Operational Semantics Part I

Jim Royer

CIS 352

February 12, 2019

References

- Andrew Pitts' Lecture Notes on Semantics of Programming Languages http://www.inf.ed.ac.uk/teaching/courses/lsi/sempl.pdf.
 We'll be following the Pitts' notes for a while and mostly using his notation.
- Matthew Hennessy's Semantics of programming languages:
 https:
 //www.scss.tcd.ie/Matthew.Hennessy/splexternal2015/LectureNotes/Notes14%20copy.pdf
 is very readable and very good.
- There are many of other good references in Hennessy's reading list: https://www.scss.tcd.ie/Matthew.Hennessy/splexternal2015/reading.php

Aexp, A little language for arithmetic expressions

Grammar

$$a ::= n$$
 $| (a_1 + a_2)$
 $| (a_1 - a_2)$
 $| (a_1 * a_2)$
 $n ::= \dots$

Syntactic categories

 $n \in$ Num Numerals $a \in$ Aexp Arithmetic expressions

Conventions

- Metavariables: n, a, b, w, x, etc.
- We write \[35\] for the numeral 35.

Examples

- 「2¬
- $(\lceil 2 \rceil + \lceil 5 \rceil)$
- $(((\lceil 2 \rceil + \lceil 5 \rceil) * \lceil 13 \rceil) \lceil 9 \rceil)$

Syntax

Concrete syntax

≈ phonemes, characters, words, tokens — the raw stuff of language

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, ...

Grammar

- ≈ collection of formation rules to organize parts into a whole. E.g.,
 - words into noun phrases, verb phrases, ..., sentences
 - key words, tokens, ... into expressions, statements, ..., programs

Abstract syntax

≈ a structure (e.g., labeled tree or data structure) showing how a "phrase" breaks down into pieces according to a specific rule.

Aexp's abstract syntax

Grammar

$$a ::= n$$
 $|(a_1 + a_2)|$
 $|(a_1 - a_2)|$
 $|(a_1 * a_2)|$

In Haskell

As a Parse Tree

What do **Aexp** expression mean?

$$a ::= n \mid (a_1 + a_2) \mid (a_1 - a_2) \mid (a_1 * a_2)$$

PLUS:
$$\frac{a_1 \Downarrow v_1}{(a_1 + a_2) \Downarrow v} (v = v_1 + v_2)$$

MINUS:
$$\frac{a_1 \Downarrow v_1}{(a_1 - a_2) \Downarrow v} (v = v_1 - v_2)$$

MULT:
$$\frac{a_1 \Downarrow v_1}{(a_1 * a_2) \Downarrow v} (v = v_1 * v_2)$$

NUM:
$$\frac{1}{n + v} (\mathcal{N}[n] = v)$$

Big-step rules

Notes

- $a \Downarrow v \equiv$ expression a evaluates to value v.
- \blacksquare \Downarrow is an evaluation relation.
- Upstairs assertions are called premises.
- Downstairs assertions are called conclusions.
- Parenthetical equations on the side are called side conditions.
- \mathcal{N} : numerals $\to \mathbb{Z}$. I.e., $\mathcal{N} \llbracket \neg -43 \rceil \rrbracket = -43$.
- The NUM_{BSS} rule is an example of an axiom.

Digression: Rules, 1

General Format for Rules

Name:
$$\frac{\text{premise}_1 \quad \cdots \quad \text{premise}_k}{\text{conclusion}}$$
 (side condition)

Example 1.

■ Modus Ponens:
$$\frac{p \implies q}{q}$$

■ Transitivity:
$$\frac{x \equiv y \quad y \equiv z}{x \equiv z}$$

■ PLUS:
$$\frac{a_1 \Downarrow v_1}{(a_1 + a_2) \Downarrow v} (v = v_1 + v_2)$$

Digression: Rules, 2

General Format for Rules

```
Name: \frac{\text{premise}_1 \quad \cdots \quad \text{premise}_k}{\text{conclusion}} (side condition)
```

Definition 2.

A rule with no premises is an axiom.

Definition 3.

A rule is *sound* if and only if the conclusion is true whenever the premises (and side-condition—if any) are true.

Ouestion

So an axiom is sound when ...?

