Lab11 Solution

YAO ZHAO

Lab11 Q1

```
VCN(1) = VC
VCN(2) = VCCN
VCN(3) = VCCNCNNV
...
VCN(n) = VCN(n-1)+switch(VCN(n-1))
```

switch(s) means changing all 'V' to 'C', all 'C' to 'N', and all 'N' to 'V' in string s

VCN(n)	len	V	С	N
0	1	1	0	0
1	2	1	1	0
2	4	1+0= 1	1+1= 2	1+0=1
3	8	1+1 =2	1+2 = 3	2+1 = 3
n	2 ⁿ	V(n) = V(n-1)+N(n-1)	C(n)=C(n-1)+V(n-1)	N(n)=N(n-1)+C(n-1)

Lab11 Q1 Sample

Sample:

how many 'V', 'C', and 'N' are there in the string from the 1st position to the 7th position.

Lab11 Q1 Pseudo-code

```
Generate table T according Page.2
(V,C,N) Count_VCN(L){
     if (L==0) return (0,0,0)
    index = \lfloor log_2 L \rfloor
     (V1, C1, N1) \leftarrow get the value from the table Taccording the index
     (V2, C2, N2) \leftarrow Count_VCN(L - 2^{index})
    return (V1+N2, C1+V2, N1+C2)
```

Lab11 Q2

4 11 4 5 1 4 A1 A2 A3 A4

S			
0	{}->0	7	{}->0
1	{A3*A3}->1	8	{}->0
2	{}->0	9	{A1*A2,A2*A1,A 2*A4,A4*A2}->4
3	{A2*A2}->1	10	{}->0
4	{A1*A3, A3*A1, A3*A4, A4*A3}->4		
5	{A1*A1, A2*A3, A3*A2, A4*A4, A1*A4,A4*A1}->6		
6	{}->0		

Lab12 Q2

2 is the primitive root of 11, we have the following formulas:

Convert this problem to a Polynomial Multiplication Problem

When the remainder is 0, special handling is required.

 $(2*2^2+2^4+2^{10})*(2*2^2+2^4+2^{10})$

Polynomial Multiplication

Lab11 Q2 Pseudo-code

```
Input parameters: a prime P and a sequence A: A<sub>1</sub>, A<sub>2</sub>, A<sub>3</sub>...A<sub>n</sub>
Output parameter: a sequence S: S_0, S_1, S_2...S_{P-1}
S FaFaFa(P, A){
    calculate the primitive root g of P
    calculate g^i \% P (1 \le i \le P-1) to generate the list exponent_to_remainder and remainder_to_ exponent
    initial the coefficient sequence B: B<sub>0</sub>, B<sub>1</sub>, B<sub>2</sub>...B<sub>P-1</sub> to 0
    for k = 1 to n{
         \in \leftarrow get exponent from A<sub>k</sub>%P according the list remainder_to_ exponent
         B_{e} \leftarrow B_{e} + 1
    C_2...C_{2P-2} \leftarrow Polynomial\_Multiplication(B_1, B_2...B_{P-1})
    initial the coefficient sequence S: S<sub>0</sub>, S<sub>1</sub>, S<sub>2</sub>...S<sub>P-1</sub> to 0
    for e = 2 to 2P - 2{
         r \leftarrow get remainder from e%(P-1) according the list exponent_to_remainder
        S_r \leftarrow S_r + C_e
    calculate S<sub>0</sub>
    return S
```

Polynomial Multiplication

Theorem. Can multiply two degree n-1 polynomials in $O(n \log n)$ steps.

pad with 0s to make n a power of 2

FFT Pseudo-code

```
input: n, a_0, a_1,..., a_{n-1} (n = 2<sup>k</sup> (k = 0,1,2...) you can check n & (n - 1) == 0)
output: y_0, y_1, ..., y_{n-1}
FFT(n, a_0, a_1, ..., a_{n-1}) {
     if (n == 1) return a_0
          (e_0, e_1, ..., e_{\frac{n}{2}-1}) \le FFT(n/2, a_0, a_2, ..., a_{n-2})
          (d_0, d_1, ..., d_{\frac{n}{2}-1}) \le FFT(n/2, a_1, a_3, ..., a_{n-1})
          for k = 0 to n/2 - 1 {
               \omega^k = e^{-2\pi i k/n} //When you write your code, you can use:\omega^k = \cos(-\frac{2\pi k}{n}) + i\sin(-\frac{2\pi k}{n})
               y_k = e_k + \omega^{k*} d_k
               y_{k+\frac{n}{2}} = e_k - \omega^{k*} d_k
   return (y_0, y_1, ..., y_{n-1})
```

IFFT Pseudo-code

```
input: n, a_0, a_1,..., a_{n-1} (n = 2<sup>k</sup> (k = 0,1,2...) you can check n & (n - 1) == 0)
output: y_0, y_1, ..., y_{n-1}
IFFT(n, a_0, a_1,..., a_{n-1}) {
     if (n == 1) return a0
          (e_0, e_1, ..., e_{\frac{n}{2}-1}) \le |FFT(n/2, a_0, a_2, ..., a_{n-2})|
          (d_0, d_1, ..., d_{\frac{n}{2}-1}) \le IFFT(n/2, a_1, a_3, ..., a_{n-1})
          for k = 0 to n/2 - 1 {
               \omega^k = e^{2\pi i k/n} // When you write your code, you can use:\omega^k = \cos(\frac{2\pi k}{n}) + i\sin(\frac{2\pi k}{n})
               y_k = (e_k + \omega^{k*} d_k) / n
               y_{k+\frac{n}{2}} = (e_k - \omega^{k*} d_k)/n
  } return (y_0, y_1, ..., y_{n-1})
```