MI-SPOL-3

Funkce více proměnných: gradient, Hessián, definitnost matic, extrémy funkcí více proměnných bez omezení a s rovnostními omezeními.

Norma na vektorovém prostoru V (nad $\mathbb R$ nebo $\mathbb C$) je zobrazení $||\cdot||:V\to\mathbb R_0^+$ splňující $\forall \mathbf x,\mathbf y\in V,lpha$:

- $||\mathbf{x}|| = 0 \Rightarrow \mathbf{x} = 0$
- $||\alpha \mathbf{x}|| = |\alpha| \cdot ||\mathbf{x}||$
- $ullet \ ||\mathbf{x}+\mathbf{y}|| \leq ||\mathbf{x}|| + ||\mathbf{y}||$ (trojúhelníková nerovnost)

Příklad:

- ullet Eukleidovská norma: $||\mathbf{x}||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$
- ullet Maximová: $||\mathbf{x}||_{\infty} = \max\{|x_i|\}, i \in \{1,...,n\}$
- ullet Součtová: $||\mathbf{x}||_1 = \sum_{i=1}^n |x_i|$

Reálná funkce více reálných proměnných je zobrazení $D_f o \mathbb{R}$ pro $D_f \subset \mathbb{R}^n$

- ullet D_f je definiční obor
- $f(D_f)$ je obor hodnot

Pro $\mathbf{x}\in\mathbb{R}^n$ a $\delta\in\mathbb{R}^+$ je δ -okolí bodu \mathbf{x} množina $H_\delta(\mathbf{x})=\{\mathbf{b}\in\mathbb{R}^n:||\mathbf{x}-\mathbf{b}||<\delta\}$

Množina $M\subset\mathbb{R}^n$. Bod $\mathbf{x}\in\mathbb{R}^n$ je **hromadným bodem** M, pokud pro všechna r>0 platí $H_r(\mathbf{x})\setminus\{\mathbf{x}\}\cap M\neq\emptyset$

Bod, který není hromadný, je izolovaný

Funkce $f:D_f o\mathbb{R},D_f\subset\mathbb{R}^n$, má limitu $L\inar{\mathbb{R}}$ v hromadném bodě ${f b}$ množiny D_f , pokud:

$$orall H(L)\exists H(\mathbf{b}) orall x \in D_f \setminus \{\mathbf{b}\} : \mathbf{x} \in H(\mathbf{b}) \Rightarrow f(\mathbf{x}) \in H(L)$$

Značení: $\lim_{x o b} f(x) = L$

Funkce $f:D_f o \mathbb{R},D_f\subset \mathbb{R}^n$ je **spojitá v bodě** $x_0\in D_f$, pokud $orall \epsilon>0 \exists \delta>0 orall x\in D_f: x\in H_\delta(x_0)\Rightarrow f(x)\in H_\epsilon(f(x_0))$

NEBO: pokud pro všechny neizolované body $x_0 \in D_f$ platí: $\lim_{x o x_0} f(x) = f(x_0)$

Funkce je spojitá, pokud je spojitá ve všech bodech.

Reálná funkce f má v bodě $\mathbf{b} \in D_f$:

- ullet lokální minimum, pokud $\exists \delta>0, orall \mathbf{x}\in H_{\delta}(\mathbf{b}), f(\mathbf{x})\geq f(\mathbf{b})$
- ullet ostré lokální minimum, pokud $\exists \delta>0, orall \mathbf{x}\in H_\delta(\mathbf{b})\setminus \{\mathbf{b}\}, f(\mathbf{x})>f(\mathbf{b})$
- ullet globální minimum, pokud $orall \mathbf{x} \in D_f, f(\mathbf{x}) \geq f(\mathbf{b})$

Spojitá funkce obsahuje globální minimum i maximum, pokud je D_f :

- omezená (je podmnožinou otevřené koule)
- a uzavřená (obsahuje i svou hranici)

Parciální derivace funkce f ve směru x_i v bodě $\mathbf{b}=(b_1,b_2,...,b_n)\in D_f$ takovém, že $\exists H(\mathbf{b})\subset D_f$, je

$$\lim_{h o 0}rac{f(b_1,b_2,...,b_i+h,...,b_n)-f(b_1,b_2,...,b_i,...,b_n)}{h}=L$$

