Simulation and analysis of power systems Steady-State and Transients Software tools

- Jean Mahseredjian
 - École Polytechnique de Montréal

Power System Phenomenon

Software tools

- Short-circuit
 - Based on sequence networks
 - Fundamental frequency
- Power-flow (Load-flow): operating conditions
 - Positive sequence network
 - Fundamental frequency linear network
- Transient stability (electromechanical transients)
 - Positive sequence network
 - Phase domain linear network model, fundamental frequency
 - Time-domain solution of machine equations
- Harmonic analysis
 - Representation of harmonic sources
 - Propagation of harmonics
 - Linear, multiphase network
 - Nonlinearities can be included: harmonic coupling
- EMTP (electromagnetic transients)
 - Wideband, ultimate precision
 - Detailed time-domain analysis
 - Harmonic analysis, power quality
 - Nonlinear network
 - Includes load-flow and steady-state solutions
- Matlab
 - General purpose environment, support tool, separate modeling
 - Not for large scale problems

Fundamental notions

- Balanced network analysis, fundamental frequency
 - Traditional power system analysis methods
 - Linear network conditions
- Multiphase network analysis
 - Phase domain
 - Circuit based
- Steady-state analysis
 - Phasors, linear or nonlinear conditions
 - Generation and propagation of harmonics
- Time-domain analysis
 - Samples, oscilloscope
 - Transient conditions leading into steady-state
 - Harmonics
 - May start from existing steady-state
- Time-domain steady-state condition
 - Fundamental frequency waveforms
 - Harmonics: Fourier series in steady-state

Short-circuit analysis methods

- Based on sequence networks
- Assumes balanced networks
- Assumes linear networks
- X/R ratio usage for setting breakers
- Multiple fault calculations
 - Symmetric faults
 - Non-symmetric faults
 - Many automatic features
- Limitations
 - Sequence networks
 - When coupling between sequence networks
 - Linear

Harmonic analysis

- Generation and propagation of harmonics
- Steady-state computations
 - Harmonic source models
 - Independent sources based on device type
 - · Does not account for harmonic coupling
 - Network models, may account for harmonics
 - Some models have frequency dependent parameters
- Contingency methods
 - Impedance scan at the point of connection
- Harmonic Power-Flow
 - Iterative methods
 - Capable of accounting for harmonic coupling between sources
 - Capable of accounting for voltage dependency of harmonic sources

Time-domain methods

- Phase-domain solution
- Waveform based solution
 - Transients
 - Steady-state
- No limitations (in principles)
- Account for:
 - Nonlinearities
 - Extremely detailed models
 - Frequency dependence of component parameters
 - Propagation on transmission lines

Other methods

- SPICE-type
- Saber
- Electronic industry
- Mixed Technology system simulation
- Mixed engineering domains
- Finite elements methods
- Maxwell equations

EMTP: Electromagnetic Transients

- www.emtp-software.com (EMTP-RV)
- Electromagnetic Transients Program
 - For computing Power System Transients
 - For computing electrical circuit transients
 - Non-real-time application
- Comparison with real-time applications
 - Designed for highest precision within available mathematical capabilities and within available data
 - Designed for wideband analysis: within model mathematics, no limitations in timestep, computer limitations in precision
- History
 - Old EMTP: research program, started in the 80s, DCG-EMTP
 - Has triggered many developments in the field of transients
 - Widely used commercial products (EMTP type) in chronological order: EMTP-RV, EMTDC, ATP
- IPST conference
 - International Power Systems Transients conference
 - www.ipstconf.org

Field of EMTP applications

- General purpose circuit analysis tool: wideband, from steady-state to timedomain
- Simulate and analyze power system transients
- Power system design tool
- Detailed simulation and analysis of large scale electrical systems
- **Network analysis**: network separation, power quality, geomagnetic storm, interaction between compensation and control components, wind generation
- Synchronous machines: SSR, auto-excitation, control
- Multiterminal HVDC systems
- Power electronics: compensators
- **Series compensation**: MOV energy absorption, short-circuit conditions, network interaction
- **Transmission line systems**: insulation coordination, switching, design, wideband line and cable models
- Switchgear: TRV, shunt compensation, current chopping, delayed-current zero conditions
- **Protection**: power oscillations, saturation problems, surge arrester influences
- Detailed transient stability analysis: more and more
- May save millions in design and operation!

Range of Transient phenomenon

EMTP-RV modules

Ultimate Simulation Tool

