Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2008/2009

AL1 - Algebra 1: Fondamenti Prof. F. Pappalardi Tutorato 2 - 16 Ottobre 2008 Elisa Di Gloria, Luca Dell'Anna

www.matematica3.com

Esercizio 1.

Sia $f: \mathbb{N} \longrightarrow \mathbb{N}$ definita dalla legge $f(x) = \frac{x^2 + x}{a}$ con $a \in \mathbb{N}$. Per quali valori di a essa é un'applicazione? E in tali casi é iniettiva?

Esercizio 2.

Stabilire se le seguenti applicazioni sono iniettive e/o suriettive e calcolarne, quando possibile, l'inversa.

$$f: \mathbb{Q} \longrightarrow \mathbb{Q}$$

$$x \longmapsto \frac{x-3}{2}$$

•
$$f: \mathbb{N} \longrightarrow \mathbb{Z}$$
 definita da $f(x) = \begin{cases} \frac{x}{2} - 1, & x \text{ pari } -\frac{x+1}{2}, & x \text{ dispari} \end{cases}$

$$\begin{array}{ccc}
\bullet & f: \mathbb{R}_{>0} & \longrightarrow \mathbb{R}_{>0} \\
x & \longmapsto \frac{1}{\sqrt{x^2 + x}}
\end{array}$$

•
$$f: \mathbb{R} \longrightarrow \mathbb{Z}$$

 $x \longmapsto [x]$ ove con $[x]$ si indica la parte intera di x

Trovare in ognuno dei casi precedenti le controimmagini $f^{-1}(15)$.

Esercizio 3.

Se $\varphi: A \longrightarrow B$ é un'applicazione ed A_1, A_2 sono sottoinsiemi di A, posto $\varphi(A_1) = B_1 \supseteq B$ e $\varphi(A_2) = B_2 \supseteq B$, provare che:

i)
$$\varphi(A_1 \cup A_2) = \varphi(A_1) \cup \varphi(A_2)$$

ii)
$$\varphi(A_1 \cap A_2) \subseteq \varphi(A_1) \cap \varphi(A_2)$$
.

iii)
$$\varphi^{-1}(B_1 \cup B_2) = \varphi^{-1}(B_1) \cup \varphi^{-1}(B_2)$$

iv)
$$\varphi^{-1}(B_1 \cap B_2) = \varphi^{-1}(B_1) \cap \varphi^{-1}(B_2)$$
.

Portare un esempio che illustri come, in generale, in ii) non valga l'ugua-glianza.

Esercizio 4.

Dire quali delle seguenti leggi sono applicazioni ed, in caso affermativo, se esse sono iniettive e/o suriettive:

- $f: \mathbb{N} \longrightarrow \mathbb{N} \cup \{0\}$ $x \longmapsto \frac{x^3 2x}{6}$
- $f: \mathbb{Z} \longrightarrow \mathbb{Q} \\ x \longmapsto \frac{x^2 2}{x + 2}$
- $\begin{array}{ccc}
 \bullet & f: \mathbb{R}^* & \longrightarrow \mathbb{R} \\
 x & \longmapsto \frac{2}{x}
 \end{array}$
- $f: \mathbb{R} \longrightarrow \mathbb{R}_{\geq 0}$ $x \longmapsto (x-1)^4$

Per ognuna delle precedenti applicazioni descrivere l'immagine e determinare la controimmagine $f^{-1}(1)$.

Esercizio 5.

Provare per induzione che:

•
$$\sum_{k=1}^{n} (-1)^k k^2 = \frac{(-1)^n n(n+1)}{2}$$
.

$$\bullet \sum_{k=1}^{n} \frac{1}{4k^2 - 1} = \frac{n}{2n+1}.$$

- $n! > n^2 \ \forall n \ge 4;$
- $n! > n^3 \ \forall n \ge 6$;

Esercizio 6.

Momento relax:

Trovare l'errore nel seguente procedimento di induzione usato per provare l'affermazione: *Tutti gli uomini hanno lo stesso nome*.

É chiaro che basta provare che in ogni insieme di n uomini, con $n \in \mathbb{N}$, essi hanno lo stesso nome.

La proposizione é vera per insiemi con un solo uomo; supponiamo allora che essa sia vera per insiemi con n-1 uomini e proviamola per un insieme con n uomini. Sia allora $I_n = \{U_1, U_2, \ldots, U_n\}$ un insieme costituito da n uomini, allora $J = \{U_1, U_2, \ldots, U_{n-1}\}$, essendo formato da n-1 uomini, per l'ipotesi induttiva, sará tale che $U_1, U_2, \ldots, U_{n-1}$ hanno lo stesso nome, diciamo **Franco**; d'altra parte, anche $K = \{U_1, U_2, \ldots, U_{n-2}, U_n\}$ é formato da n-1 elementi, e per lo stesso motivo anche $U_1, U_2, \ldots, U_{n-2}, U_n$ hanno lo stesso nome, ma essendo **Franco** il nome di U_1 ne segue anche che U_n si chiama **Franco**. Allora tutti gli uomini in I_n hanno lo stesso nome. Per il principio di induzione, allora, tutti gli uomini si chiamano **Franco**!!!!