Japanese Unexamined Patent Publication 256390/1986 (Tokukaisho 61-256390)

A. Relevance of the Above-identified Document

The following is an English translation of non-English language information that may be relevant to the issue of patentability of the claims of the present application.

B. <u>Translation of the Relevant Passages of the Document</u> See also the attached English Abstract.

1.TITLE OF THE INVENTION

Control pulse generation circuit for driving liquid crystal panel

2. CLAIM

A control pulse generation circuit for driving a liquid crystal panel, comprising a video signal sample and hold circuit, which samples a video signal during one horizontal scanning period in a time division manner and holds the video signal during another one horizontal scanning period subsequently,

the video signal sample and hold circuit receiving the video signal as a control pulse,

wherein two control pulses having a cycle of two horizontal periods are provided and are set so as to have a longer time period during which both of the two control pulses are in an OFF state, compared to a transitional switching time of an element constituting the sample and hold circuit.

3. DETAILED DESCRIPTION OF THE INVENTION

[INDUSTRIAL APPLICABILITY]

The present invention relates to a control pulse generation circuit for supplying a control pulse to a liquid crystal panel drive circuit including a sample and hold circuit.

[BACKGROUND ART]

In recent years, liquid crystal television receivers have been developed which incorporate a liquid crystal panel as a display element. The following briefly describes operations of such a liquid crystal television receiver.

Fig. 3 shows a typical structure of a liquid crystal television receiver. A TV signal transmitted from a broadcast station is received by an antenna 1, and converted into an intermediate frequency by a tuner 2. The TV signal converted into the intermediate frequency is amplified and detected by a signal processing circuit section 3, so that an audio signal and a video signal are obtained. The audio signal is outputted via an output circuit 4 to a speaker 5, and the video signal is applied to a chroma section 6 including a chroma processing section

and a chroma output section. The video signal is demodulated into R, G, B signals at the chroma processing section, and then converted into signals whose polarities are reversed every field at the chroma output section, so as to be supplied to a Y driver integrated circuit 9 (hereinafter, an integrated circuit is referred to as an IC). The video signals supplied to the Y driver IC 9 are sampled and become on hold, and then applied to source lines of an active matrix liquid crystal panel 8. Further, the video signals are supplied to a control pulse generation circuit 7. In the control pulse generation circuit 7, various kinds of control pulses are obtained and applied to control signal input terminals of an X driver IC10 and the Y driver IC9. The X driver IC10 carries out scanning in a vertical direction, and outputs scanning pulses to gate lines of the active matrix liquid crystal panel 8. As such, with the vertical scanning pulses from the X driver IC10 and the video signals from the Y driver IC9, a television image is realized on the active matrix liquid crystal panel 8.

The following describes how the operation of the Y driver IC9 relates to control pulses supplied from the control pulse generation circuit 7. The Y driver IC9 and the control pulse generation circuit 7 are shown in Fig. 3. Fig. 4 shows one exemplary structure of the Y driver IC9 and the control pulse generation circuit 7. In Fig. 4,

control pulses ϕ_Y , G_1 , G_2 , and S are supplied from the control pulse generation circuit. R, G, B signals from the chroma section are supplied to R, G, B terminals and switched by an analog multiplexer 11 every horizontal period, and then introduced to three video signal lines 12, respectively. The analog multiplexer 11 carries out the switching operations for R, G, B pixel arrays. In Fig. 4, indicated by 13 is a shift register, and 14 is a sample and hold circuit and operational amplifier. From the control pulse generation circuit, the shift register 13 receives a clock ϕ_Y and a start pulse S, and sequentially outputs sampling pulses θ_1 , θ_2 , ..., respectively. The sample and hold circuit and operational amplifier 14 samples video signals from the video signal lines 12 according to sampling pulses θ_1 , θ_2 , ... supplied from the shift register, and holds the video signals according to G1 and G2 pulses supplied from the control pulse generation circuit. Outputs of the sample and hold circuit and operational amplifier 14 are respectively connected terminals of the Y driver IC Yo1, Yo2, ... which are connected to the source lines of the active matrix liquid crystal panel, respectively. Fig. 5 shows one circuit provided in the sample and hold circuit and operational amplifier (nth circuit) and the control pulse generation circuit, which are shown in Fig. 4, and Fig. 6 shows its timing chart.

