Construction of Dense Lattice Packings in Prime Dimensions

Michael Angel

San Diego State University

15 May 2020

Presentation Agenda

Introduction

Background

Search for Dense Packings

Future Studies

Questions

Introduction

Background

Search for Dense Packings

Future Studies

Questions

Sphere Packing

Goal:

Find arrangements of identical spheres in \mathbb{R}^n with high density. Metrics: Proportion of total volume or density.

Example: Spheres in 2 dimensions (circles):

Applications

Various practical applications for dense sphere packings:

- ► Error correcting codes
- Channel coding with Gaussian noise
- Coding of a Rayleigh fading channel
- Stable state of crystals/quasicrystals

This thesis...

- ... algebraically constructs sphere packings.
- … proposes novel search technique based on the constructions.
- ... implements search and discovers lattices with high density in dimensions 3, 5, 7, 11 and 13.

Introduction

Background

Search for Dense Packings

Future Studies

Questions

Lattice Packings

A **lattice**, that is, a discrete subgroup of \mathbb{R}^n , can describe a sphere packing. Lattice points are sphere centers. Points can be generated

by generator matrix,
$$M = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$
 , where b_1, \dots, b_n form a basis for

 \mathbb{R}^n .

Example: 2-dimensional Lattice = $\{a_1b_1 + a_2b_2 : \forall a_1, a_2 \in \mathbb{Z}\}$

Table of Densest Known Packings:

Dimension	Center Density, δ
3*	0.17678 (lattice)
4	0.12500 (lattice)
5	0.08839 (lattice)
6	0.07217 (lattice)
7	0.06250 (lattice)
8*	0.06250 (lattice)
9	0.04419 (lattice)
10	0.03906 (non-lattice)
11	0.03516 (non-lattice)

- * Hexagonal packing and Leech lattice packing in dimensions 3 and 8 respectively are proven to be optimally dense.
- ▶ Dimensions 4, 5, 6 and 7 cannot have denser lattice packings.

Lattice Fundamental Parallelotope

Given a lattice, Λ , with basis B, the fundamental parallelotope of the lattice, $\mathcal{P}(\Lambda)$, is:

$$\{Bx \mid x \in \mathbb{R}^n, \forall i : 0 \le i < 1\}$$

The fundamental parallelotope contains the volume of one sphere.

Lattice Gram Matrix

Given a lattice with generator matrix M, the **Gram matrix**, G, of the lattice is MM^{tr} .

The **determinant** of the lattice, $det(\Lambda)$, is the square of volume of the fundamental parallelotope.

- $\operatorname{vol}(\Lambda)^2 = \det(\Lambda) = \det(G)$.
 - ▶ The density of the lattice is the volume of one sphere divided by the volume of the fundamental parallelotope
 - \triangleright Center density, δ , is the volume density divided by the volume of an *n*-dimensional unit sphere, $\frac{r^n}{\sqrt{\det(G)}}$, were *r* is the sphere radius

Lenstra-Lenstra-Lovász (LLL) Basis Reduction Algorithm

Center density calculation requires finding the shortest distance between two lattice points ("Shortest Vector Problem", NP-Complete).

The **LLL** algorithm is a relatively simple algorithm that finds a short vector in **polynomial time**. LLL theoretically returns n-dim vector within $2^{(n+1)/2}$ times the actual shortest vector. In practice the algorithm almost always produces shortest vector.

LLL Pseudocode

```
Input: b = \{b_1, b_2, ..., b_n\}
Output: reduced b
B := gram_schmidt(b)
k := 1
while k < n do:
   for j in from k-1 to 0 do:
       u_{k,j} := \frac{\langle b_k, B_j \rangle}{\langle B_k, B_i \rangle}
       if |u_{k,i}| > \frac{1}{2}:
           b_k = b_k - b_i \star u_{k,i}
           B = gram_schmidt(b)
   if \langle B_k \rangle \geq (\frac{3}{4} - (u_{k-1,k})^2) \star \langle B_{k-1} \rangle:
      k = k + 1
   else:
       swap b_k and b_{k-1}
       B = gram_schmidt(b)
       k = \max(k - 1, 1)
return b
```

