

Statement for Audio and Video Learning Resources

Video and audio content at the University uses closed captions generated by automatic speech recognition (ASR). The ASR process is based on machine learning algorithms which automatically transcribe voice to text. According to our technology providers, this process is approximately 70-90% accurate depending on the quality of the audio, and consequently video and audio closed captions may include some transcription errors. It is therefore important to recognise that the original recording is the most accurate reflection of the content, and not the captions.

If you require accurate captions as part of your reasonable adjustments, please contact the Inclusion Centre to discuss your requirements.

Introduction to Data Visualisation

Ines Arana

i.arana@rgu.ac.uk

Refs:

- E. Tufte, The Visual Display of Quantitative Information, 2nd Ed., Graphics Press LLC, 2001
- E Tufte Visual Explanations, Graphics Press LLC, 1997

Content

- Data
- Why visualise?
- Requirements
- Problem visualisations
- Tips for visualisation
- Summary

Data

- How much data is there?
- In 2011 there were 1.8 zetabytes of data
- 1 zetabyte = 2⁷⁰
- In 2017, 2.7 zetabytes (source: NodeGraph)
- In 2020, 44 zetabytes (https://seedscientific.com/how-much-data-is-created-every-day/)
 - Predicted 463 exabytes by 2025
- What do we want to do with data:
 - Understand
 - Analyse
 - Visualise
 - Communicate

... data

... data

... more data

X	Υ
10.00	7.46
8.00	6.77
13.00	12.74
9.00	7.11
11.00	7.81
14.00	8.84
6.00	6.08
4.00	5.39
12.00	8.15
7.00	6.42
5.00	5.73

... and more data

X	Y
8.00	6.58
8.00	5.76
8.00	7.71
8.00	8.84
8.00	8.47
8.00	7.04
8.00	5.25
19.00	12.50
8.00	5.56
8.00	7.51
8.00	6.89

Data – Ascombe's Quartet

For each data set:

- X's mean: 9.0
- Y's mean: 7.5
- Equation of regression line: Y = 3 + 0.5 X
- Stdr error of estimate of slope: 0.118
- t = 4.24
- Sum of squares = 110.0
- Regression of sum of squares = 27.70
- Residual sum of squares of Y = 13:75
- Correlation coefficient = 0.82
- $r^2 = 0.67$

X	Y
10.00	8.04
8.00	6.95
13.00	7.58
9.00	8.81
11.00	8.33
14.00	9.96
6.00	7.24
4.00	4.26
12.00	10.84
7.00	4.82
5.00	5.68

X	Υ
10.00	9.14
8.00	8.14
13.00	8.74
9.00	8.77
11.00	9.26
14.00	8.10
6.00	6.13
4.00	3.10
12.00	9.13
7.00	7.26
5.00	4.74

X	Υ
10.00	7.46
8.00	6.77
13.00	12.74
9.00	7.11
11.00	7.81
14.00	8.84
6.00	6.08
4.00	5.39
12.00	8.15
7.00	6.42
5.00	5.73

X	Y
8.00	6.58
8.00	5.76
8.00	7.71
8.00	8.84
8.00	8.47
8.00	7.04
8.00	5.25
19.00	12.50
8.00	5.56
8.00	7.51
8.00	6.89

Why Visualise? Visualisation shows differences!

Why visualise data?

- Visualisations may give us the right information to
 - Answer questions
 - Make decisions
 - Find patterns
 - Communicate a story
 - Hypothesise
 - Abstract

Content (2)

- Data
- Why visualise?
- Requirements
- Problem visualisations
- Tips for visualisation
- Summary

Visualisations - requirements

- Show the data
 - Not a pretty picture
 - Substance over presentation
- Data is informative
 - No distortion of meaning
- Lots of data presented in a compact way
- Comparison between various pieces of data should be possible
- Present data at several levels of detail depending on user
 - Summary
 - Detailed structure

Good visualisations

- Well-designed display of data which is of interest to the viewer
- Generally
 - Multivariate several variables involved
 - Large amounts of data sometimes
- Must present data in a straightforward way
 - Not misleading!

