PCT/DK00/00333

NOVEL BENZIMIDAZOLE DERIVATIVES AND PHARMACEUTICAL COMPOSITIONS COMPRISING THESE COMPOUNDS

5

TECHNICAL FIELD

The present invention relates to novel benzimidazole derivatives. pharmaceutical compositions containing these compounds, and methods of treatment therewith.

The compounds of the invention are useful in the treatment of central 10 nervous system diseases and disorders, which are responsive to modulation of the GABAA receptor complex, and in particular for inducing and maintaining anaesthesia. sedation and muscle relaxation, as well as for combating febrile convulsions in children.

The compounds of the invention may also be used by veterinarians.

15

25

30

BACKGROUND ART

Agents that bind or interact with the modulatory sites on the GABAA receptor complex, such as for example the benzodiazepine receptor, can have either 20 enhancing effect on the action of GABA, i.e. a positive modulatory effect of the receptor (agonists, partial agonists), an attenuating effect on the action of GABA, i.e. negative modulation of the receptor (inverse agonists, partial inverse agonists), or they can block the effect of both agonists and inverse agonists (antagonists or ligands without intrinsic activity).

Agonists generally produce muscle relaxant, hypnotic, sedative, anxiolytic, and/or anticonvulsant effects, while inverse agonists produce pro-convulsive, antiinebriant or anxiogenic effects. Compounds with anxiolytic effects, but with or without reduced muscle relaxant, hypnotic and sedative effects, are characterised as partial agonists. Partial inverse agonists are considered to be useful as cognition enhancers.

Full agonists of the benzodiazepine receptor are considered useful as anaesthetics. However, many drugs presently available as anaesthetics, and especially pre-anaesthetics, give rise to hang-over effects as well as long awakening times, wherein careful monitoring of the patient is necessary. Anaesthetics with a long half-life may also impose difficulties during incidents of overdosing i.e. prolonged 35 respiratory depression. Furthermore, some currently used drugs cannot be used for anaesthetising children as deaths have been reported in children after prolonged use of Propofol. Some anaesthetics are gasses which inherently possesses a contamination problem for the medical staff.

30

A well known anaesthetic, Propofol, is administered as a mixture of soybean oil, glycerol and purified egg phosphatide, which mixture nourish bacterial growth. Administration of bacterially contaminated Propofol has been reported to cause sepsis and death [Wiklund et al.; The New England Journal of Medicine 1997 5 337 (16) 1132-1141]. Further, compounds with a long in vivo half-life will give problems with accumulation during and after prolonged treatment e.g. when administered to patients constrained to a respirator. Short half-lives wherein the compounds are metabolised to inactive metabolites allow for a predictable correlation of dose and duration of pharmacological effect.

Ideally the anaesthestising effect should be observed shortly after a bolus injection or infusion of the compound. A rapid onset of action minimises the period of anxiety and uneasiness experienced by patients going into surgery.

Patients suffering from severe and continuous epileptic attacks presently treated with large amounts of sedatives, e.g. benzodiazepines, will benefit from 15 shorter acting compounds with no hang-over or long lasting sedating effect.

As the preferred route of administration is by intravenous injection or infusion, the anaesthestising compounds should preferably be water soluble.

EP 616807 describes benzimidazole compounds as benzodiazepine receptor ligands.

WO 96/33194, WO 96/33191 and WO 96/33192 describe benzimidazole 20 compounds having affinity for the GABA receptor complex.

WO 98/34923 describes phenylbenzimidazole derivatives as ligands for the GABA receptor complex.

WO 98/17651 describes benzimidazole compounds for use as e.g. 25 anaesthetics. However, the presently disclosed compounds are superior to the compounds previously described.

SUMMARY OF THE INVENTION

It is an object of the invention to provide novel compounds useful as anaesthetics and/or pre-anaesthetics, sedatives, muscle relaxants, and for the treatment of febrile convulsions in children, status epilepticus, for use to patients constrained to a respirator as well as for veterinarian uses.

In its first aspect, the invention provides a benzimidazole derivative represented by the general Formula I, 35

or a pharmaceutically acceptable salt thereof, wherein,

R' represents a group of the formula -(alk)_q-R¹,

5 wherein

(alk) represents alkyl, alkenyl or alkynyl,

q is 0 or 1,

R¹ represents a group of the formula -CO₂R², wherein

R² represents hydrogen, alkyl, hydroxy-alkyl, alkoxy-alkyl, thioalkoxy-alkyl, 10 alkyl-"Heterocycle", or -alkyl-NR³R⁴,

wherein

"Heterocycle" represents a mono- or polycyclic heterocyclic group, which heterocyclic group is optionally substituted one or more times with substituents selected from the group consisting of halogen, alkyl, hydroxy, oxo, cyano, hydroxy-alkyl, alkoxy-alkyl, carboxyl and acyl, and a group of the formula -(alkyl)_p-CN, -(alkyl)_p-aryl, -(alkyl)_p-"Heterocycle", -(alkyl)_p-CO₂-"Heterocycle" or -(alkyl-CO₂)_s-(alkyl)_t-COR⁵,

p, s and t independently of each another is 0 or 1,

"Heterocycle" represents a mono- or polycyclic heterocyclic group, which 20 heterocyclic group is optionally substituted one or more times with substituents selected from the group consisting of halogen, alkyl, hydroxy, oxo, cyano, hydroxy-alkyl, alkoxy-alkyl, carboxyl and acyl,

R⁵ represents hydroxy, alkoxy, hydroxy-alkoxy, alkoxy-alkoxy, thioalkoxy-alkoxy, or a group of the formula -NR⁶R⁷ or -O-alkyl-NR⁶R⁷,

in which formulas

25

in which formulas

R⁶ and R⁷ independently of each another represent hydrogen, alkyl, cycloalkyl or a mono- or polycyclic heterocyclic group, which heterocyclic group is optionally substituted one or more times with substituents selected from the group consisting of halogen, alkyl, hydroxy, oxo, hydroxy-alkyl, alkoxy-alkyl, carboxyl and acyl, or

R⁶ and R⁷ together with the nitrogen to which they are attached form a mono- or polycyclic heterocyclic group, which heterocyclic group may be substituted

10

one or more times with substituents selected from the group consisting of halogen, alkyl, hydroxy, oxo, hydroxy-alkyl, alkoxy-alkyl, carboxyl and acyl; and

 $\mbox{\ensuremath{R^3}}$ and $\mbox{\ensuremath{R^4}}$ independently of each another represent hydrogen, alkyl or cycloalkyl, or

R³ and R⁴ together with the nitrogen to which they are attached form a mono- or poly-cyclic heterocyclic group, which heterocyclic group is optionally substituted one or more times with substituents selected from the group consisting of halogen, alkyl, hydroxy, oxo, hydroxy-alkyl, alkoxy-alkyl, carboxyl and acyl; or

R1 represents a group of the formula

X represents N or CH,

R¹² represents hydrogen, alkyl, alkoxy or hydroxy-alkyl, and

R¹³ represents hydrogen, hydroxy, alkyl, alkoxy or hydroxy-alkyl; or

R¹ represents a mono- or polycyclic heterocyclic group, which heterocyclic group is optionally substituted one or more times with substituents selected from the group consisting of alkyl, hydroxy-alkyl, alkoxy-alkyl, carboxyl, and acyl, and a group of the formula -(alkyl)_p-aryl, -(alkyl)_p-"Heterocycle", -(alkyl)_p-CN or -(alkyl-CO₂)_s-(alkyl)_t-COR⁵,

in which formulas

p, s and t independently of each another is 0 or 1,

"Heterocycle" represents a mono- or polycyclic heterocyclic group, which heterocyclic group is optionally substituted one or more times with substituents selected from the group consisting of halogen, alkyl, hydroxy, oxo, cyano, hydroxy-alkyl, alkoxy-alkyl, carboxyl and acyl,

R⁵ represents hydroxy, alkoxy, hydroxy-alkoxy, alkoxy-alkoxy, thioalkoxy-25 alkoxy, or a group of the formula -NR⁶R⁷ or -O-alkyl-NR⁶R⁷.

in which formulas

R⁶ and R⁷ independently of each another represent hydrogen, alkyl, cycloalkyl or a mono- or polycyclic heterocyclic group, which heterocyclic group is optionally substituted one or more times with substituents selected from the group consisting of halogen, alkyl, hydroxy, oxo, hydroxy-alkyl, alkoxy-alkyl, carboxyl and acyl, or

R⁶ and R⁷ together with the nitrogen to which they are attached form a mono- or polycyclic heterocyclic group, which heterocyclic group is optionally substituted one or more times with substituents selected from the group consisting of halogen, alkyl, hydroxy, oxo, hydroxy-alkyl, alkoxy-alkyl, carboxyl and acyl; and

R" represents -(alkyl)o-"Heterocycle" or -(alkyl)o-CO2-(alkyl)u-"Heterocycle",

25

30

35

5

wherein

o and u independently of each another is 0 or 1, and

"Heterocycle" represents a mono- or polycyclic heterocyclic group, which heterocyclic group is optionally substituted one or more times with substituents selected from the group consisting of halogen, alkyl, hydroxy, oxo, cyano, hydroxy-alkyl, alkoxy-alkyl, carboxyl, and acyl, and a group of the formula -(alkyl)_p-CN, -(alkyl)_p-aryl, -(alkyl)_p-O-aryl, -(alkyl)_p-O-aralkyl, -(alkyl)_p-CO₂-aryl, -(alkyl)_p-CO₂-aralkyl, -(alkyl)_p-CO₂-aryl, -(alkyl)_p-CO₂-aralkyl, -(alkyl)_p-CO₂-aralk

in which formulas

p, s and t independently of each another is 0 or 1,

"Heterocycle" represents a mono- or polycyclic heterocyclic group, which heterocyclic group is optionally substituted one or more times with substituents selected from the group consisting of halogen, alkyl, hydroxy, oxo, cyano, hydroxy-alkyl, alkoxy-alkyl, carboxyl and acyl,

R⁵ represents hydrogen, hydroxy, alkyl, alkoxy, hydroxy-alkyl, hydroxy-alkoxy, alkoxy-alkyl, alkoxy-alkoxy, thioalkoxy-alkoxy, or a group of the formula -NR⁶R⁷ or -O-alkyl-NR⁶R⁷,

in which formulas

R⁶ and R⁷ independently of each another represent hydrogen, alkyl, cycloalkyl or a mono- or polycyclic heterocyclic group, which heterocyclic group is optionally substituted one or more times with substituents selected from the group consisting of halogen, alkyl, hydroxy, oxo, hydroxy-alkyl, alkoxy-alkyl, carboxyl and acyl, or

R⁶ and R⁷ together with the nitrogen to which they are attached form a mono- or polycyclic heterocyclic group, which heterocyclic group is optionally substituted one or more times with substituents selected from the group consisting of halogen, aikyl, hydroxy, oxo, hydroxy-alkyl, alkoxy-alkyl, carboxyl and acyl; or

R" represents -(alkyl)_m-CO₂R⁸,

wherein

m is 0 or 1, and

 R^8 represents hydrogen, alkyl, hydroxy-alkyl, alkoxy-alkyl, thioalkoxy-alkyl, or a group of the formula -(alkyl)_p-NR⁹R¹⁰,

wherein

p is 0 or 1, and

R⁹ and R¹⁰ independently of each another represent hydrogen, alkyl, cycloalkyl, or a mono- or polycyclic heterocyclic group, which heterocyclic group is optionally substituted one or more times with substituents selected from the group

consisting of halogen, alkyl, hydroxy, oxo, hydroxy-alkyl, alkoxy-alkyl, carboxyl and acyl, or

R9 and R10 together with the nitrogen to which they are attached form a mono- or polycyclic heterocyclic group, which heterocyclic group is optionally 5 substituted one or more times with substituents selected from the group consisting of halogen, alkyl, hydroxy, oxo, hydroxy-alkyl, alkoxy-alkyl, carboxyl and acyl.

In its second aspect, the invention provides a pharmaceutical composition containing a therapeutically effective amount of a benzimidazole derivative according to the invention, or a pharmaceutically acceptable addition salt thereof, together with 10 at least one pharmaceutically acceptable carrier, excipient or diluent.

In its third aspect, the invention provides a use of a benzimidazole derivative according to the invention for the manufacture of a medicament for the treatment, prevention or alleviation of a disease or a disorder or a condition of a mammal, including a human, which disease, disorder or condition is responsive to 15 modulation of the GABA receptor complex.

In its fourth aspect, the invention provides a method for treatment, prevention or alleviation of a disease or a disorder or a condition of a living animal body, including a human, which disorder, disease or condition is responsive to modulation of the GABA receptor complex, which method comprises the step of 20 administering to such a living animal body in need thereof a therapeutically effective amount of a benzimidazole derivative according to the invention.

Other objects of the invention will be apparent to the person skilled in the art from the following detailed description and the working examples.

DETAILED DISCLOSURE OF THE INVENTION

Benzimidazole Derivatives

25

30

In its first aspect the invention provides novel benzimidazole derivatives. The benzimidazole derivatives of the invention are represented by the general Formula I,

(1)

or a pharmaceutically acceptable salt thereof, wherein.

15

20

R' represents a group of the formula -(alk)_q-R¹,

wherein

(alk) represents alkyl, alkenyl or alkynyl,

q is 0 or 1,

R¹ represents a group of the formula -CO₂R², wherein

R² represents hydrogen, alkyl, hydroxy-alkyl, alkoxy-alkyl, thioalkoxy-alkyl, alkyl-"Heterocycle", or -alkyl-NR³R⁴,

wherein

"Heterocycle" represents a mono- or polycyclic heterocyclic group, which heterocyclic group is optionally substituted one or more times with substituents selected from the group consisting of halogen, alkyl, hydroxy, oxo, cyano, hydroxy-alkyl, alkoxy-alkyl, carboxyl and acyl, and a group of the formula -(alkyl)_p-CN, -(alkyl)_p-aryl, -(alkyl)_p-"Heterocycle", -(alkyl)_p-CO₂-"Heterocycle" or -(alkyl-CO₂)_s-(alkyl)_t-COR⁵,

in which formulas

p, s and t independently of each another is 0 or 1,

"Heterocycle" represents a mono- or polycyclic heterocyclic group, which heterocyclic group is optionally substituted one or more times with substituents selected from the group consisting of halogen, alkyl, hydroxy, oxo, cyano, hydroxyalkyl, alkoxy-alkyl, carboxyl and acyl,

R⁵ represents hydroxy, alkoxy, hydroxy-alkoxy, alkoxy-alkoxy, thioalkoxy-alkoxy, or a group of the formula -NR⁶R⁷ or -O-alkyl-NR⁶R⁷,

in which formulas

R⁶ and R⁷ independently of each another represent hydrogen, alkyl, cycloalkyl or a mono- or polycyclic heterocyclic group, which heterocyclic group is optionally substituted one or more times with substituents selected from the group consisting of halogen, alkyl, hydroxy, oxo, hydroxy-alkyl, alkoxy-alkyl, carboxyl and acyl, or

R⁶ and R⁷ together with the nitrogen to which they are attached form a mono- or polycyclic heterocyclic group, which heterocyclic group may be substituted one or more times with substituents selected from the group consisting of halogen, alkyl, hydroxy, oxo, hydroxy-alkyl, alkoxy-alkyl, carboxyl and acyl; and

R³ and R⁴ independently of each another represent hydrogen, alkyl or cycloalkyl, or

R³ and R⁴ together with the nitrogen to which they are attached form a mono- or poly-cyclic heterocyclic group, which heterocyclic group is optionally substituted one or more times with substituents selected from the group consisting of halogen, alkyl, hydroxy, oxo, hydroxy-alkyl, alkoxy-alkyl, carboxyl and acyl; or

10

30

$$X$$
 R^{13}
 R^{12} , wherein

R1 represents a group of the formula

X represents N or CH,

R¹² represents hydrogen, alkyl, alkoxy or hydroxy-alkyl, and

R¹³ represents hydrogen, hydroxy, alkyl, alkoxy or hydroxy-alkyl; or

R¹ represents a mono- or polycyclic heterocyclic group, which heterocyclic group is optionally substituted one or more times with substituents selected from the group consisting of alkyl, hydroxy-alkyl, alkoxy-alkyl, carboxyl, and acyl, and a group of the formula -(alkyl)_p-aryl, -(alkyl)_p-"Heterocycle", -(alkyl)_p-CN or -(alkyl-CO₂)_s-(alkyl)_t-COR⁵.

in which formulas

p, s and t independently of each another is 0 or 1,

"Heterocycle" represents a mono- or polycyclic heterocyclic group, which heterocyclic group is optionally substituted one or more times with substituents selected from the group consisting of halogen, alkyl, hydroxy, oxo, cyano, hydroxy-alkyl, alkoxy-alkyl, carboxyl and acyl,

R⁵ represents hydroxy, alkoxy, hydroxy-alkoxy, alkoxy-alkoxy, thioalkoxy-alkoxy, or a group of the formula -NR⁶R⁷ or -O-alkyl-NR⁶R⁷,

in which formulas

R⁶ and R⁷ independently of each another represent hydrogen, alkyl, cycloalkyl or a mono- or polycyclic heterocyclic group, which heterocyclic group is optionally substituted one or more times with substituents selected from the group consisting of halogen, alkyl, hydroxy, oxo, hydroxy-alkyl, alkoxy-alkyl, carboxyl and acyl, or

R⁶ and R⁷ together with the nitrogen to which they are attached form a 25 mono- or polycyclic heterocyclic group, which heterocyclic group is optionally substituted one or more times with substituents selected from the group consisting of halogen, alkyl, hydroxy, oxo, hydroxy-alkyl, alkoxy-alkyl, carboxyl and acyl; and

R" represents -(alkyl) $_{o}$ -"Heterocycle" or -(alkyl) $_{o}$ -CO $_{2}$ -(alkyl) $_{u}$ -"Heterocycle", wherein

o and u independently of each another is 0 or 1, and

"Heterocycle" represents a mono- or polycyclic heterocyclic group, which heterocyclic group is optionally substituted one or more times with substituents selected from the group consisting of halogen, alkyl, hydroxy, oxo, cyano, hydroxy-alkyl, alkoxy-alkyl, carboxyl, and acyl, and a group of the formula -(alkyl)_p-CN, -(alkyl)_p-35 aryl, -(alkyl)_p-O-aryl, -(al

25

 CO_2 -aralkyl, -(alkyl)_p-"Heterocycle", -(alkyl)_p- CO_2 -"Heterocycle" or -(alkyl- CO_2)_s-(alkyl)_t- COR^5 ,

in which formulas

p, s and t independently of each another is 0 or 1,

"Heterocycle" represents a mono- or polycyclic heterocyclic group, which heterocyclic group is optionally substituted one or more times with substituents selected from the group consisting of halogen, alkyl, hydroxy, oxo, cyano, hydroxyalkyl, alkoxy-alkyl, carboxyl and acyl,

R⁵ represents hydrogen, hydroxy, alkyl, alkoxy, hydroxy-alkyl, hydroxy-10 alkoxy, alkoxy-alkyl, alkoxy-alkoxy, thioalkoxy-alkyl, thioalkoxy-alkoxy, or a group of the formula -NR⁶R⁷ or -O-alkyl-NR⁶R⁷,

in which formulas

R⁶ and R⁷ independently of each another represent hydrogen, alkyl, cycloalkyl or a mono- or polycyclic heterocyclic group, which heterocyclic group is optionally substituted one or more times with substituents selected from the group consisting of halogen, alkyl, hydroxy, oxo, hydroxy-alkyl, alkoxy-alkyl, carboxyl and acyl, or

R⁶ and R⁷ together with the nitrogen to which they are attached form a mono- or polycyclic heterocyclic group, which heterocyclic group is optionally substituted one or more times with substituents selected from the group consisting of halogen, alkyl, hydroxy, oxo, hydroxy-alkyl, alkoxy-alkyl, carboxyl and acyl; or

R" represents -(alkyl)_m-CO₂R⁸,

wherein

m is 0 or 1, and

R⁸ represents hydrogen, alkyl, hydroxy-alkyl, alkoxy-alkyl, thioalkoxy-alkyl, or a group of the formula -(alkyl)_p-NR⁹R¹⁰,

wherein

p is 0 or 1, and

R⁹ and R¹⁰ independently of each another represent hydrogen, alkyl, 30 cycloalkyl, or a mono- or polycyclic heterocyclic group, which heterocyclic group is optionally substituted one or more times with substituents selected from the group consisting of halogen, alkyl, hydroxy, oxo, hydroxy-alkyl, alkoxy-alkyl, carboxyl and acyl, or

R⁹ and R¹⁰ together with the nitrogen to which they are attached form a mono- or polycyclic heterocyclic group, which heterocyclic group is optionally substituted one or more times with substituents selected from the group consisting of halogen, alkyl, hydroxy, oxo, hydroxy-alkyl, alkoxy-alkyl, carboxyl and acyl.

