Seminário de Métodos Probabilísticos – Subconjuntos Pseudo-aleatórios do \mathbb{Z}_n –

Jair Donadelli Júnior *

^{*}Referência: F.R.K. Chung and R.L. Graham, Quasi-Radom Subsets of \mathbb{Z}_n , J. Combin. Theory Ser. A (1992).

0 Aquecimento: Grafos pseudo-aleatórios

Escrevemos $\mathcal{G}(n)$ para a família dos grafos de ordem n e G_n para um grafo arbitrário de ordem n. Em 1989, Chung, Graham e Wilson [2] introduziram uma classe de propriedades de grafos que são equivalentes e satisfeitas por grafos aleatórios quase-sempre, isto é, propriedades P tais que

$$\Pr[G_n \in \mathcal{G}(n) : G_n \text{ satisfaz } P] \to 1 \text{ quando } n \to \infty.$$

No Teorema 1 abaixo, listamos essa classe de equivalência de propriedades que são satisfeitas para grafos aleatórios quase sempre, para probabilidade de arestas 1/2. Resultados análogos podem ser provados para probabilidade de arestas p, para todo 0 fixo, basicamente pelos mesmos argumentos.

Um grafo que satisfaz alguma (portanto, todas) dessas propriedades é dito grafo pseudo-aleatório.

No que segue adotamos as seguintes notações, $N_{G_n}^*(H)$ e $N_{G_n}(H)$ denotam o número de cópias induzidas e não necessariamente induzidas de H em G_n , respectivamente. Denotamos por $\Gamma_{G_n}(x)$ o conjunto dos vértices adjacentes a x em G_n . Usamos C^t para denotar o circuito com t arestas e $A = A(G_n) = (a_{x,y})_{x,y\in V(G_n)}$ é a matriz de adjacências de G_n . Lembramos que A é uma matriz real simétrica, portanto, admite autovalores reais.

Teorema 1 São equivalentes:

 $P_1(s)$: Para todo grafo H de ordem $s, s \ge 4$ inteiro,

$$N_{G_n}^*(H) = (1 + o(1))n^s 2^{-\binom{s}{2}}.$$

 $\mathbf{P_2}(t)$: Para $t \geq 4$ inteiro par,

$$e(G_n) \ge (1 + o(1)) \left(\frac{n}{2}\right)^2 \qquad e \qquad N_{G_n}(C^t) \le (1 + o(1)) \left(\frac{n}{2}\right)^t.$$

P₃: Considere uma ordenação $|\lambda_1| \ge \cdots \ge |\lambda_n|$ dos autovalores λ_i de $A(G_n)$. Então,

$$e(G_n) \ge (1 + o(1)) \left(\frac{n}{2}\right)^2, \qquad \lambda_1 = (1 + o(1)) \frac{n}{2} \qquad e \qquad \lambda_2 = o(n).$$

 $\mathbf{P_4}$: Para cada $U \subseteq V(G_n)$, temos

$$e(U) = \frac{1}{4}|U|^2 + o(n^2).$$

 $\mathbf{P_5}$: Para cada $U \subseteq V(G_n)$, com $|U| = \lfloor n/2 \rfloor$, temos

$$e(U) = \left(\frac{1}{16} + o(1)\right) n^2.$$

P₆: Para todo $x, y \in V(G_n)$, se $S(x,y) = V(G_n) \setminus (\Gamma(x) \triangle \Gamma(y))$, então

$$\sum_{x,y \in V} \left| |S(x,y)| - \frac{n}{2} \right| = o(n^3).$$

 $\mathbf{P_7}$: Para todos $x, y \in V(G_n)$

$$\sum_{x,y\in V} \left| |\Gamma(x)\cap\Gamma(y)| - \frac{n}{4} \right| = o(n^3).$$

Note que $\mathbf{P_2}$ vale somente para circuitos pares. O seguinte exemplo mostra a diferença, neste contexto, entre circuitos pares e circuitos ímpares. Sejam G um grafo com 4n vértices e V_1, V_2, V_3, V_4 subconjuntos disjuntos de V(G), cada um de tamanho n. Em V_1 e em V_2 colocamos todas arestas, entre V_3 e V_4 colocamos todas as aresta e entre $V_1 \cup V_2$ e $V_3 \cup V_4$ colocamos as arestas com probabilidade 1/2. Esse grafo não é pseudo-aleatório, entretanto, valem $\mathbf{P_1}(3)$ e $\mathbf{P_2}(2t+1)$ para todo t fixo.

