df.describe()

```
import seaborn as sns # for data visualization
import matplotlib.pyplot as plt
import numpy as np # for operations on data
import pandas as pd # for loading dataset
from sklearn.impute import SimpleImputer # for preprocessing
from sklearn.model_selection import train_test_split # for splitting dataset
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report, precision_score, f1_score
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import confusion_matrix
df=pd.read_csv("/content/Crop_recommendation.csv")
df1=df.copy(deep=True)
df.head()
                                                                    \blacksquare
                K temperature humidity
                                              ph
                                                   rainfall label
     0 90 42 43
                     20.879744 82.002744 6.502985 202.935536
                                                              rice
                                                                    ılı.
     1 85 58 41
                     21.770462 80.319644 7.038096 226.655537
                                                              rice
     2 60 55 44
                     23.004459 82.320763 7.840207 263.964248
                                                              rice
     3 74 35 40
                     26.491096 80.158363 6.980401 242.864034
     4 78 42 42
                     20.130175 81.604873 7.628473 262.717340
            View recommended plots
 Next steps:
df.tail()
                                                                        畾
            N P
                    K temperature humidity
                                                  ph
                                                       rainfall label
     2195 107 34 32
                         26.774637 66.413269 6.780064 177.774507 coffee
     2196
           99 15 27
                         27.417112 56.636362 6.086922 127.924610 coffee
                         24.131797 67.225123 6.362608 173.322839 coffee
     2197 118 33 30
     2198 117 32 34
                         26.272418 52.127394 6.758793 127.175293 coffee
                         23.603016 60.396475 6.779833 140.937041 coffee
     2199 104 18 30
df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 2200 entries, 0 to 2199
    Data columns (total 8 columns):
     # Column
                     Non-Null Count Dtype
     ---
         -----
                     -----
     0
         Ν
                     2200 non-null
                                    int64
     1
                     2200 non-null
                                    int64
                     2200 non-null
                                    int64
     2
     3
         temperature 2200 non-null
                                    float64
     4
         humidity
                     2200 non-null
                                    float64
                     2200 non-null
                                    float64
         ph
         rainfall
                     2200 non-null
                                    float64
         label
                     2200 non-null
                                    object
    dtypes: float64(4), int64(3), object(1)
    memory usage: 137.6+ KB
```

https://colab.research.google.com/drive/1MPm-6caBXDNEHXJRuMzPoZzj1LsOOvX1?authuser=2#scrollTo=xlS2D4BvRZZE&printMode=true

	N	Р	К	temperature	humidity	ph	rainfall	
count	2200.000000	2200.000000	2200.000000	2200.000000	2200.000000	2200.000000	2200.000000	11.
mean	50.551818	53.362727	48.149091	25.616244	71.481779	6.469480	103.463655	
std	36.917334	32.985883	50.647931	5.063749	22.263812	0.773938	54.958389	
min	0.000000	5.000000	5.000000	8.825675	14.258040	3.504752	20.211267	
25%	21.000000	28.000000	20.000000	22.769375	60.261953	5.971693	64.551686	
50%	37.000000	51.000000	32.000000	25.598693	80.473146	6.425045	94.867624	
75%	84.250000	68.000000	49.000000	28.561654	89.948771	6.923643	124.267508	
max	140.000000	145.000000	205.000000	43.675493	99.981876	9.935091	298.560117	

```
crop={}
temp=set()
for i in df["label"]:
    temp.add(i)
index=0
for k in sorted(list(temp)):
    if k not in dict:
        crop[index]=k
    index+=1
```

print(crop)

```
{0: 'apple', 1: 'banana', 2: 'blackgram', 3: 'chickpea', 4: 'coconut', 5: 'coffee', 6: 'cotton', 7: 'grapes', 8: 'jute', 9: 'kidneybean
```

