Nom	
Prénom	
Groupe	

Note	
------	--

${\bf Algorithmique\ -\ Info-SPE}$

Partiel nº 2

D.S. 312354.45 BW (10 mai 2011 - 09 :00)

Feuilles de réponses

Réponses 1 (Gisement épuisant... - 5 points)

	La solution correspond à : Dans le cas de la figure 1, combien faut-il sécuriser de galeries?
3.	Proposer une solution graphique (Surligner les galeries que vous vous proposez de sécuriser).
4.	Pour un réseau de N points d'extraction, il faut sécuriser $\begin{picture}(20,5) \put(0,0){\line(1,0){100}} \put(0,0){\li$
5.	Justification :

On affine l'analyse du problème : pour chaque galerie, nous avons évalué le coût des travaux de sécurisation (voir figure 2).

6. Comment dans ce cas sécuriser l'accès à toutes les grottes au moindre coût?

7. Proposer une solution graphique (Tracer en gras les galeries qu'il faut sécuriser).

8. La solution est-elle unique?

OUI - NON

9. Justification:

Réponses 2 (Mangez des crêpes - 16 points)

1. Graphe représentant le projet :

2. (a) Solution de tri topologique à compléter :

(b) Comment trouver une solution de tri topologique?

(c) $\mathbf{Sp\acute{e}cifications}$: La procédure $\mathtt{tri_topo}$ (G, tri) donne une solution de tri topologique (dans la pile tri) obtenu à partir du premier sommet du graphe G.

Algorithme (parcours récursif):

 $Proc\'edure\ tri_topo\ (algo\ d'appel)\ page\ suivante$

3.

V				/* cont	cient d	es t_li	stsom *	:/			
debu	t										
fin a	gorith	ne pro	cedure	tri_to	po						
				tri_to		ue tâche	à parti:	· de ce t	type de g	graphe ?	
						ue tâche	à parti:	r de ce t	type de g	graphe ?	
						ue tâche	e à parti:	r de ce t	ype de g	graphe ?	
						ue tâche	e à parti	e de ce t	type de g	graphe ?	
						ue tâche	e à parti:	r de ce t	ype de g	graphe?	
	ent calcu	ller les d	lates au		de chaq	ue tâche	e à partir	· de ce t	type de g	graphe ?	

				ouvoir							
Commen	$nt \ obten$	ir la du	rée mini	$male \ du$	projet ?						
Commen	nt calcu	ler les d	ates au	plus tare	d de cha	que tâch	ne?				
Dates a											
$egin{aligned} \mathbf{Dates} & \mathbf{a} \ & debut \end{aligned}$	u plus	tard p	oour la	recette D	: E	F	G	Н	I	J	
						F	G	Н	I	J	f
debut	A	В	С	D	Е				I	J	fi
	A	В	С	D	Е				I	J	fi
debut	A	В	С	D	Е				I	J	fi
debut	A	В	С	D	Е				I	J	fi
debut	A	В	С	D	Е				I	J	fi
debut	A obtien	B nt-on les	C s tâches	D critique.	E s dans c	e type d	e projet	?			fi ue!

(e) **Spécifications :** La fonction duree_minimale (G, source, finale) calcule la longueur du plus long chemin (la durée minimale du projet) dans le graphe G, entre les tâches source et finale.

```
algorithme fonction duree_minimale : reel
parametres locaux
t_graphe_d G
entier s, f

variables
```

\mathbf{debut}

 $fin \ algorithme \ fonction \ {\tt duree_minimale}$

Réponses 3 Construire un ARPM par suppression – 9 points

1.	Principe du test de connexité entre deux sommets par un parcours profondeur :					

2. Spécification: la fonction lie_rec(dst,ps,T,M) teste (elle renvoie donc un booléen) s'il existe un chemin depuis le sommet pointé par ps jusqu'au sommet de numéro dst. La fonction utilise le principe de la question précédente. La matrice T décrit les arêtes qui ont été supprimées du graphe et le vecteur de booléens M sert de vecteur de marques pour le parcours profondeur.

```
algorithme fonction lie_rec : booleen
 parametres locaux
   entier
                     dst
   t_listsom
                     ps
                     Т
   t_mat_entiers
 parametres globaux
   t_vect_booleens
 variables
```

debut

fin algorithme fonction lie_rec

3.	Condition d'arrêt de l	l'algorithme de suppression	des arêtes :	

4. Spécification : la procédure revdel(g,E,T) applique l'algorithme de construction de l'ARPM par suppression des arêtes dans le graphe g, à partir de l'ensemble d'arête E et indique dans la matrice T les arêtes supprimées.

```
algorithme procedure revdel
 parametres locaux
   t_graphe_d
 parametres globaux
   ensemble E
   t_mat_entiers
 variables
```

\mathbf{debut}

fin algorithme procedure revdel

5. Surligner les arêtes supprimées par l'algorithme

