# CAPITULO 5. TRANSMISIÓN ANALÓGICA

#### CONVERSIÓN DE DIGITAL A ANALÓGICO:

 Es el proceso de cambiar una de las características de una señal de base analógica en información basada en una señal digital.



- Una onda seno se define por tres características (amplitud, frecuencia y fase).
- Modificando cualquiera de estas características, se crea una segunda versión de esta onda y que nos puede servir para representar datos digitales.
- Del resultado anterior se obtienen cuatro técnicas para la modulación de datos digitales en analógicos. Siendo estos ASK, FSK, PSK y QAM.



- Aspectos de la conversión de digital a analógico:
  - Elementos de datos frente a elementos de señal:
    - Tasa de (datos o bits) y tasa de (señal o baudios):
      - La relación que las define es:
        - $S = N.\frac{1}{2}$  baudios.
        - Donde 'N' es la tasa de datos (bps).
        - 'r' es el número de elementos de datos transportados por un elemento de señal.
        - Conviene recordar que 'S' define el número de señales que se envían en un segundo o tasa de señal.
      - $\circ$  En una transmisión analógica el valor de 'r' es:
        - $r = \log_2 L$
        - Donde L es aquí el tipo de elemento de señal, no el nivel.
    - Ancho de banda: Se tratará el ancho de banda para cada técnica de modulación.
    - Señal portadora:
      - También llamada frecuencia portadora, es una señal de alta frecuencia que produce el emisor y que actúa como base para la señal de información.
      - El receptor está ajustado para la señal portadora.
      - La información digital se modula sobre la señal portadora modificando alguna de sus características.
      - Este tipo de modificación se denomina modulación por desplazamiento.
- Modulación por desplazamiento de amplitud (ASK, Amplitude Shift Keying):
  - Se modifica la amplitud de la señal portadora, para crear elementos de señal.
  - ASK binario (BASK):
    - Se define como la modulación binaria en amplitud o modulación <u>on-off</u> (<u>OOK</u>, on-off keying).

 La amplitud pico de un nivel de señal es 0, el otro es el mismo que la amplitud de la señal portadora.



## • Ancho de banda ASK:

- Es proporcional a tasa de baudios 'S'.
- Existe un factor, denominado d, que depende del proceso de modulación y filtrado, tomando valores entre 0 y 1.
- O Siendo 'B' el ancho de banda, todo esto se expresa como sigue:

$$B = (1 + d).S$$

- o La mitad del ancho de banda se encuentra en  $f_c$ , donde se sitúa la frecuencia portadora.
- $\circ$  Si hay disponible un canal paso banda, se puede elegir  $f_c$  de forma que la señal modulada ocupe el ancho de banda.

## • Implementación:

Si los datos digitales e presentan como una señal digital NRZ unipolar con un voltaje alto de 1 y bajo de 0, la implementación se lleva a cabo multiplicando la señal digital NRZ por la señal portadora  $f_c$ , que viene de un oscilador.



#### ASK multinivel:

- Se puede usar 4, 8, 16 o más amplitudes distintas para la señal y modular los datos usando 2, 3, 4 o más bits al tiempo.
- o Modulación por desplazamiento de frecuencia (FSK, Frecuency Shift Keying):
  - La frecuencia de la señal portadora cambia para representar los datos.
  - La frecuencia de la señal modulada cambia si el elemento de datos cambia.
  - FSK binario (BFSK):
    - Idealmente se consideran dos frecuencias portadoras fc1 y fc2.
    - Se usa  $f_{c1}$  si el elemento de datos es 0 y  $f_{c2}$  si es 1.
    - Ancho de banda para FSK:
      - $\circ$  La mitad de un ancho de banda es  $f_1$  y la mitad de la otra es  $f_2$ .
      - O Ambas, tienen una separación de  $\Delta f_c$  desde el punto medio de ambas bandas.
      - O La diferencia entre  $f_{c2}$  y  $f_{c1}$  es 2Δ $f_{c}$ .
      - El ancho de banda necesario es:

$$B = (1+d).S + 2\Delta f.$$

# • Implementación:

#### Coherente:

- Puede haber discontinuidad en fase cuando un elemento de señal termina y comienza el siguiente.
- Se implementa como dos modulaciones ASK y usando dos frecuencias portadores.

#### o No coherente:

- La fase se mantiene a través de la frontera entre dos elementos de señal.
- Se implementa usando un oscilador controlado por voltaje (OCV), que cambia su frecuencia según el voltaje de entrada.



