Chapitre 2.3 : Séries semi-convergentes et produit de Cauchy

Séries semi-convergentes

Mais on a pas les outils pour voir si elle est "seulement" convergente. *Idem* pour la série $\sum_{n>1} \frac{(-1)^n}{n}$.

Donc le but ici, c'est de trouver des critères de convergence pour des séries qui ne sont pas ACV.

Définitions et premières propriétés

Définition: Une série est dite semi-convergente (SCV) si elle est convergente mais pas absolument convergente.

 $oldsymbol{0}$ Remarque : On considère ici les les séries à terme général $u_n\in\mathbb{C}$ ou \mathbb{R} (on a pas $u_n\geq 0$).

Proposition: "étrange"

Soit $\sum_{n\geq 0} u_n$ une série à terme général dans \mathbb{R} .

On considère la série $\sum_{n>0} u_n^+$ et $\sum_{n>0} u_n^-$.

On a $\sum_{n\geq 0} u_n$ est SCV $\Rightarrow \sum_{n\geq 0} u_n^+$ et $\sum_{n\geq 0} u_n^-$ divergent.

Preuve:

On rappelle que $u_n^+ = \max(u_n, 0)$ et $u_n^- = \max(-u_n, 0)$ et donc $u_n = u_n^+ - u_n^-$ (2) et $|u_n| = u_n^+ + u_n^-$ (1).

- Si $\sum_{n>0} u_n^+$ et $\sum_{n>0} u_n^-$ convergent, alors $\sum_{n>0} u_n$ ACV par (1) : **absurde**.
- Si l'une des séries converge et l'autre diverge, alors $\sum_{n\geq 0} u_n$ diverge par (2).
- Seule possibilité donc : $\sum_{n\geq 0} u_n^+$ et $\sum_{n\geq 0} u_n^-$ divergent.

Proposition:

Considérons $\sum_{n>0} u_n$ une série à terme général dans \mathbb{C} .

 $\sum_{n\geq 0}u_n$ est SCV $\Leftrightarrow \sum_{n\geq 0}Re(u_n)$ et $\sum_{n\geq 0}Im(u_n)$ sont CV et l'une d'entre elles est SCV.

Preuve:

 \Rightarrow / Si $\sum_{n\geq 0} u_n$ est CV, alors $\sum n = 0^N u_n = \sum_{n=0}^N Re(u_n) + i \sum_{n=0}^N Im(u_n)$. Donc on a la CV des séries $\sum_{n\geq 0} Re(u_n)$ et $\sum_{n\geq 0} Im(u_n)$.

Montrons que l'une des deux séries n'est pas ACV.

En effet on a $\forall n \in \mathbb{N}, |u_n| \leq |Re(u_n)| + |Im(u_n)|$ si $\sum_{n \geq 0} |Re(u_n)|$ et $\sum_{n \geq 0} |Im(u_n)|$ ACV.

- ⇒ une des deux séries n'est pas ACV.
- ⇒ une des deux séries est ACV.

$$\Leftarrow$$
 / On a que $\sum_{n\geq 0}Re(u_n)$ et $\sum_{n\geq 0}Im(u_n)$ sont CV. Donc $\sum_{n\geq 0}u_n$ est CV.

Montrons que $\sum_{n\geq 0} u_n$ est SCV.

On a : $|Re(u_n)| \le |u_n|$ et $|Im(u_n)| \le |u_n|$, $\forall n \in \mathbb{N}$. Si $\sum_{n \ge 0} u_n$ était ACV, alors $\sum_{n \ge 0} Re(u_n)$ et $\sum_{n \ge 0} Im(u_n)$ seraient ACV ce qui est contraite à l'hypothèse "l'une d'entre elles est SCV".

B Critère d'Abel

 $f \Delta$ Application : On veut donner un critère pour la convergence d'une série du type $\sum_{n\geq 1}rac{e^{in heta}}{n}=a_nb_n$ avec $a_n=e^{in heta}$ et $b_n = \frac{1}{n}$.

Théorème : Critère d'Abel

On considère la série $\sum_{n\geq 0}u_n$ où $\sum_{n\geq 0}u_n\in\mathbb{C}$, avec $u_n=a_nb_n$ tels quels :

- 1. (a_n) est réelle, décroissante, et $\lim_{n\to\infty} a_n = 0$.
- 2. (b_n) est complexe telle que $B_N = \sum_{n=0}^N b_n$, i.e. (B_N) est bornée.

