Vector Spaces and Subspaces

Rohit Budhiraja, IITK

Applied Linear Algebra for Wireless Communications

Recap and agenda for today's class

- Discussed the following in the last lecture
 - Matrix transpose, inverse and their properties

Recap and agenda for today's class

- Discussed the following in the last lecture
 - Matrix transpose, inverse and their properties
- Discuss the following today
 - Discuss vector spaces and subspaces

• Vector space \mathbb{R}^n consists of all column vectors \mathbf{v} with n components

- Vector space \mathbf{R}^n consists of all column vectors \mathbf{v} with n components
 - ullet Components of ullet are real numbers, which is the reason for letter $oldsymbol{R}$

- Vector space \mathbf{R}^n consists of all column vectors \mathbf{v} with n components
 - \bullet Components of \boldsymbol{v} are real numbers, which is the reason for letter \boldsymbol{R}
- Vector space \mathbf{R}^2 is represented by the usual xy plane

- Vector space \mathbf{R}^n consists of all column vectors \mathbf{v} with n components
 - \bullet Components of \boldsymbol{v} are real numbers, which is the reason for letter \boldsymbol{R}
- ullet Vector space ${f R}^2$ is represented by the usual xy plane
 - ullet Each vector ${f v}$ in ${f R}^2$ has two components

- Vector space \mathbf{R}^n consists of all column vectors \mathbf{v} with n components
 - ullet Components of ullet are real numbers, which is the reason for letter $oldsymbol{R}$
- ullet Vector space ${f R}^2$ is represented by the usual xy plane
 - Each vector \mathbf{v} in \mathbf{R}^2 has two components

$$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$$
 is in \mathbb{R}^2

- Vector space \mathbf{R}^n consists of all column vectors \mathbf{v} with n components
 - \bullet Components of \boldsymbol{v} are real numbers, which is the reason for letter \boldsymbol{R}
- Vector space \mathbf{R}^2 is represented by the usual xy plane
 - ullet Each vector ${f v}$ in ${f R}^2$ has two components

$$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$$
 is in \mathbb{R}^2

• Each vector gives the x and y coordinates of a point in the plane: v = (x, y)

- Vector space \mathbf{R}^n consists of all column vectors \mathbf{v} with n components
 - \bullet Components of \boldsymbol{v} are real numbers, which is the reason for letter \boldsymbol{R}
- Vector space \mathbf{R}^2 is represented by the usual xy plane
 - Each vector \mathbf{v} in \mathbf{R}^2 has two components

$$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$$
 is in \mathbf{R}^2

- Each vector gives the x and y coordinates of a point in the plane: v = (x, y)
- Word "space" asks us to think of all such vectors in the whole plane

- Vector space \mathbb{R}^n consists of all column vectors \mathbf{v} with n components
 - \bullet Components of \boldsymbol{v} are real numbers, which is the reason for letter \boldsymbol{R}
- Vector space \mathbf{R}^2 is represented by the usual xy plane
 - ullet Each vector ${f v}$ in ${f R}^2$ has two components

$$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$$
 is in \mathbf{R}^2

- Each vector gives the x and y coordinates of a point in the plane: v = (x, y)
- Word "space" asks us to think of all such vectors in the whole plane
- R³ corresponds to vectors in three-dimensional space

- Vector space \mathbf{R}^n consists of all column vectors \mathbf{v} with n components
 - \bullet Components of \boldsymbol{v} are real numbers, which is the reason for letter \boldsymbol{R}
- Vector space \mathbf{R}^2 is represented by the usual xy plane
 - Each vector \mathbf{v} in \mathbf{R}^2 has two components

$$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$$
 is in \mathbf{R}^2

- Each vector gives the x and y coordinates of a point in the plane: v = (x, y)
- Word "space" asks us to think of all such vectors in the whole plane
- R³ corresponds to vectors in three-dimensional space
- One-dimensional space R^1 is a line (like the x axis)

• We can add any vectors in \mathbb{R}^n . We can multiply any vector \mathbf{v} by scalar c

- We can add any vectors in \mathbb{R}^n . We can multiply any vector \mathbf{v} by scalar c
 - Result stays in the space

