ECE 449 In-class exercise #15

Fall 2019

Design Bidirectional Associative Memory (BAM) to store mapping from 3-digit binary to gray code for decimal values 2, 3, 4.

Dec	Gray	Binary
0	000	000
1	001	001
2	011	010
3	010	011
4	110	100
5	111	101
6	101	110
7	100	111

Binary values must be first converted to bipolar:

g2=[-1 1 1]

 $g3=[-1\ 1\ -1]$

 $g4=[1\ 1\ -1]$

b2=[-1 1 -1]

b3=[-1 1 1]

b4=[1-1-1]

Individual weight matrices calculated by multiplying corresponding vectors:

$$m2 = g2^{T} b2 = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ -1 & 1 & -1 \end{bmatrix}$$

$$m4 = g4^{T}b4 = \begin{bmatrix} 1 & -1 & -1 \\ 1 & -1 & -1 \\ -1 & 1 & 1 \end{bmatrix}$$

and then summed up

$$m=m2+m3+m4 = \begin{bmatrix} 3 & -3 & -1 \\ -1 & 1 & -1 \\ -1 & 1 & -1 \end{bmatrix}$$

BAM operation

After training the network (i.e. after determining the matrix M as described), it can be used to recall stored patterns in either direction (i.e. to recall y given x and vice versa) as follows:

$$\mathbf{y}(k) = f_{\text{hlb}} [\mathbf{x}(k) \mathbf{M}]$$

or
 $\mathbf{x}(k) = f_{\text{hlb}} [\mathbf{y}(k) \mathbf{M}^{\text{T}}]$

If patterns stored in such network are orthogonal and a complete pattern (x or y) is presented, the corresponding response will be provided immediately. However, if these conditions are not satisfied, recall will involve an iterative process:

- 1. An input pattern, x, is presented to the BAM.
- 2. Activity corresponding to this input pattern is passed through M to yield an output pattern. This output may be different than any output originally presented to the network during training. Let's label it y'.
- 3. y' is passed back to input through transposed weight matrix M T, yielding x'.
- 4. x' is passed forward to output through weight matrix M, yielding y''.
- 5. The activity bounces back in sequence $x'' \to y'''$, etc., until a state is achieved, when no further changes in the patterns occur (i.e., successive values of $x^{(i)}$ and $y^{(j)}$ are the same).

2:
$$\begin{bmatrix} 3 & -3 & -1 \\ -1 & 1 & -1 \\ -1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} -5 & 5 & -1 \end{bmatrix}$$
 which corresponds to $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$

3:
$$\begin{bmatrix} 3 & -3 & -1 \\ -1 & 1 & -1 \\ -1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} -3 & 3 & 1 \end{bmatrix}$$
 which corresponds to $\begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$

4:
$$\begin{bmatrix} 1 & 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} 3 & -3 & -1 \\ -1 & 1 & -1 \\ -1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 3 & -3 & -1 \end{bmatrix}$$
 which corresponds to $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$