COMPSCI/SFWRENG 2FA3

Discrete Mathematics with Applications II Winter 2020

Week 06 Exercises with Solutions

Dr. William M. Farmer McMaster University

Revised: February 16, 2020

Background Definitions

Consider the following definitions:

- 1. $\Sigma_{\text{stack}} = (\mathcal{B}, \mathcal{C}, \mathcal{F}, \mathcal{P}, \tau)$ where:
 - a. $\mathcal{B} = \{\mathsf{Element}, \mathsf{Stack}\}.$
 - b. $C = \{error, bottom\}.$
 - c. $\mathcal{F} = \{\text{push}, \text{pop}, \text{top}\}.$
 - d. $\mathcal{P} = \emptyset$.
 - e. $\tau(error) = Element$.
 - f. $\tau(bottom) = Stack$.
 - g. $\tau(push) = Element \times Stack \rightarrow Stack$.
 - h. $\tau(pop) = Stack \rightarrow Stack$.
 - i. $\tau(\mathsf{top}) = \mathsf{Stack} \to \mathsf{Element}$.
- 2. $\Sigma_{\text{grp}} = (\{G\}, \{e\}, \{*, \mathsf{inv}\}, \emptyset, \tau)$ where $\tau(e) = G, \tau(*) = G \times G \to G$, and $\tau(\mathsf{inv}) = G \to G$.
- 3. Let $\Gamma_{\rm grp}$ be the following set of Σ -sentences:

Assoc
$$\forall x, y, z : G . (x * y) * z = x * (y * z).$$

 $IdLeft \ \forall x : G . \ e * x = x.$

IdRight $\forall x : G \cdot x * e = x$.

InvLeft $\forall x : G . inv(x) * x = e$.

InvRight $\forall x : G \cdot x * \mathsf{inv}(x) = e$.

4. A partition of a set S is a nonempty set U of subsets of S such that, for all $x \in S$, x is a member of exactly one member of U. Hence (1) the members of U are disjoint and (2) their union equals S.

- 5. A *lattice* is a weak partial order (U, \leq) such that each pair of elements of U has both a least upper bound and a greatest lower bound.
- 6. Let $M_1 = (D_1, e_1, *_1)$ and $M_2 = (D_2, e_2, *_2)$ be two monoids. A monoid homomorphism from M_1 to M_2 is a function $h: D_1 \to D_2$ such that:
 - a. $h(x *_1 y) = h(x) *_2 h(y)$ for all $x, y \in D_1$. b. $h(e_1) = e_2$.

Exercises

- 1. Construct in MSFOL a theory $T = (\Sigma_{\text{stack}}, \Gamma_{\text{stack}})$ of stacks. Γ_{stack} should contain axioms that say:
 - a. The top of the bottom stack is the error element.
 - b. Let s be a stack obtained by pushing an element e onto a stack s'. The top of s is e.
 - c. Pop of the bottom stack is the bottom stack.
 - d. Let s be a stack obtained by pushing an element e onto a stack s'. The pop of s is s'.

Solution:

 $\Sigma_{\rm stack}$ is defined in Background Definitions.

 Γ_{stack} contains the following:

- a. top(bottom) = errorb. $\forall e : Element, s' : Stack . top(push(e, s')) = e$ c. pop(bottom) = bottomd. $\forall e : Element, s' : Stack . pop(push(e, s')) = s'$
- 2. A group is a monoid with an inverse operation. $T_{\text{grp}} = (\Sigma_{\text{grp}}, \Gamma_{\text{grp}})$ is a theory of groups. Show that models of T_{grp} can be directly derived from $(\mathbb{Z}, 0, +)$ and $(\mathbb{Q}, 1, *)$ but not from $(\mathbb{N}, 0, +)$ and $(\mathbb{Z}, 1, *)$.

Solution:

In each case, we must show/argue that the function provided for * is associative, that the constant provided for e is a left and right identity for that operator, and provide a function for inv which is a right and left inverse of the function for *.

