Theorem 1: Let ϕ be a TWTL formula, then for any trace t, Algorithm 1 returns \pm/\top iff $[t[i,j] \models \phi] = \pm/\top$.

Proof: We proceed to prove the theorem above. The proof is by a structural induction on the structure of the formula $\phi \in TWTL$.

Base Case: $\phi \in \{\top, \bot, \mathbf{H}^{\mathbb{D}}p, \mathbf{H}^{\mathbb{D}} \neg p\}$

Case 1: $\phi = \top$. The proof for this case is trivial based on the definition Algorithm 1, since given trace t, Monitor $(\top, t) = \top$. From the semantics, $t[i, j] \models \top = \top$.

Case 2: $\phi = \bot$. Same as the previous case.

Case 3: $\phi = \mathbf{H}^{\mathbb{D}}p$. For Algorithm 1 to be correct, then $\forall t.[t[i,j] \models \mathbf{H}^{\mathbb{D}}p] \equiv \text{Monitor } (\mathbf{H}^{\mathbb{D}}p,\ t[i,j])$ Performing a case analysis on the length of trace |t|. Given |t|=1, i.e. $t=\{e_i\}$ while performing further case analysis on the value of \mathbb{D} .

- Assuming $\mathbb{D}=0$ or $\mathbb{D}=1$: Based on TWTL semantics $t[i,j] \models \mathbf{H}^{\mathbb{D}}p$ iff $p \in e_i, \forall n \in \{i\} \land (t[j].\tau t[i].\tau) \geq \mathbb{D}$. With $(t[j].\tau t[i].\tau) \geq \mathbb{D}$, the above specification will be satisfied if $p \in e_i$ as stated above. Hence, $[t[i,j] \models \mathbf{H}^{\mathbb{D}}p] = \top$ if $p \in e_i$ else \bot . According to Algorithm 1 Monitor $(p,t[i,j]) = \top$ after applying Algorithm 2, Progress (p,e_i) if $p \in e_i$.
- Assuming $\mathbb{D} > 1$: Based on TWTL semantics, with |t| = 1, the case where $\mathbb{D} > 1$ violates the condition $(t[j].\tau t[i].\tau) \geq \mathbb{D}$. Hence, $t[i,j] \models \mathbf{H}^{\mathbb{D}}p$ = \bot . Furthermore, from the Algorithm 1, Monitor $(\mathbf{H}^{\mathbb{D}}p, t[i,j]) = \bot$. This is because Progress $(\mathbf{H}^{\mathbb{D}}p, e_i)$ returns \top for every $p \in e_i$ and then subsequently $\mathbf{H}^{\mathbb{D}-1}p$. Hence, it is required that $\mathbb{D} \leq |t|$.

Case 4: $\phi = \mathbf{H}^{\mathbb{D}} \neg p$. Same as previous case.

We proceed with the induction on the structure of the formula $\phi \in \{\varphi_1 \land \varphi_2, \ \varphi_1 \odot \varphi_2, \ \neg \varphi, \ [\varphi]^{[\tau,\tau']}\}$. The induction hypothesis requires that given a TWTL formula and a trace, the theorem based on the recursion in Algorithm 1 returns \bot/\top demonstrating whether the TWTL formula is satisfied or not.

Case 5: $\phi = \phi_1 \wedge \phi_2$. For Algorithm 1 to be correct, then $\forall t.t[i,j] \models \phi_1 \wedge \phi_2 \equiv \text{Monitor } (\phi_1 \wedge \phi_2, t[i,j])$. Based on TWTL semantics, $t[i,j] \models \phi_1 \wedge \phi_2 = (t[i,j] \models \phi_1) \wedge (t[i,j] \models \phi_2)$. Likewise, from Algorithm 1, Monitor $(\phi_1 \wedge \phi_2, t[i,j]) = \text{Monitor } (\phi_1, t[i,j])) \wedge \text{Monitor } (\phi_2, t[i,j])$. Performing the induction on both ϕ_1 : $\phi_1 = \top$ and ϕ_2 : $\phi_2 = \top$:

• Subcase 5.1: $\phi = \top \land \phi_2$. From the TWTL semantics on the \land operator, $t[i,j] \models (\top \land \phi_2) = \phi_2$. Likewise, from

- Algorithm 1, Monitor $(\top \land \phi_2, t[i, j])$. By applying Algorithm 3, Reduce $(\top \land \phi_2) = \phi_2$
- Subcase 5.2: $\phi = \phi_1 \wedge \top$. Again, based on TWTL semantics, $t[i,j] \models \phi_1 \wedge \top = \phi_1$. From Algorithm 1, Monitor $(\phi_1 \wedge \top, t[i,j])$. By applying Algorithm 3, Reduce $(\phi_1 \wedge \top) = \phi_1$.

