Permutáció: Legyen A egy halmaz n különböző elemmel ($n \in N$). A egy permutációján egy, az $\{1, 2, ..., n\}$ halmaz és A közötti bijektív leképezést értünk, azaz az A elemeinek valamilyen sorrendben való felsorolását.

Ismétléses permutáció: Akkor merül fel, amikor egy halmaz elemeit úgy rendezzük el, hogy egyes elemek többször is szerepelhetnek a rendezett sorozatban. $P_n^{11...lk} = n!/(l_1!...l_k!)$

Tétel: n különböző elem lehetséges sorbarendezéseinek a száma $P_n = n!$.

Variáció: Egy n elemű halmaz k-ad osztűlyú ismétlés nélküli variációi alatt a halmaz elemeiből kiválasztott k hosszúságú sorozatokat értjük. Ezek száma: $V_{n,k} = (n!)/(n-k)!$

Ismétléses variáció: Egy n elemű halmaz k-ad osztályú ismétléses variációi alatt a halmaz elemeiből visszatevéssel kiválasztott k hosszúságú sorozatokat értjük. Ezek száma: Vⁱn,k = n^k

Ismétlés nélküli kombináció: Egy n elemű halmaz k elemű részhalmazait a halmaz k-ad osztályú ismétlés nélküli kombinációinak nevezzük. Számuk: $C_{n,k} = \binom{n}{k}$

Ismétléses kombináció: Ha egy n elemű halmaz elemeiből úgy képezünk k elemű halmazt, hogy egy elemet többször is választhatunk (azaz visszatevéssel), akkor az n elem k-ad osztályú ismétléses kombinációjáról beszélünk. Számuk: $C_{n,k}^i = \binom{n+k-1}{k}$

Binominális tétel:
$$(x+y)^n = \binom{n}{n} x^n + \binom{n}{n-1} x^{n-1} y + \binom{n}{n-2} x^{n-2} y^2 + \dots + \binom{n}{1} x^* y^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Binominális együttható: Az $\binom{n}{k}$ kifejezést binomiális együtthatónak nevezzük. (együtthatók a pascal háromszögben)

Eseménytér: Legyen Ω rögzített, nem üres halmaz: $\Omega = \{\omega 1, \omega 2, \dots\}$. Ezt eseménytérnek, az elemeit pedig elemi eseményeknek nevezzük.

Tétel: Az elemi események halmazát eseménytérnek nevezzük.

Elemi esemény: Olyan esemény, ami már nem bontható tovább. jele: ω

Esemény: Az eseménytér részhalmazait eseményeknek nevezzük.

Esemény bekövetkezése: Az Ω eseménytér egy $A \subset \Omega$ eseménye bekövetkezik, ha az $\omega \in \Omega$ elemi esemény valósul meg és $\omega \in A$.

Lehetetlen esemény: Olyan esemény, amely sosem következik be.

Biztos esemény: Olyan esemény, amely biztos hogy bekövetkezik.

Diszjunk esemény: Az A és B események diszjunktak vagy egymást kizáró események, ha egyszerre nem következhetnek be.

Tétel: Az A esemény maga után vonja a B eseményt, ha az A esemény bekövetkezése esetén szükségképpen B is bekövetkezik.

Eseményalgebra: Tekintsünk egy Ω eseményteret. Ennek bizonyos részhalmazait akkor nevezzük eseményeknek, valamint ezen halmazok A halmazát eseményalgebrának, ha:

a biztos esemény: $\Omega \in A$;

ha A esemény, akkor az A komplementere is az: ha $A \in A$, akkor A komplementer $\in A$;

ha A1, A2, ... események, akkor ezek uniója (összege) is esemény: ha A1, A2, ... \in A, akkor: $\bigcup_{i=1}^{\infty} A_i = \sum_{i=1}^{\infty} A_i \in A$

Gyakoriság: Az A esemény gyakorisága az a szám, ahányszor az A esemény bekövetkezik az n kísérlet során. Jele: $k_n(A)$. Ekkor $k_n(A) \in \{0, 1, ..., n\}$.

Relatív gyakoriság: Az A esemény relatív gyakorisága a bekövetkezések számának és n-nek a hányadosa: $r_n(A) = k_n(A)/n$.

Relatív gyakoriság tulajdonságai:

 $0 \le r_n(A) \le 1$;

 $r_n(\emptyset) = 0$, $r_n(\Omega) = 1$;

ha A és B egymást kizáró események, akkor: $r_n(A + B) = r_n(A) + r_n(B)$;

ha A1, A2, . . . egymást páronkánt kizáró események, akkor $r_n \sum_{i=1}^{\infty} A_i = \sum_{i=1}^{\infty} (rn(A_i))$

 $r_n(A) = 1 - r_n(A);$

ha $A \Rightarrow B$, akkor $r_n(A) \le r_n(B)$.

