UMWELT-PRODUKTDEKLARATION

nach ISO 14025 und EN 15804

Deklarationsinhaber FDT FlachdachTechnologie GmbH & Co. KG

Herausgeber Institut Bauen und Umwelt e.V. (IBU)

Programmhalter Institut Bauen und Umwelt e.V. (IBU)

Deklarationsnummer EPD-FDT-20150187-IAA1-DE

Ausstellungsdatum 14.08.2015 Gültig bis 13.08.2020

Rhepanol hfk

FDT FlachdachTechnologie GmbH & Co. KG

www.bau-umwelt.com / https://epd-online.com

1. Allgemeine Angaben

FDT FlachdachTechnologie GmbH & Co. KG

Programmhalter

IBU - Institut Bauen und Umwelt e.V.

Panoramastr. 1

10178 Berlin

Deutschland

Deklarationsnummer

EPD-FDT-20150187-IAA1-DE

Diese Deklaration basiert auf den Produktkategorienregeln:

Dach- und Dichtungsbahnsysteme aus Kunststoffen und Elastomeren, 07.2014

(PCR geprüft und zugelassen durch den unabhängigen Sachverständigenrat)

Ausstellungsdatum

14.08.2015

Gültig bis

13.08.2020

Werner Die Verifizie

Prof. Dr.-Ing. Horst J. Bossenmayer (Präsident des Instituts Bauen und Umwelt e.V.)

Dr. Burkhart Lehmann (Geschäftsführer IBU)

Rhepanol hfk

Inhaber der Deklaration

FDT FlachdachTechnologie GmbH & Co. KG Eisenbahnstr. 6-8 68199 Mannheim

Deklariertes Produkt/deklarierte Einheit

1 m² produzierte Dachbahn Rhepanol hfk

Gültigkeitsbereich:

Die Deklaration gilt für die Dachbahn Rhepanol hfk mit der Dicke 1,5 mm, die in 68199 Mannheim-Neckarau gefertigt wird.

Der Inhaber der Deklaration haftet für die zugrundeliegenden Angaben und Nachweise; eine Haftung des IBU in Bezug auf Herstellerinformationen, Ökobilanzdaten und Nachweise ist ausgeschlossen.

Verifizierung

Die CEN Norm /EN 15804/ dient als Kern-PCR

Verifizierung der EPD durch eine/n unabhängige/n Dritte/n gemäß /ISO 14025/

intern

x extern

(l. l2

Matthias Schulz, Unabhängige/r Prüfer/in vom SVR bestellt

2. Produkt

2.1 Produktbeschreibung

Rhepanol hfk ist eine bitumenverträgliche Polyisobutylen (PIB)-Kunststoffdachbahn, bestehend aus hochmolekularem PIB, Copolymeren und funktionellen Zusatzstoffen sowie einem unterseitigen Kunststoffvlies. Zur Nahtfügung wird Rhepanol hfk heißluftverschweißt.

2.2 Anwendung

Rhepanol hfk wird für die Abdichtung sowohl von flachen und geneigten Dächern im mechanisch befestigten bzw. verklebten Schichtenaufbau als auch für bekieste oder genutzte Dächer, mit Ausnahme von begrünten Dächern, eingesetzt.

Bei der Verarbeitung ist die Verlegeanleitung des Herstellers einzuhalten.

2.3 Technische Daten

Bautechnische Daten

Bezeichnung	Wert	Einheit
Wasserdampfdiffusionswiderstand s- zahl µ, /DIN EN 1931/ (Verf. B)	≥ 160.000	
Zugfestigkeit (Rhepanol hfk), /DIN EN 12311-2/ (Verf. A)	≥ 400	N/50mm
Zugdehnung (Rhepanol hfk), /DIN EN 12311-2/ (A)	≥ 50	%

