ASYMPTOTIC FORMULA ON AVERAGE PATH LENGTH OF FRACTAL NETWORKS MODELLED ON SIERPINSKI GASKET

FEI GAO, ANBO LE, LIFENG XI, AND SHUHUA YIN

ABSTRACT. In this paper, we introduce a new method to construct evolving networks based on the construction of the Sierpinski gasket. Using self-similarity and renewal theorem, we obtain the asymptotic formula for average path length of our evolving networks.

1. Introduction

The Sierpinski gasket described in 1915 by W. Sierpiński is a classical fractal. Suppose K is the solid regular triangle with vertexes $a_1 = (0,0)$, $a_2 = (1,0)$, $a_3 = (1/2, \sqrt{3}/2)$. Let $T_i(x) = x/2 + a_i/2$ be the contracting similitude for i = 1, 2, 3. Then $T_i : K \to K$ and the Sierpinski gasket E is the self-similar set, which is the unique invariant set [9] of IFS $\{T_1, T_2, T_3\}$, satisfying

$$E = \bigcup_{i=1}^{3} T_i(E).$$

The Sierpinski gasket is important for the study of fractals, e.g., the Sierpinski gasket is a typical example of post-critically finite self-similar fractals on which the Dirichlet forms and Laplacians can be constructed by Kigami [10, 11], see also Strichartz [14].

FIGURE 1. The first two constructions of Sierpinski gasket

For the word $\sigma = i_1 \cdots i_k$ with letters in $\{1,2,3\}$, i.e., every letter $i_t \in \{1,2,3\}$ for all $t \leq k$, we denote by $|\sigma|(=k)$ the length of word σ . Given words $\sigma = i_1 \cdots i_k$ and $\tau = j_1 \cdots j_n$, we call σ a prefix of τ and denote by $\tau \prec \sigma$, if k < n and $i_1 \cdots i_k = j_1 \cdots j_k$. We also write $\tau \preceq \sigma$ if $\tau = \sigma$ or $\tau \prec \sigma$. When $\tau \prec \sigma$ with $|\tau| = |\sigma| - 1$, we say that τ is the father of σ and σ is a child of τ . Given $\sigma = i_1 \cdots i_k$, we write $T_{\sigma} = T_{i_1} \circ \cdots \circ T_{i_k}$ and $K_{\sigma} = T_{\sigma}(K)$ which is a solid regular triangle with side length $2^{-|\sigma|}$. For notational convenience, we write $K_{\emptyset} = K$ with empty word \emptyset . We also denote $|\emptyset| = 0$. If $\tau \prec \sigma$, then $K_{\sigma} \subset K_{\tau}$. For solid triangle K_{σ} with word

²⁰⁰⁰ Mathematics Subject Classification. 28A80.

Key words and phrases. fractal, Sierpinski gasket, network, self-similarity.

Lifeng Xi is the corresponding author. The work is supported by NSFC (Nos. 11371329, 11471124), NSF of Zhejiang(Nos. LR13A1010001, LY12F02011).

 σ , we denote by ∂K_{σ} its boundary consisting of 3 sides, where every side is a line segment with side length $2^{-|\sigma|}$.

Complex networks arise from natural and social phenomena, such as the Internet, the collaborations in research, and the social relationships. These networks have in common two structural characteristics: the small-world effect and the scale-freeness (power-law degree distribution), as indicated, respectively, in the seminal papers by Watts and Strogatz [16] and by Barabási and Albert [2]. In fact complex networks also exhibit self-similarity as demonstrated by Song, Havlin and Makse [13] and fractals possess the feature of power law in terms of their fractal dimension (e.g. see [6]). Recently self-similar fractals are used to model evolving networks, for example, in a series of papers, Zhang et al. [18, 19, 8] use the Sierpinski gasket to construct evolving networks. There are also some complex networks modelled on self-similar fractals, for example, Liu and Kong [12] and Chen et al. [4] study Koch networks, Zhang et al. [17] investigate the networks constructed from Vicsek fractals. See also Dai and Liu [5], Sun et al. [15] and Zhou et al. [20].

In the paper, we introduce a new method to construct evolving networks modelled on Sierpinski gasket and study the asymptotic formula for average path length. Since E is connected, we can construct the network from geometry as follows.

Fix an integer t, we consider a network G_t with vertex set $V_t = \{\sigma : 0 \le |\sigma| \le t\}$ where $\#V_t = 1 + 3 + ... + 3^t = \frac{1}{2}(3^{t+1} - 1)$. For the edge set of G_t , there is a unique edge between distinct words σ and τ (denoted by $\tau \sim \sigma$) if and only if

$$\partial K_{\sigma} \cap \partial K_{\tau} \neq \varnothing. \tag{1.1}$$

We can illustrate the geodesic paths in Figure 2 for t=3. We have $233 \sim 32 \sim 312$ since $\partial K_{233} \cap \partial K_{32} = \{C\}$ and $\partial K_{32} \cap \partial K_{312} = \{F\}$. We also get another geodesic path from 233 to $312:233 \sim 3 \sim 312$ since $\partial K_{233} \cap \partial K_3 = \{C\}$ and $\partial K_3 \cap \partial K_{312} = [G, F]$, the line segment between G and F. We also have some geodesic paths from 21 to $312:21 \sim 1 \sim 311 \sim 312$, $21 \sim \emptyset \sim 3 \sim 312$ and $21 \sim 2 \sim 32 \sim 312$. Also we have $132 \sim 1 \sim \emptyset$ but $132 \not\sim \emptyset$, then the geodesic distance between 132 and \emptyset is 2.

In Figure 2, $312 \nsim \emptyset$, $231 \nsim \emptyset$ and $132 \nsim \emptyset$. In fact, by observation we have

Claim 1. Suppose $\sigma \prec \tau$ with $\tau = \sigma \beta$. Then $\sigma \sim \tau$ if and only if there are at most two letters in β . In particular, if $\sigma \prec \tau$ and $|\tau| - |\sigma| \leq 2$, then $\sigma \sim \tau$.

For example, 123123 and 1231 are neighbors, but 123123 and 123 are not.

For every t, we denote $d_t(\sigma,\tau)$ the geodesic distance on V_t . Let

$$\bar{D}(t) = \frac{\sum_{\sigma \neq \tau \in V_t} d_t(\sigma, \tau)}{\#V_t(\#V_t - 1)/2}$$

be the average path length of the complex network V_t .

We can state our main result as follows.

Theorem 1. We have the asymptotic formula

$$\lim_{t \to \infty} \frac{\bar{D}(t)}{t} = \frac{4}{9}.\tag{1.2}$$

Remark 1. Since $t \propto \ln(\#V_t)$, Theorem 1 implies that the evolving networks G_t have small average path length, namely $\bar{D}(t) \propto \ln(\#V_t)$.

The paper is organized as follows. In Section 2 we give notations and sketch of proof for Theorem 1, consisting of four steps. In sections 3-6, we will provide details for the four steps respectively. Our main techniques come from the self-similarity and the renewal theorem.

2. Sketch of proof for Theorem 1

We will illustrate our following four steps needed to prove Theorem 1.

