

アプリケーションマニュアル

Real Time Clock Module

RX-8035SA/LC

● 本マニュアルのご使用につきましては、次の点にご留意願います。

- 1. 本資料の内容については、予告なく変更することがあります。量産設計の際は最新情報をご確認ください。
- 2. 本資料の一部、または全部を弊社に無断で転載、または、複製など他の目的に使用することは堅くお断りいたします。
- 3. 本資料に記載される応用回路、プログラム、使用方法等はあくまでも参考情報であり、これらに起因する第三者の知的財産権およびその他の権利侵害あるいは損害の発生に対し、弊社は如何なる保証を行うものではありません。また、本資料によって第三者または弊社の知的財産権およびその他の権利の実施権の許諾を行うものではありません。
- 4. 特性表の数値の大小は、数値線上の大小関係で表します。
- 5. 輸出管理について
 - (1) 製品および弊社が提供する技術を輸出等するにあたっては「外国為替および外国貿易法」を遵守し、当該法令の定める必要な手続をおとりください。
 - (2) 大量破壊兵器の開発等およびその他の軍事用途に使用する目的をもって製品および弊社が提供する技術を輸出等しないでください。また、これらに使用するおそれのある第三者に提供しないでください。
- 6. 製品は一般電子機器に使用されることを意図し設計されたものです。 特別に高信頼性を必要とする以下の特定用途に 使用する場合は、弊社の事前承諾を必ず得て下さい。 承諾無き場合は如何なる責任も負いかねることがあります。
 - 1 宇宙機器 (人工衛星・ロケット等) 2 輸送車両並びにその制御機器 (自動車・航空機・列車・船舶等)
 - 3 生命維持を目的とした医療機器 4 海底中継機器 5 発電所制御機器 6 防災・防犯装置7 交通用機器
 - 8 その他; 1 ~7 と同等の信頼性を必要とする用途

本資料に掲載されている会社名、商品名は、各社の商標もしくは登録商標です。

ETM35J 改定履歴

	•		<u></u>
Rev No.	Date	Page	Description
-05	2013/06/10		制定
00	0044/00/40	4	プルダウン抵抗値の仕様記載
-08	2014/06/18	15	タイミングチャート修正:VDD→VOUT 等
		13,20,30	VDET に関して 秒桁書き込み後は VDET をクリアしてください。
-09	2017/9/20	13	VDET に関して 2:VDET は VBAT 電圧を監視しています。
		7	電源切替に関して 電池を先入れする際の注意事項追加
		29	フローチャート新規追加

目 次

1. 概要	1
2.ブロック 図	1
3. 端子説明	
3.1. 端子配置	
4. 絶対最大定格	
5. 推奨動作条件	3
6. 水晶発振特性	3
7. 電気的特性	
7.1. DC 電気的性	
7.3. AC 電気的特性(2)	6
8. 使用方法	
8.1 電源切替機能	7
8.1.1 VBAT 端子への電池接続時の注意事項 8.1.2 VBAT 端子入カリーク電流と注意事項。	7
8.1.3 電源切替チャート	
8.1.4 バックアップ電池接続例	8
8.1.5 電源切換え回路の注意事項	
8.2. レジスタテーブル	
8.2.1 レジスタ説明 8.2.2 レジスタ イニシャライズ データ	9
8.2.2 レンスタ イージャフィス・テータ 8.3 レジスタの機能	
8.3.1 制御レジスタ 1(BANK=0,1 アドレス Eh)	11
8.3.2 制御レジスタ 2(BANK=0,1 アドレス Fh)	13
8.3.3 検出フラグビットと RTC データ信頼性	14
8.3.4 イベントデテクション機能	
8.3.5 CTFG 定周期割込み機能	
8.3.6 MoAFG, WkAFG 機能	16
8.3.7 タイムスタンプレジスタ	
8.3.8 Alarm_Wk レジスタ	
8.3.9 Alarm_Mo レジスタ 8.3.10 ユーザーRAM	
8.3.11 時計カウンタ	
8.3.12 曜日カウンタ	
8.3.13 カレンダカウンタ	21
8.4. 時計精度調整機能	
8.4.1. 関連レジスタ	22
8.4.2. 調整量	
8.4.3. 調整例	
8.5. データのリード/ライト	
8.5.1 I2C-BUS の通信手順 8.5.2 スレーブアドレス	
8.5.3 I ² C-BUS の基本転送フォーマット	28
0.0.0 1 0 000 0 至不知及 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20
9 フローチャート	29
9.1. 初期電源投入時の手続き (初期設定)	29
9.1.1. 初期設定	29
9.2. バックアップからの復帰時の手続き	
9. 3. 時計・カレンダの書き込み (現在時刻設定)	30
10. 外部接続例	31
11. 外形寸法図 / マーキングレイアウト	32
11.1 外形寸法図	32
11.2 マーキングレイアウト	323
12. 参考データ	
13. 使用上の注意事項	34

I2C インターフェース リアルタイムクロックモジュール

RX - 8035 SA / LC

1. 概要

RX-8035は、電源切替回路とイベント検出機能を備えた2線式シリアルインターフェース(I2Cバス)のリアルタイムクロックモジュールで、高精度仕様計時(±5ppm 25°C)が対応可能です。 電源切替回路はVDD電圧が低下すると自動的にバッテリー電源に切替わると同時にI2Cバスが無効にされデータを保護します。 2本のイベント入力によるイベントの検出およびイベント検出割り込み出力とイベント検出時刻をレジスタに保存するタイムスタンプ機能を備えています。

- 32768Hz水晶を内蔵し常温高精度仕様に対応可能(±5ppm / 25°C)
- 最低時計動作電源電圧 (1.0V) Max.
- 低消費計時電流 (350nA) TYP VBAT=3.0V 8035-SA
- バックアップ切換え回路内蔵(一次電池、二次電池、大容量コンデンサいずれも使用可能)
- 内部電源の出力機能 最大10mA。
- I^2C バス(400kHzモード) 準拠シリアルインターフェース
- 12/24時間制の選択可能なフルカレンダー時計 年・月・日・曜・時・分・秒 BCDコード
- チャタリング除去機能を備えたイベント入力端子
- VDD/VBATどちらの電源でもイベント検出日時を1回レコードするタイムスタンプ機能。
- イベント検出割り込み出力機能。
- CPUに対する定周期割込み発生機能(周期1ヶ月~0.5秒)
- 2系統のアラーム割込み発生機能 Alarm_Mo(月日時分) Alarm_Wk(曜時分)
- 32768Hzクロック出力 (CMOS出力)
- 豊富な診断機能 (パワーオンリセット検出 バッテリー電圧低下検出 発振停止検出)

2.ブロック 図

3. 端子説明

3.1. 端子配置

3.2. 端子機能

端子名	名称	内容
VBAT	バッテリー電源入力	バックアップ用一次電池入力です。
CLKOUT	32768Hz クロック出力	32768kHz クロック CMOS 出力です。 High レベルは VDD レベルで常時出力します。 VDD が Off されると出力が停止します。
SCL	シリアルクロック 入力	I2C バスインターフェース SCL 入力です。 VDD <vd2b td="" では入力が無効になります。<=""></vd2b>
EVIN1	イベント入力 1	デバウンス回路付き High アクティブ入力です。 内蔵抵抗は有りません。
EVIN2	イベント入力 2	デバウンス回路付き High アクティブ入力です。 プルダウン抵抗が内蔵されています。
ĪNTRĀ	割込み出力 A	イベント検出と Alarm_Mo を出力する N-ch オープンドレイン 出力です。未使用時はオープンにしてください。 使用時はプルアップ抵抗が必要です。
SDA	シリアルデータ 入出力	I2C バスインターフェース SDA 入出力です。 VDD <vd2b hi-z="" td="" では="" となり入出力無効になります。<=""></vd2b>
GND	グランド	グランド接続してください。
ĪNTRB	割込み出力 B	定周期割込みと Alarm_Wk を出力する N-ch オープンドレイン 出力です。未使用時はオープンにしてください。 使用時はプルアップ抵抗が必要です。
RES	VDD 電源電圧監視出力	VDD 電圧が VD2B 以下になると Low 出力し、 VB2D 以上になると tDELAY 時間後に LOW から Hi-Z に移行します。 N-ch オープンドレイン出力です。
VOUT	内部電源出力	VDD と VBAT の切換後の内部電源を出力します。 0.1µF 程度の容量を接続してください。 バックアップ用二次電池は本端子に接続してください。 本マニュアルの中では電源出力仕様と切替後の内部電圧の 2 つの意味で参照されますのでご了承ください。
VDD	主電源入力	I2C コントローラと同じ電源を入力してください。
N.C.	接続禁止	どこにも接続しないでください。

注) VOIT-GND間及びVDD-GND間にの直近に0.1µF以上のパスコンを必ず接続してください。

4. 絶対最大定格 GND=0 V

項目	記号	条件	Min.	Max.	unit
電源電圧 1	VDD	VDD	-0.3	+6.5	V
電源電圧 2	VBAT	VBAT	-0.3	+6.5	V
入力電圧	VIN	SCL SDA EVIN1 EVIN2	-0.3	+6.5	V
出力電流	IOUT	VOUT	-	20	mA
==	VOUT1	INTRA INTRB RES	-0.3	+6.5	V
出力電圧	VOUT2	CLKOUT VOUT	-0.3	VOUT+0.3	V
動作周囲温度	Topt		-40	85	°C
保存温度	TSTG	梱包状態を除く単品での保存	-55	+125	°C

