

Universidade Federal de Santa Catarina

Centro Tecnológico

Departamento de Informática e Estatística Curso de Graduação em Ciências da Computação

Sistemas Digitais

INE 5406

Aula 6-T

2. Máquinas Sequenciais Síncronas. Modelos de Moore e de Mealy. Estrutura e representações do comportamento. Análise de circuitos sequenciais síncronos. Síntese de circuitos sequenciais segundo o Modelo de Moore. Exemplos.

Prof. José Luís Güntzel guntzel@inf.ufsc.br

www.inf.ufsc.br/~guntzel/ine5406/ine5406.html

Máquinas de Estados Finitos (FSM)

- Nome dado ao modelo genérico (abstrato) de circuitos sequenciais.
- Em inglês **FSMs**: Finite State Machines.
- O comportamento depende das **entradas** e do **estado** em que o circuito se encontra ("**estado corrente**" ou "**estado atual**").
- O **estado** corresponde ao valor de um conjunto de variáveis binárias denominadas **variáveis de estado**.
- As variáveis de estado ficam armazenadas no registrador de estado.
- Dado um **estado atual** e uma combinação de valores de entrada (vetor de entrada), a FSM calcula os **valores das saídas** (vetor de saída) e o **próximo estado**.

Máquinas de Estados Finitos (FSM)

- Podem ser síncronas (cadenciadas por um sinal monótono chamado relógio ou *clock*) ou assíncronas (sem relógio).
- Máquina Sequenciais Síncronas são mais utilizadas porque:
 - São mais fáceis de projetar e de validar.
 - Têm operação mais segura, são mais robustas.
- Há dois modelos: Moore e Mealy.
- Registradores podem ser vistos como Máquina Sequenciais Síncronas.

Modelo de Moore

Característica principal: as saídas dependem apenas do estado atual.

Modelo de Moore

Característica principal: as saídas dependem apenas do estado atual.

Modelo de Mealy

Característica principal: as saídas dependem do estado atual e de

entrada(s) primária(s)

Análise de Circuitos Sequenciais

Roteiro para a análise:

- 1. Determinar as Equações de Excitação
- 2. Determinar as Equações de Estado e as Equações das Saídas
- 3. Construir a Tabela de Próximo Estado e a Tabela das Saídas
- 4. Desenhar o Diagrama de Transição de Estados

Vejamos um exemplo...

Análise de Circuitos Sequenciais

Exemplo 1: analisar o circuito seqüencial que segue.

A qual modelo de FSM corresponde este circuito?

Moore ou Mealy?

Análise de Circuitos Sequenciais

1. Determinando as equações de excitação (entradas dos flip-flops)

INE/CTC/UFSC Sistemas Digitais - semestre 2010/2 Slide 6T.9 Prof. José Luís Güntzel

Análise de Circuitos Sequenciais

1. Determinando as equações de excitação (entradas dos flip-flops)

INE/CTC/UFSC Sistemas Digitais - semestre 2010/2 Prof. José Luís Güntzel

Análise de Circuitos Sequenciais

2. Determinando as equações de estado (saída dos flip-flops)

Análise de Circuitos Sequenciais

3. Construindo a Tabela de Transição de Estados e a Tabela da Saída $Q0_{t+1} = \overline{\text{cnt} \cdot Q0_t} + \overline{\text{cnt} \cdot Q0_t}$

$$Q1_{t+1} = \overline{\text{cnt}} \cdot Q1_t + \text{cnt} \cdot \overline{Q1_t} \cdot Q0_t + \text{cnt} \cdot Q1_t \cdot \overline{Q0_t}$$

Entrada	Estado	o atual	Próxim	o estado
cnt	$Q1_t$	$Q0_t$	$Q1_{t+1}$	$Q0_{t+1}$
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	1	1
1	0	0	0	1
1	0	1	1	0
1	1	0	1	1
1	1	1	0	0

$$Y = Q0 \cdot Q1$$

Q0	Q1	Y
0	0	0
0	1	0
1	0	0
1	1	1

Análise de Circuitos Sequenciais

4. Desenhando o Diagrama de Estados

Este circuito é um "contador binário módulo-4"

Análise de Circuitos Sequenciais

Exemplo de comportamento dinâmico

Análise de Circuitos Sequenciais

Segunda versão do Contador Módulo-4

Análise de Circuitos Sequenciais

Segunda versão do Contador Módulo-4

Como agora a saída Y depende também da entrada cnt, o valor de Y precisa ser associado às arestas do diagrama...