Step 1. We calculate the geodesic distance between a word and the empty word. Given a small solid triangle Δ , we can find a maximal solid triangle Δ' which contains Δ and their boundaries are touching. Translating into the language of words, for a given word $\sigma \neq \emptyset$, we can find a unique shortest word $f(\sigma)$ such that $f(\sigma) \prec \sigma$ and $f(\sigma) \sim \sigma$. For a word $\sigma = \tau_2 \tau_1$, where τ_1 is the maximal suffix with at most two letters appearing, using Claim 1 we have $f(\sigma) = \tau_2$. Iterating f again and again, we obtain a sequence $\sigma \sim f(\sigma) \sim \cdots \sim f^{n-1}(\sigma) \sim f^n(\sigma) = \emptyset$. Let

$$\omega(\sigma) = \min\{n : f^n(\sigma) = \emptyset\}.$$

In particular, we define $\omega(\emptyset) = 0$. For $\sigma = 112113112312 = (112)(11311)(23)(12)$, we have $f(\sigma) = (112)(11311)(23)$, $f^2(\sigma) = (112)(11311)$, $f^3(\sigma) = (112)$ and $f^4(\sigma) = \emptyset$. Then $\omega(\sigma) = 4$. We will prove in Section 3

Proposition 1. For $\sigma \in V_t$, we have $d_t(\sigma, \emptyset) = \omega(\sigma)$.

In fact, this proposition shows that $d_t(\sigma, \emptyset)$ is independent of the choice of t whenever $t \geq |\sigma|$. In this case, we also write $d(\sigma, \emptyset)$. Write

$$L(\tau) = d(\tau, \emptyset) - 1$$
 for $\tau \neq \emptyset$ and $L(\emptyset) = 0$.

Then $L(\tau)$ is independent of t, in fact, $L(\tau)$ is the minimal number of moves for K_{τ} to touch the boundary of K.

Step 2. Given $m \geq 1$, we consider the average geodesic distance between the empty word and word of length m and set

$$\bar{\alpha}_m = \frac{\sum_{|\sigma|=m} d(\sigma, \emptyset)}{\#\{\sigma : |\sigma|=m\}} - 1 = \frac{\sum_{|\sigma|=m} L(\sigma)}{\#\{\sigma : |\sigma|=m\}},$$

and $\bar{\alpha}_0 = 0$, we will obtain the limit property of $\bar{\alpha}_m/m$ as $m \to \infty$ in Section 4. In fact, by the **Jordan curve theorem**, we can obtain

$$L(\tau) + L(\sigma) < L(\tau\sigma) < L(\tau) + L(\sigma) + 1. \tag{2.1}$$

From (2.1), we can verify $\{\bar{\alpha}_m\}_m$ is superadditive which implies

Proposition 2. $\lim_{m\to\infty} \bar{\alpha}_m/m = \sup(\bar{\alpha}_m/m) < \infty.$

Denote

$$\alpha^* = \sup(\bar{\alpha}_m/m) = \lim_{m \to \infty} \bar{\alpha}_m/m.$$

Step 3. We obtain the asymptotic formula of $\bar{D}(t)$ in terms of α^* . Using the similarity of Sierpinski gasket, e.g., for i = 1, 2, 3,

$$d(i\sigma, i\tau) = d(\sigma, \tau),$$

and for $i \neq j$,

$$L(\sigma) + L(\tau) \le d(i\sigma, j\tau) \le (L(\sigma) + 1) + (L(\tau) + 1) + 1,$$

we will prove the following in Section 5

Proposition 3. $\lim_{t\to\infty} \frac{\bar{D}(t)}{t} = 2\alpha^*$.

FIGURE 3. The typical geodesic path between Δ_1 and Δ_3

As illustrated in Figure 3, Proposition 3 shows that the *typical* geodesic path is the geodesic path between Δ_1 and Δ_3 whose first letters of codings are different. On the other hand, for example the geodesic path between Δ_1 and Δ_2 with the same first letter will give negligible contribution to $\bar{D}(t)$. Using $L(\sigma) + L(\tau) \leq d(i\sigma, j\tau) \leq L(\sigma) + L(\tau) + 3$ with $i \neq j$, we obtain that $d(i\sigma, j\tau) \approx L(\sigma) + L(\tau)$, ignoring the terms like $d(i\sigma, i\tau)$, we have

$$\frac{\bar{D}(t)}{t} \approx 2 \cdot \frac{1}{t} \cdot \frac{\sum_{|\tau| \le t-1} L(\tau)}{\#\{\tau : |\tau| \le t-1\}},$$

where $\frac{\sum_{|\tau| \le t-1} L(\tau)}{\#\{\tau: |\tau| \le t-1\}}$ is the average value of $L(\tau)$. Using Stolz theorem, we have

$$\lim_{t \to \infty} \frac{2 \sum_{|\tau| \le t-1} L(\tau)}{t \cdot \#\{\tau : |\tau| \le t-1\}} = \lim_{t \to \infty} \frac{2 \sum_{|\tau| = t-1} L(\tau)}{3^{t-1}t + \frac{3^t}{6} - \frac{1}{2}}$$

$$= \lim_{t \to \infty} \frac{2}{t} \cdot \frac{\sum_{|\tau| = t-1} L(\tau)}{\#\{\tau : |\tau| = t-1\}}$$

$$= \lim_{t \to \infty} \frac{2\bar{\alpha}_{t-1}}{t} = 2\alpha^*.$$
(2.2)

Step 4. Using the renewal theorem, we will prove in Section 6

Proposition 4. $\alpha^* = 2/9$.

By programming, we have

t =	300	400	500	600	700	800
$\bar{\alpha}_t/t =$	$0.2207\cdots$	$0.2211\cdots$	$0.2213\cdots$	$0.2214\cdots$	$0.2215\cdots$	$0.2216\cdots$

which is in line with $\alpha^* = 2/9 = 0.2222 \cdots$.

In fact, suppose $\Sigma = \{\cdots x_2 x_1 : x_i = 1, 2 \text{ or } 3 \text{ for all } t\}$ is composed of infinite words with letters in $\{1,2,3\}$. Then we have a natural mass distribution μ on Σ such that for any word σ of length k,

$$\mu(\{\cdots x_k \cdots x_1 : x_k \cdots x_1 = \sigma\}) = 1/3^k.$$

For any word σ , let $\#(\sigma)$ denote the cardinality of letters appearing in word σ . For μ -almost all x, let

$$S(\cdots x_p x_{p-1} \cdots x_1) = p$$
 if $\#(x_{p-1} \cdots x_1 1) = 2$ and $\#(x_p x_{p-1} \cdots x_1 1) = 3$.

Then
$$\mathbb{E}(S) = \sum_{k=2}^{\infty} k \cdot \mu\{x : S(x) = k\} = \sum_{k=2}^{\infty} k \cdot (2^k - 2)/3^k = 9/2 < \infty.$$

Then $\mathbb{E}(S) = \sum_{k=2}^{\infty} k \cdot \mu\{x : S(x) = k\} = \sum_{k=2}^{\infty} k \cdot (2^k - 2)/3^k = 9/2 < \infty$. For μ -almost all $x = \cdots x_2 x_1$, suppose $x_0 = 1$ and $p_0 = 0$ and there is an infinite sequence $\{p_n\}_{n>0}$ of integers such that $p_{n+1}>p_n$ for all n and

$$x1 = \cdots x_{p_3} \cdots x_{p_2} \cdots x_{p_1} \cdots x_1 x_0$$

satisfying $\#(x_{p_n}\cdots x_{p_{n-1}})=3$ and $\#(x_{(p_n-1)}\cdots x_{p_{n-1}})=2$ for all n. We then let

$$S_i(x) = p_i - p_{i-1}$$
 for any $i \ge 1$.