In Fig. 5, indicated by 7 is the control pulse generation circuit, 15 is a video input terminal, 16, 17, 18, and 19, and 20 are switching elements controlled by the control signals Q_n , G_1 , G_2 , G_2 , and G_1 , respectively, C_{na} and C_{nb} are sampling and holding capacitors, 21 is a buffer amplifier, and 22 is a video output terminal.

Referring to the timing chart shown in Fig. 6, the following describes a pulse generation circuit for driving a liquid crystal panel and a sample and hold circuit, which are configured as described above.

In Fig. 6, Vin represents a waveform of an input signal supplied to the video input terminal 15 and one horizontal period is denoted by 1H (one horizontal line will be abbreviated to 1H hereinafter). G1 and G2 are control pulses for the sample and hold circuit, which are supplied from the control pulse generation circuit 7. Both of the G₁ and G2 have two horizontal periods within one cycle, and their phases are shifted by π . The falling edge of G_1 and the rising edge of G2 are matched, and the rising edge of G₁ and the falling edge of G₂ are matched, providing coincident timing. Qn represents an nth sampling pulse when video signals in 1H are supplied in a time division manner. On is used to sample information of the video signals, which will be supplied to nth line of the liquid crystal panel. Vna and Vnb are voltages to be supplied to the sampling and holding capacitors C_{na} and C_{nb} ,

respectively. Further, V_{out} represents a waveform of an output signal of the video output terminal 22. The video output terminal 22 is connected to an nth electrode (not shown) of the liquid crystal panel.

In the timing chart, during t1 period, since G_1 is ON and G_2 is OFF, information of the sampling and holding capacitor C_{nb} is transmitted to the video output terminal 22. Further, video signal information is sampled to the sampling and holding capacitor C_{na} according to the sampling pulse Q_n . Next, during t2 period, since G_1 is Off and G_2 is ON, the information of C_{na} thus sampled during t1 period is transmitted to the video output terminal 22. Further, video signal information is sampled to the capacitor C_{nb} according to the sampling pulse Q_n .

During the following periods t3, t4, ..., operations carried out in t1 and t2 periods will be repeated in a similar manner.

[PROBLEM TO BE SOLVED BY THE INVENTION]

In the conventional circuit, as to the sampling and holding control pulses G_1 and G_2 supplied from the control pulse generation circuit, the falling edge of G_1 and the rising edge of G_2 are matched, and the rising edge of G_1 and the falling edge of G_2 are matched, providing coincident timing. On the contrary, elements constituting the switches 17, 18, 19, and 20, which perform sampling and holding operations (e.g. MOS analog switches), have

transitional switching periods. This generates a period in which both of G_1 and G_2 become in an ON state when switched. As a result, crosstalk occurs between V_{na} and V_{nb} , so that accurate video signal information cannot be transmitted to the video output terminal 22. In the example shown in Fig. 6, the signal V_{nb} should be outputted as the signal V_{out} during t3 period. However, accurate information is not obtained due to the influence of V_{na} .

The present invention is made in view of the foregoing problems, and an object of the present invention is to provide a pulse generation circuit for driving a liquid crystal panel, in which no crosstalk occurs and accurate video signal information is transmitted to the video output terminal 22 of the Y driver IC.

[MEANS TO SOLVE THE PROBLEMS]

According to the present invention, to solve the foregoing problems, a pulse generation circuit for driving a liquid crystal panel includes a Y driver IC having therein a video signal sample and hold circuit, which samples a video signal during one horizontal scanning period in a time division manner and holds the video signal during another one horizontal scanning period subsequently, the video signal sample and hold circuit receiving the video signal as a control pulse, wherein two control pulses having a cycle of two horizontal periods are provided and

are set so as to have a longer time period during which both of the two control pulses are in an OFF state, compared to a transitional switching time of an element constituting the sample and hold circuit.

[OPERATION]

According to the arrangement of the present invention, when two sampling and holding control pulses are switched, both of the pulses become in an OFF state for a certain effective time period, and then one of the pulses becomes in an ON state. This allows no crosstalk occurring between two voltages which were sampled and become on hold, so that accurate video signal information can be transmitted to a video output terminal.

[EMBODIMENTS]

With reference to figures, the following describes a pulse generation circuit for driving a liquid crystal display according to one embodiment of the present invention.

