Constraint Satisfaction Problem II

CSE 4617: Artificial Intelligence

Isham Tashdeed Lecturer, CSE

Examples of CSPs

Examples of CSPs

- Variables
 - o WA, NT, Q, NSW, V, SA, T
- Domains
 - \circ $D = \{\text{red, green, blue}\}$
- Constraints → Adjacent regions must be different colored
 - \supset Implicit: WA \neq NT, ...
 - Explicit: (WA, NT) \subseteq {(red, green), (red, blue), (blue, green), ...}
- Solution
 - An assignment of variables that satisfy all constraints

Backtracking Search

Backtracking Search

```
return RECURSIVE-BACKTRACKING ({}, csp)
RECURSIVE-BACKTRACKING (assignment, csp) → returns a solution or failure
   if assignment is complete then return assignment
    var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)
    for value in ORDER-DOMAIN-VALUE(var, assignment, csp):
        if value is consistent with assignment given CONSTRAINTS[csp]:
            then add {var = value} to assignment
            result ← RECURSIVE-BACKTRACKING (assignment, csp)
            if result is not failure then return result
            remove {var = value} from assignment
    return failure
```

BACKTRACKING-SEARCH $(csp) \rightarrow returns$ a solution or failure

How to Improve Backtracking Search

- Filtering
 - Limiting our choices for variable assignment
 - Detects an inevitable failure early
- Ordering
 - In what order should we assign variables
 - Does it actually matter?
- Structure
 - Can we exploit the structure of a problem?

Certain values as soon as arc consistency is checked

Filtering: Arc Consistency

After enforcing arc consistency:

- Can have one solution left
- Can have multiple solutions left
- Can have no solutions left (and not know it)

Arc consistency only checks pairs :(

k-Consistency

k-Consistency

Increasing degrees of consistency:

- 1-Consistency → Each node's domain has a value which meets that node's unary constraints
- 2-Consistency → For each pair of nodes, any consistent assignment to one can be extended to the other → Arc Consistency
- k-Consistency \rightarrow For each k nodes, any consistent assignment to k-1th can be extended to the kth node
 - \circ As the value of k increases, it gets more difficult to compute k-Consistency
- Strong k-Consistency \rightarrow Nodes are k 1, k 2, k 3, ..., 2, 1 consistent
- Strong n-consistency \rightarrow Can solve without backtracking ! \rightarrow *n* is the number of variables

Structure

Structure

In this specific graph:

- There are 2 independent subproblems
- Independent subproblems are identifiable as connected components of constraint graph
 - How to detect independent subproblems?

If a graph of *n* variables can be broken down into subproblems of only *c* variables:

- The worst case solution cost is $O((n/c)(d^c))$
- This is much better than the worst case of naive DFS which is $O(d^n)$

In most cases, encountered graphs have a tree-like structure

For tree-structured CSPs:

Use Topological Sort

Notice that it is now a DAG, even though the original graph wasn't

For tree-structured CSPs:

- Order: Choose a root variable, order variables so that the parents precede the children
- Remove Backward: Start from the rightmost node and keep going left as you remove inconsistent values from nodes to ensure consistency of the arcs
- Assign Forward: Assign values from left to right nodes by taking valid values from the domain

For tree-structured CSPs:

- Order: Choose a root variable, order variables so that the parents precede the children
- Remove Backward: Start from the rightmost node and keep going left as you remove inconsistent values from nodes to ensure consistency of the arcs
- Assign Forward: Assign values from left to right nodes by taking valid values from the domain

Runtime: $O(nd^2)$

- Go from tail to head and then head to tail $\rightarrow O(n)$
- Check pairs of values for consistency/assignment \rightarrow O(d^2)

I can make a few claims about tree-structured CSPs:

- After a backward pass, all root-to-leaf arcs are consistent → Why?
 - \circ Each $X \to Y$ was made consistent at one point and Y's domain could not have been reduced thereafter
- If all root-to-leaf arcs are consistent, forward assignment will not backtrack
 - \circ Arc consistency implies for X \to Y, for a consistent assignment of X so far, we have a consistent assignment of Y

Why doesn't this algorithm work with cycles in the constraint graph?

```
TREE-CSP-SOLVER (csp) \rightarrow returns a solution or failure
     X \leftarrow \text{set of variables}
     N \leftarrow \text{number of variables in } X
     root \leftarrow any random variable in X
     D ← domain of possible values
     X \leftarrow \text{TOPOLOGICAL-SORT}(X, root)
     for i in range(n \rightarrow 2):
          MAKE-ARC-CONSISTENT (PARENT (X_i), X_i)
          if no consistency then return failure
     for i in range(1 \rightarrow n):
          X_i \leftarrow \text{any consistent value from } D_i
          if no consistency then return failure
     return X
```

Improving Structure

- Conditioning → Instantiate a variable, prune its neighbors' domains
- Cutset conditioning → Instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree

Cutset size *c* gives runtime $O(d^c(n-c)d^2)$:

- Total instantiations $\rightarrow O(d^c)$
- Total remaining subproblems \rightarrow (n c)

Cutset Conditioning

Choose a cutset

Instantiate the cutset (all possible ways)

Compute residual CSP for each assignment

Solve the residual CSPs (tree structured)

CSE 4617: Artificial Intelligence

Cutset Conditioning

Find the smallest cutset for the following graph that gives us a tree:

Local search methods typically work with "complete" states, i.e., all variables assigned

To apply the same idea to CSPs:

- Take an assignment with unsatisfied constraints
- Operators reassign variable values
- No need for fringe!

Keep randomly selecting any conflicted variable and set the value to the one with minimum conflicts

Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability

• Such as n = 10,000,000

The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

$$R = \frac{\text{number of constraints}}{\text{number of variables}}$$

Local Search

Local Search

- Tree search keeps unexplored alternatives on the fringe → This ensures completeness
- Local search improves a single option until you can't make it better → no fringe!

General idea:

- Randomly start
- Repeat: move to the best neighboring state
- If no neighbors better than current, quit
- Not complete
- Not optimal
- Very efficient in finding good-enough solutions

Additional Resources

- <u>Backtracking Search Simulator</u>
- What are Genetic Algorithms?
- A.I. Learns To Walk

Thank you