Course project

Shams Methnani & Rodrigo Arias Mallo

November 26, 2017

1 Problem statement

1.1 Parameters

TODO: Describe params...

1.2 Decision variables

For the problem, 3 matrices are needed as decision variables. The last one is auxiliary.

Symbol	Type and size
P	Binary matrix of size $N \times H$.
W	Binary matrix of size $N \times H$.
T	Binary matrix of size $N \times H$.

The matrix P has the element $P_{n,h} = 1$ if the nurse n is at the hospital at hour n, also if is working, $W_{n,h} = 1$, otherwise 0. The matrix T is an auxiliary matrix, with the element $T_{n,h} = 1$ if the nurse n is travelling to the hospital at the hour h, otherwise 0.

1.3 Constraints

Constraint 1 At least demand_h nurses should be working at the hour h.

$$\forall h \in H, \sum_{n \in N} W_{n,h} \ge \operatorname{demand}_h$$

Constraint 2 Each working nurse should work at least minHours.

$$\forall n \in \mathbb{N}, \ \sum_{h \in H} W_{n,h} \ge \min \text{Hours} * \sum_{j \in H} T_{n,j}$$

Constraint 3 Each nurse should work at most maxHours.

$$\forall n \in \mathbb{N}, \sum_{h \in H} W_{n,h} \leq \text{maxHours}$$

 ${\bf Constraint \ 4} \quad {\bf Each \ nurse \ should \ work \ at \ most \ maxConsec \ consecutive \ hours. }$

$$\forall n \in N, \forall h \in [1, \text{nHours} - \text{maxConsec}],$$

$$\sum_{k \in [0, maxConsec]} W_{n, h+k} \leq \text{maxConsec}$$

Constraint 5 No nurse can stay at the hospital for more than maxPresence hours.

$$\forall n \in \mathbb{N}, \sum_{h \in H} P_{n,h} \leq \text{maxPresence}$$

Constraint 6 No nurse can rest for more than one consecutive hour.

$$\forall n \in \mathbb{N}, \, \forall h \in [1, \text{nHours-1}],$$

$$W_{n,h} + W_{n,h+1} \ge P_{n,h+1}$$

Constraint 7 Working nurses can travel to hospital at most once.

$$\forall n \in N$$
,

$$\sum_{h \in H} T_{n,h} \le 1$$