Prediction of a Chemical whether it is musk or

non musk, using Artificial Neural Network

Resources:

- Dataset: https://drive.google.com/file/d/1pZhzZnaPi74aKCQImSPrzrTxWzVeE0qv/view?usp=sharing
- Anaconda navigator 2019.10 :https://www.anaconda.com/distribution/ 3.7 :
- Spyder: https://www.spyder-ide.org
- pandas: https://pandas.pydata.org/pandas-docs/stable/
- Numpy: https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
- Scikit-learn: http://scikit-learn.org/stable/
- Matplotlib: https://matplotlib.org/2.1.0/index.html
- Keras: https://keras.io/

Tools Used:

- Data Analysis and Preprocessing:
 - Pandas, Numpy and Scikit-learn
- Data Visualization:
 - Matplotlib
- Deep Learning Library:
 - Keras (with Tensorflow backend)

We will divide the project into 2 parts:

- 1. Data Exploration and Data Preprocessing:
 - 1. Description of Data
 - 2. Feature scaling with class StandarScaler
 - 3. Splitting data into training and test set
 - 4. Using marplotlib to visualization

Aproach:

Network Architecture:

- Input Layer with 84 Neurons(average of input and output nodes)
- First Hidden Layer with 84 Neurons and "Rectified" Activation Function
- Second Hidden Layer with 84 Neurons and "Rectified" Activation Function
- Output Layer with 1 Neurons and "Sigmoid" Activation Function
- Number of epochs 80 and batch size 20

Run time:

Performance:

Accuracy: 0.9984

F1 score :0.9950

Accuracy 0.99848484848485 f1 score 0.9950248756218906 recall f1-score precision support 1.00 1.00 1.00 1120 0.99 1.00 1.00 200 1.00 1320 accuracy macro avg 1.00 1.00 1.00 1320 weighted avg 1.00 1.00 1.00 1320

In [5]:

Accuracy graph:

Loss Graph:

