行列輪講: 第6回 確率分布, ガウス積分

杉浦 圭祐

慶應義塾大学理工学部情報工学科 松谷研究室

August 14, 2023

目次

① 概要

② 確率分布

③ ガウス積分

目次

- ① 概要
- ② 確率分布
- ③ ガウス積分

このスライドの概要

- 確率分布と, ガウス積分について確認する
 - 確率密度関数,ベイズの定理,モーメント
 - エントロピー, KL ダイバージェンス, 相互情報量
 - 不偏推定量, クラメール・ラオ (Cramér-Rao) の下限
 - 積分の変数変換, 偶関数と奇関数の積分, ガウス積分
- 以下の資料を参考に作成しました:
 - パターン認識と機械学習 (上巻)
 - State Estimation For Robotics

目次

- 1 概要
- ② 確率分布
- ③ ガウス積分

確率密度関数 (Probability Density Function; PDF)

- ullet 確率変数 x が, ある<mark>確率密度関数</mark> p(x) に従うとする.
- ullet p(x) は, [a,b] の範囲で定義されるとする.
- p(x) は, 2 つの条件を満たす:

$$p(x) \ge 0, \quad \int_a^b p(x) \, \mathrm{d}x = 1$$

確率密度関数と確率

- 確率密度と確率は別物である.
- \bullet x が, [c,d] の範囲をとる確率を, $\Pr(c \le x \le d)$ とする.

$$\Pr(c \le x \le d) = \int_{c}^{d} p(x) dx$$

• $\Pr(c \le x \le d)$ は、以下の図で、影がかかった部分である.

条件付き確率分布 (Conditional Probability)

- 確率変数 $x \in [a,b]$, $y \in [r,s]$ を考える.
- ullet y に条件付けられた, x の確率密度関数 $p(x \mid y)$ を考える.
- p(x | y) を, 条件付き確率密度関数という.
- p(x | y) も, 2 つの条件を満たす:

$$p(x \mid y) \ge 0, \quad \int_a^b p(x \mid y) dx = 1$$

同時分布 (Joint Probability)

- ullet 複数の確率変数 x_1, x_2, \ldots, x_N を考える $ig(x_i \in [a_i, b_i]ig)$.
- ullet これらの確率密度関数 $p(x_1,x_2,\ldots,x_N)$ を考える.
- ullet $p(x_1,x_2,\ldots,x_N)$ を、同時確率密度関数という.
- 確率変数をまとめて、 $\mathbf{x} = (x_1, x_2, \dots, x_N)$ とかく.
- p(x) も, 2 つの条件を満たす:

$$p(\mathbf{x}) = p(x_1, x_2, \dots, x_N) \ge 0$$
$$\int_{\mathbf{a}}^{\mathbf{b}} p(\mathbf{x}) \, d\mathbf{x} = \int_{a_N}^{b_N} \dots \int_{a_1}^{b_1} p(x_1, \dots, x_N) \, dx_1 \dots dx_N = 1$$

- 積分の範囲は $\mathbf{a}=(a_1,a_2,\ldots,a_N)$, $\mathbf{b}=(b_1,b_2,\ldots,b_N)$ である.
- 確率変数の範囲については、以後は明記しない.

加法定理 (Sum Rule), 周辺化 (Marginalization), 乗法定理

- 確率変数 x,y を考える.
- 同時分布 $p(\mathbf{x}, \mathbf{y})$ と、 周辺分布 $p(\mathbf{x})$ について、次が成り立つ.
- 加法定理, 周辺化, 積分消去とよばれる.

$$p(\mathbf{x}) = \int p(\mathbf{x}, \mathbf{y}) \, \mathrm{d}\mathbf{y}$$

- 同時分布 $p(\mathbf{x}, \mathbf{y})$, 条件付き確率分布 $p(\mathbf{x} \mid \mathbf{y})$, $p(\mathbf{y} \mid \mathbf{x})$, 周辺分布 $p(\mathbf{x})$, $p(\mathbf{y})$ について, 次が成り立つ.
- 乗法定理とよばれる.

$$p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x} \mid \mathbf{y})p(\mathbf{y}) = p(\mathbf{y} \mid \mathbf{x})p(\mathbf{x})$$

同時分布は, 周辺分布と, 条件付き確率分布に分解できる.

独立 (Independent)

- 確率変数 x,y を考える.
- x,yが独立であるとする。
- y は x の確率分布に (x は y の確率分布に) 影響を与えない.
- 条件付き確率分布 $p(\mathbf{x} \mid \mathbf{y})$ は, $p(\mathbf{x})$ に等しい.
 - y が与えられても, x についての確率分布は変化しない.
- 同様に、p(y | x) は、p(y) に等しい。
- ullet 同時分布 $p(\mathbf{x},\mathbf{y})$ を,個々の確率分布 $p(\mathbf{x})$, $p(\mathbf{y})$ に分解できる.

$$p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x} \mid \mathbf{y})p(\mathbf{y}) = p(\mathbf{x})p(\mathbf{y}) \quad (\because p(\mathbf{x} \mid \mathbf{y}) = p(\mathbf{x}))$$
$$= p(\mathbf{y} \mid \mathbf{x})p(\mathbf{x}) = p(\mathbf{x})p(\mathbf{y}) \quad (\because p(\mathbf{y} \mid \mathbf{x}) = p(\mathbf{y}))$$

• $p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x})p(\mathbf{y})$ であれば、 \mathbf{x}, \mathbf{y} は独立である.

確率の乗法定理から、ベイズの定理が得られる:

$$p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x} \mid \mathbf{y})p(\mathbf{y}) \longrightarrow p(\mathbf{x} \mid \mathbf{y}) = \frac{p(\mathbf{y} \mid \mathbf{x})p(\mathbf{x})}{p(\mathbf{y})}$$

• 分母は周辺化としてかける.

$$p(\mathbf{y}) = p(\mathbf{y}) \underbrace{\int p(\mathbf{x} \mid \mathbf{y}) \, d\mathbf{x}}_{=1} = \int p(\mathbf{x} \mid \mathbf{y}) p(\mathbf{y}) \, d\mathbf{x}$$
$$= \int p(\mathbf{x}, \mathbf{y}) \, d\mathbf{x} = \int p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x}) \, d\mathbf{x}$$

ベイズの定理は、次のようになる。

$$p(\mathbf{x} \mid \mathbf{y}) = \frac{p(\mathbf{y} \mid \mathbf{x})p(\mathbf{x})}{p(\mathbf{y})} = \frac{p(\mathbf{y} \mid \mathbf{x})p(\mathbf{x})}{\int p(\mathbf{y} \mid \mathbf{x})p(\mathbf{x}) d\mathbf{x}}$$

ベイズの定理

$$p(\mathbf{x} \mid \mathbf{y}) = \frac{p(\mathbf{y} \mid \mathbf{x})p(\mathbf{x})}{p(\mathbf{y})} = \frac{p(\mathbf{y} \mid \mathbf{x})p(\mathbf{x})}{\int p(\mathbf{y} \mid \mathbf{x})p(\mathbf{x}) d\mathbf{x}}$$

分母は, $p(\mathbf{x} \mid \mathbf{y})$ が確率分布になるための正規化 $(\mathbf{x}$ による積分が 1).

• ベイズの定理:

$$p(\mathbf{x} \mid \mathbf{y}) = \frac{p(\mathbf{y} \mid \mathbf{x})p(\mathbf{x})}{p(\mathbf{y})} = \frac{p(\mathbf{y} \mid \mathbf{x})p(\mathbf{x})}{\int p(\mathbf{y} \mid \mathbf{x})p(\mathbf{x}) d\mathbf{x}}$$

- センサデータ y を手掛かりに,変数 x を推定したい.
 - 例えば、y は GPS のデータ、x は GPS の位置.
- $oxed{1}$ $oxed{x}$ に関する仮説を、事前分布 (Prior) $p(oxed{x})$ として決める.
- 2 センサのモデルを, $p(\mathbf{y} \mid \mathbf{x})$ として決める.
 - 変数 x のもとで、どのようなセンサデータ y が得られるのか?
- 3 新たなセンサデータ ${f y}$ を得たら, $p({f y}\mid {f x})p({f x})$ を計算し, 正規化する.
- 4 y を取り込んだ、x の事後分布 (Posterior) $p(x \mid y)$ が得られる.

