Section Overview

What You Will Learn

- Linux security features.
- The superuser.
- Why Linux is avoided by many attackers.
- Open source and security.
- Software management.
- User and administrator roles and responsibilities.

What You Will Learn

- Security Principles
- Software and services
- Encryption
- Accounts
- Multi-factor authentication
- Principle of Least Privilege

Is Linux Secure?

Is Linux Secure?

- Nothing is perfectly secure.
- Security is a series of trade-offs.
 - convenience vs security
 - No passwords = easy to use, not secure.
 - System powered off = secure, not usable.

Risk Assessment

- What is the severity of the risk?
- What is the probability of the risk occurring?
- What is the cost to mitigate the risk?
- What is the effectiveness of the countermeasure?

Linux is only as secure as you make it!

- Linux can be configured to be unsecure.
- Users may employ lax file permissions.
- System administration mistakes.
- Users could use easy to guess passwords.

Linux is only as secure as you make it!

- Data transmitted in the clear.
- Malicious software installed on the system.
- Lack of training or security awareness.

It's a trap!

- Just because you are using Linux, doesn't mean you are "secure."
- Security is an ongoing process.
- Stay vigilant!

What Makes Linux Secure?

Multiuser System

- Linux is a multiuser system.
- The superuser is the root account.
 - root is all powerful.
 - Required to install system-wide software, configure networking, manager users, etc.
- All other accounts are "normal" accounts.
 - Can be used by people or applications (services).

Advantages to a Multiuser System.

- File permissions.
- Every file has an owner.
- Permissions can be granted to other accounts and users as needed.
- Breaking into one account does not necessarily compromise the entire system.

Advantages to a Multiuser System.

- Process permissions.
- Every process has an owner.
- Each account can manage their processes.
 - * root can do anything.
- Breaking into one account does not necessarily compromise the entire system.

Attackers Are "Lazy"

- More Windows computers than Linux.
- Linux user base is technical.
- Windows is an easier target.

Linux is Open Source

- You don't have to trust one company.
- Practically impossible to sneak malicious code into the Linux Kernel.
- Open source increases the discovery of security holes.
- Windows is a black box.

Centralized Software Management

- Packages are managed by package managers.
- Linux distros provide package repositories.
- Most OS software is open source.
- Easy to keep up with security updates.
- When updating, you can update everything.

Linux vs Windows Software Installation

Linux

 Search the repository and install with the package manager.

Linux vs Windows Software Installation

Linux

 Search the repository and install with the package manager.

Windows

- search the Internet and install from a third party.
- untested software.
- closed source, most likely.
- you may not know what you're going to get.

Linux is not immune!

Security Guidelines

Minimize Software and Services

- If you don't need a piece of software, don't install it.
- If you don't need a service, don't start it.
- If you no longer need the software or service, stop and uninstall it.

Run Services on Separate Systems

 Minimizes the risk of one compromised service leading to other compromised services.

Encrypt Data Transmissions

- Protect against eavesdropping and man-inthe middle attacks.
- Examples:
 - o FTP -> SFTP
 - telnet -> SSH
 - $_{\circ}$ SNMP v1/v2 -> SNMP v3
 - HTTP -> HTTPS

Avoid Shared Accounts

- Each person should have their own account.
- Each service should have its own account.
- Shared accounts make security auditing difficult.
- Lack of accountability with shared accounts.

Avoid Direct root Logins

- Do not allow direct login of shared accounts.
- Users must login to their personal accounts and then switch to the shared account.
- Control and monitor access with sudo.

Maintain Accounts

Create and use a process for removing access.

Use Multifactor Authentication

- Something you know + something you have or something you are.
- Examples:
 - account password + phone to receive the one time password (OTP).
 - account password + fingerprint

The Principle of Least Privilege

- AKA, the Principle of Least Authority.
- Examples:
 - Only use root privileges when required.
 - Avoid running services as the root user.
 - Use restrictive permissions that allow people and services enough access to do their jobs.

Monitor System Activity

- Routinely review logs.
- Send logs to a central logging system.

Use a Firewall

- Linux has a built-in firewall. Netfilters + iptables.
- Only allow network connections from desired sources.

Encrypt Your Data

 Encryption protects your data while it is "at rest" (on disk).

Section Summary

Summary

- Linux is "secure," but it's not a panacea.
- People play a key role in security.
- Security is an ongoing process.

Summary

- Linux security features
 - Open source.
 - It's not a popular target.
 - Package management.
 - Separation of privileges (multiuser system).

Summary

Security Principles

- Principle of Least Privilege
- Use encryption
- Shared accounts (Yes, root can be a shared account!)
- Multifactor authentication
- Firewall
- Monitoring logs