PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-288086

(43) Date of publication of application: 04.11.1997

(51)Int.CI.

G01N 27/416 G01N 27/419

(21)Application number: **09-025576**

(71)Applicant:

NGK INSULATORS LTD

(22)Date of filing:

07.02.1997

(72)Inventor:

KATO NOBUHIDE

NAKAGAKI KUNIHIKO

(30)Priority

Priority number: 08 36753

Priority date: 23.02.1996

Priority country: JP

(54) NITROGEN OXIDE MEASURING APPARATUS

(57) Abstract:

PROBLEM TO BE SOLVED: To enable measurement of oxide by a method wherein oxygen of a gas to be measured undergoes a pumping treatment by a main pump means to adjust the concentration thereof and another pumping treatment is performed based on an interelectrode voltage by a measuring pumping means to detect a pump current corresponding to the amount of the oxygen.

SOLUTION: A gas to be measured is introduced into a first chamber 54 through a diffusion speed control section 58 to control the partial pressure of the oxygen in the first chamber 54 controlled to a specified value by a main pump cell 68 and the atmosphere of the first chamber 56 is introduced into a second chamber 5 through a diffusion speed control section 60 to analyze nitrogen oxide. The oxygen then generated is drawn by a measuring pump cell 84 and an ammeter 88 detects a pump current Ip2 flowing with the action of the cell 84 to d measure the amount of the nitrogen oxide in the gas to be measured. An internal pump electrode 64 and a measuring electrode 72 in the first chamber 54 are built up with a cermet electrode containing 0.01-1% of gold and the balance of an alloy mainly composed of a platinum family element. Thus, a low activity as decomposition catalyst of the nitrogen oxide in the method eliminates possible decomposition of the nitrogen oxide under a low partial pressure of the oxygen thereby enabling highly accurate measurement of the nitrogen oxide.

LEGAL STATUS

[Date of request for examination]

07.08.2002

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

* (19)日本国特許庁(JP)

(i2) 公開特許公報(A)

(11)特許出願公開番号

特開平9-288086

(43)公開日 平成9年(1997)11月4日

裁別記号 (51) Int.Cl. 庁内整理番号 FI 技術表示箇所 G01N 27/46 G01N 27/416 331 27/419 327H 327N 327E 376 審査請求 未請求 請求項の数18 OL (全 16 頁)

(21)出願番号 特惠平9-25576

(22)出願日 平成9年(1997)2月7日:

(31) 優先権主張番号 特顯平8-36753

(32) 優先日 " 平8 (1996) 2月23日

(33)優先権主張国 日本(JP) (71)出頭人 000004064

日本码子株式会社

愛知県名古屋市瑞穂区須田町2番56号

愛知県名古屋市瑞穂区須田町2番56号 日

から、3、1年、**本得子株式会社内**と、Andialize しいり 人のなか

爱知県名古屋市瑞穂区須田町2番56号 日

本码子株式会社内

(74)代理人 弁理士 千葉 剛宏 (外1名) 東京 東京

からがをあげてこのにするなど。まずではし、あるいはか

で、2月ポンプチ製に西部されたことが、世界等世代もに ing the control of the state of the control of the

18、ELEFFEEDS:1655下型。1670章型的8.54一点19

(54) 【発明の名称】 窒素酸化物の測定装置

(57) (要約) にしい いきたいさつていてはできばいだけが

【課題】被測定ガス中のNOx濃度を、酸素あるいはC O, 、H, O等の影響を受けることなく、広い温度範囲 において、長期間安定に測定可能にする。

【解決手段】被測定ガス中のNOx濃度を知るために、 第1の拡散律速部58を通じて被測定ガスが導かれる第 1室54と、その雰囲気が第2の拡散律速部60を通じ て導かれる第2室56と、第1室54内の酸素分圧を制 御する主ポンプセル68と、第2室56内の酸素を汲み 出す測定用ポンプセル84と、測定用ポンプセル84の 作動により流れるポンプ電流 Ip2を検出する電流検出 手段(電流計88を含む)を設けて構成する。そして、 第1室54内に露呈する内側ポンプ電極64及び測定電 極72を、0.01%以上、1%未満のAuと、残部が 主として白金族元素からなる合金を含めたサーメット電 極にて構成する。

【特許請求の範囲】

【請求項1】一方が、外部空間からの被測定ガスの導入側に配設された一対のポンプ電極を有し、かつ、前記外部空間から導入された被測定ガスに含まれる酸素を、前記一対のポンプ電極間に印加される制御電圧に基づいてポンピング処理して、処理雰囲気中の酸素分圧をNOが分解され得ない所定の値に制御する主ポンプ手段と、一方が、前記主ポンプ手段にてポンピング処理された後の被測定ガスの導入側に設けられた一対の検出電極を有し、かつ、前記主ポンプ手段にてポンピング処理された 10後の被測定ガスに含まれる酸素を、前記一対の検出電極間に印加される測定用電圧に基づいてポンピング処理する測定用ポンプ手段と、

前記測定用ポンプ手段によりポンピング処理される前記 酸素の量に応じて生じるポンプ電流を検出する電流検出 手段とを具備し、

前記外部空間から導入された被測定ガスの処理空間に露 呈する少なくとも一つの電極が、0.01%以上、1% 未満のAuと、残部が主として白金族元素からなる合金 を含むことを特徴とする窒素酸化物の測定装置。20

【請求項2】請求項1記載の窒素酸化物の測定装置において、

前記測定用ポンプ手段は、前記一対の検出電極間に窒素 酸化物を分解するのに十分な電圧を印加し、あるいは該 測定用ポンプ手段に配設された窒素酸化物分解触媒のい ずれか、あるいは両方の作用によって生成した酸素を、 前記一対の検出電極間に印加される前記測定用電圧に基 づいてポンピング処理することを特徴とする窒素酸化物 の測定装置。

【請求項3】一方が、外部空間からの被測定ガスの導入 30 側に配設された一対のボンブ電極を有し、かつ、前記外部空間から導入された被測定ガスに含まれる酸素を、前記一対のボンブ電極間に印加される制御電圧に基づいてボンビング処理して、処理雰囲気中の酸素分圧をNOが分解され得ない所定の値に制御する主ボンブ手段と、一方が、前記主ボンブ手段にてボンビング処理された後の被測定ガスの導入側に設けられた一対の検出電極を有し、かつ、前記主ボンブ手段にてボンビング処理された後の被測定ガスに含まれる酸素の量と他方の検出電極側のガスに含まれる酸素の量との差に応じた起電力を発生 40 する濃度検出手段と、

前記濃度検出手段により発生する前記起電力を検出する。 電圧検出手段とを具備し、

前記外部空間から導入された被測定ガスの処理空間に露 呈する少なくとも一つの電極が、0.01%以上、1% 未満のAuと、残部が主として白金族元素からなる合金 を含むことを特徴とする窒素酸化物の測定装置。

【請求項4】請求項3記載の窒素酸化物の測定装置において

前記濃度検出手段は、該濃度検出手段に配設された窒素 50 とする窒素酸化物の測定装置。

一酸化物分解触媒の作用によって生成された酸素と前記他方の検出電極側のガスに含まれる酸素との分圧差に応じた酸素濃淡電池起電力を発生することを特徴とする窒素酸化物の測定装置。

【請求項5】請求項1~4のいずれか1項に記載の窒素 酸化物の測定装置において、

前記合金のAu含有率が0.03%以上、0.8%未満であることを特徴とする窒素酸化物の測定装置。

【請求項6】請求項1~5のいずれか1項に記載の窒素 酸化物の測定装置において、

一方が、前記主ポンプ手段における前記一方のポンプ電極と対向するように配設された一対の測定電極を有し、かつ、前記主ポンプ手段でのポンピング処理時における被測定ガスに含まれる酸素の量と他方の測定電極側のガスに含まれる酸素の量との差に応じて生じる酸素濃淡電池起電力を測定する濃度測定手段と、

前記濃度測定手段にて検出された起電力に基づいて前記 主ポンプ手段の前記制御電圧を調整する主ポンプ制御手 段が設けられていることを特徴とする窒素酸化物の測定 装置。

【請求項7】請求項1~6のいずれか1項に記載の窒素酸化物の測定装置において、

前記主ポンプ手段における前記一対のポンプ電極のうち、前記被測定ガスの導入側に配設された一方のポンプ電極が、窒素酸化物に対する触媒活性の低い不活性材料からなることを特徴とする窒素酸化物の測定装置。

