Projective modules over discrete Hodge algebras

Manoj Kumar Keshari

Department of Mathematics, IIT Mumbai, Mumbai - 400076, India; keshari@math.iitb.ac.in

1 Introduction

All the rings are assumed to be commutative Noetherian and all the modules are finitely generated.

Let A be a ring. In ([6], Theorem 1.1), Vorst proved that if all projective modules over polynomial extensions of A are extended from A, then all projective modules over discrete Hodge A-algebras are extended from A (An A-algebra R is a discrete Hodge A-algebra if $R = A[X_0, \ldots, X_n]/I$, where I is an ideal generated by monomials). In this note, we extend the above result of Vorst by proving the following result.

Theorem 1.1 Let A be a ring and r > 0 be an integer. Assume that all projective modules of rank r over polynomial extensions of A are extended from A. Then all projective modules of rank r over discrete Hodge A-algebras are extended from A.

We note that Lindel gave another proof of Vorst's result ([1], Theorem 1.5) and a proof of (1.1) is implicit in Lindel's proof. But the idea of our proof is different from Lindel's and it also gives other results which we describe below.

Let A be a ring of dimension d and let r > d/2. Assume that A is of finite characteristic prime to r!. In ([5], Theorem 5), Roitman proved that if P is a projective module of rank r over $R = A[X_1, \ldots, X_n]$ such that $P \oplus R$ is extended from A, then P is extended from A. In particular, if A is a local ring of dimension d, characteristic of A is positive and prime to d!, then all stably free modules of rank > d/2 over polynomial extensions of A are free.

We will prove the following analogue of Roitman's result for discrete Hodge A-algebras.

Theorem 1.2 Let A be a ring of dimension d. Assume A is of finite characteristic prime to r!. Let R be a discrete Hodge A-algebra and let P be a projective R-module of rank r > d/2. If $P \oplus R$ is extended from A, then P is extended from A.

As a corollary to the above result, if A is a local ring of dimension d, characteristic of A is finite and prime to d!, then all stably free modules of rank > d/2 over discrete Hodge A-algebras are free.

Now, we will describe our last result. Let A be a ring of dimension d and let $R = A[X_1, \ldots, X_n]$. In ([7], Section 4), Wiemers asked the following question: Is the natural map $\operatorname{Um}_r(R) \to \operatorname{Um}_r(R/(X_1X_2\ldots X_k))$ surjective for all r and $1 \le k \le n$?

Wiemers ([7], Proposition 4.1) answered the above question in affirmative when $r \geq d+2$ or r = d+1 and $1/d! \in A$. We will prove the following result which gives a partial answer to Wiemers question in affirmative.

Theorem 1.3 Let A be a ring of dimension d. Assume characteristic of A is positive and prime to d!. Let $R = A[X_1, \ldots, X_n]$ and let $I \subset J$ be two ideals of R generated by square free monomials. Then the map $\operatorname{Um}_r(R/I) \to \operatorname{Um}_r(R/J)$ is surjective for $r \geq \frac{d}{2} + 2$.

2 Preliminaries

Given a cartesian diagram of rings

$$\begin{array}{ccc}
A & \longrightarrow & A_1 \\
\downarrow & & \downarrow & \downarrow \\
A_2 & \longrightarrow & A_0
\end{array}$$

where j_2 is a surjective map. If P is a projective A-module, then the above diagram induces a cartesian diagram ([2], Section 2)

$$P \longrightarrow P_1$$

$$\downarrow$$

$$\downarrow$$

$$P_2 \longrightarrow P_0$$

where $P_i = P \otimes A_i$ for i = 0, 1, 2.

We begin by stating the following two results of A. Wiemers ([7], Proposition 2.1 and Theorem 2.3) respectively.

Proposition 2.1 Given a cartesian square of rings with j_2 surjective and a projective A-module P. Then

- $(i) \ \textit{If} \ \mathrm{Aut}_{\ A_2}(P_2) \to \mathrm{Aut}_{\ A_0}(P_0) \ \textit{is surjective, then so is} \ \mathrm{Aut}_{\ A}(P) \to \mathrm{Aut}_{\ A_1}(P_1).$
- (ii) If $\operatorname{Aut}_{A_2}(P_2) \to \operatorname{Aut}_{A_0}(P_0)$ is surjective and $Q \otimes_A A_i \xrightarrow{\sim} P_i$, i = 1, 2 for another projective A-module Q, then $P \xrightarrow{\sim} Q$. In particular, if P_1 and P_2 have the cancellation property, then so does P.
- (iii) Let, in addition, j_1 be surjective. If $\operatorname{Um}(P_2) \to \operatorname{Um}(P_0)$ is surjective, then so is $\operatorname{Um}(P) \to \operatorname{Um}(P_1)$.

