CS1231(S) Tutorial 4: Functions Solutions

National University of Singapore

2020/21 Semester 1

- 1. Which of the following formulas define a function $f: \mathbb{Q} \to \mathbb{Q}$?
 - (a) $f(n) = \pm n$.
 - (b) $f(n) = 2\sqrt{n}$.
 - (c) $f(n) = \frac{1}{n^2+1}$.
 - (d) $f(n) = |\sin n|$.

Solution. Formulas (c) and (d) do, while (a) and (b) do not.

(Here we extend the domain of floor in Definition 6.1.9(1) from \mathbb{Q} to \mathbb{R} , because otherwise one would need to worry about whether $\sin 1$ is rational, for example, which is not the intention of this question.)

2. Let U be a set and $A \subseteq U$ such that $\emptyset \neq A \neq U$. Define the function $\chi \colon U \to \mathbb{Z}$ by setting, for all $x \in U$,

$$\chi(x) = \begin{cases} 0, & \text{if } x \notin A; \\ 1, & \text{if } x \in A. \end{cases}$$

Find the domain, the codomain, and the image of χ .

Solution. The domain is U. The codomain is \mathbb{Z} . The image is $\{0,1\}$.

3. Which of the functions defined in the following are injective? Which are surjective? Prove that your answers are correct. If a function defined below is both injective and surjective, then find a formula for the inverse of the function. Here denote by Bool the set {true, false}.

$$f: \mathbb{Q} \to \mathbb{Q};$$
 $g: \operatorname{Bool}^2 \to \operatorname{Bool};$ $h: \operatorname{Bool}^2 \to \operatorname{Bool}^2;$ $x \mapsto 12x + 31,$ $(p,q) \mapsto p \land \sim q,$ $(p,q) \mapsto (p \land q, p \lor q),$

$$k \colon \mathbb{Z} \to \mathbb{Z};$$

$$x \mapsto \begin{cases} x, & \text{if } x \text{ is even;} \\ 2x - 1, & \text{if } x \text{ is odd.} \end{cases}$$

Solution.

• 1. Note that for all $x, y \in \mathbb{Q}$,

$$y = 12x + 31 \Leftrightarrow x = (y - 31)/12.$$

2. Define $f^*: \mathbb{Q} \to \mathbb{Q}$ by setting, for all $y \in \mathbb{Q}$,

$$f^*(y) = (y - 31)/12.$$

3. Then whenever $x, y \in \mathbb{Q}$,

$$y = f(x) \Leftrightarrow x = f^*(y).$$

- 4. Thus f^* is the inverse of f.
- 5. Hence f is both injective and surjective by Theorem 6.2.18.
- 1. g(false, true) = false = g(false, false), where $(false, true) \neq (false, false)$.
 - 2. So g is not injective.
 - 3. g(true, false) = true.
 - 4. So every element in the codomain Bool is in the image of g by lines 1 and 3.
 - 5. This says g is surjective.
- 1. $h(\mathbf{true}, \mathbf{false}) = (\mathbf{false}, \mathbf{true}) = h(\mathbf{false}, \mathbf{true}), \text{ where } (\mathbf{true}, \mathbf{false}) \neq (\mathbf{false}, \mathbf{true}).$
 - 2. So h is not injective.
 - 3. If $p, q, r \in \text{Bool}$ such that $h(p, q) = (\mathbf{true}, r)$, then
 - 3.1. $p \wedge q = \mathbf{true}$ by the definition of h;
 - 3.2. \therefore p = true
 - 3.3. \therefore $r = p \lor q = \mathbf{true}$ by the definition of h.
 - 4. So (**true**, **false**) in the codomain is not in the image of h.
 - 5. Thus h is not surjective.
- (For this question, we implicitly assume that every integer is either odd or even, but not both. This will be proved in Corollary 8.1.22.)
 - 1. We first show that if x is an even integer, then k(x) is even.
 - 1.1. Let x be an even integer.
 - 1.2. Then k(x) = x by the definition of k.
 - 1.3. So k(x) is even.
 - 2. Next we show that if x is an odd integer, then k(x) is odd.
 - 2.1. Let x be an odd integer.
 - 2.2. Then k(x) = 2x 1 = 2(x 1) + 1, where x 1 is an integer.
 - 2.3. So k(x) is odd.
 - 3. Since every integer is either even or odd but not both, lines 1 and 2 tell us that, for every $x \in \mathbb{Z}$,
 - 3.1. x is even if and only if k(x) is even; and
 - 3.2. x is odd if and only if k(x) is odd.
 - 4. Now we show that k is injective.
 - 4.1. Let $x, x' \in \mathbb{Z}$ such that k(x) = k(x').
 - 4.2. Case 1: k(x) is even.
 - 4.2.1. Then both x and x' are even by line 3.1.
 - 4.2.2. So x = k(x) = k(x') = x' by the definition of k.
 - 4.3. Case 2: k(x) is odd.
 - 4.3.1. Then both x and x' are odd by line 3.2.
 - 4.3.2. So 2x 1 = k(x) = k(x') = 2x' 1 by the definition of k.
 - 4.3.3. Thus x = x'.
 - 4.4. Since k(x) is either even or odd, we conclude that x = x' in any case.
 - 5. Finally, we show that k is not surjective.
 - 5.1. We prove this by contradiction.
 - 5.1.1. Suppose k is surjective.
 - 5.1.2. Note 3 is in the codomain \mathbb{Z} .
 - 5.1.3. Use the surjectivity of k to find $x \in \mathbb{Z}$ such that k(x) = 3.
 - 5.1.4. Note $k(x) = 3 = 2 \times 1 + 1$ is odd.

