

TensorFlow Graph Optimizations

Rasmus Munk Larsen rmlarsen@google.com

Tatiana Shpeisman shpeisman@google.com

Presenting the work of many people at Google & open source contributors

TensorFlow

http://tensorflow.org/

and

https://github.com/tensorflow/tensorflow

Open, standard software for general machine learning

Great for Deep Learning in particular

First released Nov 2015

Apache 2.0 license

Powers many Google products

TensorFlow Graph concepts

- TensorFlow (v1.x) programs generate a DataFlow (directed, multi-) Graph
 - Device independent intermediate program representation
 - TensorFlow v2.x uses a mix of imperative (**Eager**) execution mode and graphs functions
- Graph nodes represent operations "Ops" (Add, MatMul, Conv2D, ...)
 - Abstract device-, execution backend-, and language independent API
 - Implemented by Op Kernels written in C++, specialized on <Type, Device>
- Graph edges represent "data" flowing between ops
 - Tensors (ref-counted, n-dimensional array buffers in device memory)
 - Control dependencies: A->B means A must finish before B can run
 - Resource handles to state (e.g. variables, input data pipelines)

Graph example: The Inception Architecture (2014)

Going Deeper with Convolutions

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich

Graph example: The Transformer

Output **Probabilities**

(shifted right)

Attention Is All You Need (arXiv 2017)

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin

Grappler

Grappler: Grappling with TF Graphs

- Grappler: Default graph optimization system in the TF runtime
 - Re-writes graphs to improve out-of-the-box TensorFlow performance
 - Provides a plugin infrastructure to register custom optimizers/rewriters
- Main goals:
 - Automatically improve TF performance through graph simplifications & high-level optimizations that benefit most target HW architectures (CPU/GPU/TPU/mobile etc.)
 - Reduce device peak memory usage to enable larger models to run
 - Improve hardware utilization by optimizing the mapping of graph nodes to compute resources
- Provides cost models to drive optimization and help diagnose model performance

Grappler: TensorFlow Context

Why transformations at the graph level?

• Pros:

- Many optimizations can be easier to discover and express as high-level graph transformations
 - Example: Matmul(Transpose(x), y) => Matmul(x,y, transpose_x=True)
- Graph is backend independent (TF runtime, XLA, TensorRT, TensorFlow.js, ...)
- Interoperable with TensorFlow supported languages (protocol buffer format)
- Optimizations can be applied at runtime or offline using our standalone tool
- Lots of <u>existing models</u> (TF Hub, Google production models) available for learning
- o Pragmatic: Helps the most existing TensorFlow users get better "out-of-the-box" performance

Cons:

- Rewrites can be tricky to implement correctly, because of loosely defined graph semantics
 - In-place ops, side-effects, control flow, control dependencies
- Protocol buffer dependence increases binary size
- Currently requires extra graph format conversions in TF runtime

Examples of Graph Simplifications

- Graph minimization and canonicalization
 - Redundant computation removal through constant folding, CSE, redundant control edge removal by transitive reduction on graph
 - Whole graph analysis to identify and remove hidden identity and other unnecessary ops (e.g. shuffling a Tensor of size 1 or reductions along empty set of dimensions are identity ops)
- Algebraic simplifications
 - Take advantage of commutativity, associativity, and distributivity to simplify computations
 - Example: A+2*B+2*C+Identity(A) => 2*A+2*B+2*C => 2*AddN(A,B,C)
- Synergy: Each optimization builds upon the previous ones
- Graph optimizers at https://github.com/tensorflow/tensorflow/tensorflow/tree/master/tensorflow/core/grappler/optimizers

