Chapitre

Pourcentages et évolutions

1

1.1 Taux d'évolution et coefficient multiplicateur

Définition 1.1 — Le P%. désigne P centièmes = $\frac{P}{100}$.

Définition 1.2 — U de V. désigne $U \times V$.

Démonstration. L'évolution de taux TE appliquée à X donne $X+TE\times X=(1+TE)X.$

Définition 1.3 — taux d'évolution et coefficient multiplicateur. Une évolution de taux TE correspond à un multiplication par CM=1+TE

coefficient multiplicateur = $1 + \tan x$ d'évolution

Journalistes	TE	$\mathbf{CM} = 1 + TE$
augmentation de 12%	12% = 0.12	CM = 1,12
diminution de 12%	-12% = -0.12	0,88
pas de changement	0	1

Proposition 1.1 Dans une évolution $V_I \mapsto V_F$ on a :

$$V_F = CM \times V_I$$
 $V_F = (1 + TE) \times V_I$

$$CM = \frac{V_F}{V_I}$$
 $TE = CM - 1 = \frac{V_F - V_I}{V_I}$

$$\times CM = \frac{y}{x}$$

$$V_I = x$$

$$V_F = y$$

$$\times (1 + TE)$$

Figure 1.1 – Evolution, CM et TE

1.1.1 Exercices : taux d'évolution et coefficient multiplicateur

Exercice 1 Complétez.

- a) Une augmentation de 3% est une évolution de taux $TE = \dots$ Elle correspond à une multiplication par $CM = \dots + \dots = \dots$

- d) Multiplier par CM=0.95 correspond à une évolution de taux $TE=\ldots\ldots=\ldots$.

 C'est une (augmentation/diminution) de $\ldots\ldots\%$.
- f) Une évolution de $40 \in \text{ à EUR24 correspond à une multiplication par } CM = \frac{1}{1-1-1} = \frac{1}{1-1-1}$. C'est une évolution de taux $TE = \frac{1}{1-1-1} = \frac{1}{1-1-1}$.
- g) Une évolution de $320 \in$ à $288 \in$ est de taux $TE = \frac{1}{1-1-1} = \frac$

Les exercices suivants illustrent des formulations de problèmes d'évolutions.

Exercice 2

Prix initial est de 80€. Après augmentation le prix est de 125€. Quel est le taux d'augmentation?

Exercice 3

Le prix initial est de $16 \in$. Après réduction le prix est de $12.5 \in$. Donner le taux de diminution

Exercice 4

Le montant de la redevance audiovisuel en France est passé de 114.49 \in en 2001 à 123 \in en 2011.

Quel est le taux d'évolution de cette taxe de 2001 à 2011?

Exercice 5

Le prix initial de $60 \in$ subit une augmentation de 35%.

Sans calculer le montant de l'augmentation retrouver le prix final?

 $V_F =$

 $\times CM =$

$$TE =$$

 $V_I =$

Exercice 6

Le prix initial de $35 \in$ subit une diminution de 60%.

Sans calculer le montant de l'augmentation retrouver le prix final?

Exercice 7

En appliquant une augmentation de 12.5% du prix initial, le prix augmente de $15 \in$.

a) Donner une équation vérifiée par le prix initial.

b) Quel est le prix initial.....

Exercice 8

Après augmentation de 12.5%, le prix final est de 45€.

TE =

TE =

Exercice 9

Après diminution de 12.5%, le prix final est de $80.5 \in$.

Quel était le prix initial?

Exercice 10

En appliquant une diminution de 15%, le prix final est $100 \in$.

Quel est le montant de la diminution?

$V_I = V_F =$ $V_F =$

Exercice 11

Le prix d'un appareil ménager a augmenté de 15 % en 2 ans. Il coûte maintenant $460 \in$.

Quel est montant de l'augmentation en deux ans?

TE =

Exercice 12

Les prix des aliments ont diminué de 20%. Un aliment coûte maintenant 240. Quel est le montant de la diminution?

LG Jeanne d'Arc, 2nd

Dans un plan d'épargne, les intérêts sont dit **simples** lorsqu'ils sont calculés chaque année sur la base de la **somme placée au départ**.

