

Support Vector Machines

Kernels I

Machine Learning

Non-linear Decision Boundary

Is there a different / better choice of the features f_1, f_2, f_3, \ldots ?

Kernel

Given x, compute new feature depending on proximity to landmarks $l^{(1)}, l^{(2)}, l^{(3)}$

$$||x|| = \frac{||x-\lambda|||}{||x-\lambda||||}$$

$$||x|| = \frac{||x-\lambda|||}{||x-\lambda|||}$$

$$||x|| = \frac{||x-\lambda|||}{||x-\lambda|||}$$

$$||x|| = \frac{||x-\lambda|||}{||x-\lambda||}$$

$$||x|| = \frac{||x-\lambda|||}{||x-\lambda||}$$

$$||x-\lambda||| = \frac{||x-\lambda|||}{||x-\lambda||}$$

$$||x-\lambda||| = \frac{||x-\lambda|||}{||x-\lambda||}$$

$$||x-\lambda||| = \frac{||x-\lambda|||}{||x-\lambda||}$$

$$||x-\lambda|| = \frac{||x-\lambda|||}{||x-\lambda||}$$

$$||x-\lambda|| = \frac{||x-\lambda|||}{||x-\lambda||}$$

$$||x-\lambda|| = \frac{||x-\lambda||}{||x-\lambda||}$$

$$||x-\lambda||}$$

$$||x-\lambda|| = \frac{||x-\lambda||}{||x-\lambda||}$$

$$||x-\lambda||}$$

$$||x-\lambda|||x-\lambda||}$$

$$||x-\lambda||}$$

$$||x$$

Kernels and Similarity

$$f_1 = \text{similarity}(x, \underline{l^{(1)}}) = \exp\left(-\frac{\|x - l^{(1)}\|^2}{2\sigma^2}\right)$$

If
$$\underline{x} \approx l^{(1)}$$
:

If
$$x$$
 if far from $\underline{l^{(1)}}$:

$$f_1 = exp\left(-\frac{(lorge number)^2}{262}\right)$$
 % C

Example:

2

Andrew Ng