- 5.1.5. So x is odd by line 3.2.
- 5.1.6. Thus 3 = k(x) = 2x 1 by the choice of x and the definition of k.
- 5.1.7. Solving gives $x = (3+1)/2 = 2 = 2 \times 1$, which is even.
- 5.1.8. This contradicts line 5.1.5 as no integer is both even and odd.
- 5.2. Hence k is not surjective.

4. Let $f: B \to C$.

- (a) Suppose f is injective. Show that $g \circ f$ is injective whenever g is an injective function with domain C.
- (b) Suppose we have a function g with domain C such that $g \circ f$ is injective. Show that f is injective.

Solution.

- 1. Suppose f is injective.
 - 2. Let g be an injective function with domain C.
 - 3. Take $x, x' \in B$ such that $(g \circ f)(x) = (g \circ f)(x')$.
 - 4. Then g(f(x)) = g(f(x')) by the definition of $g \circ f$;
 - 5. *:* .
 - f(x) = f(x') as g is injective; x = x' as f is injective. 6.
- 1. Suppose g is a function with domain C such that $g \circ f$ is injective.
 - 2. Let $x, x' \in B$ such that f(x) = f(x').
 - 3. Then $(g \circ f)(x) = g(f(x)) = g(f(x')) = (g \circ f)(x')$ by the definition of $g \circ f$.
 - 4. So x = x' as $g \circ f$ is injective by the choice of g.

5. Let $f: B \to C$.

- (a) Suppose f is surjective. Show that $f \circ h$ is surjective whenever h is a surjective function with codomain B.
- (b) Suppose we have a function h with codomain B such that $f \circ h$ is surjective. Show that f is surjective.

Solution.

- 1. Suppose f is surjective.
 - 2. Let h be a surjective function with codomain B.
 - 3. Take any $y \in C$.
 - 4. Apply the surjectivity of f to find $x \in B$ such that y = f(x).
 - 5. Apply the surjectivity of h to find w in the domain of h such that x = h(w).
 - 6. Then $y = f(x) = f(h(w)) = (f \circ h)(w)$ by the definition of $f \circ h$.
- 1. Suppose h is a function with codomain B such that $f \circ h$ is surjective.
 - 2. Take any $y \in C$.
 - 3. Apply the surjectivity of $f \circ h$ to find w in the domain of h such that y = $(f \circ h)(w).$
 - 4. Let x = h(w).
 - 5. Then $x \in B$ and $y = (f \circ h)(w) = f(h(w)) = f(x)$ by the definition of $f \circ h$.
- 6. Let $A = \{1, 2, 3\}$. The order of a bijection $f: A \to A$ is defined to be the least $n \in \mathbb{Z}^+$ such that

$$\underbrace{f \circ f \circ \ldots \circ f}_{n\text{-many } f\text{'s}} = \mathrm{id}_A.$$

Define functions $g, h: A \to A$ by setting, for all $x \in A$,

$$g(x) = \begin{cases} 1, & \text{if } x = 2; \\ 2, & \text{if } x = 1; \\ x, & \text{otherwise,} \end{cases} \qquad h(x) = \begin{cases} 2, & \text{if } x = 3; \\ 3, & \text{if } x = 2; \\ x, & \text{otherwise.} \end{cases}$$

Find the orders of g, h, $g \circ h$, and $h \circ g$.

Solution. The orders are respectively 2, 2, 3 and 3.

7. Let A, B, C be sets. Show that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$ for all bijections $f: A \to B$ and all bijections $g \colon B \to C$.

Solution.

1. For all $x \in A$ and all $z \in C$,

$$1.1. z = (g \circ f)(x)$$

1.2.
$$\Leftrightarrow$$
 $z = g(f(x))$ by the definition of $g \circ f$

1.3.
$$\Leftrightarrow$$
 $g^{-1}(z) = f(x)$ by the definition of g^{-1} ;

1.4.
$$\Leftrightarrow$$
 $f^{-1}(g^{-1}(z)) = x$ by the definition of f^{-1}

1.2.
$$\Leftrightarrow$$
 $z = g(f(x))$ by the definition of $g \circ f$;
1.3. \Leftrightarrow $g^{-1}(z) = f(x)$ by the definition of g^{-1} ;
1.4. \Leftrightarrow $f^{-1}(g^{-1}(z)) = x$ by the definition of f^{-1} ;
1.5. \Leftrightarrow $(f^{-1} \circ g^{-1})(z) = x$ by the definition of $f^{-1} \circ g^{-1}$.

