气液压传动

曹湧

华东理工大学机械工程学院

绪论

- 一、传动的基本概念
 - ₩ 机器的组成

原动机:整机的动力源,提供系统所需的驱动功率。 蒸汽机、内燃机、电动机 宣 传动部分:

将原动机的机械动力提供给执行机构,并改变原有运动的形式、方向和太小。

■ 执行机构:

实现机器所需的功能和动作。

■ 控制系统:

控制和调整机器的运行状态。

电力拖动控制、电气自动控制、电液控制

■ 辅助系统:

机器的润滑、显示、照明、保护等。

◎ 传动的类型

传动的类型

机械传动电力传动流体传动

液力传动:

依靠液体流速能传递动力 液压传动:

流体传动

依靠液体压力能传递动力 气压传动:

依靠压缩气体传递动力

液压(气压)传动研究对象和定义

一、液压 (气压) 传动定义

液压与气压传动是以有压流体(压力油或压缩空气)为能源介质,来实现各种机械的传动和自动控制的学科。

液压系统工作介质 一 液压油

气压系统工作介质 压缩空气

二、液压传动的工作原理

在液压传动系统中,是依靠工作介质的压力能来传递动力。

输出力的产生

液体的静压力

运动的产生

液体的流动

三、典型液压传动系统的工作过程

二位三通手动 换向阀的作用:

打开/关闭

传动系统

二位阀,压位河流 三位阀,压缩河 一种侧断压流统, 一种的压缩液系统, 一种的压流统, 一种的压流统, 一种的压流统, 一种的压流统, 一种的一种。

机床工作台液压传动系统

三、典型液压传动系统的工作过程

二位五通手动换 向阀的作用:

机床工作台液压传动系统

三、典型液压传动系统的工作过程

二位五通手动换 向阀的作用:

机床工作台液压传动系统

系统的能量转换过程

表现形式 转矩× 角速度 表现形式 压力× 流量 表现形式

压力× 流量 力× 速度 (转矩× 角速度

四:液压(气压)传动系统的组成

能源装置:将驱动装置的机械能转化成液 压油(压缩空气)压力能的液压元件→液压泵、 空压机

空气压缩机

内啮合齿轮泵

执行元件:将液压油(压缩空气)的压力能转化成系统输出的机械能的液压(气压)元件→液压缸、气缸、液压马达、气动马达。

液压马达

气缸

控制调节装置:对液压(气压)系统的压力、流量、 介质流动向进行调节控制的元件→各类液压(气 压)阀

电磁换向阀

压力继电器

溢流/顺序阀

节流阀

辅助元件:油箱、油管、接头、过滤器、蓄能器和压力计等在系统中起辅助作用,却不可或缺的元件。

工作介质:系统中用以传递动力和信号的流体,即液压油和压缩空气。

液压油及油源装置

压缩空气的净化与储存

五、液压传动系统的特点

- 1. 液压传动系统是以液体为传输介质(通常为液压油)。
- 2. 液压传动必须在密闭的容器内进行。
- 3. 液压传动是依靠液体的压力能来传递动力, 其中力或力矩是由液体的静压力来传递的; 速度或角速度是由液体的流量传递的。
- 4. 液压传动系统中液体压力的形成和大小是由 负载决定的。

凸、液压传动系统职能符号

在设计和分析液压或气动回路时, 将各个液压或气动元件进行简化,舍却 其具体结构,而突出其作用和功能,就 形成了液压或气动元件的职能符号图。

系统职能符号图中各液压元件均处于静止位置(不工作时)在液压系统的职能符号图中,一些特殊的非标液压元件, 允许用其结构原理图代替。

机床工作台液压传动系统的职能符号图

七:液压传动应用与发展

液压传动的发展概况

液压传动已经有二三百年的历史。17世纪中叶,帕斯卡提出静压传递原理,到18世纪末,英国制成第一台水压机。19世纪末,德国制成了液压龙门刨床;美国制成了液压转塔车床和磨床。液压传动技术真正的成熟发展时期是在20世纪中叶,随着科技的发展,液压传动技术与计算机、自动化等技术紧密融合,逐步渗入到国民经济的各个领域并向着高压、高速、高效、低能耗和高度集成化的方向发展。

我国液压工业始于20世纪50年代,最初用于机床和锻压设备,后用于拖拉机等工程机械。1964年开始从国外引进液压元件生产技术,并同时自行设计液压产品。现今我国液压工业已取得了长足进展,液压元件已形成系列,并在各个工业领域中得到了广泛的应用。

液压传动的优缺点

主要优点 3.执行元件反应速度快,运动稳定,可实现频繁换向。

4.操作简单,调整控制方便,易于实现自动化。

液压传动系统对油温的变化敏感,不宜用于高,低温的环境中

液压传动在工程领域的应用

行业名称	应用场所举例
机床工业	自动车床、组合机床、数控机床
工程机械	挖掘机、装载机、推土机、压路机、铲运机
起重运输机械	叉车、龙门吊、装卸机械、皮带运输机
矿山机械	凿岩机、开采机、破碎机、提升机,液压支架
建筑机械	打桩机、液压千斤顶、平地机
农业机械	联合收割机、拖拉机、农具悬挂系统
冶金机械	压力机、轧钢机、电炉炉顶及电极升降机
轻工机械	注塑机、打包机、校直机、橡胶硫化机、造纸机
汽车工业	平板车、自卸式小车、高空作业车、汽车转向器
智能机械	机器人、折臂式小汽车装卸器、模拟驾驶舱
航空、航天工业	飞机起落架、舱门等
军事工业	舰艇用炮塔转位器、高炮瞄准系统、雷达转向器

液压传动系统在机械制造与加工领域的应用

液压刀架

液压车床

液压传动系统在工程机械领域的应用

液压吊车

推土机

液压传动系统在小型工程领域的应用

液压举升机

各类常见液压站

气压传动的优缺点

- 2. 执行元件响应速度快, 动作灵敏, 广泛应用于自动化系统

- 主要优点 3.介质粘性低,阻力损失小,适合于远距离传输与控制。

 - 5.维护简单,使用安全,环境适应性强。

执行元件运行速度不恒定,冲击强,运动平稳性差。

工作压力低,输出力较小。

气压传动系统在生产、生活中的应用

气动机械手

气动扳手

气动丝印机

液压系统产品知名品牌

威格士

派克汉尼芬

博世力士乐

油研

气动系统产品知名品牌

SMC

费斯托

CKD

