Capítulo 10

Problema 01.

- (a) A opinião dos operários pode estar relacionada com seus horários de chegada.
- **(b)** Parece razoável, já que as alturas devem se distribuir homogeneamente segundo os horários de chegada.
- (c) Pode ser que municípios com investimentos menores mão retornem os questionários, acarretando um viés na estimativa da porcentagem média da receita investida em lazer.
- (d) Não haveria problemas se os supermercados fossem homogêneos quanto à venda de sabão em pó. Porém, pode ser que as regiões tenham potenciais de venda diferentes, independentemente do brinde.

Problema 03.

(a) Por exemplo: colocar em uma urna 100 fichas, sendo 10 com o número zero, 20 com número 1, 30 com o número 2, 25 com o número 3 e 15 com o número 4. Sortear uma ficha da urna.

(b)

			x_1			
x_2	0	1	2	3	4	$P(X_2 = x_2)$
0	0,010	0,020	0,030	0,025	0,015	0,10
1	0,020	0,040	0,060	0,050	0,030	0,20
2	0,030	0,060	0,090	0,075	0,045	0,30
3	0,025	0,050	0,075	0,063	0,038	0,25
4	0,015	0,030	0,045	0,038	0,023	0,15
$P(X_1 = x_1)$	0,10	0,20	0,30	0,25	0,15	1

(c)
$$P(X_1 = 2, X_2 = 3, X_3 = 3, X_4 = 1) = P(X_1 = 2)P(X_2 = 3)P(X_3 = 3)P(X_4 = 1) = 0,00375$$

Problema 04.

$$\hat{\sigma}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

x_1	x_2	$P(X_1 = x_1, X_2 = x_2)$	$\hat{\sigma}^{2}$
1	1	1/25	0
1	3	1/25	1
1	5	2/25	4
1	7	1/25	9
3	1	1/25	1
3	3	1/25	0
3	5	2/25	1
3	7	1/25	4

Distribuição amostral de 6º 2

v	0	1	4	9
$P(\hat{\sigma}^2 = v)$	7/25	10/25	6/25	2/25

Problema 05.

(a) E(X) = 2,15; Var(X) = 1,428.

(b) $E(X_i) = 2,15$, i=1,2; $Var(X_i) = 1,428$, i=1,2.

(c)

 \overline{x}	0,0	0,5	1,0	1,5	2,0	2,5	3,0	3,5	4,0

 $P(\overline{X} = \overline{x})$ 0,0100 0,0400 0,1000 0,1700 0,2200 0,2100 0,1525 0,0750 0,0225

(d) $E(\overline{X}) = 2.15$; $Var(\overline{X}) = 0.7138$.

(f)

s^2	0,0	0,5	2,0	4,5	8,0
$P(S^2 = s^2)$	0,225	0,385	0,250	0,110	0,030
v	0,00	0,25	1,00	2,25	4,00
$P(\hat{\sigma}^2 = v)$	0,225	0,385	0,250	0,110	0,030

(g)
$$E(S^2) = 1,428$$
; $Var(S^2) = 3,206$.
 $E(\hat{\sigma}^2) = 0,714$; $Var(\hat{\sigma}^2) = 0,802$.

Se desejarmos um estimador não-viciado, devemos utilizar S^2 . Se desejarmos o estimador com a menor variância, devemos utilizar $\hat{\sigma}^2$.

(h)
$$P(|\overline{X} - \mu| > 1) = P(\overline{X} < 1,15) + P(\overline{X} > 3,15) = P(\overline{X} = 0 \text{ ou } 0,5 \text{ ou } 1) + P(\overline{X} = 3,5 \text{ ou } 4) = 0,01 + 0,04 + 0,1+,075 + 0,0225 = 24,75\%$$

Problema 06.