- ullet We can add any vectors in \mathbf{R}^n . We can multiply any vector $oldsymbol{v}$ by scalar c
 - Result stays in the space
- If \mathbf{v} is the vector in \mathbf{R}^4 with components (1,0,0,1) then

- We can add any vectors in \mathbb{R}^n . We can multiply any vector \mathbf{v} by scalar c
 - Result stays in the space
- If \mathbf{v} is the vector in \mathbf{R}^4 with components (1,0,0,1) then
 - $2\mathbf{v}$ is the vector in \mathbf{R}^4 with components 2, 0, 0, 2

- ullet We can add any vectors in \mathbf{R}^n . We can multiply any vector \mathbf{v} by scalar c
 - Result stays in the space
- If \mathbf{v} is the vector in \mathbf{R}^4 with components (1,0,0,1) then
 - $2\mathbf{v}$ is the vector in \mathbf{R}^4 with components 2, 0, 0, 2
- A real vector space is a set of "vectors" together with eight rules for vector addition and for multiplication by real numbers

- 0 x + y = y + x
- (x + y) + z = x + (y + z)

- (x + y) + z = x + (y + z)
- **3** There is a unique "zero vector" such that $\mathbf{x} + \mathbf{0} = \mathbf{x}$ for all \mathbf{x}

- 0 x + y = y + x
- (x + y) + z = x + (y + z)
- **3** There is a unique "zero vector" such that $\mathbf{x} + \mathbf{0} = \mathbf{x}$ for all \mathbf{x}
- **3** For each \mathbf{x} , there is a unique vector $-\mathbf{x}$ such that $\mathbf{x} + (-\mathbf{x}) = 0$

- (x + y) + z = x + (y + z)
- **3** There is a unique "zero vector" such that $\mathbf{x} + \mathbf{0} = \mathbf{x}$ for all \mathbf{x}
- For each x, there is a unique vector -x such that x + (-x) = 0
- 1 times x equals x

- 0 x + y = y + x
- (x + y) + z = x + (y + z)
- 3 There is a unique "zero vector" such that $\mathbf{x} + \mathbf{0} = \mathbf{x}$ for all \mathbf{x}
- For each x, there is a unique vector -x such that x + (-x) = 0
- 1 times x equals x
- $(c_1c_2)\mathbf{x} = c_1(c_2\mathbf{x})$

- (x + y) + z = x + (y + z)
- 3 There is a unique "zero vector" such that $\mathbf{x} + \mathbf{0} = \mathbf{x}$ for all \mathbf{x}
- For each x, there is a unique vector -x such that x + (-x) = 0
- 1 times x equals x
- $(c_1c_2)\mathbf{x} = c_1(c_2\mathbf{x})$

- 0 x + y = y + x
- (x + y) + z = x + (y + z)
- **1** There is a unique "zero vector" such that $\mathbf{x} + \mathbf{0} = \mathbf{x}$ for all \mathbf{x}
- For each x, there is a unique vector -x such that x + (-x) = 0
- 1 times x equals x
- $(c_1c_2)\mathbf{x} = c_1(c_2\mathbf{x})$
- $(c_1 + c_2)\mathbf{x} = c_1\mathbf{x} + c_2\mathbf{x}$

• There are important vector spaces inside \mathbf{R}^n

- There are important vector spaces inside \mathbf{R}^n
 - Subspaces of Rⁿ

- There are important vector spaces inside \mathbf{R}^n
 - Subspaces of Rⁿ
- ullet Start with the usual two-dimensional space ${\bf R}^2$

- There are important vector spaces inside \mathbf{R}^n
 - Subspaces of Rⁿ
- ullet Start with the usual two-dimensional space ${f R}^2$
- Choose a line through the origin (0,0)

- There are important vector spaces inside \mathbf{R}^n
 - Subspaces of Rⁿ
- ullet Start with the usual two-dimensional space ${\bf R}^2$
- Choose a line through the origin (0,0)
 - Line is a vector space in its own right

- There are important vector spaces inside \mathbf{R}^n
 - Subspaces of Rⁿ
- ullet Start with the usual two-dimensional space ${\bf R}^2$
- Choose a line through the origin (0,0)
 - Line is a vector space in its own right
 - If we add two vectors in the line, their sum is in the line