Valószínűségi mező: Tekintsünk egy $P: A \rightarrow R$ függvényt, melyre:

 $P(A) \ge 0$, tetszőleges $A \in A$ esetén;

 $P(\Omega) = 1$;

ha A1, A2, · · · ∈ A egymást páronként kizáró események, akkor:

 $P \sum_{i=1}^{\infty} A_i = \sum_{i=1}^{\infty} (P(A_i))$ Ez a valószínűség σ-additivitása.

Ekkor P-t valószínűségnek vagy valószínűségi függvénynek, P(A)-t pedig az A esemény valószínűségének mondjuk. Az (Ω, A, P) hármast valószínűségi mezőnek hívjuk.

Valószínűségi mező további tulajdonságai ((Ω, A, P) egy valószínűségi mező):

$$P(\emptyset) = 0.$$

P (végesen) additív

P(komplementer A) = 1 - P(A)

P monoton ha $A \Rightarrow B$ (azaz $A \subset B$), akkor $P(A) \le P(B)$.

Tetszőleges A és B események esetén $P(A + B) = P(A) + P(B) - P(A \cdot B)$

Diszkrét valószínűségi mező: Az Ω eseményteret, valamint az (Ω, A, P) valószínűségi mezőt diszkrétnek mondjuk, ha Ω megszámlálható halmaz, tehát véges: $\Omega = \{\omega 1, \ldots, \omega n\}$, vagy megszámlálhatóan végtelen: $\Omega = \{\omega 1, \omega 2, \ldots\}$, továbbá $A = 2^{\Omega}$

Tétel: Diszkrét valószínűségi mezőben a $p_i := P(\{\omega i\})$, i = 1, 2, ... számok (egyértelműen meghatározzák a P valószínűségi függvényt. Ekkor a fenti valószínűségek nemnegatívak: $p_i \ge 0$, és összegük 1, hiszen $\sum_i p_i = \sum_i P\{\omega i\} = P(\sum_i \{\omega i\}) = P(\Omega) = 1$. Ekkor a $\{p_i, p_i\}$ számok eloszlást alkotnak.

Klasszikus valószínűségi mező: Az (Ω, A, P) valószínűségi mező klasszikus valószínűségi mező, ha Ω véges, azaz $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}, A = 2^{\Omega}$, továbbá minden elemi esemény egyenlően valószínű.

Tétel: - P(AUB) = P(A) + P(B) - P(A metszet B)

Tétel: Klasszikus valószínűségi mezőben egy k elemű A esemény valószínűsége kiszámítható a (kedvező esetek száma / összes eset száma) képlettel.

Tétel: Nem klasszikus mező esetén egy esemény valószínűsége a benne lévő elemi események valószínűségének az összege.

Geometriai valószínűségi mező: Ha az eseményteret Rⁿ egy véges részhalmazával tudjuk beazonosítani, az elemi események pedig egyenletesen oszlanak el ezen a halmazon, akkor geometriai valószínűségi mezőről beszélünk.

Feltételes valószínűség: Az A esemény feltételes valószínűsége a B feltétel mellett P(A|B) = P(A metszet B) / P(B), ha P(B) > 0

Teljes eseményrendszer: Azt mondjuk, hogy az $A_1, A_2, ... A_n \in A$ események teljes eseményrendszert alkotnak, ha pozitív valószínűségűek, az eseménytér egy diszjunkt felbontását alkotják, azaz egymást páronként kizárják, és összegük a teljes eseménytér.

Teljes valószínűség tétel: Legyen (Ω , A, P) valószínűségi mező és tekintsünk egy A1, A2, An ∈ A teljes eseményrendszert. Ekkor tetszőleges B esemény esetén $P(B) = \sum_{i=1}^{n} P(B|Ai) \cdot P(Ai)$.

Bayes-formula: Ha A és B tetszőleges, pozitív valószínűségű események, akkor $P(A|B) = (P(A) \cdot P(B|A))/P(B)$

Bayes tétel: Tekintsünk egy $A_1, A_2, ... A_n \in A$ teljes eseményrendszert, valamint egy pozitív valószínűségű B eseményt: P(B) > 0. Ekkor $P(Aj|B) = (P(B|Aj) \cdot P(Aj)) / (\sum i P(B|Ai) \cdot P(Ai))$

Függetlenség: Azt mondjuk, hogy az A és B események függetlenek, ha $P(AB) = P(A) \cdot P(B)$. Ha az A és B események pozitív valószínűségűek, akkor az alábbiak ekvivalensek: A és B függetlenek; P(A) = P(A|B); P(B) = P(B|A).

