

1. Klausur Analysis I für Ing/Inf

2.8.2014

1. Es seien $n \in \mathbb{N}$ und $a_1, \ldots, a_n \in \mathbb{R}$ mit entweder $a_1, \ldots, a_n \geq 0$ oder $-1 \leq a_1, \ldots, a_n \leq 0$. Zeigen Sie die Ungleichung

[6]

$$\prod_{k=1}^{n} (1 + a_k) = (1 + a_1) \cdot (1 + a_2) \cdots (1 + a_n) \ge 1 + \sum_{k=1}^{n} a_k.$$

2. Untersuchen Sie mit Hilfe der Definition die Folge $(a_n)_{n\in\mathbb{N}}$ auf Konvergenz, wobei [5]

 $a_n = \frac{2n^3 + 3n^2 - 8n}{3n^3 - 2n}$ für alle $n \in \mathbb{N}$.

3. Zeigen Sie, dass der folgende Schluss im Allgemeinen falsch
 ist: Seien $(a_n)_{n\in\mathbb{N}}, (b_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ Folgen mit $a_n + b_n \to c \in \mathbb{R}$ für $n \to \infty$, dann existieren auch $\lim_{n \to \infty} a_n$ und $\lim_{n \to \infty} b_n$.

4. Untersuchen Sie die folgenden Reihen auf Konvergenz und absolute Konvergenz.

[5+4]

(a) $\sum_{k=0}^{\infty} (-1)^k \frac{3^k + 2}{4^k - 6}$,

- (b) $\sum_{k=1}^{\infty} \frac{\sqrt{k+1} \sqrt{k}}{\sqrt{k+1}}.$
- 5. Es seien $a, b \in \mathbb{R}$ mit a < b, I = [a, b] und $f: I \to \mathbb{R}$ stetig. Geben Sie eine Konstante C an, so dass die Funktion $g: I \to \mathbb{R}$, gf(x) = f(x) + C auf I positiv ist. [4]
- 6. Gegeben sei die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit

 $f(x) := \begin{cases} e^{x+1} & \text{für } < -1, \\ -\frac{x^2}{2} + 3 & \text{für } -1 \le x \le 0, \\ 3 - x & \text{für } 0 < x < 2, \\ e^{-x+2} & \text{für } x \ge 2. \end{cases}$

Untersuchen Sie, in welchen Punkten $x \in \mathbb{R}$ f stetig oder differenzierbar ist.

[12]

- 7. Zeigen Sie, dass $F(x) = \frac{1}{4} \ln \frac{1+x}{1-x} \frac{1}{2} \arctan x$ eine Stammfunktion von $f(x) = \frac{x^2}{1-x^4}$ auf (-1,1) ist.
- 8. Berechnen Sie, falls existent, folgende Integrale. Leiten Sie dabei ggf. verwendete Stamm- [5+11] funktionen her.

(a) $\int_0^{\pi} \cos^2 x \, dx,$

(b)
$$\int_0^2 \frac{4x^2 + 2x + 9}{(x - 1)(x^2 + x + 3)} dx.$$

Hinweis: Wenn Sie bei der Partialbruchdarstellung in 8b Schwierigkeiten haben, können Sie statt dessen die Funktion $\frac{x}{x^2+2x+3} + \frac{4}{x-1}$ untersuchen (Punktabzug falls die Partialbruchzerlegung fehlt).