Discrete Distributions

Continuous Distributions

Beta
$$α > 0$$
 $α > 0$ $β > 0$ $μ = \frac{α}{α + β}, σ^2 = \frac{αβ}{(α + β + 1)(α + β)^2}$

Chi-square $χ^2(r)$ $r = 1, 2, ...$ $M(t) = \frac{1}{(1 - 2t)^{r/2}}, t < \frac{1}{2}$ $μ = α > 0$ $μ = α + β = α > 0$ $M(t) = \frac{1}{1 - θt}, t < \frac{1}{θ}$ $μ = αθ, σ^2 = θ^2$

Gamma $α > 0$ $M(t) = \frac{1}{(1 - θt)^α}, t < \frac{1}{θ}$ $μ = αθ, σ^2 = αθ^2$

Normal $N(μ, σ^2)$ $-∞ < μ < ∞$ $M(t) = \frac{1}{σ - 2π}e^{-(x - μ)^2/2σ^2}, -∞ < x < ∞$ $M(t) = \frac{1}{σ - 2π}e^{-(x - μ)^2/2σ^2}, -∞ < x < ∞$ $M(t) = \frac{1}{σ - 2π}e^{-(x - μ)^2/2σ^2}, -∞ < x < ∞$ $M(t) = \frac{1}{σ - 2π}e^{-(x - μ)^2/2σ^2}, -∞ < x < ∞$ $M(t) = \frac{1}{σ - 2π}e^{-(x - μ)^2/2σ^2}, -∞ < x < ∞$ $M(t) = \frac{1}{θ}e^{-t(x - μ)^2/2σ^2}, -∞ < x < ∞$ $M(t) = \frac{1}{θ}e^{-t(x - μ)^2/2σ^2}, -∞ < x < ∞$ $M(t) = \frac{1}{θ}e^{-t(x - μ)^2/2σ^2}, -∞ < t < ∞$ $M(t) = \frac{1}{θ}e^{-t(x - μ)^2/2σ^2}, -∞ < t < ∞$ $M(t) = \frac{1}{θ}e^{-t(x - μ)^2/2σ^2}, -∞ < t < ∞$ $M(t) = \frac{1}{θ}e^{-t(x - μ)^2/2σ^2}, -∞ < t < ∞$ $M(t) = \frac{1}{θ}e^{-t(x - μ)^2/2σ^2}, -∞ < t < ∞$ $M(t) = \frac{1}{θ}e^{-t(x - μ)^2/2σ^2}, -∞ < t < ∞$ $M(t) = \frac{1}{θ}e^{-t(x - μ)^2/2σ^2}, -∞ < t < ∞$ $M(t) = \frac{1}{θ}e^{-t(t - μ)}, -∞ < t < ∞$ $M(t) = \frac{1}{θ}e^{-t(t - μ)^2}, -∞ < t < ∞$ $M(t) = \frac{1}{θ}e^{-t(t - μ)^2}, -∞ < t < ∞$ $M(t) = \frac{1}{θ}e^{-t(t - μ)^2}, -∞ < t < ∞$ $M(t) = \frac{1}{θ}e^{-t(t - μ)^2}, -∞ < t < ∞$ $M(t) = \frac{1}{θ}e^{-t(t - μ)^2}, -∞ < t < ∞$ $M(t) = \frac{1}{θ}e^{-t(t - μ)^2}, -∞ < t < ∞$ $M(t) = \frac{1}{θ}e^{-t(t - μ)^2}, -∞ < t < ∞$ $M(t) = \frac{1}{θ}e^{-t(t - μ)^2}, -∞ < t < ∞$ $M(t) = \frac{1}{θ}e^{-t(t - μ)^2}, -∞ < t < ∞$ $M(t) = \frac{1}{θ}e^{-t(t - μ)^2}, -∞ < t < ∞$ $M(t) = \frac{1}{θ}e^{-t(t - μ)^2}, -∞ < t < ∞$ $M(t) = \frac{1}{θ}e^{-t(t - μ)^2}, -∞ < t < ∞$ $M(t) = \frac{1}{θ}e^{-t(t - μ)^2}, -∞ < t < ∞$ $M(t) = \frac{1}{θ}e^{-t(t - μ)^2}, -∞ < t < ∞$ $M(t) = \frac{1}{θ}e^{-t(t - μ)^2}, -∞ < t < ∞$ $M(t) = \frac{1}{θ}e^{-t(t - μ)^2}, -∞ < t < ∞$ $M(t) = \frac{1}{θ}e^{-t(t - μ)^2}, -∞ < t < ∞$ $M(t) = \frac{1}{θ}e^{-t(t - μ)^2}, -∞ < t < ∞$ $M(t) = \frac{1}{θ}e^{-t(t - μ)^2}, -∞ < t < ∞$ $M(t) = \frac{1}{θ}e^{-t(t - μ)^2}, -∞$ $M(t) = \frac{1}{θ}e^{-t(t - μ)^2}, -∞$ $M(t) = \frac{1}{θ}e^{-t(t - μ)^2},$

