Lecture 05: Image Mappings / Homographies

Partitioned Matrices

A partitioned matrix, or a block matrix, is a matrix M that has been constructed from other smaller matrices. These smaller matrices are called blocks or sub-matrices of M

For instance, if we partition the below 5×5 matrix as follows

$$L = \begin{pmatrix} 1 & 0 & 1 & 2 & 3 \\ 0 & 1 & 1 & 2 & 3 \\ \hline 2 & 3 & 9 & 9 & 9 \\ 2 & 3 & 9 & 9 & 9 \\ 2 & 3 & 9 & 9 & 9 \end{pmatrix},$$

then we can define the matrices

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, C = \begin{pmatrix} 2 & 3 \\ 2 & 3 \\ 2 & 3 \end{pmatrix}, D = \begin{pmatrix} 9 & 9 & 9 \\ 9 & 9 & 9 \\ 9 & 9 & 9 \end{pmatrix}$$

and write $\,L\,$ as

$$L = \left(\begin{array}{cc} A & B \\ C & D \end{array} \right), \quad \text{or} \ \ L = \left(\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right).$$

http://planetmath.org/encyclopedia/PartitionedMatrix.html

Yin, MST Spring, 2012

Partitioned Matrices

$$\begin{bmatrix} x' \\ \underline{y'} \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & t_x \\ \sin \theta & \cos \theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ \underline{y} \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} p' \\ p' \\ 1 \end{bmatrix} = \begin{bmatrix} R & t \\ 1x2 & 1x1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2x1 \\ p \\ 1x1 \\ 1 \end{bmatrix} \quad \text{matrix form}$$

$$p' = Rp + t$$

equation form

10

9

Another Example (from last time)
$$\begin{pmatrix} X \\ Y \\ Z \\ \hline 1 \end{pmatrix} = \begin{pmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ \hline 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} U \\ V \\ \hline W \\ \hline 1 \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{P_C} \\ \mathbf{Ix1} \\ 1 \end{pmatrix} = \begin{pmatrix} \mathbf{R} & \mathbf{T} \\ \mathbf{Rx3} & \mathbf{Ix1} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{P_W} \\ \mathbf{Ix1} \\ 1 \end{pmatrix}$$

$$\mathbf{P_C} = \mathbf{R} \, \mathbf{P_W} + \mathbf{T}$$

Yin, MST Spring, 2012	C 2	р Т	-C	20
Summary of 2D Transformations				
Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$egin{bmatrix} \left[egin{array}{c c} I & t \end{array} ight]_{2 imes 3} \end{array}$	2	orientation $+\cdots$	
rigid (Euclidean)	$\left[\begin{array}{c c} R \mid t\end{array}\right]_{2 imes 3}$	3	lengths $+\cdots$	\Diamond
similarity	$\begin{bmatrix} sR \mid t \end{bmatrix}_{2 \times 3}$	4	$angles + \cdots$	\Diamond
affine	$\left[\begin{array}{c}A\end{array} ight]_{2 imes 3}$	6	$\text{parallelism} + \cdots$	
projective	$\left[\begin{array}{c}H\end{array} ight]_{3 imes 3}$	8	straight lines	
from R.Szeliski				

Why do we care? Planar Homographies

Review: Perspective Matrix Equation

(Camera Coordinates)

$$x = f \frac{X}{Z}$$
$$y = f \frac{Y}{Z}$$

(Camera Coordinates)
$$\begin{aligned}
x &= f \frac{X}{Z} \\
y &= f \frac{Y}{Z}
\end{aligned}$$

$$\begin{bmatrix}
x' \\
y' \\
z'
\end{bmatrix} = \begin{bmatrix}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix} \begin{bmatrix}
X \\
Y \\
Z \\
1
\end{bmatrix}$$

$$p = M_{\text{proj}} \cdot P_{\text{C}}$$

Yin, MST Spring, 2012

Review: Film to Pixel Coords

In general, just think of this as a 2D affine transformation from film coords (x,v) to

$$\mathbf{u} = \mathbf{M}_{int} \mathbf{P}_{C} = \mathbf{M}_{aff} \mathbf{M}_{proj} \mathbf{P}_{C}$$

Projection of Planar Points
$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \sim \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} p \\ q \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \sim \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ r_{31} & r_{32} & t_z \end{bmatrix} \begin{bmatrix} p \\ q \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \sim \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ r_{31} & r_{32} & t_z \end{bmatrix} \begin{bmatrix} p \\ q \\ 1 \end{bmatrix}$$

Projection of Planar Points (cont)

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \sim \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ r_{31} & r_{32} & t_z \end{bmatrix} \begin{bmatrix} p \\ q \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \sim \begin{bmatrix} fr_{11} & fr_{12} & ft_x \\ fr_{21} & fr_{22} & ft_y \\ r_{31} & r_{32} & t_z \end{bmatrix} \begin{bmatrix} p \\ q \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \sim \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} p \\ q \\ 1 \end{bmatrix}$$
 Homography H (planar projective transformation)

Yin, MST Spring, 2012

Projection of Planar Points (cont)

 $\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \sim \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} p \\ q \\ 1 \end{bmatrix}$ Homography H (planar projective transformation)

Important: For planar surfaces, 3D to 2D perspective projection reduces to a 2D to 2D transformation.

Important^2: This transformation is INVERTIBLE!

Special Case: Frontal Plane

31

What if the planar surface is perpendicular to the optic axis (Z axis of camera coord system)?

Then world rotation matrix simplies:

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \sim \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p \\ q \\ 0 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} \cos \theta - \sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Yin, MST Spring, 2012

Special Case: Frontal Plane

So the homography for a frontal plane simplies:

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \sim \begin{bmatrix} fr_{11} & fr_{12} & ft_x \\ fr_{21} & fr_{22} & ft_y \\ r_{31} & r_{32} & t_z \end{bmatrix} \begin{bmatrix} p \\ q \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \sim \begin{bmatrix} f\cos\theta & -f\sin\theta & ft_x \\ f\sin\theta & f\cos\theta & ft_y \\ 0 & 0 & t_z \end{bmatrix} \begin{bmatrix} p \\ q \\ 1 \end{bmatrix}$$

Similarity Transformation!

Two Practical Issues

37

How to estimate the homography given four or more point correspondences (least squares / RANSAC : next week)

How to (un)warp image pixel values to produce a new picture (next week)