. . .

Iris flower has three species; setosa, versicolor, and virginica, which differs according to their measurements. Now assume that you have the measurements of the iris flowers according to their species, and here your task is to train a machine learning model that can learn from the measurements of the iris species and classify them

Although the Scikit-learn library provides a dataset for iris flower classification, you can also download the same dataset from here for the task of iris flower classification with Machine Learning.

Learnin

'\nIris flower has three species; setosa, versicolor, and virginica, which differs according to their\nmeasurements. Now assume that you have the measurements of the iris flowers according to\ntheir species, and here your task is to train a machine learning mode I that can learn from the\nmeasurements of the iris species and classify them\nAlthough the Scikit-learn library provides a dataset for iris flower classification, you can also\ndownload the same dataset from here for the task of iris flower classification with M achine\nlearning\n'

import pandas as pd
import numpy as np
import seaborn as sns

df=sns.load_dataset('iris')

df.head()

		sepal_length	sepal_width	petal_length	petal_width	species	
	0	5.1	3.5	1.4	0.2	setosa	ılı
	1	4.9	3.0	1.4	0.2	setosa	
	2	4.7	3.2	1.3	0.2	setosa	
	3	4.6	3.1	1.5	0.2	setosa	
	4	5.0	3.6	1.4	0.2	setosa	

Next steps: Generate code with df View recommended plots New interactive sheet

df['species'].unique()

→ array(['setosa', 'versicolor', 'virginica'], dtype=object)

df.isnull().sum()

dtype: int64

df.duplicated().sum()

→ np.int64(1)

df.shape

→ (150, 5)

df.drop_duplicates(inplace=True)

df.shape

→ (149, 5)

 ${\tt import\ matplotlib.pyplot\ as\ plt}$

for i in df.columns:
 if df[i].dtypes=='object':

continue
sns.histplot(data=df,x=i,kde=True)
plt.show()

df.columns

sns.histplot(data=df,x=np.log(df['petal_length']),kde=True)
plt.show()

/usr/local/lib/python3.11/dist-packages/pandas/core/arraylike.py:399: RuntimeWarning: divide by zero encountered in log result = getattr(ufunc, method)(*inputs, **kwargs)

np.mean(np.sqrt(df['sepal_length']))

→ np.float64(1.323831781280919)

np.mean(np.log(df['sepal_width']))

p.float64(1.1082055251621128)

df.head()

→		sepal_length	sepal_width	petal_length	petal_width	species	
	0	1.629241	3.5	0.336472	0.447214	setosa	ıl.
	1	1.589235	3.0	0.336472	0.447214	setosa	
	2	1.547563	3.2	0.262364	0.447214	setosa	
	3	1.526056	3.1	0.405465	0.447214	setosa	
	4	1.609438	3.6	0.336472	0.447214	setosa	

Next steps: (

Generate code with df

View recommended plots

New interactive sheet

df.shape

→ (149, 5)

Start coding or $\underline{\text{generate}}$ with AI.

df['species'].value_counts()

_		count
	species	
	setosa	50
	versicolor	50
	virginica	49

dtype: int64

MODEL BUILDING

X=df.drop('species',axis=1)

y=df['species']

