# edureka!

Hadoop Administration \*\*



# **Hadoop Administration**



Module 5: Hadoop 2.0 and High Availability

### **Course Topics**

## edureka!

#### ✓ Module 1

- ✓ Understanding Big Data
- √ Hadoop Components

### √ Module 2

- ✓ Different Hadoop Server Roles
- ✓ Hadoop Cluster Configuration

### ✓ Module 3

- √ Hadoop Cluster Planning
- √ Job Scheduling

### ✓ Module 4

- ✓ Securing your Hadoop Cluster
- ✓ Backup and Recovery

### ✓ Module 5

- √ Hadoop 2.0 New Features
- √ HDFS High Availability

### ✓ Module 6

- Quorum Journal Manager (QJM)
- ✓ Hadoop 2.0 YARN

#### ✓ Module 7

- ✓ Oozie Workflow Scheduler
- ✓ Hive and Hbase Administration

### ✓ Module 8

- √ Hadoop Cluster Case Study
- ✓ Hadoop Implementation

### Topics of the Day

# edureka!

- Hadoop Architecture
- **■** Problems with Hadoop 1.0
- Solution: Hadoop 2.0 and YARN
- Hadoop 2.0 New Features
  - HDFS High Availability
  - **HDFS Federation**
- YARN and Hadoop ecosystem
- Hadoop 2.0 Configuration Files
- Hadoop 2.0 Cluster Setup



### Let's Revise

# edureka!

✓ Plan You Hadoop Cluster

Recover using Secondary NameNode

NameNode recovery in Hadoop 1.0



### **Hadoop Core Components**

### edureka!

#### Hadoop is a system for large scale data processing.

It has two main components:

- √ HDFS Hadoop Distributed File System (Storage)
  - ✓ Distributed across "nodes"
  - ✓ Natively redundant
  - ✓ NameNode tracks locations.
- √ MapReduce (Processing)
  - ✓ Splits a task across processors
  - √ "near" the data & assembles results
  - ✓ Self-Healing, High Bandwidth
  - ✓ Clustered storage
  - ✓ Job Tracker manages the Task Trackers

### Hadoop Core Components (Contd.)

# edureka!







| Problem                              | Description                                                                                                           |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| NameNode – No Horizontal Scalability | Single NameNode and Single Namespaces, limited by NameNode RAM                                                        |
| NameNode – No High Availability (HA) | NameNode is Single Point of Failure, Need manual recovery using Secondary NameNode in case of failure                 |
| Job Tracker – Overburdened           | Spends significant portion of time and effort managing the life cycle of applications                                 |
| MRv1 – Only Map and Reduce tasks     | Humongous Data stored in HDFS remains unutilized and cannot be used for other workloads such as Graph processing etc. |





NameNode - No Horizontal Scale

NameNode - No High Availability





#### **CPU**



The following command will display the status for your entire file system namespace.

- a) hadoop fsck /
- b) hadoop fs Is









- a) 1
- b) 2
- c) 3



Annie's Answer

# edureka!



If a task fails, which of the following automatically resubmit the task (possibly on a different node)?

- a) NameNode
- b) Job Tracker
- c) Task Tracker





Answer: Job Tracker

### MRv1 – Unpredictability in Large Clusters

# edureka!

As the cluster size grow and reaches to 4000 Nodes

### √ Cascading Failures

✓ The DataNode failures results in a serious deterioration of the overall cluster performance because of attempts to replicate data and overload live nodes, through network flooding.

### ✓ Multi-tenancy

✓ As clusters increase in size, you may want to employ these clusters for a variety of models. MRv1 dedicates its nodes to Hadoop and cannot be re-purposed for other applications and workloads in an Organization. With the growing popularity and adoption of cloud computing among enterprises, this becomes more important.





