Spring BOOTCAMP - Elektronica Club

Problem Statement

In this assignment, you will design a digital filter using MATLAB's filterDesigner tool and apply it to filter a mixture of sine waves. Follow the steps outlined below:

Filter Design in MATLAB

1. Open MATLAB and type the following command in the command window: (You should have DSP ToolBox installed) as we have discussed in the session.

filterDesigner

- 2. This opens the Filter Designer window.
- 3. Select the following options:
 - (a) **Type of Filter**: Choose an appropriate type (Band-pass, Low-pass, etc.) as per the requirement.
 - (b) Filter Order: Set to Minimum.
 - (c) **Density Factor**: Set to 20.
 - (d) Frequency Specifications: Set the Sampling Frequency to 48,000 Hz.
- 4. Click on Design Filter.
- 5. Observe the filter response plot.
- 6. Export the filter coefficients by navigating to:

File
$$\rightarrow$$
 Export \rightarrow Export as MATLAB file.

7. This MATLAB file will contain all the filter coefficients.

Signal Generation and Filtering

- 1. Write a MATLAB script to:
 - (a) Generate a mixture of ten sine waves with different frequencies of your choice
 - (b) Compute and plot the **Fast Fourier Transform (FFT)** of the generated signal.
 - (c) Analyze the frequency spectrum.
- 2. Use the exported filter coefficients to filter the generated signal.
- 3. Compute and plot the FFT of the filtered signal.
- 4. Analyze the output and compare it with the original signal.

Submission Requirements

- Submit a report detailing your process, including:
 - Explanation of steps followed.
 - Filter design choices and justification.
 - MATLAB code used for signal generation, filtering, and FFT analysis.
 - Plots of input and output signals in both time and frequency domains.
 - Observations and conclusions.