The Chemical Homogeneity of Sun-like Stars in the Solar Neighborhood

Megan Bedell

Flatiron Institute

with collaborators: Jorge Melendez, Jacob Bean, Lorenzo Spina, Ivan Ramirez, Martin Asplund, Alan Alves-Brito, Leonardo dos Santos, Stefan Dreizler, David Yong, TalaWanda Monroe, Luca Casagrande

HARPS Solar Twin Planet Search

5 years, 100 nights, 68 stars P.I. Jorge Melendez

Coadded spectra: median SNR ~ **1000** pix⁻¹ @ 600nm

Exoplanets: see Bedell+2015; Melendez, Bedell+2016

The limiting factor in a high-resolution, high-SNR spectroscopic abundance analysis is not in the data but in the stellar models employed.

We can side-step this problem with twin stars* and achieve 0.01 dex or 2% precision on abundances (a factor of 5 better than a typical spectroscopic analysis!)

* Typical definition of a "twin": ΔTeff ≤ 100 K, Δlog(g) ≤ 0.1 dex, Δ[Fe/H] ≤ 0.1 dex

Bedell+2018, arxiv:1802.02576

What is the dimensionality of abundance space?

What is the dimensionality of abundance space?

How do age & composition relate to kinematics?

Beane, Ness, & Bedell arxiv:1807.05986

Galactic chemical Chemical tagging prospects evolution 79 stars 30 elemental abundances 0.01 dex precision Elemental age-dating Nucleosynthetič yields

EXTRA SLIDES

How do these data constrain galactic evolution models?

With Jan Rybizki (very preliminary work):

