Evaluation of the DAO Protocol with BLS Aggregate Signature Verification

Jean Gal

Tuesday 14th of May

1 Introduction

The purpose of this report is to present benchmarks for a DAO protocol that incorporates on-chain BLS aggregate signature verification for voting purposes. This protocol is designed to improve the efficiency of voting processes within decentralized autonomous organizations (DAOs). The implementation details and source code are available in the repository at: https://github.com/jjeangal/bls-agg-dao.

2 Benchmark Data

The following table, table 1, presents the gas usage benchmarks for calling the castVoteWithReasonAndBlsSig function in the DAO protocol. Each entry represents a different number of aggregated signatures (n).

Number of Signatures (n)	Gas Used
1	206,632
2	233,956
3	261,231
4	$288,\!579$
5	315,902
6	343,214
7	370,541
8	397,892
9	425,207
10	452,546
11	479,849
12	507,189

 ${\bf Table~1:~Gas~usage~benchmarks~for~{\tt castVoteWithReasonAndBlsSig~function}.}$

3 Gas Cost Analysis

The gas cost for validating a BLS signature aggregation can be expressed by the following formula, where k is the number of pairings executed:

Pairing Costs =
$$34,000 \times k + 45,000$$
 (0x08 ecPairing)

For two pairings in our verifySingle signature of the aggregated keys and signatures for one message, the cost is:

$$34,000 \times 2 + 45,000 = 113,000$$

The gas costs for invoking the function to cast a vote, excluding the signature verification operation, are calculated as follows:

Total Gas
$$(1 \text{ sig})$$
 - Pairing Cost = $207,000 - 113,000 = 94,000$

The additional gas cost for each of the n signatures, which mainly involves looping through the accounts and calculating the vote weights, is approximately 27,330.

4 Comparison with ecRecover

To compare with another digital signature algorithm, we'll examine ECDSA, which is a cryptographic algorithm used for public key recovery and is the only other elliptic curve supported by the Ethereum Virtual Machine (EVM). The ecRecover function is a pre-compiled contract in Ethereum that implements the ECDSA public key recovery process. It is located at address 0x01 and costs 3,000 gas to execute. In our scenario, we found that our approach outperforms ecRecover when there are more than 38 signatures to verify:

$$113,000 < 38 \times 3,000$$

5 Example Calculation

In this section, we present the gas cost calculations for calling the:

based on our observations. The gas costs for different values of n, the number of signatures, are illustrated in Appendix A through Figure 2 and 3.

For n=1, the gas cost is calculated as follows:

$$Gas Cost = 94,000 + 113,000 = 207,000 \tag{1}$$

The base cost of the function is 94,000 gas, and the cost of verifying a single BLS signature is 113,000 gas, resulting in a total cost of 207,000 gas.

For n=2, the gas cost is calculated as follows:

Gas Cost =
$$94,000 + 113,000 + 27,330 \times 1 = 234,330$$
 (2)

The base cost of the function and the verification of BLS signatures remain constant. However, each additional signature beyond the first incurs an extra cost of 27,330 gas, leading to a total cost of 234,330 gas. This increase is mainly attributed to the operations required to loop over the accounts and calculate their token weights in the protocol.

Our observations show that the gas cost for the castVoteWithReasonAndBlsSig function scales linearly with the number of signatures, making it a cost-effective approach for verifying multiple signatures in a single transaction.

6 Graphical Representation

Figure 1: Gas Usage Comparison: BLS Aggregate Signatures vs ECDSA Signatures

7 Future Improvements

The DAO protocol using BLS aggregate signatures on-chain provides a compelling solution for voting scenarios that require signatures. Nevertheless, several important considerations need to be addressed before implementation. The

first step is to generate key pairs and associate them with Ethereum accounts, which can pose challenges. Ideally, enabling direct voting through Ethereum accounts would significantly simplify the process, but this may not be feasible in the near future. In the current scenario, the distribution of key pairs must be meticulously managed to maintain the security and integrity of the voting process.

It is also important to note that even with our signature scheme, calculating the weights of each account can be resource-intensive, as it involves iterating through the accounts. This step is crucial to determine the number of tokens each account holds, influencing their voting weight within the DAO.

Looking ahead, this basic DAO protocol can be expanded to incorporate unique voting mechanisms, such as using NFTs or other emerging solutions, depending on the specific needs of the DAO. Ensuring that each voter has only one vote can significantly enhance both the security and fairness of the voting process. Overall, the use of BLS aggregate signatures in this DAO protocol lays a solid groundwork for future enhancements and improvements.

