Relatório de Atividades Computação Inspirada pela Natureza

Trabalho 3: PSO e ACO

Davi Augusto Neves Leite

Professor: Fabricio Aparecido Breve

Departamento de Computação, Faculdade de Ciências, Universidade Estadual Paulista Júlio de Mesquita Filho

1 Introdução

O Algoritmo de Otimização por Enxame de Partículas (PSO) e o Algoritmo de Otimização por Colônia de Formigas (ACO) são duas técnicas de otimização inspiradas em fenômenos da natureza e que têm sido amplamente utilizadas para resolver problemas complexos em várias áreas da Computação, como ajuste de parâmetros, treinamento de redes neurais artificiais e busca por máximos e mínimos de funções.

O PSO é baseado no comportamento coletivo de um enxame de partículas, como pássaros ou cardumes de peixes, em busca de alimentos. No âmbito computacional, cada partícula representa uma solução candidata e é influenciada pelo seu próprio histórico de desempenho (comportamento cognitivo) e pelas melhores soluções encontradas pelas outras partículas (comportamento social). Ao ajustar sua posição no espaço de busca, as partículas exploram áreas promissoras e compartilhando informações com seus vizinhos, permitindo uma busca eficiente por soluções ótimas em espaços multidimensionais e em problemas não lineares e não convencionais.

Por outro lado, o ACO é baseado no comportamento das formigas ao encontrar o caminho mais curto entre seu ninho e uma fonte de alimento. As formigas depositam feromônios no solo enquanto percorrem os caminhos, servindo como um sinalizador para outras formigas seguirem o caminho mais intenso em feromônios. Computacionalmente, o ACO utiliza grafos para representar este comportamento. Inicialmente, cria-se uma colônia virtual de formigas, em que cada formiga representa uma solução candidata. Através das iterações, as formigas exploram o espaço de busca percorrendo as arestas do grafo e atualizam os feromônios associados a cada solução. Esse processo reforça o caminho mais curto, permitindo ao algoritmo encontrar soluções de alta qualidade, sendo especialmente útil em problemas de otimização de caminhos, como o Problema do Caixeiro Viajante (TSP). Esse problema, em poucas palavras, é um desafio de otimização combinatória que busca determinar o menor caminho possível, isto é, minimizar a distância total percorrida, para que um "caixeiro viajante" visite um conjunto de cidades, passando por cada cidade exatamente uma vez e retornando à cidade de origem.

Diante disso, o presente relatório tem por objetivo investigar o desempenho do PSO e ACO em diferentes configurações e objetivos. Para tanto, foram realizados dois exercícios distintos: o primeiro envolveu a otimização da função de Rosenbrock usando o PSO, enquanto o segundo abordou a otimização de um TSP utilizando o ACO. Para cada exercício, foram testadas diferentes configurações dos algoritmos, como a velocidade no PSO e os parâmetros alfa e beta no ACO. Além disso, o desempenho do PSO foi comparado com o Algoritmo Genético (AG), o qual foi testado com diferentes taxas de crossover e mutação.

1.1 Organização do Trabalho

O presente relatório está estruturado da seguinte forma: na Seção 2 tem-se a descrição dos experimentos gerais propostos e materiais utilizados. Na Seção 3, são descritos os experimentos específicos de cada exercício, apresentados e discutidos os resultados obtidos. Por fim, na Seção 4 são apresentadas as considerações finais gerais considerando o contexto de aplicação do PSO e ACO em cada exercício.

2 Materiais e Métodos

A fim de medir-se a acurácia do PSO e do ACO para os problemas propostos no enunciado do trabalho, foi realizada uma avaliação quantitativa baseada na captura de dados de aptidão, número de iterações e de tempo de execução. Como cada exercício possui suas próprias particularidades experimentais, os métodos estão descritos em capítulos relativos a cada exercício na Seção 3. Contudo, enfatiza-se que, para cada exercício, foram geradas tabelas com valores estatísticos, contendo a média, o desvio padrão, o mínimo, a mediana e o máximo, para a aptidão obtida, para o número de iterações e para o tempo de execução (em segundos), além de gráficos de convergência do tipo "melhor aptidão x iteração". Especificamente, ainda foi gerado o gráfico do caminho mínimo obtido com o ACO no segundo exercício, com a finalidade de tornar os resultados mais visuais e interpretativos.