In a preferred embodiment the benzimidazole derivative of the invention is represented by Formula I, wherein R" represents

15

25

30

2-(4-acetylpiperazin-1-yl)-ethoxy-carbonyl;

pyridin-2-yl-methoxy-carbonyl;

1-Methyl-2-pyrrolidyl-methoxy-carbonyl; or

3,5-dimethyl-1-piperazinyl-ethoxy-carbonyl.

In a most preferred embodiment, the benzimidazole derivative is

2-(1-Acetyl-4-piperazinyl)-ethyl 3-(5-(3-furanyl)-1-benzimidazolyl)-benzoate;

1-Methyl-2-pyrrolidylmethyl 3-(5-(3-furanyl)-1-benzimidazolyl)-benzoate;

or a pharmaceutically acceptable salt thereof.

In another preferred embodiment the benzimidazole derivative of the invention is a compound of Formula I, wherein

R¹ represents a group of the formula -CO₂R², wherein

R² represents alkyl, hydroxy-alkyl, alkoxy-alkyl, thioalkoxy-alkyl, alkyl-N(alkyl)₂; or

R¹³
R¹², wherein

R1 represents a group of the formula

R¹² represents alkyl, and

R¹³ represents hydroxy, or alkoxy; or

R¹ represents a furanyl group, a pyrazolyl group, an isoxazolyl group, an oxazolyl group, an oxadiazolyl group.

In a more preferred embodiment

20 R¹ represents a group of the formula -COOH, -CO₂-CH₃, -CO₂-C₂H₅, -CO₂-CH₂-CH(OH), -CO₂(CH₂)₂OCH₃, -CO₂(CH₂)₂SCH₃, -CO₂(CH₂)₂SC₂H₅, or -CO₂(CH₂)₂N(CH₃)₂; or

R¹ represents a group of the formula

R¹² represents methyl or ethyl, and

R¹³ represents hydroxy, methoxy or ethoxy; or

R¹ represents a 2- or 3-furanyl group.

In a most preferred embodiment, the benzimidazole derivative is

2-(3,5-dimethyl-1-piperazinyl)-ethyl 3-(5-acetylbenzimidazol-1-yl)-benzoate oxime; or

2-(2-pyridyl)-methyl 3-(5-acetylbenzimidazol-1-yl)-benzoate oxime; or a pharmaceutically acceptable salt thereof.

In another preferred embodiment the benzimidazole derivative of the invention is represented by Formula I, wherein

R" represents a group of the formula -(alkyl)_o-"Heterocycle", wherein o is 0 or 1, and

"Heterocycle" represents a furanyl group, a 2H-furanyl group, a 4H-furanyl group, a thienyl group, a pyrrolyl group, a 2H-pyrrolyl (pyrrolinyl) group, a 4H-pyrrolyl (pyrrolinyl) group, an imidazolyl group, an oxazolyl group, a 2H-oxazolyl (oxazolinyl) group, a 4H-oxazolyl (oxazolidinyl) group, an isoxazolyl group, a 2H-isoxazolyl (isoxazolinyl) group, a 4H-isoxazolyl (isoxazolidinyl) group, an oxadiazolyl group, a 2H-oxadiazolyl (oxadiazolinyl) group, a 4H-oxadiazolyl (oxadiazolidinyl) group, a morpholinyl group, a thiomorpholinyl group, a pyridinyl group, a piperidinyl group, a piperazine group, a homopiperazine group or a tetrazolyl group, which heterocyclic groups may be substituted one or more times with substituents selected from the group consisting of halogen, alkyl, oxo, acyl, alkyl-CO₂H, alkyl-CO₂-alkyl -(alkyl)_p-CO₂-aryl, -(alkyl)_p-CO₂-aralkyl and alkyl-CO₂-alkyl-CONR⁶R⁷, wherein

R⁶ and R⁷ independently of each another represent hydrogen or alkyl. In a more preferred embodiment,

"Heterocycle" represents a pyrrolidin-1-yl; a piperazin-1-yl; a homopiperazin-1-yl; an imidazol-1-yl; a pyridin-4-yl; a 4H-pyridin-4-yl, in particular a 1,2,5,6-tetrahydro-pyridin-4-yl; a piperidin4-yl; a 2H-isoxazol-3-yl, in particular a 4,5-dihydro-isoxazol-3-yl.

In a further preferred embodiment the benzimidazole derivative of the invention is represented by Formula I, wherein R"

4-ethoxycarbonyl-1-imidazolyl;

4-methoxycarbonyl-1-imidazolyl;

5-((N,N-Diethylcarbamoyl)-methoxy-carbonyl-methyl)-4,5-dihydroisoxazol-

25 3-yl;

30

35

3-yi;

15

5-((N,N-Dimethylcarbamoyl)-methoxy-carbonyl-methyl)-4,5-dihydroisoxazol-

1-imidazolylmethyl;

4-(1-methyl-5-tetrazolyl)-methyl-1-piperazinyl;

1-ethyl-1,2,5,6-tetrahydropyridin-4-yl;

4-(2-oxazolidinone-5-yl)-methyl)1-piperazinyl;

4-(5-methyloxadiazol-3-yl)-methyl)1-piperazinyl;

4-(3,5-dimethylisoxazol-4-yl)-methyl)1-piperazinyl;

4-(2-oxo-tetrahydrofuran-3-yl)-1-piperazinyl;

4-(2-chloro-5-thienyl)-methyl-1-piperazinyl; or

(1-methyl-2-pyrrolidyl)-methyl-carbonyl.

In a most preferred embodiment the benzimidazole derivative of the invention is

10

30

WO 00/78728 PCT/DK00/00333

12

2-Methoxyethyl 1-(3-(4-methoxycarbonyl-1-imidazolyl)-phenyl)-benzimidazole-5-carboxylate;

(N,N-Diethylcarbamoyl)-methyl 2-(3-[3-(5-ethoxycarbonyl-1-benzimidazolyl)-phenyl]-4,5-dihydroxyisoxazol-5-yl)-acetate;

Methyl 1-(3-(1-imidazolylmethyl)-phenyl)-benzimidazole-5-carboxylate;

2-(Methylthio)-ethyl 1-(3-(1-imidazolylmethyl)-phenyl)-benzimidazole-5-carboxylate;

2-Methoxyethyl 1-(3-(4-(1-methyl-5-tetrazolyl)methyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate;

2-Methoxyethyl 1-(3-(1-ethyl-1,2,5,6-tetrahydropyridin-4-yl)-phenyl)-benzimidazole-5-carboxylate;

2-Methoxyethyl 1-(3-(4-(2-oxazolidinone-5-yl)-methyl)1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate;

2-Methoxyethyl 1-(3-(4-(5-methyloxadiazol-3-yl)-methyl)1-piperazinyl)-15 phenyl)-benzimidazole-5-carboxylate;

2-Methoxyethyl 1-(3-(4-(3,5-dimethylisoxazol-4-yl)methyl)1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate;

2-Methoxyethyl 1-(3-(4-(2-oxo-tetrahydrofuran-3-yl)-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate;

2-Methoxyethyl 1-(3-(4-(2-chloro-5-thienyl)-methyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate;

5-(3-Furanyl)-1-(3-(4-methoxycarbonyl-1-imidazolyl)-phenyl)-benzimidazole; or

N,N-Diethylcarbamoylmethyl 2-(3-(3-(5-(3-furanyl)-1-benzimidazolyl)-25 phenyl)-4,5-dihydroisoxazole-5-yl)-acetate;

or a pharmaceutically acceptable salt thereof.

In another preferred embodiment the benzimidazole derivative of the invention is represented by Formula I wherein

R" represents a group of the formula -CO₂-(alkyl)_o-"Heterocycle", wherein o is 0 or 1, and

"Heterocycle" represents a pyrrolyl group, a 2H-pyrrolyl (pyrrolinyl) group, a 4H-pyrrolyl (pyrrolidinyl) group, an imidazolyl group, an oxazolyl group, an isoxazolyl group, a 2H-isoxazolyl (isoxazolinyl) group, a 4H-isoxazolyl (isoxazolidinyl) group, an oxadiazolyl group, a pyridyl group, a piperidinyl group, a piperazine group or a homopiperazine group, which heterocyclic groups may be substituted one or more times with substituents selected from the group consisting of alkyl, acyl, alkyl-CO₂+alkyl-CO₂-alkyl-CO₂-alkyl-CONR⁶R⁷, wherein

R⁶ and R⁷ independently of each another represent hydrogen or alkyl.

In a more preferred embodiment the benzimidazole derivative of the invention is represented by Formula I, wherein

R" represents a group of the formula

5 in which formula

o is 0 or 1,

n is 0, 1 or 2,

X represents N or CH.

Y represents O, NR¹¹ or CHR¹¹,

wherein R¹¹ represents hydrogen, alkyl, hydroxy-alkyl, alkoxy-alkyl, carboxyl or acyl, or a group of the formula -(alkyl)_p-CN, -(alkyl)_p-aryl, -(alkyl)_p-O-aralkyl, -(alkyl)_p-"Heterocycle", -(alkyl)_p-CO₂-"Heterocycle" or -(alkyl-CO₂)_s-(alkyl)_t-COR⁵,

wherein

15

20

p, s and t independently of each another is 0 or 1,

"Heterocycle" represents a mono- or polycyclic heterocyclic group, which heterocyclic group is optionally substituted one or more times with substituents selected from the group consisting of halogen, alkyl, hydroxy, oxo, cyano, hydroxyalkyl, alkoxy-alkyl, carboxyl and acyl,

R⁵ represents hydroxy, alkoxy, hydroxy-alkoxy, alkoxy-alkoxy, thioalkoxy-alkoxy, aryl or aralkyl, or a group of the formula -NR⁶R⁷ or -O-alkyl-NR⁶R⁷, in which formulas

R⁶ and R⁷ independently of each another represents hydrogen, alkyl, cycloalkyl or a mono- or polycyclic heterocyclic group, which heterocyclic group is optionally substituted one or more times with substituents selected from the group consisting of alkyl, and acyl, or

R⁶ and R⁷ together with the nitrogen to which they are attached form a mono- or polycyclic heterocyclic group, which heterocyclic group may be substituted one or more times with substituents selected from the group consisting of alkyl and acyl, and

R¹⁴ and R¹⁵ independently of each another represent hydrogen, alkyl, hydroxy-alkyl, alkoxy-alkyl, carboxyl or acyl; or

R" represents a group of the formula -CO₂R⁸, wherein

10

20

25

30

R⁸ represents alkyl-NR⁹R¹⁰, wherein

R⁹ and R¹⁰ together with the nitrogen to which they are attached form a pyrrolidine or a piperazine group, which group may be substituted one or more times with substituents selected from the group consisting of alkyl and acyl.

In an even more preferred embodiment the benzimidazole derivative of the invention is represented by Formula I, wherein R" represents

4-methoxycarbonyl-methyl-3,5-dimethyl-1-piperazinyl;

4-ethoxycarbonyl-methyl-3,5-dimethyl-1-piperazinyl;

4-methyl-3,5-dimethyl-1-piperazinyl;

4-ethyl-3,5-dimethyl-1-piperazinyl; or

3,5-dimethyl-1-piperazinyl.

In a most preferred embodiment the benzimidazole derivative of the invention is

2-Methoxyethyl 1-(3-(4-ethoxycarbonylmethyl-3,5-dimethyl-1-piperazinyl)15 phenyl)-benzimidazole-5-carboxylate;

2-Methyl 1-(3-(4-ethoxycarbonylmethyl-3,5-dimethyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate;

2-Methoxyethyl 1-(3-(4-ethyl-3,5-dimethyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate;

2-Methoxyethyl 1-(3-(3,5-dimethyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate; or

2-(3,5-dimethyl-1-piperazinyl)-ethyl 3-(5-acetylbenzimidazol-1-yl)-benzoate oxime;

or a pharmaceutically acceptable salt thereof.

In yet another preferred embodiment the benzimidazole derivative of the invention is represented by Formula I wherein

R" represents a group of the formula

in which formula

o is 0 or 1,

n is 0, 1 or 2,

X represents N or CH, and

Y represents NR¹¹ or CHR¹¹, wherein

 R^{11} represents hydrogen, alkyl, hydroxy-alkyl, carboxy, acyl, or a group of the formula -(alkyl)_p-CN, -(alkyl)_p-aryl, -(alkyl)_p-O-aryl, -(alkyl)_p-O-aralkyl, -(alkyl)_t-COR or -(alkyl)_t-R^5,

wherein

p and t independently of each another is 0 or 1, and

R⁵ represents hydroxy, alkoxy, NH₂, NH(alkyl) or N(alkyl)₂.

In a more preferred embodiment,

R" represents

4-(methoxy-carbonyl)-1-piperazinylmethyl;

4-(ethoxy-carbonyl)-1-piperazinylmethyl;

4-(methoxy-carbonyl-methyl)-1-piperazinyl;

4-(ethoxy-carbonyl-methyl)-1-piperazinyl;

4-(methoxy-carbonyl-methyl)-1-piperazinylmethyl;

4-(ethoxy-carbonyl-methyl)-1-piperazinylmethyl;

15 1-piperazinyl;

1-piperazinyl-methyl;

4-acetyl-1-piperazinyl;

4-methyl-1-piperazinyl;

4-ethyl-1-piperazinyl;

20 1-methyl-4-piperidinyl;

1-acetyl-4-piperidinyl;

1-methyl-4-piperidyl;

1-acetyl-4-piperidyl;

4-tert-butoxycarbonylmethyl-1-piperazinyl;

25 4-isopropoxycarbonylmethyl-1-piperazinyl;

4-carboxymethyl-1-piperazinyl;

4-benzyl-1-piperazinyl;

4-cyanomethyl-1-piperazinyl;

4-benzyloxy-ethyl-1-piperazinyl;

30 4-ethyl-1-homopiperazinyl;

35

4-(2-hydroxy-ethyl)-1-piperazinyl;

4-carbamovImethyl-1-piperazinyl;

4-dimethylcarbamoylmethyl-1-piperazinyl; or

4-diethylcarbamoylmethyl-1-piperazinyl.

In a most preferred embodiment, the benzimidazole derivative of the invention is

2-Methoxyethyl 1-(3-(4-(ethoxy-carbonyl)-1-piperazinylmethyl)-phenyl)-benzimidazole-5-carboxylate;

WO 00/78728 PCT/DK00/00333 16

- 2-Methoxyethyl 1-(3-(4-(ethoxy-carbonyl-methyl)-1-piperazinyl)-phenyl)benzimidazole-5-carboxylate;
- 2-Methoxyethyl 1-(3-(4-carboxymethyl-1-piperazinyl)-phenyl)benzimidazole-5-carboxylate;
- 2-Methoxyethyl 1-(3-(4-methyl-1-piperazinyl)-phenyl)-benzimidazole-5-5 carboxylate;
 - 2-Metoxyethyl 1-(3-(4-acetyl-1-piperazinyl)-phenyl)-benzimidazole-5carboxylate;
- 2-Methoxyethyl 1-(3-(1-methyl-4-piperidyl)phenyl)benzimidazole-5-10 carboxylate;
 - 2-Methoxyethyl 1-(3-(1-acetyl-4-piperidyl)-phenyl)-benzimidazole-5carboxylate;
 - 2-Methoxyethyl 1-(3-(4-t-butoxycarbonylmethyl-1-piperazinyl)-phenyl)benzimidazole-5-carboxylate;
- 2-Methoxyethyl 1-(3-(4-i-propoxycarbonylmethyl-1-piperazinyl)-phenyl)-15 benzimidazole-5-carboxylate;
 - 2-[4-(3-(5-Methoxycarbonylbenzimidazol-1-yl)-phenyl)-1-piperazinyl]-acetic acid;
- 2-(Methylthio)-ethyl 1-(3-(4-methyl-1-piperazinyl)-phenyl)-benzimidazole-5-20 carboxylate;
 - 2-(N,N-dimethylamino)-ethyl 1-(3-(1-carboxymethyl-4-piperazinyl)-phenyl)benzimidazole-5-carboxylate;
 - 2-Methoxyethyl 1-(3-(4-benzyl-1-piperazinyl)-phenyl)-benzimidazole-5carboxylate;
- 25 Methyl 1-(3-(4-cyanomethyl-1-piperazinyl)-phenyl)-benzimidazole-5carboxylate;
 - 2-Methoxyethyl 1-(3-(4-cyanomethyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate;
 - Methyl 1-(3-(4-benzyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate:
 - 2-Methoxyethyl 1-(3-(4-benzyloxyethyl-1-piperazinyl)-phenyl)benzimidazole-5-carboxylate;

30

- 2-Methoxyethyl 1-(3-(4-ethyl-1-homopiperazinyl)-phenyl)-benzimidazole-5carboxylate;
- 2-Methyl 1-(3-(4-ethyl-1-homopiperazinyl)-phenyl)-benzimidazole-5-35 carboxylate;
 - 2-Methoxyethyl 1-(3-(4-ethyl-1-piperazinyl)-phenyl)-benzimidazole-5carboxylate;
 - 2-Hydroxyethyl 1-(3-(4-(2-hydroxyethyl)-1-piperazinyl)-phenyl)benzimidazole-5-carboxylate;

Methyl 1-(3-(1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate;

2-Methoxyethyl 1-(3-(1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate;

2-Hydroxyethyl 1-(3-(4-methyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate;

2-Hydroxyethyl 1-(3-(4-methoxycarbonylmethyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate;

2-Hydroxyethyl 1-(3-(4-ethoxycarbonylmethyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate;

2-Methoxyethyl 1-(3-(4-diethylcarbamoylmethyl-1-piperazinyl)-phenyl)-10 benzimidazole-5-carboxylate;

2-Methoxyethyl 1-(3-(4-methoxycarbonylmethyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate;

2-Methoxyethyl 1-(3-(4-carbamoylmethyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate;

2-Hydroxyethyl 1-(3-(4-carbamoylmethyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate;

2-Hydroxyethyl 1-(3-(4-diethylcarbamoylmethyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate;

2-Hydroxyethyl 1-(3-(4-carboxymethyl-1-piperazinyl)-phenyl)-

20 benzimidazole-5-carboxylate;

5-(3-Furanyl)-1-(3-((4-ethoxycarbonyl-1-piperazinyl)-methyl)-phenyl)-benzimidazole;

5-(3-Furanyl)-1-(3-(1-(ethoxy-carbonyl-methyl)-4-piperazinyl)-phenyl)-benzimidazole;

5-(3-Furanyl)-1-(3-(4-t-butoxycarbonylmethyl-1-piperazinyl)-phenyl)-benzimidazole;

5-(3-Furanyl)-1-(3-(1-ethoxycarbonylmethyl-4-piperazinylmethyl)-phenyl)-benzimidazole;

5-(3-Furanyl)-1-(3-(1-ethoxycarbonylmethyl-4-piperidyl)-phenyl)-

30 benzimidazole;

5

15

25

35

5-(3-Furanyl)-1-(3-(4-ethoxycarbonylpiperid-1-ylmethyl)-phenyl)-benzimidazole; or

5-(3-Furanyl)-1-(3-(1-ethoxycarbonyl-4-piperazinyl)-phenyl)-benzimidazole; or a pharmaceutically acceptable salt thereof.

Definition of Substituents

In the context of this invention halogen represents a fluorine, a chlorine, a bromine or an iodine atom.

In the context of this invention an alkyl group designates a univalent saturated, straight or branched hydrocarbon chain. The hydrocarbon chain preferably consists of from one to eight carbon atoms (C₁₋₈-alkyl), more preferred from one to six carbon atoms (C₁₋₆-alkyl), including pentyl, isopentyl, neopentyl, tertiary pentyl, hexyl and isohexyl. In a preferred embodiment alkyl represents a C₁₋₄-alkyl group, including butyl, isobutyl, secondary butyl, and tertiary butyl. In a preferred embodiment of this invention alkyl represents a C₁₋₃-alkyl group, which may in particular be methyl, ethyl, propyl or isopropyl.

In the context of this invention a cycloalkyl group designates a cyclic alkyl group, preferably containing of from three to seven carbon atoms (C₃₋₇-cycloalkyl), including cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl.

In the context of this invention an alkenyl group designates a carbon chain containing one or more double bonds, including di-enes, tri-enes and polyenes. In a preferred embodiment the alkenyl group of the invention comprises of from two to six carbon atoms (C₂₋₆-alkenyl), including at least one double bond. In a most preferred embodiment the alkenyl group of the invention is ethenyl; 1,2- or 2,3- propenyl; or 1,2-, 2,3-, or 3,4-butenyl.

In the context of this invention an alkynyl group designates a carbon chain containing one or more triple bonds, including di-ynes, tri-ynes and poly-ynes. In a preferred embodiment the alkynyl group of the invention comprises of from two to six carbon atoms (C₂₋₆-alkynyl), including at least one triple bond. In its most preferred embodiment the alkynyl group of the invention is ethynyl, 1,2- or 2,3-propynyl, 1,2-, 2,3- or 3,4-butynyl.

In the context of this invention an alkoxy-alkyl group designates an "alkyl-25" O-alkyl-" group, wherein alkyl is as defined above.

