Materiały do zajęć 2 z Programowania narzędzi analitycznych

1. Statystyka opisowa

```
sum(wektor) - suma elementów wektora lub macierzy
mean(wektor) - wylicza średnią z wektora
median(wektor) - wyznacza medianę z wektora
sd(wektor) - wylicza odchylenie standardowe wartości wektora
var(wektor) - wylicza wariancję wartości wektora
abs(liczba) - wylicza moduł/wartość absolutną liczby
quantile(x, probs=0.25) - wylicza pierwszy kwartyl
```

2. Moda/dominanta

```
Mode <- function(x, na.rm = FALSE) {
  if(na.rm){
    x = x[!is.na(x)]
  }
  ux <- unique(x)
  return(ux[which.max(tabulate(match(x, ux)))])
}</pre>
```

Źródło: link: https://stackoverflow.com/

3. Kwantyle

qnorm(x, mean=0, sd=1) - kwantyle rozkładu standardowego normalnego pnorm(x, mean=0, sd=1) - wartość dystrybuanty rozkładu w punkcie x, tj. $\Phi(x)$

Rozkład	Kwantyl	Gęstość	Dystrybuanta	Liczby losowe
Normalny	qnorm(p, mean, sd)	\mathbf{d} norm(x,mean, sd)	\mathbf{p} norm(q, mean, sd)	\mathbf{r} norm $(n, mean, sd)$
Beta	\mathbf{q} beta $(p, s1, s2)$	dbeta(x, s1, s2)	\mathbf{p} beta $(q, s1, s2)$	\mathbf{r} beta(n, s1, s2)
χ_n^2	\mathbf{q} chis $\mathbf{q}(\mathbf{p}, d\mathbf{f})$	\mathbf{d} chisq (x, df)	\mathbf{p} chis $\mathbf{q}(\mathbf{q}, d\mathbf{f})$	\mathbf{r} chisq (n, df)
Wykładniczy	$\mathbf{q} \exp(\mathbf{p}, \mathrm{rate})$	$\mathbf{d}\exp(\mathbf{x}, \mathrm{rate})$	\mathbf{p} exp $(q, rate)$	\mathbf{r} exp(n, rate)
t-Studenta	$\mathbf{q}t(\mathbf{p}, d\mathbf{f})$	dt(x, df)	$\mathbf{p}t(q, df)$	$\mathbf{r}t(n, df)$
Jednostajny(0,1)	qunif(p, min, max)	$\mathbf{d}\mathrm{unif}(\mathrm{x},\mathrm{min},\mathrm{max})$	\mathbf{p} unif (q, \min, \max)	\mathbf{r} unif (n, \min, \max)
Gamma	\mathbf{q} gamma (p, s, r)	\mathbf{d} gamma (x, s, r)	\mathbf{p} gamma (q, s, r)	rgamma(n, s, r)
F-Snedecora	$\mathbf{q}f(p, df1, df2)$	$\mathbf{d}f(x, df1, df2)$	$\mathbf{p}f(q, df1, df2)$	\mathbf{r} f(n, df1, df2)
Dwumianowy	\mathbf{q} binom (p, s, p)	dbinom(x, s, p)	\mathbf{p} binom (q, s, p)	\mathbf{r} binom (n, s, p)
Poissona	q pois(p, lambda)	\mathbf{d} pois $(x, lambda)$	p pois(q, lambda)	rpois(n, lambda)

Materiały do zajęć 1 z Programowania narzędzi analitycznych

1. Pomoc

help(''nazwa_polecenia'') - wyświetla informacje o poleceniu ?nazwa_polecenia - wyświetla informacje o poleceniu

help.search(''slowoKluczowe'') - Przemysław Biecek, Przewodnik po pakiecie R, 2008, str. 18, (link): Przegląda opisy funkcji znajdujących się w zainstalowanych pakietach i wyświetla te pozycje, w których znaleziono wskazane slowoKluczowe. W tym przypadku slowoKluczowe może oznaczać również kilka słów lub zwrot. W liście wyników znajduje się również informacja, w którym pakiecie znajdują się znalezione funkcje.

demo - pliki instruktażowe. Przemysław Biecek, Przewodnik po pakiecie R, 2008, str. 10, (link): Dla wielu pakietów oraz funkcji dostępnych w R zostały przygotowane prezentacje, pokazujące możliwości danego pakietu lub funkcji. Takie prezentacje uruchamia się funkcją demo(utils).

