ISIMM ANNEE UNIVERSITAIRE: 2023-2024
SECTION: ING1INFO ENSEIGNANT: SAKKA ROUIS TAOUFIK

MATIERE: CONCEPTION ET ANALYSE D'ALGORITHMES

TD2

EXERCICE 1:

Soit la suite U_n définit par :

$$\left\{ \begin{array}{c} U_{n} \!\!\!\! = U_{n\text{-}1} \! \times \! U_{n\text{-}2} \! + U_{n\text{-}3} \\ U_{0} \!\!\!\! = \!\!\! 1 \\ U_{1} \!\!\! = \!\!\! 1 \\ U_{2} \!\!\! = \!\!\! 1 \end{array} \right.$$

Ouestion

- Donner un algorithme récursif qui calcule U_n
- Évaluer sa complexité.

EXERCICE 2: TRIANGLE DE PASCAL

On veut calculer les coefficients binomiaux $C_n^k = \binom{n}{k} = \frac{n!}{k!(n-k)!}$. Rappelons les propriétés suivantes :

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} pour \ 0 < k < n$$
$$\binom{n}{n} = 1 \ et \binom{n}{0} = 1$$

Question:

- Donner un algorithme récursif qui calcul $\binom{n}{k}$
- Évaluer sa complexité.

	0	1	2	3		n-1	r_1
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
;	;	÷	÷		٠.		
n-1	1	n-1	$\binom{n-1}{2}$	$\begin{pmatrix} n-1 \\ 3 \end{pmatrix} \begin{pmatrix} n \\ 3 \end{pmatrix}$		1	
n.	1	P1.	$\binom{n}{2}$	$\binom{n}{3}$	•••	77.	1

EXERCICE 3:

- Ecrire une fonction qui permet de calculer la somme des éléments d'une matrice carrée
- Évaluer sa complexité.

EXERCICE 4:

- 1. Ecrire une fonction itérative puissanceIterative (a, n) qui permet de calculer aⁿ. Rq. En utilisant seulement les opérateurs simples (+, -, *, /)
- 2. Évaluer sa complexité.
- 3. Ecrire une fonction récursive puissanceRecursive (a, n) qui permet de calculer aⁿ.
- 4. Évaluer sa complexité.

EXERCICE 5:

Les nombres de Fibonacci sont définis par la récurrence :

- $F_0 = 1$ $F_1 = 1$ $F_n = F_{n-1} + F_{n-2}$ pour $n \ge 2$
- 1. Ecrire une fonction récursive permettant de calculer Fib (n)
- 2. Évaluer sa complexité.
- 3. Ecrire une fonction itérative permettant de calculer Fib (n)
- 4. Évaluer sa complexité.