DOCUMENT RESUME

ED 247 460

CE 039 561

AUTHOR - Mislevy, Robert J.; Bock, R. Darrell

TITLE Item Operating Characteristics of the Armed Services

Vocational Aptitude Battery (ASVAB), Form 8a.

SPONS AGENCY Office of Naval Research, Washington, D.C.

Psychological Sciences Div.

PUB DATE 1 Mar 84

CONTRACT N00014-83-C-0283

NOTE 73p.

PUB TYPE Reports - Research/Technical (143) -- Statistical

Data (110)

EDRS PRICE MF01/PC03 Plus Postage.

DESCRIPTORS Adolescents; Aptitude Tests; Malitary Personnel;

Military Training; National Surveys; *Occupational Tests; Postsecondary Education; Sampling; Scores; Secondary Education; *Statistical Analysis; Test

Interpretation; 'Test Items; *Test Norms; *Vocational

Aptitude; Vocational Education; *Vocational

Evaluation; Young Adults

IDENTIFIERS *Armed Services Vooational Aptitude Battery; *Item

Parameters; Profile of American Youth; Project

ABSTRACT

The Armed Services Vocational Aptitude Battery (ASVAB), a battery of 10 vocational tests, was administered to a national probability sample of nearly 12,000 young people, 15 to 23 years of age. Score distributions from the study were needed by the Armed Services to set performance levels for accepting and assigning recruits. Three psychometric models designed to provide information about the operating characteristics of the tests and the items of which they are comprised were fit to the eight "power" tests of the ASVAB, based on-a random sample of 1,187 respondents from the national study. The models in question were the one-, two-, and three-parameter item response models, that were fit to the data by the marginal estimation approach by means of the BILOG computer program. Results for each model and test included indices of overall goodness-of-fit, item parameter estimates and associated standard errors, item information indices, and test information and standard error curves. Appendixes contain the results of the analyses. Appendix A contains classical item statistics for each of the tests, including item percents-correct and item-test correlation, both Pearson and biserial. Appendixes B through J present results from the BILOG runs under the one-, two-, and three-parameter models. (YLB)

ITEM OPERATING CHARACTERISTICS OF THE ARMED SERVICES VOCATIONAL APTITUDE BATTERY (ASVAB), FORM 8A

Robert J. Mislevy
National Opinion Research Center

R. Darrell Bock
University of Chicago

March 1, 1984

ABSTRACT

The Profile of American Youth study carried out in 1980 by the Department of Defense with the cooperation of the Department of Labor obtained responses from a national probability sample of young people between the ages of 16 and 23 to the tests of the Armed Services Vocational Aptitude Battery (ASVAB). This report contains the results of item analyses of the eight power tests of the ASVAB, based on a random sample of 1187 respondents from the Profile study. The 1-, 2-, and 3-parameter logistic ogive item response models were fit to the data by marginal estimation methods. Indices of overall fit, item parameter estimates and their standard errors, item information indices, and test information and standard error curves are presented.

US DEPARTMENT OF EDUCATION
NATIONAL INSTITUTE OF EDUCATION
FOLIATIONAL RESOURCES INFORMATION

ENTRE ERE

The largest that there reproduced as a consequence of the present of congruence of the present of congruence of the present of the congruence of the present of the congruence of

 Provinced program of a state of a trendency control program of survey impression of to say the prostout.

CED396

ERIC

This research was sponsored by the Psychological Services Division, Office of Naval Research, under Contract No. N00014-83-C-028J.

INTRODUCTION

The Profile of American Youth is the title given to a large-scale social research project sponsored by the Department of Defense with the cooperation of the Department of Labor. Its purposes were to assess the vocational aptitudes of contemporary American Youth and, at the same time, establish current national norms for the Armed Services Vocational Aptitude Battery (ASVAB). To achieve these goals, the National Opinion Research Center (NORC) administered Form 8A of the ASVAB during the summer of 1980 to a national probability sample of nearly 12,000 men and women, ages 16 to 23. This paper reports the results attained when three psychometric models designed to provide information about the operating characteristics of the tests and the items of which they are comprised were fit to the eight "power" tests of the ASVAB battery, using responses from a 10-percent random sample of the Profile data. The models in question were the one-, two-, and threeparameter item response models (Birnbaum, 1968; Lord, 1980), which were fit to the data by the marginal estimation approach described by Bock and Aitkin (1981) by means of the BILOG computer program (Mislevy and Bock, 1983). Results for each model and test include the following:

- Indices of overall goodness-of-fit
- Item parameter estimates and associated standard errors
- Item information indices
- Test information curres

All calculations utilized Profile case weights which account for systematic oversampling of certain demographic groups such as blacks, Hispanics, and poor non-Black, non-Hispanics. The resulting estimates of item parameters and population distributions therefore approximate the values that would be obtained in a full census of the target population, namely the

contemporary youth population. In this way the current results provide information beyond that present in previously available analyses of the ASVAB, based of necessity on data from samples of convenience such as recent service inductees.

THE PROFILE OF AMERICAN YOUTH

During the spring and summer of 1980, the National Opinion Research Center (NORC) administered a battery of ten vocational tests to a national probability sample of nearly 12,000 young people, 15 to 23 years of age. The tests, the Armed Services Vocational Aptitude Battery (ASVAB), Form 8A, were the latest in a long series of aptitude and vocational tests developed by the Armed Services for purposes of selecting recruits and assigning them to military occupational specialties. A basic purpose of this administration of the ASVAB by NORC was to obtain normative information in a representative contemporary civilian sample. The score distributions from this study were needed by the Armed Services to set performance levels for accepting and assigning recruits. The Profile of American Youth used for its sample the 12,686 young people who completed the Round I 1979 first annual interview of the National Longitudinal Survey of Labor Force Behavior, Youth Survey. sample was composed of three independent probability samples. Two of these samples were designed to cover the non-institutionalized civilian population born in the years 1957 through 1964. The third sample was designed to cover those born in 1957 through 1961 and serving in the military as of September 30, 1978.

The first of the two civilian samples was cross-sectional, designed to yield the proper proportions of various racial, ethnic, and income groups in the 1957 through 1964 cohort. The second was a supplemental sample designed

to oversample Hispanic, Black, and economically disadvantaged non-Black, non-Hispanic youth. The military sample of the 1957 through 1961 cohort, stratified by branch of military service and geographic location, sampled females at six times the rate of males.

Because not all subjects in the final sample had the same probability of being selected for the study, case weights were assigned to the subjects. The weighted data properly reflect the actual distributions of the oversampled groups in the population. Of the 12,686 young people in the Profile sample, 11,914 were successfully tested with the ASVAB. Test conditions were altered for 36 of these subjects because of handicaps or language barriers; these data were not included in our consideration. Of the remaining 11,878 subjects, a 10 percent simple random sample of 1,187 subjects has been selected for the present analyses.

The reader interested in further information about the Profile study is referred to a series of reports prepared by NORC and the Department of Defense. See Sheatsley (1980) for a description of pretest procedures and results, Frankel and McWilliams (1981) for sampling considerations, McWilliams (1980) for field administration procedures, Bock and Mislevy (1981) for data quality analyses, and Department of Defense (1982) and Bock and Moore (1983) for discussions of results.

THE ARMED SERVICES VOCATIONAL APTITUDE BATTERY (ASVAB) J

The ASVAB 8A consists of ten tests, administered and timed separately. Briefly, these are as follows:

General Science (20 items; 11 minutes). Items are drawn from biology, medicine, chemistry, and physics. This test measures basic factual knowledge at a level appropriate to secondary school general science courses.

Arithmetic Reasoning (30 items; 36 minutes). Often called "word problems," the items in this test require subjects to

use arithmetic skills to solve problems described in short verbal passages. Advanced mathematics is not required.

Word Knowledge (35 items; 11 minutes). Essentially a vocabulary test. The subject is presented a word and asked to choose which of four other words is closest in meaning.

Paragraph Comprehension (15 items; 13 minutes). Designed to measure how well subjects can acquire information from a written passage. Subjects are asked to read short paragraphs and answer questions about them.

Numerical Operations (50 items; 3 minutes). This test covers the basic arithmetic operations of addition, subtraction, multiplication, and division, presenting simple problems which subjects are asked to solve as quickly as possible. Scores depend to a great extent on speed and accuracy.

Coding Speed (84 items; 7 minutes). Like Numerical Operations, this test emphasizes speed and accuracy. Given the code numbers for key words at the top of a page in the test booklet, subjects are asked to mark spaces on their answer sheet corresponding to the code numbers of the words as quickly as possible.

Auto and Shop Information (25 items; 11 minutes). This test measures subjects' specific knowledge of tools and terms associated with the repair and maintenance of vehicles.

Mathematics Knowledge (25 items, 24 minutes). The questions in this test concern topics that are normally taught in high school classes such as algebra, geometry, and trigonometry.

Mechanical Comprehension (25 items; 19 minutes). Items in this test show pictures related to basic machines such such as pulleys, gears, levers, and wedges. To answer the questions, subjects must visualize how the pictured objects would operate.

Electronics Information (20 items; 9 minutes). This test measures subjects' familiarity with electrical equipment, knowledge of electronics terminology, and ability to solve simple electrical problems.

All subtests are paper and pencil tests, in multiple-choice format. The items in all tests offer four alternatives from which the subject must choose their answers, except for Coding Speed which offers five alternatives. Subjects read the questions from test booklets and responded on

machine-readable answer sheets. Subjects were instructed to make their best
a
response to each item, but random guessing was discouraged.

Two of the ten ASVAB 8A subtests, Numerical Operations and Coding Speed, are speeded tests in which performance depends mainly on subjects' speed and accuracy at very simple tasks in a limited amount of time. The remaining eight are power tests, in which performance depends mainly on subjects' knowledge or reasoning abilities rather than on time limitations. The analyses reported here concern the power tests only.

THE ANALYSES

A power (unspeeded) mental test demands knowledge or reasoning ability from a subject. Although time limitations are set and observed, it is assumed that subjects would answer few additional items correctly if given more generous time limits.

The models used in the present analysis of the ASVAB 8A power tests are based on Birn' lum's (1968) 3-parameter logistic item response theoretic (IRT) model, which provides a mathematical expression for the probability that a given subject will respond correctly to a given test item. When the model is fitted to the data for a given power test, it is capable of accounting for the following facts:

- 1. Some subject perform better than others on the items in that test. The ability, or scale score, of subject i (θ_i) is his or her value on an unobservable variable assumed to account for all non-random variation among subjects in performance on of correct response.
- 2. Some items are easier than others. The threshold parameter of item j (b_j) indicates its level of difficulty. A subject whose ability parameter has the same value as an item's threshold parameter has 50-50 chances of responding correctly, aside from guessing among the alternatives.

- 3. Some items measure the underlying ability more accurately than others. The slope parameter of item j (a_j) is directly related to the reliability with which item j measures ability.
- 4. Because the items are multiple-choice, subjects will occasionally respond correctly to an item by guessing among the alternatives. The lower asymptote parameter of item j (c_j) is the probability of a correct response from even the subjects of lowest ability.

Under the Birnbaum 3-parameter item response model, the probability of a correct response to item j from a subject with ability C , θ is given by the following function of θ , a_{j} , b_{j} , and c_{j} :

$$P_{j}(\theta) = c_{j} + (1 - c_{j})/\{1 + \exp[-1.7a_{j}(\theta - b_{j})]\}$$

where $\exp(x)$ denotes the raising of the base of the natural logarithms to the x'th power. Seen as a function of \mathfrak{A}_{p} with the parameters of the item fixed, this expression is referred to as the response curve of item j_{a} .

We have also fit to the ASVAB data two submodels of the 3-parameter model. They are the 2-parameter logistic model, in which all lower asymptote parameters c_j are constrained to be zero, and the 1-parameter logistic model, in which all c's are zero and all a's are constrained to be equal to one another. This latter model is mathematically equivalent to Rasch's (1960) IRT model for dichotomous test items.

The origin and scale of the ability variable in an IRT model may be chosen arbitrarily. In our analyses the scale has been set so that the mean of subject abilities in the youth population is zero and the standard deviation is one.

Birnbaum (1968) defines the "information" that item j provides about subjects at various levels of ability by

(1)
$$[P_{j}(\theta)]^{2}/\{P_{j}(\theta)[1-P_{j}(\theta)]\}$$
,

where $P_j^*(\theta)$ is the derivative of the response curve for item j. For the 3-parameter logistic model, the information function takes the following form:

$$I_{j}(\theta) = 1.7^{2}a_{j}^{2}\psi[1.7a_{j}(\theta - b_{j})]$$
(2)
$$-1.7^{2}a_{j}^{2}P_{j}^{2}(\theta)\psi[1.7a_{j}(\theta - b_{j}) - \log c_{j}],$$
where
$$\psi(x) = \exp(x)/[1 + \exp(x)]^{2}.$$

The maximum value of an item's information curve under the the 3-parameter model is given by

$$\frac{1.7^{2}a_{j}^{2}}{8(1-c_{j})^{2}}[1-20c_{j}-8c_{j}^{2}+(1+8c_{j})^{-3}],$$

which occurs at the following level of ability:

$$\theta_{j}^{*} = b_{j} + (1.7a_{j})^{-1} \log\{[1 + (1 + 8c_{j})^{1/2}]/2\}$$
.

Obvious simplifications give the information functions of the 1- and 2-parameter models.

Examination of (1) reveals the dependence of the information curve upon the values of the item parameters. An item provides most information about subjects in the neighborhood of its threshold; the maximum value is attained at the threshold if c is zero and at a slightly higher level of ability when c is greater than zero. At their most informative points, items with large values of a provide more information than items with small values of a. The greater the value of c, the less total area under the information curve.

The total amount of information provided by a collection of items, given by the sum of their individual item information curves, is called the test information curve. The standard error of estimation for the ability of a

subject at a given value of is the square root of the reciprocal of the test information at that point. A test information curve, then, reveals the degree of measurement precision provided at each point along the ability scale; measurement is most precise where the test information curve attains its maximum, and increasingly less precise where the test information is lower.

The method by which item parameters have been estimated is based on the marginal maximum likelihood approach described by Bock and Aitkin (1981). Let \mathbf{x}_{ij} denote the response of subject i to item j, taking the value 1 if correct and 0 if not, and let $g(\theta)$ be the density of the ability variable in a population of interest. The marginal probability of observing response patterns $\underline{\mathbf{x}}_i = (\mathbf{x}_{i1}, \mathbf{x}_{i2}, \dots, \mathbf{x}_{in})$ for N randomly-selected subjects indexed by i is then given as

$$L = \prod_{i \in \theta} \prod_{j} P_{j}(\theta)^{x_{ij}} [1 - P_{j}(\theta)]^{1-x_{ij}} g(\theta) d\theta$$

Marginal maximum likelihood estimates of a, b, and c are the values that maximize this expression for given item responses. Standard errors of estimation may be obtained as the square roots of the diagonal elements of the following approximation of the Fisher information matrix:

(3)
$$I \approx \sum_{i} \left[\frac{\partial \log L(\underline{x}_{i})}{\partial \xi} \Big|_{\xi} = \hat{\xi} \right] \left[\frac{\partial \log L(\underline{x}_{i})}{\partial \xi'} \Big|_{\xi} = \hat{\xi} \right] ,$$

where ξ is the vector of all item parameters estimated under a given model, the summation runs over subjects, and

$$\frac{\partial \log L(\underline{x_i})}{\partial \xi} = \left[\int_{\theta} \frac{\partial \log P(\underline{x_i}|\theta)}{\partial \underline{\xi}} P(\underline{x_i}|\theta) g(\theta) d(\theta) \right] \left[\int_{\theta} P(\underline{x_i}|\theta) g(\theta) d(\theta) \right]^{-1}.$$

The fit of nested models, such as the 1- vs. 2- and the 2- vs. 3- parameter models, may be compared by means of likelihood ratio chi-square statistics. If L is the maximum likelihood attainable under the less restrictive model and L_0 is the maximum under the more restrictive model, then under the assumption that the more restrictive model is correct the quantity

$$\chi^2 = -2 \log(L_0/L_1)$$

will be distributed approximately chi-square for large samples, with degrees of freedom equal to the number of additional parameters in the less restrictive model.

In addition to the overall indices of fit, rough approximations of fit have been provided for each item. These indices are obtained by dividing the ability variable into ten fractiles, the middle eight of equal length, in a manner that ensures about 5 percent of the calibration sample lies within each of the extreme fractiles. For the subjects in each fractile, then, the number of correct responses to a given item is accumulated over subjects and compared with an expectation based on the simplifying assumption that all subjects in the fractile have the same ability. An index with the appearance of a chi-

$$\chi_{j}^{2} \approx \sum_{k} [R_{jk} - N_{jk}P_{j}(\theta_{k})]^{2}/\{N_{jk}P_{j}(\theta_{k})[1 - P_{j}(\theta_{k})]\}$$
,

where summation runs over fractiles k; N_{jk} and R_{jk} are the numbers of attempts and corrects to item j from subjects in fractile k; and $P_{j}(\theta_{k})$ is the probability of a correct response ability associated with fractile k.

The computations reported here were performed with the BILOG computer program (Mislevy and Bock, 1983), which extends the Bock-Aitkin procedure in a

number of minor ways (see Mislevy and Bock, 1982). In particular, the following extensions were in effect during the course of our work:

1. Prior distributions on item parameters. To enhance the stability of item parameter estimation, mild Bayesian prior distributions were imposed in the 2- and 3-parameter solutions. For both the 2- and 3-parameter solutions, lognormal priors with mean 0 and standard deviation 1 were assumed for slope parameters. For the 3-parameter solution, normal priors with mean 0 and standard deviation 2 were additionally assumed for threshold parameters, and beta priors with parameters 5 and 17 were assumed for asymptote parameters. The prior on asymptotes may be interpreted as an expectation of .2 for asymptotes, with the weight of 20 observed responses from low-ability subjects.

Instead of maximum likelihood estimates, BILOG will in these runs produce Bayes modal estimates of item parameters; the likelihood of the sample will no longer be maximized, and differences between the likelihoods as evaluated at the item parameter estimates no longer follow chi-square distributions. Experience suggests, however, that when only mild priors such as those mentioned above are imposed, the effect is constrain item parameters to "reasonable" values without substantially reducing the likelihood as evaluated at the item parameter estimates. Differences are therefore reported as possibly useful evidence on comparative model fit.

Indicators of the precision of item parameter estimation are obtained for Bayes modal estimates by augmenting the approximation of the information matrix shown as (3) by the second derivatives of the priors for the parameters in question, evaluated at the Bayes modal estimates, then taking the square roots of the diagonal elements of the inverse matrix.

2. Omitted items were handled in one of two ways, depending on their locations in a subject's response vector. It was assumed that all omitted items appearing after a subject's last actual response in a subtest were not reached due to time limitations; such items have been treated as if they were not administered to the subject. Omitted items appearing before a subject's last actual response were treated as if the subject read the item and decided not to respond; they have been counted as incorrect under the 1- and 2-parameter models and fractionally correct under the 3-parameter model, with the fraction equal to the c value of the item in question.

- As suggested by Bock and Aitkin, empirical priors have been used for the distributions of subject ability parameters. In this way, item parameter estimates will not be bias due to the incorrect specification of the parametric form of the ability distribution, such as normality. The empirical distributions employed took the form of ten equally-spaced quadrature points from approximately minus four to plus four standard deviations around the mean of zero.
- 4. In addition to an item's maximum information value and the point at which this maximum is attained, BILOG optionally provides a number of population-dependent indices of item information. All are based on the "effectiveness" function, or the pointwise product of an item information curve and a population density function, assumed normal in the analyses reported here.

The "maximum effectiveness" and "point of maximum effectiveness" describe the height and location of the maximum of the effectiveness curve; they indicate the region of the ability variable where the item is providing most information about the population as a whole. The "average information" is the integral of the product with respect to the ability distribution; it provides a useful adjunct to maximum information when measurement within a particular population with a fixed test is contemplated. For example, an item with a lower maximum but occurring in a region with many subjects may be preferable to an item with a higher maximum but occurring in a region with few subjects. Finally, an index of item reliability is computed as

$$r = \sigma^2/[\sigma^2 + \overline{I}_j^{-1}] ,$$

where \overline{I}_j is the average information of item j and σ^2 is the population variance. This statistic remains invariant with a linear rescaling of the latent variable, and is thereby useful in comparisons of items from tests on different scales.

RESULTS

The results of the analyses described in the preceding section are Contained in a series of appendices to this report.

Appendix A contains classical items statistics for each of the tests, including item percents-correct and item-test correlations, both Pearson and biserial. All these values take case weights into account, so they approximate the values that would be obtained from the youth population at large.

Appendices B through J present results from the BILOG runs under the 1-, 2-, and 5-parameter models. Results within appendices are arranged by subject, with the contents of the appendices as follows:

- B: Item parameter estimates, 1-parameter model
- C: Item parameter estimates, 2-parameter model
- D: Iter parameter estimates, 3-parameter model
- E: Item information indices, 1-parameter model
- F: Item information indices, 2-parameter model
- G: Item information indices, 3-parameter model
- H: Test information curves, 1-parameter, model
- I: Test information curves, 2-parameter model
- J: Test'information curves, 3-parameter model

The scales upon which test information and standard error curves appear in Appendices H through J are the same for all subtests under a given model. In this way, the amount of information provided can be easily compared from one subtest to the next.

To facilitate the interpretation of these results, a few comments on the results in general are in order.

The values of the likelihood of the data obtained under each solution, as shown in Table 1, show strong evidence in all tests that the 2-parameter model fits the data appreciably better than the 1-parameter model. Furthermore, the 3-parameter model fits appreciably better than the 2-parameter model in all tests but two, namely Paragraph Comprehension and Electronics Knowledge.

TABLE 1
ASVAB 8A LOG LIKELIHOODS AND LOG LIKELIHOOD DIFFERENCES

•		LOG LIKELIHO	OD	DIFFERENCES					
TEST	1-P	2-P	3-P	2-P vs. 1-P	3-P vs. 2-P				
GS	20059.53	19863.10	19742.56	196.43	120.54				
AR	23360.74	23053.63	22900.57	307.11	153.06				
WK	22480.19	22003.62	21771.86	476.57	231.76				
PC	11570.42	11356.17	. 11338.76	214.25	17,41				
AS	21628.40	21275.61	21214.56	352.79	61.05				
MK	20495.99	20160.89	20107.64	335.10	53.25				
MC	21934.24	21683.18	21591.61	251.06	91.57				
EI	17442.33	17180.68	17163.50	261.65	17.18				

The result in Paragraph Comprehension can be explained by noting how easy the items are; over 70 percent of all responses were correct. Under such circumstances there is little information about the response probabilities of low ability subjects, and item response curves without nonzero lower asymptotes can be found to fit the bulk of the data just as well as response curves with nonzero lower asymptotes. The results in Electronics cannot be similarly explained, however, since that test is considerably more difficult than Paragraph Comprehension; about 55 percent responses were correct there. It would appear that in Electronics Information, to a greater extent than in the remaining tests, low levels of guessing were occurring.

It will be noted that even though the 2- and 3-parameter solutions fit
Paragraph Comprehension and Electronics Information nearly equally well, item
parameter estimates can vary considerably across models. This is particularly
true with hard items, when the presence of a nonzero lower asymptote can
require substantial changes in slopes and thresholds in order to capture the
observed marginal item percents-correct. Item 17 in Electronics Information,
for example, has a threshold of 3.654 and a slope of .162 under the 2-parameter

model, but a threshold of 2.764, a slope of .774, and an asymptote of .234 under the 3- parameter model. Despite the apparent discrepancies in item parameters, the 2- and 3-parameter response curves agree closely in the region of the ability scale where most of the data lie. Modeled probabilities of correct response for a subject at the mean of the population are .267 under the 2-p model and .254 under the 3-p model.

Effects of the same phenomenon appear in test information and standard error curves. Even though the item parameter estimates under each solution trace response curves that agree on the expected probabilities of correct response for most of the subjects, differences among models as to the processes that give rise to those probabilities have different implications about the information that is provided about subjects at various levels of ability. The effect is most pronounced in a comparison of information curves from the 2- and 3-parameter solutions, highlights of which are contained in Table 2. It may be seen that the region in which a test is maximally informative appears at substantially higher levels of ability under the 3-parameter model, usually higher by a full standard deviation or more.

TABLE 2
ASVAB 8A POINTS OF MAXIMUM INFORMATION

POINT 1-P	OF MAXIMUM 2-P	INFORMATION 3-P
-0.71	-1.00	0.92
-0.28	-0.57	0.64
-1.00	-1.14	0.21
-1.07	-1.14	-0.42
-0.28	-0.28	0.64
-0.14	-0.35	0.57
-0.28	-0.42	0.78
-0.28	-0.57	0.14
	1-P -0.71 -0.28 -1.00 -1.07 -0.28 -0.14 -0.28	-0.71 -1.00 -0.28 -0.57 -1.00 -1.14 -1.07 -1.14 -0.28 -0.28 -0.14 -0.35 -0.28 -0.42

An intuitive explanation for this finding can be based on the fact that items are most informative when a subject has a 50-50 chance of knowing the answer, aside from the possibility of answering the item correctly by means other than knowledge or ability; e.g., guessing randomly among alternatives. Under the 2-parameter model, percents-correct are taken at face value because it is assumed that only the ability of interest gives rise to correct responses. Under the 3-parameter model, however, the possibility of correct responses by reasons other than ability is taken into account and percents-correct are partially discounted. An item is no longer most informative at its 50-50 point of observed correct responses, but at some higher level at which there is a 50-50 chance of responding correctly after the possibility of chance success has been removed. Since follow-up interviews with a sample of the respondent's confirmed that most subjects did in fact guess at least occasionally (Bock and Mislevy, 1981), the information indices from the 3-parameter analyses may be better indicative of the regions where items and tests are more informative than indices from the 1- and 2-parameter analyses.

It should be noted that the ASVAB 8A is merely the latest in a long line of paper and pencil versions of the ASVAB. The test operating characteristics have evolved along lines dictated by the uses to which ASVAB scores are put (i.e., selection and classification), limitations on total testing time, and the restriction of administering exactly the same item set to each tested individual. The consequences of these constraints are examined in detail in Bock and Mislevy (1981), in terms of item content, item characteristics, sex and racial/ethnic group biases, and differential reliabilities among subpopulations defined by sex, level of education, and racial/ethnic group membership. Highlights of these results, however, are discernable from

the item and test operating characteristics presented in the Appendices of this report. Comments on specific tests in the ASVAB 8A battery follow.

General Science (GS). GS is among the more difficult of the subtests, as indicated by the fact that its point of maximum information (under the 3-parameter model) lies about a standard deviation above the population mean. This finding is a natural reflection of the use to which GS scores are put, namely for selection and classification into technical training courses. While the peak of the information curve lies far above the population mean, where candidates for advanced training will be found, it is interesting to note a plateau to the left of the peak, beginning about one standard deviation below the population mean (see Exhibit J-1). This indicates the presence of a number of items evenly spaced in difficulty somewhat below the cluster of more difficult items that create the peak in the information curve. While not as informative in the region where the majority of the youth population lies as for the more able subjects, GS does provide useful information for sorting and comparing individuals over nearly the entire range of aptitude.

Arithmetic Reasoning (AR). AR is among the more reliable ASVAB 8A tests, due partly to its comparatively large number of items (30) and partly to the fact that most are located in a region including the mean of the youth population. The implicit decision to obtain relatively precise measures of the skills tapped by its items, namely the ability to recognize and solve quantitative problems embedded in a verbal context, reflects their importance for success in a wide variety of subsequent training experiences. These skills are to be distinguished from the more advanced mathematical techniques that are the focus of Mathematical Knowledge, critical to success in a narrower range of more technical training.

Word Knowledge (WK). WK is the longest power test in the paper and pencil ASVAB, but somewhat paradoxically, not the most informative in terms of its point of maximum information (a distinction held by Mathematics Knowledge). The reason is that its items span a broad range of abilities, providing standard errors of estimation below, 5 (in population standard deviation units) for nearly 90 percent of the youth population. This finding reflects the usefulness in predicting future success in training that accumulated vocabulary has been found to exhibit for a wide range of types of training, over a wide range of abilities. This test, more than any other, attempts to do in paper-and-pencil format what adaptive testing is intended to do, namely, provide reliable measures of aptitude from nearly every subject who will be tested.

Paragraph Comprehension (PC). PC is the shortest test in the ASVAB, consisting of only 15 items. Its maximum information, consequently, is lowest of all eight power tests. It is of interest to note that its point of maximum information is also lowest, about a half standard deviation below the population mean. These results reflect its implicit role in the battery; PC is not intended to provide for fine distinctions among the reading and comprehension abilities across the broad range of the population, but more simply to distinguish those who can read at a minimal level required in the armed services from those who cannot.

Results for one item in PC merit particular attention. Item 15, the last item in the test, stands out from the rest with its uncharacteristically high difficulty, low reliability, and poor model fit. Further investigation revealed that this item appeared on a page of its own, following a page that contained a number of other items for the same reading passage. It can be inferred that this item was inadvertently skipped by a disproportionately

large number of subjects across the range of ability. This finding has important implications for not only the design of paper-and-pencil ASVAB forms (i.e., avoid widowed items) but for converting to computerized adaptive format. In particular, item operating characteristics estimated from paper-and-pencil administration will be inappropriate for the adaptive setting if they have been estimated in a highly context-dependent setting, as is the case for item 15 in the Profiles test administration.

Auto and Shop Information (AS). AS is at the lower end of difficulty of the more technical tests in the ASVAB. Its point of maximum information lies about two-thirds of a standard deviation above the population mean, but the average item threshold in AS is almost exactly at the mean. The test information curve, then, is skewed slightly left. Scores are most precise for individuals a bit above the population mean, but a sufficient number and spread of items of lower difficulties are present to permit reasonably good precision down through about a standard deviation below the mean.

Mathematics Knowledge (MK). Not only is MK the most difficult test in the ASVAB, as indicated by its highest average item threshold value, but it has the highest value of maximum information—this despite having only 25 items as opposed to the 35 of Word Knowledge. The reason is that its items are clustered more tightly with respect to their difficulty, focusing the measurement precision of MK at a point slightly higher than half a standard deviation about the population mean. An examination of content reveals that the items of MK tap skills and concepts generally taught in secondary school math courses such as algebra, geometry, and trigonometry. MK, in short, is useful in determining whether or not a subject is proficient in these areas. MK scores, then, are important mainly for higher—level training courses. Considerably less measurement precision is provided for distinguishing among the proficiency levels of subjects below this level.

Mechanical Comprehension (MC). MC, like MK and EK (see below) is one of the more technical tests of the ASVAB. It has the same number of items as MK (25) and a point of maximum information in a similar region (about threefourths of a standard deviation above the population mean), but a markedly less peaked information curve. There are two reasons for this result. First, the item thresholds are a bit more disperse. Second, and more importantly, the reliability of its items, as indicated by a comparison of average slope estimates, is not as high. This latter result can be explained in terms of the content of the items. MK items are quite straightforward in the following sense; if one has experience with the concept or definition involved, the item is a simple application of it. One usually either simply knows how to approach the item almost immediately or has no idea how to. MC items, on the other hand, are much more abstract applications of mechanical concepts; solving a MC item correctly requires not only an understanding of the concepts involved, but discerning their application in context and correctly interpreting the schematic diagram about which the question is asked.

Electronics Knowledge (EK). The last of the technical tests, EK exhibits a test information curve spanning a broad range of aptitude, spreading its measurement precision roughly from about one standard deviation below the population mean to two standard deviations above it. Like Word Knowledge, EK functions a bit more like one would expect in an adaptive testing context when reasonably precise measurements are desired over a broad range. With only 20 items, however, bandwidth is achieved at the expense of fidelity. Even at its most informative point, EK provides only slightly more information than the 15-item Paragraph Comprehension test.

