Lagrangian Duality and Convex Optimization

Marylou Gabrié & He He Material originally designed by: Julia Kempe & David Rosenberg

CDS, NYU

September 10, 2023

Optimization

General Optimization Problem: Standard Form

 $x \in \mathbb{R}^n$ are the optimization variables and f_0 is the objective function.

minimize $f_0(x)$

Optimization

General Optimization Problem: Standard Form

 $x \in \mathbb{R}^n$ are the optimization variables and f_0 is the objective function.

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1,..., m$
 $h_i(x) = 0, i = 1,..., p$

Optimization

General Optimization Problem: Standard Form

 $x \in \mathbb{R}^n$ are the optimization variables and f_0 is the objective function.

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1,..., m$
 $h_i(x) = 0, i = 1,..., p$

• Can you think of examples?

- Historically:
 - Linear programs (linear objectives & constraints) were the focus

- Historically:
 - Linear programs (linear objectives & constraints) were the focus
 - Nonlinear programs: some easy, some hard

- Historically:
 - Linear programs (linear objectives & constraints) were the focus
 - Nonlinear programs: some easy, some hard
- By early 2000s:
 - Main distinction is between **convex** and **non-convex** problems

- Historically:
 - Linear programs (linear objectives & constraints) were the focus
 - Nonlinear programs: some easy, some hard
- By early 2000s:
 - Main distinction is between **convex** and **non-convex** problems
 - Convex problems are the ones we know how to solve efficiently

- Historically:
 - Linear programs (linear objectives & constraints) were the focus
 - Nonlinear programs: some easy, some hard
- By early 2000s:
 - Main distinction is between convex and non-convex problems
 - Convex problems are the ones we know how to solve efficiently
 - Mostly batch methods until... around 2010? (earlier if you were into neural nets)

- Historically:
 - Linear programs (linear objectives & constraints) were the focus
 - Nonlinear programs: some easy, some hard
- By early 2000s:
 - Main distinction is between convex and non-convex problems
 - Convex problems are the ones we know how to solve efficiently
 - Mostly batch methods until... around 2010? (earlier if you were into neural nets)
- By 2010 +- few years, most people understood the
 - optimization / estimation / approximation error tradeoffs
 - accepted that stochatic methods were often faster to get good results
 - (especially on big data sets)
 - now nobody's scared to try convex optimization machinery on non-convex problems

Your Reference for Convex Optimization

- Boyd and Vandenberghe (2004)
 - Very clearly written, but has a ton of detail for a first pass.
 - See the Extreme Abridgement of Boyd and Vandenberghe.

What we will quickly review today

- Convex Sets and Functions
- The General Optimization Problem
- 3 Lagrangian Duality: Convexity not required
- 4 Convex Optimization
- Complementary Slackness

Table of Contents

- Convex Sets and Functions
- 2 The General Optimization Problem
- 3 Lagrangian Duality: Convexity not required
- 4 Convex Optimization
- Complementary Slackness

Convex Sets and Functions

Notation from Boyd and Vandenberghe

- $f: \mathbb{R}^p \to \mathbb{R}^q$ to mean that f maps from some *subset* of \mathbb{R}^p
 - namely **dom** $f \subset \mathbb{R}^p$, where **dom** f is the domain of f

Convex Sets

Definition

A set C is **convex** if for any $x_1, x_2 \in C$ and any θ with $0 \le \theta \le 1$ we have

$$\theta x_1 + (1-\theta)x_2 \in C.$$

Convex and Concave Functions

Definition

A function $f: \mathbb{R}^n \to \mathbb{R}$ is **convex** if **dom** f is a convex set and if for all $x, y \in \mathbf{dom} \ f$, and $0 \le \theta \le 1$, we have

$$f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y).$$

KPM Fig. 7.5

Examples

• $x \mapsto ax + b$ is both convex and concave on R for all $a, b \in R$.