✓ Terabytes and Petabytes of data in HDFS can be used only for MapReduce processing.

| Property                                    | Hadoop 1.0                  | Hadoop 2.0                                                           |
|---------------------------------------------|-----------------------------|----------------------------------------------------------------------|
| Federation                                  | One NameNode and Namespaces | Multiple NameNode and<br>Namespaces                                  |
| High Availability                           | Not present                 | Highly Available                                                     |
| YARN - Processing Control and Multi-tenancy | Job Tracker, Task Tracker   | Resource Manager, Node<br>Manager, App Master,<br>Capacity Scheduler |

### **Other important Hadoop 2.0 features**

- ✓ HDFS Snapshots
- ✓ NFSv3 access to data in HDFS
- ✓ Support for running Hadoop on MS Windows
- ✓ Binary Compatibility for MapReduce applications built on Hadoop 1.0
- ✓ Substantial amount of Integration testing with rest of the projects (such as PIG, HIVE) in Hadoop ecosystem

### YARN and Hadoop Ecosystem







YARN adds a more general interface to run non-MapReduce jobs (such as Graph Processing) within the Hadoop framework

Hadoop 1.0



### Hadoop 2.0



http://hadoop.apache.org/docs/stable2/hadoop-project-dist/hadoop-hdfs/Federation.html

How does HDFS Federation help HDFS Scale horizontally?

- a) Reduces the load on any single NameNode by using the multiple, independent NameNode to manage individual parts of the file system namespace.
- b) Provides cross-data centre (non-local) support for HDFS, allowing a cluster administrator to split the Block Storage outside the local cluster.



Answer: In order to scale the name service horizontally, HDFS federation uses multiple independent NameNode. The NameNode are federated, that is, the NameNode are independent and don't require coordination with each other.



You have configured two name nodes to manage /marketing and /finance respectively. What will happen if you try to put a file in /accounting directory?



Answer: The put will fail. None of the namespace will manage the file and you will get an IOException with a No such file or directory error.



#### **HDFS HIGH AVAILABILITY**



http://hadoop.apache.org/docs/stable2/hadoop-yarn/hadoop-yarn-site/HDFSHighAvailabilityWithNFS.html

HDFS HA was developed to overcome the following disadvantage in Hadoop 1.0?

- a) Single Point Of Failure Of NameNode
- b) Only one version can be run in classic MapReduce
- c) Too much burden on Job Tracker



Answer: Single Point of Failure of NameNode.



### NameNode Recovery Vs. Failover







| Configuration Filenames | Description of Log Files                                                                           |
|-------------------------|----------------------------------------------------------------------------------------------------|
| hadoop-env.sh           | Environment variables that are used in the scripts to run Hadoop.                                  |
| core-site.xml           | Configuration settings for Hadoop Core such as I/O settings that are common to HDFS and MapReduce. |
| hdfs-site.xml           | Configuration settings for HDFS daemons, the namenode, the secondary namenode and the data nodes.  |
| mapred-site.xml         | Configuration settings for MapReduce daemons: the job-tracker and the task-trackers.               |
| masters                 | A list of machines (one per line) that each run a secondary NameNode.                              |
| slaves                  | A list of machines (one per line) that each run a datanode and a task-tracker.                     |

| Configuration Filenames      | Description of Log Files                                                                       |
|------------------------------|------------------------------------------------------------------------------------------------|
| hadoop-env.sh<br>yarn-env.sh | Settings for Hadoop Daemon's process environment.                                              |
| core-site.xml                | Configuration settings for Hadoop Core such as I/O settings that common to both HDFS and YARN. |
| hdfs-site.xml                | Configuration settings for HDFS Daemons, the Name Node and the Data Nodes.                     |
| yarn-site.xml                | Configuration setting for Resource Manager and Node Manager.                                   |
| mapred-site.xml              | Configuration settings for MapReduce Applications.                                             |
| slaves                       | A list of machines (one per line) that each run DataNode and Node Manager.                     |

## Hadoop 2.0 Configuration Files

### edureka!



The core functionality and usage of these core configuration files are same in Hadoop 2.0 and 1.0 but many new properties have been added and many have been deprecated.

