

2020/2021

FIRST: ALGEBRA

Choose the co	rrect answer:		
1)If the line segn	-	the points (2,k),(4,7) parallel to X
a) 5	b) 4	c) 7	d) 1
		the sum of their mar	
a) 13	b) 20	c) 30	d)6
3)If (a, 2a) satis	fies the relation : y	= x -1 , then a =	
a) 1	b) -1	c) 10	d)3
4)The slope of th	e straight line parall	el to x-axis is	•••••
a) zero	b) 1	c)undefined	d)negative
5) [1,5]-{1,5	5 } =		
a)] 1, 5]	b) { 1, 5 }	c)] 1 ,5[d) [1,5[
6) The median of	f:24,20,11,36,4	0 is	
a) 24	b) 20	c) 40	d)36
7) The cube who	se volume is 27 cm ³ ,	then the area of one	e face =
a)36	b) 9	c)12	d) 25
8) (\(\sqrt{5}-2\) + ($\sqrt{5}+2)=$		
$a)2\sqrt{5}$	b) 3	c) $\sqrt{10}$	$d)3\sqrt{5}$
9) The conjugat	e of the number v	$\sqrt{5} - \sqrt{2}$ is	
$a/\sqrt{5}+\sqrt{2}$	b) $\sqrt{2} - \sqrt{5}$	c) $\sqrt{5}$ - $\sqrt{2}$	d) $\sqrt{2} + \sqrt{5}$
. 3			

10)
$$\sqrt[3]{4 + \cdots} = 3$$

a) 27

b) 9

c) <mark>23</mark>

d)16

11) The square	whose side length is	$\sqrt{5}$ cm, its area =	cm ² .
a) 20	b)25	c) 2√5	d)5
12)R - Q= a) Ø	<i>b) Q</i>	c) Z	d)N
13) [-2,7] ∩ a)]-2,7[] -2 , 7 [= b) [-2 , 7]	c) {-2,7}	d)]-2,7]
-	ve inverse of the number $\sqrt{3} + 5$	mber 5 - $\sqrt{3}$ is	$d)2\sqrt{3}$
	R+ =	c)[-4, 6]	d)[0,6]
16)The sum of a)6	f the real numbers in		3 [= d)9
	on set of the equation b) { 0 }	$n \times^2 + 25 = 0 \text{ in R i}$ $\frac{c}{\phi}$	isd) {5 }
18)The solution (a) {3,1}	on set of the equation b) { -3 , 1}	on $(x+3)(x-1)$ c){3,-1}	= 0 in R is
ofits base is 1	0 cm, then its height	is	and the diameter length
	<i>b) 25</i> , then x	c) 10	d)5
	ular cylinder, its vous length of its base:		d)<-4 , and its height is 10 cm d)10
	vhose edge length is b) 6		
the x-axis a	at the point	*******	traight line intersecting
a) (4,0)	b) (0,4)	c)(3,4)	d)(-3,4)

B

I

	f the straight line pass		politis (5, y),
(5,-2) is -3, the	en y=		
a) 5	b) -4	c) 4	d)2
25)If (-1,5) sat	tisfies the relation:	3x + ky = 7, then	k=
a) 3	b) 5	c) -2	d)2
26)The slope of	the straight line the	at is parallel to the	y-axis is
a) ZERO	b) Undefined	c) Negative	d)Positiv
27)If the straigl	ht line: $ax +by+c$	= 0 passes throug	h the origin
point, then c =	************		
a) 1	b) a	c) b	d)0
28) If (2,-1) sa	tisfies the relation	2x + 3y + c = 0,	then <i>c</i> =
a) -1	b) 2	c) 1	$d)\frac{1}{2}$
29)The point of	intersection of the	ascending and the	descending
	frequency curves of	A	_
axis.			
a) median	b) order of the n	nedian c)me	an d)mode
30)The most co	mmon values of a s	et of values is calle	he
	illilloll values of a s	et of values is calle	
a) Median	b) mode	c) mean	d) otherwise
a) Median		c) mean	d) otherwise
a) Median 31) If the order	b) mode	c) mean set of values is the	d) otherwise
a) Median 31) If the order	b) mode of the median of a	c) mean set of values is the	d) otherwise
a) Median 31) If the order number of the a) 20	b) mode of the median of a se values is b)16	c) mean set of values is the c) 9	d) otherwise ninth, then the
a) Median 31) If the order number of the a) 20 32) If the mode of	b) mode of the median of a se values is	c) mean set of values is the constant c of y and	d) otherwise ninth, then the d)17
a) Median 31) If the order number of the a) 20 32) If the mode of a) -2	b) mode of the median of a se values is b)16 the values:9,8,9,y	c) mean set of values is the	d) otherwise ninth, then the d)17
a) Median 31) If the order number of the a) 20 32) If the mode of a) -2 29)If the mode of	b) mode of the median of a se values is b)16 the values:9,8,9,y b) 2 f the values:15,9,X-	c) mean set of values is the c) 9 ,8 is 8, then $\sqrt[3]{y}$ = c) 8 c) 8 6,9,15 is 9, then	<i>d) otherwise</i> e ninth, then the d)17 d)9 X =
a) Median 31) If the order number of the a) 20 32) If the mode of a) -2 29) If the mode of a) 3	b) mode of the median of a se values is b)16 the values:9,8,9,y b) 2 f the values:15,9,X-	c) mean set of values is the c) 9 ,8 is 8, then $\sqrt[3]{y}$ = c) 8 c) 8 c) 8 c) 8 do not compare the original of the	<i>d) otherwise</i> ninth, then the d)17 <i>d</i>)9 X =
a) Median 31) If the order number of the a) 20 32) If the mode of a) -2 29) If the mode of a) 3	b) mode of the median of a se values is b)16 the values:9,8,9,y b) 2 f the values:15,9,X-	c) mean set of values is the c) 9 ,8 is 8, then $\sqrt[3]{y}$ = c) 8 c) 8 c) 8 c) 8 do not compare the original of the	<i>d) otherwise</i> ninth, then the d)17 <i>d</i>)9 X =
a) Median 31) If the order number of the a) 20 32) If the mode of a) -2 29) If the mode of a) 3	b) mode of the median of a se values is b)16 the values:9,8,9,y b) 2 f the values:15,9,X-	c) mean set of values is the c) 9 ,8 is 8, then $\sqrt[3]{y}$ = c) 8 c) 8 c) 8 c) 8 do not compare the original of the	<i>d) otherwise</i> ninth, then the d)17 <i>d</i>)9 X =
a) Median 31) If the order number of the number of the a) 20 32) If the mode of a) -2 29) If the mode of a) 3 30) The mean of the a) 7	b) mode of the median of a se values is b)16 the values:9,8,9,y b) 2 f the values:15,9,X- b) 9 the values:7,11,21	c) mean set of values is the c) 9 , 8 is 8, then $\sqrt[3]{y} =$ c) 8 + 6, 9, 15 is 9, then c) 6 , 10 and 16 is	d) otherwise ninth, then the d) $\frac{d}{17}$
a) Median 31) If the order number of the number of the a) 20 32) If the mode of a) -2 29) If the mode of a) 3 30) The mean of the a) 7 31) The point of integral and a a	of the median of a se values is	c) mean set of values is the c) 9 ,8 is 8, then $\sqrt[3]{y}$ = c) 8 +6,9,15 is 9, then c)6 ding and the descent	d) otherwise ninth, then the d
a) Median 31) If the order number of the number of the a) 20 32) If the mode of a) -2 29) If the mode of a) 3 30) The mean of the a) 7 31) The point of integral and a a	b) mode of the median of a se values is b)16 the values:9,8,9,y b) 2 f the values:15,9,X- b) 9 the values:7,11,21	c) mean set of values is the c) 9 ,8 is 8, then $\sqrt[3]{y}$ = c) 8 +6,9,15 is 9, then c)6 ding and 16 is	d) otherwise ninth, then the d)17 d)9 X =

32)If the arithmetic mean of the values: 1,6,4,4,5K is 7, then K a)5 d)20b) 35 *33)*[-2,5]-{-2,5}=..... d)]-2,5] a) $\{-2,5\}$ b) [-2,5[c)]-2,5[34)Q \(\text{Q} \) = a)Zb)R $c)R^*$ *35)*{ 2,5,7}-{2,7}=..... $a) \{ 5 \}$ d)[2,5] c)] 2, 5[b) { 2,5 } SECOND: GEOMTRY 36)ABC is a right angle triangle at B , AC= 10 cm, m (\angle c) = 60 , then BC =...cm a)2 b)4 d) 6 37) The point of intersection of the medians of the triangle divides each medians in the ratio: 2 from vertex a)1 b)2 d) 3 38)In the opposite figure: $x = \dots$ b)70° $a)65^{\circ}$ c)50° d) 80° 39)If the angles of a triangle are congruent, then the triangle is a/an a)equilateral b)isosceles c)scalene d) right 40)The length of any side in a triangle.....the sum of lengths of the other two sides. b)> c)≤ $d) \geq$

41)The measure of the exterior angle of the equilateral triangle				
=				
a) 30°	b) 60°	c) 120 °	d) 90°	
		es triangle are mentary c) cong	ruent d) straight	
		ex angle of an iso the base angles i c) 70	sceles triangle is 50°, is	
44) In ∆ ABC, if A a) 30	AB = AC , m (∠ A b) 45) = 2 m (∠ B) , the	en m (∠ C) = ⁰ d) 90	
45)If the triang a) $AC = AB$	gle ABC is right b) BC < A	at B then		
		f the third side=.		
47)In \triangle ABC if a)] 6, 13]		AC = 7 cm., then c)] 1 , 13 [
triangle?			engths of sides of a	
a) 3, 4, 4	b) 4, 3, 5	c) 4, 3, 6	d) 4, 3, 7	
49)If ABC is a r	ight – angled tr	riangle at A & AB	= AC, then m (∠B)	
a) 30	b) 45	c) 60	d) 90	
50)The number	r 5 ,7 can	be lengths of side	es of triangle.	
a) 12	b) 3	c) 2	d) 13	
_	ht –angle at B n from B =		n the length of the	
a) 5	b) 20	c) 7.5	d) 10	

52)The number	of axis of sym	metry in	the scalene	triangle =
a) 0	b) 1	c) 2		d) 3
53)In the triang m(∠A)	gle ABC , if BC :	= 9 cm , A	AB= 7cm , th	en m(∠c)
a) =	b) <	c) >		d) ≤
54)The number	of medians in	the righ	t angle triai	ngle =
a) 3	b) 0	c) 1		d) 2
the triangle is			nt-angled tr	iangle is 45°, then d) scalene
56)The lengths		n an isoso	celes triangl	e are 2cm , 5cm ,
57)The side opposite opposite side opposite oppo	posite to the a gth of the hypo b) twice	tenuse	in aright –a c) half	ngled triangle d) triple
58) XYZ is a tric	angle in which	m(∠ Z) =	70°, m(∠Y):	=60°,then
a) <	b) >	c) =		d) TWICE
	ooint of interse of BC, then AD			s of ∆ ABC, D is
a) 2 AM	b) 4 MD		c) $\frac{2}{3}MD$	$d)\frac{3}{2}AM$
	obtuse – angl	_		midpoint of BD,
a) AB	b) AC	C) BD	d) AD

Prep.[2] First Term-Algebra Final Revision Part 2-Problems

Mr. Mahmoud Esmaiel 01006487539=01110882717

لاســم

Exercises

[A]: Choose The Correct Answer:

1	$\sqrt[3]{a^3} =$ D) 2a D) 2a	Α
2	$\sqrt{3} (\sqrt{11} + \sqrt{3}) =$ A) $3\sqrt{11} + 2$ B) $\sqrt{33} + 3$ C) $11\sqrt{3} + 2$ D) $2\sqrt{11} + 3$	В
3	$\sqrt{25} = \sqrt[3]{}$ A) 5 B) 15 C) 125 D) -5	С
4	3√ = 4 A) 4 B) 16 C) 64 D) 1	С
5	$\sqrt{25} + \sqrt[3]{-27} = $ A) 8 B) 4 C) 2 D) 5	В
6	$\sqrt[3]{64} = \sqrt{X}$, then 2 X = D) 32	D
7	$\sqrt[3]{64} = $ A) 64 B) 8 C) 16 D) 32	С
8	$\sqrt[3]{27} = \sqrt{X+3}$, then X = D) 12	В
9	³ √64+ = 5 A) 5 B) 61 C) 100 D) 25	В

11
$$X^2 = 5$$
, then $(X + \sqrt{5})^2 = \dots$ or

11
$$X^2 = 5$$
, then $(X + \sqrt{5})^2 = 0$ or $($

C) 2

D)-2

	Page [3] - Math - Mr. Mahmoud Esmaiel - Mobile : 01006487539 - 01110882717	
		1
12	$\frac{X^3}{y^3} = \frac{8}{27}$, then $(\frac{y}{X})^2 =$ A) $\frac{8}{27}$ B) $\frac{2}{3}$ C) $\frac{4}{9}$ D) $\frac{9}{4}$	D
13	$X^2 - X^2 = 60$ and $X + y = 5$, then $X - y = $	D
14	The solution set of the equation : $X^2 = 2$ in R is A) $\{\sqrt{2}\}$ B) $\{-\sqrt{2}\}$ C) $\{2\}$ D) $\{\sqrt{2},-\sqrt{2}\}$	D
15	The solution set of the equation : $X^2 + 2 = 0$ in R is A) \varnothing B) $-\sqrt{3}$ C) $\sqrt{3}$ D) $\pm \sqrt{3}$	Α
16	The solution set of the equation : $X^3 + 8 = 0$ in R is A) {2} B) {-2} C) $\{2\sqrt{2}\}$ D) $\{2, -2\}$	В
17	The solution set of the equation: X ³ + 9 = 8 in R is	D
18	The S.S of the equation: $(X^2 + 3)(X^2 + 1) = 0$ in R is	A
19	The S.S of the equation: $(X^2 + 1)(X - 5) = 0$ in R is	В
20	The S.S of the equation: $(X^2 + 3)(X^3 + 1) = 0$ in R is	D
21	The S.S of the equation: $(X^2-1)(X+5)=0$ in R is	С
22	The S.S of the equation: $X(X^3-1)=0$ in R is A) \emptyset B) $\{0,1\}$ C) $\{0,\pm 1\}$ D) $\{1\}$	В
23	If: $\frac{3}{a+2}$ is a rational number the a \neq	С
24	If $n \in \mathbb{Z}_{+}$, $n < \sqrt{26} < n + 1$, then $a = \dots$ A) 25 B) 5 C) 24 D) -5	В