【請求項8】請求項1~7のいずれか1項に記載の窒素 酸化物の測定装置において、

前記一方の検出電極の近傍に形成された補助ポンプ電極を有し、かつ、前記主ポンプ手段にてポンピング処理された後の被測定ガスに含まれる酸素を、前記補助ポンプ電極と前記他方の検出電極間に印加される電圧に基づいて前記ポンピング処理する補助ポンプ手段が設けられていることを特徴とする窒素酸化物の測定装置。

【請求項9】請求項1~8のいずれか1項に記載の窒素 酸化物の測定装置において、

前記他方の測定電極は、基準ガスが導入される空間に露 呈する位置に配設されていることを特徴とする窒素酸化物の測定装置。

【請求項10】請求項1~9のいずれか1項に記載の窒素酸化物の測定装置において、

前記他方の測定電極は、前記他方の検出電極と共通に構成されていることを特徴とする窒素酸化物の測定装置。

【請求項11】請求項1~10のいずれか1項に記載の 窒素酸化物の測定装置において、

前記主ポンプ手段は、固体電解質からなる基体にて囲まれ、かつ前記被測定ガスが導入される第1室の内外に形成された内側ポンプ電極及び外側ポンプ電極と、

これら両電極にて挟まれた前記基体を有することを特徴 とする容素酸化物の測定装置

2

10

20

3

【請求項12】請求項1、2、5~11のいずれか1項 に記載の窒素酸化物の測定装置において、

前記測定用ポンプ手段は、固体電解質からなる基体にて 囲まれ、かつ前記主ポンプ手段にてポンピング処理され た後の被測定ガスが導入される第2室内に形成された検 出電極と

固体電解質からなる基体にて囲まれ、かつ基準ガスが導入される基準ガス導入室に形成された基準電極と、

前記検出電極と前記基準電極にて挟まれた前記基体を有することを特徴とする窒素酸化物の測定装置。

【請求項13】請求項3~11のいずれか1項に記載の 窒素酸化物の測定装置において、

前記濃度検出手段は、固体電解質からなる基体にて囲まれ、かつ前記主ボンブ手段にてボンビング処理された後の被測定ガスが導入される第2室内に形成された検出電極と、

固体電解質からなる基体にて囲まれ、かつ基準ガスが導入される基準ガス導入室に形成された前記基準電極と、 前記検出電極と前記基準電極にて挟まれた前記基体を有することを特徴とする窒素酸化物の測定装置。

【請求項14】請求項6~13のいずれか1項に記載の 窒素酸化物の測定装置において、

前記濃度測定手段は、固体電解質からなる基体にて囲まれ、かつ前記外部空間からの被測定ガスが導入される前記第1室内に形成された測定電極と、

固体電解質からなる基体にて囲まれ、かつ基準ガスが導入される基準ガス導入室に形成された前記基準電極と、前記測定電極と前記基準電極にて挟まれた前記基体を有することを特徴とする窒素酸化物の測定装置。

【請求項15】請求項11~14のいずれか1項に記載 30の窒素酸化物の測定装置において、

前記外部空間における前記被測定ガスの前記第1室への 導入経路に、前記被測定ガスに対して所定の拡散抵抗を 付与する第1の拡散律速部が設けられ、

前記主ポンプ手段にてポンピング処理された後の前記被 測定ガスの前記第2室への導入経路に、前記被測定ガス に対して所定の拡散抵抗を付与する第2の拡散律速部が 設けられていることを特徴とする窒素酸化物の測定装 置。

【請求項16】請求項11~15のいずれか1項に記載 40 の窒素酸化物の測定装置において、

前記第2室における前記被測定ガスの前記検出電極への 進入経路に、前記被測定ガスに対して所定の拡散抵抗を 付与する第3の拡散律速部が設けられているととを特徴 とする窒素酸化物の測定装置。

【請求項17】請求項11~16のいずれか1項に記載の窒素酸化物の測定装置において、

前記第1室及び前記第2室を構成する前記各基体を所定 温度に加熱する加熱手段を有することを特徴とする窒素 酸化物の測定装置。 【請求項18】請求項2、4~17のいずれか1項に記載の窒素酸化物の測定装置において

前記窒素酸化物分解触媒はRhサーメットであることを 特徴とする窒素酸化物の測定装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、例えば、車両の排出ガスや大気中に含まれる窒素酸化物を測定する窒素酸化物の測定装置に関する。なお、金属組成の記述において、単に%というときは、特にことわりがなければ重量%を示すものとする。

[0002]

【従来の技術】例えば、ガソリン車やディーゼルエンジン車等の車両から排出される排出ガス中には、一酸化窒素(NO)、二酸化窒素(NO)等の窒素酸化物(NOx)や、一酸化炭素(CO)、二酸化炭素(CO)、水(H,O)、炭化水素(HC)、水素(H,O)、酸素(O,)等が含まれている。この場合、NOはNOx全体の約80%を占め、また、NOとNO、とでNOx全体の約95%を占めている。

【0003】このような排出ガス中に含まれるHC、CO、NOxを浄化する三元触媒は、理論空燃比(A/F=14.6)近傍で最大の浄化効率を示し、A/Fを16以上に制御した場合には、NOxの発生量は減るが、触媒の浄化効率が低下し、結果的に、NOxの排出量が増える傾向がある。

【0004】ところで、昨今学化石燃料の有効利用、地球温暖化防止のためのCO、の排出量の抑制等の市場要求が増大しており、これに対応するために燃費を向上させる必要性が高まりつつある。このような要求に対して、例えば、リーン・バーン・エンジンの研究や、NO x争化触媒の研究等が行われつつあり、その中でもNO xセンサのニーズが高まっている。

【0005】従来、このようなNOxを検出するものとして、NOx分析計がある。このNOx分析計は、化学発光分析法を用いてNOx固有の特性を測定するものであるが、装置自体がきわめて大がかりであり、高価となる不都合がある。また、NOxを検出するための光学系部品を用いているため、頻繁なメンテナンスが必要である。更に、このNOx分析計は、NOxをサンプリングして測定するものであり、検出素子自体を流体内に直接挿入することができず、従って、自動車の排出ガス等のように、状況が頻繁に変動する過渡現象の解析には不向きなものである。

【0006】そこで、これらの不具合を解消するものとして、酸素イオン伝導性固体電解質からなる基体を用いて排出ガス中の所望のガス成分を測定するようにしたセンサが提案されている。

【0007】図11は、国際公開W095/30146 50 号に開示されたガス分析装置の構成を示す。この装置 は、細孔2を介してNOを含む被測定ガスが導入される 第1室4と、細孔6を介して前記第1室4から被測定ガ スが導入される第2室8とを備えている。前記第1室4 および前記第2室8を構成する壁面は、酸素イオンを透 過させることのできるジルコニア(ZrO、)隔壁10 a、10bによって構成されている。第1室4および第 2室8の一方のZrO、隔壁10aには、それぞれの室 内の酸素分圧を検出するための一対の測定電極12a、 12b、14a、14bが配設されている。また、他方 のZrO,隔壁10bには、各室内のO,を室外に汲み 出すためのポンプ電極16a、16bおよび18a、1 8 bが配設されている。

【0008】このように構成されたガス分析装置では、 細孔2を介して第1室4に導入された被測定ガスに含ま れる酸素分圧が測定電極12a、12b間に生じる電位 差として電圧計20により検出され、前記電位差を所定 の値とすべく、ポンプ電極16a、16b間に電源22 により100~200mVの電圧が印加され、これによ って、第1室4内の〇、が当該装置外に汲み出される。 なお、この汲み出された酸素量は、電流計24によって 20 測定することができる。

【0009】一方、O, の殆どが除去された被測定ガス は、細孔6を介して第2室8に導入される。第2室8で は、測定電極14a、14b間に生じる電位差を電圧計 26で検出することにより、当該室内の酸素分圧が測定 される。また、第2室8に導入された被測定ガス中に含 まれるNOは、ポンプ電極18a、18b間に電源28 によって印加された電圧により、

 $NO \rightarrow (1/2) N_1 + (1/2) O_1$

として分解され、そのとき発生するO、が前記ポンプ電 極18a、18bによって室外に汲み出される。そのと き発生する電流値を電流計30によって検出することに より、被測定ガス中に含まれるNOの濃度が測定され

[00101

【発明が解決しようとする課題】ところで、少なくとも 第1室4に設けられる電気化学的セルを用いた酸素ポン プにおける内側のポンプ電極16bには、NOxを分解 する能力の低いAu、又はAuの含有率が1%と残部P tからなる合金を使うことが望ましいとされている。

【0011】しかしながら、かかるAuのみ、あるいは 'Auを含む合金電極は、耐熱性に劣り、長時間使用する と、焼結により電極機能が低下し、酸素ポンプとして十 分に機能させることができなくなるおそれがある。

