)北京交通大学

Assignment 2 Zhang Xiao 张潮 18120953

1. (a) The passengers load:

Frequency calculations are based on Max-load

method z. $Ftrain = \frac{600 + 900}{to0} = 3 (Veh/hour)$

 $f_{BUS} = \frac{600 + 900}{300} = 5 (veh/hour)$

Headway (train) = $\frac{60}{F_{\text{train}}}$ = 20 minutes

Headway (Bus) = 60 = 12 minutes

 $\overline{W} = \frac{h}{Z}$, \overline{W} train = $\frac{20}{Z} = 10 \text{ min}$ \overline{W} bus = $\frac{12}{Z} = 6 \text{ min}$.

The wait -time wst: Tranh: 10 x 10 x (160+900+600) = 2767

Bus: 60 ×10 × (160+900+600) = 1660.

(b) The number of empty seats is 600-160 = 440, from Beijing to Zone 1.

Lost - wst of empty seats per hour Train: 440 x 25 = 11000

Bus: 440 x 20 = 8800

(c) Lost-wst of the lost-travel time

Train: $(160 \times \frac{45}{60} + 600 \times \frac{15}{60} + 900 \times \frac{60}{60}) \times 215 = \frac{2925}{bns}$ is better because of its

Bus: 1160 x 75 + 600 x 25 + 900 x 100) x2.5 = 4875/lower fares and shorter

(d) Income

Train = 160 x 25 + 900 x 33 + 600 x 11 = 40300

Bus : 160 × 20 + 900 × 25 + 600 × 8 = 30500

wait-time which would some money and time. But on the other hand, the time spent on the mad is more 1100 > 60).

(2). Profit = Income - cost

Train: 40300 - 2767 - 11000 - 2925 = 23608

Bus: 30500 - 1660 - 8800 - 4875 = 15165.

leii). As the operator, train is better than large bus because its profit is more (23608>15165). But in fact, due to the long wait time, some passengers wan will choose other public transport. then the profit will cut down.

(f) is on the next page w

- (f). O The cost of buying a train or a large bus.
 - 1) The pay of cabin crews.
 - 3 The cost of fuel
 - ⊕ The cost of pollution & Cleaning and maintenance costs.

2. (a). SDM (v,j).

ji	1	2	3	4	5	6
1	0	9(1-2)	311-3)	13 (1-3-4)	7(1-3-5)	13(1-3-5-6)
2		0	11 (2-3)	13(2-4)	15(2-3-5)	18 (2-4-6)
3			0	1013-4)	4(3-5)	10(3-5-6)
4		4		D	7 (4-5)	5(4-6)
5					0	6(5-6)
_6						0

21=18. so all of the distance of 12,j' belong to Sw.v (2,3) (1,3)(2,4) 13,4) 13,5) (1,2) (4.6) 15,6) (4.5) 1,2 9 (1-2) 14 (1-3-2) 14 (2-3-1) X X X X X X 1,3 3(1-3) 14 1,4 13(1-3-4) (1-3-5-4) (4-5-3-1) (4-6-5-3-1) (1-3-5-6-4) 1311-3-4) X X 1,5 X 7(1-3-5) 7(1-3-5) X X (1-3-5-6) 1,6 X (1-3-4-6) (1-3-5-6) (1-3-4-6) (1-3-5-6) X (3-1-2) (2-1-3) 11(2-3) X X 2.3 X X X X X X 2,4 13(2-4) X X X X 2,5 X 15(2-3-17) X (5-3-1-2) (2-1-3-5) (2-5-5) X X 18 X X 18(2-4-6) 2.6 X X X 12-4-6) X 10(3-4) 11(3-5-4) 11(4-5-3) (4-6-5-3) (4-6-5-3) 3.4 X X X X 1713-4-5) 413-5) 1713-4-5) X 3.5 X X X X

Remaining table is on the next page

J·J·J·J·文通大學

	(1,2)	(1,3)	(2,3)	(2,4)	(3.4)	(3,5)	(4.5)	(4.6)	(5,6)
3.6	X	χ	×	X		10 (3-5-6)	Х	(3-4-6)	(3-5-6)
415	X	X	Х	Х	1415-3-4)	14 (4-3-5)	7 14-5)	14-6-5)	(5-6-4)
4.6	X	×	X	×	X	*	13 (4-5-6)	5 (4-b)	14-5-6)
5.6	X	X	×	×	X	X	12 (6-4-5)	15-4-6)	15-6)

The table of SCP Analysis results:

1	1.2	1,2	1.2	1.3	1.4	1.4	1.4	1.4	1.4	1.4	,
DL	9	14	14	3	13	13	14	14	18	18	
vij)uv	(1,2)	(113)	(2,5)	(1,3)	(1,3)	(3,4)	13.5)	(4,5)	(4,6)	(516)	
divisi	9	2	7	2	2	6	4	7	2	0	
1	i	ı	1	1	1	0	1	1	0	1	٠.,
2,	1	0	1	0	0	0	0	0	0	D	
3	0	T	1	ı	1	1	1	. 1	0	1	
4	0	0	0	0	0	I,	1	1	1	- 1	
5	0	0	1	0	0	0	1	- 1	0	1	
Ь	D	0	0	0	0	1	1	T		1	

The smallest number of centers is Two.

One is at node 5 cuenter for node 1, 3, 4, 6).

another one is at node 2 (center for node 2).

(b). The largest distance from node $i \in N$ to one of the centers is l = 2.5. Which is decided by the center of (4,6).

The other three: 0 on the arcli,3), d(1,5) >,0:5 and d(3,5) >,0.5

on the mod3.4), d(3,5) >1.5 and d(4,5) > 1.5. D on orc(1,2) (2,3).(3,4). d(2,5)=2.5.

(c). The center is on the arc(2,3), d(2,8)=10,5, d(3,5)=0.5.

From node 2,4,6, there is the largest distance which is 10.5.

$$PH_1 = 830 \times \frac{20}{60} + 1210 \times \frac{10}{60} + 770 \times \frac{15}{60} = 670.83$$

$$I = 830 \times \frac{20}{60} + 1210 \times \frac{15}{60} = 670.83$$

EHI = $(1210-830) \times \frac{20}{60} + (1210-770) \times \frac{15}{60} = 236.7$ Both 1-2-4 and 1-2-4 6 are not the shortest paths. hence, DPHI = $120 \times \frac{30-15}{60} + 180 \times \frac{45-30}{60} = 75$.

 $\overline{W}_1 = \frac{1}{2F_1} \times \text{PassengerS}_1 = \frac{1}{2 \times 16.1} \times (830 + 540 + 140 + 170 + 100)$ = 53.6.

B 4-5-3

3 1-8-7

assengers	total: 910	7	
	100	100	
	140		
	100	550	
	60	100	
	100	100	
	100	100	
	120	120	
	120	20	
	40	30	
	30	80	

Passengers 1

total:320	7	
40		
3° 40 50		
30	190	
20	30	
30	30 50 20	
30	20	
	30	
20	0	
10	10	
20	50	

PH2= 9104 18 +550x 12 = 383

The shortest Path is 4-1-3, 15+14=29min

$$\overline{W}_2 = \frac{1}{2F_2} \times Passengers_1$$

The shortest path is 1-7. 12 min $17 + 26 - 12 \times 30 = 7.$