DEPARTAMENTO DE INGENIERIA MATEMATICA

SOLUCION EVALUACION DE RECUPERACION 1.

ALGEBRA Y ALGEBRA LINEAL. 520142.

Problema 1. Demuestre que:

1.1) Para
$$A \neq \phi$$
 y $B \neq \phi$, $A \times B = B \times A \iff A = B$. (20 ptos.)

Solución. \Longrightarrow) Primero supongamos que $A \times B = B \times A$ y probemos que A = B.

Si $a \in A$, entonces existe $b \in B$, $(a, b) \in A \times B$, pues $B \neq \phi$ y por definición de producto cartesiano. Luego $(a, b) \in B \times A = A \times B$, por hipótesis, y así $a \in B$. En consecuencia, $A \subseteq B$. (7 ptos.)

Por otro lado, si $b \in B$, entonces existe $a \in A$, $(a,b) \in A \times B$, pues $A \neq \phi$ y por definición de producto cartesiano. Luego $(b,a) \in A \times B = B \times A$, por hipótesis, y así $b \in A$. En consecuencia, $B \subseteq A$ y A = B.

(7 ptos.)

 \iff) Ahora, supongamos que A=B y probemos que $A\times B=B\times A$. $(a,b)\in A\times B$ es equivalente con $a\in A\wedge b\in B$, por definición de producto cartesiano. Luego, $a\in B$ y $b\in A$, pues A=B por hipótesis. Así, euivalentemente $(a,b)\in B\times A$, por definición de producto cartesiano. En consecuencia, $A\times B=B\times A$.

De otra forma, como A = B se tiene que $A \times B = A \times A = A \times B$.

(6 ptos.)

1.2)
$$\forall n \in \mathbb{N}, \quad 10^n + 3 \cdot 4^{n+2} + 5 \text{ es divisible por 9.}$$
 (20 ptos.)

Solución. Sea $S = \{n \in \mathbb{N} : 10^n + 3 \cdot 4^{n+2} + 5 \text{ es divisible por } 9\}.$

i) Si n = 1, se tiene: $10 + .64 + 5 = 207 = 9 \cdot 23$. Luego, $1 \in S$. (5 ptos.)

ii) Supongamos que $k \in S$. Esto es $10^k + 3 \cdot 4^{k+2} + 5 = 9q, q \in \mathbb{Z}$. Entonces.

$$10^{k+1} + 3 \cdot 4^{k+3} + 5 = 10(10^k) + 4 \cdot 3 \cdot 4^{k+2} + 5$$

$$= 10(10^k + 3 \cdot 4^{k+2} + 5) - 10 \cdot 3 \cdot 4^{k+2} - 50 + 4 \cdot 3 \cdot 4^{k+2} + 5$$

$$= 10 \cdot 9 \cdot q + 3 \cdot 4^{k+2}(4 - 10) - 45$$

$$= 10 \cdot 9 \cdot q - 18 \cdot 4^{k+2} - 45$$

$$= 10 \cdot 9 \cdot q - 9(2 \cdot 4^{k+2} - 5)$$

(10 ptos.)

Así, $k+1 \in S$, De i) y ii), $S = \mathbb{N}$, lo que prueba que la propiedad es válida para todo número natural N. (5 ptos.)

Problema 2. Si la suma de tres números en progresión geométrica es 70 y al multiplicar los extremos por 4 y el intermedio por 5 se obtiene una progresión aritmética, entonces encuentre los tres números de la progresión geométrica.

(20 ptos.)

Solución. Sean a, ar y ar^2 los tres números en progresión geométrica. Luego, $a + ar + ar^2 = 70$. (4 ptos.)

Ahora, sean 4a, 5ar y $4ar^2$ los tres términos de la progresión aritmética. Luego, $5ar - 4a = 4ar^2 - 5ar$ de donde se tiene:

$$4ar^2 - 10ar + 4a = 0 \iff r^2 - \frac{5}{2}r + 1 = 0$$

ecuación cuya solución es r=2 o r=1/2.

(8 ptos.)

Si r=2, entonces a+2a+4a=70, de donde a=10 y los números buscados son 10, 20 y 40. (4 ptos.)

Si r=1/2, entonces a+a/2+a/4=70, de donde a=40 y los números buscados son 40, 20 y 10. (4 ptos.)

Tiempo: 50 minutos.

11. 08. 2003.

RAD/FCHH/ACQ/acq.