

Electromagnetismo Aplicado (EL3103-1) Clase auxiliar 3

Prof. Benjamin Jacard H. Prof. Aux. Erik Saez A.

- 1. En el toroide delgado de la figura, determinar:
 - 1. La **impedancia** del enrollado de N vueltas en primera aproximación (despreciando energía almacenada en campo eléctrico).
 - 2. El campo eléctrico fasorial de mayor amplitud en el entrehierro.

Nota: Suponga que el campo magnético en el toroide es uniforme e igual al correspondiente al radio medio. Despreciar efectos de borde y pérdidas.

Figura 1: Esquema del toroide

2. El campo eléctrico $E(r,\phi)$ dentro de una cuña bidimensional $(0 \le \phi \le \beta, r \le R)$ limitada por un conductor perfecto conectado a tierra (figura 2) proporciona una visión de la naturaleza de los campos eléctricos cerca de esquinas conductoras. El potencial no puede ser singular cuando $r \to 0$, entonces se simplifica a la siguiente expresión (α constante mayor a 0)

$$V(r,\phi) = A + B\phi + \sum_{\alpha>0} C_{\alpha} r^{\alpha} \sin(\alpha\phi)$$
(44)

1. Determine los coeficientes A, B y α a partir de las condiciones de borde. Luego de determinar α encuentre la forma integral de calcular los C_{α} a partir de $f(\phi)$. Las condiciones de borde siguen la forma:

$$\begin{cases} V(r,0) = 0 & r \in [0,R] \\ V(r,\beta) = 0 & r \in [0,R] \\ V(R,\phi) = f(\phi) & \phi \in [0,\beta] \end{cases}$$
(45)

2. Cuando $r \to 0$ el potencial se puede aproximar por:

$$V(r,\phi) \approx r^{n/\beta} \sin\left(\frac{n\pi}{\beta}\right)$$
 (46)

Para esta expresión encuentre el campo eléctrico asociado y comente cualitativamente como se comporta el campo cuando $r \to 0$ en los casos $\beta < \pi$, $\beta = \pi$ y $\beta > \pi$. Indicación: Puede ser útil recordar la expresión del gradiente en coordenadas polares.

Figura 2: Esquema general para los diferentes valores de β

3. Una placa de un material con constante ϵ_0 posee dimensiones de 8 cm \times 8 cm, y se le aplica potencial como muestra la figura.

- 1. Determine el potencial en el centro de la placa y el campo eléctrico en el centro de la placa.
- 2. Suponga que alguna persona maldadosa decide insertar dos materiales con constantes ϵ_1 y ϵ_2 , estos se dividen en el medio de la placa. En que cambia el sistema?
- 3. No solo con esto, decide posteriormente eliminar los diferentes materiales e insertar una densidad de carga $\rho = 5\epsilon_0$. En que se ve afectado el sistema? **Propuesto**