2.1 Materiais

Os principais recursos necessários para a execução do trabalho podem ser vistos a seguir.

1. Software

- Sistemas Operacionais: Windows 11 para desktop;
- Ambiente de Desenvolvimento Integrado: Microsoft Visual Studio Code;
- Linguagem de Programação: Python 3.11.3 64-bit.
 Pacotes Extras Não-Nativos: NumPy, MatPlotLib e tsplib95.

2. Hardware

 Notebook pessoal Lenovo Ideapad 330-15IKB com: processador Intel Core i7-8550U, HDD WD Blue WD10SPZX de 1TB, SSD Crucial BX500 de 240GB, 12 GB DDR4 de Memória RAM e placa de vídeo NVIDIA GeForce MX150 com 2 GB GDDR5 de memória.

3 Experimentos e Resultados

O objetivo deste capítulo é apresentar os experimentos e resultados obtidos para cada um dos exercícios. O exercício 01, referente ao PSO, será detalhado na Subseção 3.1, enquanto que o exercício 02, referente ao ACO, na Subseção 3.2.

3.1 Exercício 1: PSO

O primeiro exercício consistiu na aplicação do PSO e do AG para a minimização da função de Rosenbrock $f(x,y)=(1-x)^2+100(y-x^2)^2$ no intervalo contínuo de $\left[\left[-5.0,5.0\right],\left[-5.0,5.0\right]\right]$. Ademais, tem-se a informação de que a aptidão ideal desta função, no intervalo mencionado, é $f_{min}(x,y)=0$ com o agente ideal de (x,y)=(1,1).

Diante disso, a metodologia adotada para a realização e avaliação dos experimentos consistiu em uma série de variações de parâmetros no PSO. Especificamente, foram realizados **quatro ciclos de execução**, em sequência, onde a velocidade das partículas foram variadas. Cada ciclo teve o PSO sendo executado **25 vezes**, de tal forma a garantir uma amostra estatisticamente significativa para as tabelas. De modo análogo ao AG, variou-se em pares as taxas de *crossover* e mutação para cada ciclo de execução.

Além disso, adotou-se os seguintes parâmetros para a configuração do PSO: número de partículas fixo durante os ciclos e gerado aleatoriamente entre 10 e 50; W com o valor fixo de 0.7; e AC1 e AC2 com valores fixos de 2.05. Já para o AG: bitstrings compostas por 1 bit para o sinal, 11 bits para a parte inteira e 20 bits para a parte decimal, de tal forma a representar o **IEEE float 32 bits**; população com tamanho de 30; método de seleção pelo torneio, com tamanho 3; e sem elitismo. Além disso, fixou-se o número de iterações/gerações máximo em 1000 e o número de "paciência" para a estagnação dos algoritmos em 100.

Por fim, os gráficos de convergência foram gerados a partir da **melhor execução** obtida **dentre todos os ciclos**. Considera-se como melhor execução a primeira em que a acurácia foi a menor possível. Vale ressaltar, também, que os gráficos foram escalonados com logaritmo base 10, uma vez que a representação dos valores de aptidão se tornam menos visíveis a cada avanço de iteração/geração. Já as as tabelas de aptidão, iteração/geração e tempo de execução tiveram seus dados obtidos a cada término de ciclo, ou seja, totalizando quatro linhas em cada tabela e representando diretamente os dados de cada ciclo.

3.1.1 PSO

Esta subsubseção apresenta os resultados obtidos na execução do PSO. Previamente, é importante ressaltar que cada ciclo representou respectivamente o seguinte valor de velocidade das partículas: ± 5.0 , ± 2.5 , ± 10.0 e ± 1.0 . Desta forma, na Figura 1 é possível visualizar o gráfico de convergência do tipo "aptidão x iteração" obtido do **experimento de número 1** do **primeiro ciclo**. Já na Tabela 1, na Tabela 2 e na Tabela 3 são apresentadas as tabelas de aptidão, iteração e tempo de execução, respectivamente.

