AE353: Midterm

November 13, 2024

You are allowed to use any online or offline notes at your disposal, but no communication and computational tools. You must write a complete solution, showing the process that you took to reach your answer. The problems are not sorted by difficulty.

Problem 1. (25 points)

Consider matrix

$$M = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Let $N = (MM^T)^{-1}$. Show that N is symmetric, i.e., that $N = N^T$. (I suggest working smart, not hard.)

Problem 2. (25 points)

This problem had a typo that allowed it to be understood in multiple ways. This document contains the problem and the solution that were originally intended, but a correct solution to any interpretation is equally acceptable.

Consider a linear control system given by $\dot{x} = Ax + Bu$, where $A \in \mathbb{R}^{2\times 2}$, $B \in \mathbb{R}^{2\times 2}$. Consider the problem of finding a control signal u which minimizes

$$\int_0^1 (x_1(t) + x_2(t))^2 + (x_1(t) - x_2(t))^2 + ||u(t)||^2 dt.$$

Convert it (you do not have to solve the problem!) into the LQR problem of minimizing

$$\int_{0}^{1} (x(t))^{T} Qx(t) + (u(t))^{T} Ru(t) dt,$$

i.e., find positive semidefinite matrices Q and R such that the two problems match.

Problem 3. (25 points)

Consider a two-state linear control system given by

$$\dot{x} = Ax + Bu, \quad y = \begin{pmatrix} 1 & 0 \end{pmatrix} x.$$

Assume that all elements of A are non-zero. Show that this system is detectable and observable.

TURN PAGE OVER

Problem 4. (25 points)

Consider a linear control system given by

$$\dot{x} = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix} x + \begin{pmatrix} 1 \\ 0 \end{pmatrix} u, \quad y = \begin{pmatrix} 1 & 0 \end{pmatrix} x.$$

Assuming that the controller can only read output values y(t), but not full x(t) directly, construct a control signal u which ensures $\lim_{t\to+\infty} x(t) = 0$.

You do not need to write u(t) explicitly for all t, but, if you want, you can write it as an output of an observer system.

Bonus Problem. (25 points)

Consider a single-input, single-state linear control system given by $\dot{x} = x + u$, with x(0) = 1. Show that there does not exist a minimum of

$$\int_0^1 x^2(t) - u^2(t)dt,$$

i.e., that one can choose u such that the integral above is negative and arbitrarily large in magnitude.

Solutions

Problem 1.

We first note that M is invertible, and MM^T is thus invertible as well, since $\det(MM^T) = \det(M) \det(M^T) = \det(M)^2 \neq 0$. Then, using X^{-T} to denote the inverse of X^T and, equivalently, the transpose of X^{-1} , we get $X^T = (MM^T)^{-T} = M^{-T}M^{-1} = N$.

Problem 2.

We first note that $(x_1 + x_2)^2 + (x_1 - x_2)^2 = 2x_1^2 + 2x_2^2 = x^T Q x$, and $||u||^2 = u_1^2 + u_2^2 = u^T R u$, where

$$Q = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \quad R = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Both of these matrices are clearly symmetric and positive definite.

Problem 3.

Let us calculate the observability matrix. It equals

$$O = \begin{pmatrix} 1 & 0 \\ a_1 & a_2 \end{pmatrix},$$

where a_1 and a_2 are the elements of the first row of A. Thus, $det(O) = a_2 \neq 0$. Since matrix O is thus full rank, this system is observable. Since it is observable, it is detectable.

Problem 4.

Let us set matrix $K = \begin{pmatrix} 1 & 0 \end{pmatrix}$. Then, using our usual notation for matrices A, B, and C, matrix A - BK is upper-triangular with -1 and -1 on the diagonal. Hence, A - BK is stable. Let us set $L = \begin{pmatrix} 1 & 0 \end{pmatrix}^T$. Then, A - LC is also upper triangular with -1 and -1 on the diagonal. Hence, A - LC is stable. Thus, as described in class, a control signal $u(t) = -K\hat{x}(t)$, where $\hat{x}(t)$ is the observer generated by $\hat{x}(t) = A\hat{x} + Bu(t) - L(C\hat{x}(t) - y(t))$ and $\hat{x}(t) = 0$, ensures that $x(t) \to 0$ as $t \to +\infty$.

Bonus Problem.

Consider any $n \ge 0$ and a control input u given by u(t) = nx(t). Then, $\dot{x} = (n+1)x$, so $x(t) = e^{(n+1)t}$. The value of the integral in question is thus

$$\int_0^1 (1 - n^2) x^2(t) dt = (1 - n^2) \int_0^1 e^{2(n+1)t} dt = \frac{(1 - n^2)(e^{2(n+1)} - 1)}{2(n+1)} = -\frac{(n-1)(e^{2(n+1)} - 1)}{2}.$$

As $n \to +\infty$, the integral's value clearly diverges to $-\infty$.