3.2.2. Singularity in conusal structure: There are some Killing vectors that do fulfill (3,15) everynhere in anti-de Siller space, for Jeanple 30, where to is the angular overdistate lappearing in (3.6). However, the Killing vectors appearing in the identifications that give (rise to the Clack hole are Cimelike or null in some regions. These regions must le rent out from anti-de Aller space to Comake the identifications fermissible. The resulting spaces which ne denete (ads) is invariantly under (3.13) because the norm of a Chiling vector is constant along its orbits. Olence, the quotient son still le taken. The skace (ad 5) is geodesically incomplète since one can find geodesics that go from E. E >0 to 5. 5 < 0. From the faint of view of (ad5)'-i.e., frior La the édentifications - it is quite unnatural la remove the regions where E. E is not positive. Flowever, once the identifications are made, the frontier of region \$ \$70, i.e.,

Softial from of - else ideal finition:

$$\mathcal{E} = \frac{r_{+}}{\ell} \quad J_{12} - \frac{r_{-}}{\ell} \quad J_{03} - J_{13} + J_{23} \quad (3.17)$$
We remfore this will $\mathcal{E} = \frac{1}{2} i \delta^{ab} J_{ab}$
and thus we get - lu real eigenvalues $+ \frac{r_{+}}{\ell}$.

Thus, $J_{1} = W_{ab} \quad w^{ab} = -\frac{2}{\ell^{2}} \left(\frac{r_{+}^{2} + r_{-}^{2}}{\ell} \right) = -2M$

$$J_{2} = \frac{1}{2} \varepsilon^{ab} \cdot \mathcal{E} \quad \omega_{ab} \quad \omega_{cd} = -\frac{4}{\ell^{2}} \quad \mathcal{E} \quad$$

eliminate the last term in (3.17) and replace
$$E$$
 by the simpler expression
$$E' = \frac{r_+}{c} J_{12} - \frac{r_-}{c} J_{03}$$

From
$$(3.9)$$
 and (3.11) we get
$$-\xi = \frac{r_{+}}{2} \left(\frac{3}{2} \frac{3}{2z} + \beta \frac{3}{3\beta} + \gamma \frac{3}{3\beta} \right) - \frac{r_{-}}{2} \left(\beta \frac{3}{3\gamma} + \gamma \frac{3}{3\beta} \right)$$

$$+ \frac{3}{3\beta}$$

$$(3.20)$$

The norm of
$$\xi'$$
 is given by
$$\xi' = \frac{r}{e} \left[\frac{n}{n} \right] - \frac{r}{e} \left[\frac{r}{n} \right] \\
= \frac{r}{e} \left[\frac{r}{n} \right] + \frac{r}{e} \left[\frac{r}{n} \right] \\
= -\left(\frac{r}{e} \right)^{2} - \left(\frac{r}{e} \right)^{2} - \left(\frac{r}{e} \right)^{2} \\
+ \left(\frac{r}{e} \right)^{2} u^{2} + \left(\frac{r}{e} \right)^{2} v^{2}$$

$$E = \frac{r}{e} \begin{bmatrix} x \\ x \\ 0 \end{bmatrix} - \frac{r}{e} \begin{bmatrix} y \\ 0 \\ 0 \end{bmatrix}$$

$$= \frac{r}{e} \begin{bmatrix} x \\ x \\ 0 \end{bmatrix}$$

$$= \frac{r}{e} \begin{bmatrix} x \\ x \\ 0 \end{bmatrix}$$

$$= \frac{r}{e} \begin{bmatrix} x \\ x \\ 0 \end{bmatrix}$$

:
$$\xi' \cdot \xi' = \left(\frac{r_{+}}{\ell}\right)^{2} \left(n^{2} - n^{2}\right) + \left(\frac{r_{-}}{\ell}\right)^{2} \left(n^{2} - y^{2}\right)$$
 (3.23)

 $\xi'.\xi' = \frac{n_{+}^{2} - n_{-}^{2}}{\rho^{2}} (u^{2} - x^{2}) + r_{-}^{2}$ (3.24)

According to the allowed region, where E', E' > 0 is $-\frac{n^2\ell^2}{r^2-r^2} g < u^2 - z^2 < \infty$ (3,25)