8 Conclusion

The benchmarks demonstrate that the DAO protocol efficiently handles BLS aggregate signature verification, with a predictable increase in gas usage as the number of aggregated signatures increases. This makes it a suitable choice for secure and scalable voting mechanisms within DAOs. Additionally, it outperforms the ecRecover function when there are more than 38 signatures to verify. However, it is important to note that despite these advantages, the protocol can still be computationally intensive. The computation costs, particularly when managing a large number of signatures, might impact its scalability and overall efficiency in larger DAO settings. Future improvements could focus on optimizing these computational demands to enhance performance and feasibility in broader applications.

Special thanks to the contributors at Ethereum Research Forum for their insights on BLS signatures in Solidity, which greatly informed this report.

9 Appendices

Appendix A: Screenshots of transactions with gas usage details

eth_sendTransaction	
Contract call:	TheGovernor#castVoteWithReasonAndBlsSig
Transaction:	0x7d0d1c8e10dca0ca853bbf86d74886a4a9c000238f75388ed6f0f499ff52931e
From:	0xf39fd6e51aad88f6f4ce6ab8827279cfffb92266
To:	0xcf7ed3acca5a467e9e704c703e8d87f634fb0fc9
Value:	0 ETH
Gas used:	206632 of 1000000
Block #14:	0xb6bc6f25f53437b2b0723ab81ebe413dad2c032d6ec0846bbb699d94fcf2310b

Figure 2: Transaction 1

eth_sendTransaction	
Contract call:	TheGovernor#castVoteWithReasonAndBlsSig
Transaction:	0x1cbda414467a9f83c43a4ebae83c3aa61e38cc2b4cd43df528e75aabdc2d9624
From:	0xf39fd6e51aad88f6f4ce6ab8827279cfffb92266
To:	0xcf7ed3acca5a467e9e704c703e8d87f634fb0fc9
Value:	0 ETH
Gas used:	233956 of 1000000
Block #14:	0x2935a59e50de0dc92ed6965a578516799af9322d591b78dc7dd7ec5ef93f3a48

Figure 3: Transaction 2

eth_sendTransaction	
Contract call:	TheGovernor#castVoteWithReasonAndBlsSig
Transaction:	0x9667dcfe90168b10a490790e743771fff2680d2253504c462b610c9cc701c68a
From:	0xf39fd6e51aad88f6f4ce6ab8827279cfffb92266
To:	0xcf7ed3acca5a467e9e704c703e8d87f634fb0fc9
Value:	0 ETH
Gas used:	261231 of 1000000
Block #14:	0x8c29e2b2c192b51ce1fa7cf3d6e3bffb819fe092df6c1fc0a5f1a8eb40bc99f6

Figure 4: Transaction 3

<pre>eth_sendTransaction Contract call:</pre>	TheGovernor#castVoteWithReasonAndBlsSig
Transaction:	0x8e74c205edd2f2ac0581a85b8fe22ba28dae251220f2ff53747a2dbde411e52e
From:	0xf39fd6e51aad88f6f4ce6ab8827279cfffb92266
To:	0xcf7ed3acca5a467e9e704c703e8d87f634fb0fc9
Value:	0 ETH
Gas used:	288579 of 1000000
Block #14:	0xb65917d17f8371cb9d7fa288095f226024e6adcb06c96d5bf87ee1a139d2fc11

Figure 5: Transaction 4

eth sendTransaction	
Contract call:	TheGovernor#castVoteWithReasonAndBlsSig
Transaction:	0xcf3af00c48fdf09208c7916a7287b2669ee390f636362fd02e9c5d715863883b
From:	0xf39fd6e51aad88f6f4ce6ab8827279cfffb92266
To:	0xcf7ed3acca5a467e9e704c703e8d87f634fb0fc9
Value:	0 ETH
Gas used:	315902 of 1000000
Block #14:	0xe01ef01c0ec896908d15c279b9d99b85cdd1990282407d7824fb4a8fc97d4d94

Figure 6: Transaction 5

eth_sendTransaction	
Contract call:	TheGovernor#castVoteWithReasonAndBlsSig
Transaction:	0xe2a7bdf92a9efc5ceb9e665ad0d68ca7476a6c4d2bb850bb05e1c041bdde46e9
From:	0xf39fd6e51aad88f6f4ce6ab8827279cfffb92266
To:	0xcf7ed3acca5a467e9e704c703e8d87f634fb0fc9
Value:	0 ETH
Gas used:	343214 of 1000000
Block #14:	0x0bade3fa84d7adfbd371af36b03d3c6db86b901a4656a24b0d464a0da0310d21

Figure 7: Transaction 6

eth sendTransaction	
Contract call:	TheGovernor#castVoteWithReasonAndBlsSig
Transaction:	0x329a278643b92ed4842cfb2b276b913c9e775870357f328fe107b5acdc4ba537
From:	0xf39fd6e51aad88f6f4ce6ab8827279cfffb92266
To:	0xcf7ed3acca5a467e9e704c703e8d87f634fb0fc9
Value:	0 ETH
Gas used:	370541 of 1000000
Block #14:	0xd89dfdda8dc10d5b619bbbd6bad6a5cae5196ae779d8adf726d3f70f2a2be97b