N 0 P 0 K 0 temperature 0 humidity 0

df.isnull().sum()

humidity 0 ph 0 rainfall 0 label 0 dtype: int64

num_cols = df[["N","K","P","ph","humidity","rainfall","temperature"]]
cat_cols = df[["label"]]

sb.countplot(y="label", data=df)
plt.show()


```
#Categorical Values
print(df['label'])
     0
               rice
     1
              rice
     2
              rice
     3
              rice
     4
              rice
            coffee
     2195
     2196
             coffee
     2197
            coffee
     2198
            coffee
     2199
            coffee
     Name: label, Length: 2200, dtype: object
le = LabelEncoder()
df['label'] = le.fit_transform(df['label'])
#Numerical Values
print(df['label'])
     0
             20
     1
             20
     2
             20
     3
             20
     4
             20
     2195
     2196
             5
     2197
             5
     2198
              5
     2199
    Name: label, Length: 2200, dtype: int64
a=df.corr()
```

a.style.background_gradient()

	N	Р	К	temperature	humidity	ph	rainfall	label
N	1.000000	-0.231460	-0.140512	0.026504	0.190688	0.096683	0.059020	-0.031130
Р	-0.231460	1.000000	0.736232	-0.127541	-0.118734	-0.138019	-0.063839	-0.491006
K	-0.140512	0.736232	1.000000	-0.160387	0.190859	-0.169503	-0.053461	-0.346417
temperature	0.026504	-0.127541	-0.160387	1.000000	0.205320	-0.017795	-0.030084	0.113606
humidity	0.190688	-0.118734	0.190859	0.205320	1.000000	-0.008483	0.094423	0.193911
ph	0.096683	-0.138019	-0.169503	-0.017795	-0.008483	1.000000	-0.109069	-0.012253
rainfall	0.059020	-0.063839	-0.053461	-0.030084	0.094423	-0.109069	1.000000	0.045611
label	-0.031130	-0.491006	-0.346417	0.113606	0.193911	-0.012253	0.045611	1.000000

sb.heatmap(a,annot=True,mask=np.triu(a))

<Axes: >

```
N -
                                                                                         0.6
                 -0.23
                                                                                         0.4
                 -0.14
                         0.74
temperature -
                 0.027
                        -0.13
                                 -0.16
                                                                                         0.2
    humidity -
                         -0.12
                                         0.21
                                                                                         0.0
                 0.097
                        -0.14
                                 -0.17 -0.018-0.0085
                                                                                         -0.2
      rainfall - 0.059 -0.064 -0.053 -0.03 0.094 -0.11
                                                 0.19 -0.012 0.046
         label -
                 -0.031
                         -0.49
                                 -0.35
                                         0.11
                  Z
                           ۵
                                           temperature
                                                                           abe
                                                           h
                                                   humidity
                                                                   ainfall
```

```
def outlier_analysis(f_q, t_q):
    shape_first = num_cols.shape[0] # get initial no. of rows (row size,col size)
    col='ph
    Q1 = num_cols[col].quantile(f_q) # First Quartile
    Q3 = num_cols[col].quantile(t_q) # Third Quartile
    IQR = Q3 - Q1 # interquartile range
    min_ = Q1 - 1.5 * IQR # for non-outliers Q1-1.5IQR <= X <= Q3+1.5IQR
    max_ = Q3 + 1.5 * IQR
    filter_ = (num\_cols[col] < min_) | (num\_cols[col] > max_) # get col withb corresponding bool
    if num_cols.loc[filter_].any(axis = None): # check for outlier in any row
         cat cols.drop(num cols.loc[filter ].index, inplace=True) # .index retrieves row no.
         num_cols.drop(num_cols.loc[filter_].index, inplace=True) # separately drop then combine
    else:
         print(f"There is no outlier for {col} column.")
    shape_last = num_cols.shape[0]
    outlier_percentage = ((shape_first - shape_last) / shape_first) * 100
    print("{:.2f}% observations have been dropped as outlier.".format(outlier_percentage))
outlier analysis(0.2, 0.8) # we can customize the definition for quartiles
df = pd.concat([num_cols,cat_cols], axis=1)
     1.36% observations have been dropped as outlier.
     <ipython-input-88-09e70c8967a0>:11: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-c">https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-c</a>
       cat_cols.drop(num_cols.loc[filter_].index, inplace=True) # .index retrieves row no.
     <ipython-input-88-09e70c8967a0>:12: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-c">https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-c</a>
        num_cols.drop(num_cols.loc[filter_].index, inplace=True) # separately drop then combine
     \dashv
```