Graph Simplifications

MetaOptimizer

- Top-level driver invoked by runtime or <u>standalone tool</u>
- Controlled by <u>RewriterConfig</u> in TF <u>Config</u>
- Runs multiple sub-optimizers in a loop: (* = not on by default):

```
i = 0
while i < config.meta optimizer iterations (default=2):
   Pruning () # Remove nodes not in fanin of outputs, unused functions
   Function () # Function specialization & inlining, symbolic gradient inlining
   DebugStripper () * # Remove assert, print, check_numerics
   ConstFold () # Constant folding and materialization
            # Symbolic shape arithmetic
   Shape ()
   Remapper () # Op fusion
   Arithmetic () # Node deduping (CSE) & arithmetic simplification
   if i==0: Layout() # Layout optimization for GPU
   if i==0: Memory() # Swap-out/Swap-in, Recompute*, split large nodes
                       # Loop Invariant Node Motion*, Stack Push & Dead Node Elimination
   Loop()
                       # Prune/optimize control edges, NoOp/Identity node pruning
   Dependency ()
                        # Run registered custom optimizers (e.g. TensorRT)
   Custom()
   i += 1
```

Constant folding optimizer

```
do:
    InferShapesStatically() # Fixed-point iteration with symbolic shapes
    graph_changed = MaterializeConstants() # grad broadcast, reduction dims
    q = NodesWithKnownInputs()
    while not q.empty():
        node = q.pop()
        graph_changed |= FoldGraph(node, &q) # Evaluate node on host
        graph_changed |= SimplifyGraph()
    while graph_changed
```

Constant folding optimizer: SimplifyGraph ()

- Removes trivial ops, e.g. identity Reshape, Transpose of 1-d tensors, Slice(x) = x, etc.
- Rewrites that enable further constant folding, e.g.
 - Constant propagation through Enter
 - Switch(pred=x, value=x) => propagate False through port0, True through port1
 - Partial constant propagation through IdentityN
- Arithmetic rewrites that rely on known shapes or inputs, e.g.
 - Constant push-down:

 - ConvND(c1 * x, c2) => ConvND(x, c1 * c2)
 - Partial constfold:
 - AddN(c1, x, c2, y) => AddN(c1 + c2, x, y),
 - Operations with neutral & absorbing elements:
 - x * Ones(s) => Identity(x), if shape(x) == output_shape
 - $\mathbf{x} * \mathsf{Ones}(s) \Rightarrow \mathsf{BroadcastTo}(x, \mathsf{Shape}(s)), \text{ if } \mathsf{shape}(s) == \mathsf{output_shape}$
 - Same for x + Zeros(s), x / Ones(s), x * Zeros(s) etc.
 - $Zeros(s) y \Rightarrow Neg(y)$, if $shape(y) == output_shape$
 - Ones(s) / y => Recip(y) if shape(y) == output_shape

Arithmetic optimizer

- 1. Node deduplication (common subexpression elimination)
- 2. Arithmetic simplifications & optimizations

```
DedupComputations():
    do:
      stop = true
      UniqueNodes reps
      for node in graph.nodes():
        rep = reps.FindOrInsert (node, IsCommutative (node))
        if rep == node or !SafeToDedup (node, rep):
          continue
        for fanout in node.fanout():
           ReplaceInputs (fanout, node, rep)
        stop = false
    while !stop
```

Arithmetic optimizer:

- Arithmetic simplifications
 - Flattening: a+b+c+d => AddN(a, b, c, d)
 - O Hoisting: AddN(x * a, b * x, x * c) => x * AddN(a+b+c)
 - Simplification to reduce number of nodes:
 - Numeric: x+x+x => 3*x
 - Logic: !(x > y) => x <= y
- Broadcast minimization
 - Example: (matrix1 + scalar1) + (matrix2 + scalar2) => (matrix1 + matrix2) + (scalar1 + scalar2)
- Better use of intrinsics
 - Matmul(Transpose(x), y) => Matmul(x, y, transpose_x=True)
- Remove redundant ops or op pairs
 - Transpose(Transpose(x, perm), inverse_perm)
 - BitCast(BitCast(x, dtype1), dtype2) => BitCast(x, dtype2)
 - Pairs of elementwise involutions f(f(x)) => x (Neg, Conj, Reciprocal, LogicalNot)
 - \circ Repeated Idempotent ops $f(f(x)) \Rightarrow f(x)$ (DeepCopy, Identity, CheckNumerics...)
- Hoist chains of unary ops at Concat/Split/SplitV
 - $= \operatorname{Concat}([\operatorname{Exp}(\operatorname{Cos}(x)), \operatorname{Exp}(\operatorname{Cos}(y)), \operatorname{Exp}(\operatorname{Cos}(z))]) => \operatorname{Exp}(\operatorname{Cos}(\operatorname{Concat}([x, y, z])))$
 - $(Exp(Cos(y)) for y in Split(x)] => Split(Exp(Cos(x), num_splits))$

