Informática II - Prepa Tec Campus Eugenio Garza Lagüera Laboratorio Primer Parcial

Sección 1: Ordena los siguientes arreglos a mano ascendentemente, mostrando cada uno de los pasos, utilizando los algoritmos de Selection Sort y Bubble Sort. Indica la cantidad de comparaciones e intercambios que tuvo que realizarse en cada algoritmo.

1.

ļ	45	1	88	0	35	99

2.

5	4	3	2

Sección 2: Codifica los siguientes ejercicios.

Problema 1: Diseña una clase llamada **TicTacToe** que sirva para modelar un juego de Tic-Tac-Toe (gato) para dos jugadores. El juego deberá validar las entradas y mostrar en consola el ganador del juego.

Diseña métodos para cada una de las acciones del juego. Por ejemplo:

- Determinar si existe un ganador o no en el tablero.
- Escribir en una posición del tablero.
- Imprimir el estado del tablero.

Problema 2: Escribe un método estático char[] removeDuplicates(char[] in) que retorne un nuevo arreglo de caracteres sin elementos duplicados. Siempre deberás mantener el primer elemento encontrado y eliminar los elementos subsecuentes. Ejemplo:

```
removeDuplicates(new char[]{'b','d','a','b','f','a','g','a','a'}) \rightarrow {'b','d','a','f','g'}. removeDuplicates(new char[]{'a','b','a','a'}) \rightarrow {'a','b'}.
```

Problema 3: Escribe un método estático int[][] removeSmaller(int v, int[][] in) que retorne una nueva matriz de enteros a partir del arreglo recibido **in**, pero con los valores <u>menores a v</u> eliminados. El nuevo arreglo retornado deberá tener la misma cantidad de filas que el arreglo **in**, pero cada fila deberá tener sólo las columnas necesarias.

removeS	maller(5, in)						
in =					out =			
5	3	6	5		5	6	5	
1	2	3	5		5			
8	8	6	5	\longrightarrow	8	8	6	5
-1	5	2	15		5	15		
0	0	0	0					

Prueba el método anterior diseñando 3 casos de prueba adicionales a los siguientes:

- 1. in es un arreglo no inicializado (null)
- 2. todos los valores de in son menores a v
- 3. <caso de prueba 3>
- 4. <caso de prueba 4>
- 5. <caso de prueba 5>

Problema 4: Dado un arreglo de enteros de dos dimensiones llamado *matrix*, regresa la transpuesta de *matrix*. La transpuesta de una matriz es la matriz invertida en su diagonal principal, intercambiando los índices de sus filas y columnas.

2	4	-1	2	-10	18
-10	5	11	4	5	-7
18	-7	6	-1	11	6

Puedes utilizar la siguiente liga para probar tu código: https://leetcode.com/problems/transpose-matrix/

int[][] transpose(int[][] matrix)

Problema 5: Crea un método estático void sortMatrix(int[][] data) que reciba como parámetro de entrada una matriz cuadrada de enteros (misma cantidad de filas y columnas) y lo ordene ascendentemente. Utiliza el algoritmo Selection Sort para este fin. Intenta no utilizar un arreglo auxiliar para resolver este problema.

Ejemplo: sortMatrix(new int[][]{ $\{3,7,1\},\{4,2,5\},\{9,8,6\}\}$) \rightarrow { $\{1,2,3\},\{4,5,6\},\{7,8,9\}\}$

Problema Reto!

https://leetcode.com/problems/cells-with-odd-values-in-a-matrix/