

Cryptanalysis (암호분석)

Chapter 2 - Part 1

2020.3

Contents

- Probability
- Birthday paradox
- ▶ Euler totient function $\phi(n)$
- GCD and Euclidean algorithm
- Finite field $GF(p^n)$

Probability

random variable

- Probability $P(X = x_i)$ of an occurrence x_i (event)
 - \blacktriangleright is defined by the likelihood that it(= x_i) happens

$$0 \le P(X = x_i) \le 1$$

never happens

always happens

- Examples
 - (fair coin): $P(X = \text{HEAD}) = P(X = \text{TAIL}) = \frac{1}{2}$
 - $(jack diamond): P(X =) = \frac{1}{52}$
- Permutations and Choices
 - ▶ the number of (all) Permutations of n objects: n!
 - ▶ the number of permuted choices (k out of n): $\frac{n!}{(n-k)!}$
 - ▶ Binomial coefficients (*n* choose *k*): $\binom{n}{k} = \frac{n!}{(n-k)!k!}$

Dependence

- Independent and dependent events
 - ▶ A, B are independent events if one event has occurred does not affect the probability that the other event will occur.

$$P(A|B) = P(A)$$

- Otherwise, A, B are said to be dependent events.
- Example (Dice game)
 - event A: Alice gets a point for even numbers
 - event B: Bob gets a point for prime numbers
 - Events A and B are dependent (why?)

Calculate probabilities P(A), P(B), P(A|B), P(B|A)

Birthday collision

- Birthday collision
 - Birthday collision of two people occurs with probability 1/365.
 - ▶ The probability P that there are no birthday collisions with k people is $e^{-k(k-1)/2n}$ (n=365)
 - ► No collision probability *P*:

$$P = \frac{n(n-1)(n-2)\cdots(n-k+1)}{n^k} = \left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right)\cdots\left(1 - \frac{k-1}{n}\right)$$

Taylor series for approximation:

$$e^{-1/n} \approx 1 - \frac{1}{n}$$

Approximate P:

$$P = e^{-1/n}e^{-2/n} \cdots e^{-\frac{k-1}{n}} = e^{-k(k-1)/(2n)}$$

Birthday paradox

- Birthday paradox
 - ▶ There is at least one birthday collision among 23 or more people with probability more than 0.5.
 - ▶ Condition that no collision probability $P = e^{-k(k-1)/(2n)} = \frac{1}{2}$:

 - ▶ Approximately, $k(k-1) = k^2$ yields $k \approx 1.1774\sqrt{n}$
 - ▶ If $k > 1.1774\sqrt{365} \approx 22.49$, a birthday collision among k people is found with probability $\geq \frac{1}{2}$.

Collisions in Cryptographic Algorithms

- ightharpoonup Collision in an n-bit Block cipher
 - ▶ We only have to look at about $2^{n/2}$ ciphertexts to expect to find the pattern twice.
- Collision in hashes
 - ▶ preimage attack: (2^n complexity) find an input message knowing only its hash value
 - **collision attack**: $(2^{n/2} \text{ complexity})$ find random messages that have the same hash value

Integers

Congruence

- $ightharpoonup a \equiv b \pmod{m}$: a is congruent to b modulo m if m divides (a-b)
- $a \equiv b \pmod{m}$ is equivalent to a = b + km

Residue class

- \blacktriangleright A set of all congruent to each other modular m is called its residue class.
- \triangleright example: $\{..., -6, -3, 0, 3, 6, ...\}$ is a residue class modulo 3

Complete Set of Residues (CSR)

- contains integers exactly one from each residue
- example: {0,1,2, ..., 9} is CSR of 10

Reduced Set of Residues (RSR)

- \triangleright subset of CSR containing only numbers relatively prime to m
- example: {1,3,7,9} is CSR of 10

Euler's totient theorem

- ▶ Euler totient function $\phi(n)$
 - the size of the RSR
 - equivalently, the number of positive integers less than n that are relatively prime to n.
 - examples: $\phi(5) = 4$, $\phi(6) = 2$, $\phi(10) = 4$
- Euler's theorem (Fermat's little theorem)
 - \triangleright m: positive integer
 - ▶ a: integer relatively prime to m ($1 \le a < m$) then,

$$a^{\phi(m)} \equiv 1 \pmod{m}$$
.

GCD

- ▶ GCD: Greatest Common Divisor
 - For nonnegative integers a, b, $g = \gcd(a, b)$ is the largest common divisor of a and b
 - Properties of GCD:
 - $\blacktriangleright \text{ If } b \neq 0, \gcd(a, b) = \gcd(b, a \bmod b)$
 - ▶ If b = 0, gcd(a, b) = a

$$a = b \cdot q + r \ (0 \le r < b)$$

$$\gcd(a, b) = \gcd(b, r)$$

GCD function

$$a = b \cdot q + r \ (0 \le r < b)$$

$$\gcd(a, b) = \gcd(b, r)$$

Euclidean Algorithm

```
9 = \gcd(63, 90)
 63 = 90 * 0 + 63
90 = 63 * 1 + 27
 63 = 27 * 2 + 9
27 = 9 * 3 + 0
  9 = 0 * ? + ?
```

```
def gcd(a,b):
    while b != 0:
        r = a % b
        a = b
        b = r

return a
```

