♥ YOLO: You Only Look Once – Object Detection Algorithm

Introduction to Object Detection

- Object detection identifies and locates objects in images or videos.
- Applications include autonomous vehicles, surveillance, robotics, and augmented reality.
- Traditional methods: R-CNN, Fast R-CNN, Faster R-CNN.

What is YOLO?

- YOLO is a single-stage object detection algorithm.
- Processes the entire image with one neural network pass.
- Outputs bounding boxes and class probabilities simultaneously.

You Only Look Once (YOLO) is a series of real-time object detection systems based on convolutional neural networks. First introduced by Joseph Redmon et al. in 2015, YOLO has undergone several iterations and improvements, becoming one of the most popular object detection frameworks.

YOLO vs Traditional Methods

Feature	YOLO	R-CNN Family
Speed	Very fast (real-time)	Slower (multi-stage)
Architecture	Single neural network	Region proposal + classifier
Accuracy	Competitive	High but slower
Use Case	Real-time applications	High-precision tasks

YOLO Architecture

- Input image divided into an $S \times S$ grid.
- Each grid cell predicts:
 - Bounding boxes
 - o Confidence scores
 - Class probabilities
- Uses convolutional layers followed by fully connected layers.

Key Concepts

- **Bounding Box Regression**: Predicts coordinates of objects.
- Intersection over Union (IoU): Measures overlap between predicted and ground truth boxes.
- **Confidence Score**: Indicates probability of object presence.
- Non-Max Suppression: Removes duplicate detections.

YOLO Versions

Version	Highlights
YOLOv1	Introduced real-time detection
YOLOv2	Improved accuracy and speed
YOLOv3	Multi-scale predictions
YOLOv4	Optimized for speed and accuracy
YOLOv5+	Lightweight, modular, PyTorch-based

Advantages of YOLO

- **†** Real-time performance
- **Q** Unified architecture
- End-to-end training

Limitations

- Struggles with small objects
- Lower accuracy compared to two-stage detectors in some cases
- Sensitive to aspect ratio and object density

Applications

- Autonomous driving
- Retail analytics
- Medical imaging
- Surveillance systems
- Wildlife monitoring

Example Output

- Show sample image with bounding boxes and labels
- Highlight real-time detection speed (e.g., 45 FPS)

Conclusion

- YOLO revolutionized object detection with speed and simplicity.
- Continues to evolve with newer versions and community support.
- Ideal for real-time, resource-constrained environments.