# Kaggle Kobe Bryant Analysis

Analytics Meetup

Norm Zeck



# My goals with the project & this talk

- Project: Educational exercise
  - Experiment: R, visualization, prediction
    - Caret package, XGBoost
  - Data set that would stress predictive algorithms
  - Choose a set that I had domain knowledge
- Talk: Walk through of a sample data science project
  - Process (future discussion?)
  - Value of knowing the domain
  - Use of visualization & analysis
  - Modeling results
  - Caveat code needs refactoring from exploratory mode; did not do "leakage" requirement

Norm Zeck 2 12/10/2017

# Data Science Application Design

Possible Future Discussion

**Problem/Value Proposition** 

Domain, System, Human Factors, & Analytics Experts

Business Knowledge Data Science Knowledge Application
System Design

Java, Python R (for analytics)

Deployment

Operational Application

Data
Preparation &
Visualization

Modeling & Analysis

Evaluation

Analytics Part of the Solution

3

R Plus Other Tools Statistics, modeling, visualization, machine learning, data base

Norm Zeck

12/10/2017

### Importance of domain knowledge



4

# Kaggle Kobe Bryant Shot Selection



Norm Zeck 5 12/10/2017

### CodeBook

Full Set 30,697 samples, 25 Variables Training Set (coded) 25697 samples Test Set (not coded) 5000 samples

| Variable           | Info                                                  | Туре        | Grouping  |
|--------------------|-------------------------------------------------------|-------------|-----------|
| season             | Year span like 2000-01, 2015-16; 20 total Categorical |             | Date      |
| game_date          | Date of the game Date                                 |             | Date      |
| game_event_id      | Numbered event in game                                | Integer     | Game      |
| game_id            | Number assigned to each game                          | Integer     | Game      |
| playoffs           | Regular or playoff game                               | Categorical | Game      |
| minutes_remaining  | Minutes remaining in quarter                          | Integer     | Game Time |
| period             | Period. Typically 1-4, but overtime 5,6,7             | Categorical | Game Time |
| seconds_remaining  | Seconds remaining in quarter                          | Integer     | Game Time |
| shot_id            | Sequential # for each shot                            | Integer     | Index     |
| lat                | X location                                            | Float       | Location  |
| loc_x              | X location (0.1 ft)                                   | Integer     | Location  |
| loc_y              | Y location (0.1 ft)                                   | Integer     | Location  |
| Ion                | Y location                                            | Float       | Location  |
| shot_distance      | Feet from basket, 0 is valid                          | Integer     | Location  |
| shot_zone_area     | Left, right, center6 levels                           | Categorical | Location  |
|                    | 7 levels: Above the Break 3; Backcourt; In The Paint  |             |           |
|                    | (Non-RA - restricted area); Left Corner 3; Right      |             |           |
| shot_zone_basic    | Corner 3; Mid-Range; Restricted Area;                 | Categorical | Location  |
|                    | One of 5 zones: backcourt; 24+; 16-24 ft.; 8 to 16;   |             |           |
| shot_zone_range    | less than 8;                                          | Categorical | Location  |
| shot_made_flag     | Made/miss, this is what to predict                    | Categorical | Outcome   |
|                    | Detail shot type. 57 Levels: Reverse Layup Shot;      |             |           |
| action_type        | Running Jump Shot; Jump Shot; Slam Dunk Shot          | Categorical | Shot type |
|                    | More general shot type, 6 levele: Bank Shot; Dunk;    |             |           |
| combined_shot_type | Hook Shot; Jump Shot; Layup; Tip Shot                 | Categorical | Shot type |
| shot_type          | 2 or 3 point                                          | Categorical | Shot type |
| team_id            | Lakers                                                | Integer     | Team      |
| team_name          | Lakers                                                | Categorical | Team      |
| matchup            | Opponent and home vs away                             | Categorical |           |
| opponent           | Opponent team                                         | Categorical |           |
|                    |                                                       | _           |           |