- $x \mapsto ax + b$ is both convex and concave on R for all $a, b \in R$.
- $x \mapsto |x|^p$ for $p \geqslant 1$ is convex on R

- $x \mapsto ax + b$ is both convex and concave on R for all $a, b \in R$.
- $x \mapsto |x|^p$ for $p \geqslant 1$ is convex on R
- $x \mapsto e^{ax}$ is convex on R for all $a \in R$

- $x \mapsto ax + b$ is both convex and concave on R for all $a, b \in R$.
- $x \mapsto |x|^p$ for $p \geqslant 1$ is convex on R
- $x \mapsto e^{ax}$ is convex on R for all $a \in R$
- Every norm on \mathbb{R}^n is convex (e.g. $||x||_1$ and $||x||_2$)

- $x \mapsto ax + b$ is both convex and concave on R for all $a, b \in R$.
- $x \mapsto |x|^p$ for $p \geqslant 1$ is convex on R
- $x \mapsto e^{ax}$ is convex on R for all $a \in R$
- Every norm on \mathbb{R}^n is convex (e.g. $||x||_1$ and $||x||_2$)
- Max: $(x_1, ..., x_n) \mapsto \max\{x_1, ..., x_n\}$ is convex on \mathbb{R}^n

Convex Functions and Optimization

Definition

A function f is **strictly convex** if the line segment connecting any two points on the graph of f lies **strictly** above the graph (excluding the endpoints).

Convex Functions and Optimization

Definition

A function f is **strictly convex** if the line segment connecting any two points on the graph of f lies **strictly** above the graph (excluding the endpoints).

Consequences for optimization:

- convex: if there is a local minimum, then it is a global minimum
- strictly convex: if there is a local minimum, then it is the unique global minumum

Table of Contents

- Convex Sets and Functions
- 2 The General Optimization Problem
- 3 Lagrangian Duality: Convexity not required
- 4 Convex Optimization
- 5 Complementary Slackness

The General Optimization Problem

General Optimization Problem: Standard Form

General Optimization Problem: Standard Form

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1,..., m$
 $h_i(x) = 0, i = 1,..., p$

where $x \in \mathbb{R}^n$ are the optimization variables and f_0 is the objective function.

General Optimization Problem: Standard Form

General Optimization Problem: Standard Form

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1,..., m$
 $h_i(x) = 0, i = 1,..., p$

where $x \in \mathbb{R}^n$ are the optimization variables and f_0 is the objective function.

Assume domain $\mathcal{D} = \bigcap_{i=0}^{m} \mathbf{dom} \ f_i \cap \bigcap_{i=1}^{p} \mathbf{dom} \ h_i$ is nonempty.

- The set of points satisfying the constraints is called the **feasible set**.
- A point x in the feasible set is called a **feasible point**.

- The set of points satisfying the constraints is called the **feasible set**.
- A point x in the feasible set is called a **feasible point**.
- If x is feasible and $f_i(x) = 0$,
 - then we say the inequality constraint $f_i(x) \leq 0$ is **active** at x.

- The set of points satisfying the constraints is called the **feasible set**.
- A point x in the feasible set is called a **feasible point**.
- If x is feasible and $f_i(x) = 0$,
 - then we say the inequality constraint $f_i(x) \leq 0$ is active at x.
- The optimal value p^* of the problem is defined as

 $p^* = \inf\{f_0(x) \mid x \text{ satisfies all constraints}\}.$

- The set of points satisfying the constraints is called the feasible set.
- A point x in the feasible set is called a **feasible point**.
- If x is feasible and $f_i(x) = 0$,
 - then we say the inequality constraint $f_i(x) \leq 0$ is active at x.
- The optimal value p^* of the problem is defined as

$$p^* = \inf\{f_0(x) \mid x \text{ satisfies all constraints}\}.$$

• x^* is an **optimal point** (or a solution to the problem) if x^* is feasible and $f(x^*) = p^*$.

