$$\begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 2 & 5 & 1 \\ 4 & -1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 4 & 2 & 1 \\ 2 & 3 & 2 \\ 5 & 1 & 0 \\ 0 & 4 & 3 \end{bmatrix}$$

- A. 4
- B. 5
- C. 6
- D. 7
- E. 8

2)

Find a matrix A such that
$$AB = C$$
, where

$$B = \begin{pmatrix} 1 & -1 \\ 2 & 2 \end{pmatrix}, \quad C = \begin{pmatrix} 8 & 4 \\ -3 & -1 \end{pmatrix}.$$

Solve the following equation for A:

$$A^t - [1 \ 0 \ 0]^t[0 \ 1] = egin{bmatrix} 1 & 3 \ 2 & 4 \ 3 & 6 \end{bmatrix}$$

A.
$$\begin{bmatrix} 0 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
 B. $\begin{bmatrix} 0 & 2 & 3 \\ 4 & 4 & 6 \end{bmatrix}$ C. $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ D. $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 4 & 6 \end{bmatrix}$ E. $\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$

Find a matrix
$$A$$
 such that $\left(2A^T + \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}\right)^T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and give its first row.

- **A**. (2,-1)
- **B**. (0,0)
- C. (-1/2, 1/2)
- **D**. (0, 1/2)
- **E**. (1/2,0)

Let
$$A = \begin{pmatrix} 3 & 1 & 0 \\ 2 & 3 & -1 \\ 0 & 2 & -1 \end{pmatrix}$$
. Then the main diagonal of A^{-1} is:

B.
$$-1, -3, -6$$
.

C.
$$1, -3, -7$$
.

D.
$$-1, 3, -6$$
.

E.
$$-1, -3, -7$$
.

Find the main diagonal of the inverse of
$$\begin{bmatrix} 1 & -2 & -3 \\ -2 & 2 & 4 \\ -3 & 0 & 2 \end{bmatrix}$$
.

A.
$$(2, -7/2, -1)$$

C.
$$(2, 1, -1)$$

D.
$$(-1, -7/2, 3)$$

E.
$$(7/2, 2, -1)$$

Determine for which value(s) of t the matrix
$$\begin{pmatrix} 1 & 2 & -1 \\ 2 & 0 & t \\ 0 & 1 & 1 \end{pmatrix}$$
 is invertible.

$$\Box$$
 $t \neq 3$.

$$\Box$$
 $t \neq -6$.

If
$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 9$$
, find $\begin{vmatrix} 3a-5g & g & d \\ 3b-5h & h & e \\ 3c-5i & i & f \end{vmatrix}$.

9)

12)

10) Find a complex number
$$z$$
 such that $\begin{vmatrix} 1 & 1-i & -i \\ 0 & z & 1+i \\ 0 & 0 & 1+i \end{vmatrix} = 3+i.$

A.
$$z = -i$$

$$\mathbf{B}. \ z=2i$$

C.
$$z = 2 - i$$

D.
$$z = 1 - i$$

E.
$$z = 2 + 2i$$

Let
$$A, B, C$$
 be square invertible matrices satisfying $AB = B^2C$. Assume that $\det B = 3$ and $\det C = 2$. Find a formula for A and calculate the determinant of A .

A.
$$A = BC$$
, $\det A = 6$.

B.
$$A = B^3C$$
, det $A = 11$.

C.
$$A = B^2 C B^{-1}$$
, det $A = 6$.

D.
$$A = B^2 C B^{-1}$$
, det $A = 5$.

E.
$$A = BC$$
, det $A = 5$.

Find scalars
$$a, b, c \in \mathbb{R}$$
 such that $au_1 + bu_2 + cu_3 = w$, where

$$u_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \quad u_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad w = \begin{pmatrix} 3 \\ -1 \\ 3 \end{pmatrix}.$$

Answer:
$$a = \boxed{ \qquad \qquad b = \boxed{ \qquad c = \boxed{ }}$$

$$\begin{cases}
-x + 3y + 2z = -8 \\
x + z = 2 \\
2x + 2y + az = b
\end{cases}$$

have more than one solution?

