XỬ LÝ THÔNG TIN MỜ TOK

PHÉP HỢP THÀNH

- Cho R⊆X×Y, S⊆Y×Z, có thể kết hợp R và S tạo thành quan hệ T=R∘S ⊆X×Z
 μ_T(x,z) = max_{y∈Y} min {μ_R(x,y), μ_S(y,z)}
- Lưu ý:
 - Có thể thay min bằng các t-chuẩn khác
 - Có thể giải thích bằng nguyên lý mở rộng

VÍ DỤ

R	y1	y2	у3	y4	y5	
x 1	0.1	0.2	0	1	0.7	
x2	0.3	0.5	0	0.2	1	
x 3	y1 0.1 0.3 0.8	0	1	0.4	0.3	
	R∘S	y1	y2	у3	y4	
_	R∘S x1	y1 0.4	y2 0.7	y3 0.3	y4 0.7	
_	RoS x1 x2	y1 0.4 0.3 0.8	y2 0.7 1	y3 0.3 0.5	y4 0.7 0.8	

S	z1	z2	z3	z4
y1	0.9 0.2 0.8 0.4	0	0.3	0.4
y2	0.2	1	8.0	0
у3	8.0	0	0.7	1
y4	0.4	0.2	0.3	0
у5	0	1	0	8.0

CHƯƠNG 4 - LOGIC MỜ

- Nhắc lại logic kinh điển
- Logic mò

LOGIC TÍNH TOÁN

 Logic trong biểu diễn và xử lý thông tin: Ý tưởng:

Nhận thức: $KB \cap K_0 \models_{cog} K_1$

Logic: $KB \cap K_0 \models K_1$, $KB \cap K_0 \models K_1$

Các vấn đề:

giá trị chân lý, các toán tử, suy diễn

LOGIC KINH ĐIỂN

- Ngôn ngữ: Tập thành tố A_R, các kết nối {₇ , ∧, ∨, →, ↔,(,)},
 Tập các biểu thức: là thành tố, hoặc ₇ F, F, G, F∨G, F→G, F↔G, với F, G là các biểu
- Ngữ nghĩa: Diễn dịch I: A_R → {0,1}
 Có thể viết p∈ I iff I(p)=1 → mô hình I⊂A_R
 I⊨p (I suy ra p), nếu I(p)=1
 Đệ quy: I⊨F, nếu I(F)=1

thức

LOGIC KINH ĐIỂN

- Biểu thức F luôn đúng, nếu ∀I: I ⊨ F, biểu thức F thoả nếu ∃I: I ⊨ F, biểu thức F có thể sai nếu ∃I: I ⊭ F, biểu thức F (luôn) không thoả nếu ∀I: I ⊭ F
- Cho Σ là tập các biểu thức, F là một biểu thức,
 - $\Sigma \models F$, nếu mọi mô hình của Σ (các I làm cho mọi biểu thức trong Σ đều đúng) cũng là mô hình của F

LOGIC KINH ĐIỂN

- Hai biểu thức F và G là tương đương (về ngữ nghĩa) (F ≡ G), nếu ∀I, I ⊨ F iff I ⊨ G
- Biểu thức ở dạng chuẩn PHỦ ĐỊNH chỉ chứa các phép toán Ţ, ∧, v, và Ţ chỉ đứng trước các thành tố ...dạng chuẩn HỘI, TUYỀN ...
- Cho logic (A, L, ⊨), tập các luật dẫn xuất Π,
 và tập các tiên đề Γ thì có thể xác định được một quan hệ dẫn xuất ⊢
 - $\begin{array}{l} \Sigma \vdash F \ nghĩa \ là tồn tại một chuỗi dẫn xuất \ \Sigma \\ \vdash_r \Sigma_1 \vdash_r \Sigma_2 \vdash_r \ldots \ \vdash_r \Sigma_n \ , \ F \in \Sigma_n \ , \ các \ r \in \Pi \end{array}$

VÍ DỤ

- Cho A_R={p,q,r,s}, mô hình I={p,r}, thì có : I ⊨ (p∨q) ∧ (r∨s) {r,s} ⊭ (p∨q) ∧ (r∨s) (p∨q) ∧ (r∨s) là biểu thức thoả, có thể sai
- Cho $\Sigma = \{p \land q \rightarrow r, p \rightarrow q\}$ thì có $\Sigma \models p \rightarrow r$
- $\Sigma \cup \{F\} \models G \text{ iff } \Sigma \models F \rightarrow G$
- ∅ ⊨ F ?
- $F_1 \land F_2 \land ... \land F_n \rightarrow G \equiv \neg F_1 \lor ... \lor \neg F_n \lor G$
- •

CÁC VẤN ĐỀ CỦA LOGIC KINH ĐIỂN

- Chỉ có hai giá trị chân lý: đúng, sai
- Hạn chế về ngôn ngữ: thiếu các lượng từ, trạng từ biến đổi
- Hạn chế về các phép toán
- Suy diễn
- → Mở rộng!

