

AK4678

24bit Stereo CODEC with MIC/RCV/HP/SPK/LINE-AMP

GENERAL DESCRIPTION

The AK4678 is a 24bit stereo CODEC with a built-in Microphone-Amplifier, Receiver-Amplifier, Mono Class-D Speaker-Amplifier, Cap-less Class-G Headphone-Amplifier and Line-Amplifier. The AK4678 features dual PCM I/F in addition to audio I/F that allows easy interfacing in mobile phone designs with Bluetooth I/F. The playback features also include 5-band Parametric EQ and Dynamic Range Control, therefore the AK4678 can automatically adjust a comfortable volume without distortion and provides great flexibility. The AK4678 is available in a 49pin CSP, utilizing less board space than competitive offerings.

FEATURES

- 1. Recording Function (Stereo CODEC)
 - 4 Stereo Input Selectors
 - 4 Stereo Inputs (Single-ended) or 3 Mono Input (Full-differential)
 - MIC Amplifier: +24dB ~ -6dB, 3dB step
 - 2 Output MIC Power Supplies
 - Digital ALC (Automatic Level Control): +36dB ~ -54dB, 0.375dB Step, Mute
 - ADC CHARACTERISTICS: S/(N+D): 80dB, DR, S/N: 87dB (MIC-Amp=+18dB) S/(N+D): 80dB, DR, S/N: 92dB (MIC-Amp=0dB)
 - Stereo Digital MIC Interface
 - Wind-noise Reduction Filter
 - Stereo Separation Emphasis
 - 3-band Programmable Notch Filter
 - Audio Interface Format: 24/16bit MSB justified, 24/16bit I2S, 16bit DSP Mode
- 2. Playback Function (Stereo CODEC)
 - Digital Volume (+6dB ~ -57.0dB, 0.5dB Step. Mute)
 - Digital ALC (Automatic Level Control): +36dB ~ -54dB, 0.375dB Step, Mute
 - Stereo Separation Emphasis
 - Dynamic Range Control
 - 5-band Parametric Equalizer
 - Stereo Line Output (Selectable Full-differential / Single-ended)
 - Mono Receiver-Amp
 - BTL Output
 - Output Power: 60mW @ 32Ω
 - Analog Volume: +12 ~ -30dB & Mute, 3dB Step
 - Cap-less Stereo Class-G Headphone-Amp
 - Output Power: 25mW @ 32Ω, 45mW @ 16Ω
 - Analog Volume: +6 ~ -62dB & Mute, 2dB Step
 - Zero crossing Detection
 - Pop Noise Free at Power-ON/OFF
 - Mono Class-D Speaker-Amp
 - BTL Output
 - Short Protection Circuit
 - Output Power: 1.1W @ 8Ω , SVDD=4.2V, THD+N = 10% 0.89W @ 8Ω , SVDD=4.2V, THD+N = 1%
 - Analog Volume: +12 ~ -30dB & Mute, 3dB Step
 - Pop Noise Free at Power-ON/OFF
 - Audio Interface Format:
 - 24/16bit MSB justified, 16bit LSB justified, 16/24bit I²S, 16bit DSP Mode

- 3. Dual PCM I/F for Baseband & Bluetooth Interface
 - Four sample Rate Converters (Up sample: up to x6: Down sample: down to x1/6)
 - Sample Rate:
 - PORTA (Mono): 8 ~ 16kHz
 - PORTB (Stereo): 8 ~ 48kHz
 - Digital Volume
 - Slave Mode
 - Audio Interface Format:
 - 16bit Linear, 8bit A-law, 8bit µ-law
 - Short/Long Frame, I²S, MSB justified
- 4. Power Management
- 5. Master Clock(Audio I/F):
 - (1) PLL Mode
 - Frequencies: 11.2896MHz, 12MHz, 12.288MHz, 13MHz, 13.5MHz, 19.2MHz, 24MHz, 25MHz, 26MHz, 27MHz (MCKI pin)
 32fs or 64fs (BICK pin)
 - (2) External Clock Mode
 - Frequencies: 256fs, 512fs or 1024fs (MCKI pin)
- 6. Output Master Clock Frequencies(Audio I/F): 32fs/64fs/128fs/256fs
- 7. Sampling Frequency (Audio I/F)
 - PLL Slave Mode (BICK pin): 8kHz ~ 48kHz
 - PLL Master Mode:

8kHz, 11.025kHz, 12kHz, 16kHz, 22.05kHz, 24kHz, 32kHz, 44.1kHz, 48kHz

• EXT Master/Slave Mode:

8kHz ~ 48kHz (256fs), 8kHz ~ 24kHz (512fs), 8kHz ~ 12kHz (1024fs)

- 8. Audio I/F: Master/Slave mode
- 9. μP I/F: I²C Bus (Ver 1.0, 400kHz Fast Mode)
- 10. Ta = $-30 \sim 85^{\circ}$ C
- 11. Power Supply:

SVDD (SPK/RCV/LINE-Amp): 3.0 ~ 5.5V
 AVDD (Analog): 1.7 ~ 2.0V
 DVDD (Digital Core): 1.7 ~ 2.0V
 PVDD (HP-Amp & Charge Pump): 1.7 ~ 2.0V
 TVDD (Digital I/F): 1.6 ~ 3.6V

12. Package: 49pin CSP(2.96 x 2.96 mm, 0.4mm pitch)

■ Block Diagram

Figure 1. Analog Block Diagram

Figure 2. Digital Block Diagram

■ Ordering Guide

AK4678ECB $-30 \sim +85^{\circ}$ C 49pin CSP (0.4mm pitch) Black type AKD4678 Evaluation board for AK4678

■ Pin Layout

7	CNB	CNA	VEE	HPR	LIN3 /IN3+	LIN1/IN1+ /DMDAT	RIN1/IN1- /DMCLK
6	СРВ	СРА	PVDD	HPL	RIN3 /IN3-	LIN2 /IN2-	VSS1
5	TVDD	VSS2	SDA	LIN4	RIN2 /IN2+	VCOM	AVDD
4	SDTO	SCL	PDN	RIN4	LOUT /LOP	MPWR1	MPWR2
3	BICK	SDTI	LRCK	SYNCA	ROUT /LON	RCP	RCN
2	MCKI	SYNCB	SDTOB	BICKA	SPFIL	SVDD	SPN
1	BICKB	SDTIB	SDTOA	SDTIA	DVDD	SPP	VSS3
	Α	В	С	D	E	F	G

Top View

PIN/FUNCTION

No.	Pin Name	I/O	Function
	er Supply		
G5	AVDD	_	Analog Power Supply Pin, 1.7 ~ 2.0V
F5	VCOM	О	Common Voltage Output Pin
G6	VSS1	-	Ground 1 Pin
E1	DVDD	_	Digital Core Power Supply Pin, 1.7 ~ 2.0V
A5	TVDD	_	Digital I/O Power Supply Pin, 1.6 ~ 3.6V
B5	VSS2	_	Ground 2 Pin
F2	SVDD	_	Analog Amp Power Supply Pin, 3.0 ~ 5.5V
G1	VSS3	_	Ground 3 Pin
C6	PVDD	_	HP-Amp & Charge Pump Power Supply Pin
C7	VEE	<u> </u>	Charge Pump Circuit Negative Voltage Output Pin
B6	CPA	-	Positive Charge Pump Capacitor Terminal A Pin
		0	
B7	CNA	I	Negative Charge Pump Capacitor Terminal A Pin
A6	CNB	0	Positive Charge Pump Capacitor Terminal B Pin
A7 F4	CNB MPWR1	I	Negative Charge Pump Capacitor Terminal B Pin MIC Power Supply 1 Pin
G4	MPWR2	0	MIC Power Supply 2 Pin
		U	MIC LOWEL Supply 2.1 III
	io Interface		
A2	MCKI	I	External Master Clock Input Pin
A3	BICK	I/O	Audio Serial Data Clock Pin
C3	LRCK	I/O	Input / Output Channel Clock Pin
B3	SDTI	I	Audio Serial Data Input Pin
A4	SDTO	O	Audio Serial Data Output Pin
	I Interface		
D2	BICKA	I	Serial Data Clock A Pin
D3	SYNCA	I	Sync Signal A Pin
D1	SDTIA	I	Serial Data Input A Pin
C1	SDTOA	0	Serial Data Output A Pin
A1	BICKB	I	Serial Data Clock B Pin
B2	SYNCB	I	Sync Signal B Pin
B1	SDTIB	I	Serial Data Input B Pin
C2	SDTOB	О	Serial Data Output B Pin
	og Input	1	
	LIN1	,	Lch Analog Input 1 Pin (MDIF1 bit = "0": Single-ended Input, DMIC bit = "0")
F7	IN1+	I	Positive Line Input 1 Pin (MDIF1 bit = "1": Full-differential Input, DMIC bit = "0")
	DMDAT	I	Digital Microphone Data Input Pin (DMIC bit = "1")
	RIN1	I	Rch Analog Input 1 Pin (MDIF1 bit = "0": Single-ended Input, DMIC bit = "0")
G7	IN1-	I	Negative Line Input 1 Pin (MDIF1 bit = "1": Full-differential Input, DMIC bit = "0")
		1	
	DMCLK	О	Digital Microphone Clock Pin (DMIC bit = "1")
F6	DMCLK LIN2	 	Digital Microphone Clock Pin (DMIC bit = "1") Lch Analog Input 2 Pin (MDIF2 bit = "0": Single-ended Input)
F6	DMCLK LIN2 IN2–	O I	Digital Microphone Clock Pin (DMIC bit = "1") Lch Analog Input 2 Pin (MDIF2 bit = "0": Single-ended Input) Negative Line Input 2 Pin (MDIF2 bit = "1": Full-differential Input)
	DMCLK LIN2 IN2– RIN2	O	Digital Microphone Clock Pin (DMIC bit = "1") Lch Analog Input 2 Pin (MDIF2 bit = "0": Single-ended Input) Negative Line Input 2 Pin (MDIF2 bit = "1": Full-differential Input) Rch Analog Input 2 Pin (MDIF2 bit = "0": Single-ended Input)
F6 E5	DMCLK LIN2 IN2– RIN2 IN2+	O I I I	Digital Microphone Clock Pin (DMIC bit = "1") Lch Analog Input 2 Pin (MDIF2 bit = "0": Single-ended Input) Negative Line Input 2 Pin (MDIF2 bit = "1": Full-differential Input) Rch Analog Input 2 Pin (MDIF2 bit = "0": Single-ended Input) Positive Line Input 2 Pin (MDIF2 bit = "1": Full-differential Input)
E5	DMCLK LIN2 IN2- RIN2 IN2+ LIN3	O I I I	Digital Microphone Clock Pin (DMIC bit = "1") Lch Analog Input 2 Pin (MDIF2 bit = "0": Single-ended Input) Negative Line Input 2 Pin (MDIF2 bit = "1": Full-differential Input) Rch Analog Input 2 Pin (MDIF2 bit = "0": Single-ended Input) Positive Line Input 2 Pin (MDIF2 bit = "1": Full-differential Input) Lch Analog Input 3 Pin (MDIF3 bit = "0": Single-ended Input)
	DMCLK LIN2 IN2– RIN2 IN2+	O I I I	Digital Microphone Clock Pin (DMIC bit = "1") Lch Analog Input 2 Pin (MDIF2 bit = "0": Single-ended Input) Negative Line Input 2 Pin (MDIF2 bit = "1": Full-differential Input) Rch Analog Input 2 Pin (MDIF2 bit = "0": Single-ended Input) Positive Line Input 2 Pin (MDIF2 bit = "1": Full-differential Input)
E5 E7	DMCLK LIN2 IN2- RIN2 IN2+ LIN3	O I I I I	Digital Microphone Clock Pin (DMIC bit = "1") Lch Analog Input 2 Pin (MDIF2 bit = "0": Single-ended Input) Negative Line Input 2 Pin (MDIF2 bit = "1": Full-differential Input) Rch Analog Input 2 Pin (MDIF2 bit = "0": Single-ended Input) Positive Line Input 2 Pin (MDIF2 bit = "1": Full-differential Input) Lch Analog Input 3 Pin (MDIF3 bit = "0": Single-ended Input)
E5	DMCLK LIN2 IN2- RIN2 IN2+ LIN3 IN3+	O I I I I I I I I I I I I I I I I I I I	Digital Microphone Clock Pin (DMIC bit = "1") Lch Analog Input 2 Pin (MDIF2 bit = "0": Single-ended Input) Negative Line Input 2 Pin (MDIF2 bit = "1": Full-differential Input) Rch Analog Input 2 Pin (MDIF2 bit = "0": Single-ended Input) Positive Line Input 2 Pin (MDIF2 bit = "1": Full-differential Input) Lch Analog Input 3 Pin (MDIF3 bit = "0": Single-ended Input) Positive Line Input 3 Pin (MDIF3 bit = "1": Full-differential Input)
E5 E7	DMCLK LIN2 IN2- RIN2 IN2+ LIN3 IN3+ RIN3	O I I I I I I I I I I I I I I I I I I I	Digital Microphone Clock Pin (DMIC bit = "1") Leh Analog Input 2 Pin (MDIF2 bit = "0": Single-ended Input) Negative Line Input 2 Pin (MDIF2 bit = "1": Full-differential Input) Reh Analog Input 2 Pin (MDIF2 bit = "0": Single-ended Input) Positive Line Input 2 Pin (MDIF2 bit = "1": Full-differential Input) Leh Analog Input 3 Pin (MDIF3 bit = "0": Single-ended Input) Positive Line Input 3 Pin (MDIF3 bit = "1": Full-differential Input) Reh Analog Input 3 Pin (MDIF3 bit = "0": Single-ended Input)

PIN/FUNCTION (Cont.)

No.	Pin Name	I/O	Function			
Anal	Analog Output					
E3	ROUT	0	Rch Stereo Line Output Pin (LODIF bit = "0": Stereo Line Output)			
E3	LON	О	Negative Line Output Pin (LODIF bit = "1": Full-differential Mono Output)			
E4	LOUT	О	Lch Stereo Line Output Pin (LODIF bit = "0": Stereo Line Output)			
E4	LOP	О	Positive Line Output Pin (LODIF bit = "1": Full-differential Mono Output)			
F3	RCP	О	Receiver-Amp Positive Output Pin			
G3	RCN	О	Receiver-Amp Negative Output Pin			
D6	HPL	О	Lch Headphone-Amp Output Pin			
D7	HPR	О	Rch Headphone-Amp Output Pin			
F1	SPP	О	Speaker-Amp Positive Output Pin			
G2	SPN	О	Speaker-Amp Negative Output Pin			
E2	SPFIL	SPFIL O	Speaker-Amp Filter Pin			
			Connect 2.2nF between SPFIL pin and VSS1.			
Cont	trol Interface					
B4	SCL	I	Control Data Clock Pin			
C5	SDA	I/O	Control Data Input Pin			
C4	PDN	DN I Power-Down Mode Pin	1 - 4 11 -			
	121,	•	"H": Power-up, "L": Power-down, reset and initializes the control register.			

Note 1. All input pins except analog input pins (LIN1/IN1+, RIN1/IN1-, LIN2/IN2-, RIN2/IN2+, LIN3/IN3+, RIN3/IN3-, LIN4, RIN4) must not be allowed to float.

I/O pins (LRCK, BICK and SDA pins) should be processed appropriately.

■ Handling of Unused Pin on the System

The unused input and output pins on the system should be processed appropriately as below.

Classification	Pin Name	Setting
Analog	MPWR1, MPWR2, SPP, SPN, RCP, RCN, HPL, HPR, ROUT/LON, LOUT/LOP, RIN4, LIN4, RIN3/IN3-, LIN3/IN3+, RIN2/IN2+, LIN2/IN2-, RIN1/IN1-, LIN1/IN1+, CPA, CNA, CPB, CNB, VEE, SPFIL	These pins should be open.
Digital	SDTO, SDTOA, SDTOB MCKI, SDTI, SDTIA, SDTIB, BICKA, SYNCA, BICKB, SYNCB	These pins should be open. These pins should be connected to VSS2.
<i>5</i> ···	LRCK, BICK	These pins should be connected to VSS2 and M/S bit should be set to "0".

ABSOLUTE MAXIMUM RATINGS

(VSS1=VSS2=VSS3=0V; Note 2, Note 3)

Parameter		Symbol	min	max	Unit
Power Supplies:	Analog	AVDD	-0.3	2.5	V
	SPK/RCV/LINE-Amp	SVDD	-0.3	6.0	V
	HP-Amp & Charge Pump	PVDD	-0.3	2.5	V
	Digital Core	DVDD	-0.3	2.5	V
	Digital I/O	TVDD	-0.3	6.0	V
Input Current, An	y Pin Except Supplies	IIN	-	±10	mA
Analog Input Volt	rage (Note 4)	VINA	-0.3	AVDD + 0.3	V
Digital Input Volta	age (Note 5)	VIND	-0.3	TVDD + 0.3	V
Ambient Temperature (powered applied)		Ta	-30	85	°C
Storage Temperature		Tstg	-65	150	°C
Maximum Power	Dissipation (Note 6)	Pd	_	1	W

Note 2. All voltages with respect to ground.

Note 3. VSS1, VSS2 and VSS3 must be connected to the same analog ground plane.

- Note 4. RIN4, LIN4, RIN3/IN3-, LIN3/IN3+, RIN2/IN2+, LIN2/IN2-, RIN1/IN1-, LIN1/IN1+ pins
- Note 5. SDTI, LRCK, BICK, MCKI, PDN, BICKA, SYNCA, SDITA, BICKB, SYNCB, SDTIB, SCL and SDA pins Pull-up resistors at SDA and SCL pins should be connected to (TVDD+0.3)V or less voltage.
- Note 6. The maximum power dissipation (1W) is the AK4678 internal dissipation that does not include power dissipation of externally connected speaker, headphone and receiver in recommended operating conditions. The allowable maximum junction temperature for the AK4678 is 125°C and θ ja(Junction to Ambient) is 35°C/W under JESD51-9(2p2s). The internal dissipation does not cause permanent damage to the device when θ ja = 35°C/W and Pd=1W because the junction temperature does not exceed 125°C. AKM recommends to use the board with θ ja \leq 35°C/W.

WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes.

RECOMMENDED OPERATING CONDITIONS

(VSS1=VSS2=VSS3=0V; Note 2)

Parameter		Symbol	min	typ	max	Unit
Power	Analog	AVDD	1.7	1.8	2.0	V
Supplies	SPK/RCV/LINE-Amp	SVDD	3.0	4.2	5.5	V
(Note 7)	HP-Amp & Charge Pump	PVDD	1.7	1.8	2.0	V
	Digital Core	DVDD	1.7	1.8	2.0	V
	Digital I/O	TVDD	1.6	1.8	3.6	V
	Difference	AVDD – PVDD	-0.2	_	0.2	V
		AVDD – DVDD	-0.2	_	0.2	V
		PVDD – DVDD	-0.2	_	0.2	V

Note 2. All voltages with respect to ground.

- Note 7. The power-up sequence between supplies (AVDD, SVDD, PVDD, DVDD or TVDD) is not critical. The PDN pin should be held "L" when power supplies are tuning on. The PDN pin is allowed to be "H" after all power supplies are applied and settled. The AK4678 should be operated along the recommended power-up/down sequence shown in "System Design (Grounding and Power Supply Decoupling)" to avoid pop noise at speaker output, receiver output, headphone outputs and line outputs.
 - * AVDD, PVDD, DVDD and TVDD can be powered OFF (Power is not applied) when SVDD is powered ON (Power is applied) with PDN pin "L". When turning on AVDD, PVDD, DVDD and TVDD again in this case, the PDN pin must be "L" until all other power supplies are powered ON. Also, when turning off AVDD, PVDD, DVDD and TVDD, the PDN pin must be "L" before other power supplies start to turn off.

^{*} AKM assumes no responsibility for the usage beyond the conditions in this datasheet.

ANALOG CHARACTERISTICS (CODEC)

(Ta=25°C; AVDD=PVDD= DVDD=TVDD= 1.8V, SVDD=4.2V; VSS1=VSS2=VSS3=0V;

Signal Frequency=1kHz; 24bit Data; fs=44.1kHz, BICK=64fs; Measurement Bandwidth=20Hz ~ 20kHz; unless otherwise specified)

Parameter	min	typ	max	Unit
MIC Amplifier: LIN1/RIN1/LIN2/RIN2/LIN	N3/RIN3/LIN4/RIN4 pins			
Input Resistance	17	25	38	kΩ
Gain (Note 8)				
Gain Setting	-6	-	+24	dB
Step Width	-	3	-	dВ
MIC Power Supply: MPWR1, MPWR2 pin				
Output Voltage (Note 9)	2.4	2.5	2.6	V
Load Resistance	1.0	-	-	kΩ
Load Capacitance	-	-	30	pF
Output Noise Level (A-weighted)	-	-107	-	dBV
PSRR (Note 10)				
217Hz	-	100	-	dB
1kHz	-	100	-	dB

Stereo ADC Analog Input Characteristics:

LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 pins(Single-ended Input) \rightarrow Stereo ADC \rightarrow Programmable Filter (IVOL=0dB, EQ=ALC=OFF) \rightarrow SDTO

Resolution		-	-	24	Bits
Input Voltage (Note 11)	(Note 12)	0.204	0.227	0.250	Vpp
input voltage (Note 11)	(Note 13)	1.62	1.8	1.98	Vpp
S/(N+D) (-1dBFS)	(Note 12)	69	80	-	dВ
3/(N+D) (-1dBr3)	(Note 13)	-	80	-	dB
D-Range (-60dBFS, A-weighted)	(Note 12)	76	87	-	dВ
D-Kange (-bouders, A-weighted)	(Note 13)	-	92	-	dВ
S/N (A-weighted)	(Note 12)	76	87	-	dВ
5/1 (A-weighted)	(Note 13)	-	92	-	dВ
Interchannel Isolation (Note 14)	(Note 12)	75	90	-	dB
interchannel isolation (Note 14)	(Note 13)	-	100	-	dВ
Interchannel Gain Mismatch (Note 14)	(Note 12)	-	0	0.8	dВ
interchannel Gam Mismatch (Note 14)	(Note 13)	_	0	0.8	dВ

Note 8. In case of full-differential input, MGAIN (min)=-3dB

Note 9. In case of MICL1 bit or MICL2 bit = "0". Output voltage is proportional to AVDD (typ. 1.39 x AVDD V). MICL1 bit or MICL2 bit = "1": typ. 1.56 x AVDD V

Note 10. PSRR is referred to SVDD with 500mVpp sine wave.

Note 11. Input voltage means ADC full-scale voltage. It is proportional to AVDD voltage.

Single-ended Input: $Vin = 1.0 \times AVDD Vpp(typ)$.

Full-Differential Input: Vin = (IN+) - (IN-) = 1.0 x AVDD Vpp(typ).

 $IN+=0.5 \times AVDD(typ)$, $IN-=0.5 \times AVDD(typ)$

Pseudo-Differential Input: Vin = (IN+) - (IN-) = 1.0 x AVDD Vpp (typ).

IN+ = 1.0 x AVDD(typ), IN- = 0V (IN- pin should be connected to VSS1.)

Note 12. MGNL3-0=MGNR3-0 bits = "BH" (+18dB).

In case of Full-differential, S/(N+D) =75dB, DR=S/N=81dB

Note 13. MGNL3-0=MGNR3-0 bits = "5H" (0dB).

In case of Full-differential, S/(N+D) = 79dB, DR=S/N=91dB

Note 14. This is a value between Lch and Rch of each input.

Parameter	min	typ	max	Unit
Stereo DAC Characteristics:				
Resolution	-	-	24	Bits
Stereo Line Output Characteristics: Stereo DAC -	LOUT/ROUT p	ins, ALC=OFF, IVC	L=0dB, OVOL:	=0dB,
-		therwise specified.	ŕ	ŕ
Output Voltage (Note 15)	1.62	1.8	1.98	Vpp
S/(N+D) (0dBFS)	70	80	-	dB
S/N (A-weighted)	82	92	_	dB
Interchannel Isolation	80	95	-	dB
Interchannel Gain Mismatch	-	0	0.8	dB
Load Resistance	10	-	-	kΩ
Load Capacitance	-	-	30	pF
PSRR (Note 16)				
217Hz	-	75	-	dB
1kHz	-	75	-	dB
Mono Line Output Characteristics: Stereo DAC →	LOP/LON pins,	ALC=OFF, IVOL=0	dB, OVOL=0dE	B, LVL=0dB,
LODIF bit = "1"	', $R_L=10k\Omega$ for ea	ich pin (Full-differer	ntial)	
Output Voltage (Note 17)	3.24	3.6	3.96	Vpp
S/(N+D) (0dBFS)	-	73	-	dB
S/N (A-weighted)	-	95	-	dB
Load Resistance (LOP/LON pins, respectively)	10			1.0
(Note 18)	10	-	-	kΩ
Load Capacitance (LOP/LON pins, respectively)			30	nE
(Note 19)	-	-	30	pF
PSRR (Note 16)				
217Hz	-	70	-	dB
1kHz	-	70	-	dB
Mono Receiver-Amp Output Characteristics:				
DAC(Stereo, Note 20) \rightarrow RCP/RCN pins, ALC=OI	FF, IVOL=0dB, C	OVOL=0dB, RCVG=	$=$ -6 dB, R_L $=$ 32Ω ,	BTL; unless
otherwise specified.				
Output Voltage (Note 21)	_	,		
0dBFS	1.76	1.96	2.16	Vpp
0dBFS, RCVG=0dB	_	3.91		Vpp
S/(N+D)	_	,		
0dBFS	40	59		dB
0dBFS, RCVG=0dB	_	55		dB
S/N (A-weighted) (DAC \rightarrow RCP/RCN pins)	84	94	-	dB
Output Noise Level (A-weighted, $RCVG = -9dB$)	-	-100	-	dBV
Load Resistance	32	-	-	Ω
Load Capacitance (Note 19)	-	-	30	pF
PSRR (Note 16)				
217Hz	-	75	-	dB
1kHz	-	75	<u>-</u>	dB

- Note 15. Output voltage is proportional to AVDD voltage. Vout = $1.0 \times \text{AVDD Vpp(typ)}$
- Note 16. PSRR is referred to SVDD with 200mVpp sine wave.
- Note 17. Output voltage is proportional to AVDD voltage. Vout = (LOP) (LON) = 2.0 x AVDD Vpp(typ)
- Note 18. This is a resistance value between output pin and VSS1. When a resistor is connected between output pins, load resistance for each output pin is half. Therefore, it is necessary to decide load resistance in consideration of these
- Note 19. This is a capacitance value between output pin and VSS1. When a capacitor is connected between output pins, load capacitance for each output pin doubles. Therefore, it is necessary to decide load capacitance in consideration of these.
- Note 20. Input signal of left and right channels is same phase and level.
- Note 21. Output voltage is proportional to AVDD voltage. Vout = (RCP) (RCN) = 2.17 x AVDD Vpp(typ) Po = 15mW @ 32Ω , Vout = 1.96Vpp. Po = 60mW @ 32Ω , Vout = 3.91Vpp.

Parameter	min	typ	max	Unit
Headphone-Amp Characteristics: DAC(Stereo, Not	$e 20) \rightarrow HPL/HP$	R pins, ALC=OFF	, IVOL=0dB, OV	OL=0dB,
$HPG=0dB, R_L=32$	2Ω			
Output Voltage (Note 22)				
0 dBFS, $R_L = 32\Omega$, HPG= -4 dB	1.44	1.6	1.76	Vpp
$0dBFS$, $R_L = 16\Omega$, $HPG = -4dB$	-	1.6	-	Vpp
0 dBFS, $R_L = 32\Omega$, HPG= 0 dB	-	2.5	-	Vpp
$0 \text{dBFS}, R_L = 16\Omega, HPG=0 \text{dB}$	-	0.85	-	Vrms
S/(N+D)		•		
0 dBFS, $R_L = 32\Omega$, HPG= -4 dB	50	73	-	dB
0 dBFS, $R_L = 16\Omega$, HPG= -4 dB	-	67	-	dB
$0 \text{dBFS}, R_L = 32\Omega \text{ HPG=0dB}$	-	73	-	dВ
$0 \text{dBFS}, R_L = 16\Omega \text{ HPG=0dB}$	-	20	-	dВ
S/N (A-weighted)	85	95	-	dB
Output Noise Level (A-weighted, HPG=–14dB)	-	-106	_	dBV
Interchannel Isolation	60	80	_	dB
Interchannel Gain Mismatch	-	0	0.8	dB
Load Resistance	16	32	-	Ω
Load Capacitance (Note 23)	-	-	300	pF
PSRR (Note 24)				
217Hz	-	70	-	dB
1kHz	-	60	-	dB
DC-offset (HPG \leq -4dB)	-1	0	1	mV
Speaker-Amp Characteristics: DAC(stereo, Note	$25) \rightarrow SPP/SP$	N pins, ALC=OF	F, IVOL=0dB,	OVOL=0dB
SPKG=-6dB, R _L =8	$\Omega + 10\mu H$			
Output Power				
SVDD=5.0V, THD+N = 10%	-	1.57	-	W
SVDD=4.2V, THD+N = 10%		1.1	-	W
SVDD=4.2V, THD+N = 1%		0.89	<u>-</u>	W
SVDD= $3.7V$, THD+ $N = 1\%$	-	0.69	-	W
Output Voltage (–3dBFS) (Note 26)	5.0	5.4	6.2	Vpp
S/(N+D) (SVDD=3.7V, Po=0.35W)	40	59	-	dB
Output Noise Level (A-weighted) (Note 27)	-	-82	-73	dBV
Load Resistance	8	-	-	Ω
Load Capacitance (Note 23)	-	-	300	pF
PSRR (Note 28)				
217Hz	-	63	-	dB
1kHz	-	63	-	dB
DC-offset	-10	0	10	mV
Current Limit (Note 29)	-	40	80	mA

Note 22. The Output voltage is proportional to AVDD voltage. Vout = $1.4 \times \text{AVDD Vpp(typ)}$.

Po = 10mW @ 32Ω, Vout = 1.6Vpp. Po = 25mW @ 32Ω, Vout = 2.5Vpp.

Po = 20mW @ 16Ω , Vout = 1.6Vpp. Po = 45mW @ 16Ω , Vout = 0.85Vrms.

- Note 23. Load Capacitance for VSS1.
- Note 24. PSRR is referred to PVDD with 200mVpp sine wave.
- Note 25. Input signal of left and right channels is same phase and level.
- Note 26. Output voltage is proportional to AVDD voltage. Vout = $(SPP) (SPN) = 3.0 \times AVDD Vpp(typ)$.
- Note 27. In case of mono signal input (e.g. Lch only) and SPKG=0dB, output noise level is -84dBV.
- Note 28. PSRR is referred to SVDD with 200mVpp sine wave.
- Note 29. The average current between SVDD and VSS3 when the SPP and SPN pins are shorted and output power is 890mW.

Parameter		min	typ	max	Unit
Stereo Line Outpu	it Volume Characteristics:				
Gain Setting		-9	-	+6	dB
Step Width		1	3	5	dB
Headphone Outpu	it Volume Characteristics:				
Gain Setting		-62	-	+6	dB
Step Width	Gain: +6 ~ −40dB	1	2	3	dB
	Gain: $-40 \sim -62 dB$	-	2	-	dB
Speaker Output V	olume Characteristics:				
Gain Setting		-30	-	+12	dB
Step Width		1	3	5	dB
Receiver Output V	Volume Characteristics:				
Gain Setting		-30	-	+12	dB
Step Width		1	3	5	dB

Parameter			min	typ	max	Unit			
Po	Power Supply Current:								
Po	Power Up (PDN pin = "H", All Circuits Power-up)								
	AVDD + DVDD + PVDD + TVDD	(Note 30)	-	6.2	-	mA			
		(Note 31)	-	9.6	14.4	mA			
	SVDD (No Load)	(Note 30)	-	3.5	-	mA			
		(Note 31)	-	4.2	6.3	mA			
Po	Power Down (PDN pin = "L") (Note 32)								
	AVDD + PVDD + DVDD + TVDD + SVDD		-	1	10	μΑ			
	SVDD (Note 33)		-	0	10	μΑ			

Note 30. EXT Slave Mode, fs=44.1kHz, No input, No load, PMADL = PMADR = PMDAL = PMDAR = PMPFIL = PMEQ = PMDRC = PMLO = PMRO = PMHPL = PMHPR = PMSPK = PMRCV = PMVCM bits = "1", PMPLL = PMMP1 = PMMP2 = M/S = PMOSC = PMMIX = PMSRAI = PMSRAO = PMSRBI = PMSRBO = PMPCMA = PMPCMB bits = "0".

AVDD=3.9mA (typ), DVDD=1.4mA (typ), PVDD=0.75mA (typ), SVDD=3.5mA (typ), TVDD=0.1mA (typ). Note 31. PLL Master Mode, Audio I/F sampling frequency =44.1kHz, PCM I/F A sampling frequency =16kHz, PCM I/F B sampling frequency = 8kHz, No input, No load, PMADL = PMADR = PMDAL = PMDAR = PMPFIL = PMEQ = PMDRC = PMLO = PMRO = PMHPL = PMHPR = PMSPK = PMRCV = PMVCM = PMPLL = PMMP1 = PMMP2 = M/S = PMOSC = PMMIX = PMSRAI = PMSRAO = PMSRBI = PMSRBO = PMPCMA = PMPCMB bits = "1". PLL Reference Clock = MCKI = 11.2896MHz. In this case, output current of the MPWR1 and MPWR2 pins are 0mA.

AVDD=4.6mA (typ), DVDD=4.0mA (typ), PVDD=0.78mA (typ), SVDD=4.2mA (typ), TVDD=0.2mA (typ) Note 32. All digital input pins are fixed to each supply pin TVDD or VSS2.

Note 33. AVDD, DVDD, PVDD and TVDD are powered OFF.

■ Power Consumption for Each Operation Mode

Condition: Ta=25°C; AVDD=DVDD=PVDD=TVDD =1.8V, SVDD=4.2V; VSS1=VSS2=VSS3=0V; fs=44.1kHz, fs2=16kHz, fs3=8kHz; External Slave Mode, BICK=64fs; No data input, Receiver / Speaker / Headphone = No Load

Mode	AVDD [mA]	DVDD+PVDD [mA]	TVDD [mA]	SVDD [mA]	Total Power [mW]
LIN1/RIN1 \rightarrow ADC (Note 34)	1.93	0.74	0.1	0.003	5.0
DAC → Lineout (Note 35)	1.27	0.46	0.02	0.9	6.9
$DAC \rightarrow HP (Note 36)$	0.82	1.21	0.02	0.003	3.7
DAC → RCV (Note 37)	1.22	0.44	0.02	1.3	8.5
$DAC \rightarrow SPK (Note 38)$	1.75	0.44	0.02	1.35	9.4
PCM I/F A \rightarrow PCM I/F B & PCM I/F B \rightarrow PCM I/F A (Note 39)	0.21	1.19	0.1	0.003	2.7

Note 34. PMVCM = PMADL = PMADR bits = "1", PFSDO bit = "0"

Note 35. PMVCM = PMDAL = PMDAR = PMLO = PMRO bits = "1", DASEL1-0 bits = "10"

Note 36. PMVCM = PMDAL = PMDAR = PMHPL = PMHPR bits = "1", DASEL1-0 bits = "10"

Note 37. PMVCM = PMDAL = PMDAR = PMRCV bits = "1", DASEL1-0 bits = "10" Note 38. PMVCM = PMDAL = PMDAR = PMSPK bits = "1", DASEL1-0 bits = "10"

Note 39. PMVCM = PMOSC = PMPCMA = PMSRAI = PMSRAO = PMPCMB = PMSRBI = PMSRBO bits = "1" Table 1. Power Consumption for Each Operation Mode (typ)

SRC CHARACTERISTICS

(Ta=25°C; AVDD=PVDD= DVDD=TVDD =1.8V, SVDD=4.2V; VSS1=VSS2=VSS3=0V; Signal Frequency=1kHz; 16bit Data; Measurement Bandwidth=20Hz ~ FSO/2; unless otherwise specified)

Parameter	Symbol	min	typ	max	Unit
SRC Characteristics (SRCAI): SDTIA \rightarrow SRCAI \rightarrow SDT	O				
Resolution		-	-	16	Bits
Input Sample Rate	FSI	8	-	16	kHz
Output Sample Rate	FSO	8	-	48	kHz
THD+N (Input = 1kHz, -1dBFS, Note 40) FSO/FSI = 44.1kHz/8kHz		-	-88	1	dB
Dynamic Range (Input = 1kHz, -60dBFS, Note 40) FSO/FSI = 44.1kHz/8kHz		-	98	1	dB
Ratio between Input and Output Sample Rate	FSO/FSI	1/2		6	-
SRC Characteristics (SRCAO): SDTI → SRCAO → SDT	OA				
Resolution		-	-	16	Bits
Input Sample Rate	FSI	8	-	48	kHz
Output Sample Rate	FSO	8	-	16	kHz
THD+N (Input = 1kHz, -1dBFS, Note 40) FSO/FSI = 8kHz/44.1kHz FSO/FSI = 16kHz /8kHz		-	-75 -88	-	dB dB
Dynamic Range (Input = 1kHz, -60dBFS, Note 40)		-	-88	-	иБ
FSO/FSI = 8kHz/44.1kHz FSO/FSI = 16kHz /8kHz		-	100 99	-	dB dB
Ratio between Input and Output Sample Rate	FSO/FSI	1/6		2	-
SRC Characteristics (SRCBI, SRCBO): SDTI → SRCBO	→ SDTOB, SDT	IB → SRC	BI → SDT)	•
Resolution		-	-	16	Bits
Input Sample Rate	FSI	8	-	48	kHz
Output Sample Rate	FSO	8	-	48	kHz
THD+N (Input = 1kHz, -1dBFS, Note 40)					
FSO/FSI = 8kHz/44.1kHz		-	-75	-	dB
FSO/FSI = 44.1kHz/8kHz		-	-88	-	dB
Dynamic Range (Input = 1kHz, -60dBFS, Note 40) FSO/FSI = 8kHz/44.1kHz		-	100	-	dB
FSO/FSI = 44.1kHz/8kHz		-	99	-	dB
Ratio between Input and Output Sample Rate	FSO/FSI	1/6		6	-

Note 40. Measured by Audio Precision System Two Cascade.