【0012】本発明は、かかる従来の窒素酸化物の測定 装置における欠点を解消すべくなされたものであって、 その解決すべき課題とするところは、被測定ガス中の例 えばNOx濃度を、酸素あるいはCO、、H、O等の影 響を受けることなく、かつ、広い温度範囲において、長 時間安定に測定可能とした窒素酸化物の測定装置を提供 50 め、窒素酸化物の測定に際して妨害成分となる酸素を実

することを目的とする。 [0013]

【課題を解決するための手段】請求項1記載の本発明に 係る窒素酸化物の測定装置は、外部空間に接する固体電 解質と該固体電解質に接して設けられた一対のポンプ電 極を有し、かつ、前記外部空間から導入された被測定ガ スに含まれる酸素を、前記一対のポンプ電極間に印加さ れる制御電圧に基づいてポンピング処理して、処理雰囲 気中の酸素分圧をNOが分解され得ない所定の値に制御 する主ポンプ手段と、一方が、前記主ポンプ手段にてポ ンピング処理された後の被測定ガスの導入側に設けられ た一対の検出電極を有し、かつ、前記主ポンプ手段にて ポンピング処理された後の被測定ガスに含まれる酸素 を、前記一対の検出電極間に印加される測定用電圧に基 づいてポンピング処理する測定用ポンプ手段と、前記測 定用ポンプ手段によりポンピング処理される前記酸素の 量に応じて生じるポンプ電流を検出する電流検出手段と を具備し、前記外部空間から導入された被測定ガスの処 理空間に露呈する少なくとも一つの電極に、0.01% 以上、1%未満のAuと、残部が主として白金族元素か らなる合金を含んで構成する。

【0014】 これにより、まず、外部空間から導入され た被測定ガスのうち、酸素が主ポンプ手段によってポン ピング処理され、該酸素は所定濃度に調整される。前記 主ポンプ手段にて酸素の濃度が調整された被測定ガス。 は、次の測定用ポンプ手段に導かれる。測定用ポンプ手 段は、内側検出電極と外側検出電極間に印加される測定 用電圧に基づいて、前記被測定ガスのうち、酸素をポン ピング処理する。前記測定用ポンプ手段によりポンピン グ処理される酸素の量に応じて該測定用ポンプ手段に生 じるポンプ電流が電流検出手段により検出されることに で、酸素量に応じた酸化物が測定される。バストープライン

【0015】つまり、前記測定用ポンプ手段において、 前記一対の検出電極間に前記室素酸化物を分解するのに 十分な電圧を印加するか、あるいは該測定用ポンプ手段 に前記室素酸化物を分解する窒素酸化物分解触媒を配設 するようにすれば(請求項2記載の発明)。前記電圧及 び/又は前記窒素酸化物分解触媒の作用により分解され た窒素酸化物から生成された酸素がポンピング処理さ 40 れ、それによって生じるポンプ電流が電流検出手段によ り検出されることで、酸素量に応じた酸化物が測定され

【0016】特に、本発明に係る窒素酸化物の測定装置 においては、前記外部空間から導入された被測定ガスの 処理空間に露呈する少なくとも一つの電極に、0.01 %以上、1%未満のAuと、残部が主として白金族元素 からなる合金を含むようにしている。該合金を含む電極 は、窒素酸化物の分解触媒としての活性が極めて低く、 低酸素分圧下でも窒素酸化物を分解することがないた

質的にゼロとなるまで、かつ、窒素酸化物の測定に影響を及ぼすことなく排除することができ、測定用ポンプ手段及び電流検出手段を通じて被測定ガスに含まれる窒素酸化物を高精度に、かつ、安定に測定することができる。

【0017】次に、請求項3記載の本発明に係る窒素酸 化物の測定装置は、外部空間に接する固体電解質と該固 体電解質に接して設けられた一対のポンプ電極を有し、 かつ、前記外部空間から導入された被測定ガスに含まれ る酸素を、前記一対のポンプ電極間に印加される制御電 10 圧に基づいてポンピング処理して、処理雰囲気中の酸素 分圧をNOが分解され得ない所定の値に制御する主ポン プ手段と、一方が、前記主ポンプ手段にてポンピング処 理された後の被測定ガスの導入側に設けられた一対の検 出電極を有し、かつ、前記主ポンプ手段にてポンピング 処理された後の被測定ガスに含まれる酸素の量と他方の 検出電極側のガスに含まれる酸素の量との差に応じた起 電力を発生する濃度検出手段と、前記濃度検出手段によ り発生する前記起電力を検出する電圧検出手段とを具備 し、前記外部空間から導入された被測定ガスの処理空間 20 1%未満のAuと、残部が主として白金族元素からなる 合金を含めて構成する。

(0018] これにより、まず、外部空間から導入された被測定ガスのうち、酸素が主ポンプ手段によってポンピング処理され、該酸素は所定濃度に調整される。前記主ポンプ手段にて酸素の濃度が調整された被測定ガスは、次の濃度検出手段に導かれ、該濃度検出手段において、前記主ポンプ手段にてポンピング処理された後の被測定ガスに含まれる酸素の量と他方の検出電極側のガス 30に含まれる酸素の量との差に応じた酸素濃淡電池起電力が発生し、該起電力が電圧検出手段により検出されることで、酸素量に応じた窒素酸化物が測定される。

【0019】との場合、前記濃度検出手段において、該 濃度検出手段に前記窒素酸化物を分解する窒素酸化物分 解触媒を配設するようにすれば(請求項4記載の発 明)、該窒素酸化物分解触媒の作用によって分解された 窒素酸化物から生成された酸素の量と他方の検出電極側 のガスに含まれる酸素の量との差に応じた酸素濃淡電池 起電力が一対の検出電極間に発生し、該起電力が電圧検 40 出手段により検出されることで、酸素量に応じた窒素酸 化物が測定される。

【0020】特に、本発明に係る窒素酸化物の測定装置においては、前記外部空間から導入された被測定ガスの処理空間に露呈する少なくとも一つの電極に、0.01%以上、1%未満のAuと、残部が主として白金族元素からなる合金を含むようにしている。該合金を含む電極は、窒素酸化物の分解触媒としての活性が極めて低く、低酸素分圧下でも窒素酸化物を分解することがないため、窒素酸化物の測定に際して妨害成分となる酸素を実 50

質的にゼロとなるまで、かつ、窒素酸化物の測定に影響を及ぼすことなく排除することができ、測定用ポンプ手段及び電流検出手段を通じて被測定ガスに含まれる窒素酸化物を高精度に、かつ、安定に測定することができる。

【0021】また、前記構成において、前記合金を含む電極のAu含有率は0.03%以上、0.8%未満であることが好ましい(請求項5記載の発明)。

【0022】即ち、前記合金を含む電極をサーメットにて構成した場合は、Au量が0.8%以上では、電極の焼き付け工程で焼結による目詰まりが起こり易く、酸素ポンプとしての機能が低下するため、Au量は0.8%未満とするのが好ましい。

【0023】また、窒素酸化物の測定精度を高めるには、測定ポンプ手段あるいは濃度検出手段の検出値(電流値あるいは電圧値)に現れるオフセット成分をなるべく小さくする必要があるが、Au添加量が0.01%以下では、触媒活性が十分低下しないため、被測定ガス中に共存する酸素を窒素酸化物の分解を伴わずに汲み出すのに必要な酸素濃淡電池起電力の範囲において、NOの分解が起こってしまい、正確な窒素酸化物の量を測定することが困難となる。

【0024】従って、前記合金を含む電極のAu含有率は0.03%以上、0.8%未満であることが好ましな。

【0025】また、合金の主要成分である白金族元素としては、PtiRh等を用いることができ、特にPtとAuとの合金が低触媒活性の点で望ましい。

【0026】そして、前記構成において、一方が、前記主ポンプ手段における前記一方のポンプ電極と対向するように配設された一対の測定電極を有し、かつ、前記主ポンプ手段でのポンピング処理時における被測定ガスに含まれる酸素の量との差に応じて生じる酸素濃淡電池起電力を創定する濃度測定手段と、前記濃度測定手段にて検出された起電力に基づいて前記主ポンプ手段の前記制御電圧を調整する前記主ポンプ制御手段を設けるようにしてもよい(請求項6記載の発明)。

【0027】これにより、前記譲度測定手段において、前記主ポンプ手段でのポンピング処理時における前記被測定ガスに含まれる酸素の量と前記他方の測定電極側のガスに含まれる酸素の量との差に応じた起電力が発生する。そして、主ポンプ制御手段を通じ、前記起電力に基づいて、前記主ポンプ手段における一対のポンプ電極間に印加される制御電圧のレベルが調整される。

