Vertex Coloring in the LOCAL model

Case Study: Vertex Coloring

vertex coloring:

assign a color to each node of the graph such neighbors have different colors

Case Study: Vertex Coloring

c-coloring:

a coloring of a graph with c (or less) colors

Case Study: Vertex Coloring

Chromatic number χ:

smallest number of colors needed to color a graph

Applications

Medium Access

- Interference-free, efficient utilization of spectrum
- Neighboring cells should have different frequencies!
- Colors = frequencies, channels, etc.

Scheduling

- As many jobs as possible should run in parallel
- Jobs that share a resource should be scheduled at a different time
- Colors = time slots, rounds
- o Example: bipartite matching!

Last time: could not even color this graph in the port numbering model!

LOCAL model

LOCAL model = Port numbering model + unique IDs

LOCAL model

- Every node has a unique identifier
- In a system of n nodes, each identifier consists of log n bits (e.g. IP addresses)

Input: general graph

Output: $(\Delta + 1)$ -coloring

Model of computing: Centralized & Node IDs

- Find node with the largest ID
- Recolor the node with the smallest color in {1, ..., Δ + 1} that does not cause a conflict

- Find node with the largest ID
- Recolor the node with the smallest color in {1, ..., Δ + 1} that does not cause a conflict

How many colors do we get?

How many colors do we get?

Every node has at most Δ neighbors, so at most $\Delta + 1$ colors

Distributed coloring: Reduce

Input: general graph

Output: $(\Delta + 1)$ -coloring

Model of computing: synchronous LOCAL model

Reduce

- Send color to neighbors
- If all neighbors have a smaller color:
 Recolor the node with the smallest color in {1, ..., Δ + 1} that does not cause a conflict

Performance Metrics for Distributed Algorithms

Time Complexity:

Number of communication rounds

Message Complexity:

Number of messages sent

Local Computation:

Complexity of local computations

Quality of solution:

Approximation ratio

Analysis: Reduce

Simpler: Coloring rooted trees

Tree = Acyclic connected graph (with $\chi \leq 2$)

Rooted tree =
Tree where one node is designated
the root; every edge is directed
toward the root

Input: rooted tree

Output: 2-coloring

Model of computing: synchronous LOCAL model

Rooted tree with Root ID 0

- Rooted tree with Root ID 0
- Idea: interpret root bit as color! Iteratively communicate colors to children and take opposite color from parent!

Round 1

Round 1

Slow Tree Coloring

```
If root: color 0, send 0 to children Otherwise: each node v:

Wait for message x from parent Choose color y = 1 - x

Send y to children
```

Analysis: Slow tree coloring

Fast tree coloring

Input: rooted tree

Output: 6-coloring

Model of computing: synchronous LOCAL model

From 2^x to 2x colors

Assume: each node has an ID in $\{1, ..., 2^x\}$

Each node v does (in parallel): send own color c_v to the children receive color c_p of the parent let i be the index of the first bit where c_v and c_p differ let b be the value of the bit of c_v that differs set new color to $c_v = 2i + b$

Analysis: Color reduction from 2^x to 2x

6-Color

Assume: each node has an ID in $\{1,...,n\}$

repeat

apply color reduction "from 2^x to 2x" colors

until $c_v \in \{0, ..., 5\}$ for all nodes

6-Color

Assume: each node has an ID in $\{1,...,n\}$

repeat

apply color reduction "from 2^x to 2x" colors

until $c_v \in \{0, ..., 5\}$ for all nodes

Logarithmic reduction of colors in every round! Time complexity: $O(\log^* n)$

Intuition: n vs. $O(\log^* n)$

 $\log n$: How many times do I have to /2 until < 2?

$$\begin{array}{c}
n, n/2, n/4, n/8, \dots, 8, 4, 2, 1 \\
 & log n
\end{array}$$

Intuition: n vs. $O(\log^* n)$

 $\log n$: How many times do I have to /2 until < 2?

$$\begin{array}{c}
n, n/2, n/4, n/8, \dots, 8, 4, 2, 1 \\
 & \log n
\end{array}$$

 $\log \log n$: How many times do I have to \sqrt{x} until < 2?

$$n, \sqrt{n}, \sqrt{\sqrt{n}}, \sqrt{\sqrt{n}}, \dots$$

$$\log \log n$$

Intuition: n vs. $O(\log^* n)$

 $\log n$: How many times do I have to $\sqrt{2}$ until < 2?

 $\log \log n$: How many times do I have to \sqrt{x} until < 2?

$$n, \sqrt{n}, \sqrt{\sqrt{n}}, \sqrt{\sqrt{n}}, \dots$$

$$\log \log n$$

 $\log^* n$: How many times do I have to $\log x$ until < 2?

$$n, \log n, \log \log n, \log \log \log n, ...$$

$$\log^* n$$

 $n = \text{atoms in the universe} \approx 10^{80}$ $\log^*(\text{atoms in the universe}) \approx 5$

Fast 3-coloring in trees

Input: rooted tree

Output: 3-coloring

Model of computing: synchronous LOCAL model

Subroutine: Shift down

Each node v (not root) concurrently does: recolor v with color of parent

The root chooses the smallest free color

Six-2-Three

Each other node v does (in parallel): Run "6-Colors" for $\log^*(n)$ rounds For x = 5,4,3: Perform "Shift Down" If $(c_v = x)$ choose new color $c_v \in \{0,1,2\}$ according to "Reduce"

Analysis: 3-coloring trees

Learning goals

- Graph problems: coloring
- Distributed models: synchronous LOCAL model
- O Algorithms:
 - $(\Delta + 1)$ -coloring any graph (Reduce)
 - 2-coloring rooted trees (Slow Tree Coloring)
 - 6-coloring rooted trees (6-Coloring)
 - Shift Down technique on trees
 - 3-coloring rooted trees (Six-2-Three)