Tétel: Az A₁, A₂, . . . események páronként függetlenek, ha közülük bármely két esemény független.

Tétel: Az A_1, A_2, \ldots események (teljesen) függetlenek, ha tetszőleges $i_1, i_2, \ldots i_k$ indexek esetén $P(A_{i1} \cdot A_{i2} \ldots A_{ik}) = P(A_{i1}) \cdot P(A_{i2}) \ldots P(A_{ik})$

Valószínűségi változó: A $\xi: \Omega \to R$ függvény valószínűségi változó, ha tetszőleges $x \in R$ esetén $\{\omega \in \Omega \mid \xi(\omega) \le x\} \in A$.

Eloszlásfüggvény: Legyen ξ valószínűségi változó az (Ω, A, P) valószínűségi mezőn. Ennek eloszlásfüggvénye alatt az $F_{\xi}: R \to [0, 1], x \to F_{\xi}(x) := P(\xi < x)$ függvényt értjük.

Tétel: Egy F : R \rightarrow [0, 1] függvény pontosan akkor eloszlásfüggvénye valamely $\xi: \Omega \rightarrow \mathbb{R}$ valószínűségi változónak, ha monoton növekvő, balról folytonos $\lim_{x \to -\infty} F(x) = 0$ és $\lim_{x \to \infty} F(x) = 1$

Diszkrét valószínűségi változó: A $\xi: \Omega \to R$ valószínűségi változó diszkrét, ha értékkészlete megszámlálható.

Tétel: A ξ diszkrét valószínűségi változó eloszlása az a P_{ξ} függvény a ξ lehetséges értékeinek $X = \{x1, x2, ...\}$ halmazán, melyre $P_{\xi}(x_i) = P(\omega \in \Omega \mid \xi(\omega) = x_i), x_i \in X$.

Tétel: Egy diszkrét valószínűségi változó eloszlásfüggvénye olyan lépcsős függvény, mely ξ értékkészletének x_i elemeinél $P(\xi = x_i)$ mennyiséget ugrik felfelé.

Tétel: Legyen $p \in (0, 1)$, $n \in \mathbb{N}$. Azt mondjuk, hogy a ξ valószínűségi változó n-edrendű, p paraméterű binomiális eloszlású valószínűségi változó, ha értékkészlete $\{0, 1, 2, \ldots, n\}$, és $P(\xi = k) = \binom{n}{k} p^k (1-p)^{n-k}$. ξ -t ebben az esetben n és p paraméterű binomiális eloszlású valószínűségi változónak is hívjuk. Jelölés: $\xi \sim \text{Bin}(n, p)$.

Bernoulli eloszlás: Legyen $p \in (0, 1)$. Azt mondjuk, hogy a ξ valószínűségi változó p paraméterű Bernoulli-eloszlású valószínűségi változó, ha értékkészlete $\{0, 1\}$, és $P(\xi = 1) = p$ $P(\xi = 0) = 1 - p$.

Hipergeometrikus eloszlás: Egy dobozban N golyó van, M db kék és N – M db zöld. Visszatevés nélkül húzzunk ki n golyót (n \leq N). Jelölje ξ a kihúzott kék golyók számát. Ekkor $P(\xi=k)=\frac{\binom{M}{k}\binom{N-M}{n-k}}{\binom{N}{n}}$ ahol az értékkészlet elemei olyan k értékek, melyekre $0\leq k\leq n,\,k\leq M$ és $n-k\leq N-M$.

Tétel: Ha a ξ valószínűségi változó eloszlása a fenti alakú, akkor (n, M, N – M) paraméterű hipergeometrikus eloszlásúnak mondjuk.

