The University of Newcastle School of Information and Physical Sciences

COMP2230/6230 Algorithms

Tutorial Week 9 Solutions

13 – 17 September 2021

Tutorial

1. Write a dynamic programming algorithm for computing the n^{th} Fibonacci number f(n). Trace your algorithm for n = 7. Compare the time complexity of your algorithm to the time complexity of a recursive algorithm for computing the n^{th} Fibonacci number f(n). Refine your algorithm so that it does not use extra space. Trace the refined algorithm for n = 7.

Solution:

The dynamic programming algorithm for computing the n^{th} Fibonacci number f(n) fills elements of a one-dimensional array with n consecutive Fibonacci numbers, starting from f(1) to f(n).

```
Input Parameters: n
Output Parameters: None fibonaccil(n) {

//f is a local array if (n = 1 \parallel n = 2) return 1

f[1] = 1
f[2] = 1
for i = 3 to n
f[i] = f[i - 1] + f[i - 2] return f[n]
```

Time complexity of this algorithm is $\Theta(n)$. Tracing the algorithm for n = 7:

1						
1	1					
1	1	2				
1	1	2	3			
1	1	2	3	<u>5</u>		
1	1	2	3	5	8	

```
1 1 2 3 5 8 <u>13</u>
```

Recursive algorithm:

```
Input Parameters: n
Output Parameters: None fibonacci\_recurs(n) {
        if (n = 1 \parallel n = 2)
        return 1
        return fibonacci\_recurs(n-2) + fibonacci\_recurs(n-1) }
```

Time complexity of this algorithm is $\Theta(c^n)$. Tracing the algorithm for n = 7:

Algorithm refined to save the space:

```
Input Parameters: n
Output Parameters: None fibonacci2(n) {
    if (n == 1 \parallel n == 2)
        return 1
    f\_twoback = 1
```

Time complexity of this algorithm is $\Theta(n)$, assuming that addition requires constant time (strictly speaking this is not the case).

Tracing the algorithm for n = 7:

f_twoback	f_oneback	f
1		
1	1	
1	1	2
1	2	2
1	2	<u>3</u>
2	3	3
2	3	<u>5</u>
3	<u>5</u>	5
2 2 3 3 5	5	8
<u>5</u>	<u>8</u>	8
5	8	<u>13</u>

2. Write a dynamic programming algorithm for computing binomial coefficient $C(n,k) = \binom{n}{k}$. What is the complexity of your algorithm? Trace the algorithm for C(5,3).

Solution:

```
Binomial coefficients are the coefficients in the binomial formula: (a + b)^n = C(n,0)a^n + \ldots + C(n,k)a^{n-k}b^k + \ldots + C(n,n)b^n
```

We shall use the following recurrence relation:

$$C(n,k) = C(n-1,k-1) + C(n-1,k)$$
, for $n>k>0$; $C(n,0) = C(n,n) = 1$

Algorithm:

```
//Input: A pair of nonnegative integers n \ge k \ge 0.
//Output: None
```

```
for i = 0 to n

for j = 0 to \min(i,k)

if j = 0 or j = i

C[i,j] = 1
else C[i,j] = C[i-1,j-1] + C[i-1,j]
return C[n,k]
```

The time complexity is $(k+1)k/2 + k(n-k+1) = \Theta(nk)$ (again assuming that addition requires constant time).

Tracing the algorithm for C(5,3):

	0	1	2	3
0	1			
1	1	1		
2	1	2	1	
<i>3</i>	1	3	3	1
4	1	4	6	4
5	1	5	10	10

3. The following is a pseudo code of Warshall's algorithm for computing the transitive closure of a digraph, where the transitive closure of a directed graph with n vertices is an $n \times n$ Boolean matrix TC such that TC(i,j) is 1 if there is a directed path from vertex i to vertex j, and 0 otherwise. Trace the algorithm for the digraph below.

```
//Input: The adjacency matrix A of a digraph D with n vertices. 

//Output: None TC^{(0)} = A for k=1 to n for j=1 to n for j=1 to n TC^{(k)}[i,j] = TC^{(k-1)}[i,j] \text{ or } (TC^{(k-1)}[i,k] \text{ and } TC^{(k-1)}[k,j]) return TC^{(n)}
```