(a)

$\overline{\overline{x}}$	0,00	0,33	0,67	1,00	1,33	1,67	2,00	2,33	2,67	3,00	3,33	3,67	4,00
$P(\overline{X} = \overline{x})$	0,001	0,006	0,021	0,052	0,098	0,147	0,181	0,182	0,149	0,097	0,048	0,017	0,003

(b) $E(\overline{X}) = 2.15$; $Var(\overline{X}) = 0.4758$.

$$P(|\overline{X} - \mu| > 1) = P(\overline{X} < 1,15) + P(\overline{X} > 3,15) =$$

(c) =
$$P(\overline{X} = 0.00 \text{ ou } 0.33 \text{ ou } 0.67 \text{ ou } 1.00) + P(\overline{X} = 3.33 \text{ ou } 3.67 \text{ ou } 4.00) =$$

= $0.001 + 0.006 + 0.021 + 0.052 + 0.048 + 0.017 + 0.003 = 14.81\%$

(d) Menor, pois a variância de \overline{X} seria menor, fazendo com que sua distribuição fosse mais concentrada em torno de μ .

Problema 07.

(a) P(90 < X < 110) = 68,27%

(b)
$$\overline{X} \sim N\left(100; \frac{100}{16}\right) \Rightarrow P(90 < \overline{X} < 110) = 99,99\%$$

(c)

(d)
$$P(90 < \overline{X} < 110) = 0.95 \Rightarrow P\left(\frac{(90 - 100)\sqrt{n}}{10} < Z < \frac{(110 - 100)\sqrt{n}}{10}\right) = 0.95 \Rightarrow P(-\sqrt{n} < Z < \sqrt{n}) = 0.95 \Rightarrow \sqrt{n} = 1.96 \Rightarrow n \cong 4$$

Problema 08.

(a)
$$P(X < 500) = 0.1 \Rightarrow P\left(Z < \frac{500 - \mu}{10}\right) = 0.1 \Rightarrow \frac{500 - \mu}{10} = 1.28 \Rightarrow \mu = 512.82.$$

 $\overline{X} \sim N\left(512.82; \frac{100}{4}\right); P\left(\sum_{i=1}^{4} X_i < 2000\right) = P(\overline{X} < 500) = 0.519\%.$

Problema 09.

(a) Se a máquina estiver regulada: $\overline{X} \sim N\left(512,82; \frac{100}{4}\right)$

 $P(\text{parada desnecess\'aria}) = P(\overline{X} < 495 \text{ ou } \overline{X} > 520 \mid \text{m\'aquina est\'a regulada}) = 7,56\%$

(b) Se o peso médio desregulou-se para 500g:
$$\overline{X} \sim N\left(500, \frac{100}{4}\right)$$

 $P(\text{continuar for a dos padrões}) = P(495 \le \overline{X} \le 520 \mid \text{máquina des regulou - se}) = 84,13\%$

Problema 10.

(a)
$$\overline{X} \sim N\left(70; \frac{100}{7}\right); \ P\left(\sum_{i=1}^{7} X_i > 500\right) = P\left(\overline{X} > \frac{500}{7}\right) = 35,27\%.$$

(b)
$$\overline{X} \sim N\left(70; \frac{100}{6}\right); \ P\left(\sum_{i=1}^{6} X_i > 500\right) = P\left(\overline{X} > \frac{500}{6}\right) = 0,055\%.$$

Problema 11.

(a)

k/8	0	0,125	0,25	0,375	0,5	0,625	0,75	0,875	1
$P(\hat{p} = k / 8)$	0,1678	0,3355	0,2936	0,1468	0,0459	0,0092	0,0011	0,0001	0,0000

(b)

k/8	0	0,125	0,25	0,375	0,5	0,625	0,75	0,875	1
$P(\hat{p} = k / 8)$	0,1337	0,2993	0,3221	0,1666	0,0414	0,0049	0,0003	0,0000	0,0000

Obs.: $P(\hat{p} = k / 8) = P(S = k) \cong P(k - 0.5 < X < k + 0.5)$, onde $S \sim Binomial(8,0.2)$ e

 $X \sim N(1,6;1,28)$.

- (c) Razoável, pois n é pequeno,
- (d) Para p tendendo a 1/2.

Problema 12.