• Consider an equality-constrained problem:

minimize
$$f_0(x)$$

subject to $h(x) = 0$

• Consider an equality-constrained problem:

minimize
$$f_0(x)$$

subject to $h(x) = 0$

Note that

$$h(x) = 0 \iff (h(x) \ge 0 \text{ AND } h(x) \le 0)$$

• Consider an equality-constrained problem:

minimize
$$f_0(x)$$

subject to $h(x) = 0$

Note that

$$h(x) = 0 \iff (h(x) \geqslant 0 \text{ AND } h(x) \leqslant 0)$$

Can be rewritten as

• Consider an equality-constrained problem:

minimize
$$f_0(x)$$

subject to $h(x) = 0$

Note that

$$h(x) = 0 \iff (h(x) \ge 0 \text{ AND } h(x) \le 0)$$

• Can be rewritten as

minimize
$$f_0(x)$$

subject to $h(x) \le 0$
 $-h(x) \le 0$.

Do We Need Equality Constraints?

• Consider an equality-constrained problem:

minimize
$$f_0(x)$$

subject to $h(x) = 0$

Note that

$$h(x) = 0 \iff (h(x) \geqslant 0 \text{ AND } h(x) \leqslant 0)$$

Can be rewritten as

minimize
$$f_0(x)$$

subject to $h(x) \le 0$
 $-h(x) \le 0$.

• For simplicity, we'll drop equality contraints from this presentation.

Table of Contents

- Convex Sets and Functions
- 2 The General Optimization Problem
- 3 Lagrangian Duality: Convexity not required
- 4 Convex Optimization
- Complementary Slackness

Lagrangian Duality: Convexity not required

The Lagrangian

The general [inequality-constrained] optimization problem is:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1,..., m$

Definition

The Lagrangian for this optimization problem is

$$L(x,\lambda) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x).$$

• λ_i 's are called **Lagrange multipliers** (also called the **dual variables**).

The Lagrangian Encodes the Objective and Constraints

• Supremum over Lagrangian gives back encoding of objective and constraints:

$$\sup_{\lambda \succeq 0} L(x,\lambda) = \sup_{\lambda \succeq 0} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) \right)$$

The Lagrangian Encodes the Objective and Constraints

• Supremum over Lagrangian gives back encoding of objective and constraints:

$$\sup_{\lambda \succeq 0} L(x,\lambda) = \sup_{\lambda \succeq 0} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) \right)$$
$$= \begin{cases} f_0(x) & \text{when } f_i(x) \leqslant 0 \text{ all } i \\ \infty & \text{otherwise.} \end{cases}$$

The Lagrangian Encodes the Objective and Constraints

• Supremum over Lagrangian gives back encoding of objective and constraints:

$$\sup_{\lambda \succeq 0} L(x,\lambda) = \sup_{\lambda \succeq 0} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) \right)$$
$$= \begin{cases} f_0(x) & \text{when } f_i(x) \leqslant 0 \text{ all } i \\ \infty & \text{otherwise.} \end{cases}$$

• Equivalent **primal form** of optimization problem:

$$p^* = \inf_{x} \sup_{\lambda \succeq 0} L(x, \lambda)$$

The Primal and the Dual

• Original optimization problem in **primal form**:

$$p^* = \inf_{x} \sup_{\lambda \succeq 0} L(x, \lambda)$$

The Primal and the Dual

• Original optimization problem in **primal form**:

$$p^* = \inf_{x} \sup_{\lambda \succ 0} L(x, \lambda)$$

• Get the Lagrangian dual problem by "swapping the inf and the sup":

$$d^* = \sup_{\lambda \succ 0} \inf_{x} L(x, \lambda)$$

The Primal and the Dual

• Original optimization problem in **primal form**:

$$p^* = \inf_{x} \sup_{\lambda \succeq 0} L(x, \lambda)$$

• Get the Lagrangian dual problem by "swapping the inf and the sup":