Figura 1: Gráfico de Convergência do tipo "Aptidão x Iteração".

Num. Partículas	V.Min	V.Máx	Média	Desvio Padrão	Mínimo	Mediana	Máximo
48.0000	-5.0000	5.0000	0.0611	0.2992	0.0000	0.0000	1.5271
48.0000	-2.5000	2.5000	0.0000	0.0000	0.0000	0.0000	0.0000
48.0000	-10.0000	10.0000	0.3665	0.6522	0.0000	0.0000	1.5271
48.0000	-1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Tabela 1: Dados de Aptidão dos Experimentos Executados

Num. Partículas	V.Min	V.Máx	Média	Desvio Padrão	Mínimo	Mediana	Máximo
48.0000	-5.0000	5.0000	641.6800	75.0204	337.0000	655.0000	745.0000
48.0000	-2.5000	2.5000	636.6800	39.2639	546.0000	636.0000	706.0000
48.0000	-10.0000	10.0000	574.3600	157.7299	264.0000	645.0000	718.0000
48.0000	-1.0000	1.0000	627.6000	48.0250	524.0000	624.0000	744.0000

Tabela 2: Dados de Iterações dos Experimentos Executados

Num. Partículas	V.Min	V.Máx	Média	Desvio Padrão	Mínimo	Mediana	Máximo
48.0000	-5.0000	5.0000	2.1660	0.5489	1.1073	2.2554	2.9843
48.0000	-2.5000	2.5000	2.0807	0.4563	1.1674	2.0278	2.8536
48.0000	-10.0000	10.0000	1.9596	0.7036	0.7571	1.7992	3.3077
48.0000	-1.0000	1.0000	2.0394	0.5059	1.0904	1.8519	2.8441

Tabela 3: Dados do Tempo, em segundos, de Execução dos Experimentos

Com base nos dados coletados, é possível inferir que a $vel=\pm 2.5$ e a $vel=\pm 1.0$ tiveram um melhor desempenho geral em termos de acurácia do que as outras velocidades testadas, como indicado pelos seus valores de média, desvio padrão, mínimo, mediana e máximo. É importante ressaltar que o melhor valor obtido, nesta ocasião, foi o ótimo ideal da função de Rosenbrock, no intervalo definido. Além disso, a $vel=\pm 2.5$ também obteve um melhor desempenho, juntamente com a $vel=\pm 10.0$, em termos do número

de iterações executadas. Além disso, constatou-se que a $vel=\pm 10.0$ obteve os melhores valores gerais em relação ao tempo de execução, como indicado em seus valores de média, mínimo e mediana.

3.1.2 Algoritmo Genético

Esta subsubseção apresenta os resultados obtidos na execução do AG. Previamente, é importante ressaltar que cada ciclo representou respectivamente os seguintes pares de taxas de *crossover* e mutação: 0.5 e 0.1; 0.6 e 0.2; 0.7 e 0.3; 0.8 e 0.4. Desta forma, na Figura 2 é possível visualizar o gráfico de convergência do tipo "aptidão x geração" obtido do **experimento de número 22** do **segundo ciclo**. Já na Tabela 4, na Tabela 5 e na Tabela 6 são apresentadas as tabelas de aptidão, iteração e tempo de execução, respectivamente.

Figura 2: Gráfico de Convergência do tipo "Aptidão x Geração".

