

каталог продукции

О КОМПАНИИ

Компания ТехноПром является одним из лидирующих предприятий производящим оборудование для электрохимической защиты трубопроводов и металлических конструкций от коррозии.

ООО «ТехноПром» входит в группу компаний ТЕХНО занимающейся разработкой, производством и комплектной поставкой оборудования для комплексного решения проблем борьбы с коррозией.

Разработка нашей продукции основывается на глубоком понимании потребностей отрасли, анализе преимуществ и недостатков имеющейся продукции как отечественного, так и зарубежного производства. Благодаря успешному сотрудничеству с крупными научными организациями, отраслевыми НИИ ОАО «Газпром» наша продукция является воплощением в жизнь совокупности желаний эксплуатирующих организаций и практически не ограниченных возможностей современной науки.

Контроль качества, серийно выпускаемой продукции, происходит в течении всего процесса производства и достигается благодаря внедрению на производстве Системы менеджмента качества, соответствующей требованиям ГОСТ Р ИСО 9001-2008.

Вся продукция компании прошла сертификацию в системе ГОСТ Р.

Высокое качество подтверждается соответствующим Разрешением РОСТЕХНАДЗОРа на применение технических устройств на опасных производственных объектах и сертификатами соответствия системы добровольной сертификации «ГАЗПРОМСЕРТ».

Все оборудование, поставляемое ООО «Техно-Пром», прошло отраслевые приемочные испытания и внесено в Реестр оборудования ЭХЗ, разрешенного к применению на объектах ОАО «Газпром».

Изделием вызывающим ассоциацию с компанией ТехноПром безусловно является контрольноизмерительный пункт КИП.ПВЕК.

КИП.ПВЕК – это лицо компании ТехноПром. Изделие по праву заслужило звание «лидера» среди существующих на сегодняшний день контрольноизмерительных пунктов. КИП.ПВЕК соединяет в себе соответствие жестких требований и простоты, доступности в эксплуатации, прочности и легкости, высокой информативности и соблюдения корпоративного стиля заказчиков.

КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ ПУНКТЫ КИП.ПВЕК

ТУ 4318-002-87598003-2010

Контрольно-измерительные пункты (КИП), предназначенные для контроля (регулировки) параметров электрохимической защиты (ЭХЗ) и обозначения трасс трубопроводов согласно ГОСТ Р 51164, эксплуатируемых в различных климатических условиях.

Контрольно-измерительные пункты устанавливаются в следующих местах:

- На прямых участках трассы подземных коммуникаций в пределах видимости, но не реже чем через 500-1000м в зависимости от коррозионной опасности участка;
- В местах поворота трассы подземных коммуникаций:
- По обе стороны от мест пересечений трассы подземных коммуникаций с искусственными и естественными преградами (дорогами, реками и т.п.);
- В местах подключения дренажного кабеля к подземным коммуникациям;
- В местах установки изолирующих фланцевых соединений;
- В местах пересечения с трассами других надземных и подземных коммуникаций.

Общая характеристика:

- Стойка КИП изготовлена из полимерного материала белого цвета, не поддерживающего горение.
- Условная светостойкость покрытия, адгезия лакокрасочного покрытия надписей, полос, маркировки стоек КИП, соответствуют требованиям ГОСТ Р 52491.
- Сопротивление на излом стойки КИП на расстоянии 0,7 м от поверхности земли не менее 2,5 кН.
- Конструкция зажимов обеспечивает надежное электрическое крепление кабелей и проводов без специального оконцевания жил:
- Для измерительных зажимов сечением до 6 мм²;
- Для силовых зажимов сечением до 35 мм².
- По требованиям электробезопасности КИП ПВЕК соответствует ГОСТ 14254-96, степень защиты оболочки IP23.
- КИП при работе не создают шума, вибрации и не загрязняют окружающую среду.

Типы КИП

КИПы выпускаются четырех типов:

Тип 1 – для установки на линейной части трубопроводов;

Тип 2 – для установки на линейной части трубопроводов и на промышленных площадках; **Тип 2В** – для установки на промышленных площадках (с выдвижной верхней частью – «винчестер»);

Тип 3 – для установки непосредственно на трубопровод.

