Assignment 4

Come Up With a Group Name

Contents

1	Question 1	2
	1.1 (i)	2
	1.2 (ii)	2
	1.3 (iii)	
2	Question 2	2
	2.1 (i)	2
	2.2 (ii)	
	2.3 (iii)	
3	Question 3	3
	3.1 (i)	3
	3.2 (ii)	_
		6
	\	7
	(,	8
	3.6 (vi)	9
	3.7 (vii)	9

1 Question 1

Judge	Jones		Smith	
Sentences	Prison	Other	Prison	Other
Cases	70%	30%	40%	60%
Future arrests	40%	60%	20%	50%

1.1 (i)

We can treat the following problem as follows: Y_i is the outcome

1.2 (ii)

1.3 (iii)

2 Question 2

2.1 (i)

From what is given, we have MDE=0.1, the power p=0.7, the proportion of students in control group is p=0.5. The variance of the binomial variable is $\sigma^2=p(1-p)=0.25$ To get the number of students the teacher should include in the experiment, we use the following formula:

$$n = \left(\frac{t_{1-\alpha/2} - t_{1-q}}{MDE}\right)^2 \frac{\sigma^2}{p(1-p)}$$

$$= \left(\frac{1.960 + 0.524}{0.1}\right)^2 \frac{0.25}{0.5(1-0.5)}$$

$$\approx 617$$
(1)

Thus, the teacher should include at least 617 students in the experiment.

2.2 (ii)

This will change the proportion of students in treatment to $p=0.5\times 20\%=0.1$, using the formula in Equation (1), the number of students required to participate in the experiment is:

$$n = \left(\frac{1.960 + 0.524}{0.1}\right)^2 \frac{0.25}{0.1(1 - 0.1)}$$

$$\approx 1713$$
(2)

Thus, the number of students required to participate in the experiment increases by 6856-2468=4388 students.

2.3 (iii)

3 Question 3

3.1 (i)

```
# Load data
dfData = read.csv("AngristEvans80.csv")
attach(dfData)

# Fraction of girls among the first born child
count_girl1 = table(dfData$SEXK)
fraction_girl1= count_girl1[[2]]/(count_girl1[[1]]+count_girl1[[2]])
```

Fraction of girls among the first born child is: 0.4876463
Fraction of girls among the second born child is: 0.4884266

```
#Regress gender of second child on gender of first child
lm_second_first = lm(SEX2ND~SEXK, data = dfData)
summary(lm_second_first)
```

```
Call:
```

lm(formula = SEX2ND ~ SEXK, data = dfData)

Residuals:

Min 1Q Median 3Q Max -0.4908 -0.4862 -0.4862 0.5092 0.5138

Coefficients:

Residual standard error: 0.4999 on 648470 degrees of freedom Multiple R-squared: 2.133e-05, Adjusted R-squared: 1.979e-05

F-statistic: 13.83 on 1 and 648470 DF, p-value: 2e-04

3.2 (ii)

```
# First stage regression
  lm_first_stage = lm(CHILD3 ~ SAMESEX, data= dfData)
  summary(lm_first_stage)
Call:
lm(formula = CHILD3 ~ SAMESEX, data = dfData)
Residuals:
            1Q Median 3Q
   Min
                                   Max
-0.4093 -0.4093 -0.3552 0.5907 0.6448
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.3552366 0.0008544 415.79 <2e-16 ***
SAMESEX
          0.0540534 0.0012051 44.85
                                          <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4852 on 648470 degrees of freedom
Multiple R-squared: 0.003093, Adjusted R-squared: 0.003091
F-statistic: 2012 on 1 and 648470 DF, p-value: < 2.2e-16
Is the instrumental variable sufficiently strong? => yes
  # Regress number of children on whether the first two children have the
   lm_total = lm(KIDCOUNT ~ SAMESEX, data= dfData)
  summary(lm_total)
Call:
lm(formula = KIDCOUNT ~ SAMESEX, data = dfData)
Residuals:
           1Q Median
                            ЗQ
                                   Max
-0.5752 -0.5752 -0.5040 0.4248 9.4960
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
```

```
(Intercept) 2.504033  0.001458 1716.93  <2e-16 ***

SAMESEX  0.071200  0.002057  34.61  <2e-16 ***
---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8283 on 648470 degrees of freedom

Multiple R-squared: 0.001844, Adjusted R-squared: 0.001842

F-statistic: 1198 on 1 and 648470 DF, p-value: < 2.2e-16
```

3.3 (iii)

In this study, the treatment group includes those who have a third child and the control group includes those who have two children or less. The variables that affect decision for mothers to be assigned into treatment or control group is Z=SAMESEX, indicating whether the first two child are of the same sex or not.

