GESIS Spring Seminar 23

Comparative Social Research with Multi-Group SEM $\,$

Daniel Seddig Eldad Davidov Peter Schmidt Yannick Diehl

Day 1 - 27.02.2023

1

Table of Contents

Packages

Data	2
Procedure	
Measurement Invaraince Procedure	1 5
<pre># basic tools library(tidyverse) library(sjmisc) # checking data library(MVN) library(correlation) library(performance) library(parameters) library(insight)</pre>	
<pre># building the models library(lavaan) # cheking the models library(semTools)</pre>	
<pre># model visualization library(semPlot) library(semptools)</pre>	

Data

ESS07 <- read.csv("../Data/ESS07.csv")

Confirmatory measurement analysis (CFA)

Procedure

Step 1: Translation of the theoretical model into a measurement model

 We need a model that is able to conceptualize the relationship between manifest indicators and latent variables

Step 2: Checking whether it is a reflexive or formative construct

- Reflective measurement: indicators are "effects" of the latent variable
- Formative measurement: latent variable is "caused" or composed by the manifest indicators

Step 3: Specification of the model (Choose a method to assign a scale to the latent variable)

- Reference indicator method: factor loading of one indicator is fixed to 1.0
- Fixed factor method: the factor variance is fixed to 1.0

Step 4: Checking the model assumptions (ML estimation requirements)

- Data are continuous and multivariate normal (case of non-normal data standard errors and chi-squre-statistics should be adjusted e.g., robust ML = MLR)
- Sample size is sufficiently large (ratio of number of cases and number of parameters N:q rule => 20:1 or 10:1)

Step 5: Checking wether the model is identified

- Complexity of a CFA models is limited by the total number of observations (p) and the number of unknown model parameters (q)
- Degrees of freedom must be at least zero: df = p q >= 0
- j = number of indicators
- p = j * (j + 1) / 2
- q = counting of the parameters to be calculated (factor loading, residual error, factor variance)
- df = 0 = model is idenitfied and saturated / df > 0 = model is overidentified

Step 6: Checking the fit measurements

Index	Тур	Theoretical range	Cut-off	N sensitive	Penalty for complexity
X2/df	badness	>= 0	< 5	yes	no
CFI	godness	0.0 - 1.0	>= 0.95 (>= 0.90)	no	yes
TLI	godness	0.0 - 1.0*		no	yes
SRMR	badness	>= 0	< 0.08	yes	no
RMSEA	badness	>= 0	<=0.05 (<=0.08)	yes to small N	yes
PCLOSE	badness	0.0 - 1.0	>=0.95	yes	/

^{*}negative values indicate extremely misspecified model; when exceeds 1, model is extremely well-fitting

Step 7: Checking for misspecification

• What causes model misfit? => Indicator choice, Factor choice, Violations of assumptions (e.g., multivariate normality) and Causal structure (e.g., restrictions)

• How to diagnose model misfit? => Parameter estimates (Heywood cases?), Residual matrices (i.e., differences between observed and estimated covariances), Modification indices (approximation of the reduction of chi-square if a single constrained parameter is freely estimated)

Step 8: Identifying the mean structure (optional)

- Fixing the intercept of the reference indicator to zero
- Fixing the latent mean to zero

CFA model of Universalism

Step 1

Our example measurement model Universalism comes from the Theory of Basic Human Values according to Schwartz (1992) and comprises three facets - Concern, Nature, Tolerance.

Concern: Commitment to equality, justice and protection for all people

Nature: Preservation of the natural environment

Tolerance: Acceptance and understanding of those who are different from oneself

In order to measure this attitude construct, three questions (items) were created in ESS 7 (2014) and queried in various countries (e.g. Czech Republic, Germany, Great Britain).

Name	Label	Construct
ipeqopt ipudrst impenv	Important that people are treated equally and have equal opportunities Important to understand different people Important to care for nature and environment	Universalism Universalism Universalism

Step 2

Indicators are "effects" of the latent variable and therefore we specify a reflective measurement model

Step 3
The syntax commands for specifying a lavaan model: https://lavaan.ugent.be/tutorial/syntax1.html

Formula type	Operator	Mnemonic
latent variable definition	=~	is measured by
regression	~	is regressed on
(residual) (co)variance	~~	is correlated with
intercept	~1	intercept

```
universalism <- "uni =~ ipeqopt + ipudrst + impenv"
```

Lavaan automatically uses the reference indicator method, so one indicator's factual loading is fixed at 1. Accordingly, the variance of the latent factor is estimated.

In Lavaan, however, it is also very easy to use the fixed factor method, i.e. to fix the variance of the latent factor to 1. This allows all factor loadings to be freely estimated.

This requires the use of labels, i.e. the labeling of individual parameters in order to be able to control them directly. The syntax commands for labeling a lavaan model can be found here: https://lavaan.ugent.be/tutorial/syntax2.html. For this step, we only need to understand how individual parameters can be fixed and freely calculated. As soon as it comes to the calculation of measurement invariance, we will work with labels again. But more on that later.

