Solutions Contest # 3

13.
$$(2*4)*3 = (2\cdot 4\cdot 2 + 1)*3 = 17*3 = 2\cdot 17\cdot 3 + 1 = 103$$

14.
$$m\angle ACD = m\angle B + m\angle BAC$$
, so $4x - 22 = 3x + 1$, thus $x = 23$. Now we know $m\angle BAC = 24^{\circ}$ and $m\angle ACD = 70^{\circ}$. Let $y = m\angle D = m\angle CAD$, so $2y + 70 = 180$ and $y = 55$. Then $m\angle BAD = 24 + 55 = 79$

16. From the parallel sides and alternate interior angles, and from the angle bisectors, we have
$$\angle LPG \cong \angle APG \cong \angle LGP$$
 and $\angle RAG \cong \angle PAG \cong \angle AGR$. So triangles PLG and ARG are isosceles. Thus $PL = LG$ and $GR = RA$. But $AR = PL$. So $\frac{PL}{LR} = \frac{1}{2}$

17. If
$$x < 1/2$$
, the function is $1 - 2x + 2 - x = -3x + 3$. Between $\frac{1}{2}$ and 2, the function is $2x - 1 + 2 - x = x + 1$.

If x > 2, then the function is 2x - 1 + x - 2 = 3x - 3. Thus the graph goes down to the left of $\frac{1}{2}$ and up to the right and the minimum value is for $x = \frac{1}{2}$, and that value is $\frac{3}{2}$ or 1.5

18.
$$\frac{52}{23} = 2 + \frac{6}{23}$$
, so A = 2. Now $\frac{23}{6} = 3 + \frac{5}{6}$, so B = 3. Then $\frac{6}{5} = 1 + \frac{1}{5}$, so C = 1. Finally, $\frac{5}{1} = 5$, so D = 5.