1. For the PDA defined by $(Q,\Sigma,\Gamma,\delta,q_0,F)$, which of the following defines the mapping associated with the transition function δ ?

$$1.Q \times \Sigma_{\varepsilon} \times F \rightarrow Q \times \Gamma_{\varepsilon}$$

$$2.Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow Q \times \Gamma_{\varepsilon}$$

$$\checkmark$$
3.Q× Σ_{ϵ} × Γ_{ϵ} \rightarrow P(Q× Γ_{ϵ})

$$4.Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow P(Q \times \Sigma_{\varepsilon})$$

$$5.Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow P(\Sigma_{\varepsilon} \times \Gamma_{\varepsilon})$$

2. Which of the following notations for a PDA stack operation defines a transition without reading input and without popping any symbol from the stack?

- 1.1 0 ε
- 2.0 ε 0
- √3.εε\$
 - 4.0 \$ ε

3. Which of the following notations for a PDA stack pushes a symbol onto the stack?

- 1.1 0 ε
- **√**2.0 ε 0
 - 3.ε \$ ε
 - 4.0 \$ ε

1. Consider the PDA below that recognizes strings generated by the CFG G with rules S→bAa; A→Aa|ε.

Which of the following is the correct list of stack elements (leftmost is top) when the **b** is matched from the input **baa**.

- √1.b A a \$
 - 2.\$ a b A
 - 3.A a b \$
 - 4.baA\$

2. Consider the PDA below that recognizes strings generated by the CFG G with rules S→bAa; A→Aa|ε.

Which of the following is the correct list of stack elements (leftmost is top) when the first **a** is matched from the input **baa**. (3 points)

- 1.b A a \$
- 2.a a A \$
- 3.a A A \$
- √4.a a \$

3. Consider the PDA below that recognizes strings generated by the CFG G with rules S→bAa; A→Aa|ε.

Which of the following is the correct list of stack elements (leftmost is top) when the second **a** is matched from the input **baa**. (3 points)

- 1.baa\$
- √2.a \$
 - 3.A a \$
 - 4.a A \$

1. Consider $C=\{a^ib^jc^k|0\le i\le j\le k\}$ with pumping length 4. For which of the partitions of $s=a^4b^4c^4=uvxyz$ would the string uv^2xy^2z be in C?

	u		٧		Х	У			Z			Α
а	а	а	а	b	b	b	b	С	С	С	С	
		u		٧		х	У		Z			В
а	а	а	а	b	b	b	b	С	С	С	С	
			u			٧		Х	У	Z		С
а	а	а	а	b	b	b	b	С	С	С	С	

- 1.A
- 2.B
- 3.C
- √ 4. None

2. Consider $C = \{a^i b^j c^k | 0 \le i \le j \le k\}$ with pumping length 4. For which of the partitions of $s = a^4 b^4 c^4 = uvxyz$ would the string $uv^0 xy^0 z$ be in C?

	u		V		X	У			Z			Α
а	а	а	а	b	b	y b	b	С	С	С	С	
		u		٧		Х	У		Z			В
а	а	а	а	b	b	b	b	С	С	С	С	
			u			٧		Х	у	z C		С
а	а	а	а	b	b	b	b	С	С	С	С	

- **√**1.A
 - 2.B
 - 3.C
 - 4. None

3. Consider $C=\{a^ib^jc^k|0\le i\le j\le k\}$ with pumping length 4. For which of the partitions of $s=a^4b^4c^4=uvxyz$ would the string uvxyz be in C?

	u		V		Х	У			Z			Α
а	а	а	а	b	b	b	b	С	С	С	С	
		u		٧		х	у		z			В
а	а	а	а	b	b	b	b	С	С	С	С	
			u			v		Х	у	z		С
а	а	а	а	b	b	b	b	С	С	С	С	

(3 points)

- 1.A
- 2.B
- 3.C

√ 4. All of them

```
1. Which of the following is a CFL? Assume \Sigma = \{0,1\}. (3 points)

A. \{1^n0^n1^n|n\geq 0\}
B. \{0^n10^n10^n|n\geq 0\}
C. \{0^n10^n|n\geq 0\}
D. \{0^n1^n0^n|n\geq 0\}
```

ANS: C PTS: 3 2. Suppose G is a CFG in CNF form with $\Sigma = \{a,b\}$ and the following rules (R): $S \rightarrow AB$, $A \rightarrow AC \mid b$, $B \rightarrow DB \mid a$, $C \rightarrow a$, $D \rightarrow b$. Assume that S is the start variable. Below is the 5-level parse tree for the string **babba** using G:

How many levels would the parse tree for **baba** have?