Example: Original graph with all ops in NHWC format

Phase 1: Expand by inserting conversion pairs

Phase 2: Collapse adjacent conversion pairs

Remapper optimizer: Op fusion

- Replaces commonly occurring subgraphs with optimized fused "monolithic" kernels
 - Examples of patterns fused:
 - Conv2D + BiasAdd + <Activation>
 - Conv2D + FusedBatchNorm + <Activation>
 - Conv2D + Squeeze + BiasAdd
 - MatMul + BiasAdd + <Activation>
- Fusing ops together provides several performance advantages:
 - Completely eliminates Op scheduling overhead (big win for cheap ops)
 - Increases opportunities for ILP, vectorization etc.
 - Improves temporal and spatial locality of data access
 - E.g. MatMul is computed block-wise and bias and activation function can be applied while data is still "hot" in cache.
- A separate mechanism allows the TensorFlow compiler to cluster subgraphs and generate fused kernel code on-the-fly

Memory optimizer

- Memory optimization based on abstract interpretation
 - Swap-out / Swap-in optimization
 - Reduces device memory usage by swapping to host memory
 - Uses memory cost model to estimate peak memory
 - Uses op cost model to schedule Swap-In at (roughly) the right time
 - Enables models for Waymo, Cerebra mobilenet
 - Recomputation optimization (not on by default)
- Rewrites large aggregation nodes to fit in device memory
- Allocator constraint relaxation
 - Fixes 2x memory peak bug and removes explicit copy in AssignOp
 - Adds more opportunities for buffer forwarding in TF runtime

Peak Memory Characterization

Swapping

Recomputation

Control Flow Optimizer

- Loop Invariant Node Motion
 - Contributed by Alibaba TensorFlow team
 - Hoists loop-invariant subgraphs out of loops
 - Not enabled by default
- StackPush removal
 - Remove StackPushes without consumers
 - No matching StackPop or matching StackPop with no consumers
- Dead Branch Elimination for Switch with constant predicate
- Deduce loop trip count statically
 - Remove loop for zero trip count
 - Remove control flow nodes for trip count == 1

Dependency Optimizer

- 1. Whole-graph optimization: Removal of redundant control edges through *transitive reduction*
- 2. Conversion of nodes bypassed by other optimizations to NoOp
- 3. Pruning of NoOp and Identity nodes
- 4. Consolidation of cross-device control edges

Dependency Optimizer: Transitive Reduction

A control edge is redundant iff there exists a path of length > 1 from () to ().

Algorithm:

- 1. Sort nodes topologically after removing back-edges in loops
- 2. For each :
 - a. Compute longest paths in DAG for nodes up to max(topo_index(___))
 - b. Discard control edges to with distance > 1

Step 2 has O(N*(M+N)) worst case complexity. Very fast in practice: **26ms** on InceptionV3.

Grappler: Performance Results

Results: InceptionV3

	Nodes	Edges
Iteration 1	-55.9%	-48.0%
Iteration 2	-3.7%	-0.5%
Total	-59.6%	-48.6%

Performance gains:

- 43% step time reduction w/o fused batch norm
- 9% step time reduction w/o fused batch norm
- 26% step time reduction w/ fused batch norm
 - No significant gains on CPU w/ fused batch norm

Results: InceptionV3 graph size reduction

Note: The arithmetic optimizer often temporarily grows the graph by leaving behind by-passed nodes with only control outputs. They are subsequently pruned by the dependency optimizer.

