Data 621 Homework 4: Code Appendix

Jeff Nieman, Scott Karr, James Topor, Armenoush Aslanian-Persico

Contents

Full Results of Evaluation Data Set Predictions	1
Part 1. Data Exploration	43
Part 2. Data Preparation	54
Part 3. Build Models	60
Binary Model 1	60
Binary Model 3	71
Linear Model 1	76
Linear Model 2	82
Part 4. Select Models	85

This Appendix contains all of the source R code and associated relevant output from our final writeup and our model building efforts. The R code is organized to match up to the relevant sections of the Writeup document.

However, we begin here by providing the full ouput of our Evaluation data set predictions as indicated in Part 4 of the final writeup document.

Full Results of Evaluation Data Set Predictions

The full set of Evaluation data set predictions listed in order of their 'INDEX' identifier is as follows:

INDEX	TARGET_FLAG_PROB	TARGET_FLAG	TARGET_AMT
3	0.221	0	0
9	0.455	0	0
10	0.126	0	0
18	0.181	0	0
21	0.266	0	0
30	0.163	0	0
31	0.343	0	0
37	0.320	0	0
39	0.021	0	0
47	0.174	0	0
60	0.026	0	0
62	0.563	1	4088
63	0.830	1	3619
64	0.118	0	0
68	0.033	0	0
75	0.583	1	4005

INDEX	$TARGET_{_}$	_FLAG_	_PROB	$TARGET_{_}$	_FLAG	$TARGET_{_}$	_AMT
76	0.703			1		3262	
83	0.144			0		0	
87	0.515			1		3855	
92	0.376			0		0	
98	0.180			0		0	
106	0.453			0		0	
107	0.104			0		0	
113	0.323			0		0	
120	0.364			0		0	
123	0.413			0		0	
125	0.426			0		0	
126	0.456			0		0	
128	0.135			0		0	
129	0.177			0		0	
131	0.177			0		0	
135	0.450			0		0	
141	0.060			0		0	
147	0.198			0		0	
148				0		0	
	0.108						
151	0.039			0		0	
156	0.177			0		0	
157	0.091			0		0	
174	0.041			0		0	
186	0.601			1		4149	
193	0.276			0		0	
195	0.476			0		0	
212	0.020			0		0	
213	0.497			0		0	
217	0.005			0		0	
223	0.214			0		0	
226	0.149			0		0	
228	0.490			0		0	
230	0.015			0		0	
241	0.517			1		3535	
243	0.177			0		0	
249	0.321			0		0	
281	0.791			1		4160	
288	0.108			0		0	
294	0.491			0		0	
295	0.194			0		0	
300	0.402			0		0	
302	0.359			0		0	
303	0.076			0		0	
308	0.601			1		3652	
319	0.010			0		0	
320	0.080			0		0	
324	0.365			0		0	
331	0.230			0		0	
343	0.042			0		0	
347	0.535			1		3206	
348	0.750			1		3842	
350	0.473			0		0	

INDEX	TARGET_	_FLAG_	_PROB	TARGET_	_FLAG	TARGET_	_AMT
357	0.150			0		0	
358	0.054			0		0	
360	0.037			0		0	
366	0.231			0		0	
367	0.624			1		3865	
368	0.300			0		0	
376	0.711			1		4046	
380	0.365			0		0	
388	0.384			0		0	
396	0.250			0		0	
398	0.176			0		0	
403	0.057			0		0	
410	0.557			1		3512	
412	0.389			0		0	
420	0.422			0		0	
434	0.049			0		0	
440	0.520			1		4046	
450	0.557			1		4386	
453	0.241			0		0	
464	0.349			0		0	
465	0.036			0		0	
466	0.761			1		4251	
473	0.091			0		0	
476	0.074			0		0	
478	0.073			0		0	
479	0.215			0		0	
493	0.051			0		0	
497	0.329			0		0	
503	0.006			0		0	
504	0.336			0		0	
505	0.407			0		0	
507	0.257			0		0	
513	0.539			1		3322	
519	0.454			0		0	
521	0.558			1		4127	
522	0.770			1		4261	
545	0.123			0		0	
549	0.051			0		0	
551	0.163			0		0	
556	0.082			0		0	
557	0.425			0		0	
559	0.399			0		0	
560	0.738			1		3896	
566	0.035			0		0	
569	0.141			0		0	
573	0.442			0		0	
578	0.649			1		3935	
579	0.037			0		0	
582	0.020			0		0	
596	0.770			1		4000	
598	0.643			1		3489	
599	0.253			0		0	
				-		•	

INDEX	TARGET_FLAG_PROB	TARGET_FLAG	TARGET_AMT
602	0.340	0	0
605	0.899	1	4022
617	0.708	1	3717
619	0.530	1	3790
630	0.189	0	0
634	0.592	1	3737
643	0.363	0	0
645	0.198	0	0
647	0.383	0	0
649	0.075	0	0
656	0.155	0	0
657	0.150	0	0
658	0.174	0	0
667	0.046	0	0
692	0.255	0	0
693	0.265	0	0
698	0.730	1	4187
699	0.604	1	4300
700	0.051	0	0
704	0.142	0	0
707	0.077	0	0
708	0.716	1	3863
709	0.092	0	0
713	0.125	0	0
714	0.049	0	0
716	0.675	1	3262
718	0.122	0	0
722	0.099	0	0
729	0.458	0	0
731	0.029	0	0
733	0.470	0	0
733 746	0.470	0	0
740		1	4123
	0.562	0	
748	0.459		0
753 757	0.280	0	0
757 762	0.418	0	0
763	0.032	0	0
767	0.140	0	0
774	0.487	0	0
776	0.491	0	0
788	0.192	0	0
794	0.377	0	0
799	0.226	0	0
803	0.182	0	0
806	0.309	0	0
807	0.207	0	0
811	0.024	0	0
816	0.159	0	0
818	0.327	0	0
819	0.127	0	0
831	0.117	0	0
835	0.498	0	0

837 0.210 0 0 841 0.843 1 4544 846 0.285 0 0 856 0.402 0 0 861 0.502 1 4676 862 0.456 0 0 863 0.777 1 4507 865 0.718 1 3885 871 0.515 1 3886 879 0.188 0 0 880 0.099 0 0 881 0.252 0 0 885 0.312 0 0 887 0.262 0 0 887 0.262 0 0 892 0.051 0 0 898 0.059 0 0 900 0.161 0 0 904 0.289 0 0 906 0.689 1 3618 <t< th=""><th>AMT</th></t<>	AMT
846 0.285 0 0 856 0.402 0 0 861 0.502 1 4676 862 0.456 0 0 863 0.777 1 4507 865 0.718 1 3885 871 0.515 1 3886 879 0.188 0 0 880 0.099 0 0 881 0.252 0 0 885 0.312 0 0 887 0.262 0 0 887 0.262 0 0 889 0.059 0 0 898 0.059 0 0 900 0.161 0 0 904 0.289 0 0 906 0.689 1 3618 910 0.702 1 3924 912 0.291 0 0 913 0.379 0 0 924 0.619 1 <td></td>	
856 0.402 0 0 861 0.502 1 4676 862 0.456 0 0 863 0.777 1 4507 865 0.718 1 3885 871 0.515 1 3886 879 0.188 0 0 880 0.099 0 0 881 0.252 0 0 887 0.262 0 0 887 0.262 0 0 887 0.262 0 0 892 0.051 0 0 892 0.051 0 0 898 0.059 0 0 900 0.161 0 0 904 0.289 0 0 906 0.689 1 3618 910 0.702 1 3924 912 0.291 0 0 <t< td=""><td></td></t<>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
863 0.777 1 4507 865 0.718 1 3885 871 0.515 1 3886 879 0.188 0 0 880 0.099 0 0 881 0.252 0 0 885 0.312 0 0 887 0.262 0 0 892 0.051 0 0 898 0.059 0 0 900 0.161 0 0 904 0.289 0 0 906 0.689 1 3618 910 0.702 1 3924 912 0.291 0 0 913 0.379 0 0 0 919 0.060 0 0 0 924 0.619 1 3453 0 925 0.404 0 0 0 940 0.261 0 0 0 941 0.144 0	
865 0.718 1 3885 871 0.515 1 3886 879 0.188 0 0 880 0.099 0 0 881 0.252 0 0 885 0.312 0 0 887 0.262 0 0 892 0.051 0 0 898 0.059 0 0 900 0.161 0 0 904 0.289 0 0 906 0.689 1 3618 910 0.702 1 3924 912 0.291 0 0 913 0.379 0 0 919 0.060 0 0 924 0.619 1 3453 925 0.404 0 0 930 0.172 0 0 940 0.261 0 0 941 0.144 0 0 949 0.309 0	
871 0.515 1 3886 879 0.188 0 0 880 0.099 0 0 881 0.252 0 0 885 0.312 0 0 887 0.262 0 0 892 0.051 0 0 898 0.059 0 0 900 0.161 0 0 904 0.289 0 0 906 0.689 1 3618 910 0.702 1 3924 912 0.291 0 0 913 0.379 0 0 919 0.060 0 0 924 0.619 1 3453 925 0.404 0 0 930 0.172 0 0 941 0.144 0 0 946 0.197 0 0 949 0.309 0 0 962 0.032 0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
971 0.843 1 3713 981 0.017 0 0 982 0.054 0 0 983 0.106 0 0 984 0.045 0 0 989 0.172 0 0	
981 0.017 0 0 982 0.054 0 0 983 0.106 0 0 984 0.045 0 0 989 0.172 0 0	
982 0.054 0 0 983 0.106 0 0 984 0.045 0 0 989 0.172 0 0	
983 0.106 0 0 984 0.045 0 0 989 0.172 0 0	
984 0.045 0 0 989 0.172 0 0	
989 0.172 0	
996 0.393 0 0	
998 0.542 1 3830	
1001 0.048 0 0	
1007 0.129 0 0	
1008 0.086 0 0	
1016 0.047 0 0	
1022 0.059 0 0	
1027 0.392 0 0	
0.394 0 0	

INDEX	TARGET_	_FLAG_	_PROB	TARGET	_FLAG	TARGET_	AMT
1033	0.235			0		0	
1041	0.231			0		0	
1065	0.596			1		3930	
1074	0.379			0		0	
1075	0.314			0		0	
1081	0.133			0		0	
1094	0.052			0		0	
1099	0.080			0		0	
1105	0.358			0		0	
1123	0.072			0		0	
1135	0.008			0		0	
1142	0.216			0		0	
1155	0.088			0		0	
1169	0.000			0		0	
1176	0.017 0.035			0		0	
1178	0.615			1		4470	
1178	0.013 0.027			0		0	
	0.027 0.121					0	
1184				0			
1185	0.506			1		3961	
1193	0.221			0		0	
1196	0.156			0		0	
1199	0.461			0		0	
1203	0.311			0		0	
1205	0.444			0		0	
1207	0.034			0		0	
1208	0.499			0		0	
1212	0.569			1		3815	
1213	0.667			1		3762	
1222	0.087			0		0	
1223	0.220			0		0	
1226	0.399			0		0	
1227	0.220			0		0	
1229	0.084			0		0	
1230	0.279			0		0	
1231	0.700			1		3833	
1241	0.063			0		0	
1243	0.051			0		0	
1244	0.166			0		0	
1246	0.160			0		0	
1248	0.168			0		0	
1249	0.148			0		0	
1252	0.056			0		0	
1261	0.110			0		0	
1275	0.091			0		0	
1281	0.857			1		4411	
1285	0.427			0		0	
1288	0.546			1		3965	
1290	0.064			0		0	
1291	0.260			0		0	
1304	0.642			1		3973	
1305	0.100			0		0	
1323	0.228			0		0	
				=		•	

INDEX	TARGET_	_FLAG_	PROB	TARGET_FLAG	TARGET_	AMT
1342	0.459			0	0	
1348	0.291			0	0	
1353	0.261			0	0	
1363	0.162			0	0	
1371	0.346			0	0	
1372	0.200			0	0	
1378	0.242			0	0	
1381	0.254			0	0	
1382	0.426			0	0	
1393	0.638			1	3499	
1394	0.015			0	0	
1398	0.248			0	0	
1404	0.471			0	0	
1405	0.723			1	3895	
1419	0.344			0	0	
1421	0.129			0	0	
1426	0.149			0	0	
1431	0.446			0	0	
1435	0.031			0	0	
1437	0.407			0	0	
1438	0.182			0	0	
1442	0.518			1	4255	
1464	0.087			0	0	
1471	0.396			0	0	
1473	0.195			0	0	
1476	0.073			0	0	
1478	0.254			0	0	
1479	0.573			1	4615	
1487	0.534			1	3405	
1492	0.350			0	0	
1496	0.102			0	0	
1497	0.698			1	3697	
1515	0.018			0	0	
1519	0.152			0	0	
1522	0.588			1	4230	
1526	0.497			0	0	
1537	0.036			0	0	
1538	0.868			1	3811	
1540	0.257			0	0	
1543	0.130			0	0	
1548	0.208			0	0	
1549	0.094			0	0	
1556	0.595			1	4074	
1564	0.014			0	0	
1570	0.172			0	0	
1577	0.634			1	3569	
1585	0.249			0	0	
1590	0.210			0	0	
1592	0.617			1	4218	
1594	0.330			0	0	
1596	0.492			0	0	
1598	0.236			0	0	

INDEX	TARGET_	FLAG	PROB	TARGET	FLAG	TARGET_	AMT
1603	0.384			0		0	
1607	0.360			0		0	
1612	0.059			0		0	
1627	0.074			0		0	
1629	0.722			1		4332	
1630	0.105			0		0	
1640	0.279			0		0	
1641	0.297			0		0	
1646	0.150			0		0	
1662	0.535			1		3863	
1668	0.123			0		0	
1671	0.123			0		0	
1672	0.657			1		3539	
1673	0.403			0		0	
1686	0.403 0.277			0		0	
1688	0.691			1		3946	
1696	0.091 0.022			0		0	
				0		0	
1701	0.028						
1707	0.102			0		0	
1708	0.111			0		0	
1713	0.058			0		0	
1715	0.171			0		0	
1717	0.035			0		0	
1721	0.172			0		0	
1724	0.875			1		4577	
1725	0.714			1		4163	
1730	0.176			0		0	
1731	0.704			1		3192	
1734	0.317			0		0	
1740	0.112			0		0	
1748	0.030			0		0	
1749	0.061			0		0	
1750	0.620			1		3614	
1763	0.178			0		0	
1768	0.062			0		0	
1773	0.473			0		0	
1777	0.206			0		0	
1778	0.441			0		0	
1780	0.107			0		0	
1782	0.362			0		0	
1784	0.054			0		0	
1786	0.130			0		0	
1787	0.147			0		0	
1792	0.211			0		0	
1800	0.549			1		4650	
1801	0.184			0		0	
1803	0.108			0		0	
1804	0.624			1		3605	
1807	0.028			0		0	
1818	0.235			0		0	
1821	0.026			0		0	
1822	0.079			0		0	

INDEX	TARGET_FLAG_PROB	$TARGET_FLAG$	TARGET_AM7
1828	0.078	0	0
1833	0.205	0	0
1844	0.335	0	0
1847	0.528	1	3589
1850	0.070	0	0
1854	0.310	0	0
1858	0.376	0	0
1864	0.126	0	0
1867	0.051	0	0
1876	0.774	1	3423
1880	0.204	0	0
1881	0.151	0	0
1891	0.259	0	0
1894	0.142	0	0
1895	0.063	0	0
1901	0.386	0	0
1905	0.061	0	0
1912	0.385	0	0
1918	0.320	0	0
1921	0.398	0	0
1923	0.251	0	0
1924	0.185	0	0
1931	0.113	0	0
1941	0.056	0	0
1950	0.079	0	0
1951	0.139	0	0
1954	0.009	0	0
1961	0.323	0	0
1966	0.010	0	0
1979	0.082	0	0
1982	0.050	0	0
1987	0.783	1	3732
1997	0.328	0	0
2004	0.034	0	0
2011	0.517	1	3766
$2011 \\ 2015$	0.454	0	0
$2015 \\ 2025$		0	0
	0.013		
2033	0.363	0	0
2034	0.008	0	0
2035	0.220	0	0
2036	0.612	1	3642
2053	0.620	1	4382
2059	0.653	1	4280
2060	0.030	0	0
2073	0.305	0	0
2084	0.401	0	0
2089	0.074	0	0
2092	0.275	0	0
2109	0.398	0	0
2129	0.354	0	0
2134	0.401	0	0
2135	0.025	0	0

INDEX	TARGET_FLAG_PROB	TARGET_FLAG	TARGET_AMT
2148	0.016	0	0
2149	0.029	0	0
2150	0.253	0	0
2165	0.784	1	4407
2166	0.035	0	0
2168	0.071	0	0
2170	0.292	0	0
2171	0.124	0	0
2172	0.040	0	0
2176	0.104	0	0
2182	0.055	0	0
2189	0.237	0	0
2191	0.071	0	0
2197	0.025	0	0
2202	0.172	0	0
2203	0.205	0	0
2204	0.616	1	4083
2206	0.713	1	4141
2218	0.071	0	0
2219	0.117	0	0
2213 2221	0.419	0	0
2221 2226	0.165	0	0
2228	0.339	0	0
2232	0.517	1	4284
2232	0.261	0	0
2241	0.745	1	4507
$\frac{2241}{2245}$	0.056	0	0
2245 2251	0.482	0	0
$\frac{2251}{2255}$	0.482	0	0
$\frac{2256}{2256}$	0.030	0	0
$\frac{2250}{2259}$	0.010	0	0
$\frac{2259}{2263}$	0.300	0	0
2264	0.037	0	0
2264 2267	0.037	0	0
		1	
$2273 \\ 2277$	0.765 0.708	1	4145 3689
2287			
	0.154	0 1	$0\\4482$
2289	0.579		
2291	0.063	0 1	0 3579
2296	0.885		
2299	0.097	0	0
2306	0.047	0	0
2314	0.390	0	0
2317	0.014	0	0
2318	0.556	1	4126
2321	0.850	1	3755
2324	0.028	0	0
2340	0.421	0	0
2343	0.028	0	0
2349	0.351	0	0
2352	0.327	0	0
2353	0.301	0	0

INDEX	TARGET_	_FLAG_	_PROB	TARGET	_FLAG	TARGET_	_AMT
2365	0.892			1		3274	
2370	0.676			1		3897	
2378	0.288			0		0	
2390	0.395			0		0	
2399	0.254			0		0	
2402	0.553			1		4302	
2403	0.512			1		3920	
2404	0.073			0		0	
2414	0.092			0		0	
2422	0.217			0		0	
2424	0.176			0		0	
2430	0.539			1		4130	
2435	0.297			0		0	
2439	0.046			0		0	
2442	0.471			0		0	
2445	0.294			0		0	
2449	0.274			0		0	
2451	0.360			0		0	
2461	0.744			1		3712	
2464	0.076			0		0	
2465	0.445			0		0	
2472	0.073			0		0	
2476	0.304			0		0	
2482	0.166			0		0	
2487	0.303			0		0	
2498	0.254			0		0	
2501	0.294 0.095			0		0	
2504	0.413			0		0	
2511	0.416			0		0	
2518	0.021			0		0	
2510 2521	0.021 0.177			0		0	
2521 2530	0.177			0		0	
2543	0.558			1		4515	
2545	0.365			0		0	
2561	0.340			0		0	
2566	0.546			1		4019	
2572	0.540 0.195			0		0	
2577	0.133 0.112			0		0	
2578	0.112 0.194			0		0	
2580	0.194 0.232			0		0	
2581	0.232 0.231			0		0	
2582	0.231 0.084			0		0	
2584	0.034 0.033			0		0	
2590	0.033 0.024						
				0		0	
2598	$0.007 \\ 0.176$			0		0	
2602				0		0	
2605	0.008			0		0	
2616	0.208			0		0	
2618	0.176			0		0	
2619	0.299			0		0	
2624	0.032			0		0	
2632	0.192			0		0	

2640 0.208 0 0 2646 0.014 0 0 2651 0.098 0 0 2660 0.052 0 0	
2651 0.098 0 0 2660 0.052 0 0	
2651 0.098 0 0 2660 0.052 0 0	
2660 0.052 0 0	
0.047 0 0	
2668 0.094 0 0	
2670 0.362 0 0	
2680 0.332 0 0	
2681 0.021 0 0	
2689 0.258 0 0	
2694 0.074 0 0	
2695 0.774 1 4431	
2696 0.410 0 0	
2702 0.043 0 0	
2709 0.052 0 0	
2714 0.416 0 0	
2716 0.108 0 0	
2723 0.065 0 0	
0.326 0 0	
2738 0.088 0 0	
2750 0.511 1 4030	
0.332 0 0	
2758 0.069 0 0	
2766 0.332 0 0	
2767 0.322 0 0	
2771 0.208 0	
0.315 0 0	
0.199 0 0	
2779 0.928 1 4263	
2780 0.376 0	
2781 0.354 0 0	
2782 0.472 0 0	
2783 0.142 0 0	
2796 0.315 0 0	
2798 0.298 0 0	
2800 0.069 0	
2803 0.162 0 0	
2806 0.003 0	
2813 0.135 0 0	
2818 0.131 0 0	
2821 0.440 0 0	
2825 0.340 0 0	
2829 0.042 0 0	
2830 0.621 1 4255	
2833 0.075 0 0	
2839 0.859 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
2846 0.049 0 0	
2847 0.082 0 0	
2848 0.132 0	