Tam. da População	Crossover	Mutação	Média	Desvio Padrão	Mínimo	Mediana	Máximo
30	0.5	0.1	0.0068	0.0088	0.0005	0.0045	0.0379
30	0.6	0.2	0.0046	0.0036	0.0001	0.0044	0.0151
30	0.7	0.3	0.0090	0.0103	0.0002	0.0061	0.0410
30	0.8	0.4	0.0145	0.0137	0.0007	0.0097	0.0518

Tabela 4: Dados de Aptidão dos Experimentos Executados

7	Гат. da População	Crossover	Mutação	Média	Desvio Padrão	Mínimo	Mediana	Máximo
	30	0.5	0.1	1000.0000	0.0000	1000.0000	1000.0000	1000.0000
	30	0.6	0.2	1000.0000	0.0000	1000.0000	1000.0000	1000.0000
	30	0.7	0.3	1000.0000	0.0000	1000.0000	1000.0000	1000.0000
	30	0.8	0.4	1000.0000	0.0000	1000.0000	1000.0000	1000.0000

Tabela 5: Dados de Gerações dos Experimentos Executados

Tam. da População	Crossover	Mutação	Média	Desvio Padrão	Mínimo	Mediana	Máximo
30	0.5	0.1	13.7419	1.8182	11.3204	13.3008	19.0795
30	0.6	0.2	14.1506	1.0263	11.3720	14.1095	15.8665
30	0.7	0.3	12.5868	0.4980	11.7281	12.6506	13.7492
30	0.8	0.4	12.8639	0.4867	12.0527	12.8469	13.9730

Tabela 6: Dados do Tempo, em segundos, de Execução dos Experimentos

Com base nos dados coletados, é possível inferir que o par de taxas crossover = 0.6 e mutação = 0.2 teve um melhor desempenho geral em termos de acurácia do que os outros pares de taxas testados, como indicado pelos seus valores de média, desvio padrão, mínimo, mediana e máximo. É importante ressaltar que o melhor valor obtido, nesta ocasião, foi bem próximo (0.0001) ao ótimo ideal da função de Rosenbrock, no intervalo definido. Além disso, constatou-se de que todos os pares de taxas tiveram um desempenho igual em termos do número de iterações executadas, tendo utilizado o máximo possível de iterações. Por fim, é possível visualizar que o par de taxas crossover = 0.7 e mutação = 0.3 obteve os melhores valores gerais em relação ao tempo de execução, como indicado em seus valores de média, mediana e máximo.

3.1.3 Comparação: PSO x AG

Com base nas conclusões obtidas na Subsubseção 3.1.1 e na Subsubseção 3.1.2, é possível comparar o desempenho do PSO e do AG em termos de acurácia, número de iterações realizados e tempo de execução para a minimização da função de Rosenbrock, dadas as configurações descritas anteriormente.

Inicialmente, ao analisar os resultados de aptidão, observa-se que o PSO obteve um desempenho consideravelmente superior em relação ao AG, levando em consideração o valor ótimo esperado da função analisada. Especificamente, o PSO alcançou valores médios e mínimos de aptidão, em sua grande maioria, exatamente iguais ao valor ótimo, enquanto que o AG obteve valores médios ligeiramente maiores, embora próximos ao ótimo. Isso indica que o PSO foi capaz de explorar e encontrar a solução ótima global mais eficiente do que o AG para o problema em questão.

No que diz respeito ao número de iterações, novamente o PSO apresentou um desempenho superior ao AG. Essencialmente, o AG atingiu o limite máximo de gerações permitido em todos os experimentos, mesmo com o uso do mecanismo de estagnação. Isso indica principalmente que o AG teve dificuldades em convergir para o ótimo global, ainda que com um número significativo de gerações utilizado. Em contrapartida, o PSO apresentou um desempenho mais estável, alcançando a solução ótima global em um número consideravelmente menor de iterações.

Já com relação ao tempo de execução, o PSO novamente teve um desempenho melhor, com tempos médios menores do que o AG. Especificamente, enquanto que o AG obteve tempos em torno de 14 segundos, o PSO ficou próximo aos 2 segundos. Portanto, considerando a relação entre o tempo de execução e qualidade da solução encontrada, o PSO se destaca nesta categoria por oferecer os melhores resultados com um tempo de execução consideravelmente menor do que o AG.

