Lie Algebras

D. Zack Garza

August 16, 2019

Contents

1	Lect	ture 1
	1.1	Overview
		1.1.1 Chapter 2
		1.1.2 Chapter 3-4
	1.2	Classification
		Chapters 4-5
		1.3.1 Chapter 6
		1.3.2 Chapter 7
		1.3.3 Topics
	1.4	Content
		Linear Lie Algebras
2	Lect	ture 2
	2.1	Lie Algebras of Derivations
	2.2	Abstract Lie Algebras
	2.3	Ideals

1 Lecture 1

The material for this class will roughly come from Humphrey, Chapters 1 to 5. There is also a useful appendix which has been uploaded to the ELC system online.

1.1 Overview

Here is a short overview of the topics we expect to cover:

1.1.1 Chapter 2

- Ideals, solvability, and nilpotency
- Semisimple Lie algebras
 - These have a particularly nice structure and representation theory
- Determining if a Lie algebra is semisimple using Killing forms
- Weyl's theorem for complete reducibility for finite dimensional representations
- Root space decompositions

1.1.2 Chapter 3-4

We will describe the following series of correspondences:

1.2 Classification

The classical Lie algebras can be essentially classified by certain classes of diagrams:

1.3 Chapters 4-5

These cover the following topics:

- Conjugacy classes of Cartan subalgebras
- The PBW theorem for the universal enveloping algebra
- Serre relations

1.3.1 Chapter 6

Some import topics include:

- Weight space decompositions
- Finite dimensional modules
- Character and the Harish-Chandra theorem
- The Weyl character formula
 - This will be computed for the specific Lie algebras seen earlier

We will also see the type A_{ℓ} algebra used for the first time; however, it differs from the other types in several important/significant ways.

1.3.2 Chapter 7

Skip!

1.3.3 Topics

Time permitting, we may also cover the following extra topics:

- Infinite dimensional Lie algebras [Carter 05]
- BGG Cat-O [Humphrey 08]

1.4 Content

Fix F a field of characteristic zero – note that prime characteristic is closer to a research topic.

Definition 1. A Lie Algebra \mathfrak{g} over F is an F-vector space with an operation denoted the Lie bracket,

$$[\cdot,\cdot]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$$

 $(x,y)\mapsto[x,y].$

satisfying the following properties:

- $[\cdot, \cdot]$ is bilinear
- [x, x] = 0
- The Jacobi identity:

$$[x, [y, z]] + [y, [x, z]] + [z, [x, y]] = \mathbf{0}.$$

Exercise 1. Show that [x, y] = -[y, x].

Definition 2. Two Lie algebras $\mathfrak{g}, \mathfrak{g}'$ are said to be isomorphic if $\varphi([x,y]) = [\varphi(x), \varphi(y)]$.

1.5 Linear Lie Algebras

Let $V = \mathbb{F}^n$, and define $\operatorname{End}(V) = \{f : V \to V \ni V \text{ is linear}\}$. We can then define $\mathfrak{gl}(n,V)$ by setting $[x,y] = (x \circ y) - (y \circ x)$.

exercise

2 Lecture 2

Recall from last time that a Lie Algebra is a vector space with a bilinear bracket, which importantly satisfies the Jacobi identity:

$$[x, [y, z]] + [y, [x, z]] + [z, [x, y]] = \mathbf{0}.$$

Also recall the examples from last time:

- $A_{\ell} \iff \mathfrak{sl}(\ell+1,F)$
- $B_{\ell} \iff \mathfrak{so}(2\ell+1,F)$
- $C_{\ell} \iff \mathfrak{sp}(2\ell, F)$
- $D_{\ell} \iff \mathfrak{so}(2\ell, F)$

Exercise 2. Characterize these matrix subalgebras in terms of basis elements, and compute their dimensions.

2.1 Lie Algebras of Derivations

Definition 3. An *F*-algebra *A* is an *F*-vector space endowed with a bilinear map $A^2 \to A$, $(x,y) \mapsto xy$.

Definition 4. An algebra is associative if x(yz) = (xy)z.

Modern interest: simple Lie algebras, which have a good representation theory. Take a look a Erdmann-Wildon (Springer) for an introductory look at 3-dimensional algebras.

Definition 5. Any map $\delta: A^2 \to A$ that satisfies the Leibniz rule is called a **derivation** of A, where the rule is given by $\delta(xy) = \delta(x)y + x\delta(y)$.

Definition 6. We define $Der(A) = \{\delta \ni \delta \text{ is a derivation } \}.$

Any Lie algebra \mathfrak{g} is an F-algebra, since $[\cdot,\cdot]$ is bilinear. Moreover, \mathfrak{g} is associative iff [x,[y,z]]=0.

Exercise 3. Show that $\operatorname{Der}\mathfrak{g} \leq \mathfrak{gl}(\mathfrak{g})$ is a Lie subalgebra. One needs to check that $\delta_1, \delta_2 \in \mathfrak{g} \Longrightarrow [\delta_1, \delta_2] \in \mathfrak{g}$.