from sklearn.preprocessing import LabelEncoder
lb=LabelEncoder()

```
df['species']=lb.fit_transform(df['species'])
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,Y_test=train_test_split(X,y,test_size=0.2,random_state=42)
from sklearn.model_selection import GridSearchCV
para={
    'C':[0.01,0.1,1],
    'solver':['liblinear','saga','newton-cg'],
    'penalty':['l1','l2']
from sklearn.linear model import LogisticRegression
lg=LogisticRegression(C=1,penalty='l1',solver='saga')
lg.fit(X_train,y_train)
/usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_sag.py:348: ConvergenceWarning: The max_iter was reached which means t
       warnings.warn(
                                                     (i) (?)
                     LogisticRegression
     LogisticRegression(C=1, penalty='l1', solver='saga')
\verb|gd=GridSearchCV| (estimator=lg,param\_grid=para,cv=5,scoring='accuracy')|
gd.fit(X_train,y_train)
```

```
🚁 /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_sag.py:348: ConvergenceWarning: The max_iter was reached which means
       warnings.warn(
     /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_sag.py:348: ConvergenceWarning: The max_iter was reached which means
       warnings.warn(
     /usr/local/lib/python3.11/dist-packages/sklearn/linear model/ sag.py:348: ConvergenceWarning: The max iter was reached which means
       warnings.warn(
     /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_sag.py:348: ConvergenceWarning: The max_iter was reached which means
       warnings.warn(
     /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_sag.py:348: ConvergenceWarning: The max_iter was reached which means
       warnings.warn(
     /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_sag.py:348: ConvergenceWarning: The max_iter was reached which means
       warnings.warn(
     /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_sag.py:348: ConvergenceWarning: The max_iter was reached which means
       warnings.warn(
     /usr/local/lib/python3.11/dist-packages/sklearn/linear model/ sag.py:348: ConvergenceWarning: The max iter was reached which means
       warnings.warn(
     /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_sag.py:348: ConvergenceWarning: The max_iter was reached which means
       warnings.warn(
     /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_sag.py:348: ConvergenceWarning: The max_iter was reached which means
       warnings.warn(
     /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_sag.py:348: ConvergenceWarning: The max_iter was reached which mean:
       warnings.warn(
     /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_sag.py:348: ConvergenceWarning: The max_iter was reached which means
       warnings.warn(
     /usr/local/lib/python3.11/dist-packages/sklearn/linear model/ sag.py:348: ConvergenceWarning: The max iter was reached which means
       warnings.warn(
     /usr/local/lib/python3.11/dist-packages/sklearn/linear model/ sag.py:348: ConvergenceWarning: The max iter was reached which means
       warnings.warn(
     /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_sag.py:348: ConvergenceWarning: The max_iter was reached which means
       warnings.warn(
     /usr/local/lib/python3.11/dist-packages/sklearn/model_selection/_validation.py:528: FitFailedWarning:
     15 fits failed out of a total of 90.
     The score on these train-test partitions for these parameters will be set to nan.
     If these failures are not expected, you can try to debug them by setting error_score='raise'.
     Below are more details about the failures:
     15 fits failed with the following error:
     Traceback (most recent call last):
       File "/usr/local/lib/python3.11/dist-packages/sklearn/model_selection/_validation.py", line 866, in _fit_and_score
         estimator.fit(X_train, y_train, **fit_params)
       File "/usr/local/lib/python3.11/dist-packages/sklearn/base.py", line 1389, in wrapper
         return fit_method(estimator, *args, **kwargs)
       File "/usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_logistic.py", line 1193, in fit
         solver = _check_solver(self.solver, self.penalty, self.dual)
       File "/usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_logistic.py", line 63, in _check_solver
         raise ValueError(
     ValueError: Solver newton-cg supports only '12' or None penalties, got 11 penalty.
       warnings.warn(some_fits_failed_message, FitFailedWarning)
     /usr/local/lib/python3.11/dist-packages/sklearn/model_selection/_search.py:1108: UserWarning: One or more of the test scores are r
                                   nan 0.68043478 0.86594203 0.86594203
      0.66376812 0.6807971
      0.89166667 0.95797101
                                   nan 0.925
                                                  0.91630435 0.9076087 ]
       warnings.warn(
     /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_sag.py:348: ConvergenceWarning: The max_iter was reached which means
       warnings.warn(
                   GridSearchCV
                                      (i) (?
                 best estimator :
               LogisticRegression
            ▶ LogisticRegression ?
gd.best score
```

```
np.float64(0.9579710144927537)
y_pred=lg.predict(X_test)
from sklearn.metrics import *
accuracy score(Y test,y pred)
→▼ 1.0
y prob=lg.predict proba(X test)
auc=roc_auc_score(Y_test,y_prob,multi class='ovr')
```

auc

→ np.float64(1.0)

confusion_matrix(Y_test,y_pred)

→ array([[10, 0, 0], [0, 9, 0], [0, 0, 11]])

print(classification_report(Y_test,y_pred))

	precision	recall	f1-score	support
setosa	1.00	1.00	1.00	10
versicolor	1.00	1.00	1.00	9
virginica	1.00	1.00	1.00	11
accuracy			1.00	30
macro avg	1.00	1.00	1.00	30
weighted avg	1.00	1.00	1.00	30

∨ UNEMPLOYMENT IN INDIA AT THE TIME OF CORONA

df1=pd.read_csv(r'/content/Unemployment in India.csv')

df1.head()

