1 Topic modelling with NMF

I load the document-term matrix. And then as the instruction in the file, I replace word frequencies by "probabilities".

I present the matrix as a colored panel. And, as the instruction, I truncate values >0.0001 for imporoved visibility. It shows as below.

a)

Look into the top-10 terms in the matrix R-hat. It is presented as below.

space	launch	orbit	mission	nasa	shutt1	venu	system	year	earth
4.675926e-05	2.791249e-05	2.266385e-05	2.242116e-05	2.123164e-05	1.980099e-05	1.765422e-05	1.507907e-05	1.399894e-05	1.380021e-05
studi 1.854399e-05	diseas 1.851442e-05	effect 1.810447e-05	doctor 1.806254e-05	medic 1.783681e-05	candida 1.670837e-05	patient 1.603073e-05	peopl 1.566815e-05	drug 1.456400e-05	food 1.354655e-05

god	christian	peopl	church	homosexu	paul	jesu	faith	thing	question
6.244223e-05	4.252302e-05	3.511040e-05	3.357088e-05	2.327599e-05	1.984683e-05	1.969462e-05	1.946757e-05	1.711896e-05	1.562345e-05
kei	encrypt	system	secur	govern	chip	clipper	law	peopl	de
	4.766727e-05								

I present it as a colored panel as below. I present the value for each row corresponding to the first 10 terms in different color. It is somehow clear to see the 4 X 10 squares with different level of darkness in color green.

And the top 10 terms for each row are as follow.

ROW 1	space	launch	orbit	mission	nasa	shuttl	venu	system	year	earth
KOW I	0.0000468	0.0000279	0.0000227	0.0000224	0.0000212	0.0000198	0.0000177	0.0000151	0.0000140	0.0000138
ROW 2	studi	diseas	effect	doctor	medic	candida	patient	peopl	drug	food
KOW Z	0.0000185	0.0000185	0.0000181	0.0000181	0.0000178	0.0000167	0.0000160	0.0000157	0.0000146	0.0000135
ROW 3	god	christian	peopl	church	homosexu	paul	jesu	faith	thing	question
KOW 3	0.0000624	0.0000425	0.0000351	0.0000336	0.0000233	0.0000198	0.0000197	0.0000195	0.0000171	0.0000156
ROW 4	kei	encrypt	system	secur	govern	chip	clipper	law	peopl	de
ROW 4	0.0000583	0.0000477	0.0000288	0.0000287	0.0000282	0.0000263	0.0000226	0.0000212	0.0000207	0.0000164

As we know ahead that the topics are "sci.crypt", "sci.med", "sci.space", and "soc.religion.christian", it is easier to see the topic for each row. With the indication of those words colored with orange cell, it is easy to see that for ROW 1, it's

<u>about "sci.space"</u>; <u>for ROW 2, it's about "sci.med"</u>: <u>for ROW 3, it's about "soc.religion.christian"</u>; <u>for ROW 4, it's about "sci.crypt"</u>. So, in general, I think the subsets of each row constitute a meaningful topic respectively.

I use the code provided in the file to reconstruct the matrix.

```
Phat <- lr.gkl$L %*% lr.gkl$R
showcol(pmin(Phat,0.0001))</pre>
```

I compare both of them as below.

Original matrix

Reconstructed matrix (Using KL divergence with r = 4)

After the observation, the result is quite as what I expected, which is 1 the dense (high-value) part will be presented, and also that 1 for some cells in the reconstructed matrix, the value will be a bit larger or smaller comparing with the corresponding cells in the original matrix.

This point is showed as the white circles, which points out the dense (high-value) part.

ii) This point is showed as the yellow circle. For the original matrix, almost all of the cells at the right-up side are zero(empty), and the yellow circle is pointing out the clear line distinguishing two area. On the opposite, the line between two area is much more blurry.

c)

i)

Use SVD to redo the process as in a) and b).

Look into the top-10 terms(using the absolutes of each cell) in the matrix V. It is presented as below.

venu -0.3467093					mission -0.1813604				earth -0.1298500
venu -0.3843787					mission -0.1781779				
					diseas	secur	devic	chip	health
0.381/868	0.2849342	0.2344941	-0.2042601	-0.1884720	-0.1883962	0.1843405	0.1754694	0.1627822	-0.1616573

I adjust the presentation as the form below.

