AutoML: Gaussian Processes

Gaussian Proccesses: Additional Material

Bernd Bischl Frank Hutter Lars Kotthoff Marius Lindauer Joaquin Vanschoren

Notation

In this part,

- \bullet (\mathbf{x}_*, y_*) denotes a single test observation, excluded from the training data.
- $\mathbf{X}_* \in \mathbb{R}^{n_* \times p}$ denotes a set of n_* test observations.
- $oldsymbol{ ext{y}}_* \in \mathbb{R}^{n_* imes p}$ denotes the corresponding outcomes, excluded from the training data.

Noisy Gaussian Processes

Noisy Gaussian Processes

• In the previous slides, we implicitly assumed that we access the true function values $f(\mathbf{x})$. However, in many practical cases, we only have a noisy version of the values:

$$y = f(\mathbf{x}) + \epsilon.$$

• By assuming an additive i.i.d. Gaussian noise, the covariance function becomes:

$$cov(y^{(i)}, y^{(j)}) = k\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right) + \sigma_n^2 \delta_{ij}$$
, where $\delta_{ij} = 1$ if $i = j$.

• In the matrix notation, this becomes:

$$cov(\mathbf{y}) = \mathbf{K} + \sigma_n^2 \mathbf{I} =: \mathbf{K}_y$$
, where σ_n^2 is called **nugget**.

GP vs. Kernelized Ridge Regression

The predictive function is then

$$oldsymbol{f}_{*}|\mathbf{X}_{*},\mathbf{X},\mathbf{y}\sim\mathcal{N}(ar{f}_{*},\,cov\,(ar{f}_{*})),$$

with
$$\bar{f}_* = \mathbf{K}_*^T \mathbf{K}_y^{-1} \mathbf{y}$$
 and $cov\left(\bar{f}_*\right) = \mathbf{K}_{**} - \mathbf{K}_*^{\top} \mathbf{K}_y^{-1} \mathbf{K}_*$.

- ullet The predicted mean value at the training points $ar{f} = K \mathbf{K}_y^{-1} m{y}$ is a **linear combination** of the $m{y}$ values.
- Predicting the posterior mean corresponds exactly to the predictions obtained by kernelized Ridge regression. However, a GP as a Bayesian model provides us with much more information (i.e., a posterior distribution), whilst the kernelized Ridge regression does not.

Bayesian Linear Regression as a GP

Bayesian Linear Regression as a GP

- One example for a Gaussian process is the Bayesian linear regression model, and we already discuss it.
- For $\theta \sim \mathcal{N}(\mathbf{0}, \tau^2 \mathbf{I})$, the joint distribution of any set of function values is Gaussian:

$$f(\mathbf{x}^{(i)}) = \boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} + \epsilon.$$

• The corresponding mean function is $m(\mathbf{x}) = \mathbf{0}$, and the covariance function is

$$cov (f(\mathbf{x}), f(\mathbf{x}')) = \mathbb{E}[f(\mathbf{x})f(\mathbf{x}')] - \underbrace{\mathbb{E}[f(\mathbf{x})]\mathbb{E}[f(\mathbf{x}')]}_{=0}$$
$$= \mathbb{E}[(\boldsymbol{\theta}^{\top}\mathbf{x} + \epsilon)^{\top}(\boldsymbol{\theta}^{\top}\mathbf{x}' + \epsilon)]$$
$$= \tau^{2}\mathbf{x}^{\top}\mathbf{x}' + \sigma^{2} =: k(\mathbf{x}, \mathbf{x}').$$

Feature Spaces and the Kernel Trick I

• If one relaxes the linearity assumption by projecting the features into a higher dimensional feature space $\mathcal Z$ using a basis function $\phi: \mathcal X \to \mathcal Z$, the corresponding covariance function becomes:

$$k(\mathbf{x}, \mathbf{x}') = \tau^2 \phi(\mathbf{x})^{\top} \phi(\mathbf{x}') + \sigma^2.$$

- ullet To get arbitrarily complicated functions, we would have to handle high-dimensional feature vectors $\phi(\mathbf{x})$.
- Fortunately, all we need to know is the inner product $\phi(\mathbf{x})^T \phi(\mathbf{x}')$. That is, the feature vector itself never occurs in calculations.

Feature Spaces and the Kernel Trick II

If we can get the inner product directly and without calculating the infinite feature vectors, we can infer an infinitely complicated model with a finite amount of computation. This idea is known as **kernel trick**.

- A Gaussian process can then be defined by either:
 - deriving the covariance function from the inner products of the basis functions evaluations, or
 - choosing a positive definite kernel function (Mercer Kernel), which- according to Mercer's theorem - corresponds to taking the inner products in some (possibly infinite) feature space.

Summary: Gaussian Process Regression

- The Gaussian process regression is equivalent to the kernelized Bayesian linear regression.
- The covariance function describes the shape of the Gaussian process. Hence, with the right choice of covariance function, remarkably flexible models can be built.
- Naive implementations of Gaussian process models scale poorly with large datasets, as
 - the kernel matrix has to be inverted / factorized, which is $\mathcal{O}(n^3)$,
 - \blacktriangleright computing the kernel matrix uses $\mathcal{O}(n^2)$ memory running out of memory places a hard limit on the size of problems
 - generating predictions is $\mathcal{O}(n)$ for the mean, but $\mathcal{O}(n^2)$ for the variance.

(...special tricks are needed.)