The region 5'. 5' >0 can be divided in an set infinite number of regions of three different types Gounded lay The null surfaces $u^2 - n^2 = 0$ or $v^2 - y^2 = \ell^2 - (n^2 - n^2) = 0$. Ceziens of lyke I: Smallest resonne cled regions with 12-12 > l2 and y and w to of definite sign. This regions have no restrictions intersection with y =0 this would violate 12- 22= 2+y2-v2> 22. These regions are called sector regions. The norm of the Killing rector fulfills "2 < E' & ' < 0 . Regions of type II: Smallest connected regions with 0< 12-12 < l2 and u and ve of definite sign. Theres regions are called "intermediate signes regions". The norm of the Filling rector-fulfilles $r_-^2 < \xi' \cdot \xi' < r_+^2$. $\xi' \cdot \xi' = \frac{r_+^2 - r_-^2}{\ell^2} (u^2 - x^2) + r_-^2$ > r² < € € < 5²

Egiono of type II: Swallest remeded regions with $\frac{r^2 l^2}{r_+^2 - r^2} < n^2 < 0 \text{ and } n \text{ and } v \text{ of definite sign.}$ $\text{Ohreo recipies regions are called "when regions" and only exists for <math>r \neq 0$. They do not interval the n = 0 blanc. The norm of the Cliting rectors fulfills $0 < \xi' \cdot \xi' < r^2$ $\Rightarrow 0 < \xi' \cdot \xi' < r^2$

Scanned with CamScanner

Regian
$$I$$
: $r_{+} < n$:

$$u = \int \overline{A(n)} \operatorname{ressh} \widetilde{\phi}(t, \phi)$$

$$u = g = \int \overline{A(n)} \sinh \widetilde{\phi}(t, \phi)$$

$$y = g = \int \overline{B(n)} \operatorname{ressh} \widetilde{t}(t, \phi)$$

$$u = \int \overline{B(n)} \operatorname{ressh} \widetilde{t}(t, \phi)$$

$$(3.26)$$

$$u = \int A(r) \quad \cosh \widetilde{\phi}(t, \phi)$$

$$\alpha = \sqrt{A(r)} \quad \sinh \widetilde{\phi}(t, \phi)$$

$$y = -\int B(r) \quad \cosh \widetilde{t}(t, \phi)$$

$$u = -\int -B(r) \quad \sinh \widetilde{t}(t, \phi) \quad (3.27)$$

$$u = \int -A(n) \operatorname{dish} \widetilde{\phi}(t, \phi)$$

$$z = \int -A(n) \operatorname{dish} \widetilde{\phi}(t, \phi)$$

$$y = -\int -B(n) \operatorname{dish} \widetilde{\tau}(t, \phi)$$

$$v = -\int -B(n) \operatorname{dish} \operatorname{cosh} \widetilde{\tau}(t, \phi)$$

$$(5.28)$$

where, $A(n) = \ell^{2} \left(\frac{n^{2} - n^{2}}{r_{+}^{2} - r_{-}^{2}} \right)$ $B(n) = \ell^{2} \left(\frac{n^{2} - r_{+}^{2}}{r_{+}^{2} - r_{-}^{2}} \right)$

$$\widetilde{t} = \frac{1}{\ell} \left(\frac{r_{+}t}{\ell} - r_{-}\phi \right)$$

$$\widetilde{\phi} = \frac{1}{\ell} \left(\frac{r_{-}t}{\ell} + r_{+}\phi \right)$$

Thun in resordinates t, r, & the nutric becomes

$$ds^{2} = -\left(N^{\perp}\right)^{2}dt^{2} + \left(N^{\perp}\right)^{-2}dn^{2} + r^{2}\left(N^{\uparrow}\right)^{2}dt^{2} + \left(N^{\downarrow}\right)^{2}dt^{2}$$

$$+ r^{2}\left(N^{\uparrow}\right)^{2}dt^{2} + \left(N^{\downarrow}\right)^{2}$$
(3.30)

with $-\infty < + < \infty$, $-\infty < \phi < \infty$ i.e., it is the Black hole metric but with ϕ a non-feriodic reads

By making the identification $\phi \to \phi + 2k\pi t$ om gets the blackhole spailine en claimed above.

