

Computer Engineering

Prof. Dr. Jochen Rust Prof. Dr. Michael Schäfers Prof. Dr. Tim Tiedemann

Agenda

- Vorstellung
- Organisatorisches
- Motivation, Grundlagen des "Computer Engineering"
- Grundlagen Digitalschaltungen

PAUSE

Einführung VHDL

0. Vorstellung

Vorstellung

Jochen Rust *Prof. Dr.-Ing.*

Werdegang

2023 – heute 2023 – heute	HAW Hamburg DSI Aerospace GmbH
2020 - 2023	DSI Aerospace Technologie GmbH
2014 - 2020	ITEM, Universität Bremen
2008 - 2014	ITEM, Universität Bremen
2006 - 2007	IBM Deutschland Entwicklung GmbH
2001 - 2008	Universität Hannover

Professor Technische Informatik Deputy Head of Pre-Development

Head of Studies
Senior Research Group Leader
Research Associate
Masterarbeit, Internship
Studium Technische Informatik

09.04.2024

Industrial Radio/SDR

System-on-Chip Design

Space Robotics

© Universität Bremen

...und Sie?

Was ist für Sie Computer Engineering?

Haben Sie schonmal was von

- VHDL
- Hardwareentwurf
- FPGAs

gehört?

Was erwarten Sie von der Vorlesung?

Computer Engineering

1. Organisatorisches und Einführung

Organisation

Allgemeines

Vortragsfolien

Vertiefungen

Implementierungsbeispiele

Kleine "Projekte"

Präsenz/TEAMs,

Tafel, FPGA-board

Labor, FPGA-board

Labor, FPGA-board

PDF in TEAMs (vor der VL)

während der VL

Dateien in TEAMs (nach der VL)

Selbständige Bearbeitung im Praktikum

Besondere Daten (Stand jetzt)

• Pfingsten (21.05.24)

keine Veranstaltung

Unterlagen sowie aktuelle Informationen finden sich im TEAMs-Raum "SoSe24_CE"

Einschreibeschlüssel: ssjr901

Prüfungsform

mündlich

Übersicht CE SS24

Semester-	Kalender-	Woche im	Wochen-	Bemerkungen
woche	woche	Stundenplan	beginn	
0	13	13	25.03.2024	
1	14	14	01.04.2024	Beginn WiSe Prüfungswoche nur INF
'	14	14	01.04.2024	Ostermontag 01.04.2024
2	15	15	08.04.2024	Grundlagen /
3	16	16	15.04.2024	VHDĽ
4	17	17	22.04.2024	
5	18	18	29.04.2024	Praktikum
6	19	19	06.05.2024	Crundlesen FDCA Decima
7	20	20	13.05.2024	Grundlagen FPGA Design
8	21	21	20.05.2024	
9	22	22	27.05.2024	Praktikum
10	23	23	03.06.2024	Digitale Signalyerarheitung
11	24	24	10.06.2024	Digitale Signalverarbeitung
12	25	25	17.06.2024	Praktikum
13	26	26	24.06.2024	Anwendungen
14	27	27	01.07.2024	Praktikum
15	28	28	08.07.2024	Pruiungswoche nur ⊑+i
16	29	29	15.07.2024	Prüfungswoche
17	30	30	22.07.2024	Prüfungswoche

Zielhardware: Das Avnet ZedBoard

Wo findet "FPGA-Design" statt?

Hochsprachenebene

- Rechner wird als abstrakte Maschine aufgefasst
- Die konkrete Arbeitsweise ist uninteressant
- \Rightarrow Java, C/C++, Python, etc.

Maschinennahe Ebene (Registerniveau)

- Verstehen des Rechners auf Registerniveau
- Typisch: Technische Informatiker, Applikationsingenieure
- ⇒ Assembler, C (bare-metal)

Gatter und Schaltwerkniveau

- Verstehen der Prozessorkomponenten
- Typisch: Hardwareentwickler
- ⇒ Hardware-Beschreibungen, z.B. VHDL, Schaltpläne (Schematics)

Transistorniveau

- Verstehen der integrierten Schaltkreise
- Typisch: theoretische Elektrotechniker, Physiker
- ⇒ Layout- und Transistortools: SPICE, Cadence