The always takers are those who have a third child regardless of whether the first two children is of the same sex or not.

```
df_always = dfData[dfData$CHILD3 == 1 & dfData$SAMESEX == 0,]
cat("The share of always takers is: ", nrow(df_always)/nrow(dfData))
```

The share of always takers is: 0.1766969

The compliers are those who only have a third child if the first two kids are of the same sex.

The share of compliers is: 0.5264159

The never takers are those who will never have the third child regardless of whether the first two chidren are of the same sex or not.

```
df_never = dfData[dfData$CHILD3 == 0 & dfData$SAMESEX == 1,]
cat("The share of never takers is: ", nrow(df_never)/nrow(dfData))
```

The share of never takers is: 0.2968871

Lastly, the defiers are those who will have a third child if the first two kids are of different sexes and will not have a third child if the first two kids are of the same sex. We cannot observe this as they are divided among the always taker and never taker's group.

3.4 (iv)

···

	Dependent variable:		
	HOURSM	INCOME1M	
	(1)	(2)	
CHILD3	-3.585***	-786.830***	
	(0.864)	(244.939)	
	t = -4.150	t = -3.212	
	p = 0.00004	p = 0.002	
Constant	20.304***	3,825.464***	
	(0.331)	(93.899)	
	t = 61.311	t = 40.740	
	p = 0.000	p = 0.000	
Observations	648,472	648,472	
Adjusted R2	0.007	0.008	
Note: *p<0.1; **p<0.05; ***p			

3.5 (v)

```
# Subgroup 1: Always taker
hour1=mean(df_always$HOURSM)
income1=mean(df_always$INCOME1M)
cat("The mean working hour of always takers is: ", hour1, ", the mean
income of always takers is: ",income1)
```

The mean working hour of always takers is: 17.04711 , the mean income of always takers is:

```
# Subgroup 2: never takers
hour2=mean(df_never$HOURSM)
income2=mean(df_never$INCOME1M)
cat("The mean working hour of never takers is: ", hour2, ", the mean
income of never takers is: ",income2)
```

The mean working hour of never takers is: 20.20379 , the mean income of never takers is: 3

The mean working hour of complier in treatment group is: 16.8629 , the mean income of this

```
# Subgroup 4: complier 0
hour4=mean(df_compliers0$HOURSM)
income4=mean(df_compliers0$INCOME1M)
cat("The mean working hour of complier in control group is: ", hour4, ",

the mean income of this group is: ",income4)
```

The mean working hour of complier in control group is: 20.12279, the mean income of this g

To-dos: USE these means to say something about the preference of having a third child

3.6 (vi)

3.7 (vii)

First, we stratify the sample by gender of the first child:

```
df_first_girl = dfData[dfData$SEXK == 1,]
df_first_boy = dfData[dfData$SEXK == 0,]
```

(But they ask to use the first stage result?) I try to to it manually below:

Dependent variable: _____ CHILD3 (1) (2) 0.063*** 0.046*** SAMESEX (0.002) (0.002) t = 36.381 t = 27.351p = 0.000 p = 0.000Constant 0.355*** 0.356*** (0.001)(0.001)t = 293.159 t = 294.887p = 0.000 p = 0.000Observations 316,225 332,247 0.004 Adjusted R2 0.002

Note:

*p<0.1; **p<0.05; ***p<0.01

If the first child is a girl and first two children are of the same sex, one is more likely to have a third child.

Then, we perform instrumental variable regressions:

•	•

	Dependent variable:			
	HOURSM (1)	INCOME1M (2)	HOURSM (3)	INCOME1M (4)
CHILD3	-1.104 (1.064) t = -1.037 p = 0.300	-343.922 (303.245) t = -1.134 p = 0.257	(1.425)	
Constant	19.409*** (0.412) t = 47.115 p = 0.000	3,676.891*** (117.357) t = 31.331 p = 0.000	(0.541)	4,006.674*** (152.305) t = 26.307 p = 0.000
Observations Adjusted R2	316,225 0.004	316,225 0.005	332,247 -0.001	332,247 0.007
Note:	=======	 *	======= p<0.1; **p<0	.05; ***p<0.01

Here we see that if the first child is a girl, having a third child does not significantly influence

the hour and income.