

HR Data Analytics Presentation

By Alice Chang 9 Oct 2021, IOD Data Science & Al Course - Capstone Project

Project Analysis

1. MARKET ASSESSMENT

2. STAKEHOLDERS

3. DATA ANALYSIS

4. DATA SCIENCE

5. TESTING

6. IMPLEMENT PROJECT

Market Analysis

POSITIVE

NEGATIVE

STRENGTH

- Robust dataset where the candidates already have the right technical foundation and background to fulfil their role as data scientists/ analysts.
- > Educational background and training of candidates in the dataset are promising and highly qualified.

WEAKNESS

- > Dataset is highly imbalanced.
- > There are far too many males than females in the dataset.
- Only 25% wants to quit vs 75% who have no intention to quit (yet).

OPPORTUNITY

- As at 8 Oct 2021, there are 1729 'Data Science' and 1100 'Data Analyst' positions in Singapore advertised in LinkedIn. From LinkedIn alone, over <u>2500</u> positions to fill in the job market.
- > From JobStreet, there are over <u>7800</u> posts for Data Science related jobs in Singapore.

THREAT

- Data Scientists who wish to quit may not have the domain knowledge of certain industries. For example, Bio-science research, finance and medical sectors require direct experience or domain knowledge.
- COVID-19 means that candidates living abroad will find it challenging to relocate to Singapore.

INTERNAL

Stakeholder Analysis

% breakdown of data scientists staying or leaving

25% wants to quit their present job.

75% are not quitting their present job yet.

% breakdown of data scientists by gender

Less than 10% were female.

Data science is still dominated by male (90%).

Majority of data scientists had a major in STEM (Science, Technology, Engineering and Maths).

Those who had over 20 years of overall work experience made up the largest group. This tells us quite a number of data scientists started off with another discipline but adapted into data science as a mid career change.

The next group (2 – 10 years) formed a substantial number who have chosen data science as a choice career quite early in their work life.

Feature Importance

The 2 features that had most significance on the results:

- 1. Training hours (the more training in data science, the more competent and confident the candidate is in their job)
- 2. City Development Index (high-tier or mid-tier city determines the lifestyle they want and availability of career opportunities.)

The next 2 features of importance:

- 3. Work experience (not necessarily relevant experience).
- 4. Company size (prospects for growth/ promotion)

Machine Learning

	model	accuracy	specificity	sensitivity
0	GradientBoostClassifier	0.78	0.90	0.41
1	AdaBoostClassifier	0.78	0.92	0.35
0	StackingClassifier	0.78	0.90	0.40
4	RandomForestClassifier	0.77	0.91	0.36
6	MLPClassifier	0.77	0.92	0.34
3	KNeighborsClassifier	0.74	0.87	0.35
5	XGBClassifier	0.74	0.87	0.36
2	DecisionTreeClassifier	0.71	0.82	0.37

ACCURACY SCORE

78%

GradientBoostClassifier AdaBoostClassifier StackingClassifier **SPECIFICITY (For non-quitters)**

92%

AdaBoostClassifier MLPClassifier

SENSITIVITY (For quitters)

41%

GradientBoostClassifier.

Testing (AUC ROC Score) •

	Models	ROC A	UC SCORE
4	KNeighborsClassifier		0.963129
6	RandomForestClassifier		0.957559
7	XGBoostClassifier		0.951514
3	DecisionTreeClassifier		0.902327
0	StackingClassifier		0.783812
1	GradientBoostClassifier		0.770357
5	MLPClassifier		0.757838
2	AdaBoostClassifier		0.752410

Testing (Threshold)

Implementation: deciding on thresholds __

Q	20%	25%	30%	35%	40%	45%	50%	Yes/No
KNeighborsClassifier	1,837	33	33	33	13	0	0	Yes
RandomForestClassifier	3,750	1,086	233	38	4	2	0	Yes
XGBoostClassifier	63	46	25	15	9	6	4	No
DecisionTreeClassifier	296	296	296	292	292	270	270	Yes
StackingClassifier	277	8	0	0	0	0	0	No
GradientBoostClassifier	2,887	1,409	0	0	0	0	0	Yes
MLPClassifier	34	20	15	12	8	5	3	No
AdaBoostClassifier	19,158	19,158	19,158	19,158	19,158	19,158	0	No

