KNN

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as p
from sklearn.model_selection import train_test_split
```

In [2]: dataset = pd.read_csv('wifi_localization.csv', sep='\t', header=0)
 dataset

Out[2]:

	atb1	atb2	atb3	atb4	atb5	atr6	atb7	lable
0	-64	-56	-61	-66	-71	-82	-81	1
1	-68	-57	-61	-65	-71	-85	-85	1
2	-63	-60	-60	-67	-76	-85	-84	1
3	-61	-60	-68	-62	-77	-90	-80	1
4	-63	-65	-60	-63	-77	-81	-87	1
1995	-59	-59	-48	-66	-50	-86	-94	4
1996	-59	-56	-50	-62	-47	-87	-90	4
1997	-62	-59	-46	-65	-45	-87	-88	4
1998	-62	-58	-52	-61	-41	-90	-85	4
1999	-59	-50	-45	-60	-45	-88	-87	4

2000 rows × 8 columns

```
In [3]: #dataset.head()
        #dataset.shape
        #dataset.info()
        #print(dataset['t'])
        #y=(dataset['t'])
        #x=dataset[['a','b','c','d','e','f','g','h','i','j','k','l']]
        #print(x)
        #print(y)
        #dataset.hist(bins=50, figsize=(20,15))
        #p.show()
        train set, test set = train test split(dataset, test size=0.3, random state=40
        train set att = train set.drop(['lable'], axis=1)
        print(train_set_att)
        train set t = train set['lable']
        test_set_att = test_set.drop(['lable'], axis=1)
        test_set_t = test_set['lable']
        from sklearn.neighbors import KNeighborsClassifier
        K = 1
        knn = KNeighborsClassifier(n neighbors=K)
        knn.fit(train set att, train set t)
        print("When K = {} neighnors , KNN test accuracy: {}".format(K, knn.score(test
        set att,test set t)))
        print("When K = {} neighnors , KNN train accuracy: {}".format(K, knn.score(tra
        in set att, train set t)))
        ran = np.arange(1,30)
        train list = []
        test list = []
        for i,each in enumerate(ran):
            knn = KNeighborsClassifier(n neighbors=each)
            knn.fit(train_set_att, train_set_t)
            test_list.append(knn.score(test_set_att,test_set_t ))
            train list.append(knn.score(train set att,train set t ))
        p.figure(figsize=[15,10])
        p.plot(ran,test list,label='Test Score')
        p.plot(ran,train list,label = 'Train Score')
        p.xlabel('Number of Neighbers')
        p.ylabel('fav number/retweet count')
        p.xticks(ran)
        p.legend()
        print("Best test score is {} , K = {}".format(np.max(test list), test list.ind
        ex(np.max(test list))+1))
        print("Best train score is {} , K = {}".format(np.max(train_list), train_list.
        index(np.max(train list))+1))
```

	atb1	atb2	atb3	atb4	atb5	atr6	atb7
993	-45	-52	-59	-43	-71	-74	-79
1156	-51	-53	-52	-55	-68	-78	-91
615	-41	-57	-64	-42	-74	-69	-70
703	-37	-61	-55	-40	-63	-70	-67
1130	-51	-57	-51	-51	-65	-80	-80
• • •							
1016	-48	-56	-50	-45	-61	-80	-80
165	-62	-55	-58	-68	-69	-83	-88
7	-61	-63	-58	-66	-74	-87	-82
219	-62	-49	-56	-63	-67	-78	-80
1350	-52	-56	-52	-50	-65	-86	-84

[1400 rows x 7 columns]

When K = 1 neighnors , KNN test accuracy: 0.986666666666667

When K = 1 neighnors , KNN train accuracy: 1.0

Best test score is 0.9916666666666667, K = 3

Best train score is 1.0 , K = 1