Case 6: $\phi = \phi_1 \odot \phi_2$. For Algorithm 1 to be correct, then $\forall t. \ [t[i,j] \models \phi_1 \odot \phi_2 \equiv \mathsf{Monitor} \ (\phi_1 \odot \phi_2, t[i,j]).$ According to the TWTL semantics $\exists k = \arg\min_{i \leq k < j} \{t[i,k] \models \phi_1\} \land (t[k+1,j] \models \phi_2),$ where k is time between i and j i.e. $i \leq k < j$. Hence, $t[i,j] \models \phi_1 \odot \phi_2 = (t[i,k] \models \phi_1) \land (t[k+1,j] \models \phi_2).$ Likewise, based on Algorithm 1, Monitor $(\phi_1 \odot \phi_2, t[i,j])$ = Monitor $(\phi_1 t[i,j]) \odot \mathsf{Monitor} \ (\phi_2, t[i,j]).$ First performing the induction on $\phi_1 \colon \phi_1 = \top$ and then $\phi_2 \colon \phi_2 = \top$:

- **Subcase 6.1**: $\phi = \top \odot \phi_2$. From the TWTL semantics, $t[i,k] \models \top \land (t[k+1,j] \models \phi_2) = \phi_2$. Likewise, from the Algorithm 1, Monitor $(\top \odot \phi_2, t[i,j])$. By applying Algorithm 3, Reduce $(\top \odot \phi_2) = \phi_2$.
- Subcase 6.2: $\phi = \phi_1 \odot \top$. From the TWTL semantics, $t[i,k] \models \phi_1 \land (t[k+1,j] \models \top) = t[i,j] \models \phi_1 \odot \top$. Based on semantics $\phi = \phi_1$. Furthermore, from the Algorithm 1, Monitor $(\phi_1 \odot \top, t[i,j])$. Applying Algorithm 3, Reduce $(\phi_1 \odot \top) = \phi_1$.

Case 7: $\phi = \neg \phi$. For Algorithm 1 to be correct, then $\forall t.t[i,j] \models \neg \phi \equiv \text{Monitor } (\neg \phi, t[i,j]).$ From the TWTL semantics, $t[i,j] \models \neg \phi$ iff $t[i,j] \not\models \phi$. Likewise, Based Algorithm 1, Monitor $(\neg \phi, t[i,j]) = \neg \text{Progress } (\varphi, e_i)$, by applying Algorithm 2.

Case 8: $[\phi]^{[\tau,\tau']}$. For Algorithm 1 to be correct, then $\forall t.[t[i,j] \models [\phi]^{[\tau,\tau']} \equiv \text{Monitor } ([\phi]^{[\tau,\tau']},t[i,j]).$ Based on TWTL semantics, $t[i,j] \models [\phi]^{[\tau,\tau']} = \top$ given that $\exists k \geq i + \tau.t[k,i+\tau'] \models \phi \land (t[j].\tau-t[i].\tau) \geq \tau'$ and all other cases in relation to ϕ as stated in the semantics is satisfied. According to Algorithm 1, Monitor $([\phi]^{[\tau,\tau']},t[i,j])$ is based on 2 scenarios. Given $\phi = \mathbf{H}^{\mathbb{D}}p$ or $\phi = \mathbf{H}^{\mathbb{D}}\neg p$, the conditions of the base case must hold as well as $\mathbb{D} \leq (\tau'-\tau)$ else \bot . In the other scenario, Monitor $([\phi]^{[\tau,\tau']},t[i,j]) = \top$ if Algorithms 2 and 3 are applied on all the respective induction cases as presented in the algorithms 2 and 3 otherwise \bot .