Anders: базова бібліотека

Максим Сохацький ¹

¹ Національний технічний університет України «Київський Політехнічний Інститут» ім. Ігора Сікорського 26 листопада 2020

Анотація

Тут представлена базова бібліотека мови **Anders** для курсу «Теорія типів», яка сумісна з позначеннями, що використовуються в підручнику НоТТ. Серед принципів, які покладені в основу бібліотеки, головними є: лаконічность, академічність, педагогічність. Кожна сторінка має на меті повністю висвітлити компоненти типу, використовуючи тільки ті типи, що були викладені попередньо, кожне визначення повинно містити як математичну нотацію так і код верифікатора та бути вичерпним посібником користувача мови програмування **Anders** та її базової бібліотеки. Загалом передбачається, що бібліотека повинна відповідати підручнику НоТТ, та бути його практичним досліднидницьким артефактом.

Теорія типів

Теорія типів — це універсальна мова програмування чистої математики (для доведення теорем), яка може містити довільну кількість консистентних аксіом, впорядкованих у вигляді псевдо-ізоморфізмів: функцій епсоdе (способи конструювання елементів типу) і decode (залежні елімінатори принципу індукції типу) та їх рівнянь — бета і ета правил обчислювальності та унікальності. Зазвичай теорія типів, як мова програмування, вже постачається з наступними типами (примітивами-аксіомами) та коментарями у вигляді окремих лекцій (конспекти, документація).

Головна мотивація гомотопічної теорії — надати обчислювальну семантику гомотопічним типам та СW-комплексам. Головна ідея гомотопічної теорії [1] полягає в поєднанні просторів функцій, просторів контекстів і просторів шляхів таким чином, що вони утворюють фібраційну рівність яка збігається (доводиться в самій теорії) з простором шляхів.

Завдяки відсутності ета-правила у рівності, не кожні два доведення одного простору шляхів дорівнюють між собою, отже простір шляхів утворює багатовимірну структуру інфініті-групоїда.

Групоїдна інтерпретація теорії типів ставить питання про існування мови, в якій можна довести механічно всі всластивості категорного визначення групоїда.

Основи

Модальні унівалентні МLTT основи розділені на три частини. Перша частина містить класичні типи МLTT системи описані Мартіном-Льофом. Друга частина містить унівалентні ідентифікаційні системи. Третя частина містить модальності, які використовуються в диференціальній геометріїї та в теорії гомотопій. Основи пропонують фундаментальний базис який використовується для формалізації сучасної математики в таких системах доведення теорем як: Соq, Agda, Lean.

- Фібраційні
- Унівалентні
- Модальні

Математики

Друга частина базової бібліотеки містить формалізації математичних теорій з різних галузей математики: аналіз, алгебра, геометрія, теорія гомотопій, теорія категорій.

Слухачам курсу (10) пропонується застосувати теорію типів для доведення початкового але нетривіального результу, який є відкритою проблемою в теорії типів для однеї із математик, що є курсами на кафедрі чистої математики (КМ-111):

- Функціональний аналіз
- Гомологічна алгебра
- Диференціальна геометрія
- Теорія гомотопій
- Теорія категорій

1 Простори функцій

 Π -тип — це простір, що містить залежні функції, кодомен яких залежить від значення з домену. Так як всі розшарування домену присутні повністю в кожній функції з простору, Π -тип також називається залежним добутком, так як фунція визначена на всьому просторі домена.

Простори залежних функції використовуються в теорії типів для моделювання різних математичних конструкцій, об'єктів, типів, просторів, а також їхніх відображень: залежних функцій, неперервниї відображень, етальних відображень, розшарувань, квантора узанальнення ∀, імплікації, тощо.

1.1 Формація

Визначення 1.1 (П-формація, залежний добуток). П-типи репрезентують спосіб створення просторів залежних функцій $f: \Pi(x:A), B(x)$ в певному всесвіті U_i , з доменом в A і кодоменом в сім'ї функцій $B: A \to U_i$ над A.

$$\Pi: U =_{def} \prod_{x:A} B(x).$$

$$\begin{array}{lll} def & Pi & (A : U) & (B : A \rightarrow U) : U \\ := & \Pi & (x : A), & B(x) \end{array}$$

1.2 Конструкція

Визначення 1.2 (λ -функція). Лямбда конструктор визначає нову лямбда функцію в просторі залежних функцій, вона ще називається лямбда абстракцією і позначається як $\lambda x.b(x)$ або $x \mapsto b(x)$.

$$\lambda(x:A) \to b(x): \Pi(A,B) =_{def}$$

$$\prod_{A:U} \prod_{B:A \to U} \prod_{a:A} \prod_{b:B(a)} \lambda x.b.$$

def lambda (A: U) (B: A
$$\rightarrow$$
 U) (b: Pi A B)
: Pi A B := λ (x : A), b(x)

def lam (A B: U) (f: A
$$\rightarrow$$
 B)
: A \rightarrow B := λ (x : A), f(x)

Коли кодомен не залежить від значеення з домену функції $f:A\to B$ розглядаються в контексті System F_ω , залежний випадок розглядається в Systen P_ω або Calculus of Construction (CoC).