Fig. 1 is a block diagram showing one embodiment of the present invention, and Fig. 2 shows its timing chart. A circuit shown in Fig. 1 is the same as that shown in Fig. 5. Specifically, in Fig. 7, indicated by 7 is a control pulse generation circuit, 15 is a video input terminal, 16, 17, 18, and 19, and 20 are switching elements which are controlled by control signals Q_n, G₁, G₂, G₂, and G₁, respectively, C_{na} and C_{nb} are sampling and holding capacitors, 21 is a buffer amplifier, and 22 is a video

output terminal.

Referring to the timing chart shown in Fig. 2, the following describes a pulse generation circuit for driving a liquid crystal panel and a sample and hold circuit, which are configured as described above.

In Fig. 2, V_{in} represents a waveform of an input signal supplied to the video input terminal 15 and one horizontal period is denoted by 1H. G_1 and G_2 are control pulses for the sample and hold circuit, which are supplied from the control pulse generation circuit 7. Both of the G_1 and G_2 have two horizontal periods within one cycle, and their phases are shifted by π . A period between the falling edge of G_1 and the rising edge of G_2 , and a period between the rising edge of G_1 and the falling edge of G_2 , i.e., periods during which both G_1 and G_2 are in an OFF state, are secured by a finite value t. The value t is set so as to have a longer time period, compared to a transitional switching time of the switching elements 17, 18, 19, and 20.

 Q_n represents an n^{th} sampling pulse when video signals in 1H are supplied in a time division manner. Q_n is used to sample information of the video signals, which will be supplied to n^{th} line of the liquid crystal panel. V_{na} and V_{nb} are voltages to be supplied to the sampling and holding capacitors C_{na} and C_{nb} , respectively. Further, V_{out} represents a waveform of an output signal of the video

output terminal 22. The video output terminal 22 is connected to an nth electrode (not shown) of the liquid crystal panel.

In the timing chart, during t1 period, since G_1 is ON and G_2 is OFF, information of the sampling and holding capacitor C_{nb} is transmitted to the video output terminal 22. Further, video signal information is sampled to the sampling and holding capacitor C_{na} according to the sampling pulse Q_n . Next, during t2 period, since G_1 is Off and G_2 is ON, the information of C_{na} thus sampled during t1 period is transmitted to the video output terminal 22. Further, video signal information is sampled to the capacitor C_{nb} according to the sampling pulse Q_n .

During the following periods t3, t4, ..., operations carried out in t1 and t2 periods will be repeated in a similar manner.

According to the present invention, a pulse generation circuit for driving a liquid crystal panel has periods t between periods for sampling and holding operations t_1 , t_2 , t_3 , t_4 , During the t periods, both of the sampling and holding control pulses G_1 and G_2 are in an OFF state. This allows sampling and holding voltages V_{na} and V_{nb} to go into a hold period, after the completion of a sample period.

As described above, according to the present embodiment, a period t, during which both of the

sampling and holding control pulses G_1 and G_2 are in an OFF state, is set to be longer than a transitional switching time of the elements constituting a sample and hold circuit. With the above arrangement, the conventional problems can be solved. Specifically, no crosstalk occurs between the two sampling and holding voltages V_{na} and V_{nb} , so that accurate video signal information can be transmitted to the video output terminal 22.

When switching circuits constituted by aluminum gate MOS are used as elements constituting a sample and hold circuit, their transitional switching time will be approximately 50 nsec to 100 nsec. Thus, approximately 2 usec to 3 usec may be set for a time period during which both of G_1 and G_2 , supplied from a control pulse generation circuit, become in an OFF state.

[EFFECT OF THE INVENTION]

As described above, a control pulse generation circuit for driving a liquid crystal panel of the present invention includes a video signal sample and hold circuit, which samples a video signal during one horizontal scanning period in a time division manner and holds the video signal during another one horizontal scanning period subsequently. In the video signal sample and hold circuit receiving a video signal as a control pulse, two control pulses having a cycle of two horizontal periods are provided, and a time period during which both of the two

control pulses are in an OFF state is longer than a transitional switching time of an element constituting the sample and hold circuit. With the above arrangement, the conventional problems are solved. Specifically, no crosstalk occurs between two sampling and holding voltages, so that accurate video signal information can be transmitted to a video output terminal.

