ผลการทดลอง Lab 1

ตอนที่ 1: การทดลองอ่านไฟล์ข้อมูล การแก้ปัญหา ข้อมูลหาย และการปรับช่วงค่าของข้อมูล แสดงข้อมูล เชิง กราฟ และ การจัดเตรียมรูปแบบข้อมูลเพื่อนำเข้าโมเดล

1. ขั้นตอนการทดลองในการนำเข้าข้อมูล

import lib

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   from mpl_toolkits.mplot3d import Axes3D
   import seaborn as sns
```

read data file

```
In [2]: df = pd.read_csv('watch_test2_sample.csv')
```

แปลงชนิดของข้อมูล และทำการcopyข้อมูลไว้เพื่อใช้งานในการplot gps จากค่าจริง

```
In [3]: df['uts'] = pd.to_datetime(df['uts'])
    df.sort_values('uts', inplace = True)
    df_copy = df.copy()
```

- In [1] ทำการ import library ที่จำเป็นต่อการทดลอง
- In [2] อ่านไฟล์จาก .csv โดยใช้ pandas แล้วเก็บลง df
- In [3] แปลง format ของ feature "uts" จาก string เป็น datetime และทำการ copy ข้อมูลไว้เพื่อใช้ งานในการplot GPS จากค่าจริง

กลุ่ม เด็กดีขี้เมา

[4]:	df													
[4]:		uts	accelerateX	accelerateY	accelerateZ	compass	gps.x	gps.y	gyro.x	gyro.y	gyro.z	heartrate	light	pressure
	0	2018-11-18 08:18:41+07:00	-3.957379	-14.204506	2.303692	355.85300	13.621563	100.369093	-1.304740	-2.642471	3.315061	117.0	12	1013.201
	1	2018-11-18 08:18:41+07:00	-3.957379	-14.204506	2.303692	355.85300	13.621563	100.369093	-1.304740	-2.642471	3.315061	117.0	12	1013.201
	2	2018-11-18 08:18:41+07:00	-3.957379	-14.204506	2.303692	355.85300	13.621563	100.369093	-1.304740	-2.642471	3.315061	117.0	12	1013.201
	3	2018-11-18 08:18:41+07:00	-3.957379	-14.204506	2.303692	355.85300	13.621563	100.369093	-1.304740	-2.642471	3.315061	117.0	12	1013.201
	4	2018-11-18 08:18:41+07:00	-3.957379	-14.204506	2.303692	355.85300	13.621563	100.369093	-1.304740	-2.642471	3.315061	117.0	12	1013.201
	6265	2018-11-18 16:09:04+07:00	0.480334	-8.700976	-4.669516	232.32242	13.553518	100.279728	0.065982	-0.058532	0.052147	63.0	0	1008.726
	6264	2018-11-18 16:09:04+07:00	0.480334	-8.700976	-4.669516	232.32242	13.553518	100.279728	0.065982	-0.058532	0.052147	63.0	0	1008.726
	6274	2018-11-18 16:09:04+07:00	0.480334	-8.700976	-4.669516	232.32242	13.553518	100.279728	0.065982	-0.058532	0.052147	63.0	0	1008.726
	6268	2018-11-18 16:09:04+07:00	0.480334	-8.700976	-4.669516	232.32242	13.553518	100.279728	0.065982	-0.058532	0.052147	63.0	0	1008.726
	6275	2018-11-18 16:09:04+07:00	0.480334	-8.700976	-4.669516	232.32242	13.553518	100.279728	0.065982	-0.058532	0.052147	63.0	0	1008.726

6276 rows × 13 columns

ln [4] นำข้อมูลมาแสดงผลเพื่อตรวจสอบความถูกต้องของ feature ใน table

2. ทำการลดปัญหาข้อผิดพลาดของข้อมูล