In the context of this invention a thioalkoxy-alkyl group designates an "alkyl-S-alkyl" group wherein alkyl is as defined above;

In the context of this invention an alkoxyalkoxy group designates O-alkyl-O-alkyl wherein alkyl is as defined above.

In the context of this invention an thioalkoxy-alkoxy group designates O-alkyl-S-alkyl wherein alkyl is as defined above.

30

In the context of this invention an acyl group designates a carboxy group (HOOC-), an alkyl-carbonyl group (alkyl-CO-), or a cycloalkyl-carbonyl (cycloalkyl-CO-), wherein alkyl and cycloalkyl are as defined above. Examples of preferred acyl groups of the invention include carboxy, acetyl, and propionyl.

In the context of this invention an aryl group designates a monocyclic or polycyclic aromatic hydrocarbon group. Examples of preferred aryl groups of the invention include phenyl, naphthyl and anthracenyl.

In the context of this invention an aralkyl group designates a mono- or polycyclic aryl group as defined above, which aryl group is attached to an alkyl group as also defined above. Examples of preferred aralkyl groups of the invention include benzyl, and phenethyl.

In the context of this invention a "Heterocycle" designates a mono- or polycyclic heterocyclic group, which is a mono- or polycyclic group, and which group holds one or more heteroatoms in its ring structure. Preferred heteroatoms include nitrogen (N), oxygen (O), and sulphur (S). One or more of the ring structures may in particular be aromatic (i.e. a heteroaryl), saturated or partially saturated. Preferred 10 heterocyclic monocyclic groups of the invention include 5- and 6-membered heterocyclic monocyclic groups. Preferred poly-heterocyclic groups of the invention are the bicyclic heterocyclic groups.

Examples of preferred aromatic heterocyclic 5-membered monocyclic groups of the invention include

```
15
               furan, in particular 2- or 3-furanyl;
               thiophene, in particular 2- or 3-thienyl;
               pyrrole (azole), in particular 1-, 2- or 3-pyrrolyl;
               oxazole, in particular oxazol-(2-,4- or 5-)yl;
               thiazole, in particular thiazol-(2-,4-, or 5-)yl;
               imidazole, in particular imidazol-(1-,2-,4- or 5-)yl;
20
               pyrazole, in particular pyrazol-(1-,3-,4- or 5-)yl;
               isoxazole, in particular isoxazol-(3-,4- or 5-)yl;
               isothiazole, in particular isothiazol-(3-,4- or 5-)yl;
               1,2,3-oxadiazole, in particular 1,2,3-oxadiazol-(4- or 5-)yl;
               1,2,4-oxadiazole, in particular 1,2,4-oxadiazol-(3- or 5-)yl;
25
               1,2,5-oxadiazole, in particular 1,2,5-oxadiazol-(3- or 4-)yl;
               1,2,3-triazole, in particular 1,2,3-triazol-(1-,4- or 5-)yl;
               1,2,4-thiadiazole, in particular 1,2,4-thiadiazol-(3- or 5-)yl;
               1,2,5-thiadiazole, in particular 1,2,5-thiadiazol-(3- or 4-)yl; and
               1,3,4-thiadiazole, in particular 1,3,4-thiadiazol-(2- or 5-)yl.
30
               Examples of preferred saturated or partially saturated heterocyclic
    monocyclic 5-membered groups of the invention include
```

```
1,3-dioxolan, in particular 1,3-dioxolan-(2- or 4-)yl;
               imidazolidine, in particular imidazolidin-(1-,2-,3-,4- or 5-)yl;
               2-imidazoline, in particular 2-imidazolin-(1-,2-,4- or 5-)yl;
35
                3-imidazoline, in particular 3-imidazolin-(1-,2-,4- or 5-)yl;
               4-imidazoline, in particular 4-imidazolin-(1-,2-,4- or 5-)yl;
                2H-oxazole (oxazoline), in particular 2H-oxazol-(2-,4- or 5-)yl;
                4H-oxazole (oxazolidine), in particular 4H-oxazol-(2-,4- or 5-)yl;
```

WO 00/78728 PCT/DK00/00333

```
1,2,3-oxadiazoline, in particular 1,2,3-oxadiazol-(4- or 5-)vl:
               1,2,4-oxadiazoline, in particular 1,2,4-oxadiazol-(3- or 5-)yl;
               1,2,5-oxadiazoline, in particular 1,2,5-oxadiazol-(3- or 4-)yl;
               1,2,3-oxadiazolidine, in particular 1,2,3-oxadiazol-(4- or 5-)yl;
               1,2,4-oxadiazolidine, in particular 1,2,4-oxadiazol-(3- or 5-)vl:
 5
               1,2,5-oxadiazolidine, in particular 1,2,5-oxadiazol-(3- or 4-)yl;
               2H-pyrrole (pyrroline), in particular 2H-pyrrol-(1-,2- or 3-)yl;
               4H-pyrrole (pyrrolidine), in particular 4H-pyrrol-(1-,2- or 3-)yl;
               pyrazolidine, in particular pyrazolidin-(1-,2-,3-,4- or 5-)yl;
               2-pyrazoline, in particular 2-pyrazolin-(1-,3-,4- or 5-)yl; and
10
               3-pyrazoline, in particular 3-pyrazolin-(1-,3-,4- or 5-)yl.
               Examples of preferred aromatic heterocyclic 6-membered monocyclic
    groups of the invention include
               pyridine, in particular pyridin-(2-,3- or 4-)yl;
               pyridazine, in particular pyridazin-(3- or 4-)yl;
15
               pyrimidine, in particular pyrimidin-(2-,4- or 5-)yl;
               pyrazine, in particular pyrazin-(2-,3-,5- or 6-)yl;
               1.3.5-triazine, in particular 1.3.5-triazin-(2-,4- or 6-)vl; and
               phosphinine, in particular phosphinin-(2-,3- or 4-)yl.
               Examples of preferred saturated or partially saturated heterocyclic
20
    monocyclic 6-membered groups of the invention include
               1,4-dioxolane, in particular 1,4-dioxolan-(2- or 3-)yl;
               1,4-dithiane, in particular 1,4-dithian-(2- or 3-)yl;
               morpholine, in particular morpholin-(2-,3- or 4-)yl;
               1,4-oxazine, in particular 1,4-oxazin-(2-)yl;
25
               oxadiazine, in particular oxadiazin-(2-,3- or 5-)yl;
               piperidine, in particular piperidin-(1-,2-,3- or 4-)yl;
               piperazine, in particular piperazin-(1-,2-,3- or 4-)yl;
               2H-pyrane, in particular 2H-pyran-(2-,3- or 4-)yl;
               4H-pyrane, in particular 4H-pyran-(2-,3- or 4-)yl;
30
               thiomorpholine, in particular thiomorpholin-(2-,3- or 4-)yl; and
               1,3,5-trithiane, in particular 1,3,5-trithian-(2-)yl.
               Examples of preferred saturated or partially saturated heterocyclic
   monocyclic 7-membered groups of the invention include
               homopiperidine, in particular homopiperidin-(1-,2-,3- or 4-)yl; and
35
               homopiperazine, in particular homopiperazin-(1-,2-,3- or 4-)yl.
               Examples of preferred aromatic heterocyclic bi-cyclic groups of the
   invention include
```

indolizine, in particular indolizin-(1-,2-,3-,5-,6-,7- or 8)yl;

```
indole, in particular indol-(1-,2-,3-,4-,5-,6- or 7)yl;
               isoindole, in particular isoindol-(1-,2-,3-,4-,5-,6- or 7-)yl;
               benzo[b]furan (benzofuran), in particular benzo[b]furan-(2-,3-,4-,5-,6- or
    7-)yl;
               benzo[c]furan (isobenzofuran), in particular benzo[c]furan-(1-,3-,4-,5-,6- or
 5
    7-)yl;
               benzo[b]thiophene (benzothiophene), in particular benzo[b]thiophen-(2-,
    3-.4-.5-.6- or 7-)yl;
               benzo[c]thiophene (isobenzothiophene), in particular benzo[c]thiophen-
10 (1-,3-,4-,5-,6- or 7-)yl;
               benzimidazole, in particular benzimidazol-(1-,2-,4-,5-,6- or 7-)yl;
               benzthiazole, in particular benzthiazol-(2-,4-,5-,6- or 7-)yl;
               purine, in particular purin-(2-,6- or 8-)yl;
               quinoline, in particular quinolin-(2-,3-,4-,5-,6-,7- or 8-)yl;
               isoquinoline, in particular isoquinolin-(1-,3-,4-,5-,6-,7- or 8-)yl;
15
               cinnoline, in particular cinnolin-(3-,4-,5-,6-,7- or 8-)yl;
               phthlazine, in particular phthlazin-(1-,4-,5-,6-,7- or 8-)yl;
               quinazoline, in particular quinazolin-(2-,4-,5-,6-,7- or 8-)yl;
               quinoxaline, in particular quinoxalin-(2-,3-,5-,6-,7- or 8-)yl;
               1,8-naphthyridine, in particular 1,8-naphthyridin-(2-,3-,4-,5-,6- or 7-)yl; and
20
               pteridine, in particular pteridin-(2-,4-,6- or 7-)yl.
               Examples of preferred aromatic heterocyclic tri-cyclic groups of the
    invention include
               carbazole, in particular carbazol-(1-,2-,3-,4-,5-,6-,7-,8- or 9-)yl;
               acridine, in particular acridin-(1-,2-,3-,4-,5-,6-,7-,8- or 9-)yl;
25
               phenazine, in particular phenazin-(1-,2-,3-,4-,6-,7-,8- or 9-)yl;
               phenothiazine, in particular phenothiazin-(1-,2-,3-,4-,6-,7-,8-,9- or 10-)vl;
   and
               phenoxazine, in particular phenoxazin-(1-,2-,3-,4-,6-,7-,8-,9- or 10-)vl.
30
               Examples of preferred saturated or partially saturated heterocyclic bi-
   cyclic groups of the invention include
               indoline, in particular indolin-(1-,2-,3-,4-,5-,6- or 7-)yl;
               3H-indole, in particular 3H-indol-(2-,3-,4-,5-,6- or 7-)yl;
               1H-indazole, in particular 1H-indazol-(3-,4-,5-,6- or 7-)yl;
               4H-quinolizine, in particular 4H-quinolizin-(1-,2-,3-,4-6-,7-,8- or 9-)vi;
35
               quinuclidine, in particular quinuclidin-(2-,3-,4-,5-,6-,7- or 8-)yl;
               isoquinuclidine, in particular isoquinuclidin-(1-,2-,3-,4-,5-,6-,7- or 8-)yl:
               tropane, in particular tropan-(1-,2-,3-,4-,5-,6-,7- or 8-)yl; and
               nortropane, in particular nortropan-(1-,2-,3-,4-,5-,6- or 7-)yl.
```

Pharmaceutically Acceptable Salts

The chemical compound of the invention may be provided in any form suitable for the intended administration. Suitable forms include pharmaceutically (i.e. physiologically) acceptable salts, and pre- or prodrug forms of the chemical compound of the invention.

Examples of pharmaceutically acceptable addition salts include, without limitation, the non-toxic inorganic and organic acid addition salts such as the hydrochloride derived from hydrochloric acid, the hydrobromide derived from 10 hydrobromic acid, the nitrate derived from nitric acid, the perchlorate derived from perchloric acid, the phosphate derived from phosphoric acid, the sulphate derived from sulphuric acid, the formate derived from formic acid, the acetate derived from acetic acid, the aconate derived from aconitic acid, the ascorbate derived from ascorbic acid, the benzenesulphonate derived from benzensulphonic acid, the 15 benzoate derived from benzoic acid, the cinnamate derived from cinnamic acid, the citrate derived from citric acid, the embonate derived from embonic acid, the enantate derived from enanthic acid, the fumarate derived from fumaric acid, the glutamate derived from glutamic acid, the glycolate derived from glycolic acid, the lactate derived from lactic acid, the maleate derived from maleic acid, the malonate derived from 20 malonic acid, the mandelate derived from mandelic acid, the methanesulphonate derived from methane sulphonic acid, the naphthalene-2-sulphonate derived from naphtalene-2-sulphonic acid, the phthalate derived from phthalic acid, the salicylate derived from salicylic acid, the sorbate derived from sorbic acid, the stearate derived from stearic acid, the succinate derived from succinic acid, the tartrate derived from 25 tartaric acid, the toluene-p-sulphonate derived from p-toluene sulphonic acid, and the like. Such salts may be formed by procedures well known and described in the art.

Other acids such as oxalic acid, which may not be considered pharmaceutically acceptable, may be useful in the preparation of salts useful as intermediates in obtaining a chemical compound of the invention and its pharmaceutically acceptable acid addition salt.

Metal salts of a chemical compound of the invention includes alkali metal salts, such as the sodium salt of a chemical compound of the invention containing a carboxy group.

In the context of this invention the "onium salts" of N-containing compounds
are also contemplated as pharmaceutically acceptable salts. Preferred "onium salts"
include the alkyl-onium salts, the cycloalkyl-onium salts, and the cycloalkylalkyl-onium
salts.

The chemical compound of the invention may be provided in dissoluble or indissoluble forms together with a pharmaceutically acceptable solvents such as

PCT/DK00/00333 WO 00/78728

water, ethanol, and the like. Dissoluble forms may also include hydrated forms such as the monohydrate, the dihydrate, the hemihydrate, the trihydrate, the tetrahydrate, and the like. In general, the dissoluble forms are considered equivalent to indissoluble forms for the purposes of this invention.

5

10

Steric Isomers

The chemical compounds of the present invention may exist in (+) and (-) forms as well as in racemic forms. The racemates of these isomers and the individual isomers themselves are within the scope of the present invention.

Racemic forms can be resolved into the optical antipodes by known methods and techniques. One way of separating the diastereomeric salts is by use of an optically active acid, and liberating the optically active amine compound by treatment with a base. Another method for resolving racemates into the optical antipodes is based upon chromatography on an optical active matrix. Racemic 15 compounds of the present invention can thus be resolved into their optical antipodes, by fractional crystallisation of d- or l- (tartrates, mandelates. camphorsulphonate) salts for example.

The chemical compounds of the present invention may also be resolved by the formation of diastereomeric amides by reaction of the chemical compounds of the 20 present invention with an optically active activated carboxylic acid such as that derived from (+) or (-) phenylalanine, (+) or (-) phenylalycine, (+) or (-) camphanic acid or by the formation of diastereomeric carbamates by reaction of the chemical compound of the present invention with an optically active chloroformate or the like.

Additional methods for the resolving the optical isomers are known in the 25 art. Such methods include those described by Jaques J, Collet A, & Wilen S in "Enantiomers, Racemates, and Resolutions", John Wiley and Sons, New York (1981).

Optical active compounds can also be prepared from optical active starting materials.

Moreover, some of the chemical compounds of the invention may exist in 30 two forms, cis- and trans-form (Z- and E-form), depending on the arrangement of the substituents around the -C=C- double bond. A chemical compound of the present invention may thus be the cis- or the trans-form (Z- and E-form), or it may be a mixture hereof.

35 Methods of Preparation

The benzimidazole derivatives of the invention may be prepared by conventional methods for chemical synthesis, e.g. those described in the working examples. The starting materials for the processes described in the present

application are known or may readily be prepared by conventional methods from commercially available chemicals.

Also one compound of the invention can be converted to another compound of the invention using conventional methods.

The end products of the reactions described herein may be isolated by conventional extraction, techniques, e.g. by crystallisation, distillation. chromatography, etc.

Pharmaceutical Compositions

5

25

35

another aspect the invention provides novel pharmaceutical 10 In compositions comprising a therapeutically effective amount of the benzimidazole derivative of the invention.

While a chemical compound of the invention for use in therapy may be administered in the form of the raw chemical compound, it is preferred to introduce 15 the active ingredient, optionally in the form of a physiologically acceptable salt, in a pharmaceutical composition together with one or more adjuvants, excipients, carriers, buffers, diluents, and/or other customary pharmaceutical auxiliaries.

In a preferred embodiment, the invention provides pharmaceutical compositions comprising the chemical compound of the invention, or a 20 pharmaceutically acceptable salt or derivative thereof, together with one or more pharmaceutically acceptable carriers therefor, and, optionally, other therapeutic and/or prophylactic ingredients. The carrier(s) must be "acceptable" in the sense of being compatible with the other ingredients of the formulation and not harmful to the recipient thereof.

Pharmaceutical compositions of the invention may be those suitable for oral, rectal, bronchial, nasal, topical (including buccal and sub-lingual), transdermal, or parenteral (including cutaneous, subcutaneous, intraperitoneal, intravenous, intraarterial, intracerebral, intraocular injection or infusion) administration, or those in a form suitable for administration by inhalation or 30 insufflation, including powders and liquid aerosol administration, or by sustained release systems. Suitable examples of sustained release systems include semipermeable matrices of solid hydrophobic polymers containing the compound of the invention, which matrices may be in form of shaped articles, e.g. films or microcapsules.

The chemical compound of the invention, together with a conventional adjuvant, carrier, or diluent, may thus be placed into the form of pharmaceutical compositions and unit dosages thereof. Such forms include solids, and in particular tablets, filled capsules, powder and pellet forms, and liquids, in particular aqueous or non-aqueous solutions, suspensions, emulsions, elixirs, and capsules filled with the

same, all for oral use, suppositories for rectal administration, and sterile injectable solutions for parenteral use. Such pharmaceutical compositions and unit dosage forms thereof may comprise conventional ingredients in conventional proportions, with or without additional active compounds or principles, and such unit dosage forms may contain any suitable effective amount of the active ingredient commensurate with the intended daily dosage range to be employed.

The chemical compound of the present invention can be administered in a wide variety of oral and parenteral dosage forms. It will be obvious to those skilled in the art that the following dosage forms may comprise, as the active component, either a chemical compound of the invention or a pharmaceutically acceptable salt of a chemical compound of the invention.

For preparing pharmaceutical compositions from a chemical compound of the present invention, pharmaceutically acceptable carriers can be either solid or liquid. Solid form preparations include powders, tablets, pills, capsules, cachets, suppositories, and dispersible granules. A solid carrier can be one or more substances which may also act as diluents, flavouring agents, solubilizers, lubricants, suspending agents, binders, preservatives, tablet disintegrating agents, or an encapsulating material.

In powders, the carrier is a finely divided solid which is in a mixture with the 20 finely divided active component.

In tablets, the active component is mixed with the carrier having the necessary binding capacity in suitable proportions and compacted in the shape and size desired.

The powders and tablets preferably contain from five or ten to about seventy percent of the active compound. Suitable carriers are magnesium carbonate, magnesium stearate, talc, sugar, lactose, pectin, dextrin, starch, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose, a low melting wax, cocoa butter, and the like. The term "preparation" is intended to include the formulation of the active compound with encapsulating material as carrier providing a capsule in which the active component, with or without carriers, is surrounded by a carrier, which is thus in association with it. Similarly, cachets and lozenges are included. Tablets, powders, capsules, pills, cachets, and lozenges can be used as solid forms suitable for oral administration.

For preparing suppositories, a low melting wax, such as a mixture of fatty acid glyceride or cocoa butter, is first melted and the active component is dispersed homogeneously therein, as by stirring. The molten homogeneous mixture is then poured into convenient sized moulds, allowed to cool, and thereby to solidify.

Compositions suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or sprays containing in addition to the active ingredient such carriers as are known in the art to be appropriate.

Liquid preparations include solutions, suspensions, and emulsions, for 5 example, water or water-propylene glycol solutions. For example, parenteral injection liquid preparations can be formulated as solutions in aqueous polyethylene glycol solution.

The chemical compound according to the present invention may thus be formulated for parenteral administration (e.g. by injection, for example bolus injection or continuous infusion) and may be presented in unit dose form in ampoules, pre-filled syringes, small volume infusion or in multi-dose containers with an added preservative. The compositions may take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles, and may contain formulation agents such as suspending, stabilising and/or dispersing agents. Alternatively, the active ingredient 15 may be in powder form, obtained by aseptic isolation of sterile solid or by lyophilization from solution, for constitution with a suitable vehicle, e.g. sterile, pyrogen-free water, before use.

Aqueous solutions suitable for oral use can be prepared by dissolving the active component in water and adding suitable colorants, flavours, stabilising and 20 thickening agents, as desired.

Aqueous suspensions suitable for oral use can be made by dispersing the finely divided active component in water with viscous material, such as natural or synthetic gums, resins, methylcellulose, sodium carboxymethylcellulose, or other well known suspending agents.

Also included are solid form preparations which are intended to be converted, shortly before use, to liquid form preparations for oral administration. Such liquid forms include solutions, suspensions, and emulsions. These preparations may contain, in addition to the active component, colorants, flavours, stabilisers, buffers, artificial and natural sweeteners, dispersants, thickeners, solubilizing agents, and the 30 like.

25

For topical administration to the epidermis the compound of the invention may be formulated as ointments, creams or lotions, or as a transdermal patch. Ointments and creams may, for example, be formulated with an aqueous or oily base with the addition of suitable thickening and/or gelling agents. Lotions may be 35 formulated with an aqueous or oily base and will in general also contain one or more emulsifying agents, stabilising agents, dispersing agents, suspending agents, thickening agents, or colouring agents.

