

二草 导数与微分

(顶尖考研祝/本章内容要点

- 一. 考试内容概要
 - (一) 导数与微分的概念
 - (二) 导数公式与求导法则
 - (三) 高阶导数

二. 常考题型与典型例题

题型一 导数定义

题型二 复合函数、隐函数、参数方程求导

题型三 高阶导数

题型四 导数应用

第二章 导数与微分

微信公众号: 考试内容概要

(一) 导数与微分的概念

1. 导数的概念

定义1(导数)
$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

X = X AtoX

$$\checkmark f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \qquad f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

定义2(左导数)
$$f'_{-}(x_0) = \lim_{\Delta x \to 0^{-}} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0^{-}} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

定义3(右导数)
$$f'_{+}(x_{0}) = \lim_{\Delta x \to 0^{+}} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0^{+}} \frac{f(x_{0} + \Delta x) - f(x_{0})}{\Delta x}$$

│ 中国大学MOOC × Д 有道考神

定义4(区间上可导及导函数)

【例1】 (1994年3) 设
$$f(x) = \begin{cases} \frac{2}{3}x^3 \\ \frac{1}{3}x^3 \end{cases}$$

$$\begin{cases} \frac{2}{3}x^3, & x \le 1, \\ x^2, & x > 1, \end{cases} \text{ if } f(x) \text{ if } x = 0$$

- (A) 左、右导数都存在
- ((B) 左导数存在但右导数不存在
 - (C) 左导数不存在但右导数存在
 - (D) 左、右导数都不存在

$$[4^{2}] \int (1) = (\frac{1}{7}\chi^{3})'|_{X=1} = 2\chi^{2}|_{X=1}^{2} 2$$

$$f'(1) = (x^2)'|_{\chi=1} = 2x|_{\chi=1} = 2$$

$$\begin{cases}
\frac{1}{2} + \frac$$

【例2】(1990年4,5)设函数 f(x) 对任意 x 均满足等式 中国大学MOOC x \sqrt{x} 有道考神

$$f(1+x) = af(x)$$
,且有 $f'(0) = b$,其中 a,b 为非零常数,则().

(A) f(x)在 x=1 处不可导;

(B)
$$f(x)$$
 在 $x = 1$ 处可导, 且 $f'(1) = a$;

(C)
$$f(x)$$
 在 $x=1$ 处可导, 且 $f'(1)=b$;

(D)
$$f(x)$$
在 $x=1$ 处可导, 且 $f'(1)=ab$.

$$f'(i) = \lim_{\Delta x \to 0} \frac{f(i+\Delta x) - f(i)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\alpha f(\Delta x) - f(i)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\alpha f(\Delta x) - \alpha f(i)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\alpha f(\Delta x) - \alpha f(i)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\alpha f(\Delta x) - \alpha f(i)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\alpha f(\Delta x) - \alpha f(i)}{\Delta x}$$

+(1) = a f(0)

2. 微分的概念

定义5(微分) 如果 $\Delta y = f(\dot{x}_0 + \Delta x) - f(x_0)$ 可以表示为

$$\Delta y = \Delta x + o(\Delta x) \qquad (\Delta x \to 0)$$

则称函数 f(x) 在点 x_0 处可微,称 $A\Delta x$ 为微分,记为

$$dy = A\Delta x$$

定理2 函数 y = f(x) 在点 x_0 处可微的充分必要条件是 f(x) 在点 x_0 处可导,且有 $\mathrm{d}\,y = f'(x_0)\Delta x = f'(x_0)\mathrm{d}\,x$.

【例3】(1988年1, 2, 3) 若函数 y = f(x) 有 $f'(x_0) = \frac{1}{2}$ 则等学MOOC × $\sqrt{100}$ 有道考证

 $\Delta x \rightarrow 0$ 时, 该函数在 $x = x_0$ 处的微分 dy 是()

- (A) 与 Δx 等价的无穷小;
- (B) 与 Δx 同阶的无穷小;
 - (C) 比 Δx 低阶的无穷小;
 - (D) 比 Δx 高阶的无穷小.

$$\frac{dy}{\Delta x} = f(x_0) dx = \frac{1}{2} \Delta x \rightarrow \frac{1}{2}$$

3. 导数与微分的几何意义

1) 导数的几何意义: 导数 $f'(x_0)$

在几何上表示曲线 y = f(x)

