# Modern Niagara Group Intelligent Predictive Building System Maintenance Integration Platform

APS490 Multidisciplinary Capstone Design Review & Critique Jan. 13th, 2022

#### **Capstone Design Team**



Chi Zhang Computer Science



Elizabeth Chelmecki Mechanical Engineering



Sherry
Zuo
Industrial Engineering



Shirley Zhang Civil Engineering



Anoja Muthucumaru Faculty of Information



### Summary

Problem, Scope, Objective

#### **Problem**

For maintenance issues (i.e. abrupt faults and degradation faults), MNG is reliant on local building operators to recognize issues and place a call to MNG's 24/7 dispatch.



#### Agenda

- 1. Brief Introduction: Problem Statement, Scope, Objective
- 2. Digital Twin Overview
- 3. Amendment to Design Proposal
- 4. ML Design Justification
- 5. Model Results and Comparison
- 6. Anomaly Detection
- 7. Validation / Verification of Design Against Requirements
- 8. Next Steps
- 9. Work Plan

#### Scope

Predicting these emergency maintenance events ahead of time, while the fault is in the early stage.

#### **Objective**

Develop a proof-of-concept that can identifying potential failures before they occur, without manual intervention.

#### 17th Floor of Canadian Pension Plan Investment Board (CPPIB) building.

Air Handling Central Unit (CU) and Variable Air Volume (VAV) system



### 2.Mechanism

Digital Twin

#### Diagram of the Digital Twin



## 3. Amendments to Design Proposal

#### **Spearman Correlation Coefficient**



#### Design Proposed in Design Proposal (Nov 2021)



Alternative Design #2: Deep Regressor Chain

#### Proposed Model 1: Airflow / Damper Position



#### Proposed Model 1: Airflow / Damper Position



#### Proposed Model 1: Airflow / Damper Position



#### **Airflow and Damper Position**

• Damper position directly controls airflow, which is why it is excluded from the inputs



#### **Correlation Coefficients for Airflow**

|          | Condenser<br>Water Temp | _      |        | ,      |        |   |        | Damper<br>Command | '      |        |
|----------|-------------------------|--------|--------|--------|--------|---|--------|-------------------|--------|--------|
| Air Flow | 0.3038                  | 0.1944 | 0.1816 | 0.3294 | 0.3260 | 1 | 0.8335 | 0.7507            | 0.7982 | 0.6225 |

- Static pressure in the main duct indicates whether airflow should be behaving normally
- Some coefficients merely show correlation, while causality is what we ideally need to construct a model for fault detection and diagnosis

#### Revised Model 1: Airflow



#### **Proposed Model 2: Static Pressure Prediction**



#### **Proposed Model 2: Static Pressure Prediction**



#### **Proposed Model 3: Zone Air Temperature**



#### Proposed Model 4: Supply Fan Speed



#### **Proposed Model 5: Mixed Air Temperature**



#### Proposed Model 5: Mixed Air Temperature



#### New model: Fin Tube Valve Position



#### **Current Design**



Input Subset 1



Input Subset 2

## 4. Model Architecture Selection

Model architectures for prediction: Baseline (VAR), LSTM, and GRU

#### **Datasets**



#### **Baseline Model: Vector Autoregression (VAR)**

**Vector autoregression** (VAR) is a statistical model used to capture the relationship between multiple quantities as they change over time.

- Typically used for multivariate time-series forecasting
- Appropriate for variables that move together in time (cointegrated) in a stationary manner

$$Y_{t} = \alpha + \beta_{11}Y_{t-1} + \beta_{12}Y_{t-2} \\ + \gamma_{11}X_{t-1} + \gamma_{12}X_{t-2} + \varepsilon_{1t} \\ X_{t} = \alpha_{2} + \beta_{21}Y_{t-1} + \beta_{22}Y_{t-2} \\ + \gamma_{21}X_{t-1} + \gamma_{22}X_{t-2} + \varepsilon_{2t}$$

$$(1)$$
Formula for two variable VAR with a two-step lag

Chris Sims. Macroeconomics and Reality, Econometrica. 1980.