Norm Zeck 6 12/10/2017

# Spatial view of the data

Basket ball court

### Shot by distance zone



Scale: 1 ~ 0.1 ft

Norm Zeck 8 12/10/2017

# Exploratory visualization of the data

Focus on percent made, number of shots by categorical variable

### Shots by Season, Percent made

2013 Injury

Percent made ranges from 42.3% to 46.8% (4.5% delta) before injury



Norm Zeck 10 12/10/2017

# Shots by Distance





Norm Zeck 11 12/10/2017





Norm Zeck 12 12/10/2017

# Shots by Opponent, Percent Made



Norm Zeck 13 12/10/2017

# Shots by time in game





Norm Zeck 14 12/10/2017

# Shots by time in game

Simple moving average, 10 seconds





Norm Zeck 15 12/10/2017

# Shots by game





Norm Zeck 16 12/10/2017

# Which Variables to Use for Prediction?

Build on learnings from visualization & analysis

# Chosen Variable Set

| Variable                 | Info                                                                             | Turne               | Grouping  | Prediction |
|--------------------------|----------------------------------------------------------------------------------|---------------------|-----------|------------|
| season                   | Year span like 2000-01, 2015-16; 20 total                                        | Type<br>Categorical |           | v          |
| game date                | Date of the game                                                                 | Date                | Date      | N          |
| game_event_id            | Numbered event in game                                                           | Integer             | Game      | N          |
| game_id                  | Number assigned to each game                                                     | Integer             | Game      | v          |
| playoffs                 | Regular or playoff game                                                          | Categorical         | Game      | N          |
| minutes_remaining        | Minutes remaining in quarter                                                     | Integer             | Game Time | N          |
| period                   | Period. Typically 1-4, but overtime 5,6,7                                        | Categorical         | Game Time | N          |
| seconds remaining        | Seconds remaining in quarter                                                     | Integer             | Game Time | N          |
| shot_id                  | Sequential # for each shot                                                       | Integer             | Index     | N          |
| lat                      | X location                                                                       | Float               | Location  | N          |
| loc_x                    | X location (0.1 ft)                                                              | Integer             | Location  | Υ          |
| loc_y                    | Y location (0.1 ft)                                                              | Integer             | Location  | Υ          |
| Ion                      | Y location                                                                       | Float               | Location  | N          |
| shot_distance            | Feet from basket, 0 is valid                                                     | Integer             | Location  | Υ          |
| shot_zone_area           | Left, right, center6 levels                                                      | Categorical         | Location  | Υ          |
|                          | 7 levels: Above the Break 3; Backcourt; In The Paint (Non-RA - restricted        |                     |           |            |
| shot_zone_basic          | area); Left Corner 3; Right Corner 3; Mid-Range; Restricted Area;                | Categorical         | Location  | Υ          |
| shot_zone_range          | shot_zone_range One of 5 zones: backcourt; 24+; 16-24 ft.; 8 to 16; less than 8; |                     | Location  | Υ          |
| shot_made_flag           | shot_made_flag Made/miss, this is what to predict                                |                     | Outcome   | Υ          |
|                          | Detail shot type. 57 Levels: Reverse Layup Shot; Running Jump Shot;              |                     |           |            |
| action_type              | Jump Shot; Slam Dunk Shot                                                        | Categorical         | Shot type | Υ          |
|                          | More general shot type, 6 levele: Bank Shot; Dunk; Hook Shot; Jump Shot;         |                     |           |            |
| combined_shot_type       | Layup; Tip Shot                                                                  | Categorical         | Shot type | N          |
| shot_type                | 2 or 3 point                                                                     | Categorical         | Shot type | Υ          |
| team_id                  | Lakers                                                                           | Integer             | Team      | N          |
| team_name                | Lakers                                                                           | Categorical         | Team      | N          |
| matchup                  | tchup Opponent and home vs away                                                  |                     | Team      | N          |
| opponent                 | Opponent team                                                                    | Categorical         | Team      | N          |
| game_time                | Seconds in the game                                                              | Float               | Game Time | Υ          |
| game_pct                 | Percent made for each game                                                       | Float               | Game      | Υ          |
| shots_made_by_second     | Number of shots made by second in the game                                       | Float               | Game      | Υ          |
| shots_not_made_by_second | Number of shots not made by second in the game                                   | Float               | Game      | Υ          |

Added Variables -

Norm Zeck 18 12/10/2017

# **Predictions** Logistic, Random Forest (Caret), XGBoost, Also tested randomForest

# **Modeling Process**

Norm Zeck



12/10/2017

# Confusion Matrix & Accuracy

|            | Log  | istic | xgbo | oost | random<br>(car |      | randon | nForest |
|------------|------|-------|------|------|----------------|------|--------|---------|
|            | 0    | 1     | 0    | 1    | 0              | 1    | 0      | 1       |
| 0          | 2875 | 666   | 2896 | 645  | 2921           | 620  | 3151   | 389     |
| 1          | 1171 | 1690  | 1081 | 1780 | 1206           | 1655 | 2038   | 816     |
| Accuracy   | 71.  | 3%    | 73.  | 0%   | 71.            | 5%   | 62.    | 0%      |
| Time (sec) | 2.   | 39    | 1.3  | 14   | 98             | 13   | 7.     | 14      |

