Министерство образования и науки Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный аэрокосмический университет имени академика М.Ф. Решетнева»

Сергиенко Антон Борисович

Тестовые функции для глобальной оптимизации. v.1.18

Оглавление

В ведение				7
				8
1	Задачи вещественной оптимизации			
	1.1	Функ	ция Ackley	9
		1.1.1	Описание функции	9
		1.1.2	Параметры для алгоритмов оптимизации	10
		1.1.3	Основная задача и подзадачи	10
		1.1.4	Нахождение ошибки оптимизации	11
		1.1.5	Свойства задачи	11
		1.1.6	Реализация	11
		1.1.7	Ссылки	12
	1.2	Функ	ция Гипер-эллипсоид	12
		1.2.1	Описание функции	12
		1.2.2	Параметры для алгоритмов оптимизации	13
		1.2.3	Основная задача и подзадачи	14
		1.2.4	Нахождение ошибки оптимизации	14
		1.2.5	Свойства задачи	15
		1.2.6	Реализация	15
		1.2.7	Ссылки	15
	1.3	Эллип	тический параболоид	16
		1.3.1	Описание функции	16
		1.3.2	Параметры для алгоритмов оптимизации	17
		1.3.3	Основная задача и подзадачи	17
		1.3.4	Нахождение ошибки оптимизации	17

	1.3.5	Свойства задачи	18
	1.3.6	Реализация	18
	1.3.7	Ссылки	19
1.4	Функі	ция Растригина	19
	1.4.1	Описание функции	19
	1.4.2	Параметры для алгоритмов оптимизации	20
	1.4.3	Основная задача и подзадачи	20
	1.4.4	Нахождение ошибки оптимизации	20
	1.4.5	Свойства задачи	21
	1.4.6	Реализация	21
	1.4.7	Ссылки	22
1.5	Функі	ция Розенброка	22
	1.5.1	Описание функции	22
	1.5.2	Параметры для алгоритмов оптимизации	23
	1.5.3	Основная задача и подзадачи	23
	1.5.4	Нахождение ошибки оптимизации	24
	1.5.5	Свойства задачи	24
	1.5.6	Реализация	24
	1.5.7	Ссылки	25
1.6	Функі	ция Развернутый гипер-эллипсоид	25
	1.6.1	Описание функции	25
	1.6.2	Параметры для алгоритмов оптимизации	26
	1.6.3	Основная задача и подзадачи	26
	1.6.4	Нахождение ошибки оптимизации	27
	1.6.5	Свойства задачи	27
	1.6.6	Реализация	27
	1.6.7	Ссылки	28
1.7	Аддит	тивная потенциальная функция	28
	1.7.1	Описание функции	28
	1.7.2	Параметры для алгоритмов оптимизации	29
	1.7.3	Основная задача и подзадачи	30
	1.7.4	Нахождение ошибки оптимизации	30

	1.7.5	Свойства задачи	30
	1.7.6	Реализация	31
	1.7.7	Ссылки	31
1.8	Функц	ция Химмельблау	31
	1.8.1	Описание функции	31
	1.8.2	Параметры для алгоритмов оптимизации	32
	1.8.3	Основная задача и подзадачи	33
	1.8.4	Нахождение ошибки оптимизации	33
	1.8.5	Свойства задачи	34
	1.8.6	Реализация	34
	1.8.7	Ссылки	34
1.9	Функц	ция Катникова	35
	1.9.1	Описание функции	35
	1.9.2	Параметры для алгоритмов оптимизации	36
	1.9.3	Основная задача и подзадачи	36
	1.9.4	Нахождение ошибки оптимизации	36
	1.9.5	Свойства задачи	37
	1.9.6	Реализация	37
	1.9.7	Ссылки	37
1.10	Функц	ия Multiextremal3	38
	1.10.1	Описание функции	38
	1.10.2	Параметры для алгоритмов оптимизации	39
	1.10.3	Основная задача и подзадачи	39
	1.10.4	Нахождение ошибки оптимизации	39
	1.10.5	Свойства задачи	40
	1.10.6	Реализация	40
	1.10.7	Ссылки	40
1.11	Функц	ия Multiextremal4	41
	1.11.1	Описание функции	41
	1.11.2	Параметры для алгоритмов оптимизации	42
	1.11.3	Основная задача и подзадачи	42
	1.11.4	Нахождение ошибки оптимизации	42

	1.11.5	Свойства задачи	43
	1.11.6	Реализация	43
	1.11.7	Ссылки	43
1.12	Мульт	ипликативная потенциальная функция	44
	1.12.1	Описание функции	44
	1.12.2	Параметры для алгоритмов оптимизации	45
	1.12.3	Основная задача и подзадачи	45
	1.12.4	Нахождение ошибки оптимизации	45
	1.12.5	Свойства задачи	46
	1.12.6	Реализация	46
	1.12.7	Ссылки	46
1.13	Функц	ция ReverseGriewank	47
	1.13.1	Описание функции	47
	1.13.2	Параметры для алгоритмов оптимизации	48
	1.13.3	Основная задача и подзадачи	48
	1.13.4	Нахождение ошибки оптимизации	48
	1.13.5	Свойства задачи	49
	1.13.6	Реализация	49
	1.13.7	Ссылки	49
1.14	Функц	ция Сомбреро	50
	1.14.1	Описание функции	50
	1.14.2	Параметры для алгоритмов оптимизации	51
	1.14.3	Основная задача и подзадачи	51
	1.14.4	Нахождение ошибки оптимизации	51
	1.14.5	Свойства задачи	52
	1.14.6	Реализация	52
	1.14.7	Ссылки	52
1.15	Функц	ция Multiextremal	53
	1.15.1	Описание функции	53
	1.15.2	Параметры для алгоритмов оптимизации	54
	1.15.3	Основная задача и подзадачи	54
	1 15 4	Науожление ошибки оптимизации	54

Ли	Іитература 65					
		2.1.5	Реализация	64		
		2.1.4	Свойства задачи	64		
		2.1.3	Нахождение ошибки оптимизации	63		
		2.1.2	Основная задача и подзадачи	63		
		2.1.1	Описание функции	62		
	2.1	Сумма	всех элементов бинарного вектора	62		
2	Зада	чи бин	парной оптимизации	62		
		1.1/./	Ссылки	01		
			Реализация	61		
			Свойства задачи	61		
			Нахождение ошибки оптимизации	61		
			Основная задача и подзадачи	60		
			Параметры для алгоритмов оптимизации	60		
			Описание функции	59 60		
	1.17		Отиссии функции	59 59		
	1 17					
			Реализация	58 58		
			Свойства задачи	58 50		
			Нахождение ошибки оптимизации	57 50		
			Основная задача и подзадачи	57 57		
			Параметры для алгоритмов оптимизации	57 57		
			Описание функции	56 57		
	1.16	· ·	мя Multiextremal2	56		
	1 10		Ссылки	55 50		
			Реализация	55 		
			Своиства задачи	55		
		1155	Своиства залачи	כה		

Условные обозначения

```
a \in A — элемент a принадлежит множеству A.
```

 \bar{x} — обозначение вектора.

 $\arg f(x)$ — возвращает аргумент x, при котором функция принимает значение f(x).

Random(X) — случайный выбор элемента из множества X с равной вероятностью.

 $Random\left(\{x^i\mid p^i\}\right)$ — случайный выбор элемента x^i из множества X, при условии, что каждый элемент $x^i\in X$ имеет вероятность выбора равную p^i , то есть это обозначение равнозначно предыдущему.

random(a,b) — случайное действительное число из интервала [a;b].

int(a) — целая часть действительного числа a.

 $\mu(X)$ — мощность множества X.

Замечание. Оператор присваивания обозначается через знак «=», так же как и знак равенства.

Замечание. Индексация всех массивов в документе начинается с 1. Это стоит помнить при реализации алгоритма на С-подобных языках программирования, где индексация начинается с нуля.

Замечание. Вызывание трех функций: Random(X), $Random(\{x_i \mid p_i\})$, random(a,b) – происходит каждый раз, когда по ходу выполнения формул, они встречаются. Если формула итерационная, то нельзя перед ее вызовом один раз определить, например, random(a,b) как константу и потом её использовать на протяжении всех итераций неизменной.

Замечание. Надстрочный индекс может обозначать как возведение в степень, так и индекс элемента. Конкретное обозначение определяется в контексте текста, в котором используется формула с надстрочным индексом.

Замечание. Если у нас имеется множество векторов, то подстрочный индекс обозначает номер компоненты конкретного вектора, а надстрочный индекс обозначает номер вектора во множестве, например, $\bar{x}^i \in X$ $(i=\overline{1,N}), \, \bar{x}^i_j \in \{0;1\}, \, (j=\overline{1,n}).$ В случае, если вектор имеет свое обозначение в виде подстрочной надписи, то компоненты вектора проставляются за скобками, например, $(\bar{x}_{max})_j = 0$ $(j=\overline{1,n}).$

Замечание. При выводе матриц и векторов элементы могут разделяться как пробелом, так и точкой с запятой, то есть обе записи $\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}^T$ и $\begin{pmatrix} 1;1;1;1;1;1;1;1 \end{pmatrix}^T$ допустимы.

Замечание. При выводе множеств элементы разделяются только точкой с запятой, то есть допустима только такая запись: $\{1; 1; 1; 1; 1; 1; 1; 1\}^{T}$.

Введение

В данном документе рассмотрено множество тестовых функций, которые можно использовать для проведения исследований алгоритмов оптимизации. К каждой функции дано подробное описание, график (если это возможно), свойств и параметров, которые позволят единообразно проводить сравнения разных алгоритмов оптимизации во избежания несостыковок с точки зрения разного понимания нахождения ошибки, точности работы алгоритмом.

Данный документ представляет его версию 1.18 от 26 декабря 2013 г.

Последнюю версию документа можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Там же можно найти реализацию тестовых функция в среде Mathcad.

Тестовые функции реализованы на языке C++ в библиотеке **HarrixMathLibrary** в разделе «Тестовые функции для оптимизации», которую можно найти по адресу:

https://github.com/Harrix/HarrixMathLibrary.

Все библиографические материалы, которые используются в документе, приведены в виде скриншотов, скринов, документов в папке **_Biblio** на https://github.com/Harrix/HarrixTestFunctions.

С автором можно связаться по адресу sergienkoanton@mail.ru или http://vk.com/harrix.

Сайт автора, где публикуются последние новости: http://blog.harrix.org/, а проекты располагаются по адресу http://harrix.org/.

Глава 1

Задачи вещественной оптимизации

1.1 Функция Ackley

1.1.1 Описание функции

Идентификатор: MHL_TestFunction_Ackley.

Наименование: Функция Ackley.

Тип: Задача вещественной оптимизации.

Формула (целевая функция):

$$f(\bar{x}) = 20 + e - 20e^{-0.2\sqrt{\frac{1}{n}\sum_{i=1}^{n}\bar{x}_{i}^{2}}} - e^{\frac{1}{n}\sum_{i=1}^{n}\cos(2\pi\cdot\bar{x}_{i})}, \text{ где}$$
 (1.1)

 $\bar{x} \in X, \ \bar{x}_j \in [Left_j; Right_j], \ Left_j = -5, \ Right_j = 5, \ j = \overline{1, n}.$

Обозначение: \bar{x} — вещественный вектор;

n — размерность вещественного вектора.

Решаемая задача оптимизации: $\bar{x}_{min} = \arg\min_{\bar{x} \in X} f(\bar{x}).$

Точка минимума: $\bar{x}_{min} = (0, 0, \dots, 0)^{\mathrm{T}}$, то есть $(\bar{x}_{min})_j = 0$ $(j = \overline{1, n})$.

Минимум функции: $f(\bar{x}_{min}) = 0.$

График: Рисунок 1.1 нас 10 стр.

Рисунок 1.1. Функция Ackley

1.1.2 Параметры для алгоритмов оптимизации

Точность вычислений: $\varepsilon = 0.025$.

Число интервалов, на которые предполагается разбивать каждую компоненту вектора \bar{x} в пределах своего изменения (для алгоритмов дискретной оптимизации) :

 $NumberOfParts_j = 4095 \ (j = \overline{1, n}).$

Для этого длина бинарной строки для x_j **координаты равна** (для алгоритмов бинарной оптимизации) :

 $(k_2)_j = 12 \ (j = \overline{1,n}).$

Замечание: $NumberOfParts_j$ выбирается как минимальное число, удовлетворяющее соотношению:

$$NumberOfParts_{j}=2^{(k_{2})_{j}}-1\geq \frac{10\left(Right_{j}-Left_{j}\right)}{\varepsilon},$$
где $\left(k_{2}\right)_{j}\in\mathbb{N},\left(j=\overline{1,n}\right).$

1.1.3 Основная задача и подзадачи

Изменяемый параметр: n — размерность вещественного вектора.

Значение в основной задаче: n = 2.

Подзадача №2: n=3.

Подзадача №3: n = 4.

Подзадача №4: n = 5.

Подзадача №**5**: n = 10.

Подзадача №6: n = 20.

Подзадача №7: n = 30.