Digression: Rules, 3

General Format for Rules

Name:
$$\frac{\text{premise}_1 \quad \cdots \quad \text{premise}_k}{\text{conclusion}}$$
 (side condition)

Proofs from gluing together rule applications

$$Num: \frac{}{ \begin{array}{c|c} \hline \text{Num: } \hline -2 & \text{Num: } \hline -5 & \text{Volum: } \hline \\ Plus: & \hline \end{array}} \underbrace{ \begin{array}{c|c} \hline \text{Num: } \hline -5 & \text{Volum: } \hline -13 & \text{Volum: } \hline \\ \hline \hline \end{array}}_{\text{Times: }} \underbrace{ \begin{array}{c|c} \hline (-2 & +5 & \text{Volum: } \hline (-13 & \text{Volum: } \hline -13 & \text{Volum: } \hline \\ \hline \end{array}}_{\text{Color of the points}} \underbrace{ \begin{array}{c|c} \hline (-2 & +5 & \text{Volum: } \hline -13 & \text{Volum: } \hline \\ \hline \end{array}}_{\text{Color of the points}} \underbrace{ \begin{array}{c|c} \hline (-2 & +5 & \text{Volum: } \hline -13 & \text{Volum: } \hline -13 & \text{Volum: } \hline \\ \hline \end{array}}_{\text{Color of the points}} \underbrace{ \begin{array}{c|c} \hline (-2 & +5 & \text{Volum: } \hline -13 & \text{Volum: } \hline -13 & \text{Volum: } \hline \\ \hline \end{array}}_{\text{Color of the points}} \underbrace{ \begin{array}{c|c} \hline (-2 & +5 & \text{Volum: } \hline -13 & \text{Volum: } \hline -13 & \text{Volum: } \hline \\ \hline \end{array}}_{\text{Color of the points}} \underbrace{ \begin{array}{c|c} \hline (-2 & +5 & \text{Volum: } \hline -13 & \text{Volum: } \hline -13 & \text{Volum: } \hline -13 & \text{Volum: } \hline \\ \hline \end{array}}_{\text{Color of the points}} \underbrace{ \begin{array}{c|c} \hline (-2 & +5 & \text{Volum: } \hline -13 & \text{Volum: } \hline -13 & \text{Volum: } \hline -13 & \text{Volum: } \hline \\ \hline \end{array}}_{\text{Color of the points}} \underbrace{ \begin{array}{c|c} \hline (-2 & +5 & \text{Volum: } \hline -13 & \text{Volum: } \hline -13 & \text{Volum: } \hline \\ \hline \end{array}}_{\text{Color of the points}} \underbrace{ \begin{array}{c|c} \hline (-2 & +5 & \text{Volum: } \hline -13 & \text{Volum: } \hline -13 & \text{Volum: } \hline \\ \hline \end{array}}_{\text{Color of the points}} \underbrace{ \begin{array}{c|c} \hline (-2 & +5 & \text{Volum: } \hline -13 & \text{Volum: } \hline -13 & \text{Volum: } \hline \\ \hline \end{array}}_{\text{Color of the points}} \underbrace{ \begin{array}{c|c} \hline (-2 & +5 & \text{Volum: } \hline -13 & \text{Volum: } \hline -13 & \text{Volum: } \hline -13 & \text{Volum: } \hline \end{array}}_{\text{Color of the points}} \underbrace{ \begin{array}{c|c} \hline (-2 & +5 & \text{Volum: } \hline -13 & \text{Volum: } \hline \end{array}}_{\text{Color of the points}} \underbrace{ \begin{array}{c|c} \hline (-2 & +5 & \text{Volum: } \hline -13 & \text{Volu$$

```
\begin{array}{c}
\vdots \\
((\lceil 2 \rceil + \lceil 5 \rceil) * \lceil 13 \rceil) & ?? \\
\downarrow \downarrow \downarrow \downarrow \\
\vdots \\
(\lceil 2 \rceil + \lceil 5 \rceil) & ?? \\
\hline
((\lceil 2 \rceil + \lceil 5 \rceil) * \lceil 13 \rceil) & ??
\end{array}
```

```
((\lceil 2 \rceil + \lceil 5 \rceil) * \lceil 13 \rceil) \downarrow ??
                                 \iiint
      ((\lceil 2 \rceil + \lceil 5 \rceil) * \lceil 13 \rceil)  \Downarrow ??
                                  ЩЩ
(\lceil 2 \rceil + \lceil 5 \rceil) \downarrow ?? \lceil 13 \rceil \downarrow 13
          ((\lceil 2 \rceil + \lceil 5 \rceil) * \lceil 13 \rceil) \downarrow ??
```

```
((\lceil 2 \rceil + \lceil 5 \rceil) * \lceil 13 \rceil)  \Downarrow ??
                                  \iiint
(\lceil 2 \rceil + \lceil 5 \rceil) \Downarrow ?? \qquad \lceil 13 \rceil \Downarrow 13
       ((\lceil 2 \rceil + \lceil 5 \rceil) * \lceil 13 \rceil) \downarrow ??
                                  ЩЩ
(\lceil 2 \rceil + \lceil 5 \rceil) \downarrow ?? \lceil 13 \rceil \downarrow 13
         ((\lceil 2 \rceil + \lceil 5 \rceil) * \lceil 13 \rceil) \downarrow ??
```

```
((\lceil 2 \rceil + \lceil 5 \rceil) * \lceil 13 \rceil)  \Downarrow ??
                                  \iiint
(\lceil 2 \rceil + \lceil 5 \rceil) \Downarrow ?? \qquad \lceil 13 \rceil \Downarrow 13
        ((\lceil 2 \rceil + \lceil 5 \rceil) * \lceil 13 \rceil)  ??
                                  ЩЩ
(\lceil 2 \rceil + \lceil 5 \rceil) \Downarrow ?? \lceil 13 \rceil \Downarrow 13
          ((\lceil 2 \rceil + \lceil 5 \rceil) * \lceil 13 \rceil) \downarrow ??
```

