

Machine learning

Clustering: Basic Concepts and Algorithms

Mohammad-Reza A. Dehaqani

dehaqani@ut.ac.ir

Why cluster?

- Unsupervised method
- Labeling is expensive
- Gain insight into the structure of the data
- Find prototypes in the data

What is Cluster Analysis?

 Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

Quality: What Is Good Clustering?

- A good clustering method will produce high quality clusters with
 - high intra-class similarity
 - low inter-class similarity
- The quality of a clustering result depends on both the similarity measure used by the method and its implementation
- The quality of a clustering method is also measured by its ability to discover some or all of the hidden patterns

Dissimilarity/Similarity metric

- Dissimilarity/Similarity metric:
 - Similarity is expressed in terms of a **distance function**, typically metric: d(i, j)
- The definitions of **distance functions** are usually very different for interval-scaled, boolean, categorical, ordinal ratio, and vector variables.
- Weights should be associated with different variables based on applications and data semantics.
- It is hard to define "similar enough" or "good enough"
 - the answer is typically highly subjective.

Notion of a Cluster can be Ambiguous

Data Structures

Data matrix

$$\begin{bmatrix} x_{11} & \dots & x_{1f} & \dots & x_{1d} \\ \dots & \dots & \dots & \dots \\ x_{i1} & \dots & x_{if} & \dots & x_{id} \\ \dots & \dots & \dots & \dots \\ x_{n1} & \dots & x_{nf} & \dots & x_{nd} \end{bmatrix}$$

Dissimilarity matrix

\bigcap O				
d(2,1)	O			
d(3,1)	d(3,2)	0		
:	•	•		
d(n,1)	d(n,2)	•••	•••	0

Type of data in clustering analysis

- Interval-scaled variables
 - You cannot calculate a ratio between them (arbitrary zero-point)
 - e.g. temperature in Celsius
- Binary variables
- Nominal and ordinal
- Ratio variables
 - It has **all the characteristics** of an interval scale, in addition, to be able to calculate ratios (absolute zero or character of origin)
 - e.g. age, weight, height,
- Variables of mixed types

Type of data	Nominal	Ordinal	Interval	Ratio
The sequence of variables is established	_	Yes	Yes	Yes
Mode	Yes	Yes	Yes	Yes
Median	_	Yes	Yes	Yes
Mean	_	_	Yes	Yes
Difference between variables can be evaluated	_	_	Yes	Yes
Addition and Subtraction of variables	_	_	Yes	Yes
Multiplication and Division of variables	_	_	_	Yes
Absolute zero	_	_	_	Yes

NOMINAL Named variables

LEVELS OF MEASUREMENT

ORDINAL Named + ordered variables

INTERVAL Named + ordered + proportionate interval between variables

RATIO Named + ordered + proportionate interval between variables

+ Can accommodate absolute zero

Interval-valued variables

- Standardize data
 - Calculate the mean absolute deviation:

$$s_f = \frac{1}{n} \left[|x_{1f} - m_f| + |x_{2f} - m_f| + ... + |x_{nf} - m_f| \right]$$

where
$$m_f = \frac{1}{n} (x_{1f} + x_{2f} + ... + x_{nf})$$

Calculate the standardized measurement (z-score)

$$z_{if} = \frac{x_{if} - m_f}{s_f}$$

Using mean absolute deviation is more robust than using standard deviation

Similarity and Dissimilarity Between Objects

- Distances are normally used to measure the similarity or dissimilarity between two data objects
- Some popular ones include: Minkowski distance

$$d(i,j) = \sqrt[q]{\left| |x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + ... + |x_{id} - x_{jd}|^q \right|}$$

where $i=(x_{i1},\ x_{i2},\ ...,\ x_{id})$ and $j=(x_{j1},\ x_{j2},\ ...,\ x_{jd})$ are two p-dimensional data objects, and q is a positive integer

• If q = 1, d is Manhattan distance

$$d(i,j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + ... + |x_{id} - x_{jd}|$$

