IN3170 V24 - Lab 3

Andreas Engøy, Simen Norrud, Erik Røset & Daniel Tran May 2024

1 Task 1

1.1 Equipment

Component	Model	Quantity
Resistor	$120 \mathrm{k}\Omega$	1
Capacitor	390pF	3

Table 1: List of components used in task 1.

2 Task 2

In an ideal current source, the output current is independent of the voltage across the terminals. I.e. the current source maintains the same current throughout the circuit, despite changes to V_{DS} .

A Field-Effect Transistor (FET) operating in the saturation region exhibits the same characteristics as an ideal current source. This can be seen from the I_D vs V_{DS} curve in the saturation region, where the current is almost constant. This is because V_{DS} approximing the saturation region is high enough that it has maxed out the number of charge carriers that can contribute to current flow, making the gate voltage the primarily factor to the current flow.

In the plot, the curve will flatten out in this region. In a practical FET, the curve will not be completely flat (indicating that the current is not completely constant), but it will give a good approximation of an ideal current source.

Figure 1: Screencapture of the circuit in figure 1 c) from the lab manual simulated in Cadence.

The bias current is implemented as a current mirror, consisting of M2 and I4, which sets the current that flows through M1.

As suggested in the lab manual, a DC analysis is performed with V_C as a sweep parameter. This results in the following plot:

Figure 2: Screencapture of the DC sweep of the circuit in figure 1.

 ΔI_D is calculated as the difference between two points on the *most linear* part of the curve. In figure 2, this is chosen to be a segment at the end of the curve. The DC sweep simulation is set to sweep from 0 V to 1.5 V, as the lab manual specifies to use only up to 1.2 V, the last point is chosen to be close to 1.2 V.

$$\Delta I_D = 414.926 \text{ nA} \tag{1}$$

The same method is used to calculate ΔV_{DS} , however as V_C is the sweep parameter, the voltage rises lineary. The difference between two points on this line will be the same wherever. In figure 2, the points are chosen arbitrarily.

$$\Delta V_{DS} = 1 \text{ V} \tag{2}$$

 R_{ds} can then simply be calculated using Ohms Law:

$$r_{ds} = \frac{\Delta V_{DS}}{\Delta I_D} = \frac{1 \text{ V}}{414.926 \text{ nA}} = 2.4007 \text{ M}\Omega$$
 (3)

The next step is to change $\frac{W}{L}$ of M0 (M1) in order to better it as a current source. For this rapport, the length was increased to 1 μm

Figure 3: Screencapture of the circuit in figure 1 d) from the lab manual simulated in Cadence.

Figure 4: Screencapture of the circuit in figure 1 d) from the lab manual simulated in Cadence.

Figure 5: Screencapture of the DC sweep of both circuits in figure 1 d).