Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu nr 4

Bartłomiej Boczek, Aleksander Piotrowski, Łukasz Śmigielski

Spis treści

1.	Punkt	1			•										 							•					2
2.	Punkt	2													 												3
3.	Punkt	3	i	4											 												5
4.	Punkt	5													 												7
5.	Punkt	6													 												10
6.	Punkt	7													 												13

Punkt pracy jest poprawny, obiekt nie zmienia swojego stanu przy podaniu \mathcal{U}_{pp}

Rys. 1.1. Punkt pracy

Rys. 2.1. Odpowiedzi skokowe procesu dla pięciu różnych zmian sygnału sterującego

Rys. 2.2. Charakterystyka statyczna

Właściwości statyczne obiektu nie są w całościowym ujęciu - względem dziedziny U - liniowe. Charakterystyka statyczna to złożenie dwóch prostych, pierwszej szybko rosnącej, drugiej bardzo wolno, niemal stale, z punktem przegięcia w okolicach -0.1(u) Właściwości dynamiczne obiektu: układ jest stabilny, ma opóźnienie w ilości 5 chwil k, ma jedną lub dwie inercje; wszystkie te cechy dynamiczne można uznać za w przybliżeniu liniowe.

3. Punkt 3 i 4

Symulacja trwa 1000 chwil. Skoki:

```
\begin{array}{l} \text{- k=}21,\,y_{zad}=\text{-}1\\ \text{- k=}201,\,y_{zad}=\text{-}2\\ \text{- k=}401,\,y_{zad}=\text{-}0,1\\ \text{- k=}601,\,y_{zad}=\text{-}2\\ \text{- k=}801,\,y_{zad}=\text{-}1 \end{array}
```

PID, parametry: K=0,17; T_i =3,5; T_d =1,1; DMC, parametry: D=N= N_u =50; λ =250; Parametry dobrane eksperymentalnie.

Widzimy, że dla skoków wartości zadanej zawierających się w pierwszej, szybszej części charakterystyki statycznej regulatory działają dużo lepiej niż w przypadku skoków zawierających się w drugiej, bardzo wolnej części charakterystyki. 200 chwil k to za mało, aby obiekt osiągnął wartość zadaną podczas gdy osiągnięcie "szybszej" wartości zadanej zajmuje mu kilkadziesiąt chwil.

Strojenie liniowego regulatora w tym przypadku przy pomocy optymalizatorów zapewne dałoby lepszy efekt, ale nadal nieliniowość obiektu mocno by "dokuczała" i nie byłaby to tak dobra regulacja jak w przypadku obiektu liniowego.

Rys. 3.1. Przebiegi sygnałów dla PID, błąd E = 133,2526

3. Punkt 3 i 4

Rys. 3.2. Przebiegi sygnałów dla DMC, błąd E = 236,8488

Rozmyty regulator PID:

We wszystkich przypadkach poza pierwszym jakość regulacji jest lepsza zarówno pod względem wskaźnika E jak i jakości przebiegów. Regulatory rozmyte dobrze sobie radzą z nieliniowością obiektu, drobne wahania błędu względem liczby regulatorów lokalnych wynikają z niedokładnego podzielenia dziedziny U pomiędzy funkcje przynależności. Rozmyty regulator z jednym regulatorem lokalnym kiepsko radzi sobie z wolniejszą częścią charakterystyki statycznej obiektu; 200 chwil k ledwo wystarcza aby obiekt osiągnął wartość zadaną. Dobieranie parametrów regulatorów lokalnych odbyło się przy pomocy optymalizatora 'ga'. Dodaliśmy ograniczenia kostkowe na każdy parametr 0 ; param ; 50; i uśredniliśmy kilka wyników optymalizatora ponieważ jest to algorytm niedeterministyczny i za każdym razem dawał inny wynik.

Rys. 4.1. Przebiegi sygnałów dla 1 regulatora, błąd $\rm E=159{,}1203$

Rys. 4.2. Przebiegi sygnałów dla 2 regulatorów, błąd $\mathcal{E}=126,\!4950$

Rys. 4.3. Przebiegi sygnałów dla 3 regulatorów, błąd $\mathcal{E}=129{,}3428$

Rys. 4.4. Przebiegi sygnałów dla 4 regulatorów, błąd $\mathcal{E}=121,9314$

Rys. 4.5. Przebiegi sygnałów dla 5 regulatorów, błąd $\mathcal{E}=126,\!6583$

Rozmyty regulator DMC:

Podobnie jak w poprzednim przypadku, regulacja rozmyta daje znacznie lepsze efekty pod względem jakościowym i ilościowym; w każdym przypadku błąd E jest znacznie mniejszy w porównaniu do regulacji liniowej. Ponownie, wachania błędu względem regulatorów lokalnych wynikają z dobrania 'na oko' (eksperymentalnego) parametrów funkcji przynależności oraz parametrów λ , jednak tak jak się można spodziewać, najlepszy wynik dał regulator z pięcioma regulatorami lokalnymi.

Rys. 5.1. Przebiegi sygnałów dla 1 regulatora, błąd E=179,4611

Rys. 5.2. Przebiegi sygnałów dla 2 regulatorów, błąd $\mathcal{E}=148{,}1608$

Rys. 5.3. Przebiegi sygnałów dla 3 regulatorów, błąd $\mathcal{E}=149{,}4896$

Rys. 5.4. Przebiegi sygnałów dla 4 regulatorów, błąd $\mathcal{E}=147{,}9031$

Rys. 5.5. Przebiegi sygnałów dla 5 regulatorów, błąd $\mathcal{E}=134{,}2346$

Rozmyty regulator DMC z różnymi parametrami λ :

1 regulator: $\lambda = 570$

2 regulatory: $\lambda = 500, 10$

3 regulatory: $\lambda = 800, 30, 10$

4 regulatory: $\lambda = 100, 50, 10, 10$

5 regulatorów: $\lambda = 10, 10, 10, 500, 10$

Starając się osiągnąć kompromis pomiędzy minimalizacją błędu E, a jakością przebiegów, osiągnęliśmy metodą eksperymentalną nastepujące rezultaty:

Rys. 6.1. Przebiegi sygnałów dla 1 regulatora, błąd $\rm E=165,7639$

Rys. 6.2. Przebiegi sygnałów dla 2 regulatorów, błąd $\mathcal{E}=181{,}5727$

Rys. 6.3. Przebiegi sygnałów dla 3 regulatorów, błąd $\mathcal{E}=162{,}3975$

Rys. 6.4. Przebiegi sygnałów dla 4 regulatorów, błąd E = 129,4927

Rys. 6.5. Przebiegi sygnałów dla 5 regulatorów, błąd $\mathcal{E}=113{,}2183$

W tym przypadku korelacja błędu i jakości regulacji a liczbą regulatorów jest wyraźna i zgodna z oczekiwaniami. Poza pierwszym przypadkiem, błąd maleje, a jakość regulacji rośnie wraz ze wzrostem liczby regulatorów lokalnych.