COSC 2370 – Boolean Logic and Algebra Assignment-2 Developed by: Jackson Benard

1 Binary Multiplication

 5×6

Multiplicand	Multiplier	Product
0000 0101	0000 0110	0000 0000
		0000 0000
0000 1010	0000 0011	0000 0000
		0000 1010
0001 0100	0000 0001	0000 1010
		0001 1110
0010 1000	0000 0000	0001 1110
		0001 1110

Answer: $0001 \ 1110 = 2^4 + 2^3 + 2^2 + 2^1 = 30$

2 Binary Division

 $\frac{10}{4}$

A	Q	M	Count	Comment	
00000	1010	00100	4	Initialize	
00001	010-	00100	4	Left Shift	
11101	0100	00100	4	Subtract	
00001	0100	00100	4	Add	
00010	100-	00100	3	Left Shift	
11110	1000	00100	3	Subtract	
00010	1000	00100	3	Add	
00101	000-	00100	2	Left Shift	
00001	0001	00100	2	Subtract	
00010	001-	00100	1	Left Shift	
11110	0010	00100	1	Subtract	
00010	0010	00100	1	Add	
00010	0010	00100	0	Final	

Quotient: 0010 = 2 **Remainder:** 00010 = 2

3 Theorem

$$(X+Y)\cdot(\overline{X}+Z)=X\cdot Z+\overline{X}\cdot Y$$

$$= (X + Y) \cdot (\overline{X} + Z)$$

$$= X\overline{X} + XZ + Y\overline{X} + YZ$$

$$=XZ+\overline{X}Y+YZ$$

$$=XZ+\overline{X}Y+YZ(X+\overline{X})$$

$$=XZ+\overline{X}Y+YZX+YZ\overline{X}$$

$$=XZ+YZX+\overline{X}Y+YZ\overline{X}$$

$$=XZ(1+Y)+\overline{X}Y(1+Z)$$

$$=XZ(1)+\overline{X}Y(1)$$

$$=XZ+\overline{X}Y$$

4 Simplification

$$E = W \cdot X \cdot \overline{Z} + \overline{X} \cdot Y \cdot Z + W \cdot X \cdot \overline{Y} + X \cdot Y \cdot Z + \overline{W} \cdot Y \cdot Z$$

$$= WX\overline{Z} + \overline{X}YZ + WX\overline{Y} + XYZ + \overline{W}YZ$$

$$=WX\overline{Z}+WX\overline{Y}+\overline{W}YZ+YZ$$

$$=WX\overline{Z}+WX\overline{Y}+YZ(\overline{W}+1)$$

$$=WX\overline{Z}+WX\overline{Y}+YZ(1)$$

$$=WX(\overline{Z}+\overline{Y})+YZ$$

$$= (YZ + WX) \cdot (YZ + \overline{Y} + \overline{Z})$$

$$= (YZ + WX) \cdot (Z + \overline{Y} + \overline{Z})$$

$$= (YZ + WX) \cdot (1 + \overline{Y})$$

$$= (YZ + WX) \cdot (1)$$

$$=YZ+WX$$

5 KMAP

$$E = W \cdot X \cdot \overline{Z} + \overline{X} \cdot Y \cdot Z + W \cdot X \cdot \overline{Y} + X \cdot Y \cdot Z + \overline{W} \cdot Y \cdot Z$$

$WX \setminus YZ$	00	01	11	10
00			1	
01			1	
11	1	1	1	1
10			1	

Simplification

$$W \cdot X \cdot \overline{Z} + \overline{X} \cdot Y \cdot Z + W \cdot X \cdot \overline{Y} + X \cdot Y \cdot Z + \overline{W} \cdot Y \cdot Z = WX + YZ$$