## 1: The Bisection Method (25%)

For function  $f(x) = x^3 + 6x^2 + \pi x - 12$ , the derivative is  $f'(x) = 3x^2 + 12x + \pi$ . The we can calculate that zeros of the derivative are  $\frac{-12 - \sqrt{12(12 - \pi)}}{6}$  and  $\frac{-12 + \sqrt{12(12 - \pi)}}{6}$ .

 $f(\frac{-12-\sqrt{12(12-\pi)}}{6}) = 7.864841$  and  $f(\frac{-12+\sqrt{12(12-\pi)}}{6}) = -12.43121$  Hence, the function f has totally 3 zeros.

**Algorithm:** Bisection Method in the R file.

**Result:** zeros -4.837944, -2.259727, and 1.097664.

## 2: Poisson Regression - Newton's Method (25%)

(1) Since  $y_i \sim Poisson(\lambda_i)$  and  $log(\lambda_i) = \alpha + \beta x_i + \gamma x_i^2$ , we can get the Likelihhod function:

$$L(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y}) = \prod_{i=1}^{n} \frac{\lambda_i^{y_i} e^{-\lambda_i}}{y_i!} = \prod_{i=1}^{n} \frac{e^{(\alpha + \beta x_i + \gamma x_i^2) y_i} e^{-e^{\alpha + \beta x_i + \gamma x_i^2}}}{y_i!}$$

(2) The log-Likelihood function is

$$l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} (\alpha + \beta x_i + \gamma x_i^2) y_i - e^{\alpha + \beta x_i + \gamma x_i^2} - \log y_i!$$

Then we have:

$$\frac{\partial l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \alpha} \Big|_{\hat{\alpha}} = \sum_{i=1}^{n} [y_i - e^{\alpha + \beta x_i + \gamma x_i^2}] \Big|_{\hat{\alpha}} = 0$$

$$\frac{\partial l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \beta} \Big|_{\hat{\beta}} = \sum_{i=1}^{n} [x_i y_i - x_i e^{\alpha + \beta x_i + \gamma x_i^2}] \Big|_{\hat{\beta}} = 0$$

$$\frac{\partial l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \gamma} \Big|_{\hat{\gamma}} = \sum_{i=1}^{n} [x_i^2 y_i - x_i^2 e^{\alpha + \beta x_i + \gamma x_i^2}] \Big|_{\hat{\gamma}} = 0$$

Let 
$$\mathbf{F}(\mathbf{x}) = \begin{pmatrix} \frac{\partial l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \alpha} \\ \frac{\partial l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \beta} \\ \frac{\partial l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \gamma} \end{pmatrix}$$
, then  $\mathbf{F}'(\mathbf{x}) = \begin{pmatrix} \frac{\partial^2 l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \alpha^2} & \frac{\partial^2 l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \beta \partial \alpha} & \frac{\partial^2 l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \gamma \partial \alpha} \\ \frac{\partial^2 l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \alpha \partial \beta} & \frac{\partial^2 l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \beta^2} & \frac{\partial^2 l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \gamma \partial \beta} \\ \frac{\partial^2 l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \alpha \partial \gamma} & \frac{\partial^2 l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \beta \partial \gamma} & \frac{\partial^2 l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \gamma^2} \end{pmatrix}$ , in

which

$$\frac{\partial^{2}l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \alpha^{2}} = \sum_{i=1}^{n} -e^{\alpha + \beta x_{i} + \gamma x_{i}^{2}}$$

$$\frac{\partial^{2}l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \alpha \partial \beta} = \frac{\partial^{2}l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \beta \partial \alpha} = \sum_{i=1}^{n} -x_{i}e^{\alpha + \beta x_{i} + \gamma x_{i}^{2}}$$

$$\frac{\partial^{2}l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \alpha \partial \gamma} = \frac{\partial^{2}l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \gamma \partial \alpha} = \sum_{i=1}^{n} -x_{i}^{2}e^{\alpha + \beta x_{i} + \gamma x_{i}^{2}}$$

$$\frac{\partial^{2}l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \beta^{2}} = \sum_{i=1}^{n} -x_{i}^{2}e^{\alpha + \beta x_{i} + \gamma x_{i}^{2}}$$

$$\frac{\partial^{2}l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \beta \partial \gamma} = \frac{\partial^{2}l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \gamma \partial \beta} = \sum_{i=1}^{n} -x_{i}^{3}e^{\alpha + \beta x_{i} + \gamma x_{i}^{2}}$$

$$\frac{\partial^{2}l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \gamma^{2}} = \sum_{i=1}^{n} -x_{i}^{4}e^{\alpha + \beta x_{i} + \gamma x_{i}^{2}}$$