- $(\mathbb{Z}, 0, +)$: + is associative, 0 is the identity for +, and for inv we may take the unary -, since x + -x = 0 and -x + x = 0.
- $(\mathbb{Q},1,*)$: Take $\mathbb{Q}\setminus\{0\}$ as G, rather than \mathbb{Q} , because there is no multiplicative inverse for 0. Then, * is associative, 1 is the identity for *, and for inv we may take the unary "recipricol", since $x*\frac{1}{x}=1$ and $\frac{1}{x}*x=1$ (since we have removed 0).

- $(\mathbb{N}, 0, +)$: while + is associative and 0 is the identity for +, we cannot provide an inverse for plus; this can be seen because e.g. $1 + y \neq 0$ for any y.
- $(\mathbb{Z}, 1, *)$: while * is associative and 1 is the identity for *, we cannot provide an inverse for *; this can be seen because e.g. $1 + y \neq 0$ for any y..
- 3. Let $\Sigma = (\alpha, p : \alpha \to \mathbb{B}, q : \alpha \to \mathbb{B})$ be a signature of MSFOL. What should Γ be so that each model for the theory $T = (\Sigma, \Gamma)$ is a set of values partitioned into two components defined by p and q.

Solution:

Let Γ contain the following Σ -sentences:

- a. $\forall x : \alpha . \neg (p x \land q x)$.
- b. $\forall x : \alpha . p x \lor q x$.

Let $\mathcal{M} = (\{D_{\alpha}\}, I)$ be a model for T. Then clearly the two sets

$$\{d \in D_{\alpha} \mid V_{\phi[x:\alpha \mapsto d]}^{\mathbf{M}} p(x:\alpha) = T\}$$

and

$$\{d \in D_{\alpha} \mid V_{\phi[x:\alpha \mapsto d]}^{M} q(x:\alpha) = T\}$$

are a partition of D_{α} .

- 4. Let Σ_{pairs} be the signature $(\mathcal{B}, \emptyset, \mathcal{F}, \emptyset, \tau)$ where:
 - a. $\mathcal{B} = \{\alpha, \beta, \gamma\}.$
 - b. $\mathcal{F} = \{\mathsf{mkPair}, \mathsf{left}, \mathsf{right}\}\ \text{where}\ \tau(\mathsf{mkPair}) = \alpha \times \beta \to \gamma,\ \tau(\mathsf{left}) = \gamma \to \alpha,\ \mathrm{and}\ \tau(\mathsf{right}) = \gamma \to \beta.$

What should Γ_{pairs} be so that $T_{\text{pairs}} = (\Sigma_{\text{pairs}}, \Gamma_{\text{pairs}})$ is a theory of mathematical structures that contain (1) sets A, B, and C where C is a set of values that have the same structure as ordered pairs of members of A and B and (2) functions to construct and destruct the pairs in C?

Solution:

 Γ_{pairs} should consist of the following sentences:

- a. OnlyPairs $\forall z : \gamma . \exists x : \alpha, y : \beta$. mkPair x y = z
- b. mkPairInj $\forall x, x' : \alpha, y, y' : \beta$. mkPair $x \ y = \text{mkPair} \ x' \ y' \Rightarrow (x = x' \land y = y')$
- c. IsLeftProj $\forall x : \alpha, y : \beta$. left (mkPair x y) = x
- d. IsRightProj $\forall x : \alpha, y : \beta$ right (mkPair x y) = y

5. Let $\Sigma_{\text{lattice}} = (\{U\}, \emptyset, \emptyset, \{\leq\}, \tau)$ where $\tau(\leq) = U \times U \to \mathbb{B}$. Construct in MSFOL a theory $T = (\Sigma_{\text{lattice}}, \Gamma_{\text{lattice}})$ of lattices. Solution.

 $\Sigma_{\mathsf{lattice}}$ is defined in Background Definitions.

 Γ_{lattice} contain the following:

- a. $\forall x \in U . x \leq x$
- b. $\forall x, y \in U$. $(x \le y \land y \le x) \Rightarrow x = y$
- c. $\forall x, y, z \in U$. $(x \le y \land y \le z) \Rightarrow x \le z$
- d. $\forall x,y \in U$. $\exists z \in U$. $x \leq z \land y \leq z \land (\forall w \in U . x \leq w \land y \leq w \Rightarrow z \leq w).$
- e. $\forall x, y \in U$. $\exists z \in U$. $z \leq x \land z \leq y \land (\forall w \in U . w \leq x \land w \leq y \Rightarrow w \leq z).$
- 6. Explain why it is not possible to construct a theory of well-founded relations in MSFOL.