- There are important vector spaces inside \mathbf{R}^n
 - Subspaces of Rⁿ
- ullet Start with the usual two-dimensional space ${\bf R}^2$
- Choose a line through the origin (0,0)
 - Line is a vector space in its own right
 - If we add two vectors in the line, their sum is in the line
 - If we multiply an in-line vector by 2 or -5, it is still in the line

- There are important vector spaces inside \mathbf{R}^n
 - Subspaces of Rⁿ
- Start with the usual two-dimensional space R²
- Choose a line through the origin (0,0)
 - Line is a vector space in its own right
 - If we add two vectors in the line, their sum is in the line
 - If we multiply an in-line vector by 2 or -5, it is still in the line
 - Line in two-dimensional space is not R¹ (even if it looks like R¹)

- There are important vector spaces inside \mathbf{R}^n
 - Subspaces of Rⁿ
- Start with the usual two-dimensional space R²
- Choose a line through the origin (0,0)
 - Line is a vector space in its own right
 - If we add two vectors in the line, their sum is in the line
 - If we multiply an in-line vector by 2 or -5, it is still in the line
 - Line in two-dimensional space is not R¹ (even if it looks like R¹)
 - ullet Vectors have two components and they belong to ${f R}^2$

- There are important vector spaces inside \mathbf{R}^n
 - Subspaces of Rⁿ
- Start with the usual two-dimensional space R²
- Choose a line through the origin (0,0)
 - · Line is a vector space in its own right
 - If we add two vectors in the line, their sum is in the line
 - If we multiply an in-line vector by 2 or -5, it is still in the line
 - Line in two-dimensional space is not R¹ (even if it looks like R¹)
 - \bullet Vectors have two components and they belong to \mathbf{R}^2
 - Line is a vector space inside R²

• A subspace of a vector space is a set of vectors (including **0**) that satisfies two requirements:

- A subspace of a vector space is a set of vectors (including **0**) that satisfies two requirements:
- If **v** and **w** are vectors in the subspace and c is any scalar, then

- A subspace of a vector space is a set of vectors (including 0) that satisfies two requirements:
- If **v** and **w** are vectors in the subspace and c is any scalar, then
 - $\mathbf{0} \mathbf{v} + \mathbf{w}$ is in the subspace
 - ② cv is in the subspace

- A subspace of a vector space is a set of vectors (including 0) that satisfies two requirements:
- If **v** and **w** are vectors in the subspace and c is any scalar, then
 - $\mathbf{0} \mathbf{v} + \mathbf{w}$ is in the subspace
 - ② cv is in the subspace
- Set of vectors is "closed" under addition $\mathbf{v} + \mathbf{w}$ and multiplication $c\mathbf{v}$

- A subspace of a vector space is a set of vectors (including 0) that satisfies two requirements:
- If **v** and **w** are vectors in the subspace and c is any scalar, then
 - $\mathbf{0} \mathbf{v} + \mathbf{w}$ is in the subspace
 - ② cv is in the subspace
- Set of vectors is "closed" under addition $\mathbf{v} + \mathbf{w}$ and multiplication $c\mathbf{v}$
 - These operations leave us in the subspace

- A subspace of a vector space is a set of vectors (including 0) that satisfies two requirements:
- If **v** and **w** are vectors in the subspace and c is any scalar, then
 - $\mathbf{0} \mathbf{v} + \mathbf{w}$ is in the subspace
 - ② cv is in the subspace
- Set of vectors is "closed" under addition $\mathbf{v} + \mathbf{w}$ and multiplication $c\mathbf{v}$
 - These operations leave us in the subspace
- We can also subtract, because $-\mathbf{w}$ is in the subspace

- A subspace of a vector space is a set of vectors (including 0) that satisfies two requirements:
- If **v** and **w** are vectors in the subspace and c is any scalar, then
 - $\mathbf{0} \mathbf{v} + \mathbf{w}$ is in the subspace
 - ② cv is in the subspace
- Set of vectors is "closed" under addition $\mathbf{v} + \mathbf{w}$ and multiplication $c\mathbf{v}$
 - These operations leave us in the subspace
- We can also subtract, because $-\mathbf{w}$ is in the subspace
- Every subspace contains the zero vector follows directly from second rule