1.1.4 Нахождение ошибки оптимизации

Пусть в результате работы алгоритма оптимизации за N запусков мы нашли решения \bar{x}_{submin}^k со значениями целевой функции $f\left(\bar{x}_{submin}^k\right)$ соответственно $(k=\overline{1,N})$. Используем три вида ошибок:

Надёжность:

$$R = \frac{\sum_{k=1}^{N} S\left(\bar{x}_{submin}^{k}\right)}{N}, \text{ где}$$

$$S\left(\bar{x}_{submin}^{k}\right) = \begin{cases} 1, \text{ если } \left|\left(\bar{x}_{submin}^{k}\right)_{j} - (\bar{x}_{min})_{j}\right| < \varepsilon, j = \overline{1, n}; \\ 0, \text{ иначе.} \end{cases}$$

Ошибка по входным параметрам:

$$E_{x} = \frac{\sum_{k=1}^{N} \left(\frac{\sqrt{\sum_{j=1}^{n} \left(\left(\bar{x}_{submin}^{k} \right)_{j} - \left(\bar{x}_{min} \right)_{j} \right)^{2}}}{n} \right)}{N}.$$

Ошибка по значениям целевой функции:

$$E_f = \frac{\sum_{k=1}^{N} \left| f\left(\bar{x}_{submin}^k\right) - f\left(\bar{x}_{min}\right) \right|}{N}.$$

1.1.5 Свойства задачи

Условной или безусловной оптимиза- Задача безусловной оптимизации. **шии:**

Одномерной или многомерной опти- Многомерной: n. **мизации:**

Функция унимодальная или много- Функция многоэкстремальная. **экстремальная:**

Функция стохастическая или нет: Функция не стохастическая.

Особенности: Нет.

1.1.6 Реализация

Реализация Harrix Math Library функции библиотеки взята В разде-«Тестовые функции найти ДЛЯ оптимизации», которую ПО адресу https://github.com/Harrix/HarrixMathLibrary.

```
Koд 1.1. Koд функции MHL_TestFunction_Ackley

double MHL_TestFunction_Ackley(double *x, int VMHL_N)

{
/*
```

```
Функция многих переменных: Ackley.

Тестовая функция вещественной оптимизации.

Входные параметры:

х - указатель на исходный массив;

VMHL_N - размер массива х.

Возвращаемое значение:

Значение тестовой функции в точке х.

*/

double VMHL_Result;

double f1, f2=0;

f1=exp(-0.2*sqrt(TMHL_SumSquareVector(x,VMHL_N)/double(VMHL_N)));

for (int i=0;i<VMHL_N;i++) f2=f2+cos(2.*MHL_PI*x[i]);

f2=exp(f2/double(VMHL_N));

VMHL_Result=20.+exp(1)-20.*f1-f2;

return VMHL_Result;

}
```

1.1.7 Ссылки

Данная функция приводится в следующих источниках:

- 1. [1, ctp. 5] Empirical review of standard benchmark functions using evolutionary global optimization.
- 2. [2] Ackley's Function.

1.2 Функция Гипер-эллипсоид

1.2.1 Описание функции

Идентификатор: MHL_TestFunction_HyperEllipsoid.

Наименование: Гипер-эллипсоид.

Тип: Задача вещественной оптимизации.

Формула (целевая функция):

$$f(\bar{x}) = \sum_{i=1}^{n} (i \cdot \bar{x}_i)^2$$
, где (1.2)

 $\bar{x} \in X$, $\bar{x}_j \in [Left_j; Right_j]$, $Left_j = -5$, $Right_j = 5$, $j = \overline{1, n}$.

Обозначение:

 \bar{x} — вещественный вектор;

n — размерность вещественного вектора.

Решаемая задача оптимизации:

 $\bar{x}_{min} = \arg\min_{\bar{x} \in X} f(\bar{x}).$

Точка минимума:

 $ar{x}_{min} = \left(0,0,\dots,0
ight)^{\mathrm{T}}$, то есть $\left(ar{x}_{min}
ight)_j = 0$ $(j = \overline{1,n}).$

Минимум функции:

 $f\left(\bar{x}_{min}\right) = 0.$

График:

Рисунок 1.2 нас 13 стр.

Рисунок 1.2. Гипер-эллипсоид

1.2.2 Параметры для алгоритмов оптимизации

Точность вычислений:

 $\varepsilon = 0.025$.

Число интервалов, на которые предполагается разбивать каждую компоненту вектора \bar{x} в пределах своего изменения (для алгоритмов дискретной оптимизации) :

 $NumberOfParts_j = 4095 \ (j = \overline{1, n}).$

Для этого длина бинарной строки для x_j **координаты равна** (для алгоритмов бинарной оптимизации) :

$$(k_2)_j = 12 \ (j = \overline{1,n}).$$

Замечание: $NumberOfParts_j$ выбирается как минимальное число, удовлетворяющее соотношению:

$$NumberOfParts_{j} = 2^{(k_{2})_{j}} - 1 \geq \frac{10\left(Right_{j} - Left_{j}\right)}{\varepsilon}, \text{где } (k_{2})_{j} \in \mathbb{N}, \left(j = \overline{1, n}\right).$$

1.2.3 Основная задача и подзадачи

Изменяемый параметр: n — размерность вещественного вектора.

Значение в основной задаче: n=2.

Подзадача №2: n=3.

Подзадача №3: n=4.

Подзадача №4: n = 5.

Подзадача №5: n = 10.

Подзадача №6: n = 20.

Подзадача №7: n = 30.

1.2.4 Нахождение ошибки оптимизации

Пусть в результате работы алгоритма оптимизации за N запусков мы нашли решения \bar{x}_{submin}^k со значениями целевой функции $f\left(\bar{x}_{submin}^k\right)$ соответственно $(k=\overline{1,N})$. Используем три вида ошибок:

Надёжность:

$$R = \frac{\sum_{k=1}^{N} S\left(\bar{x}_{submin}^{k}\right)}{N}, \text{ где}$$

$$S\left(\bar{x}_{submin}^{k}\right) = \begin{cases} 1, \text{ если } \left|\left(\bar{x}_{submin}^{k}\right)_{j} - (\bar{x}_{min})_{j}\right| < \varepsilon, j = \overline{1, n}; \\ 0, \text{ иначе.} \end{cases}$$

Ошибка по входным параметрам:

$$E_x = \frac{\sum_{k=1}^{N} \left(\frac{\sqrt{\sum_{j=1}^{n} \left(\left(\bar{x}_{submin}^k\right)_j - \left(\bar{x}_{min}\right)_j\right)^2}}{n}\right)}{N}.$$

Ошибка по значениям целевой функции:

$$E_f = \frac{\sum_{k=1}^{N} \left| f\left(\bar{x}_{submin}^k\right) - f\left(\bar{x}_{min}\right) \right|}{N}.$$

1.2.5 Свойства задачи

Условной или безусловной оптимиза- Задача безусловной оптимизации. **ции:**

Одномерной или многомерной опти- Mногомерной: n.

мизации:

Функция унимодальная или много- Функция унимодальная. **экстремальная:**

Функция стохастическая или нет: Функция не стохастическая.

Особенности: Нет.

1.2.6 Реализация

Реализация функции библиотеки Harrix Math Library взята ИЗ В раздефункции «Тестовые ДЛЯ оптимизации», которую МОЖНО найти ПО адресу https://github.com/Harrix/HarrixMathLibrary.

```
Kog 1.2. Код функции MHL_TestFunction_HyperEllipsoid

double MHL_TestFunction_HyperEllipsoid(double *x, int VMHL_N)

{

/*

Функция многих переменных: Гипер-эллипсоид.
Тестовая функция вещественной оптимизации.
Входные параметры:

x - указатель на исходный массив;
VMHL_N - размер массива x.
Возвращаемое значение:

3начение тестовой функции в точке x.

*/

double VMHL_Result=0;

for (int i=0;i<VMHL_N;i++)
   VMHL_Result += (i+1)*(i+1)*x[i]*x[i];

return VMHL_Result;
}
```

1.2.7 Ссылки

В данном виде тестовую функцию в литературе не нашел. Обычно используется несколько иной вид этой функции, когда i не возводится в квадрат.

1.3 Эллиптический параболоид

1.3.1 Описание функции

Идентификатор: MHL_TestFunction_ParaboloidOfRevolution.

Наименование: Эллиптический параболоид.

Тип: Задача вещественной оптимизации.

Формула (целевая функция):

$$f(\bar{x}) = \sum_{i=1}^{n} \bar{x}_i^2$$
, где (1.3)

 $\bar{x} \in X, \ \bar{x}_j \in [Left_j; Right_j], \ Left_j = -2, \ Right_j = 2, \ j = \overline{1, n}.$

Обозначение: \bar{x} — вещественный вектор;

n — размерность вещественного вектора.

Решаемая задача оптимизации: $\bar{x}_{min} = \arg\min_{\bar{x} \in X} f(\bar{x}).$

Точка минимума: $\bar{x}_{min} = (0, 0, \dots, 0)^{\mathrm{T}}$, то есть $(\bar{x}_{min})_j = 0$ $(j = \overline{1, n})$.

Минимум функции: $f(\bar{x}_{min}) = 0.$

График: Рисунок 1.3 нас 16 стр.

Рисунок 1.3. Эллиптический параболоид

1.3.2 Параметры для алгоритмов оптимизации

Точность вычислений: $\varepsilon = 0.01.$

Число интервалов, на которые пред-полагается разбивать каждую компоненту вектора \bar{x} в пределах своего изменения (для алгоритмов дискретной оптимизации) :

Для этого длина бинарной строки для $(k_2)_j=12 \ (j=\overline{1,n}).$ x_j координаты равна (для алгоритмов бинарной оптимизации) :

Замечание: $NumberOfParts_j$ выбирается как минимальное число, удовлетворяющее соотношению:

$$NumberOfParts_{j}=2^{(k_{2})_{j}}-1\geq\frac{10\left(Right_{j}-Left_{j}\right)}{\varepsilon}, \text{где }\left(k_{2}\right)_{j}\in\mathbb{N},\left(j=\overline{1,n}\right).$$

1.3.3 Основная задача и подзадачи

Изменяемый параметр: n — размерность вещественного вектора.

Значение в основной задаче: n=2.

Подзадача №2: n = 3.

Подзадача №3: n=4.

Подзадача №4: n = 5.

Подзадача №5: n = 10.

Подзадача №6: n = 20.

Подзадача №7: n = 30.

1.3.4 Нахождение ошибки оптимизации

Пусть в результате работы алгоритма оптимизации за N запусков мы нашли решения \bar{x}_{submin}^k со значениями целевой функции $f\left(\bar{x}_{submin}^k\right)$ соответственно $(k=\overline{1,N})$. Используем три вида ошибок:

Надёжность:

$$R = \frac{\sum_{k=1}^{N} S\left(\bar{x}_{submin}^{k}\right)}{N}, \text{ где}$$

$$S\left(\bar{x}_{submin}^{k}\right) = \begin{cases} 1, \text{ если } \left|\left(\bar{x}_{submin}^{k}\right)_{j} - (\bar{x}_{min})_{j}\right| < \varepsilon, j = \overline{1, n}; \\ 0, \text{ иначе.} \end{cases}$$

Ошибка по входным параметрам:

$$E_{x} = \frac{\sum_{k=1}^{N} \left(\frac{\sqrt{\sum_{j=1}^{n} \left(\left(\bar{x}_{submin}^{k}\right)_{j} - \left(\bar{x}_{min}\right)_{j}\right)^{2}}}{n} \right)}{N}.$$

Ошибка по значениям целевой функции:

$$E_f = \frac{\sum_{k=1}^{N} \left| f\left(\bar{x}_{submin}^k\right) - f\left(\bar{x}_{min}\right) \right|}{N}.$$

1.3.5 Свойства задачи

Условной или безусловной оптимиза- Задача безусловной оптимизации. **шии:**

Одномерной или многомерной опти- Многомерной: n. **мизации:**

Функция унимодальная или много- Функция унимодальная. **экстремальная:**

Функция стохастическая или нет: Функция не стохастическая.

Особенности: Нет.

1.3.6 Реализация

Реализация функции библиотеки Harrix Math Library взята ИЗ В раздефункции «Тестовые для оптимизации», которую можно найти ПО адресу https://github.com/Harrix/HarrixMathLibrary.

```
Kog 1.3. Kog функции MHL_TestFunction_ParaboloidOfRevolution

double MHL_TestFunction_ParaboloidOfRevolution(double *x, int VMHL_N)

{
/*

Функция многих переменных: Эллиптический параболоид.

Тестовая функция вещественной оптимизации.

Входные параметры:

x - указатель на исходный массив;

VMHL_N - размер массива х.

Возвращаемое значение:

Значение тестовой функции в точке х.

*/

double VMHL_Result=0;

for (int i=0;i<VMHL_N;i++) VMHL_Result+=x[i]*x[i];

return VMHL_Result;

}
```

1.3.7 Ссылки

Данная функция приводится в следующих источниках:

1. [3] — Paraboloid.

1.4 Функция Растригина

1.4.1 Описание функции

Идентификатор: MHL_TestFunction_Rastrigin.

Наименование: Функция Растригина.

Тип: Задача вещественной оптимизации.

Формула (целевая функция):

$$f(\bar{x}) = 10n + \sum_{i=1}^{n} (\bar{x}_i^2 - 10 \cdot \cos(2\pi \cdot \bar{x}_i)),$$
 где (1.4)

 $\bar{x} \in X$, $\bar{x}_j \in [Left_j; Right_j]$, $Left_j = -5$, $Right_j = 5$, $j = \overline{1, n}$.

