Bài A. GOODS

File dữ liệu vào: stdin File kết quả: stdout Hạn chế thời gian: 1 giây

- Xâu rỗng là một dãy ngoặc đúng
- Nếu A là dãy ngoặc đúng thì (A), [A], $\{A\}$ cũng là dãy ngoặc đúng
- Nếu A,B là 2 dãy ngoặc đúng thì AB cũng là dãy ngoặc đúng

Cho xâu S gồm các ký tự thuộc $\{'(',')','[',']','\{','\}'\}$. Đếm số đoạn con của S là dãy ngoặc đúng. Đoạn con của S là một dãy liên tiếp các ký tự của S. Hai đoạn con được gọi là khác nhau nếu điểm bắt đầu hoặc điểm kết thúc của hai đoạn khác nhau

Dữ liệu vào

 $\bullet\,$ Một dòng duy nhất chứa xâu S

Kết quả

• Một số nguyên duy nhất – kết quả bài toán

Ví dụ

stdin	stdout
()	1

Hạn chế

• $1 \le n \le 10^6$

Bài B. XQUERY

File dữ liệu vào: stdin File kết quả: stdout Hạn chế thời gian: 2 giây

Cho S là một tập các số nguyên không âm (các số có thể xuất hiện nhiều lần). Ban đầu tập S rỗng, cần thực hiện Q truy vấn trên S, mỗi truy vấn thuộc một trong các dạng sau:

- 0 x: Thêm một số x vào S ($0 \le x \le 10^5$). Nếu x đã có trong S thì truy vấn này vẫn được thực hiện như thường.
- 1 x: Xóa một số x khỏi S ($0 \le x \le 10^5$). Nếu $x \notin S$ thì truy vấn này không cần làm gì. Nếu x xuất hiện nhiều lần trong S thì truy vấn này chỉ xóa đi 1.
- 2 a: Thay thế tất cả phần tử của S, x thay bằng $x \wedge a$ với \wedge là phép toán xor/nim/hoặc triệt tiêu $(0 \le a \le 10^5)$
- 3 k: Tính tổng của k phần tử nhỏ nhất trong S $(0 \le k \le |S|)$

Dữ liệu vào

- Dòng đầu tiên chứa Q $(1 \le Q \le 10^5)$
- ullet Q dòng tiếp theo mỗi dòng chứa một truy vấn: t val

Kết quả

Với mỗi truy vấn loại 3, hãy in ra tổng của k phần tử nhỏ nhất trong S trên một dòng

Ví dụ

stdin	stdout
6	6
0 1	1
2 2	
0 3	
3 2	
2 2	
3 1	

Hạn chế

- $\bullet\,$ Có 15% số test không có truy vấn loại $2\,$
- Có 20% số test với $k \le 10$
- \bullet Có 50% số test không có ràng buộc gì thêm

Bài C. FROBOT

File dữ liệu vào: stdin File kết quả: stdout Hạn chế thời gian: 1s

Trên lưới ô vuông n dòng m cột có 1 con robot đứng ở vị trí (x,y) và ngoảnh mặt về hướng bên phải (theo hướng ô $(1,1) \to (1,m)$). Tại mỗi bước di chuyển của mình, robot có thể đi sang ô phía trước (mất k_1 năng lượng) hoặc ô trước phải (mất k_2 năng lượng); hoặc nó có thể quay phải (mất k_3 năng lượng), quay trái (mất k_4 năng lượng) và vẫn đứng trong ô đó. Một số ô của bảng có chứa vật cản và không thể đi vào Nhiệm vụ đặc biệt của nó là phải đến được ô (z,t), hãy giúp nó tìm cách di chuyển để hoàn thành nhiệm vụ và tốn ít năng lượng nhất có thể

Dữ liêu vào

- Dòng đầu chứa 10 số nguyên dương $n, m, x, y, z, t, k_1, k_2, k_3, k_4$
- n dòng tiếp theo, mỗi dòng chứa m ký tự mô tả trạng thái vật cản của một dòng của lưới, ký tự 1/0 tương ứng có/không có vật cản

Dữ liệu đảm bảo ô (x, y) không có vật cản

Kết quả

Nếu không có cách di chuyển, in ra -1, ngược lại:

- Dòng đầu chứa một số nguyên không âm là năng lượng ít nhất cần có để robot hoàn thành nhiệm vụ
- \bullet Dòng thứ 2 chứa số nguyên không âm k: Số bước di chuyển trong cách di chuyển tìm được
- Dòng thứ 3 chứa k số nguyên dương mô tả di chuyển: 1/2/3/4 tương ứng là robot sang ô phía trước/sang ô trước phải/quay phải/quay trái

Ví du

stdin	stdout
5 5 1 1 5 5 1 1 1 10	9
00000	9
00000	1 2 2 3 1 3 3 3 2
00100	
00001	
00000	

Hạn chế

- $1 \le n, m \le 100, 1 \le k_i \le 10^9$
- Có 50% test với $k_i = 1$

Bài D. PRUN

File dữ liệu vào: stdin File kết quả: stdout Hạn chế thời gian: 1 giây

Với $p=p_1,p_2,\ldots,p_n$ là một hoán vị của n số nguyên dương từ 1 đến n, gọi $\beta(p)$ là số đoạn trong cách chia p thành ít nhất các đoạn con tăng. Cho n và k, hãy đếm số hoán vị p của n số từ 1 đến n có $\beta(p)=k$

Dữ liệu vào

ullet Một dòng duy nhất chứa $n\ k$

Kết quả

 $\bullet\,$ Ghi số lượng hoán vị tìm được sau khi chia lấy dư cho $10^9 + 7$

Ví dụ

stdin	stdout
4 2	11

Hạn chế

- $1 \le n \le 1000, 0 \le k \le n$
- Có 30% số test với $1 \leq n \leq 9$