AZS- cvičení 3

- 1. Pro analogový signál $x(t) = 5 \cdot \cos(10\pi \cdot t) + 2 \cdot \cos(50\pi \cdot t)$ $t \ge 0$, vzorkovaný frekvencí f_s= 45Hz
 - a) Použijte modul g_sample (FDSP toolbox) k znázornění spektra vzorkovaného signálu bez antialiasing filtru
 - b) znázorněte spektrum vzorkovaného signálu a Butterwothovým antialiasing filtrem 2. a 4. řádu s mezní frekvencí fc=40 Hz,
 - c) určete frekvence, ve kterých se vyskytuje aliasing šum
 - d) Určete správnou vzorkovací frekvenci a parametry antialiasing filtru, aby byl signál správně rekonstruován
- 2. Předpokládejme, že máme 4 bitový AD převodník, kterým zpracováváme signál z rozsahu 0 5V. Určete:
 - a) počet kvantizačních úrovní,
 - b) rozlišení kvantizátoru,
 - c) kvantizační úroveň pro analogové napětí 3.2 V
 - d) binární kód pro 3.2 V
 - e) Kvantizační chybu

 Jakou nejmenší vzorkovací frekvencí může být vzorkován signál s následujícími parametry:

$$f_{min}$$
 = 15kHz, f_{max} = 25kHz,
aby mohl být správně rekonstruován

- 4. 8-bitový bipolární A/D převodník s postupnou aproximací má referenční napětí V_r =10V.
 - a) Určete postupné aproximace vyplněním následující tabulky pro analogové vstupní napětí x_a=-3.941V
 - b) Jaká je vzorkovací frekvence tohoto převodníku pokud je frekvence hodin f_{clock}=200kHz
 - c) Určete kvantizační úroveň převodníku
 - d) Určete průměrný výkon kvantizačního šumu

k	b _{n-k}	u _k	y _k
0			
1			
2			
3			
4			
5			
6			
7			

- 5. Pro následující signály zapište výraz, ve kterém použijete:
 - a) impulzní funkci
 - b) funkci jednotkového skoku (u[n]) a lineární funkci (ramp)
 - c) Napište v matlabu funkci **decomp** k dekompozici signálu na symetrickou a antisymetrickou komponentu a výsledky zobrazte

6. Určete co je obsahem signálů v souboru signaly.zip dostupných na webu, pokud víme, že frekvence vzorkování signálů byla 44.1 kHz. Pokud je obsahem signálů šum, určete o jaký typ šumu se jedná. Typ šumu určujte podle chování ve frekvenčním pásmu 5kHz-10kHz.