``		Region	Date	Frequency	Estimated Unemployment Rate (%)	Estimated Employed	Estimated Labour Participation Rate (%)	Area	
	0	Andhra Pradesh	31-05- 2019	Monthly	3.65	11999139.0	43.24	Rural	11.
	1	Andhra Pradesh	30-06- 2019	Monthly	3.05	11755881.0	42.05	Rural	
	2	Andhra Pradesh	31-07- 2019	Monthly	3.75	12086707.0	43.50	Rural	

Next steps: Generate code with df1

View recommended plots

New interactive sheet

EXPLORATORY DATA ANALYSIS

sns.barplot(data=df1, x='Region', y=' Estimated Unemployment Rate (%)') plt.xticks(rotation=90) plt.show()

df1.head()

}		Region	Date	Frequency	Estimated Unemployment Rate (%)	Estimated Employed	Estimated Labour Participation Rate (%)	Area	
	0	Andhra Pradesh	31-05- 2019	Monthly	3.65	11999139.0	43.24	Rural	il.
	1	Andhra Pradesh	30-06- 2019	Monthly	3.05	11755881.0	42.05	Rural	
	2	Andhra Pradesh	31-07- 2019	Monthly	3.75	12086707.0	43.50	Rural	
Next	steps:	Generate co	de with df1	● View r	recommended plots New inte	eractive sheet			

fig, ax = plt.subplots(figsize=(14, 6))
sns.lineplot(data=df1,x=' Date',y=' Estimated Unemployment Rate (%)',ci=None)
plt.show()

<ipython-input-111-ca29d06e5dbc>:2: FutureWarning:

The `ci` parameter is deprecated. Use `errorbar=None` for the same effect.

sns.lineplot(data=df1,x=' Date',y=' Estimated Unemployment Rate (%)',ci=None)

sns.lineplot(data=df1,x=' Date',y=' Estimated Employed',ci=None)
plt.show()

<ipython-input-112-10d3bc17e3bc>:1: FutureWarning:

The `ci` parameter is deprecated. Use `errorbar=None` for the same effect.

sns.lineplot(data=df1,x=' Date',y=' Estimated Employed',ci=None)

plt.show()
sns.lineplot(data=df1,x=' Date',y=' Estimated Labour Participation Rate (%)',ci=None)

→ <ipython-input-113-1227a9dac27d>:2: FutureWarning:

The `ci` parameter is deprecated. Use `errorbar=None` for the same effect.

 $sns.lineplot(data=df1,x='\ Date',y='\ Estimated\ Labour\ Participation\ Rate\ (\%)',ci=None) $$<Axes:\ xlabel='\ Date',\ ylabel='\ Estimated\ Labour\ Participation\ Rate\ (\%)'>$

df1[' Frequency'].unique()

⇒ array([' Monthly', nan, 'Monthly'], dtype=object)

df1.isnull().sum().sum()

→ np.int64(196)

df1.shape

→ (768, 7)

df.duplicated().sum()

→ np.int64(0)

df1.dropna(inplace=True)

df1

	Region	Date	Frequency	Estimated Unemployment Rate (%)	Estimated Employed	Estimated Labour Participation Rate (%)	Area
0	Andhra Pradesh	31-05- 2019	Monthly	3.65	11999139.0	43.24	Rural
1	Andhra Pradesh	30-06- 2019	Monthly	3.05	11755881.0	42.05	Rural
2	Andhra Pradesh	31-07- 2019	Monthly	3.75	12086707.0	43.50	Rural
3	Andhra Pradesh	31-08- 2019	Monthly	3.32	12285693.0	43.97	Rural
4	Andhra Pradesh	30-09- 2019	Monthly	5.17	12256762.0	44.68	Rural
749	West Bengal	29-02- 2020	Monthly	7.55	10871168.0	44.09	Urban
750	West Bengal	31-03- 2020	Monthly	6.67	10806105.0	43.34	Urban

THIS TO BE CONTINUED AFTER SOME DAYS THE ABOVE

_		Region	Date	Frequency	Estimated Unemployment Rate (%)	Estimated Employed	Estimated Labour Participation Rate (%)	Area	
	0	Andhra Pradesh	31-05- 2019	Monthly	3.65	11999139.0	43.24	Rural	Ш
	1	Andhra Pradesh	30-06- 2019	Monthly	3.05	11755881.0	42.05	Rural	
	2	Andhra Pradesh	31-07- 2019	Monthly	3.75	12086707.0	43.50	Rural	

