### **Lecture 2 - Image Fundamentals**

### This lecture will cover:

- Sampling and Quantization
- Pixels



## Sampling and Quantization







➤Sampling (取样)

Digitize the coordinate values

➤Quantization (量化)

Digitize the amplitude values

➤ Methods: Uniform & Non-uniform

#### **Conventional 2D Sampling**



### Non-uniform 2D Sampling



## Matrix Representation

### Three basic ways to represent f(x, y)

- Plot of function: *difficult to view and interpret*
- Visual intensity array: for view
- numerical array: for processing and algorithm development

$$[f(x,y)] = \begin{bmatrix} f(0,0) & f(0,1) & \cdots & f(0,N-1) \\ f(1,0) & f(1,1) & \cdots & f(1,N-1) \\ \vdots & \ddots & \cdots & \vdots \\ f(M-1,0) & f(M-1,1) \cdots & \cdots & f(M-1,N-1) \end{bmatrix}$$

$$A = \begin{bmatrix} a_{0,0} & a_{0,1} & \cdots & a_{0,N-1} \\ a_{1,0} & a_{1,1} & \cdots & a_{1,N-1} \\ \vdots & \ddots & \cdots & \vdots \\ a_{M-1,0} & a_{M-1,1} \cdots & \cdots & a_{M-1,N-1} \end{bmatrix}$$

Intensity level  $L = 2^k$ , then  $b = M \times N \times k$ 





## Matrix Representation

Number of storage bits for various values of N and k.

| N/k  | 1(L=2)     | 2(L=4)      | 3(L = 8)    | 4 (L = 16)  | 5(L = 32)   | 6(L = 64)   | 7(L = 128)  | 8(L=256)    |
|------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| 32   | 1,024      | 2,048       | 3,072       | 4,096       | 5,120       | 6,144       | 7,168       | 8,192       |
| 64   | 4,096      | 8,192       | 12,288      | 16,384      | 20,480      | 24,576      | 28,672      | 32,768      |
| 128  | 16,384     | 32,768      | 49,152      | 65,536      | 81,920      | 98,304      | 114,688     | 131,072     |
| 256  | 65,536     | 131,072     | 196,608     | 262,144     | 327,680     | 393,216     | 458,752     | 524,288     |
| 512  | 262,144    | 524,288     | 786,432     | 1,048,576   | 1,310,720   | 1,572,864   | 1,835,008   | 2,097,152   |
| 1024 | 1,048,576  | 2,097,152   | 3,145,728   | 4,194,304   | 5,242,880   | 6,291,456   | 7,340,032   | 8,388,608   |
| 2048 | 4,194,304  | 8,388,608   | 12,582,912  | 16,777,216  | 20,971,520  | 25,165,824  | 29,369,128  | 33,554,432  |
| 4096 | 16,777,216 | 33,554,432  | 50,331,648  | 67,108,864  | 83,886,080  | 100,663,296 | 117,440,512 | 134,217,728 |
| 8192 | 67,108,864 | 134,217,728 | 201,326,592 | 268,435,456 | 335,544,320 | 402,653,184 | 469,762,048 | 536,870,912 |



## Spatial Resolution (空间分辨率)

Spatial Resolution: smallest discernible detail in an image





## **Spatial Resolution**

Spatial resolution – Sampling (interval of pixels) vs Size (number of pixels)





## **Spatial Resolution**

Spatial resolution: dpi (Dots Per Inch)





## Intensity Resolution (灰度分辨率)

Intensity resolution: smallest discernible change in intensity level (灰度级)

| 8 bit | 7 bit |
|-------|-------|
| 6 bit | 5 bit |



| 4 bit | 3 bit |
|-------|-------|
| 2 bit | 1 bit |



## Interpolation (插值)

- Use known data to estimate values at unknown locations
- ➤ Basic tool for geometric transformation
- ➤ A resampling (重取样) method







## Question?

## Optical zoom vs Digital zoom





### **Lecture 2 - Image Fundamentals**

### This lecture will cover:

- Sampling and Quantization
- Pixels



### **Pixels**

- ➤ Neighbors of Pixel (像素邻域)
- Relationship between Pixels
  - Adjacency (邻接性)
  - Connectivity (连通性)
  - Regions (区域)
  - Boundaries (边界)
- Distance measures
  - Euclidean distance (欧氏距离)
  - City-block distance (街区距离)
  - Chessboard distance (棋盘距离)



## Neighbors of Pixel (像素邻域)

If a pixel p at coordinate (x, y)

➤ N<sub>4</sub>(p) (4邻域)

➤ N<sub>D</sub>(p) (对角邻域)

➤ N<sub>8</sub>(p) (8邻域)



## Neighbors of Pixel

### If a pixel p at coordinate (x, y)

➤ N<sub>D</sub>(p) (对角邻域)

➤ N<sub>8</sub>(p) (8邻域)

|       | $q_1$ |       |
|-------|-------|-------|
| $q_2$ | p     | $q_3$ |
|       | $q_4$ |       |



## **Neighbors of Pixel**

### If a pixel p at coordinate (x, y)

➤ N<sub>4</sub>(p) (4邻域) (x+1, y), (x-1, y), (x, y+1), (x, y-1)

$$(x+1, y+1), (x+1, y-1), (x-1, y+1), (x-1, y-1)$$

➤ N<sub>8</sub>(p) (8邻域)

| $r_1$ |   | $r_2$ |
|-------|---|-------|
|       | p |       |
| $r_3$ |   | $r_4$ |