FILTER CHARACTERISTICS (CODEC)

(Ta=25°C; AVDD = PVDD =DVDD=1.7 \sim 2.0V; SVDD=3.0 \sim 5.5V, TVDD =1.6 \sim 3.6V; fs=44.1kHz; Programmable Filter=OFF)

Parameter		Symbol	min	typ	max	Unit
ADC Digital Filter (Decima	ation LPF):					
Passband (Note 41)	±0.16dB	PB	0	-	17.3	kHz
	-0.66dB		-	19.4	-	kHz
	-1.1dB		-	19.9	-	kHz
	-6.9dB		-	22.1	-	kHz
Stopband (Note 41)		SB	26.1	-	-	kHz
Passband Ripple		PR	-	-	±0.16	dB
Stopband Attenuation		SA	73	-	-	dB
Group Delay (Note 42)		GD	-	20	-	1/fs
Group Delay Distortion		ΔGD	-	0	-	μs
ADC Digital Filter (HPF):	HPFC1-0 bits = 0	"00"				
Frequency Response	-3.0dB	FR	-	3.4	-	Hz
	-0.5dB		-	10	-	Hz
	-0.1dB		-	22	-	Hz
DAC Digital Filter (LPF):						
Passband (Note 41)	±0.05dB	PB	0	-	20.0	kHz
, , ,	-6.0dB		-	22.05	-	kHz
Stopband (Note 41)	•	SB	24.1	-	-	kHz
Passband Ripple		PR	-	-	±0.05	dB
Stopband Attenuation		SA	54	-	-	dB
Group Delay (Note 42)		GD	-	25	-	1/fs
DAC Digital Filter (LPF) +	- SCF + SMF:					
Frequency Response: 0 ~ 20	.0kHz	FR	-	±1.0	-	dB

Note 41. The passband and stopband frequencies scale with fs (system sampling rate). For example, DAC is PB=0.454 x fs (@±0.05dB). Each response refers to that of 1kHz.

Note 42. The calculated delay time caused by digital filtering. This time is from the input of analog signal to setting of the 24-bit data of both channels from the input register to the output register of the ADC. This time includes group delay of the HPF and Programmable filter. For the DAC, this time is from setting the 24-bit data of both channels from the input register to the output of analog signal and includes selector block (SDMIN, PFMXL/R and SRMXL/R), DRC, 5-band EQ and DATT-A. For the signal through the programmable filters, group delay is increased 4/fs at Playback Mode from the value above if there is no phase changed by the IIR filter.

FILTER CHARACTERISTICS (SRC)

(Ta=25°C; AVDD = PVDD =DVDD=1.7 \sim 2.0V; SVDD=3.0 \sim 5.5V, TVDD =1.6 \sim 3.6V; Programmable Filter=OFF)

Parameter			Symbol	min	typ	max	Unit
Digital Filt	er		•		· · · · · · · · · · · · · · · · · · ·		
Passband	-0.23dB 0.985	\leq FSO/FSI \leq 6.000	PB	0	-	0.4583FSI	kHz
		≤ FSO/FSI < 0.985	PB	0	-	0.4167FSI	kHz
		≤ FSO/FSI < 0.905	PB	0	-	0.3104FSI	kHz
	-0.11dB 0.656	≤ FSO/FSI < 0.714	PB	0	-	0.2813FSI	kHz
	-0.10dB 0.492	≤ FSO/FSI < 0.656	PB	0	-	0.2167FSI	kHz
	-0.09dB 0.452	≤ FSO/FSI < 0.492	PB	0	-	0.1948FSI	kHz
	-0.07dB 0.357	\leq FSO/FSI $<$ 0.452	PB	0	-	0.1458FSI	kHz
	-0.07dB 0.324	≤ FSO/FSI < 0.357	PB	0	-	0.1271FSI	kHz
	-0.06dB 0.226	≤ FSO/FSI < 0.324	PB	0	-	0.0729FSI	kHz
	-0.17dB 0.166	$7 \le FSO/FSI < 0.226$	PB	0	-	0.0625FSI	kHz
Stopband	0.985	\leq FSO/FSI \leq 6.000	SB	0.5417FSI	-	-	kHz
	0.905	\leq FSO/FSI $<$ 0.985	SB	0.5021FSI	-	-	kHz
	0.714	\leq FSO/FSI $<$ 0.905	SB	0.3958FSI	-	-	kHz
	0.656	\leq FSO/FSI $<$ 0.714	SB	0.3667FSI	-	-	kHz
	0.492	\leq FSO/FSI $<$ 0.656	SB	0.3021FSI	-	-	kHz
	0.452	\leq FSO/FSI $<$ 0.492	SB	0.2802FSI	-	-	kHz
	0.357	\leq FSO/FSI $<$ 0.452	SB	0.2313FSI	-	-	kHz
	0.324	\leq FSO/FSI $<$ 0.357	SB	0.2125FSI	-	-	kHz
		≤ FSO/FSI <0.324	SB	0.1583FSI	-	-	kHz
	0.166	$7 \le FSO/FSI < 0.226$	SB	0.1271FSI	-	-	kHz
Stopband		\leq FSO/FSI \leq 6.000	SA	87.0	-	-	dB
Attenuation	0.905	\leq FSO/FSI $<$ 0.985	SA	88.0	-	-	dB
	0.714	\leq FSO/FSI $<$ 0.905	SA	87.5	-	-	dB
	0.656	\leq FSO/FSI $<$ 0.714	SA	86.8	-	-	dB
	0.492	\leq FSO/FSI $<$ 0.656	SA	86.4	-	-	dB
	0.452	\leq FSO/FSI $<$ 0.492	SA	86.0	-	-	dB
	0.357	\leq FSO/FSI $<$ 0.452	SA	86.6	-	-	dB
	0.324	\leq FSO/FSI $<$ 0.357	SA	86.1	-	-	dB
	0.226	\leq FSO/FSI $<$ 0.324	SA	85.7	-	-	dB
		$7 \le FSO/FSI < 0.226$	SA	72.8	-	-	dB
	ny (Note 43)	ı	1	T	T	Ī	1
PCM I/I	$FA \rightarrow PCMI/FB$	(PMMIX bit="0")	GD	-	30/fs2+10.5/fs3	-	S
		(PMMIX bit="1")	GD	-	29.5/fs2+37.5/fs3 +9.5/fs	-	s
PCM I/I	F B → PCM I/F A	(PMMIX bit="0")	GD	-	30/fs2+10.5/fs3	-	S
		(PMMIX bit="1")	GD	-	29.5/fs2+37.5/fs3 +9.5/fs	-	s
PCM I/	F A → SDTO	•	GD	-	29.5/fs2+11.5/fs	-	S
	F B → SDTO		GD	-	29.5/fs2+12.5/fs	-	S
	F A → 5-band EQ C Digital Output (→ DATT-A → DRC Note 44)	GD	-	29.5/fs2+32.5/fs	-	S
PCM I/I		→ DATT-A → DRC	GD	-	29.5/fs2+33.5/fs	-	S

Note 43. This value is the time from the rising edge of LRCK, SYNCA or SYNCB after data is input to rising edge of LRCK after data is output, when LRCK, SYNCA or SYNCB for Output data corresponds with SYNCA or SYNCB for Input.

Note 44. This value includes group delay of DAC digital filter.

fs: LRCK Frequency, fs2: SYNCA Frequency, fs3: SYNCB Frequency.

DC CHARACTERISTICS

 $(Ta=25^{\circ}C; AVDD = PVDD = DVDD=1.7 \sim 2.0V; SVDD=3.0 \sim 5.5V, TVDD = 1.6 \sim 3.6V)$

Parameter	,	Symbol	min	typ	max	Unit
High-Level Input Voltage	2.2V≤TVDD≤3.6V	VIH1	70%TVDD	-	_	V
(Note 45)	1.6V≤TVDD<2.2V	VIH1	80%TVDD	-	-	V
Low-Level Input Voltage	2.2V≤TVDD≤3.6V	VIL1	-	-	30%TVDD	V
(Note 45)	1.6V≤TVDD<2.2V	VIL1	-	-	20%TVDD	V
High-Level Output Voltage						
(N	Tote 46)(Iout=-200μA)	VOH1	TVDD-0.2	-	-	V
Low-Level Output Voltage				-	-	V
(Note 46)(Iout=200μA)	VOL1	-	-	0.2	V
(SDA pin, 2.0V≤TV	DD≤3.6V: Iout=3mA)	VOL2	-	-	0.4	V
(SDA pin, 1.6V≤TV	DD<2.0V: Iout=3mA)	VOL2	-	-	20%TVDD	V
Input Leakage Current (Note 4	-7)	Iind	-	-	±2	μΑ
Digital MIC Interface (DMD	AT pin Input; DMIC I	bit = "1")				
High-Level Input Voltage		VIH3	65%AVDD	-	-	V
Low-Level Input Voltage		VIL3	-	-	35%AVDD	V
Digital MIC Interface (DMC	LK pin Output; DMIC	C bit = "1")				
High-Level Output Voltage	(Iout=-80µA)	VOH3	AVDD-0.4	=	-	V
Low-Level Output Voltage	(Iout= 80μ A)	VOL3			0.4	V
Input Leakage Current	(Note 47)	Iin	_	_	±10	μA

Note 45. BICK, LRCK, SDTI, MCKI, PDN, BICKA, SYNCA, SDTIA, BICKB, SYNCB, SDTIB, SCL and SDA pins Note 46. BICK, LRCK SDTO, SDTOA and SDTOB pins

Note 47. SYNCB, BICKB, SDTIB, SDTI, LRCK, MCKI, BICK, SCL, SDA, SDTIA, BICKA and SYNCA pins. I/O pins (LRCK, BICK and SDA pins) are at the time of Input state.

SWITCHING CHARACTERISTICS

(Ta=25°C; AVDD=DVDD=PVDD=1.7 \sim 2.0V, TVDD =1.6 \sim 3 .6V, SVDD=3.0 \sim 5.5V; C_L=20pF (except SDA pin) or 400pF (SDA pin); unless otherwise specified)

Parai	meter		Symbol	min	typ	max	Unit
PLL	Master Mode (PLL Reference Clock = MCl	KI pin)				
M	ICKI Input Tii	ming	-				
	Frequency		fCLK	11.2896	-	27	MHz
	Pulse Width	Low	tCLKL	0.4/fCLK	-	-	ns
	Pulse Width	High	tCLKH	0.4/fCLK	=	-	ns
L	RCK Output T	Timing					
	Frequency		fs	-	Table 7	-	kHz
	DSP Mode: F	Pulse Width High	tLRCKH	-	tBCK	-	ns
	Except DSP I	Mode: Duty Cycle	Duty	=	50	-	%
В	ICK Output T	iming					
	Period	BCKO bit = "0"	tBCK	-	1/(32fs)	-	ns
		BCKO bit = "1"	tBCK	-	1/(64fs)	-	ns
	Duty Cycle		dBCK	-	50	-	%
PLL	Slave Mode (P	LL Reference Clock = BICK	pin)				
\mathbf{L}	RCK Input Ti	ming	•				
	Frequency		fs	8	-	48	kHz
	DSP Mode: F	Pulse Width High	tLRCKH	tBCK-60	-	1/fs – tBCK	ns
		Mode: Duty Cycle	Duty	45	-	55	%
В	ICK Input Tin	ning					
	Period	PLL3-0 bits = "0010"	tBCK	-	1/(32fs)	-	ns
		PLL3-0 bits = "0011"	tBCK	-	1/(64fs)	-	ns
	Pulse Width	Low	tBCKL	0.4 x tBCK	-	-	ns
	Pulse Width	High	tBCKH	0.4 x tBCK	-	-	ns

Parameter		Symbol	min	typ	max	Unit
External Slave Mo	de					
MCKI Input T	iming					
Frequency	256fs	fCLK	2.048	-	12.288	MHz
	512fs	fCLK	4.096	-	12.288	MHz
	1024fs	fCLK	8.192	-	12.288	MHz
Pulse Width	Low	tCLKL	0.4/fCLK	-	-	ns
Pulse Width	High	tCLKH	0.4/fCLK	-	-	ns
LRCK Input T	iming					
Frequency	256fs	fs	8	-	48	kHz
	512fs	fs	8	-	24	kHz
	1024fs	fs	8	-	12	kHz
DSP Mode:	Pulse Width High	tLRCKH	tBCK-60	-	1/fs – tBCK	ns
	Mode: Duty Cycle	Duty	45	-	55	%
BICK Input Ti	ming					
Period (Note	. 40)	tBCK	312.5 or			ns
Period (Note	46)	IDCK	1/(126fs)	-	_	S
Pulse Width	Low	tBCKL	130	-	-	ns
Pulse Width	High	tBCKH	130	-	-	ns
External Master M	lode					
MCKI Input T	iming					
Frequency	256fs	fCLK	2.048	-	12.288	MHz
	512fs	fCLK	4.096	-	12.288	MHz
	1024fs	fCLK	8.192	-	12.288	MHz
Pulse Width	Low	tCLKL	0.4/fCLK	-	-	ns
Pulse Width	High	tCLKH	0.4/fCLK	-	-	ns
LRCK Output	Timing					
Frequency		fs	8	-	48	kHz
DSP Mode:	Pulse Width High	tLRCKH	-	tBCK	_	ns
	Mode: Duty Cycle	Duty		50		%
BICK Output						
Period	BCKO bit = "0"	tBCK	-	1/(32fs)	-	ns
	BCKO bit = "1"	tBCK		1/(64fs)	-	ns
Duty Cycle		dBCK	_	50	_	%

Note 48. The minimum value is longer time between 312.5ns and 1/(126fs)s.

Parameter	Symbol	min	typ	max	Unit
Audio Interface Timing (DSP Mode)					
Master Mode					
LRCK "\" to BICK "\" (Note 49)	tDBF	0.5 x tBCK – 40	0.5 x tBCK	0.5 x tBCK + 40	ns
LRCK "↑" to BICK "↓" (Note 50)	tDBF	0.5 x tBCK - 40	0.5 x tBCK	0.5 x tBCK + 40	ns
BICK "\tag{"}" to SDTO (BCKP bit = "0")	tBSD	-70	-	70	ns
BICK " \downarrow " to SDTO (BCKP bit = "1")	tBSD	-70	-	70	ns
SDTI Hold Time	tSDH	50	-	-	ns
SDTI Setup Time	tSDS	50	-	-	ns
Slave Mode					
LRCK "\" to BICK "\" (Note 49)	tLRB	0.4 x tBCK	-	-	ns
LRCK "↑" to BICK "↓" (Note 50)	tLRB	0.4 x tBCK	-	-	ns
BICK "↑" to LRCK "↑" (Note 49)	tBLR	0.4 x tBCK	-	-	ns
BICK "↓" to LRCK "↑" (Note 50)	tBLR	0.4 x tBCK	-	-	ns
BICK "\tag{"}" to SDTO (BCKP bit = "0")	tBSD	-	-	80	ns
BICK " \downarrow " to SDTO (BCKP bit = "1")	tBSD	-	-	80	ns
SDTI Hold Time	tSDH	50	-	-	ns
SDTI Setup Time	tSDS	50	-	-	ns
Audio Interface Timing (Right/Left justified &	I^2S)				
Master Mode					
BICK "↓" to LRCK Edge (Note 51)	tMBLR	-40	-	40	ns
LRCK Edge to SDTO (MSB)	tLRD	-70	-	70	ns
(Except I ² S mode)					
BICK "↓" to SDTO	tBSD	-70	-	70	ns
SDTI Hold Time	tSDH	50	-	-	ns
SDTI Setup Time	tSDS	50	-	-	ns
Slave Mode					
LRCK Edge to BICK "\tag{"}" (Note 51)	tLRB	50	-	-	ns
BICK "↑" to LRCK Edge (Note 51)	tBLR	50	-	-	ns
LRCK Edge to SDTO (MSB)	tLRD	-	-	80	ns
(Except I ² S mode)					
BICK "↓" to SDTO	tBSD	-	-	80	ns
SDTI Hold Time	tSDH	50	-	-	ns
SDTI Setup Time	tSDS	50	-	-	ns

Note 49. MSBS, BCKP bits = "00" or "11".

Note 50. MSBS, BCKP bits = "01" or "10".

Note 51. BICK rising edge must not occur at the same time as LRCK edge.

Parameter	Symbol	min	typ	max	Unit
PCM Interface Timing (BICKA, SYNCA, SDTIA, SDT	OA pins):				
SYNCA Timing					
Frequency	fs2	8	-	16	kHz
Serial Interface Timing at Short/long Frame Sync					
BICKA Frequency	fBCK2	128	-	4096	kHz
BICKA Period	tBCK2	244	-	_	ns
BICKA Pulse Width Low	tBCKL2	100	-	_	ns
Pulse Width High	tBCKH2	100	-	-	ns
SYNCA Edge to BICKA "↓" (Note 52)	tSYB2	40	-	-	ns
SYNCA Edge to BICKA "\" (Note 53)	tSYB2	40	-	_	ns
BICKA "↓" to SYNCA Edge (Note 52)	tBSY2	40	-	_	ns
BICKA "\" to SYNCA Edge (Note 53)	tBSY2	40	-	_	ns
SYNCA to SDTOA (MSB) (Except Short Frame)	tSYD2	-	-	60	ns
BICKA "↑" to SDTOA (BCKPA bit = "0")	tBSD2	_	-	60	ns
BICKA "↓" to SDTOA (BCKPA bit = "1")	tBSD2	_	-	60	ns
SDTIA Hold Time	tSDH2	25	-	-	ns
SDTIA Setup Time	tSDS2	25	-	_	ns
SYNCA Pulse Width Low	tSYL2	0.8 x tBCK2	-	_	ns
Pulse Width High	tSYH2	0.8 x tBCK2	-	_	ns
Serial Interface Timing at MSB justified and I ² S					
BICKA Frequency	fBCK2	256	-	3072	kHz
BICKA Period	tBCK2	312.5	-	_	ns
BICKA Pulse Width Low	tBCKL2	130	-	-	ns
Pulse Width High	tBCKH2	130	-	-	ns
SYNCA Edge to BICKA "↑"	tSYB2	50	-	-	ns
BICKA "↑" to SYNCA Edge	tBSY2	50	-	_	ns
SYNCA to SDTOA (MSB) (Except I ² S mode)	tSYD2	_	-	80	ns
BICKA "↓" to SDTOA	tBSD2	-	-	80	ns
SDTIA Hold Time	tSDH2	50	-	-	ns
SDTIA Setup Time	tSDS2	50	-	-	ns
SYNCA Duty Cycle	dSYC2	45	50	55	%

Note 52. MSBSA, BCKPA bits = "00" or "11".

Note 53. MSBSA, BCKPA bits = "01" or "10".

Parameter	Symbol	min	typ	max	Unit		
PCM Interface Timing (BICKB, SYNCB, SDTIB, SDT	PCM Interface Timing (BICKB, SYNCB, SDTIB, SDTOB pins):						
SYNCB Timing							
Frequency	fs3	8	-	48	kHz		
Serial Interface Timing at Short/long Frame Sync							
BICKB Frequency	fBCK3	128	-	4096	kHz		
BICKB Period	tBCK3	244	-	-	ns		
BICKB Pulse Width Low	tBCKL3	100	-	_	ns		
Pulse Width High	tBCKH3	100	-	-	ns		
SYNCB Edge to BICKB "↓" (Note 54)	tSYB3	40	-	-	ns		
SYNCB Edge to BICKB "\" (Note 55)	tSYB3	40	-	_	ns		
BICKB "↓" to SYNCB Edge (Note 54)	tBSY3	40	-	_	ns		
BICKB "\" to SYNCB Edge (Note 55)	tBSY3	40	-	-	ns		
SYNCB to SDTOB (MSB) (Except Short Frame)	tSYD3	-	-	60	ns		
BICKB "\" to SDTOB (BCKPB bit = "0")	tBSD3	-	-	60	ns		
BICKB "↓" to SDTOB (BCKPB bit = "1")	tBSD3	-	-	60	ns		
SDTIB Hold Time	tSDH3	25	-	_	ns		
SDTIB Setup Time	tSDS3	25	-	-	ns		
SYNCB Pulse Width Low	tSYL3	0.8 x tBCK3	-	_	ns		
Pulse Width High	tSYH3	0.8 x tBCK3	-	_	ns		
Serial Interface Timing at MSB justified and I ² S							
BICKB Frequency	fBCK3	256	-	3072	kHz		
BICKB Period	tBCK3	312.5	-	_	ns		
BICKB Pulse Width Low	tBCKL3	130	-	_	ns		
Pulse Width High	tBCKH3	130	-	_	ns		
SYNCB Edge to BICKB "↑"	tSYB3	50	-	-	ns		
BICKB "\" to SYNCB Edge	tBSY3	50	-	_	ns		
SYNCB to SDTOB (MSB) (Except I ² S mode)	tSYD3	-	-	80	ns		
BICKB "↓" to SDTOB	tBSD3	-	-	80	ns		
SDTIB Hold Time	tSDH3	50	-	_	ns		
SDTIB Setup Time	tSDS3	50	-	-	ns		
SYNCB Duty Cycle	dSYC3	45	50	55	%		

Note 54. MSBSB, BCKPB bits = "00" or "11".

Note 55. MSBSB, BCKPB bits = "01" or "10".

Symbol	min	typ	max	Unit
fSCL	30	-	400	kHz
tBUF	1.3	-	-	μs
tHD:STA		-	_	μs
tLOW	1.3	-	_	μs
		-	_	μs
tSU:STA	0.6	-	-	μs
tHD:DAT	0	-	-	μs
tSU:DAT	0.1	-	_	μs
tR	-	-	0.3	μs
	-	-	0.3	μs
tSU:STO	0.6	-	-	μs
Cb	-	-	400	pF
tSP	0	-	50	ns
tSCK	-	1/(64fs)	-	ns
tSRise	-	_	10	ns
tSFall	-	-	10	ns
dSCK	45	50	55	%
tDMS	50	-	-	ns
tDMH	0	-	-	ns
tAPD	1.5	-	-	μs
tRPD	-	-	50	ns
tPDV	-	1059	-	1/fs
tPDV	-	267	-	1/fs
tPDV	_	1059	-	1/fs
tPDV	-	267	-	1/fs
tPDV2	_	164		1/fs2
tPDV3	_	164		1/fs3
	fSCL tBUF tHD:STA tLOW tHIGH tSU:STA tHD:DAT tSU:DAT tR tF tSU:STO Cb tSP tSCK tSRise tSFall dSCK tDMS tDMH tAPD tRPD tPDV tPDV tPDV tPDV	## SCL 30 1.3	SCL	SCL

Note 56. I²C-bus is a registered trademark of NXP B.V.

Note 57. Data must be held long enough to bridge the 300ns-transition time of SCL.

Note 58. The AK4678 can be reset by bringing PDN pin = "L" to "H" only upon power up. The PDN pin must held "L" for more than $1.5\mu s$ for a certain reset. The AK4678 is not reset by the "L" pulse less than 50ns.

Note 59. This is the count of LRCK "\" from the PMADL or PMADR bit = "1".

Note 60. This is the count of LRCK "\" from the PMDML or PMDMR bit = "1".

Note 61. This is the count of SYNCA "\" from the PMSRAO bit = "1".

Note 62. This is the count of SYNCB "\" from the PMSRBO bit = "1".

■ Timing Diagram

Figure 3. Clock Timing (PLL/EXT Master mode)

Figure 4. Audio Interface Timing (PLL/EXT Master mode, DSP mode, MSBS bit="0")

Figure 5. Audio Interface Timing (PLL/EXT Master mode, DSP mode, MSBS bit="1")

Figure 6. Audio Interface Timing (PLL/EXT Master mode, Except DSP mode)

Figure 7. Clock Timing (PLL Slave mode; PLL Reference Clock = BICK pin, DSP mode, MSBS bit="0")

Figure 8. Clock Timing (PLL Slave mode; PLL Reference Clock = BICK pin, DSP mode, MSBS bit="1")

Figure 9. Clock Timing (PLL Slave mode; Except DSP mode)

Figure 10. Audio Interface Timing (PLL Slave mode, DSP mode; MSBS bit="0")

Figure 11. Audio Interface Timing (PLL Slave mode, DSP mode, MSBS bit="1")

Figure 12. Clock Timing (EXT Slave mode)

Figure 13. Audio Interface Timing (PLL/EXT Slave mode, Except DSP mode)

Figure 14. Clock Timing of PCM I/F A

Figure 15. PCM I/F A Timing at short and long frame sync (MSBSA bit="0")

Figure 16. PCM I/F A Timing at short and long frame sync (MSBSA bit="1")

Figure 17. PCM I/F A Timing at MSB justified and I²S

Figure 18. Clock Timing of PCM I/F B

Figure 19. PCM I/F B Timing at short and long frame sync (MSBSB bit="0")

Figure 20. PCM I/F B Timing at short and long frame sync (MSBSB bit="1")

Figure 21. PCM I/F B Timing at MSB justified and I²S

Figure 22. DMCLK Clock Timing

Figure 23. Audio Interface Timing (DCLKP bit = "1")

Figure 24. Audio Interface Timing (DCLKP bit = "0")

Figure 25. I²C Bus Mode Timing

Figure 26. Power Down & Reset Timing 1

Figure 27. Power Down & Reset Timing 2

Figure 28. Power Down & Reset Timing 3

Figure 29. Power Down & Reset Timing 4

OPERATION OVERVIEW

■ System Clock (Audio I/F)

There are the following four clock modes to interface with external devices. (Table 2 and Table 3)

Mode	PMPLL bit	M/S bit	PLL3-0 bits	Figure
PLL Master Mode	1	1	Table 5	Figure 30
PLL Slave Mode (PLL Reference Clock: BICK pin)	1	0	Table 5	Figure 31
EXT Slave Mode	0	0	X	Figure 32
EXT Master Mode	0	1	X	Figure 33

Table 2. Clock Mode Setting (x: Don't care)

Mode	MCKI pin	BICK pin	LRCK pin
PLL Master Mode	Selected by PLL3-0	Output	Output
	bits	(Selected by BCKO bit)	(1fs)
PLL Slave Mode	GND	Input	Input
(PLL Reference Clock: BICK pin)		(Selected by PLL3-0 bits)	(1fs)
EXT Slave Mode	Selected by FS1-0 bits	Input	Input
		(≥ 32fs)	(1fs)
EXT Master Mode	Selected by FS1-0 bits	Output	Output
		(Selected by BCKO bit)	(1fs)

Table 3. Clock pins state in Clock Mode

■ Master Mode/Slave Mode

The M/S bit selects either master or slave mode. M/S bit = "1" selects master mode and "0" selects slave mode. The AK4678 is in slave mode until the M/S bit is changed to "1" after the PDN pin changes from "L" to "H". The AK4678 goes to master mode by changing M/S bit = "1".

When the AK4678 is used in master mode, LRCK and BICK pins are Hi-Z state until M/S bit becomes "1". LRCK and BICK pins of the AK4678 should be pulled-down or pulled-up by a resistor (about $100k\Omega$) externally to avoid floating state.

M/S bit	Mode	
0	Slave Mode	(default)
1	Master Mode	

Table 4. Select Master/Slave Mode

■ PLL Mode (PMPLL bit = "1")

When PMPLL bit is "1", a fully integrated analog phase locked loop (PLL) generates clock that is selected by the PLL3-0 and FS3-0 bits. The PLL lock time is shown in Table 5. This lock time is when the AK4678 is supplied stable clocks after PLL is powered-up (PMPLL bit = "0" \rightarrow "1") or when the sampling frequency changes.

1) Setting of PLL Mode

Mode	PLL3 bit	PLL2 bit	PLL1 bit	PLL0 bit	PLL Reference Clock Input Pin	Input Frequency	PLL Lock Time (max)	
2	0	0	1	0	BICK pin	32fs	2ms	
3	0	0	1	1	BICK pin	64fs	2ms	
4	0	1	0	0	MCKI pin	11.2896MHz	10ms	
5	0	1	0	1	MCKI pin	12.288MHz	10ms	
6	0	1	1	0	MCKI pin	12MHz	10ms	(default)
7	0	1	1	1	MCKI pin	24MHz	10ms	
8	1	0	0	0	MCKI pin	19.2MHz	10ms	
10	1	0	1	0	MCKI pin	13MHz	10ms	
11	1	0	1	1	MCKI pin	26MHz	10ms	
12	1	1	0	0	MCKI pin	13.5MHz	10ms	
13	1	1	0	1	MCKI pin	27MHz	10ms	
14	1	1	1	0	MCKI pin	25MHz	10ms	
Others		Others				N/A		

Table 5. Setting of PLL Mode (*fs: Sampling Frequency, N/A: Not available)

2) Setting of sampling frequency in PLL Mode

When PLL reference clock input is MCKI and BICK pins, the sampling frequency is selected by FS3-0 bits as defined in Table 6.

Mode	FS3 bit	FS2 bit	FS1 bit	FS0 bit	Sampling Frequency (Note 63)
0	0	0	0	0	8kHz mode
1	0	0	0	1	12kHz mode
2	0	0	1	0	16kHz mode
3	0	0	1	1	24kHz mode
5	0	1	0	1	11.025kHz mode
7	0	1	1	1	22.05kHz mode
10	1	0	1	0	32kHz mode
11	1	0	1	1	48kHz mode
15	1	1	1	1	44.1kHz mode
Others	Others				N/A

(default)

Table 6. Setting of Sampling Frequency at PMPLL bit = "1" (N/A: Not available)

Note 63. When the MCKI pin is the PLL reference clock input, the sampling frequency generated by PLL differs from the sampling frequency of mode name in some combinations of MCKI frequency(PLL3-0 bits) and sampling frequency (FS3-0 bits). Refer to Table 7 for the details of sampling frequency. In master mode, LRCK and BICK output frequency correspond to sampling frequencies shown in Table 7. When the BICK pin is the PLL reference clock input, the sampling frequency generated by PLL is the same sampling frequency of mode name.

Input Frequency	Sampling Frequency	Sampling Frequency
MCKI[MHz]	Mode	generated by PLL [kHz](Note 64)
11.2896	8kHz mode	8.000000
11.2070	12kHz mode	12.000000
	16kHz mode	16.000000
	24kHz mode	24.000000
	32kHz mode	32.000000
	48kHz mode	48.000000
	11.025kHz mode	11.025000
	22.05kHz mode	22.050000
	44.1kHz mode	44.100000
12	8kHz mode	8.00000
12	12kHz mode	12.000000
	16kHz mode	16.000000
	24kHz mode	24.000000
	32kHz mode	32.000000
	48kHz mode	48.000000
	11.025kHz mode	11.024877
	22.05kHz mode	22.049753
	44.1kHz mode	44.099507
24	8kHz mode	8.000000
	12kHz mode	12.000000
	16kHz mode	16.000000
	24kHz mode	24.000000
	32kHz mode	32.000000
	48kHz mode	48.000000
	11.025kHz mode	11.024877
	22.05kHz mode	22.049753
	44.1kHz mode	44.099507
13.5	8kHz mode	8.000300
	12kHz mode	12.000451
	16kHz mode	16.000601
	24kHz mode	24.000901
	32kHz mode	32.001202
	48kHz mode	48.001803
	11.025kHz mode	11.025218
	22.05kHz mode	22.050436
	44.1kHz mode	44.100871
27	8kHz mode	8.000300
	12kHz mode	12.000451
	16kHz mode	16.000601
	24kHz mode	24.000901
	32kHz mode	32.001202
	48kHz mode	48.001803
	11.025kHz mode	11.025218
	22.05kHz mode	22.050436
	44.1kHz mode	44.100871
Sampling	g frequency that differs fro	m sampling frequency of mode name

Note 64. These are rounded off to six decimal places.

Table 7. Sampling Frequency at PLL mode (Reference clock is MCKI)

Input Frequency MCKI[MHz]	Sampling Frequency Mode	Sampling Frequency generated by PLL [kHz] (Note 64)
12.288	8kHz mode	8.000000
-	12kHz mode	12.000000
-	16kHz mode	16.000000
-	24kHz mode	24.000000
-	32kHz mode	32.000000
-	48kHz mode	48.000000
-	11.025kHz mode	11.025000
-	22.05kHz mode	22.050000
	44.1kHz mode	44.100000
19.2	8kHz mode	8.00000
	12kHz mode	12.000000
	16kHz mode	16.000000
_	24kHz mode	24.000000
_	32kHz mode	32.000000
_	48kHz mode	48.000000
_	11.025kHz mode	11.025000
	22.05kHz mode	22.050000
	44.1kHz mode	44.100000
13	8kHz mode	7.999786
	12kHz mode	11.999679
	16kHz mode	15.999572
	24kHz mode	23.999358
	32kHz mode	31.999144
	48kHz mode	47.998716
	11.025kHz mode	11.024877
	22.05kHz mode	22.049753
	44.1kHz mode	44.099507
26	8kHz mode	7.999786
	12kHz mode	11.999679
	16kHz mode	15.999572
	24kHz mode	23.999358
	32kHz mode	31.999144
	48kHz mode	47.998716
	11.025kHz mode	11.024877
	22.05kHz mode	22.049753
	44.1kHz mode	44.099507
25	8kHz mode	8.000088
_	12kHz mode	12.000132
	16kHz mode	16.000177
	24kHz mode	24.000265
	32kHz mode	32.000353
	48kHz mode	48.000530
	11.025kHz mode	11.025706
	22.05kHz mode	22.051411
	44.1kHz mode	44.102823
Compline		m sampling frequency of mode name

Note 64. These are rounded off to six decimal places.

Table 7. Sampling Frequency at PLL mode (Reference clock is MCKI) (2)

■ PLL Unlock State

1) PLL Master Mode (PMPLL bit = "1", M/S bit = "1")

In this mode, LRCK and BICK pins output "L" before the PLL goes to lock state after PMPLL bit = "0" → "1" (Table 8).

After the PLL is locked, a first period of LRCK and BICK may be invalid clock, but these clocks return to normal state after a period of 1/fs.

When sampling frequency is changed, BICK and LRCK pins do not output irregular frequency clocks but go to "L" by setting PMPLL bit "0".

PLL State	BICK pin	LRCK pin
After that PMPLL bit "0" \rightarrow "1"	"L" Output	"L" Output
PLL Unlock (except above case)	Invalid	Invalid
PLL Lock	Table 9	1fs Output

Table 8. Clock Operation in PLL Master Mode (PMPLL bit = "1", M/S bit = "1")

■ PLL Master Mode (PMPLL bit = "1", M/S bit = "1")

When an external clock (11.2896MHz, 12MHz, 12.288MHz, 13MHz, 13.5MHz, 19.2MHz, 24MHz, 25MHz, 26MHz or 27MHz) is input to the MCKI pin, the BICK and LRCK clocks are generated by an internal PLL circuit. MCKI input frequency is selected by PLL3-0 bits (Table 5). The BICK output frequency is selected between 32fs or 64fs, by BCKO bit (Table 9). Sampling frequency mode is selected by FS3-0 bits (Table 6, Table 7).

Figure 30. PLL Master Mode

BCKO bit	BICK Output Frequency	
0	32fs	(default)
1	64fs	

Table 9. BICK Output Frequency in Master Mode

■ PLL Slave Mode (PMPLL bit = "1", M/S bit = "0")

A reference clock of PLL is selected among the input clocks to BICK pin. The required clock to the AK4678 is generated by an internal PLL circuit. Input frequency is selected by PLL3-0 bits (Table 5).

BICK input should be synchronized to LRCK input. Sampling frequency can be selected by FS3-0 bits (Table 6).

Figure 31. PLL Slave Mode (PLL Reference Clock: BICK pin)

■ EXT Slave Mode (PMPLL bit = "0", M/S bit = "0")

When PMPLL bit is "0", the AK4678 becomes EXT mode. Master clock is input from the MCKI pin, the internal PLL circuit is not operated. This mode is compatible with I/F of the normal audio CODEC. The clocks required to operate the AK4678 are MCKI (256fs, 512fs, or 1024fs), LRCK (fs) and BICK (≥32fs). The master clock (MCKI) should be synchronized with LRCK. The phase between these clocks does not matter. The input frequency of MCKI is selected by CM1-0 bits (Table 10) and sampling frequency is selected by FS3-0 bits (Table 11).

In case that the CODEC is used without Audio I/F (like phone call), the CODEC can be operated by MCKI only. In this case, BICK and LRCK can be stopped.

]	Sampling Frequency Range	MCKI Input Frequency	CM0 bit	CM1 bit	Mode
(default)	24kHz ~ 48kHz	256fs	0	0	0
	8kHz ~ 24kHz	512fs	1	0	1
	8kHz ~ 12kHz	1024fs	0	1	2
	8kHz ~ 24kHz	256fs	1	1	3

Table 10. MCKI Frequency in EXT Slave Mode (PMPLL bit = "0", M/S bit = "0")

Mode	FS3 bit	FS2 bit	FS1 bit	FS0 bit	Sampling Frequency
0	0	0	0	0	8kHz
1	0	0	0	1	12kHz
2	0	0	1	0	16kHz
3	0	0	1	1	24kHz
5	0	1	0	1	11.025kHz
7	0	1	1	1	22.05kHz
10	1	0	1	0	32kHz
11	1	0	1	1	48kHz
15	1	1	1	1	44.1kHz
Others		Oth	N/A		

Table 11. Setting of Sampling Frequency (N/A: Not available)

(default)

The S/N of the DAC at low sampling frequencies is worse than at high sampling frequencies due to out-of-band noise. The out-of-band noise can be reduced by using higher frequency of the master clock. The S/N of the DAC output through LOUT/ROUT pins at fs=8kHz is shown in Table 12.

MCKI	S/N
WICKI	(fs=8kHz, 20kHzLPF + A-weighted)
256fs	82dB
512fs	82dB
1024fs	92dB

Table 12. Relationship between MCKI and S/N of LOUT/ROUT pins

Figure 32. EXT Slave Mode

■ EXT Master Mode (PMPLL bit = "0", M/S bit = "1")

The AK4678 becomes EXT Master Mode by setting PMPLL bit = "0" and M/S bit = "1". Master clock is input from the MCKI pin, the internal PLL circuit is not operated. The clock required to operate is MCKI (256fs, 512fs, or 1024fs). The input frequency of MCKI is selected by CM1-0 bits (Table 13) and sampling frequency is selected by FS3-0 bits (Table 14).

