NATIONAL UNIVERSITY OF SINGAPORE

CS3244 - MACHINE LEARNING (Semester 2: AY2019/20)

Time Allowed: 1 Hour 30 Minutes

INSTRUCTIONS TO CANDIDATES

- 1. This assessment paper contains **FOUR (4)** parts and comprises **FOURTEEN (14)** printed pages, including this page.
- 2. Answer **ALL** questions as indicated.
- 3. This is a **OPEN BOOK** assessment.
- 4. You are allowed to use NUS APPROVED CALCULATORS.
- 5. Please write your **Student Number** below. Do not write your name.

STUDENT NUMBER:
By ticking this box, I declare that I will adhere to the NUS code of student conduct nus.edu.sg/osa/resources/codeofstudentconduct), will not cheat, will all other rules for the assessments, and am aware that failure to comply may result in disciple against them.

EXAMINER'S USE ONLY		
Part	Part Mark Score	
I	10	
II	8	
III	12	
IV	10	
TOTAL	40	

In Part I, II, III, and IV, you will find a series of structured questions. For each structured question, give your answer in the reserved space in the script.

Part I

Concept Learning 1

(10 points) Structured questions. Answer in the space provided on the script.

1. (10 points) Let $Z = \{0, 1, ..., 10\}$. Consider the input instance space $X = \{(x_1, x_2)\}_{x_1, x_2 \in Z}$ consisting of integer points in the x_1, x_2 plane, and the hypothesis space H such that each hypothesis $h \in H$ is defined as

$$h(x_1,x_2) = \left\{ \begin{array}{ll} 1 & \text{if } a \leq x_1 \leq b \text{ and } c \leq x_2 \leq d, \\ 0 & \text{otherwise;} \end{array} \right.$$

where $a,b,c,d \in Z$. We represent hypothesis h in the form (a,b,c,d). For example, a typical hypothesis in H is (3,5,2,9). Note that for any $h=(a,b,c,d) \in H$, if a>b or c>d, then **no** input instance $(x_1,x_2) \in X$ satisfies h.

Let hypotheses h and h' be in the same hypothesis space H, i.e., $h, h' \in H$. We know that a hypothesis represents a set of input instances in X such that every input instance in this set satisfies this hypothesis.

Let us define a **new hypothesis space** H' that consists of all **differences** of the hypotheses in H. The **difference** $h \setminus h'$ of the hypotheses h and h' is defined as $h \setminus h'(x) = ((h(x) = 1) \land (h'(x) = 0))$ for all $x \in X$ and therefore represents the set difference of the sets of input instances represented by h and h'. For example, a typical hypothesis in H' is $(3, 5, 2, 9) \setminus (4, 4, 4, 6)$.

Trace the CANDIDATE-ELIMINATION algorithm (reproduced below in Fig. 1) for the **hypothesis space** H' given the sequence of positive $(c(x_1, x_2) = 1)$ and negative $(c(x_1, x_2) = 0)$ training examples from Table 1 below (i.e., show the sequence of S and G boundary sets). You only need to show the **semantically distinct** hypotheses in each boundary set.

- 1. $G \leftarrow$ maximally general hypotheses in H
- 2. $S \leftarrow$ maximally specific hypotheses in H
- 3. For each training example d
 - If d is a positive example
 - Remove from ${\cal G}$ any hypothesis inconsistent with d
 - For each $s \in S$ not consistent with d
 - * Remove s from S
 - * Add to S all minimal generalizations h of s s.t. h is consistent with d, and some member of G is more general than h
 - st Remove from S any hypothesis that is more general than another hypothesis in S
 - If d is a negative example
 - Remove from S any hypothesis inconsistent with d
 - For each $g \in G$ not consistent with d
 - * Remove q from G
 - * Add to G all minimal specializations h of g s.t. h is consistent with d, and some member of S is more specific than h
 - st Remove from G any hypothesis that is more specific than another hypothesis in G

Figure 1: CANDIDATE-ELIMINATION algorithm.

¹The notion of **semantically distinct** hypotheses was mentioned and explained informally on page 10 of the "Concept Learning" lecture slides. For a formal definition, the hypotheses h and h' are **semantically distinct** iff there exists some $x \in X$ satisfying $h \setminus h'$ or $h' \setminus h$, that is, $\exists x \in X \ (h \setminus h'(x) = 1) \lor (h' \setminus h(x) = 1)$.

Example	Input	Instance	Target Concept
	x_1	x_2	$c(x_1, x_2)$
1	6	3	1
2	8	7	0
3	4	7	1
4	2	1	0
5	3	9	0

Table 1: Positive $(c(x_1,x_2)=1)$ and negative $(c(x_1,x_2)=0)$ training examples for target concept c.

