

Our Team

Aakash Pahuja

MScA Candidate at The University of Chicago RFID Solution Architect

Adrienne Wang

MScA Candidate at The University of Chicago

Brandon Allen

MBA Candidate at The University of Chicago
Senior Associate Director of Analytics at The University of Chicago

Prasanth Chinta

MScA Candidate at The University of Chicago Senior Product Manager at a Financial Firm

Does history repeat itself? Extrapolating implications from the 2008 Financial Crisis for a COVID-19 world.

The 2008 Financial Crisis was one of the most severe global economic crises in history. Its impact was felt across all industries, and it continues to have a material impact on countless lives. Learning from the past could allow policy-makers, civic leaders, and industry entities to more adequately prepare for future economic recessions.

By understanding how the 2008 crisis impacted employment and stock performance, we seek to identify individuals and industries that are most vulnerable to economic downturns. In doing so, we hope to highlight opportunities for support during the next economic crisis.

Business Case

Financial Crisis Analysis

- Demographic Analysis
- Stock Market Analysis
- **Employment Analysis**

Data Structure Design

- Underlying Data Structure Design
- Data Source Clarification

Verification

Result Verification

Objective

- Develop analytics framework to carry out the analysis of the Financial Crisis on unemployment rate
- Detail impact on stock market and workforce deployment
- Identify individuals' characteristics and industries that are most at-risk
- Design One-Page Dashboard to interactively visualize current and historical KPI, filtered by selected dimensions

Our Datasets

Data Profile	Description	Total Size	Sources #	# of Rows	Columns #	Structure	Source
Stock Market Indexes	S&P 500, Dow Jones IA, and NASDAQ Indexes	16KB	1	149	4	Structured	Yahoo Finance
Employment and Labor Force Participation Data for Education Attainment	Labor force, employment, and unemployment statistics by educational attainment for persons age 25 and older	22KB	1	360	2	Structured	Bls.gov Website and Public API FRED
Currency Exchange Rate	US to EURO Currency Exchange Rate	10KB	1	149	5	Structured	FRED
Unemployment Duration	Unemployment Duration	64KB	1	588	5	Structured	Bls.gov Website and Public API
Unemployment Rate and Volume by Demographics	Unemployed jobseekers by sex, reason for unemployment, and active job search methods used	193KB	1	5,000	6	Structured (JSON)	Bls.gov Website and Public API
Stocks Return by Industries	Annual returns for the ten stock market sectors against the S&P 500	112KB	1	1872	5	Structured	Novel Investor

Data Profile After

• dim_master_codes: "Data about races, education, marital status etc." Columns: stg_id smallint(5) UN AI PK code varchar(45) sexes varchar(4) races varchar(10) age varchar(10) education varchar(255) marital_status varchar(45) bls_type varchar(45) ts timestamp

Our Snowflake Dimensional Table

Data Ingestion

```
import pandas as pd
    import json
    import requests
    def get bls data(series, start, end):
        headers = {'Content-Type': 'application/json'}
        data = json.dumps({"seriesid": series, "startyear": "%d" % (start), "endyear": "%d" % (end)})
       p = requests.post('https://api.bls.gov/publicAPI/v2/timeseries/data/?registrationkey=60256a471f4a427c813300a92445943c&catalog=false&startyear=2010&endyear=2011', data=data, headers=headers)
        json_data = json.loads(p.text)
        try:
            df = pd.DataFrame()
            for series in json data['Results']['series']:
                df initial = pd.DataFrame(series)
                series col = df initial['seriesID'][0]
                for i in range(0, len(df initial) - 1):
                   df row = pd.DataFrame(df_initial['data'][i])
                   df_row['seriesID'] = series_col
                   if 'code' not in str(df row['footnotes']):
                       df row['footnotes'] = '
                        df_row['footnotes'] = str(df_row['footnotes']).split("'code': '",1)[1][:1]
                    df = df.append(df_row, ignore_index=True)
           return df
        except:
            json_data['status'] == 'REQUEST_NOT_PROCESSED'
           print('BLS API has given the following Response:', json data['status'])
            print('Reason:', json data['message'])
```


We are connected to the bls api to gather information for:

- unemployment_duration
- unemployment_rate and employment_rate
- consumer price index

