Лекция 19: стек технических средств для реализации методов ML

Евгений Борисов

история

- [1950] математические модели биологического нейрона
 - McCulloch W.S., Pitts W. A logical Calculus of Ideas Immanent in Nervous Activity Bull. Mathematical Biophysics, 1943
- [1960] МОДЕЛИ НЕЙРОННЫХ СЕТЕЙ С ОДНИМ ОБРАБАТЫВАЮЩИМ СЛОЕМ F.Rosenblatt Principles of Neurodinamics. New York: Spartan Books, 1962.
- [1970-80] метод обратного распространения, нейронные сети с несколькими обрабатывающими слоями

Галушкин А. И. Синтез многослойных систем распознавания образов. — М.: «Энергия», 1974.

D.E.Rumelhart, G.E.Hinton, R.J.Williams Learning internal representations by error propagation. // In Parallel distributed processing, vol. 1, pp. 318-62. Cambridg, MA: MIT Press, 1986.

[2005] концепция Deep Learning

концепция Deep Learning

многоуровневые модели интеллектуальных систем (т.е. представленные несколькими слоями модели)

искусственные нейронные сети

много данных

через большое количество слоёв

с большим количеством нейронов

автоматическое извлечение признаков

улучшеная обобщающая способность

проблема "исчезающего" градиента (vanishing gradient)

предобучение

общее описание стека технологий

прикладные программные средства

вычислительные библиотеки

программный интерфейс с аппаратурой

аппаратные вычислительные средства

аппаратная часть: про модельные данные

набор с изображениями цифр MNIST - 70 000 примеров - 53MB

набор картинок CIFAR-10 - 60 000 примеров - 163MB

набор изображений PASCAL-2011 - 11 530 - 2GB

набор изображений ILSVRC-2015: CLS-LOC - 100 000 - 155GB

необходимо использовать средства соответствующей производительности

- высокопроизводительные параллельные вычисления

аппаратная часть : параллельные вычисления

классификация по двум параметрам

- способ организации памяти
- способ организации управления

аппаратная часть: основные типы организации памяти параллельных вычислителей

<u>общая память</u> - все процессора работают в едином адресном пространстве с равноправным доступом к памяти

- + относительно просто программировать,
- ограниченая масштабируемость

распределенная память - каждый процессор имеет собственную локальную памятью, прямой доступ к этой памяти других процессоров невозможен.

- + хорошая масштабируемость
- сложно программировать (больше вычислений, меньше обменов)

аппаратная часть: способ организации управления параллельными вычислителями

классификация Флинна

SIMD "single instruction multiple data" (один поток команд много потоков данных)

SISD

MISD

MIMD "multiple instruction multiple data" (много потоков команд много потоков данных)

аппаратная часть: задачи при организации параллельных вычислений

автоматическое распараллеливание последовательных программ

автоматическая балансировка загрузки процессоров

аппаратная часть: основные типы параллельных вычислителей

<u>SMP</u> - симметричные мультипроцессорные системы (общая память)

<u>PVP</u> - параллельные векторные системы (специальные векторноконвейерные процессоры)

<u>МРР</u> - системы массового параллелизма. несколько однородных вычислительных узлов; связаны специальной высокоскоростной сетью. (распределенная память)

<u>NUMA</u> - системы с неоднородным доступом к памяти. память физически распределена, но логически общедоступна.

<u>Cluster</u> - «упрощённый» вариант MPP

Grid - «кластер из кластеров»

GPGPU - General-Purpose Graphics Processing Units

аппаратная часть

НРС технологии можно комбинировать

Пример: Грид состоящий из нескольких кластеров, кластеры состоят из вычислительных узлов SMP вычислительные узлы имеют GPU

аппаратная часть : подробней про GPGPU

параллельная программа GPGPU состоит из двух частей

- 1. основная выполняется на CPU (host)
- 2. kernel выполняется на GPU (device)

аппаратная часть : подробней про GPGPU

GPU - массив потоковых процессоров (Streaming Processor Array), сосоит из Texture Processor Clusters (TPC)

TPC состоит из Streaming Multi-processor (SM)

SM содержит несколько Streaming Processors (SP) или ядер.

ядра мультипроцессора работают по схеме SIMD

программный интерфейс с аппаратурой

распределенная память: MPI, Spark

общая память: OpenMP, OpenCL

GPU: OpenCL, CUDA

прикладные программные средства

вычислительные библиотеки

программный интерфейс с аппаратурой

аппаратные вычислительные средства

программный интерфейс с аппаратурой:

вычислительные библиотеки для систем с распределенной памятью

MPI - стандарт параллельного программирования для распределённых систем на каждом узле кластера запускаем вычислительный процесс процессы могут обмениваються данными

есть механизм синхронизации процессов

Apache Spark - средство для обработки данных в распределённых хранилищах

программный интерфейс с аппаратурой:

вычислительные библиотеки для систем с общей памятью

OpenMP - стандарт параллельного программирования для SMP

OpenCL - стандарт параллельного программирования для SMP и GPU

программный интерфейс с аппаратурой:

вычислительные библиотеки для GPGPU

CUDA - библиотека параллельного программирования для устройств nVidia compute capability 7.5, cuBLAS, cuDNN

OpenCL - стандарт параллельного программирования для SMP и GPU

прикладные средства

Caffe и DIGITS - система моделирования свёрточных сетей

Theano - пакет ML от университета Монреаля

TensorFlow - пакет ML от Google

CNTK - пакет ML от Microsoft

Keras - библиотека-надстройка над Theano, TensorFlow, CNTK

Torch - пакет ML основанный на языке Lua

прикладные средства

<u>Caffe</u> - система моделирования свёрточных сетей имеет интерфейсы для нескольких популярных языков web интерфейс DIGITS можно описывать модели в спецификациях на языке protobuf поддерживает вычисления на GPU

прикладные средства

Theano - пакет ML от университета Монреаля

пакет языка Python предназначенный для символьных вычислений

численные расчёты работают непосредственно с данными в памяти

символьные вычисления (symbolic computation) работают с алгебраическими выражениями

может выполнять аналитическое дифференцирование и оптимизацию описанных пользователем функций

позволяет компилировать и выполнять заданные пользователем функций в машинный код для CPU и/или GPU

прикладные средства

<u>TensorFlow</u> - пакет ML от Google

пакет языка Python предназначенный для символьных вычислений

может выполнять аналитическое дифференцирование и оптимизацию описанных пользователем функций

позволяет компилировать и выполнять заданные пользователем функций в машинный код для CPU и/или GPU

содержит TensorBoard - инструмент для визуализации графа вычислений

прикладные средства

Keras - библиотека-надстройка над Theano, TensorFlow, CNTK пакет языка Python

содержит примитивы для реализации моделей Deep Leaning

использует Theano, ThensorFlow или CNTK в качестве основы (backend)

описание стека технологий

прикладные программные средства

вычислительные библиотеки

программный интерфейс с аппаратурой

аппаратные вычислительные средства

Нейросети: литература

git clone https://github.com/mechanoid5/ml_lectorium.git

Евгений Борисов О технических средствах для реализации методов Deep Learning.

http://mechanoid.kiev.ua/ml-deep-learning-tools.html

Евгений Борисов Технология параллельного программирования CUDA. http://mechanoid.kiev.ua/parallel-cuda.html

Вопросы?

Нейросети: практика

sklearn.datasets UCI Repository kaggle

