Neural Networks

Vishal Patel

Spring 2022

Feature Engineering

CUSTOMER ID	PURCHASE DATE
1001	02-12-2015:05:20:39
1001	05-13-2015:12:18:09
1001	12-20-2016:00:15:59
1002	01-19-2014:04:28:54
1003	01-12-2015:09:20:36
1003	05-31-2015:10:10:02
•••	•••

- 1. Number of transactions (Frequency)
- 2. Days since the last transaction (Recency)
- 3. Days since the earliest transaction (Tenure)
- 4. Avg. days between transaction
- 5. # of transactions during weekends
- 6. % of transactions during weekends
- 7. # of transactions by day-part (breakfast, lunch, etc.)
- 8. % of transactions by day-part
- 9. Days since last transaction / Avg. days between transactions
- 10. ...

Create Features

Train Models

CUSTOMER ID	x_1	x_2		x_j
1001	•••	•••		•••
1002	•••	•••		•••
1003	•••	•••		•••
•••	•••	•••	•••	•••

Training Data

Domain Knowledge

Create Features

Train Models

Feature Engineering?

Training Data

 $y_1 = 4$

$$j = 36$$

Digit Recognition Program

Neural Network

Multilayer Perceptron

Terminology

input is that number

Activation values for the input layer

The Layers

Activation Function

$$w_1 = -0.17$$

 $w_2 = -2.09$
 $w_3 = +3.25$
 $w_4 = -0.05$
 $w_5 = -2.99$
 $w_6 = +1.11$

•

Sigmoid function

Activation value of a neuron:

$$\sigma(w_1a_1 + w_2a_2 + w_3a_3 + \dots + w_na_n + bias)$$

Sigmoid function

Activation Function

$$a_0^{(1)} = \sigma \left(w_{0,0} a_0^{(0)} + w_{0,1} a_1^{(0)} + \dots + w_{0,n} a_n^{(0)} + b_0 \right)$$

$$a^{(1)} = \sigma(Wa^{(0)} + b)$$

Rectified Linear Unit

Sigmoid

$$\sigma(a) = \frac{1}{1 + e^{-a}}$$

Slow learner

ReLU

$$ReLU(a) = \max(0, a)$$

Neural Network: Model Parameters

64*12+12*12+12*10 weights

12 + 12 + 10 biases

4,394

Learning →

Finding the right weights and biases

The Cost Function

Weights and biases

Training data

Cost

Mean Squared Error (Quadratic cost), Cross-entropy cost, etc.

Input

Output

Backpropagation

Actual Output	Desired Output	Adj.
0.20	0	-
0.18	0	-
0.01	0	
0.78	0	-
0.88	1	+
0.32	0	-
0.15	0	-
0.08	0	-
0.05	0	
0.83	0	-

Resources

TensorFlow, Keras and deep learning, without a PhD

$$a_{0}^{(0)}$$
 $w_{0,0}$
 $v_{0,0}$
 $v_{0,1}$
 $v_{0,2}$
 $v_{0,2}$
 $v_{0,3}$
 $v_{0,4}$
 $v_{0,4}$

$$a_0^{(1)} = \sigma \left(w_{0,0} a_0^{(0)} + w_{0,1} a_1^{(0)} + \dots + w_{0,n} a_n^{(0)} + b_0 \right)$$

$$a^{(1)} = \sigma \left(W a^{(0)} + b \right)$$

import tensorflow as tf

Neural Network Tutorial

```
12_digits_recognition_model.ipynb
```

13_intro_neural_net.ipynb

batch, iterations, and epoch

Fully Connected MLP

- Computationally expensive
- Spatial information is lost
- Sensitive to location of objects within an image

convolve

[kən'välv] ◆))

VFRR rare

convolve (verb) · convolves (third person present) · convolved (past tense) · convolved (past participle)
convolving (present participle)

roll or coil together; entwine.

 mathematics combine (one function or series) with another by forming their convolution.

ORIGIN

late 16th century (in the sense 'enclose in folds'): from Latin convolvere 'roll together', from con- 'together' + volvere 'roll'.

Spatial Structure

Convolution

Filter = A **patch** of size 3x3 (in this example)

Instead of taking a straight sum of all pixels within a patch, a set of weights are created which are then used to take a weighted sums.

Multiple filters (i.e., set of weights) are used to extract different features.

Feature Extraction

Let's create a filter to identify the cross.

-1	1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1
-1	1	-1	1	-1	-1
-1	1	1	1	1	-1
-1	-1	-1	1	-1	-1
-1	-1	-1	1	-1	-1

 -1
 1
 -1

 1
 1
 1

 -1
 1
 -1

Filter

Input

-1	1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1
-1	1	-1	1	-1	-1
-1	1	1	1	1	-1
-1	-1	-1	1	-1	-1
-1	-1	-1	1	-1	-1

Input

Filter

$$(-1*-1) + (1*1) + (-1*-1)$$

+ $(-1*1) + (1*1) + (-1*1)$
+ $(-1*-1) + (1*1) + (-1*-1)$

$$1+1+1-1+1-1+1+1=5$$

-1	1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1
-1	1	-1	1	-1	-1
-1	1	1	1	1	-1
-1	-1	-1	1	-1	-1
-1	-1	-1	1	-1	-1

-1	1	-1
1	1	1
-1	1	-1

5	-5	

Filter map

Input

Pooling = Downsampling operation on a feature map

CNN Tutorial

14_image_classification_cnn.ipynb