OIP	E JC/3
JAN 1	3 5004
SATENT & TI	ADEMAND TO A

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

in re Application of:)	
	:	Examiner: Unassigned
Yasunari WATANABE, et al.)	
	:	Group Art Unit: Unassigned
Application No.: 10/685,465)	
T'' 1 0 1 1 1 0 000	:	
Filed: October 16, 2003)	
Earl IMACE ECOMINIC ADDADATHS	:	Ianuam, 12, 2004
For: IMAGE FORMING APPARATUS)	January 13, 2004
HAVING CHARGING MEANS AND	:	
DEVELOPING AGENT CHARGING)	
MEANS	:	

Commissioner for Patents Post Office Box 1450 Alexandria, VA 22313-1450

SUBMISSION OF PRIORITY DOCUMENTS

Sir:

In support of Applicants' claim for priority under 35 U.S.C. § 119, enclosed is a certified copy of the following foreign applications:

2002-318859, filed October 31, 2002; and

2003-348457, filed October 7, 2003.

Applicants' undersigned attorney may be reached in our Washington, D.C. office by telephone at (202) 530-1010. All correspondence should continue to be directed to our New York office at the address given below.

Respectfully submitted,

Attorney for Applicants William M. Wannisky

Registration No. 28,373

FITZPATRICK, CELLA, HARPER & SCINTO 30 Rockefeller Plaza
New York, New York 10112-3801

Facsimile: (212) 218-2200

WMW\tas

DC_MAIN 155069v1

US

日本国特許 JAPAN PATENT OFFICE

Yasunari WATANABE, etal. Appin. No. 10/685,465 Filed 10/16/03 GAV Unassigned

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2002年10月31日

出 願 番 号 Application Number:

特願2002-318859

[ST. 10/C]:

[JP2002-318859]

出 願 人 Applicant(s):

キヤノン株式会社

2003年11月18日

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】 特許願

【整理番号】 4820006

【提出日】 平成14年10月31日

【あて先】 特許庁長官殿

【国際特許分類】 G03G 21/00

【発明の名称】 画像形成装置

【請求項の数】 3

【発明者】

【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会

社内

【氏名】 渡邉 泰成

【特許出願人】

【識別番号】 000001007

【氏名又は名称】 キヤノン株式会社

【代表者】 御手洗 富士夫

【代理人】

【識別番号】 100075638

【弁理士】

【氏名又は名称】 倉橋 暎

【手数料の表示】

【予納台帳番号】 009128

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9703884

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 画像形成装置

【特許請求の範囲】

【請求項1】 像担持体と、該像担持体面を帯電する帯電手段と、帯電処理された前記像担持体に静電潜像を形成する手段と、現像剤を供給して前記静電潜像を可視化する現像手段と、可視化した現像剤像を転写媒体に転写する転写手段と、該転写手段より前記像担持体回転方向下流側且つ前記帯電手段より同方向上流側に位置し、電圧が印加されて前記像担持体上に残留する残留現像剤を帯電する現像剤帯電量制御手段と、前記帯電手段に、交流電圧を含む電圧を印加する手段と、を有する画像形成装置において、

画像形成動作開始時に、前記現像剤帯電量制御手段に電圧が印加される前記像 担持体面上のタイミングより前に、前記帯電手段に交流電圧が印加されており、

画像形成動作終了時に、前記現像剤帯電量制御手段への電圧印加が終了した前記像担持体面上のタイミングより後に、前記帯電手段への交流電圧印加を終了することを特徴とする画像形成装置。

【請求項2】 前記帯電手段は、前記像担持体に接触することによって前記像担持体表面を帯電する接触帯電方式を採用することを特徴とする請求項1の画像形成装置。

【請求項3】 前記現像剤帯電量制御手段は、導電性のブラシ状部材を有することを特徴とする請求項1又は2に記載の画像形成装置。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1\]$

【発明の属する技術分野】

本発明は、クリーナレスの転写方式画像形成装置に関する。より詳しくは、転写工程後の像担持体上に残余する現像剤(トナー)を現像装置において現像同時クリーニングで像担持体上から除去・回収し再利用するようにしてクリーニング装置を廃したクリーナレス方式の画像形成装置に関する。

[0002]

【従来の技術】

従来、転写型の電子写真方式又は静電記録方式を用いた複写機・プリンタ・ファクシミリ等の画像形成装置が知られている。電子写真方式の画像形成装置に関しては、画像形成装置は、回転ドラム型を一般的とする像担持体である感光体、その感光体を所定の極性・電位に一様に帯電処理する帯電手段(帯電工程)、静電潜像形成手段、即ち、帯電処理された感光体に静電潜像を形成する露光手段(露光工程)、感光体上に形成された静電潜像を現像剤(トナー)により顕像化し感光体上に現像剤像(トナー像)を形成する現像手段(現像工程)、上記トナー像を感光体表面から転写媒体である紙等の転写材に転写する転写手段(転写工程)、転写工程後の感光体上に多少ながら残留するトナーを除去し、感光体表面を清掃するクリーニング手段(クリーニング工程)、転写材上のトナー画像を定着させる定着手段(定着工程)等から構成されている。感光体は、これらによる帯電・露光・現像・転写・クリーニングから構成される画像形成プロセスにおいて、繰り返し用いられる。

