

Clasificación de funciones

INYECTIVA

Una función $f: A \to B$ es inyectiva si cualquiera sean x_1, x_2 pertenecientes a A se cumple:

$$x_1 \neq x_2 \Leftrightarrow f(x_1) \neq f(x_2)$$

Ejemplos:

$$f: \mathbb{R} \to \mathbb{R}/f(x) = x^2 + 1$$

Esta función **no es inyectiva** porque a dos elementos distintos del dominio les corresponde la misma imagen.

$$f(1) = f(-1) = 2$$

$$f: \mathbb{R} \to \mathbb{R}/f(x) = x^3 + 1$$

Esta función es inyectiva porque a dos elementos distintos del dominio les corresponden imágenes distintas.

$$f(1) = 2 \wedge f(-1) = 0$$

SOBREYECTIVA

Una función $f: A \rightarrow B$ es suryectiva si:

$$\mathbb{I}m(f) = \mathbb{C}odom f(x)$$

donde
$$\mathbb{I}m(f) = \{y \in B \mid \exists x \in A \text{ tal que } y = f(x)\}$$

Ejemplos:

$$f: \mathbb{R} \to \mathbb{R}/f(x) = x^2 + 1$$

Esta función no es survectiva porque el codominio de la función es \mathbb{R} y el conjunto imagen es [1; \propto)

$$\mathbb{I}m f(x) \neq \mathbb{C}odom f(x)$$

$$f: \mathbb{R} \to \mathbb{R}/f(x) = x^3 + 1$$

Esta función es survectiva porque el codominio de la función es R y el conjunto imagen es R

$$\mathbb{I}m f(x) = \mathbb{C}odom f(x)$$

BIYECTIVA

Una función $f: A \rightarrow B$ es biyectiva si es inyectiva y suryectiva

Ejemplos:

$$f: \mathbb{R} \to \mathbb{R}/f(x) = x^2 + 1$$

Esta función no es biyectiva porque no es inyectiva ni suryectiva.

$$f: \mathbb{R} \to \mathbb{R}/f(x) = x^3 + 1$$

Esta función es biyectiva porque es inyectiva y suryectiva

Paridad de una función

Función par: es aquella que toma el mismo valor en el punto x y en el -x.

 $f \text{ es par} \Leftrightarrow \forall x \in A : [f(x) = f(-x)]$

 \triangleright Función impar: a valores opuestos de x corresponden valores opuestos de la función.

$$f$$
 es impar $\Leftrightarrow \forall x \in A$: $[f(-x) = -f(x)]$

Existen funciones que no son pares ni impares.

Nota: para estudiar la paridad de la función obtenemos la expresión para la función evaluada en -x y la comparamos con la misma evaluada en x y con la opuesta de ésta.

Determinar la paridad de las siguientes funciones definidas en el conjunto de los números reales.

a)
$$q(x) = x^2 - 3$$

b)
$$f(x) = 2x^3 - 2x$$

Función inversa

- 1. **Verificar si es inyectiva:** Asegurarse de que la función original es inyectiva (o uno a uno).
- 2. **Intercambiar variables:** Reemplazar x por y, y y por x en la ecuación de la función original.
- 3. **Despejar y:** Resolver la nueva ecuación para despejar la variable y. Esta nueva ecuación será la función inversa, $f^{-1}(x)$.
- 4. **Verificación:** Aplicar la función original a un valor x, luego aplicar la función inversa al resultado. Debería devolver el valor x original.

Ejemplo: Si f(x) = 2x + 3, para encontrar la función inversa:

- La función es inyectiva porque a cada valor de y le corresponde un único valor de x.
- 2) Intercambiar variables: x = 2y + 3.
- 3) **Despejar y:** x 3 = 2y

$$y = (x - 3) / 2$$

4) Función inversa: $f^{-1}(x) = (x - 3) / 2$.

SP2

AÑOS

1) A partir de las siguientes gráficas, determinar:

- a. Dominio e imagen de cada función.
- b. Cero o raíz de f(x).
- c. Ordenada al origen de g(x).
- d. Puntos de intersección entre f(x) y g(x).
- e. $f(_) = 2$
- **f.** f() = 1
- g. $g(_) = -2$
- h. g(0) =
- i. $\xi g(x)$ es inyectiva?
- j. f(x) es invertible?
- 2) Determine si cada una de las siguientes funciones es par o impar.

a)
$$f(x) = -3x^2 - 5x$$

b)
$$h(x) = x^5 - 6$$

c)
$$g(x) = x^3 - 3x$$

d)
$$i(x) = -3x^2$$

3) Observa y completa.

Dominio:

Imagen:

Cero o raíz:

Ordenada al origen:

Crecimiento:

Decrecimiento:

f(-4) =

f(1) =

f(4) = ____

f(8) = ___

 $f(\underline{})=1$

f()=4

Dominio:

Imagen:

Cero o raíz:

Ordenada al origen:

f(-4) =

f(-1) =

f(5) =

- 4) Determine si las siguientes funciones son uno a uno (inyectiva). En caso de ser una función inyectiva encuentre la función inversa, su rango y dominio.
 - (a) f(x) = 2x 1.
 - (b) $f(x) = \sqrt{x^2 1}$.
 - (c) $f(x) = x^2$ con dominio $[0, \infty)$.
 - (d) $f(x) = \frac{x+1}{x+2}$.
 - (e) $f(x) = x^3 + 3$.
 - (f) $f(x) = \sqrt[3]{x^2 + 1}$.
 - (g) $h(x) = \frac{2x^3 + 6x^2 + 6x 1}{x^3 + 3x^2 + 3x + 1}$.

Composición de funciones

Definición: Dadas dos funciones f y g, la función compuesta $f \circ g$ (también llamada la composición de f y g) está definida por

$$(f \circ g)(x) = f(g(x))$$

Ejemplo: Si $f(x) = x^2$ y g(x) = x - 3, encuentre las funciones $f \circ g$ y $g \circ f$.

Tenemos

$$(f \circ g)(x) = f(g(x)) = f(x-3) = (x-3)^2$$

$$(g \circ f)(x) = g(f(x)) = g(x^2) = x^2 - 3$$

Ejercicio: Si $f(x) = \sqrt{x}$ y $g(x) = \sqrt{2-x}$, encuentre las funciones y su dominio: $f \circ g, g \circ f, f \circ f \vee g \circ g.$

5) Encuentre las funciones $f \circ g$, $g \circ f$, $f \circ f$, $g \circ g$. 6) Encuentre las funciones $f \circ g \circ h$

$$f(x) = x^2 - 1$$
, $g(x) = 2x + 1$

f(x) =
$$x + 1$$
, $q(x) = 2x$, $h(x) = x - 1$

$$f(x) = x - 2$$
, $g(x) = x^2 + 3x + 4$

$$f(x) = 2x - 1$$
, $g(x) = x^2$, $h(x) = 1 - x$

$$f(x) = 1 - 3x, \quad g(x) = \cos x$$

$$f(x) = \sqrt{x-3}$$
, $g(x) = x^2$, $h(x) = x^3 + 2$

$$f(x) = \sqrt{x}, \quad g(x) = \sqrt[3]{1 - x}$$

$$f(x) = \tan x$$
, $g(x) = \frac{x}{x-1}$, $h(x) = \sqrt[3]{x}$

$$f(x) = x + \frac{1}{x}, \quad g(x) = \frac{x+1}{x+2}$$

$$f(x) = \frac{x}{1+x}, \quad g(x) = \sin 2x$$