Рисунок №1 Общий вид КИП ПВЕК (тип 1)

1	Стойка
2	Сигнальный колпак
3	Крышка терминала
4	Отверстие для ввода кабеля
5	Устройство, препятствующее свободному изъятию КИП из грунта
6	Место для размещения информационных надписей
7	Замок
8	Метка уровня заглубления КИП

Рисунок №2 Общий вид КИП ПВЕК (тип 2)

1	Стойка
2	Сигнальный колпак
3-4	Крышка терминала
5	Отверстие для ввода кабеля
6	Место для размещения информационных надписей
7	Устройство, препятствующее свободному изъятию КИП из грунта
8	Замок
9	Метка уровня заглубления КИП
10	Вентиляционное отверстие

Таблица № 1 Основные размеры:

Наименование параметров	Тип 1	Тип 2	Тип 2В	Тип 3
Высота стойки, м	2,5 -3,0	2,5	1,8 - 2,5	0,5 - 1,0
Ширина грани, мм	180 ± 10	200 ± 10	200 ± 10	200 ± 10
Толщина стенки, мм	4 ±0,5	4 ±0,5	4 ±0,5	4 ±0,5
Масса, кг	11,5 ±1,5	18,0 ± 1,5	18±1,5	6 ± 0,5

Рисунок №3 Общий вид КИП ПВЕК (тип 2В - винчестер)

3 2 009 11 4 11 5 1 6 7 1800-2500 11 A10 9 200 +0,5 □ 200±10

Рисунок №4 Общий вид КИП ПВЕК (тип 3)

1 Стойка 2 Выдвижная часть («винчестер») 3 Сигнальный колпак 4 Клеммная панель 5 Направляющие полозья 6 Замок 7 Защелка Устройство, препятствующее 8 свободному изъятию КИП из грунта 9 Отверстие для ввода кабеля 10 Метка уровня заглубления КИП

Место для размещения информационных

надписей

1	Стойка
2	Сигнальный колпак
3	Кронштейн крепления платы
4	Корпус
5	Клеммная панель
6	Кабельный ввод
7	Замок
8	Место для размещения информационных надписей
9	Кронштейн

Рисунок №5 Расположение и цвета информационных надписей

Таблице№ 2 Цвета элементов и надписей КИП

Nº ⊓/⊓	Тип трубопровода	Цвет логотипа фирмы заказчика	Цвет надписей и каймы	Цвет поля информационно-предупреждающих надписей	Цвет сигналь- ного колпака	Цифро- вое обо- значение цвета по RAL	
1	Трубопроводы объектов добычи	По согла-			Синий	5015	
2	Магистральный трубопровод			По согла-			Жёлтый
3	Трубопроводы подземного хранения	с заказчи-	Чёрный	Жёлтый	Зелёный	6018	
4	Газораспре- делительный трубопровод				Красный	3020	

Для заказа КИП используется следующее обозначение

Пример обозначения:

^{*} Примечание: в приведенном примере дополнительные устройства не заказываются.

Километровый знак

Изделие предназначено для обозначения трассы трубопровода.

Изделие позволяет обнаруживать КИП как с земли, так и с борта самолета или вертолета.

Для улучшения визуального поиска трассы трубопровода с воздуха плоскость размещения информационных надписей на километровом знаке находиться под небольшим наклоном к горизонту (не более 30°).

На километровый знак наносятся километровые отметки трассы трубопровода. С одной стороны крышки наносится предыдущий километр, с другой - следующий.

Технические характеристики

Километровый знак изготавливается двух типов:

- тип «K-1» для стоек типа «1»;
- тип «K-2» для стоек типа «2,2B,3».

Рисунок №6

Развертка километрового знака

Тип исполнения	Размер А, мм.	Размер В, мм.
K-1	650	400
K-2	800	500

Рисунок №7 Установка километрового знака

Стойка КИП
 Километровый знак
 Отверстия для заклепок
 Болт
 Крепежная гайка
 Заклепка
 Устройство препятствующее свободному изъятию КИП из грунта

Пример обозначения при оформлении заказа на километровый знак

ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ КИП

Для расширения возможностей использования, КИП ПВЕК комплектуются следующими видами устройств:

- блок совместной защиты (БСЗ);
- устройство защитно-заземляющие (УЗЗ);
- устройствами защиты вставок электроизолирующих (УЗ);
- устройство контроля утечки газа (УКГ);

- устройство коммутации (УК);
- устройство контроля анодных заземлителей, протекторов и электрических перемычек (KA3-M);
- блок контроля и регулировки токов анодных заземлителей (PKT);
- блок коррозионного мониторинга (БКМ).

Блок совместной защиты (БСЗ)

Изделие предназначено для совместной защиты и исключения вредного взаимного влияния соседних коммуникаций, электрохимической защиты сторонних подземных металлических сооружений.

Блоки совместной защиты устанавливаются в стойках КИП следующих типов 2, 3.

