Exercício 2

Rodrigo Barbosa

2023 - 11 - 19

Table 1: Matriz de correlação

	Y	X2	Х3	X4	X5	X6
Y	1.00	0.95	0.84	0.91	0.94	0.94
X2	0.95	1.00	0.93	0.96	0.99	0.99
X3	0.84	0.93	1.00	0.97	0.93	0.96
X4	0.91	0.96	0.97	1.00	0.94	0.98
X5	0.94	0.99	0.93	0.94	1.00	0.99
X6	0.94	0.99	0.96	0.98	0.99	1.00

Table 2: Modelos ajustados

modelo	$R^2 ajustado$	AIC
$lm(formula = Y \sim X2 + X3, data = dados)$	0.9019031	108.5549
$lm(formula = Y \sim X2 + X3 + X4, data = dados)$	0.9266508	102.6885
$lm(formula = Y \sim X2 + X3 + X5, data = dados)$	0.8977030	110.3394
$lm(formula = Y \sim X2 + X3 + X6, data = dados)$	0.9208280	104.4455

Eu escolheria a função (2), cujo modelo é $Y_i = \beta_0 + \beta_1 X_{2i} + \beta_2 X_{3i} + \beta_3 X_{4i} + \epsilon_i$, pois o R^2 ajustado e o Critério de Informação Akaike é o mais adequado entre os modelos ajustados

Table 3: Tabela de Coeficientes e P-valores

Estimate	$\Pr(> t)$
38.6471955	0.0000000
0.0108762	0.0002104
-0.5410844	0.0028377
0.1740545	0.0118412
	38.6471955 0.0108762 -0.5410844

Todos os coeficientes da regressão são estatisticamente significativos ao nível de 5%. Este é o melhor modelo.