Similarity and Dissimilarity Between Objects

• If q = 2, d is Euclidean distance

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{id} - x_{jd}|^2)}$$

- Properties
 - $d(i,j) \geq 0$
 - d(i,i) = 0
 - d(i,j) = d(j,i)
 - $d(i,j) \leq d(i,k) + d(k,j)$
- Also, one can use weighted distance, Pearson correlation coefficient, or other dissimilarity measures

Binary Variables

A contingency table for binary data

• Distance measure for symmetric binary variables:

$$d(i,j) = \frac{b+c}{a+b+c+d}$$

Distance measure for asymmetric binary variables:

$$d(i,j) = \frac{b+c}{a+b+c}$$

• Jaccard coefficient (*similarity* measure for *asymmetric* binary variables):

$$sim_{Jaccard}(i,j) = \frac{a}{a+b+c}$$

Nominal Variables

- A generalization of the binary variable in that it can take more than
 2 states, e.g., red, yellow, blue, green
- Method 1: Simple matching
 - m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- Method 2: use a large number of binary variables
 - \bullet creating a **new binary variable** for each of the M nominal states

Ordinal Variables

- An ordinal variable can be discrete or continuous
 - Order is important, e.g., rank
- Can be treated like interval-scaled
 - replace x_{if} by their rank $r_{if} \in \{1,...,M_f\}$
 - map the range of each variable onto [0, 1] by replacing i-th object in the f-th variable by

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

compute the dissimilarity using methods for interval-

Variables of Mixed Types

- A database may contain all types of variables
 - symmetric binary, asymmetric binary, nominal, ordinal, interval and ratio
- One may use a weighted formula to combine their effects

$$d(i,j) = \frac{\sum_{f=1}^{d} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{d} \delta_{ij}^{(f)}}$$

f is binary or nominal:

$$d_{ii}^{(f)} = 0$$
 if $x_{if} = x_{if}$, or $d_{ii}^{(f)} = 1$ otherwise

- f is interval-based: use the normalized distance
- f is ordinal or ratio-scaled
 - compute ranks r_{if} and
 - and treat z_{if} as interval-scaled

$$Z_{if} = \frac{r_{if} - 1}{M_{f} - 1}$$

Types of Clusters: Well-Separated

17

A cluster is a set of points such that any point in a cluster is closer (or more similar) to every other point in the cluster than to any point not in the cluster.

3 well-separated clusters

Types of Clusters: Center-Based

- A cluster is a set of objects such that an object in a cluster is closer (more similar) to the "center" of a cluster, than to the center of any other cluster
- The center of a cluster is often a **centroid**, the **average** of all the points in the cluster, or a **medoid**, the most "**representative**" point of a cluster

4 center-based clusters

Types of Clusters: Contiguity-Based

- Contiguous Cluster (Nearest neighbor or Transitive)
 - A cluster is a set of points such that a point in a cluster is closer (or more similar) to one or more other points in the cluster than to any point not in the cluster.

8 contiguous clusters

Types of Clusters: Density-Based

- A cluster is a **dense region of points**, which is separated by low-density regions, from other regions of high density.
- Used when the clusters are irregular or intertwined, and when noise and outliers are present.

6 density-based clusters

Types of Clusters: Conceptual Clusters

- Shared Property or Conceptual Clusters
 - Finds clusters that **share some common property** or represent a particular concept.

2 Overlapping Circles

Types of Clusters: Objective Function

- Clusters Defined by an Objective Function
 - Finds clusters that minimize or maximize an objective function.
 - Enumerate **all possible ways** of dividing the points into clusters and evaluate the `goodness' of each potential set of clusters by using the given objective function. (**NP Hard**)
 - Can have global or local objectives.
 - Hierarchical clustering algorithms typically have local objectives
 - Partitional algorithms typically have global objectives

Types of Clusters: Objective Function Graph approach

- Map the clustering problem to a different domain and solve a related problem in that domain
 - Proximity matrix defines a weighted graph, where the nodes are the points being clustered, and the weighted edges represent the proximities between points
 - Clustering is equivalent to breaking the graph into connected components, one for each cluster
 - Want to minimize the edge weight between clusters and maximize the edge weight within clusters

