Sunday

Lucy Eckert

```
data.path <- "C:/Users/leckert/Documents/NCSU/ST558/Project_2"</pre>
day <- read_csv(paste0(data.path,"/day.csv"))</pre>
## Parsed with column specification:
## cols(
##
     instant = col_double(),
##
     dteday = col date(format = ""),
     season = col_double(),
##
##
    yr = col_double(),
##
    mnth = col_double(),
    holiday = col_double(),
##
     weekday = col_double(),
     workingday = col_double(),
##
##
     weathersit = col_double(),
##
     temp = col_double(),
     atemp = col_double(),
##
##
    hum = col_double(),
     windspeed = col double(),
##
##
     casual = col_double(),
##
     registered = col_double(),
##
     cnt = col_double()
## )
byday <- day %>% select(-c(casual,registered, instant, dteday))
#Filter out Monday data, and remove unused variables
ByDay <- day %>% filter(weekday==6) %>% select(-c(casual,registered, instant, dteday))
Review Data by Summaries and Plots
#Rentals by Temperature
```

```
## 'geom_smooth()' using method = 'loess' and formula 'y ~ x'
```

Bike Rental Count by Temperature


```
#Rentals by Season
b <- ggplot(day, aes(x = season, y = cnt))
b + geom_bar(stat = "identity", aes(y=cnt, fill="Season"), colour="green") + labs(title = "Bike Rental")
labels = c("Winter", "Spring", "Summer", "Fall"))</pre>
```

Bike Rental Count by Season


```
#Rentals by Weather Type
c <- ggplot(day, aes(x = weathersit, y = cnt))
c + geom_bar(stat = "identity", aes(y=cnt, fill="Weather"), colour="green") +
   labs(title = "Bike Rental Count by Weather Type", x = "Weather Type", y = "Count of Bike Rentals") +</pre>
```


Review Summary Stats for Continuous Variables

Table 1: Summary Stats for Continuous Variables

	$_{\mathrm{temp}}$	atemp	hum	windspeed
Min.	0.06	0.08	0.19	0.05
1st Qu.	0.32	0.32	0.50	0.14
Median	0.47	0.47	0.61	0.19
Mean	0.48	0.46	0.62	0.20
3rd Qu.	0.66	0.61	0.73	0.23
Max.	0.86	0.80	0.93	0.51

Create train and test data sets for Monday data. Clean data.

```
set.seed(1)
trainIndex <- createDataPartition(ByDay$cnt, p = 0.7, list = FALSE)
Train <- ByDay[trainIndex, ]
Test <- ByDay[-trainIndex, ]</pre>
```

Build Models for Train Data

Model 1: Non-Ensemble Tree

plot(model\$finalModel)

While doing some research on model building, I discovered the concept of of using dummy variables as a way to create "switches" for some of the variables. It really helped me break down which were more useful for the model.

```
<- day %% filter(weekday==6) %% select(-c(casual,registered, instant, dteday))</pre>
trainIndex <- createDataPartition(ByDay$cnt, p = 0.7, list = FALSE)</pre>
Train <- ByDay[trainIndex, ] %>% select(-c(workingday, weekday)) %>%
  mutate(mnth=as.factor(mnth), season=as.factor(season), weathersit = as.factor(weathersit))
             <- dummyVars(" ~ .", data = Train, fullRank = T)
dmv
Train.trf <- data.frame(predict(dmy, newdata = Train)) %>% mutate(y = scale(cnt)) %>% select(-cnt)
fitControl <- trainControl(method = "LOOCV")</pre>
           <- train(y ~., data = Train.trf, method = "ctree",
model
                    trControl = fitControl)
print(model)
## Conditional Inference Tree
##
## 76 samples
## 22 predictors
##
## No pre-processing
## Resampling: Leave-One-Out Cross-Validation
## Summary of sample sizes: 75, 75, 75, 75, 75, 75, ...
## Resampling results across tuning parameters:
##
##
    mincriterion RMSE
                              Rsquared
                                         MAE
##
    0.01
                   0.6060087
                              0.6316622 0.4579451
##
    0.50
                   0.6060087 0.6316622 0.4579451
    0.99
                   0.7155505 0.4835593 0.5595580
##
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was mincriterion = 0.5.
```


Model 2: Boosted Tree

I selected this model after trying many combinations of the n.trees, shrinkage, and interaction depth. I selected it for the most favorable RMSE.

[1] 1521.667