Since x_{p_n} is uniquely determined by word $x_{(p_n-1)}\cdots x_{p_{n-1}}$, and μ is symmetric for letters in $\{1,2,3\}$, we find that $\{S_i\}_i$ is a sequence of positive independent identically distributed random variables with $S_1 = S$. For example, for $x = \cdots 321223121$, then $x1 = \cdots 3(21)(223)(1211)$ and $S_1(x) = S(x) = 4$, $S_2(x) = 3$, $S_3(x) = 2$, \cdots .

Let $J_n = S_1 + \cdots + S_n$ and $Y_t = \sup\{n : J_n \leq t\}$. Then $J_n = p_n$ and $Y_t =$ $\max\{n: p_n \leq t\}$. By the elementary renewal theorem, we have

$$\frac{\mathbb{E}(Y_t)}{t} \to \frac{1}{\mathbb{E}(S)} = \frac{2}{9} = 0.222 \cdots.$$

Using the following estimates (Lemma 8 in Section 6)

$$\lim_{t \to \infty} \inf \frac{\sum_{|\sigma|=t} d(\sigma, \emptyset)}{t3^t} \geq \lim_{t \to \infty} \frac{\sum_{k=2}^{t-1} \mathbb{E}(Y_{t-k}) \frac{2^k - 2}{3^k}}{t},$$

$$\lim_{t \to \infty} \sup \frac{\sum_{|\sigma|=t} d(\sigma, \emptyset)}{t3^t} \leq \lim_{t \to \infty} \frac{\sum_{k=2}^{t-1} \mathbb{E}(Y_{t-k}) \frac{2^k - 2}{3^k}}{t},$$

we can prove that $\alpha^* = \lim_{t \to \infty} \frac{\sum_{|\sigma|=t} d(\sigma,\emptyset)}{t3^t} = \lim_{t \to \infty} \frac{\mathbb{E}(Y_t)}{t} = 2/9.$

Theorem 1 follows from Propositions 3 and 4.

3. Basic formulas on geodesic distance

3.1. Criteria of neighbor.

Given distinct words σ and τ with $|\sigma|, |\tau| \leq t$, we give the following **criteria** to test whether they are neighbors or not. At first, we delete the common prefix of σ and τ , say $\sigma = \beta \sigma'$ and $\tau = \beta \tau'$ where the first letters of σ' and τ' are different. We can distinguish two cases:

Case 1. If one of σ' and τ' is the empty word, say $\sigma' = \emptyset$, then σ and τ are not neighbors if and only if every letter $i \in \{1, 2, 3\}$ appears in the word τ' .

Case 2. If neither σ' nor τ' is the empty word, say i, j the first letters of σ' and τ' respectively, then σ and τ are neighbors if and only if

$$\sigma' = i[j]^k$$
 and $\tau' = j[i]^{k'}$ with $k, k' \ge 0$.

We say that σ and τ are neighbors of type 1 or 2 according to Case 1 or 2 respectively.

3.2. Estimates on distance.

The first lemma show the *self-similarity* of geodesic distance.

Lemma 1. If $\sigma = i\sigma'$ and $\tau = i\tau'$ with $i \in \{1, 2, 3\}$, then

$$d_t(\sigma,\tau) = d_t(i\sigma',i\tau') = d_{t-1}(\sigma',\tau').$$

Consequently, given any word $i_1 \cdots i_k$,

$$d_t(i_1 \cdots i_k \sigma', i_1 \cdots i_k \tau') = d_{t-k}(\sigma', \tau') \text{ for all } \sigma', \tau'.$$

Proof. Fix the letter i, we define $q: V_t \to V_t$ by

$$g(\beta) = \begin{cases} \beta & \text{if } i \leq \beta, \\ i & \text{otherwise.} \end{cases}$$

If we give a shortest sequence $(\sigma =)\sigma^1 \sim \sigma^2 \sim \cdots \sim \sigma^k (=\tau)$ in G_t , then $\sigma = g(\sigma^1) \simeq g(\sigma^2) \simeq \cdots \simeq g(\sigma^k) = \tau$ is also a sequence and all word $\{g(\sigma^i)\}_{i=1}^k$ have the same first letter i. Deleting the first letter i, we get a (\simeq) -sequence from σ' to τ' in G_{t-1} . Hence $d_t(\sigma,\tau) \geq d_{t-1}(\sigma',\tau')$.

On the other hand, for given (\sim)-sequence from σ' to τ' in G_{t-1} , by adding the first letter i, we obtain a (\sim)-sequence σ to τ in G_t which implies $d_t(\sigma,\tau) \leq d_{t-1}(\sigma',\tau')$. The lemma follows.

Given t, let $L_t(\sigma) = d_t(\sigma, \emptyset) - 1$ for $\sigma \neq \emptyset$. The second lemma shows that $L_t(\sigma)$ is independent of t whenever $t \geq |\sigma|$. We can write $L(\sigma)$.

Lemma 2. For $\sigma, \tau \in V_k$, $d_t(\sigma, \tau) = d_k(\sigma, \tau)$. As a result, $L_t(\sigma) = L_{|\sigma|}(\sigma)$.

Proof. Fix $k \leq t$. Let $h: V_t \to V_k$ be defined by

$$h(\beta) = \begin{cases} \beta & \text{if } |\beta| \le k, \\ i_1 \cdots i_k & \text{if } |\beta| > k \text{ and } \beta = i_1 \cdots i_k \cdots i_{|\beta|}. \end{cases}$$

Given $\sigma, \tau \in V_k$, if we give a shortest sequence $(\sigma =) \sigma^1 \sim \sigma^2 \sim \cdots \sim \sigma^k (=\tau)$ in G_t , by criteria of neighbor we obtain that $\sigma = h(\sigma^1) \simeq h(\sigma^2) \simeq \cdots \simeq h(\sigma^k) = \tau$ is also a (\simeq) -sequence and all words in V_k . Therefore, $d_t(\sigma, \tau) \geq d_k(\sigma, \tau)$. On the other hand, any (\sim) -sequence from σ to τ in G_k is also a (\sim) -sequence in G_k , that means $d_t(\sigma, \tau) \leq d_k(\sigma, \tau)$. The lemma follows.

By the *Jordan curve theorem*, when a point in the *interior* moves to the *exterior*, it must touch the *boundary*. Therefore, we have the following

Lemma 3. For any word $\tau \sigma$ with $\tau, \sigma \neq \emptyset$, we have

$$L(\tau) + L(\sigma) \le L(\tau\sigma) \le L(\tau) + L(\sigma) + 1.$$

Proof. In fact, using triangle inequality and Lemmas 1 and 2, we have

$$L(\tau\sigma) = d_t(\tau\sigma, \emptyset) - 1 \leq d_t(\tau\sigma, \tau) + d_t(\tau, \emptyset) - 1$$
$$= d_{t-|\tau|}(\sigma, \emptyset) + d_t(\tau, \emptyset) - 1$$
$$= L(\sigma) + L(\tau) + 1.$$

On the other hand, using the self-similarity in Lemma 1, the minimal number of moves for $K_{\tau\sigma}$ to touch the boundary of K_{τ} is $L(\sigma)$, and $L(\tau)$ is the minimal number of moves for K_{τ} to touch the boundary of K, by the Jordan curve theorem, there are at least $L(\sigma) + L(\tau)$ moves for $K_{\tau\sigma}$ to touch the boundary of K, that means $L(\tau) + L(\sigma) \leq L(\tau\sigma)$.