[0003]

トナー像が転写材に転写された後に、感光体上に残留するトナーは、クリーニング手段としてのクリーニング装置により感光体表面から除去される。除去されたトナーは、クリーニング装置内に回収される。回収されたトナーは、廃トナーとして、クリーニング装置内に溜まる。しかし、廃トナーは、環境保全や資源の有効利用等の点から、なるべく発生しないことが望ましい。

$[0\ 0\ 0\ 4\]$

そこで、クリーニング装置内に回収されている廃トナーを現像手段に戻し、現 像手段で再利用する画像形成装置が知られている。

[0005]

こうした画像形成装置であって、更に、クリーニング装置を廃した、クリーナレス方式の画像形成装置が知られている。クリーナレス方式の画像形成装置は、転写工程後に、感光体上に残留しているトナーを、現像手段により除去し、除去したトナーは、現像手段内に回収され、現像手段内で再利用される。

[0006]

そして、こうした感光体上に残留しているトナーをクリーニングする動作を、

クリーナレス方式の画像形成装置では、現像手段によって静電潜像を現像すると 同時に行う、いわゆる現像同時クリーニングを実施している。

[0007]

現像同時クリーニングは、残留トナー、即ち、転写手段により転写されずに感 光体上に留まっている転写残現像剤(転写残トナー)を、次工程以降の現像工程 時に、現像手段に回収する方法である。

[0008]

即ち、トナーが残留した感光体は、引き続き帯電手段により帯電され、露光手段により感光体表面に静電潜像が形成され、現像手段により静電潜像が現像される。そして、現像手段により静電潜像が現像されると同時に、現像されずにそのまま感光体上に残留しているトナーのうち非露光部のトナーは、かぶりを取るためのバイアス、即ち現像手段に印加する直流電圧と感光体の表面電位間の電位差であるかぶり取り電位差Vbackによって、現像手段に回収される。

[0009]

この方法によれば、残留トナーは現像手段に回収され、その後の現像工程に利用される。そのため、廃トナーが生じなくなり、廃トナーを回収するためのメンテナンスに手を煩わさせることも少なくなる。又、クリーニング装置が必要ないため、画像形成装置の小型化にも有利である。

[0010]

しかし、帯電手段が、感光体表面に接触して感光体を帯電する接触帯電方式を とる帯電手段である場合においても、感光体上の転写残トナーが、感光体と接触 帯電手段との接触ニップ部(帯電部)を通過するときに、残留トナーのうち、特 にトナーの正規極性とは逆極性の電荷をもったトナー(反転トナー)が接触帯電 手段に付着する。そのため、接触帯電手段が許容以上にトナーに汚染されてしま い、帯電手段が感光体を十分に帯電することができなくなる。

$[0\ 0\ 1\ 1]$

上述のようなクリーナレス方式の画像形成装置において、帯電手段が接触帯電 手段である場合、帯電手段への残留トナーが付着することを防止するとともに、 現像手段が残留トナーを効率的に回収することで、帯電不良や画像不良がなく、 しかもクリーナレス方式のメリットを生かした画像形成装置が提案されている (例えば、特許文献1参照)。

[0012]

この画像形成装置においては、転写手段より感光体回転方向の下流且つ上記静電潜像を形成するための帯電手段より上流に位置し、感光体上の残留現像剤を帯電する第一の現像剤帯電量制御手段と、第一の現像剤帯電量制御手段より下流且つ帯電手段より上流に位置し、感光体上の残留現像剤を引き続いて帯電する第二の現像剤帯電量制御手段と、を有す。

[0013]

そして、第一の現像剤帯電量制御手段は、残留現像剤、即ち、転写装置により 転写されずに感光体上に留まる現像剤を、現像剤(トナー)の正規極性とは逆の 極性に帯電する。次に、第二の現像剤帯電量制御手段は、現像剤(トナー)の正 規極性とは逆の極性に帯電された残留現像剤を正規極性に帯電する。その後、帯 電手段は感光体を帯電し、同時に残留現像剤を均一適正に帯電する。

[0014]

これによって、転写残トナーが帯電手段へ付着することが防止され、現像手段が残留現像剤を効率的に回収するため、帯電不良や画像不良がなく、しかもクリーナレス方式のメリットを生かした画像形成装置を提供できる。

