

Echem Rnx. Engg. CL 611

Prof. Bharat Suthar

Department of Chemical Engineering IIT Bombay, Mumbai, India, 400076

Characterization Methods

bharat.k.suthar[at]iitb.ac.in

Landline: +91 (22) 2576 7243

Admin

- Extra Class:
 - · Wednesday?
- Project weightage: 10% (5% bonus for extra efforts based on presentation)
- Project Timeline:
 - Project topic submission: 24th Oct 11.59 PM (Moodle) PPT Format
 - Project statement undertaken, objective, proposed work steps, novelty and difference from existing projects in COMSOL
 - How it is related to the course-work.
 - Distribution of the work and timelines. (not more than 2 slides per group).
 - Help:
 - Today after the class
 - Online session tomorrow (based on request)
 - Intermediate update: Help session will be organized.
 - Final submission: 10th Nov 11.59 PM
 - Presentation submission 10th Nov
 - 20 min presentation (timing flexible).

Quiz

Thursday Last 20 mins:

Quiz syllabus: Transport

You should be able to solve the following problem:

ILLUSTRATION 4.5

ILLUSTRATION 5.1

ILLUSTRATION 5.3

Characterization of Battery Systems

Non-invasive:

- 1. Rete tests
- 2. Pulse tests (DCIR)
- 3. Electrochemical Impedance spectroscopy
 - Transport resistance
 - Reaction kinetics, capacity fade expression

Invasive:

- Geometric parameters
 Thicknesses, porosities, area, particle size and shape
- 2. Post-mortem analysis

Table V	7.	List	of	parameters.
---------	----	------	----	-------------

Symbol	Parameter	Positive Electrode ^a	Separator ^a	Negative Electrode ^a	Units
a_i	Particle Surface Area to Volume	354000		144720	m^2/m^3
Brugg	Bruggeman Coefficient	1.5 ^b	1.5 ^b	1.5 ^b	
$c_{i,\max}^s$	Maximum solid phase concentration	51554		30555	mol/m ³
$c_{i,0}^s$	Initial solid phase concentration	$c_{p,\text{max}}^s \times 0.95$		$c_{n, \max}^{s} \times 0.105$	mol/m ³
c_0	Initial electrolyte concentration	1000	1000	1000	mol/m ³
D	Electrolyte diffusivity	7.5×10^{-10}	7.5×10^{-10}	7.5×10^{-10}	m ² /s
D_i^s	Solid Phase Diffusivity	1×10^{-14}		3.9×10^{-14}	m ² /s
F	Faraday's Constant		96487		C/mol
k_i	Reaction Rate constant	2.33×10^{-11}		5×10^{-10}	m ^{2.5} /(mol ^{0.5} s)
l_i	Region thickness	80×10^{-6}	25×10^{-6}	88×10^{-6}	m
$R_{p,i}$	Particle Radius	5×10^{-6b}		10×10^{-6b}	m
R	Gas Constant		8.314		J/mol/ K
T_{ref}	Temperature		298.15		K
t_{+}	Transference number		0.364		
$\varepsilon_{f,i}$	Filler fraction	0.025		0.0326	
ε_i	Porosity	0.385	0.724	0.485	
σ_i	Solid phase electronic conductivity	59		48.24	S/m
Ω	Partial molar volume	4.0815×10^{-6c}			m ³ /mol
\boldsymbol{E}	Young's modulus	15×10^{9} d			Pa
ν	Poisson's ratio	0.3 ^d			

Schematic Illustration of 4 Echem. Methods

a potentiostatic; b galvanostatic; c potentiometric; d steady-state ac

1 Schematic illustration of four electrochemical methods

Literature Review

Weppner and Huggins: 1977

Weppner and Huggins: 1977

Weppner and Huggins: 1979

Weppner and Huggins: 1981

Determination of the Kinetic Parameters of Mixed-Conducting Electrodes and Application to the System Li₈Sb

