SMAI-S25-03: Linear Classifiers

C. V. Jawahar

IIIT Hyderabad

January 10, 2025

Recap

- Actions: Project team formation and sports/game/data identification. (deadline soon)
- Summary
 - Representation as a vector in R^d
 - Learn a function $y = f(\mathbf{W}, \mathbf{x})$ from the data.
 - Notion of Training and Testing
 - Feature Transformation as a useful trick:

$$\mathbf{x}' = \mathbf{W}\mathbf{x}$$

- Data normalization
- Dimensionality Reduction
- Two Simple Classification Schemes:
 - Nearest Neighbour Algorithm (K NN)
 - Linear Classification
 - $sign(\mathbf{w}^T \mathbf{x})$; Either +ve or -ve.

Performance Metrics

- In the classification setting:
 - Accuracy, Confusion Matrix, Precision, Recall
 - Read Now:

```
https://developers.google.com/machine-learning/
crash-course/classification/accuracy-precision-recall
```

- In the ranking/retrieval setting:
 - Precision, Recall, AP, F-score.
- Many more performance metrics see for example:
 - Read Later:

https://en.wikipedia.org/wiki/Confusion_matrix

Discussions

 $Q: \mathbf{w}^T \mathbf{x}$ is a line passing through origin. How do we characterize "general" line?

- Ans1: $\mathbf{w}^T \mathbf{x} + b$
- Ans2: $\mathbf{w'}^T \mathbf{x'}$ where $\mathbf{x'}$ is an augmented vector. i.e., $\mathbf{x'} = [\mathbf{x}^T, 1]^T$. (There is notational convenience for this.)
- (Refer the usage of "bias" in neural networks. You will appreciate this better)
- In general, when we write as $\mathbf{w}^T \mathbf{x}$, often \mathbf{x} is augmented and bias is absorbed.

Q: We know, if we have two classes, we can classify as:

$$sign(\mathbf{w}^T\mathbf{x})$$

Assume we have three classes, how do we extend this decision making logic?

Write an algorithm to classify a sample into one of the four possible classes.

Consider a classification rule:

"Decide as A if $\mathbf{w}^T x \ge 0$; Else Class B"

Problem: for $\mathbf{w} = [1, 1, 1, 1]^T$, classify the following samples:

(i)
$$[1,1,1,1]$$
 (ii) $[0,1,2,3]^T$ (ii) $[-1,+1,-1,+1]$

What is the angle between the two lines characterized by

$$\mathbf{w}_1 = [1,1]^{\mathcal{T}}$$

$$\mathbf{w}_2 = [1, -1]^T$$

Q: There was a proposal to an airport from a supplier:

"We have a multi-sensor product that can recognize terrorists reliably. We can classify a normal person vs terrorist (two class classification problem) with an accuracy of 99.5%"

- Is this a good product for detecting terrorists? Why?
- As an SMAI student, who evaluate this product, what performance metrics you will prefer? What should be a good crieria?

In a problem of classification of "cricket ball vs Tennis ball" there were two features (i) size/radius measured in micometer (ii) Weight measured in Tons. Final classification will be done with KNN with Eucldean distance.

- Fact: A non-SMAI student felt that size should be in cm (1 cm = 10^4 mico meter) and weight in Kg (1 Ton = 10^3 Kg) for good performance of the algorithm she uses.
- Suggest the 2×2 matrix \mathbf{W} to obtain the new feature representation from the old one.

$$\mathbf{x}' = \mathbf{W}\mathbf{x}$$