Обозначение: \bar{x} — вещественный вектор;

n — размерность вещественного вектора.

Решаемая задача оптимизации: $\bar{x}_{min} = \arg\min_{\bar{x} \in X} f(\bar{x}).$

Точка минимума: $\bar{x}_{min} = (0, 0, \dots, 0)^{\mathrm{T}}$, то есть $(\bar{x}_{min})_j = 0$ $(j = \overline{1, n})$.

Минимум функции: $f(\bar{x}_{min}) = 0.$

График: Рисунок 1.4 нас 19 стр.

Рисунок 1.4. Функция Растригина

1.4.2 Параметры для алгоритмов оптимизации

Точность вычислений: $\varepsilon = 0.025$.

Число интервалов, на которые пред-полагается разбивать каждую компоненту вектора \bar{x} в пределах своего изменения (для алгоритмов дискретной оптимизации) :

Для этого длина бинарной строки для $(k_2)_j=12\ (j=\overline{1,n}).$ x_j координаты равна (для алгоритмов бинарной оптимизации) :

Замечание: $NumberOfParts_j$ выбирается как минимальное число, удовлетворяющее соотношению:

$$NumberOfParts_{j}=2^{(k_{2})_{j}}-1\geq \frac{10\left(Right_{j}-Left_{j}\right)}{\varepsilon},$$
где $\left(k_{2}\right)_{j}\in\mathbb{N},\left(j=\overline{1,n}\right).$

1.4.3 Основная задача и подзадачи

Изменяемый параметр: n — размерность вещественного вектора.

Значение в основной задаче: n = 2.

Подзадача №2: n=3.

Подзадача №3: n=4.

Подзадача №4: n = 5.

Подзадача №5: n = 10.

Подзадача №6: n = 20.

Подзадача №7: n = 30.

1.4.4 Нахождение ошибки оптимизации

Пусть в результате работы алгоритма оптимизации за N запусков мы нашли решения \bar{x}_{submin}^k со значениями целевой функции $f\left(\bar{x}_{submin}^k\right)$ соответственно $(k=\overline{1,N})$. Используем три вида ошибок:

Надёжность:

$$R = \frac{\sum_{k=1}^{N} S\left(\bar{x}_{submin}^{k}\right)}{N}, \text{ где}$$

$$S\left(\bar{x}_{submin}^{k}\right) = \begin{cases} 1, \text{ если } \left|\left(\bar{x}_{submin}^{k}\right)_{j} - (\bar{x}_{min})_{j}\right| < \varepsilon, j = \overline{1, n}; \\ 0, \text{ иначе.} \end{cases}$$

Ошибка по входным параметрам:

$$E_{x} = \frac{\sum_{k=1}^{N} \left(\frac{\sqrt{\sum_{j=1}^{n} \left(\left(\bar{x}_{submin}^{k}\right)_{j} - \left(\bar{x}_{min}\right)_{j}\right)^{2}}}{n} \right)}{N}.$$

Ошибка по значениям целевой функции:

$$E_f = \frac{\sum_{k=1}^{N} \left| f\left(\bar{x}_{submin}^k\right) - f\left(\bar{x}_{min}\right) \right|}{N}.$$

1.4.5 Свойства задачи

Условной или безусловной оптимиза- Задача безусловной оптимизации. **шии:**

Одномерной или многомерной опти- Многомерной: n. **мизации:**

Функция унимодальная или много- Функция многоэкстремальная. **экстремальная:**

Функция стохастическая или нет: Функция не стохастическая.

Особенности: Нет.

1.4.6 Реализация

Реализация функции библиотеки Harrix Math Library взята ИЗ В раздефункции «Тестовые для оптимизации», которую МОЖНО найти ПО адресу https://github.com/Harrix/HarrixMathLibrary.

```
Код 1.4. Код функции MHL_TestFunction_Rastrigin
double MHL TestFunction Rastrigin(double *x, int VMHL N)
{
/*
Функция многих переменных: функция Растригина.
Тестовая функция вещественной оптимизации.
Входные параметры:
 х - указатель на исходный массив;
 VMHL_N - pasmep maccuba x.
Возвращаемое значение:
 Значение тестовой функции в точке х.
double VMHL Result=0;
for (int i=0;i<VMHL_N;i++) VMHL_Result+=x[i]*x[i]-10.*cos(2.*MHL_PI*x[i]);</pre>
VMHL_Result+=10*VMHL N;
return VMHL Result;
}
```

1.4.7 Ссылки

Данная функция приводится в следующих источниках:

- 1. [4] Rastrigin function.
- 2. [5] Non-linear Continuous Multi-Extremal Optimization.
- 3. [6] Parametric Optimization.

1.5 Функция Розенброка

1.5.1 Описание функции

Идентификатор: MHL_TestFunction_Rosenbrock.

Наименование: Функция Розенброка.

Тип: Задача вещественной оптимизации.

Формула (целевая функция):

$$f(\bar{x}) = \sum_{i=1}^{n-1} \left(100 \left(\bar{x}_{i+1} - \bar{x}_i^2 \right)^2 + \left(1 - \bar{x}_i \right)^2 \right), \text{ где}$$
 (1.5)

 $\bar{x} \in X$, $\bar{x}_j \in [Left_j; Right_j]$, $Left_j = -2$, $Right_j = 2$, $j = \overline{1, n}$.

Обозначение: \bar{x} — вещественный вектор;

n — размерность вещественного вектора.

Решаемая задача оптимизации: $\bar{x}_{min} = \arg\min_{\bar{x} \in X} f(\bar{x}).$

Точка минимума: $\bar{x}_{min} = (1, 1, \dots, 1)^{\mathrm{T}}$, то есть $(\bar{x}_{min})_j = 1$ $(j = \overline{1, n})$.

Минимум функции: $f\left(\bar{x}_{min}\right)=0.$

График: Рисунок 1.5 нас 23 стр.

Рисунок 1.5. Функция Розенброка

1.5.2 Параметры для алгоритмов оптимизации

Точность вычислений: $\varepsilon = 0.01$.

Число интервалов, на которые пред- $NumberOfParts_i = 4095 \ (j = \overline{1, n}).$ полагается разбивать каждую компоненту вектора \bar{x} в пределах своего изменения (для алгоритмов дискретной оптимизации):

Для этого длина бинарной строки для x_i координаты равна (для алгоритмов бинарной оптимизации):

 $(k_2)_i = 12 \ (j = \overline{1,n}).$

Замечание: $NumberOfParts_i$ выбирается как минимальное число, удовлетворяющее соотношению:

$$NumberOfParts_{j}=2^{(k_{2})_{j}}-1\geq\frac{10\left(Right_{j}-Left_{j}\right)}{\varepsilon}, \text{где }\left(k_{2}\right)_{j}\in\mathbb{N},\left(j=\overline{1,n}\right).$$

1.5.3 Основная задача и подзадачи

Изменяемый параметр: n — размерность вещественного вектора.

Значение в основной задаче: n=2.

Подзадача №2: n=3.

Подзадача №3: n=4.

Подзадача №4: n=5.

Подзадача №5: n = 10.

Подзадача №6: n = 20.

Подзадача №7: n = 30.

1.5.4 Нахождение ошибки оптимизации

Пусть в результате работы алгоритма оптимизации за N запусков мы нашли решения \bar{x}_{submin}^k со значениями целевой функции $f\left(\bar{x}_{submin}^k\right)$ соответственно $(k=\overline{1,N})$. Используем три вида ошибок:

Надёжность:

$$R = \frac{\sum_{k=1}^{N} S\left(\bar{x}_{submin}^{k}\right)}{N}, \text{ где}$$

$$S\left(\bar{x}_{submin}^{k}\right) = \begin{cases} 1, \text{ если } \left|\left(\bar{x}_{submin}^{k}\right)_{j} - (\bar{x}_{min})_{j}\right| < \varepsilon, j = \overline{1, n}; \\ 0, \text{ иначе.} \end{cases}$$

Ошибка по входным параметрам:

$$E_{x} = \frac{\sum_{k=1}^{N} \left(\frac{\sqrt{\sum_{j=1}^{n} \left(\left(\bar{x}_{submin}^{k} \right)_{j} - \left(\bar{x}_{min} \right)_{j} \right)^{2}}}{n} \right)}{N}.$$

Ошибка по значениям целевой функции:

$$E_f = \frac{\sum_{k=1}^{N} \left| f\left(\bar{x}_{submin}^k\right) - f\left(\bar{x}_{min}\right) \right|}{N}.$$

1.5.5 Свойства задачи

Условной или безусловной оптимиза- Задача безусловной оптимизации. **шии:**

Одномерной или многомерной опти- Многомерной: n. **мизации:**

Функция унимодальная или много- Функция многоэкстремальная. **экстремальная:**

Функция стохастическая или нет: Функция не стохастическая.

Особенности: Нет.

1.5.6 Реализация

Реализация Harrix Math Library функции библиотеки взята В ИЗ разде-«Тестовые функции найти ДЛЯ оптимизации», которую ПО адресу https://github.com/Harrix/HarrixMathLibrary.

```
Код 1.5. Код функции MHL_TestFunction_Rosenbrock

double MHL_TestFunction_Rosenbrock(double *x, int VMHL_N)

{
/*
```

```
Функция многих переменных: функция Розенброка.

Тестовая функция вещественной оптимизации.

Входные параметры:

x - указатель на исходный массив;

VMHL_N - размер массива х.

Возвращаемое значение:

Значение тестовой функции в точке х.

*/

double VMHL_Result=0;

for (int i=0;i<VMHL_N-1;i++) VMHL_Result+=100.*(x[i+1]-x[i]*x[i])*(x[i+1]-x[i]*x[i])

+(1.-x[i])*(1.-x[i]);

return VMHL_Result;

}
```

1.5.7 Ссылки

Данная функция приводится в следующих источниках:

1. [7] — Rosenbrock function.

2. [8] — Rosenbrock Function.

1.6 Функция Развернутый гипер-эллипсоид

1.6.1 Описание функции

Идентификатор: MHL_TestFunction_RotatedHyperEllipsoid.

Наименование: Развернутый гипер-эллипсоид.

Тип: Задача вещественной оптимизации.

Формула (целевая функция):

$$f(\bar{x}) = \sum_{i=1}^{n} \left(\sum_{j=1}^{j} \bar{x}_{j}\right)^{2}$$
, где (1.6)

 $\bar{x} \in X$, $\bar{x}_j \in [Left_j; Right_j]$, $Left_j = -5$, $Right_j = 5$, $j = \overline{1, n}$.

Обозначение: \bar{x} — вещественный вектор;

n — размерность вещественного вектора.

Решаемая задача оптимизации: $\bar{x}_{min} = \arg\min_{\bar{x} \in X} f(\bar{x}).$

Точка минимума: $\bar{x}_{min} = (0, 0, \dots, 0)^{\mathrm{T}}$, то есть $(\bar{x}_{min})_{j} = 0$ $(j = \overline{1, n})$.

Минимум функции: $f(\bar{x}_{min}) = 0.$

График: Рисунок 1.6 нас 26 стр.

Рисунок 1.6. Развернутый гипер-эллипсоид

1.6.2 Параметры для алгоритмов оптимизации

Точность вычислений: $\varepsilon = 0.025$.

Число интервалов, на которые предполагается разбивать каждую компоненту вектора \bar{x} в пределах своего изменения (для алгоритмов дискретной оптимизации) :

 $NumberOfParts_j = 4095 \ (j = \overline{1, n}).$

Для этого длина бинарной строки для x_j **координаты равна** (для алгоритмов бинарной оптимизации) :

 $(k_2)_j = 12 \ (j = \overline{1,n}).$

Замечание: $NumberOfParts_j$ выбирается как минимальное число, удовлетворяющее соотношению:

$$NumberOfParts_{j}=2^{(k_{2})_{j}}-1\geq \frac{10\left(Right_{j}-Left_{j}\right)}{\varepsilon},$$
где $\left(k_{2}\right)_{j}\in\mathbb{N},\left(j=\overline{1,n}\right).$

1.6.3 Основная задача и подзадачи

Изменяемый параметр: n — размерность вещественного вектора.

Значение в основной задаче: n=2.

Подзадача №2: n=3.

Подзадача №3: n=4.

Подзадача №4: n = 5.

Подзадача №**5**: n = 10.

Подзадача №6: n = 20.

Подзадача №7: n = 30.

1.6.4 Нахождение ошибки оптимизации

Пусть в результате работы алгоритма оптимизации за N запусков мы нашли решения \bar{x}_{submin}^k со значениями целевой функции $f\left(\bar{x}_{submin}^k\right)$ соответственно $(k=\overline{1,N})$. Используем три вида ошибок:

Надёжность:

$$R = \frac{\sum_{k=1}^{N} S\left(\bar{x}_{submin}^{k}\right)}{N}, \text{ где}$$

$$S\left(\bar{x}_{submin}^{k}\right) = \begin{cases} 1, \text{ если } \left|\left(\bar{x}_{submin}^{k}\right)_{j} - (\bar{x}_{min})_{j}\right| < \varepsilon, j = \overline{1, n}; \\ 0, \text{ иначе.} \end{cases}$$

Ошибка по входным параметрам:

$$E_{x} = \frac{\sum_{k=1}^{N} \left(\frac{\sqrt{\sum_{j=1}^{n} \left(\left(\bar{x}_{submin}^{k}\right)_{j} - \left(\bar{x}_{min}\right)_{j}\right)^{2}}}{n} \right)}{N}.$$

Ошибка по значениям целевой функции:

$$E_f = \frac{\sum_{k=1}^{N} \left| f\left(\bar{x}_{submin}^k\right) - f\left(\bar{x}_{min}\right) \right|}{N}.$$

1.6.5 Свойства задачи

Условной или безусловной оптимиза- Задача безусловной оптимизации. **шии:**

Одномерной или многомерной опти- Многомерной: n. **мизации:**

Функция унимодальная или много- Функция унимодальная. **экстремальная:**

Функция стохастическая или нет: Функция не стохастическая.

