Lecture 6 Exercises

Isabel Fulcher 8/14/2018

Install packages

```
library(matrixStats)
library(knitr)
library(tidyverse)
library(reshape2)
```

Population Mean Example

Suppose you are interested in comparing the properties of the following 3 estimators for the maen μ for n iid draws $X_1, ..., X_n$ with $X_i \sim f(x)$

- Sample mean, T^1
- Sample 15% trimmed mean mean, T^2
- Sample median, T^3

How would you expect the estimators to compare if the distribution of X_i is N(1,16)?

Step 1: Conduct the simulation

```
#Set the seed
set.seed(123456)
#Set up simulation parameters and truth
B = 500 #number of replicates
true.mu = 1 #true population mean
samp.size = 100 #sample size
#Create a function to loop or apply over
simulate <- function(n,mu,b){</pre>
  #generate data
  samp <- rnorm(n, mean=true.mu, sd=4)</pre>
  #calculate relevant quantities
  mean <- mean(samp)</pre>
  mean_trim <- mean(samp,trim=0.15)</pre>
  med <- median(samp)</pre>
  #return results
  return(c(mean,mean_trim,med))
}
#Simulate 500 times
# Option 1: use sapply
```

```
out.sapply <- sapply(1:B,simulate,n=samp.size,mu=true.mu) #this returns a 3xB matrix
# Option 2: use a for loop
out.for <- matrix(NA,B,3) #this will store results in a Bx3 matrix
for (b in 1:B){
   out.for[b,] <- simulate(n=samp.size,mu=true.mu,b)
}</pre>
```

Step 2: Calculate the simulation quantities for each estimator

```
#OPTION 1: BASE R
# Mean
sim.mean <- colMeans(out.for)</pre>
# Bias
sim.bias <- colMeans(out.for-true.mu)</pre>
# Relative bias
sim.rel.bias <- colMeans(out.for-true.mu)/true.mu</pre>
# Standard deviation
sim.sd <- colSds(out.for)</pre>
# Mean squared error
sim.mse <- sim.bias^2 + sim.sd^2 #bias^2 + variance</pre>
# Combine all together
df.results <- data.frame(rbind(sim.mean,sim.bias,sim.rel.bias,sim.sd,sim.mse))</pre>
#OPTION 2: TIDYVERSE
df.out <- data.frame(out.for)</pre>
df.out %<>% rename(mean=X1, trimmed mean = X2, median=X3) %>%
  melt() %>% group_by(variable) %>%
  summarise(sim.mean=mean(value), sim.bias=mean(value)-true.mu,
             sim.rel.bias=(mean(value)-true.mu)/true.mu,
             sim.sd = sd(value),
            sim.mse = (mean(value)-true.mu)^2 + sd(value)^2) #one command!
```

No id variables; using all as measure variables

Step 3: Present your results

	mean	trimmed mean	median
sim.mean	1.016	1.022	1.034
sim.bias	0.016	0.022	0.034
sim.rel.bias	0.016	0.022	0.034
sim.sd	0.404	0.422	0.508

	mean	trimmed mean	median
sim.mse	0.164	0.178	0.260

Simulation exercise

library(MASS)

What happens if I exclude a covariate from my model? This follows from the first question on slide 6,

$$E[Y|X_1, X_2] = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

$$E[Y|X_1] = \alpha_0 + \alpha_1 X_1$$

The goal of this exercise is to say when $\hat{\alpha}_1$ is unbiased for β_1 .

- 1. Write a function that takes in b, n, Σ , λ , β_0 , β_1 , and β_2 and performs the following analysis:
- Generate an $n \times 2$ matrix containing the predictors X_1 and X_2 from a $MVN(0_{2\times 1}, \Sigma_{2\times 2})$ where $\Sigma_{2\times 2}$ is the covariance matrix (the MASS package has a function called myrnorm)
- Generate an outcome vector with n observations $\mathbf{y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \boldsymbol{\epsilon}$ where $\epsilon_i \sim N(0, \lambda^2)$ and X_1 and X_2 come from above
- Fit the unadjusted model $E[Y \mid X_1] = \alpha_0 + \alpha_1 X_1$
- Return the coefficient estimates from the unadjusted model, i.e. $\hat{\alpha}_0$ and $\hat{\alpha}_1$

```
gen.func <- function(b,n,Sigma,lambda,b0,b1,b2){
  #only need b if you are going to use sapply in part 2

beta <- c(b0,b1,b2)
  X <- cbind(1,MASS::mvrnorm(n,rep(0,2),Sigma))
  Y <- X%*%beta + rnorm(n,0,lambda)

fit <- lm(Y ~ X[,2])
  beta.hat <- coefficients(fit)

return(beta.hat)
}</pre>
```