Reference indicator method:

```
universalism <- "uni =~ 1*ipeqopt + ipudrst + impenv"
```

Fixed factor method:

```
universalism <- "
# specification of the measurement model
uni =~ NA*ipeqopt + ipudrst + impenv

# specification of the variance
uni ~~ 1*uni
"</pre>
```

Freely estimate the factor loading of the first indicator by NA*ipeqopt and fix the variance of the latent factor by 1*uni. The variance of a variable is specified as covariance with itself, hence uni \sim uni. In the end we get uni \sim 1*uni

Step 4

Now let's get an overview of the properties of our variables. First, let's look at the descriptive statistics of our items to gain knowledge of missing values, central tendency properties, variability, and distribution.

```
ESS07 %>%
  select(ipeqopt, ipudrst, impenv) %>%
  mvn() %>%
  # optional for better display
  export_table(table_width = 1, digits = 3)
```

Test	I	Variable	I	Statistic	p value		Normality
Anderson-Darling Anderson-Darling		ipeqopt	 	362.6880 332.9049		 	NO NO
Anderson-Darling	Ţ.	impenv	İ	322.7889		i	NO

n	Mean	Std.Dev	Median	Min	١	Max	2	25th	75th	١	Skew	Kurtosis
5844 l	4.945 l	1.040 l	 5 l	1	1	 6	 I	 4 l	 6	1	-1.142	1.295
		1.027			•		•	•		•	•	0.892
5844	4.878	1.025	5 I	1	1	6		4	6	-	-0.933	0.732

This shows that the individual variables are not normally distributed and that there is no multivariate normal distribution (Henze-Zirkler value). So, we don't have any missing values in our example dataset and a more than sufficient sample size. In addition, the variables show a right skewed distribution and a moderate variance.

Due to the missing multivariate normal distribution, we use the MLR estimator. If we were dealing with missing values, we would use Full Information Maximum Likelihood (FIML) as the estimation strategy.

Step 5

Now let's estimate the model using Lavaan. For this we use the cfa() function.

```
universalism_fit <- cfa(
  model = "Universalism =~ ipeqopt + ipudrst + impenv",
  data = ESS07,
  estimator = "MLR",
  # optional if there are missing values
  missing = "fiml.x"
)</pre>
```

Now we can look at the estimated model. To do this, we use the summary() function.

Fit.measures = T shows us the most important fit measurements of our model and thus the fit to the data. Standardized = T shows us standardized values in the output and rsquare shows us the explained variance of the dependent variable.

```
summary(
  object = universalism_fit,
  fit.measures = T,
  standardized = T,
  rsquare = T
)
```

lavaan 0.6-12 ended normally after 24 iterations

Estimator	ML
Optimization method	NLMINB
Number of model parameters	9
Number of observations Number of missing patterns	5844 1

Model Test User Model:

	Standard	Robust
Test Statistic	0.000	0.000
Degrees of freedom	0	0

Model Test Baseline Model:

Test statistic	1532.717	1023.100
Degrees of freedom	3	3
P-value	0.000	0.000
Scaling correction factor		1.498

User Model versus Baseline Model:

Comparative Fit Index (CFI)	1.000	1.000
Tucker-Lewis Index (TLI)	1.000	1.000
Robust Comparative Fit Index (CFI)		NA
Robust Tucker-Lewis Index (TLI)		NA

Loglikelihood and Information Criteria:

Loglikelihood user model (H0) -24640.784 -24640.784

Loglikelihood ur	nrestricted	model (H1) -2	24640.784	-24640.7	84		
Akaike (AIC) Bayesian (BIC)	19299.567 19359.626							
Sample-size adju	19331.026							
Root Mean Square Error of Approximation:								
RMSEA				0.000	0.0	00		
90 Percent confi				0.000	0.0	00		
90 Percent confi	dence inte	rval - up	pper	0.000	0.0			
P-value RMSEA <=	= 0.05			NA		NA		
Robust RMSEA					0.0			
90 Percent confi					0.0			
90 Percent confi	idence inte	rvar – uj	pher		0.0	00		
Standardized Root	Mean Squar	e Residua	al:					
SRMR				0.000	0.0	00		
Parameter Estimate	es:							
Standard errors				Sandwich				
Information brea	ıd			Observed				
Observed informa	ation based	on		Hessian				
Latent Variables:	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all		
Universalism =~								
ipeqopt	1.000				0.595	0.572		
ipudrst	1.059	0.063	16.852	0.000	0.630	0.613		
impenv	0.837	0.046	18.010	0.000	0.498	0.486		
Intercepts:								
	Estimate		z-value	` ' ' '				
.ipeqopt	4.945	0.014		0.000	4.945	4.753		
.ipudrst	4.717	0.013	351.024	0.000	4.717	4.592		
.impenv	4.878	0.013	363.981	0.000	4.878	4.761		
Universalism	0.000				0.000	0.000		
Variances:				- 4 1 15				
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all		
.ipeqopt	0.729	0.030	24.070	0.000	0.729	0.673		
.ipudrst	0.659	0.029	22.371	0.000	0.659	0.624		
.impenv	0.802	0.023	34.294	0.000	0.802	0.764		
Universalism	0.354	0.027	13.341	0.000	1.000	1.000		
R-Square:	Estimate							
ipeqopt	0.327							
ipudrst	0.327							
impenv	0.236							
Timpoit v	0.200							

Since we estimated a model with three indicators, it is a saturated model, i.e. a model identified with 0 degrees of freedom.