Therefore, by Newton's Methhod, given initial guess  $\alpha^{(0)}$ ,  $\beta^{(0)}$ , and  $\gamma^{(0)}$ , for each iteration:

$$\begin{pmatrix} \alpha^{(n)} \\ \beta^{(n)} \\ \gamma^{(n)} \end{pmatrix} = \begin{pmatrix} \alpha^{(n-1)} \\ \beta^{(n-1)} \\ \gamma^{(n-1)} \end{pmatrix} - \mathbf{F}'[(\mathbf{x})]^{-1} \mathbf{F}(\mathbf{x}).$$

Hence, for the algorithm:  $\mathbf{x}^{(\mathbf{n})} = \begin{pmatrix} \alpha^{(n)} \\ \beta^{(n)} \\ \gamma^{(n)} \end{pmatrix}$ ,

STEP 1: Solve  $\mathbf{F}'(\mathbf{x}^{(n)}) \triangle \mathbf{x}^{(n)} = -\mathbf{F}(\mathbf{x}^{(n)});$ 

STEP 2: Update by  $\mathbf{x^{(n+1)}} = \mathbf{x^{(n)}} + \triangle \mathbf{x^{(n)}}$ 

(3)

**Algorithm:** Newton's Method code in the R file.

**Result:**  $\alpha = 1.503533$ ,  $\beta = 1.052351$ , and  $\gamma = 1.957396$ .

## 3: Logistic Regression - Newton's Method (20%)

(1) Since  $y_i \sim Bernoulli(p_i)$  and  $logit(p_i) = \alpha + \beta x_i$ , we can know that  $f(y_i, p_i) = p_i^{y_i} (1 - p_i)^{1 - y_i}$ , and  $p_i = \frac{e^{\alpha + \beta x_i}}{1 + e^{\alpha + \beta x_i}}$ . Then we can get the following Likelihood function:

$$L(\alpha, \beta | \mathbf{x}, \mathbf{y}) = \prod_{i=1}^{n} p_i^{y_i} (1 - p_i)^{1 - y_i}$$
$$= \prod_{i=1}^{n} \left(\frac{e^{\alpha + \beta x_i}}{1 + e^{\alpha + \beta x_i}}\right)^{y_i} \left(1 - \frac{e^{\alpha + \beta x_i}}{1 + e^{\alpha + \beta x_i}}\right)^{1 - y_i}$$

(2) The log-Likelihood function is

$$l(\alpha, \beta | \mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} y_i (\alpha + \beta x_i - \log(1 + e^{\alpha + \beta x_i})) + (1 - y_i) \log(\frac{1}{1 + e^{\alpha + \beta x_i}})$$
$$= \sum_{i=1}^{n} \alpha x_i + \beta x_i y_i - \log(1 + e^{\alpha + \beta x_i})$$

Then we have:

$$\frac{\partial l(\alpha, \beta | \mathbf{x}, \mathbf{y})}{\partial \alpha} \Big|_{\hat{\alpha}} = \sum_{i=1}^{n} \left[ y_i - \frac{e^{\alpha + \beta x_i}}{1 + e^{\alpha + \beta x_i}} \right] \Big|_{\hat{\alpha}} = 0$$
$$\frac{\partial l(\alpha, \beta | \mathbf{x}, \mathbf{y})}{\partial \beta} \Big|_{\hat{\beta}} = \sum_{i=1}^{n} \left[ x_i y_i - \frac{x_i e^{\alpha + \beta x_i}}{1 + e^{\alpha + \beta x_i}} \right] \Big|_{\hat{\beta}} = 0$$