ROW 1	venu	space	soviet	probe	system	mission	year	studi	program	earth
KOW I	(0.35)	(0.24)	(0.23)	(0.20)	(0.19)	(0.18)	(0.16)	(0.14)	(0.13)	(0.13)
ROW 2	venu	soviet	probe	space	cancer	mission	drug	diseas	diet	peopl
KOW Z	(0.38)	(0.25)	(0.22)	(0.21)	0.18	(0.18)	0.18	0.17	0.17	0.15
ROW 3	encrypt	kei	law	cancer	diet	diseas	secur	devic	chip	health
KOW 3	0.38	0.28	0.23	(0.20)	(0.19)	(0.19)	0.18	0.18	0.16	(0.16)
ROW 4	god	homosexu	christian	encrypt	paul	sin	peopl	kei	jesu	church
KOW 4	(0.52)	(0.24)	(0.24)	0.22	(0.22)	(0.19)	(0.19)	0.17	(0.15)	(0.12)

As the information above, the negative values are telling that the related topic is "NOT" about certain term, and the positive values are telling that the related topic is "HAVING SOMETHING TO DO" with certain term. By this way, we can see that <u>for ROW 2</u>, <u>it's about "sci.med"</u>; and <u>for ROW 3</u>, <u>it's about "sci.crypt"</u>. But it's hard to tell what topics for the rest two row are related to.

So, I try to "not to use absolutes", and I use the original value for the selection of the top 10 terms for each row. And the result is presented below.

ROW 1	omiss	strnlghtc	suno	kipl	geb	collision	metzger	pmetzger	idealist	ес
KOW I	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
ROW 2	cancer	drug	diseas	diet	peopl	encrypt	health	studi	kei	effect
KOW 2	0.18	0.18	0.17	0.17	0.15	0.15	0.14	0.13	0.12	0.12

ROW 3	encrypt	kei	law	secur	devic	chip	protect	govern	clipper	god
KOW 3	0.38	0.28	0.23	0.18	0.18	0.16	0.16	0.16	0.13	0.13
DOW 4	encrypt	kei	devic	secur	protect	govern	chip	cancer	drug	privaci
ROW 4	0.22	0.17	0.10	0.10	0.10	0.09	0.09	0.09	80.0	0.07

For this trial, it is clear that <u>for ROW 2</u>, <u>it's about "sci.med"</u>. But some terms are causing problem while allocating the topics. For example, the term "encrypt" appears in both row 3 and 4 with a "not so low" value. And also there is still no telling that what topic it is for ROW 1; though there is term "collision" in the top 10, but the value is too low to have a efficient indication.

ii)

I use the code provided in the file to reconstruct the matrix.

Phat <- P.svd\$u[,1:4] %*% diag(P.svd\$d[1:4]) %*% t(P.svd\$v[,1:4])
showcol(pmin(Phat,0.0001))</pre>

I compare both of them as below.

Original matrix

Reconstructed matrix (Using SVD with k = 4)

It's apparent that the reconstruction of the matrix using SVD is having less similarity comparing to the result using KL-divergence method.

d)

I)

Run the process with r = 2.

5.642955e-05 4.850925e-05 4.576931e-05 4.479688e-05 2.895709e-05 2.722350e-05 2.697668e-05 2.513996e-05 2.500510e-05 2.351206e-05

god peopl christian church question homosexu thing paul studi person
6.149216e-05 4.855624e-05 4.187606e-05 3.305997e-05 2.360997e-05 2.292185e-05 2.241282e-05 2.211637e-05 2.175841e-05 1.969726e-05

Adjust the presentation as below.

ROW 1	kei	space	system	encrypt	launch	govern	secur	data	chip	mission
KOW I	0.000056	0.000049	0.000046	0.000045	0.000029	0.000027	0.000027	0.000025	0.000025	0.000024
ROW 2	god	peopl	christian	church	question	homosexu	thing	paul	studi	person
KOW 2	0.000061	0.000049	0.000042	0.000033	0.000024	0.000023	0.000022	0.000022	0.000022	0.000020

It is seemingly that the "sci.crypt" (orange) and "sci.space" (purple) are becoming the mixed topic for ROW 1 collected terms; and the "sci.med" (green) and "soc.religion.christian" (red) are the mixed topic for ROW 2 collected terms.

