Predicting User Churn

Anoosh Moutafian 2024

Waze provides satellite navigation software on smartphones

- Revenue generated via ad sales
- App relies on crowdsourced information
- 150 million monthly active users

Dataset: Synthetic dataset constructed by Waze

- 14,299 complete rows
- 13 features (most cover one-month time period)
- Data labeled churn/retain (reflects user behavior behavior during one-month period)

https://github.com/amoutafian/waze_capstone/blob/main/data/waze_dataset.csv

Problem Statement

User churn during dataset month

- 18%
- 2536 users churn /14299 total

Goal: Reduce user churn by 10%

- 18% → 16.2%
- 2536 → 2316 users churn
- 220 users retained/14299 total

Questions:

How can we predict user churn?

Which features contribute most strongly?

Results of successful retentions:

- Increased ad impressions at \$.002 each
- Increased app quality with additional crowdsourced info

Data Cleaning, Exploration, Wrangling and Preprocessing

Of the original 14,999 observations (each representing a Waze user), 700 were removed due to missing churn information

Features were explored individually and in relationship to other features

The imbalanced churn/retain feature was balanced using random oversampling 18% → 33% churn rate

The data was split into 80% train and 20% test sets

Dummies were made from the single independent categorical feature

Numerical features were standardized

Relative feature importance as identified by XGB

activity_days: Number of days the user opens the app during the month

driving_days: Number of
days the user drives >= 1 km
during the month

n_days_after_onboarding:
Number of days since user
onboarding

Random Forest had high accuracy (81%), but low recall (19%) meaning it wasn't great at predicting which users would churn

Logistic Regression had 74% accuracy and 58% recall, making the model of choice for this use case

	precision	recall	f1-score	support
0 1	0.89 0.36	0.77 0.58	0.83 0.45	2337 523
accuracy macro avg weighted avg	0.63 0.80	0.68 0.74	0.74 0.64 0.76	2860 2860 2860

Next Steps:

Tune gradient boost model hyperparameters

Convert data to DMatrix (XGBoost proprietary data structure)

Experiment with class balancing techniques