 $S = 20 \times \hat{p}$: número de peças defeituosas na amostra

Probabilidade exata

Se a produção estiver sob controle: $S \sim binomial(20,0,1)$

 $P(\text{parada desnecess\'{a}ria}) = P(\hat{p} > 0.15 | \text{produção sob controle}) =$

= P(S > 3 | produção sob controle) =
$$1 - \sum_{k=0}^{3} {20 \choose k} 0, 1^{k} 0, 9^{20-k} = 13,30\%$$

Aproximação pela distribuição normal

Se a produção estiver sob controle: $\hat{p} \sim N\left(0,1; \frac{0,1 \times 0,9}{20}\right)$, aproximadamente

 $P(\text{parada desnecess\'aria}) = P(\hat{p} > 0.15 | \text{produção sob controle}) \approx 22.80\%$

Problema 13.

 $S = 100 \times \hat{p}$: número de peças defeituosas na amostra; $S \sim binomial(100;0,1)$

(a) Probabilidade exata

$$P(\hat{p} > 0.1) = P(S > 10) = 1 - \sum_{k=0}^{10} {100 \choose k} 0.1^k 0.9^{100-k} = 41.7\%$$

Aproximação pela distribuição normal

$$\hat{p} \sim N\left(0,1; \frac{0,1\times0,9}{100}\right)$$
, approximadamente; $P(\hat{p} > 0,1) \cong 50,0\%$.

(b)
$$P(\hat{p} = 0) = P(S = 0) = \begin{pmatrix} 100 \\ 0 \end{pmatrix} 0, 1^{0}0, 9^{100-0} = 0, 9^{100} = 0,0027 \%$$

Problema 14.

Bussab&Morettin

(a)

ν	0	1	4	9
$P(\hat{\sigma}^2 = v)$	7/25	2/5	6/25	2/25

$$E(\hat{\sigma}^2) = 2.08$$
 $Var(\hat{\sigma}^2) = 6.39$

$$E(S^2) = 4,16$$
 $Var(S^2) = 25,57$

 $E(S^2) = \sigma^2 = 4,16$, ou seja, S^2 é um estimador não viciado da variância populacional.

(b)

\overline{U}	0,00	2,00	3,00	3,67	4,00	4,33	5,00	6,00
P(U = u)	11/125	6/125	6/25	6/125	24/125	12/125	18/125	18/125

Obs.: Assumindo que U=0 nos casos em que os 3 elementos da amostra forem iguais.

(c)

\overline{x}	1,0	1,7	2,3	3,0	3,7	4,3	5,0	5,7	6,3	7,0
$P(\overline{X} = \overline{x})$	1/125	3/125	9/125	16/125	24/125	27/125	23/125	3/25	6/125	1/125

$$E(\overline{X}) = 4,20; \quad Var(\overline{X}) = 1,39.$$

$$E(U) = 3.76$$
; $Var(U) = 2.52$.

U é viciado e tem variância maior que \overline{X} .

Problema 15.

(a)
$$E(X) = 12$$
; $Var(X) = 10.8$; $Md(X) = 12$.

(b)

\overline{x}	6,0	7,5	9,0	10,5	12,0	13,5	15,0	16,5	18,0
$P(\overline{X} = \overline{x})$	0,01	0,04	0,12	0,2	0,26	0,2	0,12	0,04	0,01

md	6,0	7,5	9,0	10,5	12,0	13,5	15,0	16,5	18,0
P(Md = md)	0,01	0,04	0,12	0,2	0,26	0,2	0,12	0,04	0,01

(c)
$$E(\overline{X}) = E(Md) = 12 = Md(X)$$
.

(d) Qualquer um, pois as duas distribuições amostrais são iguais.

Bussab&Morettin

(e)

Z	-2,58	-1,94	-1,29	-0,65	0,00	0,65	1,29	1,94	2,58
P(Z=z)	0,01	0,04	0,12	0,2	0,26	0,2	0,12	0,04	0,01

(f) E(Z) = 0; Var(Z) = 1.

