Contents

1	Ten	nplate	2
2	Sea	rch	2
	2.1	Ternary Search	2
3	Algebra 3		
	3.1	All divisors	3
	3.2	Primality test	3
	3.3	Binary exponentiation	3
	3.4	Greatest common divisor	4
		3.4.1 Least common multiple	4
		3.4.2 Extended Euclides Algorithm	4
	3.5	Linear Diophantine Equations	4
		3.5.1 Any solution	4
	3.6	Integer Factorization	5
		3.6.1 Pollard's Rho	5
	3.7	Fast Fourier Transform	6
		3.7.1 Polynomial Multiplication	7
4	Gra	phs	8
	4.1	DFS	8
	4.2	BFS	8
		4.2.1 Shortest path on unweighted graph	8
	4.3	Flood Fill	9
	4.4	1 0 (1)	10
			10
		0	10
	4.5	1 1 /	11
	4.6	v (1)	11
	4.7	Dijkstra	12
5	Mat	th Formulas	13
	5.1	Sum of an arithmetic progression	13
	5.2	Permutation with repeated elements	13
	5.3	Check if is geometric progression	13
	5.4	Bitwise equations	13
	5.5		13
			13
			14
	5.6	Binomial expansion	14

```
      6
      Facts
      14

      6.1
      XOR
      14

      6.1.1
      Self-inverse property
      14

      6.1.2
      Identity element
      14

      6.1.3
      Commutative
      14

      6.1.4
      Associative
      14
```

1 Template

```
#include <bits/stdc++.h>
using namespace std;
using 11 =
                       long long;
#define vll
                       vector<11>
#define vvll
                       vector <vll>>
#define pll
                       pair<ll, ll>
#define vpll
                       vector <pll>
#define vvpll
                       vector < vpll >
#define endl '\n'
#define all(xs)
                       xs.begin(), xs.end()
#define found(x, xs) (xs.find(x) != xs.end())
```

2 Search

2.1 Ternary Search

 $O(\log n)$

Function f(x) is unimodal on an interval [l, r]. Unimodal means: the function strictly increases first, reaches a maximum, and then strictly decreases OR the function strictly decreases first, reaches a minimum and then strictly decreases

```
16 return f(1);
17 }
```

3 Sequences

3.1 Max/Min subsegment

O(n)

```
ll kadane(const vll &a) {
        11 n = a.size();
3
        ll ans = a[0], ans_1 = 0, ans_r = 0;
        11 \text{ sum} = 0, \text{ minus_pos} = -1;
        for (ll r = 0; r < n; ++r) {
             sum += a[r];
            if (sum > ans) {
9
                 ans = sum;
11
                 ans_1 = minus_pos + 1;
                 ans_r = r;
            }
13
            if (sum < 0) {</pre>
14
                 sum = 0;
                 minus_pos = r;
16
            }
17
        }
19
        return ans;
20
21
```

3.1.1 Max/Min submatrix

 $O(nm^2)$

```
14 | return ans; 16 | }
```

4 Algebra

4.1 All divisors

 $O(\sqrt{n})$

```
vll divisors(ll n) {
vll divs;
for (ll i = 1; 1LL * i * i <= n; i++) {
   if (n % i == 0) {
      divs.push_back(i);
      if (i != n / i) {
        divs.push_back(n / i);
      }
   }
}
return divs;
}</pre>
```

4.2 Primality test

 $O(\sqrt{n})$

```
bool isPrime(11 n)
{
    if(n!=2 && n % 2==0)
        return false;

    for(11 d=3; d*d <= n; d+=2)
    {
        if(n % d==0)
            return false;
    }

    return n >= 2;
}
```

4.3 Binary exponentiation

 $O(\log n)$

4.4 Greatest common divisor

 $O(\log \min(a, b))$

4.4.1 Least common multiple

4.4.2 Extended Euclides Algorithm

```
11 gcd(l1 a, l1 b, l1& x, l1& y) {
       if (b == 0) {
2
           x = 1;
3
           y = 0;
           return a;
5
       }
6
       ll x1, y1;
       11 d = gcd(b, a % b, x1, y1);
       x = y1;
       y = x1 - y1 * (a / b);
10
       return d;
11
   }
12
```