INDEX	TARGET_	_FLAG_	_PROB	TARGET	_FLAG	TARGET_	_AMT
2856	0.812			1		3536	
2863	0.386			0		0	
2867	0.291			0		0	
2869	0.291			0		0	
2873	0.006			0		0	
2874	0.414			0		0	
2875	0.514			1		3737	
2880	0.618			1		3760	
2886	0.568			1		4167	
2887	0.342			0		0	
2888	0.211			0		0	
2889	0.758			1		3666	
2890	0.439			0		0	
2892	0.453 0.352			0		0	
2901	0.332 0.141			0		0	
2901	0.141 0.157			0		0	
2905	0.137 0.239			0		0	
						0	
2917	0.294			0			
2922	0.519			1		4550	
2924	0.109			0		0	
2930	0.339			0		0	
2931	0.077			0		0	
2946	0.097			0		0	
2955	0.347			0		0	
2962	0.010			0		0	
2964	0.025			0		0	
2965	0.470			0		0	
2967	0.018			0		0	
2970	0.069			0		0	
2973	0.532			1		3676	
2974	0.213			0		0	
2976	0.621			1		4628	
2977	0.372			0		0	
2978	0.214			0		0	
2986	0.103			0		0	
2988	0.260			0		0	
2989	0.147			0		0	
2995	0.665			1		4611	
3005	0.500			0		0	
3011	0.127			0		0	
3013	0.047			0		0	
3019	0.352			0		0	
3021	0.033			0		0	
3022	0.432			0		0	
3029	0.211			0		0	
3037	0.211			0		0	
3042	0.216			0		0	
3042	0.250 0.171			0		0	
3049	0.171			0		0	
3050	0.240 0.671			1		4450	
				0		4450 0	
$3053 \\ 3058$	0.173 0.349			0		0	
9090	0.043			U		U	

INDEX	TARGET	_FLAG_	_PROB	TARGET	_FLAG	TARGET	_AMT
3062	0.165			0		0	
3063	0.265			0		0	
3065	0.056			0		0	
3080	0.125			0		0	
3088	0.218			0		0	
3093	0.472			0		0	
3096	0.346			0		0	
3101	0.318			0		0	
3103	0.320			0		0	
3107	0.268			0		0	
3109	0.078			0		0	
3111	0.061			0		0	
3113	0.843			1		3489	
3116	0.007			0		0	
3132	0.168			0		0	
3141	0.198			0		0	
3153	0.299			0		0	
3154	0.058			0		0	
3160	0.135			0		0	
3167	0.070			0		0	
3170	0.396			0		0	
3173	0.483			0		0	
3174	0.306			0		0	
3177	0.181			0		0	
3179	0.188			0		0	
3184	0.423			0		0	
3190	0.207			0		0	
3193	0.049			0		0	
3199	0.311			0		0	
3201	0.086			0		0	
3202	0.158			0		0	
3203	0.513			1		3239	
3206	0.618			1		3299	
3209	0.048			0		0	
3210	0.462			0		0	
3217	0.281			0		0	
3220	0.074			0		0	
3228	0.357			0		0	
3232	0.024			0		0	
3239	0.126			0		0	
3243	0.526			1		4647	
3245	0.116			0		0	
3246	0.427			0		0	
3251	0.060			0		0	
3253	0.290			0		0	
3257	0.236			0		0	
3260	0.011			0		0	
3261	0.186			0		0	
3263	0.368			0		0	
3278	0.300 0.210			0		0	
3281	0.210			0		0	
3283	0.131 0.077			0		0	
3203	0.011			J		J	

INDEX	TARGET_FLAG_PROB	TARGET_FLAG	TARGET_AMT
3290	0.024	0	0
3297	0.296	0	0
3304	0.069	0	0
3305	0.453	0	0
3307	0.052	0	0
3308	0.419	0	0
3313	0.278	0	0
3314	0.186	0	0
3317	0.126	0	0
3348	0.108	0	0
3350	0.287	0	0
3359	0.028	0	0
3367	0.052	0	0
3376	0.095	0	0
3378	0.313	0	0
3384	0.776	1	4012
3386		0	0
	0.134		
3387	0.136	0	0
3388	0.105	0	0
3390	0.037	0	0
3391	0.423	0	0
3396	0.339	0	0
3398	0.022	0	0
3404	0.035	0	0
3406	0.027	0	0
3407	0.048	0	0
3414	0.048	0	0
3419	0.099	0	0
3423	0.590	1	3693
3427	0.041	0	0
3432	0.047	0	0
3434	0.049	0	0
3438	0.066	0	0
3442	0.227	0	0
3443	0.049	0	0
3448	0.067	0	0
3456	0.114	0	0
3464	0.104	0	0
3470	0.711	1	3107
3475	0.472	0	0
3477	0.376	0	0
3490	0.088	0	0
3493	0.285	0	0
3502	0.656	1	3480
3508	0.030	0	0
3516	0.095	0	0
3517	0.290	0	0
3525	0.217	0	0
3532	0.802	1	3660
3535	0.391	0	0
3536	0.719	1	3771
3540	0.089	0	0
30 10		×	~

INDEX	TARGET_	_FLAG_	_PROB	TARGET_	_FLAG	TARGET_	_AMT
3547	0.367			0		0	
3550	0.502			1		4670	
3557	0.682			1		3892	
3562	0.186			0		0	
3563	0.095			0		0	
3564	0.288			0		0	
3570	0.108			0		0	
3573	0.461			0		0	
3577	0.573			1		3820	
3579	0.545			1		4023	
3581	0.064			0		0	
3587	0.356			0		0	
3602	0.348			0		0	
3609	0.500			1		4161	
3612	0.097			0		0	
3621	0.389			0		0	
3642	0.184			0		0	
3647	0.770			1		3837	
3649	0.489			0		0	
3654	0.442			0		0	
3660	0.504			1		3802	
3665	0.553			1		4054	
3669	0.415			0		0	
3673	0.324			0		0	
3675	0.458			0		0	
3678	0.132			0		0	
3680	0.411			0		0	
3686	0.625			1		4142	
3693	0.237			0		0	
3710	0.510			1		4074	
3713	0.032			0		0	
3718	0.316			0		0	
3725	0.072			0		0	
3726	0.286			0		0	
3747	0.140			0		0	
3753	0.023			0		0	
3754	0.278			0		0	
3760	0.811			1		4297	
3763	0.043			0		0	
3765	0.342			0		0	
3769	0.178			0		0	
3771	0.668			1		4293	
3784	0.104			0		0	
3787	0.177			0		0	
3794	0.257			0		0	
3796	0.056			0		0	
3798	0.043			0		0	
3809	0.125			0		0	
3812	0.307			0		0	
3819	0.269			0		0	
3828	0.188			0		0	
3831	0.235			0		0	

INDEX	TARGET_FLAG_PROB	TARGET_FLAG	TARGET_AMT
3833	0.084	0	0
3837	0.832	1	3262
3839	0.820	1	3937
3843	0.378	0	0
3846	0.145	0	0
3854	0.036	0	0
3861	0.117	0	0
3864	0.331	0	0
3868	0.084	0	0
3869	0.145	0	0
3870	0.174	0	0
3883	0.140	0	0
3886	0.054	0	0
3889	0.332	0	0
3894	0.354	0	0
3907	0.034	0	0
3910	0.101	0	0
3913	0.020	0	0
3914	0.318	0	0
3921	0.262	0	0
$3921 \\ 3923$	0.202	0	0
	0.453	0	0
3929		1	4612
3931	0.501	0	401 <i>2</i> 0
3932	0.249		
3937	0.625	1	3651
3943	0.308	0	0
3956	0.420	0	0
3957	0.524	1	3445
3961	0.530	1	3706
3971	0.216	0	0
4004	0.271	0	0
4005	0.056	0	0
4006	0.010	0	0
4011	0.119	0	0
4013	0.193	0	0
4014	0.121	0	0
4016	0.421	0	0
4017	0.016	0	0
4020	0.081	0	0
4022	0.111	0	0
4026	0.117	0	0
4032	0.123	0	0
4043	0.110	0	0
4045	0.378	0	0
4048	0.084	0	0
4051	0.082	0	0
4052	0.281	0	0
4056	0.041	0	0
4059	0.050	0	0
4069	0.044	0	0
4074	0.415	0	0
4076	0.279	0	0

INDEX	TARGET_	_FLAG_	_PROB	TARGET	_FLAG	TARGET_	_AMT
4077	0.682			1		4351	
4079	0.769			1		4032	
4081	0.581			1		4447	
4088	0.117			0		0	
4105	0.141			0		0	
4125	0.187			0		0	
4134	0.583			1		3879	
4139	0.004			0		0	
4146	0.053			0		0	
4149	0.083			0		0	
4151	0.805			1		4144	
4155	0.134			0		0	
4157	0.101			0		0	
4168	0.557			1		3788	
4170	0.150			0		0	
4174	0.160			0		0	
4179	0.407			0		0	
4179	0.407 0.126			0		0	
4199	0.120 0.510			1		4219	
				0			
4205	0.090					0	
4208	0.022			0		0	
4211	0.616			1		3885	
4212	0.055			0		0	
4215	0.627			1		4401	
4217	0.113			0		0	
4219	0.827			1		3963	
4226	0.540			1		3283	
4227	0.421			0		0	
4229	0.031			0		0	
4231	0.120			0		0	
4233	0.008			0		0	
4237	0.385			0		0	
4243	0.422			0		0	
4248	0.172			0		0	
4255	0.238			0		0	
4262	0.052			0		0	
4266	0.698			1		3732	
4268	0.275			0		0	
4270	0.750			1		4392	
4273	0.083			0		0	
4276	0.096			0		0	
4277	0.120			0		0	
4279	0.219			0		0	
4299	0.141			0		0	
4313	0.051			0		0	
4322	0.060			0		0	
4324	0.067			0		0	
4324	0.341			0		0	
4331	0.351			0		0	
4335	0.036			0		0	
4337	0.030 0.473			0		0	
4338	0.473 0.382			0		0	
400 0	0.004			J		J	

INDEX	$TARGET_{_}$	_FLAG_	_PROB	$TARGET_{_}$	_FLAG	$TARGET_{_}$	_AMT
4343	0.062			0		0	
4347	0.100			0		0	
4355	0.702			1		4286	
4357	0.005			0		0	
4359	0.056			0		0	
4362	0.148			0		0	
4368	0.547			1		4160	
4374	0.073			0		0	
4375	0.507			1		3774	
4378	0.457			0		0	
4381	0.656			1		4499	
4387	0.103			0		0	
4400	0.014			0		0	
4423	0.127			0		0	
4424	0.058			0		0	
4428	0.475			0		0	
4433	0.475 0.635			1		4688	
4436	0.469			0		0	
4437	0.403 0.184			0		0	
4439	0.164 0.368			0		0	
4449	0.308 0.246			0		0	
4449 4456	0.240 0.085			0		0	
4463	0.085 0.097			0		0	
				0		0	
4467	0.088					0	
4468	0.087			0			
4469	0.066			0		0	
4472	0.320			0		0	
4473	0.021			0		0	
4476	0.798			1		3695	
4500	0.046			0		0	
4509	0.176			0		0	
4513	0.879			1		4008	
4521	0.038			0		0	
4527	0.444			0		0	
4530	0.343			0		0	
4532	0.511			1		4119	
4533	0.111			0		0	
4535	0.383			0		0	
4536	0.432			0		0	
4542	0.292			0		0	
4551	0.710			1		4087	
4554	0.061			0		0	
4555	0.557			1		3252	
4564	0.292			0		0	
4572	0.437			0		0	
4573	0.150			0		0	
4577	0.302			0		0	
4579	0.379			0		0	
4583	0.081			0		0	
4584	0.433			0		0	
4596	0.049			0		0	
4599	0.238			0		0	

INDEX	TARGET_	_FLAG_	_PROB	TARGET_	_FLAG	TARGET	_AMT
4607	0.344			0		0	
4609	0.524			1		3925	
4610	0.071			0		0	
4616	0.390			0		0	
4617	0.304			0		0	
4633	0.237			0		0	
4638	0.273			0		0	
4641	0.043			0		0	
4653	0.640			1		3966	
4655	0.303			0		0	
4659	0.386			0		0	
4669	0.061			0		0	
4678	0.085			0		0	
4685	0.638			1		4287	
4686	0.155			0		0	
4691	0.247			0		0	
4695	0.151			0		0	
4698	0.129			0		0	
4700	0.604			1		4346	
4711	0.087			0		0	
4722	0.029			0		0	
4727	0.525			1		3620	
4756	0.010			0		0	
4762	0.267			0		0	
4763	0.326			0		0	
4766	0.020			0		0	
4770	0.071			0		0	
4784	0.107 0.312			0		0	
4791	0.012			0		0	
4795	0.032 0.034			0		0	
4799	0.034 0.703			1		3884	
4802	0.703			0		0	
4805	0.471 0.642			1		3365	
4814	0.569			1		3607	
	0.309 0.324			0		0	
4816							
4817	0.059			0		0	
4822	0.234			0		0	
4827	0.454			0		0	
4833	0.115			0		0	
4836	0.013			0		0	
4842	0.178			0		0	
4844	0.090			0		0	
4845	0.327			0		0	
4849	0.289			0		0	
4850	0.276			0		0	
4860	0.032			0		0	
4863	0.252			0		0	
4871	0.165			0		0	
4878	0.442			0		0	
4881	0.404			0		0	
	0.405			0		0	
4888 4900	$0.465 \\ 0.160$			0		0	

INDEX	TARGET_FLAG_PROB	TARGET_FLAG	TARGET_AMT
4906	0.353	0	0
4909	0.016	0	0
4916	0.096	0	0
4918	0.335	0	0
4926	0.364	0	0
4928	0.144	0	0
4941	0.410	0	0
4946	0.144	0	0
4949	0.046	0	0
4956	0.068	0	0
4966	0.037	0	0
4969	0.405	0	0
4973	0.121	0	0
4978	0.422	0	0
4982	0.354	0	0
4985	0.050	0	0
4991	0.030	0	0
		0	0
4998	0.038	1	
5000	0.504		4621
5004	0.358	0	0
5005	0.558	1	4229
5011	0.720	1	3595
5016	0.467	0	0
5018	0.058	0	0
5034	0.155	0	0
5038	0.024	0	0
5042	0.068	0	0
5046	0.086	0	0
5051	0.106	0	0
5054	0.206	0	0
5057	0.354	0	0
5062	0.061	0	0
5063	0.047	0	0
5065	0.068	0	0
5066	0.113	0	0
5076	0.225	0	0
5089	0.203	0	0
5092	0.641	1	3739
5093	0.692	1	3374
5094	0.032	0	0
5098	0.754	1	3433
5102	0.031	0	0
5112	0.267	0	0
5117	0.460	0	0
5127	0.531	1	3628
5130	0.288	0	0
5131	0.479	0	0
5132	0.512	1	3930
5135	0.782	1	3788
5136	0.022	0	0
5147	0.436	0	0
5157	0.430	0	0
9191	0.010	U	V

INDEX	TARGET_FLAG_PROB	TARGET_FLAG	TARGET_AMT
5160	0.310	0	0
5165	0.012	0	0
5166	0.394	0	0
5172	0.575	1	3803
5173	0.183	0	0
5179	0.893	1	3213
5184	0.497	0	0
5187	0.051	0	0
5191	0.103	0	0
5193	0.147	0	0
5194	0.173	0	0
5199	0.178	0	0
5212	0.028	0	0
5213	0.498	0	0
5215 5224	0.450	0	0
5224 5226	0.107	0	0
5239	0.107	0	0
5259 5252	0.722	1	4477
		0	
5264	0.203		0
5266	0.017	0	0
5271	0.019	0	0
5273	0.035	0	0
5276	0.651	1	3865
5278	0.060	0	0
5281	0.660	1	4428
5283	0.638	1	4311
5291	0.120	0	0
5294	0.300	0	0
5296	0.555	1	3444
5297	0.868	1	4533
5313	0.029	0	0
5314	0.403	0	0
5321	0.232	0	0
5325	0.009	0	0
5326	0.189	0	0
5328	0.014	0	0
5334	0.201	0	0
5338	0.461	0	0
5344	0.312	0	0
5348	0.258	0	0
5352	0.168	0	0
5353	0.063	0	0
5354	0.466	0	0
5361	0.876	1	3213
5364	0.028	0	0
5365	0.079	0	0
5367	0.512	1	3610
5379	0.417	0	0
5382	0.409	0	0
5386	0.269	0	0
5395	0.112	0	0
5410	0.340	0	0
3110	0.010	•	~

INDEX	TARGET_FLAG_PROB	TARGET_FLAG	TARGET_AMT
5411	0.106	0	0
5416	0.398	0	0
5424	0.716	1	3717
5426	0.284	0	0
5428	0.149	0	0
5430	0.379	0	0
5433	0.173	0	0
5437	0.006	0	0
5440	0.282	0	0
5442	0.890	1	4110
5445	0.437	0	0
5449	0.138	0	0
5452	0.550	1	3498
5460	0.627	1	3439
5460	0.078	0	0
5465	0.169	0	0
5467	0.109	0	0
5471	0.326	0	0
	0.520		
5474		0	0
5475	0.024	0	0
5480	0.073	0	0
5481	0.178	0	0
5484	0.130	0	0
5494	0.104	0	0
5495	0.767	1	4059
5497	0.074	0	0
5499	0.406	0	0
5507	0.031	0	0
5510	0.114	0	0
5515	0.162	0	0
5516	0.039	0	0
5517	0.185	0	0
5524	0.056	0	0
5530	0.136	0	0
5534	0.331	0	0
5543	0.317	0	0
5545	0.571	1	3795
5558	0.181	0	0
5562	0.171	0	0
5573	0.728	1	4451
5581	0.188	0	0
5583	0.430	0	0
5587	0.540	1	3026
5589	0.835	1	4259
5591	0.192	0	0
5596	0.264	0	0
5606	0.834	1	3923
5608	0.176	0	0
5611	0.076	0	0
5612	0.205	0	0
5614	0.248	0	0
5620	0.050	0	0
0020	3.000	•	V

INDEX	TARGET_FLAG_PROB	TARGET_FLAG	TARGET_AMT
5623	0.124	0	0
5624	0.131	0	0
5626	0.305	0	0
5633	0.146	0	0
5635	0.107	0	0
5640	0.444	0	0
5643	0.106	0	0
5644	0.417	0	0
5653	0.418	0	0
5663	0.021	0	0
5664	0.661	1	3432
5667	0.503	1	4362
5671	0.409	0	0
5673	0.590	1	4343
5676	0.106	0	0
5678	0.064	0	0
5698	0.243	0	0
5700	0.054	0	0
5705	0.305	0	0
5706	0.795	1	3880
5700	0.057	0	0
5711	0.875	1	3745
5712	0.409	0	0
5710	0.409	0	0
		1	
5725	0.888	0	3453
5728 5724	0.122		0
5734	0.061	0	0
5735	0.082	0	0
5743	0.218	0	0
5754	0.158	0	0
5755	0.341	0	0
5756	0.082	0	0
5766	0.040	0	0
5770	0.590	1	3861
5774	0.147	0	0
5775	0.020	0	0
5776	0.208	0	0
5778	0.032	0	0
5786	0.644	1	3851
5787	0.331	0	0
5791	0.192	0	0
5794	0.181	0	0
5803	0.173	0	0
5804	0.209	0	0
5808	0.163	0	0
5810	0.027	0	0
5813	0.601	1	3605
5828	0.112	0	0
5839	0.348	0	0
5842	0.399	0	0
5843	0.039	0	0
5844	0.178	0	0

INDEX	TARGET_FLAG_PROB	TARGET_FLAG	TARGET_AMT
5847	0.556	1	4646
5851	0.017	0	0
5854	0.065	0	0
5857	0.018	0	0
5866	0.485	0	0
5874	0.383	0	0
5886	0.065	0	0
5895	0.064	0	0
5897	0.025	0	0
5898	0.206	0	0
5900	0.542	1	4511
5902	0.454	0	0
5908	0.647	1	3865
5909	0.021	0	0
5912	0.025	0	0
5913	0.104	0	0
5917	0.327	0	0
5918	0.572	1	4395
5910 5921	0.177	0	0
5931	0.324	0	0
5942	0.485	0	0
5943	0.466	1	4188
5945 5950	0.078	0	0
5950 5954	0.028	0	0
		0	0
5983	0.023		
5995	0.669	1	4216
6002	0.096	0	0
6005	0.033	0	0
6009	0.208	0	0
6011	0.004	0	0
6012	0.013	0	0
6019	0.256	0	0
6021	0.376	0	0
6029	0.687	1	4515
6036	0.383	0	0
6037	0.006	0	0
6038	0.051	0	0
6043	0.038	0	0
6045	0.133	0	0
6047	0.731	1	3853
6048	0.034	0	0
6061	0.356	0	0
6063	0.198	0	0
6064	0.069	0	0
6068	0.661	1	4195
6069	0.063	0	0
6070	0.405	0	0
6071	0.174	0	0
6074	0.392	0	0
6079	0.371	0	0
6082	0.045	0	0
6088	0.793	1	3375

INDEX	TARGET_FLAG_PROB	TARGET_FLAG	TARGET_AMT
6094	0.147	0	0
6095	0.273	0	0
6098	0.468	0	0
6102	0.017	0	0
6105	0.443	0	0
6113	0.110	0	0
6116	0.252	0	0
6120	0.560	1	4282
6121	0.276	0	0
6126	0.218	0	0
6144	0.095	0	0
6145	0.035	0	0
6153	0.160	0	0
6156	0.173	0	0
6159	0.274	0	0
6162	0.052	0	0
6184	0.686	1	4236
6188		0	0
	0.486	0	0
6189	0.334		
6191	0.375	0	0
6211	0.471	0	0
6216	0.170	0	0
6218	0.580	1	3845
6222	0.186	0	0
6235	0.233	0	0
6245	0.169	0	0
6248	0.656	1	4483
6253	0.225	0	0
6256	0.005	0	0
6257	0.394	0	0
6259	0.309	0	0
6266	0.105	0	0
6268	0.291	0	0
6275	0.244	0	0
6280	0.632	1	4008
6283	0.361	0	0
6288	0.046	0	0
6289	0.112	0	0
6301	0.060	0	0
6308	0.244	0	0
6314	0.044	0	0
6315	0.151	0	0
6316	0.498	0	0
6317	0.495	0	0
6318	0.044	0	0
6323	0.741	1	3584
6329	0.599	1	3675
6336	0.161	0	0
6341	0.884	1	4102
6348	0.168	0	0
6349	0.029	0	0
6365	0.041	0	0

