Adam Krška

Gymnázium a střední odborná škola Mikulov

Obsah

- Cíl Práce
- Současný stav řešené problematiky
 - Proložení dat funkcí
 - Termoelektrický jev
- Secondary States (1988)
 Experiment a Výsledky
 - Popis experimentu
 - Naměřená data
- Diskuze
- Závěr

- vysvětlení metody nejmenších čtverců
- experimentální měření dat termočlánku
- výpočet parametru termočlánku pomocí metody nejmenších čtverců

Aproximace a interpolace

Interpolace

Spojení všech bodů spojitou křivkou.

Aproximace

Hledání předpisu funkce vhodně vyjadřující datové body.

Metoda nejmenších čtverců

- metoda pro nalezení parametrů předpisu funkce
- minimalizace druhých mocnin odchylek dat a funkce

$$S = \sum_{i=1}^{n} (y_i - f(x_i))^2$$

- metody řešení
 - iterativně
 - analyticky

Proložení dat funkcí

Lineární regrese

- speciální případ prokládání dat
- aproximace lineární funkcí
- analytické řešení

- souhrnný název pro více efektů
 - Seebeckův efekt
 - Peltierův efekt
 - Thomsonův efekt
 - Benedickův efekt
- popis spojitosti elektrického napětí a rozdílu teplot

Termočlánky

- spojení dvou druhů kovů
- rozdíl teplot spojů vede k vytvoření napětí
- různé kombinace kovů různé vlastnosti
- standart IEC 584

Popis experimentu

- sestavení vlastního termočlánku typu T
- změření termoelektrického jevu
 - ohřívání a ochlazování konců termočlánku
- \odot stanovení parametru α pro tento termočlánek

Popis experimentu

Výpočet parametru

Závislost termoelektrického napětí při nízkém rozdílu teplot.

$$E = \alpha \Delta T$$

Výpočet parametru

$$a = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2} \quad \Rightarrow \quad \alpha = \frac{\sum_{i=1}^{n} \Delta T_i \cdot E_i}{\sum_{i=1}^{n} (\Delta T_i)^2}$$

Naměřená data

Tabulka dat

i	$\frac{\Delta T}{^{\circ}C}$	$rac{E_1}{mV}$	$rac{E_2}{mV}$	$rac{\overline{E}}{mV}$	$\frac{(\Delta T)^2}{{}^{\circ}C^2}$	$\frac{\Delta T \cdot \overline{E}}{mV^{\circ}C}$
1	80	2,8	2,8	2,8	6 400	224,0
2	75	2,8	2,6	2,7	5625	202,5
3	70	2,6	2,4	2,5	4900	175,0
4	65	2,4	2,2	2,3	4225	149,5
5	60	2,2	2,0	2,1	3 600	126,0
6	55	2,0	2,0	2,0	3025	110,0
7	50	1,8	1,8	1,8	2500	90,0
8	45	1,8	1,6	1,7	2025	76,5
9	40	1,6	1,4	1,5	1 600	60,0
10	35	1,2	1,4	1,3	1225	45,5
11	30	1,2	1,2	1,2	900	36,0
12	25	1,0	1,0	1,0	625	25,0
13	20	1,0	1,0	1,0	400	20,0
				\sum	37 050	1 340,0

Tab.: Naměřená data

Naměřená data

Data v grafu

Naměřená data

Vypočtené parametry

Závislost termoelektrického napětí při nízkém rozdílu teplot.

$$\alpha = 0.036\,2\,\mathrm{mV}{\cdot}\mathrm{C}^{-1}$$

Výpočet parametru

$$R^2=0{,}958\,5=95{,}85\,\%$$

Diskuze

- změřit experiment vícekrát
- použít digitální voltmetr
- provést experiment při zahřívání i ochlazování

- metoda nejmenších čtverců je důležitá v prokládání dat funkcí
- termočlánek dva spolu spojené druhy kovů, na kterých se projevuje termoelektrický jev
- nutno měřit koeficienty pro každou dvojící kovů
- termočlánek typu T: $\alpha = 0.036\,2\,\mathrm{mV\cdot C^{-1}}$
- přesnost našeho měření: $R^2=0.958\,5=95.85\,\%$