3.2

Opérations sur les vecteurs

Maths 2nde 7 - JB Duthoit

3.2.1 Somme de deux vecteurs

Définition

Définition

La somme de deux vecteurs \vec{u} et \vec{v} est le vecteur \vec{w} qui résulte de l'enchaînement des translations de vecteur \vec{u} puis de vecteur \vec{v} .

On écrit : $\vec{u} + \vec{v} = \vec{w}$

Exemple

Savoir-Faire 3.21

SAVOIR REPRÉSENTER LA SOMME DE DEUX VECTEURS

- 1. Tracer un représentant du vecteur $\vec{u} + \vec{v}$.
- 2. Placer le point F tel que $\overrightarrow{BF} = \overrightarrow{u} + \overrightarrow{v}$
- 3. Placer le point G tel que $\overrightarrow{AG} = \overrightarrow{u} + \overrightarrow{w}$
- 4. Placer le point H tel que $\overrightarrow{CH} = \vec{u} + \vec{v} + \vec{w}$
- 5. Placer le point I tel que $\overrightarrow{DI} = \vec{v} + \vec{w}$

Propriété (admise)

RELATION DE CHASLES

Pour tous points A,B et C du plan, on a :

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

Savoir-Faire 3.22

SAVOIR UTILISER LA RELATION DE CHASLES

1. Compléter :

a)
$$\overrightarrow{AB} + \overrightarrow{BF} = \overline{}$$

b)
$$\overrightarrow{AK} + \overrightarrow{G} = \overline{}$$

c)
$$\overrightarrow{FR} + \overrightarrow{} = \overrightarrow{FB}$$

d)
$$\overrightarrow{R} + \overrightarrow{T} = \overrightarrow{B}$$

e)
$$\overrightarrow{RO} + \overrightarrow{I} = \overrightarrow{RI}$$

f)
$$\overrightarrow{K} + \overrightarrow{LM} = \overrightarrow{KM}$$

2. Simplifier:

a)
$$\overrightarrow{AB} + \overrightarrow{BC}$$

b)
$$\overrightarrow{AR} + \overrightarrow{BA}$$

c)
$$\overrightarrow{DF} + \overrightarrow{GD}$$

d)
$$\overrightarrow{BC} + \overrightarrow{AB} + \overrightarrow{CD}$$

e)
$$\overrightarrow{RG} + \overrightarrow{HI} + \overrightarrow{GH}$$

Exercice 3.10

 $\tilde{\mathsf{I}}$ Soient ABCD un carré de centre O.

Placer les points

- 1. E tel que $\overrightarrow{BE} = \overrightarrow{AB}$
- 2. F tel que $\overrightarrow{AF} = \overrightarrow{AC} + \overrightarrow{BD}$
- 3. G tel que $\overrightarrow{BG} = \overrightarrow{BC} + \overrightarrow{AB}$
- 4. H tel que $\overrightarrow{CH} = \overrightarrow{HB}$
- 5. I tel que $\overrightarrow{DI} = \overrightarrow{BO} + \overrightarrow{AD}$
- 6. J tel que $\overrightarrow{AJ} = \overrightarrow{OB}$
- 7. K tel que $\overrightarrow{KC} = \overrightarrow{AD}$

Exercice 3.11

Reproduire la figure ci-dessous :

1. Construire un représentant du vecteur $\vec{u} = \overrightarrow{AB} + \overrightarrow{CD} + \overrightarrow{ED}$, puis un représenant du vecteur $\vec{v} = \overrightarrow{AD} + \overrightarrow{CD} + \overrightarrow{EB}$. (utilser des couleurs). Que constate-t-on?

2. Le démontrer à l'aide de la relation de Chasles.

Exercice 3.12

Soit ABCD un parallélogramme. Montrer que :

1.
$$\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$$

$$2. \ \overrightarrow{AB} + \overrightarrow{CB} = \overrightarrow{DB}$$

3.
$$\overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{0}$$

4.
$$\overrightarrow{DC} - \overrightarrow{AD} = \overrightarrow{DB}$$

• Exercice 3.13

Soit RST un triangle.

- 1. Construire le point P tel que $\overrightarrow{RP} = \overrightarrow{RS} + \overrightarrow{RT}$
- 2. Montrer que $\overrightarrow{TP} = \overrightarrow{RS}$. Penser à la relation de Chasles!

