CZ4041/CE4041: Machine Learning

Week 12: Dimensionality Reduction

Question 1

• A dataset of five 4-dimensional instances is given in Table 1. Suppose an SVD is performed on the data matrix **X** (5-by-4) via **X** = **VDU**^T. The matrices **V**, **D**, and **U** are shown in Tables 2-4, respectively. Use principal component analysis to project the 5 data points in Table 1 to 2-dimensional space.

X_1	X_2	X_3	X_4
2	4	1	3
1	2	3	5
-2	-4	-4	-1
0	-1	-2	-6
-1	-1	2	-1

Step 1: Center the data points s.t. the mean is **0**

Already centered

PCA

- Step 1: Center the data points s.t. the mean is **0**
- Step 2: Compute sample covariance matrix $\tilde{\Sigma}$
- Step 3: Compute eigenvectors of $\widetilde{\Sigma}$, $\{u_1, u_2, ..., u_d\}$, which are sorted based on their eigenvalues in non-increasing order, i.e., $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$
- Step 4: Select the first *k* eigenvectors to construct principal components
- Step 5: Project the data instances to k-dimensional space

Singular Value Decomposition (SVD)

• The SVD of **X** (*N*-by-*d*) has the following form

 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d \geq \mathbf{0}$

U = the Eigenvectors

$$\widetilde{\Sigma} = \frac{1}{5-1} \mathbf{X}^T \mathbf{X} = \frac{1}{4} (\mathbf{V} \mathbf{D} \mathbf{U}^T)^T \mathbf{V} \mathbf{D} \mathbf{U}^T$$

$$= \frac{1}{4} \mathbf{U} \mathbf{D}^T \mathbf{V}^T \mathbf{V} \mathbf{D} \mathbf{U}^T$$

$$\widetilde{\mathbf{D}} = \frac{1}{4} \mathbf{D}^T \mathbf{D} = \mathbf{U} \widetilde{\mathbf{D}} \mathbf{U}^T$$

U = the

Eigenvectors

The matrix \mathbf{D} (5-by-4) obtained by SVD ($\mathbf{X} = \mathbf{V}\mathbf{D}\mathbf{U}^{\top}$)

maan D	(30)	otamea of	5 1 12
10.9040	0	0	0
0	4.8385	0	0
0	0	3.3973	0
0	0	0	0.3867
0	0	0	0

$$\widetilde{\mathbf{\Sigma}} = \frac{1}{5-1} \mathbf{X}^T \mathbf{X} = \frac{1}{4} (\mathbf{V} \mathbf{D} \mathbf{U}^T)^T \mathbf{V} \mathbf{D} \mathbf{U}^T$$

$$= \frac{1}{4} \mathbf{U} \mathbf{D}^T \mathbf{V}^T \mathbf{V} \mathbf{D} \mathbf{U}^T$$

$$\widetilde{\mathbf{D}} = \frac{1}{4} \mathbf{D}^T \mathbf{D} = \mathbf{U} \widetilde{\mathbf{D}} \mathbf{U}^T$$

 $\widetilde{\Sigma}\mathbf{U} = \mathbf{U}\widetilde{\mathbf{D}}$ $\mathbf{U}^{T}\mathbf{U} = \mathbf{I}$

10.90^2	0	0	0
0	4.84 ²	0	0
0	0	3.40^{2}	0
0	0	0	0.39^{2}

$$A = U^{T} \begin{bmatrix} \lambda_{1} & 0 & 0 & 0 \\ 0 & \lambda_{2} & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \lambda_{D} \end{bmatrix} U$$

$$A = \begin{bmatrix} u_1 & u_2 & \dots & u_D \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \lambda_D \end{bmatrix} \begin{bmatrix} u_1^T \\ u_2^T \\ \vdots \\ u_D^T \end{bmatrix}$$

$$A = \begin{bmatrix} u_1 & u_2 & \dots & u_D \end{bmatrix} \begin{bmatrix} \lambda_1 u_1^T \\ \lambda_2 u_2^T \\ \vdots \\ \lambda_D u_D^T \end{bmatrix}$$

$$A = \lambda_1 u_1 u_1^T + \lambda_2 u_2 u_2^T + \dots + \lambda_D u_D u_D^T$$

$$\alpha A = \alpha \lambda_1 u_1 u_1^T + \alpha \lambda_1 u_2 u_2^T + \dots + \alpha \lambda_D u_D u_D^T$$

$$\alpha A = \alpha \lambda_1 x_1 x_1^T + \alpha \lambda_1 x_2 x_2^T + \dots + \alpha \lambda_D x_D x_D^T$$

$$\alpha A = U^T \begin{bmatrix} \alpha \lambda_1 & 0 & 0 & 0 \\ 0 & \alpha \lambda_2 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \alpha \lambda_D \end{bmatrix} U$$

- Step 2: Compute sample covariance matrix $\widetilde{\Sigma}$
- Step 3: Compute eigenvectors of $\widetilde{\Sigma}$, $\{u_1, u_2, ..., u_d\}$, which are sorted based on their eigenvalues in non-increasing order, i.e., $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$

 Perform SVD on the centered data matrix X (5-by-4) to obtain

 $X = VDU^{T}$ (already done in this question)

- Step 4: Select the first k eigenvectors to construct principal components
- Select the first 2 eigenvectors of $\widetilde{\Sigma}$, i.e, the first two column vectors of the matrix \mathbf{U} to construct the principle component matrix $\mathbf{U_2} = [u_1, u_2]$

U_2			
-0.2224	0.3430	-0.3302	-0.8508
-0.4880	0.5756	-0.4046	0.5166
-0.4479	0.2924	0.8400	-0.0911
-0.7154	-0.6823	-0.1473	-0.00309

X

Step 5: Project the instances to k-dimensional space

Compute XU₂

2	4	1	3
1	2	3	5
-2	-4	-4	-1
0	-1	-2	-6
-1	-1	2	-1

-0.2224	0.3430
-0.4880	0.5756
-0.4479	0.2924
-0.7154	-0.6823
-	

-4.9908	1.2338
-6.1191	-1.0402
4.9038	-3.4759
5.6762	2.9335
0.5399	0.3486

 \mathbf{X} $\mathbf{U_2}$ \mathbf{Z}

Thank you!