \cdot b) = \sigma(a) \odot \sigma(b)$.

- Need a geometry and notion of "short" for ring elements.
 Use coefficient vector w.r.t. a Z-basis? Which basis to use? None!
- ▶ $R = \mathbb{Z}[\zeta_m]$ has $n = \varphi(m)$ ring embeddings into \mathbb{C} , given by mapping ζ_m to each primitive mth root of unity:

$$\sigma_i(\zeta_m) = \omega_m^i \in \mathbb{C}, \ i \in \mathbb{Z}_m^*.$$

- ► The canonical embedding $\sigma \colon R \to \mathbb{C}^n$ is $\sigma(a) = (\sigma_i(a))_{i \in \mathbb{Z}_m^*}$. Canonical because it is independent of representation (basis) of R.
- ▶ Define all geometric quantities using σ : e.g., $||a||_2 := ||\sigma(a)||_2$.

Nice Properties

✓ Under σ , both + and · are coordinate-wise: $\sigma(a \cdot b) = \sigma(a) \odot \sigma(b)$. This yields the "expansion" bound

$$\|a \cdot b\|_2 \le \|a\|_{\infty} \cdot \|b\|_2$$
, where $\|a\|_{\infty} = \max_i |\sigma_i(a)|$.

▶ 4th cyclotomic $R = \mathbb{Z}[X]/(1+X^2)$: embeddings $X \mapsto \pm \sqrt{-1}$

▶ 4th cyclotomic $R = \mathbb{Z}[X]/(1+X^2)$: embeddings $X \mapsto \pm \sqrt{-1}$

▶ 4th cyclotomic $R = \mathbb{Z}[X]/(1+X^2)$: embeddings $X \mapsto \pm \sqrt{-1}$

In Any 2^k -th Cyclotomic...

 \checkmark For any j, $||X^j||_2 = \sqrt{n}$ and $||X^j||_\infty = 1$.

▶ 4th cyclotomic $R = \mathbb{Z}[X]/(1+X^2)$: embeddings $X \mapsto \pm \sqrt{-1}$

In Any 2^k -th Cyclotomic...

- \checkmark For any j, $\|X^j\|_2 = \sqrt{n}$ and $\|X^j\|_\infty = 1$.
- **∨** Power basis $\{1, X, ..., X^{n-1}\}$ is orthogonal under embedding σ . So power & canonical geometries are equivalent (up to \sqrt{n} scaling).

▶ 3rd cyclotomic $R = \mathbb{Z}[X]/(1+X+X^2)$: embed $X \mapsto -\frac{1}{2} \pm \frac{\sqrt{-3}}{2}$

▶ 3rd cyclotomic $R = \mathbb{Z}[X]/(1+X+X^2)$: embed $X \mapsto -\frac{1}{2} \pm \frac{\sqrt{-3}}{2}$

In Any Cyclotomic...

 \checkmark For any j, $\|X^j\|_2 = \sqrt{n}$ and $\|X^j\|_\infty = 1$.

▶ 3rd cyclotomic $R = \mathbb{Z}[X]/(1+X+X^2)$: embed $X \mapsto -\frac{1}{2} \pm \frac{\sqrt{-3}}{2}$

In Any Cyclotomic...

- ✓ For any j, $||X^j||_2 = \sqrt{n}$ and $||X^j||_{\infty} = 1$.
- Power basis $\{1, X, \dots, X^{n-1}\}$ is not orthogonal (unless $m=2^k$).

Example 2

▶ 3rd cyclotomic $R = \mathbb{Z}[X]/(1+X+X^2)$: embed $X \mapsto -\frac{1}{2} \pm \frac{\sqrt{-3}}{2}$

In Any Cyclotomic...

- ✓ For any j, $||X^j||_2 = \sqrt{n}$ and $||X^j||_{\infty} = 1$.
- Power basis $\{1, X, \dots, X^{n-1}\}$ is not orthogonal (unless $m = 2^k$).
- In power basis, short elements can have long coeff vectors.

