Cache-Aware Sampling Strategies for Texture-Based Ray Casting on GPU

Junpeng Wang Fei Yang Yong Cao

Overview

- Introduction/Motivation
- Related Work
- Contribution
- Result
- Application

Motivation

Motivation

Viewing Direction

Motivation

GPU: GTX GeForce Titan

Volume size: 1024x1024x1024 x 8bit

Rendered image size: 512x512

Motivation

Volume size: 1024x1024x1024 x 8bit

Rendered image size: 512x512

Related Work

Related Work

[Weiskopf04]

Partitioning a volume into small bricks

For any direction, 2 bricks are parallel and two bricks are perpendicular to the view

Achieve a roughly constant frame rate when rotating around the Y axis

Related Work

[Weiskopf04]

Partitioning a volume into small bricks

For any direction, 2 bricks are parallel and two bricks are perpendicular to the view

Achieve a roughly constant frame rate when rotating around the Y axis

[Sugimoto2012] [Sugimoto2014]

Memory stride ratio of the 3D texture along X, Y and Z axis is 1:2:6

A warp of GPU threads should always take samples along the direction with smaller stride, so that higher cache locality could be achieved

Contribution

We are trying to improve the texture cache performance by minimizing the memory stride inside a WARP of GPU threads

Contribution

Contribution

Contribution

Contribution

Contribution

Contribution

Contribution

Map one thread to one ray (warp size = 8)

The Standard

Contribution

Map one warp of threads to one ray

Contribution

Map one warp of threads to one ray

Contribution

Map one warp of threads to one ray

Contribution

Map one warp of threads to one ray

Contribution

Map one warp of threads to one ray

Warp Marching

Single Buffer Warp Marching

sample

buffer

■ intermediate result

- sample
- buffer
- intermediate result

Double Buffer Warp Marching

sample

buffer 1

buffer 2

Double Buffer Warp Marching

• sample

buffer 1

buffer 2

sample

buffer 1

buffer 2

Double Buffer Warp Marching

sample

buffer 1

buffer 2

- sample
- buffer 1
- buffer 2

- sample
- buffer 1
- buffer 2

Double Buffer Warp Marching

sample

buffer 1

buffer 2

Double Buffer Warp Marching

sample

buffer 1

buffer 2

Application

- sample
- buffer 1
- buffer 2

- sample
- buffer 1
- buffer 2

Application

Application

Optimization Result

Warp size = 32

Texture Cache Performance

Warp Marching

Texture Cache Performance

The Standard (The Traditional)

Warp Marching

View Independent?

- Hybrid?
 - Perpendicular, the standard
 - Parallel, warp marching
- How about viewing directions in between?

View Independent?

- Hybrid?
 - Perpendicular, the standard
 - Parallel, warp marching
- How about viewing directions in between?

[Weiskopf04]

Partitioning a volume into small bricks

For any direction, 2 bricks are parallel and two bricks are perpendicular to the view

Achieve a roughly constant frame rate when rotating around the Y axis

The Standard Sampling		Warp Marching	
Block Shape	Warp Shape	Block Shape	Warp Shape
32 x 8	32 x 1		
16 x 16	16 x 2		
8 x 32	8 x 4		
•••	•••	•••	•••

The Standard Sampling		Warp Marching	
Block Shape	Warp Shape	Block Shape	Warp Shape
32 x 8 x 1	32 x 1		
16 x 16 × 1	16 x 2		
8 x 32 x 1	8 x 4		
•••	•••	•••	•••

The Standard Sampling		Warp Marching	
Block Shape	Warp Shape	Block Shape	Warp Shape
32 x 8 x 1	32 x 1 x 1		
16 x 16 × 1	16 x 2 × 1		
8 x 32 x 1	8 x 4 x 1		
•••	•••	•••	•••

The Standard Sampling		Warp Marching	
Block Shape	Warp Shape	Block Shape	Warp Shape
32 x 8 x 1	32 x 1 x 1	1x8x32	1 x 1 x 32
16 x 16 × 1	16 x 2 × 1	2x4x32	1 x 1 x 32
8 x 32 x 1	8 x 4 x 1	4x2x32	1 x 1 x 32
•••		•••	•••

The Standa	rd Sampling	Warp N	larching
Block Shape	Warp Shape	Block Shape	Warp Shape
32 x 8 x 1	32 x 1 x 1	1x8x32	1 x 1 x 32
16 x 16 × 1	16 x 2 × 1	2x4x32	1 x 1 x 32
8 x 32 x 1	8 x 4 x 1	4x2x32	1 x 1 x 32

LDAV

Warp Shape

The Standar	rd Sampling	Warp M	larching
Block Shape	Warp Shape	Block Shape	Warp Shape
32 x 8 x 1	32 x 1 x 1	1x8x32	1 x 1 x 32
16 x 16 × 1	16 x 2 × 1	2x4x32	1 x 1 x 32
8 x 32 x 1	8 x 4 x 1	4x2x32	1 x 1 x 32
			•••

Combined Approach		
Block Shape	Warp Shape	
2x16x8	2x2x8	
4x16x4	4x2x4	

Thread block size 256, warp size 32

1D Warp Marching

The Standar	rd Sampling	Warp M	larching
Block Shape	Warp Shape	Block Shape	Warp Shape
32 x 8 x 1	32 x 1 x 1	1x8x32	1 x 1 x 32
16 x 16 × 1	16 x 2 × 1	2x4x32	1 x 1 x 32
8 x 32 x 1	8 x 4 x 1	4x2x32	1 x 1 x 32
			•••

Combined Approach		
Block Shape	Warp Shape	
2x16x8	2x2x8	
4x16x4	4x2x4	
•••	•••	

3D Warp Marching

3D Warp Marching

1D Warp Marching The Standard 3D Warp Marching

Application

3D Warp Marching

Rotate the volume around vector (1,1,1) 360 degree

Result Application

Application

vhf_head (8-bit, 2.8GB)

vhm_body (8-bit, 3.8GB)

1D Warp Marching The Standard 3D Warp Marching

[Lum2004]: High-quality lighting and efficient pre-integration for volume rendering.

Conclusion & Future Work

Conclusion

- We design a cache-aware sampling strategy, i.e. warp marching, for the ray casting algorithm.
- The 3D warp marching maintains a roughly constant texture cache hit rate regardless of volume orientation.

Future Work

- L2 cache performance
- Other types of GPUs, varying warp sizes
- New applications

Thank you

Questions?