Let 
$$\mathbf{F}(\mathbf{x}) = \begin{pmatrix} \frac{\partial l(\alpha, \beta | \mathbf{x}, \mathbf{y})}{\partial \alpha} \\ \frac{\partial l(\alpha, \beta | \mathbf{x}, \mathbf{y})}{\partial \beta} \end{pmatrix}$$
, then  $\mathbf{F}'(\mathbf{x}) = \begin{pmatrix} \frac{\partial^2 l(\alpha, \beta | \mathbf{x}, \mathbf{y})}{\partial \alpha^2} & \frac{\partial^2 l(\alpha, \beta | \mathbf{x}, \mathbf{y})}{\partial \beta \partial \alpha} \\ \frac{\partial^2 l(\alpha, \beta | \mathbf{x}, \mathbf{y})}{\partial \alpha \partial \beta} & \frac{\partial^2 l(\alpha, \beta | \mathbf{x}, \mathbf{y})}{\partial \beta^2} \end{pmatrix}$ , in which 
$$\frac{\partial^2 l(\alpha, \beta | \mathbf{x}, \mathbf{y})}{\partial \alpha^2} = -\frac{e^{\alpha + \beta x_i}}{(1 + e^{\alpha + \beta x_i})^2}$$
$$\frac{\partial^2 l(\alpha, \beta | \mathbf{x}, \mathbf{y})}{\partial \alpha^2} = -\frac{e^{\alpha + \beta x_i}}{(1 + e^{\alpha + \beta x_i})^2}$$

$$\frac{\partial^2 l(\alpha, \beta | \mathbf{x}, \mathbf{y})}{\partial \beta \partial \alpha} = \frac{\partial^2 l(\alpha, \beta | \mathbf{x}, \mathbf{y})}{\partial \alpha \partial \beta} = -\frac{x_i e^{\alpha + \beta x_i}}{(1 + e^{\alpha + \beta x_i})^2}$$
$$\frac{\partial^2 l(\alpha, \beta | \mathbf{x}, \mathbf{y})}{\partial \beta^2} = -\frac{x_i^2 e^{\alpha + \beta x_i}}{(1 + e^{\alpha + \beta x_i})^2}$$

Therefore, by Newton's Methhod, given initial guess  $\alpha^{(0)}$  and  $\beta^{(0)}$ , for each iteration:

$$\begin{pmatrix} \alpha^{(n)} \\ \beta^{(n)} \end{pmatrix} = \begin{pmatrix} \alpha^{(n-1)} \\ \beta^{(n-1)} \end{pmatrix} - \mathbf{F}'[(\mathbf{x})]^{-1}\mathbf{F}(\mathbf{x}).$$

Hence, for the algorithm:  $\mathbf{x}^{(\mathbf{n})} = \begin{pmatrix} \alpha^{(n)} \\ \beta^{(n)} \end{pmatrix}$ ,

STEP 1: Solve  $\mathbf{F}'(\mathbf{x}^{(n)}) \triangle \mathbf{x}^{(n)} = -\mathbf{F}(\mathbf{x}^{(n)});$ 

STEP 2: Update by  $\mathbf{x^{(n+1)}} = \mathbf{x^{(n)}} + \triangle \mathbf{x^{(n)}}$ .

(3)

Algorithm: Newton's Method code in the R file.

**Result:**  $\alpha = 1.564284$  and beta = 1.771093.

## 4: EM Algorithm (30%)

(1) Observed data:  $Y_i$  for i = 1, 2, ..., 8000; Missing data:  $Z_i$  for i = 1, 2, ..., 8000., where  $Z_i = 1, 2, or 3$  for low, middle, and high income respectively.

Since  $Y_i|(Z_i = k) \sim N(\mu_k, \sigma_k^2)$ , with proportion  $\pi_k$   $(\pi_3 = 1 - (\pi_1 + \pi_2))$ , we can formulate the **complete** – **data Likelihhod function** as:

$$L(\pi_1, \pi_2, \mu_1, \mu_2, \mu_3, \sigma_1, \sigma_2, \sigma_3 | \mathbf{Y}, \mathbf{Z})$$

$$= \prod_{i=1}^{n} \left[ \pi_1 \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(y_i - \mu_1)^2}{2\sigma_1^2}} \right]^{I(Z_i = 1)} \left[ \pi_2 \frac{1}{\sqrt{2\pi}\sigma_2} e^{-\frac{(y_i - \mu_2)^2}{2\sigma_2^2}} \right]^{I(Z_i = 2)} \left[ (1 - \pi_1 - \pi_2) \frac{1}{\sqrt{2\pi}\sigma_3} e^{-\frac{(y_i - \mu_3)^2}{2\sigma_3^2}} \right]^{I(Z_i = 3)}$$