Таблица №3 Технические характеристики

Параметры	БСЗ-10-1	БСЗ-10-2	БСЗ-10-4	БСЗ-30-1	БСЗ-30-2
Количество каналов	1	2	4	1	2
Номинальный ток канала, А	10	10	10	30	30
Суммарное сопротивление Ом (R) канала	0,45	0,45	0,45	0,24	0,24
Количество регулировочных резисторов	4	8	16	4	8
Допустимое обратное напряжение, В	600	600	600	1000	1000
Масса (кг), не более	0,6	0,7	1,0	0,8	1,0

Рисунок№8 Принципиальная электрическая схема БСЗ

VD - диод

RS – измерительный шунт

R1....R4 – сопротивления реостата

Блок совместной защиты с устройством защиты (БСЗ с УЗ)

Блок совместной защиты применяется для работы в схемах совместной защиты от коррозии подземных коммуникаций. БСЗ позволяет организовывать совместную защиту двух и более подземных коммуникаций, расположенных в непосредственной близости друг от друга.

Устройство защиты используется в качестве предохранительного устройства для изолирующих монолитных муфт и исключает возможность пробоя изолятора в случае попадания молний.

КИП со встроенным БСЗ с УЗ устанавливается:

- в местах параллельной прокладки подземных коммуникаций, защищаемых от одной станции катодной защиты (СКЗ), для регулировки защитного тока, втекающего в каждое подземное сооружение;
- в местах установки изолирующих фланцевых соединений пересечения для защиты соединения от электрического пробоя, а также для выравнивания потенциалов сегментов трубопровода.

Рисунок №9 Принципиальная схема электрическая БСЗ с УЗ

VD – диод:

RS – измерительный шунт;

R1....R4 – сопротивления реостата;

HS – разделительный разрядник

1-2 - клеммы БСЗ

3-4 – клеммы УЗ

Пример обозначения при оформлении заказа КИП с БСЗ и УЗ

Устройство защитно-заземляющее (УЗЗ)

Устройство предназначено для защиты трубопроводов от вредного влияния ЛЭП, грозозащиты, снижения напряжения прикосновения и проведения контроля параметров ЭХЗ.

УЗЗ-Л для устранения вредного влияния ЛЭП, расположенных параллельно трубопроводам.

УЗЗ-Г для грозозащиты трубопроводов и снижения напряжения прикосновения.

Требуемое количество защитных заземлителей, их тип, сопротивление растеканию и размещение по трассе трубопровода определяется расчетом для каждого конкретного случая.

Таблица №4 Технические характеристики

Тип/Размер		У33.Г	У33.Л
Ограничение импульсных перенапряжений (В)		230-250	75
Максимальный импульсный	ток (кА)	24	20
Регулируемый элемент		Газовый разрядник	Варистор
Количество измерительных клемм		8	8
Foconum in populari (MA)	стойки	2500x(□200±10)	2500x(□200±10)
Габаритные размеры (мм):	заземлителя	полоса 4х40х6000	полоса 4х40х6000

Рисунок №10 Способ установки УЗЗ

Измерительные клеммы
 Разрядник (варистор)
 Перемычка
 Кабель
 Заземлитель
 Трубопровод

Пример обозначения при оформлении заказа КИП с УЗЗ

Устройство контроля газа (УКГ)

УКГ предназначено для контроля воздушной среды на наличие горючих газов и паров горючих жидкостей над трубопроводом.

Измерения проводятся переносным газоанализатором.

Наличие дополнительных зажимов на клеммной панели позволяет подключать датчики контроля параметров ЭХЗ.

1	Штуцер отбора проб
2	Клеммная панель
3	Стойка
4	Газоотводящая трубка
5	Экран
6	Трубопровод

Устройство коммутации (УК)

• Устройство используется для коммутации выводов проводов от трубопровода и проводов от стационарного и вспомогательных электродов.

Рисунок №12 Устройство коммутации

Технические характеристики:

- Количество переключателей 3
- Количество измерительных клемм 12
- Количество силовых клемм 2

Переключатели и клеммные зажимы расположены на плате размером 200x100 мм.

Пример обозначения при оформлении заказа КИП с устройством УКГ

Блок коррозионного мониторинга (БКМ)

Блок коррозионного мониторинга предназначен для контроля параметров электрохимической защиты приведенных в таблице №5, и может использоваться при построении различных программно-технических комплексов, предназначенных для дистанционного контроля и управления состоянием противокоррозионной защиты трубопроводов и других подземных металлических сооружений.