$$d^* = \sup_{\lambda \succ 0} \inf_{x} L(x, \lambda)$$

• We will show weak duality: $p^* \ge d^*$ for any optimization problem

Weak Max-Min Inequality

Theorem

For any $f: W \times Z \rightarrow R$, we have

$$\sup_{z\in Z}\inf_{w\in W}f(w,z)\leqslant\inf_{w\in W}\sup_{z\in Z}f(w,z).$$

Weak Max-Min Inequality

Theorem

For any $f: W \times Z \rightarrow R$, we have

$$\sup_{z\in Z}\inf_{w\in W}f(w,z)\leqslant\inf_{w\in W}\sup_{z\in Z}f(w,z).$$

Proof

For any $w_0 \in W$ and $z_0 \in Z$, we clearly have

$$\inf_{w \in W} f(w, z_0) \leqslant f(w_0, z_0) \leqslant \sup_{z \in Z} f(w_0, z).$$

Weak Max-Min Inequality

Theorem

For **any** $f: W \times Z \rightarrow R$, we have

$$\sup_{z\in Z}\inf_{w\in W}f(w,z)\leqslant\inf_{w\in W}\sup_{z\in Z}f(w,z).$$

Proof

For any $w_0 \in W$ and $z_0 \in Z$, we clearly have

$$\inf_{w\in W} f(w,z_0) \leqslant f(w_0,z_0) \leqslant \sup_{z\in Z} f(w_0,z).$$

Since $\inf_{w \in W} f(w, z_0) \leq \sup_{z \in Z} f(w_0, z)$ for all w_0 and z_0 , we must also have

$$\sup_{z_0 \in Z} \inf_{w \in W} f(w, z_0) \leqslant \inf_{w_0 \in W} \sup_{z \in Z} f(w_0, z).$$

Weak Duality

 For any optimization problem (not just convex), weak max-min inequality implies weak duality:

$$p^* = \inf_{x} \sup_{\lambda \succeq 0} \left[f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) \right]$$

$$\geqslant \sup_{\lambda \succeq 0, \nu} \inf_{x} \left[f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) \right] = d^*$$

Weak Duality

 For any optimization problem (not just convex), weak max-min inequality implies weak duality:

$$p^* = \inf_{x} \sup_{\lambda \succeq 0} \left[f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) \right]$$

$$\geqslant \sup_{\lambda \succeq 0, \nu} \inf_{x} \left[f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) \right] = d^*$$

- The difference $p^* d^*$ is called the **duality gap**.
- For *convex* problems, we often have **strong duality**: $p^* = d^*$.

• The Lagrangian dual problem:

$$d^* = \sup_{\lambda \succeq 0} \inf_{x} L(x, \lambda)$$

• The Lagrangian dual problem:

$$d^* = \sup_{\lambda \succeq 0} \inf_{x} L(x, \lambda)$$

Definition

The Lagrange dual function (or just dual function) is

$$g(\lambda) = \inf_{x} L(x, \lambda) = \inf_{x} \left(f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) \right).$$

• The Lagrangian dual problem:

$$d^* = \sup_{\lambda \succeq 0} \inf_{x} L(x, \lambda)$$

Definition

The Lagrange dual function (or just dual function) is

$$g(\lambda) = \inf_{x} L(x, \lambda) = \inf_{x} \left(f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) \right).$$

• The dual function may take on the value $-\infty$ (e.g. $f_0(x) = x$).

• The Lagrangian dual problem:

$$d^* = \sup_{\lambda \succeq 0} \inf_{x} L(x, \lambda)$$

Definition

The Lagrange dual function (or just dual function) is

$$g(\lambda) = \inf_{x} L(x, \lambda) = \inf_{x} \left(f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) \right).$$

- The dual function may take on the value $-\infty$ (e.g. $f_0(x) = x$).
- The dual function is always concave
 - since pointwise min of affine functions

• In terms of Lagrange dual function, we can write weak duality as

$$p^* \geqslant \sup_{\lambda \geqslant 0} g(\lambda) = d^*$$

• In terms of Lagrange dual function, we can write weak duality as

$$p^* \geqslant \sup_{\lambda \geqslant 0} g(\lambda) = d^*$$

• So for any λ with $\lambda \geqslant 0$, Lagrange dual function gives a lower bound on optimal solution:

$$p^* \geqslant g(\lambda)$$
 for all $\lambda \geqslant 0$

• The Lagrange dual problem is a search for best lower bound on p^* :

maximize $g(\lambda)$

subject to $\lambda \succeq 0$.