Types of Clustering

- A clustering is a process to find a set of clusters
- Important distinction between hierarchical and partitional sets of clusters
- Partitional Clustering
 - A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset
- Hierarchical clustering
 - A set of nested clusters organized as a hierarchical tree
- Density based clustering
 - Discover clusters of **arbitrary** shape.
 - Clusters dense regions of objects separated by regions of low density

Hierarchical Clustering

Hierarchical Clustering

Dendrogram

One dataset that can be perfectly clustered using a hierarchy

Partitional Clustering

Hierarchical Clustering: Bottom-Up Agglomerative

- Clustering starts with each object in a separate cluster, and repeat:
 - Joins the most similar pair of clusters,
 - Update the similarity of the new cluster to others until there is only one cluster.
- Greedy less accurate but simple to implement (there is no way to revise clustering)

Bottom-up Agglomerative clustering

- Different algorithms differ in how the similarities are defined (and hence updated) between two clusters
- Single-Linkage
 - Nearest Neighbor: similarity between their closest members.

- Complete-Linkage
 - Furthest Neighbor: similarity between their furthest members.

- Centroid
 - Similarity between the centers of gravity

- Average-Linkage
 - Average similarity of all cross-cluster pairs

Single-Linkage Method

Euclidean Distance

Distance Matrix

Complete-Linkage Method

Euclidean Distance

••••	٠.,	c	d	
\boldsymbol{a}	, b	5	6	• .
(···		4)	

	c,d
a,b	•6

Distance Matrix

Single Link

Complete Link

Dendogram

- A Useful Tool for Summarizing Similarity Measurements
- Clustering obtained by cutting the dendrogram at a desired level: each connected component forms a cluster.
- The dissimilarity (or distance) between two objects in a dendrogram is represented as the height of the lowest internal node they share.

Simple example

Dendrograms

Single vs. Complete Linkage

- Shape of clusters
- Single-linkage:
 - allows anisotropic and non-convex shapes
- Complete-linkage:
 - assumes isotopic, convex shapes

Hierarchical Clustering: Top-Down divisive

- Starts with all the data in a single cluster, and repeat:
 - Split each cluster into two using a partition algorithm
 - Until each object is a separate cluster.
- More accurate than bottom-up but complex to implement

Computational Complexity

- All hierarchical clustering methods need to compute similarity of all pairs of n individual instances which is $O(n^2)$.
- At each iteration,
 - **Sort** similarities to find largest one $O(n^2 \log n)$.
 - Update similarity between merged cluster and other clusters.
 - Computing similarity to each other cluster can be done in constant time.
- we get $O(n^2 \log n)$ or $O(n^3)$ (if naïvely implemented)

Partitioning Algorithms

- Partitioning method: Construct a partition of n objects into a set of K clusters
 - Given: a set of objects and the number K
 - Find: a partition of K clusters that optimizes the chosen partitioning criterion
- Globally optimal: exhaustively enumerate all partitions
- Effective heuristic method: K-means algorithm

K-Means Algorithm

- Input:
 - Desired number of clusters, k
- Initialize:
 - the k cluster centers (randomly if necessary)
- Iterate:
 - 1. Assign points to the nearest cluster centers
 - 2. Re-estimate the k cluster centers (aka the centroid or mean), by assuming the memberships found above are correct.

$$\vec{\mu}_k = \frac{1}{\mathcal{C}_k} \sum_{i \in \mathcal{C}_k} \vec{x}_i$$

- Termination
 - If **none of the objects changed membership** in the last iteration, exit. Otherwise go to 1.

Algorithm: k-means, Distance Metric: Euclidean Distance

Algorithm: k-means, Distance Metric: Euclidean Distance

Algorithm: k-means, Distance Metric: Euclidean Distance

Algorithm: k-means, Distance Metric: Euclidean Distance

Algorithm: k-means, Distance Metric: Euclidean Distance

K-means Recap ...