5. 推奨動作条件 GND=0 V

項目	記号	記号条件		Тур.	Max.	unit
I2C-BUS 電源電圧	Vaccess	AC 特性を保証可能な VOUT 電圧	VB2D	-	5.5	
計時電源電圧 VCLK		計時,イベント検出可能な VBAT 電圧	1.0	-	5.5	V
水晶発振停止	VVCTD	XSTP=1 となる電圧		0.7	4.0	
検出電圧	VXSTP	∧31F=1 となる电圧	-	0.7	1.0	V

6. 水晶発振特性 GND=0 V

項目	記号	条件	Min.	Тур.	Max.	unit
発振開始時間	tSTA	Ta = +25 °C VDD = 3.0 V	_	0.3	1	S
	Δf/f	B (*1)	- 23	5	+23	
時計精度		AA (*2) Ta = +25 °C	- 5	5	+5	10 ⁻⁶
		AC (*3) VDD = 0 V VBAT=3.0V	- 5	0	+5	

^{*1)} 月差1分相当 ^{*2)} 月差13秒相当 ^{*3)} 月差13秒相当 (オフセット値を除く)

7. 電気的特性

7.1. DC 電気的性

なき場合:GND=0V, VDD=3.0V, Topt=-40~+85°C,

	I		- なる物ロ	.GIND=UV, V	DD=3.0V, IO	υρι=- 4 0.9 +	65 C,
記号	項目	端 子 名	測定条件	最小	標準	最大	単位
VIH1	"H"入力電圧		VDD V - 5 5 V	0.8x VDD		5.5	
VIL1	"L"入力電圧	SCL, SDA	VDD =V _{B2D} ~5.5V	-0.3		0.2x VDD	V
VIH2	"H"入力電圧	EVIN1,	V _{OUT} =1.0∼5.5V	0.8x V _{OUT}		5.5	V
VIL2	"L"入力電圧	EVIN2		-0.3		0.3	
IOH	"H"出力電流	CLKOUT	VOH=VDD-0.5V			-0.5	mA
IOL1		CLKOUT		0.5			
IOL2	L"出力電流	INTRA , INTRB VDCC	VOL=0.4V	2.0			mA
IOL3		SDA		3.0			
IIL	入カリーク電流	SCL EVIN1	VI=5.5V or GND	-0.2		0.2	μА
IOZ	オフ状態出力 リーク電流	INTRA , INTRB VDCC , SDA	VO=5.5V or GND	-0.2		0.2	μΑ
RDN	プルダウン 抵抗値	EVIN2		40	120	400	kΩ
VD2B	VDD→VBAT 切換電圧	VDD	Topt=+25°C	2.328	2.40	2.472	V
VB2D	VBAT→VDD 切換電圧	VDD	Topt=+25°C	2.396	2.52	2.544	V
ΔVDET ΔTopt	切換電圧 温度係数	VDD	Topt=-40~+85°C		±100		ppm/ °C
VDET	VBAT 電圧低下 検出電圧	VBAT	Topt=-30 to +70°C	1.10	1.25	1.40	V
VOUT1	V _{OUT} 出力電圧 1	VOUT	Topt=+25°C, VDD=3.0V lout = 10mA	VDD -0.12	VDD -0.03		V
VOUT2	V _{OUT} 出力電圧 2	VOUT	Topt=+25°C, VDD=2.0V VBAT=3.0V	VBAT -0.08	VBAT -0.03		V
IBATL	VDD オン時 VBAT 端子漏れ電流	VBAT	Iout = 100μA VDD=3.0V VBAT=0V or 5.5V SCL=SDA=0V CLKOUT = OPEN -1.0 0.01		1.0	μА	
IBAT1	RX 8035 SA 計時消費電流	VBAT	VDD=0V VBAT=3V SCL=SDA=0V		350	1200	nA
IBAT2	RX 8035 LC 計時消費電流	VDAT	EVIN1=EVIN2= GND VLKOUT = OPEN		400	1200	IIA
IDD	VDD 消費電流	VDD	VDD=3V, VBAT=0V SCL=SDA=0V EVIN1=EVIN2=GND CLKOUT = OPEN	-	1400	2500	nA

(*1) 入力リーク電流 参考値

条件: SCL 端子 VOUT=3.0V VIN=0V or 5.5V -40°C ~ +85°C

上記条件で任意ロットにおけるワースト値:±17nA

7.2. AC 電気的特性

指定なき場合: GND=0V, Topt=-40~+85°C

入出力条件:VIH=0.8xVDD,VIL=0.2xVDD,VOH=0.8xVDD,VOL=0.2xVDD,CL=50pF

※特記無き場合、GND=0 V , VDD=VB2D ~ 5.5 V , Ta= -40 °C ~ +85 °C

#3 P.	塔 日	V	出任		
記号	項目	MIN.	TYP.	MAX.	単位
f _{SCL}	SCL クロック周波数			400	KHz
t _{LOW}	SCL クロック"L"時間	1.3			μS
t _{HIGH}	SCL クロック"H"時間	0.6			μS
t _{HD;STA}	スタートコンデ゛ィションホールト゛時間	0.6			μS
t _{su;sto}	ストップ。コンテ、ィションセットアップ。時間	0.6			μS
t _{SU;STA}	スタートコンデ、ィションセットアップ。時間	0.6			μS
t _{SU;DAT}	データセットアップ時間	100			ns
t _{HD;DAT}	データホールド時間	0			ns
t _{PL;DAT}	SCL 立ち下がり後の SDA の"L"確定時間			0.9	μS
t _{PZ;DAT}	SCL 立ち下がり後の SDA の OFF 確定時間			0.9	μS
t _R	SCL,SDA(入力)立ち上がり時間			300	ns
t _F	SCL,SDA(入力)立ち下がり時間			300	ns
t _{SP}	入力フィルタにより取り除けるスパイクパルス幅			50	ns
t _{RCV}	ストップコンディションから次のスタートコンディションへの	62			μS
	セットアップ時間				
t _{DB}	EVIN1,EVIN2 端子ノイズ除去時間	(15.6)			ms

7.3. AC電気的特性 (2)

指定なき場合: GND=0V, Topt=-40~+85°C, VBAT=3.0V 入出力条件:CL=50pF

	, <u>'</u>					
記号	項 目	測定条件	MIN.	TYP.	MAX.	単位
t _{DELAY}	ボルテージディテクタ	計時動作時、VOUT	Typ -4	(105)	Typ +4	ms
	出力遅延時間	≥ VB2D				
t _{PD_HL}	ボルテージディテクタ			15		μS
	伝播遅延時間					
t _{DB} *1)	EVIN1,EVIN2 端子	計時動作時	Typ -4	35 or	Typ +4	ms
	ノイズ除去時間			1996		
t _{ED}	イベント入力検出時間	計時動作時	Typ -4	t _{DB} +7.8	Typ +4	ms

^{*1)} t_{DB}はDBSLビットで35ms or 1996msが選択可能です。

8. 使用方法

8.1 電源切替機能

RX-8035 は 3 つの電源端子(VOUT, VDD, VBAT)を持っています。 VOUT は RTC の内部電源が現れます。

VDD 電源電圧が VD2B より低いときは VBAT から電源が自動供給されて VOUT には VBAT 電圧が現れ、

VB2D より高い場合は、VDD から電源が供給されて VOUT には VDD 電圧が現れます。

VDD電源電圧がVD2B電圧より低下するとI²Cバスインターフェースが自動的に無効になりRTC内部データが保護されます。

8.1.1 VBAT 端子への電池接続時の注意事項

電源切替回路はVDD電源の供給によって初期化されるため、VDDが供給される前にバックアップ用電池をセットされた場合は VDD電源で動作する電源切替SWが初期化されずVBAT端子に100µA前後のリーク電流が流れ込む事が有ります。

このような電池先入れ時のリーク電流を解消するためには以下のいずれかの処理を実施してください。

- 1) VDD供給状態で電池をセットしてください。
- 2) 電池セット後に2.47V以上の電圧を10ms以上VDD端子に供給してください。
- 3) 2.47V以上の電池セット後にVBAT端子とVDD端子を10ms以上ショートしてください。 OFF状態のVDDのインピーダンスが低い場合はVBATの電池電圧がVDDに引き込まれて2.47Vに達しない場合も想定されます。

ショート時のVDD電圧をご確認ください。

以上の処理以降はVDD、VBATの電圧変動に追従して切替動作が行われリーク電流が発生することは有りません。

8.1.2 VBAT 端子入力リーク電流と注意事項。

本書 7.2 DC 電気的特性仕様の IBATL 特性の任意ロットにおける参考値は以下のとおりです。

VDD = 3.0V VBAT = 5.5V : Max:+9nA (-40 °C \sim +85 °C)

VDD = 3.0V VBAT = 0.0V : Max:-3nA (-40 °C ~ +85 °C)

VDD電圧がVD2B(Typ. 2.4V), VB2D(Typ. 2.47V) 付近ではVDD側およびVBAT側の切替SWが両方ONまたはOFFに近い状態となりVDD-VBAT間がショートされる、あるいはどちらからも電源供給されないような瞬間があります。

VDD電圧が上記の切替電圧付近に停滞せず、できるだけ速やかにMAX~MIN間を遷移するようにご配慮ください。

8.1.3 電源切替チャート

下図にVDDとVBATとVOUTの関係をタイミングチャートで示します。

上記タイミングチャートの説明

電源切換回路が不安定です。

状態	説明
1	VDD,VBAT 端子共に 0V の時に VDD だけを供給していくと、徐々に内部電源に供給され、VOUT は
	VDD の半分くらいの電圧で追従します。
II	VDD が VB2D を超えると、VOUT は VDD と等しい電圧まで上昇し、その後、VDD に追従します。
	VDDが VB2Dより高い電圧では VDD=VOUT となります。
III	VDDが VD2Bを下回ると、VOUTは VBATと等しくなります。
IV	VDD 供給が無い状態(初期電源投入)で VBAT だけが供給されると、VDD が供給されるまでは VOUT
	が不安定になり、VBAT 端子に 100μA 前後の入力リーク電流が生じる場合が有ります。