The overlap terms between two rows is not clear, at least for the top10 terms. So I will say that the performance using r =2 under this method is quite good.

For reconstruction of the matrix:

Phat <- lr.gkl\$L %*% lr.gkl\$R
showcol(pmin(Phat,0.0001))</pre>

I compare both of them as below.

Original matrix

Reconstructed matrix (Using KL divergence with r = 2)

It shows that using r = 2, has a blurry result comparing to the original matrix. Because the main point for any kind of method is 1) to have an efficient way to distinguish the topics between documents, and also 2) to reconstruct the matrix as close as it possibly can get. So, I will say that for the 1st purpose, using r = 2 is still work, but for 2^{ed} purpose, it's not good to use r = 2.

ii)

Run the process with r = 8.

space 3.482521e-05	launch 2.267867e-05	orbit 1.836416e-05		nasa 1.686169e-05					•
church 3.065920e-05		peopl 1.897872e-05	group 1.219438e-05	_		cathol 8.876667e-06	9	•	
govern 2.151724e-05		clinton 1.377205e-05	law 1.195599e-05		privaci 1.022457e-05			- 3	
•	scienc 1.551924e-05	comput 1.236823e-05	de 1.153659e-05				•	•	
god 5.462475e-05	homosexu 2.076040e-05	christian 1.961800e-05	•	_	peopl 1.427537e-05				
kei 4.814733e-05	encrypt 3.637384e-05	secur 2.640802e-05	•		system 1.693102e-05			•	
henri 1.226398e-05		thing 1.108025e-05	net 1.007863e-05				pat 7.924872e-06	,	
diseas 1.478210e-05		medic 1.389079e-05			patient 1.280005e-05				

Adjust the presentation as below.

ROW 1	space	launch	orbit	mission	nasa	shuttl	venu	station	soviet	option
KOW I	0.0000348	0.0000227	0.0000184	0.0000180	0.0000169	0.0000155	0.0000143	0.0000106	0.0000105	0.0000105
ROW 2	church	christian	peopl	group	religion	bibl	cathol	thing	question	faith
NOVV Z	0.0000307	0.0000212	0.0000190	0.0000122	0.0000107	0.0000095	0.0000089	0.0000088	0.0000087	0.0000087
ROW 3	govern	administr	clinton	law	protect	privaci	drug	devic	legal	data
KOW 3	0.0000215	0.0000141	0.0000138	0.0000120	0.0000118	0.0000102	0.0000101	0.0000099	0.0000097	0.0000095
ROW 4	system	scienc	comput	de	data	scientist	scientif	part	protein	program
KOW 4	0.0000232	0.0000155	0.0000124	0.0000115	0.0000095	0.0000090	0.0000086	0.0000080	0.0000077	0.0000071
ROW 5	god	homosexu	christian	paul	jesu	peopl	sin	word	law	faith
KOW 3	0.0000546	0.0000208	0.0000196	0.0000193	0.0000171	0.0000143	0.0000138	0.0000114	0.0000102	0.0000097
ROW 6	kei	encrypt	secur	chip	clipper	system	peopl	escrow	public	law
KOW 0	0.0000481	0.0000364	0.0000264	0.0000199	0.0000198	0.0000169	0.0000131	0.0000120	0.0000113	0.0000103
ROW 7	henri	test	thing	net	toronto	hst	water	pat	high	tast
KOW 1	0.0000123	0.0000116	0.0000111	0.0000101	0.0000091	0.0000082	0.0000080	0.0000079	0.000078	0.0000073
ROW 8	diseas	doctor	medic	candida	effect	patient	studi	food	diet	health
NOW 0	0.0000148	0.0000144	0.0000139	0.0000133	0.0000128	0.0000128	0.0000123	0.0000108	0.0000105	0.0000102

If we still hold only 4 topics as "sci.crypt", "sci.med", "sci.space", and "soc.religion.christian", then it is easier to see which row belongs to which topic. With the indication of those words with different colored, it is easy to see that <u>for ROW 1 and ROW 4</u>, it's about "sci.space"; <u>for ROW 2 and ROW 5</u>, it's about "soc.religion.christian": <u>for ROW 3 and ROW 6</u>, it's about "sci.crypt"; <u>for ROW 7 and ROW 8</u>, it's about "sci.med". And the most important part is that the OVERLAPE term should be as less as it can be, then we can say that it's an efficient way to split.