REFERENCES

- Birnbaum, A. Some latent trait models and their use in inferring an examinee's ability. In F.M. Lord and M.R. Novick, Statistical Theories of Mental Test Scores. Reading, Massachusetts: Addison-Wesley, 1968.
- Bock, R. D. and Aitkin, M. Marginal maximum likelihood estimation of item parameters: an application of an EM algorithm. Psychometrika, 1981, 46, 443-459.
- Bock, R. D. and Mislevy, R. J. The Profile of American Youth: Data Quality Analysis of the Armed Services Vocational Aptitude Battery. Chicago:
 National Opinion Research Center, 1981.
- Bock, R. D. and Moore, E. G. J. Advantage and Disadvantage: A Profile of American Youth of the 1980s. Chicago: National Opinion Research Center, 1983.
- Frankel, M. R. and McWilliams, H. The Profile of American Youth: Technical Sampling Report. Chicago: National Opinion Research Center, 1981.
- Lord, F. M. Estimation of latent ability and item parameters when there are omitted responses. Psychometrika, 1974, 39, 247-264.
- Lord, F. M. Applications of Item Response Theory to Practical Testing Problems. New York: Erlbaum Associates, 1980.
- McWilliams, H. The Profile of American Youth: Field Report. Chicago: National Opinion Research Center, 1980.
- Mislevy, R. J. and Bock, R. D. Implementation of the EM algorithm in the estimation of item parameters: the BILOG computer program. In D. Weiss (Ed.), Proceedings of the 1982 Invitational Conference on Item Response

 Theory and Computerized Adaptive Testing. Department of Psychology,
 University of Minnesota, 1982.
- Mislevy, R. J. and Bock, R. D. <u>BILOG: Marginal Estimation of Item Parameters</u> and Subject Ability under Binary Logistic Models. Chicago: International Educational Services, 1983.
- Rasch, G. Probabilistic Models for Some Intelligence and Attainment Tests.
 Copenhagen: Danish Institute for Educational Research, 1960; Chicago:
 University of Chicago Press, 1980 (reprint).
- Sheatsley, P. B. The Profile of American Youth: Pretest Report. Chicago: National Opinion Research Center, 1980.
- U.S. Department of Defense. Profile of American Youth: 1980 Nationwide
 Administration of the Armed Services Vocational Aptitude Battery.
 Washington D.C.: Office of the Assistant Secretary of Defense (Manpower, Reserve Affairs, and Logistics), 1982.

APPENDICES

73

APPENDIX A

CLASSICAL ITEM STATISTICS

CLASSICAL ITEM STATISTICS FOR SUBTEST GENERAL SCIENCE

ITEM	HAME	FTRIED	#RIGHT	PCT	LOGIT/1.		CORRELATION BISERIAL
	0001	750.1	874.5	0.899	1.29	0.384	0.655
2	0002	750.1	598.8	0.798	0.51	0.398	0.568
3	0003	749.8	590.3	0.787	0.77	0.474	0.668
4	0004	749.4	552.7	0.738	0.61	0.366	
5 6 7	0005	7 9.8	580.7	0,774	0.73	0.384	0.535
6	0006	749.8	618.2	0.525	0.91	0.471	0.693
	0007	749.8	540.9	0.721	0 56	0.383	
8	0008	749.8	626.7	0.836	Ç.96	0.298	0.448
	0009	749.6	584.9	0.780	0 75	0.398	0.557
10	0010	749.8	575.0	0.767	0.70	0.393	0.544
11	0011	749.8	543.4	0.725	0.57	0.430	0.576
12	0012	749.6		0.521	0.05		0.340
13	0013	749.5	396.7	0.529	0.07	0.420	0.527
14	0014	749.1	491.7	0.685	0.38	0,359	0.463
15 16	0015	747.5	529.5	0.708	0.52		0.369
16		747.1	516.6	0.692	0.47		
17		744.8	489.2	0.657	0.38	0.305	0.384
18	0018	742.4	326.1	0.439	-0.14		0.550
19	0019	740.3	367.1	0.496	-0.01	0.314	0.334
20	0020	736.8	384.2	0.521	0.05		
21	0021	731.5	282.7	0.387	-0.27		0.410
22	2022 \	723.8	276.1	0.378	-0.29		0.355
23 24	0023	720.2	266.1.	0.370	-0.31		
25	0024	714.1	175.7		~0.85	0.319 0.281	
20	W25	894.4	267.7	0.365	-0.27	0.281	0.358

EXHIBIT A-2 CLASSICAL ITEM STATISTICS FOR SUSTEST ARITHMETIC REASONING

ITEM	HAME	STRIED	#R I CHT	PCT			CORRELATION SISERIAL
1	0001	749.8	682.1	0.910	1.35	0,185	0.326
2 3	0002	749.8	887.8	0.917	1.42	0.251	0.454
3	0003	749.5	564.7		0.65	0.508	
4	0004	749.4	537.2	0.716			
5 6	0005	749.8	473.0		0.34	Q. 52 <u>1</u>	0.568
<u> </u>		745.8	526.1	0.702	0.50	0.465	
ž	0007	748.4	569.4	0.760	0.68	0.284	0.389
8 9	0008	748.4	541.3	0.722	0.86	0.453	0.605
10	0010	743.6 743.8	519.8	0. 693 0. 5 75	0.48 0.43	0.467 0.520	0.513 0.577
11	0011	749.8	468 4	0.572			
12	0012	748.7	412.4	0.877	0, 18	0.533	0.673
15	0013	749.7	445.7	O. 585	0.23	0.443	0.551
14	0014	749.4 748.2	428.7	0.572	0.17	0.443 0.582 0.560	0.734
15	0018	748.2	460.6	0.616	0.28	0.560	0.714
16	0016	747.5	433.8	0.580	0.19	0.409	0.516
17	0017	747.2	3B2.3	0.812	0.03	0.428	0.537
1.8		747.2	371.6	0.497		0.416	
19		746.8	409.2	0.548	0.11		
20	0010	745.7	273.7	0.357	-0.32	0.559	0.715
21	0021	744.8 742.2	305.5	0.410	-0.21	0.486	0.615
22	0022	742.2	386.2	0.834	0.08	0.505	0.634
23	0023 0024	740.3	381.8		0.04		0.547
24		736.8 734.5		0.433			
25 26		724.7		0.458			
27	0027	712.3	288.1		-0.23	0.453	0.703
28	0028	712.3 892.5	223.6	0,323	EO. 44	0.555 0.424	0.552
29	0029	675.5	208.6	0.308	-0.47	0.431	0.565
30	0030	657.6	293.8		-0.13	0.452	

25

EXHIBIT A-3

CLASSICAL ITEM STATISTICS FOR SUBTEST WORD KNOWLEDGE

ITEM	HAME	#TRIED	#RIGHT	PCT	LOGIT/1.7		ORRELATION BISERIAL
1234567890123456789	0001 0002 0003 0004 0005 0006 0007 0008 0010 0011 0012 0013 0018	#TR3 ED	596.8 597.9 653.42 6545.0 6438.0 6438.4 6519.4 6519.4 6519.4 6519.4 6519.6 6519.6 6519.6 6519.6 6519.6	231 231 231 231 231 231 231 231 231 231	LOGIT/1.7 1.51 1.53 1.26 1.13 1.47 1.07 1.08 1.02 0.48 1.376 0.76 0.77	PEARSON 0.379 0.379 0.485 0.399 0.455 0.399 0.466 0.472 0.468 0.463 0.463 0.463 0.463	BISERIAL 0.717 0.717 0.722 0.814 0.741 0.8626 0.8657 0.545 0.750 0.750 0.750 0.750 0.750 0.750 0.750
20 21 22	0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031 0032	7443.1 7443.1 7433.1 7335.2 7335.2 7335.8 7222.8 7122.8 7120.8 886.8 6881.4 678.7 671.0	571.9 508.7 421.1 447.95 437.0 488.1 3588.4 3588.4 3586.1 321.0	0.805 573 655 655 665 665 665 665 665 665 665 66	0.47 0.25 0.17 0.27 0.25 0.44 -0.00 1.06	0.468 6.464 0.5464 0.547 6.534 0.334 6.430 0.348 1.436	O. 510 O. 850 O. 859 O. 634 O. 505 O. 505 O. 525 O. 589 O. 378 O. 453 O. 750

EXHIBIT A-4
CLASSICAL ITEM STATISTICS FOR SUBTEST PARAGRAPH COMPREHENSION

						TEM#TEST	CORRELATION
ITEM	NAME	#TRIED	#RIGHT	PCT	LOGIT/1.7	7 PEARSON	BISERIAL
1	0001	748.6	582.9	0.778	0.74	0.432	0.603
2	0002	749.6	5EO.7	0.881	1.18	0.370	0.602
3	0003	749.6	621.5	0.829	0.93	0.560	0.830
ä	0004	748.4	544.4	0.726	0.57	0.362	0.485
ъ	0005	748.4	523.3	0.706	0.52	0.531	0.703
6	3000	748.4	539.8	0.721	0.86	0.383	0.512
7	0007	748.4	549.6	0.734	0.60	0.380	0.526
8	8000	748.4	585.2	0.782	0.75	0.328	0.460
8 9	0009	747.8	560.0	0.749	0.64	0.491	0.689
10	0010	746.9	403.3	0.540	0.09	0.445	0.559
11	-0011	742.7	548.6	0.739	0.61	0.274	0.368
12	0012	738.7	443.4	0.600	0.24	0.398	0.504
13	0013	734.5	567.3	0.772	0.72	0.476	0.661
14	0014	720.0	479.7	0.586	15.41	0.397	0.515
15	0015	713.1	346.8	0.486	-0.03	0.066	0.083

EXHIBIT A-5
CLASSICAL ITEM STATISTICS FOR SUSTEST AUTO AND SHOP INFORMATION

ITEM	HAME	FTRIED	#RICHT	PCT	LOGIT/1.		CORRELATION SISERIAL
i	0001	749.8	565.9	0.755	0.66	0.214	0.293
2	0002	749.8	609.1	0.812	0.86	0.318	0.462
3	0003	749.6	467.5	0.824	0.30	0.467	0.596
4 5 7	0004 0005 0006 0007	749.6 749.8 . 749.8 . 749.8	625.2 494.0 398.1 378.8	0.834 0.659 0.532 0.505	0.95 0.39 0.08 0.01	0.283 0.485 0.854 0.429	0.422 0.627 0.695 0.538
8	0008	748.8	476.8	0.636	0.33	0.241	0.309
3	0009	748.8	500.1	0.668	0.41	0.192	0.250
10	0010	748.8	484.2	0.607	0.25	0.410	0.521
11	0011	748.8	421.2	0.562	0.15	0.318	0.400
13	0012	748.2	451.0	0.602	0.24	0.281	0.357
	0013	748.4	450.3	0.601	0.24	0.438	0.556
	0014	748.2	464.2	0.620	0.29	0.447	0.570
15	0018	748.1	380.0	0.505	0.02	0.445	0.856
15	0018	748.8	383.2	0.513	0.03	0.482	0.604
17	0017	744.9	304.8	0.408	- 0.22	0.497	0.628
18	0018	742.4	308.5	0.415	-0.20	0.478	0.604
18	0019	741.6	466.4	0.656	0,38	0.322	0.415
20	0020	736.1	378.0	0.515	0,03	0.377	0.472
21	0021	730.1	303.7	0.416	-0,20	0.313	0.395
22	0022 \	727.3	301.3	0.414	-0.20	0.484	0.586
23	0023	721.8	222.4	0.308	-0.48	0.584	0.766
24	0024	712.2	212.8	0.298	-0.50	0.375	0.495
25	0028	704.3	283.2	0.416	-0.20	0.248	0.314

EXHIBIT A-6
CLASSICAL ITEM STATISTICS FOR SUSTEST MATHEMATICS KNOWLEDGE

ITEM	HAME	FTRIED	#R CHT	PCT	LOGIT/1.	TEMOTEST C	ORRELATION BISERIAL
1	0001	749.3	845.2	0.861	1.07	0.380	0.862
3	0002	749.3	580.7	0.775	0.73	0.343	0.478
3	0003	748.3	446.3	0.596	0.23	0.498	0.631
4	0004	749.0	521.5	0.697	0.49	0.455	0.589
5	0008	748.3	351.6	0.736	0.50	0.303 "	0.406 0.691
•	0006	748.9 748.7	421.8 480.5	0.553 0. 64 2	0.15 0.34	0.548	0.525
'	0008	748.9	427,8	0.571	0.17	0.490 0.428	0.539
3	0008	748.9	483.3	0.659	0.39	0.483	0.585
10	0010	748.7	447,6	0.598	0.23	. 0, 434	0.550
ii	0011	748.4	406.4	0.543	ŏ. 10	0.350	0.438
12	0012	747.5	347.3	0.485	-0.08	0.562	0.705
iā	0013	747.3	380.4	0. 522	0.05	0.607	0.781
14	0014	746,1	321.8	0.431	-0.16	0.591	0.744
1 5	0015	745.4	298.9	0.401	-Ö. 24	0.308	0,391
16	0016	744.8	394.5	0.530	0.07	0.498	0,624
17	0017	744.0	308.7	0.415	-0.2b	0.582	0.748
1.5	0018	744.0	355.8	0.478	-0.05	0.549	0.713
1 🛢	0019	743.8	406.8	0.847	0.11	0.422	0, 530
20	0020	742.0	343.7	0.463	-0.09	0.405	0.505
21	0021	741,1	301.4	0.407	-0.22	0.362	0.458
22	0022	739.1	249.7	0.338	-0.40	0.500	0.647
23	0023,	735.6	217.1	0.295	-Q.51	Q. 5Q \$	0.555
24	0024	725.7	215.5	0.297	-Q. 5 <u>1</u>	0.401	0.529
25	0025	706.3	228.6	0.324	~0.43	0.496	0.546

EXHIBIT A-7
CLASSICAL ITEM STATISTICS FOR SUBTEST MECHANICAL REASONING

ITEM	NAME	#TRIED	#RIGHT	₽CT	LOG17/1.7	TEMPTEST C PEARSON	ORRELATION SISERIAL
123456788011234567111567	0001 0002 0003 0004 0005 0005 0007 0008 0009 0010 0011 0012 0013 0014 0015 0016	749.5 749.5 748.5 748.5 748.5 748.3 748.0 747.7 748.3 748.3 748.0 748.2 748.2 748.1	857.8 578.0 586.6 306.5 447.0 434.4 499.2 440.3 498.8 480.5 418.5 438.7 377.0	0.2783917793687473955000.55857475685000.55857476685000.5585	LOGIT/1.7 1.15 0.72 0.75 -0.22 0.17 0.23 0.18 0.32 0.41 0.21 0.40 0.17 0.34 0.17 0.14 0.20 0.01	PEARSON - 0.237 0.427 0.337 0.328 0.367 0.478 0.443 0.443 0.445 0.338 0.338	\$15ER1AL 0.375 0.564 0.449 0.449 0.535 0.303 0.409 0.409 0.549 0.409 0.533 0.603 0.561 0.562 0.425
18 19 20 21 22 23 24 25	0018 0019 0020 0021 0022 0023 0024 0025	743.8 741.8 734.1 734.1 727.0 716.5 707.8 697.3	368.5 314.6 383.4 325.5 285.6 262.7 302.2 264.2	0.497 0.424 0.820 0.443 0.385 0.367 0.427 0.378	-0.01 -0.18 -0.05 -0.13 -0.25 -0.32 -0.17 -0.28	0.408 0.201 0.377 0.382 0.261 0.446	0.512 0.253 0.472 0.493 0.318 0.582 0.472 0.561

EXHIBIT A-8
CLASSICAL ITEM STATISTICS FOR SUSTEST SLECTRONICS KNOWLEDGE

ITEM	HAME	#TRIED	#RIGHT	PCT(LOGIT/1.		CORRELATION SISERIAL
1	0001	748.8	598.2	0.798	0.81	0.349	0.497
2	0002	749.8	538.1	0.718	0.55	0.414	0.651
3	0003	748.8	818.6	0.632	0.48	0.480	0.830
4	0004	748.8	B20.3	0.684	0.48	0.474	0.622
£	0005	748.6	570.B	0.762	0.58	0.355	0.483
6	8000	749.8	489.2	0.452	0.37	0.486	0.627
7	0007	743.5	501.2	0.669	0.41	0.420	0.545
	8000	748.2	487.8	0.852	0.37	0,401	0.517
•	0009	747.8	517.7	0.552	0.48	0.301	0.398
10	0010	747.8	408.9	0.548	0.11	0.440	0.553
11	0011	747.0	338.3	0.483	-0,11	0.273	0.343
12	0012	745.5	352.6	0.472	-0.07	0.451	0.566
13	00:37	744.8	317.4	0.426	-0.18	0.416	0.824
14	0014	743.9	379.8	0.511	0.03	0.213	0.267
15	00 1 5	741.2	325.2	0.439	-0.14	0.457	0.575
16	0018	738.	321.2	0.435	-0.18	0.363	0.458
17	0017	735.0	199.6	0.272	-0.58	0.073	0.027
18	DO18	733.0	316.6	0.432	-0.16	0.374	0.471
1 🛢	QQ 1 🛡	727.2	327.8	0.451	-0.12	0.375	0.472
20	0020	720.3	225.6	0.315	-0.46	0.343	0.449

APPENDIX B

ITEM PARAMETER ESTIMATES, 1-PARAMETER LOGISTIC MODEL

EXHIBIT 8-1

ITEM PARAMETER ESTIMATES FOR GENERAL SCIENCE; 1-PARAMETER LOGISTIC HODEL

ITEM													
	INTERCEPT	8 . E .	SLOPE	3.E.	THRESHOLD	8.E.	OISPERSN	5.E.	ASYMPTOTE	S.E.	CHIEG	OF	PROB
0001 0002 0003 0004 0005 0005 0006 0007 0010 0011 0012 0013 0014 0015 0016 0017 0018 0019 0019 0020 0021	3 . 527 0 . 986 0 . 940 0 . 749 0 . 888 1 . 102 0 . 893 1 . 156 0 . 811 0 . 859 0 . 076 0 . 099 0 . 477 0 . 844 0 . 587 0 . 168 -0 . 168 -0 . 0055 -0 . 033	8 . E	SLOPE 0.854 0.854 0.854 0.854 0.854 0.854 0.854 0.854 0.654 0.654 0.654 0.654 0.654 0.654 0.654 0.654 0.654 0.654 0.654	S.E. 0.014	THRESHOLD -2.338 -1.508 -1.508 -1.437 -1.146 -1.359 -1.886 -1.059 -1.768 -1.393 -1.314 -1.077 -0.116 -0.151 -0.730 -0.985 -0.899 -0.727 0.257 0.008 -0.100 0.510	8.E. 0.1093 0.0934 0.0839 0.0839 0.0839 0.0839 0.0927 0.0927 0.0938 0.0778 0.0778 0.0778 0.0778 0.0778	OISPERSN 1.530 1.530 1.530 1.530 1.530 1.530 1.530 1.530 1.530 1.530 1.530 1.530 1.530 1.530 1.530 1.530 1.530	5. E	ASYMPTOTE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	\$.E.	CHISQ 21.3 18.4 38.2 10.8 10.8 17.0 10.1 30.1 18.1 10.1 24.7 8.0 10.1 24.7 8.0 10.1		PROB 0.0115 9.0312 0.0000 0.2669 0.1661 0.0000 0.4803 0.0481 0.0336 0.0005 0.0261 0.9883 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035

475.8 225.0 0.0000

PARAMETER MEAN STN DEV
THRESHOLD -0.543 .0.318

QUADRATURE POINTS AND POSTERIOR WEIGHTS:

POINT -0.3871D+01 -0.3088D+01 -0.208D+01 (-0.13230+01 -0.44000+00 0.44280+00 0.1328D+01 0.22080+01 0.3081D+01 0.3974D+01 0.8872D-08 0.8714D-03 0.2670D-01 0.1304D+00 0.3731D+00 0.3268D+00 0.84710-01 0.4312D-01 0.1322D-01 0.9927D-03

EXMISIT 8-2
ITEM PARAMETER ESTIMATES FOR ARITHMETIC REASONING; 1-PARAMETER LOGISTIC MODEL

							numbering; .		IEK FOGIBLIF	*OOE'S			
ITEM	INTERCEPT	5.E.	SLOPE	S.E.	THRESHOLD	S.E.	DISPERSH	5.E.	ASYMPTOTE	S.E.	CHISQ	OF	PROS
0001	1.738	0.077	0.860	0.013	1 -2.021	0.080	1.163	0.018	0.0	0.0	12.6		0.1816
0003	1.801	0.082	0.860	0.013	~2.094	0.096	1.163	0.016	0.0	0.0	11.6		0.2354
0003	0.922	0.060	0.850	10.013	-1,072	0.070	1.163	0.018	0.0	0.0	38.0	9.0	
0004	0.782	0.058	0.850	0.013	-0.910	0.068	1.163	0.018	0.0	0.0	52.6	9.0	0.0000
	0.511	0.054	0.850	0.013	-0.595	0.063	1.163	0.018	0.0	0.0	13.4	9.0	
0005	0.729	0.055	0.860	0.013	-0.848	0.064	1.163	0.018	0.0	ŏ:ŏ	15.1	9.0	
0008	0.947	0.053	0.860	0.013	-1.101	0.062	1.163	0.018	0.0	0.0	18.1	9.0	0.0338
0000	0.803 0.699	0.055	0.860	0.013	-0.934	0.064	1.163	0.018	0.0	ŏ.ŏ	15.3	9.0	0.0832
70010		0.055	0.860	0.013	-0.813	0.064	1.163	0.018	0.0	0.0	15.4	9.0	0.0801
8011	0. 6 34 0.455	0.055	0.860	0.013	~0.737	0.064	1.163	0.018	0.0	0.0	18.6		0.0284
0012	0.307	0.058	0.860	0.013	-0.529	D.068	1.163	0.018	0.0	0.0	75.8	9.0	
0013		0.053	0.860	0.013	-0.357	0.061	1.163	0.018	0.0	0.0	11.3		0. 2523
0014	0.364 0.2 9 0	0.050	0.850	0.013	-0.424	0.058	1.183	0.018	0.0	0.0	4.7		0.8629
0015	0.432	0.054	0.850	0.013	-0.338	0.063	1.163	0.018	0.0	0.0	22.0	9.0	0.0000
0016	0.315		0.860	0.013	-0.502	0.063	1.163	0.018	0.0	0.0	18.5	9.0	0.0300
0017	0.094	0.049	0.860	0.013	-0.367	0.057	1.163	0.015	0.0	0.0	13.8		0. 1278
0018	0.044	0.049	0.860	0.013	-0.109	0.087	1.163	0.018	0.0	0.0	25.5		0.0025
0019	0.209	0.049	0.860 0.860	0.013	-0.082	0.057	1.163	0.018	0.0	0.0	35.9	3.0	0.0001
0020	-0.403	0.056	0.850	0.013	-0.243	0.057	1.153	0.018	0.0	0.0	15.3	\$.0	0.0597
0021	-0.250	0.053	0.883	0.013	0.469	0.065	1.163	0.018	0.0	0.0	13.8	8.0	0.1282
0022	0.161	0.052	0.860	0.013	0.231	0.061	1.163	0.018	0.0	0.0	10.1	9.0	0.3413
0023	0.101	0.050	0.860	0.013	-0.188 -0.117	0.060	1.163	0.018	0.0	0.0	. 9.5	9.0	0.3959
0024	-0.173	0.084	0.860	0.013	0.201	0.058	1.163	0.018	0.0	0.0	14.0		0.1208
0025	-0.088	0.052	0.860	0.013	0.103	0.063	1.163	0.018	0.0	0.0	37.8		0.0000
0025	-0.082	0.052	0.860	0.013	0.795	0.080	1.163	0.018	0.0	0.0	11.9		0.2195
0027	-0.279	0.056	0.860	0.013	0.324	0.061	1 - 163	0.018	0.0	0.0	3.8		0. \$21\$
0028	-0.575	0.056	0.860	0.013	0.570	0.065	1.163	0.018	0.0	0.0	10.3		0.3283
0029	-0.622	0.058	0.860	0.013	0.724	0.065	1.163	0.018	0.0	0.0	21.5		0.0105
0030	-0,118	0.054	0.860	0.013	0.137	0.062	1.163	0.018	0.0	0.0	10.7		0.2995
	~~!!			0.013	0.137	0.062	1.163	0.018	0.0	0.0	15.5	9.0	0.0772

594.6 270.0 0.0000

PARAMETER MEAN STN DEV
THRESHOLD -0.378 0.675

QUADRATURE POINTS AND POSTERIOR WEIGHTS:

1 2 3 4 5 6 7 8 9 10
POINT -0.3759D+01 -0.2932D+01 -0.2095D+01 -0.1258D+01 -0.4203D+00 0.4169D+00 0.1254D+01 0.2091D+01 0.2929D+01 0.3766D+01
WEIGHT 0.1347D-06 0.4769D-04 0.1057D-02 0.2064D+00 0.3750D+00 0.2055D+00 0.1377D+00 0.6003D-01 0.1343D-01 0.8055D-03

EXHIBIT 8-3

ITEM PARAMETER ESTIMATES FOR WORD KNOWLEDGE; 1-PARAMETER LOGISTIC MODEL

ITEM	INTERCEPT	S.E.	SLOPE	S.E.	THRESHOLD	S.E.	DISPERSN	S.E.	ASYMPTOTE	S.E.	CHISQ	DF	PROB .
0001	2.003	0.095	0.878	0.012	-2.282	0.108	1.139	0.015	0.0	0.0	11.9	9.0	0.2211
0002	2.022	0.097	0.878	0.012	-2,303	0.110	1.139	0.015	0.0	0.0	13.3	9.0	0.1493
0003	1.698	0.084	0.878	0.012	-1.936	0.096	1.139	0.015	0.0	0.0	25.1	9.0	
0004	1.533	0.070	0.878	0.012	-1.746	0.080	1 - 139	0.015	0.0	0.0	9.7		0.3790
0006	1.956 1.461	0.094	O.878 O.878	0.012	-2.229 -1.664	0.107	1.139	0.015	0.0	0.0	20.1	9.0	
0007	1.476	0.070	0.878	0.012	-1.681	0.088	1.139 1.138	0.015	0.0	0.0 0.0	30.B	9.0 9.0	0.0004 "
0008	1.404	0.077	0.878	0.012	-1.600	0.587	1-1.139	0.015	0.0	0.0	35.6	9.0	0.0001
0009	0.673	0.055	0.878	0.012	-0.766	0.083	1.135	0.015	0.0	0.0	6.4	9.0	0.7046
0010	1.770	0.088	0.878	0.012	-2.016	0,100	1.139	0.015	ŏ.ŏ	0.0	31.1	8.0	0.0003
0011	1.055	0.055	0.575	0.012	-1.202	0.075	1,139	0.015	0.0	0.0	18.8	B. Ö	0.0267
0012	1.331	0.056	0.878	0.012	-1,517	0.076	1.139	0.015	0.0	0.0	11.5	9.0	0.2428
0013	1.396	0.072	0.878	0.012	-1.591	0.082	1.139	10.015	0.0	0.0	9.3	9.0	0.4118
0014	0.944	0.061	0.878	0.012	-1.076	0.070	1.139	0.015	0.0	0.0	9.3	9.0	0.4072
0015	1.047 1.013	0.068	0.878 0.878	0.012	-1.193 -1.185	0.077	1.139	0,015	0.0	0.0	36.2	9.0	
0017	0.899	0.065	0.878	0.012	-1.025	0.074	1.139 1.139	0.015	0.0 0.0	0.0	10.0 33.8		0.3510 U.0001
0018	1.011	0.064	0.878	0.012	-1.152	0.073	1,139	0.015	6.6	8.6	20.4		0.0155
0019	0.612	0.054	0.878	0.012	-0.697	0.062	1.138	0.015	0.0	0.0	8.2	9.0	0.5183
0020	1,142	0.069	0.878	0.012	-1,301	0.078	1.139	0.015	0.0	ŏ.ŏ	18.8	9.0	0.0267
0021	0.972	0.060	0.878	0.012	-1.107	0.068	1.139	0.015	0.0	0.0	14.2		0,1150
0022	0.635	0.057	0.878	0.012	-0.723	0.065	1.139	0.015	0.0	0.0	31.3	9.0	0.0003
0023	0.329	0.056	0.878	0.012	-0.375	0.064	1.139	0.015	0.0	0.0	28.5	9.0	
0024	0,214 0,344	0.048	0.878 0.578	0.012	-0.244	0.055	1.139	0.015	0.0	0.0	45.7	9.0	0.0000
0026	0.463	0.057	0.878	0.012	-0.392 -0.527	0.057	1.139 1.139	0.015	0.0 0.0	0.0	28.7	§.ŏ	0.0008
0027	0.300	0.051	0.878	0.012	-0.342	0.058	1.139	0.015	0.0	0.0	25.0 14.7	9.0	0.0031 0.0976
0028	0.561	0.054	0.878	0.012	-0.639	0.061	1.139	0.015	0.0	0.0	17.3	3.0	
0029	-0.068	0.048	0.878	0.012	0.077	0.055	1.139	40.015	0.0 .	0.0	47.3		6.0000
0030	-0.002	0.050	0.878	0.012	0.002	0.057	1.139	0.015	0.0	0.0	24.7		
0031	1.333	0.075	0.878	0.012	-1.518	0.086	1.139	0.015	0.0	0.0	13.7	9.0	0.1318
0032	-0.043	0.048	0.878	0.012	0.049	0.054	1.138	0.015	0.0	0.0	57.4	8.0	0.0000
0033	-0.199	0.051	0.878	0,012	0.227	0.058	1.138	0.015	0.0	0.0	62.0		0.0000
0034	0.182 0.067	0.054	0.878 0.878	0.012	-0.207	0.061	1.139	0.015	0.0	0.0	11.0		0.2733
5555	U.UD/	0.056	V.0/0	0.012	-0.077	0.066	1.139	0.015	0.0	0.0	26.0	3.0	0.0021

815.8 315.0 0.0000

PARAMETER MEAN STN DEY
THRESHOLD -1.026 0.733

QUADRATURE POINTS AND POSTERIOR WEIGHTS:

1 2 3 4 5 6 7 8 9 10
POINT -0.39310+01 -0.3060D+01 -0.2188D+01 -0.1316D+01 -0.4445D+00 0.4272D+00 0.1299D+01 0.2171D+01 0.3042D+01 0.3914D+01
WEICHT 0.2673D-06 0.40500-03 0.3708D-01 0.1591D+00 0.2861D+00 0.3266D+00 0.1501D+00 0.3693D-01 0.3654D-02 0.1573D-03

EXHIBIT 8-4

ITEM PARAMETER ESTIMATES FOR PARAGRAPH COMPREHENSION; 1-PARAMETER LOGISTIC MODEL

OOO1 C.926 O.060 O.680 O.017 -1.361 O.085 1.470 O.037 O.0 O.0 0002 1.461 0.075 0.680 0.017 -2.148 0.110 1.470 0.037 0.0 0.0 0003 1.153 0.071 0.680 0.017 -1.709 0.104 1.470 0.037 0.0 0.0 0004 0.722 0.055 0.680 0.017 -1.061 0.081 1.470 0.037 0.0 0.0 0005 0.645 0.059 0.680 0.017 -0.948 0.086 1.470 0.037 0.0 0.0 0006 0.702 0.055 0.680 0.017 -1.031 0.080 1.470 0.037 0.0 0.0 0007 0.751 0.056 0.680 0.017 -1.031 0.080 1.470 0.037 0.0 0.0 0007 0.751 0.056 0.680 0.017 -1.031 0.080 <th>ITEM</th> <th>INTERCEPT</th> <th>\$.E.</th> <th>SLOPE</th> <th>S.E.</th> <th>THRESHOLD</th> <th>S.E.</th> <th>DISPERSN</th> <th>S.E.</th> <th>ASYMPTOTE</th> <th>\$.E.</th> <th>CHISQ</th> <th>DF</th> <th>PROB</th>	ITEM	INTERCEPT	\$.E.	SLOPE	S.E.	THRESHOLD	S.E.	DISPERSN	S.E.	ASYMPTOTE	\$.E.	CHISQ	DF	PROB
0010	0001 0002 0003 0004 0005 0007 0008 0009 0010 0011 0011	O. 926 1. 461 1. 153 O. 722 O. 845 O. 702 O. 751 O. 943 O. 807 O. 105 O. 763 O. 284 O. 284 O. 889	O.060 O.075 O.055 O.055 O.055 O.056 O.056 O.052 O.051 O.051	0. 580 0. 680 0. 680 0. 680 0. 680 0. 680 0. 680 0. 680 0. 680 0. 680 0. 580	0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017	-1.361 -2.148 -1.709 -1.061 -0.948 -1.031 -1.104 -1.386 -1.187 -0.154 -1.122 -0.417 -1.306	O.085 O.110 O.104 O.081 O.080 O.080 O.082 O.085 O.085 O.076 O.076 O.076	1.470 1.470 1.470 1.470 1.470 1.470 1.470 1.470 1.470 1.470 1.470	0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037	000000000000000000000000000000000000000	000000000000000000000000000000000000000	10.7 15.1 62.5 9.4 28.6 10.1 2.0 11.2 17.7 21.8 18.4 17.5 12.0	7.007.007.007.007.007.007.007.007.007.0	0.1513 0.0349 0.0000 0.2224 0.0002 0.1819 0.9567 0.1272 0.0133 0.0031 0.0031 0.01003 0.1003

