Teoría de la Computación Licenciatura en Informática con Orientación en Desarrollo de Software Universidad Nacional de Quilmes

Práctica 7 Notación "O"

En esta guía, las letras f, g, h, \ldots denotan funciones $\mathbb{N} \to \mathbb{R}_{\geq 0}$.

Ejercicio 1. Demostrar que $O(f+g) = O(\max\{f,g\})$.

Ejercicio 2. Demostrar que $\sqrt{n} \in O(n)$ pero $n \notin O(\sqrt{n})$.

Ejercicio 3. Demostrar que las cuatro propiedades siguientes son equivalentes:

- 1. $f \in \Theta(g)$
- 2. $g \in \Theta(f)$
- 3. $f \in O(g) \cap \Omega(g)$
- 4. Existen $c_1, c_2 > 0$ y $n_0 \in \mathbb{N}$ tales que para todo $n \geq n_0$ se tiene que $c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$.

Ejercicio 4.

- 1. Demostrar que si $f(n) \in \Theta(h(n))$ y $g(n) \in O(h(n))$ entonces $f(n) + g(n) \in \Theta(h(n))$.
- 2. Demostrar que **no siempre** vale que si $f(n) \in \Theta(h(n))$ y $g(n) \in \Omega(h(n))$ entonces $f(n) + g(n) \in \Theta(h(n))$.

Ejercicio 5.

- 1. Demostrar que si $f(n) \in O(g(n))$ entonces $\log_2(f(n)) \in O(\log_2(g(n))$.
- 2. Demostrar que si $f(n) \in O(g(n))$ entonces $f(n)^k \in O(g(n)^k)$ para todo entero $k \ge 1$.
- 3. Demostrar que no siempre vale que si $f(n) \in O(q(n))$ entonces $2^{f(n)} \in 2^{g(n)}$.

Ejercicio 6.

- 1. Demostrar que $a \cdot f(n) \in \Theta(b \cdot f(n))$, donde $a, b \in \mathbb{R}$ denotan reales positivos (a, b > 0).
- 2. Demostrar que **no siempre** vale que $f(a \cdot n) \in \Theta(f(b \cdot n))$, donde $a, b \in \mathbb{R}$ denotan reales positivos.

Ejercicio 7. Para cada una de las siguientes afirmaciones, determinar si son verdaderas o falsas y justificar:

- 1. Si $a, b \in \mathbb{R}$ son tales que 0 < a < b, entonces $a \cdot n^p \in O(b \cdot n^p)$.
- 2. Si $a, b \in \mathbb{R}$ son tales que 0 < a < b, entonces $b \cdot n^p \in O(a \cdot n^p)$.
- 3. Si $p, q \in \mathbb{N}$ son tales que p < q, entonces $n^p \in O(n^q)$.
- 4. Si $p, q \in \mathbb{N}$ son tales que p < q, entonces $n^q \in O(n^p)$.
- 5. Si $a, b \in \mathbb{R}$ son tales que 1 < a < b, entonces $a^n \in O(b^n)$.
- 6. Si $a, b \in \mathbb{R}$ son tales que 1 < a < b, entonces $b^n \in O(a^n)$.
- 7. Si $a, b \in \mathbb{R}$ son tales que 1 < a < b, entonces $\log_a(n) \in O(\log_b(n))$.
- 8. Si $a, b \in \mathbb{R}$ son tales que 1 < a < b, entonces $\log_b(n) \in O(\log_a(n))$.