

WELCOME TO ARDUINO CURIOSITY CRAFTING ELECTRONICAL SENSORS

Topic List

- Sensors Primer
- Modbus as Data Transmission Protocol
- Human Machine Interface

Overview

Sensor DAQ Presentation

Overview

DAQ Presentation Sensor Remote Terminal Unit Slave Remote Terminal Unit Master A0 ATMEGA32 Serial Port Sprt Serial OUT Ckt GUI

LDR Sensor

A device that converts a light intensity into resistance invented by John N Shive and supported by Bell Laboratories in 1949

LDR Sensor

A device that converts a light intensity into resistance invented by John N Shive and supported by Bell Laboratories in 1949

Thermistor Sensor

A device that converts a Temperature into Resistance invented by Michael Faraday in 1833. This was improved by Samuel Ruben in 1930 into the commercially viable thermistor we all use

Potentiometer as Angular Sensor

A device that converts angular displacement into Resistance

Conductive or Resistive track

Single turn Movable wiper

⊘ Vout

Potentiometer as Angular Sensor

► A device that converts angular displacement into Voltage

Flex Sensor

► A device that converts bending angle to Electrical Resistance

ARDUINO CURIOSITY CRAFTING ELECTRONICAL SENSORS

Code

```
// C++ code
   int arei[3];
   void setup()
     pinMode (LED BUILTIN, OUTPUT);
 8
     Serial.begin(9600);
 9
10
   void loop()
12
   arei[0] = analogRead(A0);
   arei[1] = analogRead(A1);
15 arei[2] = analogRead(A2);
16 if(arei[0]>500) { digitalWrite(13, HIGH);}
   if(arei[0]<500) {digitalWrite(13,LOW); }
18 Serial.print(arei[0]);
   Serial.print(";");
   Serial.print(arei[1]);
   Serial.print(";");
   Serial.print(arei[2]);
   Serial.println(";");
24
```


Tilt Sensor

► A device that converts a physical phenomenon into Electrical Signals

Rotational Encoder as a Sensor

► A device that converts angle displacement into Electrical Pulses

ARDUINO CURIOSITY CRAFTING ELECTRONICAL SENSORS

Code Example

```
1 // C++ code
                                   Coded Light & Dark
                                                      2 Photo-detectors
    int arei[3];
    bool statusTilt;
    int counter;
                                      Channel A Output
                                      Channel B Output
   void setup()
                                                     Left to Right
                                                                 Right to Left
 9
10
      pinMode(2, INPUT PULLUP);
      pinMode (3, INPUT PULLUP);
      attachInterrupt(digitalPinToInterrupt(2), tilt, CHANGE);
      attachInterrupt(digitalPinToInterrupt(3), encode, FALLING);
      Serial.begin(9600);
      statusTilt=LOW;
      counter=0;
16
17 }
18
    void loop()
20
21
   void tilt() {
      statusTilt=~statusTilt;
      Serial.println("Tilted");
26
27
28 void encode() {
      counter++;
      Serial.print("Counter:");
31
      Serial.println(counter);
32 }
```


Modbus Standard

Overview

DAQ Presentation Sensor Remote Terminal Unit Remote Terminal Unit A0 ATMEGA32 **MODBUS** Sprt Serial OUT PC Ckt

History of Modbus

- Modicon 1968
 - Programmable Logic Controller thru the direction of Dick Morley

- Modicon 1979
 - Modbus Communication Protocol
- Modicon was sold to Gould Electronics in 1977 and resold to Schnieder Electric in 2014 when Gould Electronics was dissolved by JX Holdings

- Modbus is hailed as the de facto standard for PLC Communication commonly done between a Remote Terminal Units and a Central Monitoring and Processing Terminal
- Modbus is managed now by the Modbus Organization (Modbus.org)
- Drury, Bill (2009). <u>Control Techniques</u> <u>Drives and Controls</u> <u>Handbook</u> (PDF) (2nd ed.). <u>Institution</u> <u>of Engineering and Technology</u>. pp. 508–.