347 1 105.0 0.0000

PARAMETER MEAN STN DEV THRESHOLD -1.035 0.575

QUADRATURE POINTS AND POSTERIOR WEIGHTS:

1 2 3 4 5 5 6 7 8 9 10

POINT -0.4013D+01 -0.3122D+01 -0.2231D+01 -0.1340D+01 -0.4497D+00 0.4411D+00 0.1332D+01 0.2223D+01 0.3113D+01 0.4004D+01

WEIGHT \$\phi\$ 0.4001D-04 0.9865D-03 0.3735D-01 0.1684D+00 0.2247D+00 0.4042D+00 0.1445D+00 0.1839D-01 0.1307D-02 0.4941D-04

EXHIBIT R-K

ITEM PARAMETER ESTIMATES FOR AUTO AND SHOP INFORMATION: 1-PARAMETER LOGISTIC MODEL

											_		
ITEM	INTERCEPT	S.E.	SLOPE	8.E.	THRESHOLD	5.E.	DISPERSN	S.E.	ASYMPTOTE	5.E.	CHISQ	DF	PROS
0001 0002 0003 0004 0005 0005 0007 0008 0009 0011 0012 0013 0014 0015	0.831 1.050 0.401 1.158 0.510 0.131 0.050 0.439 0.538 0.350 0.217 0.336 0.336 0.332	0.052 C.050 0.082 0.053 0.053 0.053 0.047 0.047 0.047 0.047 0.050 0.050	0.673 0.673 0.673 0.673 0.673 0.673 0.673 0.673 0.673 0.673 0.673	0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014	-1.235 -1.575 -0.596 -1.720 -0.757 -0.194 -0.074 -0.682 -0.799 -0.820 -0.323 -0.499 -0.499 -0.577 -0.086	0.077 0.088 0.077 0.082 0.078 0.078 0.074 0.070 0.070 0.070 0.070 0.075 0.074	01spersn 1.486 1.486 1.486 1.486 1.436 1.436 1.486 1.486 1.486 1.486 1.486 1.486	8.E. 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031	ASYMPTOTE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	5.E. 0.00 0.00 0.00 0.00 0.00 0.00 0.00	CHISQ 16.5 7.4 19.7 7.5 46.7 55.8 12.1 24.0 4.9 11.5 21.1 22.8 21.3		0.0570 0.5995 0.0197 0.6335 0.0000 0.2043 0.0000 0.2043 0.0000 0.3459 0.2402 0.0042 0.0068 0.0123
0016 0017 0018 0019 0020 0021 0022 0023 0024 0025	0.072 -0.241 -0.224 0.493 0.087 -0.230 -0.237 -0.581 -0.630 -3.245	0.051 0.052 0.052 0.050 0.048 0.053 0.053 0.055 0.047	0.673 0.673 0.673 0.673 0.673 0.673 0.673 0.673	0.014 0.014 0.014 0.014 0.014 0.014 0.014	-0.108 0.358 0.353 -0.733 -0.100 0.341 0.352 0.878 0.935 0.364	0.075 0.079 0.078 0.074 0.072 0.072 0.078 0.091 0.082 0.070	1 . 486 1 . 486 1 . 466 1 . 466 1 . 486 1 . 486 1 . 486 1 . 486	0.031 0.031 0.031 0.031 0.031 0.031 0.031	000000000000000000000000000000000000000	000000000000000000000000000000000000000	173.28 173.85 270.55 200.29 28.9 28.9 18.9		0.0433 g 0.0001 0.0011 0.0153 0.0151

599.1 225.0 0.0000

PARAMETER MEAN STN DEV
THRESHOLD -0.239 0.870

QUADRATURE POINTS AND POSTERIOR WEIGHTS:

1 2 3 4 5 6 7 8 9 10
PDINT -0.3845D+01 -0.3089D+01 +0.21920+01 -0.1315D+01 -0.4388D+00 0.4378D+00 0.1314D+01 0.2191D+01 0.3088D+01 0.3844D+01
WEIGHT 0.3817D-08 0.4791D-05 0.2274D-02 0.1628D+00 0.4435D+00 0.2074D+00 0.1087D+00 0.8700D-01 0.8267D-02 0.326DD-03

EXHIBIT 8-6

ITEM	PARAMETER	ESTIMATES	FOR	MATHEMATICS	KNOWLEDGE;	1-PARAMETER	LOGISTIC MODEL
------	-----------	-----------	-----	-------------	------------	-------------	----------------

ITEM	INTERCEPT	S.E.	SLOPE	3.E.	THRESHOLO	S.E.	DISPERSN	8.E.	ASYMPTOTE	E.E.	CHISQ	DF	PROS	
0001 0002 0003 0004 0005 0005 0007 0008 0010 0011 (\delta 12 0013 0014 0015 0017 0016 0017 0016 0017 0016 0017 0016 0020 0021 0022 0023	1.386 0.985 0.365 0.695 0.835 0.287 0.557 0.1587 0.198 -0.153 -0.153 -0.153 -0.218 -0.218 -0.218 -0.218 -0.255 0.553 -0.553 -0.553 -0.553 -0.553 -0.555 -0.555 -0.555	0.058 0.057 0.052 0.053 0.053 0.053 0.049 0.050 0.047 0.056 0.047 0.056 0.054 0.054 0.054 0.055 0.054	0.830	00000000000000000000000000000000000000	-1:670 -1:187 -0.439 -0.839 -0.316 -0.316 -0.683 -0.438 -0.683 -0.438 -0.982 -0.185 -0.195 -0.185 -0.283 -0.283 -0.283 -0.283 -0.283 -0.285	0.083 0.063 0.063 0.064 0.064 0.064 0.063 0.065	1.205 1.205 1.205 1.205 1.205 1.205 1.205 1.205 1.205 1.205 1.205 1.205 1.205 1.205 1.205 1.205 1.205 1.205 1.205	0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022			34.4 4.7 20.5 15.8 224.9 15.2 11,4 19.6 18.7 26.3 451.0 21.0 418.1 20.8 328.1 21.3 13.1		0.0301 0.8637 0.0077 0.0152 0.0691 0.0133	#1°

592.2 225.0 0.0000

PARAMETER MEAN STH DEV

QUADRATIRE POINTS AND POSTERIOR WEIGHTS:

POINT -0.3946D+01 -0.3078D+01 -0.2210D+01 -0.1341D+01 -0.4733D+00 0.3948D+00 0.1263D+01 0.2131D+01 0.2999D+01 0.3867D+01 0.7734D+08 0.1710D-05 0.4297D+03 0.1336D+00 0.4547D+00 0.2175D+00 0.1110D+00 0.70380-01 0.1178D-01 0.6253D-03

EXHIBIT B-7

ITEM PARAMETER ESTIMATES FOR MECHANICAL REASONING; 1-PARAMETER LOGISTIC MODEL

ITEM	INTERCEPT	S.E.	SLOPE	S.E.	THRESHOLD	\$ Æ .	OISPERSN	Ş.E.	ASYMPTOTE	S.E.	CHISQ	DF	PROB
000 1 000 2 000 3 000 4 000 5 000 6	1,377 0.877 0.921 -0.253 0.223 0.299	0.069 0.058 0.057 0.049 0.050 0.046	0.624 0.624 0.624 0.624 0.624 0.624	0.013 0.013 0.013 0.013 0.013	-2.208 -1.406 -1.477 0.405 -0.358 -0.479	0.110 0.052 0.051 0.078 0.080 0.074	1 , 604 1 , 804 1 , 604 1 , 604 1 , 604	0.034 0.034 0.034 0.034 0.034	0.0 0.0 0.0 0.0 0.0	0,0 0.0 0.0 0.0 0.0	4.2 22.9 4.6 7.1 13.7 28.0	9.0 9.0 9.0	0 0.9013 0 0.0065 0 0.8674 0 0.6322 0 0.1341
0007 0008 0009 0010 0011 J 0012	0.248 0.410 0.513 0.276 0.504 0.228	0.049 0.053 0.050 0.053 0.048 0.051	0.824 0.624 0.624 0.624 0.624 0.624	0.013 0.013 0.013 0.013 0.013	+0.298 -0.657 -0.822 -0.442 -0.809 -0.365	0.079 0.085 0.980 0.085 0.078 0.082	1 . 604 1 . 604 1 . 604 1 . 604 1 . 604	0.034 0.034 0.034 0.034 0.034	0.00	0.0000	14.8 48.5 15.6 59.9 12.4 26.7	9.0 9.0 9.0	0 0.0972 ** 0 0.0000 0 0.0749 0 0.0000
0013 0014 0015 0016 0017 0018 0019	0.436 0.229 0.183 0.264 0.031 0.004 -0.211	0.051 0.051 0.050 0.048 0.048	0.624 0.624 0.624 0.624 0.624	0.013 0.013 0.013 0.013	-0.699 -0.367 -0.310 -0.424 -0.050 -c.007	0.082 0.081 0.080 0.077 0.076 0.079	1.604 1.604 1.604 1.604 1.604	0.034 0.034 0.034 0.034 0.034	0.0 0.0 0.0 0.0	0.00 0.00 0.00 0.00	22.7 17.6 25.5 16.3 12.5 17.0	9.0 9.0 9.0 9.0	0.0071 0.0397 0.0026 0.0607 0.1883
0020 0021 0022 0023 0024 0025	0.070 -0.186 -0.303 -0.392 -0.207 -0.352	0.046 0.048 0.050 0.047 0.054 0.050 0.053	0.624 0.624 0.624 0.624 0.624 0.624	0.013 0.013 0.013 0.013 0.013 0.013	0.338 -0.112 0.251 0.486 0.628 0.332 0.565	0.073 0.078 0.079 0.075 0.086 0.080 0.086	1 , 504 1 , 604 1 , 604 1 , 604 1 , 604 1 , 604	0.034 0.034 0.034 0.034 0.034 0.034	0.0000000000000000000000000000000000000	0,0 0,0 0,0 0,0 0,0 0,0	54.6 8.4 10.5 27.4 9.1 13.4 6.6	9.0	0.4963

500.1 225.0 0.0000

PARAMETER MEAN STN DEV
THRESHOLD -0.335 0.681

QUADRATURE POINTS AND POSTERIOR WEIGHTS:

POINT -0.4008D+01 -0.31150+01 -0.2223D+01 -0.1331D+01 -0.4388D+00 0.45340+00 0.1346D+01 0.2238D+01 0.3130D+01 0.4022D+01 WEIGHT 0.15570-06 0.4191D-04 0.6364D-02 0.1753D+00 0.3823D+00 0.2496D+00 0.1265D+00 0.5317D-01 0.6371D-02 0.2873D-03

EXHIBIT 8-8.

ITEM PARAMETER ESTIMATES FOR ELECTRONICS KNOWLEDGE; 1-PARAMETER LOGISTIC MODEL

COD1 C.985 C.059 C.636 C.016 -1.549 C.083 1.573 C.036 C.0 C.0 B.3 S.0 C.408 COD2 C.679 C.055 C.636 C.015 -1.069 C.086 1.573 C.038 C.0 C.0 17.0 B.0 C.048 COC4 C.591 C.055 C.636 C.015 -0.942 C.087 1.573 C.038 C.0 C.0 28.7 B.0 C.000 COC4 C.598 C.055 C.636 C.015 -0.942 C.087 1.573 C.038 C.0 C.0 28.7 B.0 C.000 COC5 C.636 C.015 -1.323 C.089 1.573 C.038 C.0 C.0 37.5 B.0 C.000 COC6 C.464 C.054 C.636 C.015 -0.730 C.085 1.573 C.038 C.0 C.0 38.6 9.0 C.000 COC8 C.4515 C.052 <	ITEM	INTERCHEPT	8.E,	SLOPE	5.E.	THRESHOLD	S.E.	OISPERSN	S.E.	ASYMPTOTE	S.E.	CHISQ	OF	PROB
0015 -0.179 0.052 0.636 0.015 0.282 0.081 1.573 0.038 0.0 0.0 15.6 8.0 0.076 0.015 -0.193 0.049 0.636 0.015 0.304 0.078 1.573 0.038 0.0 0.0 15.6 8.0 0.0483 0.0 0.0 0.0 8.8 9.0 0.483 0.0 0.0 0.0 8.8 9.0 0.483 0.0 0.0 0.0 83.4 9.0 0.006 0.0 0.0 83.4 9.0 0.006 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0002 0003 0004 0005 0006 0007 0008 0010 0011 0012 0014 0015 0016 0017	0.679 0.899 0.841 0.464 0.815 0.459 0.514 0.514 -0.133 -0.074 -0.179 -0.179	0.055 0.055 0.056 0.055	0.6336666336666336663366633666336663366	00000000000000000000000000000000000000	-1.069 -0.929 -0.942 -1.323 -0.730 -0.811 -0.723 -0.930 -0.210 0.120 0.327 -0.054 0.282 0.304	0.083 0.085 0.087 0.089 0.085 0.061 0.060 0.079 0.079 0.079 0.079 0.079	1.573 1.573 1.573 1.573 1.573 1.573 1.573 1.573 1.573 1.573 1.573 1.573 1.573	O. C38 O.	000000000000000000000000000000000000000	000000000000000000000000000000000000000	9.07 178.5 128.5 15.6 15.3 14.9 15.5 15.3 15.3 15.3 15.3 15.3 15.3 15.3		0.4087 0.0486 0.0005 0.0000 0.7305 0.0000 0.0210 0.0814 0.4474 0.0933 0.0019 0.3934 0.0775 0.0000 0.775 0.4835

437.0 180.0 0,0000

PARAMETER HEAN STN DEV
THRESHOLD -0.271 0.755

QUADRATURE POINTS AND POSTERIOR WEIGHTS:

POINT ~0.4002D+01 ~0.3113D+01 ~0.2223D+01 ~0.1334D+01 ~0.4446D+00 0.4449D+00 0.1334D+01 0.2224D+01 0.3113D+01 0.4003D+01 WEIGHT 0.5170D+05 0.5469D+03 0.1859D-01 0.1607D+00 0.3537D+00 0.2817D+00 0.1400D+00 0.3972D-01 0.4775D-02 0.2284D-03

APPENDIX C

ITEM PARAMETER ESTIMATES, 2-PARAMETER LOGISTIC MODEL

EXHIBIT C-1 ITEM PARAMETER ESTIMATES FOR GENERAL SCIENCE; 2-PARAMETER LOGISTIC MODEL

DF PROS	CHISQ DF	S.E.	ASYMPTOTE	S.E.	DISPERSN	S.E.	THRESHOLD	5.E.	SLOPE	5 . E .	INTERCEPT	ITEM
8.0 0.7537		0.0	0.0	0.080	0.664	0.090	-1.419	0.182	1.505	0.177	2.136	0001
8.0 0.8104		0.0	Q.Q	0.105	0.953	0.087	-1,127	0.116	1.050	0.088	1.183	0002
8.0 0.7356 8.0 0.8945		0.0	0.0	0.076	0.701 1.2 8 0	0.050	-0.942 -1,02 9	0.155 6.095	1.426 0.781	0.113	1.343 0.804	0004
8.0 0.5872		8.8	0.0	0. 124	1,104	0.100	-1.108	0.102	0.905	0.073	1,003	0005
8.0 0.8697		0.0	0.0	0.057	0.618	0.060	-1.033	0.178	1.627	0.141	1,681	0006
8.0 0.5298		ō. ō	0.0	0.137	1.140	0.083	-0.895	0.106	0.878	0.071	0.785	0007
8.0 0.1990		0.0	0.0	0.166	1.358	0.164	-1,621	0.089	0,731	0.075	1.185	0008
8.0 0.7206		0.0	0.0	0.109	0.973	0.085	-1.060	0.115	1.027	0.083	1.089	0009
8.0 0.8465		0.0	0.0	0.127	1.130	0.097	-1.087	0.099	0.885	0.072	0.862	0010
8.0 0.5861		0.0	0.0	0.104	1.051	0.075	-0.871	0.094	0.951	0.058	0.829	0011
8.0 0.0742		0.0	0.0	0.315	2.108	0.006	-0.158	0.071	0.475	0.047	0.075	0012
8.0 0.0505 8.0 0.7462										0.023		
8.0 0.6310												
8.0 0.0117					1.623							
8.0 0.2200					1,773	0,114			0,564			0017
8.0 0.0004		0.0	0.0	0,114	1.130	0.065	0.147	0.089	0.885	0.053	-0.130	0018
8.0 0.1531		0.0			1.776	0.086				0.049		
8.0 0.9282												
8.0 0.4753												
8.0 0.4453												
8.0 0.2259 8.0 0.0003												
8.0 0.0001												
	15.5 5.1 6.2 19.7 10.7 26.9	000000	0.0 0.0 0.0 0.0	0.125 0.177 0.275 0.187 0.234	1.159 1.499 1.867 1.623 1.773	0.059 0.093 0.155 0.116 0.114 0.065	-0.180 -0.741 -1.145 -0.950 -0.822	0.083 0.079 0.079 0.071 0.074	0.863 0.667 0.536 0.516 0.564	0.055 0.054 0.055 0.053 0.052 0.053	0.155 0.494 0.613 0.585 0.464	0013 0014 0015 0016 0017

267.2 200.0 0.0011

PARAMETER MEAN STH DEV SLOPE 0.808 0.324 LOG(SLOPE) -0.281 0.367 THRESHOLD -0.481 0.790

QUADRATURE POINTS AND POSTERIOR WEIGHTS:

POINT -0.3865D+01 -0.3017D+01 -0.2168D+01 -0.1320D+01 -0.4716D+00 0.37670+00 0.1225D+0: 0.2073D+01 0.2922D+01 0.3770D+01 WEIGHT 0.1701D-13 0.5629D-06 0.7483D-02 0.1331D+00 0.4023D+00 0.3333D+00 0.5032D-01 0.3867D-01 0.3111D-01 0.6713D-02