(g)

s ²	0,0	4,5	18,0	40,5	72,0
$P(S^2 = s^2)$	0,26	0,4	0,24	0,08	0,02

(h) $E(S^2) = 10.8$; $Var(S^2) = 204$

(i)

t_0	-3,0	-1,0	-0,3	0,0	0,3	1,0	3,0
$P(t=t_0)$	0,04	0,24	0,04	0,1	0,04	0,24	0,04

Problema: t não pode ser calculado quando S=0. Assim, $\sum_{i} p(t=t_{0i}) = 0.74$, e não 1.

(j) E(t) = 0; Var(t) = 1,21

(k) P(|t| < 2) = 0.66P(|t| < 4.30) = 0.74

Problema 16.

(a)

(b)

(c) Para amostras grandes, a distribuição de t aproxima-se da distribuição de Z, obtida em (b).

Problema 17.

$$n = \frac{z_{\gamma}^2}{4\varepsilon^2} = \frac{1,645^2}{4(0,02)^2} \cong 1691.$$

Problema 18.

A função f(p) = p(1-p) é decrescente no intervalo [0,5;1]. Logo, para $p \ge 0.80$, $p(1-p) \le 0.80 \times 0.20 = 0.16$. Assim,

$$n = \frac{z_{\gamma}^2 p(1-p)}{\varepsilon^2} = \frac{1,645^2 \times 0,16}{(0.02)^2} \cong 1082.$$

Problema 19.

$$n = \frac{z_{\gamma}^2 p(1-p)}{\varepsilon^2} e \ n_0 = \frac{z_{\gamma}^2}{4\varepsilon^2} \Rightarrow n = 4n_0 p(1-p) = f(p).$$

f(p) assume valor máximo quando p = 1/2. Logo: $n \le f(1/2) = 4n_0 \frac{1}{2} \times \frac{1}{2} = n_0$.

Problema 20.

Seja
$$n = \frac{z_{\gamma}^2 p(1-p)}{\varepsilon^2} = f(p)$$
.

A função f(p) é crescente para p no intervalo [0;0,5] e decrescente para p no intervalo [0,5;1]. Logo,

$$p \le p_0 < 0.5 \Rightarrow f(p) \le f(p_0) < f(0.5) \Rightarrow n \le n_1 < n_0.$$

$$p \ge p_0 > 0.5 \Rightarrow f(p) \le f(p_0) < f(0.5) \Rightarrow n \le n_1 < n_0$$
.

Problema 21.

(a) $\overline{X}_{16} \sim N(10;1) \Rightarrow P(\text{ganhar o prêmio}) = P(\overline{X}_{16} > 12) = 2,275\%$

(b)

Tamanhos de								-		
amostra	1	2	3	4	5	6	7	8	9	10
amostra										

Prob. de ganhar o prêmio 30,9% 24,0% 19,3% 15,9% 13,2% 11,0% 9,3% 7,9% 6,7% 5,7%

(c) n = 1

Problema 22.

$$DP(\overline{X}_1) = \frac{\sigma}{6} e DP(\overline{X}_2) = \frac{\sigma}{\sqrt{n_2}}; DP(\overline{X}_2) = \frac{2}{3}DP(\overline{X}_1) \Rightarrow \frac{\sigma}{\sqrt{n_2}} = \frac{2}{3} \times \frac{\sigma}{6} = \frac{\sigma}{9} \Rightarrow n_2 = 81$$

Problema 23.

(a)
$$E(e) = E(\overline{X}) - \mu = 0$$
; $Var(e) = Var(\overline{X}) = \frac{400}{n}$.

(b)
$$e_{25} \sim N(0;16) \Rightarrow P(|e_{25}|>2) = P(e_{25}<-2) + P(e_{25}>2) = 61,71\%.$$

(c)
$$e_{100} \sim N(0;4) \Rightarrow P(|e_{25}|>2) = P(e_{25}<-2) + P(e_{25}>2) = 31,73\%$$
.

(d) d = 5.15.

(e)
$$n = \frac{z_{\gamma}^2 \sigma^2}{\varepsilon^2} = \frac{1,96^2 \times 400}{1^2} = 1537.$$

Problema 24.