Em síntese, o PSO apresentou resultados de desempenho mais promissores em relação ao AG, uma vez que foi capaz de encontrar a solução ótima global em um número menor de iterações e em um tempo de execução bastante aceitável. Portanto, para a minimização da função de Rosenbrock com as configurações utilizadas, o PSO se demonstrou uma melhor abordagem do que o AG.

3.2 Exercício 2: ACO para TSP

O segundo exercício consistiu na aplicação do ACO para encontrar o caminho de distância mínima de um TSP. Especificamente, o TSP trabalhado é denominado "berlin52" e apresenta 52 localizações da cidade de Berlin, na Alemanha. Ele advém de uma base de dados denominada TSPLIB95¹, a qual contém diversos problemas relacionados ao TSP, como o ATSP (Problema do Caixeiro Viajante Assimétrico) e o HCP (Problema do Caminho Hamiltoniano). Especificamente, tem-se a informação de que a distância mínima do caminho ótimo para o "berlin52" é o valor de 7542.

A metodologia adotada para a realização e avaliação dos experimentos consistiu em uma série de variações dos parâmetros alfa (peso da trilha de feromônio) e beta (peso do desejo heurístico) no ACO. Especificamente, foram realizados quatro ciclos de execução, em sequência, sendo cada ciclo representativo de um par de valores alfa e beta. Cada ciclo teve o algoritmo sendo executado 25 vezes, de tal forma a garantir uma amostra estatisticamente significativa para as tabelas.

Diante disso, adotou-se a seguinte configuração de parâmetros do ACO: taxa de evaporação do feromônio (rho - ρ) com valor de 0.5; quantidade de feromônio depositado por uma formiga (Q) com valor de 100; número de formigas elitistas em 5; e trilha de feromônio inicial em 10^{-6} . Com relação aos valores de alfa e beta, variou-se em um par para cada ciclo, respectivamente em: 1.0 e 5.0; 5.0 e 1.0; 2.0 e 2.0; 2.0 e 5.0. Além disso, fixou-se o número de iterações máximo em 150 e o número de "paciência" para a estagnação dos algoritmo em 10.

Além disso, dois gráficos foram gerados a partir da **melhor execução** obtida **dentre todos os ciclos**: o primeiro contemplando a convergência do ACO, no modelo de "Distância do Menor Caminho x Iteração"; e o segundo contemplando o caminho mínimo conectando as cidades, de tal forma a trazer um resultado mais visual da distância obtida. Considera-se como melhor execução a primeira em que distância mínima foi a menor possível. Já as as tabelas de aptidão, iteração/geração e tempo de execução tiveram seus dados obtidos a cada término de ciclo, ou seja, totalizando quatro linhas em cada tabela e representando diretamente os dados de cada ciclo.

Por fim, é possível visualizar na Figura 3 o gráfico de convergência do ACO, obtido do **experimento de número 22** do **quarto ciclo**. Seguidamente, é possível visualizar o caminho entre as cidades da distância mínima obtida na Figura 4. Já na Tabela 7, na Tabela 8 e na Tabela 9 são apresentadas as tabelas de aptidão, iteração e tempo de execução, respectivamente.

¹Disponível em: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

Figura 3: Gráfico de Convergência do tipo "Distância Mínima x Iteração".

Figura 4: Gráfico do Caminho Mínimo Obtido.

Alfa	Beta	Média	Desvio Padrão	Mínimo	Mediana	Máximo
1.0000	5.0000	8039.4672	131.8766	7674.2465	8073.2243	8185.2229
5.0000	1.0000	9216.9989	368.3766	8615.6424	9135.8190	9999.3389
2.0000	2.0000	8535.7924	181.9626	8244.5917	8500.6035	8957.3720
2.0000	5.0000	7866.4710	135.3505	7663.5852	7870.4449	8197.9052

Tabela 7: Dados de Distância Mínima dos Experimentos Executados

Alfa	Beta	Média	Desvio Padrão	Mínimo	Mediana	Máximo
1.0000	5.0000	150.0000	0.0000	150.0000	150.0000	150.0000
5.0000	1.0000	139.6800	24.2911	67.0000	150.0000	150.0000
2.0000	2.0000	150.0000	0.0000	150.0000	150.0000	150.0000
2.0000	5.0000	150.0000	0.0000	150.0000	150.0000	150.0000

