Statistical Inference

Lecture 06a

ANU - RSFAS

Last Updated: Wed Mar 28 11:39:40 2018

MLE Computation: Expectation - Maximization (EM) Algorithm

- Presentation adapted from CB & Computational Statistics.
- The EM algorithm is a general algorithm to find MLEs when some of the data are missing (or the problem can be set in a manner that there are missing data).
- Suppose we observe all of the data $\mathbf{y} = \{y_1, \dots, y_n\}$, then all we do to find the MLE is maximize:

$$\ell(\boldsymbol{\theta}; \boldsymbol{y})$$

• Suppose we don't observe all the ys then based on the notation by Donald Rubin we have $y = (y_{obs}, y_{miss})$.

$$f(\mathbf{y}; \boldsymbol{\theta}) = f(\mathbf{y}_{obs}, \mathbf{y}_{miss}; \boldsymbol{\theta})$$

= $k(\mathbf{y}_{miss} | \mathbf{y}_{obs}, \boldsymbol{\theta}) g(\mathbf{y}_{obs}; \boldsymbol{\theta})$

• This leads to: $g(\mathbf{y}_{obs}; \theta) = \frac{f(\mathbf{y}; \theta)}{k(\mathbf{y}_{miss}|\mathbf{y}_{obs}, \theta)}$

$$log [g(\mathbf{y}_{obs}; \boldsymbol{\theta})] = log [f(\mathbf{y}_{obs}, \mathbf{y}_{miss}; \boldsymbol{\theta})] - log [k(\mathbf{y}_{miss}|\mathbf{y}_{obs}, \boldsymbol{\theta})]$$

$$\ell_{obs}(\boldsymbol{\theta}; \mathbf{y}_{obs}) = \ell_{comp}(\boldsymbol{\theta}; \mathbf{y}_{obs}, \mathbf{y}_{miss}) - log [k(\mathbf{y}_{miss}|\mathbf{y}_{obs}, \boldsymbol{\theta})]$$

• As y_{miss} is missing, we replace the right side of the equation with its expectation:

$$\ell_{obs}(\boldsymbol{\theta}; \boldsymbol{y}_{obs}) = E\left\{\ell_{comp}(\boldsymbol{\theta}; \boldsymbol{y}_{obs}, \boldsymbol{y}_{miss}) \middle| \boldsymbol{\theta}', \boldsymbol{y}_{obs}\right\}$$
$$-E\left\{log\left[k(\boldsymbol{y}_{miss}|\boldsymbol{y}_{obs}, \boldsymbol{\theta})\right] \middle| \boldsymbol{\theta}', \boldsymbol{y}_{obs}\right\}$$

- The EM algorithm seeks to maximize $\ell(\theta; \mathbf{y}_{obs})$ with respect to θ through the following process:
- **1. E step**: Calculate the expectation of the complete likelihood conditional on the observed data and the current value of θ :

$$Q\left(\boldsymbol{\theta}|\boldsymbol{\theta}^{(r)}\right) = E\left\{\ell_{comp}(\boldsymbol{\theta}; \boldsymbol{y}_{obs}, \boldsymbol{y}_{miss})\middle|\boldsymbol{\theta}^{(r)}, \boldsymbol{y}_{obs}\right\}$$
$$= \int \left[\ell_{comp}(\boldsymbol{\theta}; \boldsymbol{y}_{obs}, \boldsymbol{y}_{miss})\right] k(\boldsymbol{y}_{miss}|\boldsymbol{y}_{obs}, \boldsymbol{\theta}) d\boldsymbol{y}_{miss}$$

- **2. M step**: Maximize $Q\left(\theta|\theta^{(r)}\right)$ with respect to θ . Set $\theta^{(r+1)}$ equal to the maximizer of Q.
- 3. Return to the E step unless a stopping criterion has been reached.
 - I will not present a proof that the EM algorithm maximizes $\ell(\theta; \mathbf{y}_{obs})$. If you are interested please see either Casella and Berger Exercise 7.31 or *Computational Statistics* Section 4.2.1.

EM Example

• Let
$$X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f(y; \theta)$$
.

prob

whole

two component

must

integrate to 1

 $f(y; \theta) = p \text{ normal}(\mu_0, \sigma_0^2) + (1-p) \text{ normal}(\mu_1, \sigma_1^2)$

- For this problem generally we have $\theta = (\mu_0, \sigma_0^2, \mu_1, \sigma_1^2, p)$.
- For our example let's simplify the problem and assume $p=\frac{1}{2},\sigma_0^2=\sigma_1^2=1$
- We have the following likelihood:

$$L(\boldsymbol{\theta}) = \prod_{i=1}^{n} \left[\frac{1}{2} \operatorname{normal}(\mu_0, 1) + \frac{1}{2} \operatorname{normal}(\mu_1, 1) \right]$$

Directly optimizing this is hard.