O leitor interessado pode encontrar uma dezena de exemplos de grafos pseudo-aleatórios em Thomason [4]. Vejamos um deles, mas antes do exemplo de grafo pseudo-aleatório, vejamos algumas notações e alguns resultados básicos de álgebra. Dizemos que um inteiro a é um $resíduo\ quadrático\ módulo\ um\ primo\ p\geq 3$ se p não divide a e

$$a \equiv x^2 \mod p$$

para algum inteiro x. O símbolo de Legendre, (\cdot/p) , é definido da seguinte forma: se p divide a, então (a/p) = 0, senão

$$(a/p) = \begin{cases} +1 & \text{se } a \text{ \'e res\'iduo quadr\'atico de } p, \\ -1 & \text{se } a \text{ n\~ao \'e res\'iduo quadr\'atico de } p. \end{cases}$$

Os seguintes resultados são teoremas básicos de álgebra.

(a) Metade dos inteiros a tais que $1 \le a \le p-1$ são resíduos quadráticos de p.

- (b) Se d divide p-1, então $x^d \equiv 1 \mod p$ tem exatamente d soluções.
- (c) Para todo primo p vale $a^p \equiv a \mod p$.

Desses três resultados, temos que o conjunto dos resíduos quadráticos de p é igual ao conjunto das soluções de

$$x^{\frac{p-1}{2}} \equiv 1 \mod p.$$

Portanto, se p não divide a, vale que

$$(a/p) \equiv a^{\frac{p-1}{2}} \mod p, \tag{1}$$

e, se p também não divide b, temos que

$$(a/p)(b/p) \equiv a^{\frac{p-1}{2}}b^{\frac{p-1}{2}} = (ab)^{\frac{p-1}{2}} \equiv (ab/p).$$
 (2)

O grafo de Paley, Q_p , é um dos exemplos de grafos pseudo-aleatórios mais conhecidos e usados. Ele é definido para todo primo $p \equiv 1 \mod 4$ (existem infinitos primos dessa forma!) pondo $V(Q_p) = \mathbb{Z}_p$, o corpo finito de ordem p, e as arestas são dadas por $E(Q_p) = \{\{i,j\}: (i-j/p) = 1\}$. Note que da escolha de p temos, por (1), que $(-1/p) = (-1)^{(p-1)/2} = 1$ e isso quer dizer que $\{i,j\} \in E(Q_p)$ está bem definido pois

$$(i-j/p) = 1 \Leftrightarrow (i-j/p)(-1/p) = 1 \stackrel{(2)}{\Leftrightarrow} (j-i/p) = 1.$$

Agora, observe que $k \in V(Q_p)$ é adjacente a $i, j \in V(Q_p)$ distintos, ou não-adjacente a ambos se, e somente se, $\frac{k-i}{k-j}$ é um resíduo quadrático de p. Mas, para quaisquer um dos 1/2(p-1)-1 resíduos quadráticos a, de p, diferente de 1, existe um único k tal que

$$\frac{k-i}{k-j} = 1 + \frac{j-i}{k-j} = a.$$

Assim, S(i, j) = 1/2(p-3), portanto, $\mathbf{P_6}$ vale.

Terminamos observando que Q_p difere do grafo aleatório $G_{p,1/2}$ no seguinte: S.W. Graham e C. Ringrose [3] provaram que o tamanho do clique máximo de Q_p , que denotamos $\omega(Q_p)$, é tão grande quanto $\log p \log \log \log p$ para infinitos valores de p, enquanto que o valor esperado de $\omega(G_{p,1/2})$ é $(1+o(1))\log p$ (veja Bollobás [1]).

1 Pré-requisitos

O primeiro pré-requisito que veremos é a desigualdade de Cauchy-Schwarz.

Proposição 1 Sejam d_1, \ldots, d_n reais. Então para todo inteiro não-negativo m < n

$$\sum_{i=1}^{n} d_i^2 \ge \frac{1}{n} \left(\sum_{i=1}^{n} d_i \right)^2 + \frac{mn}{n-m} \left(\frac{1}{m} \sum_{i=1}^{m} d_i - \frac{1}{n} \sum_{i=1}^{n} d_i \right)^2.$$
 (3)

Em particular, se

$$\frac{1}{m} \sum_{i=1}^{m} d_i = \alpha \frac{1}{n} \sum_{i=1}^{n} d_i,$$

 $ent ilde{a}o$

$$\sum_{i=1}^{n} d_i^2 \ge \frac{1}{n} \left(1 + (\alpha - 1)^2 \frac{m}{n - m} \right) \left(\sum_{i=1}^{n} d_i \right)^2. \tag{4}$$

