

DISTA

Corso: Analisi Numerica

Docente: Roberto Piersanti

Risoluzione di sistema lineari: metodi iterativi Lezione 3.6b

Metodi di Richardson

Risoluzione di sistemi lineari (convergenza)

ightarrow Se $\mu_k \in \mathbb{R}^+$ (autovalori di $P^{-1}A$) la convergenza di Richardson

$$0 < \alpha < \frac{2}{\mu_{max}}$$

- $\blacktriangleright \ \mu_{max}$ è il massimo autovalore di $P^{-1}A$
- \triangleright Inoltre, se A, P sono matrici simmetriche definite positive (SDP)

Risoluzione di sistemi lineari (scelta dinamica di α)

 \succ II **metodo di Richardson** introduce un parametro lpha

$$P(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}) = \alpha \mathbf{r}^{(k)} \qquad k \ge 0$$

- ightharpoonup II parametro di accelerazione lpha è costante per ogni iterazione k
- > Generalizzare per una scelta dinamica del parametro

$$\alpha = \alpha_k$$

 \blacktriangleright Una necessità: non sempre si conoscono $\mu_{min}, \, \mu_{max}$ di $P^{-1}A$

$$\alpha_{ott} = \frac{2}{\mu_{min} + \mu_{max}}$$

Risoluzione di sistemi lineari (Richardson dinamico)

 \succ Richardson dinamico introduce un parametro $lpha_k$ per ogni iterazione k

$$P(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}) = \alpha_k \mathbf{r}^{(k)} \qquad k \ge 0$$

- \triangleright Individuare delle <u>strategie</u> per *determinare* α_k *automaticamente*
- \blacktriangleright Nel Richardson dinamico α_k è aggiornato

Utilizzando un criterio adattivo

Metodo del gradiente

Risoluzione di sistemi lineari (residuo precondizionato)

 \triangleright Obiettivo: α_k per massimizzare la velocità di convergenza del metodo

$$P(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}) = \alpha_k \mathbf{r}^{(k)}$$

 \triangleright Applicando P^{-1} a sinistra e a destra

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k P^{-1} \mathbf{r}^{(k)}$$

$$\mathbf{z}^{(k)} \leftarrow \mathbf{Residuo}$$
precondizionato

In maniera analoga si ricava che

$$\mathbf{r}^{(k+1)} = \mathbf{r}^{(k)} - \alpha_k A \mathbf{z}^{(k)}$$

Risoluzione di sistemi lineari (Richardson dinamico)

> Abbiamo ricavato due relazioni ricorsive

$$\begin{aligned} \mathbf{x}^{(k+1)} &= \mathbf{x}^{(k)} + \alpha_k \mathbf{z}^{(k)} & \text{Residuo precondizionato} \\ \mathbf{r}^{(k+1)} &= \mathbf{r}^{(k)} - \alpha_k A \mathbf{z}^{(k)} & \mathbf{z}^{(k)} &= P^{-1} \mathbf{r}^{(k)} \end{aligned}$$

Riassumendo tutte le informazioni insieme si ha

$$\begin{cases} P\mathbf{z}^{(k)} = \mathbf{r}^{(k)} \\ \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{z}^{(k)} & k \ge 0 \\ \mathbf{r}^{(k+1)} = \mathbf{r}^{(k)} - \alpha_k A \mathbf{z}^{(k)} \end{cases}$$

 $ightharpoonup P\mathbf{z}^{(k)} = \mathbf{r}^{(k)}$ è un sistema lineare da risolvere