Lecture 1:

Radioactive decay

Euler's method for solving differential equations

Mathematical model & analytical solution

▶ Constant fraction of atoms decays per unit time

$$\frac{\mathrm{d}N}{N} \propto -\mathrm{d}t \,
ightarrow \frac{\mathrm{d}N}{\mathrm{d}t} = -\frac{N}{\tau} \equiv f(N,t)$$

where N(t) is the number of radio-active atoms at time t, and the constant τ is called mean life-time in this specific example, the function f does not actually depend on time t

Analytical solution: $N(t) = N_0 \exp(-t/\tau)$ N_0 : number of radio-active atoms at t = 0. $N(t) = N_0/2$ for $\exp(-t/\tau) = 1/2$, so half life-time $T_{1/2} = \tau \ln(2)$. examples: (element, $T_{1/2}$): (U²³⁸, 4.5 Gyr), (C¹⁴, 5.7 kyr), (Am²⁴¹, 432 yr)

Numerical solution: Euler's method. (Using discretisation)

- ▶ Basic idea: replace continuous time t by discrete times t_i
 _{i∈N}
- How does this work out?
 - Remember definition of derivative:

$$\frac{\mathrm{d}N}{\mathrm{d}t} = \lim_{\mathrm{d}t \to 0} \frac{N(t + \mathrm{d}t) - N(t)}{\mathrm{d}t}$$

• Approximate $\mathrm{d}t \to 0$ with finite Δt which is 'small enough':

$$rac{\mathrm{d}N}{\mathrm{d}t}pprox rac{N(t+\Delta t)-N(t)}{\Delta t}$$

Approximate differential eqn by difference eqn:

$$\frac{\mathrm{d}N}{\mathrm{d}t} = -\frac{N}{\tau} \to \frac{N(t+\Delta t) - N(t)}{\Delta t} = -\frac{N(t)}{\tau}.$$

Numerical solution: Euler's method. (cont'd)

With discrete times:

$$N(t_{i+1}) \equiv N_{i+1} = (1 - \frac{\Delta t}{\tau})N_i$$

 $t_i = i \times \Delta t$

► This is an example of Euler's method

for solving linear differential equations numerically

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{f}(\mathbf{x},t) o \frac{\mathbf{x}(t+\Delta t) - \mathbf{x}(t)}{\Delta t} = \mathbf{f}(\mathbf{x}(t),t)$$

in general, where x(t) is a vector and f is a given function

Euler's method: choosing the step size

- $\blacktriangleright \ N_{i+1} = \left(1 \frac{\Delta t}{\tau}\right) N_i$
 - 1. Requires $\Delta t < \tau$, otherwise $N_{i+1} < 0$ method is not unconditionally stable
 - 2. Accuracy improves with decreasing $\Delta t/ au$
 - 3. Taking Δt constant gives constant relative error per step
- ▶ In general: $f(x) \rightarrow f(x,t)$

Euler's method: error estimate

Start with Taylor expansion,

$$x(t + \Delta t) = x(t) + \frac{\mathrm{d}x(t)}{\mathrm{d}t}\Delta t + \frac{\mathrm{d}^2x(t)}{\mathrm{d}t^2}\frac{(\Delta t)^2}{2!} + \dots$$

Euler method uses first two terms, but ignores all others starting at the third one.

$$\implies$$
 Error per step: $\mathcal{O}[(\Delta t)^2]$

▶ But number of steps from t_0 to $t_{\rm end} \sim 1/\Delta t!$

$$\Longrightarrow$$
 Overall error: $\mathcal{O}[(\Delta t)]$

▶ Take Δt small enough: compare to time-scale in the problem

in the current problem, take $\Delta t \ll au$

Pseudo-code for solution

Main program

- ▶ Input initial conditions (N_0, τ) and run time parameter (final time)
- ► Initialise classes "Radioactive" and "DEq_Solver"
- Calculate the evolution
- Print/plot the result.

Initialisation of physics problem (in "Radioactive")

- Fix $t_0 = 0$, $t_{\rm end}$, N_0 , τ
- $ightharpoonup \Delta t$ part of the calculation, not the physics

<u>Calculation</u> (in "DEq_Solver")

▶ Iterate time steps until $t_i \ge t_{end}$ is reached:

$$t_{i+1} = t_i + \Delta t$$

$$\underline{x}(t_{i+1}) = \underline{x}_{i+1} = \underline{x}_i + \underline{f}(\underline{x}_i)\Delta t.$$

Example solution

Radioactive decay: a change of variables

- Original equation: $\frac{\mathrm{d}N}{\mathrm{d}t} = -\frac{N}{\tau}$
- ► Change of variables: $x = \ln\left(\frac{N}{N_0}\right) N_0$ is N(t=0)

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{1}{\tau}$$

Trivial to integrate using Euler's method as well as analytically, of course **No limit on time-step!**

• Even better: $t
ightarrow t' \equiv rac{t}{ au}$

$$\frac{\mathrm{d}x}{\mathrm{d}t'} = -1.$$

In the lab session/homework, we stick with the original equation to check for precision of the numerical solution

Summary

- Euler's method is work horse for solving linear differential equations
- First-order accurate
- Method is not unconditionally stable precision depends on discretisation step

require $\Delta t \ll au$ in our example