le = LabelEncoder() #Create object for class to access its functions
df['label'] = le.fit_transform(df['label'])
df.tail(5)

	N	К	Р	ph	humidity	rainfall	temperature	label	\blacksquare
2195	107	32	34	6.780064	66.413269	177.774507	26.774637	5	ıl.
2196	99	27	15	6.086922	56.636362	127.924610	27.417112	5	
2197	118	30	33	6.362608	67.225123	173.322839	24.131797	5	
2198	117	34	32	6.758793	52.127394	127.175293	26.272418	5	
2199	104	30	18	6.779833	60.396475	140.937041	23.603016	5	

```
x= df.iloc[:, [0,1,2,3,4,5,6]].values
y= df["label"].values
x_train, x_test, y_train, y_test= train_test_split(x, y, test_size= 0.20, random_state=100) # 20% test
st_x= StandardScaler() #create object
y t=y train
x\_train= st\_x.fit\_transform(x\_train) #standardize by shifting mean and scaling SD
x_test= st_x.transform(x_test)
x_test
     array([[ 1.86507501, 0.07582936, 1.0267091 , ..., 0.17865519,
              0.26445285, 0.48678633],
            [-0.62789371, 3.01838878, 2.51178762, ..., 0.91908547,
           0.18794326, -0.49980808],
[-1.11564846, 2.93886015, 2.17840265, ..., 0.81216092,
             0.15787709, -0.64727523],
            [-0.57369874, -0.46098891, 0.6630164, ..., -1.34852847,
           0.809744 , 0.93072228],
[ 1.29602781, -0.22240301, 0.02655418, ..., 0.37258768,
             1.69806053, -0.87729065],
            [-0.54660125, 2.93886015, 2.54209534, ..., 0.98389417,
             0.29393655, -0.68030905]])
y_t
     array([19, 3, 9, ..., 20, 4, 0])
pca=PCA()
pca.fit(x_train)
     ▼ PCA
     PCA()
x_pca=pca.transform(x train)
x_t_pca=pca.transform(x_test)
x_test
     array([[ 1.86507501, 0.07582936, 1.0267091 , ..., 0.17865519,
             0.26445285, 0.48678633],
            [-0.62789371, 3.01838878, 2.51178762, ..., 0.91908547,
             0.18794326, -0.49980808],
            [-1.11564846, 2.93886015, 2.17840265, ..., 0.81216092,
             0.15787709, -0.64727523],
            [-0.57369874, -0.46098891, 0.6630164, ..., -1.34852847,
             0.809744 , 0.93072228],
            [ 1.29602781, -0.22240301, 0.02655418, ..., 0.37258768,
           1.69806053, -0.87729065],
[-0.54660125, 2.93886015, 2.54209534, ..., 0.98389417,
             0.29393655, -0.68030905]])
x_pca.shape
     (1736, 7)
exp_var_pca = pca.explained_variance_ratio_
# Cumulative sum of eigenvalues; This will be used to create step plot
# for visualizing the variance explained by each principal component.
cum_sum_eigenvalues = np.cumsum(exp_var_pca)
# Create the visualization plot
\verb|plt.bar(range(0,len(exp\_var\_pca))|, exp\_var\_pca, alpha=0.5, align='center', label='Individual explained variance'|)|
plt.ylabel('Explained variance ratio')
plt.xlabel('Principal component index')
plt.legend(loc='best')
plt.tight_layout()
plt.show()
```



```
def model_train(model):
    model.fit(x_pca, y_train)
    y_pred = model.predict(x_t_pca)
    score = model.score(x_t_pca, y_test)
    print("accuracy ", score)
    print(classification_report(y_test, y_pred))
    print(confusion_matrix(y_test, y_pred)) # Corrected this line
    print("precision ", precision_score(y_test, y_pred, average=None))
    print("f_score ", f1_score(y_test, y_pred, average=None))
```

model_train(LogisticRegression())