[0015]

【特許文献1】

特開2001-215798号公報

$[0\ 0\ 1\ 6]$

【発明が解決しようとする課題】

しかしながら、第一又は第二の現像剤帯電量制御手段を感光体に当接させている場合、多少ながらもトナーが現像剤帯電量制御手段と感光体とのニップに残留してしまうことがある。この残留しているトナーは現像剤帯電量制御手段へバイアスを印加した瞬間やバイアス印加をやめた瞬間に、感光体と現像剤帯電量制御手段とのニップにとどまっている力を失い、感光体上に移り不良画像の原因となってしまう。

[0017]

~ \

又、画像形成動作開始時や終了時は、感光体上の帯電電位は不安定であり、予測可能な電位状態にならない。特に現像手段に接触現像などを用いている場合、例え現像手段への電源供給をなしにしても、感光体の電位によっては感光体にトナーが付着したり、又、二成分現像方式を用いた場合においては、キャリアが感光体の電位によって感光体に付着したりしてしまい、不良画像の原因となってしまう。

[0018]

従って、本発明の目的は、クリーナレスシステムを採用する画像形成装置において、像担持体や帯電手段等の現像剤の付着を防止し、帯電手段による像担持体の帯電電位を安定化させ、不良画像を回避し、長期に渡り高画質を維持することが可能な画像形成装置を提供することである。

[0019]

【課題を解決するための手段】

上記目的は本発明に係る画像形成装置にて達成される。要約すれば、本発明は、像担持体と、該像担持体面を帯電する帯電手段と、帯電処理された前記像担持体に静電潜像を形成する手段と、現像剤を供給して前記静電潜像を可視化する現像手段と、可視化した現像剤像を転写媒体に転写する転写手段と、該転写手段より前記像担持体回転方向下流側且つ前記帯電手段より同方向上流側に位置し、電圧が印加されて前記像担持体上に残留する残留現像剤を帯電する現像剤帯電量制御手段と、前記帯電手段に、交流電圧を含む電圧を印加する手段と、を有する画像形成装置において、

画像形成動作開始時に、前記現像剤帯電量制御手段に電圧が印加される前記像 担持体面上のタイミングより前に、前記帯電手段に交流電圧が印加されており、

画像形成動作終了時に、前記現像剤帯電量制御手段への電圧印加が終了した前記像担持体面上のタイミングより後に、前記帯電手段への交流電圧印加を終了することを特徴とする画像形成装置を提供する。

[0020]

【発明の実施の形態】

以下、本発明に係る画像形成装置を図面に則して更に詳しく説明する。

[0021]

実施例1

図1は本発明に係る画像形成装置例の概略構成図である。本実施例の画像形成装置は、転写式電子写真プロセス利用、接触帯電方式、反転現像方式、現像手段である現像装置で現像同時クリーニングを行なうクリーナレスシステム、最大通紙サイズがA3サイズのレーザビームプリンタである。

[0022]

まず、本実施例の画像形成装置であるプリンタの全体的概略構成を説明する。

[0023]

a)像担持体:像担持体として、回転ドラム型の電子写真感光体1(以下、「感光体ドラム」と称す。)が設けられている。この感光体ドラム1は、負帯電性の有機光導電体(OPC)ドラムで、外径50mmであり、中心支軸を中心に100mm/secのプロセススピード(周速度)をもって矢示の反時計方向に回転駆動する。

[0024]

感光体ドラム 1 は、図 2 に示す層構成模型図のように、アルミニウム製シリンダ(導電性ドラム基体) 1 a の表面に、光の干渉を抑え、上層の接着性を向上させる下引き層 1 b と、光電荷発生層 1 c と、厚さ 1 t 1 m の電荷輸送層 1 d の 1 を下から順に塗り重ねた構成をしている。

[0025]

b) 帯電手段:感光体ドラム1の外周面を所定の極性・電位に一様に帯電する 帯電手段2として、本実施例では接触帯電方式を採用し、接触帯電部材としての ローラ帯電器(以下、「帯電ローラ」と称す。)が設けられている。この帯電ロ ーラ2に、所定の条件の電圧が印加されて、感光体ドラム1の面上が一様に負極 性に帯電処理される。感光体ドラム1と帯電ローラ2との圧接部aが帯電部(帯 電ニップ部)となる。

[0026]

又、帯電ローラ2の感光体ドラム1面上を帯電する長手長さは320mmであ

り、図2の層構成模型図に示すように、芯金(支持部材)2aの外回りに、下層2bと、中間層2cと、表層2dを下から順次に積層した3層構成である。下層2bは帯電音を低減するための発泡スポンジ層であり、中間層2cは帯電ローラ2全体として均一な抵抗を得るための導電層であり、表層2dは感光体ドラム1上にピンホール等の欠陥があってもリークが発生するのを防止するために設けている保護層である。より具体的には本例の帯電ローラ2の仕様は下記のとおりである。

