C语言重现机器学习算法---测试说明

1. Simple Linear Regression (20)

• 参数说明

○ 数据集: Swedish Auto Insurance Dataset

○ 数据集分割: train-test split, 0.6:0.4

○ 评估指标: root mean squared error

○ 基准模型: zero rule algorithm

• 测试结果

○ 分别用不同的seed(1,39,97),生成不同的训练集-数据集分割多次评估

```
Simple Linear Regression :
                      root mean squared error
                                                                     40.060269
Zero Rule :
                      root mean squared error
                                                                     69.857813
Simple Linear Regression:
                                                                    43.333857
                      root mean squared error
Zero Rule:
                      root mean squared error
                                                                    82.314053
Simple Linear Regression :
                      root mean squared error
                                                                    36.059726
Zero Rule:
                      root mean squared error
                                                                    92.323789
```

• main.c相关代码

```
train_size = s_rate * row_num;
    rand_index(row_num, 2020, index);

linear_pre(data, 0, col_num, index, train_size);
    printf("\n Simple Linear Regression : ");
    rmse_metric( data, col_num, index, train_size);

printf(" Zero Rule : ");
    zero_rule(data,col_num,0,index,train_size);
    rmse_metric( data, col_num, index, train_size);
```

2. Multivariate Linear Regression (25)

• 参数说明

○ 数据集: Wine Quality Dataset

○ 数据集分割: cross validation split, 5-fold

○ 每组分割训练次数: 100

○ 评估指标: root mean squared error

○ 基准模型: zero rule algorithm

• 测试结果

0

○ 分别用不同的seed(1,39,97),生成不同的训练集-数据集分割多次评估

カが元代的は35CCは(1,33,37),工版代的は新い法、安然指来力配を八斤旧	
Multivariate Linear Regression :	
root mean squared error	0.133546
root mean squared error	0. 133788
root mean squared error	0. 131936
root mean squared error	0. 125695
root mean squared error	0. 120750
average rmse : 0.129143	
Zero Rule:	
root mean squared error	0. 150609
root mean squared error	0. 147959
root mean squared error	0.243164
root mean squared error	0. 150587
root mean squared error	0.141382
average rmse : 0.166740	
Multivariate Linear Regression :	
root mean squared error	0. 126826
root mean squared error	0.137540
root mean squared error	0. 127117
root mean squared error	0.126137
root mean squared error	0.133576
average rmse : 0.130239	
Zero Rule:	
root mean squared error	0.144318
root mean squared error	0.229013
root mean squared error	0.168494
root mean squared error	0.142185
root mean squared error	0.156179
average rmse : 0.168038	

```
Multivariate Linear Regression :
                     root mean squared error
                                                                   0.132609
                     | root mean squared error |
                                                                   0.137259
                     root mean squared error
                                                                   0.127166
                     root mean squared error
                                                                   0.125139
                     root mean squared error
                                                                   0.127039
average rmse : 0.129842
Zero Rule:
                     root mean squared error
                                                                   0.148418
                     root mean squared error
                                                                   0.228313
                                                                   0.168835
                     root mean squared error
                     | root mean squared error |
                                                                   0.145721
                                                                   0.150087
                     root mean squared error
average rmse : 0.168275
```

• main.c相关代码

```
normalize_data(data,col_num);
printf(" \n\n Multivariate Linear Regression : \n");
    mlr_eva(l_rate, epoch, data, col_num, k);
   //生成第一个随机索引数组
   rand_index(row_num, 1, index);
   fold = row_num/k;
   train_size = fold*(k-1);
   printf(" \nZero Rule: \n");
   temp = 0;
   //交叉检验
   for(i=0;i<k;i++)
       zero_rule(data,col_num,0,index, train_size,count);
       temp += rmse_metric(data, col_num, index, train_size);
       next_fold(fold, row_num, index);
   temp /= k;
    printf("\n average rmse : %f \n",temp);
```

3. Perceptron (25)

参数说明

○ 数据集: Sonar Dataset

○ 数据集分割: cross validation split, 7-fold

○ 学习速率: 0.01

○ 评估指标: accuracy

○ 基准模型: zero rule algorithm

• 测试结果

○ 分别用不同的seed(1,39,97),生成不同的训练集-数据集分割多次评估

```
Perceptron:
accuracy of fold[0]: 0.735294
accuracy of fold[1]: 0.676471
accuracy of fold[2]: 0.882353
accuracy of fold[3]: 0.500000
accuracy of fold[4]: 0.735294
accuracy of fold[5] : 0.735294
accuracy of fold[6] : 0.794118
average accuracy : 0.722689
Zero Rule:
accuracy of fold[0]: 0.617647
accuracy of fold[1]: 0.529412
accuracy of fold[2]: 0.411765
accuracy of fold[3]: 0.470588
accuracy of fold[4]: 0.470588
accuracy of fold[5]: 0.558824
accuracy of fold[6]: 0.647059
average accuracy : 0.529412
Perceptron:
accuracy of fold[0] : 0.764706
accuracy of fold[1]: 0.852941
accuracy of fold[2]: 0.617647
accuracy of fold[3]: 0.617647
accuracy of fold[4]: 0.647059
accuracy of fold[5]: 0.617647
accuracy of fold[6]: 0.735294
average accuracy : 0.693277
Zero Rule:
accuracy of fold[0]: 0.617647 accuracy of fold[1]: 0.500000 accuracy of fold[2]: 0.470588
accuracy of fold[3]: 0.617647
accuracy of fold[4]: 0.529412
accuracy of fold[5] : 0.382353
accuracy of fold[6] : 0.588235
average accuracy : 0.529412
```

```
Perceptron:

accuracy of fold[0] : 0.735294
accuracy of fold[1] : 0.676471
accuracy of fold[2] : 0.676471
accuracy of fold[3] : 0.764706
accuracy of fold[4] : 0.647059
accuracy of fold[5] : 0.647059
accuracy of fold[6] : 0.852941
average accuracy : 0.714286

Zero Rule:

accuracy of fold[0] : 0.676471
accuracy of fold[1] : 0.558824
accuracy of fold[2] : 0.470588
accuracy of fold[3] : 0.500000
accuracy of fold[4] : 0.558824
accuracy of fold[5] : 0.470588
accuracy of fold[6] : 0.529412
```

