Trabalho IV: Testes uniformemente mais poderosos.

Disciplina: Inferência Estatística Aluno: Rener de Souza Oliveira

15 de novembro de 2020

Introdução

Vimos que os testes de hipótese fornecem uma abordagem matematicamente sólida para traduzir hipóteses científicas sobre o processo gerador dos dados em decisões sobre os dados – isto é, traduzir afirmações sobre partições do espaço de parâmetros, Ω , em afirmações testáveis sobre o espaço amostral \mathcal{X}^n .

Um teste $\delta(\boldsymbol{X})$ é uma decisão (binária) de rejeitar ou não uma hipótese nula (H_0) sobre $\theta \in \Omega$ com base em uma amostra \boldsymbol{X} . A capacidade de um teste de rejeitar H_0 quando ela é falsa é medida pela função poder, $\pi(\theta|\delta)$. Nem todos os testes, no entanto, são criados iguais. Em certas situações, é possível mostrar que um procedimento δ_A é uniformemente mais poderoso que outro procedimento δ_B para testar a mesma hipótese.

Neste trabalho, vamos definir e aplicar o conceito de **teste uniformemente** mais poderoso.

1 - Motivação e Definição

Sejam:

$$H_0: \theta \in \Omega_0 \subset \Omega,$$

$$H_1: \theta \in \Omega_1 \subset \Omega,$$
onde $\Omega_1 = \Omega \setminus \Omega_0$
(1)

Ao realizar um procedimento de teste $\delta(\boldsymbol{X})$, é desejável que a função poder $\pi(\theta|\delta)$: $\stackrel{\text{def}}{=} \Pr(Rejeitar\ H_0|\theta)$ seja menor ou igual à um nível de significância $\alpha_0 \in (0,1)$, quando $\theta \in \Omega_0$, limitando superiormente a probabilidade de erro do tipo I (rejeitar H_0 quando ela é verdadeira). Podemos expressar tal propriedade da seguinte forma:

$$\alpha(\delta) \leq \alpha_0$$

Onde $\alpha(\delta) \stackrel{\text{def}}{=} \sup_{\theta \in \Omega_0} \pi(\theta|\delta)$ é o tamanho do teste.

Além disso, queremos também ter algum controle sobre a probabilidade de erro do tipo II (não rejeitar H_0 quando ela é falsa). Como a probabilidade de tal erro quando $\theta \in \Omega_1$ é igual a $1 - \pi(\theta|\delta)$, queremos que, na região onde H_0 é falsa (Ω_1) a função poder $\pi(\theta|\delta)$ seja máxima, para todo θ em tal região. Tal maximização, minimiza a probabilidade de erro do tipo II quando $\theta \in \Omega_1$, isso nem sempre é possível, mas quando for, temos um nome especial para esse teste, que segue abaixo sua definição:

Definicão 1 (Teste Uniformemente mais poderoso) Seja C uma classe de teste para as hipóteses (1); $\delta^* \in C$ é chamado de uniformemente mais poderoso (UMP^1) da classe C, se:

$$\pi(\theta|\delta^*) \ge \pi(\theta|\delta) \ \forall \ \theta \in \Omega_1,$$

para qualquer teste $\delta \in \mathcal{C}$.

Seguindo a motivação dada acima, podemos definir \mathcal{C} como o conjunto de todos dos testes de tamanho menor ou igual a α_0 , limitando o erro tipo I. Neste caso, chamamos δ^* de UMP para (1) ao nível α_0 .

2 - Razão de Verossimilhança Monótona

Definicão 2 (Razão de Verossimilhanças Monótona) Seja $f_n(x|\theta)$ a função de verossimilhança das observações $\mathbf{X} = (X_1, X_2, \dots, X_n)$, $e \ T = r(\mathbf{X})$ uma estatística. Dizemos que a distribuição dos dados tem razão de verossimilhanças monótona quando, $\forall \theta_1, \theta_2 \in \Omega; \theta_1 < \theta_2$, a razão $\frac{f(\mathbf{x}|\theta_2)}{f(\mathbf{x}|\theta_1)}$ depende dos dados através de $r(\mathbf{x})$ somente, e é uma função monótona de $r(\mathbf{x})$ sob seu espaço de definição.