Таблица №5 Параметры электрохимической защиты

Nº п.п	Наименование сигнала (параметра)	Модель датчика	Диапазон значений	Диапазон передаваемых значений	Дискретность
1	Защитный потенциал (суммарный)	Датчик потенциала	-5+5 B	-10+10 B	0,01 B
2	Защитный потенциал (поляризационный)	ЭСМС-Э.ПВЕК	-5+5 B	-10+10	0,01 B
3	Ток поляризации вспомогательного электрода на внутреннем шунте, А	ЭСМС-Э.ПВЕК	- 15 +15 мА	- 100 +100 мА	0,1 мА
4	Скорость коррозии, мм/год	ИКП ДК-1ц	065,535 мм в год	065535	1 мкм
5	Температура	TCM-50M	- 20 - +100 C	- 100 - + 100	0,5 град
6	Несанкционированный доступ в КИП	геркон	открыт/замкнут	0/1	

Изделие подразделяется на несколько типов по системе электропитания:

Таблица №6

Тип	Характеристика
1	Постоянное электропитание по кабельным линиям через трансформатор питания.
2	Питание от возобновляемых источников энергии (фотоэлектрические элементы в комплекте с аккумулятором).
3	Питание от неперезаряжаемого источника питания (ИП) емкостью не менее 30 Ач.

Рисунок №13 Схема подключения БКМ

Изделие подразделяется на следующие типы по способам объединения в сеть и используемым коммуникационным технологиям:

Таблица №7

Тип	Характеристика
1	Передача данных по кабелю посредством интерфейса RS-485 на расстояние до 1200 метров. Скорость передачи данных до 96 кбит/сек. Данный интерфейс поддерживается непосредственно центральным контроллером. На одной «ветке», подключенной к одному master-контроллеру, может располагаться до 32 slave-устройств (таковыми являются БКМ).
2	Передача данных и электропитания по кабелю по технологии PoDSL на расстояние до 30 километров. Используется одна или две пары кабеля. На центральном узле (СКЗ или КП ТМ) устанавливается базовая платформа, обеспечивающая прием-передачу данных от БКМ и выдачу питания по тем же парам кабеля. В каждом БКМ устанавливается регенератор, который выполняет три функции — «отбор» части передаваемой мощности для электропитания всего установленного в КИП оборудования, обеспечение телекоммуникационного интерфейса RS232/RS485, последующая передача данных и питания далее по цепочке. Тип связи - дуплексный. Скорость передачи данных - до 15 Мбит/с.
3	Передача данных по радиоканалу в LPD-диапазоне (433 МГц). Для передачи данных используется полоса частот, для работы в которой не требуются разрешения ГКРЧ (решение ГКРЧ от 7 мая 2007 г. № 07-20-03-001). Мощность передатчика до 10 мВт. Скорость передачи данных - программируемая от 1,2 до 57,6 кбит/с. Каждый узел выступает в качестве интеллектуального ретранслятора. При этом, если ближайший соседний узел перестает «выходить на связь», то узел-ретранслятор пытается установить связь со следующим доступным «соседом». Используемые БПД со специально подобранными антеннами круговой направленности обеспечивают связь на расстоянии до 3 километров при условии прямой видимости.
4	Передача данных по радиоканалу в стандарте ZigBee. Решением ГКРЧ от 19 августа 2009 г. № 09-04-07 (Приложение №1) использование данного стандарта в полосе частот 2400-2483,5 МГц не требует согласования при мощности передатчиков не более 100 мВт. Сети стандарта ZigBee являются самоорганизующимися и самовосстанавливающимися. Скорость передачи данных – до 80 кбит/сек. Сеть на базе ZigBee за счет избыточности взаимных связей обеспечивает возможность передачи данных при входе из строя сразу нескольких узлов.

При оформлении заказа на КИП.ПВЕК с БКМ применяется следующая маркировка:

Устройство контроля анодных заземлителей КАЗ-М

Изделие предназначено для контроля работы протекторов, анодных заземлителей и электрических перемычек, путем измерения тока.

Рисунок №14 Схема электрическая принципиальная КАЗ-М

Технические характеристики:

- Количество контролируемых каналов 4÷8
- Максимальный ток канала 20A

Ток канала рассчитывается по формуле: I=20/75Um, где Um-измеренное напряжение на шунте.

Блок регулировки и контроля токов анодных заземлителей (РКТ)

Изделие предназначено для регулировки и контроля тока анодных заземлителей.

Рисунок №15 Схема электрическая принципиальная

FU1 – предохранитель

VD1 – диод R1...R4 – постоянное сопротивление R5 – переменный реостат 0...30 Ом

А – амперметр

УКЗ – установка катодной защиты АЗ – анодный заземлитель

ПАЗ – протяженный анодный заземлитель

Технические характеристики:

- Ток нагрузки по выходу анодного заземлителя (A3) — до 10 A;
- Регулировка тока ступенчатая (с помощью перемычек);
- Ток нагрузки по выходу протяженного анодного заземлителя (ПАЗ) – до 5 А;
- Плавная регулировка тока с помощью реостата;
- Суммарный максимальный ток нагрузки по выходу АЗ и ПАЗ – не более 10 А.