Solution:

Warshall's algorithm constructs a series of $n \times n$ matrices $TC^{(0)}$, $TC^{(1)}$, . . . , $TC^{(n)}$. $TC^{(0)}$ is equal to the adjacency matrix A and $t_{ij}^{(0)}$ is 1 if and only if there is a directed edge from vertex i to vertex j. An element of $TC^{(1)}$, $t_{ij}^{(1)}$, is equal to 1 if and only if there is a directed path from i to vertex j, which can only contain vertex 1 as an intermediate vertex. In general, an element of $TC^{(k)}$, $t_{ij}^{(k)}$, is equal to 1 if and only if there is a directed path from i to vertex j, which can only contain vertices 1 to k as intermediate vertices. Finally, in $TC^{(n)}$ the element $t_{ij}^{(n)}$ is equal to 1 if and only if there is a directed path from i to vertex j, and that path can use all n vertices as intermediate vertices.

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$TC^{(0)} = \begin{cases} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{cases} \qquad TC^{(1)} = \begin{cases} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{cases}$$

4. Trace Floyd's algorithm for the following digraph.

$$A = \begin{cases} 0 & 5 & 1 & \infty \\ 1 & 0 & \infty & 10 \\ \infty & 3 & 0 & 1 \\ 7 & 1 & \infty & 0 \end{cases}$$

Solution:

Floyd's algorithm finds the shortest paths between each pair of vertices in a graph. Floyd's algorithm can be applied to any directed or undirected graph that does not have a cycle of negative length. The output of the algorithm is the so-called distance matrix D where the element d_{ij} is the length of the shortest path from the vertex i to the vertex j.

Floyd's algorithm constructs D through a series of matrices $D^{(0)}$, $D^{(1)}$, . . . , $D^{(n)}$, where $D^{(0)}$ is equal to the matrix A. The element $d_{ij}{}^{(k)}$ of matrix $D^{(k)}$ is equal to the length of the shortest path from vertex i to vertex j, among all paths from vertex i to vertex j that can only contain vertices 1 to k as intermediate vertices.

```
//Input: The adjacency matrix A of a weighted digraph G with n vertices an no negative cycles. 
//Output: None D^{(0)} = A for k=1 to n for i=1 to n for j=1 to n D^{(k)}\left[i,j\right] = \min\left(D^{(k-1)}\left[i,j\right], D^{(k-1)}\left[i,k\right] + D^{(k-1)}\left[k,j\right]\right) return D^{(n)}
```


$$D^{(0)} = A = \begin{pmatrix} 0 & 5 & 1 & \infty \\ 1 & 0 & \infty & 10 \\ \infty & 3 & 0 & 1 \\ 7 & 1 & \infty & 0 \end{pmatrix} \qquad D^{(1)} = A = \begin{pmatrix} 0 & 5 & 1 & \infty \\ 1 & 0 & 2 & 10 \\ \infty & 3 & 0 & 1 \\ 7 & 1 & 8 & 0 \end{pmatrix} \qquad D^{(2)} = A = \begin{pmatrix} 1 & 0 & 2 & 10 \\ 4 & 3 & 0 & 1 \\ 2 & 1 & 3 & 0 \end{pmatrix}$$

$$D^{(3)} = A = \begin{pmatrix} 0 & 4 & 1 & 2 \\ 1 & 0 & 2 & 3 \\ 4 & 3 & 0 & 1 \\ 2 & 1 & 3 & 0 \end{pmatrix} \qquad D^{(4)} = A = \begin{pmatrix} 0 & 3 & 1 & 2 \\ 1 & 0 & 2 & 3 \\ 3 & 2 & 0 & 1 \\ 2 & 1 & 3 & 0 \end{pmatrix}$$

Workshop

5. Trace Warshall's algorithm on the diagraphs below.

$$TC^{(0)} = A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad TC^{(1)} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad TC^{(2)} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$TC^{(3)} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad TC^{(4)} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$TC^{(0)} = A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$
 $TC^{(1)} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $TC^{(2)} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

$$TC^{(3)} = \begin{matrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{matrix}$$

$$TC^{(4)} = \begin{matrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{matrix}$$