Demonstração. Ponha $S_n = \sum_{i=1}^n d_i$ e $Q_n = \sum_{i=1}^n d_i^2$. Então

$$0 \le \sum_{i=1}^{n} \left(d_i - \frac{S_n}{n} \right)^2 = \sum_{i=1}^{n} \left(d_i^2 - 2d_i \frac{S_n}{n} + \frac{S_n^2}{n^2} \right) = Q_n - \frac{S_n^2}{n}, \quad (5)$$

portanto,

$$Q_n - Q_m = \sum_{i=m+1}^n d_i^2 \ge \frac{1}{n-m} \left(\sum_{i=m+1}^n d_i \right)^2 = \frac{(S_n - S_m)^2}{n-m}.$$

Então

$$Q_n = Q_m + (Q_n - Q_m) \ge \frac{S_m^2}{m} + \frac{(S_n - S_m)^2}{n - m}$$
$$= \frac{1}{n}S_n^2 + \frac{nm}{n - m} \left(\frac{S_n}{n} - \frac{S_m}{m}\right)^2.$$

e demonstramos (3). Agora, provar (4) é fácil. Observe que (5) é a desigualdade usual de Cauchy-Schwarz. QED

1.1 Notação

Denotamos por \mathbb{Z}_n o anel dos inteiros módulo n. Se S e T são subconjuntos do \mathbb{Z}_n então pomos |S| = s e |T| = t.

Definimos a função característica em $S \subseteq \mathbb{Z}_n$ por

$$\chi_S(x) = \begin{cases} 1, & x \in S \\ 0, & x \notin S. \end{cases}$$

Para todos $u, v \in \mathbb{Z}_n$ vamos escrever u+v para $u+v \pmod{n}$. Com isso, definimos $S+x=\{j+x\colon j\in S\}$.

Quase todo $x \in X$ significa todos elementos de X exceto o(|X|) deles, ou seja, a menos de um subconjunto de m = m(|X|) elementos com $m/|X| \to 0$ quando $|X| \to \infty$.

2 Propriedades pseudo-aleatórias do \mathbb{Z}_n

Vamos definir propriedades de subconjuntos do \mathbb{Z}_n que provaremos serem equivalentes e que são facilmentes provadas serem satisfeitas para subconjuntos aleatórios do \mathbb{Z}_n .

WT: Para quase todo $x \in \mathbb{Z}_n$

$$|S \cap (S+x)| = \frac{s^2}{n} + o(n).$$

ST: Para todo $T \subseteq \mathbb{Z}_n$, onde |T| = t, e para quase todo $x \in \mathbb{Z}_n$

$$|S \cap (T+x)| = \frac{st}{n} + o(n).$$

 $\mathbf{Q}(\mathbf{k})$: Para quase todos $u_1, \ldots, u_k \in \mathbb{Z}_n$

$$\sum_{x \in \mathbb{Z}_n} \prod_{i=1}^k \chi_S(x + u_i) = \frac{s^k}{n^{k-1}} + o(n).$$

 $\mathbf{Q}(\mathbf{2})$: Para quase todos $u_1, u_2 \in \mathbb{Z}_n$

$$\sum_{x \in \mathbb{Z}_n} \chi_S(x + u_1) \chi_S(x + u_2) = \frac{s^2}{n} + o(n).$$

 $\mathbf{R}(\mathbf{2})$: Para quase todo $x \in \mathbb{Z}_n$

$$\sum_{u_1+u_2=x} \chi_S(u_1)\chi_S(u_2) = \frac{s^2}{n} + o(n).$$

 $\mathbf{R}(\mathbf{k})$: Para quase todo $x \in \mathbb{Z}_n$

$$\sum_{u_1 + \dots + u_k = x} \prod_{i=1}^k \chi_S(u_i) = \frac{s^k}{n} + o(n^{k-1}).$$

EXP: Para todo $0 \neq j \in \mathbb{Z}_n$

$$\sum_{x \in \mathbb{Z}_n} \chi_S(x) \exp\left(\frac{2\pi i j x}{n}\right) = o(n).$$

Um subconjunto S do \mathbb{Z}_n que satisfaz alguma (e, portanto, todas) dessas propriedades é dito um subconjunto pseudo-aleatório do \mathbb{Z}_n . Vamos provar a equivalência dessas propriedades em duas etapas.

Lema 1

$$\mathbf{WT} \Rightarrow \mathbf{ST} \Rightarrow \mathbf{Q}(\mathbf{k}) \Rightarrow \mathbf{Q}(\mathbf{2}) \Rightarrow \mathbf{WT}.$$

Lema 2

$$ST \Rightarrow R(2) \Rightarrow R(k) \Rightarrow EXP \Rightarrow ST$$
.

2.1 Conexão com grafos pseudo-aleatórios

As propriedades pseudo-aleatórias acima têm conexão com grafos pseudo aleatórios conforme descrevemos abaixo.

Graph: Para $S \subseteq \mathbb{Z}_n$ definimos $G_S = (\mathbb{Z}_n, E)$ por $E = \{\{i, j\} : i + j \in S\}$. G_S é pseudo-aleatório.