8	1.00	0.93	0.97	15
9	1.00	1.00	1.00	22
10	0.91	1.00	0.95	21
11	1.00	1.00	1.00	20
12	0.96	1.00	0.98	22
13	1.00	0.83	0.91	12
14	1.00	1.00	1.00	20
15	1.00	1.00	1.00	17
16	1.00	0.94	0.97	16
17	1.00	0.89	0.94	19
18	1.00	1.00	1.00	19
19	1.00	1.00	1.00	17
20	0.88	1.00	0.94	15
21	1.00	1.00	1.00	14
accuracy			0.98	434
macro avg	0.99	0.98	0.98	434
weighted avg	0.99	0.98	0.98	434
[[] 0 0 0				

[[20 0 0 0 0 23 0 24 [0 0 27 0 25 0 0 0 24 [0 0 0 0 0 1 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0] 0 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0 0 0

```
hiertaton [T.
     1.
               1.
                        1.
                                  1.
                                            0.91304348 1.
     0.95652174 1.
                                  1.
                        0.88235294 1.
     1.
               1.
                                           1
                                0.9787234 1.
                                                    0.97959184 0.98181818
    f_score [1.
     1.
              1.
                        0.96551724 1.
                                            0.95454545 1.
                                            0.96774194 0.94444444
     0.97777778 0.90909091 1.
                        0.9375
                                  1.
                                           1
              1.
    /usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py:458: ConvergenceWarning: lbfgs failed to converge (status=1
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
       https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
      n_iter_i = _check_optimize_result(
model_train(SVC(kernel = 'linear'))
    accuracy 0.9976958525345622
                           recall f1-score
                precision
                                             support
              0
                     1.00
                              1.00
                                                 20
                                       1.00
                     1.00
                              1.00
                                      1.00
                                                 18
              1
              2
                     1.00
                              1.00
                                      1.00
                                                 24
                     1.00
                              1.00
                                       1.00
                                                 23
                     1.00
                              1.00
                                       1.00
                                                 24
                                                 27
                     1.00
                              1.00
                                       1.00
              6
                     1.00
                              1.00
                                       1.00
                                                 25
                     1.00
                              1.00
                                       1.00
              8
                                                 15
                     1.00
                              1.00
                                      1.00
              9
                     1.00
                              1.00
                                      1.00
                                                 22
             10
                     0.95
                              1.00
                                       0.98
                                                 21
             11
                     1.00
                              1.00
                                       1.00
                                                 20
                     1.00
                              1.00
                                      1.00
                                                 22
             12
             13
                     1.00
                              0.92
                                       0.96
                                                 12
             14
                                                 20
                     1.00
             15
                     1.00
                              1.00
                                      1.00
                                                 17
             16
                     1.00
                              1.00
                                      1.00
                                                 16
             17
                     1.00
                              1.00
                                       1.00
                                                 19
             18
                     1.00
                              1.00
                                      1.00
                                                 19
             19
                     1.00
                              1.00
                                      1.00
                                                 17
             20
                     1.00
                              1.00
                                      1.00
                                                 15
             21
                     1.00
                              1.00
                                      1.00
                                                 14
       accuracy
                                       1.00
                                                434
                     1.00
                              1.00
                                       1.00
                                                434