(a)
$$\overline{X}_{30} \sim N(2;0.01/30) \Rightarrow P(\tilde{\text{nao}} \text{ se ajustar}) = P(\overline{X}_{30} < 58/30) + P(\overline{X}_{30} > 61/30) = 3.41\%$$

(b)
$$\overline{X}_{29} \sim N(2;0,01/29) \Rightarrow P(\text{não se ajustar}) = P(\overline{X}_{29} < 58/29) + P(\overline{X}_{29} > 61/29) = 50,00\%$$

Problema 25.

(a)
$$\overline{X}_{1600} \sim N\left(5; \frac{0.2^2}{1600}\right) \Rightarrow P(\text{comprar} + \text{que 1 seção adicional}) = P\left(\overline{X}_{1600} < \frac{7995}{1600}\right) = 26,60\%$$

(b)
$$\overline{X}_{1599} \sim N \left(5; \frac{0.2^2}{1599}\right) \Rightarrow P\left(\frac{8000}{1599} < \overline{X}_{1599} < \frac{8005}{1599}\right) = 16,03\%$$

Problema 26.

S: nota do teste. Se o estudante estiver adivinhando as respostas: $S \sim binomial(20,0,5)$.

$$P(S \ge 13 \mid \text{estudante está adivinhand o}) = \sum_{k=13}^{20} {20 \choose k} 0.5^k 0.5^{20-k} = 13.16\%$$

Problema 27.

S: quantidade de sementes que germinam em um pacote; $S \sim binomial(200;0,95)$

Probabilidade exata

$$P(\hat{p} < 90\%) = P(S < 180) = 1 - \sum_{k=180}^{200} {200 \choose k} 0,95^{k} 0,05^{200-k} = 0,116\%$$

Aproximação pela distribuição normal

$$\hat{p} \sim N(0.95; (0.95 \times 0.05)/200)$$
, aproximadamente

$$P(\hat{p} < 0.90) \cong 0.059 \%$$

Problema 28.

(a)
$$\overline{X} \sim N(\mu;6,25/4)$$

 $P(\overline{X} < 46,3 \text{ ou } \overline{X} > 53,7 \mid \mu = 50) = 0,308\%$
 $P(46,3 \le \overline{X} \le 53,7 \mid \mu = 53,7) = 50\%$

Problema 29.

Em elaboração

Problema 32.

(a) Pelo Teorema do Limite Central, para n e m grandes: $\overline{X} \sim N(\mu_1; \frac{\sigma_1^2}{n})$ e $\overline{Y} \sim N(\mu_2; \frac{\sigma_2^2}{m})$. Essas distribuições serão exatas se X e Y tiverem distribuição normal.

(b) É a distribuição das diferenças entre as médias de todos os possíveis pares de amostras de X e Y com tamanhos n e m, respectivamente.

(c)
$$E(D) = E(\overline{X}) - E(\overline{Y}) = \mu_1 - \mu_2$$
; $Var(D) = Var(\overline{X}) + Var(\overline{Y}) = \frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}$.

(d) Normal, com média e variância dadas em (c), pois D é uma diferença entre variáveis com distribuição (aproximadamente) normal.

Problema 33.

(a)
$$\overline{X} \sim N(5,4;1,69/16); \ \overline{Y} \sim N(5,4;2,25/16); \ D \sim N(0;3,94/16)$$

 $P(|D| > 0,5) = P(D < -0,5) + P(D > 0,5) = 31,37\%$

(b)
$$P(|D| > d) = 0.05 \Rightarrow P(D < -d) = 0.025 \Rightarrow d = 0.973$$

(c)
$$P(\mid D \mid > 0.4) = 0.05 \Rightarrow P(-0.4 \le D \le 0.4) = 0.95 \Rightarrow \frac{0.4\sqrt{n}}{\sqrt{3.94}} = 1.96 \Rightarrow n = 95$$

Problema 34.

$$\overline{X} \sim N(70;100/36)$$
; $\overline{Y} \sim N(65;225/49)$; $D = \overline{X} - \overline{Y} \sim N(5;100/36 + 225/49)$
 $P(D > 6) = 35,6\%$

Problema 35.

$$\begin{split} \hat{p}_1 &\sim N\!\!\left(p_1; \frac{p_1(1-p_1)}{n}\right); \; \hat{p}_2 \sim N\!\!\left(p_2; \frac{p_2(1-p_2)}{m}\right) \!\!. \; \textbf{Logo:} \\ \hat{p}_1 &- \hat{p}_2 \sim N\!\!\left(p_1 - p_2; \frac{p_1(1-p_1)}{n} + \frac{p_2(1-p_2)}{m}\right) \!\!. \end{split}$$

Problema 36.