	Page [4] - Math - Mr. Mahmoud Esmaiel	- Mobile : 01006	487539 - 01110882717	
			`	
25	The irrational number in the follows A) $\sqrt{\frac{1}{9}}$ B) $\sqrt{\frac{1}{4}}$	ing numbers is	s D) ³ √27	С
26	The irrational number lies between A) $\sqrt{10}$ B) $\sqrt{7}$ C	1 2 and 3 is () 2.5	D) √3	В
27	The area of a square whose side le	ength is √3 cr	m =cm ² D) 6	С
28	The square whose area is 10 cm ² , A) 5 B) -5 C	its side length () √10	n iscm D) – √10	С
29	The multiplicative inverse of $\frac{\sqrt{3}}{3}$ in A) $\sqrt{3}$ B) 1 C	s	D) _ √3	Α
30	The multiplicative inverse of $\sqrt{5}$ is A) $-\sqrt{5}$ B) $\frac{\sqrt{5}}{5}$		D) \(\frac{5}{\sqrt{5}}\)	В
31	The multiplicative inverse of ($\sqrt{3}$ A) $\sqrt{3}$ B) $\sqrt{2}$ C	+ $\sqrt{2}$) is	D) √3 –√2	D
32	The additive inverse of $(3-2\sqrt{2})$ A) $3+2\sqrt{2}$ B) 3 C	is) 2	D) 2√2 - 3	D
33	$Q \cap Q^{1} = B$ $A) \{0\}$ $B) \emptyset$) R	D) Q	В
34	$Q \cup Q' = B$ $A) \{0\}$ C) R	D) Q	С
35	$R_{+} \cup R_{-} =$ A) R B) Q C) N	D) R*	D
36	3√8] - ∞, 4 [A)) _	D) ⊄	Α
37	5 ∈	(3,5)	D) [-5,∞[D

	Page [5] - Math - Mr. Mahmoud Esmaiel - Mobile : 01006487539 - 01110882717	
38	$R = \dots$ A) $R_+ \cup R$ B) $R_+ \cap R$ C) $]-\infty, \infty[$ D) $Q \cap Q^1$	C
39	$R_{+} = \dots \dots$ A)]0, ∞ [B)]- ∞ , 0[C) [0, ∞ [D)]- ∞ , 0]	Α
40	R __ =	В
41	The set of none –negative numbers =	С
42	The set of none –positive numbers =	D
43	$[2,7]-\{2,7\}=$ A) Ø B) $[1,6]$ C) $[2,7[$ D) $\{0\}$	С
44	$[-2,5]-\{-2,6\}=$	С
45	$]3,5[\cup{3,5}=$ A) $]3,5[$ B) $[3,5[$ C) $]3,5[$ D) $[3,5[$	D
46	$]-2,2] \cup \{-2,0\} = $ A) $]-2,2[$ B) $[-2,2[$ C) $]-2,2[$ D) $[-2,2[$	В
47	[1,3]∪[2,5[= A)]1,5[B)[1,5[C)]1,5] D)[1,5]	В
48]- ∞ ,1] \cup [-4,, ∞ [= A) R B) [-4,, ∞ [C)]- ∞ ,1] D) Q	Α
49	$]-1,3] \cap [-3,-1] =$ A) \varnothing B) $\{-1\}$ C) $\{-3\}$ D) $\{3\}$	В
50	$[1,5] \cap]-2,3] =$ A) $\{1,3\}$ B) $]1,3[$ C) $[1,3]$ D) $[1,3[$	С
51	$N \cap]1,2[=$ A) B) {1,2} C) {1} D)]1,2[Α

	Page [6] - Math - Mr. Mahmoud Esmaiel - Mobile : 01006487539 - 01110882717	
52	[3,7[-]-2,5]= A)]5,7[B) {5,7} C)]-2,3[D) [3,5]	Α
53	The additive neutral (identity) in R is	Α
54	The multiplicative neutral (identity) in R is	В
55	If $a \in N$, $b \in Z$ and $c \in R$, then $a + b + c \in D$. A) N B) Z C) Q D) R	D
56	If $a \in R$ and $b \in R$. then $a - b$ means the sum of the number a and of inverse of the number b A) 0 B) B C) Additive D) multiplicative	С
57	The number $(1 - \sqrt{3})(1 + \sqrt{3})$ is a number	В
58	The simplest form of the expression: $(\sqrt{3} - 1)^2 (\sqrt{3} + 1)^2$ is	В
59	The multiplicative inverse of $(\sqrt{7} + \sqrt{3})(\sqrt{7} - \sqrt{3})$ is	С
60	If: $X = \sqrt{5} + \sqrt{3}$, $y = \sqrt{5} - \sqrt{3}$, then $X - y =$ A) $2\sqrt{3}$ B) $5\sqrt{3}$ C) $2\sqrt{5}$ D) 2	Α
61	If: $X = \sqrt{7} + \sqrt{3}$, $y = \sqrt{7} - \sqrt{3}$, then $(X - y)^3 = \dots$ A) Zero B) 24 C) $24\sqrt{3}$ D) 196	С
62	The conjugate number of : $\sqrt{5} + \sqrt{3}$ is	В
63	The conjugate number of: $\frac{2}{\sqrt{5}-\sqrt{3}}$ = A) $\sqrt{5}+\sqrt{3}$ B) $\sqrt{5}-\sqrt{3}$ C) $2\sqrt{3}$ D) $2\sqrt{5}$	В
64	The conjugate number of : $\sqrt{3} - \frac{5}{\sqrt{5}} =$ A) $\sqrt{5} + \sqrt{3}$ B) $\sqrt{5} - \sqrt{3}$ C) $2\sqrt{3}$ D) $2\sqrt{5}$	A

	Page [7] - Math - Mr. Mahmoud Esmaiel - Mobile : 01006487539 - 01110882717	
65	If: $\frac{X}{5-\sqrt{5}} = 5 + \sqrt{5}$, then $X = \frac{1}{5-\sqrt{5}}$ A) 25 B) 20 C) 15 D) 10	В
66	If: $\frac{1}{X} = \sqrt{5} - 2$, then $X =$ A) $\sqrt{5} - 2$ B) $\sqrt{5} + 2$ C) $\sqrt{5} - 5$ D) 0	В
	If: $X = \frac{2}{\sqrt{5} - \sqrt{3}}$ and $Xy = 2$, then $y =$ A) $\sqrt{5} + \sqrt{3}$ B) $\sqrt{5} - \sqrt{3}$ C) $2\sqrt{3}$ D) $2\sqrt{5}$	В
68	A rectangle of dimensions $(\sqrt{3}-1)$, $(\sqrt{3}+1)$ cm. its area is A) 2 B) 4 C) $2\sqrt{3}$ D) $2\sqrt{5}$	A
69	If: $X = \sqrt{3} + 2$, $y = \sqrt{3} - 2$, then $(Xy, X + y) =$ A) $(1,1)$ B) $(-1,4)$ C) $(-1,9)$ D) $(-1,2\sqrt{3})$	D
70	If: $X = \sqrt[3]{3} + 7$, $y = \sqrt[3]{3} - 7$, then $(X + y)^3 =$ A) 3 B) 7 C) 24 D) 64	С
71	$\sqrt[3]{54} + \sqrt[3]{-2} =$ A) $\sqrt[3]{52}$ B) $\sqrt[3]{2}$ C) $2\sqrt[3]{2}$ D) $4\sqrt[3]{2}$	С
72	$\sqrt[3]{2} + \sqrt[3]{2} =$ A) $\sqrt[3]{4}$ B) $\sqrt[3]{4}$ C) $\sqrt[3]{8}$ D) $\sqrt[3]{16}$	С
73	$\sqrt[3]{\frac{2}{3}} \times \sqrt[3]{-12} = $ A) 2 B) -2 C) 3 D) 5	В
74	$\sqrt[3]{24} + \sqrt[3]{-81} + \sqrt[3]{3} = $ A) $\sqrt[3]{3}$ B) 0 C) $6\sqrt[3]{3}$ D) $-\sqrt[3]{3}$	В
75	If the side length of a square is L cm. and its area is 30 cm ² , then the area of the square whose side length equals 2 L cm. is A) 30 B) 60 C) 120 D) 180	С

	Page [8] - Math - Mr. Mahmoud Esmaiel - Mobile : 01006487539 - 01110882717	
76	Volume of a cube whose edge length 2 L cm. is cm ³ A) 2 L B) 8 L C) 8 L ³ D) L ³	С
77	The lateral area of a cube whose edge length is L cm. = cm ² A) L ² B) 4L ³ C) L ³ D) 4L ²	D
78	The edge length of a cube is 4 cm., then its total area = cm ² . A) 4 B) 64 C) 96 D) 144	С
79	If the edge length of a cube is 5 cm., then its volume =	С
80	The sum of lengths of all edges of a cube is 36 cm., then its total area equals cm ² A) 3 B) 12 C) 54 D) 36	С
81	If the volume of a cube is 216 cm ³ , then the length of its edge is A) 6 B) 12 C) 24 D) 36	Α
82	The edge length of a cube whose volume is 3 cm^3 iscm. A) $\sqrt{3}$ B) $\sqrt[3]{3}$	D
83	The edge length of a cube whose volume is $2\sqrt{2}$ cm ³ is	A
84	If the volume of a cube is $40\sqrt{5}$ cm ³ , then its edge length iscm. A) $\sqrt{5}$ B) $8\sqrt{5}$ C) $2\sqrt{5}$ D) $5\sqrt{2}$	С
85	The volume of a cuboid whose dimensions are : $\sqrt{2}$, $\sqrt{3}$, $\sqrt{6}$ cm is	Α
86	If a volume of a cube is 27 cm ³ , then the total area is cm ² A) 3 B) 9 C) 36 D) 54	D
87	If a volume of a cube is 27 cm ³ , then the lateral area is	С
88	If a area of one face of a cube is 25 cm ² , then it's volume =cm ³ A) 25 B) 5 C) 125 D) 1	С

	Page [9] - Math - Mr. Mahmoud Esmaiel - Mobile : 01006487539 - 01110882717								
89	Area of the square of side length is 21 cm. = cm ² A) 441 B) 400 C) 525 D) 625	Α							
90	The volume of a sphere which its diameter 6 cm. =	C							
91	A volume of the sphere equals $32\sqrt{3}~\pi~cm^3$, its radius length								
92	The radius length of a right circular cylinder whose volume is 40π cm ³ and its height 10 cm. = cm. A) 5 B) 3 C) 2 D) 1	С							
93	If a volume of a cube is L ³ cm ³ , then the total area is cm ² A) 4 L ³ B) 6 L ³ C) 4 L ² D) 6 L ²	D							
94	The S.S. of equation : $\sqrt{2}$ X = 2 in R =	В							
95	The S.S. of equation : $X + \sqrt{2} = \sqrt{8}$ in $R =$ A) $\{\sqrt{2}\}$ B) $\sqrt{8}$ C) $\sqrt{6}$ D) $\sqrt{4}$	A							
96	The S.S. of the inequality: $0 < x + 5 \le 6$ in \mathbb{R} is	D							
97	The S.S. of the inequality $-x > 2$ in \mathbb{R} is	D							
98	If $-1 < -x \le 5$, then the S.S. in \mathbb{R} is	A							
99	The S.S. of equation: $\sqrt{2} \dot{x} = 2$ in \mathbb{R} is	В							
100	$\{x: x \in \mathbb{R}, x < 1\} = \dots$ (a) $0, -1, -2, \dots$ (b) $]-\infty, 1]$ (c) $]-\infty, 1[$ (d) $]-\infty, 0]$	С							
101	If: $X \in \mathbb{R}$, $1-7X > -8 $, then $X < \dots$ (a) 1 (b) -1 (c) $\frac{9}{7}$ (d) 0	В							

	Page [10] - Math - Mr. Mahmoud Esmaiel - Mobile : 01006487539 - 01110882717				
102	If: $2 < x < 5$, then $3x - 1 \in$ (a)]3, 12[(b)]6, 14[(c)]5, 15[(d)]5, 14[D			
103	Which of the following represent linear relation? A) $Xy = 2$ B) $X^2 = \frac{1}{y}$ C) $\frac{X}{y} = 1$ D) $y = X^2 + 4$	C			
104	Which of the following satisfies the relation: $2X + y = 5$? A) $(-3,3)$ B) $(1,3)$ C) $(3,1)$ D) $(2,2)$	В			
105	(3,2) satisfies the relation A) Y+X=5 B) Y-X=5 C) 3Y-X=2 D) 2X+Y=1	Α			
106	(3,2) does not satisfy the relation A) Y+X=5 B) X-Y=1 C) Y+X=7 D) 3Y-X=3	С			
107	Value of b where $(-3, 2)$ satisfies the relation: $3X + by = 1$ is A) 3 B) 5 C) 4 D) 0	В			
108	If: (a,1) satisfies the relation: 2 X + 3y = 7, then a = A) 2				
109	If: (k, 2k) satisfies the relation: 3 X + 2 y = 14, then k = A) 2 B) -2 C) 7 D) 0	Α			
110	The opposite table shows the relation between x and y , which is (a) $y = x + 4$ (b) $y = x + 1$ (c) $y = 2x - 1$ (d) $y = 3x - 2$	С			
111	The slope of the straight line parallel to the X – axis is . A) Positive B) Negative C) Zero D) Undefined	С			
112	The slope of the straight line parallel to the Y – axis is A) Positive B) Negative C) Zero D) Undefined	D			
113	The slope of horizontal line is	В			
114	Slope of straight line passes through (- 2 , 3) and (2 , 3) is A) 2 B) 1 C) Zero D) Undefined	С			

