4.9: Antiderivatives

A physicist who knows the velocity of a particle might wish to know its position at a given time. An engineer who can measure the variable rate at which water is leaking from a tank wants to know the amount leaked over a certain time period. A biologist who knows the rate at which a bacteria population is increasing might want to deduce what the size of the population will be at some future time. In each case, the problem is to find a function F whose derivative is a known function F. If such a function F exists, it is called an **antiderivative** of f.

A function F is called an **antiderivative** of f on an interval I if F'(x) = f(x) for all x in I.

Theorem 1. If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is F(x) + C where C is an arbitrary constant.

Example 1. Find the most general antiderivative of each of the following functions

(a)
$$f(x) = \sin x$$

(b)
$$f(x) = \frac{1}{x}$$

(c)
$$f(x) = x^n$$
, $n \neq -1$

Below is a table of particular antiderivatives for a number of common functions.

Function	Particular antiderivative	Function	Particular antiderivative
cf(x)	cF (x)	sec ² x	tan <i>x</i>
f(x) + g(x)	F(x) + G(x)	sec x tan x	sec x
$x^n \ (n \neq -1)$	$\frac{x^{n+1}}{n+1}$	$\frac{1}{\sqrt{1-x^2}}$	sin ^{−1} x
$\frac{1}{x}$	In <i>x</i>	$\frac{1}{1+x^2}$	tan ⁻¹ x
e ^x	e ^x	cosh x	sinh x
cos x	sin <i>x</i>	sinh x	cosh x
sin x	−cos x		

Example 2. Find all functions such that

$$g'(x) = 4\sin x + \frac{2x^5 - \sqrt{x}}{x}.$$

Example 3. Find f is $f'(x) = e^x + 20(1+x^2)^{-1}$ and f(0) = -2.

Example 4. Find f if $f''(x) = 12x^2 + 6x - 4$, f(0) = 4, and f(1) = 1.

Example 5. The graph of a function f is given below. Make a rough sketch of an antiderivative F, given that F(0) = 2.

Example 6. A particle moves in a straight line and has acceleration given by a(t) = 6t + 4. Its initial velocity is v(0) = -6 cm/s and its initial displacement is s(0) = 9 cm. Find its position function s(t).

An object near the surface of the earth is subject to a gravitational force that produces a downward acceleration denoted by g. For motion close to the ground we may assume that g is constant, its value being about 9.8 m/s² (or 32 ft/s²).

Example 7. A ball is thrown upward with a speed of 48 ft/s from the edge of a cliff 432 ft above the ground. Find its height above the ground t seconds later. When does it reach its maximum height? When does it hit the ground?