INDEX	TARGET_FLAG_PROB	TARGET_FLAG	TARGET_AMT
6372	0.251	0	0
6376	0.025	0	0
6378	0.068	0	0
6379	0.830	1	4082
6382	0.139	0	0
6383	0.396	0	0
6389	0.824	1	2981
6390	0.069	0	0
6392	0.062	0	0
6394	0.589	1	4291
6402	0.088	0	0
6404	0.346	0	0
6405	0.039	0	0
6406	0.281	0	0
6409	0.155	0	0
6410	0.155	0	0
6411	0.149	0	0
6421	0.061	0	0
6428	0.276	0	0
6429	0.345	0	0
6432	0.088	0	0
6436	0.042	0	0
6437	0.254	0	0
6438	0.210	0	0
6445	0.120	0	0
6447	0.564	1	3837
6450	0.050	0	0
6462	0.208	0	0
6467	0.671	1	4672
6478	0.040	0	0
6484	0.207	0	0
6492	0.417	0	0
6497	0.054	0	0
6504	0.254	0	0
6505	0.119	0	0
6513	0.612	1	3617
6525	0.212	0	0
6526	0.397	0	0
6528	0.054	0	0
6540	0.009	0	0
6542	0.110	0	0
6544	0.424	0	0
6548	0.133	0	0
6552	0.238	0	0
6558	0.007	0	0
6567	0.072	0	0
6569	0.534	1	4421
6572	0.127	0	0
6577	0.080	0	0
6581	0.308	0	0
6588	0.508	1	4305
6591	0.699	1	3356

INDEX	TARGET_FLAG_PROB	TARGET_FLAG	TARGET_AMT
6594	0.351	0	0
6600	0.520	1	4415
6602	0.208	0	0
6604	0.134	0	0
6605	0.035	0	0
6614	0.262	0	0
6616	0.405	0	0
6621	0.348	0	0
6640	0.362	0	0
6641	0.353	0	0
6643	0.048	0	0
6644	0.171	0	0
6649	0.432	0	0
6650	0.723	1	3872
6655	0.459	0	0
6661	0.019	0	0
6672	0.255	0	0
6677	0.051	0	0
6688	0.132	0	0
6689	0.081	0	0
6691	0.067	0	0
6692	0.347	0	0
6694	0.769	1	3563
6702	0.607	1	4150
6714	0.044	0	0
6716	0.507	1	3414
6724	0.100	0	0
6725	0.090	0	0
6730	0.165	0	0
6735	0.481	0	0
6738	0.342	0	0
6739	0.150	0	0
6743	0.242	0	0
6747	0.148	0	0
6750	0.714	1	4242
6751	0.564	1	3432
6753	0.559	1	3584
6754	0.316	0	0
6755	0.116	0	0
6762	0.177	0	0
6764	0.075	0	0
6772	0.651	1	3707
6774	0.093	0	0
6787	0.153	0	0
6789	0.027	0	0
6793	0.027	0	0
6798	0.009	0	0
6799	0.020	0	0
6800	0.102	0	0
6802	0.024	0	0
6808	0.279	0	0
6809	0.052	0	0
3003	0.004	V	V

INDEX	TARGET_FLAG_PROB	TARGET_FLAG	TARGET_AMT
6812	0.013	0	0
6814	0.843	1	4198
6816	0.607	1	3628
6822	0.037	0	0
6829	0.287	0	0
6834	0.818	1	4075
6836	0.027	0	0
6839	0.139	0	0
6840	0.520	1	2981
6843	0.070	0	0
6846	0.626	1	4018
6848	0.013	0	0
6852	0.063	0	0
6856	0.177	0	0
6860	0.077	0	0
6866	0.327	0	0
6870	0.471	0	0
6878	0.471	1	3479
		0	
6880	0.128		0
6885	0.026	0	0
6897	0.053	0	0
6902	0.740	1	3598
6904	0.402	0	0
6907	0.070	0	0
6909	0.164	0	0
6914	0.540	1	3395
6915	0.455	0	0
6922	0.344	0	0
6924	0.168	0	0
6933	0.084	0	0
6934	0.087	0	0
6941	0.289	0	0
6957	0.215	0	0
6960	0.091	0	0
6969	0.070	0	0
6975	0.087	0	0
6980	0.762	1	3628
6983	0.094	0	0
6987	0.113	0	0
6994	0.044	0	0
6997	0.005	0	0
7002	0.108	0	0
7010	0.025	0	0
7015	0.569	1	3757
7019	0.305	0	0
7022	0.198	0	0
7025	0.037	0	0
7029	0.074	0	0
7031	0.205	0	0
7037	0.444	0	0
7038	0.137	0	0
7043	0.137	0	0
1010	0.100		J

INDEX	TARGET_FLAG_PROB	TARGET_FLAG	TARGET_AMT
7049	0.050	0	0
7052	0.190	0	0
7053	0.334	0	0
7056	0.006	0	0
7057	0.626	1	3712
7080	0.190	0	0
7086	0.194	0	0
7087	0.105	0	0
7105	0.535	1	3732
7108	0.007	0	0
7121	0.544	1	2981
7122	0.263	0	0
7125	0.488	0	0
7132	0.304	0	0
7134	0.136	0	0
7151	0.244	0	0
7152	0.685	1	3867
7157	0.178	0	0
7159	0.191	0	0
7166	0.718	1	3679
7167	0.076	0	0
7177	0.038	0	0
7177	0.720	1	4291
7179	0.720	0	0
7181	0.155	0	0
		0	0
7186	0.027	0	0
7193	0.016	0	
7205	0.047	0	0
7207	0.024		0
7209	0.383	0	0
7216	0.267	0 1	0 3606
7232	0.852	0	
7235	0.108		0
7238	0.391	0	0
7240	0.578	1	3874
7243	0.309	0	0
7252	0.296	0	0
7269	0.140	0	0
7275	0.023	0	0
7281	0.128	0	0
7283	0.059	0	0
7287	0.204	0	0
7289	0.338	0	0
7291	0.420	0	0
7294	0.024	0	0
7304	0.552	1	3347
7308	0.231	0	0
7313	0.044	0	0
7319	0.428	0	0
7325	0.108	0	0
7326	0.111	0	0
7330	0.317	0	0

INDEX	TARGET_FLAG_PROB	TARGET_FLAG	TARGET_AMT
7332	0.027	0	0
7337	0.429	0	0
7341	0.378	0	0
7346	0.571	1	4503
7353	0.634	1	3928
7354	0.751	1	4025
7361	0.416	0	0
7366	0.476	0	0
7368	0.033	0	0
7372	0.043	0	0
7375	0.491	0	0
7377	0.495	0	0
7380	0.103	0	0
7382	0.380	0	0
7385	0.769	1	3976
7392	0.661	1	4335
	0.090	0	
7395			0
7397	0.247	0	0
7403	0.070	0	0
7406	0.558	1	4565
7409	0.716	1	3667
7410	0.188	0	0
7412	0.067	0	0
7419	0.233	0	0
7425	0.133	0	0
7435	0.212	0	0
7438	0.275	0	0
7440	0.152	0	0
7447	0.101	0	0
7449	0.636	1	3852
7456	0.239	0	0
7464	0.131	0	0
7478	0.123	0	0
7480	0.046	0	0
7481	0.452	0	0
7483	0.198	0	0
7484	0.273	0	0
7491	0.561	1	4518
7494	0.465	0	0
7501	0.469	0	0
7503	0.783	1	4388
7509	0.270	0	0
7517	0.098	0	0
7518	0.168	0	0
7519	0.417	0	0
7521	0.650	1	3730
7522	0.490	0	0
7536	0.074	0	0
7539	0.014	0	0
7547	0.537	1	4301
7549	0.050	0	0
7549 7552	0.414	0	0
1004	0.414	U	U

INDEX	TARGET_FLAG_PROB	TARGET_FLAG	TARGET_AMT
7554	0.236	0	0
7556	0.059	0	0
7564	0.099	0	0
7566	0.237	0	0
7570	0.269	0	0
7571	0.018	0	0
7572	0.222	0	0
7575	0.129	0	0
7586	0.100	0	0
7589	0.041	0	0
7590	0.070	0	0
7597	0.268	0	0
7602	0.030	0	0
7604	0.316	0	0
7605	0.325	0	0
7612	0.788	1	3771
7615	0.076	0	0
7617	0.128	0	0
7624	0.128	0	0
		0	
7632	0.106		0
7639	0.356	0	0
7642	0.194	0	0
7643	0.217	0	0
7649	0.428	0	0
7650	0.425	0	0
7653	0.246	0	0
7654	0.293	0	0
7657	0.598	1	4243
7662	0.192	0	0
7669	0.797	1	4426
7671	0.013	0	0
7675	0.043	0	0
7678	0.188	0	0
7682	0.761	1	3700
7688	0.547	1	3874
7689	0.194	0	0
7690	0.149	0	0
7692	0.444	0	0
7699	0.294	0	0
7705	0.521	1	3887
7712	0.249	0	0
7726	0.643	1	3990
7728	0.106	0	0
7735	0.322	0	0
7737	0.731	1	3806
7739	0.053	0	0
7743	0.603	1	4237
7744	0.179	0	0
7746	0.241	0	0
7749	0.391	0	0
7750	0.299	0	0
7752	0.046	0	0
	5.5 10	¥	~

INDEX	TARGET_	_FLAG_	_PROB	TARGET	_FLAG	TARGET_	_AMT
7755	0.139			0		0	
7756	0.740			1		3782	
7762	0.130			0		0	
7764	0.683			1		3913	
7769	0.092			0		0	
7770	0.462			0		0	
7776	0.113			0		0	
7778	0.263			0		0	
7784	0.464			0		0	
7786	0.308			0		0	
7789	0.201			0		0	
7793	0.293			0		0	
7794	0.083			0		0	
7804	0.279			0		0	
7811	0.187			0		0	
7813	0.106			0		0	
7815	0.272			0		0	
7817	0.014			0		0	
7818	0.232			0		0	
7821	0.167			0		0	
7825	0.038			0		0	
7830	0.656			1		3609	
7832	0.111			0		0	
7835	0.011			0		0	
7839	0.011			0		0	
7842	0.130 0.045			0		0	
7849	0.045 0.436			0		0	
7856	0.430 0.333			0		0	
7857	0.005			0		0	
7863	0.064			0		0	
7866	0.004 0.135			0		0	
7871	0.135 0.064			0		0	
7875	0.494			0		0	
7882	0.494 0.760			1		4599	
				0		4599 0	
7887	0.460			1			
7888 7801	0.538					4119	
7891	0.788			1		4566	
7895	0.020			0		0	
7901	0.307			0		0	
7906	0.264			0		0	
7908	0.831			1		4076	
7917	0.231			0		0	
7924	0.697			1		3928	
7948	0.326			0		0	
7950	0.736			1		4047	
7955	0.187			0		0	
7957	0.073			0		0	
7959	0.161			0		0	
7967	0.058			0		0	
7969	0.042			0		0	
7971	0.204			0		0	
7974	0.318			0		0	

INDEX	TARGET_	_FLAG_	_PROB	TARGET	_FLAG	TARGET_	_AMT
7976	0.068			0		0	
7986	0.848			1		3184	
7987	0.688			1		3869	
7993	0.295			0		0	
7996	0.445			0		0	
7998	0.336			0		0	
8018	0.083			0		0	
8019	0.227			0		0	
8027	0.014			0		0	
8036	0.110			0		0	
8040	0.077			0		0	
8044	0.097			0		0	
8050	0.035			0		0	
8052	0.529			1		4135	
8054	0.391			0		0	
8057	0.762			1		3213	
8058	0.268			0		0	
8059	0.511			1		4138	
8066	0.841			1		3929	
8070	0.053			0		0	
8072	0.345			0		0	
8078	0.025			0		0	
8079	0.069			0		0	
8080	0.530			1		2860	
8081	0.350 0.152			0		0	
8081	0.132 0.097			0		0	
8091	0.097 0.666			1		4044	
8094	0.000 0.135			0		0	
8095	0.135 0.634			1		4281	
	0.034 0.124			0			
8099	0.124 0.252			0		0	
8101 8102						0	
	0.012			0			
8116	0.465			0		0	
8125	0.379			0		0	
8134	0.190			0		0	
8139	0.028			0		0	
8141	0.060			0		0	
8147	0.057			0		0	
8158	0.353			0		0	
8160	0.122			0		0	
8165	0.427			0		0	
8187	0.328			0		0	
8205	0.341			0		0	
8209	0.293			0		0	
8211	0.201			0		0	
8232	0.003			0		0	
8236	0.072			0		0	
8237	0.158			0		0	
8238	0.772			1		3966	
8245	0.366			0		0	
8256	0.405			0		0	
8268	0.053			0		0	

INDEX	TARGET_FLAG_PROB	TARGET_FLAG	TARGET_AMT
8269	0.024	0	0
8270	0.334	0	0
8286	0.077	0	0
8289	0.054	0	0
8301	0.457	0	0
8305	0.149	0	0
8310	0.162	0	0
8312	0.032	0	0
8318	0.856	1	3948
8321	0.214	0	0
8328	0.072	0	0
8331	0.035	0	0
8334	0.421	0	0
8344	0.308	0	0
8345	0.228	0	0
8352	0.283	0	0
8358	0.452	0	0
8359	0.227	0	0
8360	0.144	0	0
8365	0.308	0	0
8366	0.085	0	0
8369	0.655	1	3677
8373	0.040	0	0
8378	0.123	0	0
8392	0.123	0	0
8397	0.479	0	0
8399	0.223	0	0
8400	0.087	0	0
8405	0.530	1	4270
8406	0.058	0	0
8410	0.141	0	0
8413	0.051	0	0
8414	0.216	0	0
8416	0.733	1	3704
8426	0.058	0	0
8434	0.313	0	0
8439	0.208	0	0
8440	0.262	0	0
8475	0.202	0	0
8480	0.148	0	0
8497	0.241	0	0
8499	0.712	1	4516
8500	0.329	0	0
8501	0.070	0	0
8502		1	3754
8518	0.519 0.454	0	0
8520	0.454	1	3502
8520 8523	0.261	0	350 <i>2</i> 0
8525	0.201	0	0
8532	0.130	0	0
8535	0.131	0	0
8543	0.204	0	0
0949	U.J4U	U	U

INDEX	TARGET_FLAG_PROB	TARGET_FLAG	TARGET_AMT
8554	0.249	0	0
8560	0.095	0	0
8561	0.255	0	0
8563	0.019	0	0
8566	0.875	1	3763
8570	0.295	0	0
8572	0.068	0	0
8582	0.108	0	0
8583	0.240	0	0
8587	0.218	0	0
8592	0.221	0	0
8593	0.442	0	0
8607	0.025	0	0
8609	0.168	0	0
8610	0.066	0	0
8614	0.244	0	0
8616	0.399	0	0
8622	0.158	0	0
8623	0.073	0	0
8624	0.193	0	0
8633	0.205	0	0
8641	0.338	0	0
8644	0.617	1	3824
8649	0.602	1	3816
8653	0.149	0	0
8657	0.165	0	0
8658	0.143	0	0
8663	0.129	0	0
8672	0.680	1	4314
8680	0.570	1	3778
8684	0.547	1	2860
8687	0.144	0	0
8688	0.116	0	0
8690	0.227	0	0
8712	0.251	0	0
8717	0.280	0	0
8730	0.048	0	0
8739	0.128	0	0
8744	0.020	0	0
8747	0.249	0	0
8748	0.340	0	0
8751	0.772	1	3982
8758	0.206	0	0
8761	0.358	0	0
8763	0.007	0	0
8764	0.307	0	0
8765	0.173	0	0
8773	0.104	0	0
8780	0.104	0	0
8781	0.247	0	0
8782	0.475	0	0
8785	0.137	0	0
0,00	V.101	V	J.

INDEX	TARGET_FLAG_PROB	TARGET_FLAG	TARGET_AMT
8786	0.168	0	0
8797	0.808	1	4429
8799	0.064	0	0
8807	0.750	1	3963
8816	0.054	0	0
8817	0.077	0	0
8826	0.355	0	0
8833	0.182	0	0
8834	0.068	0	0
8835	0.127	0	0
8840	0.108	0	0
8843	0.088	0	0
8849	0.283	0	0
8855	0.117	0	0
8861	0.269	0	0
8862	0.169	0	0
8865	0.246	0	0
8868	0.008	0	0
8870	0.040	0	0
8880	0.298	0	0
8885	0.052	0	0
8894	0.219	0	0
8895	0.161	0	0
8899	0.031	0	0
8912	0.254	0	0
8922	0.011	0	0
8924	0.130	0	0
8928	0.223	0	0
8932	0.306	0	0
8943	0.130	0	0
8945	0.146	0	0
8946	0.039	0	0
8954	0.419	0	0
8958	0.463	0	0
8960	0.703	1	3830
8965	0.228	0	0
8966	0.087	0	0
8967	0.055	0	0
8969	0.302	0	0
8980	0.158	0	0
8984	0.032	0	0
8985	0.753	1	3746
8988	0.298	0	0
8989	0.342	0	0
8995	0.084	0	0
9004	0.053	0	0
9004	0.044	0	0
9010	0.044 0.235	0	0
9012	0.233	1	3645
9018	0.004	0	0
9030 9037	0.247	0	0
9037	0.245	0	0
304U	0.011	U	U

INDEX	TARGET_FLAG_PROB	TARGET_FLAG	TARGET_AMT
9041	0.341	0	0
9044	0.447	0	0
9045	0.095	0	0
9047	0.530	1	4149
9049	0.018	0	0
9061	0.012	0	0
9062	0.422	0	0
9076	0.239	0	0
9079	0.280	0	0
9081	0.298	0	0
9082	0.139	0	0
9089	0.632	1	3804
9092	0.188	0	0
9094	0.236	0	0
9115	0.028	0	0
9117	0.404	0	0
9117		0	0
	0.287		
9120	0.089	0	0
9124	0.015	0	0
9128	0.146	0	0
9135	0.411	0	0
9136	0.707	1	4087
9138	0.299	0	0
9157	0.452	0	0
9176	0.056	0	0
9183	0.275	0	0
9187	0.506	1	3863
9188	0.225	0	0
9190	0.173	0	0
9197	0.024	0	0
9200	0.038	0	0
9201	0.183	0	0
9203	0.017	0	0
9212	0.374	0	0
9213	0.064	0	0
9214	0.151	0	0
9217	0.296	0	0
9219	0.007	0	0
9220	0.146	0	0
9221	0.091	0	0
9237	0.011	0	0
9240	0.092	0	0
9241	0.006	0	0
9248	0.224	0	0
9253	0.457	0	0
9259	0.549	1	4424
9267	0.111	0	0
9271	0.303	0	0
9273	0.210	0	0
9285	0.041	0	0
9290	0.298	0	0
9291	0.079	0	0