And for all the terms above (total 80 terms), only 8 terms are overlapped, which are "data", "christian", "peopl", "law", "faith", "system", and "thing". So we can see this as a 8 topics division for all 400 documents; and that it's efficient to use r = 8.

For reconstruction of the matrix:

Phat <- lr.gkl\$L %*% lr.gkl\$R
showcol(pmin(Phat,0.0001))</pre>

I compare both of them as below.

Original matrix

Reconstructed matrix (Using KL divergence with r = 8)

As expected, the two graph are much more similar since we use a higher rank (as r = 8).

e)

Use Guassian NMF:

```
lr.gnmf <- lee01.gnmf(P, r, reps=5)</pre>
with(lr.gnmf,
      for (k in 1:nrow(R)) {
           print(rev(sort(R[k,]))[1:10])
cat(strrep('-',130), "\n")
        venu
                   soviet
                                 space
                                               probe
                                                          mission
                                                                         earth
                                                                                      launch
                                                                                                    orbit
                                                                                                                explor
7.865402e-05 5.158317e-05 4.977810e-05 4.581903e-05 3.905513e-05 2.834690e-05 2.521950e-05 2.401224e-05 2.229390e-05 1.932836e-05
         god
                    peopl
                              homosexu
                                           christian
                                                             paul
                                                                           sin
                                                                                        jesu
                                                                                                      law
                                                                                                                 church
                                                                                                                               faith
7.438044e-05 3.565252e-05 3.503802e-05 3.482337e-05 3.248718e-05 2.739292e-05 2.195861e-05 1.864565e-05 1.774603e-05 1.699184e-05
```

 cancer
 diseas
 diet
 drug
 health
 studi
 effect
 medic
 patient
 dr

 4.408339e-05
 4.154017e-05
 4.108598e-05
 4.027694e-05
 3.550131e-05
 3.267301e-05
 2.976185e-05
 2.747793e-05
 2.632505e-05
 2.437573e-05

 encrypt
 kei
 law
 secur
 devic
 protect
 chip
 govern
 system
 clipper

 6.228736e-05
 4.885666e-05
 3.089337e-05
 3.021957e-05
 2.855234e-05
 2.763946e-05
 2.682029e-05
 2.652668e-05
 2.176663e-05
 2.148359e-05

Adjust the presentation as below.

ROW 1	venu	soviet	space	probe	mission	earth	launch	orbit	explor	year
KOW I	0.000079	0.000052	0.000050	0.000046	0.000039	0.000028	0.000025	0.000024	0.000022	0.000019
ROW 2	god	peopl	homosexu	christian	paul	sin	jesu	law	church	faith
KOW Z	0.000074	0.000036	0.000035	0.000035	0.000032	0.000027	0.000022	0.000019	0.000018	0.000017
ROW 3	cancer	diseas	diet	drug	health	studi	effect	medic	patient	dr
KOW 3	0.000044	0.000042	0.000041	0.000040	0.000036	0.000033	0.000030	0.000027	0.000026	0.000024
ROW 4	encrypt	kei	law	secur	devic	protect	chip	govern	system	clipper
KOW 4	0.000062	0.000049	0.000031	0.000030	0.000029	0.000028	0.000027	0.000027	0.000022	0.000021

From the result above, it's easy to see that <u>for ROW 1</u>, <u>it's about "sci.space"</u>; <u>for ROW 2</u>, <u>it's about "sci.rypt"</u>. So, for this part, I think it is also efficient to use this method.

For reconstruction of the matrix:

Phat <- lr.gnmf\$L %*% lr.gnmf\$R
showcol(pmin(Phat,0.0001))</pre>

I compare both of them as below.

Original matrix

Reconstructed matrix (Using Gaussian NMF with r = 4)

It can also show the dense part, but still have the blurry boundary problem.

Which NMF variant produces better results?