Solut	ion:	
G_0		
S_0	=	$\{(6,5,3,2) \setminus (0,10,0,10), (10,0,10,0) \setminus (0,10,0,10), \ldots\} = \{(6,5,3,2)\}$
		The above hypotheses in G_0 and S_0 are not semantically distinct.
G_1	=	
S_1	=	
\mathcal{D}_1		
S_2	=	
G_2	=	
G_3	=	
<u> </u>		
S_3	_	
\mathcal{D}_3	_	
S_4	=	
G_4	_	
G_4	_	

Solution:			
$S_5 =$			
$G_5 =$			

Part II

Neural Networks 1

(8 points) Structured questions. Answer in the space provided on the script.

- 1. (3 points) Fig. 2a below shows a network A of perceptron units with a hidden layer of two units, while Fig. 2b below shows a perceptron unit B. They are based on the following structure:
 - Network A of perceptron units and perceptron unit B have one (Boolean) output unit each for producing the output o_A and the output o_B , respectively.
 - There should be two input units (i.e., one input unit for each of the two (Boolean) input attributes x_1, x_2).
 - A Boolean is -1 if false, and 1 if true.
 - The activation function of every (non-input) unit is a **–1 to 1 step function** (refer to page 6 of the "Neural Networks" lecture slides), including that of the output unit.
 - The weights (i.e., hypothesis) of network A of perceptron units and the weights (i.e., hypothesis) of perceptron unit B are indicated in Fig. 2a and Fig. 2b, respectively.
 - A bias input is of value 1 and is not considered a hidden unit.

Figure 2: Perceptron networks: (a) network A of perceptron units, and (b) perceptron unit B.

Prove formally or disprove that the network A of perceptron units is *more general than or equal to* perceptron unit B.

- 2. (5 points) Fig. 3a below shows a network C of perceptron units with two hidden layers of two units each, while Fig. 3b below shows a network F of perceptron units with a hidden layer of two units. They are based on the following structure:
 - Networks C and F of perceptron units have one (Boolean) output unit each for producing the output o_C and the output o_F , respectively.
 - There should be four input units (i.e., one input unit for each of the four (Boolean) input attributes x_1, x_2, x_3, x_4).
 - A Boolean is -1 if false, and 1 if true.
 - The activation function of every (non-input) unit is a **–1 to 1 step function** (refer to page 6 of the "Neural Networks" lecture slides), including that of the output unit.
 - ullet The weights (i.e., hypothesis) of networks C and F of perceptron units are indicated in Fig. 3a and Fig. 3b, respectively.
 - A bias input is of value 1 and is not considered a hidden unit.

Figure 3: Perceptron networks: (a) network C of perceptron units, and (b) network F of perceptron units.

Prove formally or disprove that the network C of perceptron units is more general than or equal to network F of perceptron units.

Solution:	

Solution:	

Part III

Bayesian Inference

(12 points) Structured questions. Answer in the space provided on the script.

Fig. 4a and Fig. 4b below show perceptron units A and B. Fig. 4c below shows a network C of perceptron units with two hidden layers of two units each (i.e., same as that in Fig. 3a), while Fig. 4d below shows a network F of perceptron units with a hidden layer of two units (i.e., same as that in Fig. 3b). They are based on the following structure:

- Perceptron units A and B have one (Boolean) output unit each for producing the output o_A and the output o_B , respectively. Similarly, networks C and F of perceptron units have one (Boolean) output unit each for producing the output o_C and the output o_F , respectively.
- There should be four input units (i.e., one input unit for each of the four (Boolean) input attributes x_1, x_2, x_3, x_4).
- A Boolean is **-1 if false**, and **1** if true.
- The activation function of every (non-input) unit is a **-1 to 1 step function** (refer to page 6 of the "Neural Networks" lecture slides), including that of the output unit.
- The weights \mathbf{w}_A (i.e., hypothesis) of perceptron unit A and the weights \mathbf{w}_B (i.e., hypothesis) of perceptron unit B are indicated in Fig. 4a and Fig. 4b, respectively. The weights \mathbf{w}_C (i.e., hypothesis) of network C of perceptron units and the weights \mathbf{w}_F (i.e., hypothesis) of network F of perceptron units are indicated in Fig. 4c and Fig. 4d, respectively.
- A bias input is of value 1 and is not considered a hidden unit.

Figure 4: Perceptron networks: (a) perceptron unit A, (b) perceptron unit B, (c) network C of perceptron units, and (d) network F of perceptron units.

1. (6 points) One of the four perceptron networks in Fig. 4 above has been used to generate a dataset of 4 Boolean input attributes x_1, x_2, x_3, x_4 and a Boolean target output t_d with the following 3 noise-free training examples of the form $d = \langle (x_1, x_2, x_3, x_4), t_d \rangle$:

$$D = \{d_1 = \langle (-1, -1, -1, 1), 1 \rangle, d_2 = \langle (1, 1, -1, -1), 1 \rangle, d_3 = \langle (1, 1, 1, 1), -1 \rangle \}.$$

Suppose that the **prior beliefs** of hypotheses/weights \mathbf{w}_A , \mathbf{w}_B , \mathbf{w}_C , and \mathbf{w}_F are equal and they sum to 1.

