Math 4L03 - Assignment 2

October 1, 2020

Note: As discussed in class, the proper bracketing clearly causes confusion, so I will follow Dr. Valeriote in omitting some brackets when it increases clarity. (Each question starts on a new page)

Question 1:

a)
$$(p \wedge q) \to r$$

$$\equiv \langle \text{definition of } \to \rangle$$

$$\neg (p \wedge q) \vee r$$

$$\equiv \langle \text{De Morgan} \rangle$$

$$(\neg p \vee \neg q \vee r)$$

Notice that this is both in disjunctive normal form and conjunctive normal since it can be considered as a disjunction of three literals or it can be considered as an entire entity of disjunctions that trivially satisfies conjunctive normal form.

We note that $(p \lor q) \land (\neg p \lor r)$ is already in conjunctive normal form since it is a conjunction of disjunctions of literals, thus, we can use the formula $(\neg p \lor r) \land (p \lor q)$ by commutativity of \land which is an equivalent formula in conjunctive normal form. For disjunctive normal form, we have

$$(p \lor q) \land (\neg p \lor r)$$

$$\equiv \langle \text{distributivity of } \land \rangle$$

$$[p \land (\neg p \lor r)] \lor [q \land (\neg p \lor r)]$$

$$\equiv \langle \text{absorption} \rangle$$

$$[p \land r] \lor [q \land (\neg p \lor r)]$$

$$\equiv \langle \text{distributivity of } \wedge \rangle$$
$$(p \wedge r) \vee (q \wedge \neg p) \vee (q \wedge r)$$

as required.

c) For disjunctive normal form we have

$$(p \lor q) \leftrightarrow c$$

$$\equiv \langle \text{definition of } \leftrightarrow \rangle$$

$$[(p \lor q) \to c] \land [c \to (p \lor q)]$$

$$\equiv \langle \text{question 7 a) \text{ on assignment 1} \rangle$$

$$[(p \lor q) \land c] \lor [\neg (p \lor q) \land \neg c]$$

$$\equiv \langle \text{distributivity of } \land \rangle$$

$$(p \land c) \lor (q \land c) \lor [\neg (p \lor q) \land \neg c]$$

$$\equiv \langle \text{De Morgan} \rangle$$

$$(p \land c) \lor (q \land c) \lor (\neg p \land \neg q \land \neg c)$$

For conjunctive normal form we have

$$(p \lor q) \leftrightarrow c$$

$$\equiv \langle \text{definition of } \leftrightarrow \rangle$$

$$[(p \lor q) \to c] \land [c \to (p \lor q)]$$

$$\equiv \langle \text{definition of } \to \rangle$$

$$[\neg (p \lor q) \lor c] \land (\neg c \lor p \lor q)$$

$$\equiv \langle \text{De Morgan } \rangle$$

$$[(\neg p \land \neg q) \lor c] \land (\neg c \lor p \lor q)$$

$$\equiv \langle \text{distributivity of } \lor \rangle$$

$$(\neg p \lor c) \land (\neg q \lor c) \land (\neg c \lor p \lor q)$$

as required.

Question 2: We prove this by induction on the length of the formula ϕ .

Base case: Let n=1, then ϕ can only be a propositional variable of the form p. So we have,

$$\phi = p \implies (\phi' \equiv \neg p) \text{ and } (\neg \phi \equiv \neg p)$$

thus, the base case holds. Now suppose that all formulas of length $\leq n$ have the property that their dual is equivalent to their negation, then we show that it holds for formulas of length n+1.

Induction step: Let ϕ be a formula of length n+1, then using our connectives, it must be of the form $(\theta \lor \psi)$, $(\theta \land \psi)$, or $\neg \theta$ for some formulas θ and ψ .