EXHIBIT C-2
ITEM PARAMETER ESTIMATES FOR ARITHMETIC REASONING; 2-PARAMETER LOGISTIC MODEL

ITEM	INTERCEPT	5.E.	SLOPE	S.E.	THRESHOLD	S.E.	DISPERSN	3.E.	ASYMPTOTE	5.E.	CHISQ	DF	PROS
0001	1.526	0.097	0.555	0.118	-2.752	0.498	1.803	0.385	0.0	0.0	4.7	8.0	0.7898
0002	1,849	0.147	0,973	0.175	-1.901/	0.233	1.028	0.185	0.0	0.0	5.9		
0003	1,418	0.116	1.658	Q. 146	-0.855	0.041	0.603	0.053	0.0	0.0	13.4	8.0	
0004	1.313	0.109	1.758	0,141	-0.747	0.037	0.569	0.046	0.0	0.0	10.1		0,2542
0005	0.659	0.073	1.167	0,104	-0.585	0.048	0.857	0.076	0.0	0.0	6.6	8.0	
0006	0.833	0.071	1.054	0.094	-0.790	0.059	0.948	0.085	0.0	0.0	8.3		0.4057
0007	0.789	0.050	0, 549	0.076	-1.456	0.176	1.821	0.252	0.0	0.0	10.9	8.0	
8000	0.911	0.077	1.057	0.102	-0.862	0.062	0.846	0.091	0.0	0.0	5.3	8.0	
0009	(,818	0.074	1.078	0.102	-0.756	0.056	0.927	0.088	0.0	0.0	7.9		0.4419
2010	0.886	0.092	1.345	0.132	-0.653	0.043	0.744	0.073	0.0	0.0	4.5	8.0	
0011	1.055	0.103	2.101	0.163	-0.502	0.032	0.476	0.037	0.0	0.0	8.5	8.0	
0012	0.408	0.062	1.09F	0.092	-0.373	0.049	0.913	0.077	0.0	0.0	7.3	8.0	0.5048 0.6337
0014	0.365 0.462	0.057	0.805 1.289	0.078	-0.454 -0.358	0.044	1.243 0.776	0.063	0.0	0.0	9.1		0.3309
0015	0.634	0.074	1.307	0.105	-0.485	0.043	0.765	0.063	0.0	0.0	9.5		0.2923
0016	0.293	0.054	0.717	0.073	-0.409	0.069	1.395	0.142	0.0	0.0	16.4	8.0	
0017	₩ 5.095	0.053	0.743	0.075	-0.128	0.068	1.345	0.135	0.0	0.0	25.3	8.0	
0018	. 0,043	0.053	0.708	0.074	-0.081	0.072	1.413	0.147	0.0	ŏ.ŏ	30.7	ā.ŏ	
0019	0.204	0.053	0.752	0.077	-0.272	0.065	1.330	0.137	0.0	0.0	8.3		0.3519
0020	-0.378	0.057	0.953	0.077	0.396	0.064	1.049	0.084	0.0	ő.ő	20.6	8.0	
0021	-0.222	0.053	0.832	0.077	0.257	0.072	1.202	0.111	0.0	ŏ.ŏ	29.7	8.0	
0022	0.201	0.058	0.919	0.085	-0.219	0.057	1.088	0.101	ŏ.ŏ	ŏ.ŏ	13.0		0.1106
0023	0.095	0.051	0.704	0.068	-0,134	0.070	1.421	0.137	0.0	0.0	12.1	8.0	0,1473
0024	-0.138	0.057	0.938	0.085	0.147	0.086	1.086	0.096	0.0	0.0	30.3	8.0	0.0002
0025	-0.063	0.054	0.843	0.078	0.074	0.068	1.186	0.109	0.0	0.0	20.2	8.0	0.0096
0026	-0.059	0.053	0.813	0.075	0.073	0.066	1.230	0.113	0.0	0. 0	9.0	8.0	
0027	-0.246	0.056	0.970	0.084	0.253	0.063	1.031	0.090	0.0	0.0	9.1	8.0	0.3370
0028	-0.516	0.055	0.661	0.065	0.780	0,108	1.512	0.149	0.0	0.0	5.1	8.0	C.4240
0029	-0.561	0.057	0.676	0.087	0.830	0,111	1.479	0.147	0.0	0. 0	6.8		0.5858
0030	-0.103	0.054 i	0.719	0.070	0.144	0.079	1.391	0.135	0.0	0.0	16.6	8.0	0.0349
~~~~					******				****				

374.7 240.0 0.0000

PARAMETER MEAN STN DEV SLOPE 0.991 0.361 LOG(SLOPE) -0.064 0.327 THRESHOLD -0.392 0.733

QUACRATURE POINTS AND POSTERIOR WEIGHTS:

1 2 3 4 . 5 6 7 8 9 10

POINT ~0.2917D+01 ~0.2269D+01 ~0.1621D+01 ~0.9727D+00 ~0.3246D+00 0.3236D+00 0.9717D+00 0.1620D+01 0.2268D+01 0.2916D+01 0.2427D+07 0.12000-02 0.1764D-02 0.3227D+00 0.2770D+00 0.1656D+00 0.1423D+00 0.2859D-01 0.4966D-01 0.2117D-01



EXHIBIT C-3

## ITEM PARAMETER ESTIMATES FOR WORD KNOWLEDGE; 2-PARAMETER LOGISTIC MODEL

ITEM	INTERCEPT	S.E.	\$LOPE .	5.E.	THRESHOLD	\$.E.	DISPERSN	S.E.	ASYMPTOTE	5.E.	CHISQ	DF	PROB
0001 0002 0003 0004 0005 0006	2.443 2.459 2.336 1.416 2.417 2.370	0.192 0.184 0.179 0.091 0.170 0.244	1.376 1.597 0.746 1.401	0.150 0.153 0.155 0.091 0.143 0.228	-1.771 -1.787 -1.463 -1.900 -1.725 -1.229	0.110 0.111 0.070 0.179 0.103 0.050	0.725 0.727 0.626 1.341 0.714 0.518	0.084 0.081 0.061 0.164 0.073 0.061	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	6.2 3.6 8.4 10.2 14.2	8.0 8.0 8.0 8.0	0.2510 0.0785
0007 0008 0009 0010 0011 0012	1.513 2.174 0.704 2.464 1.338 1.321	0.102 0.192 0.063 0.180 0.105 0.086	O.851 1.802 O.891 1.643 1.304 Q.876	0.101 0.178 0.081 0.156 0.120 0.091	-1.592 -1.206 -0.790 -1.502 -1.026 -1.510	0.117 0.050 0.072 0.074 0.059 0.121	1.082 0.555 1.123 0.609 0.767 1.143	0.112 0.055 0.102 0.058 0.070 0.119	000000	00000	19.7 5.8 19.7 5.8	8.0000 8.000 8.00	0.7066 0.2726 0.4504 0.0115 0.6765
0013 0014 0015 0016 0017 0018	1.697 1.156 1.552 1.088 1.352	0.134 0.093 0.127 0.078 0.118 0.100	1.216 1.616 0.986 1.607 1.234	0.132 0.109 0.145 0.087 0.141 0.113	-1.327 -0.951 -0.960 -1.103 -0.841 -1.006	0.075 0.059 0.048 0.077 0.045 0.060	0.782 0.823 0.618 1.015 0.622 0.810	0.081 0.074 0.055 0.090 0.055 0.074	0000000	0.0	3.5 3.9 34.9 8.5 2.1 5.6	8.00 8.00 8.00 8.00	0.8952 0.8895 0.0609 0.3889 0.9784
0019 0020 0021 0022 0023 0024	0.629 1.616 1.051 0.785 0.416 0.204	0.082 0.129 0.088 0.082 0.065 0.050	1.546 0.992 1.162 1.063	0.079 0.138 0.104 0.104 0.091	-0.745 -1.045 -1.059 -0.675 -0.391	0.071 0.052 0.075 0.051 0.052 0.086	1.184 O.647 1.008 O.860 O.860 O.940 1.761	0.111 0.058 0.106 0.077 0.081 0.193	0.00	000000000000000000000000000000000000000	10.1 6.3 13.0 27.9 21.1 10.3	8.0 8.0 8.0 8.0	0.2580 0.6205 0.1101
0025 0026 0027 0028 0028 0030	0.341 0.588 0.302 0.572 -0.027 0.033	0.054 0.070 0.052 0.062 0.048 0.050	0,693 ( 1.152 ( 0.684 ( 0.802 ( 0.477 (	0.073 0.095 0.068 0.082 0.056	-0.492 -0.510 -0.442 -0.713 0.056 -0.053	0.075 0.051 0.078 0.076 0.100 0.081	1.443 0.868 1.462 1.247 2.096	0.152 0.072 0.144 0.127 0.248 0.175	000000	0000000	10.0 21.7 9.1 9.5 10.0	8.00 8.00 8.00	0.2638 0.0087 0.3336 0.2879 0.2615
0031 0032 0033 0034 0035	1.682 0.004 -0.139 0.218 0.131	0.140 0.048 0.051 0.054 0.061	1.373 0.438 0.636 0.801	0.152 0.058 0.067 0.077 0.097	-1.225 -0.009 0.219 -0.272 -0.115	0.076 0.109 0.087 0.069 0.052	0.729 2.284 1.571 1.248 0.876	0.081 0.304 0.156 0.119 0.074	0.0 0.0 0.0 0.0	000000	8.1 8.8 11.9 41.5 14.9 13.2	8.000 8.000 8.000	0.3599 0.1566 0.0000

386.0 280.0 0.0000

PARAMETER MEAN 5TN DEV SLOPE 1.108 0.394 LOG(8LOPE) 0.036 0.386 THRESHOLD -9/901 0.575

QUADRATURE POINTS AND POSTERIOR WEIGHTS:

POINT WEIGHT 0.2819D-34 0.1053D-14 0.7540D-01 0.1869D+00 0.2148D+00 0.2602D+00 0.7928D-01 0.6450D-01 0.1869D-01

EXHIBIT C-4

ITEM PARAMETER ESTIMATES FOR PARAGRAPH COMPREHENSION; 2-PARAMETER LOGISTIC MODEL

ITEM	INTERCEPT	S.E.	SLOPE	S.E.	THRESHOLD	S.E.	DISPERSN	S.E.	ASYMPTOTE	8.E.	CHISQ	DF	PROB
0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013	1.025 1.597 1.910 0.718 0.816 0.705 0.765 0.898 0.951 0.122 0.587 0.294 1.019 0.489	0.082 0.116 0.202 0.061 0.063 0.063 0.065 0.055 0.056 0.052 0.052 0.055 0.054	O.857 O.866 1.665 1.079 O.665 O.966 O.585 O.986 O.480 O.480 O.649 O.133	0.090 0.107 0.184 0.071 0.098 0.074 0.073 0.095 0.080 0.065 0.071 0.094	-1.185 -1.844 -1.193 -1.096 -0.757 -1.056 -1.056 -1.536 -0.980 -0.151 -1.493 -0.434 -1.109 -0.763 0.282	0.095 0.152 0.057 0.113 0.067 0.109 0.108 0.078 0.065 0.203 0.081 0.089 0.100 0.342	1.167 1.155 0.625 0.927 1.504 1.425 1.710 1.042 1.233 2.174 1.475 1.058 1.541 7.534	0.122 0.142 0.075 0.165 0.168 0.168 0.103 0.103 0.103 0.154 0.158 0.158 2.453		000000000000000000000000000000000000000	5.1 10.5 7.3 4.46 14.6 10.7 5.1 4.5 14.3 5.7 14.3 6.9 6.9	7.0 7.0 7.0 7.0 7.0 7.0 7.0	0.1620 0.4004 0.7294 0.0409 0.1628 0.7161 0.0461 0.0461 0.0420 0.4398 0.4398

261.9 105.0 0.0000

 PARAMETER
 MEAN
 STN
 DEV

 SLOPE
 0.775
 0.322

 LOC(SLOPE)
 -0.362
 0.544

 THRESMOLD
 -0.961
 0.543

QUADRATURE POINTS AND POSTERIOR WEIGHTS:

POINT -0.40590+01 -0.31660+01 -0.22630+01 -0.13610+01 -0.45780+00 0.44500+00 0.13480+01 0.22510+01 0.21530+01 0.40560+01 0.79250-05 0.13600+03 0.19670+00 0.24100+00 0.37870+00 0.13870+00 0.26130-01 0.24430-02 0.10180-03



## EXHIBIT C-5 ITEM PARAMETER ESTIMATES FOR AUTO AND SHOP INFORMATION; 2-PARAMETER LOGISTIC MODEL

ITEM	INTERCEPT	S.E.	SLOPE	5.E.	THRESHOLD	S.E.	DISPERSN	5.E.	ASYMPTOTE	8.E.	CHISQ	DF	PROB
0001	0.713	0.054	0.351	0.065	-2.032	0.357	2.852	0.529	0.0	0.0	[ 6.3	8.0	0,6171
0003	1.099	0.075	0.753	0.101	-1.459	0.149	1.328	0.178	0.0	0.0	10.3		0.2445
0003	0.547	0.058	1.076	0.107	-0.505	0.051	0.929	0.092	0.0	0.0	8.2	8,0	
0004	1.180	0.091	0.723	0, 122	-1.633	0.200	1,383	0.233	0.0	0.0	] _3.3		0.8141
0005	0.844	0.102	1.478	0.178	-0.571	0,041	0,677	0.082	0.0	0.0	17.7		0.0234
0006	0.324	0.079	1.386	0.146	-0.234	0:044	0.721	0.075	0.0	0.0	9.3	8.0	0.3171
0007	0.078	0.054	0.776	0.080	-0.100	0.066	1.288	0.133	0.0	0.0	1 1 2 . 7		0.0164
0008	0.358	0.047	0.335	0.056	-1.058	0.199	2.953	0.477	0.0	0.0	7.8	8.0	0.4495
0009	0.432	0.047	0.257 0.771	0.050	-1.678	0.353	3.888 1.287	0.758	0.0	0.0	11.8		0.1580
0010	0.385	0.057	0.501	0.086	-0.500 -0.379	0.068	1.996	0.145 0.259	0.0	0.0	4.8	8.0	0.77 <b>28</b> 0.7 <b>38</b> 7
0012	0.1 <b>90</b> 0.277	0.048	0.394	0.065	-0.705	0.095	2.540	0.385	0.0	ŏ.ŏ	6.2	8.0	0.6271
0013	0.403	0.056	0.883	0.084	-0.705 -0.456	0.061	1.132	0.108	0.0	0.0	17.2	8.0	0.0281
0014	0.476	0.065	0.322	0.108	-0.517	0.058	1.085	0.127	0.0	0.0	10.5	8.0	
0015	0.095	0.054	0.819	0.085	-0.115	0.062	1.221	0.127	0.0	8.8	1 7:7	8.0	0.4811
0016	0,126	0.056	0.895	0.082	-0.140	0.058	1.116	0.114	0.0	ŏ.ŏ	8.4		0.396
0017	-0.216	0.057	0.971	0.039	0.223	0.068	1.030	0.105	0.0	0.0	13.7		0.0886
0018	-0.199	0.087	0.926	0.084	0.215	0.071	1.080	0.109	0.0	ŏ.ŏ	25.3	ă. c	0,0016
0018	0.443	0.050	0.463	0.061	~0.918	0.135	2.072	0.261	0.0	0.0	25.0	8.0	
0020	0.072	0.049	0.630	0.071	-0.115	0.077	1.585	0,179	0.0	0.0	12.6		0.1249
0021	-0,217	0.048	0.471	0.056	0.461	0.115	2.124	0.252	0.0	0.0	10.7	8.0	
0022	-0.217	0.056	0.909	0.085	0.239	0.069	1.101	0.102	0.0	0.0	10.2	8.0	0.2474
0023	-0.594	0.070	1,231	0.113	0.538	0.054	0.775	0.058	0.0	0.0	6.8	8.C	
0024	-0.507	0.056	0.515	0.064	0.979	0.125	1.614	0.166	0.0	0.0	10.8		0.2078
0025	-0.220	0.047	0.332	0.050	0.623	0.157	3.005	0.450	0.0	0.0	8.6	8.0	0.3725
~ <b>~~</b> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			*******	*******	/~~~	****			<u> </u>		277.5	200.0	0.0002

PARAMETER MEAH STN DEV SLOPE LOG(SLOPE) THRESMOLD

QUADRATURE POINTS AND POSTERIOR WEIGHTS:

1 2 3 4 5 6 7 8 9 10 ~0.3888D+01 -0.3023D+01 -0.2189D+01 ~0.12940+01 -0.4290D+00 0.4359D+00 0.1301D+01 0.2188D+01 0.3030D+01 0.3895D+01 0.7130D-09 0.8778D-06 0.3409D-03 0.1528D+00 0.4810D+00 0.1939D+00 0.8518D-01 0.7054D-01 0.1555D-01 0.7504D-03

## EXHIBIT C-6

			ITEM PARAMET	ER ESTI	MATES FOR MA	THEMATICS	KNOWLEDGE;	2-PARAME	TER LOGISTI	MODEL			€
ITEM	INTERCEPT	S.E.	SLOPE	S.E.	THRESHOLD	S.E.	DISPERSN	S.E.	ASYMPTOTE	S.E.	CHISQ	DF	PROS
0001	1.917	0.235	1 1.692	0.325	-1.133	0.095	0.591	0,114	0.0	0.0	11.2		0.1912
0003	0.952	0.075	0.852	0.112	-1.164	0.109	1.173	Q. 155	0.0	0.0	12.4	8.0	
0003	0.475	0.054	1.052	0.033	~0.447	0.049	0.942	0.088	0.0	0.0	22.7	8.0	
0004	0.944	0.057	1.312	0.127	~0.720	0.046	0.762	0.074	0.0	0.0	17.0	8.0	
0005	0.726	0.057	0.572	0.073	~1.270	0.148	1.748	0.224	0.0	0.0	16.9	8.0	
9000	0.464	0.070	1.309	0.113	-0.354	0.042	0.764	0.085	0.0	0.0	13.4	8.0	
0007	0.777	0.097	1.374	0.153	-0.546	0.040	0.728	0.081	0.0	0.0	5.3	8.0	
0008	0.285	0.052	0.751	0.073	-0.380	0.056	1.331	0.130	0.0	0.0	23.8	8.0	
0003	0.717	0.075	1,131	0.117	-0.634	0.050	0.884	0.082	0.0	0.0	4.5		0.8126
0010	0.401	0.062	0.854	0.099	-0.470	0.053	1,172	0.136	0.0	0.0	10.3	8.0	
0011	0.157	0.04 ∜	0.568	0.068	~0.277	0.082	1.750	C. 208	0.0	<b>Q</b> .0	1.6		0.3894
0012~	0.055	0.059	1.160	0.095	-0.047	0.048	0.862	0.070	C.O	0.0	[ 10.5	8.0	
0013	0.475	0.084	1.748	0.148	-Q.272	0.037	0.572	0.048	0.0	0.0	19.4	8.0	
0014	~O.0€2	0.063	1.212	0,113	0.051	0.054	0.825	0.077	0.0	0.0	11.1	8.0	
0015	-0.247	0.047	0.445	0.054	0.555	0.125	2.246	0,274	0.0	0.0	7.5	8.0	
0015	0.257	0.067	1.078	0.114	-0.235	0.050	0.928	0.099	0.0	0.0	11.5		0.1733
0017	~O. 125	0.050	1.240	0.100	0.101	0.050	0.806	0.065	0.0	0.0	10.0		0.255\$
8100	0.132	0.068	1.273	0.120	-0.104	0.049	0.785	0.074	0.0	o. <b>o</b>	17.8	8.0	
0019	0.215	0.053	0.758	0.074	-0.282	0.054	1.302	0.125	0.0	0.0	15.5	8.0	0.0503
0020	~0.05€	0.050	0.855	0.071	0.086	0.079	1.525	0.166	0.0	0.0	10.3		0.2433
0021	-0.229	0.049	0.589	0.065	- 0.389	0.100	1.696	0.188	0.0	0.0	15.8		0.0456
0022	~0.450	0.057	0.851	0.078	0.540	0.085	1.175	0.107	0.0	0.0	20.0		0.0103
0023	-0.637	0.060	0.878	0.075	0.725	0.088	1.139	0.098	0.0	0. <b>0</b>	19.7		0.0116
0024	~0.587	0.055	0.591	0.059	0.993	0.122	1.692	0.168	0.0	0.0	11.3		0.1855
0025	-0.529	0.058	0.515	0.078	0.648	0.094	1.227	0.117	0.0	0.0	14.1	8.0	0.0791

PARAMETER
SLOPE
LOG(SLOPE)
THRESHOLD MEAN STN DEV 0.991 0.351 0.071 0.365 0.171 0.594

0.991 -0.071 -0.171

QUADRATURE POINTS AND POSTERIOR WEIGHTS:

1 2 3 4 5 6 7 8 9 10 -0.3956D+01 -0.2336D+01 -0.1526D+01 -0.7183D+00 0.9173D+01 0.9017D+00 0.1712D+C 0.2522D+01 0.3332D+01 0.425D-23 0.1486D-18 0.4040D-11 0.2051D-01 0.4852D+00 0.2672D+00 0.1021D+00 0.7332D-01 0.4171D-01 0.9990D+02



37

333.5 200.0 0.0000

#### EXHIBIT C-7

### ITEM PARAMETER ESTIMATES FOR MECHANICAL REASONING: 2-PARAMETER LOGISTIC MODEL

0003         0.973         0.074         0.738         0.093         -1.318         0.128         1.355         0.171         0.0         0.0         8.2         8.0         0.41           0005         0.264         0.053         0.753         0.074         -0.351         0.068         1.328         0.130         0.0         0.0         12.4         8.0         0.75           0007         0.261         0.047         0.390         0.051         -0.669         0.137         2.562         0.389         0.0         0.0         12.4         8.0         0.05           0007         0.278         0.055         0.709         0.081         -0.393         0.070         1.409         0.160         0.0         0.0         12.4         8.0         0.05           0008         0.602         0.069         1.148         0.108         -0.525         0.051         0.871         0.062         0.0         0.0         12.6         8.0         0.12           0010         0.4848         0.051         0.523         0.062         -0.832         0.123         1.812         0.226         0.0         0.0         15.1         8.0         0.04           0011         0.4	ITEM	INTERCEPT	S.E.	SLOPE	S.E.	THRESHOLD	\$.E.	OISPERSN	\$.E.	ASYMPTOTE	S.E.	CHISQ	DF	PROB
CO21         -0.139         0.050         0.640         0.069         0.218         0.085         1.663         0.168         0.0         0.0         8.8         8.0         0.38           0022         -0.271         0.047         0.374         0.052         0.726         0.160         2.676         0.371         0.0         0.0         8.8         8.0         0.38           0023         -0.382         0.055         0.778         0.504         0.083         1.286         0.128         0.0         0.0         9.5         8.0         0.38           0024         -0.189         0.049         0.539         0.051         0.351         0.098         1.856         0.208         0.0         0.0         14.0         8.0         0.08	0001 0002 0003 0004 0005 0006 0007 0008 0009 0011 0012 0013 0014 0015 0016 0019 0020 0021 0022	1.363 1.12E 0.873 -0.264 0.261 0.602 0.488 0.491 0.307 0.307 0.242 0.242 0.242 0.033 0.030 -0.139 -0.239	0.092 0.106 0.074 0.049 0.053 0.055 0.055 0.055 0.056 0.057 0.058 0.050 0.053 0.053 0.048 0.048 0.048 0.042	O. 626 10.738 O. 567 O. 7590 O. 7498 O. 7429 O. 8910 O. 898 O. 714 O. 898 O. 7110 O. 7110 O. 7110 O. 7110 O. 7110 O. 7110 O. 7314 O. 7314	O.106 O.139 O.093 O.060 O.074 O.058 O.081 O.062 O.089 O.089 O.089 O.089 O.060 O.079 O.060 O.053 O.060 O.069 O.069	-2.177 -1.030 -1.319 0.415 -0.369 -0.393 -0.625 -0.832 -0.375 -1.062 -0.341 -0.341 -0.341 -0.345 -0.489 -0.489 -0.136 -0.136 -0.136	0.292 0.1287 0.1287 0.0588 0.0588 0.05137 0.05137 0.0513 0.1052 0.0518 0.1062 0.1083 0.1083 0.1083 0.1083 0.1083	1.5916 1.3565 1.3565 1.3569 1.3569 1.3569 1.48712 0.8165 1.10969 1.2055 1.20569 1.4236 1.5669 1.5669	0.271 0.171 0.171 0.187 0.188 0.168 0.265 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.0826 0.	000000000000000000000000000000000000000	000000000000000000000000000000000000000	10.9 15.2 5.1 12.4 12.6 16.9 13.5 33.9 14.8 7.0 18.7 14.8 12.7 14.8 12.7 14.8 12.7 14.8 12.8	8.0000000000000000000000000000000000000	0.2055 0.0543 0.4157 0.7515 0.01331 0.0985 0.01271 0.0408 0.0602 0.0502 0.0502 0.0502 0.05031 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503

340.0 200.0 0.0000

 PARAMETER
 MEAN
 STN OEV

 SLOPE
 0.898
 0.248

 LOG(SLOPE)
 -0.420
 0.358

 THRESHOLD
 -0.314
 0.673

QUADRATURE POINTS AND POSTERIOR WEIGHTS:

1 2 3 4 5 5 7 8 9 10
POINT -0.3798D+01 -0.2957D+01 -0.2115D+01 -0.1273D+01 -0.4314D+00 0.4104D+00 0.1252D+01 0.2094O+01 0.2936O+0; 0.3777D+01
WEIGHT 0.2665D-12 0.7291D-08 0.2135D-03 0.1889D+00 0.3903D+00 0.2356D+00 0.1004O+00 0.6872D-01 0.14850-01 0.98560-03

EXHIBIT C-8

ITEM PARAMETER ESTIMATES FOR ELECTRONICS KNOWLEDGE; 2-PARAMETER LOGISTIC MODEL

ITEM	INTERCEPT	S.E.	SLOPE	S.E.	THRESHOLO	8.E.	DISPERSN	8.E.	ASYMPTOTE	8.E.	CHISQ	OF	PROB
0001 0002 0003 0004 0005 0006 0007 0008 0009	1.096 0.834 0.831 0.893 0.893 0.678 0.678 0.635 0.513 0.582 0.208	0.085 0.089 0.089 0.086 0.078 0.078 0.070 0.057 0.057	O.86: O.874 1.180 1.285 O.839 1.176 O.926 O.753 O.52:	0.112 0.120 0.136 0.135 0.107 0.125 0.078 0.078 0.086	-1.274 -0.856 -0.704 -0.690 -1.118 -0.577 -0.686 -0.686 -1.010 -0.253	0.117 0.070 0.054 0.052 0.103 0.051 0.065 0.078 0.123 0.062	1,162 1,026 0,847 0,772 1,192 0,850 1,080 1,325 1,736 1,219	5.E. 0.151 0.126 0.097 0.080 0.152 0.152 0.138 0.228 0.128	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5.E. 0.000000000000000000000000000000000	5.4 9.6 6.7 2.8 12.4 11.7 10.3	8.00 8.00 8.00 8.00 8.00 8.00	PROB 0.2194 0.1940 0.4529 0.4527 0.9436 0.1337 0.7208 0.1626 0.1626 0.8003
0011 0012 0013 0014 0015 0016 0017 0018 0018	-0.113 -0.030 -0.184 0.030 -0.142 -0.165 -0.583 -0.173 -0.123	0.046 0.053 0.051 0.045 0.053 0.049 0.049 0.050 0.054	O.425 C.829 O.714 O.299 O.856 O.164 C.588 O.642 O.690	0.059 0.085 0.079 0.050 0.084 0.067 0.045 0.068 0.075	0.265 0.258 -0.258 -0.098 0.167 0.281 3.611 0.300 0.192 0.923	0.117 0.066 0.078 0.148 0.067 0.091 1.010 0.090 0.083 0.129	2.353 1.205 1.401 3.341 1.176 6.090 1.701 1.557 1.557	O.329 O.124 O.156 O.560 O.116 O.194 1.674 O.187 O.187 O.183	000000000000000000000000000000000000000	00000000000	86 10.4.8 169 180 180 75 103	8 8 8 8 8 8 8 8 8	0.3745 0.2521 0.7796 0.0315 0.0169 0.7591 0.4871 0.4857 0.3746 0.2429

175.9 160.0 0.1841

 PARAMETER
 MEAN
 STN
 DEV

 SLOPE
 0.754
 0.287

 LOG(SLOPE)
 -0.373
 0.486

 THRESHOLD
 -0.096
 1.052

QUADRATURE POINTS AND POSTERIOR WEIGHTS:

1 2 3 4 5 6 7 8 8 9 10
POINT -0.38860+01 -0.30340+01 -0.21710+01 -0.13080+01 -0.44590+00 0.41670+00 0.12790+01 0.21420+01 0.30050+01 0.38670+01
WEIGHT 0.14830-09 0.20210-06 0.44750-03 0.16660+00 0.41620+00 0.24690+00 0.98410-01 0.50430-01 0.19000-01 0.19440-02



## APPENDIX D

ITEM PARAMETER ESTIMATES, 3-PARAMETER LOGISTIC MODEL

EXHIBIT D-1

#### ITEM PARAMETER ESTIMATES FOR GENERAL SCIENCE; 3-PARAMETER LOGISTIC MODEL

ITEM	INTERCEPT	5.E.	SLOPE	5.E.	THRESHOLD	S.E.	DISPERSH	S.E.	ASYMPTOTE	S.E.	CHI5Q	DF	PROB
0001	1.715	0.157	1.127	0.180	-1.522	0.215	0.888	0.141	0.204	0.085	1.4		0.9835
0002	0.862	0.112	1.003	0.158	-0.860	0.184	0.997	0.157	0.213	0.075	3.0		0.8873
0003	0.938	0.116	1.484	0.263	-0.632	0,127	0.574	0.120	0.220	0.063	7.1		0,4195
0004	0.484	0.121	0.805	0.137	-0.601	0.215	1.242	0.212	0.225	0.075	9.2		0.2369
0005	0.759	0.088	0.808	0.115	-0.938	0.192	1.237	0.176	0.159	0.068	3.0	7.0	0.8850
0006	1.305	0.129	1.479	0.239	-0.883	0,133	0.676	0.109	0.174	0.063	3.9		0.7973
0007	0.324	0.138	1.035	0.206	-0.313	0.174	0.966	0, 193	0.281	0.071	7.5		0.3823
0008	0.976	0.106	0.643	0.091	-1.517	0.275	1.555	0.220	0.185	0.082	16.4		0.0218
0009	0.769	0.108	0.969	0.149	-0.793	0.182	1.032	0.159	0.204	0.073	4.2		0.7882
0010	Q. 682	0.106	0.823	0.123	-0.829	0.201	1.215	0.182	0.189	0.074	8.5		0.2863
0011	0.478	0.114	1.036	0.150	-0.481	0.148	0.965	0.138	0.218	0.054	10.8		0.1465
0012	-1.324	0.396 [	1.636	0.458	0.810	0.100	0.611	0.171	0.374	0.035	16.2		0.0234
0013	-0.966	0.540	2.338	0.953	0.413	0.077	0.428	0.174	0.262	0.041	17.7		0.0136
0014	0.212	0.119	0.729	0. 122	-0.230	0.194	1.371	0.229	0.188	0.059	1.6		0.3781
0015	C. 297	0.142	0.588	0.110	-0.507	0.310	1.709	0.345	0.248	0.030	6.7		0.4647
0015	0.396	0.096	0.623	0.085	-0.636	0,206	1.606	0.228	0, 145	0.064	13.1		0.0839
0017	0.135	0.142	0.652	0.126	-0.205	0.240	1.511	0.287	0.230	0.078	. <del>9</del> . 1		0.2441
0018	-1.692	0.752	3.130	1.355	0.541	0.035	0.320	0.138	0.197	0.025	20.4		0.0049
0015	-0.893	0.274	1.293	0.308	0.691	0.103	0.773	0.184	0.2 <b>9</b> 0	0.042	12.7		0.0794
0020	-0.265	0.140	0.898	0.150	0.295	0.126	1.113	0.186	Q. 1 <b>62</b>	0.052	8.8		0.2677
0021	-0.782	0.194	0.859	0.170	0.910	0,129	1.154	0.231	0.156	0.043	7.8		0.3518
0022	-1.326	0.324	1.196	0.284	1.103	0,122	0.838	0.199	0.230	0.035	4.4		0.7302
0023	-1.162	0.280	1.020	0.233	1.139	0.133	0.981	0.224	0.207	0.038	18.2		0.0187
0024	-2.379	0.435	2.143	0.394	1,110	0.076	0.467	0.085	0.128	0.020	25.6		0.0004
0025	~3.411	0.982	3.736	1.185	0.913	0.114	0.258	0.085	0.272	0.025	53.1	7.0	0.0000

289.9 175.0 0.0000

PARAMETER	MEAN		
~		~~~~	
SYMPTOTE	0.215	0	. 054
SLOFE	1.282	0	. 788
LOG(SLOPE)	0.116	0.	492
THRESHOLD	-0.122	0	. 840

QUADRATURE POINTS AND POSTERIOR WEIGHTS

1 2 3 4 5 5 6 7 8 9 10
POINT -0.3586D+01 -0.2762D+01 -0.1936D+01 -0.1111D+01 -0.2859D+00 0.5382D+00 0.136ED+01 0.21890+01 0.3014D+01 0.3839D+01
WEIGHT 0.3281D-02 0.2575D-01 0.4285D-01 0.1096D+00 0.3444D+00 0.3587D+00 0.8522D-01 0.2502D-01 0.5003D-02 0.2040D-03

EXHIBIT D-2

ITEM PARAMETER ESTIMATES FOR ARITHMETIC REASONING; 3-PARAMETER LOGISTIC MODEL

ITEM	INTERCEPT	S.E.	SLOPE	S.E.	THRESHOLD	5.E.	DISPERSN	S.E.	ASYMPTOTE	5.E.	CH15Q	OF.	PROB
0001	1.348	0.122	0.495	0.096	-2.718	C.499	2.021	0.392	0.210	0.092	6.8	7.0	0.4348
0002	1.604	0.144	0.750	0, 121	-2.109	0.283	1,315	0.208	0.202	0.090	14.4	7.0	0.0435
0003	1.023	0.117	1.451	0,169	-0.705	0.107	0.689	0.080	0.149	0.061	3.6	7,0	0.2144
0004	0.831	0.121	1.662	0.197	-0.500	.0.098	0.602	0.071	0.173	0.055	10.3	7.0	Q. 1688
0005	O. 151	0.139	1.460	0.215	-0.103	/ 0.105	0.685	0.101	0.230	0.050	12.3		0.0590
0006	0.578	0.105	1.040	0, 123	-0.555	0.132	0.961	0.113	0.148	0.063	5,5	7.0	0.5963
0007	0.605	0.118	0.551	0.083	-1.098	0.252	1.814	0.273	0.207	0.089	9.6	7.0	0.2141
8000	0.602	0.117	1.003	0.127	0.601	0.157	0.997	0.127	0.183	0.073	9.1	7.0	0.2475
0009	0.523	0.110	1.040	0.132	-0.503	0.140	0.962	0.122	0.160	0.066	5.4	7.0	0.6164
0010	0.350	0.138	1.610	0.293	-0.217	0.110	0.621	0.113	0.250	0.055	11.3	7.0	0.1242
0011	0.523	0,104	2.081	0.233	~0.251	0.061	0.481	0.054	0.096	0.032	22.1	7.0	0.0026
0012	-0.003	0.125	1.294	0.172	0.002 \	0.057	0.773	0.102	0.160	0.044	14.7	7.0	0.0392
0013	<b>-</b> 0.177	0.173	1,172	0.199	0.151	0.129	0.853	0.146	0.261	0.053	8.0	7.0	0.3338
0014	0.032	0.120	1.549	0.201	-0.021	0.079	0.646	0.084	0.139	0.039	7.9		0.3435
0015	0.157	0.125	1.560	(1, 209	~0.101	0.088	0.641	0.086	0.182	0.044	12.3	7.0	0.0908
0015	-0.612	0.232	1.522	J. 278	0.402	0.100	0.657	0.120	0.340	0.038	19.1	7.0	0.0082
0017	-1.001	0.280	1.768	0.330	0.567	0.078	0.566	0.106	0.289	0.031	8.9	7.0	0.2560
8100	<b>~1.793</b>	0.465	2.759	0.518	0.650	0.054	0.362	0.081	0.311	0.025	6.2		C.5119
0019	-0.214	0.163	1.012	0.189	0.212	0.133	0.988	0.185	0.200	0.055	13.8	7.0	0.0532
0020	-0.811	0.152	1.347	0.175	0.602	0.054	0.742	0.097	0.075	0.023	13.2	".0	0.0668
0021	-1.319	0.296	1.978	0.365	0.867	0.059	0.506	0.094	0.185	0.025	10.9		0.1435
0022	-0.524	0.209	1.749	0.301	0.357	0.076	0.572	0.096	0.250	0.034	8.0	7 0	0.3342
0023	~0.689	0.215	1.386	0.240	0.497	0.094	0.722	0.125	0.262	0.037	21.9	7.0	0.0028
0024	-1.625	0.526	2.775	0.784	0.585	0.049	0.360	0.102	0.205	0.024	9 7		0.2040
0025	~1.036	0.261	1.775	0.318	0.584	0.070	0.563	0.101	0.219	0.028	9.5		0.2136
0026	-0.530	0.166	1.163	0.185	0.456	0.093	0.860	0.137	0 152	0.038	10.8		0.1455
0027	-0.690	0.152	1.355	0.192	0.510	0.069	0.738	0.104	0.095	0.028	8 8		0.2653
0028	-1.513	0.316	1,516	0.297	0.997	0.076	0 659	0.129	0.152	0.024	÷š		0.3990
0029	-1.570	0.326	1.562	0.308	1.005	0.075	0.640	0.126	0.139	0.023	5 7		0.5793
0030	-0.834	0.229	1,305	0.234	0.639	0.094	0.786	0.138	0.203	C 035	10.1		0.1828

323.5 210 0 0.0000

PARAMETER	MEAN	STN	DEV
ASYMPTOTE	0.194		062
SLOPE	1.457		516
LOG(SLOPE)	0.311		382
THRESHOLD	÷0 020	Ο.	. 542

QUADRATURE POINTS AND POSTERIOR WEIGHTS.

7 2 3 4 5 6 7 8 9 10 POINT -0.26660+01 -0.20080+01 -0.13520+01 -0.69510+00 -0.38750+01 0.51790+00 0.12740+01 0.19310+01 0.25880+01 0.32440+01 0.39120+02 0.34930+01 0.12290+00 0.20190+00 0.24830+00 0.21830+00 0.13080+00 0.18420+01 0.19310+00 0.19380+02



.1()

EXHIBIT D-3

ITEM PARAMETER ESTIMATES FOR WORD KNOWLEDGE; 3-PARAMETER LOGISTIC MODEL

0001	. ITEM	INTERCEPT	S.E.	SLOPE	5,E.	THRESHOLD	8.E.	DISPERSN	\$.E.	ASYMPTOTE	5.E.	CHISQ	DF	PROB
0.003														
COOC    1.204														
CODE         2.045         0.168         1.008         0.111         -2.027         0.208         0.981         0.108         0.183         0.075         9.4         7.0         0.233           COD6         1.865         0.251         2.104         0.383         -0.886         0.083         0.475         0.088         0.229         0.008         19.4         7.0         0.028           COD6         1.166         0.189         2.232         0.300         -0.744         0.083         0.448         0.080         0.083         1.21         0.083         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002								0.509						