Mode	CM1 bit	CM0 bit	MCKI Input Frequency	Sampling Frequency Range	
0	0	0	256fs	24kHz ~ 48kHz	(default)
1	0	1	512fs	8kHz ~ 24kHz	
2	1	0	1024fs	8kHz ~ 12kHz	
3	1	1	256fs	8kHz ~ 24kHz	

Table 13. MCKI Frequency in EXT Master Mode (PMPLL bit = "0", M/S bit = "1")

Mode	FS3 bit	FS2 bit	FS1 bit	FS0 bit	Sampling Frequency	Ī
0	0	0	0	0	8kHz	
1	0	0	0	1	12kHz	
2	0	0	1	0	16kHz	
3	0	0	1	1	24kHz	
5	0	1	0	1	11.025kHz	
7	0	1	1	1	22.05kHz	
10	1	0	1	0	32kHz	
11	1	0	1	1	48kHz	
15	1	1	1	1	44.1kHz	(default)
Others		Oth	ers		N/A	

Table 14. Setting of Sampling Frequency (N/A: Not available)

The S/N of the DAC at low sampling frequencies is worse than at high sampling frequencies due to out-of-band noise. The out-of-band noise can be reduced by using higher frequency of the master clock. The S/N of the DAC output through LOUT/ROUT pins at fs=8kHz is shown in Table 15.

MCKI	S/N (fs=8kHz, 20kHzLPF + A-weighted)
256fs	82dB
512fs	82dB
1024fs	92dB

Table 15. Relationship between MCKI and S/N of LOUT/ROUT pins

Figure 33. EXT Master Mode

BCKO bit	BICK Output Frequency	
0	32fs	(default)
1	64fs	

Table 16. BICK Output Frequency in Master Mode

■ System Reset

Upon power-up, the PDN pin must be "L" and changed to "H" after all power supplies are supplied. "L" time of 1.5μs or more is needed to reset the AK4678. All internal registers reset to their initial values. This reset is released when the dummy command (Actually, the rising edge of 16th SCL) is input after PDN pin = "H". Dummy command is executed by writing all "0" to the register address 00H.

The ADC enters an initialization cycle when the PMADL or PMADR bit is changed from "0" to "1". The initialization cycle time is set by ADRST bit (Table 17). During the initialization cycle, the ADC digital data outputs of both channels are forced to a 2's complement, "0". The ADC output reflects the analog input signal after the initialization cycle is complete. When using a digital microphone, the initialization cycle is the same as ADC's.

Note 65. The initial data of ADC has offset data that depends on the condition of the microphone and the cut-off frequency of HPF. If this offset is not small, make initialization cycle longer by setting ADRST bit = "0" or do not use the initial data of ADC.

	Digital Initialization Cycle					
ADRST bit		fs = 8kHz	fs = 16kHz	$f_S = 44.1 \text{kHz}$		
0	1059/fs	132.4ms	66.2ms	24ms	(default)	
1	267/fs	33.4ms	16.7ms	6.1ms		

Table 17. ADC Digital Initialization Cycle

Figure 34. Dummy Command

■ Audio Interface Format

Four types of data formats are available and can be selected by setting the DIF1-0 bits (Table 18). In all modes, the serial data is MSB first, 2's complement format. Audio interface formats can be used in both master and slave modes. LRCK and BICK are output from the AK4678 in master mode, but must be input to the AK4678 in slave mode.

Mode	DIF1 bit	DIF0 bit	SDTO (ADC)	SDTI (DAC)	BICK	Figure
0	0	0	16bit DSP Mode	16bit DSP Mode	≥ 32fs	Table 19
1	0	1	24bit MSB justified	16bit LSB justified	≥ 32fs	Figure 39
2	1	0	24bit MSB justified	24bit MSB justified	≥ 48fs	Figure 40
3	1	1	24/16 bit I ² S compatible	24/16bit I ² S compatible	32fs or ≥ 48fs	Figure 41

(default)

Table 18. Audio Interface Format

If 24-bit(16-bit) data that ADC outputs is converted to 8-bit data by removing LSB 16-bit(8-bit), "-1" at 24bit(16bit) data is converted to "-1" at 8-bit data. And when the DAC playbacks this 8-bit data, "-1" at 8-bit data will be converted to "-65536" at 24-bit ("-256" at 16-bit) data which is a large offset. This offset can be removed by adding the offset of "32768" at 24-bit ("128" at 16bit) to 24-bit(16-bit) data before converting to 8-bit data.

In Mode 1, 2 and 3, the SDTO is clocked out on the falling edge (" \downarrow ") of BICK and the SDTI is latched on the rising edge (" \uparrow ").

In Mode 0 (16bit DSP mode), the audio I/F timing is changed by BCKP and MSBS bits (Table 19).

DIF1 bit	DIF0 bit	MSBS bit	BCKP bit	Audio Interface Format	Figure	
		0	0	MSB of SDTO is output by the rising edge ("\u00e9") of the first BICK after the rising edge ("\u00e9") of LRCK. MSB of SDTI is latched by the falling edge ("\u00e4") of the BICK just after the output timing of SDTO's MSB.	Figure 35	(default)
		0	1	MSB of SDTO is output by the falling edge ("\perp") of the first BICK after the rising edge ("\perp") of LRCK. MSB of SDTI is latched by the rising edge ("\perp") of the BICK just after the output timing of SDTO's MSB.	Figure 36	
0	0	1	0	MSB of SDTO is output by next rising edge ("\")") of the falling edge ("\")") of the first BICK after the rising edge ("\")") of LRCK. MSB of SDTI is latched by the falling edge ("\")") of the BICK just after the output timing of SDTO's MSB.	Figure 37	
		1	1	MSB of SDTO is output by next falling edge ("\perp") of the rising edge ("\tau") of the first BICK after the rising edge ("\tau") of LRCK. MSB of SDTI is latched by the rising edge ("\tau") of the BICK just after the output timing of SDTO's MSB.	Figure 38	

Table 19. Audio Interface Format in Mode 0

Figure 35. Mode 0 Timing (BCKP bit = "0", MSBS bit = "0")

Figure 36. Mode 0 Timing (BCKP bit = "1", MSBS bit = "0")

Figure 37. Mode 0 Timing (BCKP bit = "0", MSBS bit = "1")

Figure 38. Mode 0 Timing (BCKP bit = "1", MSBS bit = "1")

Figure 39. Mode 1 Timing

Figure 40. Mode 2 Timing

Figure 41. Mode 3 Timing

■ MIC/LINE Input Selector

The AK4678 has input selector. When MDIF1, MDIF2 and MDIF3 bits are "0", INL1-0 and INR1-0 bits select LIN1/LIN2/LIN3/LIN4 and RIN1/RIN2/RIN3/RIN4, respectively. When MDIF1, MDIF2 and MDIF3 bits are "1", LIN1/RIN1, LIN2/RIN2 and LIN3/RIN3 pins become IN1+/-, IN2-/+ and IN3+/- pins, respectively. In this case, full-differential input is available (Figure 43). Digital microphone input is selected when DMIC bit = "1".

(default)

MDIF1	MDIF2	MDIF3	INL1	INL0	INR1	INR0	т 1	D 1
bit	bit	bit	bit	bit	bit	bit	Lch	Rch
0	0	0	0	0	0	0	LIN1	RIN1
0	0	0	0	0	0	1	LIN1	RIN2
0	0	0	0	0	1	0	LIN1	RIN3
0	0	0	0	0	1	1	LIN1	RIN4
0	0	0	0	1	0	0	LIN2	RIN1
0	0	0	0	1	0	1	LIN2	RIN2
0	0	0	0	1	1	0	LIN2	RIN3
0	0	0	0	1	1	1	LIN2	RIN4
0	0	0	1	0	0	0	LIN3	RIN1
0	0	0	1	0	0	1	LIN3	RIN2
0	0	0	1	0	1	0	LIN3	RIN3
0	0	0	1	0	1	1	LIN3	RIN4
0	0	0	1	1	0	0	LIN4	RIN1
0	0	0	1	1	0	1	LIN4	RIN2
0	0	0	1	1	1	0	LIN4	RIN3
0	0	0	1	1	1	1	LIN4	RIN4
0	0	1	1	0	0	0	IN3+/-	RIN1
0	0	1	1	0	0	1	IN3+/-	RIN2
0	0	1	1	0	1	1	IN3+/-	RIN4
0	1	0	0	0	0	1	LIN1	IN2+/-
0	1	0	1	0	0	1	LIN3	IN2+/-
0	1	0	1	1	0	1	LIN4	IN2+/-
0	1	1	1	0	0	1	IN3+/-	IN2+/-
1	0	0	0	0	0	1	IN1+/-	RIN2
1	0	0	0	0	1	0	IN1+/-	RIN3
1	0	0	0	0	1	1	IN1+/-	RIN4
1	1	0	0	0	0	1	IN1+/-	IN2+/-
	•		Others	•	•		N/	/A

Table 20. MIC-Amp Input Signal at DMIC bit = "0" (N/A: Not available)

Figure 42. Mic/Line Input Selector (DMIC bit = "0")

Figure 43. Connection Example for Full-differential Mic Input (MDIF1/2/3 bits = "1")

Figure 44. Connection Example for Full-differential Mic Input (MDIF1/2/3 bits = "1")

■ MIC Gain Amplifier

The AK4678 has a gain amplifier for microphone input. The gain of MIC-Amp Lch and Rch is independently selected by the MGNL3-0 and MGNR3-0 bits (Table 21).

Mode	MGNL3 /MGNR3 bits	MGNL2 /MGNR2 bits	MGNL1 /MGNR1 bits	MGNL0 /MGNR0 bits	Input Gain	
0	0	0	0	0	N/A	c
1	0	0	0	1	N/A	
2	0	0	1	0	N/A	ł
3	0		1	1		1
		0	1	1	-6dB	
4	0	1	0	0	−3dB	
5	0	1	0	1	0dB	(default)
6	0	1	1	0	+3dB	
7	0	1	1	1	+6dB	
8	1	0	0	0	+9dB	
9	1	0	0	1	+12dB	
10	1	0	1	0	+15dB	
11	1	0	1	1	+18dB	
12	1	1	0	0	+21dB	
13	1	1	0	1	+24dB	Ì
14	1	1	1	0	N/A	
15	1	1	1	1	N/A	

Table 21. Mic Input Gain (N/A: Not available)

■ MIC Power

When PMMP1 bit (PMMP2 bit) = "1", the MPWR1 pin (MPWR2 pin) supplies power for the microphone. This output voltage is typically 2.5V @MICL1 bit (MICL2 bit) = "0" (SVDD=3.0 \sim 5.5V), and typically 2.8V@MICL1 bit (MICL2 bit) = "1" (SVDD=3.3 \sim 5.5V) (Table 22). The load resistance is minimum $1k\Omega$ for each MPWR1 pin and MPWR2 pin. In case of using two sets of stereo mic, the load resistance is minimum $2k\Omega$ for each channel. Any capacitor must not be connected directly to the MPWR1 pin (MPWR2 pin) (Figure 45).

MICL1 bit MICL2 bit	SVDD Voltage Range	Output Level (typ)	Output Level (typ) AVDD=1.8V	
0	$3.0 \sim 5.5 \text{V}$	1.39 x AVDD	2.5V	(default)
1	3.3 ~ 5.5V	1.56 x AVDD	2.8V	

Table 22. MIC Power 1, MC Power 2 Output Level

PMMP1 bit	MPWR1 pin	
0	Hi-Z	(default)
1	Output	

Table 23. MIC Power 1 Status

PMMP2 bit	MPWR2 pin	
0	Hi-Z	(default)
1	Output	

Table 24. MIC Power 2 Status

Figure 45. MIC Block Circuit

■ Digital MIC

1. Connection to Digital MIC

The AK4678 can be connected to digital microphone by setting DMIC bit = "1". When DMIC bit is set to "1", the LIN1 and RIN1 pins become DMDAT (digital microphone data input) and DMCLK (digital microphone clock supply) pins respectively. The same power supply as AVDD must be provided to the digital microphone. The Figure 46 and Figure 47 show mono/stereo connection examples. The DMCLK signal is output from the AK4678, and the digital microphone outputs 1bit data, which generated by $\Delta\Sigma$ Modulator, from DMDAT. PMDML/R bits control power up/down of the digital block (Decimation Filter and HPF1). PMADL/PMADR bits settings do not affect the digital microphone power management. The DCLKE bit controls ON/OFF of the output clock from the DMCLK pin. When the AK4678 is powered down (PDN pin= "L"), the DMCLK and DMDAT pins are pulled-down by internal 2.7k Ω (typ.) resistor. However, when the AK4678 is powered-up (PDN pin = "H"), path of the internal pulled-down resistor is OFF. Therefore, external pull-down resistor(R) should be connected to the DMDAT pin to avoid floating state.

Figure 46. Connection Example of Stereo Digital MIC

Figure 47. Connection Example of Mono Digital MIC

2. Interface

The input data channel of the DMDAT pin is set by DCLKP bit. When DCLKP bit = "1, Lch data is input to the Decimation Filter if DMCLK = "H", Rch data is input if DMCLK = "L". When DCLKP bit = "0", Rch data is input to the Decimation Filter if DMCLK = "H", Lch data is input if DMCLK = "L". The DMCLK pin outputs "L" when DCLKE bit = "0", and only supports 64fs. In this case, necessary clocks must be supplied to the AK4678 for ADC operation. The output data through "the Decimation and Digital Filters" is the negative full-scale with 0% 1's density of 1bit output data and positive full-scale with the 100% 1's density of 1bit output data.

DCLKP bit	DMCLK pin = "H"	DMCLK pin = "L"	
0	Rch	Lch	(default)
1	Lch	Rch	

Table 25. Data In/Output Timing with Digital MIC

Figure 48. Data In/Output Timing with Digital MIC (DCLKP bit = "1")

Figure 49. Data In/Output Timing with Digital MIC (DCLKP bit = "0")

■ Digital Block

Digital block is composed as Figure 50. Each block can be powered-down by power management bits (PMADL, PMADR, PMDAL, PMDAR, PMPFIL, PMEQ, PMDRC, PMSRAI, PMSRAO, PMSRBI and PMSRBO bits).

Figure 50. Path Select of Digital Block

- 1. ADC: Include the Digital Filter (LPF) for ADC as shown in "FILTER CHRACTERISTICS".
- 2. HPF1: Include the Digital Filter (HPF) for ADC as shown in "FILTER CHRACTERISTICS".
- 3. DAC: Include the Digital Filter (LPF) for DAC as shown in "FILTER CHRACTERISTICS".
- 4. HPF2: High Pass Filter. Applicable to use as Wind-Noise Reduction Filter. (See "Digital Programmable Filter".)
- 5. LPF: Low Pass Filter (See "Digital Programmable Filter".)
- 6. Stereo Separation: Stereo Separation Emphasis Filter & Gain Compensation. (See "Digital Programmable Filter".) Gain Compensation is composed with EQ0 and Gain blocks. This block adjusts the frequency response after Stereo Separation Emphasis.
- 7. 3-Band Notch: Applicable to use as Equalizer or Notch Filter. (See "Digital Programmable Filter".)
- 8. ALC: Input Digital Volume with ALC function. (See "Input Digital Volume" and "ALC Operation".)
- 9. SVOLA: Side Tone Volume at Internal MIC/SPK or External Headset Phone Call. (See "Side Tone Volume".)
- 10. 5-Band EQ: Equalizer for playback path. (See "5-band Equalizer".)
- 11. DATT-A: Digital Volume for playback path. (See "Digital Output Volume".)
- 12. SMUTE: Soft mute. (See "Soft Mute".)
- 13. DRC: Dynamic Range Control for playback path. (See "Dynamic Range Control".)
- 14. DATT-B: Digital Volume for Recording of Received Voice. (See "Digital Volume for Recording of Received Voice")
- 15. DATT-C: Digital Volume of Received Voice. (See "Digital Volume for Received Voice")
- 16. SVOLB: Side Tone Volume at B/T Headset Phone Call. (See "Side Tone Volume for B/T Phone Call".)

Mode	PMADL bit (PMDML bit)	PMADR bit (PMDMR bit)	PMPFIL bit	PFSEL bit	PFSDO bit	PMDAL/R bits	PMEQ bit	PMDRC bit	DASEL1-0 bits	Figure
Recording 1	1	1	1	0	1	00	0	0	X	
	1	0	1	0	1	00	0	0	X	Figure 51
	0	1	1	0	1	00	0	0	X	
Recording 1	1	1	1	0	1	11	1	1	01	
& Playback 2	1	0	1	0	1	11	1	1	01	Figure 52
	0	1	1	0	1	11	1	1	01	
Playback 1	0	0	1	1	1	11	1	1	01	Figure 53
Playback 2	0	0	0	0	1	11	1	1	01	Figure 54

Table 26. Recode/Playback Mode (x: Don't care)

Figure 52. Path at Recording Mode 1 & Playback Mode 2

Figure 54. Path at Playback Mode 2

■ Digital Programmable Filter

(1) High Pass Filter (HPF2)

Normally, this HPF is used for Wind-Noise Reduction. This is composed 1st order HPF. The coefficient of HPF is set by F1A13-0 bits and F1B13-0 bits. HPF bit controls ON/OFF of the HPF2. When the HPF2 is OFF, the audio data passes this block by 0dB gain. The coefficient must be set when HPF bit = "0" or PMPFIL bit = "0". The HPF2 starts operation 4/fs(max) after when HPF bit = "1" and PMPFIL bit = "1" are set.

fs: Sampling frequency fc: Cut-off frequency

Register setting (Note 66)

HPF: F1A[13:0] bits =A, F1B[13:0] bits =B (MSB=F1A13, F1B13; LSB=F1A0, F1B0)

$$A = \frac{1 \ / \ tan \ (\pi fc/fs)}{1 + 1 \ / \ tan \ (\pi fc/fs)} \ \ , \qquad B = \frac{1 - 1 \ / \ tan \ (\pi fc/fs)}{1 + 1 \ / \ tan \ (\pi fc/fs)}$$

Transfer function

$$H(z) = A \frac{1 - z^{-1}}{1 + Bz^{-1}}$$

The cut-off frequency should be set as below. $fc/fs \ge 0.0001$ (fc min = 4.41Hz at 44.1kHz)

(2) Low Pass Filter (LPF)

This is composed with 1st order LPF. F2A13-0 bits and F2B13-0 bits set the coefficient of LPF. LPF bit controls ON/OFF of the LPF. When the LPF is OFF, the audio data passes this block by 0dB gain. The coefficient must be set when LPF bit = "0" or PMPFIL bit = "0". The LPF starts operation 4/fs(max) after when LPF bit = "1" and PMPFIL bit = "1" are set.

fs: Sampling frequency

fc: Cut-off frequency

Register setting (Note 66)

LPF: F2A[13:0] bits =A, F2B[13:0] bits =B (MSB=F2A13, F1B13; LSB=F2A0, F2B0)

$$A = \frac{1}{1 + 1 / \tan (\pi f c / f s)} \ , \qquad B = \frac{1 - 1 / \tan (\pi f c / f s)}{1 + 1 / \tan (\pi f c / f s)}$$

Transfer function

$$H(z) = A \frac{1 + z^{-1}}{1 + Bz^{-1}}$$

The cut-off frequency should be set as below. $fc/fs \ge 0.05$ (fc min = 2205Hz at 44.1kHz)

(3) Stereo Separation Emphasis Filter (FIL3)

FIL3 is used to emphasize the stereo separation of stereo mic recording data or playback data. F3A13-0 and F3B13-0 bits set the filter coefficient of FIL3. FIL3 becomes High Pass Filter (HPF) at F3AS bit = "0", and Low Pass Filter (LPF) at F3AS bit = "1". FIL3 bit controls ON/OFF of FIL3. When Stereo Separation Emphasis Filter is OFF, the audio data passes this block by 0dB gain. The coefficient should be set when FIL3 bit = "0" or PMPFIL bit = "0". The FIL3 starts operation 4/fs(max) after when FIL3 bit = "1" and PMPFIL bit = "1" are set.

1) When FIL3 is set to "HPF"

fs: Sampling frequency

fc: Cut-off frequency

K: Filter gain [dB] $(0dB \ge K \ge -10dB)$

Register setting (Note 66)

FIL3: F3AS bit = "0", F3A[13:0] bits =A, F3B[13:0] bits =B (MSB=F3A13, F3B13; LSB=F3A0, F3B0)

$$A = 10^{K/20} \; x \; \frac{1 \; / \; tan \; (\pi fc/fs)}{1 \; + \; 1 \; / \; tan \; (\pi fc/fs)} \; \; , \qquad B = \; \frac{1 \; - \; 1 \; / \; tan \; (\pi fc/fs)}{1 \; + \; 1 \; / \; tan \; (\pi fc/fs)}$$

Transfer function

$$H(z) = A \frac{1 - z^{-1}}{1 + Bz^{-1}}$$

2) When FIL3 is set to "LPF"

fs: Sampling frequency

fc: Cut-off frequency

K: Filter gain [dB] $(0dB \ge K \ge -10dB)$

Register setting (Note 66)

FIL3: F3AS bit = "1", F3A[13:0] bits =A, F3B[13:0] bits =B (MSB=F3A13, F3B13; LSB= F3A0, F3B0)

$$A = 10^{K/20} x \frac{1}{1 + 1 / \tan (\pi fc/fs)} , \qquad B = \frac{1 - 1 / \tan (\pi fc/fs)}{1 + 1 / \tan (\pi fc/fs)}$$

Transfer function

$$H(z) = A \frac{1 + z^{-1}}{1 + Bz^{-1}}$$

(4) Gain Compensation (EQ0)

Gain Compensation is used to compensate the frequency response and the gain that is changed by Stereo Separation Emphasis Filter. Gain Compensation is composed with Equalizer (EQ0) and the Gain (0dB/+12dB/+24dB). E0A15-0, E0B13-0 and E0C15-0 bits set the coefficient of EQ0. GN1-0 bits set the gain (Table 27). EQ0 bit controls ON/OFF of EQ0. When EQ is OFF and the gain is 0dB, the audio data passes this block by 0dB gain. The coefficient should be set when EQ0 bit = "0" or PMPFIL bit = "0". EQ0 starts operation 4/fs(max) after when EQ0 bit = "1" and PMPFIL bit = "1" are set.

fs: Sampling frequency

fc₁: Pole frequency

fc₂: Zero-point frequency

K: Filter gain [dB] (Maximum +12dB)

Register setting (Note 66)

E0A[15:0] bits =A, E0B[13:0] bits =B, E0C[15:0] bits =C (MSB=E0A15, E0B13, E0C15; LSB=E0A0, E0B0, E0C0)

$$A = 10^{K/20} \; x \; \; \frac{1 + 1 \; / \; tan \; (\pi f c_2 / f s)}{1 + 1 \; / \; tan \; (\pi f c_1 / f s)} \; \; , \qquad B = \; \frac{1 - 1 \; / \; tan \; (\pi f c_1 / f s)}{1 + 1 \; / \; tan \; (\pi f c_1 / f s)} \; \; , \qquad C = 10^{K/20} \; x \; \; \frac{1 - 1 \; / \; tan \; (\pi f c_2 / f s)}{1 + 1 \; / \; tan \; (\pi f c_1 / f s)}$$

Transfer function

$$H(z) = \frac{A + Cz^{-1}}{1 + Bz^{-1}}$$

Figure 55. EQ0 Frequency Response

GN1 bit	GN0 bit	Gain	
0	0	0dB	(default)
0	1	+12dB	
1	X	+24dB	

Table 27. Gain select of gain block (x: Don't care)

(5) 3-band Equalizer

This block can be used as Equalizer or Notch Filter. 3-band Equalizer (EQ1, EQ2 and EQ3) is selected ON/OFF independently by EQ1, EQ2 and EQ3 bits. When Equalizer is OFF, the audio data passes this block by 0dB gain. E1A15-0, E1B15-0 and E1C15-0 bits set the coefficient of EQ1. E2A15-0, E2B15-0 and E2C15-0 bits set the coefficient of EQ2. E3A15-0, E3B15-0 and E3C15-0 bits set the coefficient of EQ3. The EQx $(x=1\sim3)$ coefficient must be set when EQx bit = "0" or PMPFIL bit = "0". EQ1-3 start operation 4/fs(max) after when $(EQx (x=1\sim3) = "1")$ and PMPFIL bit = "1" is set

fs: Sampling frequency

 $fo_1 \sim fo_3$: Center frequency

fb₁ ~ fb₃: Band width where the gain is 3dB different from center frequency

 $K_1 \sim K_3$: Gain $(-1 \le K_n \le 3)$

Register setting (Note 66)

EQ1: E1A[15:0] bits = A_1 , E1B[15:0] bits = B_1 , E1C[15:0] bits = C_1

EQ2: E2A[15:0] bits = A_2 , E2B[15:0] bits = B_2 , E2C[15:0] bits = C_2

EQ3: E3A[15:0] bits = A_3 , E3B[15:0] bits = B_3 , E3C[15:0] bits = C_3

(MSB=E1A15, E1B15, E1C15, E2A15, E2B15, E2C15, E3A15, E3B15, E3C15; LSB= E1A0, E1B0, E1C0, E2A0, E2B0, E2C0, E3A0, E3B0, E3C0)

$$A_{n} = K_{n} \; x \; \; \frac{tan \; (\pi fb_{n}/fs)}{1 + tan \; (\pi fb_{n}/fs)} \; \; , \quad B_{n} = cos(2\pi \; fo_{n}/fs) \; x \; \frac{2}{1 + tan \; (\pi fb_{n}/fs)} \; \; , \quad C_{n} = - \; \frac{1 - tan \; (\pi fb_{n}/fs)}{1 + tan \; (\pi fb_{n}/fs)} \; ; \quad C_{n} = - \; \frac{1 - tan \; (\pi fb_{n}/fs)}{1 + tan \; (\pi fb_{n}/fs)} \; ; \quad C_{n} = - \; \frac{1 - tan \; (\pi fb_{n}/fs)}{1 + tan \; (\pi fb_{n}/fs)} \; ; \quad C_{n} = - \; \frac{1 - tan \; (\pi fb_{n}/fs)}{1 + tan \; (\pi fb_{n}/fs)} \; ; \quad C_{n} = - \; \frac{1 - tan \; (\pi fb_{n}/fs)}{1 + tan \; (\pi fb_{n}/fs)} \; ; \quad C_{n} = - \; \frac{1 - tan \; (\pi fb_{n}/fs)}{1 + tan \; (\pi fb_{n}/fs)} \; ; \quad C_{n} = - \; \frac{1 - tan \; (\pi fb_{n}/fs)}{1 + tan \; (\pi fb_{n}/fs)} \; ; \quad C_{n} = - \; \frac{1 - tan \; (\pi fb_{n}/fs)}{1 + tan \; (\pi fb_{n}/fs)} \; ; \quad C_{n} = - \; \frac{1 - tan \; (\pi fb_{n}/fs)}{1 + tan \; (\pi fb_{n}/fs)} \; ; \quad C_{n} = - \; \frac{1 - tan \; (\pi fb_{n}/fs)}{1 + tan \; (\pi fb_{n}/fs)} \; ; \quad C_{n} = - \; \frac{1 - tan \; (\pi fb_{n}/fs)}{1 + tan \; (\pi fb_{n}/fs)} \; ; \quad C_{n} = - \; \frac{1 - tan \; (\pi fb_{n}/fs)}{1 + tan \; (\pi fb_{n}/fs)} \; ; \quad C_{n} = - \; \frac{1 - tan \; (\pi fb_{n}/fs)}{1 + tan \; (\pi fb_{n}/fs)} \; ; \quad C_{n} = - \; \frac{1 - tan \; (\pi fb_{n}/fs)}{1 + tan \; (\pi fb_{n}/fs)} \; ; \quad C_{n} = - \; \frac{1 - tan \; (\pi fb_{n}/fs)}{1 + tan \; (\pi fb_{n}/fs)} \; ; \quad C_{n} = - \; \frac{1 - tan \; (\pi fb_{n}/fs)}{1 + tan \; (\pi fb_{n}/fs)} \; ; \quad C_{n} = - \; \frac{1 - tan \; (\pi fb_{n}/fs)}{1 + tan \; (\pi fb_{n}/fs)} \; ; \quad C_{n} = - \; \frac{1 - tan \; (\pi fb_{n}/fs)}{1 + tan \; (\pi fb_{n}/fs)} \; ; \quad C_{n} = - \; \frac{1 - tan \; (\pi fb_{n}/fs)}{1 + tan \; (\pi fb_{n}/fs)} \; ; \quad C_{n} = - \; \frac{1 - tan \; (\pi fb_{n}/fs)}{1 + tan \; (\pi fb_{n}/fs)} \; ; \quad C_{n} = - \; \frac{1 - tan \; (\pi fb_{n}/fs)}{1 + tan \; (\pi fb_{n}/fs)} \; ; \quad C_{n} = - \; \frac{1 - tan \; (\pi fb_{n}/fs)}{1 + tan \; (\pi fb_{n}/fs)} \; ; \quad C_{n} = - \; \frac{1 - tan \; (\pi fb_{n}/fs)}{1 + tan \; (\pi fb_{n}/fs)} \; ; \quad C_{n} = - \; \frac{1 - tan \; (\pi fb_{n}/fs)}{1 + tan \; (\pi fb_{n}/fs)} \; ; \quad C_{n} = - \; \frac{1 - tan \; (\pi fb_{n}/fs)}{1 + tan \; (\pi fb_{n}/fs)} \; ; \quad C_{n} = - \; \frac{1 - tan \; (\pi fb_{n}/fs)}{1 + tan \; (\pi fb_{n}/fs)} \; ; \quad C_{n} = - \; \frac{1 - tan \; (\pi fb_{n}/fs)}{1 + tan \; (\pi fb_{n}/fs)} \; ; \quad C_{n$$

$$(n = 1, 2, 3)$$

Transfer function

$$H(z) = 1 + h_1(z) + h_2(z) + h_3(z)$$

$$h_n(z) = A_n = \frac{1 - z^{-2}}{1 - B_n z^{-1} - C_n z^{-2}}$$

 $(n = 1, 2, 3)$

The center frequency should be set as below.

 $0.003 < fo_n / fs < 0.497$

Note 66. [Translation the filter coefficient calculated by the equations above from real number to binary code (2's complement)]

 $X = (Real number of filter coefficient calculated by the equations above) x <math>2^{13}$

X should be rounded to integer, and then should be translated to binary code (2's complement).

MSB of each filter coefficient setting register is sine bit.

■ ALC Operation

The ALC (Automatic Level Control) is executed by ALC block when ALC bit is "1". ALC circuit operates at playback path for Playback mode (Figure 53 and Figure 54) and operates at recording path for Recording mode (Figure 51 and Figure 52).

1. ALC Limiter Operation

During the ALC limiter operation, when either Lch or Rch exceeds the ALC limiter detection level (Table 28), the IVL and IVR values (same value) are attenuated automatically by the amount defined by the ALC limiter ATT step (Table 29).

When ZELMN bit = "0" (zero cross detection is enabled), the IVL and IVR values are changed by ALC limiter operation at the individual zero crossing points of Lch and Rch or at the zero crossing timeout. ZTM1-0 bits set the zero crossing timeout period of both ALC limiter and recovery operation (Table 30). When ALC output level exceeds full-scale at LFST bit = "1", IVL and IVR values are immediately (period: 1/fs) changed in 1 step(L/R common). When ALC output level is less than full-scale, the IVL and IVR values are changed at the individual zero crossing point of each channels or at the zero crossing timeout.

When ZELMN bit = "1" (zero cross detection is disabled.), IVL and IVR values are immediately (period: 1/fs) changed by ALC limiter operation. Attenuation step is fixed to 1 step regardless of the setting LMAT1-0 bits.

The attenuation operation is exceeded continuously until the input signal level becomes ALC limiter detection level (Table 28) or less. After completing the attenuate operation, unless ALC bit is changed to "0", the operation repeats when the input signal level exceeds LMTH1-0 bits.

LMTH1 bit	LMTH0 bit	ALC Limier Detection Level	ALC Recovery Waiting Counter Reset Level	
0	0	ALC Output ≥ -2.5 dBFS	-2.5 dBFS > ALC Output ≥ -4.1 dBFS	(default)
0	1	ALC Output \geq -4.1dBFS	-4.1 dBFS > ALC Output ≥ -6.0 dBFS	
1	0	ALC Output ≥ -6.0 dBFS	-6.0 dBFS > ALC Output ≥ -8.5 dBFS	
1	1	ALC Output ≥ -8.5 dBFS	-8.5 dBFS > ALC Output ≥ -12 dBFS	

Table 28. ALC Limiter Detection Level / Recovery Counter Reset Level

LMAT1 LMAT0		ALC Limiter ATT Step				
bit	bit	ALC Output ≥ LMTH	ALC Output ≥ FS	ALC Output \geq FS + 6dB	ALC Output \geq FS + 12dB	
0	0	1	1	1	1	(default)
0	1	2	2	2	2	
1	0	2	4	4	8	
1	1	1	2	4	8	

Table 29. ALC Limiter ATT Step

ZTM1	ZTM0		Zero C	rossing Timeout	Period	
bit	bit		8kHz	16kHz	44.1kHz	
0	0	128/fs	16ms	8ms	2.9ms	(default)
0	1	256/fs	32ms	16ms	5.8ms	
1	0	512/fs	64ms	32ms	11.6ms	
1	1	1024/fs	128ms	64ms	23.2ms	

Table 30. ALC Zero Crossing Timeout Period

2. ALC Recovery Operation

The ALC recovery operation waits for the WTM2-0 bits (Table 31) to be set after completing the ALC limiter operation. If the input signal does not exceed "ALC recovery waiting counter reset level" (Table 28) during the wait time, the ALC recovery operation is executed. The IVL and IVR values are automatically incremented by RGAIN1-0 bits (Table 32) up to the set reference level (Table 33) with zero crossing detection which timeout period is set by ZTM1-0 bits (Table 30). Then the IVL and IVR are set to the same value for both channels. The ALC recovery operation is executed in a period set by WTM2-0 bits. When zero cross is detected at both channels during the wait period set by WTM2-0 bits, the ALC recovery operation waits until WTM2-0 bits period and the next recovery operation is executed. If ZTM1-0 bits are longer than WTM2-0 bits and no zero crossing occurs, the ALC recovery operation is executed in a period set by ZTM1-0 bits.

For example, when the current IVL and IVR values are 30H and RGAIN1-0 bits are set to "01", IVL and IVR values are changed to 32H by the auto limiter operation and then the input signal level is gained by 0.75dB (=0.375dB x 2). When the IVL and IVR values exceed the reference level (REF7-0 bits), the IVL and IVR values are not increased.

When

"ALC recovery waiting counter reset level (LMTH1-0) ≤ Output Signal < ALC limiter detection level (LMTH1-0)" during the ALC recovery operation, the waiting timer of ALC recovery operation is reset. When

"ALC recovery waiting counter reset level (LMTH1-0) > Output Signal", the waiting timer of ALC recovery operation starts.

The ALC operation corresponds to the impulse noise. When the impulse noise is input, the ALC recovery operation becomes faster than a normal recovery operation (Fast Recovery Operation). When large noise is input to microphone instantaneously, the quality of small signal level in the large noise can be improved by this fast recovery operation. The speed of fast recovery operation is set by RFST1-0 bits (Table 34).

WTM	2 WTM1	WTM0		ALC Recove	ery Operation W	aiting Period	
bit	bit	bit		8kHz	16kHz	44.1kHz	
0	0	0	128/fs	16ms	8ms	2.9ms	(default)
0	0	1	256/fs	32ms	16ms	5.8ms	
0	1	0	512/fs	64ms	32ms	11.6ms]
0	1	1	1024/fs	128ms	64ms	23.2ms	
1	0	0	2048/fs	256ms	128ms	46.4ms	
1	0	1	4096/fs	512ms	256ms	92.9ms	
1	1	0	8192/fs	1024ms	512ms	185.8ms]
1	1	1	16384/fs	2048ms	1024ms	371.5ms	

Table 31. ALC Recovery Operation Waiting Period

RGAIN1 bit	RGAIN0 bit	GAIN	STEP	
0	0	1 step	0.375dB	(default)
0	1	2 step	0.750dB	
1	0	3 step	1.125dB	
1	1	4 step	1.500dB	

Table 32. ALC Recovery GAIN Step

REF7-0 bits	GAIN (dB)	Step	
F1H	+36.0		
F0H	+35.625		
EFH	+35.25		
:	:		
E1H	+30.0		(default)
:	:	0.375dB	
92H	+0.375	0.5/3 u B	
91H	0.0		
90H	-0.375		
:	:		
02H	-53.625		
01H	-54.0		
00Н	MUTE		

Table 33. Reference Level at ALC Recovery Operation

	Recovery Speed	RFST0 bit	RFST1 bit
(default)	4 times	0	0
	8 times	1	0
	16times	0	1
	N/A	1	1

Table 34. Fast Recovery Speed Setting (N/A: Not available)

3. Example of ALC Operation

Table 35 and Table 36 show the examples of the ALC setting for mic recording and playback, respectively.

