ANNALI DELL'UNIVERSITÀ DI FERRARA

(Nuova Serie)

Sezione VII - SCIENZE MATEMATICHE - Vol. XIV, N. 1

ROBERTO MAGARI

UNA DIMOSTRAZIONE DEL FATTO CHE OGNI VARIETÀ AMMETTE ALGEBRE SEMPLICI

UNIVERSITÀ DEGLI STUDI DI FERRARA
1969

UNA DIMOSTRAZIONE DEL FATTO CHE OGNI VARIETÀ AMMETTE ALGEBRE SEMPLICI

ROBERTO MAGARI (*)

AVVERTENZA.

Si pone abbastanza naturalmente la questione se ogni varietà di algebre (¹) ammetta algebre semplici. La risposta è ovviamente affermativa per ogni varietà che abbia algebre finite, ma non è immediata negli altri casi, dato che esistono algebre (infinite) prive di congruenze proprie massimali, ed esistono varietà prive di algebre finite. Tuttavia quando, qualche tempo fa, la questione si è presentata a me e ad alcuni miei colleghi, eravamo convinti che il problema, dato il suo interesse, dovesse esser già stato studiato; poichè un esame della letteratura e un quesito posto a uno dei massimi studiosi di algebra universale non ci hanno fornito la desiderata risposta, mi decido a pubblicare una dimostrazione che in seguito ho trovato.

(*)

1. Sia $\mathfrak V$ una varietà non degenere di algebre. Se $\mathfrak V$ non ammette algebre semplici allora ovviamente ogni algebra di $\mathfrak V$ è priva di quozienti semplici (per il teorema di Birkhoff $\mathfrak V$ contiene tutti i quozienti di ogni sua algebra).

Mostrerò nel paragrafo successivo che, se $\mathfrak A$ è un'algebra non degenere priva di quozienti semplici allora esiste una sottoalgebra di una sua potenza diretta che ammette quozienti semplici.

Se $\mathfrak{A} \in \mathfrak{D}$, per il ricordato teorema di Birkhoff, tali quozienti appartengono ancora a \mathfrak{D} onde resterà dimostrato il risultato del titolo.

2. Sia $\mathfrak C$ un'algebra (non degenere) priva di quozienti semplici, priva cioè di congruenze proprie massimali. È allora ovvio che:

^(*) Lavoro eseguito nell'ambito dell'attività del Comitato Nazionale per le Scienze Matematiche del C.N.R. (anno '68-'69, programma 8).

⁽¹⁾ La parola « algebre » è qui usata ad indicare « strutture algebriche » in generale. Per le varie nozioni di algebra universale usate vedi P. M. COHN [1].

LEMMA 1. Se M è un sottoinsieme finito di \mathfrak{A} (2) la minima congruenza R_M di \mathfrak{A} che pone tutti gli elementi di M in una stessa classe di equivalenza non è totale.

Dimostrazione (per induzione sul cardinale di M). Se M è vuoto la cosa è ovvia. Supponiamo che la cosa valga per insiemi di cardinale n-1 ($0 < n < \omega$), sia M di cardinale n e sia a un suo elemento. Per ipotesi induttiva $R_{M-\{a\}}$ è propria e, o $R_{M-\{a\}} = R_M$ e perciò R_M non è totale o, via lemma di Zorn, è facile vedere che esiste una congruenza R massimale rispetto alla condizione $R_{M-\{a\}} \subseteq R \subset R_M$. Se ora R_M fosse totale la R risulterebbe (propria) massimale contro l'ipotesi che $\mathfrak A$ sia priva di quozienti semplici. Il lemma è così dimostrato.

Sia ora $\mathcal{B} = \mathfrak{A}^{\mathfrak{C}}$, sia, per ogni $x \in \mathcal{A}$, \hat{x} l'elemento di \mathcal{B} costante di valore x e sia v l'elemento di \mathcal{B} definito da:

$$v_x = x$$
 $(x \in \mathfrak{A})$

Infine sia $\mathbb C$ la sottoalgebra di $\mathcal B$ generata da v e dall'insieme $\widetilde{\mathfrak A} = \{\widehat x: x \in \mathfrak A\}.$

Mostriamo che:

LEMMA 2. Esiste almeno una congruenza R di C nella quale tutte le costanti appartengono ad una medesima classe di equivalenza, K, mentre v¢K.