Alors la série $\sum_{n\geq 0} a_n b_n$ converge.

1 Rappel: Une suite complexe est bornée: $\exists M > 0, \forall n \in \mathbb{N}, |z_n| \leq M$, où $|z_n| = \sqrt{Re(z_n)^2 + Im(z_n)^2}$.

Preuve:

On a
$$B_N = \sum_{n=0}^N b_n$$
.

On va utiliser la "transformation d'Abel". On a
$$B_N=\sum_{n=0}^N b_n$$
. Alors $B_k-B_{k-1}=b_k,\, \forall k\geq 1$ et $B_0=b_0$.

On part de la somme partielle de la série :

$$\forall n \in \mathbb{N}, \sum_{k=1}^{N} a_k b_k = a_0 b_0 + \sum_{k=1}^{N} a_k (B_k - B_{k-1})$$

$$= a_0 b_0 + \sum_{k=1}^{N} a_k B_k - \sum_{k=1}^{N} a_k B_{k-1}$$

$$= a_0 b_0 + \sum_{k=1}^{N} a_k B_k - \sum_{k=0}^{N-1} a_{k+1} B_k$$

$$\forall n \in \mathbb{N}, \sum_{k=1}^{N} a_k b_k = a_0 b_0 + \sum_{k=1}^{N} a_k (B_k - B_{k-1}) \\ = a_0 b_0 + \sum_{k=1}^{N} a_k B_k - \sum_{k=1}^{N} a_k B_{k-1} \\ = a_0 b_0 + \sum_{k=1}^{N} a_k B_k - \sum_{k=0}^{N-1} a_{k+1} B_k \\ = a_0 b_0 + \sum_{k=1}^{N-1} (a_k - a_{k+1}) B_k + a_N B_N - a_1 b_0 = \sum_{k=0}^{N} (a_k - a_{k+1}) B_k + a_n B_N \text{ avec } a_n \text{ tend vers 0 et } B_n \text{ bornée}$$

Etude de $\sum_{k=0}^N (a_k-a_{k+1})B_k$, séries à termes dans $\mathbb C.$ Etudions donc l'ACV :

$$|a_k - a_{k+1}B_k||a_k - a_{k+1}||B_k|| < (a_k - a_{k+1})M \operatorname{car} |B_k| < M$$

 $\begin{array}{l} |a_k-a_{k+1}B_k||a_k-a_{k+1}||B_k| \leq (a_k-a_{k+1})M \text{ car } |B_k| \leq M \\ \text{Or la s\'erie } \sum_{k=0}^N (a_k-a_{k+1})M \text{ est de m\^eme nature que } \sum_{k=0}^N a_k-a_{k+1} \text{ (car } M \text{ est un scalaire non nul).} \end{array}$

Et la CV de cette série téléscopique est évidente.

💬 Note de rédaction : Il y avait beaucoup d'indices et d'infos, j'attends la vérification de Laurent pour être sûr que c'est correct (j'ai un doute sur la fin).

Donc la série $\sum_{n\geq 1} \frac{e^{in\theta}}{n}$ converge, mais pas ACV, donc elle est SCV.

🛂 Application : Etudier la convergence, l'absolue convergence et la semi-convergence de la série $\sum_{n\geq 1}rac{e^{inv}}{n^lpha}$ avec $\theta \in \mathbb{R}, \alpha \in \mathbb{R}_+^*$.

1 Remarque : Dans le critère d'Abel, comme (a_n) est décroissante et $a_n \xrightarrow[n \to \infty]{} 0$, $a_n \ge 0$ (car $a_n \in \mathbb{R}$).

C Séries alternées

Définition : Une série $\sum_{n>0} u_n$ est dite **alternée** si $u_n = (-1)^n a_n$ ou $u_n = (-1)^{n+1} a_n$ avec $a_n \ge 0$.

© Exemple : $\sum_{n\geq 0} \frac{(-1)^n}{n}$, $\sum_{n\geq 0} (-1)^n$ sont des séries alternées.

