Name: CHAN King Yeung

SID: 1155119394

CSCI2100 Assignment 1

Question 1

Total frequency: $3n^2 + 8n + 5$

Time complexity: $O(n^2)$

Question 2

a) By definition, we have $g_i(n) \le c_i \cdot f_i(n)$ for any $n \ge n_i$

The product of $g_1(n)$ and $g_2(n)$ resulting an inequality as follow

$$g_1(n)g_2(n) \le c_1c_2 \cdot f_1(n)f_2(n)$$
 for any $n > \max(n_1, n_2)$

Then we have $g_1(n)g_2(n) = O(f_1(n)f_2(n))$

b)
$$g(n) = (n^2 + \sqrt{n}) \cdot (n + \log(n)) = O(n^2 \cdot n) = O(n^3)$$

c)
$$g(n) = (n^3 + 3n^2 + 5) \cdot (n^2 + n^4) = \Theta(n^3 \cdot n^4) = \Theta(n^7)$$

d) By definition, we have $c_1 \cdot f(n) \le g(n) \le c_2 \cdot f(n)$ for any n

The maximum of f(n) and g(n) resulting an inequality as follow

$$c_1(f(n) + g(n)) \le \max(f(n), g(n)) \le c_2(f(n) + g(n))$$

Given both f(n) and g(n) are nonnegative function, we have

$$max(f(n),g(n)) \le 1 \cdot (f(n)+g(n))$$
 and $max(f(n),g(n)) \ge \frac{1}{2} \cdot (f(n)+g(n))$

Thus, $c_1=\frac{1}{2}$ and $c_2=1$ holds the inequality for any n

Question 3

a) 6

Question 4

- a) We have that a=4, b=4, $\lambda=0$ Since $log_4(4)>0$, we have that $g(n)=O\bigl(n^{log_b(a)}\bigr)=O(n)$
- b) We have that a=2, b=4, $\lambda=\frac{1}{2}$ Since $\log_4(2)=\frac{1}{2}$, we have that $g(n)=O\left(n^\lambda\cdot\log(n)\right)=O\left(\sqrt{n}\log(n)\right)$
- c) We have that a=2, b=4, $\lambda=2$ Since $log_4(2)<2$, we have that $g(n)=O(n^{\lambda})=O(n^2)$

Question 5

 $f_1(n) = 2^{2^{100000}}$ runs in a constant time, thus, $f_1(n) = O(1)$

 $f_2(n) = 2^{10000n}$ grows in 2^n , thus, $f_2(n) = O(2^n)$

$$f_3(n)={n\choose 2}$$
 rewrite as $\frac{n(n-1)}{2}$, thus, $f_3(n)=O(n^2)$ $f_4(n)=n\sqrt{n}$ known as $n^{\frac{3}{2}}$, thus, $f_4(n)=O\left(n^{\frac{3}{2}}\right)$

The growth rate, therefore, is $f_2(n) > f_4(n) > f_3(n) > f_1(n)$

Question 6

- a) Suppose $T(n) \le c \cdot n^2$ holds for $n \le k-1$ For n = k, we have $T(k) \le T(k-1) + k \le c \cdot (k-1)^2 + k = c \cdot k^2 - 2c \cdot k + c + k$ To make $T(k) \le c \cdot k^2$, c must statisfy that $-2c \cdot k + c + k \le 0 \implies c \ge 1$ By induction, for any $k \ge 1$, we obtain $T(n) \le 1 \cdot n^2$, therefore, $T(n) = O(n^2)$
- b) We have that a = 1, b = 2, $\lambda = 0$ Since $log_2(1) = 0$, we have that $T(n) = O(n^{\lambda} \cdot log(n)) = O(log(n))$

Question 7

By the definition of Big-Omega, we obtain as follow

$$g(n) = \Omega\left(n^{\log_b(a)} + \sum_{i=0}^{y} \left(\frac{a}{b^{\lambda}}\right)^i n^{\lambda}\right)$$
, where $y = \log_b(n) - 1$

- a) Given $log_b(a) < \lambda$, we have $a < b^\lambda$ and $g(n) = \Omega \left(n^{log_b(a)} + c_0 \cdot n^\lambda \right)$ for some constant c_0 n^{λ} grow faster than $n^{\log_b(a)}$, thus by the sum property we obtain $g(n) = \Omega(n^{\lambda})$
- b) Given $log_b(a)=\lambda$, we have $a=b^\lambda$ and $g(n)=\Omega \big(n^{log_b(a)}+n^\lambda \cdot log_b(n)\big)$ $n^{\lambda} \cdot log_b(n)$ grow faster than $n^{log_b(a)}$, thus by the sum property we obtain $g(n) = \Omega(n^{\lambda} \cdot log(n))$
- c) Given $log_b(a) > \lambda$, we have $a > b^{\lambda}$ and $g(n) = \Omega(n^{log_b(a)} + c_0 \cdot n^{\lambda})$ for some constant c_0 $n^{\log_b(a)}$ grow faster than n^{λ} , thus by the sum property we obtain $g(n) = \Omega(n^{\log_b(a)})$