Пример обозначения при оформлении заказа КИП с устройствами УКП, УК, КАЗ-М, РКТ

Устройство крепления КИП в слабонесущих грунтах, в болотистой местности (УКСГ)

Устройство используется для удержания стойки КИП в вертикальном положении в болотистой местности. Эффект достигается за счет крепления стойки КИП к телу трубопровода диаметром от 500 мм до 1420 мм.

Конструктивно устройство состоит из стойки УКСГ, металлической платформы и крепежных хомутов.

Рисунок №16 Схема установка УКСГ на трубопровод

Пример обозначения при оформлении заказа на УКСГ

Знак информационно-предупреждающий типа МАРКЕР.ПВЕК

ТУ 4318-001-87598003-2008

Знаки устанавливаются вдоль оси трубопроводов для обозначения охранных зон согласно «Правил эксплуатации магистральных газопроводов» СТО Газпром 2-3.5-454-2010.

Таблица № 8

Наименование параметров	Тип 1	Тип 2
Высота стойки, м	2,5	2,5
Ширина грани, мм	Δ180 ± 10	□200 ± 10
Толщина стенки, мм	4 ±0,5	4 ±0,5
Масса, кг	11,5 ±1,5	15,5 ± 1,5

Рисунок №17 Общий вид МАРКЕР.ПВЕК

Пример обозначения при оформлении заказа на Знак информационно-предупреждающий

МАРКЕР.ПВЕК.Х.Х.Х Обозначение километрового знака (по необходимости) Тип исполнения стойки КИП (Таблица №1) Тип трубопровода/цвет сигнального колпака (Таблица № 2) Торговая марка изготовителя ООО «ТехноПром» Наименование изделия

Запасной инструмент и принадлежности ЗИП.ПВЕК

ТУ 4318-002-87598003-2010

ЗИП.ПВЕК предназначен для оперативного и своевременного обслуживания и восстановления полноценной работоспособности КИП.ПВЕК в условиях непрерывной эксплуатации.

В ассортименте предлагается один базовый комплект и три специальных комплектации для отдельных устройств: БСЗ, УЗЗ и КАЗ-М

При оформлении заказа на ЗИП.ПВЕК применяется следующая маркировка:

Пример условного обозначения при заказе:

ЭЛЕКТРОД СРАВНЕНИЯ

Медносульфатный электрод сравнения ЭСМС.ПВЕК

ТУ 3435-012-87598003-2012

Электроды сравнения предназначены для использования в системах электрохимической защиты от коррозии и применяются для измерения поляризационного потенциала подземного сооружения путем создания электролитического контакта с грунтом в схемах при определении эффективности противокоррозионной защиты подземных металлических сооружений. Изделие поставляются полностью готовыми к работе.

Рисунок №18 Конструкция электрода сравнения ЭСМС-Э.ПВЕК

1. Внешний корпус
2. Внутренний корпус
3. Медный электрод
4. Медный купорос
5. Ионообменная мембрана
6. Пористая диафрагма
7. Информационная бирка электрода
8. Соединительный провод электрода
9. Кабельные наконечники
10. Контактная масса
11. Заглушка
12. Верхняя крышка
13. Нижняя крышка
14. Вспомогательный электрод
15. Соединительный провод вспомогательного электрода
16. Информационная бирка вспомогательного электрода

Потенциал электрода сравнения по отношению к хлорсеребряному электроду сравнения равен -120 ± 15 мВ. Электрическое сопротивление электрода сравнения не более 15 кОм.

Таблица №9 Габаритные размеры и вес электродов сравнения

Параметры	ЭСМС.ПВЕК	ЭСМС-Э.ПВЕК	
Габаритные размеры, мм	110x300	130x300	
Вес (без кабеля)	Не более 3,0 кг		

Предусмотрена поставка электрода сравнения в комплекте с контейнером установочным.

Контейнер установочный представляет собой пластиковую обсадную трубу длинною 2,2 м с клеммной платой для подключения выводов электрода сравнения и вспомогательного электрода. В нижней части контейнера выполнена перфорация для обеспечения электролитического контакта «электрод-грунт». Верхняя часть контейнера герметично закрывается крышкой.

