Chapitre 28

Intégration sur un segment

Sommaire

I	Intégrale des fonctions en escalier	
	1) Fonctions en escalier	
	2) Intégrale d'une fonction en escalier	
II	Intégrale des fonctions continues par morceaux	
	1) Fonctions continues par morceaux	
	2) Approximation uniforme	
	3) Définition de l'intégrale	
	4) Premières propriétés de l'intégrale	
III	Calcul d'une intégrale	
	1) Primitives	
	2) Rappels: techniques de calculs	
IV	Propriétés de l'intégration	
	1) Inégalités	
	2) Sommes de Riemann	
V	Compléments : recherche de primitives	
	1) Fonctions usuelles	
	2) Fractions rationnelles en sinus et cosinus	
	3) Fractions rationnelles en ch et sh	
	4) Fonctions se ramenant aux types précédents	
	5) Polynômes trigonométriques	
VI	Solution des exercices	

Dans tout le chapitre $\mathbb K$ désigne $\mathbb R$ ou $\mathbb C$

I INTÉGRALE DES FONCTIONS EN ESCALIER

1) Fonctions en escalier

Soit $f: [a;b] \to \mathbb{K}$ une fonction, on dit que f est en escalier sur [a;b] lorsqu'il existe un entier $n \in \mathbb{N}^*$, des réels $x_0 = a < x_1 < \dots < x_n = b$, et des nombres c_0, \dots, c_{n-1} de \mathbb{K} tels que sur chacun des intervalles ouverts : $]x_k; x_{k+1}[$ la fonction f est constante égale à c_k ($0 \le k \le n-1$). On dit aussi parfois que f est constante par morceaux. L'ensemble des fonctions en escalier sur [a;b] est noté $\mathscr{E}([a;b],\mathbb{K})$.

Exemples:

- Une fonction constante sur [*a*; *b*] est en escalier.
- La fonction partie entière restreinte à [*a*; *b*] est en escalier.

FIGURE 28.1: La fonction partie entière sur [-3.5, 3.5].

Remarque 28.1 -

- La courbe représentative d'une fonction en escalier a la forme d'un escalier!
- Les réels $x_0 = a < \cdots < x_n = b$ de la définition constituent ce que l'on appelle une **subdivision** de l'intervalle [a;b]. Une telle subdivision est dite **adaptée** à la fonction en escalier f lorsque f est constante sur chacun des morceaux (ouverts) de la subdivision. Il est facile de voir qu'il y a une infinité de subdivisions adaptées à f lorsque f est en escalier. Le réel $\max\{x_{k+1} - x_k | 0 \le k \le n-1\}$ est appelé **le pas** de la subdivision. Lorsque le pas est constant, il vaut $\frac{b-a}{n}$, on dit que la subdivision est **régulière**.
- La définition ne fait pas intervenir la valeur de f aux points de la subdivision.
- Une fonction en escalier sur [a; b] est bornée.

Définition 28.2

Si σ, σ' sont deux subdivisions de [a; b], on dit que σ' est plus fine que σ lorsque les points de la subdivision σ font partie de la subdivision σ' , ce que l'on note $\sigma \subset \sigma'$, si de plus σ est adaptée à $f \in \mathcal{E}([a;b],\mathbb{K})$, alors σ' aussi.

Remarque 28.2 -

- $Si \sigma, \sigma'$ sont deux subdivisions de [a; b], on note $\sigma \cup \sigma'$ la subdivision obtenue en réunissant les points de σ avec ceux de σ' (et en les rangeant dans l'ordre croissant). Cette nouvelle subdivision est plus fine que les deux précédentes.
- Il en découle que si f et g sont en escalier sur [a;b] alors il existe une subdivision σ de [a;b] qui est à la fois adaptée à f et à g.

Marente de 18.1 Marente 28.1 Ma

L'ensemble $\mathscr{E}([a;b],\mathbb{K})$ est un \mathbb{K} -espace vectoriel (et même une \mathbb{K} -algèbre) pour les opérations usuelles sur les fonctions.

Preuve : Celle-ci est simple et laissée en exercice.

2) Intégrale d'une fonction en escalier

🛀 Théorème 28.2

Soit $f \in \mathcal{E}([a;b],\mathbb{K})$ et soit $\sigma = (x_i)_{0 \le i \le n}$ une subdivision de [a;b] adaptée à f, alors la quantité :

$$I_{\sigma}(f) = \sum_{i=0}^{n-1} (x_{i+1} - x_i) c_i$$

 $I_{\sigma}(f) = \sum_{i=0}^{n-1} (x_{i+1} - x_i) c_i,$ où c_i désigne la valeur de f sur l'intervalle $]x_i, x_{i+1}[$, est indépendante de la subdivision adaptée à f. Autrement dit, si σ' est une autre subdivision adaptée à f, alors $I_{\sigma}(f) = I_{\sigma'}(f)$.

Preuve: Si on rajoute un point d à la subdivision σ , on obtient une nouvelle subdivision σ' et il existe un indice $j \in [0; (n-1)]$ tel que $d \in [x_i, x_{i+1}]$, mais alors $c_i(x_{i+1} - x_i) = c_i(d - x_i) + c_i(x_{i+1} - d)$, on voit donc que $I_{\sigma}(f) = I_{\sigma'}(f)$. Par récurrence, on en déduit que si σ' est une subdivision plus fine que σ , alors $I_{\sigma}(f) = I_{\sigma'}(f)$.

Soit σ' une autre subdivision de [a; b] adaptée à f, la subdivision $\sigma'' = \sigma' \cup \sigma$ est adaptée à f et plus fine que σ et σ' , donc $I_{\sigma''}(f) = I_{\sigma'}(f) = I_{\sigma}(f)$.

FIGURE 28.2: Interprétation géométrique

Remarque 28.3 – Géométriquement, si $f \in \mathcal{E}([a;b],\mathbb{K})$ et si σ est une subdivision de [a;b] adaptée à f, alors dans un repère orthonormé, la quantité $I_{\sigma}(f)$ représente l'aire algébrique de la portion de plan délimitée par la courbe de f, l'axe des abscisses, et les droites d'équation : x = a et x = b, c'est une somme d'aires de rectangles.

Définition 28.3 (intégrale d'une fonction en escalier)

Si $f \in \mathcal{E}([a;b],\mathbb{R})$, on appelle intégrale de f sur [a;b] le nombre (complexe) noté $\int_{[a;b]} f$ et défini par :

$$\int_{[a;b]} f = I_{\sigma}(f) = \sum_{i=0}^{n-1} (x_{i+1} - x_i) c_i,$$
 où $\sigma = (x_i)_{0 \leqslant i \leqslant n}$ est une subdivision adaptée à f .