Compositions suitable for topical administration in the mouth include lozenges comprising the active agent in a flavoured base, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert base such as gelatin and glycerine or sucrose and acacia; and mouthwashes comprising the active ingredient in a suitable liquid carrier.

Solutions or suspensions are applied directly to the nasal cavity by 5 conventional means, for example with a dropper, pipette or spray. The compositions may be provided in single or multi-dose form. In the latter case of a dropper or pipette, this may be achieved by the patient administering an appropriate, predetermined volume of the solution or suspension. In the case of a spray, this may be achieved for example by means of a metering atomising spray pump.

Administration to the respiratory tract may also be achieved by means of an aerosol formulation in which the active ingredient is provided in a pressurised pack with a suitable propellant such as a chlorofluorocarbon (CFC) for example dichlorodifluoromethane, trichlorofluoromethane, or dichlorotetrafluoroethane, carbon dioxide, or other suitable gas. The aerosol may conveniently also contain a surfactant 15 such as lecithin. The dose of drug may be controlled by provision of a metered valve.

10

Alternatively the active ingredients may be provided in the form of a dry powder, for example a powder mix of the compound in a suitable powder base such as lactose, starch, starch derivatives such as hydroxypropylmethyl cellulose and polyvinylpyrrolidone (PVP). Conveniently the powder carrier will form a gel in the nasal 20 cavity. The powder composition may be presented in unit dose form for example in capsules or cartridges of, e.g., gelatin, or blister packs from which the powder may be administered by means of an inhaler.

In compositions intended for administration to the respiratory tract, including intranasal compositions, the compound will generally have a small particle 25 size for example of the order of 5 microns or less. Such a particle size may be obtained by means known in the art, for example by micronization.

When desired, compositions adapted to give sustained release of the active ingredient may be employed.

The pharmaceutical preparations are preferably in unit dosage forms. In 30 such form, the preparation is subdivided into unit doses containing appropriate quantities of the active component. The unit dosage form can be a packaged preparation, the package containing discrete quantities of preparation, such as packaged tablets, capsules, and powders in vials or ampoules. Also, the unit dosage form can be a capsule, tablet, cachet, or lozenge itself, or it can be the appropriate 35 number of any of these in packaged form.

Tablets or capsules for oral administration and liquids for intravenous administration and continuous infusion are preferred compositions.

Further details on techniques for formulation and administration may be found in the latest edition of <u>Remington's Pharmaceutical Sciences</u> (Maack Publishing Co., Easton, PA).

A therapeutically effective dose refers to that amount of active ingredient which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity, e.g. ED₅₀ and LD₅₀, may be determined by standard pharmacological procedures in cell cultures or experimental animals. The dose ratio between therapeutic and toxic effects is the therapeutic index and may be expressed by the ratio LD₅₀/ED₅₀. Pharmaceutical compositions which exhibit large therapeutic indexes are preferred.

The dose administered must of course be carefully adjusted to the age, weight and condition of the individual being treated, as well as the route of administration, dosage form and regimen, and the result desired, and the exact dosage should of course be determined by the practitioner.

The actual dosage depend on the nature and severity of the disease being treated and the route of administration, and is within the discretion of the physician, and may be varied by titration of the dosage to the particular circumstances of this invention to produce the desired therapeutic effect. However, it is presently contemplated that pharmaceutical compositions containing of from about 0.1 to about 500 mg of active ingredient per individual dose, preferably of from about 1 to about 100 mg, most preferred of from about 1 to about 10 mg, are suitable for therapeutic treatments.

The active ingredient may be administered in one or several doses per day. A satisfactory result can, in certain instances, be obtained at a dosage as low as 0.1 μg/kg i.v. and 1 μg/kg p.o. The upper limit of the dosage range is presently considered to be about 10 mg/kg i.v. and 100 mg/kg p.o. Preferred ranges are from about 0.1 μg/kg to about 10 mg/kg/day i.v., and from about 1 μg/kg to about 100 mg/kg/day p.o.

As the preferred way of administration is intravenous and by infusion the dose ranges are from 0.01µg/kg/h to about 10 mg/kg/h.

30 Biological Activity

10

It is an object of the present invention to provide compounds capable of modulating the GABA_A receptor complex, which object is met by the provision of the novel benzimidazole derivatives of Formula I.

The benzimidazole derivatives of the invention are particularly useful as anaesthetics and/or pre-anaesthetics, for inducing and maintaining anaesthesia, as sedatives, as muscle relaxants, and for combating febrile convulsions in children, status epilepticus, for use to patients constrained to a respirator.

The benzimidazole derivatives of the invention show a short duration of action, they are water soluble at therapeutic relevant doses, and are particular well suited for intravenous administration.

The compounds of the invention may also be used by veterinarians.

As demonstrated in the working examples the benzimidazole derivatives of the invention show high to moderate affinity for the benzodiazepine receptor as measured by displacement at ³H-flunitrazepam *in vitro* as well as *in vivo*. The most preferred compounds are full agonists i.e. they exert a high maximal effect in the seizure test as described in the application.

Preferred compounds are full agonists on the GABA_A receptor complex, e.g. as measured by the anticonvulsant activity in the ptz-test described in Example 14, and give rise to a 2-5 fold increase of the tolerated ptz dose. The most preferred compounds are those which increase the tolerated dose the most.

The benzimidazole derivatives of the invention show half-lives of below 30 minutes, which allows for a short duration of action. Preferred half-lives are in the range of from about 30 seconds to about 20 minutes. Most preferred half-lives are in the range of from about 2 to about 5 minutes.

The preferred compounds induce a rapid onset of anaesthesia, i.e. in less than 1-2 minutes. Most preferred is an onset of anaesthesia in less than 1 minute.

Awakening from anaesthesia following a bolus injection (i.v.), or following the attenuation of an infusion, should occur within a short period of time, i.e. of from about 5 to about 30 minutes, preferably of from about 5 to about 10 minutes, after which time the patient should normalise rapidly, i.e. in less than 40 minutes, preferably in less than 20 minutes, as measured from awakening.

The compounds of this invention can be used together with analgetic compounds such as Remifentanile, Fentanyl, or other opiods.

Methods of Therapy

5

10

20

25

35

In another aspect the invention provides a method for the treatment, prevention or alleviation of a disease or a disorder or a condition of a living animal body, including a human, which disease, disorder or condition is responsive to modulation of the GABA receptor complex, and which method comprises administering to such a living animal body, including a human, in need thereof an effective amount of benzimidazole derivative of the invention.

In a more preferred embodiment the invention provides a method for the induction or maintenance of anaesthesia or pre-anaesthesia, muscle relaxation or sedation, or for the treatment, prevention or alleviation of fewer cramps or status epilepticus.

It is at present contemplated that suitable infusion rates are in the range of from about 0.01 to about 100 mg/kg/hour, more preferred of from about 0.1 to about 15 mg/kg/hour, dependent upon the exact mode of administration, form in which administered, the indication toward which the administration is directed, the subject involved and the body weight of the subject involved, and further the preference and experience of the physician or veterinarian in charge.

EXAMPLES

10

The invention is further illustrated with reference to the following examples which are not intended to be in any way limiting to the scope of the invention as claimed.

15 Example 1

WO 00/78728

The benzimidazoles of Table 1 were all prepared according to the above scheme as exemplified for compound 1a, below.

20 Table 1

$$R_1O$$
 R_2O
 R_3O

Comp.	R ₁	R ₂	Mp (°C)	Yield	Starting	Salt
No.				(%)	material	
. 1a	MeO(CH ₂) ₂	L _N CO ₂ Et	171-173	48	2a	HCI
1b	MeO(CH ₂) ₂	_NCO₂E1	161-163	64	2b	HCI
1c	MeO(CH ₂) ₂	CO ₂ Me	132-134	78	2c	HCI
1d	MeO(CH ₂) ₂	—h соон	105-110	43	2d	
1e	MeO(CH ₂) ₂	—N NMe	136-137	29	2e	male- ate
1f	MeO(CH ₂) ₂	—NNAc	157-164	53	2f	HCI
1g	MeO(CH ₂) ₂	NMe	123-125	27ª	2g	HCI
1h	MeO(CH ₂) ₂	NAc	139-140	62	2h	HCI
1i	MeO(CH ₂) ₂	—N CO₂tBu	218-224	100	2i	HCI
1j	MeO(CH ₂) ₂	-N COziPr	155-159	69	2j	HCI
1k	Et	my ic	157-159	70	2k	HCI
11	Me	-n_n	241-244	42	21	HCI
1m	Ме	— _N соон	210-220	2	2m	HCI
1n	MeS(CH ₂) ₂	-n_n	71-75	42	2n	-
10	MeS(CH ₂) ₂	—N NMe	121-122	69	20	-
1p	Me ₂ N(CH ₂) ₂	-N COOH	47 (de- comp.)	30	2р	<u>-</u>
1q	MeO(CH ₂) ₂	-N_N_CO2iPr	155-159	69	2q	HCI

Comp.	R ₁	R ₂	Mp (°C)	Yield	Starting	Salt
1		11/2	1415 (3)	1		Jan
No.				(%)	material	
1r	MeO(CH ₂) ₂	_NPh	172-177	75	2r	HCI
1s	Ме	-N CN	160-162	53	2s	-
1t	MeO(CH ₂) ₂	_N	91-93	71	2t	-
1u	Me	_NPh	153-163	70	2u	HCI
1v	MeO(CH ₂) ₂	-N N-OBz	139-141	45	2v	HCI
1w	MeO(CH ₂) ₂		196-198	73	2w	HCI
1x	MeO(CH ₂) ₂	_N_N_Et	un- defined	72	2x	HCI
1 y	Me	-N N-Et	un- defined	66	2 y	HCI
1z	MeO(CH ₂) ₂	−N N−Et	166-168	26	2z	HCI
1aa	MeO(CH ₂) ₂	Me CO ₂ Et	90-94	59	2aa	HCI
1bb	Me	Me CO ₂ Et	168-181	48	2bb	HCI
1cc	HO(CH ₂) ₂	-NOH	182-192	34	2cc	HCI
1dd	MeO(CH ₂) ₂	Me N-Et Me	202-208	24	2dd	HCI

Comp.	R ₁	R ₂	Mp (°C)	Yield	Starting	Salt
No.				(%)	material	
1ee	MeO(CH ₂) ₂	N-Et	179-180	69	2ee	HCI
1ff	MeO(CH₂)₂		oil	54	2ff	HCI
1gg	MeO(CH₂)₂	N Me	oil	100	2gg	-
1hh	Ме	-N_N	179-202	81	2hh	2HCI
1ii	MeO(CH ₂) ₂	_N_N	191-205	74	2ii	2HCI
1jj	MeO(CH ₂) ₂	Me N Me	219-223	50	2jj	HCI
1kk	MeO(CH ₂) ₂	Me N Me	215-231	92	2kk	HCI
111	MeO(CH ₂) ₂		225-254	60	211	HCI
1mm	MeO(CH ₂) ₂	-N_N_S ^{CI}	185-186	62	2mm	HCI
1nn	HO(CH ₂) ₂	—N_N−Me	128-139	17	2nn	HCI
100	HO(CH ₂) ₂	-N CO ₂ Me	150-155	44	200	HCI
1рр	HO(CH ₂) ₂	-N CO ₂ Et	103-125	45	2рр	HCI
1qq	MeO(CH ₂) ₂	-N CONEt ₂	202-204	100	2qq	HCI

Comp.	R ₁	R ₂	Mp (°C)	Yield	Starting	Salt
No.				(%)	material	
1rr	MeO(CH ₂) ₂	-N_N_CO ₂ Me	161-164	72	2rr	HCI
1ss	MeO(CH ₂) ₂	-N CONH ₂	211-212	58	2ss	HCI
1tt	HO(CH ₂) ₂	-N CONH ²	268-270	79	2tt	HCI
1uu	HO(CH ₂) ₂	-N CONEL	149-154	64	2uu	HCI
1vv	HO(CH ₂) ₂		un- defined	50	2vv	HCI

^athe total yield from three steps.

2-Methoxyethyl 1-(3-(4-(ethoxy-carbonyl)-1-piperazinylmethyl)-phenyl)5 benzimidazole-5-carboxylate (1a): A mixture of 2a (0.57 g; 1.25 mmol), triethylorthoformate (0.42 ml; 2.5 mmol) and a catalytic amount of p-toluenesulfonic acid in tetrahydrofurane (10 ml) was heated to reflux for 30 min. The cooled mixture was diluted with ethyl acetate and washed with aqueous sodium hydroxide (1 M). The organic phase was dried over magnesium sulphate and concentrated under reduced pressure. The residue was purified by column-chromatography on silica gel using ethyl acetate as the eluent. The product was precipitated as the hydrochloride by addition of etheral hydrogen chloride to the eluate. Yield: 0.4 g (64%), Mp. 171-173°C.

The following compound were prepared in analogy with Compound 1a:

2-Methoxyethyl 1-(3-(4-(ethoxy-carbonyl-methyl)-1-piperazinyl)-phenyl)15 benzimidazole-5-carboxylate (1b) from 2b. A mixture of ethyl acetate and acetone (4:1 v/v) was used as the eluent. Mp. 161-163°C.

<u>2-Methoxyethyl</u> <u>1-(3-(4-methoxycarbonyl-1-imidazolyl)-phenyl)-benzimidazole-5-carboxylate</u> (**1c**) from **2c**. Mp. 132-134°C.

2-Methoxyethyl 1-(3-(4-carboxymethyl-1-piperazinyl)-phenyl)-

benzimidazole-5-carboxylate (1d) from 2d. Mp. 105-110°C. A mixture of acetonitrile, acetic acid and water (8:1:1 v/v/v) was used as the eluent for the column chromatographic purification. No hydrogen chloride was added.

2-Methoxyethyl 1-(3-(4-methyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate (1e) from 2e. Mp. 136-137°C isolated as the maleate. A mixture of ethyl acetate and acetone (4:1 v/v) was used as the eluent.

WO 00/78728 PCT/DK00/00333

- 2-Metoxyethyl 1-(3-(4-acetyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate (1f) from 2f. Mp. 157-164°C. A mixture of ethyl acetate and acetone (4:1 v/v) was used as the eluent.
- 2-Methoxyethyl 1-(3-(1-methyl-4-piperidyl)-phenyl)-benzimidazole-5-5 carboxylate (1g) from 2g. Mp. 123-125°C. A mixture of ethyl acetate and acetone (4:1 v/v) was used as the eluent.
 - 2-Methoxyethyl 1-(3-(1-acetyl-4-piperidyl)-phenyl)-benzimidazole-5-carboxylate (1h) from 2h. Mp. 139-140°C. Acetone was used as the eluent for the column-chromatographic purification.
- 10 <u>2-Methoxyethyl</u> <u>1-(3-(4-*t*-butoxycarbonylmethyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate (1i) from 2i. Mp. 218-224°C.</u>
 - 2-Methoxyethyl 1-(3-(4-*i*-propoxycarbonylmethyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate (1j) from 2j. Mp. 155-159°C.
- ((N,N-Diethylcarbamoyl)-methyl 2-(3-[3-(5-ethoxycarbonyl-1-15 benzimidazolyl)-phenyl]-4.5-dihydroxyisoxazol-5-yl)-acetate (1k) from 2k. Mp. 157-159°C.
 - Methyl 1-(3-(1-imidazolylmethyl)-phenyl)-benzimidazole-5-carboxylate (1I) from 2I. Mp. 241-244°C. A mixture of dichloromethane and methanol (9:1 v/v) was used as the eluent.
- 20 <u>2-[4-(3-(5-Methoxycarbonylbenzimidazol-1-yl)-phenyl)-1-piperazinyl]-acetic acid</u> (1m) from 2m. Mp. 210-220°C. The product was chromatographied twice using a mixture of acetonitrile, water and acetic acid (8:1:1 v/v/v) as the eluent.
- 2-(Methylthio)-ethyl 1-(3-(1-imidazolylmethyl)-phenyl)-benzimidazole-5-carboxylate (1n) from 2n. Mp. 71-75°C. A mixture of dichloromethane, methanol and aqueous ammonia (90:10:1 v/v/v) was used as the eluent. Isolated as the free base.
 - 2-(Methylthio)-ethyl 1-(3-(4-methyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate (1o) from 2o. Mp. 121-122°C.
- 2-(N,N-dimethylamino)-ethyl 1-(3-(1-carboxymethyl-4-piperazinyl)-phenyl)-benzimidazole-5-carboxylate (1p) from 2p. Mp. 47°C (with decomposition). A mixture of acetonitrile, acetic acid, pyridine and water (7:1:1:1 v/v/v/v) was used as the eluent.
 - 2-Methoxyethyl 1-(3-(1-isopropoxycarbonylmethyl-4-piperazinyl)-phenyl)-benzimidazole-5-carboxylate (1q) from 2q. Mp. 155-159°C.
 - 2-Methoxyethyl 1-(3-(4-benzyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate (1r) from 2r. Mp. 172-177°C.
- 35 <u>Methyl 1-(3-(4-cyanomethyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate</u> (1s) from 2s. Mp. 160-162°C. The product was isolated as the free base.
 - <u>2-Methoxyethyl</u> <u>1-(3-(4-cyanomethyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate</u> (**1t**) from **2t**. Mp. 91-93°C. The product was isolated as the free base.

- Methyl 1-(3-(4-benzyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate (1u) from 2u. Mp. 153-163°C.
- 2-Methoxyethyl 1-(3-(4-benzyloxyethyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate (1v) from 2v. Mp. 139-141°C.
- 2-Methoxyethyl 1-(3-(4-(1-methyl-5-tetrazolyl)methyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate (1w) from 2w. Mp. 196-198°C.
- 2-Methoxyethyl 1-(3-(4-ethyl-1-homopiperazinyl)-phenyl)-benzimidazole-5-carboxylate (1x) from 2x. Mp. undefined. A mixture of dichloromethane and methanol (9:1 v/v) was used as the eluent.
- 10 <u>2-Methyl 1-(3-(4-ethyl-1-homopiperazinyl)-phenyl)-benzimidazole-5-carboxylate</u> (1y) from 2y. Mp. undefined. A mixture of dichloromethane and methanol (9:1 v/v) was used as the eluent.
 - 2-Methoxyethyl 1-(3-(4-ethyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate (1z) from 2z. Mp. 166-168°C.
- 2-Methoxyethyl 1-(3-(4-ethoxycarbonylmethyl-3,5-dimethyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate (1aa) from 2aa. Mp. 90-94°C.
 - 2-Methyl 1-(3-(4-ethoxycarbonylmethyl-3,5-dimethyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate (1bb) from 2bb. Mp. 168-181°C.
- 2-Hydroxyethyl 1-(3-(4-(2-hydroxyethyl)-1-piperazinyl)-phenyl)20 benzimidazole-5-carboxylate (1cc) from 2cc. Mp. 182-192°C. A mixture of ethyl acetate and methanol (1:1 v/v) was used as the eluent.
 - 2-Methoxyethyl 1-(3-(4-ethyl-3,5-dimethyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate (1dd) from 2dd. Mp. 202-208°C. A mixture of ethyl acetate and methanol (1:1 v/v) was used as the eluent.
- 25 <u>2-Methoxyethyl 1-(3-(1-ethyl-1,2,5.6-tetrahydropyridin-4-yl)-phenyl)-benzimidazole-5-carboxylate</u> (1ee) from 2ee. Mp. 179-180°C.
 - 2-Methoxyethyl 1-(3-(4-(2-oxazolidinone-5-yl)methyl)1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate (1ff) from 2ff. Isolated as an oil.
- 2-Methoxyethyl 1-(3-(4-(5-methyloxadiazol-3-yl)methyl)1-piperazinyl)-30 phenyl)-benzimidazole-5-carboxylate (1gg) from 2gg. Isolated as an oil.
 - Methyl 1-(3-(1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate (1hh) from 2hh. Mp. 179-202°C. The Boc-group was removed subsequently to the ring closure by treatment with trifluoroacetic acid in dichloromethane.
- 2-Methoxyethyl 1-(3-(1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate

 35 (1ii) from 2ii. Mp. 191-205°C. The Boc-group was removed subsequently to the ring closure by treatment with trifluoroacetic acid in dichloromethane.
 - <u>2-Methoxyethyl</u> <u>1-(3-(4-(3.5-dimethylisoxazol-4-yl)methyl)1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate</u> (**1jj**) was prepared from **1ii** by alkylation with.4-chloromethyl-3,5-dimethylisoxazol. Mp. 219-223°C.

WO 00/78728 PCT/DK00/00333

2-Methoxyethyl 1-(3-(3,5-dimethyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate (1kk) from 2kk. Mp. 215-231°C. The Boc-group was removed subsequently to the ring closure by treatment with trifluoroacetic acid in dichloromethane.