LLL Python Code

```
111 reduction(basis, delta):
n = len(basis)
basis = list(map(Vector, basis))
orthogonal = gram schmidt(basis)
def mu(i: int, j: int) -> Rational:
    return orthogonal[i].proj coeff(basis[i])
k = 1
while k < n:
        mu kj = mu(k, j)
        if abs(mu kj) > 0.5:
            basis[k] = basis[k] - basis[j] * round(mu kj)
            orthogonal = gram schmidt(basis)
    if orthogonal[k].sdot() >= (delta - mu(k, k - 1) ** 2) * orthogonal[k - 1].sdot():
        k += 1
        basis[k], basis[k - 1] = basis[k - 1], basis[k]
        orthogonal = gram schmidt(basis)
        k = max(k - 1, 1)
return basis
```

Quadratic Forms

A quadratic form is a polynomial with every term having degree 2. A quadratic form can be represented with a symmetric matrix, S.

Example:

$$q(x_1, x_2) = 7x_1^2 + 6x_1x_2 + 5x_2^2 = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 7 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$
$$q(x) = xSx^{tr}, \ x = (x_1, x_2)$$

Quadratic Forms ←→ Lattices

Quadratic Form, $q \longleftrightarrow Symmetric Matrix$, S

$$q = xSx^{tr}$$

Symmetric Matrix, $S \longleftrightarrow$ Gram Matrix, G

$$S = G$$
,

(positive definite implies lattice is full rank)

Gram Matrix, $G \longleftrightarrow$ Generator Matrix, M

$$G = MM^{tr}$$

Generator Matrix, $M \longleftrightarrow Lattice$, Λ

$$\Lambda = \{aM : \forall a \in \mathbb{Z}^n\}$$

Number Field Definitions and Theorems

- Number field: a finite degree field extension of the field of rational numbers.
- ▶ The ring of integers, \mathcal{O}_K , of a number field, K, is the set of all elements in K that are roots of monic polynomials with integer coefficients.
- ▶ The ring of integers is a finitely generated \mathbb{Z} -module and thus has an **integral basis**, b_1, \ldots, b_n , where n is the degree of field extension K/\mathbb{Q} .
- ► A field extension is **abelian/cyclic** if its Galois group is abelian/cyclic.

Kronecker-Weber Theorem and Conductor

- ► Kronecker–Weber Theorem: K finite abelian number field $\Rightarrow K \subset \mathbb{Q}(\zeta_n)$, for some n, where ζ_n is an n-th root of unity.
- ▶ Conductor, f, of K is the smallest n such that $K \subset \mathbb{Q}(\zeta_n)$
- ▶ When K/\mathbb{Q} is unramified and has degree p, for prime p, the conductor f is of the form $\prod_{i=1} p_i$ for distinct primes p_i , $p_i \equiv 1 \pmod{p}$.
- When f is prime itself, f is the smallest prime such that $f \equiv 1 \pmod{p}$ and $K \subset \mathbb{Q}(\zeta_f)$.

Restrictions on Field K

Field K is a cyclic number field with degree p, where p is an odd, unramified prime in K/\mathbb{Q} . Then:

- ▶ $K \subset \mathbb{Q}(\zeta_n)$ (Kronecker–Weber Theorem);
- ► K is totally real, i.e., all of K's embeddings into C are real;
- ▶ Field Discriminant of K, disc(K), is f^{p-1} .

Trace Form of Number Field

For number field K and $\alpha \in K$ and let $\sigma_1(\alpha), \sigma_2(\alpha), \ldots, \sigma_n(\alpha)$ be the roots of the minimal polynomial of α over \mathbb{Q} . The **field trace**, $\text{Tr}_{K/\mathbb{Q}}(\alpha)$, is defined as:

$$\operatorname{Tr}_{K/\mathbb{Q}}(\alpha) = \sum_{i=1}^n \sigma_i(\alpha).$$

Note: $\mathrm{Tr}_{K/\mathbb{Q}}(\alpha)$ is always a rational number and is an integer when α is an algebraic integer.

We define the **trace form** as the map from $K \times K$ to \mathbb{Q} sending (x,y) to $\text{Tr}_{K/\mathbb{Q}}(xy)$. The trace form is a quadratic form.