[0027]

芯金2a;直径6mmのステンレス丸棒

下層 2b ;カーボン分散の発泡EPDM、比重 $0.5g/cm^3$ 、体積抵抗値 $10^3\Omega$ cm、層厚 3.0mm、長さ 320mm

中間層 2~c ;カーボン分散のNBR系ゴム、体積抵抗値 $1~0^3\Omega~c$ m、層厚 $7~0~0~\mu$ m

表層 2 d;フッ素化合物のトレジン樹脂に酸化錫、カーボンを分散、体積抵抗値 1 0 8 Ω c m、表面粗さ(JIS規格 1 0 点平均表面粗さ R a) 1 . 5 μ m 、層厚 1 0 μ m

の帯電ローラ2は、芯金2aの両端部をそれぞれ軸受け部材により回転自在に保持させると共に押し圧ばね2eによって感光体ドラム1方向に付勢して感光体ドラム1の表面に対して所定の押圧力をもって圧接させており、感光体ドラム1の回転に従動して回転する。

[0028]

そして、電源S1から直流電圧に所定の周波数の交流電圧を重畳した所定の振動電圧が芯金2aを介して帯電ローラ2に印加されることで、回転する感光体ドラム1の周面が所定の電位に帯電処理される。

[0029]

c) 露光手段:帯電処理された感光体ドラム1の面に静電潜像を形成する露光手段3として、本実施例はレーザスキャナを用いている。レーザスキャナ3によって、不図示の画像読み取り装置等のホスト装置からプリンタ側に送られた画像信号に対応して変調されたレーザ光を出力して回転している感光体ドラム1の一

様帯電処理面を露光位置 b においてレーザ走査露光L (イメージ露光) する。このレーザ走査露光Lにより感光体ドラム1面のレーザ光で照射されたところの電位が低下することで、回転感光体ドラム1面には走査露光した画像情報に対応した静電潜像が順次に形成されていく。

[0030]

d) 現像手段:感光体ドラム1上の静電潜像に現像剤(トナー)を供給し静電 潜像を可視化する現像手段4として、本例は二成分磁気ブラシ現像方式の反転現 像装置が用いられている。

[0031]

現像装置 4 は、現像容器 4 a、非磁性の現像スリーブ 4 b を有し、現像スリーブ 4 b は、その外周面の一部を外部に露呈させて現像容器 4 a 内に回転可能に配設してある。現像スリーブ 4 b 内には、非回転に固定して挿設したマグネットローラ 4 c が設けられている。又、現像剤コーティングブレード 4 d、現像容器 4 a に収容した二成分現像剤 4 e、は現像容器 4 a 内の底部側に配設した現像剤攪拌部材 4 f、補給用トナーを収容させたトナーホッパー 4 g が設けられている。

[0032]

そして、現像容器 4 a 内の二成分現像剤 4 e はトナーと磁性キャリアの混合物であり、現像剤攪拌部材 4 f により攪拌される。本実施例において磁性キャリアの抵抗は約 1 0 13 Ω c m、粒径は約 4 0 μ mである。トナーは磁性キャリアとの摺擦により負極性に摩擦帯電される(ネガトナー)。

[0033]

現像スリーブ4 b は、感光体ドラム 1 との最近接距離(S – D g a p と称する)を350μmに保たせて感光体ドラム1に近接させて対向配設してある。感光体ドラム1と現像スリーブ4 a との対向部が現像動作が行われる現像部 c である

[0034]

現像スリーブ4bは現像部 c において、感光体ドラム1の進行方向とは逆方向に回転駆動する。現像スリーブ4bの外周面に該スリーブ4b内のマグネットローラ4cの磁力により、現像容器4a内の二成分現像剤4eの一部が磁気ブラシ

層として吸着保持され、スリーブ4bの回転に伴い回転搬送され、現像剤コーティングブレード4dにより所定の薄層に整層され、現像部cにおいて感光体ドラム1の面に対して接触して感光体ドラム1面を適度に摺擦する。現像スリーブ4bには電源S2から所定の現像バイアスが印加される。

[0035]

而して、回転する現像スリーブ4bの面に薄層としてコーティングされ、現像部 c に搬送された現像剤4e中のトナー分が現像バイアスによる電界によって感光体ドラム1面に静電潜像に対応して選択的に付着することで静電潜像が現像剤像(トナー像)として現像される。本実施例の場合は感光体ドラム1面の露光明部にトナーが付着して静電潜像が反転現像され、感光体ドラム1表面にはトナー像が形成される。

[0036]