- A. if a = -4 and $b \neq 0$.
- B. if $a \neq -4$ and $b \neq 0$.
- C. if a = 4 and b = 0.
- D. if $a \neq 4$ and $b \neq 0$.
- E. if a = 4 and $b \neq 0$.
- For a non-homogeneous system of 12 equations in 15 unknowns, answer the following three questions:
 - Can the system be inconsistent?
 - o Can the system have infinitely many solutions?
 - o Can the system have a unique solution?
 - A. No, Yes, No.
 - B. Yes, Yes, Yes.
 - C. Yes, Yes, No.
 - D. No, No, No.
 - E. Yes, No, Yes.
- Let $A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & t & 0 \\ 1 & 0 & -1 \end{pmatrix}$. Find the set of values of t for which the homogeneous system

of linear equations AX = 0 has a non-trivial solution.

- **A**. t = -3
- **B**. $t \neq 2$
- **C**. $t \neq -3$
- **D**. $t \neq 1$ and $t \neq 3$
- **E.** t = 2

16\				5 equations in 7 unknowns, answer by yes or				
16)	no the following three questions and indicate which combination of answers is right.							
	• Can the system have no solution?							
	 Can the system have infinitely many solutions? 							
	• Can the system have a unique solution?							
	A. No, No	o, No.						
	B. Yes, Yes, Yes.							
	C. No, No	o, Yes.						
	D. Yes, Yes, No.							
	E. No, Ye	s, Yes.						
17)	If the coefficient matrix A in a homogeneous system of 12 equations in 16 unknowns is known to have rank 5, how many parameters are there in the general solution?							
	A. 10 B. 7 C. 11 D. none E. 12							
18)	Determine whether or not W is a subspace of \mathbb{R}^3 where W consists of all vectors (a, b, c) in \mathbb{R}^3 such that:							
	(a)	$b = a^2$	☐ yes	□ no				
	(b)	a=2b=3c	☐ yes	□ no				
	(c)	a = 3b	☐ yes	□ no				
	(d)	ab = 0	☐ yes	□ no				
	(e)	$a\leqslant b\leqslant c$	☐ yes	□ no				
	(f)	a+b+c=0	☐ yes	□ no				
19)	Find all values of c so that {(2, -1, 3), (0, c, 2), (8, -1, 8)} is linearly independent.							
	A. $c \neq \pm$	± 3/2						
	$B. \qquad c = 0$							
	C. $c = 3/2$							
	D. $c \neq -3/2$							
	E. $c > 0$)						

20)	What is the dimension of the subspace of \mathbb{R}^3 spanned by $(1, 1, 1), (-1, 1, -1), (1, 1, 3)$ and $(0, 2, 1)$?						
	A. 0 B. 1 C. 2 D. 3 E. 4						
21)	Let V be an n -dimensional vector space. True or false:						
	(a) If the vectors v_1, \ldots, v_m span V , then $m < n$.	☐ true	☐ false				
	(b) Any n vectors which span V are linearly independent.	☐ true	☐ false				
	(c) Every set of n vectors in V is linearly independent.	☐ true	☐ false				
	(d) V has a basis consisting of n elements.	☐ true	☐ false				
	(e) V is spanned by $n-1$ or fewer vectors.	☐ true	☐ false				
	(f) Any $n+1$ or more vectors in V are linearly dependent.	☐ true	☐ false				
22)	Let V be a vector space . Which of the following statements are	always v	alid:				
	(a) Every subset of V is a subspace of V		true \square false				
	(b) Every subspace of V is a subset of V	☐ true ☐ false					
	(c) $\{0\}$ is a subspace of V		true \square false				
	(d) Let $u, v \in V$ be vectors, and let W be a subspace of V . If W contains the vectors u and v , then W also contains the sum $u + v$. \square true \square false						
	Which of the following statements are true?						
23)	(1) Each spanning set for \mathbb{R}^n has exactly n vectors.						
	(2) If $\{u, v, w\}$ is linearly independent, then $\{u, v\}$ is also linearly independent.						
	(3) If A is an $n \times n$ matrix, then $\det A = (-1)^n \det(A^t)$.						
	(4) If A is an $n \times n$ matrix, then dim col $A = n$.						
	 (5) If A is an n × n matrix, the dim Null A = n - rank A. (6) The set of n × n diagonal matrices is a subspace of the vector space of all n × n matrices. 						
	 A. All six are true. B. (2), (5) and (6). C. (1), (2) and (4). D. (3), (2) and (6). E. (4), (5) and (6). 						