Example 2

▶ 3rd cyclotomic $R = \mathbb{Z}[X]/(1+X+X^2)$: embed $X \mapsto -\frac{1}{2} \pm \frac{\sqrt{-3}}{2}$

In Any Cyclotomic...

- ✓ For any j, $||X^j||_2 = \sqrt{n}$ and $||X^j||_{\infty} = 1$.
- Power basis $\{1, X, \dots, X^{n-1}\}$ is not orthogonal (unless $m = 2^k$).
- In power basis, short elements can have long coeff vectors.

E.g.,
$$e = 1 + X + \dots + X^{p-2}$$
 but $||e|| = ||1|| = ||X|| = \sqrt{p-1}$.

▶ An ideal $\mathcal{I} \subseteq R$ is closed under + and -, and under \cdot with R.

An ideal $\mathcal{I} \subseteq R$ is closed under + and -, and under \cdot with R. Every ideal \mathcal{I} embeds as an ideal lattice $\sigma(\mathcal{I})$.

- An ideal $\mathcal{I} \subseteq R$ is closed under + and -, and under \cdot with R. Every ideal \mathcal{I} embeds as an ideal lattice $\sigma(\mathcal{I})$.
- ▶ E.g., $R = \mathbb{Z}[X]/(X^2+1)$. Embeddings send $X \mapsto \pm \sqrt{-1}$. $\mathcal{I} = \langle X-2, -3X+1 \rangle$ is an ideal in R.

- ▶ An ideal $\mathcal{I} \subseteq R$ is closed under + and -, and under \cdot with R. Every ideal \mathcal{I} embeds as an ideal lattice $\sigma(\mathcal{I})$.
- ▶ E.g., $R = \mathbb{Z}[X]/(X^2+1)$. Embeddings send $X \mapsto \pm \sqrt{-1}$. $\mathcal{I} = \langle X-2, -3X+1 \rangle$ is an ideal in R.

(Approximate) Ideal Shortest Vector Problem

▶ Given a \mathbb{Z} -basis of an ideal $\mathcal{I} \subseteq R$, find a nearly shortest nonzero $a \in \mathcal{I}$.

▶ Let R be a cyclotomic ring and $R_q = R/qR = \mathbb{Z}_q[\zeta_m]$.

Let R be a cyclotomic ring and $R_q = R/qR = \mathbb{Z}_q[\zeta_m]$. For prime $q = 1 \pmod{m}$, $\tilde{O}(n)$ -time ring ops in R_q via CRT basis.

Let R be a cyclotomic ring and $R_q = R/qR = \mathbb{Z}_q[\zeta_m]$. For prime $q = 1 \pmod m$, $\tilde{O}(n)$ -time ring ops in R_q via CRT basis. (For product $q = q_1 \cdots q_t$ of distinct primes, $R_q \cong R_{q_1} \times \cdots \times R_{q_t}$.)

- Let R be a cyclotomic ring and $R_q=R/qR=\mathbb{Z}_q[\zeta_m].$ For prime $q=1\ (\mathrm{mod}\ m)$, $\tilde{O}(n)$ -time ring ops in R_q via CRT basis. (For product $q=q_1\cdots q_t$ of distinct primes, $R_q\cong R_{q_1}\times\cdots\times R_{q_t}.$)
- ▶ Search: find secret ring element $s \in R_q$, given:

$$\begin{array}{lll} a_1 \leftarrow R_q & , & b_1 = a_1 \cdot s + e_1 \in R_q \\ a_2 \leftarrow R_q & , & b_2 = a_2 \cdot s + e_2 \in R_q \\ a_3 \leftarrow R_q & , & b_3 = a_3 \cdot s + e_3 \in R_q \\ & \vdots & & \sqrt{n} \leq \operatorname{error coeffs} \ll q \end{array}$$