- A subspace of a vector space is a set of vectors (including 0) that satisfies two requirements:
- If **v** and **w** are vectors in the subspace and c is any scalar, then
 - $\mathbf{0} \mathbf{v} + \mathbf{w}$ is in the subspace
 - ② cv is in the subspace
- Set of vectors is "closed" under addition $\mathbf{v} + \mathbf{w}$ and multiplication $c\mathbf{v}$
 - These operations leave us in the subspace
- We can also subtract, because $-\mathbf{w}$ is in the subspace
- Every subspace contains the zero vector follows directly from second rule
 - Choose c = 0 and rule requires $0\mathbf{v}$ to be in the subspace

ullet List of all possible subspace through ${f R}^2$

- ullet List of all possible subspace through ${f R}^2$
 - i) Line through (0,0);

- ullet List of all possible subspace through ${f R}^2$
 - i) Line through (0,0);ii) Whole space \mathbb{R}^2 ;

- List of all possible subspace through R^2
 - i) Line through (0,0);ii) Whole space \mathbb{R}^2 ; iii) single vector (0,0)

- List of all possible subspace through R²
 - i) Line through (0,0);ii) Whole space \mathbb{R}^2 ; iii) single vector (0,0)
- Example1: Keep only vectors (x, y) with +/0 components (quarter plane)

- List of all possible subspace through R²
 - i) Line through (0,0);ii) Whole space \mathbb{R}^2 ; iii) single vector (0,0)
- Example1: Keep only vectors (x, y) with +/0 components (quarter plane)
 - Vector (2,3) is included but (-2,-3) is not

- List of all possible subspace through R²
 - i) Line through (0,0);ii) Whole space \mathbf{R}^2 ; iii) single vector (0,0)
- Example1: Keep only vectors (x, y) with +/0 components (quarter plane)
 - Vector (2,3) is included but (-2,-3) is not
 - ullet Rule ii) is violated when we mulitply by -1

- List of all possible subspace through R²
 - i) Line through (0,0);ii) Whole space R²; iii) single vector (0,0)
- Example1: Keep only vectors (x, y) with +/0 components (quarter plane)
 - Vector (2,3) is included but (-2,-3) is not
 - \bullet Rule ii) is violated when we mulitply by -1
 - Quarter plane is not a subspace

- List of all possible subspace through R²
 - i) Line through (0,0);ii) Whole space R²; iii) single vector (0,0)
- Example1: Keep only vectors (x, y) with +/0 components (quarter plane)
 - Vector (2,3) is included but (-2,-3) is not
 - ullet Rule ii) is violated when we mulitply by -1
 - Quarter plane is not a subspace
- Example 2: Include also the vectors whose components are both negative

- ullet List of all possible subspace through ${f R}^2$
 - i) Line through (0,0);ii) Whole space R²; iii) single vector (0,0)
- Example1: Keep only vectors (x, y) with +/0 components (quarter plane)
 - Vector (2,3) is included but (-2,-3) is not
 - ullet Rule ii) is violated when we mulitply by -1
 - Quarter plane is not a subspace
- Example 2: Include also the vectors whose components are both negative
 - ullet We have two quarter-planes. Rule (ii) is satisfied; we can multiply by any c

- List of all possible subspace through R²
 - i) Line through (0,0);ii) Whole space R²; iii) single vector (0,0)
- Example1: Keep only vectors (x, y) with +/0 components (quarter plane)
 - Vector (2,3) is included but (-2,-3) is not
 - ullet Rule ii) is violated when we mulitply by -1
 - Quarter plane is not a subspace
- Example 2: Include also the vectors whose components are both negative
 - We have two quarter-planes. Rule (ii) is satisfied; we can multiply by any c
 - But rule (i) now fails. The sum of v = (2,3) and w = (-3,-2) is (-1,1)

