Raw data from run search.py shows:

-----Solving Air Cargo Problem 1 using breadth_first_search... Expansions Goal Tests New Nodes 43 56 180 Plan length: 6 Time elapsed in seconds: 0.06741007995344729 Solving Air Cargo Problem 1 using depth_first_graph_search... Expansions Goal Tests New Nodes 21 22 84 Plan length: 20 Time elapsed in seconds: 0.023054672229865264 Solving Air Cargo Problem 1 using uniform_cost_search... Expansions Goal Tests New Nodes 55 57 224 Plan length: 6 Time elapsed in seconds: 0.057928661265964645 Solving Air Cargo Problem 1 using greedy_best_first_graph_search with h_1... Expansions Goal Tests New Nodes 28 Plan length: 6 Time elapsed in seconds: 0.008321193128550015

Expansions Goal Tests New Nodes *55 57 224* Plan length: 6 Time elapsed in seconds: 0.05750736750927128 _____ Solving Air Cargo Problem 1 using astar search with h ignore preconditions... Expansions Goal Tests New Nodes 57 55 224 Plan length: 6 Time elapsed in seconds: 0.05828529848996208 ______ Solving Air Cargo Problem 1 using astar search with h pg levelsum... Expansions Goal Tests New Nodes *39 41 158* Plan length: 6 Time elapsed in seconds: 1.1064087452578795 _____ **************second problem********** _____ Solving Air Cargo Problem 2 using breadth first search... Expansions Goal Tests New Nodes 3343 4609 30509 Plan length: 9 Time elapsed in seconds: 13.254542506282203 Solving Air Cargo Problem 2 using depth_first_graph_search... Expansions Goal Tests New Nodes

624 625 5602

Solving Air Cargo Problem 1 using astar_search with h_1...

Solving Air Cargo Problem 3 using uniform_cost_search...

Expansions Goal Tests New Nodes

18234 18236 159707

Plan length: 12 Time elapsed in seconds: 118.27142042705127

Solving Air Cargo Problem 2 using greedy_best_first_graph_search with $h_1...$

Expansions Goal Tests New Nodes

990 992 8910

Plan length: 17 Time elapsed in seconds: 3.857492383614393

Solving Air Cargo Problem 2 using astar_search with h_1...

Expansions Goal Tests New Nodes

4852 4854 44030

Plan length: 9 Time elapsed in seconds: 19.17898416376781

Solving Air Cargo Problem 2 using a star_search with h_ignore_preconditions...

Expansions Goal Tests New Nodes

1450 1452 13303

Plan length: 9 Time elapsed in seconds: 5.897049866094269

Solving Air Cargo Problem 2 using a star_search with h_pg_levelsum...

Expansions Goal Tests New Nodes

1129 1131 10232

Plan length: 9 Time elapsed in seconds: 432.1446043353745

Solving Air Cargo Problem 3 using breadth first search...

Expansions Goal Tests New Nodes

14663 18098 129631

Plan length: 12 Time elapsed in seconds: 67.86497047608248

Solving Air Cargo Problem 3 using depth_first_graph_search...

Expansions Goal Tests New Nodes

408 409 3364

Plan length: 392 Time elapsed in seconds: 4.802690840683738

Solving Air Cargo Problem 3 using uniform cost search...

Expansions Goal Tests New Nodes

18234 18236 159707

Plan length: 12 Time elapsed in seconds: 118.27142042705127

Solving Air Cargo Problem 3 using greedy_best_first_graph_search with h_1...

Expansions Goal Tests New Nodes

5605 5607 49360

Plan length: 22 Time elapsed in seconds: 25.651536182770673

solving Air Cargo Problem 3 using a tar_search with h $_1...$

Expansions Goal Tests New Nodes

18234 18236 159707

Plan length: 12 Time elapsed in seconds: 85.09576402212895

Solving Air Cargo Problem 3 using astar_search with h_ignore_preconditions...

Expansions Goal Tests New Nodes

5040 5042 44944

Plan length: 12 Time elapsed in seconds: 24.690193092116573

Solving Air Cargo Problem 3 using astar search with h pg levelsum...

Expansions Goal Tests New Nodes

2026 2028 17933

Plan length: 12 Time elapsed in seconds: 1781.885962297031

Summary:

	problem 1					problem 2					problem 3				
	expansion	goal tests	new nodes	plan length	time	expansion	goal tests	new nodes	plan length	time	expansion	goal tests	new nodes	plan length	time
breadth_first_search	43	56	180	6	0.06	3343	4609	30509	9	13.25	14663	18089	129631	12	67.8
depth_first_graph_search	21	22	84	20	0.023	624	625	5602	619	7.28	408	409	3364	392	4.8
uniform_cost_search	55	57	224	6	0.057	18234	18236	159707	12	118.27	18234	18236	159707	12	118.27
greedy_best_first_graph_search with h_1	7	9	28	6	0.0083	990	992	8910	17	3.85	5605	5607	49360	22	25.65
astar_search with h_1	55	57	224	6	0.057	4852	4852	44030	9	19.17	18234	18236	159707	12	85.1
astar_search with h_ignore_preconditions	55	57	224	6	0.057	1450	1452	13303	9	5.89	5040	5042	44944	12	24.69
astar_search with h_pg_levelsum	39	41	158	6	1.1	1139	1131	10232	9	432.144	2026	2028	17933	12	1781.88

