CARP - Quantifying Structural Complexity of Pangenomes

Leonard Bohnenkämper

March 5th, 2025

▶ No rearrangements via Homologous Recombination.

Flash Forward: Adjacencies

► No change in adjacencies!

- ► No change in adjacencies!
 - \rightarrow Non-Adjacency Modifying Operations (Namos)

- ► No change in adjacencies!
 - → Non-Adjacency Modifying Operations (Namos)
 - $\leftrightarrow \mathsf{Adjacency}\ \mathsf{Modifying}\ \mathsf{Operations}\ (\mathsf{Amos})$

- No change in adjacencies!
 - → Non-Adjacency Modifying Operations (Namos)
 - ⇔ Adjacency Modifying Operations (Amos)

Amos can introduce structural complexity!

Pangenomes with Minimal Structural Complexity

Boring Simple Pangenome

▶ #Amos in s: measure of the Structural Complexity.

- #Amos in s: measure of the Structural Complexity.
- ▶ * with minimal #Amos

k-Coalescence – an important Namo

k-Coalescence – an important Namo

Classical Problems and GARP

Distance Problem and GARP

Distance Problem and GARP

Distance Problem and GARP

Complete Ancestral Reconstruction for Pangenomes (CARP)

Very limited interaction between genomes (only Coalescence)

- ▶ Very limited interaction between genomes (only Coalescence)
- Pangenomes

- ▶ Very limited interaction between genomes (only Coalescence)
- ▶ Pangenomes→ phylogenetic closeness

- Very limited interaction between genomes (only Coalescence)
- ▶ Pangenomes→ phylogenetic closeness→ more interaction/horizontal effects

- Very limited interaction between genomes (only Coalescence)
- ▶ Pangenomes→ phylogenetic closeness→ more interaction/horizontal effects
- \rightarrow Classical Problem Formulations would overestimate structural complexity for pangenomes (missing Namos substituted with Amos)

- Very limited interaction between genomes (only Coalescence)
- ▶ Pangenomes→ phylogenetic closeness→ more interaction/horizontal effects
- → Classical Problem Formulations would overestimate structural complexity for pangenomes (missing Namos substituted with Amos)
- ightarrow For a lower bound, we need a "maximally powerful" set of Namos

...

MBPG of a Simple Pangenome

lacktriangle Simple pangenome \iff adjacencies are a perfect matching

MBPG and Namos

MBPG and Namos

► Namos don't change the graph!

Conclusions from the MBPG

Observation

Given a Namo o and pangenomes \mathbb{P}, \mathbb{P}' , where $\mathbb{P} \stackrel{\circ}{\to} \mathbb{P}'$, the MBPGs of \mathbb{P} and \mathbb{P}' are identical.

Conclusions from the MBPG

Observation

Given a Namo o and pangenomes \mathbb{P}, \mathbb{P}' , where $\mathbb{P} \stackrel{o}{\to} \mathbb{P}'$, the MBPGs of \mathbb{P} and \mathbb{P}' are identical.

Definition

A set of Namos N is called MBPG-complete, if for all pairs of pangenomes \mathbb{P}, \mathbb{P}' with the same MBPG there is a sequence of Namos $o_1 o_2 \dots o_k \in N^*$, such that $\mathbb{P} \stackrel{o_1}{\longrightarrow} \stackrel{o_2}{\longrightarrow} \dots \stackrel{o_k}{\longrightarrow} \mathbb{P}'$.

Complete Ancestral Reconstruction for Pangenomes (CARP)

- ▶ #Amos in s: measure of the Structural Complexity.
- ▶ ¹ with minimal #Amos

Complete Ancestral Reconstruction for Pangenomes (CARP)

- ▶ #Amos in *s*: measure of the Structural Complexity.
- ▶ ¹ with minimal #Amos
- ▶ ² MBPG-complete set of Namos

Amos: SCJ-operations

Amos: SCJ-operations

Nothing to be done for adjacencies at non-branching nodes.

Lemma

Need exactly $|E_C|$ SCJs to transform the MBPG into a simple MBPG where E_C is the set of contested adjacencies. We call $|E_C|$ the SCJ-CARP measure.

SCJ-CARP Tracks Structural Complexity

Pearson Coefficient: 0.88

SCJ-CARP Does Not Track Horizontal Effects

Pearson Coefficient: -0.01

SCJ-CARP Reconstructs Ancestral Adjacencies (to a Limited Extent)

► CARP for more complex rearrangement models (DCJ/HP/BI...)

- CARP for more complex rearrangement models (DCJ/HP/BI...)
 - \rightarrow Characterize Pangenome by vector of CARP measures ($m_{SCJ}, m_{DCJ}, m_{HP}, m_{BI}, \ldots$).
 - ightarrow Compare vectors to compare pangenomes

- CARP for more complex rearrangement models (DCJ/HP/BI...)
 - → Characterize Pangenome by vector of CARP measures $(m_{SCJ}, m_{DCJ}, m_{HP}, m_{BI}, ...)$.
 - → Compare vectors to compare pangenomes
- ▶ Comparing pangenomes \mathbb{P}_a , \mathbb{P}_b on the same marker set

- CARP for more complex rearrangement models (DCJ/HP/BI...)
 - → Characterize Pangenome by vector of CARP measures $(m_{SCJ}, m_{DCJ}, m_{HP}, m_{BI}, ...)$.
 - \rightarrow Compare vectors to compare pangenomes
- ▶ Comparing pangenomes \mathbb{P}_a , \mathbb{P}_b on the same marker set
 - Simple:
 - ► Calculate CARP ancestors \mathbb{A}_a , \mathbb{A}_b

- CARP for more complex rearrangement models (DCJ/HP/BI...)
 - → Characterize Pangenome by vector of CARP measures $(m_{SCJ}, m_{DCJ}, m_{HP}, m_{BI}, ...)$.
 - \rightarrow Compare vectors to compare pangenomes
- ▶ Comparing pangenomes \mathbb{P}_a , \mathbb{P}_b on the same marker set
 - Simple:
 - ► Calculate CARP ancestors \mathbb{A}_a , \mathbb{A}_b
 - $d(\mathbb{P}_a,\mathbb{P}_b) = d(\mathbb{A}_a,\mathbb{A}_b)$
 - Advanced:
 - ightharpoonup Among all possible CARP ancestors A_a, A_b
 - $\qquad \qquad d(\mathbb{P}_a,\mathbb{P}_b) = \min_{\mathbb{A}_a \in A_a,\mathbb{A}_b \in A_b} d(\mathbb{A}_a,\mathbb{A}_b)$

- CARP for more complex rearrangement models (DCJ/HP/BI...)
 - → Characterize Pangenome by vector of CARP measures $(m_{SCJ}, m_{DCJ}, m_{HP}, m_{BI}, ...)$.
 - ightarrow Compare vectors to compare pangenomes
- ightharpoonup Comparing pangenomes $\mathbb{P}_a, \mathbb{P}_b$ on the same marker set
 - Simple:
 - ► Calculate CARP ancestors \mathbb{A}_a , \mathbb{A}_b
 - $d(\mathbb{P}_a,\mathbb{P}_b) = d(\mathbb{A}_a,\mathbb{A}_b)$
 - Advanced:
 - ightharpoonup Among all possible CARP ancestors A_a, A_b
 - $\qquad \qquad d(\mathbb{P}_a,\mathbb{P}_b) = \min_{\mathbb{A}_a \in A_a, \mathbb{A}_b \in A_b} d(\mathbb{A}_a,\mathbb{A}_b)$
- (Formal definition for) Marker segmentation on pangenomes

