ML/DL for Everyone Season2

03 - How to minimize cost

Hypothesis and Cost

Hypothesis H(x) = Wx + b

Cost $cost(W,b) = rac{1}{m} \sum_{i=1}^m \left(H(x_i) - y_i
ight)^2$

Simplified hypothesis

Hypothesis H(x)=Wx

Cost $cost(W) = rac{1}{m} \sum_{i=1}^m (Wx_i - y_i)^2$

$$cost(W) = rac{1}{m} \sum_{i=1}^m {(Wx_i - y_i)^2}$$

• W = 0, cost(W) = ?

Х	У
1	1
2	2
3	3

$$cost(W) = rac{1}{m} \sum_{i=1}^m \left(Wx_i - y_i
ight)^2$$

X	У
1	1
2	2
3	3

• W = 0, cost(W) = 4.67

$$\frac{1}{3}((0*1-1)^2 + (0*2-2)^2 + (0*3-3)^2))$$

$$cost(W) = rac{1}{m} \sum_{i=1}^m (Wx_i - y_i)^2$$

Х	у
1	1
2	2
3	3

- W = 0, cost(W) = 4.67 $\frac{1}{3}((0*1-1)^2 + (0*2-2)^2 + (0*3-3)^2))$
- W = 1, cost(W) = 0 $\frac{1}{3}((1*1-1)^2 + (1*2-2)^2 + (1*3-3)^2))$
- W = 2, cost(W) = 4.67 $\frac{1}{3}((2*1-1)^2 + (2*2-2)^2 + (2*3-3)^2))$
- W = 3, cost(W) = 18.67 $\frac{1}{3}((3*1-1)^2 + (3*2-2)^2 + (3*3-3)^2))$

- W = 0, cost(W) = 4.67
- W = 1, cost(W) = 0
- W = 2, cost(W) = 4.67
- W = 3, cost(W) = 18.67

- W = 0, cost(W) = 4.67
- W = 1, cost(W) = 0
- W = 2, cost(W) = 4.67
- W = 3, cost(W) = 18.67

$$cost(W) = rac{1}{m} \sum_{i=1}^m {(Wx_i - y_i)^2}$$

How to minimize cost?

$$cost(W) = rac{1}{m} \sum_{i=1}^m {(Wx_i - y_i)^2}$$

경사를 따라 내려가면서 최저점을 찾도록 설계된 알고리즘

Gradient descent algorithm

경사 하강법 / 경사 하강 알고리즘

- Minimize cost function
- Gradient descent is used many minimization problems
- For a given cost function, cost (W, b), it will find W, b to minimize cost
- It can be applied to more general function: cost (w1, w2, ...)

변수가 여러 개 일 때도 사용 가능

엔지니어링 문제는 최적화 문제이고, 손실을 최소화하거나 이득을 최대화하는 것

How it works?

How would you find the lowest point?

How it works?

- Start with initial guesses
 - Start at 0,0 (or any other value)
 - Keeping changing W and b a little bit to try and reduce cost(W, b)
- Each time you change the parameters, you select the gradient which reduces cost(W, b) the most possible
- Repeat
- Has an interesting property
 - Where you start can determine which minimum you end up

Gradient descent algorithm

최저점에 다가갈 수록 기울기 작아진다

Formal definition

전체 개수 m으로 나눴는데, 이게 2m, 4m이든 cost의 특성에는 영향을 주지 않는다

$$cost(W,b) = rac{1}{m} \sum_{i=1}^m \left(H(x_i) - y_i
ight)^2$$

$$cost(W,b) = rac{1}{2m} \sum_{i=1}^m \left(H(x_i) - y_i
ight)^2$$

Formal definition

알파값에 따라 W값이 얼마나 빠르게 변할지 결정된다.

알파값은 작은 상수로 learning rate - 우리가 구한 값을 얼마나 반영해서 W에서 뺄지 결정하는 배수같은 것

$$W := W - lpha rac{\partial}{\partial W} rac{1}{2m} \sum_{i=1}^m \left(W(x_i) - y_i
ight)^2$$

W에 대해서만 미분하겠다는 편미분

$$W := W - lpha rac{1}{2m} \sum_{i=1}^m 2(W(x_i) - y_i) x_i$$

$$W := W - lpha rac{1}{m} \sum_{i=1}^m (W(x_i) - y_i) x_i$$

Formal definition

$$cost(W,b) = rac{1}{2m} \sum_{i=1}^m \left(H(x_i) - y_i
ight)^2$$

$$W := W - lpha rac{\partial}{\partial W} cost(W)$$

:= 는 '정의된다'는 의미

Wolfram Alpha computational intelligence.

Gradient descent algorithm

$$W := W - lpha rac{1}{m} \sum_{i=1}^m \left(W(x_i) - y_i
ight) x_i$$

적절한 알파값을 지정하는 것도 과제

Convex function

주변에서 가장 낮은 지점, 즉 기울기가 0인 지점을 local minimum 여기서는 지금 여러 개 있다 이런 상황에서는 gradient descent는 이런 상황에서 쓸 수 없다.

http://www.holehouse.org/mlclass/

Convex function

global minimum와 local minimum이 일치한는 함수

$$cost(W,b) = rac{1}{m} \sum_{i=1}^m \left(H(x_i) - y_i
ight)^2$$

cost function이 항상 convex function인 것은 아니지만,

convex function이라면 gradient descent를 사용해도 언제나 global minimum에 도착하는 것을 보장할 수 있기 때문에

What's Next?

• Multi-Variable Linear regression