Wymagania edukacyjne z uzupełnienia

Elementy algebry z teorią liczb

Treści nauczania	Dopuszczający	Dostateczny	Dobry	Bardzo dobry	Celujący
	- zna definicję liczby zespolonej	- rozwiązuje trudniejsze	- rozwiązuje złożone	- dowodzi wzoru de	Ocenę celującą
	(rozróżnia część rzeczywistą od	zadania dotyczące	zadania dotyczące	Moivre'a,	otrzymuje uczeń,
	urojonej),	działań na liczbach	działań na liczbach	- dowodzi wzory na	którego aktywności
	- wykonuje 4 podstawowe działania na	zespolonych.	zespolonych	pierwiastki z liczby	matematyczne
	liczbach zespolonych w postaci	- wykonuje 4	- rozwiązuje złożone	zespolonej	świadczą o rozumieniu
	algebraicznej,	podstawowe działania	zadania dotyczące	- rozwiązuje	pojęć na poziomie
	- zna postać liczby sprzężonej do danej.	na liczbach zespolonych	działań na liczbach	niestandardowe	strukturalnym (według:
	- zna postać trygonometryczną liczby	w postaci	zespolonych w	zadania dotyczące	Dyrszlag Z., "O
	zespolonej,	trygonometrycznej,	postaci	liczb zespolonych,	poziomach i kontroli
	- potrafi zamieniać liczby zespolone	- rozwiązuje trudniejsze	trygonometrycznej	- zaznacza na	rozumienia pojęć ma-
	jako parę liczb na postać	zadania dotyczące	- rozwiązuje	płaszczyźnie	tematycznych w
	trygonometryczną.	działań na liczbach	trudniejsze	zespolonej zbiory	procesie
	- rozwiązuje równania kwadratowe w	zespolonych w postaci	równania	opisane	dydaktycznym", WSP,
Liczby zespolone	zbiorze liczb zespolonych.	trygonometrycznej	wielomianowe w	skomplikowanymi	Opole 1978) lub
-	- stosuje wzór de Moivre'a,	- rozwiązuje równania	zbiorze liczb	warunkami	wykazał się
	- znajduje pierwiastek liczby zespolonej	wielomianowe w zbiorze	zespolonych		umiejętnością
	stopnia naturalnego w dowolnej	liczb zespolonych.	- zna interpretację		rozwiązywania zadań
	postaci (nie musi być z postaci	- rozwiązuje trudniejsze	geometryczną		pochodzących z
	trygonometrycznej)	zadania dotyczące liczb	pierwiastka stopnia		olimpiad, zawodów lub
	- rozwiązuje proste zadania dotyczące	zespolonych	naturalnego,		konkursów
	liczb zespolonych.	- zaznacza na	- znajduje		matematycznych dla
		płaszczyźnie zespolonej	pierwiastek liczby		uczniów liceów (np.
		zbiory opisane prostymi	zespolonej stopnia		prze-chodząc do ich
		warunkami	wymiernego		kolejnych etapów).
			- rozwiązuje złożone		
			zadania dotyczące		
			liczb zespolonych		

	definition details at a	hadalaaa / t l t l /	demodel () (
	- definiuje działanie wewnętrzne,	- bada własności działań,	- dowodzi twierdzeń	- sprawnie posługuje
	działanie łączne, przemienne,	rozwiązuje trudniejsze	dotyczących	się pojęciami
	element neutralny, element	zadania dotyczące	własności działań	związanymi z
	symetryczny, element odwrotny,	działań	oraz zależności	działaniami przy
	- bada, czy podane działanie ma żądane	- bada, czy dany zbiór z	między nimi,	rozwiązywaniu
	własności,	działaniem tworzy grupę,	- rozwiązuje złożone	niestandardowych
	- definiuje pojęcie rozdzielności	grupę abelową.	zadania dotyczące	zadań i dowodzeniu
Działania	jednego działania względem	 rozwiązuje trudniejsze 	działań	twierdzeń
wewnętrzne,	drugiego,	zadania dotyczące teorii	- bada własności	- sprawnie posługuje
•	- rozwiązuje proste zadania dotyczące	grup	grup,	się pojęciami
grupy	działań		- wykorzystuje	związanymi z
	 definiuje grupę, grupę abelową, 		własności grup przy	teorią grup przy
	 podaje przykłady grup (skończonych 		rozwiązywaniu	rozwiązywaniu
	i nieskończonych),		złożonych zadań i	niestandardowych
	- wyznacza element neutralny oraz		dowodzeniu	zadań i dowodzeniu
	symetryczny do danego w grupie,		twierdzeń	twierdzeń
	- rozwiązuje proste zadania dotyczące			
	teorii grup			
	- definiuje iloczyn kartezjański zbiorów,	- definiuje relację	- dowodzi	- dowodzi własności
	- wyznacza iloczyn kartezjański dwóch	porządkującą, sprawdza,	podstawowe	iloczynu
	zbiorów;	czy relacja jest	własności iloczynu	kartezjańskiego,
	- ilustruje iloczyn kartezjański dwóch	porządkiem,	kartezjańskiego,	- rozwiązuje
	zbiorów w układzie współrzędnych,	- definiuje klasę	- dostrzega zależności	niestandardowe
	- przedstawia relację za pomocą grafu,	abstrakcji dla relacji	pomiędzy typami	zadania
	macierzy, wykresu,	równoważności,	relacji, dowodzi	z wykorzystaniem
	- definiuje relację oraz podstawowe	- rozwiązuje trudniejsze	twierdzeń	poznanych pojęć
Iloczyn	typy relacji (zwrotna, przeciwzwrotna,	zadania	dotyczących relacji,	
kartezjański,	symetryczna, przechodnia,	z wykorzystaniem	- wyznacza klasy	
-	antysymetryczna, słabo	poznanych	abstrakcji relacji	
relacje	antysymetryczna.	pojęć	równoważności,	
	spójna), rozróżnia i wskazuje relację		- rozwiązuje złożone	
	danego typu, bada typ relacji,		zadania	
	- definiuje relację równoważności oraz		z wykorzystaniem	
	sprawdza, czy dana relacja jest relacją		poznanych pojęć	
	równoważności,			
	TOWITOWAZITOSCI,			
	- rozwiązuje proste zadania z			