ETM35J-09

8.1.4 バックアップ電池接続例

電源接続回路は、バックアップに使用するデバイスと充電電圧により以下のように変わります。

一次電池の場合 二次電池の場合(充電電圧と 二次電池の場合(充電電圧と 主電源電圧が等しい場合) 主電源の電圧が異なる場合) システム電源 システム電源 システム電源 VDD VDD VDD (3V) **VBAT VBAT VBAT** R1 VOUT **VOUT** VOUT C1 C1 R1 ≥ C1 R1 電気二重層 CR2025 ML614S コンデンサ など など など **GND GND GND**

8.1.5 電源切換え回路の注意事項

VOUT端子には電流負荷が重いデバイスを接続してバックアップ切換えをさせる事はできません。 C2には0.1μF以上の容量を接続してください。

また、VOUTに二次電池(電気二重層コンデンサ)を接続した場合、CPU電源のスイッチを切った直後、二次電池の電圧が、→(太い矢印)経由で、放電されます。この時、R1がCPUのインピーダンス(Rcpu)に比べて非常に小さい値ですと、VDD端子の電圧が、VD2Bを上回ってしまい、いつまでもSW1がONのままになる可能性があります。

このことから、R1は以下の式で制約されます。

R1>Rcpux(Vbat-(VD2B))/(VD2B)

一次電池、二次電池に直列に接続される R1 については、ご使用になる電池の仕様により制限される のが一般的です。詳しくは電池の仕様書を確認下さい。

8.2. レジスタテーブル

●BANK=0

Adrs	Function	Data							
Adis	1 diletion	D7	D6	D5	D4	D3	D2	D1	D0
0h	Seconds	-	S40	S20	S10	S8	S4	S2	S1
1h	Minutes	-	M40	M20	M10	M8	M4	M2	M1
2h	Hours	12 /24	-	H20 P/ A	H10	H8	H4	H2	H1
3h	Day of week	-	-	-	-	-	W4	W2	W1
4h	Day of month	-	-	D20	D10	D8	D4	D2	D1
5h	Months	-	-	-	MO10	MO8	MO4	MO2	MO1
6h	Years	Y80	Y40	Y20	Y10	Y8	Y4	Y2	Y1
7h	Digital Offset	TEST	F6	F5	F4	F3	F2	F1	F0
8h	Alarm_Wk ; Minute	*	WkM40	WkM20	WkM10	WkM8	WkM4	WkM2	WkM1
9h	Alarm_Wk ; Hour	*	*	WkH20 WkP/ A	WkH10	WkH8	WkH4	WkH2	WkH1
Ah	Alarm_Wk; Day of week.	*	WkW6	WkW5	WkW4	WkW3	WkW2	WkW1	WkW0
Bh	Alarm_Mo ; Minute	*	MoM40	MoM20	MoM10	MoM8	MoM4	MoM2	MoM1
Ch	Alarm_Mo ; Hour	*	*	MoH20 MoP/ A	MoH10	МоН8	MoH4	MoH2	MoH1
Dh	RAM	*	*	*	*	*	*	*	*
Eh	Control 1	WkALE	MoALE	DBSL	EDEN	TEST	CT2	CT1	CT0
Fh	Control 2	BANK TSFG	VDET	XSTP	PON	EDFG	CTFG	WkAFG	MoAFG

●BANK=1

VD/ (IVIC	-	Data							
Adrs	Function			ı	Da	แล	1		
, taro	1 diletion	D7	D6	D5	D4	D3	D2	D1	D0
0h	Time-stamp Sec.	EDCH1	TS40	TS20	TS10	TS8	TS4	TS2	TS1
1h	Time-stamp Min	EDCH2	TM40	TM20	TM10	TM8	TM4	TM2	TM1
2h	Time-stamp Hour	-	-	TH20 TP/ A	TH10	TH8	TH4	TH2	TH1
3h	Time-stamp Day of Week	-	-	-	-	-	TW4	TW2	TW1
4h	Time-stamp Day of Month	-	-	TD20	TD10	TD8	TD4	TD2	TD1
5h	Time-stamp Month	-	-	-	TMO10	TMO8	TMO4	TMO2	TMO1
6h	Time-stamp Year	TY80	TY40	TY20	TY10	TY8	TY4	TY2	TY1
7h	Digital Offset				Same a	s BANK0			
8h	Reserved	-	-	-	-	-	-	-	-
9h		-	-	-	-	-	-	-	-
Ah		-	-	-	-	-	-	-	-
Bh	Alarm_Mo ; Day	DYE	*	MoD20	MoD10	MoD8	MoD4	MoD2	MoD1
Ch	Alarm_Mo ; Month	MOE	*	*	MoMO10	MoMO8	MoMO4	MoMO2	MoMO1
Dh	RAM	Same as BANK0							
Eh	Control 1	Same as BANK0							
Fh	Control 2				Same a	s BANK0			

8.2.1 レジスタ説明

- "-"ビットへの書き込みは無効で、読み出し値は常に "0" です。
- "*"ビットは読み出しと任意値の書き込みが可能です。

MoALE=0 の時は Alarm_Mo レジスタ(BANK=0 の 8~Ah)が、WkALE=0 の時は Alarm_Wk レジスタ(BANK=0 の Bh,Ch と BANK=1 の Bh,Ch)が、それぞれユーザーRAM として使用できます。

パワーオンリセットフラグ(PON) が 1 にセットされると、時計誤差補正レジスタ,Alarm_Mo·Alarm_Wk レジスタ,ユーザーRAM, Control1, VDET, PON、XSTP を除いた Control2 の全ビットは 0 リセットされ VDET, XSTP, ON は 1 になります。 VDET, XSTP, PON への"1"書き込みは無効です。

Adress0(秒)の書き込み後は VDET ビットをゼロクリアしてください。

8.2.2 レジスタ イニシャライズ データ

●BANK=0

Adrs	Function		Data						
	1 dilettori	D7	D6	D5	D4	D3	D2	D1	D0
0h	seconds	_							
1h	minutes	_							
2h	houts		_						
3h	Day of week	_	_	_	_	_			
4h	Day of month	0	0						
5h	Month	0	0	0					
6h	Years								
7h	Digital offset	0	0	0	0	0	0	0	0
8h	Alarm_Wk ; Minute	0	0	0	0	0	0	0	0
9h	Alarm_Wk ; Hour	0	0	0	0	0	0	0	0
Ah	Alarm_Wk ; Day of Week	0	0	0	0	0	0	0	0
Bh	Alarm_Mo ; Minute	0	0	0	0	0	0	0	0
Ch	Alarm_Mo ; Hour	0	0	0	0	0	0	0	0
Dh	RAM	0	0	0	0	0	0	0	0
Eh	Control 1	0	0	0	0	0	0	0	0
Fh	Control 2	0	1	1	1	0	0	0	0

●BANK=1

Adrs	drs Function		Data							
		D7	D6	D5	D4	D3	D2	D1	D0	
0h	Time-stamp Sec.	0	0	0	0	0	0	0	0	
1h	Time-stamp Min	0	0	0	0	0	0	0	0	
2h	Time-stamp Hour	0	0	0	0	0	0	0	0	
3h	Time-stamp Day of Week	0	0	0	0	0	0	0	0	
4h	Time-stamp Day of Month	0	0	0	0	0	0	0	0	
5h	Time-stamp Month	0	0	0	0	0	0	0	0	
6h	Time-stamp Year	0	0	0	0	0	0	0	0	
7h	Digital offset	BANK0 と同じ								
8h	Reserved	_	_	_	_	_	_	_	_	
9h		_	_	_	_	_	_	_	_	
Ah		_	_	_	_	_	_	_	_	
Bh	Alarm_Mo ; Day	0	0	0	0	0	0	0	0	
Ch	Alarm_Mo ; Month	0	0	0	0	0	0	0	0	
Dh RAM		BANKO と同じ								
Eh	Control 1				BANKO) と同じ				
Fh	Control 2	BANK0 と同じ								

イニシャライズデータの記号説明

- 1) "- "ビットの読み出し値は常に"0"で書き込みは無効です。
- 2) "0"ビットはパワーオンリセット発生によってゼロにクリアされるビットです。
- 3) "1"ビットはパワーオンリセット発生によって"1"にセットされるビットです。
- 4) 斜線ビットはパワーオン時のデータは不定です。
 - *3 パワーオンリセットの発生はPONフラグで確認可能です。

8.3 レジスタの機能

8.3.1 制御レジスタ 1(BANK=0,1 アドレス Eh)

D7	D6	D5	D4	D3	D2	D1	D0	
MoALE	WkALE	DBSL	EDEN	TEST	CT2	CT1	CT0	(Write 時)
MoALE	WkALE	DBSL	EDEN	TEST	CT2	CT1	CT0	(Read 時)
0	0	0	0	0	0	0	0	(Default 値 *)

^{*)} Default値:電源オン後、または電源電圧低下等によりPON=1となった時に自動設定される値です。

(1) MoALE,WkALE アラーム月,アラーム曜イネーブルビット

MoALE WkALE	設 定 内 容	
0	Alarm_Mo, Alarm_Wk 一致動作無効	(Default 値)
1	Alarm_Mo, Alarm_Wk 一致動作有効	

MoALE=WkALEが共に0の時は、アラーム設定レジスタ7バイト(BANK=0のアドレス8~Chと、

BANK=1のアドレスB,Ch)はユーザーRAMとして使用可能です。

(2) DBSL デバウンス時間切替ビット

DBSL	設 定 内 容	
0	EVIN1/2 入力のデバウンス時間を 1996ms(typ)に設定	(Default 値)
1	EVIN1/2 入力のデバウンス時間を 35ms(typ)に設定	