Theorem 2.2 Let A be a ring and let J be an ideal of $R = A[X_1, ..., X_n]$ generated by square free monomials. Then the natural map $GL_r(R) \to GL_r(R/J)$ is surjective.

Given a simplicial subcomplex Σ of Δ_n and a ring A, let $I(\Sigma)$ be the ideal of $A[X_0, \ldots, X_n]$ generated by all square free monomials $X_{i_1}X_{i_2}\ldots X_{i_k}$ with $0 \le i_1 < i_2 < \ldots < i_k \le n$ and $\{i_1, \ldots, i_k\}$ is not a face of Σ . By $A(\Sigma)$, we denote the discrete Hodge A-algebra $A[X_0, \ldots, X_n]/I(\Sigma)$.

The following result is due to Vorst ([6], Lemma 3.4) and is very crucial for the proof of our results.

Proposition 2.3 Let Σ be a simplicial subcomplex of Δ_n which is not a simplex. Then there exists an $i \in \{0, 1, ..., n\}$ and simplicial subcomplexes $\Sigma_2 \subset \Sigma_1 \subset \Sigma$ such that we have a cartesian square of

rings

$$A(\Sigma) \xrightarrow{i_1} A(\Sigma_1)$$

$$\downarrow_{i_2} \downarrow \qquad \qquad \downarrow_{j_1}$$

$$A(C(\Sigma_2)) \xrightarrow{j_2} A(\Sigma_2)$$

where all maps are natural surjections and $\Sigma_2 \subset \Sigma_1 \subset \Sigma^i$, where Σ^i is the n-1 simplex of which i is not a vertex and $C(\Sigma_2)$ is the cone on Σ_2 with vertex i. Note that j_2 is a split surjection and $A(C(\Sigma_2)) = A(\Sigma_2)[X_i]$.

We end this section by stating two results of Wiemers ([7], Theorem 3.6) and ([8], Theorem 4.3) respectively which will be used in section 4.

Theorem 2.4 Let A be a ring of dimension d. Let $I \subset J$ be ideals in $R = A[X_1, \ldots, X_n]$ generated by square free monomials. Let P be a projective module over R/I. If either rank $P \geq d+1$ or rank $P \geq d$ and $1/d! \in A$, then the natural map $\operatorname{Aut}_{R/I}(P) \to \operatorname{Aut}_{R/J}(P/\overline{J}P)$ with $\overline{J} = J/I$ is surjective.

Theorem 2.5 Let A be a ring of dimension d with $1/d! \in A$ and $B = A[X_1, \ldots, X_n]$. Let P and P_1 be projective B-modules of rank $\geq d$. Assume $P \oplus B \xrightarrow{\sim} P_1 \oplus B$. If $P/(X_1, \ldots, X_n)P \xrightarrow{\sim} P_1/(X_1, \ldots, X_n)P_1$, then $P \xrightarrow{\sim} P_1$.

In other words, if the projective A-module $P/(X_1,\ldots,X_n)P$ is cancellative, then P is cancellative.

3 Main Theorem

In this section we prove our main results mentioned in the introduction.

Proof of Theorem 1.1: Let $B = A[X_0, ..., X_n]/I$ be a discrete Hodge A-algebra and let P be a projective B-module of rank r (here I is a monomial ideal). It is enough to assume that I is a square free monomial ideal. Then $I = I(\Sigma)$ for some simplicial subcomplex Σ of Δ_n and $B = A(\Sigma)$. We will use induction on n.

If n=0, then there is nothing to prove, as $A(\Sigma)=A$ or $A[X_0]$. Let n>0 and assume the result for n-1. We will apply (2.3). By induction hypothesis, all projective modules of rank r over $A_1=A(\Sigma_1)$ and $A_0=A(\Sigma_2)$ are extended from A. Also all projective modules of rank r over $A_2=A(C(\Sigma_2))=A(\Sigma_2)[X_i]$ are extended from $A[X_i]$ and hence are extended from A.

