Práctica 2: Sistemas de reescritura de primer orden

Sistemas de reescritura de cadenas

Ejercicio 1. Demostrar que cada uno de los siguientes STSs sobre el alfabeto $\Sigma = \{a, b\}$ es canónico (SN y CR):

$$S_1: \left\{ a \to \epsilon \right\}$$
 $S_2: \left\{ egin{array}{ll} ba o ab \\ aa o a \end{array} \right.$ $S_3: \left\{ egin{array}{ll} aba o bab \\ aa o \epsilon \\ bb o \epsilon \end{array} \right.$

Ejercicio 2. Demostrar que el siguiente STS sobre el alfabeto $\Sigma = \{a, b\}$ es CR:

$$\mathcal{S}: \begin{cases} ba \to ab \\ a \to aa \end{cases}$$

Observar que \mathcal{S} no es SN, por lo que no es posible usar el lema de Newman.

Ejercicio 3. Demostrar que el siguiente STS sobre el alfabeto $\Sigma = \{a, b, c\}$ es canónico y caracterizar las formas normales:

$$S: \begin{cases} ba \to ab \\ ca \to ac \\ cb \to bc \end{cases}$$

Ejercicio 4. Definir la noción de par crítico para STSs. Usar el hecho de que todo STS puede codificarse como un TRS, adaptando la noción general de par crítico para TRSs y especializándola para el caso particular de STSs.

Sistemas de reescritura de términos

Ejercicio 5. Sean Σ una signatura y $t, s \in \mathcal{T}(\Sigma)$. Demostrar las siguientes propiedades de las operaciones de "cirugía":

- a) Si $pq \in pos(t)$, entonces $t|_{pq} = t|_p|_q$.
- b) Si $p \in pos(t)$ y $q \in pos(s)$, entonces $t[s]_p|_{pq} = s|_q$.

Ejercicio 6. Sea \mathcal{R} un TRS. Demostrar las siguientes propiedades:

- a) Sustitución: si $t \to s$ entonces $t^{\theta} \to s^{\theta}$.
- b) Compatibilidad con contextos: si $t \to s$ entonces $C[t] \to C[s]$.

Ejercicio 7. Demostrar que la reducción en TRSs "no crea variables": si $t \to s$, entonces $vars(t) \supseteq vars(s)$.

Ejercicio 8. Exhibir un TRS con una sola regla que no sea WCR.

Ejercicio 9. Si \mathcal{R}_1 y \mathcal{R}_2 son TRSs bajo la misma signatura Σ , notamos $\mathcal{R}_1 \cup \mathcal{R}_2$ al TRS que resulta de unir las reglas de reescritura de \mathcal{R}_1 y \mathcal{R}_2 . Exhibir ejemplos en los que:

- a) \mathcal{R}_1 y \mathcal{R}_2 son SN pero $\mathcal{R}_1 \cup \mathcal{R}_2$ no es SN,
- b) \mathcal{R}_1 y \mathcal{R}_2 son CR pero $\mathcal{R}_1 \cup \mathcal{R}_2$ no es CR.

Ejercicio 10. Dados dos términos $t, s \in \mathcal{T}(\Sigma)$, el problema de matching (de primer orden) consiste en determinar si existe una sustitución θ tal que $t^{\theta} = s$. Proponer un algoritmo para decidir el problema de matching.

Ejercicio 11. Considerar el siguiente TRS sobre la signatura $\Sigma = \{F^2, G^1\}$:

$$\mathcal{R}: \{ F(x,y) \rightarrow F(x,G(x)) \}$$

Definimos una relación de reducción $\Rightarrow \subseteq \mathcal{T}(\Sigma) \times \mathcal{T}(\Sigma)$ inductivamente del siguiente modo:

$$\frac{t\Rightarrow t'}{x\Rightarrow x} \quad \frac{t\Rightarrow t'}{G(t)\Rightarrow G(t')} \quad \frac{t\Rightarrow t' \quad s\Rightarrow s'}{F(t,s)\Rightarrow F(t',s')} \quad \frac{t\Rightarrow t'}{F(t,s)\Rightarrow F(t',G(t'))}$$

Demostrar que $\rightarrow \subseteq \Rightarrow \subseteq \Rightarrow$ y que $\lozenge(\Rightarrow)$. Concluir que \mathcal{R} es confluente por la técnica de Tait-Martin-Löf estudiada en la Práctica 1.

