

Livestream Các Skill Casio Trong Đại Số Tuyến Tính

1. Lý thuyết

Tính định thức có tham số m.

Phương pháp tham m=1000 rồi tính det như bình thường. Từ kết quả suy ngược lại m

Ví dụ 1: Tính định thức ma trận sau

$$AA = \begin{pmatrix} 1 & m & 2 \\ 0 & 3 & 2 \\ 2 & 1 & 0 \end{pmatrix}$$

Ví dụ 2: (Đề thi 201) Tìm m để ma trận A khả ngịch

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & -1 \\ 3 & 7 & m \end{pmatrix}$$

Ví dụ 3: (Đề thi 181) Tìm det của ma trận A TÂP

$$A = \begin{pmatrix} 1 & 1 & 2 & 1 \\ 2 & 3 & 5 & 4 \\ 4 & 6 & m & 3 \\ 6 & 5 & 8 & m \end{pmatrix}$$

2. Bài toán tìm m để hệ vô nghiệm, vô số nghiệm, có nghiệm duy nhất Cho phương trình tổng quát

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

Gọi A là ma trận

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

Mẹo nhanh làm các bài này

- Hệ phương trình vô nghiệm Det A # 0
- Hệ phương trình có vô số nghiệm hoặc vô nghiệm khi Det A = 0. Vậy để
 phân biệt thì sau khi tìm ra giá trị m thì t thể vào và dùng máy tính thử nhé
 hehe

Ví dụ (đề thi 191): Tìm m để hệ phương trình sau có nghiệm duy nhất

$$\begin{cases} 2x - 3y - z = 1\\ x - 2y + z = 2\\ 3x + y - mz = 3 \end{cases}$$

3. Dang toán liên phương trình thuần nhất

Ví dụ (đề thi 191): Tìm m để phương trình có nghiệm không tầm thường

TAILIE
$$\begin{cases} x - y - 2z = 0 \\ x + 2y - z = 0 \\ 2x + 2y - mz = 0 \end{cases}$$

Buổi livestream có thời gian giới hạn nên a chỉ nói 1 số dạng toán cơ bản, còn rất nhiều dạng toán khác liên quan tới tính định thức này nữa. Anh khẳng định 80% số câu trong đề thi giữa kì có thể chuyển về Det để làm vì vậy học được skill Casio này như "hổ mọc thêm cánh". Chúc các em học tốt

MỘT SỐ CÂU TRONG ĐỀ THI CÓ THỂ DÙNG DET ĐỂ LÀM

Câu 1. Cho ma trận
$$A = \begin{pmatrix} 1 & 2 & 1 \\ -1 & 1 & 2 \\ 2 & 3 & m \end{pmatrix}$$
. Tìm m để hạng của ma trận A bằng 2.

 A. $m = 1$.
 B. $m = 2$.
 C. $m = -1$.
 D. $m = 0$.

 Câu 2. Cho ma trận $A = \begin{bmatrix} 1 & 1 & -1 \\ m & 2 & 1 \\ 1 & 0 & -1 \end{bmatrix}$. Tìm m để A khả nghịch.

 A. $m = -1$.
 B. $m \neq -1$.
 C. $m = 1$.
 D. $m \neq 1$.

Lớp Giải Tích 1- Lớp Hóa Đại Cương – Lớp Vật Lí 1 tại HCMUT-CNCP

Câu 8. Tîm m hệ phương trình có nghiệm không tầm thường: $\begin{cases} x + 2y - z = 0 \\ 2x - 2y - mz = 0 \end{cases}$ **A.** m = 3. **B.** $m \neq 3$. **C.** m = 4. **Câu 10.** Tìm m để hệ phương trình sau có nghiệm duy nhất: $\begin{cases} 2x - 3y - z = 1 \\ x - 2y + z = 2 \\ 3x + y - mz = 3 \end{cases}$ **A.** $m \neq 18$. **B.** m = 18. Câu 14. Trong không gian với hệ trục Oxyz, cho ba mặt phẳng (P): x+2y-z=1, (Q): 2x+5y-3z=4, (R): 5x + 4y - mz = m. Tìm tất cả các giá trị thực của m để ba mặt phẳng không thể đồng quy tại 1điểm. **A.** ∄*m*. **B.** m = 1. **C.** m = -1. D. Ba câu đều sai. Câu 2. Tìm m để ma trận $A = \begin{bmatrix} 2 & 1 & 2 \\ 2 & 0 & m \end{bmatrix}$ có hạng bằng 3. **B.** $m \neq 4$. **C.** $m \neq -4$. **A.** $m \neq -1$. **D.** $m \neq 1$. $\begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix}$. Tim m để A khả nghịch. **D.** ∀*m*. **A.** m = 3. A. Ba câu kia sai. **B.** ∄*m*. Câu 14. Tìm m hệ phương trình sau vô nghiệm: $\begin{cases} 2x \\ 5x \end{cases}$ A. m = -3. B. $m \neq 3$. C. BỞI HỆMUZ-CNCI Câu 15. Tìm m để det(A) = 5 với A = $\mathbf{A}. \ \forall m.$ **B.** $m \neq 4$. **D.** ∄*m*. **Câu 1.** Tìm tất cả giá trị thực của m để $A = \begin{bmatrix} 0 & 2 & -1 \\ 3 & 7 & m \end{bmatrix}$ khả nghịch. A. Đáp án khác. **B.** $m \neq 5$. \mathbb{C} . $m \neq 3$. **D.** $m \neq -5$. **Câu 14.** Tìm *m* để hệ sau vô nghiệm $\begin{cases} 2x + 2y + 4z = 2 \end{cases}$ **A.** m = 1. **B.** $m \neq 1$. **D.** m = 2. **Câu 18.** Tìm m để r(A) = 2, biết $A = \begin{bmatrix} 2 & 5 & -3 \\ 3 & 7 & m \end{bmatrix}$. **D.** m = 0.

