Mathematical Foundations of Computer Science

Project 13

Log Creative
Student ID:

June 25, 2021

Warmups

7 Is (5.34) true also when k < 0?

Solution. It is also true that

$$r^{\underline{k}}\left(r-\frac{1}{2}\right)^{\underline{k}} = \frac{(2r)^{2\underline{k}}}{2^{2k}}, \text{ when } k < 0$$

The proof is as follows.

$$r^{\underline{k}} \left(r - \frac{1}{2} \right)^{\underline{k}} = \frac{r}{r^{\overline{-k+1}}} \frac{r - \frac{1}{2}}{\left(r - \frac{1}{2} \right)^{\overline{-k+1}}}$$

$$= \frac{1}{(r + \frac{1}{2})(r+1)(r + \frac{3}{2})(r+2) \cdots (r - \frac{1}{2} - k)(r - k)}$$

$$= \frac{2^{-2k}}{(2r+1)(2r+2) \cdots (2r-1-2k)(2r-2k)}$$

$$\frac{(2r)^{\underline{2k}}}{2^{2k}} = \frac{2^{-2k}2r}{(2r)^{\overline{-2k+1}}}$$

$$= \frac{2^{-2k}}{(2r+1)(2r+2) \cdots (2r-2k)}$$

And they are the same.

8 Evaluate

$$\sum_{k} \binom{n}{k} (-1)^k \left(1 - \frac{k}{n}\right)^n$$

What is the approximate value of this sum, when n is very large? Hint: The sum is $\Delta^n f(0)$ for some function f.

Solution. According to (5.40),

$$\Delta^n f(x) = \sum_k \binom{n}{k} (-1)^{n-k} f(x+k)$$

$$= \sum_k \binom{n}{n-k} (-1)^{n-k} f(x+k)$$

$$= \sum_k \binom{n}{k} (-1)^k f(x+n-k)$$

In other word,

$$\Delta^n f(0) = \sum_k \binom{n}{k} (-1)^k f(n-k)$$

Compare to the formula to solve, the function f is

$$f(n-k) = \left(1 - \frac{k}{n}\right)^n = \left(\frac{n-k}{n}\right)^n$$
$$f(x) = \left(\frac{x}{n}\right)^n$$

As a result,

$$\sum_{k} \binom{n}{k} (-1)^k \left(1 - \frac{k}{n} \right)^n = \Delta^n f(0)$$

$$= \left(\Delta^n \left(\frac{x}{n} \right)^n \right) (0)$$

$$= \frac{(n-1)!}{n^n} \to 0, n \to +\infty$$

9 Show that the generalized exponentials of (5.58) obey the law

$$\mathcal{E}_t(z) = \mathcal{E}(tz)^{1/t}$$
, if $t \neq 0$,

where $\mathcal{E}(z)$ is an abbreviation for $\mathcal{E}_1(z)$.

Proof. By (5.60),

$$\mathcal{E}_t(z)^r = \sum_{k>0} r \frac{(tk+r)^{k-1}}{k!} z^k$$

By assigning r = t, and notice that $t \neq 0$,

$$\mathcal{E}_t(z)^t = \sum_{k \ge 0} t \frac{(tk+t)^{k-1}}{k!} z^k$$
$$= \sum_{k \ge 0} (k+1)^{k-1} \frac{(tz)^k}{k!}$$
$$= \mathcal{E}(tz)$$

which is the same as the original formula.

Basics

Prove identity (5.25) by negating the upper index in Vandermonde's convolution (5.22). Then show that another negation yields (5.26).

Proof. For (5.25),

$$\sum_{k \le l} {l-k \choose m} {s \choose k-n} (-1)^k = \sum_{k \le l} {l-k \choose l-k-m} {s \choose k-n} (-1)^k$$
 (symmetry)
$$= \sum_{k \le l} (-1)^{l-k-m} {-m-1 \choose l-k-m} {s \choose k-n} (-1)^k$$
 (negation)
$$= (-1)^{l-m} \sum_{k} {s \choose -n+k} {-m-1 \choose l-m-k}$$
 ($m \ge 0$)
$$= (-1)^{l-m} {s-m-1 \choose l-m-n}$$
 (by 5.22)
$$= (-1)^{l+m} {s-m-1 \choose l-m-n}$$
 ($(-1)^{2m} = 1$)

