모딥 스터디 12회차 GAN

최원서, 오승현, 김병주, 김민솔

INDEX

01 GAN의 개념과 구성

02 GAN 모델 예제

03 오토인코더 개념 및 예제

04 쉬는시간

05 실습

"GAN은 최근 10년간 머신러닝 분야에서 가장 멋진 아이디어다" - 얀 르쿤

Generative Adversarial Networks

생성적

적대

신경망

generator는 임의의 확률분포에서 추출한 랜덤벡터를 input으로 받는다.

※ 검은 검선: 원 데이터의 확률분포, 녹색 검선: GAN이 만들어 내는 확률분포, 파란 검선: 판별자 의 확률분포

DCGAN - generator

```
generator = Sequential() #모델 이름을 generator로 정하고 Sequential() 함수를 호출
generator.add(Dense(128*7*7, input_dim=100, activation=
LeakyReLU(0.2))) ... 0
generator.add(BatchNormalization()) ... @
generator.add(Reshape((7, 7, 128))) · · · €
generator.add(UpSampling2D()) ··· 0
generator.add(Conv2D(64, kernel_size=5, padding='same')) ··· 6
generator.add(BatchNormalization()) ··· 0
generator.add(Activation(LeakyReLU(0.2))) ... 0
generator.add(UpSampling2D()) ··· 0
generator.add(Conv2D(1, kernel_size=5, padding='same', activation=
'tanh')) ... 0
```

DCGAN - discriminator

```
# 모델 이름을 discriminator로 정하고 Sequential() 함수 호출
discriminator = Sequential()
discriminator.add(Conv2D(64, kernel_size=5, strides=2, input_
shape=(28,28,1), padding="same")) ... 0
discriminator.add(Activation(LeakyReLU(0.2))) ··· 0
discriminator.add(Dropout(0.3)) ··· 0
discriminator.add(Conv2D(128, kernel_size=5, strides=2, padding=
"same")) ... ()
discriminator.add(Activation(LeakyReLU(0.2))) ... 6
discriminator.add(Dropout(0.3)) ··· 0
discriminator.add(Flatten()) ··· 0
discriminator.add(Dense(1, activation='sigmoid')) ··· 0
discriminator.compile(loss='binary_crossentropy', optimizer='adam') ··· •
discriminator trainable = False
```

GAN 모델 실습

PPT PRESENTATION Enjoy your stylish business and campus life with BIZCAM

PPT PRESENTATION Enjoy your stylish business and campus life with BIZCAM

오토인코더 실습!

쉬는시간

PPT PRESENTATION Enjoy your stylish business and campus life with BIZCAM

GAN Model

