Travail individuel de rédaction en temps libre À rendre le lundi 26 septembre 2022

Problème 1

Partie A Le petit théorème de Fermat

Soit *p* un entier premier.

A1. Montrer

$$\forall k \in \llbracket 1, p-1 \rrbracket, k \binom{p}{k} = p \binom{p-1}{k-1}.$$

A2. Montrer

$$\sum_{k=0}^{p} \binom{p}{k} = 2^{p}.$$

A3. Montrer que p divise $2^p - 2$.

A4. En déduire une démonstration par récurrence du petit théorème de Fermat :

$$\forall a \in \mathbb{N}, a^p \equiv a \pmod{p}.$$

A5. En déduire que si a n'est pas multiple de p, alors le nombre $a^{p-1} - 1$ est divisible par p.

Partie B Première application

Ici n et m sont deux entiers quelconques.

B1. Soit α un entier naturel et p un nombre premier qui ne divise ni m ni n.

Montrer que *p* divise $(m^{\alpha})^{p-1} - 1$ et $(n^{\alpha})^{p-1} - 1$.

En déduire qu'il divise $m^{\alpha(p-1)} - n^{\alpha(p-1)}$.

B2. En déduire que le nombre $S = (m^{60} - n^{60})$ est divisible par tout nombre premier p tel que p - 1 soit un diviseur de 60.

En déduire que S est divisible par 56786730.

Partie C Seconde application

On désire montrer qu'il existe une infinité de nombres premiers de la forme 4n + 1, où n décrit \mathbb{N}^* . Pour cela, nous allons raisonner par l'absurde en supposant qu'il n'existe que k nombres premiers de la forme 4n + 1. On les note p_1, p_2, \ldots, p_k et on pose

$$a = p_1 \times p_2 \cdots \times p_k$$
 et $N = a^2 + 1$.

C1. Soit q un facteur premier de N. On suppose que q est de la forme 4n + 3, où $n \in \mathbb{N}$.

- (a) Pourquoi q ne divise-t-il pas a?
- (b) Montrer successivement que q divise $a^{4n+2}-1$, n étant l'entier tel que q=4n+3, puis que q divise aussi a^2+1 et a^2-1 . En déduire enfin que q divise 2. Conclure.
- **C2.** Montrer que N est divisible par 2, mais n'est pas divisible par 4.
- C3. Déduire des questions précédentes que N admet au moins un facteur premier de la forme 4n+1 et qu'un tel facteur est différent de $p_1 \times \cdots \times p_k$. Conclure.

1