• 2 つの変数 \mathbf{y}_1 , \mathbf{y}_2 から, 変数 \mathbf{x} の事後分布 $p(\mathbf{x} \mid \mathbf{y}_1, \mathbf{y}_2)$ を推定したい.

$$p(\mathbf{x} \mid \mathbf{y}_1, \mathbf{y}_2) = rac{p(\mathbf{y}_1, \mathbf{y}_2 \mid \mathbf{x}) p(\mathbf{x})}{p(\mathbf{y}_1, \mathbf{y}_2)}$$
 (∵べイズの定理)

ullet x のもとで $\mathbf{y}_1, \mathbf{y}_2$ が互いに独立なら, 以下が成り立つ:

$$p(\mathbf{y}_1, \mathbf{y}_2 \mid \mathbf{x}) = p(\mathbf{y}_1 \mid \mathbf{x})p(\mathbf{y}_2 \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \mathbf{y}_1)p(\mathbf{y}_1)}{p(\mathbf{x})} \frac{p(\mathbf{x} \mid \mathbf{y}_2)p(\mathbf{y}_2)}{p(\mathbf{x})}$$

• 上記を代入すれば、次が得られる.

$$p(\mathbf{x} \mid \mathbf{y}_1, \mathbf{y}_2) = \eta \ p(\mathbf{x} \mid \mathbf{y}_1) p(\mathbf{x} \mid \mathbf{y}_2)$$

• $\eta = \frac{p(\mathbf{y}_1)p(\mathbf{y}_2)}{p(\mathbf{y}_1,\mathbf{y}_2)p(\mathbf{x})}$ は正規化項である.

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 夕 Q ()

モーメント、平均、分散、歪度、尖度

- ullet 確率分布 p(x) の形状ではなく,モーメントだけを扱うことは多々ある.
- ullet $\mathbb{E}\left[f(x)
 ight]$ を, 関数 f(x) の, 確率分布 p(x) のもとでの期待値とする.

$$\mathbb{E}[f(x)] = \int f(x)p(x) \, \mathrm{d}x$$

- 1 次モーメント: 平均 $\mu = \mathbb{E}[x]$ (Mean)
- 2 次モーメント: 分散 $\sigma^2 = \mathbb{E}\left[(x-\mu)^2\right]$ (Variance)
- 3 次モーメント: 査度 $\mathbb{E}\left[(x-\mu)^3\right]$ (Skewness; わいど)
- 4 次モーメント: 尖度 $\mathbb{E}\left[(x-\mu)^4\right]$ (Kurtosis; せんど)

$$\mu = \mathbb{E}[x] = \int xp(x) dx$$
$$\sigma^2 = \mathbb{E}[(x - \mu)^2] = \int (x - \mu)^2 p(x) dx$$

モーメント, 平均, 分散 (多変数の場合)

ullet 行列関数 $\mathbf{F}(\mathbf{x})$ の、確率分布 $p(\mathbf{x})$ のもとでの期待値:

$$\mathbb{E}\left[\mathbf{F}(\mathbf{x})\right] = \int \mathbf{F}(\mathbf{x}) p(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$

• $\mathbb{E}\left[\mathbf{F}(\mathbf{x})\right]$ の (i,j) 成分は、 \mathbf{F} の (i,j) 成分 f_{ij} を用いて、

$$(\mathbb{E}[\mathbf{F}(\mathbf{x})])_{ij} = \mathbb{E}[f_{ij}(\mathbf{x})] = \int f_{ij}(\mathbf{x})p(\mathbf{x}) d\mathbf{x}$$

平均 μ と分散 Σ は, 次のようにかける.

$$\boldsymbol{\mu} = \mathbb{E}\left[\mathbf{x}\right] = \int \mathbf{x} p(\mathbf{x}) \, d\mathbf{x}$$
$$\boldsymbol{\Sigma} = \mathbb{E}\left[\left(\mathbf{x} - \boldsymbol{\mu}\right) \left(\mathbf{x} - \boldsymbol{\mu}\right)^{\top}\right] = \int \left(\mathbf{x} - \boldsymbol{\mu}\right) \left(\mathbf{x} - \boldsymbol{\mu}\right)^{\top} p(\mathbf{x}) \, d\mathbf{x}$$

モーメント, 平均, 分散 (多変数の場合)

• 確率分布 $p(\mathbf{x})$ の分散 Σ について, 次が成り立つ.

$$\boldsymbol{\Sigma} = \mathbb{E}\left[\mathbf{x}\mathbf{x}^{\top}\right] - \mathbb{E}\left[\mathbf{x}\right]\mathbb{E}\left[\mathbf{x}\right]^{\top} = \mathbb{E}\left[\mathbf{x}\mathbf{x}^{\top}\right] - \boldsymbol{\mu}\boldsymbol{\mu}^{\top}$$

● スカラの場合は、次のようになる.

$$\sigma^2 = \mathbb{E}\left[x^2\right] - (\mathbb{E}\left[x\right])^2 = \mathbb{E}\left[x^2\right] - \mu^2$$

以下のように示せる。

$$\begin{split} \boldsymbol{\Sigma} &= \mathbb{E}\left[\left(\mathbf{x} - \boldsymbol{\mu} \right) \left(\mathbf{x} - \boldsymbol{\mu} \right)^{\top} \right] \\ &= \mathbb{E}\left[\mathbf{x} \mathbf{x}^{\top} \right] - \mathbb{E}\left[\mathbf{x} \boldsymbol{\mu}^{\top} \right] - \mathbb{E}\left[\boldsymbol{\mu} \mathbf{x}^{\top} \right] + \mathbb{E}\left[\boldsymbol{\mu} \boldsymbol{\mu}^{\top} \right] \\ &= \mathbb{E}\left[\mathbf{x} \mathbf{x}^{\top} \right] - \mathbb{E}\left[\mathbf{x} \right] \boldsymbol{\mu}^{\top} - \boldsymbol{\mu} \, \mathbb{E}\left[\mathbf{x} \right]^{\top} + \boldsymbol{\mu} \boldsymbol{\mu}^{\top} \\ &= \mathbb{E}\left[\mathbf{x} \mathbf{x}^{\top} \right] - \boldsymbol{\mu} \boldsymbol{\mu}^{\top} - \boldsymbol{\mu} \boldsymbol{\mu}^{\top} + \boldsymbol{\mu} \boldsymbol{\mu}^{\top} \end{split}$$

独立 (Independent), 無相関 (Uncorrelated)

以下が成り立つとき, x,y は独立である:

$$p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x})p(\mathbf{y})$$

以下が成り立つとき, x,y は無相関である:

$$\mathbb{E}\left[\mathbf{x}\mathbf{y}^{\top}\right] = \mathbb{E}\left[\mathbf{x}\right] \mathbb{E}\left[\mathbf{y}\right]^{\top}$$

- 独立 ⇒ 無相関は成り立つが, 無相関 ⇒ 独立は成り立たない.
- 独立 ⇒ 無相関は, 次のように示せる.

$$\mathbb{E}\left[\mathbf{x}\mathbf{y}^{\top}\right] = \iint \mathbf{x}\mathbf{y}^{\top}p(\mathbf{x}, \mathbf{y}) \,d\mathbf{x} \,d\mathbf{y} = \iint \mathbf{x}\mathbf{y}^{\top}p(\mathbf{x})p(\mathbf{y}) \,d\mathbf{x} \,d\mathbf{y} \,(:: 独立)$$
$$= \int \mathbf{x}p(\mathbf{x}) \,d\mathbf{x} \int \mathbf{y}^{\top}p(\mathbf{y}) \,d\mathbf{y} = \mathbb{E}\left[\mathbf{x}\right]\mathbb{E}\left[\mathbf{y}\right]^{\top}$$

共分散 (Covariance)

x,y について, 共分散は次のようにかける.

$$\mathbb{E}\left[\left(\mathbf{x} - \mathbb{E}\left[\mathbf{x}\right]\right)\left(\mathbf{y} - \mathbb{E}\left[\mathbf{y}\right]\right)^{\top}\right] = \mathbb{E}\left[\mathbf{x}\mathbf{y}^{\top}\right] - \mathbb{E}\left[\mathbf{x}\right]\mathbb{E}\left[\mathbf{y}\right]^{\top}$$

• 左辺を展開すれば、次のように示せる.

$$\mathbb{E}\left[\left(\mathbf{x} - \mathbb{E}\left[\mathbf{x}\right]\right)\left(\mathbf{y} - \mathbb{E}\left[\mathbf{y}\right]\right)^{\top}\right]$$

$$= \mathbb{E}\left[\mathbf{x}\mathbf{y}^{\top}\right] - \mathbb{E}\left[\mathbf{x}\mathbb{E}\left[\mathbf{y}\right]^{\top}\right] - \mathbb{E}\left[\mathbb{E}\left[\mathbf{x}\right]\mathbf{y}^{\top}\right] + \mathbb{E}\left[\mathbb{E}\left[\mathbf{x}\right]\mathbb{E}\left[\mathbf{y}\right]^{\top}\right]$$

$$= \mathbb{E}\left[\mathbf{x}\mathbf{y}^{\top}\right] - \mathbb{E}\left[\mathbf{x}\right]\mathbb{E}\left[\mathbf{y}\right]^{\top} - \mathbb{E}\left[\mathbf{x}\right]\mathbb{E}\left[\mathbf{y}\right]^{\top} + \mathbb{E}\left[\mathbf{x}\right]\mathbb{E}\left[\mathbf{y}\right]^{\top}$$

- ullet \mathbf{x},\mathbf{y} が無相関 $(\mathbb{E}\left[\mathbf{x}\mathbf{y}^{ op}
 ight] = \mathbb{E}\left[\mathbf{x}
 ight]\mathbb{E}\left[\mathbf{y}
 ight]^{ op})$ であれば, 共分散は $\mathbf{0}$ である.
- ullet 独立 \Rightarrow 無相関であるから、独立であれば、共分散は 0 である.