Рисунок №29 Схема установки медносульфатного электрода сравнения со вспомогательным электродом ЭСМС-Э.ПВЕК в контейнер установочный

1.	Трубопровод
2.	Контрольный вывод от трубопровода
3.	Электрод сравнения
4.	Измерительный кабель электрода сравнения
5.	Вспомогательный электрод
6.	Измерительный кабель вспомогательного электрода
7.	Перемычка
8.	Контейнер установочный
9.	Крышка с уплотнителем
10.	Установочный трос
11.	Клеммная плата
12.	Засыпка местным грунтом
13.	Герметические вводы
14.	Контрольно- измерительный пункт (ковер)

Для оформления заказа на медносульфатный электрод сравнения ЭСМС-Э.ПВЕК используется обозначение:

Пример условного обозначения при заказе медносульфатного электрода сравнения ЭСМС-Э.ПВЕК в комплекте с контейнером установочным:

ЭЛЕКТРОДЫ АНОДНОГО ЗАЗЕМЛЕНИЯ

Электрод анодного заземления типа ПВЕК

ТУ 3435-005-8759003-2011

Изделие применяется:

- в системах катодной защиты магистральных, промысловых и иных трубопроводов и многониточных систем, трубопроводов в любых грунтах включая скальные, засушливые, пустынные и многолетнемерзлые;
- в качестве контуров анодных заземлений установок катодной защиты от коррозии стальных и железобетонных сооружений, контактирующих с грунтом, речной и морской водой и другими электролитическими средами в горизонтальном и вертикальном направлении;
- в качестве защитных заземлений устройств грозозащиты, защиты от высоких напряжений и статического электричества;
- для защиты разветвлённых коммуникаций компрессорных, газораспределительных, нефтеперекачивающих станций, теплоэлектростанций и промышленных площадок иного назначения;
- для защиты подводных переходов однониточных трубопроводов и их многониточных систем;

- для защиты технологических резервуаров любого назначения, включая внутреннюю поверхность;
- для защиты портовых и причальных сооружений, морских платформ и иных гидротехнических сооружений.

Рисунок №30 Конструкция электрода анодного заземления

Таблица №10 Конструкционные параметры и эксплуатационные характеристики изделия:

Nº ⊓/⊓	Параметр	Единица измерения	Значение
1	Наружный диаметр электрода	MM	35±2
2	Наружный диаметр токопроводящего полимера	MM	12,7±0,5
3	Эффективное сечение медного проводника, не менее	MM ²	13,2
4	Удельное сопротивление медного проводника, не более	Ом/м	1,5 x 10- ³
5	Типовое удельное сопротивление токопроводящего полимера	Ом*м	1,5 x 10-2
6	Удельное количество коксовой засыпки в оболочке, не менее	кг/м.п.	1,1
7	Количество связанного углерода в коксовой оболочке, не менее	%	97
8	Типовое удельное сопротивление коксовой оболочки	Ом*м	4,0 x 10-3
9	Срок службы с номинальной токовой нагрузкой (50 мА) не менее	лет	30
10	Строительная длина (на кабельном барабане),	М	200±1,0

Для оформления заказа на комплект электрода анодного заземления типа ПВЕК требуется заполнить опросный лист. (Форма опросного листа запрашивается в отделе продаж компании «ТехноПром»)

Анодный заземлитель комплектный типа ПВЕК (АЗК.ПВЕК)

ТУ 3435-013-87598003-2012

Анодные заземлители АЗК.ПВЕК предназначены для использования в качестве малорастворимых поверхностных и глубинных анодных заземлений в системах катодной защиты от коррозии магистральных трубопроводов и других подземных металлических сооружений. Расположение электродов может быть горизонтальным или вертикальным.

Особенностью анодных заземлителей АЗК.ПВЕК является абсолютная готовность к применению. Металлический корпус анода наполнен активатором, что в свою очередь позволяет использовать изделие без дополнительной засыпки прианодного пространства.

Внешняя оболочка изделий изготавливается из тонкостенного (толщиной 0,1 - 0,4 мм) оцинкованного стального листа.

Срок эксплуатации анода определяется скоростью растворения углеродистого наполнителя. Скорость растворения наполнителя не превышает 0,4 - 0,6 кг/А•год.

Анодные заземлители комплектуются различными типами центральных электродов:

- Графитопластовый электрод условное обозначение «Г».
- Ферросилидовый электрод условное обозначение «Ф».

