Comment étudier les variations d'une fonction en utilisant la dérivée ?

- 1. On calcule la dérivée f'(x) de f.
- **2.** On étudie sur l'intervalle I le signe de f'(x) et on en déduit les variations de f.
- 3. On construit le tableau de variation.

Exemple. Étudier les variations de f définie sur]0; + ∞ [par $f(x) = \frac{\ln x}{x^2}$.

1.
$$f$$
 est dérivable sur $]0$; $+\infty[$; d'après un résultat précédent : $f'(x) = \frac{1-2 \ln x}{x^3}$.

- **2.** Sur]0; $+\infty[$, f'(x) a le signe de $1-2 \ln x$. On a :
- 1 2 ln x < 0 si ln x > $\frac{1}{2}$, c'est-à-dire si x > $e^{\frac{1}{2}}$ soit si x > \sqrt{e} ;
- 1 2 ln x > 0 si ln $x < \frac{1}{2}$, c'est-à-dire si $x < \sqrt{e}$.

Donc sur]0 ; \sqrt{e} [, f est croissante ; sur [\sqrt{e} ; + ∞ [, f est décroissante.

X	0		\sqrt{e}	+ «
f'(x)		+	0	-
f(x)	- ∞		▼ 1/2e	

On vérifiera que :

$$\lim_{x \to 0} f(x) = -\infty \text{ et } \lim_{x \to +\infty} f(x) = 0.$$