

STT 1000 - STATISTIQVES

ARTHUR CHARPENTIER

Estimation ponctuelle : $\widehat{\theta}(\mathbf{y}) \in \mathbb{R}$ (ou \mathbb{R}^d)

Intervalle de confiance: $IC_{\alpha} = [\widehat{a}(\mathbf{Y}), \widehat{b}(\mathbf{Y})] \subset \mathbb{R}$

lci, on va se poser la question sur la valeur prise par θ .

Example: "si la fréquentation moyenne par mois pendant la saison d'ouverture dépasse 3500, nous engagerons des moyens financiers pour ouvrir la piste cyclable à l'année"

y_i : fréquentation moyenne par mois

- ightharpoonup si $\mathbb{E}[Y] > 3500$ ouverture
- ▶ si $\mathbb{E}[Y]$ < 3500 fermeture

Hypothèse 1: Y_i suit une loi normale $\mathcal{N}(\mu, \sigma^2)$, et les Y_i sont des variables indépendantes

Hypothèse 2: Y_i suit une loi de Poisson $\mathcal{P}(\lambda)$, et les Y_i sont des variables indépendantes

data : $\mathbf{y} = \{3400, 4204, 4224, 4255, 4111, 3005\}$

Hypothèse 1-2: $\widehat{\mu}(\mathbf{y}) = \overline{y}$ et $\widehat{\lambda}(\mathbf{y}) = \overline{y}$ Pour trancher entre les deux hypothèses :

- ▶ si $\overline{y} > y^*$, $\mathbb{E}[Y] > 3500$ est l'hypothèse la plus crédible
- ▶ si $\overline{y} \le y^*$, $\mathbb{E}[Y] \le 3500$ est l'hypothèse la plus crédible

Comment choisir y^* ?

Test, rejet & valeur critique

La région $\{\overline{y} \le y^*\}$ est la région de rejet, y^* est appelée valeur critique.

Tentons quelques scénarios, par simulations (pour comprendre)

Example: $\overline{y} \sim 3866.5$, scenario $\mu = 3500$ ($\sigma = 530$), $y^* = 3600$ $\mathbb{P}[Z > y^*] \sim 42.51\%$ avec $\overline{Z} \sim \mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}})$

Example: $\overline{y} \sim 3866.5$, scenario $\mu = 3600 \ (\sigma = 530)$, $y^* = 3500$ $\mathbb{P}[Z > y^*] \sim 57.48\% \text{ avec } \overline{Z} \sim \mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}})$

Example: $\overline{y} \sim 3866.5$, scenario $\mu = 3200$ ($\sigma = 530$), $y^* = 3500$ $\mathbb{P}[Z > y^*] \sim 28.57\%$ avec $\overline{Z} \sim \mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}})$

Example: $\overline{y} \sim 3866.5$, scenario $\mu = 3800 \ (\sigma = 530)$, $y^* = 3500$ $\mathbb{P}[Z > y^*] \sim 71.43\% \text{ avec } \overline{Z} \sim \mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}})$

Pour une règle de décision fixée (y^*) , correspondant à une région de rejet $\{y > y^*\}$, deux erreurs de décision sont possible, en fonction de la valeur de μ supposée.

- $\blacktriangleright \mu \notin \{y > y^*\} \text{ et } \overline{y} \in \{y > y^*\}$
- $\mu \in \{y > y^*\} \text{ et } \overline{y} \notin \{y > y^*\}$

On ne peut pas contrôler les deux erreurs en même temps...

On se donne $\alpha \in (0,1)$, et on cherche y^* tel que

$$\mathbb{P}\big[\overline{Y} > y^{\star} \big| H_0 \text{ est vraie}\big] = \alpha$$

Comparer $\widehat{\mu}(\mathbf{y})$ à \mathbf{y}^* peut se réécrire

$$\frac{\widehat{\mu}(\mathbf{y}) - y_0}{\sigma \sqrt{n}} \leftrightarrow u_{\alpha}$$

- $ightharpoonup H_0$: hypothèse nulle, $\theta \in \Theta_0$
- ▶ H_1 : hypothèse alternative, $\theta \in \Theta_1$ (souvent $\theta \notin \Theta_0$)

Probabilité critique (p-value)

La probabilité critique (p-value) associéee à une statistique de test est la probabilité d'observer des valeurs aussi ou plus extrêmes que la valeur observée dans l'échantillon sachant que H_0 est vraie.

Elle est le plus petit seuil auquel on peut rejeter H0. Pour faire simple, c'est le (plus petit) risque à encourir pour rejeter H0 et accepter H_1 .

En fonction de celle-ci, la règle de décision peut se réécrire de la façon suivante : on rejete H_0 (ou on accepte H_1) si p-valeur< α .

Il est inévitable que des erreurs soient possibles dans la prise de décision suite à un test.

On contrôle ici

$$\mathbb{P}(\text{rejeter } H_0|H_0 \text{ est vraie}) = \mathbb{P}(\text{accepter } H_1|H_0 \text{ est vraie})$$

en définissant la région de rejet de telle sorte que cette probabilité α soit petite.

Mais un autre type d'erreur est possible :

 $\mathbb{P}(\text{ne pas rejeter } H_0|H_0 \text{ est fausse}) = \mathbb{P}(\text{ne pas accepter } H_1|H_0 \text{ est fausse})$

