The Aggregate Effects of Global and Local Supply Chain Disruptions: 2020–2022

G. Alessandria, S.Y. Khan, A. Khederlarian, C. Mix, K.J. Ruhl

Chicago Trade and Spatial Afternoons | October 2022

Authors' opinions only. Does not reflect views of Federal Reserve or World Bank.

Supply chain disruptions

- 1. Getting inputs for sale or production has been challenging since 2020
 - Confluence of factors
 - Unexpected pace of recovery
 - ► Production disruptions
 - Reduced air freight capacity
 - ► Congestion effects
 - Disruptions happening both internationally and domestically
 - ▶ Lead time on inputs: 65 days \rightarrow 100 days
 - Mix of longer lead times and longer shipping times
- 2. Firms lack buffer stocks to absorb these delays
 - ► Consumer stockouts high globally (Cavallo & Kryvstov, 2021)

1

Supply chain disruptions

- 1. Getting inputs for sale or production has been challenging since 2020
 - Confluence of factors
 - ▶ Unexpected pace of recovery
 - ► Production disruptions
 - Reduced air freight capacity
 - ▶ Congestion effects
 - Disruptions happening both internationally and domestically
 - ▶ Lead time on inputs: 65 days \rightarrow 100 days
 - ▶ Mix of longer lead times and longer shipping times
- 2. Firms lack buffer stocks to absorb these delays
 - ► Consumer stockouts high globally (Cavallo & Kryvstov, 2021)
- 3. Not unique to COVID, supply delays common from 1950-1987

1

Domestic and foreign supplier delays (Census, Pulse survey)

Delays happening when inventory levels are low

The aggregate impact of supply disruptions

- ▶ How do supply disruptions/delays affect aggregate
 - ▶ Employment?
 - ► Production?
 - ▶ Consumption?
 - ▶ Prices?
- ▶ Standard "macro" frameworks ill-equipped to provide answers
- ▶ Model ingredients
 - ► Firms can hold inventories, but at a cost (interest, depreciation)
 - Fixed order costs
 - Delivery takes time and is uncertain
 - Firm-level demand is uncertain
 - ▶ Production/Consumption may be constrained by availability of goods.

Findings

- ► At its peak, international delays lead to
 - ► Production –12%
 - ► Consumption –7%
 - ► Consumer prices +12%
- ▶ Effects arise from
 - ▶ Delays → higher carrying costs
 - Production disrupted from lack of inputs
 - ▶ Uneven effects across firms: affect low-inventory products most

Roadmap

- 1. Model
- 2. Experiments
 - ► Long-run effects
 - ▶ Transitory delays
- 3. Fit the model to 2020-2022 data
 - ▶ Decompose the effects
- 4. A look at delays in general

Related Literature

► Supply disruptions

Barrot and Sauvagnat (2016), Boehm, Flaaen and Pandalai-Nayar (2019), Carvalho et al (2020), Cavallo and Krystov (2021)

► GE inventory models

Khan and Thomas (2007), Alessandria, Kaboski and Midrigan (2010, 2011, 2013), Iacoviello, Schiantarelli and Schuh (2011), Ortiz (2021), Carreras-Valle (2021)

▶ Effect of timeliness on trade

Djankov, Freund and Pham (2010), Hummels and Schaur (2013), Clark, Kozlova and Schaur (2014), Feyrer (2019, 2021), Leibovici and Waugh (2019)

Model structure

- ► Two countries: home and foreign (*), complete markets
- ▶ The aggregate state is η_t and the aggregate history is $\eta^t = (\eta_0, \dots, \eta_t)$
- ► Two continua of retail/wholesale firms
 - ▶ Use "manufacturing inputs" to produce differentiated goods
 - ▶ Sell to the consumption good firm and manufacturing-good firm
 - ➤ One continuum buys domestic manufactures (D), one buys imported (I)
 - ► Fixed order cost, shipping delays, demand uncertainty vs. holding costs
- ▶ Representative consumption-good firm
 - ▶ Uses retail goods from *D* and *I* sector to produce consumption
- Representative manufactures firm
 - ▶ Uses retail goods from *D* and *I* sector and labor to produce
 - ▶ Sells to domestic retailers and foreign country import retailers
- ▶ Domestic & imported goods differ in fixed costs + 'timeliness'

