Distinct powers

Problem 29

Consider all integer combinations of a^b for $2 \le a \le 5$ and $2 \le b \le 5$:

```
2^{2}=4, 2^{3}=8, 2^{4}=16, 2^{5}=32

3^{2}=9, 3^{3}=27, 3^{4}=81, 3^{5}=243

4^{2}=16, 4^{3}=64, 4^{4}=256, 4^{5}=1024

5^{2}=25, 5^{3}=125, 5^{4}=625, 5^{5}=3125
```

If they are then placed in numerical order, with any repeats removed, we get the following sequence of 15 distinct terms:

```
4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125
```

How many distinct terms are in the sequence generated by a^b for $2 \le a \le 100$ and $2 \le b \le 100$?

Solution

```
In [1]: ▶ print(len(set(a**b for a in range(2. 101) for b in range(2. 9183
```