	Page [11] - Math - Mr. Mahmoud Esmaiel - Mobile : 01006487539 - 01110882717	
15	Slope of straight line passes through (-3,1) and (2,5) is A) $\frac{4}{5}$ B) $-\frac{6}{1}$ C) $\frac{5}{4}$ D) $-\frac{1}{6}$	Α
16	Slope of straight line passes through $(3, y)$ and $(5, -2)$ is -3 , then $y =$ A) 2 B) 4 C) 6 D) -30	В
17	If the Slope of straight line a X + b y + 1 = 0 is undefined, then A) a = b B) a = zero C) b = zero D) a = -b	С
18	Relation: $X - 5 = 0$ is represented by a st. line whose slope is A) 0 B) -5 C) 5 D) Undefined	D
19	In the opposite figure: The slope of the straight line L is (a) positive. (b) negative. (c) zero. (d) undefined.	С
20	The slope of the straight line L in the opposite figure is	В
21	In the opposite figure: The slope of the straight line L is	С
	The mean of the values: 2,5,4,5 is	Δ

Mr. Ma. Esmaiel – Page [11] – Prep [2] – First Term – Algebra – Final Revision –

	Page [12] - Math - Mr. Mahmoud Esmaiel - Mobile : 01006487539 - 01110882717							
123	If the arithmetic mean of the values: $27, 8, 16, 24, 6$ and k is 14 , then $k = \cdots$ (a) 3 (b) 6 (c) 27 (d) 84	A						
124	If the mean of marks of 5 pupils is 20, then the total of their marks =	D						
125	The lowest limit of a set is 4 and the other limit is 8, then its centre is	С						
126	If the lowest boundary of a set is 10 and the upper boundary is X and its centre is 15, then $X = \cdots$ (a) 10 (b) 15 (c) 20 (d) 30	С						
127	If the lower limit of a set is 18 and its centre is 20, then its length is	D						
128	The arithmetic mean of the values: 3 - a, 5, 1, 4, 2 + a equals							
129	The mean of the values: $2-a$, 4 , 1 , 5 , $3+a$ is	С						
130	The order of the median of the set of values: 8, 4, 7, 6, 5 is	С						
131	If the order of the median of a set of values is the fourth, then the number of these values is	С						
132	If the median of the set of the values: $27,45,19,24$ and 28 is x , then $x = \dots$ (a) 24 (b) 27 (c) 28 (d) 45	В						
133	The median of the values: 1, 2, 5, 3 and 4 is	Α						

	Page [13] - Math - Mr. Mahmoud Esmaiel - Mobile : 01006487539 - 01110882717	
134	The median of the set of the values: 3,6,6,7,9,11,13,14,15 and 20 is	В
135	The mode of the values: 3,5,3,6,3 and 8 is	A
136	If the mode of the set of the values: $4, 11, 8, 2 \times is 4$, then $x = \frac{3}{4}$ (a) 2 (b) 4 (c) 6 (d) 8	A
137	The mode of the values: 15,9, $x+1$,9,15 is 9, then $x=$ (a) 9 (b) 14 (c) 10 (d) 8	D
138	The mode of the set of values: $5,9,5,x-2,9$ is 9 , then $x=$ (a) 5 (b) 57 (c) 9 (d) 11	D

Prep.[2] First Term-Geometry Final Revision Part 2-Problems

Mr. Mahmoud Esmaiel 01006487539=01110882717

لاســم

Exercises

[A]: Choose The Correct Answer:

1	The medians of the triangle intersect at point. (a) 1 (b) 2 (c) 3 (d) 4	Α
2	The number of medians in the right-angled triangle =	A
3	The point of intersection of the medians in the triangle divides each of them by the ratio from the vertex. (a) 1:3 (b) 3:1 (c) 2:14 (d) 1:2	С
4	The point of concurrence of the medians of the triangle divides each median in the ratio of from the base. (a) 1:2 (b) 1:3 (c) 2:1 (d) 3:1	A
5	If \overline{AD} is a median of triangle ABC, and M is the point of intersection of the medians, then AM =	В
6	AD is a median in \triangle ABC. M is the point of intersection of its medians, then AM = MD (a) 2 (b) $\frac{1}{2}$ (c) 3 (d) $\frac{1}{3}$	Α
7	If \overline{XE} is a median in ΔXYZ , M is the point of intersection of its medians, then $EM = \frac{1}{2}$ (b) 2 (c) $\frac{1}{3}$ (d) $\frac{2}{3}$	С
8	In \triangle ABC: If AD = 6 cm. is a median and M is a point of concurrent, then MA =cm. (a) 6 cm. (b) 3 cm. (c) 2 cm. (d) 4 cm.	D
9	The length of the hypotenous of the right-angled triangle = the length of the median which drawn from the vertex of the right-angle. (a) half (b) twice (c) third (d) quarter	В

	Page [3] - Math - Mr. Mahmoud Esmaiel - Mobile : 01006487539 - 01110882717						
		-					
10	If \overline{AD} is a median of $\triangle ABC$, M is the point of intersection of its medians and $AM = 6$ cm., then $AD = \cdots$ (a) 12 cm. (b) 6 cm. (c) 18 cm. (d) 9 cm.	D					
11	oose the correct answer: In the opposite figure: \overline{AD} is a median in \triangle ABC, M is the point of intersection of the medians, MD = 2 cm., then AD =	С					
12	In the right-angled triangle, the length of the median from the vertex of the right angle equals the length of hypotenuse. (a) half (b) twice (c) third (d) forth	Α					
13	In Δ ABC which is right at B s if AC = 20 cm. s then the length of the median of the triangle drawn from B equals	Α					
14	The length of the side opposite to the angle of measure 30° in the right-angled the length of the hypotenuse. (a) twice (b) half (c) square (d) equals						
15	Triangle ABC : If m (\angle A) = 30°, m (\angle B) = 90°, then BC =	В					
16	In \triangle ABC if: m (\angle B) = 90° and m (\angle A) = 60°, then AC =	Α					
17	In \triangle ABC: m (\angle A) = 30°, m (\angle B) = 90°, AC = 10 cm., then BC = cm. (a) 20 (b) 15 (c) 10 (d) 5	D					
18	In the rectangle ACBD if AC = 10 cm., then BD =	В					
19	In any isosceles triangle, the type of the base angles is	Α					
20	The base angles of the isosceles triangle are	Α					

	Page [4] - Math - Mr. Mahmoud Esmaiel - Mobile : 01006487539 - 01110882717	
21	If measure of one of the two base angles of the isosceles triangle equals 40° then the measure of the vertex angle =° (a) 40 (b) 100 (c) 80 (d) 50	В
22	In \triangle ABC : AB = AC \Rightarrow m (\angle B) = 50° \Rightarrow then m (\angle A) =	В
23	In the isosceles triangle, if the measure of one of the two base angle is 70°, then the measure of its vertex angle is	D
24	In a triangle ABC: If AB = AC and m (\angle A) = 40°, then m (\angle C) =	В
25	If the measure of an angle of the isosceles triangle is 100°, then the measure of one of the other angles =	С
26	The triangle whose sides lengths are 2 cm., $(X + 1)$ cm and 5 cm. becomes an isosceles triangle when $X = \cdots = cm$. (a) 1 (b) 2 (c) 3 (d) 4	D
27	The triangle whose sides lengths are 3 cm., $(x + 5)$ and 9 becomes an isosceles if $x = \cdots$ cm. (a) 3 (b) 4 (c) 5 (d) 6	В
28	In the opposite figure: ABC is a triangle in which: $m (\angle B) = m (\angle C)$, then $X = \cdots$ (a) 1 (b) 2 (c) 3 (d) 4	В
29	ABCD is a parallelogram: DE = DC \Rightarrow m (\angle A) = 50° \Rightarrow then m (\angle EDC) =	D
	In \triangle ABC: if AB = AC and m (\angle A) = 60°, if its perimeter is 18 cm., then BC =cm.	R

	Page [5] - Math - Mr. Mahmoud Esmaiel - Mobile : 01006487539 - 01110882717	
31	\triangle ABC, AB = AC, D is the midpoint of \overline{BC} , then \overline{AD} is	D
32	The measure of exterior angle of an equilateral triangle =	C
33	In \triangle XYZ: if XY = XZ, then the exterior angle at the vertex Z is	В
34	The axis of symmetry of a line segment is the straight line which is (a) Perpendicular to it. (b) its bisector. (c) parallel to it. (d) the perpendicular bisector.	D
35	If $A \in \text{the axis of symmetry of } \overline{BC} \rightarrow \text{then } \overline{AB} \longrightarrow \overline{AC}$ (a) \perp (b) \equiv (c) // (d) =	В
36	The number of axis of symmetry in the scalene triangle is	В
37	The number of axes of symmetry in the isosceles triangle is	A
38	The equilateral triangle has was of symmetry. (a) one (b) two (c) three (d) otherwise	С
39	The triangle which has no axes of symmetry is triangles. (a) scalene (b) isosceles (c) equilateral (d) otherwise	A
40	If \triangle ABC has one axes of symmetry and m (\angle ABC) = 140°, then m (\angle A) =	В
41	\triangle ABC in which m (\angle A) = m (\angle B) = 65°, then it has	A
42	The quadrilateral ABCD in which BD is an axis of symmetry of AC may by	Α

	Page [6] - Math - Mr. Mahmoud Esmaiel - Mobile : 01006487539 - 01110882717							
43	In \triangle ABC , AB > AC , then m (\angle C)	В						
44	In \triangle ABC, AB > AC, m (\angle C) = 70°, then m (\angle B) may be	В						
45	In \triangle ABC : AB = AC , m (\angle B) = 65° , then : AC BC (a) < (b) > (c) = (d) \leq	В						
46	In \triangle ABC: If AB = 9 cm., BC = 6 cm., AC = 7 cm., then the smallest angle is (a) \angle BAC (b) \angle ABC (c) \angle ACB (d) \angle BCA	Α						
47	ΔXYZ , m (ΔX) = 60°, m (ΔY) = 40°, then XZ XY (a) < (b) > (c) = (d) nothing.	A						
48	Δ ABC , m (\angle B) = 90° , then ABAC (a) > (b) = (d) \geq							
49	In \triangle XYZ: If m (\angle X) = 30° and m (\angle Y) = 80°, then (a) XY < XZ (b) XY > XZ (c) XY = XZ (d) XY < YZ	A						
50	The triangle in which the measure of two angles are 74° and 53° is triangle (a) a right-angled (b) an isosceles (c) an equilateral (d) a scalene	В						
51	In \triangle ABC if: m (\angle B) = 60° and m (\angle C) = 50°, then the shortest side in triangle ABC is	D						
52	In the triangle ABC, if m (\angle B) = 90°, then the greatest side in length is	C						
53	The triangle ABC is obtuse-angled triangle at B, then the longest side is	C						
54	Δ XYZ is right-angled at Y, then XZ	В						

	Page [7] - Math - Mr. Mahmoud Esmaiel - Mobile : 01006487539 - 01110882717							
55	In \triangle ABC: m (\angle B) + m (\angle C) = 3 m (\angle A), then m (\angle A) =	С						
56	The sum of lengths of any two sides in any triangle the length of the third side. (a) is less than (b) is greater than (c) equals (d) otherwise	В						
57	If the lengths of two sides in an isosceles triangle are 2 cm. and 5 cm., then the length of the third side is							
58	Δ ABC , AB = 2 cm., BC = 7 cm., then AC may equal	D						
59	The lengths of two sides in a triangle are 4 cm, and 9 cm, and it has on axis of symmetry, then the length of third side is							
60	In \triangle ABC if: AB = 3 cm. and BC = 5 cm., then AC \in	С						
61	Which of the following can be sides to draw the triangle	С						
62	How many different triangles can be formed with sides of lengths a whole number of cm. and each with perimeter 7 cm.? (a) 1 (b) 2 1 (c) 3 (d) 4	В						
63	If the length of one side of a triangle is 5 cm., then which of the following could be the lengths of the other two sides? (a) 2 cm. and 3 cm. (b) 7 cm. and 2 cm. (c) 2 cm. and 2 cm. (d) 4 cm. and 6 cm.	D						
64	In the triangle ABC \cdot AC $\cdot \cdot \cdot \cdot \cdot$ (AB – BC) (a) > (b) \geq (c) \leq (d) $<$	Α						

Answer the fillowing questions.

Ç.	Choose	the	correct	answer	from	the	given	ones:
----	--------	-----	---------	--------	------	-----	-------	-------

- If The radius lengthof a sphere is 6cm, then its volume is...........
- (a) 6 π cm³
- (b) 36 π cm³ (c) 72 π cm³
- (d) 288 π cm³
- 2) If The lowest boundary of a set is 10 and the upper boundary is x and its centre is 15, then x = ...
- (a) 10
- (b) 15
- (c) 20

- 3) (2³√2)³ =
 - (a) 4
- (b) 8

- (c) 16
- (d) 40
- 4) The median of the values :34 , 23 , 25 , 40 , 22 ,4 is....
- (a) 22
- (b) 23

- (c) 24
- (d) 25
- If The arithmetic mean of the values: 27, 8, 16, 24, 6, k is 14, then k =.....
 - (a) 3

(b)6

- (c) 27
- (d) 84
- 6) If The volume of a cube is 27 cm³, then the area of one of its faces is
 - (a) 3 cm²
- (b) 9 cm²
- (c) 36cm² (d) 54 cm²
- If The mode of the set of value: 4, 11, 8, 2, x is 4, then x=......
 - (a) 2
- (b) 4

- (c) 6
- (d) 8
- If The arithmetic mean of the set of values: 18, 23, 29, 2k
- -1,k is 18, then k=.....
 - (a) 1
- (b) 7

- (c) 29
- (d) 90

- 9) If The lowest limit of a set is 4 and the upper limit is 8, then its centre is
- (a) 2
- (b) 4

- (c) 6
- (d) 8
- 10) If : $\frac{3}{4}$ The volume of a sphere is 8 π cm³., then its radius length
- (a) 64
- (b) 8

(c) 4

- 11) $\sqrt{3\frac{3}{8}} = \sqrt{}$
 - (a) $\frac{3}{8}$ (b) $\frac{8}{3}$

- 12) IF: $x = \sqrt{7} + \sqrt{2}$ and $y = \sqrt{7} \sqrt{2}$, then $x y = \sqrt{7}$
 - (a) 7√2
- (b) $2\sqrt{2}$ (c) $\sqrt{41}$
- (d) $2\sqrt{2}$

- 13) $\sqrt{3} (\sqrt{11} + \sqrt{3}) = ...$...
- (a) $3\sqrt{11} + 2$ (b) $\sqrt{33} + 3$ (c) $11\sqrt{3} + 2$ (d) $2\sqrt{11} + 3$

- 14) If the order of the median of a set of values is the fourth, then number of values is
- (a) 3

- (b) 5 (c)7

- (d) 9
- 15) If The mode of the set of values: 5,9,5,x-2,9 is 9, then x
- - (a) 5
- (b) 57

- (c) 9
- (d) 11
- 16) The number $(1 \sqrt{3}) (1 + \sqrt{3})$ is a number
- (a) natural (b) rational (c)irrational
- (d) prime

17) If the beginning of a set is 18 and its centre is 20, then its

length is

(a) 2

(b) 4

(c) 9

(d) 10

18)]—1, 3] ∩ [—3, —1]equals _...