Dans un plan d'épargne, les intérêts sont dit **composés** lorsqu'ils sont calculés chaque année sur la base de la **somme totale accumulée l'année précédente**. De manière générale, les gains ou pertes d'un placement sont exprimés en pourcentage par rapport à l'année écoulée.

■ Exemple 1.2

Un placement $200 \in$ en intérêts **simples** de 3%, rapporte $3\% \times 200$ chaque année.

Au terme de 5 ans, la somme épargnée est

$$200 + 5 \times 0.03 \times 200 = 200 \times 1.15$$

Le montant de départ est multiplié par $CM_{\text{global}} = 1.15$, soit une augmentation globale $TE_{\text{global}} = 15\%$.

Un placement 200 € en intérêts **composés** de 3%, augmente de 3% chaque année. Le placement est multiplié par 1.03 chaque année.

Au terme de 5 ans, la somme épargnée est

$$200 \times 1.03^5 \approx 200 \times 1.159$$

Le montant de départ est multiplié par $CM_{\rm global} \approx 1.159$, soit une augmentation globale $TE_{\rm global} \approx 16\%$.

Exercice 13 Complétez le tableau.

Placement initial	taux d'intêret	nombre d'années	Calcul	Montant final
2000€	5% composés	6	2000 × 1.05···	
4000€	2% composés	8		
3500€	6% composés	10		
10000€	1% composés	11		
	-		5000×1.07^{14}	
			600×1.1^{8}	
4000€	2% simples	5		

Exercice 14 Entourez les bonnes réponses.

	Réponse A	Réponse B	Réponse C
1/ Un placement de 1000€ se déprécie de 7% par an.	$1000\times0.07\times5$	1000×0.07^5	1000×0.93^5
Le montant après 5 ans est			
2/ Un placement de 100€ rapporte 8% d'intérêts	$100 \times 1.8 \times 10$	100×1.08^{10}	100×0.8^{10}
composés par an. Le montant après 10 ans est			
3/ Un placement de 100€ rapporte 3.5% d'intérêts	100×0.07	100×1.07^2	107.1225
composés par an. Le montant après 2 ans est			
4/ Un placement de 1000 € se déprécie de 9% par an.	1000×0.91^{10}	1000×0.9^{10}	1000×1.09^{10}
Le montant après 10 ans est			
5/ Un placement de 5000 € se déprécie de 12% par an.	5000×0.12^6	1000×0.88^6	$1000(1-6 \times$
Le montant après 6 ans est			0.12)

Exercice 15

Quark souhaite investir $10000 \in$ sur 10 ans. Le placement A rapporte 4% taux d'intérêts simples. Le placement B rapporte 3.5% d'intérêts composés.

Quel placement est le plus avantageux? Montrer les calculs.

Exercice 16

Une banque propose un placement à intérêts composés. La première année est à 7%, et les suivantes sont à 5%.

Quelle est le taux d'augmentation globale d'un placement après 3 années?

Exercice 17

Un placement de $1000 \in \text{sur } 10$ ans se déprécie de 4% par an. Calculer le **taux de** diminution globale sur 10 ans.

Exercice 18 — bilan. Compléter le tableau (Variation absolue = Prix final - Prix initial).

Augmentation/diminution	taux d'évolution	Coefficient Multiplicateur	Prix initial	Prix final	Variation absolue
	+100%		98.40€		
	+160%		196.80€		
	+20%		60€		
	-20%		72€		
			72 €	54€	
Augmentation de 50%				54€	
Diminution de 50%				54€	
	+20%			54€	
	-20%			54€	
			54€		+54€
		×0,7	40€		
				108€	-27€
		×1,3		91€	
			96€	108€	
	+1,25%		96€		
	+25%			98.40€	
		×1,007	130€		
			98.40€		-19.68€
	+42%		17€		

1.2 Evolutions successives

Théorème 1.3 — Évolutions successives. Plusieurs évolutions successives vont avoir le même effet qu'une seule dont le CM global est le produit des CM des évolutions intermédiaires qui la composent.