Podzielność, Przystawanie modulo (dla klas z obowiązkowym uzupełnieniem)	- definiuje podzielność, podaje twierdzenie o dzieleniu z resztą, - wymienia cechy podzielności liczb od 2 do 11, - definiuje relację przystawania modulo, - sprawdza czy dane liczby całkowite przystają do siebie modulo przy określonej podstawie, - podaje podstawowe własności przystawania modulo (zwrotność, symetria, przechodniość, zgodność z dodawaniem, zgodność z mnożeniem) - rozwiązuje proste zadania dotyczące przystawania modulo	- dowodzi cechy podzielności przez 2,3,4,5,8,9,10 - dowodzi cechy podzielności przez 6 - rozwiązuje trudniejsze zadania dotyczące przystawania modulo, - dowodzi podstawowych własności przystawania - zna wypowiedź Małego Twierdzenia Fermata	- dowodzi cechy podzielności przez 7, 11, - wyprowadza dalsze własności przystawania modulo korzystając z podstawowych własności, - dowodzi twierdzeń przy pomocy przystawania modulo, - rozwiązuje złożone zadania dotyczące przystawania modulo - stosuje Małe	- sprawnie posługuje się pojęciami związanymi z podzielnością do rozwiązywania niestandardowych zadań - sprawnie posługuje się przystawaniem modulo do rozwiązywania niestandardowych zadań i dowodzenia twierdzeń - stosuje Małe Twierdzenie Fermata
	modulo		Twierdzenie Fermata w prostych przykładach	w bardziej skomplikowanych przykładach
Macierze (dla klas z nieobowiązkowym uzupełnieniem)	- podaje definicję macierzy, - definiuje wyznacznik macierzy kwadratowej dla wymiaru 2x2 oraz 3x3, - zna definicję dodawania i mnożenia macierzy, oraz mnożenia macierzy przez liczbę - dodaje i mnoży macierze wymiaru 2x2 oraz 3x3	- definiuje wyznacznik dla macierzy kwadratowej dowolnego wymiaru, - oblicza wyznacznik macierzy dowolnego wymiaru - zna metodę rozwiązywania układów równań z parametrem wymiaru 3x3 - dodaje i mnoży prostokątne macierze małych wymiarów	- rozwiązuje bardziej złożone zadania dotyczące macierzy i wyznaczników - rozwiązuje układy równań z parametrem wymiaru 3x3	- rozwiązuje skomplikowane zadania dotyczące macierzy i wyznaczników - dowodzi, że zbiór macierzy kwadratowych wymiaru 2x2 oraz 3x3 wraz z dodawaniem tworzy grupę

Zakłada się, że uczeń spełnia wymagania edukacyjne z matematyki określone na poprzednich etapach edukacji i aktywnie korzysta z nich przy rozwiązywaniu zadań. Klasyfikację poziomów trudności zadań matematycznych opracowano według: Dyrszlag Z., O poziomach i kontroli rozumienia pojęć matematycznych w procesie dydaktycznym", WSP, Opole 1978.

- 1. Zadanie proste ma na celu kontrolę rozumienia wszystkich pojęć w danym zadaniu na poziomie definicyjnym oraz zastosowanie wiadomości w sytuacjach typowych.
- 2. Zadanie trudniejsze dodatkowo wymaga od ucznia wykazania się rozumieniem pojęć w nim występujących na poziomie lokalnej komplikacji oraz zastosowanie analizowanych wiadomości w sytuacjach nietypowych tj. np. takich, w których na dane pojęcie narzucono dodatkowe warunki.
- 3. Zadanie złożone dodatkowo weryfikuje umiejętność ucznia do sprawnego łączenia wiadomości z co najmniej kilku działów matematyki i stosowania ich do sytuacji problemowych, sprawność rachunkową oraz stałą kontrolę wszystkich warunków zadania na każdym etapie jego rozwiązania.
- 4. Zadanie niestandardowe dodatkowo sprawdza rozumienie przez ucznia zawartych w zadaniu pojęć na poziomie uogólnienia, uwzględnia zastosowanie poznanej wiedzy do sytuacji problemowych, których rozwiązanie polega na konieczności abstrakcyjnego uogólnienia poznanych wiadomości lub twórczej aktywności matematycznej.