

- Network Attacks
- Cryptographic Technologies
- Message Integrity and Authentication
- Key Distribution
- Firewalls
- Transport Layer Security
- IP Security
- Securing Wireless LANs

Firewalls

- Isolate organization's intranet from larger Internet
 - Allowing some packets to pass, blocking others
- Ensure intranet/system security from hackers/malwares outside

- Prevent denial of service attacks
 - SYN flooding, by preventing attackers from establishing bogus
 TCP connections / trying pings
- Allow only authorized access to inside network
 - Set of authenticated users/hosts
- Prevent illegal access/modification of internal data
 - Prevent access of specified servers/applications
- 3 types
 - Stateless packet filters
 - Stateful packet filters
 - Application gateways

- Check if arriving packet be allowed in, departing packet let out
- Router firewall filters packet-by-packet, decision to forward/drop packet based on:
 - Source IP address, destination IP address
 - TCP/UDP source and destination port numbers
 - ICMP message type
 - TCP SYN and ACK bits

Filtering Example

- Block incoming/outgoing datagrams with IP protocol field = 17
 - All incoming, outgoing UDP flows are blocked
- Block incoming/outgoing datagrams with either source or dest port = 23
 - All telnet connections (bbs) are blocked
- Block incoming TCP segments with ACK bit=0
 - Prevents external clients from making TCP connections to internal hosts (i.e. DOS attacks)

More Examples

Policy	<u>Firewall Setting</u>
No outside Web access.	Drop all outgoing packets to any IP address, port 80
No incoming TCP connections, except those for institution's public Web server only.	Drop all incoming TCP SYN packets to any IP except 130.207.244.203, port 80
Prevent Web-radios from eating up the available bandwidth.	Drop all incoming UDP packets - except DNS and router advertisements.
Prevent your network from being used for a smurf DoS attack.	Drop all ICMP packets going to a "broadcast" address (eg 130.207.255.255).
Prevent your network from being tracerouted	Drop all outgoing ICMP TTL expired traffic

action	source address	dest address	protocol	source port	dest port	flag bit
allow	222.22/16	outside of 222.22/16	TCP	> 1023	80	any
allow	outside of 222.22/16	222.22/16	ТСР	80	> 1023	ACK
allow	222.22/16	outside of 222.22/16	UDP	> 1023	53	
allow	outside of 222.22/16	222.22/16	UDP	53	> 1023	
deny	all	all	all	all	all	all

路由器可采用访问控制列表来实现防火墙规则

Stateful packet filtering

- stateless packet filter: heavy handed tool
 - admits packets that "make no sense," e.g., dest port = 80, ACK bit set, even though no TCP connection established:

action	source address	dest address	protocol	source port	dest port	flag bit
allow	outside of 222.22/16	222.22/16	TCP	80	> 1023	ACK

- stateful packet filter: track status of every TCP connection
 - track connection setup (SYN), teardown (FIN): determine whether incoming, outgoing packets "makes sense"
 - timeout inactive connections at firewall: no longer admit packets

A Stateful ACL

 ACL augmented to indicate need to check connection state table before admitting packet

A stateful ACL

action	source address	dest address	proto	source port	dest port	flag bit	is closed
allow	222.22/16	outside of 222,22/16	ТСР	> 1023	80	any	
allow	outside of 222.22/16	222.22/16	ТСР	80	> 1023	ACK	×
allow	222.22/16	outside of 222.22/16	UDP	> 1023	53		
allow	outside of 222.22/16	222.22/16	UDP	53	> 1023		X
deny	all	all	all	all	all	all	

- Filters packets on application data as well as on IP/TCP/UDP fields
 - e.g. allow select internal users to telnet outside, but user authentication should be in application level
- Application Gateway
 - TCP connections must be relayed by gateway
 - Router filter blocks all TCP connections not originating from gateway

- 3 types
 - Stateless packet filters
 - Stateful packet filters
 - Application gateways
- Many things to do
 - Gateway is the most powerful, but not transparent (by proxy setting)
 - Limited functions for UDP communications
 - Setting rules is always a step later

Intrusion detection systems

- Packet filtering:
 - operates on TCP/IP headers only
 - no correlation check among sessions
- IDS: intrusion detection system
 - Deep packet inspection: look at packet contents (e.g., check character strings in packet against database of known virus, attack strings)
 - Examine correlation among multiple packets
 - Port scanning
 - Network mapping
 - DoS attack

Transport Layer Security

- SSL Secure Sockets Layer
 - Used by Netscape
 - 1996, SSL v3 was created with public review from industry
 - IETF started with this version to develop a common standard
 - Provides
 - confidentiality
 - integrity
 - authentication
- TLS Transport Layer Security
 - 1999, RFC 2246 by IETF
 - Essentially SSL v3.1 with minor difference