(a) Ø

(b) $\{-3\}$ (c) $\{-1\}$

(a) Ø

(b) $\{-\sqrt{3}\}$ (c) $\{\sqrt{3}\}$ (d) $\{\pm\sqrt{3}\}$

20) The simplest form of the expression : $(\sqrt{3}-1)^2(\sqrt{3}+1)^2$ is

(a) $2(\sqrt{3}-1)$ (b) $(\sqrt{3}+1)^2$ (c) 4

21) R =

(a) R. ∪ R (b) ∪ ∩ ; (c) 1 - ∞, ∞] (d) R. ∩ R

(a) $\frac{5}{\sqrt{5}}$

(b) -√5

(c) $\frac{\sqrt{5}}{7}$ (d) $5\sqrt{5}$

22) The order of the median of a set of values .8 , 4 , 7 , 6 , 5 is.......

(a) 7

(b) 6

(c)3

(d) 5

23) IF $x = \sqrt{3} + 2$ and $y = \sqrt{3} - \sqrt{2}$, then $(x \ y, x + y) = \dots$

(a) $(-1, 2\sqrt{3})$

(b) $(1.2\sqrt{3})$

(c) $(5, 2\sqrt{3})$

(d)(-1,4)

24) If: (2, -5) satisfies the relation:

3x - y + c = 0, then c =

(a) 11

(b) 1

(c)-11

(d) -1

- 25)]-3,5] \(\) [0,3 [=....
- (a) [0,3] (b) [0,3[(c)]-3,0[(d) [3,5[

- 26)(3, 2) satisfies the relation.....
 - (a) y + x = 5

(b) y - x = 5

(c) 3y + x = 2

- (d) 2x + y = 1
- 27) IF: $x = \sqrt{7} + \sqrt{3}$, $y = \sqrt{7} \sqrt{3}$, then x y = ...
 - (a) 4
- (b) 10

- (c) 40
- 28) If the order of the median of a set of values is the fourth, then number of these values is......
- (a) 3
- (b) 5

- 29) $\frac{1}{2}\sqrt{20} + 10\sqrt{\frac{1}{5}} = \dots$
 - (a) $3\sqrt{5}$ (b) $4\sqrt{5}$
- (c) 5
- (d) 12
- 29)The median of the values .34 , 23 , 25 , 40 , 22 ,14 is.....
 - (a) 22
- (b), 33

- (c) 24
- (d) 25
- 30) The 5.5 of the equation: $x^3 + 27 = 0$ in R = ...

- (a) $\{3\}$ (b) $\{-3\}$ (c) $\{3\sqrt{3}\}$ (d) $\{3\sqrt{3}, -3\sqrt{3}\}$
- 31) IF $x = \sqrt{5} + \sqrt{2}$, $y = \sqrt{5} \sqrt{2}$, then $x y = \dots$
- (a) $2\sqrt{2}$
- (b) $5\sqrt{2}$
- $(c)2\sqrt{5}$
- (d) 3

- 32) If :-2 x > -6, then $x \in ...$
 - (a) 1∞ , 3 [(b) 13, ∞ [(c) 1 2, -6 [(d) 11, 3 [

33) The lateral surface area of right circular cylinder =

- (a) rtrh
- (b) $4\pi r^2$
- (c) mr²h
- (d) 2 nrh

34) If: $\frac{3}{a+2}$ is a rational number then a \neq

- (a) 3
- (b) 5
- (c) -2
- (d) zero

- (a) 14
- (b) 15
- (c) 16

36) The solution set for the equation: $x^3 + 9 = 8$ in R is...

- (a) {8}
- (b) [9]
- (c) (3 }

37) The multiplicative inverse of $\frac{\sqrt{3}}{6}$ is, ...

- (a) $\frac{-\sqrt{3}}{6}$

- (b) $6\sqrt{3}$ (c) $2\sqrt{3}$ (d) $-2\sqrt{3}$

38) The mode of the values: 2, 5, 3, 6, 3 and 8 is

(a) 3

- (b) S
- (c) 6
- (d) 8

39) [1,5]n]-2,3]*.........

- (a) {1.3} (b)]1,3[(c)[1,3] (d) [1,3[

40) The arithmetic mean of the values: 3 - a, 5, 1, 4, 2 + a equals

- (a) }
- (b) 2
- (c) 3

(d) 15

41) $[2,7] - \{2,7\} = \dots \dots \dots \dots \dots \dots$

- (a) [1,6]
- (b) Ø
- (c) 12,7 (
- (d) [2,7]

42) The radius length of a right circular cylinder whose volume is 40

π cm³ and its height 10 cm=. cm

(a) 5

- (b) 3

43) If: (-1, 5) satisfies the relation: 3x + ky = 7, then k = ...

(a) - 2

(b) 8

(c) 😤

44) Let A (3, -5), B(5,-1), then the slope of AB = ...

(a) $\frac{-1}{2}$

 $\{b\}-3$

(c) 3

 $(d)^{\frac{1}{2}}$

45) If the mean of the ages of 5 students is 15 years, then the total of their ages isyears.

75 (a)

(b) 3

(c) 50

46) If The mode of the value '5, 7, 21, 7, 10,7 is =

(a) 7

(b) 6

47) $\sqrt[3]{(-8)^2} = \dots$

(a) 2

(b) -2

(c) 4

(d) -4

48) The irrational number lies between 3 and 4 is

(a) 35

(b) $\frac{1}{2}$

(c) $\sqrt{20}$

(d) $\sqrt{13}$

49) Which of the following ordered pairs satisfies the relation:

2x + y = 5?

(a) (3,3) (b) (1,3) (c) (3,1)

(d)(2,2)

50) The median of the set of values :15 , 22 , 9 , 11 and 33 is......

(a) 9

(b) 15

(c) 18

(d) 90

51) The S S of the inequality. -x>3 in R is......

(a) (3)

(b) $13, \infty$ { (c) $1-\infty, 3$ [(d) $1-\infty, -5$]

52) If: (2m, m) satisfies the relation: 2x+3y=35, then m

=.....

(a) 7

(b) 5

(c) 14

53) The edge length of a cube whose volume is 3 cm³. --.........cm

- (a) $\sqrt{3}$
- (b) 3
- (c) -3

- (a) $\{\sqrt{2}\}$
- (b) {2}
- (c) $\sqrt{2}$
- (d) $\{2, \sqrt{2}\}$

55) The slope of the straight line parallel to y-axis is

- (a) positive
- (b) negative
- (c) Zero
- (d) undefined

32) The solution set for the equation: $x^2 = 2$ in R is=

- (a) $\{\sqrt{2}\}$
- (b) $\{-\sqrt{2}\}$ (c) $\{2\}$
- (d) $\{\sqrt{2}, -\sqrt{2}\}$

56) The cube whose volume is 8 cm³.then its total area =.... =.....

- (a) 16
- (b) 24
- (c) 96

57) The slope of the straight line passes through (-3, 1) and

- $(2,5) = \dots$
 - (a) $\frac{4}{5}$

- $(c)^{\frac{5}{4}}$
- $(d) \frac{1}{6}$

58) $\sqrt{8} - \sqrt{2} = \dots$

- (a) √2
- (c) $\sqrt{6}$
- (d) 4

59) If The lowest boundary of a set is 10 and the upper boundary

- is x and its centre is 15, then x
 - (a) 10 \
- (b) 15
- (c) 20
- (d) 30

60) The arithmetic mean of the values: 9, 6, 5, 14, k is 7, then

k=

- (a) 1
- (b) 5
- (c) 34
- (d) 35

61) The order of the median of a set of values 4, 5, 6, 7, 8

IS....

(a) third

(b) fourth

(c) fifth

(d) sixth

62) If The radius lengthof a sphere is 3 cm. then its volume is...........

(a) $4 \pi \text{ cm}^3$ (b) $9 \pi \text{ cm}^3$ (c) $27 \pi \text{ cm}^3$ (d) $36 \pi \text{ cm}^3$

(a) $-\sqrt{7}$

(b) $\frac{1}{\sqrt{7}}$ (c) $\frac{\sqrt{7}}{2}$

64) The 5 S of the inequality: $-1 < x+3 < \text{ in R is a...} \dots$

(a) [-4,0] (b) [2,6] (c) [6,6] (d) [-4,0[

65) The order of the median of a sets of values 4,7,8,6,5 is.........

(a) the third (b) the fourth (c) the fifth (d) the second

66) The mode of the sets of value: 14, 11, 10, 11, 14,15, 11

is

(a) 14

(b) 11

(c) 15

(d) 10

67) The volume of a sphere which is diameter 6 cm =....

(a) 4 π

(b) 9 π

(c) 27π

(d) 36π

68) The volume of a sphere equals $32\sqrt{3}$ π cm³, then its radius

(a) $\sqrt{3}cm$

(b) 3 cm

(c) $2\sqrt{3}$ cm

(d) 9cm

69) The value of b where (-3, 2) satisfies the relation: 3x + by = 1

ÍS.....

(a) 3

(b) 5

(c) 4

70) The volume of a cube is 40 v 5cm3, then its edge length is.....cm. (b) 8√5 (c)2√5 (d)5√2 (a) √5 71) If (a, 1) satisfies the relation (2x+3y = 7), then a = ...(c) 4 (a) 2 (b) -2 01010354592 MR AHMED SHAMEKH SERIES ALSHAMEKH AT MATH 72) The median of the values 2,8,6,4 and 5 is (a) 2 (b) 4 (c) 6 73) $\sqrt{24} + \sqrt{-81} + \sqrt{3} = ...$ (a) √3 (c)6√3 (d)--₹/3 $\{b\}$ 74) | $\sqrt{-125} = \sqrt{.........}$ (a) 5 (b) 5 (c) 25 75) √9 + ∜-8 + (d) - V 3 (a) 1 (b) S (c) 6 (a) $\{5\}$ (b) $15, \infty \{ (c) 1 - \infty, 5 \}$ $\{(d) 1 - \infty, -5 \}$ $(d\{4, 6\})$ (a) [3,7] (b)]4,6[(c) [4,6[78) The mean of the values :7, 7, 5, 3 and 6 is

(c) 6

(c)36

(c) 11

79) The volume of a cube is 27 cm³, then its lateral area ... cm²

81) The multiplicative inverse of the number $\sqrt{3}$ is

82) The median of the values :11 , 10 , 12 , 9,19 is.....

(b) $\frac{1}{2}$ (c) $-\sqrt{3}$

(d)28

(d) 5

(d) √3

(d) 19

0101035

8

(b) 5.6

(b) 27

(a) 5(b) 15 (c) 125 (d) -5

(b) 10

(a) 7

(a) 9

(a) 3

(a) 9

MR AHMED SHAMEKH

80) √25 = √

81) The multiplicative inverse of the number $\sqrt{3}$ is

- (a) 3
- (b) $\frac{1}{2}$ (c) $-\sqrt{3}$
- (d) $\frac{\sqrt{3}}{2}$

82) The median of the values :11 , 10 , 12 , 9, 19 is......

- (a) 9 (b) 10 (c) 11

83) The irrational number lies between 2 and 3 is

- (a) $\sqrt{10}$
- (b) √7
- (c) 2.5
- (d) $\sqrt{3}$

33) IF $x^3 + 9 = 1$ where $x \in \mathbb{R}$, then $x = \dots$

- (a) -8
- (b) -2

- (d) 8

84) If: (2k, k) satisfies: 2x+3y = 35, then k =

(a)7

- (b) -7

(d) -5

85) The volume of a sphere whose its diameter 6 cm³ =....