Modbus is a memory management Standard and a Transmission System

As a Memory Management Standard

- PLC Storage System
 - ► I/O Pins
 - Memory
- ► I/O Pins
 - Coils
 - ▶ 1 or 0
- Memory
 - Register
 - ▶ 2³² or 2¹⁶ Length Containers

Modbus is a memory management Standard and a Transmission System

Туре	Function Code	Object Type
Input Pin	2	Discrete Input
Output Pin	1	Coil Status
Input Digitized Analog	4	Input Register
Internal Register	3	Holding Register

Modbus is a memory management
 Standard and a Transmission
 System

As a Transmission Standard

- Device ID
 - Slave
 - ▶ ID numbers 1 127
 - Master
 - ▶ ID number 0
- ► Function Code to Request/Transmit

Туре	Function Code	Object Type
Input Pin	2	Discrete Input
Output Pin	1	Coil Status
Input Digitized Analog	4	Input Register
Internal Register	3	Holding Register

Modbus is a memory management Standard and a Transmission System

As a Transmission Standard Mobus Org stated in Feb 2020 that all Language be changed from old System RTU / new System TCP/IP to avoid confusion

- Device ID
 - Server
 - ▶ ID numbers 1 127
 - Client
 - ▶ ID number 0
- Function Code to Request/Transmit

Туре	Function Code	Object Type
Input Pin	2	Discrete Input
Output Pin	1	Coil Status
Input Digitized Analog	4	Input Register
Internal Register	3	Holding Register

Modbus is a memory management Standard and a Transmission System

8:0 2 FFFF CRC

Device ID: 0

Address Fund	c. C.	Data	CRC
Type	Function Code		Object Type
Input Pin	2		Read Discrete Input
Output Pin	1		Write-Read Coil Status
Input Digitized Analog	4		Read Input Register
Internal Register	3		Write-Read Holding Register

Modbus is a memory management Standard and a Transmission System

0:8 2 1 CRC

Address F	unc. C.	Data	CRC	
Туре	Fund	ction Code	Object 1	ype
Input Pin	2		Read Dis Input	crete
Output Pin	1		Write-Read Coil Status	
Input Digitize Analog	ed 4		Read Inp Register	out
Internal Register	3	Write-Read Holding Register		ead

Modbus is a memory management Standard and a Transmission System 難しい

0:8 2 1 CRC

Address	Func. (Da	ta	CRC	
Туре	F	unction (Code	Object 7	Гуре
Input Pin	2			Read Dis	screte
Output Pin	1	1		Write-Read Coil Status	
Input Digitized Analog		4		Read Inp Register	
Internal Register	3	3		Write-Re Holding Register	

Translating Modbus to Arduino

Modbus RTU Library

https://github.com/smarmengol/Mo dbus-Master-Slave-for-Arduino/blob/master/ModbusRtu.h

Elements

- Library Declaration
 - #include <ModbusRtu.h>
- Container Declaration
 - uint16_t <name>[n] = {values list};
- Initialization
 - Modbus slave(<id>>,<port>,<txpin>);
- Activation
 - Inside Setup
 - slave.begin(baudrate);
- Updating Values
 - Inside Loop
 - slave.poll(<arrayname>,<#elements>);

Sample Code Modbus 1:

- #include <ModbusRtu.h>
- // registers in the slave Do not remove this unless you want the Modbus to not work
- uint16_t au16data[6] = {103, 0, 0, 0, 0, 0};
- int trigger=4;
- int commandline;
- int i,k;
- Modbus slave(8,0,0); // this is slave @1 and RS-232 or USB-FTDI
- void setup() {
- slave.begin(9600); // baud-rate at 9600
- pinMode(13, OUTPUT);
- digitalWrite(13,HIGH);

```
void loop()
slave.poll( au16data, 6 );
commandline=au16data[0];
if(commandline==103 && trigger==6) {
trigger=4; au16data[5]=4;}
if(commandline!=103 && trigger==4)
{switch(commandline)
case 0: k=0;
                break;
case 11: k=11:
                   break;
case 22: k=22;
                   break;
                                     trigger=6;
case 33: k=33:
                   break;
case 44: k=44:
                 break:
case 55: k=55;
                  break;
                                     au16data[1]=k;
case 66: k=66;
                   break;
case 77: k=77;
                 break;
case 88: k=88:
                   break;
case 99: k=99;
                   break;
case 100: k=100;
                     break;
case 111: k=111:
                     break;
case 112: k=112;
                    break;
case 69: k=69;
                   break;
case 79: k=79;
                  break;
case 89: k=89;
                   break;
case 97: k=97:
                   break;
case 59: k=59;
                   break;
case 49: k=49;
                   break;
case 39: k=39;
                   break;
case 29: k=29;
                   break;
default: k=8:
                 break:
```


Terminal Communication Program 1 ModScan

Device: 0 Client

Server

ModScan Download Link

USB

Device: 0 Client

https://drive.google.com/drive/fo lders/1tOXJwciSB7_lcpMgATGnggSy ML6vbXKo?usp=sharing

Sample Code Modbus 2:

```
#include <ModbusRtu.h>
// registers in the slave Do not remove this unless you want the Modbus to not work
uint16_t au16data[6] = {103, 0, 0, 0, 0, 0};
int cmd;
Modbus slave(8,0,0); // this is slave @1 and RS-232 or USB-FTDI
void setup() {
 slave.begin(9600); // baud-rate at 9600
 pinMode(13, OUTPUT);
 digitalWrite(13,HIGH);
void loop() {
slave.poll( au16data, 6 );
cmd = au16data[0];
if(cmd==64) { digitalWrite(13,LOW); }
if(cmd!=64) { digitalWrite(13,HIGH); }
au16data[2] = analogRead(A0);
```


Setup of Modscan32 for Server Interface

Human Machine Interface

Human Machine Interface

- Also known as User Interface (UI)
- Means for people to interact with Machines without knowledge of programming or inner workings
 - ► Abstractions are hidden

Human Machine Interface

Batch Interface 1945

Command Line Interface 1968

Graphics User Interface 1968 (SRI)

Rules on Creating HMI

- ▶ Before you start with any HMI Creation work make sure to figure out and state what the parameters you want to see, manipulate and how you want to see these parameters.
 - 1. Prepare your Modbus Communications Table
 - 1. Contains all essential elements to view or write to
 - 2. Write down the respective interface you want to implement as an input or output

Table 6.Planning your HMI layout based on table 5.

PLC MODBUS	Use of Register	Read	Write –	Desired Appearance
	Ose of Register			Desired Appearance
Address		Only	Read	
40001	Input Pins State	X		Digital Panel Meter
40002	Output Pins Trigger		Х	None at this time (Not
				Implemented)
40003	Output Pins State	Х		Digital Panel Meter
40004	Analog A0 Value	Х		Meter Type
40005	Analog A3 Value	Х		Gauge Type
40006	Inputs Trigger		х	None at this time (Not
				Implemented)

V.Dupo, Utilization of HMI, MODBUS RTU for Applications in Robotics and Control Systems, [Online] https://github.com/VoltsBD/AutomationSystemsIntegrationManual, Last accessed 12 July 2023

WinLog Lite as an HMI Build Tool

This was a recommended software by my instructor since its PC based but the end product if you have the pro edition can be ported to a java applications. You may download this software thru

https://www.sielcosistemi.com/en/download/public/winlog lite.html#:~:text=Winlog %20Lite%20is%20the%20free,60%20minutes%20of%20full%20operation.

Launching

Preparation for Use and Opening the Program

<u>Sielco Sistemi</u> emailed me that <u>Winlog</u> Lite 3.0 as this July 2022 is now not covered by a paid edition which is a shame <u>instead</u> they sell the <u>Winlog</u> Pro edition. This program (<u>Winlog</u> Lite) needs to be installed. After installation you can find it on the W section of the applications menu area.

