

	Date	Торіс	Page(s)		
Week 1	Monday, Aug 30 - Friday, Sep 3	Small-group meetups! Watch the welcome video explaining how the class works, and then join us for an optional zoom meeting to meet some of your classmates and chat with us face-to-face!	-		
	Monday, Sep 6	Holiday - no class			
Week 2	Wednesday, Sep 8	It's alive! Or is it? Characteristics of living things and why we study biology	6-7		
	Friday, Sep 10	The discovery of the cell The smallest living things	8-9		
	Monday, Sep 13	Laser Pointer Microscope Hands-on science project to observe living cells.	10-11		
Mark 2	Wednesday, Sep 15	The Parts of the Cell Meet the organelles. Prokaryotes & Eukaryotes	12-15		
Week 3	Friday, Sep 17	Unicellular vs Multicellular life A look at the incredible diversity of cellular life!	16-17		
	Science Vocabulary Crossword and Word Search! Reinforce the new words we've learned with two word games				
	Monday, Sep 20	Practice Quiz 1 Cell Quiz Show			
Week 4	Wednesday, Sep 22	Osmosis! All about cell membranes and why we salt our food			
	Friday, Sep 24	Proteins and Enzymes A deeper look at enzymes and cell proteins			
	Monday, Sep 27	Extract DNA from fruit Hands on science project			
Week 5	Wednesday, Sep 29	DNA The instructions for the cell			
	Friday, Oct 1	Mitosis and cell division How one cell becomes two			
Week 6	Monday, Oct 4	Sugars and Energy			
	Wednesday, Oct 6	Practice Quiz 2 Biomolecules Quiz Show			
	Friday, Oct 8	Where does energy come from? Eating vs making food			

	Date	Topic	Page(s)	
	Monday, Oct 11	Animals & Fungi Diversity of the consumers		
Week 7	Wednesday, Oct 13	Cellular Respiration Making energy in the mitochondria		
	Friday, Oct 15	Plants The big producers		
	Monday, Oct 18	Photosynthesis Making sugars in the chloroplast		
Week 8	Wednesday, Oct 20	The Single-Celled Archaea		
	Friday, Oct 22	DIY Petri Dishes Discover just how germy various surfaces are by culturing your own microorganisms		
	Monday, Oct 25	Practice Quiz 3 Diversity of Life Quiz Show		
Week 9	Wednesday, Oct 27	Systems of the human body The body is made of different systems of cells		
	Friday,Oct 29	What is blood? Introduction to circulatory system and different blood cells		
	Monday, Nov 1	Why we need to breathe An introduction to the respiratory system		
Week 10	Wednesday, Nov 3	How nerves work Introduction to the nervous system and the longest cells!		
	Friday, Nov 5	There's more of us than you! Introduction to the digestive system and the microbiome		

	Date	Topic	Page(s)
	Monday, Nov 8	The Immune System An introduction to the body's most fascinating system	
Week 11	Wednesday, Nov 10	How Antibodies Work The basic defenses and fighters against infections	
	Friday, Nov 12	You're Allergic to What? How a misbehaving immune system causes allergies	
	Monday, Nov 15	What makes things poisonous? What happens when things go wrong in the cell	
Week 12	Wednesday, Nov 17	Practice Quiz 4 Immune System Quiz Show	
	Wednesday, Nov 19	Disease-causing Microbes An overview of viruses, fungi, bacteria, and parasites	
Week 13	Nov 22 - Nov 26	Thanksgiving Break - no class	
	Monday, Nov 29	Pre-industrial Medicine A look at common 16 th century treatments	
Week 14	Wednesday, Dec 1	Placebos and Trials The evolution of modern medicine	
	Friday, Dec 3	The Story of Smallpox How a deadly disease led to the first vaccine	
	Monday, Dec 6	Tetanus & Rabies Two of the most fearsome microbes	
Week 15	Wednesday, Dec 8	Malaria Not a bacteria!	
	Friday, Dec 10	Candida and Black Mold Fungi can be both friend or foe	
Week 16	Monday, Dec 13	Penicillin & the discovery of antibiotics How a moldy dish led to medicine	
	Wednesday, Dec 15	MRSA and antibiotic resistance How overuse of a good tool is breeding superbugs	
	Friday, Dec 17	Practice Quiz 5 Microbiology Quiz Show	

This is the current draft of our syllabus as of July 30th, 2021. Some minor changes to content may occur before the class starts. Dates and times will not change. Classes will be taught at 1:00 pm Eastern (10:00 a.m. PDT) with the Monday class repeated at 4:00 p.m. EDT.

