T. D. nº 5 Régression linéaire simple II

Les deux premiers exercices s'inspirent du livre de Y. Dodge, *Analyse de régression appliquée*, aux éditions Dunod, 1999. Le dernier exercice provient du livre de G. Baillargeon, *Probabilités, Statistique et Techniques de régression*, aux éditions SMG, 1989.

Exercice 1. Les athlètes de saut en hauteur.

La taille d'un athlète peut jouer un rôle important dans ses résultats en saut en hauteur. Les données utilisées ici présentent donc la taille et la performance de 30 champions du monde.

Observation	Nom	Taille	Performance
1	Jacobs (EU, 1978)	1,73	2, 32
\parallel 2	Noji (EU, 1936)	1,73	2,31
3	Conway (EU, 1989)	1,83	2,40
\parallel 4	Matei (Roumanie, 1990)	1,84	2,40
5	Austin (EU, 1996)	1,84	2,39
6	Ottey (Jamaique)	1,78	2,33
7	Smith (GB, 1992 et 1993)	1,85	[2, 37]
8	Carter (EU)	1,85	2,37
9	McCants (ÉU)	1,85	2,37
10	Sereda (URSS)	1,86	2,37
11	Grant (GB)	1,85	2, 36
12	Paklin (URSS, 1985)	1,91	2,41
13	Annys (Belgique, 1985)	1,87	2, 36
14	Sotomayor (Cuba, 1993)	1,95	2,45
15	Sassimovitch (URSS)	1,88	2,36
16	Zhu Jianhua (Chine, 1984)	1,94	2,39
17	Brumel (URSS, 1963)	1,85	2,28
18	Sjöberg (Suède, 1987)	2,00	2,42
19	Yatchenko (URSS, 1978)	1,94	2,35
20	Povarnitsyn (URSS, 1985)	2,01	2,40
21	Voronin (Russie, 2000)	1,91	2,40
22	Ukhov (Russie, 2012)	1,92	2,39
23	Essa Barshim (Qatar, 2012)	1,89	2,39
24	Holm (Suède, 2005)	1,81	2,40
25	Sjöberg (Suède, 1987)	2,00	[2,41]
26	Prezelj (Slovénie, 2012)	1,94	2,32
27	Forsyth (Australie, 1997)	2,00	2,36
28	Kemp (Bahamas, 1995)	1,87	2,38
29	Buss (Allemand, 2001)	1,95	2,36
30	Freitag (Sud-Africain, 2005)	2,04	2,38

1. À partir de l'échantillon proposé, utiliser la méthode des moindres carrés ordinaires pour estimer les paramètres de la droite de régression linéaire :

(Performance) =
$$\beta_0 + \beta_1 \times (Taille) + \varepsilon$$
.

2. Compléter le tableau d'analyse de la variance (dit aussi tableau d'ANOVA) :

Source de	Degrés de	Somme des	Moyenne des	F_{obs}	$ F_c $
variation	liberté	carrés	carrés		
Régression					
Résiduelle					
Totale					

Puis réalisez le test de Fisher au seuil de significativité $\alpha=5\%$. Que concluezvous ?

3. Quel pourcentage de la variation totale des performances est expliqué par la variable taille? Que pensez-vous de ce résultat? Que faudrait-il faire en tant que chargé de cette étude?

Exercice 2. Calories.

Soient les données présentées dans le tableau ci-dessous. Il s'agit du nombre de calories consommées par jour et du pourcentage de population agricole dans 11

pays.

