Chapter 1: Iterative methods for linear systems Solutions

Exercise 22.-

- a) Let $\{v_1, \ldots, v_{n-1}\}$ be a basis of the space of vectors that are orthogonal to v. To compute Spec (A), we distinguish two cases:
 - i) $\langle u,v\rangle \neq 0$. This implies that the set $\{v_1,\ldots,v_{n-1},u\}$ is a basis of \mathbb{R}^n . Note that, for $j=1,\ldots,n-1$, we have $Av_j=\frac{3}{2}v_j-u(v^Tv_j)=\frac{3}{2}v_j$, which means that $\frac{3}{2}$ is an eigenvalue of multiplicity n-1. Moreover, $Au=\frac{3}{2}u-u(v^Tu)=(\frac{3}{2}-\langle u,v\rangle)u$, which implies that $\lambda_n=\frac{3}{2}-\langle u,v\rangle$ is also an eigenvalue. As $|\langle u,v\rangle|\leq ||u||_2||v||_2\leq \frac{1}{4}$, we have that $|\lambda_n|\geq \frac{3}{2}-\frac{1}{4}=\frac{5}{4}$. Hence, $\det A=(\frac{3}{2})^{n-1}\lambda_n$ and, as $\lambda_n\neq 0$, we conclude that $\det A\neq 0$.
 - ii) $\langle u,v\rangle=0$. In this case we consider a slightly different basis: we select $v_1=u$ and v_2,\ldots,v_{n-1} are chosen to complete a basis of the orthogonal space of v. Then, $\{v_1=u,v_2\ldots,v_{n-1},v\}$ is a basis of \mathbb{R}^n . As before, $Av_j=\frac{3}{2}v_j$ and this shows that $\frac{3}{2}$ is an eigenvalue of multiplicity n-1. Moreover, as $Av=\frac{3}{2}v-\langle v,v\rangle\,u=\frac{3}{2}v-u$ and, recalling that $Au=\frac{3}{2}u$, it is clear that the matrix A, in the basis $\{v_1=u,v_2\ldots,v_{n-1},v\}$, is all zero except for the values $\frac{3}{2}$ in the diagonal and the value -1 in the (1,n) entry. Therefore, $\det(A)=(\frac{3}{2})^n\neq 0$.
- b) Let us see first that, if the iterations converge, they converge to the solution of the linear system: if $x^{(k)} \to \bar{x}$, then $\bar{x} = B\bar{x} + b$, which is equivalent to $(I B)\bar{x} = b$ and, as I B = A, we have that $A\bar{x} = b$. To see the convergence we note that, as B = I A, the eigenvalues of B are of the form $1 \lambda_j$, where λ_j are the eigenvalues of A. We have seen that the eigenvalues of A are $\frac{3}{2}$ or the value $\lambda_n = \frac{3}{2} \langle u, v \rangle$. Hence, the eigenvalues of B are either $1 \frac{3}{2} = \frac{1}{2}$ or $1 \lambda_b = \frac{1}{2} \langle u, v \rangle$ that, using $|\langle u, v \rangle| \leq ||u||_2 ||v||_2 \leq \frac{1}{4}$, has modulus strictly less than 1. Hence, as $\rho(B) < 1$, the method converges.
- c) To bound $||B||_2$ we first note that $||B||_2 = ||-\frac{1}{2}I + uv^T||_2 \le \frac{1}{2} + ||uv^T||_2$. Then, using that $u^T u = \frac{1}{16}$ we obtain $||uv^T||_2^2 = \rho((uv^T)^T(uv^T)) = \frac{1}{16}\rho(vv^T) = \frac{1}{16}$ which implies $||uv^T||_2 = \frac{1}{4}$. Hence, $||B||_2 \le \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$. To obtain the number of iterates needed, we use the formula

$$||x^{(k)} - \bar{x}||_2 \le \frac{\beta^k}{1-\beta} ||x^{(1)} - x^{(0)}||_2.$$

Here, as $\beta = \frac{3}{4}$, $x^{(0)} = 0$ and $x^{(1)} = b$, we have that $||x^{(k)} - \bar{x}||_2 \le 4(\frac{3}{4})^k < 10^{-12}$, which implies $k \ge 101$.