- Let R be a cyclotomic ring and $R_q=R/qR=\mathbb{Z}_q[\zeta_m].$ For prime $q=1\ (\mathrm{mod}\ m),\ \tilde{O}(n)$ -time ring ops in R_q via CRT basis. (For product $q=q_1\cdots q_t$ of distinct primes, $R_q\cong R_{q_1}\times\cdots\times R_{q_t}.$)
- ▶ Search: $\underline{\text{find}}$ secret ring element $s \in R_q$, given:

$$\begin{array}{lll} a_1 \leftarrow R_q & , & b_1 = a_1 \cdot s + e_1 \in R_q \\ a_2 \leftarrow R_q & , & b_2 = a_2 \cdot s + e_2 \in R_q \\ a_3 \leftarrow R_q & , & b_3 = a_3 \cdot s + e_3 \in R_q \\ & \vdots & & \sqrt{n} \leq \operatorname{error coeffs} \ll q \end{array}$$

Note: (a_i, b_i) are uniformly random subject to: $b_i - a_i \cdot s \approx 0$.

- Let R be a cyclotomic ring and $R_q = R/qR = \mathbb{Z}_q[\zeta_m]$. For prime $q = 1 \pmod m$, $\tilde{O}(n)$ -time ring ops in R_q via CRT basis. (For product $q = q_1 \cdots q_t$ of distinct primes, $R_q \cong R_{q_1} \times \cdots \times R_{q_t}$.)
- ▶ Search: $\underline{\text{find}}$ secret ring element $s \in R_q$, given:

$$\begin{array}{lll} a_1 \leftarrow R_q & , & \textbf{b_1} = a_1 \cdot s + e_1 \in R_q \\ a_2 \leftarrow R_q & , & \textbf{b_2} = a_2 \cdot s + e_2 \in R_q \\ a_3 \leftarrow R_q & , & \textbf{b_3} = a_3 \cdot s + e_3 \in R_q \\ & \vdots & & \sqrt{n} \leq \text{error coeffs} \ll q \end{array}$$

Note: (a_i,b_i) are uniformly random subject to: $b_i - a_i \cdot s \approx 0$. Errors are subtle! Coeffs of e_i are small in "decoding" \mathbb{Z} -basis of R, and not necessarily independent!

- Let R be a cyclotomic ring and $R_q=R/qR=\mathbb{Z}_q[\zeta_m].$ For prime $q=1\ (\mathrm{mod}\ m),\ \tilde{O}(n)$ -time ring ops in R_q via CRT basis. (For product $q=q_1\cdots q_t$ of distinct primes, $R_q\cong R_{q_1}\times\cdots\times R_{q_t}.$)
- ▶ Search: $\underline{\text{find}}$ secret ring element $s \in R_q$, given:

$$\begin{array}{lll} a_1 \leftarrow R_q & , & \textbf{b_1} = a_1 \cdot s + e_1 \in R_q \\ a_2 \leftarrow R_q & , & \textbf{b_2} = a_2 \cdot s + e_2 \in R_q \\ a_3 \leftarrow R_q & , & \textbf{b_3} = a_3 \cdot s + e_3 \in R_q \\ & \vdots & & \sqrt{n} \leq \text{error coeffs} \ll q \end{array}$$

Note: (a_i, b_i) are uniformly random subject to: $b_i - a_i \cdot s \approx 0$. Errors are subtle! Coeffs of e_i are small in "decoding" \mathbb{Z} -basis of R, and not necessarily independent!

Decision: distinguish (a_i, b_i) from uniform $(a_i, b_i) \in R_q \times R_q$.