【0028】主ポンプ手段は、外部空間から導入された 被測定ガスのうち、酸素を制御電圧のレベルに応じた量 ほどポンピング処理する。前記レベル調整された制御電 圧の主ポンプ手段への供給によって、前記被測定ガスに おける酸素の濃度は、所定レベルにフィードバック制御

8

されることとなる。

【0029】また、前記構成において、前記主ポンプ手段における前記一対のポンプ電極のうち、前記被測定ガスの導入側に配設された一方のポンプ電極を、窒素酸化物に対する触媒活性の低い不活性材料にて構成することが好ましい(請求項7記載の発明)。この場合、前記一方のポンプ電極上での窒素酸化物の分解作用が一層好適に抑制される。

【0030】また、前記構成において、前記一方の検出電極の近傍に形成された補助ポンプ電極を有し、かつ、前記主ボンブ手段にてボンビング処理された後の被測定ガスに含まれる酸素を、前記補助ポンプ電極と前記他方の検出電極間に印加される電圧に基づいて前記ポンピング処理する補助ポンプ手段を設けるようにしてもよい(請求項8記載の発明)。

【0031】 これにより、まず、主ポンプ手段にて所定のガス成分が所定濃度に粗調整された被測定ガスは、更に補助ポンプ手段によって所定のガス成分の濃度が微調整される。

【0032】一般に、外部空間における被測定ガス中の 20 所定ガス成分の濃度が大きく(例えば0から20%)変 化すると、主ボンブ手段に導かれる被測定ガスの所定ガ ス成分の濃度分布が大きく変化し、測定用ボンブ手段あ るいは濃度検出手段に導かれる所定ガス成分量も変化す る。

【0033】 このとき、主ボンブ手段にてボンビング処理された後の被測定ガスにおける酸素濃度は、補助ボンブ手段でのボンビング処理にて微調整されることになるが、主ボンブ手段でのボンビング処理によって、前記補助ボンブ手段に導かれる被測定ガス中の酸素の濃度変化 30は、外部空間からの被測定ガス(主ボンブ手段に導かれる被測定ガス)における酸素の濃度変化よりも大幅に縮小されるため、測定用ボンブ手段における一方の検出電極近傍あるいは濃度検出手段における一方の検出電極近傍での所定ガス成分の濃度を精度よく一定に制御することができる。

【0034】従って、測定用ポンプ手段あるいは濃度検出手段に導かれる所定ガス成分の濃度は、前記被測定ガス(主ポンプ手段に導かれる被測定ガス)における酸素の濃度変化の影響を受け難くなり、その結果、電流検出 40 手段にて検出されるポンプ電流値あるいは電圧検出手段にて検出される起電力は、前記被測定ガスにおける所定ガス成分の濃度変化に影響されず、被測定ガス中に存在する目的成分量に正確に対応した値となる。

【0035】そして、請求項1~8のいずれか1項に記載の発明において、他方の測定電極を基準ガスが導入される空間に露呈する位置に配設することで(請求項9記載の発明)、被測定ガスに含まれる酸素と基準ガスに含まれる酸素との比較を行うことができ、より正確な酸化物の検出を行うことができる。

【0036】特に、前記他方の測定電極を、前記他方の 検出電極と共通に構成することが好ましい(請求項10 記載の発明)。この場合、濃度測定手段における他方の 測定電極と測定用ポンプ手段あるいは濃度検出手段にお ける他方の検出電極との共通電極が基準ガスの導入空間 に露呈することになり、濃度測定手段、測定用ポンプ手 段、濃度検出手段の各検出処理における基準電極として 定義することができ、これに準じて、濃度測定手段にお ける一方の測定電極並びに測定用ポンプ手段及び濃度検 出手段における一方の検出電極をそれぞれ測定電極並び に検出電極と定義することができる。

【0037】なお、前記主ポンプ手段は、固体電解質からなる基体にて囲まれ、かつ、前記被測定ガスが導入される第1室の内外に形成された内側ポンプ電極及び外側ポンプ電極と、これら両電極にて挟まれた前記基体にて構成することができる(請求項11記載の発明)。

【0038】また、前記測定用ポンプ手段は、固体電解質からなる基体にて囲まれ、かつ、前記主ポンプ手段にてポンピング処理された後の被測定ガスが導入される第2室内に形成された検出電極と、固体電解質からなる基体にて囲まれ、かつ、基準ガスが導入される基準ガス導入室に形成された基準電極と、前記検出電極と前記基準電極にて挟まれた前記基体にて構成することができる(請求項12記載の発明)。

【0039】また、前記線度検出手段は、固体電解質からなる基体にて囲まれ、かつ、前記主ポンプ手段にてポンピング処理された後の被測定ガスが導入される第2室内に形成された検出電極と、固体電解質からなる基体にて囲まれ、かつ、基準ガスが導入される基準ガス導入室に形成された基準電極と、前記検出電極と前記基準電極にて挟まれた前記基体にて構成することができる(請求項13記載の発明)。

【0040】また、前記譲度測定手段は、固体電解質からなる基体にて囲まれ、かつ、前記外部空間からの被測定ガスが導入される前記第1室内に形成された測定電極と、固体電解質からなる基体にて囲まれ、かつ、基準ガスが導入される基準ガス導入室に形成された前記基準電極と、前記測定電極と前記基準電極にて挟まれた前記基体にて構成することができる(請求項14記載の発

【0041】更に、前記構成において、前記外部空間における前記被測定ガスの前記第1室への導入経路に、前記被測定ガスに対して所定の拡散抵抗を付与する第1の拡散律速部を設け、前記主ポンプ手段にてポンピング処理された後の前記被測定ガスの前記第2室への導入経路に、前記被測定ガスに対して所定の拡散抵抗を付与する第2の拡散律速部を設けるようにしてもよい(請求項15記載の発明)。

【0042】また、前記第2室における前記被測定ガス 50 の前記検出電極への進入経路に、前記被測定ガスに対し 20

て所定の拡散抵抗を付与する第3の拡散律速部を設ける ようにしてもよい(請求項16記載の発明)。

【0043】更に、前記構成において、前記第1室及び前記第2室を構成する前記各基体を所定温度に加熱する加熱手段を設けるようにしてもよい(請求項17記載の発明)。これにより、前記窒素酸化物の検出動作は、加熱手段によって第1室及び第2室が所定の温度に加熱されて行われることから、測定用ポンプ手段あるいは濃度検出手段による酸素の検出が高精度に行われる。

【0044】なお、前記固体電解質としては、ZrO,等のセラミックスを用いた酸素イオン伝導性固体電解質が好適であり、また、第1拡散律速部又は第2拡散律速部は、第1室及び第2室内の被測定ガスの状態を設定された所望の状態とすべく、前記被測定ガスに対して所定の拡散抵抗を付与する多孔質材料を用いると好適である。

【0045】第1室、第2室内に配設される電極あるいは触媒を構成する窒素酸化物分解触媒は、Rhサーメットを用いると好適である(請求項18記載の発明)。 【0046】

【発明の実施の形態】以下、本発明に係る窒素酸化物の測定装置を例えば車両の排気ガスや大気中に含まれるNO、NO、等の窒素酸化物を測定する窒素酸化物の測定装置に適用したいくつかの実施の形態例を図1~図10を参照しながら説明する。

【0047】まず、第1の実施の形態に係る測定装置50Aは、図1及び図2に示すように、全体として、長尺な板状体形状に構成されており、ZrO、等の酸素イオン伝導性固体電解質を用いたセラミックスよりなる例えば5枚の固体電解質層52a~52eが積層されて構成30され、下から1層目が基板層52eとされ、下から2層目及び4層目が第1及び第2のスペーサ層52d及び52bとされ、下から3層目及び5層目が第1及び第2の固体電解質層52c及び52aとされている。

【0048】具体的には、基板層52e上に第1のスペーサ層52dが積層され、更に、この第1のスペーサ層52d上に第1の固体電解質層52c、第2のスペーサ層52b及び第2の固体電解質層52aが順次積層されている。

【0049】第2の固体電解質層52aの下面、第2の40スペーサ層52bの側面並びに第1の固体電解質層52cの上面によって、被測定ガス中の酸素分圧を調整するための第1室54と、被測定ガス中の酸素分圧を微調整し、更に被測定ガス中の酸化物、例えば窒素酸化物(NOx)を測定するための第2室56が区画、形成されている。

【0050】また、第2の固体電解質層52aのうち、第1室54に対応する箇所に、外部の被測定ガス存在空間と第1室54とを連通させるための貫通孔(第1の拡散律速部)58が設けられている。

