Learning to Optimize Deep Neural Networks

Muneeb Shahid

University of Freiburg

November 13, 2017

Introduction

Given problem variables x^t and gradient $\nabla_x L^t$ with respect to the loss L^t , optimizers output a gradient step Δx^t .

Using Δx^t we update x^t , to get x^{t+1} .

$$\mathbf{X}^{t+1} = \mathbf{X}^t + \Delta \mathbf{X}^t$$

Optimizers differ in how they compute Δx^t .

Handcrafted Optimizers

Gradient descent.

Gradient descent with momentum.

Nesterov's Accelerated Gradient Descent.

RMSProp.

Adam.

Learned Optimizers

Learn to output Δx instead!

Optimizer **O**, trains a meta optimizer O_m to output Δx .

Use the trained meta optimizer \mathbf{O}_m to train neural networks.

Previous Work

Learning to Optimize.

Learning to Learn.

Learned optimizers that Scale and Generalize.

Learning to Optimize Deep Neural Networks

Learning to Optimize Deep Neural Networks

Learning to Optimize with Normalized Inputs.

Multiscale Adam.

The Learning Algorithm

Learning to

Optimize with

Normalized Inputs

Learning to Optimize with Normalized Inputs

Normalization provides invariance to gradient scaling.

Feed cooridnatewise normalized history of gradients to the meta optimizer.

The meta optimizer then outputs $\Delta x^t \in [-1.0, 1.0]$.

Learning to Optimize with Normalized Inputs

First, let's consider two different scenarios while traversing a noise free optimization landscape.

Scenario # 1

The gradient sign changes, a good indicator we just crossed a minima.

Scenario # 2

The gradient sign does not change an indication that the minima lies outside the visible history.

Algorithm Overview

Minima lies with in the history.

Minima lies outside the history.

Algorithm Update Equations

We also introduce η_{min} as the minimum learning rate.

$$\mathbf{x}^{t,ref} = (\mathbf{x}^{t,max} + \mathbf{x}^{t,min})/2$$
 $\mathbf{x}^{t,diff} = \mathbf{x}^{t,max} - \mathbf{x}^{t,min}$
 $\mathbf{x}^{t+1} = \mathbf{x}^{t,ref} + \Delta \mathbf{x}^t \cdot (\mathbf{x}^{t,diff} + \eta_{min})$

Algorithm Variants

k Timesteps - use the last *k* timesteps.

k Momentums - use momentums at *k* different timescales.

Experiments

Meta optimizer \mathbf{O}_m is trained for 200k meta iterations on *MlpMNIST*.

The trained meta optimizer is then evaluated on the same *MLP*.

Finally, we evaluate the best trained meta optimizer on a much larger network *ConvCIFAR*.

k Timesteps

Increasing k, results in better performance but η_{min} needs to be tuned as well.

Learned $\Delta \mathbf{x}$, for $\mathbf{k} = 5$

$\nabla_{X} L^{t-4}$	$\nabla_{X} L^{t-3}$	$\nabla_{X} L^{t-2}$	$\nabla_{X} L^{t-1}$	$\nabla_{X} L^t$	Δx^t
1.0	1.0	1.0	1.0	1.0	0.99999
1.0	1.0	1.0	1.0	-1.0	0.99984
1.0	1.0	1.0	-1.0	-1.0	0.99128
1.0	1.0	-1.0	-1.0	-1.0	-0.99011
1.0	-1.0	-1.0	-1.0	-1.0	-0.99978
-1.0	-1.0	-1.0	-1.0	-1.0	-0.99999
-0.1	-0.1	-0.25	-0.25	1.0	0.84402
-0.1	-0.25	0	0.25	1.0	0.41817

k Timesteps vs **Adam**

Even with k = 100, the learned optimizer fails to outperform *Adam*.

k Momentums

We can not just keep increasing number of timesteps. Thus, we turn to momentums instead.

But now $x_{ref} = (x_{max} + x_{min})/2$ can be very far back in history.

So, we set x_{ref} to the last value i.e. $x_{ref} = x_t$.

k Momentums

Performance comparison with different parameters.

Performance against *Adam* and *RMSProp*.

Using momentums and the new update equation boosts the performance significantly.

k Momentums **ConvCIFAR**10

The learned optimizers outperform *RMSprop* but *Adam* manages to take a small lead towards the end.

Issues and Limitations

Up to two times slower than a simple *Adam* step.

One needs to store two history matrices of dimension $n \times k$ in memory, where n is the number of problem variables and k is the size of the history.

More thorough experimentation needs to be done.