Značení: $rac{\delta f}{\delta x_i}(\mathbf{b}) = L$

Jedná se o **směrnici tečny ke grafu funkce** f **ve směru osy** x_i

Gradient funkce f v bodě $b \in D_f$ je vektor

$$abla f(\mathbf{b}) = \left(rac{\delta f}{\delta x_1}(\mathbf{b})rac{\delta f}{\delta x_2}(\mathbf{b}),...,rac{\delta f}{\delta x_n}(\mathbf{b})
ight)$$

Význam: ukazuje směr (v D_f) nejvyššího růstu funkce

Nechť $\mathbf{v}\in\mathbb{R}^{n,1},||\mathbf{v}||=1.$ Derivace funkce f ve směru \mathbf{v} v bodě $\mathbf{b}\in D_f$ takovém, že $\exists H(\mathbf{b})\subset D_f$, je

$$abla_{\mathbf{v}} f(\mathbf{b}) = \lim_{h o 0} rac{f(\mathbf{b} + h \mathbf{v}) - f(\mathbf{b})}{h}$$

Význam: směrnice tečny ke grafu funkce f ve směru ${f v}$

Pokud v bodě ${f b}$ existuje gradient, pak platí $abla_{f v}f({f b})=
abla f({f b})\cdot{f v}$

Nutná podmínka lokálního extrému: Nechť má funkce $f:D_f\to\mathbb{R},D_f\subset\mathbb{R}^n$ v bodě \mathbf{b} parciální derivaci podle i-té proměnné. Pokud f má v bodě \mathbf{b} lokální extrém, potom $\frac{\delta f}{\delta x_i}(\mathbf{b})=0$ Důsledek: pokud existuje gradient funkce f v bodě \mathbf{b} , pak existence lokálního extrému implikuje $\nabla f(\mathbf{b})=0$

Body ${f b}$ splňující $abla f({f b})=0$ se nazývají **stacionární**.

Stacionární body a body, kde gradient neexistuje, se nazývají kritické body.

Parciální derivace druhého řádu:

$$rac{\delta^2 f}{\delta x_j \delta x_i}(\mathbf{b}) = rac{\delta}{\delta x_j} (rac{\delta f}{\delta x_i}(\mathbf{b}))$$

Pokud všechny druhé parciální derivace v bodě ${f b}$ existují: **Hessova matice**

$$abla^2 f(\mathbf{b}) = \left(egin{array}{cccc} rac{\delta^2 f}{\delta^2 x_1}(\mathbf{b}) & ... & rac{\delta^2 f}{\delta x_1 \delta x_n}(\mathbf{b}) \ ... & ... \ rac{\delta^2 f}{\delta x_n \delta x_1}(\mathbf{b}) & ... & rac{\delta^2 f}{\delta^2 x_n}(\mathbf{b}) \end{array}
ight)$$

Pokud existuje $\frac{\delta^2 f}{\delta x \delta y}(\mathbf{b})$ a funkce $\frac{\delta^2 f}{\delta x \delta y}$ je v \mathbf{b} spojitá, potom $\frac{\delta^2 f}{\delta y \delta x}(\mathbf{b})$ existuje a $\frac{\delta^2 f}{\delta x \delta y}(\mathbf{b}) = \frac{\delta^2 f}{\delta y \delta x}(\mathbf{b})$

Definitnost matic:

 $\mathbf{A} \in \mathbb{R}^{n,n}$ je

- ullet pozitivně semidefinitní, pokud $\mathbf{x}^T\mathbf{A}\mathbf{x} \geq 0$ pro $orall \mathbf{x} \in \mathbb{R}^{n,1}$
- ullet pozitivně definitní, pokud $\mathbf{x}^T\mathbf{A}\mathbf{x}>0$ pro $orall \mathbf{x} \in \mathbb{R}^{n,1}, \mathbf{x}
 eq 0$
- negativně semidefinitní, pokud $\mathbf{x}^T\mathbf{A}\mathbf{x} \leq 0$ pro $\forall \mathbf{x} \in \mathbb{R}^{n,1}$
- ullet negativně definitní, pokud $\mathbf{x}^T\mathbf{A}\mathbf{x} < 0$ pro $orall \mathbf{x} \in \mathbb{R}^{n,1}, \mathbf{x}
 eq 0$
- indefinitní, pokud není pozitivně ani negativně semidefinitní: právě když $\exists x,y\in\mathbb{R}^n,\mathbf{x}^T\mathbf{A}\mathbf{x}>0$ a $\mathbf{y}^T\mathbf{A}\mathbf{y}<0$