2. Polecenia ogólne

```
rm(a) - usuwa zmienną a
rm(list=ls()) - usuwa z pamięci komputera wszystkie zmienne i funkcje
ctrl+l - czyści okno poleceń
getwd - podaje bieżący katalog roboczy
setwd - zmiana katalogu domyślnego
Sys.Time() - wyświetla datę i godzinę
Sys.Date() - wyświetla datę
q() - wyłączenie programu R
# - tworzenie komentarza
```

3. Działania matematyczne

```
= lub <- przypisanie wartości np.: a=4
+,-,*,/ - podstawowe działania matematyczne
^ - podniesienie do potegi
```

4. Operatory i funkcje logiczne

```
== równy, porównanie
!= nierówny
! nierówny, negacja
<,<=,>,>= relacje
& - koniunkcja, "i", "AND"
| - alternatywa, "lub", "OR"
xor - alternatywa wykluczająca
is.infinite(x) - czy liczba x jest równa nieskończoności
is.finite(x) - czy liczba x jest skończona
is.nan(x) - czy x jest brakiem danych
```

5. Podstawowe funkcje

```
\operatorname{sqrt}(\mathbf{x}) - pierwiastek z liczby \mathbf{x} (\sqrt{x}) \exp(\mathbf{x}) - eksponenta z \mathbf{x} (e^x) \log(\mathbf{x}) - \log\operatorname{arytm} naturalny (\ln(x))
```

```
log10(x) - logarytm o podstawie 10 z liczby x
log2(x) - logarytm o podstawie 2 z liczby x
log(x, base=b) - logarytm o podstawie b z liczby x
sin(),cos(),tan() - funkcje trygonometryczne
asin(),acos(),atan() - odwrotne funkcje trygonometryczne
sinh(),cosh(),tanh() - funkcje hiperboliczne
abs() - wartość bezwzględna
factorial(n) - silnia z liczby n (n!)
floor() - zaokrąglenie liczby w dół
ceiling() - zaokrąglenie liczby w górę
c %% d - reszta z dzielenia liczby c przez liczbę d, modulo
round() - zaokrąglenie do najbliższej liczby całkowitej
sign() - zwraca (-1) dla liczb ujemnych i 1 dla dodatnich i 0 dla zera
```

6. Stałe

```
pi = \pi = 3.14159
Inf - nieskończoność
NaN - brak danych
```

7. Generowanie macierzy i wektorów

```
matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE) - tworzy macierz
diag(wielkość) - tworzy macierz jednostkową
diag(macierz) - wybiera diagonalę z macierzy
```

8. Funkcje dla macierzy i wektorów

```
det(macierz) - wyznacznik macierzy
t(A) - zwraca macierz transponowaną do macierzy A
length(wektor) - zwraca długość wektora
dim(macierz) - zwraca wektor z wymiarami macierzy
nrow(macierz) - zwraca liczbę wierszy macierzy
ncol(macierz) - zwraca liczbę kolumn macierzy
eigen(macierz) - zwraca wartości i/lub wektory własne macierzy
sum(wektor) - suma elementów wektora lub macierzy
min(wektor) - wyznacza minimalną wartość z wektora
max(wektor) - wyznacza maksymalną wartość z wektora
prod(wektor) - wyznacza iloczyn wszystkich elementów wektora
cumsum(wektor) - wylicza sumę narastającą
mean(wektor) - wylicza średnia z wektora
median(wektor) - wyznacza medianę z wektora
sd(wektor) - wylicza odchylenie standardowe z wartości wektora
which - funkcja znajduje elementy macierzy spełniające warunek
```

10. Łączenie macierzy i wektorów

```
c(v1, v2) - łączenie wektorów v1 i v2
rbind(v1, v2) - łączenie wektorów v1 i v2 wiersz pod wierszem
cbind(v1, v2) - łączenie wektorów v1 i v2 kolumna obok kolumny
```