- List of all possible subspace through R²
 - i) Line through (0,0);ii) Whole space R²; iii) single vector (0,0)
- Example1: Keep only vectors (x, y) with +/0 components (quarter plane)
 - Vector (2,3) is included but (-2,-3) is not
 - ullet Rule ii) is violated when we mulitply by -1
 - Quarter plane is not a subspace
- Example 2: Include also the vectors whose components are both negative
 - We have two quarter-planes. Rule (ii) is satisfied; we can multiply by any c
 - But rule (i) now fails. The sum of v = (2,3) and w = (-3,-2) is (-1,1)
 - Outside the quarter-planes. Two quarter-planes don't make a subspace

- List of all possible subspace through R²
 - i) Line through (0,0);ii) Whole space R²; iii) single vector (0,0)
- Example1: Keep only vectors (x, y) with +/0 components (quarter plane)
 - Vector (2,3) is included but (-2,-3) is not
 - ullet Rule ii) is violated when we mulitply by -1
 - Quarter plane is not a subspace
- Example 2: Include also the vectors whose components are both negative
 - We have two quarter-planes. Rule (ii) is satisfied; we can multiply by any c
 - But rule (i) now fails. The sum of v = (2,3) and w = (-3,-2) is (-1,1)
 - Outside the quarter-planes. Two quarter-planes don't make a subspace
- A subspace containing \mathbf{v} and \mathbf{w} must contain all linear combinations $c\mathbf{v} + d\mathbf{w}$

• We want to solve $A\mathbf{x} = \mathbf{b}$.

$$Ax$$
 is $egin{bmatrix} 1 & 0 \ 4 & 3 \ 2 & 3 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix}$ which is $x_1 egin{bmatrix} 1 \ 4 \ 2 \end{bmatrix} + x_2 egin{bmatrix} 0 \ 3 \ 3 \end{bmatrix}$

• We want to solve $A\mathbf{x} = \mathbf{b}$. Remember $A\mathbf{x}$ is a combination of columns of A

$$Ax$$
 is $egin{bmatrix} 1 & 0 \ 4 & 3 \ 2 & 3 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix}$ which is $x_1 \begin{bmatrix} 1 \ 4 \ 2 \end{bmatrix} + x_2 \begin{bmatrix} 0 \ 3 \ 3 \end{bmatrix}$

• We want to describe good right sides **b** that can be written as A times **x**

$$Ax$$
 is $egin{bmatrix} 1 & 0 \ 4 & 3 \ 2 & 3 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix}$ which is $x_1 \begin{bmatrix} 1 \ 4 \ 2 \end{bmatrix} + x_2 \begin{bmatrix} 0 \ 3 \ 3 \end{bmatrix}$

- We want to describe good right sides **b** that can be written as A times **x**
- Column space C(A): Consists of all linear combinations of the columns

$$Ax \quad \text{is} \quad \begin{bmatrix} 1 & 0 \\ 4 & 3 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \text{which is} \quad x_1 \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 3 \\ 3 \end{bmatrix}$$

- We want to describe good right sides **b** that can be written as A times **x**
- Column space C(A): Consists of all linear combinations of the columns
 - Start with the columns of A and take all their linear combinations

$$Ax \quad \text{is} \quad \begin{bmatrix} 1 & 0 \\ 4 & 3 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \text{which is} \quad x_1 \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 3 \\ 3 \end{bmatrix}$$

- We want to describe good right sides b that can be written as A times x
- Column space C(A): Consists of all linear combinations of the columns
 - Start with the columns of A and take all their linear combinations
 - Produces C(A) vector space made up of column vectors

$$Ax \quad \text{is} \quad \begin{bmatrix} 1 & 0 \\ 4 & 3 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \text{which is} \quad x_1 \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 3 \\ 3 \end{bmatrix}$$

- We want to describe good right sides b that can be written as A times x
- Column space C(A): Consists of all linear combinations of the columns
 - Start with the columns of A and take all their linear combinations
 - Produces C(A) vector space made up of column vectors
 - C(A) contains not just then columns of A, but all their combinations Ax

$$Ax \quad \text{is} \quad \begin{bmatrix} 1 & 0 \\ 4 & 3 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \text{which is} \quad x_1 \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 3 \\ 3 \end{bmatrix}$$