Randomly initialize k centers

•
$$\mu^{(0)} = \mu_1^{(0)}, \mu_2^{(0)}, \mu_3^{(0)}, \dots, \mu_k^{(0)}$$

- Interate t=0, 1, 2, . . .
 - Classify: Assign each point $j \in \{1,2,...,m\}$ to nearest center

$$C^{(t)}(j) \leftarrow \arg\min_{i=1,\dots,k} \|\mu_i^{(t)} - x_j\|^2$$

• Recenter: μ_i becomes centroid if its points:

$$\mu_i^{(t+1)} \leftarrow \arg\min_{\mu} \sum_{j:C^{(t)}(j)=i} \|\mu - x_j\|^2 \qquad i \in \{1,\dots,k\}$$

• Equivalent to μ_i average of its points!

What is K-means optimizing? (Objective Function)

• **Potential function** (objective function) $F(\mu,C)$ of centers μ and point allocation C:

$$F(\mu, C) = \sum_{j=1}^{m} ||\mu_{C(j)} - x_j||^2$$

$$= \sum_{i=1}^{k} \sum_{j:C(j)=i} ||\mu_i - x_j||^2$$

- Optimal K-means:
 - $min_{\mu}min_{C}F(\mu,C)$

K-means algorithm

Optimize potential function:

$$\min_{\mu} \min_{C} F(\mu, C) = \min_{\mu} \min_{C} \sum_{i=1}^{k} \sum_{j:C(j)=i} ||\mu_{i} - x_{j}||^{2}$$

- K-means algorithm: (coordinate descent on F)
 - (1) Fix μ and optimize C; Expected cluster assignment
 - (2) Fix C, optimize μ ; Maximum likelihood for center

A sample of EM algorithm

Computational Complexity

- At each iteration,
 - **Computing distance** between each of the n objects and the K cluster centers is O(Kn).
 - Computing cluster centers: Each object gets added once to some cluster: O(n).
- Assume these two steps are each done once for I iterations: O(IKn).

Results are quite sensitive to seed selection

- Results can vary based on random seed selection.
- Some seeds can result in poor convergence rate, or convergence to sub-optimal clustering.
 - Try out multiple starting points (very important!!!)
- k-means++ algorithm of Arthur and Vassilvitskii
 - key idea: choose centers that are far apart
 - Choose one new data point at random as a new center, using a
 weighted probability distribution where a point x is chosen with
 probability proportional to squared distance from nearest
 center picked so far.

Two different K-means Clusterings

Importance of Choosing Initial Centroids (Case i)

Importance of Choosing Initial Centroids (Case i)

Importance of Choosing Initial Centroids (Case ii)

Importance of Choosing Initial Centroids (Case ii)

Other Issues

- Shape of clusters
 - Assumes isotropic, equal variance, convex clusters
- Sensitive to Outliers
 - use K-medoids (representative objects)

Number of clusters K

Objective function:
$$\sum_{j=1}^{m} ||\mu_{C(j)} - x_j||^2$$

Look for "Knee" in objective function

Density-based Approaches

- Why Density-Based Clustering methods?
 - Discover clusters of arbitrary shape.
 - Clusters Dense regions of objects separated by regions of low density
- Proposed by Ester, Kriegel, Sander, and Xu (KDD96)
- Relies on a density-based notion of cluster: A cluster is defined as a maximal set of density-connected points.
- Discovers clusters of arbitrary shape in spatial databases with noise

Density-Based Clustering

Basic Idea:

Clusters are dense regions in the data space, separated by regions of lower object density

Why Density-Based Clustering?

Density Based Clustering: Basic Concept

- Intuition for the formalization of the basic idea
 - For any point in a cluster, the local point density around that point has to exceed some threshold
 - The set of points from one cluster is spatially connected
- Local point density at a point p defined by two parameters
 - ε radius for the neighborhood of point p:
 - $N_{\varepsilon}(p) := \{q \text{ in data set } D \mid dist(p, q) \leq \varepsilon\}$
 - MinPts minimum number of points in the given neighborhood N(p)

ε-Neighborhood

• ϵ -Neighborhood – Objects within a radius of ϵ from an object.

$$N_{\varepsilon}(p): \{q \mid d(p,q) \leq \varepsilon\}$$

• "High density" - ε-Neighborhood of an object contains at least *MinPts* of objects.

