Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет «Высшая школа экономики»

Московский институт электроники и математики им. А.Н. Тихонова НИУ ВШЭ Департамент компьютерной инженерии

Курс: Электротехника

Отчет по домашней работе № 1 «Расчёт электрических схем по законам Кирхгофа» Вариант № 13

Работу выполнил:

Лошкарев Сергей Алексеевич БИВ201

Задание

- 1. Написать по законам Кирхгофа систему уравнений для определения неизвестных токов и напряжений в ветвях схемы.
- 2. Определить неизвестные токи и напряжения в ветвях схемы, решив полученную систему уравнений.
- 3. Составить баланс мощностей для исходной схемы.
- 4. Определить напряжение, измеряемое вольтметрами.
- 5. Рассчитать режим схемы с помощью программы SPICE.

(Исходная схема)

R1	R2	R3	R4	R5	R6	R7	R8	E1	E2	E3	E4	E5	E6	J
			0	M						В				Α
8	5	4	6	6	7	2	3	20	50	30	40	50	30	1

Решение

1. Написать по законам Кирхгофа систему уравнений для определения неизвестных токов и напряжений в ветвях схемы.

Первичный анализ цепи выявил 5 узлов и 8 ветвей, откуда следует, что для проведения расчетов потребуется составить 4 уравнения для закона токов Кирхгофа и 4 уравнения для закона напряжений Кирхгофа. Контуры, выбранные для обхода изображены на схеме.

Отдельно замечу, что ток $I_6 = 0$, что очевидно из схемы.

(Схема с пояснениями)

Запишем систему уравнений законов Кирхгофа:

$$\begin{cases} I_7 - I_1 - I_4 = 0 & (3\text{TK y3e, } 1) \\ I_5 - I_3 - I_7 = 0 & (3\text{TK y3e, } 2) \\ J + I_3 + I_8 = 0 & (3\text{TK y3e, } 3) \\ I_4 - I_2 - I_8 = 0 & (3\text{TK y3e, } 3) \\ R_7 I_7 + R_1 I_1 + R_5 I_5 = E_1 + E_5 & (3\text{HK контур I}) \\ R_5 I_5 + R_3 I_3 = E_3 + E_5 - U_J & (3\text{HK контур II}) \\ R_5 I_5 + R_3 I_3 - R_8 I_8 + R_2 I_2 = E_3 + E_5 + E_2 & (3\text{HK контур III}) \\ R_8 I_8 - R_3 I_3 + R_4 I_4 + R_7 I_7 = E_4 - E_3 & (3\text{HK контур IV}) \end{cases}$$

2. Определить неизвестные токи и напряжения в ветвях схемы, решив полученную систему уравнений.

Преобразуем систему СЛАУ в матричную форму и решим ее с помощью среды MatLab:

$$\begin{bmatrix} -1 & 0 & 0 & -1 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 & 0 & 0 & -1 & 0 \\ R_1 & 0 & 0 & 0 & R_5 & R_7 & 0 & 0 \\ 0 & 0 & R_3 & 0 & R_5 & 0 & 0 & 1 \\ 0 & R_2 & R_3 & 0 & R_5 & 0 & -R_8 & 0 \\ 0 & 0 & -R_3 & R_4 & 0 & R_7 & R_8 & 0 \end{bmatrix} \times \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_7 \\ I_8 \\ U_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -J \\ 0 \\ E_1 + E_5 \\ E_3 + E_5 \\ E_3 + E_5 \\ E_3 + E_5 \\ E_4 - E_3 \end{bmatrix}$$

(Данные для расчета)

(Результирующие значения)

Запишем решение системы:

$$\begin{cases} I_1 = 0.6415 & A \\ I_2 = 9.3904 & A \\ I_3 = 3.6938 & A \\ I_4 = 4.6967 & A \\ I_5 = 9.0319 & A \\ I_7 = 5.3382 & A \\ I_8 = -4.6938 & A \\ U_J = 11.0334 & B \\ \end{cases}$$

3. Составить баланс мощностей для исходной схемы.

$$P_{a\kappa T} = E_3 I_3 + E_5 I_5 + E_2 I_2 + E_1 I_1 + E_4 I_4 + U_J J = 1243.7 \text{ BT}$$

$$P_{mac} = R_3 I_3^2 + R_8 I_8^2 + R_4 I_4^2 + R_5 I_5^2 + R_1 I_1^2 + R_2 I_2^2 = 1243.7 \text{ BT}$$

4. Определить напряжение, измеряемое вольтметрами.

$$U_2 = R_8 I_8 = 14.0814 B$$

 $U_1 = -I_6 R_6 + E_6 + E_3 - I_3 R_3 = 45.2248 B$

5. Рассчитать режим схемы с помощью программы SPICE.

(Схема, построенная для проведения симуляции в LTspice)

	Operating Point	
V(n001):	19.3237	voltage
V(n002):	14.1916	voltage
V(n006):	81.1437	voltage
V(c):	34.1916	voltage
V(a):	45.225	voltage
V(n007):	60	voltage
V(n003):	59.3237	voltage
V(b):	31.1437	voltage
V(n005):	84.1916	voltage
V(n004):	30	voltage
V(n008):	30	voltage
I(I1):	1	device_current
I(R8):	-4.69376	device_current
I(R7):	-5.33817	device_current
I(R6):	1.31958e-014	device_current
I(R5):	9.03193	device_current
I(R4):	4.69666	device_current
I(R3):	-3.69376	device_current
I(R2):	9.39042	device_current
I(R1):	0.641509	device_current
I (V6):	1.33227e-014	device_current
I (V5):	-9.03193	device_current
I(V4):	-4.69666	device_current
I (V3):	-3.69376	device_current
I (V2):	-9.39042	device_current
I (V1):	-0.641509	device current

(Результаты симуляции в LTspice)

Все вычисляемые значения сил токов совпадают, а значений напряжений на вольтметрах и на источнике тока после вычисления разности потенциалов совпадает:

$$U_2 = \varphi(a) - \varphi(b) = 14.0813 \text{ B}$$

$$U_1 = \varphi(a) - 0 = 45.225 \text{ B}$$

$$U_J = \varphi(a) - \varphi(c) = 11.0334 \text{ B}$$