Schälwiderstand der Fügenaht, /DIN EN 12316-2/	≥ 150	N/50 mm		
Scherwiderstand der Fügenaht, /DIN EN 12317-2/	≥ 200 (Abriss außerhalb der Fügenaht	N/50 mm		
Widerstand gegen stoßartige Belastungen, starre Unterlage / flexible Unterlage, /DIN EN 12691/	≥ 700 /≥ 700	mm		
Widerstand gegen statische Belastung, /DIN EN 12730/ (Verf. A/B)	≥ 20	kg		
Hagelschlag, starre Unterlage / flexible Unterlage, /DIN EN 13583/	≥ 25 / ≥ 35	m/s		
Weiterreißwiderstand, /DIN EN 12310-2/	≥ 150	N		
Maßhaltigkeit nach Wärmelagerung, /DIN EN 1107- 2/	≤1	%		
Verhalten bei Einwirken von Bitumen, /DIN EN 1548/	bestanden			
Beständigkeit gegenüber Chemilkalien, /DIN EN 1847/ (Liste Anhang C)	erfüllt			
UV-Bestrahlung, /DIN EN 1297/	Klasse 0 (5000 h)	h		

Wasserdichtheit, /DIN EN 1928/ (Verf. B)	≥ 400	kPa
Widerstand gegen Durchwurzelung (bei Gründächern) nach /EN 12948/ bzw. FLL (Dachbahnen)	nicht relevant	-
Ozonbeständigkeit (bei EPDM/IIR) nach /EN 1844/ (Dachbahnen)	nicht relevant	-

2.4 Inverkehrbringung/Anwendungsregeln

Für das Inverkehrbringen in der EU/EFTA (mit Ausnahme der Schweiz) gilt die Verordnung (EU) Nr. 305/2011. Die Produkte benötigen eine Leistungserklärung unter Berücksichtigung der /EN 13956:2012 Abdichtungsbahnen — Kunststoff- und Elastomerbahnen für Dachabdichtungen — Definitionen und Eigenschaften/ und die CE-Kennzeichnung.

Für die Verwendung der Produkte gelten die jeweiligen nationalen Bestimmungen, in Deutschland insbesondere /DIN V 20 000-201/.

2.5 Lieferzustand

Die Nenndicke der Dichtschicht beträgt 1,5 mm, die Abmessungen sind 15 m x 1,50 m / x 1,00 m / x 0,50 m x 2,5 mm (ink. 1.0 mm Kunststoffvlies).

2.6 Grundstoffe/Hilfsstoffe

Rhepanol hfk besteht aus einer Dichtschicht mit 50-65 % Polyisobutylen (PIB) und Copolymeren, 30-45 % Flammschutzmittel (Metallhydroxid) und funktionellen mineralogischen Zuschlagsstoffen, 2-10 % Titandioxid und 0,5-2,0 % Ruß und Additiven. Daneben ist Rhepanol hfk mit einem rückseitigen Kunststoffvlies verstärkt. Angaben können je nach Farbe variieren.

Die Formulierung wurde entsprechend der aktuellen /REACH/-Kandidatenliste überprüft. Die Formulierung enthält keine besonders besorgniserregenden Stoffe (SVHC).

2.7 Herstellung

Die Herstellung der Rhepanol hfk-Compounds erfolgt über einen kontinuierlich arbeitenden Kneter, in dem die einzelnen Rohstoffe zu einer homogenen Masse vermischt und anschließend granuliert werden. Das Granulat wird über einen weiteren Mischextruder sowie einen Walzenmischer auf einen Kalander gegeben, der die Bahn ausformt. In einem weiteren Prozessschritt wird in gleicher Weise die Oberfolie hergestellt und auf die bereits bestehende Unterfolie aufgebracht. Anschließend werden Kunststoffbahn und Polyestervlies kraftschlüssig zusammengefügt. Am Ende des Fertigungsprozesses erfolgt die Konfektionierung der Dachbahnen.

Die Herstellung unterliegt dem eingeführten Qualitätsmanagementsystem nach /ISO 9001/. Zertifizierungsstelle ist der TÜV Süd Management Service.

