1 Chapter 1: Tools for Analysis

Definition 1.1 For a set of real numbers S that is bounded above, there exist a number such that all upper bounds of S are greater than it. This number is the supremum of the set S.

Theorem 1.1 (Archimedean Principle)

- 1. Given any number ϵ , there exist a natural number n such that $n > \epsilon$
- 2. $(\forall \epsilon \in \mathbb{R})(\exists n \in \mathbb{N})\frac{1}{n} < \epsilon$

Theorem 1.2 The rationals are dense in \mathbb{R}

2 Chapter 2: Convergent Sequences

Definition 2.1 Given a sequence of numbers a_n , we say that a_n converges to the number a if $\forall \epsilon > 0$, there exists $N \in \mathbb{N}$ such that $\forall n \geq N$

$$|a_n - a| < \epsilon$$

Equivalently,

$$\lim_{n \to \infty} a_n = a$$

Theorem 2.1 (Properties of Limits) Suppose a_n and b_n are sequences that converge. Then,

1. (Linearity) $\alpha, \beta \in \mathbb{R}$

$$\lim_{n \to \infty} \alpha a_n + \beta b_n = \alpha \lim_{n \to \infty} a_n + \beta \lim_{n \to \infty} b_n$$

2. (Product Rule)

$$\lim_{n \to \infty} a_n b_n = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$$

3. (Quotient Rule) Suppose also that $b_n \neq 0$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} b_n \neq 0$. Then,

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$$

Definition 2.2 A sequence a_n is bounded if there exists nonnegative number M such that

$$|a_n| < M$$

for all n.

Theorem 2.2 Every convergent sequence is bounded

Theorem 2.3 A set S is dense in $\mathbb{R} \iff$ every number x is the limit of a sequence of S.

Theorem 2.4 (Comparison Lemma) Suppose $\lim_{n\to\infty} b_n = b$. A sequence $\lim_{n\to\infty} a_n$ converges to a number a if for some $C \geq 0$ and $N \in \mathbb{N}$,

$$|a_n - a| \le C|b_n - b|$$

for $n \geq N$

Definition 2.3 A subset S of \mathbb{R} is closed if a_n is a sequence in S that converges in S.

Theorem 2.5 Every interval [a, b] over \mathbb{R} is closed.

Definition 2.4 A sequence is said to be monotone if

$$a_n \ge a_{n-1}$$

(increasing) or

$$a_n \le a_{n-1}$$

(decreasing) for all n.

Theorem 2.6 A monotone sequence converges \iff it is bounded

Definition 2.5 Consider a sequence a_n . A subsequence is a sequence b_k such that for some sequence of strictly increasing natural numbers $n_1 < n_2 < \ldots$,

$$b_k = a_{n_k}$$

Theorem 2.7 If a_n converges to a, then every a_{n_k} converges to a

Theorem 2.8 (Sequential Compactness) Every sequence in interval [a, b] has a subsequence that converges to a number in [a, b].

3 Chapter 3: Continuous Functions

Definition 3.1 A function $f: D \to \mathbb{R}$ is said to be continuous at $x_0 \in D$ if whenever $\{x_n\}$ is a sequence that converges to x_0 , the sequence $\{f(x_n)\}$ converges to $f(x_0)$.

A function is continuous if it is continuous for all $x_0 \in D$.

Theorem 3.1 (Properties of continuity)

- $1.\ Products,\ quotients,\ and\ linear\ combinations\ of\ functions\ f\ and\ g\ are$ continuous.
- 2. Compositions of continuous functions (provided that the domain and images are consistent) are continuous

Definition 3.2 (Epsilon-Delta Convergence)