SSL/TLS Characteristics

- Protects application traffic for all applications that are SSL/TLS aware
 - Applications must be SSL enabled by design
- Typical applications
 - http (https) in web browsers
 - IMAP (Internet Message Access Protocol, for email like POP3)
 - LDAP (Lightweight Directory Access Protocol)
 - 802.1x authentication
 - Many VPN systems use SSL/TLS to send encrypted traffic
- Mandatory server authentication
 - Client checks server's certificate, also against CRLs (certificate revocation lists)
- Client authentication supported but normally not used

SSL Architecture

- SSL resides on TCP to provide reliable end-to-end secure service
 - 2 layers of protocols
- Record Protocol provides basic security services to various higher-layer protocols
 - Underlying protocol suite, transparent to applications
- 3 higher-layer protocols for management of SSL exchanges
 - Embedded in specific packages, within IE or Netscape

Application										
Handshake protocol	Cinher									
SSL record layer protocol										
TCP										
IP										

SSL Session

- Association between client and server
 - Created by Handshake Protocol
- Each with a set of cryptographic security parameters
 - Peer's (Server) certificate, for public keys
 - A master secret of 48 octets, for shared keys
 - Compression, cipher or MAC (hash) to use
- May have many (TCP) connections within
 - Used to avoid negotiation of new security parameters for each connection
 - Multiple sessions between same pair of apps are supported (not used)

SSL Connection

- Mechanisms used to transport data in a session
- A connection is associated with
 - Shared keys to encipher data and compute MAC
 - IV for MAC if needed
 - Sequence numbers
- Peer-to-peer and Transient
- Every connection associated with one session

SSL Record Protocol

- Each upper-layer message fragmented
 - 2¹⁴ octets (16384 octets) or less
- Compressed message plus MAC encrypted using symmetric encryption
 - Compression optionally applied
- Add SSL record header, PDU transmits in TCP segment

SSL Record PDU

- Protocol Type (1 octet)
 - 20: change_cipher_spec, 21: alert, 22: handshake, 23: application
 - No distinction between applications
- Major Version (1 octet)
 - SSL v3 is 3
- Minor Version (1 octet)
 - SSL v3 is 0
- Compressed Length (2 octets)
 - Per octet, maximum 2¹⁴+2048
- MAC (0, 16, or 20 octets)

Proto	oto Version x.y Len								
Len	Len								
Protocol Message									
	MAC								

SSL Application Protocols

1						ŀ))	١	,	,	۱	ĺ		ĺ			
1																		
1																		
1																		
1																		
1																		
1																		
1																		
1																		
1																		
1																		
1																		
1																		
1																		
•																		
-																		

1 byte 3 bytes 0 bytes

Type Length Content

(a) Change Cipher Spec Protocol

(c) Handshake Protocol

1 byte 1 byte

Level Alert

1 byte

OpaqueContent

(b) Alert Protocol

(d) Other Upper-Layer Protocol (e.g., HTTP)

- Single octet message
 - Set value 1

- Cause current state to be the pending (negotiated) state
- Cipher suite updated to use on this connection

Alert Protocol

- Convey SSL-related error or alerts to peer entity
 - Alert messages compressed and encrypted

- Alert level
 - 1: warning, 2: fatal
 - If fatal, SSL immediately terminates connection
 - Other connections on session may continue but no new connections accepted on session
- Alert description, e.g.
 - Fatal: UnexpectedMessage, BadRecordMAC, HandshakeFailure
 - Warning: CloseNotify, Certificate Unsupported/Revoked, Illegal Parameter

Handshake Protocol

1 byte	3 bytes	0 bytes
Туре	Length	Content

(c) Handshake Protocol

Purpose

- Authenticate sender/receiver
- Negotiate encryption and MAC algorithm and cryptographic keys

4 rounds

- Create SSL connection between client and server
 - Establish security capabilities
- Server authenticates itself
 - Presents public key suitable for shared key distribution
- Client validates server, begins key exchange
- Acknowledgments all around
 - Change cipher according to agreement

- 建立安全能力
- 服务器鉴别与密钥交换
- 客户机鉴别与密钥交换
- 确认

Handshake Protocol Actions

- ClientHello message:
 - v_c: the client's version of SSL
 - r₁: nonces (random number)
 - sid: current session id (0 if new session)
 - Ciphers: a list of ciphers that client supports
 - Comps: a list of compression algorithms that client supports
- ServerHello message:
 - V: highest SSL version both client and server support
 - r2: nonces (random number)
 - sid: current session id (0 if new session)
 - Cipher: the cipher to be used
 - Comp: the compression algorithm to be used

- After round 1, the client knows
 - Version of SSL
 - Cipher algorithms for key exchange, message authentication, and encryption algorithm
 - Compression algorithm
 - Two nonces for key generation
- Why two random nonces?
- Suppose Trudy sniffs all messages between Alice & Bob
- Next day, Trudy sets up TCP connection with Bob, sends exact same sequence of records
 - Bob (Amazon) thinks Alice made two separate orders for the same thing
 - Solution: Bob sends different random nonce for each connection. This
 causes encryption keys to be different on the two days

- Round 2 depends on underlying encryption scheme
 - Server certificate is required on new session
 - exchange key (depend on algorithm)
 - may request certificates from client
 - Server_hello done

- Round 3
 - Client verifies certificate if needed and check server_hello parameters
 - Client sends secrets to server, depending on underlying public-key scheme

- Client sends change_cipher_spec
 - Copies pending CipherSpec into current CipherSpec
 - Sent using Change Cipher Spec Protocol
- Client sends finished message under new algorithms, keys, and secrets
 - Finished message verifies key exchange and authentication successful
- Server sends own change_cipher_spec message
 - Transfers pending CipherSpec to current CipherSpec
 - Sends its finished message
- Handshake complete

- OpenSSL: The Open Source toolkit for SSL/TLS
 - Widely used in Linux, BSD, Apache server, etc.
- 2014年,Heartbleed 漏洞
 - Keep-alive: the Heartbeat Extension provides a new protocol for TLS/DTLS allowing the usage of keep-alive functionality.
 - A missing bounds check in the handling of the TLS heartbeat extension can be used to reveal up to 64k of memory to a connected client or server.
 - 缓冲区溢出:由于实现时忘记边界检查,如果"载荷长度"字段(payload)被发送端设置得很大,而实际的载荷长度比较短,就会把本来不属于载荷区域的内存复制到响应缓冲区,可泄漏64K内存信息
- OpenSSL 1.0.1g以上版本已修复。

- Encryption of traffic at IP level
 - Transparent for transport layer (TCP, UDP)
 - De-facto standard for site-to-site VPNs
- Mandatory in IPv6, optional in IPv4
- IPsec services
 - data integrity
 - origin authentication
 - replay attack prevention
 - confidentiality
- Application examples
 - Branch office connectivity over the Internet
 - Secure remote access (user to site)
 - Extranet and intranet connectivity
 - Server to server traffic encryption
 - Enhanced electronic commerce security

IPSec Scope

- RFC 2401: Overview of security architecture
- RFC 2402: Authentication Extension
 - Authentication header
- RFC 2406: Encryption Extension
 - Encapsulated security payload
- RFC 2408: Key management
 - Key exchange

Virtual Private Networks (VPNs)

motivation:

- Institutions often want private networks for security.
 - costly: separate routers, links, DNS infrastructure.
- VPN: institution's inter-office traffic is sent over public Internet instead
 - encrypted before entering public Internet
 - logically separate from other traffic

IPSec Scenario

IPSec Operation

Transport mode

- Offers end-to-end encryption
- Often used for remote access
- End-devices must implement Ipsec

Tunnel mode

- Often used between firewalls
- Used to build Virtual Private Networks (VPN)
- Encrypts all traffic over insecure networks

NANUTION SHIP

Transport Mode vs. Tunnel Model

Transport mode

- Header IP addresses are actual addresses
- Original IP header not protected

Transport mode

Tunnel mode

- Header IP Addresses are
 IPSec Gateway Addresses
- Host IP Address is not Revealed

Tunnel mode

IPsec protocols

- Authentication protocol
 - Authentication Header (AH)
 - Does not encrypt messages
- Combined authentication/encryption protocol
 - Encapsulating Security Payload (ESP)
 - Provides message confidentiality (encryption) plus authentication
- Internet Key exchange protocol (IKE)
 - Negotiates security capabilities between two peers

Four combinations are possible!

Host mode	Host mode
with AH	with ESP
Tunnel mode	Tunnel mode
with AH	with ESP

most common and most important

Authentication Header (AH) Protection

Authentication Header

Payload length: AH length in 32 bits word (minus 2)

ESP Protection

ESP Packet

Random padding can also be used to make traffic analysis harder

Security Associations (SA)

- Before sending data, "security association (SA)" established from sending to receiving entity
 - The SA defines one-way relationships between sender and receiver
 - 2 SAs are normally required for full duplex communication
- Ending, receiving entitles maintain state information about SA
 - recall: TCP endpoints also maintain state info
 - IP is connectionless; IPsec is connection-oriented!
- The Security Parameters Index (SPI) tells under what
 SA a received packet be processed
 - Each host has a table containing the SAs
 - SPI is the index used to find the entry for a particular SA
 - The index is local for two peers (no global meanings)

SA Parameters

- Sequence number counter
- Sequence counter overflow
- Anti-replay windows
- AH info (auth. algorithm, keys, key lifetimes, etc.)
- ESP info (encryption and auth. algorithm, keys, IV, key lifetimes, etc.)
- Lifetime of this SA
- IPsec protocol mode (tunnel, transport)
- Path MTU (observed)

IKE: Internet Key Exchange

Previous examples: manual establishment of IPsec SAs in IPsec endpoints:

Example SA

SPI: 12345

Source IP: 200.168.1.100

Dest IP: 193.68.2.23

Protocol: ESP

Encryption algorithm: 3DES-cbc

HMAC algorithm: MD5

Encryption key: 0x7aeaca...

HMAC key:0xc0291f...

- Manual keying is impractical for VPN with 100s of endpoints
- instead use IPsec IKE (Internet Key Exchange)

- Used to establish, modify and delete security associations (SAs)
- RFC 2409, based on
 - ISAKMP (Internet Security Association Key Management Protocol)
 - Oakley Key Generation Protocol
- IKE performs the following tasks
 - Agrees upon security algorithms
 - Authentication (Key-Hashed MAC)
 - Exchange of (symmetric) session crypto keys

KE: PSK and PKI

- authentication (prove who you are) with either
 - pre-shared secret (PSK) or
 - with PKI (pubic/private keys and certificates).
- PSK: both sides start with secret
 - run IKE to authenticate each other and to generate IPsec SAs (one in each direction), including encryption, authentication keys
- PKI: both sides start with public/private key pair, certificate
 - run IKE to authenticate each other, obtain IPsec SAs (one in each direction).
 - similar with handshake in SSL.

IPsec summary

- IKE message exchange for algorithms, secret keys, SPI numbers
- either AH or ESP protocol (or both)
 - AH provides integrity, source authentication
 - ESP protocol (with AH) additionally provides encryption
- IPsec peers can be two end systems, two routers/firewalls, or a router/firewall and an end system

Securing Wireless LANs

- Securing 802.11
 - Authentication + Encryption
 - 1st attempt: Wired Equivalent Privacy (WEP), failed
 - Current attempt: 802.11i
- Wired Equivalent Privacy
 - Use shared key: 40-bit master key + 24-bit initialization vector (IV)
 - No key distribution mechanism, key set manually
 - Access point supposes only the mobile host has key

Authentication

- Mobile host requests authentication from access point
- Access point sends back 128-bit nonce (against replay)
- Host encrypts nonce using shared master key K_S
- Access point decrypts nonce, authenticates host

Encryption

- 40-bit K_s + 24-bit IV used to generate a stream of keys
 - Generator assures same key stream for similar 64-bit key
- Key stream XOR'ed with plaintext and checksum to produce cipher text
 - For each octet of msg data d_i : $c_i = k_i \oplus d_i$
 - For each octet of CRC crc_j : $c_{n+j} = k_{n+j} \oplus crc_j$
- IV and cipher text sent in frame

802.11 Header	WEP encrypted data + CRC	
------------------	--------------------------	--

Attack WEP

Security hole

- 24-bit IV, one IV per frame -> IV's eventually reused
 - If assigned randomly, expected reuse once per 5000 frames
 - If assigned sequentially, reused at each startup
- IV transmitted in plaintext -> IV reuse detected
- Attack is easy, since

$$(P_1 \oplus C) \oplus (P_2 \oplus C) = P_1 \oplus P_2$$

- Cipher text C is the same if IV reused
- If Trudy causes Alice encrypt a known plain text P₁
- P₂ will be known once the IV reappear

802.11i Improved Security

- Uses authentication server separate from access point
- Provides key distribution mechanism
- Numerous (stronger) forms of encryption possible

802.11i Procedure

EAP: Extensible Authentication

- EAP: end-end client (mobile) to authentication server protocol
- EAP sent over separate "links"
 - Mobile-to-AP (EAP over LAN)
 - AP to authentication server (RADIUS over UDP)
- RADIUS: Remote Authentication Dial In User Service
 - Provides centralized Authentication, Authorization, and Accounting

EAP TLS		
EAP		
EAP over LAN (EAPoL)	RADIUS	
IEEE 802.11	UDP/IP	

Summary

- Firewalls
 - Stateless packet filters
 - Stateful packet filters
 - Application gateways
- Security in different network layers
 - Transport Layer Security
 - IP Security
 - Securing Wireless LANs

Homework

■ 第8章: R23, P19