イェンセンの不等式 (Jensen's Inequality)

- 上に凸な関数 f(x) を考える.
- $p(\mathbf{x})$ を, $\int p(\mathbf{x}) d\mathbf{x} = 1$ をみたす関数とする.
- $f(\mathbf{x}), p(\mathbf{x})$ について、 $\mathbf{1}$ イェンセンの不等式が成り立つ:

$$\int f(\mathbf{x})p(\mathbf{x})\,\mathrm{d}\mathbf{x} \ge f\left(\int \mathbf{x}p(\mathbf{x})\,\mathrm{d}\mathbf{x}\right)$$

ullet $p(\mathbf{x})$ を確率分布とすれば、期待値 $\mathbb{E}\left[\cdot\right]$ を用いて、次のようにかける:

$$\mathbb{E}\left[f(\mathbf{x})\right] \ge f(\mathbb{E}\left[\mathbf{x}\right])$$

f(x) が下に凸であれば、次が成り立つ (不等号が逆になる):

$$\int f(\mathbf{x})p(\mathbf{x}) \, d\mathbf{x} \le f\left(\int \mathbf{x}p(\mathbf{x}) \, d\mathbf{x}\right)$$
$$\mathbb{E}\left[f(\mathbf{x})\right] \le f(\mathbb{E}\left[\mathbf{x}\right])$$

イェンセンの不等式 (Jensen's Inequality)

- ▶ 下に凸であれば、任意の2点を結ぶ直線が、上側にある(凸関数、左).
 - x^2 , $x \ln x$, $\frac{1}{x}$ (x > 0), $\tan x$ $(0 < x < \frac{\pi}{2})$ など
- 上に凸であれば、任意の2点を結ぶ直線が、下側にある(凹関数、右).
 - $\ln x$, $\tan x \ (-\frac{\pi}{2} < x < 0)$ など

エントロピー (Entropy)

ullet 確率分布 $p(\mathbf{x})$ について, 次の量 $H[\mathbf{x}]$ を考える.

$$H[\mathbf{x}] = -\mathbb{E}[\ln p(\mathbf{x})] = -\int p(\mathbf{x}) \ln p(\mathbf{x}) d\mathbf{x}$$

- H[x]を,エントロピー,シャノン情報量,平均情報量とよぶ。
- 直感的には、xを、どのくらい予測しづらいのかを表す。
 - x が離散変数であれば、一様分布のときにエントロピーが最大である。
 - x が連続変数であれば, 正規分布 (ガウス分布) のときに最大.
 - この証明には,変分計算が必要である.

条件付きエントロピー (Conditional Entropy)

• 同時分布 $p(\mathbf{x}, \mathbf{y})$ のエントロピー $H[\mathbf{x}, \mathbf{y}]$ を考える.

$$H[\mathbf{x}, \mathbf{y}] = -\mathbb{E}[\ln p(\mathbf{x}, \mathbf{y})] = -\iint p(\mathbf{x}, \mathbf{y}) \ln p(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y}$$

• $p(\mathbf{x}, \mathbf{y}) = p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x})$ のように分解できるので、代入すれば

$$H[\mathbf{x}, \mathbf{y}] = -\iint p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x}) (\ln p(\mathbf{y} \mid \mathbf{x}) + \ln p(\mathbf{x})) d\mathbf{x} d\mathbf{y}$$

$$= -\iint p(\mathbf{x}, \mathbf{y}) \ln p(\mathbf{y} \mid \mathbf{x}) d\mathbf{x} d\mathbf{y}$$

$$- \int p(\mathbf{x}) \ln p(\mathbf{x}) d\mathbf{x} \underbrace{\int p(\mathbf{y} \mid \mathbf{x}) d\mathbf{y}}_{=1}$$

$$= H[\mathbf{y} \mid \mathbf{x}] + H[\mathbf{x}]$$

条件付きエントロピー (Conditional Entropy)

• 条件付き確率分布 $p(\mathbf{y} \mid \mathbf{x})$ について, $H[\mathbf{y} \mid \mathbf{x}]$ を次のように定める.

$$H[\mathbf{y} \mid \mathbf{x}] = -\mathbb{E}\left[\ln p(\mathbf{y} \mid \mathbf{x})\right] = -\iint p(\mathbf{x}, \mathbf{y}) \ln p(\mathbf{y} \mid \mathbf{x}) \, d\mathbf{x} \, d\mathbf{y}$$

- H[y | x] を, 条件付きエントロピーとよぶ。
- 次が成り立つ:

$$H\left[\mathbf{x},\mathbf{y}\right] = H\left[\mathbf{y} \mid \mathbf{x}\right] + H\left[\mathbf{x}\right] = H\left[\mathbf{x} \mid \mathbf{y}\right] + H\left[\mathbf{y}\right]$$

- H[x]: x の予測しづらさ
- H[x,y]: x と y の予測しづらさ
- H[y | x]: x が既知であるときの, y の予測しづらさ

カルバック-ライブラーダイバージェンス

(Kullback-Leibler Divergence)

ullet 2 つの確率分布 $p(\mathbf{x}), q(\mathbf{x})$ があるとき、次の量 $\mathrm{KL}\left(p \parallel q\right)$ を考える.

$$\mathrm{KL}\left(p \parallel q\right) = -\mathbb{E}\left[\ln\frac{q(\mathbf{x})}{p(\mathbf{x})}\right] = -\int p(\mathbf{x})\ln\frac{q(\mathbf{x})}{p(\mathbf{x})}\,\mathrm{d}\mathbf{x}$$

- $\mathrm{KL}\left(p\parallel q\right)$ **6**, **\mathrm{\boldsymbol{hunnyp-J-J}}**
- 長いので、KL ダイバージェンスともよぶ.
- 確率分布 $p(\mathbf{x})$ と $q(\mathbf{x})$ との距離のような概念である.
- $\mathrm{KL}\left(p\parallel q\right)
 eq \mathrm{KL}\left(q\parallel p\right)$ であるから、厳密な距離ではない.

カルバック-ライブラーダイバージェンス

(Kullback-Leibler Divergence)

● カルバック-ライブラーダイバージェンス:

$$KL(p \parallel q) = -\mathbb{E}\left[\ln\frac{q(\mathbf{x})}{p(\mathbf{x})}\right] = -\int p(\mathbf{x})\ln\frac{q(\mathbf{x})}{p(\mathbf{x})}d\mathbf{x}$$

ullet ln は下に凸だから、イェンセンの不等式より $ig(\mathbb{E}\left[f(x)
ight] \leq f(\mathbb{E}\left[x
ight])ig)$

$$KL(p \parallel q) = -\mathbb{E}\left[\ln\frac{q(\mathbf{x})}{p(\mathbf{x})}\right] \ge -\ln\mathbb{E}\left[\frac{q(\mathbf{x})}{p(\mathbf{x})}\right]$$
$$= -\ln\int p(\mathbf{x})\frac{q(\mathbf{x})}{p(\mathbf{x})} d\mathbf{x} = -\ln\int q(\mathbf{x}) d\mathbf{x} = -\ln 1 = 0$$

- 以上より、KL (p || q) ≥ 0.
- $\forall \mathbf{x} \ p(\mathbf{x}) = q(\mathbf{x})$ のときのみ 0.

相互情報量 (Mutual Information)

• 確率変数 \mathbf{x}, \mathbf{y} について, 次の量 $I(\mathbf{x}, \mathbf{y})$ を考える.

$$I\left(\mathbf{x},\mathbf{y}\right) = \mathbb{E}\left[\ln\frac{p(\mathbf{x},\mathbf{y})}{p(\mathbf{x})p(\mathbf{y})}\right] = \iint p(\mathbf{x},\mathbf{y})\ln\frac{p(\mathbf{x},\mathbf{y})}{p(\mathbf{x})p(\mathbf{y})}\,\mathrm{d}\mathbf{x}\,\mathrm{d}\mathbf{y}$$

- I(x,y)を,相互情報量とよぶ。
- ullet \mathbf{x} (\mathbf{y}) を得たとき, \mathbf{y} (\mathbf{x}) についての情報がどのくらい増えるか.
- \mathbf{x}, \mathbf{y} が独立であれば $(p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x})p(\mathbf{y}))$, $I(\mathbf{x}, \mathbf{y}) = 0$.

$$I(\mathbf{x}, \mathbf{y}) = \iint p(\mathbf{x}, \mathbf{y}) \ln \frac{p(\mathbf{x})p(\mathbf{y})}{p(\mathbf{x})p(\mathbf{y})} d\mathbf{x} d\mathbf{y} = \iint p(\mathbf{x}, \mathbf{y}) \ln 1 d\mathbf{x} d\mathbf{y} = 0$$

• x, y が独立であれば, x(y) のことが分かっても, y(x) については何の情報ももたらさない.

