

PDF generated at: 21 Jul 2025 01:44:40 UTC

View this report on HackerRank ♂

Score

100% • 80 / 80

scored in TIP102: Unit 7 Version A (Standard) - Summer 2025 in 32 min 34 sec on 20 Jul 2025 18:10:09 PDT

Candidate Information

Email rajasekhar1131997@gmail.com

Test TIP102: Unit 7 Version A (Standard) - Summer 2025

Candidate Packet View ℃

Taken on 20 Jul 2025 18:10:09 PDT

Time taken 32 min 34 sec/ 90 min

Personal Member ID 126663

Email Address with CodePath rajasekhar1131997@gmail.com

Github username with CodePath Rajasekhar1131997

Invited by CodePath

Suspicious Activity detected

Code similarity

Code similarity • 1 question

Candidate Report Page 1 of 18

Skill Distribution

There is no associated skills data that can be shown for this assessment

Tags Distribution

There is no associated tags data that can be shown for this assessment

Questions

Coding Questions • 60 / 60

Status	No.	Question	Time Taken	Skill	Score	Code Quality
8	1	Compute Power Function Coding	3 min 1 sec	-	20/20	-

Candidate Report Page 2 of 18

8	2	Bad Product Coding	6 min 50 sec	-	20/20	-
⊗	3	First and Last Position of Element in Sorted Array Coding	15 min 46 sec	-	20/20 🏳	-

Multiple Choice + Debugging • 20 / 20

Status	No.	Question	Time Taken	Skill	Score	Code Quality
8	4	What is the time complexity of mystery_function()? Multiple Choice	51 sec	-	5/5	-
⊗	5	What is the output of the following code snippet? Multiple Choice	1 min 18 sec	-	5/5	-
⊗	6	What is the output of the following code snippet? Multiple Choice	1 min 20 sec	-	5/5	-
8	7	Debug this code Coding	3 min 12 sec	-	5/5	-

1. Compute Power Function

⊘ Correct

Candidate Report Page 3 of 18

Language used: Python 3

Coding

Question description

Given two integers, x and n, where n is non-negative, write a function power() that recursively computes and returns x^n

```
Example 1:
Input: x = 2, n = 3
Output: 8
Explanation: 2^3 = 2 * 2 * 2 = 8

Example 2:
Input: x = 5, n = 0
Output: 1
Explanation: 5^0 = 1

Example 3:
Input: x = 3, n = 2
Output: 9
Explanation: 3^2 = 3 * 3 = 9
```

Candidate's Solution

```
1 #!/bin/python3
2
3 import math
4 import os
5 import random
6 import re
7 import sys
8 import ast
9
10
11
12 #
13 # Complete the 'power' function below.
14 #
15 # The function is expected to return an INTEGER.
```

Candidate Report Page 4 of 18

16 # The function accepts following parameters:

```
1. INTEGER x
17 #
      2. INTEGER n
18 #
19 #
20
21 def power(x, n):
22
       # Write your code here
23
       if n == 0:
24
            return 1
        return x * power(x, n-1)
25
26
27
28 if __name__ == '__main__':
29
       outfile = open(os.environ['OUTPUT PATH'], 'w')
30
        input data = sys.stdin.read().strip().splitlines()
31
32
        results = []
33
34
        for line in input_data:
35
            x, n = eval(line)
            result = power(x, n)
36
37
            results.append(result)
38
39
       for res in results:
            outfile.write(str(res) + '\n')
40
41
       outfile.close()
42
```

TESTCASE	DIFFICULTY	TYPE	STATUS	SCORE	TIME TAKEN	MEMORY USED
Base case: Zero exponent	Easy	Hidden	Success	0	0.0301 sec	10.6 KB
Base case: Exponent of 1	Easy	Hidden	Success	0	0.0305 sec	10.6 KB
Small base and exponent	Easy	Hidden	Success	0	0.0371 sec	10.8 KB

Candidate Report Page 5 of 18

Large base and small exponent	Easy	Hidden	Success	0	0.0289 sec	10.8 KB
Small base and large exponent	Easy	Hidden	Success	0	0.0293 sec	10.9 KB
Negative base with even exponent	Easy	Hidden	Success	0	0.0302 sec	10.9 KB
Negative base with odd exponent	Easy	Hidden	Success	0	0.0261 sec	10.8 KB
Negative base with zero exponent	Easy	Hidden	Success	0	0.027 sec	10.6 KB
Base is zero	Easy	Hidden	Success	0	0.0281 sec	10.8 KB
Base is zero and exponent is zero (0^0)	Easy	Hidden	Success	0	0.0309 sec	10.8 KB
					0.0301	

• No comments.

2. Bad Product

⊘ Correct

Language used: Python 3

Coding

Question description

You are given a list of characters letters that is sorted in **non-decreasing order**, and a character target. There are **at least two different** characters in letters.

Return *the smallest character in* letters *that is lexicographically greater (occurs later in the alphabet) than* target. If such a character does not exist, return the first character in letters.

