ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, ΘΕΩΡΙΑ ΓΡΑΦΗΜΑΤΩΝ ΤΡΙΤΌ ΣΕΤ ΑΣΚΗΣΕΩΝ ΕΑΡΙΝΌ ΕΞΑΜΗΝΟ 2019-20

ΔHΜΟΣΙΕΥΣΗ: 12.05.2020, ΠΑΡΑΔΟΣΗ: ΜΕΧΡΙ ΤΙΣ 18:00 28.05.2020

Η ΗΜΕΡΟΜΗΝΙΑ ΚΑΙ Η Ω ΡΑ ΠΑΡΑ Δ ΟΣΗ Σ ΕΙΝΑΙ ΑΝΕΛΑ Σ ΤΙΚΕ Σ .

Μπορείτε να δουλέψετε ατομικά ή σε ομάδες των δύο. Οι ασκήσεις παραδίδονται σε ηλεκτρονική μέσω eclass μορφή σε ένα αρχείο pdf. Καμία άλλη μορφή δεν θα γίνει δεκτή.

Γράψιμο έστω και ενός σετ σε \LaTeX πριμοδοτείται με +15% για το πρώτο σετ (που θα γράψετε σε \LaTeX , όποιο κι αν είναι αυτό) και +5% για κάθε επόμενο.

Πρόβλημα 1 [2 μονάδες]. (α) Δ είξτε ότι αν ένα γράφημα G δεν είναι επίπεδο, τότε $\Delta(G) \geq 3$. (β) Δ είξτε ότι δεν υπάρχει επίπεδο γράφημα που να είναι 6-συνεκτικό.

Πρόβλημα 2 [4 μονάδες]. Αποδείξτε ότι κάθε επίπεδο γράφημα προκύπτει από την ένωση το πολύ 5 δασών.

Η ένωση δύο γραφημάτων G_1 και G_2 είναι το γράφημα $H=(V(G_1)\cup V(G_2), E(G_1)\cup E(G_2))$.

Πρόβλημα 3 [4 μονάδες]. Αποδείξτε ότι σε κάθε γράφημα $G, \chi(G) \geq 2$, υπάρχει διαμέριση $\{V_1, V_2\}$ του V(G), τέτοια ώστε $\chi(G[V_1]) + \chi(G[V_2]) = \chi(G)$.

Πρόβλημα 4 [4 μονάδες]. Αποδείξτε ότι σε κάθε γράφημα G, με |E(G)|=m,

$$\chi(G) \le \frac{1}{2} + \sqrt{2m + \frac{1}{4}}.$$

Πρόβλημα 5 [6 μονάδες]. Δίνεται γράφημα G=(V,E). Για μία διάταξη v_1,\ldots,v_n των κορυφών ορίζουμε $G_i=G[\{v_1,\ldots,v_i\}],\ i=1,\ldots,n$. Μια καλή διάταξη του V είναι μια διάταξη με την ιδιότητα

$$d_{G_i}(v_i) = \delta(G_i), \quad i = 1, \dots, n.$$

 Δ ηλαδή για κάθε i η v_i είναι κορυφή ελάχιστου βαθμού στο εναγόμενο υπογράφημα G_i .

- α) Δείξτε κατασκευαστικά ότι υπάργει καλή διάταξη σγεδιάζοντας έναν αλγόριθμο που παράγει μία.
- β) Αποδείξτε ότι μια καλή διάταξη έχει την ιδιότητα ότι ελαχιστοποιεί την ποσότητα $\max_i\{d_{G_i}(v_i)\}$ επί όλων των δυνατών διατάξεων. Δηλαδή ο αλγόριθμος σας υπολογίζει και τον βαθμό εκφυλισμού, $\deg(G)$, του γραφήματος.

Πρόβλημα 6 [5 μονάδες]. Αποδείξτε ότι αν ένα γράφημα G δεν περιέχει μονοπάτι μήκους μεγαλύτερου από l, τότε το γράφημα είναι (l+1)-χρωματίσιμο.

Μπορεί να σας φανεί χρήσιμο το Θεώρημα 1.2 των σημειώσεων.