1 Remarque: $(-1)^n \cdot u_n = (-1)^{2n} a_n = a_n$ ou $u_n = -a_n \Rightarrow (-1)^n u_n$ est de signe constant

 $oldsymbol{0}$ Remarque : Une définition équivalente est : une série est alternée si le signe de $(-1)^n \cdot u_n$ est constant.

Théorème: Critère spécial des séries alternées (CSSA)

Soit $\sum_{n\geq 0} u_n$ une série de terme général $u_n=(-1)^n a_n$, avec $a_n\geq 0$.

- 1. (a_n) est décroissante.
- $2. \lim_{n\to\infty} a_n = 0.$

Alors la série $\sum_{n>0} u_n$ converge.

Preuve:

On applique le critère d'Abel avec $a_n = a_n$ et $b_n = (-1)^n$.

On a bien $a_n \xrightarrow[n \to \infty]{} 0$ et (a_n) décroissante.

De plus, $B_N=\sum_{n=0}^{n\to\infty}(-1)^n=\frac{1-(-1)^{N+1}}{1-(-1)}$ est bornée (égale à 0 ou 1). Donc la série $\sum_{n\geq 0}u_n$ converge.

Proposition:

Soit $\sum_{n\geq 0} (-1)^n a_n$ une série alternée vérifiant les hypothèses du CSSA (donc (a_n) est décroissante et $\lim_{n\to\infty} a_n=0$).

On considère la suite des sommes partielles (S_N) avec $S_N = \sum_{k=0}^N (-1)^k a_k$.

Soit S la somme de la série.

Alors:

$$S_{2N+1} \le S \le S_{2N}$$
 et $|R_N| = |S - S_N| \le a_{N+1}$.

Preuve:

On pouse $A_N=S_{2N}$ et $B_N=S_{2N+1}$. On observe que $S_{2N+1}-S_{2N}=-a_{2N+1}\leq 0$ $\Leftrightarrow S_{2N+1}\leq S_{2N}$.

Variations de (A_N) *et* (B_N)

 $A_{N+1}-A_N=S_{2N+2}-S_{2N}=a_{2N+2}-a_{2N+1}\leq 0$ car (a_n) décroissante.

 $\Leftrightarrow A_{N+1} \leq A_N$. Donc (A_N) est décroissante et $B_{N+1} - B_N = S_{2N+3} - S_{2N+1} = a_{2N+2} - a_{2N+3} \geq 0$ car (a_n) décroissante.

 $\Leftrightarrow B_{N+1} \geq B_N$. Donc (B_N) est croissante.

De plus, on a $B_N-A_N \xrightarrow[N \to \infty]{} 0$ donc (A_N) et (B_N) sont adjacentes, et convergent vers la même limite S. et donc $B_N \leq S \leq A_N$ où $S = \lim_{N \to \infty} A_N = \lim_{N \to \infty} B_N$.

On a bien $S_{2N+1} \leq S \leq S_{2N}, \forall N \in \mathbb{N}$.

Etudions maintenant le reste.

 $R_N = S - S_N$, on veut montrer que $|R_N| \le a_{N+1}$.

Séparons le cas N pair et impair :

- Si N=2p+1, alors $S_{2p+1} \leq S \implies S-S_{2p+1} \geq 0$. $\Rightarrow |R_{2p+1}| = S-S_{2p+1} \leq S_{2p+2}-S_{2p+1} = a_{2p+2} = a_{N+1}$.
- Laissé en exercice au lecteur :) □

X Attention X

- 1. Si deux suites sont équivalentes (\sim) et l'une monotone, l'autre ne l'est pas forcément. \P Exemple : $a_n =$ $\frac{1}{\sqrt{n}+(-1)^n}$ et $b_n=\frac{1}{\sqrt{n}}$. On a $a_n\sim b_n$ mais (a_n) n'est pas monotone (on le montre en encadrant/calculant 3 termes consécutifs (2p, 2p+1, 2p+2), alors que (b_n) l'est).
- 2. Considérons $\sum_{n\geq 0} (-1)^n a_n$. On remarque que $\sum_{n\geq 0} (-1)^n a_n$ n'est pas ACV. Est-elle semi-convergente ? Le CSSA ne s'applique pas. Mais $(-1)^n a_n \sim \frac{(-1)^n}{\sqrt{n}}$ QUI N'IMPLIQUE PAS " $\sum_{n\geq 0} (-1)^n a_n$ CV car $\sum_{n\geq 0} \frac{(-1)^n}{\sqrt{n}}$ CV" (car $\sum_{n\geq 0} \frac{(-1)^n}{\sqrt{n}}$ n'est pas positive).

