Recommending Graduate Universities

```
import sys
import os
import collections
from collections import defaultdict
import numpy as np
import pandas as pd
from scipy import stats
import re
```

Dataset Loading and Description

Data Scraping

data.drop(data.columns[data.columns.str.contains('unnamed',case = False)],axis = 1, inplace =
data.head(14546)

	univName	major	program	season	decision	Method	decdate	decdate_t
0	University Of Waterloo	Systems Design Engineering	MS	NaN	Accepted	Website	(1, 7, 2019)	1.561964e+0!
2	The University Of Auckland	Electrical And Electronic Engineering	MS	NaN	Accepted	Website	(19, 6, 2019)	1.560928e+0!
3	Radford University	Counseling Psychology	Other	F19	Accepted	Phone	(4, 3, 2019)	1.551686e+0

	univName	major	program	season	decision	Method	decdate	decdate_t:
0	University Of Waterloo	Systems Design Engineering	MS	NaN	Accepted	Website	(1, 7, 2019)	1.561964e+0!
2	The University Of Auckland	Electrical And Electronic Engineering	MS	NaN	Accepted	Website	(19, 6, 2019)	1.560928e+0!
3	Radford University	Counseling Psychology PsyD.	Other	F19	Accepted	Phone	(4, 3, 2019)	1.551686e+0!
5	Georgia Southern University	Speech Language Pathology	MS	F19	Accepted	E-mail	(2, 7, 2019)	1.562051e+09
7	New York University (NYU) - Steinhardt	Communication Sciences And Disorders	MS	F19	Accepted	E-mail	(8, 7, 2019)	1.562569e+0!
								••
39475	Purdue University - West Lafayette	Computer Graphics Technology	MS	F19	Accepted	E-mail	(12, 2, 2019)	1.549958e+0!
39476	University Of Georgia	English	PhD	F19	Accepted	Website	(12, 2, 2019)	1.549958e+0!
30483	Clemson	Urban And	DHD	⊏ 1Ω	Accontad	E mail	(10, 2,	1 5/0786a±00

Conditinal Data Scraping

data['major'] = 'Computer science'
data.head(201)

	univName	cgpa	greV	greQ	greA	major
393	Columbia University	3.65	165.0	162.0	5.5	Computer science
395	University Of Michigan	3.65	165.0	162.0	5.5	Computer science
582	Columbia University	2.90	143.0	142.0	0.0	Computer science
872	Columbia University	4.00	170.0	170.0	0.0	Computer science
873	Columbia University	4.00	170.0	170.0	0.0	Computer science
34636	University Of Michigan	3.90	168.0	168.0	5.5	Computer science
34685	Columbia University	3.72	168.0	164.0	4.0	Computer science
34867	University Of Michigan	3.88	164.0	168.0	4.5	Computer science
34902	University Of Michigan	3.79	160.0	170.0	4.0	Computer science
35332	Columbia University	3.90	170.0	167.0	4.0	Computer science

201 rows × 6 columns

Dataset Analysis

Unique Universities Shortlisitng

```
uni_names = data['univName'].unique()
similar_univs = pd.DataFrame({'univName':uni_names})
similar_univs
```

	univName					
0	New York University (NYU) - Steinhardt					
1	Ohio State University					
2	Texas A&M University					
3	St. Johns University					
4	University Of California, Irvine					
755	University Of San Diego					
756	Indiana University At Bloomington					
757	University Of California Los Angeles					
758	University Of Minnesota (UMN)					
759	University Of Zurich					
760 rows × 1 columns						

Statistical Calculation (Description)

```
data.describe()
```

	decdate_ts	cgpa	greV	greQ	
count	4.993000e+03	4481.000000	4993.000000	4993.000000	499
mean	1.551716e+09	3.755642	158.714801	160.622271	
std	2.072409e+06	0.644852	6.505974	7.739675	
min	1.516694e+09	1.500000	135.000000	134.000000	
25%	1.550563e+09	3.540000	154.000000	155.000000	
E00/	1 551107~100	2 760000	150 000000	160 000000	•

Data Preprocessing

```
def convert_quant_score(quant_score):
    quant_list = []
    quant_score = quant_score.tolist()
    for old quant in quant score:
        if old quant <= 170:
            quant list.append(old quant)
            continue
        else:
            old quant = old quant/4.7
            if old quant <=130:</pre>
                quant_list.append(130)
            else:
                quant_list.append(old_quant)
    return quant_list
def convert_verbal_score(verbal_score):
    verbal list = []
    verbal_score = verbal_score.tolist()
    for old verbal in verbal score:
        if old_verbal <= 170:</pre>
            verbal_list.append(old_verbal)
            continue
        else:
            old_verbal = old_verbal/4.7
            if old_verbal <=130:</pre>
                verbal_list.append(130)
            else:
                verbal_list.append(old_verbal)
    return verbal_list
data['greQ'] = convert_quant_score(data['greQ'])
data['greV'] = convert_verbal_score(data['greV'])
```