Correlation with Next Generation Science Standards (in progress)

How to get the most from this course:

This course can be used in a variety of ways! You can participate passively (just watch the videos), or actively by filling out the notes and completing the projects. You can do the entire course at once or participate in one lesson or section at a time.

For BEST learning, we recommend the following:

- Read the pages that go with each lesson before watching the video. Take 10-15 minutes to see if you can fill in the blanks.
- On "gameshow review" days, take the guiz before you watch the class!
- In each of the science activities, make predictions before you conduct the experiments.
- Download the answer key for the notes, but don't look at the answers until after you give things a try yourself!

What makes something alive? This is not an easy question to answer! Most definitions agree that living things are made of cells and include all the following qualities or abilities:

The question of whether or We can be programmed to have all of the characteristics of life! not Al is alive is currently being debated, and will be Except being one of the more important made of cells. questions of the century! So? Cells shouldn't even be on the list anyway. Write down three of the best reasons for each side of the argument and then share your opinion. What do you think? What are 3 of the best arguments for technology or AI to be considered alive: What are 3 of the best arguments for technology or AI to be considered nonliving: 2₀______ What is your opinion?

COULD ARTIFICIAL INTELLIGENCE (AI) BE CONSIDERED ALIVE?

-SCIENCE MMM

THE DISCOVERY OF THE CELL

FOR THOUSANDS OF YEARS. PEOPLE KNEW THAT CURVED GLASS MAGNIFIED DETAILS.

THEN, IN 1590, TWO SPECTACLE MAKERS CREATED THE FIRST COMPOUND MICROSCOPE.

HANS & ZACHARIAS JANSSEN Dutch glassmakers

THE NEXT CENTURY SAW HUNDREDS OF **EXPERIMENTS ON** IMPROVING THE MAGNIFICATION OF MICROSCOPES AND MANY PUBLICATIONS ABOUT WHAT WAS **OBSERVED** UNDER THE LENS.

THE MOST FAMOUS OBSERVATIONS WERE MADE BY ROBERT HOOKE...

ROBERT HOOKE'S MICROSCOPE 1665

THIS SPECIMEN OF CORK PLANT IS FULL OF PORES! THEY LOOK LIKE THE PLAIN UNFURNISHED ROOMS OF MONKS.

...AND DUTCH SCIENTIST ANTON VON LEEUWENHOEK.

I MADE INCREDIBLY TINY LENSES BY MELTING, GRINDING, AND BLOWING GLASS.

THERE IS ONLY ONE LENS IN THIS MICROSCOPE, BUT THE QUALITY IS SO GOOD I CAN SEE WITH 200 TIMES MAGNIFICATION!

OVER THE NEXT 200 YEARS, MICROSCOPES BECAME POWERFUL ENOUGH 10 SEE ATOMS AND WE DISCOVERED HOW THE PARTS OF CELLS WORKED!

S IT MADE	OF CELLS	OR NOT? Wr	rite the words l	below in the	correct oval:	
salt	tomato	wood	cement	mold	sand	cabbage
pepper	water	onion	platypus	plastic	yogurt	grass
Made o	f cells or car	me from ce//s	,	of made of	cells or deri	red from con
			,	MO		cells
r notes:						

Hands-on Science Project

LASER POINTER MICROSCOPE

MATERIALS:

Tape

Water from a pond, dog dish, aquarium, or other source that will have microbial life.

SAFETY WARNING

NEVER POINT A LASER BEAM AT ANYONE'S EYES. LOOKING DIRECTLY AT A LASER BEAM CAN PERMANENTLY DAMAGE YOUR EYES.

- 1. Straighten out a large paper clip and then bend one end so that it forms a small loop.
- 2. Test the loop to be sure that It holds a water droplet. When you dip it in water and then lift it out again, a drop of water should stay inside the loop. If the loop does not hold water then bend it again and make it smaller.
- 3. Attach the paperclip to the laser pointer with tape so that the loop is directly in front.
- 4. Carefully dip the wire loop into a water source that will have bacteria and other microbial life. Pond water, aquarium water, or water from a pet drinking dish are all good choices.
- 5. Shine the laser toward a white surface. For best results, conduct this activity in a darkened room.
- 6. Observe your results and experiment with different sources of water.