9293 0.091 0 0 9294 0.083 0 0 9301 0.188 0 0 0 9302 0.063 0 0 0 9312 0.018 0 0 0 9316 0.386 0 0 0 9316 0.386 0 0 0 9316 0.386 0 0 0 9319 0.585 1 3107 9328 0.069 0 0 0 9333 0.069 0 0 0 93338 0.033 0 0 0 9338 0.033 0 0 0 93356 0.299 0 0 0 93356 0.133 0 0 0 9359 0.449 0 0 0 9359 0.449 0 0 0 9359 0.449 0 0 0 9359 0.449 0 0 0 9364 0.135 0 0 0 0 0	INDEX	TARGET_FLAG_PROB	TARGET_FLAG	TARGET_AMT
9301 0.188 0 0 9302 0.063 0 0 9312 0.018 0 0 9316 0.386 0 0 9319 0.585 1 3107 9328 0.069 0 0 9328 0.069 0 0 9331 0.895 1 2981 9338 0.033 0 0 9356 0.113 0 0 9356 0.113 0 0 9356 0.113 0 0 9362 0.472 0 0 9364 0.135 0 0 9370 0.408 0 0 9380 0.134 0 0 9380 0.134 0 0 9384 0.433 0 0 9411 0.602 1 4424 9422 0.274 0 0 <	9293	0.091	0	0
9302 0.063 0 0 9312 0.018 0 0 9316 0.386 0 0 9319 0.585 1 3107 9328 0.069 0 0 9331 0.895 1 2981 9338 0.033 0 0 9350 0.299 0 0 9356 0.113 0 0 9359 0.449 0 0 9362 0.472 0 0 9364 0.135 0 0 9370 0.408 0 0 9370 0.408 0 0 9370 0.408 0 0 9370 0.408 0 0 9370 0.408 0 0 9380 0.134 0 0 9384 0.433 0 0 9407 0.373 0 0 <td>9294</td> <td>0.083</td> <td>0</td> <td>0</td>	9294	0.083	0	0
9312 0.018 0 0 9316 0.386 0 0 9319 0.585 1 3107 9328 0.069 0 0 9331 0.895 1 2981 9338 0.033 0 0 9350 0.299 0 0 9350 0.299 0 0 9356 0.113 0 0 9359 0.449 0 0 9364 0.135 0 0 9364 0.135 0 0 9370 0.408 0 0 9380 0.134 0 0 9386 0.142 0 0 9386 0.142 0 0 9386 0.142 0 0 9407 0.373 0 0 9411 0.602 1 4424 9422 0.274 0 0 <	9301	0.188	0	0
9312 0.018 0 0 9316 0.386 0 0 9319 0.585 1 3107 9328 0.069 0 0 9331 0.895 1 2981 9338 0.033 0 0 9350 0.299 0 0 9350 0.299 0 0 9350 0.499 0 0 9350 0.419 0 0 9362 0.472 0 0 9364 0.135 0 0 9364 0.135 0 0 9370 0.408 0 0 9380 0.134 0 0 9386 0.142 0 0 9386 0.142 0 0 9427 0.373 0 0 9417 0.602 1 4424 9422 0.261 0 0 <	9302	0.063	0	0
9319 0.585 1 3107 9328 0.069 0 0 9331 0.895 1 2981 9338 0.033 0 0 9350 0.299 0 0 9359 0.449 0 0 9362 0.472 0 0 9364 0.135 0 0 9370 0.408 0 0 9380 0.134 0 0 9386 0.142 0 0 9386 0.142 0 0 9386 0.143 0 0 9386 0.142 0 0 9386 0.142 0 0 9394 0.433 0 0 9411 0.602 1 4424 9422 0.274 0 0 9423 0.261 0 0 9433 0.155 0 0 <	9312		0	0
9319 0.585 1 3107 9328 0.069 0 0 9331 0.895 1 2981 9338 0.033 0 0 9350 0.299 0 0 9359 0.449 0 0 9362 0.472 0 0 9364 0.135 0 0 9370 0.408 0 0 9380 0.134 0 0 9386 0.142 0 0 9386 0.142 0 0 9386 0.143 0 0 9386 0.142 0 0 9386 0.142 0 0 9394 0.433 0 0 9411 0.602 1 4424 9422 0.274 0 0 9423 0.261 0 0 9433 0.155 0 0 <			0	
9328 0.069 0 0 9331 0.895 1 2981 9338 0.033 0 0 9350 0.299 0 0 0 9356 0.113 0 0 0 9356 0.113 0 0 0 9356 0.113 0 0 0 0 9356 0.149 0 0 0 9364 0.135 0 0 0 0 9364 0.135 0 0 0 0 9364 0.135 0 0 0 0 9380 0.134 0 0 0 9380 0.134 0 0 0 9384 0.433 0 0 0 9394 0.433 0 0 0 9407 0.373 0 0 0 9411 0.602 1 4424 9422 0.274 0 0 0 9429 0.261 0 0 9429 0.261 0 0 9433			1	3107
9331 0.895 1 2981 9338 0.033 0 0 9350 0.299 0 0 9356 0.113 0 0 9359 0.449 0 0 9362 0.472 0 0 9364 0.135 0 0 9370 0.408 0 0 9380 0.134 0 0 9386 0.142 0 0 9384 0.433 0 0 9407 0.373 0 0 9411 0.602 1 4424 9422 0.274 0 0 9423 0.264 0 0 9429 0.261 0 0 9433 0.155 0 0 9439 0.024 0 0 9451 0.211 0 0 9452 0.370 0 0 <td></td> <td></td> <td>0</td> <td></td>			0	
9338 0.033 0 0 0 9350 0.299 0 0 0 9356 0.113 0 0 0 9359 0.449 0 0 0 9359 0.449 0 0 0 9359 0.449 0 0 0 9366 0.135 0 0 0 9386 0.135 0 0 0 9388 0.134 0 0 0 9386 0.142 0 0 0 9386 0.142 0 0 0 9384 0.433 0 0 0 9384 0.433 0 0 0 9394 0.433 0 0 0 9492 0.264 0 0 0 9422 0.274 0 0 0 9422 0.264 0 0 0 9423 0.264 0 0 0 9429 0.261 0 0 0 9451 0.211 0 0 0<				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
9356 0.113 0 0 0 9362 0.449 0 0 0 9362 0.472 0 0 0 9364 0.135 0 0 0 9364 0.135 0 0 0 9370 0.408 0 0 0 9380 0.134 0 0 0 9386 0.142 0 0 0 9493 0.433 0 0 0 94907 0.373 0 0 0 94911 0.602 1 4424 9422 0.274 0 0 0 9411 0.602 1 4424 9422 0.274 0 0 0 9429 0.261 0 0 0 9429 0.261 0 0 0 9433 0.155 0 0 0 9433 0.155 0 0 0 9433 0.15 0 0 0 9451 0.211 0 0 0 9455				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9476			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9485	0.604	1	3808
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9486	0.065	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9488	0.265	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9507	0.009	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9508	0.373	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9517	0.254	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9521	0.146	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
9542 0.100 0 0 9546 0.244 0 0 9548 0.179 0 0 9549 0.131 0 0 9554 0.139 0 0 9555 0.358 0 0 9558 0.026 0 0				
9546 0.244 0 0 9548 0.179 0 0 9549 0.131 0 0 9554 0.139 0 0 9555 0.358 0 0 9558 0.026 0 0				
9548 0.179 0 0 9549 0.131 0 0 9554 0.139 0 0 9555 0.358 0 0 9558 0.026 0 0				
9549 0.131 0 0 9554 0.139 0 0 9555 0.358 0 0 9558 0.026 0 0				
9554 0.139 0 0 9555 0.358 0 0 9558 0.026 0 0				
9555 0.358 0 0 9558 0.026 0 0				
9558 0.026 0 0				
3010 0.140 1 3900				
	<i>a</i> 010	0.140	1	9900

INDEX	TARGET_	_FLAG_	_PROB	TARGET_	_FLAG	TARGET_	_AMT
9575	0.555			1		4173	
9584	0.715			1		4237	
9586	0.099			0		0	
9588	0.113			0		0	
9591	0.432			0		0	
9592	0.644			1		4499	
9597	0.539			1		4211	
9600	0.080			0		0	
9603	0.617			1		4097	
9605	0.360			0		0	
9614	0.686			1		4150	
9616	0.020			0		0	
9622	0.613			1		3708	
9624	0.150			0		0	
9629	0.399			0		0	
9633	0.090			0		0	
9640	0.236			0		0	
9644	0.409			0		0	
9645	0.501			1		3658	
9646	0.110			0		0	
9648	0.945			1		3262	
9649	0.054			0		0	
9660	0.207			0		0	
9664	0.485			0		0	
9675	0.058			0		0	
9679	0.779			1		3751	
9680	0.366			0		0	
9682	0.068			0		0	
9697	0.015			0		0	
9701	0.015 0.217			0		0	
9704	0.217 0.375			0		0	
9705	0.211			0		0	
9707	0.321			0		0	
9714	0.321 0.107			0		0	
9718	0.107			0		0	
9722	0.032 0.139			0		0	
9739	0.133 0.127			0		0	
9747	0.719			1		3637	
9751	0.713 0.237			0		0	
9757	0.237 0.141			0		0	
9759	0.141			0		0	
9760	0.018			0		0	
9764	0.039 0.596			1		4350	
	0.390 0.315			0			
9776						0	
9778	0.179			0		0	
9786	0.070			0 1			
9803	0.644			0		3986	
9804	0.067					0	
9815	0.126			0		0	
9824	0.016			0		0	
9825	0.148			0		0	
9826	0.279			0		0	

INDEX	TARGET FLAG PROB	TARGET FLAG	TARGET AMT
9827	0.024	0	0
9833	0.024	0	0
9835	0.089	0	0
9860	0.350	0	0
9865	0.190	0	0
9803 9871	0.190	0	0
9874	0.211	0	0
9880		0	0
	0.211	0	0
9882 9885	0.440		0
	0.072	0 1	
9888	0.640		3838
9892	0.051	0	0
9893	0.286	0	0
9896	0.252	0	0
9902	0.102	0	0
9906	0.085	0	0
9910	0.482	0	0
9914	0.317	0	0
9918	0.463	0	0
9920	0.251	0	0
9926	0.243	0	0
9931	0.071	0	0
9935	0.348	0	0
9945	0.916	1	3672
9953	0.234	0	0
9957	0.007	0	0
9963	0.128	0	0
9972	0.242	0	0
9976	0.370	0	0
9979	0.297	0	0
9980	0.017	0	0
9982	0.138	0	0
9991	0.702	1	4109
10000	0.242	0	0
10003	0.175	0	0
10005	0.877	1	3890
10014	0.019	0	0
10032	0.288	0	0
10034	0.302	0	0
10041	0.008	0	0
10042	0.026	0	0
10044	0.075	0	0
10045	0.289	0	0
10054	0.553	1	4067
10061	0.187	0	0
10062	0.498	0	0
10073	0.217	0	0
10081	0.048	0	0
10084	0.431	0	0
10086	0.166	0	0
10093	0.369	0	0
10101	0.505	1	4208

INDEX	TARGET_FLAG_PROB	TARGET_FLAG	TARGET_AMT
10105	0.377	0	0
10110	0.432	0	0
10113	0.621	1	4726
10115	0.641	1	3851
10119	0.492	0	0
10121	0.494	0	0
10124	0.789	1	3883
10126	0.191	0	0
10127	0.026	0	0
10145	0.117	0	0
10147	0.541	1	3547
10148	0.009	0	0
10162	0.305	0	0
10163	0.026	0	0
10166	0.779	1	3814
10172	0.056	0	0
10173	0.395	0	0
10175	0.034	0	0
10180	0.158	0	0
10186	0.044	0	0
10192	0.312	0	0
10199	0.277	0	0
10209	0.929	1	3650
10210	0.145	0	0
10214	0.047	0	0
10215	0.204	0	0
10216	0.668	1	4189
10232	0.230	0	0
10239	0.258	0	0
10249	0.046	0	0
10253	0.413	0	0
10255	0.104	0	0
10262	0.075	0	0
10264	0.033	0	0
10266	0.156	0	0
10268	0.209	0	0
10271	0.140	0	0
10272	0.149	0	0
10276	0.481	0	0
10277	0.034	0	0
10279	0.515	1	3107
10281	0.017	0	0
10285	0.008	0	0
10294	0.317	0	0
10300	0.107	0	0

Part 1. Data Exploration

```
library(alr3)
library(car)
library(ggplot2)
library(dplyr)
library(knitr)
library(lmtest)
library(plyr)
library(psych)
```

Data Summary

```
# original data set
url <- "https://raw.githubusercontent.com/jtopor/CUNY-MSDA-621/master/HW-4/insurance_training_data.csv"
hw4 <- read.csv(url, stringsAsFactors = FALSE)

# remove $ signs from variables
hw4$INCOME <- as.numeric(gsub("[,$]", "", hw4$INCOME))
hw4$HOME_VAL <- as.numeric(gsub("[,$]", "", hw4$HOME_VAL))
hw4$BLUEBOOK <- as.numeric(gsub("[,$]", "", hw4$BLUEBOOK))
hw4$OLDCLAIM <- as.numeric(gsub("[,$]", "", hw4$OLDCLAIM))

hw4$INCOME <- as.numeric(as.character(hw4$INCOME))
hw4$HOME_VAL <- as.numeric(as.character(hw4$HOME_VAL))
hw4$BLUEBOOK <- as.numeric(as.character(hw4$BLUEBOOK))
hw4$CLDCLAIM <- as.numeric(as.character(hw4$CLDCLAIM))

# transformed data
url <- "https://raw.githubusercontent.com/jtopor/CUNY-MSDA-621/master/HW-4/621-HW4-XFORMED-DATA.csv"
hw4.t <- read.csv(url, stringsAsFactors = FALSE)</pre>
```

NUMERIC VARIABLES table

```
# get descripitive statistics of original data set

hw4.c <- hw4[,-c(1,2)]
hw4.n <- hw4.c[sapply(hw4.c, is.numeric)]
d <- describe(hw4.n)
d$mean <- round(d$mean,0)
d$sd <- round(d$sd,0)
d$min <- round(d$min,0)
d$max <- round(d$max,0)
d$range <- round(d$range,0)
d$skew <- round(d$skew,0)
d$kurtosis <- round(d$kurtosis,0)
d <- d[, -c(1,6,7)]
kable(d,digits=0)</pre>
```

