

Research Internship with RCS@TUM

Implementation of tiny machine learning models on microcontrollers

Philipp van Kempen

Department of Electrical and Computer Engineering, Technical University of Munich (TUM)

24.08.2020 - 25.10.2020

Motivation

- Machine learning in the past vs. today
- Compute-intensive algorithms
- State of the Art: ML/Al on smartphones

• Research topic: ML/AI on microcontrollers

Figure: 2020 Gartner Hype Cycle¹

https://www.gartner.com/smarterwithgartner/5-trends-drive-the-gartner-hype-cycle-for-emerging-technologies-2020/

Goals

- 9 weeks
- Support Electronic System Level (ESL) research group (EDA+RCS)
- Implement reference implementations of TinyML models on STM32 Hardware
- Work based on previous attempts by Alex Hoffman
- Extend toolchain with new features and documentation
- Summarize results at the end of the internship

Steps

Major topics:

- Reading books and web pages
- Toolchain setup and extension
- Training of examples
- Implementation of examples
- Documentation and handover

Figure: Schedule

Reading

- Book by Pete Warden and Daniel Situnayake
- Introduction to Tensorflow Lite for Microcontrollers (TFLM) framework
- Referencing examples located in the Tensorflow source tree
 - Hello World
 - Micro Speech
- Official documentation of Tensorflow (v1.5 and latest)

Figure: TinyML Book²

²https://tinymlbook.com

Toolchain

- Original ARM mBed toolchain used as a reference
- CMake based Initially developed by Konstantin Oblaukhov ³, Improved and extended by Alex Hoffman
- Reference Application: STM3240G-EVAL-TensorFlow-MNIST
- Some workarounds required to fix upstream bugs

(a) STM32F413H-DISCOVERY

(b) STM32F769I-DISCOVERY

Figure: Target Boards⁴

³https://github.com/ObKo/stm32-cmake

⁴Images taken from https://www.st.com

Training

- Training scripts: Interactive notebooks hosted on Google Colaboratory⁵
- Deployment on Microcontrollers:
 - Quantization
 - Optimizations
 - Conversion to TFLite
 - Interpreter vs. Compiled offline model

⁵https://colab.research.google.com

Figure: TFLite Model Graphs per Example

Implementation

- Hello World: Ran almost out of the box
- Micro Speech:
 - Hardest challenge: Streaming real-time audio
 - Boards to slow? ⇒ Solution: Enable CMSIS-NN
 - Further Tuning of parameters was required to detect any voice commands ⇒ More false positives!

• MNIST:

- Dataset: ten-thousands of handwritten digits
- Quantization issue: Latest TFLM does not support unsigned uint8 inputs \Rightarrow transform to $\{-128, \dots, 127\}$
- Challenge: Transform touchscreen input into 28x28 pixel grayscale images
- Bug in Alex's implementation: Inverted colors
- Some digits can not be detected at all ⇒ Improve network architecture
- Common:
 - Added Benchmarking module
 - Added Memory Reporting support
 - Added possibility to choose TFLM interpreter or compiler
 - For easier Testing: SD-Card support to feed real samples to the network

Figure: Examples running on the STM32 Boards⁶

 $^{^6} See \ https://github.com/PhilippvK/stm32-tflm-demos for GIFs!$

Documentation

- Common toolchain parts as submodules ⇒ less redundant code
- Wrapper repository⁷
- Common documentation at a single place
- Great Extend-ability

⁷https://github.com/PhilippvK/stm32-tflm-demos

Evaluation

See report PDF or Documentation⁸ for details! Only showing tables here...

	Boards		
Metrics	STM32F413HDISCOVERY	STM32F769IDISCOVERY	Units
Clock Frequency	100	216	MHz
Special Features	-	Double Issue, I/D-Cache	-
Flash Memory	1.5	2	MB
SRAM Memory	256	512	kB

Figure: Board Metrics

 $^{^{8}} h ttps://github.com/PhilippvK/stm32-tflm-demos/blob/main/docs/Metrics.md$

Evaluation - Memory Usage & Number of Ops

	Examples			
Туре	hello_world	mirco_speech	mnist	Units
Model Size (FLASH)	2	18	23	kB
TensorArena Size (SRAM)	1	7	11	kB

Figure: Memory Usage (approx.)

Examples				
hello_world	mirco_speech	mnist		
41 FLOPS	689980 <i>FLOPS</i>	202810 FLOPS		

Figure: Number of Ops (after quant.)

Evaluation - Runtime Measurements & CMSIS-NN

		Examples			
Section	CPU	hello_world	mirco_speech	mnist	Units
Populate	F4	\sim 0	38	132	me
	F7	\sim 0	11	88	ms
Invoke	F4	~0	49	34	ma
	F7	~0	52	13	ms
Respond	F4	~0 ~0	~0	125	me
	F7	\sim 0	~0	93	ms

Figure: Runtime Measurements (approx.)

		Examples			
Settings		hello_world	mirco_speech	mnist	Units
CMSIS_NN	OFF	~1	413 (unusable!)	52	ms
	ON	\sim 0	52	13	ms
Difference		(?)	(-87)	(-75)	%

Figure: CMSIS-NN Improvements (approx.)

Conclusions and Outlook

- Main goal fulfilled
- MNIST was optional but also implemented successfully
- Models need more tuning
- Demonstrated capabilities of TinyML on microcontroller platforms

⁹https://github.com/munober/thesis/blob/master/digital_edition.pdf

Conclusions and Outlook

- Main goal fulfilled
- MNIST was optional but also implemented successfully
- Models need more tuning
- Demonstrated capabilities of TinyML on microcontroller platforms

Future Work:

- Support USB-Storage as alternative to SD-Card
- Add TinyFace Model⁹
- Merge Deployment and Evaluation Flow with EDA RISCV-toolchain
- Enable usage of FreeRTOS instead of baremetal
- Add possibility to parse results via UART
- Feed samples via UART for automated testing
 - ⇒ Extract data on the accuracy of the models

⁹https://github.com/munober/thesis/blob/master/digital_edition.pdf