(3 points)

- A. 6
- B. 5
- **√** C. 4
 - D.3

ANS: C PTS: 3 3. Given a grammar in CNF, what is the minimum number of levels that a parse tree can have when a string of length 2^n is derived? Assume that the tree is full, that is, every nonterminal node has two nonterminal children except those on the next-to-lowest level in which case each nonterminal has only one terminal as a child.

```
(3 points)
```

 \checkmark A. n+2

B.n+1

C. n

D.n/2

ANS: A PTS: 3 1. Which step of CNF conversion for CFGs was executed below?

Before: After:

 $S_0 \rightarrow S$ $S_0 \rightarrow S$

 $S \rightarrow AS|ASB|SB|S$ $S \rightarrow AS|ASB|SB|S$

 $A \rightarrow aAS|aS|a$ $A \rightarrow aAS|aS|a$

 $B \rightarrow SbS|A|bb$ $B \rightarrow SbS|bb|aAS|aS|a$

- A. Step 1 (New start variable)
- B. Step 2 (Remove ε rules)
- √ C. Step 3 (Remove unit rules)
 - D. Step 4 (Final conversion)

2. Which step of CNF conversion for CFGs was executed below?

```
(Before) (After)
S_0 \rightarrow S S_0 \rightarrow S
S \rightarrow ASB|SB S \rightarrow AS|ASB|SB|S
A \rightarrow aAS|aS|a A \rightarrow aAS|aS|a
B \rightarrow SbS|A|\epsilon|bb B \rightarrow SbS|A|bb

(3 points)

A. Step 1 (New start variable)

B. Step 2 (Remove \epsilon rules)

C. Step 3 (Remove unit rules)
```

D. Step 4 (Final conversion)

3. How many right-hand-sides are not in proper CNF form before Step 4 is applied?

$$S_0 \rightarrow AS|ASB|SB$$

 $S \rightarrow AS|ASB|SB$
 $A \rightarrow aAS|aS|a$
 $B \rightarrow SbS|bb|aAS|a$

- A. 5
- B. 6
- **√** C. 7
 - D.8

Which of the following is the correct updated rule for replacing the nonterminal S after the A -> ε rule is removed from the following CFG: S -> AS|bA, A -> B|ε, B -> b?

 (3 points)
 A. S -> AS | bA | A

 B. S -> AS | b
 C. S -> S | b
 ✓ D.S -> AS | S | bA | b

2. Which of the following is the correct updated rule for replacing the nonterminal S after the B -> ε rule is removed from the following CFG: S -> ASB|BAB, B -> b|ε, A -> Aa|ε?
(3 points)
✓ A. S -> ASB | BAB | AS | AB | BA | A B. S -> ASB | BAB | AS | AB | BA

D.S -> ASB | BAB | AS | S | AB | BA

(3 points)

$$A.S -> A_1A|BA, A_1->AS, B->b$$

C. S -> ASB | BAB | AB | BA

B. S ->
$$A_1A|bA$$
, A_1 ->AS

$$\checkmark$$
 C.S -> A₁A|BA, A₁->SA, B->b

D. S ->
$$A_1|AB$$
, A_1 ->SA, B->b

Theorem: Any CFL is generated by a CFG in CNF.

Proof. **Stage 1** – Add a new start symbol S_0 and rule $S_0 \rightarrow S$, where S was the original start variable (do not want S in the rhs of any rule).

Stage 2 – Eliminate all ϵ -rules.

Repeat . . . (until all ϵ -rules are removed):

- 1. Eliminate the ϵ -rule $A \to \epsilon$, where A is not the start variable.
- 2. For each occurrence of *A* on the *rhs* of a rule, add a new rule with that occurrence of *A* deleted.
- 3. Replace the rule $B \to A$ (if present) by $B \to A \mid \epsilon$ unless the rule $B \to \epsilon$ has not been previously eliminated.