1.3 Елімінація

Визначення 1.3 (Принцип індукції). Якшо предикат виконується для лямбда функції тоді існує функція з простору функцій в простіп предикатів.

def
$$\Pi$$
-ind (A : U) (B : A \rightarrow U) (C : Pi A B \rightarrow U) (g: Π (x: Pi A B), C x) : Π (p: Pi A B), C p := λ (p: Pi A B), g(p)

Визначення 1.3.1 (λ -аплікація). Застосування функції до аргументів редукує терм використовуючи рекурсивну підстановку аргументів в тіло функції.

$$f \ a : B(a) =_{def} \prod_{A:U} \prod_{B:A \to U} \prod_{a:A} \prod_{f:\prod_{a:A} B(a)} f(a).$$

def apply (A: U) (B: A
$$\rightarrow$$
 U) (f: Pi A B) (a: A) : B a := f(a) def app (A B: U) (f: A \rightarrow B) (x: A): B := f(x)

Визначення 1.3.2 (Композиція функцій).

$$\begin{array}{l} \text{def } \circ^T \ (x \ y \ z \colon U) \ \colon U \\ := \ (y \ \to \ z) \ \to \ (x \ \to \ y) \ \to \ (x \ \to \ z) \end{array}$$

1.4 Обчислювальність

Теорема 1.4 (Обчислювальність Π_{β}). β -правило показує, що композиція $\limsup \circ \operatorname{app}$ може бути скорочена (fused).

$$f(a) =_{B(a)} (\lambda(x : A) \to f(a))(a).$$

def
$$\Pi$$
- β (A : U) (B : A \rightarrow U) (a : A) (f : Pi A B)
: Path (B a) (apply A B (lambda A B f) a) (f a)
:= idp (B a) (f a)

1.5 Унікальність

Теорема 1.5 (Унікальність Π_{η}). η -правило показує, що композиація арр о lam можу бути скоронеча (fused).

$$f =_{(x:A)\to B(a)} (\lambda(y:A)\to f(y)).$$

2 Простори контекстів

 Σ -тип — це простір, що містить залежні пари, де тип другого елемента залежить від значення першого елемента. Оскільки в кожній визначеній парі присутня лише одна точка домену волокна, — тип також є залежною сумою, де основа волокна є непересічним об'єднанням.

Простори залежних пар використовуються в теорії типів для моделювання декартових добутків, непересічних сум, розшарувань, векторних просторів, телескопів, лінз, контекстів, об'єктів, алгебр, квантору існування \exists , тощо.

2.1 Формація

Визначення 2.1 (Σ -формація, залежна сума). Тип залежної суми індексований типом A в сенсу кодобутку або диз'юнктивної суми, де тільки одне волокно кодомену B(x) присутнє в парі.

$$\Sigma: U =_{def} \sum_{x:A} B(x).$$

$$\begin{array}{lll} def & Sigma & (A:\ U) & (B:\ A \rightarrow U) & :\ U \\ := & \Sigma & (x:\ A)\ , & B(x) \end{array}$$

2.2 Конструкція

Визначення 2.2 (Залежна пара). Конструктор залежної пари — це спосіб визначення індексованої пари над типом A елементу кодобутку або диз'юнктивного об'єднання.

$$\begin{aligned} \mathbf{pair} : \Sigma(A,B) =_{def} \\ \prod_{A:U} \prod_{B:A \to U} \prod_{a:A} \prod_{b:B(a)} (a,b). \end{aligned}$$

2.3 Елімінація

Визначення 2.3 (Проекції). Залежні проекції $pr_1: \Sigma(A,B) \to A$ і $pr_2: \Pi_{x:\Sigma(A,B)}B(pr_1(x))$ є деконструкторами пари.

$$\begin{aligned} \mathbf{pr}_1 : \prod_{A:U} \prod_{B:A \to U} \prod_{x:\Sigma(A,B)} A \\ =_{def} .1 =_{def} (a,b) \mapsto a. \\ \mathbf{pr}_2 : \prod_{A:U} \prod_{B:A \to U} \prod_{x:\Sigma(A,B)} B(x.1) \\ =_{def} .2 =_{def} (a,b) \mapsto b. \end{aligned}$$

def pr₁ (A: U) (B: A
$$\rightarrow$$
 U) (x: Sigma A B) : A := x.1 def pr₂ (A: U) (B: A \rightarrow U) (x: Sigma A B) : B (pr₁ A B x) := x.2

Якшо ви хочете доступитися до глибокого (>1) поля в сігма-типі — ви повинні використати серію елімінаторів .2, яка закінчується елімінатором .1.

Визначення 2.3.1 (Принцип індукції Σ). Каже, що предикат, який виконується для двох проекцій, він виконується також і для всього простору пар.

```
def \Sigma-ind (A : U) (B : A \rightarrow U)

(C : \Pi (s: \Sigma (x: A), B x), U)

(g: \Pi (x: A) (y: B x), C (x,y))

(p: \Sigma (x: A), B x) : C p := g p.1 p.2
```

2.4 Обчислювальність

Визначення **2.4** (Σ -обчислювальність).

def
$$\Sigma - \beta_1$$
 (A : U) (B : A \rightarrow U) (a : A) (b : B a)
: Path A a (pr₁ A B (a, b)) := idp A a
def $\Sigma - \beta_2$ (A : U) (B : A \rightarrow U) (a : A) (b : B a)
: Path (B a) b (pr₂ A B (a, b)) := idp (B a) b

2.5 Унікальність

Визначення 2.5 (Σ -унікальність).

```
def \Sigma-\eta (A : U) (B : A \rightarrow U) (p : Sigma A B) 
 : Path (Sigma A B) p (pr<sub>1</sub> A B p, pr<sub>2</sub> A B p) 
 := idp (Sigma A B) p
```

3 Ідентифікаційні простори