Ref. No.Ex/PG/IEE/T/1210A/2018 M.Tech (I.E.E.) 2nd Semester Examination, 2018 SUBJECT: Dynamic System Control and Optimization Full Marks 100 Answer any five. All questions carry equal marks

Time: Three hours

Answer any five. All questions carry equal marks.		
Q.No.		Marks
1.	Write short notes on: (any four) a) State space model of a Power System b) State space model of an Nuclear Reactor c) State equation for Sampled Data System d) Controllability and Observability in Continuous Time Systems e) Existence and Uniqueness of solutions to Continuous-time state equations f) Deadbeat Control g) Hamilton Jacobi Equation h) Luenberger full order state observer i) Separation principle j) Discrete-time Linear state regulator	5x4=20
2.	a) For a system described by $\dot{x}(t) = Ax(t) + Bu(t)$; $y(t) = Cx(t)$, $A = \begin{bmatrix} 1 & e^{-t} \\ 0 & -1 \end{bmatrix}$; $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$; $C = \begin{bmatrix} 1 & 1 \end{bmatrix}$, find i) $\Phi(t,\tau)$, ii)controllability Grammian, iii) minimum energy control $u^*(t)$ which drives the system from rest $x(0)=0$ to $x(1)=\begin{bmatrix} 1 & 1 \end{bmatrix}^T$ in 1s and iv) corresponding $x^*(t)$, $t \ge 0$.	8
	b) Comment on the observability of the discrete time system with $F = \begin{bmatrix} 1 & k \\ 0 & -1 \end{bmatrix}$, $g = \begin{bmatrix} 2 \\ k \end{bmatrix}$, $c = \begin{bmatrix} 1 & k \end{bmatrix}$ when k=1. If the system is observable, then determine x(1) from the control sequence u(k)=(-1)^k; k \ge 1; and the measurements: y(1) = 3, y(2)=-5. c) For a system described by $\dot{x}(t) = Ax(t) + Bu(t)$, where $A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$; $B = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$, $x(0) = x^0$, the eigenvalues of the matrix A are -1 and -2. Find a)	6
	the eigenvectors, b) the homogeneous solution and c) the non-homogeneous solution. Determine conditions on b_1 and b_2 for suppression of the two modes individually.	

Q.No.		Marks
3.	a) Find state models for the following:	8
	i) $\frac{d^3y}{dt^3} + 3\frac{d^2y}{dt^2} + 2\frac{dy}{dt} = \frac{du}{dt} + u$	
	ii) $y(k+2) + 3y(k+1) + 2y(k) = 5u(k+1) + 3u(k)$	
	b) Obtain a controllable companion form representation of the differential equation $\ddot{y} + 6\ddot{y} + 11\dot{y} + 6y = \dot{u} + u$. Is this system observable? If yes, find the initial state vector. If no, then find the initial state vector for a reducible form of this system.	3+4
	c) Find the Jordan canonical realization of $\frac{s^3 + 8s^2 + 17s + 8}{s^3 + 6s^2 + 11s + 6}$ and draw the state diagram.	5
4.	a) Illustrate the notion of energy function V for different conditions of stability/ instability. b) Discuss the way of Least Conditions of the conditions o	5
	b) Discuss the use of Lyapunov functions to estimate transients.	5
	c) For the system $A = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$, find a suitable Lyapunov function $V(x)$.	10
	Obtain the upper bound on the response time such that it takes the system to	
	go from a point on the boundary of the closed curve $V(x)=100$ to a point within the closed curve $V(x)=0.05$.	
1	a) For a unity feedback system with plant transfer function $G(s) = 5/\{s(s+1)(s+2)\}$, determine the stability of the unity feedback closed loop system using Routh Hurwitz criterion.	5
i	b) Obtain the corresponding discrete-time system matrices $F(k)$, $G(k)$ for the plant in a). Let a sampler and ZOH be introduced in the forward control path before the plant. For this closed loop sampled data system, determine the stability for this closed loop system for $T=1s$.	3+4
	Find the Lyapunov function $V(x)$ that ensures asymptotic stability of the system $A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$. Determine the upper bound on the time it takes this system to go from the initial state $x(0)=[1 \ 1]^T$ to within the area defined by	2+3+3
	$x_1^2 + x_2^2 = 0.1$.	

.