Example: To delete $A \to \epsilon$, replace $B \to uAv$ by $B \to uAv \mid uv$; replace $B \to uAvAw$ by $B \to uAvAw \mid uvAw \mid uAvw \mid uvw$.

Stage 3 – Remove all unit rules.

Repeat ... (until all unit rules are removed):

- 1. Remove a unit rule $A \rightarrow B$.
- 2. For each rule $B \to u$ that appears, add the rule $A \to u$, unless it was a previously-removed unit rule (u can be a string of variables and terminals).

Stage 4 - Convert all remaining rules.

Repeat . . . (until no rules of the form $A \to u_1 u_2 \dots u_k$ with $k \ge 3$ remain):

- 1. Replace a rule $A \to u_1 u_2 \dots u_k$, $k \ge 3$, where each u_i , $1 \le i \le k$, is a variable or a terminal, by $A \to u_1 A_1$, $A_1 \to u_2 A_2$, ..., $A_{k-2} \to u_{k-1} u_k$, where A_1, A_2, \dots, A_{k-2} are new variables.
- 2. If $k \geq 2$, replace any terminal u_k with a new variable U_i and add the rule $U_i \rightarrow u_k$.

Step 1 - new start variable.

Step 2 – remove ϵ rules.

Remove
$$B \Rightarrow E$$
 Remove $A \Rightarrow E$
 $50 \Rightarrow 5$
 $5 \Rightarrow ASA|2B$ $S \Rightarrow ASA|2B|2|AS|5A|5$
 $A \Rightarrow B|S$ $A \Rightarrow B|S$
 $B \Rightarrow b$ $B \Rightarrow b$

Step 3 - remove unit rules.

step 3 - Telliove unit Tules.	
Remove S > 5	Remove A → B 50 → ASA 2B 2154 AS
5-20 ASA 28 2 SA A 5 A -> B 5	S-> ASA 2B 2 SALAS A-> S16
B > 1	Remove A > 5
Remove 50-> S 50->ASA 2B 2 SA AS 5->ASA 2B 2 SA AS	5 -> ASA 2 B 2 SA AS 5 -> ASA 2 B 2 SA AS
A > B S B > b	A > 6 ASA 2B 2 SA A S

Step 4 – convert remaining rules.

S > AA, I UB | 2 | SA | AS S > AA, I UB | 3 | SA | AS A > b | AA, I UB | 3 | SA | AS

A, >SA

U ショ

R >> 5

Example: Let's draw the state diagram for the PDA that would recognize the language generated by the CFG G_1 having rules $S \to aTb \mid b$ and $T \to Ta \mid \epsilon$, with $\Sigma_{\epsilon} = \{a, b\} \cup \{\epsilon\}$.

Example: Let's draw the state diagram for the PDA that would recognize the language generated by the CFG G_2 having rules $E \to E + T \mid T$, $T \to T * F \mid F$, and $F \to (E) \mid a$, with $\Sigma_{\epsilon} = \{a, +, *, (,)\} \cup \{\epsilon\}$.

CS312

Homework #6 Answer Key

1 CNF Step 1

Perform step one of converting the following CFG into CNF by adding a new start state S. $V = \{A, B\}, \Sigma = \{0, 1, \epsilon\}, S = A, R =$

$$A \rightarrow BAB \mid B \mid 1 \mid \epsilon$$
$$B \rightarrow 00 \mid \epsilon$$

Answer

$$V = \{S,A,B\}, \; \Sigma = \{0,1\}, \; S = S, \; R =$$

$$S \to A$$

$$A \to BAB \mid B \mid 1 \mid \epsilon$$

$$B \to 00 \mid \epsilon$$

2 CNF Step 2

Perform step two of converting the following CFG's into CNF by removing ϵ rules. No points off if $C \to C$ rule left in for part (a).