Figure 8: Transaction 7

eth_sendTransaction	
Contract call:	TheGovernor#castVoteWithReasonAndBlsSig
Transaction:	0x55d089897aa8182c57b3e5d3f295eb892c95a9a54647e60bb86cf1fac6f54000
From:	0xf39fd6e51aad88f6f4ce6ab8827279cfffb92266
To:	0xcf7ed3acca5a467e9e704c703e8d87f634fb0fc9
Value:	0 ETH
Gas used:	397892 of 1000000
Block #14:	0xe77c3f51cc6387530b8472fae95094471195db583636e94c6cfefbaeb28d8be4

Figure 9: Transaction 8

eth_sendTransaction	
Contract call:	TheGovernor#castVoteWithReasonAndBlsSig
Transaction:	0x34e2053addb6740f2fd1ded8ff93197c0852f673fcc4cbc2d072aa264d89dd50
From:	0xf39fd6e51aad88f6f4ce6ab8827279cfffb92266
To:	0xcf7ed3acca5a467e9e704c703e8d87f634fb0fc9
Value:	0 ETH
Gas used:	425207 of 1000000
Block #14:	0x1e4c6c597b600cc2141223f1a063aa716c7f7022a1dfb19c237ecaaba8cfcb73

Figure 10: Transaction 9

Contr Trans	dTransaction act call: action:	TheGovernor#castVoteWithReasonAndBlsSig 0x9f87081a4a2363bf93b7d4ffb554ec14b0dfeaa1235a0f8894897e9a1f932e55
From: To:		<pre>0xf39fd6e51aad88f6f4ce6ab8827279cfffb92266 0xcf7ed3acca5a467e9e704c703e8d87f634fb0fc9</pre>
Value		0 ETH
Gas u Block		452546 of 1000000 0x19b807e439af6ea0e712f750412bdf9609158fbe8d005178ec593149cd7c8394

Figure 11: Transaction 10

eth_sendTransaction	
Contract call:	TheGovernor#castVoteWithReasonAndBlsSig
Transaction:	0x913887a415540b423973cfc485f02712912b744f2ddb353d7888d4f97662ec97
From:	0xf39fd6e51aad88f6f4ce6ab8827279cfffb92266
To:	0xcf7ed3acca5a467e9e704c703e8d87f634fb0fc9
Value:	0 ETH
Gas used:	479849 of 1000000
Block #14:	0x89d23398bdaf6a77db5bdd2671e3e78938ee73945ea8aab60b44ca02e1bae0f6

Figure 12: Transaction 11

eth_sendTransaction	
Contract call:	TheGovernor#castVoteWithReasonAndBlsSig
Transaction:	0xbc28a9decf4c57c449461f50fd452c588b5f8a92bc5a57080fecffc1eff15312
From:	0xf39fd6e51aad88f6f4ce6ab8827279cfffb92266
To:	0xcf7ed3acca5a467e9e704c703e8d87f634fb0fc9
Value:	0 ETH
Gas used:	507189 of 1000000
Block #14:	0x756a72ddcc4d51bbf8ab831cfd1dca590b35d62471db819f3a6e079442925e55

Figure 13: Transaction 12

Appendix B: Source code for the verifySingle function

```
function verifySingle(
        uint256[2] memory signature,
        uint256[4] memory pubkey,
        uint256[2] memory message
    ) internal view returns (bool) {
        uint256[12] memory input = [
            signature[0],
            signature[1],
            nG2x1,
            nG2x0,
            nG2y1,
            nG2y0,
            message[0],
            message[1],
            pubkey[1],
            pubkey[0],
            pubkey[3],
            pubkey[2]
        ];
        uint256[1] memory out;
        bool success;
        // Call the precompiled contract at address 8 - pairing
        assembly {
            success := staticcall(
                sub(gas(), 2000), // ensure that there is enough gas left
                8, // pairing precompile address
                input, // Start of input
                384, // 12 * 32 bytes - size of the input
                out, // Write the output
                0x20 // Expect 32 bytes of output
            )
            switch success
            case 0 {
                let size := mload(0x40)
                mstore(size, "Pairing check failed")
                revert(size, 21)
        }
        // Check if the pairing result is true
        if (!success) {
            BLSLibrary._throwSigError(
                BLSLibrary.SignatureError.InvalidSignature,
            );
```

```
}
    require(success, "");
    return out[0] != 0;
}
```

Appendix C: Detailed calculation steps for gas cost

 $\label{eq:approx} \text{Pairing Costs} = 34,000 \times k + 45,000$ Cast Vote Gas Cost = $94,000+113,000+27,330 \times n$