Getting Insights into Images and their Metadata

Lab ML for Data Science: Part III

Goal for the Project

- 1. Given an image of an Apple Leaf predict class (healthy/sick)
- 2. Derive explainations for predictions
- 3. Discuss results

Lab ML for Data Science: Part III

Mean apple black rot

Mean apple healthy

Difference of the means sum over channels

Difference of the means norm over channels

Mean differences per channel

Lab ML for Data Science: Part III

Observation:

- Shape (& slightly Position) vary on average for the classes
- Healthy: more oval + "pointy" tip
- Black Rot: more round + "flat" tip

- Shape: Sampling bias
- Tip: Disease leads to detoriated tip

Pipeline for making Predictions

1 Input

- As scaled Tensor (values in [0,1])
- Eventually Standardized (on train & VGG-16)

- Pretrained VGG-16
- ~15M Paramaters
- Discarding classification head
- Add Flatten layer

Difference of mean discriminant

Technical Details

Results

- Stratified Train/Test-Split of 80%/20% on unstandardized data
- 80 instances of each class in train,
 20 of each in test
- AUC Train: ~0.998
- AUC Test: ~0.997

Results

 Optimizing threshold for maximum accuracy leads reaching a test accuracy of 95%

Understanding the Class-Prediction Pixel-Wise

- Derive exact features which lead to predictions
- Enable to validate predictions exluding predictions based on artefacts (keyword: Clever Hans Effect)
- Gain knowledge about the relationship between features and class
- Most intuitive Basis: $S_i = \left\| \frac{\partial g}{\partial x_i} \right\|^2 \rightarrow \text{getting Relevance for each pixel}$

Understanding the Class-Prediction Pixel-Wise

- Most intuitive Basis: $S_i = \left\| \frac{\partial g}{\partial x_i} \right\|^2 \rightarrow \text{getting Relevance for each pixel}$
- This approach might get noisy results
- To mitigite that problem we fiddle around in the pipeline, mainly:

1. Bias Gradient of Convolutional Layers

$$z_k = \left(\sum_j a_j w_{jk}^{\uparrow} + b_k^{\uparrow}\right) \cdot \left[\frac{\sum_j a_j w_{jk} + b_k}{\sum_j a_j w_{jk}^{\uparrow} + b_k^{\uparrow}}\right]_{\text{cst.}}$$

$$w_{jk}^{\uparrow} = w_{jk} + 0.25 \max(0, w_{jk})$$

 $b_k^{\uparrow} = b_k + 0.25 \max(0, b_k).$

Lab ML for Data Science: Part III

features of input on

each class

difference of means for

head

Add Flatten layer

Sensitivity Analysis - Simple Approach

Importance scores

- Unstandardized data
- Delivers noisy results
- Arguabely detect 1 spot

Sensitivity Analysis – SmoothGrad

- Gaussian Kernel with
 sd = 0.1 and N=20
- Now contours detected as well as blackrot spot (?)
- At cost of slightly more noise

Sensitivity Analysis – Biased Layer Approach

- Way less noiser explaination
 - "More global" explaination
- Excitory > Inhibitory effects
- Less important pixels diminished
- Anomalous spots all detected
- Try to Improve with standardized data

Sensitivity Analysis – Improve with Standardizing

"Raw"/only scaled

Standardized on Train Set

Lab ML for Data Science: Part III

Miscellaneous

Input Image

'Normal' Gradient

- Misclassified
- Shape?

Sanity Check with sheet

Discussion of the Results

Discussion:

Insufficiently good pretrained neural network

Description:

 Model in Pretext Task not trained well enough → features not sufficiently learned

- Check model performance on Prext Task
- Check if similar downstream task exists
- Fine-Tune model parameters on task at hand
- Experiment with other pretrained NNs

Discussion: Improper Method for extracting relevant features

Description:

- Each layer of pretrained Model captures different aspects of image
- Last layer may be inaccurate choice for our task
- Contours/dark areas dominant in Sensitivity analysis
- Data domain too different from leafes

- Try cutting out more layers to extract appropriate features
- Fine-tune on dataset at hand
- Experiment with other pretrained NNs

Discussion: Problems with data quality

Description:

- Potential bias in data sampling (as seen with the means)
- Image resolution/sharpness to low (vague features unable to capture detailed structures)
- Shadows possibely introduce noise hardening the detection of relevant features

- Sample more data
- Manually sample images to balance types of leaf shapes or ignore shadows
- Increase sharpness of images with designated ML models
- Remove shadows

Discussion: Flawed Domain Knowledge of Human

Description:

- Disease might affect plant in a way that is unknown by humans
- Detected factors for the disease might not be perceivable by humans

- Consult experts with domain knowledge and double check results
- Investigate possible newly detected symptoms