3.2.2 Opposé d'un vecteur

Définition

L'opposé d'un vecteur \vec{u} du plan est le vecteur noté $-\vec{u}$, qui a :

- même direction que \vec{u} .
- même norme que \vec{u} .
- le sens opposé à celui de \vec{u} .

Soustraction de deux vecteurs

Définition

Soient \vec{u} et \vec{v} deux vecteurs du plan. On définit la soustraction de \vec{u} par \vec{v} , notée \vec{u} - \vec{v} , le vecteur \vec{w} défini par $\vec{w} = \vec{u} + (-\vec{v})$.

Exemple

Savoir-Faire 3.23

SAVOIR REPRÉSENTER LA DIFFÉRENCE DE DEUX VECTEURS

- 1. Placer le point G tel que $\overrightarrow{AG} = \overrightarrow{v} \overrightarrow{w}$
- 2. Placer le point H tel que $\overrightarrow{DH} = \overrightarrow{u} \overrightarrow{v}$
- 3. Placer le point I tel que $\overrightarrow{CI} = \overrightarrow{u} \overrightarrow{w}$

3.2.3 Produit d'un vecteur par un nombre

Définition

Soient \vec{u} un vecteur du plan et k un réel.

Si k = 0 ou si $\vec{u} = \vec{0}$, alors $k \times \vec{u} = \vec{0}$

Sinon:

- Direction : \vec{u} et $k \times \vec{u}$ ont la même direction.
- Sens:
 - si k > 0 alors \vec{u} et $k \times \vec{u}$ ont le même sens
 - si k < 0, alors \vec{u} et $k \times \vec{u}$ ont des sens contraires
- Longueur : La longueur du vecteur $k \times \vec{u}$ est égale à la longueur du vecteur \vec{u} multipliée par |k|.

Propriété (admise)

Pour tous vecteurs \vec{u} et \vec{v} , pour tous réels k et k', on a :

- $k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}$
- $(k+k')\vec{u} = k\vec{u} + k'\vec{u}$
- $k(\vec{u} \vec{v}) = k\vec{u} k\vec{v}$ $k(k'\vec{u}) = (kk')\vec{u}$
- $k\vec{u} = \vec{0}$ si et seulement si k = 0 ou $\vec{u} = \vec{0}$

Exemple

Simplifier les expressions suivantes :

- $5\vec{u} + 3\vec{u} =$
- $5\vec{u} 3\vec{u} =$
- $5\vec{u} + 5\vec{v} =$
- $5 \times (3\vec{v}) =$

Savoir-Faire 3.24

SAVOIR PLACER UN POINT DÉFINI PAR DES ÉGALITÉS VECTORIELLES

- 1. Placer le point G tel que $\overrightarrow{AG} = -2\vec{u} 2\vec{v} 2\vec{w}$
- 2. Placer le point H tel que $\overrightarrow{DH} = 2 \vec{w} + \vec{v}$
- 3. Placer le point I tel que $\overrightarrow{CI}=3\overrightarrow{u}-\overrightarrow{v}+2\overrightarrow{w}$

Exercice 3.14

- 1. Placer le point D tel que $\overrightarrow{AD} = 2\overrightarrow{AC} \overrightarrow{BC}$
- 2. Placer le point E tel que $\overrightarrow{BE} = -\overrightarrow{CA} + 2\overrightarrow{BC} + \overrightarrow{AB}$
- 3. Placer le point F tel que $\overrightarrow{CF} = \overrightarrow{CB} \overrightarrow{AC}$

Savoir-Faire 3.25

SAVOIR UTILISER LES RÈGLES DE CALCUL SUR LES VECTEURS AFIN D'EXPRIMER UN VECTEUR EN FONCTION D'UN AUTRE

- 1. Placer trois points A, B et C tels que $\overrightarrow{AC}=3\overrightarrow{AB}$
- 2. Exprimer \overrightarrow{BC} en fonction de \overrightarrow{AB} . Vérifier la cohérence du résultat obtenu sur la figure.

• Exercice 3.15

Soit ABC un triangle.

Construire les points $I,\,J$ et K tels que :

1.
$$\overrightarrow{AI} = \overrightarrow{AB} + \overrightarrow{AC}$$

2.
$$\overrightarrow{BJ} = 2\overrightarrow{BA} + \overrightarrow{AC}$$

$$3. \ \overrightarrow{CK} = \overrightarrow{CA} + \overrightarrow{CB}$$