Cubique circulaire

Dans tout le problème a désigne un réel strictement positif et le plan est rapporté à un repère orthonormé direct d'origine O et d'axes (Ox) et (Oy).

Partie I : Etude de la cissoïde droite

On désigne par D la droite d'équation x = 2a et par C le cercle de centre $\Omega(-a,0)$ et de rayon a.

Pour tout nombre réel t, on désignera par :

- D_t la droite d'équation y = tx,
- H(t) le point d'intersection de D et D_t ,
- M(t) le point d'intersection de C et D_t autre que O,
- I(t) le milieu du segment d'extrémités H(t) et M(t).
- 1.a Donner une équation cartésienne du cercle C.
- 1.b Déterminer les coordonnées cartésiennes des points H(t), M(t) et I(t). Nous noterons x(t) et y(t) les coordonnées du point I(t)
- 2. On étudie ici la courbe Γ formée par les I(t) lorsque t varie.
- 2.a Justifier que Γ présente un axe de symétrie. Dresser le tableau des variations simultanées des fonctions $t \mapsto x(t)$ et $t \mapsto y(t)$ pour $t \in \mathbb{R}^+$.
- 2.b Préciser la nature du point de paramètre t = 0 et la tangente en ce point.
- 2.c Etablir que la tangente à la courbe $t \mapsto J(t)$ au point $J(t_0)$ a pour équation $t_0(t_0^2+3)x-2y=at_0^3$.
- 2.d Préciser la branche infinie de Γ obtenue pour $t \to +\infty$.
- 3. Représenter sur une même figure : la droite D, le cercle C et la courbe étudiée ci-dessus.
- 4. Vérifier que $x(x^2 + y^2) = ay^2$ est une équation cartésienne de la courbe Γ .

Partie II : Etude de la strophoïde droite

On désigne par D la droite d'équation x = 2a et par C le cercle de centre $\Omega(-2a,0)$ et de rayon 2a.

Pour tout réel $\,\theta$, on désignera par :

- D_{θ} la droite passant par O et faisant un angle θ avec l'axe des abscisses,
- $H(\theta)$ le point d'intersection, lorsqu'il existe, de D_{θ} et D,
- $M(\theta)$ le point d'intersection de la droite D_{θ} et du cercle C avec la convention que lorsqu'il y a deux points d'intersection, $M(\theta)$ désigne le point d'intersection distinct de O,
- $I(\theta)$ le milieu du segment d'extrémités $H(\theta)$ et $M(\theta)$.
- 1.a Donner une équation polaire de la droite D et du cercle C.
- 1.b Déterminer des coordonnées polaires des points $M(\theta)$ et $H(\theta)$.

 En déduire que lorsque θ varie, $I(\theta)$ décrit la courbe d'équation polaire $r(\theta) = -a \frac{\cos 2\theta}{\cos \theta}$.
- 2. Dans cette question, on étudier la courbe Γ' formé par les $I(\theta)$ quand θ varie.
- 2.a Simplifier $r(\theta+2\pi)$, $r(\theta+\pi)$ et $r(-\theta)$.

 Interpréter géométriquement ces résultats et indiquer sur quelle intervalle de $\mathbb R$ il suffit d'étudier la courbe.
- 2.b Dresser le tableau de variation de r sur l'intervalle en question. Préciser l'allure de la courbe autour du point de paramètre $\theta=\pi/4$.
- 2.c Préciser la branche infinie de la courbe obtenue quand $\theta \to \frac{\pi}{2}^-$.
- 3. Représenter sur une même figure : la droite D, le cercle C et la courbe étudiée ci-dessus.

4.	Donner une équation cartésienne de la courbe Γ' .