SAFETY WARNING

WASH YOUR HANDS AFTER HANDLING SAMPLES OF WATER THAT COULD CONTAIN MICROBES.

For BEST results

Choose a source of water that is chlorine free and exposed to sunlight.

Observe multiple drops of water from different sources.

Set up the laser in a dark room and shine it on a flat white surface.

Arrange the laser so that no one is touching it. The less it moves, the better you'll see the microbes in the water.

Adjust the distance between the laser and flat white surface to see which distance gives you the best view.

WHICH SOURCE OF WATER HAD THE MOST MICROBES?

It's time to go exploring! Gather some clean containers or plastic bags and collect water from several sources. Be sure to use different paper clips OR to clean out your paperclip before testing each sample in your laser pointer microscope. If you gather a saliva sample, do NOT put the paperclip in your mouth! Spit into a container and sample the saliva from there. Before you gather your samples, make a prediction about which water will have the most microbes. Then, after observing each sample put a **check mark** by the type of water that had microbes, and a **zero** by water that was microbefree. Put a **double check mark** by the water that had the MOST microbes. Write NA if you didn't test that type of water.

YOUR PREDICTION:					
The water with the most microbes will be					
Water from the kitchen sink.					
	Water from a natural outdoor source that looks clean like a lake or river.				
	Water from a natural outdoor source that looks dirty or scummy like a puddle, swamp, or pond.				
A drop of saliva.					
Water from a pet's water dish.					
Water from the tank (not the bowl	!) of a toilet.				
Other:					
YOUR RESULT:					
The water with the most observed microbes was					
WHICH OF THESE DID YOU OBSERVE USING Your notes:					
YOUR LASER POINTER MI Check all that appl					
Clean water with no microbes. Circular cells that drifted.	Sausage or worm- like cells.				
A swimmer! A cell that is moving itself through the water rather than drifting.	Something with a tail or flagella.				

The Parts of a Cell

FILL IN THE BLANKS USING THESE WORDS:

DNA	proteins	living	org	anelles	
plasma	membrane	dead	cytoplasm	diversity	
The ce	lls that Ro	bert Hoo	ke saw in	the bark o	f a cork tree were actually
This is	why they	looked so	empty		cells contain several important parts or
		tha	at help the	m survive.	Ribosomes build The
nucle	us, if a cel	I has one	, contains	the	Mitochondria or chloroplasts are
involv	ed in dige	sting or c	reating fo	od for the o	ell, and all of this activity is contained
withi	n a cell wa	all or			The liquid inside a cell is
called	the		· · · · · · · · · · · · · · · · · · ·	Not eve	ery type of cell will contain all of these
parts	because t	here is in	credible _		between different types of cells!
	DRAW LI	NES TO CONN	ECT THE NAME	& DESCRIPTION	WITH THE CORRESPONDING PICTURE

Cytoplasm

The liquid inside the cell. It's mostly water.

Nucleus

Keeps the DNA separate from the rest of the cell.

Chloroplast

Uses CO₂ and sunlight to create sugars.

Plasma Membrane

Keeps the cytoplasm inside the cell.

Cell Wall

Keeps the cytoplasm inside the cell.

Flagella

Helps the cell move. Works like a little paddle or tail to push it through the water.

Ribosome

The thing that makes the proteins.

DNA

The instructions for making proteins and other stuff for the cell.

Mitochondria

Uses oxygen and sugar to create energy for the cell.

PROKARYOTIC CELLS

Your notes:			

IS SOMETHING AS SMALL AS A SALMONELLA BACTERIUM REALLY ALIVE? LET'S CHECK:

METABOUSM ✓

IT EATS FOOD AND PRODUCES WASTE.

SUGARS GO IN.

TOXINS COME OUT.

RESPONDS TO STIMULI √

WILL MOVE TOWARD A WETTER AND BETTER ENVIRONMENT

WHEN IT FINDS A GREAT LOCATION IT FORMS A **BIOFILM**, A COLONY OF CELLS STUCK TOGETHER WITH SLIME.