Negatív binominális eloszlás: Legyen $p \in (0, 1)$, $r \in N$. Azt mondjuk, hogy a ξ valószínűségi változó r-edrendű, p paraméterű negatív binomiális eloszlású valószínűségi változó, ha értékkészlete $\{r,r+1,r+2,\dots\}$, és $P(\xi=k+r)=\binom{k+r-1}{r-1}p^r(1-p)^k$, $k=0,1,2,\dots$

Tétel: Legyen $p \in (0, 1)$. Azt mondjuk, hogy a ξ valószínűségi változó p paraméterű geometriai eloszlású (vagy elsőrendű negatív binomiális) valószínűségi változó, ha értékkészlete $\{1, 2, \dots\}$, és $P(\xi = k + 1) = p(1-p)^k$, $k = 0, 1, 2,\dots$

Poisson eloszlás: Legyen $\lambda > 0$. Azt mondjuk, hogy a ξ valószínűségi változó λ paraméterű Poisson-eloszlású valószínűségi változó, ha értékkészlete $\{0, 1, 2, ...\}$, és $P(\xi = k) \frac{\lambda^k}{k!} e^{-\lambda}$

Diszkrét valószínűségi változók várható értéke: Tekintsünk egy $\xi: \Omega \to \mathbb{R}$ diszkrét valószínűségi változót, legyen ennek értékkészlete $\{x1, x2, \dots\}$. Az $E\xi = \sum_k xk * P(\xi = xk)$ mennyiséget ξ várható értékének nevezzük, amennyiben ez a sor abszolút konvergens, azaz $\sum k |xk| * P(\xi = xk) < \infty$.

Várható érték tulajdonságai: Legyenek ξ és η valószínűségi változók, amelyeknek létezik a várható értékük, továbbá a, b \in R. Ekkor

- $E(a\xi) = a \cdot E\xi$, azaz a várható érték homogén;
- $E(\xi + \eta) = E\xi + E\eta$, azaz a várható érték additív;
- $E(a\xi + b\eta) = a \cdot E\xi + b \cdot E\eta$, azaz a várható érték lineáris;
- ha $\xi \le \eta$, akkor $E\xi \le E\eta$, azaz a várható érték monoton;
- $|E\xi| \le E|\xi|$.

Valószínűségi változó függvényének várható értéke: Tekintsünk egy ξ diszkrét valószínűségi változót, amelynek értékkészlete $\{x1, x2, \dots\}$, valamint egy $g: R \to R$ függvényt. Ekkor $g(\xi)$ is diszkrét valószínűségi változó, amelynek várható értéke Eg $(\xi) = \sum_k g(xk) * P(\xi = xk)$ amennyiben ez a mennyiség létezik (azaz a sor abszolút konvergens).

Diszkrét valószínűségi változók szórása, szórásnégyzete: Legyen ξ diszkrét valószínűségi változó véges várható értékkel, legyen $m := E\xi$. A D^2 $\xi := E(\xi - m)^2$ mennyiséget, amennyiben létezik, ξ szórásnégyzetének vagy varianciájának nevezzük. Másik jelölés: Var(ξ). Ennek pozitív négyzetgyöke, $D\xi \sqrt{\xi D^2}$ a szórás.

Szórásnégyzet kiszámítása: Ha ξ szórásnégyzete véges, akkor ez számolható az alábbi képlettel: $D^2\xi = E\xi^2 - E^2\xi$. Tehát ha ξ diszkrét valószínűségi változó, amelynek értékkészlete $\{x1, x2, \dots\}$, akkor A $D^2\xi = \sum_k x^2_k * P(\xi = x_k) - (\sum_k xk * P(\xi = x_k))$

Szórásnégyzet tulajdonságai:

- D^2 ξ ≥ 0
- $-D^2(a\xi) = a^2D^2\xi$
- $-D^{2}(\xi + b) = D^{2}\xi$

Nevezetes diszkrét eloszlások várható értéke, szórásnégyzete:

- binomiális eloszlás:
$$E\xi = \sum_{k=0}^{n} k * \binom{n}{k} p^k (1-p)^{n-k} = np, D^2 \xi = np(1-p)$$

- hipergeometrikus eloszlás:
$$E\xi = \frac{nM}{N}$$
, $D^2\xi = n * \frac{N-n}{N-1} * \frac{M}{N} * (1 - \frac{M}{N})$

- negatív binominális eloszlás: $E\xi = r/p$, $D^2\xi = r^* (1-p)/p^2$
- Poisson eloszlás: $E\xi = \lambda$, $D^2\xi = \lambda$

Folytonos valószínűségi változó: Tekintsünk egy ξ valószínűségi változót F eloszlásfüggvénnyel. Ha létezik olyan $f: R \to R$ (mérhető) függvény, melyre $F(x) = \int_{-\infty}^{x} f(t)dt$, akkor ezt az f függvényt ξ sűrűségfüggvényének nevezzük, ξ -ról pedig azt mondjuk, hogy eloszlása abszolút folytonos, vagy folytonos valószínűségi változó.