Symetrické matice:

- PSD: všechna vlastní čísla nezáporná
- PD: všechna vlastní čísla kladná
- NSD: všechna vlastní čísla nekladná
- ND: všechna vlastní čísla záporná
- indefinitní: alespoň jedno kladné a alespoň jedno záporné vlastní číslo

Sylvestrovo kritérium určení definitnosti:

V symetrické matici $\mathbf{A} \in \mathbb{R}^{n,n}$ se nachází matice $A_1,A_2,...,A_n$, kde $A_k \in \mathbb{R}^{k,k}$ je čtvercová matice v levém horním rohu matice \mathbf{A} . Potom:

- ullet Matice old A je pozitivně definitní \Leftrightarrow determinant všech matic $A_1,...,A_n$ kladný
- ullet Matice old A je negativně definitní \Leftrightarrow determinant matic A_k záporný pro lichá k a kladný pro sudá

Pokud má čtvercová matice na diagonále dva prvky s různým znaménkem, pak je indefinitní

Stacionární bod, který není minimem ani maximem, na jehož okolí má f spojité všechny parciální derivace, je **sedlový bod**

Postačující podmínka existence extrému a sedlového bodu:

 $\mathbf{b} \in D_f$ stacionární bod funkce $f:D_f o \mathbb{R}, D_f \subset \mathbb{R}^n$

Existuje okolí $H(\mathbf{b})\subset D_f$ t.ž. f má na něm spojité všechny druhé parciální derivace, potom:

- ullet pokud $abla^2 f(\mathbf{b})$ pozitivně definitní, pak \mathbf{b} je ostré lokální minimum
- ullet pokud $abla^2 f(\mathbf{b})$ negativně definitní, pak \mathbf{b} je ostré lokální maximum
- pokud $abla^2 f(\mathbf{b})$ indefinitní, pak \mathbf{b} je sedlový bod

Nutná podmínka existence lokálního extrému:

- ullet pokud ${f b}$ je lokální minimum, pak $abla^2 f({f b})$ je pozitivně definitní
- ullet pokud ${f b}$ je lokální maximum, pak $abla^2 f({f b})$ je negativně definitní

Funkce se spojitými druhými parciálními derivacemi **konvexní**, právě když je její Hessián PSD ve všech bodech vnitřku D_f

Kuchařka na hledání extrémů

- najít podezřelé (kritické) body (body, kde neexistuje aspoň jedna parciální derivace, nebo kde gradient je 0)
- najít Hessián v podezřelém bodě -- pokud je:
 - o PD, pak bod je ostré lokální minimum
 - o ND, pak bod je ostré lokální maximum
 - o IND, pak je sedlovým bodem

Vázané extrémy s rovnostními omezeními

Úloha vázaného extrému s rovnostními omezeními je minimalizování f(x) za podmínek $g_j(x)=0, j\in\hat{m}$, kde f,g jsou funkce $D\to\mathbb{R}, D\subset\mathbb{R}^n$

Přípustná řešení:

 $M=\{x\in\mathbb{R}^n: (orall j\in\hat{m})(g_j(x)=0)\}$ (množina řešení, kde jsou splněny podmínky)

Funkce $L: M imes \mathbb{R}^m o \mathbb{R}$ definovaná jako

$$L(x;\lambda) = f(x) + \sum_{j=1}^m \lambda_j g_j(x)$$

je Lagrangeova funkce.

Koeficienty $\lambda = (\lambda_1,...,\lambda_m)$ jsou Lagrangeovy multiplikátory

Postačující podmínka existence ostrého lokálního minima při rovnostních omezeních

Nechť $f,g_j,j\in\hat{m}$ mají spojité všechny druhé parciální derivace na nějaké otevřené nadmnožině M. Pokud dvojice $(x^*,\lambda^*)\in M imes \mathbb{R}^m$ splňuje následující podmínky, potom je x^* bodem ostrého lokálního minima

Podmínky:

- ullet (optimalita) $orall i, rac{\delta L}{\delta x_i}(x^*,\lambda^*)=0$ (nulový gradient Lagrangeovy funkce podle x)
- ullet (podmínka 2. řádu) pro každý vektor $0
 eq z \in \mathbb{R}^n$ splňující $z^T
 abla g_j(x^*) = 0 (orall j \in \hat{m})$ platí

 $z^T
abla_x^2 L(x^*;\lambda^*) z > 0$ (PD Hessián za určitých podmínek).