PRC Data Challenge

Method and Results of Team "Likable Jelly"

Richard Alligier, David Gianazza

Ecole Nationale de l'Aviation Civile

PRC Data Challenge

Team "Likable Jelly":

- Richard Alligier, assistant professor at ENAC
- David Gianazza, associate professor at ENAC

PRC data challenge

Develop an open Machine Learning model to predict Aircraft Take-Off Weight (TOW) based on flight and trajectory data.

Provided Files:

- challenge_set.csv and final_submission_set.csv
 - flight identification:callsign
 - origin/destination: DEParture (ADEP), and DEStination (ADES)
 - timing: date of flight, actual off-block time, arrival time
 - aircraft: aircraft type code
 - aircraft. aircraft type codeairline: (obfuscated) Aircraft Operator code (airline)
 - operational values: flight duration, taxi-out time, flown distance
- OpenSky Network's ADS-B 2022-XX-XX.parquet files
 - timestamp, latitude, longitude, altitude, groundspeed, ROCD, T and wind

Machine Learning Model: Our Solution

TOW = model (FlightInfo, WeatherAtAirports, Trajectory)

model

- LightGBM library; an efficient gradient boosted trees library
- Hyper-parameters:
 - Number of boosting iterations (it i.e. number of trees): 50,000
 - Random search to select size of the trees and regularization parameters

Input Variables

611 input variables extracted from different sources

TOW = model (FlightInfo, WeatherAtAirports, Trajectory)

 $FlightInfo: challenge_set.csv and final_submission_set.csv$

- Basic variables from .csv files but we did not use the callsign.
- Added variables:
 - Local time of departure/arrival computed from UTC time
 - Great circle distance, latitude/longitude from [ourairports.com]

WeatherAtAirport: METARs from [https://mesonet.agron.iastate.edu/ASOS/]

- Temperature and wind at departure and arrival airport
- Thunderstorms and fog at the arrival airport

TOW = model (FlightInfo, WeatherAtAirports, Trajectory)

- ADS-B Trajectory Filtering & Smoothing
- **2** Features Engineering:

TOW = model (FlightInfo, WeatherAtAirports, Trajectory)

- ADS-B Trajectory Filtering & Smoothing
- 2 Features Engineering:
 - Wind along trajectory:
 Average value of the wind projected onto the ground speed

$$\det \left(\vec{wind}, \vec{groundspeed}\right) / \|\vec{groundspeed}\|$$

TOW = model (FlightInfo, WeatherAtAirports, Trajectory)

- ADS-B Trajectory Filtering & Smoothing
- 2 Features Engineering:
 - Wind along trajectory: Average value of the wind projected onto the ground speed

$$\det \left(\vec{wind}, \vec{groundspeed}\right) / \|\vec{groundspeed}\|$$

- Climb phase:
 - energyrate = $\frac{d\text{energy}}{dt}$, with energy = g_0 Altitude + $\frac{1}{2}$ TrueAirSpeed²

TOW = model (FlightInfo, WeatherAtAirports, Trajectory)

- ADS-B Trajectory Filtering & Smoothing
- 2 Features Engineering:
 - Wind along trajectory: Average value of the wind projected onto the ground speed

$$\det \left(\vec{wind}, \vec{groundspeed}\right) / \|\vec{groundspeed}\|$$

- Climb phase:
 - energyrate = $\frac{d \text{energy}}{dt}$, with energy = $g_0 \text{Altitude} + \frac{1}{2} \text{TrueAirSpeed}^2$
 - Estimated mass using: $(Thrust Drag) V_a/mass = energyrate$ Thrust and Drag model from OpenAP [Sun et al., 2020]Solving this equation \Rightarrow roots of a 2nd degree polynomial [Alligier et al., 2013]

TOW = model (FlightInfo, WeatherAtAirports, Trajectory)