This allows the following graphic to be created with standardized factor loadings.

```
universalism_plot <- universalism_fit %>%
  semPaths(
    whatLabels = "std",
    style = "mx",
    layout = "tree",
    edge.color = "black",
    intercepts = F,
    nCharNodes = 50
)
```


The semptools package also allows us to easily add additional information to our graphics (https://cran.r-project.org/web/packages/semptools/vignettes/semptools.html). Here I have also included the degree of statistical significance.

```
universalism_plot %>%
  mark_sig(universalism_fit) %>%
  plot()
```


Step 6:

A look at the fit measures shows us that the model is saturated due to the 0 degrees of freedom and thus achieves a perfect data fit.

Step 7:

In the following we want to check whether the selected items represent a factor. It can be seen that the factor loadings all reach the cut off of $\geq = 0.4$ and thus, in combination with the fit indices, there is an appropriate measurement model.

If there are recognizable misfits, we can access the modification indices.

Modification indices (MIs) = Approximation of the reduction of X2 if a single constrained parameter is freely estimated

Constrained parameters in CFA: - Factor cross-loadings - Residual correlations

-> Test of local fit -> One parameter at a time

```
universalism_fit %>%
  modificationindices(standardized = T, sort. = T)

lhs op rhs mi epc sepc.lv sepc.all sepc.nox
```

Accordingly, there are no modification options, since the model has just been identified and no degrees of freedom are available.

So let's look at two more models of Theory of Basic Human Values from the ESS07.

CFA model of Tradition/Conformity

Step 1:

Name	Label	Construct
ipmodst	Important to be humble and modest, not draw attention	Tradition
imptrad	Important to follow traditions and customs	Tradition
ipfrule	Important to care for nature and environment	Conformity
ipbhprp	Important to behave properly	Conformity

Step 2:

Indicators are "effects" of the latent variable and therefore we specify a reflective measurement model.

Step 3:

We use the reference indicator method again to calculate the model.

Step 4:

```
ESS07 %>%
  select(ipmodst, imptrad, ipfrule, ipbhprp) %>%
  mvn() %>%
  # optional
  export_table(table_width = 1, digits = 3)
```

Test	 	Variable	 	Statistic	_ p	value	 	Normality
Anderson-Darling Anderson-Darling Anderson-Darling Anderson-Darling	l	ipmodst imptrad ipfrule ipbhprp		242.6587 202.8157 173.6286 227.9644	<0 <0	.001 .001 .001	 	NO NO NO NO
0								

n	Mean	Std.Dev	Median	Min	Max	25th	75th	Skew	Kurtosis
		1.208	- •	•		•		-0.643	
5844	4.155	1.380	4	1	6	3	5	-0.529	-0.601
5844	3.700	1.393	4	1	6 l	2	5	-0.161	-0.984
5844	4.258	1.281	5	1	6 I	3	5 I	-0.554	-0.514

The variables are scaled metrically on a scale from 0 to 6 and distributed skewed to the right. In addition, there is neither a univariate nor a multivariate normal distribution.

Step 5:

```
tradition_conformity_fit <- cfa(
  model = "TraditionConformity =~ ipmodst + imptrad + ipfrule + ipbhprp",
  data = ESS07,
  estimator = "MLR",
  # optional if there are missing values</pre>
```

```
missing = "fiml.x"
summary(
  object = tradition_conformity_fit,
  fit.measures = T,
  standardized = T,
  rsquare = T
lavaan 0.6-12 ended normally after 31 iterations
  Estimator
                                                     ML
                                                 NLMINB
  Optimization method
  Number of model parameters
  Number of observations
                                                   5844
  Number of missing patterns
                                                      1
Model Test User Model:
                                               Standard
                                                             Robust
  Test Statistic
                                                 17.439
                                                             14.378
  Degrees of freedom
                                                      2
                                                                  2
  P-value (Chi-square)
                                                  0.000
                                                              0.001
  Scaling correction factor
                                                              1.213
    Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
  Test statistic
                                               2339.880
                                                           1848.011
  Degrees of freedom
                                                      6
                                                                  6
  P-value
                                                  0.000
                                                              0.000
                                                              1.266
  Scaling correction factor
User Model versus Baseline Model:
  Comparative Fit Index (CFI)
                                                  0.993
                                                              0.993
  Tucker-Lewis Index (TLI)
                                                  0.980
                                                              0.980
                                                              0.994
  Robust Comparative Fit Index (CFI)
  Robust Tucker-Lewis Index (TLI)
                                                              0.981
Loglikelihood and Information Criteria:
  Loglikelihood user model (HO)
                                             -38377.968 -38377.968
  Scaling correction factor
                                                              1.002
      for the MLR correction
  Loglikelihood unrestricted model (H1)
                                             -38369.248 -38369.248
  Scaling correction factor
                                                              1.032
      for the MLR correction
  Akaike (AIC)
                                              76779.936
                                                          76779.936
  Bayesian (BIC)
                                              76860.014
                                                          76860.014
  Sample-size adjusted Bayesian (BIC)
                                              76821.881
                                                          76821.881
```