C(2t):

$$\sum_{x_1,\ldots,x_{2t}} \chi_S(x_1+x_2)\chi_S(x_2+x_3)\cdots\chi_S(x_{2t-1}+x_{2t})\chi(x_{2t}+x_1) = s^{2t} + o(n^{2t}).$$

Density: Para todo $T \subseteq \mathbb{Z}_n$

$$\sum_{x,y} \chi_T(x) \chi_T(y) \chi_S(x+y) = \frac{st^2}{n} + o(n^2).$$

E temos o seguinte lema.

Lema 3

$$C(2t) \Leftrightarrow Graph \Leftrightarrow Density \Leftrightarrow Q(2)$$
.

2.2 Demonstrações do Lema 1 e Lema 2

 $\mathbf{WT} \Rightarrow \mathbf{ST}$: Dado $a \in \mathbb{Z}_n$ temos por \mathbf{WT} que $|(S-a) \cap (S-b)| = s^2/n + o(n)$. Então, temos

$$\sum_{a \in T} \sum_{b \in T} |(S - a) \cap (S - b)| =$$

$$\sum_{a \in T} \sum_{b \in T} \sum_{x \in \mathbb{Z}_n} \chi_S(x - a) \chi_S(x - b) =$$

$$\sum_{a \in \mathbb{Z}_n} \sum_{\mathbb{Z}_n \in T} \sum_{x \in \mathbb{Z}_n} \chi_S(x - a) \chi_S(x - b) \chi_T(a) \chi_T(b) =$$

$$\sum_{x \in \mathbb{Z}_n} \left(\sum_{c \in \mathbb{Z}_n} \chi_S(x - c) \chi_T(c) \right)^2 =$$

$$\sum_{x \in \mathbb{Z}_n} |(S - x) \cap T|^2.$$

Por outro lado,

$$\sum_{a \in T} \sum_{b \in T} |(S - a) \cap (S - b)| \le$$

$$\sum_{a \in T} \left(\frac{s^2}{n} + o(n)\right) t + no(n) =$$

$$\left(\frac{s^2}{n} + o(n)\right) t^2 + to(n^2) =$$

$$\frac{s^2 t^2}{n} + o(n^3).$$

Portanto,

$$\sum_{x \in \mathbb{Z}_n} |(S - x) \cap T|^2 = \frac{s^2 t^2}{n} + o(n^3).$$
 (6)

Dado $\varepsilon > 0$ ponha

$$M_{\varepsilon} = \left\{ x \in \mathbb{Z}_n \colon \left| |(S - x) \cap T| - \frac{st}{n} \right| \ge \varepsilon n \right\},$$

e defina M_{ε}^+ como os pontos $x \in M_{\varepsilon}$ tais que $|(S-x) \cap T| \ge st/n + \varepsilon n$ e defina M_{ε}^- de forma análoga. Devemos mostrar que $|M_{\varepsilon}| = o(n)$.

Suponha que para algum ε existe δ tal que $|M_{\varepsilon}| > 2\delta n$. Assim, vamos supor que $m = |M_{\varepsilon}^+| > \delta n$ (caso contrário, $|M_{\varepsilon}^-| > \delta n$ e o argumento é análogo).

Na desigualdade de Cauchy-Schwarz (3) pomos

$$\Delta = \frac{1}{m} \sum_{i=1}^{m} d_i - \frac{1}{n} \sum_{i=1}^{n} d_i.$$
 (7)

Note que $\sum_{x} |(S-x) \cap T| = st$ então em (3), usando (6), ficamos com

$$\frac{s^2t^2}{n} + o(n^3) \ge \frac{s^2t^2}{n} + \frac{\delta n}{1 - \delta}\Delta^2,$$

portanto, $\Delta = o(n)$. Agora,

$$\Delta \ge \frac{1}{m} \left(\frac{st}{n} + \varepsilon n \right) m - \frac{st}{n} = \varepsilon n,$$

uma contradição.

QED

 $\mathbf{ST} \Rightarrow \mathbf{Q}(\mathbf{k})$: Provaremos por indução em k. Para k=2 temos

$$\sum_{x \in \mathbb{Z}_r} \chi_S(x + u_1) \chi_S(x + u_2) = |(S - u_1) \cap (S - u_2)| = \frac{s^2}{n} + o(n).$$

Sejam $u_1, \ldots, u_k \in \mathbb{Z}_n$, para $k \geq 3$. Então,

$$T = \bigcap_{i=1}^{k-1} (S - u_i) \stackrel{h.i.}{\Rightarrow} |T| = \frac{s^{k-1}}{n^{k-2}} + o(n).$$