À retenir

- L'intégrale de f sur [a;b] ne dépend pas de la valeur de f aux points de la subdivision. Il en découle que si on modifie la valeur de f en un nombre fini de points, la valeur de l'intégrale reste inchangée.
- Si $f,g \in \mathcal{E}([a;b],\mathbb{K})$ et si f et g coïncident sur $[a;b] \setminus \{x_1,\ldots,x_n\}$, alors $\int_{[a;b]} f = \int_{[a;b]} g$ car il suffit de changer la valeur de f aux points x_1, \ldots, x_n pour obtenir la fonction g, ce qui ne change pas l'intégrale

🚰 Théorème 28.3 (Propriétés élémentaires)

Soient $f, g \in \mathcal{E}([a; b], \mathbb{K})$:

- linéarité : $\int_{[a;b]} f + g = \int_{[a;b]} f + \int_{[a;b]} g$ et $si \lambda \in \mathbb{K}$, $\int_{[a,b]} \lambda f = \lambda \int_{[a;b]} f$. positivité : si f est à valeurs réelles positives, alors $\int_{[a;b]} f \geqslant 0$. On en déduit que si f et g sont à valeurs réelles et si $f \leq g$, alors $\int_{[a:b]} f \leq \int_{[a:b]} g$.
- majoration : $|\int_{[a;b]} f| \leqslant \int_{[a;b]} |f|$.
- relation de CHASLES 1 : si a < c < b, alors $\int_{[a;b]} f = \int_{[a;c]} f + \int_{[c;b]} f$.

Preuve : Celle-ci est simple et laissée en exercice.

INTÉGRALE DES FONCTIONS CONTINUES PAR MORCEAUX

1) Fonctions continues par morceaux

Définition 28.4

Une fonction $f:[a;b] \to \mathbb{K}$ est dite continue par morceaux sur le segment [a;b], lorsqu'il existe une subdivision $\sigma = (a = x_0, ..., x_n = b)$ de [a; b] telle que sur chaque morceau $]x_k; x_{k+1}[$ la fonction f est continue et **prolongeable par continuité sur** $[x_k; x_{k+1}]$ (i.e. f a une limite finie à droite en x_k et à gauche en x_{k+1}). L'ensemble des fonctions continues par morceaux sur [a;b] est noté $\mathscr{C}_{\mathrm{m}}^{0}([a;b],\mathbb{K})$. Plus généralement, on dit qu'une fonction est continue par morceaux sur un intervalle I, lorsque sa restriction à tout segment inclus dans I est continue par morceaux.

1. CHASLES MICHEL (1793 - 1880): mathématicien français, auteur d'importants travaux en géométrie.

Exemples:

- Une fonction continue sur [a; b] est continue par morceaux.
- Une fonction en escalier sur [a; b] est continue par morceaux.
- La fonction f définie par $f(x) = \sin(\frac{1}{x})$ sur]0; 1] et f(0) = 0 n'est pas continue par morceaux sur [0; 1].

FIGURE 28.3: Exemple de fonction continue par morceaux

Remarque 28.4 -

- Une fonction continue par morceaux sur [a; b] est bornée.
- La valeur de f aux points de la subdivision n'intervient pas dans la définition.

🛂 Théorème 28.4

L'ensemble des fonctions continues par morceaux sur [a;b], $\mathscr{C}^0_{\mathfrak{m}}([a;b],\mathbb{K})$, est un \mathbb{K} -espace vectoriel (et même une K-algèbre) pour les opérations usuelles sur les fonctions.

Preuve : Celle-ci est simple et laissée en exercice.

2) **Approximation uniforme**

🔛 Théorème 28.5

Si $f: [a;b] \to \mathbb{K}$ est continue par morceaux sur le segment [a;b], alors pour tout $\varepsilon > 0$, il existe une fonction ψ en escalier sur [a;b] telle que $|f-\psi| \le \varepsilon$, c'est à dire :

$$\forall t \in [a;b], |f(t) - \psi(t)| \leq \varepsilon.$$

• Cas où f est continue : f est uniformément continue sur [a; b] (théorème de Heine), il existe donc un réel $\alpha > 0$ tel que pour tout $x, y \in [a, b], |x - y| < \alpha \implies |f(x) - f(y)| < \varepsilon$. Soit $n = 1 + \left\lfloor \frac{b - a}{\alpha} \right\rfloor$, on a alors $\frac{b - a}{n} < \alpha$. Découpons l'intervalle [a;b] en n morceaux de longueur $\frac{b-a}{n}$, on obtient ainsi une subdivision dont les points sont les réels $x_k = a + k \frac{b-a}{n}$ pour $k \in [0; n]$. On définit maintenant la fonction g en posant

$$g(t) = \begin{cases} f(b) & \text{si } t = b \\ f(x_k) & \text{si } t \in [x_k; x_{k+1}[$$

il est alors facile de vérifier que pour tout réel t de [a;b], on a $|f(t)-g(t)| < \varepsilon$ en distinguant les cas t=b et $t \in [x_k;x_{k+1}]$, on a donc $|f - g| < \varepsilon$.

• Cas où f est continue par morceaux : sur chaque morceau] x_k ; x_{k+1} [la fonction f est prolongeable par continuité sur $[x_k; x_{k+1}]$ en une fonction f_k . On sait alors qu'il existe une fonction g_k en escalier sur $[x_k; x_{k+1}]$ telle que $\forall t \in$ $[x_k; x_{k+1}], |f_k(t) - g_k(t)| < \varepsilon$, en particulier $\forall t \in]x_k; x_{k+1}[, |f(t) - g_k(t)| < \varepsilon$.

On construit la fonction g en posant : $g(x_k) = f(x_k)$ et pour $t \in]x_k; x_{k+1}[, g(t) = g_k(t)]$. Il est clair que g est en escalier sur [a; b] et que $\forall t \in [a; b], |f(t) - g(t)| < \varepsilon$, donc $|f - g| < \varepsilon$.

Remarque 28.5 -

- C'est l'uniforme continuité de f qui fait aboutir la démonstration.
- Si f est continue sur [a, b], alors pour tout $\varepsilon > 0$ il existe deux fonctions en escalier φ et ψ telle que \forall $t \in [a;b], \psi(t) \leqslant f(t) \leqslant \varphi(t)$ avec $\varphi(t) \psi(t) < \varepsilon$.

En effet, on sait qu'il existe une fonction en escalier g telle que $|f-g| < \varepsilon/2$, on a donc pour $t \in [a;b]$, $g(t) - \varepsilon/2 \le f(t) \le g(t) + \varepsilon/2$, il suffit donc de prendre $\psi = g - \varepsilon/2$ et $\phi = g + \varepsilon/2$.

- Si $f \in \mathcal{C}_{\mathrm{m}}^{0}([a;b],\mathbb{K})$ alors il existe une suite (ψ_{n}) de fonctions en escalier sur [a;b] telle que :

$$\sup_{x \in [a;b]} |f(x) - \psi_n(x)| \xrightarrow[n \to +\infty]{} 0.$$

On dit que la suite (ψ_n) converge uniformément vers f sur [a;b].

