WHAT IS CLAIMED IS:

A method for preparing a lithographic printing plate,
 comprising:

exposing a photosensitive lithographic printing plate precursor having an image-forming layer containing an infrared absorption dye; and

developing the exposed photosensitive lithographic printing plate precursor with an alkali developer, in which the alkali developer includes an anionic surfactant containing a sulfonate group.

2. The method according to claim 1, wherein the anionic surfactant is an anionic surfactant represented by the formula:

$$R_1$$
 O
 R_2
 SO_3M

wherein R_1 and R_2 are each independently represents a hydrogen atom or an alkyl group which may be branched, and M represents a univalent alkali metal.

3. The method according to claim 1, wherein the alkali developer comprises: at least one of an alkali silicate and a nonreducing sugar; and a base.

- 4. The method according to claim 1, wherein the alkali developer has a pH of 12.5 to 14.0.
- 5. The method according to claim 1, wherein the alkali developer contains silicone oxide and an alkali oxide: M_2O , in which M represents an alkali metal or an ammonium group.
- 6. The method according to claim 5, wherein the mixing ratio of the silicon oxide to the alkali oxide: M_2O is 0.5 to 3.0.
- 7. The method according to claim 1, wherein the infrared absorption dye includes at least one of a cyanine dye, a squalilium dye, a pyrylium salt and a nickel thiolate complex.
- 8. The method according to claim 1, wherein the infrared absorption dye includes a compound represented by the formula (Z):

wherein R²¹ to R²⁴ each independently represents a hydrogen atom, or an alkyl group having 1 to 12 carbon atoms, an alkenyl group, an alkoxyl group, a cycloalkyl group or an aryl group, each of which may have a substituent group, and R^{21} and R^{22} , and R^{23} and R²⁴ may combine with each other to form a ring structure; R²⁵ to R³⁰ each independently represents an alkyl group having 1 to 12 carbon atoms which may have a substituent group; R³¹ to R³³ each independently represents a hydrogen atom, a halogen atom or an alkyl group having 1 to 8 carbon atoms which may have a substituent group, R^{32} may combine with R^{31} or R^{33} to form a ring structure, and, when m is more than 2, a plurality of R³²'s may combine with each other to form a ring structure; m represents an integer of from 1 to 8; R³⁴ and R³⁵ each independently represents a hydrogen atom, a halogen atom or an alkyl group having 1 to 8 carbon atoms which may have a substituent group, R^{34} may combine with R^{35} to form a ring structure, and, when m is more than 2, a plurality of R^{34} 's may combine with each other to form a ring structure; X represents an anion.

9. The method according to claim 1, wherein the image-forming layer contains the infrared absorption dye in an amount of 0.01 to 50 % by weight based on the total solid weight of the image-forming layer.