イベントデテクション機能の有効/無効を設定します。Default値は0(1996ms)です。

(3) EDEN イベントデデクション機能イネーブルビット

EDEN	設 定 内 容	
0	イベントデテクション機能無効	(Default 値)
1	イベントデテクション機能有効	

イベントデテクション機能の有効/無効を設定します。Default値は0(無効)です。

EDENをOにクリアすると、以下のタイムスタンプデータが全てOクリアされますので、

タイムスタンプデータを取りこぼさないようにご配慮ください。

BANK=1のアドレス 0 から 6 までのタイムスタンプレジスタビットおよびアドレス F のEDFGビット。

(4) TEST テスト用ビット

TEST	設 定 内 容	
0	通常動作モード	(Default 値)
1	テストモード	

テスト用ビットは、ICテスト用のビットです。常にOにクリアしてください。

(5) CT2,CT1,CT0 定周期割込み選択ビット

OT0	OT4	CTO	設 定 内 容	
C12	CT2 CT1 CT0		割込モード	周 期 と 立ち下がりタイミング
0	0	0	-	OFF(H)
0	0	1	-	L 固定
0	1	0	パルスモード *1)	2Hz(Duty50%)
0	1	1	パルスモード *1)	1Hz(Duty50%)
1	0	0	レベルモード *2)	1秒に1度(秒更新と同時)
1	0	1	レベルモード *2)	1分に1度(毎分00秒)
1	1	0	レベルモード *2)	1時間に1度 (毎時00分00秒)
1	1	1	レベルモード *2)	1月に1度 (毎月1日00時00分00秒)

(Default 値)

*1) パルスモード: 2Hz,1Hz のクロックパルスを出力します。秒のカウントアップとの関連は下図を参照下さい。

*1) パルスモードにおいて、秒のカウントアップは出力立ち下がりエッジから約46µs遅れます。

このため出力の立ち下がり直後に時刻を読み出すと、RTCの計時時刻に比べて、見掛け上約1秒遅れた時刻が読み出される場合があります。

秒カウンタの書き換えを行うと秒未満のカウンタもリセットされるためINTRB端子は1度Lになります。

*2) レベルモード:割込み周期として1秒、1分、1時間、1ヶ月を選択可能。秒のカウントアップは割込み出力の立ち下がりと同時です。下図に割込み周期を1秒に設定した場合のタイミングチャートを示します。

*1), *2) 時計誤差補正回路使用時は、20秒または1分に1回定周期割込みの周期が変化します。

パルスモード: 1Hzの出力パルスのH期間が最大±3.784msec増減します。

Dutyは50±0.3784%になります。

2Hzの場合、出力パルスのL期間が最大±3.784msec増減します。Dutyは50±0.7568%になります。

レベルモード:1秒間の周期が最大±3.784msec増減します。

8.3.2 制御レジスタ 2(BANK=0,1 アドレス Fh)

D7	D6	D5	D4	D3	D2	D1	D0
BANK	VDET	XSTP	PON	EDFG	CTFG	WkAFG	MoAFG
TSFG	VDET	XSTP	PON	EDFG	CTFG	WkAFG	MoAFG
0	1	1	1	0	0	0	0

(Write 時) (Read 時) Default 値 *)

(D7) BANK BANK 切換えビット

内部アドレス機能を切り替えます。Write専用ビットです。

BANK	設 定 内 容	
0	BANK=0 の内部アドレスを指定します	(Def
1	BANK=1 の内部アドレスを指定します	

(Default 値)

(D7) TSFG タイムスタンプデータ有効有無判定フラグビット

イベント入力発生後、EDFGビットが0→1となった時にXSTPビットとVDETビットがともに0の場合、TSFG=1となります。 XSTPビットとVDETビットの少なくとも一つが1の場合、TSFG=0となります。

タイムスタンプデータの有効/無効の判定に使用できます。Read専用ビットです。

	TSFG	設 定 内 容	
I	0	タイムスタンプデータは無効です	
ĺ	1	タイムスタンプデータは有効です]

(Default 値)

(D6) VDET VBAT 電圧低下検出フラグビット

1度、VDETが1になると、監視動作は停止し、1がホールドされます。VDETはゼロクリアだけが可能で、

0を書き込むと監視動作を再開します。1の書き込みは無効です。

VDETは毎秒更新時に比較された結果を示し、1になった場合はゼロクリアするまで1が保持されます。

1からゼロに更新されることはありません。 検出動作中に秒桁データが書き込まれるとタイミングによって VBATがVDET電圧以上でもVDETが1にセットされる場合が有ります。

このため秒桁の書き込み後はVDETをクリアしてください。

VDET	設 定 内 容	
0	VBAT が監視電圧(VDET)以上です	
1	VBAT が監視電圧(VDET)以下です	(Default 値)

(D5) XSTP 発振停止検出フラグビット

内蔵水晶発振の停止を検出すると1になり、ゼロクリアするまで1を維持します。

過去に発振が停止した履歴を確認できます。1の書き込みでは何も起りません。

XSTP	設 定 内 容	
0	内蔵水晶は正常発振状態を維持しています	
1	水晶発振の停止を検出した履歴が有ります	(

(Default 値)

(D4) PON パワーオンリセットフラグビット

パワーオンリセット検出用ビットです。

- ・ 0Vから初期電源投入された場合に 1 にセットされてゼロクリアするまで維持されます。 XSTP, VDETと組み合わせて、時計・カレンダデータの信頼度の判定に応用可能です。
- ・このビットが1の時、時計誤差補正レジスタ,Alarm_Mo·Alarm_Wkレジスタ,ユーザーRAM,Control1, PON, XSTP、VDETを除くControl2の各ビットはリセットされて0になり、PON, XSTP, VDETは1になります。
 - この結果、INTRA,INTRB 各端子は出力を停止しますWkAFG。
- · PONの0のみ書き込みによるクリアだけが可能です。1の書き込みでは何も起こりません。

パワーオンリセットの発生のためには、VDD,VBATの両電圧を0.2V以下で5秒以上維持してください。

	·	
PON	設 定 内 容	
0	通常状態	
1	パワーオンリセット検出	(1

(Default 値)

^{*)} Default値:0Vからの電源オン、または電源電圧低下等によりPON=1となった時に自動設定される値です。

8.3.3 検出フラグビットと RTC データ信頼性

PON, / XST, VDET ビットの読み出し結果から、RTC データの信頼性の推測が可能です。 各検出フラグ値の組み合わせから推測される状態を以下にまとめます。

_	アレス F trol 2 Reg		過去動作履歴の推定内容。							
bit 4	bit 5	bit 6	電源,発振回路 の 状態	計時 / バックアップ の 状態						
PON	/ XST	VDET	电源,无限固路 07 代恩	日時 / バブブブブン の 1人窓						
0	1	0	・電源電圧低下はないが、 発振が停止した。	· 計時異常が発生 → 初期設定が必要 * 落下衝撃などにより 一時的に計時が停止した。						
0	1	1	・電源電圧低下があり、 発振が停止した。	* バックアップ電源の低下などで 計時が停止した。 ・バックアップの信頼性が低いので初期設定が必要。						
0	0	0	・正常状態。	・正常状態。						
0	0	1	・電源電圧は低下したが、 発振は停止していない。	・計時は正常。ただし、電源に異常あり。 * バックアップ電源等が危険な状態まで低下した。						
1	1	X	・電源が 0 V まで落ちた。	・計時状況 や 電圧低下の有無にかかわらず、初期設定が必要。						
1	1 0 X ・電源の瞬停の疑いが引		・電源の瞬停の疑いが強い。	* PON = "1"にて初期化されるビットがあるため、初期設定が必要。						

- */XST ビットは あらかじめ "0"にクリアしておいてください。
- *バックアップ電池が消耗して1V以下の電圧領域で長時間放置されると

RTCの内部レジスタビットが不定に変化する場合があり PON や VDET が正常値を示す可能性があります。 しかし XST ビットは水晶発振の停止履歴を維持し続けますので、 バックアップ復帰時には XST ビットを必ず 確認してください。 PON が"0"でも XST が"1"の場合は、必ず全レジスタの初期化処理を行ってください。

VDET 機能ご利用上の注意

AddressO(秒)へのデータ書き込み後はその都度 VDET ビットをクリアしてください。

8.3.4 イベントデテクション機能

EDFG	設 定 内 容	
0	EVIN1 or EVIN2 端子からのイベント入力なし	(Default 値)
1	EVIN1 or EVIN2 端子からのイベント入力あり	

EDENビット=1の状態で、EVINx(x:1 or 2)端子がLow \rightarrow Highになると、チャタリング除去時間(t_{DB})経過後に、再度Highを検出し、その7.8ms後にDFGが $0\rightarrow$ 1およびINTRA端子=Lowとなり最初に入力されたイベント端子はEDCH1,EDCH2に記憶されます。EVIN1が最初に入力された場合EDCH1=1、EVIN2の場合EDCH2=1、同時の場合($=t_{DB}$ 期間内にEVIN1と2がHigh)、EDCH1=EDCH2=1となります。また、この時の時刻をタイムスタンプレジスタ(年・月・日・曜日・時・分・秒)に記録します(タイムスタンプ機能)。タイムスタンプ機能は複数のイベントが発生した場合には、最初に発生したイベントの時刻を記録します。EDFGフラグは0のみ書き込み可能で、0を書き込むと、Alarm $_{AB}$ Mの未使用時INTRA端子はADFFになります。