相互情報量 (Mutual Information)

相互情報量 I(x,y):

$$I\left(\mathbf{x},\mathbf{y}\right) = \mathbb{E}\left[\ln\frac{p(\mathbf{x},\mathbf{y})}{p(\mathbf{x})p(\mathbf{y})}\right] = \iint p(\mathbf{x},\mathbf{y})\ln\frac{p(\mathbf{x},\mathbf{y})}{p(\mathbf{x})p(\mathbf{y})}\,\mathrm{d}\mathbf{x}\,\mathrm{d}\mathbf{y}$$

• エントロピー H[x], H[y], H[x, y] を使って、次のようにかける.

$$I(\mathbf{x}, \mathbf{y}) = H[\mathbf{x}] + H[\mathbf{y}] - H[\mathbf{x}, \mathbf{y}]$$

• $H[x, y] = H[y \mid x] + H[x] = H[x \mid y] + H[y]$ であるから、

$$I(\mathbf{x}, \mathbf{y}) = H[\mathbf{y}] - H[\mathbf{y} \mid \mathbf{x}] = H[\mathbf{x}] - H[\mathbf{x} \mid \mathbf{y}]$$

- H[y]: y の予測しづらさ
- ullet $H\left[\mathbf{y} \mid \mathbf{x}
 ight]: \mathbf{x}$ が既知であるときの, \mathbf{y} の予測しづらさ
- \bullet $I(\mathbf{x}, \mathbf{y})$: \mathbf{x} が分かったとき, \mathbf{y} がどのくらい予測しやすくなるか

相互情報量 (Mutual Information)

相互情報量 I (x,y):

$$I\left(\mathbf{x},\mathbf{y}\right) = \mathbb{E}\left[\ln\frac{p(\mathbf{x},\mathbf{y})}{p(\mathbf{x})p(\mathbf{y})}\right] = \iint p(\mathbf{x},\mathbf{y})\ln\frac{p(\mathbf{x},\mathbf{y})}{p(\mathbf{x})p(\mathbf{y})}\,\mathrm{d}\mathbf{x}\,\mathrm{d}\mathbf{y}$$

カルバック-ライブラーダイバージェンスを用いると、

$$I(\mathbf{x}, \mathbf{y}) = -\mathbb{E}\left[\ln \frac{p(\mathbf{x})p(\mathbf{y})}{p(\mathbf{x}, \mathbf{y})}\right] = \mathrm{KL}\left(p(\mathbf{x}, \mathbf{y}) \parallel p(\mathbf{x})p(\mathbf{y})\right)$$

- KL ダイバージェンスの性質 (≥ 0) から, $I(\mathbf{x}, \mathbf{y}) \geq 0$.
- $\forall \mathbf{x}, \mathbf{y} \ p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x})p(\mathbf{y})$ のとき (独立であるとき) に限って 0.
- 確率変数 x, y が, 独立に近いかどうかを表している.

- パラメータ θ をもつ $\mathbf x$ の確率分布 $p(\mathbf x \mid \boldsymbol \theta)$ を考える.
- この確率分布から、観測データが得られたとする。

$$\mathbf{x}_{\text{meas}} \leftarrow p(\mathbf{x} \mid \boldsymbol{\theta})$$

- 観測データ x_{meas} を基に、パラメータ θ を推定したい。
- ullet パラメータ $oldsymbol{ heta}$ の推定量 $\hat{oldsymbol{ heta}}$ が、 $oldsymbol{\mathsf{T}}$ 偏推定量であるとき、以下が成り立つ:

$$\mathbb{E}\left[\hat{oldsymbol{ heta}}
ight] = oldsymbol{ heta} \quad \longrightarrow \quad \mathbb{E}\left[\hat{oldsymbol{ heta}} - oldsymbol{ heta}
ight] = oldsymbol{0}$$

ullet 推定量の期待値 $\mathbb{E}\left[\hat{ heta}
ight]$ が, パラメータ heta に一致する (偏りがない).

• 例えば、平均 μ と共分散 Σ をもつ $\mathbf x$ の確率分布 $p(\mathbf x \mid \boldsymbol \mu, \boldsymbol \Sigma)$ から、N 個の観測データが得られたとする:

$$\begin{aligned} & \left\{\mathbf{x}_{1,\text{meas}}, \dots, \mathbf{x}_{N,\text{meas}}\right\} \leftarrow p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) \\ & \mathbb{E}\left[\mathbf{x}_{\text{meas}}\right] = \boldsymbol{\mu}, \quad \mathbb{E}\left[\left(\mathbf{x}_{\text{meas}} - \boldsymbol{\mu}\right) \left(\mathbf{x}_{\text{meas}} - \boldsymbol{\mu}\right)^{\top}\right] = \boldsymbol{\Sigma} \end{aligned}$$

- 観測データは、互いに独立であるとする。
- ullet 観測データ $\{\mathbf{x}_{i, ext{meas}}\}$ を基に、分布の平均 μ と共分散 Σ を推定したい.

• 平均 μ と共分散 Σ をもつ $\mathbf x$ の確率分布 $p(\mathbf x \mid \boldsymbol \mu, \boldsymbol \Sigma)$ から, N 個の観測 データが得られたとする:

$$\{\mathbf{x}_{1,\text{meas}}, \dots, \mathbf{x}_{N,\text{meas}}\} \leftarrow p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

- ullet 観測データ $\{{f x}_{i, ext{meas}}\}$ を基に、分布の平均 μ と共分散 Σ を推定したい。
- 平均と共分散の不偏推定量は、次のようになる:

$$\hat{\boldsymbol{\mu}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i,\text{meas}}, \quad \hat{\boldsymbol{\Sigma}} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\mathbf{x}_{i,\text{meas}} - \hat{\boldsymbol{\mu}} \right) \left(\mathbf{x}_{i,\text{meas}} - \hat{\boldsymbol{\mu}} \right)^{\top}$$

- 分散については、分母が N の代わりに N-1 となることに注意.
- û û, 標本平均という。
- ullet Σ は, 不偏分散という (分母が N のときは, 標本分散).

ullet 不偏分散は, 分母が N の代わりに N-1 になる (少し大きく補正):

$$\hat{\boldsymbol{\Sigma}} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\mathbf{x}_{i,\text{meas}} - \hat{\boldsymbol{\mu}} \right) \left(\mathbf{x}_{i,\text{meas}} - \hat{\boldsymbol{\mu}} \right)^{\top}$$

- 分散の計算に、真の平均 μ ではなく、観測データから計算された標本平均 $\hat{\mu}$ を使っているから.
 - ullet 観測データ $\mathbf{x}_{i, ext{meas}}$ と,標本平均 $\hat{oldsymbol{\mu}}$ の間には相関がある.
 - ullet 差分 $\mathbf{x}_{i, ext{meas}} \hat{\mu}$ は,真の平均から計算された,本当の差分 $\mathbf{x}_{i, ext{meas}} \mu$ よりは小さくなりがちである.
- $oldsymbol{\hat{\mu}}$ が平均の不偏推定量であることは、次のように分かる:

$$\mathbb{E}\left[\hat{\boldsymbol{\mu}}\right] = \mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N}\mathbf{x}_{i,\text{meas}}\right] = \frac{1}{N}\sum_{i=1}^{N}\underbrace{\mathbb{E}\left[\mathbf{x}_{i,\text{meas}}\right]}_{=\boldsymbol{\mu}} = \frac{1}{N}\sum_{i=1}^{N}\boldsymbol{\mu} = \boldsymbol{\mu}$$

ullet また, $oldsymbol{\Sigma} = \mathbb{E}\left[\mathbf{x}\mathbf{x}^ op
ight] - oldsymbol{\mu}oldsymbol{\mu}^ op$ を用いて,

$$\begin{split} \mathbb{E}\left[\hat{\boldsymbol{\mu}}\hat{\boldsymbol{\mu}}^{\top}\right] &= \mathbb{E}\left[\left(\frac{1}{N}\sum_{i=1}^{N}\mathbf{x}_{i,\text{meas}}\right)\left(\frac{1}{N}\sum_{j=1}^{N}\mathbf{x}_{j,\text{meas}}\right)^{\top}\right] \\ &= \frac{1}{N^{2}}\sum_{i=1}^{N}\sum_{j=1}^{N}\mathbb{E}\left[\mathbf{x}_{i,\text{meas}}\mathbf{x}_{j,\text{meas}}^{\top}\right] \\ &= \frac{1}{N^{2}}\sum_{i=1}^{N}\mathbb{E}\left[\mathbf{x}_{i,\text{meas}}\mathbf{x}_{i,\text{meas}}^{\top}\right] + \frac{1}{N^{2}}\sum_{i\neq j}\mathbb{E}\left[\mathbf{x}_{i,\text{meas}}\mathbf{x}_{j,\text{meas}}^{\top}\right] \\ &= \frac{1}{N^{2}}\cdot N\left(\mathbf{\Sigma} + \boldsymbol{\mu}\boldsymbol{\mu}^{\top}\right) + \frac{1}{N^{2}}\cdot N(N-1)\boldsymbol{\mu}\boldsymbol{\mu}^{\top} = \frac{1}{N}\boldsymbol{\Sigma} + \boldsymbol{\mu}\boldsymbol{\mu}^{\top} \end{split}$$