Confidence Intervals

Parameter	Assumptions	Endpoints
μ	$N(\mu, \sigma^2)$ or n large, σ^2 known	$\overline{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$
μ	$N(\mu, \sigma^2)$ σ^2 unknown	$\overline{x} \pm t_{\alpha/2}(n-1) \frac{s}{\sqrt{n}}$
$\mu_X - \mu_Y$	$N(\mu_X, \sigma_X^2)$ $N(\mu_Y, \sigma_Y^2)$ σ_X^2, σ_Y^2 known	$\bar{x} - \bar{y} \pm z_{\alpha/2} \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}$
$\mu_X - \mu_Y$	Variances unknown, large samples	$\overline{x} - \overline{y} \pm z_{\alpha/2} \sqrt{\frac{s_x^2}{n} + \frac{s_y^2}{m}}$
$\mu_X - \mu_Y$	$N(\mu_X, \sigma_X^2)$ $N(\mu_Y, \sigma_Y^2)$ $\sigma_X^2 = \sigma_Y^2$, unknown	$\overline{x} - \overline{y} \pm t_{\alpha/2}(n+m-2)s_p\sqrt{\frac{1}{n} + \frac{1}{m}},$ $s_p = \sqrt{\frac{(n-1)s_x^2 + (m-1)s_y^2}{n+m-2}}$
$\mu_D = \mu_X - \mu_Y$	X and Y normal, but dependent	$\overline{d} \pm t_{\alpha/2}(n-1)\frac{s_d}{\sqrt{n}}$
p	b(n,p) n is large	$\frac{y}{n} \pm z_{\alpha/2} \sqrt{\frac{(y/n)[1 - (y/n)]}{n}}$
$p_1 - p_2$	$b(n_1, p_1)$ $b(n_2, p_2)$	$\frac{y_1}{n_1} - \frac{y_2}{n_2} \pm z_{\alpha/2} \sqrt{\frac{\widehat{p_1}(1 - \widehat{p_1})}{n_1} + \frac{\widehat{p_2}(1 - \widehat{p_2})}{n_2}},$ $\widehat{p_1} = y_1/n_1, \ \widehat{p_2} = y_2/n_2$

Tests of Hypotheses

Hypotheses	Assumptions	Critical Region
H_0 : $\mu = \mu_0$ H_1 : $\mu > \mu_0$	$N(\mu, \sigma^2)$ or n large, σ^2 known	$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \ge z_\alpha$
H_0 : $\mu = \mu_0$ H_1 : $\mu > \mu_0$	$N(\mu, \sigma^2)$ σ^2 unknown	$t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}} \ge t_\alpha(n-1)$
$H_0: \mu_X - \mu_Y = 0$ $H_1: \mu_X - \mu_Y > 0$	$N(\mu_X, \sigma_X^2)$ $N(\mu_Y, \sigma_Y^2)$ σ_X^2, σ_Y^2 known	$z = \frac{\overline{x} - \overline{y} - 0}{\sqrt{(\sigma_X^2/n) + (\sigma_Y^2/m)}} \ge z_\alpha$
$H_0: \mu_X - \mu_Y = 0$ $H_1: \mu_X - \mu_Y > 0$	Variances unknown, large samples	$z = \frac{\overline{x} - \overline{y} - 0}{\sqrt{(s_x^2/n) + (s_y^2/m)}} \ge z_\alpha$
$H_0: \mu_X - \mu_Y = 0$ $H_1: \mu_X - \mu_Y > 0$	$N(\mu_X, \sigma_X^2) \ N(\mu_Y, \sigma_Y^2)$	$t = \frac{\overline{x} - \overline{y} - 0}{s_p \sqrt{(1/n) + (1/m)}} \ge t_\alpha (n + m - 2)$
	$\sigma_X^2 = \sigma_Y^2$, unknown	$s_p = \sqrt{\frac{(n-1)s_x^2 + (m-1)s_y^2}{n+m-2}}$
H_0 : $\mu_D = \mu_X - \mu_Y = 0$ H_1 : $\mu_D = \mu_X - \mu_Y > 0$	X and Y normal, but dependent	$t = \frac{\overline{d} - 0}{s_d / \sqrt{n}} \ge t_\alpha(n - 1)$
$H_0: p = p_0$ $H_1: p > p_0$	b(n,p) n is large	$z = \frac{(y/n) - p_0}{\sqrt{p_0(1 - p_0)/n}} \ge z_{\alpha}$
$H_0: p_1 - p_2 = 0$ $H_1: p_1 - p_2 > 0$	$b(n_1, p_1)$ $b(n_2, p_2)$	$z = \frac{(y_1/n_1) - (y_2/n_2) - 0}{\sqrt{\left(\frac{y_1 + y_2}{n_1 + n_2}\right)\left(1 - \frac{y_1 + y_2}{n_1 + n_2}\right)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \ge z_{\alpha}$