- 2. Use your function to repeat the above analysis B=1000 times with $n=500, \lambda=1, \beta_0=2, \beta_1=4$, for the four scenarios:
- Scenario 1: $\beta_2 = 2$ and

$$\Sigma = \begin{bmatrix} 2 & 0.3 \\ 0.3 & 2 \end{bmatrix}$$

• Scenario 2: $\beta_2 = 0$ and

$$\Sigma = \begin{bmatrix} 2 & 0.3 \\ 0.3 & 2 \end{bmatrix}$$

• Scenario 3: $\beta_2 = 2$ and

$$\Sigma = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

• Scenario 4: $\beta_2 = 0$ and

$$\Sigma = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

```
#Parameter values
B=1000
n=500
lambda=1
beta0=2
beta1=4
#Scenario 1
Sigma1 = matrix(c(2, .3, .3, 2), 2, 2)
beta2= 2
scenario1 <- sapply(1:B,gen.func,n=n,Sigma=Sigma1,lambda=lambda,</pre>
                     b0=beta0,b1=beta1,b2=beta2)
#Scenario 2
beta2= 0
scenario2 <- sapply(1:B,gen.func,n=n,Sigma=Sigma1,lambda=lambda,</pre>
                     b0=beta0,b1=beta1,b2=beta2)
#Scenario 3
Sigma2 = matrix(c(2,0,0,2),2,2)
beta2= 2
scenario3 <- sapply(1:B,gen.func,n=n,Sigma=Sigma2,lambda=lambda,</pre>
                     b0=beta0,b1=beta1,b2=beta2)
#Scenario 4
beta2= 0
scenario4 <- sapply(1:B,gen.func,n=n,Sigma=Sigma2,lambda=lambda,</pre>
                     b0=beta0,b1=beta1,b2=beta2)
```

3. For all scenarios, compute the bias of the coefficient estimates of α_0 and α_1 . Create a table with these results (columns should be scenarios).

```
#Calculate bias
truth = c(beta0,beta1)
bias1 <- rowMeans(scenario1)-truth
bias2 <- rowMeans(scenario2)-truth
bias3 <- rowMeans(scenario3)-truth
bias4 <- rowMeans(scenario4)-truth

#Construct dataframe for table
table <- cbind(t(t(bias1)),t(t(bias2)),t(t(bias3)),t(t(bias4)))
colnames(table) <- paste("Scenario",1:4)
row.names(table) <- c("alpha0","alpha1")

#Print table
kable(table,digits=3,align=rep('c', 4))</pre>
```

	Scenario 1	Scenario 2	Scenario 3	Scenario 4
alpha0	-0.004	0.000	0.001	0.002
alpha1	0.297	-0.001	-0.002	0.000

4. Using a boxplot, plot the coefficient estimates for α_1 for each scenario. Indicate the true value of β_2 on the plot.

```
#Reformat dataframe
alpha1 <- cbind(scenario1[2,],scenario2[2,],scenario3[2,],scenario4[2,])
colnames(alpha1) <- paste("Scenario",1:4)
alpha1 %>% melt() -> alpha1

#Boxplot
ggplot(alpha1,aes(x=Var2,y=value)) + geom_boxplot() +
    geom_hline(yintercept=truth[2],col="red") + theme_bw() +
    labs(y="Estimate",x="")
```


5. Under which scenarios is $\hat{\alpha}_1$ unbiased for β_1 ? Any other observations? $\hat{\alpha}_1$ seems to be unbiased for β_1 in Scenarios 2,3, and 4 as the bias is all close to zero. In other words, $\hat{\alpha}_1$ is biased for β_1 when X_2 is correlated with X_1 and X_2 has an effect on the outcome (i.e. $\beta_2 \neq 0$). In the boxplot, it seems that the standard deviation of $\hat{\alpha}_1$ in Scenario 3 is greater than the other unbiased scenarios (2 and 4).