HA HA! THEY'LL NEVER GET RID OF US NOW! TEAM WORK MAKES THE DREAM WORK!

GROWTH ✓ REPRODUCES ✓
THIS IS WHY YOU HEAR ABOUT
SALMONELLA "OUTBREAKS" IN / \ FOOD. FIRST YOU HAVE ONE,
THEN TWO THEN MILLIONS.
$\wedge \wedge \wedge \wedge \wedge$

EUKARYOTIC CELLS

BONUS ORGANELLE!

What is the crazy-shaped thing around the nucleus with ribosomes stuck to it? It's called the **endoplasmic reticulum** and it helps make proteins. We won't be talking about it more in this class, but of all the organelles, it has one of the coolest names!

RIBOSOMES which make proteins

Unicellular vs Multicellular

Can you place these organisms in their matching category?

Taxonomy is the study of classifying groups of organisms based on shared characteristics. Classification systems have changed a lot in recent years thanks to the ability compare DNA sequences. We'll learn more about taxonomy in Biology 2.

Five misclassified marvels

Scientists group things into categories to better understand them, but some organisms don't exactly fit! This page is dedicated to five organisms that people often mistake for something else. One is already filled out as an example. Choose 4 more from these lists to fill in the remaining blocks!

Plant or Fungus? Caloplaca marina (Orange Sea Lichen), Sarcodes sanguina (Snow Flower), Monotropa uniflora (Ghost Pipe), or Clathrus archeri (Octopus Stinkhorn):

Animal or Plant? Diploria labyrinthiformis (Brain Coral), Xestospongia muta (Giant barrel sponge), Elysia chlorotica (Emerald Elysia), or Pseudocolochirus violaceus (Sea Apple)

Cellular Word Search

There are a lot of new words to learn when studying biology. Repetition is the best way to learn them, and word games can be part of that! Find each of the hidden words in the word-search. The words can run in any direction: horizontal or diagonal, and the letters might go left to right or right to left!

METABOLISM

MEMBRANE

RIBOSOME

MITOCHONDRIA

DEOXYRIBONUCLEIC ACID

CYTOPLASM

NUCLEUS
CHLOROPLAST
FLAGELLA
ARCHAEA
PROKARYOTIC
UNICELLULAR

MULTICELLULAR
EUKARYOTIC
PROTIST
CILLIA
ORGANELLE

Biology Crossword

Use the clues below to fill in the crossword puzzle.

Horizontal Words

- 1. The organelle that performs photosynthesis.
- 2. The 'powerhouse' of the cell.
- 3. Keep's the cell intact by surrounding the cell.
- 4. A tail that some cells use to travel through fluid.
- 5. The central feature of most plant, fungus, or animal cells.

Vertical Words

- 6. A structure within a living cell.
- 7. Organelles that assist the function of DNA, very common throughout the cell.
- 8. An organism that is eukaryotic but not a fungus, animal, or plant.
- 9. Contains all of the organelles.

(I) QUIZ TIME!

ANSWER THE QUESTIONS TO SEE WHAT YOU LEARNED!

\sim	
(1)	Which of these is the best simple definition for
\bigcirc	the word homeostasis?

- A. The ability to regulate internal conditions.
- B. The ability to use energy.
- C. The ability to reproduce.
- D. The ability to respond to a stimulus.
- (2) What are two characteristics of living things?
- When did humans invent a microscope that can see structures inside a cell that are smaller then the wavelength of light (< 500 nanometers)?
 - A. 1665
 - B. 1850
 - C. 1903
 - D. 1951
- No cell is large enough to be viewed without the help of a microscope.
 - A. True
 - B. False
- (5) Which type of cell has a nucleus?
 - A. Prokaryotic
 - B. Eukaryotic
- 6 There are bacteria and fungi spores floating in the air.
 - A. True
 - B. False
- Which domains of life have both single-celled and multicelled organisms?
 - A. Only protists
 - B. Archaea and eubacteria
 - C. Fungi and protists
 - D. Only archaea
 - E. Only fungi
- (8) Which of the following are prokaryotic?
 - A. Bacteria and archaea
 - B. Fungi, animals, and plants
- Protists are which type of cell?
 - A. Prokaryotic
 - B. Eukaryotic