```
In [5]: df = df.drop duplicates(keep="first")
        df.info()
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 271 entries, 0 to 6273
        Data columns (total 13 columns):
                      271 non-null datetime64[ns, pytz.FixedOffset(420)]
        uts
        accelerateX 267 non-null float64
        accelerateY 267 non-null float64
        accelerateZ 267 non-null float64
                     270 non-null float64
        compass
                      271 non-null float64
        gps.x
                      271 non-null float64
        gps.y
        gyro.x
                      268 non-null float64
                      269 non-null float64
        gyro.y
                      269 non-null float64
        gyro.z
                      270 non-null float64
        heartrate
                       271 non-null int64
        light
                       269 non-null float64
        pressure
        dtypes: datetime64[ns, pytz.FixedOffset(420)](1), float64(11), int64(1)
        memory usage: 29.6 KB
     ln [5] ทำการลบข้อมูลที่มีค่าซ้ำซ้อน โดยเลือกเก็บข้อมูลชุดแรกที่เจอ
In [6]: df = df.fillna(df.median())
        df.info()
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 271 entries, 0 to 6273
        Data columns (total 13 columns):
                     271 non-null datetime64[ns, pytz.FixedOffset(420)]
        uts
        accelerateX 271 non-null float64
        accelerateY 271 non-null float64
        accelerateZ 271 non-null float64
       compass
                     271 non-null float64
                      271 non-null float64
        gps.x
                      271 non-null float64
        gps.y
                      271 non-null float64
        gyro.x
                      271 non-null float64
        gyro.y
                      271 non-null float64
        gyro.z
       heartrate
                      271 non-null float64
       light
                      271 non-null int64
       pressure
                      271 non-null float64
        dtypes: datetime64[ns, pytz.FixedOffset(420)](1), float64(11), int64(1)
       memory usage: 29.6 KB
```

ln [6] จัดการข้อมูลที่เป็น NaN โดยใช้ค่า median ของแต่ละ feature

60010113 คณิศร พิทักษ์วงศ์, 60010479 ธีระสาร มินทะขัด

	<pre>df = df.set_index('uts').interpolate(method="nearest") df</pre>													
Out[8]:		accelerateX	accelerateY	accelerateZ	compass	gps.x	gps.y	gyro.x	gyro.y	gyro.z	heartrate	light	pressure	
	uts													
	2018-11-18 08:18:41+07:00	-3.957379	-14.204506	2.303692	355.85300	13.621563	100.369093	-1.304740	-2.642471	3.315061	117.0	12	1013.20100	
	2018-11-18 08:19:03+07:00	-0.038236	-1.156625	1.883101	355.85300	13.621482	100.369133	1.873036	2.521149	-1.295162	81.0	12	1013.16500	
	2018-11-18 08:19:45+07:00	1.906998	-4.361242	-4.358852	351.80853	13.621563	100.369088	-0.676847	-3.687540	1.123822	104.0	10	1013.21800	
	2018-11-18 08:20:13+07:00	-0.265259	-10.149148	3.042116	354.06730	13.621562	100.369103	-0.437397	1.558026	0.047890	122.0	10	1013.20795	
	2018-11-18 08:20:33+07:00	-2.098175	-11.195846	1.754056	354.06730	13.621545	100.369100	-2.849995	-1.562282	3.178840	78.5	11	1013.20600	
	2018-11-18	4.803340	0.050184	-8.263658	225.21982	13.551022	100.280217	-0.031927	-0.094716	0.037248	66.0	0	1008.64700	