Box + barplots

```
# box plots of each predictor variable relative to the response
# See Figure 8.8 on page 286
# -----
# Boxplots and barplots for each numeric and categorical variable
attach(hw4.t)
par(mfrow=c(3,3), oma=c(1,1,1,1), mar=c(3,3,5,3))
# get number of TARGET_FLAG == 1/0 responses
TF_POS <- sum(TARGET_FLAG == 1)</pre>
TF_NEG <- sum(TARGET_FLAG == 0)
# box plots of each predictor variable relative to the response
# See Figure 8.8 on page 286
                         _____
# CATEGORICAL: KIDSDRIV
# how many KIDSDRIV == TRUE??
s.KD <- sum(KIDSDRIV > 0)
# there are 981
KD.NO.TPOS <- nrow(subset(hw4.t, KIDSDRIV == 0 & TARGET_FLAG == 1))</pre>
KD.YES.TPOS <- nrow(subset(hw4.t, KIDSDRIV > 0 & TARGET_FLAG == 1))
#KIDSDRIV == TRUE is 0.387 correlated with TARGET_FLAG
KDY.InAcc <- KD.YES.TPOS / s.KD
# now get proportion of KIDSDRIV == FALSE involved in accidents
KDN.InAcc <- KD.NO.TPOS / (nrow(hw4.t) - s.KD)</pre>
rel_percs <- c(KDN.InAcc, KDY.InAcc )</pre>
mp <- barplot(rel_percs, names.arg = c('KIDSDRIV = 0', 'KIDSDRIV = 1'),</pre>
       main = ('Proportions w/ Past Accidents'), ylim = c(0, 1), col = 'yellow',
       xlim=c(0,4), width=c(2,2), cex.main=.75, cex.lab=.75, cex.axis=0.75, cex.names=.75)
# write the percentage values above the individual bars in the plot
text(mp, rel_percs, labels = format(round(rel_percs, 3), 4),
       pos = 3, cex = .75)
boxplot(AGE ~ TARGET_FLAG, ylab="AGE",
      main = "Was In a Car Crash? (1 = YES, 0 = NO): AGE", col = "yellow",
      xlim=c(0,3), width=c(1,1), cex.main=.75, cex.lab=.75, cex.axis=0.75)
```

```
# CATEGORICAL: HOMEKIDS
# how many HOMEKIDS == TRUE??
s.HK <- sum(HOMEKIDS > 0)
# there are 2872
HK.NO.TPOS <- nrow(subset(hw4.t, HOMEKIDS == 0 & TARGET_FLAG == 1))</pre>
HK.YES.TPOS <- nrow(subset(hw4.t, HOMEKIDS > 0 & TARGET_FLAG == 1))
# HOMEKIDS == TRUE is 0.4419 correlated with TARGET_FLAG
HKY.InAcc <- HK.YES.TPOS / s.HK
# now get proportion of non-single parents involved in accidents
HKN.InAcc <- HK.NO.TPOS / (nrow(hw4.t) - s.HK)
rel_percs <- c(HKN.InAcc, HKY.InAcc )</pre>
mp <- barplot(rel_percs, names.arg = c('HOMEKIDS = 0', 'HOMEKIDS = 1'),</pre>
          main = ('Proportions w/ Past Accidents'), ylim = c(0, 1), col = 'yellow',
          xlim=c(0,4), width=c(2,2), cex.main=.75, cex.lab=.75, cex.axis=0.75, cex.names=.75)
# write the percentage values above the individual bars in the plot
text(mp, rel_percs, labels = format(round(rel_percs, 3), 4),
         pos = 3, cex = .75)
boxplot(YOJ ~ TARGET_FLAG, ylab="YOJ",
        main="Was In a Car Crash? (1 = YES, 0 = NO): YOJ", col = "yellow",
        xlim=c(0,3), width=c(1,1), cex.main=.75, cex.lab=.75, cex.axis=0.75)
boxplot(INCOME ~ TARGET_FLAG, ylab="INCOME",
        main="Was In a Car Crash? (1 = YES, 0 = NO): INCOME", col = "yellow",
        xlim=c(0,3), width=c(1,1), cex.main=.75, cex.lab=.75, cex.axis=0.75)
# ------
# CATEGORICAL: PARENT1
# how many PARENT1 == Yes??
s.Par1 <- sum(PARENT1 == 'Yes')
# there are 1077
PARENT1.NO.TPOS <- nrow(subset(hw4.t, PARENT1 == 'No' & TARGET_FLAG == 1))
PARENT1.YES.TPOS <- nrow(subset(hw4.t, PARENT1 == 'Yes' & TARGET_FLAG == 1))
# get ratios of PARENT1.NO.POS / s.Par1
# THIS IS the proportion of single parents that had car accidents ->
# PARENT1 == YES is 0.4419 correlated with TARGET_FLAG
Par1Y.InAcc <- PARENT1.YES.TPOS / s.Par1</pre>
```

```
# now get proportion of non-single parents involved in accidents
Par1N.InAcc <- PARENT1.NO.TPOS / (nrow(hw4.t) - s.Par1)</pre>
rel_percs <- c(Par1N.InAcc, Par1Y.InAcc )</pre>
mp <- barplot(rel_percs, names.arg = c('Parent1 = No', 'Parent1 = Yes'),</pre>
         main = ('Proportions w/ Past Accidents'), ylim = c(0, 1), col = 'yellow',
         xlim=c(0,4), width=c(2,2), cex.main=.75, cex.lab=.75, cex.axis=0.75, cex.names=.75)
# write the percentage values above the individual bars in the plot
text(mp, rel_percs, labels = format(round(rel_percs, 3), 4),
     pos = 3, cex = .6)
boxplot(HOME_VAL ~ TARGET_FLAG, ylab="HOME_VAL",
        main="Was In a Car Crash? (1 = YES, 0 = NO): HOME_VAL", col = "yellow",
        xlim=c(0,3), width=c(1,1), cex.main=.75, cex.lab=.75, cex.axis=0.75 )
# -----
# CATEGORICAL: MSTATUS
# how many MSTATUS == Yes??
s.MStat <- sum(MSTATUS == 'Yes')
# there are 4894
MSTATUS.NO.TPOS <- nrow(subset(hw4.t, MSTATUS == 'z_No' & TARGET_FLAG == 1))
MSTATUS.YES.TPOS <- nrow(subset(hw4.t, MSTATUS == 'Yes' & TARGET_FLAG == 1))
# get ratios of MSTATUS.YES.TPOS / s.MStat
# THIS IS the proportion of married people that had car accidents ->
# MSTATUS of YES is 0.2151 correlated with TARGET_FLAG
MstatY.InAcc <- MSTATUS.YES.TPOS / s.MStat</pre>
# now get proportion of non-single parents involved in accidents
MstatN.InAcc <- MSTATUS.NO.TPOS / (nrow(hw4.t) - s.MStat)</pre>
rel_percs <- c(MstatN.InAcc, MstatY.InAcc )</pre>
mp <- barplot(rel_percs, names.arg = c('MSTATUS = No', 'MSTATUS = Yes'),</pre>
          main = ('Proportions w/ Past Accidents'), ylim = c(0, 1), col = 'yellow',
          xlim=c(0,4), width=c(2,2), cex.main=.75, cex.lab=.75, cex.axis=0.75, cex.names=.75)
# write the percentage values above the individual bars in the plot
text(mp, rel_percs, labels = format(round(rel_percs, 3), 4),
     pos = 3, cex = .6)
# CATEGORICAL; SEX
# how many SEX == M??
s.SEX <- sum(SEX == 'M')
```

```
# there are 3786 M's
SEX.F.TPOS <- nrow(subset(hw4.t, SEX == 'z_F' & TARGET_FLAG == 1))
SEX.M.TPOS <- nrow(subset(hw4.t, SEX == 'M' & TARGET_FLAG == 1))
# get ratios
# THIS IS the proportion of males that had car accidents ->
# SEX.M is 0.2538 correlated with TARGET_FLAG
SEX.M.Y.InAcc <- SEX.M.TPOS / s.SEX
# now get proportion of females involved in accidents
SEX.F.Y.InAcc <- SEX.F.TPOS / (nrow(hw4.t) - s.SEX)
rel_percs <- c(SEX.M.Y.InAcc, SEX.F.Y.InAcc )</pre>
mp <- barplot(rel_percs, names.arg = c('SEX = M', 'SEX = F'),</pre>
         main = ('Proportions w/ Past Accidents'), ylim = c(0, 1), col = 'yellow',
         xlim=c(0,4), width=c(2,2), cex.main=.75, cex.lab=.75, cex.axis=0.75, cex.names=.75)
# write the percentage values above the individual bars in the plot
text(mp, rel_percs, labels = format(round(rel_percs, 3), 4),
    pos = 3, cex = .6)
par(mfrow=c(3,3), oma=c(1,1,1,1), mar=c(3,3,3,3))
# CATEGORICAL: EDUCATION
# how many EDUCATION for each category?
s.EDU.LHS <- sum(EDUCATION == '<High School')
# there are 1203 <High School
s.EDU.HS <- sum(EDUCATION == 'z_High School')
# there are 2330 z_High School
s.EDU.B <- sum(EDUCATION == 'Bachelors')
# there are 2242 Bachelors
s.EDU.M <- sum(EDUCATION == 'Masters')
# there are 1658 Masters
s.EDU.P <- sum(EDUCATION == 'PhD')
# there are 728 PhD
# now get counts of past accidents for each category
EDU.LHS.TPOS <- nrow(subset(hw4.t, EDUCATION == '<High School' & TARGET_FLAG == 1))
EDU.HS.TPOS <- nrow(subset(hw4.t, EDUCATION == 'z_High School' & TARGET_FLAG == 1))
EDU.B.TPOS <- nrow(subset(hw4.t, EDUCATION == 'Bachelors' & TARGET_FLAG == 1))
EDU.M.TPOS <- nrow(subset(hw4.t, EDUCATION == 'Masters' & TARGET_FLAG == 1))
EDU.P.TPOS <- nrow(subset(hw4.t, EDUCATION == 'PhD' & TARGET_FLAG == 1))
# get ratios for each category
EDU.LHS.InAcc <- EDU.LHS.TPOS / s.EDU.LHS
EDU.HS.InAcc <- EDU.HS.TPOS / s.EDU.HS
```

```
EDU.B.InAcc <- EDU.B.TPOS / s.EDU.B
EDU.M.InAcc <- EDU.M.TPOS / s.EDU.M
EDU.P.InAcc <- EDU.P.TPOS / s.EDU.P
rel_percs <- c(EDU.LHS.InAcc, EDU.HS.InAcc, EDU.B.InAcc, EDU.M.InAcc, EDU.P.InAcc)
mp <- barplot(rel_percs, names.arg = c('< HS', 'HS', 'Bachelors', 'Masters', 'PhD'),</pre>
          main = ('Proportions w/ Past Accidents'), ylim = c(0, 1), col = 'yellow',
          xlim=c(0,6), width=c(1,1), cex.main=.75, cex.lab=.75, cex.axis=0.75, cex.names=.75, las=2)
# write the percentage values above the individual bars in the plot
text(mp, rel_percs, labels = format(round(rel_percs, 3), 4),
     pos = 3, cex = .6)
# CATEGORICAL: JOB
# how many JOB for each category?
s.J.BC <- sum(JOB == 'z_Blue Collar')
# there are 1825 Blue Collar
s.J.PRO <- sum(JOB == 'Professional')
# there are 1117 Professionals
s.J.MGR <- sum(JOB == 'Manager')
# there are 988 Managers
s.J.HM <- sum(JOB == 'Home Maker')
# there are 641 Home Makers
s.J.CLR <- sum(JOB == 'Clerical')
# there are 1271 Clerical
s.J.DOC <- sum(JOB == 'Doctor')
# there are 246 Doctor
s.J.LAW <- sum(JOB == 'Lawyer')
# there are 835 Lawyer
s.J.STU <- sum(JOB == 'Student')
# there are 712 Students
# now get counts of past accidents for each category
J.BC.TPOS <- nrow(subset(hw4.t, JOB == 'z_Blue Collar' & TARGET_FLAG == 1))</pre>
J.PRO.TPOS <- nrow(subset(hw4.t, JOB == 'Professional' & TARGET_FLAG == 1))</pre>
J.MGR.TPOS <- nrow(subset(hw4.t, JOB == 'Manager' & TARGET_FLAG == 1))</pre>
J.HM.TPOS <- nrow(subset(hw4.t, JOB == 'Home Maker' & TARGET_FLAG == 1))</pre>
J.CLR.TPOS <- nrow(subset(hw4.t, JOB == 'Clerical' & TARGET_FLAG == 1))</pre>
J.DOC.TPOS <- nrow(subset(hw4.t, JOB == 'Doctor' & TARGET_FLAG == 1))</pre>
J.LAW.TPOS <- nrow(subset(hw4.t, JOB == 'Lawyer' & TARGET_FLAG == 1))</pre>
J.STU.TPOS <- nrow(subset(hw4.t, JOB == 'Student' & TARGET_FLAG == 1))</pre>
```

```
# get ratios for each category
J.BC.InAcc <- J.BC.TPOS / s.J.BC
J.PRO.InAcc <- J.PRO.TPOS / s.J.PRO
J.MGR.InAcc <- J.MGR.TPOS / s.J.MGR</pre>
J.HM.InAcc <- J.HM.TPOS / s.J.HM
J.CLR.InAcc <- J.CLR.TPOS / s.J.CLR</pre>
J.DOC.InAcc <- J.DOC.TPOS / s.J.DOC
J.LAW.InAcc <- J.LAW.TPOS / s.J.LAW
J.STU.InAcc <- J.STU.TPOS / s.J.STU
rel_percs <- c(J.BC.InAcc, J.PRO.InAcc, J.MGR.InAcc, J.HM.InAcc, J.CLR.InAcc, J.DOC.InAcc,
               J.LAW.InAcc, J.STU.InAcc)
mp <- barplot(rel_percs, names.arg = c('Blue Collar.', 'Professional', 'Manager', 'Home Maker', 'Cleric</pre>
          main = ('Proportions w/ Past Accidents'), ylim = c(0, 1), col = 'yellow', las=2,
          xlim=c(0,8), width=c(1,1), cex.main=.75, cex.lab=.75, cex.axis=0.75, cex.names=.75, las=2)
# write the percentage values above the individual bars in the plot
text(mp, rel_percs, labels = format(round(rel_percs, 3), 4),
     pos = 3, cex = .6)
                         _____
boxplot(TRAVTIME ~ TARGET_FLAG, ylab="TRAVTIME",
        main="Was In a Car Crash? (1 = YES, 0 = NO): TRAVTIME", col = "yellow",
        xlim=c(0,3), width=c(1,1), cex.main=.75, cex.lab=.75, cex.axis=0.75 )
# CATEGORICAL: CAR_USE
# how many CAR_USE == Private??
s.CAR_USE <- sum(CAR_USE == 'Private')
# there are 5132 Private cars
CAR_USE.P.TPOS <- nrow(subset(hw4.t, CAR_USE == 'Private' & TARGET_FLAG == 1))</pre>
CAR USE.C.TPOS <- nrow(subset(hw4.t, CAR USE == 'Commercial' & TARGET FLAG == 1))
# get ratios
# THIS IS the proportion of private cars that had car accidents ->
# Private car is 0.2155 correlated with TARGET_FLAG
CU.P.InAcc <- CAR_USE.P.TPOS / s.CAR_USE
# now get proportion of commercial vehicles involved in accidents
CU.C.InAcc <- CAR_USE.C.TPOS / (nrow(hw4.t) - s.CAR_USE)
rel_percs <- c(CU.P.InAcc, CU.C.InAcc )</pre>
mp <- barplot(rel_percs, names.arg = c('CAR_USE = Private', 'CAR_USE = Commercial'),</pre>
          main = ('Proportions w/ Past Accidents'), ylim = c(0, 1), col = 'yellow',
          xlim=c(0,4), width=c(2,2), cex.main=.75, cex.lab=.75, cex.axis=0.75, cex.names=.75)
```

```
# write the percentage values above the individual bars in the plot
text(mp, rel percs, labels = format(round(rel percs, 3), 4),
    pos = 3, cex = .6
boxplot(BLUEBOOK ~ TARGET_FLAG, ylab="BLUEBOOK",
       main="Was In a Car Crash? (1 = YES, 0 = NO): BLUEBOOK", col = "yellow",
       xlim=c(0,3), width=c(1,1), cex.main=.75, cex.lab=.75, cex.axis=0.75)
boxplot(TIF ~ TARGET_FLAG, ylab="TIF",
       main="Was In a Car Crash? (1 = YES, 0 = NO): TIF", col = "yellow",
       xlim=c(0,3), width=c(1,1), cex.main=.75, cex.lab=.75, cex.axis=0.75)
# ------
# CATEGORICAL: CAR TYPE
# how many CAR_TYPE for each category?
s.CT.Mini <- sum(CAR TYPE == 'Minivan')
# there are 2145 Minivans
s.CT.SUV <- sum(CAR_TYPE == 'z_SUV')
# there are 2294 SUV's
s.CT.SC <- sum(CAR_TYPE == 'Sports Car')
# there are 907 Sports Cars
s.CT.Van <- sum(CAR_TYPE == 'Van')
# there are 750 Vans
s.CT.PT <- sum(CAR TYPE == 'Panel Truck')
# there are 676 Panel Trucks
s.CT.PU <- sum(CAR TYPE == 'Pickup')
# there are 1389 Pickups
# now get counts of past accidents for each category
CT.Mini.TPOS <- nrow(subset(hw4.t, CAR_TYPE == 'Minivan' & TARGET_FLAG == 1))
CT.SUV.TPOS <- nrow(subset(hw4.t, CAR_TYPE == 'z_SUV' & TARGET_FLAG == 1))
CT.SC.TPOS <- nrow(subset(hw4.t, CAR_TYPE == 'Sports Car' & TARGET_FLAG == 1))
CT.Van.TPOS <- nrow(subset(hw4.t, CAR_TYPE == 'Van' & TARGET_FLAG == 1))
CT.PT.TPOS <- nrow(subset(hw4.t, CAR_TYPE == 'Panel Truck' & TARGET_FLAG == 1))
CT.PU.TPOS <- nrow(subset(hw4.t, CAR_TYPE == 'Pickup' & TARGET_FLAG == 1))
# get ratios for each category
CT.Mini.InAcc <- CT.Mini.TPOS / s.CT.Mini
CT.SUV.InAcc <- CT.SUV.TPOS / s.CT.SUV
CT.SC.InAcc <- CT.SC.TPOS / s.CT.SC
```

```
CT.Van.InAcc <- CT.Van.TPOS / s.CT.Van
CT.PT.InAcc <- CT.PT.TPOS / s.CT.PT
CT.PU.InAcc <- CT.PU.TPOS / s.CT.PU
rel_percs <- c(CT.Mini.InAcc, CT.SUV.InAcc, CT.SC.InAcc, CT.Van.InAcc, CT.PT.InAcc, CT.PU.InAcc)
mp <- barplot(rel_percs, names.arg = c('Minivan', 'SUV', 'Sports Car', 'Van', 'Panel Truck', 'Pickup'),</pre>
          main = ('Proportions w/ Past Accidents'), ylim = c(0, 1), col = 'yellow',
          xlim=c(0,8), width=c(1,1), cex.main=.75, cex.lab=.75, cex.axis=0.75, cex.names=.75, las=2)
# write the percentage values above the individual bars in the plot
text(mp, rel_percs, labels = format(round(rel_percs, 3), 4),
     pos = 3, cex = .6)
# CATEGORICAL: RED_CAR
# how many RED_CAR == yes??
s.RED_CAR <- sum(RED_CAR == 'yes')
# there are 2378 red cars
RED CAR.Y.TPOS <- nrow(subset(hw4.t, RED CAR == 'yes' & TARGET FLAG == 1))
RED_CAR.N.TPOS <- nrow(subset(hw4.t, RED_CAR == 'no' & TARGET_FLAG == 1))
# get ratios
# THIS IS the proportion of red cars that had car accidents ->
# red car is 0.259 correlated with TARGET_FLAG
RC.Y.InAcc <- RED_CAR.Y.TPOS / s.RED_CAR
# now get proportion of non-red cars involved in accidents
# 0.26.5779
RC.N.InAcc <- RED_CAR.N.TPOS / (nrow(hw4.t) - s.RED_CAR)
rel_percs <- c(RC.N.InAcc, RC.Y.InAcc )</pre>
mp <- barplot(rel_percs, names.arg = c('RED_CAR = no', 'RED_CAR = yes'),</pre>
          main = ('Proportions w/ Past Accidents'), ylim = c(0, 1), col = 'yellow',
          xlim=c(0,4), width=c(2,2), cex.main=.75, cex.lab=.75, cex.axis=0.75, cex.names=.75)
# write the percentage values above the individual bars in the plot
text(mp, rel_percs, labels = format(round(rel_percs, 3), 4),
    pos = 3, cex = .6)
par(mfrow=c(3,3), oma=c(1,1,1,1), mar=c(3,3,3,3))
boxplot(OLDCLAIM ~ TARGET_FLAG, ylab="OLDCLAIM",
        main="Was In a Car Crash? (1 = YES, 0 = NO): OLDCLAIM", col = "yellow",
        xlim=c(0,3), width=c(1,1), cex.main=.75, cex.lab=.75, cex.axis=0.75)
boxplot(CLM_FREQ ~ TARGET_FLAG, ylab="CLM_FREQ",
```

```
main="Was In a Car Crash? (1 = YES, 0 = NO): CLAIM_FREQ", col = "yellow",
        xlim=c(0,3), width=c(1,1), cex.main=.75, cex.lab=.75, cex.axis=0.75)
# CATEGORICAL: REVOKED
# how many REVOKED == yes??
s.REV <- sum(REVOKED == 'Yes')
# there are 1000 revoked's
REV.Y.TPOS <- nrow(subset(hw4.t, REVOKED == 'Yes' & TARGET_FLAG == 1))
REV.N.TPOS <- nrow(subset(hw4.t, REVOKED == 'No' & TARGET_FLAG == 1))
# get ratios
# THIS IS the proportion of REVOKED's that had car accidents ->
# REVOKED is 0.443 correlated with TARGET_FLAG
RV.Y.InAcc <- REV.Y.TPOS / s.REV
# now get proportion of non-REVOKED's involved in accidents
# 0.23879
RV.N.InAcc <- REV.N.TPOS / (nrow(hw4.t) - s.REV)
rel_percs <- c(RV.N.InAcc, RV.Y.InAcc )</pre>
mp <- barplot(rel_percs, names.arg = c('REVOKED = No', 'REVOKED = Yes'),</pre>
          main = ('Proportions w/ Past Accidents'), ylim = c(0, 1), col = 'yellow',
          xlim=c(0,4), width=c(2,2), cex.main=.75, cex.lab=.75, cex.axis=0.75, cex.names=.75)
# write the percentage values above the individual bars in the plot
text(mp, rel_percs, labels = format(round(rel_percs, 3), 4),
    pos = 3, cex = .6)
boxplot(MVR_PTS ~ TARGET_FLAG, ylab="MVR_PTS",
        main="Was In a Car Crash? (1 = YES, 0 = NO): MVR_PTS", col = "yellow",
        xlim=c(0,3), width=c(1,1), cex.main=.75, cex.lab=.75, cex.axis=0.75)
boxplot(CAR_AGE ~ TARGET_FLAG, ylab="CAR_AGE",
        main="Was In a Car Crash? (1 = YES, 0 = NO): CAR_AGE", col = "yellow",
        xlim=c(0,3), width=c(1,1), cex.main=.75, cex.lab=.75, cex.axis=0.75)
# CATEGORICAL: URBANICITY
# how many URBANICITY == Highly Urban/ Urban??
s.URB <- sum(URBANICITY == 'Highly Urban/ Urban')
# there are 6492 urbans
URB.Y.TPOS <- nrow(subset(hw4.t, URBANICITY == 'Highly Urban' & TARGET_FLAG == 1))</pre>
URB.N.TPOS <- nrow(subset(hw4.t, URBANICITY != 'Highly Urban/ Urban' & TARGET_FLAG == 1))</pre>
# get ratios
# THIS IS the proportion of URBANICITY's that had car accidents ->
```

Histograms

```
attach(hw4.t)
par(mfrow=c(4,5), oma=c(2,2,2,2), mar=c(2,2,2,2))
# Make small histograms for each variable
df <- hw4.t[sapply(hw4.t, is.numeric)]</pre>
#colnames(df)
hist(df$TARGET_FLAG, main="TARGET_FLAG",col="yellow",cex.main=.75)
hist(df$TARGET_AMT, main="TARGET_AMT",col="yellow",cex.main=.75, breaks = 20)
hist(df$KIDSDRIV, main="KIDSDRIV",col="yellow",cex.main=.75)
hist(df$AGE, main="AGE",col="yellow",cex.main=.75)
hist(df$HOMEKIDS, main="HOMEKIDS",col="yellow",cex.main=.75)
hist(df$YOJ, main="YOJ",col="yellow",cex.main=.75)
hist(df$INCOME, main="INCOME",col="yellow",cex.main=.75, breaks = 20)
hist(df$HOME_VAL, main="HOME_VAL",col="yellow",cex.main=.75, breaks = 20)
hist(df$TRAVTIME, main="TRAVTIME",col="yellow",cex.main=.75)
hist(df$BLUEB00K, main="BLUEB00K",col="yellow",cex.main=.75, breaks = 20)
hist(df$TIF, main="TIF",col="yellow",cex.main=.75)
hist(df$OLDCLAIM, main="OLDCLAIM",col="yellow",cex.main=.75, breaks = 20)
hist(df$CLM_FREQ, main="CLM_FREQ",col="yellow",cex.main=.75)
hist(df$MVR_PTS, main="MVR_PTS",col="yellow",cex.main=.75)
hist(df$CAR_AGE, main="CAR_AGE",col="yellow",cex.main=.75)
hist(df$NEW_CAR, main="NEW_CAR",col="yellow",cex.main=.75)
hist(df$H_RENTER, main="H_RENTER",col="yellow",cex.main=.75)
```

53

Part 2. Data Preparation

```
library(plyr)
library(pander)
library(knitr)

hw4 <- read.csv("https://raw.githubusercontent.com/jtopor/CUNY-MSDA-621/master/HW-4/insurance_training_
hw4$PARENT1 <- factor(hw4$PARENT1)
hw4$MSTATUS <- factor(hw4$MSTATUS)
hw4$SEX <- factor(hw4$SEX)
hw4$EDUCATION <- factor(hw4$EDUCATION)
hw4$JOB <- factor(hw4$JOB)
hw4$CAR_USE <- factor(hw4$CAR_USE)
hw4$CAR_TYPE <- factor(hw4$CAR_TYPE)
hw4$RED_CAR <- factor(hw4$RED_CAR)
hw4$REVOKED <- factor(hw4$RED_CAR)
hw4$REVOKED <- factor(hw4$REVOKED)
hw4$REVOKED <- factor(hw4$REVOKED)</pre>
```

convert INCOME, HOME_VAL, BLUEBOOK, OLDCLAIM to integers

```
# remove $ signs from variables
hw4$INCOME <- as.numeric(gsub("[,$]", "", hw4$INCOME))
hw4$HOME_VAL <- as.numeric(gsub("[,$]", "", hw4$HOME_VAL))
hw4$BLUEBOOK <- as.numeric(gsub("[,$]", "", hw4$BLUEBOOK))
hw4$OLDCLAIM <- as.numeric(gsub("[,$]", "", hw4$OLDCLAIM))

hw4$INCOME <- as.numeric(as.character(hw4$INCOME))
hw4$HOME_VAL <- as.numeric(as.character(hw4$HOME_VAL))
hw4$BLUEBOOK <- as.numeric(as.character(hw4$BLUEBOOK))
hw4$OLDCLAIM <- as.numeric(as.character(hw4$BLUEBOOK))</pre>
```

Impute function

```
impute <- function (a, a.impute){
  ifelse (is.na(a), a.impute,a)
}
hw4.1 <- hw4[,-c(1:3)]</pre>
```

Step 1: Imputation for age

Impute age with median since there are only 6 missing

```
hw4.1$AGE[is.na(hw4.1$AGE)] <- median(hw4.1$AGE, na.rm=TRUE)
```

Step 2: Imputation for home value

For the home values with NA it makes sense to impute them as 0 and assume they are renters since there are already a large percentage of renters.

```
hw4.1$HOME_VAL[is.na(hw4.1$HOME_VAL)] <- 0
```

Step 3: Imputation for Job

For the job types that are blank we will create a new value of "None Specified"

```
hw4.1$JOB <- as.character(hw4.1$JOB)
d <- ifelse(nchar(hw4.1$JOB)==0, "None Specified", hw4.1$JOB)
hw4.1$JOB <- as.factor(d)
#summary(hw4.1$JOB)
```

Step 4: Imputation for car age

#summary(car.age8)

Build a linear model to impute car age using subtraction. Also take absolute value of the negative value assuming typo (only 1 instance)

```
car.age <- lm(data=hw4.1, CAR_AGE~.)</pre>
#summary(car.age)
#remove single parent, old claim, claim freq and urban
car.age1 <- lm(data=hw4.1, CAR AGE~. - PARENT1 - OLDCLAIM - CLM FREQ - URBANICITY)
#summary(car.age1)
#remove job
car.age2 <- lm(data=hw4.1, CAR_AGE~. - PARENT1 - OLDCLAIM - CLM_FREQ - URBANICITY - JOB)
#summary(car.age2)
#remove car use
car.age3 <- lm(data=hw4.1, CAR_AGE~. - PARENT1 - OLDCLAIM - CLM_FREQ - URBANICITY - JOB - CAR_USE)
#summary(car.age3)
#remove kids at home
car.age4 <- lm(data=hw4.1, CAR_AGE~. - PARENT1 - OLDCLAIM - CLM_FREQ - URBANICITY - JOB - CAR_USE - HOM
# summary(car.age4)
#remove travel time
car.age5 <- lm(data=hw4.1, CAR_AGE~. - PARENT1 - OLDCLAIM - CLM_FREQ - URBANICITY - JOB - CAR_USE - HOM
#summary(car.age5)
#remove marital status
car.age6 <- lm(data=hw4.1, CAR_AGE~. - PARENT1 - OLDCLAIM - CLM_FREQ - URBANICITY - JOB - CAR_USE - HOM
#summary(car.age6)
#remove Years on JOb
car.age7 <- lm(data=hw4.1, CAR_AGE~. - PARENT1 - OLDCLAIM - CLM_FREQ - URBANICITY - JOB - CAR_USE - HOM
#summary(car.age7)
#remove kids driving
```

car.age8 <- lm(data=hw4.1, CAR AGE~. - PARENT1 - OLDCLAIM - CLM FREQ - URBANICITY - JOB - CAR USE - HOM

```
#remove car type
car.age9 <- lm(data=hw4.1, CAR_AGE~. - PARENT1 - OLDCLAIM - CLM_FREQ - URBANICITY - JOB - CAR_USE - HOM
#summary(car.age9)
#remove blue book
car.age10 <- lm(data=hw4.1, CAR_AGE~. - PARENT1 - OLDCLAIM - CLM_FREQ - URBANICITY - JOB - CAR_USE - HO
#summary(car.age10)
#remove age
car.age11 <- lm(data=hw4.1, CAR_AGE~. - PARENT1 - OLDCLAIM - CLM_FREQ - URBANICITY - JOB - CAR_USE - HO
#summary(car.age11)
#remove revoked
car.age12 <- lm(data=hw4.1, CAR_AGE~. - PARENT1 - OLDCLAIM - CLM_FREQ - URBANICITY - JOB - CAR_USE - HO
#summary(car.age12)
#remove MVR points
car.age13 <- lm(data=hw4.1, CAR_AGE~. - PARENT1 - OLDCLAIM - CLM_FREQ - URBANICITY - JOB - CAR_USE - HO
#summary(car.age13)
#remove red car
car.age14 <- lm(data=hw4.1, CAR_AGE~. - PARENT1 - OLDCLAIM - CLM_FREQ - URBANICITY - JOB - CAR_USE - HO
#summary(car.age14)
#remove sex
car.age15 <- lm(data=hw4.1, CAR AGE~. - PARENT1 - OLDCLAIM - CLM FREQ - URBANICITY - JOB - CAR USE - HO
#summary(car.age15)
#remove TIF
car.age16 <- lm(data=hw4.1, CAR_AGE~. - PARENT1 - OLDCLAIM - CLM_FREQ - URBANICITY - JOB - CAR_USE - HO
#summary(car.age16)
#remove Income
car.age17 <- lm(data=hw4.1, CAR_AGE~. - PARENT1 - OLDCLAIM - CLM_FREQ - URBANICITY - JOB - CAR_USE - HO
#summary(car.age17)
# plot(car.age17$residuals)
pred.carage <- round(predict(car.age17, hw4.1))</pre>
carage.Imp <- impute(hw4$CAR_AGE, pred.carage)</pre>
hw4.1$CAR_AGE <- carage.Imp
 #assume negative number is a typo so take absolute value
hw4.1$CAR_AGE <- abs(hw4.1$CAR_AGE)
```

