Домашнее задание 13

Дедлайн: 2025-03-16, 23:59. Оцениваемые задачи:

- 1. Неправильный кубик выпадает с вероятностью 0.5 шестеркой вверх. Остальные пять граней выпадают равновероятно. Случайная величина X остаток от деления номера грани на два, Y остаток от деления номера грани на три.
 - а) Найдите $\mathbb{E}(Y \mid X)$, $\mathbb{V}ar(X \mid Y)$ и $\mathbb{P}(X = 1 \mid Y)$.
 - б) Найдите $\mathbb{C}\mathrm{ov}(\mathbb{E}(Y\mid X),\mathbb{E}(X\mid Y)),\mathbb{C}\mathrm{ov}(\mathbb{E}(Y\mid X),X).$
- 2. Цена литра молока, X, распределена равномерно на отрезке [1;2]. Количество молока, которое дает корова Мурка, Y, распределено экспоненциально с $\lambda=1$. Надои не зависят от цены. Величина S выручка кота Матроскина от продажи всего объема молока.
 - а) Найдите $\mathbb{E}(S \mid X)$, $\mathbb{V}ar(S \mid X)$.
 - б) Найдите функцию плотности величины $\mathbb{V}\mathrm{ar}(S\mid X)$

Бесценные задачи в удовольствие:

3. Рассмотрим независимые равномерные случайные величины $X_1 \sim \mathrm{Unif}[0;1], \, X_2 \sim \mathrm{Unif}[-1;2]$ и $Y_i = X_i^2.$

Найдите $\mathbb{E}(X_1 \mid Y_1)$ и $\mathbb{E}(X_2 \mid Y_2)$.

4. Величина X равномерна на отрезке [0;1]. Определим событие $A=\{X>0.1\}$, величину $Y=X^2$ и сигма-алгебру $\mathcal{F}=\sigma(A)$.

Найдите $\mathbb{E}(Y\mid \mathcal{F})$, $\mathbb{E}(I_A\mid \sigma(Y))$ и $\mathbb{E}(I_A+Y\mid Y-I_A)$.

5. Кот Матроскин ловит карасей до тех пор, пока не поймает карася длиной более полуметра. Длины карасей независимы и равномерны от 0 до 1 метра. Обозначим буквой N количество пойманных карасей, а буквой S — их суммарную длину.

Найдите $\mathbb{E}(S\mid N)$, $\mathbb{V}\mathrm{ar}(S\mid N)$, $\mathbb{E}(S)$, $\mathbb{V}\mathrm{ar}(S)$.

- 6. Величины $X_1,...,X_{100}$ независимы и равномерны на [0;1]. Обозначим $L=\max\{X_1,X_2,\ldots,X_{80}\}$, $R=\max\{X_{81},X_{82},\ldots,X_{100}\}$ и $M=\max\{X_1,\ldots,X_{100}\}$.
 - а) Найдите $\mathbb{P}(L>R\mid L),\,\mathbb{P}(L>R\mid R)$ и $\mathbb{P}(L>R\mid M).$
 - б) Найдите $\mathbb{E}(X_1\mid L)$ и $\mathbb{E}(X_1\mid \min\{X_1,\ldots,X_{100}\}).$