4. BRIEF DESCRIPTION OF DRAWINGS

Fig. 1 is a block diagram showing a control pulse generation circuit for driving a liquid crystal panel according to one embodiment of the present invention, and Fig. 2 shows its timing chart. Fig. 3 is a block diagram showing a typical structure of a liquid crystal television receiver. Fig. 4 is a block circuit diagram showing a Y driver IC and a control pulse generation circuit by way of example. Fig. 5 is a block diagram showing a conventional pulse generation circuit for driving a liquid crystal panel, and Fig. 6 shows its timing chart.

7: Control pulse generation circuit

15: Video input terminal

16, 17, 18, 19, and 20: Switching elements

21: Buffer amplifier

22: Video output terminal

Tokukaisho 61-256390

Page 13

2: TUNER

3: SIGNAL PROCESSING CIRCUIT SECTION

4: AUDIO OUTPUT CIRCUIT

5: CHROMA SECTION

6: SPEAKER

8: LIQUID CRYSTAL PANEL

9: Y DRIVER

10: X DRIVER

11: ANALOG MULTIPLEXER

13: SHIFT REGISTER

14: SAMPLE HOLD & AMPLIFIER

Attorney name: Toshio NAKANO, and one other

⑩日本国特許庁(JP)

⑪特許出願公開

⑩公開特許公報(A)

昭61-256390

@Int_Cl_4		識別記号	庁内整理番号	❸公開	昭和61年(198	36)11月13日 ov.13、1986)
G 09 G	3/36		8621-5C	Publication	n Pate: (No	ov.13,1986)
G 02 F H 03 K	1/133 7/02	1 2 9	Z - 7348 - 2H 7259 - 5 J			
H 04 N	5/66	102	7245-5C	審査請求 未請求	発明の数 1	(全6頁)

60発明の名称

液晶パネル駆動用制御パルス発生回路

②特 願 昭60-99819

願 昭60(1985)5月10日

砲発 明 者

公 代

敏男

門真市大字門真1006番地 松下電器產業株式会社内

勿出 願 人 松下電器產業株式会社

門真市大字門真1006番地

60代 理 人 弁理士 中尾 外1名

2 ~- 9

1. 発明の名称

液晶パネル駆動用制御パルス発生回路

2、特許請求の範囲

1 水平走査期間の映像信号を時分割的にサンプ リングし、次の1水平走査の期間ホールドする映 像信号サンブルホールド回路に加えられる制御パ ルスとして、2つの2水平周期の制御パルスを有 し、かつこの2つの制御パルスがともにオフであ る期間を上記サンブルホールド回路を構成する素 子の過渡的なスイッチング時間より大きくしたと とを特徴とする液晶パネル駆動用制御パルス発生 回路。

3、発明の詳細な説明

産業上の利用分野

本発明は、サンプルホールド回路を有する液晶 パネル駆動回路に制御パルスを供給するための制 御パルス発生回路に関するものである。

従来の技術

近年、液晶パネルを表示素子とした液晶テレビ

ジョン受像機が開発されている。この液晶テレビ ジョン受像機の動作の概要についてまず説明する。

第3図に液晶テレビジョン受像機の一般的な構 成を示す。放送局から送られたテレビ信号はアン テナ1 で受信され、チューナ2 で周波数変換され 中間周波数となる。中間周波数に変換されたテレ ヒ信号は、信号処理回路部3で増幅,検波され音 **声信号と映像信号とが得られる。音声信号は音声** 出力回路4を経てスピーカー5に出力される。映 像信号は、クロマ部6に印加される。クロマ部6 にはクロマ処理部とクロマ出力部とがあり、映像 信号はクロマ処理部でR、G、B信号に復調され、 その後クロマ出力部で1フィールド毎に極性を反 転させられた信号に変換され、ドドライバー集積 回路9亿加えられる。(以下集積回路を10と略 す)。YドライバーIC9に加えられた映像信号 は、サンブルホールドされてアクティブマトリク ス液晶パネルBのソースラインに印加される。ま た映像信号は制御パルス発生回路でに加えられ、 ここで各種制御パルスが得られ、X ドライバー IC