Step 5: Impute for Income (Part 1)

Impute missing values for Income except for the 29 values that have both YOJ and income missing. THis process is justified in that these values do show YOJ values.

```
Inc <- lm(data=hw4.1, INCOME~.)
#summary(Inc)</pre>
```

```
#eliminate car type
Inc1 <- lm(data=hw4.1, INCOME~.-CAR_TYPE)</pre>
#summary(Inc1)
#eliminate revoked
Inc2 <- lm(data=hw4.1, INCOME~. - CAR_TYPE - REVOKED)</pre>
#summary(Inc2)
#eliminate red car
Inc3 <- lm(data=hw4.1, INCOME~. - CAR_TYPE - REVOKED - RED_CAR)</pre>
#summary(Inc3)
#eliminate old claim
Inc4 <- lm(data=hw4.1, INCOME~. - CAR_TYPE - REVOKED - RED_CAR - OLDCLAIM)</pre>
#summary(Inc4)
#eliminate car use
Inc5 <- lm(data=hw4.1, INCOME~. - CAR_TYPE - REVOKED - RED_CAR - OLDCLAIM - CAR_USE)</pre>
#summary(Inc5)
#eliminate home kids
Inc6 <- lm(data=hw4.1, INCOME~. - CAR_TYPE - REVOKED - RED_CAR - OLDCLAIM - CAR_USE - HOMEKIDS)
#summary(Inc6)
#eliminate claim freq
Inc7 <- lm(data=hw4.1, INCOME~. - CAR_TYPE - REVOKED - RED_CAR - OLDCLAIM - CAR_USE - HOMEKIDS - CLM_FR
#summary(Inc7)
#eliminate TIF
Inc8 <- lm(data=hw4.1, INCOME~. - CAR_TYPE - REVOKED - RED_CAR - OLDCLAIM - CAR_USE - HOMEKIDS - CLM_FR
#summary(Inc8)
#eliminate travel time
Inc9 <- lm(data=hw4.1, INCOME~. - CAR_TYPE - REVOKED - RED_CAR - OLDCLAIM - CAR_USE - HOMEKIDS - CLM_FR
#summary(Inc9)
#eliminate urban city
Inc10 <- lm(data=hw4.1, INCOME~. - CAR TYPE - REVOKED - RED CAR - OLDCLAIM - CAR USE - HOMEKIDS - CLM F.
#summary(Inc10)
#eliminate sex
Inc11 <- lm(data=hw4.1, INCOME~. - CAR_TYPE - REVOKED - RED_CAR - OLDCLAIM - CAR_USE - HOMEKIDS - CLM_F
#summary(Inc11)
#eliminate kids drive
Inc12 <- lm(data=hw4.1, INCOME~. - CAR_TYPE - REVOKED - RED_CAR - OLDCLAIM - CAR_USE - HOMEKIDS - CLM_
#summary(Inc12)
#eliminate car age
Inc13 <- lm(data=hw4.1, INCOME~. - CAR_TYPE - REVOKED - RED_CAR - OLDCLAIM - CAR_USE - HOMEKIDS - CLM_
#summary(Inc13)
#All p values look good
```

```
# plot(Inc13$residuals)
pred.inc <- round(predict(Inc13, hw4.1))

Inc.Imp <- impute(hw4$INCOME, pred.inc)
hw4.1$INCOME <- Inc.Imp

#fix negative income imputed
hw4.1$INCOME[which(hw4.1$INCOME<0)] <- 0</pre>
```

Step 6: Impute YOJ (Part 1)

#eliminate old claim

Impute values for all values except for the 29 that have blanks for Income

```
yoj <- lm(data=hw4.1, YOJ~.)</pre>
#summary(yoj)
#eliminate car type, car age, red car
yoj1 <- lm(data=hw4.1, YOJ~.- CAR_TYPE - RED_CAR - CAR_AGE)
#summary(yoj1)
#eliminate TIF
yoj2 <- lm(data=hw4.1, YOJ~.- CAR_TYPE - RED_CAR - CAR_AGE - TIF)
#summary(yoj2)
#eliminate home value
yoj3 <- lm(data=hw4.1, YOJ~.- CAR_TYPE - RED_CAR - CAR_AGE - TIF - HOME_VAL)
#summary(yoj3)
#eliminate travel time
yoj4 <- lm(data=hw4.1, YOJ~.- CAR_TYPE - RED_CAR - CAR_AGE - TIF - HOME_VAL - TRAVTIME)
#summary(yoj4)
#eliminate revoked
yoj5 <- lm(data=hw4.1, YOJ~.- CAR_TYPE - RED_CAR - CAR_AGE - TIF - HOME_VAL - TRAVTIME - REVOKED)
#summary(yoj5)
#eliminate claim freq
yoj6 <- lm(data=hw4.1, YOJ~.- CAR_TYPE - RED_CAR - CAR_AGE - TIF - HOME_VAL - TRAVTIME - REVOKED - CLM_
#summary(yoj6)
#eliminate urban
yoj7 <- lm(data=hw4.1, YOJ~.- CAR_TYPE - RED_CAR - CAR_AGE - TIF - HOME_VAL - TRAVTIME - REVOKED - CLM_
#summary(yoj7)
#eliminate bluebook
yoj8 <- lm(data=hw4.1, YOJ~.- CAR_TYPE - RED_CAR - CAR_AGE - TIF - HOME_VAL - TRAVTIME - REVOKED - CLM_
#summary(yoj8)
```

yoj9 <- lm(data=hw4.1, YOJ~.- CAR_TYPE - RED_CAR - CAR_AGE - TIF - HOME_VAL - TRAVTIME - REVOKED - CLM_

```
#summary(yoj9)
#eliminate single parent
yoj10 <- lm(data=hw4.1, YOJ~.- CAR_TYPE - RED_CAR - CAR_AGE - TIF - HOME_VAL - TRAVTIME - REVOKED - CLM
#summary(yoj10)

#eliminate sex
yoj11 <- lm(data=hw4.1, YOJ~.- CAR_TYPE - RED_CAR - CAR_AGE - TIF - HOME_VAL - TRAVTIME - REVOKED - CLM
#summary(yoj11)

#eliminate car use
yoj12 <- lm(data=hw4.1, YOJ~.- CAR_TYPE - RED_CAR - CAR_AGE - TIF - HOME_VAL - TRAVTIME - REVOKED - CLM
#summary(yoj12)

# plot(yoj12$residuals)
pred.yoj <- round(predict(yoj12, hw4.1))
yoj.imp <- impute(hw4$YOJ, pred.yoj)
hw4.1$YOJ <- yoj.imp</pre>
```

Step 7: Impute for YOJ and Income when both are missing.

Since both YOJ and Income are blank it is reasonable to assume that the 29 rows with both blank have no income. Fix remaining 29 rows with NA for both Income and YOJ with 0

```
hw4.1$INCOME[is.na(hw4.1$INCOME)] <- 0

hw4.1$YOJ[is.na(hw4.1$YOJ)] <- 0

# hw4.1 is missing first 3 columns of info
hw4.t <- cbind(hw4[,c(1:3)], hw4.1)

hw4 <- hw4.t
```

Create NEW_CAR variable

```
# build NEW_CAR column
# first check count of CAR_AGE <= 1 entries: there are 1937
sum(hw4$CAR_AGE <= 1)
hw4.s$NEW_CAR <- 0
hw4.s$NEW_CAR[hw4$CAR_AGE <= 1] <- 1
# make sure new column matches original
sum(hw4.s$NEW_CAR == 1)</pre>
```

Create H_RENTER variable

```
# build H_RENTER column
# first check count of HOME_VAL == 0 entries: there are 2758
sum(hw4$HOME_VAL == 0)
hw4.s$H_RENTER <- 0
hw4.s$H_RENTER[hw4$HOME_VAL == 0] <- 1

# make sure new column matches original count
sum(hw4.s$H_RENTER == 1)</pre>
```

Convert HOMEKIDS + KIDSDRIV to binary

```
hw4.s$HOMEKIDS[hw4$HOMEKIDS > 0] <- 1
hw4.s$KIDSDRIV[hw4$KIDSDRIV > 0] <- 1
```

Add a JOB_COLOR variable to the data set: white =

```
b<- as.character(hw4.s$JOB)
b[which(b=="Doctor")] <- "White"
b[which(b=="Clerical")] <- "White"
b[which(b=="Lawyer")] <- "White"
b[which(b=="Manager")] <- "White"
b[which(b=="Professional")] <- "White"
b[which(b=="None Specified")] <- "White"
b[which(b=="Student")] <- "Blue"
b[which(b=="Home Maker")] <- "Blue"
b[which(b=="z_Blue Collar")] <- "Blue"
b <- as.factor(b)
hw4.s$JOB_COLOR <- b</pre>
```

Now write updated data set to a file

```
write.csv(hw4.s, file = "C:/SQLData/621-HW4-XFORMED-DATA.csv", row.names = FALSE)
```

Part 3. Build Models

Binary Model 1

```
# library(bestglm)
library(alr3)
library(car)
library(pROC)
options(scipen=999)
hw4 <- read.csv("https://raw.githubusercontent.com/jtopor/CUNY-MSDA-621/master/HW-4/621-HW4-XFORMED-DAT.</pre>
```

Convert categoricals with strings to factors

```
hw4$PARENT1 <- factor(hw4$PARENT1)
hw4$MSTATUS <- factor(hw4$MSTATUS)
hw4$SEX <- factor(hw4$SEX)
hw4$EDUCATION <- factor(hw4$EDUCATION)
hw4$JOB <- factor(hw4$JOB)
hw4$CAR_USE <- factor(hw4$CAR_USE)
hw4$CAR_TYPE <- factor(hw4$CAR_TYPE)
hw4$RED_CAR <- factor(hw4$RED_CAR)
hw4$REVOKED <- factor(hw4$REVOKED)
hw4$URBANICITY <- factor(hw4$RIBANICITY)
hw4$KIDSDRIV <- factor(hw4$KIDSDRIV)
hw4$HOMEKIDS <- factor(hw4$HOMEKIDS)
hw4$H_RENTER <- factor(hw4$HENTER)
hw4$NEW_CAR <- factor(hw4$NEW_CAR)
hw4$JOB_COLOR <- factor(hw4$JOB_COLOR)
```

Try using step() function

Now check the marginal model plots

```
# par(mfrow=c(2,4))
mmps(m1.bic,layout=c(2,4),key=TRUE)
```

Skew shown for INCOME, TRAVTIME, BLUEBOOK, CLM_FREQ, MVR_PTS. Take log of all and refit

Check results for statistical significance and refit - results say remove BLUEBOOK

```
m3.bic <- glm(formula = TARGET FLAG ~ KIDSDRIV + HOMEKIDS + INCOME + log(INCOME + 1) + MSTATUS +
   EDUCATION + TRAVTIME + log(TRAVTIME) + CAR USE + log(BLUEBOOK) + TIF + CAR TYPE +
   OLDCLAIM + CLM_FREQ + log(CLM_FREQ + 1) + REVOKED + MVR_PTS + log(MVR_PTS + 1) + URBANICITY + H_REN
   family = binomial(link = "logit"), data = hw4)
summary(m3.bic)
Remove log(MVR PTS)
m4.bic <- glm(formula = TARGET_FLAG ~ KIDSDRIV + HOMEKIDS + INCOME + log(INCOME + 1) + MSTATUS +
    EDUCATION + TRAVTIME + log(TRAVTIME) + CAR_USE + log(BLUEBOOK) + TIF + CAR_TYPE +
   OLDCLAIM + CLM_FREQ + log(CLM_FREQ + 1) + REVOKED + MVR_PTS + URBANICITY + H_RENTER,
   family = binomial(link = "logit"), data = hw4)
summary(m4.bic)
remove TRAVTIME
m5.bic <- glm(formula = TARGET_FLAG ~ KIDSDRIV + HOMEKIDS + INCOME + log(INCOME + 1) + MSTATUS +
   EDUCATION + log(TRAVTIME) + CAR_USE + log(BLUEBOOK) + TIF + CAR_TYPE +
    OLDCLAIM + CLM FREQ + log(CLM FREQ + 1) + REVOKED + MVR PTS + URBANICITY + H RENTER,
   family = binomial(link = "logit"), data = hw4)
summary(m5.bic)
STOP
Check marginal model plots
# par(mfrow=c(2,4))
mmps(m5.bic,layout=c(3,4),key=TRUE)
Add back log(MVR_PTS), remove MVR_PTS and INCOME
m6.bic <- glm(formula = TARGET_FLAG ~ KIDSDRIV + HOMEKIDS + log(INCOME + 1) + MSTATUS +
   EDUCATION + log(TRAVTIME) + CAR USE + log(BLUEBOOK) + TIF + CAR TYPE +
   OLDCLAIM + CLM_FREQ + log(CLM_FREQ + 1) + REVOKED + log(MVR_PTS + 1) + URBANICITY + H_RENTER,
   family = binomial(link = "logit"), data = hw4)
summary(m6.bic)
Try removing CLM FREQ to check effect on AIC: slight decrease in AIC but mmps deteriorate so DON'T
DO THIS!!!
m7.bic <- glm(formula = TARGET_FLAG ~ KIDSDRIV + HOMEKIDS + log(INCOME + 1) + MSTATUS +
   EDUCATION + log(TRAVTIME) + CAR_USE + log(BLUEBOOK) + TIF + CAR_TYPE +
    OLDCLAIM + log(CLM_FREQ + 1) + REVOKED + log(MVR_PTS + 1) + URBANICITY + H_RENTER,
   family = binomial(link = "logit"), data = hw4)
summary(m7.bic)
```

Check marginal model plots

```
# par(mfrow=c(2,4))
mmps(m6.bic,layout=c(3,4),key=TRUE)
```

STOP.

Copy m6.bic to m1 for outlier tests

```
m1 <- m6.bic
```

Now test model: First load functions for metrics

```
# Load R functions for model statistics
accuracy <- function(actual, predicted){
# Equation to be modeled: (TP + TN) / (TP + FP + TN + FN)

# derive confusion matrix cell values
c.mat <- data.frame(table(actual, predicted))

# extract all four confusion matrix values from the data frame
TN <- as.numeric(as.character(c.mat[1,3]))
FN <- as.numeric(as.character(c.mat[2,3]))
FP <- as.numeric(as.character(c.mat[3,3]))
TP <- as.numeric(as.character(c.mat[4,3]))

# now calculate the required metric
return( (TP + TN) / (TP + FP + TN + FN) )
}</pre>
```

```
classif.err.rate <- function(actual, predicted) {
    # Equation to be modeled: (FP + FN) / (TP + FP + TN + FN)

# derive confusion matrix cell values
    c.mat <- data.frame(table(actual, predicted))

# extract all four confusion matrix values from the data frame

TN <- as.numeric(as.character(c.mat[1,3]))
    FN <- as.numeric(as.character(c.mat[2,3]))
    FP <- as.numeric(as.character(c.mat[3,3]))
    TP <- as.numeric(as.character(c.mat[4,3]))

# now calculate the required metric
    return( (FP + FN) / (TP + FP + TN + FN) )
}</pre>
```

```
precision <- function(actual, predicted) {
    # Precision : the proportion of positive cases that were correctly identified.</pre>
```

```
# Equation to be modeled: TP / (TP + FP)
  # derive confusion matrix cell values
  c.mat <- data.frame(table(actual, predicted))</pre>
  # extract all four confusion matrix values from the data frame
  TN <- as.numeric(as.character(c.mat[1,3]))</pre>
  FN <- as.numeric(as.character(c.mat[2,3]))</pre>
  FP <- as.numeric(as.character(c.mat[3,3]))</pre>
  TP <- as.numeric(as.character(c.mat[4,3]))</pre>
  # now calculate the required metric
  return( TP / (TP + FP) )
sensitivity <- function(actual, predicted) {</pre>
  # Equation to be modeled: TP / (TP + FN)
  # derive confusion matrix cell values
  c.mat <- data.frame(table(actual, predicted))</pre>
  # extract all four confusion matrix values from the data frame
  TN <- as.numeric(as.character(c.mat[1,3]))</pre>
  FN <- as.numeric(as.character(c.mat[2,3]))</pre>
  FP <- as.numeric(as.character(c.mat[3,3]))</pre>
  TP <- as.numeric(as.character(c.mat[4,3]))</pre>
  # now calculate the required metric
  return( TP / (TP + FN) )
}
specificity <- function(actual, predicted) {</pre>
  # Equation to be modeled: TN / (TN + FP)
  # derive confusion matrix cell values
  c.mat <- data.frame(table(actual, predicted))</pre>
  # extract all four confusion matrix values from the data frame
  TN <- as.numeric(as.character(c.mat[1,3]))</pre>
  FN <- as.numeric(as.character(c.mat[2,3]))</pre>
  FP <- as.numeric(as.character(c.mat[3,3]))</pre>
  TP <- as.numeric(as.character(c.mat[4,3]))</pre>
  # now calculate the required metric
  return( TN / (TN + FP) )
}
F1.Score <- function(actual, predicted) {
  # Equation to be modeled: ( 2 * precision * sensitivity) / (precision + sensitivity)
```

Check for outliers: This MUST be done by hand - the identify function requires that you click on points that are of interest to you so that it can label them. Does not seem possible to use this in a writeup.

Now run metrics

```
# Coefficient Interpretation
# Logit model average marginal effects - use it to generate interpretable versions of coefficients
LogitScalar <- mean(dlogis(predict(m1, type = "link")))</pre>
LogitScalar * coef(m1)
# Logit model predicted probabilities - yields likelihood that each eval item is '+'
predprob.crash<- round(predict(m1, type="response"), 2)</pre>
summary(predprob.crash)
# Percent correctly predicted values
# NOTE: Need to create variable 'Y' for this to work - set it to response variable
Y <- hw4$TARGET_FLAG
pred.crash <- round(fitted(m1))</pre>
table(true = Y, pred = pred.crash)
# t.r <- data.frame(table(true = Y, pred = pred.crime))
# now use functions built in HW 2 to get required statistics
accuracy(Y, pred.crash)
classif.err.rate(Y, pred.crash)
```

```
precision(Y, pred.crash)
sensitivity(Y, pred.crash)
specificity(Y, pred.crash)
F1.Score(Y, pred.crash)

# get AUC
rocCurve <- roc(response= Y, predictor= pred.crash)
auc(rocCurve)</pre>
```