Außerdem erfolgen externe Qualitätsüberwachungen und Prüfungen (Fremdüberwachungen) durch die Staatliche Materialprüfungsanstalt Darmstadt.

2.8 Umwelt und Gesundheit während der Herstellung

Über nationale Vorschriften hinausgehend werden in der Fertigung von Rhepanol hfk zum umweltfreundlichen Umgang z.B.

- > bei der Abluft ein Elektroabscheider verwendet, wodurch ein hoher Reinheitsgrad der Abluft erreicht wird.
- > bei den energieeffizienten Herstellungsprozessen die Energieabwärmen für Heizungen bzw. für Warmwasseraufbereitung genutzt (Umweltmanagementsystem (UMS) nach /DIN 50001/) und
- > die entstehenden Produktionsabfälle durch werksinterne Wiederaufbereitung dem Produktionskreislauf wieder zugeführt.

Zum Gesundheitsschutz der Mitarbeiter werden zur physischen Entlastung und Optimierung der Ergonomie stetig Arbeitsplatzgestaltungen verbessert, ferner zum Arbeitsschutz regelmäßige Seminare abgehalten.

2.9 Produktverarbeitung/Installation

Rhepanol hfk wird auf dem Dach ausgerollt und mittels Heißluftverschweißung gefügt.

Bei der Nahtreinigung von Rhepanol hfk mit lösemittelhaltigen Reinigungsmitteln ist folgendes zu beachten:

- Kontakt mit Haut und Augen vermeiden,
- Handschuhe tragen,
- nicht rauchen, kein offenes Feuer, Funkenbildung vermeiden.
- Dämpfe nicht einatmen, nur im Freien bzw. in gut belüfteten Räumen einsetzen.

Bei der Heißgasverschweißung von Rhepanol hfk mit Schweißrand sind keine besonderen Maßnahmen zum Gesundheitsschutz des Verarbeiters zu treffen.

Rhepanol hfk wird mechanisch befestigt, verklebt oder lose unter Auflast, wie z.B. Kies oder Plattenbeläge, verlegt. Weitere Hinweise zu den Verlegearten sind im technischen Handbuch aufgeführt.

2.10 Verpackung

Jeweils neun Rollen Rhepanol hfk befinden sich auf einer mit einer PE-Haube abgedeckten Europalette. Zwischen der Europalette und den Rollen liegt eine Schutztrennlage aus Karton, ferner liegt auf der Oberseite der Rollen ein weiterer Schutzkarton. Zur Lagesicherheit sind die Rollen mit vier Holzkeilen gesichert. Die Palette ist mit einer PE-Stretchfolie eingeschrumpft und vier Kunststoffbändern umreift. Alle Verpackungsmaterialien sind rezyklierbar und wiederverwertbar.

2.11 Nutzungszustand

Für den Zeitraum der Nutzung von Rhepanol hfk ergeben sich den langjährigen Erfahrungen zufolge keine relevanten Veränderungen hinsichtlich einer stofflichen Zusammensetzung.

2.12 Umwelt & Gesundheit während der Nutzung Hinweise auf mögliche Stoffemissionen während der Nutzungsphase liegen bei Rhepanol hfk nicht vor.

2.13 Referenz-Nutzungsdauer

Unter normalen Bedingungen und bei fachgerechter Verlegung haben Rhepanol hfk eine Lebenserwartung von 35 Jahren und mehr.

2.14 Außergewöhnliche Einwirkungen

Brand

Bezeichnung	Wert
Reaktion bei Brandeinwirkung /DIN EN 11925-	Klasse E /
2/ /DIN EN 13501-1/	bestanden
Verbelten bei äußerer Brandeinwirkung DIN	B roof (t1)
Verhalten bei äußerer Brandeinwirkung DIN CEN TS 1187: 2012-03 / /DIN EN 13501-5/	/
CEN 13 1167. 2012-03 / /DIN EN 13501-5/	bestanden

Anmerkungen

Die Prüfergebnisse B roof (t1) nach /DIN CEN TS 1187: 2012-03/ gelten für die von FDT geprüften Dachaufbauten.