In case 1, we have

$$\phi = (\theta \lor \psi) \implies \phi' \equiv (\theta' \land \psi') \text{ and } \neg \phi \equiv \neg(\theta \lor \psi) \equiv (\neg \theta \land \neg \psi)$$

Since the length of ϕ is n+1, θ and ψ must both have lengths $\leq n$, and so by the induction hypothesis we have $\theta' \equiv \neg \theta$ and $\psi' \equiv \neg \psi$. As proved in class, we can substitute subformulas for their equivalences, so we get

$$\phi' \equiv (\theta' \wedge \psi') \equiv (\neg \theta \wedge \neg \psi) \equiv \neg \phi$$

In case two, we have

$$\phi = (\theta \wedge \psi) \implies \phi' \equiv (\theta' \vee \psi') \text{ and } \neg \phi \equiv \neg (\theta \wedge \psi) \equiv (\neg \theta \vee \neg \psi)$$

Similarly, since the length of ϕ is n+1, θ and ψ must both have lengths $\leq n$, and so by the induction hypothesis we have $\theta' \equiv \neg \theta$ and $\psi' \equiv \neg \psi$. So we substitute to get

$$\phi' \equiv (\theta' \lor \psi') \equiv (\neg \theta \lor \neg \psi) \equiv \neg \phi$$

Now for the final case,

$$\phi = \neg \theta \implies (\phi' \equiv \neg \theta') \text{ and } (\neg \phi \equiv \neg \neg \theta \equiv \theta)$$

Note, that we didn't replace the negation because by construction, the length of θ is n so it is not a propositional variable. This also implies that we can use the induction hypothesis to replace θ' with $\neg \theta$ so we get

$$\phi' \equiv \neg \theta' \equiv \neg \neg \theta \equiv \theta \equiv \neg \phi$$

So we have $\phi' \equiv -\phi$ for any formula ϕ of length $n \geq 1$.

Question 3:

- a) We must show $\Gamma \models \tau$ i.e. we must show that for all truth assignments ν , if $\nu(\gamma) = T, \forall \gamma \in \Gamma$ then $\nu(\tau) = T$. But τ is a tautology, so it evaluates to T regardless of the truth assignment. Therefore, every truth assignment that satisfies all γ in Γ will vacuously satisfy τ , and thus, $\Gamma \models \tau$.
- b) We must show that $\tau \models \rho \iff \rho$ is a tautology. First, suppose that $\tau \models \rho$, then every truth assignment that satisfies τ also satisfies ρ . But since τ is a tautology, it is satisfied by all truth assignments, so our assumption implies that all truth assignments also satisfy ρ . Therefore, ρ must also be a tautology. Now suppose that ρ is a tautology, then it is satisfied by all truth assignments. This implies that $\tau \models \rho$ since all truth assignments satisfy τ and all truth assignments satisfy ρ .

Question 4:

We will check if the truth table of $(\phi \to \psi) \to (\phi \to \theta)$ is true when $\phi \to (\psi \to \theta)$ is true over the formulas ϕ, ψ , and θ .

ϕ	ψ	θ	$\psi \to \theta$	$\phi \to (\psi \to \theta)$
T	Т	Т	T	T
T	Т	F	F	F
T	F	Т	T	Т
T	F	F	T	T
F	Т	Т	T	T
F	Т	F	F	T
F	F	Т	Т	T
F	F	F	T	T

ϕ	ψ	θ	$\phi \to \psi$	$\phi o \theta$	$(\phi \to \psi) \to (\phi \to \theta)$
T	Т	Т	T	T	T
T	Т	F	Т	F	F
T	F	Т	F	T	Т
T	F	F	F	F	Т
F	Т	Т	Т	Т	T
F	Т	F	Т	T	Т
F	F	Т	Т	T	Т
F	F	F	T	T	Т

Since $(\phi \to \psi) \to (\phi \to \theta)$ is true whenever $\phi \to (\psi \to \theta)$ is true, we have that $\phi \to (\psi \to \theta) \models (\phi \to \psi) \to (\phi \to \theta)$. Furthermore, it is also true that $(\phi \to \psi) \to (\phi \to \theta) \models \phi \to (\psi \to \theta)$ since they have identical truth tables, in fact, $(\phi \to \psi) \to (\phi \to \theta) \equiv \phi \to (\psi \to \theta)$.