- We want to describe good right sides b that can be written as A times x
- Column space C(A): Consists of all linear combinations of the columns
 - Start with the columns of A and take all their linear combinations
 - Produces C(A) vector space made up of column vectors
 - C(A) contains not just then columns of A, but all their combinations Ax
- System $A\mathbf{x} = \mathbf{b}$ is solvable if and only if \mathbf{b} is in the column space of A

• When **b** is in the column space, it is a combination of the columns

• Coefficients in that combination give us a solution \mathbf{x} to the system $A\mathbf{x} = \mathbf{b}$

- Coefficients in that combination give us a solution \mathbf{x} to the system $A\mathbf{x} = \mathbf{b}$
- ullet Column space of all combinations of the two columns fills up a plane in ${\bf R}^3$

- ullet Coefficients in that combination give us a solution $oldsymbol{x}$ to the system $Aoldsymbol{x} = oldsymbol{b}$
- ullet Column space of all combinations of the two columns fills up a plane in ${\bf R}^3$
- Suppose A is an $m \times n$ matrix. Its columns have m components (not n)

- Coefficients in that combination give us a solution \mathbf{x} to the system $A\mathbf{x} = \mathbf{b}$
- ullet Column space of all combinations of the two columns fills up a plane in ${f R}^3$
- Suppose A is an $m \times n$ matrix. Its columns have m components (not n)
- So the columns belong to \mathbf{R}^m .

- Coefficients in that combination give us a solution \mathbf{x} to the system $A\mathbf{x} = \mathbf{b}$
- ullet Column space of all combinations of the two columns fills up a plane in ${f R}^3$
- Suppose A is an $m \times n$ matrix. Its columns have m components (not n)
- So the columns belong to \mathbb{R}^m . C(A) is a subspace of \mathbb{R}^m not \mathbb{R}^n

Null space of matrix A (1)

• Subspace containing all solutions to $A\mathbf{x} = \mathbf{0}$, where A is $m \times n$

Null space of matrix A (1)

- Subspace containing all solutions to $A\mathbf{x} = \mathbf{0}$, where A is $m \times n$
- One solution is $\mathbf{x} = \mathbf{0}$.

- Subspace containing all solutions to $A\mathbf{x} = \mathbf{0}$, where A is $m \times n$
- ullet One solution is ${f x}={f 0}.$ For invertible matrices this is the only solution

- Subspace containing all solutions to $A\mathbf{x} = \mathbf{0}$, where A is $m \times n$
- ullet One solution is ${f x}={f 0}$. For invertible matrices this is the only solution
- ullet For other matrices, not invertible, there are nonzero solutions to $A{f x}={f 0}$

- Subspace containing all solutions to $A\mathbf{x} = \mathbf{0}$, where A is $m \times n$
- ullet One solution is ${f x}={f 0}$. For invertible matrices this is the only solution
- ullet For other matrices, not invertible, there are nonzero solutions to $A{f x}={f 0}$
- Nullspace N(A) consists of all solutions to $A\mathbf{x} = \mathbf{0}$, these vectors \mathbf{x} are in \mathbf{R}^n

- Subspace containing all solutions to $A\mathbf{x} = \mathbf{0}$, where A is $m \times n$
- ullet One solution is ${f x}={f 0}$. For invertible matrices this is the only solution
- ullet For other matrices, not invertible, there are nonzero solutions to $A{f x}={f 0}$
- Nullspace N(A) consists of all solutions to $A\mathbf{x} = \mathbf{0}$, these vectors \mathbf{x} are in \mathbf{R}^n
- Describe the N(A) of matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$

- Subspace containing all solutions to $A\mathbf{x} = \mathbf{0}$, where A is $m \times n$
- ullet One solution is ${f x}={f 0}$. For invertible matrices this is the only solution
- ullet For other matrices, not invertible, there are nonzero solutions to $A{f x}={f 0}$
- Nullspace N(A) consists of all solutions to $A\mathbf{x} = \mathbf{0}$, these vectors \mathbf{x} are in \mathbf{R}^n
- Describe the N(A) of matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$
- ullet Apply elimination to the linear equations $A{f x}={f 0}$

