Hanwha Interface Specification

Standard Interface Specification

HPM_STD_IF_SPEC_KR ver 1.1.14 2023-08-29

Official

Hanwha Precision Machinery

Copyright

©2018 Hanwha Precision Machinery Co., Ltd. All rights reserved.

Restriction

이 문서의 저작권은 Hanwha Precision Machinery에 있다.

Hanwha Precision Machinery의 공식 승인 없이 이 문서의 내용을 복제, 배포 및 재생산 할 수 없고, 임의로 변경할 수 없다.

Disclaimer

Hanwha Precision Machinery는 이 문서에 수록된 정보의 완결성과 정확성을 검증하기 위해 최대한 노력하였으나 이에 대해 보증하지는 않는다. 문서의 사용 결과에 따른 책임은 전적으로 사용자에게 있다.

Hanwha Precision Machinery은 사전 예고 없이 이 문서의 내용을 변경할 수 있다.

Contact Information

The person in charge: Hanwha Precision Machinery Solution SW Team Henry Bang

Phone: (+82) 070-7147-7698

E-mail: hyunjin.bang@hanwha.com

Homepage: www.hanwhaprecisionmachinery.co.kr

들어가며

목적

본 문서는 외부 시스템과의 연동을 위해 Chip Mounter Data의 표준 출력 형식을 기술한다.

범위

이 문서는 Chip mounter 장비 군의 Data 연동에 대한 표준이다. 다른 종의 장비에 대해서는 추후 범위를 확대할 계획이다.

문서 구성

이 문서는 다음과 같이 구성되어 있다.

- 1장. MES 연동 형식 종류와 방법에 대해 설명한다.
- 2장. 파일로 연동할 경우 XML 파일 포맷에 대해 설명한다.
- 3장. TCP I/P 소켓 통신으로 연동할 경우의 세부 사양에 대해 설명한다.
- 4장. Database와 연동하여 연동할 경우의 세부 사양에 대해 설명한다.
- 5장. Traceability Data를 Database와 연동하여 연동할 경우의 세부 사양에 대해 설명한다.

.

관련 문서

N/A

문서 이력

이 문서의 버전과 개정 이력은 다음과 같다.

버전	개정일자	개정내역	작성자	승인자
0.1	2018.11.02	최초 작성	방현진 책임	
0.2	2018.11.08	리뷰 반영	방현진 책임	
1.0	2018.11.23	XML/TCP IP/DB 연동 방식 통합 작성	방현진 책임	
1.1	2018.12.04	이미지 파일을 표로 재첨부	방현진 책임	

1.1.0		문서 관리자 변경 : 방현진->박형근	박형근 수석	
		버전 체계를 3자리로 변경		
		LTS(Traceability) 연동 내용 추가		
		XML 포맷 1.000 => 1.0.1 로 변경		
1.1.1	2019.03.18	TCP I/P 연동 방식의 각 메시지 설명 추가, 4.1 절 추가 (TCP I/P 와 연계한 DB Data 누락 내용 추가함) DB I/F 나머지 항목은 4.2 절로 합침	방현진 책임	
1.1.2	2019.03.20	2 장 제목 변경, 2 장에 Feeder Event Text 파일 출력 사양 추가	방현진 책임	
1.1.3	2019.11.06	TCP/IP Protocol 에 Production Data, Job Program Data 전송 사양 추가	방현진 책임	
1.1.4	2020.03.06	Worked, Skipped, bad array 추가 TCP/IP Production Data, XML file 에 추가	방현진 책임	
1.1.5	2020.04.14	Time 포맷 변경 : YYYY-MM-DD HH:MM:SS, TCP/IP Production Data 에 Start Time, End Time, Array Barcode 추가	방현진 책임	
1.1.6	2020.04.28	Database I/F 추가: 4.2.13 ~ 4.2.20	서정필 책임	
1.1.7	2020.05.11	VW_PLACE_COUNT 컬럼 변경 (STATION -> FEEDER_BASE)	서정필 책임	
1.1.8	2020.05.15	File I/F, XML I/F 확장	김연민 선임	
1.1.9	2020.08.24	TCP/IP LTS, BOM Interlock 추가	방현진 책임	
1.1.10	2020.10.21	4.2.6 설명 추가	서정필 책임	
1.1.11	2021.06.02	1.6 추가, 2.1.1 내용 보완	황지원 연구원	
1.1.12	2022.05.03	LCR/NozzleCheck Data 추가,	방현진 수석	
		기능 지원되는 장비모델 별첨확인		
1.1.13	2022.07.26	TrayFeeder Pick/Vision Loss 추가 TCP/IP Instruction : Machine Control 추가	방현진 수석	
1.1.14	2023.08.29	Instruct Message Type 3 추가	김연민 책임	

목차

들어가며	3
목적 3	
범위 3	
문서 구성	3
관련 문서	3
문서 이력	3
목차5	
그림 목차	9
표 목차	11
1장. MES 연동 형식	14
1.1 MES 연동 시스템	14
1.2 MES 연동 방식	15
1.3 MES 연동 Data	16
1.4 MES 연동 Licensing	18
1.5 MES 연동 설정 방법	19
1.6 MES 연동 라인ID, 장비ID 설정 방법	21
2장. 파일(XML, TEXT) 연동	23
2.1 파일 생성 위치	23
2.1.1 Output file 생성 위치 셋팅	23
2.1.2 Output File 형식 셋팅	24
2.1.3 Output Folder/File Sample	24
2.2 파일 생성 주기	25
2.3 XML 파일 포맷 사양	26
2.3.1 Work Sheet Information의 세부 설명	27
2.3.2 Array_Information의 세부 설명	27

	2.3.3	Machine Information의 세부 설명	28
	2.3.4	Process Information의 세부 설명	29
	2.3.5	CAD Information의 세부 설명	30
	2.3.6	WorkSheet의 세부 설명	30
	2.3.7	Head Information의 세부 설명	31
	2.3.8	Nozzle Information의 세부 설명	32
	2.3.9	Tape Feeder Information의 세부 설명	32
	2.3.10	Stick Feeder Information의 세부 설명	33
	2.3.11	Tray Feeder Information의 세부 설명	33
2.4	XML Sa	ımple	34
2.5	Feeder	Event File	35
	2.5.1	Feeder Event File (Text)	35
	2.5.2	Feeder Event File (XML)	36
2.6	장비 Ev	/ent Message	37
	2.6.1	장비 Event Message (TEXT)	37
	2.6.2	장비 Event Message (XML)	37
2.7	Lot Tra	cking Data	38
	2.7.1	Lot Tracking Data (TEXT)	38
	2.7.2	Lot Tracking Data (XML)	38
	A.	LTS_Info	38
	В.	ArraySN_Info	39
	C.	Data_Info	39
2.8	LCR Ch	ecking Data	40
	2.8.1	LCR Check Result Data (TEXT)	40
	2.8.2	LCR Check Result Data (XML)	41
	A.	LCR_Info	41
2.9	Nozzle	Checking Data	41
	2.9.1	Nozzle Check Result Data (TEXT)	41
	2.9.2	Nozzle Check Result Data (XML)	42

		A. NozzleCheck_Info	
3장.	ТСР	I/P 연동	. 43
	3.1	통신 연동	. 43
	3.2	Data 통신	. 44
	3.3	Interlocking	. 44
	3.4	통신 데이터 종류와 I/F 시퀀스	. 45
	3.5	Protocol Message Structure	. 46
	3.6	Data Message Structure	. 47
	3.7	[Data] Production Data 메시지	. 48
	3.8	[Data] Job Program Data 메시지	. 50
	3.9	[Data] Lot Tracking Data 메시지	. 51
	3.10	[Event] PCB Out 보고 메시지	. 51
	3.11	[Event] 슬롯 상태 정보 메시지	. 52
	3.12	[Event] 설비 알람(상태정보) 보고 메시지	. 53
	3.13	[Event] Job Download 보고 메시지	. 54
	3.14	[Event] Reel Data 메시지	. 56
	3.15	[Interlock] 공정 투입 체크 요청 메시지	. 57
	3.16	[Interlock] 공정 투입 체크 응답 메시지	. 58
	3.17	[Interlock] BOM 비교 요청 메시지	. 59
	3.18	[Interlock] BOM 비교 응답 메시지	. 60
	3.19	[Interlock] MES Instruction 메시지	. 61
	3.20	[Event] LCR Checking Data 메시지	. 62
	3.21	[Request] Job Program Data 요청 메시지	. 64
	3.22	[Event] PCB In 보고 메시지	. 65
	3.23	[Event] Work Start 보고 메시지	. 66
	3.24	[Event] Work End 보고 메시지	. 67
	3.25	[Data] Feeder Production Data	. 68
		[Data] Tray Feeder Production Data	
4장	Data	base I/F	.71

4.1	TCP/IPS	라 연계한 DB Data	71
	4.1.1	슬롯별 생산 수량	71
	4.1.2	Mounter Job 정보	72
4.2	Only D	B to DB 방식	72
	4.2.1	기준정보 - 라인별 설비	73
	4.2.2	기준정보 - Shift 정보	73
	4.2.3	기준정보 - 휴식 시간	74
	4.2.4	기준정보 - 모델 정보	74
	4.2.5	Job Program 정보	75
	4.2.6	장착 실적	75
	4.2.7	Cycle Time	75
	4.2.8	기종변경 시간	76
	4.2.9	AOI 투입 실적	76
	4.2.10	불량 실적	77
	4.2.11	불량 타입 정보	78
	4.2.12	설비 정지/알람 이력	78
	4.2.13	JOB PROGRAM HISTORY	79
	4.2.14	JOB PROGRAM CAD	79
	4.2.15	JOB PROGRAM WORK SHEET	80
	4.2.16	PCB BARCODE	80
	4.2.17	PROCESS	81
	4.2.18	HEAD COUNT	82
	4.2.19	NOZZLE COUNT	82
	1220	FEEDER COLINT	83

그림 목차

Figure 1. Hanwha Solution과 MES 연동 시스템	14
Figure 2. MES 연동 방식과 Data 종류 관계도	15
Figure 3. MES License 동작 여부 확인	19
Figure 4. MES Output Path 설정	23
Figure 5 MES Output File 설정	24
Figure 6. MES I/F 설정화면	25
Figure 7. Folder와 XML File 출력 결과	25
Figure 8. Data 만들어지는 시점 — PCB 배출시점	25
Figure 9. XML Format Root Node	26
Figure 10. WorkSheet Information XML sample	27
Figure 11. Array Information XML Sample	27
Figure 12. Machine Information XML Sample	28
Figure 13. Process Information XML Sample	29
Figure 14 Cad Information XML Sample	30
Figure 15 WorkSheet XML Sample	30
Figure 16. Head Information XML Sample	31
Figure 17. Nozzle Information XML Sample	32
Figure 18. Tape Feeder Information XML Sample	32
Figure 19. Stick Feeder Information XML Sample	33
Figure 20. Tray Feeder Information XML Sample	33
Figure 21XML 파일 Sample	34
Figure 22 Feeder Event XML	36
Figure 23 장비 Event Message XML	37
Figure 24 Lot Tracking LTS_Info data XML	38
Figure 25 LTS Array Serial Node XML	39

Figure 26 Lot Tracking Data_Info Data XML	. 39
Figure 27 LCR Check Result Information data XML	.41
Figure 28 Nozzle Check Result Information data XML	.42
Figure 29. TCP I/P 연동 통신 방식	.43
Figure 30. TCP I/P 연동시 사용하는 IP, Port 설정 화면	.43
Figure 31. TCP I/P 연동 Data 통신 방식	.44
Figure 32. TCP I/P 연동 Interlock 통신 방식	.44
Figure 33. TCP I/P 연동 제품 생산 정보 통신 방식	.45
Figure 34. TCP I/P 연동 Event 통신 방식	.46
-igure 35. TCP I/P 연동 Message Structure	.46

표 목차

Table 1. MES 연동 Data 카테고리	16
Table 2. MES 연동 Production Data 세부표	18
Table 3. MES 연동 Event Data 세부표	18
Table 4. MES 연동 Interlocking Data 세부표	18
Table 5. XML Root Node와 Child 세부 설명표	27
Table 6. WorkSheet Information 세부 설명표	27
Table 7. Array Information 세부 설명표	28
Table 8. Machine Information의 세부 설명표	28
Table 9. Process Information 세부 설명표	30
Table 10. CAD Information 세부 설명표	30
Table 11. WorkSheet 세부 설명표	31
Table 12. Head Information 상세 설명표	31
Table 13. Nozzle Information 상세 설명표	32
Table 14. Tape Feeder Information 상세 설명표	32
Table 15. Stick Feeder Information 상세 설명표	33
Table 16. Tray Feeder Information 상세 설명표	33
Table 17 Feeder Event XML 상세 설명 표	36
Table 18 장비 Event Message 상세 설명 표	38
Table 19 LTS 공통 정보 상세 설명 표	39
Table 20 LTS Array Serial 상세 설명 표	39
Table 21 LTS Step 정보 상세 설명 표	40
Table 22 LCR 공통 정보 상세 설명 표	41
Table 23 Nozzle Check Data 상세 설명 표	42
Table 24. Event Job Download Data 설명표	49
Table 25. Event PCB Out(배출) Data 설명표	52

Table 26. Event 슬롯 상태 정보 Data 설명표	53
Table 27. Event 설비 알람 Data 설명표	54
Table 28. Event Job Download Data 설명표	55
Table 29. Event Job Download Data 설명표	56
Table 30. Interlocking 공정 이전 체크 Data 설명표	57
Table 31. Interlocking 공정 체크 응답 Data 설명표	58
Table 32. Interlocking BOM 비교 요청 Data 설명표	59
Table 33. Interlocking BOM 비교 응답 Data 설명표	60
Table 34. Interlocking MES Instruction Data 설명표	62
Table 35. LCR Checking Data 설명표	63
Table 36. Interlocking MES Instruction Data 설명표	65
Table 37. 공장 라인 설비 정보 Data 설명표	73
Table 38. 공장 Shift 정보 Data 설명표	74
Table 39. 공장 휴식시간 기준 정보 Data 설명표	74
Table 40. 생산 모델 Data 설명표	74
Table 41. Job Program Data 설명표	75
Table 42. Chip Mounter 생산 실적 Data 설명표	75
Table 43. Chip Mounter Cycle Time Data 설명표	76
Table 44. Chip Mounter 기종변경시간 Data 설명표	76
Table 45. AOI 실적 Data 설명표	77
Table 46. AOI/SPI 불량 실적 Data 설명표	78
Table 47. 검사기 불량 타입 Data 설명표	78
Table 48. 설비 정지/알람 Data 설명표	79
Table 49 JOB PROGRAM HISTORY 설명표	79
Table 50 JOB PROGRAM CAD 설명표	80
Table 51 JOB PROGRAM WORK SHEET 설명표	80
Table 52 PCB BARCODE 설명표	81
Table 53 PROCESS 설명표	81
Table 54 HEAD COUNT 설명표	82

Table 55 NOZZLE COUNT	설명표	83
Table 56 FEEDER COUNT	설명표	83

1장. MES 연동 형식

1.1 MES 연동 시스템

Hanwha 장비(Chip Mounter, Screen Printer)와 고객 MES 시스템간의 연동을 위해 Hanwha에서는 데이터를 취득 관리하는 SW(T-Smart-Link)를 통해 MES와 연동을 한다.

T- Smart-Link 시스템은 Hanwha의 다양한 장비 모델, Printer와 연동하여 데이터를 취득관리하고 있다.

이 시스템을 통해 MES는 장비의 Data를 전달 받을 수 있으며 장비로 명령을 내리는 역할도 할 수 있다.

Figure 1. Hanwha Solution과 MES 연동 시스템

- ※ <u>단, 장비 기종/모델 별 I/F되는 항목의 유/무는 다를 수 있다. 보통 구형 설비의 경우 지원이 안되는 기능이 존재함</u>
- ※ 이 부분은 반드시 기술지원 담당자를 통한 기종별 지원 기능 별첨 자료 확인과 상담할 것

1.2 MES 연동 방식

Hanwha에서 제공하는 MES연동 방식은 다음 3가지 형태가 있다.

(1) XML: File I/F 방식

: 설정된 Folder 위치에 설정된 파일명으로 XML 파일을 생성함

(2) TCP/IP: 통신 방식

: MES Agent Module과 TCP/IP 통신(Socket 등) 연결하여 Data를 주고 받음

(3) DB: Database 연동 방식

: 접속 허용된 Database ID/PW를 전달하여 View Table의 Data를 가져가도록 함

▶MES 연동 방식 별 Data 포함 관계

Figure 2. MES 연동 방식과 Data 종류 관계도

위 그림에서는 MES에 전달하는 Data 종류별 연동 방식의 Data에 포함되어 있는지를 나타낸다. 주로 Event성 Data는 직접 통신하지 않으면 받기 어렵다. TCP I/P 방식의 I/F와 DB데이터 연동을 함께 활용한다면 대부분의 장비 Data를 MES에서 받아볼 수 있다.