Next steps: Generate code with df1 View recommended plots New interactive sheet

df1.columns

from sklearn.preprocessing import StandardScaler
s=StandardScaler()

df1[' Estimated Employed']=s.fit_transform(df1[' Estimated Employed'].values.reshape(-1,1))

import scipy.stats as stats

stats.probplot(np.log(df1[' Estimated Labour Participation Rate (%)']), dist="norm", plot=plt)
plt.title('Estimated Labour Participation Rate (%)')
plt.show()

df1.isnull().sum()

dtype: int64

PREPROCESSING

```
df1.dropna(inplace=True)
from sklearn.preprocessing import LabelEncoder
le1=LabelEncoder()
for i in df1.columns:
  if df1[i].dtypes=='object':
    df1[i]=le1.fit_transform(df1[i])
x1=df1.drop([' Estimated Employed','Area'],axis=1)
x1.isnull().sum()
₹
                                           0
                                           0
                    Region
                      Date
                                           0
                   Frequency
                                           0
        Estimated Unemployment Rate (%)
                                           0
      Estimated Labour Participation Rate (%) 0
     dtype: int64
y1=df1[' Estimated Employed']
y1.isnull().sum()
→ np.int64(0)
```

MODEL BUILDIING

```
X1\_train, X1\_test, y1\_train, y1\_test=train\_test\_split(x1, y1, test\_size=0.2, random\_state=43)
    'n_estimators':[10,20,30,40],
    'max_depth':[4,6,7],
    'min_samples_split':[30,40],
    'min_samples_leaf':[4,5,6],
    'criterion':['squared_error','absolute_error']
}
from sklearn.ensemble import RandomForestRegressor
{\tt rf=RandomForestRegressor()}
{\tt g=GridSearchCV} (estimator=rf,param\_grid=para1,cv=5,n\_jobs=-1,scoring='neg\_mean\_squared\_error')
g.fit(X1_train,y1_train)
<del>_</del>
                                           GridSearchCV
                                                                                       (i) (?
                             best\_estimator\_: \ Random ForestRegressor
                                     RandomForestRegressor
        RandomForestRegressor(max_depth=7, min_samples_leaf=4, min_samples_split=30,
                                n_estimators=20)
g.best_score_
np.float64(-0.3933487557143115)
rf=RandomForestRegressor(max_depth=8, min_samples_leaf=5, min_samples_split=20,
                       n_estimators=18)
```

rf.fit(X1_train,y1_train)

```
→
                                                                                                                                                                                                                                                                                                                                                                                               {\tt RandomForestRegressor}
                                                                     Random Forest Regressor (max\_depth=8, \ min\_samples\_leaf=5, \ min\_samples\_split=20, \ min\_samples\_sp
                                                                                                                                                                                                                                                                                                                                               n_estimators=18)
mean_squared_error(rf.predict(X1_test),y1_test)
    0.6019545686377283
```

x1.columns

→ Index(['Region', ' Date', ' Frequency', ' Estimated Unemployment Rate (%)', Estimated Labour Participation Rate (%)'], dtype='object')

r2_score(rf.predict(X1_test),y1_test)

→ 0.157928096623694

sns.displot(rf.predict(X1_test)-y1_test,kind='kde') plt.show()

CAR PRICE PRIDICTION

df3=pd.read_csv(r'/content/car data.csv')

df3.head()

→	Car_Name	Year	Selling_Price	Present_Price	Driven_kms	Fuel_Type	Selling_type	Transmission	Owner	\blacksquare
0	ritz	2014	3.35	5.59	27000	Petrol	Dealer	Manual	0	ılı
1	sx4	2013	4.75	9.54	43000	Diesel	Dealer	Manual	0	
2	ciaz	2017	7.25	9.85	6900	Petrol	Dealer	Manual	0	
3	wagon r	2011	2.85	4.15	5200	Petrol	Dealer	Manual	0	
4	swift	2014	4.60	6.87	42450	Diesel	Dealer	Manual	0	

