IV - Calcul matriciel

À Savoir

Opérations sur les matrices. Addition, Multiplication par un nombre, Multiplication de matrices.

- $*A \times (B+C) = A \times B + A \times C.$
- $* \lambda(A \times B) = (\lambda A) \times B = A \times (\lambda B).$
- * A + 0 = 0 + A = A.
- * A + (-A) = (-A) + A = 0.
- $* A \times I = I \times A = A.$

Attention. En général, $AB \neq BA$.

$$A^{3} + 2A^{2} + 3A = A \times A^{2} + 2A \times A + 3A \times I = A(A^{2} + 2A + 3I).$$

À Savoir

Systèmes linéaires. Traduire un système linéaire en équation matricielle et réciproquement.

Utilisation en lien avec :

- * la résolution de systèmes.
- * les suites définies par récurrence.
- $\ast\,$ la formule des probabilités totales.

À Savoir

$$\begin{cases} A^0 = I, \\ A^n = \underbrace{A \times \cdots \times A}_{n \text{ facteurs}} \end{cases}$$

Caluls de puissances :

- * formule donnée et démonstration par récurrence.
- * puissance des matrices diagonales (par récurrence).

* formule du binôme de Newton. Si $A \times B = B \times A$, alors $(A+B)^n = \sum_{k=0}^n \binom{n}{k} A^k B^{n-k}.$

Utile surtout si $A^k = 0$ pour k assez grand.

* si $A = PDP^{-1}$, alors $A^n = PD^nP^{-1}$ (par récurrence).

À Savoir

Définition de l'inverse. Il existe B telle que AB = I. Alors, $A^{-1} = B$ et BA = I.

Existence d'un inverse :

- * donnée d'une matrice B telle que AB = I.
- * donnée d'une relation telle que $a_k A^k + \cdots + a_1 A + a_0 I = 0$.
- * matrice d'ordre 2 et $ad bc \neq 0 + Calcul$.
- * matrice diagonale & tous les coefficients diagonaux non nul
s+Calcul.
- * matrice triangulaire & tous les coefficients diagonaux non nuls.
- * calcul par inversion d'un système linéaire ou méthode du pivot sur l'identité.

Non-inversibilité. Utiliser une relation AB = AC (ou AB = 0 ou ...). Supposer par l'absurde que A est inversible et en déduire B = C (ou B = 0 ou ...). Obtenir une contradiction.