The big-step semantics in Haskell

A Haskell version of the abstract syntax

```
data Aexp = Num Integer
| Add Aexp Aexp
| Sub Aexp Aexp
| Mult Aexp Aexp
```

The big-step semantics as an evaluator function

```
aBig (Add a1 a2) = (aBig a1) + (aBig a2)
aBig (Sub a1 a2) = (aBig a1) - (aBig a2)
aBig (Mult a1 a2) = (aBig a1) * (aBig a2)
aBig (Num n) = n
```

Do these rules make sense?

Theorem 4.

Suppose $e \in \mathbf{Aexp}$.

Then there is a unique integer v such that $e \downarrow v$.

Proof (by rule induction).

CASE: NUM. This is immediate.

CASE: PLUS.

By IH, there are unique v_1 and v_2 such that $a_1 \downarrow v_1$ and $a_2 \downarrow v_2$.

By arithmetic, there is a unique v such that $v = v_1 + v_2$.

Hence, there is a unique v such that $a_1 + a_2 \downarrow v$.

CASES: *MINUS* and *MULT*. These follow *mutatis mutandis*.

PLUS_{BSS}:
$$\frac{a_1 \Downarrow v_1}{(a_1 + a_2) \Downarrow v} (v = v_1 + v_2)$$
 ... NUM_{BSS}: $\frac{a_1 \Downarrow v}{n \Downarrow v} (\mathcal{N}[\![n]\!] = v)$

What do **Aexp** expression mean?

Small-step rules

$$a ::= n \mid (a_1 + a_2) \mid (a_1 - a_2) \mid (a_1 * a_2) \mid v$$

PLUS-1_{SSS}:
$$\frac{a_1 \rightarrow a'_1}{(a_1 + a_2) \rightarrow (a'_1 + a_2)}$$
PLUS-2_{SSS}:
$$\frac{a_2 \rightarrow a'_2}{(a_1 + a_2) \rightarrow (a_1 + a'_2)}$$
PLUS-3_{SSS}:
$$\frac{(v_1 + v_2) \rightarrow v}{(v_1 + v_2) \rightarrow v}$$

 NUM_{SSS} : $\frac{1}{n \to v} (\mathcal{N}[n] = v)$

Notes

- These are rewrite rules.
- We now allow values in expressions.
- $a \rightarrow a'$ is a transition.
- $a \rightarrow a' \equiv$ expression a evaluates (or rewrites) to a' in one-step.
- \mathbf{v} is a terminal expression.
- The rules for and * follow the same pattern as the +-rules.

Class exercise

Show:

$$(((\lceil 3 \rceil * \lceil 2 \rceil) + (\lceil 8 \rceil - \lceil 3 \rceil)) * (\lceil 5 \rceil - \lceil 2 \rceil))$$

$$\rightarrow \begin{cases} ((6 + (\lceil 8 \rceil - \lceil 3 \rceil)) * (\lceil 5 \rceil - \lceil 2 \rceil)) \\ (((\lceil 3 \rceil * \lceil 2 \rceil) + 5) * (\lceil 5 \rceil - \lceil 2 \rceil)) \\ (((\lceil 3 \rceil * \lceil 2 \rceil) + (\lceil 8 \rceil - \lceil 3 \rceil)) * 3) \end{cases}$$

Some full small-step derivations of transitions

$$MINUS_{3} \xrightarrow{(8-3) \to 5} PLUS_{2} \xrightarrow{(6+(8-3)) \to (6+5)} ((6+(8-3)) * (5-2)) \xrightarrow{\bullet} ((6+5) * (5-2))$$

$$MULT_1 \xrightarrow{PLUS_3 \xrightarrow{(6+5) \to 11}} ((6+5)*(5-2)) \to 11*(5-2)$$

$$MINUS_{3} \frac{}{(5-2) \to 3}$$

$$MULT_{2} \frac{}{(11*(5-2)) \to 11*3}$$

$$MULT_3 \xrightarrow{(11*3) \rightarrow 33}$$

The derivations show that the steps in the transition sequence below are legal (i.e., follow from the rules).

$$((6 + (8 - 3)) * (5 - 2))$$

$$\rightarrow$$

$$((6 + 5) * (5 - 2))$$

$$\rightarrow$$

$$11 * (5 - 2)$$

$$\rightarrow$$

$$11 * 3$$

$$\rightarrow$$

$$33$$

There is a lattice of transitions

Properties of operational semantics

Definition 5.