Wasser

Die bei Rhepanol hfk verwendeten Stoffe sind nicht wasserlöslich.

Mechanische Zerstörung

Bei einer unvorhergesehenen mechanischen Zerstörung von Rhepanol hfk sind keinerlei negative Folgen für die Umwelt bekannt.

2.15 Nachnutzungsphase

Rhepanol hfk wird in seiner ursprünglichen Form nach Ablauf der Nutzungsphase nicht mehr wiederverwendet. Bei einer sortenreinen Trennung können Rhepanol hfk dem Rücknahmesystem "ROOFCOLLECT" (Recyclingsystem für Kunststoffdach- und Dichtungsbahnen) zugeführt werden. Aus den alten Dachbahnen wird bei diesem Rücknahmesystem ein Recyclat hergestellt, das für vielseitige Anwendungen genutzt bzw. wiederverwendet werden kann, zum Beispiel für Gartenplatten oder Trittschalldämmplatten.

Eine thermische Verwertung ist ebenfalls möglich. So kann die im Rhepanol hfk enthaltene Energie bei einer Verbrennung freigesetzt und genutzt werden.

2.16 Entsorgung

Nach Ablauf der Gebrauchsfunktion kann Rhepanol hfk einer thermischen Verwertung zugeführt werden, s.a. Pkt. 2.15. Die Dachbahnen können der /AVV/-Nummer 170904 oder der Nummer 200139 zugeordnet werden.

2.17 Weitere Informationen

Weitere Informationen zum Rhepanol hfk, wie z.B. Broschüre, Datenblatt, Verlegeanleitung und technisches Handbuch, sind unter der Webpage von FDT (www.fdt.de) zu finden.

3. LCA: Rechenregeln

3.1 Deklarierte Einheit

Die deklarierte Einheit ist 1 m^2 produzierte Dachbahn Rhepanol hfk 1,5 mm .

Deklarierte Einheit

Bezeichnung	Wert	Einheit		
Deklarierte Einheit	1	m ²		
Flächengewicht	1,934	kg/m²		
Abdichtungsart (thermisches	Thermisch			
Verschweißen oder Verbindung	es	-		
mittels Nahtband und Primer)	Verschwei			
mittels Hantband und Filmer)	ßen			
Umrechnungsfaktor zu 1 kg	0,517	-		
Dicke	1,5	mm		

3.2 Systemgrenze

Diese Ökobilanz adressiert das Lebenszyklusstadium der Produktherstellung (Wiege bis Werkstor). Das Produktstadium umfasst die Module A1 (Rohstoffbereitstellung), A2 (Transport), A3 (Herstellung) gemäß der /EN 15804/ einschließlich der Bereitstellung von allen Stoffen, Produkten und Energie. Abfälle gibt es in A1-A3 nur solche, die intern wieder rezykliert werden.

3.3 Abschätzungen und Annahmen

Polybutylen wurde als konservative Abschätzung für Polyisobuten verwendet, da der genaue Datensatz für das Polymer nicht vorhanden war. Bei Rohstoffmischungen, bei denen ein Bestandteil mind. 95 % ausmacht, wird dieser als 100 % modelliert.

3.4 Abschneideregeln

Es wurden alle Daten aus der Betriebsdatenerhebung, d.h. alle nach Rezeptur eingesetzten Ausgangsstoffe,

die eingesetzte thermische Energie sowie der Strombedarf in der Bilanzierung berücksichtigt. Für alle In- und Outputs wurden die Transportaufwendungen betrachtet.

3.5 Hintergrunddaten

Die Primärdaten wurden von der Firma FDT FlachdachTechnologie GmbH Co. KG bereitgestellt. Die Hintergrunddaten entstammen der Datenbank der GaBi-Software von PE INTERNATIONAL AG /GaBi 6 2014/. Es wurde der deutsche Strom Mix verwendet.

