Prof. Nielsen Rechia nielsen.machado@uniritter.edu.br

Paradigmas -	Supervisionado	Não-supervisionado	
	Classificação	Análise associativa	
Tarefas -	Regressão	Agrupamento (clustering)	
		Redução de dimensionalidade	
	Outros	Outros	

7 tarefas comuns de aprendizado de máquina:

http://vitalflux.co m/7-common-m achine-learningtasks-related-m ethods/

EXEMPLO DE UMA DECISION TREE

categorical categorical

class

			<u> </u>	
ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Splitting Attributes

Model: Decision Tree

Training Data

OUTRO EXEMPLO

categorical categorical continuous

	C	G ³	<u> </u>	
ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Training Data

Start from the root of tree.

			Defaulted Borrower
No	Married	80K	?

Test Data

Exercício prático

Para o dataset iris:

- Realizar uma classificação com árvore de decisão;
- Varie o tamanho dos dados para teste;
- Anote os resultados de acurácia;
- Compare com resultado do KNN

Exercício para entregar

Use o conjunto de dados censo:

O atributo indica se um indivíduo ganha mais que 50,000 dólares por ano ou não

Separe o dataset em treino e teste (use seed=0), com 75% para treino e 25% para teste

Adicione valores faltantes, trate os atributos categóricos

Treine uma árvore de decisão neste conjunto

Reporte a acurácia

Bonus Visualize a árvore de decisão (tutorial: <u>link</u>)

Conlusão

Leitura recomendada:

Capítulo 4 e 5 de Introduction to Data Mining