Register Name	Comment	fs=8kHz		fs=44.1kHz	
Register Name	Comment	Data	Operation	Data	Operation
LMTH1-0	Limiter detection Level	01	-4.1dBFS	01	-4.1dBFS
ZELMN	Limiter zero crossing detection	0	Enable	0	Enable
ZTM1-0	Zero crossing timeout period * ZTM1-0 bits should be equal to or shorter than WTM2-0 bits.	01	32ms	11	23.2ms
WTM2-0	Recovery waiting period	001	32ms	100	46.4ms
REF7-0	Maximum gain at recovery operation	E1H	+30dB	E1H	+30dB
IVL7-0, IVR7-0	Gain of IVOL	E1H	+30dB	E1H	+30dB
LMAT1-0	Limiter ATT step	00	1 step	00	1 step
RGAIN1-0	Recovery GAIN step	00	1 step	00	1 step
RFST1-0	Fast Recovery Speed	00	4 times	00	4 times
ALC	ALC enable	1	Enable	1	Enable

Table 35. Example of the ALC setting (Recording Path)

Register Name	Comment	fs=8kHz		fs=44.1kHz	
Register Name	Comment	Data	Operation	Data	Operation
LMTH1-0	Limiter detection Level	01	-4.1dBFS	01	-4.1dBFS
ZELMN	Limiter zero crossing detection	0	Enable	0	Enable
ZTM1-0	Zero crossing timeout period	01	32ms	11	23.2ms
WTM2-0	Recovery waiting period *WTM2-0 bits should be the same or longer data as ZTM1-0 bits	001	32ms	100	46.4ms
REF7-0	Maximum gain at recovery operation	A1H	+6dB	A1H	+6dB
IVL7-0, IVR7-0	Gain of IVOL	91H	0dB	91H	0dB
LMAT1-0	Limiter ATT step	00	1 step	00	1 step
RGAIN1-0	Recovery GAIN step	00	1 step	00	1 step
RFST1-0	Fast Recovery Speed	00	4 times	00	4 times
ALC	ALC enable	1	Enable	1	Enable

Table 36. Example of the ALC setting (Playback Path)

The following registers should not be changed during the ALC operation. These bits should be changed after the ALC operation is finished by ALC bit = "0".

• LMTH1-0, LMAT1-0, WTM2-0, ZTM1-0, RGAIN1-0, REF7-0, ZELMN, RFST1-0, LFST and FR bits

Figure 56. Registers set-up sequence at ALC operation

■ Input Digital Volume (Manual Mode)

The input digital volume becomes a manual mode when ALC bit is "0". This mode is used in the case shown below.

- 1. After exiting reset state, set-up the registers for the ALC operation (ZTM1-0, LMTH1-0 and etc)
- 2. When the registers for the ALC operation (Limiter period, Recovery period and etc) are changed. For example, in case of changing the sampling frequency.
- 3. When IVOL is used as a manual volume.

IVL7-0 and IVR7-0 bits set the gain of the volume control (Table 37). When IVOLC bit is "0", IVL7-0 and IVR7-0 bits control Lch and Rch volume values independently. When IVOLC bit is "1", IVL7-0 bits controls both channels. The IVOL value is changed at zero crossing or timeout. Zero crossing timeout period is set by ZTM1-0 bits. If IVL7-0 or IVR7-0 bits are written during PMADL=PMADR=PMDML=PMDMR bits = "0", IVOL operation starts with the written values at the end of the ADC initialization cycle after PMADL, PMADR, PMDML or PMMDR bit is changed to "1".

IVL7-0 bits IVR7-0 bits	GAIN (dB)	Step	
F1H	+36.0		
F0H	+35.625		
EFH	+35.25		
:	:		
92H	+0.375		
91H	0.0	0.375dB	(default)
90H	-0.375		
:	:		
03H	-53.25		
02H	-53.625		
01H	-54		
00H	MUTE		

Table 37. Input Digital Volume Setting

■ Digital HPF1

A digital High Pass Filter (HPF) is integrated for DC offset cancellation of the ADC input. The cut-off frequencies of the HPF1 are set by HPFC1-0 bits (Table 38). It is proportional to the sampling frequency (fs) and default is 3.4Hz (@fs = 44.1kHz). HPFAD bit controls the ON/OFF of the HPF1 (Recommend HPF enable).

	1	Ī			1
HPFC1 bit	HPFC0 bit		fc		J
III I CT OIL	TH PCO DIC	fs=44.1kHz	fs=22.05kHz	fs=8kHz]
0	0	3.4Hz	1.7Hz	0.62Hz	(default)
0	1	13.6Hz	6.8Hz	2.47Hz	
1	0	108.8Hz	54.4Hz	19.7Hz	
1	1	217.6Hz	108.8Hz	39.5Hz	

Table 38. HPF1 Cut-off Frequency

■ Side Tone Volume (SVOLA)

The AK4678 has the channel independent side tone volume (5 levels, 6dB step). The volume can be set by the SVAL/R2-0 bits. The volume is included at mixing path from ALC to 5-band EQ. The output data of ALC is changed from 0 to -24dB.

SVAL/R2-0 bits	Gain	
0H	0dB	(default)
1H	-6dB	
2H	-12dB	
3Н	-18dB	
4H	-24dB	
Others	N/A	

Table 39. Side Tone Volume A Code Table (N/A: Not available)

■ 5-Band Equalizer

The AK4678 has 5-Band Equalizer before DAC of Stereo CODEC. The 5-band Equalizer is selected ON/OFF by 5EQ bit. When 5-band Equalizer is OFF, the audio data passes this block by 0dB gain. Each coefficient and transfer function of 5-band Equalizer is as follows. The coefficient must be set when 5EQ bit = "0" or PMEQ bit = "0". Gain range of 5-band equalizer is set from +12dB to -12dB (0.5dB step) independently by 5EQ1G5-0, 5EQ2G5-0, 5EQ3G5-0, 5EQ4G5-0 bits.

The 5-band Equalizer starts operation 4/fs(max) after when 5EQ bit = "1" and PMEQ bit = "1" is set.

1. EQ1: 1st order Low Pass Filter

<Low Pass Filter>

fs: Sampling frequency

fc: Cut-off frequency

k: Filter gain

Register setting (Note 67)

5E1A[13:0] bits =A, 5E1B[13:0] bits =B (MSB=5E1A13, 5E1B13; LSB=5E1A0, 5E1B0)

$$A = k \ x \ \frac{1}{1 + 1 \ / \ tan \ (\pi fc/fs)} \ , \qquad B = \ \frac{1 - 1 \ / \ tan \ (\pi fc/fs)}{1 + 1 \ / \ tan \ (\pi fc/fs)}$$

Transfer function

$$h_{1L}(z) = A \frac{1 + z^{-1}}{1 + Bz^{-1}}$$

The cut-off frequency should be set as below. $fc/fs \ge 0.05$ (fc min = 2205Hz at 44.1kHz)

2. EQ2, EQ3, EQ4: Equalizer

5E2A15-0, 5E2B15-0 and 5E2C15-0 bits set the coefficient of EQ2. 5E3A15-0, 5E3B15-0 and 5E3C15-0 bits set the coefficient of EQ3. 5E4A15-0, 5E4B15-0 and 5E4C15-0 bits set the coefficient of EQ4.

fs: Sampling frequency

 $fo_2 \sim fo_4$: Center frequency

fb₂ ~ fb₄: Band width where the gain is 3dB different from center frequency

k₂ ∼ k₄: Filter gain

Register setting (Note 67)

EQ2: 5E2A[15:0] bits $=A_1$, 5E2B[15:0] bits $=B_1$, 5E2C[15:0] bits $=C_2$

EQ3: 5E3A[15:0] bits $=A_2$, 5E3B[15:0] bits $=B_2$, 5E3C[15:0] bits $=C_3$

EQ4: 5E4A[15:0] bits $=A_3$, 5E4B[15:0] bits $=B_3$, 5E4C[15:0] bits $=C_4$

(MSB=5E2A15, 5E2B15, 5E2C15, 5E3A15, 5E3B15, 5E3C15, 5E4A15, 5E4B15, 5E4C15; LSB= 5E2A0, 5E2B0, 5E2C0, 5E3A0, 5E3B0, 5E3C0, 5E4A0, 5E4B0, 5E4C0)

$$A_{n} = k_{n} \; x \; \frac{\tan \left(\pi f b_{n} / f s\right)}{1 + \tan \left(\pi f b_{n} / f s\right)} \; , \quad B_{n} = \cos(2\pi \; f o_{n} / f s) \; x \; \frac{2}{1 + \tan \left(\pi f b_{n} / f s\right)} \; , \quad C_{n} = -\frac{1 - \tan \left(\pi f b_{n} / f s\right)}{1 + \tan \left(\pi f b_{n} / f s\right)} \; , \quad C_{n} = -\frac{1 - \tan \left(\pi f b_{n} / f s\right)}{1 + \tan \left(\pi f b_{n} / f s\right)} \; , \quad C_{n} = -\frac{1 - \tan \left(\pi f b_{n} / f s\right)}{1 + \tan \left(\pi f b_{n} / f s\right)} \; , \quad C_{n} = -\frac{1 - \tan \left(\pi f b_{n} / f s\right)}{1 + \tan \left(\pi f b_{n} / f s\right)} \; , \quad C_{n} = -\frac{1 - \tan \left(\pi f b_{n} / f s\right)}{1 + \tan \left(\pi f b_{n} / f s\right)} \; , \quad C_{n} = -\frac{1 - \tan \left(\pi f b_{n} / f s\right)}{1 + \tan \left(\pi f b_{n} / f s\right)} \; , \quad C_{n} = -\frac{1 - \tan \left(\pi f b_{n} / f s\right)}{1 + \tan \left(\pi f b_{n} / f s\right)} \; , \quad C_{n} = -\frac{1 - \tan \left(\pi f b_{n} / f s\right)}{1 + \tan \left(\pi f b_{n} / f s\right)} \; , \quad C_{n} = -\frac{1 - \tan \left(\pi f b_{n} / f s\right)}{1 + \tan \left(\pi f b_{n} / f s\right)} \; , \quad C_{n} = -\frac{1 - \tan \left(\pi f b_{n} / f s\right)}{1 + \tan \left(\pi f b_{n} / f s\right)} \; , \quad C_{n} = -\frac{1 - \tan \left(\pi f b_{n} / f s\right)}{1 + \tan \left(\pi f b_{n} / f s\right)} \; , \quad C_{n} = -\frac{1 - \tan \left(\pi f b_{n} / f s\right)}{1 + \tan \left(\pi f b_{n} / f s\right)} \; , \quad C_{n} = -\frac{1 - \tan \left(\pi f b_{n} / f s\right)}{1 + \tan \left(\pi f b_{n} / f s\right)} \; , \quad C_{n} = -\frac{1 - \tan \left(\pi f b_{n} / f s\right)}{1 + \tan \left(\pi f b_{n} / f s\right)} \; , \quad C_{n} = -\frac{1 - \tan \left(\pi f b_{n} / f s\right)}{1 + \tan \left(\pi f b_{n} / f s\right)} \; , \quad C_{n} = -\frac{1 - \tan \left(\pi f b_{n} / f s\right)}{1 + \tan \left(\pi f b_{n} / f s\right)} \; , \quad C_{n} = -\frac{1 - \tan \left(\pi f b_{n} / f s\right)}{1 + \tan \left(\pi f b_{n} / f s\right)} \; , \quad C_{n} = -\frac{1 - \tan \left(\pi f b_{n} / f s\right)}{1 + \tan \left(\pi f b_{n} / f s\right)} \; , \quad C_{n} = -\frac{1 - \tan \left(\pi f b_{n} / f s\right)}{1 + \tan \left(\pi f b_{n} / f s\right)} \; , \quad C_{n} = -\frac{1 - \tan \left(\pi f b_{n} / f s\right)}{1 + \tan \left(\pi f b_{n} / f s\right)} \; , \quad C_{n} = -\frac{1 - \tan \left(\pi f b_{n} / f s\right)}{1 + \tan \left(\pi f b_{n} / f s\right)} \; , \quad C_{n} = -\frac{1 - \tan \left(\pi f b_{n} / f s\right)}{1 + \tan \left(\pi f b_{n} / f s\right)} \; , \quad C_{n} = -\frac{1 - \tan \left(\pi f b_{n} / f s\right)}{1 + \tan \left(\pi f b_{n} / f s\right)} \; , \quad C_{n} = -\frac{1 - \tan \left(\pi f b_{n} / f s\right)}{1 + \tan \left(\pi f b_{n} / f s\right)} \; , \quad C_{n} = -\frac{1 - \tan \left(\pi f b_{n} / f s\right)}{1 + \tan \left(\pi f b_{n} / f s\right)} \; , \quad C_{n} = -\frac{1 - \tan \left(\pi f b_{n} / f s\right)}{1 + \tan \left(\pi f b_{n} / f s\right)} \; , \quad C_{n} = -\frac{1 - \tan \left(\pi f b_{n} / f s\right)}{1 + \tan \left($$

Transfer function

$$h_n(z) = A_n \frac{1 - z^{-2}}{1 - B_n z^{-1} - C_n z^{-2}}$$

 $(n = 2, 3, 4)$

The center frequency should be set as below.

 $fo_n / fs < 0.497$

3. EQ5: 1st order High Pass Filter

<High Pass Filter>

fs: Sampling frequency

fc: Cut-off frequency

k: Filter gain

Register setting (Note 67)

5E5A[13:0] bits =A, 5E5B[13:0] bits =B (MSB=5E5A13, 5E5B13; LSB=5E5A0, 5E5B0)

$$A = k \ x \ \frac{1 \ / \ tan \left(\pi fc/fs\right)}{1 + 1 \ / \ tan \left(\pi fc/fs\right)} \ , \qquad B = \ \frac{1 - 1 \ / \ tan \left(\pi fc/fs\right)}{1 + 1 \ / \ tan \left(\pi fc/fs\right)}$$

Transfer Function

$$h_{5H}(z) = A \frac{1 - z^{-1}}{1 + Bz^{-1}}$$

The cut-off frequency should be set as below.

 $fc/fs \ge 0.0001$ (fc min = 4.41Hz at 44.1kHz)

Note 67. [Translation the filter coefficient calculated by the equations above from real number to binary code (2's complement)]

X =(Real number of filter coefficient calculated by the equations above) $\times 2^{13}$

X should be rounded to integer, and then should be translated to binary code (2's complement).

MSB of each filter coefficient setting register is sine bit.

Total Transfer Function:

$$H(z) = K_1 x h_{1L}(z) + K_2 x h_2(z) + K_3 x h_3(z) + K_4 x h_4(z) + K_5 x h_{5H}(z)$$

 $K_1 \sim {}_5$: EQ Gain (+12 \sim -12dB, 0.5dB step). This value is changed by control register.

 K_1 : 5EQ1G5-0 bits (Addr=6AH)

K₂: 5EQ2G5-0 bits (Addr=6BH)

K₃: 5EQ3G5-0 bits (Addr=6CH)

 K_4 : 5EQ4G5-0 bits (Addr=6DH)

K₅: 5EQ5G5-0 bits (Addr=6EH)

Default Center Frequency (Sampling Frequency = 44.1kHz):

EQ1: fc=100Hz

EQ2: $fo_2=250Hz$ ($fb_2=50Hz$)

EQ3: fo₃=1kHz (fb₃=200Hz)

EQ4: fo₄=3.5kHz (fb₄=700Hz)

EQ5: fc=10kHz

EQ1G5-0 bits		EQ1G5-0 bits	
EQ2G5-0 bits		EQ2G5-0 bits	
EQ3G5-0 bits	GAIN (dB)	EQ3G5-0 bits	GAIN (dB)
EQ4G5-0 bits	, ,	EQ4G5-0 bits	, ,
EQ5G5-0 bits		EQ5G5-0 bits	
30H	-12	17H	+0.5
2FH	-11.5	16H	+1
2EH	-11	15H	+1.5
2DH	-10.5	14H	+2
2CH	-10	13H	+2.5
2BH	-9.5	12H	+3
2AH	-9	11H	+3.5
29H	-8.5	10H	+4
28H	-8	0FH	+4.5
27H	-7.5	0EH	+5
26Н	-7	0DH	+5.5
25H	-6.5	0CH	+6
24H	-6	0BH	+6.5
23H	-5.5	0AH	+7
22H	-5	09H	+7.5
21H	-4.5	08H	+8
20H	-4	07H	+8.5
1FH	-3.5	06H	+9
1EH	-3	05H	+9.5
1DH	-2.5	04H	+10
1CH	-2	03H	+10.5
1BH	-1.5	02H	+11
1AH	-1	01H	+11.5
19H	-0.5	00H	+12
18H	0		

Table 40. 5-band Equalizer Gain Setting (Default: 0dB)

■ Dynamic Range Control

Figure 57. DRC Functions and Signal Path

DRCM1-0 bits select stereo or mono of DRC input data. In case of mono mode, the same data is input to both channels.

DRCM1 bit	DRCM0 bit	Lch	Rch	
0	0	L	R	(default)
0	1	L	L	
1	0	R	R	
1	1	N.	/A	

Table 41. DRC Stereo/Mono Select (N/A: Not available)

1. Noise Suppression Block

(1) Low Pass Filter (LPF)

This is composed with 1st order LPF. NSLA13-0 bits and NSLB13-0 bits set the coefficient of LPF. NSLPF bit controls ON/OFF of the LPF. When the LPF is OFF, the audio data passes this block by 0dB gain. The coefficient must be set when NSLPF bit = "0" or PMDRC bit = "0". The LPF starts operation 4/fs(max) after when NSLPF bit = "1" and PMDRC bit = "1" are set.

fs: Sampling frequency

fc: Cut-off frequency

Register setting

LPF: NSLA[13:0] bits =A, NSLB[13:0] bits =B (MSB=NSLA13, NSLB13; LSB=NSLA0, NSLB0)

A =
$$\frac{1}{1 + 1 / \tan (\pi f c/f s)}$$
, B = $\frac{1 - 1 / \tan (\pi f c/f s)}{1 + 1 / \tan (\pi f c/f s)}$

Transfer function

$$H(z) = A \frac{1 + z^{-1}}{1 + Bz^{-1}}$$

The cut-off frequency should be set as below. $fc/fs \ge 0.05$ (fc min = 2205Hz at 44.1kHz)

(2) High Pass Filter (HPF)

This is composed 1st order HPF. The coefficient of HPF is set by NSHA13-0 bits and NSHB13-0 bits. NSHPF bit controls ON/OFF of the HPF. When the HPF is OFF, the audio data passes this block by 0dB gain. The coefficient must be set when NSHPF bit = "0" or PMDRC bit = "0". The HPF starts operation 4/fs(max) after when NSHPF bit = "1" and PMDRC bit = "1" are set.

fs: Sampling frequency fc: Cut-off frequency

Register setting

HPF: NSHA[13:0] bits =A, NSHB[13:0] bits =B (MSB=NSHA13, NSHB13; LSB=NSHA0, NSHB0)

$$A = \frac{1 / \tan (\pi f c / f s)}{1 + 1 / \tan (\pi f c / f s)} , \qquad B = \frac{1 - 1 / \tan (\pi f c / f s)}{1 + 1 / \tan (\pi f c / f s)}$$

Transfer function

$$H(z) = A \frac{1 - z^{-1}}{1 + Bz^{-1}}$$

The cut-off frequency should be set as below. $fc/fs \ge 0.0001$ (fc min = 4.41Hz at 44.1kHz)

(3) Noise Suppression

The Noise Suppression is enabled when NSCE bit (Noise suppression enable bit) = "1" during DRC operation (PMDRC bit = "1"). This function attenuates output signal level automatically when minute amount of the signal is input.

NSCE bit: Noise Suppression Enable

0: Disable (default)

1: Enable

(3-1) Noise Level Suppressing Operation

The output signal is suppressed when the input moving average level set by NSIAF1-0 bits (Table 42) is lower than "Noise Suppression Threshold Low Level" set by NSTHL4-0 bits (Table 43) during the normal operation.

This operation attenuats the volume automatically to the reference level set by NSREF3-0 bits (Table 44) with the soft transition of the attenuation speed set by NSATT2-0 bits (Table 45).

NSIAF1-0 bits		Moving Average Parameter				
NSIAI 1-0 UIIS		fs=8kHz	fs=16kHz	fs=44.1kHz		
00	256/fs	32ms	16ms	5.8ms		
01	512/fs	64ms	32ms	11.6ms		
10	1024/fs	128ms	64ms	23.2ms	(default)	
11	2048/fs	256ms	128ms	46.4ms		

Table 42. Moving Average Parameter Setting at Noise Suppression Off

NSTHL4-0 bits	Noise Suppression Threshold Low Level [dB]	Step	
00H	-36.0		(default)
01H	-37.5		
02H	-39.0		
:	:	1.5dB	
10H	-60.0	1.500	
:	:		
1EH	-81.0		
1FH	-82.5		

Table 43. Noise Suppression Threshold Low Level

			_
NSREF3-0 bits	GAIN [dB]	Step	
0Н	-9		(default)
1H	-12		
2H	-15		
:	:		
AH	-39	2.4D	
ВН	-42	3dB	
СН	-45		
DH	-48		
EH	-51		
FH	-54		

Table 44. Reference Value Setting when Noise Suppression is ON

NSATT2	NSATT1	NSATT0		ATT Speed		
bit	bit	bit	8kHz	16kHz	44.1kHz	
0	0	0	1.1dB/s	2.1dB/s	5.8dB/s	
0	0	1	2.1dB/s	4.2dB/s	11.7dB/s	(default)
0	1	0	4.2dB/s	8.5dB/s	23.4dB/s	
0	1	1	8.5dB/s	17.0dB/s	46.8dB/s	
1	0	0	17.0dB/s	33.9dB/s	93.5dB/s	
1	0	1	33.9dB/s	67.9dB/s	187.1dB/s	
1	1	0		N/A		
1	1	1		11/71		

Table 45. Noise Suppression ATT Speed Setting (N/A: Not available)

(3-2) Noise Suppression → Normal Operation

During noise suppressing operation, if the input moving average level set by NSOAF1-0 bits (Table 46) exceeds Noise Suppression Threshold High Level set by NSTHH4-0 bits (Table 47), the operation switches to normal operation from noise suppressing operation.

This recovery operation sets the volume automatically to 0dB with the soft transition of the recovery speed set by NSGAIN2-0 bits (Table 48).

NSOAF1-0 bits		Moving Average Parameter				
NSOATT-0 01ts		fs=8kHz	fs=16kHz	fs=44.1kHz		
00	4/fs	0.5ms	0.3ms	0.1ms	1	
01	8/fs	1.0ms	0.5ms	0.2ms		
10	16/fs	2.0ms	1.0ms	0.4ms	(default)	
11	32/fs	4.0ms	2.0ms	0.7ms		

Table 46. Moving Average Parameter Setting at Noise Suppression On

NSTHH4-0 bits	Noise Suppression Threshold High Level [dB]	Step	
00H	-36.0		(default)
01H	-37.5		
02H	-39.0		
:	••	1.5dB	
10H	-60.0	1.500	
:	••		
1EH	-81.0		
1FH	-82.5		

Table 47. Noise Suppression Threshold High Level

1	i	Recovery Speed	I	NSGAIN0	NSGAIN1	NSGAIN2
	44.1kHz	16kHz	8kHz	bit	bit	bit
	1.5dB/ms	0.5dB/ms	0.3dB/ms	0	0	0
(default)	3.0dB/ms	1.1dB/ms	0.5dB/ms	1	0	0
	6.0dB/ms	2.2dB/ms	1.1dB/ms	0	1	0
	12.2dB/ms	4.4dB/ms	2.2dB/ms	1	1	0
	24.7dB/ms	9.0dB/ms	4.5dB/ms	0	0	1
				1	0	1
		N/A		0	1	1
				1	1	1

Table 48. Recovery Speed Setting from Noise Suppression to Normal Operation (N/A: Not available)

2. Dynamic Volume Control Block

The AK4678 has the dynamic volume control (DVLC) circuits before DRC. DVLC divides frequency range into three band (Low, Middle, High) and controls independently.

(1) Low Frequency Range

Figure 58. DVLC Functions and Signal Path for Low Frequency Range

(1-1) Low Pass Filter (LPF)

This is composed with 1st or 2nd order LPF. DLLA13-0 bits and DLLB13-0 bits set the coefficient of LPF. DLLPF1-0 bits controls ON/OFF of the LPF. When the LPF is OFF, the audio data does not pass this block. The coefficient must be set when DLLPF1-0 bits = "00" or PMDRC bit = "0". The LPF starts operation 4/fs(max) after when DLLPF1-0 bits = "01" or "10" and PMDRC bit = "1" are set.

				-
	DLLPF1 bit	DLLPF0 bit	Mode	
ı	0	0	OFF ("0" data)	(default)
	0	1	1st order LPF	
	1	0	2nd order LPF	
Ì	1	1	N/A	

Table 49. DLLPF Mode Setting (N/A: Not available)

fs: Sampling frequency fc: Cut-off frequency

Register setting

LPF: DLLA[13:0] bits =A, DLLB[13:0] bits =B (MSB=DLLA13, DLLB13; LSB=DLLA0, DLLB0)

$$A = \frac{1}{1 + 1 / \tan (\pi f c / f s)}, \quad B = \frac{1 - 1 / \tan (\pi f c / f s)}{1 + 1 / \tan (\pi f c / f s)}$$

Transfer function (1st order)

Transfer function (1s

$$H(z) = A \frac{1 + z^{-1}}{1 + Bz^{-1}}$$

Transfer function (2nd order)

$$H(z) = A \frac{1 + z^{-1}}{1 + Bz^{-1}} \times A \frac{1 + z^{-1}}{1 + Bz^{-1}}$$

The cut-off frequency should be set as below. $fc/fs \ge 0.002$ (fc min = 88Hz at 44.1kHz)

(1-2) Dynamic Volume Control Curve

The inflection points of the DVLC curve is set by three coordinate values (VL1X5-0, VL1Y5-0, VL2X5-0, VL2Y5-0, VL3X4-0 and VL3Y4-0 bits). The setting of three inflection points are calculated the values of (X1_L, Y1_L), (X2_L, Y2_L), (X3_L, Y3_L) in dB. The inflection points should be set in such a way that VL1X \leq VL2X \leq VL3X, VL1Y \leq VL2Y \leq VL3Y. And the each slope is set by L1G6-0, L2G6-0, L3G6-0 and L4G6-0 bits. X4_L is fixed full-scale, Y4_L is calculated by the L4G value. The initial value of the DVLC gain is set by the L1G.

Figure 59. DVLC Curve for Low Frequency Range

	Step	Dynamic Volume Control Point [dB]	VL1X/Y5-0 bits VL2X/Y5-0 bits
(default)		0	00H
		-1.5	01H
	1.5dB	-3.0	02H
	1.500	:	:
		-69.0	2EH
		-70.5	2FH
		N/A	30H
	N/A	:	:
		N/A	3FH

Table 50. DVLC Point Setting for X/Y1, X/Y2 (N/A: Not available)

VL3X/Y4-0 bits	Dynamic Volume Control Point [dB]	Step	
00H	0		(default)
01H	-1.5		
02H	-3.0	1.5dB	
:	:	1.500	
1EH	-45.0		
1FH	-46.5		

Table 51. DVLC Point Setting for X/Y3

Slope Setting

L1G =
$$\frac{Y1_L}{X1_L}$$
 x 16, L2G = $\frac{(Y2_L - Y1_L)}{(X2_L - X1_L)}$ x 16,

L3G =
$$\frac{(Y3_L - Y2_L)}{(X3_L - X2_L)}$$
 x 16, L4G = $\frac{(Y4_L - Y3_L)}{(X4_L - X3_L)}$ x 16,

The results calculated by the equations above should be rounded off to integer. These integers are slope data.

L1G6-0 bits, L2G6-0 bits, L3G6-0 bits, L4G6-0 bits	Slope Data	
00H	0	(default)
01H	1	
02H	2	
:	:	
7EH	126	
7FH	127	

Table 52. DVLC Slope Setting for Low Frequency Range

(2) Middle Frequency Range

Figure 60. DVLC Functions and Signal Path for Middle Frequency Range

(2-1) High Pass Filter (HPF)

This is composed with 1st or 2nd order HPF. The coefficient of HPF is set by DMHA13-0 bits and DMHB13-0 bits. HPF bit controls ON/OFF of the HPF. When the HPF is OFF, the audio data passes this block by 0dB gain. The coefficient must be set when DMHPF1-0 bits = "00" or PMDRC bit = "0". The HPF starts operation 4/fs(max) after when DMHPF1-0 bits = "01" or "10" and PMDRC bit = "1" are set.

_			
	Mode	DMHPF0 bit	DMHPF1 bit
(default)	Bypass	0	0
	1st order HPF	1	0
	2nd order HPF	0	1
	N/A	1	1

Table 53. DMHPF Mode Setting (N/A: Not available)

fs: Sampling frequency fc: Cut-off frequency

Register setting

HPF: DMHA[13:0] bits =A, DMHB[13:0] bits =B (MSB=DMHA13, DMHB13; LSB=DMHA0, DMHB0)

$$A = \frac{1 / \tan (\pi f c/f s)}{1 + 1 / \tan (\pi f c/f s)}, \quad B = \frac{1 - 1 / \tan (\pi f c/f s)}{1 + 1 / \tan (\pi f c/f s)}$$

Transfer function (1st order)

$$H(z) = A \frac{1 - z^{-1}}{1 + Bz^{-1}}$$

Transfer function (2nd order)

$$H(z) = A \frac{1 - z^{-1}}{1 + Bz^{-1}} \times A \frac{1 - z^{-1}}{1 + Bz^{-1}}$$

The cut-off frequency should be set as below. $fc/fs \ge 0.0001$ (fc min = 4.41Hz at 44.1kHz)

(2-2) Low Pass Filter (LPF)

This is composed with 1st or 2nd order LPF. DLLA13-0 bits and DMLB13-0 bits set the coefficient of LPF. DMLPF1-0 bits controls ON/OFF of the LPF. When the LPF is OFF, the audio data passes this block by 0dB gain. The coefficient must be set when DMLPF1-0 bits = "00" or PMDRC bit = "0". The LPF starts operation 4/fs(max) after when DMLPF1-0 bits = "01" or "10" and PMDRC bit = "1" are set.

DMLPF1 bit	DMLPF0 bit	Mode	
0	0	Bypass	(default)
0	1	1st order LPF	
1	0	2nd order LPF	
1	1	N/A	

Table 54. DMLPF Mode Setting (N/A: Not available)

fs: Sampling frequency fc: Cut-off frequency

Register setting

LPF: DMLA[13:0] bits =A, DMLB[13:0] bits =B (MSB=DMLA13, DMLB13; LSB=DMLA0, DMLB0)

$$A = \frac{1}{1 + 1 / \tan{(\pi f c / f s)}} \ , \qquad B = \frac{1 - 1 / \tan{(\pi f c / f s)}}{1 + 1 / \tan{(\pi f c / f s)}}$$

Transfer function (1st order)

H(z) = A
$$\frac{1 + z^{-1}}{1 + Bz^{-1}}$$

Transfer function (2nd order)

H(z) = A
$$\frac{1 + z^{-1}}{1 + Bz^{-1}}$$
 x A $\frac{1 + z^{-1}}{1 + Bz^{-1}}$

The cut-off frequency should be set as below. $fc/fs \ge 0.05$ (fc min = 2205Hz at 44.1kHz)

(2-3) Dynamic Volume Control Curve

The inflection points of the DVLC curve is set by three coordinate values (VM1X5-0, VM1Y5-0, VM2X5-0, VM2Y5-0, VM3X4-0 and VM3Y4-0 bits). The setting of three inflection points are calculated the values of (X1_M, Y1_M), (X2_M, Y2_M), (X3_M, Y3_M) in dB. The inflection points should be set in such a way that VM1X \leq VM2X \leq VM3X, VM1Y \leq VM2Y \leq VM3Y. And the each slope is set by M1G6-0, M2G6-0, M3G6-0 and M4G6-0 bits. X4_M is fixed full-scale, Y4_M is calculated by the M4G value. The initial value of the DVLC gain is set by the M1G. When the HPF and LPF is bypass (DMHPF1-0 = DMLPF1-0 bits = "00"), the audio data passes this block by 0dB gain.

Figure 61. DVLC Curve for Middle Frequency Range

VM1X/Y5-0 bits VM2X/Y5-0 bits		Step	
00H	0		(default)
01H	-1.5		
02H	-3.0	1.5dB	
:	:	1.500	
2EH	-69.0		
2FH	-70.5		
30H	N/A		
:	:	N/A	
3FH	N/A		

Table 55. DVLC Point Setting for X/Y1, X/Y2 (N/A: Not available)

VM3X/Y4-0 bits	Dynamic Volume Control Point [dB]	Step	
00H	0		(default)
01H	-1.5		
02H	-3.0	1.5dB	
:	:	1.500	
1EH	-45.0		
1FH	-46.5		

Table 56. DVLC Point Setting for X/Y3

Slope Setting

M1G =
$$\frac{\text{Y1}_{\text{M}}}{\text{X1}_{\text{M}}} \times 16$$
, M2G = $\frac{(\text{Y2}_{\text{M}} - \text{Y1}_{\text{M}})}{(\text{X2}_{\text{M}} - \text{X1}_{\text{M}})} \times 16$,

$$M3G = \frac{(Y3_M - Y2_M)}{(X3_M - X2_M)} \times 16, \quad M4G = \frac{(Y4_M - Y3_M)}{(X4_M - X3_M)} \times 16,$$

The results calculated by the equations above should be rounded off to integer. These integers are slope data.

M1G6-0 bits, M2G6-0 bits, M3G6-0 bits, M4G6-0 bits	Slope Data	
00H	0	(default)
01H	1	
02H	2	
:	•	
7EH	126	
7FH	127	

Table 57. DVLC Slope Setting for Middle Frequency Range

(3) High Frequency Range

Figure 62. DVLC Functions and Signal Path for High Frequency Range

(3-1) High Pass Filter (HPF)

This is composed with 1st or 2nd order HPF. The coefficient of HPF is set by DHHA13-0 bits and DHHB13-0 bits. HPF bit controls ON/OFF of the HPF. When the HPF is OFF, the audio data does not pass this block. The coefficient must be set when DHHPF1-0 bits = "00" or PMDRC bit = "0". The HPF starts operation 4/fs(max) after when DHHPF1-0 bits = "01" or "10" and PMDRC bit = "1" are set.

	Mode	DHHPF0 bit	DHHPF1 bit
(default)	OFF ("0" data)	0	0
	1st order HPF	1	0
	2nd order HPF	0	1
	N/A	1	1

Table 58. DHHPF Mode Setting (N/A: Not available)

fs: Sampling frequency fc: Cut-off frequency

Register setting

HPF: DHHA[13:0] bits =A, DHHB[13:0] bits =B (MSB=DHHA13, DMHB13; LSB=DHHA0, DHHB0)

$$A = \frac{1 / \tan (\pi f c / f s)}{1 + 1 / \tan (\pi f c / f s)} , \qquad B = \frac{1 - 1 / \tan (\pi f c / f s)}{1 + 1 / \tan (\pi f c / f s)}$$

Transfer function (1st order)

$$H(z) = A \frac{1 - z^{-1}}{1 + Bz^{-1}}$$

Transfer function (2nd order)

$$H(z) = A \frac{1-z^{-1}}{1+Bz^{-1}} \times A \frac{1-z^{-1}}{1+Bz^{-1}}$$

The cut-off frequency should be set as below. $fc/fs \ge 0.0001$ (fc min = 4.41Hz at 44.1kHz)

(3-2) Dynamic Volume Control Curve

The inflection points of the DVLC curve is set by three coordinate values (VH1X5-0, VH1Y5-0, VH2X5-0, VH2Y5-0, VH3X4-0 and VH3Y4-0 bits). The setting of three inflection points are calculated the values of (X1_H, Y1_H), (X2_H, Y2H_H), (X3_H, Y3_H) in dB. The inflection points should be set in such a way that VH1X \leq VH2X \leq VH3X, VH1Y \leq VH2Y \leq VH3Y. And the each slope is set by H1G6-0, H2G6-0, H3G6-0 and H4G6-0 bits. X4_H is fixed full-scale, Y4_H is calculated by the H4G value. The initial value of the DVLC gain is set by the H1G.

Figure 63. DVLC Curve for High Frequency Range

VH1X/Y5-0 bits VH2X/Y5-0 bits	Dynamic Volume Control Point [dB]	Step	
00H	0		(default)
01H	-1.5		
02H	-3.0	1.5dB	
:	:	1.500	
2EH	-69.0		
2FH	-70.5		
30H	N/A		
:	:	N/A	
3FH	N/A		

Table 59. DVLC Point Setting for X/Y1, X/Y2 (N/A: Not available)

VH3X/Y4-0 bits	Dynamic Volume Control Point [dB]	Step	
00H	0		(default)
01H	-1.5		
02H	-3.0	1.5dB	
:	:	1.500	
1EH	-45.0		
1FH	-46.5		

Table 60. DVLC Point Setting for X/Y3

Slope Setting

$$H1G = \frac{Y1_H}{X1_H} \times 16$$
, $H2G = \frac{(Y2_H - Y1_H)}{(X2_H - X1_H)} \times 16$,

$$H3G = \frac{(Y3_H - Y2_H)}{(X3_H - X2_H)} \times 16, \quad H4G = \frac{(Y4_H - Y3_H)}{(X4_H - X3_H)} \times 16$$

The results calculated by the equations above should be rounded off to integer. These integers are slope data.

H1G6-0 bits, H2G6-0 bits, H3G6-0 bits, H4G6-0 bits	Slope Data	
00Н	0	(default)
01H	1	
02H	2	
:	:	
7EH	126	
7FH	127	

Table 61. DVLC Slope Setting for High Frequency Range

(4) Dynamic Volume Control

The DVLC automatically controls the volume at the attenuation speed set by DVLMAT2-0 bits (Table 63) or the recovery speed set by DVRGAIN2-0 bits (Table 64) in such a way that the input moving average level set by DAF1-0 bits (Table 62) is reached the output level of the DVLC curve set by each frequency range.

DAF1-0 bits	Moving Average Parameter					
DAI 1-0 UIIS		fs=8kHz	fs=16kHz	fs=44.1kHz		
00	256/fs	32ms	16ms	5.8ms	1	
01	512/fs	64ms	32ms	11.6ms		
10	1024/fs	128ms	64ms	23.2ms		
11	2048/fs	256ms	128ms	46.4ms	(defaul	

Table 62. DVLC Moving Average Parameter Setting

(default)

DVLMAT2	DVLMAT1	DVLMAT0	ATT Speed			
bit	bit	bit	8kHz	16kHz	44.1kHz	
0	0	0	1.1dB/s	2.1dB/s	5.8dB/s	
0	0	1	2.1dB/s	4.2dB/s	11.7dB/s	
0	1	0	4.2dB/s	8.5dB/s	23.4dB/s	
0	1	1	8.5dB/s	17.0dB/s	46.8dB/s	
1	0	0	17.0dB/s	33.9dB/s	93.5dB/s	
1	0	1	33.9dB/s	67.9dB/s	187.1dB/s	
1	1	0	67.9dB/s	135.8dB/s	374.3dB/s	
1	1	1		N/A		

Table 63. DVLC ATT Speed Setting (N/A: Not available)

DVRGAIN 2	DVRGAIN1	DVRGAIN0		Recovery Spee	d	
bit	bit	bit	8kHz	16kHz	44.1kHz	
0	0	0	0.07 dB/s	0.13dB/s	0.37dB/s	
0	0	1	0.13dB/s	0.27dB/s	0.73dB/s	
0	1	0	0.27dB/s	0.53dB/s	1.46dB/s	
0	1	1	0.53dB/s	1.06dB/s	2.92dB/s	(default)
1	0	0	1.06dB/s	2.12dB/s	5.84dB/s	
1	0	1	2.12dB/s	4.24dB/s	11.7dB/s	
1	1	0	4.24dB/s	8.48dB/s	23.4dB/s	
1	1	1		N/A	•	

Table 64. DVLC Recovery Speed Setting (N/A: Not available)

3. Dynamic Range Control Block

The AK4678 has the dynamic range control (DRC) circuits. The compression level is selected in three levels and set by DRCC1-0 bits (Table 65).