Your solution must have O(log n) time complexity.

```
Example Input: letters = ["c","f","j"], target = "a"
Expected Output: "c"
Explanation: The smallest character that is lexicographically greater than 'a' in letters is 'c'.

Example Input: letters = ["x","x","y","y"], target = "z"
Expected Output: "x"
Explanation: There are no characters in letters that is lexicographically greater than 'z' so we return letters[0].
```

Candidate's Solution

```
1 #!/bin/python3
2
3 import math
4 import os
5 import random
6 import re
7 import sys
8
  import ast
9
10
11
12 #
13 # Complete the 'next greatest letter' function below.
14 #
15 # The function is expected to return a STRING.
16 # The function accepts following parameters:
     1. STRING ARRAY letters
```

Candidate Report Page 7 of 18

```
18 #
      2. STRING target
19 #
20
21 def next_greatest_letter(letters, target):
22
       # Write your code here
23
       left = 0
24
        right = len(letters) - 1
25
       while left <= right:</pre>
            mid = left + (right-left) // 2
26
            if target >= letters[mid]:
27
                left = mid + 1
28
29
            else:
30
                right = mid - 1
        return letters[left % len(letters)]
31
32
33
34
35 if __name__ == '__main__':
       outfile = open(os.environ['OUTPUT PATH'], 'w')
36
        input data = sys.stdin.read().strip().splitlines()
37
38
39
        results = []
40
        for line in input data:
41
42
            letters, target = eval(line)
43
            result = next greatest letter(letters, target)
44
            results.append(result)
45
46
        for res in results:
            outfile.write(str(res) + '\n')
47
       outfile.close()
48
49
```

TESTCASE	DIFFICULTY	TYPE	STATUS	SCORE	TIME TAKEN	MEMORY USED
Basic Case	Easy	Hidden	Success	0	0.0328 sec	10.9 KB
No characters in letters that is	Easy	Hidden	Success	0	0.0398 sec	10.8 KB

Candidate Report Page 8 of 18

lexicographically greater than target						
Target Matches a Letter in the List	Easy	Hidden	Success	0	0.0289 sec	10.9 KB
Target is Greater than All Letters	Easy	Hidden	Success	0	0.042 sec	10.9 KB
All Letters are the Same	Easy	Hidden	Success	0	0.0284 sec	10.9 KB
Single Letter in the List	Easy	Hidden	Success	0	0.0379 sec	10.9 KB
Target is Equal to the Last Letter	Easy	Hidden	Success	0	0.029 sec	10.9 KB
Target Falls Between Two Letters	Easy	Hidden	Success	0	0.0286 sec	10.9 KB
Large List with Repeated Characters	Easy	Hidden	Success	0	0.0289 sec	10.9 KB
Target is Smaller than All Letters in the List	Easy	Hidden	Success	0	0.0293 sec	10.9 KB
Wrap Around Case	Easy	Hidden	Success	0	0.0284 sec	10.9 KB

Candidate Report Page 9 of 18

Pass/Fail Case Easy Hidden Success 20 0.0323 sec 10.9 KB

! No comments.

3. First and Last Position of Element in Sorted Array

Correct

Coding

Question description

Given an array of integers nums sorted in non-decreasing order, find the starting and ending position of a given target value.

If the target is not found in the array, return [-1, -1].

You must write an algorithm with O(log n) runtime complexity.

Example 1:

Input: nums = [5,7,7,8,8,10], target = 8

Output: [3,4]

Example 2:

Input: nums = [5,7,7,8,8,10], target = 6

Output: [-1,-1]

Example 3:

Input: nums = [], target = 0

Output: [-1,-1]

Candidate's Solution

Language used: Python 3

1 #!/bin/python3

2

3 import math

Candidate Report Page 10 of 18

```
4 import os
 5 import random
 6 import re
 7 import sys
 8 import ast
9
10
11
12 #
13 # Complete the 'search range' function below.
14 #
15 # The function is expected to return an INTEGER.
16 # The function accepts following parameters:
17 #
      1. INTEGER ARRAY nums
18 #
      2. INTEGER target
19 #
20
21 def search range(nums, target):
22
       # Write your code here
23
       def find first(nums, target):
            left = 0
24
25
            right = len(nums) - 1
            first = -1
26
            while left <= right:</pre>
27
28
                mid = left + (right-left) // 2
29
                if nums[mid] == target:
30
                    first = mid
31
                    right = mid - 1
32
                elif target > nums[mid]:
                    left = mid + 1
33
34
                else:
35
                    right = mid - 1
            return first
36
37
38
       def find last(nums, target):
            left = 0
39
40
            right = len(nums) - 1
41
            last = -1
42
            while left <= right:</pre>
43
                mid = left + (right-left) // 2
44
                if nums[mid] == target:
45
                    last = mid
                    left = mid + 1
46
47
                elif target > nums[mid]:
                    left = mid + 1
48
49
                else:
```