       macro avg
    weighted avg
                     1.00
                              1.00
                                       1.00
                                                434
    [[20 0 0 0 0 0 0 0 0 0 0
                                   0
                                      0 0
                                            0
                                             0
                                                 0
                                                   0
                            0
                              0
                                    0
                                       0
      0 0 24 0
                   0 0 0 0 0
                                   0
                                      0
                                        0
                                           0 0
         0 0 23 0
                    0 0 0 0
                                0
                                   0
                                      0
                                        0
                                            0
                                              0
                                                 0
                                                    0
      0
         0
            0
              0
                24
                    0
                      0
                         0
                           0
                              0
                                 0
                                    0
                                      0
                                         0
                                            0
                                               0
                0 27
                      0 0 0 0 0
         0 0 0
                                   0 0 0
                                           0 0
       0
            0 0
                 0
                   0 25 0 0 0 0
                                   0
                                      0 0
                                            0
                                              0
      0
         0
            0
               0
                 0
                   0
                      0 24 0 0
                                0
                                   0
                                      0
                                         0
                                            0
                                              0
                                                 0
                      0 0 15 0
                                0
                                   0 0 0
                                           0 0
      0
                      0 0 0 22 0
         0
            0
               0
                 0
                   0
                                   0 0 0
                                           0 0
      0
         0
            0
               0
                 0
                    0
                      0 0 0 0 21
                                   0 0 0
                                           0 0
                                                0
                                0 20 0 0
                        0 0
                              0
       0
                 0
                      0
                        0
                              0 0
                                   0 22 0
               0
                    0
                           0
                                           0 0
      0
            0
              0
                 0
                   0 0 0 0 0 1 0 0 11 0 0 0 0 0
         0
            0
               0
                 0
                   0
                      0 0 0 0 0 0 0 0 20 0
                 0
                    0
                      0
                        0
                           0
                              0
                                0
                                   0 0 0
                                           0 17
                                                0
            0
              0
                 0
                   0 0 0 0 0 0 0 0 0 0 16
         0
            0 0
                 0
                   0 0 0 0 0
                                   0 0 0 0
                                                0 19 0
                 0
                    0
                      0
                        0
                           0
                              0
                                 0
                                    0
                                      0 0
       0
               0
     Γ 0
         0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 0 01
      [ 0
         0 0 0
                0
                   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14]]
    precision [1.
                        1.
                                  1.
                                            1.
                                            0.95454545 1.
     1.
               1.
                        1.
                                  1.
     1.
               1.
                        1.
                                  1.
                                            1.
               1.
     1.
                        1.
                                  1.
                                           ]
                                                    1.
    f_score [1.
                       1.
                                1.
                                                              1.
                                            0.97674419 1.
               1.
                        1.
                                  1.
```

