Clase 1: Inferencia Estadística

Justo Andrés Manrique Urbina

28 de agosto de 2019

Definition 1. Sean (X_1, X_2, \ldots, X_n) variables aleatorias, definidas en el espacio muestral, a partir de las cuales se realizará inferencia. Si estas variables son independientes y tienen la misma distribución que X, entonces se dice que se tiene una muestra aleatoria simple de X.

Definition 2. El parámetro desconocido θ , que depende de la distribución de la muestra disponible $f(X_1, X_2, \ldots, X_n)$, es desconocido. Sus posibles valores constituyen el conjunto Θ .

1. Ejemplo 1

Sea $Y_1 = \theta X_1 + \varepsilon_1, \dots, Y_n = \theta X_n + \varepsilon_n$, dónde (X_1, X_2, \dots, X_n) son cantidades conocidas. Asimismo, $\theta \in \mathbb{R}$ es una cantidad desconocida y $(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n)$ son variables aleatorias independientes con distribución N(0, 1).

Sea $(Y_1, Y_2, ..., Y_n)$ una muestra aleatoria independiente, sin embargo no tienen la misma distribución, puesto que $Y_i \sim N(\theta X_i, 1)$.

2. Ejemplo 2

Sea $X_i=1$ si la unidad de observación i satisface cierta característica y sea $X_i=0$ caso contrario, para $i=1,2,\ldots,n$. Sea $P(X_i=1)=\theta$ y $P(X_i=0)=1-\theta$ para $i=1,2,\ldots,n$. Dado lo anterior, se entiende que la distribución de X_i es binomial de la forma $X_i\sim B(\theta)$.

Si asumimos que $(X_1, X_2, ..., X_n)$ son independientes, entonces dicho vector es una muestra aleatoria simple de X, en dónde $X \sim B(\theta)$. Ojo: En términos prácticos, podemos definir θ como la proporción de unidades en una población que satisface la característica i.

Definition 3. La estadística es cualquier función de la muestra disponible $g(X_1, X_2, ..., X_n)$. Usualmente g es una función cuyo rango se encuentra en \mathbb{R}^n . Dicha estadística no debe depender de parámetros desconocidos.

3. Ejemplos de la definición 3

$$X_{(1)} = minimoX_1, \dots, X_n$$

$$X_{(1)} = maximoX_1, \dots, X_n$$

$$\sum_{j=1} = X_j$$

$$\sum_{j=1} = X_j$$

Definition 4. Si θ es un parámetro, un estimador de θ es una estadística $\hat{\theta} = \hat{\theta}(X_1, X_2, \dots, X_n)$ que se utiliza para aproximar el valor desconocido de θ . **Observación:** $\hat{\theta}$ es una variable aleatoria.

4. Propiedades de un estimador

4.1. Insesgamiento

 $\hat{\theta}$ es un estimador insesgado de θ , si se cumple lo siguiente:

$$E(\hat{\theta}) = \theta, \forall \theta \in \Theta.$$

4.2. Ejemplo de insesgamiento

El estimador usual de θ está dado por:

$$\hat{\theta} = \frac{\sum_{j=1} X_j Y_j}{\sum_{j=1} X_j X_j}.$$

$$E(\hat{\theta}) = \frac{\sum_{j=1} X_j E(Y_j)}{\sum_{j=1} X_j X_j} = \theta.$$

Dado que $E(Y_j) = \theta X_j$. Por lo tanto, $\hat{\theta}$ es un estimador insesgado de θ . Por otro lado, se tiene que:

$$E(g(\bar{x})) = E(g(x)).$$

Proof 1. Ver a continuación la prueba:

$$g(\bar{x}) = \frac{\sum_{j=1} g(X_j)}{n}.$$

$$E(g(\bar{x})) = \frac{1}{n} \sum_{j=1} E(g(X_j)).$$

$$E(g(\bar{x})) = \frac{1}{n} n \sum_{j=1} E(g(X)).$$

$$E(g(X)).$$

5. Ejemplo

Sea $E(\bar{X}^2) = V(\bar{X}) + E^2(\bar{X})$. Entonces se tiene que:

$$V(\frac{\sum_{j=1}^{n} X_j}{n}) + \mu^2.$$

$$\frac{1}{n^2} \sum_{j=1}^{n} V(X_j) + \mu^2.$$

Por independencia se tiene que $V(\sum) = \sum V()$.

$$\frac{\sigma^2}{n} + \mu^2$$
.

Luego, de (1), (2) y (3):

$$E(S^2) = \frac{n}{n-1} [E(X^2) - \dots].$$

$$\frac{n}{n-1}[\sigma^2 + \mu^2 - (\frac{\sigma^2}{n} + \mu^2)].$$

Definición: Si lím $_{ninfinito}\,E(\hat{\theta})=\theta, \forall \theta\in\Theta,$ se dice que $\hat{\theta}$ es asintóticamente insesgado.

6. Propiedad de eficiencia

Si $\hat{\theta_1}$ y $\hat{\theta_1}$ son estimadores insesgados de θ , se dice que $\hat{\theta_1}$ es más eficiente que $\hat{\theta_1}$ si $V(\hat{\theta_1}) < V(\hat{\theta_2})$.