1.3 MES 연동 Data

MES와 연동하는 항목의 Category와 주요 Data목록은 다음과 같다.

불량 실적의 경우 타사 설비의 데이터를 가져오는 것이기 때문에 T-PNP와 데이터 연동이 가능한 지 사전에 확인이 필요하다.

Event Data로 구분된 항목은 실시간성 데이터 성격이 강하므로 Database 방식보다 File 또는 TCP/IP 방식으로 수집하는 것이 권장된다.

연동 Data 목록				연동 방식		
Category # 항목		File	TCP/IP	Database		
	1	생산실적	0	0	0	
	2	불량실적	Χ	Χ	0	
	3	Job 정보(모델 정보)	0	0	0	
Production	4	Job Change Time	Χ	Χ	0	
Data	5	Board Barcode	0	0	0	
	6	Array Barcode	0	0	0	
	7	장비 Event Message	0	0	0	
	8	Lot Tracking Data (LTS)	0	0	0	
	9	PCB 생산 완료	0	0	X	
Event Data	10	장비 상태 (Run/Idle/Stop)	0	0	X	
Event Data	11	Job Download	0	0	X	
	12	피더 클램프/언클램프	0	0	X	
Interlecting	13	Interlocking	Χ	0	X	
Interlocking	14	장비 Control	Χ	0	X	

Table 1. MES 연동 Data 카테고리

각각의 Category항목을 한 단계 더 세분화 하여 다음 정리하였다.

1. Production Data

: 생산 관련 실적, 불량 Data, Lot Tracking Data.

인터페이스 방식에 따라 세부 데이터 항목 수준에서 지원되지 않는 데이터 항목이 있을 수 있다. 예를 들어 생산실적에서 Skip, Bad Mark Array 수량은 파일과 TCP/IP 방식에서만 제공된다. 세부 데이터 항목에 대한 지원 여부는 2장 이후 내용을 참고하되 사용자는 Database와 XML 방식을 결합해 사용하거나 Database와 TCP/IP 방식을 결합해 사용하는 것을 검토해볼 필요가 있다.

연동 Data 목록			연동 방식		
Category	#	항목	XML	TCP/IP	Database
	1	생산실적	0	0	0
		생산 PCB 수량 1 * Skip, Bad Mark Array 는 파일, TCP/IP 에서만 제공.	0	0	\triangle
		2 장착점수	0	0	0
		3 버림수	0	0	0
	2	불량실적	Х	Х	0
		1 AOI 검사수량, 불량수량 : 불량 별 종류/위치 정보 및 이미지	X	X	0
		2 SPI 검사수량, 불량수량 : 불량 별 종류/위치 정보 및 이미지	X	Х	0
	3	Job 정보(모델 정보)	0	0	0
		1 모델 이름	0	0	0
Production Data		장착 Step 정보 : Array 번호, Reference 이름, 부품 이름, 피더 타입, 피더 위치, 스핀들 번호, 노즐 번호, 사용 노즐과 피더 종류.	0	0	0
		CAD 정보 : Reference 이름, 부품 이름, 장착 좌표 정보 (X/Y/Z/R)	0	0	0
	4	Job Change Time	Χ	Χ	0
	5	Board Barcode	0	0	0
	6	Array Barcode	0	0	0
	7	장비 Event Message	0	0	0
	8	Lot Tracking Data (LTS)	0	0	0
		1 Feeder ID 별 Reel ID	0	0	Χ
		2 Slot 별 Reel ID	0	0	X
		3 Reel ID 별 Pickup, Place, Dump 수량	0	0	X

Table 2. MES 연동 Production Data 세부표

2. Event Data

: 장비에서 발생 즉시 전송하는 Data

연동 Data 목록		연동 방식			
Category # 항목 XML TCP/IP [Database			
Event Data	9	PCB 생산 완료	0	0	Χ
	10	장비 상태 (Run/Idle/Stop)	0	0	Χ
	11	Job Download	0	0	Χ
	12	피더 클램프/언클램프	0	0	Х

Table 3 MES 연동 Event Data 세부표

3. Interlocking

: 장비를 Control하는 명령, 생산 공정 체크를 수행. Host 시스템 간 상호 작용이 필요한 개발 항목의 경우 개발팀과 사전 협의가 필요하다.

연동 Data 목록			연동 방식		
Category	#	항목		TCP/IP	Database
_	13	nterlocking	X	0	X
		1 생산 공정 이전 체크 (Barcode->ME	S) X	0	Χ
Interiorismo		2 생산 공정 응답 (MES -> 생산명령)	X	0	Χ
Interlocking	14	장비 Control	Х	О	Х
		1 장비 정지	Χ	0	Χ
		2 장비 가동	Χ	0	Χ

Table 4. MES 연동 Interlocking Data 세부표

1.4 MES 연동 Licensing

MES 시스템과 연동을 위해서 License 등록 여부를 확인해야 한다.

License가 등록된 상태라면 TCDashboard 화면에서 하기와 같이 MES License 항목에 Licensed 라고 표시된다.

Licensed 상태여야 MES I/F 가 가능함을 확인하자.

Figure 3. MES License 동작 여부 확인

1.5 MES 연동 설정 방법

MES시스템과 연동하는 다양한 방법에 대해 TCDashboard 에서의 설정 방법을 확인한다. 먼저 TCDashboard의 Setup 버튼으로 Setup 화면으로 이동 후 Option 화면으로 이동한다.

MES Interface 방식에는 File I/F, TCP/IP, DBtoDB 3가지 방식이 있으며 고객 사양에 맞춘 I/F 조합으로 연동하도록 하였다.

다음과 같이 연동 항목은 5가지 종류가 있다.

1. SHP: Shinheung Precision Company I/F (TCP/IP, DB2DB)

2. Gamma: Text file for gamma format. (File I/F)

3. Hanwha: XML file for Hanwha format. (File I/F)

4. MOTONIX: MOTONIX Company I/F (TCP/IP)

5. ADMIN_Selection: Administrator(or Engineer) can select I/F types for customer wants.

Admin Selection을 선택하면 오른쪽 표가 활성화 된다.

또, Admin Selection 모드에서는 File, TCP/IP, DBtoDB 방식을 복수 선택이 가능하다.

● 1.[File I/F] 다음과 같이 File I/F 이름 밑을 Click 하여 Text/XML 중 하나를 선택할 수 있다. Text는 Gamma format의 File 출력을 말하고, XML은 Hanwha format의 File출력을 말하다.

No.	DataItem	File I/F
		XML ~
1	Production Data	
2	Defect(SPI/AOI) Data	Text
3	Job/Program Data	XML
4	1-b Channer Time	

File I/F의 format은 이미 정해져 있기 때문에 세부 DataItem을 선택/해제 할 수 없다.

- 2.[TCP/IP] 사용자가 I/F 원하는 항목에 대해 선택 한다.
 - 1.1.3.버전의 Spec에서는 (1) Production Data, (3) Job/Program Data, (5) Board Barcode, (7) Machine Event Data, (9) [Event]PCB Production Completion, (10) [Event]Job Download, (11) [Event]Feeder Clamp/UnClamp, (12) [Interlocking] Before Machine Start, (13) [Interlocking] Before PCB Produce 항목만 활성화 된다.
 - TCP/IP I/F를 사용하기 위해서는 Option창에 필요한 항목을 선택 후 통신하고자 하는 MES IP Address, MES Port를 설정해야 한다.
 - ◆ TCDashboard Setup 화면에서 각 Process(장비) 마다 MES와 연동할 IP/Port를 입력한다. (MESIP: IP Address, MESPort: Port number)

◆ MES(=Server), Hanwha SmartLink(=Client)

- 3.[DBtoDB] MES License가 있다면 4.2절의 Only DB to DB 방식으로 활성화 된다.
 - 접속 권한 ID, PW 제공
 - View Table 형태로 Data 생성하여 제공

1.6 MES 연동 라인ID, 장비ID 설정 방법

MES시스템에 사용되는 장비ID와 라인ID의 설정 방법을 확인한다.

이전 버전에서는 임의 지정된 장비ID, 라인ID가 MES에 사용되고, 1.1.11 버전부터는 Client에서 지정한 장비ID, 라인ID를 MES에 사용할 수 있다.

1. TCDashBoard의 Auto Set 버튼을 클릭하면, Client에서 설정한 장비ID, 라인ID를 불러온다.

- 2. Apply 버튼을 클릭하여, 불러온 설정을 저장한다.
- 3. 불러온 설정을 MES Data에 사용하려면, TCDashBoard의 Setup->Option에서 Use Client-defined Name 체크박스를 체크한다. 한번 설정해두면 유지된다.

■ TCDashboard Options

2장. 파일(XML, TEXT) 연동

2.1 파일 생성 위치

2.1.1 Output file 생성 위치 셋팅

TCDashboard SW 의 Setup → Option 에서 생성 위치 (Path)를 지정할 수 있다.

Figure 4. MES Output Path 설정

- Path : Output File Folder
- 기본 Root Folder 뒤에 자동으로 Folder 를 추가할 수 있다.
 - 생산 모델이름 Folder : [Job]
 - 날짜 Folder : [Date]
 - 라인_장비 Folder: [LineEquipment]
- 기본 Root Folder 뒤에 추가되는 Folder 는 옵션으로 선택 할 수 있다.
- Use Client-defined Name 이 체크일 경우 설정 라인 ID₩장비 ID 로 Folder 가 생성된다.

2.1.2 Output File 형식 셋팅

출력 File 의 이름 형식을 지정할 수 있다.

MES Interface			* Outpu	t File Format	
MES Type	Hanwha(XML)	-	Head	Body	Ext.
Retry Count	33 Retry Time(se	ec) 35		. <time>.<job></job></time>	.xml
*Path C:\\PnP\LineTC\ <job></job>					
Add folder [Job Date Lin	eEquipment	Pa	nel# Station#	

Figure 5 MES Output File 설정

- 출력되는 파일 이름은 Header + Body + Extension 구조로 구성된다.
- Header 에는 사용자가 지정한 형식의 Text 를 File 앞에 붙일 수 있다.
- Body 에는 선택 옵션에 따라 File 이름을 구성할 수 있다.
 - TIME: Year-Month-Day-Hour-Minute-Second (YYYYMMDDHHMMSS) 형식으로 생성
 - JobName : 생산 중인 Job 이름을 생성
 - Panel #: 생산 중인 PCB Number 를 생성
 - Station #: PCB 를 생산한 Station 정보를 1F, 1R, 2F, 2R 형식으로 생성
- 각 옵션 항목 간에는 Under bar("_")로 구분한다.
 - Head_TIME_JOB_PANEL_STATION.xml
- Extension 은 고정으로 xml 이다.

2.1.3 Output Folder/File Sample

다음과 같이 Root Folder (C:\PnP\LineTC) 밑에

[Job]폴더, [Date] 폴더, [LineEquipment]폴더를 생성해 보겠습니다.

Output File 은 Header : "HTW", Body : "[Time]_[Job]_[Panel]_[Station]"

위와 같이 생성합니다.

JOB: "TEST_0603_0402_2"

Line ID: 11, Equipment ID: 6

Figure 6. MES I/F 설정화면

Figure 7. Folder와 XML File 출력 결과

2.2 파일 생성 주기

출력 File 이 생성 되는 주기는 Station 에서 PCB가 생성된 후 Station을 빠져 나가는 시점에 생성된다. 하기 그림과 같이 보라색 화살표 부분에 PCB가 배출될 때 데이터가 생성된다.

Figure 8. Data 만들어지는 시점 - PCB 배출시점

2.3 XML 파일 포맷 사양

XML 파일의 포맷으로 다음과 같은 구성을 볼 수 있다.

Root Node 와 하위 Child Node 에 대한 설명은 다음과 같다.

```
<?xml version="1.0" encoding="UTF-8"?>
- <Hanwha Version=" 1.0.1 " Type="CM">
   + <WorkSheet_Info>
   + < Array_Info >
   + <Machine_Info>
   + < Process_Info>
   + <CAD_Info>
   + < WorkSheet1>
   + < WorkSheet2>
   + <WorkSheet3>
   + < WorkSheet4>
   + <Head_Info>
   + <Nozzle_Info>
   + <Tape_Feeder_Info>
     <Stick_Feeder_Info/>
     <Tray_Feeder_Info/>
  </Hanwha>
```

Figure 9. XML Format Root Node

Node Name	Node Explain	Attribute Name	Attribute Explain		
	(노드 설명)	(속성 이름)	(속성 설명)		
	Root Node	Version	XML File 버전		
[Hanwha]		Туре	CM: Chip Mounter		
[Hanwha]			SP: Screen Printer		
			등 대상 장비 타입		
[WorkSheet_Info]	Basic PCB Information of working	ng(기본 PCB 정보)			
[Array_Info]	Array Information (Array 별 바코드 정보)				
[Machine_Info]	Machine Information (장비 정보)				
[Process_Info]	Processing Information (누적 생산 정보)				
[CAD Info]	PCB CAD Information (PCB 의 CAD 정보)				
[WorkSheet1]	Working Station 1F Information (장비 1F Station 의 작업 Step 정보)				
[WorkSheet2]	Working Station 1R Information (장비 1R Station 의 작업 Step 정보)				
[WorkSheet3]	Working Station 2F Information (장비 2F Station 의 작업 Step 정보)				
[WorkSheet4]	Working Station 2R Information (장비 2R Station 의 작업 Step 정보)				
[Head_Info]	Head Information of Processing PCB (PCB 생산 후 Head 별 정보)				
[Nozzle_Info]	Nozzle Information of Processing PCB (PCB 생산 후 Nozzle 별 정보)				
[Tape_Feeder_Info]	Tape Feeder Information of Processing PCB				

	(PCB 생산 후 Tape Feeder 별 정보)
[Ctick Fooder Info]	Stick Feeder Information of Processing PCB
[Stick_Feeder_Info]	(PCB 생산 후 Stick Feeder 별 정보)
[Tray_Feeder_Info]	Tray Feeder Information of Processing PCB
	(PCB 생산 후 Tray Feeder 별 정보)

Table 5. XML Root Node와 Child 세부 설명표

다음은 각각 Child Node의 세부 구조 및 내용에 대해 설명한다.

2.3.1 Work Sheet Information의 세부 설명

Figure 10. WorkSheet Information XML sample

Node Name	Node Explain (노드 설명)
[WorkSheet]	PCB 를 생산하는 장비의 작업영역 수
[ArrayNo]	PCB의 Array 개수
[ArrayExtend]	PCB 좌표에 대한 Extend Mode 를 사용유무 (1/0)
[Barcode]	PCB Barcode 정보 (측정 시 표시)
[Date]	PCB 생산 완료 일자 (YYYYMMDD)
[Start_Time]	PCB 생산 시작 시간 (YYYY-MM-DD HH:MM:SS)
[End_Time]	PCB 생산 완료 시간 (YYYY-MM-DD HH:MM:SS)

Table 6. WorkSheet Information 세부 설명표

2.3.2 Array_Information의 세부 설명

Figure 11. Array Information XML Sample

Node Name	Node Explain	Attribute Name	Attribute Explain	
Node Name	(노드 설명)	(속성 이름)	(속성 설명)	
	Array 별 정보	ArrayNo	Array 번호	
			1 번부터 시작	
		Barcode	Array 바코드 정보, Board 바코드만	
[Array]			사용하는 경우엔 Board 바코드	
			뒤에 Array 번호가 연결된 형태로	
			제공된다.	
			(사용시만 표시 가능)	

Table 7 Array Information 세부 설명표

2.3.3 Machine Information의 세부 설명

Figure 12. Machine Information XML Sample

NI I NI	Node Explain	Attribute Name	Attribute Explain
Node Name	(노드 설명)	(속성 이름)	(속성 설명)
	장비 전면 기준으로 Board 가 투입/배출	-	-
[Board_Flow]	되는 방향		
	LTR(Left to Right), RTL(Right to Left)		
[GantryNo]	장비의 Gantry 개수	-	-
[Gantry#]	Gantry 별 정보	HeadNo	Head 개수

Table 8 Machine Information의 세부 설명표

2.3.4 Process Information의 세부 설명

Figure 13. Process Information XML Sample

Node Name	Node Explain (노드 설명)	Attribute Name (속성 이름)	Attribute Explain (속성 설명)
[Model]	생산 중인 Model/PCB 이름	-	-
[DanalCount]	생산 된 PCB Count	-	-
[PanelCount]	사용자 Reset 기준		
[WorkedArrayCount]	생산 된 Array Count	-	-
[SkippedArrayCount]	Skip 된 Array Count	-	-
[BadMarkArrayCount]	Bad Mark 로 Skip 된 Array Count	-	-
[DaywarTire a]	장비의 누적 전원 인가된 시간.(초)	-	-
[PowerTime]	장비를 꺼도 리셋되지 않음.		
	장비의 누적 실장(Mounting) 시간 .(초)		
[PlaceTime]	사용자 Reset 기준		
	장비 가동 중 누적 대기 시간.(초)		
[WaitTime]	(PCB 투입 대기, PCB 반출 대기 시간)		
	사용자 Reset 기준		
	장비의 누적 가동 상태 시간.(초)		
[RunTime]	PlaceTime+WaitTime+TransferTime		
	사용자 Reset 기준		
[CtonTime]	장비의 누적 정지 상태 시간.(초)		
[StopTime]	사용자 Reset 기준		
[IdleTime]	장비의 누적 대기 상태 시간.(초)		

