AI 中的数学 第二十讲

方聪, 概率统计部分参考章复熹和张原老师课件

2024 年秋季

- 1 置信区间
- 2 假设检验

AI 中的数学

- 1 置信区间
- 2 假设检验

定义: 设 $X_1, \dots, X_n \sim \text{iid } F(x, \theta)$ 是一个统计模型, $g(\theta)$ 为实值 函数。假设 $\underline{T} = \underline{T}(X_1, \dots, X_n)$ 与 $\bar{T} = \bar{T}(X_1, \dots, X_n)$ 为统计量, $\alpha \in (0, 1)$.

(1) 若 <u>T</u> < T 且

$$P_{\theta}(\underline{T} \leqslant g(\theta) \leqslant \overline{T}) \geqslant 1 - \alpha, \quad \forall \theta \in \Theta,$$

则称 $[\underline{T}, \overline{T}]$ 为 $g(\theta)$ 的置信度为 $1-\alpha$ 的置信区间.

(2) 若

$$P_{\theta}(\underline{T} \leqslant g(\theta)) \geqslant 1 - \alpha, \quad \forall \theta \in \Theta,$$

则称 \underline{T} 为 $g(\theta)$ 的置信度为 $1-\alpha$ 的置信下限.

(3) 若

$$P_{\theta}(g(\theta) \leqslant \bar{T}) \geqslant 1 - \alpha, \quad \forall \theta \in \Theta,$$

则称 \bar{T} 为 $g(\theta)$ 的置信度为 $1-\alpha$ 的置信上限.

枢轴量法

定义:设 $X_1, \dots, X_n \sim \text{iid } F(x, \theta)$ 是一个统计模型, $g(\theta)$ 是待估量. 若

$$h=h\left(X_1,\cdots,X_n;g(\theta)\right)$$

的分布与 θ 无关, 则称 h 为枢轴量.

借助枢轴量, 我们可以构造置信区间或置信限:

Step 1. 找枢轴量 $h = h(\vec{X}, g(\theta))$ 及其分布 F.

Step 2. 利用 F 选择 a, b, 使得:

$$P(a \leqslant h \leqslant b) \geqslant 1 - \alpha.$$

Step 3. 将 $a \leq h \leq b$ 化为 $\underline{T} \leq g(\theta) \leq \overline{T}$, 于是得到

$$P(\underline{T} \leqslant g(\theta) \leqslant \bar{T}) \geqslant 1 - \alpha.$$

例:设总体: $X \sim \text{Exp}(\lambda)$. 样本量: n. 求 λ 的置信区间.

例:设总体: $X \sim \text{Exp}(\lambda)$.样本量:n.求 λ 的置信区间.

解:由于 $\lambda X \sim \text{Exp}(1)$,因此,

$$h_1 = \lambda (X_1 + \cdots + X_n) \sim \Gamma(n, 1).$$

 $2\lambda X \sim \operatorname{Exp}\left(\frac{1}{2}\right)$, 因此

$$h_2 = 2\lambda (X_1 + \cdots + X_n) \sim \Gamma \left(n, \frac{1}{2}\right) = \chi^2(2n).$$

查 $\chi^2(2n)$ 的表获得 $\chi^2(2n)$ 分布的 $\alpha/2$ 分位数和 $1-\alpha/2$ 分位数: $\lambda_1=\chi^2_{\alpha/2}(2n), \lambda_2=\chi^2_{1-\alpha/2}(2n).$ 于是,

 $P_{\lambda}(\lambda_1 \leq h_2 \leq \lambda_2) = 1 - \alpha$. 从而, 所求为 [\underline{T} , \overline{T}], 其中,

$$\underline{T} = \frac{\lambda_1}{2(X_1 + \dots + X_n)}, \quad \overline{T} = \frac{\lambda_2}{2(X_1 + \dots + X_n)}.$$

例: 设总体 $X \sim U(0,\theta)$, 样本量为 n, 试对设定的 $\alpha(0 < \alpha < 1)$ 给出 θ 的 $1 - \alpha$ 同等置信区间。

例:设总体 $X \sim U(0,\theta)$,样本量为 n,试对设定的 $\alpha(0 < \alpha < 1)$ 给出 θ 的 $1 - \alpha$ 同等置信区间。

解:使用枢轴量法:

第一步: 已知 θ 的 ML 估计是样本的最大次序统计量 $x_{(n)}$,而 $\frac{x_{(n)}}{\theta}$ 的密度函数为

$$p(y;\theta) = ny^{n-1}, \quad 0 < y < 1,$$

与 θ 无关,可以选取 $\frac{x(n)}{\theta}$ 作为枢轴量G。

第二步:由于 $\frac{x_{(n)}}{\theta}$ 的分布函数为 $F(y) = y^n, 0 < y < 1$,故 $P(c \leq \frac{x_{(n)}}{\theta} \leq d) = d^n - c^n$,因此可以选择适当的 c 和 d 满足

$$d^n - c^n = 1 - \alpha.$$

第三步:整理不等式得到 θ 的 $1-\alpha$ 同等置信区间为 $\left[\frac{x(n)}{d},\frac{x(n)}{c}\right]$,该区间的平均长度为 $\left(\frac{1}{c}-\frac{1}{d}\right)E(x_{(n)})$ 。

不难看出,当 $d=1, c=\sqrt[q]{\alpha}$ 时, $\frac{1}{c}-\frac{1}{d}$ 取最小值,说明 $[x_{(n)},x_{(n)}/\sqrt[q]{\alpha}]$ 是 θ 的此类区间估计中置信水平为 $1=\alpha$ 的最短。

例: 设总体 $\xi \sim N(\theta, \theta^2), \theta > 0$,样本量为 n,求 θ 的 $1 - \alpha$ 同等置信区间。

例: 设总体 $\xi \sim N(\theta, \theta^2), \theta > 0$,样本量为 n,求 θ 的 $1 - \alpha$ 同等置信区间。

解: 均值
$$\bar{\xi} \sim N(\theta, \frac{\theta^2}{n})$$
, 因此 $\frac{\bar{\xi} - \theta}{\theta / \sqrt{n}} \sim N(0, 1)$,

$$-\Phi\left(1-\frac{\alpha}{2}\right) \leqslant \frac{\bar{\xi}-\theta}{\theta/\sqrt{n}} \leqslant \Phi\left(1-\frac{\alpha}{2}\right)$$

即

$$\frac{\bar{\xi}}{1 + \frac{\Phi\left(1 - \frac{\alpha}{2}\right)}{\sqrt{n}}} \leqslant \theta \leqslant \frac{\bar{\xi}}{1 - \frac{\Phi\left(1 - \frac{\alpha}{2}\right)}{\sqrt{n}}}.$$

定理: 假设总体: $X \sim N(\mu, \sigma^2)$, 样本量: n. 则

- (1) $\bar{X} \sim N\left(\mu, \frac{1}{n}\sigma^2\right)$
- (2) $\frac{1}{\sigma^2} \sum_{i=1}^n (X_i \bar{X})^2 \sim \chi^2(n-1);$
- (3) \bar{X} 与 $\sum_{i=1}^{n} (X_i \bar{X})^2$ 相互独立.

$$t(n)$$
 分布: 设 $\xi \sim N(0,1), \ \eta \sim \chi^2(n), \$ 且 $\xi 与 \eta$ 独立,记 $T = \frac{\xi}{\eta/n}.$

证明:设 $X_i = \mu + \sigma Z_i$, 其中 $Z_i = X_i^* \sim N(0,1)$, i.i.d.,因此

$$\bar{X} = \mu + \sigma \bar{Z}, \quad \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{\sigma^2} = \sum_{i=1}^{n} (Z_i - \bar{Z})^2 = \sum_{i=1}^{n} Z_i^2 - n \bar{Z}^2$$

取正交矩阵 $\mathbf{A}_{n\times n}$, 其第一行是 $\left(\frac{1}{\sqrt{n}},\cdots,\frac{1}{\sqrt{n}}\right)$. 令 $\vec{Y}=\mathbf{A}\vec{Z}$. 由 \mathbf{A} 正交, $\vec{Y}\sim N\left(\overrightarrow{0},\mathbf{I}_{n\times n}\right)$ 且 $\sum_{i=1}^{n}Z_{i}^{2}=\sum_{i=1}^{n}Y_{i}^{2}$. 由 \mathbf{A} 的第一行, $Y_{1}^{2}=n\bar{Z}^{2}$. 于是, $\frac{\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}}{\bar{Z}=\frac{\sigma_{1}^{2}}{\sqrt{n}}Y_{1}}=\sum_{i=2}^{n}Y_{i}^{2}\sim\chi^{2}(n-1)$. 故 (2) 成立. $\bar{Z}=\frac{\sigma_{1}^{2}}{\sqrt{n}}Y_{1}\sim N\left(0,\frac{1}{n}\right)$, 且与 $\sum_{i=2}^{n}Y_{i}^{2}$ 独立. 故,(1),(3) 成立.