Households

► Choose consumption, labor supply, and state-contingent debt

$$\max \sum_{t} \sum_{\eta^t} \beta^t \pi(\eta^t) \left[\ln C(\eta^t) + \psi \ln(1 - L(\eta^t)) \right]$$
s.t.
$$P_c(\eta^t) C(\eta^t) + \sum_{\eta^{t+1}} Q(\eta^{t+1} | \eta^t) B(\eta^{t+1}) = B(\eta^t) + W(\eta^t) L(\eta^t) + \Pi(\eta^t)$$

Consumption-good producers

- lacktriangleright Perfect competition + CRS ightarrow representative firm
- ► Combines domestic (*D*) and imported (*I*) varieties
- Variety-specific demand shocks ν

$$Y_{\mathcal{C}}(\eta^t) = \left[\left(\int_0^1 \nu_{\mathcal{D}}(j,\eta^t)^{\frac{1}{\theta}} c_{\mathcal{D}}(j,\eta^t)^{\frac{\theta-1}{\theta}} dj \right)^{\frac{\theta}{\theta-1}\frac{\gamma-1}{\gamma}} + \tau_{\mathcal{C}}^{\frac{1}{\gamma}} \left(\int_0^1 \nu_{\mathcal{I}}(j,\eta^t)^{\frac{1}{\theta}} c_{\mathcal{I}}(j,\eta^t)^{\frac{\theta-1}{\theta}} dj \right)^{\frac{\theta}{\theta-1}\frac{\gamma-1}{\gamma}} \right]^{\frac{\gamma}{\gamma-1}}$$

Standard profit maximization yields

$$\begin{aligned} c_D(j,\eta^t) &= \left(\frac{p_D(j,\eta^t)}{P_D(\eta^t)}\right)^{-\theta} \left(\frac{P_D(\eta^t)}{P_C(\eta^t)}\right)^{-\gamma} \nu_D(j,\eta^t) Y_c(\eta^t) \\ c_I(j,\eta^t) &= \left(\frac{p_I(j,\eta^t)}{P_I(\eta^t)}\right)^{-\theta} \left(\frac{P_I(\eta^t)}{P_C(\eta^t)}\right)^{-\gamma} \nu_I(j,\eta^t) \tau_C Y_c(\eta^t) \end{aligned}$$

11

Manufactures producers

- lacktriangleright Perfect competition + CRS ightarrow representative firm
- ► Combines labor, domestic (*D*), and imported (*I*) varieties
- ▶ Variety-specific demand shocks ν (same as in consumption)

$$M(\eta^{t}) = L_{p}^{1-\alpha} Y_{m}^{\alpha}$$

$$Y_{m}(\eta^{t}) = \left[\left(\int_{0}^{1} \nu_{D}(j, \eta^{t})^{\frac{1}{\theta}} m_{D}(j, \eta^{t})^{\frac{\theta-1}{\theta}} dj \right)^{\frac{\theta-1}{\theta-1} \frac{\gamma-1}{\gamma}} + \tau_{m}^{\frac{1}{\gamma}} \left(\int_{0}^{1} \nu_{I}(j, \eta^{t})^{\frac{1}{\theta}} m_{I}(j, \eta^{t})^{\frac{\theta-1}{\theta}} dj \right)^{\frac{\theta}{\theta-1} \frac{\gamma-1}{\gamma}} \right]^{\frac{\gamma}{\gamma-1}}$$

- ▶ Standard profit maximization yields demands: $m_D(j, \eta^t), m_I(j, \eta^t)$
- ▶ Price of the manufactured good: $p^m(\eta^t)$,

Retailers

- ► Two continua of monopolistic competitors: *D*, *I* (focus on a *D* firm)
- ▶ Firm *j* begins period with inventory $s_D(j)$, demand shock $\nu(j)$
 - ► Chooses order size $z_D(j)$ and prices $p_D(j)$
- ▶ If firm places an order: $z_D(j) > 0$
 - ▶ Pay fixed cost ϕ_D (units of labor)
 - ▶ With probability $1 \mu_D$, order arrives at t; μ_D arrives at t + 1
 - \blacktriangleright μ_D allows us to vary average length of delivery lag
- ▶ Firm's state is $(\eta_t; s_t, \nu_t)$
- lacktriangle Timing: observe demand shock \Longrightarrow place order \Longrightarrow observe delivery \Longrightarrow set prices