Ejercicio 12. Demostrar que el siguiente TRS sobre la signatura $\Sigma = \{\mathsf{tt}^0, \mathsf{ff}^0, \neg^1, \mathsf{and}^2, \mathsf{or}^2\}$ es WCR, mostrando que todos los pares críticos se pueden cerrar:

$$\mathcal{R}: \left\{ \begin{array}{ll} \neg(\mathtt{ff}) & \to & \mathtt{tt} \\ \neg(\mathtt{tt}) & \to & \mathtt{ff} \\ \neg(\neg(x)) & \to & x \\ \mathtt{and}(\mathtt{tt},x) & \to & x \\ \mathtt{and}(\mathtt{ff},x) & \to & \mathtt{ff} \\ \mathtt{or}(x,y) & \to & \neg(\mathtt{and}(\neg(x),\neg(y))) \end{array} \right.$$

Ejercicio 13. Determinar cuáles son los pares críticos del siguiente TRS sobre la signatura $\Sigma = \{K^0, S^0, A^2\}$:

$$\begin{array}{ccc} A(A(K,x),y) & \to & x \\ A(A(A(S,x),y),z) & \to & A(A(x,z),A(y,z)) \end{array}$$

Nota: este TRS modela la lógica combinatoria con combinadores K y S.

Ejercicio 14. Considerar el siguiente TRS sobre la signatura $\Sigma = \{0^0, S^1, A^2, M^2\}$:

$$\mathcal{N}: \left\{ \begin{array}{ccc} A(0,x) & \rightarrow & x \\ A(S(x),y) & \rightarrow & S(A(x,y)) \\ M(0,x) & \rightarrow & 0 \\ M(S(x),y) & \rightarrow & A(y,M(x,y)) \end{array} \right.$$

- a) Demostrar que \mathcal{N} es ortogonal, es decir, que no tiene pares críticos y es left-linear¹. El hecho de ser ortogonal implica que \mathcal{N} es confluente.
- b) Considerar el TRS \mathcal{M} que resulta de extender \mathcal{N} con reglas adicionales:

$$\mathcal{M}: \left\{ \begin{array}{lll} \ldots \mathcal{N} \ldots \\ A(x,0) & \rightarrow & x \\ A(x,S(y)) & \rightarrow & S(A(x,y)) \\ M(x,0) & \rightarrow & 0 \\ M(x,S(y)) & \rightarrow & A(x,M(x,y)) \\ M(A(x,y),z) & \rightarrow & A(M(x,z),M(y,z)) \\ M(x,A(y,z)) & \rightarrow & A(M(x,y),M(x,z)) \end{array} \right.$$

Demostrar que el TRS extendido \mathcal{M} no es confluente, exhibiendo un par crítico que no se pueda cerrar.

c) Sea $\mathcal{A} = (A, \to_{\mathcal{A}})$ el ARS cuyos objetos son los términos cerrados $A \stackrel{\text{def}}{=} \{t \in \mathcal{T}(\Sigma) \mid \mathsf{vars}(t) = \emptyset\}$ y tal que para todo par de términos cerrados $t, t' \in A$ se tiene que $t \to_{\mathcal{A}} t'$ si y sólo si $t \to_{\mathcal{M}} t'$. Demostrar que \mathcal{A} es confluente usando el método de interpretación estudiado en la Práctica 1, interpretando cada expresión aritmética con el número natural que denota.

Ejercicio 15. Demostrar que el siguiente TRS sobre la signatura $\Sigma = \{\circ^2\}$ es WCR:

$$\mathcal{R}: \Big\{ (x \circ y) \circ z \to x \circ (y \circ z) \Big\}$$

¹Un TRS se dice *left-linear* si no hay reglas que tengan variables repetidas en el lado izquierdo.

Ejercicio 16. Demostrar que el siguiente TRS sobre la signatura $\Sigma = \{1^0, \cdot^2, /^2\}$ es WCR:

$$\mathcal{R}: \left\{ \begin{array}{lll} 1 \cdot x & \rightarrow & x \\ x \cdot 1 & \rightarrow & x \\ 1/x & \rightarrow & 1 \\ x/1 & \rightarrow & x \\ (x \cdot y)/z & \rightarrow & (x/z) \cdot (y/(z/x)) \\ x/(y \cdot z) & \rightarrow & (x/y)/z \end{array} \right.$$

Ejercicio 17. Recordemos que todo TRS ortogonal (*left-linear* y sin pares críticos) es confluente. El siguiente es un ejemplo de un TRS sin pares críticos en el que la confluencia falla por el hecho de no ser *left-linear*:

$$\mathcal{R}: \left\{ \begin{array}{ccc} A(x,x) & \to & B \\ C(x) & \to & A(x,C(x)) \\ D & \to & C(D) \end{array} \right. \qquad \Sigma = \left\{ A^2, B^0, C^1, D^0 \right\}$$

- a) Verificar que \mathcal{R} es WCR comprobando que no tiene pares críticos.
- b) Mostrar que $B \leftarrow C(D) \twoheadrightarrow C(B)$
- c) Mostrar que no existe un término t tal que $B woheadrightarrow t wildescript{\leftarrow} C(B)$, y concluir que $\mathcal R$ no es CR.