3.6 Datenqualität

Zur Modellierung des Produktstadiums von Kunststoffdachbahnen wurden die von FDT FlachdachTechnologie GmbH Co. KG erhobenen Daten über das Produktionsjahr 2013 für die verschiedenen Rezepturen verwendet. Alle anderen relevanten Hintergrund-Datensätze wurden der Datenbank der Software GaBi 6 entnommen, deren letzte Revision im November 2014 stattfand. Die Repräsentativität kann als sehr gut eingestuft werden.

3.7 Betrachtungszeitraum

Die Datengrundlage der vorliegenden Ökobilanz beruht auf Datenaufnahmen aus dem Jahr 2013. Die eingesetzten Mengen an Rohstoffen, Energien und Hilfs- und Betriebsstoffen sind als Mittelwerte von 12 Monaten aus dem Herstellwerk Mannheim-Neckarau berücksichtigt.

3.8 Allokation

Intern wieder eingesetzte Produktionsabfälle (die Randabschnitte bei der Produktion) werden als closed-loop Recycling in Modul A1-A3 modelliert.

3.9 Vergleichbarkeit

Grundsätzlich ist eine Gegenüberstellung oder die Bewertung von EPD Daten nur möglich, wenn alle zu vergleichenden Datensätze nach /EN 15804/ erstellt wurden und der Gebäudekontext, bzw. die produktspezifischen Leistungsmerkmale, berücksichtigt werden.

4. LCA: Szenarien und weitere technische Informationen

Entsorgung

Man kann davon ausgehen, dass zurzeit bei einer Dachsanierung in 80 % der Fälle die Dachbahn auf dem Dach verbleibt und als Untergrund für eine neue Abdeckung dient. Daher tritt die Entsorgung der Dachbahn in den meisten Fällen zeitverzögert bei Abriss des Gebäudes ein und liegt durch die Nachnutzung nicht mehr innerhalb der hier betrachteten Systemgrenzen. Für die 20 % Abfälle kann daher eine Entsorgung als Siedlungsabfall unter derzeitigen Bedingungen (25 % Verbrennung, 75 % Deponierung) angenommen werden. In dieser Ökobilanz zu Kunststoffdachbahnen werden keine Szenarien berechnet.

5. LCA: Ergebnisse

ANG	ADE E	VED C	VOTE	4CDE	NZEN	/V – IN	LÖKC	DIL A	IZ EN	TILALI	TNL M	IND -	MODII	I NIC	UT DE	VI ADIEDT\
Produktionsstadiu m Stadium der Errichtung des Bauwerks				NZEN (X = IN ÖKOBILANZ ENTHALTEN; N Nutzungsstadium						MND = MODUL NICHT DE Entsorgungsstadium				Gutschriften und Lasten außerhalb der Systemgrenze		
Rohstoffversorgung	Transport	Herstellung	Transport vom Hersteller zum Verwendungsort	Montage	Nutzung / Anwendung	Instandhaltung	Reparatur	Ersatz	Erneuerung	Energieeinsatz für das Betreiben des Gebäudes	Wassereinsatz für das Betreiben des Gebäudes	Rückbau / Abriss	Transport	Abfallbehandlung	Beseitigung	Wiederverwendungs-, Rückgewinnungs- oder Recyclingpotenzial
A1	A2	A 3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4	D
X	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
ERG	BNIS	SE D	ER ÖK	OBIL	ANZ U	MWEL	TAUS	WIRK	UNGE	N: 1 m	² Dacl	nbahn				
			Param	eter				Einheit					A1-A	3		
		Globale	es Erwärm	unaspote	enzial		- Ik	g CO ₂ -Äo	11				7,63E+	Ю		
	Abbau P		der stratos			chicht	[kg	[kg CFC11-Äq.] 9,62E-10								
	Versau		otenzial v			sser		[kg SO ₂ -Äq.] 2,57E-2								
	D'I-I		rophierung					[kg (PO ₄) ³ -Äq.] 1,65E-3								
Doto			ntial für tro ischen Ab					[kg Ethen-Äq.] 2,98E-3								
			oiotischen				31 [[kg Sb-Äq.] 4,11E-5 [MJ] 1,47E+2								
							URCE		ATZ:	1 m² D	achba	hn	.,			
			Parar	neter				Einheit		A1-A3						
	Eme	euerbare	Primären	ergie als l	Energietra	ager		[MJ]		1,44E+1						
			imärenerg					[MJ]		0,00E+0						
		Total e	rneuerbar	e Primäre	energie			[MJ]		1,44E+1						
L .	Nicht-e	rneuerba	are Primär	energie a	Ils Energie	eträger		[MJ]	9,80E+1							
			Primären nt erneuerl					[MJ]	6,10E+1							
			atz von Se			;		[kg]								
			rbare Sek					[MJ] 0,00E+0								
	N	licht eme	uerbare S	ekundärt	orennstoff	e		[MJ] 0,00E+0								
			von Süßv					[m³]					3,92E-2			
			ER ÖK	OBIL	ANZ O	UTPU	T-FLÜ	SSE U	IND A	BFALL	.KATE	GORIE	EN:			
1 m² Dachbahn																
Parameter							Einheit		A1-A3							
Gefährlicher Abfall zur Deponie Entsorgter nicht gefährlicher Abfall								[kg] [kg]		5,87E-5 4,27E-1						
Entsorgter radioaktiver Abfall								[kg]		4,27E-1 4.88E-3						
Komponenten für die Wiederverwendung								[kg]		0,00E+0						
Stoffe zum Recycling								[kg]		0,00E+0						
Stoffe für die Energierückgewinnung								[kg]	0,00E+0							
Exportierte elektrische Energie								[MJ]		0,00E+0 0,00E+0						