When ϕ is not identified, it describes a bottom of anti-de Sitter share for any value of $r_2^2-r_2^2>0$, hence it also in a limit $r_1-r_1\to 0$. Similarly $\frac{\partial}{\partial \phi}$ is k.v. for any value of r_1 and r_2 . $I_1=-\frac{2(r_1^2+r_1^2)}{2r_1^2} \qquad ; \quad I_2=-\frac{4r_1r_1}{2r_1^2}$

u+2>0, u+2<0, u-2>0, u-2<04 fatelies.

ALTO

$$\beta = \frac{1}{2} \left(\frac{T}{\ell} + \phi + \ell \right) - \frac{1}{2r_{+}}$$

$$\gamma = \frac{1}{2} \left(\frac{T}{\ell} + \phi - \frac{1}{2r_{+}} \right)$$

$$\mathcal{Z} = \frac{1}{2r_{+}} \left(r^{2} - r_{+}^{2} \right) \ell$$

$$\mathcal{Z} = \frac{1}{2r_{+}} \left(r^{2} - r_{+}^{2} \right) \ell$$

where
$$T = 2\theta - \frac{\ell^2 r_+}{r^2 - r_+^2}$$

$$dT = 2dt + \frac{2r_{+}l^{2}r dr}{(r^{2}-r_{+}^{2})^{2}}$$

3.2.5. Absence of closed line like surve:

Causality brokerty reachs
$$\left(N^{\frac{1}{2}}\right)^{\frac{2}{dt}} \frac{dt}{d\lambda}^{2} - \left(N^{\frac{1}{2}}\right)^{-2} \left(\frac{dr}{d\lambda}\right)^{2} - r^{2} \left(N^{\frac{1}{2}}\right)^{\frac{2}{dt}} + \frac{d\phi}{d\lambda}^{2} \leq 0$$

3.2.6 Blackhole has rouly 2 k.v.-s:

$$\exp\left(2\pi\xi\right)\eta\left[\exp\left(2\pi\xi\right)\right]^{-1}=\eta$$

From appendix A.,

semi simble fort with eigenvalues

... Similar bout of exp
$$(2\pi \xi)$$
 is exp $(2\pi \xi)$

... nilborbut bout = $\exp(2\pi \xi) - \exp(2\pi \xi)$
 $= \exp(2\pi \xi) \exp(2\pi \xi) - \exp(2\pi \xi)$
 $= \exp(2\pi \xi) \exp(2\pi \xi) \exp(2\pi \xi)$
 $= \exp(2\pi \xi) \exp(2\pi \xi) \exp(2\pi \xi)$

4. Global Structure:

4.1. Fruskal coordinator:

$$ds^{2} = -\left(N^{\frac{1}{2}}\right)^{2}dt^{2} + \left(N^{\frac{1}{2}}\right)^{-2}dr^{2} + r^{2}\left(N^{\frac{1}{2}}dt + dp\right)^{2}$$

$$(4.1)$$

$$ds^{2} = \int 2^{2} (du^{2} - dv^{2}) + r^{2} (r^{4} dt + d\phi)^{2}$$
 (4.2)

4.2 Penrose Wiagrams;
$$\binom{r_{+} \neq r_{-}}{}$$

$$U+V = tan\left(\frac{p+q}{2}\right) ; U-V = tan\left(\frac{p-q}{2}\right) \qquad (4.10)$$

$$ds^2 = \left(\frac{r}{\ell}\right)^2 dt^2 + \left(\frac{r}{\ell}\right)^{-2} dr^2 + r^2 dp^2$$

$$\dot{u} = \frac{t}{2} - \frac{\ell}{r}$$

$$v = -\frac{t}{\ell} - \frac{\ell}{r}$$

$$(4.12)$$

$$ds^2 = r^2 du du + r^2 d\phi^2$$
 (4.13)

De them

$$ds^{2} = \ell^{2} \frac{dp^{2} - dq^{2}}{\sin^{2} p} + r^{2} dp^{2} \qquad (4.16)$$