olfactory information flow

Modular structure of human olfactory receptor codes reflects the bases of odor perception

> J Biol Chem. 2021 Jan-Jun:296:100475. doi: 10.1016/j.jbc.2021.100475. Epub 2021 Feb 26.

Ectopically expressed olfactory receptors OR51E1 and OR51E2 suppress proliferation and promote cell death in a prostate cancer cell line

Alexey Pronin ¹, Vladlen Slepak ²

Affiliations + expand

PMID: 33640452 PMCID: PMC8024707 DOI: 10.1016/j.jbc.2021.100475

Abstract

Olfactory receptors (ORs), the largest family of G protein-coupled receptors, are expressed in the nasal epithelium where they mediate the sense of smell. However, ORs are also found in other nonnasal tissues, but the role of these ectopic ORs in cell signaling, proliferation, and survival is not well understood. Here, using an inducible expression system in the lymph node carcinoma of the prostate (LNCaP) cell line, we investigated two ectopic ORs, OR51E1 and OR51E2, which have been shown to be upregulated in prostate cancer. We found that, consistent with previous studies, OR51E1 stimulated adenylyl cyclase in response to treatment by short-chain to medium-chain organic acids (C3-C9) but not by acetate. OR51E2 responded to acetate and propionate but not to the longer chain organic acids. Stimulation of LNCaP cells with butyrate inhibited their growth, and the knockdown of the endogenous OR51E1 negated this cytostatic effect. Most significantly, overexpression of OR51E1 or OR51E2 suppressed LNCaP cell proliferation. Overexpression of another ectopic OR OR2AT4, \(\beta 2\)-adrenergic receptor, or treatment of cells with forskolin did not suppress cell proliferation, indicating that a rise in cAMP is not sufficient to induce cytostasis. Overexpression of OR51E1 caused an upregulation of cytostatic and cell death markers including p27, p21, and p53, strongly increased annexin V staining, and stimulated extracellular signalregulated protein kinases 1 and 2. Overexpression and/or activation of OR51E1 did not affect human embryonic kidney 293 cell proliferation, indicating that cytotoxicity of OR51E1/OR51E2 is specific for LNCaP cells. Together, our results further our understanding of prostate cancer etiology and suggest that ectopic ORs may be useful therapeutic targets.

Keywords: G protein; G protein–coupled receptor; OR51E1; OR51E2; cAMP; cell death; olfactory; proliferation.

- In hepatocarcinoma cells, activation of OR1A2 by citronellal leads to calcium signals and a reduction in cell proliferation
- In non-small-cell lung cancer, OR2J3
 expression increases upon helional application,
 and furthermore, the activation induces apoptosis
 and inhibits cell proliferation
- **OR51E2** shows a high, tumor-specific expression in **prostate cancer cells** in comparison to healthy prostate tissues (13, 14). Furthermore, activating the OR by its ligand β-ionone leads to the inhibition of cell proliferation

Weber L, Maßberg D, Becker C, Altmüller J, Ubrig B, Bonatz G, Wölk G, Philippou S, Tannapfel A, Hatt H and Gisselmann G (2018) Olfactory Receptors as Biomarkers in Human Breast Carcinoma Tissues. *Front. Oncol.* 8:33. doi: 10.3389/fonc.2018.00033

Human ectopic olfactory receptors and their food originated ligands: a review

Rifat Nowshin Raka^{a,b,c,d,e}, Hua Wu^{a,b,f}, Junsong Xiao^{a,b,c,d,e} , Imam Hossen^{a,b,c,d,e}, Yanping Cao^{a,c}, Mingquan Huang^{a,b}, and Jianming Jin^{a,f}

Table 1. EORs expressed in human body.

Tissue	Cell Source	EORs	Gene	Ligands	Detection Techniques	Ref.
Tongue	Taste cells from Human fungiform papilla cells (HBO cells)	OR2W1 OR5A1 OR5P3 OR51E1	OR2W1/ hs6M1-15 OR5A1/ OR5A1P/ OST181/OR11-249 OR5P3/ JCG1 OR51E1/POGR/ DGPCR/ PSGR2/ DGPCR/GPR136/ GPR164/ OR51E1P/ OR52A3P	Heptanal, Eugenol, Acetophenone,Lyral, Coumarin, Hexanoic Acid	lmmunocytochemistry, qRT-PCR, Single-cell calcium imaging, siRNA transfection	Malik et al. 2019
Fetal Tongue	Lingual epithelial cells from the tongue surface of a Caucasian adolescent patient	JCG6 TPCR85 JCG2 JCG9	OR10A5/OR10A1/ OR11-403 OR8B8 OR8D2 OR8D1/ OR8D3/ OST004/PDJ9J14	-	RT-PCR	Durzyński et al. 2005
Adult tongue		HTPCR06	OR2K2/HSHTPCRH06/ OR2AN1P/ OR2AR1P/ HTPCRH06			
		HGMP07I	OR1E1/OR1E5/ OR1E6/OR17-2/ OR1E8P/OR1E9P/ OST547/OR13-66/ OR17-32			
		JCG3 JCG5	OR5P2/JCG4 OR10A4/OR10A4P			
Brain	Traumatic Brain Injury Patient's brain	OR4M1	OR4M1/ OR14-7	Acetophenone	cAMP assay, WB	Zhao et al. 2013
Skin	Primary human keratinocyte	OR10G7	OR10G7/OR11-283	Acetophenone	RT-PCR,si-RNA, Transfection, Immunostainning	Tham et al. 2019
Blood	Peripheral blood mononuclear cells (PBMC)	OR11H1	OR11H1/OR22- 1/OR11H12	-	Microarray, qRT-PCR	Zhao et al. 2013
Heart	Aorta, coronary artery, umbilical vein endothelial cells (HUVEC cell line)	OR10J5	OR10J5/OR1-28	Lyral	Matrigel plug assay, Calcium assay, siRNA, WB	Kim et al. 2015

Data

- Protein receptor x Small molecule data from M2OR (~3k positives)
- Small molecule x Odor text labels from Kaggle (~500 positives)

ML setup

Protein: <u>ESM-2</u> (148M)

Text: BiomedBERT (109M)

SM: MolFormer-XL (45M)

trained via trimodal CLIP-loss

(inspired by ProTrek)

Training

Loss going down, sort of

	Odor Description	DiffDock Binding Score
H ₃ C CH ₃ Butyl butyryl lactate	creamy, buttery, buttermilk dairy cheese	-1.09
CH ₃ CH ₃ Isovaleric acid	sour, sweaty, cheesy, tropical	-0.492
H ₃ C OH Nonanoic acid	waxy, dirty, cheese, cultured, dairy	-0.658
H ₃ C OH CH ₃ O 3-methylpentenoic acid	animal, sharp, acidic, cheesy, green, fruity, sweaty	-1.226
2-cyclopropylacetic acid	????	-0.21
Cyclopropanecarboxylic acid	????	0.312

Future Applications?

Flavor and Fragrance molecule design

Design of drugs for ectopic olfactory receptor targets

Flavor/Fragrance Digitization and 'Compression': a 'flavor printer' to go with your 3D food printer

Personalized molecular cocktail of flavor ligands based on genetic screening of e.g. tumor cells

Rico Meinl <u>rico@retro.bio</u>

Sean Raspet <u>seanraspet@gmail.com</u>