PROVA SCRITTA DI MDP, 15/01/2024

Riportare sotto ad ogni esercizio il relativo svolgimento in bella copia.

Esercizio 1 Un mazzo di carte piacentine è formato da 40 carte, suddivise equamente in 4 semi con le carte di ciascun seme numerate da 1 a 10. Aldo e Beatrice fanno una partita a briscola con un tale mazzo: per prima cosa si estrae una carta dal mazzo (il cui seme è detto *briscola*), dunque dal mazzo delle carte rimanenti si distribuiscono tre carte a ciascuno dei due giocatori.

- a. Calcolare la probabilità che Aldo abbia in mano l'asso di briscola.
- b. Calcolare la probabilità che Aldo abbia in mano almeno una briscola.
- c. Stabilire se gli eventi "Aldo ha almeno un asso" e "Aldo ha almeno una briscola" sono indipendenti. Calcolare quindi la probabilità che Aldo abbia contemporaneamente almeno un asso e almeno una briscola.
- d. Supponendo che Aldo non abbia briscole in mano, calcolare la probabilità che Beatrice abbia in mano almeno una briscola.
- e. Calcolare mediamente quante briscole sono in mano ad Aldo.

Soluzione. a) Sia E_1 l'evento "Aldo ha l'asso di briscola", e sia A l'evento "La briscola estratta non è l'asso". Allora

$$P(E_1) = P(E_1 \cap A) = P(A)P(E_1|A) = \frac{9}{10} \cdot \frac{\binom{38}{2}}{\binom{39}{3}} = 0.0692$$

b) Sia E_2 l'evento "Aldo ha almeno una briscola". Allora

$$P(E_2) = 1 - \frac{\binom{30}{3}}{\binom{39}{3}} = 0.5557$$

c) Osserviamo che gli eventi "Aldo ha almeno un asso" e "Aldo ha almeno una briscola" sono indipendenti se e solo se sono indipendenti i loro complementari.

Sia E_3 l'evento "Aldo non ha assi" e sia E_4 l'evento "Aldo non ha briscole". La probabilità di E_3 coincide con la probabilità di non estrarre mai un asso in tre estrazioni da un mazzo di 40 carte. Equivalentemente, possiamo calcolare la probabilità utilizzando la formula delle probabilità totali, trovando dunque

$$P(E_3) = \frac{\binom{36}{3}}{\binom{40}{3}} = \frac{1}{10} \frac{\binom{36}{3}}{\binom{39}{3}} + \frac{9}{10} \frac{\binom{35}{3}}{\binom{39}{3}} = 0.7227$$

$$P(E_4) = \frac{\binom{30}{3}}{\binom{39}{3}} = 0.4443$$

$$P(E_3 \cap E_4) = \frac{\binom{27}{3}}{\binom{39}{3}} = 0.3201$$

$$P(E_3^c) = 0.2773, \qquad P(E_4^c) = P(E_2) = 0.5557.$$

D'altra parte $P(E_3)P(E_4)=0.3210$, quindi i due eventi sono dipendenti (anche se di poco).

Detto E_5 l'evento "Aldo ha almeno un asso e almeno una briscola", abbiamo dunque

$$P(E_5) = 1 - P(E_3 \cup E_4) = 1 - P(E_3) - P(E_4) + P(E_3 \cap E_4) = 0.1531$$

d) Sia E_6 l'evento "Aldo non ha briscole", e sia E_7 l'evento "Beatrice ha almeno una briscola". Allora

$$P(E_7|E_6) = 1 - P(E_7^c|E_6) = 1 - \frac{\binom{27}{3}}{\binom{36}{3}} = 0.5903$$

e) Sia X la variabile aleatoria "numero di briscole in mano ad Aldo". Allora $X \sim H(3; 9, 30)$. Dunque il numero di briscole mediamente in mano ad Aldo è dato dal valore atteso

$$E(X) = \frac{3 \cdot 9}{39} = \frac{9}{13} = 0.6923.$$

Esercizio 2 Sotto un ponte ferroviario passano due binari. Su entrambi i binari i treni passano in intervalli di tempo la cui durata ha densità esponenziale, sul primo binario mediamente uno ogni 7 minuti, e sul secondo binario mediamente uno ogni 5 minuti.

- i) Calcolare la probabilità che in 5 minuti passi sotto al ponte almeno un treno sul primo binario.
- ii) Calcolare la probabilità che in 5 minuti passi sotto al ponte almeno un treno.
- iii) Determinare un intervallo di tempo per cui, con probabilità del 95%, nessun treno passerà sotto il ponte nel lasso di tempo in questione.
- iv) Dovendo fare un controllo sul ponte, abbiamo bisogno che nessun treno passi sul primo binario per un minuto. D'altra parte possiamo richiedere di modificare la durata media a dell'intervallo di tempo che separa il passaggio di due treni successivi sul primo binario (che rimane sempre di densità esponenziale). Determinare il valore a per cui nessun treno passerà sul primo binario per un minuto con probabilità del 95%.

Soluzione. Siano X_1, X_2 gli intervalli di tempo (in minuti) che separano il passaggio di due treni successivi sul primo e sul secondo binario, rispettivamente.

