Busca Local e Problemas de Otimização

Inteligência Artificial PCS3438

Anna Helena Reali Costa Escola Politécnica da USP Engenharia de Computação (PCS)

Classe de problemas de interesse

- Em vários problemas a própria descrição de estado contém toda informação relevante para a solução e o caminho ao estado-objetivo não interessa:
 - Ex: problema das 8 rainhas, projeto de circuitos integrados, escalonamento, problemas de roteamento, de otimização de redes de telecomunicação, etc.

Problemas de otimização

 Buscas Locais (ou de melhorias iterativas) operam num <u>único estado</u> e movem-se para a <u>vizinhança</u> deste estado.

Busca Local

- A ideia é começar com o estado inicial (configuração completa, solução aceitável) e melhorá-lo iterativamente.
- Visualização:
 - Os estados (② solução) estão representados sobre uma superfície (gráfico);
 - A altura de qualquer ponto na superfície corresponde à função de avaliação do estado naquele ponto;
 - O algoritmo se "move" pela superfície em busca de pontos mais altos (melhor avaliação do estado/solução);
 - O ponto mais alto (máximo global) corresponde à solução ótima.

Exemplo de Espaço de Estados

Espaço de estados unidimensional

Busca Local

- Os algoritmos de busca local armazenam <u>apenas</u> o estado atual (baixo uso de memória), e não veem além dos vizinhos imediatos do estado atual.
- Apesar destas restrições, muitas vezes são os melhores métodos para tratar problemas reais muito complexos (espaço contínuo).

Tipos de Busca local

Hill-Climbing: Subida pela Encosta mais Íngrime ou Busca Local Gulosa

só faz modificações que melhoram o estado atual.

2. Simulated Annealing: Têmpera Simulada

 pode fazer modificações que pioram o estado no momento, para possivelmente melhorá-lo no futuro.

3. Local beam search: Busca em feixe local

- Mantém k estados em vez de um único.

4. Algoritmos genéticos (GA)

 é uma busca subida pela encosta, estocástica, na qual uma grande população de estados é mantida e novos estados são gerados por mutação ou cruzamento.

(1) Subida da Encosta (Hill Climbing)

- O algoritmo não mantém uma árvore de busca:
 - guarda apenas o estado atual e sua avaliação
- É simplesmente um ciclo que move o estado (solução) na direção crescente da função de avaliação
 - muda o estado para o melhor vizinho).

Hill Climbing ou Gradient Ascent/Descent

```
função HILL-CLIMBING(problema)
retorna um estado que é um máximo local
```

atual = CRIAR-NÓ(problema.ESTADO_INICIAL)
repita

atual= vizinho

vizinho = um sucessor de atual com valor mais alto
se VALOR[vizinho] < VALOR[atual]
então retorna ESTADO[atual]</pre>

Exemplo

• <u>Heurística h</u>: número de pares de rainhas que se encontram em ataque.

No caso da figura, h = 17 (pares: 1-2, 1-3, 1-5, 2-3, 2-4, 2-6, 2-8, 3-5, 3-7, 4-5, 4-6, 4-7, 5-6, 5-7, 6-7, 6-8, 7-8)

<u>Movimento</u>: mover na coluna cada possível rainha.

Subida da Encosta - Problemas

- Isso pode acarretar 3 tipos de problemas:
 - 1. Máximos locais
 - 2. Planícies (platôs)
 - 3. Encostas e picos: somente poucos vizinhos podem melhorar a solução (difícil de encontrá-los)
- Nestes casos, o algoritmo chega a um ponto de onde não faz mais progresso.

Subida da Encosta – Alternativas

- Solução: reinício aleatório (random restart)
 - O algoritmo realiza uma série de buscas a partir de estados iniciais gerados aleatoriamente (diferentes reinícios).
 - Cada busca é executada até que:
 - um número máximo estipulado de iterações seja atingido, ou
 - até que os resultados encontrados não apresentem melhora significativa.
 - O algoritmo escolhe o melhor resultado obtido com as diferentes buscas.

(2) Têmpera simulada

 Semelhante à Subida pela Encosta, porém oferece meios para escapar de máximos locais.

Têmpera Simulada

```
função TEMPERA-SIMULADA(problema, mapa)
   retorna um estado solução
 atual = CRIAR-NÓ(problema.ESTADO INICIAL)
 para t=1 até ∞ faça
  T = mapa[t]
  se T=0 então retorna atual
  vizinho = um sucessor aleatório de atual
  dE = vizinho.VALOR - atual.VALOR
  se dE > 0 então atual = vizinho
  senão atual = vizinho somente com probabilidade e<sup>dE/T</sup>
```

Têmpera Simulada: considerações

- Té a "temperatura/energia", reduzida com o tempo de execução
 - com o passar do tempo, Têmpera Simulada fica igual ao Subida da Encosta
- No início, movimentos "ruins" ocorrem com maior frequência.
- Apesar de aumentar o tempo de busca, essa estratégia consegue escapar melhor dos máximos locais.

Têmpera Simulada: Exemplo

100 iterations, each state is a number $x \in [0,1]$, initial state is x = 0, $VALUE(x) = x^2$, all states are neighbors, $mapa[t]=10 \times 0.9^t$

(3) Busca em Feixe Local

- Começa com k estados gerados aleatoriamente.
- Em cada passo, são gerados todos os sucessores de todos os k estados.
- Se um dos sucessores for o <u>objetivo</u>, o algoritmo para; caso contrário, escolhe os k melhores sucessores a partir da lista <u>completa</u>.
 - Note que isso NÃO corresponde à execução de k reinícios aleatórios em paralelo da busca local Subida da Encosta (random start)!
 - Note que sempre <u>somente</u> k estados são considerados como estados atuais na busca.