Question 5:

- a) Suppose Σ is the set of tautologies, then by definition, all possible truth assignments satisfy all tautologies $\sigma \in \Sigma$. Now if $\Sigma \models \alpha$ that means α is satisfied by all truth assignments that make all tautologies $\sigma \in \Sigma$ true. But this implies that α is satisfied by all possible truth assignments and so α is a tautology and $\alpha \in \Sigma$.
- b) Let Σ be semantically closed i.e. for any formula α if $\Sigma \models \alpha$, then $\alpha \in \Sigma$. We know from question 3 a) that any set of formulas trivially implies any tautology, that is, if τ is any tautology, then $\Sigma \models \tau$ and so $\tau \in \Sigma$ since Σ is semantically closed. Thus, Σ contains all tautologies.
- c) Let $\bigcap_{i\in I} \Sigma_i$ be the intersection of semantically closed sets Σ_i . Now suppose $\bigcap_{i\in I} \Sigma_i \models \alpha$ for some formula α , then all truth assignments ν with $\nu(\sigma) = T, \forall \sigma \in \bigcap_{i\in I} \Sigma_i$ also satisfy α . But each σ is in the intersection so, more specifically, it is in $\Sigma_i, \forall i$. Therefore, the same truth assignment that satisfied $\bigcap_{i\in I} \Sigma_i$ will also satisfy each Σ_i and thus, α . This means that $\Sigma_i \models \alpha, \forall i$ and since each Σ_i is semantically closed, $\alpha \in \Sigma_i, \forall i$. If α is in all Σ_i , it is certainly in the intersection so $\alpha \in \bigcap_{i\in I} \Sigma_i$ and $\bigcap_{i\in I} \Sigma_i$ is semantically closed.
- d) As demonstrated in class, if $\Gamma \models \phi$ and $\Gamma \models \neg \phi$, then $\Gamma \models \psi$ for all formulas ψ . So any set Γ that implies a contradiction can vacuously imply any other formula, $\{p, \neg p\}$ is the simplest case. That is $\{p, \neg p\} \models p$ and $\{p, \neg p\} \models \neg p$ so $\{p, \neg p\} \models \psi$ for any formula ψ . Thus, the semantic closure of $\{p, \neg p\}$ is Form(P, S), i.e. all possible formulas.
- e) There are three cases for the semantic closure of a set. First, if Γ can imply a contradiction, then as we have seen, it can imply all possible formulas so the unique semantic closure is the set of all possible formulas. Second, if Γ is already semantically closed, then by definition, it is already the smallest set that contains itself and is semantically closed. If Γ does not imply a contradiction and is not semantically closed, then one can generate the implications of Γ and then add them to Γ iteratively. This will produce a finite set since we have assume that $\Gamma \models \theta$ xor $\Gamma \models \neg \theta$ for some θ . This will produce the smallest unique set since we are only adding elements that are necessarily generated through implication.

Question 6:

- a) Suppose that $\Sigma \models \alpha$, then by definition, all truth assignments that satisfy Σ satisfy α . But any of those truth assignments will also satisfy $(\alpha \lor \beta)$ regardless of what they make β since \lor evaluates to true when at least one of its components is true. Thus, $\Sigma \models (\alpha \lor \beta)$. Similarly, if $\Sigma \models \beta$ then for any truth assignment that satisfies Σ will satisfy β so at least one of the components of $(\alpha \lor \beta)$ will evaluate to true. Thus, $\Sigma \models (\alpha \lor \beta)$.
- b) For our example, let $\Sigma = \{p,q\}$ with $\alpha = (p \vee q)$ and $\beta = (\neg p \wedge q)$. Then $\Sigma \models \alpha \vee \beta$ for only the truth assignment $\nu(p) = \nu(q) = T$ but $\nu(\beta) = F$ so $\Sigma \not\models \beta$.