Portanto,

$$\left| \bigcap_{i=1}^{k} (S - u_i) \right| = |T \cap (S - u_k)| = \frac{s(s^{k-1}/n^{k-2} + o(n))}{n} + o(n) = \frac{s^k}{n^{k-1}} + o(n).$$

QED

 $\mathbf{Q}(\mathbf{k}) \Rightarrow \mathbf{Q}(\mathbf{2})$: De $\mathbf{Q}(\mathbf{k})$ temos que

$$\sum_{u_1,\dots,u_k} \left(\sum_x \prod_i \chi(x+u_i) \right)^2 = n^k \left(\frac{s^k}{n^{k-1}} + o(n) \right)^2 + o(n^k) n^2 = \frac{s^k}{n^{k-2}} + o(n^{k+2}),$$

portanto,

$$\sum_{u_1, u_2} \left(\sum_{x} \chi(x + u_1) \chi(x + u_2) \right)^2 \le s^4 + o(n^2),$$

pois

$$\sum_{u_1,\dots,u_k} \left(\sum_{x} \chi(x+u_1) \cdots \chi(x+u_k) \right)^2 \ge$$

$$\sum_{u_1,u_2} \frac{1}{n^{k-2}} \left(\sum_{u_3,\dots,u_k} \sum_{x} \chi(x+u_1) \cdots \chi(x+u_k) \right)^2 =$$

$$\frac{1}{n^{k-2}} \sum_{u_1,u_2} \left(s^{k-2} \sum_{x} \chi(x+u_1) \chi(x+u_2) \right)^2.$$

Por outro lado,

$$\sum_{u_1, u_2} \sum_{x} \chi(x + u_1) \chi(x + u_2) = \sum_{x} \left(\sum_{u_1} \chi(x + u_1) \right) \left(\sum_{u_2} \chi(x + u_2) \right) = s^2 n.$$

Agora, vamos usar a desigualdade de Cauchy-Schwarz (3). Se Δ é como em (7), para todo $1 \leq m \leq n-1$ temos

$$s^4 + o(n^4) \ge \frac{1}{n}(s^2n)^2 + \frac{m^2n^2}{n^2 - m^2}$$

ou seja,

$$\frac{m^2 n^2}{n^2 - m^2} \Delta^2 = o(n^4). \tag{8}$$

Definimos os conjuntos $M_{\varepsilon} = \{u_1, u_2 \in \mathbb{Z}_n : |\sum_x \chi(x + u_1)\chi(x + u_2) - s^2/n| \ge \varepsilon n\}$

 \mathbf{e}

$$M_{\varepsilon}^{+} = \left\{ u_1, u_2 \in \mathbb{Z}_n \colon \sum_{x} \chi(x + u_1) \chi(x + u_2) \ge s^2/n + \varepsilon n \right\}$$

Queremos provar que para todo $\varepsilon > 0$ e para todo $\delta > 0$ vale que $|M_{\varepsilon}| \leq \delta n$, para todo $n \geq n_0(\varepsilon, \delta)$. Suponhamos que não e que $|M_{\varepsilon}^+| > \delta n/2$. Se m é a cardinalidade de M_{ε}^+ então

$$\frac{m^2n^2}{n^2-m^2}\Delta^2 \ge \frac{\delta^2n^4/4}{n^2}(\varepsilon n)^2 = \left(\frac{\delta\varepsilon}{2}\right)^2n^4,$$

que contradiz (8).

QED

 $\mathbf{Q}(\mathbf{2}) \Rightarrow \mathbf{WT}$: Temos, para quase todos $u_1, u_2 \in \mathbb{Z}_n$,

$$\frac{s^2}{n} + o(n) = \sum_{x \in \mathbb{Z}_n} \chi_S(x + u_1) \chi_S(x + u_2) = \sum_{y \in \mathbb{Z}_n} \chi_S(y) \chi_S(y + u_2 - u_1) = |S \cap (S + u_2 - u_1)|.$$

QED

 $\mathbf{ST} \Rightarrow \mathbf{R(2)}$: Para quase todo $x \in \mathbb{Z}_n$

$$\frac{st}{n} + o(n) = \sum_{y \in \mathbb{Z}_n} \chi_S(y) \chi_T(y - x) = \sum_{y \in \mathbb{Z}_n} \chi_S(y) \chi_S(x - y),$$

fazendo T = -S.