- 5 <u>2-Methoxyethyl 1-(3-(4-(2-oxo-tetrahydrofuran-3-yl)-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate</u> (1II) from 2II. Mp. 225-254°C.
 - 2-Methoxyethyl 1-(3-(4-(2-chloro-5-thienyl)methyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate (1mm) was prepared from 1ii by alkylation with 2-chloromethyl-5-chlorothiophene. Mp. 185-186°C.
- 10 <u>2-Hydroxyethyl 1-(3-(4-methyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate</u> (**1nn**) from **2nn**. Mp. A mixture of ethyl acetate and methanol (1:1v/v) was used as the eluent.
- 2-Hydroxyethyl 1-(3-(4-methoxycarbonylmethyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate (100) from 200. Mp. A mixture of ethyl acetate and methanol (9:1v/v) was used as the eluent.
 - 2-Hydroxyethyl 1-(3-(4-ethoxycarbonylmethyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate (1pp) from 2pp. Mp. A mixture of ethyl acetate and methanol (9:1v/v) was used as the eluent.
- 2-Methoxyethyl 1-(3-(4-diethylcarbamoylmethyl-1-piperazinyl)-phenyl)20 benzimidazole-5-carboxylate (1qq) from 2qq. Mp. 202-204°C. A mixture of ethyl acetate and methanol (9:1v/v) was used as the eluent.
 - 2-Methoxyethyl 1-(3-(4-methoxycarbonylmethyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate (1rr) from 2rr. Mp. 161-164°C. A mixture of ethyl acetate and methanol (9:1v/v) was used as the eluent.
- 25 <u>2-Methoxyethyl</u> <u>1-(3-(4-carbamoylmethyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate</u> (1ss) from 2ss. Mp. 211-212°C. A mixture of ethyl acetate and methanol (9:1v/v) was used as the eluent.
- 2-Hydroxyethyl 1-(3-(4-carbamoylmethyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate (1tt) from 2tt. Mp. 268-270°C. A mixture of ethyl acetate and methanol (9:1v/v) was used as the eluent.
 - 2-Hydroxyethyl 1-(3-(4-diethylcarbamoylmethyl-1-piperazinyl)-phenyl)-benzimidazole-5-carboxylate (1uu) from 2uu. Mp. 149-154°C. A mixture of ethyl acetate and methanol (9:1v/v) was used as the eluent.
- 2-Hydroxyethyl 1-(3-(4-carboxymethyl-1-piperazinyl)-phenyl)35 benzimidazole-5-carboxylate (1vv) from 2vv. DMF was used as the solvent and a mixture of acetonitril, water and acetic acid (8:1:1 v/v/v) was used as the eluent.

Example 2

$$R_1O$$
 NO_2
 NH
 $H_2, Pd/C$
 NH
 R_1O
 NH_2
 NH
 R_2
 R_2

The diamines of Table 2 were all prepared quantitatively by hydrogenation of the corresponding nitroanilines (3), according to the above scheme as exemplified for 2a below.

Table 2

Compound	R ₁	R ₂	Starting
No.			material
2a	MeO(CH ₂) ₂	L _N CO ₂ Et	3a
2b	MeO(CH ₂) ₂	−N CO₂Et	3b
2c	MeO(CH ₂) ₂	CO ₂ Me	3с
2e	MeO(CH ₂) ₂	—N NMe	3e
2f	MeO(CH ₂) ₂	—N NAc	3f

Compound	R ₁	R ₂	Starting
No.			material
2g	MeO(CH ₂) ₂	NMe	3g
2h	MeO(CH ₂) ₂	NAc	3h
2i	MeO(CH ₂) ₂	−N CO₂tBu	3i
2j	MeO(CH ₂) ₂	−h CO₂iPr	3j
2k	Et		3k
21	Me	722	31
2n	MeS(CH ₂) ₂	~ P ~ P	3n
20	MeS(CH ₂) ₂	—N_NMe	30
2r	MeO(CH ₂) ₂	NPh	3r
2s	Me	_NCN	3s
2t	MeO(CH ₂) ₂		3t
2u	Me	_NPh	3u
2v	MeO(CH ₂) ₂	-N-OBz	3v
2w	MeO(CH ₂) ₂	N Me	3w

Compound	R ₁	R ₂	Starting
No.		·	material
2x	MeO(CH ₂) ₂		3x
		N N-Et	! !
2у	Ме		3у
,		N Et	
2z	MeO(CH ₂) ₂		3z
		N—Et	
2aa	MeO(CH ₂) ₂	Me CO _z Et	3aa
		-N_N-	
		Me	
2bb	Ме	Me CO₂Et	3bb
		-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
		Me	
2cc	HO(CH ₂) ₂	_NOH	Зсс
2dd	MeO(CH ₂) ₂	Me	3dd
		—N N—Et	
İ		Me	
2ee	MeO(CH ₂) ₂	N—Et	3ee
	,		
2ff	MeO(CH ₂) ₂	Î	3ff
		o N	
		_N/	
2gg	MeO(CH ₂) ₂	N O Me	3gg
		-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	

Compound	R ₁	R ₂	Starting
No.		·	material
2hh	Me		3hh
		_n_n	
0::	M-0(011)		011
2ii	MeO(CH ₂) ₂	_N N	3ii
			·
2jj	MeO(CH ₂) ₂	Me N	3jj
		Me Me	
2kk	MeO(CH ₂) ₂	Me	3kk
		_v	
		Me	
211	MeO(CH ₂) ₂	Q.	311
	11100(0112)2	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	U. .
	•		
2mm	MeO(CH ₂) ₂	CI	3mm
2nn	HO(CH ₂) ₂		3nn
		—N_N-Me	•
200	HO(CH ₂) ₂	CO ₂ Me	300
	\ _/-	_nn	
2pp	HO(CH ₂) ₂	CO₂Et	Зрр
_pp	, 10 (0, 12/2	-h	OPP
2m ÷	MaO(CH)	CONEL	2
2qq	MeO(CH ₂) ₂	-N N-	3qq
	14.0(011)	CO₂Me	
2rr	MeO(CH ₂) ₂	_NN	Згг
2ss	MeO(CH ₂) ₂	-N N-CONH ₂	3ss
2tt	HO(CH ₂) ₂	CONH ₂	3tt
· · · · · · · · · · · · · · · · · · ·			

WO 00/78728 PCT/DK00/00333

Compound No.	R ₁	R ₂	Starting material
2uu	HO(CH ₂) ₂	-N CONET	3uu
2vv	HO(CH₂)₂		3vv

2-Methoxyethyl 3-amino-4-(3-((1-ethoxycarbonyl-4-piperazinyl)-methyl)-phenylamino)-benzoate (2a). 3a (0.75 g; 1.54 mmol) was suspended in tetrahydrofurane. Palladium catalyst (50 mg, 5% on activated carbon) was added and the mixture was hydrogenated at ambient pressure until the hydrogen uptake had ceased. The mixture was filtered through celite and the filtrate was evaporated to dryness to leave 2a, quantitatively.

The following compound were prepared in analogy with Compound 2a:

2-Methoxyethyl 3-amino-4-(3-(1-(ethoxy-carbonyl-methyl)-4-10 piperazinylmethyl)-phenylamino)-benzoate (**2b**) from **3b**.

2-Methoxyethyl 3-amino-4-(3-(4-methoxycarbonyl-1-imidazolyl)-phenylamino)-benzoate (2c) from 3c.

2-Methoxyethyl 3-amino-4-(3-(1-methyl-4-piperazinyl)-phenylamino)benzoate (2e) from 3e.

2-Methoxyethyl 3-amino-4-(3-(1-acetyl-4-piperazinyl)-phenylamino)benzoate (2f) from 3f.

2-Methoxyethyl 3-amino-4-(3-(1-methyl-4-piperidyl)-phenylamino)-benzoate (2g) from 3g.

2-Methoxyethyl 3-amino-4-(3-(1-acetyl-4-piperidyl)-phenylamino)-benzoate 20 (2h) from 3h.

2-Methoxyethyl 3-amino-4-(3-(1-t-butoxycarbonylmethyl-4-piperazinyl)-phenylamino)-benzoate (2i) from 3i.

2-Methoxyethyl 3-amino-4-(3-(1-*i*-propoxycarbonylmethyl-4-piperazinyl)-phenylamino)-benzoate (2j) from 3j.

25 (N.N-Diethylcarbamoyl)-methyl 2-[3-(3-((2-amino-4-ethoxycarbonylphenyl)-amino)-phenyl)-4.5-dihydroisoxazol-5-yl)-acetate (2k) from 3k.

Methyl 3-amino-4-(3-((1-imidazolyl)-methyl)-phenylamino)-benzoate (2I) from 3I.

2-(Methylthio)-ethyl 3-amino-4-(3-(1-imidazolylmethyl)-phenylamino)-30 benzoate (2n) from 3n using raney nickel as the catalyst.

- 2-(Methylthio)-ethyl 3-amino-4-(3-(4-methyl-1-piperazinyl)-phenylamino)benzoate (20) from 30. 2-Methoxyethyl 3-amino-4-(3-(1-benzyl-4-piperazinyl)-phenylamino)benzoate (2r) from 3r. PtO₂ was used as the catalyst. Methyl 3-amino-4-(3-(1-cvanomethyl-4-piperazinyl)-phenylamino)-benzoate 5 (2s) from 3s. 2-Methoxyethyl 3-amino-4-(3-(1-cyanomethyl-4-piperazinyl)-phenylamino)benzoate (2t) from 3t. PtO₂ was used as the catalyst. Methyl 3-amino-4-(3-(1-benzyl-4-piperazinyl)-phenylamino)-benzoate (2u) 10 from 3u. PtO₂ was used as the catalyst. 2-Methoxyethyl 3-amino-4-(3-(1-(2-benzyloxyethyl)-4-piperazinyl)phenylamino)-benzoate (2v) from 3v. PtO₂ was used as the catalyst. 2-Methoxyethyl 3-amino-4-(3-(1-((1-methyl-5-tetrazolyl)-methyl)-4piperazinyl)-phenylamino)-benzoate (2w) from 3w. PtO₂ was used as the catalyst. 2-Methoxyethyl 3-amino-4-(3-(1-ethyl-4-homopiperazinyl)-phenylamino)-15 benzoate (2x) from 3x. Methyl 3-amino-4-(3-(1-ethyl-4-homopiperazinyl)-phenylamino)-benzoate (2y) from 3y. 2-Methoxyethyl 3-amino-4-(3-(1-ethyl-4-piperazinyl)-phenylamino)-20 benzoate (2z) from 3z. 2-Methoxyethyl 3-amino-4-(3-((1-(ethoxy-carbonyl-methyl)-2.6-dimethyl)-4piperazinylmethyl)-phenylamino)-benzoate (2aa) from 3aa. Methyl 3-amino-4-(3-((1-(ethoxy-carbonyl-methyl)-2.6-dimethyl)-4piperazinylmethyl)-phenylamino)-benzoate (2bb) from 3bb. 2-Hydroxyethyl 3-amino-4-(3-(1-(2-hydroxyethyl)-4-piperazinyl)-25 phenylamino)-benzoate (2cc) from 3cc. 2-Methoxyethyl 3-amino-4-(3-((1-ethyl-2.6-dimethyl)-4-piperazinylmethyl)phenylamino)-benzoate (2dd) from 3dd. 2-Methoxyethyl 3-amino-4-(3-(1-(2-oxazolinon-5-yl)methyl-4-piperazinyl)-30 phenylamino)-benzoate (2ff) from 3ff. 2-Methoxyethyl 3-amino-4-(3-(1-(5-methyloxadiazol-3-yl)methyl-4piperazinyl)-phenylamino)-benzoate (2gg) from 3gg. PtO2 was used as the catalyst. Methyl 3-amino-4-(3-(1-boc-4-piperazinyl)-phenylamino)-benzoate (2hh) from 3hh. 2-Methoxyethyl 3-amino-4-(3-(1-boc-4-piperazinyl)-phenylamino)-benzoate
- 35 (2ii) from 3ii.
 - 2-Methoxyethyl 3-amino-4-(3-(1-boc-2,6-dimethyl-4-piperazinyl)phenylamino)-benzoate (2kk) from 3kk.

- 2-Methoxyethyl 3-amino-4-(3-(1-(2-oxotetrahydrofuran-3-yl)-4-piperazinyl)-phenylamino)-benzoate (211) from 311.
- 2-Hydroxyethyl 3-amino-4-(3-(4-methyl-1-piperazinyl)-phenylamino)-benzoate (2nn) from 3nn.
- 5 <u>2-Hydroxyethyl</u> 3-amino-4-(3-(4-methoxycarbonylmethyl-1-piperazinyl)phenylamino)-benzoate (200) from 300.
 - 2-Hydroxyethyl 3-amino-4-(3-(4-ethoxycarbonylmethyl-1-piperazinyl)-phenylamino)-benzoate (2pp) from 3pp.
- 2-Methoxyethyl 3-amino-4-(3-(4-(N.N-diethyl-carbamoyl)methyl-1piperazinyl)-phenylamino)-benzoate (2qq) from 3qq.
 - 2-Methoxyethyl 3-amino-4-(3-(4-methoxycarbonylmethyl-1-piperazinyl)-phenylamino)-benzoate (2rr) from 3rr.
 - 2-Methoxyethyl 3-amino-4-(3-(4-carbamoylmethyl-1-piperazinyl)-phenylamino)-benzoate (2ss) from 3ss.
- 15 <u>2-Hydroxyethyl</u> <u>3-amino-4-(3-(4-carbamoylmethyl-1-piperazinyl)-</u> phenylamino)-benzoate (2tt) from 3tt.
 - 2-Hydroxyethyl 3-amino-4-(3-(4-(N.N-diethyl-carbamoyl)-methyl-1-piperazinyl)-phenylamino)-benzoate (2uu) from 3uu.

20 Example 2a.

30

RO NO2

NH

H2/Pd

RO
NH

COOH

3d, m, p

$$2d, m, p$$

2-Methoxyethyl 3-amino-4-(3-(1-carboxymethyl-4-piperazinyl)-phenylamino)-benzoate (2d). To a solution of 2-methoxyethyl 3-nitro-4-(3-(4-(benzyloxy-carbonyl-methyl)-1-piperazinyl)-phenylamino)-benzoate (3d) (3.5 g; 6.4 mmol) in a mixture of tetrahydrofurane (50 ml) and DMF (5 ml) was added palladium catalyst (0.9 g, 5% Pd on activated carbon) and ammonium formiate (0.8 g; 12.6 mmol) and the mixture was heated to reflux for 2 hours. The cooled mixture was filtered through celite and the solvent was removed under reduced pressure to leave 2d, quantitatively.

The following compound were prepared in analogy with Compound 2d.

Methyl 3-amino-4-(3-(1-carboxymethyl-4-piperazinyl)-phenylamino)-benzoate (2m) from 3m.

2-(Dimethylamino)-ethyl 3-amino-4-(3-(1-carboxymethyl-4-piperazinyl)-phenylamino)-benzoate (2p) from 3p.

2-Hydroxyethyl 3-amino-4-(3-(1-carboxymethyl-4-piperazinyl)-phenylamino)-benzoate (2vv) from 3vv.

10

2-Methoxyethyl 3-amino-4-(3-(1-ethyl-1,2,5,6-tetrahydropyridin-4-yl)-phenylamino)-benzoate (2ee) from 3ee. A mixture of 3ee (0.97 g; 1.9 mmol), sodium sulphide nonahydrate (1.37 g; 5,71 mmol) and ammonium chloride (0.3 g; 5.61 mmol) in a mixture of THF (5 ml) and 2-methoxyethanol (5 ml) was heated to 80°C for two hours. The cooled mixture was poured into ice-water and extracted with ethyl acetate. The extract was dried over magnesium sulphate, filtered and evaporated to dryness. The residue was purified on a silica gel column using a mixture of ethyl acetate and methanol (9:1 v/v) as the eluent. Yield: 0.21 g.

20 Example 3

The nitroanilines of Table 3 were prepared by reaction of 4-chloro-3-nitrobenzoates 5 with substituted anilines (4), according to the above scheme as exemplified for compound 3a below.

Table 3

Comp.	R ₁	R ₂	Starting	Yield
No.	<u> </u>		materials	(%)
3a	MeO(CH ₂) ₂	L _N CO ₂ Et	4a, 5a	43
3b	MeO(CH ₂) ₂	-N_CO ₂ Et	4b, 5a	67
3с	MeO(CH ₂) ₂	CO ₂ Me	4c, 5a	37
3d	MeO(CH ₂) ₂	-h CO ₂ Bz	4d, 5a	52
3e	MeO(CH ₂) ₂	— ММе	4e, 5a	81
3f	MeO(CH ₂) ₂	—N NAc	4f, 5a	58
3g	MeO(CH ₂) ₂	NMe	4g, 5a	-
3h	MeO(CH ₂) ₂	NAc	4h, 5a	74
3i	MeO(CH ₂) ₂	−\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4ì, 5a	45
3 <u>j</u>	MeO(CH ₂) ₂	—N CO₂iPr	4j, 5a	57
3k	Et	کنگرېد	4k, 5b	63
31	Me	_n_n	4I, 5c	32

Comp.	R ₁	R ₂	Starting	Yield
No.			materials	(%)
3m	Ме	−N CO₂Bz	4d, 5c	88
3n	MeS(CH ₂) ₂	- NON	4l, 5d	16
30	MeS(CH ₂) ₂	-N NMe	4e, 5d	78
3p	Me ₂ N(CH ₂) ₂	—) CO ₂ Bz	4d, 5e	63
3p	Me ₂ N(CH ₂) ₂	—N_CO ₂ Bz	4d, 5e	63
3r	MeO(CH ₂) ₂	_NPh	4s, 5a	65
3s	Ме	_NCN	4t, 5c	53
3t	MeO(CH ₂) ₂	_NCN	4t, 5a	74
3u	Ме	_N	4s, 5c	65
3w	MeO(CH ₂) ₂	Ne-N, N=N	4u, 5a	37
3x	MeO(CH ₂) ₂	-N-Et	4v, 5a	100
3у	Me	N-Et	4v, 5c	100
3z	MeO(CH ₂) ₂	—N—Et	4x, 5a	100
3aa	MeO(CH ₂) ₂	Me N— CO ₂ Et	4y, 5a	61

Comp.	R ₁	R ₂ Starting		Yield
No.			materials	(%)
3bb	Me	Me N CO ₂ E	-N CO ₂ E1 4y, 5c	
3cc	HO(CH ₂) ₂	_NOH	4z, 5f	90
3dd	MeO(CH ₂) ₂	Me N-Et	4aa, 5a	100
3ee	MeO(CH ₂) ₂	N-Et	4bb, 5a	70
3ff	MeO(CH ₂) ₂	-N_N_0	4cc, 5a	50
3gg	MeO(CH ₂) ₂	-N N N N N N N N N N N N N N N N N N N	4dd, 5a	71
3hh	Me	-N_N-boc	4ee, 5c	38
3ii	MeO(CH ₂) ₂	-N_N-boc	4ee, 5a	69
3kk	MeO(CH ₂) ₂	Me N—boc Me	4ff, 5a	89
311	MeO(CH ₂) ₂	-N_N-	4gg, 5a	75
3nn	HO(CH ₂) ₂	−N N−Me	4e, 5f	59

WO 00/78728 PCT/DK00/00333

Comp.	R ₁	R ₂	Starting	Yield
No.			materials	(%)
300	HO(CH₂)₂	NCO₂Me	5f	56
3рр	HO(CH ₂) ₂		4b, 5f	27
3qq	MeO(CH ₂) ₂	-N_N-CONET	4ii, 5a	24
3rr	MeO(CH ₂) ₂		5a	53
3ss	MeO(CH ₂) ₂	-N CONH ₂	4jj, 5a	21
3นน	HO(CH ₂) ₂	-N-CONH ₂	4jj, 5f	82
3vv	HO(CH ₂) ₂	-N-CONEL	4ii, 5f	41

2-Methoxyethyl 3-nitro-4-(3-(1-ethoxycarbonyl-4-piperazinylmethyl)-phenylamino)-benzoate 3a. A mixture of 5a (0.94 g; 3.62 mmol), 4a (1.0 g; 3.83 mmol) and triethylamine (0.53 ml; 3.80 mmol) in NMP (10 ml) was heated to 110°C overnight. The cooled mixture was partitioned between water and ethyl acetate. The phases were separated and the aqueous phase was extracted with ethyl acetate. The combined organic phases were washed with brine, dried over magnesium sulphate and concentrated under reduced pressure. The residue was purified by column-chromatography on silica gel using a mixture of ethyl acetate and petroleum ether (1:1 v/v) as the eluent. Yield: 0.75 g (43%).

The following compound were prepared in analogy with Compound 3a:

2-Methoxyethyl 3-nitro-4-(3-(1-(ethoxy-carbonyl-methyl)-4-piperazinylmethyl)-phenylamino)-benzoate (3b) from 4b and 5a.

2-Methoxyethyl 3-nitro-4-(3-(4-methoxycarbonyl-1-imidazolyl)
phenylamino)-benzoate (3c) from 4c and 5a.

2-Methoxyethyl 3-nitro-4-(3-(1-(benzyloxy-carbonyl-methyl)-4-piperazinyl)-phenylamino)-benzoate (3d) from 4d and 5a.

