Orthogonalité Projections

MAT-2930 Algèbre linéaire appliquée Jean-François Lalonde

Exemple: sous-espace à 1 dimension

- Dans \mathbb{R}^2 , définissons :
 - Sous-espace **u** à 1 dimension
 - Vecteur v qui n'est pas dans ce sous-espace
- Quel est le point **p** dans **u** le plus près de **v** ?

Définition: projection

• Si ${\bf u}$ et ${\bf v}$ sont des vecteurs dans ${\bf R}^n$ et ${\bf u} \neq {\bf 0}$, on définit la projection de ${\bf v}$ sur ${\bf u}$:

$$\operatorname{proj}_{\mathbf{u}}(\mathbf{v}) = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}$$

Matrice de projection

Attention

Ça **n'est pas** la même matrice projection qu'en infographie. On parle ici de projection dans un sous-espace, tandis qu'en infographie il s'agissait plutôt d'une projection de perspective.

$$\operatorname{proj}_{\mathbf{u}}(\mathbf{v}) = \left(\frac{\mathbf{u}^{\top}\mathbf{v}}{\mathbf{u}^{\top}\mathbf{u}}\right)\mathbf{u}$$

Matrice de projection

$$\mathbf{P} = \frac{\mathbf{u}\mathbf{u}^{\top}}{\mathbf{u}^{\top}\mathbf{u}}$$

- ullet Quel est l'espace des colonnes de ${f P}$?
- Quel est le rang de P?

$$\mathbf{P} = \frac{\mathbf{u}\mathbf{u}^{\top}}{\mathbf{u}^{\top}\mathbf{u}} \qquad \mathbf{u} = \begin{bmatrix} 2\\1 \end{bmatrix} \qquad \mathbf{v} = \begin{bmatrix} -3\\2 \end{bmatrix} \qquad = \begin{bmatrix} -3\\2 \end{bmatrix}$$

Matrice de projection : propriétés

$$\mathbf{P}^{ op} =$$

$$\mathbf{P}^2 =$$

Si u est unitaire?

$$\mathbf{P} = rac{\mathbf{u}\mathbf{u}^{ op}}{\mathbf{u}^{ op}\mathbf{u}}$$

Exemple: sous-espace à 2 dimensions

- Dans \mathbb{R}^3 , définissons :
 - Sous-espace \mathscr{U} à 2 dimensions ayant comme base orthonormée $\{\mathbf{u}_1,\mathbf{u}_2\}$
 - Vecteur v qui n'est pas dans ce sous-espace
- Quel est le point ${\bf p}$ dans ${\mathcal U}$ le plus près de ${\bf v}$?

Théorème de la décomposition orthogonale

Soit \mathcal{W} un sous-espace de \mathbb{R}^n . Tout vecteur $\mathbf{v} \in \mathbb{R}^n$ peut être écrit sous la forme

$$\mathbf{v} = \hat{\mathbf{v}} + \mathbf{z}$$

où $\hat{\mathbf{v}}\in \mathcal{W}$ et $\mathbf{z}\in \mathcal{W}^\perp$. Si $\{\mathbf{u}_1,\mathbf{u}_2,...,\mathbf{u}_p\}$ est une base orthogonale de \mathcal{W} , alors

$$\hat{\mathbf{v}} = \frac{\mathbf{u}_1^\top \mathbf{v}}{\mathbf{u}_1^\top \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{u}_2^\top \mathbf{v}}{\mathbf{u}_2^\top \mathbf{u}_2} \mathbf{u}_2 + \ldots + \frac{\mathbf{u}_p^\top \mathbf{v}}{\mathbf{u}_p^\top \mathbf{u}_p} \mathbf{u}_p$$

Théorème de la décomposition orthogonale

$$\hat{\mathbf{v}} = rac{\mathbf{u}_1^ op \mathbf{v}}{\mathbf{u}_1^ op \mathbf{u}_1} \mathbf{u}_1 + rac{\mathbf{u}_2^ op \mathbf{v}}{\mathbf{u}_2^ op \mathbf{u}_2} \mathbf{u}_2 + \ldots + rac{\mathbf{u}_p^ op \mathbf{v}}{\mathbf{u}_p^ op \mathbf{u}_p} \mathbf{u}_p$$