QED

 $\mathbf{R}(\mathbf{2}) \Rightarrow \mathbf{R}(\mathbf{k})$: Vamos provar por indução em k. Assumimos $\mathbf{R}(\mathbf{2})$. Então

$$\sum_{x} \left(\sum_{u_1 + \dots + u_k} \chi(u_1) \cdots \chi(u_k) \right)^2 =$$

$$\sum_{x} \left(\sum_{u_1 + y = x} \chi(u_1) \sum_{u_2 + \dots + u_k} \chi(u_2) \cdots \chi(u_k) \right)^2 =$$

$$\sum_{x} \left(\sum_{y} \chi(x - y) \left(\frac{s^{k-1}}{n} + o(n^{k-2}) \right) + o(n^{k-1}) \right)^2 =$$

$$\sum_{x} \left(s^2 \left(\frac{s^{2k-2}}{n^2} + o(n^{2k-4}) \right) \right) + o(n^{2k-1}) =$$

$$\frac{s^{2k}}{n} + s^2 o(n^{2k-3}) + o(n^{2k-1}).$$

Agora,

$$\sum_{x} \sum_{u_1 + \dots + u_k = x} \chi(u_1) \cdots \chi(u_k) = \sum_{x} \sum_{x_1} \cdots \sum_{u_{k-1}} \chi(u_1) \cdots \chi(u_{k-1}) \chi(x - u_1 - \dots - u_{k-1}) = s^k.$$

e usando Cauchy-Schwarz (3) como temos feito, para todo $m \in [n-1]$ vale que

$$\frac{s^{2k}}{n} + o(n^{2k-1}) \ge \frac{s^{2k}}{n} + \frac{mn}{n-m}\Delta^2,$$

ou seja,

$$\frac{m}{n-m}\Delta^2 = o(n^{2k-2}). (9)$$

Queremos provar que para todo $\varepsilon>0$ e para todo $\delta>0$ vale que $|M_\varepsilon|\le \delta n$, para todo $n\ge n_0(\varepsilon,\delta)$, onde

$$M_{\varepsilon} = \left\{ x \in \mathbb{Z}_n : \left| \sum_{u_1 + \dots + u_k = x} \prod_i \chi(u_i) - s^k / n \right| \ge \varepsilon n^{k-1} \right\}.$$

Definindo M_{ε}^+ da forma natural como temos feito, suponhamos que não e que $|M_{\varepsilon}^+| > \delta n/2$. Se m é a cardinalidade de M_{ε}^+ então

$$\frac{m}{n-m}\Delta^2 \ge \frac{\delta}{2}(\varepsilon n^{k-1})^2 = \frac{\delta\varepsilon^2}{2}n^{2k-2},$$

que contradiz (9).

QED

 $\mathbf{R}(\mathbf{k}) \Rightarrow \mathbf{EXP}$: Seja $M = (m_{i,j})$ a matriz dada por $m_{i,j} = \chi_S(j-i)$. Então M é uma matriz *circulante*, isto é, fixada a *i*-ésima linha de M obtemos a linha i+1 por, para toda coluna j, $m_{j+1,i+1} = m_{i,j}$, ou seja, a linha i+1 é um deslocamento circular para a direita da linha i. Assim, M tem autovalores (veja [])

$$(1, \theta^l, \theta^{2l}, \dots, \theta^{(n-1)l}), \ \theta = \exp\left(\frac{2\pi i}{n}\right), \ l \in \mathbb{Z}_n,$$

com autovetores

$$\lambda_l = \sum_{x \in \mathbb{Z}_n} \chi(x) \theta^{lx}.$$

Observe que do fato de M ser circulante, temos que $M \cdot M^T = M^T \cdot M$. O valor da k-ésima potência de M na linha i e coluna j é dado por

$$(M^{k})_{i,j} = \sum_{\substack{v_1, \dots, v_{k-1} \\ v_1, \dots, v_k : \chi(v_1 - i) = \dots = \chi(j - v_k) = 1}} m_{i,v_1} m_{v_1,v_2} \cdots m_{v_{k-1},j} =$$

$$|\{v_1, \dots, v_k : \chi(v_1 - i) = \dots = \chi(j - v_k) = 1\}| =$$

$$\sum_{\substack{u_1 + \dots + u_k = i - i}} \chi(u_1) \cdots \chi(u_k),$$

portanto, para quase todo $x = j - i \in \mathbb{Z}_n$ temos

$$(M^k)_{i,j} = \frac{s^k}{n} + o(n^k - 1).$$

Ponha $A = (M \cdot M^T)^k = M^k \cdot M^{Tk}$. Então,

$$A_{i,j} = \sum_{l} (M^k)_{i,l} (M^{T^k})_{l,j} \le n \left(\frac{s^k}{n} + o(n^{k-1}) \right)^2 + (n^{k-1})^2 o(n) = \frac{s^{2k}}{n} + o(n^{k-1}),$$

logo,

$$\operatorname{Tr}(A) = s^{2k} + o(n^{2k}) = \sum_{i=0}^{n-1} \lambda_i^{2k}.$$

Como $\lambda_0 = \sum_{x \in \mathbb{Z}_n} \chi(x) = s$ vale $\lambda_0^{2k} = s^{2k}$ donde concluímos que

$$\sum_{i=1}^{n-1} \lambda_i^{2k} = o(n^{2k}),$$

portanto,

$$\lambda_j = \sum_{x \in \mathbb{Z}_n} \chi(x) \exp\left(\frac{2\pi i j x}{n}\right) = o(n),$$

se $j \neq 0$.