The observed-data Likelihhod function is:

$$L(\pi_{1}, \pi_{2}, \mu_{1}, \mu_{2}, \mu_{3}, \sigma_{1}, \sigma_{2}, \sigma_{3} | \mathbf{Y})$$

$$= \prod_{i=1}^{n} \left[ \left[ \pi_{1} \frac{1}{\sqrt{2\pi}\sigma_{1}} e^{-\frac{(y_{i} - \mu_{1})^{2}}{2\sigma_{1}^{2}}} \right] + \left[ \pi_{2} \frac{1}{\sqrt{2\pi}\sigma_{2}} e^{-\frac{(y_{i} - \mu_{2})^{2}}{2\sigma_{2}^{2}}} \right] + \left[ (1 - \pi_{1} - \pi_{2}) \frac{1}{\sqrt{2\pi}\sigma_{3}} e^{-\frac{(y_{i} - \mu_{3})^{2}}{2\sigma_{3}^{2}}} \right] \right]$$

(2) The complete-data log-Likelihhod function is:

$$l(\pi_1, \pi_2, \mu_1, \mu_2, \mu_3, \sigma_1, \sigma_2, \sigma_3 | \mathbf{Y}, \mathbf{Z}) = \sum_{i=1}^n \left[ I(Z_i = 1) \left[ \log \pi_1 - \log \sqrt{2\pi} - \frac{1}{2} \log \sigma_1^2 - \frac{(y_i - \mu_1)^2}{2\sigma_1^2} \right] + I(Z_i = 2) \left[ \log \pi_2 - \log \sqrt{2\pi} - \frac{1}{2} \log \sigma_2^2 - \frac{(y_i - \mu_2)^2}{2\sigma_2^2} \right] + I(Z_i = 3) \left[ \log(1 - \pi_1 - \pi_2) - \log\sqrt{2\pi} - \frac{1}{2} \log\sigma_3^2 - \frac{(y_i - \mu_3)^2}{2\sigma_3^2} \right] \right]$$

Then we can calculate:

$$\begin{split} \frac{\partial l}{\partial \pi_1}\bigg|_{\hat{\pi_1},\hat{\pi_2}} &= \sum_{i=1}^n \left[I(Z_i=1)\frac{1}{\pi_1} - I(Z_i=3)\frac{1}{1-\pi_1-\pi_2}\right]\bigg|_{\hat{\pi_1},\hat{\pi_2}} = 0 \\ \frac{\partial l}{\partial \pi_2}\bigg|_{\hat{\pi_1},\hat{\pi_2}} &= \sum_{i=1}^n \left[I(Z_i=2)\frac{1}{\pi_2} - I(Z_i=3)\frac{1}{1-\pi_1-\pi_2}\right]\bigg|_{\hat{\pi_1},\hat{\pi_2}} = 0 \\ \frac{\partial l}{\partial \mu_1}\bigg|_{\hat{\mu_1},\hat{\sigma_1^2}} &= \sum_{i=1}^n \left[I(Z_i=1)\frac{y_i-\mu_1}{\sigma_1^2}\right]\bigg|_{\hat{\mu_1},\hat{\sigma_1^2}} = 0 \\ \frac{\partial l}{\partial \mu_2}\bigg|_{\hat{\mu_2},\hat{\sigma_2^2}} &= \sum_{i=1}^n \left[I(Z_i=2)\frac{y_i-\mu_2}{\sigma_2^2}\right]\bigg|_{\hat{\mu_2},\hat{\sigma_2^2}} = 0 \\ \frac{\partial l}{\partial \mu_3}\bigg|_{\hat{\mu_3},\hat{\sigma_3^2}} &= \sum_{i=1}^n \left[I(Z_i=3)\frac{y_i-\mu_3}{\sigma_3^2}\right]\bigg|_{\hat{\mu_3},\hat{\sigma_3^2}} = 0 \\ \frac{\partial l}{\partial \sigma_1^2}\bigg|_{\hat{\mu_1},\hat{\sigma_1^2}} &= \sum_{i=1}^n \left[I(Z_i=1)\left(-\frac{1}{2}\frac{1}{\sigma_1^2} + \frac{(y_i-\mu_1)^2}{2(\sigma_1^2)^2}\right)\right]\bigg|_{\hat{\mu_1},\hat{\sigma_1^2}} = 0 \\ \frac{\partial l}{\partial \sigma_2^2}\bigg|_{\hat{\mu_2},\hat{\sigma_2^2}} &= \sum_{i=1}^n \left[I(Z_i=2)\left(-\frac{1}{2}\frac{1}{\sigma_2^2} + \frac{(y_i-\mu_2)^2}{2(\sigma_2^2)^2}\right)\right]\bigg|_{\hat{\mu_2},\hat{\sigma_3^2}} = 0 \\ \frac{\partial l}{\partial \sigma_3^2}\bigg|_{\hat{\mu_3},\hat{\sigma_3^2}} &= \sum_{i=1}^n \left[I(Z_i=3)\left(-\frac{1}{2}\frac{1}{\sigma_3^2} + \frac{(y_i-\mu_3)^2}{2(\sigma_3^2)^2}\right)\right]\bigg|_{\hat{\mu_3},\hat{\sigma_3^2}} = 0 \end{split}$$