在点 $(x_0, f(x_0))$ 处切线的斜率。

切线方程

 $y-f(x_0)=f'(x_0)(x-x_0).$

法线方程

 $y-f(x_0)=-\frac{1}{f'(x_0)}(x-x_0).$

2) 微分的几何意义: 微分 $dy = f'(x_0)dx$ 在几何上表示

曲线 y = f(x) 的切线上的增量。

$$\Delta y = f(x_0 + \Delta x) - f(x_0)$$

$$\Delta y \approx dy$$

$$d\gamma = f(x_0)\Delta y$$

【例4】 (2004年1) 曲线 $y = \ln x$ 上与直线 x + y = 1 垂直的切线 OC x = 0 有道考神

$$y-w_1 = 1 \cdot (x-1)$$

【例5】(2020年1)设函数
$$f(x)$$
 在区间 (-1,1) 内有定义 图 $f(x)$ 年 $f(x)$

(B) 当
$$\lim_{x\to 0} \frac{f(x)}{x^2} = 0, f(x)$$
 在 $x = 0$ 处可导;

(C) 当
$$f(x)$$
 在 $x = 0$ 处可导时, $\lim_{x \to 0} \frac{f(x)}{\sqrt{|x|}} = 0$;

(D) 当
$$f(x)$$
 在 $x = 0$ 处可导时, $\lim_{x \to 0} \frac{f(x)}{x^2} = 0$

$$\begin{array}{c} (A) = \lim_{x \to 0} \frac{1}{\sqrt{|x|}} = \emptyset, f(x) \text{ 在 } x = 0 \text{ 处可导;} \\ (B) = \lim_{x \to 0} \frac{f(x)}{x^2} = \emptyset, f(x) \text{ 在 } x = 0 \text{ 处可导;} \\ (A) = \lim_{x \to 0} \frac{f(x)}{\sqrt{|x|}} = \emptyset, f(x) \text{ 在 } x = 0 \text{ 处可导;} \\ (A) = \lim_{x \to 0} \frac{f(x)}{\sqrt{|x|}} = \emptyset, f(x) \text{ 在 } x = 0 \text{ 处可导;} \\ (A) = \lim_{x \to 0} \frac{f(x)}{\sqrt{|x|}} = \emptyset, f(x) \text{ 在 } x = 0 \text{ 处可导;} \\ (A) = \lim_{x \to 0} \frac{f(x)}{\sqrt{|x|}} = \emptyset, f(x) \text{ A } x = 0 \text{ & } x$$

(C) 当
$$f(x)$$
 在 $x = 0$ 处可导时, $\lim_{x \to 0} \frac{f(x)}{\sqrt{|x|}} = 0$;
 (D) 当 $f(x)$ 在 $x = 0$ 处可导时, $\lim_{x \to 0} \frac{f(x)}{x^2} = 0$.
 (V) = $\int_{\mathbb{R}^n} \frac{f(x)}{\sqrt{|x|}} = \int_{\mathbb{R}^n} \frac{f(x)}{\sqrt{|x|}} =$

(二) 导数公式及求导法则

1. 基本初等函数的导数公式

1)
$$(C)' = 0$$
 2) $(x^{\alpha})' = \alpha x^{\alpha-1}$

3)
$$(a^x)' = a^x \ln a$$
 4) $(e^x)' = e^x$

5)
$$(\log_a x)' = \frac{1}{x \ln a}$$
 6) $(\ln|x|)' = \frac{1}{x}$

7)
$$(\sin x)' = \cos x$$
 8) $(\cos x)' = -\sin x$

9)
$$(\tan x)' = \sec^2 x$$
 10) $(\cot x)' = -\csc^2 x$

11)
$$(\sec x)' = \sec x \tan x$$
 12) $(\csc x)' = -\csc x \cot x$

13)
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$
 14) $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$

15)
$$(\arctan x)' = \frac{1}{1+x^2}$$
 16) $(\operatorname{arc} \cot x)' = -\frac{1}{1+x^2}$

2. 求导法则

(1) 有理运算法则

$$1) \quad (u \pm v)' = u' \pm v'$$

$$2) \quad (uv)' = u'v + uv'$$

1)
$$(u \pm v)' = u' \pm v'$$
 2) $(uv)' = u'v + uv'$
3) $(\frac{u}{v})' = \frac{u'v - uv'}{v^2}$ $(v \neq 0)$

(2) 复合函数求导法:

设
$$u = \varphi(x)$$
, $y = f(u)$ 可导,则 $y = f[\varphi(x)]$

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = f'(u)\varphi'(x)$$

【例6】 (1995年2) 设
$$y = \cos(x^2)\sin^2\frac{1}{x}$$
 ,则 $y' =$ _____

$$\int_{-\infty}^{\infty} \left(\frac{1}{2} \right) x^{2} + \omega x^{2} + \omega x^{2} + \omega x^{3} + \omega x^{4} + \omega x^{5} = -\frac{1}{2} \left(\frac{1}{2} \right)$$

- 1) 若 f(x) 是奇函数,则 f'(x) 是偶函数;
- 2) 若 f(x) 是偶函数,则 f'(x) 是奇函数;
- 3) 若 f(x) 是周期函数,则 f'(x) 也是周期函数.

