Soluciones #8

Valores y vectores propios

Problema 8.1

a) $\sigma(A_{\mathsf{T}^{\mathsf{X},\theta}}) = \{1, \cos(\theta) + i \operatorname{sen}(\theta), \cos(\theta) - i \operatorname{sen}(\theta)\}.$

b)
$$\sigma(A_{T^{X,\theta}}) = \{1, -1\}, \quad \mathfrak{m}_{\alpha}(1) = \mathfrak{m}_{g}(1) = 1, \quad \mathfrak{m}_{\alpha}(-1) = \mathfrak{m}_{g}(-1) = 2.$$

c) $B = (e_1, e_2, e_3)$.

Problema 8.2 a = 6, b = -11 y c = 6.

Problema 8.3 $\sigma(A) = \{a + b, d - b\}.$

Problema 8.4 *Indicación:* Evaluar el polinomio característico en $\lambda=0$.

Problema 8.5

$$1. \ \ \sigma(A) = \{1, -1, i, -i\}, \quad \ m_{\alpha}(\lambda_i) = 1, \quad \ \sigma(A^2) = \{1, -1\}, \quad \ m_{\alpha}(\lambda_i) = 2.$$

2.
$$det(A) = -1$$
, $det(A^2) = 1$.

Problema 8.6

- a) Diagonalizable. Vectores propios: $(0,1,0)^{t}$, $(-5,-9,-25)^{t}$, $(11,-3,11)^{t}$ y $det(A_{1})=30$.
- b) Diagonalizable. Vectores propios: $(-1,1,0)^{t}$, $(-1,0,1)^{t}$, $(1,1,1)^{t}$ y $det(A_{2})=2$.
- c) No diagonalizable. Vectores propios: $(1,0,1)^t$, $(8,0,1)^t$ y $det(A_3) = 20$.
- d) No diagonalizable. Vectores propios: $(1,0,1)^t$, $(0,1,0)^t$ y $det(A_4) = 27$.

Problema 8.7 $\sigma_1 = 0$, $\sigma_2 = 3i$ y $\sigma_3 = -3i$. Los vectores propios correspondientes son: $v_1 = (2, -1, 2)^t$, $v_2 = (1 + 3i, 4, 1 - 3i)^t$ y $v_3 = (1 - 3i, 4, 1 + 3i)^t$.

Problema 8.8 Los resultados son

$$A^2 = \begin{pmatrix} 7 & -4 \\ 8 & -1 \end{pmatrix}$$
, $p(A) = \begin{pmatrix} -29 & 12 \\ -24 & -5 \end{pmatrix}$.

Problema 8.9 $\lambda_1 = 0$ y $p_1(x) = 1$. $\lambda_2 = 1$ y $p_2(x) = x$. $\lambda_3 = 2$ y $p_3(x) = x^2$.

Problema 8.10 $\lambda_1 = \lambda_2 = \lambda_3 = 1$. No es diagonalizable.

Problema 8.11 B = $(1, 1 + x, 1 + 2x + x^2)$.

Problema 8.12

$$D = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad P = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ -1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}.$$