TEOREMA DO VALOR INTERNEDIÁRIO GENERALIZADO!!

Sejam
$$f,g: [a,b] \rightarrow ik$$
 continues, derivoiveis em (a,b) , com $g(a) + 0$. Entopo existe $ce(a,b)$ tel que $f(b) - f(a) = f'(c)$
 $g(b) - g(a)$ $g'(c)$

Reb teorema de Rolle, existe cE(a,b) tal que vi(c) = 0.

Aplicação: Regra de L'Hospital para cases 010.
f,g: I→IR continuos numa vizinhança de O e desivável numa vizinhança de O: f(a) = g(o) =0
desirarel ruma vitinhança de 0:
+(w) = g(0) = 0
Se existic $L = \lim_{x \to 0} \frac{f(x)}{g'(x)}$, entao $L = \lim_{x \to 0} \frac{f(x)}{g(x)}$.
Dem: Se x = 0 esta lia t(xs)
Dem: Se xn=0, então lin (lxn) = L (xn+0) g(xn)
posa e intervala [0, xn] (ou [xn,0], xn20)
boco o internopo po) xn7 (on pxn'07 ' xn2)
-) f(xn) - f(0) - f'(cn) cn Lx.
g(xn) - g(0) $g'(cn)$
=) t(xn) = t'(cn) -> L por hipótese. Logo:
=) t(xn) = t'(cn) -> L pos hipótese. Logo: g(xn) g'(cn)
Lin f(kn) = L g(xn)
G(×~)
Essa aplicação só ocerre quando existe
L= li~ f'(x). x=0 g'(x)
۶ ⁻³⁰ والد)

$$\lim_{x \to 0} \frac{(\cos(x+3)^2 \cdot 2(x+3) \cdot 1 - 0)}{L} = \lim_{x \to 0} \cos(x+3)^2 \cdot 2(x+3) = 6\cos(x+3)^2 \cdot 2(x+3)^2 \cdot 2($$

i. Lin
$$\frac{\sin(x+3)^2 - \sin 9}{x} = 60059$$

Example 3)
$$\lim_{x \to 0} \frac{x^{-1}}{x^2}$$

Vomos vec se existe
$$\frac{(e^{x}-1)^{2}}{(x^{2})^{3}} = \lim_{x \to 0} \frac{e^{x}}{2x} = \frac{1}{0} (\hat{x} \exp(\frac{1}{2})^{2})$$

$$\lim_{x\to 0^+} \frac{e^x}{2x} = \infty.$$

Legg lim
$$e^{x}-1=00$$
 e lim $e^{x}-1=-00$, portanto, $x \Rightarrow 0$ $x \Rightarrow 0$ $x \Rightarrow 0$

vonos vec se existe
$$l \sim (x^2)$$
 $1 \rightarrow 0$
 $(e^x-1)^1$

$$k \sim (x)$$
 = $l \sim 2x = 0 \cdot l (existo)$.

Log in
$$x^{\frac{1}{2}} = 0$$
 ($e^{x} - 1$ cresce muito mais $x \rightarrow 0$ ex-1 rapido que $x^{\frac{1}{2}}$).

$$\lim_{x\to\infty} \frac{\ln x}{(x^2)^1} = \lim_{x\to\infty} \frac{1}{x} = \lim_{x\to\infty} \frac{1}{1} \cdot \frac{1}{1} = 0.$$