Assignment 4

Madiba Hudson-Quansah

Question 1

$$\begin{array}{c} (p \wedge t) \to (r \vee s) \\ q \to (u \wedge t) \\ u \to p \\ \neg s \\ \vdots \\ r \end{array}$$

Solution:

	Steps	Reasons
1	$(p \wedge t) \rightarrow (r \vee s)$	Premise 1
2	$q \rightarrow (u \wedge t)$	Premise 2
3	$u \rightarrow p$	Premise 3
4	$\neg s$	Premise 4
5	q	Premise 5
6	$u \wedge t$	By Modus Ponens from 2 and 5
7	и	By Simplification from 6
8	p	By Modus Ponens from 3 and 7
9	t	By Simplification from 6
10	$p \wedge t$	By Conjunction from 8 and 9
11	$r \vee s$	By Modus Ponens from 1 and 10
12	r	By Disjunctive Syllogism from 11 and 4

Question 2

"Jane is a student in this class. Jane grew up in a family of entrepreneurs. Everyone who grew up in a family of entrepreneurs can build a thriving business."

Solution:

$$\mathbb{U}_x$$
: All people

 $\therefore \exists x (S(x) \land B(x))$

S(x): x is a student in this class. E(x): x grew up in a family of entrepreneurs. B(x): x can build a thriving business S (Jane) E (Jane) $\forall x (E(x) \rightarrow B(x))$

	Steps	Reasons
1	S (Jane)	Premise 1
2	E (Jane)	Premise 2
3	$\forall x (E(x) \to B(x))$	Premise 3
4	E (Jane) $\rightarrow B$ (Jane)	Universal Instantiation from 3.
5	B (Jane)	By Modus Ponens from 2 and 4.
6	S (Jane) \wedge B (Jane)	By Conjunction from 1 and 5.
7	$\exists x (S(x) \land B(x))$	Existential Generalization from 6.

Question 3

The product of two odd numbers is odd

Proof: Using a direct proof I will show that if x and y are odd, then $x \times y$ is odd. Assume that x and y are odd.

Then
$$\exists k \in \mathbb{Z} \ x = 2k + 1 \text{ and } \exists t \in \mathbb{Z} \ y = 2t + 1$$

For $x \times y$ to be odd

$$x \times y = 2z + 1$$

Where z is an integer

$$x \times y = (2k + 1) \times (2t + 1)$$

$$= 4kt + 2k + 2t + 1$$

$$= 2(2kt + k + t) + 1$$
Let $z = 2kt + k + t$

$$= 2z + 1$$

⊜

Since z is the sum of integers it is an integer. Hence If x and y are odd, then $x \times y$ is odd.

2