W. Weppner and R. A. Huggins*

Department of Materials Science and Engineering, Stanford University, Stanford, California 94305

Electrochemical Investigation of the Chemical Diffusion, Partial Ionic Conductivities, and Other Kinetic Parameters in Li₃Sb and Li₃Bi

W. WEPPNER AND R. A. HUGGINS

Department of Materials Science and Engineering, Stanford University, Stanford, California 94305

Received March 5, 1977; in revised form April 29, 1977

Thermodynamic and Mass Transport Properties of "LiAI"

C. John Wen,* B. A. Boukamp,* and R. A. Huggins*

Department of Materials Science and Engineering, Stanford University, Stanford, California 94305

and W. Weppner

Max-Planck-Institut für Festkörperforschung, 7000 Stuttgart 80, Germany

Use of electrochemical methods to determine chemical-diffusion coefficients in alloys: application to 'LiAI'

C. J. Wen, C. Ho, B. A. Boukamp, I. D. Raistrick, W. Weppner, and R. A. Huggins

Diffusion Coefficient

- What is diffusion coefficient
- What is the unit of diffusivity
- Various diffusion coefficients
 - Self diffusion coefficient
 - \Box Using NMR D_{Self}
 - Tracer diffusion coefficient
 - \Box Using tracer experiments ($D_{tracer} = fD_{Self}$)
 - ☐ f relates to crystal structure 0.5-1
 - □ Chemical diffusion coefficient
 - Proportionality factor in Fick's law

Fig. 5. Compositional variation of the enhancement factor within "LiAI" at 415°C.

$$\widetilde{D} = \underbrace{\left(\frac{d \ln a}{d \ln y}\right)}_{\text{Thermo.}} D_{\text{Self}}, \text{ this factor can be as large as } 10^4$$

Where a is the activity of the mobile species A in A_yB and y is the atomic ratio of component A to B;

Analogy: Heat Conductivity Exp.

time

Insulated iron plate

$$m = 10 \text{ g}$$

$$T_0 = 25^{\circ}\text{C}$$

$$C_p = 0.45 \text{ J/(g degC)}$$

Constant heat for 10 seconds

Plot the temperature profile inside the plate from left edge to right edge of metal plate.

- At t=0
- At t=infinity
- At intermediate time

Experimental Setup

LiAl system: > 400°C

Weppner and Huggins: 1981

Fig. 2. Coulometric titration curve for lithium-aluminum system at 423°C.

4 Coulometric-titration curve for 'LiAl' at 415°C

CL 611 | Bharat Suthar | IIT Bombay, Mumbai, India

Analogy:

Temp vs Enthalpy Change & OCV vs degree of lithiation curve

Temperature / Enthalpy Relationship of 1 mol of Water through its phase changes under constant pressure

350 10 30 40 50 X_{Li} (a1.%) 60 65 70

X_{Li} (at.%) 5 10

1.2 E(y+0) = 1,478 V

E(y+0) = 1,478 V

350 05 0.1

y in LiyAl

Fig. 2. Coulometric titration curve for lithium-aluminum system at 423°C.

Weppner and huggins Kevin G. Gallagher et al, JES, 2012

Experimental Setup:

Al, 'LiAl' (s) | LiCl-KCl (eutectic) | 'LiAl' (s)

Pictorial Description:

Mathematical Derivation

$$\frac{\partial c_1(x,t)}{\partial t} = \tilde{D} \frac{\partial^2 c_1(x,t)}{\partial x^2}$$
 [28]

with the initial and boundary conditions

$$c_i(x, t = 0) = c_0 \quad (0 \le x \le L)$$
 [29]

$$-\widetilde{D}\frac{\partial c_i}{\partial x}\bigg|_{x=0} = \frac{I_o}{Sz_i a} \quad (t \ge 0)$$
 [30]

$$\frac{\partial c_i}{\partial x} \bigg|_{x=L} = 0 \quad (t \ge 0)$$
 [31]

$$c_{i}(x=0,t) = c_{o} + \frac{2I_{o}\sqrt{t}}{Sz_{i}q\sqrt{D}} \sum_{n=o}^{\infty} \left(\operatorname{ierfc} \left[\frac{nL}{\sqrt{D}t} \right] + \operatorname{ierfc} \left[\frac{(n+1)L}{\sqrt{D}t} \right] \right)$$
 [32]

with $\operatorname{ierfc}(\lambda) = [\pi^{-1/2} \exp(-\lambda^2)] - \lambda + [\lambda \operatorname{erf}(\lambda)],$

$$\frac{dc_{i}(x=0,t)}{d\sqrt{t}} = \frac{2I_{o}}{Sz_{i}q\sqrt{\tilde{D}\pi}} \quad (t << L^{2}/\tilde{D}) \quad [33]$$

$$dc_i = \frac{N_A}{V_M} d\delta$$
 $\Delta \delta = \frac{I_o \tau M_B}{z_A m_B F}$

$$\frac{dE}{d\sqrt{t}} = \frac{2V_{\rm M}I_{\rm o}}{SFz_{\rm i}\sqrt{\tilde{D}\pi}} \frac{dE}{d\delta} \quad (t << L^2/\tilde{D})$$

$$\widetilde{D} = \frac{4}{\pi} \left(\frac{V_{\rm M}}{SFz_{\rm i}} \right)^2 \left[I_{\rm o} \left(\frac{dE}{d\delta} \right) \left| \left(\frac{dE}{d\sqrt{t}} \right) \right|^2 \right]$$

$$(t << L^2/\widetilde{D})$$

$$\widetilde{D} = \frac{4}{\pi} \left(\frac{m_{\rm B} V_{\rm M}}{M_{\rm B} S} \right)^2 \left[\frac{\Delta E_{\rm s}}{\tau \left(\frac{dE}{d\sqrt{t}} \right)} \right]^2 \quad (t << L^2/\widetilde{D})$$
[37]

$$\widetilde{D} = \frac{4}{\pi \tau} \left(\frac{m_{\rm B} V_{\rm M}}{M_{\rm B} S} \right)^2 \left(\frac{\Delta E_{\rm s}}{\Delta E_{\rm t}} \right)^2 \quad (\tau << L^2 / \widetilde{D}) \quad [38]$$

Weppner and Huggins: 1981

Processing of the Data:

Fig. 11. Time dependence of voltage using GITT

Weppner and Huggins

Another Set of Data

Fig. 3. Typical transient voltage change of the galvanic cell with a Li_3Sb sample after a constant current of 2.5 \times 10 $^{-4}$ A cm² was applied. LiCl-KCl(e) was used as a molten salt electrolyte, and two-phase Al, LiAl mixtures used as counter and reference electrodes.

Fig. 4. Representation of the transient voltage of the galvanic cell as a function of the square root of the time. The experimental conditions were the same as those of Fig. 3.

Self vs Chemical Diffusivity

Fig. 2. Coulometric titration curve for lithium-aluminum system at 423°C.

Fig. 13. Variation of diffusivity of Li in "LiA!" with composition at 415°C.

Weppner and Huggins

Summary:

Weppner and Huggins

Consider Two Following Experiments:

at different OCV points (or initial concentration) having zero and non-zero slope.

- Consider the two following exp.
 - Slope of OCV is not zero
 - Slope of OCV curve is zero
- What will happen to the dynamic response?
- In case slope is zero, what information can we get.
- ☐ Can we use that information.

Fig. 2. Coulometric titration curve for lithium-aluminum system at 423°C.

Li-C₆ System

Porous Electrode vs Solid Plate

- ☐ Discussion.
- ☐ Effect of electrolyte transport

Reference:

☐ Weppner and Huggins: work between 1977-81

Parameters:

