CC1004 - Modelos de Computação Teóricas 24 e 25

Ana Paula Tomás

Departamento de Ciência de Computadores Faculdade de Ciências da Universidade do Porto

Junho 2021

Simulador de MTs - https://turingmachinesimulator.com

© Copyleft 2017 Martin Ugarte. Very few rights reserved. Terms of service.

```
(inicio, 0, proc1, \bullet, d)
(proc1, \bullet, apaga1, \bullet, e)
                                  encontra •; à esquerda está 1?
(apaga1, 1, proc0, \bullet, e)
(proc0, \bullet, apaga0, \bullet, d)
                                  encontra •; à direita está 0?
(apaga0, 0, proc1, \bullet, d)
(apaga0, •, aceita, •, e)
                                                               ◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ■
```

```
(inicio, 0, proc1, \bullet, d)
                                 apaga 0; procura o par, i.e., o 1 mais à direita
(proc1, \bullet, apaga1, \bullet, e)
                                encontra •; à esquerda está 1?
(apaga1, 1, proc0, \bullet, e)
(proc0. •. apaga0. •. d)
                                 encontra •; à direita está 0?
(apaga0, 0, proc1, \bullet, d)
(apaga0, •, aceita, •, e)
                                                            ◆□ > ◆圖 > ◆圖 > ◆圖 > □
```

```
(inicio, 0, proc1, \bullet, d)
                                apaga 0; procura o par, i.e., o 1 mais à direita
(proc1, 0, proc1, 0, d)
(proc1, \bullet, apaga1, \bullet, e)
                                encontra •; à esquerda está 1?
(apaga1, 1, proc0, •, e)
(proc0. •. apaga0. •. d)
                                encontra •; à direita está 0?
(apaga0, 0, proc1, \bullet, d)
(apaga0, •, aceita, •, e)
                                                           ◆□ > ◆圖 > ◆圖 > ◆圖 > □
```

```
(inicio, 0, proc1, \bullet, d)
                               apaga 0; procura o par, i.e., o 1 mais à direita
(proc1, 0, proc1, 0, d)
(proc1, 1, proc1, 1, d)
(proc1, \bullet, apaga1, \bullet, e)
                            encontra •: à esquerda está 1?
(apaga1, 1, proc0, •, e)
(proc0. •. apaga0. •. d)
                               encontra •; à direita está 0?
(apaga0, 0, proc1, \bullet, d)
(apaga0, •, aceita, •, e)
                                                          ◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ □臺
```

```
(inicio, 0, proc1, \bullet, d)
                               apaga 0; procura o par, i.e., o 1 mais à direita
(proc1, 0, proc1, 0, d)
(proc1, 1, proc1, 1, d)
(proc1, \bullet, apaga1, \bullet, e)
                               encontra •; à esquerda está 1?
(apaga1, 1, proc0, •, e)
(proc0. •. apaga0. •. d)
                               encontra •; à direita está 0?
(apaga0, 0, proc1, \bullet, d)
(apaga0, •, aceita, •, e)
                                                          ◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ □臺
```

```
(inicio, 0, proc1, \bullet, d)
                                apaga 0; procura o par, i.e., o 1 mais à direita
(proc1, 0, proc1, 0, d)
(proc1, 1, proc1, 1, d)
(proc1, \bullet, apaga1, \bullet, e)
                                encontra •; à esquerda está 1?
(apaga1, 1, proc0, \bullet, e)
                                apaga o 1 mais à direita; procura 0 mais à esquerda
(proc0. •. apaga0. •. d)
                               encontra •; à direita está 0?
(apaga0, 0, proc1, \bullet, d)
(apaga0, •, aceita, •, e)
                                                          4□ > 4□ > 4 = > 4 = > = 900
```

```
(inicio, 0, proc1, \bullet, d)
                                apaga 0; procura o par, i.e., o 1 mais à direita
(proc1, 0, proc1, 0, d)
(proc1, 1, proc1, 1, d)
(proc1, \bullet, apaga1, \bullet, e)
                                encontra •; à esquerda está 1?
(apaga1, 1, proc0, \bullet, e)
                                apaga o 1 mais à direita; procura 0 mais à esquerda
(proc0, 0, proc0, 0, e)
(proc0. •. apaga0. •. d)
                                encontra •; à direita está 0?
(apaga0, 0, proc1, \bullet, d)
(apaga0, \bullet, aceita, \bullet, e)
                                                            4□ > 4□ > 4 = > 4 = > = 900
```

```
(inicio, 0, proc1, \bullet, d)
                                apaga 0; procura o par, i.e., o 1 mais à direita
(proc1, 0, proc1, 0, d)
(proc1, 1, proc1, 1, d)
(proc1, \bullet, apaga1, \bullet, e)
                                encontra •; à esquerda está 1?
(apaga1, 1, proc0, \bullet, e)
                                apaga o 1 mais à direita; procura 0 mais à esquerda
(proc0, 0, proc0, 0, e)
(proc0, 1, proc0, 1, e)
(proc0. •. apaga0. •. d)
                                encontra •; à direita está 0?
(apaga0, 0, proc1, \bullet, d)
(apaga0, \bullet, aceita, \bullet, e)
                                                            4□ > 4□ > 4 = > 4 = > = 900
```

Estado inicial inicio e conjunto de estados finais $F = \{aceita\}$; Branco •.

```
(inicio, 0, proc1, \bullet, d)
                                  apaga 0; procura o par, i.e., o 1 mais à direita
(proc1, 0, proc1, 0, d)
(proc1, 1, proc1, 1, d)
(proc1, \bullet, apaga1, \bullet, e)
                                  encontra •; à esquerda está 1?
(apaga1, 1, proc0, \bullet, e)
                                  apaga o 1 mais à direita; procura 0 mais à esquerda
(proc0, 0, proc0, 0, e)
(proc0, 1, proc0, 1, e)
(proc0, \bullet, apaga0, \bullet, d)
                                  encontra •; à direita está 0?
(apaga0, 0, proc1, \bullet, d)
(apaga0, \bullet, aceita, \bullet, e)
```

4□ > 4□ > 4 = > 4 = > = 900

Estado inicial inicio e conjunto de estados finais $F = \{aceita\}$; Branco •.

```
(inicio, 0, proc1, \bullet, d)
                                 apaga 0; procura o par, i.e., o 1 mais à direita
(proc1, 0, proc1, 0, d)
(proc1, 1, proc1, 1, d)
(proc1, \bullet, apaga1, \bullet, e)
                                 encontra •; à esquerda está 1?
(apaga1, 1, proc0, \bullet, e)
                                 apaga o 1 mais à direita; procura 0 mais à esquerda
(proc0, 0, proc0, 0, e)
(proc0, 1, proc0, 1, e)
(proc0, \bullet, apaga0, \bullet, d)
                                 encontra •; à direita está 0?
(apaga0, 0, proc1, \bullet, d)
                                 tem 0; procura o par
(apaga0, •, aceita, •, e)
```

4□ > 4□ > 4 = > 4 = > = 900

```
(inicio, 0, proc1, \bullet, d)
                                apaga 0; procura o par, i.e., o 1 mais à direita
(proc1, 0, proc1, 0, d)
(proc1, 1, proc1, 1, d)
(proc1, \bullet, apaga1, \bullet, e)
                                encontra •; à esquerda está 1?
(apaga1, 1, proc0, \bullet, e)
                                apaga o 1 mais à direita; procura 0 mais à esquerda
(proc0, 0, proc0, 0, e)
(proc0, 1, proc0, 1, e)
(proc0, \bullet, apaga0, \bullet, d)
                                encontra •; à direita está 0?
(apaga0, 0, proc1, \bullet, d)
                                tem 0; procura o par
(apaga0, \bullet, aceita, \bullet, e)
                                não tem mais nada; pára em aceita
                                                            4□ > 4□ > 4 = > 4 = > = 900
```

Simulador de MTs - https://turingmachinesimulator.com

Exemplos de MTs codificadas para este simulador estão disponíveis no Sigarra.

Tradução da MT:

O estado inicial e os finais são declarados no início. Símbolo branco é

Símbolo branco é _ (*underscore*).

Deslocamentos e, d e - são <, > e -.

Cada transição é definida em duas linhas

Código de MT para o simulador

```
name: MT para Onin, n >= 1
init: inicio
accept: aceita
inicio,0
proc1,_,>
proc1,0
proc1,0,>
proc1,1
proc1,1,>
proc1,_
apaga1,_,<
apaga1,1
proc0,_,<
proc0,0
proc0,0,<
proc0,1
proc0,1,<
proc0._
apaga0,_,>
apaga0,0
proc1,_,>
apaga0,_
```

aceita,_,<

Lema da Repetição para LICs

Exemplos de linguagens que não são LICs:

$$\left\{ \mathbf{a}^n \mathbf{b}^n \mathbf{c}^n \ | \ n \in \mathbb{N} \right\} \qquad \left\{ ww \ | \ w \in \{\mathbf{a}, \mathbf{b}\}^\star \right\}$$

$$\left\{ \mathbf{a}^p \ | \ p \text{ primo} \right\} \qquad \left\{ \mathbf{a}^{n^2} \ | \ n \in \mathbb{N} \right\}$$

Não satisfazem a condição do Lema da Repetição para LICs.

Lema da Repetição para LICs

Se L é uma LIC então existe uma constante $n \in \mathbb{Z}^+$, só dependente de L, tal que qualquer que seja $z \in L$, se $|z| \ge n$ então podemos escrever z como uvwxy de forma que $|vx| \ge 1$, $|vwx| \le n$ e, para todo $i \in \mathbb{N}$, se tem $uv^iwx^iy \in L$.

Exemplo: $L = \{a^k b^k c^k \mid k \in \mathbb{N}\}$ não é LIC.

- Dado $n \ge 1$, escolhemos $z = a^n b^n c^n$.
- Esta escolha simplifica o tipo de subpalavras que vamos ter que analisar, pois como $|vwx| \le n$, não temos simultaneamente a's, b's e c's em vwx.
- $z \in L$ e $|z| = 3n \ge n$. Não existem $u, v, w, x, y \in \{a, b, c\}^*$ tais que

$$\mathbf{a}^n \mathbf{b}^n \mathbf{c}^n = u v w x y \wedge v x \neq \varepsilon \wedge |v w x| \leq n \wedge \forall_{i \in \mathbb{N}} u v^i w x^i y \in L$$

- Como já observámos, para se ter $|vwx| \le n$, em vwx não podem existir simultanemente a's, b's e c's.
- Assim, qualquer que seja a decomposição de z como uvwxy com $|vx| \neq 0$ e $|vwx| \leq n$, para i = 0 (i.e., se cortarmos $v \in x$), $uv^0wx^0y \notin L$ porque não tem igual número de a's, b's e c's.

Exemplo: $L = \{a^k b^k c^k \mid k \in \mathbb{N}\}$ não é LIC.

- Dado $n \ge 1$, escolhemos $z = a^n b^n c^n$.
- Esta escolha simplifica o tipo de subpalavras que vamos ter que analisar, pois como $|vwx| \le n$, não temos simultaneamente a's, b's e c's em vwx.
- $z \in L$ e $|z| = 3n \ge n$. Não existem $u, v, w, x, y \in \{a, b, c\}^*$ tais que

$$\mathbf{a}^n \mathbf{b}^n \mathbf{c}^n = \mathit{uvwxy} \wedge \mathit{vx} \neq \varepsilon \wedge |\mathit{vwx}| \leq n \wedge \forall_{i \in \mathbb{N}} \mathit{uv}^i \mathit{wx}^i \mathit{y} \in L$$

- Como já observámos, para se ter $|vwx| \le n$, em vwx não podem existir simultanemente a's, b's e c's.
- Assim, qualquer que seja a decomposição de z como uvwxy com $|vx| \neq 0$ e $|vwx| \leq n$, para i = 0 (i.e., se cortarmos $v \in x$), $uv^0wx^0y \notin L$ porque não tem igual número de a's, b's e c's.

Exemplo: $L = \{a^k b^k c^k \mid k \in \mathbb{N}\}$ não é LIC.

- Dado $n \ge 1$, escolhemos $z = a^n b^n c^n$.
- Esta escolha simplifica o tipo de subpalavras que vamos ter que analisar, pois como $|vwx| \le n$, não temos simultaneamente a's, b's e c's em vwx.
- $z \in L$ e $|z| = 3n \ge n$. Não existem $u, v, w, x, y \in \{a, b, c\}^*$ tais que

$$\mathbf{a}^n \mathbf{b}^n \mathbf{c}^n = u v w x y \wedge v x \neq \varepsilon \wedge |v w x| \leq n \wedge \forall_{i \in \mathbb{N}} u v^i w x^i y \in L$$

- Como já observámos, para se ter $|vwx| \le n$, em vwx não podem existir simultanemente a's, b's e c's.
- Assim, qualquer que seja a decomposição de z como uvwxy com $|vx| \neq 0$ e $|vwx| \leq n$, para i = 0 (i.e., se cortarmos $v \in x$), $uv^0wx^0y \notin L$ porque não tem igual número de a's, b's e c's.

Exemplo: $L = \{a^k b^k c^k \mid k \in \mathbb{N}\}$ não é LIC.

- Dado $n \ge 1$, escolhemos $z = a^n b^n c^n$.
- Esta escolha simplifica o tipo de subpalavras que vamos ter que analisar, pois como $|vwx| \le n$, não temos simultaneamente a's, b's e c's em vwx.
- $z \in L$ e $|z| = 3n \ge n$. Não existem $u, v, w, x, y \in \{a, b, c\}^*$ tais que

$$\mathbf{a}^n \mathbf{b}^n \mathbf{c}^n = u v w x y \wedge v x \neq \varepsilon \wedge |v w x| \leq n \wedge \forall_{i \in \mathbb{N}} u v^i w x^i y \in L$$

- Como já observámos, para se ter $|vwx| \le n$, em vwx não podem existir simultanemente a's, b's e c's.
- Assim, qualquer que seja a decomposição de z como uvwxy com $|vx| \neq 0$ e $|vwx| \leq n$, para i = 0 (i.e., se cortarmos $v \in x$), $uv^0wx^0y \notin L$ porque não tem igual número de a's, b's e c's.

Exemplo: $L = \{a^k b^k c^k \mid k \in \mathbb{N}\}$ não é LIC.

- Dado $n \ge 1$, escolhemos $z = a^n b^n c^n$.
- Esta escolha simplifica o tipo de subpalavras que vamos ter que analisar, pois como $|vwx| \le n$, não temos simultaneamente a's, b's e c's em vwx.
- $z \in L$ e $|z| = 3n \ge n$. Não existem $u, v, w, x, y \in \{a, b, c\}^*$ tais que

$$\mathbf{a}^n \mathbf{b}^n \mathbf{c}^n = u v w x y \wedge v x \neq \varepsilon \wedge |v w x| \leq n \wedge \forall_{i \in \mathbb{N}} u v^i w x^i y \in L$$

- Como já observámos, para se ter $|vwx| \le n$, em vwx não podem existir simultanemente a's, b's e c's.
- Assim, qualquer que seja a decomposição de z como uvwxy com $|vx| \neq 0$ e $|vwx| \leq n$, para i = 0 (i.e., se cortarmos $v \in x$), $uv^0wx^0y \notin L$ porque não tem igual número de a's, b's e c's.