- ADS-B Trajectory Filtering & Smoothing
- 2 Features Engineering:
 - Wind along trajectory: Average value of the wind projected onto the ground speed

$$\det \left(\vec{wind}, \vec{groundspeed}\right) / \|\vec{groundspeed}\|$$

- Climb phase:
 - energyrate = $\frac{d\text{energy}}{dt}$, with energy = g_0 Altitude + $\frac{1}{2}$ TrueAirSpeed²
 - Estimated mass using: (Thrust Drag) $V_a/\text{mass} = \text{energyrate}$ Thrust and Drag model from OpenAP [Sun et al., 2020] Solving this equation \Rightarrow roots of a 2nd degree polynomial [Alligier et al., 2013]
- Flight profile: Cruise altitude and speed

Flight duration $t_ades - t_adep$

Flight duration t_ades-t_adep , and 20 scaled temporal slices along the trajectory, starting from [0,5%] to [95%,100%]

- Cardinal (slice)
- \blacksquare median_{i∈slice} Mach_i

- \blacksquare median_{i∈slice} altitude_i
- altitude_{last(slice)} − altitude_{first(slice)}

Flight duration $t_ades - t_adep$, and 20 scaled temporal slices along the trajectory, starting from [0,5%] to [95%,100%]

- Cardinal (slice)
- \blacksquare median_{i∈slice} Mach_i

- \blacksquare median_{i \in slice} altitude_i
- altitude_{last(slice)} altitude_{first(slice)}

This process generates $1 + 4 \times 20$ features

 $48~\rm vertical~slices~starting~from~[-500ft,500ft]$ to [46500ft,47500ft]

- Cardinal (slice) ■ median_{i∈slice} ΔT_i
 - incoroniestice ====

 $median_{i \in slice} mass_i$

- \blacksquare median_{i∈slice} TrueAirSpeed_i
- $median_{i \in slice} ROCD_i$
- $max_jROCD_j min_iROCD_i$

- min_{i∈slice} energyrate_i
 - \blacksquare median_{i∈slice} energyrate_i
 - \blacksquare max_{i∈slice} energyrate_i
 - \blacksquare $\min_{\mathbf{i} \in \text{slice}} \, \operatorname{timestamp}_i t \text{_} adep$
 - $t_ades \max_{i \in slice} timestamp_i$

48 vertical slices starting from [-500ft,500ft] to [46500ft,47500ft]

- Cardinal (slice) \blacksquare median_{i∈slice} ΔT_i
 - median_{i \in slice} TrueAirSpeed_i

 - $median_{i \in slice} ROCD_i$ $max_iROCD_i - min_iROCD_i$
 - $median_{i \in slice} mass_i$

- \blacksquare min_{i∈slice} energyrate_i
 - median_{i∈slice} energyrate_i
 - $\max_{i \in \text{slice}} \text{energyrate}_i$
 - $\min_{i \in \text{slice}} \text{timestamp}_i t_{-}adep$

 \Rightarrow Generates 11×48 features

■ $t_ades - \max_{i \in slice} timestamp_i$

Results

Using all these 611 input variables, we have an RMSE of 1,611 kg $\,$

Improved results through averaging models different random seeds:

- 10 Models (RMSE: 1,564 kg)
- 20 Models (RMSE: 1,561 kg)

- Thunderstorm and fog variables ?
- Cruise variables ?
- General climb variables (ROCD,etc) ?
- Mass estimates ?
- Energy rate variables ?

- Thunderstorm and fog variables ?
- Cruise variables ?
- General climb variables (ROCD,etc) ?
- Mass estimates ?
- Energy rate variables ?

TS & Fog	Cruise	Climb			RMSE [kg]
13 & 10g	Ciuise	Other	Mass	energy_rate	INNOL [kg]
X	X	X	X	X	3147
√					3147
	√				2489
		√			1978
			✓		1936
				✓	1686
√	√	✓	✓	✓	1611

- Thunderstorm and fog variables ?
- Cruise variables ?
- General climb variables (ROCD,etc) ?
- Mass estimates ?
- Energy rate variables ?

TS & Fog	Cruise		Clim	ıb	RMSE [kg]
13 & 10g	Ciuise	Other	Mass	energy_rate	INNOL [kg]
X	X	X	X	X	3147
√					3147
	√				2489
		√			1978
			✓		1936
				✓	1686
√	√	✓	✓	✓	1611

- Thunderstorm and fog variables ?
- Cruise variables ?
- General climb variables (ROCD,etc) ?
- Mass estimates ?
- Energy rate variables ?

