Marek Polewski Mechanika Lotu 2 Prowadzący: dr. inż Maciej Lasek

WTOREK 14:15-16:00

Projekt 9 "Równowaga podłużna samolotu i siły na sterownicy wysokości"

DATA ODDANIA PROJEKTU:	OCENA:

Spis treści

0.1 Wstęp

Celem projektu jest wyznaczenie kątów wychylenia usterzenia poziomego samolotu koniecznych do zachowania równowangi oraz wyznaczenia siły na drążku. Obliczenia zostały wykonane w Pythonie.

Wysokość przyjęta do obliczeń to h=3000m. Gęstość jej odpowiadająca wynosi $\rho=0.908kg\,m^{-3}$. Dane z poprzednich projektów:

- powierzchnia skrzydeł $S = 15m^2$,
- powierzchnia usterzenia poziomego $S_h = 2.2 m^2$,
- $\left(\frac{V_{H\infty}}{V_{\infty}}\right)^2 = 0.85$,

Do obliczeń zostały wykorzystane wartości środków ciężkości wyliczone [?]

	$\bar{x}_c[-]$
\bar{x}_{c1}	0.12
\bar{x}_{c2}	0.25
\bar{x}_{c3}	0.38

Tab. 1: Położenia środka ciężkości samolotu

0.2 Współczynnik momentu podłużnego usterzenia wysokości

0.2.1 Cecha objętościowa usterzenia poziomego

Wzór na cechę usterzenia:

$$\kappa_h' = (\bar{x}_{SA_H} - \bar{x}_c) \cdot \frac{S_H}{S} \cdot \left(\frac{V_{H\infty}}{V_{\infty}}\right)^2 \tag{1}$$

, gdzie $\bar{x}_{SA_{H}} = 2.86$.

Na podstawie powyższego wzoru uzyskałem:

κ'_{Hi}
0.34
0.33
0.31

Tab. 2: Cecha objętościowa usterzenia poziomego

0.2.2 Współczynnik siły nośnej usterzenia poziomego

Współczynnik siły nośnej usterzenia poziomego wyrażam

$$C_{z_H} = a_1 \alpha_H + a_2 \delta_H + a_3 \delta_{H_k}$$

- procetowa grubość profilu: 10%,
- położenie szczeliny w stosunku do średniej cięciwy płata stabilizatora 0.428%,
- wydłużenie efektywne usterzenia poziomego: $\Lambda_H = 4.118$
- odwrotność zbierzności usterzenia poziomego: $\frac{1}{\lambda_H} = 0.666$

Rys. 1: Odczyt charakterystyki $a_1 = \frac{dC_z}{d\alpha}$ dla usterzenia poziomego

Wyznaczanie współcznnika a_2

$$a_2 = 1.27 \cdot a_1 \cdot \sqrt{\frac{S_{sH}}{S_H}} \left(1 - 0.2 \cdot \frac{S_{sH}}{S_H} \right)$$

gdzie $\frac{S_{sH}}{S_H} = \frac{0.934}{2.2} = 0.425$ to stosunek powierzchni steru (?? w ??) do powierzchni usterzenia.

$$a_2 = 1.27 \cdot 3.1 \cdot \sqrt{0.425} \left(1 - 0.2 \cdot 0.425 \right) = 2.218 rad^{-1}$$
 (2)

0.3 Kąt zaklinowania usterzenia wysokości

Obliczenia przyjmę dla prędkości przelotowej równej V = 106kt = 54.4m/s oraz wysokości h = 0m. Przy tej prędkości płat będzie musiał wytworzyć współczynnik C_z o pewnej wartości.

$$C_z = \frac{2mg}{\rho SV^2} = \frac{2 \cdot 726 \cdot 9.81}{1.225 \cdot 15 \cdot 54.4^2} = 0.262$$
 (3)