Théorème 1.4 — Évolutions successives de même TE. Pour une succession de n évolutions de même TE, le taux d'évolution global est donné par :

$$CM_{\text{global}} = (CM)^n$$

 $1 + TE_{\text{global}} = (1 + TE)^n$

Théorème 1.5 — Cas de 2 évolutions successives.

$$CM_{\text{global}} = CM_1 \times CM_2 \tag{1.1}$$

$$1 + TE_{\text{global}} = (1 + TE_1) \times (1 + TE_2) \tag{1.2}$$

$TE_{ m global} = \dots$ $imes CM_{ m global} = \dots$ $V_D = ?$ $V_I = ?$ $V_A = ?$ $V_{ m constant} = \dots$ $V_{ m constant} = \dots$

Figure 1.2 – Pour deux évolutions successives de CM 3 et 7, vont avoir le même effet qu'une seule dont le CM est 3×7 .

Figure 1.3 – L'évolution $100 \mapsto 125$ et l'évolution $125 \mapsto 100$ sont réciproques.

1.2.1 Taux d'évolution réciproque

Définition 1.4 — Évolution réciproque. de l'évolution $V_0 \mapsto V_1$ est l'évolution $V_1 \mapsto V_0$.

Les CM multiplicateurs sont inverses l'un de l'autre. Les formules 1.1 et 1.2 donnent :

$$1 = CM \times CM_{\text{reciproque}} \tag{1.3}$$

$$1 = (1 + TE) \times (1 + TE_{\text{reciproque}}) \tag{1.4}$$

1.2 Evolutions successives 7

1.2.2 Approfondissement : Taux d'évolutions moyens

Définition 1.5 — CM et TE moyens. Deux évolutions successives de taux d'évolutions TE_1 et TE_2 .

On appelle **coefficient multiplicateur moyen** et **taux d'évolution moyen** les nombres :

$$CM_{\text{moyen}}^2 = CM_1 \times CM_2$$
$$(1 + TE_{\text{moyen}})^2 = (1 + TE_1) \times (1 + TE_2)$$

Donc 2 évolutions successives de même taux $TE_{\rm moyen}$ conduisent à une même évolution globale que les deux évolutions successives de TE_1 et TE_2 .

Proposition 1.6 — Cas de 3 évolutions successives.

$$CM_{\text{global}} = CM_1 \times CM_2 \times CM_3 \tag{1.5}$$

$$1 + TE_{\text{global}} = (1 + TE_1) \times (1 + TE_2) \times (1 + TE_3) \tag{1.6}$$

$$(1 + TE_{\text{moyen}})^3 = (1 + TE_1) \times (1 + TE_2) \times (1 + TE_3)$$
 (1.7)

■ Exemple 1.7 Est-ce que trois augmentations de 12%, puis 17%, puis 10% correspondent à une augmentation moyenne annuelle d'exactement 13%?

1.2.3 Exercices évolutions successives et réciproques

Exercice 1 Déterminez le taux d'évolution global associé à la succession d'évolutions :

1) augmentation de 8%, suivie d'une augmentation de 10%

$$1 + TE_{\text{global}} = \dots \times \dots = \dots$$

$$TE_{\text{global}} = \dots - 1 =$$

2) augmentation de 10% suivie d'une augmentation de 5%

$$1 + TE_{\text{global}} = (1 + TE_1)(1 + TE_2)$$
$$1 + TE_{\text{global}} = \dots \times \dots = \dots$$
$$TE_{\text{global}} = \dots - 1 =$$

3) diminution de 30% suivie d'une diminution de 10%

4) diminution de 40% suivie d'une diminution de 10%

$$1 + TE_{\text{global}} =$$

$$1 + TE_{\text{global}} = \dots \times \dots = \dots$$

$$TE_{\text{global}} = \dots - 1 =$$

L'évolution globale correspond à une \ldots de \ldots %

5) diminution de 25% suivie d'une diminution de 20%

=

 $TE_{
m global} = \dots$ V_D V_I V_A $TE_1 = \dots TE_2 = \dots$

$$TE_{\text{global}} = \dots - 1 =$$

L'évolution globale correspond à une de%

6) augmentation de 25% suivie d'une diminution de 20%

=

=

 $TE_{\text{global}} =$

7) augmentation de 25% suivie d'une diminution de 25%

=

=

$$TE_{\rm global} =$$

8) diminution de 20% suivie d'une augmentation de 25%

=

=

 $TE_{\rm global} =$

9) augmentation de 22% suivie d'une diminution de 15%

=

_

 $TE_{\rm global} =$

Exercice 2 — 3 évolutions successives. Dans chaque cas, calculer le TE global correspondants aux évolutions successives ci-dessous :