When the DRC is OFF (DRCC1-0 bits = "00"), the audio data passes this block by 0dB gain. However limiter and recovery operation is always ON. The compression level must be set when PMDRC bit = "0".

Figure 64. DRC Gain Curve

DRCC1 bit	DRCC0 bit	Compression Level	
0	0	OFF	(default)
0	1	Low	
1	0	Middle	
1	1	High	

Table 65. DRC Compression Level Setting

1. DRC Limiter Operation

During the DRC limiter operation, when the output level of DRC exceeds full-scale, the DRC volume are attenuated automatically with the soft transition in the attenuation speed set by DLMAT2-0 bits (Table 66).

DLMAT2	DLMAT1	DLMAT0		ATT Speed		
bit	bit	bit	8kHz	16kHz	44.1kHz	
0	0	0	0.1dB/ms	0.3dB/ms	0.7dB/ms	(default)
0	0	1	0.3dB/ms	0.5dB/ms	1.5dB/ms	
0	1	0	0.5dB/ms	1.1dB/ms	3.0dB/ms	
0	1	1	1.1dB/ms	2.2dB/ms	6.0dB/ms	
1	0	0	2.2dB/ms	4.4dB/ms	12.2dB/ms	
1	0	1	4.5dB/ms	9.0dB/ms	24.7dB/ms	
1	1	0		N/A		
1	1	1		1 V / A		

Table 66. DRC ATT Speed Setting (N/A: Not available)

2. DRC Recovery Operation

During the DRC recovery operation, when the DRC volume reaches 0dB or the output level of DRC exceeds limiter detection level, the DRC volume are set automatically with the soft transition in the recovery speed set by DRGAIN1-0 bits (Table 67).

DRGAIN1	DRGAIN0	F	Recovery Speed		
bit	bit	8kHz	16kHz	44.1kHz	
0	0	1.1dB/s	2.1dB/s	5.9dB/s	(default)
0	1	2.1dB/s	4.2dB/s	11.7dB/s	
1	0	4.2dB/s	8.5dB/s	23.4dB/s	
1	1	8.5dB/s	17.0dB/s	46.7dB/s	

Table 67. DRC Recovery Speed Setting

■ Digital Output Volume (DATT-A)

The AK4678 has a digital output volume (DATT-A: 128 levels, 0.5dB step, Mute). The volume can be set by the OVL6-0 and OVR6-0 bits. The volume is included in front of a DAC block. The input data of DAC is changed from +6 to -57dB or MUTE. When the OVOLC bit = "1", the OVL6-0 bits control both Lch and Rch attenuation levels. When the OVOLC bit = "0", the OVL6-0 bits control Lch level and OVR6-0 bits control Rch level. This volume has a soft transition function. The OVTM bit sets the transition time between set values of OVL/R6-0 bits as either 128/fs or 256/fs (Table 69). When OVTM bit = "1", a soft transition between the set values occurs (256 levels). It takes 256/fs (=5.8ms@fs=44.1kHz) from 00H (+6dB) to 7FH (MUTE).

OVL/R6-0 bits	Gain	Step	
00H	+6.0dB		
01H	+5.5dB		
02H	+5.0dB		
•	:	0.5dB	
0CH	0dB	0.305	(default)
:	:		
7DH	-56.5dB		
7EH	-57.0dB		
7FH	MUTE (−∞)		

Table 68. Digital Volume A Code Table

OVTM bit	Transition time be	etween OVL/R6-0 bit	s = 00H and $7FH$
O V TIVI OIL	Setting	fs=8kHz	fs=44.1kHz
0	128/fs	16ms	2.9ms
1	256/fs	32ms	5.8ms

(default)

Table 69. Transition Time Setting of Digital Output Volume A

■ Soft Mute

Soft mute operation is performed in the digital domain. When the SMUTE bit is changed to "1", the output signal is attenuated to $-\infty$ ("0") during the cycle set by the OVTM bit. When the SMUTE bit is returned to "0", the mute is cancelled and the output attenuation gradually changes to the value set by the OVL/R6-0 bits during the cycle set of the OVTM bit. If the soft mute is cancelled within the cycle set by the OVTM bit after starting the operation, the attenuation is discontinued and returned to the value set by the OVL/R6-0 bits. The soft mute is effective for changing the signal source without stopping the signal transmission (Figure 65).

Figure 65. Soft Mute Function

- (1) The output signal is attenuated until $-\infty$ ("0") in the cycle set by the OVTM bit.
- (2) Analog output corresponding to digital input has the group delay (GD).
- (3) If the soft mute is cancelled within the cycle set by the OVTM bit, the attenuation is discounted and returned to the value set by the OVL/R6-0 bits.

■ Digital Volume for Recording of Received Voice (DATT-B)

The AK4678 has a digital output volume control (DATT-B: 128 levels, 0.5dB step, Mute) for recording of received voice. The volume can be set by the BVL6-0 bits. This volume is included in SRCAI blocks. The output data of SRCAI is changed from +6 to -57dB or MUTE. This volume control is in common for left and right channels. This volume has a soft transit function. The OVTMB bit sets the transition time between set values of BVL6-0 bits as either 128/fs or 256/fs (Table 71). When OVTMB bit = "1", a soft transition between the set values occurs (256 levels). It takes 256/fs (=5.8ms @ fs=44.1kHz, PMMIX bit = "1") from 00H (+6dB) to 7FH (MUTE).

BVL6-0 bits	Gain	Step	
00H	+6.0dB		
01H	+5.5dB		
02H	+5.0dB		
:	:	0.5dB	
0CH	0dB	U.SUD	(default)
:	:		
7DH	-56.5dB		
7EH	-57.0dB		
7FH	MUTE (−∞)		

Table 70. Digital Volume B Table

OVTMB bit	Transition time b	between BVL6-0 bits	= 00H and 7FH
O V TWID UIT	Setting	fs=8kHz	fs=44.1kHz
0	128/fs	16ms	2.9ms
1	256/fs	32ms	5.8ms

(PMMIX bit = "0": fs = SYNCB Frequency, PMMIX bit = "1": fs = LRCK Frequency)
Table 71. Transition Time Setting of Digital Output Volume B

■ Digital Volume for Received Voice (DATT-C)

The AK4678 has a digital output volume control (DATT-C: 128 levels, 0.5dB step, Mute) for recording of received voice. The volume can be set by the CVL6-0 bits. The volume range is from +6 to -57dB or MUTE. This volume control is in common for left and right channels. This volume has a soft transit function. The OVTMB bit sets the transition time between set values of CVL6-0 bits as either 128/fs or 256/fs (Table 73). When OVTMB bit = "1", a soft transition between the set values occurs (256 levels). It takes 256/fs (=5.8ms @ fs =44.1kHz, PMMIX bit = "1") from 00H (+6dB) to 7FH (MUTE).

			-
CVL6-0 bits	Gain	Step]
00H	+6.0dB		1
01H	+5.5dB		
02H	+5.0dB		
:	:	0.5dB	
0CH	0dB	0.305	(default)
:	:		
7DH	-56.5dB		
7EH	-57.0dB		
7FH	MUTE (−∞)		

Table 72. Digital Volume C Table

OVTMB bit	Transition time b	between CVL6-0 bits	= 00H and 7FH
O v TWID UIL	Setting	fs=8kHz	fs=44.1kHz
0	128/fs	16ms	2.9ms
1	256/fs	32ms	5.8ms

(default)

(PMMIX bit = "0": fs = SYNCB Frequency, PMMIX bit = "1": fs = LRCK Frequency)
Table 73. Transition Time Setting of Digital Output Volume C

■ Side Tone Volume for B/T Phone Call (SVOLB)

The AK4678 has the side tone volume control (5 levels, 6dB step) for B/T phone call. The volume can be set by the SVB2-0 bits. The volume range is from 0dB to -24dB.

SVB2-0 bits	Gain	
0H	0dB	(default)
1H	-6dB	
2H	-12dB	
3Н	-18dB	
4H	-24dB	
Others	N/A	

Table 74. Side Tone Volume B Table (N/A: Not available)

■ Digital Volume for B/T MIC Input (BIVOL)

The AK4678 has the digital volume control (5 levels, 6dB step) for B/T mic input. The volume can be set by the BIV2-0 bits . The volume rage is from 0 to -24dB.

BIV2-0 bits	Gain
0H	0dB
1H	-6dB
2H	-12dB
3H	-18dB
4H	-24dB
Others	N/A

(default)

Table 75. SDTIB Volume Table (N/A: Not available)

■ Path & Mixing Setting of Digital Block (Figure 50)

PMADL, PMADR, PMDML and PMDMR bits set both ADC power management and output data selection. In case of mono operation, the same data is output to both channel slots.

PMADL bit	PMADR bit	ADC Lch data	ADC Rch data	
0	0	All "0"	All "0"	(default)
0	1	Rch Input Signal	Rch Input Signal	
1	0	Lch Input Signal	Lch Input Signal	
1	1	Lch Input Signal	Rch Input Signal	

Table 76. ADC Mono/Stereo Select (Analog MIC: DMIC bit = "0")

PMDML bit	PMDMR bit	ADC Lch data	ADC Rch data	
0	0	All "0"	All "0"	(default)
0	1	Rch Input Signal	Rch Input Signal	
1	0	Lch Input Signal	Lch Input Signal	
1	1	Lch Input Signal	Rch Input Signal	

Table 77. ADC Mono/Stereo Select (Digital MIC: DMIC bit = "1)

PFSEL bit select the input data of programmable filter.

PFSEL	Programmable Filter Input	
0	ADC Output (selected by Table 76)	(default)
1	SDTI Input (selected by Table 84)	

Table 78. Programmable Filter Input Signal Select

When ADM bit is "1", ALC output data is output to both channels of SDTO and SVOLA as (L+R)/2, respectively.

ADM bit	Lch	Rch	
0	L	R	(default)
1	(L+R)/2	(L+R)/2	

Table 79. ALC Output Mono Mixing

PFSDO bit select the input data both SDTO and SVOLA.

PFSDO bit	SDTO and SVOLA Input	
0	ADC Output (selected by Table 76)	
1	Programmable Filter Output (selected by Table 79)	(default)

Table 80. SDTO, SVOLA Input Signal Select

SDOL1-0 and SDOR1-0 bits set the data mixing for each channel of SDTO from the data selected by Table 80 and MIX1L/R output data.

	SDTO Lch	SDOL0 bit	SDOL1 bit
(default)	Lch Signal selected by Table 80	0	0
	MIX1L	1	0
]	(Lch Signal selected by Table 80) + (MIX1L)	0	1
1	(Lch Signal selected by Table 80)/2 + (MIX1L)/2	1	1

Table 81. SDTO Lch Output Mixing

SDOR1 bit	SDOR0 bit	SDTO Rch	
0	0	Rch Signal selected by Table 80	(default)
0	1	MIX1R	
1	0	(Rch Signal selected by Table 80) + (MIX1R)	
1	1	(Rch Signal selected by Table 80)/2 + (MIX1R)/2	

Table 82. SDTO Rch Output Mixing

When SDOD bit is "1", SDTO output data can be disabled (fixed to "L"). Input data of SVOLA is not disabled.

SDOD bit	SDTO	
0	Enable (Output)	(default)
1	Disable ("L" Output)	

Table 83. SDTO Disable

SDIM1-0 bits select stereo or mono of SDTI input data. In case of mono mode, the same data is input to both channels.

SDIM1 bit	SDIM0 bit	Lch	Rch	
0	0	L	R	(default)
0	1	L	L	
1	0	R	R	
1	1	N.	/A	

Table 84. SDTI Stereo/Mono Select (N/A: Not available)

PFMXL1-0 and PFMXR1-0 bits set the data mixing for each channel of 5-band EQ from the data selected by Table 84 and SVOLA output data.

PFMXL1 bit	PFMXL0 bit	5-band EQ Lch Input]
0	0	Lch Signal selected by Table 84	(default)
0	1	SVOLA Lch	
1	0	(Lch Signal selected by Table 84) + (SVOLA Lch)	
1	1	N/A	

Table 85. 5-band EQ Lch Input Mixing 1 (N/A: Not available)

	5-band EQ Rch Input	PFMXR0 bit	PFMXR1 bit
(default)	Rch Signal selected by Table 84	0	0
	SVOLA Rch	1	0
	(Rch Signal selected by Table 84) + (SVOLA Rch)	0	1
	N/A	1	1

Table 86. 5-band EQ Rch Input Mixing 1 (N/A: Not available)

SRMXL1-0 and SRMXR1-0 bits set the data mixing for each channel of 5-band EQ from the data selected by Table 85/Table 86 and MIX1L/R output data.

	5-band EQ Lch Input	SRMXL0 bit	SRMXL1 bit
(default)	Signal selected by Table 85	0	0
	MIX1L	1	0
	(Signal selected by Table 85) + (MIX1L)	0	1
	N/A	1	1

Table 87. 5-band EQ Lch Input Mixing 2 (N/A: Not available)

SRMXR1 bit	SRMXR0 bit	5-band EQ Rch Input	
0	0	Signal selected by Table 86	(default)
0	1	MIX1R	
1	0	(Signal selected by Table 86) + (MIX1R)	
1	1	N/A	

Table 88. 5-band EQ Rch Input Mixing 2 (N/A: Not available)

DASEL1-0 bits select the input data of DAC.

	DAC Rch	DAC Lch	DASEL0 bit	DASEL1 bit
(default)	DATT-A Rch	DATT-A Lch	0	0
	DRC Rch	DRC Lch	1	0
	SDTI Rch	SDTI Lch	0	1
	/A	N.	1	1

Table 89. DAC Input Signal Select (N/A: Not available)

MX1L2-0 bits set the data mixing for Audio I/F Lch input.

MX1L2 bit	MX1L1 bit	MX1L0 bit	Audio I/F Lch Input	
0	0	0	DATT-B	(default)
0	0	1	BIVOL Lch	
0	1	0	BIVOL Rch	
0	1	1	((BIVOL Lch) + (BIVOL Rch))/2	
1	0	0	(DATT-B) + (BIVOL Lch)	
1	0	1	(DATT-B) + (BIVOL Rch)	
1	1	0	((BIVOL Lch) + (BIVOL Rch))/2 + (DATT-B))/2	
1	1	1	N/A	

Table 90. Audio I/F Lch Input Mixing (N/A: Not available)

MX1R2-0 bits set the data mixing for Audio I/F Rch input.

	Audio I/F Rch Input	MX1R0 bit	MX1R1 bit	MX1R2 bit
(default)	DATT-B	0	0	0
	BIVOL Lch	1	0	0
	BIVOL Rch	0	1	0
	((BIVOL Lch) + (BIVOL Rch))/2	1	1	0
	(DATT-B) + (BIVOL Lch)	0	0	1
	(DATT-B) + (BIVOL Rch)	1	0	1
	((BIVOL Lch) + (BIVOL Rch))/2 + (DATT-B))/2	0	1	1
	N/A	1	1	1

Table 91. Audio I/F Rch Input Mixing (N/A: Not available)

MX2A1-0 bits set the data mixing for MIX2C input.

MX2A1 bit	MX2A0 bit	MIX2C Input	
0	0	BIVOL Lch	(default)
0	1	BIVOL Rch	
1	0	(BIVOL Lch) + (BIVOL Rch)	
1	1	((BIVOL Lch) + (BIVOL Rch))/2	

Table 92. MIX2C Input Mixing 1

MX2B1-0 bits set the data mixing for MIX2C input.

	MIX2C Input	MX2B0 bit	MX2B1 bit
(default)	DATT-A Lch	0	0
	DATT-A Rch	1	0
	(DATT-A Lch) + (DATT-A Rch)	0	1
	((DATT-A Lch) + (DATT-A Rch))/2	1	1

Table 93. MIX2C Input Mixing 2

MX2C1-0 bits set the data mixing for SRCAO and SVOLB input.

	SRCAO/SVOLB Input	MX2C0 bit	MX2C1 bit
(default)	MIX2A	0	0
	MIX2B	1	0
	(MIX2A) + (MIX2B)	0	1
	((MIX2A) + (MIX2B))/2	1	1

Table 94. SRCAO/SVOLB Input Mixing

MXSB2-0 bits set the data mixing for SRCBO input.

MXSB2 bit	MXSB1 bit	MXSB0 bit	SRCBO Lch	SRCBO Rch	
0	0	0	DATT-A Lch	DATT-A Rch	(default)
0	0	1	DATT-A Lch	←	
0	1	0	DATT-A Rch	←	
0	1	1	(DATT-A Lch) + (DATT-A Rch)	←	
1	0	0	((DATT-A Lch) + (DATT-A Rch))/2	←	
1	0	1	((DATT-A Lch) + (DATT-A Rch))/2 + (DATT-C)	←	
1	1	0	Lch Signal selected by Table 80	Rch Signal selected by Table 80	
1	1	1	DATT-C	-	

Table 95. SRCBO Input Mixing

When SDOAD bit is "1", SDTOA output data can be disabled (fixed to "L"). Input data of SVOLB is not disabled.

SDOAD bit	SDTOA	
0	Enable (Output)	(default)
1	Disable ("L" Output)	

Table 96. SDTOA Disable

SBMX1-0 bits set the data mixing from SDTIA input and SVOLB output. The mixed data is input to DATT-C.

SBMX1 bit	SBMX0 bit	DATT-C Input	
0	0	SRCAI	(default)
0	1	SVOLB	
1	0	(SRCAI) + (SVOLB)	
1	1	N/A	

Table 97. SDTOB Mixing (N/A: Not available)

When SDOBD bit is "1", SDTOB output data can be disabled (fixed to "L").

SDOBD bit	SDTOB	
0	Enable (Output)	(default)
1	Disable ("L" Output)	

Table 98. SDTOB Disable

■ Stereo Line Output (LOUT/ROUT pins)

When DACL and DACR bits are "1", Lch/Rch signal of DAC is output from the LOUT/ROUT pins in single-ended. When DACL and DACR bits are "0" in normal operation (PMDAC=PML/RO bits = "1", LOPS bit = "0"), output signal is muted and LOUT/ROUT pins output common voltage (typ. 0.8 x AVDD). The load impedance is $10k\Omega$ (min.). When the PMLO=PMRO=LOPS bits = "0", LOUT/ROUT enters power-down mode and the output is pulled-down to VSS1 by $100k\Omega$ (typ). When the LOPS bit is "1", LOUT/ROUT enters power-save mode. Pop noise at power-up/down can be reduced by changing PMLO and PMRO bits at LOPS bit = "1". In this case, output signal line should be pulled-down to VSS1 by $20k\Omega$ after AC coupled as Figure 67. Rise/Fall time is 300ms (max) at C=1 μ F and AVDD=1.8V. When PMLO=PMRO bits = "1" and LOPS bit = "0", LOUT/ROUT is in normal operation. LVL2-0 bits control the volume of LOUT/ROUT. When LOM bit = "1", DAC output signal is output to LOUT and ROUT pins as (L+R) mono signal.

Figure 66. Stereo Line Output

LOPS bit	PMLO bit	Mode	LOUT pin]
0	0	Power-down	Pull-down to VSS1	(default)
U	1	Normal Operation	Normal Operation	
1	0	Power-save	Fall down to VSS1	
1	1	Power-save	Rise up to common voltage	

Table 99. Stereo Line Output Mode Select (LOUT)

				_
LOPS bit	PMRO bit	Mode	ROUT pin	
0	0	Power-down	Pull-down to VSS1	(default)
U	1	Normal Operation	Normal Operation	
1	0	Power-save	Fall down to VSS1	
1	1	Power-save	Rise up to common voltage	

Table 100. Stereo Line Output Mode Select (ROUT)

LVL2-0 bits	Attenuation	
7H	N/A	
6H	N/A	
5H	+6dB	
4H	+3dB	
3H	0dB	(default)
2H	−3dB	
1H	-6dB	
0H	−9dB	

Table 101. Stereo Line Output Volume Setting (N/A: Not available)

Figure 67. External Circuit for Stereo Line Output (in case of using Pop Noise Reduction Circuit)

<Stereo Line Output Control Sequence (in case of using Pop Noise Reduction Circuit)>

Figure 68. Stereo Line Output Control Sequence (in case of using Pop Noise Reduction Circuit)

- (1) Set LOPS bit = "1". Stereo line output enters power-save mode.
- (2) Set PMLO=PMRO bits = "1". Stereo line output exits power-down mode.

 LOUT and ROUT pins rise up to common voltage (typ. 0.8 x AVDD). Rise time is 200ms (max 300ms) at C=1μF and AVDD=1.8V.
- (3) Set LOPS bit = "0" after LOUT and ROUT pins rise up. Stereo line output exits power-save mode. Stereo line output is enabled.
- (4) Set LOPS bit = "1". Stereo line output enters power-save mode.
- (5) Set PMLO=PMRO bits = "0". Stereo line output enters power-down mode.

 LOUT and ROUT pins fall down to VSS1. Fall time is 200ms (max 300ms) at C=1μF and AVDD=1.8V.
- (6) Set LOPS bit = "0" after LOUT and ROUT pins fall down. Stereo line output exits power-save mode.

■ Full-differential Mono Line Output (LOP/LON pins)

When LODIF bit = "1", LOUT/ROUT pins become LOP/LON pins, respectively. Lch/Rch signal of DAC or LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 is output from the LOP/LON pins in full-differential as (L+R) signal. The load impedance is $10k\Omega$ (min) for each LOP pin and LON pin. When the PMLO = PMRO bits = "0", the mono line output enters power-down mode and the output is pulled-down to VSS1. When the PMLO = PMRO bits = "1" and LOPS bit = "1", mono line output enters power-save mode. Pop noise at power-up/down can be reduced by changing PMLO and PMRO bits when LOPS bit = "1". When PMLO = PMRO bits = "1" and LOPS bit = "0", mono line output enters in normal operation. LVL2-0 bits set the volume of mono line output.

Figure 69. Full-differential Mono Line Output

	Attenuation	LVL2-0 bits
	N/A	7H
	N/A	6Н
	+12dB	5H
	+9dB	4H
(default)	+6dB	3Н
	+3dB	2H
	0dB	1H
	−3dB	0H

Table 102. Mono Line Output Gain Setting (N/A: Not available)

LOPS bit	PMLO/RO bits	Mode	LON/LOP pins	
0	0	Power-down	Pull-down to VSS1	(default)
U	1	Normal Operation	Normal Operation	
1	0	Power-save	Fall down to VSS1	
1	1	Power-save	Rise up to common voltage	

Table 103. Mono Line Output Mode Setting

<Full-differential Mono Line Output Control Sequence (in case of using Pop Noise Reduction Circuit)>

Figure 70. Mono Line Output Control Sequence (in case of using Pop Noise Reduction Circuit)

- (1) Set LOPS bit = "1". Mono line output enters power-save mode.
- (2) Set PMLO = PMRO bits = "1". Mono line output exits power-down mode.

 LOP and LON pins rise up to common voltage (typ. 0.8 x AVDD). Rise time is 200ms (max 300ms) at C=1μF and AVDD=1.8V.
- (3) Set LOPS3 bit = "0" after LOP and LON pins rise up. Mono line output exits power-save mode. Mono line output is enabled.
- (4) Set LOPS bit = "1". Mono line output enters power-save mode.
- (5) Set PMLO = PMRO bits = "0". Mono line output enters power-down mode.

 LOP and LON pins fall down to VSS1. Fall time is 200ms (max 300ms) at C=1μF and AVDD=1.8V.
- (6) Set LOPS bit = "0" after LOP and LON pins fall down. Mono line output exits power-save mode.

■ Receiver-Amp (RCP/RCN pins)

Lch/Rch signal of DAC is output from the RCP/RCN pins which is BTL as (L+R) signal. The load impedance is 32Ω (min). When the PMRCV bit = "0", the mono receiver output enters power-down mode and the output is Hi-Z. When the PMRCV bit = "1" and RCVPS bit = "1", mono receiver output enters power-save mode. Pop noise at power-up/down can be reduced by changing PMRCV bit when RCVPS bit = "1". When PMRCV bit = "1" and RCVPS bit = "0", mono receiver output enters in normal operation. RCVG3-0 bits control the volume of mono receiver output.

Figure 71. Mono Receiver Output

		-
RCVG3-0 bits	Attenuation	
FH	+12dB	
EH	+9dB	
DH	+6dB	
СН	+3dB	
BH	0dB	(default)
AH	−3dB	
9H	-6dB	
8H	−9dB	
7H	-12dB	
6Н	-15dB	
5H	-18dB	
4H	-21dB	
3H	-24dB	
2H	-27dB	
1H	-30dB	
0H	MUTE	

Table 104. Mono Receiver Output Volume Setting

PMRCV bit	RCVPS bit	Mode	RCP pin	RCN pin	
0	X	Power-down	Hi-Z	Hi-Z	(default)
1	1	Power-save	Hi-Z	Common Voltage (typ. 0.8 x AVDD)	
	0	Normal Operation	Normal Operation	Normal Operation	

Table 105. Receiver-Amp Mode Setting (x: Don't care)

Figure 72. Power-up/Power-down Timing for Receiver-Amp

■ Headphone Output (HPL/HPR pins)

The headphone amplifiers are operated by positive and negative power supplied from charge pump circuit. The VEE pin outputs the negative voltage generated by the internal charge pump circuit from PVDD. This charge pump circuit is switched between VDD mode and 1/2VDD mode by the output level of the headphone amplifiers.

The headphone amplifier output is single-ended and centered on 0V (VSS1). Therefore, the capacitor for AC-coupling can be removed. The minimum load resistance is 16Ω . The output power is 20mW (@ 0dBFS, $R_L = 16\Omega$, AVDD=1.8V, HPG = -4dB) and 25mW (@ 0dBFS, $R_L = 32\Omega$, AVDD=1.8V, HPG=0dB).

The output level of headphone-amp can be controlled by HPG5-0 bits. This volume setting is in common for L/R channels and can attenuate/gain the mixer output from +6dB to -62dB in 2dB steps (Table 106). The HPG value is changed independently on L/R channels by zero crossing or timeout. Zero crossing timeout period is set by HPTM1-0 bits. When LOHM bit = "1", the headphone-amp output to HPL and HPR pins as (L+R) mono signal.

Figure 73. Stereo Headphone Output

HPG5-0 bits	GAIN (dB)	HPG5-0 bits	GAIN (dB)
29H	N/A	14H	-30
28H	N/A	13H	-32
27H	N/A	12H	-34
26H	+6	11H	-36
25H	+4	10H	-38
24H	+2	0FH	-40
23Н	0	0EH	-42
22H	-2	0DH	-44
21H	-4	0CH	-46
20H	-6	0BH	-48
1FH	-8	0AH	-50
1EH	-10	09H	-52
1DH	-12	08H	-54
1CH	-14	07H	-56
1BH	-16	06H	-58
1AH	-18	05H	-60
19H	-20	04H	-62
18H	-22	03H	MUTE
17H	-24	02H	MUTE
16H	-26	01H	MUTE
15H	-28	00H	MUTE

Table 106. Headphone-Amp Volume Setting (Default: 0dB, N/A: Not available)

HPTM1	HPTM0		Zero Crossing Timeout Period			
bit	bit		8kHz	16kHz	44.1kHz	
0	0	128/fs	16ms	8ms	2.9ms	(default)
0	1	256/fs	32ms	16ms	5.8ms	
1	0	512/fs	64ms	32ms	11.6ms	
1	1	1024/fs	128ms	64ms	23.2ms	

Table 107. Headphone-Amp Volume Zero Crossing Timeout Period

	CPMODE1 bit	CPMODE0 bit	Mode	Operation Voltage	
	0	0	Class-G Operation Mode	Automatic Switching	(default)
	0	1	± VDD Operation Mode	± VDD	
	1	0	±1/2 VDD Operation Mode	±1/2 VDD	
Г	1	1	N/A		

Table 108. Charge Pump Mode Setting (N/A: Not available)

VDDTM2	VDDTM1	VDDTM0		VDD N	Mode Holding	Period	
bit	bit	bit		8kHz	16kHz	44.1kHz	
0	0	0	1024/fs	128ms	64ms	23.2ms	
0	0	1	2048/fs	256ms	128ms	46.4ms	
0	1	0	4096/fs	512ms	256ms	92.9ms	
0	1	1	8192/fs	1024ms	512ms	186ms	
1	0	0	16384/fs	2048ms	1024ms	372ms	
1	0	1	32768/fs	4096ms	2048ms	743ms	(default)
1	1	0	65536/fs	8192ms	4096ms	1486ms	
1	1	1		N/A	A		

Table 109. VDD Mode Waiting Period (N/A: Not available)

<HP-Amp External Circuit>

It is necessary to put an oscillation prevention circuit (0.22 μ F±20% capacitor and 15 Ω ±20% resistor) because it has the possibility that Headphone-Amp oscillates.

Figure 74. HP-Amp oscillation prevention circuit example

When PMHPL or PMHPR bit = "1", headphone outputs are in normal operation after the charge pump circuit is powered up. When PMHPL and PMHPR bits = "0", the headphone-amps and the charge pump circuit are powered-down completely. At that time, the HPL and HPR pins go to VSS1 voltage via the internal pulled-down resistor. The pulled-down resistor is 120Ω (typ).

The power-up time of HP-Amp block is 28ms and then HPL and HPR pins output 0V (VSS1). The power-down is executed immediately.

PMVCM bit	PMHPL/R bits	Mode	HPL/R pins	
Х	0	Power-down & Mute	Pull-down by 120Ω (typ)	(default)
1	1	Normal Operation	Normal Operation	

Table 110. Headphone-Amp Mode Setting (x: Don't' care)

■ Speaker Output (SPP/SPN pins)

Lch/Rch signal of DAC is converted by PWM and is output from SPP/SPN pins by BTL. When Lch/Rch signal of DAC is 0dBFS, the speaker amplifier outputs 0.89W (@ 8Ω , AVDD=1.8V, SVDD=4.2V, SPKG=-6dB). The load impedance is 8Ω (min). A 2.2nF capacitor should be connected between SPFIL pin and VSS1 pin to reduce out-of-band noise from DAC. SPKG3-0 bits control the volume of SPP/SPN.

Figure 75. Mono Speaker Output

SPKG3-0 bits	Attenuation	
FH	+12dB	
EH	+9dB	
DH	+6dB	
СН	+3dB	
BH	0dB	(default)
AH	−3dB	
9H	-6dB	
8H	−9dB	
7H	-12dB	
6H	-15dB	
5H	-18dB	
4H	-21dB	
3Н	-24dB	
2H	-27dB	
1H	-30dB	
0H	MUTE	

Table 111. Speaker Output Volume Setting

PMSPK bit	Speaker-Amp	
0	Power-down & Hi-Z	(default)
1	Power-up & Output	

Table 112. Speaker-Amp output state

When PMSPK bit is "1", the speaker-amp is powered-up. The power-up time of SPK-Amp block is 32ms and then SPP and SPN pins output 0V (VSS3). When PMSPK bit is "0", the SPK-Amp block can be powered-down. The clock supplied to SPK-Amp block must not be stopped for more than 0.5ms. Once SPK-Amp block is powered-down, the SPK-Amp block should be powered-up again with an interval of 0.5ms or more.

■ Thermal Shutdown Function

When PMVCM bit is "1" and the internal device temperature rises up irregularly (E.g. Output pins of speaker amplifier are shortened.), all amplifier blocks are automatically powered-down (PMLO, PMRO, PMRCV, PMHPL, PMHPR and PMSPK bits = "0") and then THDET bit becomes "1". The other control registers are not initialized. When the internal device temperature falls down, THDET bit becomes "0", but the amplifier blocks do not return to normal operation unless the amplifier blocks are powered-up (PMLO, PMRO, PMRCV, PMHPL, PMHPR or PMSPK bits = "1"). The device status can be monitored by THDET bit.

■ System Clock (PCM I/F)

The AK4678 has two PCM I/F ports. PCM I/F A is for baseband module and PCM I/F B is for Bluetooth mode. PCM I/F A, PCM I/F B and Audio I/F can be operated by asynchronous clock because the AK4678 has four SRCs. PCM I/F A and PCM I/F B support slave mode only. The required clock PCM I/F is BICKA (BICKB) and SYNCA (SYNCB). When PMPCMA bit is "1", PCM I/F A port is powered-up.

Figure 76. PCM I/F A and B

■ SRC (Sample Rate Converter)

The AK4678 has four asynchronous SRCs. The SRCs are operated by internal oscillator. When PMSRAI, PMSRAO, PMSRBI or PMSRBO bit is "1" and PMOSC bit is "1", SRC starts operation. Initial time of SRC is 164/fs2(164/fs3) for SDTOA(SDTOB) output enable after power-down state is released by a clock input(SYNC clock). Until then, SDTOA and SDTOB output data as shown in Table 113. Ratio of Input / Output is decided by PMMIX bit.

Mode	PMSRx bit = "0"	After PMSRx bit = "0" → "1" & Before SYNCA/SYNCB Input	PMSRx bit = "1" During initial time
16bit Linear	L	L	0000Н
8bit A-Law	L	Н	11010101b
8bit μ-Law	L	Н	11111111b

Table 113. SDTOA and SDTOB pins Output Data (PMSRx: PMSRAI, PMSRAO, PMSRBI, PMSRBO)

PMMIX bit	SRC	Input Sampling Rate (FSI)	Output Sampling Rate (FSO)
0	SRCAI	SYNCA	SYNCB
U	SRCAO	SYNCB	SYNCA
	SRCAI	SYNCA	LRCK
1	SRCAO	LRCK	SYNCA
1	SRCBI	SYNCB	LRCK
	SRCBO	LRCK	SYNCB

Table 114. PCM I/F Input Output rate

■ PCM I/F A & B Format

AK4678 supports dual PCM I/F (PCM I/F A & PCM I/F B) that supports 3 kind of I/F (16bit Linear, 8bit A-Law and 8bit μ -Law) independently (Table 115 and Table 116).

Mode	LAWA1 bit	LAWA0 bit	Format]
0	0	0	16bit Linear	(default)
1	0	1	N/A	
2	1	0	8bit A-Law	
3	1	1	8bit μ-Law	

Table 115. PCM I/F A Mode (N/A: Not available)

Mode	LAWB1 bit	LAWB0 bit	Format	
0	0	0	16bit Linear	(default)
1	0	1	N/A	
2	1	0	8bit A-Law	
3	1	1	8bit μ-Law	

Table 116. PCM I/F B Mode (N/A: Not available)

Four types of data formats are available and are selected by setting the FMTA1-0 and FMTB1-0 bits independently (Table 117 and Table 118). In 16bit Linear mode, the serial data is MSB first, 2's complement format. In 8bit A-Law and μ -Law Mode, the serial data is MSB first. PCM I/F formats support slave mode only. SYNCA/B and BICKA/B are input to the AK4678.

	Mode	FMTA1 bit	FMTA0 bit	Format	BICKA	Figure	
1	0	0	0	Short Frame Sync	≥ 16fs2	Table 119	(default)
	1	0	1	Long Frame Sync	≥ 16fs2	Table 121	
	2	1	0	MSB justified	≥ 32fs2	Figure 93	
1	3	1	1	I^2S	≥ 32fs2	Figure 95	

Table 117. PCM I/F A Format

Mode	FMTB1 bit	FMTB0 bit	Format	BICKB	Figure	
0	0	0	Short Frame Sync	$16 \text{fs} 3 \text{ or } \ge 32 \text{fs} 3$	Table 120	(default)
1	0	1	Long Frame Sync	$16 \text{fs} 3 \text{ or } \geq 32 \text{fs} 3$	Table 122	
2	1	0	MSB justified	≥ 32fs3	Figure 94	
3	1	1	I^2S	≥ 32fs3	Figure 96	

Table 118. PCM I/F B Format

In modes 2 and 3, the SDTOA/B is clocked out on the falling edge (" \downarrow ") of BICKA/B and the SDTIA/B is latched on the rising edge (" \uparrow ").

In Modes 0 and 1, PCM I/F A timing is changed by BCKPA and MSBSA bits, and PCM I/F B timing is changed by BCKPB and MSBSB bits.

When BCKPA bit = "0", the SDTOA is clocked out on the rising edge (" \uparrow ") of BICKA and the SDTIA is latched on the falling edge (" \downarrow "). When BCKPA bit = "1", the SDTOA is clocked out on the falling edge (" \downarrow ") of BICKA and the SDTIA is latched on the rising edge (" \uparrow ").

MSBSA bit can shift the MSB position of SDTOA and SDTIA by half period of BICKA.

When BCKPB bit = "0", the SDTOB is clocked out on the rising edge (" \uparrow ") of BICKB and the SDTIB is latched on the falling edge (" \downarrow "). When BCKPB bit = "1", the SDTOB is clocked out on the falling edge (" \downarrow ") of BICKB and the SDTIB is latched on the rising edge (" \uparrow ").

MSBSB bit can shift the MSB position of SDTOB and SDTIB by half period of BICKB.

