CRITTOGRAFIA 2016/17 - Appello del 10 febbraio 2017

Nome:			
Cognome:			
Matricola:			

Esercizio 1 – Crittografia ellittica [12 punti]

- 1. **Descrivere** l'algoritmo di Koblitz per trasformare un messaggio m, codificato come numero intero, in un punto di una curva ellittica prima $E_p(a,b)$.
- 2. **Spiegare** cosa si intende per "logaritmo discreto" (se esiste) di un punto R in base P.
- 3. **Descrivere** un algoritmo di scambio di messaggi cifrati e **spiegare** perché può ritenersi sicuro.

Esercizio 2 – Complessità in algebra [6 punti]

Dato un intero n definire la funzione di Eulero $\Phi(n)$, indicare se è noto un algoritmo efficiente per calcolarla e **spiegare** in termini matematici quale implicazione avrebbe questo algoritmo sui cifrari DES e RSA e sui protocolli di firma.

Esercizio 3 – Firma digitale [12 punti]

Sia S la somma delle sei cifre decimali del proprio numero di matricola. Si ponga M = S + 20. Si convertano le cifre di M in binario su 4 bit, se ne calcoli lo EXOR bit a bit e si riconverta il valore ottenuto in un numero decimale H che sarà usato come hash di M.

Per due utenti Alice e Bob di un sistema RSA si considerino i seguenti insiemi di parametri.

Alice:
$$p = 5$$
, $q = 11$, $e = 7$, $d = 23$. **Bob**: $p = 7$, $q = 13$, $e = 5$, $d = 29$.

Alice deve spedire a Bob il messaggio M cifrato e firmato in hash, impiegando le chiavi RSA e la funzione hash di cui sopra.

- 1. **Eseguire** esplicitamente tutte le operazioni aritmetiche eseguite da Alice e Bob nella trasmissione e verifica del messaggio M e della firma.
- 2. **Spiegare** per quale motivo si impiega una funzione hash per la firma.