In [8] ทำการแทรกข้อมูลในช่วงที่หายไปด้วยค่าใกล้เคียง โดยก่อนแทรกต้องกำหนด index เป็น feature ของ uts เพราะ ข้อมูลถูกเก็บแบบ timestamp ต้องแทรกด้วยช่วงเวลา

[9]:	<pre>#mva df = df.rolling("38 df</pre>	s").mean()										
	08:20:13+07:00	-0.200208	-10.143140	3.042110	334.00730	10.02 1002	100.000100	-0.401001	1.000020	0.047030	122.0	10.0	1013.2073
	2018-11-18 08:20:33+07:00	-2.098175	-11.195846	1.754056	354.06730	13.621545	100.369100	-2.849995	-1.562282	3.178840	78.5	11.0	1013.2060
	2018-11-18 16:07:32+07:00	4.803340	0.050184	-8.263658	225.21982	13.551022	100.280217	-0.031927	-0.094716	0.037248	66.0	0.0	1008.6470
	2018-11-18 16:07:58+07:00	1.780343	-6.609970	2.081448	228.24623	13.552975	100.280140	-1.199382	0.211781	-0.054275	70.0	99.0	1008.6379
	2018-11-18 16:08:19+07:00	0.399084	-8.364026	-5.357756	230.59320	13.553595	100.279633	-0.019156	-0.062789	0.100037	66.0	114.0	1008.725
	2018-11-18 16:08:42+07:00	0.745593	-8.820463	-5.106835	232.32242	13.553518	100.279728	0.013835	0.034055	0.017028	57.0	44.0	1008.693
	2018-11-18 16:09:04+07:00	0.480334	-8.700976	-4.669516	232.32242	13.553518	100.279728	0.065982	-0.058532	0.052147	63.0	0.0	1008.726
	271 rows × 12 columns												

ln [9] กิด noise ของข้อมูลด้วยการ moving average ทุก ๆ timestamp ที่ 3 วินาที

60010113 คณิศร พิทักษ์วงศ์, 60010479 ธีระสาร มินทะขัด

1	<pre>#scaler means = df.mean() stds = df.std()</pre>												
	<pre>df = (df - means) df</pre>	/ stds											
Out[11]:		accelerateX	accelerateY	accelerateZ	compass	gps.x	gps.y	gyro.x	gyro.y	gyro.z	heartrate	light	pressure
	uts												
	2018-11-18 08:18:41+07:00	-1.118282	-2.036701	-0.353763	2.096929	1.876887	1.872687	-1.750671	-3.573744	4.089767	0.513937	-1.065275	0.077559
	2018-11-18 08:19:03+07:00	-0.342711	0.672244	-0.448671	2.096929	1.876873	1.872688	2.391790	3.445797	-1.622874	-0.048798	-1.065275	0.076974
	2018-11-18 08:19:45+07:00	0.042237	0.006915	-1.857185	2.061940	1.876887	1.872687	-0.932167	-4.994435	1.374548	0.310727	-1.075608	0.077836
	2018-11-18 08:20:13+07:00	-0.387637	-1.194745	-0.187136	2.081481	1.876887	1.872688	-0.620026	2.136505	0.041335	0.592095	-1.075608	0.077672
	2018-11-18 08:20:33+07:00	-0.750358	-1.412056	-0.477790	2.081481	1.876884	1.872688	-3.765023	-2.105312	3.920973	-0.087877	-1.070442	0.077641
	2018-11-18 16:07:32+07:00	0.615403	0.922796	-2.738315	0.966798	1.864411	1.870558	-0.091467	-0.110269	0.028148	-0.283271	-1.127276	0.003507
	2018-11-18 16:07:58+07:00	0.017173	-0.459956	-0.403913	0.992980	1.864757	1.870556	-1.613329	0.306389	-0.085261	-0.220745	-0.615764	0.003360
	2018-11-18 16:08:19+07:00	-0.256168	-0.824126	-2.082590	1.013284	1.864866	1.870544	-0.074819	-0.066867	0.105952	-0.283271	-0.538262	0.004776
	2018-11-18 16:08:42+07:00	-0.187597	-0.918889	-2.025969	1.028244	1.864853	1.870546	-0.031813	0.064785	0.003092	-0.423955	-0.899937	0.004255
	2018-11-18 16:09:04+07:00	-0.240089	-0.894082	-1.927287	1.028244	1.864853	1.870546	0.036164	-0.061080	0.046610	-0.330166	-1.127276	0.004792

ln [10], [11] ทำการ Normalization ด้วย standardized Norm

3. แสดงข้อมูลในรูปกราฟ

ln [12] แก้ index กลับเป็นแบบเคิม แล้ว plot graph โดยแกน x เป็นแกนของ uts และ แกน y เป็น feature ที่เหลือ