Retailer optimization (suppressing the aggregate state)

$$V(s,
u) = \max \left\{ V^N(s,
u), J(s,
u) - \phi W \right\}$$

Value of not placing an order

$$V^{N}(s,\nu) = \max_{p,c,m} \pi(c(p,\nu), m(p,\nu)) + \mathbb{E}_{\nu'} QV(s',\nu')$$
s.t. $s \ge c(p,\nu) + m(p,\nu)$

$$s' = (1 - \delta)(s - c(p,\nu) - m(p,\nu))$$

▶ Value of placing an order (within period; no primes)

$$J(s,\nu) = \max_{z} -p^{m}z + (1-\mu)V^{N}(s+z,\nu) + \mu V^{O}(s,\nu,z)$$

Value when order but it does not arrive

$$V^{O}(s, \nu, z) = \max_{p,c,m} \pi(c(p, \nu), m(p, \nu)) + \mathbb{E}_{\nu'} QV(s', \nu')$$
s.t. $s \ge c(p, \nu) + m(p, \nu)$

$$s' = (1 - \delta)(s + z - c(p, \nu) - m(p, \nu))$$

Decision rules

- ► Inventories/ordering follow an "Ss rule"
 - Conditional on reordering

$$\underset{
u',\mu'}{\mathbb{E}} \mathcal{Q}(\eta'|\eta) V_1\left(s',
u';\eta'
ight) = oldsymbol{
ho}^{m}(\eta)$$

▶ Prices are a markup over the value of inventories

$$p(s, \nu) = rac{ heta}{ heta - 1} \mathop{\mathbb{E}}_{
u'} Q(\eta' | \eta) V_1 \left(s',
u'; \eta'
ight)$$

If goods are delayed, set price to "stock out"

$$\max_{p} p \text{ s.t. } c(p, \nu) + m(p, \nu) = s$$

Policy function: Ordering (median demand shock)

Policy function: Price (median demand shock)

Feasibility (focusing on home country)

Manufactures

$$M(\eta^t) = \int z_D(j,\eta^t)dj + \int z_I^*(j,\eta^t)dj$$

► Labor

$$L(\eta^t) = L_p(\eta^t) + \int \phi_D \mathbf{1}_{z_D(j,\eta^t)} dj + \int \phi_I \mathbf{1}_{z_I(j,\eta^t)} dj$$

Inventories

- ▶ For accounting, split inventories across manufacturing and retail.
- Retail inventory (on the shelf)

$$I_{r}(\eta^{t}) = \int \left[s_{D}(j, \eta^{t}) - c_{D}(j, \eta^{t}) - m_{D}(j, \eta^{t}) + (1 - \mu_{D}) z_{D}(j, \eta^{t}) \right] dj$$
$$+ \int \left[s_{I}(j, \eta^{t}) - c_{I}(j, \eta^{t}) - m_{I}(j, \eta^{t}) + (1 - \mu_{I}) z_{I}(j, \eta^{t}) \right] dj$$

Manufacturing inventory (on the ship)

$$I_m(\eta^t) = \int \mu_D z_D(j, \eta^t) dj + \int \mu_I z_I(j, \eta^t) dj$$

19

Assigned parameters

► Model period is one quarter

Parameters			Moments		
Discounting	β	0.960.25	Annual real rate	4%	
Input cost share	α	0.6	Manufacturing GO/VA	2.8	
International delay	μ_I	0.5	Authors' calculation	45 days	
Frisch elasticity	ψ	2	Steady State Labor	1/3	
Substitution within source	θ	4			
Substitution across source	γ	1.1			
IES	σ	1			

Jointly estimated

- ▶ Focus on the manufacturing and trade sector
- ▶ Inventory holdings and order frequency: $\delta, \mu_D, \sigma_{\nu}^2, \phi_D, \phi_I$ chosen so that
 - lacktriangle importing firms hold larger inventories than domestic firms ($\approx 2x$)
 - ightharpoonup importing firms order less frequently (pprox half)
 - ▶ imported goods arrive with 0.5 quarter delay on average
 - ▶ importers order every 4 quarters on average
 - aggregate inventories to purchases ratio of 1.3 quarters
- ▶ Elasticity of substitution between sources: $\gamma = 1.1$
- ▶ Trade preferences τ_c and τ_m chosen so that
 - ▶ import share matching U.S. data
 - share of consumption vs material imports from data

Jointly estimated

Parameters		Moments	
Home bias manufactures	$ au_m$ 0.4	Imports in maninput bundle	15%
Home bias consumption	$ au_c$ 0.07	Manufactures' share of imp	80%
Depreciation	δ 0.045	Inventory-purchases ratio (dom)	1.1
Domestic delay	μ_D 23 days	Inventory-purchases ratio (imp)	2.4
Demand variance	σ_{ν}^{2} 1.5	Inventory-purchases ratio (agg)	1.3
Fixed order cost [†] (dom)	ϕ_D 2.5%	Order freq (dom)	50%
Fixed order cost [†] (imp)	ϕ_I 15%	Order freq (imp)	25%

[†]Expressed as share of average revenue.