3) Définition de l'intégrale

Théorème 28.6

Soit $f \in \mathscr{C}^0_{\mathrm{m}}([a;b],\mathbb{K})$ et soit (ϕ_n) une suite de fonctions en escalier qui **converge uniformément vers** f sur [a;b], alors :

- la suite $(\int_{[a;b]} \phi_n)$ converge vers un nombre $\ell \in \mathbb{K}$;
- ce nombre ℓ ne dépend pas de la suite (ϕ_n) choisie.

Preuve : Posons $u_n = \int_{[a;b]} \varphi_n$, soit $\varepsilon > 0$, il existe un entier $N \in \mathbb{N}$ tel que $n \geqslant N \implies |\varphi_n - f| < \varepsilon$, on en déduit que $|\varphi_n| < |f| + \varepsilon \leqslant M + \varepsilon$ où M est un majorant de |f|, on a alors $|u_n| \leqslant (b-a)(M+\varepsilon)$: la suite u est bornée, on peut donc en extraire une suite convergente : $u_{\sigma(n)} \to \ell$, mais pour $n \geqslant N$ on a $|\varphi_n - \varphi_{\sigma(n)}| \leqslant |\varphi_n - f| + |f - \varphi_{\sigma(n)}| \leqslant 2\varepsilon$, on en déduit que $|u_n - u_{\sigma(n)}| \leqslant (b-a)2\varepsilon$ ce qui entraîne que $u_n \to \ell$.

Soit (ψ_n) une autre suite de fonctions en escalier qui converge uniformément vers f, posons $v_n = \int_{[a;b]} \psi_n$, d'après ce qui précède, la suite (v_n) converge vers un nombre ℓ' . Soit (g_n) la suite de fonctions en escalier définie par $g_{2n} = \varphi_n$ et $g_{2n+1} = \psi_n$, il est facile de voir que (g_n) converge uniformément vers f, donc la suite $(w_n = \int_{[a;b]} g_n)$ converge vers un nombre ℓ'' , or $w_{2n} = u_n$ et $w_{2n+1} = v_n$, on en déduit que $\ell'' = \ell = \ell'$.

Définition 28.5 (intégrale d'une fonction continue par morceaux)

Soit $f \in \mathscr{C}^0_{\mathrm{m}}([a;b],\mathbb{K})$, on appelle intégrale de f sur [a;b] le nombre noté $\int_{[a;b]} f$ et défini par :

$$\int_{[a;b]} f = \lim_{n \to +\infty} \int_{[a;b]} \phi_n,$$

où (ϕ_n) est une suite de fonctions en escalier sur [a;b] qui converge uniformément vers f. Géométriquement, dans un repère orthonormé, si f est à valeurs réelles, on dit que $\int_{[a;b]} f$ représente l'aire algébrique de la portion de plan délimitée par la courbe de f, l'axe des abscisses, et les droites d'équation x=a et x=b.

FIGURE 28.4: Cas d'une fonction continue

Premières propriétés de l'intégrale

Théorème 28.7 (linéarité de l'intégrale)

Soient $f, g \in \mathcal{C}_{\mathrm{m}}^{0}([a; b], \mathbb{K})$ et soit $\lambda \in \mathbb{K}$, alors :

$$\int_{[a;b]} (f+g) = \int_{[a;b]} f + \int_{[a;b]} g$$
 et $\int_{[a;b]} \lambda . f = \lambda . \int_{[a;b]} f$.

Preuve: Soient (ϕ_n) et (ψ_n) deux suites de fonctions en escalier qui convergent uniformément respectivement vers f et g, il est facile de voir que la suite $(\phi_n + \psi_n)$ converge uniformément vers f + g. D'après la définition, on a $\int_{[a;b]} (f+g) = \lim_{n \to +\infty} \int_{[a;b]} (\phi_n + \psi_n), \text{ la linéarité étant vérifiée pour les fonctions en escalier, on peut écrire que } \int_{[a;b]} (f+g) = \lim_{n \to +\infty} \int_{[a;b]} (\phi_n + \psi_n), \text{ la linéarité étant vérifiée pour les fonctions en escalier, on peut écrire que } \int_{[a;b]} (f+g) = \lim_{n \to +\infty} \int_{[a;b]} (\phi_n + \psi_n), \text{ la linéarité étant vérifiée pour les fonctions en escalier, on peut écrire que } \int_{[a;b]} (f+g) = \lim_{n \to +\infty} \int_{[a;b]} (\phi_n + \psi_n), \text{ la linéarité étant vérifiée pour les fonctions en escalier, on peut écrire que } \int_{[a;b]} (f+g) = \lim_{n \to +\infty} \int_{[a;b]} (\phi_n + \psi_n), \text{ la linéarité étant vérifiée pour les fonctions en escalier, on peut écrire que } \int_{[a;b]} (f+g) = \lim_{n \to +\infty} \int$ g) = $\int_{[a;b]} \phi_n + \int_{[a;b]} \psi_n$, le résultat s'obtient alors par passage à la limite. La preuve est du même type pour le second

Remarque 28.6 – Soit $f \in \mathcal{C}_{\mathrm{m}}^0([a;b],\mathbb{K})$, posons $u = \mathrm{Re}(f)$ et $v = \mathrm{Im}(f)$. La linéarité de l'intégrale permet d'écrire : $\int_{[a;b]} f = \int_{[a;b]} \text{Re}(f) + i \int_{[a;b]} \text{Im}(f)$. On peut donc toujours se ramener à intégrer des fonctions à valeurs réelles (mais ce n'est pas toujours la meilleure solution). D'autre part, on a établi :

$$\operatorname{Re}(\int_{[a;b]} f) = \int_{[a;b]} \operatorname{Re}(f) \ \ et \ \operatorname{Im}(\int_{[a;b]} f) = \int_{[a;b]} \operatorname{Im}(f), \ d'où \ \overline{\int_{[a;b]} f} = \int_{[a;b]} \overline{f}.$$

Théorème 28.8 (positivité)

Si $f \in \mathscr{C}^0_{\mathrm{m}}([a;b],\mathbb{R})$ est à **valeurs positives**, alors $0 \leqslant \int_{[a;b]} f$. En particulier si $f,g \in \mathscr{C}^0_{\mathrm{m}}([a;b],\mathbb{R})$ et si $f \leqslant g$, alors $\int_{[a:b]} f \leqslant \int_{[a:b]} g$.

Preuve: Si f est à valeurs positives, on peut construire une suite (ϕ_n) de fonctions en escalier **positives**, qui converge uniformément vers f, comme $\int_{[a;b]} f = \lim_{n \to +\infty} \phi_n$, on a le résultat par passage à la limite.