	사용자 Reset 기준		
--	--------------	--	--

Table 9. Process Information 세부 설명표

2.3.5 CAD Information의 세부 설명

Figure 14 Cad Information XML Sample

Node Name	Node Explain (노드 설명)	Attribute Name (속성 이름)	Attribute Explain (속성 설명)
	PCB 생산 CAD의	Part_Name	부품 이름
[CAD]	정보	Ref	장착 위치 이름
			(Reference Name)
		Χ	장착점 X 좌표
		Υ	장착점 Y 좌표
		Z	장착점 Z 좌표
		R	장착점 각도

Table 10. CAD Information 세부 설명표

2.3.6 WorkSheet의 세부 설명

```
GWORKSheet1 ArrayNo="2" Ref="REF001" SlotNo="38" Feeder_id="1" Feeder_type="Tape" Fart_name=" NewR0603" HeadID="1" NozzleID="1" NozzleID="3" Nozzle_name="CN040" Feeder_name="SME8"/>
GWORKSheet ArrayNo="2" Ref="REF002" SlotNo="39" Feeder_id="1" Feeder_type="Tape" Fart_name=" NewR0603" HeadID="2" ANCID="1" NozzleID="3" Nozzle_name="CN040" Feeder_name="SME8"/>
GWORKSheet ArrayNo="2" Ref="REF003" SlotNo="39" Feeder_id="1" Feeder_type="Tape" Fart_name=" NewR0603" HeadID="7" ANCID="1" NozzleID="10" Nozzle_name="CN040" Feeder_name="SME8"/>
GWORKSheet ArrayNo="2" Ref="REF004" SlotNo="30" Feeder_id="1" Feeder_type="Tape" Fart_name=" NewR0603" HeadID="6" ANCID="1" NozzleID="6" Nozzle_name="CN040" Feeder_name="SME8"/>
GWORKSheet ArrayNo="2" Ref="REF005" SlotNo="37" Feeder_id="1" Feeder_type="Tape" Fart_name=" NewR0603" HeadID="6" ANCID="1" NozzleID="6" Nozzle_name="CN040" Feeder_name="SME8"/>
GWORKSheet ArrayNo="2" Ref="REF005" SlotNo="37" Feeder_id="1" Feeder_type="Tape" Fart_name=" NewR0603" HeadID="9" ANCID="1" NozzleID="6" Nozzle_name="CN040" Feeder_name="SME8"/>
GWORKSheet ArrayNo="4" Ref="REF005" SlotNo="38" Feeder_id="1" Feeder_type="Tape" Fart_name=" NewR0603" HeadID="9" NozzleID="5" NozzleID="5" NozzleID="6" Nozzle name="CN040" Feeder_name="SME8"/>
GWORKSheet ArrayNo="4" Ref="REF009" SlotNo="38" Feeder_id="1" Feeder_type="Tape" Fart_name=" NewR0603" HeadID="3" ANCID="1" NozzleID="5" Nozzle name="CN040" Feeder_name="SME8"/>
GWORKSheet ArrayNo="4" Ref="REF009" SlotNo="38" Feeder_id="1" Feeder_type="Tape" Fart_name=" NewR0603" HeadID="5" ANCID="1" NozzleID="6" Nozzle name="CN040" Feeder_name="SME8"/>
GWORKSheet ArrayNo="4" Ref="REF009" SlotNo="37" Feeder_id="1" Feeder_type="Tape" Fart_name=" NewR0603" HeadID="5" ANCID="1" NozzleID="6" Nozzle name="CN040" Feeder_name="SME8"/>
GWORKSheet ArrayNo="4" Ref="REF009" SlotNo="37" Feeder_id="1" Feeder_type="Tape" Fart_name=" NewR0603" HeadID="5" ANCID="1" NozzleID="6" Nozzle name="CN040" Feeder_name="SME8"/>
GWORKSheet ArrayNo="4" Ref="REF009" SlotNo="37" Feeder_id="1"
```

Figure 15 WorkSheet XML Sample

Node Name	Node Explain	Attribute Name	Attribute Explain
	(노드 설명)	(속성 이름)	(속성 설명)
[WorkSheet1]	PCB 를 생산하는	ArrayNo	Array 번호

[WorkSheet2]	장비의 Station 별	Ref	장착 위치 이름
[WorkSheet3]	실장 Step 정보		(Reference Name)
[WorkSheet4]	(1F/1R/2F/2R)	Part_name	부품 이름
		Feeder_type	Feeder 종류
			Tape/Stick/Tray
		Feeder_id	장비 Feeder Base ID 번호
		SlotNo	Feeder Base 내 Slot 번호
		HeadID	Gantry 내 Head ID
		ANCID	장비 내 ANC Block ID
		NozzleID	ANC 내 Nozzle Hole ID
		Nozzle_name	Nozzle 이름
		Feeder_name	Feeder 이름

Table 11. WorkSheet 세부 설명표

2.3.7 Head Information의 세부 설명

Figure 16. Head Information XML Sample

Node Name	Node Explain (노드 설명)	Attribute Name (속성 이름)	Attribute Explain (속성 설명)
	PCB 생산 완료 후	GantryID	Gantry ID
	각 Head 별 생산	HeadID	Head ID
	정보.	Pickup	부품 Pickup 누적 수량
[Head]	사용자 Reset 기준	Place	부품 장착 누적 수량
	누적.	PickError	부품 Pickup Error 누적 수량
		VisionError	부품 인식 Error 누적 수량
		Dump	그 외 Dump Error 누적 수량

Table 12 Head Information 상세 설명표

2.3.8 Nozzle Information의 세부 설명

Figure 17. Nozzle Information XML Sample

Node Name	Node Explain (노드 설명)	Attribute Name (속성 이름)	Attribute Explain (속성 설명)
	PCB 생산 완료 후	ANCID	ANC ID
	각 Nozzle 별 생산	HoleID	ANC 내 Hole ID
[Nozzle]	정보	Nozzle_name	Nozzle 이름
	사용자 Reset 기준	Pickup	부품 Pickup 누적 수량
	누적.	Place	부품 장착 누적 수량
		PickError	부품 Pickup Error 누적 수량
		VisionError	부품 인식 Error 누적 수량
		Dump	그 외 Dump Error 누적 수량

Table 13. Nozzle Information 상세 설명표

2.3.9 Tape Feeder Information의 세부 설명

Figure 18. Tape Feeder Information XML Sample

Node Name	Node Explain	Attribute Name	Attribute Explain
	(노드 설명)	(속성 이름)	(속성 설명)
	PCB 생산 완료 후	FeederbaseID	Feederbase ID
	각 Tape Feeder 별	SlotNo	Feederbase 내 Slot ID
[Tape_Feeder]	생산 정보	Part_Name	부품 이름
	사용자 Reset 기준	Pickup	부품 Pickup 누적 수량
	누적.	Place	부품 장착 누적 수량
		PickError	부품 Pickup Error 누적 수량
		VisionError	부품 인식 Error 누적 수량
		Dump	그 외 Dump Error 누적 수량

Table 14. Tape Feeder Information 상세 설명표

2.3.10 Stick Feeder Information의 세부 설명

Figure 19. Stick Feeder Information XML Sample

Node Name	Node Explain (노드 설명)	Attribute Name (속성 이름)	Attribute Explain (속성 설명)
	,	*	
	PCB 생산 완료 후	StickID	Stick Feederbase ID
	각 Stick Feeder 별	SlotNo	Feederbase 내 Slot ID
	생산 정보 사용자 Reset 기준	Part_Name	부품 이름
[Ctick Foodow]		Pickup	부품 Pickup 누적 수량
[Stick_Feeder]	누적.	Place	부품 장착 누적 수량
		PickError	부품 Pickup Error 누적 수량
		VisionError	부품 인식 Error 누적 수량
		Dump	그 외 Dump Error 누적 수량

Table 15. Stick Feeder Information 상세 설명표

2.3.11 Tray Feeder Information의 세부 설명

Figure 20. Tray Feeder Information XML Sample

Node Name	Node Explain	Attribute Name	Attribute Explain
	(노드 설명)	(속성 이름)	(속성 설명)
	PCB 생산 완료 후	TrayID	Tray ID
	각 Tray Feeder 별	PalletID	Tray 내 Pallete ID
	생산 정보	Part_Name	부품 이름
[Tray_Feeder]	사용자 Reset 기준	Pickup	부품 Pickup 누적 수량
	누적.	Place	부품 장착 누적 수량
		PickError	부품 Pickup Error 누적 수량
		VisionError	부품 인식 Error 누적 수량
		Dump	그 외 Dump Error 누적 수량

Table 16 Tray Feeder Information 상세 설명표

2.4 XML Sample

Hanwha System에서 출력하는 Sample XML File을 첨부하였다.

```
XML Sample 첨부
                                                                               ----->
<ArrayNo>1</ArrayNo>
                  <ArrayExtend>0</ArrayExtend>
                   (Date>20200518</Date>
                 <Start_Time>2020-05-18 15:00:35</Start_Time>
<End_Time>2020-05-18 15:00:40</End_Time>
         </WorkSheet_Info>
         <Array Info
         <GantryNo>1</GantryNo>
         <SkippedArrayCount>0</SkippedArrayCount>
                <SkippedarrayCountDV/SkippedarrayCount>
GadWarkArrayCount>/GadWarkArrayCount>

<PowerTime>247503
<PlaceTime>15
<PlaceTime>15

                 <RunTime>35</RunTime>
                 <StopTime>59</StopTime>
<IdleTime>136</IdleTime

<ididline>136</ideTime>

<pre
                (WorkSheet ArrayNo="1" Ref="REF1" SlotNo="-1" Feeder_id="-1" Feeder_type="A" Part_name="test_NewR0603" HeadID="1" ANCID="A" NozzleID="A" Nozzle_name="A" Feeder_name="SM8"/>

(WorkSheet ArrayNo="1" Ref="REF1" SlotNo="-1" Feeder_id="-1" Feeder_type="A" Part_name="test_NewR0603" HeadID="1" ANCID="A" NozzleID="A" Nozzle_name="A" Feeder_name="SM8"/>

(WorkSheet ArrayNo="1" Ref="REF3" SlotNo="-1" Feeder_id="-1" Feeder_type="A" Part_name="test_NewR0603" HeadID="1" ANCID="A" NozzleID="A" Nozzle_name="A" Feeder_name="SM8"/>

(WorkSheet ArrayNo="1" Ref="REF3" SlotNo="-1" Feeder_id="-1" Feeder_type="A" Part_name="test_NewR0603" HeadID="1" ANCID="A" NozzleID="A" Nozzle_name="A" Feeder_name="SM8"/>

(WorkSheet ArrayNo="1" Ref="REF5" SlotNo="-1" Feeder_id="-1" Feeder_type="A" Part_name="test_NewR0603" HeadID="1" ANCID="A" NozzleID="A" Nozzle_name="A" Feeder_name="SM8"/>

(WorkSheet ArrayNo="1" Ref="REF5" SlotNo="-1" Feeder_id="-1" Feeder_type="A" Part_name="test_NewR0603" HeadID="1" ANCID="A" NozzleID="A" Nozzle_name="A" Feeder_name="SM8"/>

(WorkSheet ArrayNo="1" Ref="REF5" SlotNo="-1" Feeder_id="-1" Feeder_type="A" Part_name="test_NewR0603" HeadID="1" ANCID="A" NozzleID="A" Nozzle_name="A" Feeder_name="SM8"/>

(WorkSheet ArrayNo="1" Ref="REF5" SlotNo="-1" Feeder_id="-1" Feeder_type="A" Part_name="test_NewR0603" HeadID="1" ANCID="A" NozzleID="A" Nozzle_name="A" Feeder_name="SM8"/>

(WorkSheet ArrayNo="1" Ref="REF5" SlotNo="-1" Feeder_id="-1" Feeder_type="A" Part_name="test_NewR0603" HeadID="1" ANCID="A" NozzleID="A" Nozzle_name="A" Feeder_name="SM8"/>

(WorkSheet ArrayNo="1" Ref="REF5" SlotNo="-1" Feeder_id="-1" Feeder_type="A" Part_name="test_NewR0603" HeadID="1" ANCID="A" Nozzle_name="A" Feeder_name="SM8"/>
        <Nozzle_Info
                 <Nozzle ANCID="1" HoleID="22" Nozzle name="CN030" PickUp="25" Place="25" PickError="0" VisionError="0" Dump="0"/>
       <Tray_Feeder_Info/>
</Hanwha
```

Figure 21XML 파일 Sample

2.5 Feeder Event File

2.5.1 Feeder Event File (Text)

피더의 탈/부착 시 마다 이벤트 발생되어 File에 기록한다. 한 파일에 발생한 이벤트는 누적해서 기록하며 일별로 파일은 새로 생성된다.

단, 피더 이벤트를 받기 위해서는 전동 피더(IT-Feeder)를 사용해야 한다. 공압식 피더의 탈부착이벤트는 정상적으로 발생되지 않는다.

- 생성 파일 : 20190313_FEEDER_EVENT_DATA.csv
 - 앞에 날짜(YYYYMMDD)를 붙여 일별로 파일이 새로 생성된다.
 - 일별 발생한 이벤트는 모두 하나의 파일에 누적 기록한다.
- 생성 주기 : FEEDER 개별 탈부착 EVENT 발생시마다 기록한다.

기록되는 File의 형식은 다음과 같다.

* 제목 : [Data], [Time], [Feederbase], [FeederBaseID], [SlotID], [FeederCodeID], [FeederType], [PartName], [Status]

* Data: 2019-03-13, 10:26:14, 1R, 2, 23, PI-08S-15444-CC, TA, Part001, Unclamp 2019-03-13, 10:26:59, 1R, 2, 23, PI-08S-15444-CC, TA, Part002, Clamp 2019-03-13, 10:35:42, 1F, 1, 40, PI-08N-12436-D9, TA, Part003, Unlamp 2019-03-13, 10:35:42, 1F, 1, 40, PI-08N-12436-D9, TA, Part004, Clamp

[Data]: 이벤트 발생 날짜이다. 년-월-일로 표기한다. (YYYY-MM-DD)

[Time]: 이벤트 발생 시간이다. 시:분:초로 표기한다. (hh:mm:ss)

[FeederBase]: 이벤트 발생한 피더 베이스 이름이다. 1F, 1R, 2F, 2R

[FeederBaseID]: 이벤트 발생한 피더 베이스 번호이다. 1:1F, 2:1R, 3:2F, 4:2R

[SlotID]: 이벤트 발생한 슬롯 번호이다. (1 ~ N (최대 Slot 번호까지))

[FeederCodeID]: 피더 고유 번호, Feeder별로 Unique하다.

[FeederType]: Tape/Stick/Tray를 구분하는 Feeder Type, TA: Tape, ST: Stick, TR: Tray

[PartName]: 부품 이름

[Status]: 탈착, 부착 상태를 표시한다. 탈착이면 "Unclamp", 부착이면 "Clamp"로 표기한다.

파일은 XML 파일과 동일한 위치에 기록된다.

2.5.2 Feeder Event File (XML)

Figure 22 Feeder Event XML

Node Name	Node Explain	Attribute Name	Attribute Explain
Node Name	(노드 설명)	(속성 이름)	(속성 설명)
[FeederEvent]	Feeder Clamp/Unclamp 시 발생하는 Feeder Event	Date	이벤트 발생 날짜이다. 년-월- 일로 표기한다. (YYYY-MM-DD)
		Time	이벤트 발생 시간이다. 시:분:초로 표기한다. (hh:mm:ss)
		FeederBase	이벤트 발생한 피더 베이스 이름 이다. 1F, 1R, 2F, 2R
		FeederBaseID	이벤트 발생한 피더 베이스 번호 이다. 1:1F, 2:1R, 3:2F, 4:2R
		SlotID	이벤트 발생한 슬롯 번호이다. (1 ~ N (최대 Slot 번호까지))
		FeederCodeID	피더 고유 번호
		FeederType	피더 Type
		PartName	부품이름
		Status	Clamp / Unclamp

Table 17 Feeder Event XML 상세 설명 표

2.6 장비 Event Message

2.6.1 장비 Event Message (TEXT)

장비에서 발생한 Event Message와 장비 실시간 상태를 전송한다. 장비에서 Event Message가 중복으로 올 때가 있는데 중복으로 받은 Message는 보내지 않는다.

* 제목: [Data], [Time], [Station], [Status], [AlarmID], [AlarmMessage]

* Data: 2020/04/29, 20:09:14, 1F, RUN, 100, Im Running!

2020/04/29, 20:09:14, 1F, STOP, 100,

2020/04/29, 20:09:14, 1F, IDLE, 100, I changed to Idle Mode!