イベント検出動作

動作説明

- ① 初期電源投入時PON=1により、EDEN,EDFG,タイムスタンプレジスターはゼロクリアされます。 その後、時計をA時刻(年~秒)に設定し、EDEN=1(イベント検出開始)とします。
- ② EVIN 1/2端子にイベント入力されるとチャタリング除去(Min t_{DB})後イベントを検出します。 その⑤7.8ms後に、INTRAがLow,EDFG=1,EDCH1/2=1となり発生時刻が記録されます。
- ③ イベント検出状態で、再度イベントが入力されてもすでにEDFG=1となっているため何も変化しません。 EDFGをゼロクリアするとAlarm Mo出力が無ければINTRAは開放されます。
- ④ イベントが入力状態でEDENを0から1にした場合はイベント検出は行われません。

8.3.5 CTFG 定周期割込み機能

CTFG	設 定 内 容	
0	定周期割込み出力オフ(H)	(Default 値)
1	定周期割込み出力オン(L)	

一定周期(クロック)割込み出力時1に1となります。

CTFGは、定周期割込みがレベルモードの時に0のみ書き込みが可能で、0を書き込むとINTRB端子は開放され、次の周期で再度LOWになります。1の書き込みの時は何も起りません。

8.3.6 MoAFG, WkAFG 機能

MoAFG,WkAFG	設 定 内 容	
0	アラーム一致は無い	(Default 値)
1	アラーム一致検出	

MoALE,WkALEビットが1の時のみ有効で、各アラームの設定時刻と現時刻の一致を検出するとその約61μs後に1になります。0の書き込みのみ有効で、0を書き込むと INTR x=OFF(H)となります。その後、次のアラーム設定時刻になると再度Lになります。1の書き込みの時は何も起こりません。MoALE,WkALEが0の時アラーム動作は無効でMoAFG,WkAFGビットの読み出しは0となります。以下にMoAFG,WkAFGとINTx出力の関係を示します。

8.3.7 タイムスタンプレジスタ

(BANK=1,アドレス 0-6h)

Adrs	Function	Data							
		D7	D6	D5	D4	D3	D2	D1	D0
0h	タイムスタンプ 秒	EDCH1	TS40	TS20	TS10	TS8	TS4	TS2	TS1
1h	タイムスタンプ 分	EDCH2	TM40	TM20	TM10	TM8	TM4	TM2	TM1
2h	タイムスタンプ 時	-	-	TH20	TH10	TH8	TH4	TH2	TH1
				TP/ A					
3h	タイムスタンプ 曜	-	-	-	-	-	TW4	TW2	TW1
4h	タイムスタンプ 日	-	-	TD20	TD10	TD8	TD4	TD2	TD1
5h	タイムスタンプ 月	-	-	-	TMO10	TMO8	TMO4	TMO2	TMO1
6h	タイムスタンプ 年	TY80	TY40	TY20	TY10	TY8	TY4	TY2	TY1

- ・全てのタイムスタンプレジスタは読み出し専用です。
- ・EVIN1/2端子からのイベント発生を検出すると最初に発生した日時が記録保持されます。

次のイベントはEDENを再設定しないと記録されません。

・EDENビットに0を書き込むと全てのタイムスタンプレジスタはゼロにクリアされます。

EDCH1,EDCH2 イベント検出時、EVIN1端子 / EVIN2端子判定ビット

EDCH2	EDCH1	設 定 内 容	
0	0	EVIN1, EVIN2 端子からのイベント検出なし	(Default 値)
0	1	EVIN1 端子の入力によるイベント検出	
1	0	EVIN2 端子の入力によるイベント検出	
1	1	EVIN1, EVIN2 両端子(同時)によるイベント検出	

EDCH1,EDCH2ビットは、EDEN=1,EDFG=0の状態で、最初にHighとなった端子を記憶します。最初にHigh となった入力端子がEVIN1の時EDCH1=1、EVIN2の時EDCH2=1になり、EVIN1,EVIN2が同時にHighと なった場合、EDCH1=EDCH2=1となります。

注:RX-8035LCにはEVIN2端子が有りませんのでEVIN1端子だけがご利用可能です。 このためEDCH2ビットが"1"にセットされることはありません。

8.3.8 Alarm_Wk レジスタ

Alarm_Wk分レジスタ(BANK=0,アドレス8h)

	D7	D6	D5	D4	D3	D2	D1	D0		
	*	WkM40	WkM20	WkM10	WkM8	WkM4	WkM2	WkM1	(Write 時)	
	*	WkM40	WkM20	WkM10	WkM8	WkM4	WkM2	WkM1	(Read 時)	
	0	0	0	0	0	0	0	0	Default 値*)	
Alar	m_Wk時レシ	ジスタ(BANK=	=0,アドレス9	h)						
	D7	D6	D5	D4	D3	D2	D1	D0		
	*	*	WkH20	WkH10	WkH8	WkH4	WkH2	WkH1	(Write 時)	
			WkP/ A							
•	*	*	WkH20	WkH10	WkH8	WkH4	WkH2	WkH1	(Read 時)	
			WkP/ A							
	0	0	0	0	0	0	0	0	Default 値*)	
Alarm_Wk曜日レジスタ(BANK=0,アドレスAh)										
	_ D7	De.	DE	, D4	D3	Do	D1	DO		

D7	D6	D5	D4	D3	D2	D1	D0	
*	WkW6	WkW5	WkW4	WkW3	WkAW2	WkW1	WkW0	(Write 時)
*	WkW6	WkW5	WkW4	WkW3	WkW2	WkW1	WkW0	(Read 時)
0	0	0	0	0	0	0	0	Default 値*)

^{*)} Default値: 0Vからの電源オン後、または電源電圧低下等により、PON=1となった時に自動設定される値です。

- ・"*"印のビットは、0,1の読み出し書き込みが可能です。また、0,1でもアラーム一致には関係ありません。
- ・WkALE=0の時、各Alarm_Wkレジスタ(3バイト)はユーザーRAMとして使用可能です。

- ・ Alarm_Wk時レジスタD5は、12時間表示時にWkAP/ A を示します。(AM時0、PM時1) 24時間表示時にWkH20を示します。(時の10位桁)
- ・アラーム動作させる場合には、有り得ないアラーム時刻設定のままにしないで下さい。
- ・時桁表示は、12時間表示の時 午前0時→12, 午後0時→32となります。

(「■レジスタの機能 ● 12 /24」参照)

- ・AW0~AW6は、曜日カウンタ (W4,W2,W1) = (0,0,0) ~ (1,1,0) に対応します。
- ・AW0~AW6が全部0の時、Alarm_Wkは出力されません。

以下にアラーム時刻の設定例を示します。

アラーム		曜日					12 時間表示				24 時間表示				
設定時刻	日	月	火	水	木	金	土	10 時	1 時	10 分	1 分	10 時	1 時	1 0 分	1 分
	Wk W0	Wk W1	Wk W2	Wk W3	Wk W4	Wk W5	Wk W6							,,	
毎日 午前 0 時 00 分	1	1	1	1	1	1	1	1	2	0	0	0	0	0	0
毎日 午前 1 時 30 分	1	1	1	1	1	1	1	0	1	3	0	0	1	3	0
毎日 午前 11 時 59 分	1	1	1	1	1	1	1	1	1	5	9	1	1	5	9
月~金 午後 0 時 00 分	0	1	1	1	1	1	0	3	2	0	0	1	2	0	0
日曜 午後 1 時 30 分	1	0	0	0	0	0	0	2	1	3	0	1	3	3	0
月水金 午後 11 時 59 分	0	1	0	1	0	1	0	3	1	5	9	2	3	5	9

上表のWkW0~WkW6と曜日の対応は一例で必ずしもこの通りである必要は有りません。

曜日カウンター値が他の日時カウンター値に影響を与えることは有りません。

8.3.9 Alarm_Mo レジスタ

Alarm_Mo 分レジスタ(BANK=0, アドレスBh)

	D7	D6	D5	D4	D3	D2	D1	D0				
	*	MoM40	MoM20	MoM10	MoM8	MoM4	MoM2	MoM1	(Write 時)			
	*	BM40	BM20	BM10	BM8	BM4	BM2	BM1	(Read 時)			
	0	0	0	0	0	0	0	0	Default 値*)			
Alarm_Mo 時レジスタ(BANK=0,アドレスCh)												
	D7	D6	D5	D4	D3	D2	D1	D0				

	טט	טט	D4	D3	D2	וע	טט	
*	*	MoH20	MoH10	MoH8	MoH4	MoH2	MoH1	(Write 時)
		MoP/ A						
*	*	MoH20	MoH10	MoH8	MoH4	MoH2	MoH1	(Read 時)
		MoP/ A						
0	0	0	0	0	0	0	0	Default 値*)

Alarm_Mo 日レジスタ(BANK=1, アドレスBh)

DΓ	D6	D5	D4	D3	D2	וֹט	DU	
DYE	*	MoD20	MoD10	MoD8	MoD4	MoD2	MoD1	(Write 時)
DYE	*	MoD20	MoD10	MoD8	MoD4	MoD2	MoD1	(Read 時)
0	0	0	0	0	0	0	0	Default 値*)

Alarm_Mo 月レジスタ(BANK=1, アドレスCh)

D7	D6	D5	D4	D3	D2	D1	D0	
MOE	*	*	MoMO10	MoMO8	MoMO4	MoMO2	MoMO1	(Write 時)
MOE	*	*	MoMO10	MoMO8	MoMO4	MoMO2	MoMO1	(Read 時)
0	0	0	0	0	0	0	0	Default 値*)

- *) Default値: 0Vからの電源オン後、または電源電圧低下等により、PON=1となった時に自動設定される値です。
- ・ MoALE=0の時、各Alarm_Moレジスタ(4バイト)はユーザーRAMとして使用可能です。
- ・Alarm_Mo 時レジスタD5は、12時間表示時にMoP/ A を示します。(AM時0、PM時1)

24時間表示時 にMoH20を示します。(時の10位桁)