Write $P_i = P \otimes_A A_i$, i = 0, 1, 2. Clearly, the natural map $\operatorname{Aut}_{A_2}(P_2) \to \operatorname{Aut}_{A_0}(P_0)$ is surjective. Hence, if $Q = P/(X_0, \dots, X_n)P$, then $P_1 \stackrel{\sim}{\to} Q \otimes A_1$ and $P_2 \stackrel{\sim}{\to} Q \otimes A_2$, by induction hypothesis. Hence, by (2.1(ii)), $P \stackrel{\sim}{\to} Q \otimes A$, i.e. P is extended from A. This proves the result.

Proof of Theorem 1.2: Let $R = A[X_0, ..., X_n]/I$ be a discrete Hodge A-algebra and let P be a projective R-module of rank r (here I is a monomial ideal). Again, it is enough to assume that I is a square free monomial ideal. Then $I = I(\Sigma)$ for some simplicial subcomplex Σ of Δ_n and $R = A(\Sigma)$. We will use induction on n.

When n = 0, there is nothing to prove as R = A or $A[X_0]$. Let n > 0 and assume the result for n - 1. We will apply (2.3). Let $A_1 = A(\Sigma_1)$, $A_2 = A(C(\Sigma_2))$ and $A_0 = A(\Sigma_2)$. Write $P_i = P \otimes_A A_i$ for i = 0, 1, 2.

Since $R \to A_i$ are natural surjections, $P_i \oplus A_i$ are extended from A, i=1,2. Hence, by induction hypothesis P_i is extended from A, i=1,2. Therefore, if $Q=P/(X_0,\ldots,X_n)P$, $P_i \stackrel{\sim}{\to} Q \otimes A_i$, i=1,2. Clearly, the natural map $\operatorname{Aut}_{A_2}(P_2) \to \operatorname{Aut}_{A_0}(P_0)$ is surjective. Hence, by (2.1(ii)), $P \stackrel{\sim}{\to} Q \otimes_A R$, i.e. P is extended from A. This proves the result.

Proof of Theorem 1.3: It is enough to show that the natural map $\operatorname{Um}_r(R) \to \operatorname{Um}_r(R/J)$ is surjective for every ideal J of R generated by square free monomials.

Let $v \in \mathrm{Um}_r(R/J)$. We have an exact sequence $0 \to P \to (R/J)^r \xrightarrow{v} R/J \to 0$.

Since $P \oplus A/J$ is free, by (1.2), P is extended from A, i.e. $P = \overline{P} \otimes_A R$, where $\overline{P} = P/(X_1, \dots, X_n)P$. Hence, we have the following commutative diagram

$$0 \longrightarrow \overline{P} \otimes_A R \longrightarrow (R/J)^r \xrightarrow{v(0) \otimes R} R/J \longrightarrow 0$$

$$\downarrow \simeq \qquad \qquad \downarrow id \qquad \qquad \downarrow id$$

$$0 \longrightarrow P \longrightarrow (R/J)^r \xrightarrow{v} R/J \longrightarrow 0$$

where v(0) is the image of v in $\mathrm{Um}_r(A)$ under the map $R/J \to A$ given by $\overline{X}_i \mapsto 0$, $i = 1, \ldots, n$. Hence, there exists $\sigma \in \mathrm{GL}_r(R/J)$ such that $v\sigma = v(0) \otimes R$. By (2.2), σ can be lifted to $\Delta \in \mathrm{GL}_r(R)$ and $v(0)\Delta^{-1} \in \mathrm{Um}_r(R)$ is a lift of v. This proves the result.

4 Some Auxiliary Results

As an application of (2.3), we will give an alternative proof of the following result of Wiemers ([7], Corollary 4.4).

Theorem 4.1 Let A be a ring of dimension d with $1/d! \in A$. Let $B = A[X_0, \ldots, X_n]/I$ be a discrete Hodge A-algebra. Let P be a projective B-module of rank $\geq d$. If the projective A-module $P/(X_0, \ldots, X_n)P$ is cancellative, then P is cancellative.

Proof If B is a polynomial ring over A, then the result follows from (2.5). It is enough to assume that I is generated by square free monomials. Hence $I = I(\Sigma)$ for some simplicial subcomplex Σ of Δ_n . We will apply induction on n.