\overline{x}	2	3	4	5	6
$P(\overline{X} = \overline{x})$	0,1	0,2	0,3	0,2	0,2

$$E(X) = \mu = 4.2$$
; $Var(X) = \sigma^2 = 4.16$

$$E(\overline{X}) = 4,2 = \mu$$
; $Var(\overline{X}) = 1,56 = \frac{\sigma^2}{n} \frac{N-n}{N-1} = \frac{4,16}{2} \times \frac{5-2}{5-1}$

Problema 39.

$$f(x) = \begin{cases} \frac{1}{\theta}, x \in [0; \theta] \\ 0, \text{ caso contrário} \end{cases}; F(x) = \begin{cases} 0, x < 0 \\ \frac{x}{\theta}, x \in [0; ?] \\ 1, x > ? \end{cases}$$

$$f_M(m) = n[F(m)]^{n-1} f(m) = n \left(\frac{m}{\theta}\right)^{n-1} \frac{1}{\theta} = \frac{nm^{n-1}}{\theta^n}, m \in [0; \theta]$$

Problema 40.

Obs.: Os resultados abaixo referem-se a uma particular amostra obtida no Excel.

(a) Média

Classe	Freqüência
até 160	0
160,0 161,2	1
161,2 162,4	0
162,4 163,6	2
163,6 164,8	10
164,8 166,0	14
166,0 167,2	24
167,2 168,4	20
168,4 169,6	16
169,6 170,8	6
170,8 172,0	3
172,0 173,2	4
173,2 174,4	0
mais de 174,4	0

Medidas resumo

Mínimo	1o quartil	Mediana	3o quartil	Máximo	Média	Variância
161,0	165,7	167,0	168,5	173,1	167,2	5,3

(b) Mediana

Classe	Freqüência
até 160	0
160,0 161,2	0
161,2 162,4	5
162,4 163,6	3
163,6 164,8	11
164,8 166,0	10
166,0 167,2	13
167,2 168,4	26
168,4 169,6	11
169,6 170,8	11
170,8 172,0	6
172,0 173,2	0
173,2 174,4	3
mais de 174,4	1

Medidas resumo

1	Mínimo	1° quartil	Mediana	3o quartil	Máximo	Média	Variância
	161,5	165,8	167,5	169,4	174,8	167,5	7,8

- (c) A distribuição amostral da mediana apresenta uma variabilidade maior em torno da média (igual à mediana) populacional.
- (d) Variância, com n-1 no denominador.

Classe	Freqüência
até 1,5	1
1,5 8,7	9
8,7 15,9	19
15,9 23,0	22
23,0 30,2	12
30,2 37,4	16

37,4 44,6	9
44,6 51,8	7
51,8 59,0	2
59,0 66,2	2
Mais que 66,2	1

Medidas resumo

Mínimo	1o quartil	Mediana	3o quartil	Máximo	Média	Variâ ncia
1,48	12,86	21,92	34,57	73,38	25,65	226,60

Problema 41.

j	X_{j}	\overline{X}_{j}	S_j^2
1	3	3,00	0,00
2	5	4,00	2,00
3	2	3,33	2,33
4	6	4,00	3,33
5	4	4,00	2,50

Problema 42.

$$E(\hat{T}) = NE(\overline{X}) = N\mu = N\frac{T}{N} = T$$
; $Var(\hat{T}) = N^2 Var(\overline{X}) = N^2 \frac{\sigma^2}{n}$.

Problema 43.

Idêntico, substituindo-se S^2 no passo [3] por $S^2 = \overline{x}_n (1 - \overline{x}_n)$.