- (a) 228
- (b) 12π
- (c) 36n
- (d) 288π

0101035

 $86)[2,7] - \{2,7\} = \dots$

- (a) [2,6]
- (c)]2,7[
- (d) {0}

Answer the following questions:

- (1) Choose the correct answer:
- 1) Each of the two base angles in a triangle that has one axis of symmetry is angle
 - a) a straight b) an obtuse c) a right
- d) an acute
- 2) If the ratio between the length of each side of a triangle and its perimeter is 1:3, then the number of axis of symmetry of this triangle is
 - a) zero
- b) 1

- 3) ABC is a right-angled triangle at B a BD is a median in it and BD = 5 cm, then AC = 1
 - a)2.5 cm
- b) 10 cm
- Cm
- d) 7.5 cm

4) In the opposite figure

- a) 25
- ec) 65°
- d) 70°

- 5) If the angles of a triangle are congruent, then this triangle is triangle.
- a) a right-angled

b) an isosceles

c) an obtuse

d) an equilateral

6) In the opposite figure :

- a) 120°
- b) 70°
- c) 65°
- d) 110°

- 7) If the measure of one of the two base angles in an isosceles triangle is 30° then the triangle is
 - a) an obtuse-angled triangle b)an acute angled triangle
 - c) a right-angled triangle
- d) an equilateral triangle
- 8) $\triangle ABC$ which is right-angled at B, m ($\triangle A$) = 45° , then number of its symmetric line =
 - a) zero
- b) I
- d) 3
- 9) The point of intersection of the medians of a triangle divides each of them in the catio from the vertex.
 - a) 3:2
- b) 1 2
- c) 2:1
- d) 3:1
- 10) $\triangle ABC$ in which $m (\triangle A) = 50^{\circ}$, $m (\triangle B) = 65^{\circ}$, then
 - a) m(A) = m (C)

b) AB = BC

c) ha(4,0) = 50°

- d) AB = AC
- 11) In the opposite figure :

 $\triangle ABC$ is equilateral, then m ($\triangle ACD$)

- a) 45°
- b) 60°
- c) 120°
- d) 135°

gled at B , if AC	= 20 cm, then the
triangle drawn	from B
c) 6 cm	d) 5 cm
: m (∠Z) = 70°	and m (∠Y) =
c) =	d) twice
ngths of a trian	gle are
c) 3. 3. 6	d) 3, 3, 7
neasure of two	angles of it are 42°
N.	
b) an eq	uilateral.
	t-angled triangle
ee axes of symn	netry is
c) right-angle	d d) equilateral
sides in a triang	gles is the
b) smalle	er than
d) twice	
n an isosceles ti	rlangle are 8 cm,
of the third side	is cm
c) 3	d) 12
	c) 6 cm c) 6 cm m (\(\alpha Z \)) = 70° c) = ngths of a trian c) 3, 3, 6 neasure of two d) a right ee axes of symn c) right-angle sides in a triang b) smalle d) twice n an isosceles to f the third side

19)	In	$\triangle ABC$	if	m	(∠B)	=	130°	then	the	longest	side	of	it	is	 ,

- a) \overline{BC} b) \overline{AC}
- c) *AB*
- d) its median

- a) 100
- b) 80
- c) 60
- d) 40
- 21) The measure of the exterior angle of the equilateral triangle equals
 - a) three
- b) two
- c) one

22) $\triangle ABC$ in which : m (A) = 50°, m ($\angle B$) = longest side of it is

- a) AB
- b) AC
- d) CB

23) AXYZ is right-angled at Y then XZ YZ

- a) >
- b) <
- d) ≤

24) The length of the median drawn from the vertex of the right angle in the right angled triangle = hypotenuse.

- a) third
- b) quarter c) half d) twice

25) If the measure of one of the two base angles in the isosceles triangle is 40°, then the measure of the vertex angle is

- a) 100°
- b) 55°
- c) 70°
- d) 110°

26) Which of the following numbers can be the lengths of sides of a triangle?

- a) 4, 6, 10 b) 4, 6, 8
- c) 2, 3, 6
- d) 4, 5, 10

27) The num	ber of axes of s	ymmetry of the is	sosceles triangle
equals			
a) 3	b) 2	c) 1	d) zero
28) If ∆ <i>ABC</i>	is a right-angle	d at B , AB = 6 cr	m, and $BC = 80$ cm,
then the l	ength of the me	dian drawn from	B is cm.
a) 10	b) 8	c) 6	d) 5°
29) ∆ <i>ABC</i> in	which m (∠B)	> m (∠C) , then	AC A AB.
a) greate	er than	b) smalle	r than
c) equals		d) smalle	than or equals
30)The numb	per of axes of sy	mmetry in the is	osceles triangle
=	***	111	
a) 1	b) 2	0 3	d) 4
31) The point	i of concurrenc	e of the medians	of the triangle
divides ea	ch median in th	ie rado:	from the base.
a) 2:1	(b) 1 1	c) 5 : 10	d) 4:2
32) In the tri	angle ABC if:	AB = AC and n	n (کےA) = 40° , then:
m (_C)	Jal Jakes		
a) 40°	b) 50°	c) 70°	d) 140°
33) In the tri	angle ABC , if :	AB > AC, then	ı : m (∠C)

c) =

a) <

b) >

d) ≤

34) Th	e length	of the	median	drawn	from	the v	ertex -	of the	right
апд	le in the	e right-	angled (triangle	=		the le	ngth (of the
hyp	otenuse	of the	triangle	2.					

a) 2

b) $\frac{1}{2}$ c) $\frac{1}{2}$

35) $\triangle ABC$ in which : m ($\triangle B$) = 70°, m ($\triangle C$) = 50°, then BC AB

b) <

36) The number of axes of symmetry in the equilateral triangle

a) 0

b) 2

37) If the length of two sides in a triangle is 3, 7, then the length of the third side is

a) 3

d) 10

38) If the length of median drawn from a vertex of a triangle equals half the length of the opposite side to this vertex then the angle at this vertex is

a) acute

b) obtuse c) reflex

d) right

39) AD is a median of $\triangle ABC$ where M is the point of intersection of its median then AM = AD

a) =

b) 🚡

c) $\frac{1}{2}$

40) The triangle ABC, $m(\angle B) = 70^{\circ}$, $m(\angle C) = 50^{\circ}$, then BC AB.

a) <

b) >

d) =

41) If AD is a median of triangle ABC, M is the point of intersection of the medians of triangle ABC, then

 $AM = \dots AD$

- a) $\frac{1}{2}$
- b) 2
- c) =

42) In triangle ABC, if m (\angle C) = 60°, m (\angle B) = 90°, then

AC =

- a) 2 BC b) $\frac{1}{2} BC$ c) 2 AB

43) The measure of exterior angle of an equilateral triangle

- a) 60°
- b) 90°
- d) 180°

7 can be length sides of a 44) The numbers 4 triangle.

- a) 11

- d) 2

XZ = XZ, then m ($\angle X$) = 45) In Δ*XYZ* if XY

- a) 30° 🥿
- b) 60°7
- c) 90°
- d) 180°

46) The measure of the exterior angle of the equilateral triangle

- b) 90 °
- c) 120°
- d) 180°

47) If $\triangle ABC$ is right-angled at A and AB = AC, then m ($\triangle B$)

- a) 30°
- b) 45°
- c) 60°
- d) 90°

48) If the measure of one of the	two base angles in the isosceles
triangle = 30°, then the trian	igle is
a) obtuse angled.	b) acute angled
c) right angled	d) equilateral triangle.
49) In $\triangle XYZ$, if $XY = XZ$, then	the exterior angle at the vertex
Z is	
a) acute b) obtuse	c) right (d) reffex
50) In $\triangle ABC$: If $CA = CB$ and π	n (CC) m (CA), then m (CB)
=	O. J.
a) 30 ° b) 60°	c) 90 ° d) 120°
51) If the sum of measures of tw	o congruent angles in a triangle
$=\frac{2}{3}$ the sum of measures of it	s angles, then the triangle
1S	
a) right angled (b) isoscel	les c) equilateral d) scalene
52) If ABCD is a quadrilateral i	in which $AB = AD$ and $BC = DC$,
then AG is	
a) parallel to	b) equal
c) the axis of symmetry of	d) congruent to
53) The triangle whose sides len	gths are 2 cm, (x+3) cm, and
5cm becomes an isosceles tri	angle when x = cm.
a) 1 b) 2	c) 3 d) 4

54)	If the length of any side in a triangle = $\frac{1}{3}$ of the perimeter of
	the triangle, then the number of axes of symmetry of the
	triangle =

- a) 1
- p) 5
- c) 3
- d) zero

55) If \overline{XY} is the axis of symmetry of \overline{AB} , then.

- a) AX BY b) AX BX
- c) BY + XY

56) In the rhombus ABCD, the axis of symmetry of AC is

- a) BD
- b) AB
- c) AD

57) In the square ABCD, BD is the axis of symmetry of .

- a) \overline{AB}
- b) AC
- cl. AD
- d) \overline{CD}

58) If m is the point of intersection of the medians of $\triangle ABC$ and D is the midpoint of BC, then $AD = \dots$

- a) 2 AM
- $\frac{3}{2}$ AM
- d) 4 MD

59) The point of intersection of the medians of the triangle divides each of them with the ratio : from the vertex

- 101 2:
- c) 3:1
- d) 3:2

60) If M is the point of intersections of the medians of the the triangle in $\triangle ABC$ and \overline{AX} is a median of length 6 cm, then AM equals

- a) 1 cm
- b) 2 cm
- c) 3 cm
- d) 4 cm

61) ABCD is a rectang	gle ,M is tl	he point of int	ersection of its
diagonals. If the le	ngth of th	e diagonal is (6 cm , then the
length of the media	an AM equ	als	•••
a) 2 cm b) 3	cm .	c) 6 cm	d) 12 cm
62) The measure of th	e exterior	angle of the e	quilateral triangle
equals			
a) 30° b) 6	60 °	c) 90°	U) 120°
63) If the measure of	the vertex	angle of the is	ôsceles triangle
equals 50°, then th	не теаѕиг	e of each angl	e of its base
equals		Cal.	100
a) 40° b) 6	65°	c) 70°	d) 130°
64) If the measure of	one of the	two base angl	es of the isosceles
triangle equals 40°	, then the	measure of the	ne vertex angle
is	1)	
a) 40° (b)	0	c) 80°	d) 100°
65) The two base angl	es of the i	sosceles triang	le are
a) complementary		b) supplen	nentary
c) congruent		d) straight	angles
62) The measure of the exterior angle of the equilateral triangle equals			
which	***		
diagonals. If the length of the diagonal is 6 cm, then the length of the median \$\overline{AM}\$ equals			
diagonals. If the length of the diagonal is 6 cm, then the length of the median \$\overline{AM}\$ equals			
c) hisperts the line	teament		

d) is the perpendicular bisector of the line segment.

- a) //

- d =

68) If A lies on the axis of symmetry of \overline{XY} , then \overline{AX} \overline{AY}

- a) //

- d) =

69) In $\triangle ABC$ if m ($\triangle B$) > m ($\triangle C$), then

- a) AB < AC b) AB AC c) AB > AC d) $\overline{AB} \equiv \overline{BC}$

70) In $\triangle XYZ$ if XY < XZ, then

- a) m ($\angle Y$) < m($\angle Z$)
- b) $m(\angle Y) > m(\angle Z)$
- c) $m (\angle Y) = m (\angle Z)$
- d) m (4Z)

71) If $\triangle ABC$ is right-angled at B, then

- a) AC < AB b) AC < BC \c) AB < AC
- d) BC = AB

72) $\triangle ABD$ is obtuse-angled at B and C is the midpoint of \overline{BD} . then the longest side is ...

- a) AB
- (b) AC
- c) \overline{AD}
- d) \overline{BD}

73) The sum of lengths of any two sides in a triangle isthe length of the third side.

- (a) smaller than b) greater than c) equal
- d) twice

74) The length of any side in the triangle The sum of lengths of the other two sides.

- a) smaller than b) greater than c) equal d) twice

75) If the length of two sides in an isosceles triangle are 2 cm and 5 cm, then the length of the third side is

- a) 2 cm
- b) 3 cm
- c) 5 cm
- d) 7 cm

76) The length of	two sides in a	triangle are 4 c	m and 9 cm and
it has one axis	of symmetry ,	then the lengtl	n of third side
is	****		
a) 4 cm	b) 5 cm	c) 9 cm	d) 13 cm
77) Which of the	following set o	f numbers can	be length of sides
of a triangle?			
a) 2, 3, 4	b) 2, 3, 5	c) 2, 3, 6	(d) 2, 3, 7
78) Which of the	following set o	f numbers can	not be lengths of
sides of a trias	ngle?		1
a) 3, 4, 4	b) 3, 4, 5	c) 3. 4, 6-	d) 3, 4, 7
79) ∆ <i>ABC</i> in which	ch m (∠C) = 65	and m (&A)	= 75° , then
a) $AB > BC$	b) AB < AC	c) BC > AB	d) $AB = AC$
80) In ∆ <i>ABC</i> in w	hich m (∠B) +	m which m (2	.C) = 2cm (\(\alpha\),
then m (∠A) e	W	••••	
a) 30°	b) 60 ·	c) 45 °	d) 90°
81) The sum of Je	ngths of any tv	vo sides in a tri	angle is
the length of t	he third side.		
a) less than	b) greater tha	n c) equal	d) half
82) The lengths o	f any side in a	triangle	the sum of
lengths of the	two other side:	S.	
a) >	b) <	c) =	d) twice
83) Which of the	following num	bers cannot be	the lengths of
sides of a trias	ngle		
a) 7, 7, 5	b) 9, 9, 9	c) 3, 6, 12	d) 3, 4, 5

- 84) If the lengths of two sides in a triangle are 7 cm and 4 cm, then the length of the third side can be
 - a) I cm
- b) 2 cm
- c) 3 cm
- d) 4 cm
- 85) If the lengths of two sides of an isosceles triangle are 3 cm and 7 cm, then the length of the third side =
 - a) 7 cm
- b) 3 cm
- c) 4 cm
- d) 10 cm
- 86) A triangle has one axis of symmetry, the length of two sides in it are 4 cm and 8 cm, then its perimeter =
 - a) 16 cm
- b) 20 cm
- c) 24 cm
- d) 30 cm
- 87) In $\triangle ABC$: if AB = 3cm, BC = 5 cm and AC = x cm, then x ∈

 - a)]3, 5[b) †2, 5 [
- c) 15,8
- d) 12.81
- 88) If the lengths of two sides of a triangle are 5 cm and 10 cm, then the length of the third side belongs to
 - a) [10, 15 [
- (b) 15 15]
- c) [5, 10]
- d) [10, 15]

LMI WARRENCE TO THE WE SELVE DOLLAR THEFT.	(2)	Com	plete	each	of the	following	-
--	-----	-----	-------	------	--------	-----------	---

- 1) The number of axes of symmetry in the equilateral triangle equals
- 3) The bisector of the vertex angle of the isoscelor triangle......
- 5) The two base angles of the isosceles triangle are
- 6) In $\triangle ABC$, if D is the midpoint of BC, then \overline{AD} is called....
- 7) The number of medians of the triangle is
- 8) The medians of the triangle intersect at
- 9) The point of concurrence of the medians of the triangle divides each median in the ratio from the vertex.
- 10) The point of the intersection of the medians of the triangle divides each of them with the ratio 2: From the base.
- 11) The number of medians in the right-angled triangle is

- 12) The length of the median from the vertex of the right angle in the right angled triangle equals
- 13) If the length of the median draw from a vertex of a triangle equals half the length of the opposite side to this vertex, then the angle at this vertex is
- 14) The length of the side opposite to the angle of measure 30° in the right-angled triangle =
- 15) The length of the hypotenuse in thirty and sixty triangle equals the length of the side opposite the angle whose measure is 30°
- 16) The base angle of the isosceles triangle are
- 17) The measure of each angle in the equilateral triangle
- 18) In $\triangle DEF$, if DE = DF, then $m(\triangle E) = m(\triangle \dots)$
- 19) In the isosceles triangle, if the measure of one of the two base angles is 65°, then the measure of its vertex angle
- 20) In the isosceles triangle, if the measure of the vertex angle = 40°, then the measure of one of the two base angles equals......

