

Computer Vision - Convolution

Aprendizaje Automático Embebido

Outline

- 1. Computer vision digital images.
- 2. Image Classification
- 3. Deep Learning

"Thermal image of a building", by Marco Verch (CC BY 2.0)

npulse, Inc.

"The future of computer vision," by ShashiBellamkonda (CC BY 2.0)

 $240 \times 240 \times 8 \times 30 \times 1 = 13.824 \text{ Mbps}$ Number of pixels / Num. cameras Bits per pixel Frames per second

"OpenMV H7 Camera", by SparkFun Electronics (CC BY 2.0)

 $1 \times 30 \times 1 = 30 \text{ bps}$ / Num. cameras \ Frames per second Person or not person

0.22	0.23	0.23	0.26	0.32
0.25	0.26	0.29	0.39	0.49
0.24	0.27	0.35	0.47	0.59
0.28	0.38	0.49	0.57	0.62

0.22	0.23	0.23	0.26	0.32
0.25	0.26	0.29	0.39	0.49
0.24	0.27	0.35	0.47	0.59
0.28	0.38	0.49	0.57	0.62

57	59	58	67	82
63	66	75	100	124
61	69	89	121	150
71	96	126	145	157

Bit depth: 8 bits

- 0 = black
- 255 = white

R: 16	R: 34	R: 30	R: 55	R: 131
G: 159	G: 179	G: 161	G: 163	G: 204
B: 165	B: 176	B: 147	B: 131	B: 148
R: 19	R: 34	R: 55	R: 119	R: 184
G: 160	G: 166	G: 161	G: 187	G: 200
B: 152	B: 145	B: 125	B: 136	B: 135
R: 44	R: 73	R: 140	R: 186	R: 208
G: 166	G: 173	G: 204	G: 208	G: 181
B: 143	B: 135	B: 152	B: 144	B: 112
R: 101	R: 162	R: 203	R: 216	R: 208
G: 189	G: 215	G: 212	G: 190	G: 151
B: 149	B: 159	B: 145	B: 116	B: 80

Bit depth: 8x3=24 bits

1 byte: Red

1 byte: Green

• 1 byte: Blue

Optional

• 1 byte: Alpha

Outline

- 1. Computer vision digital images.
- 2. Image Classification
- 3. Deep Learning

Image Classification

Resolution: 2048 x 1536 pixels

Bit depth: 24 bits

Numpy array shape: (1536, 2048, 3)

Image Classification

Binary Classification

One-vs-One

One-vs-Rest

VS.

VS.

Multiclass Classification

VS.

VS.

VS.

VS.

VS.

Multiclass: One-vs-One

VS.

VS.

VS.

VS.

VS.

VS.

VS.

VS.

VS.

VS.

Multiclass: One-vs-Rest

VS.

VS.

k-Nearest Neighbors (k-NN)

Support vector machine (SVM)

Neural Network

Neural Network

Neural Network

Challenge

Challenge: deformation

Inc.

Challenge: Occlusion

Outline

- 1. Computer vision digital images.
- 2. Image Classification
- 3. Deep Learning

Raw Data

Example of sample x_0

x ₀₀	X ₀₁	X ₀₂	Х _{Оз}	X ₀₄
X ₀₅	X ₀₆	X ₀₇	X ₀₈	X ₀₉
X ₀₁₀	X ₀₁₁	X ₀₁₂	X ₀₁₃	X ₀₁₄
X ₀₁₅	X ₀₁₆	X ₀₁₇	X ₀₁₈	X ₀₁₉

$$x_{0_0} = 0.22$$

$$x_{01} = 0.23$$

$$x_{02} = 0.23$$

$$x_{0_3} = 0.26$$

$$X_{04} = 0.32$$

$$x_{0s} = 0.25$$

$$x_{06} = 0.26$$

Feature extraction

Feature Extraction Methods

- Convolutional neural networks.
- Grey scale features: Image similarity, Text Recognition, Edge Detection, Medical Imaging, Facial Recognition.
- Mean Pixel value of channels: Mean intensity value of each cannel.
- Edge Features.
- AutoEnconders.
- Histogram of Oriented Gradients.
- Scale-Invariant Feature Transform (SIFT).
- Local Binary Patterns (LBP).
- Frecuency-based features.
- 10. Color based features.

Features - LBP

Deep learning

Deep Neural Network

Vigilada Mineducación

surres rigirovacion recriológica con Sentido Humano

Deep Learning

Vigilada Mineducación

Somos Innovación Tecnológica con Sentid

Sentido Humano

Convolutional Neural Network

no

Convolution 2D

3D CNN

Convolution 2D

padding = 0, stride = 1

padding = 0, stride = 2

Convolution 2D

padding = 1, stride = 1

padding = 1, stride = 2

Convolutional layer - example

Excercise

Image

59	58	67	82
66	75	100	124
69	89	121	150

Kernel

-1	-1
-1	3

Kernel: 2x2

Stride: 1

Padding: valid

Output

	х	

Pooling

Max Pooling

29	15	28	184
0	100	70	38
12	12	7	2
12	12	45	6

2 x 2 pool size

100	184
12	45

Average Pooling

31	15	28	184
0	100	70	38
12	12	7	2
12	12	45	6

2 x 2 pool size

36	80
12	15

Max Pooling – Example

Transfer Learning

Vigilada Mineducacio

Referencias

https://www.coursera.org/learn/computer-vision-with-embedded-machine-learning/

https://hannibunny.github.io/mlbook/neuralnetworks/03ConvolutionNeuralNetworks.html

https://wandb.ai/ayush-thakur/dl-question-bank/reports/Intuitive-understanding-of-1D-2D-and-3D-convolutions-in-convolutional-neural-networks---VmlldzoxOTk2MDA

https://www.tensorflow.org/tutorials/keras/classification?hl=es-419

https://www.linkedin.com/pulse/convolutional-neural-networks-ahtesham-iqbal/

1 Gracias!