#### For example:

- ✓ 'fs.default.name' has been deprecated and replaced with 'fs.defaultFS' for YARN in core-site.xml
- ✓ 'dfs.nameservices' has been added to enable NameNode High Availability in hdfs-site.xml

| Deprecated Property Name | New Property Name         |
|--------------------------|---------------------------|
| dfs.data.dir             | dfs.datanode.data.dir     |
| dfs.http.address         | dfs.namenode.http-address |
| fs.default.name          | fs.defaultFS              |

- ✓ In Hadoop 2.2.0 release, you can use either the old or the new properties.
- ✓ The old property names are now deprecated, but still work!

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/DeprecatedProperties.html



hadoop-env.sh yarn-env.sh

- ✓ Offers a way to provide custom parameters for each of the servers.
- ✓ Sourced by the Hadoop Daemons start/stop scripts.
- ✓ Examples of environment variables that you can specify:

HADOOP\_DATANODE\_HEAPSIZE YARN\_HEAPSIZE

# Hadoop 1.0: Core Configuration Files





# Hadoop 2.0: Core Configuration Files

# edureka!



## Hadoop 2.0: core-site.xml and hdfs-site.xml

| hdfs-site.xml                                                                            | core-site.xml                                                                            |
|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| xml version - "1.0"?                                                                     | xml version ="1.0"?                                                                      |
| hdfs-site.xml                                                                            | core-site.xml                                                                            |
| <configuration></configuration>                                                          | <configuration></configuration>                                                          |
| <pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre> | <pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre> |
| <name>dfs.replication</name>                                                             | <name><b>fs.defaultFS</b></name>                                                         |
| <value>1</value>                                                                         | <pre><value>hdfs://test.abc.in:8020/</value></pre>                                       |
|                                                                                          |                                                                                          |
|                                                                                          |                                                                                          |

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/core-default.xml

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/hdfs-default.xml



| mapred-site.xml                                                                          |  |
|------------------------------------------------------------------------------------------|--|
| xml version="1.0"?                                                                       |  |
| <configuration></configuration>                                                          |  |
| <pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre> |  |
| <name>mapreduce.jobhistory.address</name>                                                |  |
| <value>test.abc.in:10020</value>                                                         |  |
| <pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre> |  |
|                                                                                          |  |

http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/mapred-default.xml

Notice difference in URL for current and stable release

http://hadoop.apache.org/docs/stable/mapred\_tutorial.html



| yarn-site.xml                                                                            |  |
|------------------------------------------------------------------------------------------|--|
| xml version="1.0"?                                                                       |  |
| <configuration></configuration>                                                          |  |
| <pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre> |  |
| <name>yarn.resourcemanager.address</name>                                                |  |
| <value>test.abc.in:8021</value>                                                          |  |
| <pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre> |  |
|                                                                                          |  |

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-common/yarn-default.xml

## Hadoop 2.0: Slaves



#### Slaves

✓ Contains a list of slave hosts, one per line, that are to host **DataNode** and **Node Manager** servers.

Environment variables that are used in the Hadoop start-up scripts can be configured in:

- a) core-site.xml
- b) hadoop-env.sh
- c) hdfs-site.xml





Answer: hadoop-env.sh

We can configure setting for Resource Manager and Node Manager in:

- a) HDFS
- b) yarn-site.xml
- c) core-site.xml
- d) yarn.env-site.xml





Answer: yarn-site.xml

In Hadoop 2.2.0 release, we can use either the old or the new properties.

- a) True
- b) False







- a) 8088
- b) 8080
- c) 19088





Answer: 8088

Which of the following file contains a list of machines (one per line) that each run a secondary Name Node?

- a) masters
- b) slaves



# edureka!



# edureka!

#### Tasks for you

- Attempt the following Assignments using the documents present in the LMS:
  - Install single-node Apache Hadoop 2.0 using a Virtual Machine in VMPlayer or VirtualBox.
  - Configure YARN in your Single Node Hadoop 2.0 Cluster.
  - Run a MapReduce application using YARN.
  - Review the Job status form the resource manager Web UI.
  - Configure Fair and Capacity Scheduler in your Virtual Cluster Environment.



### What's Within the LMS?

## edureka!



# edureka! Thank You

See You in Class Next Week