

人工智能算法发展历史

二、分阶段算法演进与关系

1. 符号主义 (Symbolic AI)

• 时期: 1950s-1980s

• 核心思想:智能=符号操作+逻辑规则

· 代表算法:

逻辑推理系统 (1950s) : 基于─阶谓词逻辑 (如纽厄尔的逻辑理论家)专家系统 (1970s) : MYCIN (医疗诊断) 、DENDRAL (化学分析)

• 优点:可解释性强,适合规则明确的领域

• 局限:依赖人工设计规则,无法处理不确定性

• 衰落原因: 规则维护成本高, 难以泛化

2. 连接主义 (Connectionism) 的早期探索

• **时期**: 1950s-1980s (与符号主义并行)

• 核心思想:智能=分布式神经网络+学习

・ 代表算法:

。 感知机 (1957) : 单层线性分类器, 无法处理非线性问题 → 被明斯基批判后陷入低谷

。 Hopfield 网络 (1982) : 引入能量函数,用于联想记忆

• 反向传播算法 (1986) : 解决多层神经网络训练问题,但受限于算力和数据

• 优点: 具备学习能力, 适合模式识别

• 局限: 训练不稳定 (梯度消失) , 算力需求高

3. 统计学习 (Statistical Learning)

• 时期: 1990s-2000s

• 核心思想:智能=数据驱动+概率模型

· 代表算法:

。 **支持向量机 (SVM) (1995)** : 通过核函数处理非线性分类,取代早期神经网络

· 决策树与随机森林 (1984/2001) : 可解释性强,适合结构化数据

。 **贝叶斯网络 (1980s)** : 处理不确定性推理 (如垃圾邮件过滤)

• 优点: 理论成熟, 适合中小规模数据

• 局限: 特征工程依赖人工, 难以处理高维非结构化数据(如图像)

4. 深度学习革命(Deep Learning)

• 时期: 2010s-至今

• 核心思想:智能=深度神经网络+端到端学习

• 代表算法:

· 卷积神经网络 (CNN) (2012 AlexNet): 局部感知、参数共享, 颠覆图像识别

· 循环神经网络 (RNN/LSTM) (1997/2014): 处理序列数据 (如文本、语音)

• Transformer (2017): 自注意力机制,取代RNN成为NLP主流(如BERT、GPT)

• 强化学习 (RL) (2016 AlphaGo) : 通过试错学习策略 (游戏、机器人控制)

• 优点: 自动提取特征, 处理高维数据(图像、语音、文本)

• 局限:数据与算力需求大,可解释性差

5. 现代融合趋势

• 神经符号系统 (Neuro-Symbolic AI) :结合符号逻辑与神经网络(如DeepMind的 PrediNet)

• **生成模型 (Generative Models)** : GAN (生成对抗网络)、扩散模型 (如Stable Diffusion)

• 大模型 (Large Models): GPT-4、PaLM,通过海量参数实现通用任务处理

三、关键算法对比表

算法类型	代表模型	优势	劣势	适用
符号主义	专家系统	可解释性强	规则维护成本高	医疗诊断、
统计学习	SVM、随机森林	中小数据高效	依赖特征工程	结构化数据
深度学习 (CNN)	ResNet	自动提取图像特征	需要大量标注数据	图像识别、
深度学习 (Transformer)	BERT、GPT	长距离依赖建模	计算资源消耗大	自然语言统
强化学习	AlphaGo	复杂策略优化	训练不稳定、耗时	游戏、机

四、算法演进的推动力

1. 数据:从小规模标注数据 (SVM) 到互联网级大数据 (深度学习)

2. **算力**:从CPU到GPU/TPU的并行计算革命

3. 理论突破: 反向传播、注意力机制、残差连接

4. 应用需求:从规则明确的专家任务(医疗)到开放环境感知(自动驾驶)

五、总结:如何选择算法?

- **数据量小+可解释性要求高** → 统计学习(如随机森林)
- **图像/语音/文本处理** → 深度学习 (CNN/Transformer)
- **动态决策与交互** → 强化学习
- **规则明确且稳定** → 符号系统 (现代通常与神经网络结合)