• 観測データは互いに独立だから、無相関であって、 $i \neq j$ のとき

$$\mathbb{E}\left[\mathbf{x}_{i, ext{meas}}\mathbf{x}_{j, ext{meas}}^{ op}
ight] = \mathbb{E}\left[\mathbf{x}_{i, ext{meas}}
ight]\mathbb{E}\left[\mathbf{x}_{j, ext{meas}}
ight]^{ op} = oldsymbol{\mu}oldsymbol{\mu}^{ op}$$

• $\hat{\mu}$ の分散 $\mathbb{E}\left[\left(\hat{\mu} - \mathbb{E}\left[\hat{\mu}\right]\right)\left(\hat{\mu} - \mathbb{E}\left[\hat{\mu}\right]\right)^{\top}\right]$ は、

$$\mathbb{E}\left[\left(\hat{\boldsymbol{\mu}} - \mathbb{E}\left[\hat{\boldsymbol{\mu}}\right]\right)\left(\hat{\boldsymbol{\mu}} - \mathbb{E}\left[\hat{\boldsymbol{\mu}}\right]\right)^{\top}\right] = \mathbb{E}\left[\left(\hat{\boldsymbol{\mu}} - \boldsymbol{\mu}\right)\left(\hat{\boldsymbol{\mu}} - \boldsymbol{\mu}\right)^{\top}\right]$$

$$= \mathbb{E}\left[\hat{\boldsymbol{\mu}}\hat{\boldsymbol{\mu}}^{\top}\right] - \mathbb{E}\left[\hat{\boldsymbol{\mu}}\right]\boldsymbol{\mu}^{\top} - \boldsymbol{\mu}\mathbb{E}\left[\hat{\boldsymbol{\mu}}\right]^{\top} + \boldsymbol{\mu}\boldsymbol{\mu}^{\top}$$

$$= \frac{1}{N}\boldsymbol{\Sigma} + \boldsymbol{\mu}\boldsymbol{\mu}^{\top} - \boldsymbol{\mu}\boldsymbol{\mu}^{\top} - \boldsymbol{\mu}\boldsymbol{\mu}^{\top} + \boldsymbol{\mu}\boldsymbol{\mu}^{\top}$$

$$= \frac{1}{N}\boldsymbol{\Sigma}$$

- ullet $\mathbb{E}\left[\hat{m{\mu}}\hat{m{\mu}}^{ op}
 ight] = rac{1}{N}m{\Sigma} + m{\mu}m{\mu}^{ op},\, \mathbb{E}\left[\hat{m{\mu}}
 ight] = m{\mu}$ を用いた.
- ullet 観測データが増えれば $(N o\infty)$, 上記の分散は 0 に近づく.
- ullet 言い換えると,平均の不偏推定量 $\hat{\mu}$ は, $\mathbb{E}\left[\hat{\mu}
 ight]=\mu$ に近づいてゆく.

不偏推定量 (Unbiased Estimate)

 \bullet $\hat{\Sigma}$ が共分散の不偏推定量であることも、次のように分かる:

$$\begin{split} \mathbb{E}\left[\hat{\boldsymbol{\Sigma}}\right] &= \mathbb{E}\left[\frac{1}{N-1}\sum_{i=1}^{N}\left(\mathbf{x}_{i,\text{meas}} - \hat{\boldsymbol{\mu}}\right)\left(\mathbf{x}_{i,\text{meas}} - \hat{\boldsymbol{\mu}}\right)^{\top}\right] \\ &= \mathbb{E}\left[\frac{1}{N-1}\sum_{i=1}^{N}\left(\mathbf{x}_{i,\text{meas}} - \boldsymbol{\mu} + \boldsymbol{\mu} - \hat{\boldsymbol{\mu}}\right)\left(\mathbf{x}_{i,\text{meas}} - \boldsymbol{\mu} + \boldsymbol{\mu} - \hat{\boldsymbol{\mu}}\right)^{\top}\right] \\ &= \frac{1}{N-1}\left(\sum_{i=1}^{N}\mathbb{E}\left[\left(\mathbf{x}_{i,\text{meas}} - \boldsymbol{\mu}\right)\left(\mathbf{x}_{i,\text{meas}} - \boldsymbol{\mu}\right)^{\top}\right] \\ &+ \mathbb{E}\left[\sum_{i=1}^{N}\left(\mathbf{x}_{i,\text{meas}} - \boldsymbol{\mu}\right)\left(\boldsymbol{\mu} - \hat{\boldsymbol{\mu}}\right)^{\top}\right] \\ &+ \mathbb{E}\left[\sum_{i=1}^{N}\left(\boldsymbol{\mu} - \hat{\boldsymbol{\mu}}\right)\left(\mathbf{x}_{i,\text{meas}} - \boldsymbol{\mu}\right)^{\top}\right] + \sum_{i=1}^{N}\mathbb{E}\left[\left(\boldsymbol{\mu} - \hat{\boldsymbol{\mu}}\right)\left(\boldsymbol{\mu} - \hat{\boldsymbol{\mu}}\right)^{\top}\right]\right) \end{split}$$

|**不偏推定**量 (Unbiased Estimate)

• 各項は,

$$\begin{split} \mathbb{E}\left[\left(\mathbf{x}_{i,\text{meas}} - \boldsymbol{\mu}\right)\left(\mathbf{x}_{i,\text{meas}} - \boldsymbol{\mu}\right)^{\top}\right] &= \boldsymbol{\Sigma} \\ &\mathbb{E}\left[\left(\boldsymbol{\mu} - \hat{\boldsymbol{\mu}}\right)\left(\boldsymbol{\mu} - \hat{\boldsymbol{\mu}}\right)^{\top}\right] &= \frac{1}{N}\boldsymbol{\Sigma} \\ \mathbb{E}\left[\sum_{i=1}^{N}\left(\mathbf{x}_{i,\text{meas}} - \boldsymbol{\mu}\right)\left(\boldsymbol{\mu} - \hat{\boldsymbol{\mu}}\right)^{\top}\right] &= \mathbb{E}\left[N\left(\hat{\boldsymbol{\mu}} - \boldsymbol{\mu}\right)\left(\boldsymbol{\mu} - \hat{\boldsymbol{\mu}}\right)^{\top}\right] &= -\boldsymbol{\Sigma} \\ \mathbb{E}\left[\sum_{i=1}^{N}\left(\boldsymbol{\mu} - \hat{\boldsymbol{\mu}}\right)\left(\mathbf{x}_{i,\text{meas}} - \boldsymbol{\mu}\right)^{\top}\right] &= \mathbb{E}\left[N\left(\boldsymbol{\mu} - \hat{\boldsymbol{\mu}}\right)\left(\hat{\boldsymbol{\mu}} - \boldsymbol{\mu}\right)^{\top}\right] &= -\boldsymbol{\Sigma} \end{split}$$

- ・ $\hat{m{\mu}} = rac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i, ext{meas}}$ であるから, $\sum_{i=1}^{N} \mathbf{x}_{i, ext{meas}} = N \hat{m{\mu}}$.
- ullet これらを, $\mathbb{E}\left[\hat{\Sigma}
 ight]$ の式に代入する.

|**不偏推定**量 (Unbiased Estimate)

ullet $\mathbb{E}\left[\hat{\Sigma}
ight]$ を計算すると,

$$\mathbb{E}\left[\hat{\boldsymbol{\Sigma}}\right] = \frac{1}{N-1} \left(\sum_{i=1}^{N} \boldsymbol{\Sigma} - \boldsymbol{\Sigma} - \boldsymbol{\Sigma} + \sum_{i=1}^{N} \frac{1}{N} \boldsymbol{\Sigma} \right)$$
$$= \frac{1}{N-1} \left(N\boldsymbol{\Sigma} - \boldsymbol{\Sigma} - \boldsymbol{\Sigma} + \boldsymbol{\Sigma} \right) = \frac{1}{N-1} (N-1) \boldsymbol{\Sigma} = \boldsymbol{\Sigma}$$

以上より、平均と共分散の不偏推定量は、次のようになる:

$$\begin{split} \hat{\boldsymbol{\mu}} &= \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i,\text{meas}}, \quad \hat{\boldsymbol{\Sigma}} &= \frac{1}{N-1} \sum_{i=1}^{N} \left(\mathbf{x}_{i,\text{meas}} - \hat{\boldsymbol{\mu}} \right) \left(\mathbf{x}_{i,\text{meas}} - \hat{\boldsymbol{\mu}} \right)^{\top} \\ & \quad \mathbb{E} \left[\hat{\boldsymbol{\mu}} \right] = \boldsymbol{\mu}, \quad \mathbb{E} \left[\hat{\boldsymbol{\Sigma}} \right] = \boldsymbol{\Sigma} \\ & \quad \mathbb{E} \left[\hat{\boldsymbol{\mu}} \hat{\boldsymbol{\mu}}^{\top} \right] &= \frac{1}{N} \boldsymbol{\Sigma} + \boldsymbol{\mu} \boldsymbol{\mu}^{\top}, \quad \mathbb{E} \left[\left(\hat{\boldsymbol{\mu}} - \boldsymbol{\mu} \right) \left(\hat{\boldsymbol{\mu}} - \boldsymbol{\mu} \right)^{\top} \right] = \frac{1}{N} \boldsymbol{\Sigma} \end{split}$$