Canonical Embedding (a.k.a. the Minkowski embedding)

Number field K; degree n; $\sigma_1, \sigma_2, \ldots, \sigma_n$ are n distinct embeddings into \mathbb{C} .

into
$$\mathbb{C}$$
. $\sigma_1, \sigma_2, \ldots, \sigma_{s_1}$: real $\sigma_{s_1+1}, \ldots, \sigma_n$: complex $n-s_1=2s_2$ complex embeddings paired such that $\sigma_{s_1+i}=\overline{\sigma_{s_1+s_2+i}}$ for $0\leq i\leq s_2$. The canonical embedding, σ_K , of K to \mathbb{R}^n is:

$$\sigma_{\mathcal{K}}(x) = \left(\sigma_1(x), \sigma_2(x), \dots, \sigma_{s_1}(x), \operatorname{Re}(\sigma_{s_1+1}(x)), \operatorname{Im}(\sigma_{s_1+1}(x)), \dots, \operatorname{Re}(\sigma_{s_1+s_2}(x)), \operatorname{Im}(\sigma_{s_1+s_2}(x))\right).$$

If \mathcal{M} is a \mathbb{Z} -submodule of \mathcal{O}_K of full rank, then $\sigma_K(\mathcal{M})$ is a full lattice (lattice of dimension n).

Canonical Embedding (a.k.a. the Minkowski embedding)

Call K's embeddings $\sigma_1, \sigma_2, \ldots, \sigma_n$ (all real). Let b_1, \ldots, b_n be a basis for \mathcal{O}_K . $\sigma_K(\mathcal{O}_K)$ has generator matrix:

$$M = \begin{bmatrix} \sigma_1(b_1) & \sigma_2(b_1) & \dots & \sigma_n(b_1) \\ \sigma_1(b_2) & \sigma_2(b_2) & \dots & \\ \vdots & & & \vdots \\ \sigma_1(b_n) & \dots & & \sigma_n(b_n) \end{bmatrix}$$

The Gram matrix, $G = MM^{tr}$, has (i,j) entry $\mathrm{Tr}_{K/\mathbb{Q}}(b_ib_j)$, and thus the Gram matrix of $\sigma_K(\mathcal{O}_K)$ is the symmetric matrix of the trace form of K, $\mathrm{Tr}_{K/\mathbb{Q}}(x^2)$, for $x \in \mathcal{O}_K$.

Center Density of $\sigma_K(\mathcal{O}_K)$

$$\delta(\sigma_K(\mathcal{O}_K)) = \frac{d^p}{2^p \text{vol}(\sigma_K(\mathcal{O}_K))} = \frac{d^p}{2^p \sqrt{|\mathsf{disc}(K)|}} = \frac{d^p}{2^p f^{\frac{p-1}{2}}}$$

G: Gram matrix of $\sigma_K(\mathcal{O}_K)$ d: shortest distance between lattice points in $\sigma_K(\mathcal{O}_K)$ Introduction

Background

Search for Dense Packings

Future Studies

Questions

Trace Form

K: Cyclic number field with degree p, an odd, unramified prime in K/\mathbb{Q} .

f: Conductor of K

$$L = \mathbb{Q}(\zeta_f)$$

Let θ be a generator of $\operatorname{Gal}(K/\mathbb{Q})$, and $t=\operatorname{Tr}_{L/K}(\zeta_f)$,

K has integral basis $\{t, \theta(t), \cdots, \theta^{p-1}(t)\}\$,

Let $x \in \mathcal{O}_K$, $x = \sum_{i=0}^{p-1} a_i \theta^i(t)$, then:

$$\operatorname{Tr}_{K/\mathbb{Q}}(x^2)|_{\mathcal{O}_K} = f \cdot \left(\sum_{i=0}^{p-1} a_i^2\right) - \frac{f-1}{p} \left(\sum_{i=0}^{p-1} a_i\right)^2$$

[E. L. d. Oliveira, J. C. Interlando, T. P. da Nóbrega Neto, and J. O. D. Lopes, *The integral trace form of cyclic extensions of odd prime degree*, Rocky Mountain Journal of Mathematics, 47 (2017), pp. 1075–1088.]