Тип установки АЗК.ПВЕК может быть:

- глубинный условное обозначение «Г»
- поверхностное условное обозначение «П»

Изделия выпускаются различных типов исполнения:

тип 1 – Ø 100 мм

тип 2 - Ø 150 мм

тип 3 - Ø 200 мм

тип 4 - квадрат сечением 250х250 мм

Длина изделия может быть трёх типоразмеров:

1 - 1000 MM

2 – 1500 мм

3 – 1750 мм (только для ферросилидовых электродов)

Рисунок №21 Устройство АЗК.ПВЕК

Таблица №11 Основные параметры и характеристики единичного анодного заземлителя АЗК.ПВЕК.Г. (Графитопластовый)

Параметры	Величина							
Poswop MM + 109/	D=100,	D=100,	D=150	D=150,	D=200	D=200	S=250*250	S=250*250
Размер мм ±10%	L=1500	L=1000	L=1500	L=1000	L=1500	L=1000	L=1500	L=1000
Вес кг ±10%	13	9	28	19	55	37	100	70
Токоотдача, А	2	2	3	3	3	3	4	4
Контактная площадь анода, м2	0,49	0,33	0,74	0,51	1,28	0,88	1,62	1,12
Скорость растворения активной массы анода, кг/(А*год)	0,4–0,6	0,4–0,6	0,4–0,6	0,4–0,6	0,4–0,6	0,4–0,6	0,4–0,6	0,4–0,6

Таблиц№12 Основные параметры и характеристики единичного заземлителя АЗК.ПВЕК.Ф. (Ферросилидовый)

	Величина			
Размер мм ±10%		D=100,	D=200	S=250x250
·		L=1750	L=1750	L=1750
Вес, кг ±10%		60	70	120
Номинальная токоотдача, А		3	4	5
Контактная площадь анода, м ²		0,74	1,28	1,62
Скорость растворения активной массы анода, кг/(А*год)	без прианодной засыпки	0,4-0,6	0,4-0,6	0,4-0,6
	с прианодной засыпкой	0,2 - 0,4	0,2- 0,4	0,2- 0,4

Для заказа АЗК.ПВЕК используется обозначение:

АЗК.ПВЕК.Х.Х/Х.Х.Х. Количество заземлителей в комплекте Тип установки Диаметр корпуса анодного заземлителя (Таблица № 11,12) Длина корпуса анодного заземлителя (Таблица № 11,12) Тип центрального электрода (Таблица № 11,12) Торговая марка изготовителя ООО «ТехноПром» Наименование изделия

Пример условного обозначения при заказе:

ЗАЩИТНЫЕ УСТРОЙСТВА И ИЗОЛЯТОРЫ

Кольца опорно-направляющие КОН.ПВЕК

ТУ 1469-003-87598003-2008

Кольца предназначены для защиты от механических повреждений изоляционного покрытия стальных труб и тела труб из полимерных материалов в процессе протаскивания через футляр подземного (подводного) перехода через автомобильные, железные дороги и естественные преграды газопроводов (магистральных, распределительных) и других трубопроводов для которых допускается применение полипропилена.

Изделия предназначены для строительства переходов из труб диаметром 110÷400 мм.

В целях унификации колец, их элементы-сегменты, выпускаются двух размеров.

Таблица № 13

Размер на рисунке	1C	2C
А (мм)	105	212
Б (мм)	35	35
В (мм)	118	118

Рисунок №22 Элемент типа 1С

Рисунок №23 Элемент типа 2С

Для заказа комплектов Колец опорно-направляющих используется следующее обозначение:

Кожух защитный изоляционного покрытия трубопроводов типа БАРЬЕР-М.ПВЕК

ТУ 2247-010-87598003-2011

Изделия предназначены для защиты изоляционного покрытия трубопровода диаметром 273 ÷ 1420 мм на границе раздела «грунт- воздух»:

- от повреждения при абразивном воздействии обсыпки на вибрирующий трубопровод;
- от повреждения изоляционного покрытия корнями растений, грызунами и насекомыми.

Рисунок №24

БАРЬЕР-М.ПВЕК.100. Общий вид

Рисунок №25 БАРЬЕР-М.ПВЕК.200. Общий вид 1 – защитный элемент
2 – горизонтальный замок
3 – вертикальный замок

Таблица №14 Характеристики Типов исполнения БАРЬЕР-М.ПВЕК

	T	Размеры			
Наименование изделия	Тип исполнения	А, мм	В, мм	Н, мм	R, мм
Кожух защитный БАРЬЕР-М.ПВЕК	100	E00 . 1 E	102 ± 1,0	15 . 0 5	200
	200	500± 1,5	205 ± 1,0	$15 \pm 0,5$	400

Типы элементов и их количество в собраном изделие определяется зависимости от внешнего диаметра трубопровода с изоляцией и должны отвечать значениям в Таблице №15.