現像部 c を通過した現像スリーブ 4 b 上の現像剤薄層は引き続く現像スリーブ 4 b の回転に伴い現像容器 4 a 内の現像剤溜り部に戻される。

[0037]

現像容器 4 a 内の二成分現像剤 4 e のトナー濃度を所定の略一定範囲内に維持させるために、現像容器 4 a 内の二成分現像剤 4 e のトナー濃度が不図示の、例えば光学式トナー濃度センサーによって検知され、その検知情報に応じてトナーホッパー 4 g が駆動制御されて、トナーホッパー 4 g 内のトナーが現像容器 4 a 内の二成分現像剤 4 e に補給される。二成分現像剤 4 e に補給されたトナーは攪拌部材 4 f により攪拌される。

[0038]

e) 転写手段・定着手段:転写手段として、本実施例では転写ローラ5が用いられている。転写ローラ5は、感光体ドラム1に所定の押圧力をもって圧接させてあり、その圧接ニップ部が転写部dである。この転写部dに不図示の給紙機構部から所定の制御タイミングにて本実施例の転写媒体としての記録材(転写材)Pが給送される。

[0039]

転写部 d に給送された転写材 P は回転する感光体ドラム 1 と転写ローラ 5 の間

に挟持されて搬送され、その間、転写ローラ5に電源S3からトナーの正規帯電極性である負極性とは逆極性である正極性の転写バイアスが印加されることで、転写部dを挟持搬送されていく転写材Pの面に感光体ドラム1面側のトナー像が順次に静電転写されていく。

[0040]

転写部 d を通り、トナー像の転写を受けた記録材 P は回転する感光体ドラム 1 面から順次に分離されて定着手段 6 (例えば熱ローラ定着器) へ搬送され、トナー像の定着処理を受けて画像形成物 (プリント、コピー) として出力される。

[0041]

以上に説明した、a)像担持体、b)帯電手段、c)露光手段、d)現像手段、e)転写手段、定着手段によって、転写材P上に画像が形成され、機外に排出される。

[0042]

こうした画像形成動作を行う本実施例の画像形成装置(プリンタ)において、クリーナレスシステム即ち転写残現像剤(転写残トナー)の現像同時クリーニングが実施されており、転写材 P に対するトナー像転写後の感光体ドラム 1 面に若干量残留する転写残現像剤(転写残トナー)を除去する専用のクリーニング装置は具備させていない。

[0043]

転写後の感光体ドラム1面上の転写残トナーは、引き続く感光体ドラム1の回転に伴い帯電部a、露光部bを通って現像部cに持ち運ばれて、現像装置4により現像同時クリーニング(回収)される。

$[0\ 0\ 4\ 4\]$

上記d)に記載したように、現像装置4の現像スリーブ4bと感光体ドラム1との最近接距離(S-Dgap)は350μmであり、この距離を保つことで現像スリーブ4b上に形成された磁気ブラシが感光体ドラム1表面と適度に摺擦し現像同時回収が行なわれる。又、現像装置4においては、回収に有利であるように、現像部cにおいて現像スリーブ4bと感光体ドラム1との進行方向は逆方向、つまり現像スリーブ4bが感光体ドラム1に対してカウンター方向に回転して

いる。

[0045]

感光体ドラム1面上の転写残トナーは露光部bを通るので、露光工程はその転写残トナー上からなされるが、転写残トナーの量は少ないため、大きな影響は現れない。

[0046]

ただ、転写工程後の感光体ドラム1面上の転写残トナーには、画像部の負極性トナー、非画像部の正極性トナー、転写の正極性の電圧に影響され、極性が正極性に反転してしまったトナーが含まれる。

[0047]

それらの反転トナーや帯電量が少ないトナーが帯電部 a を通過する際に、帯電ローラ 2 に付着することで帯電ローラ 2 が許容以上にトナー汚染して帯電不良を生じることがある。

[0048]

一方、感光体ドラム1面上の転写残トナーの現像装置4による現像同時クリーニングを効果的に行なわせるためには、現像部cに持ち運ばれる感光体ドラム1上の転写残トナーの帯電極性が正規極性であり、且つその帯電量が現像装置4によって感光体ドラム1の静電潜像を現像できるトナーの帯電量であることが必要である。反転トナーや帯電量が適切でないトナーについては感光体ドラム1上から現像装置4に除去・回収できず、不良画像の原因となってしまう。

[0049]

そこで本実施例においては、転写部 d よりも感光体ドラム1回転方向下流側で 帯電部 a よりも上流側の位置に、感光体ドラム1上の転写残トナーを均一化し、 転写残トナーの帯電極性を正規極性である負極性に揃えるために、第一の現像剤 (トナー) 帯電量制御手段7、及び感光体ドラム1回転方向にてその下流の第二 のトナー帯電量制御手段8を設けている。

[0050]