6. Trace Floyd's algorithm for the following digraph.

$$D^{(0)} = A = \begin{pmatrix} 0 & \infty & 3 & \infty \\ 2 & 0 & \infty & \infty \\ \infty & 7 & 0 & 1 \\ 6 & \infty & \infty & 0 \end{pmatrix} \qquad D^{(1)} = \begin{pmatrix} 0 & \infty & 3 & \infty \\ 2 & 0 & 5 & \infty \\ \infty & 7 & 0 & 1 \end{pmatrix} \qquad D^{(2)} = \begin{pmatrix} 0 & \infty & 3 & \infty \\ 2 & 0 & 5 & \infty \\ 9 & 7 & 0 & 1 \\ 6 & \infty & 9 & 0 \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 10 & 3 & 4 & & 0 & 10 & 3 & 4 \\ 2 & 0 & 5 & 6 & & & & \\ 9 & 7 & 0 & 1 & & & \\ 6 & 16 & 9 & 0 & & 6 & 16 & 9 & 0 \end{pmatrix}$$

7. Write a pseudo code of a dynamic programming algorithm for Knapsack problem and trace it on the following instance: $a_1(w_1 = 2, v_1 = 5)$, $a_2(w_2 = 3, v_2 = 8)$, $a_3(w_3 = 1, v_3 = 7)$, $a_4(w_4 = 2, v_4 = 15)$ and W=5.

Knapsack Problem: Given n objects and a knapsack of capacity W, where the object a_i has weight w_i and value v_i , find the maximum value that fit into knapsack. NOTE: There are different versions of the Knapsack problem.

```
//Input: Weights w_1, w_2, \ldots, w_n, values v_1, v_2, \ldots, v_n and a knapsack capacity W. //Output: None for j{=}1 to W V[0,j] = 0 for i{=}1 to n for j{=}0 to W if j>=w_i V[i,j] = max \ (V[i{-}1,j],\ V[i{-}1,j{-}w_i] + v_i) else V[i,j] = V[i{-}1,j] return V[n,W]
```

	aı	a ₂	a ₃	a ₄
W	2	3	1	2
V	5	8	7	15

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	5	5	5	5
2	0	0	5	8	8	13
3	0	7	7	12	15	15
4	0	7	15	22	22	37

8. Prove that when *Fibonacci_recurs* computes f_n , n>=3, f_n computations are required for the base cases.

Solution (from the text):

We use induction.

The base cases: n = 1,2; each of f_1 and f_2 , compute base cases only once.

<u>Inductive hypothesis:</u> Suppose that when we execute $Fibonacci_recurs(k)$, 0 < k < n, the number of times that the base cases are computed is f_k .

<u>Inductive step:</u> When we execute $Fibonacci_recurs(n)$,, we recursively invoke $Fibonacci_recurs(n-1)$ and $Fibonacci_recurs(n-2)$. By the inductive assumption, $Fibonacci_recurs(n-1)$ invokes the base cases F_{n-1} times, and $Fibonacci_recurs(n-2)$ invokes the base cases F_{n-2} times. Thus the total number of base cases computed $f_{n-1} + f_{n-2} = f_n$. The inductive step is complete.

More exercise

9. Trace Floyd's algorithm for the following graph.

10. There are six permutations of Floyds algorithm of the lines

$$for \ k = 1 \ to \ n$$

$$for \ i = 1 \ to \ n$$

$$for \ j = 1 \ to \ n$$

Which ones give a correct algorithm?

Solution:

Only lines for i = 1 to n and for j = 1 to n can be swapped; other 4 permutations do not produce a correct algorithm.

11. Suppose that G is directed, weighted graph in which some weights are negative. Write an algorithm that determines whether G contains a cycle of negative weight.

Solution idea: Use depth first search.

12. Explain why Warshall's algorithm can compute the matrices $A^{(k)}$ in place? What is the running time of Warshall's algorithm?

Solution idea:

$$A^{(k)}(i,k)=A^{(k-1)}(i,k)$$

 $A^{(k)}(k,j)=A^{(k-1)}(k,j)$
Running time is Θ (n³).