- 1) une diminution de 30% suivie d'une augmentation de 20% suivie d'une diminution de 10%
- 2) une augmentation de 12% suivie de deux baisses successives de 5%
- 3) trois augmentations successives de 10%.
- 4) trois diminutions successives de 5%.

Deux évolutions successives de taux d'évolutions TE_1 et TE_2 .

On appelle taux d'évolution moyen le nombre vérifiant :

$$(1 + TE_{\text{moyen}})^2 = (1 + TE_1)(1 + TE_2)$$
$$1 + TE_{\text{moyen}} = \sqrt{(1 + TE_1)(1 + TE_2)}$$

Donc 2 évolutions successives de même taux TE_{moyen} conduisent à une même évolution globale que les deux évolutions successives de TE_1 et TE_2 .

Exercice 3

Le nombre de nouvelles inscriptions Netflix à augmenté de 21% durant le moi d'octobre, puis de 36% durant le mois de novembre. Calculer le taux évolution mensuel moyen.

Exercice 4

Le prix d'un article augmente de 20% la première année, et diminue de 4% l'année suivante. Calculer le taux d'évolution annuel moyen.

Exercice 5

Le montant d'un placement passe de $2000 \in$ en 2020 à $2142.45 \in$ en 2022. Calculer le taux d'évolution annuel moyen.

Le concept de taux moyen se généralise à 3 évolutions de taux TE_1 , TE_2 et TE_3 à l'aide de la racine cubique :

$$(1 + TE_{\text{moyen}})^3 = (1 + TE_1)(1 + TE_2)(1 + TE_3)$$
$$1 + TE_{\text{moyen}} = \sqrt[3]{(1 + TE_1)(1 + TE_2)(1 + TE_3)}$$

Exercice 6

La taxe d'importations de patates-douces égyptiennes a augmenté de 9,75% entre 2020 et 2022. Calculer le taux d'évolution annuel moyen de cette taxe.

Exercice 7

En Juin 2017, Farid achète une voiture pour 12000€. En Juin 2020, sa voiture est évaluée à 8600€.

- a) Calculer le taux d'évolution annuel moyen.
- b) Si la voiture se déprécie à ce même taux. Quel est la valeur de la voiture en Juin 2022?

Exercice 8

Une moto achetée $2300 \in$ est revendue 3 ans plus tard à $1300 \in$. Calculer le taux de dépréciation annuel moyen.

- Exemple 1.8 Taux d'évolution réciproque. Pour chacune des évolutions suivantes, donner le taux d'évolution réciproque. Arrondir à 10^{-4} près si nécsssaire.
- 1) augmentation de 25%

$$1 = (1 + TE)(1 + TE_{\text{reciproque}})$$

$$= V_D V_I V_A$$

$$= TE = ... TE_{\text{reciproque}} =$$

 $TE_{\text{reciproque}} =$

2) diminution de 25%

 $TE_{\text{reciproque}} =$

Exercice 9 Même consignes

- 1) augmentation de 50%
- 3) diminution de 90%
- 5) augmentation de 10%

- 2) diminution de 20%
- 4) augmentation de 300%
- 6) diminution de 10%

Exercice 10

Le prix TTC est 20% du prix HT. Quelle évolution appliquer au prix TTC pour obtenir le prix HT?

Exercice 11 — Indice de base 100.

Le tableau ci-dessous donne le chiffre d'affaire annuel d'une entreprise pour les années comprises entre

2015 et 2021.