[Data]: 이벤트 발생 날짜이다. 년-월-일로 표기한다. (YYYY-MM-DD)

[Time]: 이벤트 발생 시간이다. 시:분:초로 표기한다. (hh:mm:ss)

[Station]: 이벤트 발생한 Station 이름이다. 1F, 1R, 2F, 2R

[Status]: 장비 현재 상태 표시 IDLE, RUN, STOP

[AlarmID]: AlarmID의 고유 번호, 장비 종류별 같은 Message라도 번호는 다를 수 있다.

[AlarmMessage]: Alarm Message

파일은 XML파일과 동일한 위치에 기록된다.

2.6.2 장비 Event Message (XML)

Figure 23 장비 Event Message XML

Node Name	Node Explain (노드 설명)	Attribute Name (속성 이름)	Attribute Explain (속성 설명)
[MachineEvent]	장비에서 발생한	Date	이벤트 발생 날짜이다. 년-월-

Event Message		일로 표기한다. (YYYY-MM-DD)
	Time	이벤트 발생 시간이다. 시:분:초로
		표기한다. (hh:mm:ss)
	Station	이벤트 발생한 Station 이름이다.
		1F, 1R, 2F, 2R
	Status	장비 현재 상태 표시 IDLE, RUN,
		STOP
	AlarmID	AlarmID의 고유 번호
		장비 종류별 같은 Message라도
		번호는 다를 수 있음
	AlarmMessage	Alarm Message

Table 18 장비 Event Message 상세 설명 표

2.7 Lot Tracking Data

2.7.1 Lot Tracking Data (TEXT)

2.7.2 Lot Tracking Data (XML)

A. LTS_Info

```
<LTS Info>
    <Version/>
    <BoardSN>2001632537</BoardSN>
   <ArraySN Info>
       <ArraySN SN="2001632537"/>
       <ArraySN SN="2001632538"/>
       <ArraySN SN="2001632539"/>
       <ArraySN SN="2001632540"/>
       <ArraySN SN="2001632541"/>
       <ArraySN SN="2001632542"/>
       <ArraySN SN="2001632543"/>
       <ArraySN SN="2001632544"/>
    </ArraySN_Info>
   <OrderName/>
   <MachineCode>0000000021</MachineCode>
   <PCBName>13363388 9209-S01 top 2</PCBName>
    <Operator>TESTMAN</Operator>
   <StartTime>2018-03-12 07:20:21</StartTime>
   <EndTime>2018-03-12 07:21:46</EndTime>
   <WorkZone>1</WorkZone>
</LTS Info>
```

Figure 24 Lot Tracking LTS_Info data XML

Node Name	Node Explain (노드 설명)	Attribute Name (속성 이름)	Attribute Explain (속성 설명)			
	LTS 정보의 공통	BoardSN	Board Serial 번호			
	정보 표시	ArraySNInfo	Array Serial 번호			
		OrderName	Order Code			
[LTS_Info]		MachineCode	장비 Code			
		PCBName	PCB 이름			
		Operator	작업자			
		StartTime	작업 시작 시간			
		EndTime	작업 종료 시간			
		WorkZone	작업 Station			

Table 19 LTS 공통 정보 상세 설명 표

B. ArraySN_Info

Figure 25 LTS Array Serial Node XML

Node Name	Node Explain	Attribute Name	Attribute Explain
	(노드 설명)	(속성 이름)	(속성 설명)
[ArraySN_Info]	Array Serial 번호	ArraySN	Array Serial 번호

Table 20 LTS Array Serial 상세 설명 표

C. Data_Info

Figure 26 Lot Tracking Data_Info Data XML

Node Name	Node Explain (노드 설명)	Attribute Name (속성 이름)	Attribute Explain (속성 설명)
	LTS Step 정보 표시	STEP	Step Index
		REF	레퍼런스 이름
		PART_NAME	부품 이름
[Data_Info]		RELLID	Reel 고유 ID
		FEEDERID	Feeder 고유 ID
		SLOT_NO	작업 Slot 번호
		ARRAY	Array 번호
		BLOCK	Block 번호
		VCODE	미사용
		VPART	미사용
		VNAME	미사용
		LOT_CODE	
	TO COLUMN TIME AND THE	DUMP	버림 수

Table 21 LTS Step 정보 상세 설명 표

2.8 LCR Checking Data

2.8.1 LCR Check Result Data (TEXT)

Sample CSV format

Date	Time	PartName	FeederUnit	Slot	Type(L/C/R/)	NominalValue	MeasuredValue	Unit	Result	Tolerance
2021-11-24	19:10:50	PARTLCR_002	1	21	R	1001.5	999.875	kOhm	Pass	17

2.8.2 LCR Check Result Data (XML)

A. LCR_Info

Figure 27 LCR Check Result Information data XML

Node Name	Node Explain	Attribute Name	Attribute Explain
	(노드 설명)	(속성 이름)	(속성 설명)
	LCR 검사 결과	TYPE	L/C/R Type
	데이터	PartName	Part(Material) Name
II CD Infal		FeederBase	1/2/3/4 = 1F/1R/2F/2R
[LCR_Info]		Slot	Slot Number
[LCR_Info]		NominalValue	Nominal Set Value
		MeasureValue	Measured value
		Unit	Type unit (L/F/kOhm)
		Result	Pass/Fail/Error
		Tolerance	Tolerance for nominal value (%)

Table 22 LCR 공통 정보 상세 설명 표

2.9 Nozzle Checking Data

2.9.1 Nozzle Check Result Data (TEXT)

Sample CSV format

Di	ate	Time	NozzleName	GantryID	HeadID	ANCID	HoleID	NozzleID	FlowSV	TensionSV	FlowGV	TensionGV	FlowResult	TensionResult	TensionMin	TensionMax
20	22-01-05	14:37:36	NZ060	1	4	1	12	215	410.5	95.1	411.875	94.829	1	1	90	100

2.9.2 Nozzle Check Result Data (XML)

A. NozzleCheck_Info

```
<?xml version="1.0" encoding="UTF-8"?>
<Hanwha Version="1.0.2" Type="CM">
 - <NozzleCheck_Info>
      <NozzleName>NZ060</NozzleName>
      <GantryID>1</GantryID>
      <HeadID>4</HeadID>
      <ANCID>1</ANCID>
      <HoleID>12</HoleID>
      <NozzleID>215</NozzleID>
       <FlowSV>410.500</FlowSV>
       <TensionSV>95.100</TensionSV>
       <FlowGV>411.875</FlowGV>
      <TensionGV>94.829</TensionGV>
      <FlowResult>Pass</FlowResult>
      <TensionResult>Pass</TensionResult>
      <TensionMin>90</TensionMin>
      <TensionMin>100</TensionMin>
   </NozzleCheck_Info>
</Hanwha>
```

Figure 28 Nozzle Check Result Information data XML

Node Name	Node Explain	Attribute Name	Attribute Explain
	(노드 설명)	(속성 이름)	(속성 설명)
	Nozzle 유량/텐션	NozzleName	Nozzle Name(ex CN040)
	검사 결과 데이터	GantryID	Gantry ID (1=1F, 2=1R)
[NozzloChock Info]		HeadID	SpindleID(HeadID)
[NozzleCheck_Info]		ANCID	Nozzle ANC ID
		HoleID	Nozzle Hole ID
		NozzleID	Nozzle ID(Name=ID)
		FlowSV	Nozzle Flow Set Value
		TensionSV	Tension Set Min Value
		FlowGV	Nozzle Flow Get Value
		TensionGV	Tension Get Value
		FlowResult	FAIL(0)/PASS(1)/Error(2)/
		TensionResult	FAIL(0)/PASS(1)/Error(2)/
		TensionMin	Tension Min Tolerance
		TensionMax	Tension Max Tolerance

Table 23 Nozzle Check Data 상세 설명 표

3장. TCP I/P 연동

3.1 통신 연동

TCP I/P Socket으로 통신 연결하는 방식이다. Hanwha System(T-PnP)가 Socket Client 모드이며 MES 시스템이 Server이다. Hanwha System에서 MES 시스템으로 Connect를 시도한다.

서버 IP, Port에 대해서는 장비 별 선택할 수 있다. 즉, MES에서 라인 별로 데이터를 취득 서버를 운용할 수 있으며 전체 장비를 하나의 서버로 운용할 수도 있다.

Port또한 하나의 Port에 여러 장비 Client를 접속하도록 할 수 있으며 Port를 장비 별로 나누어 설정하도록 할 수 있다.

다음가 같이 MES IP, Port를 장비 Client 개별 설정 가능하다.

Figure 30. TCP I/P 연동시 사용하는 IP, Port 설정 화면

3.2 Data 통신

생산 데이터 및 이벤트 데이터를 전송하는 방식은 다음과 같다.

Hanwha 시스템에서 PCB 생산 완료 시, 이벤트 발생시 데이터를 MES로 전달한다.

Figure 31. TCP I/P 연동 Data 통신 방식

3.3 Interlocking

생산 공정 체크를 위한 메시지 전송은 Client 에서 Board Barcode 정보를 읽고 MES 로 생산 여부를 Request 한다. MES 에서는 생산 여부를 체크 후 Client 로 Response 하여 생산이 진행되도록 명령을 수행한다.

Client 에서 MES 로 메시지를 Request 후 T3(초기 값 10 초) 시간을 대기하며 만약 응답이 없으면 장비에 에러를 띄우고 생산 진행 응답이 없음을 메시지로 표시한다.

3.4 통신 데이터 종류와 I/F 시퀀스

통신 데이터에 따른 통신 I/F 시퀀스는 다음과 같다.

Standard

- 장비의 BOM(Job File) 비교: 생산 허용된 Job 여부를 MES 에서 비교
- PCB/이전 공정 체크 : 제품 투입 직전(In)에 공정 투입 가능 여부 질의
- 공정 결과 보고 : 투입된 제품의 공정 완료 시 MES 보고

Figure 33. TCP I/P 연동 제품 생산 정보 통신 방식

LS1: PCB 생산 전 Barcode 체크 후 PCB 공정 진행 여부 요청

LS2: 바코드 정보 체크 후 공정 진행 결과 응답 (OK/NG)

LS3: 장비의 BOM(JobFile)Data 의 정상 여부 판별을 위해 장비 Start 돌입시 MES 에 비교 요청

LS4: 생산 가능한 Job 판별 후 공정 생산 시작 여부 응답 (OK/NG)

LSMTPO : PCB Out 보고

다음은 Event 정보에 대해 메시지 전송 시퀀스는 다음과 같다.

Event (Status)

- 알람이 발생하면, 알람 발생 보고 메시지 전송

Figure 34. TCP I/P 연동 Event 통신 방식

LSMTAL: 장비 알람 발생 보고, 장비의 알람과 메시지 전달

LSMTSLTSTS: 슬롯 상태 보고, 슬롯에 피더 Clamp/Unclamp 정보 전달

LSMTJD: 잡 다운로드 보고

3.5 Protocol Message Structure

Message는 항상 시작은 STX로 하고 마지막은 ETX 로 1byte씩 할당한다.

Figure 35. TCP I/P 연동 Message Structure

3.6 Data Message Structure

각 Data별 Message의 구조는 다음과 같다.

LS1: 이전 공정 체크 요청

MSG MSG EQ LINE RECIPE	TRAN TIME	LOT ID	UDF #1	UDF #2	UDF #3	UDF #4	UDF #5	1
------------------------	--------------	-----------	-----------	-----------	-----------	-----------	-----------	---

LS2 : 이전 공정 체크의 MFS 응답

		00 11		IVILO	0 0									
MSG TYPE	MSG SEQ	EQ CODE	LINE	RECIPE	TRAN TIME	LOT ID	MES RESULT	MES MSG	UDF #1	UDF #2	UDF #3	UDF #4	UDF #5	

LSMTSLTSTS: 슬롯 상태 정보 보고

MS	EQ CODE	LINE	RECIPE	TRAN TIME	LOT ID	STATION NO	SLOT TYPE	SLOT NO	FEEDER ID	PART NAME	STS	UDF #1	UDF #2	UDF #3	UDF #4	UDF #5

LSMTAL: 알람(상태정보) 보고

LSMTPO: PCB OUT 보고

MSG TYPE	MSG SEQ	EQ CODE	LINE	RECIPE	TRAN TIME	LOT ID	UDF #1	UDF #2	UDF #3	UDF #4	UDF #5
-------------	------------	------------	------	--------	--------------	-----------	-----------	-----------	-----------	-----------	-----------

LSMTJD: Job program Download 보고

MSG TYPE	MSG SEQ	EQ CODE	LINE	RECIPE	TRAN TIME	UDF #1	UDF #2	UDF #3	UDF #4	UDF #5

세부 각 항목에 대한 설명은 첨부 파일을 참조한다.

3.7 [Data] Production Data 메시지

마운터에서 PCB 1장 생산을 완료 후 Mounter의 생산 정보를 MES로 보낸다. 취득할 수 있다.

LSMTPD : SMT Production Data 메시지

ex) 0x02LSMTPD/1/EQ-

001/AM01/RecipeVision/20180223120001/BARCODEID/32/51510/4276/255 75/5069/7145/9445/8/20/40/2/1/[HEAD_PRD]*8/[NOZZLE_PRD]*20/[TAPE_P RD]*40/[STICK_PRD]*2/[TRAY_PRD]*1/96/32/0/2020-04-14 09:00:00/2020-04-14 09:00:40/4/[ARRAY_CODE]/40////0x03

항 도	†	설명	약어	구분	MAX SIZE (ASCII)	비고
1	MESSAGE_TYPE	메시지 타입	MSG TYPE	/	10	메시지 구분 (LSMTPD)
2	MESSAGE_LANE	메시지 발생 Lane	MSG LANE	/	5	Lane의 정보 (Front 1, Rear 2), 구분이 없으면 기본 값 1
3	EQUIPMENT_ID	설비 이름	EQ ID	/	30	설정 정보 (설비에서 초기 설정)
4	LINE_ID	라인	LINE	/	10	설정 정보 (EX,, AM01, AM02) (설비에서 초기 설정)
5	PROGRAM_NAME	Job 프로그램 이름	RECIPE	/	50	Job 프로그램 이름
6	TRAN_TIME	메시지 발생 시간	TRAN TIME	/	14	yyyymmddHHmmss
7	BARCODE_ID	LOT 정보	LOT ID	/	256	Board 바코드 스캔 정보
8	PANEL_COUNT	Panel 누적 Count	PANEL_CNT	/	32	누적 Panel Count (장비 Reset 기준)
9	POWER_TIME	누적 Power On Time	POWER_TM	/	32	누적 second
10	PLACE_TIME	누적 Place Time	PLACE_TM	/	32	누적 second
11	WAIT_TIME	누적 Wait Time	WAIT_TM	/	32	누적 second
12	RUN_TIME	누적 Run Time	RUN_TM	/	32	누적 second
13	STOP_TIME	누적 Stop Time	STOP_TM	/	32	누적 second
14	IDLE_TIME	누적 Idle Time	IDLE_TM	/	32	누적 second
15	HEAD_COUNT	생산된 Head Count	HEAD	/	10	Head 사용 수
16	NOZZLE_COUNT	생산된 Nozzle Count	NOZZLE	/	10	Nozzle 사용 수
17	FEEDER_TAPE_COUNT	생산된 Tape Feeder	TAPE_FEED	/	10	Tape Feeder Slot 사용 수
18	FEEDER_STICK_COUNT	생산된 Stick Feeder	STICK_FEED	/	10	Stick Feeder Slot 사용 수
19	FEEDER_TRAY_COUNT	생산된 Tray Feeder	TRAY_FEED	/	10	Tray Pallete 사용 수
20	HEAD_DATA	Head Production Data	HEAD_PRD	/	[DEVICEDATA]	Head 생산 Device Data

21	NOZZLE_DATA	Nozzle Production Data	NOZZLE_PRD	/	[DEVICEDATA]	Nozzle 생산 Device Data
22	FEEDER_TAPE_DATA	Tape Production Data	TAPE_PRD	/	[DEVICEDATA]	Feeder Tape 생산 Device Data
23	FEEDER_STICK_DATA	Stick Production Data	STICK_PRD	/	[DEVICEDATA]	Feeder Stick 생산 Device Data
24	FEEDER_TRAY_DATA	Tray Production Data	TRAY_PRD	/	[DEVICEDATA]	Feeder Tray 생산 Device Data
25	WORKED_ARRAY	Worked Array Count	WORK_ARRY	/	16	*Worked Array Count = Total Array – Skipped – Bad mark *Total Array = PCB Count * Array per PCB
26	SKIPPED_ARRAY	Skipped Array Count	SKIP_ARRY	/	16	Skipped (Not mounting) Array count
27	BADMARK_ARRAY	Bad Mark Array Count	BAD_ARRY	/	16	Bad Mark, so Skipped Array Count
28	START_TIME	Production start time	START_TIME	/	20	생산 시작 시간 YYYY-MM-DD HH:MM:SS Ex) 1900-01-01 01:01:01
29	END_TIME	Production End time	END_TIME	/	20	생산 완료 시간 YYYY-MM-DD HH:MM:SS Ex) 1900-01-01 01:01:01
30	ARRAY_COUNT	PCB Array Count	ARRY_CNT	/	10	Array Count per PCB (PCB Array 수)
31	ARRAY_CODE	Array Barcode Data	ARRY_CODE	/	[ARRAY_CODE]	Array 바코드 정보 (측정 가능한 경우 ARRAY_COUNT 만큼 있음)
32	TRANSFER_TIME	누적 Transfer Time	TRANS_TM	/	1000	누적 second
33	USER_DEFINE_FIELD #2	사용자 정의 필드 #2	UDF #2	/	1000	Default Value : empty string
34	USER_DEFINE_FIELD #3	사용자 정의 필드 #3	UDF #3	/	1000	Default Value : empty string
35	USER_DEFINE_FIELD #4	사용자 정의 필드 #4	UDF #4	/	1000	Default Value : empty string
36	USER_DEFINE_FIELD #5	사용자 정의 필드 #5	UDF #5	/	1000	Default Value : empty string