À faire : Montrer que $(-1)^n a_n = \frac{(-1)^n}{\sqrt(n)} + b_n$, où $b_n = \frac{-1}{\sqrt{n}(\sqrt{n}+(-1)^n)}$ et en déduire que $\sum u_n$ DV.

Donc $u_n \sim v_n$, $\sum v_n \text{ CV} \implies \sum u_n CV$ que si $v_n est \geq 0 ou \leq 0$

Produit de Cauchy de deux séries

Définition : Soient $\sum_{n>0} a_n$ et $\sum_{n>0} b_n$ deux séries.

La série produit (de Cauchy) est définie par la série $\sum_{n>0} c_n$ où $c_n = \sum_{p+q=n} a_p b_q = \sum_{k=0}^n a_k b_{n-k}, \forall n \in \mathbb{N}$.

1 Remarque: Supposons que $a_n=0=b_n$ pour $n>N\in\mathbb{N}$. Considérons $P(X)=a_0+a_1X+...+a_nX^n$ et $Q(X) = b_0 + b_1 X + \dots + b_n X^n.$

Alors $(PQ)(X) = c_0 + c_1X + ... + c_{2N}X^{2N}$. On peut penser au produit de Cauchy comme une "généralisation".

Proposition:

On considère $\sum_{n>0} a_n$ et $\sum_{n>0} b_n$ deux séries à termes positifs et convergentes.

Alors la série produit $\sum_{n>0} c_n$ est convergente et on a : $\sum_{n=0}^{\infty} c_n = (\sum_{n=0}^{\infty} a_n)(\sum_{n=0}^{\infty} b_n)$.

Soient $A_n = \sum_{n=0}^N a_n$ et $B_N = \sum_{n=0}^N b_n$. Notons $C_N = \sum_{n=0}^N c_n = \sum_{n=0}^N \sum_{k=0}^n a_k b_{n-k}$.

On veut monrer que (C_N) converge et déterminer sa limite.

 (C_n) est une somme partielle à termes positifs, donc (C_N) est croissante.

Posons $I_N = \{0, \dots, N\} \subset \mathbb{N}$

 \bigcirc Note de rédaction : Dessin $I_N x I_N$

Considérons $A_N B_N = \sum_{(p,q) \in I_N x I_N} a_p b_q$.

Mais $C_N = \sum_{n=0}^N c_n = \sum_{n=0}^N \sum_{p+q=n} a_p b_q = \sum_{(p,q) \in I_N^2, p+q \le N} a_p b_q.$ On a $\{(p,q) \mid p+q \le N\} \subset \{(p,q) \mid p,q \in I_N\}$, donc $C_N \le A_N B_N$ (1) qui est bornée car A_N CV et B_N CV $\implies C_N$ bornée.

On a aussi l'inégalité : $A_N B_N \leq C_{2N}(2)$

Note de rédaction : Deuxième schema

car $\{(p,q) \mid p+q \leq N\} \supset \{(p,q) \mid 0 \leq p,q \leq N\}$. On obtient $\lim_{n \to \infty} c_n = \lim_{n \to \infty} (A_N B_N) = (\lim_{n \to \infty} A_N)$. $(\lim_{+\infty} B_N)$. \square

Théorème:

Soient $\sum_{n\geq 0} a_n$ et $\sum_{n\geq 0} b_n$ deux séries à termes dans \mathbb{C} .