Solution:

Recall the definition of a well founded relation: a binary relation R on a set U is well founded if every non-empty subset of U has an R-minimal element.

Since it is not possible to quantify over subsets of a sort in MSFOL, it is not possible to construct a theory of well-founded relations in MSFOL.

7. Construct in MSFOL a theory of vector spaces.

Solution: Let $T_{vs} = (\Sigma_{vs}, \Gamma_{vs})$ where Σ_{vs} contains the following:

- $\mathcal{B} = \{F, V\}$
- $C = \{1, \vec{0}\}$
- $\mathcal{F} = \{*, \cdot, +, +_F, -\}$
- $\mathcal{P} = \{F, V\}$
- τ has:

$$-\tau(1) = F$$

$$-\tau(\vec{0}) = V$$

$$-\tau(*) = F \times F \to F$$

$$-\tau(\cdot) = F \times V \to V$$

$$-\tau(+) = V \times V \to V$$

$$-\tau(+_F) = F \times F \to F$$

$$-\tau(-) = V \to V$$

and Γ_{vs} contains the following axioms:

- $\forall \vec{x}, \vec{y} : V \cdot \vec{x} + \vec{y} = \vec{y} + \vec{x}$
- $\forall \vec{x}, \vec{y}, \vec{z} : V . (\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$
- $\bullet \ \forall \vec{x} : V \cdot \vec{0} + \vec{x} = \vec{x}$
- $\bullet \ \forall \vec{x} : V . \vec{x} + \vec{0} = \vec{x}$
- $\bullet \ \forall \vec{x} : V . \vec{x} + (-\vec{x}) = \vec{0}$
- $\forall r, s : F, \vec{x} : V \cdot r \cdot (s \cdot \vec{x}) = (r * s) \cdot \vec{x}$
- $\forall r, s : F, \vec{x} : V. (r +_F s) \cdot \vec{x} = r \cdot \vec{x} + s \cdot \vec{x}$
- $\forall r : F, \vec{x}, \vec{y} : V \cdot r \cdot (\vec{x} + \vec{y}) = r \cdot \vec{x} + r \cdot \vec{y}$
- $\bullet \ \forall \vec{x} : V . \ 1 \cdot \vec{x} = \vec{x}$
- 8. Construct in MSFOL a theory T of monoid homomorphisms where each model for T contains a monoid homomorphism.

Solution:

Let $\Sigma = (\{M_1, M_2\}, \{e_1, e_2\}, \{\circ_1, \circ_2, h\}, \emptyset, \tau)$ where τ is defined as follows:

- a. $\tau e_1 = M_1$.
- b. $\tau e_2 = M_2$.
- c. $\tau \circ_1 = M_1 \times M_1 \to M_1$.
- d. $\tau \circ_2 = M_2 \times M_2 \to M_2$.
- e. $\tau h = M_1 \rightarrow M_2$.

Let $T = (\Sigma, \Gamma)$ where Γ contains the following Σ -sentences:

- a. $\forall x, y, z : M_1 \cdot (x \circ_1 y) \circ_1 z = x \circ_1 (y \circ_1 z)$.
- b. $\forall x : M_1 \cdot e \circ_1 x = x$.
- c. $\forall x : M_1 . x \circ_1 e = x$.
- d. $\forall x, y, z : M_2 \cdot (x \circ_2 y) \circ_2 z = x \circ_2 (y \circ_2 z)$.
- e. $\forall x : M_2 . e \circ_2 x = x$.
- f. $\forall x : M_2 . x \circ_2 e = x$.
- g. $\forall x, y : M_1 \cdot h(x \circ_1 y) = (h x) \circ_2 (h y)$.
- h. $h e_1 = e_2$.

If $\mathcal{H} = (\{D_{M_1}, D_{M_2}\}, I)$ is a model for T, then clearly Ih is a monoid homomorphism. If g is a monoid homomorphism in some mathematical model, then clearly there is a Σ -interpretation $\mathcal{H} = (\{D_{M_1}, D_{M_2}\}, I)$ such that g = Ih. Therefore, T is a theory of monoid homomorphisms.