The step on $(m \ge 0)$ holds for the reason when k > l:

$$l - k - m \le -1 - m < 0 \Rightarrow \begin{pmatrix} -m - 1 \\ l - k - m \end{pmatrix} = 0, \quad (m \ge 0)$$
 (1)

For (5.26),

$$\sum_{0 \le k \le l} {l-k \choose m} {q+k \choose n} = \sum_{0 \le k \le l} {l-k \choose l-k-m} {q+k \choose q+k-n} \qquad \text{(symmetry)}$$

$$= \sum_{0 \le k \le l} {m-1 \choose l-k-m} {n-1 \choose q+k-n} (nagation)$$

$$= (-1)^{l-m+q-n} \sum_{k} {m-1 \choose l-k-m} {n-1 \choose q+k-n} \qquad (m \ge 0, n \ge q)$$

$$= (-1)^{l-m+q-n} {m-n-2 \choose l-m+q-n} \qquad (by 5.22)$$

$$= {l+q+1 \choose l-m+q-n} \qquad (negation)$$

$$= {l+q+1 \choose m+n-1} \qquad (symmetry)$$

and the step on $(m \ge 0, n \ge q)$ holds for

$$k < 0 \Rightarrow q + k - n \le n + k - n = k < 0 \Rightarrow \binom{-n-1}{q+k-n} = 0$$

the first term holds for the same reason as Eq. (1).

15 What is $\sum_{k} {n \choose k}^3 (-1)^k$? Hint: See (5.29).

Solution. By (5.29),

$$\sum_{k} \binom{a+b}{a+k} \binom{b+c}{b+k} \binom{c+a}{c+k} (-1)^k = \frac{(a+b+c)!}{a!b!c!}, \quad a,b,c \in \mathbb{N}.$$

when $n = 2m(m \in \mathbb{N})$, the original formula could be deduced to

$$\sum_{k} \binom{n}{k}^{3} (-1)^{k} = \sum_{k} \binom{n}{n-k}^{3} (-1)^{k}$$
 (symmetry)
$$= \sum_{k} \binom{n}{n+k}^{3} (-1)^{-k}$$
 ($k \to -k$)
$$= \sum_{k} \binom{n}{n+k} \binom{n}{n+k} \binom{n}{n+k} (-1)^{k} (-1)^{-2k}$$
 ($(-1)^{-2k} = 1$)
$$= \frac{(m+m+m)!}{m!m!m!}$$
 (by 5.29)
$$= \frac{(3m)!}{m!^{3}}$$

when $n = 2m + 1 (m \in \mathbb{N})$,

$$\sum_{k} \binom{n}{k}^{3} (-1)^{k} = \sum_{k} \binom{n}{n-k}^{3} (-1)^{k}$$

expand both parts,

$${\binom{n}{0}}^{3} + {\binom{n}{1}}^{3} \times (-1) + \dots + {\binom{n}{n-1}}^{3} + {\binom{n}{n}}^{3} \times (-1)$$

$$= {\binom{n}{n}}^{3} + {\binom{n}{n-1}}^{3} \times (-1) + \dots + {\binom{n}{1}}^{3} + {\binom{n}{0}}^{3} \times (-1)$$

$$= -\left[{\binom{n}{0}}^{3} + {\binom{n}{1}}^{3} \times (-1) + \dots + {\binom{n}{n-1}}^{3} + {\binom{n}{n}}^{3} \times (-1)\right]$$

then,

$$2\sum_{k} {n \choose k}^{3} (-1)^{k} = 0 \Rightarrow \sum_{k} {n \choose k}^{3} (-1)^{k} = 0$$

when n < 0,

$$\binom{n}{k} = (-1)^k \binom{-n+k-1}{k}$$

and the original formula comes to

$$\sum_{k} {n \choose k}^{3} (-1)^{k} = \sum_{k>0} {-n+k-1 \choose k}^{3}$$

and $(-n+k-1)-k=-n-1\geq 0$, the symmetry property dispears. Every term is close to 1 when n grows, so this is $+\infty$ when $n\to +\infty$. In conclusion,

$$\sum_{k} {n \choose k}^{3} (-1)^{k} = \begin{cases} \frac{(3m)!}{m!^{3}}, & \text{if } n = 2m(m \in \mathbb{N}), \\ 0, & \text{if } n = 2m + 1(m \in \mathbb{N}), \\ +\infty, & \text{if } n < 0. \end{cases}$$

16 Evaluate the sum

$$\sum_{k} {2a \choose a+k} {2b \choose b+k} {2c \choose c+k} (-1)^k$$

when a, b, c are nonnegative integers.