- ・アラーム動作させる場合には、有り得ないアラーム時刻設定のままにしないで下さい。
- ・時桁表示は、12時間表示の時 午前0時→12, 午後0時→32となります。

(「P.12 ■レジスタの機能 ●制御レジスタ1 (2)12 /24」参照)

·DYEはAlarm_Wkの日データ、MOEはAlarm_Moの月データをそれぞれ有効(データ1)、無効(データ0)にします。無効に設定したアラームデータはアラーム比較動作の対象外になるため簡略化したアラーム設定が可能になります。

DYE,MOEの値とアラーム一致条件は下表の通りです。

DYE,MOEとアラーム一致条件

MOE	DYE	内容(MoALE=1:アラーム Mo Enable 時)
0	0	指定の時・分(1 日に 1 回)
0	1	指定の日・時・分(1 月に 1 回)
1	0	指定の月で時・分
1	1	指定の月・日・時・分(1 年に 1 回)

Default 値

以下にアラーム時刻の設定例を示します。

例1) 毎年1月1日01時11分

Alarm_Mo レジスタ	ビット							内容			
Alami_Mo D J A 3	D7	D6	D5	D4	D3	D2	D1	D0			
分レジスタ	0	0	0	1	0	0	0	1	11 分		
時レジスタ	0	0	0	0	0	0	0	1	1 時		
日レジスタ	1	0	0	0	0	0	0	1	D7=1 で日データ比較		
月レジスタ	1	0	0	0	0	0	0	1	D7=1 で月データ比較		

例2) 毎月1日01時11分

Alarm_Mo レジスタ	ビット								内容		
Alaitii_ivio DDAS	D7	D6	D5	D4	D3	D2	D1	D0	774		
分レジスタ	0	0	0	1	0	0	0	1	11 分		
時レジスタ	0	0	0	0	0	0	0	1	1 時		
日レジスタ	1	0	0	0	0	0	0	1	D7=1 で日データ比較		
月レジスタ	0	Х	Х	Х	Х	Х	Х	Х	D7=0 のため		
									月データ比較せず		

例3) 毎日01時11分

Alarm_Mo レジスタ	ビット							内容		
Alaitti_IVIO DDAG	D7	D6	D5	D4	D3	D2	D1	D0	內台	
分レジスタ	0	0	0	1	0	0	0	1	11 分	
時レジスタ	0	0	0	0	0	0	0	1	1 時	
日レジスタ	0	Х	Х	Х	Х	Х	Х	Х	D7=0 のため 日データ比較せず	
月レジスタ	0	Х	Х	х	Х	Х	х	Х	D7=0 のため 月データ比較せず	

8.3.10 ユーザーRAM

(BANK=0,1 アドレス Dh)

D7	D6	D5	D4	D3	D2	D1	D0	
*	*	*	*	*	*	*	*	(
*	*	*	*	*	*	*	*	(
0	0	0	0	0	0	0	0	De

(Write 時) (Read 時) Default 値 *)

^{*)} Default値:0Vからの電源オン後、または電源電圧低下等により、PON=1となった時に自動設定される値です。

8.3.11 時計カウンタ

秒カウンタ(アドレス0h)

砂カワ	ンタ(アトレ	へ(Un)							
	D7	D6	D5	D4	D3	D2	D1	D0	
	_	S40	S20	S10	S8	S4	S2	S1	(Write 時)
	0	S40	S20	S10	S8	S4	S2	S1	(Read 時)
	0	不定	不定	不定	不定	不定	不定	不定	Default 值 *)
分カウ	ンタ(アドレ	·ス1h)							
	D7	Ď6	D5	D4	D3	D2	D1	D0	
	_	M40	M20	M10	M8	M4	M2	M1	(Write 時)
	0	M40	M20	M10	M8	M4	M2	M1	(Read 時)
	0	不定	不定	不定	不定	不定	不定	不定	Default 值 *)
時カウ	ンタ(アドレ	·ス2h)							
	D7	Ď6	D5	D4	D3	D2	D1	D0	
	12/24	_	P/ A or H20	H10	H8	H4	H2	H1	(Write 時)
	12/24	0	<u>01 112</u> 0	H10	H8	H4	H2	H1	(Read 時)

^{*)} Default値: 0Vからの電源オン後、または電源電圧低下等により、PON=1となった時に自動設定される値です。

不定

・桁表示(BCDコード) 秒 00~59 で 59→00の時、分桁へ桁上げされます

or H20 不定

分 00~59 で 59→00の時、時桁へ桁上げされます

不定

時 12 /24ビット参照

- ・ 秒カウンタに書き込みを行うと1秒未満の内部カウントはリセットされます。
- ・秒カウンタにデータ書き込み後は、その都度VDETフラグビットをリセット(ゼロクリア)してください。
- ・非存在日時データを設定しないでください。(30時,70分,33日,0月,など)) 非存在日時状態での時計カウンタ更新値は予測困難で誤動作の原因にもなります。
- うるう秒調整に用いられる60秒の書き込みには非対応です。

/24 12時間制/24時間制選択ビット

12/24	設 定 内 容	
0	午前、午後を表示する 12 時間制計時	(De
1	24 時間制計時	

(Default 値)

Default 值 *)

このビットが0の時、12時間表示、1の時、24時間表示になる。時間桁表示表を以下に示します。

24 時間制	12 時間制	24 時間制	12 時間制
00	12 (AM12)	12	32 (PM12)
01	01 (AM 1)	13	21 (PM 1)
02	02 (AM 2)	14	22 (PM 2)
03	03 (AM 3)	15	23 (PM 3)
04	04 (AM 4)	16	24 (PM 4)
05	05 (AM 5)	17	25 (PM 5)
06	06 (AM 6)	18	26 (PM 6)
07	07 (AM 7)	19	27 (PM 7)
08	08 (AM 8)	20	28 (PM 8)
09	09 (AM 9)	21	29 (PM 9)
10	10 (AM10)	22	30 (PM10)
11	11 (AM11)	23	31 (PM11)

12時間·24時間の設定は時刻Dataの書き込み前に行って下さい。

8.3.12 曜日カウンタ

(BANK=0 アドレス 3h)

D0	D1	D2	D3	D4	D5	D6	D7
W1	W2	W4	_	_	_	_	_
W1	W2	W4	0	0	0	0	0
不定	不定	不定	0	0	0	0	0

- *) Default値: 0Vからの電源オン後、または電源電圧低下等により、PON=1となった時に自動設定される値です。
 - ・日桁への桁上げ時にプラス1されます。
 - ・曜日表示(7進アップカウント) (W4W2W1)=(000)→(001)→·····→(110)→(000)
 - ・曜日とカウント値の対応は、ユーザーにて自由に設定。(例 日曜日=000など)
- ・曜日を使用しない場合を除いて、(W4W2W1)=(111)は書き込まないで下さい。

8.3.13 カレンダカウンタ

(BANK=0 アドレス 4-6h)

日カウンタ(アドレス4h)

	D7 `	D6	D5	D4	D3	D2	D1	D0	
	-	_	D20	D10	D8	D4	D2	D1	(Write 時)
	0	0	D20	D10	D8	D4	D2	D1	(Read 時)
	0	0	不定	不定	不定	不定	不定	不定	Default 值 *)
月	カウンタ(ア	ドレス5h)							
	D7	D6	D5	D4	D3	D2	D1	D0	
	_	_	_	MO10	MO8	MO4	MO2	MO1	(Write 時)
	0	0	0	MO10	MO8	MO4	MO2	MO1	(Read 時)
	0	0	0	不定	不定	不定	不定	不定	Default 值 *)
年	胻レジスタ([*]	アドレス6h)							
	D7	D6	D5	D4	D3	D2	D1	D0	
	Y80	Y40	Y20	Y10	Y8	Y4	Y2	Y1	(Write 時)
	Y80	Y40	Y20	Y10	Y8	Y4	Y2	Y1	(Read 時)
	不定	不定	不定	不定	不定	不定	不定	不定	Default 值 *)

- *) Default値: 0Vからの電源オン後、または電源電圧低下等により、PON=1となった時に自動設定される値です。
- ・オートカレンダー機能により、桁表示(BCDコード)は、

日桁(D20-D1) 1~31 (1,3,5,7,8,10,12月)

1~30 (4,6,9,11月)

1~29 (2月 うるう年)

1~28 (2月 通常年)

カウント値が1に戻る時に月桁へ桁上げされます

月桁(MO10-MO1) 1~12で、カウント値が1に戻る時に年桁へ桁上げされます

年桁(Y80-Y1) 00~99で、00,04,08,・・・・・,92,96がうるう年として2月を29日までカウントします。

西暦の100年毎、すなわち西暦の下2桁が00年は閏年ではありません。

また、西暦で400の倍数年は閏年です。(1600年、2000年、2400年)

・非存在日時データを設定しないでください。(30時,70分,33日,0月,など)) 非存在日時状態での時計カウンタ更新値は予測困難で誤動作の原因にもなります。

8.4. 時計精度調整機能

RTCの内蔵時計を進み側に調整、または遅れ側に調整することができます。

この機能を応用してご使用される温度環境に最適な調整を行うことでより高精度な時刻計時が可能です。

* 時計精度調整機能によって CLKOUT 端子の 32.768 kHz 出力周波数精度は影響を受けません。

8.4.1. 関連レジスタ

Address	Function	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
7	Digital Offset	0	F6	F5	F4	F3	F2	F1	F0
/	(Default)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)

^{*)} bit7 は R/W 可能ですが、必ずゼロを設定して使用してください。

- F6 ~ F0 の 7 bit の符号化 2 進数の設定により、32768 Hz の内部水晶発振回路より作成している時計/時計精度を、± 3.05×10^{-6} 単位で 最大±189.1 \times 10⁻⁶ まで進ませる あるいは 遅らせることができます。
- *1) 本機能を使用しない場合は、F6~F0の全てを "0"にしてください。
- *2) 本機能は 20秒に1回ごと (00秒, 20秒, 40秒) に動作しますので、そのタイミングで発生する定周期割り込みの 周期は変化します。([項8.4. 定周期割り込み機能]を参照してください)

