2022 ERAU REU: Ensemble Deep Learning

Embry-Riddle Aeronautical University

Rachel Swan

Nevada National Security Site

Jesse Adams, PhD

Margaret Lund, PhD

Support for the program has been provided by the National Science Foundation (NSF) through REU Award Number DMS - 2050754.

Nevada National Security Site (NNSS)

protection

Nuclear weapons

science Environmental

National security programs

Problem Introduction

Radiographic image analysis using

convolutional neural networks

Aids in NNSS tests analysis
National security
Nuclear stockpile safety
Project Scope

Develop a network using Python and train it using image data Probability model and uncertainty quantification

Initial Strategy

Develop neural networks and decide on an architecture

Create an ensemble and train the architecture *n* times

Start working on uncertainty quantification

Dataset: Absorption spectroscopy data for 179072 metal oxides

Image size: (64, 64, 3, 180902)

Channel values: RGB

Normalized: 0-1 for every channel

Stein, H. S., Soedarmadji, E., Newhouse, P. F., Guevarra, D. & Gregoire, J. M. Synthesis, optical imaging, and absorption spectroscopy data for 179072 metal oxides https://doi.org/10.6084/m9.fgshare.7502207 (2019).

Output

Spectra
Originally 220 values 20 values
with linear interpolation between

ModelSummary

Layers:

1.

2. 3. 4. 5. 6. 7. 8.

Convolutional Dense

Max Pooling Dropout

Flatten

Dense

Training:

Dense

Dense

90,000 images 80% training

20% validation Batchsize: 32

Epochs: earlystop

Lossfunction: MSE

Ensemble Model Summary

2 neural networks

Trained on 90,000 images

Batch size: 32

Epochs: early stop

Ensemble vs. Single NN

Uncertainty Quantification: Gaussian Process Regression Non-parametric, Bayesian regression approach Gives 95% confidence interval for prediction

Next Steps

Implement uncertainty quantification approach