Virtual Memory: ... as a tool for caching

VM as a Tool for Caching

- Conceptually, virtual memory is an array of N contiguous bytes stored on disk
- The contents of the array on disk are cached in *physical memory* (*DRAM cache*)
 - These cache blocks are called pages (size is P = 2^p bytes, e.g., 4KB)

DRAM Cache Organization

- DRAM cache organization driven by the enormous miss penalty
 - DRAM is about 10x slower than SRAM
 - Disk is about 10,000x slower than DRAM

Consequences

- Large page (block) size: typically 4 KB, sometimes 4 MB
- Fully associative (1 set!)
 - Any VP can be placed in any PP
 - Requires a "large" mapping function different from cache memories
- Highly sophisticated, expensive replacement algorithms
 - Too complicated and open-ended to be implemented in hardware
 - CSC 443
- Write-back rather than write-through

- A page table is an array of page table entries (PTEs) that maps virtual pages to physical pages.
 - Per-process kernel data structure in DRAM

- A page table is an array of page table entries (PTEs) that maps virtual pages to physical pages.
 - Per-process kernel data structure in DRAM

Virtual memory (disk)

VP 1

VP 2

VP 3

VP 4

VP 6

VP 7

- A page table is an array of page table entries (PTEs) that maps virtual pages to physical pages.
 - Per-process kernel data structure in DRAM

- A page table is an array of page table entries (PTEs) that maps virtual pages to physical pages.
 - Per-process kernel data structure in DRAM

Page Hit

Page hit: reference to VM word that is in physical memory (DRAM cache hit)

Page Hit

Page hit: reference to VM word that is in physical memory (DRAM cache hit)

Page Fault

 Page fault: reference to VM word that is not in physical memory (DRAM cache miss)

Page Fault

 Page fault: reference to VM word that is not in physical memory (DRAM cache miss)

Page miss causes page fault (an exception)

- Page miss causes page fault (an exception)
- Page fault handler selects a victim to be evicted (here VP 4)

- Page miss causes page fault (an exception)
- Page fault handler selects a victim to be evicted (here VP 4)

- Page miss causes page fault (an exception)
- Page fault handler selects a victim to be evicted (here VP 4)
- Offending instruction is restarted: page hit!

Allocating Pages

Allocating a new page (VP 5) of virtual memory.

Locality to the Rescue Again!

- Virtual memory seems terribly inefficient, but it works because of locality.
- At any point in time, programs tend to access a set of active virtual pages called the working set
 - Programs with better temporal locality will have smaller working sets
- If (working set size < main memory size)</p>
 - Good performance for one process after compulsory misses
- If (SUM(working set sizes) > main memory size)
 - Thrashing: Performance meltdown where pages are swapped (copied) in and out continuously