CSGE602055 Operating Systems CSF2600505 Sistem Operasi Week 08: Scheduling

Rahmat M. Samik-Ibrahim

University of Indonesia

https://os.vlsm.org/
Always check for the latest revision!

REV166 03-Oct-2018

Operating Systems 2018-2 (Room 3114) R/M (Tu/Th 13-15) \mid I (Tu/Th 15-17)

Week	Schedule	Торіс	OSC10	
Week 00	04 Sep - 12 Sep 2018	Overview 1, Virtualization & Scripting	Ch. 1, 2, 18.	
Week 01	13 Sep - 19 Sep 2018	Overview 2, Virtualization & Scripting	Ch. 1, 2, 18.	
Week 02	20 Sep - 26 Sep 2018	Security, Protection, Privacy,	Ch. 16, 17	
		& C-language		
Week 03	27 Sep - 03 Oct 2018	File System & FUSE	Ch. 13, 14, 15	
Week 04	04 Oct - 10 Oct 2018	Addressing, Shared Lib, & Pointer	Ch. 9	
Week 05	11 Oct - 17 Oct 2018	Virtual Memory	Ch. 10	
Reserved	18 Oct - 19 Oct 2018			
Mid-Term	24 Oct 2018	MidTerm (UTS): 09:00 - 11:30		
Week 06	30 Oct - 05 Nov 2018	Concurency: Processes & Threads	Ch. 3, 4	
Week 07	06 Nov - 12 Nov 2018	Synchronization & Deadlock	Ch. 6, 7, 8	
Week 08	13 Nov - 21 Nov 2018	Scheduling	Ch. 5	
Week 09	22 Nov - 28 Nov 2018	Disks, BIOS, Loader, & Systemd	Ch. 11	
Week 10	29 Nov - 05 Dec 2018	I/O & Programming	Ch. 12	
Reserved	06 Dec - 14 Dec 2018			
Final	15 Dec - 22 Dec 2018	Final (UAS): TBA	This schedule is	
Extra	12 Jan 2019	Extra assignment	subject to change.	

The Weekly Check List

☐ Resources: https://os.vlsm.org/
☐ (THIS) Slides — https://github.com/UI-FASILKOM-OS/
SistemOperasi/tree/master/pdf/
☐ Demos — https://github.com/UI-FASILKOM-OS/
SistemOperasi/tree/master/demos/
☐ Extra — BADAK.cs.ui.ac.id:///extra/
□ Problems — rms46.vlsm.org/2/195.pdf, 196.pdf,, 205.pdf
☐ Text Book : any recent/decent OS book. Eg. (OSC10) Silberschatz
et. al.: Operating System Concepts , 10 th Edition, 2018.
☐ Encode your QRC with size upto 7cm x 7cm (ca. 400x400 pixels):
"OS182 CLASS ID SSO-ACCOUNT Your-Full-Name"
\square For Week 00 , send your embedded QRC before the 2^{nd} lecture
mailto:operatingsystems@vlsm.org
With Subject: OS182 CLASS ID SSO-ACCOUNT Your-Full-Name
☐ Write your Memo (with QRC) every week.
☐ Login to badak.cs.ui.ac.id via kawung.cs.ui.ac.id for at least
10 minutes every week. Copy the weekly demo files to your own home
directory.
Fg (Week00): cp -r /extra/Week00/W00-demos/ W00-demos/

Agenda

- Start
- 2 Schedule
- 3 Agenda
- 4 Week 08
- Scheduling
- 6 CPU Burst: How Long (When)?
- MultiProcessor Schedulling
- The Two State Model
- The End

Week 08 Scheduling: Topics¹

- Preemptive and non-preemptive scheduling
- Schedulers and policies
- Processes and threads
- Deadlines and real-time issues

Week 08 Scheduling: Learning Outcomes¹

- Compare and contrast the common algorithms used for both preemptive and non-preemptive scheduling of tasks in operating systems, such as priority, performance comparison, and fair-share schemes. [Usage]
- Describe relationships between scheduling algorithms and application domains. [Familiarity]
- Discuss the types of processor scheduling such as short-term, medium-term, long-term, and I/O. [Familiarity]
- Describe the difference between processes and threads. [Usage]
- Compare and contrast static and dynamic approaches to real-time scheduling. [Usage]
- Discuss the need for preemption and deadline scheduling. [Familiarity]
- Identify ways that the logic embodied in scheduling algorithms are applicable to other domains, such as disk I/O, network scheduling, project scheduling, and problems beyond computing. [Usage]

¹Source: ACM IEEE CS Curricula 2013

Week 08: Scheduling

- Reference: (OSC10-ch05 demo-w08)
- Scheduling
 - Basic Concepts
 - WARNING: It's just a BURST
 - IO Burst
 - CPU Burst
 - CPU Burst vs. Freq (See next slide)
 - Criteria: Utilization, throughput, {turnaround, waiting, response} time.
 - (Burst) Algorithm
 - FCFS, SJF, RR, Priority, Multilevel Queue.
 - Preemptive / Non-preemptive (Cooperative) Scheduling
 - I/O Bound / CPU Bound Processes
- Thread Scheduling
 - User-level \rightarrow Process-Contention Scope (PCS): many to many/one.
 - $\bullet \ \, \mathsf{Kernel\text{-}level} \to \mathsf{System\text{-}Contention} \ \, \mathsf{Scope} \ (\mathsf{SCS}) \text{: one to one}.$
- Standard Linux Scheduling
 - Completely Fair Scheduler (CFS).
 - Real Time Scheduling.

CPU Burst: How Long (When)?

©2013 Silberschatz, Galvin and Gagne Operating System Concepts - 9th Edition

MultiProcessor Schedulling

- Asymmetric Multiprocessing vs. Symmetric Multiprocessing (SMP).
- Processor Affinity: soft vs. hard.
- NUMA: Non-Uniform Memory Access.
- Load Balancing
- Multicore Processors
- Real Time Schedulling: Soft vs. Hard.
- Big O Notation
 - O(1)
 - O(log N)
 - O(N)

The Two State Model

- CPU State I/O State CPU State . . .
 - n: processes in memory.
 - p: I/O time fraction.
 - p^n : probability n processes waiting for I/O.
 - $1 p^n$: CPU utilization of n processes.
 - $\left[\frac{(1-p^n)}{n}\right]$: CPU utilization of ONE processes.
- Example: $p = 60\% \Rightarrow$ CPU Utilization Per Process: $\left\lfloor \frac{1 (60\%)^n}{n} \right\rfloor$

CPU Utilization	Multiprogramming (%)					
N	1	2	3	4	5	
Per Process	40	32	26	21	18	

For 5 concurrent processes:
 If total time is 100 seconds; for each processs, the CPU time will be 18 seconds.

The End

- \square This is the end of the presentation.
- extstyle ext
- This is the end of the presentation.