A transition system $(\Gamma, \rightsquigarrow, T)$ is **deterministic** when for all a, a_1 , and a_2 : If $a \rightsquigarrow a_1$ and $a \rightsquigarrow a_2$, then $a_1 = a_2$.

Theorem 6.

The big-step semantics for **Aexp** is deterministic.

The proof is an easy rule induction.

Theorem 7.

The given small-step semantics $(Aexp \cup \mathbb{Z}, \Rightarrow, \mathbb{Z})$ fails to be deterministic, **but** for all $a \in Aexp$ and $v_1, v_2 \in \mathbb{Z}$, if $a \Rightarrow^* v_1$ and $a \Rightarrow^* v_2$, then $v_1 = v_2$.

This proof is tricky because of the nondeterminism.

Very sketchy proof-sketch

Theorem 8.

The given small-step semantics ($\mathbf{Aexp} \cup \mathbb{Z}$, \Rightarrow , \mathbb{Z}) **fails** to be deterministic, **but** for all $a \in \mathbf{Aexp}$ and $v_1, v_2 \in \mathbb{Z}$, if $a \Rightarrow^* v_1$ and $a \Rightarrow^* v_2$, then $v_1 = v_2$.

Proof-sketch.

- The argument is by induction on the number of operators (i.e., +, -, and *) occurring in a.
- Base case: a is a numeral, so it hasn't any operators and is a terminal expression. Hence if $a \Rightarrow^* v$, then v = a is our only choice.
- **Induction step:** Suppose by induction the theorem is true for all expressions of n or fewer operators and suppose $a = a_1 + a_2$ has n + 1 many operators. (The arguments for $a = a_1 a_2$ and $a = a_1 * a_2$ will be similar.)

...more

Very sketchy proof-sketch, continued

Theorem 8.

The given small-step semantics ($\mathbf{Aexp} \cup \mathbb{Z}$, \Rightarrow , \mathbb{Z}) **fails** to be deterministic, **but** for all $a \in \mathbf{Aexp}$ and $v_1, v_2 \in \mathbb{Z}$, if $a \Rightarrow^* v_1$ and $a \Rightarrow^* v_2$, then $v_1 = v_2$.

- The a_1 and a_2 are expressions with n or fewer operators.
- The last step in any transition sequence $a \Rightarrow^* v$ is of the form $v_1 + v_2 \Rightarrow v$ and justified by $PLUS_3$.
- In each step before the last, the final rule in the step-justification was either a $PLUS_1$ or a $PLUS_2$. [Clarify!]
- If we look at the premises of the $PLUS_1$'s, they give a small-step derivation $a_1 \Rightarrow^* v_1$. By the IH, we know that any \Rightarrow -reduction sequence for a_1 that ends with a value must produce v_1 .
- Similarly, $a_2 \Rightarrow^* v_2$ is also determined.
- So, it follows that if $a \Rightarrow^* v$, we must have $v = v_1 + v_2$.

 $a ::= n \mid (a_1 + a_2) \mid (a_1 - a_2) \mid (a_1 * a_2) \mid v$

A deterministic small-step semantics for **Aexp**

PLUS-1'_{SSS}:
$$\frac{a_1 \to a'_1}{a_1 + a_2 \to a'_1 + a_2}$$
PLUS-2'_{SSS}:
$$\frac{a_2 \to a'_2}{v_1 + a_2 \to v_1 + a'_2}$$
PLUS-3'_{SSS}:
$$\frac{v_1 + v_2 \to v}{v_1 + v_2 \to v} \quad (v = v_1 + v_2)$$

$$\vdots$$
NUM_{SSS}:
$$\frac{v_1 \to v_2}{v_1 \to v_2} \quad (\mathcal{N}[n] = v)$$

The leftmost path through the lattice of transitions

Why multiple flavors of semantics?

They provide different views of computations.

- Big-step is good for reasoning about how the (big) pieces of things fit together.
- Small step is good at reasoning about the (small) steps of a computation fit together.
- Small step semantics is much better at modeling inherent nondeterminism (e.g., in concurrent programs).
- ... and there are other flavors (e.g., denotational) for other purposes (e.g., obtaining stronger forms of soundness).