12

【0051】第1及び第2の固体電解質層52c及び52a間には、測定装置50Aの先端部分において第2のスペーサ層52bが挟設され、第1室54と第2室56間において第2の拡散律速部60が挟設されている。【0052】そして、第2の固体電解質層52aの下面、第2のスペーサ層52bの側面並びに第1の固体電解質層52cの上面によって、酸化物測定の基準となる基準ガス、例えば大気が導入される空間(基準ガス導入空間62)が区画、形成されている。

【0053】即ち、この第1の実施の形態に係る測定装置50Aにおいては、第1室54、第2室56及び基準ガス導入空間62は、共に第2のスペーサ層52hの積層位置に形成され、ほぼ同一面上に配置された形となっている。

【0054】 ここで、前記第1及び第2の拡散律速部58及び60は、第1室54及び第2室56にそれぞれ導入される被測定ガスに対して所定の拡散抵抗を付与するものであり、例えば、被測定ガスを導入することができる多孔質材料又は所定の断面積を有した小孔からなる通路として形成することができる。

【0055】特に、第2の拡散律速部60内には、ZrO、等からなる多孔質体が充填、配置されて、前記第2の拡散律速部60の拡散抵抗が前記第1の拡散律速部58における拡散抵抗よりも大きくされている。3000

【0056】また、前記第2の固体電解質層52aの下

面のうち、前記第1室54を形づくる下面全面に、平面はぼ矩形状の多孔質サーメット電極からなる内側ポンプ電極64が形成され、前記第2の固体電解質層52aの上面のうち、前記内側ポンプ電極64に対応する部分に、外側ポンプ電極66が形成されており、これら内側ポンプ電極64、外側ポンプ電極66並びにこれら両電極64及び66間に挟まれた第2の固体電解質層52a、にて電気化学的なポンプセル、即ち、主ポンプセル68

が構成されている。日本学の「日本のには、「日本には」 【0057】そして、前記主ポンプセル68における内 側ポンプ電極64と外側ポンプ電極66間に、外部の可 変電源70を通じて所望の制御電圧(ポンプ電圧) Vp 1を印加して、外側ポンプ電極66と内側ポンプ電極6 4間に正方向あるいは負方向にポンプ電流 Ip 1を流す ことにより、前記第1室54内における雰囲気中の酸素 を外部空間に汲み出し、あるいは外部空間の酸素を第1 室54内に汲み入れることができるようになっている。 【0058】また、前記第1の固体電解質層52cの上 面のうち、前記第1室54を形づくる上面であって、か つ第2の拡散律速部60に近接する部分に、平面ほぼ矩 形状の多孔質サーメット電極からなる測定電極72が形 成され、前記第1の固体電解質層52cの下面のうち、 基準ガス導入空間62に露呈する部分に基準電極74が 形成されており、これら測定電極72、基準電極74及 50 び第1の固体電解質層52cによって、電気化学的なセ

ンサセル、即ち、制御用酸素分圧検出セル76が構成さ れている。

【0059】この制御用酸素分圧検出セル76は、第1 室54内の雰囲気と基準ガス導入空間62内の基準ガス (大気) との間の酸素濃度差に基づいて、測定電極72 と基準電極74との間に発生する起電力を電圧計78に て測定することにより、前記第1室54内の雰囲気の酸 累分圧が検出できるようになっている。

【0060】即ち、基準電極74及び測定電極72間に 生じる電圧Vlは、基準ガス導入空間62に導入される 10 0は、酸素イオンの伝導性を高めるために設けられるも 基準ガスの酸素分圧と、第1室54内の被測定ガスの酸 累分圧との差に基づいて生じる酸素濃淡電池起電力であ り、ネルンストの式として知られる

 $V1 = RT/4F \cdot ln (P1 (O_i)/P0$ (0,)

R: 気体定数

T:絶対温度

F:ファラデー数 、

P1(O,):第1室54内の酸素分圧

PO(O,):基準ガスの酸素分圧

の関係を有している。そこで、前記ネルンストの式に基 づく電圧V1を電圧計78によって測定することで、第 1室54内の酸素分圧を検出することができる。

【0061】前記検出された酸素分圧値は可変電源70 のポンプ電圧をフィードバック制御系80を通じて制御 するために使用され、具体的には、第1室54内の雰囲 気の酸素分圧が、次の第2室56において酸素分圧の制 御を行い得るのに十分な低い所定の値となるように、主 ポンプセル68のポンプ動作が制御される。

置50Aにおいては、図2に示すように、前記第1の固 体電解質層52cの上面のうち、前記第2室56を形づ くる上面であって、かつ第2の拡散律速部60から離間 した部分に、平面ほぼ矩形状の多孔質サーメット電極か らなる検出電極82が形成され、該検出電極82、前記 基準電極74及び第1の固体電解質層52cによって、 電気化学的なポンプセル、即ち、測定用ポンプセル84 が構成される。

【0063】前記検出電極82は、酸化物分解触媒、例 えばRhサーメット、あるいは触媒活性の低い材料、あ 40 るいは触媒活性の低い材料の近傍に酸化物分解触媒を配 置する等の構成を適宜選択できる。

【0064】この第1の実施の形態に係る測定装置50 Aにおいては、検出電極82は、被測定ガス成分たるN Oxを還元し得る金属であるRhとセラミックスとして のジルコニアからなる多孔質サーメットにて構成され、 これによって、第2室56内の雰囲気中に存在するNO xを還元するNOx還元触媒として機能するほか、前記 基準電極74との間に、直流電源86を通じて一定電圧 気中の酸素を基準ガス導入空間62に汲み出せるように なっている。この測定用ポンプセル84のポンプ動作に よって流れるポンプ電流 [p2は、電流計88によって 検出されるようになっている。

【0065】また、この第1の実施の形態に係る測定装 置50Aにおいては、第1の固体電解質層52c及び基 板層52eに挟まれ、かつ、第1のスペーサ層52dに て三方が囲まれた形態において、外部からの給電によっ て発熱するヒータ90が埋設されている。このヒータ9 ので、該ヒータ90の上下面には、基板層52e及び第 1の固体電解質層52cとの電気的絶縁を得るために、 アルミナ等のセラミック層92が形成されている。

【0066】前記ヒータ90は、図2に示すように、測 定装置50Aの先端側に位置する第2室56側に偏倚し て配設されており、第1室54よりも第2室56がより 髙温に、換言すれば内側ポンプ電極64や測定電極72 よりも、検出電極82の方がより高温に加熱されるよう になっている。 きょう・く すっさびじゃ ラー・ボット

【0067】例えば、被測定ガスのガス温度が300℃ ~850°Cの間で変化するとき、第1室54内の内側ボ ンプ電極64や測定電極72が400°C~900°Cに、 第2室56内の検出電極82が700℃~900℃に加 熱されるように、前記ヒータ90が配置される。これ は、固体電解質層の酸素イオン伝導性を所定の値に維持 するためと、電極の分極を小さくし、触媒の活性を維持 することを目的としている。 手によう まごしょ こっと

【0068】特に、との第1の実施の形態に係る測定装 置50Aにおいては、第1室54内又は第2室56内に 【0062】また、この第1の実施の形態に係る測定装 30 露呈される前記複数の電極(内側ポンプ電極64、測定 電極72及び検出電極82)のうち、少なくとも一つの 電極、例えば内側ポンプ電極64及び測定電極72を、 被測定ガス中のNOx成分に対する還元能力を弱めた。 あるいは還元能力のない材料を用いて構成するようにし ている。この場合、例えばLaiCuO、等のペロブス カイト構造を有する化合物、あるいはAu等の触媒活性 の低い金属とセラミックスのサーメット、あるいはAu 等の触媒活性の低い金属とPt族金属とセラミックスの ・サーメットで構成することが好ましい。

> 【0069】更に、電極材料にAuと白金族元素の合金 を含める場合は、0.01%以上、1%未満のAuと、 残部が主として白金族元素からなる合金を含めることが 望ましく、より好ましくは、前記合金のAuの含有率を 0.03%以上、0.8%未満とする。

【0070】Auと白金族元素とは、予め合金粉末とし たものをペースト状でサーメットとして焼き付けてもよ く、また、Ptのみからなる電極に少量のAuを無電解 めっき等の方法で付着させ、高温でのエージング、ある いは使用中に熱拡散によって合金化してもよい。第1の Vp2が印加されるととによって、第2室56内の雰囲 50 実施の形態に係る測定装置50Aは、基本的には以上の

