<u>Review</u>

given U sub V

with inclusion map i: U to V

[what structures does it produce?]

- Ann_{
$$V^{\prime}$$
} = { θ in V^{\prime} | θ |_U = $\mathbf{0}_{V^{\prime}}$ }

- i^{v} : V^{v} to U^{v} defined by $i^{v}(\theta) = \theta |_{U}$

Lem Ann_{
$$V^{\vee}$$
}(U) = ker(i $^{\vee}$)

also:

- quotient map q : V to V/U
- q' : (V/U)' to V'

[to finish that discussion:]

$$\underline{\mathsf{Thm}} \qquad \mathsf{Ann}_{\mathsf{V}}(\mathsf{U}) = \mathsf{im}(\mathsf{q}^{\mathsf{v}})$$

recall: elts of V/U are subsets v + U where v in V

<u>Lem</u> v + U = v' + U, as subsets, iff v - v' in U

$$(v + U) + (w + U) = (v + w) + U$$

 $\lambda \cdot (v + U) = \lambda v + U$

use lemma to check that these op's are well-def

Ex
$$V = F^2$$
 and $U = \{(x, x) \mid x \text{ in } F\}$
for any (a, b) in V :
 $(a, b) + U = \{(a + x, b + x) \mid x \text{ in } F\}$

so elts of V/U are translates of U
[draw picture] [elts of V/U are translates in gen'l]

$$\mathbf{0}_{V/U} = 0 + U = U$$
 [the trivial translate of U]

quotient map q : V to V/U defined by q(v) = v + Unote that v + U = U iff v in Utherefore:

Lem
$$U = \ker(q : V \text{ to } V/U)$$

Pf of Thm want Ann(U) =
$$im(q^v : (V/U)^v \text{ to } V^v)$$

[first, what is q^{v} ?] $q^{v}(\psi) = \psi \circ q$

$$\begin{array}{ll} \theta \text{ in im}(q^v) & \text{iff } \theta = \psi \circ q \text{ for some } \psi \text{ in } (V/U)^v \\ \theta \text{ in Ann}(U) & \text{iff } \theta|_U \text{ is zero} \\ & \text{iff } U \text{ sub } \ker(\theta) \end{array}$$

so want to show: $\theta = \psi \circ q$ for some ψ iff U sub ker(θ)

"only if":
$$ker(q)$$
 sub $ker(\theta)$ by PS4, #3 $U = ker(q)$ by lemma

"if": for all
$$v + U$$
 in V/U
let $\psi(v + U) = \theta(v)$

claim ψ is a well-def lin map V/U to F will then have $\theta(v) = \psi(v + U) = (\psi \circ q)(v)$

well-def:
if
$$v + U = v' + U$$

then $v - v'$ in U
so $\psi(v + U) = \psi(v' + (v - v') + U) = \psi(v' + U)$

linearity of
$$\theta$$
 implies linearity of ψ :

$$\psi((v + U) + (w + U)) = \psi((v + w) + U)$$

$$= \theta(v + w)$$
$$= \theta(v) + \theta(w)$$

$$= \psi(v + U) + \psi(w + U)$$

and similarly for scalar multiplication $\ \square$

Summary U sub V gives rise to

[injective] inclusion i : U to V

[surjective] quotient q : V to V/U

 q^{v} i^{v} $(V/U)^{v}$ to V^{v} to U^{v}

s.t. im(i) = U = ker(q)

and dually $im(q^v) = Ann_{V}(U) = ker(i^v)$

today–Wed: bilinear pairings, forms (§9A) tensors (§9D)

let V_1, V_2 be arbitrary vector spaces recall that

$$V_1 \times V_2 = \{(v_1, v_2) \mid v_i \text{ in } V_i\}$$

forms a vector space under entrywise + and •

Df a bilinear pairing between V_1 and V_2 is a linear map from $V_1 \times V_2$ to F

if
$$V = V_1 = V_2$$

then β is called a bilinear form on V

we say that a bilinear form β on V is <u>symmetric</u> iff

$$\beta(w, v) = \beta(v, w)$$
 for all v, w in V

Ex for any n, the dot product on F^n def by

$$w \cdot w = w1 v1 + w2 v2 + ... + wn vn$$

is a symmetric bilinear form on F^n

[what does bilinearity mean?] for all w, w', v, v' in V and λ in F: $(w + w') \cdot v = w \cdot v + w' \cdot v$ $w \cdot (v + v') = w \cdot v + w \cdot v'$ and $(\lambda w) \cdot v = \lambda(w \cdot v) = w \cdot (\lambda v)$ Ex let β : F² × F² to F be def by

$$\beta((w1, w2), (v1, v2)) = w2 v1 - w1 v2$$

we will show later that it is bilinear

is it symmetric? no

in fact, it is <u>anti-symmetric</u>: $\beta(w, v) = -\beta(v, w)$

for all w, v

 $\underline{\mathsf{Ex}}$ fix an n × n matrix M

let $\beta_M : F^n \times F^n$ be def by

$$\beta_M(w, v) = w1 \dots wn \qquad M \dots vn$$

the preceding examples are special cases [why?]:

[the notation < , > will help avoid confusion soon]

M = I yields $v \cdot w$

M = 0 -1 yields the anti-symmetric ex

claim: β_M is bilinear

key: recall that if cols represent elts of V (wrt some basis)

then rows represent elts of V^{ν}

(wrt same basis)

Lem the <u>evaluation map</u> < , > : $V^{v} \times V$ to F def by $<\theta$, $v>=\theta(v)$ is a bilinear pairing

<u>Pf</u> exercise

Cor for any linear op T : V to V the map α : V' × V to F defined by $\alpha(\theta, v) = \langle \theta, Tv \rangle$ is a bilinear pairing

 $\frac{Cor}{S: V \text{ to } V}$ for any linear ops T: V to V $S: V \text{ to } V^v$ the map $\beta: V \times V \text{ to } F \text{ defined by}$ $\beta(w, v) = \langle Sw, Tv \rangle$ is a bilinear pairing

Cor the map β_M : F^n × F^n to F defined by $\beta_M(w, v) = w^t M v$ is a bilinear pairing