Table 24 Event Job Download Data 설명표

<Device Production Data > - [DEVICEDATA]

항 목	!	설명	약어	구분자	SIZE (ASCII)	비고
1	DEVICE_ID	Device Main ID Index	DEV MAIN ID	/	16	Tape Feeder : Feederbase ID Stick Feeder : Stick ID Tray Feeder : Tray ID Head : Gantry ID Nozzle : ANC ID
2	DEVICE_SUB_ID	Device Sub ID Index	DEV SUB ID	/	16	Tape Feeder: Slot ID Stick Feeder: Slot ID Tray Feeder: Pallet ID Head: Head ID (=Spindle ID) Nozzle: Hole ID (=Nozzle ID)
3	DEVICE_NAME	Device Name	DEV NAME	/	32	Only Nozzle, Nozzle Name
4	PART_NAME	Part Name	PART_NM	/	64	Only Feeder Data, Slot's Part Name
4	PICKUP	Accumulate Total Pickup Count	PICK	/	12	Device의 누적 Pickup 수

5	PLACE	Accumulate Total Place Count	PLACE	/	12	Device의 누적 장착(Place) 수
6	PICK_ERROR	Accumulate Total Pickup Error	PICK_ERR	/	12	Device의 누적 Pickup Error 수
7	VISION_ERROR	Accumulate Total Vision Error	VIS_ERR	/	12	Device의 누적 인식(Vision) Error 수
8	DUMP_COUNT	Accumulate Total Dump Count	DUMP	/	12	누적Dump = Pickup – Place - Total Error(Pick Error+Vision Error) 수
9	Reserved#1	확장 Field 1	RESV_1	/	128	예비 확장 필드 값 1
10	Reserved#2	확장 Field 2	RESV_2	/	128	예비 확장 필드 값 2

Item		Explanation	Abbreviation	Separator	SIZE (ASCII)	Remarks
1	Array Barcode	Array Barcode data	ARRY_CODE_DATA	/	128	Array Barcode data if possible

3.8 [Data] Job Program Data 메시지

마운터에서 Job Program을 Download(장비에 적용)시점에 Job정보를 File 형식으로 MES에 전송한다.

LSMTBOM : SMT Job Program(BOM) Data 메시지

ex) 0x02LSMTBOM/1/EQ-001/AM01/JobProgram/2019052150112/2243/[BOMData] Array,RefName,PartName,X,Y,R.../0x03/////0x03

항 목	†	설명	약어	구분자	SIZE (ASCII)	비고
1	MESSAGE_TYPE	메시지 타입	MSG TYPE	/	10	메시지 구분 (LSMTBOM)
2	MESSAGE_LANE	메시지 발생 Lane	MSG LANE	/	5	Lane의 정보 (Front 1, Rear 2), 구분이 없으면 기본 값 1
3	EQUIPMENT_ID	설비 이름	EQ ID	/	30	설정 정보 (설비에서 초기 설정)
4	LINE_ID	라인	LINE	/	10	설정 정보 (EX,, AM01, AM02) (설비에서 초기 설정)
5	PROGRAM_NAME	Job 프로그램 이름	RECIPE	/	50	Job 프로그램 이름
6	TRAN_TIME	메시지 발생 시간	TRAN TIME	/	14	yyyymmddHHmmss
7	BOM _FILE_LEN	BOM 파일 길이	FILE_LEN	/	10	File Byte Size

8 FILE_STREAM BOM File Data FILE_STR / *FILE_LEN File의 Binary Data 전송

[BOMData]

Array,RefName,PartName,X,Y,R

1,R13,A431_TN,50.0,32.5,0

1,C10,B223_HTT,52.0,41.5,90

:

2,C32,CA05-1000A,93.5,77.1,180

1. Array : Array Board 의 Number

2. RefName: 장착점 이름

3. PartName: 부품 이름

4. X, Y: 장착 위치 (mm)

5. R: 장착 각도 (Degree:0, 90, 180, 270)

3.9 [Data] Lot Tracking Data 메시지

마운터에서 PCB 완료 후 생성된 Lot Tracking Data를 File 형식으로 MES에 전송한다.

LSMTLTS: Lot Tracking Data 메시지

ex) 0x02LSMTLTS/1/EQ-001/AM01/JobProgram/2019052150112/2243/[LTSFileData]

.../0x03/////0x03

항 목	ļ	설명	약어	구분자	SIZE (ASCII)	비고
1	MESSAGE_TYPE	메시지 타입	MSG TYPE	/	10	메시지 구분 (LSMTLTS)
2	MESSAGE_LANE	메시지 발생 Lane	MSG LANE	/	5	Lane의 정보 (Front 1, Rear 2), 구분이 없으면 기본 값 1
3	EQUIPMENT_ID	설비 이름	EQ ID	/	30	설정 정보 (설비에서 초기 설정)
4	LINE_ID	라인	LINE	/	10	설정 정보 (EX,, AM01, AM02) (설비에서 초기 설정)
5	PROGRAM_NAME	Job 프로그램 이름	RECIPE	/	50	Job 프로그램 이름
6	TRAN_TIME	메시지 발생 시간	TRAN TIME	/	14	yyyymmddHHmmss
7	LTS_FILE_LEN	LTS 파일 길이	FILE_LEN	/	10	File Byte Size
8	FILE_STREAM	LTS File Data	FILE_STR	/	*FILE_LEN	File의 Binary Data 전송

3.10 [Event] PCB Out 보고 메시지

마운터에서 PCB가 한 장 생산이 완료되어 배출될 때마다 정보를 즉시 MES로 보낸다.
PCB 생산 실적 세부 정보는 Database I/F를 통해 MES에서 취득할 수 있다. (4.1.1절 참조)

LSMTPO: PCB OUT 보고 메시지

ex) 0x02LSMTPO/1/EQ-001/AM01/RecipeVision/20180223120001/T123ABC01/////0x03

항 목	ł	설명	약어	구분자	SIZE (ASCII)	비고
1	MESSAGE_TYPE	메시지 타입	MSG TYPE	/	10	메시지 구분 (LSMTPO)
2	MESSAGE_LANE	메시지 발생 Lane	MSG LANE	/	5	Lane의 정보 (Front 1, Rear 2), 구분이 없으면 기본 값 0
3	EQUIPMENT_ID	설비 이름	EQ ID	/	30	설정 정보 (설비에서 초기 설정)
4	LINE_ID	라인	LINE	/	10	설정 정보 (EX,, AM01, AM02) (설비에서 초기 설 정)
5	PROGRAM_NAME	Job 프로그램 이름	RECIPE	/	50	Job 프로그램 이름
6	TRAN_TIME	메시지 발생 시간	TRAN TIME	/	14	yyyymmddHHmmss
7	BARCODE_ID	LOT 정보	LOT ID	/	256	바코드 스캔 정보
8	USER_DEFINE_FIELD #1	사용자 정의 필드 #1	UDF #1	/	1000	Default Value : empty string
9	USER_DEFINE_FIELD #2	사용자 정의 필드 #2	UDF #2	/	1000	Default Value : empty string
10	USER_DEFINE_FIELD #3	사용자 정의 필드 #3	UDF #3	/	1000	Default Value : empty string
11	USER_DEFINE_FIELD #4	사용자 정의 필드 #4	UDF #4	/	1000	Default Value : empty string
12	USER_DEFINE_FIELD #5	사용자 정의 필드 #5	UDF #5	/	1000	Default Value : empty string

Table 25 Event PCB Out(배출) Data 설명표

3.11 [Event] 슬롯 상태 정보 메시지

마운터의 슬로별 피더의 탈부착 이벤트가 발생할 경우 즉시 이를 MES로 보낸다.

LSMTSLTSTS: 슬롯 상태 정보 보고 메시지

ex) 0x02LSMTSLTSTS/1/EQ-

001/AM01/RecipeVision/20180223115801/T123ABC01/F/TA/12/FEEDER-1A/R1/P////0x03

항 목	ł	설명	약어	구분자	SIZE (ASCII)	비고
1	MESSAGE_TYPE	메시지 타입	MSG TYPE	/	10	메시지 구분 (LSMTSLTSTS)
2	MESSAGE_LANE	메시지 발생 Lane	MSG LANE	/	5	Lane의 정보 (Front 1, Rear 2), 구분이 없으면 기본 값 0
3	EQUIPMENT_ID	설비 이름	EQ CODE	/	30	설정 정보 (설비에서 초기 설정)
4	LINE_ID	라인	LINE	/	10	설정 정보 (EX,, AM01, AM02)
5	PROGRAM_NAME	Job 프로그램 이름	RECIPE	/	50	Job 프로그램 이름
9	TRAN_TIME	메시지 발생 시간	TRAN TIME	/	14	yyyymmddHHmmss
6	BARCODE_ID	LOT 정보	LOT ID	/	256	바코드 스캔 정보
7	STATION_NO	Station 정보	STATION NO	/	2	FRONT : 1F, REAR : 1R (Station이 4EA인경우, 1F, 2F, 1R, 2R)
8	SLOT_TYPE	Slot 구분	SLOT TYPE	/	2	TAPE : TA ,TRAY : TR, STICK : ST
9	SLOT_NO	Slot 번호	SLOT NO.	/	3	
10	FEEDER_ID	Feeder 정보	FEEDER ID	/	50	
11	PART_NAME	자재 품목 번호	PART NAME	/	50	
12	STATUS	Slot 상태 정보	STS	/	2	ex) PLUGED(IN) : P, UNPLUGED(OUT) : U, ERROR : E
13	USER_DEFINE_FIELD #1	사용자 정의 필드 #1	UDF #1	/	1000	Default Value : empty string
14	USER_DEFINE_FIELD #2	사용자 정의 필드 #2	UDF #2	/	1000	Default Value : empty string
15	USER_DEFINE_FIELD #3	사용자 정의 필드 #3	UDF #3	/	1000	Default Value : empty string
16	USER_DEFINE_FIELD #4	사용자 정의 필드 #4	UDF #4	/	1000	Default Value : empty string
17	USER_DEFINE_FIELD #5	사용자 정의 필드 #5	UDF #5	/	1000	Default Value : empty string

Table 26 Event 슬롯 상태 정보 Data 설명표

3.12 [Event] 설비 알람(상태정보) 보고 메시지

마운터의 장비 상태의 변동 또는 알람 발생할 경우 장비 상태 정보를 즉시 MES로 보낸다.

LSMTAL: 설비 알람(상태정보) 보고 메시지

ex) 0x02LSMTAL/1/EQ-

001/AM01/RecipeVision/T123ABC01/20180223115001/Run/ALARM01/Equipment Hanwha Precision Machinery Run/////0x03

항 목	ţ	설명	약어	구분자	SIZE (ASCII)	비고
1	MESSAGE_TYPE	메시지 타입	MSG TYPE	/	10	메시지 구분 (LSMTAL)
2	MESSAGE_LANE	메시지 발생 Lane	MSG LANE	/	5	Lane의 정보 (Front 1, Rear 2), 구분이 없으면 기본 값 0
3	EQUIPMENT_ID	설비 이름	EQ CODE	/	30	설정 정보 (설비에서 초기 설정)
4	LINE_ID	라인	LINE	/	10	설정 정보 (EX,, AM01, AM02) (설비에서 초기 설정)
5	PROGRAM_NAME	Job 프로그램 이름	RECIPE	/	50	Job 프로그램 이름
6	TRAN_TIME	데이터 발생 시간	TRAN TIME	/	14	형식 : yyyymmddHHmmss
7	STATION_NO	Station 정보	STATION NO	/	2	FRONT : 1F, REAR : 1R (Station이 4EA인경우, 1F, 2F, 1R, 2R)
8	STATUS	설비상태정보	STS	/	10	RUN/IDLE/DOWN/ERROR
9	ALARM_ID	알람 ID	ALARM CODE	/	10	알람(상태정보) 코드
10	ALARM_MESSAGE	알람 메시지	ALARM MSG	/	50	
11	User Define Filed #1	사용자 정의 필드 #1	UDF #1	/	1000	Default Value : empty string
12	User Define Filed #2	사용자 정의 필드 #2	UDF #2	/	1000	Default Value : empty string
13	User Define Filed #3	사용자 정의 필드 #3	UDF #3	/	1000	Default Value : empty string
14	User Define Filed #4	사용자 정의 필드 #4	UDF #4	/	1000	Default Value : empty string
15	User Define Filed #5	사용자 정의 필드 #5	UDF #5	/	1000	Default Value : empty string

Table 27. Event 설비 알람 Data 설명표

3.13 [Event] Job Download 보고 메시지

마운터에서 Job Program을 Download 할 때 마다 정보를 즉시 MES로 보낸다.
Job Program 세부 정보는 Database I/F를 통해 MES에서 취득할 수 있다. (4.1.2절 참조)

LSMTJD : Job program Download 보고 메시지

ex) 0x02LSMTJD/1/EQ-001/AM01/RecipeVision/20180223120001/////0x03

항 목	ļ	설명	약어	구분자	SIZE (ASCII)	비고
1	MESSAGE_TYPE	메시지 타입	MSG TYPE	/	10	메시지 구분 (LSMTJD)
2	MESSAGE_LANE	메시지 발생 Lane	MSG LANE	/	5	Lane의 정보 (Front 1, Rear 2), 구분이 없으면 기본 값 0
3	EQUIPMENT_ID	설비 이름	EQ ID	/	30	설정 정보 (설비에서 초기 설정)
4	LINE_ID	라인	LINE	/	10	설정 정보 (EX,, AM01, AM02) (설비에서 초기 설정)
5	PROGRAM_NAME	Job 프로그램 이름	RECIPE	/	50	Job 프로그램 이름
6	TRAN_TIME	메시지 발생 시간	TRAN TIME	/	14	yyyymmddHHmmss
7	USER_DEFINE_FIELD #1	사용자 정의 필드 #1	UDF #1	/	1000	Default Value : empty string
8	USER_DEFINE_FIELD #2	사용자 정의 필드 #2	UDF #2	/	1000	Default Value : empty string
9	USER_DEFINE_FIELD #3	사용자 정의 필드 #3	UDF #3	/	1000	Default Value : empty string
10	USER_DEFINE_FIELD #4	사용자 정의 필드 #4	UDF #4	/	1000	Default Value : empty string
11	USER_DEFINE_FIELD #5	사용자 정의 필드 #5	UDF #5	/	1000	Default Value : empty string

Table 28 Event Job Download Data 실명표

3.14 [Event] Reel Data 메시지

장비에서 Feeder 투입 시 Reel Barcode 체크(오삽 체크)를 수행 시 MES로 전송함

- 이벤트 형식으로 MES에 Data 전달함

LSMTREEL: 장비 리더기로 Reel 인식 시 데이터 전송 메시지

ex) 0x02LSMTREEL/1/EQ-001/AM01/JobProgram/2019052150112/PART_001AB/

2TP201905130001/1F-11/////0x03

항 목	•	설명	약어	구분자	SIZE (ASCII)	비고
1	MESSAGE_TYPE	메시지 타입	MSG TYPE	/	10	메시지 구분 (LSMTREEL)
2	MESSAGE_LANE	메시지 발생 Lane	MSG LANE	/	5	Lane의 정보 (Front 1, Rear 2), 구분이 없으면 기본 값 0
3	EQUIPMENT_ID	설비 이름	EQ CODE	/	30	설정 정보 (설비에서 초기 설정)
4	LINE_ID	라인	LINE	/	10	설정 정보(EX,, AM01, AM02)
5	PROGRAM_NAME	Job 프로그램 이름	RECIPE	/	50	Job 프로그램 이름
6	TRAN_TIME	메시지 발생 시간	TRAN TIME	/	14	YYYYMMDDHHmmss
7	PART_NAME	Part 이름	PART NAME	/	10	Part Name (자재 품명)
8	REEL_BARCODE	Reel Barcode Scan	REEL ID	/	64	Reel Barcode ID
9	FEEDER_SLOT	투입 Feeder Slot 정보	FEED_SLOT	/	10	투입된 Feeder 위치 (ex: 1F-10)
10	USER_DEFINE_FILED #1	사용자 정의 필드#1	UDF #1	/	1000	Default Value : empty string
11	USER_DEFINE_FILED #2	사용자 정의 필드#2	UDF #2	/	1000	Default Value : empty string
12	USER_DEFINE_FILED #3	사용자 정의 필드#3	UDF #3	/	1000	Default Value : empty string
13	USER_DEFINE_FILED #4	사용자 정의 필드#4	UDF #4	/	1000	Default Value : empty string
14	USER_DEFINE_FILED #5	사용자 정의 필드#5	UDF #5	/	1000	Default Value : empty string

Table 29. Event Job Download Data 설명표

3.15 [Interlock] 공정 투입 체크 요청 메시지

PCB 생산 전에 PCB의 Barcode를 읽고 공정 투입, 생산 여부를 MES에 요청한다.