3.3. Proof of Proposition 1.

Suppose ω and f are defined as in Section 2. By the definition of f, if $\tau' \leq \sigma'$, then we have $f(\tau') \leq f(\sigma')$. Therefore we have

Claim 2. If $f(\sigma) \leq f(\tau) \leq \sigma$, then $f^k(\sigma) \leq f^k(\tau) \leq f^{k-1}(\sigma)$ for all $k \geq 0$. As a result, $|\omega(\sigma) - \omega(\tau)| \leq 1$.

Example 1. Let $i=1,\ j=3$ and $\sigma=\beta 321211$ for some word β , we have $f(\sigma i)=\beta 3$ and $f(\sigma j)=\beta 3212$. Then

$$f(\sigma i) \leq f(\sigma j) \leq \sigma i$$
,

and thus $|\omega(\sigma i) - \omega(\sigma j)| \le 1$. For $\beta = 132$ and $\beta' = \beta 1211$ with $\beta \sim \beta'$, we have $f(\beta) \le f(\beta') \le \beta$, then $|\omega(\beta) - \omega(\beta')| \le 1$.

Lemma 4. If $\sigma \sim \tau$, then $\omega(\sigma) > \omega(\tau) - 1$.

Proof. By the criteria of neighbor, without loss of generality, we only need to deal with three cases: (1) $\sigma \prec \tau$; (2) $\sigma i[j]^p$ and $\sigma j[i]^q$ with $i \neq j$ and $p, q \geq 1$; (3) σi and $\sigma j[i]^q$ with $i \neq j$ and $q \geq 0$. For case (2), it is clear that

$$\omega(\sigma i[j]^p) = \omega(\sigma j[i]^q) = \omega(\sigma ij).$$

For cases (1) and (3), we only use Claim 2 as in Example 1 above.

Proof of Proposition 1. As shown in Section 2, we can find the following path from σ to the empty word \emptyset :

$$\sigma \sim f(\sigma) \sim f^2(\sigma) \sim \cdots \sim f^{\omega(\sigma)}(\sigma_k) = \emptyset.$$

That means $d_t(\sigma, \emptyset) \leq \omega(\sigma)$.

It suffices to show $d_t(\sigma, \emptyset) \geq \omega(\sigma)$. Suppose on the contrary, if we give a sequence

$$\sigma = \sigma_0 \sim \sigma_1 \sim \sigma_2 \sim \cdots \sim \sigma_k = \emptyset$$
 with $k \leq \omega(\sigma) - 1$,

then $\omega(\sigma_{i+1}) \ge \omega(\sigma_i) - 1$ for all i by Lemma 4. Therefore, $0 = \omega(\emptyset) \ge \omega(\sigma) - k > 0$ which is impossible. That means $d_t(\sigma, \emptyset) = \omega(\sigma)$.

4. Average geodesic distance to empty word

We first recall some notations. For every t, we denote $d_k(\sigma, \tau)$ the geodesic distance on V_k . Given $k \geq 0$, let $L_k(\emptyset) = 0$ and

$$L_k(\sigma) = d_k(\sigma, \emptyset) - 1 \text{ for } \sigma \in V_k \text{ with } \sigma \neq \emptyset.$$

As shown in (2.2), for average geodesic distance $\frac{\sum_{|\tau| \leq t-1} L(\tau)}{\#\{\tau: |\tau| \leq t-1\}} + 1$ to the empty word, when we estimate $\frac{1}{t} \frac{\sum_{|\tau| \leq t-1} L(\tau)}{\#\{\tau: |\tau| \leq t-1\}}$, it is important for us to estimate $\bar{\alpha}_k/k$, where

$$\bar{\alpha}_k = \frac{\sum_{|\sigma|=k} L_k(\sigma)}{\#\{\sigma : |\sigma|=k\}} \text{ for } k \ge 0.$$

Lemma 5. For any $k_1, k_2 \geq 1$, we have

$$\bar{\alpha}_{k_1} + \bar{\alpha}_{k_2} \le \bar{\alpha}_{k_1 + k_2} \le \bar{\alpha}_{k_1} + \bar{\alpha}_{k_2} + 1.$$
 (4.1)

In particular, $\{\bar{\alpha}_k\}_k$ is non-decreasing, i.e.,

$$\bar{\alpha}_{k+1} \ge \bar{\alpha}_k \text{ for all } k.$$
 (4.2)

As a result, for any positive integers q and k we obtain that

$$\bar{\alpha}_k \ge \bar{\alpha}_q \left[\frac{k}{q}\right] \ge \frac{\bar{\alpha}_q}{q} (k - q + 1),$$
(4.3)

Proof. We obtain that

$$\bar{\alpha}_{k_1+k_2} = \frac{\sum_{|\tau|=k_1} \sum_{|\sigma|=k_2} L_{k_1+k_2}(\tau\sigma)}{\#\{\tau: |\tau|=k_1\} \cdot \#\{\sigma: |\sigma|=k_2\}}.$$

If $|\tau| = k_1$ and $|\sigma| = k_2$, using Lemma 3, we have

$$L_{k_1}(\tau) + L_{k_2}(\sigma) \le L_{k_1+k_2}(\tau\sigma) \le L_{k_1}(\tau) + L_{k_2}(\sigma) + 1,$$
 (4.4)

which implies

$$\bar{\alpha}_{k_1+k_2} \geq \frac{\sum_{|\tau|=k_1} \sum_{|\sigma|=k_2} (L_{k_1}(\tau) + L_{k_2}(\sigma))}{\#\{\tau : |\tau|=k_1\} \cdot \#\{\sigma : |\sigma|=k_2\}} = \bar{\alpha}_{k_1} + \bar{\alpha}_{k_2},$$

$$\bar{\alpha}_{k_1+k_2} \leq \frac{\sum_{|\tau|=k_1} \sum_{|\sigma|=k_2} (L_{k_1}(\tau) + L_{k_2}(\sigma) + 1)}{\#\{\tau : |\tau|=k_1\} \cdot \#\{\sigma : |\sigma|=k_2\}} = \bar{\alpha}_{k_1} + \bar{\alpha}_{k_2} + 1,$$

then (4.1) follows. In particular, we have $\bar{\alpha}_{k+1} \geq \bar{\alpha}_k + \bar{\alpha}_1 \geq \bar{\alpha}_k$.

Using (4.1) repeatedly, we have $\bar{\alpha}_{qm} \geq \bar{\alpha}_{q(m-1)} + \bar{\alpha}_q \geq \cdots \geq m\bar{\alpha}_q$. It follows from (4.2) that

$$\bar{\alpha}_{qm+(q-1)} \geq \bar{\alpha}_{qm+(q-2)} \geq \cdots \geq \bar{\alpha}_{qm+1} \geq \bar{\alpha}_{qm} \geq m\bar{\alpha}_q$$
 which implies $\bar{\alpha}_k \geq \bar{\alpha}_q[\frac{k}{q}] \geq \frac{\bar{\alpha}_q}{q}(k-q+1)$.