2-Methoxyethyl 3-nitro-4-(3-(1-methyl-4-piperazinyl)-phenylamino)benzoate (3e) from 4e and 5a.

- 2-Methoxyethyl 3-nitro-4-(3-(1-acetyl-4-piperazinyl)-phenylamino)-benzoate (3f) from 4f and 5a.
- 2-Methoxyethyl 3-nitro-4-(3-(1-methyl-4-piperidyl)-phenylamino)-benzoate (3g) from 4g and 5a.
- 5 <u>2-Methoxyethyl</u> 3-nitro-4-(3-(1-acetyl-4-piperidyl)-phenylamino)-benzoate (3h) from 4h and 5a.
 - 2-Methoxyethyl 3-nitro-4-(3-(1-(t-butoxy-carbonyl-methyl)-4-piperazinyl)-phenylamino)-benzoate (3i) from 4i and 5a.
- 2-Methoxyethyl 3-nitro-4-(3-(1-(*i*-propoxy-carbonyl-methyl)-4-piperazinyl)10 phenylamino)-benzoate (3j) from 4j and 5a.
 - (N.N-Diethylcarbamoyl)methyl 2-(3-(3-[N-(4-ethoxycarbonyl-3-nitrophenyl)-amino]-phenyl)-4,5-dihydroisoxazol-5-yl)-acetate (3k) from 4k and 5b.
 - Methyl 3-nitro-4-(3-(1-imidazolylmethyl)-phenylamino)-benzoate (3I) from 4I and 5c.
- 15 <u>2-(Methylthio)-ethyl</u> <u>3-nitro-4-(3-(1-imidazolylmethyl)-phenylamino)-benzoate</u> (**3n**) from **4l** and **5d**.
 - 2-(Methylthio)-ethyl 3-nitro-4-(3-(4-methyl-1-piperazinyl)-phenylamino)benzoate (3o) from 4I and 5d.
- 2-Methoxyethyl 3-nitro-4-(3-(4-benzyl-1-piparazinyl)-phenylamino)-20 benzoate (3r) from 4s and 5a.
 - Methyl 3-nitro-4-(3-(4-(cyanomethyl)-1-piparazinyl)-phenylamino)-benzoate (3s) from 4t and 5c.
 - 2-Methoxyethyl 3-nitro-4-(3-(4-(cyanomethyl)-1-piparazinyl)-phenylamino)benzoate (3t) from 4t and 5a.
- 25 <u>Methyl 3-nitro-4-(3-(4-benzyl-1-piparazinyl)-phenylamino)-benzoate</u> (3u) from 4s and 5c.
 - 2-Methoxyethyl 3-nitro-4-(3-(4-((1-methyl-5-tetrazolyl)methyl)-1-piparazinyl)-phenylamino)-benzoate (3w) from 4u and 5a.
- 2-Methoxyethyl 3-nitro-4-(3-(4-ethyl-1-homopiparazinyl)-phenylamino)30 benzoate (3x) from 4v and 5a.
 - Methyl 3-nitro-4-(3-(4-ethyl-1-homopiparazinyl)-phenylamino)-benzoate (3y) from 4v and 5c.
 - 2-Methoxyethyl 3-nitro-4-(3-(4-ethyl-1-piparazinyl)-phenylamino)-benzoate (3z) from 4v and 5a.
- 35 <u>2-Methoxyethyl</u> <u>3-nitro-4-(3-(4-ethoxycarbonylmethyl-3.5-dimethyl-1-piparazinyl)-phenylamino)-benzoate</u> (3aa) from 4y and 5a.
 - Methyl 3-nitro-4-(3-(4-ethoxycarbonylmethyl-3,5-dimethyl-1-piparazinyl)-phenylamino)-benzoate (3bb) from 4y and 5c.

WO 00/78728 PCT/DK00/00333

- 2-Hydroxyethyl 3-nitro-4-(3-(4-ethyl-3.5-dimethyl-1-piparazinyl)-phenylamino)-benzoate (3dd) from 4aa and 5a.
- 2-Methoxyethyl 3-nitro-4-(3-(1-ethyl-1.2,5,6-tetrahydropyridin-4-yl)-phenylamino)-benzoate (3ee) from 4bb and 5a.
- 5 <u>2-Methoxyethyl</u> 3-nitro-4-(3-(2-oxo-oxazolidin-5-yl)methyl)-phenylamino)benzoate (3ff) from 4cc and 5a.
 - 2-Methoxyethyl 3-nitro-4-(3-(4-((5-methyl-3-oxadiazolyl)methyl)-1-piparazinyl)-phenylamino)-benzoate (3gg) from 4dd and 5a.
- Methyl 3-nitro-4-(3-(4-boc-piperazin-1-yl)-phenylamino)-benzoate (3hh) 10 from 4ee and 5c.
 - 2-Methoxyethyl 3-nitro-4-(3-(4-boc-piperazin-1-yl)-phenylamino)-benzoate (3ii) from 4ee and 5a.
 - 2-Methoxyethyl 3-nitro-4-(3-(4-boc-3.5-dimethylpiperazin-1-yl)-phenylamino)-benzoate (3kk) from 4ff and 5a.
- 2-Methoxyethyl 3-nitro-4-(3-(4-(2-oxotetrahydrofuran-3-yl)-1-piperazinyl)-phenylamino)-benzoate (3II) from 4gg and 5a.
 - 2-Hydroxyethyl 3-nitro-4-(3-(4-methyl-1-piparazinyl)-phenylamino)-benzoate (3nn) from 4e and 5f.
- 2-Hydroxyethyl 3-nitro-4-(3-(4-methoxycarbonylmethyl-1-piparazinyl)-20 phenylamino)-benzoate (300) from methyl 3-nitro-4-chlorobenzoate and 5f.
 - 2-Hydroxyethyl 3-nitro-4-(3-(4-ethoxycarbonylmethyl-1-piparazinyl)-phenylamino)-benzoate (3pp) from 4b and 5f.
 - 2-Methoxyethyl 3-nitro-4-(3-(4-(N.N-diethylcarbamoylmethyl)-piperazin-1-yl)-phenylamino)-benzoate (3qq) from 4ii and 5a.
- 25 <u>2-Methoxyethyl</u> 3-nitro-4-(3-(4-methoxycarbonylmethyl-1-piparazinyl)phenylamino)-benzoate (**3rr**) from methyl 3-nitro-4-chlorobenzoate and **5a**.
 - 2-Methoxyethyl 3-nitro-4-(3-(4-(carbamoylmethyl)-piperazin-1-yl)-phenylamino)-benzoate (3ss) from 4jj and 5a.
- 2-Hydroxyethyl 3-nitro-4-(3-(4-(carbamoylmethyl)-piperazin-1-yl)-30 phenylamino)-benzoate (3tt) from 4jj and 5f.
 - 2-Hydroxyethyl 3-nitro-4-(3-(4-(N,N-diethylcarbamoylmethyl)-piperazin-1-yl)-phenylamino)-benzoate (3uu) from 4ii and 5f.

Example 4

The substituted anilines of Table 4 were prepared by hydrogenation of the corresponding nitro compounds (6) as exemplified by compound 4a below.

Table 4

$$NH_2$$

Comp.	R	Starting	R'	Preparation of
No.		material		starting material
4a	L _N CO ₂ Et	6a	R	Example 6a
4b	−N N CO₂Eι	6b	R	Example 6b
4c	CO ₂ Me	6c	R	Example 6c
4d	−N CO₂Bz	6d	R	Example 6d
4 e	—N NMe	6e	R	Example 6e
4f	—N NAC	6f	R	Example 6f
4 g	NMe	6g	NMe	Example 6g

Comp.	R	Starting	R'	Preparation of
No.		material		starting material
4h	NAc	6h	NAC	Example 6h
4i	—N CO₂tBu	6i	R	Example 6b
4j	−N CO₂iPr	6j	R	Example 6b
4k		6k	R	Example 6k
41	_h_h_	61	R	Example 6I
4m	N CO ₂ Et	6m	R	Example 6m
4n	CO ₂ Ei	6n	CO ₂ Eī	Example 6n
40	L _N CO ₂ Et	60	R	Example 6o
4 p	−N N _{CO2} Et	6p	R	Example 6p
4q	CO ₂ —NONAc	6q	R	Example 6q
4r	co ₂ N	6r	R	Example 6r
4 s	-N	6s	R	Example 6b
4t	_v_v_cv	6t	R	Example 6b
4u	Me-N, N=N	6u	R	Example 6u

Comp.	R	Starting	R'	Preparation of
No.	•	material		starting material
4v	_N_N_Et	6v	R	Example 6b
4x	—N_N−Et	6x	R	Example 6b
4y	Me N— CO ₂ Et	6у	R	Example 6b
4z	HO _ Z _ OH	6z	R	Example 6b
4aa	Me N—Et Me	баа	R	Example 6b
4bb	N-Et	6bb	R	Example 6g
4cc	-N-N-0	6cc	R	Example 6b
4dd	-N N-N Me	6dd	R	Example 6b
4ee	-N_N-boc	6ee	R	Example 6b

Comp. No.	R	Starting material	R'	Preparation of starting material
4ff	Me N-boc Me	6ff	R	Example 6b
4gg	-N: N-	6gg	R	Example 6b
4ii	-N-CONEt ₂	6ii	R	Example 6b
4 jj	-N-CONH2	6jj	R	Example 6b

1-Ethoxycarbonyl-4-(3-aminobenzyl)-piperazine 4a. To a solution of 6a (2.2 g; 7.5 mmol) in abs. ethanol (50 ml) was added palladium catalyst (100 mg, 5% Pd on activated carbon) and the mixture was hydrogenated at ambient pressure until the hydrogen uptake had ceased. Filtration through celite and evaporation of solvent left 4a, quantitatively.

The following compound were prepared in analogy with Compound 4a:

Ethyl 2-(4-(3-aminophenyl)-1-piperazinyl)-acetate (4b) from 6b.

Methyl 1-(3-aminophenyl)-4-imidazolecarboxylate (4c) from 6c.

Benzyl 2-(4-(3-aminophenyl)-1-piperazinyl)-acetate (4d) from 6d. PtO₂ was used as the catalyst.

3-(4-Methyl-1-piperazinyl)-aniline (4e) from 6e.

3-(4-Acetyl-1-piperazinyl)-aniline (4f) from 6f.

3-(1-Methyl-4-piperidyl)-aniline (4g) from 6g.

3-(1-Acetyl-4-piperidyl)-aniline (4h) from 6h.

t-Butyl 2-(4-(3-aminophenyl)-1-piperazinyl)-acetate (4i) from 6i.

i-Propyl 2-(4-(3-aminophenyl)-1-piperazinyl)-acetate (4j) from 6j.

(N,N-Diethylcarbamoyl)-methyl 2-(3-(3-aminophenyl)-4,5-dihydroisoxazol-5-

vi)-acetate (4k) from 6k.

15

20

1-[(3-aminophenyl)-methyl]-imidazole (4l) from 6l.

Ethyl 2-(4-[(3-aminophenyl)-methyl]-1-piperazinyl)-acetate (4m) from 6m.

PCT/DK00/00333

Ethyl 2-(4-(3-aminophenyl)-1-piperidyl)-acetate (4n) from 6n.

Ethyl 2-(4-(3-aminophenyl)-methyl)-1-piperidyl)-acetate (40) from 60.

Ethyl 2-(4-(3-aminophenyl)-1-piperazinyl)-acetate (4p) from 6p.

2-(4-Acetyl-1-piperazinyl)-ethyl 3-aminobenzoate (4q) from 6q. THF was 5 used as solvent.

1-Methyl-2-pyrrolidylmethyl 3-aminobenzoate (4r) from 6r. THF was used as solvent.

3-(4-benzyl-1-piperazinyl)-aniline (4s) from 6s. PtO2 was used as the catalyst.

2-(4-(3-aminophenyl)-1-piperazinyl)-acetonitril (4t) from 6t.

3-(4-((1-methyltetrazol-5-yl)methyl)-1-piperazinyl)-aniline (4u) from 6u. PtO₂ was used as the catalyst.

3-(4-ethyl-1-homopiperazinyl)-aniline (4v) from 6v.

3-(4-ethyl-1-piperazinyl)-aniline (4x) from 6x.

3-(4-ethoxycarbonylmethyl-3,5-dimethyl-1-piperazinyl)-aniline (4y) from 6y.

3-(4-(2-hydroxyethyl)-1-piperazinyl)-aniline (4z) from 6z.

3-(4-ethyl-3.5-dimethyl-1-piperazinyl)-aniline (4aa) from 6aa.

3-(4-(2-oxo-oxazolidin-5-yl)methyl)-1-piperazinyl)-aniline (4cc) from 6cc.

3-(4-(5-methyloxadiazol-3-yl)methyl)-1-piperazinyl)-aniline (4dd) from 6dd.

3-(4-boc-1-piperazinyl)-aniline (4ee) from 6ee.

3-(4-boc-3,5-dimethyl-1-piperazinyl)-aniline (4ff) from 6ff.

3-(4-(2-oxotetrahydrofuran-3-yl)-1-piperazinyl)-aniline (4gg) from 6gg.

3-(4-methoxycarbonylmethyl-1-piperazinyl)-aniline (4hh) as described in WO 98/17651.

3-(4-((N,N-diethylcarbamoyl)methyl)-1-piperazinyl)-aniline (4ii) from 6ii.

3-(4-(carbamoylmethyl)-1-piperazinyl)-aniline (4jj) from 6jj.

Example 4a

3-(4-(1-ethyl-1,2,5,6-tetrahydropyridin-4-yl)-1-piperazinyl)-aniline (4bb). A mixture of 6bb (Example 6g) (0.85 g; 3.66 mmol), sodium sulfide nonahydrate (2.64 g; 11.0 mmol) and ammonium chloride (0.58 g; 10.8mmol) in abs. ethanol (25 ml) was heated to reflux for 4 hours. The cooled mixture was poured into ice-water and extracted with dichloromethane. The extract was dried over magnesium sulphate, filtered and evaporated to leave 4bb. Yield: 0.60 g (81%).

10

15

20

25

Example 5

2-Metyhoxyethyl 4-chloro-3-nitrobenzoate 5a. A mixture of 4-chloro-3-nitrobenzoic acid (10.0 g; 49.6 mmol) and thionylchloride (50 ml) was heated to reflux overnight. The excess of thionylchloride was removed by evaporation and 2-methoxyethanol (50 ml) was added. The resulting mixture was stirred at 80°C for 4 hours. The cooled solution was diluted with water (500 ml) and extracted with ethyl acetate (2 × 100 ml). The organic extract was dried over magnesium sulphate and concentrated under reduced pressure. Trituration of the residue with petroleum ether left 5a (8.0 g; 62%) as a low melting solid (Mp. 33-35°C).

The following compound were prepared in analogy with Compound 5a:

Ethyl 4-chloro-3-nitrobenzoate (5b);

Methyl 4-chloro-3-nitrobenzoate (5c);

2-(Methylthio)ethyl 4-chloro-3-nitrobenzoate (5d);

2-(N.N-dimethylamino)ethyl 4-chloro-3-nitrobenzoate (5e); and

2-Hydroxyethyl 4-chloro-3-nitrobenzoate (5f).

Example 6a

15

$$NO_2$$
 Br
 $+$
 NO_2
 $OOEt$
 $OOEt$
 $OOEt$

20 <u>1-Ethoxycarbonyl 4-(3-nitrobenzyl)-piperazine</u> (6a). To a solution of 3-nitrobenzylbromide (2.2 g; 10.0 mmol) in NMP (5 ml) was added ethyl piperazine-1-carboxylate dropwise with stirring. At the end of the addition the temperature had reached 35°C. Triethylamine (1.39 ml) was added causing the temperature to rise to 40°C. The mixture was stirred for additionally 30 min. prior to dilution with diethyl ether (25 ml). The mixture was filtered and the filtrate was washed with water, dried over magnesium sulphate and concentrated under reduced pressure. The concentrate was

suspended in diethyl ether and filtered. The filtrate was diluted with ethyl acetate and extracted with diluted hydrochloric acid. The aqueous phase was rendered alkaline by addition of saturated aqueous sodium bicarbonate and extracted with ethyl acetate. The organic phase was dried over magnesium sulphate and evaporated to dryness to leave **6a** (1.72 g; 59%).

Example 6b

25

30

1-(3-Nitrophenyl)-piperazine. A suspension of 3-fluoronitrobenzene (23 ml; 0.21 mol) and piperazine (55.5 g; 0.64 mol) in anhydrous NMP (30 ml) was heated to 70°C for five days. The cooled mixture was diluted with water (250 ml) and extracted with dichloromethane. The combined extracts were dried over magnesium sulphate and concentrated under reduced pressure. The residue was purified by column-chromatography on silica gel eluting subsequently with mixtures of ethyl acetate and methanol (4:1 v/v) and (1:1 v/v) to leave the desired product as oily crystals (30.7 g; 71%).

Ethyl 2-(4-(3-nitrophenyl)-1-piperazinyl)-acetate (6b). To a solution of 1-(3-nitrophenyl)piperazine (12.0 g; 58 mmol) in DMF (60 ml) was added sodium hydride (2.55 g; 64 mmol, 60% dispersion in mineral oil) in portions over 30 min. The mixture was kept under nitrogen. Ethyl 2-bromoacetate (7.1 ml; 64 mmol) was added, the mixture was stirred at ambient temperature for one hour and then poured into water (250 ml). The oily precipitate was filtered off, re-dissolved in ethyl acetate and washed with water. The organic phase was dried over magnesium sulphate and evaporated to dryness to leave 6b (11.0 g; 65%).

The following compound were prepared in analogy with Compound 6b:

<u>Isopropyl 2-(4-(3-nitrophenyl)-1-piperazinyl)-acetate</u> (**6j**) from 1-(3-nitrophenyl)piperazine and isopropyl 2-bromoacetate.

<u>t-Butyl 2-(4-(3-nitrophenyl)-1-piperazinyl)-acetate</u> (**6i**) from 1-(3-nitrophenyl)piperazine and *t*-butyl 2-bromoacetate.

<u>1-(3-Nitrophenyl)-4-benzylpiperazine</u> (6s) from 1-(3-nitrophenyl)piperazine and benzylchloride.

<u>2-(1-(3-Nitrophenyl)-4-piperazinyl)-acetonitrile</u> (6t) from 1-(3-nitrophenyl)piperazine and 2-bromoacetonitrile.

<u>1-(3-Nitrophenyl)-4-ethylhomopiperazine</u> (**6v**) from 1-(3-nitrophenyl)homopiperazine (prepared analogously to 1-(3-nitrophenyl)piperazine) and iodoethane.

1-(3-Nitrophenyl)-4-methylpiperazine (6x) from 1-(3-nitrophenyl)piperazine and iodomethane.

<u>1-(3-Nitrophenyl)-4-ethoxycarbonylmethyl-3,5-dimethylpiperazine</u> (**6y**) from 1-(3-nitrophenyl)-2,6-dimethylpiperazine (prepared analogously to 1-(3-nitrophenyl)piperazine) and ethyl 2-bromoacetate.

1-(3-Nitrophenyl)-4-(2-hydroxyethyl)-piperazine (6z) from 1-(3-nitrophenyl)piperazine and 2-bromoethanol.

<u>1-(3-Nitrophenyl)-4-ethyl-3,5-dimethylpiperazine</u> (**6aa**) from 1-(3-nitrophenyl)-2,6-dimethylpiperazine (prepared analogously to 1-(3-nitrophenyl)-piperazine) and iodoethane.

<u>1-(3-Nitrophenyl)-4-((2-oxo-oxazolidin-5-yl)-methyl)-piperazine</u> (**6cc**) from 15 1-(3- nitrophenyl)-piperazine and 5-chloromethyl-2-oxazolidinone.

1-(3-Nitrophenyl)-4-((5-methyloxadiazol-3-yl)-methyl)-piperazine (6dd) from 1-(3-nitrophenyl)piperazine and 3-chloromethyl-5-methyloxadizole.

<u>1-(3-Nitrophenyl)-4-boc-piperazine</u> (**6ee**) from 1-(3-nitrophenyl)-piperazine and Boc-anhydride.

20 <u>1-(3-Nitrophenyl)-4-boc-3.5-dimethylpiperazine</u> (**6ff**) from 1-(3-nitrophenyl)-2,6-dimethylpiperazine (prepared analogously to 1-(3-nitrophenyl)-piperazine) and Boc-anhydride.

<u>1-(3-Nitrophenyl)-4-(2-oxotetrahydrofuran-3-yl)-piperazine</u> (**6gg**) from 1-(3-nitrophenyl)-piperazine and a-bromobutyrolactone.

25 <u>1-(3-Nitrophenyl)-4-((N.N-diethylarbamoyl)-methyl)-piperazine</u> (6ii) from 1-(3-nitrophenyl)-piperazine and 2-chloro-N,N-diethylacetamide.

1-(3-Nitrophenyl)-4-(carbamoylmethyl)-piperazine (6jj) from 1-(3-nitrophenyl)-piperazine and 2-chloroacetamide.