Ideia da Prova do Lema

Prova

- Seja $\mathcal G$ uma GIC na FN Chomsky (estendida) que gere L. Tome-se $n=2^{|V|}$, para mostrar que qualquer sequência $z\in L$, com $|z|\geq n$, satisfaz as condições indicadas no lema.
- As árvores de derivação em G são árvores binárias. A altura de uma árvore binária com k nós é maior ou igual a [log₂ k].
- Como os terminais são introduzidos por regras $A \to a$, a árvore de derivação de z terá de ter pelo menos n nós internos se $|z| \ge n$. Isso implica que a altura da árvore seja pelo menos $\lfloor \log_2 n \rfloor + 1 \ge |V| + 1$.
- Como a **altura** é o comprimento máximo que os caminhos desde a raíz até às folhas podem ter, se o caminho máximo tem comprimento $\geq |V|+1$ então envolve pelo menos |V|+1 variáveis até ao pai da folha. Portanto, há uma variável que se repete.

Observação: A FN Chomsky estendida permite ter a regra $S \to \varepsilon$, se o símbolo inicial S não ocorrer no lado direito de regras.

8 / 22

Ideia da Prova do Lema

• Seja A a última variável que se repete no caminho (i.e., a que se repete em níveis mais profundos). Dessa forma, podemos concluir que árvore para z inclui uma subárvore A_1 com raíz A, que gera vwx com $|vwx| \le n$ e $vx \ne \varepsilon$, e em que w é gerada por uma subárvore A_2 também com raíz A. Se não se verificasse $|vwx| \le n$, a árvore A_1 continha outras repetições mais profundas. Podemos usar A_1 e A_2 para mostrar $uv^iwx^iy \in L$, para todo $i \ge 0$. Se i = 0, transforma-se a árvore substituindo A_1 por A_2 , o que dá origem a uma árvore de derivação para uv^0wx^0y . Se $i \ge 2$, substitui-se A_2 por A_1 , sucessivamente, obtendo uv^iwx^iy após i substituições.

Ideia da Prova do Lema

• Seja A a última variável que se repete no caminho (i.e., a que se repete em níveis mais profundos). Dessa forma, podemos concluir que árvore para z inclui uma subárvore A_1 com raíz A, que gera vwx com $|vwx| \le n$ e $vx \ne \varepsilon$, e em que w é gerada por uma subárvore A_2 também com raíz A. Se não se verificasse $|vwx| \le n$, a árvore A_1 continha outras repetições mais profundas. Podemos usar A_1 e A_2 para mostrar $uv^iwx^iy \in L$, para todo $i \ge 0$. Se i = 0, transforma-se a árvore substituindo A_1 por A_2 , o que dá origem a uma árvore de derivação para uv^0wx^0y . Se $i \ge 2$, substitui-se A_2 por A_1 , sucessivamente, obtendo uv^iwx^iy após i substituições.

Exemplo: $L = \{ww \mid w \in \{0, 1\}^*\}$ não é LIC.

Prova: Vamos ver que L não satisfaz a condição do lema da repetição para LICs.

- Dado $n \ge 1$, tomamos $z = 0^{2n} 1^{2n} 0^{2n} 1^{2n}$. Para esta palavra, vwx abrange no máximo dois blocos da palavra, qualquer que seja vwx, pois $|vwx| \le n$.
- Em todos os casos, para i = 0, tem-se $uv^i wx^i y \notin L$.
- Por exemplo, se v for subpalavra do primeiro bloco de 0's, temos duas possibilidades:

$$z = \underbrace{0^{|u|}}_{u} \underbrace{0^{|v|}}_{v} w \underbrace{1^{|x|}}_{x} \underbrace{y'0^{2n}1^{2n}}_{y} \qquad e \qquad z = \underbrace{0^{|u|}}_{u} \underbrace{0^{|v|}}_{v} w \underbrace{0^{|x|}}_{x} \underbrace{y'1^{2n}0^{2n}1^{2n}}_{y}$$

No primeiro caso, $uv^0wx^0y=0^{|u|}wy'0^{2n}1^{2n}=0^{2n-|v|}1^{2n-|x|}0^{2n}1^{2n}\notin L$ porque, se dividirmos a palavra ao meio, a primeira metade termina em 0 e segunda termina em 1. No segundo, $uv^0wx^0y=0^{2n-|v|-|x|}1^{2n}0^{2n}1^{2n}\notin L$, porque depois do meio da palavra há mais 0's do que na primeira metade.

Exemplo: $L = \{ww \mid w \in \{0, 1\}^*\}$ não é LIC.

Prova: Vamos ver que *L* não satisfaz a condição do lema da repetição para LICs.

- Dado $n \ge 1$, tomamos $z = 0^{2n}1^{2n}0^{2n}1^{2n}$. Para esta palavra, vwx abrange no máximo dois blocos da palavra, qualquer que seja vwx, pois $|vwx| \le n$.
- Em todos os casos, para i = 0, tem-se $uv^i wx^i y \notin L$.
- Por exemplo, se v for subpalavra do primeiro bloco de 0's, temos duas possibilidades:

$$z = \underbrace{0^{|u|}}_{u} \underbrace{0^{|v|}}_{v} w \underbrace{1^{|x|}}_{x} \underbrace{y'0^{2n}1^{2n}}_{y} \qquad e \qquad z = \underbrace{0^{|u|}}_{u} \underbrace{0^{|v|}}_{v} w \underbrace{0^{|x|}}_{x} \underbrace{y'1^{2n}0^{2n}1^{2n}}_{y}$$

No primeiro caso, $uv^0wx^0y=0^{|u|}wy'0^{2n}1^{2n}=0^{2n-|v|}1^{2n-|x|}0^{2n}1^{2n}\notin L$ porque, se dividirmos a palavra ao meio, a primeira metade termina em 0 e segunda termina em 1. No segundo, $uv^0wx^0y=0^{2n-|v|-|x|}1^{2n}0^{2n}1^{2n}\notin L$, porque depois do meio da palavra há mais 0's do que na primeira metade.

Exemplo: $L = \{ww \mid w \in \{0, 1\}^*\}$ não é LIC.

Prova: Vamos ver que *L* não satisfaz a condição do lema da repetição para LICs.

- Dado $n \ge 1$, tomamos $z = 0^{2n}1^{2n}0^{2n}1^{2n}$. Para esta palavra, vwx abrange no máximo dois blocos da palavra, qualquer que seja vwx, pois $|vwx| \le n$.
- Em todos os casos, para i = 0, tem-se $uv^i wx^i y \notin L$.
- Por exemplo, se v for subpalavra do primeiro bloco de 0's, temos duas possibilidades:

$$z = \underbrace{0^{|u|}}_{u} \underbrace{0^{|v|}}_{v} w \underbrace{1^{|x|}}_{x} \underbrace{y'0^{2n}1^{2n}}_{y} \qquad e \qquad z = \underbrace{0^{|u|}}_{u} \underbrace{0^{|v|}}_{v} w \underbrace{0^{|x|}}_{x} \underbrace{y'1^{2n}0^{2n}1^{2n}}_{y}$$

No primeiro caso, $uv^0wx^0y=0^{|u|}wy'0^{2n}1^{2n}=0^{2n-|v|}1^{2n-|x|}0^{2n}1^{2n}\notin L$ porque, se dividirmos a palavra ao meio, a primeira metade termina em 0 e segunda termina em 1. No segundo, $uv^0wx^0y=0^{2n-|v|-|x|}1^{2n}0^{2n}1^{2n}\notin L$, porque depois do meio da palavra há mais 0's do que na primeira metade.

Exemplo: $L = \{ww \mid w \in \{0, 1\}^*\}$ não é LIC.

Prova: Vamos ver que L não satisfaz a condição do lema da repetição para LICs.

- Dado $n \ge 1$, tomamos $z = 0^{2n}1^{2n}0^{2n}1^{2n}$. Para esta palavra, vwx abrange no máximo dois blocos da palavra, qualquer que seja vwx, pois $|vwx| \le n$.
- Em todos os casos, para i = 0, tem-se $uv^i wx^i y \notin L$.
- Por exemplo, se v for subpalavra do primeiro bloco de 0's, temos duas possibilidades:

$$z = \underbrace{0^{|u|}}_{u} \underbrace{0^{|v|}}_{v} w \underbrace{1^{|x|}}_{x} \underbrace{y'0^{2n}1^{2n}}_{y} \qquad e \qquad z = \underbrace{0^{|u|}}_{u} \underbrace{0^{|v|}}_{v} w \underbrace{0^{|x|}}_{x} \underbrace{y'1^{2n}0^{2n}1^{2n}}_{y}$$

No primeiro caso, $uv^0wx^0y=0^{|u|}wy'0^{2n}1^{2n}=0^{2n-|v|}1^{2n-|x|}0^{2n}1^{2n}\notin L$ porque, se dividirmos a palavra ao meio, a primeira metade termina em 0 e segunda termina em 1. No segundo, $uv^0wx^0y=0^{2n-|v|-|x|}1^{2n}0^{2n}1^{2n}\notin L$, porque depois do meio da palavra há mais 0's do que na primeira metade.

10 / 22

Exemplo: $L = \{ww \mid w \in \{0, 1\}^*\}$ não é LIC.

Prova: Vamos ver que *L* não satisfaz a condição do lema da repetição para LICs.

- Dado $n \ge 1$, tomamos $z = 0^{2n} 1^{2n} 0^{2n} 1^{2n}$. Para esta palavra, vwx abrange no máximo dois blocos da palavra, qualquer que seja vwx, pois $|vwx| \le n$.
- Em todos os casos, para i = 0, tem-se $uv^i wx^i y \notin L$.
- Por exemplo, se v for subpalavra do primeiro bloco de 0's, temos duas possibilidades:

$$z = \underbrace{0^{|u|}}_{u} \underbrace{0^{|v|}}_{v} w \underbrace{1^{|x|}}_{x} \underbrace{y'0^{2n}1^{2n}}_{y} \qquad e \qquad z = \underbrace{0^{|u|}}_{u} \underbrace{0^{|v|}}_{v} w \underbrace{0^{|x|}}_{x} \underbrace{y'1^{2n}0^{2n}1^{2n}}_{y}$$

No primeiro caso, $uv^0wx^0y=0^{|u|}wy'0^{2n}1^{2n}=0^{2n-|v|}1^{2n-|x|}0^{2n}1^{2n}\notin L$ porque, se dividirmos a palavra ao meio, a primeira metade termina em 0 e segunda termina em 1. No segundo, $uv^0wx^0y=0^{2n-|v|-|x|}1^{2n}0^{2n}1^{2n}\notin L$, porque depois do meio da palavra há mais 0's do que na primeira metade.

10 / 22

Exemplo (cont): $L = \{ww \mid w \in \{0, 1\}^*\}$ não é LIC.

 Do mesmo modo, se v tiver 0's do primeiro bloco e algum 1 do segundo, então x só poderá ter 1's do segundo bloco, sendo

$$z = \underbrace{0^{|u|}}_{u} \underbrace{0^{k} 1^{|v|-k}}_{v} w \underbrace{1^{|x|}}_{x} \underbrace{y' 0^{2n} 1^{2n}}_{y}$$

para algum k, e |u| > n. Se cortarmos $v \in x$, a palavra uv^0wx^0y tem mais 0's no segundo bloco de 0's do que no primeiro.

• Os restantes casos podem ser analisados de forma análoga para concluir que, qualquer que seja a decomposição de z na forma uvwxy, com $|vwx| \le n$ e $vx \ne \varepsilon$, tem-se $uv^0wx^0y \notin L$.

Exemplo (cont): $L = \{ww \mid w \in \{0, 1\}^*\}$ não é LIC.

 Do mesmo modo, se v tiver 0's do primeiro bloco e algum 1 do segundo, então x só poderá ter 1's do segundo bloco, sendo

$$z = \underbrace{0^{|u|}}_{u} \underbrace{0^{k} 1^{|v|-k}}_{v} w \underbrace{1^{|x|}}_{x} \underbrace{y' 0^{2n} 1^{2n}}_{y}$$

para algum k, e |u| > n. Se cortarmos v e x, a palavra uv^0wx^0y tem mais 0's no segundo bloco de 0's do que no primeiro.

• Os restantes casos podem ser analisados de forma análoga para concluir que, qualquer que seja a decomposição de z na forma uvwxy, com $|vwx| \le n$ e $vx \ne \varepsilon$, tem-se $uv^0wx^0y \notin L$.

Exemplo (cont): $L = \{ww \mid w \in \{0, 1\}^*\}$ não é LIC.

 Do mesmo modo, se v tiver 0's do primeiro bloco e algum 1 do segundo, então x só poderá ter 1's do segundo bloco, sendo

$$z = \underbrace{0^{|u|}}_{u} \underbrace{0^{k} 1^{|v|-k}}_{v} w \underbrace{1^{|x|}}_{x} \underbrace{y' 0^{2n} 1^{2n}}_{y}$$

para algum k, e |u| > n. Se cortarmos v e x, a palavra uv^0wx^0y tem mais 0's no segundo bloco de 0's do que no primeiro.

• Os restantes casos podem ser analisados de forma análoga para concluir que, qualquer que seja a decomposição de z na forma uvwxy, com $|vwx| \le n$ e $vx \ne \varepsilon$, tem-se $uv^0wx^0y \notin L$.

Linguagens Formais e Computabilidade

Área de TCS. Limites da computação. <u>Computabilidade:</u> <u>existe algoritmo para resolução do problema? <u>Complexidade:</u> <u>Que recursos requer</u> (tempo e espaço)? Como se <u>descreve o problema?</u> Que <u>tipo de máquina</u> usará?</u>

Fonte: http://www.ic.uff.br/~ueverton/files/LF/aula09.pdf

Linguagens reconhecidas por máquinas de Turing

Máquina de Turing como reconhecedor

- Uma uma máquina de Turing aceita uma palavra x de Σ^* se, partindo do estado inicial, com x na fita e a cabeça de leitura/escrita posicionada no símbolo de x mais à esquerda, pode parar num estado final.
 - A linguagem $\mathcal{L}(M)$ reconhecida pela máquina M é o conjunto das palavras de Σ^* que M aceita.
- Uma linguagem $L \subseteq \Sigma^*$ diz-se <u>decidível</u> (ou recursiva) sse existir uma máquina de Turing \mathcal{M} tal que $L = \mathcal{L}(\mathcal{M})$ e \mathcal{M} pára, para todo $x \in \Sigma^*$, e o estado em que pára é final se e só se $x \in L$.
- L diz-se semi-decidível ou recursivamente enumerável se e só se existir uma máquina de Turing $\mathcal M$ tal que $L=\mathcal L(\mathcal M)$. Dado $x\in \Sigma^\star\setminus L$, a máquina pode parar ou não parar, mas pára para todo $x\in L$.

Linguagens decidíveis e recursivamente enumeráveis

 A classe das linguagens independentes de contexto está propriamente contida na classe das linguagens decidíveis.

O algoritmo CYK é um **algoritmo de decisão** para " $x \in \mathcal{L}(G)$?", se G está na FN Chomsky.

Exemplos de linguagens decidíveis que não são LICs

$$\{0^p \mid p \text{ primo}\}$$
$$\{0^n 1^n 2^n \mid n \in \mathbb{N}\}$$

• A classe das **linguagens decidíveis** está propriamente contida na classe das **linguagens recursivamente enumeráveis**.