EXP \Rightarrow **ST**: Seja $T \subseteq \mathbb{Z}_n$ com cardinalidade |T| = t fixo. Suponha $s, t > \delta n$ para algum $\delta > 0$ e ponha $\lambda = \max_{j \neq 0} |\lambda_j|$.

Considere o vetor característico

$$\overline{\chi_T} = \begin{pmatrix} \chi_T(0) \\ \vdots \\ \chi_T(n-1) \end{pmatrix}.$$

Então, a *i*-ésima linha do produto $M \cdot \overline{\chi_T}$ é a cardinalidade da intersecção $(S+i) \cap T$. Também $M \cdot \mathbf{1} = s1$.

Ponha $v_T(i) = \frac{1}{n-t}(-1 + \frac{n}{t}\chi_T(i))$. Então $\langle \mathbf{1}, \overline{v_T} \rangle = 0$. Portanto, se $\overline{\chi_T} = \alpha \mathbf{1} + \beta \overline{v_T}$ temos que

$$\overline{\chi_T} = \frac{t(n-t)}{n} \left(\frac{1}{n-t} \mathbf{1} + \overline{v_T} \right),$$

logo

$$M \cdot \overline{\chi_T} = \frac{st}{n} \mathbf{1} + \frac{t(n-t)}{n} M \cdot \overline{v_t}.$$

Suponha existir $\varepsilon > 0$ tal que

$$\sum_{x} \left| |S \cap (T+x)| - \frac{st}{n} \right| > 3\varepsilon st$$

e ponha

$$W = \left\{ y \colon \left| |S \cap (T+y)| - \frac{st}{n} \right| > \frac{\varepsilon st}{n} \right\}.$$

Observemos que $|W|=w>2\varepsilon s$: caso contrário, $\sum_{y\in\mathbb{Z}_n}||S\cap(T+y)|-st/n|\leq 3\varepsilon st$. Ponha

$$W' = \left\{ y \in W \colon |S \cap (T+y)| > \frac{1+\varepsilon}{n} st \right\},\,$$

e assuma que $|W'|=w'>\varepsilon s.$ Assim,

$$\sum_{y \in W'} |S \cap (T+y)| > \frac{1+\varepsilon}{n} stw'.$$

Ponha W'' = -W' e

$$\overline{\chi_{W''}} = \begin{pmatrix} \chi_{W''}(0) \\ \vdots \\ \chi_{W''}(n-1), \end{pmatrix} \qquad e \qquad \overline{v_{W''}} = \begin{pmatrix} v''_o \\ \vdots \\ v''_{n-1}, \end{pmatrix}$$

onde $v_i'' = \frac{1}{n-w'}(-1 + \frac{n}{t}\chi_{W''}(i))$. Dessa forma,

$$\overline{\chi_{W''}} = \frac{w'(n-w')}{n} \left(\frac{1}{n-w'} \mathbf{1} + \overline{v_{W''}} \right).$$

Agora,

$$\langle \overline{\chi_{W''}}, M \cdot \overline{\chi_T} \rangle = \sum_{i} \chi_{W''}(i) |(S+i) \cap T| = \sum_{i \in W''} |(S+i) \cap T| = \sum_{y \in W'} |S \cap (T+y)|,$$

portanto,

$$\langle \overline{\chi_{W''}}, M \cdot \overline{\chi_T} \rangle > \frac{1+\varepsilon}{n} stw'.$$
 (10)

Por outro lado,

$$\langle \frac{w'}{n} \mathbf{1} + \frac{w'(n-w')}{n} \overline{v_{w''}}, \frac{st}{n} \mathbf{1} + \frac{t(n-t)}{n} M \cdot \overline{v_T} \rangle = \frac{w'st}{n} + \frac{w'(n-w')t(n-t)}{n^2} \langle \overline{v_{W''}}, M \cdot \overline{v_T} \rangle \leq \frac{w'st}{n} + \frac{w'(n-w')t(n-t)}{n^2} \lambda ||\overline{v_{W''}}|| ||\overline{v_T}||.$$