ように構成されるものであり、次にその作用効果について説明する。

【0071】酸化物の測定に先立ち、当該第1の実施の 形態に係る測定装置50Aを第1室54内に被測定ガス が導入できる状態に設定する。次いで、ヒータ90に通 電し、例えば測定装置50Aにおける第1室54の第1 及び第2の固体電解質層52c及び52aを400℃~ 900℃に加熱すると共に、第2室56の第1及び第2 の固体電解質層52c及び52aを700℃~900℃ に加熱する。測定装置50Aをこのような温度状態に加 熱することにより、第1及び第2の固体電解質層52c 及び52aが所望の状態に活性化されることになる。

【0072】次に、前述のように設定した測定装置50 Aに対して被測定ガスを導入することにより、前記被測 定ガス中に含まれるNOx等の酸化物の測定を開始する。

【0073】第1の拡散律速部58を介して所定の拡散 抵抗のもとに第1室54内に導入された被測定ガスは、 可変電源70によって外側ポンプ電極66及び内側ポン プ電極64間に印加された所定のポンプ電圧Vp1によ 20 って、その中に含まれる酸素分圧が所定値に制御され る。即ち、第1室54内の酸素分圧は、電圧計78によ って検出される基準電極74及び測定電極72間の電圧 Vlに基づいて測定することができる。こうりもうしょ 【0074】との電圧V1は、前述したネルンストの式 で規定される酸素濃淡電池起電力であり、この電圧V1 が例えば203mV(500℃)となるようにフィード バック制御系80を通じて可変電源70のポンプ電圧V p 1 を制御することで、第1室54内の酸素分圧が所定 値、例えば10-0atmに制御される。なお、第1の拡 散律速部58は、主ポンプセル68の内側ポンプ電極6 4及び外側ポンプ電極66間にポンプ電圧Vp1を印加 した際に、被測定ガス中の酸素が測定空間(第1室5 4) に拡散流入する量を絞り込み、前記主ポンプセル6 8に流れるポンプ電流 [p]を抑制する働きをしてい

【0075】また、第1室54内においては、外部の被測定ガスによる加熱、更にはヒータ90による加熱環境下においても、内側ポンプ電極64や測定電極72にて雰囲気中のNOが分解されない酸素分圧下の状態、例えばNO-1/2N、+1/2O、の反応が起こらない酸素分圧下の状況が形成される。

【0076】 これは、第1室54内において被測定ガス(雰囲気)中のNOxがN、とOxにまで分解されると、第2室56内でのNOxの正確な測定ができなくなるからであり、この意味において、第1室54内においてNOの分解に関与する成分(少なくとも主ポンプセル68における内側ボンプ電極64の成分)にてNOが分解され得ない状況を形成する必要がある。

【0077】第1室54において所定の酸素分圧に制御 50

された被測定ガスは、第1の拡散律速部58よりも拡散 抵抗が大きく設定された第2の拡散律速部60を介して 第2室56に導入される。

【0078】第2室56では、基準電極74と検出電極 82との間に当該第2室56内の酸素を充分に汲み出す ことのできる所定のポンプ電圧Vp2、例えば449m V (700℃) が電源86によって印加されており、こ のポンプ電圧Vp2によって、被測定ガスに含まれるN O、NO、等のNOxがRhサーメットからなる酸化物 分解触媒としての検出電極82によって分解されるか、 あるいは、検出電極82とは別に存在する触媒で分解さ れ、それによって発生した酸素が第1の固体電解質層5 2 cを介して基準ガス導入空間62側に汲み出される。 このとき、酸素イオンの移動によって生じた電流値Ip 2は、電流計88によって測定され、この電流値 Ip2 から被測定ガス中に含まれる所定の酸化物、例えば、N O、NO、等のNOxの濃度が測定されることになる。 【0079】 ことで、前記第1の実施の形態に係る測定 装置50Aの側定原理を、図3を参照しながら更に詳し く説明する。

【0080】との図3において、被測定ガスは、第1の拡散律速部58を通じて第1室54に導入され、該第1室54内の酸素分圧は、主ボンブセル68によってNOが分解されない所定の、望ましくは低い値に制御される。この下されている。

【0081】そして、前記酸素分圧が制御された第1室 54内の雰囲気は、該第1室54と第2の拡散律速部6 0を介して連通する第2室56に導かれ、該第2室56 においてNOxが分解され、その際に生成される酸素を 30 測定用ポンプセル84を用いてガス拡散律速条件下で該 第2室56中より汲み出し、該測定用ポンプセル84に 流れる電流値「p2により、被測定ガス中のNOx量が 測定される。本語学院、など、表記を表記を表記を

【0082】この方法では、NOx歳度:Cnは、Cn = k・Ip2ーAで求められる。但し、kは感度係数、Ip2は測定用ポンプセル84に流れる電流値、Aは第1室54に残留する少量の酸素に起因する定数である。【0083】前記Ip2は、その大部分は被測定ガス中のNOx成分が分解されて生成された酸素によるものであり、従来の方法に比べ、被測定ガス中の酸素による影響を排除した状態で、微量のNOxまで精度よく測定することができる。なお、外側ポンプ電極66及び基準電極74は、第1室54内及び第2室56内の酸素を放出できる雰囲気中に形成されていればよく、例えば空気中であってもよい。

【0084】このように、前記第1の実施の形態に係る 測定装置50Aにおいては、前記第1室54内に露呈す る内側ポンプ電極64及び測定電極72として、Auと 残部が主として白金族元素とからなる合金を含む電極に て構成するようにしている。該合金を含む電極は、窒素

酸化物の分解触媒としての活性が極めて低く、低酸素分 圧下でも窒素酸化物を分解することがないため、窒素酸 化物の測定に際して妨害成分となる酸素を実質的にゼロ となるまで、かつ、窒素酸化物の測定に影響を及ぼすこ となく排除することができる。これは、測定用ポンプセ ル84及び電流計88を通じて被測定ガスに含まれる窒 素酸化物を高精度に、かつ、安定に測定できることにつ ながる。

17

【0085】 CCで、Auの含有率を0.03%以上、 0.8%未満とする根拠について図4及び図5を参照し ながら説明する。 1.0

【0086】まず、図4は、第1の実施の形態に係る測 定装置50Aを、装置温度600°C下であって、かつ、 ディーゼルエンジンの排気ガス中で作動させた際の主ボ ンプセル68のインピーダンスが初期値の5倍になるま での時間と、Au-Pt系合金電極の組成との関係を示 すグラフであり、Au量が1%以上では合金電極が焼結 し易くなり、主ポンプセルのインピーダンスが上昇する ことによって、高温での耐久性に欠けることを示してい

【0087】更に、前記内側ポンプ電極64及び測定電 極72をサーメットにて構成した場合においては、Au 量を0.8%以上とした場合、電極の焼き付け工程で焼 結による目詰まりが起こり易く、酸素ポンプとしての機 能が低下するため、Au量は0.8%未満とすることが 好ましい。

【0088】次に、図5は、第1の実施の形態に係る測 定装置50Aにおいて、第1室54内に設けられた内側 ポンプ電極64及び測定電極72をAu-Pt系合金を 含む電極とした場合に、装置温度680℃、酸素=0. 3%、H, O=3%、NO=5000ppm、残りが窒 素の混合ガスを測定した場合に、制御用酸素分圧検出セ ル76に発生する起電力V1と、測定用ポンプセル84 に流れる電流 Ip2との関係を示す。 これにはいいる

【0089】窒素酸化物の測定精度を高めるには、測定 ポンプセル84のポンプ電流値lp2に現れるオフセッ ト成分(オフセット電流)をなるべく小さくする必要が ある。この例では、オフセット電流をNO換算で1pp m以下にしたいため、制御用酸素分圧検出セル76にお る。しかし、図5に示す関係からわかるように、Au添 加量が0.01%以下では、触媒活性が十分低下しない ため、被測定ガス中に共存する酸素をNOの分解を伴わ ずに汲み出すのに必要な酸素浪淡電池起電力の領域(起 電力V1≥250mVの領域)において、NOの分解が 起こってしまい、正確な窒素酸化物の量を測定すること が困難となる。従って、前記Au-Pt系合金中のAu 量は0.01%以上、望ましくは0.03%以上とする のが好ましい。

・しては、Pt、Rh等を用いることができ、特にPtと Auとの合金が低触媒活性の点で望ましい。

【0091】次に、図6を参照しながら前記第1の実施 の形態に係る測定装置50Aの変形例について説明す る。なお、図2と対応するものについては同符号を付し てその重複説明を省略する。 . . .