Root Mean Square Error of Approximation:

DMCEA	0 000	0 000
RMSEA	0.036	0.033
90 Percent confidence interval - lower	0.022	0.019
90 Percent confidence interval - upper	0.053	0.048
P-value RMSEA <= 0.05	0.909	0.973
Robust RMSEA		0.036
90 Percent confidence interval - lower		0.020
90 Percent confidence interval - upper		0.054
Standardized Root Mean Square Residual:		

${\tt Standardized}\ {\tt Root}\ {\tt Mean}\ {\tt Square}\ {\tt Residual:}$

SRMR	0.011	0.011

Parameter Estimates:

Standard errors Sandwich
Information bread Observed
Observed information based on Hessian

Latent Variables:

	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
TraditionConformity =	•					
ipmodst	1.000				0.426	0.353
imptrad	1.546	0.095	16.327	0.000	0.659	0.477
ipfrule	1.875	0.112	16.689	0.000	0.799	0.574
ipbhprp	2.084	0.110	18.900	0.000	0.888	0.693

Intercepts:

	Estimate	Std.Err	z-value	P(> z)	${\tt Std.lv}$	Std.all
.ipmodst	4.344	0.016	274.875	0.000	4.344	3.596
.imptrad	4.155	0.018	230.189	0.000	4.155	3.011
.ipfrule	3.700	0.018	203.091	0.000	3.700	2.657
.ipbhprp	4.258	0.017	254.054	0.000	4.258	3.323
TraditnCnfrmty	0.000				0.000	0.000

Variances:

	Estimate	Std.Err	z-value	P(> z)	$\mathtt{Std.lv}$	Std.all
.ipmodst	1.278	0.027	48.093	0.000	1.278	0.876
.imptrad	1.470	0.036	41.297	0.000	1.470	0.772
.ipfrule	1.301	0.038	34.612	0.000	1.301	0.671
.ipbhprp	0.853	0.039	21.855	0.000	0.853	0.519
TraditnCnfrmty	0.182	0.018	10.217	0.000	1.000	1.000

R-Square:

	Estimate
ipmodst	0.124
imptrad	0.228
ipfrule	0.329
ipbhprp	0.481

The model is identified with two degrees of freedom.

Step 6:

The fit indices show a good fit to the data. All fit indices are below their cut offs.

Step 7:

In this model, the factor loading of the item ipmodst is clearly misfit, since the factor loading cut-off of 0.4 is not reached.

Here it has to be considered whether the item has a value for the construct or whether the item has to be removed from the measurement model. We decide to take it out.

Further modifications are not necessary since the model shows a very good fit to the data.

```
tradition_conformity_fit2 <- cfa(
  model = "TraditionConformity =~ imptrad + ipfrule + ipbhprp",
  data = ESSO7,
  estimator = "MLR",
  # optional if there are missing values
  missing = "fiml.x"
)

summary(
  object = tradition_conformity_fit2,
  fit.measures = T,
  standardized = T,
  rsquare = T
)</pre>
```

lavaan 0.6-12 ended normally after 28 iterations

Estimator Optimization method Number of model parameters	ML NLMINB 9	
Number of observations Number of missing patterns	5844 1	
Model Test User Model: Test Statistic Degrees of freedom	Standard 0.000 0	
Model Test Baseline Model:		
Test statistic Degrees of freedom P-value Scaling correction factor	1849.694 3 0.000	1427.618 3 0.000 1.296
User Model versus Baseline Model:		
Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	1.000	1.000 1.000
Robust Comparative Fit Index (CFI) Robust Tucker-Lewis Index (TLI)		1.000 1.000

Loglikelihood and Information Criteria:

Loglikelihood user model (H0) Loglikelihood unrestricted model (H1)	-29217.708 -29217.708	
Akaike (AIC)	58453.417	58453.417
Bayesian (BIC)	58513.475	58513.475
Sample-size adjusted Bayesian (BIC)	58484.876	58484.876

Root Mean Square Error of Approximation:

RMSEA	0.000	0.000
90 Percent confidence interval - lower	0.000	0.000
90 Percent confidence interval - upper	0.000	0.000
P-value RMSEA <= 0.05	NA	NA
Robust RMSEA		0.000
90 Percent confidence interval - lower		0.000
90 Percent confidence interval - upper		0.000

Standardized Root Mean Square Residual:

Parameter Estimates:

Standard errors Sandwich
Information bread Observed
Observed information based on Hessian

Latent Variables:

Latent Variables.						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
TraditionConformity =~						
imptrad	1.000				0.673	0.488
ipfrule	1.247	0.059	21.170	0.000	0.839	0.602
ipbhprp	1.252	0.061	20.475	0.000	0.842	0.658

Intercepts:

	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.imptrad	4.155	0.018	230.189	0.000	4.155	3.011
.ipfrule	3.700	0.018	203.091	0.000	3.700	2.657
.ipbhprp	4.258	0.017	254.054	0.000	4.258	3.323
${\tt TraditnCnfrmty}$	0.000				0.000	0.000

Variances:

rances.						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.imptrad	1.452	0.036	39.882	0.000	1.452	0.762
.ipfrule	1.236	0.043	29.051	0.000	1.236	0.637
.ipbhprp	0.932	0.040	23.156	0.000	0.932	0.568
TraditnCnfrmtv	0.453	0.032	14.009	0.000	1.000	1.000

R-Square:

Estimate

imptrad	0.238
ipfrule	0.363
ipbhprp	0.432

This makes the measurement model suitable for further use.

CFA model Perceived Threat

Step 1:

Name	Label	Construct
imbgeco	Immigration bad or good for country's economy	Perceived threat
imueclt	Country's cultural life undermined or enriched by immigrants	Perceived threat
imtcjob	Immigrants take jobs away in country or create new jobs	Perceived threat
rlgueim	Religious beliefs and practices undermined or enriched by immigrants	Perceived threat

Step 2:

Indicators are "effects" of the latent variable and therefore we specify a reflective measurement model

Step 3:

We use the reference indicator method again to calculate the model.

Step 4:

```
ESS07 %>%
  select(imbgeco, imueclt, imtcjob, rlgueim) %>%
  mvn() %>%
  # optional for better display
  export_table(table_width = 1, digits = 3)
```

Test		HZ		p	value		MVN
Henze-Zirkler		17.085	1		0		NO

Test	I	Variable	I	Statistic	I	p value	I	Normality
Anderson-Darling		imbgeco	1	61.6271		<0.001	-	NO
Anderson-Darling	1	imueclt	-	53.8325	1	<0.001	-	NO
Anderson-Darling		imtcjob	1	103.8354		<0.001	-	NO
Anderson-Darling	1	rlgueim	-	108.6560	1	<0.001	-	NO

n	I	Mean	I	Std.Dev	١	Median	I	Min	I	Max	I	25th	I	75th	Skew	I	Kurtosis
5844		4.979		2.466		5		0		10		3		7	0.186		-0.521
5844	1	4.696	1	2.577	-	5	1	0	1	10	-	3	1	6	0.174	-	-0.623
5844	1	5.187	-	2.301	-	5	1	0	1	10	-	4	1	7	0.228	-	-0.165
5844		5.318		2.188	-	5		0		10		4		7	0.041	-	0.053

The variables are scaled metrically on a scale from 0 to 10. Nevertheless, there is neither a univariate nor a multivariate normal distribution.

Step 5:

```
perceived_threat_fit <- cfa(</pre>
  model = "PerceivedThreat =~ imbgeco + imueclt + imtcjob + rlgueim",
  data = ESS07,
 estimator = "MLR",
  # optional if there are missing values
  missing = "fiml.x"
)
summary(
  object = perceived_threat_fit,
 fit.measures = T,
 standardized = T,
 rsquare = T
lavaan 0.6-12 ended normally after 27 iterations
  Estimator
                                                    ML
  Optimization method
                                                NLMINB
  Number of model parameters
  Number of observations
                                                  5844
  Number of missing patterns
                                                      1
Model Test User Model:
                                              Standard
                                                            Robust
  Test Statistic
                                                279.766
                                                           184.727
  Degrees of freedom
                                                     2
  P-value (Chi-square)
                                                 0.000
                                                             0.000
  Scaling correction factor
                                                              1.514
    Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
                                              8797.948
  Test statistic
                                                          5161.721
  Degrees of freedom
                                                     6
                                                                  6
  P-value
                                                 0.000
                                                              0.000
  Scaling correction factor
                                                              1.704
User Model versus Baseline Model:
  Comparative Fit Index (CFI)
                                                 0.968
                                                              0.965
  Tucker-Lewis Index (TLI)
                                                  0.905
                                                              0.894
  Robust Comparative Fit Index (CFI)
                                                              0.969
  Robust Tucker-Lewis Index (TLI)
                                                              0.906
Loglikelihood and Information Criteria:
  Loglikelihood user model (HO)
                                     -49161.345 -49161.345
  Scaling correction factor
                                                              1.214
      for the MLR correction
  Loglikelihood unrestricted model (H1)
                                           -49021.462 -49021.462
```

