Is Bang-Bang Control All You Need?

Solving the Continuous Mountain Car problem

Is Bang-Bang Control All You Need? Solving Continuous Control with Bernoulli Policies

Tim Seyde¹ MIT CSAIL **Igor Gilitschenski** University of Toronto Wilko Schwarting MIT CSAIL Bartolomeo Stellato Princeton University

Martin Riedmiller DeepMind Markus Wulfmeier² DeepMind Daniela Rus² MIT CSAIL

Results from Seyde et. All

- Bang-Bang and Bang-of-Bang controls emerge as optimal solutions
 - Some Specific Problems, such as Maximum State or Minimal Fuel
 - Presents the discussion of Singular Arcs and Chattering Controls

- Shows Competitive Results and Trade-offs of using Bernoulli Policies
 - More efficient algorithms as the explored space is smaller
 - Intrinsic property of space exploration due to extreme actions
 - Problems when dealing with fine controls

- Interesting Experiments
 - Compares the actions taken for various algorithms and problems

Results from Seyde et. All

Results from Seyde et. All

Objectives

- Reproduce The Results
 - The Classical **Mountain Car Continuous** control problem
 - Using increasing complexity models
 - Compare with the previous results from Seyde et. All

- Learn Various New Models
 - Tabular Q-Learning
 - Discretized Tabular Q-Learning
 - REINFORCE with normal parametrization
 - Deep Deterministic Policy Gradient (DDPG)

The Problem

- Classical Control Problem
- Discrete and Continuous
- Long-term planning
- Present in Gymnasium
- Simple for our examples

Continuous Action Space

- A parametric policy to continuous action
 - Action space is too large for probabilities array
 - Learns how to generate parameters from states
 - Generates the actions from sampling

$$\pi(a|s, \boldsymbol{\theta}) \doteq \frac{1}{\sigma(s, \boldsymbol{\theta})\sqrt{2\pi}} \exp\left(-\frac{(a - \mu(s, \boldsymbol{\theta}))^2}{2\sigma(s, \boldsymbol{\theta})^2}\right)$$

Deep Deterministic Policy Gradient (DDPG)

The Results (learning)

The Results (rewards)

The Results (actions)

Discussion

Results

- Discretized solutions more efficient and reliable
- Nearly reproduce the results from Seyde et. All
- Lack interpretability of the neural nets
- Issues with fine adjustments in the neural nets

Difficulties and Learnings

- Learning the real world side of using Neural Nets
- Technical issues while implementing the models
- Different classes of models for different problems
- Choosing simpler models from knowing the problem