实分析第二周作业

涂嘉乐 PB23151786

2025年3月6日

T1.

证明

(1).
$$J_*(E) \leq J_*(\overline{E})$$
: 对 $\overline{E} \subseteq \mathbb{R}$, 对 $\forall \{I_j\}_{j=1}^N$, 若 $\overline{E} \subseteq \bigcup\limits_{j=1}^N I_j$, 则

$$E \subseteq \overline{E} \subseteq \bigcup_{j=1}^{N} I_j$$

这对 \overline{E} 任意的一个有限区间覆盖都成立,因此 $J_*(E) \leq J_*(\overline{E})$

 $J_*(\overline{E}) \leq J_*(E)$: 首先注意到 \forall 区间 $I, |I| = |\overline{I}|$,设 $E \subseteq \bigcup_{j=1}^N I_j$,接下来我们证明 $\overline{E} \subseteq \bigcup_{j=1}^N \overline{I_j}$: 首先我们有 $E \subseteq \bigcup_{j=1}^N I_j \subseteq \bigcup_{j=1}^N \overline{I_j}$,因此只需证明 $\forall x \in \overline{E} \setminus E, x \in \bigcup_{j=1}^N \overline{I_j}$,由 $x \in \overline{E} \setminus E$ 知,x 为 E 的聚点,则 $\exists \{x_n\} \subset E$,s.t. $x_n \to x$,因为

$$\{x_n\} \subset E \subseteq \bigcup_{j=1}^N \overline{I_j}$$

而 $\bigcup_{j=1}^{N} \overline{I_j}$ 是闭集,且 x 是它的聚点,故 $x \in \bigcup_{j=1}^{N} \overline{I_j}$,故得证,所以我们有

$$E \subseteq \bigcup_{j=1}^{N} I_j \Rightarrow \overline{E} \subseteq \bigcup_{j=1}^{N} \overline{I_j}$$

所以 $J_*(\overline{E}) \leq \sum\limits_{j=1}^N |\overline{I_j}| = \sum\limits_{j=1}^N |I_j|$,这里 $\{I_j\}_{j=1}^N$ 是任意一个 E 的有限区间覆盖,取下极限即得 $J_*(\overline{E}) \leq J_*(E)$ 综上, $J_*(\overline{E}) = J_*(E)$, $\forall E \subseteq \mathbb{R}$ (2). $E = \mathbb{Q} \cap [0,1]$

T2.

证明

(1). $m_*^{\mathcal{R}}(E) \leq m_*(E)$: 对 $\forall E \subseteq \mathbb{R}^d$,因为方体覆盖也是矩体覆盖,故这是显然的 $m_*(E) \leq m_*^{\mathcal{R}}(E)$: Claim: \forall 闭矩体 $R, \forall \varepsilon > 0, \exists R$ 的一个方体覆盖 $\{Q_j\}_{j=1}^{\infty}, \mathrm{s.t.}$ $\sum_{j=1}^{\infty} |Q_j| \leq |R| + \varepsilon$ Proof of Claim: 考虑 k 阶二进方体全体构成的集合 Γ_k ,我们考虑集合 $\mathcal{F}_k = \{Q \in \Gamma_k : Q \cap R \neq \varnothing\}$,并且定义

$$\mathcal{F}_k^{(1)} = \{ Q \in \mathcal{F}_k : Q \cap \partial R = \varnothing \}, \quad \mathcal{F}_k^{(2)} = \{ Q \in \mathcal{F}_k : Q \cap \partial R \neq \varnothing \}$$

因此 $R\subseteq\bigcup_{Q\in\mathcal{F}_k}Q$,记 $\mathrm{Area}(\mathbf{R})$ 为矩体 R 的表面积,则我们有估计

$$\#\mathcal{F}_k^{(2)} \le \frac{2 \cdot \text{Area}(R) \cdot 2^{-k}}{2^{-nk}} = 2\text{Area}(R) \cdot 2^{(n-1)k}$$

