BRAC UNIVERSITY

Department of Computer Science and Engineering

Examination: Midterm Semester: Summer 2023
Duration: 75 minutes Full Marks: 30

CSE 440: Natural Language Processing II

Figures in the right margin indicate marks.

Name:			ID:	Section:	
Answer all 3	3				
1. [CO1]	A.	Explain with examples: a. Precision b. Micro-average F1 c. Macro-average recall d. Statistical significance		[4]	
	B.	You have two classifiers $(y = \sigma(\mathbf{w}^T x + b))$, classifier A with weight $w_A = [1 \ 0 \ 2]^T$ and bias $b_A = 1$; and classifier B with weight $w_B = [1 \ 2 \ 0]^T$ with bias $b_B = 0$. For one example $X = [1 \ 1 \ 0]^T$, predict y_A and y_B . Which classifier incurs lower cross entropy loss if X's original label is 1? Calculate. Show your work.			
2. [CO1]	A.	Let's say we are working with Shakespeare's plays, and we have three plays in our hand: Anthony and Cleopetra, Julius Caesar, and Hamlet, with four key characters: Anthony, Brutus, Caesar and Calpurnia. These characters appear in the plays as many times given in table 1. Consider this as your bag-of-words. Now build a term-term co-occurrence matrix using this binary bag-of-words. Explain what each value in the term-term co-occurrence matrix means.			
	B.	We have a document that has the document is 100 words long. If we and 1,000 of them have the word of 'shallow' in that document.	have a total of 10,000 doc	uments	
3. [CO2]	A.	Gender bias in word embedding male words and other words are of a poorly trained word vector may 'nurse' to 'woman'. If I tell you you you test it? How can you solve it?	closer to female words. For ay associate 'doctor' to 'r r embedding has this issue	example, man' and	

B. Explain the training and testing process of the Naive Bayes algorithm for sentiment classification. That is, you are given N sentences where some are positive sentiment sentences and some are negative, and you have to train a Naive Bayes model that will be able to classify a sentence. Then, you got a new sentence which you do not know whether it is positive and negative, and you need to figure out. How are you going to do it?

Table 1

	Anthony	Brutus	Caesar	Calpurnia
Anthony and Cleopetra	16	13	7	0
Julius Caesar	12	9	21	4
Hamlet	0	1	1	0