例: 总体 $X \sim N(\mu, \sigma_0^2)$, 其中 σ_0^2 已知, (例如, $X \sim N(\mu, 1)$).

求: μ 的置信度为 $1-\alpha$ 的 (1) 置信区间, (2) 置信上限.

例: 总体 $X \sim N(\mu, \sigma_0^2)$, 其中 σ_0^2 已知, (例如, $X \sim N(\mu, 1)$). 求: μ 的置信度为 $1-\alpha$ 的 (1) 置信区间, (2) 置信上限.

解: 取 $h = h(X_1, \dots, X_n, \mu) := \frac{\sqrt{n(X-\mu)}}{\sigma} \sim N(0, 1).$ (1) 查表获得标准正态分布的 $1 - \alpha/2$ 分位数 $z_{1-\alpha/2}$, 于是 $P_{\mu}(|h| \leq z_{1-\alpha/2}) = 1 - \alpha$. 因此,

$$P_{\mu}\left(|\bar{X}-\mu|\leqslant \frac{\sigma}{\sqrt{n}}z_{1-\alpha/2}\right)=1-\alpha.$$

概率论角度: $\bar{X} \in \left[\mu - \frac{\sigma_0}{\sqrt{n}} z_{1-\alpha/2}, \mu + \frac{\sigma_0}{\sqrt{n}} z_{1-\alpha/2}\right]$, 末知的随机点 \bar{X} 落在已知的确定区间中.

统计学角度: $\mu \in \left[\bar{X} - \frac{\sigma_0}{\sqrt{n}} z_{1-\alpha/2}, \bar{X} + \frac{\sigma_0}{\sqrt{n}} z_{1-\alpha/2}\right]$ (此即所求置信区间), 已知的随机区间 (可由数据得到) 覆盖末知参数 μ (确定的点).

(2) 置信上限为
$$\bar{\mu} = \bar{X} + \frac{\sigma}{\sqrt{n}} z_{1-\alpha}$$
:

$$P_{\mu}(h \geqslant z_{\alpha}) = 1 - \alpha \Rightarrow P_{\mu}\left(\bar{X} \leqslant \mu - \frac{\sigma}{\sqrt{n}}z_{\alpha}\right) = 1 - \alpha.$$

例:若在上例中 μ , σ^2 均未知, 求: μ 的置信度为 $1-\alpha$ 的置信区间。

解: 这种情况不能用枢轴量 $\frac{\sqrt{n}(X-\mu)}{\sigma}$ 得到 μ 的置信区间 (因 σ 未知)。不过可以取

$$T = \frac{\sqrt{n}(\bar{X} - \mu)}{\hat{\sigma}}$$

作为枢轴量,其中 $\hat{\sigma} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}$,且其分布是自由 度为 n-1 的 t 分布。记 $t_{1-\alpha/2}(n-1)$ 为自由度是 n-1 的 t 分布的 $1-\alpha/2$ 分位数,则

$$P\left(\left|\frac{\sqrt{n}(\bar{X}-\mu)}{\hat{\sigma}}\right| \leqslant t_{1-\alpha/2}(n-1)\right) = 1-\alpha$$

这样, 我们得到

 $[\bar{X} - \hat{\sigma}t_{1-\alpha/2}(n-1)/\sqrt{n}, \bar{X} + \hat{\sigma}t_{1-\alpha/2}(n-1)/\sqrt{n}]$ 是 μ 的置信 度为 $1-\alpha$ 的置信区间。再将数据 x_1, \ldots, x_n 代入即可。

例:设总体为正态分布 $N(\mu,1)$,为得到 μ 的置信水平为 0.95 的置信区间且长度不超过 1.2,样本容量应为多大?

例:设总体为正态分布 $N(\mu,1)$,为得到 μ 的置信水平为 0.95 的置信区间且长度不超过 1.2,样本容量应为多大?