COOF   1.865														
COO7         1.164         0.121         0.793         0.112         -1.488         0.283         1.281         0.178         0.229         0.083         8.7         7.0         0.2748           COO8         0.189         0.096         0.983         0.130         -0.448         0.080         0.302         0.052         18.3         7.0         0.0106           COO8         0.189         0.096         0.983         0.130         -0.406         0.128         1.017         0.135         0.161         0.052         15.0         7.0         0.0186           O011         0.188         0.161         0.188         0.188         0.848         0.0135         0.161         0.077         10.5         7.0         0.022           O012         0.081         0.100         0.768         0.086         -1.419         0.221         7.301         0.163         0.157         0.070         10.7         7.0         0.1649           O013         1.800         0.134         1.478         0.226         -0.805         0.133         0.676         0.103         0.329         0.060         11.8         7.0         0.0164           O14         0.130         0.151         0.020														
0008         1,660         0,189         2,232         0,300         -0,744         0,083         0,080         0,080         0,080         0,080         0,096         0,083         0,130         -0,406         0,128         1,017         0,135         0,161         0,052         15,07         0,038         0,010         1,801         0,156         1,178         0,152         -1,613         0,198         0,848         0,110         0,189         0,077         10,57         7,00         0,038         0,014         1,478         0,128         0,014         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002         0,002 <t< td=""><td>0007</td><td>1,164</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	0007	1,164												
DOOD   Coop				2.232	0.300									
0010														
0012 1.091 0.100 0.768 0.096 -1.418 0.221 T.301 0.163 0.167 0.070 10.7 7.0 0.1518 0.013 1.180 0.134 1.478 0.226 -0.805 0.133 0.676 0.103 0.329 0.060 11.8 7.0 0.1049 0.14 0.888 0.104 1.371 0.166 -0.808 0.106 0.730 0.088 0.217 0.050 24.6 7.0 0.0010 0.018 1.100 0.113 1.572 0.203 -0.658 0.080 0.588 0.072 0.161 0.043 21.9 7.0 0.0010 0.018 1.100 0.113 1.572 0.203 -0.658 0.080 0.588 0.072 0.161 0.043 21.9 7.0 0.0028 0.017 0.868 0.109 1.933 0.227 -0.448 0.072 0.886 0.111 0.233 0.057 16.4 7.0 0.0028 0.017 0.868 0.109 1.933 0.227 -0.448 0.072 0.817 0.061 0.173 0.041 19.5 7.0 0.0070 0.0018 0.758 0.114 1.519 0.188 -0.489 0.103 0.888 0.086 0.257 0.052 26.3 7.0 0.0070 0.0018 0.700 0.158 0.114 1.519 0.188 -0.489 0.103 0.888 0.086 0.257 0.052 26.3 7.0 0.00070 0.0018 0.107 0.135 1.303 0.186 -0.082 0.112 0.757 0.115 0.286 0.051 7.4 7.0 0.3881 0.0020 1.149 0.118 1.652 0.187 -0.698 0.091 0.805 0.072 0.184 0.048 30.0 7.0 0.0089 0.0019 0.107 0.135 1.303 0.186 0.027 0.089 0.091 0.805 0.072 0.184 0.048 30.0 7.0 0.0001 0.001 0.001 0.494 0.130 1.466 0.257 -0.337 0.122 0.682 0.120 0.334 0.057 14.5 7.0 0.421 0.023 -0.722 0.372 3.000 0.868 0.241 0.063 0.333 0.086 0.250 0.014 7.7 7.0 0.3681 0.0024 -0.881 0.270 1.888 0.339 0.831 0.081 0.803 0.031 0.804 0.057 0.358 0.0024 0.0024 0.0023 -0.722 0.372 3.000 0.868 0.338 0.331 0.081 0.803 0.033 0.086 0.250 0.034 0.004 1.2.9 7.0 0.3628 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0									0,110		0.077			
0013													7.0	0.0045
0014														
0018														
Oct														
October   Octo														
O018														
OO18         O. 107         O. 135         1.303         O. 186         -0.082         O. 12         0.767         0.118         0.286         0.051         7.4         7.0         0.3891           OO20         1.149         0.118         1.662         0.197         -0.898         0.091         0.865         0.072         0.194         0.048         30.0         7.0         0.0001           OO21         0.494         0.130         1.466         0.257         -0.337         0.122         0.682         0.120         0.334         0.045         7.7         7.0         0.0421           O023         -0.722         0.372         3.000         0.860         0.241         0.063         0.235         0.031         0.024         7.7         7.0         0.3628           O024         -0.881         0.270         1.668         0.333         0.531         0.081         0.603         0.123         0.335         0.037         8.8         7.0         0.2587           O026         -0.533         0.226         1.582         0.328         0.337         0.080         0.632         0.131         0.320         0.037         8.8         7.0         0.0747           O026	0018													
0020	0019	0.107	0.135											
O021														
O022												14.5		
CO24         FO.881         0.270         1.688         0.339         0.531         0.081         0.603         0.123         0.335         0.037         8.8         7.0         0.2887           CO25         -0.533         0.226         1.582         0.328         0.337         0.080         0.632         0.131         0.320         0.043         12.9         7.0         0.0747           CO27         -0.100         0.431         1.007         0.153         0.099         0.120         0.993         0.151         0.184         0.051         23.5         7.0         0.0014           CO28         0.042         0.148         1.266         0.210         -0.034         0.122         0.796         0.133         0.257         0.056         9.6         7.0         0.2142           0029         -0.874         0.289         1.295         0.301         -0.034         0.122         0.796         0.133         0.257         0.056         9.6         7.0         0.2142           0030         -0.892         0.281         1.660         0.349         0.598         0.076         0.602         0.127         0.275         0.036         2.5         7.0         0.8258									0.077	0.275	0.041			
O025														
O026													7.0	0.2587
CO27         -0.10C         0.431         1.007         0.153         0.099         0.120         0.983         0.151         0.184         0.051         21.4         7.0         0.0033           0028         0.042         0.148         1.256         0.210         -0.034         0.122         0.796         0.133         0.267         0.056         9.6         7.0         0.2142           0030         -0.874         0.289         1.295         0.301         0.752         0.096         0.772         0.178         0.287         0.041         3.7         7.0         0.8124           0030         -0.982         0.281         1.660         0.349         0.598         0.076         0.602         0.127         0.275         0.035         2.5         7.0         0.8258           0031         1.178         0.133         1.435         0.222         -0.821         0.136         0.687         0.108         0.284         0.068         12.2         7.0         0.0836           0032         -0.807         0.302         1.161         0.300         0.712         0.058         0.223         0.300         0.047         10.7         7.0         0.1508           0033													7.0	0.0747
O028         O.042         O.148         1.286         O.210         -0.034         O.122         O.796         O.133         O.257         O.056         9.6         7.0         O.2142           C029         -0.874         C.289         1.295         O.301         O.752         O.096         O.772         O.178         O.287         O.041         3.7         7.0         O.8124           C031         -0.982         O.281         1.660         O.349         O.588         O.076         O.602         O.127         O.275         O.038         2.5         7.0         O.8258           C031         1.178         O.133         1.435         O.222         -0.821         O.136         O.687         O.108         O.254         O.068         12.2         7.0         O.0836           C032         -0.907         O.302         1.161         O.300         O.781         O.113         O.861         O.223         O.300         O.047         10.7         7.0         O.1508           C034         -0.232         O.339         4.114         O.955         O.712         O.058         O.243         O.056         O.276         O.028         21.2         7.0         O.0036													7.0	0.0014
O029													7.0	0.0033
0030 -0.992 0.281 1.660 0.349 0.598 0.076 0.602 0.127 0.275 0.038 2.5 7.0 0.8258 0.031 1.178 0.133 1.435 0.222 -0.821 0.136 0.687 0.108 0.264 0.068 12.2 7.0 0.0836 0.032 -0.807 0.302 1.161 0.300 0.781 0.113 0.861 0.223 0.300 0.047 10.7 7.0 0.1508 0.033 -2.931 0.803 4.114 0.955 0.712 0.058 0.243 0.056 0.276 0.026 21.2 7.0 0.0036 0.034 -0.232 0.138 1.246 0.185 0.186 0.083 0.803 0.119 0.168 0.044 28.0 7.0 0.003													7.0	0.2142
CO31 1.178 0.133 1.435 0.222 -0.821 0.136 0.887 0.108 0.284 0.068 12.2 7.0 0.0836 0.032 -0.907 0.302 1.161 0.300 0.781 0.113 0.861 0.223 0.300 0.047 10.7 7.0 0.1508 0.033 -2.931 0.803 4.114 0.955 0.712 0.058 0.243 0.056 0.276 0.028 21.2 7.0 0.0036 0.034 -0.232 0.139 1.246 0.185 0.186 0.083 0.283 0.119 0.168 0.044 28.0 7.0 0.0038														
0032 -0.807 0.302 1.161 0.300 0.781 0.113 0.861 0.223 0.300 0.047 10.7 7.0 0.1508 0033 -2.931 0.803 4.114 0.955 0.712 0.058 0.243 0.056 0.276 0.028 21.2 7.0 0.0036 0034 -0.232 0.139 1.246 0.185 0.186 0.083 0.803 0.119 0.168 0.044 28.0 7.0 0.003	CQ31	1.178												
0033 -2.931 0.803 4.114 0.955 0.712 0.058 0.243 0.056 0.276 0.028 21.2 7.0 0.0036 0.034 -0.232 0.139 1.246 0.185 0.186 0.083 0.803 0.119 0.168 0.044 28.0 7.0 0.003														
0034 -0.232 0.139 1.246 0.185 0.186 0.083 0.803 0.119 0.168 0.044 28.0 7.0 0.0003														
									C. 119	0.168		28.0		
0035   -0.733 0.224   2.404 0.412   0.305 0.052   0.415 0.071   0.159 0.031   26.0 7.0 0.0006	0035	-0.733	0.224	2,404	0.412	0.308	0.052	0.416	0.071	0.159	0.031	26.0		

520.1 245.0 0.0000

 PARAMETER
 MEAN
 STN DEV

 ASYMPTOTE
 0.234
 0.056

 SLOPE
 1.531
 0.879

 LOG(SLOPE)
 0.348
 0.390

 THRESHOLD
 -0.510
 0.853

QUADRATURE POINTS AND POSTERIOR WEIGHTS:

1 2 3 4 5 6 7 8 9 10
POINT -0.2617D+01 -0.2014D+01 -0.1411D+01 -0.8076D+00 -0.2043D+00 0.3990D+00 0.1002D+01 0.1605D+01 0.2209D+01 0.2812D+01
WEIGHT 0.47840-01 0.3486D-01 0.1863D+01 0.1589D+00 0.1867D+00 0.3078D+00 0.4510D-01 0.6030D+02 0.2708D-03

EXHIBIT D-4

ITEM PARAMETER ESTIMATES FOR PARAGRAPH COMPREHENSION; 3-PARAMETER LOGISTIC MODEL

HET	INTERCEPT	S.E.	SLOPE	S.E.	THRESHOLD	S.E.	DISPERSN	5.E.	ASYMPTOTE	S.E.	CHISQ	DF PROS
0001 0002 0003 0004 0005 0006 0006 0008 0010 0010 0011 0012 0013 0014 0015	0.638 1.392 1.558 0.412 0.575 0.575 0.693 0.693 0.693 0.482 -0.202 0.767 0.215	O. 149 O. 135 O. 195 O. 195 O. 174 O. 174 O. 113 O. 113 O. 115 O. 117 O. 203 O. 116 O. 139 O. 158	1.155 0.857 1.894 0.840 1.240 1.033 0.826 0.625 1.122 0.611 1.272 1.382 0.611 0.840 0.181	0.230 0.116 0.430 0.160 0.178 0.248 0.098 0.184 0.335 0.089 0.339 0.155 0.167	-0.552 -1.624 -0.781 -0.480 -0.464 -0.249 -0.623 -1.109 -0.503 -0.221 -0.943 -0.161 -0.761 -0.256	O.208 O.229 O.146 O.242 O.212 O.213 O.278 O.278 O.170 O.090 O.090 O.125 O.125 O.125 O.125 O.125 O.125 O.125 O.125 O.125 O.125	O.866 1.167 O.501 1.190 O.806 O.968 1.211 1.800 O.591 O.786 O.982 1.191 5.512	0.172 0.157 0.108 0.216 0.232 0.146 0.245 0.146 0.339 0.245 0.156 0.339 0.215 0.153	0.296 0.203 0.252 0.242 0.127 0.308 0.201 0.195 0.185 0.185 0.186 0.266 0.181	0.079 0.088 0.088 0.084 0.076 0.076 0.080 0.085 0.071 0.041 0.052 0.052 0.075 0.075	15.6 15.5 16.5 16.6 16.6 14.4 12.6 14.2 16.9 16.7	6.0 0.0162 6.0 0.1111 6.0 0.0053 6.0 0.0067 6.0 0.0111 6.0 0.2524 6.0 0.1332 6.0 0.0253 6.0 0.0253 6.0 0.0268 6.0 0.0268 6.0 0.0268 6.0 0.0001 6.0 0.0001

387.2 90.0 0.0000

PARAMETER MEAN STH DEV

ASYMPTOTE D.210 0.048
\$1.0PC 0.883 0.419
LOG(\$1.0PE) -0.118 0.549
THRESHOLD -0.419 0.766

QUADRATURE POINTS AND POSTERIOR WEIGHTS:

FLINT -0 40600+01 -0 31590+01 -0.22570+01 -0 13560+01 -0.45510+00 0.44600+00 0.13470+01 0.22480+01 0.31500+01 0.40510+01 #EIGH7 0 48150-03 0.71110-02 0.42780-01 0.13490+00 0.20830+00 0.47950+00 0.10540+00 0.19480-01 0.17730-02 0.67390-04



#### EXHIBIT D-5

ITEM PARAMETER ESTIMATES FOR AUTO AND SHOP INFORMATION; 3-PARAMETER LOGISTIC MODEL

TITEM   INTERCEPT   S.E.   SLOPE   S.E.   THRESHOLD   S.E.   DISPERSN   S.E.   ASYMPTOTE   S.E.   CHISQ   DF   PROB	•								•			-		
OCO2         0.875         0.18         0.734         0.111         -1.182         0.266         1.362         0.206         0.207         0.088         6.1 7.0 0.5339           OCO3         0.110         0.125         0.877         0.117         -1.388         0.285         0.682         0.206         0.051         10.3 7.0 0.1716           OCO4         0.938         0.125         0.877         0.117         -1.388         0.285         1.478         0.256         0.228         0.098         1.877         0.171         -1.388         0.285         0.286         0.228         0.098         11.87         0.4706         0.084         0.075         0.088         0.175         0.008         0.175         0.008         11.87         0.0470         0.014         0.0147         0.061         0.421         0.075         0.088         11.37         0.008         11.37         0.008         11.37         0.008         11.37         0.008         11.37         0.008         11.37         0.008         11.37         0.008         11.37         0.008         11.37         0.008         11.37         0.008         11.37         0.008         11.38         0.008         11.38         0.008         11.38         0.008 <th>ITEM</th> <th>INTERCEPT</th> <th>S.E.</th> <th>SLOPE</th> <th>5 . E .</th> <th>THRESHOLD</th> <th>S.E.</th> <th>DISPERSN</th> <th>S.E.</th> <th>ASYMPTOTE</th> <th>5.E.</th> <th>CHISQ</th> <th>DF</th> <th>PROS</th>	ITEM	INTERCEPT	S.E.	SLOPE	5 . E .	THRESHOLD	S.E.	DISPERSN	S.E.	ASYMPTOTE	5.E.	CHISQ	DF	PROS
0003         0.10         0.39         0.125         0.202         -0.076         0.085         0.285         0.286         0.297         0.204         0.051         10.3         7.0         0.1718           0004         0.939         0.125         0.877         0.117         0.158         0.285         0.286         0.228         0.096         6.677         0.4708           0005         -0.348         0.179         2.373         0.414         0.147         0.061         0.421         0.073         0.175         0.038         0.175         0.038         0.175         0.038         0.175         0.038         11.3         7.0         0.1024           0007         -0.776         0.241         1.641         0.229         0.473         0.083         0.609         0.108         0.255         0.038         11.3         7.0         0.1024           0008         0.125         0.133         0.412         0.078         -0.303         0.313         0.420         0.084         4.9         7.0         0.061           0009         0.235         0.134         0.084         -0.737         0.445         0.145         0.145         0.083         18.1         7.0         0.0241		0.496	0.122	0.376	0.073	-1.320	0.454		0.520	0.221		4.9.		
COOM         0.939         0.125         0.877         0.117         -1.388         0.285         1.478         0.286         0.280         0.096         8.6         7.0         0.4706           COOM         0.309         0.128         1.877         0.346         -0.185         0.075         0.506         0.088         0.220         0.048         11.877         0.0123           COO7         -0.776         0.241         1.641         0.281         0.473         0.089         0.108         0.255         0.038         11.37         0.0123           COO3         0.125         0.133         0.412         0.073         0.089         0.108         0.255         0.039         11.87         0.0644         4.97         0.0644         4.97         0.0644         4.97         0.0644         4.97         0.0644         4.97         0.0644         4.97         0.0644         4.97         0.0644         4.97         0.0644         4.97         0.0644         4.97         0.0644         4.97         0.0644         4.97         0.0644         4.97         0.0644         4.97         0.0644         4.97         0.0644         4.97         0.0644         4.97         0.0644         4.97         0.0644	0002	0.875	0~119	0.734	0.111	-1,192	0.246	1.362	0.206	0.207	0.089	6.1	7.0	0.5339
COO4         C.939         C.125         C.877         C.117         -1.388         C.285         1.478         C.286         C.228         C.096         E.E         7.0         C.470           COO5         -0.308         0.129         1.877         C.346         -0.155         C.075         C.505         C.088         C.220         C.049         11.877         C.012           COO5         -0.348         O.178         C.373         C.414         C.147         C.061         C.421         C.075         C.038         11.3         7.0         C.122           COO7         -0.775         C.241         1.641         C.291         C.473         C.089         C.609         C.108         C.226         C.038         19.8         7.0         C.0061           COO8         C.125         C.133         C.412         C.078         C.303         C.353         C.429         C.450         C.134         C.089         C.174         C.089         C.174         C.089         C.189         C.039         19.8         7.0         C.0241           CO11         -0.002         C.145         C.280         C.145         C.280         C.159         C.083         16.1         7.0         C.0241 <td>0003</td> <td>0.110</td> <td>0.730</td> <td>1.445</td> <td>0.202</td> <td>-0.076</td> <td>0.095</td> <td>0.592</td> <td>0.097</td> <td>0.204</td> <td>0.051</td> <td>10.3</td> <td>7.0</td> <td>0.1716</td>	0003	0.110	0.730	1.445	0.202	-0.076	0.095	0.592	0.097	0.204	0.051	10.3	7.0	0.1716
COD6         C, 308         C, 129         1, 877         0, 346         -0, 156         0, 075         0, 506         0, 088         0, 220         0, 048         11, 8         7, 0         0, 1024           COD6         -0, 348         0, 179         2, 373         0, 414         0, 147         0, 061         0, 679         0, 108         0, 255         0, 038         11, 3         7, 0         0, 1024           COD6         -0, 775         0, 241         1, 541         0, 281         0, 473         0, 089         0, 609         0, 108         0, 255         0, 038         11, 3         7, 0         0, 0061           COD6         0, 125         0, 133         0, 412         0, 078         -0, 303         0, 318         2, 429         0, 460         0, 194         0, 084         4, 9         7, 0         0, 6794           COD10         -0, 002         0, 146         1, 002         0, 171         0, 002         0, 145         0, 988         0, 170         0, 2819         0, 181         0, 0324         0, 0324         0, 0324         0, 0324         0, 0324         0, 0324         0, 0324         0, 0324         0, 0324         0, 0324         0, 0324         0, 0324         0, 0324         0, 0324         0	0004			0.677						0.228				
COD05         -0.348         0.178         2.373         0.414         0.147         0.061         0.421         0.073         0.175         0.088         11.3         7.0         0.1232           COD3         0.125         0.133         0.412         0.078         -0.303         0.353         2.429         0.460         0.184         0.084         4.9         7.0         0.6794           CO09         0.235         0.118         0.318         0.064         -0.737         0.445         3.142         0.629         0.188         0.083         16.1         7.0         0.0241           CO10         -0.002         0.145         0.084         -0.737         0.445         0.988         0.170         0.215         0.083         16.1         7.0         0.0241           CO11         -0.002         0.145         0.002         0.145         0.002         0.145         0.002         0.145         0.002         0.188         0.103         16.1         7.0         0.0241           CO11         -0.022         0.128         0.138         0.084         -0.133         0.128         0.038         0.174         0.075         8.4         7.0         0.288           CO12														
COO7         -0.775         0.241         1.541         0.281         0.473         0.089         0.509         0.108         0.255         0.038         19.8         7.0         0.0051           COO8         0.125         0.133         0.412         0.078         0.303         0.353         2.429         0.460         0.184         0.084         4.9         7.0         0.6794           CO09         0.235         0.118         0.318         0.084         -0.737         0.445         0.629         0.194         0.084         4.9         7.0         0.6794           CO10         -0.002         0.146         1.002         0.171         0.002         0.145         0.998         0.170         0.215         0.063         8.1         7.0         0.0241           CO11         0.052         0.123         0.064         0.108         0.250         0.255         0.063         8.1         7.0         0.0241           CO12         0.052         0.123         0.060         0.145         0.060         0.215         0.063         8.1         7.0         0.235           CO13         0.134         0.108         0.024         0.132         0.053         0.118 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
COOR         0.125         0.133         0.412         0.078         -0.303         0.353         2.429         0.460         0.194         0.064         4.9         7.0         0.6794           OCOS         0.118         0.318         0.064         -0.737         0.445         3.142         0.629         0.188         0.083         16.1         7.0         0.0241           CO10         -0.022         0.146         1.002         0.171         0.002         0.145         0.170         0.0215         0.063         8.1         7.0         0.241           CO11         -0.253         0.188         0.706         0.153         0.358         0.228         1.417         0.307         0.253         0.075         8.4         7.0         0.2859           CO12         0.052         0.129         0.478         0.084         -0.108         0.280         2.092         0.368         0.174         0.076         10.8         7.0         0.1456           CO13         0.132         0.132         0.133         0.118         0.298         0.132         0.135         0.135         0.123         0.135         0.135         0.135         0.135         0.135         0.135         0.135														
OOOS         0.235         0.118         0.318         0.084         -0.737         0.445         3.142         0.629         0.188         0.083         16.1         7.0         0.021           OO10         -0.002         0.146         1.002         0.171         0.002         0.145         0.283         0.170         0.215         0.063         8.1         7.0         0.3234           O011         -0.253         0.188         0.706         0.153         0.358         0.228         1.417         0.307         0.253         0.075         8.4         7.0         0.2358           O012         0.052         0.129         0.478         0.084         -0.108         0.280         2.092         0.368         0.174         0.075         8.4         7.0         0.2358           O013         0.134         0.105         1.002         0.132         0.132         0.132         0.135         0.135         0.135         0.036         0.115         0.098         0.132         0.053         0.132         0.0678         0.024         0.076         0.135         0.053         0.149         0.244         0.053         13.2         7.0         0.0678         0.046         0.132         0.036<														
OO10         -0.002         0.146         1.002         C.171         0.002         0.145         0.998         0.170         0.215         0.063         8.1         7.0         0.3234           0011         -0.253         0.188         0.706         0.153         0.355         0.228         1.417         0.307         0.253         0.075         8.4         7.0         0.2859           0012         0.052         0.128         0.478         0.084         -0.108         0.2280         2.092         0.368         0.174         0.075         8.4         7.0         0.2859           0013         0.134         0.105         1.002         0.132         -0.133         0.118         0.998         0.132         0.135         0.053         9.6         7.0         0.2126           0014         -0.046         0.158         1.323         0.280         0.035         0.115         0.756         0.149         0.254         0.038         13.2         7.0         0.0678           0015         -0.428         0.174         1.227         0.209         0.349         0.104         0.815         0.138         0.195         0.047         7.3         7.0         0.3395														