Challenger disaster

- 24h before the flight, predicted temp was 26-29°F
 - Designers opposed launch worried about O-rings at low temperatures
 - Concerns expressed to NASA using 13 charts
 - Evidence was deemed inconclusive and launch took place
- Challenger blew up
 - Rings weakened by low temperature on the launch day:
 - Ambient temperature was 30°F
 - Rings' temperature was 20°F

	RO	BERT Versity	GOI	RD	ON
KGU	UNI	VERSITY	ABE	RD	EEN

Challenger disaster

-				
Temperat.	Erosion incidents	Blow by incidents	Damage index	Comments
53	3	2	11	Most erosion any flight. Blow by. Back up rings heated
57	1		4	Deep extensive erosion
58	1		4	o-ring erosion on lauch two weeks before challenger
63	1		2	o-rings showed signs of heating, but no damage
66			0	coolest (66) launch without o-ring problems
67			0	
67			0	
67			0	
68			0	
69			0	
70	1		4	Extent of erosion not fully known
70			0	·
70	1		4	
70			0	
72			0	
73			0	
75			0	
75		2	4	No erosion. Soot found behind 2 primary o-rings
76			0	
76			0	
78			0	
79			0	
80			?	o-ring condition unknown; roket casing lost at sea
81			0	

Challenger data (Tufte, 2001)

26-29 degrees Fahrenheit forecasted for launch

Temperature

Silly correlations

- Coca-Cola Stock Price (red) and average firing rates of neurons (black) from rat motor cortex over 9 days in 2004. Correlation coefficient = 0.704
- Figure adapted from: Timothy C. Marzullo, Ann Arbor, Edward G. Rantze, Cumming, Georgia, Gregory J. Gage, Ann Arbor Stock Market Behavior Predicted by Rat Neurons, Annals of Improbable Research, 22-25, July-August 2006, http://www.improbable.com/airchives/paperair/volume12/v12i4/rats-12-4.pdf [accessed 24/01/2022]

	%				
	College				
State	degree	Income	Maryland	31.7	17730
Alabama	20.6	11486	Massachussetts	34.5	17224
Alaska	30.3	17610	Michigan	24.1	14154
Arkansas	17	10520	Minnesota	30.4	14389
California	31.3	16409	Missisippi	19.9	9648
Colorado	33.9		Missouri	22.3	12985
	33.8		Montana	25.4	11213
Connecticut			Nebraska	26	12452
Delaware	27.9		Nevada	21.5	15214
Distr Columbia	36.4		New Hampshire	32.4	15955
Florida	24.9	14698	New Jersey	30.1	18714
Georgia	24.3	13631	New Mexico	25.5	11246
Hawaii	31.2	15770	New York	29.6	16501
Idaho	25.2	11457	North Carolina	24.2	12885
Illinois	26.8	15201	North Dakota	28.1	11051
lowa	24.5	12422	Ohio	22.3	13461
Kansas	26.5	13300	Oklahoma	22.8	11893
Kentucky	17.7	11153	Oregon	27.5	13418
Louisiana	19.4	10635	Pennsylvania	23.2	14068
Maine	25.7	12957	Rhode Island	27.5	14981
Maryland	31.7	17730	School of Co	omputing	

Sourth		
Carolina	23	11897
South Dakota	24.6	10661
Tennessee	20.1	12255
Texas	25.5	12904
Utah	30	11029
Vermont	31.5	13527
Virginia	30	15713
Washington	30.9	14923
West Virginia	16.1	10520
Wisconsin	24.9	13276
Wyoming	25.7	12311

Is there a correlation between % population with a college degree and income?

State income vs. college degree

Data somehow correlated No state with high (low) value of Income with low (high) value of % college degree

... state income vs. college degree

Data somehow correlated No state with high (low) value of Income with low (high) value of % college degree

% College degree vs. income

The labels and units of measure should be shown.
Y is income (\$) x is % college degree.

Content (3)

- Data
- Why visualise?
- Requirements
- Problem visualisations
- Tips for visualisation
- Summary

What is wrong with the following?