因此

$$\sum_{Q \in \mathcal{F}_{*}^{(2)}} |Q| \leq 2^{-nk} \cdot 2\operatorname{Area}(R) \cdot 2^{(n-1)k} = \frac{\operatorname{Area}(R)}{2^{k-1}}$$

另一方面,由 $\mathcal{F}_k^{(1)}$ 的定义, $\bigcup_{Q\in\mathcal{F}_{\mathtt{L}}^{(1)}}Q\subset R$,因此

$$\sum_{Q \in \mathcal{F}_k^{(1)}} |Q| \leq |R|$$

因为 $\mathcal{F}_k^{(1)} \sqcup \mathcal{F}_k^{(2)} = \mathcal{F}_k$, 所以

$$\sum_{Q \in \mathcal{F}_k} |Q| = \sum_{Q \in \mathcal{F}_k^{(1)}} |Q| + \sum_{Q \in \mathcal{F}_k^{(2)}} |Q| \le |R| + \frac{\text{Area}(R)}{2^{k-1}}$$

取 $k \in \mathbb{N}^*, \text{s.t. } 2^{k-1} \geq \frac{\mathbb{A} \setminus \mathcal{Q}(R)}{\varepsilon}$,这样断言就得证了 回到本题,对 $\forall E$ 的一个矩体覆盖 $\{R_j\}_{j=1}^{\infty}$,对 $\forall j \in \mathbb{N}^*, \forall \varepsilon > 0, \exists R_j$ 的一个方体覆盖 $\{Q_{jl}\}_{l=1}^{\infty}, \text{s.t.}$

$$\sum_{l=1}^{\infty} |Q_{jl}| \le |R_j| + \frac{\varepsilon}{2^j}$$

则 $\{Q_{jl}\}_{j,l=1}^\infty$ 是 E 的一个可数(因为可数个可数集合的并是可数集)方体覆盖,且

$$\begin{split} \sum_{j,l=1}^{\infty} |Q_{jl}| &= \sum_{j=1}^{\infty} \sum_{l=1}^{\infty} |Q_{jl}| \le \sum_{j=1}^{\infty} \left(|R_j| + \frac{\varepsilon}{2^j} \right) \\ &= \sum_{j=1}^{\infty} \left(\sum_{l=1}^{\infty} |Q_{jl}| + \sum_{j=1}^{\infty} \frac{\varepsilon}{2^j} \right) \\ &= \sum_{j=1}^{\infty} |R_j| + \varepsilon \end{split}$$

因此任意一个 E 的矩体覆盖 $\{R_j\}_{j=1}^{\infty}, \forall \varepsilon > 0$,都能找到 E 的一个方体覆盖 $\{Q_k\}_{k=1}^{\infty}$,使得 $\sum\limits_{k=1}^{\infty}|Q_k| \leq \sum\limits_{i=1}^{\infty}|R_j| + \varepsilon$, 因为

$$m_*^{\mathcal{R}}(E) = \inf \left\{ \sum_{j=1}^{\infty} |R_j| : \{R_j\}_{j=1}^{\infty} \\ \\ \exists E$$
的一个闭矩体覆盖 \int \left\}

所以,对 $\forall \varepsilon > 0, \exists E$ 的一个闭矩体覆盖 $\{R_j\}_{j=1}^{\infty}, \text{s.t.}$

$$\sum_{j=1}^{\infty} |R_j| \le m_*^{\mathcal{R}}(E) + \frac{\varepsilon}{2}$$

此外我们又能找到一个 E 的方体覆盖 $\{Q_k\}_{k=1}^{\infty}$, s.t.

$$\sum_{k=1}^{\infty} |Q_k| \le \sum_{j=1}^{\infty} |R_j| + \frac{\varepsilon}{2}$$

所以我们有

$$m_*(E) \le \sum_{k=1}^{\infty} |Q_k| \le m_*^{\mathcal{R}}(E) + \varepsilon$$

 $\varepsilon \to 0^+$,故 $m_*(E) \le m_*^{\mathcal{R}}(E)$

综上我们有 $m_*^{\mathcal{R}}(E) = m_*(E)$

(2). 因为 R 是它自身的一个闭矩体覆盖, 所以

$$m_*(R) = m_*^{\mathcal{R}}(R) \le |R|$$

T3.