Особенности: Нет.

1.6.6 Реализация

Реализация Harrix Math Library функции библиотеки взята ИЗ В разде-«Тестовые функции найти ДЛЯ оптимизации», которую ПО адресу https://github.com/Harrix/HarrixMathLibrary.

```
Код 1.6. Код функции MHL_TestFunction_RotatedHyperEllipsoid

double MHL_TestFunction_RotatedHyperEllipsoid(double *x, int VMHL_N)

{
/*
```

```
Функция многих переменных: Развернутый гипер-эллипсоид.

Тестовая функция вещественной оптимизации.

Входные параметры:

x - указатель на исходный массив;

VMHL_N - размер массива х.

Возвращаемое значение:

Значение тестовой функции в точке х.

*/

double VMHL_Result=0;

double f;

for (int i=0;i<VMHL_N;i++)

{
f=0;
for (int j=0;j<i+1;j++)
    f += x[j];

VMHL_Result += f*f;
}

return VMHL_Result;
}
```

1.6.7 Ссылки

Данная функция приводится в следующих источниках:

1. [9, стр. 4] — GEATbx Examples. Examples of Objective Functions.

Обратите внимание, что иногда под названием Rotated Hyper Ellipsoid встречается (например, [10]) неправильно записанная функция в виде:

$$f\left(ar{x}
ight) = \sum_{i=1}^{n} \sum_{j=1}^{j} ar{x}_{j}^{2}$$
, где

Данная функция не является развернутой по своему внешнему виду, поэтому автор склонен считать эту реализацию ошибочной.

1.7 Аддитивная потенциальная функция

1.7.1 Описание функции

Идентификатор: MHL_TestFunction_AdditivePotential.

Наименование: Аддитивная потенциальная функция.

Тип: Задача вещественной оптимизации.

Формула (целевая функция):

$$f(\bar{x}) = z(\bar{x}_1) + z(\bar{x}_2)$$
, где (1.7)

$$z(v) = -\frac{1}{(v-1)^2 + 0.2} - \frac{1}{2(v-2)^2 + 0.15} - \frac{1}{3(v-3)^2 + 0.3},$$

 $\bar{x}\in X,\,\bar{x}_j\in [Left_j;Right_j],\,Left_j=0,\,Right_j=4,\,j=\overline{1,n},\,n=2.$

Обозначение:

 \bar{x} — вещественный вектор;

n = 2 — размерность вещественного вектора.

Решаемая задача оптимизации:

 $\bar{x}_{min} = \arg\min_{\bar{x} \in X} f(\bar{x}).$

Точка минимума:

 $\bar{x}_{min} = (2,2)^{\mathrm{T}}$, то есть $(\bar{x}_{min})_{j} = 2$ $(j = \overline{1,n})$.

Минимум функции:

 $f(\bar{x}_{min}) = -15.60606060606060606$.

График:

Рисунок 1.7 нас 29 стр.

Рисунок 1.7. Аддитивная потенциальная функция

1.7.2 Параметры для алгоритмов оптимизации

Точность вычислений:

 $\varepsilon = 0.01$.

Число интервалов, на которые предполагается разбивать каждую компоненту вектора \bar{x} в пределах своего изменения (для алгоритмов дискретной оптимизации) :

 $NumberOfParts_j = 4095 \ (j = \overline{1, n}).$

Для этого длина бинарной строки для x_j **координаты равна** (для алгоритмов бинарной оптимизации) :

 $(k_2)_j = 12 \ (j = \overline{1,n}).$

Замечание: $NumberOfParts_j$ выбирается как минимальное число, удовлетворяющее соотношению:

$$NumberOfParts_j = 2^{(k_2)_j} - 1 \ge \frac{10\left(Right_j - Left_j\right)}{\varepsilon},$$
где $(k_2)_j \in \mathbb{N}, \left(j = \overline{1,n}\right).$

1.7.3 Основная задача и подзадачи

Изменяемый параметр: n — размерность вещественного вектора.

Значение в основной задаче: n=2.

1.7.4 Нахождение ошибки оптимизации

Пусть в результате работы алгоритма оптимизации за N запусков мы нашли решения \bar{x}_{submin}^k со значениями целевой функции $f\left(\bar{x}_{submin}^k\right)$ соответственно $(k=\overline{1,N})$. Используем три вида ошибок:

Надёжность:

$$R = \frac{\sum_{k=1}^{N} S\left(\bar{x}_{submin}^{k}\right)}{N}, \text{ где}$$

$$S\left(\bar{x}_{submin}^{k}\right) = \begin{cases} 1, \text{ если } \left|\left(\bar{x}_{submin}^{k}\right)_{j} - (\bar{x}_{min})_{j}\right| < \varepsilon, j = \overline{1, n}; \\ 0, \text{ иначе.} \end{cases}$$

Ошибка по входным параметрам:

$$E_{x} = \frac{\sum_{k=1}^{N} \left(\frac{\sqrt{\sum_{j=1}^{n} \left(\left(\bar{x}_{submin}^{k}\right)_{j} - \left(\bar{x}_{min}\right)_{j}\right)^{2}}}{n} \right)}{N}.$$

Ошибка по значениям целевой функции:

$$E_{f} = \frac{\sum_{k=1}^{N} \left| f\left(\bar{x}_{submin}^{k}\right) - f\left(\bar{x}_{min}\right) \right|}{N}.$$

1.7.5 Свойства задачи

Условной или безусловной оптимиза- Задача безусловной оптимизации.

Одномерной или многомерной опти- Многомерной (двумерной). **мизации:**

Функция унимодальная или много- Функция многоэкстремальная. **экстремальная:**

Функция стохастическая или нет: Функция не стохастическая.

Особенности: Нет.

1.7.6 Реализация

Реализация функции библиотеки Harrix Math Library взята ИЗ В разде-«Тестовые функции найти оптимизации», которую ОНЖОМ ДЛЯ ПО адресу https://github.com/Harrix/HarrixMathLibrary.

```
Kog 1.7. Kog функции MHL_TestFunction_AdditivePotential

double MHL_TestFunction_AdditivePotential(double x, double y)

{
    /*

Функция двух переменных: аддитивная потенциальная функция.

Тестовая функция вещественной оптимизации.

Входные параметры:
    x - первая вещественная переменная;
    y - вторая вещественная переменная.

Возвращаемое значение:
    3начение тестовой функции в точке (x, y).

*/

double VMHL_Result;

double z1=-(1./((x-1.)*(x-1.)+0.2))-(1./(2.*(x-2.)*(x-2.)+0.15))-(1./(3.*(x-3.)*(x-3.)+0.3));

double z2=-(1./((y-1.)*(y-1.)+0.2))-(1./(2.*(y-2.)*(y-2.)+0.15))-(1./(3.*(y-3.)*(y-3.)+0.3));

VMHL_Result=z1+z2;

return VMHL_Result;
}
```

1.7.7 Ссылки

Данная функция приводится в следующих источниках:

1. [11, стр. 33] — Эволюционные методы моделирования и оптимизации сложных систем.

1.8 Функция Химмельблау

1.8.1 Описание функции

Идентификатор: MHL_TestFunction_Himmelblau.

Наименование: Функция Химмельблау.

Тип: Задача вещественной оптимизации.

Формула (целевая функция):

$$f(\bar{x}) = (\bar{x}_1^2 + \bar{x}_2 - 11)^2 + (\bar{x}_1 + \bar{x}^2 - 7)^2$$
, где (1.8)

 $\bar{x} \in X$, $\bar{x}_i \in [Left_i; Right_i]$, $Left_i = -5$, $Right_i = 5$, $j = \overline{1, n}$, n = 2.

Обозначение:

 \bar{x} — вещественный вектор;

n = 2 — размерность вещественного вектора.

Решаемая задача оптимизации:

 $\bar{x}_{min} = \arg\min_{\bar{x} \in X} f(\bar{x}).$

Точки минимума:

 $\bar{x}_{min}^1 = (3,2)^{\mathrm{T}},$

 $\bar{x}_{min}^2 \approx (-2.8051183, 3.131312)^{\mathrm{T}}$

 $\bar{x}_{min}^3 \approx (-3.779310, -3.283186)^{\mathrm{T}}$

 $\bar{x}_{min}^4 \approx (3.584428, -1.848126)^{\mathrm{T}}.$

Минимум функции:

 $f\left(\bar{x}_{min}^{i}\right) = 0, \ i = \overline{1,4}.$

График:

Рисунок 1.8 нас 32 стр.

Рисунок 1.8. Функция Химмельблау

1.8.2 Параметры для алгоритмов оптимизации

Точность вычислений:

 $\varepsilon = 0.025$.

Число интервалов, на которые предполагается разбивать каждую компоненту вектора \bar{x} в пределах своего изменения (для алгоритмов дискретной оптимизации) :

 $NumberOfParts_j = 4095 \ (j = \overline{1, n}).$

Для этого длина бинарной строки для x_j **координаты равна** (для алгоритмов бинарной оптимизации) :

 $(k_2)_j = 12 \ (j = \overline{1,n}).$

Замечание: $NumberOfParts_j$ выбирается как минимальное число, удовлетворяющее соотношению:

$$NumberOfParts_{j}=2^{(k_{2})_{j}}-1\geq\frac{10\left(Right_{j}-Left_{j}\right)}{\varepsilon}, \text{где }\left(k_{2}\right)_{j}\in\mathbb{N},\left(j=\overline{1,n}\right).$$

1.8.3 Основная задача и подзадачи

Изменяемый параметр: n — размерность вещественного вектора.

Значение в основной задаче: n = 2.

1.8.4 Нахождение ошибки оптимизации

Внимание! В отличии от других функций формулы нахождения ошибок другие, так как есть несколько идентичных по значению целевой функции глобальных минимумов.

Пусть в результате работы алгоритма оптимизации за N запусков мы нашли решения \bar{x}_{submin}^k со значениями целевой функции $f\left(\bar{x}_{submin}^k\right)$ соответственно $(k=\overline{1,N})$. Используем три вида ошибок:

Надёжность:

$$R = \frac{\sum_{k=1}^{N} S\left(\bar{x}_{submin}^{k}\right)}{N}, \text{ где}$$

$$\begin{cases} 1, \text{ если } \left|\left(\bar{x}_{submin}^{k}\right)_{j} - \left(\bar{x}_{min}^{1}\right)_{j}\right| < \varepsilon, j = \overline{1, n}; \\ 1, \text{ если } \left|\left(\bar{x}_{submin}^{k}\right)_{j} - \left(\bar{x}_{min}^{2}\right)_{j}\right| < \varepsilon, j = \overline{1, n}; \\ 1, \text{ если } \left|\left(\bar{x}_{submin}^{k}\right)_{j} - \left(\bar{x}_{min}^{3}\right)_{j}\right| < \varepsilon, j = \overline{1, n}; \\ 1, \text{ если } \left|\left(\bar{x}_{submin}^{k}\right)_{j} - \left(\bar{x}_{min}^{4}\right)_{j}\right| < \varepsilon, j = \overline{1, n}; \\ 0, \text{ иначе.} \end{cases}$$

Ошибка по входным параметрам:

$$E_x = \min_{i=\overline{1,4}} \left\{ \frac{\sum_{k=1}^{N} \left(\frac{\sqrt{\sum_{j=1}^{n} \left(\left(\bar{x}_{submin}^k \right)_j - \left(\bar{x}_{min}^i \right)_j \right)^2}}{n} \right)}{N} \right\}.$$

Ошибка по значениям целевой функции: (без изменений)

$$E_f = \frac{\sum_{k=1}^{N} \left| f\left(\bar{x}_{submin}^k\right) - f\left(\bar{x}_{min}\right) \right|}{N}.$$

1.8.5 Свойства задачи

Условной или безусловной оптимиза- Задача безусловной оптимизации. **ции:**

Одномерной или многомерной опти- Многомерной: (двумерной).

мизации:

Функция унимодальная или много- Функция многоэкстремальная.

экстремальная:

Функция стохастическая или нет: Функция не стохастическая.

Особенности: Есть 4 глобальных минимума.

1.8.6 Реализация

Реализация функции библиотеки Harrix Math Library взята ИЗ В раздефункции «Тестовые ДЛЯ оптимизации», которую МОЖНО найти ПО адресу https://github.com/Harrix/HarrixMathLibrary.

```
Kog 1.8. Kog функции MHL_TestFunction_Himmelblau

double MHL_TestFunction_Himmelblau(double x, double y)

{
    /*

    Функция двух переменных: функция Химмельблау.
    Tестовая функция вещественной оптимизации.
    Bходные параметры:
        х - первая вещественная переменная;
        у - вторая вещественная переменная.
    Bозвращаемое значение:
        Значение тестовой функции в точке (x,y).

*/

double VMHL_Result;

VMHL_Result=(x*x+y-11)*(x*x+y-11)+(x+y*y-7)*(x+y*y-7);

return VMHL_Result;

}
```

1.8.7 Ссылки

Данная функция приводится в следующих источниках:

- 1. [12] Himmelblau's function.
- 2. [13] Minimization of the Himmelblau Function.