Proof of Proposition 2. Since $\{\bar{\alpha}_m\}_m$ is superadditive, i.e., $\bar{\alpha}_{k_1+k_2} \geq \bar{\alpha}_{k_1} + \bar{\alpha}_{k_2}$, by Fekete's superadditive lemma ([7]), the limit $\lim_{m\to\infty} \frac{\bar{\alpha}_m}{m}$ exists and is equal to $\sup_m \frac{\bar{\alpha}_m}{m}$. We shall verify that $\lim_{m\to\infty} \frac{\bar{\alpha}_m}{m} < +\infty$. Fix an integer q. For any $p=0,1,\cdots,(q-1)$, using (4.1) and (4.2), we have

Fix an integer q. For any $p = 0, 1, \dots, (q-1)$, using (4.1) and (4.2), we have $\bar{\alpha}_{qk+p} \leq \bar{\alpha}_{q(k+1)} \leq (k+1)\bar{\alpha}_q + k$. Letting $k \to \infty$, we have $\limsup_{m \to \infty} \frac{\bar{\alpha}_m}{m} \leq \frac{\bar{\alpha}_q}{q} + \frac{1}{q}$. \square

Set
$$\alpha^* = \lim_{m \to \infty} \frac{\bar{\alpha}_m}{m} = \sup_m \frac{\bar{\alpha}_m}{m}$$
.

5. Asymptotic formula

Now we will investigate

$$\kappa_t = \frac{\sum_{\sigma \in V_t} L(\sigma)}{\#V_t} = \frac{\sum_{k=0}^t \sum_{|\sigma|=k} L_k(\sigma)}{\sum_{k=0}^t \#\{\sigma : |\sigma|=k\}} = \frac{\sum_{k=0}^t \bar{\alpha}_k 3^k}{\sum_{k=0}^t 3^k},$$

where we let $L(\emptyset) = \bar{\alpha}_0 = \frac{\bar{\alpha}_0}{0} = 0$. At first, we have

$$\kappa_t \le \left(\sup_{m \ge 1} \frac{\bar{\alpha}_m}{m}\right) \frac{\sum_{k=0}^t k3^k}{\sum_{k=0}^t 3^k} = \alpha^* \frac{\sum_{k=0}^t k3^k}{\sum_{k=0}^t 3^k} \le (\alpha^* \chi(t))t, \tag{5.1}$$

where

$$\chi(t) = \frac{\sum_{k=0}^{t} k3^k}{t \sum_{k=0}^{t} 3^k} = \frac{(3t - \frac{3}{2}) + \frac{3}{2} \frac{1}{3^t}}{(3t)(1 - \frac{1}{3^{t+1}})} \le 1,$$
(5.2)

since $(3t - \frac{3}{2}) + \frac{3}{2} \frac{1}{3^t} - (3t)(1 - \frac{1}{3^{t+1}}) = \frac{1}{2} (2t - 3^{t+1} + 3) \frac{1}{3^t} < 0$ for any $t \ge 1$. We also have

$$\lim_{t \to \infty} \chi(t) = 1. \tag{5.3}$$

On the other hand, using $\bar{\alpha}_k \geq \frac{\bar{\alpha}_q}{q}(k-q+1)$ in (4.3), for any t we have

$$\kappa_t \ge \frac{\sum_{k=0}^t \frac{\bar{\alpha}_q(k-q+1)}{q} 3^k}{\sum_{k=0}^t 3^k} \ge \frac{\bar{\alpha}_q}{q} \left(\frac{\sum_{k=0}^t k \cdot 3^k}{\sum_{k=0}^t 3^k} - q + 1 \right),$$

that is

$$\kappa_t \ge \frac{\bar{\alpha}_q}{q} (\chi(t) \cdot t - q + 1). \tag{5.4}$$

Denote

$$\pi_t = \sum_{\sigma, \tau \in V_t} d_t(\sigma, \tau), \quad \mu_t = \sum_i \sum_{i \leq \sigma, i \leq \tau} d_t(\sigma, \tau),$$
$$\lambda_t = \sum_{\sigma \in V_t} d_t(\sigma, \emptyset), \quad \nu_t = \sum_{i \neq j} \sum_{i \leq \sigma, j \leq \tau} d_t(\sigma, \tau).$$

Then

$$\pi_t = \mu_t + \lambda_t + \nu_t.$$

By Lemma 1, we have

$$\mu_t = 3 \sum_{\sigma', \tau' \in V_{t-1}} d_{t-1}(\sigma', \tau') = 3\pi_{t-1},$$

and thus

$$\pi_t = 3\pi_{t-1} + \lambda_t + \nu_t. \tag{5.5}$$

(1) The estimate of λ_t : Using (5.1)-(5.2), we have

$$\lambda_{t} = \left(\frac{\sum_{\sigma \in V_{t}} d_{t}(\sigma, \emptyset)}{\#V_{t}}\right) \#V_{t}$$

$$= \left(\frac{\sum_{\sigma \in V_{t}} L_{t}(\sigma, \emptyset)}{\#V_{t}} + \frac{\sum_{\sigma \neq \emptyset} 1}{\#V_{t}}\right) \#V_{t}$$

$$= \kappa_{t} \#V_{t} + (\#V_{t} - 1) \leq \alpha^{*} t (\#V_{t}) + (\#V_{t} - 1).$$

$$(5.6)$$

(2) The estimate of ν_t : For $\sigma = i\sigma'$, $\tau = j\tau'$ with $i \neq j$, by Lemma 1 we have $d_t(\sigma, \tau) < d_t(i\sigma', i) + d_t(j\tau', j) + d_t(i, j) = d_{t-1}(\sigma', \emptyset) + d_{t-1}(\tau', \emptyset) + 1$. (5.7)

Notice that

$$d_{t-1}(\sigma', \emptyset) \le L(\sigma') + 1 \text{ for all } \sigma' \in V_{t-1}, \tag{5.8}$$

since $d_{t-1}(\sigma',\emptyset) = L(\sigma') + 1$ for $\sigma' \neq \emptyset$ and (5.8) is also true for $\sigma' = \emptyset$.

Using (5.1)-(5.2) and (5.7)-(5.8), we have the following upper bound of ν_t .

$$\nu_{t} = \sum_{i \neq j} \sum_{i \leq \sigma, j \leq \tau} d_{t}(\sigma, \tau)
\leq C_{3}^{2} \sum_{\sigma', \tau' \in V_{t-1}} (d_{t-1}(\sigma', \emptyset) + d_{t-1}(\tau', \emptyset) + 1)
\leq 3(\#V_{t-1})^{2} + 6(\#V_{t-1})^{2} \frac{\sum_{\sigma' \in V_{t-1}} (L(\sigma') + 1)}{\#V_{t-1}}
\leq 3(\#V_{t-1})^{2} + 6(\#V_{t-1})^{2} (\kappa_{t-1} + 1)
\leq 9(\#V_{t-1})^{2} + 6(\#V_{t-1})^{2} \cdot \alpha^{*} \cdot (t-1).$$
(5.9)

On the other hand, for $i \neq j$, using the Jordan curve theorem, we have

$$d_t(i\sigma', j\tau') \ge L_{t-1}(\sigma') + L_{t-1}(\tau').$$

Then we obtain the following lower bound of ν_t .

