Math101

Benjamin Støttrup benjamin@math.aau.dk

> Institut for matematiske fag Aalborg universitet Danmark

Agenda

Differentialregning

Regneregler for kendte funktioner

Generelle regneregler

- ▶ Differentialregning omhandler bestemmelse af hældninger af funktioner.
- ▶ Vi definerer en funktions hældning vha. sekanter.

- ▶ Differentialregning omhandler bestemmelse af hældninger af funktioner.
- ► Vi definerer en funktions hældning vha. sekanter.

- ▶ Differentialregning omhandler bestemmelse af hældninger af funktioner.
- ► Vi definerer en funktions hældning vha. sekanter.

- ▶ Differentialregning omhandler bestemmelse af hældninger af funktioner.
- ► Vi definerer en funktions hældning vha. sekanter.

- ▶ Differentialregning omhandler bestemmelse af hældninger af funktioner.
- ► Vi definerer en funktions hældning vha. sekanter.

- ▶ Differentialregning omhandler bestemmelse af hældninger af funktioner.
- ► Vi definerer en funktions hældning vha. sekanter.

- ▶ Differentialregning omhandler bestemmelse af hældninger af funktioner.
- ► Vi definerer en funktions hældning vha. sekanter.

► En funktion f er differentiabel i x_0 hvis grænsen

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

eksisterer.

- ightharpoonup Bemærk at f'(x) betegner hældningen af f i x
- ▶ Vi anvender ofte notationen

$$f'(x) = \frac{d}{dx}f(x) = \frac{df}{dx}(x).$$

▶ En funktion f er differentiabel i x_0 hvis grænsen

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

eksisterer.

- ▶ Bemærk at f'(x) betegner hældningen af f i x.
- ▶ Vi anvender ofte notationen

$$f'(x) = \frac{d}{dx}f(x) = \frac{df}{dx}(x)$$

▶ En funktion f er differentiabel i x_0 hvis grænsen

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

eksisterer.

- ▶ Bemærk at f'(x) betegner hældningen af f i x.
- ▶ Vi anvender ofte notationen

$$f'(x) = \frac{d}{dx}f(x) = \frac{df}{dx}(x).$$

► Vi har følgende regneregler:

f(x)	f'(x)
С	0
Χ	1
x ⁿ	nx ⁿ⁻¹
e ^x	e ^x
e ^{cx}	ce ^{cx}

$$f(x) = \sqrt{x}$$

$$g(x) = \frac{1}{x}$$

$$f(x) \qquad f'(x)$$

$$a^{x} \qquad a^{x} \ln a$$

$$\ln x \qquad \frac{1}{x}$$

$$\cos x \qquad -\sin x$$

$$\sin x \qquad \cos x$$

$$\tan x \qquad 1 + \tan^{2}(x)$$

$$h(x) = \ln(x^3)$$

► Vi har følgende regneregler:

f(x)	f'(x)
С	0
Χ	1
e ^x	e ^x
e ^{cx}	cecx

► Eksempler: Differentier funktionerne

$$f(x) = \sqrt{x}$$

$$g(x) = \frac{1}{2}$$

$$\begin{array}{ccc}
\ln X & \frac{1}{x} \\
\cos X & -\sin X \\
\sin X & \cos X \\
\tan X & 1 + \tan^2(X)
\end{array}$$

f'(x)

f(x)

► Vi har følgende regneregler:

f(X)	f'(x)
9	0
Υ	1
(ⁿ	nx ⁿ⁻¹
9 ^X	e ^x
e ^{cx}	ce ^{cx}

$$f(x) = \sqrt{x}$$

$$g(x) = \frac{1}{x}$$

$$h(x) = \ln(x^3)$$

$$f(x) \qquad f'(x)$$

$$a^{x} \qquad a^{x} \ln a$$

$$\ln x \qquad \frac{1}{x}$$

$$\cos x \qquad -\sin x$$

$$\sin x \qquad \cos x$$

$$\tan x \qquad 1 + \tan^{2}(x)$$

► Vi har følgende regneregler:

f(x)	f'(x)
9	0
X	1
x ⁿ	nx ⁿ⁻¹
e ^x	e ^x
ecx	ce ^{cx}

$$f(x) = \sqrt{x}$$

$$g(x) = \frac{1}{x}$$

$$h(x) = \ln(x^3)$$

$$f(x) \qquad f'(x)$$

$$a^{x} \qquad a^{x} \ln a$$

$$\ln x \qquad \frac{1}{x}$$

$$\cos x \qquad -\sin x$$

$$\sin x \qquad \cos x$$

$$\tan x \qquad 1 + \tan^{2}(x)$$

► Vi har følgende regneregler:

f(X)	f'(x)
9	0
Υ	1
κ ⁿ	nx ⁿ⁻¹
9 ^x	e ^x
e ^{cx}	ce ^{cx}

$$f(x) = \sqrt{x}$$

$$g(x) = \frac{1}{x}$$

$$h(x) = \ln(x^3)$$

$$f(x) \qquad f'(x)$$

$$a^{x} \qquad a^{x} \ln a$$

$$\ln x \qquad \frac{1}{x}$$

$$\cos x \qquad -\sin x$$

$$\sin x \qquad \cos x$$

► Vi har følgende regneregler:

f(x)	f'(x)	
С	0	
X	1	
x ⁿ	nx^{n-1}	
e ^x	e ^x	
e^{cx}	cecx	

f(x)f'(x)

$$f(x) = \sqrt{x}$$

$$g(x) =$$

$$h(x) = \ln(x^3)$$

► Vi har følgende regneregler:

f(x)	f'(x)	
С	0	
X	1	
x ⁿ	nx^{n-1}	
e ^x	e^{x}	
e ^{cx}	cecx	

f(x)	f'(x)
a ^x	a ^x In a
ln X	$\frac{1}{x}$
cos X	— sin <i>X</i>
sin X	cos X
tan X	$1 + \tan^2(x)$

$$f(x) = \sqrt{x}$$

$$g(x) =$$

$$h(x) = \ln(x^3)$$

► Vi har følgende regneregler:

f(x)	f'(x)
С	0
X	1
x ⁿ	nx ⁿ⁻¹
e ^x	e ^x
e ^{cx}	cecx

f(x)f'(x) a^{x} $a^{x} \ln a$ ln X

$$f(x) = \sqrt{x}$$

$$g(x) =$$

$$h(x) = \ln(x^3)$$

► Vi har følgende regneregler:

f(x)	f'(x)	
С	0	
X	1	
x ⁿ	nx^{n-1}	
e ^x	e ^x	
e ^{cx}	cecx	

f(x)f'(x) a^{x} $a^{x} \ln a$ ln x cos X $-\sin x$

$$f(x) = \sqrt{x}$$

$$g(x) =$$

$$h(x) = \ln(x^3)$$

► Vi har følgende regneregler:

f(x)	f'(x)
С	0
Χ	1
x ⁿ	nx^{n-1}
e ^x	e^{x}
e^{cx}	cecx

f(x)	f'(x)
a ^x	a ^x In a
ln X	$\frac{1}{x}$
cos X	— sin <i>X</i>
sin X	cos X
tan X	$1 + \tan^2(x)$

$$f(x) = \sqrt{x}$$

$$g(x)$$
:

$$h(x) = \ln(x^3)$$

► Vi har følgende regneregler:

f(x)	f'(x)
С	0
X	1
x ⁿ	nx ⁿ⁻¹
e ^x	e ^x
e ^{cx}	ce ^{cx}

f(x)f'(x) a^{x} $a^{x} \ln a$ ln x cos X $-\sin x$ sin X $\cos X$ $1 + \tan^2(x)$ tan X

$$f(x) = \sqrt{x}$$

$$g(x) = -$$

$$h(x) = \ln(x^3)$$

► Vi har følgende regneregler:

f(x)	f'(x)
С	0
X	1
x ⁿ	nx^{n-1}
e ^x	e ^x
e ^{cx}	cecx

► Eksempler: Differentier funktionerne

$$f(x) = \sqrt{x}$$
 , $g(x) =$

$$(x) = \frac{1}{x}$$
 ,

$$a^{x} \qquad a^{x} \ln a$$

$$\ln x \qquad \frac{1}{x}$$

$$\cos x \qquad -\sin x$$

$$\sin x \qquad \cos x$$

$$\tan x \qquad 1 + \tan^{2}(x)$$

f'(x)

f(x)

$$h(x) = \ln(x^3)$$

► Vi har følgende regneregler:

f(x)	f'(x)
С	0
X	1
x ⁿ	nx ⁿ⁻¹
e^{x}	e^{x}
e ^{cx}	cecx

$$f(x) = \sqrt{x} = x^{\frac{1}{2}}, \qquad g(x)$$

$$y(x) = \frac{1}{-}$$

f(x)	f'(x)
a ^x	a ^x In a
In <i>X</i>	$\frac{1}{x}$
cos X	— sin <i>X</i>
sin X	cos X
tan <i>X</i>	$1 + \tan^2(x)$

$$h(x) = \ln(x^3)$$

► Vi har følgende regneregler:

f(x)	f'(x)
С	0
X	1
x ⁿ	nx ⁿ⁻¹
e ^x	e ^x
e ^{cx}	cecx

$$f(x) = \sqrt{x} = x^{\frac{1}{2}},$$
 $g(x) = \frac{1}{x}$

$$g(x) = \frac{1}{x}$$

$$\frac{f(x)}{a^{x}} \qquad \frac{f'(x)}{a^{x} \ln a}$$

$$\frac{\ln x}{\cos x} \qquad \frac{1}{x}$$

$$\frac{1}{x}$$

$$\frac{\sin x}{\cos x} \qquad \frac{\cos x}{\tan x}$$

$$\frac{1}{x} + \tan^{2}(x)$$

$$h(x) = \ln(x^3)$$

► Vi har følgende regneregler:

f(x)	f'(x)
С	0
X	1
x ⁿ	nx^{n-1}
e^{x}	e ^x
e ^{cx}	cecx

f(x)f'(x) a^{x} $a^{x} \ln a$ ln X cos X $-\sin x$ sin X $\cos X$ $1 + \tan^2(x)$ tan X

$$f(x) = \sqrt{x} = x^{\frac{1}{2}},$$
 $g(x) = \frac{1}{x} = x^{-1},$ $h(x) = \ln(x^3)$

$$g(x) = \frac{1}{-} = x^{-1}$$

$$h(x) = \ln(x^3)$$

► Vi har følgende regneregler:

f(x)	f'(x)	f(x) $f'(x)$
С	0	a ^x a ^x In a
Х	1	$\ln X$ $\frac{1}{x}$
x ⁿ	nx ⁿ⁻¹	$\cos X - \sin X$
e ^x	e ^x	$\sin X \qquad \cos X$
e ^{cx}	cecx	$\tan x = 1 + \tan^2(x)$

$$f(x) = \sqrt{x} = x^{\frac{1}{2}},$$
 $g(x) = \frac{1}{x} = x^{-1},$ $h(x) = \ln(x^3)$

$$g(x) = \frac{1}{-} = x^{-1}$$

$$h(x) = \ln(x^3)$$

► Vi har følgende regneregler:

f(x)	f'(x)
С	0
X	1
x ⁿ	nx^{n-1}
e^{x}	e ^x
e ^{cx}	cecx

f(x)f'(x) a^{x} $a^{x} \ln a$ ln X cos X $-\sin x$ sin X $\cos X$ $1 + \tan^2(x)$ tan X

$$f(x) = \sqrt{x} = x^{\frac{1}{2}}.$$

$$q(x) = \frac{1}{-} = x^{-1}$$
.

$$f(x) = \sqrt{x} = x^{\frac{1}{2}},$$
 $g(x) = \frac{1}{x} = x^{-1},$ $h(x) = \ln(x^3) = 3\ln(x).$

$$(cf)'(x) = cf'(x)$$
$$(f \pm g)'(x) = f'(x) \pm g'(x)$$

$$f(x) = 2x + 1 - \frac{1}{x},$$
 $g(x) = 3x^{-2} - 2e^{-x} + \cos(x)$

► Vi har følgende generelle regneregler

$$(cf)'(x) = cf'(x)$$

 $(f \pm g)'(x) = f'(x) \pm g'(x).$

$$f(x) = 2x + 1 - \frac{1}{x},$$
 $g(x) = 3x^{-2} - 2e^{-x} + \cos(x)$

► Vi har følgende generelle regneregler

$$(cf)'(x) = cf'(x)$$
$$(f \pm g)'(x) = f'(x) \pm g'(x).$$

$$f(x) = 2x + 1 - \frac{1}{x},$$
 $g(x) = 3x^{-2} - 2e^{-x} + \cos(x)$

$$(cf)'(x) = cf'(x)$$

 $(f \pm g)'(x) = f'(x) \pm g'(x).$

$$f(x) = 2x + 1 - \frac{1}{x},$$

$$f'(x) = 2 + x^{-2},$$

$$g(x) = 3x^{-2} - 2e^{-x} + \cos(x)$$

$$(cf)'(x) = cf'(x)$$

 $(f \pm g)'(x) = f'(x) \pm g'(x).$

$$f(x) = 2x + 1 - \frac{1}{x},$$
 $g(x) = 3x^{-2} - 2e^{-x} + \cos(x)$
 $f'(x) = 2 + x^{-2},$

$$(cf)'(x) = cf'(x)$$

 $(f \pm g)'(x) = f'(x) \pm g'(x).$

$$f(x) = 2x + 1 - \frac{1}{x},$$
 $g(x) = 3x^{-2} - 2e^{-x} + \cos(x)$
 $f'(x) = 2 + x^{-2},$ $g'(x) = -6x^{-3} + 2e^{-x} - \sin(x)$

Opgaveregning!