Si $f \le g$, on applique ce qui précède à la fonction h = g - f et on conclut avec la linéarité.

Théorème 28.9 (majoration en module)

Si $f \in \mathscr{C}^0_{\mathrm{m}}([a;b],\mathbb{K})$, alors $|\int_{[a;b]} f| \leqslant \int_{[a;b]} |f|$. En particulier si $|f| \leqslant \mathrm{M}$ sur [a;b], alors $|\int_{[a;b]} f| \leqslant \mathrm{M}(b-a)$.

Preuve: Si f est continue par morceaux sur [a;b], alors |f| aussi, et si (ϕ_n) est une suite de fonctions en escalier qui converge uniformément vers f, il est facile de vérifier que la suite ($|\phi_n|$) est une suite de fonctions en escalier qui converge uniformément vers |f|, de plus, on sait que $|\int_{[a;b]} |\phi_n| \le \int_{[|a;b|]} |\phi_n|$, le résultat s'obtient par passage à la limite.

Théorème 28.10 (relation de Chasles)

 $Si \ f \in \mathcal{C}^0_{\mathrm{m}}([a;b],\mathbb{K}) \ \text{et si } a < c < b \text{, alors } \int_{[a;b]} f = \int_{[a;c]} f + \int_{[c;b]} f.$

Preuve : Même type de preuve que pour les résultats précédents.

Théorème 28.11 (cas d'une intégrale nulle)

Si f est à **valeurs réelles, continue, positive** sur [a;b], et si $\int_{[a;b]} f = 0$, alors f est nulle sur [a;b].

Preuve : Par l'absurde, supposons $f \neq 0$, alors il existe $t_0 \in [a;b]$ tel que $f(t_0) > 0$, soit $\varepsilon = f(t_0)/2$, f étant continue en t_0 , il existe $t_1 < t_2 \in [a; b]$ tels que $\forall t \in [t_1; t_2], f(t) > \varepsilon$. Soit g la fonction en escalier définie par $g(t) = \begin{cases} 0 & \text{si } t \notin [t_1; t_2] \\ \varepsilon & \text{si } t \in [t_1; t_2] \end{cases}$ alors on $g \le f$, donc $\int_{[a;b]} g \le \int_{[a;b]} f$, or $\int_{[a;b]} g = \varepsilon(t_2 - t_1) > 0$, ce qui est contradictoire, donc f est nulle sur [a;b]. Remarque 28.7 – Le théorème ci-dessus est faux si f n'est pas continue sur [a; b], on peut considérer par exemple la fonction f définie par $f(t) = \begin{cases} 1 & \text{si } t = a \\ 0 & \text{sinon} \end{cases}$, cette fonction est positive, non nulle et d'intégrale nulle.

Théorème 28.12 (égalité d'intégrales)

Si $f, g \in \mathcal{C}^0_{\mathrm{m}}([a;b],\mathbb{K})$ coïncident sur $[a;b] \setminus \{x_1,\ldots,x_n\}$, alors $\int_{[a;b]} f = \int_{[a;b]} g$.

Preuve: Posons h = g - f, alors h est une fonction en escalier qui coïncide avec la fonction nulle sauf éventuellement aux points $x_1, ..., x_n$, on sait alors que $\int_{[a;b]} h = 0$, et la linéarité entraîne alors le résultat.

Convention d'écriture

Si f est continue par morceaux sur un intervalle [a;b], pour $x,y \in [a;b]$, on pose :

$$\int_{x}^{y} f(t) dt = \begin{cases} \int_{[x;y]} f & \text{si } x < y \\ 0 & \text{si } x = y \\ -\int_{[y;x]} f & \text{si } y < x \end{cases}$$

Avec cette convention:

阿 Théorème 28.13

- Si $f \in \mathcal{C}_{\mathbf{m}}^{0}([a;b],\mathbb{K})$ alors: $\forall x, y \in [a;b], \int_{x}^{y} f(t) \, \mathrm{d}t = -\int_{y}^{x} f(t) \, \mathrm{d}t.$ $\forall x, y, z \in [a;b], \int_{x}^{y} f(t) \, \mathrm{d}t = \int_{x}^{z} f(t) \, \mathrm{d}t + \int_{z}^{y} f(t) \, \mathrm{d}t \text{ (relation de Chasles généralisée)}.$

Preuve : Celle-ci est simple et laissée en exercice.

CALCUL D'UNE INTÉGRALE

1) **Primitives**

Définition 28.6

Soient $f, F: I \to \mathbb{C}$ deux fonctions définies sur un intervalle I de \mathbb{R} , on dit que F est une primitive de fsur I lorsque F est dérivable sur I et que F' = f. L'ensemble des primitives de f sur I est noté $\mathcal{P}_1(f)$.

Remarque 28.8 - D'après le théorème de Darboux, une dérivée vérifie toujours le théorème des valeurs intermédiaires, par conséquent une fonction f qui ne vérifie pas ce théorème (i.e. une fonction f telle que Im(f)n'est pas un intervalle), ne peut pas avoir de primitive sur I.

🔛 Théorème 28.14

Si $f: I \to \mathbb{C}$ admet une primitive F sur l'intervalle I, alors $\mathscr{P}_{I}(f) = \{F + \lambda \mid \lambda \in \mathbb{C}\}.$

Preuve: $G \in \mathcal{P}_1(f) \iff G' = F' \iff (G - F)' = 0 \iff \exists \lambda \in \mathbb{C}, G = F + \lambda \text{ (car I est un intervalle)}.$

Conséquence

Si $f: I \to \mathbb{C}$ admet une primitive F sur I, alors $\forall y_0 \in \mathbb{C}, \forall t_0 \in I, f$ possède une unique primitive G sur I qui vérifie $G(t_0) = y_0$.

🙀 Théorème 28.15 (fondamental de l'intégration)

Si $f: I \to \mathbb{C}$ est **continue**, alors f admet des primitives sur I. Plus précisément, si $t_0 \in I$ et $y_0 \in \mathbb{C}$, alors la fonction F définie sur I par : $F(t) = y_0 + \int_{t_0}^t f(u) du$, est l'unique primitive de f sur I qui prend la valeur y_0 en t_0 .

Preuve: Soit $t_1 \in I$, on a $|F(t) - F(t_1) - (t - t_1)f(t_1)| = |\int_{t_1}^t f(u) du - \int_{t_1}^t f(t_1) du| = |\int_{t_1}^t (f(u) - f(t_1)) du| \le |\int_{t_1}^t |f(u) - f(t_1)| du|$. On se donne $\varepsilon > 0$, f étant continue en t_1 , il existe $\alpha > 0$ tel que $\forall u \in I$, $|u - t_1| < \alpha \Longrightarrow |f(u) - f(t_1)| < \varepsilon$, donc si $|t-t_1| < \alpha$, alors $|\int_{t_1}^t |f(u)-f(t_1)| du| \le |t-t_1|\varepsilon$, d'où:

$$\left|\frac{\mathbf{F}(t) - \mathbf{F}(t_1)}{t - t_1} - f(t_1)\right| \leqslant \varepsilon$$

on en déduit que F est dérivable en t_1 et que $F'(t_1) = f(t_1)$. La fonction F est donc une primitive de f sur I, et il est clair que $F(t_0) = y_0$.