LS1: 이전 공정 체크 요청 메시지

ex) 0x02LS1/1/EQ-

001/AM01/RecipeVision/20180223114602/T123ABC01/////0x03

항 목	•	설명	약어	구분자	SIZE (ASCII)	비고
1	MESSAGE_TYPE	메시지 타입	MSG TYPE	/	10	메시지 구분 (LS1)
2	MESSAGE_LANE	메시지 발생 Lane	MSG LANE	/	5	Lane의 정보 (Front 1, Rear 2), 구분이 없으면 기본 값 0
3	EQUIPMENT_ID	설비 이름	EQ CODE	/	30	설정 정보 (설비에서 초기 설정)
4	LINE_ID	라인	LINE	/	10	설정 정보 (EX,, AM01, AM02) (설비에서 초기 설정)
5	PROGRAM_NAME	Job 프로그램 이름	RECIPE	/	50	Job 프로그램 이름
6	TRAN_TIME	메시지 발생 시간	TRAN TIME	/	14	yyyymmddHHmmss
7	BARCODE_ID	스캔한 바코드 정보	Barcode ID	/	256	제품 시리얼, 바코드 스캔 정보
8	USER_DEFINE_FIELD #1	사용자 정의 필드 #1	UDF #1	/	1000	Default Value : empty string
9	USER_DEFINE_FIELD #2	사용자 정의 필드 #2	UDF #2	/	1000	Default Value : empty string
10	USER_DEFINE_FIELD #3	사용자 정의 필드 #3	UDF #3	/	1000	Default Value : empty string
11	USER_DEFINE_FIELD #4	사용자 정의 필드 #4	UDF #4	/	1000	Default Value : empty string
12	USER_DEFINE_FIELD #5	사용자 정의 필드 #5	UDF #5	/	1000	Default Value : empty string

Table 30. Interlocking 공정 이전 체크 Data 설명표

3.16 [Interlock] 공정 투입 체크 응답 메시지

공정 투입 요청의 결과를 MES로부터 받는다.

LS2: 이전 공정 체크 MES 응답 메시지

ex) 0x02LS2/2/EQ-

001/AM01/RecipeVision/20180223115001/T123ABC01/0/CMN-0000: This service is successful/////0x03

항 목	ł	설명	약어	구분자	SIZE (ASCII)	비고
1	MESSAGE_TYPE	메시지 타입	MSG TYPE	/	10	메시지 구분 (LS2)
2	MESSAGE_LANE	메시지 발생 Lane	MSG LANE	/	5	Lane의 정보 (Front 1, Rear 2), 구분이 없으면 기본 값 0
3	equipment_id	설비 이름	EQ CODE	/	30	설정 정보 (설비에서 초기 설정)
4	LINE_ID	라인	LINE	/	10	설정 정보 (EX,, AM01, AM02) (설비에서 초기 설 정)
5	PROGRAM_NAME	Job 프로그램 이름	RECIPE	/	50	Job 프로그램 이름
6	TRAN_TIME	메시지 발생 시간	TRAN TIME	/	14	yyyymmddHHmmss
7	BARCODE_ID	체크한 바코드 정보	BARCODE ID	/	256	바코드 스캔 정보
8	MES_STATUS_VALUE	MES 결과	MES RESULT	/	5	OK : S, NG : F
9	MES_MESSAGE	MES 메시지	MES MSG	/	100	결과에 대한 부가적인 Message
10	USER_DEFINE_FIELD #1	사용자 정의 필드 #1	UDF #1	/	1000	Default Value : empty string
11	USER_DEFINE_FIELD #2	사용자 정의 필드 #2	UDF #2	/	1000	Default Value : empty string
12	USER_DEFINE_FIELD #3	사용자 정의 필드 #3	UDF #3	/	1000	Default Value : empty string
13	USER_DEFINE_FIELD #4	사용자 정의 필드 #4	UDF #4	/	1000	Default Value : empty string
14	USER_DEFINE_FIELD #5	사용자 정의 필드 #5	UDF #5	/	1000	Default Value : empty string

Table 31. Interlocking 공정 체크 응답 Data 설명표

3.17 [Interlock] BOM 비교 요청 메시지

장비의 시작 시 MES에 허용된 생산 가능한 Job 여부 인지를 비교 요청한다.

LS3: MES 로의 BOM 비교 요청 메시지

ex) 0x02LS3/1/EQ-001/AM01/JobProgram/2019052150112/////0x03

항 목	ļ	설명	약어	구분자	SIZE (ASCII)	비고
1	MESSAGE_TYPE	메시지 타입	MSG TYPE	/	10	메시지 구분 (LS3)
2	MESSAGE_LANE	메시지 발생 Lane	MSG LANE	/	5	Lane의 정보 (Front 1, Rear 2), 구분이 없으면 기본 값 0
3	equipment_id	설비 이름	EQ CODE	/	30	설정 정보 (설비에서 초기 설정)
4	LINE_ID	라인	LINE	/	10	설정 정보(EX,, AM01, AM02)
5	PROGRAM_NAME	Job 프로그램 이름	RECIPE	/	50	Job 프로그램 이름
6	TRAN_TIME	메시지 발생 시간	TRAN TIME	/	14	YYYYMMDDHHmmss
7	USER_DEFINE_FILED #1	사용자 정의 필드#1	UDF #1	/	1000	Default Value : empty string
8	USER_DEFINE_FILED #2	사용자 정의 필드#2	UDF #2	/	1000	Default Value : empty string
9	USER_DEFINE_FILED #3	사용자 정의 필드#3	UDF #3	/	1000	Default Value : empty string
10	USER_DEFINE_FILED #4	사용자 정의 필드#4	UDF #4	/	1000	Default Value : empty string
11	USER_DEFINE_FILED #5	사용자 정의 필드#5	UDF #5	/	1000	Default Value : empty string

Table 32. Interlocking BOM 비교 요청 Data 설명표

3.18 [Interlock] BOM 비교 응답 메시지

MES에서 장비의 생산 시작 여부를 판단하여 장비로 응답함 (10초 Timeout으로 응답이 없으면 NG로 판단)

LS4: MES 로 부터 BOM 비교 응답 메시지

ex) 0x02LS4/1/EQ-001/AM01/JobProgram/2019052150112/JOB190521_150112_1/OK

/BOM Check Done/////0x03

항 목	 	설명	약어	구분자	SIZE (ASCII)	비고
1	MESSAGE_TYPE	메시지 타입	MSG TYPE	/	10	메시지 구분 (LS4)
2	MESSAGE_LANE	메시지 발생 Lane	MSG LANE	/	5	Lane의 정보 (Front 1, Rear 2), 구분이 없으면 기본 값 0
3	equipment_id	설비 이름	EQ CODE	/	30	설정 정보 (설비에서 초기 설정)
4	LINE_ID	라인	LINE	/	10	설정 정보(EX,, AM01, AM02)
5	PROGRAM_NAME	Job 프로그램 이름	RECIPE	/	50	Job 프로그램 이름
6	TRAN_TIME	메시지 발생 시간	TRAN TIME	/	14	YYYYMMDDHHmmss
7	JOB_ORDER	작업 지시 번호	JOB ORD	/	256	작업 지시 번호
8	RESULT	생산 가능 여부	RESULT	/	5	OK/NG (생산 가능 여부)
9	MESSAGE	MES 응답 메세지	MESSAGE	/	256	생산 가능 점검 결과 관련 응답 메세지
10	USER_DEFINE_FILED #1	사용자 정의 필드#1	UDF #1	/	1000	Default Value : empty string
11	USER_DEFINE_FILED #2	사용자 정의 필드#2	UDF #2	/	1000	Default Value : empty string
12	USER_DEFINE_FILED #3	사용자 정의 필드#3	UDF #3	/	1000	Default Value : empty string
13	USER_DEFINE_FILED #4	사용자 정의 필드#4	UDF #4	/	1000	Default Value : empty string
14	USER_DEFINE_FILED #5	사용자 정의 필드#5	UDF #5	/	1000	Default Value : empty string

Table 33. Interlocking BOM 비교 응답 Data 설명표

3.19 [Interlock] MES Instruction 메시지

MES에서 장비의 상태를 점검하여 응답이 필요한 경우 결과와 메세지를 장비로 응답함

LSINST: MES 로부터 받은 Instruction 메시지

ex)

Instruction Type 1: Reel Check Result Command

0x02 LSINST/1/EQ-

001/AM01/JobProgram/2019052150112/JobOrder/1/1/1/NoProblem/2500///MID332///////0x03

Instruction Type 2: Machine Control

0x02 LSINST/1/EQ-001/AM01/JobProgram/2019052150112/JobOrder/2/0/0/-/1~4///
//////0x03

Instruction Type 3: Machine Status Check

0x02 LSINST/1/EQ-001/AM01/JobProgram/2019052150112/JobOrder/3/0/0/-/1~2///
//////0x03

항 목	ļ	설명	약어	구분자	SIZE (ASCII)	비고
1	MESSAGE_TYPE	메시지 타입	MSG TYPE	/	10	메시지 구분 (LSINST)
2	MESSAGE_LANE	메시지 발생 Lane	MSG LANE	/	5	Lane의 정보 (Front 1, Rear 2), 구분이 없으면 기본 값 0
3	equipment_id	설비 이름	EQ CODE	/	30	설정 정보 (설비에서 초기 설정)
4	LINE_ID	라인	LINE	/	10	설정 정보(EX,, AM01, AM02)
5	PROGRAM_NAME	Job 프로그램 이름	RECIPE	/	50	Job 프로그램 이름
6	TRAN_TIME	메시지 발생 시간	TRAN TIME	/	14	YYYYMMDDHHmmss
7	JOB_ORDER	작업 지시 번호	JOB ORD	/	256	작업 지시 번호가 있는 경우
8	Instruction Type	MES 명령 종류	INST TYPE	/	5	MES 의 명령 종류를 지정 (Type) Type 1:Reel Barcode Check 결과 명령 Type 2:Machine Control Type 3:Machine Status Check Type 4 추가 가능
9	Instruction Error Code	MES 명령 에러 코드	ERR CODE	/	5	Instruction Type 에 따라 구분된 발생하는 Error, 명령 코드 번호 (없으면 0)

10	RESULT	MES 점검 결과	RESULT	/	5	MES 의 체크 결과가 있는 경우 (없으면 0) Type1. 1:OK, 2:NG, 3:N/A, (추가 가능) Type2. (Empty)
11	MESSAGE	MES 응답 메세지	MESSAGE	/	256	MES 의 명령/점검 결과 관련 장비에 표시할 메시지
12	Number Value 1	Instruct 전달 데이터	NUMV1	/	32	Instruction Information Value1 Type1 : Reel Quantity Type2: 1:Start, 2:Stop, 3:JobStop,4:JobStart Type3: 1:Front, 2:Rear
13	Number Value 2	Instruct 전달 데이터	NUMV2	/	32	Instruction Information Value2 Type1 : (Empty), Type2: (Empty)
14	Number Value 3	Instruct 전달 데이터	NUMV3	/	32	Instruction Information Value3 Type1 : (Empty), Type2: (Empty)
15	String Value 1	Instruct 전달 데이터	STRV1	/	256	Instruction Information String1 Type1 : Reel Barcode ID (=Material ID) Type2 : (Empty)
16	String Value 2	Instruct 전달 데이터	STRV2	/	256	Instruction Information String2 Type1 : (Empty) Type2 : (Empty)
17	String Value 3	Instruct 전달 데이터	STRV3	/	256	Instruction Information String3 Type1 : (Empty) Type2 : (Empty)
18	USER_DEFINE_FILED #1	사용자 정의 필드#1	UDF #1	/	1000	Default Value : empty string
19	USER_DEFINE_FILED #2	사용자 정의 필드#2	UDF #2	/	1000	Default Value : empty string
20	USER_DEFINE_FILED #3	사용자 정의 필드#3	UDF #3	/	1000	Default Value : empty string
21	USER_DEFINE_FILED #4	사용자 정의 필드#4	UDF #4	/	1000	Default Value : empty string
22	USER_DEFINE_FILED #5	사용자 정의 필드#5	UDF #5	/	1000	Default Value : empty string

Table 34 Interlocking MES Instruction Data 설명표

3.20 [Event] LCR Checking Data 메시지

마운터에서 LCR 검사 완료 후 결과 Data를 MES에 전송한다.

LSMTLCR: LCR Checking Result Data 메시지

ex) 0x02 LSMTLCR /1/EQ-

001/AM01/JobProgram/2019052150112/R/PARTLCR_001/1/21/1001.5/999.875/Ohm/ Pass/17////0x03

항 목	†	설명	약어	구분자	SIZE (ASCII)	비고
1	MESSAGE_TYPE	메시지 타입	MSG TYPE	/	10	메시지 구분 (LSMTLCR)
2	MESSAGE_LANE	메시지 발생 Lane	MSG LANE	/	5	Lane의 정보 (Front 1, Rear 2), 구분이 없으면 기본 값 0
3	equipment_id	설비 이름	EQ CODE	/	30	설정 정보 (설비에서 초기 설정)
4	LINE_ID	라인	LINE	/	10	설정 정보(EX,, AM01, AM02)
5	PROGRAM_NAME	Job 프로그램 이름	RECIPE	/	50	Job 프로그램 이름
6	TRAN_TIME	메시지 발생 시간	TRAN TIME	/	14	YYYYMMDDHHmmss
7	LCR_TYPE	LCR 검사 종류	LCR TYPE	/	8	L:Inductor, C:Capacitor, R:Resistor
8	PART_NAME	Part Name	PART NAME	1	50	Part Name
9	FEEDER_BASE	Feeder base Number	FEEDBASE	1	10	Feeder base Number (1/2/3/4 = 1F/1R/2F/2R) 1F = 1 Front, 1R = 1 Rear
10	SLOT	Slot Number	SLOT	/	10	Slot Number (1~60)
11	NOMINAL_VALUE	Nominal Value	NOM VAL	/	32	Nominal Value for checking LCR
12	MEASURE_VALUE	Measure Value	MES VAL	/	32	Measured Value for checking LCR
13	LCR UNIT	LCR Unit	LCR_UNIT	/	16	L/C/R Unit : H/F/kOhm
14	RESULT	Check Result	RESULT	/	16	Pass/Fail
15	TOLERANCE	Checking tolerance	TOL	/	16	Percentage(%) ±Nominal value * Tolerance(%)
16	USER_DEFINE_FILED #1	사용자 정의 필드#1	UDF #1	/	1000	Default Value : empty string
17	USER_DEFINE_FILED #2	사용자 정의 필드#2	UDF #2	/	1000	Default Value : empty string
18	USER_DEFINE_FILED #3	사용자 정의 필드#3	UDF #3	/	1000	Default Value : empty string
19	USER_DEFINE_FILED #4	사용자 정의 필드#4	UDF #4	/	1000	Default Value : empty string
20	USER_DEFINE_FILED #5	사용자 정의 필드#5	UDF #5	/	1000	Default Value : empty string

Table 35 LCR Checking Data 설명표

3.21 [Request] Job Program Data 요청 메시지

MES에서 Job Data가 필요한 경우 장비로 요청함. 요청에 대한 응답으로 기존 Job Data Event로 (LSMTBOM) 응답

LSINST/LaneType : MES 로부터 받은 Job Data 요청 Instruction 메시지

- **기본:** 0x02LSINST/**100**/EQUIPMENT_ID/LINE_ID///////////0x03
- Front만 요청: 0x02LSINST/101/EQUIPMENT_ID/LINE_ID///////////////0x03
- Rear만 요청: 0x02LSINST/102/EQUIPMENT_ID/LINE_ID////////////////0x03