Data Ingestion Example

Web Scraping Code

```
import requests
from bs4 import BeautifulSoup
import json
import csv
from IPython.display import HTML
URL = 'https://novelinvestor.com/sector-performance/'
page = requests.get(URL)
soup = BeautifulSoup(page.content, 'html.parser')
table = soup.find('tbody')
tmpRow = (table.findAll('tr')[1:])
list of rows = []
try:
   outfile = open("./SP.csv", "w")
    writer = csv.writer(outfile)
   writer.writerow(["2007", "2008", "2009", "2010", "2011", "2012", "2013", "2014", "2015","
    for row in table.findAll('tr'):
        list of cells = []
        for cell in row.findAll("td"):
           text = cell.text.replace(' ', '')
            list_of_cells.append(text)
        arrLength = len(list_of_cells)
        writer.writerow(list of cells)
finally:outfile.close()
```

Tool Utilized

Jupyter Notebook (package csv, and BeautifulSoup to open and scrape web data and write to CSV)

Output

_			25						
	2007	2008	2009	2010	2011	2012	2013	2014	
0	ENRS\n34.4%	CONS\n- 15.4%	INFT\n61.7%	REAL\n32.3%	UTIL\n19.9%	FINL\n28.8%	COND\n43.1%	REAL\n30.2%	COND\n
1	MATR\n22.5%	HLTH\n- 22.8%	MATR\n48.6%	COND\n27.7%	CONS\n14.0%	COND\n23.9%	HLTH\n41.5%	UTIL\n29.0%	HLTH\₁
2	UTIL\n19.4%	UTIL\n- 29.0%	COND\n41.3%	INDU\n26.7%	HLTH\n12.7%	REAL\n19.7%	INDU\n40.7%	HLTH\n25.3%	CONS\
3	INFT\n16.3%	TELS\n- 30.5%	REAL\n27.1%	MATR\n22.2%	REAL\n11.4%	TELS\n18.3%	FINL\n35.6%	INFT\n20.1%	INFT∖ı
4	CONS\n14.2%	COND\n- 33.5%	S&P\n26.5%	ENRS\n20.5%	TELS\n6.3%	HLTH\n17.9%	S&P\n32.4%	CONS\n16.0%	REAL\
5	INDU\n12.0%	ENRS\n- 34.9%	INDU\n20.9%	TELS\n19.0%	COND\n6.1%	S&P\n16.0%	INFT\n28.4%	FINL\n15.2%	TELS\
6	TELS\n11.9%	S&P\n- 37.0%	HLTH\n19.7%	S&P\n15.1%	ENRS\n4.7%	INDU\n15.4%	CONS\n26.1%	S&P\n13.7%	S&P\ı
7	HLTH\n7.2%	INDU\n- 39.9%	FINL\n17.2%	CONS\n14.1%	INFT\n2.4%	MATR\n15.0%	MATR\n25.6%	INDU\n9.8%	FINL\n
8	S&P\n5.5%	REAL\n- 42.3%	CONS\n14.9%	FINL\n12.1%	S&P\n2.1%	INFT\n14.8%	ENRS\n25.1%	COND\n9.7%	INDU\n
9	COND\n- 13.2%	INFT\n- 43.1%	ENRS\n13.8%	INFT\n10.2%	INDU\n-0.6%	CONS\n10.8%	UTIL\n13.2%	MATR\n6.9%	UTIL\n

Data Cleaning

Data Cleaning Example

R Code

library(readxl) SP <- read_excel("~/Desktop/MScA-Chicago/Spring2020/Data Engineering Platforms for Analytics/Final_Project_Team3/SP2.0.xlsx") SP1<-cbind(SP, 'month' = 1) SP2<-cbind(SP, 'month' = 2) SP3 < -cbind(SP, 'month' = 3)SP4 < -cbind(SP, 'month' = 4)SP5 < -cbind(SP, 'month' = 5)SP6 < -cbind(SP, 'month' = 6)SP7 < -cbind(SP, 'month' = 7)SP8<-cbind(SP, 'month' = 8) SP9<-cbind(SP, 'month' = 9) SP10<-cbind(SP, 'month' = 10) SP11<-cbind(SP, 'month' = 11) SP12<-cbind(SP, 'month' = 12) SP_3<-rbind.data.frame(SP1, SP2, SP3, SP4, SP5, SP6, SP7, SP8, SP9, SP10, SP11, SP12)