- To make things easier, we can introduce latent (missing) variables Z_1, \ldots, Z_n .
 - Where $Z_i = 0$ if Y_i is from $normal(\mu_0, 1)$.
 - Where $Z_i = 1$ if Y_i is from $normal(\mu_1, 1)$.
- Why is this easier? If we know what normal distribution each Y comes from then it is easy to determine the MLEs for μ_0 and μ_1 .
- We can use the EM algorithm, where $y_{miss} = z$.
- Note: Z_i is a Bernoulli random variable. $P(Z_i = 1) = \frac{1}{2}$.

$$L(\theta)_{comp} = \prod_{i=1}^{n} \operatorname{normal}(y_i; \mu_0, 1)^{1-z_i} \operatorname{normal}(y_i; \mu_1, 1)^{z_i}$$

$$\ell_{comp}(\theta) = \sum_{i=1}^{n} (1 - z_{i}) log \left(\frac{1}{\sqrt{2\pi}} exp \left(-\frac{1}{2} (y_{i} - \mu_{0})^{2} \right) \right)$$

$$+ \sum_{i=1}^{n} z_{i} log \left(\frac{1}{\sqrt{2\pi}} exp \left(-\frac{1}{2} (y_{i} - \mu_{1})^{2} \right) \right)$$

$$+ constants$$

$$= -\frac{1}{2} \sum_{i=1}^{n} (1 - z_{i}) (y_{i} - \mu_{0})^{2} + -\frac{1}{2} \sum_{i=1}^{n} z_{i} (y_{i} - \mu_{1})^{2} + constants$$

1. Let's determine $Q\left(\theta|\theta^{(r)}\right)$. Note that z is linear in the log likelihood! Makes our job much easier!

$$E\left[\ell_{comp}(\theta)\right] = -\frac{1}{2} \sum_{i=1}^{n} (1 - E[Z_i | \mathbf{y}_{obs}, \theta^r]) (y_i - \mu_0)^2$$
$$-\frac{1}{2} \sum_{i=1}^{n} E[Z_i | \mathbf{y}_{obs}, \theta^r] (y_i - \mu_1)^2 + constants$$

• We need to determine:
$$E[Z_i|\mathbf{y}_{obs},\theta^r]$$
.
• Note: $E[Z_i|\mathbf{y}_{obs};\theta^r] = Pr(Z_i = 1|\mathbf{y}_{obs};\theta^r)$

$$E(Z) = P(Z=1) \cdot 1 + OP(Z=0)$$

• We will use Bayes' rule.
$$PCAIB$$
 = $PCAIB$ = $PCAIB$

$$\begin{array}{ll} Pr(Z_{i}=1|\boldsymbol{y}_{obs};\theta') & = & \frac{f(\boldsymbol{y}_{obs}|Z_{i}=1;\theta')Pr(Z_{i}=1)}{f(\boldsymbol{y}_{obs}|Z_{i}=1;\theta')Pr(Z_{i}=1)+f(\boldsymbol{y}_{obs}|Z_{i}=0;\theta')Pr(Z_{i}=0)} \\ & = & \frac{\operatorname{normal}(y_{i};\mu_{1},1)\frac{1}{2}}{\operatorname{normal}(y_{i};\mu_{1},1)\frac{1}{2}+\operatorname{normal}(y_{i};\mu_{0},1)\frac{1}{2}} \\ & = & \frac{\operatorname{normal}(y_{i};\mu_{1},1)}{\operatorname{normal}(y_{i};\mu_{1},1)} \\ & = & p_{i} \end{array}$$

So we have:

$$Q\left(heta| heta^{(r)}
ight) = -rac{1}{2}\sum_{i=1}^{n}(1- extstyle{
ho_i})(y_i-\mu_0)^2 - rac{1}{2}\sum_{i=1}^{n} extstyle{
ho_i}(y_i-\mu_1)^2 + constants$$

2. Let's maximize $Q\left(\theta|\theta^{(r)}\right)$ with respect to μ_0, μ_1 . We find:

$$\hat{\mu}_0^{(r+1)} = \frac{\sum_{i=1}^n (1 - p_i) y_i}{\sum_{i=1}^n (1 - p_i)}$$

$$\hat{\mu}_1^{(r+1)} = \frac{\sum_{i=1}^n p_i y_i}{\sum_{i=1}^n p_i}$$

• Recompute p_i with $\hat{\mu}_0^{(r+1)}$ and $\hat{\mu}_1^{(r+1)}$. Thus iterate between the E and M steps till convergence.

```
## generate data from a bivariate normal:
set.seed(1001)
n <- 1000
z <- rbinom(n, 1, 1/2)

y <- rep(NA, n)
y[z==0] <- rnorm(length(z[z==0]), -2, 1)
y[z==1] <- rnorm(length(z[z==1]), 2, 1)</pre>
```

ullet Beacuse we generated the data, we know z, so we know the MLEs:

$$\hat{\mu}_0 = \bar{y}|_{z=0}$$

$$mean(y[z==0])$$

$$\hat{\mu}_1 = \bar{y}|_{z=1}$$

$$mean(y[z==1])$$

[1] 1.997553

hist(y, col="azure2")