Results: Transformer seq2seq model

	Nodes	Edges
Iteration 1	-53.5%	-34.0%
Iteration 2	-1.4%	-1.3%
Total	-54.9%	-35.2%

Performance gains:

- 17.5% step time reduction on GPU
- 16.2% step time reduction on CPU

Results: Grappler runtime on Transformer model

	Walltime	
Iteration 1	15.6s	
Iteration 2	5.9s	
Total	21.5s	

Results: TensorFlow.js inference

- Inference in Javascript with WebGL acceleration
- Grappler optimizations improve
 - Graph size
 - Inference speed
 - Time needed for kernel compilation

	Size reduction (#nodes)	Compilation time	Inference time
SqueezeNetV1.1	9.6 % (177->160)	0.0 % (800ms)	26.3 % (95ms->70ms)
MobileNetV1	64.1 % (555->199)	11.1% (900ms->800ms)	41.2 % (85ms->50ms)
InceptionV4	58.1% (2613->1096)	52.0 % (5000ms->2400ms)	8.3 % (1200ms->1100ms)

Google

Results: Step time improvements

Performance measured on GPU

Results only include optimizations that are turned on by default

Improvements from Graph Optimizations

Improved HW Utilization Through ML Placement

Placer Spreads The Compute Load

Model: NMT with 4 layers

Hardware: 4 K40 GPUS, 1 Haswell CPU

Performance improved by **2.4x**

Performance Evaluation Techniques

Measurement

- Outliers filtering: warmup + robust statistics
- Captures all the side effects: memory fragmentation, cache pollution, ...
- Fairly slow and requires access to input data

Simulation

- Per op cost based on roofline estimates
- Propagation based on plausible schedule
- Fast but optimistic and requires robust shape inference

Simulation vs Measurement

Distributed BNMT Step Time Comparison

MLIR: A Compiler Infrastructure for the End of Moore's Law

The TensorFlow compiler ecosystem

Many "Graph" IRs, each with challenges:

- Similar-but-different proprietary technologies: not going away anytime soon
- Fragile, poor UI when failures happen: e.g. poor/no location info, or even crashes
- Duplication of infrastructure at all levels

Goal: Global improvements to TensorFlow infrastructure

SSA-based designs to generalize and improve ML "graphs":

- Better side effect modeling and control flow representation
- Improve generality of the lowering passes
- Dramatically increase code reuse
- Fix location tracking and other pervasive issues for better user experience

No reasonable existing answers!

... and we refuse to copy and paste SSA-based optimizers 6 more times!

Quick Tour of MLIR: Multi-Level IR

Also: Mid Level,

Moore's Law,

Multidimensional Loop,

Machine Learning,

•••

Many similarities to LLVM

- SSA, typed, three address
- Module/Function/Block/Operation structure
- Round trippable textual form
- Syntactically similar:

```
func @testFunction(%arg0: i32) {
    %x = call @thingToCall(%arg0) : (i32) -> i32
    br ^bb1

^bb1:
    %y = addi %x, %x : i32
    return %y : i32
}
```


MLIR Type System - some examples

Scalars:

• f16, bf16, f32, ... i1, i8, i16, i32, ... i3, i4, i7, i57, ...

Vectors:

vector<4 x f32> vector<4x4 x f16> etc.

Tensors, including dynamic shape and rank:

tensor<4x4 x f32> tensor<4x?x?x17x? x f32> tensor<* x f32>

Others: functions, memory buffers, quantized integers, other TensorFlow stuff, ...

Extensible!!

MLIR Operations: an open ecosystem

No fixed / builtin list of globally known operations:

- No "instruction" vs "target-indep intrinsic" vs "target-dep intrinsic" distinction
 - Why is "add" an instruction but "add with overflow" an intrinsic in LLVM?