Allora $X_1 \sim Exp(1/7)$ e $X_2 \sim Exp(1/5)$, vale a dire che dato t > 0 abbiamo $P(X_1 < t) = 1 - e^{-t/7}$ e $P(X_2 < t) = 1 - e^{-t/5}$. Sia Z il minimo tra X_1 e X_2 , allora Z è una variabile esponenziale di parametro $\frac{1}{7} + \frac{1}{5} = \frac{12}{35}$.

i) Poiché X_1 gode della mancanza di memoria, la probabilità che in 5 minuti passi almeno un treno sul primo binario sotto al ponte è data da

$$P(X_1 < 5) = 1 - e^{-5/7} = 0.5105$$

ii) Poiché X_1,X_2 godono della mancanza di memoria, la probabilità che in 5 minuti passi almeno un treno sotto al ponte è data da

$$P(Z < 5) = 1 - e^{-5.12/35} = 1 - e^{-12/7} = 0.8199$$

- iii) Abbiamo $P(Z>t)=e^{-12t/35}$. Affinché tale probabilità sia del 95% deve quindi essere $e^{-12t/35}=0.95$, vale a dire $t=-\log(0.95)\cdot 35/12=0.0513\cdot 35/12=0.1496$.
- iv) Come al punto precedente, $P(X_1 > t) = e^{-t/a}$. Prendendo t = 1, troviamo $e^{-1/a} = 0.95$. Dunque $1/a = -\log(0.95) = 0.0513$, da cui ricaviamo $a = -1/\log(0.95) = 19.4932$.

Esercizio 3 Siano X_1, \ldots, X_{360} variabili aleatorie discrete tutte quante indipendenti e uniformi, con valori -2, -1, 0, 1, 2, 4.

- a. Calcolare la densità di $X_1 X_2^2$.
- b. Calcolare valore atteso e varianza di $X_1-X_2^2$. c. Calcolare $P(X_1+\ldots+X_{180}-X_{181}^2-\ldots-X_{360}^2<-750)$.

Soluzione. La variabile X_2^2 assume valori 0, 1, 4, 16, con densità data dalla tabella

X_2	0	1	4	16		
p_{X_2}	1/6	2/6	2/6	1/6		

I valori assunti da $X_1-X_2^2$ sono dati dalle entrate della seguente tabella

X_2 X_1	-2	-1	0	1	2	4
0	-2	-1	0	1	2	4
1	-3	-2	-1	0	1	3
4	-6	-5	-4	-3	-2	0
16	-18	-17	-16	-15	-14	-12

a) Poiché X_1 e X_2 sono indipendenti, dalla precedente tabella deduciamo che la densità di $X_1 - X_2^2$ è

$X_1 - X_2^2$																	
$p_{X_1-X_2^2}$	1/36	1/36	1/36	1/36	1/36	1/36	2/36	2/36	2/36	4/36	5/36	3/36	5/36	3/36	1/36	2/36	1/36

b) Il valore atteso di X_1 è

$$E(X_1) = \frac{-2-1+0+1+2+4}{6} = \frac{4}{6} = \frac{2}{3}$$

Il valore atteso di X_1^2 e di X_2^2 è

$$E(X_1^2) = E(X_2^2) = \frac{4+1+0+1+4+16}{6} = \frac{26}{6} = \frac{13}{3}$$

Il valore atteso di X_2^4 è

$$E(X_2^4) = \frac{16+1+0+1+16+256}{6} = \frac{290}{6} = \frac{145}{3}$$

Dunque la varianza di X_1 è

$$Var(X_1) = E(X_1^2) - E(X_1)^2 = \frac{13}{3} - \frac{4}{9} = \frac{35}{9}$$

mentre la varianza di X_2^2 è

$$Var(X_2^2) = E(X_2^4) - E(X_2^2)^2 = \frac{145}{3} - \frac{169}{9} = \frac{266}{9}$$

Pertanto il valore atteso di $X_1 - X_2^2$ è

$$E(X_1 - X_2^2) = E(X_1) - E(X_2^2) = \frac{2}{3} - \frac{13}{3} = -\frac{11}{3} = -3.667$$

e la varianza di $X_1 - X_2^2$ è

$$Var(X_1 - X_2^2) = Var(X_1) + Var(X_2^2) = \frac{35}{9} + \frac{266}{9} = \frac{301}{9} = 33.444$$

c) Sia $Z=X_1+\ldots+X_{180}-X_{181}^2-\ldots-X_{360}^2=(X_1-X_{181}^2)+\ldots+(X_{180}-X_{360}^2)$. Allora Z è somma di 180 variabili aleatorie indipendenti, tutte con la stessa densità di $X_1-X_2^2$. Pertanto dal teorema del limite

centrale possiamo approssimare Z con una variabile aleatoria normale di media $-180 \cdot \frac{11}{3} = -660$ e varianza $180 \cdot \frac{301}{9} = 6020$, vale a dire $Z \sim N(-660, 6020)$. Calcolato $\sqrt{6020} = 77.59$, applicando la correzione di continuità troviamo dunque

$$P(Z < -750) = P(Z \le -751) = P(77.59 \cdot \zeta_0 - 660 < -750.5) = P(\zeta_0 < -\frac{90.5}{77.59}) = \Phi(-1.17) = 1 - \Phi(1.17) = 1 - 0.8790 = 0.121$$