Pretreatments and data augmentation

▼ Data augmentation definitions

Goal:

Enhance the performance and robustness of the models (if we don't have a lot of data, it could help the model to avoid overfitting)

Steps:

- 1. **Preprocess the audio data (Pretreatments):** Before applying any augmentations, preprocess the audio data to ensure consistency and quality.
- 2. **Choose augmentation techniques :** Select augmentation techniques suitable for speech data. Common techniques include:
 - **Speed Perturbation:** Speed up or slow down the audio without changing the pitch. This can simulate variations in speaking rate.
 - **Pitch Shifting:** Alter the pitch of the speech while maintaining the duration. This can simulate variations in voice pitch.
 - **Noise Injection:** Add background noise to simulate different environmental conditions, such as street noise, office noise, or crowd noise.
 - **Time Stretching/Compression:** Stretch or compress the duration of the speech without changing the pitch. This can simulate variations in speech duration.
 - **Room Reverberation:** Add reverberation effects to simulate different room acoustics. This can include variations in room size, echo levels, and reflection characteristics.
 - **Dynamic Range Compression:** Apply compression to the audio to reduce the dynamic range, simulating different recording conditions or microphone characteristics.
 - **Clipping:** Introduce clipping distortion by clipping the audio waveform at specific levels. This can simulate low-quality recording equipment or transmission artifacts.
 - Bandpass Filtering: Apply bandpass filtering to emphasize or suppress specific frequency bands in the audio. This can simulate variations in microphone characteristics or transmission channels.
 - **Data Dropout:** Randomly remove short segments of the audio waveform to simulate dropout or missing data. This can help the model learn to handle missing or corrupted segments.
 - **Time Warping:** Apply time warping to stretch or compress different parts of the audio waveform independently. This can introduce subtle temporal variations while preserving the overall structure of the speech.
 - **Mixing Speech with Background Sounds:** Combine speech with various background sounds, such as music, environmental sounds, or other speech segments. This can simulate complex acoustic environments or overlapping speech.
- 3. **Implement augmentation pipeline:** Develop a pipeline to apply the chosen augmentation techniques to the audio data. This pipeline should be flexible and allow for easy customization and combination of different augmentation methods.
- 4. Apply augmentation: Apply the augmentation techniques to the audio data. This may involve generating new augmented versions of each original audio recording by applying one or more augmentation methods with varying parameters.

- 5. **Quality control:** After augmenting the data, perform quality control checks to ensure that the augmented data remains intelligible and retains its semantic content. Listen to a sample of the augmented recordings to verify their quality and suitability for training purposes.
- 6. **Create augmented dataset:** Once the augmented data has been generated and quality-checked, combine it with the original dataset to create an augmented dataset. Ensure that the augmented dataset maintains a balance between the original and augmented samples to prevent bias.
- 7. **Train machine learning models:** Use the augmented dataset to train machine learning models for tasks.

▼ Methodology

	Doc1	Doc2	Doc3	Doc4
Dataset	Google dataset v1 & v2	AudioSet	Google dataset v1 & v2	Google dataset v1 & v2
Length of sample	1s		1s	
Sampling rate	16kHz			
Pretreatments			40 MFCC features from a speech from of length 40ms with a stride of 20ms	* 64 MFCC from 25ms windows with a 10ms overlap * Symmetric padding of the temporal dimension with zeros to fixed length of 128 features vectors per sample
Training data augmentation	* time shift in range -100ms 100ms * signal resampling with resampling factor in range 0.851.15 * background noise * frequency/time masking, based on SpecAugment	* mixup ratio=0.5 * spectrogram masking with max time mask length = 192 frames; max frequency mask length = 48 bins	* background noise * random time shift of up to 100ms	* time shift perturbations in the range of [-5,5] ms * white noise with magnitude [-90,-46] dB * SpecAugment with 2 continuous time mask of size [0, 25] time steps; and 2 continuous frequency mask of size [0, 15] frequency bands