항 도	†	설명	약어	구분자	SIZE (ASCII)	비고
1	MESSAGE_TYPE	메시지 타입	MSG TYPE	/	10	메시지 구분 (LSINST)
2	MESSAGE_LANE	메시지 발생 Lane	MSG LANE	/	5	Lane의 정보 (Front 1, Rear 2), 구분이 없으면 기본 값 0
3	equipment_id	설비 이름	EQ CODE	/	30	설정 정보 (설비에서 초기 설정)
4	LINE_ID	라인	LINE	/	10	설정 정보(EX,, AM01, AM02)
5	PROGRAM_NAME	Job 프로그램 이름	RECIPE	/	50	Job 프로그램 이름
6	TRAN_TIME	메시지 발생 시간	TRAN TIME	/	14	YYYYMMDDHHmmss
7	JOB_ORDER	작업 지시 번호	JOB ORD	/	256	작업 지시 번호가 있는 경우
8	Instruction Type	MES 명령 종류	INST TYPE	/	5	MES 의 명령 종류를 지정 1:Reel Barcode Check 결과 명령 2: 기타 추가 가능
9	Instruction Error Code	MES 명령 에러 코드	ERR CODE	/	5	Instruction Type 에 따라 구분된 발생하는 Error, 명령 코드 번호 (없으면 0)
10	RESULT	MES 점검 결과	RESULT	/	5	MES 의 체크 결과가 있는 경우 (없으면 0) 1:OK, 2:NG, 3:N/A, (추가 가능)
11	MESSAGE	MES 응답 메세지	MESSAGE	/	256	MES 의 명령/점검 결과 관련 장비에 표시할 메시지
12	Number Value 1	Instruct 전달 데이터	NUMV1	/	32	Instruction Type 1 : Reel Quantity
13	Number Value 2	Instruct 전달 데이터	NUMV2	/	32	Instruction Type 1 : (Empty)
14	Number Value 3	Instruct 전달 데이터	NUMV3	/	32	Instruction Type 1 : (Empty)
15	String Value 1	Instruct 전달 데이터	STRV1	/	256	Instruction Type 1 : Reel Barcode ID (=Material ID)

16	String Value 2	Instruct 전달 데이터	STRV2	/	256	Instruction Type 1 : (Empty)
17	String Value 3	Instruct 전달 데이터	STRV3	/	256	Instruction Type 1 : (Empty)
18	USER_DEFINE_FILED #1	사용자 정의 필드#1	UDF #1	/	1000	Default Value : empty string
19	USER_DEFINE_FILED #2	사용자 정의 필드#2	UDF #2	/	1000	Default Value : empty string
20	USER_DEFINE_FILED #3	사용자 정의 필드#3	UDF #3	/	1000	Default Value : empty string
21	USER_DEFINE_FILED #4	사용자 정의 필드#4	UDF #4	/	1000	Default Value : empty string
22	USER_DEFINE_FILED #5	사용자 정의 필드#5	UDF #5	/	1000	Default Value : empty string

Table 36 Interlocking MES Instruction Data 설명표

3.22 [Event] PCB In 보고 메시지

마운터로 PCB가 한 장 반입이 될 때마다 정보를 즉시 T-Smart Link Server로 보낸다.

LSMTPI: PCB IN 보고 메시지 (LSMTPI, LSMTWS, LSMTWE 구조는 동일)

ex)0x02LSMTPI/LANE/EQUIPMENT_ID/LINE_ID/PROGRAM_NAME/TRANSFER_TIME/BARCODE_ID/ARRAY_COUNT/#ARRAY_BARCODE1...,#ARRAY_BARCODE,#N/#UDF 1/#UDF2/#UDF3/#UDF4/#UDF5/0x03

항목	항목		구분자	길이	비고
1	MESSAGE_TYPE	MSG TYPE	/	10	메시지 타입
2	LANE	LANE	/	5	0: Unknown / 1: Front / 2: Rear
3	EQUIPMENT_ID	EQ ID	/	30	설비 이름
4	LINE_ID	LINE	/	10	라인 이름
5	PROGRAM_NAME	RECIPE	/	50	Job Program Name
6	TRAN_TIME	TRAN TIME	/	14	발생 시간 yyyymmddHHmmss
7	BARCODE_ID	LOT ID	/	256	바코드 ID
8	ARRAY_COUNT	ARRY CNT	/	4	Array 개수 (0~n)
8+1 n	ARRAY_BARODE # 1 n		/	256	1 n번 Array Barcode.

8+n+1	USER_DEFINE_FIELD # 1	UDF # 1	/	1000	예약 필드 1
8+n+2	USER_DEFINE_FIELD # 2	UDF # 2	/	1000	예약 필드 2
8+n+3	USER_DEFINE_FIELD # 3	UDF # 3	/	1000	예약 필드 3
8+n+4	USER_DEFINE_FIELD # 4	UDF # 4	/	1000	예약 필드 4
8+n+5	USER_DEFINE_FIELD # 5	UDF # 5	/	1000	예약 필드 5

항도	1	약어	구분자	길이	비고
1	Array Barcode	ARRY_CODE_DATA	,	128	

Table 34. PCB In Data 설명표

3.23 [Event] Work Start 보고 메시지

마운터에서 PCB 한 장에 대한 장착 작업을 시작 할 때마다 정보를 즉시 T-Smart Link로 보낸다. PCB 바인과는 별개로 작업 시작 시절

PCB 반입과는 별개로 작업 시작 시점. LSMTWS: WORK START 보고 메시지 (LSMTPI, LSMTWS, LSMTWE 구조는 동일)

ex)0x02LSMTWS/LANE/EQUIPMENT_ID/LINE_ID/PROGRAM_NAME/TRANSFER_TIME/BARCODE_ID/ARRAY_COUNT/#ARRAY_BARCODE1...,#ARRAY_BARCODE,#N/#UDF1/#UDF2/#UDF3/#UDF4/#UDF5/0x03

항목		약어	구분자	길이	비고
1	MESSAGE_TYPE	MSG TYPE	/	10	메시지 타입
2	LANE	LANE	/	5	0: Unknown / 1: Front / 2: Rear
3	EQUIPMENT_ID	EQ ID	/	30	설비 이름
4	LINE_ID	LINE	/	10	라인 이름
5	PROGRAM_NAME	RECIPE	/	50	Job Program Name
6	TRAN_TIME	TRAN TIME	/	14	발생 시간 yyyymmddHHmmss
7	BARCODE_ID	LOT ID	/	256	바코드 ID
8	ARRAY_COUNT	ARRY CNT	/	4	Array 개수 (0~n)

8+1 n	ARRAY_BARODE # 1 n		/	256	1 n번 Array Barcode.
8+n+1	USER_DEFINE_FIELD # 1	UDF # 1	/	1000	예약 필드 1
8+n+2	USER_DEFINE_FIELD # 2	UDF # 2	/	1000	예약 필드 2
8+n+3	USER_DEFINE_FIELD # 3	UDF # 3	/	1000	예약 필드 3
8+n+4	USER_DEFINE_FIELD # 4	UDF # 4	/	1000	예약 필드 4
8+n+5	USER_DEFINE_FIELD # 5	UDF # 5	/	1000	예약 필드 5

항목		약어	구분자	길이	비고
1	Array Barcode	ARRY_CODE_DATA	,	128	

Table 35 Work Start Data 설명표

3.24 [Event] Work End 보고 메시지

마운터에서 PCB 한 장에 대한 장착 작업이 종료 될 때마다 정보를 즉시 MES로 보낸다. PCB 반출과는 별개로 작업 종료 시점.

LSMTWE: WORK END 보고 메시지 (LSMTPI, LSMTWS, LSMTWE 구조는 동일)

ex)0x02LSMTWE/LANE/EQUIPMENT_ID/LINE_ID/PROGRAM_NAME/TRANSFER_TIME/BARCODE_ID/ARRAY_COUNT/#ARRAY_BARCODE1...,#ARRAY_BARCODE,#N/#UDF1/#UDF2/#UDF3/#UDF4/#UDF5/0x03

항목		약어	구분자	길이	비고
1	MESSAGE_TYPE	MSG TYPE	/	10	메시지 타입
2	LANE	LANE	/	5	0: Unknown / 1: Front / 2: Rear
3	EQUIPMENT_ID	EQ ID	/	30	설비 이름
4	LINE_ID	LINE	/	10	라인 이름
5	PROGRAM_NAME	RECIPE	/	50	Job Program Name
6	TRAN_TIME	TRAN TIME	/	14	발생 시간 yyyymmddHHmmss
7	BARCODE_ID	LOT ID	/	256	바코드 ID

8	ARRAY_COUNT	ARRY CNT	/	4	Array 개수 (0~n)
8+1 n	ARRAY_BARODE # 1 n		/	256	1 n번 Array Barcode.
8+n+1	USER_DEFINE_FIELD # 1	UDF # 1	/	1000	예약 필드 1
8+n+2	USER_DEFINE_FIELD # 2	UDF # 2	/	1000	예약 필드 2
8+n+3	USER_DEFINE_FIELD # 3	UDF # 3	/	1000	예약 필드 3
8+n+4	USER_DEFINE_FIELD # 4	UDF # 4	/	1000	예약 필드 4
8+n+5	USER_DEFINE_FIELD # 5	UDF # 5	/	1000	예약 필드 5

항	목	약어	구분자	길이	비고
1	Array Barcode	ARRY_CODE_DATA	,	128	

Table 36. Work End Data 설명표

3.25 [Data] Feeder Production Data

마운터에서 PCB 1장 생산을 완료 후 각 Feeder에 대한 생산 정보를 MES로 보낸다. Production Data는 PCB에 대한 내용이고 해당 데이터는 각 Feeder에 대한 정보

ex) LSMTFPD : SMT Feeder Production Data 메시지

0x02LSMTFPD/LANE/EQUIPMENT_ID/LINE_ID/PROGRAM_NAME/TRANSFER_TIME/ FEEDER_COUNT/#feeder name,feederbase,.../#FEEDER_DATA/#N/0x03

항목		약어	구분자	길이	비고
1	MESSAGE_TYPE	MSG TYPE	/	10	메시지 타입
2	LANE	LANE	/	5	0: Unknown / 1: Front / 2: Rear
3	EQUIPMENT_ID	EQ ID	/	30	설비 이름
4	LINE_ID	LINE	/	10	라인 이름
5	PROGRAM_NAME	RECIPE	/	50	Job Program Name
6	TRAN_TIME	TRAN TIME	/	14	발생 시간 yyyymmddHHmmss
7	BARCODE_ID	LOT ID	/	256	바코드 ID

8	FEEDER_COUNT	FDR CNT	/	4	Feeder 개수 (0~n)
8+1 n	FEEDER_DATA # 1 n		/	-	1 n번 Feeder Data

<Feeder Data > - [FEEDER_DATA]

항목		약어	구분자	길이	비고
1	FEEDER_NAME	FEEDER_NAME	,	50	Feeder의 이름(ex. HM8M, VE8M)
2	FEEDERBASE_ID	FEEDER_BASE	1		1 베이스
3	SLOT_NO	SLOT_NO	,		1 베이스
4	FEEDER_ID	FEEDER_ID	ı	50	Feeder의 고유한 ID(Barcode 등의 식별가능한 ID)
5	REEL_BARCODE	REEL_BAR	ı	64	Feeder에 장착된 Reel의 Barcode ID
6	PART_NAME	PART_NM	,	64	Feeder에 장착된 Part Name
7	REMAIN_COUNT	REMAIN	,	12	Feeder에 장착된 자재의 잔량 수

Table 37 Feeder Production Data 설명표

3.26 [Data] Tray Feeder Production Data

마운터에서 PCB 1장 생산을 완료 후 각 Tray Feeder에 대한 생산 정보를 MES로 보낸다. Feeder Production Data는 Tape Feeder에 대한 내용이고 해당 데이터는 Tray Feeder에 대한 정보

ex) LSMTTRFPD : SMT Tray Feeder Production Data 메시지 (LSMTFPD와 구조는 동일)

0x02LSMTTFPD/LANE/EQUIPMENT_ID/LINE_ID/PROGRAM_NAME/TRANSFER_TIME/ FEEDER_COUNT/#feeder name,feederbase,.../#FEEDER_DATA/#N/0x03

항목		약어	구분자	길이	비고
1	MESSAGE_TYPE	MSG TYPE	/	10	메시지 타입
2	LANE	LANE	/	5	0: Unknown / 1: Front / 2: Rear
3	EQUIPMENT_ID	EQ ID	/	30	설비 이름
4	LINE_ID	LINE	/	10	라인 이름
5	PROGRAM_NAME	RECIPE	/	50	Job Program Name

6	TRAN_TIME	TRAN TIME	/	14	발생 시간 yyyymmddHHmmss
7	BARCODE_ID	LOT ID	/	256	바코드 ID
8	FEEDER_COUNT	FDR CNT	/	4	Feeder 개수 (0~n)
8+1 n	FEEDER_DATA # 1 n		/	-	1 n번 Feeder Data

<Feeder Data > - [FEEDER_DATA]

항목		약어	구분자	길이	비고
1	FEEDER_NAME	FEEDER_NAME	1	50	Feeder의 이름(ex. HM8M, VE8M)
2	FEEDERBASE_ID	FEEDER_BASE	,		1 베이스 (Tray Unit)
3	SLOT_NO	SLOT_NO	1		1 베이스 (Tray Pallet 단 수)
4	FEEDER_ID	FEEDER_ID	1	50	Tray Feeder는 Feeder ID 없음 Tray Array No로 대체 (1 베이스)
5	REEL_BARCODE	REEL_BAR	,	64	Tray Pallet Barcode ID
6	PART_NAME	PART_NM	,	64	Feeder에 장착된 Part Name
7	REMAIN_COUNT	REMAIN	1	12	Feeder에 장착된 자재의 잔량 수
8	PICK_LOSS	PICKLOSS	,	12	Pickup Loss Count
9	VISION_LOSS	VIS_LOSS	,	12	Vision(Recognition) Loss Count

Table 38. Tray Feeder Production Data 설명표

4장. Database I/F

Data base에서 View Table을 생성하여 MES에서 접속하여 가져갈 수 있는 Data를 정의한다.

Hanwha Database에 접속할 수 있는 권한 (ID/PW)를 부여하며 View Table 정보를 Polling 하여 MES에서 가져가 사용할 수 있다.

Hanwha의 Database는 MSSQL 을 사용하며 MSSQL 2014 이상의 버전을 사용한다.

4.1 TCP/IP와 연계한 DB Data

3장의 TCP I/P 방식으로 통신을 통해 필요한 기본 이벤트 정보를 수신한다. 또한 생산 실적 정보는 DB의 Data를 연계하여 취득하게 된다. TCP I/P를 통한 통신 방식과 DB Data 연계하여 활용 가능한 데이터 목록을 다음에 설명한다.

4.1.1 슬롯별 생산 수량

슬롯별 생산 실적을 DB에 저장한다. TCP I/P의 PCB Out 보고 메시지 이후 DB의 슬롯별 생산수량 정보를 연동할 수 있다. 그리고 최대 2일까지만 데이터를 저장한다.

데이터 종류	I/F 타입	I/F 방향	데이터 항목	데이터 타입	설명
슬롯별	DB2DB	Hanwha -> MES			설비에 정의된 고유한 설비
생산 수량			EQUIPMENT_ID	STRING	ID, MES 시스템에 동일한
		▶Lot Track Data			ID 가 등록
		▶Gamma Data		STRING	마운트 설비에 적용 된
		▶ Production Data	PROGRAM_NAME	STRING	프로그램(레시피) 이름
					마운트 설비에 투입되어
			BARCODE_ID	STRING	스캔 된 바코드(PCB 로트
					ID)
			TIME	STRING	해당 이벤트 발생 시간
			PRODUCT_CODE	STRING	생산 된 PCB의 품목 코드
			STATION_NO	STRING	마운트 설비 스테이션 번호
			SLOT_TYPE	STRING	피더 타입 (Tape/Stick/Tray)
			SLOT_NO	STRING	마운트 슬롯 No
			FEEDER_ID	STRING	해당 슬롯에 투입된 피더 ID

	PART_NAME	STRING	해당 슬롯에 자재 품목 번호
	DEEL LOT ID	CTDINIC	해당 슬롯(피더)에 맵핑된
	REEL_LOT_ID	STRING	자재 ID
	PICKUP_QTY	INTEGER	자재 픽업 수량
	PLACE_QTY	INTERGER	실장 수량
	PICKUP_LOSS_QTY	INTERGER	픽업 로스 수량
	VISION_LOSS_QTY	INTEGER	비젼 로스 수량

4.1.2 Mounter Job 정보

Mounter의 Job 정보를 DB에 저장한다. TCP I/P의 Job Download 보고 메시지 이후 DB의 Job Data 를 연동할 수 있다. 그리고 최대 2일까지만 데이터를 저장한다.