Multiscale *Adam*

Multiscale *Adam*

Adam relies on normalized inputs.

Input Adam running at multiple timescales as inputs to the meta optimizer \mathbf{O}_m .

The meta optimizer then learns to output a weighted average over the inputs as the gradient step Δx

Experiments

We trained four different architectures for 50k meta iterations with varying number of input timescales *k*:

Linear weighted Average (*LWA*).

Single layered *MLP* with 50 neurons.

 RNN_a with a single hidden layer of 50 neurons.

 RNN_b with two hidden layers, each with 50 neurons in each layer.

Linear Weighted Average

We experimented with three distinct architectures on *MlpMNIST*:

Normalized weights constrained to sum up to one LWA_a .

Normalized weights constrained to sum up to one and positive LWA_b .

No constraints LWA_c .

$LWA_a \vee s LWA_b \vee s LWA_c \text{ with } k = 6$

Normalization boosts performance by a huge margin.

Learned Weights

Most recent and the most distant timescales, consistently have the highest weights.

Adam	LWA _a	LWA _b	LWA _c
Adam _{.99}	0.75668	0.66044	0.24911
Adam _{.9}	0.06197	0.00366	-0.08944
Adam _{.8}	0.68091	0.00065	-0.09293
Adam _{.7}	-1.21117	0.00064	0.00168
Adam _{.6}	-0.47439	0.00077	0.07846
$Adam_{.5}$	1.18599	0.33386	0.15519

LWA with different **k** vs **Adam**

LWA outperforms all of its individual input Adam timescales.

Learned Weights, $\mathbf{k} = 5 \& \mathbf{k} = 11$

Adam	Weights		
Adam _{.99}	0.60268		
Adam _{.9}	0.00327		
Adam _{.8}	0.00654		
Adam _{.7}	0.00760		
Adam _{.6}	0.37990		

Adam	Weights
Adam _{.99}	0.66264
Adam _{.95}	0.00295
Adam 9	0.00018
Adam _{.85}	0.00256
Adam ₈	0.00493
Adam 7	0.00073
Adam 75	0.00608
Adam _{.65}	0.00615
Adam 6	0.00074
Adam 55	0.00732
Adam _{.5}	0.29241

LWA with different learning rates.

In order to further probe the performance of LWA, we tested against multiple learning rate schedules, including learning rate decay with k=6.

LWA Performance Heatmap

Why this drop in performance?

May be we need a more powerful model i.e. a *MLP*May be we need to smooth the loss as it's very noisy.

LWA vs MLP

MLP showed no increase in performance.

Enter RNN.

Using a *RNN* allows us to compute a smoothed loss by averaging over multiple timesteps i.e. the unroll length.

Optimizer \mathbf{O} , uses this smoothed loss to update the parameters w^t of the meta optimizer \mathbf{O}_m .

RNN_a Performance Heatmap

Smoothing the loss, increases the performance greatly.

RNN_b Performance Heatmap

$$\eta = 1\mathbf{e} - 1$$

$$\eta = 5\mathbf{e} - 2$$

$$g = 1e - 2$$

0.2

0.0

--- Adam_{0.5}

--- Adamo e

--- Adamo 7

--- Adamos

--- Adam_{0.9}

 η decayed from 5e-2 to 0.0

 η decayed from 1e - 2 to 0.0

Multiscale *Adam*

How well does the learned optimizer generalize?

Does it have any issues with convolutional Layers?

Does it work well with larger networks?

ConvMNISt

Trained *LWA* and *RNN_b* on a smaller Convnet with *Mnist* and evaluated on a larger Convnet. $\eta = 5e - 4$

ConvCIFAR10

Trained RNN_a and RNN_b on a smaller Convnet for Cifar10 and evaluated on a larger Convnet (Million parameters). However, the trained optimizer failed to perform well.

Training directly on the larger network did not help either.

ConvCIFAR10

Learning rate η was set to 5e-4

Training Directly on Large Networks

Training on networks with large amount of noise across batches is hard.

Moreover, training directly on larger networks is much slower compared.

Idea! Apply the optimizers trained on the small *MlpMNIST* to *ConvCIFAR*10.

ConvCifar10

$$\eta = 5e - 4$$

ConvCifar10

 η decayed from $1\mathrm{e}-2$ to $5\mathrm{e}-4$

ConvCifar10

 η decayed from 5e-4 to 5e-5

Issues and Limitations

Training on large networks takes hours.

Slower than individual input *Adam* timescales.

Training on *CIFAR*10 failed to yield good results.

Learned weighted average of timescales might not be the best choice for other networks.

Questions