• The **Lagrange dual problem** is a search for best lower bound on p^* :

maximize
$$g(\lambda)$$
 subject to $\lambda \succeq 0$.

• λ dual feasible if $\lambda \succeq 0$ and $g(\lambda) > -\infty$.

maximize
$$g(\lambda)$$

subject to $\lambda \succeq 0$.

- λ dual feasible if $\lambda \succeq 0$ and $g(\lambda) > -\infty$.
- λ^* dual optimal or optimal Lagrange multipliers if they are optimal for the Lagrange dual problem.

maximize
$$g(\lambda)$$

subject to $\lambda \succeq 0$.

- λ dual feasible if $\lambda \succeq 0$ and $g(\lambda) > -\infty$.
- λ^* dual optimal or optimal Lagrange multipliers if they are optimal for the Lagrange dual problem.
- Lagrange dual problem often easier to solve (simpler constraints).

maximize
$$g(\lambda)$$

subject to $\lambda \succeq 0$.

- λ dual feasible if $\lambda \succeq 0$ and $g(\lambda) > -\infty$.
- λ^* dual optimal or optimal Lagrange multipliers if they are optimal for the Lagrange dual problem.
- Lagrange dual problem often easier to solve (simpler constraints).
- d^* can be used as stopping criterion for primal optimization.

maximize
$$g(\lambda)$$

subject to $\lambda \succeq 0$.

- λ dual feasible if $\lambda \succeq 0$ and $g(\lambda) > -\infty$.
- λ^* dual optimal or optimal Lagrange multipliers if they are optimal for the Lagrange dual problem.
- Lagrange dual problem often easier to solve (simpler constraints).
- d^* can be used as stopping criterion for primal optimization.
- Dual can reveal hidden structure in the solution.

• Lagrangian $L(x,\lambda) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x)$, with λ_i multipliers / dual variables

- Lagrangian $L(x,\lambda) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x)$, with λ_i multipliers / dual variables
- Equivalence to original optimization problem:

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0$, $i = 1, ..., m$ $\Rightarrow p^* = \inf_{\substack{x \ \lambda \succeq 0}} [L(x, \lambda)]$

- Lagrangian $L(x,\lambda) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x)$, with λ_i multipliers / dual variables
- Equivalence to original optimization problem:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$ $\Rightarrow p^* = \inf_{\substack{x \ \lambda \succeq 0}} [L(x, \lambda)]$

• Weak duality $p^* \geqslant \sup_{\lambda \succeq 0, \nu} \inf_x [L(x, \lambda)] = d^*$

- Lagrangian $L(x,\lambda) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x)$, with λ_i multipliers / dual variables
- Equivalence to original optimization problem:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$ $\Rightarrow p^* = \inf_{\substack{x \ \lambda \succeq 0}} [L(x, \lambda)]$

- Weak duality $p^* \geqslant \sup_{\lambda \succeq 0} \inf_{x} [L(x,\lambda)] = d^*$
- Dual function $g(\lambda) = \inf_{x} L(x, \lambda) = \inf_{x} (f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x))$ is always concave

- Lagrangian $L(x,\lambda) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x)$, with λ_i multipliers / dual variables
- Equivalence to original optimization problem:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$ $\Rightarrow p^* = \inf_{\substack{x \ \lambda \succeq 0}} [L(x, \lambda)]$

- Weak duality $p^* \geqslant \sup_{\lambda \succeq 0, \gamma} \inf_{x} [L(x, \lambda)] = d^*$
- Dual function $g(\lambda) = \inf_{x} L(x, \lambda) = \inf_{x} (f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x))$ is always concave
- Convex problems (f_i convex) have strong duality $p^* = d^*$