```
In [13]: fig = plt.figure(figsize=(24, 8))
    ax = fig.add_subplot(1, 2, 1, projection='3d')
    ax.scatter(df['accelerateX'],df['accelerateX'],s=20,edgecolor='k')
    ax.set xlabel('x')
    ax.set ylabel('z')
    ax.view_init(30, -30)
    ax = fig.add_subplot(1, 2, 2, projection='3d')
    ax.scattre(df['gyro.x'],df['gyro.y'],df['gyro.z'],s=20,edgecolor='k')
    ax.set xlabel('x')
    ax.set ylabel('x')
    ax.set ylabel('x')
    ax.set ylabel('z')
    ax.set ylabel('z')
    ax.view_init(30, -30)
```

ln [13] แสดงกราฟข้อมูลความสัมพันธ์ระหว่างคู่ features ด้วย 2D Scatter Pair Plot หรือ 2D sns.jointplot หรือ 3D Scatter Plot เพื่อดูความสัมพันธ์ของข้อมูลเชิง 3 มิติ (accelerateX, accelerateY, accelerateZ) หรือ (gyro.x, gyro.y, gyro.z)

60010113 คณิศร พิทักษ์วงศ์, 60010479 ธีระสาร มินทะขัด

```
In [14]: map_im = plt.imread('map.png')
    fig, ax = plt.subplots(figsize=(14,14))
    BBox = [100.2559,100.3486,13.5383,13.6124]
    ax.scatter(df_copy['gps.y'], df_copy['gps.x'], zorder=1, alpha=0.5, c='r', s=10)
    ax.set_title('Plotting Spatial Data on Map')
    ax.set_xlim(BBox[0], BBox[1])
    ax.set_ylim(BBox[2], BBox[3])
    ax.imshow(map_im, zorder=0, extent=BBox, aspect='auto')
```


ln [14] แสดงข้อมูลเชิงพิกัด Geolocation ของ ข้อมูล (gps.x, gps.y)

4. ขั้นตอนการจัดเตรียมข้อมูลเพื่อนำเข้าโมเดล

```
In [16]: columns = ['accelerateX', 'accelerateY', 'accelerateZ', 'compass', 'heartrate']
    arr = df[columns].to_numpy()
    arr.shape
```

Out[16]: (271, 5)

```
In [17]: sns.heatmap(arr)
```

Out[17]: <matplotlib.axes._subplots.AxesSubplot at 0x136debc50>

ln [16] สร้าง table ที่มีข้อมูล 5 Features

[accelerateX, accelerateY, accelerateZ, compass, heartrate]

ln [17] น้ำ array ที่สร้างจาก ln [16] มา plot เป็น heatmap

```
In [18]: timestep = 3
    stride = 1
    data = []
    for i in range(0, len(df)-timestep+1, stride):
        data.append(df[columns].iloc[i: i+timestep].to_numpy())
```

```
In [19]: data = np.array(data)
  data.shape
```

```
Out[19]: (269, 3, 5)
```

ln [18] จัดเรียงข้อมูล time series โดยต้องการตัด ข้อมูลตาม time series เงื่อนใบ time step ที่ 3 และ time stride ที่ 1

ln [19] ทำข้อมูลใน ln [18] เป็น array 3 มิติ ที่มี 5 feature โดยใช้ array จาก ln [16]

```
In [20]: data
Out[20]: array([[[-1.11828156, -2.03670093, -0.35376317, 2.09692929,
                   0.51393742],
                 [-0.34271073, 0.67224354, -0.4486707, 2.09692929,
                  -0.0487981 ],
                 [ 0.04223724, 0.00691484, -1.85718468, 2.06193985,
                   0.31072737]],
                [[-0.34271073, 0.67224354, -0.4486707, 2.09692929,
                  -0.0487981 ],
                 [0.04223724, 0.00691484, -1.85718468, 2.06193985,
                   0.31072737],
                 [-0.3876371, -1.19474507, -0.18713573, 2.08148088,
                   0.59209513]],
                [[0.04223724, 0.00691484, -1.85718468, 2.06193985,
                   0.31072737],
                 [-0.3876371, -1.19474507, -0.18713573, 2.08148088,
                   0.59209513],
                 [-0.75035831, -1.41205597, -0.47779004, 2.08148088,
                  -0.08787695]],
                . . . ,
                [[0.61540298, 0.92279609, -2.73831488, 0.96679796,
                  -0.28327123],
                 [0.01717307, -0.45995626, -0.40391315, 0.99297999,
                  -0.22074506],
                 [-0.25616838, -0.82412577, -2.08259004, 1.01328405,
                  -0.28327123]],
                [[0.01717307, -0.45995626, -0.40391315, 0.99297999,
                  -0.22074506],
                 [-0.25616838, -0.82412577, -2.08259004, 1.01328405,
                  -0.28327123],
                 [-0.18759656, -0.91888925, -2.02596911, 1.02824384,
                  -0.42395511]],
```

ln [20] แสดงผลลัพธ์จาก ln [19]

60010113 คณิศร พิทักษ์วงศ์, 60010479 ธีระสาร มินทะขัด

Out[23]: <matplotlib.axes._subplots.AxesSubplot at 0x12d62af10>

ln [21] ปรับ array จาก ln [19] ให้เป็น 2 มิติ

ln [23] นำ array ที่ปรับแล้วจาก ln [21] มา plot เป็น heatmap