【0092】この変形例に係る測定装置50Aaは、図 6に示すように、前記第1の実施の形態に係る測定装置 50A(図2参照)とほぼ同じ構成を有するが、全体と して、Zr〇、等の酸素イオン伝導性固体電解質を用い たセラミックスよりなる6枚の固体電解質層52a~5 2 f が積層されて構成され、下から1層目及び2層目が 第1及び第2の基板層52f及び52eとされ、下から 3層目及び5層目が第1及び第2のスペーサ層52d及 び52bとされ、下から4層目及び6層目が第1及び第 2の固体電解質層52c及び52aとされている点で異 なる。これが、たっちょうだが、これ、これ

【0093】更に、この変形例に係る測定装置50Aa は、第2の基板層52bと第1の固体電解質層52cと の間において、第1の固体電解質層52cの下面、第2 の基板層52bの上面及び第1のスペーサ層52dの側 面によって、基準ガス導入空間62が区画、形成されて いる。これは、これは、これは、これには、これをとは、

【0094】また、第1及び第2の固体電解質層52c 及び52 a間に第2のスペーサ層52 bが挟設されると 共に、第1及び第2の拡散律速部58及び60が挟設さ れている。それらは他によっている。これももと対象的な

【0095】そして、第2の固体電解質層52aの下 面、第1及び第2の拡散律速部58及び60の側面並び 30 に第1の固体電解質層52cの上面によって、被測定ガ ・ス中の酸素分圧を調整するための第1室54が区画、形 成され、第2の固体電解質層52aの下面、第2の拡散 律速部60の側面、第2のスペーサ層52bの側面並び に第1の固体電解質層52cの上面によって、被測定ガ ス中の酸素分圧を微調整し、更に被測定ガス中の酸化 物、例えば窒素酸化物(NOx)を測定するための第2 室56が区画、形成される。

【0096】それ以外の構成並びに窒素酸化物の測定原 理については、前記第1の実施の形態に係る測定装置5 ける起電力V1を約250mV以上に設定する必要があ 40 0Aと同じであるため、ここではその重複説明を省略す 3. -

【0097】この変形例に係る測定装置50Aaは、第 1の実施の形態に係る測定装置50Aと同様に、第1室 54内に設けられた内側ポンプ電極64と測定電極72 が、0.01%以上、1%未満のAuと、残部が主とし て白金族元素からなる合金を含むようにしているため、 窒素酸化物の測定に際して妨害成分となる酸素を実質的 にゼロとなるまで、かつ、窒素酸化物の測定に影響を及 ぼすことなく排除することができ、測定用ポンプセル8 【0090】また、合金の主要成分である白金族元素と 50 4及び電流計88を通じて被測定ガスに含まれる窒素酸

化物を高精度に、かつ、安定に測定することができる。 【0098】次に、図7を参照しながら第2の実施の形態に係る測定装置50Bについて説明する。なお、図6と対応するものについては同符号を付してその重複説明を省略する。

19

【0099】との第2の実施の形態に係る測定装置50 Bは、図7に示すように、前記変形例に係る測定装置50Aa(図6参照)とほぼ同じ構成を有するが、測定用ポンプセル84に代えて、測定用酸素分圧検出セル100が設けられている点で異なる。

【0100】この測定用酸素分圧検出セル100は、第1の固体電解質層52cの上面のうち、前記第2室56を形づくる上面に形成された検出電極102と、前記第1の固体電解質層52cの下面に形成された前記基準電極74と、前記第1の固体電解質層52cによって構成されている。

【0101】この場合、測定用酸素分圧検出セル100 における検出電極102と基準電極74との間に、検出 電極102の周りの雰囲気と基準電極74の周りの雰囲 気との間の酸素濃度差に応じた起電力(酸素濃淡電池起 20 電力)V2が発生するととなる。

【0102】従って、前記検出電極102及び基準電極74間に発生する起電力(電圧)V2を電圧計104にて測定することにより、検出電極102の周りの雰囲気の酸素分圧、換言すれば、被測定ガス成分(NOx)の還元又は分解によって発生する酸素によって規定される酸素分圧が電圧値V2として検出される。

【0103】前記起電力V2の変化の度合いが、NOx 濃度を表すことになる。つまり、前記検出電極102と 基準電極74と第1の固体電解質層52cとから構成さ 30 れる測定用酸素分圧検出セル100から出力される起電 力V2が、被測定ガス中のNOx濃度を表すことになる。

【0104】そして、この第2の実施の形態に係る測定 装置50Bにおいても、第1の実施の形態に係る測定装 置50Aと同様に、第1室54内に設けられた内側ポン フ電極64と測定電極72が、0.01%以上、1%未 満のAuと、残部が主として白金族元素からなる合金を 含むようにしているため、窒素酸化物の測定に際して妨 害成分となる酸素を実質的にゼロとなるまで、かつ、窒 3を製化物の測定に影響を及ぼすことなく排除することが でき、測定用酸素分圧検出セル及び電圧計を通じて被測 定ガスに含まれる窒素酸化物を高精度に、かつ、安定に 測定することができる。

【0105】次に、図8を参照しながら第3の実施の形態に係る測定装置50Cについて説明する。なお、図2と対応するものについては同符号を付してその重複説明を省略する。

【0106】との第3の実施の形態に係る測定装置50 Cは、図8に示すように、前記第1の実施の形態に係る 50

測定装置50Aとほぼ同様の構成を有するが、検出電極82を被覆するように、第3の拡散律速部110を構成する多孔質A1,O,層あるいは多孔質ZrO,層が形成されている点と、補助ポンプセル112が設けられている点で異なる。

【0107】との補助ポンプセル112は、前記第2の 固体電解質層52aの下面のうち、前記第2室56を形 づくる下面全面に形成された平面ほぼ矩形状の多孔質サ ーメット電極からなる補助ポンプ電極114と、前記基 準電極74と、第2の固体電解質層52a、第2のスペ ーサ層52b及び第1の固体電解質層52cにて構成さ れている。

【0108】前記補助ポンプ電極114は、前記主ポンプセル68における内側ポンプ電極64と同様に、被測定ガス中のNOx成分に対する還元能力を弱めた、あるいは還元能力のない材料を用いて構成するようにしている。この場合、0.01%以上、1%未満のAuと、残部が主として白金族元素からなる合金であって、より好ましくは、Au含有率が0.03%以上、0.8%未満の合金を含むようにしている。

【0109】そして、前記補助ポンプセル112におけ

る補助ポンプ電極114と基準電極74間に、外部の電源116を通じて所望の一定電圧Vp3を印加することにより、第2室56内の雰囲気中の酸素を基準ガス導入空間62に汲み出せるようになっている。 選挙 では 第2室56内の雰囲気の酸素分圧が、実質的に被測定ガス成分(NOx)が還元又は分解され得ない状況下で、かつ目的成分量の測定に実質的に影響がない低い酸素分圧値とされる。この場合、第1室54における主ポンプセル68の働きにより、この第2室56内に導入される酸素の量の変化は、被測定ガスの変化よりも大幅に縮小されるため、第2室56における酸素分圧は精度よく一定に制御される。

【0111】また、この第3の実施の形態に係る測定装置50Cにおいては、前記定電圧(直流)電源86は、第3の拡散律速部110により制限されたNOxの流入下において、測定用ポンプセル84で分解時に生成した酸素のポンピングに対して限界電流を与える大きさの電圧を印加できるようになっている。

【0112】従って、前記構成を有する第3の実施の形態に係る測定装置50Cにおいては、前記第2室56内において酸素分圧が制御された被測定ガスは、第3の拡散律速部110を通じて所定の拡散抵抗の下に、検出電極82に導かれることとなる。

【0113】ところで、前記主ポンプセル68を動作させて第1室54内の雰囲気の酸素分圧をNOx測定に実質的に影響がない低い酸素分圧値に制御しようとしたとき、換言すれば、制御用酸素分圧検出セル76にて検出される電圧V1が一定となるように、フィードバック制御系80を通じて可変電源70のポンプ電圧Vp1を調

整したとき、被測定ガス中の酸素濃度が大きく、例えば 0~20%に変化すると、通常、第2室56内の雰囲気 及び検出電極82付近の雰囲気の各酸素分圧は、僅かに 変化するようになる。これは、被測定ガス中の酸素濃度 が高くなると、測定電極72上の第1室54の幅方向及 び厚み方向に酸素濃度分布が生じ、この酸素濃度分布が 被測定ガス中の酸素濃度により変化するためであると考 えられる。

【0114】しかし、との第3の実施の形態に係る測定装置50℃においては、第2室56に対して、その内部の雰囲気の酸素分圧を常に一定に低い酸素分圧値となるように、補助ポンプセル112を設けるようにしているため、第1室54から第2室56に導入される雰囲気の酸素分圧が被測定ガスの酸素濃度に応じて変化しても、前記補助ポンプセル112のポンプ動作によって、第2室56内の雰囲気の酸素分圧を常に一定の低い値とすることができ、その結果、NOxの測定に実質的に影響がない低い酸素分圧値に制御することができる。