Submodules Defined By Linear Transformation Matrix, T

T: Matrix with rank p (full rank) and p-columns

Gram Matrix

 \mathcal{M} : Submodule of $\mathcal{O}_{\mathcal{K}}$ characterized by T

Lattice

d: Minimum distance between lattice points

	Gram magnix	20 20
$\sigma_K(\mathcal{O}_K)$	$G = SymmMat(Tr_{K/\mathbb{Q}}(x^2) _{\mathcal{O}_K})$	$\delta(\sigma_{\mathcal{K}}(\mathcal{O}_{\mathcal{K}})) = rac{d^{ ho}}{2^{ ho_f} rac{ ho-1}{2}}$
$\sigma_{\mathcal{K}}(\mathcal{M})$	TGT ^{tr}	$\delta(\sigma_{\mathcal{K}}(\mathcal{M})) = rac{d^p}{2^p f^{rac{p-1}{2}}[\mathcal{O}_{\mathcal{K}}:\mathcal{M}]}$

Center Density (δ)

Definition of \mathcal{M}_H

$$H := \begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & \zeta & \zeta^2 & \zeta^3 & \dots & \zeta^{(p-1)} \\ 1 & \zeta^2 & \zeta^4 & \zeta^6 & \dots & \zeta^{2(p-1)} \\ \vdots & & & & & \\ 1 & \zeta^{\frac{(p-1)}{2}} & \zeta^{2\frac{(p-1)}{2}} & \zeta^{3\frac{(p-1)}{2}} & \dots & \zeta^{(p-1)\frac{(p-1)}{2}} \end{bmatrix}$$

Given $(a_0, ..., a_{p-1}) \in \mathbb{Z}^n$, $\{t, \theta(t), \cdots, \theta^{p-1}(t)\}$: integral basis of \mathcal{O}_K , submodule $\mathcal{M} \subset \mathcal{O}_K$ is defined as:

$$\mathcal{M}_H = \{a_0t + a_1\theta(t) + \dots + a_{p-1}\theta^{p-1}(t) \in \mathcal{O}_K :$$

$$(a_0, \dots, a_{p-1})H^{tr} \equiv (0, \dots, 0) \pmod{f}\}.$$

The rows of H represent congrunces mod f.

Transformation T defined by H

The rows of H represent congrunces mod f.

 $T := \text{first } p \text{ columns of kernel}(t), \text{ where } t := \lceil H \mid f \cdot Id \rceil$

 TGT^{tr} is the Gram matrix of $\sigma_K(\mathcal{M}_H)$.

Why $\sigma_K(\mathcal{M}_H)$?

$$[\mathcal{O}_{K}:\mathcal{M}_{H}] = f^{\frac{p+1}{2}}.$$

$$\Rightarrow \delta(\sigma_{K}(\mathcal{M}_{H})) = \frac{d^{p}}{2^{p}f^{\frac{p-1}{2}}[\mathcal{O}_{K}:\mathcal{M}_{H}]} = \frac{d^{p}}{2^{p}f^{p}}.$$

$$K/\mathbb{Q}$$
 totally real \Rightarrow

$$d = \sqrt{\min(\mathsf{Tr}_{K/\mathbb{Q}}(x^2))}$$

This thesis proves that for $\sigma_K(\mathcal{M}_H)$, f divides $d \Rightarrow d = f\sqrt{d_2}$, for some integer d_2 .

$$\delta(\sigma_K(\mathcal{M}_H)) = \frac{\sqrt{d_2}^p}{2^p}$$

Search Strategy

H has $\frac{p+1}{2}$ rows of congruences mod *f*.

Consider additional congruences. A congruence mod m, will add a factor of m to the index of the submodule.

Let \mathcal{M} be a submodule defined by the congruences of H as well as additional congruences. Let i be the product of additional index factors from additional congruences and we have:

$$\delta(\mathcal{M}) = \frac{\sqrt{d_2}^p}{2^p i}$$

Overview of Search

$$\delta = \frac{\sqrt{d_2}^p}{2^p i}$$

- 1. Fix δ (target density).
- 2. Determine an *i* that yields the target density.
- 3. Test submodules that have additional index factor i

Example, Dimension 5

p=5 Fix $\delta=\frac{1}{8\sqrt{2}}$, the highest possible density for dimension 5.

$$\delta = \frac{1}{8\sqrt{2}} = \frac{\sqrt{d_2}^5}{2^5 i} \Rightarrow d^5 = 2^3 i^2$$

 $i = 2^1, d = 2^1$ satisfies the equality.