2.a

$$V = \{S,A,B,C\}, \ \Sigma = \{a,b,c\}, \ S = S, \ R =$$

$$S \to A$$

$$A \to AaB$$

$$B \to b \mid C \mid \epsilon$$

$$C \to CC \mid c \mid \epsilon$$

Answer

$$V = \{S,A,B,C\}, \ \Sigma = \{a,b,c\}, \ S = S, \ R =$$

$$S \to A$$

$$A \to AaB \mid Aa$$

$$B \to b \mid C$$

$$C \to CC \mid c$$

2.b

$$V=\{S,A,B\},\; \Sigma=\{a,b,\epsilon\},\; S=S,\; R=$$

$$S\to A$$

$$A\to AA\mid AB\mid B\mid a$$

$$B\to BB\mid b\mid \epsilon$$

Answer

$$V=\{S,A,B\},\, \Sigma=\{a,b\},\, S=S,\, R=$$

$$S\to A\mid \epsilon$$

$$A\to AA\mid AB\mid B\mid a$$

$$B\to BB\mid b$$

3 CNF Step 3

Perform step three of converting the following CFG's into CNF by removing unit rules. No points off if $A \to BC$ rule left in for part (b).

3.a

$$V = \{S,A,B\}, \; \Sigma = \{a,b\}, \; S = S, \; R =$$

$$S \to A$$

$$A \to AA \mid AB \mid A \mid B \mid aB$$

$$B \to BB \mid Bb \mid b$$

Answer

$$\begin{split} V = \{S,A,B\}, \ \Sigma = \{a,b\}, \ S = S, \ R = \\ S \rightarrow &AA \mid AB \mid BB \mid Bb \mid b \mid aB \\ A \rightarrow &AA \mid AB \mid BB \mid Bb \mid b \mid aB \\ B \rightarrow &BB \mid Bb \mid b \end{split}$$

3.b

$$V = \{S,A,B,C,D\}, \ \Sigma = \{a,b,c\}, \ S = S, \ R =$$

$$S \rightarrow A \mid \epsilon$$

$$A \rightarrow BC$$

$$B \rightarrow BD \mid bb$$

$$C \rightarrow CD \mid cc$$

$$D \rightarrow B \mid C$$

Answer

$$V = \{S,B,C,D\}, \ \Sigma = \{a,b,c\}, \ S = S, \ R =$$

$$S \rightarrow BC \mid \epsilon$$

$$B \rightarrow BD \mid bb$$

$$C \rightarrow CD \mid cc$$

$$D \rightarrow BD \mid bb \mid CD \mid cc$$

4 CNF Step 4

Perform step four of converting the following CFG into CNF by removing remaining rules.

$$V = \{S,A,B\}, \ \Sigma = \{a,b\}, \ S = S, \ R =$$

$$S \rightarrow AAB \mid aBb \mid ABB \mid Ab$$

$$A \rightarrow AAB \mid aBb \mid ABB \mid Ab$$

$$B \rightarrow BB \mid Bb \mid b$$

Sample Answer

$$V = \{S,A,B\}, \ \Sigma = \{a,b\}, \ S = S, \ R =$$

$$S \rightarrow AE \mid FC \mid EB \mid AC$$

$$A \rightarrow AE \mid FC \mid EB \mid AC$$

$$B \rightarrow BB \mid BC \mid b$$

$$C \rightarrow b$$

$$D \rightarrow a$$

$$E \rightarrow AB$$

$$F \rightarrow DB$$

5 CFG to PDA Conversion

Using the technique that was covered in class, convert the following CFG to a PDA:

$$V = \{A, B, C, D\}, \Sigma_{\epsilon} = \{x, \sqrt{,}+, (,)\} \cup \{\epsilon\}, S = A, R =$$

$$A \to B \mid C \mid x$$

$$B \to \sqrt{C} \mid \sqrt{A}$$

$$C \to (D) \mid (A)$$

$$D \to A + A$$

Answer

COSC 312

Homework #5 Answer Key

1

Produce a context-free grammar (CFG) for each of the following languages, assuming $\Sigma = \{0, 1\}$: (showing just the rules suffices)

1.a

```
\{w \mid w \text{ starts and ends with different symbols}\}\
Example Answer: (S \to 0A1 \mid 1A0; A \to 0A \mid 1A \mid \epsilon)
```

1.b

```
\{w \mid \text{the length of w is an integer multiplier of 3}\}\
Example Answer: (S \to 0T \mid 1T \mid \epsilon; T \to 0U \mid 1U; U \to 0S \mid 1S)
```

1.c

```
\{ww^R \mid \text{ i.e., a word followed by that word reversed}\}\
Example Answer: (S \to 0S0 \mid 1S1 \mid \epsilon)
```

2

```
Let G = (\{S, A, B, C, D, Z\}, (0, 1), R, S), where R = \{S \to A \mid C \mid Z; A \to 01B \mid 0A \mid \epsilon; B \to 1B \mid 10A; C \to 10D \mid 1C \mid \epsilon; D \to 01C \mid 0D; Z \to 0Z1 \mid \epsilon\}.
```

2.a

Describe the language L (in English) that is generated by the CFG G.