解: 由题设条件知 μ 的 0.95 置信区间为

$$\left[\bar{x}-z_{1-\alpha/2}/\sqrt{n}, \quad \bar{x}+z_{1-\alpha/2}/\sqrt{n}\right],$$

其区间长度为 $2z_{1-\alpha/2}/\sqrt{n}$,它仅依赖于样本容量 n 而与样本具体取值无关。现要求 $2z_{1-\alpha/2}/\sqrt{n} \le 1.2$,立即有 $n \ge (2/1.2)^2 z_{1-\alpha/2}^2$ 。现 $1-\alpha=0.95$,故 $z_{1-\alpha/2}=1.96$,从而 $n \ge (5/3)^2 \times 1.96^2 = 10.67 \approx 11$ 。即样本容量至少为 11 时才能使 μ 的置信水平为 0.95 的置信区间长度不超过 1.2。

例:假设轮胎的寿命服从正态分布。为估计某种轮胎的平均寿命,现随机地抽取 12 只轮胎试用,测得它们的寿命(单位:万千米)如下:

试求平均寿命的 0.95 置信区间。

例:假设轮胎的寿命服从正态分布。为估计某种轮胎的平均寿命,现随机地抽取 12 只轮胎试用,测得它们的寿命(单位:万千米)如下:

试求平均寿命的 0.95 置信区间。

解:此处正态总体标准差未知,可使用 t 分布求均值的置信区间。本例中经计算有 $\bar{x}=4.709$, $s^2=0.0615$. 取 $\alpha=0.05$, 查表知 $t_{0.975}(11)=2.2010$,于是平均寿命的 0.95 置信区间为

$$4.709 \pm 2.2010 \cdot \sqrt{\frac{0.0615}{12}} = [4.5516, 4.8668].$$

在实际问题中,由于轮胎的寿命越长越好,因此可以只求平均寿命的置信下限.

参数的近似置信区间

定义:设 $X_1, \dots, X_n \sim \text{iid } F(x, \theta)$ 是一个统计模型, $g(\theta)$ 是待估量, $T(X_1, \dots, X_n)$ 是 $g(\theta)$ 的渐近正态估计,

(1) 若 σ^2 已知,则 $g(\theta)$ 的置信度为 $1-\alpha$ 的近似置信区间是

$$\left[T(X_1,\ldots,X_n)-\frac{\sigma}{\sqrt{n}}z_{1-\alpha/2},T(X_1,\ldots,X_n)+\frac{\sigma}{\sqrt{n}}z_{1-\alpha/2}\right];$$

(2) 若 σ^2 未知,则 $g(\theta)$ 的置信度为 $1-\alpha$ 的近似置信区间是

$$\left[T(X_1,\ldots,X_n)-\frac{\hat{\sigma}_n}{\sqrt{n}}t_{n-1,1-\alpha/2},T(X_1,\ldots,X_n)+\frac{\hat{\sigma}_n}{\sqrt{n}}t_{n-1,1-\alpha/2}\right],$$

其中 $\hat{\sigma}_n$ 为 σ 的相合估计.

例:某学校计划在数学系开一门新课,调查了90位学生以后,发现其中15位学生反映目前课业负担过重。试求课业负担过重的学生百分比的置信度为0.95的置信区间。

例:某学校计划在数学系开一门新课,调查了90位学生以后,发现其中15位学生反映目前课业负担过重。试求课业负担过重的学生百分比的置信度为0.95的置信区间。

解:记 θ 为课业负担过重的学生的百分比,n为调查的样本量,X为样本中课业负担过重的学生数。利用中心极限定理,得到

$$\sqrt{n}\left(\frac{X}{n}-\theta\right)/\sqrt{\theta(1-\theta)} \xrightarrow{w} N(0,1) \quad (n\to\infty),$$

从而对给定的 $a \in (0,1)$, 有

$$P\left(\left|\sqrt{n}\left(\frac{X}{n}-\theta\right)/\sqrt{\theta(1-\theta)}\right|\leqslant z_{1-a/2}\right)\approx 1-a.$$

现在需求解不等式

$$\left|\sqrt{n}\left(\frac{X}{n}-\theta\right)/\sqrt{\theta(1-\theta)}\right|\leqslant z_{1-a/2}.$$

这个不等式的解为

$$\tilde{\theta} - \Delta \leqslant \theta \leqslant \tilde{\theta} + \Delta,$$

其中

$$\tilde{\theta} = \frac{2X + z_{1-a/2}^2/n}{n},$$

$$\Delta = \sqrt{\frac{z_{1-a/2}^2/n[z_{1-a/2}^2/n + 4(1-X/n)X/n]}{n}}.$$

于是, $[\tilde{\theta} - \Delta, \tilde{\theta} + \Delta]$ 是 θ 的置信度为 $1 - \alpha$ 的近似置信区间。

- 1 置信区间
- 2 假设检验

- 例 1.1. 200 件产品, b 件次品. 问:次品率 p (= b/200) ≤ 3%?
 方法: 抽查 10 件, 观察数据 (例如:发现 2 件次品).
- 例 1.2. 纸币长度 $X \sim N(\mu, \sigma^2)$. 问: $\mu = 155 \text{ mm}$? 方法: 测量 10 张纸币的长度, 得到数据 (x_1, \dots, x_{10}) .
- 检验与估计相同之处.
 模型: X ~ F_θ, θ ∈ Θ. 目标: 对 θ 做出一些结论.
 方法: 抽样, 产生数据 X₁,···, X_n ~ i.i.d. F_θ.
- 检验与估计不同之处.
 估计: 输出值 p̂, µ̂, 或者区间.
 检验: 回答问题, 输出"是"或"否".