 ${\tt model_train(DecisionTreeClassifier(random_state=42))}$

```
0.92
                            0.96
                                     0.94
                                                 24
          3
                  1.00
                            1.00
                                     1.00
                                                 23
          4
                                     0.94
                  0.92
                            0.96
                                                 24
          5
                  1.00
                           1.00
                                     1.00
                                                 27
          6
                  0.83
                            0.96
                                     0.89
                                                 25
                                     1.00
          7
                  1.00
                           1.00
                                                 24
          8
                           0.93
                                     0.87
                  0.82
                                                 15
          9
                  1.00
                           1.00
                                     1.00
                                                 22
         10
                  0.80
                            0.95
                                     0.87
                                                 21
         11
                  1.00
                           0.70
                                     0.82
                                                 20
         12
                  1.00
                           1.00
                                     1.00
                                                 22
                  0.62
                            0.83
                                     0.71
         13
                                                 12
                                                 20
         14
                  1.00
                           0.85
                                     0.92
         15
                  1.00
                           1.00
                                     1.00
                                                 17
                  1.00
                            0.88
                                     0.93
                                                 16
                  0.94
         17
                            0.89
                                     0.92
                                                 19
         18
                  0.89
                           0.84
                                     0.86
                                                 19
         19
                  1.00
                           0.88
                                     0.94
                                                 17
         20
                  1.00
                            0.87
                                     0.93
                                                 15
         21
                  0.88
                           1.00
                                     0.93
                                                 14
   accuracy
                                     0.94
                                                434
                  0.94
                            0.93
                                     0.93
                                                434
  macro avg
                           0.94
weighted avg
                  0.94
                                     0.94
                                                434
[[20 0 0 0 0
                0 0 0
                         0
                            0
                              0
                                  0
                                     0
                                       0
                                          0 0
                                                   0 0
 [ 0 17
        0
           0
              0
                 0
                       0
                         0
                            0
                               0
                                  0
                                     0
                                           0
                                              0
                                                 0
                                                   0
                                                       0
                    1
                                        0
     0 23 0
              0
                 0
                    0
                         0
                                  0
                                     0
                                                    0
                       0
                            0
                               1
                                        0
                                           0
                                              0
        0 23
                 0
                    0
                       0
                         0
                            0
                                  0
                                     0
                                        0
  0
     0
        0
           0 23
                0
                    0
                      0
                         0
                            0
                               0
                                  0
                                     0
                                        0
                                           0
                                              0
                                                 0
                                                    0
                                                       1
     0
        0
           0
              0 27
                    0
                      0
                         0
                            0
                               0
                                  0
                                     0
                                        0
                                           0
                                              0
                                                 0
                                                   0
        0
           0
              0
                 0 24
                      0
                         0
                            0
                               0
                                  0
                                     0
                                        0
                                           0
                                              0
              0
                 0
                    0 24
                         0
                            0
                               0
                                  0
                                     0
                                        0
  0
     0
        0
           0
              0
                 0
                    0
                      0 14
                            0
                               0
                                  0
                                     0
                                        0
                                           0
                                              0
                                                 0
                                                   1
  0
     0
        0
           0
              0
                 0
                    0
                      0
                         0 22
                              0
                                  0
                                     0
                                        0
                                           0
                                              0
                                                 0
                                                       0
     0
           0
              0
                 0
                    0
                       0
                         0
                            0
                              20
                                  0
                                     0
                                        0
                                           0
                                              0
                            0
                               3 14
                                     0
     0
           0
              0
                 0
                    3
                      0
                         0
                                        0
                                           0
                                              0
  0
     0
        0
           0
              0
                 0
                    0
                      0
                         0
                            0
                               0
                                  0 22 0
                                           0
                                              0
                                                 0
                                                   0
  0
     0
        0
           0
              0
                 0
                    0
                      0
                         0
                            0
                               1
                                  0
                                     0 10
                                           0
                                              0
                                                 0
                                                   0
        1
           0
              0
                 0
                    0
                      0
                         0
                            0
                               0
                                  0
                                     0
                                       2 17
                                              0
              0
                    0
                            0
                                     0
  0
     0
        0
           0
                 0
                      0
                         0
                               0
                                  0
                                        0
                                          0 17
                                                0
                                                   0
                                                       0
  0
     0
        0
           0
              1
                 0
                    0
                      0
                         0
                            0
                               0
                                  0
                                     0
                                        1
                                           0
                                              0 14
                                                   0
                                                       0
                    0
                      0
                                  0
                         2
                                        0
  0
        0
           0
              0
                 0
                    0
                      0
                         0
                            0
                                  0
                                     0
                                           0
     0
                               0
                                        3
                                              0
                                                 0
                                                   0 16
  0
     0
        0
          a
             1
                0
                   0
                      0
                         0 0
                              0
                                  0 0
                                       0
                                           0 0
                                                0
                                                   0 0 15 0
     0 0 0 0
                0
                   1
                       0
                         1
                            0
                                  0
                                     0 0
                                           0
[000000000
                         0 0 0 0 0
                                           0 0 0 0 0 0 0 14]]
precision [1.
                      1.
                                0.92
                                           1.
                                                      0.92
0.82758621 1.
                      0.82352941 1.
                                           0.8
                                                      0.9444444
           0.625
                      1.
                                1.
                                           1.
0.8888889 1.
                                0.875
                      1.
f_score [1.
                    0.97142857 0.93877551 1.
                                                    0.93877551 1.
0.8888889 1.
                      0.875
                                1.
                                           0.86956522 0.82352941
           0.71428571 0.91891892 1.
                                           0.93333333 0.91891892
0.86486486 0.9375
                      0.92857143 0.93333333]
```