Tabela 8: Dados de Iterações dos Experimentos Executados

Alfa	Beta	Média	Desvio Padrão	Mínimo	Mediana	Máximo
1.0000	5.0000	63.6695	11.0942	50.0895	64.5146	92.4577
5.0000	1.0000	69.1623	17.8697	32.4556	69.4805	111.0851
2.0000	2.0000	54.0359	0.9198	53.1465	53.8406	58.1700
2.0000	5.0000	53.9469	0.6020	52.7333	54.0204	54.7224

Tabela 9: Dados do Tempo, em segundos, de Execução dos Experimentos

Com base nos dados coletados, é possível inferir que o par de taxas alfa=2.0 e beta=5.0 teve um melhor desempenho geral em termos de acurácia do que os outros pares de taxas testados, como indicado pelos seus valores de média, mínimo e mediana. É importante ressaltar que o melhor valor obtido, nesta ocasião, foi de 7663.5852 e representa **uma diferença de aproximada de 121.6 da distância mínima ótima do problema**, demonstrando um bom valor encontrado. Além disso, constatou-se de que quase todos os pares de taxas tiveram um desempenho semelhante em termos do número de iterações executadas, tendo utilizado o máximo possível de iterações, exceto pelo par de taxas alfa=5.0 e beta=1.0 o qual obteve um valor melhor para a média e o mínimo. Por fim, é possível visualizar que o par de taxas alfa=2.0 e beta=5.0 obteve os melhores valores gerais em relação ao tempo de execução, como indicado em seus valores de média, desvio padrão e máximo.

4 Considerações Finais

Em síntese, este relatório teve como objetivo avaliar o desempenho do PSO e do ACO em diferentes configurações e contextos de aplicação. Os resultados obtidos demonstram, de forma geral, que o PSO é um algoritmo mais adequado do que o AG para otimizar a função de Rosenbrock, ao passo que o ACO é altamente indicado para resolver problemas do tipo TSP.

No primeiro exercício, o PSO demonstrou uma capacidade impressionante de otimizar com precisão a função de Rosenbrock, mesmo sob várias condições experimentais, incluindo diferentes taxas de velocidade das partículas. De modo geral, o algoritmo superou o AG na mesma tarefa, obtendo, em média, valores de aptidão superiores em menos iterações e tempo de execução. Em relação aos resultados, enquanto que o PSO encontrou o valor ideal de 0 em grande parte das experimentações e em menos iterações do que o máximo permitido, o AG alcançou valores de aptidão próximos ao ideal, utilizando as 1000 iterações máximas permitidas. Quanto ao tempo de execução, o PSO levou aproximadamente 2 segundos para encontrar a solução, enquanto que o AG demorou cerca de 14 segundos.

No segundo exercício, o ACO demonstrou uma excelente capacidade de encontrar o caminho ótimo e sua respectiva distância mínima, mesmo diante de várias condições experimentais, incluindo diferentes taxas de alfa e beta. No entanto, o algoritmo encontrou certa dificuldade em se aproximar da distância ideal, mesmo tendo o melhor valor encontrado com uma diferença "pequena" de aproximadamente 121.6 em relação ao valor ótimo. Essa dificuldade é evidenciada pelos valores médios, que variaram entre 8000 e 9000 para as taxas utilizadas. Além disso, é importante notar que o algoritmo frequentemente atingiu o limite máximo de 150 iterações permitidas, e o tempo de execução médio foi próximo de 60 segundos.

Portanto, é evidente que tanto o PSO quanto o ACO são ferramentas eficientes e versáteis para a solução de problemas. O PSO é especialmente adequado para otimização de funções, enquanto o ACO é eficaz na busca pelo caminho ótimo com a distância mínima em problemas de otimização de caminho. Os resultados obtidos demonstram a notável adaptabilidade desses algoritmos e os tornam escolhas excelentes para resolver tarefas não triviais em diversos contextos e cenários.