0011         -0.283         0.188         0.706         0.153         0.388         0.228         1.417         0.307         0.253         0.075         8.4         7.0         0.2898           0012         0.052         0.129         0.478         0.084         -0.108         0.280         2.092         0.368         0.174         0.053         9.6         7.0         0.1456           0014         -0.046         0.158         1.323         0.280         0.036         0.115         0.998         0.132         0.135         9.6         7.0         0.0678           0015         -0.428         0.174         1.227         0.209         0.349         0.104         0.815         0.135         0.047         7.3         7.0         0.385           0015         -0.428         0.174         1.227         0.209         0.349         0.104         0.815         0.135         0.195         0.047         7.3         7.0         0.385           0015         -0.428         0.174         1.227         0.209         0.349         0.104         0.815         0.135         0.195         0.047         7.3         7.0         0.3845           0015         -0.413         <														
CO12         C.052         C.128         C.478         C.084         -C.108         C.28C         2.092         C.368         C.174         C.076         IC.8         7.0         C.1466           CO13         C.105         C.105         I.002         C.132         C.033         C.135         C.035         C.035<														
OO13         O.134         O.109         1.002         O.132         -0.133         O.118         O.998         O.132         O.135         O.0216           OO14         -0.046         0.158         1.323         0.250         0.035         0.115         0.756         0.149         0.254         0.08         13.2         7.0 0.0678           OO15         -0.428         0.174         1.227         0.209         0.349         0.104         0.815         0.139         0.155         0.047         7.3         7.0 0.3955           OO15         -0.413         0.173         1.352         0.229         0.303         0.066         0.734         0.123         0.195         0.046         7.9         7.0 0.3447           OO17         -1.424         0.351         2.254         0.480         0.632         0.063         0.444         0.086         0.196         0.028         8.5         7.0 0.3528           OO18         -1.819         0.435         2.819         0.626         0.645         0.079         0.218         0.024         7.8         7.0 0.3528           OO18         0.295         0.094         0.574         0.078         -0.513         0.197         0.7079         0.218<														
OO14         ~O.046         O.158         1.323         O.250         O.036         O.115         Q.756         O.149         O.254         O.08         13.2         7.0         O.0678           OO15         ~O.428         O.174         1.227         O.209         O.349         O.104         O.815         O.135         O.195         O.047         7.3         7.0         O.355           OO15         ~O.413         O.173         1.362         O.228         O.303         O.096         O.734         O.123         O.195         O.046         7.9         7.0         O.3547           OO17         ~1.424         O.351         2.254         O.480         G.632         O.063         O.444         O.086         O.196         O.028         8.5         7.0         O.2895           OO18         ~1.519         O.436         O.526         O.645         O.057         O.355         O.079         O.218         O.024         7.8         7.0         O.3528           OO19         O.295         O.094         O.574         C.078         O.645         O.057         O.355         O.079         O.218         O.020         7.8         7.0         O.3528           OO20 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
OO15         -0.428         0.174         1.227         0.209         0.349         0.104         0.815         0.138         0.195         0.047         7.3         7.0         0.3955           OO15         -0.413         0.173         1.362         0.228         0.303         0.096         0.734         0.195         0.045         7.9         7.0         0.347           OO17         -1.424         0.351         2.254         0.480         0.632         0.063         0.444         0.086         0.196         0.028         8.5         7.0         0.347           OO18         -1.819         0.435         2.819         0.626         0.057         0.358         0.079         0.218         0.024         7.8         7.0         0.3528           OO19         0.235         0.094         0.574         0.078         -0.513         0.197         0.358         0.079         0.218         0.024         7.8         7.0         0.3528           OO19         0.235         0.094         0.574         0.078         -0.513         0.197         0.179         0.179         0.179         0.179         0.179         0.179         0.179         0.179         0.179         0.179														
OO15         -0.413         0.173         1.362         0.228         0.303         0.096         0.734         0.123         0.195         0.046         7.9         7.0         0.3447           OO17         -1.424         0.351         2.254         0.480         0.632         0.063         0.444         0.086         0.196         0.028         8.5         7.0         0.2895           OO18         -1.819         0.435         2.819         0.526         0.645         0.057         0.358         0.079         0.218         0.024         7.8         7.0         0.3528           OO19         0.285         0.084         0.574         0.076         -0.513         0.197         1.741         0.237         0.130         0.050         20.5         7.0         0.0466           OO20         -0.438         0.191         0.972         0.179         0.450         0.142         1.028         0.190         0.222         0.055         8.2         7.0         0.3126           OO21         -0.815         0.268         0.900         0.197         1.017         0.147         1.111         0.243         0.225         0.046         5.5         7.0         0.4847														
OO17         -1.424         0.351         2.254         0.480         0.632         0.063         0.444         0.086         0.196         0.028         8.6         7.0         0.2885           OO18         -1.819         0.435         2.819         0.626         0.645         0.057         0.355         0.079         0.218         0.024         7.8         7.0         0.3528           OO20         -0.438         0.191         0.972         0.179         0.460         0.142         1.028         0.190         0.122         0.055         8.2         7.0         0.0460           OO21         -0.815         0.268         0.900         0.197         1.017         0.147         1.111         0.243         0.222         0.055         8.2         7.0         0.3126           OO22         -1.120         0.268         0.800         0.197         1.017         0.147         1.111         0.243         0.225         0.046         6.5         7.0         0.04847           CO22         -1.120         0.268         1.511         0.314         0.619         0.071         0.552         0.096         0.178         0.030         18.0         7.0         0.0120														
CO18         -1.819         0.435         2.819         0.526         0.645         0.057         0.355         0.079         0.218         0.024         7.8         7.0         0.358           CO19         0.295         0.084         0.574         0.071         0.197         1.741         0.237         0.130         0.080         20.5         7.0         0.046           CO20         -0.438         0.191         0.972         0.197         0.460         0.142         1.028         0.190         0.022         0.055         8.2         7.0         0.3126           CO21         -0.915         0.268         0.900         0.197         1.017         0.147         1.111         0.243         0.225         0.046         6.5         7.0         0.4847           CO22         -1.120         0.265         1.511         0.314         0.619         0.071         0.552         0.096         0.178         0.030         18.0         7.0         0.0120           CO23         -1.420         0.239         2.099         0.317         0.677         0.051         0.476         0.072         0.063         0.018         16.7         7.0         0.0185           CO24														
OO19 OO20 OO20 OO21 OO21 OO22 OO21 OO22 OO22														
OO20														
OO21														
CO22     -1.120     0.286     1.511     0.314     0.619     0.071     0.552     0.096     0.178     0.030     18.0     7.0     0.0120       CO23     -1.420     0.239     2.099     0.317     0.677     0.051     0.476     0.072     0.063     0.018     16.7     7.0     0.0195       CO24     -1.738     0.412     1.541     0.330     1.167     0.088     0.649     0.140     0.159     0.025     9.8     7.0     0.1974														
0023 -1.420 0.238 2.099 0.317 0.677 0.051 0.476 0.072 0.063 0.018 16.7 7.0 0.0185 0024 -1.788 0.412 1.541 0.335 1.167 0.088 0.649 0.140 0.159 0.025 9.8 7.0 0.1974														
0024 -1.798 0.412 1.541 0.33 1.167 0.088 0.649 0.140 0.159 0.025 9.8 7.0 0.1974														
OO25   -0.694														
	0025	-0.534	0.246	0.549	0.139	1.265	0.253	1.822	0.463	0.196	0.054	2.2	7.0	0.3454

255.5 175.0 0.0001

PARAMETER	MEAN		
	****	~-~-	
ASYMPTOTE	0.195	٥.	042
SLOPE	1.723	٥.	697
LOG(SLOPE)	0.029	٥.	£21
THRESHOLD	550.0	٥.	716

QUADRATURE POINTS AND POSTERIOR WEIGHTS:

1 2 3 4 5 6 7 8 9 10
POINT -0.2848D+01 -0.2167D+01 -0.1525D+01 -0.8640D+00 -0.2024D+00 0.4592D+00 0.1121D+01 0.1782D+01 0.2444D+01 0.3108D+01
WEIGHT 0.8179D-02 0.3923D+01 0.7460D+01 0.1122D+00 0.3569D+00 0.2198D+00 0.1095D+00 0.6272D+01 0.1667D+01 0.2232D+03

### EXHIBIT D-6

ITEM PARAMETER ESTIMATES FOR MATHEMATICS KNOWLEDGE; 3-PARAMETER LOGISTIC MODEL

ITEM	INTERCEPT	S.E.	SLOPE	S.E.	THRESHOLD	S.E.	DISPERSN	S.E.	ASYMPTOTE	S.E.	CHISQ	DF	PROB
1 000	1.656	0.188 [	1.412	0.228	-1.175	0.158	0.708	0.114	0.197	0.086	1 35.3	7,0	0.0000
0002	0.782	0.112	0.841	0.113	-0.930	0.192	1,189	0.160	0.179	0.079	19.1	7.0	0.0081
0003	0.115	0.114	1.212	0.162	-0.095	0.102	0.825	0,111	0.135	0.049	6.0	7.0	0.5422
0004	0.312	0.151	1.500	0.215	~0.20€	0.118	0.667	0.096	0.790	0.057	13.0		0.0712
0005	0.532	0.112	0.510	0.084	<b>~0.871</b>	0.244	1,538	0.225	0.181	0.080	11.9		0.1015
0006	<b>~</b> O. 155	0.146	1.637	0.230	0.101	0.080	0.611	0.046	0.178	0.041	10.0	7.0	0.1869
0007	-0.132	0.222	2.201	0.465	0.087	0.088	0.454	0.098	0.321	0.045	9.3	7.0	0.2326
0008	0.009	0.119	0.308	0.124	-0.010	0.132	1,101	0.151	0,139	0.054	7.2		0.4129
0003	0.915	0.170	1.445	0.246	-0.010	0.119	0.531	0.118	0.305	0.054	5.1		0.6450
0010	<b>~</b> 0.081	0.162	1.090	0.208	. 0.074	0.139	0.918	0.175	0.225	0.061	19.0		0.0082
0011	<b>~0.582</b>	0.247	1.031	0.232	0.565	0.148	0.970	0.218	0.309	0.053	6.2		0.5160
0012	-0.584	0.166	1.671	0.235	0.349	0.055	0.598	0.084	0.133	0.031	15.4		0.0309
0013	-0.511	0.328	3.383	0.600	0.269	0.057	0.256	Ο.Ω5≥	0,198	0.026	24.9	7.0	0.0009
0014	~1.154	0.268	2.33\$	0.417	0.494	0.050	0.428	0.076	0.159	0.026	7.4		0.3837
0015	-1.045	0.301	0.949	0.234	1.100	0.135	1.054	0.256	0.234	0.042	9.4		0.2223
0016	~1.375	0.411	2.844	0.720	0.467	0.050	0.340	0.083	0.309	0.028	4.3		0.7514
0017	-0,\$24	0.203	1.986	0.265	0.465	0.055	0.503	0.072	0.119	0.025	14.0		0.0503
0018	-1.259	0.337	2.978	0.500	0.435	0.044	0.336	0.068	0.211	0.025	7.4		0.3843
0019	-0.542	0.229	1.428	0.249	0.450	0.102	Q. <b>700</b>	0.122	0.295	0.041	20.1		0.0056
0020	~1.002	0.292	1.356	0.300	0.739	0.095	0.738	0.163	0.262	0.038	10.4		0.1640
0021	~2.137	0.583	2.204	0.536	0.870	0.072	0.454	0.110	0.280	0.026	10.2		0.1772
0022	2.715	0.514	3.101	0.598	0.876	0.055	0.323	0.052	0.180	0.021	3.8	7.0	0.7987
0023	-2.114	0.372	2.316	0.375	0.913	0.052	0.432	0.070	0.120	0.018	13.8		0.0537
0024	~1.337	0.257	1.182	0.215	1.132	0.091	0.546	0.164	0.127	0.02ε	9.5		0.2150
0025	-2.177	0.457	2.369	0.452	Q.919	0.057	0.422	0.080	0.152	0.021	12.5	7.0	0.0769

305.8 175.0 0.0000

PARAMETER	MEAN		
ASYMPTOTE	0.209		068
SLOPE	1.764		. 778
LOG(SLOPE)	0.471	0	. 455
THRESHOLD	0.284	0	. 6 : 5

QUADRATURE POINTS AND POSTERIOR WEIGHTS:

1 2 3 4 5 6 7 8 9 10

POINT -0.2865D+01 -0.2200D+0+ -0.1537D+01 -0.5720D+00 -0.2079D+00 0.4583D+00 0.1120D+01 0.1785D+01 0.2448D+01 0.3113D+01

WEIGHT 0.3099D-02 0.3214D-01 0.9046D-01 0.1350D+00 0.2791D+00 0.2577D+00 0.1435D+00 0.4105D+01 0.1706D-01 0.7151D+03



EXHIBIT D-7

ITEM PARAMETER ESTIMATES FOR MECHANICAL REASONING; 3-PARAMETER LOGISTIC MODEL

ITEM	INTERCEPT	`\$.E.	SLOPE	\$.E.	THRESHOLD	5.E.	DISPERSN	S.E.	ASYMPTOTE	S.E.	CHISQ	DF	PROB
0001	1.162	0.125	0.573	0.101	-2.030	0,357	1.746	0.307	0.218	0.094	20.5	7.0	0.0047
0003	0.777	0.136	1.077	0.189	-0.721	0.192	0.923	0,163	0.232	0.089	18.4		0.0105
0003	0.756	0.116	0.729	0.102	-1.037	0.226	1,372	0.192	0.194	0.085	6.2		0.5144
0004	-0.965	0.232	1.097	0.217	0.880	0.106	0.912	C. 181	0.198	0.037	5.5		0.5996
0005	0.005	0.122	0.882	0.122	-0.006	0.139	1.134	0.157	0.137	0.055	4.8	7.0	
3000	-1,617	0.483	1.602	0.408	0.946	0.118	0.624	0.159	0.477	0.031	5.9		0.5499
0007	-0.650	0.281	1.462	0.342	0.445	0.111	0.684	0.150	0.334	0.044	4.9		0.6776
8000	0.286	0.115	1,202	0.152	-0.238		0.832	0.105	0.139	0.053	15.9		0.0262
0009	0.259	0.121	0.586	0.087	-0.459	0.245	1.707	0.253	0,178	0.077	8.7	7.0	0.2770
0010	0.118	0.120	1.497	0.164	~0.079	0.085	0.668	0.073	0.126	0.040	24.9		0.0009
0011	0.181	0.148	0.483	280.0	-0.374	0.348	2.071	0.380	0.226	0.092	2.6		0.8211
0012	-0.426	0.217	1.521	0.279	0.280	0/104	0.557	0.121	0.264	0.044	13.0	7,0	0.0705
0013	-0.085	0.197	1.369	0.269	0.062	0.135	0.731	0.143	0.300	0.057	5.8	7.0	0.4529
0014	-0.245	0.183	1,292	0.219	0.190	0.118	0.774	0.131	0.227	0.050	9.6	7.0	0.2089
0015	-0.066	0.134	0.917	0.136	0.072	0.138	1,09	0.161	0.150	0.056	2.6	7.0	0.3189
0016	-0.020	0,144	0.578	0.101	0.035	0.245	1.730	0.302	0.180	0.075	4,1	7.0	0.7658
0017	-1.104	0.313	1.392	0.288	0.793	0.104	0.718	0.149	0.325	0.035	9.4	7.0	0.2268
0018	-0.971	0.271	1.684	0.321	0.577	0.079	0.594	0.113	0.257	0.032	15.4	7.0	0.0313
0019	-3.332	1.275	2.55 <u>1</u>	0.917	1.276	0.073	0.392	0.141	0.542	0.022	8.1		0.3234
0020	-0.364	0.197	0.817	0.164	0.445	0.176	1,223	0.246	0.211	0.063	5.3	7.0	0.6239
0021	-1.405	0.327	1,747	0.342	0.804	0.078	0.572	0.112	0.255	0.029	11.3	7.0	
0022	-1.861	0.467	1,303	0.347	1.274	0.110	0,767	0.204	0.275	0.031	6.6		0.4749
C023	-0.995	0.223	1.273	0.222	0.782	0.083	0.785	0.137	0.124	0.031	12,1		0.0963
0024	-0.739	0.237	0.891	0.191	0.830	0.139	1.123	0.241	0.189	0.049	5.5	7.0	
0025	~1.200	0.264	1.420	0.252	0.846	0.081	0.704	0.125	0.167	0.029	6.2	7.0	0.5136

234.4 175.0 0.0018

PARAMETER MEAN STN DEV
ASYMPTOTE 0.228 0.082
SLOPE 1.198 0.468
LOG(SLOPE) 0.103 0.412
THRESHOLD 0.225 0.764

QUADRATURE POINTS AND POSTERIOR WEIGHTS:

POINT WEIGHT 0.1748D-03 0.4923D-02 0.5228D-01 0.16640+00 0.3035D+00 0.3020D+00 0.1544D+00 0.1552D-01 0.2033D-03 0.2834D-04

EXHIBIT D-8
ITEM PARAMETER ESTIMATES FOR ELECTRONICS KNOWLEDGE; 3-PARAMETER LOGISTIC MODEL

ITEM	INTERCEPT	S.E.	BLOPE	S.E.	THRESHOLD	S.E.	DISPERSE	S.E.	ASYMPTOTE	S.E.	CHISQ	DF	PROB
0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014	0.859 0.287 0.515 0.611 0.699 0.376 0.215 0.273 0.249 -0.026 -0.907 -0.631 -0.510 -0.248	0.117 0.173 0.125 0.110 0.122 0.118 0.154 0.120 0.160 0.160 0.113 0.320 0.219 0.192 0.192	0.824 1.654 1.494 1.385 0.894 1.377 1.255 0.714 0.838 0.853 1.407 1.025 0.396 1.319	O. 126 O. 354 O. 266 O. 194 O. 203 O. 231 O. 118 O. 127 O. 133 O. 287 O. 287 O. 2085 O. 246	-1,042 -0,173 -0,345 -0,448 -0,782 -0,273 -0,171 -0,318 -0,348 0,028 1,063 0,448 0,595 0,625 0,490	0.211 0.126 0.112 0.107 0.198 0.105 0.142 0.164 0.253 0.118 0.177 0.091 0.112 0.344 0.088	1.213 0.805 0.869 0.733 1.19 0.726 0.737 1.184 1.400 1.065 1.172 0.711 0.975 2.524	0.185 0.129 0.118 0.107 0.107 0.160 0.151 0.327 0.145 0.183 0.142	0.197 0.363 0.209 0.154 0.208 0.171 0.262 0.171 0.264 0.121 0.277 0.192 0.147 0.187	0.086 0.067 0.063 0.085 0.087 0.068 0.068 0.082 0.061 0.041 0.046 0.046	CH15Q 2,9 3.0 10.7 18.0 9.8 11.1 6.4 10.8 8.8 14.9	7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00	PROB
0016 0017 0018 0019 0020	-0.671 -2.140 -0.452 -0.689 -1,587	0.224 0.750 0.150 0.240 0.396	0.929 0.774 0.734 1.037 1.392	0.198 0.364 0.127 0.241 0.350	0.723 2.764 0.615 0.864 1.140	0.138 0.529 0.146 0.125 0.102	1.077 1.292 1.362 0.964 0.718	0.230 0.608 0.238 0.224 0.181	0.186 0.234 0.121 0.200 0.166	0.051 0.028 0.050 0.050 0.028	12.9 6.5 8.8 5.6 9.0	7.0 7.0 7.0 7.0	0.0733 0.4866 0.2651 C.5897 0.2512

190.0 140.0 0.0032

 PARAMETER
 MEAN
 STN DEV

 ASYMPTOTE
 0.199
 0.058

 SLOPE
 1.062
 0.326

 LOG(SLOPE)
 0.010
 0.341

 THRESHOLD
 0.263
 0.846

QUADRATURE POINTS AND POSTERIOR WEIGHTS:

POINT -0.3603D+01 -0.2795D+01 -0.1986D+01 -0.1177D+01 -0.368DD+00 0.4409D+00 0.1250D+01 0.2059D+01 0.2867D+01 0.3676D+01 VEIGHT 0.3378D-03 0.6650D-02 0.4692D-01 0.14010+00 0.3427D+00 0.2916D+00 0.1194D+00 0.3931D-01 0.1213D-01 0.8019D-03



## APPENDIX E

ITEM INFORMATION INDICES, 1-PARAMETER LOGISTIC MODEL

EXHIBIT E-1

ITEM INFORMATION STATISTICS FOR SUBTEST GENERAL SCIENCE; 1-PARAMETER LOGISTIC MODEL

						•			
ITEM	MAXIMUM INFORMATION	STANDARD ERROR	MAX	POINT OF INFORMATION	STANDARD ERROR	MAXIMUM Effectiveness	POINT OF MAX EFFECTVHESS	AVERAGE INFORMATION	INDEX OF RELIABILITY
0001: 0002: 0003: 0004: 0005: 0006: 0006: 0009: 0010: 0012: 0013: 0014: 0015: 0015: 0016: 0017: 0018: 0019: 0019: 0022: 0023: 0023:	0.3087 0.3087 0.3087 0.3087 0.3087 0.3087 0.3087 0.3087 0.3087 0.3087 0.3087 0.3087 0.3087 0.3087 0.3087 0.3087 0.3087 0.3087 0.3087 0.3087	0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.0133		~2.3380 ~1.5081 ~1.4374 ~1.1458 ~1.3858 ~1.3858 ~1.7679 ~1.3834 ~1.3136 ~1.0774 ~0.1156 ~0.1611 ~0.7301 ~0.7301 ~0.7271 0.2887 ~0.7271 0.28887 ~0.7271 0.5508 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.6018 0.60	O. 1325 O. 0981 O. 0988 O. 0988 O. 0938 O. 1073 O. 0855 O. 1038 O. 0947 O. 0923 O. 0875 O. 0761 O. 0781 O. 0781 O. 0781 O. 0783 O. 0811 O. 0771 O. 0730 O. 0742 O. 0753 O. 0753 O. 0765 O. 0765 O. 0785 O. 0785 O. 0785 O. 0785	0.0338   0.0740   0.0740   0.0892   0.0781   0.0812   0.0935   0.0572   0.0805   0.0805   0.1225   0.1225   0.1082   0.1082   0.1083   0.1212   0.1232   0	-0.0651 -0.1041 -0.1056 -0.1055 -0.1057 -0.0982 -0.1032 -0.1053 -0.1063 -0.1063 -0.1063 -0.1063 -0.0841 -0.0841 -0.0338 -0.0010 -0.0133 -0.0638 -0.0638 -0.0638 -0.0638 -0.0638 -0.0638 -0.0638 -0.0638 -0.0638 -0.0638 -0.0638	O. 1017 O. 1084 O. 1742 O. 1807 O. 1807 O. 1807 O. 1505 O. 2038 O. 1465 O. 1778 O. 1245 O. 2025 O. 2461 O. 225 O. 2245 O. 2245	0.0923 0.1441 0.14849 0.1530 0.1331 0.1593 0.1279 0.1560 0.1875 0.1875 0.1975 0.1729 0.1838 0.1729 0.1838 0.1976 0.1976 0.1976 0.1976 0.1976 0.1976 0.1976 0.1976 0.1978

EXHIBIT E+2 ITEM INFORMATION STATISTICS FOR SUBTEST ARITHMETIC REASONING: 1-PARAMETER LOGISTIC MODEL

			ON SIMILBITES FOR	SORIES! WELLIA	METIC REASONING:	: 1-PARAMETER LOGISTIC MODEL			
ITEM	MAXIMUM INFORMATION	STANDARD ERROR	POINT OF MAX INFORMATION	STANDARD ERROR	MAXIMAM EFFECTIVENESS	POINT OF	AVERAGE INFORMATION	INDEX OF RELIABILITY	
0001:	0.5342	0.0164	: -2.0211	* 0 00.4					
0002:	0.8342	0.0164	-2.0841	0.0948 0.1011	1 0,0438	-0.0682	0.1844	0.1337	
0003:	0.5342	0.0164	-1.0723	0.0718	0.0395	-0.0622	0.1448	0.1285	
0004:	0.5342	0,0184	-0.3095	0.0693	0.1370	-0.1405	0.2940	0.2272	
0005:	0.5342	0.0164	-0.5345	0.0633	0,1560	-Q. 136Q	0.3163	0.2403	
0006:	0.5342	0.0184	-0.8477		0,1873	-0.10 <b>99</b>	0.3524	0.2806	
0007:	0.5342	0.0184	F1.1013	0.0684	1 0.1628	-0.1348	0.3242	0.2448	
0008:	0.5342	0.0184	-0.9343	0.0643	: 0.1335	+0.1402	0.2898	0.2247	
0009:	0.5342	0.0184	-0.8130	0.0660	: 0.1532	~Q.138\$	0.3130	0.2364	
0010:	0.5342	0.0184	-0,7370	0.0650	↓ Q. 1 <b>56</b> 5	-0.132B	0.3285	0.2472	
0011;	0.5342	0.0164	-0.5282	0.0847	0.1743	-0.1262	Ø.337 <b>4</b>	0.2523	
0012:	0.5342	0.0184	-0.3570	0.0544	: 0.1925	<del>-</del> 0.1007	0.3584	0.2638	
0013:	0.8342	0.0184	-0.4237	0.0614	: 0.2035	~0.071 <b>9</b>	0.3712	0.2707	
0014;	0, 5342	0.0164	-0.3378	0.0586	: Q. 1958	-0.9837	0.3867	0.2683	
0015:	0.8342	0.0184	-0.5021	0.0638	1 0.2046	-0.0684	0.3723	پي. 0.271 <b>3</b>	
0016:	0.8342	0.0164	-0.3669	0.0638 0.0673	: 0,19,45	-0.0965	0.3607	0.2661	
0017:	0.5342	0.0154	-0.1088	0.0573	0.2030	-0.0737	0.3706	0.2704	
0018:	0.5342	0.0164	-0.0516	0.0572	0.2422	-0.0228	0.3812	0.2760	
00191	0.5342	0.0154	-0.2432	0.0578	0.2129	-0.0109	0.3820	0.2784	
0020:	0.8342	0.0184	0.4689	0.0576	: 0.2085	-0.0502	0.3770	0.2738	
0021:	0.5342	0.0184	0.2913	0.0657	: 0.1966	0.09:2	0.3634	0.2665	
0022:	0.5342	0.0164	-0.1876	0.0615	: 0.2067	0.0596	0.3748	0.2726	
0023;	0.5342	0.0184	-0.1174	PO.0802	: 0.2104	<del>-</del> 0.0390	0.3791	0.2749	
00241	0.5342	0.0164	0.2014	0.0576	: 0.2121	-0.0246	0.3810	0.2759	
0025:	0.5342	0.0164		0.0633	: 0.2100	0.0418	0.3787	0.2747	
. 00251	0.5342	0.0154	0.1029	0.0606	: 0.2123	0.0216	0.3813	0.2760	
0027:	0.5342	0.0164	9.0350	0.0806	: 0.2124	0.0200	0.3814	0.2751	
0028:	0.5342	0.0164	0.3243	0.0684	1 0.2052	0.0658	0.3731	0.2717	
0029:	0.5342	0.0164	: 0.5704	0.0654	: 0.1807	0.1193	0.3447	0.2563	
0030:	0.5342	0.0164	: 0.7239	0.0679	: 0.1756	0.1250	0.3389	0.2531	
		J.0184	: 0.1367	0.0625	: 0.2117	0.0286	0.3806	0.2757	

EXHIBIT E-3

ITEM INFORMATION STATISTICS FOR SUBTEST WORD KNOWLEGGE; 1-PARAMETER LOGISTIC MODEL

<b>УТЕМ</b>	MAXIMUM INFORMATION	STANDARD ERROR	POINT OF MAX INFORMATION	STANDARD ERROR	MAXIMUM EFFECTIVENESS	POINT OF MAX EFFECTVNESS	AVERAGE INFORMATION	" INDEX OF RELL BILITY
0001:	0.5565 0.5563	0.0148	-2.2823	0.1125	. 0.0295	-0.0488	0.1228	C. 1094
0003:	0.5565	0.0148 0.0148	: +2.3034 : +1.8367	0.1146 0.0994	, 0.0285 ; 0.0488	-0.0474 -0.0741	0.1203 0.1 <del>6</del> 84	0,1074
0004:	0.5565	0.0148	-1.7462	0.0832	0.0636	-0.0906	0.1964	0.1441 0.1642
0005:	0.5565	0,0148	-2.2291	Q. 1111	9.0319	~0,0525	0.1293	0,1842
0006:	0.5565	0,0148	: -1,6644	0.0912	0.0711	-0.0989	0.2090	0.1729
0007:	0.5365	0.0148	: -1.6815	0.0832	0.0895	-0.0972	0.2063	0.1718
0008:	0.5565	0.0148	: ~1.5998	0.0897	: 0.0774	-0.1056	J.2191	0.1797
: 8000	0.5665	0.0148	: -0.7663	0.0637	: 0.1774	-0.1334	Q.3438	0.2858
0010:	0.5565	0.0148	: -2.0165	0.1038	1 0.0434	-0.0663	Ф. 1571	0.1357
00111	0.5565 0.5565	0.0148 0.0148	-1.2019	0.0762	: 0.1241	-0.1389	0.2820	0.2200
0013:	0.5565	0.0148	: ~1.5166 : ~1.5909	0.0783	0.0852	-0.1140	0.2322	0.1885
0014	0.5565	0.0148	-1.0755	0.0842 0.0712	: 0.0784 : 0.1402	-0.1065 -0.1432	0.2205	0.1808
0015:	0.5565	0.0148	1 1.1533	0.0790	: 0.1252	-0.1394	0.3013 0.2834	0.2315
0016:	0.5568	0.0148	: -1.1545	0.0706	: 0. 1 <b>3</b> 01	-0.1411	0.2893	0.2208 0.2244
0017:	Q.5565	0.0148	-1.0247	0.0751	: 0,1467	-0.1436	0.3088	0.2389
0018:	0.5565	0.0148	: -1.1522	0.0743	0.1304	-0.1411	0.2897	0.2246
0019:	O.5565	0.0148 '	~ -0.8970	0.0623	: 0.1846	-0.1257	0.3520	0.2803
0020:	0.5565	0.0148	: -1.3008	.O.0801	: 0,111\$	-0.1328	0.2665	0,2104
0021:	0.5568	0.0148	: -1.1071	0.0699	: 0.1362	-01426	0.2966	0.2287
0022: 0023:	0.5565 0.5565	0.0148	-0.7231	0,0660	: 0.1820	-0, 1284	0.3490	Ö.2587
0024	0.5565	0.0148 0.0148	: -0.3746 : -0.2438	0:0638	: 0.2108	~O.0775	0.3816	0.2762
0025:	0.5565	0.0148	-0.3819	0.0550 0.0576	: 0.2172 : 0.2098	-0.0520 -0.0107	0.3889	0.2800
0026:	0.5565		-0.5271	0.0554	: 0.2001	-0.1634	0.3804 0.3695	0.2756
0027	0.5565	0.0148 0.0143	-0.3419	0.0584	0.2127	-0.0713	0.3837	0.2898 0.2773
0028:	0.5565	0.0148	: "O.6392!	0.0820	0.1903	÷0,11 <b>\$</b> 0	0.3584	0.2638
0029:	0.5565	0.0148	: 0.077B	0,0548	: 0.2215	0.0158	0.3938	0.2826
0030:	0.5565	0.0148	1 0.0024	0.0570	: 0.2220	0.0005	0.3944	0.2829
0031:	0.5565	0.0148	: -1.5183	0.0851	0.0861	-0.1138	0.2319	0.1883
0032:	0.5565	0.0148	0.0482	0.0844	: 0.2218	Q. Q1Q <u>7</u>	0.3942	0.2827
0933 : 0034 :	0.5555 0.5565	0.0148	0.2271	0.0582	0.2178	0.0485	0.3897	0.2804
0035:	0.5565	0.0148 0.0148	: -0.2069 : -0.0767	0.0613	: 0.2185	-0.0444	0.3905	0.2508
~ (· 9 0 i	0.2005	0.0148	-0.0/6/	0.0660	: 0.2215	-0.0157	0.3939	0.2826

EXHIBIT E-4

