Problem §1 Let v_1, \ldots, v_n be a basis for V, and let w_1, \ldots, w_n be another basis for V.

(a) Prove that for any $j \in \{1, ..., n\}$, there exists an $i \in \{1, ..., n\}$ such that

$$v_1,\ldots,\hat{v}_i,\ldots,v_n,w_j$$

is a basis.

(b) Prove that for any $i \in \{1, ..., n\}$, there exists a $j \in \{1, ..., n\}$ such that

$$v_1,\ldots,\hat{v}_i,\ldots,v_n,w_j$$

is a basis.

Solution:

(a) Let w_i be any basis vector in the basis w_1, \ldots, w_n . Since v_1, \ldots, v_n is a basis for V, we know that

$$w_i \in \operatorname{span}(v_1, \ldots, v_n),$$

and so there exists a unique linear combination

$$a_1v_1 + \ldots + a_nv_n = w_j$$

where a_1, \ldots, a_n not all zero. Let a_i be any non-zero coefficient. Then we have

$$-a_i v_i = a_1 v_1 + \ldots + a_{i-1} v_{i-1} + a_{i+1} v_{i+1} + \ldots + a_n v_n - w_j$$
$$v_i = \alpha_1 v_1 + \ldots + \alpha_n v_n - \frac{w_j}{a_i},$$

where $\alpha_j = -\frac{a_j}{a_i}$. Thus, $v_i \in \text{span}(v_1, \dots, \hat{v}_i, \dots, v_n, w_j)$, and so any linear combination

$$v = a_1 v_1 + \ldots + a_i v_i + \ldots + a_n v_n$$

can be replaced by

$$v = a_1v_1 + \ldots + (b_1v_1 + \ldots + b_{i-1}v_{i-1} + b_{i+1}v_{i+1} + \ldots + b_nv_n + b_iw_i) + \ldots + a_nv_n.$$

From this, we see that $\operatorname{span}(v_1,\ldots,v_n)=\operatorname{span}(v_1,\ldots,\hat{v}_i,\ldots,v_n,w_j)$, and since every spanning list of length dim V is a basis for V, we have that

$$v_1,\ldots,\hat{v}_i,\ldots,v_n,w_i$$

is a basis for V.

(b) Let v_i be any vector in v_1, \ldots, v_n . Then

$$v_1, \ldots, \hat{v}_i, \ldots, v_n$$

is a linearly independent list that doesn't span all of V. Thus, from the basis w_1, \ldots, w_n , there exists some w_j such that

$$w_i \notin \operatorname{span}(v_1, \dots, \hat{v}_i, \dots, v_n),$$

since otherwise $\operatorname{span}(v_1,\ldots,\hat{v}_i,\ldots,v_n) = \operatorname{span}(w_1,\ldots,w_n)$, a contradiction of $v_1,\ldots,\hat{v}_i,\ldots,v_n$ not spanning V. Thus the list

$$v_1, \ldots, \hat{v}_i, \ldots, v_n, w_i$$

is a linearly independent list. Since every linearly independent list of length dim V is a basis for V, we have that $v_1, \ldots, \hat{v}_i, \ldots, v_n, w_i$ is a basis for V.

Problem §2 Let V, W be vector spaces. Suppose v_1, \ldots, v_m are linearly independent in V and suppose w_1, \ldots, w_m are any vectors in W. Prove that there exists a linear map $T: V \to W$ such that

$$T(v_1) = w_1, \dots, T(v_m) = w_m.$$

Solution: Let v_1, \ldots, v_m be linearly independent in V, and extend the list to a basis $v_1, \ldots, v_m, u_1, \ldots, u_n$. Define a linear map

$$T(a_1v_1 + \ldots + a_mv_m + b_1u_1 + \ldots + b_nu_n) = a_1w_1 + \ldots + a_mw_m.$$

(All of the u_i 's are sent to 0). Because $v_1, \ldots, v_m, u_1, \ldots, u_n$ is a basis, T is a function, as each element of V can be uniquely written in the form $v = a_1v_1 + \ldots + a_mv_m + b_1u_1 + \ldots + b_nu_n$. By taking $a_i = 1$ and the other a's as zero, we have that

$$T(v_i) = w_i$$
.

Now, take any two vectors $u, v \in V$ and any two scalars $\lambda_1, \lambda_2 \in \mathbb{F}$. We have

$$T(\lambda_{1}u + \lambda_{2}v) = T((\lambda_{1}a_{1}v_{1} + \dots + \lambda_{1}a_{m}v_{m} + \lambda_{1}b_{1}u_{1} + \dots + \lambda_{1}b_{n}u_{n}) + (\lambda_{2}c_{1}v_{1} + \dots + \lambda_{2}c_{m}v_{m} + \lambda_{2}d_{1}u_{1} + \dots + \lambda_{2}d_{n}u_{n}))$$

$$= (\lambda_{1}a_{1}w_{1} + \dots + \lambda_{1}a_{m}w_{m}) + (\lambda_{2}c_{1}w_{1} + \dots + \lambda_{2}c_{m}w_{m})$$

$$= \lambda_{1}(a_{1}w_{1} + \dots + a_{m}w_{m}) + \lambda_{2}(c_{1}w_{1} + \dots + c_{m}w_{m})$$

$$= \lambda_{1}T(a_{1}v_{1} + \dots + a_{m}v_{m} + b_{1}u_{1} + \dots + b_{n}u_{n}) + \lambda_{2}T(c_{1}v_{1} + \dots + c_{m}v_{m} + d_{1}u_{1} + \dots + d_{n}u_{n})$$

$$= \lambda_{1}T(u) + \lambda_{2}T(v).$$

Thus T preserves linearity and homogeneity, and so T is a linear map (note that T is very much not injective! Going from the 2nd last step to the 3rd last step is guaranteed, but the reverse is very much not guaranteed.)

Problem §3 Let V, W be vector spaces over \mathbb{F} , and suppose V is finite-dimensional with dim V > 0. Let $w \in W$ be any vector. Prove that there exists a linear map $T: V \to W$ such that

$$range(T) = span(w)$$
.

Solution: Let $n = \dim V$. Since n > 0, there exists a length-n basis v_1, \ldots, v_n of V. Define a linear map

$$T(a_1v_1 + \ldots + a_nv_n) = a_1w$$
 [all of the $v_i, j > 1$ are mapped to 0]

Since v_1, \ldots, v_n is a basis of V, each $v \in V$ has a unique representation, and so T is a valid function. Moreover, we see that

range(T) =
$$\{T(v) \mid v \in V, v = a_1v_1 + \ldots + a_nv_n, \ a_1, \ldots, a_n \in \mathbb{F}, v_1, \ldots, v_n \in V\}$$

= $\{a_1w \mid a_1 \in \mathbb{F}\}$
= span(w),

as required. Now, take any two vectors $u, v \in V$ and any two scalars $\lambda_1, \lambda_2 \in \mathbb{F}$. We have

$$T(\lambda_1 u + \lambda_2 v) = T(\lambda_1 a_1 v_1 + \ldots + \lambda_n a_n v_n + \lambda_2 b_1 v_1 + \ldots + \lambda_2 b_n v_n)$$

$$= \lambda_1 a_1 w + \lambda_2 b_1 w$$

$$= \lambda_1 T(a_1 v_1 + \ldots + a_n v_n) + \lambda_2 T(b_1 v_1 + \ldots + b_n v_n)$$

$$= \lambda_1 T(u) + \lambda_2 T(v).$$

Thus T preserves linearity and homogeneity, and so T is a linear map (much like problem 2, T is very much not injective).