Análise de Circuitos Sequenciais

Segunda versão do Contador Módulo-4

Síntese de Circuitos Sequenciais

Exemplo 2:

Projete um circuito contador binário módulo 4 capaz de contar no sentido crescente $(00 \rightarrow 01 \rightarrow 10 \rightarrow 11 \rightarrow 00 \rightarrow 01 \dots)$ e no sentido decrescente $(00 \rightarrow 11 \rightarrow 10 \rightarrow 01 \rightarrow 00 \rightarrow 11 \dots)$.

A direção da contagem é determinada por uma variável de entrada denominada "UP":

- Se UP = 1 a contagem é no sentido crescente
- Se UP = 0 a contagem é no sentido decrescente

Além disso, este circuito possui uma entrada de habilitação denominada H:

- Enquanto H = 0 a contagem pára
- Enquanto H = 1, a cada borda ativa do sinal de relógio a contagem avança no sentido selecionado (crescente ou decrescente, conforme o valor de "UP")

Modelo de Moore

Característica principal: as saídas dependem apenas do estado atual.

Síntese de Circuitos Sequenciais

Roteiro para a Síntese (=Projeto)

- 1. Determinar quantos estados são necessários (e o nº de variáveis de estado)
- 2. Construir o diagrama de estados, observando com cuidado o comportamento solicitado para a FSM e adotando um modelo de FSM (Moore ou Mealy):
 - Determinar as transições entre estados necessárias
 - Selecionar um estado para servir como estado inicial
- 3. Construir a tabela de próximo estado e a tabela das saídas
- 4. Sintetizar (projetar) os circuitos combinacionais: lógica de próximo estado e lógica de saída.

Vejamos um exemplo...

Síntese de Circuitos Sequenciais

Exemplo 3:

Projete um circuito que satisfaça às seguintes especificações:

- 1.O circuito possui uma entrada, w, e uma saída, z.
- 2. Todas as mudanças de valores no circuito ocorrem na borda de subida do sinal de relógio.
- 3. Quando o circuito detetar que a entrada w vale "0", a saída z deve valer "0" no ciclo de relógio seguinte. Porém, quando o circuito detetar que a entrada w vale "1" durante duas bordas de relógio consecutivas, a saída z deve passar a valer "1" no ciclo de relógio seguinte à segunda ocorrência do valor "1". As mudanças de z estão sincronizadas com a borda de relógio ativa.

INE/CTC/UFSC
Sistemas Digitais - semestre 2010/2

Slide 6T.21

Prof. José Luís Güntzel

Síntese de Circuitos Sequenciais

Exemplo 3: Diagrama de Estados

Síntese de Circuitos Sequenciais

Exemplo 3: Tabelas de (Transição de) Estados e de Saída

Tabela de (transição de) estados

Estado atual	W	Próximo estado
A	0	A
A	1	В
В	0	A
В	1	С
С	0	A
С	1	С

Tabela de saída

Estado	Z
A	0
В	0
С	1

Síntese de Circuitos Sequenciais

Exemplo 3: Diagrama de Blocos

Sinais de entrada: w W Sinais de saída: z Número de estados: 3 ⇒ Logo, são necessários **Y**0 2 flip-flops para lógica de FF_0 lógica de armazenar as variáveis próximo \mathbf{Z} saída estado de estado ck Reset

Síntese de Circuitos Sequenciais

Exemplo 3: Codificação de Estados

Supondo a seguinte codificação: A=00, B=01, C=10

Estado atual	W	Próximo estado
A	0	A
A	1	В
В	0	A
В	1	С
С	0	A
С	1	С

	Estado atual y1y0	W	Próximo estado Y1Y0	
A	00	0	00	A
A	00	1	01	В
В	01	0	00	A
В	01	1	10	С
C	10	0	00	A
С	10	1	10	С
_	11	0	XX	_
_	11	1	XX	-

Síntese de Circuitos Sequenciais

Exemplo 3: Projetando a lógica de próximo estado

y1y0	W	Y1Y0
00	0	00
00	1	01
01	0	00
01	1	10
10	0	00
10	1	10
11	0	XX
11	1	XX

$$Y1 = w \cdot y1 + w \cdot y0$$
$$= w (y1+y0)$$

$$Y0 = w \cdot y \cdot 1 \cdot y \cdot 0$$

Síntese de Circuitos Sequenciais

Exemplo 3: Projetando a lógica de saída

	Estado	Z
	y1y0	
A	00	0
В	01	0
С	10	1
	11	X

$$z = y1$$

Síntese de Circuitos Sequenciais

Exemplo 3: circuito final

Síntese de Circuitos Sequenciais

Exemplo 3: Funcionamento dinâmico

Síntese de Circuitos Sequenciais Roteiro Revisitado para a Síntese (=Projeto)

- 1. Determinar quantos estados são necessários (e o nº de variáveis de estado)
- 2. Construir o diagrama de estados, observando com cuidado o comportamento solicitado para a FSM e adotando um modelo de FSM (Moore ou Mealy):
 - Determinar as transições entre estados necessárias
 - Selecionar um estado para servir como estado inicial
- 3. Construir a tabela de próximo estado e a tabela das saídas
- **4.** Escolher uma codificação para os estados e definir o tipo de flip-flops para compor o registrador de estados.
- 5. Sintetizar (projetar) os circuitos combinacionais: lógica de próximo estado e lógica de saída.

