Christian B. Mendl, Richard M. Milbradt

Exercise 3.1 (Tensor diagrams)

(a) Recall that the matrix product AB with entries $(AB)_{ik} = \sum_{j} a_{ij}b_{jk}$ translates to the following diagram:

$$i$$
 A j B k

Connect the legs of AB^T and B^T are accordingly to represent AB^T , B^TA^T and tr[AB] graphically.

(b) Given a matrix A, a tensor B of degree 3, and a vector C, express the following tensor contraction in graphical form:

$$m_{ik} = \sum_{j,\ell} a_{ij} \, b_{kj\ell} \, c_{\ell}.$$

(c) Let A and B be tensors of degree d_A and d_B , respectively, such that each individual dimension is equal to some $n \in \mathbb{N}$. (In other words, $A \in \mathbb{C}^{n \times \cdots \times n}$ where n appears d_A times, and likewise for B.) Now A and B are contracted along c of these dimensions, as illustrated for $d_A = 4$, $d_B = 3$ and c = 2 in the following diagram:

What is the asymptotic computational cost of this contraction (in the form $\mathcal{O}(n^{\ell})$ with to-be determined exponent ℓ) based on a literal implementation of the summation formulation?

Hint: Determine the required number of nested for-loops from 1 to n to compute the entries of the resulting tensor.

Solution

(a) Following the given diagram:

(b) In $m_{ik} = \sum_{j,\ell} a_{ij} b_{kj\ell} c_{\ell}$, there is a contraction over j and ℓ , while i and k are free indexes.

(c) The asymptotic computational cost is $\mathcal{O}(n^{d_A+d_B-c})$, since there are n^c summation terms for each index assignment to the "open" legs. A has d_A-c uncontracted dimensions (n^{d_A-c} indices) and B has d_B-c uncontracted dimensions (n^{d_B-c} indices).