2024년 지능화 파일럿 프로젝트 프로젝트 계획서

Project

고도 데이터 기반 자율주행 UAM 시스템 구현 Implementation of an Advanced Data-Based Self-Driving UAM System

> 이선경(2023254006) 2024. 09. 09.

2024년 지능화 파일럿 프로젝트 프로젝트 계획서

Contents

- 연구 배경
- 기존 연구(or 기술)의 한계
- 연구 목표
- 관련 연구
- 실험 장치 및 데이터셋
- 연구 방법
- 연구 결과 및 토의
- 향후 추진 일정

연구 배경

1. 배경 및 필요성

- 신속하고 효율적인 이동 수단으로서 UAM(Unmanned Aerial Mobility)의 운용성이 커짐
- 도시 환경에서의 안전한 운항 보장이 주요 과제
- 기존 자율주행 시스템 대부분 사전 정의된 경로를 따라 비행, 동적인 환경 변화에 적절히 대응하지 못함

2. 문제 정의

- 고도 정보를 통한 안전하고 효율적이 경로 계획
- 3차원 공간에서의 복잡한 장애물과 경로 문제 해결
- 실시간 고도 데이터 처리 및 비행 경로 통합이 필수적

기존 연구(or 기술)의 한계

1. 기존 연구(or 기술)의 한계

- 대부분의 UAM 시스템은 고도 정보를 충분히 활용하지 않아, 복잡한 도심 환경에서의 장애물 회피 및 경로 최적화에 한계가 있음
- 실시간 데이터 처리 부족으로 동적 환경 변화에 유연하게 대응 X
- 기존 경로 탐색 알고리즘은 2차원 지도에 최적화되어 있어 3차원 비행 경로 계획에는 적합하지 않음

기존 연구(or 기술, 제품)의 현황, 비교

기술/제품	특징	고도정보 활용	실시간 데이터 처리	알고리즘 비교	비고		
초기 UAM 모델	GPS 기반 네비게이션 사용	고도 정보 미포함	미지원	경로 계획 불완전	2차원 경로 계획에 한정		
최신 UAM 모델	센서 기반 시스템 도입	부분적 활용	제한적	고도 데이터 일부 통합	실시간 최적화 한계 존재		
A* 알고리즘	최단 경로 탐색에 효율적	사용 가능	실시간 처리 어려움	2차원 최적화에 우수	3차원 복잡성 처리에 한계		
Dijkstra	신뢰성 높음	사용 가능	계산 복잡성 높음	신뢰성은 높으나 처리 속도 저하	3차원 실시간 처리에 비효율적		
RRT	복잡한 공간 효과적 탐색	고도 정보 활용	우수	장애물 회피 및 실시간 경로 계획 에 효과적	동적 환경에 적합		
FMT*	빠르고 최적화된 경로 찾기	고도 정보 활용	매우 우수	고도 정보와 복잡한 경로를 효과 적으로 통합	복잡한 환경에서 우수한 성능		
PRM	사전 계획된 경로와 재계획 에 유용	사용 가능	실시간 재계획 가능	다양한 3차원 경로와 장애물 환 경에서 효율적	계획 및 재계획에 최적화		
Octomap	3D 공간 모델링 및 장애물 감지	고도 정보 활용	우수	3차원 실시간 데이터 처리와 장 애물 회피에 최적화	복잡한 3차원 환경에 적합		

연구 목표

1. 연구 목표

- 고도 데이터 기반 경로 계획 알고리즘 개발
 - ✓ 고도 데이터 실시간 처리 및 통합
 - ✓ 3차원 최적 경로 설계
 - ✓ 비행 경로 자동화 및 최적화
- 실시간 UAM 비행 시뮬레이션 환경 구축
 - ✓ 성능 검증 및 알고리즘 최적화
 - ✓ Occupancy Grid 활용한 장애물 처리 및 경로 탐색

2. 기대 효과

- 비행 경로의 안전성 및 효율성 향상
- UAM 기술 혁신 및 산업 발전에 기여

관련 연구 (or 기술)

N율 비행을 위한 실시간 3D 경로 계획

- Real-time 3D path planning for autonomous flight of UAVs : Zhang et al. (2018)
 - ✓ UAV를 위한 실시간 3차원 경로 계획 알고리즘을 개발하여 복잡한 환경에서의 장애물 회피와 경로 최적화를 가능하게 함
 - ✓ 더 빠르고 효율적인 경로 결정이 가능해져, UAV 운영의 안전성과 효율성이 향상됨
 - ✓ 알고리즘은 고도 변화가 심한 도심 지역에서는 여전히 정밀도와 반응 속도에 제한이 있음

고도 데이터를 이용한 UAV 경로 최적화

- Optimization of UAV flight paths using altitude data: Patel and Kumar (2019)
 - ✓ 고도 데이터를 활용하여 UAV의 경로를 실시간으로 최적화하는 방법을 개발, 다양한 기상 조건과 환경에서의 비행 효율성을 개선
 - ✓ 비행시 안전성 및 연료 효율성이 크게 개선되어 경제적이고 환경적으로 지속 가능한 UAV 운영이 가능해짐
 - ✓ Res실제 비행 중 갑작스런 기상 변화에 대한 적응력이 부족하며, 데이터 수집 및 처리에 높은 비용이 발생함

실험 장치

1. 대상 제품 (or 재료)