Sűrűségfüggvény tulajdonságai: Legyen ξ folytonos valószínűségi változó F eloszlás- és f sűrűségfüggvénnyel. Ekkor:

- $f(x) \ge 0$ $x \in R$ esetén $\int_{-\infty}^{+\infty} f(t) dt = 1$
- ha f folytonos az $x \in R$ pontban, akkor F'(x) = f(x);
- ha a < b, akkor $P(a \le \xi < b) = F(b) F(a) = \int_a^b f(t) dt$

Egyenletes eloszlás: A ξ valószínűségi változót az [a, b] intervallumon egyenletes

eloszlásúnak nevezzük, ha eloszlásfüggvénye
$$F(x) = \begin{cases} 0, ha \ a \ge x \\ \frac{x-a}{b-a} \ ha \ a < x \le b \text{ Jele: } \xi \sim \text{U(a,b)}. \end{cases}$$
1, $ha \ x > b$

Normális eloszlás: A ξ valószínűségi változót normális eloszlásúnak nevezzük, ha sűrűségfüggvénye $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-m)^2}{2\sigma^2}}$ alakú, ahol $m \in \mathbb{R}, \ \sigma > 0$. Jele: $\xi \sim \mathbb{N}$ (m, σ^2).

Standard eloszlás: A ξ valószínűségi változót standard normális eloszlásúnak nevezzük, ha sűrűségfüggvénye $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x)^2}{2}}$. Ekkor tehát $\xi \sim N(0, 1)$.

Exponenciális eloszlás (örökifjú): A ξ valószínűségi változót λ paraméterű exponenciális eloszlásúnak nevezzük, ha eloszlásfüggvénye $F(x) = \begin{cases} 0, & ha \ x \leq 0 \\ 1 - e^{-\lambda x}, & ha \ x > 0 \text{ ahol } \lambda > 0 \end{cases}$ rögzített.

Tétel: Ekkor ξ folytonos valószínűségi változó, amelynek sűrűségfüggvénye

$$f(x) = \begin{cases} 0, & ha \ x \le 0 \\ \lambda e^{-\lambda x}, & ha \ x > 0 \end{cases}$$

Folytonos valószínűségi változók várható értéke: Tekintsünk egy $\xi: \Omega \to \mathbb{R}$ abszolút folytonos eloszlású valószínűségi változót f sűrűségfüggvénnyel. Ekkor ξ várható értéke $E\xi = \int_{-\infty}^{\infty} x \cdot f(x) dx$, amennyiben ez az improprius integrál abszolút konvergens, azaz $\int_{-\infty}^{\infty} |x| * f(x) dx < \infty$

Tétel: Legyen ξ folytonos valószínűségi változó f sűrűségfüggvénnyel, valamint tekintsünk egy $g: R \to R$ függvényt. Ekkor $Eg(\xi) = \int_{-\infty}^{\infty} g(x) \cdot f(x) dx$

Tétel: Legyen ξ folytonos valószínűségi változó véges várható értékkel. A $D^2\xi := E(\xi - E\xi)^2$ mennyiséget, amennyiben létezik, ξ szórásnégyzetének vagy varianciájának nevezzük. Ennek pozitív négyzetgyöke a szórás: $D\xi := gyök(D^2\xi)$.

Szórásnégyzet kiszámítása:
$$D^2\xi = E\xi^2 - E^2\xi = \int_{-\infty}^{\infty} x * x f(x) dx - (\int_{-\infty}^{\infty} x f(x) dx)^2$$

Nevezetes folytonos eloszlások várható értéke, szórásnégyzete:

egyenletes eloszlás: $E\xi = (a+b)/2$ $D^2\xi = (b-a)^2/12$

normális eloszlás: $E\xi = m$ $D^2\xi = \sigma^2$

exponenciális eloszlás: $E\xi = 1/\lambda$ $D^2\xi = 1/\lambda^2$

Valószínűségi változók függetlensége: A ξ és η valószínűségi változók függetlenek, ha együttes eloszlásfüggévényük felbomlik a két marginális eloszlásfüggvény szorzatára, azaz $F(x, y) = F\xi(x) \cdot F\eta(y)$

Peremeloszlásfüggvény: Tekintsük a ξ és $F_{\xi}(x)$ valószínűségi változókat, ezek együttes eloszlásfüggvényét jelölje F. (Tehát $F(x, y) = P(\xi < x, \eta < y)$.) Ekkor $F_{\xi}(x) = \lim_{y \to \infty} F(x, y)$ és $F_{\eta}(y) = \lim_{x \to \infty} F(x, y)$ rendre ξ és η eloszlásfüggvénye, amelyeket az együttes eloszlás marginális (vagy perem-) eloszlásfüggvényeinek is nevezünk.