H5: Mekanik2.b Fysik A

Kevin Zhou

Oktober 2023

Opgave 1: Rullende fortov

Metrostationen "Montparnasse" i Paris har et rullende fortov med høj fart. På det første stykke accelereres fodgængere fra farten 4 km/h til 9 km/h, og på det sidste stykke bremses fodgængerne igen til 4 km/h. En fodgænger træder ind på det rullende fortov til tiden t=0 s. Grafen i fig. 1.1 viser fodgængerens fart som funktion af tiden.

- a. Bestem ud fra grafen fodgængerens acceleration til tiden t = 5.0 s
- b. Brug grafen til at bestemme længden af det rullende fortov.

Figure 1.1: Graf for fodgængerens fart som funktion af tiden.

Løsning:

a. Vi kan benytte numerisk differentiation med punkterne ved t = 0 og t = 10 til at estimere tangentens hældning ved t = 5.0 s.

$$a \approx \frac{(2.4 - \frac{4}{3.6}) \text{ m/s}}{10 \text{ s}} \approx 0.13 \text{ m/s}^2$$

Altså er accelerationen ved t = 5.0 s cirka 0.13 m/s^2 .

b. Længden af det rullende fortov kan bestemmes ved at tælle ternene under grafen. Disse tælles til at være cirka 67. Længden, som hvert tern svarer til er

$$0.5 \text{ m/s} \cdot 5 \text{ s} = 2.5 \text{ m}$$

Længden af fortovet kan nu regnes ud.

$$s_{\text{fortov}} = 67 \cdot 2.5 \text{ m} \approx 0.17 \text{ km}$$

Minrui Kevin Zhou 2.b H5: Mekanik

Altså er længden på fortovet 0,17 km

Opgave 2: Ind på motorvejen

På en motorvej kører trafikken med 110 km/h. En bil holder stille i nødsporet langs motorvejen. Bilens fører ønsker at køre ind på motorvejen igen. Under denne udkørsel accelererer bilen med en konstant acceleration på 1.7 m/s^2 .

a. Hvor lang tid vil det vare, før bilen har opnået farten 110 km/h?

Føreren af bilen vil undgå, at den bagvedkørende bil skal sagtne farten, når hun kører ind på motorvejen og accelererer op.

b. Hvor stort et hul i trafikken skal føreren vente på, når afstanden til den bagvedkørende bil skal være mindst 25 m under hele accelerationen?

Løsning:

a. Tiden, der går er farten over accelerationen.

$$t = \frac{v}{a} = \frac{110 \text{ km/h}}{1.7 \text{ m/s}^2} \approx 18 \text{ s}$$

Altså vil der gå 18 s før bilen har opnået 110 km/h.

b. Vi opstiller en ligning, hvor h er størrelsen på hullet i trafikken, som føreren skal vente på og s er afstanden bilerne mindst skal have under acceleration.

$$s = h - v \cdot t + \frac{v^2}{2 \cdot a} \implies h = s + v \cdot t - \frac{v^2}{2 \cdot a}$$

Vores værdier kan nu sættes ind i denne.

$$h = 25 \text{ m} + 110 \text{ km/h} \cdot \frac{110}{3.6 \cdot 1.7} \text{ s} - \frac{(110 \text{ km/h})^2}{2 \cdot 1.7 \text{ m/s}^2} \approx 0.29 \text{ km}$$

Altså skal hullet i trafikken mindst være 0,29 km, hvis afstanden til bagvedkørende bil skal være større end 25 m under accelerationen.

Opgave 3: Skydiving

For at vurdere hvornår faldskærmen skal udløses, foretog en udspringer en måling af farten under et fald fra stor højde. Grafen i fig. 1.2 viser sammenhængen mellem farten v under den første del af faldet og tiden t, der er gået fra udspringets begyndelse.

- a. Benyt grafen til at bestemme udspringerens acceleration til start, til tiden 5,0 s samt 15 s.
- b. Forklar, hvorfor grafen ser ud som den gør.

Faldskærmen udløses, når udspringeren er faldet 2 km

c. Benyt grafen til at vurdere, hvor lang tid det tager udspringeren at falde 2 km

Minrui Kevin Zhou 2.b H5: Mekanik

Figure 1.2: Sammenhængen mellem farten v under den første del af faldet og tiden t, der er gået fra udspringets begyndelse.

Løsning:

a. Den geometriske betydning af accelerationen i dette tilfælde er blot hældningen af tangenten til grafen. Disse findes så ved t = 0 s, t = 5.0 s og t = 10 s.

b. Grafen ser ud som den gør, da udspringeren opnår sin terminale fart. På det tidspunkt er opdriften og luftmodstanden lig med kraften, der trækker udspringeren ned mod jorden.

c. Den geometriske betydning af strækningen, som udspringeren falder, er blot arealet under grafen. Dette estimerer vi ved at tælle tern. Hvert tern er da

$$1 \text{ s} \cdot 5.0 \text{ m/s} = 5.0 \text{ m}$$

Fra t=0 s til t=12 s tælles der 88 tern. Vi går ud fra, at v=52,3 m/s, når t>12 s. Tiden det tager for udspringeren at falde 2 km må derfor være

$$t = \frac{2000 \text{ m} - 88 \cdot 5.0 \text{ m}}{52.3 \text{ m/s}} + 12 \text{ s} \approx 42 \text{ s}$$

Altså tager det udspringeren 42 s at falde 2 km.