Hence, we can conclude that:

$$\begin{split} \hat{\pi_1} &= \frac{\sum_{i=1}^n I(Z_i = 1)(1 - \hat{\pi_2})}{\sum_{i=1}^n [I(Z_i = 1) + I(Z_i = 3)]} \\ \hat{\pi_2} &= \frac{\sum_{i=1}^n I(Z_i = 2)(1 - \hat{\pi_1})}{\sum_{i=1}^n [I(Z_i = 2) + I(Z_i = 3)]} \\ \hat{\mu_1} &= \frac{\sum_{i=1}^n I(Z_i = 1)y_i}{\sum_{i=1}^n I(Z_i = 1)} \\ \hat{\mu_2} &= \frac{\sum_{i=1}^n I(Z_i = 2)y_i}{\sum_{i=1}^n I(Z_i = 2)} \\ \hat{\mu_3} &= \frac{\sum_{i=1}^n I(Z_i = 3)y_i}{\sum_{i=1}^n I(Z_i = 3)} \\ \hat{\sigma_1^2} &= \frac{\sum_{i=1}^n I(Z_i = 1)(y_i^2 - \hat{\mu_1^2} + 2\hat{\mu_1}y_i)}{\sum_{i=1}^n I(Z_i = 1)} \\ \hat{\sigma_2^2} &= \frac{\sum_{i=1}^n I(Z_i = 2)(y_i^2 - \hat{\mu_2^2} + 2\hat{\mu_2}y_i)}{\sum_{i=1}^n I(Z_i = 2)} \\ \hat{\sigma_3^2} &= \frac{\sum_{i=1}^n I(Z_i = 3)(y_i^2 - \hat{\mu_3^2} + 2\hat{\mu_3}y_i)}{\sum_{i=1}^n I(Z_i = 3)} \end{split}$$

Then given initial guess  $\pi_1^{(0)}, \pi_2^{(0)}, \mu_1^{(0)}, \mu_2^{(0)}, \sigma_1^{(0)}, \sigma_2^{(0)}$ , we define a Q function by  $Q(\Theta; \Theta^{(t)}) = E_{\mathbf{\Theta}^{(t)}} \big( l(\mathbf{\Theta} | \mathbf{Y}, \mathbf{Z}) | \mathbf{Y} \big)$ :

$$Q(\Theta; \Theta^{(t)}) = E_{\pi_1^{(t)}, \pi_2^{(t)}, \mu_1^{(t)}, \mu_2^{(t)}, \mu_3^{(t)}, \sigma_1^{2(t)}, \sigma_2^{2(t)}, \sigma_3^{2(t)}} \left( l(\pi_1, \pi_2, \mu_1, \mu_2, \mu_3, \sigma_1, \sigma_2, \sigma_3 | \mathbf{Y}, \mathbf{Z}) | \mathbf{Y} \right)$$

$$= \sum_{i=1}^n \left[ I(Z_i = 1) \left[ \log \pi_1^{(t)} - \log \sqrt{2\pi} - \frac{1}{2} \log \sigma_1^{2(t)} - \frac{(y_i - \mu_1^{(t)})^2}{2\sigma_1^{2(t)}} \right] + I(Z_i = 2) \left[ \log \pi_2^{(t)} - \log \sqrt{2\pi} - \frac{1}{2} \log \sigma_2^{2(t)} - \frac{(y_i - \mu_2^{(t)})^2}{2\sigma_2^{2(t)}} \right] + I(Z_i = 3) \left[ \log(1 - \pi_1^{(t)} - \pi_2^{(t)}) - \log \sqrt{2\pi} - \frac{1}{2} \log \sigma_3^{2(t)} - \frac{(y_i - \mu_3^{(t)})^2}{2\sigma_3^{2(t)}} \right] \right]$$

**(3)** 

(4)