TS & Fog	Cruise	Climb			RMSE [kg]
13 & 10g	Cruise	Other	Mass	energy_rate	INNOL [kg]
X	X	X	X	X	3147
√					3147
	√				2489
		√			1978
			✓		1936
				✓	1686
√	√	√	✓	✓	1611

- Thunderstorm and fog variables ? No!
- Cruise variables ?
- General climb variables (ROCD,etc) ?
- Mass estimates ?
- Energy rate variables ?

TS & Fog	Cruise	Climb			RMSE [kg]
13 & 10g	Cruise	Other	Mass	energy_rate	INNOL [kg]
X	X	X	X	X	3147
√					3147
	√				2489
		√			1978
			✓		1936
				✓	1686
√	√	✓	✓	✓	1611

- Thunderstorm and fog variables ? No!
- Cruise variables ? Not that much
- General climb variables (ROCD,etc) ?
- Mass estimates ?
- Energy rate variables ?

TS & Fog	Cruise	Climb			RMSE [kg]
13 & 10g	Cruise	Other	Mass	energy_rate	INNOL [kg]
X	X	X	X	X	3147
√					3147
	√				2489
		√			1978
			✓		1936
				✓	1686
√	√	✓	✓	✓	1611

- Thunderstorm and fog variables ? No!
- Cruise variables ? Not that much
- General climb variables (ROCD,etc) ? Yes, somewhat
- Mass estimates ?
- Energy rate variables ?

TS & Fog	Cruise	Climb			RMSE [kg]
13 & 10g	Cruise	Other	Mass	energy_rate	INNOL [kg]
X	X	X	X	X	3147
√					3147
	√				2489
		√			1978
			✓		1936
				✓	1686
√	√	√	✓	✓	1611

- Thunderstorm and fog variables ? No!
- Cruise variables? Not that much
- General climb variables (ROCD,etc) ? Yes, somewhat
- Mass estimates ? Yes, somewhat
- Energy rate variables ?

TS & Fog	Cruise		Clim	RMSE [kg]	
13 & 10g	Cruise	Other	Mass	energy_rate	INNOL [kg]
X	X	X	X	X	3147
√					3147
	√				2489
		√			1978
			✓		1936
				✓	1686
√	√	√	✓	✓	1611

- Thunderstorm and fog variables ? No!
- Cruise variables ? Not that much
- General climb variables (ROCD,etc) ? Yes, somewhat
- Mass estimates ? Yes, somewhat
- Energy rate variables ? Yes !!

TS & Fog	Cruise	Climb			RMSE [kg]
13 & 10g	Ciuise	Other	Mass	energy_rate	IVIVIOL [Kg]
X	X	X	X	X	3147
√					3147
	√				2489
		√			1978
			√		1936
				✓	1686
√	✓	✓	✓	✓	1611

Predicting TOW with a good accuracy is possible

What Worked?

- Information extracted from climb phase (energy rate!)
- Filtering and smoothing (??) + many slices (??)

TS & Fog Cruise			Clim	ıb	RMSE [kg]
13 & 10g	Ciuise	Other	Mass	energy_rate	IVIVIOL [Kg]
✓	√	✓	X	X	1954

Predicting TOW with a good accuracy is possible

What Worked?

- Information extracted from climb phase (energy rate !)
- Filtering and smoothing (??) + many slices (??)

TS & For	TS & Fog Cruise		Clim	ıb	RMSE [kg]
13 & 10g	Ciuise	Other	Mass	energy_rate	IVIVIOL [Kg]
√	✓	✓	X	X	1954

Features Not so Useful in our Solution?

- Thunder and fog at arrival airport
- Cruise features

Predicting TOW with a good accuracy is possible

What Worked?

- Information extracted from climb phase (energy rate !)
- Filtering and smoothing (??) + many slices (??)