Hardness of Ring-LWE [LyubashevskyPeikertRegev'10]

Two main theorems (reductions):

```
\begin{array}{ll} \text{worst-case approx-SVP} & \leq_{\P} \text{search Ring-LWE} & \leq_{\P} \text{decision Ring-LWE} \\ \text{on } \textit{ideal} \text{ lattices} & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &
```

Hardness of Ring-LWE [LyubashevskyPeikertRegev'10]

Two main theorems (reductions):

```
\begin{array}{c} \text{worst-case approx-SVP} \\ \text{on } \textit{ideal} \text{ lattices} \end{array} \overset{\leq}{\underset{\textbf{\upshape N}}{\text{search Ring-LWE}}} \overset{\text{decision Ring-LWE}}{\underset{\textbf{\upshape N}}{\text{decision Ring-LWE}}} \overset{\text{(quantum, (classical, any } R = \mathcal{O}_K))}{\underset{\textbf{any cyclotomic } R)}{\text{search Ring-LWE}}} \overset{\text{(plassical, any } R = \mathcal{O}_K)}{\underset{\textbf{\scalebel{eq:possible} of the possible}{\text{search Ring-LWE}}} \overset{\text{(plassical, any } R = \mathcal{O}_K)}{\underset{\textbf{\scalebel{eq:possible} of the possible}{\text{search Ring-LWE}}} \overset{\text{(plassical, any } R = \mathcal{O}_K)}{\underset{\textbf{\scalebel{eq:possible} of the possible}{\text{search Ring-LWE}}} \overset{\text{(plassical, any } R = \mathcal{O}_K)}}{\underset{\textbf{\scalebel{eq:possible} of the possible}{\text{search Ring-LWE}}} \overset{\text{(plassical, any } R = \mathcal{O}_K)}}{\underset{\textbf{\scalebel{eq:possible} of the possible}{\text{search Ring-LWE}}}} \overset{\text{(plassical, any } R = \mathcal{O}_K)}}{\underset{\textbf{\scalebel{eq:possible} of the possible}{\text{search Ring-LWE}}}} \overset{\text{(plassical, any } R = \mathcal{O}_K)}}{\underset{\textbf{\scalebel{eq:possible} of the possible}{\text{search Ring-LWE}}}} \overset{\text{(plassical, any } R = \mathcal{O}_K)}}{\underset{\textbf{\scalebel{eq:possible} of the possible}{\text{search Ring-LWE}}}} \overset{\text{(plassical, any } R = \mathcal{O}_K)}}{\underset{\textbf{\scalebel{eq:possible} of the possible}{\text{search Ring-LWE}}}} \overset{\text{(plassical, any } R = \mathcal{O}_K)}}{\underset{\textbf{\scalebel{eq:possible} of the possible}{\text{search Ring-LWE}}}} \overset{\text{(plassical, any } R = \mathcal{O}_K)}}{\underset{\textbf{\scalebel{eq:possible} of Ring-LWE}}}{\underset{\textbf{\scalebel{eq:possible}}{\text{search Ring-LWE}}}}} \overset{\text{(plassical, any } R = \mathcal{O}_K)}}{\underset{\textbf{\scalebel{eq:possible}}{\text{search Ring-LWE}}}}} \overset{\text{(plassical, any } R = \mathcal{O}_K)}}{\underset{\textbf{\scalebel{eq:possible}}{\text{search Ring-LWE}}}} \overset{\text{(plassical, any } R = \mathcal{O}_K)}}{\underset{\textbf{\scalebel{eq:possible}}}{\underset{\textbf{\scalebel{eq:possible}}}{\text{search Ring-LWE}}}}} \overset{\text{(plassical, any } R = \mathcal{O}_K)}}{\underset{\textbf{\scalebel{eq:possible}}}{\text{search Ring-LWE}}}} \overset{\text{(plassible)}}{\underset{\textbf{\scalebel{eq:possible}}}{\text{search Ring-LWE}}}} \overset{\text{(plassible)}}{\underset{\textbf{\scalebel{eq:possible}}}{\text{search Ring-LWE}}}} \overset{\text{(plassible)}}{\underset{\textbf{\scalebel{eq:possible}}}{\text{search Ring-LWE}}}} \overset{\text{(plassible)}}{\underset{\textbf{\scalebel{eq:possible}}}{\text{search Ri
```

★ If you can distinguish (a_i, b_i) from (a_i, b_i) , then you can find s.