Passes are expected to conservatively handle unknown ops:

• just like LLVM does with unknown intrinsics

```
func @testFunction(%arg0: i32) -> i32 {
    %x = "any_unknown_operation_here"(%arg0, %arg0) : (i32, i32) -> i32
    %y = "my_increment"(%x) : (i32) -> i32
    return %y : i32
}
```


Capabilities of MLIR Operations

Operations always have: **opcode** and source **location** info Instructions may have:

- Arbitrary number of SSA results and operands
- Attributes: guaranteed constant values
- **Block operands**: e.g. for branch instructions
- **Regions**: discussed in later slide
- Custom printing/parsing or use the more verbose generic syntax

```
%2 = dim %1, 1 : tensor<1024x? x f32>
```

Dimension to extract is guaranteed integer constant, an "attribute"

```
%x = alloc() : memref<1024x64 x f32>
%y = load %x[%a, %b] : memref<1024x64 x f32>
```


Complicated TensorFlow Example

Complicated TensorFlow Example: Inputs

→ Input SSA values and corresponding type info

Complicated TensorFlow Example: Results

- → This op produces five results
- → Each result can be used independently with # syntax
- → No "tuple extracts" get in the way of transformations

Complicated TensorFlow Example: Attributes

- → Named attributes
- → "NHWC" is a constant, static entity, not an SSA value
- → Similar to "immarg", but much richer vocabulary of constants

Extensible Operations Allow Multi-Level IR

```
Lowering
  LLVM IR - %f = llvm.add %a, %b : !llvm.float
```

Also: TF-Lite, Core ML, other frontends, etc ...

Don't we end up with the JSON of compiler IRs????

MLIR "Dialects": Families of defined operations

Example Dialects:

- TensorFlow, LLVM IR, XLA HLO, TF Lite, Swift SIL...

Dialects can define:

- Sets of defined operations
- Entirely custom type system
- Customization hooks constant folding, decoding ...

Operation can define:

- Invariants on # operands, results, attributes, etc
- Custom parser, printer, verifier, ...
- Constant folding, canonicalization patterns, ...

Nested Regions

```
%2 = xla.fusion (%0 : tensor<f32>, %1 : tensor<f32>) : tensor<f32> {
^bb0(%a0 : tensor<f32>, %a1 : tensor<f32>):
  %x0 = xla.add %a0, %a1 : tensor<f32>
  %x1 = xla.relu %x0 : tensor<f32>
  return %x1
%7 = tf.If(%arg0 : tensor<i1>, %arg1 : tensor<2xf32>) -> tensor<2xf32> {
  ... "then" code...
  return ...
} else {
  ... "else" code...
  return ...
```

→ Functional control flow, XLA fusion node, closures/lambdas, parallelism abstractions like OpenMP, etc.

MLIR: Infrastructure

Declarative Op definitions: TensorFlow LeakyRelu

- Specified using TableGen
 - LLVM Data modelling language
- Dialect can create own hierarchies
 - "tf.LeakyRelu" is a "TensorFlow unary op"
- Specify op properties (open ended)
 - o e.g. side-effect free, commutative, ...
- Name input and output operands
 - Named accessors created
- Document along with the op
- Define optimization & semantics

```
def TF_LeakyReluOp : TF_UnaryOp<"LeakyRelu",</pre>
                      [NoSideEffect, SameValueType]>,
                     Results<(outs TF_Tensor:$output)> {
  let arguments = (ins
    TF_FloatTensor:$value.
    DefaultValuedAttr<F32Attr, "0.2">:$alpha
  );
  let summary = "Leaky ReLU operator";
  let description = [{
    The Leaky ReLU operation takes a tensor and returns
    a new tensor element-wise as follows:
      LeakyRelu(x) = x
                                if x >= 0
                   = alpha*x
                                else
  }];
  let constantFolding = ...;
  let canonicalizer = ...;
  let referenceImplementation = ...;
```


Generated documentation

tf.LeakyRelu (TF::LeakyReluOp)

Leaky ReLU operator

Description:

The Leaky ReLU operation takes a tensor and returns a new tensor element-wise as follows:

Operands:

1. value: tensor of floating-point values

Attributes:

Attribute	MLIR Type	Description
alpha	FloatAttr	32-bit float attribute
т	Attribute	derived attribute

Results:

1. output: tensor of tf.dtype values

Generated C++ Code

- C++ class TF::LeakyReluOp
- Typed accessors:
 - value() and alpha()
- IRBuilder constructor
 - o builder->create<LeakyReluOp>(loc, ...)
- Verify function
 - Check number of operands, type of operands, compatibility of operands
 - Xforms can assume valid input!

```
namespace TF {
class LeakyReluOp
    : public Op<LeakyReluOp,
                OpTrait::OneResult,
                OpTrait::HasNoSideEffect,
                OpTrait::SameOperandsAndResultType,
                OpTrait::OneOperand> {
 public:
  static StringRef getOperationName() {
    return "tf.LeakyRelu";
  };
  Value *value() { ... }
 APFloat alpha() { ... }
  static void build(...) { ... }
  bool verify() const {
    if (...) return emitOpError(
        "requires 32-bit float attribute 'alpha'");
    return false:
```

Specify simple patterns simply

```
def : Pat<(TF_SqueezeOp StaticShapeTensor:$arg), (TFL_ReshapeOp $arg)>;
```

- Support M-N patterns
- Support constraints on Operations, Operands and Attributes
- Support specifying dynamic predicates
 - Similar to "Fast and Flexible Instruction Selection With Constraints", CC18
- Support manually written rewrites in C++
 - Always a long tail, don't make the common case hard for the tail!

Goal: Declarative, reduces boilerplate, easy to express for all

Passes, Walkers, Pattern Matchers

 Additionally module/function passes, function passes, utility matching functions, nested loop matchers ...

```
struct Vectorize : public FunctionPass<Vectorize> {
  void runOnFunction() override;
};
```

```
f->walk([&](Operation *op) {
   process(op);
});
```

```
...
if (matchPattern(getOperand(1), m_Zero()))
  return getOperand(0);
...
```


mlir-opt

- Similar to LLVM's opt: a tool for testing compiler passes
- Every compiler transformation is unit testable:
 - Including verification logic, without dependence on earlier passes
 - Policy: every behavior changing commit includes a test case

Integrated Source Location Tracking

API requires location information on each operation:

- File/line/column, op fusion, op fission
- "Unknown" is allowed, but discouraged and must be explicit.

Easy for passes to emit structured diagnostics:

```
$ cat test/Transforms/memref-dependence-check.mlir

// Actual test is much longer...

func @test() {
    %0 = alloc() : memref<100xf32>
    affine.for %i0 = 0 to 10 {
      %1 = load %0[%i0] : memref<100xf32>
      store %1, %0[%i0] : memref<100xf32>
    }
    return
}
```

Location Tracking: Great for Testing!

Test suite uses -verify mode just like Clang/Swift diagnostic test:

Test analysis passes directly, instead of through optimizations that use them!

```
// RUN: mlir-opt %s -memref-dependence-check -verify
func @test() {
    %0 = alloc() : memref<100xf32>
    affine.for %i0 = 0 to 10 {

        // expected-note @+1 {{dependence from 0 to 1 at depth 2 = true}}
    %1 = load %0[%i0] : memref<100xf32>
        store %1, %0[%i0] : memref<100xf32>
    }
}
```

mlir-translate - test data structure translations

- The actual lowerings and abstraction changes happen within MLIR
 - Progressive lowering of ops within same IR!
 - Leverage all the infra built for other transformations
- Decouple function/graph transformations from format change
 - Principle: Keep format transformations simple/direct/trivially testable & correct
 - ~> Target dialect represents external target closely
- But what about codegen via LLVM ... ?