6. LCA: Interpretation

Mit Hilfe einer Dominanzanalyse werden die Haupteinflussfaktoren hinsichtlich der Umweltperformance des Produktes diskutiert.

Exportierte thermische Energie

Indikatoren der Sachbilanz und Wirkungsabschätzung

Der absolute Wert des Primärenergieeinsatzes aus nicht erneuerbaren Energieträgern (PENRT) ist ca. 10-mal höher als der Primärenergieeinsatz aus erneuer-baren Energieträgern (PERT).

Die Dominanzanalyse für Rhepanol hfk 1,5 mm zeigt, dass die Polymere je nach betrachteter Umweltwirkung einen unwichtigen bis signifikanten Einfluss haben.

Zum Globalen Erwärmungspotential **(GWP)** tragen die Polymere und das Flammschutzmittel den größten

Anteil bei. Mäßig wichtigen Einfluss haben noch PES-Vlies, eingesetzter Prozessdampf und Strom.

0,00E+0

Zum Überdüngungspotential **(EP)** tragen Flammschutzmittel und Polymere die größten Lasten bei. Den größten Anteil zum Versauerungspotential **(AP)** tragen Flammschutzmittel, Titandioxid und Polymere bei.

Zum Abbaupotential der stratosphärischen Ozonschicht **(ODP)** trägt das Flammschutzmittel einen signifikanten Anteil bei, der Strom nur einen mäßig wichtigen Anteil.

Polymere tragen zum Bildungspotential für troposphärisches Ozon (POCP) den Großteil bei. Beim abiotischen Ressourcenabbau – fossile Brennstoffe

(ADPF) und Gesamteinsatz nicht erneuerbarer Primärenergie (PENRT) haben Polymere jeweils auch den größten Einfluss. An zweiter Stelle steht beim ADPF und PENRT das Flammschutzmittel.

Bei dem Gesamteinsatz erneuerbarer Primärenergie (PERT) trägt das Flammschutzmittel rund die Hälfte

bei, während der Strom auch einen gewissen Anteil beiträgt. Beim abiotischen Ressourcenabbau -Elemente (ADPE) trägt das Flammschutzmittel mit Abstand den größten Anteil bei.

7. Nachweise

Es sind keine Nachweise erforderlich.