1.9 Функция Катникова

1.9.1 Описание функции

Идентификатор: MHL_TestFunction_Katnikov.

Наименование: Функция Катникова.

Тип: Задача вещественной оптимизации.

Формула (целевая функция):

$$f(\bar{x}) = 0.5 \left(\bar{x}_1^2 + \bar{x}_2^2\right) \left(2A + A\cos\left(1.5\bar{x}_1\right)\cos\left(3.14\bar{x}_2\right) + A\cos\left(\sqrt{5}\bar{x}_1\right)\cos\left(3.5\bar{x}_2\right)\right), \text{ где}$$
 (1.9)
$$\bar{x} \in X, \ \bar{x}_j \in [Left_j; Right_j], \ Left_j = -5, \ Right_j = 5, \ j = \overline{1,n}, \ n = 2, \ A = 0.8.$$

Обозначение: \bar{x} — вещественный вектор;

n=2 — размерность вещественного вектора.

Решаемая задача оптимизации: $\bar{x}_{min} = \arg\min_{\bar{x} \in X} f(\bar{x}).$

Точка минимума: $\bar{x}_{min} = (0,0)^{\mathrm{T}}$, то есть $(\bar{x}_{min})_j = 0$ $(j = \overline{1,n})$.

Минимум функции: $f(\bar{x}_{min}) = 0.$

График: Рисунок 1.9 нас 35 стр.

Рисунок 1.9. Функция Катникова

1.9.2 Параметры для алгоритмов оптимизации

Точность вычислений:

$$\varepsilon = 0.025$$
.

Число интервалов, на которые предполагается разбивать каждую компоненту вектора \bar{x} в пределах своего изменения (для алгоритмов дискретной оптимизации):

 $NumberOfParts_{i} = 4095 \ (j = \overline{1, n}).$

Для этого длина бинарной строки для $(k_2)_i = 12 \ (j = \overline{1,n}).$ x_{i} координаты равна (для алгоритмов

$$(k_2)_j = 12 \ (j = \overline{1,n})$$

бинарной оптимизации):

Замечание: $NumberOfParts_i$ выбирается как минимальное число, удовлетворяющее соотношению:

$$NumberOfParts_{j}=2^{(k_{2})_{j}}-1\geq\frac{10\left(Right_{j}-Left_{j}\right)}{\varepsilon},$$
где $\left(k_{2}\right)_{j}\in\mathbb{N},\left(j=\overline{1,n}\right).$

1.9.3 Основная задача и подзадачи

Изменяемый параметр:

n — размерность вещественного вектора.

Значение в основной задаче:

n=2.

Нахождение ошибки оптимизации

Пусть в результате работы алгоритма оптимизации за N запусков мы нашли решения $ar{x}^k_{submin}$ со значениями целевой функции $f\left(\bar{x}_{submin}^k\right)$ соответственно $(k=\overline{1,N})$. Используем три вида ошибок:

Надёжность:

$$R = \frac{\sum_{k=1}^{N} S\left(\bar{x}_{submin}^{k}\right)}{N}, \text{ где}$$

$$S\left(\bar{x}_{submin}^{k}\right) = \begin{cases} 1, \text{ если } \left|\left(\bar{x}_{submin}^{k}\right)_{j} - (\bar{x}_{min})_{j}\right| < \varepsilon, j = \overline{1, n}; \\ 0, \text{ иначе.} \end{cases}$$

Ошибка по входным параметрам:

$$E_{x} = \frac{\sum_{k=1}^{N} \left(\frac{\sqrt{\sum_{j=1}^{n} \left(\left(\bar{x}_{submin}^{k}\right)_{j} - \left(\bar{x}_{min}\right)_{j}\right)^{2}}}{n} \right)}{N}.$$

Ошибка по значениям целевой функции:

$$E_f = \frac{\sum_{k=1}^{N} \left| f\left(\bar{x}_{submin}^k\right) - f\left(\bar{x}_{min}\right) \right|}{N}.$$

1.9.5 Свойства задачи

Условной или безусловной оптимиза- Задача безусловной оптимизации. **ции:**

Одномерной или многомерной опти- Многомерной: (двумерной).

мизации:

Функция унимодальная или много- Функция многоэкстремальная.

экстремальная:

Функция стохастическая или нет: Функция не стохастическая.

Особенности: Нет.

1.9.6 Реализация

Реализация функции библиотеки Harrix Math Library взята ИЗ В разде-«Тестовые функции ДЛЯ оптимизации», которую ОНЖОМ найти ПО адресу https://github.com/Harrix/HarrixMathLibrary.

```
Kog 1.9. Kog функции MHL_TestFunction_Katnikov

double MHL_TestFunction_Katnikov(double x, double y)
{
/*

Функция двух переменных: функция Катникова.
Тестовая функция вещественной оптимизации.
Входные параметры:

x - первая вещественная переменная;
y - вторая вещественная переменная.
Возвращаемое значение:
Значение тестовой функции в точке (x, y).

*/

double VMHL_Result;
double A=0.8;
VMHL_Result=0.5*(x*x+y*y)*(2*A+A*cos(1.5*x)*cos(3.14*y)+A*cos(sqrt(5)*x)*cos(3.5*y));
return VMHL_Result;
}
```

1.9.7 Ссылки

Данная функция приводится в следующих источниках:

1. [11, стр. 31] — Эволюционные методы моделирования и оптимизации сложных систем.

1.10 Функция Multiextremal3

1.10.1 Описание функции

Идентификатор: MHL_TestFunction_Multiextremal3.

Наименование: Функция Multiextremal3.

Тип: Задача вещественной оптимизации.

Формула (целевая функция):

$$f(\bar{x}) = \bar{x}_1^2 |\sin(2\bar{x}_1)| + \bar{x}_2^2 |\sin(2\bar{x}_2)| - \frac{1}{5\bar{x}_1^2 + 5\bar{x}_2^2 + 0.2} + 5, \text{ где}$$
 (1.10)

 $\bar{x} \in X, \ \bar{x}_j \in [Left_j; Right_j], \ Left_j = -5, \ Right_j = 5, \ j = \overline{1,n}, \ n = 2.$

Обозначение: \bar{x} — вещественный вектор;

n=2 — размерность вещественного вектора.

Решаемая задача оптимизации: $\bar{x}_{min} = \arg\min_{\bar{x} \in X} f(\bar{x}).$

Точка минимума: $\bar{x}_{min} = (0,0)^{\mathrm{T}}$, то есть $(\bar{x}_{min})_j = 0$ $(j = \overline{1,n})$.

Минимум функции: $f(\bar{x}_{min}) = 0.$

График: Рисунок 1.10 нас 38 стр.

Рисунок 1.10. Функция Multiextremal3

1.10.2 Параметры для алгоритмов оптимизации

Точность вычислений:

$$\varepsilon = 0.025$$
.

Число интервалов, на которые предполагается разбивать каждую компоненту вектора \bar{x} в пределах своего изменения (для алгоритмов дискретной оптимизации):

 $NumberOfParts_{i} = 4095 \ (j = \overline{1, n}).$

Для этого длина бинарной строки для $(k_2)_i = 12 \ (j = \overline{1,n}).$ x_{i} координаты равна (для алгоритмов

$$(k_2)_j = 12 \ (j = \overline{1, n}).$$

бинарной оптимизации):

Замечание: $NumberOfParts_i$ выбирается как минимальное число, удовлетворяющее соотношению:

$$NumberOfParts_{j}=2^{(k_{2})_{j}}-1\geq \frac{10\left(Right_{j}-Left_{j}\right)}{\varepsilon},$$
где $\left(k_{2}\right)_{j}\in\mathbb{N},\left(j=\overline{1,n}\right).$

1.10.3 Основная задача и подзадачи

Изменяемый параметр:

n — размерность вещественного вектора.

Значение в основной задаче:

n=2.

Нахождение ошибки оптимизации

Пусть в результате работы алгоритма оптимизации за N запусков мы нашли решения \bar{x}_{submin}^k со значениями целевой функции $f\left(\bar{x}_{submin}^k\right)$ соответственно $(k=\overline{1,N})$. Используем три вида ошибок:

Надёжность:

$$R = \frac{\sum_{k=1}^{N} S\left(\bar{x}_{submin}^{k}\right)}{N}, \text{ где}$$

$$S\left(\bar{x}_{submin}^{k}\right) = \begin{cases} 1, \text{ если } \left|\left(\bar{x}_{submin}^{k}\right)_{j} - (\bar{x}_{min})_{j}\right| < \varepsilon, j = \overline{1, n}; \\ 0, \text{ иначе.} \end{cases}$$

Ошибка по входным параметрам:

$$E_{x} = \frac{\sum_{k=1}^{N} \left(\frac{\sqrt{\sum_{j=1}^{n} \left(\left(\bar{x}_{submin}^{k}\right)_{j} - \left(\bar{x}_{min}\right)_{j}\right)^{2}}}{n} \right)}{N}.$$

$$E_f = \frac{\sum_{k=1}^{N} \left| f\left(\bar{x}_{submin}^k\right) - f\left(\bar{x}_{min}\right) \right|}{N}.$$

1.10.5 Свойства задачи

Условной или безусловной оптимиза- Задача безусловной оптимизации. **ции:**

Одномерной или многомерной опти- Многомерной: (двумерной).

мизации:

Функция унимодальная или много- Функция многоэкстремальная.

экстремальная:

Функция стохастическая или нет: Функция не стохастическая.

Особенности: Нет.

1.10.6 Реализация

Реализация функции библиотеки Harrix Math Library взята ИЗ В разде-«Тестовые функции ДЛЯ оптимизации», которую МОЖНО найти ПО адресу https://github.com/Harrix/HarrixMathLibrary.

```
Kog 1.10. Kog функции MHL_TestFunction_Multiextremal3

double MHL_TestFunction_Multiextremal3(double x, double y)

{
/*

Функция двух переменных: функция Multiextremal3.

Тестовая функция вещественной оптимизации.

Входные параметры:

x - первая вещественная переменная;

y - вторая вещественная переменная.

Возвращаемое значение:

Значение тестовой функции в точке (x,y).

*/

double VMHL_Result;

VMHL_Result=x*x*fabs(sin(2.*x))+y*y*fabs(sin(2.*y))-1./(5.*x*x+5.*y*y+0.2)+5.;

return VMHL_Result;

}
```

1.10.7 Ссылки

Данная функция приводится в следующих источниках:

1. [11, стр. 31] — Эволюционные методы моделирования и оптимизации сложных систем.

1.11 Функция Multiextremal4

1.11.1 Описание функции

Идентификатор: MHL_TestFunction_Multiextremal4.

Наименование: Функция Multiextremal4.

Тип: Задача вещественной оптимизации.

Формула (целевая функция):

$$f(\bar{x}) = 0.5 \left(\bar{x}_1^2 + \bar{x}_1 \bar{x}_2 + \bar{x}_2^2\right) \left(1 + 0.5 \cos\left(1.5 \bar{x}_1\right) \cos\left(3.2 \bar{x}_1 \bar{x}_2\right) \cos\left(3.14 \bar{x}_2\right) + \\ + 0.5 \cos\left(2.2 \bar{x}_1\right) \cos\left(4.8 \bar{x}_1 \bar{x}_2\right) \cos\left(3.5 \bar{x}_2\right)\right), \text{ где}$$

$$(1.11)$$

 $\bar{x} \in X, \ \bar{x}_j \in [Left_j; Right_j], \ Left_j = 0, \ Right_j = 4, \ j = \overline{1,n}, \ n = 2.$

Обозначение: \bar{x} — вещественный вектор;

n = 2 — размерность вещественного вектора.

Решаемая задача оптимизации: $\bar{x}_{min} = \arg\min_{\bar{x} \in X} f(\bar{x}).$

Точка минимума: $\bar{x}_{min} = (0,0)^{\mathrm{T}}$, то есть $(\bar{x}_{min})_j = 0$ $(j = \overline{1,n})$.

Минимум функции: $f(\bar{x}_{min}) = 0.$

График: Рисунок 1.11 нас 41 стр.

Рисунок 1.11. Функция Multiextremal4

1.11.2 Параметры для алгоритмов оптимизации

Точность вычислений:

$$\varepsilon = 0.01$$
.

Число интервалов, на которые предполагается разбивать каждую компоненту вектора \bar{x} в пределах своего изменения (для алгоритмов дискретной оптимизации):

 $NumberOfParts_{i} = 4095 \ (j = \overline{1, n}).$

Для этого длина бинарной строки для $(k_2)_i = 12 \ (j = \overline{1,n}).$ x_{i} координаты равна (для алгоритмов бинарной оптимизации):

$$(k_2)_j = 12 \ (j = \overline{1,n})$$

Замечание: $NumberOfParts_i$ выбирается как минимальное число, удовлетворяющее соотношению:

$$NumberOfParts_{j}=2^{(k_{2})_{j}}-1\geq \frac{10\left(Right_{j}-Left_{j}\right)}{\varepsilon},$$
где $(k_{2})_{j}\in\mathbb{N},\left(j=\overline{1,n}\right).$

1.11.3 Основная задача и подзадачи

Изменяемый параметр:

n — размерность вещественного вектора.