Click on the Winlog Lite 3 folder and find and click on the Project Manager Application

Creating New Projects

To create a new file click on the box icon with the sun.

This should lead to a new project being declared.

You can rename this to your liking.

Configuration

Click on the configuration folder it should show you the following

Setting up Modbus communication

Double Click on the Channels. It should open up a new popup window

Click on the configuration, find MODBUS RTU and select it from the menu

ARDUINO CURIOSITY CRAFTING ELECTRONICAL SENSORS

Configuration

ARDUINO CURIOSITY CRAFTING ELECTRONICAL SENSORS

Press OK on the Channels Configuration this will bring you back to the Project Manager Window

Proceed to double click on the device.

MODBUSTEST - Devices

Click on the Add Button and set your Slave Device ID here

You can be able to verify the configuration settings will be shown to you after you confirm the new device.

Proceed to click on the Gates folder inside the project your editing.

This will show you the following data types

Gates are also known as tags in other general language used in PLC

At this point open up your program or au16data table to know what <u>is the nature of the inputs for this example</u> its actually

Table 7. au16data Containers

0	1	2	3	4	5	6	7	8
Prime	Command	Value	referencetime	count	Elapsed time		Motor On/	SML Value
							Off	

Click on the Numeric this should open up the Gate Builder Screen

Press the green plus sign to open listing of new tags.

Use your version of Table 7 to create the table.

Table 6.Planning your HMI layout based on table 5.

				T
PLC MODBUS	Use of Register	Read	Write –	Desired Appearance
Address		Only	Read	
40001	Input Pins State	Х		Digital Panel Meter
40002	Output Pins Trigger		Х	None at this time (Not
				Implemented)
40003	Output Pins State	Х		Digital Panel Meter
40004	Analog A0 Value	Х		Meter Type
40005	Analog A3 Value	Х		Gauge Type
40006	Inputs Trigger		х	None at this time (Not
				Implemented)

Add in the Gate ID this is a text value at assigns a <u>more easier</u> to remember name for the type of data.

Add in the N ID which is just a number that denotes number in a series of similar numerical tags there are you should start at 1.

Press the green plus sign to open listing of new tags.

Use your version of Table 7 to create the table.

Table 6.Planning your HMI layout based on table 5.

*				
PLC MODBUS	Use of Register	Read	Write –	Desired Appearance
Address		Only	Read	
40001	Input Pins State	Х		Digital Panel Meter
40002	Output Pins Trigger		Х	None at this time (Not
				Implemented)
40003	Output Pins State	Х		Digital Panel Meter
40004	Analog A0 Value	Х		Meter Type
40005	Analog A3 Value	Х		Gauge Type
40006	Inputs Trigger		х	None at this time (Not
				Implemented)

ARDUINO CURIOSITY CRAFTING ELECTRONICAL SENSORS

Click on the Sampling Tab these open configuration items should be shown.

Numeric gates			
General Sampling Valu	ue Conversion Tolerance		
0 _	Channel> Protocol :		
0 •	Device		
		<u> </u>	Address
Never	Sample	1	Read block
	Sample frequency (s)		
		Ok Ca	ncel Help

Select Channel you configured previously

 ${\tt Select\,the\,device\,ID\,number\,of\,your\,Arduino.}$

You will notice upon selecting 1 Ch the name of the protocol is shown associated with this channel.

Press the green plus sign to open listing of new tags.

Use your version of Table 7 to create the table.

Table 6.Planning your HMI layout based on table 5.

PLC MODBUS	Use of Register	Read	Write -	Desired Appearance
Address		Only	Read	
40001	Input Pins State	Х		Digital Panel Meter
40002	Output Pins Trigger		Х	None at this time (Not Implemented)
40003	Output Pins State	Х		Digital Panel Meter
40004	Analog A0 Value	Х		Meter Type
40005	Analog A3 Value	Х		Gauge Type
40006	Inputs Trigger		х	None at this time (Not
				Implemented)

Let the program sample the register with the setting Always

Numeric gates				
General Sampling Value	ue Conversion Tolerance			
1 •	Channel> Protocol : Mod Device	iBus RTU		
4:1		_	0	Address
Always	▼ Sample		•	Read block
3	Sample frequency (s)			
		Ok	Cancel	Help

The sample frequency is up to you to determine and press ok

Populate the Gate Builder with more numeric tags based on Table 7.