Síntese de Circuitos Sequenciais

Exemplo 4:

Projetar o "circuito de controle" que permita realizar um *swap* entre R1 e R2, utilizando R3 como temporário. (Desconsiderar outras possíveis operações.)

Síntese de Circuitos Sequenciais

Exemplo 4:

Para realizar o *swap* entre R1 e R2 no circuito abaixo, é necessário realizar a seguinte seqüência de "**transferências entre registradores**":

```
1. R3 \leftarrow R2;
```

$$2.R2 \leftarrow R1$$
;

$$3.R1 \leftarrow R3$$
;

Síntese de Circuitos Sequenciais

Exemplo 4:

Supondo que o sinal "w" indique o início da operação *swap*, é possível criar um diagrama de estados para controlar tal seqüência:

Síntese de Circuitos Sequenciais

Exemplo 4: Diagrama de estados e sinais de saída

Estado:	Operação:	Sinais de saída que devem valer "1"
A		
В	R3 ← R2;	R2out = 1; R3in = 1;
С	R2 ← R1;	R1out = 1; R2in = 1;
D	R1 ← R3;	R3out = 1; R1in = 1; Done = 1;

INE/CTC/UFSC

Síntese de Circuitos Sequenciais

Exemplo 4: Tabela de Sinais de Saída

Estado:	Operação:	Sinais de saída que devem valer "1"
A		
В	R3 ← R2;	R2out = 1; R3in = 1;
С	R2 ← R1;	R1out = 1; R2in = 1;
D	R1 ← R3;	R3out = 1; R1in = 1; Done = 1;

	R1out	R1in	R2out	R2in	R3out	R3in	Done
A	0	0	0	0	0	0	0
В	0	0	1	0	0	1	0
С	1	0	0	1	0	0	0
D	0	1	0	0	1	0	1

Síntese de Circuitos Sequenciais

Exemplo 4: Tabela de (Transição de) Estados

Estado atual	W	Próximo estado
A	0	A
A	1	В
В	X	С
С	X	D
D	X	A

Síntese de Circuitos Sequenciais

Exemplo 4: Diagrama de Blocos

Síntese de Circuitos Sequenciais

Exemplo 4: Codificação de Estados

Supondo a Seguinte Codificação: A=00, B=01, C=10, D=11

Estado atual	W	Próximo estado
A	0	A
A	1	В
В	X	С
С	X	D
D	X	A

	Estado atual y1y0	W	Próximo estado Y1Y0	
A	00	0	00	A
A	00	1	01	В
В	01	X	10	C
C	10	X	11	D
D	11	X	00	A

Síntese de Circuitos Sequenciais

Exemplo 4: Projetando a lógica de próximo estado

	Estado atual y1y0	W	Próximo estado Y1Y0	
A	00	0	00	A
A	00	1	01	В
В	01	X	10	С
C	10	X	11	D
D	11	X	00	A

Síntese de Circuitos Sequenciais

Exemplo 4: Projetando a lógica de saída

	Estado y1y0	R1out	R1in	R2out	R2in	R3out	R3in	Done
A	00	0	0	0	0	0	0	0
В	01	0	0	1	0	0	1	0
C	10	1	0	0	1	0	0	0
D	11	0	1	0	0	1	0	1

R1out = R2in =
$$y1 \cdot \overline{y0}$$

R1in = R3out = Done = $y1 \cdot y0$
R2out = R3in = $\overline{y1} \cdot y0$

Síntese de Circuitos Sequenciais

Exemplo 4: Circuito de controle, versão 1

INE/CTC/UFSC

Slide 6T.41

Prof. José Luís Güntzel

Síntese de Circuitos Sequenciais

Exemplo 4: Circuito de controle, versão 2 R2out R3in R1in D1 Q1 R3out Done Q1 R1out R2in W Conclusão: para redução do custo, a lógica de próximo estado e a lógica de saída podem ck compartilhar termos. Reset

INE/CTC/UFSC Sistemas Digitais - semestre 2010/2

Slide 6T.42

Prof. José Luís Güntzel