4.5 Linear Diophantine Equations

 $O(\log \min(a, b))$

4.5.1 Any solution

```
bool find_any_solution(ll a, ll b, ll c, ll &x0, ll &y0, ll
    &g) {
       g = gcd(abs(a), abs(b), x0, y0);
       if (c % g) {
            return false;
       }

       x0 *= c / g;
       y0 *= c / g;
       if (a < 0) x0 = -x0;
       if (b < 0) y0 = -y0;
       return true;
}</pre>
```

4.6 Integer Factorization

4.6.1 Pollard's Rho

 $O(\sqrt[4]{n}\log n)$

```
/**
       @param a first multiplier
       Oparam b second multiplier
       @param mod
       @return a * b mod n (without overflow)
       @brief Multiplies two numbers >= 10^18
       Time Complexity: O(log b)
   11 mult(11 a, 11 b, 11 mod) {
9
       11 \text{ result = 0};
10
       while (b) {
11
            if (b & 1)
12
                result = (result + a) % mod;
13
            a = (a + a) \% mod;
14
            b >>= 1;
15
16
       return result;
17
   }
18
   /**
       @param x first multiplier
21
       @param c second multiplier
       @param mod
```

```
Oreturn f(x) = x^2 + c \mod (mod)
24
       Obrief Polynomial function chosen for pollard's rho
25
       Time Complexity: 0(1)
26
   */
27
   11 f(11 x, 11 c, 11 mod) {
       return (mult(x, x, mod) + c) % mod;
29
   }
30
31
   /**
32
       Oparam n number that we want to find a factor p
33
       @param x0 number where we will start
       Oparam c constant in polynomial function
       @return fac
36
       Obrief Pollard's Rho algorithm (works only for composite
37
         numbers)
       if(g==n) try other starting values
38
       Time Complexity: O(n^{(1/4)} \log n)
39
40
   ll rho(ll n, ll x0=2, ll c=1) {
41
       11 x = x0;
42
       11 y = x0;
43
       11 g = 1;
44
       while (g == 1) {
45
            x = f(x, c, n);
            y = f(y, c, n);
47
            y = f(y, c, n);
48
            g = gcd(abs(x - y), n);
49
50
       return g;
51
   }
52
```

4.7 Fast Fourier Transform

 $O(n \log n)$

```
using cd = complex <double >;
   const double PI = acos(-1);
2
   /**
       Oparam a vector that we want to transform
       Oparam invert inverse fft or not
       Obrief apply fft or inverse fft to a vector
       Time Complexity: O(n log n)
   void fft(vector<cd> &a, bool invert) {
10
       ll n = a.size();
11
       if (n == 1)
           return;
13
14
```

```
vector < cd > a0(n / 2), a1(n / 2);
        for (11 i = 0; 2 * i < n; i++) {
16
            a0[i] = a[2*i];
17
            a1[i] = a[2*i+1];
18
19
       fft(a0, invert);
20
       fft(a1, invert);
21
22
        double ang = 2 * PI / n * (invert ? -1 : 1);
23
       cd w(1), wn(cos(ang), sin(ang));
24
       for (11 i = 0; 2 * i < n; i++) {</pre>
            a[i] = a0[i] + w * a1[i];
26
            a[i + n/2] = a0[i] - w * a1[i];
27
            if (invert) {
28
                a[i] /= 2;
29
                a[i + n/2] /= 2;
30
            }
31
            w *= wn;
       }
33
   }
34
```