ITEM INFORMATION STATISTICS FOR SUBTEST PARAGRAPH COMPREHENSION; 1-PARAMETER LOGISTIC MODEL

ITEM	MAXIMUM	STANDARD	POINT OF	STANDARD	MAXIMUM	POINT OF	AVERAGE	INDEX OF
	INFORMATION	ERROR	MAX INFORMATIO	N ERROR	EFFECTIVENESS	MAX EFFECTVHESS	INFORMATION	RELIABILITY
0001: 0002: 0003: 0005: 0005: 0007: 0008: 0009: 0010: 0011: 0012: 0013: 0014: 0015:	0.3343 0.3343 0.3343 0.3343 0.3343 0.3343 0.3343 0.3343 0.3343 0.3343 0.3343 0.3343 0.3343 0.3343	O.0168 O.0168 O.0168 O.0168 O.0168 O.0168 O.0168 O.0168 O.0168 O.0168 O.0168 O.0168	: -1.3611 : -2.1485 : -1.7091 : -1.0613 : -0.9485 : -1.0314 : -1.13880 : -1.1868 : -0.1536 : -1.1220 : -0.4171 : -1.3064 : -0.71444 : -1.186	O. 0952 O. 1223 O. 1129 O. 0848 O. 0845 O. 0869 O. 0918 O. 0930 O. 0763 O. 0763 O. 0961 O. 0961	: 0.0818 : 0.0406 : 0.2618 : 0.0983 : 0.1009 : 0.1009 : 0.0803 : 0.0921 : 0.1325 : 0.0858 : 0.0858 : 0.1325 : 0.0850 : 0.1329	-0.1104 -0.0735 -0.0984 -0.1085 -0.1086 -0.1096 -0.1190 -0.1110 -0.0219 -0.1100 -0.0588 -0.1110 -0.0882 -0.0159	0.1898 0.1192 0.1581 0.2158 0.2243 0.2179 0.2121 0.1876 0.2051 0.2622 0.2105 0.2552 0.1947 0.2403 0.2627	0.1585 0.1065 0.1365 0.1773 0.1832 0.1789 0.1750 0.1500 0.1500 0.1702 0.2077 0.1739 0.2033 0.1630 0.1838 0.1838



EXHIBIT E-5 - ITEM INFORMATION STATISTICS FOR SUBTEST AUTO AND SHOP INFORMATION; 1-PARAMETER LOGISTIC MODEL

ITEM	MAXIMUM INFORMATION	STANDARD ERROR	POINT OF MAX INFORMATION	STANDARD STANDARD ERROR	MAXIMUM EFFECTIVENESS	POINT OF MAX EFFECTVHESS	AVERAGE INFORMATION	INDEX OF RELIABILITY
0001: 0002: 0003: 0004: 0008: 0008: 0008: 0010: 0010: 0013: 0014: 0015: 0015: 0016: 0017: 0018: 0018: 0018: 0018:	0.3274 0.3274 0.3274 0.3274 0.3274 0.3274 0.3274 0.3274 0.3274 0.3274 0.3274 0.3274 0.3274 0.3274 0.3274 0.3274	0.0135 0.0135 0.0135 0.0135 0.0135 0.0135 0.0135 0.0135 0.0135 0.0135 0.0135 0.0135	: -1,2349 : -1,5745 : -0.5963 : -1,7199 : -0,7573 : -0.1939 : -0.0742 : -0.6517 : -0.7991 : -0.3231 : -0.4987 : -0.0857 : -0.3331 : -0.3331 : -0.7331 : -0.7331 : -0.7331	0.0814 0.0942 0.0776 0.0981 0.0805 0.0785 0.0736 0.0711 0.0721 0.0702 0.0704 0.0755 0.0758 0.0758 0.0758	: 0.0880 : 0.0487 : 0.1193 : 0.0608 : 0.1128 : 0.1294 : 0.1304 : 0.1172 : 0.1109 : 0.1219 : 0.1228 : 0.1228 : 0.1228 : 0.1303 : 0.1303 : 0.1303	-0.1101 -0.1038 -0.0758 -0.0976 -0.0924 -0.0270 -0.0104 -0.0812 -0.0935 -0.0578 -0.06548 -0.0649 -0.0739 -0.0121 -0.0121 -0.0121 -0.0487 -0.0487 -0.0884 -0.0884	0.1982 0.1684 0.2430 0.1554 0.25339 0.2571 0.2586 0.2401 0.2467 0.2467 0.2467 0.2479 0.2479 0.2485 0.2585 0.2585 0.2585 0.2586	0,1654 0,1441 0,1955 0,1345 0,1895 0,2055 0,1896 0,1878 0,1878 0,1878 0,1878 0,1878 0,1961 0,2054 0,2054 0,2053 0,2053
0021: 0022: 0023: 0024: 0025:	0.3274 0.3274 0.3274 0.3274 0.3274	0.0135 0.0135 0.0135 0.0135 0.0135	: 0.3410 : 0.3525 : 0.8763 : 0.9355 : 0.3640	0.0719 0.0788 0.0931 0.0842 0.0705	: 0.1266 : 0.1266 : 0.1072 : 0.1043 : 0,1263	0.0464 0.0478 0.0988 0.1020 0.0493	0.2536 0.2532 0.2259 0.2218 0.2528	0.2023 0.2020 0.1843 0.1816 0.2018

EXHIBIT E-6
ITEM INFORMATION STATISTICS FOR SUBTEST MATHEMATICS KNOWLEDGE: 1-PARAMETER LOGISTIC MODEL

ITEM	MAXIMUM IMPORMATION	STANDARD ERROR	POINT OF MAX INFORMATION	STANDARD ERROR	MAXIMUM EFFECT!VENESS	POINT OF MAX EFFECTVHESS	AVERAGE INFORMATION	INDEX OF RELIABILITY
0061:	0.4979	0.0180	: -1.6700	0.0886	: 0.0702	-0.1007	0,1976	0,1650
0002:	0.4979	0.0180	-1,1866	0.0715	: 0,1185	-0.1340	0.2656	0.2099
0003:	O. <b>49</b> 79	0.0180	: -0.4393	0.0633	: 0.185\$	~Q.OB18	0.3468	0.2575
0004:	0.4979	0.0180	· -0.8375	0.0671	: 0.1549	-0.1283	0.3099	0.2366
0005:	0.4879	0.0140	: -1.0073	0.0661	: 0.1377	-0.1383	0.2893	0.2244
00061	0.4979	0,0180	: -Q.31 <u>5</u> 7	0.0 <b>64</b> 0	: 0.1920	-0.050 <u>\$</u>	0.3541	0.2615
00071	0.4979	0.0180	: ~Q.8171	0.0648	: 0,1740	-0.1072	0.3326	0,2496
0008:	0.4979	0,0180	: -0.3452	0.0533	r 0,1907	-0.0550	0.3525	0.2506
0009:	0.4979	0,0180	: -0.5535	0.0643	: 0.1887	-0.1149	0.3283	0.2461
0010:	0.4979	0.0180	: -0.4471	0.0610	: 0.1854	-0.0831	0.3463	0.2572
0011:	0.4979	0.0180	: -0.2384	0.0569	: 0.1548	-0.0466	0.3575	0.2533
0012:	0.4979	0.0140	: 0.0619	0.0647	1 0.1984	0.0123	0.3617	0.2656
00131	0.4979	0.0180	: -0.15 <b>9</b> 7	0.0563	: 0.1969	-0.0316	0.3600	0,2647
00141	0.4979	0.0150	: 0.1951	0.0872	: 0,1961	0.0384	0.3590	0.2641
0015:	0.4979	0.0180	0.3190	0.0569	0.1918	0.0514	0.3539	0.2614
0016: 0017:	0.4979 0.4979	0.0180	-0.1848	0.0524	: 0.1963	-0.0364	0.3533	0.2643
0018:	0.4979	0.01\$0 0.01\$0	0.2525	0.0676	: 0.1940	0.0511 0.0025	0.3565	0.2528
0013:	0.4979	0.0180	: 0.0125 : -0.2497	0.0653	: 0.1986 : 0.1845	0.0025 0.0487	0.3620 0.3670	0.2651
0020:	0.4979	0.0180	0.0729	0.0599		0.0145	0.3616	0.2656
0021:	0.4979	0.0180	: 0.2983	0.0590 0.0592	: 0,1983 : 0,1926	0.0578	0.3549	0,2619
0022:	0.4975	0.0180	0.2953	0.0592	1 0.1756	0.0578	0.3245	0.2507
0023:	0.4975	0.0150	0.7976	0.0737	1 0.1586	0.1254	0.3144	0.2392
0024:	0.4979	0.0180	0.7950	0.0670	; 0.1589	0.1252	0.3147	0.2394
0025	0.4979	0.0180	: 0.6807	0.0711	. 0.1569	0.1146	0.3266	0.2462

EXHIBIT E-7 /
ITEM INFORMATION STATISTICS FOR SUBTEST MECHANICAL REASONING; 1-PARAMETER LOGISTIC MODEL

1 TEM	MAXIMUM INFORMATION	STANDARD ERROR	POINT OF MAX INFORMATION	STANDARO ERROR	MAXIMUM EFFECTIVENESS	POINT OF MAX EFFECTVNESS	AVERAGE INFORMATION	INDEX OF RELIABILITY
D001: 0002: 0004: 0006: 0006: 0007: 0008: 0010: 0011: 0012: 0013: 0014: 0016: 0016: 0017: 0016:	0.2808 0.2809 0.2809 0.2809 0.2809 0.2809 0.2809 0.2809 0.2809 0.2809 0.2809 0.2809 0.2809 0.2809 0.2809 0.2809 0.2809 0.2809 0.2809	0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120	: -2.2077 : -1.4062 : -1.4770 : 0.4054 : -0.3578 : -0.4794 : -0.3975 : -0.8572 : -0.4222 : -0.4022 : -0.8089 : -0.3651 : -0.9889 : -0.3666 : -0.308\$ : -0.308\$ : -0.308\$ : -0.308\$ : -0.4240 : -0.0504	0.1198 0.0973 0.0963 0.0963 0.0791 0.0806 0.0790 0.0861 0.0855 0.0795 0.0838 0.0816 0.0838 0.0816	: O.O382 : O.O715 : O.O683 : O.1080 : O.1082 : O.1082 : O.1082 : O.1017 : O.0962 : O.1073 : O.0967 : O.1088 : O.1088 : O.1088 : O.1086 : O.1087 : O.1087 : O.1087 : O.1087 : O.1087	-0.0735 -0.1018 -0.1011 -0.0479 -0.0427 -0.0557 -0.0470 -0.0724 -0.0850 -0.0518 -0.0435 -0.0759 -0.0435 -0.0759 -0.0435 -0.0759 -0.0435	0.1075 0.1665 0.1613 0.2220 0.2233 0.2186 0.2222 0.2126 0.2044 0.2208 0.2052 0.2052 0.2053 0.2231 0.2107 0.2235 0.2214 0.2214	0.0470 0.1427 0.1388 0.1817 0.1825 0.1801 0.1818 0.1753 0.1697 0.1809 0.1702 0.1824 0.1740 0.1824 0.1833 0.1856 0.1856
0019: 0020: 0021: 0022: 0023: 0024: 0025:	0.2809 0.2809 0.2809 0.2809 0.2809 0.2809 0.2809	0.0120 0.0120 0.0120 0.0120 0.0120 0.0120	: 0.3380 : -0.1125 : 0.2506 : 0.4861 : 0.5281 : 0.3320 : 0.8645	0.0734 0.0778 0.0786 0.0786 0.0872 0.0803 0.0886	: 0.1082 : 0.1117 : 0.1105 : 0.1063 : 0.1025 : 0.1093 : 0.1043	0,0404 -0,0138 0.0304 0.0564 0.0700 0.0388 0.0641	0,2238 0,2275 0,2257 0,2194 0,2138 0,2239 0,2165	0.1829 0.1853 0.1841 0.1789 0.1762 0.1830 0.1780

EXHIBIT E-8

ITEM INFORMATION STATISTICS FOR SUBTEST ELECTRONICS KNOWLEDGE; 1-PARAMETER LOGISTIC MODEL

ITEM	MAXIMUM INFORMATION	STANDARD ERROR	MAX	POINT OF INFORMATION	STANDARD ERROR	EF	MAXIMUM FECTIVENESS	POINT OF MAX EFFECTVNESS	AVERAGE - INFORMATION	INDEX OF RELIABILITY
0001:	0.2919	0.0142		-1,549 ;	0, 1007		0.0863	-0, 1011	0,1595	0.1376
0002:	0.2919	0.0142	:	-1.0686	0.0897	i	0.0891	-0.0998	0.1951	0.1633
0003:	0.2919	0.0142	:	-0.9294	0.08\$4	i	0.0952	-0, 0938	0.2042	0.1695
0004:	0.2919	0.0142	:	-0.9417	0.0887	1	0.0947	-0.0945	4.2034	0.1690
0008:	0.2919	0.0142	:	-1.3232	0.0942	•	0.0772	-0,1040	₹ . 1769	0.1503
0006:	0,2919	0.0142	;	-0.7300	0.0854		0.1029	-0.0807	0.2155	0.1773
0007:	0.2919	0.0142	:	~O.8106	0.0848	:	0.0999	-0.0866	0.2112	0.1744
0008:	0.2919	0.0142	:	-0.7227	0.0830		0.1031	-0.0801	0.2159	0.1776
0008:	0.29:9	0.0142	:	-0.9301	9.083i	. :	0.0951	-0.0939	0.2041	0.1695
0010:	0.2919	0.0142	:	-0.2300	0.0795	£ ;	0,1150	-0.0288	0.2333	0.1892
0011:	0.7919	0.0142	:	0.2096	0.0737	:	0,1152	0.0264	0,2337	0.1894
00 t 2 :	0.2919	0.0142	:	0.1202	0.0799	:	0.1160	0.0153	0.2348	0.1902
0013:	0.2919	0.0142	:	0.3370	0.0797	;	0.1134	0.0417	0.2310	0.1876
0014:	0,2919	0.0142	:	-0.0535	0,0715	:	0.1163	-0.0068	0.2353	0,1905
OC 15:	0.2919	0.0142	:	0.2821	0.0813	;	0 1143	0.0362	0.2323	0.1885
0016:	0.2919	0.0142	:	0.3042	0.0780		0, 1140	0.0378	0.2318	0.1882
CO17:	0.2919	0.0142	1	1.1337	0.0817	:	0.0861	0. 1017	Ö. 1906	0.1601
0018:	0.2919	0.0142	1	0.3233	0.0784	:	0.1136	0.0401	0,2313	0.1879
0019:	0.2919	0.0142	:	0.2406	0.0785	:	0.1149	0.0302	0.2331	0.1891
0020:	0.2919	0.0142	:	0.9106	0.0868	:	0.0959	0.0928	0.2053	0.1703

# APPENDIX F

ITEM INFORMATION INDICES, 2-PARAMETER LOGISTIC MODEL

EXHIBIT F-1

ITEM INFORMATION STATISTICS FOR SUSTEST GENERAL SCIENCE; 2-PARAMETER LOGISTIC MODEL

ITEM	MAXIMUM INFORMATIOH	STANDARD ERROR	MAX	POINT OF INFORMATION	STANDARD ERROR	E	MAŽIMUM FFECTIVĒNESS	POINT OF MAX ERFECTVHESS	AVERAGE INFORMATION	INDEX OF RELIABILITY
	, 		.,,,,,,,							~~~~
00011	1.6365	0.3961	:	-1.4190	0.0900	:	0.0787	-0.0754	0.4200	0.2958
00021	0.7959	0.1754	:	-1,1272	0.0872	1	0.1608	<b>-0.18#7</b>	0.3642	0.2670
00031	1.4700	0.3199	:	-0.9416	0.0604	÷	0.2865	-0.2147	0.5831	0.3883
0004:	0.4409	0.1078	:	-1.0287	0.1035	:	0.1243	-0.1288	0.2542	0.2090
00051	0.5523	0.1329	3	-1,1075	0.0995	:	0.1413	-0, 1463	0.3083	0.2356
00061	1.9133	0.4196	1	-1.0329	0.0505		0.2398	~O.1858	0.6337	0.3879
0007:	0.5564	0.1341	•	-0.8951	0.0834		0 - 1626	-0.1407	0.3270	0.2484
0008:	0.3861	0.0936	•	-1.6214	0.1643		0.0701	-0.1047	0.1796	0.1523
0009:	0.7628	0, 1701		-1.0596	0.0854	:	0.1717	-0.1634	0.3694	0.2698
0010:	0.5663	0, 1270		-1.0559 1	0.0973	•	0 . 1403	-0,1441	0.3025	0.2325
0011:	0.5537	0.1297	:	-0.8713	0.0746		0.1873	-0.1536	0.3680	0.2690
0012:	0.1630	0.0487	i	-0.1577J	0.0965	:	0.0548	-0.0118	0.1422	0.1245
0013:.		0.1158		-0,1800	0.0587	•	0.2121	~0.0377	0.3814	0.2761
0014:	0.3213	0.0758 0.0611	3	-0.7406	0.0935		0.1117	~0.0878 ~0.0817	0.2316	0.1880
	0.2072			-1.1485	0.1547	:	0.0687		0.1480	0.1289
0016:	0.2742	0.0631		-0.9500	0.1165	•	0.0895	-0.0908 -0.0728	0.1936 0.1748	0,1822 0,1488
0017: 0018:	0.2300	0.0506 0.1141	:	-0.8223 0.1468	0.1139	:	0.0808 0.2241	0.0321	0.1748	0.2845
0019:	0.8662	0.0599		-0.0189	0.0653 0.0858		0.2241	-0.0019	0.1917	0.1508
0020:	0.22 <b>89</b> 0.3325	0.0729	•	-0.1364	0.0555	•	0.1320	-0.0019	0.2613	0.2072
0021:		0.0497	•	0.5648	0.1118	•	0.1320	0.0481	0.1685	0.1430
0022	0.2048 0.1591	0.0431	•	0.6860	0,1387	•	0.0595	0.0457	0, 1324	0,1169
0023:	0.1343	0.0369		0.8079	0.1521	•	0.0496	0.0482	0.1125	0.1011
0023	0.2673	0.0589	,	1.2843	0.1608		0.0745	0.0891	0.1894	0.1448
0025	0.2218	0.0621	:	0.5834	0.1282	•	0.0831	0.0541	0.1779	0.1510
00251	W. ZZ 10	0.0021	•	N. 0034	U. 1202	•	0.0001	0,004,	0, 1778	00.0

EXHIBIT F-2
ITEM INFORMATION STATISTICS FOR SUBTEST ARITHMETIC REASONING; 2-PARAMETER LOGISTIC MODEL

ITEM	MAXIMUM INFORMATION	STANDARD ERROR	MAX	POINT OF INFORMATION	STANDARD ERROR	27	MAXIMUM FECTIVENERS	POINT OF MAX EFFECTVNESS	AVERAGE INFORMATION	INDEX OF RELIABILITY
0001:	0.2222	0.0949		-2.7519	0.4983		0.0233	-0, 0844	0.0700	0.0654
0002:	0.5835	0.2464	i	-1.9006	0.2325	i	0.0478	-0.0678	0.1885	0.1572
0003:	1.9873	0.3500	i	-0.8550	0.0414		0.4042	-0.2584	0.7312	0.4224
0004:	2.2332	0.3586	:	-0.7470	0.0373	:	0. 5513	~O. 2875	0.8334	0.4546
0005:	0.9836	0.1745	:	-0.5551	0.0475	1	0.3313	-D. 1513	0.5445	0.3525
0006:	0.3031	0,1439	:	-0.7903	0.0589	:	0.2350	-Q. 1687	0.4364	0.3038
0007:	0.2178	0.0602	:	-1.4558	0.17 <b>6</b> 0	:	0.0591	<del>-</del> 0.0897	0.137 <del>/a</del>	0,1212
0008:	0.8074	0.1652	:	-O.8 <u>52</u> 0	0.0618	:	0.2210	-0.1724	0.4290	0.2378
0009:	0.8402	0.1559	:	-0 -7 559	0.0564	:	0.2509	<b>~0.17</b> 07	0.4562	0.3133
0010:	1.3062	0.2560	:	-0.4589	0.0435	:	0.3988	-O. 20\$E	0.6311	0.386 <u>8</u>
00111	3.1908	0.4954	:	-0.5019	0.0325	:	1.0555	-0.2848	1.1538	0.5387
0012:	0.8672	0,1484	:	-0.3726	0.0490	:	P. 3237	-0.1 <b>0</b> 54	0.5265	0.3449
0013:	0.4678	0.0912	:	-0.4538	0.0628	i	0.1744	-0. ogg2	0.3288	0.2480
00141	1.3001	0, 1961	:	-0.3583	0.0437	:	0.4487	-0.1273	0.6594	0.3374
0015:	1.2348	0.2049	ľ	-0.4853	0.0432	:	0.4287	-0. 1670	0.6493	0.3837
00161	0.3714	0.0759	:	-0.4091	0.0685	:	0. 1414	∼ତ୍. ପ୍ରତ୍ତୁ	0.2779	0,2175
00171	0.3991	0.0802	:	-O. 1279	0.0675	i	0.1585	-0.0212	0.3030	0.2326
0018:	0.3#19	0.0754	ı	-0.0612	0.0721	1	0, 1442	-0.0084	0.2807	0.2192
0019:	0.4084	0.0841	:	-0.2718	0.0652	:	0.1594	~O. 0450	0.3051	0.2338
0020:	0.6562	0.1056	2	0.3964	0.0638	•	0.2454	0.0921	0.4232	0.3003
0021:	0.4997	0.0920	:	0.2668	0.0721		0.1945	0.0520	0.3573	0.2632
0022:	0.5101	0.1129	:	-0.2185	0.0546	•	0.2389	-0. <b>05</b> 02	0.4180	0.2945
0023:	0.3576	0.0688	:	-0.1344	0.0599	:	0.1420	-0.0203	0.2773	0.2171
0024:	0.6357	0.1146	;	0.1471	0.0656	ï	0.2514	0.0352	0.4339	0.3025
0025: 0025:	0.5137	0.0947	•	0.0745	0.0662	•	0.2045	0.0152	0.3704	0.2703 0.2593
	0.4775	G. 0850	:	0.0731	0.0561	•	0.1902	0.0141	0.3500	
0027:	0.5794 0.3160	0.1182 0.0821	:	0.2532 0.7759	0.0629 0.1083	:	0,2639 0,1084	0.0628 0.0897	0.4509 0.2263	0.3108 0.1845
0028: 0029:	0.3303	0.0621	:	0.7799	0.1083	•	0.1103	0.0863	0.2263	0.1845 0.1875
	0.3303	0.0725	:		0.0788	:	0.1481	0.0983	0.2307	0.2231
0030:	0,3/35	0.0725	:	0.1438	0.0755	•	U. 1401	0.0226	0.20/1	0.4431



EXMIBIT F-3

ITEM INFORMATION STATISTICS FOR SUBTEST WORD KNOWLEDGE; 2-PARAMETER LOGISTIC MODEL

ITEM	MAXIMUM INFORMATION	STANDARD ERROR	HAX	POINT OF INFORMATION	STANDARD ERROR	ŧ	MAXIMUM FFECTIVENESS	POINT OF MAX EFFECTVNESS	AVERAGE INFORMATION	INDEX OF RELIABILITY
00011 00021 00031 00041 00061	1.3743 1.3686 1.8436 0.4017 1.4183	0.3191 0.3043 0.3581 0.0981 0.2895	:	-1.7713 -1.7870 -1.4827 -1.8996 -1.7250	0,1087 0,1112 0,0702 0,1783 0,1027	:	0.0514 0.0498 0.0762 0.0528 0.0454	-0.2000 -0.2000 -0.1411 -0.0859 -0.1036	0.2696 0.2544 0.4239 0.1527	0.2123 0.2001 0.2077 0.1325
0006: 0007: 0008: 0009: 0010:	2.5890 0.5529 2.3458 0.5732 1.9449	0.5344 0.1387 0.4644 0.1044 0.3693	:	-1.2288 -1.5918 -1.2063 -0.7802 -1.5020	0.0503 0.1172 0.0497 0.0723 0.0739	:	0.0913 0.0786 0.1161 0.1790 0.0637	-0.1036 -0.0681 -0.1025 -0.0852 -0.1370 -0.1270	0,2872 0,6385 0,2377 0,8098 0,3479 0,4161	0.2231 9.3897 0.1920 0.3788 0.2581
0011: 0012: 0013: 0014: 0015: 0015:	1,2280 0.5529 1,1808 1,0675 1,8875 0,7019	0.2253 0.1152 0.2447 0.1917 0.3381 0.1241	: : : : : : : : : : : : : : : : : : : :	-1.0259 -1.5102 -1.3272 -0.9509 -0.9603 -1.1033	0.0592 9.1207 0.0745 0.0884 0.0483 0.0772	:	0.2256 0.0868 0.1189 0.2381 0.3000	-0.1901 -0.1146 -0.1247 -0.1834 -0.2188	0.4984 0.2325 0.3807 0.4811 0.6628	0.3326 0.1886 0.2809 0.3248 0.3886
0017: 0018: 0018: 0020: 0021:	1.8654 1.1009 0.5154 1.7273 0.7104	0.3280 0.2008 0.0964 0.3084 0.1489	;	-0.8412 -1.0061 -0.7445 -1.0452 -1.0594	0.0450 0.0899 0.0713 0.0522 0.0751	:	0.1558 0.4015 0.2230 0.1683 0.2313 0.1651	-0.1560 -0.2538 -0.1885 -0.1238 -0.1844 -0.1592	0.3428 0.7113 0.4740 0.3281 0.5942 0.3538	0.2583 0.4157 0.3216 0.2471 0.3727 0.2614
0022: 0023: 0024: 0025: 0026: 0027:	0.9588	0.1743 0.1401 0.0511 0.0731 0.1582	:	-0.6753 -0.3911 -0.3586 -0.4917 -0.5104	0.0514 0.0523 0.0863 0.0758 0.0518	:	0.3039 0.3035 0.0906 0.1299 0.3343	-0,1783 -0,1085 -0,0364 -0,0678 -0,1476	0.5202 0.5029 0.1810 0.2588 0.5446	0.3422 0.3346 0.1603 0.2062 0.3526
0028: 0029: 0030: 0031: 0032:	0.3352 0.4645 0.1645 0.2720 1.3612 0.1385	0.0868 0.0948 0.0389 0.0583 0.3020 0.0388	:	-0.4417 -0.7130 0.0558 -0.0532 -1.2251	0.0784 0.0780 0.1002 0.0810 0.0750 0.1088	:	0.1283 0.1565 0.0656 0.1084 0.1456	-0.0604 -0.1123 -0.0042 -0.0064 -0.1357	0.2567 0.3076 0.1436 0.2218 0.4561	0.2042 0.2352 0.1256 0.1815 0.3133
0033: 0034: 0035:	0.2826 0.4639 0.9418	0.0617 0.0887 0.1699	!	0.2187 -0.2718 -0.1146	0.0858 0.0852		0.0552 0.1154 0.1807 0.3733	-0.0008 0,0276 -0.0499 -0.0365	0.1232 0.2340 0.3371 0.5785	0.1097 0.1896 0.2521 0.3665

EXHIBIT F-4

ITEM INFORMATION STATISTICS FOR SUBTEST PARAGRAPH COMPREHENSION; 2-PARAMETER LOGISTIC MODEL

ITEM	MAXIMUM	STANDARD	POINT OF	STANDARD	MAXIMUM	POINT OF	AVERAGE	INDEX OF
	INFORMATION	ERROR	MAX INFORMATION	ERROR	RFFECTIVENESS	MAX EFFECTVHESS	INFORMATION	RELIABILITY
0001: 0002: 0003: 0004: 0006: 0006: 0007: 0008: 0010: 0011: 0011:	0.5308 0.5418 1.8524 0.3096 0.5409 0.3185 0.3559 0.2470 0.5657 0.4750 0.1529 0.3321	O. 1115 O. 1305 O. 4248 O. 0669 O. 1532 O. 0712 O. 0749 O. 0516 O. 1312 O. 0938 O. 0431 O. 0692	: ~1.1952 : ~1.8438 : ~1.1929 : ~1.0954 : ~0.7567 : ~1.0557 : ~1.0902 : ~1.5386 : ~0.9904 : ~0.1508 : ~0.4343	0.0947 0.1515 0.0567 0.1128 0.0666 0.1091 0.1078 0.1682 0.0780 0.0655 0.2008	. 0.1218 . 0.0558 . 0.1445 . 0.0919 . 0.2509 . 0.0962 . 0.1022 . 0.0611 . 0.1705 . 0.1881 . 0.0454	-0.1370 -0.0821 -0.1262 -0.1045 -0.1708 -0.1053 -0.1134 -0.0950 -0.1569 -0.0287 -0.0735 -0.0586	0.2750 0.1798 0.5482 0.2015 0.4563 0.2081 0.2226 0.1448 0.3522 0.3472 0.1054	0.2157 0.1524 0.3541 0.1577 0.3133 0.1730 0.1821 0.1265 0.2605 0.2577 0.0961
0013:	0.6103	0.1254	: ~1.1058	0.0691	0.1436	-0,1480	0.3138	0.2389
0014:	0.3042	0.0663	: ~0.7532	0.0997	0.1059	-0,0852	0.2213	0.1812
0015:	0.0127	0.0083	: 0.2820	0.3419	0.0051	-0,018	0.0126	0.0124



EXHIBIT P

ITEM INFORMATION STATISTICS FOR SUBTEST AUTO AND SHOP INFORMATION: 2-PARAMETER LOGISTIC MODEL

ITEM	MAXIMUM INFORMATION	STANDARD ERROR		NT OF ORMATION	STANDARD ERROR	EF	MAXIMUM PECTIVENESS	POINT OF MAX EFFECTYNESS	AVERAGE INFORMATION	INDEX OF RELIABILITY
0001:	0.0885	0.0329		.0323	0.3569	 :	0.0255	-0.0568	0.0617	0.0552
0002:	0.4099	0.1101		.4693	0.1493	:	0.0836	<del>-</del> 0.1148	0.2040	0.1694
0003:	0.8370	0.1560		. 505 f	0.0511	:	0.2950	<del>-</del> 0.1343	0,4966	G. 3318
0004:	0.3775	0, 1271		.6328	0.2000	;	0.0589	-0. 1038	0,1763	0,1439
0005:	1.5765	0.3829		. 5709	0.0413	:	0.8077	-0.2167	0.7367	0.4242
0006:	1.3885	0.2917		. 2338	0.0437	:	0.5367	-0.0938	0.7441	0.4267
0007 : 0008 :	0.4353	0.0902		. 1002	0.0659		0.1731	-0.0179 -0.0378	0.3251 0.0714	0.2454 0.0666
0009	0.0628 0.0478	0.02 <b>6</b> 8 0.0186		.0883 . .5782	0.1992 0.3529		0.0303 0.0168	-0.0378 -0.0332	0,0407	0.0391
0010:	0.4295	0.0963		5005	0.0675	•	0.1585	~0.0332 ~0.0815	0.3061	0.2344
00111	0.1513	0.0470		. 3790	0.0965	i	0.0707	-0.0307	0,1538	0,1333
0012:	0.1120	0.0322		.7046	0.1405	•	0.0425	-0.0351	0,0974	O.ORRE
00131	0.8636	0.1077		. 4559	0.0608	•	0.2080	-0.0928	0.3792	0.274
00141	0.8137	0.1440	-0	.5166	0,0584	:	0.2202	-0.1094	0.3979	0.2846
0015:	0.4550	0.1011		. 1 1 63	0.0622	:	0.1926	-0.0224	0.3536	0.2612
0015:	0.5802	0.1186		, 1404	0.0582	:	0.2297	-0.0314	0.4052	0,2884
0017:	0.8814	0.1393		,2227	0.0680	i	0.2663	0.0555	0.4536	0.3120
0018:	0.6196	0.1255		.2183	0.0710		0.2427	0.0501	0.4230	0.2973
0019:	0,1582	0.0424		.9177	0.1355	•	0.0593	-0.0613	0.1330	0.1174
0020:	0.2566 0.1601	0.0 <b>64</b> 8 0.0381		.1149 .4510	0.07 <b>86</b> 0.1147		0.1140 0.0 <b>6</b> 20	~0.0144 0.0330	0.2313 0.1370	0.1879
0021; 0022;	0.5\$65	0.1110		. 2393	0,0692	•	0.2328	0.0538	0.4101	0.1205 0.2808
0022:	1.2036	0.2112		.5381	0.0837	;	0.4054	0.0538	0.6276	0.3856
0024:	0,2772	0.0569		.9795	0.1246	•	0.0892	0.0928	0.1935	0,1621
0025:	0.0795	0.0239		. 6626	0.1668	7	0.0308	0.0244	0.0722	0.0674

EXMISIT F-5

(TRM INCODMATION STATISTICS FOR SHRIPET MATHEMATICS KNOWLEDGE: 2-PARAMETER LOGISTIC:

ITEM	MAXIMUM INFORMATION	STANDARD ERROR		POINT OF INFORMATION	STANDARD ERROR	ĒF	MAXIMUM FECTIVENESS	POINT OF MAX EFFECTYNESS	AVERAGE INFORMATION	INDEX OF RELIABILITY
0001:	2 . 0652	0.7978	 :	-1,1330	0.0948		0.1590	-0.1425	0.6102	0.3790
0002	0.5249	C. 1386	;	-1,1641	0.1093	i	0.1247	-0.1375	0.2775	0.2173
0003	0.8149	0, 1520	i	-0.4471	0.0491	•	0.2960	-0.1191	0.4954	0.3313
00041	1,2429	0.2411	:	-0.7201	0.0460	i	0.3870	-0.2108	0.5954	0.3732
0005:	0.2366	0.0605	:	-1.2895	0.1482		0.0888	-0.0921	0.1564	0.1383
0006:	1.2389	0,2134	;	-0.3540	0.0415	:	0.4605	-O. 1285	0.6742	0.4027
0007:	1.3634	0.3042	;	~O.5656	0.0398	:	0.4459	<del>-</del> 0,1977	0.6733	0.4024
0008:	0.4073	0.0796	ı	-0.3804	0.0661		O. 1559	-0.0616	0.3005	0.2311
0009:	0.9247	0,13/15	;	-0.6337	0.0487	:	0.2992	-0.1555	0.5101	0.3378
0010:	0.5264	O. 1225	:	-0.4699	0.0591	:	0, 1940	-0.0904	0.3593	0.2643
0011:	0.2333	0.0555	;	-0.2786	0.0823	Ţ	0.0917	-0,0284	Q. 1 <b>92</b> 7	0.1616
0012:	O. 9729	0.1587	1	-0.0470	0.0484	:	0.3877	-0.0154	0.5938	0.3726
0013:	2.2109	0.3733	:	-0.2718	0.0368	:	0.8403	<u>-</u> 0. <u>1392</u>	0.9943	0.4986
00141	1.0615	0.1978	:	0.0515	0.0842	1	0.4229	0.0178	0.5308	. 0.3868
0015:	0.1432	0.0350	:	0.5550	0.1262	ı	0.0549	0.0354	0. 1230	0.1096
00161	0.8398	0, 1784	ı	-0.2387	0.0501	;	0.3262	-0.0650	0.5267	0.3450
00171	1.1105	0.1734	;	0.1007	0.0805	:	0.4408	0.0358	0.6496	0.3938
00181	1.1718	0,2300	:	-0.1037	0.0455	1	0.4547	-0.0381	0.6736	0.4025
0019:	0.4259	0.0821	:	-0.2818	0.0640	•	0,1658	-0.0482	0.3150	0.2395
0020:	0.3104	0.0874	;	0.0858	0.0791	- 1	0.1236	0.0115	0.2474	0.1983
0021:	0.2510	0.0555	:	0.3893	0.0899		0.0971	0.0419	0.2027	0.1685
0022:	0.5233	0.0955		0,5401	0.0876	:	0.1880	0.1007	0.3520	C. 2504
0024:	0.5569 0.2524	0.0954 0.0502		0.7254 0.9926	0.0884 0.1220		0.1818 0.0821	0,1257 0,0876	0.348£ 0.1797	0.2586 0.1523
0025:	0.4801	0.0802		0.5484	0.0943	•	0.1660	0.0876	0.3210	0.1623



EXHIBIT F-7 ...

ITEM INFORMATION STATISTICS FOR BUBTEST MECHANICAL REASONING; 2-PARAMETER LOGISTIC MODEL

COO1:						•			
0002:         0.8809         0.2186         : -1.0302         0.0753         0.1802         -0.1726         0.4041         0.2878           0003:         0.3834         0.0980         : -1.3182         0.1279         0.0926         -0.1187         0.2145         0.1786           0004:         0.2321         0.0482         0.4150         0.0868         0.0886         0.0415         0.1892         0.1786           0006:         0.1101         0.0334         -0.3505         0.0678         0.1574         -0.0573         0.3026         0.2323           0007:         0.3/37         0.0828         -0.3535         0.0700         0.1391         -0.0573         0.2740         0.2150           0008:         0.5527         0.1788         -0.5245         0.0513         0.3297         -0.1499         0.5399         0.3506           0010:         1.2338         0.2043         -0.9320         0.1231         0.0682         -0.0704         0.1511         0.1310           0011:         0.1320         0.0383         -1.0621         0.1621         0.0453         0.1499         0.8539         0.3506           0012:         0.8843         0.1287         -0.3412         0.0518         0.0451	ITEM								INDEX OF RELIABILITY
0,2154 0,2745 0,2154	DO02: DO03: DO04: DO06: DO06: DO08: DO08: DO10: DO11: DO13: DO14: DO18: DO18: DO18: DO19: DO22: DO22: DO22: DO22: DO22: DO22:	0.8809 0.3834 0.38321 0.4091 0.36327 0.15327 0.18327 0.18320 0.8843 0.5883 0.6883 0.1787 0.1787 0.1787 0.1789 0.2419 0.2419 0.1201 0.4377	0.2186 0.0980 0.0983 0.0834 0.1788 0.1788 0.1294 0.1186 0.1186 0.1186 0.0723 0.0744 0.0744 0.07238 0.0836 0.0836 0.0873	-1.0302 -1.3182 -0.4150 -0.3505 -0.6689 -0.3935 -0.5245 -0.9320 -0.3755 -1.0621 -0.3412 -0.3413 -0.3046 -0.426 -0.426 -0.426 -0.426 -0.426 -0.426 -0.426 -0.5084 -0.5084 -0.7259 -0.5037	0.0753 0.1258 0.0968 0.0978 0.1371 0.0513 0.1231 0.0453 0.0858 0.0678 0.0678 0.0678 0.0643 0.1022 0.1022 0.1022 0.1022 0.10858 0.1806 0.0858	. 0.1802 . 0.0826 . 0.0826 . 0.1574 . 0.1574 . 0.3297 . 0.3297 . 0.4585 . 0.2273 . 0.2273 . 0.2273 . 0.1769 . 0.0743 . 0.07457 . 0.0962 . 0.16510	-0.1726 -0.1187 -0.0415 -0.0573 -0.0578 -0.1499 -0.1350 -0.1350 -0.0558 -0.0759 -0.0759 -0.0759 -0.0750 -0.0548 -0.0393 -0.0955 -0.0955 -0.0955 -0.0055	0.4041 0.11492 0.3025 0.0863 0.25399 0.1511 0.5699 0.3550 0.3550 0.3625 0.3639 0.3639 0.3639 0.3639 0.3639 0.3639 0.3639 0.3639 0.3639	0.2578 0.1523 0.1523 0.2575 0.2575 0.25375 0.35310 0.35310 0.22437 0.22437 0.22431 0.25661 0.15611 0.25661 0.15611

EXHIBIT F-8

ITEM INFORMATION STATISTICS FOR SUBTEST ELECTRONICS KNOWLEDGE; 2-PARAMETER LOGISTIC MODEL

ITEM	MAXIMUM INFORMATION	STANDARD ERROR	POINT OF MAX INFORMATION	STANDARD ERROR	MAXIMUM Effectiveness	POINT OF MAX EFFECTVHESS	AVERAGE INFORMATION	INDEX OF RELIABILITY
0001:	0.8382	0,1389	: +1,2740					
0002	0.5858	0.1687	-0.8559	0.11 <b>69</b> 0.0703	0.1129	-0.1333	0.2646	0.2092
0003	1.0065	0.2311	-0.7043	0.0703	1 0.1967	-0.1572	0.3824	©. 2756
0004	1.2118	0.2525	-0.6897		0.3044	-0.1851	0.5244	0.3440
0005	0.5083	J. 1292	-1.1179	0.0521	ı 0.3605	-0.2047	0.5340	0.3727
0006	0.9994	0.2117	-0.5774	0.1026	0.1276	-0.1368	0.2785	0,2179
0007	O. 6193	0,1418		0.0507	0.3334	<b>~</b> 0.1 <b>5</b> 53	C.5479	0.3540
OCOE:	0.4098	0.0852	: -0.6862	0.0650	1 0.2039	-0.1340	0.3809	0.2758
0009:	0.2398		1 -0.5811	0.0783	1 0.1420	-0.0995	0.2829	0.2205
0010:	0.4366	0.0630	-1.0096	0.1231	: 0.0782	~Q.O8§2	0.1720	0.1467
0011:		0.1025	: -0.2530	0.0622	: 0.1800	-0.0484	0.3506	0.2596
0012	0.1305	0.0355	: 0.2652	0,1168	: Q.0516	0.0161	0.1180	0.1039
	0.4968	0.1018	: 0.0355	0.0650	: 0.1981	D.0073	0.3012	0.2654
0013:	0.3682	0.0818	1 0.2577	0.0782	: 0.1442	0.0393	0.2813	0.2196
0014:	0.0647	D. 0217	: ~Q.09 <b>9</b> 4	0.1495	: 0.0258	-0.003 t	0.0610	0.0575
