45

Considera due oscillazioni di equazioni:

$$y = A \cos(b_1 t + \pi/3)$$
 4
 $y = A \cos(b_2 t + \pi/6)$, **2**

dove A = 3.5 cm, $b_1 = 2.0$ rad/s, $b_2 = 4.0$ rad/s.

- ▶ Disegna il grafico *y-t* delle due onde al variare del tempo.
- ▶ Disegna il grafico dell'onda ottenuta dalla loro sovrapposizione per *t* da 0 s a 3,0 s.

$$\cos x + \cos \beta = 2 \cos \frac{x + \beta}{2} \cos \frac{x - \beta}{2}
y_1 + y_2 = A \left[\cos \left(\frac{l_1 t + \frac{\pi}{3}}{3} \right) + \cos \left(\frac{l_2 t + \frac{\pi}{6}}{6} \right) \right] =
= A \cdot 2 \cos \frac{\left(\frac{l_1 + l_2}{2} \right) t + \frac{\pi}{2}}{2} \cos \frac{\left(\frac{l_1 - l_2}{2} \right) t + \frac{\pi}{6}}{2}
y = 0,070 \cos \frac{6t + \frac{\pi}{2}}{2} \cos \frac{-2t + \frac{\pi}{6}}{2}$$

Il disegno mostra due impulsi che si propagano su di una corda, in verso opposto, all'istante t=0 s. La velocità di ciascun impulso è di 2 m/s.

▶ Disegna la forma della corda dopo 1 s e dopo 2 s.

- Due onde armoniche, con uguale pulsazione e uguale ampiezza, si sovrappongono e, interferendo, generano un'onda armonica di ampiezza A = 20 cm. Ogni onda ha ampiezza pari a a = 13 cm.
 - ▶ Calcola lo sfasamento tra le due onde.

[1,4 rad]

$$y = a cos(\omega t)$$
 $y_2 = a cos(\omega t + 40)$

AMPLEAR $A = 2a cos \frac{40}{2}$
 $20 = 2.13 cos \frac{40}{2}$
 $cos \frac{40}{2} = \frac{10}{13}$
 $\frac{40}{2} = cos^{-1}(\frac{10}{13}) \approx 0,693$
 $40 \approx 2.0,693 \approx 1,4 \text{ Red}$