4.7.1 Polynomial Multiplication

```
/**
       @param a first polynomial coefficients
       Oparam b second polynomial coefficients
       Oreturn product of two polynomials
       Obrief Multiplies two polynomials
       Time Complexity: O(n log n)
6
   vll multiply(vll const& a, vll const& b) {
       vector < cd > fa(a.begin(), a.end()), fb(b.begin(), b.end()
           );
       11 n = 1;
10
       while (n < a.size() + b.size())</pre>
           n <<= 1;
13
       fa.resize(n);
       fb.resize(n);
14
15
       fft(fa, false);
16
       fft(fb, false);
17
       for (11 i = 0; i < n; i++)</pre>
18
            fa[i] *= fb[i];
19
       fft(fa, true);
20
21
22
       vll result(n, 0);
       for (ll i = 0; i < n; i++) {</pre>
23
            result[i] += round(fa[i].real());
24
```

5 Graphs

5.1 DFS

```
O(n+m)
```

```
void dfs(ll at, ll n ,vpll adj[], bool visited[]) {
   if(visited[at])
      return;

visited[at] = true;

vpll neighbours = adj[at];
for(auto nex: neighbours)
   dfs(nex.first, n, adj, visited);
}
```

5.2 BFS

```
O(n+m)
```

```
void bfs(ll s, ll n, vll adj[]) {
       bool visited[n] = {0};
       visited[s] = true;
       queue <11> q;
       q.push(s);
       while (!q.empty())
            vll neighbours = adj[q.front()];
            for(auto nex: neighbours) {
10
                if(!visited[nex]) {
                    visited[nex]=true;
                    q.push(nex);
                }
14
            }
            cout << q.front() << '\n';</pre>
16
           q.pop();
17
       }
18
   }
```

5.2.1 Shortest path on unweighted graph

O(n+m)

```
vll solve(ll s, ll n, vll adj[]) {
       bool visited[n] = {0};
2
       visited[s] = true;
3
       queue <11> q;
       q.push(s);
       vll prev(n, -1);
       while (!q.empty())
9
            vll neighbours = adj[q.front()];
            for(auto nex: neighbours) {
11
                if(!visited[nex]) {
12
                     visited[nex]=true;
13
                     q.push(nex);
14
                     prev[nex] = q.front();
15
16
            }
17
18
            q.pop();
       }
19
       return prev;
21
22
23
   vll reconstructPath(ll s, ll e, vll prev) {
24
       vll path;
25
       for(ll i=e; i!=-1; i=prev[i])
            path.push_back(i);
28
       reverse(path.begin(), path.end());
29
30
       if (path [0] == s)
31
            return path;
32
        else {
            vll place;
34
            return place;
35
36
   }
37
   vll bfs(ll s, ll e, ll n, vll adj[]) {
       vll prev = solve(s, n, adj);
40
41
       return reconstructPath(s, e, prev);
42
   }
43
```

5.3 Flood Fill

O(n+m)

```
int dir_y[] = {};
2
   int dir_x[] = {};
   int ff(int i, int j, char c1, char c2) {
       if ((i < 0) || (i >= n)) return 0;
       if ((j < 0) || (j >= m)) return 0;
       if (grid[i][j] != c1) return 0;
       int ans = 1;
9
       grid[i][j] = c2;
10
11
       for (int d = 0; d < 8; ++d)
           ans += floodfill(i+dir_y[d], j+dir_x[d], c1, c2);
13
14
       return ans;
15
16
```

5.4 Topological Sort (Directed Acyclic Graph)

5.4.1 DFS Variation

O(n+m)

```
void dfs(ll at, ll n ,vpll adj[], bool visited[], vll &ts) {
   if(visited[at])
      return;

visited[at] = true;

vpll neighbours = adj[at];
   for(auto nex: neighbours)
      dfs(nex.first, n, adj, visited);
   ts.push_back(at);  // Only change
}
```

5.4.2 Kahn's Algorithm

5.5 Bipartite Graph Check (Undirected Graph)

O(n+m)

```
bool isBipartite(ll s, ll n, vll adj[]) {
       queue <11> q;
       q.push(s);
       vll color(n, -1); color[s]=0;
       bool flag = true;
       while (!q.empty())
            vll neighbours = adj[q.front()];
            for(auto nex: neighbours) {
                if(color[nex] == -1) {
                    color[nex] = 1-(color[q.front()]);
                    q.push(nex);
13
                else if(color[nex] == color[q.front()]) {
14
                    flag = false;
                    break;
16
                }
            }
           q.pop();
20
21
       return flag;
22
   }
23
```

5.6 Cycle Check (Directed Graph)

```
O(n+m)
```

```
enum { UNVISITED = -1, VISITED = -2, EXPLORED=-3};

void cycleCheck(ll at, ll n ,vll adj[], int visited[], ll
    dfs_parent[]) {
    visited[at] = EXPLORED;

vll neighbours = adj[at];
```

```
for(auto nex: neighbours) {
7
            if(visited[nex] == UNVISITED) {
8
                // Tree edges (part of the DFS spanning tree)
9
                dfs_parent[nex] = at;
10
                cycleCheck(nex, n, adj, visited);
11
            }
12
            else if(visited[nex] == EXPLORED) {
13
                if(nex == dfs_parent[at]) {
14
                    // Trivial cycle
                    // Do something
                }
                else {
18
                    // Non trivial cycle - Back Edge ((u, v)
19
                        such that v is the ancestor of node u but
                         is not part of the DFS tree)
                    // Do something
20
21
           }
23
            else if(visited[nex] == VISITED) {
24
                // Forward/Cross edge ((u, v) such that v is a
25
                    descendant but not part of the DFS tree)
                // Do something
26
            }
28
       }
29
30
       visited[at] = VISITED;
31
   }
32
```

5.7 Dijkstra

 $O(n\log n + m\log n)$

```
void dijkstra(ll s, vll & d, vll & p) {
       d.assign(n, LLONG_MAX);
2
       p.assign(n, -1);
3
       d[s] = 0;
       priority_queue < pll , vpll , greater < pll >> q;
6
       q.push({0, s});
       while (!q.empty()) {
            11 v = q.top().second;
           11 d_v = q.top().first;
10
            q.pop();
            if (d_v != d[v])
12
                continue;
14
            for (auto edge : adj[v]) {
15
```

```
11 to = edge.first;
16
                 11 len = edge.second;
17
18
                 if (d[v] + len < d[to]) {</pre>
19
                      d[to] = d[v] + len;
                      p[to] = v;
21
                      q.push({d[to], to});
22
23
            }
24
        }
25
   }
```

6 Math Formulas

6.1 Sum of an arithmetic progression

$$S_n = \frac{n}{2}(a_1 + a_n)$$

6.2 Permutation with repeated elements

$$P_n = \frac{n!}{n_1! n_2! \dots n_k!}$$

6.3 Check if is geometric progression

$$a_i^2 = a_{i-1}a_{i+1}$$

6.4 Bitwise equations

$$\begin{aligned} a|b &= a \oplus b + a\&b \\ a \oplus (a\&b) &= (a|b) \oplus b \\ (a\&b) \oplus (a|b) &= a \oplus b \\ \\ a+b &= a|b+a\&b \\ a+b &= a \oplus b + 2(a\&b) \\ \\ a-b &= (a \oplus (a\&b)) - ((a|b) \oplus a) \\ a-b &= (a(b) \oplus b) - ((a|b) \oplus a) \\ a-b &= (a \oplus (a\&b)) - (b \oplus (a\&b)) \\ a-b &= ((a|b) \oplus b) - (b \oplus (a\&b)) \end{aligned}$$

6.5 Cube of Binomial

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

 $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$

6.5.1 Sum of Cubes

$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

6.5.2 Difference of Cubes

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

6.6 Binomial expansion

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

7 Facts

7.1 XOR

7.1.1 Self-inverse property

To cancel a XOR, you can XOR again the same value because $a \oplus a = 0$, so $(value \oplus a) \oplus a = value$

7.1.2 Identity element

$$a \oplus 0 = a$$

7.1.3 Commutative

$$a \oplus b = b \oplus a$$

7.1.4 Associative

$$(a \oplus b) \oplus c = a \oplus (b \oplus c)$$