

STL10N3LLH5

N-channel 30 V, 0.015 Ω, 9 A, PowerFLAT™ 3.3x3.3 STripFET™ V Power MOSFET

Features

Order code	V _{DSS}	R _{DS(on)} max	I _D
STL10N3LLH5	30 V	< 0.019 Ω	9 A ⁽¹⁾

- 1. The value is rated according Rthj-pcb
- R_{DS(on)} * Q_q industry benchmark
- Extremely low on-resistance R_{DS(on)}
- Very low switching gate charge
- High avalanche ruggedness
- Low gate drive power losses

Applications

- Switching applications
- Automotive

Description

This device is an N-channel Power MOSFET developed using STMicroelectronics' STripFET™ V technology. The device has been optimized to achieve very low on-state resistance, contributing to an FOM that is among the best in its class.

Figure 1. Internal schematic diagram

Table 1. Device summary

Order code	Marking	Package	Packaging
STL10N3LLH5	10N3L	PowerFLAT™ 3.3x3.3	Tape and reel

Contents STL10N3LLH5

Contents

1	Electrical ratings
2	Electrical characteristics
	2.1 Electrical characteristics (curves)
3	Test circuits
4	Package mechanical data
5	Revision history

47/

STL10N3LLH5 Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)	30	V
V _{GS}	Gate-source voltage	± 22	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	9	Α
I _D ⁽¹⁾	Drain current (continuous) at T _C =100 °C	6	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	36	Α
P _{TOT}	Total dissipation at T _C = 25 °C	50	W
	Derating factor	0.4	W/°C
P _{TOT} ⁽¹⁾	Total dissipation at T _{pcb} = 25 °C	2	W
	Derating factor	0.02	W/°C
T _J T _{stg}	Operating junction temperature storage temperature	-55 to 150	°C

^{1.} The value is rated according Rthj-pcb

Table 3. Thermal resistance

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	2.5	°C/W
R _{thj-pcb} (1)	Thermal resistance junction-pcb	42.8	°C/W
R _{thj-pcb} (1)	Thermal resistance junction-pcb (steady state)	62.5	°C/W

^{1.} When mounted on FR-4 board of 1inch 2 , 2oz Cu, t < 10sec

Table 4. Avalanche data

Symbol	Parameter	Value	Unit
I _{AV} ⁽¹⁾	Not-repetitive avalanche current	7.5	Α
E _{AS} (2)	Thermal resistance junction-pcb	150	mJ

^{1.} Pulse width limited by T_{Jmax} .

^{2.} Pulse width limited by safe operating area.

^{2.} Starting $T_J = 25$ °C, $I_D = I_{AV}$, $V_{DD} = 21$ V

Electrical characteristics STL10N3LLH5

2 Electrical characteristics

(T_{CASE}=25 $^{\circ}$ C unless otherwise specified)

Table 5. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage (V _{GS} = 0)	I _D = 250 μA	30			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 30 V, V _{DS} = 30 V, T _C = 125 °C			1 10	μ Α μ Α
I _{GSS}	Gate body leakage current (V _{DS} = 0)	V _{GS} = ± 22 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1		2.5	V
R _{DS(on)}	Static drain-source on resistance	V_{GS} = 10 V, I_{D} = 4.5 A V_{GS} = 4.5 V, I_{D} = 4.5 A		15 19	19 22	mΩ

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} =25 V, f=1 MHz, V _{GS} =0	-	724 132 20	900 ⁽¹⁾ 165 ⁽¹⁾ 25 ⁽¹⁾	pF pF pF
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V_{DD} =15 V, I_D = 9 A V_{GS} =4.5 V (see Figure 14)	-	5 2 2	6 ⁽¹⁾ 2.5 ⁽¹⁾ 2.5 ⁽¹⁾	nC nC nC
R _G	Gate input resistance	f=1 MHz Gate DC Bias = 0 Test signal level = 20 mV Open drain	-		3.3	Ω

^{1.} Max values not tested

Table 7. Switching times (1)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$t_{d(on)}$ t_r $t_{d(off)}$ t_f	Turn-on delay time Rise time Turn-off delay time Fall time	V_{DD} =15 V, I_{D} = 4.5 A, R_{G} =4.7 Ω , V_{GS} = 10 V (see Figure 13)	1	4 4.2 21 3.5	5 5.2 26 4.25	ns ns ns ns

^{1.} Max values not tested

Table 8. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		9	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		36	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 9 A, V _{GS} =0	-		1.1	٧
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I_{SD} = 9 A, di/dt = 100 A/ μ s, V_{DD} =20 V, Tj=150 °C (see Figure 18)	-	21 10 1		ns nC A

^{1.} Pulse width limited by safe operating area.

^{2.} Pulsed: pulse duration = 300 $\mu s,$ duty cycle 1.5 %

Electrical characteristics STL10N3LLH5

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area

Figure 3. Thermal impedance

Figure 4. Output characteristics

Figure 5. Transfer characteristics

Figure 6. Normalized B_{VDSS} vs temperature

Figure 7. Static drain-source on resistance

57

AM03817v1 AM03816v1 Vgs С (V) (pF) f=1MHz VDD=15V 1000 ID=9A 10 800 Ciss 8 600 6 400 4 2 200 Coss 0 Crss 0 2 4 6 10 Qg(nC) 10 20 VDS(V) 0

Figure 8. Gate charge vs gate-source voltage Figure 9. Capacitance variations

Figure 10. Normalized gate threshold voltage Figure 11. Normalized on resistance vs vs temperature temperature

Figure 12. Source-drain diode forward characteristics

Test circuits STL10N3LLH5

3 Test circuits

Figure 13. Switching times test circuit for resistive load

Figure 14. Gate charge test circuit

Figure 15. Test circuit for inductive load switching and diode recovery times

Figure 16. Unclamped inductive load test circuit

Figure 17. Unclamped inductive waveform

Figure 18. Switching time waveform

577

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Table 9. PowerFLAT™ 3.3 x 3.3 mechanical data

Dim.		mm	
Diiii.	Min.	Тур.	Max.
А	0.80	0.90	1.00
A1	0		0.05
A3		0.20	
b	0.23		0.38
D	3.20	3.30	3.40
D2	2.50		2.75
E	3.20	3.30	3.40
E2	1.25		1.50
е		0.65	
L	0.30		0.50

BOTTOM VIEW DIMENSIONS IN mm D2 -PIN 1 1.325 Ref. EXPOSED PAD 0.328 Ref. 0.12 Ref. -**L** 8x b 8x // 0.1 C -A3 -SEATING PLANE A1. SIDE VIEW C LEADS COPLANARITY PIN 1 TOP VIEW 7635509_E

Figure 19. PowerFLAT™ 3.3 x 3.3 drawing

Figure 20. PowerFLAT™ 3.3 x 3.3 recommended footprint

577

STL10N3LLH5 Revision history

5 Revision history

Table 10. Document revision history

Date	Revision	Changes
09-Aug-2011	1	First release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

14/14 Doc ID 022093 Rev 1