Candidate Report Page 11 of 18

```
50
                    right = mid - 1
51
            return last
52
53
        return [find_first(nums, target), find_last(nums, target)]
54
55
56 if __name__ == '__main__':
       outfile = open(os.environ['OUTPUT_PATH'], 'w')
57
       input_data = sys.stdin.read().strip().splitlines()
58
59
60
        results = []
61
       for line in input_data:
62
            nums, target = eval(line)
63
            result = search_range(nums, target)
64
65
            results.append(result)
66
67
       for res in results:
            outfile.write(str(res) + '\n')
68
69
       outfile.close()
```

TESTCASE	DIFFICULTY	TYPE	STATUS	SCORE	TIME TAKEN	MEMORY USED
Basic Case	Easy	Hidden	Success	0	0.0396 sec	10.8 KB
Basic Case	Easy	Hidden	Success	0	0.0281 sec	10.8 KB
Single Element Matching Target	Easy	Hidden	Success	0	0.0303 sec	10.9 KB
All Elements Match Target	Easy	Hidden	Success	0	0.0364 sec	10.8 KB
Target at the Beginning	Easy	Hidden	Success	0	0.0286 sec	10.8 KB

Candidate Report Page 12 of 18

Target at the End	Easy	Hidden	Success	0	0.0324 sec	10.9 KB
Empty Array	Easy	Hidden	Success	0	0.0302 sec	10.8 KB
No Target Found	Easy	Hidden	Success	0	0.0313 sec	10.5 KB
Multiple Occurrences of Target	Easy	Hidden	Success	0	0.0321 sec	10.9 KB
Target Less than All Elements	Easy	Hidden	Success	0	0.0287 sec	10.9 KB
Target Greater than All Elements	Easy	Hidden	Success	0	0.0277 sec	10.9 KB
Pass/Fail Case	Easy	Hidden	Success	20	0.0272 sec	10.9 KB

No comments.

4. What is the time complexity of mystery_function()?

⊘ Correct

Multiple Choice

Question description

What is the time complexity of $mystery_function()$?

Candidate Report Page 13 of 18

```
def mystery_function(n):

if n == 0 or n == 1:

return 1

return n * factorial(n - 1)
```

Candidate's Solution

Options: (Expected answer indicated with a tick)

O(1)	
O(log n)	
O(n)	\otimes
O(n^2)	
① No comments.	

5. What is the output of the following code snippet?

Multiple Choice

Question description

Candidate Report Page 14 of 18

```
def mystery_function(arr):
    if not arr:
        return 0
    return arr[0] + mystery_function(arr[1:])

print(mystery_function([1, 2, 3, 4, 5]))
print(mystery_function([10, 20, 30]))
```

Candidate's Solution

Options: (Expected answer indicated with a tick)

No comments.

6. What is the output of the following code snippet?

(4)

Multiple Choice

Question description

Candidate Report Page 15 of 18

```
from collections import deque

def recursive_helper(queue):
   if not queue:
      return 0
      current = queue.popleft()
   return current + recursive_helper(queue)

def sum_with_queue(arr):
   queue = deque(arr)
   return recursive_helper(queue)

print(sum_with_queue([1, 2, 3, 4, 5]))
```

Candidate's Solution

Options: (Expected answer indicated with a tick)

10	
12	
16	
15	\otimes
① No comments.	

Candidate Report Page 16 of 18

Language used: Python 3

7. Debug this code

⊘ Correct

Coding

Question description

The code provided below incorrectly implements the <code>binary_search()</code> function. Implemented correctly, <code>binary_search()</code> accepts a unique list of integers <code>nums</code> and an integer <code>target</code> and returns the index of <code>target</code> in the list. If <code>target</code> is not a value in the list, the function should return -1.

Identify any bug(s) within the given implementation and correct the code so that it successfully passes the provided test cases.

Candidate's Solution

```
1 #!/bin/python3
 2
 3 import math
4 import os
 5 import random
 6 import re
7 import sys
8
  import ast
9
10
11
   def binary search(nums, target):
12
       left, right = 0, len(nums) - 1
13
14
       while left <= right:</pre>
           mid = left + (right - left) // 2
15
16
           if nums[mid] == target:
17
                return mid
18
           elif target > nums[mid]:
19
                left = mid + 1
20
           else:
                right = mid - 1
21
22
23
        return -1
24 if name == ' main ':
25
       input data = sys.stdin.read().strip()
       input list = ast.literal eval(input data)
26
```

Candidate Report Page 17 of 18

```
27
28    nums = input_list[0]
29    target = input_list[1]
30
31    result = binary_search(nums, target)
32    print(result)
```

TESTCASE	DIFFICULTY	TYPE	STATUS	SCORE	TIME TAKEN	MEMORY USED
Pass/Fail Case	Easy	Hidden	Success	5	0.0253 sec	10.9 KB

No comments.

Candidate Report Page 18 of 18