#### ■ FSK multinivel (MFSK):

- En general si lo que se pretende es enviar *n* bits al mismo tiempo se utilizan (2número de bits a enviar) frecuencias distintas.
- Las frecuencias han de estar separadas  $2\Delta f_{c}$ , para que el modulador y el demodulador funcionen adecuadamente.
- Ancho de banda para MFSKs:

$$\circ$$
  $B = (1 + d).S + (L - 1).2\Delta f.$ 

- o Modulación por desplazamiento de fase (PSK, Phase Shift Keying):
  - La fase de la portadora cambia para representar dos o más elementos de señal.
  - PSK binaria (BPSK):
    - Hay dos elementos de información, uno con una fase de 0° y otro con una fase de 180°.
    - Es menos susceptible al ruido que ASK y es superior al FSK por que no necesita dos señales portadoras.
    - Ancho de banda:
      - o Es el mismo que para la BASK, pero menor que BFSK.
    - Implementación:
      - Si los datos digitales e presentan como una señal digital NRZ polar, la implementación se lleva a cabo multiplicando la señal digital NRZ por la señal portadora fc, que viene de un oscilador.



#### PSK en cuadratura (QPSK):

• Igual que BPSK pero utilizando cuatro fases para representar 4 bit de esta forma:

| Fase        | dato |
|-------------|------|
| 45° ó 0°    | 00   |
| 135° ó 90°  | 01   |
| 225° ó 180° | 10   |
| 315° ó 270° | 11   |

- Para ello se usan dos modulaciones BPSK separadas.
- Las ondas seno creadas tienen la misma frecuencia pero una está en-fase y otra desfasada o en cuadratura.
- Disminuyendo la tasa de baudios y el ancho de banda necesario.



#### Diagrama de constelación:

- Útil para definir la amplitud y la fase de un elemento.
- El elemento de señal se representa como un punto, acompañado a menudo con el valor del dato.
- El eje X se relaciona con la portador en-fase y el eje Y con la portadora en cuadratura.
- La proyección sobre el eje X define la amplitud de pico del componente en-fase.
- La proyección sobre el eje Y define la amplitud de pico del componente en cuadratura.
- El vector que conecta el punto al origen es la amplitud de pico de la señal.
- o El ángulo del vector con el eje X es la fase del elemento señal.

#### Modulación de amplitud en cuadratura (QAM):

- Es una combinación de ASK y PSK.
- Se utilizan dos portadoras, una en fase y otra en cuadratura, con distintos niveles de amplitud para cada portadora.
- Las variaciones posibles de QAM son numerosas.



- Ancho de banda para QAM:
  - Es el mismo que en ASK y PSK.
  - Tiene las mismas ventajas que PSK sobre ASK.
- CONVERSIÓN DE ANALÓGICO A ANLÓGICO:
  - Se consigue empleando tres técnicas de modulación: en amplitud, fase y frecuencia.
  - Modulación en amplitud (AM):
    - Se modula la amplitud de la señal portadora a medida que la señal de cambia.
    - La señal modulada se convierte en una envoltura de la portadora.



- Ancho de banda en AM:
  - Se determina a partir del ancho de banda de una señal de audio:

$$B_{AM} = 2B$$

- o Modulación en frecuencia (FM):
  - Se modula la frecuencia de la señal portadora a medida que la amplitud de la señal de información cambia.



#### Ancho de banda en AM:

• Se determina empíricamente a partir del ancho de banda de una señal de audio:

$$B_{AM} = 2.(1+\beta).B$$

 Donde β es un factor que depende de la técnica de modulación, siendo 4 un valor frecuente.

#### Modulación en fase (PM):

- Se modula la fase de la señal portadora a medida que la amplitud de la señal de información cambia.
- Se puede probar matemáticamente que PM es igual a FM.
- En FM los cambios instantáneos de la frecuencia portadora es igual a la amplitud de la señal a modular.
- En PM los cambios instantáneos de la frecuencia portadora son proporcionales a la derivada de a la amplitud de la señal a modular.
- En las siguientes figuras se aprecia lo expuesto anteriormente:





# Señal FM periódica



# Ancho de banda en AM:

• Se determina empíricamente a partir del ancho de banda de una señal de audio:

$$B_{AM} = 2.(1+\beta).B$$

 Donde β es un factor que depende de la técnica de modulación, siendo 1 para banda estrecha y 3 para banda ancha.