证明

Case 1. E 为闭矩体,不妨设 $E = [a_1, b_1] \times \cdots \times [a_d, b_d]$,由 T2 知

$$m_*(E) = |E| = \prod_{i=1}^d |b_i - a_i|$$

对 $\forall \lambda = (\lambda_1, \dots, \lambda_d) \in \mathbb{R}^d \setminus \{0\}$, 显然 λE 为矩体, 且第 i 条边长从 $|b_i - a_i|$ 变为 $|\lambda_i b_i - \lambda_i a_i| = |\lambda_i| \cdot |b_i - a_i|$, 所以

$$m_*(\lambda E) = |\lambda E| = \prod_{i=1}^d |\lambda_i| \cdot |b_i - a_i| = |\lambda_1 \cdots \lambda_d| m_*(E)$$

Case 2. E 为一般集合,则对 $\forall \varepsilon > 0$,存在 E 的矩体覆盖 $\{R_i\}_{i=1}^{\infty}$, s.t.

$$\sum_{j=1}^{\infty} |R_j| \le m_*^{\mathcal{R}}(E) + \frac{\varepsilon}{|\lambda_1 \cdots \lambda_d|}$$

Claim: $\{\lambda R_j\}_{j=1}^{\infty}$ 为 λE 的一个矩体覆盖: 设 $\boldsymbol{x}=(x_1,\cdots,x_d)\in E\subseteq \bigcup\limits_{j=1}^{\infty}R_j$, 则 $\exists R_i, \text{s.t. }\boldsymbol{x}\in R_i$, 不妨设 $R_i=[m_1,n_1]\times\cdots\times[m_d,n_d]$,则 $\forall i\in\{1,\cdots,d\},x_i\in[m_i,n_i]\Rightarrow\lambda_i>0$ 时 $\lambda_ix_i\in[\lambda_im_i,\lambda_in_i]$; $\lambda<0$ 时, $\lambda_ix_i\in[\lambda_in_i,\lambda_im_i]$,因此 $\lambda\boldsymbol{x}\in\boldsymbol{\lambda}R_i$,断言得证

所以

$$m_*^{\mathcal{R}}(\lambda E) \leq \sum_{j=1}^{\infty} |\lambda R_j| \stackrel{\text{Step1}}{=} |\lambda_1 \cdots \lambda_d| \sum_{j=1}^{\infty} |R_j|$$
$$\leq |\lambda_1 \cdots \lambda_d| \left(m_*^{\mathcal{R}}(E) + \frac{\varepsilon}{|\lambda_1 \cdots \lambda_d|} \right)$$
$$= |\lambda_1 \cdots \lambda_d| m_*^{\mathcal{R}}(E) + \varepsilon$$

令 $\varepsilon \to 0^+$,则说明 $m_*^{\mathcal{R}}(\lambda E) \leq |\lambda_1 \cdots \lambda_d| m_*^{\mathcal{R}}(E)$ 另一方面,令 $\pmb{\lambda}^{-1} = \left(\frac{1}{\lambda_1}, \cdots, \frac{1}{\lambda_d}\right)$,则 $\pmb{\lambda}^{-1}(\pmb{\lambda} E) = E$,因此我们有

$$m_*^{\mathcal{R}}(E) \le \frac{1}{|\lambda_1 \cdots \lambda_d|} m_*^{\mathcal{R}}(\lambda E)$$

所以

$$m_*^{\mathcal{R}}(\lambda E) \le |\lambda_1 \cdots \lambda_d| m_*^{\mathcal{R}}(E) \le m_*^{\mathcal{R}}(\lambda E)$$

这就证明了 $m_*^{\mathcal{R}}(\lambda E) = |\lambda_1 \cdots \lambda_d| m_*^{\mathcal{R}}(E)$, 再由 T2, 故 $m_*(\lambda E) = m_*(E)$