R Studio was used to replicate yearly data as monthly data

Output

return_rate_id	year	month	industry	return_rate
5	2007	1	5	0.072
6	2007	1	6	0.12
7	2007	1	7	0.163
8	2007	1	8	0.225
9	2007	1	9	-0.179
10	2007	1	10	0.055
11	2007	1	11	0.119
12	2007	1	12	0.194
13	2008	1	1	-0.335
14	2008	1	2	-0.154
15	2008	1	3	-0.349
16	2008	1	4	-0.553
17	2008	1	5	-0.228
18	2008	1	6	-0.399
19	2008	1	7	-0.431
20	2008	1	8	-0.457
21	2008	1	9	-0.423
22	2008	1	10	-0.37
23	2008	1	11	-0.305
24	2008	1	12	-0.29
25	2009	1	1	0.413
26	2009	1	2	0.149
27	2009	1	3	0.138
28	2009	1	4	0.172
29	2009	1	5	0.197
30	2009	1	6	0.209

Data Warehouse through GCP

Storage is fast with uncapped bandwidth with strongly consistent listings.

With numerous data breaches and security issues reported in the news almost daily, security is on top of our mind. Hence, GCP offers robust data privacy and security features.

Fully compatible with Jupyter notebook, MySQL, and Tableau with convenient data transfer mechanism.

NoSQL DATABASE

MongoDB is document database, which fits well with our data, as each document contains several attributes (Dow_Jones_Average_Close, Nasdaq_Average_Close, SP_500_Average_Close, employment_ratio, unemployment ratio etc.) for each specific month and year.

Why MongoDB over Neo4j for OLTP?

- We used MongoDB over Neo4js because the analysis we needed was been done using MongoDB. If government officials wanted to add new data for a particular month and year, they could do that easily by just creating a new document in Mongo Different categorical
 variables are only linked
 through a rate number.
 Graphical database can only
 provide minimal insights to
 future use cases

- Our business case focuses on trend analysis mainly and relational graph provides minimal insight to our use case

Design Considerations

Outliers, Anomalies, and Aggregation

- We didn't encounter
 outliers or anomalous
 data points, but we were
 prepared to treat them if
 necessary
- Aggregated by time period depending on the native time scale to ensure consistent granularity of time

Data Transformations

- Melted and reformed dim tables to better integrate with fact table
- Reshaped industry data to successfully visualize in Tableau
- Aligned education codes across BLS and Fred datasets
- Standardized period naming conventions

Data Mapping

We considered a galaxy schema, but decided for the purposes of this project to go with snowflake

After creating reports and building dashboards in Tableau, we noticed that ...

The decline in stock index performance during the 2008 Financial Crisis is sufficiently similar to the 2020 COVID decline

Stock industry indexes behaved similarly with a steep decline in 2008

The Energy, Financials, Industrials, Information Technology, Materials, and Real Estate industries had the lowest average return rates during 2008

Lower education attainment suggests greater risk for unemployment, especially during financial crises

High School Graduates:

Some college or associate degree

■ Some college, no degree

2x higher unemployment ratio

than Bachelor's Degree Holders after 2008 Crisis

The unemployment ratio dichotomously divided into "Bachelor's degree" and "High School Diploma" suggests that, while high school graduates are typically more likely to be unemployed, the magnitude of increase in the aftermath of the 2008 financial crisis is over 2 times greater

Less than a High School Diploma:

3x higher

unemployment rate

than Advanced Degree Holders during COVID-19

This distinction by education level is also borne out when a more granular perspective is taken. While data is not available every year for each education level, the unemployment rates corroborate that increased education level leads to a lower unemployment rate. This is especially true when comparing the most educated against the least educated.

Comparisons across other metrics (Labor Force Participation, Consumer Price Index, etc.) and demographics (gender, etc.) did not yield meaningful differences

Our Tableau dashboard consolidates sheets for future research

The Energy, Financials, Industrials, Information Technology, Materials, Real Estate, and Utilities industries

dropped to the lowest absolute return rate during the 2008 Financial Crisis

The least educated members of society (less than a bachelor's degree)

are most at-risk of becoming unemployed during a financial crisis

Industry and civic leaders must prepare

to implement programs that quickly and efficiently support these most vulnerable individuals and industries to mitigate long-term fiscal damage

Lessons Learned

Data quality

It was extremely helpful to have identified and leveraged high-quality and well-documented data sources

Structural decisions

Developing the schema requires tremendous vetting and iterative review to deliver best results

Schema Selection

Most datasets have only rate and date columns (Snowflake over Galaxy)

Ideal for our business case: compare trends for multiple indexes together

Time dimension is extremely important

Data availability

Finding the right data can be challenging, especially when attempting to avoid paywalls

Adding more data could yield additional insights

Thanks!