Si les séries sont ACV, alors la série produit $\sum_{n>0} c_n$ est ACV. (où $c_n = \sum_{k=0}^n a_k b_{n-k}$)

Preuve:

On considère $A_N = \sum_{n=0}^N |a_n|, \ B_N = \sum_{n=0}^N |b_n|$ et $C_N = \sum_{n=0}^N |c_n|$. D'après la proposition précédente et sa démonstration, on a $A_N B_N - C_N \xrightarrow[N \to \infty]{} 0$. (on va utiliser cette propriété)

On a $\forall N \in \mathbb{N}, |(\sum_{n=0}^N a_n)(\sum_{n=0}^N |b_n|) - (\sum_{n=0}^N |c_n|)|.$

On peut donc écrire :

$$|(\sum_{n=0}^{N}a_n)(\sum_{n=0}^{N}|b_n|)-(\sum_{n=0}^{N}|c_n|)| = |\sum_{p\in I_N}\sum_{q\in I_N}a_pb_q - \sum_{(p,q)\in I_N^2, p+q\leq N}a_pb_q| = |\sum_{(p,q)\in I_N^2}a_pb_q - \sum_{(p,q)\in J_N^2}a_pb_q| \text{ où } J_N = \{(p,q)\mid p+q\leq N\}$$

Or $J_N \subset I_N^2$, donc

$$|\sum_{(p,q)\in I_N^2} a_p b_q - \sum_{(p,q)\in J_N^2} a_p b_q| = |\sum_{(p,q)\in I_N^2\backslash J_N^2} a_p b_q| = \sum_{(p,q)\in K_N} |a_p b_q|$$

où $K_N=I_N^2\setminus J_N^2=\{(p,q)\mid p+q>N\}$

$$\leq \sum_{(p,q)\in K_N} |a_p||b_q| = (\sum_{n=0}^N |a_n|)(\sum_{n=0}^N |b_n|) - \sum_{n=0}^N |c_n| = A_N B_N - C_N \xrightarrow[N\to\infty]{} 0$$

par la proposition précédente et l'inégalité triangulaire.

Poly Note de rédaction : À changer dans la démo A_N en A'_N et B_N en B'_N . De plus, il faut mettre $C'_N = \sum_{n=0}^N |c'_n| = \sum_{n=0}^N |a_k| |b_{n-k}|$ et pas $|\sum_{n=0}^N a_k b_{n-k}|$.

f 0 Remarque : L'hypothèse d'absolue convergence pour $\sum a_n$ et $\sum b_n$ est très importante dans le théorème. L'hypothèse de positivité dans la proposition qui précède le théorème est fondamentale.

§ Exemple: On considère la série de terme général $u_n = \frac{(-1)^n}{\sqrt{n}}$.

- u_n n'est pas positive.
- On a pas l'absolue convergence.
- Le CSSA s'applique car $a_n = \frac{1}{\sqrt{n}}$ est positive, décroissante et tend vers 0.

Considérons le produit de Cauchy. $(\sum_{n\geq 1}u_n)(\sum_{n\geq 1}u_n)=\sum_{n\geq 1}c_n$ où $c_n=\sum_{k=1}^{n-1}\frac{(-1)^k}{\sqrt{k}}\cdot\frac{(-1)^{n-k}}{\sqrt{n-k}}$ Montrons que $\sum_{n\geq 1}c_n$ diverge (en montrant que ça ne tend pas vers 0). On a $|c_n|=|\sum_{k=1}^{n-1}\frac{1}{\sqrt{k\cdot(n-k)}}|$

On a $k(n-k) \le kn - k^2 \le kn \le (n-1)n$.

Donc
$$|c_n| = |\sum_{k=1}^{n-1} \frac{1}{\sqrt{k \cdot (n-k)}}| \ge \sum_{k=1}^{n-1} \frac{1}{\sqrt{(n-1)n}} = \frac{n-1}{\sqrt{(n-1)n}} = \sqrt{\frac{n-1}{n}}$$
.

Conclusion : Pour faire le produit de Cauchy de deux séries, il faut :

- 1. Que les deux séries soient ACV.
- 2. ou Que les deux séries soient à termes positifs et CV.

Application: Fixons $z \in \mathbb{C}$. Etudions la convergence de la série $\sum_{n \geq 0} \frac{z^n}{n!}$.

1. Montrons que $\forall n \in \mathbb{N}$ la série ACV.

On va utiliser la règle de d'Alembert : $\frac{|u_{n+1}|}{|u_n|} = \frac{|z|}{(n+1)}$

Donc $\forall z \in \mathbb{C}, \frac{z^n}{n!} \xrightarrow[n \to \infty]{} 0.$

Donc $\forall z \in \mathbb{C}, \sum_{n>0} u_n(z)$ est ACV.

