

# Unit 4. Sequential Systems



#### **Contents**

- Basic Concepts
- Latches and flip-flops
- Registers
- Counters
- Sequential System Design

#### **Bibliography**

- Digital fundamentals.
  Thomas Floyd. Prentice-Hall.
- Digital Design.
  M. Morris Mano. Prentice-Hall
- Introduction to Digital Logic Design.
  John P. Hayes. Addison-Wesley

### **Basic concepts**



- **Sequential circuit.** Circuit in which the outputs in a concrete instant are function of the inputs in that instant and the state of the circuit, i.e., they store information
- Therefore a sequential system is formed by two different blocks: a combinational system to process information and a memory system to store it.



Generally, feedback circuits are present in sequential systems.

# Latches and flip-flops (I)



- Information is stored in binary, and the basic memory elements are latches and flip-flops which store just one bit of information.
- \* They are elementary logical circuits that can remain in one of the two possible states (Q=0 or Q=1) and switch among them depending on the triggering inputs.
- There are many types, but the general scheme is:



### Latches and flip-flops (II)



#### **Classification:**

Depending on triggering method:

R-S J-K D T

#### Depending on triggering synchronization:

- Synchronous. Switching among states occurs in synchrony with a clock signal
- Asynchronous. Switching among states can occurs in any moment; it just depend on the triggering inputs.

#### Depending on the form of the **triggering signal**:

- Level-triggered. Triggering and change of state occurs when a low or high level is detected in the inputs.
- Edge-triggered (synchronous flip-flops): Triggering and change of state occurs just when the clock changes from low to high (rising edge) or from high to low (falling edge).





#### **R-S NOR**



| <b>Three dai</b> ón |    |          |
|---------------------|----|----------|
| Ŕ                   | \$ | <b>Q</b> |
| 0                   | O  | Q        |
| О                   | 1  | 1        |
| 1                   | O  | О        |
| 1                   | 1  | I        |



R=S=1: Q is not determined. Not valid input





#### **RS-NAND**



| Ŕ | \$ | <b>Q</b> |
|---|----|----------|
| О | О  | I        |
| 0 | 1  | О        |
| 1 | O  | 1        |
| 1 | 1  | Q        |



R=S=0: Q is not determined. Not valid input

### Latches and flip-flops (V)



#### **R-S synchronous**

Level-triggered











### Latches and flip-flops (VI)

#### R-S synchronous with asynchronous inputs CL and PR



| <b>Hibidexitation</b> |                        |  |
|-----------------------|------------------------|--|
| PCSI                  | ROE CO                 |  |
| O 1 XX                |                        |  |
| $1 \times 2$          | $\times \times \circ$  |  |
| OOX                   | $\times \times \times$ |  |
| 1100                  |                        |  |
| 1 1 1 (               |                        |  |
| 1 1 O 1               | LIL                    |  |
| 1 1 1 1               | Lı X                   |  |

### Latches and flip-flops (VII)



#### **R-S Master-Slave**

It solves timing problems that can give rise to wrong outputs by reducing the switching moment of the flip-flop to transitions of the clock (rising or falling edges)

Example: falling edge



### Latches and flip-flops (VIII)



#### **Asynchronous J-K Flip-flop**

Like R-S, but removing undetermined situations using feedback

$$J \sim S y K \sim R$$
.



| Ĵ | ĸ | <b>4</b>           |
|---|---|--------------------|
| О | О | Q                  |
| O | 1 | О                  |
| 1 | Ο | 1                  |
| 1 | 1 | $\mathbf{\bar{Q}}$ |





### Latches and flip-flops (IX)



#### **Synchronous J-K Flip-flop**

Level-triggered





Edge-triggered





## Latches and flip-flops (X)



### T flip-flop





| 1 |  | • |
|---|--|---|
| О |  | Q |
| 1 |  | Q |

### Latches and flip-flops (XI)



• **D** latch (level-triggered)



• **D** flip-flop (edge-triggered)









### Registers (I)



**Register**: Circuit that can store binary information, generally a *word* (*n* bits: 4, 8, 16, 32, 64...).

It is formed by flip-flops connected by different ways depending on the type:

#### **Basic types:**

- Storing registers
- Shift registers
- Counters

### Registers (II)



Storing Register: it works like a small memory; just stores bits.

Operations: read and write

Depending on the triggering:

Latches

Flip-flops



### Registers (III)



**Shift register.** Besides storing information, it can shift it by moving bits between connected flip-flops or latches

Types (depending on input-output)

- Serial Input Serial Output
- Serial Input Parallel output
- Parallel Input Serial Output
- Parallel Input Parallel output



### Registers (IV)



#### Types (depending on shifting):

- Open
  - Right shift
  - Left shift
- Ring
  - Right shift
  - Left shift







### Registers (V)



#### Shift register with serial input – serial output





### Registers (VI)



#### Shift register with serial input – parallel output



### Registers (VII)



#### Shift register with parallel input – serial output



### Registers (VIII)



#### Shift register with parallel input - parallel output



### Registers (IX)



#### Universal shift register

| C <sub>1</sub> | C <sub>0</sub> | Operation              |
|----------------|----------------|------------------------|
| 0              | 0              | Keeps the state. No op |
| 0              | 1              | Right shift            |
| 1              | 0              | Left shift             |
| 1              | 1              | Load                   |



### Counters (I)



- Circuit that "counts" and "remembers" the number of pulses it receives from an external signal or clock
- It is formed by a chain of flip-flops whose n outputs represent the count in binary
- Classifications:
  - Synchronism:
    - Asynchronous / synchronous
  - Counting way:
    - Up / Down
  - Maximum count:
    - Binary / N-modulus

### Counters (II)



#### Asynchronous up binary counter



### **Counters (III)**



#### **Asynchronous down binary counter**



### Counters (IV)



### Synchronous up binary counter



### Counters (V)



### 10-modulus counter N (Up, Asynchronous)



