Open Problems in Algorithmic Game Theory and Mechanism Design

July 18, 2010

This is a note I took from ASI 2010: Theory and Applications on Algorithmic Game Theory. As the lectures do not provide slides currently, I just transfer the essential part of the slides into this note. The open problem session is given by Prof. Deng, Xiaotie from City University of Hong Kong.

I may not aim at solving the open problems now, but I think I could keep them in mind and think about their implications and applications, maybe some day when they are solved, we can use the results to some networking systems.

1st Problem (Paul Spirakis)

Let G be an undirected graph of n vertices. Let A be its adjacency matrix. Let. Let $\lambda_1, \lambda_2, \dots, \lambda_m$ be the positive eigenvalues of A.

(a) Prove or disprove:

$$\forall_i = 1, \cdots, m, \quad \lambda_j \le \frac{n}{\sqrt{i}}$$

(b) Prove or disprove: if G is connected then,

$$\lambda_j \le \frac{n}{i}$$

(I have some doubts on the notations on the slide, and at that time a professor from HKUST also raised his challenge, so we will check it later.)

(Also, I suspect the eigenvalue should be $\lambda_1 > \lambda_2 > \cdots > \lambda_m$).

2^{nd} Problem

Find a connected graph G for which $\sum_{i=1}^{m} \lambda_i/n$ is not $\Theta(1)$, where $\lambda_1, \lambda_2, \dots, \lambda_m$ are the positive eigenvalues of the adjacency matrix A of G.

3^{rd} Problem

Find sufficient conditions for local optima (like he Karush Kuhn, Tucker points) for *cubic* programs under linear constraints. Are such conditions equivalent to the stationary points condition (Fermat's Rule)?

4th Problem

Let $s = (\bar{x}, \bar{y}, \bar{a}, \bar{b})$ be a stationary point at t = 1/2 of the parameterized program MS(t): $minimize(1-t)(a-x^TAy) + t(b-x^TBy)$ so that:

```
Ay \leq a \\ B^T x \leq b \\ 1^T x = 1 \\ 1^T y = 1 \\ a, b \in \mathbb{R}, x, y \geq 0
```

Find the t_1, t_2 so that s remains stationary point of MS(t) for the whole interval $[t_1, t_2]$.

5^{th} Problem

Is there a way to force the regrets $a - x^T Ay$ and $b - x^T By$ to the almost equal for a t > 1/5 in the MS(t) when they are evaluated at a stationary point of MS(t)?

6th Problem

Is the random sampling auction for digital goods 4-competitive? Given values $v_1 \geq v_2 \cdots \geq v_n$ and benchmark $G(v) = \max_{i \geq 2} iv_i$ (the optimal single price revenue with at least two winners). An auction is β -competitive if its expected revenue, in worst case over v is at least $G(v)/\beta$.

The random sampling auction randomly partitions the bidders into two sets (with a fair coin for each bidder), computes the optimal sale price for each set, and offers each sale price to the opposite set, This auction is clearly no better than 4-competitive, e.g., on v = (1.1, 1).

Show it is exactly 4-competitive. Recently, Alaei et. al. (2009) showed that it is at worst 4.7-competitive but it is widely believed that the correct answer is 4. Prove or disprove.

7th Problem

The following mathematical puzzle is related to designing deterministic and competitive auctions, see Aggarwal et. al. (2005). The "deterministic dice hat puzzle" is the following: There are n players indexed $1, \dots, n$. Each player

has a hat on their head the is a distinct shade of red. Each player can see the hats of all other players and but cannot see their own hat. Each player must simultaneously (without communication) choose one of k actions (e.g., corresponding to sides of a k-sided die). The players win if among players with the m darkest hats at least m/k should chose each action, for all m.

Find an asymmetric deterministic strategy for any $k \geq 3$.

7^{th} and 8^{th} Problem will be Discussed Next Time

10^{th} Problem

What's the complexity of finding a Nash equilibrium in a tree, even when the degree is bounded?

11th Problem

Theorem. (Lipton, Marakakis, Metha'06) For any $\varepsilon > 0$, computing a $(1 + \varepsilon)$ -approximate Nash equilibrium can be solved in time $N^{\log N}$, where N is the input size.

Can we convert it to a polynomial-time algorithm for any fixed $\varepsilon > 0$?

- The best known result is $\varepsilon = -.3393$ (Tsaknakis, Spirakis'07).
- Tow major challenges: $\varepsilon = 1/3$ and PTAS.
- [Daskalakis, Papadimitriou'08,'09] There is a PTAS for anonymous games and a class of games whose equilibria are guaranteed to have small value.

12th Problem

Given a graph G, where each node represents a player and the utility of every player is only affected by his neighbors in G.

- more realistic in a non-cooperative and distributed setting.
- concise representation.

$13s^{th}$ Problem

There are n players and set R of resources.

Each resource r has cost function $f_r: \{1, \dots, n\} \to R$.

The strategy set S_1 of each player is subset of resources, *i.e.*, $S_1 \in R$.

Given the selected strategies $s_i \in S_i$ of each player, the cost (i.e., negative utility) of player i is

$$c_i(s_1\cdots,s_n) = \sum_{r\in s_i} f_r(n_r)$$

where n_r is the number of players that select a containing r.

- I did not quite understand this problem, I will find a chance to ask the presenter.