Table of Contents

- Convex Sets and Functions
- 2 The General Optimization Problem
- 3 Lagrangian Duality: Convexity not required
- 4 Convex Optimization
- Complementary Slackness

Convex Optimization

Convex Optimization Problem: Standard Form

Convex Optimization Problem: Standard Form

minimize $f_0(x)$

subject to $f_i(x) \leq 0$, i = 1, ..., m

where f_0, \ldots, f_m are convex functions.

Strong Duality for Convex Problems

- For a convex optimization problems, we usually have strong duality, but not always.
 - For example:

minimize
$$e^{-x}$$

subject to $x^2/y \le 0$
 $y > 0$

• The additional conditions needed are called **constraint qualifications**.

• Sufficient conditions for strong duality in a **convex** problem.

 $^{{}^{1}\}mathcal{D}$ is the set where all functions are defined, NOT the feasible set.

- Sufficient conditions for strong duality in a **convex** problem.
- Roughly: the problem must be strictly feasible.

 $^{{}^{1}\}mathcal{D}$ is the set where all functions are defined. NOT the feasible set.

- Sufficient conditions for strong duality in a convex problem.
- Roughly: the problem must be strictly feasible.
- Qualifications when problem domain $\mathfrak{D} \subset \mathbb{R}^n$ is an open set:
 - Strict feasibility is sufficient. $(\exists x \ f_i(x) < 0 \ \text{for} \ i = 1, ..., m)$
 - For any affine inequality constraints, $f_i(x) \leq 0$ is sufficient.

 $^{^{1}\}mathcal{D}$ is the set where all functions are defined. NOT the feasible set.

- Sufficient conditions for strong duality in a **convex** problem.
- Roughly: the problem must be strictly feasible.
- Qualifications when problem domain $\mathfrak{D} \subset \mathbb{R}^n$ is an open set:
 - Strict feasibility is sufficient. $(\exists x \ f_i(x) < 0 \ \text{for} \ i = 1, ..., m)$
 - For any affine inequality constraints, $f_i(x) \leq 0$ is sufficient.
- Otherwise, see notes or BV Section 5.2.3, p. 226.

 $^{{}^{1}\}mathcal{D}$ is the set where all functions are defined. NOT the feasible set.

Table of Contents

- Convex Sets and Functions
- 2 The General Optimization Problem
- 3 Lagrangian Duality: Convexity not required
- 4 Convex Optimization
- **5** Complementary Slackness

• Consider a general optimization problem (i.e. not necessarily convex).

- Consider a general optimization problem (i.e. not necessarily convex).
- If we have strong duality, we get an interesting relationship between
 - the optimal Lagrange multiplier λ_i and
 - the *i*th constraint at the optimum: $f_i(x^*)$

- Consider a general optimization problem (i.e. not necessarily convex).
- If we have strong duality, we get an interesting relationship between
 - the optimal Lagrange multiplier λ_i and
 - the *i*th constraint at the optimum: $f_i(x^*)$
- Relationship is called "complementary slackness":

$$\lambda_i^* f_i(x^*) = 0$$

- Consider a general optimization problem (i.e. not necessarily convex).
- If we have strong duality, we get an interesting relationship between
 - the optimal Lagrange multiplier λ_i and
 - the *i*th constraint at the optimum: $f_i(x^*)$
- Relationship is called "complementary slackness":

$$\lambda_i^* f_i(x^*) = 0$$

• Always have Lagrange multiplier is zero or constraint is active at optimum or both.

