Ecuaciones diferenciales ordinarias 3 Métodos multipasos

Curso de Física Computacional

M. en C. Gustavo Contreras Mayén

9 de abril de 2014

Contenido

- Métodos multipaso
 - Método multipaso de paso m
 - Método de Adams-Bashforth de 4 orden

Contenido

- Métodos multipaso
 - Método multipaso de paso m
 - Método de Adams-Bashforth de 4 orden

Métodos multipaso

Los métodos que hemos explicado hasta ahora se llaman *métodos de un paso*, por que la aproximación del punto x_{i+1} contiene información proveniente de un solo de los puntos anteriores x_i .

Aunque estas técnicas pueden usar la información relativa a la evaluación de funciones en los puntos entre x_i y x_{i+1} , no la conservan para utilizarla directamente en aproximaciones futuras.

Toda la información que emplean se obtiene dentro del intervalo en el que va a aproximarse la función.

Como la solución aproximada w_j está disponible en cada uno de los puntos x_0, x_1, \ldots, x_i antes de obtener la aproximación en x_{i+1} y como el error $|w_j - y(x_j)|$ tiende a aumentar con j, para razonable desarrollar métodos que usen estos datos precedentes más precisos al aproximar la solución en x_{i+1} .

Se conoce como *métodos multipaso* a aquellos que emplean la aproximación en más de uno de los puntos precedentes para determinar la aproximación en el siguiente punto.

Método multipaso de paso m

Un $\it M\'etodo multipaso de paso m$ para resolver el problema con valores iniciales

$$y' = f(x, y), \quad a \le x \le b, \quad y(a) = \alpha$$

tiene una ecuación en diferencias para obtener la aproximación w_{i+1} en el punto x_{i+1} , representada por la siguiente expresión, donde m > 1:

$$w_{i+1} = a_{m-1}w_i + a_{m-2}w_{i-1} + \dots + a_0w_{i+1-m} + h[b_m f(x_{i+1}, w_{i+1}) + b_{m-1}f(x_i, w_i) + \dots + b_0 f(x_{i+1-m}, w_{i+1-m})]$$

$$w_{i+1} = a_{m-1}w_i + a_{m-2}w_{i-1} + \dots + a_0w_{i+1-m} + h[b_m f(x_{i+1}, w_{i+1}) + b_{m-1}f(x_i, w_i) + \dots + b_0 f(x_{i+1-m}, w_{i+1-m})]$$

para $i=m-1,m,\ldots,N-1$, donde h=(b-a)/N, las a_0,a_1,\ldots,a_{m-1} y b_0,b_1,\ldots,b_m son constantes y los valores iniciales

 $w_0 = \alpha$, $w_1 = \alpha_1$, $w_2 = \alpha_2$, ..., $w_{m-1} = \alpha_{m-1}$ están especificadas.

Cuando $b_m = 0$, el método es **explícito** o **abierto**, ya que la ecuación anterior da entonces el valor de w_{i+1} de manera explícita en términos de los valores previamente determinados.

Cuando $b_m=0$, el método es **explícito** o **abierto**, ya que la ecuación anterior da entonces el valor de w_{i+1} de manera explícita en términos de los valores previamente determinados.

Cuando $b_m \neq 0$, el método es llamado **implícito** o **cerrado**, ya que el valor de w_{i+1} se encuentra en ambos lados de la ecuación y se especifica sólo implícitamente.

Método de Adams-Bashforth de 4 orden

Las ecuaciones

$$w_{i+1} = w_i + \frac{h}{24} [55f(x_i, w_i) - 59f(x_{i-1}, w_{i-1}) + 37f(t_{i-2}, w_{i-2}) - 9f(t_{i-3}, w_{i-3})]$$

para cada $i=3,4,\ldots,N-1$ definen un método explícito de cuatro pasos llamado **método de Adams-Bashforth de cuarto orden**.