Sabemos calcular $||\overline{v_T}||$

$$||\overline{v_T}|| = \left(\sum_{i=0}^{n-1} \left(\frac{1}{n-t} \left(-1 + \frac{n}{t} \chi_T(i)\right)\right)^2\right)^{1/2} = \left(\sum_{i \in T} \left(\frac{n-t}{t(n-t)}\right)^2 + \sum_{i \notin T} \frac{1}{(n-t)^2}\right)^{1/2} = \left(\frac{1}{t} + \frac{1}{n-t}\right)^{1/2}.$$

Da mesma forma,

$$||\overline{v_{W''}}|| = \left(\frac{1}{w'} + \frac{1}{n - w'}\right)^{1/2}.$$

Assim, ficamos com

$$\langle \frac{w'}{n} \mathbf{1} + \frac{w'(n-w')}{n} \overline{v_{w''}}, \frac{st}{n} \mathbf{1} + \frac{t(n-t)}{n} M \cdot \overline{v_T} \rangle \le$$

$$\frac{w'st}{n} + \frac{w'(n-w')t(n-t)}{n^2} o(n) \left(\frac{1}{t} + \frac{1}{n-t} \right)^{1/2} \left(\frac{1}{w'} + \frac{1}{n-w'} \right)^{1/2} =$$

$$\frac{w'st}{n} + \frac{(w'(n-w')t(n-t))^{1/2}}{n^2} o(n) =$$

$$\frac{w'st}{n} + o\left(\frac{w'st}{n} \right),$$

contradizendo (10) pois $s, t > \delta n$ e $w' > \varepsilon s$.

QED

2.3 Demonstração do Lema 3

 $\mathbf{Graph} \Leftrightarrow \mathbf{C(2t)}$: A prova de " \Rightarrow " é imediata. Para provar o outro lado, temos de $\mathbf{C(2t)}$

$$\mathbf{C}(2\mathbf{t}) \Rightarrow \sum_{x_1, \dots, x_{2t}} \chi(x_1 + x_2) \chi(x_2 + x_3) \cdots \chi(x_{2t} + x_1) = s^{2t} + o(n^{2t}).$$

Ainda, o número de cópias de C_{2t} em G_S é

$$\sum_{x_1,\ldots,x_{2t}} \chi(x_1+x_2)\chi(x_2+x_3)\cdots\chi(x_{2t}+x_1),$$

onde a soma são sobre as 2t-uplas sem repetição, que é facilmente provado ser $\Theta(n^{2t})$. QED

Graph \Leftrightarrow **Density**: De **Density** temos que para todo $T \subseteq \mathbb{Z}_n$

$$\sum_{x,y\in\mathbb{Z}_n} \chi_T(x)\chi_T(y)\chi_S(x+y) = \frac{st^2}{n} + o(n^2),$$

portanto, o número de arestas no grafo induzido por T é

$$e(T) = \frac{1}{2} \sum_{x,y} \chi_T(x) \chi_T(y) \chi_S(x+y) = \frac{st^2}{2n} + o(n^2),$$

logo temos Graph.

Por outro lado, de **Graph** temos que para todo $T \subseteq \mathbb{Z}_n$ vale que

$$e(T) = \frac{s}{2n}t^2 + o(n^2),$$

implicando que

$$\sum_{x,y} \chi_T(x) \chi_T(y) \chi_S(x+y) = \frac{st^2}{n} + o(n^2),$$

ou seja, **Density**.

QED

 $\mathbf{GRAPH} \Leftrightarrow \mathbf{Q(2)} \colon \text{ De } \mathbf{Q(2)} \text{ temos que para quase todos } u_1, \ u_2 \in \mathbb{Z}_n$

$$\begin{split} \sum_{x \in \mathbb{Z}_n} \chi_S(x + u_1) \chi_S(x + u_2) &= \frac{s^2}{n} + o(n) \Leftrightarrow \\ \left| |\Gamma(u_1) \cap \Gamma(u_2)| - \frac{s^2}{n} \right| &= o(n) \leftrightarrow \\ \sum_{u_1, u_2} \left| |\Gamma(u_1) \cap \Gamma(u_2)| - \frac{s^2}{n} \right| &= o(n^3) \Leftrightarrow \mathbf{Graph}. \end{split}$$

QED

Referências

- [1] Béla Bollobás, *Random graphs*, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1985.
- [2] F. R. K. Chung, R. L. Graham, and R. M. Wilson, *Quasi-random graphs*, Combinatorica **9** (1989), no. 4, 345–362.
- [3] S. W. Graham and C. J. Ringrose, Lower bounds for least quadratic non-residues, Analytic number theory (Allerton Park, IL, 1989), Progr. Math., vol. 85, Birkhäuser Boston, Boston, MA, 1990, pp. 269–309.
- [4] Andrew Thomason, Pseudorandom graphs, Random graphs '85 (Poznań, 1985), North-Holland Math. Stud., vol. 144, North-Holland, Amsterdam, 1987, pp. 307–331.