$$f(-x) = -f(x) \Rightarrow -f(-x) = -f(x) \Rightarrow f(-x) = f(x)$$

【例8】(2017年1)已知函数
$$f(x) = \frac{1}{1+x^2}$$
 ,则从, $f^{(3)}(0) = 0$

(3) 隐函数求导法:

【例9】(1993年3)函数
$$y = y(x)$$
 由方程

$$\sin(x^2 + y^2) + e^x - xy^2 = 0$$
 所确定, 则 $\frac{dy}{dx}$

$$\left[\frac{y^2 - e^x - 2x\cos(x^2 + y^2)}{2y\cos(x^2 + y^2) - 2xy}\right]$$

(4) 反函数的导数;

若
$$y = f(x)$$
可导,且 $f'(x) \neq 0$,则其反函数 $x = \varphi(y)$

也可导,且
$$\int_{\omega}$$
 \int_{ω} \int_{ω}

$$y'_{X} = (avc_{X})'_{X} = \frac{1}{c_{3}y} = \frac{1}{\sqrt{1-k_{1}^{2}y}} = \frac{1}{\sqrt{1-k_{1}^{2}y}}$$

(5)参数方程求导法:

1) 若 $\varphi(t)$ 和 $\psi(t)$ 都可导,且 $\varphi'(t) \neq 0$

$$\frac{dy}{dx} = \frac{\psi'(t)}{\varphi'(t)} \quad \longleftarrow$$

$$\frac{dy}{dx} = \frac{\psi'(t)}{\varphi'(t)}$$
(2) 若 $\varphi(t)$ 和 $\psi(t)$ 二阶可导,且 $\varphi'(t) \neq 0$,则
$$\frac{d^2y}{dx^2} = \frac{d}{dt} \left(\frac{\psi'(t)}{\varphi'(t)}\right) \cdot \frac{1}{\varphi'(t)} = \frac{\psi''(t)\varphi'(t) - \varphi''(t)\psi'(t)}{\varphi'^3(t)}$$

[例11] (2020年1, 2) 设
$$\begin{cases} x = \sqrt{t^2 + 1} \\ y = \ln(t + \sqrt{t^2 + 1}) \end{cases}$$
 则
$$\frac{d^2 y}{dx^2} = \frac{1}{\sqrt{2}}$$
 [解1]
$$\frac{dy}{dx} = \left(-\frac{1}{2}\right) \cdot \frac{dx}{dx} = \left(-\frac{1}{2}\right)$$

$$y' = \chi \ln (H \% \chi)$$

$$y' = \ln (H \% \chi) + \frac{\chi \% \chi}{H \% \chi}$$

$$y'(\pi) = -\pi.$$

【例13】 设
$$y = \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}}$$
 , 求 y' .

$$\frac{y'}{y} = \frac{1}{2} \left[\frac{1}{k_1} + \frac{1}{k_2} - \frac{1}{k_3} - \frac{1}{k_4} \right]$$

$$\frac{y'}{y} = \frac{1}{2} \left[\frac{1}{k_1} + \frac{1}{k_2} - \frac{1}{k_3} - \frac{1}{k_4} \right]$$

$$\frac{y'}{y'} = \frac{1}{2} \left[\frac{(k+0)(k-1)}{(k-2)(k-4)} \left(\frac{1}{k-1} + \frac{1}{k-1} - \frac{1}{k-3} - \frac{1}{k-4} \right) \right]$$

微信公众号:djky66 (顶尖和研究上岸)

2, 就是(科学), (i) 十一X 六

(三) 高阶导数

1) 定义6(高阶导数) $y^{(n)} = [f^{(n-1)}(x)]'$,

$$f^{(n)}(x_0) = \lim_{\Delta x \to 0} \frac{f^{(n-1)}(x_0 + \Delta x) - f^{(n-1)}(x_0)}{\Delta x}$$

$$= \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x_0)}{x - x_0}$$

注: 如果函数 f(x) 在点 x 处 n 阶可导,则在点 x 的某 邻域内 f(x) 必定具有一切低于 n 阶的导数.

2) 常用的高阶导数公式:

1)
$$(\sin x)^{(n)} = \sin(x + n \cdot \frac{\pi}{2});$$
 2) $(\cos x)^{(n)} = \cos(x + n \cdot \frac{\pi}{2});$

3)
$$(u \pm v)^{(n)} = u^{(n)} \pm v^{(n)}$$
 4) $(uv)^{(n)} = \sum_{k=0}^{n} C_n^k u^{(k)} v^{(n-k)}$.