定义:设 $X \sim F_{\theta}(\theta \in \Theta)$ 为总体模型,所谓假设检验问题是两个关于总体真值的互相对立判断 $(\theta \in \Theta_0, \theta \in \Theta_1)$ 的鉴定问题,其中 Θ_0 是 Θ 的一个真子集, $\Theta_1 = \Theta \setminus \Theta_0$ 为 Θ_0 的余集,判断 $\theta \in \Theta_0$ 称为零假设(或原假设),记为 H_0 ,判断 $\theta \in \Theta_1$ 称为对立假设(或备择假设),记为 H_1 ,通常用

$$H_0: \theta \in \Theta_0 \leftrightarrow H_1: \theta \in \Theta_1$$

或 (Θ_0,Θ_1) 表示假设检验问题。

定义:设 $X \sim F_{\theta}(\theta \in \Theta)$ 为总体模型,所谓假设检验问题是两个关于总体真值的互相对立判断 $(\theta \in \Theta_0, \theta \in \Theta_1)$ 的鉴定问题,其中 Θ_0 是 Θ 的一个真子集, $\Theta_1 = \Theta \setminus \Theta_0$ 为 Θ_0 的余集,判断 $\theta \in \Theta_0$ 称为零假设(或原假设),记为 H_0 ,判断 $\theta \in \Theta_1$ 称为对立假设(或备择假设),记为 H_1 ,通常用

$$H_0: \theta \in \Theta_0 \leftrightarrow H_1: \theta \in \Theta_1$$

或 (Θ_0,Θ_1) 表示假设检验问题。

假设检验要求回答是否接受零假设 $\theta \in \Theta_0$ 成立,该回答依赖于样本观测值 $\mathbf{x} = (x_1, \dots, x_n)$,它是样本空间 \mathcal{X} 的一个取值。因此为了做出判断,只需给出样本空间的一个子集 \mathcal{W} 。当且仅当 $\mathbf{x} \in \mathcal{W}$ 时,否定零假设 $\theta \in \Theta_0$,我们称 \mathcal{W} 为否定域。

第一类错误:实际问题需要评价否定域的优良性。我们考虑在取定否定域W后,实施起来会有什么后果。在 H_0 为真的条件下,若样本观测值满足条件 $\mathbf{x} \in W$,此时按照检验规则,应当否定 H_0 ,而 H_0 为真,这种错误称为第一类错误。

第二类错误: 在 H_0 不真的条件下,若样本观察值 $x \in W$,按照检验规则,不应否定 H_0 ,而 H_0 不真,这种错误称为第二类错误。

- 定义 1.1. 零假设/原假设 $H_0: \theta \in \Theta_0$. 对立假设/备择假设 $H_1: \theta \in \Theta_1 = \Theta \setminus \Theta_0$. 检验问题 (Θ_0, Θ_1) . $H_0: \theta \in \Theta_0 \leftrightarrow H_1: \theta \in \Theta_1$.
- 问题的提法: *H*₀ 是否成立?
- 检验方法: 给出一个否定域 W (⊆ ℝⁿ).
 若数据 x = (x₁,···,x_n) ∈ W, 则输出"拒绝 (否定) H₀";
 若 x ∉ W, 则输出"不拒绝 (接受)H₀".

检验方法 = 带概率的反证法.

寻找 W 使得

$$P_{\theta}(\vec{X} \in \mathcal{W}) \leqslant \alpha, \quad \theta \in \Theta_0.$$

- x∈W:假设 H₀ 成立,那么小概率事件 {X∈W} 发生了, 矛盾! 因此,原假设 H₀ 不成立.即,否定 H₀.
 注:在指定水平下有充分证据表明 H₀ 不成立,推出 H₁ 成立. 强烈的否定!
- x ∉ W:没有足够充分的证据表明 H₀ 不成立.
 但同样不代表已经有充分的证据接受 H₀,微弱的接受.
- 两类错误: 第一类: H_0 为真, 否定 H_0 . 犯错概率 $P_{\theta}(\vec{X} \in W), \theta \in \Theta_0$. 第二类: H_0 为假, 接受 H_0 . 犯错概率 $P_{\theta}(\vec{X} \notin W), \theta \in \Theta_1$.

