Unidad I: Lógica proposicional

Lógica proposicional: Tautologías, contradicciones y consecuencia lógica

Clase 04 - Matemáticas Discretas (IIC1253)

Prof. Miguel Romero

Tautologías

Definición:

Una fórmula φ es una tautología si para cada valuación σ se cumple $\sigma(\varphi) = 1$.

Ejercicio:

¿Cuáles de las siguientes fórmulas son tautologías?

- $p \vee \neg p$
- $p \land (p \rightarrow q)$ $(p \land (p \rightarrow q)) \rightarrow q$

¿Cómo se ve la tabla de verdad de una tautología?

Contradicciones

Definición:

Una fórmula φ es una contradicción si para cada valuación σ se cumple $\sigma(\varphi) = 0.$

Ejercicio:

¿Cuáles de las siguientes fórmulas son contradicciones?

- $p \land \neg p$
- $p \land (p \rightarrow q)$

¿Cómo se ve la tabla de verdad de una contradicción?

Ejercicios

Demuestre las siguientes propiedades:

- 1. Una fórmula φ es contradicción si y sólo si φ **no** es satisfacible.
- 2. Una fórmula φ es tautología si y sólo si $\neg \varphi$ no es satisfacible.

Tautologías y equivalencia

Recordemos la definición de equivalencia entre fórmulas:

Definición:

Dos fórmulas φ y ψ son **equivalentes** si para **cada** valuación σ , se cumple $\sigma(\varphi) = \sigma(\psi)$.

Podemos definir la noción de equivalencia en términos de tautologías:

Proposición:

Dos fórmulas φ y ψ son equivalentes si y sólo si $\varphi \leftrightarrow \psi$ es tautología.

Ejercicio: demuestre la proposición.

Conjuntos de fórmulas y satisfacibilidad

Sea Σ un **conjunto** de fórmulas en L(P).

Decimos que una valuación σ satisface a Σ si:

para cada fórmula $\varphi \in \Sigma$, se tiene que $\sigma(\varphi) = 1$.

Notación: $\sigma(\Sigma) = 1$

Comentarios:

■ Sea $\Sigma = \{\varphi_1, \dots, \varphi_n\}$ un conjunto finito y σ una valuación.

$$\sigma(\Sigma) = 1$$
 si y sólo si $\sigma(\bigwedge_{i=1}^{n} \varphi_i) = 1$.

¿Qué pasa cuando Σ es infinito?

Consecuencia lógica

Definición:

Una fórmula φ es **consecuencia lógica** de un conjunto de fórmulas Σ , si para **cada** valuación σ tal que $\sigma(\Sigma) = 1$, se tiene que $\sigma(\varphi) = 1$.

Notación:

- Si φ es consecuencia lógica de Σ , escribimos $\Sigma \vDash \varphi$.
- lacksquare Es el conjunto de premisas y φ es la conclusión.

Consecuencia lógica: ejemplos

¿Es este razonamiento válido?

Si hay luna llena, entonces Joaquín es feliz.

Hay luna llena y está lloviendo.

Por lo tanto, Joaquín es feliz.

Variables proposicionales:

p = "Hay luna llena"

q = "Joaquín es feliz"

r = "Está lloviendo"

Consecuencia lógica: ejemplos

¿Es este razonamiento válido?

$$\frac{p \to q}{p \land r}$$

¿Se cumple la siguiente consecuencia lógica?

$$\left\{\,p\to q,\,p\wedge r\,\right\} \;\vDash\; q$$

р	q	r	$p \rightarrow q$	$p \wedge r$	q
0	0	0	1	0	0
0	0	1	1	0	0
0	1	0	1	0	1
0	1	1	1	0	1
1	0	0	0	0	0
1	0	1	0	1	0
1	1	0	1	0	1
1	1	1	1	1	1

Consecuencia lógica: ejemplos

¿Es este razonamiento válido?

$$\frac{p \to q}{p \lor r}$$

¿Se cumple la siguiente consecuencia lógica?

$$\{p \rightarrow q, p \lor r\} \models q$$

			1		
р	q	r	$p \rightarrow q$	$p \vee r$	q
0	0	0	1	0	0
0	0	1	1	1	0
0	1	0	1	0	1
0	1	1	1	1	1
1	0	0	0	1	0
1	0	1	0	1	0
1	1	0	1	1	1
1	1	1	1	1	1
_	_	-	_	_	-

Consecuencias lógicas: ejemplos

¿Cuáles de las siguientes consecuencias lógicas son ciertas?