Remarque 28.9 – La continuité de f est essentielle pour la démonstration, prenons $f(t) = \begin{cases} 1 & \text{si } t = 0 \\ 0 & \text{sinon} \end{cases}$, alors avec $t_0 = y_0 = 0$, on obtient que F = 0, F est bien dérivable mais ce n'est pas une primitive de f sur [0;1].

Théorème 28.16 (calcul d'une intégrale)

Si $f: I \to \mathbb{C}$ est continue sur l'intervalle I et si F désigne une primitive de f sur I, alors : $\forall a, b \in I, \int_{a}^{b} f(t) dt = [F]_{a}^{b} = F(b) - F(a).$

Preuve: F étant une primitive de f, on a $\forall t \in I$, $F(t) = F(a) + \int_a^t f(u) du$, d'où $F(b) - F(a) = \int_a^b f(u) du$.

Cas d'une fonction continue par morceaux

si $f: [a;b] \to \mathbb{C}$ est continue par morceaux, soit $\sigma = (x_i)_{0 \le i \le n}$ une subdivision adaptée à f. Sur chacun des $morceaux \]x_i; x_{i+1}[$ la fonction f admet un prolongement par continuité f_i sur le segment $[x_i; x_{i+1}]$, les deux fonctions coïncidant sur le segment $[x_i; x_{i+1}]$, sauf peut être en deux points, on a $\int_{x_i}^{x_{i+1}} f(t) dt = \int_{x_i}^{x_{i+1}} f_i(t) dt$, mais f_i admet une primitive F_i sur $[x_i; x_{i+1}]$, d'où $\int_{x_i}^{x_{i+1}} f = F_i(x_{i+1}) - F_i(x_i)$, la relation de Chasles donne alors:

$$\int_{a}^{b} f(t) dt = \sum_{i=0}^{n-1} F_{i}(x_{i+1}) - F_{i}(x_{i})$$

On peut donc toujours se ramener au cas des fonctions continues et donc à une recherche de primitive.

Théorème 28.17 (lien entre une fonction et sa dérivée)

Si f est de classe \mathscr{C}^1 sur l'intervalle I, alors $\forall t, t_0 \in I$, $f(t) = f(t_0) + \int_{t_0}^t f'(u) du$.

Théorème 28.18 (inégalité des accroissements finis généralisée)

Si $f, g: I \to \mathbb{C}$ sont de classe \mathscr{C}^1 sur l'intervalle I et si $\forall t \in I, |f'(t)| \leq g'(t)$, alors : $\forall a, b \in I, |f(b) - f(a)| \le |g(b) - g(a)|.$

Preuve : Supposons a < b, on a :

$$|f(b) - f(a)| = |\int_{[a;b]} f'(u) \, \mathrm{d}u| \le \int_{[a;b]} |f'(u)| \, \mathrm{d}u \le \int_{[a;b]} g'(u) \, \mathrm{d}u = g(b) - g(a) = |g(b) - g(a)|.$$

Rappels : techniques de calculs

Théorème 28.19 (intégration par parties)

Soient
$$f,g: I \to \mathbb{C}$$
 deux fonctions de classe \mathcal{C}^1 , alors : $\forall \ a,b \in I, \int_a^b f'(u)g(u)\,\mathrm{d}u = [f(u)g(u)]_a^b - \int_a^b f(u)g'(u)\,\mathrm{d}u.$

Théorème 28.20 (changement de variable)

Soit $\theta: J \to I$ une fonction de classe \mathscr{C}^1 sur l'intervalle J, et soit $f: I \to \mathbb{C}$ une fonction continue sur l'intervalle I, alors on $a: \forall a,b \in J$, $\int_a^b f(\theta(u))\theta'(u) \, \mathrm{d}u = \int_{\theta(a)}^{\theta(b)} f(t) \, \mathrm{d}t$.

Exemples:

- Soit I = $\int_0^1 \sqrt{1 - t^2} \, dt$.

On effectue le changement de variable $t = \sin(u)$ avec $u \in [0; \frac{\pi}{2}]$, on a alors $dt = \cos(u) du$, d'où I = $\int_0^{\pi/2} \sqrt{1 - \sin(u)^2} \cos(u) \, \mathrm{d}u = \int_0^{\pi/2} \cos(u)^2 \, \mathrm{d}u = \int_0^{\pi/2} \frac{1 + \cos(2u)}{2} \, \mathrm{d}u = \left[\frac{u}{2} + \frac{\sin(2u)}{4} \right]_0^{\pi/2} = \frac{\pi}{4}.$ En particulier on en déduit que la surface du cercle trigonométrique vaut π .

- Soit I = $\int_0^{\pi/3} \ln(\cos(t)) \sin(t) dt$. On effectue le changement de variable $u = \cos(t)$ avec $\cos: [0; \frac{\pi}{3}] \to [\frac{1}{2}; 1]$ (\mathscr{C}^1), on a $du = -\sin(t) dt$ et donc I = $\int_{1/2}^{1} \ln(u) du = [u \ln(u) - u]_{1/2}^{1} = \frac{\ln(2) - 1}{2}$.

★Exercice 28.1 Calculer $I = \int_0^1 t\sqrt{1-t^2} dt$.

PROPRIÉTÉS DE L'INTÉGRATION

1) Inégalités

Théorème 28.21 (cas d'égalité de Cauchy-Schwarz²)

Soit f, g deux fonctions continues par morceaux sur [a;b] et à valeurs réelles, on a: $(\int_{[a;b]} fg)^2 \le (\int_{[a;b]} f^2) (\int_{[a;b]} g^2)$ (inégalité de CAUCHY-SCHWARZ).

Preuve : L'application $(f,g)\mapsto \int_{a;b}fg$ n'est pas un produit scalaire sur $\mathscr{C}^0_{\mathrm{m}}([a;b],\mathbb{R})$ c'est néanmoins une forme bilinéaire symétrique et positive, on peut donc lui appliquer l'inégalité de Cauchy-Schwarz, dont on rappelle une preuve : posons $a = \int_{[a;b]} f^2$, $b = \int_{[a;b]} fg$ et $c = \int_{[a;b]} g^2$. Pour tout réel λ on a $0 \le \int_{[a;b]} (\lambda f + g)^2$ (intégrale d'une fonction positive), en développant on obtient par linéarité $a\lambda^2 + 2b\lambda + c \ge 0$. Si $a \ne 0$ alors on a un trinôme du second degré qui est toujours positif, donc son discriminant est négatif ou nul, i.e. $b^2 - ac \le 0$ ce qui donne exactement l'inégalité de Cauchy-Schwarz. Si a = 0 alors pour tout réel λ on a $2b\lambda + c \geqslant 0$ ce qui entraîne b = 0 et donc $b^2 \leqslant ac$.

