HPC Homework III

Zihan Zhang

April 2022

Processor Information: I use the CIMS server to finish this homework. AMD Opteron(TM) Processor 6272 with Bulldozer micro-architecture (64 CPUs/cores). The cloud speed is 2.1GHz, and it has 8 flops per cycle. The total peak FLOP-rate is:

$$2.1 \times 10^9 \times 8 \times 64 \approx 1075 \text{ GFLOP/s}$$

Problem 1. I have changed the implementations for both functions of $sin4_intrin$ and $sin4_vector$ by adding more terms to the Taylor series expansion and improve the accuracy to 12-digits, as shown in the following results:

Reference time: 16.9144

Taylor time: 2.4301 Error: 6.928125e-12
Intrin time: 0.6853 Error: 6.928125e-12
Vector time: 0.6677 Error: 6.928125e-12

Extra Credit: My code and idea are partially inspired from MathExchange. To evaluate the sine function outside of $[-\pi/4, \pi/4]$, we could firstly move any x to $[-\pi/4, 7\pi/4]$ by $x = x - 2\pi \cdot \lfloor x + \pi/4 \rfloor$. Also, $\sin(x) = -\sin(x - \pi)$, so we could move $x \in [3\pi/4, 7\pi/4]$ to $[-\pi/4, 3\pi/4]$. From the previous, we have already calculated the $\sin(x)$ in $[-\pi/4, \pi/4]$, so only remaining a half part $[\pi/4, 3\pi/4]$: since $\sin(x) = \cos(x - \pi/2)$, we could then calculate the Taylor expansion for the cos function to x^{12} for $x \in [-\pi/4, \pi/4]$. The results are following:

Reference time: 16.9754 EC Reference time: 24.0671

Taylor time: 2.4926 Error: 6.928125e-12 EC Taylor time: 14.2977 Error: 6.928014e-12 Intrin time: 1.0036 Error: 6.928125e-12 Vector time: 0.9673 Error: 6.928125e-12

Problem 2. The results for different scan size and different threads are the following:

Scan Size	Thread 1	Thread 2	Thread 3	Thread 4
50000000	0.536100s	0.301920s	0.212112s	0.181933s
100000000	0.862035s	0.436828s	0.304313s	0.223344s

The information or architecture is introduced above.