LLVM IR Dialect: Directly use LLVM for CodeGen

- LLVM optimization and codegen is great at the C level abstraction
- Directly uses the LLVM type system:

```
!llvm<"{ i32, double, i32 }">
```

Code lowered to LLVM dialect

MLIR: Use within TensorFlow

The TensorFlow compiler ecosystem

TensorFlow ecosystem is complicated, TensorFlow team plan:

- Incrementally move graph transformations to MLIR
- Unify interfaces to external code generators
- Provide easier support for first-class integration of codegen algorithms

TensorFlow Lite Converter

- TensorFlow to TensorFlow Lite converter
 - Two different graph representations
 - Different set of ops & types
 - Different constraints/targets
- Overlapping goals with regular compilation
 - Edge devices also can have accelerators (or a multitude of them!)
 - Same lowering path, expressed as rewrite patterns
- MLIR's pluggable type system simplifies transforms & expressibility
 - Quantized types is a first class citizen in dialect

Old "TOCO" User Experience

```
F0122 11:20:14.691357 27738 import_tensorflow.cc:2549] Check failed: status.ok()
Unexpected value for attribute 'data_format'. Expected 'NHWC'
*** Check failure stack trace: ***
         0x5557b0ac3e78 base_logging::LogMessage::SendToLog()
         0x5557b0ac46c2 base_logging::LogMessage::Flush()
         0x5557b0ac6665 base_logging::LogMessageFatal::~LogMessageFatal()
         0x5557af51e22b toco::ImportTensorFlowGraphDef()
         0x5557af51f60c toco::ImportTensorFlowGraphDef()
         0x5557af4ac679 main
         0x7f7fa2057bbd __libc_start_main
         0x5557af4ac369 start
*** SIGABRT received by PID 27738 (TID 27738) from PID 27738; ***
F0122 11:20:14.691357 27738 import_tensorflow.cc:2549] Check failed: status.ok()
Unexpected value for attribute 'data_format'. Expected 'NHWC'
E0122 11:20:14.881460 27738 process_state.cc:689 RAW: Raising signal 6 with default
behavior
Aborted
```


Improved User Experience


```
node "MobilenetV1/MobilenetV1/Conv2d_0/Conv2D" defined
    at 'convolution2d'(third_party/tensorflow/contrib/layers/python/layers/layers.py:1156):
        conv_dims=2)
    at 'func_with_args'(third_party/tensorflow/contrib/framework/python/ops/arg_scope.py:182):
        return func(*args, **current_args)
    at 'mobilenet_base'(third_party/tensorflow_models/slim/nets/mobilenet/mobilenet.py:278):
        net = opdef.op(net, **params)
        ...
        at 'network_fn'(resnet/nets_factory.py:93):
            return func(images, num_classes, is_training=is_training, **kwargs)
        at 'build_model'(resnet/train_experiment.py:165):
            inputs, depth_multiplier=FLAGS.depth_multiplier)
        ...
    error: 'tf.Conv2D' op requires data_format attribute to be either 'NHWC' or 'NCHW'
Failed to run transformation: tf-raise-control-flow
```


New TensorFlow Compiler Bridge

- Interop between TensorFlow and XLA
 - Consists of rewrite passes and transformation to XLA
- Large part is expanding subset of TensorFlow ops to XLA HLO
 - Many 1-M patterns
 - Simple to express as DAG-to-DAG patterns
- XLA targets from multi-node machines to edge devices
 - Not as distinct from TensorFlow Lite

Not just XLA: Custom Compiler Backends

- Other compilers can be integrated using the same framework
 - Dialect defines operations and types
 - Pattern rewrites specify transformation rules
- Custom pipelines can reuse existing components
 - Translate from TensorFlow or XLA dialect
 - Optimize graph before translation

Tensor Codegen: Investing in Two Approaches

XLA Compiler Technology

Polyhedral Compiler Algorithms

MLIR is Open Source!

Visit us at github.com/tensorflow/mlir:

- Code, documentation, examples
- Developer mailing list: mlir@tensorflow.org

Still early days:

- Contributions not accepted yet still setting up CI, etc.
- Merging TensorFlow-specific pieces into public TensorFlow repo

Thank you to the team! Questions?

We are hiring interns! mlir-hiring@google.com