3 ~-9

10、及びYドライバーIC9の制御信号入力端子に印加される。 ※ドライバーIC10は、たて方向の走査を行なりためのものであり、この出力はアクティブマトリクス液晶パネルBのゲートラインに加えられる。 ※ドライバーIC10からのたて方向走査ベルスとYドライバーIC9からの映像信号とによって、アクティブマトリクス液晶パネルB上にテレビ画像が得られる。

6 T₁ = 6

次に、第3図に示すYドライバーICョの動作と制御パルス発生回路でからの制御パルスの関係について説明する。第4図にYドライバーICョ、及び制御パルス発生回路での構成の一例を示す。本例では制御パルス発生回路からYドライバーIC制御パルスと回路からYドライバーIC制御パルスと回路からOR、G、B信号はR、G、B端子に加えられ、アナログマルチブレクサイ1により1水平周期毎に切り換えられる本の映像信号ライン12に導かれる。アナログマルチブレクサイ1は、液晶パネルのR、G、B絵楽配列に応じた切換動作を行なう。13はシフトレジスタで

5 ~- 9

ンプルホールド用コンデンサ、21 はパッファア ンプ、22は映像出力端子である。

以上のように構成された従来の液晶パネル駆動 用制御パルス発生回路及びサンブルホールド回路 について、第8図のタイミングチャートに基づき その動作を説明する。

 V_{in} は映像入力端子 1 5 に加えられる入力信号の波形であり 1 水平周期を 1 H で表わしてある (以下、 1 水平周期を 1 H と略す)。 G_1 , G_2 は 制御パルス発生回路 7 から加えられるサンブルホールト回路の制御パルスであり、 G_1 , G_2 とも周期は 2 水平周期であり、位相は G_2 とも周れている。 なれてだけずれている。 立上りと G_2 の立上りと G_2 の立上りかんであり、 G_1 の立上りと G_2 の立て下りとは G_1 の立上りな G_2 の立て下りとは G_1 の立とは G_2 の立て下り、 G_1 の立とは G_2 の立ている。 G_1 の立ている。 G_1 の立ている。 G_2 の立ている。 G_1 の立ている。 G_2 の立ている。 G_1 の立ている。 G_1 の立ている。 G_2 の立ている。 G_1 の立ている。 G_1 の立ている。 G_1 の立とは G_2 の立ている。 G_1 の G_2 に G_1 の G_2 に G_2 の G_1 に G_2 に G_1 の G_2 に G_2 に G_1 に G_2 に G_2

あり、制御パルス発生回路からのクロック by と スタートパルスSを入力とし、サンプリングパル スθ1,θ2, ……を順次出力する。14はサンプ ルホールド回路及びオペアンプであり、映像信号 ライン12の映像信号をシフトレジスタからのサ ンプリングパルスθ1,θ2, ……によってサンプ リングし、制御パルス発生回路から加えられるG₄, Go パルスによってホールド動作を行なりもので ある。サンプルホールド回路及びオペアンプ14 の出力はYドライバーICの出力端子Y01,Y02 …… に接続されており、この出力端子 Yo1, Yo2 ……はアクティブマトリクス液晶パネルのソース ラインに接続されている。第4図におけるサンプ ルホールド回路及びオペアンプの1つの回路(ロ 番目)及び制御パルス発生回路を第6図に示し、 第6図にそのタイミングチャートを示す。

第 B 図において、 7 は制御パルス発生回路、 16 は映像入力端子、 16 、 17 、 18 、 19 、 20 はそれぞれ制御信号 Q_n 、 G_1 、 G_2 、 G_2 、 G_1 によって制御されるスイッチング素子、 C_{na} 、 C_{nb} はサ

8 x= #

出力信号の波形である。映像出力端子22は液晶 パネルのエ列目の電優(図示せず)に接続される。 タイミングチャートにおいて、 t₁ の期間は G₁ がオンで G₂ がオフであるから、サンブルホール

がオンで G_2 がオフであるから、サンブルホールドコンデンサ C_{nb} の情報が映像出力端子 2 2 に伝えられるとともに、サンブルホールドコンデンサ C_{na} にはサンプリングベルス Q_n によって映像信号情報がサンプリングされる。次に、 t_2 の期間は G_1 がオフで G_2 がオンであるから、 t_1 期間にサンブリングされた C_{na} の情報が映像出力端子 2 2 に伝えられるとともに C_{nb} には Q_n のサンプリングベルスによって映像信号情報がサンブリン