## **Neighbors of Pixel**

### If a pixel p at coordinate (x, y)

➤ N<sub>D</sub>(p) (对角邻域)

$$(x+1, y+1), (x+1, y-1), (x-1, y+1), (x-1, y-1)$$

➤ N<sub>8</sub>(p) (8邻域): N<sub>4</sub>(p)∪N<sub>D</sub>(p)

| $r_1$          | $q_1$ | $r_2$ |
|----------------|-------|-------|
| $\mathbf{q}_2$ | p     | $q_3$ |
| $r_3$          | $q_4$ | $r_4$ |



### **Pixels**

- ➤ Neighbors of Pixel (像素邻域)
- Relationship between Pixels
  - Adjacency (邻接性)
  - Connectivity (连通性)
  - Regions (区域)
  - Boundaries (边界)
- Distance measures
  - Euclidean distance (欧氏距离)
  - City-block distance (街区距离)
  - Chessboard distance (棋盘距离)



## Adjacency (邻接性)

## To define adjacency of pixels, we need identify

> Type of Neighbor

$$N_4(p), N_D(p), N_8(p)$$

- The set of intensity values V
  - Binary image:  $V = \{1\}$
  - Gray-scale image:  $V = [L_{min}, L_{max}]$



| 0 | 1 | 1 |
|---|---|---|
|   |   |   |

Adjacency in a binary image

|       | $q_1$ |       |
|-------|-------|-------|
| $q_2$ | р     | $q_3$ |
|       |       |       |

|    | 39 |    |
|----|----|----|
| 11 | 13 | 16 |
|    |    |    |

Adjacency in a gray-scale image



### Types of Adjacency:

- ▶ 4-adjacency (4邻接)
- ➤ 8-adjacency (8邻接)
- M-adjacency (mixed adjacency)

(M邻接, 混合邻接)



### Types of Adjacency:

- ➤ 4-adjacency
  - p, q ∈ V
  - $q \in N_4(p)$
- > 8-adjacency
- M-adjacency (mixed adjacency)

| r <sub>11</sub> | r <sub>12</sub> | r <sub>13</sub> |
|-----------------|-----------------|-----------------|
| r <sub>21</sub> | r <sub>22</sub> | r <sub>23</sub> |
| r <sub>31</sub> | r <sub>32</sub> | r <sub>33</sub> |

| 0 | 1 ······· 1<br>! |   |
|---|------------------|---|
| 0 | 1                | 0 |
| 0 | 0                | 1 |



### Types of Adjacency:

- > 4-adjacency
- ▶ 8-adjacency
  - p, q ∈ V
  - $q \in N_8(p)$
- M-adjacency (mixed adjacency)







### Types of Adjacency:

- > 4-adjacency
- > 8-adjacency
- M-adjacency (mixed adjacency)
  - p, q ∈ V
  - $q \in N_4(p)$  or  $q \in N_D(p)$  and  $N_4(p) \cap N_4(q) \notin V$







## Connectivity (连通性)

# Important concept used in establishing boundaries of objects and components of regions in an image

- ➤ Path (通路)
- ➤ Connected (连通)
- > Connected component

(连通分量)

➤ Connected set (连通集)









## Region (区域)

- R: a subset of an image which is also a connected set
- ➤ Adjacent region (邻接区域)
- ➤ Disjoint region (不连接区域)





## Boundary (边界)

A set of pixels that are adjacent to pixels in the complement of *R*.

- > Inner border and outer border
- > Image border
- > Edge

| 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|
| 0 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 | 0 |
|   |   |   |   |   |



## Boundary

A set of pixels that are adjacent to pixels in the complement of *R*.

- > Inner border and outer border
- > Image border
- ➤ Edge (边缘)





### **Pixels**

- ➤ Neighbors of Pixel (像素邻域)
- Relationship between Pixels
  - Adjacency (邻接性)
  - Connectivity (连通性)
  - Regions (区域)
  - Boundaries (边界)
- Distance measures
  - Euclidean distance (欧氏距离)
  - City-block distance (街区距离)
  - Chessboard distance (棋盘距离)



For pixels p, q and z, with coordinates (x, y), (s, t) and (v, w), D is a **distance function or metric** if

• 
$$D(p, q) \ge 0 \ (D(p, q) = 0 \ \text{only if } p = q)$$

• 
$$D(p, q) = D(q, p)$$

• 
$$D(p, z) \leq D(p, q) + D(q, z)$$



➤ Euclidean distance (欧氏距离):

$$D_e(p, q) = [(x-s)^2 + (y-t)^2]^{1/2}$$

- City-block distance:
- Chessboard distance





> Euclidean distance:

$$D_e(p, q) = [(x-s)^2 + (y-t)^2]^{1/2}$$

➤ City-block distance (街区距离):

$$D_4(p, q) = |x-s| + |y-t|$$

Chessboard distance



> Euclidean distance:

$$D_e(p, q) = [(x-s)^2 + (y-t)^2]^{1/2}$$

City-block distance:

$$D_4(p, q) = |x-s| + |y-t|$$

➤ Chessboard distance (棋盘距离)

$$D_8(p, q) = \max(|x-s|, |y-t|)$$



 $D_m$  distance is defined as the shortest m-path between the point

$$r_{12}$$
  $r_{12}$   $r_{21}$   $r_{22}$ 

$$D_m = ?$$



### No m-path between the point

0 1 1 0 ii 1



 $D_m$  distance is different by the values of  $r_{12}$ ,  $r_{21}$  and  $r_{22}$ 











$$D_m = 2$$

$$D_{\rm m}=3$$

$$D_{\rm m} = 3$$

$$D_{\rm m} = 3$$

$$D_{\rm m}=4$$