クラメール・ラオの下限 (Cramér-Rao Lower Bound)

- パラメータ θ をもつ \mathbf{x} の確率分布 $p(\mathbf{x} \mid \boldsymbol{\theta})$ を考える.
- この確率分布から、観測データが得られたとする.

$$\mathbf{x}_{\text{meas}} \leftarrow p(\mathbf{x} \mid \boldsymbol{\theta})$$

ullet 観測データ $\mathbf{x}_{ ext{meas}}$ を基に、パラメータ heta の不偏推定量 $\hat{ heta}$ を計算する.

$$\mathbb{E}\left[\hat{oldsymbol{ heta}}-oldsymbol{ heta}
ight]=\mathbf{0}$$

• 不偏推定量 $\hat{\theta}$ の分散について, 以下が成り立つ:

$$\mathbb{E}\left[\left(\hat{oldsymbol{ heta}} - oldsymbol{ heta}
ight)\left(\hat{oldsymbol{ heta}} - oldsymbol{ heta}
ight)^{ op}
ight] \geq \mathbf{I}^{-1}(\mathbf{x} \mid oldsymbol{ heta})$$

■ これを、クラメール・ラオの下限という。

クラメール・ラオの下限 (Cramér-Rao Lower Bound)

• 確率分布 $p(\mathbf{x} \mid \boldsymbol{\theta})$ のパラメータ $\boldsymbol{\theta}$ の不偏推定量 $\hat{\boldsymbol{\theta}}$ について,

$$\mathbb{E}\left[\left(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}\right) \left(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}\right)^{\top}\right] \geq \mathbf{I}^{-1}(\mathbf{x} \mid \boldsymbol{\theta})$$

I(x | θ) は、フィッシャー情報行列とよぶ。

$$\mathbf{I}(\mathbf{x} \mid \boldsymbol{\theta}) = \mathbb{E}\left[\left(\frac{\partial \ln p(\mathbf{x} \mid \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right)^{\top} \left(\frac{\partial \ln p(\mathbf{x} \mid \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right)\right]$$

ullet 不等号 $\mathbf{A} \geq \mathbf{B}$ は、行列 $\mathbf{A} - \mathbf{B}$ が半正定値になることを意味する.

$$\forall \mathbf{x} \neq \mathbf{0} \quad \mathbf{x}^{\top} (\mathbf{A} - \mathbf{B}) \mathbf{x} \ge 0 \longrightarrow \mathbf{A} - \mathbf{B} \ge 0$$

観測データを使ってパラメータを推定するとき、その精度には限度がある。

目次

- 1 概要
- ② 確率分布
- ③ ガウス積分

微分のレイアウト (再掲)

- 以下の2つのレイアウトに大別される (x,y を縦ベクトルとする).
- 分子レイアウト (Numerator Layout)
 - $\frac{\partial \mathbf{y}}{\partial x}$ は、縦ベクトル、 $\frac{\partial y}{\partial \mathbf{x}}$ は、横ベクトル
- 分母レイアウト (Denominator Layout)
 - $\frac{\partial \mathbf{y}}{\partial x}$ は、横ベクトル、 $\frac{\partial y}{\partial \mathbf{x}}$ は、縦ベクトル

スカラによる微分 (再掲)

分子レイアウト

分母レイアウト

$$\frac{\partial y}{\partial x}$$

$$\frac{\partial y}{\partial x}$$

$$\frac{\partial \mathbf{y}}{\partial x} = \begin{pmatrix} \frac{\partial y_1}{\partial x} \\ \vdots \\ \frac{\partial y_m}{\partial x} \end{pmatrix}$$

$$\frac{\partial \mathbf{y}}{\partial x} = \begin{pmatrix} \frac{\partial y_1}{\partial x} & \cdots & \frac{\partial y_m}{\partial x} \end{pmatrix} \equiv \frac{\partial \mathbf{y}^\top}{\partial x}$$

$$\frac{\partial \mathbf{Y}}{\partial x} = \begin{pmatrix} \frac{\partial y_{11}}{\partial x} & \cdots & \frac{\partial y_{1n}}{\partial x} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_{m1}}{\partial x} & \cdots & \frac{\partial y_{mn}}{\partial x} \end{pmatrix}$$

まれ

ベクトルによる微分(再掲)

分子レイアウト

分母レイアウト

$$\frac{\partial y}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial y}{\partial x_1} & \cdots & \frac{\partial y}{\partial x_n} \end{pmatrix} \equiv \frac{\partial y}{\partial \mathbf{x}^{\top}} \qquad \qquad \frac{\partial y}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial y}{\partial x_1} \\ \vdots \\ \frac{\partial y}{\partial x_n} \end{pmatrix}$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_n} \end{pmatrix} \qquad \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_1}{\partial x_n} & \cdots & \frac{\partial y_m}{\partial x_n} \end{pmatrix}
\equiv \frac{\partial \mathbf{y}}{\partial \mathbf{x}^\top} \qquad \equiv \frac{\partial \mathbf{y}^\top}{\partial \mathbf{x}}$$

行列による微分 (再掲)

分子レイアウト

分母レイアウト

$$\frac{\partial y}{\partial \mathbf{X}} = \begin{pmatrix} \frac{\partial y}{\partial x_{11}} & \cdots & \frac{\partial y}{\partial x_{m1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial y}{\partial x_{1n}} & \cdots & \frac{\partial y}{\partial x_{mn}} \end{pmatrix} \quad \frac{\partial y}{\partial \mathbf{X}} = \begin{pmatrix} \frac{\partial y}{\partial x_{11}} & \cdots & \frac{\partial y}{\partial x_{1n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial y}{\partial x_{m1}} & \cdots & \frac{\partial y}{\partial x_{mn}} \end{pmatrix} \\
\equiv \frac{\partial y}{\partial \mathbf{X}^{\top}} \qquad \qquad \equiv \frac{\partial y}{\partial \mathbf{X}}$$

ヤコビ行列, ヤコビアン (Jacobi Matrix, Jacobian)

- n, m 次変数 $\mathbf{x} = (x_1, x_2, \dots, x_n)^\top$, $\mathbf{y} = (y_1, y_2, \dots, y_m)^\top$ を考える.
- $\frac{\partial y_i}{\partial x_i}$ を (i,j) 成分とした $m \times n$ 行列 ${f J}$ を, ヤコビ行列という.

$$\mathbf{J} = \frac{\partial(y_1, y_2, \dots, y_m)}{\partial(x_1, x_2, \dots, x_n)} = \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_n} \end{pmatrix}$$

- 分子レイアウトにおける $\frac{\partial \mathbf{y}}{\partial \mathbf{x}} \equiv \frac{\partial \mathbf{y}}{\partial \mathbf{x}^{\top}}$ と同じ.
- ◆ ヤコビ行列の行列式 det J を, ヤコビアンとよぶ。

積分の変数変換

- n, m 次変数 $\mathbf{x} = (x_1, x_2, \dots, x_n)^{\mathsf{T}}$, $\mathbf{y} = (y_1, y_2, \dots, y_m)^{\mathsf{T}}$ を考える.
- 関数 $f(\mathbf{y})$ があり、次の積分を行いたいとする:

$$\int f(\mathbf{y}) \, \mathrm{d}\mathbf{y}$$

- $\mathbf{y} = \mathbf{g}(\mathbf{x})$, $m \times n$ 行列を $\mathbf{G} = \frac{\partial \mathbf{y}}{\partial \mathbf{x}}$ とおく.
- ヤコビアン det G を使うと、次のように変数変換できる:

$$\int f(\mathbf{y}) \, d\mathbf{y} \longrightarrow \int f(\mathbf{g}(\mathbf{x})) \left| \det \mathbf{G} \right| \, d\mathbf{x}$$

- $dy = |\det G| dx$ のように関連付けられる.
- ヤコビアンは、変数変換による微小な体積 dx, dy の変化率を表す。

積分の変数変換 (スカラの場合)

■ 関数 f(y) があり、次の計算を行いたいとする:

$$\int f(y) \, \mathrm{d}y$$

• y = g(x) とすると、次のように変数変換できる:

$$\int f(y) \, \mathrm{d}y \quad \longrightarrow \quad \int f(g(x)) \frac{\mathrm{d}y}{\mathrm{d}x} \, \mathrm{d}x$$