ANS:

Compare the two method I've used before:

i) Using Guassian NMF:

anaca	venu	soviet	space	probe	mission	earth	launch	orbit	explor	year
space	0.000079	0.000052	0.000050	0.000046	0.000039	0.000028	0.000025	0.000024	0.000022	0.000019
roligion	god	peopl	homosexu	christian	paul	sin	jesu	law	church	faith
religion	0.000074	0.000036	0.000035	0.000035	0.000032	0.000027	0.000022	0.000019	0.000018	0.000017

	med ·	cancer	diseas	diet	drug	health	studi	effect	medic	patient	dr
		0.000044	0.000042	0.000041	0.000040	0.000036	0.000033	0.000030	0.000027	0.000026	0.000024
	orunt	encrypt	kei	law	secur	devic	protect	chip	govern	system	clipper
	crypt	0.000062	0.000049	0.000031	0.000030	0.000029	0.000028	0.000027	0.000027	0.000022	0.000021

ii) Using KL divergence:

anaaa	space	launch	orbit	mission	nasa	shuttl	venu	system	year	earth
space	0.000047	0.000028	0.000023	0.000022	0.000021	0.000020	0.000018	0.000015	0.000014	0.000014
religion	god	christian	peopl	church	homosexu	paul	jesu	faith	thing	question
religion	0.000062	0.000043	0.000035	0.000034	0.000023	0.000020	0.000020	0.000020	0.000017	0.000016
mod	studi	diseas	effect	doctor	medic	candida	patient	peopl	drug	food
med	0.000019	0.000019	0.000018	0.000018	<mark>0.000018</mark>	0.000017	0.000016	0.000016	0.000015	0.000014
or ot	kei	encrypt	system	secur	govern	chip	clipper	law	peopl	de
crypt	<mark>0.000058</mark>	0.000048	0.000029	0.000029	0.000028	0.000026	0.000023	0.000021	0.000021	0.000016

If we focus on the value for the top 10 terms under each topics, we can see that the values using Guassian NMF is much more higher than those of using KL divergence in general. And one of the purpose of these methodology is to have an efficient way or distinguishable values to split the documents into sub groups, and that depends on the calculated values as mentioned. So I will say that within the methodology I've tried, Guassian NMF is a better choice.

2 PLSA

a)

I acquire some traits of matrix L', S', and R'. I show the traits as below.

So to enforce a probability concept, I can put some explanation in to the product of these three matrixs.

Let Di refer to document(i); Wi refer to term(i); and Zi refer to topic(i).

- I. Each element in Matrix L represents "for a selected topic Zi, the probability to pick up document Mi", i.e. P(Di|Zi).
- II. Each element in Matrix S represents "the probability to pick topic Zi", i.e. P(Zi).
- III. Each element in Matrix R represents "for a selected topic Zi, the probability to has term Wi in the topic set", i.e. P(Wi|Zi).
- ※But there are some assumption has to be made for this probability explanation to be built.

b)

```
slr.gkl <- nmf.slr(lr.gkl)</pre>
summary(slr.gkl)
Length Class
       Mode
S 160000 ddiMatrix S4
 1600 -none-
       numeric
 3200 -none-
       numeric
> sum(slr.gkl$S)
[1] 0.9998147
> apply(slr.gkl$L,1,sum)
[388] 1 1 1 1 1 1 1 1 1 1 1 1 1 1
```

I acquire some traits of matrix S', L', and R'. I show the traits as below.

So to enforce a probability concept, I can put some explanation in to the product of these three matrixs.

Let Di refer to document(i); Wi refer to term(i); and Zi refer to topic(i).

- I. Each element in Matrix S represents "the probability to pick document Di", i.e. P(Zi).
- II. Each element in Matrix L represents "for a selected document Di, the probability that it contains topic Zi", i.e. P(Zi|Di).

- III. Each element in Matrix R represents "for a selected topic Zi, the probability to has term Wi in the topic set", i.e. P(Wi|Zi).
- ※But still, there are some assumption has to be made for this probability explanation to be built.