Exploratory Data Analysis

import seaborn as sns
import matplotlib.pyplot as plt
sns.pairplot(data, palette="husl", x_vars=["greV","cgpa","greQ"], y_vars=["greV","cgpa","greQ
plt.show()

```
def normalize_gpa(data2,cgpa,totalcgpa):
    cgpa = data2[cgpa].tolist()
   totalcgpa = data2[totalcgpa].tolist()
   for i in range(len(cgpa)):
        if totalcgpa[i] != 0:
            cgpa[i] = cgpa[i] / totalcgpa[i]
        else:
            cgpa[i] = 0
   data2['cgpa'] = cgpa
    return data2
     166
data = data.drop('major',1)
data = data.drop('program',1)
data = data.drop('season',1)
data = data.drop('decision',1)
data = data.drop('Method',1)
data = data.drop('decdate',1)
data = data.drop('decdate ts',1)
data = data.drop('is new gre',1)
data = data.drop('gre_subject',1)
data = data.drop('status',1)
data = data.drop('post_data',1)
data = data.drop('post_timestamp',1)
data = data.drop('comments',1)
university list = list(set(data['univName'].tolist()))
for i in range(len(university_list)):
    if(len(data[data['univName'] == university_list[i]]) < 100):</pre>
        data = data[data['univName'] != university_list[i]]
data = data.dropna()
data.head()
```

```
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py::
       """Entry point for launching an IPython kernel.
     /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:
    /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py::
       This is separate from the ipykernel package so we can avoid
     /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:
       after removing the cwd from sys.path.
     /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:
     /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:
     /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:
       import svs
     /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:
     /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:
       if __name__ == '__main__':
     /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:
       # Remove the CWD from sys.path while we load stuff.
     /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py::
       # This is added back by InteractiveShellApp.init path()
     /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py::
       if sys.path[0] == '':
     /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py::
       del sys.path[0]
                     univNama cona
                                           are∩ are∧
                                     areV
processed_data = data[['greV', 'greQ', 'greA', 'cgpa', 'univName']]
processed data.head()
processed data.to csv('/content/Final.csv')
import math
from sklearn import neighbors, datasets
from numpy.random import permutation
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import precision recall fscore support
random_indices = permutation(data.index)
test cutoff = math.floor(len(data)/5)
print(test cutoff)
test = processed_data.loc[random_indices[1:test_cutoff]]
train = processed data.loc[random indices[test cutoff:]]
train_output_data = train['univName']
print("train Output data", train_output_data)
train input data = train
train_input_data = train_input_data.drop('univName',1)
print("train input data", train_input_data)
test_output_data = test['univName']
```

```
print("test Output data", test_output_data)
test_input_data = test
test_input_data = test_input_data.drop('univName',1)
print("test input data", test input data)
     45
     train Output data 5249
                                   Columbia University
              University Of Michigan
     35751
     6853
              University Of Michigan
                 Columbia University
     13043
     15258
                 Columbia University
     35412
              University Of Michigan
     25038
                 Columbia University
     11773
              University Of Michigan
              University Of Michigan
     4830
                 Columbia University
     32915
     Name: univName, Length: 183, dtype: object
     train input data
                              greV
                                     greQ greA cgpa
     5249
            154.0 170.0
                           0.0 3.94
     35751 164.0 169.0
                           4.0
                                3.94
     6853
            158.0 170.0
                           4.0 4.00
     13043 157.0 166.0
                           3.5
                                3.77
     15258 155.0 158.0
                           5.0
                                4.00
     . . .
              . . .
                     . . .
                           . . .
                                 . . .
     35412 166.0 170.0
                           5.0
                                3.96
     25038 162.0 167.0
                           5.0 3.98
     11773 157.0 170.0
                           3.5 3.73
     4830
            163.0 170.0
                           4.0 4.00
     32915 161.0 170.0
                           4.0 3.90
     [183 rows x 4 columns]
     test Output data 24930
                               University Of Michigan
              University Of Michigan
     11764
     28350
                 Columbia University
                 Columbia University
     18635
     28158
                 Columbia University
     873
                 Columbia University
     24760
                 Columbia University
     10403
                 Columbia University
              University Of Michigan
     14040
     14477
              University Of Michigan
     4547
                 Columbia University
     28469
              University Of Michigan
     30175
              University Of Michigan
     12939
                 Columbia University
              University Of Michigan
     16015
     15790
                 Columbia University
              University Of Michigan
     25091
              University Of Michigan
     35856
     24585
              University Of Michigan
                 Columbia University
     26632
     20786
              University Of Michigan
     11001
                 Columbia University
     36731
              University Of Michigan
     16897
                 Columbia University
```

```
Columbia University
University Of Michigan
Columbia University
University Of Michigan
University Of Michigan
Columbia University
Columbia University
```

```
def euclideanDistance(data1, data2, length):
   distance = 0
   for x in range(length):
        distance += np.square(data1[x] - data2[x])
    return np.sqrt(distance)
def knn(trainingSet, testInstance, k):
   print(k)
   distances = {}
    sort = \{\}
   length = testInstance.shape[1]
   for x in range(len(trainingSet)):
        dist = euclideanDistance(testInstance, trainingSet.iloc[x], length)
        distances[x] = dist[0]
    sorted_d = sorted(distances.items(), key=lambda x: x[1])
   neighbors = []
   for x in range(k):
        neighbors.append(sorted_d[x][0])
   classVotes = {}
   for x in range(len(neighbors)):
        response = trainingSet.iloc[neighbors[x]][-1]
        if response in classVotes:
            classVotes[response] += 1
        else:
            classVotes[response] = 1
    sortedVotes = sorted(classVotes.items(), key=lambda x: x[1], reverse=True)
   return(sortedVotes, neighbors)
testSet = [[142, 153, 5.0, 3.6]]
test = pd.DataFrame(testSet)
test.shape
```

```
(1, 4)

k = 7

result,neigh= knn(processed_data, test, k)

list1 = []
list2 = []
for i in result:
    list1.append(i[0])
    list2.append(i[1])

for i in list1:
    print(i)

    7
    Columbia University
    University Of Michigan
```

Final University Recommendation

×