偶関数の積分

- 関数 f(x) が偶関数であれば, f(-x) = f(x) となる.
- \bullet -a から a までの積分は,

$$\int_{-a}^{a} f(x) dx = \int_{-a}^{0} f(x) dx + \int_{0}^{a} f(x) dx$$

• 第一項において x=-y とすると, $\dfrac{\mathrm{d}x}{\mathrm{d}y}=-1$, 積分範囲は [-a,0] から [a,0] になるので,

$$\int_{-a}^{a} f(x) dx = \int_{a}^{0} \frac{f(-y)}{dy} dy + \int_{0}^{a} f(x) dx$$

$$= \int_{a}^{0} \frac{f(y)(-1)}{dy} dy + \int_{0}^{a} f(x) dx$$

$$= \int_{0}^{a} f(y) dy + \int_{0}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$

奇関数の積分

- 関数 f(x) が奇関数であれば, f(-x) = -f(x) となる.
- \bullet -a から a までの積分は.

$$\int_{-a}^{a} f(x) dx = \int_{-a}^{0} f(x) dx + \int_{0}^{a} f(x) dx$$

• 第一項において x=-y とすると, $\dfrac{\mathrm{d}x}{\mathrm{d}y}=-1$, 積分範囲は [-a,0] から [a,0] になるので、

$$\int_{-a}^{a} f(x) dx = \int_{a}^{0} \frac{f(-y)}{dy} dy + \int_{0}^{a} f(x) dx$$
$$= \int_{a}^{0} -f(y)(-1) dy + \int_{0}^{a} f(x) dx$$
$$= \int_{a}^{0} (-f(y)) dy + \int_{0}^{a} f(x) dx = 0$$

偶関数、奇関数の積分

偶関数, 奇関数の積分

f(x) が偶関数であれば, [-a,a] の積分は, [0,a] の積分の 2 倍:

$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$

f(x) が奇関数であれば、[-a,a] の積分は 0:

$$\int_{-a}^{a} f(x) \, \mathrm{d}x = 0$$

- 以下も成り立つ:
- (奇関数) × (奇関数) = (偶関数)
- (奇関数) × (偶関数) = (奇関数)
- (偶関数) × (偶関数) = (偶関数)

- n 次変数 $\mathbf{x} = (x_1, x_2, \dots, x_n)^{\top}$ を考える.
- $\mathbf{a} = (a_1, a_2, \dots, a_n)^{\top}$ として、 $-\mathbf{a}$ から \mathbf{a} までの $f(\mathbf{x})$ の積分は、

$$\int_{-\mathbf{a}}^{\mathbf{a}} f(\mathbf{x}) \, \mathrm{d}\mathbf{x} = \int_{-\mathbf{a}}^{\mathbf{0}} f(\mathbf{x}) \, \mathrm{d}\mathbf{x} + \int_{\mathbf{0}}^{\mathbf{a}} f(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$

• 上式の積分は、次と同じことである:

$$\int_{-a_1}^{a_1} \int_{-a_2}^{a_2} \cdots \int_{-a_n}^{a_n} f(x_1, x_2, \dots, x_n) \, dx_1 \, dx_2 \cdots dx_n$$

$$= \int_{-a_1}^{0} \int_{-a_2}^{0} \cdots \int_{-a_n}^{0} f(x_1, x_2, \dots, x_n) \, dx_1 \, dx_2 \cdots dx_n$$

$$+ \int_{0}^{a_1} \int_{0}^{a_2} \cdots \int_{0}^{a_n} f(x_1, x_2, \dots, x_n) \, dx_1 \, dx_2 \cdots dx_n$$

- n 次変数 $\mathbf{x} = (x_1, x_2, \dots, x_n)^{\top}$ を考える.
- $\mathbf{a} = (a_1, a_2, \dots, a_n)^{\top}$ として、 $-\mathbf{a}$ から \mathbf{a} までの $f(\mathbf{x})$ の積分は、

$$\int_{-\mathbf{a}}^{\mathbf{a}} f(\mathbf{x}) \, \mathrm{d}\mathbf{x} = \int_{-\mathbf{a}}^{\mathbf{0}} f(\mathbf{x}) \, \mathrm{d}\mathbf{x} + \int_{\mathbf{0}}^{\mathbf{a}} f(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$

• 第一項において $\mathbf{x}=-\mathbf{y}$ とすると, ヤコビ行列は $\frac{\partial \mathbf{x}}{\partial \mathbf{y}}=-\mathbf{I}$, ヤコビアンは $\det(-\mathbf{I})=(-1)^n$. 積分範囲は $[-\mathbf{a},\mathbf{0}]$ から $[\mathbf{a},\mathbf{0}]$ になるので,

$$\int_{-\mathbf{a}}^{\mathbf{a}} f(\mathbf{x}) d\mathbf{x} = \int_{\mathbf{a}}^{\mathbf{0}} f(-\mathbf{y}) (-1)^{n} d\mathbf{y} + \int_{\mathbf{0}}^{\mathbf{a}} f(\mathbf{x}) d\mathbf{x}$$

• $\frac{\partial \mathbf{x}}{\partial \mathbf{x}} = \mathbf{I}$, $\det(c\mathbf{A}) = c^n \det \mathbf{A}$ を用いた.

• $\mathbf{a} = (a_1, a_2, \dots, a_n)^{\top}$ として、 $-\mathbf{a}$ から \mathbf{a} までの $f(\mathbf{x})$ の積分は、

$$\int_{-\mathbf{a}}^{\mathbf{a}} f(\mathbf{x}) \, d\mathbf{x} = \int_{\mathbf{a}}^{\mathbf{0}} f(-\mathbf{y})(-1)^n \, d\mathbf{y} + \int_{\mathbf{0}}^{\mathbf{a}} f(\mathbf{x}) \, d\mathbf{x} \quad (\mathbf{y} = -\mathbf{x})$$

第一項は、次と同じことである:

$$\int_{\mathbf{a}}^{\mathbf{0}} f(-\mathbf{y})(-1)^n \, d\mathbf{y} = \int_{a_1}^0 \int_{a_2}^0 \cdots \int_{a_n}^0 f(-\mathbf{y})(-1)^n \, dy_1 \, dy_2 \cdots dy_n$$

$$= \int_0^{a_1} \int_0^{a_2} \cdots \int_0^{a_n} f(-\mathbf{y}) \, dy_1 \, dy_2 \cdots dy_n$$

$$= \int_0^{\mathbf{a}} f(-\mathbf{y}) \, d\mathbf{y}$$

● 積分範囲を入れ替えると、符号が反転することに注意 (上では n 回入れ替える)。

• $\mathbf{a} = (a_1, a_2, \dots, a_n)^\top$ として、 $-\mathbf{a}$ から \mathbf{a} までの $f(\mathbf{x})$ の積分は、

$$\int_{-\mathbf{a}}^{\mathbf{a}} f(\mathbf{x}) d\mathbf{x} = \int_{-\mathbf{a}}^{\mathbf{0}} f(\mathbf{x}) d\mathbf{x} + \int_{\mathbf{0}}^{\mathbf{a}} f(\mathbf{x}) d\mathbf{x}$$
$$= \int_{\mathbf{a}}^{\mathbf{0}} f(-\mathbf{y})(-1)^{n} d\mathbf{y} + \int_{\mathbf{0}}^{\mathbf{a}} f(\mathbf{x}) d\mathbf{x} \quad (\mathbf{y} = -\mathbf{x})$$
$$= \int_{\mathbf{0}}^{\mathbf{a}} f(-\mathbf{y}) d\mathbf{y} + \int_{\mathbf{0}}^{\mathbf{a}} f(\mathbf{x}) d\mathbf{x}$$

• 偶関数なら $f(-\mathbf{x}) = f(\mathbf{x})$, 奇関数なら $f(-\mathbf{x}) = -f(\mathbf{x})$ だから,

$$\int_{-\mathbf{a}}^{\mathbf{a}} f(\mathbf{x}) \, \mathrm{d}\mathbf{x} = \left\{ \begin{array}{ll} 2 \int_{\mathbf{0}}^{\mathbf{a}} f(\mathbf{x}) \, \mathrm{d}\mathbf{x} & (f(\mathbf{x}) \;$$
が偶関数)
$$0 & (f(\mathbf{x}) \;$$
が奇関数)

ガウス積分の基本形

$$\int_0^\infty \exp\left(-x^2\right) \mathrm{d}x = \frac{\sqrt{\pi}}{2}$$

上記の積分をIとおくと, I^2 は

$$I^{2} = \int_{0}^{\infty} \int_{0}^{\infty} \exp\left(-\left(x^{2} + y^{2}\right)\right) dx dy$$

 $x = r\cos\theta$, $y = r\sin\theta$ のように変数変換すると, ヤコビアンは

$$\left| \det \frac{\partial(x,y)}{\partial(r,\theta)} \right| = \left| \det \left(\frac{\partial x}{\partial r} \frac{\partial x}{\partial \theta} \right) \right| = \left| \det \left(\frac{\cos \theta}{\sin \theta} - r \sin \theta \right) \right|$$
$$= \left| r \left(\cos^2 \theta + \sin^2 \theta \right) \right| = |r|$$

 $x=r\cos\theta,\ y=r\sin\theta,\ x,y\in[0,\infty]$ であるから, $r\in[0,\infty)$, $\theta\in[0,\frac{\pi}{2}]$. ヤコビアンは |r|=r であるから, $\mathrm{d}x\,\mathrm{d}y=r\,\mathrm{d}r\,\mathrm{d}\theta$. 以上より, I^2 は

$$I^{2} = \int_{0}^{\infty} \int_{0}^{\infty} \exp\left(-\left(x^{2} + y^{2}\right)\right) dx dy$$

$$= \int_{0}^{\infty} \int_{0}^{\frac{\pi}{2}} \exp\left(-r^{2}\right) r dr d\theta = \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{\infty} \exp\left(-r^{2}\right) r dr$$

$$= \frac{\pi}{2} \left[-\frac{1}{2} \exp\left(-r^{2}\right)\right]_{0}^{\infty} = \frac{\pi}{4}$$

であるから, $I=rac{\sqrt{\pi}}{2}$.

