Heart attack analysis using Decision Tree

```
1 import pandas as pd
 2 from sklearn.tree import DecisionTreeClassifier
3 import seaborn as sns
 4 from sklearn.model_selection import train_test_split
 5 from sklearn.metrics import accuracy_score
 6 from sklearn.metrics import confusion_matrix
 7 import six
8 import sys
9 sys.modules['sklearn.externals.six'] = six
10 from sklearn import tree
11 from sklearn.tree import export_graphviz
12 from sklearn.externals.six import StringIO
13 from IPython.display import Image
14 import pydotplus
15 import graphviz
16 import matplotlib.pyplot as plt
17 %matplotlib inline
1 # Load the data
2 data = pd.read_csv('heart.csv')
 3 data
```

	age	sex	ср	trtbps	chol	fbs	restecg	thalachh	exng	oldpeak	slp	caa	t
0	63	1	3	145	233	1	0	150	0	2.3	0	0	
1	37	1	2	130	250	0	1	187	0	3.5	0	0	
2	41	0	1	130	204	0	0	172	0	1.4	2	0	
3	56	1	1	120	236	0	1	178	0	0.8	2	0	
4	57	0	0	120	354	0	1	163	1	0.6	2	0	
•••													
298	57	0	0	140	241	0	1	123	1	0.2	1	0	
299	45	1	3	110	264	0	1	132	0	1.2	1	0	
300	68	1	0	144	193	1	1	141	0	3.4	1	2	
301	57	1	0	130	131	0	1	115	1	1.2	1	1	
302	57	0	1	130	236	0	0	174	0	0.0	1	1	
303 rows × 14 columns											>		
,													,

```
1 # Split the data into features and labels
2 X = data.drop(['age'], axis=1)
3 y = data['age']
```

1 data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 303 entries, 0 to 302 Data columns (total 14 columns): # Column Non-Null Count Dtype 303 non-null 0 age 303 non-null int64 1 sex 303 non-null 2 int64 Ср trtbps 303 non-null int64 3 303 non-null 4 chol int64 5 fbs 303 non-null int64 6 restecg 303 non-null int64 thalachh 303 non-null int64 8 exng 303 non-null int64 oldpeak 303 non-null float64 10 slp 303 non-null int64 303 non-null int64 11 caa 12 thall 303 non-null int64 303 non-null 13 output int64 dtypes: float64(1), int64(13) memory usage: 33.3 KB

1 data.describe()

	age	sex	ср	trtbps	chol	fbs	res
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.00
mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.52
std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.52
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.00
25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.00
50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.00
75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.00
max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.00

1 data.isnull()

	age	sex	ср	trtbps	chol	fbs	restecg	thalachh	exng	oldpeak	slŗ
0	False	False	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False	False	False
298	False	False	False	False	False	False	False	False	False	False	False
299	False	False	False	False	False	False	False	False	False	False	False
300	False	False	False	False	False	False	False	False	False	False	False
301	False	False	False	False	False	False	False	False	False	False	Fals€
302	False	False	False	False	False	False	False	False	False	False	False
303 rows × 14 columns											
4											•

1 data.isnull().sum()

```
0
age
             0
sex
             0
trtbps
             0
chol
fbs
restecg
thalachh
             0
exng
oldpeak
             0
             0
             0
slp
caa
thall
             0
            0
output
            0
dtype: int64
```

```
1 X = data.iloc[:,0:13] # Features
```

² y = data.iloc[:,13] # Target variable 3 x

```
age sex cp trtbps chol fbs restecg thalachh exng oldpeak slp caa t
                                      233
1 y=data['output']
2 у
    0
             1
    3
    4
    298
             0
    299
             0
    300
             0
    301
             0
    302
    Name: output, Length: 303, dtype: int64
1 plt.figure(figsize=(12,10))
2 sns.heatmap(data.corr(),annot=True,cmap="magma",fmt='.2f')
    <matplotlib.axes._subplots.AxesSubplot at 0x7f4187ecd7c0>
                   -0.10 -0.07 0.28 0.21 0.12 -0.12 -0.40
                                                         0.10 0.21 -0.17 0.28 0.07 -0.23
                   1.00
                                              -0.06 -0.04
                                                                   -0.03 0.12
                                                                                    -0.28
         sex
                                                                                                  0.8
          ф
              -0.07 -0.05
                        1.00
                              0.05 -0.08
                                        0.09 0.04 0.30
                                                         -0.39 -0.15 0.12 -0.18 -0.16 0.43
                             1.00
                                                                                                 - 0.6
                                  1.00
                                         0.01 -0.15 -0.01 0.07
        chol
                                                                                                  - 0.4
                                        1.00
         fbs
                   0.05 0.09
                                              -0.08 -0.01 0.03
                                                                   -0.06 0.14 -0.03 -0.03
                                              1.00
                                                                                                  0.2
                                                   1.00
                   0.14 -0.39
                                        0.03 -0.07 -0.38
                                                         1.00
                                                                                    -0.44
        exng
                                                                                                  0.0
      oldpeak
                   0.10 -0.15
                                        0.01 -0.06 -0.34
                                                              1.00
                                                                    -0.58
                                                              -0.58
                                                                                                 - -0.2
                                                                   -0.08
                                                                         1.00
                                        0.14 -0.07
         caa
                                                                                                  -0.4
        thall
                                                                              1.00
                  -0.28
```

```
1 # Split the data into training and testing sets
2 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

1 # Train the Decision Tree classifier
2 clf = DecisionTreeClassifier()
3 clf.fit(X_train, y_train)
    DecisionTreeClassifier()

1 # Predict using the trained model
2 y_pred = clf.predict(X_test)

1 # Evaluate the accuracy of the model
2 accuracy = accuracy_score(y_test, y_pred)
3 print("Accuracy:", accuracy)
    Accuracy: 0.7582417582417582

1 # Evaluate the model performance using confusion matrix
2 cm = confusion_matrix(y_test, y_pred)
```

3 print("Confusion Matrix: \n ", cm)

```
Confusion Matrix:
[[29 10]
[12 40]]
```

```
1 # Plot the confusion matrix
2 plt.imshow(cm, cmap='Blues')
3 plt.colorbar()
4 plt.title("Confusion Matrix")
5 plt.xlabel("Predicted Label")
6 plt.ylabel("True Label")
7 plt.show()
```


✓ 3s completed at 11:15 AM