Título

Autor 1 Autor 2

Universidade Federal do Paraná Programa de Pós-Graduação em Informática

5 de outubro de 2015

- Introdução
 - Objetivo
- 2 Método Proposto
 - Método Proposto
 - Objetivos
- Configuração dos Experimentos
 - Experimentos
- Resultados
 - Análise
 - Resultados

Objetivo

Objetivo Geral

Texto

Texto

- Texto
- Texto

Objetivos

Objetivos do trabalho

- Texto:
- Texto;
- Texto;
- Texto;
- Texto.

Funções objetivas do trabalho

- $maxf_i(T) = pc(T)$
- $minf_{ii}(T) = \frac{custo(T)}{n^{\circ} c de t}$
- $maxf_{iii}(T) = \frac{pref(T)}{n^{\circ} c \ de \ t}$
- $maxf_{iv}(T) = escore(T)$
- $minf_{v}(T) = nCasos(T)$

Funções objetivas do trabalho

Funções objetivas do trabalho

•
$$pc(T) = \frac{(n^{\circ} de p c)}{(n^{\circ} de p c)}$$

$$c(T) = \sum_{i=0}^{i < n} c(p_i)$$

•
$$score(T) = \frac{(n^{\circ} de m m)}{(n^{\circ} de m g + n^{\circ} de m e)}$$

•
$$nCasos(T) = \frac{(n^{O} de c de t)}{(total de p)}$$

Tabela

Tabelas utilizadas

Matriz	Qtde de P	Qtde de M	Qtde de Pa	Qtde de C
texto1	450	227	183	21
texto2	1152	394	202	22
texto3	68	106	75	14
texto4	504	357	195	22

Experimentos

Representação da População de Exemplo

Texto

Texto.

Equação

$$H = \begin{pmatrix} M + p - 1 \\ p \end{pmatrix} \tag{1}$$

Operadores, Probabilidades e Gerações

Parâmetro	Valores	
Cruzamento	Single Point e Uniform	
Mutação	Bit Flip e Product Swap	
Seleção	Torneio Binário	
Probabilidade de Cruzamento	80% e 90%	
Probabilidade de Mutação	0.5% e 1%	
Quantidade de Gerações	200, 400 e 600	

Configuração dos Experimentos

Quantidade de Avaliações

	População					
		70 126 2		210		
Geração	200	14.000	25.200	42.000		
	400	28.000	50.400	84.000		
	600	42.000	75.600	126.000		

Análise dos Resultados

Métodos

- Análise da Fronteira de Pareto
- Análise do Hypervolume
- Teste estatístico de Kruskal Wallis.

Melhor Configuração

Matriz	Algoritmo	Aval.	Pop.	Ger.	%Cruz	%Mut	Cruz.	Mut.
С	NSGA-II	25.200	126	200	90%	1%	Unif.	PS
	NSGA-III	14.000	70	200	90%	0.5%	Unif.	PS
e	NSGA-II	25.200	126	200	90%	1%	Unif.	PS
	NSGA-III	25.200	126	200	90%	1%	Unif.	PS
	NSGA-II	25.200	126	200	80%	1%	SP	PS
J	NSGA-III	14.000	70	200	90%	0.5%	SP	BF
w	NSGA-II	14.000	70	200	90%	1%	Unif.	PS
	NSGA-III	14.000	70	200	90%	0.5%	Unif.	BF

Resultados encontrados pelos experimentos

Matriz	Algoritmo	Média (HV)	DP	Maior (HV)	DP	Kruskal
	NSGA-II	0.62023	0.04014	0.46567	0.00442	TRUE
С	NSGA-III	0.54753	0.03500	0.43851	0.01429	TROL
e -	NSGA-II	0.62477	0.03647	0.63374	0.01673	FALSE
	NSGA-III	0.64214	0.03435	0.64977	0.02570	FALSE
j	NSGA-II	0.46720	0.011003	0.51034	0.00812	TRUE
	NSGA-III	0.41669	0.02091	0.47553	0.01359	INUE
w	NSGA-II	0.55486	0.03767	0.50344	0.00970	TRUE
	NSGA-III	0.57406	0.031040	0.46240	0.014059	TRUE

Quantidade de soluções nas Fronteiras de Pareto

Matriz	PF _{aprox}	$PF_{know}(PF_{true}/\%)$			
		NSGA-II	NSGA-III		
С	214	189(181 / 84,58%)	116(33 / 15,42%)		
е	119	118(59 / 49,58%)	96(60 / 50,42%)		
j	590	542(361 / 61,19%)	331(229 / 38,81%)		
W	113	95(53 / 46,90%)	89(60 / 53,1%)		

Tempo de execução

Matriz	Algoritmo	Tempo Total (s)	Média (s)
	NSGA-II	250	8.3
С	NSGA-III	161	5.4
е	NSGA-II	1.457	48
	NSGA-III	1.623	54
j	NSGA-II	46	1.5
	NSGA-III	32	1
w	NSGA-II	220	7
	NSGA-III	247	8

Obrigado!