Solution.

$$\sum_{k} {2a \choose a+k} {2b \choose b+k} {2c \choose c+k} (-1)^k = \sum_{k} \frac{(2a)!}{(a+k)!(a-k)!} \frac{(2b)!}{(b+k)!(b-k)!} \frac{(2c)!}{(c+k)!(c-k)!} (-1)^k$$

compared with (5.29),

$$\sum_{k} {a+b \choose a+k} {b+c \choose b+k} {c+a \choose c+k} (-1)^k = \sum_{k} \frac{(a+b)!}{(a+k)!(b-k)!} \frac{(b+c)!}{(b+k)!(c-k)!} \frac{(c+a)!}{(c+k)!(a-k)!} (-1)^k$$

then.

$$\sum_{k} {2a \choose a+k} {2b \choose b+k} {2c \choose c+k} (-1)^{k} = \frac{(2a)!(2b)!(2c)!}{(a+b)!(b+c)!(c+a)!} \sum_{k} {a+b \choose a+k} {b+c \choose b+k} {c+a \choose c+k} (-1)^{k}$$

$$= \frac{(2a)!(2b)!(2c)!}{(a+b)!(b+c)!(c+a)!} \frac{(a+b+c)!}{a!b!c!}$$

17 Find a simple relation between $\binom{2n-1/2}{n}$ and $\binom{2n-1/2}{2n}$

Solution. By (5.35),

$$\binom{r}{k}\binom{r-\frac{1}{2}}{k} = \binom{2r}{2k}\binom{2k}{k} / 2^{2k}$$

and assigning r = 2n, k = n

$$\binom{2n - \frac{1}{2}}{n} = \frac{\binom{4n}{2n}\binom{2n}{n}}{2^{2n}\binom{2n}{n}} = \binom{4n}{2n} / 2^{2n}$$

assigning r = 2n, k = 2n,

$$\binom{2n - \frac{1}{2}}{2n} = \frac{\binom{4n}{4n}\binom{4n}{2n}}{2^{2n}\binom{2n}{2n}} = \binom{4n}{2n} / 2^{4n}$$

yields the simple relation of

$$\binom{2n-\frac{1}{2}}{n} = 2^{2n} \binom{2n-\frac{1}{2}}{2n}$$

18 Find an alternative form analogous to (5.35) for the product

$$\binom{r}{k} \binom{r-1/3}{k} \binom{r-2/3}{k}$$

Solution.

$$r^{\underline{k}} \left(r - \frac{1}{3} \right)^{\underline{k}} \left(r - \frac{2}{3} \right)^{\underline{k}}$$

$$= r \left(r - \frac{1}{3} \right) \left(r - \frac{2}{3} \right) (r - 1) \left(r - \frac{4}{3} \right) \left(r - \frac{5}{3} \right) \cdots (r - k + 1) \left(r - k + \frac{2}{3} \right) \left(r - k + \frac{1}{3} \right)$$

$$= \frac{(3r)(3r - 1)(3r - 2)(3r - 3)(3r - 4)(3r - 5) \cdots (3r - 3k + 3)(3r - 3k + 2)(3r - 3k + 1)}{3^{3k}}$$

divide both sides by $k!^3$,

$$\frac{r^{\underline{k}}}{k!} \frac{\left(r - \frac{1}{3}\right)^{\underline{k}}}{k!} \frac{\left(r - \frac{2}{3}\right)^{\underline{k}}}{k!} = \frac{1}{3^{3k}} \frac{(3r)^{3\underline{k}}}{k!^3}$$

$$\binom{r}{k} \binom{r - \frac{1}{3}}{k} \binom{r - \frac{2}{3}}{k} = \frac{1}{3^{3k}} \frac{(3r)^{3\underline{k}}}{(3k)!} \frac{(3k)!}{k!^3}$$

$$\binom{r}{k} \binom{r - \frac{1}{3}}{k} \binom{r - \frac{2}{3}}{k} = \frac{1}{3^{3k}} \binom{3r}{3k} \frac{(3k)!}{2k!k!} \frac{(2k)^{\underline{k}}}{k!}$$

$$\binom{r}{k} \binom{r - \frac{1}{3}}{k} \binom{r - \frac{2}{3}}{k} = \frac{1}{3^{3k}} \binom{3r}{3k} \binom{3k}{2k} \binom{2k}{k}$$