Analysis

First let's talk about each problem optimal plan starting from problem 1:

- 1. Load(C1, P1, SFO)
- 2. Fly(P1, SFO, JFK)
- 3. Unload(C1, P1, JFK)
- 4. Load(C2, P2, JFK)
- 5. Fly(P2, JFK, SFO)
- 6. Unload(C2, P2, SFO)

Plan length: 6 steps

Problem 2 optimal plan:

- Load(C1, P1, SFO)
- Load(C2, P2, JFK)
- 3. Load(C3, P3, ATL)
- 4. Fly(P2, JFK, SFO)
- 5. Unload(C2, P2, SFO)
- 6. Fly(P1, SFO, JFK)
- 7. Unload(C1, P1, JFK)
- 8. Fly(P3, ATL, SFO)
- 9. Unload(C3, P3, SFO)

Plan length: 9 steps

Problem 3 optimal plan:

- 1. Load(C1, P1, SFO)
- 2. Load(C2, P2, JFK)
- 3. Fly(P2, JFK, ORD)
- 4. Load(C4, P2, ORD)
- 5. Fly(P1, SFO, ATL)
- 6. Load(C3, P1, ATL)
- 7. Fly(P1, ATL, JFK)
- 8. Unload(C1, P1, JFK)
- 9. Unload(C3, P1, JFK)
- 10. Fly(P2, ORD, SFO)
- 11. Unload(C2, P2, SFO)
- 12. Unload(C4, P2, SFO)

Plan length: 12 steps

The goal is to get the number of minimum actions to reach the goal, so in my opinion the optimal search algorithm must give us the least plan length.

For problem 1 "which had the least number of goals and preconditions":

greedy_best_first_graph_search with h_1 is the optimal best search as it had the right plan length "minimum" and also the minimum time taken for execution, also the least number of goal tests and expansions which makes sense as this type of search starts with the node that is the nearest to the goal

For problem 2 and problem 3 "both have more conditions and goals than problem 1":

greedy_best_first_graph_search with h_1 is still the algorithm recording the least time, depth_first_graph_search records the least number of goal tests and expansions which means less memory consumption, but both aren't optimal "plan length of both is bigger than 9" which leads us to

choose another search algorithm that is optimal with the least possible time for execution leading us to astar_search with h_ignore_preconditions

Comparing algorithms:

breadth_first_search: This is a good un-informed algorithm that takes suitable time to reach an optimal plan and I consider it as one of the best un-informed algorithm as it represent a balanced approach from the perspective of time, plan length and complexity "expansion and new nodes", as the BFS heuristic searches the each level for the needed target so when we have a lot of nodes and expansions this algorithm will prove useful, but when compared to informed algorithms specially to astar_search with h_ignore_preconditions, it loses.

<u>depth_first_graph_search:</u> This is one of the fastest algorithms :second fastest algorithm, as it searches in depth until reaching a goal, so it doesn't lead to un-needed expansions in each level, which leads to less complexity, but un-fortunately it doesn't give us the an optimal plan for our cargo transfer, so we can't use it.

<u>uniform_cost_search:</u> This an un-informed search algorithm and it isn't an optimal as it has more complexity than BFS and takes more time but reaches an optimal plan for cargo transfer

greedy best first graph search with h 1: This is the fastest algorithm and that is expected as it choses the node that is the nearest to the goal state using H_1 heurestic, so it takes less time to get to the goal and also it's the second algorithms in minimum number of nodes and minimum complexity but it doesn't provide an optimal cargo transfer plan, so we can't use it.

<u>astar_search with h_1:</u> This is also a good search algorithm that gives an optimal cargo transfer plan but BFS is better in all aspects "time, complexity and memory consumption"

<u>astar_search with h_ignore_preconditions:</u> This informed heuristic is superior to BFS in all aspects which is expected as it's an informed algorithm giving the optimal cargo transfer plan, so it's our best choice here

<u>astar_search with h_pg_levelsum</u>: This algorithm takes a lot of time and sometimes it timeouts so it can't be considered

Note that the best search algorithm is an informed search type and this is expected as according to Norvig and Russell's textbook at page 92:

'Informed search strategy—one that uses problem-specific knowledge beyond the definition of the problem itself—can find solutions more efficiently than can an uninformed strategy'[1]

SO it was expected that Astar search informed with h_ignore heuristic will be the best algorithm to choose

Summary:

DFS is the best algorithm from memory consumption point of view, greedy_best_first_graph_search is the least time consuming but both don't give us an optimized plan so the best algorithm here is the astar_search with h_ignore_preconditions as it's optimal and takes the least time and also less complex.

References:

- Video lessons from AIND
- $\bullet \ \ Norvig \ and \ Russell's \ textbook \ `Artificial Intelligence A \ Modern \ Approach \ (3rd \ Edition)'[1]$