- The solution to Ax = b, where A is a square matrix:
 - A is not singular $\Rightarrow x = A^{-1}b$.
 - A is singular and $b = 0 \Rightarrow x$ is in the nullspace of A.
 - A is singular and $b \neq 0 \Rightarrow$ no solution or infinitely many solution.
- A matrix $R_{m \times n}$ is called a **row echelon matrix** if
 - The nonzero rows come first and the pivots are the first nonzero entries in those rows.
 - Below each pivot is a column of zeros.
 - Each pivot lies to the right of the pivot in the row above.
- A matrix $R_{m \times n}$ is called a **row-reduced echelon matrix** if
 - The nonzero rows come first and the pivots are the first nonzero entries in those rows and normalized to be 1.
 - Above and below each pivot is a column of zeros.
 - Each pivot lies to the right of the pivot in the row above.
- To any matrix $A_{m \times n}$, there exist a permuatation matrix P, a lower triangular matrix L w/ unit diagnoal, and a row echelon matrix $U_{m \times n}$ such that PA = LU. Every matrix $A_{m \times n}$ is **row equivalent** to a row echelon matrix.
- Homogeneous cases (b = 0):
 - The components of x which correspond to columns w/ pivots are called **pivot variables**, and those corresponding to columns w/o pivots are called **free variables**.
 - The pivot variables are expressed in terms of free variables by back substitution.
 - Set one free variable to be 1 and the others to be zero and solve Ux = 0 for pivot variables.
 - The combination of the solutions from each free variable is the solution.
 - The solution set of Ax = 0 is the nullspace of A, i.e. $x \in N(A)$.
- If a homogeneous system $A_{m \times n} x = 0$ has more unknowns than equations (m < n), it has a nontrivial solution.
- The nullspace is a subspace of the same dimension (degree of freedom) as the number of free variables.
- Inhomogeneous cases $(b \neq 0)$:
 - The pivot variables are expressed in terms of free variables by back substitution.
 - Particular solution: Set all free variables to 0 and solve $Ux = L^{-1}b$ for pivot variables.
 - Homogeneous solution: Set one free variable to be 1 and the others to be zero and solve Ux = 0 for pivot variables.
 - $x = x_p + x_h$, where x is the general solution, x_p is the particular solution, and x_h is the homogeneous solution.
- The set of general solutions is not a subspace since it does not contain the zero vector (origin). It is parallel to the nullspace of A.
- Given a matrix $A_{m \times n}$, if there are r pivots, there are r pivot variables and n-r free variables. The

number of pivots, r, is called the **rank** of A.

- Suppose elimination reduces $A_{m \times n} x = b$ to $Ux = L^{-1}b$ and there are r pivots. Then, the last m r rows of U are zeros, and there are n r free variables.
 - If r = m, threre are n r free variables and the column space $C(A) = \mathbb{R}^m$. There's always a solution, which is the sum of particular solution and a homogeneous solution.
 - If r = n, there are no free variables and the nullspace contains x = 0 only, i.e. $N(A) = \{0\}$. There is a solution only if the last m - r elements of $L^{-1}b$ are zeros as well.
- Let V be a vector space over F. A nonempty subset S of V is said to be **linearly dependent** if there exist distinct vectors v_1, v_2, \ldots, v_n in S and at least one nonzero scalars $\alpha_1, \alpha_2, \ldots, \alpha_n$ in F s.t. $\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = 0$; Otherwise, S are **linearly independent**.
- To show that v_1, v_2, \ldots, v_n are linearly independent, we should verify that if $\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = 0$ for some $\alpha_i \in F$, then α_i must be zero for all i.
- In \mathbb{R}^2 , if v_1 and v_2 are not colinear iff they are linearly independent. Any three vectors in \mathbb{R}^2 are linearly dependent.
- If $v_1 = v_2$, the set $\{v_1, v_2, \dots, v_n\}$ are linearly dependent.
- Any set which contains zero vector is linearly dependent.