Лабораторная работа 2.2.1. "Исследование взаимной диффузии газов"

Учащийся 1 курса ЛФИ Гусаров Николай

Март 2021

1. Цель лабораторной работы

1) регистрация зависимости концентрации гелия в воздухе от времени с помощью датчиков теплопроводности при разных начальных давлениях смеси газов; 2) определение коэффициента диффузии по результатам измерении.

2. Оборудование

Измерительная установка; форвакуумный насос; баллон с газом (гелий); вакуумметр; источник питания; мост Уитстона; вольтметр; секундомер.

3. Теория

Диффузией называется самопроизвольное перемешивание молекул, происходящее вследствие их хаотичного теплового движения. При перемешивании молекул разного сорта говорят о взаимной диффузии. Плотность диффузионного потока любого из веществ определяется законом Фика:

$$j = -D\frac{\partial n}{\partial x}$$

где D — коэффициент взаимной диффузии компонентов, п — концентрация молекул. В случае, когда мы исследуем диффузию гелия на фоне воздуха, концентрация воздуха предполагается значительно большей, соответственно, её изменение — значительно меньшим, а значит мы будем описывать только диффузию гелия на стационарном фоне воздуха. Устройство установки изображено на рисунке 1. Сосуды заполнены двумя газами при одинаковом давлении, но с разной концентрацией. Из-за взаимной диффузии концентрация постепенно выравнивается после открытия крана К3. Для измерения концентрации применяются датчики теплопроводности и зависимость теплопроводности смеси газов от её состава. При малых изменениях концентрации, раскладывая формулу в ряд Тейлора, можно получить, что сила тока через вольтметр будет пропорциональна разности концентраций. Из уравнения

$$J = -DS\frac{n_1 - n_2}{l} = -DS\frac{\Delta n}{l}$$

описывающего зависимость стационарного потока частиц от разности концентраций, можно получить, что зависимость описывается формулой

$$\Delta n = \Delta n_0 \cdot e^{-t/\tau}$$

где $au = \frac{V_1 V_2}{V_1 + V_2} \frac{l}{SD}$ — постоянная времени процесса, определяющаяся геометрическими параметрами установки и коэффициентом диффузии.

Тогда показания вольтметра изменяются по закону:

$$U = U_0 \cdot e^{-t/\tau}$$

где U_0 – показания в начальный момент времени.

4. Эксперементальная установка

5. Эксперимент

1. Так как вакуумметр измеряет разность давлений между атмосферным и давлением внутри резервуаров, перепишем значение атмосферного давления — $P_0 = 98, 0 \frac{{
m Krc}}{{
m cm}^2},$ и в дальнейшем будем вычитать из него показания вакуумметра. 2. Очистим установку от всех газов и полностью откачаем установку (примерно до давления в 0,1 Торр). 3. Рассчитаем давления внутри установки при которых будем проводить измерения так, чтобы обратные к ним величины были связаны линейной зависимостью. Полученные теоретические значения занесем в таблицу. 4. Напустим в установку воздух до первого значения рабочего давления и сбалансируем мост Уитстона так, чтобы значения на вольтметре флуктуировали около 0. 5. Заполним установку рабочей смесью в указанном в инструкции порядке. 6. Откроем кран между сосудами и снимем показания вольтметра в зависимости от времени, пока они не упадут на 30%. Результаты занесем в таблицу. 7. Построим график зависимости в координатах t, $-\ln\frac{U}{U_0}$. По угловому коэффициенту рассчитаем коэффициент диффузии и его погрешность. 8. Повторим для остальных рабочих давлений. 9. Построим график зависимости в координатах $D, \frac{1}{P}$. Рассчитаем значение коэффициента диффузии при атмосферном давлении. 10. Оценим по полученным результатам длину свободного пробега и размер молекулы.

\$t\$, \$c\$	\$U\$, \$B \cdot 10{-5}\$	$-\ln \frac{U}{U_0}$
0	41	0
10	39	0,050010421
20	37	0,102654154
30	35	0,158224005
40	33	0,217064505
50	32	0,247836164
55	31	0,279584862
62	30	0,312374685
69	29	0,346276237
76	28	0,381367557
84	27	0,417735201
111	24	0,535518236
142	21	0,669049629
174	18	0,823200309
209	15	1,005521866
251	12	1,228665417
297	9	1,516347489
355	6	1,921812597
416	3	2,614959778

5.1. 93, $5\frac{\text{kpc}}{\text{cm}^2}$, 47 topp

$$k = 5,66 \cdot 10^{-3} \frac{1}{c}$$

5.2. $90, 0 \frac{\text{kpc}}{\text{cm}^2}, 72 \text{topp}$

c	B*10{-5}	$-\ln \c U_{U_0}\$
0	170	0
20	160	0,060624622
59	150	0,125163143
100	140	0,194156014
138	130	0,268263987
191	120	0,348306694
249	110	0,435318071
299	105	0,481838087
325	100	0,530628251
368	95	0,581921545
412	90	0,635988767
535	80	0,753771802

$$k = 1,42 \cdot 10^{-3} \frac{1}{c}$$

5.3. $85, 0 \frac{\text{kpc}}{\text{cm}^2}, 108 \text{Topp}$

c	B*10{-5}	$-\ln \frac{U}{U_0}$
0	46	0
12	45	0,021978907
45	40	0,139761942
80	35	0,273293335
116	30	0,427444015
139	27	0,53280453
165	24	0,650587566
195	21	0,784118959
220	18	0,938269639
244	15	1,120591195
274	12	1,343734747
303	9	1,631416819
339	6	2,036881927
381	3	2,730029108

$$k = 4,74 \cdot 10^{-3} \frac{1}{c}$$

6. Заключение

$$V_1 = V_2 = 420 \,\mathrm{cm}^3, \, L/S = 9,0 \,1/\mathrm{cm}$$

Р, торр	Р, Па	$1/P, 1/\Pi a$	k, \P , $\Pi a/c \cdot 10\{-3\}$	D, \$м2̂ / с * 10-3\$
47	6251	0,000159974	5,66	1,06974
72	9576	0,000104428	1,42	0,26838
108	14364	6,96185E-05	4,74	0,89586