本実施例では、第一のトナー帯電量制御手段7と第二のトナー帯電量制御手段 8は、適度の導電性を持ったブラシ状部材であり、ブラシ部7a、8aを感光体 ドラム1面に接触させて配設してある。

[0051]

第一のトナー帯電量制御手段7は正極性の電圧が電源S4より印加されており、第二のトナー帯電量制御手段8は負極性の電圧が電源S5より印加されている

[0052]

第一のトナー帯電量制御手段7と感光体ドラム1面の接触部eにて、様々の極性である転写残トナーのうち、ゼロもしくは負極性に帯電されているトナーは、一旦この第一のトナー帯電量制御手段7に吸引される。ここで第一のトナー帯電量制御手段7が抱え得るトナー量には限界があるため、飽和状態に達した後は徐々にトナーが離脱して感光体面に付着して搬送されるが、その時のトナーの極性は正になる。ここで、トナーの分布は均一化されるのである。

[0053]

次いで、第二のトナー帯電量制御手段8と感光体ドラム1面の接触部fにおいて、第二のトナー帯電量制御手段8を通過する感光体ドラム1上の転写残トナーはその帯電極性が正規極性である負極性に揃えられる。第一のトナー帯電量制御手段7で、トナーは正極性に揃えられているため、より効果的に負極性に揃えられる。この第二のトナー帯電量制御手段8で、転写残トナーの帯電極性を正規極性である負極性に揃えることにより、更に下流に位置する帯電部aで、転写残トナーの上から感光体ドラム1面上を帯電処理する際に、感光体ドラム1への鏡映力が大きくし、転写残トナーの帯電ローラ2への付着を防止する。

[0054]

上述したのが、本クリーナレスシステムの画像形成装置が定常状態での作動している時のメカニズムである。

[0055]

しかしながら、画像形成装置が動作開始時や終了時といった定常状態ではない 状況下においては、従来例に前記した、以下に説明する、主に2点の問題(1) 、(2)が生じてしまう。

[0056]

(1)第一や第二のトナー帯電量制御手段 7、8に多少ながらも物理的な力等で付着しているトナーは、画像形成装置が動作し始める時に、感光体ドラム 1上へ吐き出されてしまう。このように第一、第二のトナー帯電量制御手段 7、8より感光体ドラム 1上に吐き出されたトナーは、帯電量はコントロールされていないため、帯電ローラ 2への付着や汚染を招き、不良画像を発生させてしまう。

[0057]

(2)第一や第二のトナー帯電量制御手段7、8は、感光体ドラム1外周面上の帯電電位に影響を与えているため、感光体ドラム1上の帯電電位は不安定であり、予測可能な電位状態にはなく、また微小な電位ムラの形成も考えられる。特に、本実施例のように現像装置4に接触現像等を採用している場合、感光体ドラム1面を帯電ローラ2で適正に帯電処理を行われていない状態で現像装置4に突入すると、例え現像装置4への電源供給をしなくとも、感光体ドラム1の電位によっては現像剤が付着したり、キャリアが感光体の電位に対し付着したりしてしまい、不良画像の原因となってしまう。

[0058]

ここで、上記(1)の課題に係る、本実施例における帯電ローラ2へのトナー 付着と帯電ローラ2へのバイアスの関係について述べる。

[0059]

これまでに検討されたトナー帯電量制御手段に付着したトナーのトナー吐き出し防止方法より、トナー帯電量制御手段からの付着トナーのトナー吐き出しをコントロールできる。

[0060]

具体的には、トナー帯電量制御手段 7、8にバイアスを印加する際、DCバイアスの印加傾きの絶対値が 2000V/秒以上とすると、トナーは吐き出される。この方法により感光体ドラム 1 上に吐き出されたトナーが、帯電ローラ 2 へのトナー付着状態と、電源 S 1 より印加される帯電ローラ 2 印加バイアスと、の関係を表 1 に示す。本実施例では、帯電ローラ 2 に直流電圧を印加した時の感光体ドラム 1 への放電開始電圧 V t h は 500Vであり、交流電圧の場合は、V t h の 2 倍以下のピーク間電圧即 5100V以下が未放電電圧である。

【表 1 】

電源S1によ	るバイアス	
交流電圧(ピーク間電圧)	直流電圧	帯電ローラ2汚れ
1000V(放電領域)	OV	発生なし。
400V(未放電領域)	OV	発生なし。
OV	400V(未放電領域)	発生
O V	1000V(放電領域)	発生
OV	OV	発生

[0062]