以下 t_3 , t_4 ……の期間はそれぞれ t_1 , t_2 の期間と同様の動作を繰り返す0

発明が解決しようとする問題点

しかしながら、このような従来の回路では、制 制パルス発生回路からのサンブルホールド制御パ ルス G_1 G_2 において G_1 の立下りと G_2 の立上 り、及び G_1 の立上りと G_2 の立下りのタイミン グが一到しているのに対し、サンプルホールド動作を行っているスイッチ17,18,19,20を構成している素子(例えばMOSのアナログスイッチなど)の過酸的なスイッチング時間はゼロではないため、 G_1 , G_2 が切り換わる際 G_1 , G_2 ではないたかが、 G_1 , G_2 が切り換わる際 G_1 , G_2 ではないたかが発生し、 V_{na} , V_{nb} 間にクロストークが発生し、映像は出たいないの間題点を有していた。第6図の例では、 t_3 の期間に V_{out} として V_{nb} の信号が出たないのに V_{na} の影響を受け正確な情報が得られていない。

本発明は上記問題点に鑑み、2つのサンブルホールド電圧 Vna,Vnb間にクロストークがなく、 YドライバーICの映像出力端子22に正確な映像借号情報を伝達する液晶パネル駆動用制御パルス発生回路を提供することを目的としている。

問題点を解決するための手段

上記問題点を解決するため、本発明の液晶パネル駆動用制御パルス発生回路は、1 水平走査期間

9 ~- 5

第1図は本発明の一実施例を示す構成図、第2図はそのタイミングチャートである。構成そのものは第5図のものと同一である。すなわち第1図においてては制御パルス発生回路、15は映像入力端子、16,17,18,19,20はそれぞれ制御信号Qn,G1,G2、G2,G1によって制御されるスイッチング素子、 Cna, Cnb はサンブルホールド用コンデンサ、21はパッファアンブ、22は映像出力端子である。

以上のように構成された液晶パネル駆動用制御 パルス発生回路及びサンブルホールド回路につい て以下第2図タイミングチャートに基づきその動 作を説明する。

 V_{in} は映像入力端子 1 5 に加えられる入力信号の改形であり、 1 水平周期を 1 H で表わしてある G_1 . G_2 は制御パルス発生回路から Y ドライバー I C に加えられるサンブルホールド回路の制御パルスであり、 G_1 . G_2 とも周期は 2 水平周期であり、位相は互いにπだけずれている。また G_2 の立下りと G_1 の立上りの間、及び G_1 の立下りと

の映像信号を時分割的にサンブリングし、次の1水平走査の期間ホールドする、YドライバーIC内映像信号サンプルホールド回路に加えられる制御パルスとして、2つの2水平周期の制御パルスを有し、かつとの2つの制御パルスがともにオフである期間をサンブルホールド回路を構成する素子の過渡的なスイッチング時間より大きくしたものである。

作用

本発明は上記した構成により、2つのサンブルホールド制御バルスが切り換わる際、ある有限期間だけこの両バルスが共にオフとなり、そのあとでどちらかがオンとなるので、2つのサンブルホールドされた電圧間にクロストークは発生せず、映像出力端子に正確な映像信号情報を伝達できることとなる。

実 施 例

以下本発明の一実施例の液晶パネル駆動用制御 パルス発生回路について、図面を参照しながら説 明する。

10 4-9

G2 の立上りの間、すなわちG1,G2 の両方ともがオフである期間を有限値 t だけとっている。そしてこの t の値はサンブルホールド回路を構成する案子、つまりスイッチング案子17,18,19,20の過渡的なスイッチング時間よりも大きくとってある。

Qn は1Hの映像信号を時分割したときの n 番目のサンプリングパルスであり、液晶パネルの n 列目に供給する映像信号の情報をサンプリングするものである。 Vna, Vnbはそれぞれサンプルホールドコンデンサ Cna, Cnbにかかる電圧であり、 Vout は映像出力端子 2 2 位液晶パネルの n 列目電極 (図示せず) に接続される。

タイミングチャートにおいて、t₁ の期間はG₁ がオンでG₂ がオフであるから、サンブルホールドコンデンサ C_nbの情報が映像出力端子22に伝えられるとともに、サンブルホールドコンデンサ C_{na}にはサンブリングベルスQ_n によって映像信号がサンブリングされる。次にt₂ の期間はG₁