Binary Model 2

```
library(car)
library(pROC)
hw4t <- read.csv("https://raw.githubusercontent.com/jtopor/CUNY-MSDA-621/master/HW-4/621-HW4-XFORMED-DA
hw4t$PARENT1 <- as.factor(hw4t$PARENT1)</pre>
hw4t$MSTATUS <- as.factor(hw4t$MSTATUS)</pre>
hw4t$SEX <- as.factor(hw4t$SEX)</pre>
hw4t$EDUCATION <- as.factor(hw4t$EDUCATION)</pre>
hw4t$JOB <- as.factor(hw4t$JOB)</pre>
hw4t$CAR USE <- as.factor(hw4t$CAR USE)
hw4t$CAR_TYPE <- as.factor(hw4t$CAR_TYPE)</pre>
hw4t$RED_CAR <- as.factor(hw4t$RED_CAR)
hw4t$REVOKED <- as.factor(hw4t$REVOKED)
hw4t$URBANICITY <- as.factor(hw4t$URBANICITY)</pre>
hw4t$JOB_COLOR <- as.factor(hw4t$JOB_COLOR)</pre>
hw4t$KIDSDRIV <- as.factor(hw4t$KIDSDRIV)</pre>
hw4t$H_RENTER <- as.factor(hw4t$H_RENTER)</pre>
hw4t$NEW_CAR <- as.factor(hw4t$NEW_CAR)</pre>
hw4t$HOMEKIDS <- as.factor(hw4t$HOMEKIDS)
###eliminate variables we agreed to leave out.
hw4t.1 \leftarrow hw4t
#step 1: start to look at all options
mod <- glm(data=hw4t.1, TARGET FLAG~.- INDEX - TARGET AMT - YOJ- HOME VAL - SEX - TRAVTIME - JOB - RED
summary(mod)
#step 2: eliminate CAR_AGE
mod1 <- glm(data=hw4t.1, TARGET_FLAG~. - INDEX - TARGET_AMT - YOJ- HOME_VAL - SEX - TRAVTIME - JOB - RE
summary(mod1)
#step 3: eliminate AGE
mod2 <- glm(data=hw4t.1, TARGET_FLAG~. - INDEX - TARGET_AMT - YOJ- HOME_VAL - SEX - TRAVTIME - JOB - RE
summary(mod2)
#step 4: eliminate new_car
mod3 <- glm(data=hw4t.1, TARGET_FLAG~. - INDEX - TARGET_AMT - YOJ- HOME_VAL - SEX - TRAVTIME - JOB - RE
summary(mod3)
```

```
#step5: eliminate HS education except for Bachelors, Masters and PhD
mod4 <- glm(data=hw4t.1, TARGET_FLAG~KIDSDRIV+ INCOME + PARENT1 + MSTATUS + CAR_USE + BLUEBOOK + TIF +
summary(mod4)
#step6: eliminate old claim
mod5 <- glm(data=hw4t.1, TARGET_FLAG~KIDSDRIV+ INCOME + PARENT1 + MSTATUS + CAR_USE + BLUEBOOK + TIF +
summary(mod5)
#step7 : eliminate single parent
mod6 <- glm(data=hw4t.1, TARGET_FLAG~KIDSDRIV+ INCOME + MSTATUS + CAR_USE + BLUEBOOK + TIF + CAR_TYPE
summary(mod6)
#step8 : eliminate job color
mod7 <- glm(data=hw4t.1, TARGET_FLAG~KIDSDRIV+ INCOME + MSTATUS + CAR_USE + BLUEBOOK + TIF + CAR_TYPE
summary(mod7)
#Step9: create college variable to simplify
b<- as.character(hw4t.1$EDUCATION)
b[which(b=="<High School")] <- "Not College"</pre>
b[which(b=="z_High School")] <- "Not College"</pre>
b[which(b=="Bachelors")] <- "College"</pre>
b[which(b=="Masters")] <- "College"</pre>
b[which(b=="PhD")] <- "College"</pre>
b <- as.factor(b)</pre>
hw4t.1$ED LEVEL <- b
#Step 10: eliminate individual college values in place of ED_LEVEL
mod8 <- glm(data=hw4t.1, TARGET_FLAG~KIDSDRIV+ INCOME + MSTATUS + CAR_USE + BLUEBOOK + TIF + CAR_TYPE
summary(mod8)
#look at mmps to see if there are data issues
mmps(mod8,layout=c(4,4),key=TRUE)
#mmps shows issues with Income, Bluebook, MVR_PTS
#Step 11: Box Cox Transformations
library(car)
library(MASS)
summary(powerTransform(BLUEBOOK~TARGET_FLAG, hw4t.1, family="bcPower"))
boxcox(hw4t.1$BLUEBOOK~hw4t.1$TARGET_FLAG)
#use sqrt for BLUEBOOK
summary(powerTransform(INCOME+1~TARGET_FLAG, hw4t.1, family="bcPower"))
boxcox(hw4t.1$INCOME+1~hw4t.1$TARGET_FLAG)
#use sqrt for INCOME
summary(powerTransform(MVR_PTS +1~TARGET_FLAG, hw4t.1, family="bcPower"))
boxcox(hw4t.1$MVR_PTS + 1 ~hw4t.1$TARGET_FLAG)
#use 1/sqrt for MVR_PTS
#Step12: New model with transformed data
mod9 <- glm(data=hw4t.1, TARGET_FLAG~KIDSDRIV+ sqrt(INCOME) + MSTATUS + CAR_USE + sqrt(BLUEBOOK) + TIF
summary(mod9)
```

```
mmps(mod9,layout=c(4,3),key=TRUE)

#MVR_PTS still looks off, try log instead

#Step13: Log of MVR_PTS
mod10 <- glm(data=hw4t.1, TARGET_FLAG~KIDSDRIV+ sqrt(INCOME) + MSTATUS + CAR_USE + sqrt(BLUEBOOK) + TI
summary(mod10)

mmps(mod10,layout=c(4,3),key=TRUE)</pre>
```

Load functions

```
accuracy <- function(actual, predicted){
    # Equation to be modeled: (TP + TN) / (TP + FP + TN + FN)

# derive confusion matrix cell values
    c.mat <- data.frame(table(actual, predicted))

# extract all four confusion matrix values from the data frame
    TN <- as.numeric(as.character(c.mat[1,3]))
    FN <- as.numeric(as.character(c.mat[2,3]))
    FP <- as.numeric(as.character(c.mat[3,3]))
    TP <- as.numeric(as.character(c.mat[4,3]))

# now calculate the required metric
    return( (TP + TN) / (TP + FP + TN + FN) )
}</pre>
```

```
classif.err.rate <- function(actual, predicted) {
    # Equation to be modeled: (FP + FN) / (TP + FP + TN + FN)

# derive confusion matrix cell values
    c.mat <- data.frame(table(actual, predicted))

# extract all four confusion matrix values from the data frame
TN <- as.numeric(as.character(c.mat[1,3]))
FN <- as.numeric(as.character(c.mat[2,3]))
FP <- as.numeric(as.character(c.mat[3,3]))
TP <- as.numeric(as.character(c.mat[4,3]))

# now calculate the required metric
    return( (FP + FN) / (TP + FP + TN + FN) )
}</pre>
```

```
precision <- function(actual, predicted) {

# Precision : the proportion of positive cases that were correctly identified.</pre>
```

```
# Equation to be modeled: TP / (TP + FP)
  # derive confusion matrix cell values
  c.mat <- data.frame(table(actual, predicted))</pre>
  # extract all four confusion matrix values from the data frame
  TN <- as.numeric(as.character(c.mat[1,3]))</pre>
  FN <- as.numeric(as.character(c.mat[2,3]))</pre>
  FP <- as.numeric(as.character(c.mat[3,3]))</pre>
  TP <- as.numeric(as.character(c.mat[4,3]))</pre>
  # now calculate the required metric
  return( TP / (TP + FP) )
sensitivity <- function(actual, predicted) {</pre>
  # Equation to be modeled: TP / (TP + FN)
  # derive confusion matrix cell values
  c.mat <- data.frame(table(actual, predicted))</pre>
  # extract all four confusion matrix values from the data frame
  TN <- as.numeric(as.character(c.mat[1,3]))</pre>
  FN <- as.numeric(as.character(c.mat[2,3]))</pre>
  FP <- as.numeric(as.character(c.mat[3,3]))</pre>
  TP <- as.numeric(as.character(c.mat[4,3]))</pre>
  # now calculate the required metric
  return( TP / (TP + FN) )
}
specificity <- function(actual, predicted) {</pre>
  # Equation to be modeled: TN / (TN + FP)
  # derive confusion matrix cell values
  c.mat <- data.frame(table(actual, predicted))</pre>
  # extract all four confusion matrix values from the data frame
  TN <- as.numeric(as.character(c.mat[1,3]))</pre>
  FN <- as.numeric(as.character(c.mat[2,3]))</pre>
  FP <- as.numeric(as.character(c.mat[3,3]))</pre>
  TP <- as.numeric(as.character(c.mat[4,3]))</pre>
  # now calculate the required metric
  return( TN / (TN + FP) )
F1.Score <- function(actual, predicted) {
  # Equation to be modeled: ( 2 * precision * sensitivity) / (precision + sensitivity)
```

Check for outliers: This MUST be done by hand - the identify function requires that you click on points that are of interest to you so that it can label them. Does not seem possible to use this in a writeup.

no highly leveraged outliers

Now run metrics

```
# Coefficient Interpretation
m1 <- mod10
# Logit model average marginal effects - use it to generate interpretable versions of coefficients
LogitScalar <- mean(dlogis(predict(m1, type = "link")))
LogitScalar * coef(m1)

# Logit model predicted probabilities - yields likelihood that each eval item is '+'
# predprob.crash<- round(predict(m1, type="response"), 2)
summary(predprob.crash)

# Percent correctly predicted values
# NOTE: Need to create variable 'Y' for this to work - set it to response variable
Y <- hw4t$TARGET_FLAG

pred.crash <- round(fitted(m1))

table(true = Y, pred = pred.crash)

# t.r <- data.frame(table(true = Y, pred = pred.crime))
# t.r</pre>
```

```
# now use functions built in HW 2 to get required statistics
accuracy(Y, pred.crash)
classif.err.rate(Y, pred.crash)
precision(Y, pred.crash)
sensitivity(Y, pred.crash)
specificity(Y, pred.crash)
F1.Score(Y, pred.crash)

# get AUC
rocCurve <- roc(response= Y, predictor= pred.crash)
auc(rocCurve)</pre>
```

Binary Model 3

Load Training Data

```
hw4.t <- read.csv("https://raw.githubusercontent.com/jtopor/CUNY-MSDA-621/master/HW-4/621-HW4-XFORMED-D.
hw4.t0 <-hw4.t
attach(hw4.t)
hw4.t$PARENT1 <- as.factor(hw4.t$PARENT1)
hw4.t$MSTATUS <- as.factor(hw4.t$MSTATUS)</pre>
hw4.t$SEX <- as.factor(hw4.t$SEX)
hw4.t$EDUCATION <- as.factor(hw4.t$EDUCATION)</pre>
hw4.t$JOB <- as.factor(hw4.t$JOB)</pre>
hw4.t$CAR_USE <- as.factor(hw4.t$CAR_USE)</pre>
hw4.t$CAR_TYPE <- as.factor(hw4.t$CAR_TYPE)</pre>
hw4.t$RED_CAR <- as.factor(hw4.t$RED_CAR)
hw4.t$REVOKED <- as.factor(hw4.t$REVOKED)
hw4.t$URBANICITY <- as.factor(hw4.t$URBANICITY)</pre>
hw4.t$HOMEKIDS <- as.factor(hw4.t$HOMEKIDS)
hw4.t$KIDSDRIV <- as.factor(hw4.t$KIDSDRIV)</pre>
hw4.t$H_RENTER <- as.factor(hw4.t$H_RENTER)</pre>
hw4.t$NEW_CAR <- as.factor(hw4.t$NEW_CAR)</pre>
###eliminate variables we agreed to leave out. Eliminated older_car and h.renter because the opposite
###added back in BLUEBOOK & TRAVTIME bc their log transforms help the model
hw4.t \leftarrow hw4.t[,-c(1,3,7,10,12,20,27,29)]
#INDEX, TARGET_AMT, YOJ, HOME_VAL, SEX, RED_CAR, NEW_CAR, JOB_COLOR
# Use forward selection strategy to find model with lowest AIC using PREPPED data set (prepped as above
# iterate through predictors in descending order of correlation with target
# avoid highly collinear predictors with each iteration
m1 <- glm(data = hw4.t, TARGET_FLAG ~ MVR_PTS, family = binomial(link = "logit"))
summary(m1)
# added log(MVR_PTS + 1) due to high deviance of MVR_PTS
```

```
m2 <- glm(data = hw4.t, TARGET_FLAG ~ log(MVR_PTS + 1) + MVR_PTS, family = binomial(link = "logit"))
summary(m2)
# threw out log(MVR_PTS + 1) due to high p-value, threw out MVR_PTS due to high deviance
m3 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ, family = binomial(link = "logit"))
summary(m3)
# added log(CLM FREQ + 1) due to high deviance of MVR PTS
m4 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1), family = binomial(link = "logit"))
summary(m4)
# added OLDCLAIM
m5 <- glm(data = hw4.t, TARGET FLAG ~ CLM FREQ + log(CLM FREQ + 1) + OLDCLAIM, family = binomial(link =
summary(m5)
#removed OLDCLAIM due to high p-value, added INCOME
m6 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME, family = binomial(link = "
summary(m6)
# added log(INCOME + 1) due to high deviance of INCOME
m7 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME + log(INCOME + 1), family =
summary(m7)
# added AGE
m8 <- glm(data = hw4.t, TARGET FLAG ~ CLM FREQ + log(CLM FREQ + 1) + INCOME + log(INCOME + 1) + AGE, fa
summary(m8)
# added log(AGE + 1) due to high deviance of AGE
m9 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME + log(INCOME + 1) + AGE + 1
summary(m9)
# added BLUEBOOK
m10 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME + log(INCOME + 1) + AGE +
BLUEBOOK, family = binomial(link = "logit"))
summary(m10)
# added log(BLUBOOK) due to high deviance of BLUEBOOK
m11 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME + log(INCOME + 1) + AGE +
summary(m11)
# added CAR_AGE, removed BLUEBOOK due to high p-value
m11 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME + log(INCOME + 1) + AGE +
summary(m11)
# added CAR_AGE, removed BLUEBOOK due to high p-value
m12 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME + log(INCOME + 1) + AGE +
summary(m12)
# added TIF
m13 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME + log(INCOME + 1) + AGE +
summary(m13)
# added TRAVTIME
```

```
m14 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME + log(INCOME + 1) + AGE +
summary(m14)
# added log(TRAVTIME) due to high deviation of TRAVTIME
m15 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME + log(INCOME + 1) + AGE +
summary(m15)
# remove TRAVTIME due to high p-value
m16 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME + log(INCOME + 1) + AGE +
summary(m16)
# remove log(INCOME + 1) due to high deviation of log(INCOME + 1)
m17 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME + AGE + log(AGE + 1) + log
summary(m17)
m18 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME + AGE + log(AGE + 1) + log
summary(m18)
m19 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME + AGE + log(AGE + 1) + log
summary(m19)
m20 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME + AGE + log(AGE + 1) + log
summary(m20)
m21 <- glm(data = hw4.t, TARGET FLAG ~ CLM FREQ + log(CLM FREQ + 1) + INCOME + AGE + log(AGE + 1) + log
summary(m21)
m22 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME + AGE + log(AGE + 1) + log
summary(m22)
# don't add HOMEKIDS due to high p-value
m23 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME + AGE + log(AGE + 1) + log
summary(m23)
# remove JOB_COLOR due to high p-value
m24 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME + AGE + log(AGE + 1) + log
summary(m24)
m25 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME + AGE + log(AGE + 1) + log
summary(m25)
m26 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME + AGE + log(AGE + 1) + log
summary(m26)
# don't add EDUCATION or JOB due to high p-value
m <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME + AGE + log(AGE + 1) + log(B
summary(m)
plot(hw4.t$TARGET_AMT)
\# Find outliers using \sim twice the average leverage
# Avg leverage is first dotted line ~.015
# Cutoff leverage is second dotted line ~.030
```

```
# Note, the strategy in this model is forward selection and minimizing AIC
# while maintaining all predictor p-values within .05 significance levels.
# AIC minimization drove selection of outliers first, removing as many as plausible
# while staying within customary cutoff threshold
#Figure 8.13 on page 291
par(mfrow=c(1,1))
hvalues <- influence(m)$hat
stanresDeviance <- residuals(m)/sqrt(1-hvalues)</pre>
plot(hvalues, stanresDeviance, ylab="Standardized Deviance Residuals",
     xlab="Leverage Values",ylim=c(-3,3),xlim=c(-0.05,0.7))
# NOTE: the '7' indicated here is found by adding 1 to the number of predictor variables
# used in the final model
abline(v=2 * 13 / nrow(hw4.t), lty=2)
#.015
# Find outliers using ~ twice the average leverage
abline(v=2 * 26 / nrow(hw4.t), lty=2)
# .030
hw4.t\\.names <- as.character(seq(1:nrow(hw4.t)))
# need to click on potential outliers using the mouse and then click "finish" in the plot window
identify(hvalues, stanresDeviance, labels = hw4.names, cex=0.75)
```

Results say no rows to be removed

```
hw4.re <- hw4.t

# now rebuild

#remove predictors with excessive deviation plots
m.re.1 <- glm(data = hw4.t, TARGET_FLAG ~ MVR_PTS, family = binomial(link = "logit"))
summary(m.re.1)

m.re.2 <- glm(data = hw4.t, TARGET_FLAG ~ MVR_PTS + log(MVR_PTS + 1), family = binomial(link = "logit")
summary(m.re.2)

m.re.3 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ, family = binomial(link = "logit"))
summary(m.re.3)

m.re.4 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1), family = binomial(link = "logit")
m.re.5 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME, family = binomial(link summary(m.re.5))

m.re.6 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME + log(INCOME + 1), family</pre>
```

```
m.re.7 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME + log(INCOME + 1) + AGE
summary(m.re.7)
m.re.8 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME + log(INCOME + 1) + AGE
summary(m.re.8)
m.re.9 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME + log(INCOME + 1) + AGE
summary(m.re.9)
m.re.10 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME + log(INCOME + 1) + AG
summary(m.re.10)
m.re.11 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME + log(INCOME + 1) + AG
summary(m.re.11)
m.re.12 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME + log(INCOME + 1) + AG
summary(m.re.12)
m.re.13 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME + log(INCOME + 1) + AG
summary(m.re.13)
m.re.14 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME + log(INCOME + 1) + AG
summary(m.re.14)
m.re.15 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME + log(INCOME + 1) + AG
summary(m.re.15)
# add the binary predictors and see if we've introduced deviance that wasn't in the prior model
m.re.16 <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME + AGE + log(AGE + 1) +
summary(m.re.16)
# now do the same for categorical predictors
m.re <- glm(data = hw4.t, TARGET_FLAG ~ CLM_FREQ + log(CLM_FREQ + 1) + INCOME + AGE + log(AGE + 1) + log
summary(m.re)
marginal model plots
par(mar=c(1,1,1,1))
par(mfrow=c(1,1))
mmps(m.re,layout=c(4,3),key=TRUE)
dev.off()
```

Results say no rows to be removed

STOP

Now run metrics

summary(m.re.6)

```
# Coefficient Interpretation
{\it\# Logit\ model\ average\ marginal\ effects\ -\ use\ it\ to\ generate\ interpretable\ versions\ of\ coefficients}
LogitScalar <- mean(dlogis(predict(m.re, type = "link")))</pre>
LogitScalar * coef(m.re)
# Logit model predicted probabilities - yields likelihood that each eval item is '+'
predprob.crash <- round(predict(m.re, type="response"), 2)</pre>
summary(predprob.crash)
# Percent correctly predicted values
# NOTE: Need to create variable 'Y' for this to work - set it to response variable
Y <- hw4.re[,1]
pred.crash <- round(fitted(m.re))</pre>
table(true = Y, pred = pred.crash)
# t.r <- data.frame(table(true = Y, pred = pred.crime))</pre>
# t.r
# now use functions built in HW 2 to get required statistics
accuracy(Y, pred.crash)
classif.err.rate(Y, pred.crash)
precision(Y, pred.crash)
sensitivity(Y, pred.crash)
specificity(Y, pred.crash)
F1.Score(Y, pred.crash)
rocCurve <- roc(response= Y, predictor= pred.crash)</pre>
auc(rocCurve)
```

Linear Model 1

```
library(alr3)
library(car)
library(pROC)
# library(MASS)

hw4 <- read.csv("https://raw.githubusercontent.com/jtopor/CUNY-MSDA-621/master/HW-4/621-HW4-XFORMED-DATE</pre>
```

Convert categoricals with strings to factors

```
hw4$PARENT1 <- factor(hw4$PARENT1)
hw4$MSTATUS <- factor(hw4$MSTATUS)
hw4$SEX <- factor(hw4$SEX)
```

```
hw4$EDUCATION <- factor(hw4$EDUCATION)
hw4$JOB <- factor(hw4$JOB)
hw4$CAR_USE <- factor(hw4$CAR_USE)
hw4$CAR_TYPE <- factor(hw4$CAR_TYPE)
hw4$RED_CAR <- factor(hw4$RED_CAR)
hw4$REVOKED <- factor(hw4$REVOKED)
hw4$URBANICITY <- factor(hw4$URBANICITY)
hw4$KIDSDRIV <- factor(hw4$KIDSDRIV)
hw4$HOMEKIDS <- factor(hw4$HOMEKIDS)
hw4$H_RENTER <- factor(hw4$H_RENTER)
hw4$NEW_CAR <- factor(hw4$NEW_CAR)
hw4$JOB_COLOR <- factor(hw4$JOB_COLOR)
```

Transform INCOME, BLUEBOOK, CLM_FREQ, MVR_PTS, TRAVTIME using log(x)

```
hw4$INCOME <- log(hw4$INCOME + 1)
hw4$BLUEBOOK <- log(hw4$BLUEBOOK)
hw4$CLM_FREQ <- log(hw4$CLM_FREQ + 1)
hw4$MVR_PTS <- log(hw4$MVR_PTS + 1)
hw4$TRAVTIME <- log(hw4$TRAVTIME)

# hw4$TARGET_AMT <- log(hw4$TARGET_AMT + 1)
```

```
# Try removing all TARGET_FLAG == 0
hw4.t <- hw4[which(hw4$TARGET_FLAG == 1),]
hw4.safe <- hw4
hw4 <- hw4.t</pre>
```

Try using step() function

Remove SEX

```
m2 <- lm(formula = log(TARGET_AMT + 1) ~ MSTATUS + BLUEBOOK +
    OLDCLAIM + CLM_FREQ + REVOKED + MVR_PTS, data = hw4)
summary(m2)</pre>
```

Remove REVOKED

```
m3 <- lm(formula = log(TARGET_AMT + 1) ~ MSTATUS + BLUEBOOK +
OLDCLAIM + CLM_FREQ + MVR_PTS, data = hw4)
summary(m3)
```

Remove OLDCLAIM

```
m4 <- lm(formula = log(TARGET_AMT + 1) ~ MSTATUS + BLUEBOOK + CLM_FREQ + MVR_PTS, data = hw4)
summary(m4)</pre>
```

Remove CLM_FREQ

```
m5 <- lm(formula = log(TARGET_AMT + 1) ~ MSTATUS + BLUEBOOK + MVR_PTS, data = hw4)
summary(m5)</pre>
```

STOP

```
par(mfrow=c(2,2))
plot(m5)
```

Diagnostics

AV plots show outliers so remove them and refit

```
# CREATE ADDED VARIABLE PLOTS TO ASSESS predictor vs response
avPlots(m5, id.n = 8)
```

REMOVE OUTLIERS AND REFIT

 $Per\ Cooks\ Distance,\ remove\ items\ 7691,\ 5389,\ 3599,\ 1592,\ 3577,\ 6606,\ 5190,\ 3595,\ 7072$