3 - UMP para H_0 simples

Considere uma hipótese nula simples, $H_0: \theta = \theta_0, \theta_0 \in \Omega$. Mostraremos que, se vale o Teorema da Fatorização, e existem $c \in \alpha_0$ tais que

$$\Pr(r(\boldsymbol{X}) \geq c \mid \theta = \theta_0) = \alpha_0,$$

então o procedimento δ^* que rejeita H_0 se $r(X) \ge c$ é UMP para H_0 ao nível α_0 .

Mas antes, vamos enunciar alguns teoremas:

Teorema 1 (Teorema da Fatorização) (citar degroot) Sejam $X_1, X_2, ..., X_n$ amostra aleatória de uma distribuição de densidade ou massa $f(x|\theta)$, onde $\theta \in \Omega$. Uma estatística $T = r(X_1, X_2, ..., X_n)$ é suficiente para θ , se, e somente se a distribuição conjunta dos dados $f_n(x|\theta)$ pode ser fatorizada como:

$$f_n(\boldsymbol{x}|\theta) = u(\boldsymbol{x})v[r(\boldsymbol{x}),\theta],$$

para todo $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, $e \ \forall \theta \in \Omega$. $u \ e \ v \ s\~{ao} \ fun\~{coes} \ n\~{ao} \ negativas$.

¹Uniformly Most Powerful Test

A demostração pode ser encontrada em (degroot 445)

Teorema 2 (Lema de Neyman-Pearson) (citar casella 388-389) Seja $(X_1, X_2, ..., X_n) \in \mathbb{R}^n$ uma amostra indexada por θ . Considere as hipóteses

$$H_0: \theta = \theta_0,$$

$$H_1: \theta = \theta_1,$$
(2)

e seja $f_n(\mathbf{x}|\theta_i)$, com i = 0, 1 a função de densidade ou massa dos dados. Seja $R \in \mathbb{R}^n$ uma região de rejeição que satisfaça:

$$x \in R \text{ se } f(x|\theta_1) \ge kf(x|\theta_0)$$

$$e \ x \in R^C \text{ se } f(x|\theta_1) \le kf(x|\theta_0),$$
(3)

para algum $k \ge 0$ e

$$\Pr(\boldsymbol{X} \in R | \boldsymbol{\theta} = \boldsymbol{\theta}_0) = \alpha_0. \tag{4}$$

Então, todo teste que satisfaz (3) e (4) é UMP ao nivel α_0 .

A demostração será omitida pois pode ser encontrada em (citar casella).

Corolário 1 Considere as hipóteses (2). Seja $T(\mathbf{X})$ uma estatística suficiente para θ e $g(t|\theta_i)$ i=0,1, uma função de $t=T(\mathbf{x})$ tal que fatoriza a verossimilhança dos dados em $f_n(\mathbf{x}|\theta_i) = g(t|\theta_i)u(\mathbf{x})$, para alguma função $u(\mathbf{x}) \geq 0$. Seja δ um teste que rejeite H_0 se T pertence a uma região de rejeição S (subconjunto do espaço de definição de T). Assim, δ será UMP ao nível α_0 se satisfazer:

$$g(t|\theta_1) \ge kg(t|\theta_0) \implies t \in S$$

$$e \ g(t|\theta_1) \le kg(t|\theta_0) \implies t \in S^C,$$
(5)

 $para\ algum\ k \ge 0\ e$

$$\Pr[T(X) \in S | \theta = \theta_0] = \alpha_0. \tag{6}$$

Demonstração: Definindo $R = \{x|T(x) \in S\}$, rejeitaremos H_0 se $x \in R$. Pelo Teorema da Fatorização, dado que T(X) é suficiente, a verossimilhança de X pode ser escrita como $f_n(x|\theta_i) = g(T(x)|\theta_i)u(x)$, i = 0, 1, para alguma função u(x) > 0.

