Performance Modeling of Computer Systems and Networks

Prof. Vittoria de Nitto Personè

Abstract Priority

Università degli studi di Roma Tor Vergata

Department of Civil Engineering and Computer Science Engineering

Copyright © Vittoria de Nitto Personè, 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/

1

QoS management

Analytical models abstract priority

- Service provider
- Traffic flows with different QoS
- QoS: mean response time

prof. Vittoria de Nitto Personè

2

Analytical models abstract priority

NP priority $E(T_{Q_1}) = \frac{\rho E(S)}{(1 - \rho_1)}$ $E(T_{Q_2}) = \frac{\rho E(S)}{(1 - (\rho_1 + \rho_2))(1 - \rho_1)}$ $E(T_{Q_3}) = \frac{\rho E(S)}{(1 - (\rho_1 + \rho_2 + \rho_3))(1 - (\rho_1 + \rho_2))}$ $E(T_{Q_4}) = \frac{\rho E(S)}{(1 - \rho_1)(1 - (\rho_1 + \rho_2 + \rho_3))}$ prof. Vittoria de Nitto Personè

Analytical models priority scheduling Goals: • given a QoS requirement, decide if adopt priority classes • note that if the policy is non-size-based, we can reason just in terms of waiting time Mean service demand: 0.4 sQoS requirement the waiting time should not exceed the service demand, in particular: the service provider will not incur in penalties if $T_Q \leq 0.45 \text{ s}$; the service provider will gain revenue if $T_Q < 0.4 \text{ s}$ By simple "costless" analysis we can offer good insights prof. Vittoria de Nitto Persone

Analytical models priority scheduling

E(S) = 0.4 s

Low load medium load high load

 $\rho = 0.4$ 0.6
0.8 $\lambda = 1$ 1.5
2 job/s

 $E(T_Q) = 0.26$ 0.6 1.6 job/s without priority classes

prof. Vittoria de Nitto Personè

9

high load ρ =0.8

not penalties if $T_{\mathcal{Q}} \leq 0.45 \; \mathrm{s}$ gain revenue if $T_{\mathcal{Q}} < 0.4 \; \mathrm{s}$

 $p_1 = 0.36, p_2 = 0.64$ $p_1 = 0.22, p_2 = 0.78$

 $E(T_{Ql}) = 0.4494 \text{ s}$ $E(T_{Ql}) = 0.3883 \text{ s}$

 $E(T_{Q2}) = 2.2472 \text{ s}$ $E(T_{Q2}) = 1.9417 \text{ s}$

 $E(T_Q)_{glob} = E(T_Q)_{KP} = 1.6 \text{ s}$

prof. Vittoria de Nitto Personè

10

Euristica per la ripartizione in classi di priorità astratta

$$\rho = 0.92$$
, $E(S) = 1$ j/s $E(T_Q) = 11.5$ s, $E(T_S) = 12.5$ s

 $E(T_{S3}) = 53.75229 \text{ s}$

60%, 25 %, 15 %, 15 %, 25 %, 60%, $E(T_{Ql}) = 1.067285 \text{ s}$ $E(T_{OI}) = 2.05357 \text{ s}$ $E(T_{Q2}) = 1.688743 \text{ s}$ $E(T_{Q2}) = 9.42005 \text{ s}$ $E(T_{Q3}) = 18.196203 \text{ s}$ $E(T_{Q3}) = 52.75229 \text{ s}$ $E(T_{SI}) = 2.067285 \text{ s}$ $E(T_{SI}) = 3.05357 \text{ s}$ $E(T_{S2}) = 2.688743 \text{ s}$ $E(T_{S2}) = 10.42005 \text{ s}$ $E(T_{S3}) = 19.196203 \text{ s}$

prof. Vittoria de Nitto Personè

11

11

Mean service demand (expo): $0.4\ s$

QoS requirement

the waiting time (average) should not exceed $0.1\ s$, in particular: the service provider will gain c_1 for each service within QoS the service provider will pay c_2 for each service violates QoS

 $R = p_1c_1 - p_2c_2$

Abstract-P → max R

prof. Vittoria de Nitto Personè

17

17

$$E(S) = 0.4 \text{ s}, \lambda = 0.8 \text{ j/s}, \rho = 0.32$$

$$p_1 = 0.6, p_2 = 0.4, c_1=5, c_2=3 \rightarrow R=2.2$$

$$E(T_{QI}) = 0.095 \text{ s}$$
, $E(T_{SI}) = 0.495 \text{ s}$

$$E(T_{Q2}) = 0.233 \text{ s}$$
, $E(T_{S2}) = 0.728 \text{ s}$

prof. Vittoria de Nitto Personè

18