Dans le cas des fonctions continues sur [a;b], l'application (f,g) $\mapsto \int_{a;b} fg$ est un produit scalaire sur $\mathscr{C}^0([a;b],\mathbb{R})$, on a donc comme dans tout espace préhilbertien réel :

Théorème 28.22 (cas d'égalité de Cauchy-Schwarz)

Si f, g sont **continues** et à valeurs **réelles**, alors :

$$(\int_{[a;b]} fg)^2 = (\int_{[a;b]} f^2)(\int_{[a;b]} g^2) \iff f \text{ et } g \text{ sont colinéaires.}$$

Exemple: Soit $f: [0;1] \to \mathbb{R}$ une fonction de classe \mathscr{C}^1 telle que f(0) = 0. Pour $t \in [0;1]$ on a $f(t) = \int_0^t f'(u) \, du$, d'où $f(t)^2 = \left(\int_0^t f'(u) \, \mathrm{d}u\right)^2 \leqslant \left(\int_0^t 1\right) \left(\int_0^t f'(u)^2 \, \mathrm{d}u\right)$, ce qui entraı̂ne $f(t)^2 \leqslant t \int_0^1 f'(u)^2 \, \mathrm{d}u$, il en découle alors que $\int_0^1 f^2(t) dt \le \frac{1}{2} \int_0^1 f'(u)^2 du$.

🙀 Théorème 28.23 (Inégalité de la moyenne)

Soi $f:[a;b]\to\mathbb{C}$ continue par morceaux, majorée par $\mathbf{M}\in\mathbb{R}^+$ en module, alors :

$$\left| \int_{[a;b]} f \right| \leqslant M(b-a).$$

Exemple : Soient 0 < a < b et soit $\varepsilon > 0$. D'après le théorème ci-dessus :

$$\cos(\varepsilon b)\ln(\frac{b}{a}) \leqslant \int_{\varepsilon a}^{\varepsilon b} \frac{\cos(t)}{t} dt \leqslant \cos(\varepsilon a)\ln(\frac{b}{a}). \text{ D'où : } \lim_{\varepsilon \to 0} \int_{\varepsilon a}^{\varepsilon b} \frac{\cos(t)}{t} dt = \ln(\frac{b}{a}).$$

Sommes de Riemann

Définition 28.7

Soit $f:[a;b]\to\mathbb{C}$ une fonction continue par morceaux et $n\in\mathbb{N}^*$, on appelle **somme de Riemann**³ d'ordre n associée à f la quantité :

$$R_n(f) = \frac{b-a}{n} \sum_{k=0}^{n-1} f(a+k\frac{b-a}{n}).$$

- 2. SCHWARZ HERMANN (1846 1921): mathématicien allemand.
- 3. RIEMANN GEORG FRIEDRICH BERNHARD (1826 1866): mathématicien allemand dont l'œuvre est colossale.

Remarque 28.10 – Soit ϕ la fonction en escalier sur [a;b] définie par $\phi(t) = f(x_k)$ si $t \in [x_k; x_{k+1}]$ et $\phi(b) = f(b)$, alors on a $R_n(f) = \int_{[a;b]} \phi$.

Théorème 28.24 (limite des sommes de Riemann)

 $\lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=0}^{n-1} f(a+k\frac{b-a}{n}) = \int_{[a;b]} f.$ Soit $f: [a;b] \to \mathbb{C}$ une fonction continue par morceaux on a :

Preuve : On se limite au cas où f est de classe \mathscr{C}^1 conformément au programme. Comme f' est bornée sur le segment [a;b], il existe un réel $M \in \mathbb{R}^+$ tel que $\forall t \in [a;b], |f'(t)| \leq M$ et donc $\forall x, y \in [a;b], |f(x)-f(y)| \leq M|x-y|$ (IAF).

$$\left| \mathbf{R}_{n}(f) - \int_{[a;b]} f \right| = \left| \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} f(x_{k}) \, \mathrm{d}t - \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} f(t) \, \mathrm{d}t \right| = \left| \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} \left(f(x_{k}) - f(t) \right) \, \mathrm{d}t \right|$$

$$\leq \sum_{k=0}^{n-1} \left| \int_{x_{k}}^{x_{k+1}} \left(f(x_{k}) - f(t) \right) \, \mathrm{d}t \right| \leq \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} \left| f(k_{k}) - f(t) \right| \, \mathrm{d}t$$

$$\leq \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} M |x_{k} - t| \, \mathrm{d}t \leq \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} M \frac{b - a}{n} \, \mathrm{d}t$$

$$\leq \sum_{k=0}^{n-1} M \frac{(b - a)^{2}}{n^{2}} = \frac{M(b - a)^{2}}{n}$$

on a donc $\left| \mathbf{R}_n(f) - \int_{[a;b]} f \right| \leqslant \frac{\mathbf{M}(b-a)^2}{n} \to 0$.

À retenir

Méthode des rectangles de gauche pour le calcul approché d'une intégrale :

Méthode des rectangles de gaucne pour le calcul approprié $R_n(f) = \frac{b-a}{n} \sum_{k=0}^{n-1} f(a+k\frac{b-a}{n})$ est une valeur approchée de $\int_{[a;b]} f$ à $\frac{M(b-a)^2}{n}$ près où $M = \sup_{a \leqslant t \leqslant b} |f'(t)|$.

FIGURE 28.5: Méthode des rectangles de gauche

Théorème 28.25 (méthode de rectangles de droite)

 $\lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=1}^{n} f(a + k \frac{b-a}{n}) = \int_{[a;b]} f.$ Soit $f: [a;b] \to \mathbb{C}$ une fonction continue par morceaux on a :

Preuve : Même preuve que le théorème précédent, avec la même majoration de l'erreur.