- Subspace containing all solutions to $A\mathbf{x} = \mathbf{0}$, where A is $m \times n$
- ullet One solution is ${f x}={f 0}$. For invertible matrices this is the only solution
- ullet For other matrices, not invertible, there are nonzero solutions to $A{f x}={f 0}$
- Nullspace N(A) consists of all solutions to $A\mathbf{x} = \mathbf{0}$, these vectors \mathbf{x} are in \mathbf{R}^n
- Describe the N(A) of matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$
- ullet Apply elimination to the linear equations $A{f x}={f 0}$

$$\begin{array}{c}
 x_1 + 2x_2 = 0 \\
 3x_1 + 6x_2 = 0
 \end{array}
 \rightarrow
 \begin{array}{c}
 x_1 + 2x_2 = 0 \\
 0 = 0
 \end{array}$$

- Subspace containing all solutions to $A\mathbf{x} = \mathbf{0}$, where A is $m \times n$
- ullet One solution is ${f x}={f 0}.$ For invertible matrices this is the only solution
- ullet For other matrices, not invertible, there are nonzero solutions to $A{f x}={f 0}$
- Nullspace N(A) consists of all solutions to $A\mathbf{x} = \mathbf{0}$, these vectors \mathbf{x} are in \mathbf{R}^n
- Describe the N(A) of matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$
- ullet Apply elimination to the linear equations $A{f x}={f 0}$

$$x_1 + 2x_2 = 0$$

 $3x_1 + 6x_2 = 0$ \rightarrow $x_1 + 2x_2 = 0$
 $0 = 0$

• There is only one equation – Second Eq. is the first Eq. multiplied by 3

• In the row picture, line $x_1 + 2x_2$ is same as the line $3x_1 + 6x_2$

- In the row picture, line $x_1 + 2x_2$ is same as the line $3x_1 + 6x_2$
- That line is N(A), which contains all solutions (x_1, x_2)

- In the row picture, line $x_1 + 2x_2$ is same as the line $3x_1 + 6x_2$
- That line is N(A), which contains all solutions (x_1, x_2)
- To describe the solutions of Ax = 0, here is an efficient way

- In the row picture, line $x_1 + 2x_2$ is same as the line $3x_1 + 6x_2$
- That line is N(A), which contains all solutions (x_1, x_2)
- To describe the solutions of Ax = 0, here is an efficient way
 - Choose one point on the line (one "special solution")

- In the row picture, line $x_1 + 2x_2$ is same as the line $3x_1 + 6x_2$
- That line is N(A), which contains all solutions (x_1, x_2)
- To describe the solutions of $A\mathbf{x} = \mathbf{0}$, here is an efficient way
 - Choose one point on the line (one "special solution")
 - Then all points on the line are multiples of this one

- In the row picture, line $x_1 + 2x_2$ is same as the line $3x_1 + 6x_2$
- That line is N(A), which contains all solutions (x_1, x_2)
- To describe the solutions of $A\mathbf{x} = \mathbf{0}$, here is an efficient way
 - Choose one point on the line (one "special solution")
 - Then all points on the line are multiples of this one
- We choose the second component to be $x_2 = 1$

- In the row picture, line $x_1 + 2x_2$ is same as the line $3x_1 + 6x_2$
- That line is N(A), which contains all solutions (x_1, x_2)
- To describe the solutions of Ax = 0, here is an efficient way
 - Choose one point on the line (one "special solution")
 - Then all points on the line are multiples of this one
- We choose the second component to be $x_2 = 1$
- From the equation $x_1 + 2x_2$ the first component must be $x_1 = -2$

- In the row picture, line $x_1 + 2x_2$ is same as the line $3x_1 + 6x_2$
- That line is N(A), which contains all solutions (x_1, x_2)
- To describe the solutions of $A\mathbf{x} = \mathbf{0}$, here is an efficient way
 - Choose one point on the line (one "special solution")
 - Then all points on the line are multiples of this one
- We choose the second component to be $x_2 = 1$
- From the equation $x_1 + 2x_2$ the first component must be $x_1 = -2$
- Special solution is s = (-2, 1)