8.4.2. 調整量

1) 調整範囲 と 分解能

調整範囲	調整分解能	内部での調整実施タイミング
-189.1 × 10 ⁻⁶ ∼ +189.1 × 10 ⁻⁶	± 3.05 × 10 ⁻⁶	20 秒毎に 1 回 (00 秒, 20 秒, 40 秒のとき)

2) 調整量 と 調整値

里 C 砂金旭															
調整量	調整データ	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0						
(× 10 ⁻⁶)	10 進 / 16 進	0	F6	F5	F4	F3	F2	F1	F0						
-189.10	+63 / 3F h	0	0	1	1	1	1	1	1						
-186.05	+62 / 3E h	0	0	1	1	1	1	1	0						
-183.00	+61 / 3D h	0	0	1	1	1	1	0	1						
•	•	•													
•	•				•	•									
•	•				•										
-9.15	+4 / 04	0	0	0	0	0	1	0	0						
-6.10	+3 / 03	0	0	0	0	0	0	1	1						
-3.05	+2 / 02 h	0	0	0	0	0	0	1	0						
OFF	1 / 01 h	0	0	0	0	0	0	0	1						
OFF	0 / 00 h	0	0	0	0	0	0	0	0						
+3.05	−1 / 7F h	0	1	1	1	1	1	1	1						
+6.10	−2 / 7E h	0	1	1	1	1	1	1	0						
+9.15	−3 / 7D h	0	1	1	1	1	1	0	1						
•	•				•	•									
•	•				•										
•	•				•	•									
+183.00	-60 / 44 h	0	1	0	0	0	1	0	0						
+186.05	-61 / 43 h	0	1	0	0	0	0	1	1						
+189.10	–62 / 42 h	0	1	0	0	0	0	1	0						
OFF	−63 / 41 h	0	1	0	0	0	0	0	1						
OFF	−64 / 40 h	0	1	0	0	0	0	0	0						

8.4.3. 調整例

CLKOUT 端子から出力される内蔵水晶発振周波数は 32768Hz が時計誤差ゼロになります。

- 例 1) 時計を進み側に調整する場合。
 - 例) CLKOUT クロック出力が 32767.7 Hz のときの時計精度誤差を調整する(進み側に調整)。
 - (1) 現在のズレ量を把握する。

32767.7 Hz
$$\rightarrow$$
 (32767.7 – 32768) / 32768 \rightarrow -9.16 \times 10⁻⁶

(2) 現在のズレ量に対する最適調整データ(10進数)を算出する。

- * 遅れを進めるには逆数で補正すれば良いことになりますが、本機種では調整の +/-の関係を逆にしてありますので そのまま上記の計算式により算出します。
- (3) 設定調整データ(16進数)を算出する

7 bit の符号化 2 進数を考慮したうえで 設定調整データを算出するには、128(80h)から調整データ(10 進数)を引き算します。

例2) 時計を遅れ側に調整する場合。

例題) CLKOUT クロック出力が 32768.3 Hz のときの時計精度誤差を調整する(遅れ側に調整)。

(1) 現在のズレ量を把握する。

32768.3 Hz
$$\rightarrow$$
 (32768.3 – 32768) / 32768 \rightarrow +9.16 \times 10⁻⁶

(2) 現在のズレ量に対する最適調整データ(10進数)を算出する。

- * 進めを遅らせるには逆数で補正すれば良いことになりますが、本機種では調整の +/-の関係を逆にしてありますので そのまま上記の計算式により算出します。
- (3) 設定調整データ(16進数)を算出する

4 を、そのまま 16 進数化します。

設定調整データ = 04 h (16進数)

8.5. データのリード/ライト

8.5.1 I2C-BUS の通信手順

I²C-BUS は、SDA(データライン)と SCL(クロックライン)とで構成される 2 線式の双方向通信です。 この 2 つの信号の組み合わせにより、通信の開始 / 停止 / データ転送 / アクノリッジ等の送受信を行います。

非通信時は SCL, SDA ともに High に保ちます。

通信の開始と停止は、SCLが Highで、かつ、SDAを立ち上げるまたは立ち下げることで制御します。

データの転送は、送信時の SDA ライン上のデータ変更は SCL ラインが LOW の区間で行い、また、受信側では SCL ラインが HIGH の区間でデータを取り込みます。 どちらの場合も、SCL ラインの 1 クロックパルスごとに 1 ビットずつ行います。

I²C-BUS デバイスは 通常のロジックデバイスが有するチップセレクト端子を持ちません。 チップセレクトの 代用として 各デバイスにはスレーブアドレスが割り当てられており、受信デバイスは 受信したスレーブアドレスが 一致した場合にのみ、その後の通信に反応します。

システム構成

I²C-BUS に接続する全てのポートは、複数のデバイスの AND 接続を実現するためにオープンドレイン あるいはオープンコレクタでなければなりません。 SCL, SDA は、ともにプルアップ抵抗を介してシステム電源ラインに接続し、BUS 開放時(非通信時)は SCL, SDA ともに High にします。

データの送受信を制御するデバイスを"マスタ"、マスタによって制御されるデバイスを"スレーブ"と定義します。また、データを送信するデバイスを"トランスミッタ"、データを受信するデバイスを"レシーバ"とします。本 RTC の場合、CPU 等のコントローラがマスタ、本 RTC がスレーブとなります。 データの送信/受信はどちらも行いますので、状況によりトランスミッタになり また レシーバにもなります。

内蔵水晶の発振が必要です

RX-8035 は内蔵水晶の発振スタートによって、I2C インターフェースを動作可能にします。 水晶発振が停止中に I2C-BUS アクセスを行った場合はアクノリッジが出力されず、正常なアクセスが 行なわれませんのでご注意ください。

I2C-BUS通信の 開始と停止

- 1) START condition / Repeated START condition & STOP condition
 - (1) START condition (開始条件)
 - I²C-BUS 通信を開始するための規定条件です。 SCL が High の状態で かつ SDA を High から Low に変化させます。
 - (2) STOP condition (停止条件)
 - I²C-BUS 通信を正常終了させるための規定条件です。 SCL が High の状態で かつ SDA を Low から High に変化させます。
 - (3) Repeated START condition / Re-START condition (再送開始条件)
 - START condition と STOP condition の途中で、再度 START condition と同じ状態にする場合があり、 それを Re-START condition(再送開始条件) として区別します。 必要な状態は START condition と 同じですから、SCL が High の状態で かつ SDA を High から Low に変化させます。

2) 注意事項

- 通信の START, Re-START condition と STOP condition の制御は、常にマスタが行います。 *1)
- マスタによる STOP condition 送信の実施タイミングに制限はありませんので、通信の途中であっても *2) 強制的に通信を終了させることができます。 (ただし、本 RTC がレシーバ状態 (データ受信状態 = SDA 開放状態) のときに限ります。)
- *3) 本 RTC との通信は、START condition 送信から STOP condition 送信までの一連の通信を 0.5 秒以内に 終了させてください。
 - (START condition と STOP condition の間に Re-START condition を送る場合がありますが、 その場合でも、START condition から STOP condition までを 0.5 秒以内に終了させてください) 0.5 秒 ~ 1 秒以上の時間がかかった場合、本 RTC 内の BUS タイムアウト機能によって I^2 C-BUS インタフェースは自動解除されて待機状態になります。 自動解除時 および その後の通信は、 書き込み / 読み出し ともに無効となりますので ご注意ください。 (読み出し無効時は、読み出される全てのデータが "1" になります)
 - 通信を再開するには、再度、START condition の送信から始めます。
- *4) 本RTCとの通信では、通信停止のSTOP condition 送信から 次の通信を始めるSTART condition 送信 までを 62 μs 以上空けてください。 (通信の間に計時データの桁上げが発生した場合は、この間に補正しています)

I2C-BUS通信の データの転送と確認応答

1) データの転送

データの転送は、START condition 発生後に 8 bit / 1 Byte 単位で行います。 START condition と STOP condition の 間で転送するデータの Byte 数に制限はありません。

(ただし 通信時間は 0.5 秒以内とし、また、アドレス D h (Reserved Register) へのアクセスは禁止 です。) 書き込み / 読み出し ともに アドレス・オートインクリメント機能が働きます。

アドレス Fh の次は アドレス 0h へと移行します。

トランスミッタ(送信側)の SDA ライン上のデータ変更は、SCL ラインが Low の区間で行います。

また、レシーバ(受信側)では、SCL ラインが High の区間でデータを取り込みます。

* SCLがHighのときにSDAを変化させるとSTART, Re-START condition または STOP conditionとして扱われますのでご注意ください。

2) データの確認応答 (アクノリッジ信号)

レシーバからのアクノリッジが無い場合は、その通信は正しく行われなかったことを意味します。

(ただし、マスタによる 意図的なアクリッジの非生成を除く)

データ転送の SCL の 8 bit 目のクロックパルスが Low に立ち下がった直後、トランスミッタは SDA を解放し、また、レシーバは SDA を Low (= アクノリッジ) にします。

レシーバがアクノリッジ信号送出後、次の 1 Byte 転送も そのままレシーバであるときは SCL の 9 bit 目のクロックの立ち下がりで SDA を解放します。 また、トランスミッタになるときは データの転送に移ります。

マスタがレシーバになっている場合、マスタはスレーブから送信された最後の1Byteに対するアクノリッジを生成しないことで、トランスミッタにデータ転送の終了を知らせます。

