Kjartan Halvorsen

February 24, 2022

Sensors

Sensors

It is inevitable that sensors introduce noise into the system.

Sensors

It is important to know the (statistical) characteristics of the measurement error!

Sensors - characteristics

- Accuracy How correct is the measurement on average
- Precision How much do the errors vary (standard deviation)
- Sensitivity/resolution The smallest change in the measured variable that can be detected
- Sampling and digitalization

Sensors - characteristics

- Accuracy How correct is the measurement on average
- Precision How much do the errors vary (standard deviation)
- Sensitivity/resolution The smallest change in the measured variable that can be detected
- Sampling and digitalization

 $\verb|https://www.sciencedirect.com/topics/engineering/incremental-encoder|\\$

Pulses Per Revolution (PPR) is 4 en the example. Each aperture covers a sector of $\frac{360^{\circ}}{2 \times PPR} = 45^{\circ}$.

Activity If both rising and falling edges of both signals A and B, what is the smallest change in angle that can be detected (sensitivity of the sensor)?

Activity In the above example, does the encoder turn clockwise (CW) or counter-clockwise (CCW)?

Incremental encoder - velocity

We want to find the angular velocity at the time-instant $t=6.5~\mathrm{ms}$. For the encoder we have PPR=8, and both rising and falling edges of both signals A and B are counted, resulting in 32 counts per revolution. Activity Calculate the angular velocity in rad/s for case (a) using a sampling period of $\Delta t=0.5~\mathrm{ms}$, and for case (b) using a sampling period of $\Delta t=5~\mathrm{ms}$.

Incremental encoder - Velocity from frequency of the counts

The velocity can be measured by the inverse of the time between subsequent pulses. In the example there is an interval of $1\ \mathrm{ms}$ between the two pulses. The velocity becomes

$$v=1$$
 pulses/ms $= \frac{1/32 \text{ revolutions}}{10^{-3} \text{ s}}$
 $= \frac{2\pi}{32} \times 1000 \text{ rad/s} = 196.3 \text{ rad/s}$

Incremental encoder - Velocity from frequency of the counts

Activity Calculate the velocity at t = 11 ms!

Simulink exercise - decoder

Complete the simulink diagram so that the angular velocity is correctly estimated.

