Math 244

Chapter 16

SECTION 16.9: DIVERGENCE THEOREM

Contents

Divergence in 3D	2
Divergence Theorem	4

Created by: Pierre-Olivier Parisé Fall 2023

DIVERGENCE IN 3D

DEFINITION 1. If $\vec{F} = \langle P, Q, R \rangle$ is a vector field in 3D, then

$$\operatorname{div} \vec{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}.$$

Another way to write $\operatorname{curl} \vec{F}$ is as followed. Define

$$\vec{\nabla} = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle \implies \operatorname{div} \vec{F} = \vec{\nabla} \cdot \vec{F}.$$

EXAMPLE 1. Find the divergence of $\vec{F} = \langle xz, xyz, -y^2 \rangle$.

SOLUTION.

$$\frac{\partial}{\partial x} = \overrightarrow{\nabla} \cdot \overrightarrow{F}$$

$$= \left\langle \frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \right\rangle \cdot \left\langle 2z, 2yz, -y^{2} \right\rangle$$

$$= \frac{\partial(2z)}{\partial x} + \frac{\partial}{\partial y} (2yz) + \frac{\partial}{\partial z} (-y^{2})$$

$$= z + xz + 0$$

$$= z + xz$$

THEOREM 1. Let $\vec{F} = \langle P, Q, R \rangle$ and assume P, Q, R have continuous second partial derivatives. Then

$$\operatorname{div}\left(\operatorname{curl}\vec{F}\right) = 0. \qquad \left(\overrightarrow{\nabla} \cdot \left(\overrightarrow{\nabla} \times \overrightarrow{F} \right) \right)$$

EXAMPLE 2. Show that $\vec{F}(x, y, z) = \langle xz, xyz, -y^2 \rangle$ can't be written as the curl of some other vector field.

SOLUTION.

By contradiction, assume that there is a vector field \overrightarrow{G} such that $\overrightarrow{F} = \text{curl } \overrightarrow{G}$.

By Thm. 1, div F = div (curl G) = 0.

But, dix F = Z+27 = 0.

This is a contradiction!

So, F \ wil G, for any G. =

DIVERGENCE THEOREM

Theorem 2. Assume

- S be a closed surface with positive orientation (outward orientation).
- $\vec{F} = \langle P, Q, R \rangle$ with P, Q, R having continuous partial derivatives.

Then,

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iiint_{E} \operatorname{div} \vec{F} \, dV,$$

where E is the solid bounded by S.

EXAMPLE 3. Let $\vec{F}(x, y, z) = \langle xye^z, xy^2z^3, -ye^z \rangle$ and S is the surface of the box bounded by the coordinates planes and the planes x = 3, y = 2, and z = 1. Compute the flux of \vec{F} across S.

SOLUTION.

Picture

$$Z = \sqrt{2}$$
 $Z = \sqrt{2}$
 $Z = \sqrt{2}$

Divergence Therem

$$\iint_{S} \overrightarrow{F} \cdot d\overrightarrow{S} = \iiint_{E} dn \overrightarrow{F} dV$$

$$= \int_0^1 \int_0^2 \int_0^3 2xy^2 dx dy dz$$

$$= \left(\int_0^3 2\pi \, d\pi \right) \left(\int_0^2 y \, dy \right) \left(\int_0^1 z^3 dz \right)$$