Accuracy = (TP + TN)/(TP + TN + FP + FN)

|        |   | y Predicted    |                |  |
|--------|---|----------------|----------------|--|
|        |   | 0              | 1              |  |
| у      | 0 | True Negative  | False Positive |  |
| Actual | 1 | False Negative | True Positive  |  |
|        |   |                |                |  |

9813 seconds = 2.7 hrs

# Variable Importance

### Logistic Regression

| 1 |                                       | Estimate  | Std. Error | z value | Pr(> z ) |     |
|---|---------------------------------------|-----------|------------|---------|----------|-----|
|   | (Intercept)                           | -1.08E+01 | 1.44E+02   | -0.075  |          |     |
|   | action_typeDriving.Jump.shot          | -2.95E+00 | 7.35E-01   | -4.02   |          |     |
|   | action_typeFadeaway.Jump.Shot         | -2.30E+00 | 5.50E-01   | -4.178  |          |     |
|   | action_typeHook.Shot                  | -3.20E+00 | 6.18E-01   | -5.183  |          |     |
|   | action_typeJump.Shot                  | -3.46E+00 | 5.44E-01   | -6.374  | 1.85E-10 |     |
|   | action_typeLayup.Shot                 | -3.11E+00 | 5.24E-01   | -5.927  | 3.09E-09 | *** |
|   | action_typeReverse.Layup.Shot         | -2.39E+00 | 5.39E-01   | -4.438  | 9.07E-06 | *** |
|   | action_typeStep.Back.Jump.shot        | -2.06E+00 | 5.95E-01   | -3.466  | 0.000528 | *** |
|   | action_typeTip.Shot                   | -3.33E+00 | 5.62E-01   | -5.927  | 3.09E-09 |     |
|   | action_typeTurnaround.Fadeaway.shot   | -2.01E+00 | 5.60E-01   | -3.589  | 0.000332 | *** |
|   | action_typeTurnaround.Jump.Shot       | -2.27E+00 | 5.49E-01   | -4.124  | 3.72E-05 | *** |
|   | shots_notmade_by_second               | -7.34E-02 | 3.13E-03   | -23.422 | < 2e-16  | *** |
|   | shots_made_by_second                  | 2.31E-01  | 7.76E-03   | 29.753  | < 2e-16  | *** |
|   | game_pct                              | 4.25E-02  | 1.54E-03   | 27.687  | < 2e-16  | *** |
|   | shot_distance                         | 2.36E-02  | 8.89E-03   | 2.659   | 0.007845 | **  |
|   | action_typeAlley.Oop.Layup.shot       | -1.78E+00 | 6.12E-01   | -2.903  | 0.003692 | **  |
|   | action_typeDriving.Hook.Shot          | -2.12E+00 | 8.18E-01   | -2.59   | 0.009611 | **  |
|   | action_typeDriving.Layup.Shot         | -1.61E+00 | 5.26E-01   | -3.056  | 0.00224  | **  |
|   | action_typeDunk.Shot                  | -1.48E+00 | 5.56E-01   | -2.65   |          | **  |
|   | action_typeFinger.Roll.Shot           | -2.31E+00 | 7.19E-01   | -3.213  | 0.001312 | **  |
|   | action_typePullup.Bank.shot           | -2.28E+00 | 8.57E-01   | -2.655  | 0.007924 | **  |
|   | action_typePullup.Jump.shot           | -1.62E+00 | 5.62E-01   | -2.877  | 0.004018 |     |
|   | action_typeRunning.Jump.Shot          | -1.43E+00 | 5.52E-01   | -2.594  | 0.009478 | **  |
|   | action_typeRunning.Layup.Shot         | -1.84E+00 | 6.23E-01   | -2.958  | 0.003098 | **  |
|   | action_typeTurnaround.Hook.Shot       | -2.51E+00 | 9.64E-01   | -2.6    | 0.009321 | **  |
|   | shot_zone_basicLeft Corner 3          | 4.00E-01  | 1.99E-01   | 2.011   | 0.044353 | •   |
|   | action_typeDriving.Finger.Roll.Shot   | -1.27E+00 | 6.35E-01   | -2.001  | 0.045363 | •   |
|   | action_typeDriving.Reverse.Layup.Shot | -1.42E+00 | 6.00E-01   | -2.367  | 0.017939 | •   |
|   | action_typeFinger.Roll.Layup.Shot     | -1.62E+00 | 8.00E-01   | -2.024  | 0.042991 | •   |
|   | action_typeFloating.Jump.shot         | -1.49E+00 | 6.07E-01   | -2.445  | 0.014487 | •   |
| L | action_typeJump.Bank.Shot             | -1.30E+00 | 5.71E-01   | -2.279  | 0.022687 | •   |
|   | action_typePutback.Dunk.Shot          | -3.16E+00 | 1.53E+00   | -2.066  | 0.038864 | •   |
|   | action_typeJump.Hook.Shot             | -1.56E+00 | 8.60E-01   | -1.809  | 0.070414 |     |
|   | action_typePutback.Layup.Shot         | -1.91E+00 | 1.03E+00   | -1.862  | 0.062568 |     |
|   | action_typeTurnaround.Bank.shot       | -1.26E+00 | 6.69E-01   | -1.88   | 0.060097 |     |
|   |                                       |           |            |         |          |     |