FIGURE 28.6: Méthode des rectangles de droite

-**À reteni**i

La demi-somme des rectangles de gauche et des rectangles de droite est la méthode des trapèzes : $T_n(f) = \frac{b-a}{n} \sum_{k=0}^{n-1} \frac{1}{2} (f(x_k) + f(x_{k+1})) = \frac{b-a}{2n} [f(a) + 2f(x_1) + \dots + 2f(x_{n-1}) + f(b)] \to \int_{[a;b]} f. \text{ On admettra}$ que $\left| T_n(f) - \int_{[a;b]} f \right| \leqslant \frac{M_2(b-a)^3}{12n^2} \text{ où } M_2 = \sup_{a \leqslant t \leqslant b} |f''(t)|.$

FIGURE 28.7: Méthode des trapèzes

Exemples:

- Étude de certaines suites : soit $u_n = \sum_{k=1}^n \frac{1}{n+k}$, on a alors $u_n = \frac{1}{n} \sum_{k=1}^n \frac{1}{1+k/n}$, c'est la méthode des rectangles de droite appliquée à la fonction $f \colon t \mapsto \frac{1}{1+t}$ sur l'intervalle [0;1], la fonction étant continue sur cet intervalle, on a $\lim u_n = \int_{[0;1]} f = \ln(2)$.
- Calcul de certaines intégrales : $\int_0^{2\pi} \ln(1 2x\cos(t) + x^2) dt$ pour $|x| \neq 1$ (cf. TD).

V COMPLÉMENTS : RECHERCHE DE PRIMITIVES

Convention: soit f une fonction continue sur un intervalle I, une primitive de f sur I est la fonction $f: x \mapsto \int_a^x f(t) dt$ où $a \in I$ est quelconque, ce qui fait que l'on notera simplement $F(x) = \int_a^x f(t) dt$.

1) Fonctions usuelles

Fonction	Primitive
$u'u^{\alpha}$	$\frac{u^{\alpha+1}}{\alpha+1}$ si $\alpha \neq -1$, $\ln(u)$ sinon
$u'e^u$	e^u
$u'\cos(u)$	$\sin(u)$
$u'\sin(u)$	$-\cos(u)$
$u'(1 + tan^2(u)) = \frac{u'}{\cos^2(u)}$	tan(u)
$u'\operatorname{ch}(u)$	sh(u)
$u' \operatorname{sh}(u)$	ch(u)
$u'(1-th^2(u)) = \frac{u'}{\cosh^2(u)}$	th(u)
$u'\tan(u)$	$-\ln(\cos(u))$
$u' \tan(u)^2$	tan(u) - u
$\begin{array}{c} u' \\ \hline 1 + u^2 \\ u' \end{array}$	arctan(u)
$\frac{u'}{\sqrt{1-u^2}}$	arcsin(u)
$\frac{\frac{u'}{\sqrt{1+u^2}}}{\frac{u'}{u'}}$	argsh(u)
$\frac{u'}{\sqrt{u^2-1}}$	argch(u)
$\frac{u'}{1-u^2}$	$\operatorname{argth}(u) = \ln(\sqrt{\left \frac{1+u}{1-u}\right })$

2) Fractions rationnelles en sinus et cosinus

Soit f(t) une fraction rationnelle en $\sin(t)$ et $\cos(t)$: $f(t) = \frac{\sum\limits_{p,q} a_{p,q} \sin(t)^p \cos(t)^q}{\sum\limits_{p,q} b_{p,q} \sin(t)^p \cos(t)^q}.$

Pour intégrer ce type de fonction on peut appliquer la règle de Bioche :

- Si f(-t) d(-t) = f(t) dt, alors on peut poser $u = \cos(t)$.
- Si $f(\pi t) d(\pi t) = f(t) dt$, alors on peut poser $u = \sin(t)$.

- Si $f(\pi + t) d(\pi + t) = f(t) dt$, alors on peut poser $u = \tan(t)$.
- Sinon on peut poser $u = \tan(\frac{t}{2})$. Rappelons que $\sin(t) = \frac{2u}{1+u^2}$ et $\cos(t) = \frac{1-u^2}{1+u^2}$.

Dans tous les cas, on est ramené à une fraction rationnelle en u.

- **★Exercice 28.2** Calculer une primitive de $f(t) = \frac{1}{\sin(t)^2 + 3\cos(t)^2} sur] \pi/2; \pi/2[$.
- **★Exercice 28.3** Calculer une primitive de $f(x) = \frac{1}{\sin(x)} sur]0; \pi[$.

3) Fractions rationnelles en ch et sh

Soit F(X, Y) une fraction rationnelle à deux indéterminées X et Y, la fonction $f(t) = F(\operatorname{ch}(t), \operatorname{sh}(t))$ est une fraction rationnelle en ch et sh. Pour intégrer ce type de fonction, on peut appliquer la règle de Bioche à la fonction $g(t) = F(\cos(t), \sin(t))$, c'est à dire en remplaçant $\operatorname{ch}(t)$ par $\cos(t)$ et $\operatorname{sh}(t)$ par $\sin(t)$:

- Si g(-t) d(-t) = g(t) dt, alors on peut poser u = ch(t).
- Si $g(\pi t) d(\pi t) = g(t) dt$, alors on peut poser $u = \operatorname{sh}(t)$.
- Si $g(\pi + t) d(\pi + t) = g(t) dt$, alors on peut poser u = th(t).
- Sinon on peut poser $u = \exp(t)$.

Dans tous les cas, on est ramené à une fraction rationnelle en u.

Exemple: Calculons $F(x) = \int_{-\infty}^{x} \frac{dt}{\cosh(t)}$ sur \mathbb{R} , d'après la règle de Bioche, on peut poser $u = \sinh(t)$, d'où d $u = \cosh(t)$ dt et $F(x) = \int_{-\infty}^{\sinh(x)} \frac{du}{1+u^2}$, et donc $F(x) = \arctan(\sinh(x)) + \cot$.

4) Fonctions se ramenant aux types précédents

- Une fraction rationnelle en t et $\sqrt{a^2-t^2}$ peut s'intégrer en posant $t=a\sin(u)$, ce qui donne une fraction rationnelle en $\sin(u)$ et $\cos(u)$.
- **Exemple**: Une primitive de $f(x) = \sqrt{1 + x x^2}$ sur $[\frac{1 \sqrt{5}}{2}; \frac{1 + \sqrt{5}}{2}]$ est $F(x) = \int^x \sqrt{1 + t t^2} \, dt$. On a $f(t) = \frac{\sqrt{5}}{2} \sqrt{1 - \left(\frac{2t - 1}{\sqrt{5}}\right)^2}$, donc $F(x) = \frac{\sqrt{5}}{2} \int^x \sqrt{1 - \left(\frac{2t - 1}{\sqrt{5}}\right)^2} \, dt$, on pose $\sin(u) = \frac{2t - 1}{\sqrt{5}} \in [-1; 1]$, on peut donc prendre $u \in [-\pi/2; \pi/2]$, on a $dt = \frac{\sqrt{5}}{2} \cos(u) \, du$, et donc :

$$F(x) = \frac{5}{4} \int_{0}^{\arcsin(\frac{2x-1}{\sqrt{5}})} \cos(u)^2 du$$

ce qui donne:

$$F(x) = \frac{5}{8}\arcsin(\frac{2x-1}{\sqrt{5}}) + \frac{2x-1}{4}\sqrt{1+x-x^2} + \text{cte}$$