Now refit first model from above: all variables

```
outr.init <- lm(log(TARGET_AMT + 1) ~ . - INDEX - TARGET_FLAG - H_RENTER - CAR_AGE - JOB_COLOR, data=hw
summary(outr.init)
# use STEP function to find best BIC model
outr <- step(outr.init, trace=0)
summary(outr)
# now just recreate output of step function to ensure it matches:
```

outr.gen <- lm(formula = log(TARGET_AMT + 1) ~ MSTATUS + SEX + BLUEBOOK +

```
OLDCLAIM + CLM_FREQ + REVOKED + MVR_PTS, data = hw4_rem)
summary(outr.gen)
vif(outr.gen)
Remove SEX
outr.2 <- lm(formula = log(TARGET_AMT + 1) ~ MSTATUS + BLUEBOOK +</pre>
   OLDCLAIM + CLM_FREQ + REVOKED + MVR_PTS, data = hw4_rem)
summary(outr.2)
Remove REVOKED
outr.3 <- lm(formula = log(TARGET_AMT + 1) ~ MSTATUS + BLUEBOOK +</pre>
   OLDCLAIM + CLM_FREQ + MVR_PTS, data = hw4_rem)
summary(outr.3)
Remove OLDCLAIM
outr.4 <- lm(formula = log(TARGET_AMT + 1) ~ MSTATUS + BLUEBOOK + CLM_FREQ + MVR_PTS, data = hw4_rem)
summary(outr.4)
Remove CLM_FREQ
outr.5 <- lm(formula = log(TARGET_AMT + 1) ~ MSTATUS + BLUEBOOK + MVR_PTS, data = hw4_rem)
summary(outr.5)
STOP -
Diagnostics
par(mfrow=c(2,2))
plot(outr.5)
AV plots show outliers so remove them and refit
# CREATE ADDED VARIABLE PLOTS TO ASSESS predictor vs response
avPlots(outr.5, id.n = 8)
More outliers: remove and refit
Per Cooks Distance, remove items 1748, 1377, 944, 419, 947, 2037, 939, 1857, 1430
# drop outlier records from data set
```

Now refit first model from above: all variables

rownames(hw4_rem) <- 1:nrow(hw4_rem)</pre>

renumber rows

hw4_rem <- hw4_rem[-c(1748, 1377, 944, 419, 947, 2037, 939, 1857, 1430),]

```
outr.init <- lm(log(TARGET_AMT + 1) ~ . - INDEX - TARGET_FLAG - H_RENTER - CAR_AGE - JOB_COLOR, data=hw
summary(outr.init)
# use STEP function to find best BIC model
outr <- step(outr.init, trace=0)</pre>
summary(outr)
# now just recreate output of step function to ensure it matches:
outr.gen <- lm(formula = log(TARGET_AMT + 1) ~ MSTATUS + SEX + BLUEBOOK +
   OLDCLAIM + CLM_FREQ + REVOKED + MVR_PTS, data = hw4_rem)
summary(outr.gen)
vif(outr.gen)
Remove REVOKED
outr.2 <- lm(formula = log(TARGET_AMT + 1) ~ MSTATUS + SEX + BLUEBOOK +
   OLDCLAIM + CLM_FREQ + MVR_PTS, data = hw4_rem)
summary(outr.2)
Remove OLDCLAIM
outr.3 <- lm(formula = log(TARGET_AMT + 1) ~ MSTATUS + SEX + BLUEBOOK + CLM_FREQ + MVR_PTS, data = hw4_:
summary(outr.3)
Remove CLM FREQ
outr.4 <- lm(formula = log(TARGET_AMT + 1) ~ MSTATUS + SEX + BLUEBOOK + MVR_PTS, data = hw4_rem)
summary(outr.4)
Remove SEX
outr.5 <- lm(formula = log(TARGET_AMT + 1) ~ MSTATUS + BLUEBOOK + MVR_PTS, data = hw4_rem)
summary(outr.5)
STOP
Diagnostics
par(mfrow=c(2,2))
plot(outr.5)
AV plots show outliers so remove them and refit
# CREATE ADDED VARIABLE PLOTS TO ASSESS predictor us response
avPlots(outr.5, id.n = 8)
```

Outliers so remove and refit

REMOVE OUTLIERS AND REFIT

Per Cooks Distance, remove items 1727, 1942, 384, 2053, 639, 1546, 1824, 1353, 1709, 2065, 1612, 718

```
# drop outlier records from data set
hw4 rem <- hw4 rem[-c(1727, 1942, 384, 2053, 639, 1546, 1824, 1353, 1709, 2065, 1612, 718),]
# renumber rows
rownames(hw4_rem) <- 1:nrow(hw4_rem)</pre>
Now refit first model from above: all variables
outr.init <- lm(log(TARGET_AMT + 1) ~ . - INDEX - TARGET_FLAG - H_RENTER - CAR_AGE - JOB_COLOR, data=hw
summary(outr.init)
# use STEP function to find best BIC model
outr <- step(outr.init, trace=0)</pre>
summary(outr)
# now just recreate output of step function to ensure it matches:
outr.gen <- lm(formula = log(TARGET_AMT + 1) ~ MSTATUS + EDUCATION + BLUEBOOK +
   RED_CAR + MVR_PTS, data = hw4_rem)
summary(outr.gen)
vif(outr.gen)
Remove EDUCATION
outr.2 <- lm(formula = log(TARGET_AMT + 1) ~ MSTATUS + BLUEBOOK + RED_CAR + MVR_PTS, data = hw4_rem)
summary(outr.2)
Remove RED CAR
outr.3 <- lm(formula = log(TARGET_AMT + 1) ~ MSTATUS + BLUEBOOK + MVR_PTS, data = hw4_rem)
summary(outr.3)
Remove MSTATUS
outr.4 <- lm(formula = log(TARGET_AMT + 1) ~ BLUEBOOK + MVR_PTS, data = hw4_rem)
summary(outr.4)
Get Mean Squared Error
anova(outr.4)
STOP
SUMMARY MODEL DIAGNOSTIC PLOTS
par(mfrow=c(2,2))
plot(outr.4)
```

AV Plots

```
# CREATE ADDED VARIABLE PLOTS TO ASSESS predictor vs response
avPlots(outr.4, id.n = 8)
```

PLOT STANDARDIZED RESIDUALS AGAINST EACH PREDICTOR

```
StanRes1 <- rstandard(outr.4)
par(mfrow=c(2,2))

plot(hw4_rem$BLUEBOOK, StanRes1, ylab="Standardized Residuals")
plot(hw4_rem$MVR_PTS, StanRes1, ylab="Standardized Residuals")</pre>
```

PLOT Y AGAINST FITTED VALUES

```
fit1 <- outr.4$fitted.values
summary(outr.4$fitted.values)

fit2 = round(exp(fit1) - 1)
summary(fit2)

# fit3 <- fit2[which(fit2 > 0)]
# summary(fit3)

Payout <- hw4_rem$TARGET_AMT
summary(Payout)

par(mfrow = c(1,1))
plot(fit2, Payout, xlab="Fitted Values")
abline(lsfit(fit2, Payout),lty=2)</pre>
```

Linear Model 2

```
#Step 0: Subset data for only those with payouts (TARGET_FLAG=1) and get rid of extra variables:
hw4t.p <- hw4t[which(hw4t$TARGET_FLAG == 1),]

#Step 2:
#Step 1: take out new fields
pay <- lm(data=hw4t.p, TARGET_AMT~.-INDEX - TARGET_FLAG - NEW_CAR - H_RENTER - JOB_COLOR)
summary(pay)

#Step 2: take out kids drive
pay1 <- lm(data=hw4t.p, TARGET_AMT~-INDEX - TARGET_FLAG - NEW_CAR - H_RENTER - JOB_COLOR - KIDSDRIV)
summary(pay1)

#Step 3: take out job
pay2 <- lm(data=hw4t.p, TARGET_AMT~. -INDEX - TARGET_FLAG - NEW_CAR - H_RENTER - JOB_COLOR - KIDSDRIV - summary(pay2)</pre>
#Step 4: take out car type
```

```
pay3 <- lm(data=hw4t.p, TARGET_AMT~. -INDEX - TARGET_FLAG - NEW_CAR - H_RENTER - JOB_COLOR- KIDSDRIV -
summary(pay3)
#Step 5: take out urbanicity
pay4 <- lm(data=hw4t.p, TARGET_AMT~.-INDEX - TARGET_FLAG - NEW_CAR - H_RENTER - JOB_COLOR- JOB - KIDSDR
summary(pay4)
#Step 6: take out travel time
pay5 <- lm(data=hw4t.p, TARGET_AMT~.-INDEX - TARGET_FLAG - NEW_CAR - H_RENTER - JOB_COLOR-JOB - KIDSDRI
summary(pay5)
#Step 7: take out single parent
pay6 <- lm(data=hw4t.p, TARGET_AMT~.-INDEX - TARGET_FLAG - NEW_CAR - H_RENTER - JOB_COLOR-JOB - KIDSDRI
summary(pay6)
#Step 8: take out TIF
pay7 <- lm(data=hw4t.p, TARGET_AMT~.-INDEX - TARGET_FLAG - NEW_CAR - H_RENTER - JOB_COLOR- JOB - KIDSDR
summary(pay7)
#Step 9: take out red car
pay8 <- lm(data=hw4t.p, TARGET_AMT~.-INDEX - TARGET_FLAG - NEW_CAR - H_RENTER - JOB_COLOR- JOB - KIDSDR
summary(pay8)
#Step 10: take out education
pay9 <- lm(data=hw4t.p, TARGET_AMT~.-INDEX - TARGET_FLAG - NEW_CAR - H_RENTER - JOB_COLOR- JOB - KIDSDR
summary(pay9)
#Step 11: take out car use
pay10 <- lm(data=hw4t.p, TARGET_AMT~.-INDEX - TARGET_FLAG - NEW_CAR - H_RENTER - JOB_COLOR- JOB - KIDSD
summary(pay10)
#Step 12: take out YOJ
pay11 <- lm(data=hw4t.p, TARGET_AMT~.-INDEX - TARGET_FLAG - NEW_CAR - H_RENTER - JOB_COLOR- JOB - KIDS
summary(pay11)
#Step 13: take out CLM_FREQ
pay12 <- lm(data=hw4t.p, TARGET_AMT~.-INDEX - TARGET_FLAG - NEW_CAR - H_RENTER - JOB_COLOR- JOB - KIDSD
summary(pay12)
#Step 14: take out old claim
pay13 <- lm(data=hw4t.p, TARGET_AMT~.-INDEX - TARGET_FLAG - NEW_CAR - H_RENTER - JOB_COLOR-JOB - KIDSDR
summary(pay13)
#Step 15: take out income
pay14 <- lm(data=hw4t.p, TARGET_AMT~.-INDEX - TARGET_FLAG - NEW_CAR - H_RENTER - JOB_COLOR- JOB - KIDSD
summary(pay14)
#Step 16: take out home value
pay15 <- lm(data=hw4t.p, TARGET_AMT~.-INDEX - TARGET_FLAG - NEW_CAR - H_RENTER - JOB_COLOR- JOB - KIDSD
summary(pay15)
#Step 17: take out home kids
pay16 <- lm(data=hw4t.p, TARGET_AMT~.-INDEX - TARGET_FLAG - NEW_CAR - H_RENTER - JOB_COLOR- JOB - KIDSD
```

```
summary(pay16)
#Step 18: take out age
pay17 <- lm(data=hw4t.p, TARGET_AMT~.-INDEX - TARGET_FLAG - NEW_CAR - H_RENTER - JOB_COLOR- JOB - KIDS
summary(pay17)
#Step 19: take out car age
pay18 <- lm(data=hw4t.p, TARGET_AMT~.-INDEX - TARGET_FLAG - NEW_CAR - H_RENTER - JOB_COLOR- JOB - KIDSD
summary(pay18)
#Step 20: take out marital status
pay19 <- lm(data=hw4t.p, TARGET_AMT~.-INDEX - TARGET_FLAG - NEW_CAR - H_RENTER - JOB_COLOR-JOB - KIDSDR
summary(pay19)
#Step 21: take out revoked
pay20 <- lm(data=hw4t.p, TARGET_AMT~.-INDEX - TARGET_FLAG - NEW_CAR - H_RENTER - JOB_COLOR-JOB - KIDSDR
summary(pay20)
#Look at mmps
mmps(pay20,layout=c(2,2),key=TRUE)
#Step22: look at transformations
#POssible transformations
summary(powerTransform(BLUEBOOK~TARGET_AMT, hw4t.p, family="bcPower"))
boxcox(hw4t.p$BLUEBOOK~hw4t.p$TARGET_AMT)
#use sqroot for BLUEBOOK
summary(powerTransform(MVR_PTS+1~TARGET_AMT, hw4t.p, family="bcPower"))
boxcox(hw4t.p$MVR_PTS +1~hw4t.p$TARGET_AMT)
#use log for MVR_PTS
#Step 23: Make new model with transformations
pay21 <- lm(data=hw4t.p, TARGET_AMT~sqrt(BLUEBOOK) + log(MVR_PTS +1) + SEX )</pre>
summary(pay21)
vif(pay21)
#Step 24: remove sex
pay22 <- lm(data=hw4t.p, TARGET_AMT~sqrt(BLUEBOOK) + log(MVR_PTS +1))</pre>
summary(pay22)
vif(pay22)
plot(pay22$residuals~hw4t.p$TARGET_AMT)
avPlots(pay22, id.n = 8)
#this data has so much variance it is hard to say what should be removed or not - so leaving it all in.
mmps(pay22, layout=c(2,2), key=T)
```

Part 4. Select Models

R code for the required 2-stage prediction process

First stage:

- 1) Load training data
- 2) Perform any necessary transforms on data
- 3) build selected binary regression model
- 4) Load eval data
- 5) Perform any necessary transforms on eval data
- 6) use **predict** function to get required probabilities
- 7) Save both the probabilities and their rounded 0/1 values to the eval data set

```
# load training set so that binary model can be built
hw4 <- read.csv("https://raw.githubusercontent.com/jtopor/CUNY-MSDA-621/master/HW-4/621-HW4-XFORMED-DAT.
# convert categoricals to factors
hw4$PARENT1 <- factor(hw4$PARENT1)
hw4$MSTATUS <- factor(hw4$MSTATUS)
hw4$SEX <- factor(hw4$SEX)
hw4$EDUCATION <- factor(hw4$EDUCATION)
hw4$JOB <- factor(hw4$JOB)
hw4$CAR_USE <- factor(hw4$CAR_USE)
hw4$CAR_TYPE <- factor(hw4$CAR_TYPE)</pre>
hw4$RED_CAR <- factor(hw4$RED_CAR)
hw4$REVOKED <- factor(hw4$REVOKED)
hw4$URBANICITY <- factor(hw4$URBANICITY)
hw4$KIDSDRIV <- factor(hw4$KIDSDRIV)
hw4$HOMEKIDS <- factor(hw4$HOMEKIDS)
hw4$H_RENTER <- factor(hw4$H_RENTER)
hw4$NEW_CAR <- factor(hw4$NEW_CAR)
hw4$JOB_COLOR <- factor(hw4$JOB_COLOR)
# save a copy of TARGET_AMT and TARGET_FLAG for stats at end
Target.amt <- hw4$TARGET_AMT</pre>
Target.f <- hw4$TARGET_FLAG</pre>
m1 <- glm(formula = TARGET_FLAG ~ KIDSDRIV + HOMEKIDS + log(INCOME + 1) + MSTATUS +
    EDUCATION + log(TRAVTIME) + CAR_USE + log(BLUEBOOK) + TIF + CAR_TYPE +
   OLDCLAIM + CLM_FREQ + log(CLM_FREQ + 1) + REVOKED + log(MVR_PTS + 1) + URBANICITY + H_RENTER,
    family = binomial(link = "logit"), data = hw4)
# now that model is built, load eval data set
# load EVAL data set
hw4 <- read.csv("https://raw.githubusercontent.com/jtopor/CUNY-MSDA-621/master/HW-4/HW4-XFORMED-EVAL-DA
# convert categoricals to factors
hw4$PARENT1 <- factor(hw4$PARENT1)
hw4$MSTATUS <- factor(hw4$MSTATUS)
```

```
hw4$SEX <- factor(hw4$SEX)
hw4$EDUCATION <- factor(hw4$EDUCATION)
hw4$JOB <- factor(hw4$JOB)
hw4$CAR_USE <- factor(hw4$CAR_USE)
hw4$CAR_TYPE <- factor(hw4$CAR_TYPE)</pre>
hw4$RED_CAR <- factor(hw4$RED_CAR)
hw4$REVOKED <- factor(hw4$REVOKED)</pre>
hw4$URBANICITY <- factor(hw4$URBANICITY)
hw4$KIDSDRIV <- factor(hw4$KIDSDRIV)
hw4$HOMEKIDS <- factor(hw4$HOMEKIDS)
hw4$H_RENTER <- factor(hw4$H_RENTER)
hw4$NEW_CAR <- factor(hw4$NEW_CAR)
hw4$JOB_COLOR <- factor(hw4$JOB_COLOR)</pre>
# make a copy of the original data
eval.out <- hw4
# now predict TARGET_FLAG using model
pred.CR <- predict(m1, newdata=eval.out, type="response")</pre>
# Save predicted probability and rounded value to eval data set
eval.out$TARGET_FLAG_PROB <- round(pred.CR, 3)</pre>
eval.out$TARGET_FLAG <- round(pred.CR)</pre>
```

Second stage:

- 1) Load training data set again
- 2) Perform any necessary transforms on data
- 3) build selected linear regression model

hw4\$NEW_CAR <- factor(hw4\$NEW_CAR)

- 4) Extract only TARGET FLAG = 1 rows from eval data
- 5) Perform any necessary transforms on copy of eval data
- 6) use **predict** function to get required payout amounts
- 7) Save predicted payout amount to eval data set

```
# load training set so that linear model can be built
hw4 <- read.csv("https://raw.githubusercontent.com/jtopor/CUNY-MSDA-621/master/HW-4/621-HW4-XFORMED-DAT.
# convert categoricals to factors
hw4$PARENT1 <- factor(hw4$PARENT1)
hw4$MSTATUS <- factor(hw4$MSTATUS)
hw4$SEX <- factor(hw4$SEX)
hw4$EDUCATION <- factor(hw4$EDUCATION)</pre>
hw4$JOB <- factor(hw4$JOB)</pre>
hw4$CAR_USE <- factor(hw4$CAR_USE)
hw4$CAR_TYPE <- factor(hw4$CAR_TYPE)</pre>
hw4$RED_CAR <- factor(hw4$RED_CAR)
hw4$REVOKED <- factor(hw4$REVOKED)
hw4$URBANICITY <- factor(hw4$URBANICITY)</pre>
hw4$KIDSDRIV <- factor(hw4$KIDSDRIV)</pre>
hw4$HOMEKIDS <- factor(hw4$HOMEKIDS)
hw4$H_RENTER <- factor(hw4$H_RENTER)
```

```
hw4$JOB_COLOR <- factor(hw4$JOB_COLOR)</pre>
# read in data set was done above
hw4.L1 <- hw4[which(hw4$TARGET_FLAG == 1),]
# tranform variables as needed
# hw4.L1$INCOME <- log(hw4.L1$INCOME + 1)
# hw4.L1$BLUEBOOK <- log(hw4.L1$BLUEBOOK)
# hw4.L1$CLM_FREQ <- log(hw4.L1$CLM_FREQ + 1)</pre>
# hw4.L1$MVR_PTS <- log(hw4.L1$MVR_PTS + 1)
# hw4.L1$TRAVTIME <- log(hw4.L1$TRAVTIME)
# remove all outliers
# set 1
hw4_rem <- hw4.L1[-c(7691, 5389, 3599, 1592, 3577, 6606, 5190, 3595, 7072),]
# renumber rows
rownames(hw4_rem) <- 1:nrow(hw4_rem)</pre>
# -----
# set 2
hw4_rem <- hw4_rem[-c(1748, 1377, 944, 419, 947, 2037, 939, 1857, 1430),]
# renumber rows
rownames(hw4_rem) <- 1:nrow(hw4_rem)</pre>
# -----
# set 3
hw4_rem <- hw4_rem[-c(1727, 1942, 384, 2053, 639, 1546, 1824, 1353, 1709, 2065, 1612, 718),]
# renumber rows
rownames(hw4_rem) <- 1:nrow(hw4_rem)</pre>
# now fit the model
lm1 <- lm(formula = log(TARGET_AMT + 1) ~ log(BLUEBOOK) + log(MVR_PTS + 1), data = hw4_rem)</pre>
# -----
# extract only transform variables as needed
eval.lm <- eval.out[which(eval.out$TARGET_FLAG == 1),]
# tranform variables as needed
# eval.lm$INCOME <- log(eval.lm$INCOME + 1)</pre>
# eval.lm$BLUEBOOK <- log(eval.lm$BLUEBOOK)</pre>
# eval.lm$CLM_FREQ <- log(eval.lm$CLM_FREQ + 1)</pre>
# eval.lm$MVR_PTS <- log(eval.lm$MVR_PTS + 1)</pre>
# eval.lm$TRAVTIME <- log(eval.lm$TRAVTIME)</pre>
# now predict TARGET_AMT using model
pred.CR <- predict(lm1, newdata=eval.lm, type="response")</pre>
```

```
# back transform predicted values if response was log transformed
preds = round(exp(pred.CR) - 1)
# now add predicted TARGET AMT to TARGET FLAG = 1 restricted eval data set
eval.lm$TARGET_AMT <- round(preds, 2)</pre>
# now combine prediction results with eval rows that didn't require predictions
eval.out <- rbind(eval.lm, eval.out[which(eval.out$TARGET_FLAG == 0),])</pre>
# re-sort eval data by iNDEX
library(plyr)
eval.out <- arrange(eval.out, INDEX)</pre>
# write full model EVAL data to a CSV file
write.csv(eval.out, file = "C:/SQLData/621/HW4-PRED-EVAL-ALL-DATA.csv", row.names = FALSE)
# write only pertinent columns to a CSV file
# now write just INDEX and TARGET_WINS to a separate file
eval.s <- eval.out[,c(1,30,2,3)]
write.csv(eval.s, file = "C:/SQLData/621/HW4-PRED-EVAL-COLS-ONLY.csv", row.names = FALSE)
library(psych)
describe(eval.out$TARGET_FLAG)
describe(Target.f)
describe(eval.out$TARGET_AMT)
describe(Target.amt)
```