- (10) A cell can only have one nucleus.
 - A. True
 - B. False
- The average prokaryotic cell is _____ than the average eukaryotic cell.
 - A. 2 to 5 times smaller
 - B. 20 to 100 times smaller
 - C. More than 1,000 times smaller
- (12) Which organelle is responsible for making proteins in the cell?
 - A. Mitochondria
 - B. Ribosome
 - C. Plasma membrane
 - D. Endoplasmic reticulum
- (13) A single drop of pond water will likely contain:
 - A. Bacteria only.
 - B. Bacteria and protists only.
 - C. Bacteria, archaea, protists, and fungi.
- Which organelle uses oxygen and sugar to create energy for the cell?
 - A. Mitochondria
 - B. Chloroplast
 - C. Nucleus
 - D. Flagella
- Why do bacteria grow better in a petri dish than on a countertop?
 - A. The air above the petri dish is more humid than the air above the countertop.
 - B. The petri dish surface has sugars and proteins built into it.
 - C. The Petri dish is not cleaned with soap or disinfectant.
 - D. All of the above.
- Which organelle is only found in plants or protists?
 - A. Chloroplasts
 - B. Mitochondria
- Eukaryotic cells are bigger than prokaryotic cells.
 - A. True
 - B. False

$\overline{}$	Vhich of these is the best simple definition for the word metabolism?	
E	A. The ability to use energy	
	B. The ability to use energy C. The ability to reproduce	
	D. The ability to respond to a stimulus	
_		
19) [Draw a simple bacterial cell. Label the plasma membrane, DNA, ribosomes, and flagella.	
<i></i>		
(
		/
<u> </u>		
20) [Draw a simple animal cell. Label the plasma membrane, DNA, ribosomes, mitochondria, and nucleus.	
/		\
(
/		/
	SCIENCE MAM	_
		2

BIOMOLECULES

The molecules that make living things! After completing each topic, return to this page and draw or write a favorite fact you learned about each biomolecule.

POLYMERS AND MONOMERS

USE THE WORDS BELOW TO FILL IN THE BLANKS WITH THE CORRECT MONOMER AND POLYMER FOR EACH PICTURE:

DNA stories	beads proteins		letters nucleotides	amino acids nucleus
Monomer: Polymer:	imes and bad times it was the worst of times	ad stur	Clue: This polymer h	nas the shape of a spiral or helix
Monomer:			Monomer:	
Polymer:			Polymer:	
	er is used to store energy	/. •••	H C H	Clue: One name for this polymer is High Density Polyethylene. It's one of the more common plastics.
Monomer:			Monomer:	
Polymer:			Polymer:	

osmosis impermeable semipermeable

A substance that nothing will pass through is called ______. You could think of it as a solid closed door. Something that is

screen door; it lets the air through but keeps the bugs outside.

Grape skins, gummy candy, and cell membranes are all semipermeable. They allow water and other small molecules to pass through them. This movement of water through a semipermeable membrane is called .

Which examples of osmosis have you seen?

A grape left in the sun shrivels into a raisin.

A cucumber		
soaked in brine		
becomes a pickle		

A gummy bear left in water expands.

Why does water move out of a cucumber or into dried fruit? Whenever there is something like salt or sugar (**the solute**) dissolved in water (**the solvent**), water will always move toward the area with a high concentration of solutes.

DRAW LINES TO SHOW WHAT WOULD HAPPEN IF A SEMIPERMEABLE BAG OF SALTY WATER WAS PLACED IN ANOTHER CONTAINER OF SALTY WATER. THE DOTS REPRESENT THE AMOUNT OF SALT, OR SOLUTE.

Lipids Make Membranes

If you mixed a large spoonful of each of the biomolecules into a glass of water, would it dissolve or not? Color in the cup with your prediction. Sugar has already been completed as an example.

Protein Powder

DNA

oil

FILL IN THE BLANKS USING THESE WORDS:

Sugar

	phospholipids	channel				
	cholesterol	hydrophobic	hydrophilic			
The membranes of animal cells are made of						
These molecules have a						
"head" that is(attracted to						
water) and a "tail" that is						
(repelled by water).						
molecules stabilize the membrane and						
		proteins can o	oen to allow			
m	molecules to pass through and enter the cell.					