Hardness of Ring-LWE [LyubashevskyPeikertRegev'10]

► Two main theorems (reductions):

```
\begin{array}{c} \text{worst-case approx-SVP} \\ \text{on } \textit{ideal} \text{ lattices} \end{array} \overset{\leq}{\underset{\textbf{\upshape N}}{\text{search Ring-LWE}}} \overset{\text{decision Ring-LWE}}{\underset{\textbf{\upshape N}}{\text{decision Ring-LWE}}} \overset{\text{(quantum, (classical, any } R = \mathcal{O}_K))}{\underset{\textbf{any cyclotomic } R)}{\text{decision Ring-LWE}}} \overset{\text{(plassical, any } R = \mathcal{O}_K)}{\underset{\textbf{\scalebel{eq:possible} of the possible}{\text{decision Ring-LWE}}} \overset{\text{(plassical, any } R = \mathcal{O}_K)}{\underset{\textbf{\scalebel{eq:possible} of the possible}{\text{decision Ring-LWE}}} \overset{\text{(plassical, any } R = \mathcal{O}_K)}{\underset{\textbf{\scalebel{eq:possible} of the possible}{\text{decision Ring-LWE}}} \overset{\text{(plassical, any } R = \mathcal{O}_K)}}{\underset{\textbf{\scalebel{eq:possible} of the possible}{\text{decision Ring-LWE}}} \overset{\text{(plassical, any } R = \mathcal{O}_K)}}{\underset{\textbf{\scalebel{eq:possible} of the possible}{\text{decision Ring-LWE}}} \overset{\text{(plassical, any } R = \mathcal{O}_K)}}{\underset{\textbf{\scalebel{eq:possible} of the possible}{\text{\scalebel{eq:possible} of the possible}}} \overset{\text{(plassical, any } R = \mathcal{O}_K)}}{\underset{\textbf{\scalebel{eq:possible} of the possible}{\text{\scalebel{eq:possible} of the possible}}} \overset{\text{(plassical, possible})}}{\underset{\textbf{\scalebel{eq:possible} of the possible}{\text{\scalebel{eq:possible}}}}} \overset{\text{(plassical, possible)}}}{\underset{\textbf{\scalebel{eq:possible}}{\text{\scalebel{eq:possible}}}}} \overset{\text{(plassical, possible})}}{\underset{\textbf{\scalebel{eq:possible}}}{\text{\scalebel{eq:possible}}}} \overset{\text{(plassical, possible)}}}{\underset{\textbf{\scalebel{eq:possible}}}{\text{\scalebel{eq:possible}}}}} \overset{\text{(plassible)}}{\underset{\textbf{\scalebel{eq:possible}}}{\text{\scalebel{eq:possible}}}}} \overset{\text{(plassible)}}{\underset{\textbf{\scalebel{eq:possible}}}}{\text{\scalebel{eq:possible}}}}} \overset{\text{(plassible)}}{\underset{\textbf{\scalebel{eq:possible}}}{\text{\scalebel{eq:possible}}}}} \overset{\text{(plassible)}}}{\underset{\textbf{\scalebel{eq:possible}}}{\text{\scalebel{eq:possible}}}} \overset{\text{(plassible)}}}{\underset{\textbf{\scalebel{eq:possible}}}{\text{\scalebel{eq:possible}}}}} \overset{\text{(plassible)}}{\underset{\textbf{\scalebel{eq:possible}}}{\text{\scalebel{eq:possible}}}}} \overset{\text{(plassible)}}{\underset{\textbf{\scalebel{eq:possible}}}{\text{\scalebel{eq:possible}}}}} \overset{\text{(plassible)}}{\underset{\textbf{\scalebel{eq:possible}}}{\text{\scalebel{eq:possible}}}}} \overset{\text{(plassible)}}{\underset{\textbf{\scalebel{eq:possible}}}{\text{\s
```

- ★ If you can distinguish (a_i, b_i) from (a_i, b_i) , then you can find s.
- * If you can find s, then you can find approximately shortest vectors in any ideal lattice in R, using a quantum algorithm.

