西	安	交	诵	大	学	老	试	题
ш	$\boldsymbol{\mathcal{I}}$	\sim	~!!	/\	J	7	M	NEX

程 复变函数与积分变换(A)

成绩

考试日期 2019年1月11日

题 号	_	11	Ш	四	五	六	七	八	九
得分									

一、填空(每题3分,共18分)

- 1. $\left(\frac{1+e^{i\theta}}{1+e^{-i\theta}}\right)^n$ (n 为正整数) 的指数形式为______
- 2. 曲线 $x^2 + y^2 = 4$ 在映射 $w = \frac{1}{2}$ 下的像曲线方程为______.
- 3. 设曲线C为|z|=1的正向,则 $\oint \text{Im}(z)dz=$ _______
- 4. $(-3)^{\sqrt{5}} =$
- 5. $\int_{|z|=2} \frac{\cos z \ dz}{(z-\pi)^2} = \underline{\hspace{1cm}}.$
- 6.. Re $s[\sin \frac{z}{1+z}, -1] = \underline{\hspace{1cm}}$
- 二、单项选择(每题3分,共18分)
 - 1. $e^{-t^2}\delta(t)$ 的傅氏变换为【 】 1. $e^{-i\omega}$ $\delta(t)$ 的傳比受换为 【 】 A. $e^{-i\omega}$; B. 1; C. $e^{i\omega}$; D. $2\pi\delta(\omega)$.

- 2. Res $\left[\frac{1}{z^5}\cos z, 0\right]$ 为【 】

- B. -1; C. $\frac{1}{24}$; D. 1.

3. 读
$$\alpha_n = \frac{n}{(2i)^n}$$
, 则 $\sum_{n=1}^{\infty} \alpha_n$ 【 】

- A. 收敛但非绝对收敛;
- B. 发散;

C. 绝对收敛:

- D. 以上结论均不正确.
- 4. $f(t) = \int_0^t \tau e^{-3\tau} \sin 2\tau d\tau$,则 f(t)的拉氏变换为【
- A. $\frac{4(s+3)}{s[(s+3)^2+4]^2}$;
- B. $-\frac{4(s+3)}{s[(s+3)^2+4]^2}$;

 D. $-\frac{4}{s[(s+3)^2+4]}$.
- C. $\frac{4s}{s\lceil (s+3)^2+4\rceil};$
- 5. $f(z) = \frac{1}{\sin(z+1)}$ 在 $z_0 = 0$ 处的泰勒级数的收敛半径为【
- A. 不能确定; B. $\frac{\pi}{2}$; C. π ; D. 1

- 6. 设f(z)在|z| < R(R > 1) 内解析,且f(0) = f'(0) = 1,则沿封闭曲线正向的积分

$$\oint_{|z|=1} \left(2+z+\frac{1}{z}\right) f\left(z\right) \frac{dz}{z} = \left[\left(-\frac{1}{z} \right) \frac{dz}{z} \right]$$

- В. 3;
- C. $8\pi i$; D. $6\pi i$
- 三、 $(12 \, \mathcal{G})$ 问v(x, y) = 2xy + 3x 是否可作为解析函数的虚部? 为什么? 若能, 做一个解 析函数,使得f(i)=0.

四、(12分)将函数 $f(z) = \frac{2(z+1)}{z^2+2z-3}$ 在以 z=0 为中心,由它的奇点相互隔开的不同圆 环域内展成洛朗级数.

五、(8分) 利用留数求积分 $\int_0^{+\infty} \frac{x \sin \beta x}{(x^2 + \alpha^2)^2} dx$. $(\alpha > 0, \beta > 0)$.

六、(8分) 计算积分 $\oint_C \frac{z^{10}}{(z^4+2)^2(z-2)^3} dz$,其中C:|z|=4,方向为正方向.

七、 $(8\,\%)$ 求 $f(t) = \frac{1-\cos t}{t}$ 的拉普拉斯变换,并由此求积分 $\int_0^{+\infty} \frac{1-\cos t}{t} e^{-t} dt$

八、(16分) 在拉普拉斯变换下求解下列问题:

1. (8分) t^m*tⁿ (其中 m,n 为正整数).

2. (8 分)
$$\begin{cases} y''(t) - y(t) = 4 \sin t, \\ y(0) = -1, y'(0) = -2 \quad (t > 0) \end{cases}$$