3 Clustering

Method	Accuracy
a)k-means	0.265
b) k-means on $U_4\Sigma_4$	0.4925
c) k -means on the \tilde{L} matrix of the NMF	0.315
d) k -means on the L' matrix of factorization $L'\Sigma'R'$	0.5025
obtained from the NMF	
e)k-means on the L'' matrix of factorization $\Sigma''L''R''$	0.725
obtained from the NMF.	

if(cluster[i]==1){cluster[i]<-4</pre>

}else if(cluster[i]==2){cluster[i]<-2</pre>

```
}else if(cluster[i]==3){cluster[i]<-3</pre>
}else{cluster[i]<-1</pre>
i<-i+1
trail_a<- cm(cluster)
trail_a$overall["Accuracy"]
b)
P.svd <- svd(P)
test2<- P.svd$u[,1:4]%*%diag(P.svd$d[1:4])
cluster <-kmeans(test2, 4, nstart=100)$cluster</pre>
> cluster
[385] 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1
Relabel:
i<-1
while(i<101){</pre>
if(cluster[i]==1){cluster[i]<-4</pre>
}else if(cluster[i]==2){cluster[i]<-2</pre>
}else if(cluster[i]==3){cluster[i]<-3</pre>
}else{cluster[i]<-1</pre>
```

```
trail_b<- cm(cluster)</pre>
trail_b$overall["Accuracy"]
c)
r < -4
lr.gkl <- lee01.gkl(P, r, reps=5)
cluster <-kmeans(lr.gkl$L, 4, nstart=100)$cluster</pre>
> cluster
[385] 2 2 2 2 1 2 2 2 2 2 1 2 2 1 1 2
Relabel:
i<-1
while(i<101){
if(cluster[i]==1){cluster[i]<-4</pre>
}else if(cluster[i]==2){cluster[i]<-2</pre>
}else if(cluster[i]==3){cluster[i]<-3</pre>
}else{cluster[i]<-1</pre>
i<-i+1
trail_c<- cm(cluster)</pre>
trail_c$overall["Accuracy"]
```

```
d)
```

Relabel:

```
i<-1
while(i<101){</pre>
  if(cluster[i]==1){cluster[i]<-3</pre>
  }else if(cluster[i]==2){cluster[i]<-2</pre>
  }else if(cluster[i]==3){cluster[i]<-4</pre>
  }else{cluster[i]<-1</pre>
  i < -i + 1
trail_d<- cm(cluster)</pre>
trail_d$overall["Accuracy"]
e)
slr.gkl <- nmf.slr(lr.gkl)</pre>
cluster <-kmeans(slr.gkl$L, 4, nstart=100)$cluster</pre>
```

```
i<-i+1
}

trail_e<- cm(cluster)

trail_e$overall["Accuracy"]</pre>
```

}else if(cluster[i]==3){cluster[i]<-4</pre>

Compare the result:

}else{cluster[i]<-3</pre>

```
> trail_a
Confusion Matrix and Statistics

Reference
Prediction 1 2 3 4
1 100 0 1 0
2 0 2 0 0
3 0 1 0 0
```

> trail_b

Confusion Matrix and Statistics

Reference

Prediction 1 2 3 4 1 97 2 0 11 2 0 1 0 0 3 3 97 99 89 4 0 0 1 0

> trail_c

Confusion Matrix and Statistics

Reference

Prediction 1 2 3 4 1 100 97 99 78 2 0 3 0 0 3 0 0 1 0 4 0 0 0 22

> trail_d

Confusion Matrix and Statistics

Reference

Prediction 1 2 3 4 1 97 0 0 0 2 0 3 0 0 3 3 0 1 0 4 0 97 99 100

> trail_e

Confusion Matrix and Statistics

Reference

Prediction 1 2 3 4 1 95 96 1 1 2 0 1 3 0 3 2 2 96 1 4 3 1 0 98

Observation 1:

For the accuracy, it is hugely better using method (e). I think it is because of the extraction of the document information from matrix L, which is presented below. In this way, the noisy in the matrix L can be incredibly reduced.

Observation 2:

topic 1=sci.crypt

topic 2=sci.med

topic 3=sci.space

topic 4=soc.religion.christian

For the results showed above, I see most off the error happens with Topic 2 and 3. I think it is because the articles (or documents) over these kind of topics use more general words than of the other two topics, causing the trouble during clustering.