- 2. So $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$ by the definition of $(g \circ f)^{-1}$.
- 8. Fix sets A, B. Define the graph of a function $f: A \to B$ to be

$$\{(x,y) \in A \times B : y = f(x)\}.$$

- (a) Assuming $A \neq \emptyset$, find a subset $S \subseteq A \times B$ that cannot be the graph of any function $A \to B$.
- (b) Show that a subset $S \subseteq A \times B$ is the graph of a function $A \to B$ if and only if

$$\forall x \in A \quad \exists ! y \in B \quad (x, y) \in S.$$

Solution.

- (a) We claim that $S = \emptyset$ works.
 - 1. We prove this by contradiction.
 - 1.1. Suppose $f: A \to B$ whose graph is S.
 - 1.2. Since $A \neq \emptyset$, it has an element, say x.
 - 1.3. Then $(x, f(x)) \in S$ by the definition of graphs.
 - 1.4. This contradicts the fact that $S = \emptyset$.
 - 2. So S cannot be the graph of any function $A \to B$.
- (b) 1. ("Only if")
 - 1.1. Suppose S is the graph of a function $f: A \to B$.
 - 1.2. Pick any $x \in A$.
 - 1.3. ("Existence part")
 - 1.3.1. $f(x) \in B$ as B is the codomain of f.
 - 1.3.2. As S is the graph of f, we know $(x, f(x)) \in S$.
 - 1.3.3. So $(x, y) \in S$ for some $y \in B$.
 - 1.4. ("Uniqueness part")
 - 1.4.1. Let $y \in B$ such that $(x, y) \in S$.
 - 1.4.2. As S is the graph of f, we know y = f(x).
 - 1.5. So there is a unique $y \in B$ such that $(x, y) \in S$.
 - 2. ("If")

- 2.1. Suppose $\forall x \in A \exists ! y \in B \ (x, y) \in S$.
- 2.2. Define $f: A \to B$ by setting f(x) to be the unique $y \in B$ such that $(x,y) \in S$, for every $x \in A$.
- 2.3. This function is well-defined by line 2.1.
- 2.4. By the definition of f, for all $(x,y) \in A \times B$,

$$(x,y) \in S \quad \Leftrightarrow \quad y = f(x).$$

- 2.5. So S is indeed the graph of f.
- 9. Let $f: A \to B$ be a function. Let $X \subseteq A$ and $Y \subseteq B$.
 - (a) Compare the sets X and $f^{-1}(f(X))$. Is one always a subset of the other? Justify your answer.
 - (b) Compare the sets Y and $f(f^{-1}(Y))$. Is one always a subset of the other? Justify your answer.

Solution.

- (a) First we show it is always the case that $X \subseteq f^{-1}(f(X))$.
 - 1. Let $x \in X$.
 - 2. Then $f(x) \in f(X)$ by the definition of f(X).
 - 3. So $x \in f^{-1}(f(X))$ by the definition of $f^{-1}(f(X))$.

Next we show it is possible that $f^{-1}(f(X)) \not\subseteq X$.

- 1. Consider $f: \{-1, 1\} \to \{0\}$ where f(-1) = 0 = f(1), and $X = \{1\}$.
- 2. Note $f(X) = \{f(1)\} = \{0\}.$
- 3. Since f(-1) = 0, we know $-1 \in f^{-1}(\{0\}) = f^{-1}(f(X))$.
- 4. As $-1 \notin \{1\} = X$, we deduce that $f^{-1}(f(X)) \subseteq X$.
- (b) First we show it is always the case that $f(f^{-1}(Y)) \subseteq Y$.
 - 1. Take any $y \in f(f^{-1}(Y))$.
 - 2. Then the definition of $f(f^{-1}(Y))$ gives some $x \in f^{-1}(Y)$ such that y = f(x).
 - 3. Now as $x \in f^{-1}(Y)$, we get $y' \in Y$ which makes y' = f(x).
 - 4. Since f is a function, this implies $y = f(x) = y' \in Y$, as required.

Next we show it is possible that $Y \not\subseteq f(f^{-1}(Y))$.

- 1. Consider $f: \{0\} \to \{-1, 1\}$ where f(0) = 1, and $Y = \{-1\}$.
- 2. Note that no $x \in \{0\}$ makes f(x) = -1.
- 3. So $f^{-1}(Y) = \emptyset$ by the definition of $f^{-1}(Y)$.
- 4. This entails $f(f^{-1}(Y)) = \emptyset \not\supseteq \{-1\} = Y$.