$$\nu_{t} = \sum_{i \neq j} \sum_{i \leq \sigma, j \leq \tau} d_{t}(\sigma, \tau)
\geq C_{3}^{2} \sum_{\sigma', \tau' \in V_{t-1}} (L_{t-1}(\sigma') + L_{t-1}(\tau'))
\geq 6 \frac{\sum_{\sigma' \in V_{t-1}} L_{t-1}(\sigma')}{(\#V_{t-1})} (\#V_{t-1})^{2}
\geq 6\kappa_{t-1} (\#V_{t-1})^{2}
\geq 6 \left(\frac{\kappa_{t-1}}{t-1}\right) (\#V_{t-1})^{2} (t-1),$$
(5.10)

where

$$\frac{\kappa_{t-1}}{t-1} \to \alpha^* \text{ as } t \to \infty \tag{5.11}$$

since

$$\frac{\kappa_{t-1}}{t-1} = \frac{\sum_{k=0}^{t-1} \left(\frac{\bar{\alpha}_k}{k}\right) k 3^k}{(t-1) \sum_{k=0}^{t-1} 3^k}$$

with $\lim_{k \to \infty} \frac{\bar{\alpha}_k}{k} = \alpha^*$ and $\lim_{t \to \infty} \frac{\sum_{k=0}^{t-1} k3^k}{(t-1)\sum_{k=0}^{t-1} 3^k} = \lim_{t \to \infty} \chi(t-1) = 1$.

Proof of Proposition 3.

(i) Upper bound of π_t : Using (5.6) and (5.9), we have

$$\lambda_t + \nu_t \le \psi(t) + 6(\#V_{t-1})^2 \alpha^*(t-1),$$
(5.12)

where $\psi(t) = \alpha^* t(\#V_t) + (\#V_t - 1) + 9(\#V_{t-1})^2$.

Fix an integer q. Using (5.5) and (5.12) again and again, for t > q we have

$$\pi_{t} \leq 3\pi_{t-1} + \psi(t) + 6\alpha^{*}(t-1)(\#V_{t-1})^{2}$$

$$\leq 3^{2}\pi_{t-2} + (\psi(t) + 3\psi(t-1)) + 6\alpha^{*}\left((t-1)(\#V_{t-1})^{2} + 18\alpha^{*}(t-2)(\#V_{t-2})^{2}\right)$$

$$\leq \dots \leq 3^{t-q}\pi_{q} + \sum_{k=q}^{t-1} 3^{t-k-1}\psi(k+1) + 6\alpha^{*}\sum_{k=q}^{t-1} 3^{t-k-1}k(\#V_{k})^{2}.$$

We can check that

$$\frac{3^{t-q}\pi_q + \sum_{k=q}^{t-1} 3^{t-k-1}\psi(k+1)}{t(\#V_t)^2} \to 0 \text{ as } t \to \infty.$$

In fact, we only need to estimate

(i)
$$\frac{\sum_{k=q}^{t-1} 3^{t-k-1} (k+1) (\#V_{k+1})}{t (\#V_t)^2} = \frac{\sum_{k=q+1}^{t} 3^{t-k} k \frac{3^{k+1}-1}{2}}{t (\frac{3^{t+1}-1}{2})^2} \le \frac{3}{2} \frac{\frac{t (t+1)}{2} 3^t}{t (\frac{3^{t+1}-1}{2})^2} \to 0 \text{ as } t \to \infty;$$
(ii)
$$\frac{\sum_{k=q}^{t-1} 3^{t-k-1} (\#V_{k+1}-1)}{t (\#V_t)^2} \le \frac{\sum_{k=q}^{t} 3^{t-k-1} (\#V_k)^2}{t (\#V_t)^2} \le \frac{1}{4} \frac{3^t \sum_{k=0}^{t} 3^{k+1}}{t (\frac{3^{t+1}-1}{2})^2} \to 0 \text{ as } t \to \infty.$$

(ii)
$$\frac{\sum_{k=q}^{t-1} 3^{t-k-1} (\#V_{k+1} - 1)}{t(\#V_t)^2} \le \frac{\sum_{k=q}^{t} 3^{t-k-1} (\#V_k)^2}{t(\#V_t)^2} \le \frac{1}{4} \frac{3^t \sum_{k=0}^{t} 3^{k+1}}{t(\frac{3^{t+1} - 1}{2})^2} \to 0 \text{ as } t \to \infty.$$

$$\lim \sup_{t \to \infty} \frac{\bar{D}(t)}{t} = \lim \sup_{t \to \infty} \frac{\pi_t}{t(\#V_t - 1)\#V_t/2}$$

$$\leq 6\alpha^* \lim_{t \to \infty} \frac{\sum_{k=q}^{t-1} 3^{t-k-1} k(\#V_k)^2}{t(\#V_t - 1)\#V_t/2}$$

$$= 12\alpha^* \lim_{t \to \infty} \frac{\sum_{k=q}^{t-1} 3^{t-k-1} k(\#V_k)^2}{t(\#V_t)^2}.$$

Using Stolz theorem, we have

$$\lim_{t \to \infty} \frac{\sum_{k=q}^{t-1} 3^{t-k-1} k (\#V_k)^2}{t (\#V_t)^2} = \frac{1}{3} \lim_{t \to \infty} \frac{\sum_{k=q}^{t-1} k (\#V_k)^2 / 3^k}{t (V_t)^2 / 3^t}$$

$$= \frac{1}{3} \lim_{t \to \infty} \frac{(t-1) (\#V_{t-1})^2 / 3^{t-1}}{t (\#V_t)^2 / 3^t - (t-1) (\#V_{t-1})^2 / 3^{t-1}}$$

$$= \lim_{t \to \infty} \frac{(t-1) (3^t - 1)^2}{6(t \cdot 3^{2t}) + 3^{2t+1} - 6 \cdot 3^t - 2t + 3}$$

$$= \frac{1}{6}.$$

That means

$$\limsup_{t \to \infty} \frac{\bar{D}(t)}{t} \le 2\alpha^*. \tag{5.13}$$

(ii) Lower bound of π_t : By (5.11), suppose there exists an integer k_0 such that $\frac{\kappa_{t-1}}{t-1} \geq (\alpha^* - \varepsilon)$ for all $t \geq k_0$. Using (5.5) and (5.10) we have

$$\pi_{t} \geq 3\pi_{t-1} + \nu_{t}$$

$$\geq 3\pi_{t-1} + 6(\alpha^{*} - \varepsilon)(\#V_{t-1})^{2}(t-1)$$

$$\geq 3^{2}\pi_{t-2} + 6(\alpha^{*} - \varepsilon)\left((\#V_{t-1})^{2}(t-1) + 3(\#V_{t-2})^{2}(t-2)\right)$$

$$\geq \cdots \geq 6(\alpha^{*} - \varepsilon)\sum_{k=k_{0}}^{t-1} 3^{t-1-k}k(\#V_{k})^{2}.$$

In the same way as above, we obtain that

$$\liminf_{t \to \infty} \frac{\bar{D}(t)}{t} \ge 2\alpha^*.$$
(5.14)

It follows from (5.13) and (5.14) that

$$\lim_{t \to \infty} \frac{\bar{D}(t)}{t} = 2\alpha^*.$$

6. Determination of α^*

6.1. Normal decomposition.

Given a word σ , let $C(\sigma)$ be the set of letters appearing in σ , $\#\sigma$ the cardinality of $C(\sigma)$, and $\sigma|_{-1}$ the last letter of σ .