30 Example 6c

HN
$$O_2$$
 O_2 O

Methyl 1-(3-nitrophenyl)-imidazole-4-carboxylate (6c). A mixture of 3-fluoronitrobenzene (1.78 ml; 16.7 mmol), methyl imidazole-4-carboxylate and

potassium carbonate (2.3 g; 16.7 mmol) in 10 ml NMP was heated to 120°C in a nitrogen atmosphere overnight. The cooled mixture was poured into water (100 ml), the precipitate was filtered off, washed with water and dried to yield **6c** (2.38 g; 58%).

5 Example 6d

Benzyl 2-(4-(3-nitrophenyl)-1-piperazinyl)-acetate (6d). To a solution of 1-(3-nitrophenyl)piperazine (Example 6a) (10.0 g; 48.3 mmol) in anhydrous DMF (50 ml) was added sodium hydride (2.12 g, 60% dispersion in mineral oil; 53.1 mmol) in small portions. The mixture was stirred and benzyl 2-bromoacetate was added. The addition was extremely exothermic. The reaction mixture was left with stirring at ambient temperature overnight. The mixture was poured into water (200 ml) and extracted with ethyl acetate. The combined extracts were dried over magnesium sulphate and concentrated under reduced pressure. The residue was purified by column-chromatography on silica gel using ethyl acetate as the eluent to yield 6c (14.4 g; 84%).

Example 6e

20

1-(3-Nitrophenyl)-4-methylpiperazine (6e). A mixture of 3-fluoronitrobenzene (20 ml; 0.19 mol) and 1-methylpiperazine (40 ml; 0.36 mol) was heated to 120°C for a week. The cooled mixture was purified by column-chromatography on silica gel using a mixture of ethyl acetate and methanol (9:1 v/1) as the eluent. Yield: 33 g (79%).

Example 6f

$$Ac_2O$$
 NO_2
 1-Acetyl-4-(3-nitrophenyl)-piperazine (6f). A mixture of 1-(3-nitrophenyl)piperazine (Example 6a) (33.0 g; 0.16 mol) and acetic anhydride (130 ml)
5 was stirred at ambient temperature overnight. The excess of acetic anhydride was removed by evaporation and saturated aqueous sodium carbonate was added to the residue with stirring. The precipitate was filtered off, washed with water and dried to leave 6f (39 g; 98%).

10 Example 6g

$$NO_2$$
 Br
 Br
 Me_2SO_4
 Me_2SO_4
 NO_2
 4-(3-Nitrophenyl)-pyridine. A mixture of 4-bromopyridine, hydrochloride (8.03; 41.3 mmol), 3-nitrophenylboronic acid (6.85 g; 41.0 mmol), potassium carbonate (34.2 g; 0.25 mol), 1,3-propandiol (14.9 ml; 0.21 mol) and tetrakis(triphenylphosphine)palladium (0.2 g) in a mixture of dimethoxyethane (80 ml) and water (40 ml) was stirred at 80°C in a nitrogen atmosphere overnight. The cooled mixture was diluted with ethyl acetate and filtered through celite. The filtrate was evaporated to dryness and water was added to the residue. Vigorously stirring caused the product to precipitate. The product was filtered off, washed with water, dried and subsequently washed with petroleum ether. Yield: 8.15 g (99%).

1-Methyl-4-(3-nitrophenyl)-pyridinium monomethyl-sulphate. A mixture of 4-(3-nitrophenyl)pyridine (4.0 g; 20 mmol) and dimethylsulphate (10 ml) was heated to 100°C for five days. The cooled mixture wad diluted with diethyl ether (50 ml) and stirred thoroughly. The mixture was decanted and the oily bottom layer was washed additionally three times with diethyl ether and once with ethanol to leave the crystalline product (2.9 g; 47%).

1-Methyl-4-(3-nitrophenyl)-1.2.5,6-tetrahydropyridine (6g). To a suspension of 1-methyl-4-(3-nitrophenyl)pyridinium monomethylsulphate (2.8 g; 9.03 mmol) in methanol (50 ml) was added sodium borohydride (0.68 g; 18.0 mmol) in portions over 30 min. Following the addition the mixture was stirred at ambient temperature overnight. The mixture was diluted with water (200 ml) and extracted with ethyl acetate (2 × 100 ml). The combined extracts were washed with brine, dried over magnesium sulphate and evaporated to dryness. Trituration of the residue with diethyl ether left the crystalline product (1.7 g; 86%).

<u>1-Ethyl-4-(3-nitrophenyl)-1,2,5,6-tetrahydropyridine</u> (**6bb**) was prepared analogously by alkylation with iodoethane.

Example 6h

15

20

$$Ac_2O, \Delta$$
 $AcOH, NaBH_4$
 $AcOH$
 $AcOH$

1-Acetyl-4-(3-nitrophenyl)-1,2,5,6-tetrahydropyridine (6h). To a mixture of 4-(3-nitrophenyl)pyridine (Example 6g) (4.0 g; 20.0 mmol) and acetic anhydride (20 ml) in glacial acetic acid (30 ml) was added sodium borohydride (1.51 g; 40.0 mmol) in portions over one hour. The resulting mixture was stirred at ambient temperature for five days and then poured into ice-water. The mixture was extracted with ethyl acetate, the organic phase was washed with water, dried over magnesium sulphate and concentrated under reduced pressure. The residue was eluted through silica gel with ethyl acetate to yield 6h (1.29 g; 26%).

Example 6k

$$NO_2$$
 H_2NOH
 NO_2
 NO_2
 NO_2
 NO_2
 NOH
 $NOOCI$
 $NOOCI$
 $NOOCI$
 $NOOCI$
 $NOOCI$
 $NOOCI$
 $NOOCI$
 $NOOCI$
 $NOOCI$

$$\frac{\text{CICH}_2\text{CNEt}_2, \text{Nal}}{\text{Et}_3\text{N}}$$

3-Nitrobenzaldehyde oxime (6k₂). To a solution of 3-nitrobenzaldehyde (5.0 g; 33.1 mmol) in abs. ethanol (40 ml) was added hydroxylamine, hydrochloride (3.45 g; 49.6 mmol) and the resulting suspension was heated to reflux overnight. The cooled mixture was poured into water (100 ml) and the product was filtered off and dried. Yield: 4.5 g (82%).

2-(3-(3-Nitrophenyl)-4.5-dihvdroisoxazol-5-yl)-acetic acid. To a solution of 6k₂ (3.1 g; 18.8 mmol) in THF (30 ml) was added vinylacetic acid (3.41 ml; 56.4 mmol). An aqueous solution of sodium hypochlorite (47 ml; 0.2 M) was added dropwise keeping the temperature between 25-30°C. Following the addition the mixture was stirred at ambient temperature overnight. pH was adjusted to 4 by addition of aqueous citric acid and the mixture was extracted thrice with diethyl ether. The combined extracts were dried over sodium sulphate and concentrated under reduced pressure. The concentrate was purified by column-chromatography on silica gel using a mixture of ethyl acetate and methanol (9:1 v/v) as the eluent. Yield: 4.7 g (98%).

N.N-Diethylcarbamoylmethyl 2-(3-(3-nitrophenyl)-4,5-dihydroisoxazole-5-yl)-acetate (6k). A mixture of 6k₂ (4.6 g; 18.4 mmol), 2-chloro N,N-diethylacetamide (2.53 ml; 18.4 mmol), triethylamine (5.1 ml; 36.6 mmol) and a catalytic amount of sodium iodide in anhydrous DMF (25 ml) was stirred at ambient temperature overnight. The solvent was removed by evaporation under reduced pressure and the residue was partitioned between water and ethyl acetate. The organic phase was dried over sodium sulphate and concentrated under reduced pressure.

Exampl 61

1-(3-Nitrobenzyl)-imidazole (6k). A mixture of 3-nitrobenzylbromide (10 g; 46.3 mmol) and imidazole (6.3 g; 92.5 mmol) in NMP (10 ml) was stirred at 80°C overnight. The cooled mixture was poured into ice-water and rendered alkaline by addition of aqueous sodium hydroxide (4 M). The precipitate was filtered off, washed with water and dried to yield 6I (6.9 g; 73%).

Example 6m

10 6m

1-Acetyl-4-(3-nitrobenzyl)-piperazine (6m₂). To a solution of 1-acetylpiperazine (5.0 g; 39.0 mmol) in THF (50 ml) was added triethylamine (5.6 ml; 39.0 mmol) and 3-nitrobenzylbromide (8.4 g; 39.0 mmol). The mixture was stirred at ambient temperature for 1 hour and the solvent was removed by evaporation. The residue was partitioned between water and ethyl acetate. The organic phase was dried over sodium sulphate and evaporated under reduced pressure to leave 6m₂, quantitatively.

1-(3-Nitrobenzyl)-piperazine (6m₁). To a solution of 6m₂ (10.2 g; 39.0 mmol) in dimethoxyethane (100 ml) was added aqueous sodium hydroxide (120 ml; 1
 M) and the mixture heated to reflux overnight. The mixture was evaporated to dryness and the residue was extracted with a mixture of ethanol and dichloromethane (2:1 v/v). The extract was evaporated to dryness to leave 6m₁ (6.1 g; 71%).

Ethyl 2-(4-(3-nitrobenzyl)-1-piperazinyl)-acetate (6m). To a solution of 6m₁ (2.5 g; 11.3 mmol) in anhydrous DMF (20 ml) was added sodium hydride (13.6 mmol; 0.54 g 60% dispersion in mineral oil) and ethyl 2-bromoacetate (1.25 ml; 11.3 mmol).

The exothermic reaction was completed in 15 min. The mixture was poured into icewater and extracted with ethyl acetate. The organic extract was dried over sodium sulphate and evaporated to dryness to leave **6m** quantitatively.

5 Example 6n

1-(Ethoxy-carbonyl-methyl)-4-(3-nitrophenyl)-pyridinium bromide (6n₁). A mixture of 4-(3-nitrophenyl)pyridine (2.25 g; 11.3 mmol) and ethyl 2-bromoacetate (1.5 ml; 13.5 mmol) in THF (10 ml) was heated to reflux overnight. The cooled mixture was filtered and the crystalline product was washed with THF and dried to leave 6n₁ (3.49 g; 84%).

1-(Ethoxy-carbonyl-methyl)-4-(3-nitrophenyl)-1.2.5,6-tetrahydropyridine

(6n). To a suspension of 6n₁ (2.90 g; 7.88 mmol) in abs. ethanol (50 ml) was added sodium borohydride (0.60 g; 15.9 mmol) in portions over 1 hour. The mixture was stirred at ambient temperature for two days, poured into ice-water and extracted with ethyl acetate. The extract was dried over sodium sulphate, concentrated and eluted through silica gel with ethyl acetate to yield 6n (1.65 g; 72%).

Example 60

60

Ethyl 1-(3-nitrophenyl)-piperidine-4-carboxylate (6o). To a solution of 3-nitrobenzylchloride (2.0 g; 11.7 mmol) and triethylamine (1.65 ml; 11.7 mmol) in NMP (3 ml) was added ethyl isonipecotate (1.8 ml; 11.7 mmol). The mixture was heated to 80°C overnight. The cooled mixture was poured into water and extracted with ethyl acetate. The organic extract was washed with brine, dried over sodium sulphate and evaporated to dryness to leave 6o, quantitatively.

Example 6p

6p

10 1-Ethoxycarbonyl-4-(3-nitrophenyl)-piperazine (6p). To a solution of 3-fluoro-1-nitrobenzene (3.37 ml; 31.6 mmol) in NMP (5 ml) was added triethylamine (4.38 ml; 31.6 mmol) and ethyl 1-piperazinecarboxylate (4.63 ml; 31.6 mmol) and the mixture was heated to 120°C for five days. The cooled mixture was poured into icewater and a small volume of ethanol was added. Vigorous stirring caused the product to precipitate. The product was filtered off, washed with petroleum ether and dried to leave 6p (3.34 g; 38%).

Example 6q

20

1-Acetyl-4-(2-hydroxyethyl)-piperazine (6q₁). To a solution of 1-(2-hydroxyethyl)piperazine (5.5 ml; 42.3 mmol) in toluene (50 ml) was added acetic anhydride (4.0 ml; 42.4 mmol). The mixture was heated to 80°C overnight. The solvent was removed under reduced pressure and the residue was washed several

times with a mixture of diethyl ether and petroleum ether (1:1 v/v) to leave $6q_1$ as an oil (5.2 g; 72%).

2-(1-Acetyl-4-piperazinyl)-ethyl 3-nitrobenzoate (6q). To a solution of 3-nitrobenzoyl chloride (2.5 g; 13.5 mmol) in a mixture of THF (25 ml) and DMF (5 ml) was added triethylamine (1.87 ml; 13.5 mmol), a catalytic amount of 4-(N,N-dimethylamino)pyridine and 6q1 (2.32 g; 13.5 mmol). The mixture was heated to 80°C for 2 hours whereafter the solvent was removed under reduced pressure. The residue was re-dissolved in dichloromethane and extracted with diluted hydrochloride acid (4 M). The aqueous phase was rendered alkaline by addition of aqueous sodium hydroxide (4 M) and extracted with dichloromethane. This extract was dried over sodium sulphate and concentrated under reduced pressure. The concentrate was purified by column-chromatography on silica gel using a mixture of dichloromethane, methanol and aqueous ammonia (90:10:1 v/v/v) as the eluent. Yield: 1.0 g (23%).

15 Example 6r

$$NO_2$$
 + NO_2 + NO_2 $NO_$

(1-Methyl-2-pyrrolidyl)-methyl 3-nitrobenzoate (6r). To a solution of 3-nitrobenzoylchloride (2.5 g; 13.5 mmol) in THF (25 ml) was added triethylamine (1.87 ml; 13.5 mmol), a catalytic amount of 4-(N,N-dimethylamino)pyridine and (S)-(-)-1-methyl-2-pyrrolidinemethanol (1.61 ml; 13.5 mmol). The mixture was heated to reflux for 1.5 hours and left with stirring at ambient temperature overnight. The solvent was removed by evaporation and the residue was partitioned between dichloromethane and diluted hydrochloric acid (4 M). The aqueous phase was rendered alkaline by addition of aqueous sodium hydroxide (4 M) and extracted with dichloromethane. The organic extract was dried over sodium sulphate and evaporated to leave 6r (2.8 g; 78%).

The concentrate was purified by column-chromatography on silica gel using a mixture of ethyl acetate and petroleum ether as the eluent (9:1 v/v). Yield: 2.6 g (38%).

Exampl 6u

1-(3-Nitrophenyl)-4-((1-methyl-5-tetrazolyl)-methyl)-piperazine (6u). A solution of 6t (2.40 g; 10.0 mmol), sodium azide (1.43 g; 22.0 mmol) and ammonium chloride (0.64 g; 12.0 mmol) in DMF (25 ml) was heated to 120°C over night. The cooled mixture was poured into ice-water and the precipitate was filtered off, washed with water and air-dried to leave a tetrazole (2.03 g).

This intermediary product was suspended in DMF (25 ml) in a nitrogen atmosphere and sodium hydride (0.28 g, 7.0 mmol) was added. When the evolution of hydrogen had ceased iodo-methane (0.44 ml; 7.1 mmol) was added and the mixture was stirred at ambient temperature for 4 hours. The mixture was diluted with four volumes of water and extracted with ethyl acetate. The extract was dried over magnesium sulphate and evaporated to dryness. The residue was trituated with a mixture of diethyl ether and petroleum ether (1:1 v/v) to leave 6u. Yield: 0.95 g.

15 Example 7

NH₂
$$\frac{\text{HC(OEt)}_3}{\text{THF. H}^+}$$
 $\frac{\text{NH}_2}{\text{R}}$

The furanyl substituted benzimidazoles of Table 5 were all prepared according to the above scheme as exemplified for compound **7a** below.

20 Table 5

10

Comp. No.	R	Mp (°C)	Yield (%)	Starting material	Salt
7a	CO ₂ Et	248-250	100	8a	HCI
7b	−h CO₂Et	113-114.5	83	8b	
7c	CO ₂ Me	221-223	100	8c	
7d	-__\co_2+	131-132	37	8d	
7e		oil	77	8e	·
7f	N_CO₂Et	oil	47	8f	
7g	→ CO ₂ Et	114-115	29	8g	
7h	CO ₂ Et	oil	82	8h	
7i	—N CO₂Ei	131-132	48	8i	
7 <u>j</u>	CO ₂ (CH ₂) ₂ —NNAc	167-168	78	8j	HCI
7k	CO ₂	198-200	38	8k	HCI

5-(3-Furanyl)-1-(3-((4-ethoxycarbonyl-1-piperazinyl)-methyl)-phenyl)-

benzimidazole (7a). To a solution of 8a (0.13 g; 0.31 mmol) in THF was added triethyl orthoformiate (0.1 ml; 0.62 mmol) and a catalytic amount of p-toluenesulfonic acid.

The mixture was heated to 80°C for 30 min. The cooled mixture was diluted with ethyl acetate and washed with aqueous sodium hydroxide and water, successively. The organic phase was dried over sodium sulphate and concentrated to a small volume. The product precipitated as the hydrochloride upon addition of ethereal hydrogen chloride. Filtration left the product, quantitatively. Mp. 248-250°C.

The following compound were prepared in analogy with Compound 7a:

5-(3-Furanyl)-1-(3-(1-(ethoxy-carbonyl-methyl)-4-piperazinyl)-phenyl)benzimidazole (7b) from 8b. The product was purified on silica gel using a mixture of

5

20

ethyl acetate and ethanol (9:1 v/v) and was isolated as the free base. Mp. 113-114.5°C.

5-(3-Furanyl)-1-(3-(4-methoxycarbonyl-1-imidazolyl)-phenyl)-benzimidazole (7c) from 8c. Mp. 221-223°C.

5-(3-Furanyl)-1-(3-(4-t-butoxycarbonylmethyl-1-piperazinyl)-phenyl)-benzimidazole (7d) from 8d. The product was purified on silica gel using ethyl acetate as the eluent and was isolated as the free base. Mp. 131-132°C.

N.N-Diethylcarbamoylmethyl 2-(3-(3-(5-(3-furanyl)-1-benzimidazolyl)-phenyl)-4,5-dihydroisoxazole-5-yl)-acetate (7e) from 8e. The product was purified on silica gel using ethyl acetate as the eluent and was isolated as the free base.

<u>5-(3-Furanyl)-1-(3-(1-ethoxycarbonylmethyl-4-piperazinylmethyl)-phenyl)-benzimidazole</u> (**7f**) from **8f**. The product was purified on silica gel using a mixture of ethyl acetate and ethanol (9:1 v/v) as the eluent and was isolated as the free base.

5-(3-Furanyl)-1-(3-(1-ethoxycarbonylmethyl-4-piperidyl)-phenyl)-

benzimidazole (7g) from 8g. The product was purified on silica gel using ethyl acetate as the eluent and was isolated as the free base. Mp. 114.5-115°C.

<u>5-(3-Furanyl)-1-(3-(4-ethoxycarbonylpiperid-1-ylmethyl)-phenyl)-benzimidazole</u> (**7h**) from **8h**. The product was purified on silica gel using a mixture of ethyl acetate and ethanol (9:1 v/v) as the eluent and was isolated as the free base.

<u>5-(3-Furanyl)-1-(3-(1-ethoxycarbonyl-4-piperazinyl)-phenyl)-benzimidazole</u> (7i) from 8i. The product was purified on silica gel using ethyl acetate as the eluent and isolated as the free base. Mp. 131-132°C.

2-(1-Acetyl-4-piperazinyl)-ethyl 3-(5-(3-furanyl)-1-benzimidazolyl)-benzoate (7j) from 8j. Mp. 167-168°C.

25 <u>1-Methyl-2-pyrrolidylmethyl 3-(5-(3-furanyl)-1-benzimidazolyl)-benzoate</u> (**7k**) from **8k**. Mp. 198-200°C.

Example 8

9

8

The furanyl substituted phenylenediamines of Table 6 were all prepared quantitatively by hydrogenation of the corresponding nitro compounds (9) as exemplified for compound 8a below.

5 Table 6

Comp. No.	R	Starting material
8a	∠N CO₂Et	9a
8b	-N_N_CO ₂ E1	9b
8c	CO ₂ Me	9c
8d	_√co₂+	9d
8e		9e
8f	N_CO ₂ E1	9f
8g	CO ₂ Et	9g
8h	COJEI	8h
8i	—N_N_ _{CO₂Et}	9i
8j	CO ₂ (CH ₂) ₂ —NNAc	9j
8k	co ₂ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	9k

2-Amino-4-(3-furanyl)-N-(3-(1-ethoxycarbonyl-4-piperazinylmethyl)-phenyl)-aniline (8a). To a suspension of 9a (0.37 g; 0.82 mmol) in ethanol (10 ml) was added Pd-catalyst (5% Pd on activated carbon) and the mixture was hydrogenated until the hydrogen uptake had ceased. The mixture was filtered through celite and the solvent removed by evaporation to leave the desired product, quantitatively.