MSBSA bit	BCKPA bit	Data Interface Format	Figure
0	0	MSB of SDTOA is output by next rising edge (" \uparrow ") of the falling edge (" \downarrow ") of BICKA after the rising edge (" \uparrow ") of SYNCA. MSB of SDTIA is latched by the falling edge (" \downarrow ") of the BICKA just after the output timing of SDTOA's MSB.	Figure 77
0	1	MSB of SDTOA is output by next falling edge ("↓") of the rising edge ("↑") of BICKA after the rising edge ("↑") of SYNCA. MSB of SDTIA is latched by the rising edge ("↑") of the BICKA just after the output timing of SDTOA's MSB.	Figure 78
1	0	MSB of SDTOA is output by the 2nd rising edge ("↑") of BICKA after the rising edge ("↑") of SYNCA. MSB of SDTIA is latched by the falling edge ("↓") of the BICKA just after the output timing of SDTOA's MSB.	Figure 79
1	1	MSB of SDTOA is output by the 2nd falling edge (" \downarrow ") of BICKA after the rising edge (" \uparrow ") of SYNCA. MSB of SDTIA is latched by the rising edge (" \uparrow ") of the BICKA just after the output timing of SDTOA's MSB.	Figure 80

Table 119. PCM I/F A Format in Mode 0

MSBSB bit	BCKPB bit	Data Interface Format	Figure
0	0	MSB of SDTOB is output by next rising edge (" \uparrow ") of the falling edge (" \downarrow ") of BICKB after the rising edge (" \uparrow ") of SYNCB. MSB of SDTIB is latched by the falling edge (" \downarrow ") of the BICKB just after the output timing of SDTOB's MSB.	Figure 85
0	1	MSB of SDTOB is output by next falling edge ("\u224") of the rising edge ("\u224") of BICKB after the rising edge ("\u224") of SYNCB. MSB of SDTIB is latched by the rising edge ("\u224") of the BICKB just after the output timing of SDTOB's MSB.	Figure 86
1	0	MSB of SDTOB is output by the 2nd rising edge ("↑") of BICKB after the rising edge ("↑") of SYNCB. MSB of SDTIB is latched by the falling edge ("↓") of the BICKB just after the output timing of SDTOB's MSB.	Figure 87
1	1	MSB of SDTOB is output by the 2nd falling edge ("↓") of BICKB after the rising edge ("↑") of SYNCB. MSB of SDTIB is latched by the rising edge ("↑") of the BICKB just after the output timing of SDTOB's MSB.	Figure 88

Table 120. PCM I/F B Format in Mode 0

MSBSA bit	BCKPA bit	Data Interface Format	Figure
0	0	MSB of SDTOA is output by the rising edge (" \uparrow ") of SYNCA. MSB of SDTIA is latched by the falling edge (" \downarrow ") of the BICKA just after the output timing of SDTOA's MSB.	Figure 81
0	1	MSB of SDTOA is output by the rising edge ("\u2221") of SYNCA. MSB of SDTIA is latched by the rising edge ("\u2221"") of the BICKA just after the output timing of SDTOA's MSB.	Figure 82
1	0	MSB of SDTOA is output by the rising edge ("↑") of the first BICKA after the rising edge ("↑") of SYNCA. MSB of SDTIA is latched by the falling edge ("↓") of the BICKA just after the output timing of SDTOA's MSB.	Figure 83
1	1	MSB of SDTOA is output by the falling edge ("↓") of the first BICKA after the rising edge ("↑") of SYNCA. MSB of SDTIA is latched by the rising edge ("↑") of the BICKA just after the output timing of SDTOA's MSB.	Figure 84

Table 121. PCM I/F A Format in Mode 1

MSBSB bit	BCKPB bit	Data Interface Format	Figure
0	0	MSB of SDTOB is output by the rising edge (" \uparrow ") of SYNCB. MSB of SDTIB is latched by the falling edge (" \downarrow ") of the BICKB just after the output timing of SDTOB's MSB.	Figure 89
0	1	MSB of SDTOB is output by the rising edge ("\u2224") of SYNCB. MSB of SDTIB is latched by the rising edge ("\u2224") of the BICKB just after the output timing of SDTOB's MSB.	Figure 90
1	0	MSB of SDTOB is output by the rising edge ("↑") of the first BICKB after the rising edge ("↑") of SYNCB. MSB of SDTIB is latched by the falling edge ("↓") of the BICKB just after the output timing of SDTOB's MSB.	Figure 91
1	1	MSB of SDTOB is output by the falling edge (" \downarrow ") of the first BICKB after the rising edge (" \uparrow ") of SYNCB. MSB of SDTIB is latched by the rising edge (" \uparrow ") of the BICKB just after the output timing of SDTOB's MSB.	Figure 92

Table 122. PCM I/F B Format in Mode 1

Figure 77. Timing of Short Frame Sync (PCM I/F A: MSBSA bit = "0", BCKPA bit = "0")

Figure 78. Timing of Short Frame Sync (PCM I/F A: MSBSA bit = "0", BCKPA bit = "1")

Figure 81. Timing of Long Frame Sync (PCM I/F A: MSBSA bit = "0", BCKPA bit = "0")

Figure 82. Timing of Long Frame Sync (PCM I/F A: MSBSA bit = "0", BCKPA bit = "1")

Figure 83. Timing of Long Frame Sync (PCM I/F A: MSBSA bit = "1", BCKPA bit = "0")

Figure 84. Timing of Long Frame Sync (PCM I/F A: MSBSA bit = "1", BCKPA bit = "1")

<16bit Linear> Lch Data: L15-0, MSB(L15), LSB(L0) Rch Data: R15-0, MSB(R15), LSB(R0) <8bit A-Law/µ-Law> Lch Data: L7-0, MSB(L7), LSB(L0) Rch Data: R7-0, MSB(R7), LSB(R0)

Figure 85. Timing of Short Frame Sync (PCM I/F B: MSBSB bit = "0", BCKPB bit = "0")

<16bit Linear> Lch Data: L15-0, MSB(L15), LSB(L0) Rch Data: R15-0, MSB(R15), LSB(R0) <8bit A-Law/µ-Law> Lch Data: L7-0, MSB(L7), LSB(L0) Rch Data: R7-0, MSB(R7), LSB(R0)

Figure 86. Timing of Short Frame Sync (PCM I/F B: MSBSB bit = "0", BCKPB bit = "1")

<16bit Linear>
Lch Data: L15-0, MSB(L15), LSB(L0)
Rch Data: R15-0, MSB(R15), LSB(R0)
<8bit A-Law/µ-Law>
Lch Data: L7-0, MSB(L7), LSB(L0)
Rch Data: R7-0, MSB(R7), LSB(R0)

Figure 87. Timing of Short Frame Sync (PCM I/F B: MSBSB bit = "1", BCKPB bit = "0")

<16bit Linear>
Lch Data: L15-0, MSB(L15), LSB(L0)
Rch Data: R15-0, MSB(R15), LSB(R0)
<8bit A-Law/µ-Law>
Lch Data: L7-0, MSB(L7), LSB(L0)
Rch Data: R7-0, MSB(R7), LSB(R0)

Figure 88. Timing of Short Frame Sync (PCM I/F B: MSBSB bit = "1", BCKPB bit = "1")

<16bit Linear>
Lch Data: L15-0, MSB(L15), LSB(L0)
Rch Data: R15-0, MSB(R15), LSB(R0)
<8bit A-Law/µ-Law>
Lch Data: L7-0, MSB(L7), LSB(L0)
Rch Data: R7-0, MSB(R7), LSB(R0)

Figure 89. Timing of Long Frame Sync (PCM I/F B: MSBSB bit = "0", BCKPB bit = "0")

<16bit Linear>
Lch Data: L15-0, MSB(L15), LSB(L0)
Rch Data: R15-0, MSB(R15), LSB(R0)
<8bit A-Law/µ-Law>
Lch Data: L7-0, MSB(L7), LSB(L0)
Rch Data: R17-0, MSB(R7), LSB(R0)

Figure 90. Timing of Long Frame Sync (PCM I/F B: MSBSB bit = "0", BCKPB bit = "1")

<Ibbt Linear>
Lch Data: L15-0, MSB(L15), LSB(L0)
Rch Data: R15-0, MSB(R15), LSB(R0)
<8bit A-Law/µ-Law>
Lch Data: L7-0, MSB(L7), LSB(L0)
Rch Data: R7-0, MSB(R7), LSB(R0)

Figure 91. Timing of Long Frame Sync (PCM I/F B MSBSB bit = "1", BCKPB bit = "0")

<16bit Linear>
Lch Data: L15-0, MSB(L15), LSB(L0)
Rch Data: R15-0, MSB(R15), LSB(R0)
<8bit A-Law/µ-Law>
Lch Data: L7-0, MSB(L7), LSB(L0)
Rch Data: R17-0, MSB(R7), LSB(R0)

Figure 92. Timing of Long Frame Sync (PCM I/F B: MSBSB bit = "1", BCKPB bit = "1")

Figure 93. Timing of MSB justified (PCM I/F A)

Figure 94. Timing of MSB justified (PCM I/F B)

Figure 95. Timing of I²S (PCM I/F A)

Figure 96. Timing of I²S (PCM I/F B)

■ Serial Control Interface (I²C-bus)

The AK4678 supports the fast-mode I²C-bus (max: 400kHz). Pull-up resistors at SDA and SCL pins must be connected to (TVDD+0.3)V or less voltage.

(2)-1. WRITE Operations

Figure 97 shows the data transfer sequence for the I²C-bus mode. All commands are preceded by a START condition. A HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START condition (Figure 103). After the START condition, a slave address is sent. This address is 7 bits long followed by the eighth bit that is a data direction bit (R/W). The most significant seven bits of the slave address are fixed as "0010010" (Figure 98). If the slave address matches that of the AK4678, the AK4678 generates an acknowledge and the operation is executed. The master must generate the acknowledge-related clock pulse and release the SDA line (HIGH) during the acknowledge clock pulse (Figure 104). A R/W bit value of "1" indicates that the read operation is to be executed. A "0" indicates that the write operation is to be executed.

The second byte consists of the control register address of the AK4678. This address is 8bits and the format is MSB first (Figure 99). The data after the second byte contains control data. The format is MSB first, 8bits (Figure 100). The AK4678 generates an acknowledge after each byte is received. A data transfer is always terminated by a STOP condition generated by the master. A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition (Figure 103).

The AK4678 can perform more than one byte write operation per sequence. After receipt of the third byte the AK4678 generates an acknowledge and awaits the next data. The master can transmit more than one byte instead of terminating the write cycle after the first data byte is transferred. After receiving each data packet the internal 8-bit address counter is incremented by one, and the next data is automatically taken into the next address. If the address exceeds AFH prior to generating a stop condition, the address counter will "roll over" to 00H and the previous data will be overwritten.

The data on the SDA line must remain stable during the HIGH period of the clock. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW (Figure 105) except for the START and STOP conditions.

Figure 100. Byte Structure after the second byte

(2)-2. READ Operations

Set the R/W bit = "1" for the READ operation of the AK4678. After transmission of data, the master can read the next address's data by generating an acknowledge instead of terminating the write cycle after the receipt of the first data word. After receiving each data packet the internal 8-bit address counter is incremented by one, and the next data is automatically taken into the next address. If the address exceeds AFH prior to generating a stop condition, the address counter will "roll over" to 00H and the data of 00H will be read out. The AK4678 supports two basic read operations: CURRENT ADDRESS READ and RANDOM ADDRESS READ.

(2)-2-1. CURRENT ADDRESS READ

The AK4678 contains an internal address counter that maintains the address of the last word accessed, incremented by one. Therefore, if the last access (either a read or write) were to address "n", the next CURRENT READ operation would access data from the address "n+1". After receipt of the slave address with R/W bit set to "1", the AK4678 generates an acknowledge, transmits 1-byte of data to the address set by the internal address counter and increments the internal address counter by 1. If the master does not generate an acknowledge but instead generates a stop condition, the AK4678 ceases transmission.

Figure 101. CURRENT ADDRESS READ

(2)-2-2. RANDOM ADDRESS READ

The random read operation allows the master to access any memory location at random. Prior to issuing the slave address with the R/W bit "1", the master must first perform a "dummy" write operation. The master issues a start request, a slave address (R/W bit = "0") and then the register address to read. After the register address is acknowledged, the master immediately reissues the start request and the slave address with the R/W bit "1". The AK4678 then generates an acknowledge, 1 byte of data and increments the internal address counter by 1. If the master does not generate an acknowledge but instead generates a stop condition, the AK4678 ceases transmission.

Figure 102. RANDOM ADDRESS READ

Figure 103. START and STOP Conditions

Figure 104. Acknowledge on the I²C-Bus

Figure 105. Bit Transfer on the I²C-Bus

■ Register Map

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
00H	Power Management 0	0	0	PMADR	PMADL	0	0	PMPFIL	PMVCM
01H	Power Management 1	0	0	0	0	PMDAR	PMDAL	PMDRC	PMEQ
02H	Power Management 2	ADRST	0	0	0	MICL2	PMMP2	MICL1	PMMP1
03H	PLL Mode Select 0	FS3	FS2	FS1	FS0	PLL3	PLL2	PLL1	PLL0
04H	PLL Mode Select 1	CM1	CM0	BCKO	0	0	0	M/S	PMPLL
05H	Audio I/F Format Select	0	0	0	SDOD	MSBS	ВСКР	DIF1	DIF0
06H	MIC Signal Select	0	MDIF3	MDIF2	MDIF1	INR1	INR0	INL1	INL0
07H	MIC Amp Gain	MGNR3	MGNR2	MGNR1	MGNR0	MGNL3	MGNL2	MGNL1	MGNL0
08H	Digital MIC	0	0	PMDMR	PMDML	DCLKE	0	DCLKP	DMIC
09H	DAC Signal Pass Select	DACSR	DACSL	DACRR	DACRL	0	0	DACR	DACL
0AH	LINEOUT Power Management	0	0	0	LODIF	LOM	LOPS	PMRO	PMLO
0BH	HP Power Management	HPTM1	HPTM0	0	0	LOMH	0	PMHPR	PMHPL
0CH	Charge Pump Control	0	VDDTM2	VDDTM1	VDDTM0	0	0	CPMODE1	CPMODE0
0DH	SPK&RCV Power Management	THDET	0	TEST	PMSPK	0	0	RCVPS	PMRCV
0EH	LINEOUT Volume Control	0	0	0	0	0	LVL2	LVL1	LVL0
0FH	HP Volume Control	0	0	HPG5	HPG4	HPG3	HPG2	HPG1	HPG0
10H	SPK & RCV Volume Control	RCVG3	RCVG2	RCVG1	RCVG0	SPKG3	SPKG2	SPKG1	SPKG0
11H	Lch Input Volume Control	IVL7	IVL6	IVL5	IVL4	IVL3	IVL2	IVL1	IVL0
12H	Rch Input Volume Control	IVR7	IVR6	IVR5	IVR4	IVR3	IVR2	IVR1	IVR0
13H	ALC Reference Select	REF7	REF6	REF5	REF4	REF3	REF2	REF1	REF0
14H	Digital Mixing Control	SRMXR1	SRMXR0	SRMXL1	SRMXL0	PFMXR1	PFMXR0	PFMXL1	PFMXL0
15H	ALC Timer Select	FR	RFST1	RFST0	WTM2	WTM1	WTM0	ZTM1	ZTM0
16H	ALC Mode Control	LFST	ZELMN	LMAT1	LMAT0	RGAIN1	RGAIN0	LMTH1	LMTH0
17H	Mode Control 0	0	0	SDIM1	SDIM0	5EQ	ADM	IVOLC	ALC
18H	Mode Control 1	0	OVTMB	BIV2	BIV1	BIV0	SMUTE	OVTM	OVOLC
19H	Digital Filter Select 0	0	HPFC1	HPFC0	HPFAD	DASEL1	DASEL0	PFSDO	PFSEL
1AH	Digital Filter Select 1	GN1	GN0	LPF	HPF	EQ0	FIL3	0	0
1BH	Digital Filter Select 2	0	0	0	EQ5	EQ4	EQ3	EQ2	EQ1
1CH	Side Tone Volume A Control	0	SVAR2	SVAR1	SVAR0	0	SVAL2	SVAL1	SVAL0
1DH	Lch Output Volume Control	0	OVL6	OVL5	OVL4	OVL3	OVL2	OVL1	OVL0
1EH	Rch Output Volume Control	0 PMMIX	OVR6	OVR5	OVR4	OVR3	OVR2	OVR1	OVR0
1FH 20H	PCM I/F Power Management PCM I/F Control 0	SDOAD	PMSRBO 0	PMSRBI MSBSA	PMPCMB BCKPA	PMOSC	PMSRAO	PMSRAI FMTA1	PMPCMA
21H	PCM I/F Control 1	SDOAD		MSBSB	BCKPB	LAWA1 LAWB1	LAWA0 LAWB0	FMTB1	FMTA0 FMTB0
22H	Side Tone Volume B Control	0	0	0	0	0	SVB2	SVB1	SVB0
23H	Digital Volume B Control	0	BVL6	BVL5	BVL4	BVL3	BVL2	BVL1	BVL0
24H	Digital Volume C Control	0	CVL6	CVL5	CVL4	CVL3	CVL2	CVL1	CVL0
25H	Digital Mixing Control 0	0	0	MX1R2	MX1R1	MX1R0	MX1L2	MX1L1	MX1L0
26H	Digital Mixing Control 1	0	0		MX2C0	MX2B1	MX2B0		MX2A0
27H	Digital Mixing Control 2	0	0	0	0	0	MXSB2	MXSB1	MXSB0
28H	Digital Mixing Control 3	SDOR1	SDOR0	SDOL1	SDOL0	0	0	SBMX1	SBMX0
29H	FIL1 Co-efficient 0	F1A7	F1A6	F1A5	F1A4	F1A3	F1A2	F1A1	F1A0
2AH	FIL1 Co-efficient 1	0	0	F1A13	F1A12	F1A11	F1A10	F1A9	F1A8
2BH	FIL1 Co-efficient 2	F1B7	F1B6	F1B5	F1B4	F1B3	F1B2	F1B1	F1B0
2CH	FIL1 Co-efficient 3	0	0	F1B13	F1B12	F1B11	F1B10	F1B9	F1B8
2DH	FIL2 Co-efficient 0	F2A7	F2A6	F2A5	F2A4	F2A3	F2A2	F2A1	F2A0
2EH	FIL2 Co-efficient 1	0	0	F2A13	F2A12	F2A11	F2A10	F2A9	F2A8
2FH	FIL2 Co-efficient 2	F2B7	F2B6	F2B5	F2B4	F2B3	F2B2	F2B1	F2B0
30H	FIL2 Co-efficient 3	0	0	F2B13	F2B12	F2B11	F2B10	F2B9	F2B8
31H	FIL3 Co-efficient 0	F3A7	F3A6	F3A5	F3A4	F3A3	F3A2	F3A1	F3A0
32H	FIL3 Co-efficient 1	F3AS	0	F3A13	F3A12	F3A11	F3A10	F3A9	F3A8
33H	FIL3 Co-efficient 2	F3B7	F3B6	F3B5	F3B4	F3B3	F3B2	F3B1	F3B0
34H	FIL3 Co-efficient 3	0	0	F3B13	F3B12	F3B11	F3B10	F3B9	F3B8
35H	EQ Co-efficient 0	E0A7	E0A6	E0A5	E0A4	E0A3	E0A2	E0A1	E0A0
36H	EQ Co-efficient 1	E0A15	E0A14	E0A13	E0A12	E0A11	E0A10	E0A9	E0A8
37H	EQ Co-efficient 2	E0B7	E0B6	E0B5	E0B4	E0B3	E0B2	E0B1	E0B0
38H	EQ Co-efficient 3	0	0	E0B13	E0B12	E0B11	E0B10	E0B9	E0B8
39H	EQ Co-efficient 4	E0C7	E0C6	E0C5	E0C4	E0C3	E0C2	E0C1	E0C0
3AH	EQ Co-efficient 5	E0C15	E0C14	E0C13	E0C12	E0C11	E0C10	E0C9	E0C8

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
3BH	E1 Co-efficient 0	E1A7	E1A6	E1A5	E1A4	E1A3	E1A2	E1A1	E1A0
3CH	E1 Co-efficient 1	E1A15	E1A14	E1A13	E1A12	E1A11	E1A10	E1A9	E1A8
3DH	E1 Co-efficient 2	E1B7	E1B6	E1B5	E1B4	E1B3	E1B2	E1B1	E1B0
3EH	E1 Co-efficient 3	E1B15	E1B14	E1B13	E1B12	E1B11	E1B10	E1B9	E1B8
3FH	E1 Co-efficient 4	E1C7	E1C6	E1C5	E1C4	E1C3	E1C2	E1C1	E1C0
40H	E1 Co-efficient 5	E1C15	E1C14	E1C13	E1C12	E1C11	E1C10	E1C9	E1C8
41H	E2 Co-efficient 0	E2A7	E2A6	E2A5	E2A4	E2A3	E2A2	E2A1	E2A0
42H	E2 Co-efficient 1	E2A15	E2A14	E2A13	E2A12	E2A11	E2A10	E2A9	E2A8
43H	E2 Co-efficient 2	E2B7	E2B6	E2B5	E2B4	E2B3	E2B2	E2B1	E2B0
44H	E2 Co-efficient 3	E2B15	E2B14	E2B13	E2B12	E2B11	E2B10	E2B9	E2B8
45H	E2 Co-efficient 4	E2C7	E2C6	E2C5	E2C4	E2C3	E2C2	E2C1	E2C0
46H	E2 Co-efficient 5	E2C15	E2C14	E2C13	E2C12	E2C11	E2C10	E2C9	E2C8
47H	E3 Co-efficient 0	E3A7	E3A6	E3A5	E3A4	E3A3	E3A2	E3A1	E3A0
48H	E3 Co-efficient 1	E3A15	E3A14	E3A13	E3A12	E3A11	E3A10	E3A9	E3A8
49H	E3 Co-efficient 2	E3B7	E3B6	E3B5	E3B4	E3B3	E3B2	E3B1	E3B0
4AH	E3 Co-efficient 3	E3B15	E3B14	E3B13	E3B12	E3B11	E3B10	E3B9	E3B8
4BH	E3 Co-efficient 4	E3C7	E3C6	E3C5	E3C4	E3C3	E3C2	E3C1	E3C0
4CH	E3 Co-efficient 5	E3C15	E3C14	E3C13	E3C12	E3C11	E3C10	E3C9	E3C8
4DH	Reserved	0	0	0	0	0	0	0	0
4EH	Reserved	0	0	0	0	0	0	0	0
4FH	Reserved	0	0	0	0	0	0	0	0
50H	5band E1 Co-efficient 0	5E1A7	5E1A6	5E1A5	5E1A4	5E1A3	5E1A2	5E1A1	5E1A0
51H	5band E1 Co-efficient 1	0	0	5E1A13	5E1A12	5E1A11	5E1A10	5E1A9	5E1A8
52H	5band E1 Co-efficient 2	5E1B7	5E1B6	5E1B5	5E1B4	5E1B3	5E1B2	5E1B1	5E1B0
53H	5band E1 Co-efficient 3	0	0	5E1B13	5E1B12	5E1B11	5E1B10	5E1B9	5E1B8
54H	5band E2 Co-efficient 0	5E2A7	5E2A6	5E2A5	5E2A4	5E2A3	5E2A2	5E2A1	5E2A0
55H	5band E2 Co-efficient 1	5E2A15	5E2A14	5E2A13	5E2A12	5E2A11	5E2A10	5E2A9	5E2A8
56H	5band E2 Co-efficient 2	5E2B7	5E2B6	5E2B5	5E2B4	5E2B3	5E2B2	5E2B1	5E2B0
57H	5band E2 Co-efficient 3	5E2B15	5E2B14	5E2B13	5E2B12	5E2B11	5E2B10	5E2B9	5E2B8
58H	5band E2 Co-efficient 4	5E2C7	5E2C6	5E2C5	5E2C4	5E2C3	5E2C2	5E2C1	5E2C0
59H	5band E2 Co-efficient 5	5E2C15	5E2C14	5E2C13	5E2C12	5E2C11	5E2C10	5E2C9	5E2C8
5AH	5band E3 Co-efficient 0	5E3A7	5E3A6	5E3A5	5E3A4	5E3A3	5E3A2	5E3A1	5E3A0
5BH	5band E3 Co-efficient 1	5E3A15	5E3A14	5E3A13	5E3A12	5E3A11	5E3A10	5E3A9	5E3A8
5CH	5band E3 Co-efficient 2	5E3B7	5E3B6	5E3B5	5E3B4	5E3B3	5E3B2	5E3B1	5E3B0
5DH	5band E3 Co-efficient 3	5E3B15	5E3B14	5E3B13	5E3B12	5E3B11	5E3B10	5E3B9	5E3B8
5EH	5band E3 Co-efficient 4	5E3C7	5E3C6	5E3C5	5E3C4	5E3C3	5E3C2	5E3C1	5E3C0
5FH	5band E3 Co-efficient 5	5E3C15	5E3C14	5E3C13	5E3C12	5E3C11	5E3C10	5E3C9	5E3C8
60H	5band E4 Co-efficient 0	5E4A7	5E4A6	5E4A5	5E4A4	5E4A3	5E4A2	5E4A1	5E4A0
61H	5band E4 Co-efficient 1	5E4A15	5E4A14	5E4A13	5E4A12	5E4A11	5E4A10	5E4A9	5E4A8
62H	5band E4 Co-efficient 2	5E4B7	5E4B6	5E4B5	5E4B4	5E4B3	5E4B2	5E4B1	5E4B0
63H	5band E4 Co-efficient 3	5E4B15	5E4B14	5E4B13	5E4B12	5E4B11	5E4B10	5E4B9	5E4B8
64H	5band E4 Co-efficient 4	5E4C7	5E4C6	5E4C5	5E4C4	5E4C3	5E4C2	5E4C1	5E4C0
65H	5band E4 Co-efficient 5	5E4C15		5E4C13	5E4C12	5E4C11	5E4C10	5E4C9	5E4C8
66H	5band E5 Co-efficient 0	5E5A7	5E5A6	5E5A5	5E5A4	5E5A3	5E5A2	5E5A1	5E5A0
67H	5band E5 Co-efficient 1	0 5E5D7	0 5E5D6	5E5A13	5E5A12	5E5A11	5E5A10	5E5A9	5E5A8
68H	5band E5 Co-efficient 2	5E5B7	5E5B6	5E5B5	5E5B4	5E5B3	5E5B2	5E5B1	5E5B0
69H	5band E5 Co-efficient 3	0	0	5E5B13	5E5B12	5E5B11	5E5B10	5E5B9	5E5B8
6AH	5band EQ1 Gain	0	0	EQ1G5	EQ1G4	EQ1G3	EQ1G2	EQ1G1	EQ1G0
6BH	5band EQ2 Gain	0	0	EQ2G5	EQ2G4	EQ2G3	EQ2G2	EQ2G1	EQ2G0
6CH	5band EQ3 Gain	0	0	EQ3G5	EQ3G4	EQ3G3	EQ3G2	EQ3G1	EQ3G0
6DH	5band EQ4 Gain	0	0	EQ4G5	EQ4G4	EQ4G3	EQ4G2	EQ4G1	EQ4G0
6EH	5band EQ5 Gain	0	0	EQ5G5	EQ5G4	EQ5G3	EQ5G2	EQ5G1	EQ5G0
6FH	Reserved	0	0	; 0	0	; 0	; 0	0	0

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
70H	DRC Mode Control	0	DLMAT2	DLMAT1	DLMAT0	DRGAIN1	DRGAIN0	DRCC1	DRCC0
71H	NS Control	0	0	DRCM1	DRCM0	0	NSLPF	NSHPF	NSCE
72H	NS Gain & ATT Control	0	NSGAIN2	NSGAIN1	NSGAIN0	0	NSATT2	NSATT1	NSATT0
73H	NS On Level	NSIAF1	NSIAF0	0	NSTHL4	NSTHL3	NSTHL2	NSTHL1	NSTHL0
74H	NS Off Level	NSOAF1	NSOAF0	0	NSTHH 4	NSTHH3	NSTHH 2	NSTHH 1	NSTHH 0
75H	NS Reference Select	0	0	0	0	NSREF3	NSREF2	NSREF1	NSREF0
76H	NS LPF Co-efficient 0	NSLA7	NSLA6	NSLA5	NSLA4	NSLA3	NSLA2	NSLA1	NSLA0
77H	NS LPF Co-efficient 1	0	0	NSLA13	NSLA12	NSLA11	NSLA10	NSLA9	NSLA8
78H	NS LPF Co-efficient 2	NSLB7	NSLB6	NSLB5	NSLB4	NSLB3	NSLB2	NSLB1	NSLB0
79H	NS LPF Co-efficient 3	0	0	NSLB13	NSLB12	NSLB11	NSLB10	NSLB9	NSLB8
7AH	NS HPF Co-efficient 0	NSHA7	NSHA6	NSHA5	NSHA4	NSHA3	NSHA2	NSHA1	NSHA0
7BH	NS HPF Co-efficient 1	0	0	NSHA13	NSHA12	NSHA11	NSHA10	NSHA9	NSHA8
7CH	NS HPF Co-efficient 2	NSHB7	NSHB6	NSHB5	NSHB4	NSHB3	NSHB2	NSHB1	NSHB0
7DH	NS HPF Co-efficient 3	0	0	NSHB13		NSHB11	NSHB10	NSHB9	NSHB8
7EH	Reserved	0	0	0	0	0	0	0	0
7FH	Reserved	0	0	0	0	0	0	0	0
80H	DVLC Filter Select	DLLPF1	DLLPF0		DMHPF0		DMLPF0	DHHPF1	DHHPF0
81H	DVLC Mode Control		DVRGAIN1				DVLMAT0		DAF0
82H	DVLCL Curve X1	0	0	VL1X5	VL1X4	VL1X3	VL1X2	VL1X1	VL1X0
83H	DVLCL Curve Y1	0	0	VL1Y5	VL1Y4	VL1Y3	VL1Y2	VL1Y1	VL1Y0
84H	DVLCL Curve X2	0	0	VL2X5	VL2X4	VL2X3	VL2X2	VL2X1	VL2X0
85H	DVLCL Curve Y2	0	0	VL2Y5	VL2Y4	VL2X3	VL2Y2	VL2X1	VL2Y0
86H	DVLCL Curve X3	0	0	0	VL3X4	VL3X3	VL3X2	VL3X1	VL3X0
87H	DVLCL Curve Y3	0	0	0	VL3Y4	VL3Y3	VL3X2	VL3X1	VL3Y0
88H	DVLCL Slope 1	0	L1G6	L1G5	L1G4	L1G3	L1G2	L1G1	L1G0
89H	DVLCL Slope 2	0	L2G6	L2G5	L2G4	L2G3	L2G2	L2G1	L2G0
8AH	DVLCL Slope 3	0	L3G6	L3G5	L3G4	L3G3	L3G2	L3G1	L3G0
8BH	DVLCL Slope 4	0	L4G6	L4G5	L4G4	L4G3	L4G2	L4G1	L4G0
8CH	DVLCM Curve X1	0	0	VM1X5	VM1X4	VM1X3	VM1X2	VM1X1	VM1X0
8DH	DVLCM Curve Y1	0	0	VM1Y5		VM1Y3	VM1Y2	VM1Y1	VM1Y0
8EH	DVLCM Curve X2	0	0	VM2X5	VM2X4	VM2X3	VM2X2	VM2X1	VM2X0
8FH	DVLCM Curve Y2	0	0	VM2Y5	VM2Y4	VM2Y3	VM2Y2	VM2Y1	VM2Y0
90H	DVLCM Curve X3	0	0	0	VM3X4	VM3X3	VM3X2	VM3X1	VM3X0
91H	DVLCM Curve Y3	0	0	0	VM3Y4	VM3Y3	VM3Y2	VM3Y1	VM3Y0
92H	DVLCM Slope 1	0	M1G6	M1G5	M1G4	M1G3	M1G2	M1G1	M1G0
93H	DVLCM Slope 2	0	M2G6	M2G5	M2G4	M2G3	M2G2	M2G1	M2G0
94H	DVLCM Slope 3	0	M3G6	M3G5	M3G4	M3G3	M3G2	M3G1	M3G0
95H	DVLCM Slope 4		M4G6	M4G5	M4G4	M4G3	M4G2	M4G1	M4G0
96H	DVLCH Curve X1	0	0	VH1X5	VH1X4	VH1X3	VH1X2	VH1X1	VH1X0
97H	DVLCH Curve Y1	0	0	VH1Y5	VH1Y4	VH1Y3	VH1Y2	VH1Y1	VH1Y0
98H	DVLCH Curve X2	0	0	VH2X5	VH2X4	VH2X3	VH1112 VH2X2	VH2X1	VH2X0
99H	DVLCH Curve Y2	0	0	VH2Y5	VH2Y4	VH2Y3	VH2Y2	VH2Y1	VH2Y0
9AH	DVLCH Curve X3	0	0	0	VH3X4	VH3X3	VH3X2	VH3X1	VH3X0
9BH	DVLCH Curve Y3	0	0	0	VH3Y4	VH3Y3	VH3Y2	VH3Y1	VH3Y0
9CH	DVLCH Slope 1	0	H1G6	H1G5	H1G4	H1G3	H1G2	H1G1	H1G0
9DH	DVLCH Slope 2	0	H2G6	H2G5	H2G4	H2G3	H2G2	H2G1	H2G0
9EH	DVLCH Slope 2 DVLCH Slope 3	0	H3G6	H3G5	H3G4	H3G3	H3G2	H3G1	H3G0
9FH	DVLCH Slope 3 DVLCH Slope 4	0		H4G5	H4G4	H4G3	H4G2	H4G1	H4G0
УΓП	DYLCH Slope 4	U	H4U0	H4U3	П4О4	, n 4 U3	, П 4 U2	П401	H4UU

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
A0H	DVLCL LPF Co-efficient 0	DLLA7	DLLA6	DLLA5	DLLA4	DLLA3	DLLA2	DLLA1	DLLA0
A1H	DVLCL LPF Co-efficient 1	0	0	DLLA13	DLLA12	DLLA11	DLLA10	DLLA9	DLLA8
A2H	DVLCL LPF Co-efficient 2	DLLB7	DLLB6	DLLB5	DLLB4	DLLB3	DLLB2	DLLB1	DLLB0
A3H	DVLCL LPF Co-efficient 3	0	0	DLLB13	DLLB12	DLLB11	DLLB10	DLLB9	DLLB8
A4H	DVLCM HPF Co-efficient 0	DMHA7	DMHA6	DMHA5	DMHA4	DMHA3	DMHA2	DMHA1	DMHA0
A5H	DVLCM HPF Co-efficient 1	0	0	DMHA13	DMHA12	DMHA11	DMHA10	DMHA9	DMHA8
A6H	DVLCM HPF Co-efficient 2	DMHB7	DMHB6	DMHB5	DMHB4	DMHB3	DMHB2	DMHB1	DMHB0
A7H	DVLCM HPF Co-efficient 3	0	0	DMHB13	DMHB12	DMHB11	DMHB10	DMHB9	DMHB8
A8H	DVLCM LPF Co-efficient 0	DMLA7	DMLA6	DMLA5	DMLA4	DMLA3	DMLA2	DMLA1	DMLA0
A9H	DVLCM LPF Co-efficient 1	0	0	DMLA13	DMLA12	DMLA11	DMLA10	DMLA9	DMLA8
AAH	DVLCM LPF Co-efficient 2	DMLB7	DMLB6	DMLB5	DMLB4	DMLB3	DMLB2	DMLB1	DMLB0
ABH	DVLCM LPF Co-efficient 3	0	0	DMLB13	DMLB12	DMLB11	DMLB10	DMLB9	DMLB8
ACH	DVLCH HPF Co-efficient 0	DHHA7	DHHA6	DHHA5	DHHA4	DHHA3	DHHA2	DHHA1	DHHA0
ADH	DVLCH HPF Co-efficient 1	0	0	DHHA13	DHHA12	DHHA11	DHHA10	DHHA9	DHHA8
AEH	DVLCH HPF Co-efficient 2	DHHB7	DHHB6	DHHB5	DHHB4	DHHB3	DHHB2	DHHB1	DHHB0
AFH	DVLCH HPF Co-efficient 3	0	0	DHHB13	DHHB12	DHHB11	DHHB10	DHHB9	DHHB8

Note 68. PDN pin = "L" resets the registers to their default values. Note 69. The bits defined as 0 must contain a "0" value.

Note 70. For Addresses B0H to FFH, data must not be written.

■ Register Definitions

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
00H	Power Management 0	0	0	PMADR	PMADL	0	0	PMPFIL	PMVCM
	R/W	R	R	R/W	R/W	R	R	R/W	R/W
	Default	0	0	0	0	0	0	0	0

PMVCM: VCOM Power Management

0: Power down (default)

1: Power up

When any blocks are powered-up, the PMVCM bit must be set to "1". PMVCM bit can be set to "0" only when all power management bits are "0".

PMPFIL: Programmable Filter Block Power Management

0: Power down (default)

1: Power up

PMADL: MIC-Amp Lch & ADC Lch Power Management

0: Power down (default)

1: Power up

When the PMADL(PMDML) or PMADR(PMDMR) bit is changed from "0" to "1", the digital initialization cycle (1059/fs=24ms @ 44.1kHz, ADRST bit = "0") starts. After initializing, digital data of the ADC is output.

PMADR: MIC-Amp Rch & ADC Rch Power Management

0: Power down (default)

1: Power up

Each block can be powered-down respectively by writing "0" in each bit of this address. When the PDN pin is "L", all blocks are powered-down regardless of setting of this address. In this case, register is initialized to the default value.

When all power management bits are "0", all blocks are powered-down. The register values remain unchanged. Power supply current is $50\mu A(typ)$ in this case. For fully shut down (typ. $1\mu A$), the PDN pin should be "L".

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
01H	Power Management 1	0	0	0	0	PMDAR	PMDAL	PMDRC	PMEQ
	R/W	R	R	R	R	R/W	R/W	R/W	R/W
	Default	0	0	0	0	0	0	0	0

PMEQ: 5-band Parametric Equalizer Block Power Management

0: Power down (default)

1: Power up

PMDRC: Dynamic Range Control Block Power Management

0: Power down (default)

1: Power up

PMDAL: DAC Lch Power Management

0: Power down (default)

1: Power up

PMDAR: DAC Rch Power Management

0: Power down (default)

1: Power up

Each block can be powered-down respectively by writing "0" in each bit of this address. When the PDN pin is "L", all blocks are powered-down regardless of setting of this address. In this case, register is initialized to the default value.