Dimostrazione. Non sia così. Ciò significa che esiste una sequenza finita p_1 , p_2 , ..., p_n di coppie di elementi di $\mathfrak C$ tale che p_n è del tipo $(\hat a, v)$ con $a \in \mathfrak A$ e ciascun p_i è:

- (i) o una coppia di costanti,
- (ii) o una coppia della diagonale di C,
- (iii) o del tipo (α, β) , (β, α) essendo una coppia precedente,
- (iv) o del tipo (α, γ) , essendo (α, β) e (β, γ) due coppie precedenti,
- (v) o del tipo $(g(\alpha_1, \alpha_2, ..., \alpha_n), (g(\beta_1, \beta_2, ..., \beta_n))$ dove le (α_i, β_i) sono coppie precedenti, g è un'operazione m-aria di \mathcal{E} l e g è l'operazione analoga in \mathcal{B} .

Le costanti implicate nella sequenza saranno ovviamente in numero finito e siano $\widehat{a_1}$, $\widehat{a_2}$, ..., a_r (questa parte della dimostrazione può naturalmente essere abbreviata ricordando che l'operatore di « passaggio alla congruenza generata » è un operatore di Moore algebrico). Sia ora S la minima congruenza di $\mathfrak A$ per

⁽²⁾ Confondo tipograficamente El col suo insieme di base.

cui a_1 , a_2 , ..., a_r , a sono in una stessa classe H e sia $x \in \mathcal{C}$. La sequenza delle proiezioni x-esime delle p_i termina con la coppia $(\widehat{a}_x, v_x) = (a, x)$ onde $x \in H$.

La S risulta perciò totale, contro il lemma 1, e la contraddizione dimostra il lemma.

Mostriamo ancora che:

LEMMA 3. Presa una R soddisfacente la condizione del lemma 2. la minima congruenza S di $\mathfrak E$ per cui $\mathfrak A \cup \{v\}$ è contenuto in una stessa classe di equivalenza H della S è totale.

Dimostrazione. Sia $x \in \mathbb{C}$. Allora esistono: un'operazione n-aria f appartenente al clono generato dalle operazioni di \mathfrak{A} e un elemento $y=({}_{\hat{j}}y)_{j\in n}\in \mathbb{C}^n$ con ${}_{\hat{j}}y\in \{v\}\cup \widehat{\mathfrak{A}}$ per cui x=fy.

Preso un a di \mathfrak{A} e detto $a=(ja)_{j\in n}$ l'elemento di \mathfrak{C}^n definito da ja=a è jyS_ja onde $fyS_j\overline{a}$. Ma fa è ovviamente una costante onde x=(=/y) è associato nella S a una costante e appartiene perciò ad H.

Perciò $H = \mathbb{C}$ e la S è totale.

Dai lemmi 2 e 3 segue subito che:

TEOREMA 1. C ammette quozienti semplici.

Dimostrazione. Via lemma di Zorn si dimostra subito l'esistenza di una congruenza massimale rispetto alle condizioni del lemma 2 ed essa risulta (propria) massimale per il lemma 3.

Ne segue, tenuto conto delle considerazioni fatte nel n. 1, che:

TEOREMA 2. Ogni varietà di algebre ammette algebre semplici.

Pervenuto in Redazione il 9 gennaio 1969.

RIASSUNTO

Si dimostra che se $\mathfrak A$ è una struttura algebrica priva di quozienti semplici, allora un'opportuna sottoalgebra di $\mathfrak A^{\mathfrak A}$ ammette quozienti semplici. Ne segue il risultato del titolo.

SUMMARY

Let $\mathfrak A$ be an algebraic structure with no simple quotients. Then there is a subalgebra of $\mathfrak A$ which possess simple quotients. Therefore every variety of algebras (= algebraic structures) has simple algebras,

BIBLIOGRAFIA

Per questo articolo è sufficiente la consultazione di un qualunque trattato di algebra universale, per esempio:

- [1] P. M. Cohn, Universal Algebra, Harper & Row, London 1965.
- [2] G. Gratzer, Universal Algebra (annunciato dall'editore Van Nostrand).