Année	2015	2016	2017	2018	2019	2020	2021
Chiffre d'affaire en miliers d'euros	134	138	138.3	135.6	133.2	138.2	140.4
Indice (base 100)	97.1	100					

- 1) Complétez la ligne des indices sachant qu'elle est proportionnelle à celle des chiffre d'affaire.
- 2) Sans aucun calculs supplémentaires donner le taux d'augmentation en % qui permet de passer du chiffre d'affaire de 2016 à celui de 2021.
- 3) Même question avec le taux de diminution du chiffre d'affaire de 2016 à 2019.

1.3 Club de Maths: Problèmes

Exercice 1

Une augmentation de 5% suivie d'une augmentation de taux t correspond à une augmentation globale de 17,6%. Montrer que t est solution de l'équation 1,05(1+t)=1,176 et trouver t.

Exercice 2

Une diminution de 15 % suivie d'une diminution de taux t correspond à une diminution globale de 32 %. Trouver t.

Exercice $3 - \Psi$.

Après deux augmentations successives de taux t, le prix d'un produit a globalement augmenté de 32,25%. Trouver t.

Exercice 4 — Ψ .

Après une augmentation de taux t suivie d'une baisse de taux t, le prix d'une chemise a diminué de 4%.

- 1) Montrer que $0.96 = 1 t^2$.
- 2) Trouver t.

Vrai ou Faux? « une augmentation de t% suivie d'une diminution de t% est toujours une diminution ».

Problème 1

On aggrandit les côtés d'un carré de 20%, quel est le taux d'agrandissement des aires.

Problème 2

Soit un carré de côté c. On augmente deux côtés opposés d'un taux t_1 , et les deux autres d'un taux t_2 .

- 1) Exprimer l'aire du rectangle obtenu en fonction de c.
- 2) En déduire que le taux d'évolution de l'aire par cette transformation est $t_1 + t_2 + t_1t_2$.
- 3) Si $t_1 = 25\%$ et $t_2 = -22\%$, l'aire a-t-elle augmenté ou diminué?
- 4) Si $t_1 = 15\%$. Comment choisir t_2 pour que l'aire soit conservée?

Problème 3

Deux offres sont proposées pour une bouteille de lessive : 15% de produit en plus, ou 15% de réduction sur le prix. Laquelle choisissez-vous et pourquoi?

Problème 4

Le coût du pétrole représente 24% du coût de production de l'essence, qui représente lui-même 35% du prix de l'essence. Si le coût du pétrole augmente de 10%, et que les autres composants du prix de l'essence ne subissent aucun changement, quel sera le pourcentage d'augmentation du prix de l'essence.

Problème 5

Après une année d'entrainement, Minnie augmente sa vitesse moyenne au Marathon de Londres de 25%. Quel est le taux de diminution de son temps total?

Problème 6

Coincée dans le trafic, Emilie's met 25% de plus que d'habitude pour arriver chez elle. Quel est le pourcentage de réduction de sa vitesse par rapport à un trajet sans embouteillage.

Problème 7

Si un tapis roulant avançait 10% plus rapidement, alors le trajet prendrait 5 s de moins. Quelle est la durée du trajet?

indication pour le problème 4. x = prix de l'essence. Quel est le coût du pétrole?

indication pour le problème 7. Traduire l'énoncé en une équation utilisant l et t la longueur du tapis roulant et le temps normal de trajet.

Exercice 5

```
def mafonction(t1, t2) :
                                                 def cm(t) :
      cm1 = 1 + t1 / 100
2
                                               9
      cm2 = 1 + t2 / 100
3
                                              10
                                                      return ...
                                                 def reciproque(t) :
      cmg = cm1 * cm2
4
                                              11
      tg = (cmg - 1) * 100
5
                                              12
      return tg
6
                                              13
                                              14
                                                      return
```

- 1) Que retourne l'instruction mafonction (100,-29)?
- 2) Quel est l'objet de la fonction mafonction()?
- 3) Complétez les lignes 9 et 10 afin que la fonction d'appel cm() et d'argument t retourne le coefficient multiplicateur de l'évolution de taux t donné en %.
- 4) Complétez les lignes 12, 13 et 14 afin que la fonction d'appel reciproque() et d'argument t retourne le taux reciproque de l'évolution de taux t donné en %.