model_train(SVC(kernel = 'rbf'))

accuracy	0.9	930875576036	5866		
,		precision	recall	f1-score	support
	0	1.00	1.00	1.00	20
	1	1.00	1.00	1.00	18
	2	1.00	1.00	1.00	24
	3	1.00	1.00	1.00	23
	4	1.00	1.00	1.00	24
	5	1.00	1.00	1.00	27
	6	1.00	1.00	1.00	25
	7	1.00	1.00	1.00	24
	8	0.94	1.00	0.97	15
	9	1.00	1.00	1.00	22
	10	0.91	1.00	0.95	21
	11	1.00	1.00	1.00	20
	12	1.00	1.00	1.00	22
	13	1.00	0.83	0.91	12
	14	1.00	1.00	1.00	20
	15	1.00	1.00	1.00	17
	16	1.00	1.00	1.00	16
	17	1.00	1.00	1.00	19
	18	1.00	1.00	1.00	19
	19	1.00	1.00	1.00	17
	20	1.00	0.93	0.97	15
	21	1.00	1.00	1.00	14

		accı		-		0.99 0.99							_	0.99 434								
		acro		_			9.99							.99			434					
wei	gŀ	ited	l av	/g		(9.99	9		0.9	99		0	.99			434	1				
[[2	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0]
[0	18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0]
[0	0	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0]
[0	0	0	23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0]
[0	0	0	0	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0]
[0	0	0	0	0	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0]
[0	0	0	0	0	0	25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0]
Ī	0	0	0	0	0	0	0	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0]
[0	0	0	0	0	0	0	0	15	0	0	0	0	0	0	0	0	0	0	0	0	0]
[0	0	0	0	0	0	0	0	0	22	0	0	0	0	0	0	0	0	0	0	0	0]
Ī	0	0	0	0	0	0	0	0	0	0	21	0	0	0	0	0	0	0	0	0	0	0]
Ī	0	0	0	0	0	0	0	0	0	0	0	20	0	0	0	0	0	0	0	0	0	0]
[0	0	0	0	0	0	0	0	0	0	0	0	22	0	0	0	0	0	0	0	0	0]
[0	0	0	0	0	0	0	0	0	0	2	0	0	10	0	0	0	0	0	0	0	0]
[0	0	0	0	0	0	0	0	0	0	0	0	0	0	20	0	0	0	0	0	0	0]
[0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	17	0	0	0	0	0	0]
[0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16	0	0	0	0	0]
[0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	19	0	0	0	0]
Ī	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	19	0	0	0]
[0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	17	0	0]
[0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	14	0]
[0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14]]
pre	eci	isio	n	[1.				1.			:	1.			1				1.			1.
1.				1.				0.9	9375	5	:	1.			0	.91	3043	348	1.			
1.				1.				1.			:	1.			1				1.			
1.				1				1.			:	1.]							
f_s	cc	ore	[:	1.			1.				1.		1. 1. 1						1.			
<u>1</u> . 1.							0.9	9677	7419	94 :	1.		0.95454545 1.									