8. Literaturhinweise

Institut Bauen und Umwelt e.V., Berlin (Hrsg.): Erstellung von Umweltproduktdeklarationen (EPDs);

Allgemeine Grundsätze für das EPD-Programm des Instituts Bauen und Umwelt e.V. (IBU), 2013-04.

Produktkategorienregeln für Bauprodukte Teil A: Rechenregeln für die Ökobilanz und Anforderungen an den Hintergrundbericht. 2013-04.

ISO 14025

DIN EN ISO 14025:2011-10, Environmental labels and declarations — Type III environmental declarations — Principles and procedures.

EN 15804

EN 15804:2012-04+A1 2013, Sustainability of construction works — Environmental product declarations — Core rules for the product category of construction products.

PCR 2014, Teil B: PCR Anleitungstexte für gebäudebezogene Produkte und Dienstleistungen der Bauproduktgruppe Dach- und Dichtungsbahnsysteme aus Kunststoffen und Elastomeren (2014).

GaBi 6:

PE INTERNATIONAL AG; GaBi 6: Software-System und Datenbank zur Ganzheitlichen Bilanzierung. Copyright, TM. Stuttgart, Echterdingen, 1992-2014.

GaBi 6D:

Dokumentation der GaBi 6: Datensätze der Datenbank zur Ganzheitlichen Bilanzierung. Copyright, TM. Stuttgart, Echterdingen, 1992-2014. http://documentation.gabi-software.com/

AVV (Abfallverzeichnis-Verordnung).
Ausfertigungsdatum: 10.12.2001
Nummer 17 09 04: gemischte Bau- und
Abbruchabfälle mit Ausnahme derjenigen, die unter 17
09 01, 17 09 02 und 17 09 03 fallen.
Nummer 200139: Kunststoffe.

DIN EN 495-5:201210

Abdichtungsbahnen Bestimmung des Verhaltens beim Falzen bei tiefen Temperaturen Teil 5: Kunststoff und Elastomerbahnen für Dachabdichtungen

DIN EN 1107-2: 2001-04, Abdichtungsbahnen -Bestimmung der Maßhaltigkeit - Teil 2: Kunststoff- und Elastomerbahnen für Dachabdichtungen **DIN CEN TS 1187**: 2012-03 Prüfverfahren zur Beanspruchung von Bedachungen durch Feuer von außen

DIN EN 1297: 2004-12, Abdichtungsbahnen - Bitumen, Kunststoff- und Elastomerbahnen für Dachabdichtungen - Verfahren zur künstlichen Alterung bei kombinierter Dauerbeanspruchung durch UV-Strahlung, erhöhte Temperatur und Wasser

DIN EN 1548: 2007-11Abdichtungsbahnen -Kunststoff- und Elastomerbahnen für Dachabdichtungen - Verhalten nach Lagerung auf Bitumen

DIN EN 1847:2010-4 Abdichtungsbahnen - Kunststoffund Elastomerbahnen für Dachabdichtungen -Bestimmung der Einwirkung von Flüssigchemikalien einschließlich Wasser

DIN EN 1928:2000-07Abdichtungsbahnen - Bitumen-, Kunststoff- und Elastomerbahnen für Dachabdichtungen - Bestimmung der Wasserdichtheit

DIN EN 1931:2001-03, Abdichtungsbahnen - Bitumen-, Kunststoff und Elastomerbahnen für Dachabdichtungen - Bestimmung der Wasserdampfdurchlässigkeit

ISO 9001:2008-12 Qualitätsmanagementsysteme – Anforderungen

DIN EN ISO 11925-2:2011-02 Prüfungen zum Brandverhalten - Entzündbarkeit von Produkten bei direkter Flammeneinwirkung

DIN EN 12310-2:2000-12 Abdichtungsbahnen - Bestimmung des Widerstandes gegen Weiterreißen - Teil 2: Kunststoff- und Elastomerbahnen für Dachabdichtungen

DIN EN 12311-2:2010-12, Abdichtungsbahnen - Bestimmung des Zug-Dehnungsverhaltens - Teil 2: Kunststoff- und Elastomerbahnen für Dachabdichtungen