The following compound were prepared in analogy with Compound 8a: 2-Amino-4-(3-furanyl)-N-(3-(1-ethoxycarbonylmethyl-4-piperazinyl)-phenyl)-

<u>aniline</u> (**8b**) from **9b**.

<u>2-Amino-4-(3-furanyl)-N-(3-(4-methoxycarbonyl-1-imidazolyl)-phenyl)-</u>

10 aniline (**8c**) from **9c** using methanol as the solvent.

2-Amino-4-(3-furanyl)-N-(3-(1-t-butoxycarbonyl-4-piperazinyl)-phenyl)-aniline (8d) from 9d using THF as the solvent.

N.N-Diethylcarbamovlmethyl 2-(3-(3-(2-amino-4-(3-furanyl)-phenylamino)-phenyl)-4.5-dihydroisoxazolin-5-yl)-acetate (8e) from 9e using THF as the solvent.

2-Amino-4-(3-furanyl)-N-(3-(1-ethoxycarbonylmethyl-4-piperazinylmethyl)-phenyl)-aniline (8f) from 9f.

2-Amino-4-(3-furanyl)-N-(3-(1-ethoxycarbonyl-4-piperidyl)-phenyl)-aniline (8g) from 9g.

2-Amino-4-(3-furanyl)-N-(3-(4-ethoxycarbonyl-1-piperidylmethyl)-phenyl)-20 aniline (8h) from 9h.

2-Amino-4-(3-furanyl)-N-(3-(4-ethoxycarbonyl-1-piperazinyl)-phenyl)-aniline (8i) from 9i.

2-(4-Acetyl-1-piperazinyl)ethyl 3-(N-(2-amino-4-(3-furanyl)-phenyl)-amino)-benzoate (8j) from 9j using THF as the solvent.

25 <u>1-Methyl-2-pyrrolidylmethyl</u> 3-(N-(2-amino-4-(3-furanyl)-phenyl)-amino)benzoate (8k) from 9k using THF as the solvent.

Example 9

$$NO_2$$
 + NO_2 NO_2

The furanyl substituted nitroanilines of Table 7 were all prepared by reaction of **10** (prepared as described in WO 96/33194) with substituted anilines (**4** (see Example 4)) as described for compound **9a** below.

5 Table 7

Compound No.	R	Starting materials	Yield
9a	L _N CO₂Et	10, 4a	23
9b	—N i CO₂Et	10, 4b	10
9c	CO ₂ Me	10, 4c	10
9d	—ì√\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	10, 4i	61
9e		10, 4k	15
9f	N CO ₂ Et	10, 4m	13
9g	CO ₂ Et	10, 4n	34
9h	CO ₂ Et	10, 40	38
9i	−N CO₂Et	10, 4p	29
9j	CO ₂ (CH ₂) ₂ —N NAc	10, 4q	51
9k	co	10, 4r	34

10

2-Nitro-4-(3-furanyl)-N-(3-(1-ethoxycarbonyl-4-piperazinylmethyl)-phenyl)-aniline (9a). To a solution of 10 (0.75 g; 3.61 mmol) in NMP (5 ml) was added triethylamine (0.53 ml; 3.61 mmol) and 4a (1.0 g; 3.83 mmol). The mixture was heated to 110°C for two days and then poured into water and extracted with ethyl acetate. The organic extract was washed with brine, dried over magnesium sulphate and concentrated under reduced pressure. The concentrate was purified by column-chromatography on silica gel using a mixture of ethyl acetate and petroleum ether (1:1 v/v) as the eluent. Yield: 23%.

The following compound were prepared in analogy with Compound 9a: 2-Nitro-4-(3-furanyl)-N-(3-(1-ethoxycarbonylmethyl-4-piperazinyl)-phenyl)-

aniline (9b) from 10 and 4b.

2-Nitro-4-(3-furanyl)-N-(3-(4-methoxycarbonyl-1-imidazolyl)-phenyl)-aniline (9c) from 10 and 4c. Ethyl acetate was used as the eluent.

15 <u>2-Nitro-4-(3-furanyl)-N-(3-(1-t-butoxycarbonyl-4-piperazinyl)-phenyl)-aniline</u> (9d) from 10 and 4i.

N.N-Diethylcarbamoylmethyl 2-(3-(3-(N-(2-nitro-4-(3-furanyl)-phenyl)-amino)-phenyl)-4,5-dihydroisoxazolin-5-yl)-acetate (9e) from 10 and 4k. A mixture of ethyl acetate and petroleum ether (9:1 v/v) was used as the eluent.

20 <u>2-Nitro-4-(3-furanyl)-N-(3-(1-ethoxycarbonylmethyl-4-piperazinylmethyl)-</u> phenyl)-aniline (9f) from 10 and 4m.

2-Nitro-4-(3-furanyl)-N-(3-(1-ethoxycarbonyl-4-piperidyl)-phenyl)-aniline (9g) from 10 and 4n. Ethyl acetate was used as the eluent.

2-Nitro-4-(3-furanyl)-N-(3-(4-ethoxycarbonyl-1-piperidylmethyl)-phenyl)-25 <u>aniline</u> **9h** from **10** and **4o**.

2-Nitro-4-(3-furanyl)-N-(3-(4-ethoxycarbonyl-1-piperazinyl)-phenyl)-aniline (9i) from 10 and 4p.

2-(4-Acetyl-1-piperazinyl)ethyl 3-(N-(2-nitro-4-(3-furanyl)-phenyl)-amino)benzoate (9j) from 10 and 4q. Ethyl acetate was used as the eluent.

30 <u>1-Methyl-2-pyrrolidylmethyl</u> <u>3-(N-(2-nitro-4-(3-furanyl)-phenyl)-amino)-benzoate</u> (**9k**) from **10** and **4r**. A mixture of dichloromethane, methanol and aqueous ammonia (90:10;1) was used as the eluent.

Example 10

5-(3-Furanyl)-1-(3-(1-(3-methyl-5-oxadiazolylmethyl)-4-piperazine)-phenyl)-

benzimidazole (11). To a solution of sodium (0.12 g; 5.2 mmol) in abs. ethanol (10 ml) was added molecular sieves (0.5 g), acetamide-oxime (0.19 g; 2.57 mmol) and 7b (1.0 g; 2.32 mmol). The mixture was heated to reflux overnight. The cooled suspension was diluted with dichloromethane (50 ml) and stirred until all organic material had dissolved. The molecular sieves were filtered off and the filtrate was washed with water and brine, dried over sodium sulphate and evaporated to dryness.

The residue was dissolved in toluene and a catalytic amount of p-toluenesulfonic acid was added. The mixture was heated to 100°C overnight, whereafter the cooled mixture was washed with aqueous sodium carbonate, dried over sodium sulphate and evaporated to dryness. The residue was triturated with diethyl ether to yield 11 (0.47 g; 46%). Mp. 129-130°C.

Example 11

15

13

Ethyl (E)-3-(1-(3-(4-methyl-1-piperazinyl)-phenyl)-benzimidazol-5-yl)-propenoate (12). To a suspension of sodium hydride (40 mg, 60% dispersion in mineral oil, 1.0 mmol) kept in an inert atmosphere was added triethylphosphone-

acetate (0.2 ml; 1.0 mmol). The mixture was stirred at ambient temperature until a clear solution had formed. A solution 13 (0.33 g; 0.94 mmol) in anhydrous toluene (5 ml) was added. Stirring was continued for 15 min at room temperature whereafter the temperature was raised to 60-65°C overnight. The solvents were removed under reduced pressure and the residue was partitioned between ethyl acetate and water. The phases were separated and the aqueous phase was extracted thrice with ethyl acetate. The combined organic extracts were dried over magnesium sulphate and concentrated. The concentrate was purified by column-chromatography on silica gel using a mixture of dichloromethane, methanol and aqueous ammonia (90:10:1 v/v/v) as the eluent. The product-containing fractions were evaporated to dryness, redissolved in abs. ethanol and precipitated as the hydrochloride by addition of ethereal hydrogen chloride. Yield: 0.28 g (68%). Mp. 180-190°C (with decomposition).

13

5-Acetyl-1-(3-(4-methyl-1-piperazinyl)-phenyl)-benzimidazole (13). To a solution of 14 (0.75 g; 2.34 mmol) in anhydrous DMF (10 ml) was added sodium hydride (0.1 g, 60% dispersion in mineral oil). The mixture was stirred for 30 min and iodo-methane (0.15 ml; 2.34 mmol) was added. After one hour the mixture was poured into ice-water and extracted with ethyl acetate. The extract was dried over magnesium sulphate and concentrated under reduced pressure. The concentrate was purified by column-chromatography using mixtures of ethyl acetate and methanol (9:1 v/v, 1:1 v/v), successively as eluents. Yield: 0.34 g (41%).

14

10

15

WO 00/78728 PCT/DK00/00333 77

15 14

5-Acetyl-1-(3-(1-piperazinyl)-phenyl)-benzimidazole (14). To a solution of 15 (8.3 g; 23.0 mmol) in dimethoxyethane (140 ml) was added aqueous sodium hydroxide (70 ml; 1 M) and the mixture was heated to reflux overnight. The volatile 5 solvent was removed and the aqueous suspension was extracted with dichloromethane. This extract was dried over sodium sulphate, concentrated and eluted through a silica gel column with a mixture of dichloromethane, methanol and aqueous ammonia (90:10:1 v/v/v). Yield: 4.8 g (65%).

5-Acetyl-1-(3-(1-acetyl-4-piperazinyl)-phenyl)-benzimidazole (15). 16 (17.7 g; 50.3 mmol) was treated with triethyl orthoformiate as described in Example 1. The product was purified by column-chromatography on silica gel using a mixture of dichloromethane, methanol and aqueous ammonia (90:10:1 v/v/v) as the eluent. Yield: 16.0 g (88%).

2-(3,5-dimethyl-1-piperazinyl)ethyl 3-(5-acetylbenzimidazol-1-vl)-benzoate was prepared analogously to 15. The compound was treated hydroxylamine hydrochloride in abs. ethanol to yield 2-(3.5-dimethyl-1-piperazinyl)ethyl 3-(5acetylbenzimidazol-1-yl)-benzoate oxime (15a) Mp. 255-260°C.

2-(2-pyridyl)methyl 3-(5-acetylbenzimidazol-1-yl)-benzoate was prepared 20 analogously to 15. This compound was treated hydroxylamine hydrochloride in abs. ethanol to yield 2-(2-pyridyl)-methyl 3-(5-acetylbenzimidazol-1-yl)-benzoate oxime (15b) Mp. 162-163°C.

N-(4-Acetyl-2-aminophenyl)-3-(1-acetyl-4-piperazinyl)-aniline (16). 17 (45 g; 93.6 mmol) was hydrogenated as described in Example 2 to yield 16, quantitatively.

16

N-(4-Acetyl-2-nitrophenyl)-3-(1-acetyl-4-piperazinyl)-aniline (17).solution of 18 (17.1 g; 93.6 mmol) (prepared as previously described: WO 96/33191) and triethylamine (13 ml; 93.6 mmol) in anhydrous NMP (50 ml) was added 4f and the mixture was heated to 80°C for four hours. The cooled mixture was poured into icewater and extracted thrice with ethyl acetate. The organic extract was dried over 10 sodium sulphate and evaporated to dryness to leave 17, quantitatively.

Example 12

5

17

Ethyl 1-(3-(4-acetyl-1-piperazinyl)-phenyl)-6-fluorobenzimidazole-5-

15 <u>carboxylate</u> (19) was prepared analogously to Example 1 from 20. A mixture of ethyl acetate and ethanol (9:1 v/v) was used as the eluent. Yield: 55%. Mp. undefined.

Ethyl 3-amino-4-(3-(4-acetyl-1-piperazinyl)-phenyl)-amino-6-fluorobenzoate (20) was prepared from 21 in analogy with Example 2. Abs. ethanol was used as solvent. Quantitative yield.

5

4-(3-(4-acetyl-1-piperazinyl)-phenyl)-amino-6-fluoro-3-nitrobenzoate (21). A mixture of ethyl 2,4-difluoro-5-nitrobenzoate (22) (1.0 g; 4.33 mmol), 4f (0.95 g; 4.33 mmol) and triethylamine (0.6 ml; 0.33 mmol) in anhydrous NMP (10 ml) was heated to 80°C for one hour. The cooled mixture was poured into water and extracted 10 with ethyl acetate. The organic extract was dried over magnesium sulphate, concentrated under reduced pressure and purified by column-chromatography on silica gel using ethyl acetate as the eluent. Yield: 1.53 g (82%).

Ethyl 2,4-difluoro-5-nitrobenzoate (22). To a cooled (-5-0°C) solution of 15 ethyl 2,4-difluorobenzoate (3.4 g; 18.3 mmol) in conc. sulphuric acid (6 ml) was added potassium nitrate (1.94 g; 19.2 mmol) in small portions over one hour -5°C. Following the addition the temperature was allowed to raise to 20°C over 4.5 hours. The mixture

80

was poured into ice-water with vigorous stirring. The product was filtered off, washed with water and air-dried. Yield: 3.2 g (76%).

Example 13

5 In vitro and in vivo Binding Activity

The GABA recognition site and the benzodiazepine modulatory unit can selectively be labelled with ³H-muscimol and ³H-flunitrazepam, respectively.

13A: In vitro inhibition of 3H-flunitrazepam (3H-FNM) binding

10

Tissue Preparation

Preparations are performed at 0-4°C unless otherwise indicated. Cerebral cortex from male Wistar rats (150-200 g) is homogenised for 5-10 sec in 20 ml Tris-HCl (30 mM, pH 7.4) using an Ultra-Turrax homogeniser. The suspension is centrifuged at 27,000 x g for 15 min and the pellet is washed three times with buffer (centrifuged at 27,000 x g for 10 min). The washed pellet is homogenized in 20 ml of buffer and incubated on a water bath (37°C) for 30 min to remove endogenous GABA and then centrifuged for 10 min at 27,000 x g. The pellet is then homogenized in buffer and centrifuged for 10 min at 27,000 x g. The final pellet is resuspended in 30 ml buffer and the preparation is frozen and stored at -20°C.

<u>Assay</u>

The membrane preparation is thawed and centrifuged at 2°C for 10 min at 27,000 x g. The pellet is washed twice with 20 ml 50 mM Tris-citrate, pH 7.1 using an 25 Ultra-Turrax homogeniser and centrifuged for 10 min at 27,000 x g. The final pellet is resuspended in 50 mM Tris-citrate, pH 7.1 (500 ml buffer per g of original tissue), and then used for binding assays. Aliquots of 0.5 ml tissue are added to 25 µl of test solution and 25 µl of ³H-FNM (1 nM, final concentration), mixed and incubated for 40 min at 2°C. Non-specific binding is determined using Clonazepam (1 µM, final concentration). After incubation the samples are added 5 ml of ice-cold buffer and poured directly onto Whatman GF/C glass fibre filters under suction and immediately washed with 5 ml ice-cold buffer. The amount of radioactivity on the filters is determined by conventional liquid scintillation counting. Specific binding is total binding minus non-specific binding.

35

Results

25-75% inhibition of specific binding must be obtained, before calculation of an IC₅₀.

The test value will be given as IC_{50} (the concentration (μ M) of the test substance which inhibits the specific binding of ^{3}H -FNM by 50%).

where

Co is specific binding in control assays, and

C_x is the specific binding in the test assay.

(The calculations assume normal mass-action kinetics).

The results from these experiments are shown in Table 8 below.

15 13B: In vivo inhibition of 3H-FNM binding

Introduction

10

In vitro binding studies have demonstrated that the benzodiazepine [³H]FNM binds selectively and with high-affinity to the GABA_A receptor-ion channel complex.

[³H]FNM can also be used for *in vivo* receptor labelling studies in mouse. Accumulation of [³H]FNM binding will occur all over the brain as GABA_A receptors are widely distributed. The specific binding of [³H]FNM can be partly or completely prevented by simultaneous or prior administration of pharmacologically active benzodiazepines or by some benzodiazepine-like compounds.

Method

25

All test substances used are solutions prepared in 10% TWEEN 80. Groups of three female NMRI mice (25 g) are injected i.v. via the tail vein with 5.0 μCi of [³H]FNM in 0.2 ml saline. Fifteen min after injection with [³H]FNM the test substance is administered i.v. Twenty min after injection with [³H]FNM, mice are killed by decapitation, the forebrains rapidly excised and homogenized in 12 ml of ice-cold 50 mM Tris-citrate, pH 7.1 using an Ultra-Turrax homogenizer. Three aliquots of 1 ml are immediately filtered through GF/C glass fibre filters and washed with 2 × 5 ml of ice-cold buffer. The amounts of radioactivity on the filters and in 200 μl of the homogenate are determined by conventional scintillation counting. Groups of untreated mice serves as controls. To determine non-specific binding groups of mice are injected with Clonazepam (25 mg/kg) i.p. 10 min before [³H]FNM injection. Specific binding is the amount of binding in controls minus the amount of binding in Clonazepam treated mice.

WO 00/78728 82

Results

The ED₅₀ value is determined from dose response curves. If only one dose of test substance is administered, the ED₅₀ value is calculated as follows, provided that the inhibition of specific binding is within the range of 25-75%.

PCT/DK00/00333

5

10

where C_{o} is specific binding in controls and C_{x} is the specific binding in mice treated with test substance.

The results from these experiments are shown in Table 8 below.

15 **Table 8**

Test compound	<i>In vitr</i> o binding	<i>In vivo</i> binding	
	IС ₅₀ (μ М)	ED ₅₀ (mg/kg)	
Of the invention:			
1b	0.26	0.9	
7j	0.0028	1.9	
7i	0.0008	1.8	
7g	0.0009	1.4	
7c	0.0007	0.43	
11	0.012	0.75	
7f	0.0006	0.17	
Reference compounds:			
Compound 4d ₃ of WO 98/17651	0.06	0.22	
Compound 4j of WO 98/17651	1.1	13.3	
Compound 4m of WO 98/17651	1.0	6	

WO 00/78728 PCT/DK00/00333

Example 14

PTZ Clonic Convulsions

The purpose of this test is to show antagonism of clonic convulsions induced by pentylenetetrazol (PTZ). PTZ induces clonic convulsions in mice after i.v. infusion. Antagonism of PTZ-induced convulsions is a measure for the agonistic character of ligands for the benzodiazepine recognition site.

<u>Procedure</u>

Female NMRI mice (Bomholdtgaard, Ry), 20 g, 6 mice in each group are administered i.v. with vehicle or test substance. After five minutes the PTZ-solution is infused intravenously at a speed of 0.7 ml/minute through a cannula placed in the tail vein. The time from initiation of the infusion to appearance of clonic convulsions is recorded.

The dose of PTZ required for inducing convulsion in each mouse is calculated as PTZ/kg body weight. Means ±sd for each experimental group of 6 mice is calculated. ED₁₀₀ is calculated by linear regression expressing the dose increasing the PTZ threshold to 100 mg PTZ/kg.

The threshold of vehicle treated controls is in the range of 37-39 mg PTZ/kg. As a control in each series of experiments PTZ is infused into 6 vehicle treated mice.

The results from these experiments are shown in Table 9 below.

Table 9

Test compound	ED ₁₀₀ (mg/kg)	ptz threshold at 30mg/kg	
		(mg/kg)	
Of the invention:			
1b	1.6	200	
7j	13	170	
7i	2.5	140	
7g	1.2	200	
7c	20	110	
11	17	120	
7f	2.7	120	
Reference compounds:			
Compound 4d ₃ of WO 98/17651	0.16	230	

Test compound	ED ₁₀₀ (mg/kg)	ptz threshold at 30mg/kg	
		(mg/kg)	
Compound 4j of	16	140	
WO 98/17651			
Compound 4m of	9	175	
WO 98/17651			

Example 15

Evaluation of Efficacy

Selected compounds exhibiting a promising profile in the above tests were evaluated with respect to efficacy and duration of action and compared to prior art as follows.

Aqueous solutions of the test substances (50 mg/ml isotonic glucose) were administered to pigs (25-30 kg) as bolus injections. The actual dose of each substance is included in the table below. The pigs were observed with respect to the time of induction of anaesthesia, the duration of anaesthesia and the normalising time following awakening from anaesthesia.

These observations are compiled in Table 10 below. This table also provides comparative data for compounds of the prior art (WO 98/17651).

15 Table 10

Compound No.	Bolus	Induction	Maintained	Normalising
	dose	Time	anaesthesia	time following
	(mg/kg)	(min.)	(min.)	awakening
				(min.)
7j	3	0,5	8 ^a	. 20
1b	0,6	1,3	10	15
Compound 4d₃ of WO 98/17651	0,03	0,75	60	120
Compound 4j of WO 98/17651	3	1,0	0°	-
Compound 4m of WO 98/17651	3	-	0°	-

^a Uneasy sleep

b light sleep/sedation

c only mild sedation observed

WO 00/78728 PCT/DK00/00333 85

From the table it can be concluded, that the compounds of the present invention has a very advantageous profile regarding the induction time, duration of action and recovery time. Compared to the compounds of prior art, which shows either a too weak anaesthesising effect or a too long recovery time, the compounds provided by the present invention meet the criteria for promising anaesthetics.