MATEMATICA DISCRETA II-2016 PRACTICO 5: Genéticos

- I): Para los siguientes progenitores en una codificación basada en el orden, hacer crossover usando:
- a) El primer método dado en clase, con corte de dos puntos.
- b) PMX (usar el mismo corte de a), para comparar)
- c) cyclic crossover
- i. $P_1 = (B, F, E, H, C, I, G, D, A)$, $P_2 = (I, E, A, D, F, G, H, B, C)$
- ii. $P_1 = (A, B, C, D, E, F, G, H, I), P_2 = (I, H, G, F, E, D, C, B, A).$
 - II): En los siguientes items, se tiene una poblacion cuyas fitness son las dadas. Cuando deba usar numeros al azar, tome los siguientes números entre 0 y 1 como fuente de aleatoriedad, elija n de ellos y multipliquelos por el n apropiado en cada caso. Le damos dos series de números aleatorios para que haga cada ejercicio dos veces si quiere.
 - i) aletorios entre 0 y 1: 0,72 | 0,15 | 0,38 | 0,57 | 0,88 | 0,32 | 0,22 | 0,98
 - ii) aletorios entre 0 y 1: 0, 22 | 0, 54 | 0, 81 | 0, 12 | 0, 75 | 0, 64 | 0, 47 | 0, 33

Con esos numeros al azar y las fitness, decir quienes serán los individuos seleccionados para reproducirse con los metodos de:

- a. Ruleta
- b. SUS
- c. Remainder con Ruleta para los restos. Todos ellos usando la Esperanza usual. $(E_i = \frac{F_i}{\overline{F}})$ y luego repetir usando la esperanza dada con sigma scaling. $(E_i^* = 1 + \frac{F_i \overline{F}}{2\sigma})$. (para lo cual se les da la desviacion estandard en cada ejercicio)
- d. Ranking, con SP igual a 1.1
- e. Ranking, con SP igual a 1.8

1):
$$F_1 = 0, 3$$
 $F_2 = 90, 8$ $F_3 = 45, 2$ $F_4 = 71, 7$ $F_5 = 30, 2$ $F_6 = 9, 3$ $\sigma = 35, 2642$

2):
$$F_1 = 7,7$$
 $F_2 = 0,3$ $F_3 = 0,5$ $F_4 = 0,9$ $F_5 = 4,1$ $F_6 = 2,5$ $\sigma = 2,8577$

3):
$$F_1 = 8,09$$
 $F_2 = 0,16$ $F_3 = 7,07$ $F_4 = 3,59$ $F_5 = 9,98$ $F_6 = 4,07$ $F_7 = 6,52$ $F_8 = 9,1$ $\sigma = 3,2696$

4):
$$F_1 = 1,65$$
 $F_2 = 1,54$ $F_3 = 1,57$ $F_4 = 1,56$ $F_5 = 1,56$ $F_6 = 1,61$ $\sigma = 0,0407$

III): Probar que en sigma scaling la suma de las fitness normalizadas sigue siendo n.

IV):

Supongamos que en rank fitness decidieramos usar la formula

$$LP^*(pos) = min + (Max - min)\frac{pos - 1}{n - 1}$$

donde min y Max son los valores minimos y maximo que queremos que la función tome. (observar que $LP^*(1) = min$ y $LP^*(n) = Max$).

- a) Probar que debe ser Max + min = 2.
- b) Probar que la formula puede escribirse $LP^*(pos) = 2 Max + 2(Max 1)\frac{pos 1}{n-1}$ es decir es la formula LP que vimos en el teorico con SP = Max.