#### **Recurrent Neural Networks (RNNs)**



A RNN is suitable for our problem as it has "loops" that allow information to persist (unlike in other tradition neural networks). This chain-like nature makes RNNs suitable for use with sequences - like our time-series data.

#### Model 1: Long Short-Term Memory (LSTM)

Long Short-Term Memory is a type of RNN that is capable of learning the long-term dependencies between variables.



#### Model 2: Gated-Recurrent Unit (GRU)

**Gated-Recurrent Unit (GRU)** is a type of RNN that is similar to LSTM.

 The GRU model has a slight difference in model architecture, helps solving Vanishing Gradients issue (In our case, 0 in datasets might cause the problem).



K. Cho, D. Bahdanau, F. Bougares, H. Schwenk & Y. Bengio. Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. 2014.

#### Supervised learning

#### 1. Build Samples



#### **Supervised learning**

#### 2. Feeding samples to NN model



### 5. Model Results

Model architecture, Detection methods

#### **Evaluating the Performance**

MAE (Mean Absolute Error)

**MAPE (Mean Absolute Percentage Error)** 

$$MAE = \frac{1}{n} \sum_{t} |A_t - F_t|$$
$$MAPE = \frac{1}{n} \sum_{t} |\frac{A_t - F_t}{A_t}|$$

where A\_t is actual value at time t and F\_t: forecasted value at time t

## **Method 1: Vector AutoRegression (VAR)**

#### Air flow Prediction

TEST MAE: 23.24
TEST MAPE: 9.76%

#### Sample



#### Valve Position Prediction

TEST MAE: 1.32
TEST MAPE: 1.50%

#### Sample



## Limitation: Vector AutoRegression (VAR) is not robust

Range of Valve positions value (0 - 100)



\*\*Note: across 9 months; timestamps interval is 5 min

#### Testing data



MAE: 3.47

MAPE: 3.61%



MAE: 1.32

MAPE: 1.50%

## Extension: method 2 Neural Network Model

### Air flow Prediction results

Range of air flow value (0 - 250)



|      | MAE   | MAPE  |
|------|-------|-------|
| VAR  | 23.25 | 9.76% |
| LSTM | 17.06 | 6.82% |
| GRU  | 16.84 | 6.74% |

## **Air Flow Prediction Samples**

## Sample 1



## Extension: method 2 Neural Network Model

#### **Valve Position Prediction Results**

Range of Valve positions value (0 - 100)



|      | MAE  | MAPE  |
|------|------|-------|
| VAR  | 1.32 | 1.50% |
| LSTM | 1.13 | 1.18% |
| GRU  | 1.14 | 1.57% |

## **Valve Position Prediction Samples**

### Sample 1



### Sample 2



# **5.Anomaly Detection**

**STEP 1: Predict Future Values** 

**STEP 2: Monitor for Anomalies** 

## 1. Use prediction module to predict next 2hrs



Actual Primary Air flow (Blue) vs 2-hour forecast (Orange)

## 2. Histogram-based Outlier Score (HBOS)

- Unsupervised distance-based outlier-selection algorithm that evaluates the frequency of occurrence of a data point
- Is a global rather than a local outlier selection method





### **Fraction of Contamination**

- Without labelled anomaly data, we assume a fraction of the input data contains outliers (contamination)
- The sensitivity of the model depends on the fraction

## **Anomaly Detection in Practice**



# **6.Next Steps**

- Implement Deep Regressor Chains
- Further optimize inputs & outputs
- Tune Anomaly Detector
- Build ML Pipeline

## **Deep Regressor Chains (DRC)**



## Improving anomaly detector

Once we include more insight and domain knowledge about when & how anomalies occur, we should ask:

- Are there more suitable algorithms?
- Are there points we should exclude?
- What, realistically, should the contamination fraction be?
- Should we fit all the data (costly) or just the last N entries?



# **Project RoadMap**



# Thanks!

Any questions or Comments?