- $[p] \models p \lor q$
- $[p, q] \models p \land q$
- $p \land q \models p \lor q$
- $\{p \lor q\} \models p \land q$

(modus ponens)

(modus tollens)

(demostración por casos)

Satisfacibilidad de un conjunto de fórmulas

Un conjunto de fórmulas Σ es satisfacible si existe una valuación σ tal que $\sigma(\Sigma) = 1$. En caso contrario, decimos que Σ es inconsistente.

Ejemplos:

¿Cuáles de los siguientes conjuntos son satisfacibles?

Pregunta:

Si Σ es inconsistente y φ es una fórmula arbitraria:

; Es cierto que $\Sigma \vDash \varphi$?

SI!

Consecuencia lógica vs satisfacibilidad

Teorema:

 $\Sigma \vDash \varphi$ si y sólo si $\Sigma \cup \{\neg \varphi\}$ es inconsistente.

Demostración (⇒):

Supongamos que $\Sigma \vDash \varphi$.

Por demostrar que (PDQ): $\Sigma \cup \{\neg \varphi\}$ es inconsistente.

Sea σ una valuación arbitraria. Debemos probar que $\sigma(\Sigma \cup \{\neg \varphi\}) = 0$.

Hay dos posibles casos:

1. $\sigma(\Sigma) = 0$:

Tenemos que existe una fórmula $\alpha \in \Sigma$ tal que $\sigma(\alpha) = 0$.

Como $\alpha \in \Sigma \cup \{\neg \varphi\}$, concluimos que $\sigma(\Sigma \cup \{\neg \varphi\}) = 0$.

2. $\sigma(\Sigma) = 1$:

Por hipótesis, tenemos que $\Sigma \vDash \varphi$.

Como $\sigma(\Sigma)$ = 1, se debe cumplir que $\sigma(\varphi)$ = 1.

Esto implica que $\sigma(\neg \varphi) = 0$, y concluimos que $\sigma(\Sigma \cup {\neg \varphi}) = 0$.

Consecuencia lógica vs satisfacibilidad

Teorema:

 $\Sigma \vDash \varphi$ si y sólo si $\Sigma \cup \{\neg \varphi\}$ es inconsistente.

Demostración (\Leftarrow):

Supongamos que $\Sigma \cup \{\neg \varphi\}$ es inconsistente.

Por demostrar que (PDQ): $\Sigma \vDash \varphi$

Sea σ una valuación arbitraria tal que $\sigma(\Sigma) = 1$.

Debemos probar que $\sigma(\varphi)$ = 1.

Como $\sigma(\Sigma)$ = 1, se debe cumplir que $\sigma(\neg \varphi)$ = 0.

(De lo contrario $\sigma(\Sigma \cup \{\neg \varphi\}) = 1$, y entonces $\Sigma \cup \{\neg \varphi\}$ sería satisfacible.

Esto contradice nuestra hipótesis.)

Concluimos que $\sigma(\varphi)$ = 1.

Ejercicios propuestos

1. Sea α una contradicción y Σ un conjunto de fórmulas. Demuestre que:

 Σ es inconsistente si y sólo si $\Sigma \vDash \alpha$.

2. Demuestre que si Σ = $\{\varphi_1, \dots, \varphi_n\}$ y φ es una fórmula:

 $\Sigma \models \varphi \text{ si y s\'olo si } (\varphi_1 \wedge \dots \wedge \varphi_n) \rightarrow \varphi \text{ es tautolog\'a}.$