CIS 467 - Week 1

Chapters 1, 6 & 3 in Lemahieu text, Chapter 1 & 10 in Murach text

Introduction to Data Management

- Some definitions to get started and for future reference
 - Note: terminology varies across texts, platforms and applications concept is the same
- Database system basic elements

Database Design

- Use database specifications/real-world models to identify tables, columns and keys for a database
- (E)ER diagrams, translating ER diagrams to relational DB schema

Data Normalization

- Rules of data normalization
- Steps for normalizing database schema
- Concepts of "tidy" data, transforming raw data to processed data

Database Terminology

- Data
 - known, recorded facts
- Database
 - a collection of data
- Database System
 - "People, Processes/Technology & Data"
- Database Management System (DBMS)
 - software component(s) that support database system functionality

System Data: Origin to Retrieval for Analytics

Advantages to Using DBMS

- Data independence changes in data definitions can be made with minimal impact on applications using the data
- Concurrency control multiple users can access/update the same data in a supervised environment to avoid inconsistencies
- Data integrity can be programmatically monitored and enforced
- Reduce redundancy in data storage and in application development
- Backup data and data recovery; data security

Database Technology Evolution

Cloud Social Media Big Data Mobile Tech Internet of Things

2nd Platform

Client-Server LAN/Internet Web 1.0

1st Platform

Mainframe Minicomputers

Relational Database NOSQL NewSQL

Relational Database

Hierarchical Database

Client-Server Architecture

- Server software
 - Database management system (DBMS)
 - "Back-end" processing

- Client software
 - Application software
 - "Front-end" processing

Client-Server Architecture

- Server software
 - Database management system (DBMS)
 - "Back-end" processing

MySQL Server

- Client software
 - Application software
 - "Front-end" processing

Note on Accessing MySQL

If you have successfully installed both MySQL Workbench and MySQL Server, you should be able to go to Server > Server Status (in the tool menu) and see a screen like this, that shows the Server Status as "Running"

Scripts to Be Able to Run

create_databases.sql (on Blackboard under Week 1 or module 1)

Database Terminology in MySQL

- Database
 - a collection of data
- Schema
 - the internal structure (layout) of a database, including tables and the relationships between tables
- Table
 - A matrix of rows and columns containing datapoints
- Column/Row/Cell
 - Components of tables
- Key
 - A column in a table designated as a means of identifying rows in the table, used especially for making connections between tables

Example: Database Schema

```
Database model: exampledb
```

```
student (number, name, address, email)
course (number, name)
building (number, address)
```

Example: Database

Database: exampledb

<u>STUDENT</u>				
Number	Name	Address	Email	
0165854	Bart Baesens	1040 Market Street, SF	Bart.Baesens@kuleuven.be	
0168975	Seppe vanden Broucke	520, Fifth Avenue, NY	Seppe.vandenbroucke@kuleuven.be	
0157895	Wilfried Lemahieu	644, Wacker Drive, Chicago	Wilfried.Lemahieu@kuleuven.be	

COURSE			
Number	Name		
D0169A	Principles of Database Management		
DORO4A	Basic Programming		
D0T21A	Big Data & Analytics		

BUILDING			
Number	Address		
0600	Naamsestraat 69, Leuven		
0365	Naamsestraat 78, Leuven		
0589	Tiensestraat 115, Leuven		

Example: Table

Example: Relationship between Vendors & Invoices tables in AP database

- Primary key
 - Column(s) in a table that uniquely identify each row in that table
- Composite key
 - Keys that consist of two or more columns
- Foreign key
 - Column(s) in a table that refer to a primary key in another table

(Enhanced) Entity-Relationship Diagram

An EER diagram for the AP database

SQL = Structured Query Language

- SQL is both a standard for DDL (Data Definition Language) and DML (Data Manipulation Language)
- Used to write queries, i.e. describe which parts of a database to retrieve
- Basic SQL statement are the same for all "dialects" of SQL.
 - Knowing one version of SQL allows you to easily learn others
 - Some syntax modifications may need to be made if moving to another databse

The Anatomy of a SQL Statement

SELECT statement

KEYWORDS

Identifiers

Semi-colon

Comment

```
-- select invices with balances outstanding
SELECT vendor_name, invoice_number, invoice_date,
    line_item_amount, account_description
FROM vendors v
    JOIN invoices i
        ON v.vendor_id = i.vendor_id
    JOIN invoice_line_items li
        ON i.invoice_id = li.invoice_id
    JOIN general_ledger_accounts gl
        ON li.account_number = gl.account_number
WHERE invoice_total - payment_total - credit_total > 0
ORDER BY vendor_name, line_item_amount DESC;
```

SQL Best Practices

- Use ALL CAPS for keywords
- Use lowercase for other code, including table names and variables
- Use underscores to separate words in table/column names
- Start each clause on a new line
- Break long clauses into multiple lines, using indents
- Comment code for readability
- SQL note: white space (including line breaks, extra spaces and indents) does not affect the operation of the SQL code

SQL Readability

A SELECT statement that's difficult to read

```
select invoice_number, invoice_date, invoice_total,
payment_total, credit_total, invoice_total - payment_total -
credit_total as balance_due from invoices where
invoice_total - payment_total - credit_total > 0 order by
invoice_date
```

A SELECT statement that's coded with a readable style

White space (including line breaks, extra spaces and indents) does not affect the operation of the SQL code, but it does make the code much more readable

SQL Comment Syntax

A SELECT statement with a block comment

```
/*
Author: Joel Murach
Date: 8/22/2014
*/
SELECT invoice_number, invoice_date, invoice_total,
    invoice_total - payment_total - credit_total
    AS balance_due
FROM invoices
```

A SELECT statement with a single-line comment

```
-- The fourth column calculates the balance due
SELECT invoice_number, invoice_date, invoice_total,
    invoice_total - payment_total - credit_total
    AS balance_due
FROM invoices
```

Comments are lines within the code that are not executed by the system.

Why Data Management for Analytics?

- Any analysis project starts with the question: what do I want to know and what kind of data do I need/what form does the data have to be in?
- Very often, the limitations of what analysis is possible stem from the underlying design of the database.
- Within an organization, Business Analysts are often liaisons between IT and Management. Even when not doing the actual programming/database administration, it is very helpful to "speak the language" and understand the structure and possibilities.