MAC0444 — Sistemas Baseados em Conhecimento

Departamento de Ciência da Computação

Prof.ª Renata Wassermann

Lista 1

4 de setembro de 2019

Aluno Vitor Santa Rosa Gomes, 10258862, vitorssrg@usp.br Curso Bacharelado em Ciência da Computação, IME-USP

- 1. Para cada uma das três sentenças abaixo, encontre uma interpretação que faça a sentença falsa e as outras duas verdadeiras:
 - (a) $\forall x \forall y \forall z ((P(x, y) \land P(y, z) \rightarrow P(x, z)))$
 - **(b)** $\forall x \forall y ((P(x, y) \land P(y, x) \rightarrow x = y))$
 - (c) $\forall x \forall y ((P(a, y) \rightarrow P(x, b)))$

Interpretação I := $\langle \mathcal{D}, \mathcal{I} \rangle$	(a)	(b)	(c)
\mathcal{D}	$\mathcal{D} := \{1, 2, 3, 4\}$	$\mathcal{D} := \{1, 2, 3, 4\}$	$\mathcal{D} := \mathbb{R}$
$\mathcal{I}(P)$	{(1, 2), (2, 3)}	$\{(1, 1), (1, 2), (2, 1)\}$	≤
$\mathcal{I}(a)$	1	1	1
$\mathcal{I}(b)$	3	3	2
$\forall x, y, z ((P(x, y) \land P(y, z) \rightarrow P(x, z)))$	x = 1, y = 2, z = 3 X	✓	transitividade 🗸
$\forall x, y ((P(x, y) \land P(y, x) \rightarrow x = y))$	✓	$x = 1, \ y = 2 X$	antissimétrica 🗸
$\forall x, y ((P(a, y) \rightarrow P(x, b)))$	y = 4 ✓	<i>y</i> = 4 ✓	y = 1, x = 3 X

- 2. Tony, Mike e John pertencem ao Clube Alpino. Todo membro do Clube Alpino que não é esquiador é alpinista. Alpinistas não gostam de chuva e qualquer um que não goste de neve não é esquiador. Mike não gosta de nada que Tony gosta e gosta de tudo o que Tony não gosta. Tony gosta de chuva e de neve.
 - (a) Represente o conhecimento sobre o Clube Alpino e seus membros.

Constantes: $C = \{\text{Tony, Mike, John, chuva, neve}\}.$

Predicados \mathcal{P} :

- alpino(x): x é membro do clube Alpino;
- esquiador(x): x é esquiador;
- alpinista(x): x é alpinista;
- gosta(x, y): x gosta de y.

Base de conhecimento:

As constantes são distintas entre si (conhecimento sobre o domínio)	
alpino(Tony)	(1)
alpino(Mike)	(2)
alpino(John)	(3)
$\forall x (alpino(x) \rightarrow esquiador(x) \lor alpinista(x))$	(4)
$\forall x (alpinista(x) \rightarrow \neg gosta(x, chuva))$	(5)
$\forall x (\neg gosta(x, neve) \rightarrow \neg esquiador(x))$	(6)
$\forall y (gosta(Tony, y) \rightarrow \neg gosta(Mike, y))$	(7)
$\forall y (\neg gosta(Tony, y) \rightarrow gosta(Mike, y))$	(8)
gosta(Tony, chuva)	(9)
gosta(Tony, neve)	(10)

(b) Prove semanticamente que é uma consequência lógica deste conhecimento que existe um membro do Clube Alpino que é alpinista mas não esquiador.

$$\neg gosta(Mike, neve) \qquad (7[x \leftarrow Mike] \land 10 \vDash 11)$$

$$\neg esquiador(Mike) \qquad (6[y \leftarrow Mike] \land 11 \vDash 12)$$

$$alpinista(Mike) \qquad (2 \land 4[x \leftarrow Mike] \land 12 \vDash 13)$$

Existe um membro que é alpinista mas não é esquiador: Mike.

(c) Suponha que tenha sido dito apenas que Mike gosta de tudo o que Tony não gosta, mas não que Mike não gosta de nada que Tony gosta. Mostre que agora a prova acima não é mais possível (dê um contra-exemplo).

Considere a interpretação canônica $I := \langle \mathcal{D} := \mathcal{C}, \mathcal{I} \sim \mathcal{P} \rangle$, com \mathcal{I} obedecendo 1, 2, 3, 9 e 10 e mapeando $\mathcal{D} := \mathcal{C} \mapsto \mathcal{C}$ de forma idêntica.

Acrescente que Tony, Mike e John sejam esquiadores e gostem de neve.

Assim, concluem-se 4, 5, 6, 8 (contraexemplo).

١

(d) Use resolução com extração de resposta para descobrir quem é o membro do Clube Alpino que é alpinista mas não esquiador.

Base de conhecimento com a pergunta:

As constantes são distintas entre si (conhecimento sobre o domínio)	
alpino(Tony)	(1)
alpino(Mike)	(2)
alpino(John)	(3)
$\neg alpino(x) \lor esquiador(x) \lor alpinista(x)$	(4)
$\neg alpinista(x) \lor \neg gosta(x, chuva)$	(5)
$gosta(x, neve) \lor \neg esquiador(x)$	(6)
$\neg gosta(Tony, y) \lor \neg gosta(Mike, y)$	(7)
$gosta(Tony, y) \lor gosta(Mike, y)$	(8)
gosta(Tony, chuva)	(9)
gosta(Tony, neve)	(10)
$\neg alpino(x) \lor \neg alpinista(x) \lor esquiador(x) \lor resposta(x)$	(11)

Resolução:

¬gosta(Mike, neve)	$(7[y \leftarrow Mike] \land 10 \models 11)$
¬esquiador(Mike)	$(6[x \leftarrow Mike] \land 11 \models 12)$
esquiador(Mike) v alpinista(Mike)	$(2 \land 4[x \leftarrow Mike] \models 13)$
alpinista(Mike)	(12 ∧ 13 ⊨ 14)
\neg alpinista(Mike) \lor esquiador(Mike) \lor resposta(Mike)	$(3 \land 11[x \leftarrow Mike] \models 15)$
¬alpinista(Mike) ∨ resposta(Mike)	(12 ∧ 15 ⊨ 16)
resposta(Mike)	$(14 \wedge 15 \vDash 17)$