Signif. codes: 0 \\*\*\*' 0.001 \\*\*' 0.01 \\*' 0.05 \.' 0.1 \ ' 1

### XGBoost

|    | Feature                 | Gain    | Cover   | Frequency |
|----|-------------------------|---------|---------|-----------|
| 1  | action_type             | 0.28415 | 0.20674 | 0.08803   |
| 2  | game_pct                | 0.16535 | 0.17451 | 0.15479   |
| 3  | shots_made_by_second    | 0.16297 | 0.19144 | 0.14528   |
| 4  | shots_notmade_by_second | 0.15386 | 0.17723 | 0.10840   |
| 5  | shot_distance           | 0.05356 | 0.05951 | 0.06789   |
| 6  | loc_y                   | 0.04793 | 0.06090 | 0.10840   |
| 7  | game_time               | 0.04733 | 0.04359 | 0.13193   |
| 8  | loc_x                   | 0.03919 | 0.04697 | 0.08984   |
| 9  | season                  | 0.02908 | 0.02497 | 0.07422   |
| 10 | shot_zone_basic         | 0.00580 | 0.00570 | 0.01199   |
| 11 | shot_zone_range         | 0.00536 | 0.00416 | 0.00498   |
| 12 | shot_zone_area          | 0.00499 | 0.00349 | 0.01313   |
| 13 | shot_type               | 0.00041 | 0.00080 | 0.00113   |
|    |                         |         |         |           |

### Random Forest (Caret)

|                              | MeanDecreaseAccuracy |
|------------------------------|----------------------|
| shots_notmade_by_second      | 26.27371269          |
| shots_made_by_second         | 24.3478625           |
| action_typeJump.Shot         | 23.96860105          |
| action_typeLayup.Shot        | 22.40470404          |
| game_pct                     | 22.11663757          |
| loc_x                        | 12.53466977          |
| action_typeSlam.Dunk.Shot    | 11.86498281          |
| loc_y                        | 11.47755651          |
| shot_distance                | 10.58029387          |
| action_typeDriving.Dunk.Shot | 10.36861343          |
| action_typePullup.Jump.shot  | 7.372344572          |
| action_typeRunning.Jump.Shot | 6.258553183          |
| action_typeTip.Shot          | 5.602478132          |

# Model support and comparison

### One-Hot Encoding; ROC (Receiver Operating Characteristic)

| Var1  | Var2 | Outcome |
|-------|------|---------|
| 1.20  | Cat1 | Out1    |
| 1.30  | Cat2 | Out2    |
| 5.00  | Cat1 | Out3    |
| 10.40 | Cat4 | Out4    |

| Var1  | Cat1 | Cat2 | Cat4 | Outcome |
|-------|------|------|------|---------|
| 1.20  | 1    | 0    | 0    | Out1    |
| 1.30  | 0    | 1    | 0    | Out2    |
| 5.00  | 1    | 0    | 0    | Out3    |
| 10.40 | 0    | 0    | 1    | Out4    |



