## Esercizio di Logica



Se l'unicorno è mitico, allora è immortale, ma se non è mitico allora è mortale. Se è mortale o immortale, allora è cornuto. L'unicorno è magico se è cornuto.

# | Teoremi da dimostrare

- o L'unicorno è cornuto?
- o L'unicorno è magico?

# Risoluzione

### **Predicati**

P { mitico(), immortale(), cornuto(), magico() }

## Traduzione in logica

```
Mitico(Unicorno) ⇒ Immortale(Unicorno)
¬Mitico(Unicorno) ⇒ ¬Immortale(Unicorno)

Immortale(Unicorno) ∨ ¬Immortale(Unicorno) ⇒ Cornuto(Unicorno)

Cornuto(Unicorno) ⇒ Magico(Unicorno)
```

#### **Dimostrazioni**

 $\circ$  **S**  $\vdash$  Cornuto(Unicorno) ?

| $\textbf{P1} \;\; Immortale(Unicorno) \lor \neg Immortale(Unicorno) \Rightarrow Cornuto(Unicorno)$ | [Base di Con.] |
|----------------------------------------------------------------------------------------------------|----------------|
| P2 Immortale(Unicorno) ∨ ¬Immortale(Unicorno)                                                      | [Tautologia]   |
| P3 Cornuto(Unicorno)                                                                               | [Modus Ponens] |

∘ S ⊢ Magico(Unicorno) ?

| $\textbf{P1} \;\; Immortale(Unicorno) \lor \neg Immortale(Unicorno) \Rightarrow Cornuto(Unicorno)$ | [Base di Con.] |
|----------------------------------------------------------------------------------------------------|----------------|
| <b>P2</b> Immortale(Unicorno) ∨ ¬Immortale(Unicorno)                                               | [Tautologia]   |
| P3 Cornuto(Unicorno)                                                                               | [Modus Ponens] |
| $\textbf{P4} \;\; Cornuto(Unicorno) \Rightarrow Magico(Unicorno)$                                  | [Base di Con.] |
| P3 Magico(Unicorno)                                                                                | [Modus Ponens] |