When all power management bits are "0", all blocks are powered-down. The register values remain unchanged. Power supply current is $50\mu A(typ)$ in this case. For fully shut down (typ. $1\mu A$), the PDN pin should be "L".

	Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
I	02H	Power Management 1	ADRST	0	0	0	MICL2	PMMP2	MICL1	PMMP1
I		R/W	R/W	R	R	R	R/W	R/W	R/W	R/W
ı		Default	0	0	0	0	0	0	0	0

PMMP1: MPWR1 pin Power Management

0: Power down: Hi-Z (default)

1: Power up

MICL1: MIC Power (MPWR1 pin) Output Level select Default "0", typ. 2.5V (Table 22)

PMMP2: MPWR2 pin Power Management

0: Power down: Hi-Z (default)

1: Power up

MICL2: MIC Power (MPWR2 pin) Output Level Select Default "0", typ. 2.5V (Table 22)

ADRST: ADC Initialization Cycle Setting

0: 1059/fs (default)

1: 267/fs

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
03H	PLL Mode Select 0	FS3	FS2	FS1	FS0	PLL3	PLL2	PLL1	PLL0
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Default	1	1	1	1	0	1	1	0

PLL3-0: PLL Reference Clock Select (Table 5)

Default: "0110" (MCKI pin, 12MHz)

FS3-0: Sampling Frequency Select (Table 6, Table 11 and Table 14)

Default: "1111" (fs=44.1kHz)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
04H	PLL Mode Select 1	CM1	CM0	BCKO	0	0	0	M/S	PMPLL
	R/W	R/W	R/W	R/W	R	R	R	R/W	R/W
	Default	0	0	0	0	0	0	0	0

PMPLL: PLL Power Management

0: EXT Mode and Power Down (default)

1: PLL Mode and Power up

M/S: Master / Slave Mode Select

0: Slave Mode (default)

1: Master Mode

BCKO: BICK Output Frequency Select at Master Mode (Table 9)

CM1-0: MCKI Frequency Select at EXT Mode (Table 10 and Table 13)

Default: "00" (256fs)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
05H	Audio I/F Format Select	0	0	0	SDOD	MSBS	BCKP	DIF1	DIF0
	R/W	R	R	R	R/W	R/W	R/W	R/W	R/W
	Default	0	0	0	0	0	0	1	0

DIF1-0: Audio Interface Format (Table 18)

Default: "10" (24bit Left justified)

BCKP: BICK Polarity at DSP Mode (Table 19)

"0": SDTO is output by the rising edge (" \uparrow ") of BICK and SDTI is latched by the falling edge (" \downarrow "). (default)

"1": SDTO is output by the falling edge ("↓") of BICK and SDTI is latched by the rising edge ("↑").

MSBS: LRCK Phase at DSP Mode (Table 19)

"0": The rising edge ("↑") of LRCK is half clock of BICK before the channel change. (default)

"1": The rising edge ("\") of LRCK is one clock of BICK before the channel change.

SDOD: SDTO Disable (Table 83)

"0": Enable (default)
"1": Disable ("L")

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
06H	MIC Signal Select	0	MDIF3	MDIF2	MDIF1	INR1	INR0	INL1	INL0
	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Default	0	0	0	0	0	0	0	0

INL1-0: MIC-Amp Lch Input Source Select (Table 20)

Default: "00" (LIN1)

INR1-0: MIC-Amp Rch Input Source Select (Table 20)

Default: "00" (RIN1)

MDIF1: Line1 Input Type Select

0: Single-ended input (LIN1/RIN1 pins: default)

1: Full-differential input (IN1+/IN1- pins)

MDIF2: Line2 Input Type Select

0: Single-ended input (LIN2/RIN2 pins: default)

1: Full-differential input (IN2-/IN2+ pins)

MDIF3: Line3 Input Type Select

0: Single-ended input (LIN3/RIN3 pins: default)

1: Full-differential input (IN3+/IN3- pins)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
07H	MIC Amp Gain	MGNR3	MGNR2	MGNR1	MGNR0	MGNL3	MGNL2	MGNL1	MGNL0
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Default	0	1	0	1	0	1	0	1

MGNL3-0: MIC-Amp Lch Gain Control (Table 21)

Default: "0101" (0dB)

MGNR3-0: MIC-Amp Rch Gain Control (Table 21)

Default: "0101" (0dB)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
08H	Digital MIC	0	0	PMDMR	PMDML	DCLKE	0	DCLKP	DMIC
	R/W	R	R	R/W	R/W	R/W	R	R/W	R/W
	Default	0	0	0	0	0	0	0	0

DMIC: Digital Microphone Connection Select

0: Analog Microphone (default)

1: Digital Microphone

DCLKP: Data Latching Edge Select

0: Lch data is latched on the DMCLK rising edge ("\u2214"). (default)

1: Lch data is latched on the DMCLK falling edge (" \downarrow ").

DCLKE: DMCLK pin Output Clock Control

0: "L" Output (default)

1: 64fs Output

PMDML/R: Input Signal Select with Digital Microphone (Table 77)

Default: "0"

When DMIC bit is "1", these registers are enabled. ADC digital block is powered-down by PMDML = PMDMR bits = "0" when selecting a digital microphone input (DMIC bit = "1").

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
09H	DAC Signal Pass Select	DACSR	DACSL	DACRR	DACRL	0	0	DACR	DACL
	R/W	R/W	R/W	R/W	R/W	R	R	R/W	R/W
	Default	0	0	0	0	0	0	0	0

DACL: Switch Control from DAC Lch to LOUT

0: OFF (default)

1: ON

DACR: Switch Control from DAC Rch to ROUT

0: OFF (default)

1: ON

DACRL: Switch Control from DAC Lch to RCV-Amp

0: OFF (default)

1: ON

DACRR: Switch Control from DAC Rch to RCV-Amp

0: OFF (default)

1: ON

DACSL: Switch Control from DAC Lch to SPK-Amp

0: OFF (default)

1: ON

DACSR: Switch Control from DAC Rch to SPK-Amp

0: OFF (default)

1: ON

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
0AH	LINEOUT Power Management	0	0	0	LODIF	LOM	LOPS	PMRO	PMLO
	R/W	R	R	R	R/W	R/W	R/W	R/W	R/W
	Default	0	0	0	0	0	0	0	0

PMLO: LOUT Power Management

0: Power down (default)

1: Power up

PMRO: ROUT Power Management

0: Power down (default)

1: Power up

LOPS: LOUT/ROUT Power Management

0: Normal Operation (default)

1: Power Save Mode

LOM: Mono Mixing from DAC to LOUT/ROUT

0: Stereo Mixing (default)

1: Mono Mixing

LODIF: Lineout Mode Select

0: Stereo Single-ended Line Output (LOUT/ROUT pins) (default)

1: Mono Full-differential Output (LOP/LON pins)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
0BH	HP Power Management	HPTM1	HPTM0	0	0	LOMH	0	PMHPR	PMHPL
	R/W	R/W	R/W	R	R	R/W	R	R/W	R/W
	Default	0	0	0	0	0	0	0	0

PMHPL: HPL Power Management

0: Power down (default)

1: Power up

PMHPR: HPR Power Management

0: Power down (default)

1: Power up

LOMH: Mono Mixing from DAC to HPL/HPR

0: Stereo Mixing (default)

1: Mono Mixing

HPTM1-0: Headphone-Amp Volume Zero Crossing Timeout Period (Table 107)

Default: "00" (128/fs)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
0CH	Charge Pump Control	0	VDDTM2	VDDTM1	VDDTM0	0	0	CPMODE1	CPMODE0
	R/W	R	R/W	R/W	R/W	R	R	R/W	R/W
	Default	0	1	0	1	0	0	0	0

CPMODE1-0: Charge-pump Mode Setting (Table 108)

Default: "00" (Automatic Switching)

VDDTM2-0: VDD Mode Waiting Period (Table 109)

Default: "101" (32768/fs)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
0DH	SPK & RCV Power Management	THDET	0	TEST	PMSPK	0	0	RCVPS	PMRCV
	R/W	R	R	R/W	R/W	R	R	R/W	R/W
	Default	0	0	0	0	0	0	0	0

PMRCV: Receiver-Amp Power Management

0: Power down (default)

1: Power up

RCVPS: Receiver-Amp Power Save Mode

0: Normal Operation (default)

1: Power Save Mode

PMSPK: Speaker-Amp Power Management

0: Power down (default)

1: Power up

TEST: Device TEST mode Enable.

0: Normal operation (default)

1: TEST mode

TEST bit must be always "0".

THDET: Thermal Shutdown Detection

0: Normal Operation (default)

1: Thermal Shutdown status

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
0EH	LINEOUT Volume Control	0	0	0	0	0	LVL2	LVL1	LVL0
	R/W	R	R	R	R	R	R/W	R/W	R/W
	Default	0	0	0	0	0	0	1	1

LVL2-0: LINEOUT Volume Control (Table 101)

Default: "3H" (0dB)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
0FH	HP Volume Control	0	0	HPG5	HPG4	HPG3	HPG2	HPG1	HPG0
	R/W	R	R	R/W	R/W	R/W	R/W	R/W	R/W
	Default	0	0	1	0	0	0	1	1

HPG5-0: Headphone Volume Control (Table 106)

Default: "23H" (0dB)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
10H	SPK & RCV Volume Control	RCVG3	RCVG2	RCVG1	RCVG0	SPKG3	SPKG2	SPKG1	SPKG0
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Default	1	0	1	1	1	0	1	1

SPKG3-0: Speaker Volume Control (Table 111)

Default: "BH" (0dB)

RCVG3-0: Receiver Volume Control (Table 104)

Default: "BH" (0dB)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
11H	Lch Input Volume Control	IVL7	IVL6	IVL5	IVL4	IVL3	IVL2	IVL1	IVL0
12H	Rch Input Volume Control	IVR7	IVR6	IVR5	IVR4	IVR3	IVR2	IVR1	IVR0
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Default	1	0	0	1	0	0	0	1

IVL7-0, IVR7-0: Input Digital Volume; 0.375dB step, 242 Level (Table 37)

Default: "91H" (0dB)

Addr Register Name	D7	D6	D5	D4	D3	D2	D1	D0
13H ALC Reference Select	REF7	REF6	REF5	REF4	REF3	REF2	REF1	REF0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Default	1	1	1	0	0	0	0	1

REF7-0: Reference Value at ALC Recovery Operation (Recording); 0.375dB step, 242 Level (Table 33)

Default: "E1H" (+30.0dB)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
14H	Digital Mixing Control	SRMXR1	SRMXR0	SRMXL1	SRMXL0	PFMXR1	PFMXR0	PFMXL1	PFMXL0
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Default	0	0	0	0	0	0	0	0

PFMXL1-0: 5-band EQ Lch Input Mixing 1 (Table 85)

Default: "00" (SDTI)

PFMXR1-0: 5-band EQ Rch Input Mixing 1 (Table 86)

Default: "00" (SDTI)

SRMXL1-0: 5-band EQ Lch Input Mixing 2 (Table 87)

Default: "00" (SDTI)

SRMXR1-0: 5-band EQ Rch Input Mixing 2 (Table 88)

Default: "00" (SDTI)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
15H	ALC Timer Select	FR	RFST1	RFST0	WTM2	WTM1	WTM0	ZTM1	ZTM0
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Default	0	0	0	0	0	0	0	0

ZTM1-0: ALC Limiter/Recovery Operation Zero Crossing Timeout Period (Table 30)

Default: "00" (128/fs)

WTM2-0: ALC Recovery Waiting Period (Table 31)

Default: "000" (128/fs)

RFST1-0: ALC Fast recovery Speed (Table 34)

Default: "00" (4times)

FR: Fast recovery Enable 0: Enable (default)

1: Disable

ddr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
16F	I ALC Mode Control	LFST	ZELMN	LMAT1	LMAT0	RGAIN1	RGAIN0	LMTH1	LMTH0
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Default	0	0	0	0	0	0	0	0

LMTH1-0: ALC Limiter Detection Level / Recovery Counter Reset Level (Table 28)

Default: "00"

RGAIN1-0: ALC Recovery GAIN Step (Table 32)

Default: "00"

LMAT1-0: ALC Limiter ATT Step (Table 29)

Default: "00"

ZELMN: Zero Crossing Detection Enable at ALC Limiter Operation

0: Enable (default)

1: Disable

LFST: ALC Limiter operation when the output level exceeds FS(full-scale) level.

0: The volume is changed at zero crossing or zero crossing time out (default)

1: When output of ALC is larger than FS, IVL/IVR values are changed immediately (1/fs).

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
17H	Mode Control 0	0	0	SDIM1	SDIM0	5EQ	ADM	IVOLC	ALC
	R/W	R	R	R/W	R/W	R/W	R/W	R/W	R/W
	Default	0	0	0	0	0	0	1	0

ALC: ALC Enable

0: ALC Disable (default)

1: ALC Enable

IVOLC: Input Digital Volume Control Mode Select

0: Independent

1: Dependent (default)

When IVOLC bit = "1", IVL7-0 bits control both Lch and Rch volume level, while register values of IVL7-0 bits are not written to IVR7-0 bits. When IVOLC bit = "0", IVL7-0 bits control Lch level and IVR7-0 bits control Rch level, respectively.

ADM: Mono Recording (Table 79)

0: Stereo (default)
1: Mono: (L+R)/2

5EQ: Select 5-Band Equalizer

0: OFF (default)

1: ON

SDIM1-0: SDTI Input Signal Select (Table 84)

Default: "00" (L=Lch, R=Rch)

Addr Register Name	D7	D6	D5	D4	D3	D2	D1	D0
18H Mode Control 0	0	OVTMB	BIV2	BIV1	BIV0	SMUTE	OVTM	OVOLC
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Default	0	1	0	0	0	0	1	1

OVOLC: Output Digital Volume Control Mode Select

0: Independent

1: Dependent (default)

When OVOLC bit = "1", OVL6-0 bits control both Lch and Rch volume level, while register values of OVL6-0 bits are not written to OVR6-0 bits. When OVOLC bit = "0", OVL6-0 bits control Lch level and OVR6-0 bits control Rch level, respectively.

OVTM: Digital Volume Transition Time Setting

0: 128/fs

1: 256/fs (default)

This is the transition time between OVL/R6-0 bits = 00H and 7FH.

SMUTE: Soft Mute Control

0: Normal Operation (default)

1: DAC outputs soft-muted

BIV2-0: SDTIB Input Volume Control (Table 75)

Default: "0H" (0dB)

OVTMB: Digital Volume Control (DATT-B and DATT-C) Transition Time Setting

0: 128/fs

1: 256/fs (default)

This is the transition time between BVL6-0 bits or CVL6-0 bits = 00H and 7FH.

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
19H	Digital Filter Select 0	0	HPFC1	HPFC0	HPFAD	DASEL1	DASEL0	PFSDO	PFSEL
	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Default	0	0	0	1	0	0	1	0

PFSEL: Signal Select of Programmable Filter Block (Table 78)

0: ADC Output Data (default)

1: SDTI Input Data

PFSDO: SDTO Output and SVOLA Input Signal Select (Table 80)

0: ADC (+1st HPF) Output

1: Programmable Filter Output (default)

DASEL1-0: DAC Input Signal Select (Table 89)

Default: "00" (L= DATT-A Lch, R= DATT-A Rch)

HPFAD: HPF1 Control of ADC

0: OFF

1: ON (default)

When HPFAD bit is "1", the settings of HPFC1-0 bits are enabled. When HPFAD bit is "0", HPFAD block is through (0dB).

When PMADL bit = "1" or PMADR bit = "1", set HPFAD bit to "1".

HPFC1-0: Cut-off Frequency Setting of HPF1 (ADC) (Table 38)

Default: "00" (3.4Hz @ fs = 44.1kHz)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
1AH	Digital Filter Select 1	GN1	GN0	LPF	HPF	EQ0	FIL3	0	0
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R
	Default	0	0	0	0	0	0	0	0

- FIL3: FIL3 (Stereo Separation Emphasis Filter) Coefficient Setting Enable
 - 0: Disable (default)
 - 1: Enable

When FIL3 bit is "1", the settings of F3A13-0 and F3B13-0 bits are enabled. When FIL3 bit is "0", FIL3 block is OFF (MUTE).

EQ0: EQ0 (Gain Compensation Filter) Coefficient Setting Enable

- 0: Disable (default)
- 1: Enable

When EQ0 bit is "1", the settings of E0A15-0, E0B13-0 and E0C15-0 bits are enabled. When EQ0 bit is "0", EQ0 block is through (0dB).

HPF: HPF Coefficient Setting Enable

- 0: Disable (default)
- 1: Enable

When HPF bit is "1", the settings of F1A13-0 and F1B13-0 bits are enabled. When HPF bit is "0", HPF block is through (0dB).

LPF: LPF Coefficient Setting Enable

- 0: Disable (default)
- 1: Enable

When LPF bit is "1", the settings of F2A13-0 and F2B13-0 bits are enabled. When LPF bit is "0", LPF block is through (0dB).

GN1-0: Gain Select at GAIN block (Table 27)

Default: "00" (0dB)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
1BH	Digital Filter Select 2	0	0	0	0	0	EQ3	EQ2	EQ1
	R/W	R	R	R	R	R	R/W	R/W	R/W
	Default	0	0	0	0	0	0	0	0

- EQ1: Equalizer 1 Coefficient Setting Enable
 - 0: Disable (default)
 - 1: Enable

When EQ1 bit is "1", the settings of E1A15-0, E1B15-0 and E1C15-0 bits are enabled. When EQ1 bit is "0", EQ1 block is through (0dB).

- EQ2: Equalizer 2 Coefficient Setting Enable
 - 0: Disable (default)
 - 1: Enable

When EQ2 bit is "1", the settings of E2A15-0, E2B15-0 and E2C15-0 bits are enabled. When EQ2 bit is "0", EQ2 block is through (0dB).

- EQ3: Equalizer 3 Coefficient Setting Enable
 - 0: Disable (default)
 - 1: Enable

When EQ3 bit is "1", the settings of E3A15-0, E3B15-0 and E3C15-0 bits are enabled. When EQ3 bit is "0", EQ3 block is through (0dB).

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
1CH	Side Tone A Control	0	SVAR2	SVAR1	SVAR0	0	SVAL2	SVAL1	SVAL0
	R/W	R	R/W	R/W	R/W	R	R/W	R/W	R/W
	Default	0	0	0	0	0	0	0	0

SVAL2-0, SVAR2-0: Side Tone Volume A (SVOLA) (Table 39)

Default: "000" (0dB)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
1DH	Lch Output Volume Control	0	OVL6	OVL5	OVL4	OVL3	OVL2	OVL1	OVL0
1EH	Rch Output Volume Control	0	OVR6	OVR5	OVR4	OVR3	OVR2	OVR1	OVR0
	R/W	R	R/W						
	Default	0	0	0	0	1	1	0	0

OVL6-0, OVR6-0: Output Digital Volume (Table 68)

Default: "0CH" (0dB)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
1FH	PCM I/F Power Management	PMMIX	PMSRBO	PMSRBI	PMPCMB	PMOSC	PMSRAO	PMSRAI	PMPCMA
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Default	0	0	0	0	0	0	0	0

PMPCMA: PCM I/F A Power Management

0: Power down (default)

1: Power up

PMSRAI: SRCAI Power Management

0: Power down (default)

1: Power up

PMSRAO: SRCAO Power Management

0: Power down (default)

1: Power up

PMOSC: Internal Oscillator Power Management

0: Power down (default)

1: Power up

PMPCMB: PCM I/F B Power Management

0: Power down (default)

1: Power up

PMSRBI: SRCBI Power Management

0: Power down (default)

1: Power up

PMSRBO: SRCBO Power Management

0: Power down (default)

1: Power up

PMMIX: MIX1 Block Power Management

0: Power down (default)

1: Power up

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
20H	PCM I/F Control 0	SDOAD	0	MSBSA	BCKPA	LAWA1	LAWA0	FMTA1	FMTA0
	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W
	Default	0	0	0	0	0	0	0	0

FMTA1-0: PCM I/F A Format (Table 117)

Default: "00" (Mode 0)

LAWA1-0: PCM I/F A Mode (Table 115)

Default: "00" (Mode 0)

BCKPA: P BICKA Polarity of PCM I/F A (Table 119)

"0": SDTOA is output by the rising edge ("↑") of BICKA and SDTIA is latched by the falling edge ("↓"). (default)

"1": SDTOA is output by the falling edge ("↓") of BICKA and SDTIA is latched by the rising edge ("↑").

MSBSA: SYNCA Phase of PCM I/F A (Table 119)

"0": The rising edge ("↑") of SYNCA is half clock of BICKA before the channel change. (default)

"1": The rising edge ("\") of SYNCA is one clock of BICKA before the channel change.

SDOAD: SDTOA Disable (Table 96)

"0": Enable (default)
"1": Disable ("L")

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
21H	PCM I/F Control 1	SDOBD	0	MSBSB	BCKPB	LAWB1	LAWB0	FMTB1	FMTB0
	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W
	Default	0	0	0	0	0	0	0	0

FMTB1-0: PCM I/F B Format (Table 118)

Default: "00" (Mode 0)

LAWB1-0: PCM I/F B Mode (Table 116)

Default: "00" (Mode 0)

BCKPB: BICKB Polarity of PCM I/F B (Table 120)

"0": SDTOB is output by the rising edge ("↑") of BICKB and SDTIB is latched by the falling edge ("↓"). (default)

"1": SDTOB is output by the falling edge (" \downarrow ") of BICKB and SDTIB is latched by the rising edge (" \uparrow ").

MSBSB: SYNCB Phase of PCM I/F B (Table 120)

"0": The rising edge ("↑") of SYNCB is half clock of BICKB before the channel change. (default)

"1": The rising edge ("\") of SYNCB is one clock of BICKB before the channel change.

SDOBD: SDTOB Disable (Table 98)

"0": Enable (default)
"1": Disable ("L")

Addr	Register Name	D7	i	D6	D5	D4	į	D3	D2	D1	D0
22H	Side Tone Volume B Control	0	i	0	0	0	Ì	0	SVB2	SVB1	SVB0
	R/W	R		R	R	R		R	R/W	R/W	R/W
	D.f14	0	-	Λ				Λ	^		^

SVB2-0: Side Tone Volume B (Table 74)

Default: "0H" (0dB)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
23H	Digital Volume B Control	0	BVL6	BVL5	BVL4	BVL3	BVL2	BVL1	BVL0
	R/W	R	R/W						
	Default	0	0	0	0	1	1	0	0

BVL6-0: Digital Volume B (Table 70)

Default: "0CH" (0dB)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
24H	Digital Volume C Control	0	CVL6	CVL5	CVL4	CVL3	CVL2	CVL1	CVL0
	R/W		R/W						
	Default		0	0	0	1	1	0	0

CVL6-0: Digital Volume C (Table 72)

Default: "0CH" (0dB)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
25H	Digital Mixing Control 0	0	0	MX1R2	MX1R1	MX1R0	MX1L2	MX1L1	MX1L0
	R/W		R	R/W	R/W	R/W	R/W	R/W	R/W
Default		0	0	0	0	0	0	0	0

MX1L2-0: MIX1 Lch Output Signal Select (Table 90)

Default: "000" (DATT-B)

MX1R2-0: MIX1 Rch Output Signal Select (Table 91)

Default: "000" (DATT-B)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
26H	Digital Mixing Control 1	0	0	MX2C1	MX2C0	MX2B1	MX2B0	MX2A1	MX2A0
R/W		R	R	R/W	R/W	R/W	R/W	R/W	R/W
Default		0	0	0	0	0	0	0	0

MX2A1-0: MIX2A Output Signal Select (Table 92)

Default: "00" (BIVOL Lch)

MX2B1-0: MIX2B Output Signal Select (Table 93)

Default: "00" (DATT-A Lch)

MX2C1-0: MIX2C Output Signal Select (Table 94)

Default: "00" (MIX2A)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
27H	Digital Mixing Control 2	0	0	0	0	0	MXSB2	MXSB1	MXSB0
	R/W		R	R	R	R	R/W	R/W	R/W
	Default		0	0	0	0	0	0	0

MXSB2-0: MIX3 Output Signal Select (Table 95) Default: "000" (DATT-A Lch, DATT-A Rch)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
28H	Digital Mixing Control 3	SDOR1	SDOR0	SDOL1	SDOL0	0	0	SBMX1	SBMX0
R/W		R/W	R/W	R/W	R/W	R	R	R/W	R/W
Default		0	0	0	0	0	0	0	0

SBXM1-0: DATT-C Input Signal Selec (Table 97)

Default: "00" (SRCAI)

SDOL1-0: SDTO Lch Output Mixing (Table 81) Default: "00" (Lch Signal Selected by Table 80)

SDOR1-0: SDTO Rch Output Mixing (Table 82)
Default: "00" (Rch Signal Selected by Table 80)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
29H	FIL1 Co-efficient 0	F1A7	F1A6	F1A5	F1A4	F1A3	F1A2	F1A1	F1A0
2AH	FIL1 Co-efficient 1	0	0	F1A13	F1A12	F1A11	F1A10	F1A9	F1A8
2BH	FIL1 Co-efficient 2	F1B7	F1B6	F1B5	F1B4	F1B3	F1B2	F1B1	F1B0
2CH	FIL1 Co-efficient 3	0	0	F1B13	F1B12	F1B11	F1B10	F1B9	F1B8
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Default F1A13-0 bits = "1FA9H", F1B13-0 bits = "20ADH"								

F1A13-0, F1B13-B0: FIL1 (Wind-noise Reduction Filter) Coefficient (14bit x 2) Default: F1A13-0 bits = "1FA9H", F1B13-0 bits = "20ADH" (fc=150Hz@fs=44.1kHz)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
2DH	FIL2 Co-efficient 0	F2A7	F2A6	F2A5	F2A4	F2A3	F2A2	F2A1	F2A0
2EH	FIL2 Co-efficient 1	0	0	F2A13	F2A12	F2A11	F2A10	F2A9	F2A8
2FH	FIL2 Co-efficient 2	F2B7	F2B6	F2B5	F2B4	F2B3	F2B2	F2B1	F2B0
30H	FIL2 Co-efficient 3	0	0	F2B13	F2B12	F2B11	F2B10	F2B9	F2B8
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Default	0	0	0	0	0	0	0	0

F2A13-0, F2B13-B0: FIL2 (LPF) Coefficient (14bit x 2)

Default: "0000H"

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
31H	FIL3 Co-efficient 0	F3A7	F3A6	F3A5	F3A4	F3A3	F3A2	F3A1	F3A0
32H	FIL3 Co-efficient 1	F3AS	0	F3A13	F3A12	F3A11	F3A10	F3A9	F3A8
33H	FIL3 Co-efficient 2	F3B7	F3B6	F3B5	F3B4	F3B3	F3B2	F3B1	F3B0
34H	FIL3 Co-efficient 3	0	0	F3B13	F3B12	F3B11	F3B10	F3B9	F3B8
35H	EQ Co-efficient 0	E0A7	E0A6	E0A5	E0A4	E0A3	E0A2	E0A1	E0A0
36H	EQ Co-efficient 1	E0A15	E0A14	E0A13	E0A12	E0A11	E0A10	E0A9	E0A8
37H	EQ Co-efficient 2	E0B7	E0B6	E0B5	E0B4	E0B3	E0B2	E0B1	E0B0
38H	EQ Co-efficient 3	0	0	E0B13	E0B12	E0B11	E0B10	E0B9	E0B8
39H	EQ Co-efficient 4	E0C7	E0C6	E0C5	E0C4	E0C3	E0C2	E0C1	E0C0
3AH	EQ Co-efficient 5	E0C15	E0C14	E0C13	E0C12	E0C11	E0C10	E0C9	E0C8
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Default	0	0	0	0	0	0	0	0

F3A13-0, F3B13-0: FIL3 (Stereo Separation Emphasis Filter) Coefficient (14bit x 2)

Default: "0000H"

F3AS: FIL3(Stereo Separation Emphasis Filter) Select

0: HPF (default)

1: LPF

E0A15-0, E0B13-0, E0C15-C0: EQ0 (Gain Compensation Filter) Coefficient (14bit x 1 + 16bit x 2)

Default: "0000H"

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
3BH	E1 Co-efficient 0	E1A7	E1A6	E1A5	E1A4	E1A3	E1A2	E1A1	E1A0
3CH	E1 Co-efficient 1	E1A15	E1A14	E1A13	E1A12	E1A11	E1A10	E1A9	E1A8
3DH	E1 Co-efficient 2	E1B7	E1B6	E1B5	E1B4	E1B3	E1B2	E1B1	E1B0
3EH	E1 Co-efficient 3	E1B15	E1B14	E1B13	E1B12	E1B11	E1B10	E1B9	E1B8
3FH	E1 Co-efficient 4	E1C7	E1C6	E1C5	E1C4	E1C3	E1C2	E1C1	E1C0
40H	E1 Co-efficient 5	E1C15	E1C14	E1C13	E1C12	E1C11	E1C10	E1C9	E1C8
41H	E2 Co-efficient 0	E2A7	E2A6	E2A5	E2A4	E2A3	E2A2	E2A1	E2A0
42H	E2 Co-efficient 1	E2A15	E2A14	E2A13	E2A12	E2A11	E2A10	E2A9	E2A8
43H	E2 Co-efficient 2	E2B7	E2B6	E2B5	E2B4	E2B3	E2B2	E2B1	E2B0
44H	E2 Co-efficient 3	E2B15	E2B14	E2B13	E2B12	E2B11	E2B10	E2B9	E2B8
45H	E2 Co-efficient 4	E2C7	E2C6	E2C5	E2C4	E2C3	E2C2	E2C1	E2C0
46H	E2 Co-efficient 5	E2C15	E2C14	E2C13	E2C12	E2C11	E2C10	E2C9	E2C8
47H	E3 Co-efficient 0	E3A7	E3A6	E3A5	E3A4	E3A3	E3A2	E3A1	E3A0
48H	E3 Co-efficient 1	E3A15	E3A14	E3A13	E3A12	E3A11	E3A10	E3A9	E3A8
49H	E3 Co-efficient 2	E3B7	E3B6	E3B5	E3B4	E3B3	E3B2	E3B1	E3B0
4AH	E3 Co-efficient 3	E3B15	E3B14	E3B13	E3B12	E3B11	E3B10	E3B9	E3B8
4BH	E3 Co-efficient 4	E3C7	E3C6	E3C5	E3C4	E3C3	E3C2	E3C1	E3C0
4CH	E3 Co-efficient 5	E3C15	E3C14	E3C13	E3C12	E3C11	E3C10	E3C9	E3C8
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Default	0	0	0	0	0	0	0	0

E1A15-0, E1B15-0, E1C15-0: Equalizer 1 Coefficient (16bit x3)

Default: "0000H"

E2A15-0, E2B15-0, E2C15-0: Equalizer 2 Coefficient (16bit x3)

Default: "0000H"

E3A15-0, E3B15-0, E3C15-0: Equalizer 3 Coefficient (16bit x3)

Default: "0000H"

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
50H	5band E1 Co-efficient 0	5E1A7	5E1A6	5E1A5	5E1A4	5E1A3	5E1A2	5E1A1	5E1A0
51H	5band E1 Co-efficient 1	0	0	5E1A13	5E1A12	5E1A11	5E1A10	5E1A9	5E1A8
52H	5band E1 Co-efficient 2	5E1B7	5E1B6	5E1B5	5E1B4	5E1B3	5E1B2	5E1B1	5E1B0
53H	5band E1 Co-efficient 3	0	0	5E1B13	5E1B12	5E1B11	5E1B10	5E1B9	5E1B8
54H	5band E2 Co-efficient 0	5E2A7	5E2A6	5E2A5	5E2A4	5E2A3	5E2A2	5E2A1	5E2A0
55H	5band E2 Co-efficient 1	5E2A15	5E2A14	5E2A13	5E2A12	5E2A11	5E2A10	5E2A9	5E2A8
56H	5band E2 Co-efficient 2	5E2B7	5E2B6	5E2B5	5E2B4	5E2B3	5E2B2	5E2B1	5E2B0
57H	5band E2 Co-efficient 3	5E2B15	5E2B14	5E2B13	5E2B12	5E2B11	5E2B10	5E2B9	5E2B8
58H	5band E2 Co-efficient 4	5E2C7	5E2C6	5E2C5	5E2C4	5E2C3	5E2C2	5E2C1	5E2C0
59H	5band E2 Co-efficient 5	5E2C15	5E2C14	5E2C13	5E2C12	5E2C11	5E2C10	5E2C9	5E2C8
5AH	5band E3 Co-efficient 0	5E3A7	5E3A6	5E3A5	5E3A4	5E3A3	5E3A2	5E3A1	5E3A0
5BH	5band E3 Co-efficient 1	5E3A15	5E3A14	5E3A13	5E3A12	5E3A11	5E3A10	5E3A9	5E3A8
5CH	5band E3 Co-efficient 2	5E3B7	5E3B6	5E3B5	5E3B4	5E3B3	5E3B2	5E3B1	5E3B0
5DH	5band E3 Co-efficient 3	5E3B15	5E3B14	5E3B13	5E3B12	5E3B11	5E3B10	5E3B9	5E3B8
5EH	5band E3 Co-efficient 4	5E3C7	5E3C6	5E3C5	5E3C4	5E3C3	5E3C2	5E3C1	5E3C0
5FH	5band E3 Co-efficient 5	5E3C15	5E3C14	5E3C13	5E3C12	5E3C11	5E3C10	5E3C9	5E3C8
60H	5band E4 Co-efficient 0	5E4A7	5E4A6	5E4A5	5E4A4	5E4A3	5E4A2	5E4A1	5E4A0
61H	5band E4 Co-efficient 1	5E4A15	5E4A14	5E4A13	5E4A12	5E4A11	5E4A10	5E4A9	5E4A8
62H	5band E4 Co-efficient 2	5E4B7	5E4B6	5E4B5	5E4B4	5E4B3	5E4B2	5E4B1	5E4B0
63H	5band E4 Co-efficient 3	5E4B15	5E4B14	5E4B13	5E4B12	5E4B11	5E4B10	5E4B9	5E4B8
64H	5band E4 Co-efficient 4	5E4C7	5E4C6	5E4C5	5E4C4	5E4C3	5E4C2	5E4C1	5E4C0
65H	5band E4 Co-efficient 5	5E4C15	5E4C14	5E4C13	5E4C12	5E4C11	5E4C10	5E4C9	5E4C8
66H	5band E5 Co-efficient 0	5E5A7	5E5A6	5E5A5	5E5A4	5E5A3	5E5A2	5E5A1	5E5A0
67H	5band E5 Co-efficient 1	0	0	5E5A13	5E5A12	5E5A11	5E5A10	5E5A9	5E5A8
68H	5band E5 Co-efficient 2	5E5B7	5E5B6	5E5B5	5E5B4	5E5B3	5E5B2	5E5B1	5E5B0
69H	5band E5 Co-efficient 3	0	0	5E5B13	5E5B12	5E5B11	5E5B10	5E5B9	5E5B8
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

5E1A13-0, 5E1B13-B0: 5-band Equalizer 1 Coefficient (14bit x 2)

Default: 5E1A13-0 bits = "003AH", 5E1B13-0 bits = "2074H" (fc=100Hz@fs=44.1kHz)

5E2A15-0, 5E2B15-0, 5E2C15-0: 5-band Equalizer 2 Coefficient (16bit x3)

Default: 5E2A15-0 bits = "001DH", 5E2B15-0 bits = "3FBB H", 5E2C15-0 bits = "E03AH" (fo₂=250Hz, fb₂=50Hz@fs=44.1kHz)

5E3A15-0, 5E3B15-0, 5E3C15-0: 5-band Equalizer 3 Coefficient (16bit x3)

Default: 5E3A15-0 bits = "0073H", 5E3B15-0 bits = "3E76H", 5E3C15-0 bits = "E0E6H" (fo₃=1kHz, fb₃=200Hz@fs=44.1kHz)

5E4A15-0, 5E4B15-0, 5E4C15-0: 5-band Equalizer 4 Coefficient (16bit x3)

Default: 5E4A15-0 bits = "0185H", 5E4B15-0 bits = "3589H", 5E4C15-0 bits = "E30BH" (fo₄=3.5kHz, fb₄=700Hz@fs=44.1kHz)

5E5A13-0, 5E5B13-B0: 5-band Equalizer 5 Coefficient (14bit x 2)

Default: 5E5A13-0 bits = "112CH", 5E5B13-0 bits = "3DA9H" (fc=10kHz@fs=44.1kHz)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
6AH	5band EQ1 Gain	0	0	5EQ1G5	5EQ1G4	5EQ1G3	5EQ1G2	5EQ1G1	5EQ1G0
6BH	5band EQ2 Gain	0	0	5EQ2G5	5EQ2G4	5EQ2G3	5EQ2G2	5EQ2G1	5EQ2G0
6CH	5band EQ3 Gain	0	0	5EQ3G5	5EQ3G4	5EQ3G3	5EQ3G2	5EQ3G1	5EQ3G0
6DH	5band EQ4 Gain	0	0	5EQ4G5	5EQ4G4	5EQ4G3	5EQ4G2	5EQ4G1	5EQ4G0
6EH	5band EQ5 Gain	0	0	5EQ5G5	5EQ5G4	5EQ5G3	5EQ5G2	5EQ5G1	5EQ5G0
	R/W	R	R	R/W	R/W	R/W	R/W	R/W	R/W
	Default	0	0	0	1	1	0	0	0

5EQ1G5-0: 5-band Equalizer 1 Gain Setting

Default: 18H (0dB)

5EQ2G5-0: 5-band Equalizer 2 Gain Setting

Default: 18H (0dB)

5EQ3G5-0: 5-band Equalizer 3 Gain Setting

Default: 18H (0dB)

5EQ4G5-0: 5-band Equalizer 4 Gain Setting

Default: 18H (0dB)

5EQ5G5-0: 5-band Equalizer 5 Gain Setting

Default: 18H (0dB)

EQ gain: $+12dB(00H) \sim -12dB(30H)$, 0.5dB step

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
70H	DRC Mode Control	0	DLMAT2	DLMAT1	DLMAT0	DRGAIN1	DRGAIN0	DRCC1	DRCC0
	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Default	0	0	0	0	0	0	0	0

DRCC1-0: DRC Enable (Table 65)

00: Disable (default)

01: Low 10: Middle 11: High

When DRCC1-0 bits are "00", DRC is through (0dB).