1 Remarque : On a le bon goût de pouvoir appeller $\sum_{n\geq 0}\frac{z^n}{n!}:=exp(z)$. (je dis bon goût mais ça risque de faire

mal bientôt)

2. Calculons $exp(z) \cdot exp(z')$ avec $z, z' \in \mathbb{C}$. Comme les deux séries sont ACV, on peut faire le produit de Cauchy.

$$\begin{array}{l} \exp(z) \cdot \exp(z') = \sum_{n \geq 0} c_n \text{ où } c_n = \sum_{k=0}^n \frac{z^k}{k!} \cdot \frac{(z')^{n-k}}{(n-k)!} \\ \text{On a } c_n = \frac{1}{n!} \sum_{k=0}^n \frac{n!}{k!(n-k)!} z^k (z')^{n-k} = \frac{(z+z')^n}{n!} \text{ par le binôme de Newton.} \\ \text{Donc } \exp(z) \cdot \exp(z') = \sum_{n \geq 0}^{+\infty} \frac{(z+z')^n}{n!} = \exp(z+z'). \end{array}$$

III Compléments

A Hors-programme : Séries commutativement convergentes

Note de rédaction : On a traité de ça en parlant rapidement de permutations. À voir chez Laurent si c'est nécessaire à mettre, mais je l'omets ici pour l'instant.

B Introduction aux séries de Taylor d'une fonction

Définition : Considérons $f:I\to\mathbb{R}$ où I est un intervalle ouvert contenant o. Supposons que $f\in\mathcal{C}^\infty(I)$. (i.e. f est dérivable autant de fois qu'on veut sur I et les dérivées sont continues). La série de Taylor associée à f au voisinage de 0 est la série $\sum_{n\geq 0} \frac{f^{(n)}(0)}{n!} x^n$.

lci, $x \in \mathcal{V}(0)$ (cela peut être I tout entier). Et il s'agit en fait d'une série de fonctions: $x \in \mathcal{V}(0) \subset I \mapsto \frac{f^{(n)}(0)}{n!}x^n$. À ce stade du cours, on y pense comme une série numérique à x fixé.

Deux questions se posent :

- 1. Pour quels $x \in I$ la série de Taylor $\sum_{n \geq 0} \frac{f^{(n)}(0)}{n!} x^n$ converge-t-elle ?
- 2. Si elle converge "pour des x", a-t-elle pour somme f(x) ?

(1) Remarque : Plus généralement, si I est quelconque et que on prend $a < b \in I$, les mêmes questions se posent de la façon suivante : $f(b) = \sum_{n \geq 0} \frac{(b-a)^n}{n!} f^{(n)}(a)$?

1 Remarque : Les sommes partielles de la série de Taylor associée à f, i.e. $\sum_{n=0}^{N} \frac{f^{(n)}(0)}{n!} x^n, x \in I$ sont appelées polynômes de Taylor

Réponses partielles aux questions.

- 1. Utiliser les règles de d'Alembert ou de Cauchy pour déterminer les $x \in I$ tels que $\sum_{n \geq 0} \frac{f^{(n)}(0)}{n!} x^n$ converge.
- 2. Utilisons la formule de Taylor avec reste intégral si on veut montrer que pour les x où $\sum_{n\geq 0} \frac{f^{(n)}(0)}{n!} x^n$ converge, on a $f(x) = \sum_{n\geq 0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n$.

 Ou de manière équivalente $\sum_{n=0}^{N} \frac{f^{(n)}(0)}{n!} x^n \xrightarrow[N \to \infty]{} f(x)$. (convergence à x fixé !)
- Application : Retrouvons la formule de Taylor avec reste intégral.

