TABLE1

	_						
Irreversible Flux Loss (%)	-6.5	-4.7	4.0	-3.6	-3.2	-2.7	-3.5
Xirr (x10 ⁻⁷ H/m)	7.5	4.8	3.7	3.2	3.0	2.7	3.3
Br/ρ (x10 ⁻⁶ T⋅m³/g)	0.132	0.139	0.142	0.146	0.143	0.128	0.120
(BH) _{max} (kJ/m³)	75.6	104.8	113.2	115.9	112.0	102.7	79.1
H _c J (KA/m)	345	415	478	496	530	561	553
ā()	0.83	0.87	06.0	0.92	06.0	0.81	9/.0
p (Mg/m³)	6.27	6.26	6.32	6.29	6.30	6.33	6.31
>	0.1	0.2	0.5	1.2	2.5	3.3	3.6
Sample No.	1 (Comp.Ex.)	2 (This Invention)	3 (This Invention)	4 (This Invention)	5 (This Invention)	6 (This Invention)	7 (Comp.Ex.)

3LE2

Irreversible Flux Loss -2.5 -4.2 -2.2 6. 9. -3.4 -3.7 -3.1 8 $\begin{array}{c|c} (BH)_{max} & Br/\rho & \chi_{irr} \\ (kJ/m^3) & (\times 10^{\circ} T \cdot m^3/g) & (\times 10^{-7} H/m) \end{array}$ 2.3 2.5 2.9 2.7 2.1 0.145 0.142 0.142 0.146 0.143 0.144 0.147 100.5 108.8 118.4 92.6 96.2 83.4 88.3 (kA/m) 510 517 563 542 535 551 531 0.92 0.85 0.88 0.78 0.80 0.82 0.84 'nЕ Molding p Temp. (Mg/m³) 5.95 6.48 5.30 5.50 5.80 5.67 6.21 215 220 230 245 260 275 210 Compaction Molding Compaction Compaction Injection Molding Injection Molding Injection Molding Injection Molding Molding Method Molding Molding Kneading Temp. (°C) 200 203 211 216 220 224 230 8 (This Invention) 9 (This Invention) 13 (This Invention) 10 (This Invention) 11 (This Invention) 12 (This Invention) 14 (This Invention) Sample No.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

No.1: Demagnetization Curve

No.2: Straight Line

Having a Gradient of -3.8 x 10⁻⁶H/m in the J-H diagram

No.3: Tangential Line at Intersectioning Point P

No.4: Recoil Curve

No.5: Straight Line

Representing a Gradient of the Recoil Curve