Partiel du 25 mars 2019. Durée 2h Sans documents ni calculatrice ni portable

Notations : dans tout l'énoncé on écrit v.a. pour variable aléatoire. $\mathbb N$ est l'ensemble des entiers naturels, $\mathbb R$ celui des réels.

Questions de Cours.

- 1) \mathbb{P} est une probabilité (sur une tribu \mathcal{F}) et $(A_n)_{n\in\mathbb{N}}$ est une suite d'événements (une suite d'éléments de \mathcal{F}) qui vérifie $A_{n+1} \subset A_n$, $\forall n \in \mathbb{N}$. Que peut-on dire de $\mathbf{P}(\cap_{n\in\mathbb{N}} A_n)$?
- 2) Donner la définition de la fonction caractéristique d'une v.a. réelle X.

Exercice 1. Soit f la fonction définie sur $\mathbb{R} \times \mathbb{R}$ par $f(x,y) = \frac{1}{3\pi}e^{-\frac{x^2+2xy+5x^2}{6}}$.

- 1) Montrer que f est une densité de probabilité sur $\mathbb{R} \times \mathbb{R}$.
- 2) On note (X,Y) une v.a. à valeurs dans $\mathbb{R} \times \mathbb{R}$ de densité f.
- a) Calculer la densité de X.
- b) Calculer la densité de Y.
- 3) Les v.a. X et Y sont-elles indépendantes? Justifier votre réponse.

Exercice 2. 1) Soit (X,Y) de densité $\lambda^2 e^{-\lambda(x+y)} \mathbf{1}_{]0,+\infty[}(x) \mathbf{1}_{]0,+\infty[}(y)$ où $\lambda > 0$ est un paramètre. Déterminer les lois de X, de Y et du vecteur (X,X+Y) qu'on note (U,V).

2) On fixe t>0 et on définit $N(t)=\mathbf{1}_{[0,t]}(U)+\mathbf{1}_{[0,t]}(V)$. On admet que N(t) est une v.a. Déterminer la loi de N(t).

Exercice 3. X est une v.a.r. de densité $\frac{1}{2}e^{-|x|}$.

- 1) Déterminer la fonction caractéristique de X.
- 2) On suppose que la v.a.r. Y admet la densité $\frac{1}{y^2}\mathbf{1}_{[1,+\infty[}$. A l'aide de la question 1) déterminer la fonction caractéristique de $\frac{X}{V}$.

Exercice 4. L'entropie d'une v.a. discrète X à valeurs dans \mathbb{N}^* est définie par

$$-\sum_{k>1} \mathbb{P}(X=k) \log \mathbb{P}(X=k).$$

Déterminer l'entropie de la loi géométrique telle que $\mathbb{P}(X=k)=p(1-p)^{k-1}$ pour tout $k\in\mathbb{N}^*$ où $p\in]0,1[$.