데이터 종류	I/F 타입	I/F 방향	데이터 항목	데이터 타입	설명
마운터 Job	DB2DB	Hanwha -> MES			설비에 정의된 고유한 설비
정보 (슬롯			EQUIPMENT_ID	STRING	ID, MES 시스템에 동일한
기준 정보)		▶Job Data			ID 가 등록
					설비에 정의된 라인 ID,
			LINE_ID	STRING	MES 시스템에 동일한 ID 가
					등록
					마운트 설비에 적용 된
			PROGRAM_NAME	STRING	프로그램(레시피) 이름, Job
					Program
			TRAN_TIME	STRING	메시지 발생 시간
			STATION_NO	STRING	마운트 설비 스테이션 번호
			SLOT_TYPE	STRING	피더 타입 (Tape/Stick/Tray)
			SLOT_NO	STRING	마운트 슬롯 No
			PART_NAME	STRING	해당 슬롯에 자재 품목 번호

4.2 Only DB to DB 방식

Database에 MES I/F를 위해 필요한 Data들을 저장하고 MES에서 일정 주기로 Hanwha DB에 접속 하여 Data를 취득하는 방식이다. 이를 위해 기준 정보 Table과 실적 Table로 구성된 View Table에 서 Join을 통해 Data를 취득할 수 있다.

- 1. MES 연동 시 제공되는 계정으로 로그인
 - * ID = pnpmesuser

- * PW = pnpmesuser123!@#
- 2. MES 라이선스가 없을 때 계정 권한 삭제
- 3. MES 라이선스가 있을 때 계정 권한 추가 및 데이터 생성
- 4. 데이터는 다음 내용의 View Table 구조로 생성

4.2.1 기준정보 - 라인별 설비

Hanwha Solution에 등록된 라인 구성 및 장비 모델 정보를 다음과 같이 DB에 출력한다.

Table Name: VW_EQUIPMENT_INFO				
Column Name	Data Type	Definition		
LINE_ID	int	라인 ID		
LINE_NAME	nvarchar(100)	라인 이름		
EQMT_ID	int	설비 ID		
EQMT_NAME	nvarchar(100)	설비 이름		
EQMT_ORD	Samllint	라인 내 설비 순서 번호		
EQMT_TYPE	nvarchar(100)	설비 종류 (마운터, 검사기,)		
EQMT_MODL_NAME	nvarchar(100)	설비 모델 이름		
EQMT_SUB_TYPE_CD	nvarchar(10)	설비 서브 타입 (MULTI, STANDARD,)		
IP_ADDR	nvarchar(100)	IP 주소		
STND_CPH	int	이론 CPH		

Table 37 공장 라인 설비 정보 Data 설명표

4.2.2 기준정보 - Shift 정보

Hanwha Solution에 기록된 공장의 Shift(교대조)별 시간 정보를 다음과 같이 DB에 출력한다.

Table Name: VW_SHIFT_INFO			
Column Name	Data Type	Definition	
SHFT_ID	int	Shift ID	
SHFT_NAME	nvarchar(100)	Shift 이름	
SHFT_ORD	smallint	Shift 순서	

STRT_DT	datetime	시작 시간
END_DT	datetime	종료시간

Table 38. 공장 Shift 정보 Data 설명표

4.2.3 기준정보 - 휴식 시간

Hanwha Solution에 기록된 공장의 휴식 시간 정보를 다음과 같이 DB에 출력한다.

Table Name: VW_BRK_TIME_INFO				
Column Name	Data Type	Definition		
LINE_ID	int	라인 ID		
LINE_NAME	nvarchar(100)	라인 이름		
STRT_DT	datetime	휴식 시작 시간		
END_DT	datetime	휴식 종료 시간		

Table 39. 공장 휴식시간 기준 정보 Data 설명표

4.2.4 기준정보 - 모델 정보

Hanwha Solution에 취합된 생산된 모델의 정보를 다음과 같이 DB에 출력한다. 사전에 입력된 모델 정보가 아닌 생산이 진행된 모델에 대해서만 표시된다.

Table Name: VW_MOD	Table Name: VW_MODEL_INFO				
Column Name	Data Type	Definition			
MODL_ID	int	모델 ID			
MODL_NAME	nvarchar(100)	모델 이름			
ARRY_CNT	int	Array 개수			
ARRY_ROW_VALU	int	Y 방향 Array 개수			
ARRY_COL_VALU	int	X 방향 Array 개수			
PLCT_PNT	int	총 장착점 수			
USE_YN	char(1)	사용 여부 (0: 미사용, 1: 사용)			
INPT_DT	datetime	등록 시간			

Table 40. 생산 모델 Data 설명표

4.2.5 Job Program 정보

PCB 생산 Job의 Array 개수, 이름 등 기본 정보를 조회할 수 있다.

Table Name: VW_JOB_PROGRAM_INFO		
Column Name	Data Type	Definition
JOB_PGM_ID	int	프로그램 ID
JOB_PGM_NAME	nvarchar(100)	프로그램 이름
ARRY_CNT	int	Array 개수

Table 41. Job Program Data 설명표

4.2.6 장착 실적

PCB 한 장에 대한 생산한 실적 정보를 DB에 출력한다.

Table Name: VW_PLACE_COUNT		
Column Name	Data Type	Definition
INPT_DT	char(10)	생산일자(ex. 2016-10-15)
LINE_ID	int	라인 ID
LINE_NAME	nvarchar(100)	라인 이름
EQMT_ID	int	설비 ID
EQMT_NAME	nvarchar(100)	설비 이름
SHFT_ID	int	Shift ID
MODL_ID	int	모델 ID
FEEDER_BASE	int	PCB를 작업한 피더 베이스 번호
BOARD_BARCODE	nvarchar(100)	PCB BARCODE
PCB_ORD	nvarchar(50)	PCB ORDER
PLC_CNT	int	장착점 수 (PCB 1장 기준)
END_DT	datetime	작업 시간

Table 42 Chip Mounter 생산 실적 Data 설명표

4.2.7 Cycle Time

Chip Mounter의 PCB 생산 시간 정보를 DB에 출력한다. 5분 주기로 취합, min(cycle time)

Table Name: VW_CYCLE_TIME

Column Name	Data Type	Definition
INPT_DT	datetime	생산일자(ex. 2016-10-15)
LINE_ID	int	라인 ID
LINE_NAME	nvarchar(100)	라인 이름
EQMT_ID	int	설비 ID
EQMT_NAME	nvarchar(100)	설비 이름
SHFT_ID	int	Shift ID
MODL_ID	int	모델 ID
CYCLE_TIME	int	Cycle Time
		단위: millisecond(ms)

Table 43 Chip Mounter Cycle Time Data 설명표

4.2.8 기종변경 시간

Chip Mounter의 Job이 변경된 시간을 DB에 출력한다.

이전 모델과 현재 모델 정보와 함께 기종 변경의 경과된 시간이 표시된다.

Table Name: VW_JOB_CHANGE		
Column Name	Data Type	Definition
INPT_DT	datetime	생산일자(ex. 2016-10-15)
LINE_ID	int	라인 ID
LINE_NAME	nvarchar(100)	라인 이름
SHFT _ID	int	Shift ID
PRE_MODL_ID	int	이전 모델 ID
CURR_MODL_ID	int	현재 모델 ID
START_DT	datetime	시작 시간
END_DT	datetime	종료 시간

Table 44 Chip Mounter 기종변경시간 Data 설명표

4.2.9 AOI 투입 실적

Hanwha Solution과 연동 중인 SPI/AOI(검사기)의 투입 실적을 기록한다. (검사기와 연동 필요함, 1 시간 주기로 취합)

Table Name: VW_AOI_PRDT		
Column Name	Data Type	Definition
DATE_HOUR_DT	datetime	취합일자, 1시간 주기로 취합
LINE_ID	int	라인 ID
LINE_NAME	nvarchar(100)	라인 이름
EQMT_ID	int	설비 ID
EQMT_NAME	nvarchar(100)	설비 이름
JOB_PGM_ID	int	프로그램 ID
JOB_PGM_NAME	nvarchar(100)	프로그램 이름
PCB_CNT	int	생산 수량 (채번)

Table 45 AOI 실적 Data 설명표

4.2.10 불량 실적

Hanwha Solution과 연동 중인 SPI/AOI(검사기)의 불량 실적을 기록한다. (검사기와 연동 필요함, 5 분 주기 취합)

Table Name: VW_DEFECT		
Column Name	Data Type	Definition
DFCT_DT	datetime	불량시간
LINE_ID	int	라인 ID
LINE_NAME	nvarchar(100)	라인 이름
EQMT_ID	int	설비 ID
EQMT_NAME	nvarchar(100)	설비 이름
MODL_ID	int	모델 ID
PCB_ORD	nvarchar(50)	PCB ORDER
ARRAY	int	array 수량
REF_NAME	nvarchar(100)	Reference Name
DFCT_TYPE_ID	int	불량타입ID
DFCT_FORM_ID	int	진/가성
		0: 양품
		1: 가성

			2: 진성
--	--	--	-------

Table 46. AOI/SPI 불량 실적 Data 설명표

4.2.11 불량 타입 정보

Hanwha Solution과 연동 중인 SPI/AOI(검사기)의 불량 타입 코드를 기록한다.

Table Name: VW_DEFE	CT_TYPE	
Column Name	Data Type	Definition
DFCT_TYPE_ID	int	불량타입ID
DFCT_TYPE_NAME	nvarchar(100)	불량타입 이름
DFCT_FORM_CD	int	진/가성
		0: 양품
		1: 가성
		2: 진성

Table 47. 검사기 불량 타입 Data 설명표

4.2.12 설비 정지/알람 이력

장비의 이벤트 발생시 메세지를 기록하며 Run/Idle/Stop 등 상태 정보를 DB에 출력한다. (1시간 주기로 취합)

Table Name: VW_STOP_HIST		
Column Name	Data Type	Definition
INPT_DT	datetime	불량 시간
SHFT_ID	int	Shift ID
LINE_ID	int	라인 ID
LINE_NAME	nvarchar(100)	라인 이름
EQMT_ID	int	설비 ID
EQMT_NAME	nvarchar(100)	설비 이름
MODL_ID	int	모델 ID
STOP_GRUP_ID	nvarchar(50)	정지그룹 ID (여러 알람 이력이 하나의 정지 그 룹에 포함될 수 있음.)
HST_SWQ_NO	int	시퀀스 (동일 시간에 여러 이력이 발생할 수 있 기 때문에 이를 구분하기 위함.)

ERR_ID	int	정지 ID
ERR_MESG	nvarchar(256)	정지 메시지
STRT_DT	datetime	시작 시간
END_DT	datetime	종료 시간

Table 48. 설비 정지/알람 Data 설명표

4.2.13 JOB PROGRAM HISTORY

설비 별 job program 이력 정보를 저장한다. 최대 2일까지만 데이터를 저장한다.

Table Name: VW_JOB_PROGRAM_HIST		ī
Column Name	Data Type	Definition
EQMT_ID	int	설비 ID
EQMT_NAME	nvarchar(100)	설비 이름
HST_DT	datetime	저장 시간
JOB_PGM_NAME	nvarchar(100)	프로그램 이름

Table 49 JOB PROGRAM HISTORY 설명표

4.2.14 JOB PROGRAM CAD

Job program CAD 정보를 저장한다. job program 별로 24시간 이내 데이터 중 가장 최신 데이터 만 저장한다.

Table Name: VW_JOB_PROGRAM_CAD		
Column Name	Data Type	Definition
EQMT_ID	int	설비 ID
EQMT_NAME	nvarchar(100)	설비 이름
JOB_PGM_NAME	nvarchar(100)	프로그램 이름
PART_NAME	nvarchar(100)	자재 이름
REF_NAME	nvarchar(100)	레퍼런스 이름
CAD_X	numeric	X 좌표
CAD_Y	numeric	Y 좌표
CAD_Z	numeric	Z 좌표

CAD_R	numeric	R 좌표

Table 50 JOB PROGRAM CAD 설명표

4.2.15 JOB PROGRAM WORK SHEET

Job program work sheet 정보를 저장한다. job program 별로 24시간 이내 데이터 중 가장 최신 데이터만 저장한다.

Table Name: VW_JOB_PROGRAM_WORK_SHEET		
Column Name	Data Type	Definition
EQMT_ID	int	설비 ID
EQMT_NAME	nvarchar(100)	설비 이름
JOB_PGM_NAME	nvarchar(100)	프로그램 이름
WORK_SHEET	int	Work sheet 번호
ARRY_NO	int	Array 번호
REF_NAME	nvarchar(100)	레퍼런스 이름
PART_NAME	nvarchar(100)	자재 이름
FDR_TYPE	nvarchar(100)	피더 타입
FDR_NAME	nvarchar(100)	피더 이름
FDBS_NO	int	피더 베이스 번호
SLOT_NO	Int	슬롯 번호
HEAD_NO	Int	헤드 번호
ANC_NO	Int	ANC 번호
NOZZLE_NO	Int	노즐 번호
NOZZLE_NAME	nvarchar(100)	노즐 이름

Table 51 JOB PROGRAM WORK SHEET 설명표

4.2.16 PCB BARCODE

PCB 한 장에 대한 생산 설비와 PCB의 고유 코드를 저장한다. Barcode를 사용하지 않는 공장에서 는 PnP 자체적으로 생성하는 PCB_ORD 사용한다.

Table Name: VW_PCB_BARCODE

Column Name	Data Type	Definition
EQMT_ID	int	설비 ID
EQMT_NAME	nvarchar(100)	설비 이름
BOARD_BARCODE	nvarchar(100)	PCB BARCODE
ARRAY_NO	int	ARRAY NO
ARRAY_BARCODE	nvarchar(100)	ARRAY BARCODE
PCB_ORD	nvarchar(50)	장비별 PCB 고유 코드
HST_DT	datetime	저장 시간

Table 52 PCB BARCODE 설명표

4.2.17 PROCESS

PCB 한 장에 대한 생산 시간 정보를 저장 한다.

Table Name: VW_PROCESS_TIME		
Column Name	Data Type	Definition
EQMT_ID	int	설비 ID
EQMT_NAME	nvarchar(100)	설비 이름
BOARD_BARCODE	nvarchar(100)	PCB BARCODE
PCB_ORD	nvarchar(50)	장비별 PCB 고유 코드
PGM_NAME	nvarchar(100)	프로그램 명
HST_DT	datetime	저장 시간
POWER_TIME	bigint	전원 인가 시간
PLACE_TIME	bigint	Place 시간 (Transfer + Build))
WAIT_TIME	bigint	Wait 시간 (반입 대기 + 반출 대기)
RUN_TIME	bigint	Run time (Place + Wait)
STOP_TIME	bigint	Stop 시간
IDLE_TIME	bigint	Idle 시간

Table 53 PROCESS 설명표

4.2.18 HEAD COUNT

PCB 한 장에 대한 Head별 생산 정보를 저장 한다.

Table Name: VW_HEAD_COUNT		
Column Name	Data Type	Definition
EQMT_ID	int	설비 ID
EQMT_NAME	nvarchar(100)	설비 이름
BOARD_BARCODE	nvarchar(100)	PCB BARCODE
PCB_ORD	nvarchar(50)	장비별 PCB 고유 코드
PGM_NAME	nvarchar(100)	프로그램 명
HST_DT	datetime	저장 시간
GANTRY_NO	int	갠트리 번호
HEAD_NO	int	스핀들 번호
PLACE	int	장착 수
PICKUP	int	픽업 수
VISION_ERROR	int	인식 에러 수
PICK_ERROR	int	픽업 에러 수
DUMP_COUNT	int	Dump 수

Table 54 HEAD COUNT 설명표

4.2.19 NOZZLE COUNT

PCB 한 장에 대한 NOZZLE별 생산 정보를 저장 한다.

Table Name: VW_NOZZLE_COUNT		
Column Name	Data Type	Definition
EQMT_ID	int	설비 ID
EQMT_NAME	nvarchar(100)	설비 이름
BOARD_BARCODE	nvarchar(100)	PCB BARCODE
PCB_ORD	nvarchar(50)	장비별 PCB 고유 코드
PGM_NAME	nvarchar(100)	프로그램 명

HST_DT	datetime	저장 시간
ANC_NO	int	ANC 위치 번호
HOLE_NO	int	노즐 홀 번호
PLACE	int	장착 수
PICKUP	int	픽업 수
VISION_ERROR	int	인식 에러 수
PICK_ERROR	int	픽업 에러 수
DUMP_COUNT	int	Dump 수

Table 55 NOZZLE COUNT 설명표

4.2.20 FEEDER COUNT

PCB 한 장에 대한 FEDDER별 생산 정보를 저장 한다.

Table Name: VW_FEEDER_COUNT		
Column Name	Data Type	Definition
EQMT_ID	int	설비 ID
EQMT_NAME	nvarchar(100)	설비 이름
BOARD_BARCODE	nvarchar(100)	PCB BARCODE
PCB_ORD	nvarchar(50)	장비별 PCB 고유 코드
PGM_NAME	nvarchar(100)	프로그램 명
HST_DT	datetime	저장 시간
FEEDER_TYPE	nvarchar(10)	피더 타입 (Tape/Stick/Tray)
FDBS_NO	int	피더베이스 번호
SLOT_NO	int	피더 베이스 내 슬롯 인덱스
PLACE	int	장착 수
PICKUP	int	픽업 수
VISION_ERROR	int	인식 에러 수
PICK_ERROR	int	픽업 에러 수
DUMP_COUNT	int	Dump 수

Table 56 FEEDER COUNT 설명표