Hardness of Ring-LWE

[LyubashevskyPeikertRegev'10]

► Two main theorems (reductions):

```
\begin{array}{ll} \text{worst-case approx-SVP} \\ \text{on } \textit{ideal} \text{ lattices} \end{array} \leq \underset{\P}{\text{search }} \text{Ring-LWE} \leq \underset{\P}{\text{decision }} \text{Ring-LWE} \\ \underset{\text{(quantum, any } R = \mathcal{O}_K)}{\text{(classical, any cyclotomic } R)} \end{array}
```

- ★ If you can distinguish (a_i, b_i) from (a_i, b_i) , then you can find s.
- ★ If you can find s, then you can find approximately shortest vectors in any ideal lattice in R, using a quantum algorithm.
- ► Then:

decision Ring-LWE ≤ tons of crypto!

Hardness of Ring-LWE

[LyubashevskyPeikertRegev'10]

► Two main theorems (reductions):

```
\begin{array}{c} \text{worst-case approx-SVP} \\ \text{on } \textit{ideal} \text{ lattices} \end{array} \overset{\leq}{\underset{\textbf{T}}{\text{search}}} \underset{\textbf{Ring-LWE}}{\text{Ring-LWE}} \overset{\text{decision}}{\underset{\textbf{T}}{\text{decision}}} \underset{\textbf{Ring-LWE}}{\text{Ring-LWE}}
```

- ★ If you can distinguish (a_i, b_i) from (a_i, b_i) , then you can find s.
- ★ If you can find s, then you can find approximately shortest vectors in any ideal lattice in R, using a quantum algorithm.
- ► Then:

decision Ring-LWE ≤ tons of crypto!

★ If you can break the crypto, then you can distinguish (a_i, b_i) from (a_i, b_i) ...

Ring-LWE Symmetric Cryptosystem [LyubashevskyPeikertRegev'10]

▶ Secret key: $s \leftarrow R_q$.

- ▶ Secret key: $s \leftarrow R_a$.
- ▶ Encrypt $\mu \in R_2$: choose error $e \in R$ s.t. $e = \mu \mod 2R$. Output

$$(c_0, c_1) = (a \cdot s + e, -a).$$

- ▶ Secret key: $s \leftarrow R_a$.
- ▶ Encrypt $\mu \in R_2$: choose error $e \in R$ s.t. $e = \mu \mod 2R$. Output

$$(c_0, c_1) = (a \cdot s + e, -a).$$

▶ Decrypt: 'lift' $c_0 + c_1 \cdot s \in R_q$ to $e \in R$, output $\mu = e \mod 2R$.

- ▶ Secret key: $s \leftarrow R_a$.
- Encrypt $\mu \in R_2$: choose error $e \in R$ s.t. $e = \mu \mod 2R$. Output

$$(c_0, c_1) = (a \cdot s + e, -a).$$

▶ Decrypt: 'lift' $c_0 + c_1 \cdot s \in R_q$ to $e \in R$, output $\mu = e \mod 2R$.

Security

Ciphertexts are RLWE samples, so can't distinguish them from uniform (c_0, c_1) , so message is hidden.

- ▶ Secret key: $s \leftarrow R_a$.
- Encrypt $\mu \in R_2$: choose error $e \in R$ s.t. $e = \mu \mod 2R$. Output

$$(c_0,c_1)=(\underline{a}\cdot s+e\,,\,-\underline{a}).$$

▶ Decrypt: 'lift' $c_0 + c_1 \cdot s \in R_q$ to $e \in R$, output $\mu = e \mod 2R$.

