高二知识点整理 4

信息调节

1、比较信息在神经元上和神经元之间的传递的具体过程

神经元上,由受刺激的地方双向传播,使膜电位变化(由外正内负变为外负内正),信号形式是生物电。

神经元之间通过突触传导,突触前膜通过胞吐,单向释放神经递质到突触间隙,与突触后膜上的受体结合,使后膜上的膜电位发生变化,信号形式是电信号→化学信号→电信号。

2、神经元的结构及功能(3部分)

神经元结构和功能

3、突触的结构(3部分)

突触前膜——突触间隙——突触后膜(上有受体和离子通道)神经元以轴突末端膨大与其他神经元的细胞体或树突接触

4、条件反射的建立

无关刺激与非条件刺激在时间上多次结合(强化) 条件反射建立后,无关刺激→条件刺激

5、激素调节特点 特异性、高效性

6、激素调节的方式、基本方式

方式: 反馈

基本方式: 负反馈

内环境

1、画出体液各成分的物质交换关系图

2、水和电解质平衡、体温调节、血糖调节、血脂调节、血压调节中调节中枢、参与调节的激素有哪些、激素的具体作用。(可列表)

内容	调节中枢	激素	激素的作用
1. 水和电解质平	下丘脑	抗利尿激素	在血浆渗透压过高时,加强
衡			肾小管对水的重吸收,减少
			尿量。
2. 体温调节	下丘脑	肾上腺素,	促进新陈代谢,加速糖和脂
		甲状腺素	肪的氧化分解,放出热量,使
			体温升高
3. 血糖调节	下丘脑	胰高血糖素,肾	促进肝糖原的分解,促进非
		上腺素;(协同)	糖物质转化为葡萄糖,使得
			血糖升高;
		胰岛素	促进葡萄糖合成肝糖原,促
			进葡萄糖转化为非糖物质,
			促进葡萄糖的氧化分解,使
4. 血脂调节		 胰高血糖素,肾	得血糖降低。 促进甘油三酯的分解,转变
4. 川川月日 7月 17			
		上腺素(协同)	为糖
		胰岛素	促进糖转变为甘油三酯
5. 血压调节	心血管中	肾上腺素;	心跳加快,心输出量增加,血
	枢		压上升;
		抗利尿激素	促进肾小管对水的重吸收,
			使血量增加, 血压上升

3、脂蛋白的种类和功能; LDL、HDL 的多少对血脂的影响

CM 乳糜微粒, 将小肠吸收的外源性甘油三酯带入血液, 进入脂肪细胞。

VLDL 极低密度脂蛋白,将肝脏内合成的内源性甘油三酯带入血液,进入脂肪细胞。

LDL 低密度脂蛋白,携带胆固醇,并将其运送到全身组织细胞。

HDL 高密度脂蛋白,在肝脏中形成,吸收外周组织中多余的胆固醇运送到肝脏,在肝脏中被加工成胆汁酸排出体外。

LDL 和 HDL 的多少对血脂的影响

当 LDL 过多时,血液内胆固醇含量过高,容易引起动脉粥样硬化

当 LDL 过少时,血液内胆固醇含量变低,可能影响细胞膜合成、性激素、肾上腺皮质激素、维生素 D 的合成

当 HDL 过多时,血液内胆固醇含量变低,不会引起动脉粥样硬化 当 HDL 过少时,血液内胆固醇含量过高,容易引起动脉粥样硬化

4、水和电解质平衡

5、体温平衡的调节过程

6、血糖平衡的调节过程

7、血压平衡的调节过程

血压的神经调节——降压反射(减压反射)

血压的神经调节——升压反射