このとき トランスミッタは、そのまま SDA を放し続けて マスタによる STOP condition の発生に備えます。

8.5.2 スレーブアドレス

I²C-BUS デバイスは 通常のロジックデバイスが有するチップセレクト端子を持ちません。

チップセレクトの代用として 各デバイスにはスレーブアドレスが割り当てられています。

全ての通信は [START condition] + [スレーブアドレス (+R/W 指定)] の送信から始まります。 受信デバイスは、 受信した指定スレーブアドレスが 自己のスレーブアドレスと一致した場合にのみ、その後の通信に反応します。

スレーブアドレスは 7 bit の固定値で、本 RTC では [0110 010*]です。

スレーブアドレスは7bit ですが、通信時には R/W bit を付加した8bit を転送します。

	転送データ			R/W bit					
		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Read 時	65 h	0	1	1	0	0	1	0	1 (= Read)
Write 時	64 h	U	I	I	U	U	I	U	0 (= Write)

8.5.3 I²C-BUS の基本転送フォーマット

● 書き込み / 読み出し の手順は 次のとおりです。

マスタがトランスミッタ(送信側)、 RTC がレシーバ(受信側)	s	マスタが送信する START condition	Α	マスタによる 確認応答の実施
マスタがレシーバ(受信側)、 RTC がトランスミッタ(送信側)	Sr	マスタが送信する Re-START condition	/A	マスタは 確認応答せず
	Р	マスタが送信する STOP condition	A	RTC からの 確認応答あり

- 1) I²C-BUS での書き込み
 - 以下に、I²C-BUS での書き込み手順を示します。
 クロックとデータを送り続ければアドレスはオートインクリメントします。

s	0	スレ 1	ープ 7 1	アドレ	ノス (1	7 bit)	0	Write 0	Α		ス指5 h (*			送モ- 0 h	ード指 (+1)	定	Α	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Α	Р
		スレ	ープ	アドレ	/ス+	Write	指定			· 書きi	・レス・ 込み開 モー	始ア	ー ドレス	を指	定。	•				1	き込	ት Da	ita				

- 2) I²C-BUS での読み出し
 - (1) I²C-BUS 標準の読み出し方法
 - 以下に、I²C-BUS での 標準の読み出し手順を示します。

- (2) 便利な読み出し方法
 - 本 RTC では、読み出し手順を短縮できる 特別な読み出し方法があります。

- (3) アドレス Fh からの、読み出し開始アドレスを指定しない読み出し方法
 - アドレス $Fh \rightarrow 0h \rightarrow 1h \rightarrow 2h$ … のように アドレス Fh から読み出す場合にのみ、読み出しアドレス と転送モードの指定を省略して読み出すことができます。

s	スレープアドレス (7 bit) 0 1 1 0 0 1 0 1	Α	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Α	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	/A	Р
	スレープアドレス + Read 指定 * 次より読み出しすることを指定。			アドレ .Fh	ス指		ていた	いた	め、	アド		15	より	ス・オ	ドレス	イン! . F h	・・ノリメ	ント = 0 l		確認応答せず	

* 上記手順は 1~2Btype 通信の例ですが、実際の通信においては 通信する Byte 数に制限はありません。 (ただし、通信時間は 0.5 秒以内に完了してください。)

9 フローチャート

9.1. 初期電源投入時の手続き (初期設定)

9.1.1. 初期設定

9.2. バックアップからの復帰時の手続き

バックアップ復帰処理

*1) 先に検出ビットをチェックします。

*2) VDET のみ"1"なら RTC データは信頼できます。

XST と PON の どちらかが "1" なら 電源電圧の低下などによる RTC データの信頼性低下が疑われます。 初期電源投入時と同じ初期化を行ってください。

9.3. 時計・カレンダの書き込み (現在時刻設定)

VDET を確認される場合は 時刻設定の前に読み出してください。

・計時、カレンダレジスタへのデータ設定を行ないます。

・時刻設定後に VDET フラグをゼロクリアしてください。

10. 外部接続例

11. 外形寸法図 / マーキングレイアウト

11.1 外形寸法図

11.2 マーキングレイアウト

RX - 8035 SA (SOP-14pin)

Type
R 8035
E A123B
Production lot

RX - 8035 LC (VSOJ - 12pin)

E 8035

A123B
Production lot

* 表示内容は、捺印と表示の大略を示すもので、字形・大きさ および 位置の詳細を規定するものではありません。

12. 参考データ

(1) 周波数温度特性例

(2) 周波数電圧特性例

[周波数安定度の求め方]

1. 周波数温度特性は、以下の式で近似できます。

 $\Delta fT = \alpha (\theta T - \theta X)^2$

ΔfT :任意の温度における周波数偏差

 α (1/°C²) : 2次温度係数

 $(-0.04) \times 10^{-6} / {}^{\circ}\text{C}^{2}$ Max.

θT (°C) : 頂点温度 (+25±5°C)

θX (°C) : 任意の温度

2. 時計精度を求めるためには、更に周波数精度と電圧特性を加えます。

 $\Delta f/f = \Delta f/fo + \Delta fT + \Delta fV$

Δf/f : 任意の温度,電圧における

時計精度 (周波数安定度)

Δf/fo : 周波数精度

ΔfT : 任意の温度における周波数偏差 ΔfV : 任意の電圧における周波数偏差

3. 日差の求め方

日差 = $\Delta f/f \times 86400(秒)$

86400 秒=60 秒 × 60 秒 × 24 時間

※例えば、 $\Delta f/f = 11.574 \times 10^6$ で 約 1 秒/日 の誤差になります。

Page - 33

13. 使用上の注意事項

1) 取り扱い上の注意事項

□ 本モジュールは 水晶振動子を内蔵していますので、過大な衝撃・振動を与えないようにしてください。 また、低消費電力実現のために C-MOS IC を用いておりますので、以下に注意して 使用してください。

(1) 静電気

耐静電気破壊保護回路は内蔵しておりますが、過大な静電気が加わると IC が破壊されるおそれがありますので、梱包 および 運搬容器 には 導電性の物を使用してください。 はんだごてや測定回路などは 高電圧リークの無いものを使用し、また、実装時・作業時にも 静電気 対策をお願いいたします。

(2) ノイズ

電源 および 入出力端子に過大な外来ノイズが印加されますと、誤動作やラッチアップ現象等による 破壊の原因となることがあります。 安定動作のため、本モジュールの電源端子(VDD-GND間)の極力近い場所に $0.1~\mu F$ 以上のパスコン(セラミックを推奨)を使用してください。 また、本モジュールの近くには、高ノイズを発生するデバイスを配置しないようにしてください。

※ 図 1 の網掛部分()には信号線を接近させず、可能であれば GND パターンで埋めてください。

(3) 入力端子の電位

入力端子が中間レベルの電位になることは、消費電力の増加,ノイズマージンの減少,素子の破壊等につながりますので、VIL/VIH 仕様の範囲でご使用ください。

(4) 未使用入力端子の処理

入力端子の入力インピーダンスは非常に高く、開放状態での使用は不定電位やノイズによる誤動作の原因につながります。 未使用の入力端子は、VDD または GND に電位固定してください

2) 実装上の注意事項

(1) はんだ付け温度

パッケージ内部が +260°C を越えますと、水晶振動子の特性劣化 および 破壊を招く場合がありますので、弊社はんだ耐熱性評価プロファイルを越えない領域でのご使用を推奨します。 ご実装前に 必ず実装条件 (温度・時間)を ご確認ください。 また、条件変更時も同様の確認をしていただいた後に ご使用ください。

※ 図 2 に、 弊社 はんだ耐熱性評価プロファイル (Ref. JEDEC J - STD - 020C) を 掲載します。

(2) 実装機

本製品は裏面に硝子を使用しておりますので、使用機器,条件等によっては実装時の衝撃力により製品の破壊を招く場合があります。 で使用の前には必ず、実装時の製品への負荷が極力少なくなる条件(基板上への搭載速度を遅くする,チャックを弱くする など)を確認していただいてから で使用ください。 条件変更時も、同様の確認をしていただいてから で使用ください。

本製品と実装基板の間に異物などがありますと、製品の破壊を招く場合があります。 実装時には、異物にも ご注意ください。 また、実装時·作業時には、静電気対策をお願いいたします。

(3) 超音波

超音波を使用する機器(超音波洗浄機や超音波はんだ付け等)は 内蔵水晶振動子が共振破壊される場合がありますので、超音波機器をご使用後の製品保証は いたしかねます。

(4) 実装方向

逆向きに実装しますと破壊の原因となります。 方向を確認した上で実装を行なってください。

(5) 端子間リーク

製品が汚れていたり結露している状態などで電源投入しますと 端子間リークを招く場合がありますので、洗浄し さらに 乾燥させた後に電源投入を行なってください。

(6) 製品実装後の接着剤の使用禁止

本製品は パッケージの裏面に硝子を使用しています。 本製品を基板実装後に、アンダーフィル等の接着剤が 実装面とガラス面の間に侵入すると、その後、接着剤の熱膨張などにより硝子が割れる可能性があります。この場合は、水晶発振が停止しますので、接着剤はご使用を中止していただくか、本製品に接着剤が接近しないように、実装上の配慮をお願いいたします。

Application Manual

セイコーエプソン株式会社

〒191-8501 東京都日野市日野 421-8 TEL (042) 587-5315 (直通) FAX (042) 587-5014

〒541-0059 大阪市中央区博労町 3-5-1 御堂筋グランタワー 15F TEL (06) 6120-6510(直通)FAX(06) 6120-6782

〒460-0008 名古屋市中区栄 1-10-21 名古屋御園ビル 6F TEL (052) 205-8431(直通)FAX (052) 231-2537

インターネットによる情報配信

http://www5.epsondevice.com/ja/

代理店—