LOGIC MÒ

- Biến chân lý
- Mở rộng của logic kinh điển
- Suy luận xấp xỉ
- Phép kéo theo mò

BIÉN CHÂN LÝ

- Biến chân lý là biến ngôn ngữ trên [0,1]
 với hai phần tử sinh : true, false
- Gia tử là toán tử biến đối ngữ nghĩa của giá trị ngôn ngữ, ví dụ, very, more_or_less

VÍ DỤ

- $\mu_{\text{true}}(t) = t$, $\mu_{\text{very true}}(t) = t^2$,
- $\mu_{true}(t) = 2((t-a)/(1-a))^2$, với a ≤ t ≤(a+1)/2 1-2((1-t)/(1-a))², với (a+1)/2 ≤ t ≤ a 0, với t<a

MỞ RỘNG LOGIC KINH ĐIỂN

- Thành tố → biến ngôn ngữ, các giá trị ngôn ngữ
- ¬, ∧, ∨ → n, t- chuẩn, s- đối chuẩn
- Suy luận xấp xỉ
- Cho v(A), v(B) là giá trị chân lý của các tập mờ A, B, thì v(A và B) = t(v(A),v(B)), tương tự: v(A hoặc B), v(không A), ...

MỆNH ĐỀ MỜ VỚI GIÁ TRỊ CHÂN LÝ (Baldwin, Tsukamoto)

Cho "V là A"

P = "V là B" với giá trị chân lý P? $\mu_P(t) = \sup_{u:\mu_B(u)=t} \{\mu_A(u)\}$

→ (V, A, t)

SUY LUẬN XẤP XỈ

- Nếu x là A thì y là B
 Cho x là A'
 Tính y là B'
- $A, A' \subset X$
- $B, B' \subset Y$
- Từ P_1 ="x là A", P_2 ="x là A", tính được $\underline{P_1}$ =v(P_1) $\mu_{\underline{P_1}}(t) = \sup_{u:\mu_A(u)=t} \{\mu_{A'}(u)\}$
- Từ $P_1 \rightarrow Q_1$ (với Q_1 ="y là B"), tính được $\underline{P_1} \rightarrow Q_1$ là toán tử kéo theo I:[0,1]×[0,1] \rightarrow [0,1], $I(\mu_A(u),\mu_B(v)) = \mu_{R(A,B)}(u,v)$
- Tính Q₁ là phép hợp thành P₁ và P₁→Q₁
- Từ Q_1 và \underline{Q}_1 tính B', $\mu_{B'}(v) = \mu_{\underline{Q}_1}(\mu_B(v)), v \in Y$

PHÉP KÉO THEO MÒ'

- $\mu_R(u,v) = \varphi(\mu_A(u),\mu_B(v))$
- Hàm φ:[0,1]×[0,1]→[0,1] thường được chọn sao cho phép kéo theo mờ trong các trường hợp đặc biệt "đồng nhất" với phép kéo theo kinh điển:

$$\phi(1,1) = \phi(0,1) = \phi(0,0) = 1$$

$$\phi(1,0) = 0$$

MỘT SỐ PHÉP KÉO THEO MỜ

- Mamdani (Rc): φ(a,b) = min {a,b},
- Lukasiewics (Ra): φ(a,b) = min {1, 1-a+b}
- Kleene-Dienes (Rb): φ(a,b) = max {1-a, b}
- Zadeh (Rm): $\varphi(a,b) = \max \{1-a, \min\{a,b\}\}$
- Standard (Rs): φ_s(a,b) = 1, nếu a≤b, =0, a>b
- Goedel (Rg): φ_g(a,b) = 1, nếu a≤b, =b, a>b
- Rss: $\varphi(a,b) = \min \{ \varphi_s(a,b), \varphi_s(1-a,1-b) \}$
- Rsg: $\varphi(a,b) = \min \{ \varphi_s(a,b), \varphi g(1-a,1-b) \}$
- Rgs, Rgg, ...

BÀI TẬP

- Cho A = $\{(1,1), (0.6,2), (0.2,3)\} \subset \{1,2,3,4\}$ B = $\{(0.2,2), (0.6,3), (1,4)\} \subset \{1,2,3,4\}$
- Hãy tính quan hệ mờ R cho mệnh đề "Nếu x là A thì y là B" với các phép kéo theo mờ khác nhau !!!

