

Complex Numbers

Why

We want to find the roots of negative numbers.¹

Definition

A complex number is an ordered pair of real numbers. The real part of a complex number is its first coordinate. The imaginary part of a complex number is its second coordinate.

The complex conjugate (or conjugate) of a complex number z is the complex number whose real part matches z and whose imaginary part is the additive inverse of z. The complex conjugate of a real number (imaginary part is zero) is the real number. In other words, the complex conjugate of a complex number with no imaginary part is the same complex number.

Notation

When we think of \mathbb{R}^2 as the set of complex numbers, we denote it by \mathbb{C} . Let $z \in \mathbb{C}$. We denote the real part of z by $\mathbb{Re}(z)$, read "real of z," and the imaginary part by $\mathbb{Im}(z)$, read "imaginary of z." If z = (a, b) for $a, b \in \mathbb{R}$, then $\mathbb{Re}(z) = a$ and $\mathbb{Im}(z) = b$.

We denote the complex conjugate of the complex number $z \in \mathbf{C}$ by $z^* \in \mathbf{C}$. Another common notation, not used in these sheets is \overline{z} or \overline{z} . If there exists $a, b \in \mathbf{R}$ so that z = (a, b), then $z^* = (a, -b)$.

¹Future editions will modify this, and will discuss the existence of solutions of algebraic equations.

Modulus and argument

The modulus of $z \in \mathbf{C}$ is the distance of z to the origin. If $z \in \mathbf{C}$, then the modulus of z is

$$\sqrt{\operatorname{Re} z^2 + \operatorname{Im} z^2}$$
.

We denote the modulus of z by |z|.

The argument of $z \in \mathbb{C}$ is $\tan^{-1}(\operatorname{Im} z / \operatorname{Re} z)$. We denote the argument of z by $\arg z$.²

²Future editions will include the geometric interpretations.