E-M

```
## starting values
mu.0 < -0.5
m_{11}.1 < -0.5
##
check <- 10
eps <- 1e-10
##
while(check > eps){
  # vector E[z/y] - E step
  rho <- dnorm(y, mu.1, 1)/(dnorm(y, mu.1, 1) + dnorm(y, mu.0, 1))
  # M step
  mu.0.new \leftarrow sum((1-rho)*y)/(sum((1-rho)))
  mu.1.new \leftarrow sum((rho)*y)/(sum((rho)))
  check <- sum( c(abs(mu.0.new - mu.0), abs(mu.1.new - mu.1)))
  mu.0 <- mu.0.new
  mu.1 <- mu.1.new
mu.0.hat <- mu.0
mu.1.hat <- mu.1
```

MLEs based on E-M algorithm

```
mu.0.hat
```

mu.1.hat

[1] -1.942764

[1] 2.007483

Lemma 3.2: Suppose that θ and η represent two alternative parameterizations for some probability distirbution and that η is a (1-1) function of θ , so that we can write $\eta = \mathbf{g}(\theta), \theta = \mathbf{h}(\eta)$ for appropriate functions $\mathbf{g}(\cdot), \mathbf{h}(\cdot)$.

- ullet If $\hat{oldsymbol{ heta}}$ is the MLE of $oldsymbol{ heta}$ then $\hat{oldsymbol{\eta}}=oldsymbol{g}(\hat{oldsymbol{ heta}})$ is the MLE for $oldsymbol{\eta}$
- If the mapping is (1-1) we simply note:

$$\eta = \tau(\theta) \to \tau^{-1}(\eta) = \theta$$

• Define our likelihood based on the reparameterization $(\theta = \tau^{-1}(\eta))$:

$$L^*(\eta; \mathbf{x}) = \prod_{i=1}^n f(x_i; \tau^{-1}(\eta)) = L(\tau^{-1}(\eta); \mathbf{x}) = L(\theta; \mathbf{x})$$

• We find the supremumum of likelihood

$$\max_{\substack{\gamma \\ \eta}} \max_{\boldsymbol{x} \in \mathcal{X}} \min_{\boldsymbol{x} \in \mathcal{X}}$$

to see that the maximum of $L^*(\eta; \mathbf{x})$ is when $\eta = \tau(\hat{\theta}) = \tau(\hat{\theta})$.

$$\hat{\theta}$$
 is the MLE for θ

$$T = (\hat{\theta})^2 \Rightarrow \hat{\tau} = (\hat{\theta})^2$$

- However, many functions of interest are not one-to-one: $heta o heta^2$.
- ullet We proceed by defining the induced likelihood function of L^* for au(heta)

$$L^*(\eta; \mathbf{x}) = \sup_{\theta: \tau(\theta) = \eta} L(\theta; \mathbf{x}) \qquad \int = \mathcal{T}(\theta)$$

• The value $\hat{\eta}$ that maximizes $L^*(\eta; \mathbf{x})$ will be called the MLE of η .

Proof: Let $\hat{\eta}$ denote the value that maximizes $L^*(\eta; \mathbf{x})$. Let's show for all values of η that

$$L^*\left(\hat{\eta} \neq \tau(\hat{\theta}); \mathbf{x}\right) \geq L^*(\eta; \mathbf{x})$$

Steve Stem's Note
$$L^*(\eta; \mathbf{x}) = \sup_{\substack{\theta: \tau(\theta) = \eta \\ \theta}} L(\theta; \mathbf{x})$$

$$\leq \sup_{\substack{\theta: \tau(\theta) = \eta \\ \theta}} L(\theta; \mathbf{x})$$

$$= L(\hat{\theta}; \mathbf{x})$$

$$= \sup_{\substack{\theta: \tau(\theta) = \tau(\hat{\theta}) \\ \theta: \tau(\theta) = \tau(\hat{\theta})}} L(\theta; \mathbf{x})$$

$$= L^*(\tau(\hat{\theta}); \mathbf{x})$$

21 / 22

Eg. Normal: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{normal}(\mu, \sigma^2)$.

- If we want the MLE of μ^2 it is $\widehat{\mu^2} = (\widehat{\mu})^2$.
- If we want the MLE of σ it is $\hat{\sigma} = \sqrt{\hat{\sigma^2}}$.
- This tends to be helpful in a computational sense as well (we can remove bounds on parameters):

$$\sigma^2 = \exp(\theta) - \infty < \theta < \infty$$