Table 6.Planning your HMI layout based on table 5.

PLC MODBUS	Use of Register	Read	Write –	Desired Appearance
Address		Only	Read	
40001	Input Pins State	Х		Digital Panel Meter
40002	Output Pins Trigger		Х	None at this time (Not
				Implemented)
40003	Output Pins State	Х		Digital Panel Meter
40004	Analog A0 Value	Х		Meter Type
40005	Analog A3 Value	Х		Gauge Type
40006	Inputs Trigger		х	None at this time (Not
				Implemented)

Table 8. Address Prefixes for Numerical Input and Holding Register

Decription	Function	Address	Gate read	Gate write	Block read
3 (obsolete)	HOLDING REGISTER 16 bit	XXXX (09999 decimal)	Yes	Yes	Yes
3:	HOLDING REGISTER 16 bit	XXXXX (065535 decimal)	Yes	Yes	Yes
3h:	HOLDING REGISTER 16 bit	XXXXh (0FFFF Hexadecimal)	Yes	Yes	Yes
3:16:	HOLDING REGISTER 16 bit	XXXXX (065535 decimal)	Yes	Yes	Yes
3h:10h:	HOLDING REGISTER 16 bit	XXXh (0FFFF Hexadecimal)	Yes	Yes	Yes
4 (obsolete)	INPUT REGISTER 16 bit	XXXX (09999 decimal)	Yes	No	Yes
4:	INPUT REGISTER 16 bit	XXXXX (065535 decimal)	Yes	No	Yes
4h:	INPUT REGISTER 16 bit	XXXXh (0FFFF Hexadecimal)	Yes	No	Yes

The sample frequency is up to you to determine and press ok

Populate the Gate Builder with more numeric tags based on Table 7.

Now we need to edit some values like the Maximum Values

Press the Save Button [Diskette Icon]

Leave the Gate Builder Window.

Press the green plus sign to open listing of new tags.

Use your version of Table 7 to create the table.

Table 6.Planning your HMI layout based on table 5.

PLC MODBUS	Use of Register	Read	Write –	Desired Appearance
Address		Only	Read	
40001	Input Pins State	Х		Digital Panel Meter
40002	Output Pins Trigger		Х	None at this time (Not
				Implemented)
40003	Output Pins State	Х		Digital Panel Meter
40004	Analog A0 Value	Х		Meter Type
40005	Analog A3 Value	Х		Gauge Type
40006	Inputs Trigger		х	None at this time (Not
				Implemented)

Template Assigning Numeric Values

Template Assigning Writing Surface

Template Assigning Write Value Monitor

ate condition	× _	
Gate		Add
NUM,au16data,0		Add
Operator		Delete
!= (not equal to) Negated condition		Edit
Value (numeric)	Do	uplicate
64		
		Ok
		<u> </u>
Ok Cancel		Cancel

Property	Value		
ID	0		
Left	60		
Тор	35		
Width	100		
Height	100		
Description			
Transparent Color	Custom (0,128,128)		
Cursor	(default)		
ON status appearance	81		
OFF status appearance	87		
Led ON conditions	"""NUM,au16data,2"",7,64"		
Flashing	500 ms		
Show			
Access group	0		
Enable			
On Click			
On Double Click			

Template Running your GUI

ARDUINO CURIOSITY CRAFTING ELECTRONICAL SENSORS

Template Running your GUI

Template Running your GUI

Devices status						
Double click or SPACE bar = Enable/	disable device communication				Reset er	rors
Device	Description	Status	Write errors	Read errors	Scanning	
Channel 1 - Device 8	♦ 7~	OK	0	0	Enabled	