DRGAIN1-0: DRC Recovery Speed Setting (Table 67)

Default: "00"

DLMAT2-0: DRC ATT Speed Setting (Table 66)

Default: "000"

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
71H	NS Control	0	0	DRCM1	DRCM0	0	NSLPF	NSHPF	NSCE
	R/W	R	R	R/W	R/W	R	R/W	R/W	R/W
	Default	0	0	0	0	0	0	0	0

NSCE: Noise Suppression Enable

0: Disable (default)

1: Enable

When NSCE bit is "0", Noise Suppression is through (0dB).

NSHPF: HPF for Noise Suppression Coefficient Setting Enable

0: Disable (default)

1: Enable

When NSHPF bit is "1", the settings of NSHA13-0 and NSHB13-0 bits are enabled. When NSHPF bit is "0", HPF block is through (0dB).

NSLPF: LPF for Noise Suppression Coefficient Setting Enable

0: Disable (default)

1: Enable

When NSLPF bit is "1", the settings of NSLA13-0 and NSLB13-0 bits are enabled. When NSLPF bit is "0", LPF block is through (0dB).

DRCM1-0: DRC Input Signal Setting (Table 41)

Default: "00" (L = Lch, R = Rch)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
72H	NS Gain & ATT Control	0	NSGAIN2	NSGAIN1	NSGAIN0	0	NSATT2	NSATT1	NSATT0
	R/W	R	R/W	R/W	R/W	R	R/W	R/W	R/W
	Default	0	0	0	1	0	0	0	1

NSATT2-0: Noise Suppression ATT Speed Setting (Table 45)

Default: "001"

NSGAIN2-0: Noise Suppression Recovery Speed Setting (Table 48)

Default: "001"

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
73H	NS On Level	NSIAF1	NSIAF0	0	NSTHL4	NSTHL3	NSTHL2	NSTHL1	NSTHL0
	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W
	Default	1	0	0	0	0	0	0	0

NSTHL4-0: Noise Suppression Threshold Low Level Setting (Table 43)

Default: "00H" (-36dB)

NSIAF1-0: Moving Average Parameter Setting at Noise Suppression Off (Table 42)

Default: "10" (1024/fs)

Addr Register Name	D7	D6	D5	D4	D3	D2	D1	D0
74H NS Off Level	NSOAF1	NSOAF0	0	NSTHH4	NSTHH3	NSTHH2	NSTHH1	NSTHH0
R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W
Default	1	0	0	0	0	0	0	0

NSTHH4-0: Noise Suppression Threshold High Level Setting (Table 47)

Default: "00H" (-36dB)

NSOAF1-0: Moving Average Parameter Setting at Noise Suppression On (Table 46)

Default: "10" (16/fs)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
75H	NS Reference Select	0	0	0	0	NSREF3	NSREF2	NSREF1	NSREF0
	R/W	R	R	R	R	R/W	R/W	R/W	R/W
	Default	0	0	0	0	0	0	0	0

NSREF3-0: Reference Value at Noise Suppression (Table 44)

Default: "0H" (-9dB)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
76H	NS LPF Co-efficient 0	NSLA7	NSLA6	NSLA5	NSLA4	NSLA3	NSLA2	NSLA1	NSLA0
77H	NS LPF Co-efficient 1	0	0	NSLA13	NSLA12	NSLA11	NSLA10	NSLA9	NSLA8
78H	NS LPF Co-efficient 2	NSLB7	NSLB6	NSLB5	NSLB4	NSLB3	NSLB2	NSLB1	NSLB0
79H	NS LPF Co-efficient 3	0	0	NSLB13	NSLB12	NSLB11	NSLB10	NSLB9	NSLB8
7AH	NS HPF Co-efficient 0	NSHA7	NSHA6	NSHA5	NSHA4	NSHA3	NSHA2	NSHA1	NSHA0
7BH	NS HPF Co-efficient 1	0	0	NSHA13	NSHA12	NSHA11	NSHA10	NSHA9	NSHA8
7CH	NS HPF Co-efficient 2	NSHB7	NSHB6	NSHB5	NSHB4	NSHB3	NSHB2	NSHB1	NSHB0
7DH	NS HPF Co-efficient 3	0	0	NSHB13	NSHB12	NSHB11	NSHB10	NSHB9	NSHB8
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

NSLA13-0, NSLB13-0: Noise Suppression LPF Coefficient (14bit x 2)

Default: "0000H"

NSHA13-0, NSHB13-0: Noise Suppression HPF Coefficient (14bit x 2)

Default: "0000H"

ı	Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
I	80H	DVLC Filter Select	DLLPF1	DLLPF0	DMHPF1	DMHPF0	DMLPF1	DMLPF0	DHHPF1	DHHPF0
I		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
I		Default	0	0	0	0	0	0	0	0

DHHPF1-0: DVLC High Frequency Range HPF Coefficient Setting Enable (Table 58)

00: Disable (default)

01: 1st order HPF

10: 2nd order HPF

11: N/A

When DHHPF1-0 bits are "01" or "10", the settings of DHHA13-0 and DHHB13-0 bits are enabled. When DHHPF1-0 bits are "00", HPF block outputs "0" data.

DMLPF1-0: DVLC Middle Frequency Range LPF Coefficient Setting Enable (Table 54)

00: Disable (default)

01: 1st order LPF

10: 2nd order LPF

11: N/A

When DMLPF1-0 bits are "01" or "10", the settings of DMLA13-0 and DMLB13-0 bits are enabled. When DMLPF1-0 bits are "00", LPF block of DVLC middle frequency range is through (0dB).

DMHPF1-0: DVLC Middle Frequency Range HPF Coefficient Setting Enable (Table 53)

00: Disable (default)

01: 1st order HPF

10: 2nd order HPF

11: N/A

When DMHPF1-0 bits are "01" or "10", the settings of DMHA13-0 and DMHB13-0 bits are enabled. When DMHPF1-0 bits are "00", HPF block of DVLC middle frequency range is through (0dB).

DLLPF1-0: DVLC Low Frequency Range LPF Coefficient Setting Enable (Table 49)

00: Disable (default)

01: 1st order LPF

10: 2nd order LPF

11: N/A

When DLLPF1-0 bits are "01" or "10", the settings of DLLA13-0 and DLLB13-0 bits are enabled. When DLLPF1-0 bits are "00", LPF block outputs "0" data.

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
81H	DVLC Mode Control	DVRGAIN2	DVRGAIN1	DVRGAIN0	DVLMAT2	DVLMAT1	DVLMAT0	DAF1	DAF0
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Default	0	1	1	0	1	1	1	1

DAF1-0: Moving Average Parameter Setting for DVLC (Table 62)

Default: "11" (Default: 2048/fs)

DVLMAT2-0: DVLC ATT Speed Setting (Table 63)

Default: "011"

DVRGAIN2-0: DVLC Recovery Speed Setting (Table 64)

Default: "011"

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
82H	DVLCL Curve X1	0	0	VL1X5	VL1X4	VL1X3	VL1X2	VL1X1	VL1X0
83H	DVLCL Curve Y1	0	0	VL1Y5	VL1Y4	VL1Y3	VL1Y2	VL1Y1	VL1Y0
84H	DVLCL Curve X2	0	0	VL2X5	VL2X4	VL2X3	VL2X2	VL2X1	VL2X0
85H	DVLCL Curve Y2	0	0	VL2Y5	VL2Y4	VL2Y3	VL2Y2	VL2Y1	VL2Y0
86H	DVLCL Curve X3	0	0	0	VL3X4	VL3X3	VL3X2	VL3X1	VL3X0
87H	DVLCL Curve Y3	0	0	0	VL3Y4	VL3Y3	VL3Y2	VL3Y1	VL3Y0
88H	DVLCL Slope 1	0	L1G6	L1G5	L1G4	L1G3	L1G2	L1G1	L1G0
89H	DVLCL Slope 2	0	L2G6	L2G5	L2G4	L2G3	L2G2	L2G1	L2G0
8AH	DVLCL Slope 3	0	L3G6	L3G5	L3G4	L3G3	L3G2	L3G1	L3G0
8BH	DVLCL Slope 4	0	L4G6	L4G5	L4G4	L4G3	L4G2	L4G1	L4G0
8CH	DVLCM Curve X1	0	0	VM1X5	VM1X4	VM1X3	VM1X2	VM1X1	VM1X0
8DH	DVLCM Curve Y1	0	0	VM1Y5	VM1Y4	VM1Y3	VM1Y2	VM1Y1	VM1Y0
8EH	DVLCM Curve X2	0	0	VM2X5	VM2X4	VM2X3	VM2X2	VM2X1	VM2X0
8FH	DVLCM Curve Y2	0	0	VM2Y5	VM2Y4	VM2Y3	VM2Y2	VM2Y1	VM2Y0
90H	DVLCM Curve X3	0	0	0	VM3X4	VM3X3	VM3X2	VM3X1	VM3X0
91H	DVLCM Curve Y3	0	0	0	VM3Y4	VM3Y3	VM3Y2	VM3Y1	VM3Y0
92H	DVLCM Slope 1	0	M1G6	M1G5	M1G4	M1G3	M1G2	M1G1	M1G0
93H	DVLCM Slope 2	0	M2G6	M2G5	M2G4	M2G3	M2G2	M2G1	M2G0
94H	DVLCM Slope 3	0	M3G6	M3G5	M3G4	M3G3	M3G2	M3G1	M3G0
95H	DVLCM Slope 4	0	M4G6	M4G5	M4G4	M4G3	M4G2	M4G1	M4G0
96H	DVLCH Curve X1	0	0	VH1X5	VH1X4	VH1X3	VH1X2	VH1X1	VH1X0
97H	DVLCH Curve Y1	0	0	VH1Y5	VH1Y4	VH1Y3	VH1Y2	VH1Y1	VH1Y0
98H	DVLCH Curve X2	0	0	VH2X5	VH2X4	VH2X3	VH2X2	VH2X1	VH2X0
99H	DVLCH Curve Y2	0	0	VH2Y5	VH2Y4	VH2Y3	VH2Y2	VH2Y1	VH2Y0
9AH	DVLCH Curve X3	0	0	0	VH3X4	VH3X3	VH3X2	VH3X1	VH3X0
9BH	DVLCH Curve Y3	0	0	0	VH3Y4	VH3Y3	VH3Y2	VH3Y1	VH3Y0
9CH	DVLCH Slope 1	0	H1G6	H1G5	H1G4	H1G3	H1G2	H1G1	H1G0
9DH	DVLCH Slope 2	0	H2G6	H2G5	H2G4	H2G3	H2G2	H2G1	H2G0
9EH	DVLCH Slope 3	0	H3G6	H3G5	H3G4	H3G3	H3G2	H3G1	H3G0
9FH	DVLCH Slope 4	0	H4G6	H4G5	H4G4	H4G3	H4G2	H4G1	H4G0
	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Default	0	0	0	0	0	0	0	0

VL1X5-0, VL2X5-0, VL3X4-0: Input Gain Setting for Low Range DVLC Point (Table 50, Table 51) Default: "00H" (0dB)

VL1Y5-0, VL2Y5-0, VL3Y4-0: Output Gain Setting for Low Range DVLC Point (Table 50, Table 51) Default: "00H" (0dB)

L1G6-0, L2G6-0, L3G6-0, L4G6-0: DVLC Slope Setting for Low Range (Table 52) Default: "00H"

VM1X5-0, VM2X5-0, VM3X4-0: Input Gain Setting for Middle Range DVLC Point (Table 50, Table 51) Default: "00H" (0dB)

VM1Y5-0, VM2Y5-0, VM3Y4-0: Output Gain Setting for Middle Range DVLC Point (Table 50, Table 51) Default: "00H" (0dB)

M1G6-0, M2G6-0, M3G6-0, M4G6-0: DVLC Slope Setting for Middle Range (Table 52) Default: "00H"

VH1X5-0, VH2X5-0, VH3X4-0: Input Gain Setting for High Range DVLC Point (Table 50, Table 51) Default: "00H" (0dB)

VH1Y5-0, VH2Y5-0, VH3Y4-0: Output Gain Setting for High Range DVLC Point (Table 50, Table 51) Default: "00H" (0dB)

H1G6-0, H2G6-0, H3G6-0, H4G6-0: DVLC Slope Setting for High Range (Table 52) Default: "00H"

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
A0H	DVLCL LPF Co-efficient 0	DLLA7	DLLA6	DLLA5	DLLA4	DLLA3	DLLA2	DLLA1	DLLA0
A1H	DVLCL LPF Co-efficient 1	0	0	DLLA13	DLLA12	DLLA11	DLLA10	DLLA9	DLLA8
A2H	DVLCL LPF Co-efficient 2	DLLB7	DLLB6	DLLB5	DLLB4	DLLB3	DLLB2	DLLB1	DLLB0
A3H	DVLCL LPF Co-efficient 3	0	0	DLLB13	DLLB12	DLLB11	DLLB10	DLLB9	DLLB8
A4H	DVLCM HPF Co-efficient 0	DMHA7	DMHA6	DMHA5	DMHA4	DMHA3	DMHA2	DMHA1	DMHA0
A5H	DVLCM HPF Co-efficient 1	0	0	DMHA13	DMHA12	DMHA11	DMHA10	DMHA9	DMHA8
A6H	DVLCM HPF Co-efficient 2	DMHB7	DMHB6	DMHB5	DMHB4	DMHB3	DMHB2	DMHB1	DMHB0
A7H	DVLCM HPF Co-efficient 3	0	0	DMHB13	DMHB12	DMHB11	DMHB10	DMHB9	DMHB8
A8H	DVLCM LPF Co-efficient 0	DMLA7	DMLA6	DMLA5	DMLA4	DMLA3	DMLA2	DMLA1	DMLA0
A9H	DVLCM LPF Co-efficient 1	0	0	DMLA13	DMLA12	DMLA11	DMLA10	DMLA9	DMLA8
AAH	DVLCM LPF Co-efficient 2	DMLB7	DMLB6	DMLB5	DMLB4	DMLB3	DMLB2	DMLB1	DMLB0
ABH	DVLCM LPF Co-efficient 3	0	0	DMLB13	DMLB12	DMLB11	DMLB10	DMLB9	DMLB8
ACH	DVLCH HPF Co-efficient 0	DHHA7	DHHA6	DHHA5	DHHA4	DHHA3	DHHA2	DHHA1	DHHA0
ADH	DVLCH HPF Co-efficient 1	0	0	DHHA13	DHHA12	DHHA11	DHHA10	DHHA9	DHHA8
AEH	DVLCH HPF Co-efficient 2	DHHB7	DHHB6	DHHB5	DHHB4	DHHB3	DHHB2	DHHB1	DHHB0
AFH	DVLCH HPF Co-efficient 3	0	0	DHHB13	DHHB12	DHHB11	DHHB10	DHHB9	DHHB8
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

DLLA13-0, DLLB13-0: DVLC Low Frequency Range LPF Coefficient (14bit x 2) Default: "0000H"

DMHA13-0, DMHB13-0: DVLC Middle Frequency Range HPF Coefficient (14bit x 2) Default: "0000H"

DMLA13-0, DMLB13-0: DVLC Middle Frequency Range LPF Coefficient (14bit x 2)

Default: "0000H"

DHHA13-0, DHHB13-0: DVLC High Frequency Range HPF Coefficient (14bit x 2) Default: "0000H"

SYSTEM DESIGN

Figure 106, Figure 107 and Figure 108 show the system connection diagram for the AK4678. An evaluation board [AKD4678] demonstrates the optimum layout, power supply arrangements and measurement results.

Note:

- VSS1, VSS2 and VSS3 of the AK4678 should be distributed separately from the ground of external controllers.
- 0.1μF capacitors at power supply pins should be ceramic capacitors. 2.2μF±50% capacitors between the CPA to CNA pins, the CPB to CNB pins and the VEE to VSS2 pins should be low ESR ceramic capacitors. These capacitors must be connected as close as possible to the pins.

Figure 106. Typical Connection Diagram (Power Supply Block)

Figure 107. Typical Connection Diagram (Analog Input/Output Block) (In case of Internal Full-differential Mic and External pseudo differential Mic)

Note:

- All digital input pins should not be left floating.
- When the AK4678 is used by master mode, LRCK and BICK pins are a Hi-Z state until M/S bit becomes "1". LRCK and BICK pins of the AK4678 should be pulled-down or pulled-up by the resistor (about $100k\Omega$) externally to avoid the floating state.

Figure 108. Typical Connection Diagram (Digital Block)

1. Grounding and Power Supply Decoupling

The AK4678 requires careful attention to power supply and grounding arrangements. AVDD, PVDD and SVDD are usually supplied from the system's analog supply, and DVDD and TVDD are supplied from the system's digital power supply. The power-up sequence between supplies (AVDD, PVDD, SVDD, DVDD or TVDD) is not critical. The PDN pin should be held "L" when power supplies are tuning on. The PDN pin is allowed to be "H" after all power supplies are applied and settled.

To avoid pop noise at receiver output, headphone outputs, speaker output and line outputs, the AK4678 should be operated along the following recommended power-up/down sequence.

1) Power-up

- The PDN pin should be held "L" when power supplies are turning on. The AK4678 can be reset by keeping the PDN pin "L" for 1.5µs or longer after all power supplies are applied and settled.
- In the case that the power supplies are separated in two or more groups, SVDD should be powered ON first.

2) Power-down

- Each of power supplies can be powered OFF after the PDN pin is set to "L".
- In the case that the power supplies are separated in two or more groups, SVDD should be powered OFF last.

VSS1, VSS2 and VSS3 of the AK4678 should be connected to the analog ground plane. System analog ground and digital ground should be connected together near where the supplies are brought onto the printed circuit board. Decoupling capacitors should be as near the AK4678 as possible. Especially, the small value ceramic capacitor is to be closest.

2. Voltage Reference

VCOM is a signal ground of this chip. A 1μ F electrolytic capacitor attached to the VCOM pin eliminates the effects of high frequency noise. No load current is allowed to be drawn from the VCOM pin. All signals, especially clocks, should be kept away from the VCOM pin in order to avoid unwanted coupling into the AK4678.

3. Charge Pump

 $2.2\mu\text{F}\pm50\%$ capacitors between the CPA to CNA pins, the CPB to CNB pins and the VEE to VSS2 pins should be low ESR ceramic capacitors. These capacitors must be connected as close as possible to the pins. No load current may be drawn from the VEE pin.

4. Analog Inputs

The input signal range scales with 1.0 x AVDD Vpp (typ) at MGNL=MGNR=0dB, AVDD=1.8V and single-ended input, centered around the internal common voltage (typ. 0.47 x AVDD). The input signal must be AC coupled using a capacitor. The cut-off frequency (fc) is $1/(2\pi RC)$.

5. Analog Outputs

Stereo Line outputs and Mono Receiver output are centered at typ. 0.8 x AVDD. Stereo line output (LOUT/ROUT pins) must be AC –coupled using a capacitor. Receiver output (RCP/RCN pins) should be connected directly to a receiver. Headphone outputs (HPL/HPR pin) are centered at 0V and should be directly connected to a headphone. Speaker output is PWM output (Class-D) and it is not necessary to add an external filter such as LC filters.

CONTROL SEQUENCE (AUDIO)

■ Clock Set-up

When ADC, DAC or Programmable Filter is powered-up, the clocks must be supplied.

1. PLL Master Mode

Figure 109. Clock Set Up Sequence (1)

- (1) After Power Up, PDN pin = "L" → "H".

 "L" time of 1.5 us or more is needed to reset the AK4678.
- (2) Dummy command(Addr:00H, Data:00H) must be executed before control register is set. DIF1-0, PLL3-0, FS3-0, BCKO and M/S bits should be set during this period.
- (3) Power Up VCOM: PMVCM bit = "0" → "1" VCOM should first be powered-up before the other block operates. Rise-up time of the VCOM pin is 1.5ms (max) when the external capacitance is 1μF.
- (4) PLL lock time is 10ms(max.) after PMPLL bit changes from "0" to "1" and MCKI is supplied from an external source.
- (5) The AK4678 starts to output the LRCK and BICK clocks after the PLL becomes stable. Then normal operation starts.

2. PLL Slave Mode (BICK pin)

Figure 110. Clock Set Up Sequence (2)

- (1) After Power Up, PDN pin = "L" → "H".

 "L" time of 1.5μs or more is needed to reset the AK4678.
- (2) Dummy command (Addr:00H, Data:00H) must be executed before control register is set. DIF1-0, FS3-0 and PLL3-0 bits should be set during this period.
- (3) Power Up VCOM: PMVCM bit = "0" \rightarrow "1" VCOM should first be powered up before the other block operates. Rise-up time of the VCOM pin is 1.5ms (max) when the external capacitance is 1μ F.
- (4) PLL starts after the PMPLL bit changes from "0" to "1" and PLL reference clock (BICK pin) is supplied. PLL lock time is 2ms(max.).
- (5) Normal operation starts after that the PLL is locked.

3. EXT Slave Mode

Figure 111. Clock Set Up Sequence (3)

- (1) After Power Up, PDN pin = "L" → "H".

 "L" time of 1.5µs or more is needed to reset the AK4678.
- (2) Dummy command (Addr:00H, Data:00H) must be executed before control register is set. DIF1-0, CM1-0 and FS3-0 bits should be set during this period.
- (3) Power Up VCOM: PMVCM bit = "0" \rightarrow "1" VCOM should first be powered up before the other block operates. Rise-up time of the VCOM pin is 1.5ms (max) when the external capacitance is 1μ F.
- (4) Normal operation starts after the MCKI, LRCK and BICK are supplied.

4. EXT Master Mode

Figure 112. Clock Set Up Sequence (4)

- (1) After Power Up, PDN pin = "L" → "H".

 "L" time of 1.5µs or more is needed to reset the AK4678.
- (2) MCKI should be input.
- (3) Dummy command (Addr:00H, Data:00H) must be executed before control register is set. After DIF1-0, CM1-0 and FS3-0 bits are set, M/S bit should be set to "1". Then LRCK and BICK are output.
- (4) Power Up VCOM: PMVCM bit = "0" \rightarrow "1" VCOM should first be powered up before the other block operates. Rise-up time of the VCOM pin is 1.5ms (max) when the external capacitance is 1μ F.

■ MIC Input Recording (Stereo)

Figure 113. Stereo MIC Input Sequence (MIC Recording: LINx/RINx \rightarrow MICL/R \rightarrow ADCL/R \rightarrow ALC \rightarrow Audio I/F \rightarrow SDTO)

<Example>

This sequence is an example of ALC setting at fs=44.1kHz. If the parameter of the ALC is changed, please refer to "Example of the ALC setting (Recording Path)".

- (1) Set up a sampling frequency (FS3-0 bits). MIC, ADC and Programmable Filter should be powered-up in consideration of VCOM rise time and PLL lock time after a sampling frequency is changed when the AK4678 is PLL mode.
- (2) Set up Gain for MIC-Amp (Addr: 07H)
- (3) Set up MIC Input Selector (Addr: 06H)
- (4) Set up REF value for ALC (Addr: 13H), Timer Select for ALC (Addr: 15H) and ALC mode (Addr: 16H)
- (5) ALC Enable (Addr: 17H): ALC bit = "0" \rightarrow "1"
- (6) Power Up MIC Power1: PMMP1 bit = "0" \rightarrow "1"
- (7) Power Up MIC-Amp, ADC and Programmable Filter: PMADL/R = PMPFIL bits = "0"→"1"

 The initialization cycle time of ADC is 1059/fs=24ms @ fs=44.1kHz, ADRST bit = "0". ADC outputs "0" data during the initialization cycle. After the ALC bit is set to "1", the ALC operation starts from IVOL value
- (8) Power Down MIC-Amp, ADC and Programmable Filter: PMADL/R= PMPFIL bits = "1" → "0" When the registers for the ALC operation are not changed, ALC bit may be keeping "1". The ALC operation is disabled because the ADC block is powered-down. If the registers for the ALC operation are also changed when the sampling frequency is changed, it should be done after the AK4678 goes to the manual mode (ALC bit = "0") or ADC block is powered-down (PMADL = PMADR bits = "0"). IVOL gain is not reset when PMADL = PMADR bits = "0", and then IVOL operation starts from the setting value when PMADL or PMADR bit is changed to "1".
- (9) Power Down MIC Power 1: PMMP1 bit = "1" \rightarrow "0"
- (10) ALC Disable: ALC bit = "1" \rightarrow "0"

■ Headphone-Amp Output

Figure 114. Headphone-Amp Output Sequence (Headphone Playback: SDTI \rightarrow Audio I/F \rightarrow 5-band EQ \rightarrow DATT-A \rightarrow DACL/R \rightarrow HPL/HPR)

<Example>

- (1) Set up a sampling frequency (FS3-0 bits). DAC and Headphone-Amp should be powered-up in consideration of VCOM rise time and PLL lock time after a sampling frequency is changed when the AK4678 is PLL mode.
- (2) Set up analog volume for HP-Amp (Addr: 0FH, HPG5-0 bits)
- (3) Enable 5-band Equalizer: 5EQ bit = "0" → "1" (Frequency Response and gain are selected by Addr = 50H-6EH.)
- (4) Power up DAC and EQ : PMDAL = PMDAR = PMEQ bits = "0" \rightarrow "1"
- (5) Power up Headphone-Amp and charge pump circuit: PMHPL = PMHPR bits = "0" → "1" The power-up time of HP-Amp block is 28ms. HPL and HPR pins output 0V until the power-up time of HP-Amp block passes.
- (6) Power down Headphone-Amp and charge pump circuit: PMHPL = PMHPR bits = "1" → "0" HPL and HPR pins go to 0V.
- (7) Power down DAC and EQ: PMDAL = PMDAR = PMEO bits = "1" \rightarrow "0"
- (8) Disable 5-band Equalizer: 5EQ bit = "1" → "0"

■ Speaker-Amp Output

Figure 115. Speaker-Amp Output Sequence (Headphone Playback: SDTI \rightarrow Audio I/F \rightarrow 5-band EQ \rightarrow DATT-A \rightarrow DACL/R \rightarrow SPP/SPN)

<Example>

- (1) Set up a sampling frequency (FS3-0 bits). DAC and Speaker-Amp should be powered-up in consideration of VCOM rise time and PLL lock time after a sampling frequency is changed when the AK4678 is PLL mode.
- (2) Set up analog volume for SPK-Amp (Addr: 10H, SPKG3-0 bits)
- (3) Set up the path of "SDTI \rightarrow DAC \rightarrow SPK-Amp": DACSL = DACSR bits = "0" \rightarrow "1"
- (4) Enable 5-band Equalizer: 5EQ bit = "0" → "1" (Frequency Response and gain are selected by Addr = 50H-6EH.)
- (5) Power up DAC and EQ: PMDAL = PMDAR = PMEQ bits = "0" \rightarrow "1"
- (6) Power up SP-Amp block: PMSPK bit = "0" \rightarrow "1"
 - The power-up time of SPK-Amp block is 32ms. SPP and SPN pins output 0V until the power-up time of SPK-Amp block passes.
- (7) Power down SPK-Amp block: PMSPK bit = "1" → "0" SPN and SPP pins go to 0V.
- (8) Power down DAC and EQ: PMDAL = PMDAR = PMEQ bits = "1" \rightarrow "0"
- (9) Disable 5-band Equalizer: 5EO bit = "1" \rightarrow "0"
- (10) Disable the path of "DAC \rightarrow Speaker-Amp": DACSL = DACSR bits = "1" \rightarrow "0"

■ Stereo Line Output

Figure 116. Stereo Lineout Sequence (Lineout Playback: SDTI \rightarrow Audio I/F \rightarrow SVOLA \rightarrow DATT-A \rightarrow DACL/R \rightarrow LOUT/ROUT)

<Example>

- (1) Set up the sampling frequency (FS3-0 bits). DAC and Stereo Line-Amp should be powered-up in consideration of VCOM rise time and PLL lock time after the sampling frequency is changed when the AK4678 is PLL mode.
- (2) Set up the path of "SDTI → DAC → Stereo Line-Amp": PFSEL = "0" → "1", PFMXL1-0 = PFMXR1-0 bits = "0000" → "0101", DACL = DACR bits = "0" → "1"

 Set up analog volume for Stereo Line-Amp (Addr: 0EH, LVL2-0 bits)
- (3) Set up the output digital volume (Addr: 1DH and 1EH)
 - When OVOLC bit is "1" (default), OVL6-0 bits (1DH) set the volume of both channels. After DAC is powered-up, the digital volume changes from default value (0dB) to the register setting value by the soft transition.
- (4) Enter power-save mode of Stereo Line-Amp: LOPS bit = "0" → "1"
- (5) Power-up DAC, Programmable Filter and Stereo Line-Amp: PMDAL = PMDAR = PMPFIL = PMLO = PMRO bits = "0" → "1"
 - LOUT and ROUT pins rise up to VCOM voltage after PMLO and PMRO bits are changed to "1". Rise time is 300ms (max.) at C=1 μ F and AVDD=1.8V.
- (6) Exit power-save mode of Stereo Line-Amp: LOPS bit = "1" → "0" LOPS bit should be set to "0" after LOUT and ROUT pins rise up. Stereo Line-Amp goes to normal operation by setting LOPS bit to "0".
- (7) Enter power-save mode of Stereo Line-Amp: LOPS bit: "0" \rightarrow "1"
- (8) Power-down DAC, Programmable Filter and Stereo Line-Amp: PMDAL = PMDAR = PMPFIL = PMLO = PMRO bits = "1" → "0"
 - LOUT and ROUT pins fall down to VSS1. Fall time is 300ms(max.) at C=1µF and AVDD=1.8V.
- (9) Disable the path of "DAC → Stereo Line-Amp": DACL = DACR bits = "1" → "0"
- (10) Exit power-save mode of Stereo Line-Amp: LOPS bit = "1" → "0" LOPS bit should be set to "0" after LOUT and ROUT pins fall down.

■ Stop of Clock

1. PLL Master Mode

Figure 117. Clock Stopping Sequence (1)

<Example>

- (1) Power down PLL: PMPLL bit = "1" \rightarrow "0"
- (2) Stop an external MCKI clock.

2. PLL Slave Mode (BICK pin)

Figure 118. Clock Stopping Sequence (2)

- (1) Power down PLL: PMPLL bit = "1" \rightarrow "0"
- (2) Stop the external BICK and LRCK clocks.

3. EXT Slave Mode

Figure 119. Clock Stopping Sequence (3)

<Example>

(1) Stop the external MCKI, BICK and LRCK clocks.

4. EXT Master Mode

Figure 120. Clock Stopping Sequence (4)

<Example>

(1) Stop MCKI clock. BICK and LRCK are fixed to "H" or "L".

■ Power down

Power supply current can be shut down (typ. $50\mu A$) by stopping clocks and setting PMVCM bit = "0" after all blocks except for VCOM are powered-down. Power supply current can be also shut down (typ. $1\mu A$) by stopping clocks and setting the PDN pin = "L". When the PDN pin = "L", the registers are initialized.

CONTROL SEQUENCE (PCM)

■ PCM I/F A(Baseband) to PCM I/F B(Bluetooth)

Note: PMSRx bit means PMSRAI, PMSRAO, PMSRBI and PMSRBO bits

Figure 121. Sequence of PCM I/F A to PCM I/F B

(Baseband RX to Bluetooth TX: SDTIA \rightarrow PCM I/F A \rightarrow SRCAI \rightarrow DATT-C \rightarrow MIX3 \rightarrow PCM I/F B \rightarrow SDTOB & Bluetooth RX to Baseband TX: SDTIB \rightarrow PCM I/F B \rightarrow BIVOL \rightarrow MIX2A \rightarrow MIX2C \rightarrow SRCAO \rightarrow PCM I/F A \rightarrow SDTOA)

- (1) After Power Up, PDN pin = "L" \rightarrow "H". "L" time of 1.5 μ s or more is needed to reset the AK4678.
- (2) Dummy command (Addr:00H, Data:00H) must be executed before control register is set. OVTMB, BIV2-0, SDOA/BD, FMTA/B1-0, LAWA/B1-0, BCKPA/B, MSBSA/B, CVL6-0, MX2A1-0, MX2C1-0, MXSB2-0, SBMX1-0 bits should be set during this period.
- (3) Power Up VCOM: PMVCM bit = "0" → "1" VCOM should first be powered up before the other block operates.
- (4) Power Up Internal Oscillator, SRCAI, SRCAO, SRCBI, SRCBO, PCM I/F A port and PCM I/F B port. PMSRBO=PMSRBI=PMPCMB=PMOSC=PMSRAO=PMSRAI=PMPCMA bits: "0" → "1" SDTOA(SDTOB) outputs data after power-down state is released by inputting SYNCA(SYNCB). This initial of SRCAO(SRCBO) is 164/fs2(164/fs3) for SDTOA(SDTOB) output enable after power-down state is released by inputting SYNCA(SYNCB).
- (5) Power down Internal Oscillator, SRCAI, SRCAO, SRCBI, SRCBO, PCM I/F A port and PCM I/F B port. PMSRBO=PMSRBI=PMPCMB=PMOSC=PMSRAO=PMSRAI=PMPCMA bits: "1" → "0"
- (6) Power Down VCOM: PMVCM bit = "1" → "0"

■ Receiver-Amp Output

Figure 122. Receiver-Amp Output Sequence

(Baseband Rx: SDTIA \rightarrow PCM I/F A \rightarrow SRCAI \rightarrow DATT-B \rightarrow MIX1R \rightarrow 5-Band EQ \rightarrow DATT-A \rightarrow DACR \rightarrow RCP/RCN)

<Example>

At first, audio clocks should be supplied according to "Clock Set Up" sequence. DAC and Receiver-Amp should be powered-up in consideration of VCOM rise time

- (1) Set up the format of PCM I/F A(FMTA1-0, LAWA1-0, BCKPA, MSBSA bits) and the path of "SDTIA → DAC → Receiver-Amp" (MX1R2-0 bits = "000" → "000", SRMXR1-0 bits = "00" → "01", DACRR bit = "0" → "1")
- (2) Power-up Internal Oscillator, MIX1 block and SRCAI: PMMIX = PMOSC= PMSRAI = PMPCMA bits = "0" → "1". The initial time of SRCAI is 164/fs2 after SYNCA clock is supplied.
- (3) Set up analog volume for Receiver-Amp (Addr: 10H, RCVG3-0 bits)
- (4) Enable 5-band Equalizer: 5EQ bit = "0" → "1" (Frequency Response and gain are selected by Addr = 50H-6EH.)
- (5) Set up the output digital volume (Addr: 1EH)

 After DAC is powered-up, the digital volume changes from default value (0dB) to the register setting value by the soft transition.
- (6) Enter power-save mode of Receiver-Amp: RCVPS bit = "0" → "1"

 After passing the initial time of SRCAI, the Receiver-Amp should enter power-save mode.
- (7) Power-up DAC, EQ and Receiver-Amp: PMDAR = PMEQ = PMRCV bits = "0" → "1" The RCN pin rises up to VCOM voltage after PMRCV bit is changed to "1".
- (8) Exit power-save mode of Receiver-Amp: RCVPS bit = "1" → "0"

 RCVPS bit should be set to "0" after the RCN pin rises up. Receiver-Amp goes to normal operation by setting RCVPS bit to "0".
- (9) Enter power-save mode of Receiver-Amp: RCVPS bit: "0" → "1"
- (10) Power-down DAC, EQ and Receiver-Amp: PMDAR = PMEQ = PMRCV bit = "1" → "0" Receiver-Amp becomes to power-down mode.
- (11) Disable 5-band Equalizer: 5EQ bit = "1" \rightarrow "0"
- (12) Power-down Internal Oscillator, MIX1 block and SRCAI: PMOSC = PMMIX = PMSRAI and PMPCMA bits = "1" → "0"
- (13) Exit power-save mode of Receiver-Amp: RCVPS bit = "1" → "0" RCVPS bit should be set to "0" after Receiver-Amp power-down.

PACKAGE

49pin CSP

■ Material & Lead finish

Package molding compound: Epoxy, Halogen (bromine and chlorine) free

Solder ball material: SnAgCuNi

MARKING

XXXX: Date code (4 digit) Pin #A1 indication

REVISION HISTORY

Date (Y/M/D)	Revision	Reason	Page/Line	Contents
12/04/20	00	First Edition		
12/05/14	01	Error	3, 5~8, 47,	Pin names were corrected.
		Correction	48, 130,	$LIN2/IN2+ \rightarrow LIN2/IN2-$
			152~154	$RIN2/IN2- \rightarrow RIN2/IN2+$
12/10/31	02	Specification	20	Switching Characteristics
		Change		External Slave Mode
				BICK Input Timing, Period:
				$312.5 \text{ns} \rightarrow 312.5 \text{ns} \text{ or } 1/(126 \text{fs}) \text{s}$
				Note 48 was added.
13/01/30	03	Description	37, 38, 39	■ PLL Mode
		Addition		A detailed description was added:
				Note 63 and Note 64 were added.
				Table 7 was added.
			40	■ PLL Master Mode
				The description was changed.

IMPORTANT NOTICE

- These products and their specifications are subject to change without notice.
 When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei Microdevices Corporation (AKM) or authorized distributors as to current status of the products.
- Descriptions of external circuits, application circuits, software and other related information contained in this document are provided only to illustrate the operation and application examples of the semiconductor products. You are fully responsible for the incorporation of these external circuits, application circuits, software and other related information in the design of your equipments. AKM assumes no responsibility for any losses incurred by you or third parties arising from the use of these information herein. AKM assumes no liability for infringement of any patent, intellectual property, or other rights in the application or use of such information contained herein.
- Any export of these products, or devices or systems containing them, may require an export license or other official
 approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange,
 or strategic materials.
- AKM products are neither intended nor authorized for use as critical components_{Note1} in any safety, life support, or
 other hazard related device or system_{Note2}, and AKM assumes no responsibility for such use, except for the use
 approved with the express written consent by Representative Director of AKM. As used here:
 - Note1) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.
 - Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.
- It is the responsibility of the buyer or distributor of AKM products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.