Index factor i has one factor of 2, therefore look for a lattice with center density $\frac{1}{8\sqrt{2}}$ by considering submodules constructed with the congruences of H as well as one additional congruence modulo 2: $J = \begin{bmatrix} X & X & X & X \end{bmatrix}$, where X = 0 or 1.

Use matrices H and J to construct a lattice, for all possible J's. Calculate the density of all 2^5 lattices.

Example, Dimension 7

$$p = 7$$

 $\delta = \frac{1}{2^4} = \frac{\sqrt{d^7}}{2^7 i} \Rightarrow d^7 = 2^6 i^2$

 $i = 2^4$ satisfies the equality.

Index factor *i* has 4 factors of 2, therefore look for a lattice with center density $\frac{1}{2^4}$ by considering 4 additional congruences modulo 2:

Size of the search space is 2^{28} lattices.

Search Implementation: Algorithm

```
Input: p, f, m, search_size
Output: search size many densities, d
zeta := find_primitive_root(p, f)
h := make h(zeta, p)
h = m * h
g := symmetric_matrix_of_trace_form(p)
i := 0
while i < search size:
  j := make search matrix(i)
  j = f * j
  t := h.concatenate(j)
  t = augment_identity_times_factor(t, f*m)
  n := get_nullspace(t)
  n = n.matrix_from_columns(p)
  gram_matrix := n*g*n.transpose()
  d := get_density(gram_matrix)
  print(d)
  i = i + 1
```

github.com/mike006322/LatticePackings

```
def main():
   name = 'search dim 5'
   data filename = 'search data/' + name + '.txt'
   p = 5 # prime dimension
   f = 11 # conductor
   m = 2
   zeta = find primitive root(p, f)
   h = m * make h(zeta, p)
   g = matrix(DIM 5 TR SYM MATRIX)
   for i in range(2 ** 5):
       j = f * make search matrix(i)
       t = h.concatenate(j)
       t = augment identity times factor(t, f*m)
       t = matrix(t) # make t a SAGE matrix
       n = get nullspace(t)
       n = n.matrix from columns(range(p)) # SAGE specific.
       gram_matrix = n * g * n.transpose()
       d = get density(gram matrix)
        add to file(str(d), data filename)
```

Search Implementation

Mathematical Computation Requirements:

- ► Number Class (Floating point or infinite precision)
- Matrix Class (w/ Concatenation, Transpose, etc)
- Matrix Multiplication
- ► Get Matrix Nullspace
- Lattice Class
- ► Get Lattice Density
- Basis Reduction Algorithm (LLL)

Search Implementation

LLL Basis Reduction

- ► LLL original implemented in Python (slow)
- ➤ SAGE LLL using floating point algorithm, fplll, open source, C++ package at github.com/fplll/fplll
- MAGMA using floating point Nguyen and Stehlé LLL implementation

Introduction

Background

Search for Dense Packings

Future Studies

Questions

Higher Dimensions: Exponential Growth in Search Size

- ► Search size for $\delta = \frac{1}{8\sqrt{2}}$ in dimension 5: 2^5 lattices
- ▶ Search size for $\delta = \frac{1}{16}$ in dimension 7: 2^{21} lattices
- ▶ Search size for $\delta = \frac{1}{32}$ in dimension 11: 2^{24} lattices
- ▶ Search size for $\delta = \frac{1}{32}$ in dimension 13: 2^{32} lattices

Implementation For Non-binary Search Matrix Entries

Example: Search for $\delta = \frac{1}{18\sqrt{3}}$ in 11 Dimensions:

 $i = 2 \cdot 3^8$

Maintain explicit order for progress tracking, multi-processing

Utilize Equivalence Classes

Search matrices J_1 and J_2 yield lattices with same density if they have the same rows or columns but permuted.

Accounting for this, we can reduce the size of the search space by a factorial factor.

Introduction

Background

Search for Dense Packings

Future Studies

Questions