- Une fraction rationnelle en t et $\sqrt{t^2 a^2}$ peut s'intégrer en posant $t = a \operatorname{ch}(u)$, on obtient alors une fraction rationnelle en $\operatorname{ch}(u)$ et $\operatorname{sh}(u)$.
- **Exemple**: Une primitive de $f(x) = \sqrt{x^2 1}$ sur $[1; +\infty[$ est la fonction $F(x) = \int^x \sqrt{t^2 1} \, dt$, on pose t = ch(u) avec $u \in [0; +\infty[$, on a $dt = \text{sh}(u) \, du$, et donc $F(x) = \int^{\ln(x + \sqrt{x^2 1})} \text{sh}(u)^2 \, du$, or $\text{sh}^2(u) = \frac{e^{2u} + e^{-2u} 2}{4}$, donc $F(x) = \left[\frac{e^{2u} e^{-2u} 4u}{8}\right]^{\ln(x + \sqrt{x^2 1})}$, ce qui donne après simplifications :

$$F(x) = \frac{x\sqrt{x^2 - 1} - \ln(x + \sqrt{x^2 - 1})}{2} + \text{cte}$$

- Une fraction rationnelle en t et $\sqrt{t^2 + a^2}$ peut s'intégrer en posant $t = a \operatorname{sh}(u)$, on obtient alors une fraction rationnelle en $\operatorname{ch}(u)$ et $\operatorname{sh}(u)$.
- **Exemple**: Une primitive de la fonction $f(x) = \frac{1}{\sqrt{1+x^2}}$ sur \mathbb{R} est la fonction $F(x) = \int^x \frac{dt}{\sqrt{1+t^2}}$, on pose $t = \operatorname{sh}(u)$, on a $\mathrm{d}t = \operatorname{ch}(u) \, \mathrm{d}u$ et donc $F(x) = \int^{\ln(x+\sqrt{x^2+1})} \mathrm{d}u = \ln(x+\sqrt{1+x^2}) + \mathrm{cte}$.

- Une fraction rationnelle en t et $\sqrt{\frac{at+b}{ct+d}}$ peut s'intégrer en posant $u=\sqrt{\frac{at+b}{ct+d}}$, on obtient alors une fraction rationnelle en u.
- **Exemple**: Une primitive de $f(x) = \frac{1}{x \sqrt{x 1}}$ sur [1; +∞[est la fonction $F(x) = \int^x \frac{dt}{t \sqrt{t 1}} dt$, on pose $u = \sqrt{t 1}$, d'où $t = u^2 + 1$, donc dt = 2u du et $F(x) = \int^{\sqrt{x 1}} \frac{2u du}{u^2 u + 1}$. Or $\frac{2u}{u^2 u + 1} = \frac{2u 1}{u^2 u + 1} + \frac{1}{(u 1/2)^2 + 3/4}$, d'où $F(x) = \ln(x \sqrt{x 1}) + \frac{4}{3} \int^{\sqrt{x 1}} \frac{du}{\left(\frac{2u 1}{\sqrt{x}}\right)^2 + 1}$, ce qui donne finalement :

$$F(x) = \ln(x - \sqrt{x - 1}) + 2\frac{\sqrt{3}}{3}\arctan(\frac{2\sqrt{x - 1} - 1}{\sqrt{3}}) + \text{cte.}$$

5) Polynômes trigonométriques

Il s'agit des sommes finies du type $\sum_{p,q} a_{i,j} \cos(x)^p \sin(x)^q$. Une telle fonction est un cas particulier de fraction rationnelle en cos et sin, la règle de Bioche peut s'appliquer, mais il y a parfois plus simple, on est en fait ramené à chercher une primitive de $\cos(x)^p \sin(x)^q$:

- Linéarisation : on écrit que $\cos(t)^p = \left(\frac{e^{it} + e^{-it}}{2}\right)^p$ et $\sin(t)^q = \left(\frac{e^{it} e^{-it}}{2i}\right)^q$, puis on développe.
- **Exemple**: $\int_{-\infty}^{\infty} \cos(t)^4 \sin(t)^2 dt$, on a:

$$\cos(t)^4 \sin(t)^2 = \left(\frac{e^{it} + e^{-it}}{2}\right)^4 \left(\frac{e^{it} - e^{-it}}{2i}\right)^2 = \frac{-\cos(6t) - 2\cos(4t) + \cos(2t) + 2}{32}$$

Ce qui donne finalement :

$$\int_{0}^{x} \cos(t)^{4} \sin(t)^{2} dt = -\frac{\sin(6x)}{192} - \frac{\sin(4x)}{64} + \frac{\sin(2x)}{64} + \frac{x}{16} + \text{cte}$$

- Changement de variable : lorsque l'un des exposants est impair, par exemple p = 2k + 1, on a $F(x) = \int_0^x \cos(t)^p \sin(t)^q dt = \int_0^x \cos(t)^{2k} \sin(t)^q \cos(t) dt$, on pose alors $u = \sin(t)$, d'où $du = \cos(t) dt$ et donc $F(x) = \int_0^{\sin(x)} (1 u^2)^k u^q du$, c'est un polynôme en u.
- **Exemple**: Soit à calculer $F(x) = \int_0^x \sin(t)^5 dt$, on pose $u = \cos(t)$, d'où $du = -\sin(t) dt$ et

$$F(x) = -\int_{0}^{\cos(x)} (1 - u^2)^2 du = -\frac{\cos(x)^5}{5} + \frac{2\cos(x)^3}{3} - \cos(x) + cte$$

VI SOLUTION DES EXERCICES

Solution 28.1 La fonction à intégrer est de la forme au' $u^{1/2}$ et s'intègre donc en $\frac{2a}{3}u^{3/2}$, d'où : $I = [-\frac{1}{3}(1-t^2)^{3/2}]_0^1 = \frac{1}{3}$.

Solution 28.2 Il s'agit de calculer $F(x) = \int^x f(t) dt = \int^x \frac{dt}{1+2\cos(t)^2}$, d'après la règle de Bioche, on peut poser $u = \tan(t)$, ce qui donne $du = (1+u^2) dt$, et donc $F(x) = \int^{\tan(x)} \frac{du}{u^2+3}$, ce qui donne :

$$F(x) = \frac{1}{\sqrt{3}}\arctan(\frac{\tan(x)}{\sqrt{3}}) + cte$$

Solution 28.3 *Une primitive est* $F(x) = \int_{-\infty}^{x} \frac{dt}{\sin(t)}$, *posons* $u = \tan(t/2)$, *on a alors* $2 du = (1+u^2) dt$, $d'où F(x) = \int_{-\infty}^{\tan(x/2)} \frac{2(1+u^2)}{2u(1+u^2)} du = \int_{-\infty}^{\tan(x/2)} \frac{1}{u} du = \ln(|\tan(x/2)|) + cte$.