VERSUCH NUMMER

TITEL

AUTOR A authorA@udo.edu

AUTOR B authorB@udo.edu

Durchführung: DATUM

Abgabe: DATUM

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Theorie	3
2	Durchführung	3
3	Auswertung3.1 Niedrigdruckbereich3.2 Hochdruckbereich	
4	Diskussion	6
Literatur		

1 Theorie

[1]

2 Durchführung

3 Auswertung

3.1 Niedrigdruckbereich

Bei den Messungen bis 1 bar wurde die in folgender Tabelle dargestellten Werte festgehalten. Sie wurden bereits in die SI Einheiten Kelvin und Pascal umgerechnet.

Tabelle 1: Messwerte bis 1 bar

p[Pa]	T[K]
3700	301.65
5700	309.15
7700	314.15
9700	318.15
11700	322.15
13700	322.15
15700	328.15
17700	330.15
19700	333.15
21700	335.15
23700	337.15
35700	339.15
27700	341.15
29700	342.15
31700	344.15
33700	346.15
35700	347.15
37700	349.15
39700	350.15
41700	352.15
43700	353.15
45700	355.15
47700	356.15
49700	357.15
51700	358.15
53700	359.15
55700	360.15
57700	361.15
59700	362.15
61700	363.15
63700	364.15
65700	365.15
67700	366.15
69700	367.15
71700	368.15
73700	369.15
75700	369.15
77700	370.15
79700	371.15
81700	372.15
83700	372.15
85700	373.15
87700	373.15
80700	275 15
91700_{4}	375.15
93700	376.15
95700 95700	377.15
93700 97700	377.15
99700	378.15
101700	378.15
101100	510.13

Zur Berechnung von L wird die in der Theorie hergeleitete Formel

$$\ln\left(\frac{p}{p_0}\right) = -\frac{L}{RT} \iff L = -\ln\left(\frac{p}{p_0}\right)RT \tag{1}$$

verwendet. Der Umgebungsdruck auf Meereshöhe beträgt etwa $p_0=1bar$. Die allgemeine Gaskonstante lautet $R=8.31446261815324\frac{\mathrm{kg\,m^2}}{\mathrm{s^2\,mol\,K}}$. Somit lässt sich L mittels linearer Regression aus folgender Grafik berechnen:

Abbildung 1: Messwerte und Ausgleichsgerade bis 1 bar

Für die Ausgleichsgerade ergeben sich die Koeffizienten

$$a = (-4686.5514 \pm 58.9156) \ K$$

 $b = 10.1354 \pm 0.2268$

Einsetzen in die Formel (1) liefert:

$$L = -a \cdot R = (3.9 \pm 0.05) \cdot 10^4 \frac{J}{mol}$$

Die Verdamfpungswären setzt sich aus zwei Teilen zusammen: Der äußeren Verdampfungswärme L_a liefert die Energie, die benötigt, wird um das Volumen einer Flüssigkeit in das eines Gases zu vergrößern. Sie lässt sich also durch die Volumenarbeit W=pV ausdrücken. Da es sich um den Niedrigdruckbereich handelt, kann mit der idealen Gasgleichung pV=RT gearbeitet werden, so dass sich für

$$L_a = W = pV = RT$$

ergibt. Die innere Verdampfungswärme L_i , die benötigt wird, um die molekularen Bindungskräfte zu überwinden kann daher aus der Gleichung

$$L_i=L-L_a$$

gewonnen werden.

3.2 Hochdruckbereich

4 Diskussion

Literatur

[1] TU Dortmund. Versuch zum Literaturverzeichnis. 2014.