model_train(SVC(kernel = 'poly'))

acci	accuracy 0.9331797235023042																							
	precision										recall f1-score support						:							
	0 1.00									1.00 1.00						20								
				1			. 00										18							
	2 1.00									0.88 0.93 24														
	3 1.00									1.00 1.00 23														
				4			.96			1.00 0.98 24 0.85 0.92 27														
				5			. 00			0.8						27								
				6			.00			0.92 0.96 25														
				7			.00			1.6				00			24							
				8			.67			0.8				73			15							
				9			.00			1.6				00			22							
			10				.88			1.6				93			21							
			1:				.53			1.6				69			26							
			1				.00			0.9				98			22							
			1				.00			0.7				86			12							
			1				. 00			1.6	90			00			26							
			1				.00			1.6				00			17							
			1				.00			0.8	88			93			16							
			1	7		1	.00)		0.7	4		0.	85			19	9						
			1	8		1	.00)		0.84 0.91						19								
			1	9		6	.94	1		1.6	90		0.	97			17	7						
			2	0		1	.00)		0.8	37		0.	93			15	5						
			2	1		1	.00)		1.6	90		1.	00			14	ļ						
	acc	ur	ac	у									0.	93			434	ļ						
1	nacr	o	av	g		6	.95	,		0.9	3		0.	93			434	ļ						
wei	ghte	d	av	g	0.96					0.93			0.94			434								
[[2	a e) (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	01		
	9 17		0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0]		
-	a e	2	1	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	01		
-	a e			23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0]		
	a e		0	0	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0]		
_	a e) (0	0	0	23	0	0	1	0	0	3	0	0	0	0	0	0	0	0	0	0]		
_	a e		0	0	0		23	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0]		
-	a e		0	0	0	0		24	0	0	0	0	0	0	0	0	0	0	0	0	0	0]		
	a e		0	0	0	0	0	0	12	0	0	3	0	0	0	0	0	0	0	0	0	0]		
	a e		0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0]		
	a e		0	0	0	0	0	0	0	0	21	0	0	0	0	0	0	0	0	0	0	0]		
_	a e		0	0	0	0	0	0	0	0	0	20	0	0	0	0	0	0	0	0	0	0]		
	a e		0	0	0	0	0	0	0	0	0	1	21	0	0	0	0	0	0	0	0	0]		
	9 6		0	0	0	0	0	0	0	0	3	0	0	9	0	0	0	0	0	0	0	0]		
-	a e		0	0	0	0	0	0	0	0	0	0	0		20	0	0	0	0	0	0	0]		
-	9 6		0	0	0	0	0	0	0	0	0	0	0	0	0	17	0	0	0	0	0	0]		
-	o		0	0	1	0	0	0	0	0	0	0	0	0	0	0	14	0	0	1	0	0]		
	9 6		0	0	0	0	0	0	3	0	0	2	0	0	0	0	0	14	0	0	0	0]		
	9 6		0	0	0	0	0	0	0	0	0	3	0	0	0	0	0		16	a	0	0] 0]		
L,			_	Ŭ	-	·	Ü	-	9	J	-		·		J	9	-	9		Ü	Ü	٦		
olah r	6 56	arc	h.	αO	nale	- cc	m/	driv	/e/1	MP	m_	бса	RXI	ואס	ΕH	X.IF	S i i N	17P	077	i11	sΩ	ົງ∨X1		

```
[0000000020000000000000130]
    1. 1.
   precision [1.
                                 1.
0.875
                   0.66666667 1.
                                           0.52631579
    1.
           1.
    1.
           1.
                  1. 1.
                                   1.
                                  ]
            0.94444444 1.
                           1.
   f_score [1. 0.97142857 0.93333333 1.
                                         0.97959184 0.92
    0.95833333 1.
                   0.72727273 1.
                                   0.93333333 0.68965517
print("Enter N K P PH humidity rainfall temparature accordingly")
arr=[float(input()) for i in range(7)]
   Enter N K P PH humidity rainfall temparature accordingly
   23
   45
   56
   4.5
   4.7
   3.6
arr=np.array([arr])
   array([[100., 23., 45., 56., 4.5, 4.7, 3.6]])
x_i=st_x.transform(arr)
x_i = pca.transform(x_i)
x_i
   array([[-17.64039512, 12.63422887, -40.88957981, -27.21390004,
```