- 자율주행 소프트웨어 및 경로 탐색 시스템
 - ✓ A* 알고리즘을 기반으로 한 경로 탐색 소프트웨어와 3D 공간에서의 최단 경로 탐색을 위한 시뮬레이션 시스템
- 고도 데이터 및 장애물 데이터 생성 시스템
 - ✓ 가우시안 분포 기반의 고도 데이터와 랜덤하게 생성된 장애물 데이터를 포함하는 데이터 처리 유닛
- LSTM 기반 경로 재탐색 시스템
 - ✓ 실시간 장애물 데이터를 반영하여 경로를 재탐색할 수 있는 LSTM 기반의 경로 재탐색 시스템

2. 실험 장치 (or 시스템 구성)

- 데이터 수집 및 처리
 - ✓ 고도 데이터와 장애물 데이터를 시뮬레이션을 통해 생성하고, 이를 LSTM 모델 학습에 사용
- 학습 기반 데이터 처리
 - ✓ 고도 및 장애물 데이터를 결합한 학습 알고리즘을 통해 실시간 경로 재탐색이 가능하도록 처리
 - ✓ 학습된 LSTM 모델을 사용하여 장애물 회피 경로를 동적으로 계산 및 최적화

데이터셋

1. 데이터셋

- 고도 데이터 및 장애물 데이터 생성
- 고도 데이터는 가우시안 분포를 사용하여 랜덤하게 생성되며, 3D 경로 탐색을 위한 고도 정보를 제공
- 장애물 데이터는 랜덤으로 3D 공간에 배치된 다양한 크기와 형태의 장애물을 포함하여, 실시간 장애물 회피를 위한 학습 데이터로 사용

2. 데이터 전처리

- 고도 데이터 및 장애물 데이터 정규화
- 고도 및 장애물 데이터의 범위가 일정하지 않기 때문에, 모델 학습에 적합하도록 **정규화**를 진행하여 각 값이 일정한 범위 내에 존재하도록 조정
- 데이터 증강
- 다양한 상황에서의 경로 탐색과 장애물 회피 성능을 강화하기 위해, **데이터 증강** 기법을 사용하여 여러 변형된 고도 및 장애물 데이터를 생성
- LSTM 모델 학습을 위한 시계열 데이터 변환
- 경로 데이터를 **시계열 데이터로 변환**하여, LSTM 모델이 과거 경로와 장애물 상황을 바탕으로 미래 경로를 예측할 수 있도록 준비

- 1. Long Short-Term Memory(LSTM)
 - 순환신경망(RNN)의 확장 모델로, 시계열 데이터를 학습하기에 적합한 구조
 - 긴 시계열 데이터 학습에 유리하며, 과거의 중요한 정보를 오랜 기간 기억할 수 있음
 - 게이트 구조를 통해 불필요한 정보는 잊고, 중요한 정보만 기억하며 다음 단계로 전달
- 2. LSTM의 구조

- 특징 추출 네트워크
 - Forgot Gate(망각 게이트), Input Gate(입력 게이트), Output Gate(출력 게이트)
- 기억 저장 네트워크
 - 셀 상태(Cell State), 게이트(Gates)

3. 제안하는 모델

- LSTM 기반 경로 탐색 모델
- LSTM(Long Short-Term Memory) 네트워크를 기반으로 하여 3D 경로 탐색과 실시간 장애물 회피를 목표
- 입력 데이터
- **고도 데이터**와 **장애물 데이터**가 시계열 형태로 입력. 이를 통해 모델은 현재 위치와 장애물 상태를 바탕으로 다음 경로를 예측
- 출력
- 모델은 **최적의 경로**를 시계열로 출력하며, 새로운 장애물이 발생할 경우 실시간으로 경로를 재탐색
- 학습 과정
- A* 알고리즘을 사용하여 생성된 경로 데이터를 학습시키고, 장애물데이터를 결합하여 실시간으로 경로를 수정하는 LSTM 모델을 학습
- 모델의 장점
 - 실시간 반응성, 3D 공간 최적화

4. 모델의 학습

- 하이퍼파라미터 설정
 - ✓ optimizer = Adam Stochastic
 - ✓ batch size = 100
 - ✓ epoch = 20
 - ✓ learning rate = 0.001
 - ✓ loss function = Mean Squared Error (MSE)
- 컴퓨터 사양 (H/W)
 - ✓ CPU: 11th Gen Intel® Core(TM) i7-1165G7 @ 2.80GHz
 - ✓ RAM: 16GB
 - ✓ GPU: NVIDIA GeForce GTX 1650 12GB
- Al Framework (S/W)
 - ✓ Tensorflow 및 Keras

연구 결과 및 토의

1. 모델의 학습 곡선

작성 예정

연구 결과 및 토의

2. 제안하는 모델의 분류 성능

연구 결과 및 토의

제안하는 모델과 다른 모델의 비교

작성 예정

향후 추진 일정

1. 추진 현황

- 장애물 및 고도 데이터 생성 완료
- A* 알고리즘을 통한 경로 탐색 완료
- LSTM 모델 설계 및 초기 코드 작성 완료

2. 향후 추진 일정

- LSTM 모델 학습 완료(10월 첫째 주)
- 모델 성능 평가 및 다른 모델과의 성능 비교 미 결과 분석(10월 셋째 주)

주요 추진 내용							
수업 진행 내용							
주제 선정 및 제목 결정							
관련 연구 및 기술 조사							
연구(or 개발) 방법론 확정							
초기 실험(or 프로토타입 개발)							
실험(or 개발) 검증 및 완료							
발표자료 및 논문 작성							

	예비	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
	계획서 발표					중간 팀	중간 발표(서론~실험결과)					최종 발표(논문 및 발표자료 완성)					
									←								
																	
																-	