Значение в основной задаче:

n=2.

Нахождение ошибки оптимизации

Пусть в результате работы алгоритма оптимизации за N запусков мы нашли решения \bar{x}_{submin}^k со значениями целевой функции $f\left(\bar{x}_{submin}^k\right)$ соответственно $(k=\overline{1,N})$. Используем три вида ошибок:

Надёжность:

$$R = \frac{\sum_{k=1}^{N} S\left(\bar{x}_{submin}^{k}\right)}{N}, \text{ где}$$

$$S\left(\bar{x}_{submin}^{k}\right) = \begin{cases} 1, \text{ если } \left|\left(\bar{x}_{submin}^{k}\right)_{j} - (\bar{x}_{min})_{j}\right| < \varepsilon, j = \overline{1, n}; \\ 0, \text{ иначе.} \end{cases}$$

Ошибка по входным параметрам:

$$E_{x} = \frac{\sum_{k=1}^{N} \left(\frac{\sqrt{\sum_{j=1}^{n} \left(\left(\bar{x}_{submin}^{k}\right)_{j} - \left(\bar{x}_{min}\right)_{j}\right)^{2}}}{n} \right)}{N}.$$

$$E_f = \frac{\sum_{k=1}^{N} \left| f\left(\bar{x}_{submin}^k\right) - f\left(\bar{x}_{min}\right) \right|}{N}.$$

1.11.5 Свойства задачи

Условной или безусловной оптимиза- Задача безусловной оптимизации. **ции:**

Одномерной или многомерной опти- Многомерной: (двумерной).

мизации:

Функция унимодальная или много- Функция многоэкстремальная.

экстремальная:

Функция стохастическая или нет: Функция не стохастическая.

Особенности: Нет.

1.11.6 Реализация

Реализация функции библиотеки Harrix Math Library взята ИЗ В разде-«Тестовые функции ДЛЯ оптимизации», которую ОНЖОМ найти ПО адресу https://github.com/Harrix/HarrixMathLibrary.

```
Kog 1.11. Kog функции MHL_TestFunction_Multiextremal4

double MHL_TestFunction_Multiextremal4(double x, double y)

{
/*

Функция двух переменных: функция Multiextremal4.

Тестовая функция вещественной оптимизации.

Вкодные параметры:

x - первая вещественная переменная;

y - вторая вещественная переменная.

Возвращаемое значение:

3начение тестовой функции в точке (x, y).

*/

double VMHL_Result;

VMHL_Result=0.5*(x*x+x*y+y*y)*(1.+0.5*cos(1.5*x)*cos(3.2*x*y)*cos(3.14*y)+0.5*cos
(2.2*x)*cos(4.8*x*y)*cos(3.5*y));

return VMHL_Result;

}
```

1.11.7 Ссылки

Данная функция приводится в следующих источниках:

1. [11, стр. 31] — Эволюционные методы моделирования и оптимизации сложных систем.

1.12 Мультипликативная потенциальная функция

1.12.1 Описание функции

Идентификатор: MHL_TestFunction_MultiplicativePotential.

Наименование: Мультипликативная потенциальная функция.

Тип: Задача вещественной оптимизации.

Формула (целевая функция):

$$f\left(\bar{x}\right) = -z\left(\bar{x}_{1}\right) \cdot z\left(\bar{x}_{2}\right), \text{ где}$$

$$z\left(v\right) = -\frac{1}{\left(v-1\right)^{2} + 0.2} - \frac{1}{2\left(v-2\right)^{2} + 0.15} - \frac{1}{3\left(v-3\right)^{2} + 0.3},$$
(1.12)

 $\bar{x} \in X$, $\bar{x}_j \in [Left_j; Right_j]$, $Left_j = 0$, $Right_j = 4$, $j = \overline{1, n}$, n = 2.

Обозначение: \bar{x} — вещественный вектор;

n=2 — размерность вещественного вектора.

Решаемая задача оптимизации: $\bar{x}_{min} = \arg\min_{\bar{x} \in X} f(\bar{x}).$

Точка минимума: $\bar{x}_{min} = (2,2)^{\mathrm{T}}$, то есть $(\bar{x}_{min})_j = 2$ $(j = \overline{1,n})$.

Минимум функции: $f(\bar{x}_{min}) = -60.8872819100091.$

График: Рисунок 1.12 нас 44 стр.

Рисунок 1.12. Мультипликативная потенциальная функция

1.12.2 Параметры для алгоритмов оптимизации

Точность вычислений:

$$\varepsilon = 0.01$$
.

Число интервалов, на которые предполагается разбивать каждую компоненту вектора \bar{x} в пределах своего изменения (для алгоритмов дискретной оптимизации):

 $NumberOfParts_{i} = 4095 \ (j = \overline{1, n}).$

Для этого длина бинарной строки для $(k_2)_i = 12 \ (j = \overline{1,n}).$ x_{i} координаты равна (для алгоритмов бинарной оптимизации):

$$(k_2)_j = 12 \ (j = \overline{1,n})$$

Замечание: $NumberOfParts_i$ выбирается как минимальное число, удовлетворяющее соотношению:

$$NumberOfParts_{j}=2^{(k_{2})_{j}}-1\geq \frac{10\left(Right_{j}-Left_{j}\right)}{\varepsilon},$$
где $(k_{2})_{j}\in\mathbb{N},\left(j=\overline{1,n}\right).$

1.12.3 Основная задача и подзадачи

Изменяемый параметр:

n — размерность вещественного вектора.

Значение в основной задаче:

n=2.

Нахождение ошибки оптимизации

Пусть в результате работы алгоритма оптимизации за N запусков мы нашли решения \bar{x}_{submin}^k со значениями целевой функции $f\left(\bar{x}_{submin}^k\right)$ соответственно $(k=\overline{1,N})$. Используем три вида ошибок:

Надёжность:

$$R = \frac{\sum_{k=1}^{N} S\left(\bar{x}_{submin}^{k}\right)}{N}, \text{ где}$$

$$S\left(\bar{x}_{submin}^{k}\right) = \begin{cases} 1, \text{ если } \left|\left(\bar{x}_{submin}^{k}\right)_{j} - (\bar{x}_{min})_{j}\right| < \varepsilon, j = \overline{1, n}; \\ 0, \text{ иначе.} \end{cases}$$

Ошибка по входным параметрам:

$$E_{x} = \frac{\sum_{k=1}^{N} \left(\frac{\sqrt{\sum_{j=1}^{n} \left(\left(\bar{x}_{submin}^{k}\right)_{j} - \left(\bar{x}_{min}\right)_{j}\right)^{2}}}{n} \right)}{N}.$$

$$E_f = \frac{\sum_{k=1}^{N} \left| f\left(\bar{x}_{submin}^k\right) - f\left(\bar{x}_{min}\right) \right|}{N}.$$

1.12.5 Свойства задачи

Условной или безусловной оптимиза- Задача безусловной оптимизации. **ции:**

Одномерной или многомерной опти- Многомерной: (двумерной). **мизации:**

Функция унимодальная или много- Функция многоэкстремальная. **экстремальная:**

Функция стохастическая или нет: Функция не стохастическая.

Особенности: Нет.

1.12.6 Реализация

Реализация функции библиотеки Harrix Math Library взята ИЗ В разде-«Тестовые функции ДЛЯ оптимизации», которую ОНЖОМ найти ПО адресу https://github.com/Harrix/HarrixMathLibrary.

```
double MHL TestFunction MultiplicativePotential(double x, double y)
/*
Функция двух переменных: мультипликативная потенциальная функция.
Тестовая функция вещественной оптимизации.
Входные параметры:
      х - первая вещественная переменная;
      у - вторая вещественная переменная.
Возвращаемое значение:
       Значение тестовой функции в точке (x, y).
*/
double VMHL Result;
double z1=-(1./((x-1.)*(x-1.)+0.2))-(1./(2.*(x-2.)*(x-2.)+0.15))-(1./(3.*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x-3.)*(x
                          -3.)+0.3));
double z_{2}=(1./((y-1.)*(y-1.)+0.2))-(1./(2.*(y-2.)*(y-2.)+0.15))-(1./(3.*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*(y-3.)*
                      -3.)+0.3));
VMHL_Result=-z1*z2;
return VMHL_Result;
```

1.12.7 Ссылки

Данная функция приводится в следующих источниках:

1. [11, стр. 32] — Эволюционные методы моделирования и оптимизации сложных систем.

1.13 Функция ReverseGriewank

1.13.1 Описание функции

Идентификатор: MHL_TestFunction_ReverseGriewank.

Наименование: Функция ReverseGriewank.

Тип: Задача вещественной оптимизации.

Формула (целевая функция):

$$f(\bar{x}) = \frac{1}{\frac{\bar{x}_1^2 + \bar{x}_2^2}{200} - \cos(\bar{x}_0)\cos(\frac{\bar{x}_2}{\sqrt{2}}) + 2}, \text{ где}$$
 (1.13)

 $\bar{x}\in X,\,\bar{x}_j\in [Left_j;Right_j],\,Left_j=-10,\,Right_j=10,\,j=\overline{1,n},\,n=2.$

Обозначение: \bar{x} — вещественный вектор;

n=2 — размерность вещественного вектора.

Решаемая задача оптимизации: $\bar{x}_{max} = \arg\max_{\bar{x} \in X} f(\bar{x}).$

Точка максимума: $\bar{x}_{max} = (0,0)^{\mathrm{T}}$, то есть $(\bar{x}_{max})_j = 0$ $(j = \overline{1,n})$.

Максимум функции: $f\left(\bar{x}_{max}\right)=1.$

График: Рисунок 1.13 нас 47 стр.

Рисунок 1.13. Функция ReverseGriewank

1.13.2 Параметры для алгоритмов оптимизации

Точность вычислений:

$$\varepsilon = 0.05$$
.

Число интервалов, на которые предполагается разбивать каждую компоненту вектора \bar{x} в пределах своего изменения (для алгоритмов дискретной оптимизации):

 $NumberOfParts_{i} = 4095 \ (j = \overline{1, n}).$

Для этого длина бинарной строки для $(k_2)_i = 12 \ (j = \overline{1,n}).$ x_{i} координаты равна (для алгоритмов бинарной оптимизации):

$$(k_2)_j = 12 \ (j = \overline{1,n})$$

Замечание: $NumberOfParts_i$ выбирается как минимальное число, удовлетворяющее соотношению:

$$NumberOfParts_{j}=2^{(k_{2})_{j}}-1\geq \frac{10\left(Right_{j}-Left_{j}\right)}{\varepsilon},$$
где $\left(k_{2}\right)_{j}\in\mathbb{N},\left(j=\overline{1,n}\right).$

1.13.3 Основная задача и подзадачи

Изменяемый параметр:

n — размерность вещественного вектора.

Значение в основной задаче:

n=2.

Нахождение ошибки оптимизации

Пусть в результате работы алгоритма оптимизации за N запусков мы нашли решения \bar{x}_{submin}^k со значениями целевой функции $f\left(\bar{x}_{submin}^k\right)$ соответственно $(k=\overline{1,N})$. Используем три вида ошибок:

Надёжность:

$$R = \frac{\sum_{k=1}^{N} S\left(\bar{x}_{submin}^{k}\right)}{N}, \text{ где}$$

$$S\left(\bar{x}_{submin}^{k}\right) = \begin{cases} 1, \text{ если } \left|\left(\bar{x}_{submin}^{k}\right)_{j} - (\bar{x}_{min})_{j}\right| < \varepsilon, j = \overline{1, n}; \\ 0, \text{ иначе.} \end{cases}$$

Ошибка по входным параметрам:

$$E_{x} = \frac{\sum_{k=1}^{N} \left(\frac{\sqrt{\sum_{j=1}^{n} \left(\left(\bar{x}_{submin}^{k} \right)_{j} - \left(\bar{x}_{min} \right)_{j} \right)^{2}}}{n} \right)}{N}.$$

$$E_f = \frac{\sum_{k=1}^{N} \left| f\left(\bar{x}_{submin}^k\right) - f\left(\bar{x}_{min}\right) \right|}{N}.$$

1.13.5 Свойства задачи

Условной или безусловной оптимиза- Задача безусловной оптимизации. **ции:**

Одномерной или многомерной опти- Многомерной: (двумерной).

мизации:

Функция унимодальная или много- Функция многоэкстремальная.

экстремальная:

Функция стохастическая или нет: Функция не стохастическая.

Особенности: Нет.

1.13.6 Реализация

Реализация функции библиотеки Harrix Math Library взята ИЗ В раздефункции «Тестовые ДЛЯ оптимизации», которую МОЖНО найти ПО адресу https://github.com/Harrix/HarrixMathLibrary.

```
Kog 1.13. Kog функции MHL_TestFunction_ReverseGriewank

double MHL_TestFunction_ReverseGriewank(double x, double y)

{

/*

Функция двух переменных: функция ReverseGriewank.

Тестовая функция вещественной оптимизации.

Входные параметры:

x - первая вещественная переменная;

y - вторая вещественная переменная.

Возвращаемое значение:

3начение тестовой функции в точке (x, y).

*/

double VMHL_Result;

VMHL_Result = 1./((x*x+y*y)/200.-cos(x)*cos(y/sqrt(2.))+2.);

return VMHL_Result;

}
```

1.13.7 Ссылки

Так и не смог найти нормальный источник для этой функции. По внешнему виду похожа на функцию Гриванка, которую возвели в -1 степень. Откуда-то у меня находится со студенческих времен.