EXPLORATORY DATA ANALYSIS

df3['Fuel_Type'].unique()

```
⇒ array(['Petrol', 'Diesel', 'CNG'], dtype=object)
df3['Selling_type'].unique()
→ array(['Dealer', 'Individual'], dtype=object)
df3['Transmission'].unique()
⇒ array(['Manual', 'Automatic'], dtype=object)
df3['Owner'].unique()
\rightarrow array([0, 1, 3])
df3.shape
→ (301, 9)
df3.isnull().sum()
₹
       Car_Name
                    0
          Year
                    0
      Selling_Price
      Present_Price 0
       Driven_kms
       Fuel_Type
      Selling_type
      Transmission
                   0
         Owner
                    0
     dtype: int64
df3.duplicated().sum()
→ np.int64(2)
df3[df3.duplicated()]
          Car_Name Year Selling_Price Present_Price Driven_kms Fuel_Type Selling_type Transmission Owner
                                                                                                                     \blacksquare
             ertiga 2016
      17
                                   7.75
                                                  10.79
                                                             43000
                                                                        Diesel
                                                                                      Dealer
                                                                                                    Manual
                                                                                                                0
                                                                                                                     ılı.
      93
           fortuner 2015
                                  23.00
                                                  30.61
                                                             40000
                                                                        Diesel
                                                                                      Dealer
                                                                                                  Automatic
                                                                                                                0
df3.drop(93,axis=0,inplace=True)
df3.info()
    <class 'pandas.core.frame.DataFrame'>
     Index: 300 entries, 0 to 300
     Data columns (total 9 columns):
                         Non-Null Count Dtype
     # Column
      0
         Car_Name
                         300 non-null
                                          object
      1
          Year
                         300 non-null
                                          int64
          Selling_Price
                         300 non-null
                                          float64
          Present_Price 300 non-null
                                          float64
          Driven_kms
                         300 non-null
                                          int64
          Fuel_Type
                         300 non-null
                                          object
                         300 non-null
          Selling_type
                                          object
          Transmission
                         300 non-null
                                          object
                         300 non-null
          Owner
                                          int64
     dtypes: float64(2), int64(3), object(4)
     memory usage: 23.4+ KB
import numpy as np
for i in df3.columns:
  if df3[i].dtypes=='object':
    continue
```

sns.histplot(data=df3,x=(i),kde=True)
plt.show()

np.mean(df3['Selling_Price'])

p.float64(4.6001666666666665)

np.mean(np.sqrt(df3['Selling_Price']))

p.float64(1.8761384695271879)

np.mean(np.log(df3['Selling_Price']))

np.float64(0.9039446587834338)

sns.histplot(data=df3,x=np.log(df3['Selling_Price']),kde=True)
plt.show()

df3['Selling_Price']=np.log(df3['Selling_Price'])

np.mean(np.sqrt(df3['Present_Price']))

→ np.float64(2.4119916890364816)

np.mean(np.log(df3['Present_Price']))

p.float64(1.4265831790876917)

sns.histplot(data=df3,x=np.log(df3['Present_Price']),kde=True)
plt.show()

sns.histplot(data=df3,x=np.sqrt(df3['Present_Price']),kde=True)
plt.show()

df3

→		Car_Name	Year	Selling_Price	Present_Price	Driven_kms	Fuel_Type	Selling_type	Transmission	Owner	=
	0	ritz	2014	1.208960	5.59	27000	Petrol	Dealer	Manual	0	ılı
	1	sx4	2013	1.558145	9.54	43000	Diesel	Dealer	Manual	0	+/
	2	ciaz	2017	1.981001	9.85	6900	Petrol	Dealer	Manual	0	-
	3	wagon r	2011	1.047319	4.15	5200	Petrol	Dealer	Manual	0	
	4	swift	2014	1.526056	6.87	42450	Diesel	Dealer	Manual	0	
	296	city	2016	2.251292	11.60	33988	Diesel	Dealer	Manual	0	
	297	brio	2015	1.386294	5.90	60000	Petrol	Dealer	Manual	0	
	298	city	2009	1.208960	11.00	87934	Petrol	Dealer	Manual	0	
	299	city	2017	2.442347	12.50	9000	Diesel	Dealer	Manual	0	
	300	brio	2016	1.667707	5.90	5464	Petrol	Dealer	Manual	0	
3	300 rc	ows × 9 colu	mns								

Next steps: (Generate code with df3)

View recommended plots

New interactive sheet

VISUALIZATION

```
What is the average selling price of used cars?

Which car models are the most frequently sold?

How does the fuel type affect the selling price?

Are older cars (based on Year) priced significantly lower?

What is the distribution of Driven_kms — are most cars lightly used?

How many cars are sold by Dealers vs. Individuals?

What's the proportion of manual vs. automatic transmission?
```

