IR-Lumineszenzdiode Infrared Emitter

Lead (Pb) Free Product - RoHS Compliant

LD 271 LD 271 H LD 271 L LD 271 LH

Wesentliche Merkmale

- GaAs-LED in 5mm radial-Gehäuse
- Typische Peakwellenlänge 950nm
- Hohe Zuverlässigkeit
- Mit verschiedenen Beinchenlängen lieferbar
- · Variante mit "stand-off" lieferbar
- TTW Löten geeignet

Anwendungen

- IR-Fernsteuerung von Fernseh- und Rundfunkgeräten, Videorecordern, Lichtdimmern
- Gerätefernsteuerungen für Gleich- und Wechsellichtbetrieb
- Sensorik
- Diskrete Lichtschranken

Features

- GaAs-LED in 5mm radial package (T 1 ³/₄)
- Typical peak wavelength 950nm
- · High reliability
- · Available with two different lead lengths
- Version with stand-off available
- Suitable for TTW soldering

Applications

- IR remote control of hi-fi and TV-sets, video tape recorders, dimmers
- Remote control for steady and varying intensity
- Sensor technology
- Discrete interrupters

Тур Туре	Bestellnummer Ordering Code	Strahlstärkegruppierung ¹⁾ ($I_{\rm F}$ = 100mA, $t_{\rm p}$ = 20 ms) Radiant intensity grouping ¹⁾ $I_{\rm e}$ (mW/sr)
LD 271	Q62703Q0148	15 (>10)
LD 271 L	Q62703Q0833	
LD 271 H	Q62703Q0256	>16
LD 271 LH	Q62703Q0838	

 $^{^{1)}}$ gemessen bei einem Raumwinkel Ω = 0.01 sr measured at a solid angle of Ω = 0.01 sr

OSRAM

2004-06-04

Grenzwerte Maximum Ratings

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Betriebs- und Lagertemperatur Operating and storage temperature range	$T_{\sf op};T_{\sf stg}$	- 40 + 100	°C
Sperrspannung Reverse voltage	V_{R}	5	V
Durchlaßstrom Forward current	I_{F}	130	mA
Stoßstrom, $t_p = 10 \mu s$, $D = 0$ Surge current	I_{FSM}	3.5	А
Verlustleistung Power dissipation	P _{tot}	220	mW
Wärmewiderstand Thermal resistance	R_{thJA}	330	K/W

Kennwerte ($T_A = 25$ °C) **Characteristics**

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Wellenlänge der Strahlung Wavelength at peak emission $I_{\rm F}=100$ mA, $t_{\rm p}=20$ ms	λ_{peak}	950	nm
Spektrale Bandbreite bei 50% von $I_{\rm max}$ Spectral bandwidth at 50% of $I_{\rm max}$ $I_{\rm F}$ = 100 mA	Δλ	55	nm
Abstrahlwinkel Half angle	φ	± 25	Grad deg.
Aktive Chipfläche Active chip area	A	0.25	mm ²
Abmessungen der aktiven Chipfläche Dimensions of the active chip area	$L \times B$ $L \times W$	0.5 × 0.5	mm
Abstand Chipoberfläche bis Linsenscheitel Distance chip front to lens top	Н	4.0 4.6	mm
Schaltzeiten, $I_{\rm e}$ von 10% auf 90% und von 90% auf 10%, bei $I_{\rm F}$ = 100 mA, $R_{\rm L}$ = 50 Ω Switching times, $I_{\rm e}$ from 10% to 90% and from 90% to 10%, $I_{\rm F}$ = 100 mA, $R_{\rm L}$ = 50 Ω	t_{r},t_{f}	1	μs

Kennwerte ($T_A = 25$ °C) Characteristics (cont'd)

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Kapazität, $V_{\rm R}$ = 0 V, f = 1 MHz Capacitance	Co	40	pF
Durchlaßspannung Forward voltage $I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms $I_{\rm F}$ = 1 A, $t_{\rm p}$ = 100 μ s	$V_{F} \ V_{F}$	1.30 (≤ 1.5) 1.90 (≤ 2.5)	V V
Sperrstrom, $V_R = 5 \text{ V}$ Reverse current	I_{R}	0.01 (≤ 1)	μΑ
Gesamtstrahlungsfluß Total radiant flux $I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms	Φ_{e}	18	mW
Temperaturkoeffizient von $\rm I_e$ bzw. $\rm \Phi_e$, $I_{\rm F}$ = 100 mA Temperature coefficient of $\rm I_e$ or $\rm \Phi_e$, $I_{\rm F}$ = 100 mA	TC_1	- 0.55	%/K
Temperaturkoeffizient von $V_{\rm F}$, $I_{\rm F}$ = 100 mA Temperature coefficient of $V_{\rm F}$, $I_{\rm F}$ = 100 mA	TC_{\vee}	- 1.5	mV/K
Temperaturkoeffizient von λ , $I_{\rm F}$ = 100 mA Temperature coefficient of λ , $I_{\rm F}$ = 100 mA	TC_{λ}	0.3	nm/K

Gruppierung der Strahlstärke I_e in Achsrichtung gemessen bei einem Raumwinkel $\Omega=0.01$ sr Grouping of Radiant Intensity I_e in Axial Direction at a solid angle of $\Omega=0.01$ sr

Bezeichnung Parameter	Symbol Symbol			Einheit Unit
		LD 271 LD 271 L	LD 271 H LD 271 LH	
Strahlstärke Radiant intensity				
$I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms $I_{\rm F}$ = 1 A, $t_{\rm p}$ = 100 μ s	I_{e} $I_{e \text{ typ.}}$	15 (> 10) 120	> 16	mW/sr mW/sr

Relative Spectral emission $\mathbf{I} = f(\lambda)$

 $I_{rel} = f(\lambda)$

Forward Current $I_F = f(V_F)$, single pulse, $t_D = 20 \mu s$

Radiation Characteristics $I_{rel} = f(\phi)$

2.5

2004-06-04 4

Radiant Intensity $\frac{I_{\rm e}}{I_{\rm e}\,{\rm 100~mA}}$ = $f(I_{\rm F})$

Single pulse, $t_p = 20 \,\mu\text{s}$

Permissible Pulse Handling Capability $I_{\rm F}$ = f (τ), $T_{\rm C}$ = 25 °C, duty cycle D = parameter

Max. Permissible Forward Current $I_{\rm F} = f\left(T_{\rm A}\right)$

Maßzeichnung Package Outlines

Maße werden wie folgt angegeben: mm (inch) / Dimensions are specified as follows: mm (inch).

Gehäusefarbe: grau

Brechungsindex Verguss: 1.53

Package Coluor: grey Refractive index resin: 1.53

Lötbedingungen Soldering Conditions

Wellenlöten (TTW)
TTW Soldering

(nach CECC 00802) (acc. to CECC 00802)

Empfohlenes Lötpaddesign Wellenlöten (TTW) **Recommended Solder Pad** TTW Soldering

Maße werden wie folgt angegeben: mm (inch) / Dimensions are specified as follows: mm (inch).

Published by OSRAM Opto Semiconductors GmbH Wernerwerkstrasse 2, D-93049 Regensburg

www.osram-os.com

© All Rights Reserved.

The information describes the type of component and shall not be considered as assured characteristics. All typical data and graphs are basing on sample base, but don't represent the production range. If required, e.g. because of technical improvements, the typ. data will be changed without any further notice.

Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances. For information on the types in question please contact our Sales Organization.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components ¹, may only be used in life-support devices or systems ² with the express written approval of OSRAM OS. ¹ A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system.

² Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered.