		M G G :	
Observation	Pays	% Superficie	Calories par jour
i		agricole (1000Ha)	et par personne
1	Luxembourg	131,0	4713
\parallel 2	Autriche	2869,0	4 023
3	Israël	520, 5	3 831
\parallel 4	États-Unis	411262, 5	3 754
5	Italie	9227,0	3 754
6	Grèce	8 152, 0	3 706
7	Portugal	3636,0	3 635
8	Uruguay	14378,0	3 576
9	Cuba	6570,0	3 547
10	France	29090,0	3 541
11	Lituanie	2805, 9	3 5 3 0
12	Arabie Saoudite	173355,0	3 527
13	Algérie	41 383, 0	3 5 1 0
14	Irlande	4555,0	3 503
15	Pologne	14779,0	3 503
16	Danemark	2690,0	3 494
17	Maroc	30 103, 8	3 492
18	Canada	62597,0	3 486
19	Pays-Bas	1894,8	3 479
20	République tchèque	4229,0	3 303
21	Roumanie	13982,0	3 263
22	Suède	3066,0	3 114
23	Suisse	1522,9	3 085
24	Brésil	275030,0	2 926
25	Bulgarie	62597,0	2 839
26	Chine	519148, 2	2 740
27	Pérou	21500,0	2583
28	Inde	179799,0	2529
29	Sénégal	9505, 0	2 513
30	Pakistan	26550,0	2422

- 1. Représenter graphiquement Y en fonction de X.
- 2. Estimer les paramètres β_0 et β_1 du modèle :

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i.$$

- 3. Construire le tableau d'analyse de la variance correspondant à cette régression.
- 4. Construire un intervalle de confiance à 95% autour de la droite de régression.
- 5. Représenter sur le graphique de la question (1) la droite de régression et l'intervalle de confiance calculé à la question (4).

Exercice 3. Le composant électronique.

Un certain composant électronique est fabriqué une fois par mois par l'entreprise Micro-Systèmes. La quantité fabriquée varie avec la demande du marché. Dans le but de planifier la production et d'établir certaines normes sur le nombre d'hommesminutes exigés pour la production de différents lots de ce composant électronique, le responsable de la production a relevé l'information suivante pour 30 cédules de production. Le nombre d'hommes-minutes est identifié par Y et la quantité fabriquée par X.

y_i	150	192	264	371	300	358	192	134	242	238	226	302	340	182	169
x_i	35	42	64	88	70	85	40	30	55	60	51	72	80	44	39
y_i	149	183	273	362	311	347	183	123	213	217	237	313	331	193	158
x_i	38	40	68	85	70	75	37	28	55	52	53	74	76	48	37

- 1. Quelle serait la première étape à franchir avant d'aborder tout calcul préliminaire?
- 2. Le responsable de la production envisage d'utiliser le modèle linéaire simple comme modèle prévisionnel. Spécifier ce modèle et bien identifier chacune des composantes du modèle dans le contexte de ce problème.
- 3. Déterminer l'équation de régression.
- 4. D'après l'équation de régression, si le nombre d'unités à fabriquer augmente de 10, quelle sera l'augmentation correspondante du nombre moyen d'hommesminutes requis?
- 5. En l'absence de l'information que nous donne la quantité à fabriquer, quelle serait une bonne estimation du nombre d'hommes-minutes requis?
- 6. Quelle correction peut-il apporter à son estimation du nombre moyen d'hommesminutes requis en introduisant la connaissance de X dans son analyse?
- 7. Donner la valeur de $s(\widehat{\beta}_1)$ et tester, au risque $\alpha = 5\%$ les deux hypothèses suivantes :

$$\mathcal{H}_0: \beta_1 = 0$$
 contre $\mathcal{H}_1: \beta_1 \neq 0$.

- 8. Donner la variation qui est expliquée par la droite de régression et la variation qui est inexpliquée par la droite.
- 9. Déterminer le pourcentage de variation qui est expliqué par la droite de régression.
- 10. Donner une estimation du nombre moyen d'hommes-minutes requis pour : $x_h = 42; x_h = 57; x_h = 72.$
- 11. Pour quelle quantité X_n , l'estimation du nombre moyen d'hommes-minutes requis serait-elle la plus précise?
- 12. Entre quelles valeurs peut se situer le vrai nombre moyen d'hommes-minutes requis pour les lots dont la quantité a été déterminée à la question 11.? Utiliser un niveau de confiance de 95%.
- 13. Quelle est la marge d'erreur dans l'estimation effectuée en 12.?