DIN EN 12316-2:2012-10, Abdichtungsbahnen - Bestimmung des Schälwiderstandes der Fügenähte - Teil 2: Kunststoff- und Elastomerbahnen für Dachabdichtungen

DIN EN 12317-2:2010-12, Abdichtungsbahnen - Bestimmung des Scherwiderstandes der Fügenähte - Teil 2: Kunststoff- und Elastomerbahnen für Dachabdichtungen

DIN EN 12691:2006-06, Abdichtungsbahnen -Bitumen-, Kunststoff- und Elastomerbahnen für Dachabdichtungen - Bestimmung des Widerstandes gegen stoßartige Belastung

DIN EN 13501-1:2010-01, Klassifizierung von Bauprodukten und Bauarten zu ihrem Brandverhalten -Teil 1: Klassifizierung mit den Ergebnissen aus den Prüfungen zum Brandverhalten von Bauprodukten

DIN EN 13501-5:2010-02, Klassifizierung von Bauprodukten und Bauarten zu ihrem Brandverhalten - Teil 5: Klassifizierung mit den Ergebnissen aus Prüfungen von Bedachungen bei Beanspruchung durch Feuer von außen

DIN EN 13583:2012-10, Abdichtungsbahnen -Bitumen-, Kunststoff- und Elastomerbahnen für Dachabdichtungen - Bestimmung des Widerstandes gegen Hagelschlag

DIN EN 13948:2008-01, Abdichtungsbahnen -Bitumen-, Kunststoff- und Elastomerbahnen für Dachabdichtungen - Bestimmung des Widerstandes gegen Wurzelpenetration

DIN EN 13956:2012-05, Abdichtungsbahnen -Kunststoff- und Elastomerbahnen für Dachabdichtungen - Definitionen und Eigenschaften **DIN EN ISO 14025**:2009-11, Environmental labels and declarations — Type III environmental declarations — Principles and procedures.

DIN V 20000-201:2006-11, Anwendung von Bauprodukten in Bauwerken - Teil 201: Anwendungsnorm für Abdichtungsbahnen nach Europäischen Produktnormen zur Verwendung in Dachabdichtungen

DIN V 20000-202:2007-12 Anwendung von Bauprodukten in Bauwerken - Teil 202: Anwendungsnorm für Abdichtungsbahnen nach Europäischen Produktnormen zur Verwendung in Bauwerksabdichtungen

DIN EN ISO 50001:2011-12

Energiemanagementsysteme - Anforderungen mit Anleitung zur Anwendung

REACH

VERORDNUNG (EG) Nr. 1907/2006 DES EUROPÄISCHEN PARLAMENTS UND DES RATES vom 18. Dezember 2006 zur Registrierung, Bewertung, Zulassung und Beschränkung chemischer Stoffe

Herausgeber

+49 (0)30 3087748- 0 Institut Bauen und Umwelt e.V. Tel Panoramastr.1 Fax +49 (0)30 3087748- 29 info@bau-umwelt.com 10178 Berlin Mail Web Deutschland www.bau-umwelt.com

Programmhalter

+49 (0)30 3087748- 0 +49 (0)30 3087748- 29 Institut Bauen und Umwelt e.V. Tel Panoramastr.1 Fax 10178 Berlin Mail info@bau-umwelt.com Web www.bau-umwelt.com Deutschland

thinkstep

Ersteller der Ökobilanz

Tel +49 (0)711 341817-0 thinkstep AG Hauptstraße 111 Fax +49 (0)711 341817-25 70771 Leinfelden-Echterdingen info@thinkstep.com Mail Web www.thinkstep.com

Inhaber der Deklaration

Tel 0621-8504-399 FDT FlachdachTechnologie GmbH &. Co. 0621-8504-574 Fax

Matthias.Bergmann@fdt.de Eisenbahnstr. 6-8 Mail

68199 Mannheim Web www.fdt.de

Germany