 ϵ -Neighborhood of p ϵ -Neighborhood of qDensity of p is "high" (MinPts = 4)

Density of q is "low" (MinPts = 4)

Core, Border & Outlier

 $\varepsilon = 1$ unit, MinPts = 5

Given ε and MinPts, categorize the objects into three exclusive groups.

A point is a core point if it has more than a specified number of points (MinPts) within Eps These are points that are at the interior of a cluster.

A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point.

A noise point is any point that is not a core point nor a border point.

Density-Reachability

- Directly density-reachable
 - An object q is directly density-reachable from object p if p is a core object and q is in p's ε-neighborhood.

MinPts = 4

- q is directly density-reachable from p
- p is not directly density- reachable from q?
- Density-reachability is asymmetric.

Density-reachability

- Density-Reachable (directly and indirectly):
 - A point p is directly density-reachable from p₂;
 - p_2 is directly density-reachable from p_1 ;
 - p_1 is directly density-reachable from q;
 - $p \leftarrow p_2 \leftarrow p_1 \leftarrow q$ form a **chain**.

MinPts = 7

- p is (indirectly) density-reachable from q
- q is not density- reachable from p?

Density-Connectivity

66

- Density-reachable is not symmetric
 - not good enough to describe clusters
- Density-Connected
 - A pair of points p and q are density-connected if they are commonly density-reachable from a point o.
 - Density-connectivity is symmetric

DBSCAN: The Algorithm

- Arbitrary select a point p
- Retrieve all points density-reachable from p wrt Eps and MinPts.
- If p is a core point, a cluster is formed.
- If *p* is a border point, **no points are density- reachable from** *p* and DBSCAN visits the next point of the database.
- Continue the process until all of the points have been processed.

DBSCAN Algorithm: Example

Parameter

- $\varepsilon = 2 \text{ cm}$
- MinPts = 3


```
for each o \in D do

if o is not yet classified then

if o is a core-object then

collect all objects density-reachable from o

and assign them to a new cluster.

else

assign o to NOISE
```


DBSCAN Algorithm: Example Parameter

- $\varepsilon = 2 \text{ cm}$
- MinPts = 3


```
for each o \in D do
   if o is not yet classified then
      if o is a core-object then
          collect all objects density-reachable from o
          and assign them to a new cluster.
       else
          assign o to NOISE
```


DBSCAN Algorithm: Example

Parameter

- $\varepsilon = 2 \text{ cm}$
- MinPts = 3


```
for each o \in D do

if o is not yet classified then

if o is a core-object then

collect all objects density-reachable from o

and assign them to a new cluster.

else

assign o to NOISE
```

When DBSCAN Works Well

- Resistant to Noise
- Can handle clusters of different shapes and sizes

When DBSCAN Does NOT Work Well

Original Points

- Cannot handle Varying densities
- sensitive to parameters
- •Input parameters may be difficult to determine

(MinPts=4, Eps=9.92).

(MinPts=4, Eps=9.75)

What Is A Good Clustering?

- Internal criterion: A good clustering will produce high quality clusters in which:
 - the <u>intra-class</u> (that is, intra-cluster) similarity is high (low within distance)
 - the <u>inter-class</u> similarity is low high (high between distance)
 - The measured quality of a clustering depends on both the document representation and the similarity measure used

External criteria for clustering quality

- Quality measured by its ability to discover some or all of the hidden patterns or latent classes in gold standard data
- Assesses a clustering with respect to ground truth requires labeled data
- Assume documents with C gold standard classes, while our clustering algorithms produce K clusters, ω_1 , ω_2 , ..., ω_K with n_i members.

External Evaluation of Cluster Quality

• Simple measure: <u>purity</u>, the ratio between the dominant class in the cluster π_i and the size of cluster ω_i

$$Purity(\omega_i) = \frac{1}{n_i} \max_{j} (n_{ij}) \quad j \in C$$

Cluster II