Scaling correction for the MLR					1.25	57				
Akaike (AIC)			9	8346.690	98346.69	90				
Bayesian (BIC)				8426.768	98426.76					
Sample-size adju	8388.636	98388.63								
Root Mean Square Error of Approximation:										
_	_	_								
RMSEA				0.154	0.12	25				
90 Percent confid				0.139	0.11					
90 Percent confid		rval - up	per	0.170	0.13					
P-value RMSEA <=	0.05			0.000	0.00	00				
Dalas - + DMCEA					0.45	- 4				
Robust RMSEA 90 Percent confid	donas into	m			0.15					
					0.13					
90 Percent confi	rence ince	ıvaı – up	her		0.17	3				
Standardized Root	Mean Squar	e Residua	1:							
SRMR				0.026	0.02	26				
2101110				0.020	0.02					
Parameter Estimates:										
Standard errors				Sandwich						
Information bread	d			Observed						
Observed informa	tion based	on		Hessian						
Latent Variables:										
		e Std.Er	r z-valu	e P(> z)	Std.lv	Std.all				
PerceivedThreat		•								
imbgeco	1.00		.0 54 00		1.967 0.79					
imueclt	1.10									
imtcjob	0.79 0.69									
rlgueim	0.69	2 0.02	34.94	6 0.000	1.362	0.622				
Intercepts:										
invoi copub.	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all				
.imbgeco	4.979	0.032	154.352	0.000	4.979	2.019				
.imueclt	4.696	0.034	139.327	0.000	4.696	1.823				
.imtcjob	5.187	0.030	172.337	0.000	5.187	2.254				
.rlgueim	5.318	0.029	185.807	0.000	5.318	2.431				
PerceivedThret	0.000				0.000	0.000				
Variances:										
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all				
.imbgeco	2.211	0.085	26.148	0.000	2.211	0.364				
.imueclt	1.913	0.094	20.355	0.000	1.913	0.288				
.imtcjob	2.865	0.087	33.077	0.000	2.865	0.541				
.rlgueim	2.933	0.080	36.474	0.000	2.933	0.613				
PerceivedThret	3.870	0.119	32.528	0.000	1.000	1.000				
R-Square:										

R-Square:

Estimate

```
      imbgeco
      0.636

      imueclt
      0.712

      imtcjob
      0.459

      rlgueim
      0.387
```

The model is identified with two degrees of freedom.

Step 6:

The model shows a clear misspecification of the model for the RMSEA indice.

Step 7:

The factor loadings all show sufficient loading. So we can immediately devote ourselves to the modification indices in order to understand the misspecification evident in the RMSEA.

```
perceived_threat_fit %>%
  modificationindices(standardized = T, sort. = T)
```

	lhs	op	rhs	mi	epc	sepc.lv	sepc.all	sepc.nox
19	imueclt	~~	rlgueim	238.993104	0.8771423	0.8771423	0.3702775	0.3702775
16	imbgeco	~~	imtcjob	238.993083	0.9085458	0.9085458	0.3609752	0.3609752
17	imbgeco	~~	rlgueim	207.424644	-0.7466824	-0.7466824	-0.2931758	-0.2931758
18	imueclt	~~	imtcjob	207.424451	-0.9445400	-0.9445400	-0.4034743	-0.4034743
20	imtcjob	~~	rlgueim	1.848284	-0.0628233	-0.0628233	-0.0216717	-0.0216717
15	imbgeco	~~	imueclt	1.848267	-0.1265846	-0.1265846	-0.0615456	-0.0615456

The modification indices tell us that adjusting the residual covariance between items imuecht and rigueim would have the largest effect on model fitting (in terms of the chi-square test statistic).

This is because some of the covariation of imueclt and rigueim is due to sources other than the common factor

Reasons: method effects, item wording, acquiescence, social desirability, unaccounted theoretical common causes.

We then modify our initial model and remove the residual covariance constraint between the two items, which is fixed at 0, and let it calculate freely.

```
perceived_threat_fit2 <- cfa(
    model = "
    PerceivedThreat =~ imbgeco + imueclt + imtcjob + rlgueim

imueclt ~~ rlgueim
    ",
    data = ESS07,
    estimator = "MLR",
    # optional if there are missing values
    missing = "fiml.x"
)

summary(
    object = perceived_threat_fit2,
    fit.measures = T,
    standardized = T,
    rsquare = T
)</pre>
```

lavaan 0.6--12 ended normally after 31 iterations

Estimator	ML	
Optimization method Number of model parameters	NLMINB 13	
Number of observations	5844	
Number of missing patterns	1	
Model Test User Model:	a	
Test Statistic	Standard 47.224	Robust 31.440
Degrees of freedom	1	1
P-value (Chi-square)	0.000	0.000
Scaling correction factor		1.502
Yuan-Bentler correction (Mplus variant)		
Model Test Baseline Model:		
Test statistic	8797.948	
Degrees of freedom P-value	6	6
Scaling correction factor	0.000	0.000 1.704
bearing correction factor		1.704
User Model versus Baseline Model:		
Comparative Fit Index (CFI)	0.995	0.994
Tucker-Lewis Index (TLI)	0.968	0.965
Robust Comparative Fit Index (CFI)		0.995
Robust Tucker-Lewis Index (TLI)		0.969
Loglikelihood and Information Criteria:		
Loglikelihood user model (HO)	-49045.074	-49045.074
Scaling correction factor		1.238
for the MLR correction Loglikelihood unrestricted model (H1)	-49021.462	-49021.462
Scaling correction factor		1.257
for the MLR correction		
Akaike (AIC)	98116.148	98116.148
Bayesian (BIC)	98202.900	
Sample-size adjusted Bayesian (BIC)	98161.589	98161.589
Root Mean Square Error of Approximation:		
RMSEA	0.089	0.072
90 Percent confidence interval - lower	0.068	0.055
90 Percent confidence interval - upper	0.111	
P-value RMSEA <= 0.05	0.001	0.016
Robust RMSEA		0.088
90 Percent confidence interval - lower		0.064

```
0.116
  90 Percent confidence interval - upper
Standardized Root Mean Square Residual:
                                                  0.012
  SRMR
                                                               0.012
Parameter Estimates:
  Standard errors
                                               Sandwich
  Information bread
                                               Observed
  Observed information based on
                                                Hessian
Latent Variables:
                     Estimate Std.Err z-value P(>|z|)
                                                             Std.lv Std.all
  PerceivedThreat =~
    imbgeco
                         1.000
                                                              2.100
                                                                       0.851
    imueclt
                         0.963
                                  0.019
                                          50.389
                                                     0.000
                                                              2.022
                                                                       0.785
                                                     0.000
                                                              1.596
                                                                       0.694
    imtcjob
                        0.760
                                  0.017
                                          46.031
                                                     0.000
    rlgueim
                        0.559
                                  0.018
                                          30.307
                                                              1.174
                                                                       0.537
Covariances:
                   Estimate Std.Err z-value P(>|z|)
                                                           Std.lv Std.all
 .imueclt ~~
   .rlgueim
                      0.848
                                0.072
                                        11.715
                                                   0.000
                                                            0.848
                                                                     0.287
Intercepts:
                   Estimate Std.Err z-value P(>|z|)
                                                           Std.lv Std.all
   .imbgeco
                      4.979
                                0.032 154.352
                                                  0.000
                                                            4.979
                                                                     2.019
   .imueclt
                      4.696
                                0.034 139.327
                                                   0.000
                                                            4.696
                                                                     1.823
                      5.187
                                0.030 172.337
                                                   0.000
                                                                     2.254
   .imtcjob
                                                            5.187
                                0.029 185.807
   .rlgueim
                      5.318
                                                   0.000
                                                            5.318
                                                                     2.431
    {\tt PerceivedThret}
                      0.000
                                                            0.000
                                                                     0.000
Variances:
                   Estimate Std.Err z-value P(>|z|)
                                                           Std.lv Std.all
   .imbgeco
                      1.673
                                0.091
                                        18.481
                                                  0.000
                                                            1.673
                                                                     0.275
   .imueclt
                      2.551
                                0.097
                                        26.176
                                                  0.000
                                                            2.551
                                                                     0.384
   .imtcjob
                      2.747
                                0.084
                                        32.790
                                                  0.000
                                                            2.747
                                                                     0.519
   .rlgueim
                      3.409
                                0.086
                                        39.542
                                                  0.000
                                                            3.409
                                                                     0.712
    PerceivedThret
                      4.408
                                0.126
                                        34.979
                                                  0.000
                                                            1.000
                                                                     1.000
R-Square:
                   Estimate
    imbgeco
                      0.725
    imueclt
                      0.616
                      0.481
    imtcjob
                      0.288
    rlgueim
perceived_threat_fit2 %>%
  semPaths(
    whatLabels = "std",
    style = "mx",
    layout = "tree",
    edge.color = "black",
```

```
intercepts = F,
nCharNodes = 50
)
```


The RMSEA is then back in our anticipated cut-off area and we can continue working with the measurement model.

Step 8:

Finally, we want to display the mean structure of our model.

In practice, the only reason why a user would add intercept-formulas in the model syntax is because some constraints must be specified on them.

```
perceived_threat_mean <- cfa(
   model = "
   PerceivedThreat =~ imbgeco + imueclt + imtcjob + rlgueim

imueclt ~~ rlgueim
   ",
   data = ESS07,
   estimator = "MLR",
   # optional if there are missing values
   missing = "fiml.x",
   meanstructure = T
)

summary(
   object = perceived_threat_mean,
   fit.measures = T,
   standardized = T,</pre>
```