電源S1に印加するバイアスが交流電圧のみであり、直流成分を重畳させないとき、そのピーク電圧値が1000Vの時には、一旦は帯電ローラ2に付着するものの、帯電ローラ2が2周以上回転すると、感光体ドラム1へ戻っていく。よって、帯電ローラ2は汚れない。又、交流電圧のピーク電圧が400Vの時も、一旦は帯電ローラ2に付着するものの、帯電ローラ2が2周以上回転すると、感光体ドラム1へ戻っていく。ただし、放電領域で交流電圧が印加されている時よりは、感光体に戻っていく量は少ない。

[0063]

一方、電源S1に印加するバイアスが直流電圧のみの時は、放電領域か未放電 領域か関わらず帯電ローラ2汚れは発生した。

$[0\ 0\ 6\ 4]$

以上のように、帯電ローラ2が汚れる危険性があるとき、即ちトナー帯電量制御手段7、8へのバイアス供給が開始される時や終了する時において、帯電ローラ2へ印加するバイアスを交流電圧とすることで、帯電ローラ汚れを抑止することができる。

[0065]

又、上記(2)の課題に係る、トナー帯電量制御手段7、8にバイアスが印加されている時の、帯電ローラ2へのバイアス印加状態と感光体ドラム1上の帯電電位の状態の関係を表2に示す。

[0066]

【表2】

電源S1によ	るバイアス	
交流電圧(ピーク間電圧)	直流電圧	感光体ドラム1上の帯電電位の状態
1000V(放電領域)	OV	OVに安定する
400V(未放電領域)	OV	不安定
OV	400V(未放電領域)	不安定
OV	1000V(放電領域)	500%に安定する。
O V	OV	不安定

[0067]

表2より、帯電ローラ2に電圧が印加されないか、印加された電圧が未放電領域かそれより低い交流電圧又は直流電圧であるときに、感光体ドラム1上の帯電電位が安定しないことがわかる。

[0068]

第一や第二のトナー帯電量制御手段 7、8は、感光体ドラム 1 外周面上の帯電電位に影響を与えているため、感光体ドラム 1 上の帯電電位は不安定であり、予測可能な電位状態にはなく、また微小な電位ムラの形成も考えられる。よって、帯電ローラ 2 に未放電領域の電圧が印加された場合、帯電ローラ 2 通過後の感光体ドラム 1 上の電位も不安定である。

[0069]

放電領域の直流電圧を印加した場合、感光体ドラム1上の電位は印加バイアスと放電開始電圧の差分の電位として安定し、放電領域のピーク間電圧の交流電圧を印加した場合は、感光体ドラム1上電位は直流電圧成分の値として安定し、予測可能な電位状態とすることができる。

[0070]

よって、帯電ローラ2へいずれかのバイアスを最初に印加することによって、 感光体ドラム1への帯電電位を調整し、安定化させることができる。そして、適 正に帯電処理を行われていない状態で現像装置4に突入することはなく、例え現 像装置4への電源供給をなしにしても、感光体ドラム1の電位によっては現像剤 が付着したり、キャリアが感光体ドラム1の電位によっては付着したりしてしま う現象を防止できるのである。

[0071]

以上のことから、帯電ローラ2汚れと帯電ローラ2通過後の感光体ドラム1電位の問題について両方の問題も未然に防ぐという観点から、画像形成装置の動作開始時に帯電ローラ2の交流電圧を最初に印加することが良く、画像形成装置の停止動作時における、帯電ローラ2の交流電圧を終了するタイミングを、トナー帯電量制御手段7、8からトナーが吐き出される危険がある画像形成終了時のタイミングより後の方が良いのである。

[0072]

このことを考慮して、本実施例の帯電ローラ2への印加バイアスのタイミングとトナー帯電量制御手段7、8への印加バイアスのタイミングを示したのが、図3である。図3においては、感光体ドラム1面上のある地点が、帯電ローラ2を通過するタイミングで表記してある。よって、絶対時間でのタイミングとは異なる。

[0073]

図中A~Fは感光体ドラム1上のある地点を示すものである。少なくとも帯電交流電圧が印加される点Aは、トナー帯電量制御手段バイアスが印加される点Bより前であり、又、帯電直流電圧が印加される点は、図中のように必ずしもトナー帯電量制御手段7、8と同時でなくても良い。点Bの後の点CからDは印字動作区間であり、前記したように本システムは定常状態にある。点D以降は停止動作であり、少なくとも帯電交流電圧が終了する点Fは、トナー帯電量制御手段7、8に印加されていたバイアスが終了した感光体ドラム1上の地点Eより後である。ここでも、帯電直流電圧の印加が終了される点は図中のように必ずしもトナー帯電量制御手段7、8と同時でなくても良い。よって感光体ドラム1の回転動作の停止は点F以降となる。

[0074]

つまり、図3に示すように、上記に説明した感光体ドラム1上に静電潜像を形成して転写材Pに画像を形成する一連の画像形成動作の動作開始前に、帯電ローラ2に交流バイアスを最初に印加し、次に帯電ローラ2への直流電圧やトナー帯電量制御手段7、8へのバイアスを印加し、画像形成動作終了後に帯電ローラ2