Równanie kąta zaklinowania łopaty:

$$\alpha_{zH} = \frac{C_{mbu}}{\kappa'_{H} \cdot a_{1}} - \frac{C_{z}}{a} \cdot \left(1 - \frac{\partial \varepsilon}{\partial \alpha}\right)$$

gdzie

$$\frac{\partial \varepsilon}{\partial \alpha} = \frac{2a}{\pi \Lambda} = \frac{2 \cdot 4.452}{\pi \cdot 6.59} = 0.430 \tag{4}$$

\bar{x}_c	C_{mbu}	κ_H'	$\alpha_{zH}[rad]$	$\alpha_{zH}[deg]$
0.12	-0.074	0.34	-0.10	-5.95
0.25	-0.039	0.32	-0.07	-4.16
0.38	-0.004	0.31	-0.03	-2.17

Tab. 3: Wyznaczanie α_{zH} - kąta zaklinowania płata

Jako podstawową wartość przyjmuję $\alpha_{zH} \approx -0.1 rad^{-1} = -5.95 deg$.

0.4 Kąt wychylenia steru

Kąt wychylenia steru δ_h z równania równowagi:

$$\delta_h = \frac{C_{mbu}}{\kappa'_H \cdot a_2} - \frac{a_1}{a_2} \cdot \left[\frac{C_z}{a} \cdot \left(1 - \frac{\partial \varepsilon}{\partial \alpha} \right) + \alpha_{zH} \right]$$
 (5)

Rys. 2: Kąt wychylenia steru niezbędny do zachowania równowagi dla różnego \mathcal{C}_z

Rys. 3: Kąt wychylenia steru niezbędny do zachowania równowagi dla różnego ${\cal V}$

$V[ms^{-1}]$	C_z	δ_{h1} [°]	$\delta_{h2}[^{\circ}]$	$\delta_{h3}[^{\circ}]$
24	1.253129	-12.720390	-10.166218	-7.391849
25	1.154884	-11.712590	-9.158418	-6.384049
26	1.067755	-10.818822	-8.264650	-5.490281
27	0.990127	-10.022511	-7.468339	-4.693970
28	0.920666	-9.309986	-6.755814	-3.981445
29	0.858267	-8.669892	-6.115720	-3.341351
30	0.802003	-8.092734	-5.538562	-2.764193
31	0.751095	-7.570524	-5.016352	-2.241983
32	0.704885	-7.096503	-4.542331	-1.767962
33	0.662812	-6.664917	-4.110745	-1.336376
34	0.624397	-6.270850	-3.716678	-0.942309
35	0.589226	-5.910076	-3.355904	-0.581535
36	0.556946	-5.578946	-3.024774	-0.250405
37	0.527248	-5.274300	-2.720128	0.054241
38	0.499863	-4.993387	-2.439215	0.335154
39	0.474558	-4.733804	-2.179632	0.594737
40	0.451127	-4.493446	-1.939274	0.835095
41	0.429389	-4.270460	-1.716288	1.058081
42	0.409185	-4.063210	-1.509039	1.265331
43	0.390374	-3.870252	-1.316080	1.458289
44	0.372832	-3.690299	-1.136127	1.638242
45	0.356446	-3.522210	-0.968038	1.806331
46	0.341116	-3.364963	-0.810791	1.963578
47	0.326755	-3.217646	-0.663474	2.110895
48	0.313282	-3.079440	-0.525268	2.249101
49	0.300626	-2.949609	-0.395437	2.378932
50	0.288721	-2.827490	-0.273318	2.501051
51	0.277510	-2.712483	-0.158312	2.616058
52	0.266939	-2.604048	-0.049876	2.724493
53	0.256961	-2.501692	0.052480	2.826849

Tab. 4: Kąt wychylenia stery niezbędnego do zachowania równowagi

Dodatek A

Obliczenia powierzchni steru

Rys. A.1: Obliczanie pola S_{sH} z wysunku z Projektu 1 [?]

Bibliografia

- [1] Marek Polewski. Projekt 1 Wybór samolotu. 2023.
- [2] Marek Polewski. Projekt 8 Moment podłużny samolotu. 2023.