- ► Home biases largely determine import ratios
- lacktriangle Higher δ hold smaller inventories; higher μ hold larger inventories
- ightharpoonup Different ϕ drive different order frequency

Long-run effects

 \blacktriangleright Steady-state; permanent change in μ_I that makes delays 30 days longer

	percent change				
Model	Import share	Inv/Purch (Agg)	Prod labor	Consumption	P_c
Baseline Armington ($\gamma = 1.4$)	-0.78)	10.12	-0.15	-1.36	1.33

▶ Back of the envelope: 30 day increase in delay

change in cost of goods =
$$\frac{30}{90} \times (\delta + r) = \frac{30}{90} \times (0.045 + 0.01) = 1.83\%$$

change in imports = change in cost of goods \times (1 - γ) = 1.83% \times (-0.1) = -0.18%

Long-run effects

- \blacktriangleright Steady-state; permanent change in μ_I that makes delays 30 days longer
- ► Armington model with increase in trade costs

	percent change				
Model	Import share	Inv/Purch (Agg)	Prod labor	Consumption	P_c
Baseline	-0.78	10.12	-0.15	-1.36	1.33
Armington ($\gamma = 1.4$)	-0.78	_	0	-0.53	0.53

- ► Same change in trade, delays generate 2.5x larger effect on consumption
- ▶ Higher inventory and lower production employment.
- ► Firms constrained more often by stocks.

International delivery delays: Dynamics

 \blacktriangleright Start from steady state; unforeseen change in μ_I from 0.5 to 1; perfect foresight afterward

$$\mu_{I,t+1} = 0.5\mu_I^{ss} + \rho_I \mu_{It}$$

▶ Impulse increases average delivery time from 45 to 90 days

Policy function: Ordering (median demand shock)

- Two main mechanisms at work
- 1. (Time) Reduced supply for production and consumption today
 - ► If nothing arrives today → production & consumption limited to inventory (about 1 quarter's worth of output)
 - ▶ Decreases demand for production labor
 - ▶ Affects firms with lowest inventories most (different from trade cost)
- 2. (Cost) Higher carrying costs of inventories
 - ► Interest costs: (extra days/365) × r
 - Depreciation costs: (extra days/365) × δ
 - Fixed costs: more orders burns up resources

Time vs. carrying costs

- ► Consider an increase in shipping costs equivalent to extra carrying costs of delay
- Cost shocks less costly because they do not constrain the orders of high-demand low-inventory firms
- ► Explains willingness to pay very large trade costs to accelerate trade

Time vs. carrying costs

Fitting the model to the data

- ▶ 2019Q4-2022Q2
- Shocks: international delays; domestic delays (x2); consumption stimulus (x2); labor supply (x2)
- ► Targets: production (x2); domestic delays (x2); international delays; home consumption; trade balance
- Everything effects everything, but
 - ▶ Labor supply (x2) → output in US and ROW
 - ▶ Stimulus (x2) → US consumption & trade balance

Endogenous variables

Exogenous shocks

The effect of delays

Misses

▶ Timing assumption: Firms change price after observing arrival

Summary

- ▶ Develop a GE model of time to restock
- ► Large aggregate effects of changing the speed of trade
- ► Supply delays much more costly than cost shocks
- Mitigated by inventory levels at firm & aggregate level
- ► For policy, need to introduce congestion effects (in progress)

Delays are common

- Delays have been important in the past, too
- Consider VAR evidence from 1950–2020
 - ▶ Delays more common 1950–1987
- ▶ Part of "Supply-chain recessions" with Alessandria, Khan, Khederlarian, and Mix

Delivery delays on production inputs

Some VAR evidence

- ► Consider VAR with 3 blocks
- ► Real: IP, Sales, Inventory, Employment, ISM Delays
- ▶ Nominal: Wages, Price of Goods/Wage
- ▶ Int'l: Trade, Export-Import Ratio, Terms of trade, Price of Traded goods
- ► Real variables, then delays, then prices (robust to ordering)
- Consider impulse from delays and orthogonalized response of system

Effects of a delay shock

