实验六

1. 曲线拟合

第六章上机题3: 对物理实验中所得下列数据

t_i	1	1.5	2	2.5	3.0	3.5	4	
y_i	33.40	79.50	122.65	159.05	189.15	214.15	238.65	
t_i	4.5	5	5.5	6	6.5	7	7.5	8
y_i	252.2	267.55	280.50	296.65	301.65	310.40	318.15	325.15

- (1) 用二次函数 $y = a + bt + ct^2$ 做曲线拟合.
- (2) 用指数函数 $y = ae^{bt}$ 做曲线拟合.
- (3) 绘制出数据点与拟合曲线, 比较上述两条拟合曲线, 哪条更好?

用最小二乘法进行函数拟合:

1. 二次函数拟合

• 设计矩阵: 构造 $A = [1, t, t^2]$

• 正规方程: 求解 $(A^TA)\mathbf{x} = A^T\mathbf{y}$, $\mathbf{x} = [a,b,c]^T$ 其中

• 数值求解:通过 Cholesky 分解加速计算

• 误差评估: 计算均方根误差 (RMSE)

2. 指数函数拟合

• **线性化处理**: 对模型取对数,转化为线性问题 $\ln y = \ln a + bt$

• 设计矩阵: 构造 A = [1,t])

• 正规方程: 求解 $(A^TA)\mathbf{x} = A^T \ln \mathbf{y}$,其中 $\mathbf{x} = [\ln a, b]^T$

• 数值求解:通过 Cholesky 分解加速计算

• 参数还原: $a=e^{\ln a}$

• **误差评估**: 计算 RMSE

3. 效果对比

代码块

- 1 # 二次函数拟合
- 2 Quadratic fit parameters (a, b, c): [-45.29423077 94.19429218 -6.12682612]
- 3 Quadratic fit RMSE: 5.683931823476435

4

- 5 # 指数函数拟合
- 6 Exponential fit parameters (a, b): 67.3937925784558 0.23898343793723434
- 7 Exponential fit RMSE: 56.52224402531059

可见,二次函数拟合的效果更好,主要由于数据有增速减缓的特征,这点指数函数难以拟合。

2. 样条插值

第六章上机题8: 已知直升飞机旋转机翼外形曲线的采样点坐标如下:

\boldsymbol{x}	0.520	3.1	8.0	17.95	28.65	39.62	50.65	78	104.6	156.6
\boldsymbol{y}	5.288	9.4	13.84	20.20	24.90	28.44	31.10	35	36.9	36.6
\boldsymbol{x}	208.6	260.7	312.50	364.4	416.3	468	494	507	520	
\boldsymbol{y}	34.6	31.0	26.34	20.9	14.8	7.8	3.7	1.5	0.2	

以及两端点的 1 阶导数值 $y_0' = 1.86548$ 和 $y_n' = -0.046115$.

利用第一种边界条件的三次样条插值函数来近似机翼外形曲线,并计算翼型曲线在 x=2,30,130,350,515 各点上的函数值及 1 阶导数、2 阶导数的近似值.

数学原理

这里我们要用三次样条插值(Cubic Spline Interpolation)方法来近似直升飞机旋转机翼外形曲线, 并计算特定点的函数值及其导数。

三次样条插值的基本思想是在每个区间 $[x_i,x_{i+1}]$ 上构造一个三次多项式 $S_i(x)$,使得:

- 1. 函数值在节点处连续: $S_i(x_i) = y_i$, $S_i(x_{i+1}) = y_{i+1}$
- 2. 一阶导数连续: $S_i'(x_{i+1}) = S_{i+1}'(x_{i+1})$
- 3. 二阶导数连续: $S_i''(x_{i+1}) = S_{i+1}''(x_{i+1})$
- 4. 满足边界条件(这里是固定一阶导数)

三次样条函数表达式

• 在每个区间 $[x_i, x_{i+1}]$ 上,样条函数可以表示为:

$$S_i(x) = rac{M_i(x_{i+1}-x)^3}{6h_i} + rac{M_{i+1}(x-x_i)^3}{6h_i} + \left(y_i - rac{M_i h_i^2}{6}
ight)rac{x_{i+1}-x}{h_i} + \left(y_{i+1} - rac{M_{i+1} h_i^2}{6}
ight)rac{x-x_i}{h_i}$$

一阶导数:

$$S_i'(x) = -rac{M_i(x_{i+1}-x)^2}{2h_i} + rac{M_{i+1}(x-x_i)^2}{2h_i} + rac{y_{i+1}-y_i}{h_i} - rac{h_i(M_{i+1}-M_i)}{6}$$

• 二阶导数:

$$S_i''(x)=M_irac{x_{i+1}-x}{h_i}+M_{i+1}rac{x-x_i}{h_i}$$

其中 $h_i=x_{i+1}-x_i$, $M_i=S''(x_i)$

求解 M 的三对角方程组

核心方程

对每个内部节点 i = 1, 2, ..., n-1:

$$\mu_i M_{i-1} + 2M_i + \lambda_i M_{i+1} = d_i$$

其中:

$$\qquad \lambda_i = \frac{h_{i+1}}{h_i + h_{i+1}}$$

•
$$\mu_i = 1 - \lambda_i$$

$$oldsymbol{d}_i = rac{6(rac{y_{i+1}-y_i}{h_{i+1}}-rac{y_i-y_{i-1}}{h_i})}{h_i+h_{i+1}}$$

边界条件(固定一阶导数)

• 左边界(给定
$$y_0'$$
): $2M_0+M_1=rac{6}{h_1}\left(rac{y_1-y_0}{h_1}-y_0'
ight)$

• 右边界(给定
$$y_n'$$
): $M_{n-1}+2M_n=rac{6}{h_n}\left(y_n'-rac{y_n-y_{n-1}}{h_n}
ight)$

完整方程组形式

组合后得到三对角线性方程组:

用矩阵形式表示为 $\mathbf{AM} = \mathbf{d}$:

$$egin{bmatrix} 2 & 1 & & & & & \ \mu_1 & 2 & \lambda_1 & & & & \ & \mu_2 & 2 & \lambda_2 & & & \ & \ddots & \ddots & \ddots & & \ & & \mu_{n-1} & 2 & \lambda_{n-1} \ & & & 1 & 2 \end{bmatrix} egin{bmatrix} M_0 \ M_1 \ M_2 \ dots \ M_{n-1} \ M_n \end{bmatrix} = egin{bmatrix} d_0 \ d_1 \ d_2 \ dots \ d_{n-1} \ d_n \end{bmatrix}$$

求解步骤概述

1. 计算步长 $h_i = x_i - x_{i-1}$

- 2. 计算系数 λ_i 和 μ_i
- 3. **构建右端项** d_i (包含边界条件)
- 4. 解三对角方程组得到 M_i (代码中我用的是追赶法)
- 5. 利用 M_i 构造分段三次样条函数:

$$S_i(x) = rac{M_i(x_{i+1}-x)^3}{6h_i} + rac{M_{i+1}(x-x_i)^3}{6h_i} + \left(y_i - rac{M_i h_i^2}{6}
ight)rac{x_{i+1}-x}{h_i} + \left(y_{i+1} - rac{M_{i+1} h_i^2}{6}
ight)rac{x-x_i}{h_i}$$

结果

1 x	f(x)	f'(x)	f''(x)
2 2.0	7.8252	1.5568	-0.2213
3 30.0	25.3862	0.3549	-0.0078
4 130.0	37.2138	-0.0104	-0.0014
5 350.0	22.4751	-0.1078	-0.0002
515.0	0.5427	-0.0899	0.0081