【要約】

【課題】 クリーナレスシステムを採用する画像形成装置において、像担持体や 帯電手段等の現像剤剤の付着を防止して、それによる不良画像を回避し、長期に 渡り高画質を維持することが可能な画像形成装置を提供する。

【解決手段】 転写手段5より像担持体1回転方向下流側且つ帯電手段2より同方向上流側に位置し、像担持体1上に残留する残留現像剤を帯電する現像剤帯電量制御手段7、8と、帯電手段2に、交流電圧を含む電圧を印加する手段S1と、を有する画像形成装置において、画像形成動作開始時に、現像剤帯電量制御手段7、8に電圧が印加される像担持体1面上のタイミングより前に、帯電手段2に交流電圧が印加されおり、画像形成動作終了時に、現像剤帯電量制御手段7、8に電圧印加が終了した像担持体面1上のタイミングより後に、帯電手段2に交流電圧印加を終了する。

【選択図】 図1

特願2002-318859

出願人履歴情報

識別番号

[000001007]

1. 変更年月日

1990年 8月30日

[変更理由]

新規登録

住 所

東京都大田区下丸子3丁目30番2号

氏 名 キヤノン株式会社

への直流電圧やトナー帯電量制御手段 7、8へのバイアス印加を終了し、最後に 交流バイアス印加を終了することで、トナー帯電量制御手段 7、8からのトナー 吐き出しによる帯電ローラ 2 汚れを防止し、且つ、そのバイアスを放電領域以上 にすることによって、感光体ドラム 1 への帯電を安定にさせることができる。

[0075]

以上のことから、本実施例のようなクリーナレスシステムを採用する画像形成装置において、画像形成開始前のトナー帯電量制御手段へのバイアス印加前に帯電手段に交流電圧を印加し、該交流電圧の印加を終了するのは、画像形成終了後でトナー帯電量制御手段へのバイアス印加を終了後にすることで、帯電手段における現像剤の付着や像担持体の帯電不良による画像不良を防止できる。

[0076]

以上に説明した画像形成装置の構成部品の寸法、材質、形状、及びその相対位置などは、特に特定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。

[0077]

尚、本実施例においては、像担持体からトナー像が転写される転写媒体を転写材として、像担持体から転写材へ直接トナー像を転写する画像形成装置について説明したが、転写媒体として中間転写体を用いる画像形成装置の一次転写系においても適用できる。

(0078)

又、現像装置を複数個用いて、複数色のカラー画像を形成するカラー画像形成 装置においても、又、像担持体を複数個設けたインライン方式の画像形成装置に おいても、本発明は適用できることはいうまでもない。

[0079]

【発明の効果】

以上説明したように、本発明の画像形成装置は、転写手段が像担持体上に形成された現像剤像を転写材に転写する転写部より像担持体回転方向下流側且つ帯電工程を行う帯電手段より上流側に位置し、電圧を印加することにより像担持体上に残留する残留現像剤の帯電量を均一化ために帯電する現像剤帯電量制御手段と

、帯電手段に、交流電圧を含む電圧を印加する手段と、を有する画像形成装置に おいて、画像形成動作開始時に、現像剤帯電量制御手段に電圧が印加される像担 持体面上のタイミングより前に、帯電手段に交流電圧が印加されており、画像形 成動作終了時に、現像剤帯電量制御手段に電圧印加が終了した像担持体面上のタ イミングより後に、帯電手段に交流電圧印加を終了することを特徴とするので、 クリーナレスシステムを採用する画像形成装置において、帯電手段の汚れや汚染 を防止し、帯電手段による像担持体の帯電を安定させ、像担持体へのキャリア付 着トナー付着を防止し、不良画像の発生を抑制できる。

【図面の簡単な説明】

【図1】

本発明に係る画像形成装置の一例を示す概略構成図である。

【図2】

本発明に係る帯電手段及び像担持体の一例による接触部分を示す断面図である

【図3】

本発明に係る帯電手段及び現像剤帯電量制御手段のバイアス印加タイミングの 一例を示すタイミングチャートである。

【符号の説明】

1	感光体ドラム(像担持体)
2	帯電ローラ(帯電手段)
3	レーザスキャナ(露光手段)
4	現像装置(現像手段)
5	転写ローラ (転写手段)
7	第一トナー帯電量制御手段(現像剤帯電量制御手段)
8	第二トナー帯電量制御手段(現像剤帯電量制御手段)
S 1	帯電ローラ電源
S 4	第一トナー帯電量制御手段電源
S 5	第二トナー帯電量制御手段電源

【書類名】 図面

【図1】

【図2】