On peut également écrire cette projection sous la forme :

$$\hat{\mathbf{v}} = \frac{\mathbf{u}_1 \mathbf{u}_1^\top}{\mathbf{u}_1^\top \mathbf{u}_1} \mathbf{v} + \frac{\mathbf{u}_2 \mathbf{u}_2^\top}{\mathbf{u}_2^\top \mathbf{u}_2} \mathbf{v} + \ldots + \frac{\mathbf{u}_p \mathbf{u}_p^\top}{\mathbf{u}_p^\top \mathbf{u}_p} \mathbf{v}$$

$$\{\mathbf{u}_1, \mathbf{u}_2\} = \left\{ \begin{bmatrix} -1\\1\\1\\-1\end{bmatrix}, \begin{bmatrix} -1\\1\\-1\end{bmatrix} \right\}$$

Projeter ce vecteur dans \mathfrak{W}:

$$\mathbf{v}_1 = egin{bmatrix} 2 \ 4 \ 2 \ 4 \end{bmatrix}$$

Quel est son complément orthogonal z?

$$\hat{\mathbf{v}} = \frac{\mathbf{u}_1^\top \mathbf{v}}{\mathbf{u}_1^\top \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{u}_2^\top \mathbf{v}}{\mathbf{u}_2^\top \mathbf{u}_2} \mathbf{u}_2 + \ldots + \frac{\mathbf{u}_p^\top \mathbf{v}}{\mathbf{u}_p^\top \mathbf{u}_p} \mathbf{u}_p$$

$$\{\mathbf{u}_1, \mathbf{u}_2\} = \left\{ \begin{bmatrix} -1\\1\\1\\-1 \end{bmatrix}, \begin{bmatrix} -1\\1\\-1 \end{bmatrix} \right\}$$

Projeter ce vecteur dans \(\mathbb{W} \):

$$\mathbf{v}_2 = \begin{bmatrix} -3\\3\\-1\\1 \end{bmatrix}$$

Quel est son complément orthogonal z?

$$\hat{\mathbf{v}} = \frac{\mathbf{u}_1^\top \mathbf{v}}{\mathbf{u}_1^\top \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{u}_2^\top \mathbf{v}}{\mathbf{u}_2^\top \mathbf{u}_2} \mathbf{u}_2 + \ldots + \frac{\mathbf{u}_p^\top \mathbf{v}}{\mathbf{u}_p^\top \mathbf{u}_p} \mathbf{u}_p$$

$$\{\mathbf{u}_1, \mathbf{u}_2\} = \left\{ \begin{bmatrix} -1\\1\\1\\-1\end{bmatrix}, \begin{bmatrix} -1\\1\\-1\\1 \end{bmatrix} \right\}$$

Projeter ce vecteur dans \mathfrak{W}:

$$\mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Quel est son complément orthogonal z?

$$\hat{\mathbf{v}} = \frac{\mathbf{u}_1^\top \mathbf{v}}{\mathbf{u}_1^\top \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{u}_2^\top \mathbf{v}}{\mathbf{u}_2^\top \mathbf{u}_2} \mathbf{u}_2 + \ldots + \frac{\mathbf{u}_p^\top \mathbf{v}}{\mathbf{u}_p^\top \mathbf{u}_p} \mathbf{u}_p$$

Théorème de la décomposition orthogonale

Soit \mathcal{W} un sous-espace de \mathbb{R}^n . Tout vecteur $\mathbf{v} \in \mathbb{R}^n$ peut être écrit sous la forme

$$\mathbf{v} = \hat{\mathbf{v}} + \mathbf{z}$$

où $\hat{\mathbf{v}} \in \mathcal{W}$ et $\mathbf{z} \in \mathcal{W}^{\perp}$. Si $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_p\}$ est une base **orthornormée** de \mathcal{W} , alors

$$\hat{\mathbf{v}} = \frac{\mathbf{u}_1 \mathbf{u}_1^\top}{\mathbf{u}_1^\top \mathbf{u}_1} \mathbf{v} + \frac{\mathbf{u}_2 \mathbf{u}_2^\top}{\mathbf{u}_2^\top \mathbf{u}_2} \mathbf{v} + \ldots + \frac{\mathbf{u}_p \mathbf{u}_p^\top}{\mathbf{u}_p^\top \mathbf{u}_p} \mathbf{v}$$

$$\hat{\mathbf{v}} = \mathbf{U}\mathbf{U}^{ op}\mathbf{v}$$