Concavità e convessità

Andrea Canale

May 20, 2025

Contents

L	Convessità	1
2	Concavità	2
	2.1 Osservazione	2
3	Test di concavità	3
	3.1 Dimostrazione	3
	3.2 Osservazione	5

1 Convessità

Una funzione $f:I\subset\mathbb{R}\to\mathbb{R}$ è convessa nell'intervallo I se $\forall x_1,x_2\in I$ con $x_1< x_2$ risulta vero:

$$f(x) \le f(x_1) + \frac{f(x_2) - f(x_1)}{x_2 - x_1}(x - x_1)$$

La parte destra della disequazioni è una funzione che ha come parametro x e l'abbreviamo $\delta(x)$.

Notiamo che questa funzione $\delta(x)$ ha le seguenti caratteristiche:

- $\delta(x_1) = f(x_1) + \frac{f(x_2) f(x_1)}{x_2 x_1}(x_1 x_1) = f(x_1)$ per via delle semplificazioni
- $\delta(x_2) = f(x_1) + \frac{f(x_2) f(x_1)}{x_2 x_1}(x_2 x_1) = f(x_1) + f(x_2) f(x_1) = f(x_2)$ per via delle semplificazioni

Questa funzione è quindi una retta passante tra i punti $(x_1, f(x_1))$ e $(x_2, f(x_2))$ Quindi la definizione di concavità impone che la funzione sia sotto questa retta per ogni punto della funzione:

2 Concavità

Una funzione $f:I\subset\mathbb{R}\to\mathbb{R}$ è concava nell'intervallo I se $\forall x_1,x_2\in I$ con $x_1>x_2$ risulta vero:

$$f(x) \ge f(x_1) + \frac{f(x_2) - f(x_1)}{x_2 - x_1}(x - x_1)$$

Cioè la retta $\delta(x)$ di prima deve stare sopra la funzione per ogni punto della funzione:

2.1 Osservazione

Una funzione che ha un flesso in un intervallo, non è nè concava nè convessa.

3 Test di concavità

Il test di concavità mostra il legame tra la funzione derivata e la concavità di una funzione.

Se f è derivabile in (a, b), allora:

- f è convessa su (a,b) se e solo se $f^{'}$ è crescente in (a,b)
- f è concava su (a,b) se e solo se $f^{'}$ è decrescente in (a,b)

Inoltre se f è derivabile due volte:

- f è crescente in (a, b) se e solo se $f'' \ge 0$
- f è decrescente in (a, b) se e solo se $f'' \leq 0$

3.1 Dimostrazione

Dimostriamo la prima implicazione, f convessa $\implies f$ crescente:

Vogliamo dimostrare $x_1 < x_2 \implies f'(x_1) \le f'(x_2) \ \forall x_1, x_2 \in (a, b).$

Per ipotesi f è convessa: $f(x) \le f(x_1) + (f(x_2) - f(x_1))/(x_2 - x_1)(x - x_1)$

Spostando f(x) a destra, otteniamo:

$$f(x) - f(x_1) + \frac{f(x_2) - f(x_1)}{(x_2 - x_1)}(x - x_1) \le 0$$

Questa disequazione la abbreviamo come $g(x) \leq 0$ ed otteniamo:

- $q(x_1) = f(x_1) \delta(x_1) = 0$
- $g(x_2) = f(x_2) \delta(x_2) = 0$

Ora mostriamo che

- $g'(x_1) \leq 0$
- $g'(x_2) \geq 0$

Se $x > x_1$, otteniamo:

$$g'(x_1) = \lim_{x \to x_+^+} \frac{g(x) - g(x_1)}{x - x_1} = \le 0$$

Per il secondo teorema della permanenza del segno Se $x < x_2$, otteniamo:

$$g^{'}(x_{2}) = \lim_{x \to x_{2}^{-}} \frac{g(x) - g(x_{2})}{x - x_{2}} = \ge 0$$

Questa implicazione è verificata quindi:

$$f'(x_1) \leq f'(x_2)$$

quindi la derivata è crescente.

* * *

Dimostriamo ora la seconda implicazione.

Mostriamo che $x_1 < x_2 \ \forall x_1, x_2 \implies g(x) \le 0 \forall x \in (a, b)$

Ricordiamo da prima $g(x_1)=g(x_2)=0$, inoltre $g^{'}=f^{'}(x)-c$ con $c\in\mathbb{R}$

Allora se $g^{'}$ è crescente lo è anche $f^{'}(x)$ perchè stiamo solo applicando uno spostamento.

Usando il teorema di Lagrange otteniamo:

$$\exists c \in (x_1, x_2)$$
 Tale che $g'(c) = \frac{g(x_2) - g(x_1)}{(x_2 - x_1)} = 0$

Questo perchè $g(x_1) = g(x_2) = 0$

Allora il grafico sarà sicuramente crescente tra (c, x_2) e decrescente tra (x_1, c) e quindi sarà così:

Che dimostra la convessità.

3.2 Osservazione

Le funzioni lineare sono sia concave che convesse. Infatti avendo $\geq e \leq$ copriamo tutti i casi di uguaglianza.