By (2.3), we have the following cartesian square

$$A(\Sigma) \xrightarrow{i_1} A(\Sigma_1)$$

$$\downarrow_{i_2} \qquad \qquad \downarrow_{j_1}$$

$$A(C(\Sigma_2)) \xrightarrow{j_2} A(\Sigma_2).$$

By (2.4), the natural map $\operatorname{Aut}_{A(C(\Sigma_2))}(P \otimes A(C(\Sigma_2))) \to \operatorname{Aut}_{A(\Sigma_2)}(P \otimes A(\Sigma_2))$ is surjective and by induction hypothesis on n, $P \otimes A(C(\Sigma_2))$ and $P \otimes A(\Sigma_1)$ are cancellative. Hence, by (2.1(ii)), P is cancellative. This proves the result.

Theorem 4.2 Let A be a ring of dimension d with $1/d! \in A$ and $R = A[X_1, ..., X_n]$. Let P be a projective R-module of rank d such that $P \oplus R$ is extended from A. Then P is extended from A.

Proof By Quillen's local-global principle ([3], Theorem 1), it is enough to assume that A is local. Then $P \oplus R$ is free. Since $P/(X_1, \ldots, X_n)P$ is free, by (2.5), P is free. This proves the result. \square

Remark 4.3 When P is stably free, the above result (4.2) is due to Ravi A Rao ([4] Corollary 2.5). More precisely, Rao proved that if A is a ring of dimension d with $1/d! \in A$, then every $v \in \mathrm{Um}_{d+1}(A[X])$ is extended from A, i.e. there exists $\sigma \in \mathrm{SL}_{d+1}(A[X])$ such that $v\sigma = v(0)$.

Following the proof of (1.2) and using (4.2), we get the following:

Corollary 4.4 Let A be a ring of dimension d with $1/d! \in A$. Let B be a discrete Hodge A-algebra. Let P be a projective B-module of rank d such that $P \oplus B$ is extended from A, then P is extended from A. In particular, every stably free B-module of rank d is extended from A.

During CAAG VII meeting in Bangalore, Kapil H Paranjape asked if we can extend the above results (1.1, 1.2, 4.4) for locally discrete Hodge A-algebras (Definition: A positively graded A-algebra B is a locally discrete Hodge A-algebra if B_p is a discrete Hodge A_p -algebra for every prime ideal \mathfrak{p} of A. The answer is yes and follows from the following result of Lindel ([1], Theorem 1.3) which generalises Quillen's patching theorem ([3], Theorem 1) from polynomial rings to positively graded rings.

Theorem 4.5 Let A be a ring and let M be a finitely presented module over a positively graded ring $R = \bigoplus_{i \geq 0} R_i$, $R_0 = A$. Then the set J(A, M), of all $u \in A$ for which M_u is extended from A_u , is an ideal of A.

In particular, if $M_{\mathfrak{p}}$ is extended from $A_{\mathfrak{p}}$ for all prime ideal \mathfrak{p} of A, then M is extended from A.

References

- [1] Lindel H., On projective modules over positively graded rings, Vector bundles on algebraic varieties (Bombay, 1984), 251–273, Tata Inst. Fund. Res. Stud. Math., 11, Tata Inst. Fund. Res., Bombay, 1987.
- [2] Milnor J., Introduction to Algebraic K-Theory, Annals of Math. Studies, Princeton Univ. Press, Princeton, 1971.
- [3] Quillen D., Projective modules over polynomial rings, Invent. Math. 36 (1976), 167-171.
- [4] Rao Ravi A., The Bass-Quillen conjecture in dimension three but characteristic ≠ 2,3 via a question of A. Suslin, Invent. Math. 93 (1988), 609-618.

- [5] Roitman M., On stably extended projective modules over polynomial rings, Proc. AMS 97 (1986), 585-589.
- [6] Vorst T., The Serre problem for discrete Hodge algebras, Math. Z. 184 (1983), 425-433.
- [7] Wiemers A., Some properties of projective modules over discrete Hodge algebras, J. Algebra 150 (1992), 402-426.
- [8] Wiemers A., Cancellation properties of projective modules over Laurent polynomial rings, J. Algebra 156 (1993), 108-124.