

UD Nº 7 Medios Físicos de Comunicaciones

Calculo de Enlace en un sistema de radio con onda directa (Radioenlace)

$$P_{Tx} - P_{Tx} dB (\alpha vinculo + \alpha conectores) + G_{Tx} dB - L_{p} dB + G_{Rx} dB - P_{Rx} dB$$

$$(\alpha vinculo + \alpha conectores) - F_{p} dB = S_{Rx} \leftarrow dB - dB$$

Espectro Electromagnectico

Hertz = c/seg

Khz = 10 3 hz

Mhz = 10 6 hz

Ghz = 109hz

Thz = 10 12 hz

BANDA D	E FRECL	ENCIAS	;						
1000 km	Miriamétricas 100 km	Cilométricas 0 km	Hectométricas 1 km	De métricas 100	Métricas 10 m	Decimétricas m	Centimétricas 10 cm	Milimétricas 1 cm]1 mm
ELF	VLF	LF	MF	HF	VHF	UHF	SHF	EHF	ALC CELLINGTUC
300Hz	3000Hz	30KHz	300KHz	3MHz	30MHz	300MHz	3GHz	30GHz	300GHz

 λ = Long onda (m)

C= 3*108 m/seg

f = frecuencia (Hz)

Modos de Propagación

ONDA IONOSFÉRICA

Onda lonosférica

Capas de la Atmósfera:

Tropósfera

Estratósfera

Ionósfera (60 a 350 km)

•**D**

•E

 \mathbf{F} \mathbf{F} 1 \mathbf{F} 2

Altura respecto de la corteza terrestre

Irradiantes (antenas)

Omnidireccionales

Diagramas de irradiación Ganancia y Directividad

$$C = \lambda * f$$

$$\lambda = C / f$$

Antena

1/4 de onda

½ de onda

Onda completa

Cálculo de longitud

(metros)

75 / f (MHz)

150 / f (MHz)

300 / f (MHz)

COMUNICACIONES SATELITALES

Componentes de una comunicación satelital

TIPOS DE SATÉLITES DE COMUNICACIONES

- De órbita baja (LEO Low Earth Orbit), con altura entre 150 y 450 km, dan la vuelta a la Tierra en aproximadamente 1,5 horas, permaneciendo a la vista de una estación terrena durante alrededor de un cuarto de hora.
- De órbita media (MEO Medium Earth Orbit), con altura entre 9000 y 18000 km, tiene un período de rotación comprendido entre 5 y 12 horas, permaneciendo a la vista de una estación terrena entre 2 y 4 horas.
- Geoestacionarios (GEO Geosynchronous Earth Orbit), con altura de 36000 km, tiene un período de rotación de 24 horas por lo que se llaman geosincrónicos también.

SISTEMAS SATELITALES

Retardos Satelitales

$$Vp = H / T$$

$$T = H / Vp$$

$$R = 2 T$$

VP = **Velocidad Propagación: 3.10**⁸ m/seg

H = Altura del satélite en (m).

T = **Tiempo de subida o bajada** (seg).

R = **Retardo total o delay** (seg).

TIPOS DE SATÉLITES DE COMUNICACIONES

Figura 2-15. Satélites de comunicaciones y algunas de sus propiedades, entre ellas: altitud sobre la Tierra, tiempo de duración de un viaje de ida y vuelta y la cantidad de satélites necesarios para abarcar toda la Tierra.

TRANSMISIÓN EN MEDIOS CONDUCTORES

Características eléctricas

$$Z = R + j (X_L - X_C)$$
 ohms

$$R = \rho L/S$$
 $X_L = \omega L$ $X_c = 1 / \omega C$