

INTRODUCTION AUX SYSTÈMES DISTRIBUÉS

AGENDA – COURS 3 – KUBERNETES

Déploiement

Pods et services

2

Allocation de ressources

3

Mise à l'échelle

Adapter la taille de la flotte de services

4

Regéneration

Pratique de l'auto guérison des services

KUBERNETES

- Une plateforme Open Source
- Facilite le déploiement de clusters de serveurs
- Les clusters hébergent des flottes de conteneurs
 - Deployés sur des serveurs
- Conçu par Google

- **etcd**: stockage de configuration
- Scheduler: déploie un pods sur une node en fonction des ressources demandées et disponibles
- Node : une machine physique qui roule des conteneurs
- Kubelet: Gère le cycle de vie d'un pod
- Cluster DNS : Service discovery

KEBERNETES POD

- Consiste en un ou plusieurs conteneurs co-localisées sur une machine
- Possède une adresse IP unique
- Peut définir des volumes

KUBERNETES SERVICE

- Un groupe de PODS travaillant ensemble
- Un service est requis pour exposer les pods au traffic extérieur
 - Ex: votre ordinaleur local ou l'internet public pour la production
- Inclus du Service discovery
- Inclus un Load balancer (round-robin) automatique pour distribuer le trafic sur les pods

4 TYPES D'EXPOSITION D'UN SERVICE

ClusterIP : Mode par défault. IP interne au Cluster

Non accessible hors du cluster

NodePort: Port disponible sur chaque Nodes

LoadBalancer: IP externe associé à un load balancer

ExternalName: Créer un nom de domaine qui permet l'accès au service

kubectl apply -f .
kubectl expose dep

kubectl expose deployment nginx-deployment --type=NodePort

Hello world kubernetes

DEAMONSET

- Permet de bypasser le scheduler et de deployer un pod sur toutes les nodes physiques d'un cluster
 - Utilisé pour l'aggrégation de logs
 - Parfois utilisé pour les déploiement de base de donnée qui ont besoin d'un stockage persistent
 - Utilise la notion de label et d'affinité pour y arriver

Capture de packets distribuée

PROGRESSION

Deploiements

Mise à l'échelle

Allocation de ressources

Auto-guérison

MISE À L'ÉCHELLE HORIZONTALE

Une fois un deployment lancé, il est possible de changer sa taille

kubectl scale --replicas=3 deployment/\$NAME

Confirmer que le load balancing fonctione via les logs nginx.

PROGRESSION

Deploiements

Mise à l'échelle

Allocation de ressources

Auto-guérison

MISE À L'ÉCHELLE VERTICALE

- Kubernetes utilise les limits pour restreindre les ressource d'un conteneur
 - Mémoire
 - CPU
- Requests servent aussi au scheduler pour choisir la node qui possède assez de ressources pour héberger les conteneurs d'un pod
- Requests détermine les ressources alouées à un conteneurs, mais les conteneurs peuvent prendre plus tant qu'ils ne dépassent pas les limits

```
requests:

memory: "64Mi"

cpu: "250m"
```

```
limits:
    memory: "128Mi"
    cpu: "500m"
```

```
requests:
    memory: "64Mi"
    cpu: "250m"
spec:
  containers:
  - name: app
    image: images.example/app:uqar
    resources:
      requests:
        memory: "64Mi"
        cpu: "250m"
      limits:
        memory: "128Mi"
        cpu: "500m"
```

MISE À L'ÉCHELLE VERTICALE

- Les unités pour le CPU sont en fraction de CPU
 - 2 = 2 CPU
 - 0.5 = un demi CPU
 - 500m = un demi CPU
- Les unités pour la mémoire sont en bytes
 - Ex: 128Mi

MISE À L'ÉCHELLE VERTICALE

- Les limits sur le CPU et la Mémoire sont les plus fréquemment utilisées
- Mais il en existe d'autres
 - ephemeral-storage: "2Gi"

Doubler la mémoire associée à un conteneur.

OOM kill: Lancer MySQL avec 128M de ram

PROGRESSION

Deploiements

Mise à l'échelle

Allocation de ressources

Auto-guérison

KUBERNETES SERVICE ET LABEL

- Permet de ne pas se soucier de la santé d'un pod ou de la node qui l'héberge
 - Si une node physique meurt, tous les pods sur cette node meurt aussi
 - Mais le service va recéduler automatiquement les pods configurés pour un service sur d'autres nodes disponibles
- Le Service Discovery dans un service kubernetes utilise les labels
 - Rends possible la découverte des pods même lorsqu'ils changent d'adresses IP

labels:
 app: nginx

selector:
 matchLabels:
 app: nginx

Ajouter un label a un pod

kubectl label pod \$POD_NAME university=uqar


```
kind: PersistentVolumeClaim
metadata:
   name: mysql-pv-claim
   labels:
      app: mysql
spec:
   accessModes:
      - ReadWriteOnce
   resources:
      requests:
      storage: 2Gi
```

VOLUME KUBENETES

- Un peu comme docker, kubernetes assigne un disque éphèmere au pods
- Mais il est possible de demander un disque persistant

Convertir le service rest en kubernetes

LES SECRETS KUBERNETES

- Permet de rendre disponible au conteneur des informations sensibles (ex: password) sans les rendre visibles dans les fichiers de configuration
- kubectl create secret generic mysql-db-secret -from-literal=password='test123'

env:

- name: DB_PASSWORD

valueFrom:

secretKeyRef:

name: mysql-pass

key: password

Retirer le mot de pass dans le service rest en kubernetes

AUTO GUÉRISON

- Kubelet est en charge des vérifier l'état de santé des pods sur une node
- Kubelet va régénérer un pod perdu pour conserver l'état désiré dans la configuration

Tuer une des replicas de votre pods et observer la guérison

DEVOIR

LIRE SUR LES SYSTEMS DE GESTION DE QUEUE

SE FAMILIARISER AVEC KAFKA