- 23) If the three angles in the triangle are congruent, then the triangle is
- 24) In $\triangle ABC$, if m($\angle A$) = 50° and m ($\angle B$) 80°, then the triangle is
- 25) If the measure of one angle in the right-angled triangle is 45°, then the triangle is
- 26) If the measure of one angle of an isosceles triangle = 60°, then the triangle is
- 27) ABC is a triangle in which AB = AC and m (\angle A) = 60° if its perimeter 18 cm, then BC = cm.
- 29) The number of axes of symmetry in the equilateral triangle
- 30) The number of axes of symmetry in the isosceles triangle
- 31) The number of axes of symmetry in the scalene triangle

- 32) The median of the isosceles triangle drawn from the vertex angle
- 33) The bisector of the vertex angle of the isosceles triangle
- 35) The axis of the line segment is
- 36) Any point belonging to the axis of a line segment is

 From its two terminals.
- 37) If C belong to the axis of symmetry of \overline{AB} , the =
- 38) In $\triangle ABC$, if $m(\triangle A) = m(\triangle B) = 60^{\circ}$, then the number of axes of symmetry of $\triangle ABC$ is
- 39) In $\triangle ABC$, if m($\triangle A$) = m ($\triangle B$) \neq 60°, then the number of axes of symmetry of $\triangle ABC$ is
- 41) If the measure of one of the angles of a right-angled triangle is 45°, then the n of axes of symmetry of it is
- 42) If In $\triangle ABC$ has one axis of symmetry and $m (\triangle ABC) = 120^{\circ}$, then $m (\triangle A) = \dots$

17

- 43) If two sides in the triangle are not equal in length, then the longest of them is opposite to an angle of measure.
- 45) The longest side in the right angled triangle is
- 46) The distance between a point and a given straight line is the length of
- 47) In the obtuse-angle triangle, the longest side is......
- 48) In the isosceles triangle if AB AC, m(AA) = 70°, then AB<.....
- 49) The longest side in the triangle ABC in which m(\angle A) = 105° is

- 52) In $\triangle XYZ$ if m($\triangle X$) > m($\triangle Z$) then XY <
- 53) In $\triangle ABC$ if AB > BC, then $m(\angle A) < \dots$
- 54) In △ABC if m(∠A) = 67° and m(∠B) = 33°, then AB
 >>

- 55) In any triangle the sum of lengths of any two sides is greater than
- 56) In Δ*ABC* it will be AB + BC >
- 58) In ΔABC of AB < BC < AC, then the smallest angle in measure is
- 59) ABC is an isosceles triangle where AB 3 cm and BC = 7 cm, then AC =
- 60) An isosceles triangle in which the lengths of two of its sides are 4 cm and 8 cm, then the length of the third side equals.....
- 62) The smallest angle of a triangle (in measure) is opposite
- 63) The longest side in the right-angled triangle is
- 64) The shortest distance between a given point and a given straight line is

- 65) ABC is a triangle in which : m (\angle C) 110°, then its longest side is

- 68) The lengths of two sides in the triangle are not equal, then the greater side in length is opposite to
- 69) In $\triangle ABC$, AB = 7 cm, BC = 5 cm and $AC \ge 6$ cm, then the smallest angle in measure is
- 71) In any triangle ABC if AB > AC > BC, then

m (८) km (८) < m (८......)

Part (1)

(1) Complete:

1)
$$\sqrt[3]{r^3} =$$

3)
$$-\sqrt[3]{-1} - \sqrt{1} =$$

$$5) - \sqrt[3]{64} + \dots = 5$$

2) $\sqrt{16} = \sqrt[3]{.}$

4)
$$\sqrt[3]{-64} =$$

10)
$$\mathbb{R} - \{0\} =$$

- 12) The mult plicative neutral element in R is and the additive neutral in R is
- 13) The add tive inverse of the number $3 \sqrt{5}$ is
- 14) The mult plicative inverse of the number $\frac{7}{\sqrt{7}}$ is $\frac{7}{\sqrt{7}}$
- 15) The conjugate number of the number $\frac{2}{\sqrt{3}-\sqrt{2}}$ is
- 16) If $x = 2 + \sqrt{5}$ and y is the conjugate number of x then $(x y)^2 =$

17) If
$$x = \sqrt{3} + 2$$
, $y = \sqrt{3} - 2$ then $(xy, x + y) =$

18)
$$\sqrt[3]{2} \times 3\sqrt[3]{32} =$$

19)
$$\sqrt[3]{54} + \sqrt[3]{16} - \sqrt[3]{250} =$$

20)
$$\sqrt[3]{16} - \frac{1}{3}\sqrt[3]{54} + \sqrt[3]{-2} =$$

21)
$$\sqrt[3]{\frac{3}{3}} \times \sqrt[3]{12} =$$

An Azher Language Institute معهد العد المسرق الدرشري

Algebra 2nd Preparatory

22) If
$$x = 2$$
, $y = \sqrt[3]{-16}$, then $\binom{x}{y}^3 =$

$$23)_{2}^{1}\sqrt[3]{56} - \sqrt[3]{\frac{7}{27}} =$$

$$27) \frac{4}{\sqrt{5} + \sqrt{3}} + \frac{4}{\sqrt{5} - \sqrt{3}} =$$

28)
$$\sqrt{6} - \sqrt{5} + \sqrt{6} + \sqrt{5} =$$

(2) Choose the correct answer:

$$1)\sqrt[3]{\left(\frac{1}{8}\right)^2} =$$

2)
$$\sqrt[3]{\frac{0.001}{8}} =$$

3)
$$-\sqrt{25} = \sqrt[3]{y}$$
, then y =

$$b) - 4$$

$$d) - 125$$

4) If
$$\frac{x}{3} = \frac{9}{x^2}$$
, then $x =$

The irrational number in the following numbers is

$$a\rangle \int_4^1$$

$$C$$
 $\sqrt{\frac{4}{9}}$

6) If $n \in \mathbb{Z}_+$, $n < \sqrt{26} < n + 1$ then n =

$$c) - 5$$

7) The square whose area is 10 cm² its side length is

cm

$$b) - 5$$

$$d = \sqrt{10}$$

$$\{ > , < , = \}$$

10)
$$\sqrt[3]{3} - 1 \dots 0 2$$

$$\{>,<,=\}$$

13) If x is a negative number, then which of the following number is: positive

14) If $x \in \mathbb{R}^+$, $y \in \mathbb{R}^+$ and if $x^2 > y^2$ then

b)
$$x < y$$

$$c) x = y$$

15) The s s of the equation $x^2 + 1 = 0$ in \mathbb{R} is

20) The mult picative inverse of the number $\sqrt{5} =$

$$a) - 5$$

C)
$$\sqrt{\frac{5}{5}}$$

d)
$$\frac{\sqrt{5}}{5}$$

21) The additive inverse of the number $\frac{6}{\sqrt{2}}$ is

a)
$$-2\sqrt{3}$$

$$c > -3\sqrt{2}$$

d)
$$3\sqrt{2}$$

22)
$$\sqrt[3]{\frac{1}{9}} =$$

a)
$$\frac{\sqrt[3]{6}}{3}$$

b)
$$\sqrt[3]{1}$$

(3) Find the value of x in each of the following:

a)
$$\sqrt[3]{x} = \frac{-1}{4}$$

b)
$$\sqrt[3]{x} - 3 = -1$$

c)
$$x^3 + 5 = 32$$

$$d \frac{1}{5} x^3 = -200$$

e)
$$x < \sqrt[3]{-100} < x + 1$$

f)
$$x < |-\sqrt{35}| < x + 1$$

(4) Find the value of a, b

a)
$$\frac{3}{2\sqrt{2}-\sqrt{5}} = a \sqrt{2} + b \sqrt{5}$$

b)
$$\frac{11}{2\sqrt{5}+3} = a\sqrt{5} + b$$

(5) Write the conjugate of the numbers:

a)
$$\sqrt{5} + \sqrt{3}$$

a)
$$\sqrt{5} + \sqrt{3}$$
 b) $5 - 2\sqrt{7}$

(6) If
$$x = \frac{2}{\sqrt{7} - \sqrt{5}}$$
, $y = \frac{2}{\sqrt{5} + \sqrt{7}}$ find $(x + y)^2$

(7) If x = [2, 5] and y = [-1, 3] find using the number line:

$$2) \times \cap y$$

$$3) x - y$$

4)
$$y - x$$

(8) A square of side length is 6 cm find its diagonal length.

(9) A rectangle with dimensions 5 cm , 7 cm, if the area equals the area of a square, then find the side length of the square and its diagonals length.

(10) Prove that $\sqrt{7}$ included between 2.6 and 2.7

(11) Find the s.s in \mathbb{Q} :

a)
$$\chi^2 = 13$$

b)
$$\frac{2}{5} x^2 = \frac{25}{2}$$

c)
$$(x^3 + 5) (x^2 - 3) = 0$$

12) Represent 2 $\sqrt{3}$ on the number line

Part (2)

(1) Choose the correct answer:

- 1) 服 =

 - a) 职_ し 限_ b)] oo , + oo [

 - c) $\{-\infty, 0\}$ d) $\{0, -\infty\}$
- 2) If the volume of the sphere is $\frac{9}{16}\pi$ cm³ then it's radius length
 - a) 3π cm
- b) 3 cm c) $\frac{4}{3}$ cm d) $\frac{3}{3}$ cm

- 3) $\sqrt{8} \sqrt{2} =$
 - a) √2
- b) 2
- c) √6
- d) 4
- 4) If the volume of the sphere is $\frac{32}{3}$ π cm³, then it's diameter is of length equals .
 - a) 2 cm b) 4 cm c) 8 cm
- d) 32 cm

- $5) [-3, 7[-\{-3, 7\} =$
- a) [-3,7[b) [-3,7[c) [-3,7[d) (0,0)

- 6) {8, 9, 10}]8, 10[= ..., ...

- b) $\{8, 10\}$ c) $\{9\}$
- d) N
- The volume of a cube is 125 cm³, then its total area equals.

- a) 25 cm² b) 50 cm² c) 125 cm² d) 150 cm²
- $811-3.5[\cap[0.3]=$
- a) [0,3] b) [0,3[c)]-3,0[d) [3,5[

9)
$$\frac{1}{2}\sqrt{20} + 10\sqrt{\frac{1}{5}} =$$

- a) 3 √5
- b) 4 √5
- c) 5
- d) 12
- 10) The volume of a right circular cylinder is 90 π cm³ and its height is 10 cm then the radius length of its base equals
 - a) 3 cm
- b) 4 5 cm
- c) 5
- d) 9 cm
- 11) If $x = \sqrt{7} + \sqrt{3}$ and $y = \sqrt{7} \sqrt{3}$ then $xy = \sqrt{3} + \sqrt{3} + \sqrt{3} = \sqrt{3} = \sqrt{3} + \sqrt{3} = \sqrt{3} = \sqrt{3} + \sqrt{3} = \sqrt{3} =$

- b) 10
- c) 40
- d) 58
- The edge length of a cube is 4 cm, then its volume is
 - a) 16 cm³
- b) 24 cm³
- c) 64 cm³
- d) 96 cm³
- 13) The volume of a cube is 64 cm³ then its edge length is
 - a) 32
- b) 16 cm
- c) 8 cm
- d) 4 cm
- 14) The circumference of a circle is 44 cm then its diameter length

IS
$$\left\{\pi = \frac{22}{\pi}\right\}$$

$$\{\pi = \frac{22}{7}\}$$

- a) 14 cm
- b) 22 cm c) 44 cm
- d) 154 cm
- 15) The mult pilicative inverse of the number $\sqrt{5}$ is

$$a\rangle - \sqrt{5}$$

b)
$$\frac{-1}{\sqrt{5}}$$

b)
$$\frac{-1}{\sqrt{5}}$$
 c) $\frac{\sqrt{5}}{5}$

- 16)[-3,4] \cap [2,6] =

 - a)[-3,2] b)[-3,6] c)[2,4]
- d) 12.6[
- If the rad us length of a sphere is 3 cm, then its volume is
- a) $4 \pi \text{ cm}^3$ b) $9 \pi \text{ cm}^3$ c) $27 \pi \text{ cm}^3$
- d) $36 \pi \text{ cm}^3$

- 18)[-3,2]-{-3,6}=

 - a)]-3,6[b)]-3,2[c)]-3,2[d) \emptyset

19) The sign of the nequality -1 < x + 3 < 3 in \mathbb{R} is

$$20$$
) $\frac{1}{2}\sqrt{48} = 2 \times$

21) The expression
$$\frac{\sqrt{25-9}}{\sqrt{25}-\sqrt{9}} =$$

$$a) - 1$$

22) The s s of the in equality 3 < x + 2 < 5 in \mathbb{R} equals

23) If the volume of a sphere equals $36 \pi \text{ cm}^3$ then its radius length IS.