Application Level

High-Level SW Level

Machine Code Level

HW-Architecture Level

Transistor Level

Electrical Level

Anwendungsbeispiel: Image-/Video-/Audio-Encoding

- Kompression des Speicherbedarfs
- Trade-Off: Qualität versus Speicherbedarf
- Beispiel: JPEG Encoding via Fouriertransformation

© soctechnologies.com

Anwendungsbeispiel: High-End Oszilloscope und Signalgeneratoren

- Erzeugung hochfrequenter Signale
- Sampling hochfrequenter Signale

Anwendungsbeispiel: Low-Layer Protokolle

- Beispiel 6G/5G NG Mobile Communications
- Hier: Rad-Tolerant FPGA

Grundlagen
Digitalschaltungen und
VHDL

Grundlagen
FPGA-Entwurf
Signalverarbeitung

Anwendungen
Signalverarbeitung

1. Grundlagen und VHDL

© u-r-rennert.de

```
1 library ieee;
 2 use ieee.std_logic_1164.all;
 3 use ieee.numeric_std.all;
 5 entity signed_adder is
    port
    aclr : in std logic;
   clk : in std logic;
   a : in std logic vector;
   b : in std logic vector;
    q : out std logic vector
14 end signed_adder;
15
16 architecture signed_adder_arch of signed_adder is
17 signal q_s : signed(a'high+1 downto 0); -- extra bit wide
18
19 begin -- architecture
20 assert(a'length >= b'length)
   report "Port A must be the longer vector if different sizes!"
   severity FAILURE;
    q <= std logic vector(q s);</pre>
24
    adding proc:
    process (aclr, clk)
     if (aclr = '1') then
       q_s <= (others => '0');
    elsif rising edge(clk) then
         q s <= ('0'&signed(a)) + ('0'&signed(b));
        end if: -- clk'd
      end process;
35 end signed adder arch;
```

2. Grundlagen FPGA-Entwurf

© B. Ghavami: "LEAP: A Deep Learning based Aging-Aware Architecture Exploration Framework for FPGAs" in FPGA'21

3. Digitale Signalverarbeitung

4. Anwendungen

© https://www.terasic.com.tw/

© DSI/HAW/TUHH

© AEON Robotics

© DSI Aerospace GmbH

...in a nutshell

Literatur und Software

Zum Nachlesen:

- H. Kaeslin: "Digital Integrated Circuit Design: From VLSI Architectures to CMOS Fabrication", Cambridge University Press, 2008.
- G. Lehmann, B. Wunder und M. Selz: "Schaltungsdesign mit VHDL" online: https://www.itiv.kit.edu/downloads/Buch_gesamt.pdf
- Universität Hannover, IMS: "Skript zur Vorlesung Electronic Design Automation (EDA)", URL: http://edascript.ims.uni-hannover.de/de/index.html
- J.-M. Muller: "Elementary Functions: Algorithms and Implementation", Birkhäuser, 2. Aufl., 2006, ISBN-13: 978-0817643720
- J. Hennessy, D. Patterson: "Computer Architecture: A Quantitative Approach", Morgan Kaufmann, 2. Aufl., 1996, ISBN: 1-55860-329-8
- J. Hennessy, D. Patterson: "Computer Architecture: A Quantitative Approach", Morgan Kaufmann, 4. Aufl., 2006, ISBN: 0-12-370490-1
- J. Gustafson: "The End of Error: Unum Computing", Chapman & Hall CRC Computational Science, 2015, ISBN-13: 978-1482239867

Literatur und Software

Zum Nachschlagen:

- Online repository für VHDL: https://tams.informatik.uni-hamburg.de/research/vlsi/vhdl/index.php?content=03-documentation
- AVNET ZedBoard technical datasheet:
 https://www.avnet.com/wps/wcm/connect/onesite/922900e3-3d57-4cc7-883f-a8b9fbea0cd0/ZedBoard HW UG v2 2.pdf?MOD=AJPERES&CACHEID=ROOTWORKSPACE.Z18

 NA5A1I41L0ICD0ABNDMDDG0000-922900e3-3d57-4cc7-883f-a8b9fbea0cd0-nxyWMFS

FRAGEN

F.1a Wozu müssen ITS-/AI-ler FPGAs kennen und benutzen?

F.1b Was könnten Vor- und Nachteile des FPGA-Entwurfs gegenüber Microcontroller/Prozessorentwurfs.

F.1c Kennen Sie ein Beispiel, in dem Prozessoren "nicht schnell genug" sind?