Linguagens decidíveis e recursivamente enumeráveis

NB: Slide não apresentado nas aulas.

Seja Σ um alfabeto. Verdade ou Falso?

- \bullet $\forall L \subseteq \Sigma^*$, se L é decidível então \overline{L} é decidível. \overline{V}
- ② $\forall L \subseteq \Sigma^*$, se L e \overline{L} são recursivamente enumeráveis, L é decidível. $\boxed{\mathsf{V}}$
- ③ $\forall L, M \subseteq \Sigma^*$, se L e M são decidíveis, $L \cup M$ é decidível. $\boxed{\mathsf{V}}$

Funções calculadas por máquinas de Turing

Máquina de Turing como computador

- As funções parciais dos naturais nos naturais que podem ser calculadas por máquinas de Turing designam-se por funções parcialmente recursivas.
- Se f(n) puder ser calculado por uma máquina de Turing que **pára**, para todo o *input* n, a função f diz-se **função** recursiva ou computável.

Existem muitos problemas que não podem ser resolvidos por MTs. Se aceitarmos a conjetura de Church-Turing que diz que existe um método algorítmico para resolver um dado problema se e só se existe uma máquina de Turing para o resolver, isso significa que não podem ser resolvidos computacionalmente.

- Existe um algoritmo para determinar o AFD mínimo que é equivalente a um dado autómato finito. Consequentemente, existe um algoritmo para verificar se dois autómatos finitos quaisquer são equivalentes.
 - Mas, não existe um algoritmo que determine se duas GICs \mathcal{G} e \mathcal{G}' quaisquer são ou não são equivalentes, ou seja, se $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{G}')$.
- Não existe um algoritmo para decidir se dois autómatos de pilha quaisquer reconhecem a mesma linguagem.
- ullet Também, o problema de decidir se uma GIC ${\mathcal G}$ arbitrária gera Σ^* indecidível.

Existem muitos problemas que não podem ser resolvidos por MTs. Se aceitarmos a conjetura de Church-Turing que diz que existe um método algorítmico para resolver um dado problema se e só se existe uma máquina de Turing para o resolver, isso significa que não podem ser resolvidos computacionalmente.

- Existe um algoritmo para determinar o AFD mínimo que é equivalente a um dado autómato finito. Consequentemente, existe um algoritmo para verificar se dois autómatos finitos quaisquer são equivalentes.
 - Mas, não existe um algoritmo que determine se duas GICs \mathcal{G} e \mathcal{G}' quaisquer são ou não são equivalentes, ou seja, se $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{G}')$.
- Não existe um algoritmo para decidir se dois autómatos de pilha quaisquer reconhecem a mesma linguagem.
- ullet Também, o problema de decidir se uma GIC ${\mathcal G}$ arbitrária gera Σ^* indecidível.

Existem muitos problemas que não podem ser resolvidos por MTs. Se aceitarmos a conjetura de Church-Turing que diz que existe um método algorítmico para resolver um dado problema se e só se existe uma máquina de Turing para o resolver, isso significa que não podem ser resolvidos computacionalmente.

- Existe um algoritmo para determinar o AFD mínimo que é equivalente a um dado autómato finito. Consequentemente, existe um algoritmo para verificar se dois autómatos finitos quaisquer são equivalentes.
 - Mas, não existe um algoritmo que determine se duas GICs \mathcal{G} e \mathcal{G}' quaisquer são ou não são equivalentes, ou seja, se $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{G}')$.
- Não existe um algoritmo para decidir se dois autómatos de pilha quaisquer reconhecem a mesma linguagem.
- \bullet Também, o problema de decidir se uma GIC ${\cal G}$ arbitrária gera Σ^{\star} indecidível.

Existem muitos problemas que não podem ser resolvidos por MTs. Se aceitarmos a conjetura de Church-Turing que diz que existe um método algorítmico para resolver um dado problema se e só se existe uma máquina de Turing para o resolver, isso significa que não podem ser resolvidos computacionalmente.

- Existe um algoritmo para determinar o AFD mínimo que é equivalente a um dado autómato finito. Consequentemente, existe um algoritmo para verificar se dois autómatos finitos quaisquer são equivalentes.
 - Mas, não existe um algoritmo que determine se duas GICs \mathcal{G} e \mathcal{G}' quaisquer são ou não são equivalentes, ou seja, se $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{G}')$.
- Não existe um algoritmo para decidir se dois autómatos de pilha quaisquer reconhecem a mesma linguagem.
- \bullet Também, o problema de decidir se uma GIC ${\cal G}$ arbitrária gera Σ^{\star} indecidível.

Existem muitos problemas que não podem ser resolvidos por MTs. Se aceitarmos a conjetura de Church-Turing que diz que existe um método algorítmico para resolver um dado problema se e só se existe uma máquina de Turing para o resolver, isso significa que não podem ser resolvidos computacionalmente.