For $\sigma = 222113112312$, $\omega(\sigma) = 4$, we can obtain a decomposition

$$\sigma = (222)(11311)(23)(12) = \tau_1 \tau_2 \tau_3 \tau_4$$

such that τ_2, τ_3, τ_4 contains 2 letters and $3\tau_4, 1\tau_3, 2\tau_2$ contains 3 letters, where 3, 1 and 2 are the last letter of τ_3, τ_2 and τ_1 respectively. In the same way, for σ with $\omega(\sigma) = l > 1$, we have the decomposition

$$\sigma = \tau_1 \tau_2 \cdots \tau_{l-1} \tau_l \text{ with } \omega(\sigma) = l > 1$$
(6.1)

satisfying

$$\#\tau_1 \le 2 \text{ and } \#\tau_i = 2 \text{ for } i \ge 2,$$

 $|\tau_1| \ge 1 \text{ and } |\tau_i| \ge 2 \text{ for } i \ge 2,$
 $\{\tau_i|_{-1}\} = \{1, 2, 3\} \setminus C(\tau_{i+1}),$

$$(6.2)$$

where the last one means the tail of τ_i with i < l is uniquely determined by τ_{i+1} . For σ with $\omega(\sigma) = 1$, we have $\#\sigma \le 2$, we give the decomposition

$$\sigma = \tau_1 \text{ with } \omega(\sigma) = 1$$
 (6.3)

and (6.2) also holds. We call the decomposition (6.1) or (6.3) the **normal decomposition** if (6.2) holds. For $k \geq 3$, let

$$T(k) = \#\{|\tau| = k \text{ with letters in } \{1, 2\} : \#\tau = 2\},$$

$$h(k) = \#\{|\tau| = k \text{ with letters in } \{1, 2, 3\} : \tau|_{-1} = 1 \text{ and } \#\tau \le 2\},$$

$$M(k) = \#\{|\tau| = k \text{ with letters in } \{1,2\} : \tau|_{-1} = 1 \text{ and } \#\tau = 2\},$$

$$e(k) = \#\{|\tau| = k \text{ with letters in } \{1, 2, 3\} : \#\tau \le 2\}.$$

Then

$$T(k) = 2^k - 2, \quad h(k) = 2^k - 1,$$

 $M(k) = 2^{k-1} - 1, \ e(k) = 3 \cdot 2^k - 3 = 3h(k).$

Notice that $e(k) = \#\{|\tau| = k : \omega(\tau) = 1\}$ and

$$2M(k) = T(k). (6.4)$$

Given $k_1 + \cdots + k_l = t$ with $k_1 \ge 1$ and $k_2, \cdots, k_l \ge 2$, consider

 $W_{k_1\cdots k_l} = \#\{|\sigma| = t : \sigma = \tau_1\tau_2\cdots\tau_{l-1}\tau_l \text{ are normal with } |\tau_i| = k_i \text{ for all } i\}.$

Lemma 6. If $l \geq 3$, then

$$W_{k_1\cdots k_l} = h(k_1) \left[(C_2^1 M(k_2)) \cdots ((C_2^1 M(k_{l-1}))) \right] (C_3^2 T(k_l)). \tag{6.5}$$

For l = 2, we have $W_{k_1k_2} = h(k_1)(C_3^2T(k_l))$.

Proof. Fix $l \geq 3$. At first we can choose two distinct letters $i_1 < i_2$ from $\{1, 2, 3\}$ such that $C(\tau_l) = \{i_1, i_2\}$, then the number of choices for τ_l is $C_3^2 T(k_l)$. When τ_l is given, the tail of τ_{l-1} , say 1, is uniquely determined by τ_l , then the number of choices for τ_{l-1} is $C_2^1 M(k_{l-1})$. Again and again, when τ_2 is given, then the tail of τ_1 is uniquely determined and number of choices for τ_1 is $h(k_1)$. Then (6.5) follows. \square

Then we have

$$\sum_{\substack{l \ge 1 \\ k_1 + \dots + k_l = t}} W_{k_1 \dots k_l} = e(t) + \#\{|\sigma| = t : \omega(\sigma) \ge 2\} = 3^t,$$

and

$$\sum_{|\sigma|=t} \omega(\sigma) = e(t) + \sum_{l \ge 2} \left(l \cdot \sum_{\substack{k_1 \ge 1, k_2, \cdots, k_l \ge 2\\k_1 + \cdots + k_l = t}} W_{k_1 \cdots k_l} \right).$$

Lemma 7. If $l \geq 2$, then

$$W_{k_1 \dots k_{l-1} k_l} = T(k_l) W_{k_1 \dots k_{l-1}}. \tag{6.6}$$

Proof. If $l \geq 3$, using (6.4) and (6.5), we obtain (6.6). If l = 2, we have

$$W_{k_1k_2} = h(k_1)(C_3^2T(k_2)) = T(k_2)(3h(k_1)) = T(k_2)(e(k_1)) = T(k_2)W_{k_1}$$
 (6.7)

since
$$3h(k) = e(k)$$
.

6.2. Proof of Proposition 4.

For $x = \cdots x_2 x_1 \in \Sigma$, let $x|_{-k} = x_k x_{k-1} \cdots x_1$. Given $k_1 \ge 1$ and $k_2, \cdots, k_q \ge 2$, consider

$$A_{k_1\cdots k_q} = \{x \in \Sigma : (x1)|_{-(k_1+\cdots+k_q)} = \tau_1\tau_2\cdots\tau_{q-1}\tau_q \text{ is a}$$
 normal decomposition with $|\tau_i| = k_i$ for all $i\}$.

Since 1 is the tail of τ_q , we have

$$\mu(A_{k_1\cdots k_q}) = \frac{W_{k_1\cdots k_q}/3}{3^{k_1+\cdots+k_q-1}} = \frac{W_{k_1\cdots k_q}}{3^{k_1+\cdots+k_q}}.$$
(6.8)

Suppose $x1 = \cdots x_{p_{n+1}} \cdots x_{p_n} \cdots x_{p_1} \cdots 1$ and $Y_t(x) = n$, then

$$(x1)|_{-t} = (x_t \cdots x_{p_n})(x_{(p_n-1)} \cdots x_{p_{n-1}}) \cdots (x_{p_2} \cdots x_{p_1})(x_{(p_1-1)} \cdots 1)$$

with $p_{n+1} > t \ge p_n$ and

$$x \in A_{k_1 k_2 \cdots k_{n+1}}$$
 with $k_1 + \cdots + k_{n+1} = t$ and $Y_t(x) = n$ (6.9)

where $k_1 = t - p_n + 1 (\geq 1)$ and $k_i = p_{n-i+2} - p_{n-i+1} (\geq 2)$ for $i \geq 2$.