 See Oil Reserves Data in OPEC website at http://www.opec.org/opec web/en/data graphs/330.htm
 [accessed 24/1/2022]

See the 2 data charts in the next 2 slides

Pie chart - Proven Oil Reserves 2014

• Proven crude oil reserves

... pie chart

- What is Lybia's share?
- Is Algeria's share bigger or smaller than Lybia's

... pie chart (cont)

• Pie shows percentages, not actual figures

• Data used is below, measured in billion barrels (OPEC

share)

Venezuela	299.95
Saudi Arabia	266.58
IR Iran	157.53
Iraq	143.07
Kuwait	101.5
UAE	97.8
Lybia	48.36
Nigeira	37.07
Quatar	25.24
Algeria	12.2
Angola	8.42
Ecuador	8.27

New data – OPEC share of world crude reserves 2021

This time
there is a
table below
the plot
with actual
amounts
and
percentages

OPEC proven crude oil reserves, at end 2021 (billion barrels, OPEC share)

Venezuela	303.47 24	1.4%	United Arab Emirates	111.00	8.9%	Algeria	12.20	1.0%	Equatorial Guinea	1.10	0.1%
Saudi Arabia	267.19 21	1.5%	Kuwait	101.50	8.2%	Angola	2.52	0.2%			
IR Iran	208.60 16	5.8%	Libya	48.36	3.9%	Gabon	2.00	0.2%			
Iraq	145.02 11	1.7%	Nigeria	37.05	3.0%	Congo	1.81	0.1%			

Crude Oil Production Allocations (1000 b/d)

	Apr 82– A Mar 83 O	•	lov 84- S .ug 86 C	•	Nov-86		lan 87 Jun 87 I	•	Jan 88 Dec 88 .		
Algeria	650	725	663	663	669	669	635	667	667	695	733
Ecuador	200	200	183	183	221	221	210	221	221	230	242
IR Iran	1,200	2,400	2,300	2,300	2,317	2,317	2,255	2,369	2,369	2,640	2,783
Iraq	1,200	1,200	1,200	1,200	_	_	1,466	1,540	_	2,640	2,783
Kuwait	800	1,050	900	900	921	999	948	996	996	1,037	1,093
Libya	750	1,100	990	990	999	999	948	996	996	1,037	1,093
Nigeria	1,300	1,300	1,300	1,300	1,304	1,304	1,238	1,301	1,301	1,355	1,428
Qatar	300	300	280	280	300	300	285	299	299	312	329
Saudi Arabia	7,150	5,000	4,353	4,353	4,353	4,353	4,133	4,343	4,343	4,524	4,769
UAE	1,000	1,100	950	950	950	950	902	948	948	988	1,041
Venezuela	1,500	1,675	1,555	1,555	1,574	1,574	1,495	1,571	1,571	1,636	1,724

... crude Oil Production Allocations (1000 b/d)

... crude Oil Production Allocations (1000 b/d) (cont.)

Problems

- Time periods are varied
 - So it is difficult to decide if a country's crude production allocation has increased or decreased.
 - Barchart is too crowded
 - Other chart difficult to assess individual country's trends as they are added on top of "previous" country's data.

Better? - Crude production allocation Apr 82 - Sep 89

Adapted from OPEC Website
OPEC upstream capacity in the medium term (OPEC world oil outlook)

OPEC Data

 Adapted from figure OPEC website

Previous 2 visualisations

- Are they clear?
- Is it easy to see who gets what from a litre of oil in the 2nd visualisation.
- Which country has a higher tax, Germany or France?
- It is easy to see that USA gets cheaper crude.

Lies?

Adapted from

http://www.infovis-wiki.net/index.php?title=File:Lie factor example1 image.jpg
[accessed 29/01/2019]

Lie Factor

- Lie Factor = $\frac{\text{size of factor shown in graphic}}{\text{size of effect in data}}$
- Good representation of data
 - Lie factor = 1
- Significant distortion
 - Lie factor < 0.95
 - Or
 - Lie factor > 1.05 ***this is what usually happens if visualisation is misleading ***

... lie factor

- Congress and department of transportation set a series of fuel economy standards to be met by car manufacturers
 - 18 miles/gallon in 1978
 - 27.5 miles/gallon in 1985
- Increase

$$\bullet \frac{27.5 - 18.0}{18.0} \times 100 = 53\%$$

Lie factor calculations

Magnitude of change given length of lines in graph

$$\bullet \frac{5.3 - 0.6}{0.6} \times 100 = 783\%$$

• Lie factor = $\frac{783}{53}$ = 14.8

Fuel economy Standards for Cars

Set by congress and supplemented by the

Lie factor example - observations

- Things to note
 - Here present is closest to viewer unusual on roads!
 - Date fontsize is constant, fuel economy fontsize is not