Théorème fondamental de l'analyse : Rappel (admis)

Soit
$$x \in I, x > 0$$
.
Alors $f(x) - f(0) = \int_0^x f'(t)dt$.

$$\int_0^x f'(t)dt = \int_0^x (t-x)'f'(t)dt = [(t-x)f'(t)]_0^x - \int_0^x (t-x)f''(t)dt.$$

$$= -xf'(0) + \int_0^x (x-t)f''(t)dt.$$
Ce qui se réécrit : $f(x) - f(0) - xf'(0) = \int_0^x (x-t)f''(t)dt.$
On refait la même chose pour f'' :
$$\int_0^x (x-t)f''(t)dt = \int_0^x ((x-t)^2/2)'f''(t)dt = -[(x-t)^2/2f''(t)]_0^x + \int_0^x (x-t)^2/2f^{(3)}(t)dt.$$

$$= -x^2/2f''(0) + \int_0^x (x-t)^2/2f^{(3)}(t)dt.$$

Ce qui se réécrit : $f(x) - f(0) - xf'(0) - x^2/2f''(0) = \int_0^x (x-t)^2/2f^{(3)}(t)dt$.

Puis on continue par récurrence et on a :

Théorème: Taylor avec R.I.

$$f \in \mathcal{C}^{\infty}(I), I \ni 0$$

On a
$$\forall x \in I, x > 0, f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k = \int_0^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt.$$

1 Remarque : Pour montrer que $\sum_{n\geq 0} \frac{f^{(n)}(0)}{n!} x^n$ converge vers f(x), il suffit de montrer que le $R_n(x) \xrightarrow[n\to\infty]{} 0$, où

On a $|R_n(x)|=|\int_0^x \frac{(x-t)^n}{n!}f^{(n+1)}(t)dt|$. En principe, majorer $R_n(x)$!

Application : On prend $f(x) = exp(x), I = \mathbb{R}$.

On a que $\forall n \in \mathbb{N}, f^{(n)}(x) = exp(x)$. Sa série de Taylor au voisinage de 0 est $\sum_{n \geq 0} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n \geq 0} \frac{x^n}{n!}$.

1. Convergence

$$u_n(x) = \frac{x^n}{n!}$$
.

On utilise la règle de d'Alembert : $\frac{|u_{n+1}(x)|}{|u_n(x)|} = \frac{|x|}{n+1} \xrightarrow[n \to \infty]{} 0, \forall x \in \mathbb{R}.$

Or 0 < 1, donc $\sum_{n \geq 0} \frac{x^n}{n!}$ est ACV, $\forall x \in \mathbb{R}$.

2. Somme

On veut montrer que $\sum_{n\geq 0}^{+\infty}\frac{x^n}{n!}=exp(x), \forall x\in\mathbb{R}.$

Par la formule de Taylor avec reste intégral, on a $|f(x) - \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k| = |R_n(x)| = |\int_0^x \frac{(x-t)^n}{n!} e(t) dt|$ $\leq \frac{|x|^n}{n!} e^x \xrightarrow[n \to \infty]{} 0, \forall x \in \mathbb{R}.$

Donc $exp(x) = \sum_{n>0}^{+\infty} \frac{x^n}{n!}, \forall x \in \mathbb{R}.$

Exemple : Calculons la valeur de $\sum_{n\geq 0}^{+\infty}\frac{1}{n!}$. On sait que $\sum_{n\geq 0}^{+\infty}\frac{x^n}{n!}=exp(x)$, donc en prenant x=1, on obtient $\sum_{n\geq 0}^{+\infty}\frac{1}{n!}=exp(1)=e$.

 \P Contre-Exemple : Voici une fonction C^∞ sur $\mathbb R$ dont la série de Taylor ne converge pas vers la fonction (sauf en 0).

Considérons
$$f:_{x\mapsto}\begin{cases} 0 & \text{si } x=0 \\ e^{-\frac{1}{x^2}} & \text{si } x\neq 0 \end{cases}$$
 .

f est continue sur \mathbb{R} .

 $x \mapsto e^{-\frac{1}{x^2}}$ est dérivable sur \mathbb{R}^* , et $\lim_{x\to 0} f(x) = 0 = f(0)$.

On montre que f est C^{∞} : elle se prolonge en une fonction C^{∞} sur \mathbb{R} telle que $f^{(n)}(0)=0, \forall n\in\mathbb{N}$. Il faut vérifier $\lim_{x\to 0} f^{(n)}(x) = 0, \forall n \in \mathbb{N}$.

La série de Talyor associée à f est donc $\sum_{n\geq 0} \frac{f^{(n)}(0)}{n!} x^n = 0 \forall x \in \mathbb{R}$.

Et donc on a pas $f(x) = \sum_{n>0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n$ sauf en 0.