Let A be an 8×6 matrix such that Ax = 0 has only the trivial solution x = 0.

- What is the rank of A?
 - Do the columns of A span \mathbb{R}^8 ?
 - A. 0, Yes
 - B. 6, Yes
 - C. 6, No
 - D. 8, Yes
 - E. 8, No
- For which values of a does the matrix $\begin{pmatrix} 1 & -a & 2 \\ 0 & 1 & -2 \\ 2 & 1 & a \end{pmatrix}$ have rank 2?
 - A. a = -3/2 and a = 1.
 - B. a = 2/5.
 - C. No value of a.
 - D. a = 3/4 and a = -1/2.
 - E. a = -4/3.
- 26) A basis for the solution space of the system

$$u - 2x + 3y + 4z = 0$$
 is:
-2u + 4x - 5y - 6z = 0

- A. { (0, 0, 0, 0) }
- B. $\{(2, 1, 0, 0), (2, 0, -2, 1)\}$
- C. $\{(1, 2, 0, 0)\}$
- D. $\{(2, 0, -2, 1)\}$
- E. $\{(2, 1, 0, 0), (1, -3, -4, 1)\}$

Let
$$A = \begin{bmatrix} 1 & 1 & 0 & -5 \\ 2 & 1 & 3 & 2 \\ 3 & 1 & 3 & 4 \\ 1 & 0 & 0 & 2 \end{bmatrix}$$
. The dimension of the solution-space of $Ax = 0$ is:

- A. 1
- B. 2
- C. 4
- D. 0
- € 3

Consider the following matrix:
$$B = \begin{pmatrix} 1 & 5 & 3 & 2 & -1 \\ 4 & -2 & 0 & 1 & 2 \\ 3 & -1 & 1 & 2 & 1 \\ 2 & 6 & 4 & 3 & -1 \\ 4 & 0 & 2 & 3 & 1 \end{pmatrix}$$

(a) What is the rank of B? (b) Find a basis of the Col(B) and Row(B)

The eigenvalues of the matrix
$$\begin{bmatrix} 1 & 1 & -1 \\ 0 & 0 & -1 \\ 0 & 2 & -3 \end{bmatrix}$$
 are:

- A. 2, 3, 4
- B. -3, 3, 4
- C. 0, 1, 3
- D. -3, 0, 4
- E. -1, -2, 1

Suppose that a given matrix A satisfies $A^2 - 2A - I = 0$. Give a formula for A^{-1} :

- 30)
- $\square \quad A^{-1} = 2A + I.$
- $\square \quad A^{-1} = A + I.$
- $\square \quad A^{-1} = A 2I.$
- $\square \quad A^{-1} = 2A I.$
- $\Box A^{-1} = A + 2I.$

Let $A = \begin{pmatrix} 0 & 2 & -1 \\ -2 & 8 & -5 \\ -3 & 10 & -7 \end{pmatrix}$, $X = \begin{pmatrix} 0 \\ -1 \\ -2 \end{pmatrix}$, $Y = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$. Which of the following

statements is true?

- **A.** Y is an eigenvector of A with the eigenvalue 2.
- **B**. Y is an eigenvector of A with the eigenvalue -2.
- ${f C}$. Y is an eigenvector of A with the eigenvalue 3.
- ${f D}$. X is an eigenvector of A with the eigenvalue 3.
- **E**. X is an eigenvector of A with the eigenvalue -2.