VÍ DŲ - MAMDANI

Rc	1	2	3	4
1	0	0.2	0.6	1
2	0	0.2	0.6	0.6
3	0	0.2	0.2	0.2
4	0	0	0	0

CHƯƠNG 5 – SUY DIỄN MỜ

- Suy diễn mờ đơn điều kiện
- Suy diễn mờ mở rộng
- Nội suy mờ

BÀI TOÁN

Nếu x là A thì y là B
 Cho x là A'
 y là B'?

Trong đó, A, A' là các tập mờ \subset X, B, B' là các tập mờ \subset Y, cần xác định B'

- Cách giải quyết:
 - Từ (1), tính quan hệ mờ R(A,B)
 - Tính $B' = A' \circ R$

VÍ DỤ

 Nếu x là nhỏ thì y là lớn Cho x là rất nhỏ

y là B'?

```
Với nhỏ = \{(1,1), (0.6,2), (0.2,3)\} \subset \{1,2,3,4\}

lớn = \{(0.2,2), (0.6,3), (1,4)\} \subset \{1,2,3,4\},

rất nhỏ = nhỏ^2 = \{(1,1), (0.36,2), (0.04,3)\}
```

- Tính Rc như ở Ví dụ trước
- Kết quả B' = lớn
- Tính quan hệ mờ khác !!! Kết quả !!!

TIÊU CHUẨN SUY DIỄN "TỐT"

- Tuỳ theo việc lựa chọn phép kéo theo mờ, tnorm, s-conorm, ... cho các kết quả suy diễn mờ khác nhau
- Tiêu chuẩn: (i) A'=A thì B'=B,
 (ii.1) A'=very A thì B'=very B, (ii-2) A'=very A thì B'=B
 (iii-1) A'=mol A thì B'=mol B, (iii-2) A'=mol A thì B'=B,

(iv) A'=not A thì B'=unknown ...

KIỂM TRA THEO TIÊU CHUẨN

- Rm, Ra, Rb thoả tiêu chuẩn (iv)
- Rc thoả tiêu chuẩn (i), (ii-2), (iii-2)
- Rs thoả tiêu chuẩn (i), (ii-1), (iii-1), (iv)
- Rg thoả tiêu chuẩn (i), (ii-2), (iii-1), (iv)
- Rss, Rsg thoả tiêu chuẩn (i), (ii-1), (iii-1)
- Rgg, Rgs thoả tiêu chuẩn (i), (ii-2), (iii-1)

•

TIÊU CHUẨN BẮC CẦU

Nếu x là A thì y là B
 Nếu y là B thì z là C
 Nếu x là A thì z là C?

 Rc, Rs, Rg, Rsg, Rss, Rgg, Rgs thoả mãn tiêu chuẩn bắc cầu

SUY DIỄN MÒ MỞ RỘNG

Nếu x₁ là A₁ và x₂ là A₂ và ... và x_n là A_n thì y
 là B

Cho x_1 là A'_1 và x_2 là A'_2 và ... và x_n là A'_n y là B'?

Trong đó, A_i, A'_i là các tập mờ của biến x_i, B, B' là các tập mờ của biến y, cần xác định B'

CÁCH GIẢI QUYẾT

- Xây dựng quan hệ mờ R(A₁,A₂,...,A_n;B), sau đó tính kết luận B' từ phép hợp thành (A'₁ ∩ A'₂ ∩ ... ∩ A'_n) và R, hoặc
- Phân tách về các bài toán con:

Nếu x_i là A_i thì y là B Cho x_i là A'_i

Tính y là B'i

Sau đó tính B' từ các B'i

TIÊU CHUẨN

- Nếu dùng Rc thì B' theo cách thứ nhất bằng B'₁ ∩ B'₂ ∩ ... ∩ B'n theo cách thứ hai
- Nếu dùng Rm, Rss, Rsg, Rgs, Rgg thì B' theo cách thứ nhất bằng B'₁ ∪ B'₂ ∪ ... ∪ B'n theo cách thứ hai
- Nếu dùng Rc, Rs, Rg, Rss, Rsg, Rgs, Rgg thì cũng thoả mãn tiêu chuẩn (i) suy diễn "tốt"

SUY DIỄN MÒ ĐA ĐIỀU KIỆN

Nếu x là A1 thì y là B1
 Nếu x là A2 thì y là B2

. . .

Nếu x là Ak thì y là Bk Cho x là A0

y là B0 ?

 Cách giải quyết: Tích hợp các quan hệ mờ Ri(Ai,Bi) thành quan hệ mờ R, sau đó dùng phép hợp thành

VÍ DŲ (MIZUMOTO)

Fuzzy Rules:

e, $\Delta e \rightarrow \Delta q$

e\Δe	NB	NM	NS	ZO	PS	PM	PB
NB				РВ			
NM				PM			
NS				PS			
ZO	РВ	PM	PS	ZO	NS	NM	NB
PS				NS			
PM				NM			
PB				NB			