'\nWhat is the average selling price of used cars?\n\nWhich car models are the most frequently sold?\n\nHow does the fuel type affe ct the selling price?\n\nAre older cars (based on Year) priced significantly lower?\n\nWhat is the distribution of Driven_kms — are most cars lightly used?\n\nHow many cars are sold by Dealers vs. Individuals?\n\nWhat's the proportion of manual vs. automatic tran smission?\n'

```
df3['Year'].unique()
```

```
array([2014, 2013, 2017, 2011, 2018, 2015, 2016, 2009, 2010, 2012, 2003, 2008, 2006, 2005, 2004, 2007])
```

```
plt.figure(figsize=(11,6))
sns.histplot(data=df3,x=df3['Car_Name'])
plt.xticks(rotation=90)
plt.show()
```


sns.boxplot(data=df3,x='Fuel_Type',y='Selling_Price')
plt.show()

df31=df3.groupby('Year')['Selling_Price'].mean().reset_index()

df31

→ ▼		Year	Selling_Price	
	0	2003	-0.119446	ıl.
	1	2004	0.405465	+/
	2	2005	0.476920	
	3	2006	-0.148892	
	4	2007	-1.864851	
	5	2008	-0.815614	
	6	2009	0.938180	
	7	2010	0.682096	
	8	2011	0.507475	
	9	2012	0.773808	
	10	2013	0.702343	
	11	2014	1.105755	
	12	2015	1.293036	
	13	2016	1.072335	
	14	2017	1.063544	
	15	2018	2.224624	

Next steps: Generate code with df31 View recommended plots New interactive sheet

sns.lineplot(data=df31,x='Year',y='Selling_Price')
plt.show()

df3['Car_Name'].value_counts()

→

Car_Name	
city	26
corolla altis	16
verna	14
brio	10
fortuner	10
Honda Activa 125	1
Hero Hunk	1
Hero Ignitor Disc	1
Hero CBZ Xtreme	1
Bajaj ct 100	1
98 rows × 1 columns	

count

dtype: int64

```
df32=df3.groupby('Car_Name')['Driven_kms'].sum().reset_index()
```

```
plt.figure(figsize=(15,5))
sns.lineplot(data=df32,x='Car_Name',y='Driven_kms')
plt.xticks(rotation=90)
plt.show()
```


df3.head(2)

→		Car_Name Year Selling_Price		Present_Price Driven_kms		Fuel_Type Selling_type		Transmission	Owner	\blacksquare	
	0	ritz	2014	1.208960	5.59	27000	Petrol	Dealer	Manual	0	11.
	1	sx4	2013	1.558145	9.54	43000	Diesel	Dealer	Manual	0	

Next steps: Generate code with df3

View recommended plots

New interactive sheet

df3.groupby('Selling_type')['Car_Name']

k=df3['Selling_type'].value_counts()

sns.histplot(data=df3, x='Selling_type')

plt.show()

df3['Transmission'].value_counts()

_→

count

Transmission

Manual 261

Automatic 39

dtype: int64

df3['Current_Year']=2025-df3['Year']

df3.head()

₹	Car_Name	Year	Selling_Price	Present_Price	Driven_kms	Fuel_Type	Selling_type	Transmission	Owner	Current_Year	
	0 ritz	2014	1.208960	5.59	27000	Petrol	Dealer	Manual	0	11	ıl.
	1 sx4	2013	1.558145	9.54	43000	Diesel	Dealer	Manual	0	12	
	2 ciaz	2017	1.981001	9.85	6900	Petrol	Dealer	Manual	0	8	
	3 wagon r	2011	1.047319	4.15	5200	Petrol	Dealer	Manual	0	14	
	4 swift	2014	1.526056	6.87	42450	Diesel	Dealer	Manual	0	11	

Next steps: Generate code with df3 View recommended plots New interactive sheet

df3=df3.sort_values(by='Year')

df3.head(2)

→		Car_Name	Year	Selling_Price	Present_Price	Driven_kms	Fuel_Type	Selling_type	Transmission	Owner	Current_Year	
	39	sx4	2003	0.810930	7.98	62000	Petrol	Dealer	Manual	0	22	11.
	37	800	2003	-1.049822	2.28	127000	Petrol	Individual	Manual	0	22	

Next steps: Generate code with df3 View recommended plots New interactive sheet

from sklearn.preprocessing import LabelBinarizer