Fuel economy Standards for Cars

Set by congress and supplemented by the

18 miles/gallon in 1978. Line is 0.6 in long

27.5 miles/gallon in 1985. Line is 5.3 in long

Better representation

Required fuel economy standards - new cars 1978-1985

1978 1979 1980 1981 1982 1983 1984 1985

Show data variation NOT design variation

(adapted from Tufte 2001)

- Barrel size is misleading
- Increase of 553% in price
- BUT much bigger increase in barrel size
- Huge lie factor!

... 3D barrels misrepresent data

- Smallest barrel in largest barrel more than 12 in one layer (more than 1200%)
 - A lot more if whole volume considered!
- Do not use 3D marks (barrels) to display 1D data (price).

Population of 10 most populated countries – not

[accessed 29/01/2019]. Also next few slides.

Better

Better?

Millions of people

Better if needing to scroll People in the world (in millions)

... and it can be easily expanded (3 more countries)

... but if you really want the people ...

Some designs distract from data?
Nigel Holmes designs

https://eagereyes.org/criticism/chart-junk-considered-useful-ajter-un [uccesseu 24/01/22]

Are visual ornaments a problem?

- Do they prevent us from understanding the data?
- Do they convey additional information?
- Experimental tests suggest
 - No significant difference between plain and ornated visualisation
 - No significant difference in recall accuracy after a 5 min break
 - Better recall for Holmes charts of the data topic and the details after a 3 week break
 - People were better at identifying messages in the Holmes visualisations.
 - People preferred Holmes charts

• Problems:

- Space use
- Interpretation of data
- Trust biased image?

Content (4)

- Data
- Why visualise?
- Requirements
- Problem visualisations
- Tips for visualisation
- Summary

Show context to ensure graphical integrity

... show context

Other example – show context

Better plot

Maximise data-ink ratio

•
$$dataInkRatio = \frac{dataInk}{totalInkUsedInGraphic}$$

- Most of the ink should be used to present the data
 - NOT to ornate the data
- Retain only what cannot be deleted without loosing information.

Wrong data-ink ratio

Better bar plot

Data-ink ratio

- Delete non-data ink
 - Within reason!!!!
- What is each bit of ink telling?
 - Each bit of ink requires a reason.
- Delete redundant information
- Delete decorations

Poor data-ink ratio

Remove horizontal lines

Adjust Y axis

Adjust X axis (note it does not start at 0).

Removal of points is not always useful. It may be easier to understand if it starts at zero.

Other

- Solid diamond markers could be changed for unfilled circles
 - This would allow to see any overlapping data

Very large datasets

- If there is too much data
 - Consider data summarisation prior to visualisation
 - Do you need to present all the data?
 - Do you need to consider presenting the data at several different levels of detail?
 - E.g. OPEC production allocations by periods vs. summary of production allocations.

Good visualisations chracteristics

- Simplicity make graphs and tables as simple as possible
- Graphs are gen. better than tables
 - Except when the amount of data is small
- Titles of visualisations should be meaningful
- Explain the graph
 - X variable including unit of measure
 - Y variable including unit of measure
 - Scale and limitations
 - Include a meaningful title

... good visualisations

- Number representation should be directly proportional to the actual amounts being represented
 - lie factor should be 1
- Use labels to explain any potential graphical mislead or ambiguity
- Show changes in data NOT in design
- Present cause and effect in the visualisation

Hans Rosling's visualisation

- Hans Rosling in action at
 - http://www.ted.com/talks/hans rosling shows the best stats you ve ever seen.html
 - [accessed 24/01/2022]

Summary

- Show data
 - Emphasis should be on the information contained in the data NOT on graphics.
- Avoid presenting data in a misleading way
 - Consider
 - Lie factor
 - Scale
- Make large data sets coherent
 - Data summarisation may be needed
- Maximise data-ink ratio
 - Within reason
- Visualisation should encourage the viewer compare different pieces of data