

Lab 1 Edge Detection and Debouncing

Microcomputer Systems 1

Juan Gruber and Andreas Rüst

2

Change of status -> event

Software solution

Simple software solution

- Read input
- Compare with last value → edge detected when change in value
- Store new value

Simple Software Solution

Example: Detect rising edge

```
// buttons state contains current state of buttons
// return value: buttons with rising edge
uint8 t detect rising(uint8 t buttons state)
    static uint8 t last buttons state = 0;
    uint8 t buttons rising;
    // detect edges
    buttons rising = buttons state & ~last buttons state;
    // store button state for next detection.
    last buttons state = buttons state;
    return buttons rising;
```


Simple Software Solution

Example: Detect falling edge

```
// buttons state contains current state of buttons
// return value: buttons with falling edge
uint8 t detect falling(uint8 t buttons state)
    static uint8 t last buttons state = 0;
    uint8 t buttons falling;
    // detect edges
    buttons falling = ~buttons state & last buttons state;
    // store button state for next detection.
    last buttons state = buttons state;
    return buttons falling;
```


Simple software solution

- Use static variable to store last state
 - → Only one instance possible (static variable)

Software solution for multiple instances

- Solution: Using pointers
- Memory allocation in calling function

Software solution for multiple instances

Example: Detect rising edges

```
Pointers to variables
// input: current and last state of buttons
// return value: buttons with rising edge
uint8 t detect rising(uint8 t *buttons state,
                      uint8 t *last buttons state)
 uint8 t edges;
                                                   Dereferencing
  // detect rising edge
  edges = (*buttons state) & ~(*last buttons state);
  // store button state for next detection
  *last buttons state = *buttons state;
  return edges;
```


Software solution for multiple instances

Example: Detect button 1 rising

```
Memory allocation
int main (void)
 uint8 t buttons state = 0;
                                                    Addresses of variables
  uint8 t last buttons state = 0;
 while (1) {
    buttons_state = read_byte(ADDR_BUTTONS) & 0x0F;
    if (detect rising(&buttons state, &last buttons state) & 0x01)
      write word(ADDR LED 31 0, read word(ADDR DIP SWITCH 31 0));
```

Debouncing

10

12.01.2016

What is bouncing?

Every bounce is seen as input change

Debouncing

11

12.01.2016

What is bouncing?

Every bounce is seen as input change

Debouncing

What is bouncing?

12 ZHAW, Microcomputer Systems 1 12.01.2016

12.01.2016

Sliding window filter

Sliding window filter

12.01.2016

Sliding window filter

16

12.01.2016

Detecting falling edge with sliding window filter