TS & Fog	Cruise	Climb		RMSE [kg]	
15 & 10g	Ciuise	Other	Mass	energy_rate	IVIVIOL [Kg]
✓	√	✓	X	X	1954

Features Not so Useful in our Solution?

- Thunder and fog at arrival airport
- Cruise features

Perspective?

- Is it possible to extract more info from cruise and descent phases ?
- A benchmark that will be used by researchers on future study ?!

Predicting TOW with a good accuracy is possible

What Worked?

- Information extracted from climb phase (energy rate!)
- Filtering and smoothing (??) + many slices (??)

TS & Fog	Cruise	Climb		RMSE [kg]	
13 & 10g	Cruise	Other	Mass	energy_rate	IXIVIOL [Kg]
√	\checkmark	\checkmark	X	X	1954

Features Not so Useful in our Solution?

- Thunder and fog at arrival airport
- Cruise features

Perspective?

- Is it possible to extract more info from cruise and descent phases ?
- A benchmark that will be used by researchers on future study ?!

Thanks to the organizers for this nice data challenge, it has been fun! :-)

Thank you for your attention

[Alligier et al., 2013]

Ground-based estimation of aircraft mass, adaptive vs. least squares method.

[Sun et al., 2020]

Openap: An open-source aircraft performance model for air transportation studies and simulations.

Trajectory features

Climbing phase

48 vertical slices starting from [-500ft,500ft] to [46500ft,47500ft] For each slice:

- Cardinal (slice) number of points in the slice
- \blacksquare median_{i∈slice} ROCD_i
- $\blacksquare max_jROCD_j min_iROCD_i$
- \blacksquare median_{i \in slice} TrueAirSpeed_i
- \blacksquare median_{i∈slice} ΔT_i
- \blacksquare min_{i∈slice} energyrate_i
- \blacksquare median_{i \in slice} energy rate_i
- \blacksquare max_{i∈slice} energyrate_i
- \blacksquare min_{i∈slice} timestamp_i t₋adep
- $t_ades \max_{i \in slice} timestamp_i$
- \blacksquare median_{i∈slice} mass_i

Trajectory features

Flight profile

20 scaled temporal slices along the trajectory, starting from [0,5%] to [95%,100%] For each slice:

- $t_ades t_adep$ the scaling factor and flight duration
- Cardinal (slice) number of points in the slice
- \blacksquare median_{i∈slice} Mach_i
- \blacksquare median_{i∈slice} altitude_i
- \blacksquare altitude_{last(slice)} altitude₋first(slice)

Machine Learning Model

- Theoretical framework: stochastic gradient boosting
- Gradient-boosted regression trees:
 - Sum of weak prediction models $h_m(\mathbf{x}) = h_{m-1}(\mathbf{x}) + \nu t_m(\mathbf{x})$
 - \blacksquare with $t_m(x) = \sum_{R_j \in T_m} \gamma_{mj} 1\!\!1_{R_j}(\mathbf{x})$ a small tree Elements of Statistical Learning (2nd Ed.) Hastle, Tibshirani & Friedman 2009 Chap 9

Iterative training: small tree $t_m(\mathbf{x})$ tuned on residuals of previous model h_{m-1} , with random sampling

Filtering out repeated measurements

- Filtering out repeated measurements
- 2 Filtering out measurements associated with a second order derivative above a threshold
- Trajectories are smoothed using cubic splines (csaps library)

- Filtering out repeated measurements
- 2 Filtering out measurements associated with a second order derivative above a threshold
- 3 Trajectories are smoothed using cubic splines (csaps library)
- 4 Correct take-off/landing datetimes

- Thunderstorm and fog, No!
- Do cruise variables are that useful ? not that much
- Do mass estimates are that useful? Yes, somewhat
- Do energy rate variables are that useful ? Yes !!

TS & Fog	Cruise	Climb			RMSE [kg]
		Other	Mass	energy_rate	INIVISE [Kg]
√	√	√	√	√	1611
X					1606
	X				1610
			X		1609
				X	1721
X	X	X	X	X	3147
√					3147
	√				2489
		√			1978
			√		1936
				√	1686