Norm Zeck 23 12/10/2017

### XGBoost Parameter Tuning



Eta=0.35, ltr=300 Accuracy=66.2%

0.517244



Eta=0.35, ltr=13 Accuracy=72.5%

xg\_error[xg\_error\$test\_logloss == min(xg\_error\$test\_logloss),]
 iter train\_logloss test\_logloss

0.541837

Norm Zeck

13

13

# True Positive & Negative



# False Positive & Negative



# Summary & Learning

- Data Science Project
  - Visualization and analysis yielded new variables that also were high importance in the models
  - Generating many slices of the data helped in exploration process
    - Minus lots of variables and data frames
- ightharpoonup R
  - New use of "intersection". Useful for categorical/factor variables.
  - Categories/Factors are stored independent of changes to the samples
    - randomForest only allowed 53 categories per factor variable. action\_type has 57.
    - Using a new as.factor() did not work to reset the factors
    - ► Had to use as.character(), then as.factor() to reset the list

Norm Zeck 27 12/10/2017

# Summary & Learning

### Models

- Given information contained in the independent variables, models topped out at ~70%
  - Models needed more information that directed successful shots (True Positive)
  - Since his percent made was from 42% to 47% there is a small real bias toward missing a shot. Models do better at predicting missed shots.
- New use of xgboost. Impressive both in performance and accuracy, tuning
- Surprised that logistic regression did as well compared to decision trees.
- Caret random forest worked well. Used in the past.
  - Slow to build a model, but often that is ok as prediction is fast
- randomForest disappointed, fast, but low accuracy...back burner.
- Tuning in all cases was less obvious for many parameters.

Norm Zeck 28 12/10/2017



### Code and Data File Index

| kobe_xgboost.R   | XGBoost Model                                            |  |
|------------------|----------------------------------------------------------|--|
| kobeinit.R       | Initialization and data maniplulation                    |  |
| kobe_explore.R   | Visualization of data set                                |  |
| kobe_logistic.R  | Logistic Model                                           |  |
| kobe_caretrf.R   | Caret Random Forest Model                                |  |
| kobe_func.R      | Utility functions                                        |  |
| kobeinfo-v2.xlsx | Excel file with info on the data set and model results   |  |
| bbcourt.jpg      | Picture of basketball court with dimensions              |  |
| KobeBryant.txt   | Some info on the data set from kaggle                    |  |
|                  | Data set - you need to get this from kaggle. Sign up is  |  |
|                  | free, search for "Kobe" on their site will get you to th |  |
| data.csv         | page.                                                    |  |

- You will have to change the "set working directory" in kobeinit.R to the location of your files.
- There is a function call commented out in kobeinit.R, check\_pkgs(), that will check and install packages. It does ask first. You can source kobe\_func.R first, then run check\_pkgs() before getting started.
- Also, I have only run this on the windows version of R. Other than the directory name in setwd, should work under Linux.

### Operation:

- 1. Source kobeinit.R to initialize the data frames
- 2. You can then source kobe\_explore.R to generate all plots or select a set to run (ctrl+return). I usually use the x11() device, but you can also use the PDF code.
- 3. And/or you can run any of the models. Some of the data and plots are sent to files for future reference





# Shot by distance zone made, not made



### Shots by "shot zone basic"



### Shots Not Made by Shot Zone Basic



# Shots by Distance, Percent Made



12/10/2017

35





Norm Zeck 36 12/10/2017

# Action\_type at 0 distance





Norm Zeck 37 12/10/2017

# XGBoost importance plot



12/10/2017

38

# Game\_event\_id



Game\_event\_id

Norm Zeck 39 12/10/2017

### **Useful links**

- xgboost
  - Paper: XGBoost: A Scalable Tree Boosting System
    - https://arxiv.org/pdf/1603.02754.pdf
  - Video
    - https://youtu.be/ufHo8vbk6g4
      - detailed but a bit slow, more on parameters

Norm Zeck 40 12/10/2017

### R Links

- Google/Stack overflow search (find most of my questions answered here)
- https://www.r-bloggers.com/
  - R specific info/blogs
- https://shiny.rstudio.com/gallery/
  - Examples of a web server "shiny" tool specific to R
- http://www.r-graph-gallery.com/all-graphs/
  - Example Graphs/visualization
- https://www.udemy.com/machinelearning/learn/v4/overview
- Kirill Eremenko instructor. Python and R examples for each topic
- https://www.coursera.org/specializations/jhu-data-science
  - Great data science series. Jeff Leek in particular was great.
  - www.coursera.org/jhu (free version)

Norm Zeck 41 12/10/2017