5. Connect up an inverter (AND gate), a pin and an LED to the output

Attribute Table

Pin 1	Pin 2	Output
0	0	0
0	1	0
1	0	0
1	1	1

8. Connect up an inverter (NOT gate), a pin and an LED to the output

10. Connect up a 2-input XOR gate, connect a pin to each input and an LED to the output

Attribute Table

Pin 1	Pin 2	Output
0	0	0
0	1	1
1	0	1
1	1	0

15. Extended your circuit from Step 13 to do the same thing for three inputs. It should output 1 if all three input bits are either all 0, or all 1.

Attribute Table

Pin 1	Pin 3	Pin 2	Output
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1