Multiplicando tal função nas desigualdades (5) temos:

$$g(T(\boldsymbol{x})|\theta_1) \ge kg(T(\boldsymbol{x})|\theta_0)$$

$$\Leftrightarrow g(T(\boldsymbol{x})|\theta_1)u(\boldsymbol{x}) \ge kg(T(\boldsymbol{x})|\theta_0)u(\boldsymbol{x})$$

$$\Leftrightarrow f_n(\boldsymbol{x}|\theta_1) \ge kf_n(\boldsymbol{x}|\theta_0)$$

Assim, tem-se: $f_n(\boldsymbol{x}|\theta_1) \ge kf_n(\boldsymbol{x}|\theta_0) \Longrightarrow T(\boldsymbol{x}) \in S \Longrightarrow \boldsymbol{x} \in R$. Analogamente, $f_n(\boldsymbol{x}|\theta_1) \le kf_n(\boldsymbol{x}|\theta_0) \Longrightarrow \boldsymbol{x} \in R^C$. De (6), tem-se:

$$\Pr(\boldsymbol{X} \in R | \theta = \theta_0) = \Pr[T(\boldsymbol{X}) \in S | \theta = \theta_0] = \alpha_0$$

Pelo **Lema de Neyman-Pearson** concluímos que o teste δ é UMP ao nível α_0 .

Voltando agora ao problema inicial da seção, queremos provar que δ^* é UMP ao nível α_0 para $H_0: \theta = \theta_0$.

Primeiramente precisamos provar que $\alpha(\delta^*) = \alpha_0$.

$$\alpha(\delta^*) = \sup_{\theta \in \Omega_0} \pi(\theta | \delta^*)$$
$$= \sup_{\theta \in \Omega_0} \Pr[r(\boldsymbol{X}) \ge c | \theta]$$

Como $\Omega_0 = \{\theta_0\}$, o supremo ocorre em θ_0 o que implica que $\alpha(\delta^*) = \alpha_0$. Agora precisamos provar que δ^* é UMP.

Façamos θ' arbitrário, com $\theta' \neq \theta_0$, testaremos $H_0: \theta = \theta_0$ contra $H_1': \theta = \theta'$. No problema em questão, vale o **Teorema da Fatorização** para $r(\boldsymbol{X})$, logo assumindo sua suficiência, temos que a verossimilhança pode ser escrita como $f_n(\boldsymbol{x}|\theta) = g(r(\boldsymbol{x})|\theta)u(\boldsymbol{x})$, para alguma função $u(\boldsymbol{x}) \geq 0$. Seja $t = r(\boldsymbol{x})$; Definamos:

$$k = \inf_{t \in \mathcal{T}} \frac{f_n(\boldsymbol{x}|\theta')}{f_n(\boldsymbol{x}|\theta_0)} = \frac{g(t|\theta')}{g(t|\theta_0)}$$

 $\operatorname{Com} \, \mathcal{T} : \stackrel{\operatorname{def}}{=} \{t | t \ge c\}$

Tal ínfimo existe, pois pelo Teorema da Fatorização, a função g é não-negativa, logo, o conjunto na qual estamos tomando ínfimo é limitado inferiormente por 0. Pelo análogo do Axioma do Supremo para ínfimos, k está bem definido.

Pela definição de ínfimo segue que:

$$r(x) \ge c \Leftrightarrow \frac{g(r(x)|\theta')}{g(r(x)|\theta_0)} \ge k.$$

Pelo Corolário 1 do Lema de Neyman-Pearson, temos que δ^* é UMP para as hipóteses $H_0: \theta = \theta_0$ e $H_1': \theta = \theta'$, ou seja, $\pi(\theta|\delta^*) \ge \pi(\theta'|\delta)$, para qualquer teste δ de tamanho α_0 . Como θ' foi escolhido arbitrariamente diferente de θ_0 , temos que δ^* satisfaz $\pi(\theta|\delta^*) \ge \pi(\theta'|\delta) \ \forall \ \theta' \ne \theta_0$, o que prova nossa afirmação inicial.