1 Specifications of -FUTURE-

-FUTURE- is a new SPN based block cipher and consists of 10 rounds in a fully unrolled fashion. It accept 128-bit keys and have a block size of 64-bit.

1.1 Round Function.

One encryption round of -FUTURE- is composed of four operations in the following order: SubCells, MixColumns, ShiftRows and AddRoundKey (see illustration in Figure 1). The cipher receives an 64-bit plaintext $P = b_0b_1b_2\dots b_{62}b_{63}$ as the cipher state S, where b_0 being the most significant bit. The cipher state can also be expressed as 16 many 4-bit cells as follows:

$$S = \begin{bmatrix} s_0 \ s_4 \ s_8 \ s_{12} \\ s_1 \ s_5 \ s_9 \ s_{13} \\ s_2 \ s_6 \ s_{10} \ s_{14} \\ s_3 \ s_7 \ s_{11} \ s_{15} \end{bmatrix},$$

i.e. $s_i \in \{0,1\}^4$. The *i*-th round output state is defined as S_i , namely $S_0 = P$.

Fig. 1. The round function applies four different transformations: SubCells (SC), MixColumns (MC), ShiftRows (SR) and AddRoundKey (ARK).

SubCells. A 4-bit Sbox S is applied to every cell of the cipher internal state.

$$s_i \leftarrow S(s_i)$$
 for $i = 0, 1, \dots, 15$.

The SBox S is a composition of two low hardware cost SBoxes S_1 and S_2 i.e. $S(s_i) = S_1(S_2(s_i))$ for i = 0, 1, ..., 15. The Sboxes in hexadecimal notation is given by the following table.

2	ζ	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
S_1	(x)	1	3	0	2	7	5	4	6	9	a	8	b	f	e	c	d
S_2	(x)	0	1	2	3	4	d	6	f	8	9	e	7	c	5	a	b
	(x)	1	3	0	2	7	e	4	d	9	a	c	6	f	5	8	b

 ${\it MixColumns.}$ -FUTURE- uses an MDS matrix M for the MixColumns operation. M is applied to every 16-bit column of the state S,

$$(s_i, s_{i+1}, s_{i+2}, s_{i+3}) \leftarrow M \cdot (s_i, s_{i+1}, s_{i+2}, s_{i+3})^t$$

for i = 0, 4, 8, 12.

The MDS matrix M is constructed by composition of 4 sparse matrices M_1, M_2, M_3 and M_4 of order 4 i.e., $M = M_1 M_2 M_3 M_4$, where

$$M_{1} = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, M_{2} = \begin{bmatrix} 0 & 0 & 1 & \alpha \\ 1 & 0 & 0 & 0 \\ \alpha^{3} + 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, M_{3} = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ \alpha^{3} + 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \text{ and } M_{4} = M_{1}$$

$$(1)$$

The multiplications between matrices and vectors are performed over \mathbb{F}_{2^4} defined by the primitive polynomial x^4+x+1 and α is the primitive element of the field.

ShiftRows. Row i of the array state is rotated i cell positions to the right, for i = 0, 1, 2, 3, i.e.,

$$\begin{bmatrix} s_0 \ s_4 \ s_8 \ s_{12} \\ s_1 \ s_5 \ s_9 \ s_{13} \\ s_2 \ s_6 \ s_{10} \ s_{14} \\ s_3 \ s_7 \ s_{11} \ s_{15} \end{bmatrix} \leftarrow \begin{bmatrix} s_0 \ s_4 \ s_8 \ s_{12} \\ s_{13} \ s_1 \ s_5 \ s_9 \\ s_{10} \ s_{14} \ s_2 \ s_6 \\ s_7 \ s_{11} \ s_{15} \ s_3 \end{bmatrix}.$$

Note that in the ShiftRows operation of AES [2] and LED [3] the row i of the array state is rotated i cell positions to the left, for i = 0, 1, 2, 3.

AddRoundKey. Given round key RK_i for $1 \le i \le 10$, the *i*-th 64-bit round key RK_i is XORed to the state S.

1.2 Data Processing

The data processing part of -FUTURE- for encryption consisting of 10 rounds, F, takes a 64-bit data $X \in \{0,1\}^{64}$, whitening keys $WK \in \{0,1\}^{64}$ and 10 round keys $RK_i \in \{0,1\}^{64}$ ($1 \le i \le 10$) as the inputs, and outputs a 64-bit data $Y \in \{0,1\}^{64}$. F is defined as follows:

$$F = \begin{cases} \{0,1\}^{64} \times \{0,1\}^{64} \times \{\{0,1\}^{64}\}^{10} \to \{0,1\}^{64} \\ (X, WK, RK_1, RK_2, \dots, RK_{10}) \to Y \end{cases}$$

```
Input: X and WK, RK_1, RK_2, \dots, RK_{10}

Initialization: S \leftarrow \text{KeyAdd}(X, WK);

for i \leftarrow 1 to 9 do

\begin{vmatrix} S \leftarrow \text{SubCell}(S); \\ S \leftarrow \text{MixColumn}(S); \\ S \leftarrow \text{ShiftRows}(S); \\ S \leftarrow \text{AddRoundKey}(S, RK_i); \\ \end{aligned}
end
S \leftarrow \text{SubCell}(S);
S \leftarrow \text{ShiftRows}(S);
S \leftarrow \text{ShiftRows}(S);
S \leftarrow \text{AddRoundKey}(S, RK_{10});
Output: Y
```

Algorithm 1: Encryption Function of -FUTURE-

The inverse data processing part F^{-1} of -FUTURE- operates as follows:

$$F = \begin{cases} \{0,1\}^{64} \times \{\{0,1\}^{64}\}^{10} \times \{0,1\}^{64} \to \{0,1\}^{64} \\ (Y, RK_{10}, RK_{9}, \dots, RK_{1}, WK) \to X \end{cases}$$

```
Input: Y and RK_{10}, RK_{9}, \dots, RK_{1}, WK

S \leftarrow \text{KeyAdd}(Y, RK_{10});

S \leftarrow \text{InvShiftRows}(S);

for i \leftarrow 1 to 9 do

\begin{array}{c} S \leftarrow \text{InvSubCell}(S); \\ S \leftarrow \text{AddRoundKey}(S, RK_{i}); \\ S \leftarrow \text{InvShiftRows}(S); \\ S \leftarrow \text{InvMixColumn}(S); \\ \end{array}
end

S \leftarrow \text{InvSubCell}(S); \\ S \leftarrow \text{KeyAdd}(S, WK); \\ \text{Output: } X
```

Algorithm 2: Decryption Function of -FUTURE-

1.3 Key schedule and round constants.

-FUTURE- uses a 128-bit secret key $K = k_0 k_1 \dots k_{127}$. It splits K in two equal parts K_0 and K_1 for the round key and whitening key generation i.e. $K = K_0 || K_1$, where $K_0 = k_0 k_1 \dots k_{63}$ and $K_1 = k_{64} k_{65} \dots k_{127}$ are two 64-bit key. It uses K_0 as whitening key and the round key RK_i $(1 \le i \le 10)$ generation is as follows (see Figure 2):

$$RK_i = \begin{cases} K_0 \leftarrow 5 \lfloor i/2 \rfloor <<< K_0 & \text{if } 2 \mid i \\ K_1 \leftarrow 5 \lfloor i/2 \rfloor <<< K_1 & \text{if } 2 \nmid i \end{cases}$$

Fig. 2. Round Key Generation