例 1.6. 药品检验. 药效 $X \sim N(\mu, \sigma^2), \sigma^2$ 已知. 若 $\mu \ge \mu_0$, 则药有效; 若 $\mu \le \mu_0$, 则药无效.

怎样提 H₀?

$$H_0: \mu \geqslant \mu_0 \leftrightarrow H_1: \mu < \mu_0$$

$$H_0: \mu \leqslant \mu_0 \leftrightarrow H_1: \mu > \mu_0.$$

• 控制第一类错误,即 H₀ 为真却输出"认定 H₁"的概率

$$\sup_{\theta \in \Theta_0} P_{\theta}(\vec{X} \in \mathcal{W}) \leqslant \alpha$$

- 防止假药上市, 即 $\mu \leq \mu_0$ 为真却输出"认定 $\mu \geq \mu_0$ ".
- 因此, 应该选 $H_0: \mu \leq \mu_0 \leftrightarrow H_1: \mu > \mu_0$.

例:将每一个人看成一个总体,总体的参数为有病 $(\theta = 0)$ 或没病 $(\theta = 1)$,则假设检验问题为

$$H_0: \theta = 0 \leftrightarrow H_1: \theta = 1.$$

记 X 为鼻子分泌物中某种物质的含量。由经验知道,可存在一个临界值 c,使得 $P_{\theta}(X>c)=1-\alpha$,其中 α 是一个非常小的正数。这说明,这种检验方法可将绝大部分的患胃病的病人检测出来。但是,对于健康人来说,也有相当大的比例呈假阳性,即 $P_{1}(X>c)=\beta$ 。但是,医生并不关心 β 的大小,其原因是这种检验方法成本很低。

定义: 设 (Θ_1, Θ_2) 称 $\beta_W(\theta) := P_{\theta}(\vec{X} \in W)$ 为 W 的功效函数. 若

$$P_{\theta}(\vec{X} \in \mathcal{W}) \leqslant \alpha, \quad \forall \theta \in \Theta_0,$$

则称 \mathcal{W} 为检验问题 (Θ_0,Θ_1) 的一个 (显著性) 水平为 α 的否定域.

注: 选取 W, 使得 $\beta_W(\theta)$ 在 Θ_0 小, 在 Θ_1 越大越好.

定义: 若W 是检验问题 (Θ_0,Θ_1) 的水平为 α 的否定域, 并且对任意水平为 α 的否定域 \widetilde{W} 都有:

$$P_{\theta}(\vec{X} \in \mathcal{W}) \geqslant P_{\theta}(\vec{X} \in \tilde{\mathcal{W}}), \quad \forall \theta \in \Theta_1,$$

则称 W 为检验问题 (Θ_0,Θ_1) 的水平为 α 的一致最大功效否定域/UMP 否定域.

定义: 若

$$P_{\theta_0}(\vec{X} \in \mathcal{W}) \leqslant \alpha \leqslant P_{\theta_1}(\vec{X} \in \mathcal{W}), \quad \forall \theta_0 \in \Theta_0, \theta_1 \in \Theta_1$$

则称 W 为检验问题 (Θ_0,Θ_1) 的一个水平为 α 的无偏否定域.

定义: 若

$$P_{\theta_0}(\vec{X} \in \mathcal{W}) \leqslant \alpha \leqslant P_{\theta_1}(\vec{X} \in \mathcal{W}), \quad \forall \theta_0 \in \Theta_0, \theta_1 \in \Theta_1$$

则称 W 为检验问题 (Θ_0,Θ_1) 的一个水平为 lpha 的无偏否定域.

定义: 若 W 是检验问题 (Θ_0,Θ_1) 的水平为 α 的无偏否定域, 并且对任意水平为 α 的无偏否定域 \tilde{W} 都有:

$$P_{\theta}(\vec{X} \in \mathcal{W}) \geqslant P_{\theta}(\vec{X} \in \tilde{\mathcal{W}}), \quad \forall \theta \in \Theta_1,$$

则称 W 为检验问题 (Θ_0,Θ_1) 的水平为 lpha 的一致最大功效无偏否定域/UMPU 否定域.