Classificação de imagens de Raio-X para detecção de doenças.

Luis Fillipe Nunes Lopes

1. Objetivo

O presente trabalho tem como intuito o desenvolvimento de um modelo para classificação de imagens de Raio-X de pacientes saudáveis e doentes. Tal tarefa foi inspirada e utiliza os dados de https://www.kaggle.com/datasets/pranavraikokte/covid19-image-dataset. Foram utilizados modelos preditivos de classificação e de segmentação.

2. Fonte de dado

Os dados utilizados foram extraídos de diversas fontes de dados de licença pública, são eles:

- [1] Montgomery e ChinaSet Datasets: Contém imagens de máscaras feitas a mão, foi utilizado para treino e validação do modelo de segmentação.
- [2] CoronaHack -Chest X-Ray-Dataset: Imagens de Raio-X que contém a classificação da condição de saúdes dos indivíduos, foi inserida no modelo de segmentação, já treinado, para geração das mascaras que posteriormente treinaram o modelo de classificação.

O Kaggle foi utilizado durante todo o projeto, dessa forma, os diversos dados utilizados, excetuando [2] pois foi encontrado um dataset de terceiros em tal plataforma, foram inseridos num dataset comum.

https://kaggle.com/datasets/fb4823d1ab6f96333377a7c94f90f9fe6f589c78643ed8a463d17d0bd67a193f

3. Metodologia

A metodologia do presente trabalho foi inspirada em https://arxiv.org/abs/2004.05405. Dessa forma, os dataset [1] foram utilizados para treinamento do modelo de segmentação. A fim de aumentar a base de dados foram utilizadas transformações de Rotation e Cropping no ChinaSet, duplicando a quantidade de imagens para treinamento do modelo.

As imagens foram redimensionadas para 640x640, devido a testes terem mostrado uma melhor performance final — na classificação — em imagens de resolução acima de 400x400. O modelo utilizado foi Unet, com backbone Resnet pre-treinado, atingindo 92% de IoU na validação.

Figura 1: a) Imagem original do dataset [2]; b) Utilização do modelo de Segmentação para recorte da região dos pulmões

O objetivo do trabalho foi alcançado pela inserção dos pulmões, já recortados das imagens originais, utilizando um modelo Resnet com um topo de classificação linear.

4. Avaliação do modelo

As principais métricas de avaliação do modelo de classificação, são mostradas a seguir.

- Classificação Binária: Percebe-se que o modelo apresenta uma boa classificação de indivíduos doentes e saudáveis. Com acurácia em 87% e Precisão em 97%.
- Multiclassificação: Existe uma alta taxa de erros na pneumonia de virus prevendo para bactéria.