Zestaw III

- **Zad.1** Jaki będzie stosunek ciężarów Q_J , Q_{Sat} , Q_{Sun} , Q_{Moon} , Q_{Mer} człowieka na powierzchni odpowiednio Jowisza, Saturna, Słońca, Księżyca i Merkurego do jego ciężaru Q_Z na powierzchni Ziemi, jeżeli wiadomo, że stosunek mas tych ciał niebieskich do masy Ziemi wynosi odpowiednio $\frac{M_J}{M_Z}=318.35, \frac{M_{Sat}}{M_Z}=95.22, \frac{M_{Sun}}{M_Z}=331832.6, \frac{M_{Moon}}{M_Z}=0.0123, \frac{M_{Mer}}{M_Z}=0.55$, a stosunek promieni wynosi $\frac{R_J}{R_Z}=11.27, \frac{R_{Sat}}{R_Z}=9.47, \frac{R_{Sun}}{R_Z}=109.13, \frac{R_{Moon}}{R_Z}=0.27, \frac{R_{Mer}}{R_Z}=0.38$.
- **Zad.2** Obliczyć prędkość v, jaką powinien mieć satelita Ziemi krążący po orbicie o promieniu R. Obliczyć czas T pełnego obiegu satelity wokół Ziemi w zależności od R. Sporządzić wykresy v(R) i T(R) dla R zmieniającego się w zakresie od $R_Z=6370~km$ do $R_K=3.84\times 10^5~km$, gdzie R_Z promień Ziemi, a R_K średnia odległość do Księżyca.
- **Zad.3** Obliczyć drugą prędkość kosmiczną v_{II} , tj. prędkość, z jaką powinien być wystrzelony pocisk z powierzchni planety o masie M i promieniu R, aby nie wrócił do tej planety. Sporządzić wykresy a) $v_{II}(M)$ dla R=6370~km przy M zmieniajacym się w zakresie od $6\times 10^{24}~kg$ do $1\times 10^{26}~kg$ b) $v_{II}(R)$ dla $M=6\times 10^{24}~kg$ przy R zmieniającym się w zakresie od 6370~km do 20000~km.
- **Zad.4** Statek kosmiczny o masie m=1000~kg krąży swobodnie (bez napędu) po orbicie okołoziemskiej o promieniu R. Obliczyć całkowitą energię mechaniczną statku E_k+E_p . Sporządzić wykres zależności energii mechanicznej od R, dla R zmieniającego się w zakresie od 6500 km do 40000~km.