Machine Learning 1

Homework Week 10 - Decision Tree

Tran Hai Nam - 11219279 - DSEB 63

1 Problem 1:

Training dataset

Tid	Attribl	Attrib2	Class
1	Yes	Large	No
2	No	Medium	No
3	No	Small	No
4	Yes	Medium	No
5	No	Large	Yes
6	No	Medium	No
7	Yes	Large	No
8	No	Small	Yes
9	No	Medium	No
10	No	Small	Yes

Approach 1: Gini Impurty

$$N_{(Yes)} = 3, N_{(No)} = 7$$

$$p_{(Yes)} = \frac{3}{10}, p_{(No)} = \frac{7}{10}$$

$$Gini(\mathbf{X}) = 1 - \left(\frac{3}{10}\right)^2 - \left(\frac{7}{10}\right)^2 = 0.42$$

Gini
$$(X_{att1} = yes) = 1 - (\frac{3}{3})^2 = 0$$

(3 yes - yes)

$$Gini(X_{att1} = no) = 1 - \left(\frac{4}{7}\right)^2 - \left(\frac{3}{7}\right)^2 = 0.489$$

$$\Delta \mathbf{Gini}(X, \text{ atrrib1}) = \mathbf{Gini}(\mathbf{X}) - \frac{7}{10} \cdot \mathbf{Gini}(\mathbf{X}_{att1} = yes) - \frac{3}{10} \cdot \mathbf{Gini}(\mathbf{X}_{att1} = no)$$

$$= 0.42 - \frac{7}{10} \cdot 0.489 - \frac{3}{10} \cdot 0$$

$$= 0.0777$$

And:

Gini
$$(X_{\text{att2}} = \text{large}) = 1 - \left(\frac{1}{3}\right)^2 - \left(\frac{2}{3}\right)^2 = 0.444$$

(1 large - yes , 2 large - no)

Gini
$$(X_{\text{att2}} = \text{medium}) = 1 - (\frac{4}{4})^2 - (\frac{0}{4})^2 = 0$$

(4 medium - no)

$$\mathbf{Gini}(X_{\mathrm{att2}}=\mathrm{\;small\;})=1-\left(\frac{2}{3}\right)^2-\left(\frac{1}{3}\right)^2=0.444$$
 (2 small - yes , 1 small - no)

$$\begin{split} \Delta\mathbf{Gini}(X, \text{ atrrib2}) &= \mathbf{Gini}(\mathbf{X}) - \frac{3}{10} \cdot \mathbf{Gini}(\mathbf{X}_{att2} = large) - \frac{4}{10} \cdot \mathbf{Gini}(\mathbf{X}_{att2} = medium) \\ &- \frac{3}{10} \cdot \mathbf{Gini}(\mathbf{X}_{att2} = small) \\ &= 0.42 - \frac{3}{10} \cdot 0.444 - \frac{4}{10} \cdot 0 - \frac{3}{10} \cdot 0.444 \\ &= 0.402 \end{split}$$

Since $\Delta Gini(X, atrrib2) > \Delta Gini(X, atrrib1)$

 \longrightarrow We choose Attrb2 to be the root.

Approach 2: Information gain

(best attribute = highest information gain)

Entropy
$$(X) = -\left(\frac{7}{10}\right)\log_2\left(\frac{7}{10}\right) - \frac{3}{10}\log_2\left(\frac{3}{40}\right) = 0.88129$$

Entropy
$$(X, \text{ att1} = \text{yes}) = -\left(\frac{3}{3}\right)\log_2\left(\frac{3}{3}\right) = 0$$

(3 yes - no)

Entropy
$$(X, \text{ att1} = \text{no }) = -\left(\frac{3}{7}\right)\log_2\left(\frac{3}{7}\right) - \left(\frac{4}{7}\right)\log_2\left(\frac{4}{7}\right) = 0.985$$
 (4 no - no , 3 no - yes)

$$\mathbf{Gain}(X, attrb1) = 0.88129 - \frac{3}{10} \cdot 0 - \frac{7}{10} \cdot 0.985$$
$$= 0.19179$$

Entropy
$$(X, \text{ att2} = \text{large}) = -\frac{1}{3}\log_2\left(\frac{1}{3}\right) - \frac{2}{3}\log_2\left(\frac{2}{3}\right) = 0.9182$$
 (2 large - no , 1 large - yes)