1.14 Функция Сомбреро

1.14.1 Описание функции

Идентификатор: MHL_TestFunction_Sombrero.

Наименование: Функция Сомбреро.

Тип: Задача вещественной оптимизации.

Формула (целевая функция):

$$f\left(\bar{x}
ight) = rac{1 - sin\left(\sqrt{\bar{x}_1^2 + \bar{x}_2^2}
ight)^2}{1 + 0.001\left(\bar{x}_1^2 + \bar{x}_2^2
ight)},$$
 где (1.14)

 $\bar{x} \in X, \ \bar{x}_j \in [Left_j; Right_j], \ Left_j = -10, \ Right_j = 10, \ j = \overline{1,n}, \ n = 2.$

Обозначение: \bar{x} — вещественный вектор;

n=2 — размерность вещественного вектора.

Решаемая задача оптимизации: $\bar{x}_{max} = \arg\max_{\bar{x} \in X} f(\bar{x}).$

Точка максимума: $\bar{x}_{max} = (0,0)^{\mathrm{T}}$, то есть $(\bar{x}_{max})_j = 0$ $(j = \overline{1,n})$.

Максимум функции: $f(\bar{x}_{max}) = 1.$

График: Рисунок 1.14 нас 50 стр.

Рисунок 1.14. Функция Сомбреро

1.14.2 Параметры для алгоритмов оптимизации

Точность вычислений:

$$\varepsilon = 0.05$$
.

Число интервалов, на которые предполагается разбивать каждую компоненту вектора \bar{x} в пределах своего изменения (для алгоритмов дискретной оптимизации):

 $NumberOfParts_{i} = 4095 \ (j = \overline{1, n}).$

Для этого длина бинарной строки для $(k_2)_i = 12 \ (j = \overline{1,n}).$ x_{i} координаты равна (для алгоритмов бинарной оптимизации):

$$(k_2)_j = 12 \ (j = \overline{1,n})$$

Замечание: $NumberOfParts_i$ выбирается как минимальное число, удовлетворяющее соотношению:

$$NumberOfParts_{j}=2^{(k_{2})_{j}}-1\geq \frac{10\left(Right_{j}-Left_{j}\right)}{\varepsilon},$$
где $(k_{2})_{j}\in\mathbb{N},\left(j=\overline{1,n}\right).$

1.14.3 Основная задача и подзадачи

Изменяемый параметр: n — размерность вещественного вектора.

n=2. Значение в основной задаче:

Нахождение ошибки оптимизации

Пусть в результате работы алгоритма оптимизации за N запусков мы нашли решения \bar{x}_{submin}^k со значениями целевой функции $f\left(\bar{x}_{submin}^k\right)$ соответственно $(k=\overline{1,N})$. Используем три вида ошибок:

Надёжность:

$$R = \frac{\sum_{k=1}^{N} S\left(\bar{x}_{submin}^{k}\right)}{N}, \text{ где}$$

$$S\left(\bar{x}_{submin}^{k}\right) = \begin{cases} 1, \text{ если } \left|\left(\bar{x}_{submin}^{k}\right)_{j} - (\bar{x}_{min})_{j}\right| < \varepsilon, j = \overline{1, n}; \\ 0, \text{ иначе.} \end{cases}$$

Ошибка по входным параметрам:

$$E_{x} = \frac{\sum_{k=1}^{N} \left(\frac{\sqrt{\sum_{j=1}^{n} \left(\left(\bar{x}_{submin}^{k}\right)_{j} - \left(\bar{x}_{min}\right)_{j}\right)^{2}}}{n} \right)}{N}.$$

$$E_f = \frac{\sum_{k=1}^{N} \left| f\left(\bar{x}_{submin}^k\right) - f\left(\bar{x}_{min}\right) \right|}{N}.$$

1.14.5 Свойства задачи

Условной или безусловной оптимиза- Задача безусловной оптимизации. **ции:**

Одномерной или многомерной опти- Многомерной: (двумерной).

мизации:

Функция унимодальная или много- Функция многоэкстремальная.

экстремальная:

Функция стохастическая или нет: Функция не стохастическая.

Особенности: Нет.

1.14.6 Реализация

Реализация функции взята библиотеки Harrix Math Library ИЗ В разде-«Тестовые функции ДЛЯ оптимизации», которую МОЖНО найти ПО адресу https://github.com/Harrix/HarrixMathLibrary.

```
Kog 1.14. Kog функции MHL_TestFunction_Sombrero

double MHL_TestFunction_Sombrero(double x, double y)

{

/*

Функция одной переменных: функция Сомбреро.

Тестовая функция вещественной оптимизации.

Входные параметры:

x - первая вещественная переменная;

y - вторая вещественная переменная.

Возвращаемое значение:

Значение тестовой функции в точке (x,y).

*/

double VMHL_Result;

VMHL_Result = 1.-sin(sqrt(x*x+y*y))*sin(sqrt(x*x+y*y));

VMHL_Result /= (1.+0.001*(x*x+y*y));

return VMHL_Result;

}
```

1.14.7 Ссылки

Данная функция приводится в следующих источниках:

1. [11, стр. 30] — Эволюционные методы моделирования и оптимизации сложных систем.

1.15 Функция Multiextremal

1.15.1 Описание функции

Идентификатор: MHL_TestFunction_Multiextremal.

Наименование: Multiextremal.

Тип: Задача вещественной оптимизации.

Формула (целевая функция):

$$f\left(\bar{x}\right) = 0.05\left(x-1\right)^2 + \left(3 - 2.9e^{-2.77257x^2}\right)\left(1 - \cos\left(x\left(4 - 50e^{-2.77257x^2}\right)\right)\right), \text{ где} \tag{1.15}$$

 $\bar{x} \in X, \ \bar{x}_j \in [Left_j; Right_j], \ Left_j = -2, \ Right_j = 2, \ j = \overline{1,n}, \ n = 1.$

Обозначение: \bar{x} — вещественный вектор;

n=1 — размерность вещественного вектора.

Решаемая задача оптимизации: $\bar{x}_{min} = \arg\min_{\bar{x} \in X} f(\bar{x}).$

Точка минимума: $\bar{x}_{min} \approx (0.954452)^{\mathrm{T}}$, то есть $(\bar{x}_{min})_j \approx 0.954452$ (j=

Минимум функции: $f(\bar{x}_{min}) \approx 0.000103742.$

График: Рисунок 1.15 нас 53 стр.

Рисунок 1.15. Функция Multiextremal

1.15.2 Параметры для алгоритмов оптимизации

Точность вычислений:

$$\varepsilon = 0.01$$
.

Число интервалов, на которые предполагается разбивать каждую компоненту вектора \bar{x} в пределах своего изменения (для алгоритмов дискретной оптимизации):

 $NumberOfParts_{i} = 4095 \ (j = \overline{1, n}).$

Для этого длина бинарной строки для $(k_2)_i = 12 \ (j = \overline{1,n}).$ x_{i} координаты равна (для алгоритмов бинарной оптимизации):

$$(k_2)_j = 12 \ (j = \overline{1,n})$$

Замечание: $NumberOfParts_i$ выбирается как минимальное число, удовлетворяющее соотношению:

$$NumberOfParts_{j}=2^{(k_{2})_{j}}-1\geq \frac{10\left(Right_{j}-Left_{j}\right)}{\varepsilon},$$
где $(k_{2})_{j}\in\mathbb{N},\left(j=\overline{1,n}\right).$

1.15.3 Основная задача и подзадачи

Изменяемый параметр: n — размерность вещественного вектора.

Значение в основной задаче: n=1.

Нахождение ошибки оптимизации

Пусть в результате работы алгоритма оптимизации за N запусков мы нашли решения \bar{x}_{submin}^k со значениями целевой функции $f\left(\bar{x}_{submin}^k\right)$ соответственно $(k=\overline{1,N})$. Используем три вида ошибок:

Надёжность:

$$R = \frac{\sum_{k=1}^{N} S\left(\bar{x}_{submin}^{k}\right)}{N}, \text{ где}$$

$$S\left(\bar{x}_{submin}^{k}\right) = \begin{cases} 1, \text{ если } \left|\left(\bar{x}_{submin}^{k}\right)_{j} - (\bar{x}_{min})_{j}\right| < \varepsilon, j = \overline{1, n}; \\ 0, \text{ иначе.} \end{cases}$$

Ошибка по входным параметрам:

$$E_{x} = \frac{\sum_{k=1}^{N} \left(\frac{\sqrt{\sum_{j=1}^{n} \left(\left(\bar{x}_{submin}^{k}\right)_{j} - \left(\bar{x}_{min}\right)_{j}\right)^{2}}}{n} \right)}{N}.$$

$$E_f = \frac{\sum_{k=1}^{N} \left| f\left(\bar{x}_{submin}^k\right) - f\left(\bar{x}_{min}\right) \right|}{N}.$$

1.15.5 Свойства задачи

Условной или безусловной оптимиза- Задача безусловной оптимизации. **ции:**

Одномерной или многомерной опти- Одномерной.

мизации:

Функция унимодальная или много- Функция многоэкстремальная.

экстремальная:

Функция стохастическая или нет: Функция не стохастическая.

Особенности: Нет.

1.15.6 Реализация

Реализация функции библиотеки Harrix Math Library взята ИЗ В раздефункции «Тестовые ДЛЯ оптимизации», которую ОНЖОМ найти ПО адресу https://github.com/Harrix/HarrixMathLibrary.

```
Kog 1.15. Kog функции MHL_TestFunction_Multiextremal

double MHL_TestFunction_Multiextremal(double x)
{
/*

Функция одной переменных: функция Multiextremal.

Тестовая функция вещественной оптимизации.

Вкодные параметры:

x - вещественная переменная.

Возвращаемое значение:

3начение тестовой функции в точке (x).

*/

double VMHL_Result;

VMHL_Result = (0.05*(x-1.)*(x-1.)+(3.-2.9*exp(-2.77257*x*x))*(1-cos(x*(4.-50*exp(-2.77257*x*x))));

return VMHL_Result;
}
```

1.15.7 Ссылки

Данная функция приводится в следующих источниках:

1. [11, стр. 26] — Эволюционные методы моделирования и оптимизации сложных систем.

По сравнению с данной работой в данном документе представлено уточненное значение функции в точке минимума.

1.16 Функция Multiextremal2

1.16.1 Описание функции

Идентификатор: MHL_TestFunction_Multiextremal2.

Наименование: Multiextremal2.

Тип: Задача вещественной оптимизации.

Формула (целевая функция):

$$f(\bar{x}) = 1 - 0.5\cos(1.5(10x - 0.3))\cos(31.4x) + 0.5\cos(\sqrt{5} \cdot 10x)\cos(35x),$$
 где (1.16)

 $\bar{x}\in X,\ \bar{x}_j\in [Left_j;Right_j],\ Left_j=-2,\ Right_j=2,\ j=\overline{1,n},\ n=1.$

Обозначение: \bar{x} — вещественный вектор;

n=1 — размерность вещественного вектора.

Решаемая задача оптимизации: $\bar{x}_{max} = \arg\max_{\bar{x} \in X} f(\bar{x}).$

Точка максимума: $\bar{x}_{max} \simeq (-0.993263)^{\mathrm{T}}$, то есть $(\bar{x}_{max})_j \approx -0.993263$

 $(j=\overline{1,n}).$

Максимум функции: $f(\bar{x}_{max}) \approx 1.93374.$

График: Рисунок 1.16 нас 56 стр.

Рисунок 1.16. Функция Multiextremal2

1.16.2 Параметры для алгоритмов оптимизации

Точность вычислений:

$$\varepsilon = 0.01$$
.

Число интервалов, на которые предполагается разбивать каждую компоненту вектора \bar{x} в пределах своего изменения (для алгоритмов дискретной оптимизации):

 $NumberOfParts_{i} = 4095 \ (j = \overline{1, n}).$

Для этого длина бинарной строки для $(k_2)_i = 12 \ (j = \overline{1,n}).$ x_{i} координаты равна (для алгоритмов бинарной оптимизации):

$$(k_2)_j = 12 \ (j = \overline{1,n}).$$

Замечание: $NumberOfParts_i$ выбирается как минимальное число, удовлетворяющее соотношению:

$$NumberOfParts_{j}=2^{(k_{2})_{j}}-1\geq \frac{10\left(Right_{j}-Left_{j}\right)}{\varepsilon},$$
где $(k_{2})_{j}\in\mathbb{N},\left(j=\overline{1,n}\right).$

1.16.3 Основная задача и подзадачи

Изменяемый параметр:

n — размерность вещественного вектора.

Значение в основной задаче:

n=1.

