Statistical Inference Course Project, Part 1: Simulation Exercises

Sukanya Sen

6th April 2018

Overview::

The exponential distribution can be simulated in R with rexp(n, lambda) where lambda λ is the rate parameter. The mean of exponential distribution is $1/\lambda$ and the standard deviation is also $1/\lambda$. For this simulation, we set $\lambda=0.2$. In this simulation, we investigate the distribution of averages of 40 numbers sampled from exponential distribution with $\lambda=0.2$.

Simulations:

Let's do a thousand simulated averages of 40 exponentials.

```
set.seed(3)
lambda <- 0.2
num_sim <- 1000
sample_size <- 40
sim <- matrix(rexp(num_sim*sample_size, rate=lambda), num_sim, sample_size)
row_means <- rowMeans(sim)</pre>
```

Sample Mean versus Theoretical Mean:

The distribution of sample means is as follows.

```
# plot the histogram of averages
hist(row means, breaks=50, prob=TRUE,
     main="Distribution of averages of samples,
     drawn from exponential distribution with lambda=0.2",
     xlab="")
# density of the averages of samples
lines(density(row means))
# theoretical center of distribution
abline(v=1/lambda, col="red")
# theoretical density of the averages of samples
xfit <- seq(min(row means), max(row means), length=100)</pre>
yfit <- dnorm(xfit, mean=1/lambda, sd=(1/lambda/sqrt(sample size)))</pre>
lines(xfit, yfit, pch=22, col="red", lty=2)
# add Legend
legend('topright', c("simulation", "theoretical"), lty=c(1,2), col=c("black",
"red"))
```

Distribution of averages of samples, drawn from exponential distribution with lambda:

Sample Variance versus Theoretical Variance:

The distribution of sample means is centered at 4.9866197 and the theoretical center of the distribution is $\lambda^{-1} = 5$. The variance of sample means is 0.6257575 where the theoretical variance of the distribution is $\sigma^2/n = 1/(\lambda^2 n) = 1/(0.04 \times 40) = 0.625$.

Due to the central limit theorem, the averages of samples follow normal distribution. The figure above also shows the density computed using the histogram and the normal density plotted with theoretical mean and variance values. Also, the q-q plot below suggests the normality.

qqnorm(row_means); qqline(row_means)

Normal Q-Q Plot

Distribution:

Finally, let's evaluate the coverage of the confidence interval for $1/\lambda = \overline{X} \pm 1.96 \frac{s}{\sqrt{n}}$

The 95% confidence intervals for the rate parameter (λ) to be estimated ($\hat{\lambda}$) are $\hat{\lambda}_{low}=\hat{\lambda} \left(1-\frac{1.96}{\sqrt{n}}\right)$ agnd $\hat{\lambda}_{upp}=\hat{\lambda} \left(1+\frac{1.96}{\sqrt{n}}\right)$. As can be seen from the plot above, for selection of $\hat{\lambda}$ around 5, the average of the sample mean falls within the confidence interval at least 95% of the time. Note that the true rate, λ is 5.