- Assume strong duality: $p^* = d^*$ in a general optimization problem
- Let x^* be primal optimal and λ^* be dual optimal. Then:

$$f_0(x^*) = g(\lambda^*) = \inf_{x} L(x, \lambda^*)$$

- Assume strong duality: $p^* = d^*$ in a general optimization problem
- Let x^* be primal optimal and λ^* be dual optimal. Then:

$$f_0(x^*) = g(\lambda^*) = \inf_x L(x, \lambda^*)$$
 (strong duality and definition)

- Assume strong duality: $p^* = d^*$ in a general optimization problem
- Let x^* be primal optimal and λ^* be dual optimal. Then:

$$f_0(x^*) = g(\lambda^*) = \inf_x L(x, \lambda^*)$$
 (strong duality and definition) $\leqslant L(x^*, \lambda^*)$

- Assume strong duality: $p^* = d^*$ in a general optimization problem
- Let x^* be primal optimal and λ^* be dual optimal. Then:

$$\begin{array}{lcl} f_0(x^*) & = & g(\lambda^*) = \inf_x L(x,\lambda^*) & \text{(strong duality and definition)} \\ & \leqslant & L(x^*,\lambda^*) \\ & = & f_0(x^*) + \sum_{i=1}^m \underbrace{\lambda_i^* f_i(x^*)}_{\leq 0} \end{array}$$

- Assume strong duality: $p^* = d^*$ in a general optimization problem
- Let x^* be primal optimal and λ^* be dual optimal. Then:

$$\begin{array}{lll} f_0(x^*) & = & g(\lambda^*) = \inf_x L(x,\lambda^*) & \text{(strong duality and definition)} \\ & \leqslant & L(x^*,\lambda^*) \\ & = & f_0(x^*) + \sum_{i=1}^m \underbrace{\lambda_i^* f_i(x^*)}_{\leqslant 0} \\ & \leqslant & f_0(x^*). \end{array}$$

- Assume strong duality: $p^* = d^*$ in a general optimization problem
- Let x^* be primal optimal and λ^* be dual optimal. Then:

$$\begin{array}{lll} f_0(x^*) & = & g(\lambda^*) = \inf_x L(x,\lambda^*) & \text{(strong duality and definition)} \\ & \leqslant & L(x^*,\lambda^*) \\ & = & f_0(x^*) + \sum_{i=1}^m \underbrace{\lambda_i^* f_i(x^*)}_{\leqslant 0} \\ & \leqslant & f_0(x^*). \end{array}$$

Each term in sum $\sum_{i=1}^{\infty} \lambda_i^* f_i(x^*)$ must actually be 0. That is

$$\lambda_i^* f_i(x^*) = 0, \quad i = 1, \ldots, m.$$

This condition is known as complementary slackness.

Result of "Sandwich Proof" and Consequences

- Let x^* be primal optimal and λ^* be dual optimal.
- If we have strong duality, then

$$p^* = d^* = f_0(x^*) = g(\lambda^*) = L(x^*, \lambda^*)$$

and we have complementary slackness

$$\lambda_i^* f_i(x^*) = 0, \quad i = 1, \dots, m.$$

Result of "Sandwich Proof" and Consequences

- Let x^* be primal optimal and λ^* be dual optimal.
- If we have strong duality, then

$$p^* = d^* = f_0(x^*) = g(\lambda^*) = L(x^*, \lambda^*)$$

and we have complementary slackness

$$\lambda_i^* f_i(x^*) = 0, \quad i = 1, ..., m.$$

• From the proof, we can also conclude that

$$L(x^*, \lambda^*) = \inf_{x} L(x, \lambda^*).$$

Result of "Sandwich Proof" and Consequences

- Let x^* be primal optimal and λ^* be dual optimal.
- If we have strong duality, then

$$p^* = d^* = f_0(x^*) = g(\lambda^*) = L(x^*, \lambda^*)$$

and we have complementary slackness

$$\lambda_i^* f_i(x^*) = 0, \quad i = 1, ..., m.$$

• From the proof, we can also conclude that

$$L(x^*, \lambda^*) = \inf_{x} L(x, \lambda^*).$$

• If $x \mapsto L(x, \lambda^*)$ is differentiable, then we must have $\nabla L(x^*, \lambda^*) = 0$.