Extended Euclidean Algorithm

- Extended Euclidean Algorithm
 - There exist integers x and y such that $ax + by = \gcd(a, b)$

```
def gcd(a,b):
a = 1*a + 0*b,
b = 0*a + 1*b.
while b != 0:
r = a \% b
a = b
b = r
For each step,
a = u_a * a + v_a * b,
b = u_b * a + v_b * b.
Finally,
\gcd(a,b) = a = u_a * a + v_a * b.
```

Extended Euclidean Algorithm

- In the Euclidean algorithm,
 - ▶ Store Input value a, b (keep them unchanged)
 - ightharpoonup Set a'=a, b'=b
 - Initially,

$$a' = u_a * a + v_a * b = 1 * a + 0 * b$$

 $b' = u_b * a + v_b * b = 0 * a + 1 * b$

Update values as

$$a' = b' = u_b * a + v_b * b$$

$$b' = r = a' - b' \cdot q$$

$$= u_a * a + v_a * b u_b * a - q * (u_b * a + v_b * b)$$

$$= (u_a - u_b q) * a + (v_a - v_b q) * b$$

Finally, when b' = 0, the algorithm returns $a' = \gcd(a, b) = u_a * a + v_a * b$

Initially,
$$u_a=1,\ v_a=0,\ u_b=1,\ v_b=0.$$

Updating...

$$u_{a} = u_{b},$$

 $v_{a} = v_{b},$
 $u_{b} = u_{a} - u_{b}q,$
 $v_{b} = v_{a} - v_{b}q.$

Extended Euclidean Algorithm

```
반드시 필요하지 않지만
def xgcd(a,b):
                        변수를 새로 만들면 중간과정을 인쇄하여
                                확인하기 좋다.
    an, bn = a, b
    ua, va, ub, vb = 1, 0, 0, 1
                                            Python에서는 한번에 어려 변수를 업데이트
    while bn != 0:
                                                   할 수 있어 편리하다
       q = an//bn
        an, bn = bn, an-bn*q
        ua, va, ub, vb = ub, vb, ua-ub*q, va-vb*q
    return an, ua, va
                              37 = 1*37 + 0*41, \quad 41 = 0*37 + 1*41
   이렇게 중간과정이 출력되로록
                              41 = 0*37 + 1*41, \quad 37 = 1*37 + 0*41
       함수를 고쳐보자!
                              37 = 1*37 + 0*41, \quad 4 = -1*37 + 1*41
                              4 = -1*37 + 1*41, 1 = 10*37 + -9*41
                              gcd(37,41) = 1 = 10*37 + -9*41
```

Multiplicative Inverse

- Multiplicative inverse
 - For a and m with gcd(a, m) = 1, x is called the multiplicative inverse of a modulo m if $ax = xa = 1 \pmod{m}$
 - ▶ The multiplicative inverse of a is denoted by a^{-1} .
- ▶ Algorithm for calculating a^{-1}
 - Using the Extended Euclidean algorithm, find integers x and y such that

$$ax + my = \gcd(a, m) = 1.$$

▶ Then $a^{-1} = x \mod m$ is the multiplicative inverse of a.

Multiplicative Inverse

```
def modInv(a,m):
    if gcd1(a,m) != 1:
        return None
    c, d = a, m
    uc, vc, ud, vd = 1, 0, 0, 1
    while c != 0:
        q = d//c
        c, d = d-q*c, c
        uc, vc, ud, vd = ud-q*uc, vd-q*vc, uc, vc
    return ud % m
```

Extended Euclidean algorithm과 거의 같다.

Finite Field

- A finite field is a field which consists of finite elements.
 - Example 1: $(Z_p, +, \times)$ (p: prime) is also called GF(p). $Z_p = \{0, 1, 2, ..., p-1\}$
 - $ightharpoonup Z_p$ satisfies all conditions for field.
 - For any x in Z_p , $-x \pmod{p}$ is the additive inverse of x
 - ▶ For $x \neq 0$ in Z_p , $x^{-1} \pmod{p}$ is the multiplicative inverse of x
 - Example 2: Galois field $GF(p^n)$ with p^n elements.
 - A set of polynomials of degree n-1 with multiplication modulo m(x) (irreducible polynomial of degree n) having coefficients in GF(p).

Example $GF(2^3)$

- ▶ GF(2³) consists of 2³ elements of the form $GF(2^3) = \{a_0 + a_1x + a_2x^2 \mid a_i = 0, 1\}.$
 - ▶ Their coefficients belong to the finite field $GF(2) = \{0, 1\}$.
 - ▶ Choose an irreducible polynomial $m(x) = x^3 + x + 1$ in GF(2)[x].
 - Multiplications are defined as modulo m(x). eg., $(x^2 + 1) \cdot (x^2 + 1) = x^4 + 1 = x \cdot m(x) + x^2 + x + 1$
 - ▶ The multiplicative inverse can be found as in the following table.

×	0	1	X	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
0	0	0	0	0	0	0	0	0
1	0	1	X	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
x	0	x	x^2	$x^2 + x$	x + 1	1	$x^2 + x + 1$	$x^2 + 1$
x + 1	0	x + 1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	x^2	1	x
x^2	0	x^2	x + 1	$x^2 + x + 1$	$x^2 + x$	x	$x^2 + 1$	1
$x^2 + 1$	0	$x^2 + 1$	1	x^2	x	$x^2 + x + 1$	x + 1	$x^2 + x$
$x^2 + x$	0	$x^2 + x$	$x^2 + x + 1$	1	$x^2 + 1$	x + 1	x	x^2
$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + 1$	х	1	$x^2 + x$	x^2	x + 1