KNOWLEDGE REPRESENTATION AND REASONING: Constraint Satisfaction Problems

CHAPTER 6.1, 6.2

Outline of the lecture

- Introduction
- Constraint Networks
- CSPs: the Logical View
- Assignments, Consistency, Solutions
- Backtracking

Constraint Satisfaction Example: Minesweeper

Constraint Satisfaction Example: Sudoku

5			4		2		6	
		9		5		1		
		8		9	1	7		5
							2	6
	2	5	3	4	6	8	9	
6	9							
9		6	1	3		2		
		3		2		6		
	4		8		5			1

Constraint Satisfaction: Car Sequencing

CSPs: a general class of problems

- ♦ General problem: find an arrangement agreeing with a set of constraints
 - distribution of mines and non-mines giving the right numbers
 - ways to fill in squares so that rows, columns and blocks are all permutations of (1, ..., 9)
 - order of cars so that every assembly job gets done smoothly
- ♦ Situation can be described by a set of variables
- Constraint is a condition the variables must meet
- \diamondsuit Problem: find assignments of values satisfying all constraints
- ♦ May want any solution, all solutions, a good/best solution, . . .

Example: 8 queens problem

- Variables: positions of the 8 queens
- Domains: squares of the board
- Constraints: no 2 queens in the same row, column or diagonal

Binary constraint network

- A constraint network is a triple $\langle V, D, C \rangle$
- $\diamondsuit V$ a finite set of variables v_1, \ldots, v_n
- \diamondsuit D a set of [finite] sets D_{v_1}, \ldots, D_{v_n}
- \diamondsuit C a set of binary relations $\{C_{u,v} \mid u,v \in V, u \neq v\}$ $C_{u,v} \subseteq D_u \times D_v$

E.g. $V = \{a, b\}$. Suppose $D_a = \{1, ..., 10\}$ and $D_b = \{8, ..., 20\}$. If we require a > b then $C_{a,b}$ is the set $\{(9,8), (10,8), (10,9)\}.$

Constraint network: notes

- A constraint $C_{u,v}$ is the allowed pairs of assignments to u and v
- These are arbitrary relations: they need not have an intuitive reading
- Sometimes require domains to be finite (FD problem) Sometimes allow domains to be infinite (e.g. integers, reals)
- Extension to non-binary constraints is simple.
- SAT is the special case where all domains have just 2 values.
- Linear programming is the special case where domains are the real numbers and all constraints are linear inequalities.

Queens problem again

- \diamondsuit Variables: $V = \{v_1, v_2, v_3, v_4\}$. Row of queen in each column
- \diamondsuit Domains: For all v, $D_v = \{1, 2, 3, 4\}$
- \diamondsuit Constraints: For $1 \leq i < j \leq 4$ $C_{v_i,v_j} = \{(d,d') \in D \times D : d \neq d', |d-d'| \neq |i-j|\}$ e.g. $C_{v_1,v_3} = \{(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3)\}$
- \diamondsuit Assignment above is $v_1 \leftarrow 3, \ v_2 \leftarrow 1, \ v_3 \leftarrow 4, \ v_4 \leftarrow 2$

The logical view

- ♦ In interesting cases, problems have logical descriptions
- Interpretation of logic: assign a relation to each predicate, and a function to each function symbol.
- Makes formulae true or false.
- \Diamond Interpreted over finite domain, need to specify value of each function f for each choice of arguments.
 - E.g. decide that f(a) = 3
- \diamondsuit So term f(a) corresponds to a decision variable
 - Has a set of possible values (its domain)
 - Is assigned a value from this domain on any interpretation
- ♦ Constraints can be written as logical formulae
 - Succinct and readable formulation
- ♦ Solutions to the CSP are exactly models of the theory

From a logical point of view

Given: monadic function symbol $q(_{-})$.

Find: interpretation satisfying

$$\forall x \forall y ([q(x) = q(y)] \to [x = y])$$

$$\forall x \forall y ([abs(q(x)-q(y))=abs(x-y)] \rightarrow [x=y])$$

over the domain $\{1, 2, 3, 4\}$

Consistency

Definition (Consistency). Let $\langle V, D, C \rangle$ be a constraint network. Let a be a partial assignment.

a is inconsistent if there are variables u, v in V and a constraint $C_{u,v}$ in C such that a(u) and a(v) are defined, and $(a(u),a(v))\notin C_{u,v}$

In that case, a violates the constraint $C_{u,v}$

 \diamondsuit Consistency is <u>local</u>: inconsistent a already violates a constraint.

Solution

Definition (Solution). Let $\gamma = \langle V, D, C \rangle$ be a constraint network.

a is a solution to γ if it is a total consistent assignment for γ .

If a solution to γ exists, then γ is solvable. Otherwise it is unsolvable or over-constrained.

A partial assignment a can be extended to a solution if there is a solution which agrees with a wherever a is defined.

Not every consistent partial assignment can be extended to a solution

Searching for solutions

- ♦ Search: Systematic enumeration of partial assignments
 - If a complete assignment is found, that's a solution
 - If the search space is exhausted, there are no [more] solutions
- Backtracking: Pruning of inconsistent partial assignments (and all their extensions)
- ♦ Inference: Reasoning about a partial assignment, to tighten constraints and reduce domains for its extensions
- There is a tradeoff: reduction in number of search nodes vs runtime needed for inference

Pure Backtracking

```
function Backtrack(\gamma,a) returns solution, or "inconsistent" if a is inconsistent with \gamma then return "inconsistent" if a is total then return a select variable v for which a is not defined for each d in D_v do a' \leftarrow a \ \cup \ \{(v,d)\} \\ a'' \leftarrow \text{Backtrack}(\gamma,\ a') \\ \text{if } a'' \ \neq \text{"inconsistent" then return } a'' \\ \text{end} \\ \text{return "inconsistent"}
```

Pure Backtracking: notes

♦ Informal version:

Recursively instantiate variables one by one, backing up out of a search branch if the partial assignment is inconsistent.

than

Better that exhaustive search: avoids enumerating many inconsistent (partial) assignments by detecting them early

\Diamond Advantages:

Very simple to implement Very fast (per node of the search tree) Complete (always gives a decision)

♦ Disadvantages:

Does no reasoning except detecting actual inconsistency Cannot look further ahead than the current state

Summary

- Constraint networks consist of variables associated with (usually finite) domains and constraints which are [binary] relations specifying allowed pairs (or tuples) of values.
- ♦ A partial assignment maps some variables to values; a total assignment does so for all variables. A partial assignment is consistent if it does not violate any constraint. A consistent total assignment is a solution.
- ♦ The constraint satisfaction problem (CSP) consists in finding a solution for a constraint network. Applications are everywhere!
- Backtracking instantiates variables one by one, cutting branches when inconsistent partial assignments occur.