Busca em Feixe Local

função BEAM-SEARCH(*problema, k*) **retorna** um estado que é solução

inicia com *k* estados gerados aleatoriamente **repita**

gera todos sucessores de todos *k* estados

se um deles for a solução

então retorna solução

senão seleciona os *k* melhores sucessores

(4) Algoritmos Genéticos (AG) ou Computação Evolutiva

- As técnicas de computação evolutiva operam sobre uma população de candidatos em <u>paralelo</u>.
 - Buscam em diferentes áreas do espaço de solução, alocando um número apropriado de membros para a busca em várias regiões.

(4) Algoritmos Genéticos (AG) ou Computação Evolutiva

- AGs têm as seguintes características:
 - Trabalham com uma codificação do conjunto de parâmetros e não com os próprios parâmetros.
 - Trabalham com uma população e não com um só elemento.
 - Utilizam informações de custo ou recompensa.
 - Utilizam regras de transição não determinísticas.
 - São baseados na técnica gerar-e-testar

Algoritmos Genéticos

- A modelagem de um problema AG envolve:
 - Codificação da solução
 - Função de avaliação
 - Função de aptidão (fitness)

Função de avaliação

- Provém uma medida de desempenho com respeito a um conjunto particular de parâmetros.
- Deve ser relativamente <u>rápida</u>, uma vez que, em cada iteração, cada membro da população é avaliado e recebe um <u>valor de aptidão</u>.
- A avaliação de um membro (cromossomo) representando um conjunto particular de parâmetros é independente da avaliação de qualquer outro membro

Função de aptidão (fitness)

- Transforma a medida da função de avaliação em alocação de oportunidades reprodutivas.
- É sempre definida de acordo com outros membros da atual população.
- No <u>algoritmo genético canônico</u>, aptidão é definida como

$$fit(x) = f(x) / f'$$

onde f(x) é a avaliação associada ao cromossomo x e f' é a soma da avaliação (ou média) de todos os membros da população.

 A aptidão pode também ser associada à classificação de um cromossomo na população ou outras medidas.

Codificação

- O cromossomo contém informação sobre a solução
- Mais usual: sequência binária

Cromossomo 1	1101100100110110
Cromossomo 2	1101111000011110

 Cada bit na sequência (gene) pode representar uma característica da solução ou a série como um todo pode representar um número.

AG canônico

[Início] Gerar uma população aleatória com *n* cromossomos Repetir até obter a solução (ou terminar)

- [Avaliação] Determinar f(x) e fit(x) de cada cromossomo x na população.
- [Seleção] Selecionar elementos para criar uma população intermediária
- 3. [Recombinação (Crossover)] Com uma probabilidade de recombinação, realizar uma recombinação sobre os pais para formar uma nova prole
- 4. [Mutação] Com uma probabilidade de mutação, realizar mutação sobre a nova prole em cada gene (posição no cromossomo).
- 5. [Atualização da população] Usar a nova população gerada para repetir os passos 1-5 do algoritmo

Retornar a melhor solução na população atual.

Seleção

- Exemplo: através da Roleta
 - fit(x) define os pais (quanto maior, maior chance de serem selecionados):

Indivíduo			Aptidão	
	S_i	$f(S_i)$	Relativa	S3
Sı	10110	2.23	0.14	
S2	11000	7.27	0.47	
Ѕз	11110	1.05	0.07	S ₂
S4	01001	3.35	0.21	
Ss	00110	1.69	0.11	

Recombinação (Crossover)

- Um método (existem outros):
- 1. Escolha aleatoriamente algum ponto (locus entre genes) no cromossomo
- 2. Tudo que estiver antes desse ponto será copiado do primeiro pai
- 3. Tudo que estiver depois será copiado do segundo pai.

Cromossomo 1	11011 00100110110
Cromossomo 2	11011 11000011110
Prole 1	11011 11000011110
Prole 2	11011 00100110110

Mutação

- Evita que a população fique presa em um mínimo (máximo) local.
- Altera aleatoriamente a nova prole.
 - Na codificação binária, pode-se mudar alguns bits de 1 para
 0 e de 0 para 1:

Prole Original 1	11101111000011110
Prole Original 2	11101100100110110
Prole com Mutação 1	11100111000011110
Prole com Mutação 2	11101101100110110

AG: parâmetros

- Probabilidade de recombinação: indica o quão frequente a recombinação é executada.
- Probabilidade de mutação: indica o quão frequente partes dos cromossomos sofrerão mutações.
- Tamanho da população: indica quantos cromossomos existem em uma população.
- Intervalo de Geração: controla a porcentagem da população que será substituída durante a próxima geração.

Codificação

 Cromossomos compostos por 8 números (genes), a posição do gene indica a coluna, o valor do número indica a linha

- Função de avaliação:
 - f(x) =número de pares que não se atacam
 - Na solução: 1-2,1-3, ...,1-8, 2-3,...,2-8, 3-4,..., 3-8,...,6-7, 6-8, 7-8 = 28 pares
- Função de aptidão:

$$- fit(x) = f(x) / \Sigma f(x) [\%]$$

 Indivíduos com maiores aptidões possuem mais chances de serem selecionados

Bibliografia

- Busca local e problemas de otimização:
 - Capítulo 4 do livro texto (Russel & Norvig,
 Inteligência Artificial, 3a. Edição)