Security

Ciphertexts are RLWE samples, so can't distinguish them from uniform (c_0, c_1) , so message is hidden.

Alternative Interpretation

- ▶ Encryption of $\mu \in R_2$ is a linear polynomial $c(S) = c_0 + c_1 S \in R_a[S]$:
 - $\mathbf{1}$ $c(s) = e \approx 0 \mod qR$, and
 - **2** $e = m \mod 2R$.

Need a system where: if c,c' encrypt m,m', then $c \boxplus c'$ encrypts m+m', $c \boxdot c'$ encrypts $m \cdot m'$.

Symmetric Cryptosystem

- ▶ Encryption of $m \in R_2$ is a linear polynomial $c(S) = c_0 + c_1 S \in R_q[S]$:

 - $e = m \bmod 2R.$

Need a system where: if c, c' encrypt m, m', then

$$c \boxplus c'$$
 encrypts $m + m'$, $c \boxdot c'$ encrypts $m \cdot m'$.

Symmetric Cryptosystem

- ▶ Encryption of $m \in R_2$ is a linear polynomial $c(S) = c_0 + c_1 S \in R_a[S]$:
 - $\mathbf{1}$ $c(s) = e \approx 0 \mod qR$, and
 - $e = m \mod 2R$.

Full Homomorphism

▶ Define \boxplus , \boxdot to be simply +, \cdot in $R_q[S]$:

Need a system where: if c, c' encrypt m, m', then

$$c \boxplus c'$$
 encrypts $m + m'$, $c \boxdot c'$ encrypts $m \cdot m'$.

Symmetric Cryptosystem

- ▶ Encryption of $m \in R_2$ is a linear polynomial $c(S) = c_0 + c_1 S \in R_a[S]$:
 - $\mathbf{1}$ $c(s) = e \approx 0 \mod qR$, and
 - $e = m \mod 2R$.

Full Homomorphism

▶ Define \boxplus , \boxdot to be simply +, \cdot in $R_q[S]$:

$$(c+c')(s) = c(s) + c'(s) = (e+e') \approx 0 \mod qR$$

 $(e+e') = (m+m') \mod 2R.$

Need a system where: if c, c' encrypt m, m', then

$$c \boxplus c'$$
 encrypts $m + m'$, $c \boxdot c'$ encrypts $m \cdot m'$.

Symmetric Cryptosystem

- ▶ Encryption of $m \in R_2$ is a linear polynomial $c(S) = c_0 + c_1 S \in R_a[S]$:
 - $\mathbf{1}$ $c(s) = e \approx 0 \mod qR$, and
 - $e = m \mod 2R$.

Full Homomorphism

▶ Define \boxplus , \boxdot to be simply +, \cdot in $R_q[S]$:

$$(c \cdot c')(s) = c(s) \cdot c'(s) = (e \cdot e') \approx 0 \mod qR$$

 $(e \cdot e') = (m \cdot m') \mod 2R.$

Need a system where: if c, c' encrypt m, m', then

$$c \boxplus c'$$
 encrypts $m + m'$, $c \boxdot c'$ encrypts $m \cdot m'$.

Symmetric Cryptosystem

- ▶ Encryption of $m \in R_2$ is a linear polynomial $c(S) = c_0 + c_1 S \in R_a[S]$:
 - $\mathbf{1}$ $c(s) = e \approx 0 \mod qR$, and
 - $e = m \mod 2R$.

Full Homomorphism

▶ Define \boxplus , \boxdot to be simply +, \cdot in $R_q[S]$:

$$(c \cdot c')(s) = c(s) \cdot c'(s) = (e \cdot e') \approx 0 \mod qR$$
$$(e \cdot e') = (m \cdot m') \mod 2R.$$

ightharpoonup Error size and polynomial degree (in S) grow with \boxplus, \boxdot . Use "linearization/key switching" and "modulus reduction" to shrink.