Using Bayes' Theorem, calculate the posterior beliefs $P(\mathbf{w}_A|D)$, $P(\mathbf{w}_B|D)$, $P(\mathbf{w}_C|D)$, and $P(\mathbf{w}_F|D)$. Show the steps of your derivation. No marks will be awarded for not doing so.

We assume that the input instances $\mathbf{x}_d = (x_1, x_2, x_3, x_4)$ for $d \in D$ are fixed. Therefore, in deriving an expression for $P(D|\mathbf{w}_A)$, $P(D|\mathbf{w}_B)$, $P(D|\mathbf{w}_C)$, or $P(D|\mathbf{w}_F)$, we only need to consider the probability of observing the target outputs t_d for $d \in D$ for these fixed input instances \mathbf{x}_d for $d \in D$.

Furthermore, we assume that the training examples are conditionally independent given the hypothesis/weights of any perceptron network in Fig. 4 above.

Solution:	

Using the posterior beliefs calculated above, compute	the Bayes-optimal classification for the new input
instance $\mathbf{x}_{d_4} = (-1, -1, -1, -1)$. Show the steps of y	your derivation. No marks will be awarded for not
doing so.	

Solution:	
Boolean input	be of the four perceptron networks in Fig. 4 above has been used to generate another dataset of t attributes x_1, x_2, x_3, x_4 and a Boolean target output t_d with the following 3 noise-free training the form $d = \langle (x_1, x_2, x_3, x_4), t_d \rangle$:
D' =	$\{d_1 = \langle (-1, 1, -1, -1), 1 \rangle, d_2 = \langle (1, -1, -1, 1), 1 \rangle, d_3 = \langle (-1, -1, -1, -1), -1 \rangle \}.$
Suppose that t	the prior beliefs of hypotheses/weights \mathbf{w}_A , \mathbf{w}_B , \mathbf{w}_C , and \mathbf{w}_F are equal and they sum to 1.
	Theorem, calculate the posterior beliefs $P(\mathbf{w}_A D')$, $P(\mathbf{w}_B D')$, $P(\mathbf{w}_C D')$, and $P(\mathbf{w}_F D')$ is of your derivation. No marks will be awarded for not doing so.
also assume t	estion 1, we assume that the input instances $\mathbf{x}_d = (x_1, x_2, x_3, x_4)$ for $d \in D'$ are fixed. We that the training examples are conditionally independent given the hypothesis/weights of any twork in Fig. 4 above.
Solution:	

Solution:
sing the posterior beliefs calculated above, compute the Bayes-optimal classification for the new instance $\mathbf{x}_{d_4} = (-1, -1, -1, -1)$. Show the steps of your derivation. No marks will be awarded for soing so.
Solution:

Part IV

Neural Networks 2

(10 points) Structured questions. Answer in the space provided on the script.

1. (10 points) Cara has constructed a dataset of 4 Boolean input attributes x_1, x_2, x_3, x_4 and 4 Boolean target outputs $t_{k_1}, t_{k_2}, t_{k_3}, t_{k_4}$ with the following 4 training examples of the form $d = \langle (x_1, x_2, x_3, x_4), (t_{k_1}, t_{k_2}, t_{k_3}, t_{k_4}) \rangle$:

$$D = \{d_1 = \langle (1,0,0,0), (1,0,0,0) \rangle, d_2 = \langle (0,1,0,0), (0,1,0,0) \rangle, d_3 = \langle (0,0,1,0), (0,0,1,0) \rangle, d_4 = \langle (0,0,0,1), (0,0,0,1) \rangle \}.$$

Consider the network of perceptron units in Fig. 5 below with **only a hidden layer of one unit** based on the following **constraints**:

- There should be **only four (Boolean) output units** k_1, k_2, k_3, k_4 and **four input units** (i.e., one input unit for each of the four (Boolean) input attributes x_1, x_2, x_3, x_4).
- A Boolean is **0 if false**, and **1** if true.
- The activation function $\sigma(\cdot)$ of every (non-input) unit is a **0 to 1 step function**, including that of the output unit. That is,

$$\sigma(s) = \begin{cases} 1 & \text{if } s > 0, \\ 0 & \text{otherwise.} \end{cases}$$

This is **in contrast** to the activation function on page 6 of the "Neural Networks" lecture slides that is a -1 to 1 step function.

- The weights w_0, w_1, \dots, w_{12} (i.e., hypothesis) must be consistent with D and must take on one of the following values: -1, 0, 1.
- A bias input is of value 1 and is not considered a hidden unit.

Figure 5: Network of perceptron units.

Prove formally or disprove that no such network of perceptron units in Fig. 5 can be consistent with D.

Solution:

Solution:	

Solution:	

END OF PAPER _