- Existe um algoritmo para determinar o AFD mínimo que é equivalente a um dado autómato finito. Consequentemente, existe um algoritmo para verificar se dois autómatos finitos quaisquer são equivalentes.
 - Mas, não existe um algoritmo que determine se duas GICs \mathcal{G} e \mathcal{G}' quaisquer são ou não são equivalentes, ou seja, se $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{G}')$.
- Não existe um algoritmo para decidir se dois autómatos de pilha quaisquer reconhecem a mesma linguagem.
- ullet Também, o problema de decidir se uma GIC ${\cal G}$ arbitrária gera Σ^{\star} indecidível.

Máquina de Turing Universal

Uma Máquina de Turing Universal U é uma máquina de Turing que consegue **simular** qualquer máquina de Turing M arbitrária, dado $(\langle M \rangle, x)$, sendo $\langle M \rangle$ uma sequência que descreve M e x a sequência que M deve analisar.

Observação:

A prova de que a linguagem $A_{TM} = \{(\langle M \rangle, x) \mid M \text{ \'e uma MT e } M \text{ aceita } x\}$ é indecidível, que apresentamos a seguir, não foi dada nas aulas. Mas, pode permitir perceber melhor a justificação da indecidiblidade do **Problema da paragem**.

Exemplos de provas de indecidibilidade

Teorema (A. Turing): $A_{TM} = \{(\langle M \rangle, x) \mid M \in MT \in M \text{ aceita } x\} \in \text{indecidível.}$

Prova (por redução ao absurdo):

Suponhamos que A_{TM} é decidível. Seja H uma MT que, dado $(\langle M \rangle, x)$, pára no estado accept, se M aceita x. Caso contrário, pára no estado reject, rejeitando $(\langle M \rangle, x)$.

O que acontece se $x = \langle M \rangle$?

Podemos definir uma máquina H' que faz o contrário:

Exemplos de provas de indecidibilidade

Teorema (A.Turing): $A_{TM} = \{(\langle M \rangle, x) \mid M \in MT \in M \text{ aceita } x\} \in \text{indecidível.}$

Prova (cont):

Podemos construir uma MT D que efetua uma cópia do seu input e a seguir executa H':

Então, quando D recebe $\langle D \rangle$, teriamos uma <u>inconsistência</u>:

Notar que, por construção, H' pára sempre e, portanto, D também.

Problema da Paragem (halting problem)

Não existe um programa de computador, que analise o código de um qualquer programa de computador arbitrário e diga se este pára ou não.

Problema de paragem:

Não existe uma máquina de Turing que receba o código de uma qualquer máquina de Turing e diga se esta pára sempre ou não.

Ideia da prova (por redução ao absurdo): Suponhamos que existia uma MT *H* que resolvia o *halting problem*. Construimos uma MT *D* que, sempre que *H* dá resposta Yes, entra num *loop* infinito e, portanto, não pára. E, se *H* dá resposta No, *D* pára.

Quando D recebe $\langle D \rangle$, pára ou não pára. Mas

- se D pára, H(\(\langle D\), \(\langle D\)) responde Yes, pelo que D entra num ciclo infinito, o que \(\epsilon\) absurdo, se D p\(\text{pára}\);
- se D não pára, H(\(\lambda\right)\), \(\lambda\right)\) responde No e, por construção, E pára, o que é absurdo, se D não pára.

Problema da Paragem (halting problem)

Não existe um programa de computador, que analise o código de um qualquer programa de computador arbitrário e diga se este pára ou não.

Problema de paragem:

Não existe uma máquina de Turing que receba o código de uma qualquer máquina de Turing e diga se esta pára sempre ou não.

Ideia da prova (por redução ao absurdo): Suponhamos que existia uma MT *H* que resolvia o *halting problem*. Construimos uma MT *D* que, sempre que *H* dá resposta Yes, entra num *loop* infinito e, portanto, não pára. E, se *H* dá resposta No, *D* pára.

Quando D recebe $\langle D \rangle$, pára ou não pára. Mas

- se D pára, H(\(\langle D\), \(\langle D\)) responde Yes, pelo que D entra num ciclo infinito, o que \(\epsilon\) absurdo, se D p\(\text{pára}\);
- se D não pára, H(\(\lambda\right)\), \(\lambda\right)\) responde No e, por construção, E pára, o que é absurdo, se D não pára.

Problema da Paragem (halting problem)

Não existe um programa de computador, que analise o código de um qualquer programa de computador arbitrário e diga se este pára ou não.

Problema de paragem:

Não existe uma máquina de Turing que receba o código de uma qualquer máquina de Turing e diga se esta pára sempre ou não.

Ideia da prova (por redução ao absurdo): Suponhamos que existia uma MT H que resolvia o *halting problem*. Construimos uma MT D que, sempre que H dá resposta Yes, entra num *loop* infinito e, portanto, não pára. E, se H dá resposta No, D pára.

Quando D recebe $\langle D \rangle$, pára ou não pára. Mas:

- se D pára, H(\(\lambda\rangle\), \(\lambda\rangle\)) responde Yes, pelo que D entra num ciclo infinito, o que \(\epsilon\) absurdo, se D p\(\epsilon\) ra;
- se D não pára, $H(\langle D \rangle, \langle D \rangle)$ responde No e, por construção, D pára, o que é absurdo, se D não pára.

UCs de continuação...

Lógica Computacional

Computabilidade e Complexidade

Desenho e Análise de Algoritmos

Semânticas de Linguagens de Programação . . .

Compiladores . . .