【例14】设 $y = \sin 3x$, 求 $y^{(n)}$

微信公众号: djky66 (顶尖考研祝您上岸)

【例15】设 $y = x^2 \cos x$, 求. $y^{(n)}$

常考题型与典型例题

- 1. 导数定义; 2. 复合函数、隐函数、参数方程求导;
- 3. 高阶导数; 4. 导数应用

(一) 导数定义

【例16】(1994年, 数三, 4分) 已知 $f'(x_0) = -1$, 则

$$\lim_{x\to 0} \frac{x}{f(x_0-2x)-f(x_0-x)} = \underline{\qquad}.$$

【例17】(2011年2,3) 已知 f(x) 在 x=0 处可导,且 中心学校、x=0 处可导,且 中心学校、x=0 不知 有道考神

$$\lim_{x \to 0} \frac{x^2 f(x) - 2 f(x^3)}{x^3} =$$
(A) $-2 f'(0)$.

(A)
$$-2f'(0)$$
.

(B)
$$-f'(0)$$
.

(c)
$$f'(0)$$
.

$$(D) \quad 0.$$

【例18】(2013年, 1)设函数 y = f(x) 由方程 y - x 中國大学MOOC x 人 有道考神

确定,则
$$\lim_{n\to\infty} n(f(\frac{1}{n})-1) = \underline{\qquad}$$
 [1]

【例19】(2018年1, 2, 3) 下列函数中,在 x=0 处不可导酌是 $(OO) \times \sqrt{1000}$

(A)
$$f(x) = |x| \sin |x|$$
,

(B)
$$f(x) = |x| \sin \sqrt{|x|},$$

(C)
$$f(x) = \cos|x|,$$

(D)
$$f(x) = \cos \sqrt{|x|}$$
.

【例20】设 f(x) 在 x=a 的某个邻域内有定义,则 f(x) 重在学MOOC x 《 有道考神》

x = a 处可导的一个充分条件是

(A)
$$\lim_{h\to +\infty} h[f(a+\frac{1}{h})-f(a)]$$
 存在;

(B)
$$\lim_{n\to\infty} n[f(a+\frac{1}{n})-f(a)]$$
 存在;

(C)
$$\lim_{h\to 0} \frac{f(a+h)-f(a-h)}{2h}$$
 存在;
(D) $\lim_{h\to 0} \frac{f(a)-f(a-h)}{h}$ 存在;

(D)
$$\lim_{h\to 0} \frac{f(a)-f(a-h)}{h}$$
 存在

(二) 复合函数、隐函数、参数方程求导中国大学MOOC× 🔎 有道考神

【例21】(1993年3) 设 $y = \sin[f(x^2)]$, 其中 f 具有二阶导数,

求
$$\frac{d^2 y}{d x^2}$$

【例22】 (2012年2) 设 y = y(x) 是由方程 $x^2 - y + 1 = e^{\text{中国大学MOOC}} \times 4 = \pi$ 有道考神

所确定的隐函数,则
$$\frac{d^2y}{dx^2}\Big|_{x=0} =$$
______.

【例23】(2013年1) 设
$$\begin{cases} x = \sin t, \\ y = t \sin t + \cos t, \end{cases}$$
$$\frac{d^2 y}{dx^2} \bigg|_{t=\frac{\pi}{4}} = \underline{\qquad}.$$

 $(\sqrt{2})$

(三) 高阶导数

【例24】(2007年2,3) 设函数
$$y = \frac{1}{2x+3}$$
, 则

$$y^{(n)}(0) =$$
_____.

$$\left[\frac{(-1)^n 2^n n!}{3^{n+1}}\right]$$

【例25】(2015年2)函数 $f(x) = x^2 2^x$ 在 x = 0 处的 n 阶景数MOOC × $\sqrt{2}$ 有道者神

$$f^{(n)}(0) =$$
_____.

 $[n(n-1)(\ln 2)^{n-2}]$

(顶尖考研祝您上岸)

(四)导数应用

(1)导数的几何意义

【例26】 (2011年3) 曲线
$$\tan\left(x+y+\frac{\pi}{4}\right)=e^y$$
 在点 (0,0)

处的切线方程为

(y = -2x)

的点处的法线方程为 ______ 上对应于 Tanata PMOOC × An 有道考神 【例27】(2013年2)曲线

$$(x + y = \frac{\pi}{4} + \frac{1}{2}\ln 2)$$

【例28】(1997年, 1)对数螺线 $\rho = e^{\theta}$ 在点 $(\rho, \theta) = \left(e^{\pi/2}, \frac{1}{2}\right)$ 所OOC \times 和 有道考神

处的切线的直角坐标方程为____

$$(x+y=e^{\frac{\pi}{2}})$$

(2)相关变化率(数三不要求)

【例29】(2016年2)已知动点 P 在曲线 $y = x^3$ 上运动, 记坐标原点与点 P 间的距离为 l. 若点 P 的横坐标对时间的变化率为常数 v_0 ,则当点 P 运动到点 (1,1) 时,l 对时间的变化率是 _____

 $[2\sqrt{2}v_0]$

微信公众号: djky66 (顶尖考研祝您上岸)