【0115】そして、検出電極82に導入された被測定ガスのNOxは、該検出電極82の周りにおいて還元又は分解されて、例えばNO→1/2N,+1/2O,の反応が引き起こされる。このとき、測定用ポンプセル84を構成する検出電極82と基準電極74との間には、酸素が第2室56から基準ガス導入空間62側に汲み出される方向に、所定の電圧Vp2、例えば430mV(700℃)が印加される。

【0116】従って、測定用ポンプセル84に流れるポンプ電流Ip2は、第2室56に導かれる雰囲気中の酸素濃度、即ち、第2室56内の酸素濃度と検出電極82にてNOxが還元又は分解されて発生した酸素濃度との30和に比例した値となる。

【0117】この場合、第2室56内の雰囲気中の酸素 濃度は、補助ポンプセル112にて一定に制御されていることから、前記測定用ポンプセル84に流れるポンプ 電流 Ip2は、NOxの濃度に比例することになる。また、このNOxの濃度は、第3の拡散律速部110にて 制限されるNOxの拡散量に対応していることから、被 測定ガスの酸素濃度が大きく変化したとしても、測定用 ポンプセル84から電流計88を通じて正確にNOx 渡を測定することが可能となる。

【0118】例えば、補助ポンプセル112にて制御された第2室56内の雰囲気の酸素分圧が0.02ppmで、被測定ガス中のNOx成分たるNO濃度が100ppmとすると、NOが還元又は分解されて発生する酸素濃度50ppmと第2室56内の雰囲気中の酸素濃度0.02ppmとの和(=50.02ppm)に相当するポンプ電流【p2が流れることとなる。従って、測定用ポンプセル84におけるポンプ電流値【p2は、NOxがほとんど還元又は分解された重を表し、そのため、被測定ガス中の酸素濃度に依存するようなこともない。

【0119】次に、図9を参照しながら第4の実施の形態に係る測定装置50Dについて説明する。なお、図7及び図8と対応するものについては同符号を付してその重複説明を省略する。

が高くなると、測定電極72上の第1室54の幅方向及 び厚み方向に酸素濃度分布が生じ、この酸素濃度分布が 被測定ガス中の酸素濃度により変化するためであると考えられる。

【0114】しかし、この第3の実施の形態に係る測定 装置50Cにおいては、第2室56に対して、その内部 10 の雰囲気の酸素分圧を常に一定に低い酸素分圧値となるように、補助ポンプセル112を設けるようにしている ため、第1室54から第2室56に導入される雰囲気の 2 が設けられている点と、補助ポンプセル11 2 を設けるようれる雰囲気の 2 が設けられている点で異なる。

【0121】 ここで、図10の特性図を参照しながら前記第4の実施の形態に係る測定装置50Dの検出原理を説明する。

ことができ、その結果、NOxの測定に実質的に影響が 0122]まず、外部空間のNO濃度が0ppmのとない低い酸素分圧値に制御することができる。 3×10 を、第1室34内の雰囲気中の酸素分圧が 1.3×10 で 15 そして、検出電極82に導入された被測定 が 20 は分解されて、例えばNO-1/2 N、+1/2 O、の 制御する。

【0123】次に、補助ポンプセル112に印加される設定電圧Vp3を460mVに設定する。補助ポンプセル112の作用により、第2室56内の酸素分圧は、 6.1×10⁻¹¹ atmに制御され、その結果、前記測定用酸素分圧検出セル100における検出電極102と基準電極74との間の起電力V2は約460mVとなる。

【0124】との場合、第2室56内の酸素分圧が6. 1×10⁻¹¹ a t m であっても、第1室54内の酸素分 圧が1.3×10-1atmであるため、可燃ガス成分は 第1室54内で酸化され、NOx感度に影響しない。」 【0125】そして、外部空間のNO濃度が徐々に増加 すると、前記検出電極102も上述した測定用ポンプセ ル84 (図6参照) における検出電極82と同様に、N Ox還元触媒として機能することから、前記検出電極1 02では、NOの還元又は分解反応が引き起こされ、該 検出電極102の周りの雰囲気中の酸素濃度が上がり、 これによって、検出電極102と基準電極74間に発生 40 する起電力V2が徐々に低下することとなる。図10の 特性図では、NO濃度が例えば300ppm、500p pm、1000ppmというように徐々に増加するにつ れて、電圧計104にて検出される起電力V2は、30 0mV、250mV、220mVというように徐々に低 下している。

【0126】前記起電力V2の低下の度合いが、NO濃度を表すことになる。つまり、前記検出電極102と基準電極74と第1の固体電解質層52cとから構成される測定用酸素分圧検出セル100から出力される起電力 V2が、被測定ガス中のNO濃度を表すことになる。

【0127】この場合、前記第3の実施の形態に係る測 定装置500と同様に、第2室56内の雰囲気の酸素分 圧が、実質的に被測定ガス成分(NOx)が還元又は分 解され得ない状況下で、かつ目的成分量の測定に実質的 に影響がない低い酸素分圧値とされ、第1室54におけ る主ポンプセル68の働きにより、この第2室56内に 導入される酸素の量の変化は、被測定ガスの変化よりも 大幅に縮小されるため、第2室56における酸素分圧は 精度よく一定に制御される。

【0128】従って、被測定ガスの酸素濃度が大きく変 10 化したとしても、測定用酸素分圧検出セル100から電 圧計 104を通じて正確にNOx 濃度を測定することが 可能となる。

【0129】前記第1~第4の実施の形態に係る測定装 置(変形例も含む)によれば、共存する水や炭酸ガス及 び酸素の影響を排除して、長期間安定に測定することが 可能であり、産業上極めて有用である。

【0130】なお、この発明に係る窒素酸化物の測定装 置は、上述の実施の形態に限らず、この発明の要旨を逸 脱することなく、種々の構成を採り得ることはもちろん 20 である。

[0131]

【発明の効果】本発明の窒素酸化物の測定装置によれ ば、被測定ガス中の例えばNOx濃度を、酸素あるいは CO、、H、O等の影響を受けることなく、かつ、広い 温度範囲において、長時間安定に測定可能となる。

【図面の簡単な説明】

【図1】第1の実施の形態に係る測定装置を示す平面図 である。

- 【図2】図1におけるA-A線上の断面図である。・
- 【図3】第1の実施の形態に係る測定装置における窒素 酸化物の測定原理を示す説明図である。

【図4】第1の実施の形態に係る測定装置において、デ ィーゼルエンジンの排気ガス中での耐久性を示す特性図 である。

【図5】第1の実施の形態に係る測定装置において、各 - ンプセル - -組成の電極に対する主ボンプセルにおけるボンプ電圧と 測定用ポンプセルにおけるポンプ電流との関係を示す特米

*性図である。

【図6】第1の実施の形態に係る測定装置の変形例を示 す断面図である。

【図7】第2の実施の形態に係る測定装置を示す断面図 である。

【図8】第3の実施の形態に係る測定装置を示す断面図

【図9】第4の実施の形態に係る測定装置を示す断面図 である。

【図10】第4の実施の形態に係る測定装置において、 NO濃度の変化に対する測定用酸素分斤検出セルにて発 生する起電力の変化を示す特性図である。

【図11】従来技術に係るガス分析装置の断面構成図で ある。

【符号の説明】

	50A~50D…測定装置	5 2 a …第2の
	固体電解質層	
	52b…第2のスペーサ層	52 c…第1の
	固体電解質層	. •
0	5 2 d…第2のスペーサ層	5·2 e ···第2 σ
	基板層	e and e
	52 f…第1の基板層	54…第1室
	56…第2室	58…第1の拡

散律速部 60…第2の拡散律速部 62…基準ガス

導入空間 -64…内側ポンプ電極 66…外側ポン

プ電極 68…主ポンプセル 70…可変電源

72…測定電極 74…基進電極 76…制御用酸素分圧検出セル 82…検出電極

84…測定用ポンプセル 90…ヒータ 100…測定用酸素分圧検出セル 102…検出電

112…補助ポ ***110…第3の拡散律速部

114…補助ポンプ電極

Tales Indian

【図1】

(図3]

[図4]

10

0

200

160 257

【図5】: 5

F I G.5 10-11 10-13 10 50 40 30 dip2 (µA) 20

400

112 208 305 401 498 594 691

起電力 V1 (mV)

600

353 450 546 642 739

e:Au=0.8%柔加管極 f:Au=1.0%深加管極

[図6]

[図10]

[図7]

F1G.7

[図8]

FIG.8

【図9】

.【図11].

F1G.11

