Multi-Level Inheritance

In multi-level Inheritance, we have Parent, child, grand-child relationship

Multi-Level Inheritance in Python

Parent Class

```
In [52]: class Parent():
    def assign_name(self,name):
        self.name = name

    def show_name(self):
        return self.name
```

Child Class

```
In [53]: class Child(Parent):
    def assign_age(self,age):
        self.age = age

    def show_age(self):
        return self.age
```

Grand-Child Class

```
In [54]: class GrandChild(Child):
    def assign_gender(self,gender):
        self.gender = gender

    def show_gender(self):
        return self.name
```


Libraries in Python

Python library is a collection of functions and methods that allows you to perform many actions without writing your code

Python NumPy

NumPy stands for Numerical python and is the core library for numeric and scientific computing

It consists of multidimensional array objects and a collection of routines for processing those arrays

NumPy

Creating NumPy Array

Single-dimensional Array

Multi-dimensional Array

Initializing NumPy Array

Initializing NumPy array with zeros

Initializing NumPy Array

Initializing NumPy array with same number

Initializing NumPy array within a range

```
In [34]: import numpy as np
    n1=np.arange(10,20)
    n1

Out[34]: array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19])
```


Initializing NumPy Array

Initializing NumPy array with random numbers

In [46]: import numpy as np
n1=np.random.randint(1,100,5)

n1

Out[46]: array([95, 88, 26, 22, 76])

NumPy-Shape

Checking the shape of NumPy arrays

Joining NumPy Arrays

vstack()

hstack()

```
In [33]: import numpy as np
    n1=np.array([10,20,30])
    n2=np.array([40,50,60])
    np.hstack((n1,n2))
Out[33]: array([10, 20, 30, 40, 50, 60])
```

column_stack()

Numpy Intersection & Difference


```
In [10]: import numpy as np
    n1=np.array([10,20,30,40,50,60])
    n2=np.array([50,60,70,80,90])
```

```
In [11]: np.intersect1d(n1,n2)
Out[11]: array([50, 60])
```

```
In [10]: import numpy as np
    n1=np.array([10,20,30,40,50,60])
    n2=np.array([50,60,70,80,90])
```

```
In [23]: np.setdiff1d(n1,n2)

Out[23]: array([10, 20, 30, 40])
```

```
In [10]: import numpy as np
    n1=np.array([10,20,30,40,50,60])
    n2=np.array([50,60,70,80,90])
```

In [20]: np.setdiff1d(n2, Out[20]: array([70, 80, 90]

NumPy Array Mathematics

Addition of NumPy Arrays

```
In [13]: import numpy as np
    n1=np.array([10,20])
    n2=np.array([30,40])
    np.sum([n1,n2])
Out[13]: 100
```

```
In [14]: np.sum([n1,n2],axis=0)
Out[14]: array([40, 60])
```

In [15]: np.sum([n1,n2],axis=1)
Out[15]: array([30, 70])

NumPy Array Mathematics

Basic Addition

Basic Subtraction

```
In [5]: import numpy as np
n1=np.array([10,20,30])
n1=n1-1
n1
Out[5]: array([ 9, 19, 29])
```

Basic Multiplication

```
In [6]: import numpy as np
    n1=np.array([10,20,30])
    n1=n1*2
    n1
Out[6]: array([20, 40, 60])
```

Basic Division

```
In [7]: import numpy as np
    n1=np.array([10,20,30])
    n1=n1/2
    n1

Out[7]: array([ 5., 10., 15.])
```


NumPy Math Functions

Mean

In [14]: import numpy as np
 n1=np.array([10,20,30,40,50,60])
 np.mean(n1)

Out[14]: 35.0

Median

In [16]: import numpy as np
 n1=np.array([11,44,5,96,67,85])
 np.median(n1)

Out[16]: 55.5

Standard Deviation

In [17]: import numpy as np
 n1=np.array([1,5,3,100,4,48])

np.std(n1)

Out[17]: 36.59424666377065

13: 51.41Kb/s volte 46 51, 511, 511, 61% 10:23 PM

In [13]: import numpy as np
 n1=np.array([10,20,30,40,50,60])
 np.save('my_numpy',n1)

Saving Numpy Array

In [17]: n2=np.load('my_numpy.npy')
n2

Out[17]: array([10, 20, 30, 40, 50, 60])

Loading Numpy Array

Python Pandas

Pandas stands for Panel Data and is the core library for data manipulation and data analysis

It consists of single and multidimensional datastructures for datamanipulation

Pandas Data-Structures

Single-dimensional

Multi-dimensional

Pandas Series Object

Series Object is one-dimensional labeled array

```
In [2]: import pandas as pd
s1=pd.Series([1,2,3,4,5])
s1

Out[2]: 0   1
   1   2
   2   3
   3   4
   4   5
   dtype: int64
```

```
In [4]: type(s1)
Out[4]: pandas.core.series.Series
```


Changing Index


```
In [2]: import pandas as pd
s1=pd.Series([1,2,3,4,5])
s1

Out[2]: 0  1
    1   2
    2   3
   3   4
   4   5
   dtype: int64
```

```
In [5]: import pandas as pd
    s1=pd.Series([1,2,3,4,5],index=['a','b','c','d','e'])
    s1
Out[5]: a     1
     b     2
     c     3
     d     4
     e     5
     dtype: int64
```


Series Object from Dictionary


```
In [8]: import pandas as pd
   pd.Series({'a':10,'b':20,'c':30})
Out[8]: a    10
         b     20
         c     30
         dtype: int64
```


Changing index position

You can change the index positions

Extracting Individual Elements

Extracting a single element

Extracting a sequence of elements

Extracting elements from back

Basic Math Operations on Series

greatlearning

Learning for Life

Adding a scalar value to Series Elements

In [26]: s1 +5 Out[26]: 10 11 12 13 14 dtype: int64

Adding two Series Objects

```
In [24]:
         s1 = pd.Series([1,2,3,4,5,6,7,8,9])
         s2 = pd.Series([10,20,30,40,50,60,70,80,90])
In [25]:
         s1+s2
Out[25]: 0
              11
               22
               33
              44
               55
               66
               77
               88
               99
         dtype: int64
```


Pandas Dataframe

Dataframe is a 2-dimensional labelled data-structure

A data-frame comprises of rows and columns

Out[9]:		Name	Marks
	0	Bob	76
	1	Sam	25
	2	Anne	92

Creating a Dataframe

In [9]: import pandas as pd
pd.DataFrame({"Name":['Bob','Sam','Anne'],"Marks":[76,25,92]})

Out[9]:

	Name	Marks
0	Bob	76
1	Sam	25
2	Anne	92

Dataframe In-Built Functions

head()

shape()

describe()

tail()

.iloc[]

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

iris.iloc[0:3,0:2]

	Sepal.Length	Sepal.Width
0	5.1	3.5
1	4.9	3.0
2	4.7	3.2

.loc[]

greatlearning Learning for Life

iris.loc[0:3,("Sepal.Length","Petal.Length")]

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

	Sepal.Length	Petal.Length
0	5.1	1.4
1	4.9	1.4
2	4.7	1.3
3	4.6	1.5

Dropping Columns

iris.drop('Sepal.Length',axis=1)

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

	Sepal.Width	Petal.Length	Petal.Width	Species
0	3.5	1.4	0.2	setosa
1	3.0	1.4	0.2	setosa
2	3.2	1.3	0.2	setosa
3	3.1	1.5	0.2	setosa
4	3.6	1.4	0.2	setosa