がオフで G_2 がオンであるから、 t_1 期間にサンプリングされた $C_{n,a}$ の情報が映像出力端子 22 に 伝えられるとともに $C_{n,b}$ には Q_n のサンブリング パルスによって映像信号情報がサンプリングされる 0

以下、 t₃, t₄, ……の期間はそれぞれ t₁, t₂ の期間と同様の動作を繰り返す。

本発明による液晶パネル駆動用制御パルス発生回路では、サンブルホールド動作期間 t₁,t₂,t₃,t₄, ……の間にサンブルホールド制御パルスG₁,G₂ がともにオフである期間 t を設けているため、サンブルホールド電圧 V_{na},V_{nb}はサンブリング期間が完全に終了したあとでホールド期間に移行することになる。

以上のように、本実施例によれば、2つのサンブルホールド制御バルスG₁・G₂がともにオフである期間 t を、サンブルホールド回路を構成する素子の過渡的なスイッチング時間より大きく設定したことにより、従来回路で問題となっていた2つのサンブルホールド電圧 V_{na}、V_{nb}間のクロス

13 4-9

をなくし、映像出力端子に正確な映像信号情報を 伝達することができる。

4、図面の簡単な説明

第1図は本発明の一実施例における液晶パネル 駆動用制御パルス発生回路を示すプロック図、第 2図はそのタイミングチャート、第3図は液晶テ レビジ。ン受像機の一般的な構成図、第4図はY ドライバーIC及び制御パルス発生回路の構成の 一例を示す図、第5図は従来例の液晶パネル駆動 用制御パルス発生回路を示すプロック図、第6図はそのタイミングチャートである。

7……制御バルス発生回路、15……映像入力 媚子、16,17,18,19,20……スイッ チング素子、21……パッファアンブ、22…… 映像出力端子。

代理人の氏名 弁理士 中 尾 敏 男 ほか1名

トークをなくし、映像出力端子22 に正確な映像 信号情報を伝達することができる。

サンプルホールド回路を構成する案子としてアルミゲートMOSによるスイッチ回路を使用した場合、その過渡的なスイッチング期間は 5 O n ssc ~1 O O n ssc 程度となるので、制御パルス発生回路からのサンプルホールド制御パルスG₁, G₂がともにオフとなる期間を 2 ~ 3 μ ssc 程度に設定すればよい。

発明の効果

第 3 図

特許法第17条の2の規定による補正の掲載

昭和 60 年特許願第 99819 号(特開 昭 61-256390 号,昭和 61 年 11 月 13 日発行 公開特許公報 61-2561 号掲載)については特許法第17条の2の規定による補正があったので下記のとおり掲載する。 6 (2)

Int.Cl. : 識別記号 庁内整理番号 G09G 3/36 G02F 1/133 129 H03K 7/02 H04N 5/66 102 7259-51 7245-5C				
G 0 2 F 1 / 1 3 3 1 2 9 Z - 7 3 4 8 - 2 H H 0 3 K 7 / 0 2 7 2 5 9 - 5 J	•	Int.Cl.	識別記号	庁内整理番号
	٠	G 0 2 F 1 / 1 3 3 H 0 3 K 7 / 0 2		Z - 7 3 4 8 - 2 H 7 2 5 9 - 5 J

昭 62. 8. 4 発行

手続補正書

照和 62年 5 A13 B

特許庁長官殿

1事件の表示

昭和 6 0 年 特 許 願 第 9 9 8 1 9 月

2 発明の名称

液晶パネル駆動用制御パルス発生回路

3 補正をする者

ず件との関係 特 許 出 願 人 住 所 大阪府門真市大字門真1006番地 名 称 (582)松下電器産業株式会社 代表者 谷 井 昭 雄

4 代 型 人 〒 571

住 所 大阪府門真市大字門真1006番地 松下電器遊業株式会社内

氏 名 (5971) 弁理士 中 尾 飯 男仁) (ほか 1名)[[]

(連絡先 電話(東京)437-1121 東京法務分室)

5 補正の対象 明細書の発明の詳細な説明の機

6、補正の内容

- (1) 明細書第4頁第3行の「θ, θ₂」を「Q, Q₂」 に補正します。
- (2) 同第4頁第8行の「θ, θ₂」を「Q, Q₂」 に補正します。