Exercise 4 (Turn in). Define the adjoint by $ad_x : \mathfrak{g} \circlearrowleft, y \mapsto [x,y]$. Show that $ad_x \in Der(\mathfrak{g})$.

2.2 Abstract Lie Algebras

Fact: Every finite-dimensional Lie algebra is isomorphic to a linear Lie algebra, i.e. a subalgebra of $\mathfrak{gl}(V)$. Each isomorphism type can be specified by certain *structure constants* for the Lie bracket.

Example 1. Any F-vector space can be made into a Lie algebra by setting [x, y] = 0; such algebras are referred to as *abelian*.

Attempting to classify Lie algebras of dimension at most 2.

- 1 dimensional: We can write $\mathfrak{g} = Fx$, and so $[x, x] = 0 \implies [\cdot, \cdot] = 0$. So every bracket must be zero, and thus every Lie algebra is abelian.
- 2 dimensional: Write $\mathfrak{g} = Fx \oplus Fy$, the only nontrivial bracket here is [x,y]. Some cases:
 - $-[x,y]=0 \implies \mathfrak{g}$ is abelian.
 - $-[x,y] = ax + by \neq 0$. Assume $a \neq 0$ and set $x' = ax + by, y' = \frac{y}{a}$. Now compute $[x',y']=[ax+by,\frac{y}{a}]=[x,y]=ax+by=x'.$ Punchline: $\mathfrak{g}\cong Fx'\oplus Fy',[x',y']=x'.$

We can fill in a table with all of the various combinations of brackets:

Example 2. Let $V = \mathbb{R}^3$, and define $[a, b] = a \times b$ to be the usual cross product.

Exercise 5. Look at notes for basis elements of $\mathfrak{sl}(2, F)$,

$$e = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad h = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad f = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

Compute the matrices of ad(e), ad(h), ad(g) with respect to this basis.

2.3 Ideals

Definition 7. A subspace $I \subseteq \mathfrak{g}$ is called an **ideal**, and we write $I \subseteq \mathfrak{g}$, if $x, y \in I \implies [x, y] \in I$.

Note that there is no need to distinguish right, left, or two-sided ideals. This can be shown using [x,y] = [-y,x].

Exercise 6. Check that the following are all ideals of \mathfrak{g} :

- $\mathfrak{z}(\mathfrak{g}) = \{z \in \mathfrak{g} \ni [x, z] = 0 \quad \forall x \in \mathfrak{g}\}$
- The commutator (or derived) algebra $[\mathfrak{g},\mathfrak{g}] = \{\sum_i [x_i,y_i] \ni x_i,y_i \in \mathfrak{g}\}.$ - Moreover, $[\mathfrak{gl}(n,F),\mathfrak{gl}(n,F)] = \mathfrak{sl}(n,F).$

Fact: If $I, J \leq \mathfrak{g}$, then

- $I + J = \{x + y \ni x \in I, y \in J\} \leq \mathfrak{g}$
- $\begin{array}{l} \bullet \ I \bigcap J \trianglelefteq \mathfrak{g} \\ \bullet \ [I,J] = \{ \sum_i [x_i,y_i] \ni x_i \in I, y_i \in J \} \ \trianglelefteq \mathfrak{g} \end{array}$

Definition 8. A Lie algebra is simple if $[\mathfrak{g},\mathfrak{g}] \neq 0$ (i.e. when \mathfrak{g} is not abelian) and has no non-trivial ideals. Note that this implies that $[\mathfrak{g},\mathfrak{g}] = \mathfrak{g}$.

Theorem 1. Suppose that char $F \neq 2$, then $\mathfrak{sl}(2,F)$ is not simple.

Proof. Recall that we have a basis of $\mathfrak{sl}(2,F)$ given by $B=\{e,h,f\}$ where

- [e, f] = h,
- [h, e] = 2e,
- [h, f] = -2f.

So think of $[h, e] = \mathrm{ad}_h$, so h is an eigenvector of this map with eigenvalues $\{0, \pm 2\}$. Since char $F \neq 2$, these are all distinct. Suppose $\mathfrak{sl}(2, F)$ has a nontrivial ideal I; then pick $x = ae + bh + cf \in I$. Then [e, x] = 0 - 2be + ch, and [e, [e, x]] = 0 - 0 + 2ce. Again since char $F \neq 2$, then if $c \neq 0$ then $e \in I$. Now you can show that $h \in I$ and $f \in I$, but then $I = \mathfrak{sl}(2, F)$, a contradiction. So c = 0.

Then $x = bh \neq 0$, so $h \in I$, and we can compute

$$2e = [h, e] \in I \implies e \in I,$$

$$2f = [h, -f] \in I \implies f \in I.$$

which implies that $I = \mathfrak{sl}(2, F)$ and thus it is simple.

Note that there is a homework coming due next Monday, about 4 questions.