Нахождение ошибки оптимизации

Пусть в результате работы алгоритма оптимизации за N запусков мы нашли решения \bar{x}_{submin}^k со значениями целевой функции $f\left(\bar{x}_{submin}^k\right)$ соответственно $(k=\overline{1,N})$. Используем три вида ошибок:

Надёжность:

$$R = \frac{\sum_{k=1}^{N} S\left(\bar{x}_{submin}^{k}\right)}{N}, \text{ где}$$

$$S\left(\bar{x}_{submin}^{k}\right) = \begin{cases} 1, \text{ если } \left|\left(\bar{x}_{submin}^{k}\right)_{j} - (\bar{x}_{min})_{j}\right| < \varepsilon, j = \overline{1, n}; \\ 0, \text{ иначе.} \end{cases}$$

Ошибка по входным параметрам:

$$E_{x} = \frac{\sum_{k=1}^{N} \left(\frac{\sqrt{\sum_{j=1}^{n} \left(\left(\bar{x}_{submin}^{k}\right)_{j} - \left(\bar{x}_{min}\right)_{j}\right)^{2}}}{n} \right)}{N}.$$

$$E_f = \frac{\sum_{k=1}^{N} \left| f\left(\bar{x}_{submin}^k\right) - f\left(\bar{x}_{min}\right) \right|}{N}.$$

1.16.5 Свойства задачи

Условной или безусловной оптимиза- Задача безусловной оптимизации. **ции:**

Одномерной или многомерной опти- Одномерной.

мизации:

Функция унимодальная или много- Функция многоэкстремальная.

экстремальная:

Функция стохастическая или нет: Функция не стохастическая.

Особенности: Нет.

1.16.6 Реализация

Реализация функции библиотеки Harrix Math Library взята ИЗ В раздефункции «Тестовые ДЛЯ оптимизации», которую ОНЖОМ найти ПО адресу https://github.com/Harrix/HarrixMathLibrary.

```
Kog 1.16. Kog функции MHL_TestFunction_Multiextremal2

double MHL_TestFunction_Multiextremal2(double x)
{
/*

Функция одной переменных: функция Multiextremal2.

Тестовая функция вещественной оптимизации.

Вкодные параметры:

x - вещественная переменная.

Возвращаемое значение:

3начение тестовой функции в точке (x).

*/

double VMHL_Result;

VMHL_Result = 1.-0.5*cos(1.5*(10.*x-0.3))*cos(31.4*x)+0.5*cos(sqrt(5.)*10.*x)*cos
(35.*x);

return VMHL_Result;
}
```

1.16.7 Ссылки

Данная функция приводится в следующих источниках:

1. [11, стр. 27] — Эволюционные методы моделирования и оптимизации сложных систем.

По сравнению с данной работой в данном документе представлено уточненное значение функции в точке минимума.

1.17 Функция волна

1.17.1 Описание функции

Идентификатор: MHL_TestFunction_Wave.

Наименование: Волна.

Тип: Задача вещественной оптимизации.

Формула (целевая функция):

$$f(\bar{x}) = e^{-\bar{x}_1^2} + 0.01\cos(200 \cdot \bar{x}_1)$$
, где (1.17)

 $\bar{x} \in X, \ \bar{x}_j \in [Left_j; Right_j], \ Left_j = -2, \ Right_j = 2, \ j = \overline{1,n}, \ n = 1.$

Обозначение: \bar{x} — вещественный вектор;

n=1 — размерность вещественного вектора.

Решаемая задача оптимизации: $\bar{x}_{max} = \arg\max_{\bar{x} \in X} f(\bar{x}).$

Точка максимума: $\bar{x}_{max} = (0)^{\mathrm{T}}$, то есть $(\bar{x}_{max})_j = 0$ $(j = \overline{1,n})$.

Максимум функции: $f(\bar{x}_{max}) = 1.01.$

График: Рисунок 1.17 нас 59 стр.

Рисунок 1.17. Волна

1.17.2 Параметры для алгоритмов оптимизации

Точность вычислений:

$$\varepsilon = 0.01$$
.

Число интервалов, на которые предполагается разбивать каждую компоненту вектора \bar{x} в пределах своего изменения (для алгоритмов дискретной оптимизации):

 $NumberOfParts_{i} = 4095 \ (j = \overline{1, n}).$

Для этого длина бинарной строки для $(k_2)_i = 12 \ (j = \overline{1,n}).$ x_{i} координаты равна (для алгоритмов бинарной оптимизации):

$$(k_2)_j = 12 \ (j = \overline{1, n}).$$

Замечание: $NumberOfParts_i$ выбирается как минимальное число, удовлетворяющее соотношению:

$$NumberOfParts_{j}=2^{(k_{2})_{j}}-1\geq \frac{10\left(Right_{j}-Left_{j}\right)}{\varepsilon},$$
где $(k_{2})_{j}\in\mathbb{N},\left(j=\overline{1,n}\right).$

1.17.3 Основная задача и подзадачи

Изменяемый параметр: n — размерность вещественного вектора.

Значение в основной задаче: n=1.

Нахождение ошибки оптимизации

Пусть в результате работы алгоритма оптимизации за N запусков мы нашли решения \bar{x}_{submin}^k со значениями целевой функции $f\left(\bar{x}_{submin}^k\right)$ соответственно $(k=\overline{1,N})$. Используем три вида ошибок:

Надёжность:

$$R = \frac{\sum_{k=1}^{N} S\left(\bar{x}_{submin}^{k}\right)}{N}, \text{ где}$$

$$S\left(\bar{x}_{submin}^{k}\right) = \begin{cases} 1, \text{ если } \left|\left(\bar{x}_{submin}^{k}\right)_{j} - (\bar{x}_{min})_{j}\right| < \varepsilon, j = \overline{1, n}; \\ 0, \text{ иначе.} \end{cases}$$

Ошибка по входным параметрам:

$$E_{x} = \frac{\sum_{k=1}^{N} \left(\frac{\sqrt{\sum_{j=1}^{n} \left(\left(\bar{x}_{submin}^{k}\right)_{j} - \left(\bar{x}_{min}\right)_{j}\right)^{2}}}{n} \right)}{N}.$$

$$E_f = \frac{\sum_{k=1}^{N} \left| f\left(\bar{x}_{submin}^k\right) - f\left(\bar{x}_{min}\right) \right|}{N}.$$

1.17.5 Свойства задачи

Условной или безусловной оптимиза- Задача безусловной оптимизации. **ции:**

Одномерной или многомерной опти- Одномерной.

мизации:

Функция унимодальная или много- Функция многоэкстремальная.

экстремальная:

Функция стохастическая или нет: Функция не стохастическая.

Хотя внешне можно отнести эту функцию к стохастической, так как по поведению напоминает вид плотности нормального распределения с помехой.

1.17.6 Реализация

Особенности:

Реализация функции библиотеки Harrix Math Library взята ИЗ разде-В «Тестовые функции ДЛЯ оптимизации», которую найти ОНЖОМ адресу https://github.com/Harrix/HarrixMathLibrary.

```
Kog 1.17. Kog функции MHL_TestFunction_Wave

double MHL_TestFunction_Wave(double x)

{

/*

Функция одной переменных: волна.

Тестовая функция вещественной оптимизации.

Входные параметры:

x — вещественная переменная.

Возвращаемое значение:

Значение тестовой функции в точке (x).

*/

double VMHL_Result;

VMHL_Result = (exp(-x*x)+0.01*cos(200*x));

return VMHL_Result;

}
```

1.17.7 Ссылки

Так и не смог найти нормальный источник для этой функции. Откуда-то у меня находится со студенческих времен.

Глава 2

Задачи бинарной оптимизации

2.1 Сумма всех элементов бинарного вектора

2.1.1 Описание функции

Идентификатор: MHL_TestFunction_SumVector.

Наименование: Сумма всех элементов бинарного вектора.

Тип: Задача бинарной оптимизации.

Формула (целевая функция):

 $f\left(\bar{x}\right) = \sum_{i=1}^{n} \bar{x}_i, \text{ где} \tag{2.1}$

 $\bar{x} \in X, \ \bar{x}_j \in \{0; 1\}, \ j = \overline{1, n}.$

Обозначение: \bar{x} — бинарный вектор;

n — размерность бинарного вектора.

Объем поискового пространства: $\mu\left(X\right)=2^{n}.$

Решаемая задача оптимизации: $\bar{x}_{max} = \arg\max_{\bar{x} \in X} f(\bar{x}).$

Точка максимума: $\bar{x}_{max} = (1, 1, \dots, 1)^{\mathrm{T}}$, то есть $(\bar{x}_{max})_j = 1$ $(j = \overline{1, n})$.

Максимум функции: $f(\bar{x}_{max}) = n.$

Точка минимума: $\bar{x}_{min} = (0, 0, \dots, 0)^{\mathrm{T}}$, то есть $(\bar{x}_{min})_j = 0$ $(j = \overline{1, n})$.

Минимум функции: $f(\bar{x}_{min}) = 0.$

2.1.2 Основная задача и подзадачи

Изменяемый параметр: n — размерность бинарного вектора.

Значение в основной задаче: n = 20.

Подзадача №2: n = 30.

Подзадача №**3:** n = 40.

Подзадача №4: n = 50.

Подзадача №5: n = 60.

Подзадача №6: n = 70.

Подзадача №7: n = 80.

Подзадача №8: n = 90.

Подзадача №9: n = 100.

Подзадача №10: n = 200.

2.1.3 Нахождение ошибки оптимизации

Пусть в результате работы алгоритма оптимизации за N запусков мы нашли решения \bar{x}^k_{submax} со значениями целевой функции $f\left(\bar{x}^k_{submax}\right)$ соответственно $(k=\overline{1,N})$. Используем три вида ошибок:

Надёжность:

$$R=rac{\sum_{k=1}^{N}S\left(ar{x}_{submax}^{k}
ight)}{N},$$
 где $S\left(ar{x}_{submax}^{k}
ight)=\left\{egin{array}{l} 1, \ ext{ecли } ar{x}_{submax}^{k}=ar{x}_{max}; \ 0, \ ext{иначе}. \end{array}
ight.$

Ошибка по входным параметрам:

$$E_x = \frac{\sum_{k=1}^{N} \left(\frac{\sum_{j=1}^{n} \left| \left(\bar{x}_{submax}^k \right)_j - \left(\bar{x}_{max} \right)_j \right|}{n} \right)}{N}.$$

$$E_f = \frac{\sum_{k=1}^{N} \left(\frac{\left| f\left(\bar{x}_{submax}^k\right) - f\left(\bar{x}_{max}\right)\right|}{n} \right)}{N}.$$

2.1.4 Свойства задачи

Условной или безусловной оптимиза- Задача безусловной оптимизации. **ции:**

Одномерной или многомерной опти- Многомерной: n. **мизации:**

Функция унимодальная или много- Функция унимодальная. **экстремальная:**

Функция стохастическая или нет: Функция не стохастическая.

Особенности: Нет.

2.1.5 Реализация

Реализация функции взята библиотеки Harrix Math Library ИЗ В разде-«Тестовые функции ДЛЯ оптимизации», которую ОНЖОМ найти ПО адресу https://github.com/Harrix/HarrixMathLibrary.

```
Kod 2.1. Kod функции MHL_TestFunction_SumVector

double MHL_TestFunction_SumVector(int *x, int VMHL_N)

{

/*

Сумма всех элементов бинарного вектора.

Тестовая функция бинарной оптимизации.

Входные параметры:

x - указатель на исходный массив;

VMHL_N - размер массива x.

Возвращаемое значение:

Значение тестовой функции в точке x.

*/

double VMHL_Result=0;

for (int i=0;i<VMHL_N;i++) VMHL_Result+=x[i];

return VMHL_Result;

}
```

Литература

- Dieterich Johannes M., Hartke Bernd. Empirical review of standard benchmark functions using evolutionary global optimization // CoRR. 2012. T. abs/1207.4318. http://arxiv.org/ pdf/1207.4318v1.pdf.
- 2. Ackley's Function. http://www.cs.unm.edu/~neal.holts/dga/benchmarkFunction/ackley.html.
- 3. Paraboloid. http://en.wikipedia.org/wiki/Paraboloid.
- 4. Rastrigin function. http://en.wikipedia.org/wiki/Rastrigin_function.
- 5. Non-linear Continuous Multi-Extremal Optimization. http://www.maths.uq.edu.au/cetoolBox/node3.html.
- 6. Parametric Optimization. http://www.pg.gda.pl/~mkwies/dyd/geadocu/fcnfun6.html.
- 7. Rosenbrock function. http://en.wikipedia.org/wiki/Rosenbrock function.
- 8. Rosenbrock Function. http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page2537.htm.
- 9. Pohlheim Hartmut. GEATbx Examples. Examples of Objective Functions. 2006. http://www.geatbx.com/download/GEATbx_ObjFunExpl_v38.pdf.
- 10. Virtual Library of Simulation Experiments: Test Functions and Datasets. Rotated hyperellipsoid function. 2013. http://www.sfu.ca/~ssurjano/rothyp.html.
- 11. Эволюционные методы моделирования и оптимизации сложных систем / Е. С. Семенкин, М. Н. Жукова, В. Г. Жуков [и др.]. Красноярск: Федеральное агентство по образованию, Сибирский федеральный университет, 2007. 310 с. http://files.lib.sfu-kras.ru/ebibl/umkd/22/u_lectures.pdf.
- 12. Himmelblau's function. http://en.wikipedia.org/wiki/Himmelblau's_function.
- 13. Minimization of the Himmelblau Function. http://pythonhosted.org/algopy/examples/minimization/himmelblau minimization.html.