PREDICTIVE MODELING OF FRAUDULENT HEALTHCARE PROVIDERS

Julia Sheriff | Springboard, Data Science Career Track

CAPSTONE PROJECT 2

HOW CAN WE PREDICT POTENTIALLY FRAUDULENT MEDICARE PROVIDERS?

- Source: Medicare Data:
 - Beneficiary Claims
 - Outpatient Claims
 - Inpatient Claims
 - Provider Potential Fraud Status

BENEFICIARY DATA

- 138,556 BENEFICIARIES
- 27 FEATURES:
 - Demographics
 - Chronic health conditions
 - Insurance
- DATA WRANGLING:
 - Created binary variables for gender, death, and chronic health conditions
 - Removed strings from beneficiary id

OUTPATIENT CLAIMS

- 517,737 OUTPATIENT CLAIMS
- 25 FEATURES:
 - Claim Information (Location, Date, Time, Beneficiary, Provider)
 - Charges and Payments
 - Diagnosis and Procedure Codes
 - Physicians
- DATA WRANGLING:
 - Dropped procedure codes 4-6 due to missing data
 - Time variables converted to datetime objects
 - String parsing to remove redundant letters in provider id, beneficiary id, claim id, and physician id.

INPATIENT CLAIMS

- 40,474 INPATIENT CLAIMS
- 29 FEATURES:
 - Included all features from outpatient claims
 - Additional features:
 - Admission and Discharge Date
 - Diagnosis Group Code
- DATA WRANGLING:
 - New variable: duration
 - Dropped procedure codes 4-6 due to large quantities of missing data
 - Time variables converted to datetime objects
 - String parsing to remove redundant letters in provider id, beneficiary id, claim id, and physician id.

AGGREGATED DATAFRAME

- 5,410 PROVIDERS
- 168,888 FEATURES:
 - Measures of central tendency of other variables
 - Distributions of demographic variables
 - Diversity in number of physicians per provider
 - Maximum mean insurance claim amount reimbursed for various diagnostic codes
 - Counts per procedure and diagnostic codes
- Used beneficiary and provider to merge all datasets

CLASS IMBALANCE: FRAUD ON THE PROVIDER AND CLAIMS LEVEL

A few providers are responsible for the majority of fraudulent claims.

IMBALANCE: INPATIENT VERSUS OUTPATIENT CLAIMS

The claims data used to describe providers is more influenced by outpatient claims.

LOGISTIC REGRESSOR

Test Classification Report:					
	precision	recall	f1-score		
0	0.97	0.90	0.93		
1	0.46	0.75	0.57		
accuracy			0.88		

• The best model with ridge penalty and the best model with lasso penalty had the same class 1 recall and accuracy.

RANDOM FOREST CLASSIFIER

Test Classification Report:				
pr	recision	recall	f1-score	
0	0.98	0.86	0.91	
1	0.37	0.81	0.51	
accuracy			0.85	

- 6% improvement in class 1 recall from the best logistic regression model.
- 3% decrease in accuracy from the best logistic regression model.

TOP PERFORMING MODEL: EXTREME GRADIENT BOOSTED (XGB) TREE CLASSIFIER

Test Classification Report:				
p	recision	recall	f1-score	
0	0.98	0.86	0.92	
1	0.39	0.87	0.54	
accuracy			0.86	

- 6% improvement in recall from the best random forest model.
- 2% decrease in accuracy from the best logistic regression model.

MODELING NOTE: RANDOM UNDER-SAMPLING

- How it works: The algorithm takes the minority class (potentially fraudulent providers) and resamples with replacement until the size of the resampled class matches the size of the majority class
- Improved Class 1 recall across all models and decreased accuracy.
- The large gains in recall were beneficial in identifying more fraudulent providers

EFFECT OF RANDOM UNDERSAMPLING:

Recall is higher and accuracy is lower when implementing undersampling on the same models. Accuracy-recall tradeoffs were greater in XGB and random forest models than in logistic models.

XGB Feature Importances:

	Variable	Importance
4432	diag_41401	0.066810
4365	diag_40390	0.044962
5691	diag_5990	0.028702
4527	diag_4280	0.024929
4446	diag_4149	0.020869

SUMMARY

- Mean Insurance Claim Amount Reimbursed was important in predicting potential fraud across all models
- Mean duration was one of the most important features in random forest models and XGB models.
- Counts of the following ICD-9 Diagnostic Codes indicated potential fraud in random forest and XGB models:
 - Coronary atherosclerosis of native coronary artery (41401)
 - Hypertensive chronic kidney disease, unspecified, with chronic kidney disease stage I through stage IV, or unspecified (40390)
 - Urinary tract infection, site not specified (5990)

CONCLUSIONS

- The top-performing model was an XGB Trees classifier with a Class 1 recall of 87% and accuracy of 86% in predicting potential provider fraud.
- The model with higher accuracy and the least comparative loss in recall was a Logistic Regressor with a recall of 75% and accuracy of 89%.
- Both models significantly improve the ability to predict provider fraud. A model using random selection to predict potential fraud has 9.31% Class 1 recall.

FUTURE WORK

Inpatient versus Outpatient Providers

- Modeling inpatient providers and outpatient providers separately could lead to new insights.
- Collapsing beneficiary and claims data to the provider level in different ways could yield alternative results due to different features.

RECOMMENDATIONS FOR THE CLIENT

- Having more data on inpatient claims and providers could assist in improving model performance with inpatient providers.
- Having additional data about health claims, particularly on the provider level, would be helping in improving model performance.
 For example:
 - Provider charges per claim
 - Provider operational costs
 - Provider date established
 - Provider legal history
 - Provider client reviews