• main.c相关代码

```
pcep_eva(1_rate, epoch, data, co1_num,k);
   //生成第一个随机索引数组
   rand_index(row_num, 1, index);
   fold = row_num/k;
   train_size = fold*(k-1);
   printf("\n Zero Rule: \n");
   //交叉检验
   for(i=0;i<k;i++)
       zero_rule(data,col_num,1,index, train_size,count);
       acc[i] = accuracy(data,col_num,index,train_size);
       next_fold(fold, row_num, index);
   }
   for(i=0;i<k;i++)
       temp += acc[i];
       printf("\n accuracy of fold[%d] : %f",i,acc[i]);
   }
    temp /= k;
    printf("\n average accuracy : %f \n",temp);
```

4. Naive Bayes (30)

参数说明

○ 数据集: Iris Flower Species Dataset

○ 数据集分割: cross validation split, 7-fold

○ 评估指标: accuracy

○ 基准模型: zero rule algorithm

• 测试结果

○ 分别用不同的seed(1,39,97,2021),生成不同的训练集-数据集分割多次评估

```
Naive Bayes:
accuracy of fold[0]: 0.666667 accuracy of fold[1]: 0.708333
accuracy of fold[2]: 0.666667
accuracy of fold[3] : 0.833333
accuracy of fold[4]: 0.708333
accuracy of fold[5]: 0.916667
accuracy of fold[6]: 0.958333
average accuracy : 0.779762
Zero Rule:
accuracy of fold[0]: 0.250000
accuracy of fold[1]: 0.333333
accuracy of fold[2]: 0.250000
accuracy of fold[3]: 0.166667
accuracy of fold[4] : 0.250000
accuracy of fold[5]: 0.291667
accuracy of fold[6] : 0.333333
average accuracy: 0.267857
Naive Baves:
accuracy of fold[0]: 0.416667
accuracy of fold[1]: 0.958333
accuracy of fold[2]: 0.916667
accuracy of fold[3]: 0.791667
accuracy of fold[4]: 0.666667
accuracy of fold[5] : 0.750000
accuracy of fold[6] : 0.750000
average accuracy : 0.750000
Zero Rule:
accuracy of fold[0] : 0.208333
accuracy of fold[1] : 0.333333
accuracy of fold[2]: 0.208333
accuracy of fold[3]: 0.375000
accuracy of fold[4]: 0.416667
accuracy of fold[5]: 0.375000
accuracy of fold[5]: 0.291667
average accuracy : 0.315476
```

```
Naive Bayes:
accuracy of fold[0] : 0.958333
accuracy of fold[1]: 0.541667
accuracy of fold[2]: 1.000000
accuracy of fold[3]: 1.000000
accuracy of fold[4]: 0.666667
accuracy of fold[5] : 0.791667
accuracy of fold[6] : 0.458333
average accuracy : 0.773810
Zero Rule:
accuracy of fold[0] : 0.166667
accuracy of fold[1] : 0.125000
accuracy of fold[2] : 0.291667
accuracy of fold[3] : 0.458333
accuracy of fold[4]: 0.291667
accuracy of fold[5]: 0.333333
accuracy of fold[6]: 0.291667
average accuracy : 0.279762
Naive Bayes:
accuracy of fold[0] : 1.000000
accuracy of fold[1] : 0.833333
accuracy of fold[2] : 0.583333
accuracy of fold[3]: 1.000000
accuracy of fold[4]: 0.875000
accuracy of fold[5] : 0.916667
accuracy of fold[6] : 0.708333
average accuracy : 0.845238
Zero Rule:
accuracy of fold[0] : 0.250000
accuracy of fold[1]: 0.333333
accuracy of fold[2]: 0.166667
accuracy of fold[3] : 0.208333
accuracy of fold[4] : 0.291667
accuracy of fold[5] : 0.125000
accuracy of fold[6] : 0.333333
average accuracy : 0.244048
```

• main.c相关代码

```
bayes_top(data,col_num,k);

//生成第一个随机索引数组
rand_index(row_num, 2021, index);
fold = row_num/k;
train_size = fold*(k-1);
printf("\n zero Rule: \n");
//交叉检验
for(i=0;i<k;i++)
{
    zero_rule(data,col_num,1,index, train_size,count);
    acc[i] = accuracy(data,col_num,index,train_size);
    next_fold(fold, row_num, index);
}
```

```
for(i=0;i<k;i++)
{
    temp += acc[i];
    printf("\n accuracy of fold[%d] : %f",i,acc[i]);
}
temp /= k;
printf("\n average accuracy : %f \n",temp);</pre>
```