rsquare = T

lavaan 0.6-12 ended normally after 31 iterations

	010110	
Estimator	ML	
Optimization method	NLMINB	
Number of model parameters	13	
•		
Number of observations	5844	
Number of missing patterns	1	
G I		
Model Test User Model:		
	Standard	Robust
Test Statistic	47.224	31.440
Degrees of freedom	1	1
P-value (Chi-square)	0.000	0.000
Scaling correction factor		1.502
Yuan-Bentler correction (Mplus variant)		1.002
ruan zonozor corroccon (prub varrano,		
Model Test Baseline Model:		
Test statistic	8797.948	5161.721
Degrees of freedom	6	6
P-value	0.000	_
Scaling correction factor	0.000	1.704
User Model versus Baseline Model:		
Comparative Fit Index (CFI)	0.995	0.994
Tucker-Lewis Index (TLI)	0.968	0.965
140101 20112 11401 (121)	0.000	0.000
Robust Comparative Fit Index (CFI)		0.995
Robust Tucker-Lewis Index (TLI)		0.969
Loglikelihood and Information Criteria:		
Loglikelihood user model (HO)	-49045 074	-49045.074
Scaling correction factor	10101011	1.238
for the MLR correction		1.200
Loglikelihood unrestricted model (H1)	-49021 462	-49021.462
Scaling correction factor	43021.402	1.257
for the MLR correction		1.201
Tot one that correction		
Akaike (AIC)	98116.148	98116.148
Bayesian (BIC)	98202.900	
Sample-size adjusted Bayesian (BIC)	98161.589	
Zampio ziio aajazota zajozian (zio,	00101.000	331311333
Root Mean Square Error of Approximation:		
RMSEA	0.089	0.072
90 Percent confidence interval - lower	0.069	0.072
	0.000	0.055
90 Percent confidence interval - upper P-value RMSEA <= 0.05	0.111	0.091
r value midea >- V.UD	0.001	0.016

90 Percent confidence interval - upper 0.11	16
Standardized Root Mean Square Residual:	
SRMR 0.012 0.01	12
Parameter Estimates:	
Standard errors Sandwich	
Information bread Observed	
Observed information based on Hessian	
Latent Variables:	
Estimate Std.Err z-value P(> z) Std.lv	7 Std.all
PerceivedThreat =~	
imbgeco 1.000 2.100	
imueclt 0.963 0.019 50.389 0.000 2.022	0.785
imtcjob 0.760 0.017 46.031 0.000 1.596	0.694
rlgueim 0.559 0.018 30.307 0.000 1.174	1 0.537
Covariances:	
Estimate Std.Err z-value P(> z) Std.lv	Std.all
.imueclt ~~	
.rlgueim 0.848 0.072 11.715 0.000 0.848	0.287
Intercepts:	
Estimate Std.Err z-value $P(> z)$ Std.lv	Std.all
.imbgeco 4.979 0.032 154.352 0.000 4.979	2.019
.imueclt 4.696 0.034 139.327 0.000 4.696	1.823
.imtcjob 5.187 0.030 172.337 0.000 5.187	2.254
.rlgueim 5.318 0.029 185.807 0.000 5.318	2.431
PerceivedThret 0.000 0.000	0.000
Vanianaa	
Variances:	C+1 -11
Estimate Std.Err z-value P(> z) Std.lv	Std.all
.imbgeco 1.673 0.091 18.481 0.000 1.673	0.275
.imueclt 2.551 0.097 26.176 0.000 2.551	0.384
.imtcjob 2.747 0.084 32.790 0.000 2.747	0.519
.rlgueim 3.409 0.086 39.542 0.000 3.409	0.712
PerceivedThret 4.408 0.126 34.979 0.000 1.000	1.000
R-Square:	
Estimate	
imbgeco 0.725	
imueclt 0.616	
imtcjob 0.481	
rlgueim 0.288	

Measurement Invaraince

Procedure

Are measurements actually comparable across groups/time?

Definition: Measurement invariance is a property of a measurement instrument, implying that the instrument measures the same concept in the same way across subgroups of respondents or time points of data assessment.

Measurement invariance (MI) can be assessed with multiple-group CFA (MGCFA). Impose equality constrains on measurement parameters across groups/time ("fix them to be equal").

Use a sequential testing strategy to test different levels of measurement invariance: - Configural MI - Metric (weak) MI - Scalar (strong) MI - Strict MI - . . .

Configural measurement invariance

Equality constraints: Equal structure: pattern of factors and relationships of indicators and factors is equal across groups

Implications: Same construct exists across groups; no comparisons of estimates!

Metric measurement invariance

Equality constraints: Equal structure + equal factor loadings across groups

$$\lambda^1 = \lambda^2 = \lambda^G$$

Scalar measurement invariance

Equality constraints: Equal structure + equal factor loadings + equal intercepts across groups

$$\lambda^1 = \lambda^2 = \lambda^G$$

$$\tau^{1} = \tau^{2} = \tau^{G}$$

Implications: Respondents from different groups "use" the scale in a similar manner; comparison of latent means are valid

Result

- Configural invariance: same structure across groups
- Metric invariance: factor loadings set equal across groups
- Scalar invariance: factor loadings and intercepts set equal across groups

How decide which level of measurement invariance is supported by the data?

- 1. Consecutively estimate the configural, metric, and scalar invariance models
- 2. Inspect model fit as usual: χ^2 (df), CFI, RMSEA
- 3. Inspect model fit differences between models:
- $\chi^2/\Delta\chi^2(df/\Delta df)$
- $CFI/\Delta CFI$; $RMSEA/\Delta RMSEA$