24) The sign of the nequality -2x > 6 n \mathbb{R} is

a)
$$]-\infty, -3[$$
 b) $]-\infty, -3[$ c) $[-3, +\infty[$ d) $]-3, +\infty[$

(2) Complete the following:

$$3)\{-1,0,1\}\cap]-1,1[=$$

5) If
$$\sqrt{x} = \sqrt{2} + 1$$
 then $x =$

$$6)[2,5]\cap[2,5[=$$

7)
$$\sqrt[3]{64} = \sqrt{...}$$

8) The multiplicative inverse of the number
$$\frac{3}{\sqrt{3}}$$
 is $\sqrt{3}$

9) The s.s of the inequality
$$-x + 1 < 0$$
 in \mathbb{R} is

10) If
$$x = \sqrt[3]{3} + 1$$
 and $y = \sqrt[3]{3} - 1$ then $(x + y)^3 =$

- 11) [2, 00 [[4, 00 [=
- 12) If the side length of a square is L cm and its area is 30 cm³, then the area of the square whose side length equals 2 L cm is
- 13) The slope of the straight the which passes through (-3 1) and (2, 5) equals
- 15) The relation y = 3x + 4, and x = 1, then y =

(3) Answer the following questions:

- 1) Reduce to the simplest form $\sqrt{75}$ $\sqrt[3]{125} + \frac{10}{\sqrt{3}-1}$
- A right circular cylinder, whose height equals the radius length of its base and its volume equals 27π cm³ calculate its lateral surface area
- 3) Solve in \mathbb{R} the inequality 5-2x<9 then represent the solution set on the number line
- 4) Find the s s of the inequality 3x < 2x + 4 in \mathbb{R} and represent the interval of solution on the number line
- 5) If $x = \sqrt{3}$ 1 and $y = \frac{1}{\sqrt{3} \sqrt{2}}$ find the value of $x \times y$
- 6) The area of one face of a cube is 36 cm² find the length of its edge, and its volume.
- 7) Find the s s of the inequality 1 < x + 1 < 4 in \mathbb{R} then represent the interval of solution on the number line

- 8) Reduce to the simplest form $2\sqrt{5}(\sqrt{5} + 2) + \sqrt{20} + 10\sqrt{\frac{1}{5}}$
- 9) Find the value of $\sqrt{75}$ $2\sqrt{27} + 3\sqrt{\frac{1}{3}}$
- 10) Find the sign of the inequality 5 < 3 x < 7 in \mathbb{R} and represent the interval of solution on the number line
- 11) If $x = \sqrt{7} + 3$ and $y = \sqrt{7} 3$ then find the value of $\left(\frac{x+y}{xy}\right)^2$
- 12) Find the s s of the inequality 3 < x + 2 < 6 n \mathbb{R}
- 13) Write the form of an interval the s s of the inequality -1 < 5 2x < 7 in \mathbb{R} then represent the solution on the number line
- 14) If $x = \sqrt{5} + \sqrt{2}$ then prove that $\frac{6}{x} + 2x = 4\sqrt{5}$
- 15) Find the totals area of a right circular cylinder of radius of its base is $\frac{7}{\sqrt{2}}$ cm and its height is $10\sqrt{2}$ cm $(\pi = \frac{22}{7})$
- 16) If $x=2\sqrt{2}-\sqrt{3}$ and $=\frac{5}{2\sqrt{2}-\sqrt{3}}$, then prove that x and y are two conjugate numbers
- 17) Reduce to the s mp est form $\sqrt[3]{16}$ $\sqrt[3]{54} + \sqrt[3]{2}$
- 18) If $x=\frac{5}{\sqrt{7}-\sqrt{2}}$ and $=\frac{5}{\sqrt{7}+\sqrt{2}}$, then find the value of x^2y^2
- 19) If $a = \sqrt{2} + 1$ and $b = \frac{1}{1 + \sqrt{2}}$ then find the value of $(a b)^2$
- 20) A metallic sphere of radius length 6 cm. It is melted and its material has been converted into a right circular cylinder its base radius is of length 6 cm calculate the height of the cylinder.
- 21) If (a , 2a) satisfies y = x 1 then find the value of a
- 22) Represent the relation y = x + 2 graphically

Statistics

(1) C	hoose the corre	ect answer from	ı those given:	
1) Th	e order of the m	edian of the set	of values 4, 5 6.	7, 8 s
a)	third	b) fourth	c) fifth	d) s xth
2) If t	the order of the r	ned an of a set o	of values is the fo	ourth then the
nı	umber of these v	alues is		
a)	3	b) 5	c) 7	d) 9
3) If t	the order of the r	ned an of the se	t of values is the	fifth, then the
nı	umber of these v	alues equals ,		
a)	5	b) 6	c) 9	d) 10
4) Th	e median of the	set of the values	15,22,9 11	, 33 is
a)	9	b) 15	c) 18	d) 90
5) Th	e median of the	set of values 34	23, 25. 40, 22	4 is
a)	22	b) 23	c) 24	d) 25
6) Th	e median of the	set of the values	3, 6, 6, 7, 9, 11	, 13, 14, 15, 20
is	h			
a)	9	b) 10	c) 11	d) 20
7) If t	the med an of the	e set of the value	es 27 45, 19 24	, 28 is x then x
=				
a)	24	b) 27	c) 28	d) 45
8) If t	the med an of the	set of the value	esk + 1 , k + 2 ,	k + 5 , k + 3 ,

c) 10

d) 13

k + 3 where is (appositive number) is 13 then k =

b) 5

a) 2

An Azhar Language Institute معهد الغد المشرق الأزهري

Algebra 2nd Preparatory

9)	9) The arithmetic mean of the values 19, 32, 27, 6, 6 is								
	a) 90	b) 32	c) 18	d) 6					
10) If the arithmetic r	nean of the value	es 27, 8, 16 24	6 k is 14 then					
	k =								
	a) 9	b) 6	c) 27	d) 84					
11) If the arithmetic r	mean of the valu	es 18, 23, 29, 2k	-1 k is 18					
	then k =								
	a) 6	b) 7	c) 29	d) 90					
12) The arithmetic m	ean of the value	s3-a 5 1,4	, 2 + a equals					
	a) 5	b) 2	c) 3	d) 15					
13) If the arithmetic r	nean of 6 values	s 12, then the s	sum of these					
	values equals								
	a) 12	b) 6	c) 18	d) 72					
14) The set which its	lowest boundary	y is 2 and its upp	er boundary is					
	6 then its centre	IS							
	a) 3	b) 6	c) 4	d) 8					
15) The set which its	lowers limit s 5	and its upper lin	nit s 7, then its					
	centre is	4.4.4							
	a) 9	b) 6	c) 4	d) 5					

(2) Find the arithmetic mean of the following frequency distribution:

Sets	1-	3-	5-	7-	9-	Tota.
Frequency	4	6	8	7	5	30

(3) Find the arithmetic mean of the following frequency distribution:

Sets	5-	15-	25-	35-	45-	Tota
Frequency	3	10	12	10	5	40

(4) Find by using the following frequence distribution

Sets	0-	2-	4-	6-	k-	Tota
Frequency	m	5	8	7	2	25

- a) The value of k and m
- b) The median using the ascending cumulative curve
- c) The arithmetic mean
- d) The mode

Part (1) Answers

(1) Complete

- 11 C
- 4) 1
- 7) R
- 10) $R \{0\}$
- 13) $-3 + \sqrt{5}$
- 16) Zero
- 19) 10 ∛2
- $22) \frac{1}{2}$
- 25)] 3, 0 [
- 28) 22

- 2) 64
- 5) 1
- 8) Ø
- 11) @
- 14) 1
- 17) $(-1, 2\sqrt{3})$ 18) 12
- 20) Zero
- 23) $\frac{2}{3}\sqrt[3]{7}$
- 26) { 2, 7 }
- 29) 2, 3

- Zero
- 6) Ø
- 9) @
- 12) 1, zero
- 15) 2 $(\sqrt{3} + \sqrt{2})$
- 21) 2
- 24)[3.4]
- 27) $4\sqrt{5}$
- 30) 3, 4

(2) Choose

- 1) 4
- 4)3
- 7) $\sqrt{10}$
- 10) >
- 13) X 2
- 16) €
- 19) €

- 2) 1 20
- 5) √2
- 8) <
- 11)>
- 14 X > Y
- 17) €
- 20) $\frac{\sqrt{5}}{5}$

- 3) 125
- 6) 5
- 9) =
- 12) Q u Q
- 15) Ø
- 18) ∉
- 21) $-3\sqrt{2}$

An Azher Language Institute صعيمة العج المسرور الدرقتري

Algebra 💮

2" Preparatory

(3) a)
$$-\frac{1}{64}$$

$$d) - 10$$

$$e) - 5$$

(4) a,
$$a = 3$$
 , $b = 1$
b) $a = 2$, $b = 3$

(6)
$$X = \frac{2}{\sqrt{7} + \sqrt{5}} \times \frac{\sqrt{7} + \sqrt{5}}{\sqrt{7} + \sqrt{5}} = \sqrt{7} + \sqrt{5}$$

 $Y = \frac{2}{\sqrt{5} + \sqrt{7}} \times \frac{\sqrt{5} + \sqrt{7}}{\sqrt{5} + \sqrt{7}} = \sqrt{7} + \sqrt{5}$

$$(X + Y) 2 = (\sqrt{7} + \sqrt{5} + \sqrt{7} - \sqrt{5}) 2$$

= $(2\sqrt{7})2$
= (4×7)
= 28

<u>(7)</u>

- 1)[-1,5[
- 2)[2,3[
- 3)[3,5[
- 4) [-1,2[
- 5)]-∞,2[७[5,∞[
- 6)]-∞,-1[[[[3,∞[

(8) A of square =
$$6 \times 6 = 36 \text{ cm}^2$$

 $d = \sqrt{2A} = \sqrt{2 \times 36} = \sqrt{72} = 8.5 \text{ cm}^2$

(9) A of Rectangle =
$$5 \times 7 = 35 \text{ cm}^2$$

A of Square = 35 cm^2
$$d = \sqrt{2A} = \sqrt{2 \times 35} = \sqrt{70} = 8.4 \text{ cm}$$
the side length of the square = $\sqrt{A} = \sqrt{35} = 5.9 \text{ cm}$

(10)
$$\sqrt{7} \sim 2.65$$

2.6 < 2.65 < 2.7

(12) The length of the hypotenuse =
$$\frac{3+1}{2}$$
 = 2 cm
The length of the side = $\frac{3-1}{2}$ = 1 cm

Algebra ... Preparatory

Part (2) Answers

(1) Choose

4)
$$2 \times 2 = 4 \text{ cm}$$

4)
$$2 \times 2 = 4 \text{ cm}$$

7) T.A. =
$$5 \times 5 \times 6 = 150 \text{ cm}^{P}$$

12)
$$v = 4^3 = 64 \text{ cm}^3$$

15)
$$\frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}$$

17)
$$\mathbf{v} = \frac{4}{3} \times \pi \times 3^3 = 36 \pi$$
 18)] -3 2]

23)
$$r = 3 \int_{\frac{4}{3}\pi}^{\frac{1}{6}\pi} = 3 \text{ cm}$$
 24) $] - \infty, -3]$

2)
$$r = \frac{3}{4}$$

10)
$$\sqrt{\frac{95\pi}{15\pi}} = 3 \text{ cm}$$

12)
$$v = 4^3 = 64 \text{ cm}^3$$
 13) $E = \sqrt[3]{64} = 4 \text{ cm}$ 14) $d = \frac{1}{2} = 14 \text{ cm}$

$$21)\frac{4}{5-3}=2$$

31√2

11)
$$7 - 3 = 4$$

14)
$$d = \frac{1}{\pi} = 14 \text{ cm}$$

(2) Complete:

4)
$$[-4,1]$$
 5) $x = (\sqrt{2}+1)^2 = 5$

7)
$$\sqrt[3]{64} = 4 = \sqrt{16}$$
 8) $\sqrt[3]{3} = \frac{1}{12}$

8)
$$\frac{\sqrt{3}}{3} = \frac{1}{\sqrt{3}}$$

$$9, x > 1 \quad s s = [1 \quad \infty]$$

10)
$$(2\sqrt[3]{3})^3 = 8 \times 3 = 24$$

12)
$$A = S^2 = 4 L^2 = 4 \times 30 = 120 \text{ cm}^2$$

Ai-Azhar Language Institute صعيمية العبد المسيري البرشيري

Algebra 📑 Preparatory

13)
$$m = \frac{5 \cdot 1}{2 \cdot 3} \cdot \frac{4}{5}$$

14)
$$E = \frac{36}{12} = 3 \text{ cm}$$
, $T.A = 3 \times 3 \times 6 = 54 \text{ cm}^2$

15)
$$y = 3 \times 1 + 4 = 7$$

(3)

1)
$$5\sqrt{3} - 5 + 5 + 5\sqrt{3} = 10\sqrt{3}$$

2)
$$h = r$$
, $V = \pi r^2 h = \pi r^3$
 $r = \sqrt[3]{\pi} = \sqrt[3]{\frac{27\pi}{\pi}} = 3 cm$

$$LSA = 2\pi rh = 2 \times \pi \times 3 \times 3 = 18\pi$$

$$3) - 2 \times < 4$$

$$x > -2$$

4)
$$3x - 2x < 4$$

4)
$$3x - 2x < 4$$
 $x < 4$ $SS = 1 - \infty$, 4

5)
$$y = \frac{1}{\sqrt{3} - \sqrt{2}} \times \frac{\sqrt{3} + \sqrt{2}}{3 - 2} = +(\sqrt{3} + \sqrt{2})$$

 $xy = +(\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})$ 3 2 1

6)
$$E = \sqrt{36} = 6 \text{ cm}$$
, $V = 6^3 = 216 \text{ cm}^3$

7)
$$0 < x < 3$$
 SS = $[0, 3]$

8)
$$10 - 4\sqrt{5} + 2\sqrt{5} + 2\sqrt{5} = 10$$

- 9) zero
- 10) 2 < -x < 4-2 > x > 4

11)
$$\left(\frac{x+y}{xy}\right)^2 = \left(\frac{2\sqrt{7}}{7-9}\right)^2 = \left(-\sqrt{7}\right)^2 = 7$$

Ai-Azhar Language Institute معيمد العبد المسرق الدرشري

12)
$$1 < x < 4$$

$$ss = [1, 4]$$

$$13$$
) $-6 < -2 < 2$

$$3 > x > -1$$

$$13$$
) $-6 < -2 < 2$, $3 > x > -1$ $ss =]-1,3[$

14
$$\frac{6}{\sqrt{5} + \sqrt{2}} + 2\sqrt{5} + 2\sqrt{2} = 2(\sqrt{5} + \sqrt{2}) + 2\sqrt{5} + 2\sqrt{2}$$

$$\sqrt{2}$$
) + 2 $\sqrt{5}$ + 2 $\sqrt{2}$

$$= 2\sqrt{5} - 2\sqrt{2} + 2\sqrt{5} + 2\sqrt{2} = 4\sqrt{5}$$

15, TA =
$$2 \pi rh = 2 \times \frac{22}{2} \times \frac{2}{\sqrt{2}} \times 10 \sqrt{2} = 440 \text{ cm}^2$$