ガウス積分の基本形

$$\int_{-\infty}^{\infty} \exp\left(-x^2\right) \mathrm{d}x = \sqrt{\pi}$$

上記の積分をIとおくと, I^2 は

$$I^{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left(-\left(x^{2} + y^{2}\right)\right) dx dy$$

 $x=r\cos\theta$, $y=r\sin\theta$ のように変数変換すると, ヤコビアンは r. よって, $\mathrm{d}x\,\mathrm{d}y=r\,\mathrm{d}r\,\mathrm{d}\theta$. $x,y\in(-\infty,\infty)$ であるから, $r\in[0,\infty]$, $\theta\in[0,2\pi]$.

$$I^{2} = \int_{0}^{\infty} \int_{0}^{2\pi} \exp(-r^{2}) r dr d\theta = \int_{0}^{2\pi} d\theta \int_{0}^{\infty} \exp(-r^{2}) r dr$$
$$= 2\pi \left[-\frac{1}{2} \exp(-r^{2}) \right]_{0}^{\infty} = \pi \longrightarrow I = \sqrt{\pi}$$

ガウス積分の基本形

$$\int_0^\infty \exp(-x^2) dx = \frac{\sqrt{\pi}}{2}$$
$$\int_{-\infty}^\infty \exp(-x^2) dx = \sqrt{\pi}$$

 $\exp\left(-x^2\right)$ は偶関数 $\left(f(x)=f(-x)\right)$ であるから, $-\infty$ から ∞ までの積分値は, 0 から ∞ までの積分値の倍となる.

ガウス積分の基本形

$$\int_0^\infty \exp(-ax^2) dx = \frac{1}{2} \sqrt{\frac{\pi}{a}} \quad (a > 0)$$
$$\int_{-\infty}^\infty \exp(-ax^2) dx = \sqrt{\frac{\pi}{a}} \quad (a > 0)$$

$$y=\sqrt{a}x$$
 とすると, $x=rac{y}{\sqrt{a}}$, $rac{\mathrm{d}x}{\mathrm{d}y}=rac{1}{\sqrt{a}}$ だから,

$$\int_0^\infty \exp\left(-ax^2\right) \mathrm{d}x = \int_0^\infty \exp\left(-y^2\right) \frac{\mathrm{d}x}{\mathrm{d}y} \, \mathrm{d}y = \frac{1}{\sqrt{a}} \int_0^\infty \exp\left(-y^2\right) \mathrm{d}y = \frac{1}{\sqrt{a}} \frac{\sqrt{\pi}}{2}$$

 $\exp\left(-ax^2\right)$ は偶関数だから,積分範囲を $[0,\infty)$ から $(-\infty,\infty)$ に広げると,積分値は倍となる.

ガウス積分の基本形

$$\int_0^\infty x \exp(-ax^2) dx = \frac{1}{2a} \quad (a > 0)$$
$$\int_{-\infty}^\infty x \exp(-ax^2) dx = 0 \quad (a > 0)$$

次のように計算できる:

$$\int_0^\infty x \exp(-ax^2) dx = \left[-\frac{1}{2a} \exp(-ax^2) \right]_0^\infty = \frac{1}{2a}$$

 $x\exp\left(-ax^2\right)$ は奇関数だから, $-\infty$ から ∞ までの積分は 0.

ガウス積分の漸化式

$$I_n = \int_0^\infty x^n \exp\left(-ax^2\right) \mathrm{d}x$$
 とおくと $(a>0)$, $I_{n+2} = \frac{n+1}{2a} I_n$

次のように部分積分すれば $(\lim_{x\to\infty}x^n\exp(-x)=0$ に注意):

$$I_{n} = \int_{0}^{\infty} x^{n} \exp(-ax^{2}) dx$$

$$= \left[\frac{x^{n+1}}{n+1} \exp(-ax^{2}) \right]_{0}^{\infty} + \frac{2a}{n+1} \int_{0}^{\infty} x^{n+2} \exp(-ax^{2}) dx$$

$$= \frac{2a}{n+1} \int_{0}^{\infty} x^{n+2} \exp(-ax^{2}) dx = \frac{2a}{n+1} I_{n+2}$$

ガウス積分の漸化式

$$I_n = \int_0^\infty x^n \exp\left(-ax^2\right) \mathrm{d}x$$
 とおくと $(a>0)$, $I_{n+2} = -rac{\partial}{\partial a} I_n$

次のように計算できる:

$$\frac{\partial}{\partial a} I_n = \frac{\partial}{\partial a} \int_0^\infty x^n \exp(-ax^2) dx$$
$$= \int_0^\infty \frac{\partial}{\partial a} x^n \exp(-ax^2) dx$$
$$= -\int_0^\infty x^{n+2} \exp(-ax^2) dx = -I_{n+2}$$

微分と積分の交換については条件がある (上の場合は可能).

ガウス積分 (2乗)

$$\int_0^\infty x^2 \exp(-ax^2) dx = \frac{1}{4} \sqrt{\frac{\pi}{a^3}} \quad (a > 0)$$
$$\int_{-\infty}^\infty x^2 \exp(-ax^2) dx = \frac{1}{2} \sqrt{\frac{\pi}{a^3}} \quad (a > 0)$$

$$I_n = \int_0^\infty x^n \exp\left(-ax^2\right) \mathrm{d}x$$
 とすると, $I_{n+2} = \frac{n+1}{2a} I_n$ である. $I_0 = \int_0^\infty \exp\left(-ax^2\right) \mathrm{d}x = \frac{1}{2} \sqrt{\frac{\pi}{a}}$ だから,

$$I_2 = \int_0^\infty x^2 \exp(-ax^2) dx = \frac{0+1}{2a} I_0 = \frac{1}{2a} \frac{1}{2} \sqrt{\frac{\pi}{a}} = \frac{1}{4} \sqrt{\frac{\pi}{a^3}}$$

 $x^2\exp\left(-ax^2
ight)$ は偶関数なので, $(-\infty,\infty)$ の積分は, $[0,\infty)$ の積分の 2 倍.

ガウス積分 (3乗)

$$\int_0^\infty x^3 \exp(-ax^2) dx = \frac{1}{2a^2} \quad (a > 0)$$
$$\int_{-\infty}^\infty x^3 \exp(-ax^2) dx = 0 \quad (a > 0)$$

$$I_n = \int_0^\infty x^n \exp\left(-ax^2\right) \mathrm{d}x$$
 とすると, $I_{n+2} = \frac{n+1}{2a} I_n$ である. $I_1 = \int_0^\infty x \exp\left(-ax^2\right) \mathrm{d}x = \frac{1}{2a}$ だから,

$$I_3 = \int_0^\infty x^3 \exp(-ax^2) dx = \frac{1+1}{2a} I_1 = \frac{1}{a} \frac{1}{2a} = \frac{1}{2a^2}$$

 $x^3 \exp\left(-ax^2\right)$ は奇関数だから、 $-\infty$ から ∞ までの積分は 0.

ガウス積分 (二次関数の一般形)

$$\int_{-\infty}^{\infty} \exp\left(-ax^2 + bx + c\right) dx = \exp\left(\frac{b^2}{4a} + c\right) \sqrt{\frac{\pi}{a}}$$

$$-ax^2+bx+c=-a\left(x-rac{b}{2a}
ight)^2+rac{b^2}{4a}+c$$
 と平方完成できる. $y=x-rac{b}{2a}$ とすると, $rac{\partial x}{\partial y}=1$, 積分範囲は $(-\infty,\infty)$ だから,

$$\int_{-\infty}^{\infty} \exp\left(-ax^2 + bx + c\right) dx = \exp\left(\frac{b^2}{4a} + c\right) \int_{-\infty}^{\infty} \exp\left(-ay^2\right) \frac{\partial x}{\partial y} dy$$
$$= \exp\left(\frac{b^2}{4a} + c\right) \int_{-\infty}^{\infty} \exp\left(-ay^2\right) dy = \exp\left(\frac{b^2}{4a} + c\right) \sqrt{\frac{\pi}{a}}$$