Answer: L(G) is the language of either an equal number of disjoint 01 and 10 substrings or the language of n 0's followed by n 1's. By disjoint we mean 0110 rather than 010.

Prove that the language L generated by the CFG G is **not** regular. **Hint**: use the fact that regular languages are closed under union and prove that one component of the language is not regular by the P

Answer:

Prove that the language L(G) is not a regular language.

Proof. 1. Let L(G) be the language generated by the CFG G.

- 2. Assume L(G₁) is the language generated by the rule set $\{S \to Z; Z \to 0Z1 \mid \epsilon\}$
- 3. Assume L(G₂) is the language generated by the rule set $\{S \to A \mid C; A \to 01B \mid 0A \mid \epsilon; B \to 1B \mid 10A; C \to 10D \mid 1C \mid \epsilon; D \to 01C \mid 0D\}$
- 4. If we can show that either $L(G_1)$ or $L(G_2)$ is not regular, then L(G) would not be regular by the union closure of regular languages.
- 5. Assume $L(G_1)$ is regular.
- 6. Let p be the pumping length of $L(G_1)$.
- 7. Suppose we choose $s = 0^p 1^p \in L(G_1)$ so that $|0^p 1^p| > p$
- 8. By the pumping lemma, s can be partitioned as s = xyz such that for all $i \ge 0, xy^iz \in L(G_1)$.
- 9. By condition 3 of the pumping lemma, s must be divided so that $|xy| \le p$. Therefore y must contain only one or more 0's $\forall s = xyz$.
- 10. Let $s' = xy^2z \in L(G_1)$ by choosing i = 2.
- 11. $s' = 0^{p+|y|} 1^p \notin L(G_1)$

Therefore, by this contradiction $L(G_1)$ is not regular, and subsequently L(G) must not be regular due to the union closure of regular languages. \square

8. Turing Machines

Example: Let's revisit our TM M_1 that tests the membership of the language $L_1 = \{w \# w \mid w \in \{0,1\}^*\}.$

S_0	If symbol read is a 0 or 1, replace it by x and remember the symbol as a ;							
0	if the symbol is a # go to S_5 ; else reject .							
	$\delta(S_0,0) = (S_1(0),x,R), \delta(S_0,1) = (S_1(1),x,R), \delta(S_0,\#) = (S_5,\#,R)$							
$S_1(a)$	Move right until a # is found; if no # is found before blank, reject.							
	$\delta(S_1(a),0) = (S_1(a),0,R), \delta(S_1(a),1) = (S_1(a),1,R)$							
	$\delta(S_1(a), \#) = (S_2(a), \#, R)$ // change state							
$S_2(a)$	Move right until a 0 or 1 is found; if current symbol							
	is the same as a , replace if by x ; else reject .							
	$\delta(S_2(a), x) = (S_2(a), x, R), \delta(S_2(0), 0) = (S_3, x, L)$							
,	$\delta(S_2(1),1) = (S_3,x,L)$ // change state							
S_3	Move left until a # is found.							
	$\delta(S_3, a) = (S_3, a, L)$, where $a \in \{0, 1, x\}$							
	$\delta(S_3, \#) = (S_4, \#, L)$ // change state							
S_4	Move left until an x is found and go to S_0							
	$\delta(S_4, a) = (S_4, a, L)$, where $a \in \{0, 1\}$							
	$\delta(S_4, x) = (S_0, x, R) / / \text{ change state}$							
S_5	Move right until a 0, 1, or blank is found; accept if current symbol							
	is a blank; reject if current symbol is 0 or 1.							
	$\delta(S_5, a) = (S_5, a, R)$, where $a \in \{0, 1, x\}$ // stay in S_5							
	$\delta(S_5, blank) = (S_0, blank, L) // accept$							

Legend:

Instruction when 'Blank' symbol is read
Instruction when '0' symbol is read
Instruction when '1' symbol is read