16
$$y = \frac{5}{2\sqrt{2} - \sqrt{3}} \times \frac{2\sqrt{2} + \sqrt{3}}{2\sqrt{2} + \sqrt{3}} = \frac{5/2\sqrt{2} + \sqrt{3}}{8 + 3}$$
 $2\sqrt{2} + \sqrt{3}$

$$2\sqrt{2} + \sqrt{3}$$

so , y is the conjugate of x

17) 2
$$\sqrt[3]{2} - \sqrt[3]{2} - \sqrt[3]{2} = zero$$

18)
$$x = \sqrt{7} + \sqrt{2}$$
, $y = \sqrt{7} - \sqrt{2}$
 $x^2y^2 = (xy)^2 = (7-2)^2 = 25$

19)
$$b = -(1 - \sqrt{2}) = \sqrt{2} - 1$$

 $(\alpha - b)^2 = 2^2 - 4$

20) V sphere = V cylinder
$$\frac{4}{3} \pi \times 6^3 = \pi \times 6^2 \times h$$

$$h = \frac{6^3 \times \frac{3}{3}}{6^2} = 8 \text{ cm}$$

21)
$$2a = a - 1$$

 $a = -1$

22,

x	-1	0	1	2
У	1	2	3	4

Represent by yourself

Statistics

(1) Choose:

1) th rd

2) 9

3)9

4) 15

5) $\frac{23+25}{2}$ = 24

6, 11 10

7) 27

8) $k + 3 = 13 \rightarrow k = 10$

9) $\frac{19+32+27+6+6}{5} = 18$

10) $\frac{27+8+16+24+k+14}{7} = 14 \rightarrow k = 7 \times 14 - 89 = 9$

11 $\frac{10+23+29+2k+1+k}{5}$ $\frac{69+3k}{5}$ 18 \star $\kappa = \frac{5\times18}{3}$ 7

 $12)^{\frac{3-1+5+1+4+2+n}{5}}=3$

13) $6 \times 12 = 72$

 $14)_{2}^{2+6} = 4$

15) $\frac{5+7}{2} = 6$

(2)

Sets	Center	Freq.	Center x freq.
1-	2	4	8
3-	4	6	24
5-	6	8	48
7-	8	7	56
9-	10	5	50
Total		30	186

Mean =
$$\frac{186}{60}$$
 = 6.2

Preparatory

(3) Mean =
$$\frac{1146}{40}$$
 = 31

" make table by yourself "

a)
$$k = 8$$

(4) a)
$$k = 8$$
 , $m = 25 - (5 + 8 + 7 + 2) = 3$

b) Mean =
$$\frac{125}{25}$$
 = 5

(draw the mean table)

c)

The upper limit	Ascending cumulative freq.
ess than 0	0
ess than 2	3
ess than 4	В
ess than 6	16
ess than 8	23
less than 10	25

The order of med an $= \frac{19}{3}$ 12.5

Median ~ 5

Mode ~ 5

Question

í	(4)	Choose	the	correct	answer.
4		CHOOSE	rre	correct	aliswel.

(1) Onoose the c	offect answer.		
1) R =			
a) ℝ ₊ ∪ ℝ _−	b)]-∞,+∞	[c)]-∞,0]	d)] 0 , + ∞ [
2) The opposite fig	gure represents th	ne interval	*******
a) [-3 , 5]	b)]-3,5[4	
c) [-3,5[d)] -3, 5]	-3	5
3) If the volume of	the sphere is $\frac{9}{16}$	τ cm³ then its rac	lius length
a) 3 π cm	b) 3 cm	c) $\frac{4}{3}$ cm	d) $\frac{3}{4}$ cm
4) $\sqrt{8} - \sqrt{2} = \dots$			
a) $\sqrt{2}$	b) 2	c) √6	d) 4
5) If the volume of	the sphere is $\frac{32}{3}$	π cm 3 then its dia	ameter is of length
equals	*****		
a) 2 cm	b) 4 cm	c) 8 cm	d) 32 cm
6) [-3,7[-{-3	3 , 7 } =	***	
a) [-3,7[b)] - 3, 7]	c)]-3,7[d) (0,0)
7) {8,9,10}-]	8 , 10 [=	** * * * *	
a) Ø	b) { 8 , 10 }	c) {9}	d) N
8) The volume of	a cube is 125 cm	then its total ar	ea equals
a) 25 cm ²	b) 50 cm ²	c) 125 cm ²	d) 150 cm ²
9)]-3,5[\(\cappa\)[0	, 3 [=		
a) [0,3]	b)[0,3[c)]-3,0[d) [3,5[

2nd Preparatory - Mid Term First Term

10)
$$\frac{1}{2}\sqrt{20} + 10\sqrt{\frac{1}{5}} = \dots$$

- a) $3\sqrt{5}$ b) $4\sqrt{5}$ c) 5
- d) 12
- 11) The volume of a right circular cylinder is 90 π cm³ and its height is 10 cm then the radius length of its base equals
 - a) 3 cm
- b) 4.5 cm c) 5 cm
- d) 9 cm

- b) 10 c) 40 d) 58
- - a) 16 cm³
- b) 24 cm³ c) 64 cm³ d) 96 cm³
- 14) The volume of a cube is 64 cm³, then its edge length is
 - a) 32 cm
- b) 16 cm c) 8 cm
- d) 4 cm
- 15) The circumference of a circle is 44 cm then its diameter length

is
$$(\pi = \frac{22}{7})$$

- a) 14 cm b) 22 cm c) 44 cm d) 154 cm
- 16) The multiplicative inverse of the number $\sqrt{5}$ is
 - a) $-\sqrt{5}$
- b) $\frac{-1}{\sqrt{5}}$ c) $\frac{\sqrt{5}}{6}$
- d) $\frac{5}{\sqrt{5}}$
- 17) [-3,4] n [2,6]=.....

 - a) [-3,2] b) [-3,6] c) [2,4] d)]2,6[
- 18) If the radius length of a sphere is 3 cm, then its volume is
- a) $4 \pi \text{ cm}^3$ b) $9 \pi \text{ cm}^3$ c) $27 \pi \text{ cm}^3$ d) $36 \pi \text{ cm}^3$

- 19) $[-3, 6] \{-3, 6\} = \dots$
 - a)]-3,6[b)]-3,2[c)]-3,2] d) Ø

- 20) The S S of the inequality –1 < x + 3 < 3 in ℝ is
 - a)[-4,0]
- b) [2,6] c)]-4,0[d)]2,6[

2nd Preparatory - Mid Term First Term

21)
$$\frac{1}{2}\sqrt{48} = 2 \times \dots$$

- a) $\sqrt{3}$
- b) $\sqrt{12}$ c) $\sqrt{96}$
- d) 192

22) The expression
$$\frac{\sqrt{25-9}}{\sqrt{25}-\sqrt{9}} = \dots \dots$$

- a) 1
- b) 1
- c) 2
- d) 3

- a)[1,3[

- b) 11,3] c) [1,3] d)]1,3[

24) If the volume of a sphere equals 36
$$\pi$$
 cm³, then its radius length

is

- a) $\sqrt[3]{3}$ cm b) $\sqrt{3}$ cm c) 3 cm d) 9 cm

25) The S.S of the inequality
$$-2 \times \ge 6$$
 in \mathbb{R} is

a)
$$]-\infty, -3[$$
 b) $]-\infty, -3[$ c) $[-3, +\infty[$ d) $]-3, +\infty[$

b)
$$]-\infty, -3]$$

c)
$$[-3,+\infty]$$

d)] - 3, +
$$\infty$$
[

(2) Complete the following:

7)
$$\sqrt[3]{64} = \sqrt{....}$$

8) The multiplicative inverse of the number
$$\frac{3}{\sqrt{3}}$$
 is $\frac{3}{\sqrt{3}}$

10) If
$$x = \sqrt[3]{3} + 1$$
 and $y = \sqrt[3]{3} - 1$ then $(x + y)^3 = \dots$

Model Answers

(1) Choose

- 1) b
- 4) a
- 7) b
- 10) a
- 13) c
- 16) c
- 19) a
- 22) c
- 25) b

- 2) c
- 5) b
- 8) d
- 11) a
- 14) d
- 17) c
- 20) c
- 23) a

- 3) c
- 6) b
- 9) b
- 12) a
- 15) a
- 18) d
- 21) a
- 24) c

(2) complete

1)]2,5[

- 2)]-2,∞[
- 3) {0}

4) [-4, 1]

- 5) 3 + $2\sqrt{2}$
- 6)] 2, 5[

7) √16

8) $\frac{1}{\sqrt{3}}$

9)[1,∞[

10)
$$(\sqrt{3} + 1 + \sqrt{3} - 1)^3 = (2\sqrt{3})^3 = 8 \times 3 = 24$$

11)[2,4[

12) $L = \sqrt{30}$, $2L = 2\sqrt{30}$

$$A = (2 L)^2 = (2\sqrt{30})^2$$

$$= 4 \times 30 = 120 \text{ cm}^2$$

13)
$$E = \frac{Sum \ of \ edges}{12} = \frac{36}{12} = 3 \ cm$$

Face area =
$$3 \times 3 = 9 \text{ cm}^2$$

Total area =
$$9 \times 6 = 54 \text{ cm}^2$$

2nd Preparatory - Mid Term First Term

- d) XYZ is an isosceles triangle where XY = XZ if m (Z X) = 80° then m (Z Y) =
- e) In ∆ ABC if AB ⊥ BC and AB = BC then m (∠ A) =

(9) In the opposite figure:

(10) Complete using data registered on each figure:

Fig. (1) m (
$$\angle$$
 C) =....

Fig. (2) m (
$$\angle A$$
) =

Fig. (3) m (
$$\angle$$
 B) =

Fig. (4) m (
$$\angle$$
 D) =

Second: Choose the correct answer from those given:

- 1. If M is the point of intersection of the medians of A ABC and D is the midpoint of BC , then AD =
 - a) 2 Am
- b) $\frac{2}{3}$ MD c) $\frac{3}{2}$ AM
- d) 4 MD
- 2. The point of intersection of the medians of the triangle divides each of them with the ratio from the vertex.
 - a) 2:1
- b) 1:2 c) 3:1
- d) 3:2

2nd Preparatory - Mid Term First Term

3. If M is the poin	t of intersections	of the medians	of the triangle in
Δ ABC and \overline{AX}	is a median of le	ength 6 cm, then	AM equals
a) 1	b) 2 cm	c) 3 cm	d) 4 cm
4. ABCD is a rect	tangle M is the p	oint of intersection	on of its diagonals.
If the length of	the diagonal is 6	cm, then the ler	ngth of the median
AM equals	******		
a) 2 cm	b) 3 cm	c) 6 cm	d) 12 cm
5. The measure of	of the exterior an	gle of the equilat	teral triangle
equals	+ h + s		
a) 30°	b) 60°	c) 90°	d) 120°
6. If the measure	of the vertex an	gle of the isosce	les triangle equals
50°, then the m	neasure of each	angle of its base	equal
a) 40°	b) 65°	c) 70°	d) 130°
7. If the measure	of one of the two	o base angles of	the isosceles triangle
equals 40°, the	n the measure o	of the vertex angl	e is
a) 40°	b) 50°	c) 80°	d) 100°
8. The base angl	es of the isoscel	es triangle are	
a) complem	nentary	b) suppleme	entary
c) congruer	nt	d) straight a	ngles
9. If XA = XB and	YA = YB then X	Ϋ́ ĀΒ	3
a) //	b) 1	c) =	d) ≡
10. If A lies on the	e axis of symme	try of \overline{XY} then \overline{AX}	<u>AY</u>
a) //	b) 1	c) =	d) ≡
11. The quadrilat		nich BD is an axis	of symmetry of
a) a rhombi		b) a rectang	jle
c) a parallel	logram	d) a trapezio	um

2nd Preparatory - Mid Term First Term

12. If AX = AY and BX = BY where X and Y are at different sides of

 \overrightarrow{AB} then \overrightarrow{XY} \overrightarrow{AB}

- a) //
- b) ⊥
- c) =
- d) ≡

Third: Questions for getting the answer:

(1) In the opposite figure:

m (\angle ABC) = 90°, D is the midpoint of \overline{AC} ,

$$m (\angle C) = 30^{\circ}$$

Prove that: A ABD is equilateral

(2) In the opposite figure:

 $m (\angle DEF) = 90^{\circ}$,

X and Y are the midpoints of EF, DF

respectively, m (Z F) = 30°

DF = 12, XZ = 2.5 find the perimeter of \triangle DEZ

(3) In the opposite figure:

m (\angle C) = 90°, \overline{AF} is a median of \triangle ABD

BC = AF = 6 cm

First: Find the length of BD

Second: Prove that m (BAD) = 90°

2nd Preparatory - Mid Term First Term

Second: Choose the correct answer from those given:

1) $\frac{3}{2}$ AM

2) 2:1

3) 4 cm

4) 3 cm

5) 120°

6) 65°

7) 100°

8) congruent

9) 1

10) =

11) rhombus 12) 1

Third:

(1) Proof: ∵ In △ ABC

m (\angle C) = 30°, m (\angle ABC) = 90°, D is the midpoint of \overrightarrow{AC}

: BD is a median

$$\therefore$$
 BD = $\frac{1}{2}$ AC

(1)

$$\therefore AB = \frac{1}{2}AC$$

(2)

∴ △ ABD is equilateral

(2) Proof: ∵ In △ DEF

X is midpoint of EF

∴ DX is a median, XZ = 2.5

.: DZ = 2 ZX = 5 cm

(1)

, Y is midpoint of FD

.. EY is median

 $EY = \frac{1}{2}DF = 6 cm$

 $EZ = \frac{2}{3}EY = \frac{2 \times 6}{3} = 4 \text{ cm}$

(2)

¬ m (∠ F) = 30°

:. DE = $\frac{1}{2}$ FD = 6 cm

P. of A DEZ = 6 + 4 + 5 = 15 cm