Entropy
$$(X, \text{att2} = \text{small}) = -\frac{2}{3}\log_2\left(\frac{2}{3}\right) - \frac{1}{3}\log_2\left(\frac{1}{3}\right) = 0.9182$$

(2 small - yes, 1 small - no)

Entropy
$$(X, \text{att2} = \text{medium}) = -\frac{4}{4} \log_2 \left(\frac{4}{4}\right) = 0$$

(4 medium - no)

$$\mathbf{Gain}(X, att2) = 0.88129 - \frac{3}{10} \cdot 0.9182 - \frac{4}{10} \cdot 0 - \frac{3}{10} \cdot 0.9182 = 0.805$$

Since Gain(X, atrrib2) > Gain(X, atrrib1)

\longrightarrow We choose Attrb2 to be the root.

Attr1 Attr1 No No Yes No No Yes

2 Problem 2:

Outlook	Temperature	Humidity	Wind	Play Tennis?
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rainy	Mild	High	Weak	Yes
Rainy	Cool	Normal	Weak	Yes
Rainy	Cool	Normal	Strong	No
Overcast	Cool	Normal	Strong	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rainy	Mild	Normal	Weak	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rainy	Mild	High	Strong	No

Gain of numerical attribute a if we split at value t

$$\mathbf{gain}(X, a, t) = \mathbf{entropy}(X) - \frac{|X_{a \leq t}|}{|X|} \mathbf{entropy}\left(X_{a \leq t}\right) - \frac{|X_{a} > t|}{|X|} \mathbf{entropy}\left(X_{a > t}\right)$$

 $\to \mathbf{Sort}$

entropy
$$(X) = -\frac{5}{14} \log_2 \left(\frac{5}{14}\right) - \frac{9}{14} \log_2 \left(\frac{9}{14}\right) = 0.94$$

entropy $(X_a \le 83.5) = -\frac{6}{7} \log_2 \left(\frac{6}{7}\right) - \frac{1}{7} \log_2 \left(\frac{6}{7}\right) = 0.59$
 (6 yes - 1 no)

entropy
$$(X_a > 83.5) = -\frac{4}{7}\log_2\left(\frac{4}{7}\right) - \frac{3}{7}\log_2\left(\frac{3}{7}\right) = 0.985$$

$$gain(x, humidity, 83.5) = 0.94 - \frac{7}{14} \cdot 0.59 - \frac{7}{14} \cdot 0.985 = 0.1525$$

3 Problem 3:

Outlook	Temperature	Humidity	Wind	Play Tennis?
Sunny	Hot	> 83.5	Weak	No
Sunny	Hot	> 83.5	Strong	No
Overcast	Hot	> 83.5	Weak	Yes
Rainy	Mild	> 83.5	Weak	Yes
Rainy	Cool	≤ 83.5	Weak	Yes
Rainy	Cool	≤ 83.5	Strong	No
Overcast	Cool	≤ 83.5	Strong	Yes
Sunny	Mild	> 83.5	Weak	No
Sunny	Cool	≤ 83.5	Weak	Yes
Rainy	Mild	≤ 83.5	Weak	Yes
Sunny	Mild	≤ 83.5	Strong	Yes
Overcast	Mild	> 83.5	Strong	Yes
Overcast	Hot	≤ 83.5	Weak	Yes
Rainy	Mild	> 83.5	Strong	No

$$\begin{aligned} & \mathbf{gini}(X) = 1 - \left(\frac{5}{14}\right)^2 - \left(\frac{9}{14}\right)^2 = 0.459 \\ & \mathbf{gini}(\ \mathrm{Outlook} = \mathrm{Sunny}\) = 1 - \left(\frac{3}{5}\right)^2 - \left(\frac{2}{5}\right)^2 = 0.48. \\ & \mathbf{gini}(\ \mathrm{Outlook} = \ \mathrm{Rainy}\) = 1 - \left(\frac{3}{5}\right)^2 - \left(\frac{2}{5}\right)^2 = 0.48. \\ & \mathbf{gini}(\ \mathrm{Outlook} = \ \mathrm{Overcast}\) = 1 - \left(\frac{4}{4}\right)^2 = 0. \\ & \Delta \ \mathbf{gini}(X, \ \mathrm{outlook}\) = 0.459 - \frac{5}{14} \cdot 0.48 - \frac{5}{14} \cdot 0.48 = 0.1161 \\ & \rightarrow \ \mathbf{best} \ \mathbf{attribute} \end{aligned}$$

PLAY TENNIS DECISION TREE