Таблица №15

Тип элемента БАРЬЕР-М.ПВЕК	Диаметр трубопро- вода, Ø Dy, мм	Диаметр трубопровода, с изоляцией Ø D, мм	Количество эле- ментов в собраном изделие	Зазор t, мм
	168	186	7	18
	219	237	9	27
	273	291	11	33
Тип 100	325	343	12	23
	377	395	14	29
	426	444	15	20
	530	548	19	32
	630	648	11	35
	720	738	12	22
Tur. 000	820	838	14	36
Тип 200	1020	1038	17	32
	1220	1238	20	29
	1420	1438	23	25

Рисунок №26 Изделие БАРЬЕР-М.ПВЕК в сборе

Для заказа элементов используется следующие обозначения:

БАРЬЕР-М.ПВЕК.100 БАРЬЕР-М.ПВЕК.200

Ложемент электроизолирующий ПВЕК ИЗОПЛАСТ

ТУ 1469-004-87598003-2009

Электроизолирующие ложементы марок ПВЕК «Изопласт» предназначенны для исключения электрического контакта между металлическими трубопроводами, опорами и конструкциями.

Рисунок №27 Ложемент электроизолирующий ПВЕК «ИЗОПЛАСТ», Тип 1 (2)

Рисунок № 29 Ложемент электроизолирующий ПВЕК «ИЗОПЛАСТ», Тип 4 (4a)

Таблица №16 Исполнения ПВЕК «ИЗОПЛАСТ»

Название изделия	Тип исполнения	Габаритные размеры мм. (длина, ширина, толщина)	Используется для трубопровода диаметром мм.
	1	175x75x4	до 273
Ложемент	2	350x150x6	от 273 до 377
Электроизолирующий ПВЕК «ИЗОПЛАСТ»	3	200x200x15	от 377 до 1000
	4a	100x95x15	от 377 до 1420
	4	200x95x15	от 377 до 1420

Для заказа ложемента электроизолирующего используется следующее обозначение:

Фиксатор точки доступа к поверхности теплоизолированного трубопровода типа ПВЕК.ФТД

ТУ 4314-008-87598003-2011

Изделия предназначены для фиксации и обозначения на поверхности теплоизолирующего кожуха точки доступа к датчикам и контактам наружной поверхности трубопровода.

Наименование	Диаметр, А,	Длина В,	Ширина С,
изделия	мм	мм	мм
ПВЕК.ФТД	110 ± 10	260 ± 10	260 ± 10

Фиксатор точки измерения электрохимического потенциала типа ПВЕК.ФТИ

ТУ 4314-007-87598003-2011

Изделия предназначено для фиксации и обозначения на местности точки установки переносного электрода сравнения при измерениях электрохимического потенциала металлических подземных сооружений.

Таблица №18 Параметры изделия ПВЕК.ФТИ

Тип исполнения	Диаметр А, мм	Диаметр В, мм	Длина L, мм
0,5	140,0 ± 1,4	110,0 ± 1,1	500 ± 10
1,0			1000 ± 10
1,5			1500 ± 10
2,0			2000 ± 10
2,5			2500 ± 10

Рисунок №30 Общий вид ПВЕК.ФТИ

Для заказа Фиксаторов точек доступа и измерений используется следующее обозначение:

Справочная информация

Оформление заявки:

Письмо на имя коммерческого директора OOO «ТехноПром» направлять одним из способов:

- по факсу (495) 646-09-95;
- по электронной почте: info@texnoprom.com

В заявке необходимо указать реквизиты предприятия, почтовый адрес, Ф.И.О. исполнителя и телефон.

Счет выставляется по требованию заказчика и высылается по электронной почте или факсу. Оригинал счета направляется вместе с договором поставки в адрес заказчика заказным письмом (если есть необходимость). Товар резервируется на складе.

Сроки изготовления:

Срок изготовления в течении 28 дней с момента предоплаты, если иное не указано в счете на оплату.

Самовывоз изделий со склада производиться при условии обязательного согласования сроков с Отделом продаж при наличии доверенности и паспорта.

Отгрузка:

Получение товара осуществляется на складе по адресу: Московская обл., Щелковский район, г.Фрязино, Заводской проезд, д.З.

Склад находится на территории предприятия «Фрязинский завод мощных транзисторов» ОАО «Центральный научно-исследовательский институт «Дельфин»».

КАТАЛОГ ПРОДУКЦИИ

111141, Россия,

г. Москва, ул. Перовская, 21

Тел.: +7 (495) 646-09-35

+7 (495) 215-07-14

Факс: +7 (495) 646-09-95

info@texnoprom.com

www.texnoprom.com