0018:	0.5225	0.1032	I 0.1667	0.0665	: 0.2054	0.0342	0.3734	0.2719
0016:	0.2481	0.0565	: 0.2812	0.0907	: 0.0974	0.0305	0.2029	0.1687
0017:	0.0195	0.0107	1 3.6111	1.0098	; D. 0061	0.0254	0.0152	0.0149
0018:	0.2497	0.0579	r 0.2397	0. <del>08</del> 9#	0.0978	0.0326	0.2037	0.1692
0019:	O.297#	0.0692	; O.1919	0.0830	1 0.1178	0.0246	0.2379	0.1922
0020:	0.2512	0.0569	: 0. <b>922</b> 7	0.1287	1 0.0841	0.0838	0.1826	0.1544

APPENDIX G

ITEM INFORMATION INDICES, 3-PARAMETER LOGISTIC MODEL

EXMIBIT G-1

ITEM INFORMATION STATISTICS FOR GENERAL SCIENCE; 3-PARAMETER LOGISTIC MODEL

			INFORMATION	ERROR	effect I veness	MAX EFFFCTVNESS	INFORMATION	RELIABILITY
0.8206	0.1705		-1.3£12	0. 1977	. 0.1309	-0.8047	0.2121	0.1780
	0.1187	i		0.1651			0.2675	0.2113
1.0424	0.2843	ì	-0.5191	0,1121	: 0.3738	-0.4095	0.4502	0.3152
0.3033	0.0756	:	-0.3878	0,1892	: 0.1163	~O.2038	0.2067	0.1713
0.3476	0.0848	:	-0.773E	0,1752	: 0.1188	-0.3 <b>94</b> 5	0.2170	0.1783
1.1317	0.2994	:	-0.7 <b>854</b>				0.4498	0.3103
0.4413	0.1195	:						0.2102
		ł						0.1101
		:						0.2106
		1						0,1788
		1						0,2341
		:						0,2090
		ı						0,4042
		:						0.1842
		!						0.1088
		!						0.1397
		1						0.1338
		:						0,5042 0,20 <b>9</b> 3
								0.2082
		1						0.1600
		;						0.1667
		•						0.1475
		;						0.3311
		;						0.4392
	0.3033 0.3476 1.1317	0.4827	0.4827	0.4827       0.1187       1       -0.8860         1,0424       0.2843       : -0.5191         0.3033       0.0756       : -0.3676         0.3478       0.0848       : -0.7736         1,1317       0.2894       : -0.7854         0.4413       0.1196       : -0.1166         0.2097       0.0561       : -1.2662         0.4591       0.1101       -0.6255         0.3403       0.0819       : -0.6458         0.5107       0.1132       : -0.3003         0.9303       0.3807       : 0.8552         2.3845       1.5309       : 0.4941         0.2880       0.0674       : -0.0843         0.1536       0.0439       : -0.1946         0.2119       0.0514       : -0.4385         0.2035       0.0514       : -0.4385         0.2035       0.0524       : 0.8472         0.4270       0.1096       : 0.4454         0.3949       0.1243       : 0.633         0.5054       0.1243       : 1.2539         0.5054       0.8619       : 1.2539         0.5054       0.8619       : 1.1525	0.4827       0.1187       1       -0.8960       0.1651         1,0424       0.2843       1       -0.5191       0.1121         0.3033       0.0736       1       -0.3878       0.1892         0.3478       0.0848       1       -0.7736       0.1752         1,1317       0.2894       1       -0.7864       0.1217         0.4413       0.1186       1.168       0.1470         0.2097       0.0561       1       1.2862       0.2507         0.4591       0.1101       10.6285       0.1632         0.3403       0.0819       10.6458       0.1812         0.5107       0.1132       10.8658       0.1812         0.8303       0.3807       0.8652       0.1107         2.3845       1.5309       0.4841       0.0589         0.2880       0.0874       10.0843       0.1724         0.1536       0.0439       10.4481       0.2872         0.219       0.0514       10.4385       0.2872         0.2035       0.0514       10.4385       0.1879         0.2035       0.0534       0.0572       0.2888         0.2035       0.0534       0.0572       0.2888 </td <td>0.4827       0.1187       -0.8980       0.1851       0.1651       0.1553         1,0424       0.2843       -0.5191       0.1121       0.3738         0.3033       0.0756       -0.3878       0.1892       0.1163         0.3475       0.0848       -0.7364       0.1752       0.1188         1.1317       0.2994       -0.7864       0.1217       0.3542         0.4413       0.1195       -0.1156       0.1470       0.1753         0.2097       0.0861       -1.2862       0.2507       0.0602         0.4591       0.1101       -0.6285       0.1632       0.1622         0.3403       0.0819       -0.6458       0.1812       0.1215         0.5107       0.1132       -0.6458       0.1326       0.1978         0.5107       0.1132       -0.3003       0.107       0.2533         0.5107       0.1132       -0.3003       0.107       0.2533         0.5107       0.132       -0.3003       0.107       0.2533         0.5280       0.3807       0.9552       0.1107       0.2533         0.2850       0.0674       -0.0643       0.1724       0.1067         0.1536       0.0439       -0.4</td> <td>0.4827         0.1187         1         -0.8980         0.1851         :         0.4339           1,0424         0.2843         :         -0.5191         0.1121         :         0.3738         -0.4095           0.3033         0.0756         :         -0.3878         0.1892         :         0.1163         -0.2035           0.3476         0.0848         :         -0.7364         0.1752         :         0.1188         -0.3845           1.1317         0.2894         :         -0.7364         0.1217         :         0.3542         -0.8138           0.4413         0.1196         :         -0.1166         0.1470         :         0.1753         -0.0787           0.2087         0.0861         :         -1.2862         0.2507         :         0.0602         -0.4832           0.4591         0.1101         :         -0.8285         0.1832         :         0.1622         -0.3823           0.3403         0.0819         :         -0.6458         0.1832         :         0.1216         -0.3395           0.5107         0.132         :         -0.6458         0.1872         :         0.1948         -0.1948         0.1949         :</td> <td>0.4827         0.1187         1 -0.6980         0.1851         0.1853         -0.4339         0.2873           1.0424         0.2843         1 -0.6191         0.1121         1 0.3738         -0.409E         0.4802           0.3073         0.0756         1 -0.3878         0.1892         0.1183         -0.2038         0.2067           0.3476         0.0848         1 -0.773E         0.1752         0.1188         -0.3945         0.2170           1.317         0.2894         1 -0.7864         0.1217         0.3542         -0.8138         0.4488           0.4413         0.1185         1 -0.1166         0.1470         0.1753         -0.0767         0.2661           0.4591         0.101         1 -0.6255         0.1632         0.1622         -0.3823         0.2868           0.3403         0.0819         1 -0.6458         0.1812         0.1925         -0.3398         0.2178           0.5107         0.1132         1 -0.3003         0.1326         0.1978         -0.1948         0.3056           0.9303         0.3807         1 0.8552         0.1107         0.2533         0.8014         0.2642           2.3845         1.5309         0.49841         0.0568         0.8513</td>	0.4827       0.1187       -0.8980       0.1851       0.1651       0.1553         1,0424       0.2843       -0.5191       0.1121       0.3738         0.3033       0.0756       -0.3878       0.1892       0.1163         0.3475       0.0848       -0.7364       0.1752       0.1188         1.1317       0.2994       -0.7864       0.1217       0.3542         0.4413       0.1195       -0.1156       0.1470       0.1753         0.2097       0.0861       -1.2862       0.2507       0.0602         0.4591       0.1101       -0.6285       0.1632       0.1622         0.3403       0.0819       -0.6458       0.1812       0.1215         0.5107       0.1132       -0.6458       0.1326       0.1978         0.5107       0.1132       -0.3003       0.107       0.2533         0.5107       0.1132       -0.3003       0.107       0.2533         0.5107       0.132       -0.3003       0.107       0.2533         0.5280       0.3807       0.9552       0.1107       0.2533         0.2850       0.0674       -0.0643       0.1724       0.1067         0.1536       0.0439       -0.4	0.4827         0.1187         1         -0.8980         0.1851         :         0.4339           1,0424         0.2843         :         -0.5191         0.1121         :         0.3738         -0.4095           0.3033         0.0756         :         -0.3878         0.1892         :         0.1163         -0.2035           0.3476         0.0848         :         -0.7364         0.1752         :         0.1188         -0.3845           1.1317         0.2894         :         -0.7364         0.1217         :         0.3542         -0.8138           0.4413         0.1196         :         -0.1166         0.1470         :         0.1753         -0.0787           0.2087         0.0861         :         -1.2862         0.2507         :         0.0602         -0.4832           0.4591         0.1101         :         -0.8285         0.1832         :         0.1622         -0.3823           0.3403         0.0819         :         -0.6458         0.1832         :         0.1216         -0.3395           0.5107         0.132         :         -0.6458         0.1872         :         0.1948         -0.1948         0.1949         :	0.4827         0.1187         1 -0.6980         0.1851         0.1853         -0.4339         0.2873           1.0424         0.2843         1 -0.6191         0.1121         1 0.3738         -0.409E         0.4802           0.3073         0.0756         1 -0.3878         0.1892         0.1183         -0.2038         0.2067           0.3476         0.0848         1 -0.773E         0.1752         0.1188         -0.3945         0.2170           1.317         0.2894         1 -0.7864         0.1217         0.3542         -0.8138         0.4488           0.4413         0.1185         1 -0.1166         0.1470         0.1753         -0.0767         0.2661           0.4591         0.101         1 -0.6255         0.1632         0.1622         -0.3823         0.2868           0.3403         0.0819         1 -0.6458         0.1812         0.1925         -0.3398         0.2178           0.5107         0.1132         1 -0.3003         0.1326         0.1978         -0.1948         0.3056           0.9303         0.3807         1 0.8552         0.1107         0.2533         0.8014         0.2642           2.3845         1.5309         0.49841         0.0568         0.8513

EXHIBIT G-2
ITEM INFORMATION STATISTICS FOR ARITHMETIC REASONING; 3-PARAMETER LOGISTIC MODEL

! TEM	MAXIMUM HIFORMATION	STANDARD ERROR	MAX	POINT OF INFORMATION	STANDARD ERROR	E?	MAXIMUM PECTIVENESS	POINT OF MAX EFFECTVHESS	AVERACE INFORMATION	INDEX OF RELIABILITY
0001:	0,1182	0.0471		-2.3857	0,4447		0.0222	-0.5750	0.0508	0.0484
0002:	0.1535	0.0961	:	-1.9013	0.2571	:	0.0489	-0.8297	0.1000	0.0909
0003:	1.1425	0.2207	:	-O. S178	0,1011	:	0.3929	-0.4785	O.50C3	0.3337
0004:	1.4327	0.2605	i	90,4147	0.0921		0.5324	-0.3413	0.6000	0.3750
1 2000	0.9904	0.2052	1	0.0166	0.0940	:	0.3950	0.0124	0.4740	0.3218
0006:	0.5885	0.1123	•	-0.4322	0.1237	1	0.2209	-0.2781	0.3465	0.2573
0007:	0.1477	0.0408	:	-0.8067	0.2853	:	0.0528	-0.2555	0.1106	0.0995
0008:	0.5116 0.8739	0,1008	:	-0.4635 -0.3741	0.1456 0.1256	•	0.1913 0.2188	-0.2843 -0.2405	0.3084 0.3414	0.2340 0.2546
0010:	1.1603	0.2886	:	-0.1034	0.0966	•	0.4508	-0.0849	0.515	0.3402
0011	2.5968	0.4971	:	-0.2083	0.0586	;	1.0164	-0.1524	0.3537	0.4897
0012:	0.8903	0. 1771	;	0.1054	0.0888	;	0.3537	0.0783	0.4564	0.3181
0013:	0.6005	0.1365	,	0.3125	0.1134	i	0.2313	0.2237	0.3183	0.2415
0014	1.3265	0.2704	ì	0.0568	0.0736	i	0.5281	0.0456	0.6155	0.3810
0015:	1,2408	C. 2436	i	-0.0069	0.0811	ì	0.4549	-0.0056	0.5703	0.3832
0016	0 8637	0,2222	1	0.5496	0.0883	:	0.3047	0.4475	0.3415	0.2545
0017:	1.2935	0.3880	:	0.5808	0,0711	:	0.4234	0.5517	0.4220	0.2968
0018:	3.0178	1,0890	:	0.7265	0.0523	:	0.9408	. 0.6790	0.6385	0.3897
00131	0.5050	U. 1309	:	0. <b>356</b> 6	0.1175	:	0. 1929	0. <b>23</b> 75	0.2933	0.2268
0020:	1 1242	0.2568	:	0.6591	0. <b>0630</b>	:	0.3812	0.4938	Q.4940	0.3307
0021:	1 9824	0.6318	;	0.7421	0.0571	ï	0.6216	0.6495	0.5744	0.3648
0023:	1.2668	0.3619	:	0.4621	0.0693	:	0.4977	0.3921	0.5071	0.3365
0023:	୍ 8388	0.2154	:	0.3338	0.0556	:	0.2561	0.4954	0.3455	0.2570
0024	3 7535	1.8317	:	0.6430	0.0469	:	1.2348	0.5997	0.8498	0.4594
0025	1 4947	0.4322	:	0.6781	0.0656	:	0.4903	0.5777	0.4924	0.3299 0.2665
0028: 0027:	0 7292	0.1609 0.2670	:	0.566 <b>3</b> 0.5749	0.0869 0.0678	:	0.2593 0.3891	0. <b>3987</b> 0.43 <b>3</b> 7	0.363 <b>3</b> 0.4990	0.3329
0025	1 24 18	0.4219	-	1.0818	0.0786	:	0.3098	0.8597	0.3546	0.2618
0029	3493	0.4675	:	1.0827	0.0771	:	0.3350	0.8780	0.3767	0.2736
0030	0 8335	0.2338	,	0.7606	3.0878	:	0.3350	0.5756	0.3396	0.2535
3030	U 0333	9,230		5.7600	0.00.0	•	010070	010700	0.0000	0.2000

EXHIBIT G-3

ITEM INFORMATION STATISTICS FOR WORD KNOWLEDGE; 3 PARAMETER LOGISTIC MODEL

1 TEM	MAXIMUM INFORMATION	STANDARD ERROR	MAX	POINT OF INFORMATION	STANDARD ERROR	MAX 1 a. and EFFECT I VENESS	POINT OF MAX EFFECTYNESS	AVERAGE INFORMATION	INDEX OF RELIABILITY
0001:	0.4065	0.1060		-1. B529	0.2253	: 0.0566	~1.0198	0, 1093	0.0386
0002	0.4004	0.1043	i	-2.Q156	0,2257	0.0533	-1.0262	0.1044	0.0945
0003:	<b>.</b> 0.7278	0.1693	1	-1.3069	0,1765	: 0.1580	-0.9155	0.2387	0.1933
0004:	0.2047	0.0528	1	-1,6479	0.2720	: 0.0483	-0.6041	0.1017	0.0923
0005:	0.5379	9.1235	1	-1.8933	0.1982	: 0.0730	~1.0890	0.1340	0,1182
0006:	1.9853	0.6278	:	-0.7955	0.0825	. 0.5969	-0.7057	0.5638	0.3505
0007:	0.2533	0.0694	:	-1.2501	0.2395	: 0.0789	-0.6115	0.1500	0,1304
: 6000	2.00€#	0.4548	ì	-0.6506	0.0754	: 0,6619	-0.5836	0.5833	0.3684
0009:	0.5125	0.1091	•	-0.2895	0,1173	: 0,1999	-0.1669	0.3201	0.2425
0010: 0011:	0.6991 0.9384	0.1558 0.2057		~1,4851 ~0.5353	0.1863 0.0989	0.1308	+0. <b>996</b> 7 -0.4019	0.2093 0.4360	0,1731
0012:	0.3162	0.2057	:	-0.5253 -1.2478	0.0988	: 0.3367 : 0.0867	-0.4019 -0.5844	0.4360	0.3036 0.1433
0013:	0.8352	0.1360	:	-0.6563	0,1171	0.2808	-O. 5189	0. 3474	0.1433
0014	0.8946	0.1380	•	-0.3875	0.0962	0.3369	-0.2357	0,4354	0.3033
0015:	1.5116	0.3300	;	-0.5813	0,0751	0.8247	-0.4774	0.5982	0.3743
00:6:	0.5754	0.1145	;	-0.4809	0.1238	0.2121	-0.3267	0.3165	0.2404
0017:	1,3364	0.3325	j	-0.3757	0.0675	0.7267	-0.3244	0.7224	D. 4194
0018:	1,0179	0.2113	1	-0.3757	0.0929	1 0.3837	-0.3008	0.4570	0.3137
0019:	0.7367	0.1595	1	0.0542	0.0881	0,2834	0,0484	0.3796	0,2752
0020:	1.3580	0.2852	:	··O , <b>602</b> 5	0.0839	: 0,4566	-0.4943	0.5343	0.3482
0021:	0.8127	O. 1990	1	-O, 1856	0.1045	: 0.3198	-0.1476	0.3833	0.2771
0022:	2.0769	0.5335	:	0.0609	0.0645	; 0.8271	0.0547	0.7548	0.4134
00221	<b>∳</b> ∙ 02 0 7	1.8530	:	0.3018	0,0502	: 1,5385	0.2843	0.9599	0.4974
0024:	1.0363	0.3073	1	0.8656	0.0728	1 0.3434	0.5587	0.3586	0.2839
0025:	0.8733	0.2879	:	0.4732	0.0765	; 0.3541	0.3802	0.3870	0.2790
0026:	1.8282	0.4206	1	0.0566	0.0533	: 0.7269	0.0751	0.7020	0.4125
0027:	Q.5052 Q.€819	0.1166	1	0.2518 .	0, 1069	1 0.1975	0.1620 0.0883	0.3028	0.2324
0028: 0029:	0.6958	0.1595 0.2390	:	0.1191 0.9077	0.1050 0.0923	0.2706	0.6814	0.3583	0.2538
7030:	1,1728	0.2390	:	0.7154	0.0723	: 0.2031 : 0.3777	0.5993	0.2553 0.3361	0.2034 0.2837
C731:	0.8955	0.2281	:	-O.6882	0.0704	: 0.2969	~O. 5349	0.3785	0.2745
0032	0.5462	0.2027	;	0.9596	0.1086	0.1565	0. 6923	0,2119	0.1748
0033	7.1853	2.5954	i	0.7601	0.0547	2,1656	0.7365	1.0226	0.5056
OC34	0.8127	0.1911	:	0,2972	0.0838	0,3139	0.2174	0.4209	0.2862
0035	3.0767	0.8999	i	0.3601		1 1570	0.3275	0.9231	0.4800
	*******		•	2.000			*··*		

EXHIBIT G-4

ITEM INFORMATION STATISTICS FOR PARAGRAPH COMPREHENSION; 3-PARAMETER LOGISTIC MODEL

ITEM	MAXIMUM INFORMATION	STANDARD ERROR	POINT OF , MAX INFORMATION	STANDARD ERROR	MAXIMUM EFFECT! VENESS	POINT OF MAX EFFECTVRESS	AVERAGE INFORMATION	INDEX OF RELIABILITY
0001:	0 . 5442	0.1325	: -0.3743	0,1800	: 0,2067	-0,2622	0.2977	0.2294
0002: 0003:	0.3597 1.7729	0.0966 0.5420	: -1.4389 : -0.6890	0.2118 0.1306	: 0.0824 : 0.5748	-0.7455 -0.6007	0.1544 0.5633	0.1337 0.3603
0004:	0.3207	0.0771	: -0.2761	0.2108	0.1253	-0.1522	0.2164	0.1779
0005: 0006:	0.8692 0.4262	0.1860 0.1253	: -0.3734 : -0.0451	0.1143 0.1769	: 0.3255 : 0.1695	∽0.2673 -0.0297	0.4630 0.2562	0.3168 0.2040
00071	0.3352	0.0766	: -0.4322	0.1989	: 0.1272	-0.2311	0.2243	0.1832
0008:	0.1938 0.6349	0.0504 0.1464	: -0.8615 : -0.4688	0.2516 0.1535	: 0.0669 : 0.2350	-0.3318 -0.3180	0.1352 0.3 <b>50</b> 8	0.1191 0.2597
0010: 0011:	1.0306 0.1295	0.4112 0.0370	: 0,3145 : -0.6393	0.0760 0.2895	: 0,3958 : 0.0485	0.2417 -0.1927	0.4946 0.1032	0.3310 0.0936
0012:	0.7543	0.3000	: 0.2944	0.0998	0.2913	0.2194	0.3811	0.2759
0013: 0014:	0.5144 0.3535	0.1160 0.0935	-0.6127 -0.0750	0,1716 0,1765	: 0.1523 : 0.1408	-0.3634 -0.0413	0.2834 0.2421	0.2268 0.1949
0015	0.0166	0.0104	2.6105	1,0210	0.0055	0.1491	0.0133	0.0131



EXHIBIT G-5
ITEM INFORMATION STATISTICS FOR AUTO AND SHOP INFORMATION; 3-PARAMETER LOGISTIC MODEL

ITEM	MAXIMUM INFORMATION	STANDARD ERROR	POINT OF MAX INFORMATION	STANDARD ERROR	MAXIMUM EFFECTIVENESS	POINT OF MAX EFFECTVHESS	AVERAGE INFORMATION	INDEX OF RELIABILITY
GG01:	0.0667	0,0236	: -0.8709	0.3995	: 0.0247	-0, 1 <b>64</b> 5	0.0564	0.0534
0002:	0.2518	0.0720	: -0.9727	0.2234	: 0.083 <b>5</b>	-0.4473	0.1606	0.1384
0003:	1.0212	0.2211	: 0.0335	0.0879	: 0.4072	0.0266	0.4939	0.330 <u>6</u>
00041	0.2136	0.0868	: -1.1335	0.2639	: 0.0647	-0.4712	0.1293	0,1145
0005;	1.8520	0.5174	: -0.0712	0.0688	: 0.7371	-0.0622	0.7003	0.4119
: 2000	2.9095	0.8179	: 0.2069	0.0575	: 1.1383	0.1878	0.5206	0.4793
00071	1,1932	0.3120	. 0.5868	0.0817	: 0.4127	0.4879	0.4398	0.3055
0008:	0.0844	0.0258	: 0.0707	0.3189	1 0.0336	0.0162	0.0743	0.0691
0008: 0010:	0.0509	0.0180	-0.2629	0.3980	. 0.0202	-0.0349	0.0489	0.0448
00101	0.4806	0.1157	: 0.1667	0.1305	: 0.1900	0.1070	0.2322 0.1456	0.2262
0012:	0.2215 0.1182	0.0621 0.0330	: 0.8202 : 0.1895	0.2002 0.2564	: 0.0806 : 0.0469	0.2983 0.0542	0,0998	0.1278 0.0807
0013:	0.5587	0.1133	: ~0.0158	0.1106	0.2228	-C. DO\$9	0.3501	0.2593
0014:	0.7771	0.2165	0.1749	0.1015	0.3064	0.1330	0.3905	0.2808
0015:	0.7479	0.1831	0.4745	0.0964	0.2748	0.3465	0.3681	0.2591
0015:	0.9219	0.2317	0.4167	0.0888	0.3440	0.3202	0.4291	0.3002
0017:	2.5183	0.3135	0.7006	0.0627	0.8054	0.8315	0.5655	0.3996
0018:	3,7510	1.4319	0.7045	0.0588	1,1961	0.6587	0.8081	0.4469
0019:	D. 1857	0.0455	-0.3151	0.1829	0.0728	-0.1109	0.1488	0.1295
0020	0.4458	0.1153	0,8245	0,1293	0.1572	0.3964	0.2424	0.1951
0021:	0.3800	0.1215	1.2071	0, 1422	0.0979	0.7287	0.1569	0.1356
00221	1.6846	0.4750	0.5984	0.0584	0.5458	0.5966	0.5437	0.3522
0023:	2.8144	0.7871	0.7067	0.0509	: 0.9020	0.8185	0.8345	0.4549
0024:	1.2855	0.4675	: 1.2527	0.0902	: 0.2577	1.0148	0.3018	0.2318
0025:	0.1494	0.0541	1,5474	0.2493	0.0389	0.5551	0.0786	0.0728

EXHIBIT G-6
ITEM INFORMATION STATISTICS FOR MATHEMATICS KNOWLEDGE; 3-PARAMETER LOGISTIC MODEL

ITEM	MAXIMUM INFORMATION -	STANDARD ERROR	POINT OF MAX INFORMATION	STANDARD ERROR	MAXIMUM EFFECTIVENESS		POINT OF MAX EFFECTVNESS	AVERAGE INFORMATION	INDEX OF RELIABILITY
	0.9862		: 41.0646	0,1451	:	0.2548	-0.8089	0.3434	0.2556
0002:	0.3622	0.0859	: -0.7570	0, 1772	:	0.1238	-0.4029	0.2215	0, 1813
0003:	0.8186	0.1709	: 0.0024	0.0946	:	0.3265	0.0017	0.4549	0.3127
0004:	0,9292	0.1867	: -0.0729	0,1067	يأج	0.3695	-O. OB85	0.4344	0.3028
0005;	0.1901	0.0467	: ~0.5307	0.2239	نے	0.0703	-0.2381	0.1418	0.1242
0006:	1.3770	0.2996	; 0.1890	0.6737	:	0.5413	0.1858	0.5555	0.3732
0007 :	1.8815	0.5553	9 0, 1854	0.0759	1	0.7390	0.1557	0.6243	0.3843
0008:	0.4563	0.0947	1 0, 1221	0.1224	:	0.1812	0.0714	0.2981	0.2302
00091	0.8395	0.1922	: 0.1342	0.1042	1	0.3325	ဝှ. ႏဝန္	0.3958	0.2836
0010:	0.5575	0.1450	4 9.230 <b>6</b>	0.1212	•	0.2184	0, 1571	0.3177	0.2411
00111	0.4229	0.1266	: 0.7694	0, 1275	;	0.1385	0.5151	0.2031	0.1688
0012:	1.8620	0.3618	: 0.4189	0.0624	:	0.5795	0.3467	0.6285	0.3860
0013:	5.6631	1.6882	0.3154	0.0510	:	2.1545	0.3005	1.2540	0.5563
00141	2.9050	0.8901	: 0.5508	0.0478	i	1.0102	0.4986	0.820€	0.4507
00151	0.4153	0.1512	: 1.2854	0.1353	:	0.0987	0.8103	0.1530	0, 1327
0016:	3.4499	1.3475	: 0,5386	0.0473	;	1.2005	0.5071	0.7739	0.4363
0017:	2.2677	0.5529	: 0.5187	0.0520	ı	0.8047	0.4514	0.7608	0.4321
00181	4.2786	1.4748	: 0.4908	0.0411	;	1.5239	0 4618	0.9883	0.4971
0019:	0.8342	0.2057	: 0.5930	0.0903	1	0.2895	0.4703	0.3414	0.2545
0020:	0.8034	0.2663	0.8788	0.0899	i	0.2377	0.6820	0.7902	0.2249
0021:	2.0485	0.7991	: 1,0593	0.0689	;	0.4930	0.9552	0.4051	0.2883
0022:	4.9218	1.6619	: 0.3226	0.0525	;	1.3135	0.8718	0.8164	0,4495
0023:	3.0745	0.9078	9.9550	0.0517	:	0.8102	0.8652	0.6550	0.3994
0024:	0.7850	0.2473	1 . 2270	0.0942	:	0.1847	0.8708	0.2556	0.2035
QQ25:	3.0298	1.0218	0.9729	0.0559	:	0.7866	0.8838	0.6256	0.3848

EXMIBIT G-7

ITEM INFORMATION STATISTICS FOR MECHANICAL REASONING; 3-PARAMETER LOGISTIC MODEL

ITEM	MAXIMUM INFORMATION	STANDARD ERROR MA		POINT OF X INFORMATION	STANDARD ERROR	MAXIMUM EFFECTIVENESS		POINT OF MAX EFFECTVNESS	AVERAGE INFORMATION	INDEX OF
0001: 0002: 0003: 0004: 0005: 0006: 0007: 0008: 0010: 0011: 0013: 0014: 0016: 0016: 0016: 0018: 0018: 0018: 0018: 0018: 0018: 0018: 0018: 0018: 0018: 0018: 0018: 0018: 0018: 0018: 0018: 0018: 0018: 0018: 0018: 0018: 0018:	O.1580 O.575 O.2945 C.5947 O.4318 O.772 O.8065 O.7891 O.17509 O.1092 1.0068 O.7808 O.4707 O.7588 O.4707 O.7485 1.2500 2.4160 O.3218 O.3218 O.3228 O.3289 1.0572	O.0558 O.1349 O.0875 O.1891 O.2415 O.1581 O.02416 O.1581 O.0220 O.1581 O.0220 O.1581 O.0220 O.1581 O.0225 O.1581 O.02529 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582 O.1582	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-1.7382 -0.8595 -0.8292 -0.1284 -0.1284 -0.1384 -0.1384 -0.21246 -0.0188 -0.4052 -0.4052 -0.3288 -0.21672 -0.9494 -0.9494 -0.9494 -0.9494 -0.9494 -0.9494 -0.9494 -0.9495 -0.9495 -0.9495 -0.9495 -0.9495 -0.9495 -0.9495 -0.9495	0.3184 0.1722 0.2011 0.1014 0.1280 0.1115 0.0950 0.2265 0.3113 0.0808 0.3113 0.1275 0.1275 0.2220 0.0988 0.0721 0.0591 0.1552 0.0789 0.1252			-0.5522 -0.3703 -0.3802 0.7043 0.0732 0.8360 0.4788 -0.0980 -0.0784 -0.0058 0.3281 0.1653 0.12428 0.1248 0.1248 0.1067 0.7492 0.5781 1.2820 0.3552 0.7747 1.0813 0.6403 0.7386	C. 0811 0.2965 0.1718 0.2876 0.1718 0.2876 0.1719 0.4465 0.1405 0.64271 0.3870 0.2871 0.2871 0.2871 0.2871 0.2871 0.2871 0.2871 0.2871 0.2871 0.2871 0.2871 0.2871 0.2871 0.2871 0.2871 0.2871 0.2871 0.2871 0.2871 0.2871 0.2871 0.2871	0.0750 0.2287 0.1486 0.1913 0.1484 0.2233 0.1484 0.3087 0.3087 0.3088 0.2388 0.2388 0.2783 0.2783 0.21885 0.21885 0.21885 0.21428 0.21422 0.21422

EXHIBIT G-8

ITEM INFORMATION STATISTICS FOR ELECTRONICS KNOWLEDGE; 3-PARAMETER LOGISTIC MODEL :

ITEM	MAXIMUM INFORMATION	STANDARD ERROR	POINT O MAX INFORMA		MAX 1 NUM EFFECT I VENE'S		POINT OF MAX EFFECTVHESS	AVERAGE INFORMATION	INDEX OF RELIABILITY
0001: 0002: 0003: 0004: 0005: 0006: 0007: 0008: 0010: 0011: 0012: 0013: 0014: 0015: 0018: 0018: 0019:	0.3363 0.8729 1.0797 1.0707 0.3879 0.8857 0.58583 0.2219 0.5046 0.9910 0.5724 0.9910 0.5724 0.9412 0.4363 0.2763 0.3084 0.5293	0.09:7 0.2695 0.2895 0.2886 0.2386 0.1693 0.1539 0.1216 0.1218 0.1260 0.2808 0.13199 0.13199 0.13199 0.13199 0.14373		1 0.1085 3 0.1006 3 0.0980 7 0.1781 9 0.097 8 0.1511 6 0.1511 6 0.1786 0 0.1786 0 0.1786 0 0.0840 0 0.0825 0 0.1283 7 0.6128		0.1105 0.3879 0.4212 0.3808 0.1394 0.3888 0.1521 0.0884 0.10758 0.3504 0.1933 0.0287 0.3298 0.1373 0.1070 0.1697 0.2238	-0.4445 -0.0288 -0.1881 -0.2865 -0.3430 -0.1306 -0.0151 -0.0863 -0.0384 0.0855 0.4558 0.4658 0.4658 0.4658 0.4658 0.4658 0.4658 0.4658 0.4658 0.4658 0.4658 0.4658 0.4658	0.2008 0.4185 0.5061 0.4871 0.2369 0.4871 0.3666 0.2602 0.1630 0.3252 0.1242 0.4248 0.0535 0.4228 0.2034 0.1830 0.2178 0.2178	0.1672 0.2951 0.3360 0.3320 0.1928 0.3320 0.2665 0.1402 0.2465 0.1405 0.2166 0.2166 0.2172 0.2172 0.1729 0.0186 0.1630 0.208



APPENDIX H

TEST INFORMATION AND STANDARD ERROR CURVES, 1-PARAMETER LOGISTIC MODEL

EXHIBIT H-









EXHIBIT H-3



EXHIBIT H-4





EXHIBIT H-5



EXHIBIT H-6









EXHIBIT H-8





# APPENDIX I

TEST INFORMATION AND STANDARD ERROR CURVES, 2-PARAMETER LOGISTIC MODEL

1.0

EXHIBIT I-1
TEST INFORMATION AND STANDARD ERROR CURVES FOR GENERAL SCIENCE; 2-PARAMETER LOGISTIC MODEL



EXMIBIT 1-2
TEST INFORMATION AND STANDARD ERROR CURVES FOR ARITHMETIC REASONING: 2-PARAMETER LOGISTIC MODEL





EXHIBIT 1-3
TEST INFORMATION AND STANDARD ERROR CURVES FOR WORD KNOWLEDGE; 2-PARAMETER LOGISTIC MODEL



EXHIBIT 1-4
TEST INFORMATION AND STANDARD ERROR CURVES FOR PARAGRAPH COMPREHENSION; 2-PARAMETER LOGISTIC MODEL





EXHIBIT I=6
TEST INFORMATION AND STANDARD ERROR CURVES FOR AUTO AND SHOP INFORMATION: 2-PARAMETER LOGISTIC MODEL



i

EXHIBIT 1-6
TEST INFORMATION AND STANDARD ERROR CURVES FOR MATHEMATICS KNOWLEDGE: 2-PARAMETER LOGISTIC MODEL





EXHIBIT 1-7
TEST INFORMATION AND STANDARD ERROR CURVES FOR MECHANICAL REASONING: 2-PÁRAMETER LOGISTIC MODEL



EXHIBIT 1-8
TEST INFORMATION AND STANDARD ERROR CURVES FOR ELECTRONICS KNOWLEDGE: 2-PARAMETER LCGISTIC MODEL





APPENDIX J

TEST INFORMATION AND STANDARD ERROR CURVES, 3-PARAMETER LOGISTIC MODEL

EXHIBIT J-1



EXHIBIT J-2





EXHIBIT J-3









EXHIBIT J-5



B-L TIBINXE





EXHIBIT J-7



EXHIBIT 'J-8