Lemma 8. Suppose $J_n = S_1 + S_2 + \cdots + S_n$ and $Y_t = \sup\{n : J_n \leq t\}$ are defined in Section 2. Then

$$\liminf_{t \to \infty} \frac{\sum_{|\sigma|=t} d(\sigma, \emptyset)}{t3^t} \geq \liminf_{t \to \infty} \frac{\sum_{k=2}^{t-1} \mathbb{E}(Y_{t-k}) \frac{2^k - 2}{3^k}}{t},$$

$$\limsup_{t \to \infty} \frac{\sum_{|\sigma|=t} d(\sigma, \emptyset)}{t3^t} \leq \limsup_{t \to \infty} \frac{\sum_{k=2}^{t-1} \mathbb{E}(Y_{t-k}) \frac{2^k - 2}{3^k}}{t}.$$

Proof. For $Y_{t'} = \sup\{n : J_n \leq t'\}$, using (6.9) we have

$$\mathbb{E}(Y_{t'}) = \sum_{\substack{q \\ k_1 + \dots + k_q = t' \\ k_1 \ge 1, k_2, \dots, k_q \ge 2}} (q - 1) \mu(A_{k_1 \dots k_q}).$$

Using (6.6) and (6.8), we obtain that

$$\begin{split} &\frac{\sum_{|\sigma|=t}\omega(\sigma)}{3^t} \\ = & \frac{e(t)}{3^t} + \sum_{k=2}^{t-1} \sum_{l \geq 2} \left(l \cdot \frac{T(k)}{3^k} \sum_{\substack{k_1 + \dots + k_{l-1} = t-k \\ k_1 > 1, k_2, \dots, k_{l-1} > 2}} \mu(A_{k_1 \dots k_{l-1}}) \right) \end{split}$$

where $\frac{e(t)}{3^t} \to 0$. We notice that

$$\sum_{k=2}^{t-1} \sum_{l\geq 2} \sum_{\substack{k_1+\dots+k_{l-1}=t-k\\k_1\geq 1, k_2,\dots,k_{l-1}\geq 2}} l \cdot \frac{T(k)}{3^k} \mu(A_{k_1\dots k_{l-1}})$$

$$\leq 2 \sum_{k\geq 2} \frac{T(k)}{3^k} + \sum_{k=2}^{t-1} \sum_{\substack{l\geq 2\\k_1+\dots+k_{l-1}=t-k\\k_1\geq 1, k_2,\dots,k_{l-1}\geq 2}} (l-2) \frac{T(k)}{3^k} \mu(A_{k_1\dots k_{l-1}})$$

$$\leq 2 + \sum_{k=2}^{t-1} \mathbb{E}(Y_{t-k}) \frac{T(k)}{3^k}.$$

On the other hand, we have

$$\sum_{k=2}^{t-1} \sum_{l \geq 2} \sum_{\substack{k_1 + \dots + k_{l-1} = t - k \\ k_1 \geq 1, k_2, \dots, k_{l-1} \geq 2}} l \cdot \frac{T(k)}{3^k} \mu(A_{k_1 \dots k_{l-1}})$$

$$\geq \sum_{k=2}^{t-1} \sum_{l \geq 2} \sum_{\substack{k_1 + \dots + k_{l-1} = t - k \\ k_1 \geq 1, k_2, \dots, k_{l-1} \geq 2}} (l-2) \frac{T(k)}{3^k} \mu(A_{k_1 \dots k_{l-1}})$$

$$\geq \sum_{k=2}^{t-1} \mathbb{E}(Y_{t-k}) \frac{T(k)}{3^k}.$$

Notice that $\frac{e(t)}{3^t} \to 0$, then the lemma follows.

Proof of Proposition 4. Notice that $\frac{\mathbb{E}(Y_i)}{i} \to \frac{2}{9}$ as $i \to \infty$ and

$$\frac{\sum_{k=2}^{t-1} \left((t-k) \cdot \frac{2^k-2}{3^k} \right)}{t} \to 1 \text{ as } t \to \infty,$$

using Lemma 8 we obtain that

$$\alpha^* = \lim_{t \to \infty} \frac{\sum_{|\sigma| = t} \omega(\sigma)}{t3^t} = \lim_{t \to \infty} \frac{\sum_{k=2}^{t-1} \mathbb{E}(Y_{t-k}) \frac{2^k - 2}{3^k}}{t}$$

$$= \lim_{t \to \infty} \frac{\sum_{k=2}^{t-1} \frac{\mathbb{E}(Y_{t-k})}{t - k} (t - k) \frac{2^k - 2}{3^k}}{t}$$

$$= \lim_{i \to \infty} \frac{\mathbb{E}(Y_i)}{i} = \frac{2}{9}.$$

References

- R. Albert, A.-L. Barabási, Statistical mechanics of complex networks, Rev. Modern Phys., 74 (2002), 47–97.
- [2] A.-L. Barabási, R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509-512.
- [3] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Complex networks: structure and dynamics, Phys. Rep., 424 (2006), 175–308.
- [4] R. Chen, X. Fu, Q. Wu, On topological properties of the octahedral Koch network, Physica A 391 (2012) 880–886.
- [5] M. Dai, J. Liu, Scaling of average sending time on weighted Koch networks, J. Math. Phys. 53 (2012), no. 10, 103501.
- [6] K. Falconer, Fractal Geometry: Mathematical Foundations and Application (2nd Ed), John Wiley & Sons, 2003.
- [7] M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten (German), Math. Z. 17 (1923), no. 1, 228–249.
- [8] J. Guan, Y. Wu, Z. Zhang, S. Zhou, Y. Wu, A unified model for Sierpinski networks with scale-free scaling and small-world effect, Physica A 388 (2009) 2571–2578.
- [9] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713-747.
- [10] J. Kigami, A harmonic calculus on the Sierpinski spaces, Japan J. Appl. Math. 8 (1989), 259–290.
- [11] J. Kigami, Harmonic calculus on p.c.f. self-similar sets, Trans. Amer. Math. Soc. 335 (1993), 721–755.
- [12] J.-X. Liu, X.-M. Kong, Establishment and structure properties of the scale-free Koch network, Acta Phys. Sinica 59 (2010) 2244–2249.
- [13] C. Song, S. Havlin, H. A. Makse, Self-similarity of complex networks, Nature, 433 (2005), 392–395.
- [14] R. S. Strichartz, Differential equations on fractals. A tutorial. Princeton University Press, Princeton, NJ, 2006.
- [15] Y. Sun, M. Dai, L. Xi, Scaling of average weighted shortest path and average receiving time on weighted hierarchical networks, Physica A 407 (2014), 110–118.
- [16] D. J. Watts, S. H. Strogatz, Collective dynamics of 'small-world' networks, Nature, 393 (1998), 440–442.
- [17] Z. Zhang, S. Zhou, L. Chen, M. Yin, J. Guan, The exact solution of the mean geodesic distance for Vicsek fractals, J. Phys. A: Math. Theor. 41 (2008) 485102.
- [18] Z. Zhang, S. Zhou, L. Fang, J. Guan, Y. Zhang, Maximal planar scale-free Sierpinski networks with small-world effect and power law strength-degree correlation, EPL 79 (2007) 38007.
- [19] Z. Zhang, S. Zhou, Z. Su, T. Zou, J. Guan, Random Sierpinski network with scale-free small-world and modular structure, Eur. Phys. J. B 65 (2008) 141–147.
- [20] Y.-W. Zhou, J.-L. Liu, Z.-G. Yu, Z.-Q. Zhao, V. Anh, Fractal and complex network analyses of protein molecular dynamics, Physica A 416 (2014), 21–32.

SCHOOL OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, ZHEJIANG WANLI UNIVERSITY, 315100 NINGBO, P. R. CHINA

E-mail address: dgaofei@sina.com

Institute of Mathematics, Zhejiang Wanli University, 315100 Ningbo, P. R. China $E\text{-}mail\ address$: andole@msn.com

Institute of Mathematics, Zhejiang Wanli University, 315100 Ningbo, P. R. China $E\text{-}mail\ address$: xilifengningbo@yahoo.com

Institute of Mathematics, Zhejiang Wanli University, 315100 Ningbo, P. R. China $E\text{-}mail\ address$: yinshuhua@126.com