Skript Lineare Algebra & Geometrie 2, Hertrich-Jeromin

Studierendenmitschrift

1. März 2016

Inhaltsverzeichnis

4	Volumenmessung	3
	4.3 Polynome & Polynomfunktionen	3

4 Volumenmessung

4.3 Polynome & Polynomfunktionen

Warum? (Vielleicht eher "Algebra" – allgemein – als "lineare" Algebra) Wichtig: das charakteristische Polynom eines Endomorphismus – wichtiges Hilfsmittel im Kontext der Struktursätze.

Beispiel Wir definieren Polynomfunktionen $p, q: K \to K$ eines Körpers K in sich durch

$$\begin{aligned} p: & K \to K, x \mapsto p(x) := 1 + x + x^2 \\ q: & K \to K, x \mapsto q(x) := 1 \end{aligned}$$

Falls $K = \mathbb{Z}_2$ gilt dann

$$\forall x \in K : x(x+1) = 0$$
$$\Rightarrow \forall x \in K : p(x) = q(x)$$

d.h., unterschiedliche "Polynome" liefern die gleiche Polynomfunktion: Koeffizientenvergleich funktioniert nicht.

Wiederholung Auf dem Folgenraum $K^{\mathbb{N}}$ betrachten wir die Familie $(e_k)_{k\in\mathbb{N}}$ mit

$$e_k : \mathbb{N} \to K, j \mapsto e_k(j) := \delta_{jk};$$

wir wissen: $(e_k)_{k\in\mathbb{N}}$ ist linear unabhängig, aber kein Erzeugendensystem:

$$\forall k \in \mathbb{N} : e_k \notin [(e_j)_{j \neq k}] \text{ und } [(e_j)_{j \in \mathbb{N}}] \neq K^{\mathbb{N}}$$

Insbesondere gilt:

$$\forall x \in [(e_i)_{i \in \mathbb{N}}] \ \exists n \in \mathbb{N} \forall k > n : x_k = 0$$

4.3.1 Idee & Definition

Wir fassen ein Polynom als (endliche) Koeffizientenfolge auf,

$$\sum_{k=0}^{n} t^{k} a_{k} \cong \sum_{k \in \mathbb{N}} e_{k} a_{k} \text{ mit } a_{k} = 0 \text{ für } k > n$$

und führen darauf das Cauchyprodukt (vgl. Analysis) als Multiplikation ein:

$$(a_k)_{k\in\mathbb{N}}\odot(b_k)_{k\in\mathbb{N}}:=(c_k)_{k\in\mathbb{N}}$$

wobei

$$c_k := \sum_{j=0}^k a_j b_{k-j}.$$

Insbesondere gilt damit

$$\forall j, k \in \mathbb{N} : e_j \odot e_k = e_{j+k} \Rightarrow \forall k \in \mathbb{N} : \begin{cases} e_0 \odot e_k = e_k \\ e_1^k = \underbrace{e_1 \odot \cdots \odot e_1}_{k \text{ mal}} = e_k \end{cases}$$

Mit $1 := e_0$, $t := e_1$ und $t^0 := 1$, wie üblich, liefert dies:

$$\sum_{k=0}^{n} t^k a_k = \sum_{k \in \mathbb{N}} e_k a_k \in [(e_k)_{k \in \mathbb{N}}] \subset K^{\mathbb{N}}$$

4.3.2 Definition

$$K[t] := ([(e_k)_{k \in \mathbb{N}}], \odot),$$

mit dem Cauchyprodukt \odot , ist die *Polynomalgebra* über dem Körper K; die Elemente von K[t],

$$p(t) = \sum_{k=0}^{n} t^k a_k = \sum_{k \in \mathbb{N}} e_k a_k,$$

heißen Polynome in der Variablen $t := e_1$. Der Grad eines Polynoms ist

$$\deg \sum_{k=0}^{n} t^{k} a_{k} := \max\{k \in \mathbb{N} \mid a_{k} \neq 0\}$$

Ist $a_n = 1$ für $\deg p(t) = n$, so heißt das Polynom p(t) normiert.

Notation Mit wird das Cauchyprodukt auf K[t] eine "normale" Multiplikation, gefolgt von einer Sortierung nach den Potenzen der Variablen t. Wir werden das \oplus daher oft unterdrücken, und z.B. p(t)q(t) schreiben, anstelle von $p(t) \oplus q(t)$.

Bemerkung (Koeffizientenvergleich) Mit dieser Definition von "Polynom" gilt

$$p(t) = \sum_{k=0}^{n} t^{k} a_{k} = 0 \Rightarrow \forall k \in \mathbb{N} : a_{k} = 0,$$

da $(t^k)_{k\in\mathbb{N}}=(e_k)_{k\in\mathbb{N}}$ linear unabhängig ist. Koeffizientenvergleich funktioniert!

Bemerkung Die Polynomalgebra K[t] über K ist eine assoziative und kommutative K-Algebra, weiter ist K[t] unitär mit Einselement $1 = e_0$.

4.3.3 Definition

Eine K-Algebra ist ein K-VR mit einer bilinearen Abbildung,

$$\odot: V \times V \to V, \ (v, w) \mapsto v \odot w,$$

d.h. es gilt

- (i) $\forall w \in V : V \ni v \mapsto v \odot w \in V$ ist linear;
- (ii) $\forall v \in V : V \ni w \mapsto v \odot w \in V$ ist linear.

Eine K-Algebra heißt

• unitär (mit Einselement 1), falls

$$\exists 1 \in V \forall v \in V : 1 \odot v = v \odot 1 = v;$$

• assoziativ, falls

$$\forall u, v, w \in V : (u \odot v) \odot w = u \odot (v \odot w);$$

• kommutativ, falls

$$\forall v. w. \in V : v \odot w = w \odot v$$

Beispiel End(V) ist (mit Komposition) eine unitäre assoziative Algebra.

Bemerkung In jeder Algebra (V, \odot) gilt:

$$\forall v \in V : 0 \odot v = v \odot 0 = 0$$

da z.B. für $v \in V$ gilt

$$v \odot 0 = v \odot (0+0) = v \odot 0 + v \odot 0 \Rightarrow 0 = v \odot 0$$

Ist (V, \odot) unitär, so folgt $[1] \in V$ wegen $1 \odot 1 = 1$

$$([1], + |_{[1] \times [1]}, \odot |_{[1] \times [1]}) \cong K$$

vermöge $K \ni x \mapsto 1 \times x \in [1]$ (siehe Aufgabe 5).

4.3.4 Definition

Ein Algebra-Homomorphismus zwischen K-Algebren (V, \odot) und (W, *) ist eine lineare Abbildung $\psi \in \text{Hom}(V, W)$, für die gilt:

$$\forall v, v' \in V : \psi(v \odot v') = \psi(v) * \psi(v')$$

Bemerkung $\operatorname{Hom}(V, W)$ wird oft auch für den (Vektor-)Raum der Algebra-Homomorphismen verwendet. In dieser LVA bedeutet $\operatorname{Hom}(V, W)$ immer VR-Homomorphismen, bei allen "anderen" Homomorphismen wird extra erwähnt, was gemeint ist.

Index

```
Cauchyprodukt, 4
Polynom, 4
-algebra, 4
Grad, 4
normiertes, 4
```