COS210 - Theoretical Computer Science Pushdown Automata

Pushdown Automata

We will introduce the concept of pushdown automata (PDA)

- Deterministic pushdown automata
- Non-deterministic pushdown automata

Unlike DFAs and NFAs, non-deterministic pushdown automata can describe **more** languages than deterministic ones

We will prove: Every **context-free grammar** can be transformed into an **equivalent non-deterministic PDA**

Descriptive Power of Languages and Automata

the traditional Chomsky hierarchy

Finite Automaton M_{FA} vs Pushdown Automaton M_{PDA}

Finite automaton $M_{FA} = (Q, \Sigma, \delta, q, F)$

• states Q, input alphabet Σ , transition function δ , initial state q, accepting states F

Pushdown Automaton $M_{PDA} = (Q, \Sigma, \Gamma, \delta, q)$

- Q set of states
- Σ input alphabet (also called tape alphabet)
- \bullet δ transition function
- q initial state

no set of accepting states, acceptance is defined implicitly for PDAs

As a FA, a PDA can **process strings** over the input alphabet $\Sigma = \{a, b, c, \ldots\}$

Additionally, a PDA makes use of a **stack** where symbols from the stack alphabet $\Gamma = \{A, B, C, \ldots\}$ can be **pushed** and **popped**

Finite Automaton M_{FA} vs Pushdown Automaton M_{PDA}

string w = abc accepted by automaton?

state control

Finite Automaton M_{FA} vs Pushdown Automaton M_{PDA}

string w = abc accepted by automaton?

state control

state control

tape

Configuration of a PDA:

• triple of state, symbol at tape head, and stack content

stack

• current configuration: (q, a, \$)

string w = abc accepted by automaton?

state control

stack

tape

General form of PDA transitions: $r \xrightarrow{a, A : \tau, W} r'$

- $r, r' \in Q$ states
- $a \in \Sigma$ language/tape symbol
- $A \in \Gamma$ stack symbol
- $\tau \in \{R, N\}$ 'Right move' or 'No move'
- $W \in \Gamma^*$ string over stack symbols

string w = abc accepted by automaton?

state control

stack

tape

General form of PDA transitions: $r \xrightarrow{a, A : \tau, W} r'$

- $r, r' \in Q$ states
- $a \in \Sigma$ language/tape symbol
- $A \in \Gamma$ stack symbol
- $\tau \in \{R, N\}$ 'Right move' or 'No move'
- $W \in \Gamma^*$ string over stack symbols

string w = abc accepted by automaton?

state control

stack

tape

General form of PDA transitions: $r \xrightarrow{a, A : \tau, W} r'$

- $r, r' \in Q$ states
- $a \in \Sigma \cup \{\Box\}$ language/tape symbol
- $A \in \Gamma$ stack symbol
- $\tau \in \{R, N\}$ 'Right move' or 'No move'
- $W \in \Gamma^*$ string over stack symbols

string w = abc accepted by automaton?

state control

stack

tape

Termination and acceptance of PDA:

- PDA terminates when stack becomes empty
- PDA accepts input string w if
 - ▶ PDA terminates for input w, and
 - ightharpoonup at time of termination, the tape head points at \square

Pushdown Automata – Informal Summary

Tape and stack of a PDA

- Each cell of the tape stores one symbol from the tape alphabet Σ , or the blank symbol \square which indicates that the cell is empty
- An input string over Σ is stored on the tape followed by \square , which indicates the end of the input string
- The stack contains symbols from the stack alphabet Γ
- The special symbol $\$ \in \Gamma$ indicates the bottom of the stack

Initial configuration of a PDA

- The tape head points at the left-most symbol of the input string
- The stack contains \$ only
- The state control is in the initial state q

Pushdown Automata – Informal Summary

Transitions of a PDA

- PDA determines the current configuration
 - read current state r of state control
 - read symbol a at head of the tape
 - read symbol A at top of the stack
- ② PDA selects a transition that is available in configuration (r, a, A)
 - in a deterministic PDA there will be exactly one available transition for each configuration
 - ▶ in a non-deterministic PDA there will be a set of available transitions
- Objective By taking the transition, PDA enters a new configuration
 - state control moves to successor state
 - tape head moves one position to the right or remains at current position
 - top of the stack is popped and a new string is pushed onto it

Deterministic Pushdown Automata - Definition

Definition

A **deterministic pushdown automaton** is a 5-tuple $M = (Q, \Sigma, \Gamma, \delta, q)$, where

- Q is a finite set, whose elements are called **states**
- Σ is a finite set, called the **tape alphabet** the blank symbol \square is not contained in Σ
- Γ is a finite set, called the stack alphabet
 Γ contains the special symbol \$
- \bullet q is an element of Q, called the **initial state**
- \bullet δ is called the **transition function**, which is a function

$$\delta: Q \times (\Sigma \cup \{ \square \}) \times \Gamma \rightarrow Q \times \{N, R\} \times \Gamma^*$$

Deterministic Pushdown Automata – Transition Function

$$\delta: Q \times (\Sigma \cup \{ \square \}) \times \Gamma \rightarrow Q \times \{N, R\} \times \Gamma^*$$

Given a current configuration, δ allows to determine the **unique successor** configuration

$$\delta(r,a,A) = (r',\tau,W)$$

$$r \in Q, a \in \Sigma \cup \{\Box\}, A \in \Gamma \qquad r' \in Q, \tau \in \{R,N\}, W \in \Gamma^*$$

Instruction notation:

A deterministic PDA M accepts a string w if the unique run over w is accepting (M terminates, at time of termination tape head points at \square)

Non-Deterministic Pushdown Automata – Definition

Definition

A non-deterministic pushdown automaton is a 5-tuple

$$M = (Q, \Sigma, \Gamma, \delta, q)$$
, where

- Q is a finite set, whose elements are called states
- Σ is a finite set, called the tape alphabet the blank symbol \square is not contained in Σ
- Γ is a finite set, called the stack alphabet
 Γ contains the special symbol \$
- \bullet q is an element of Q, called the initial state
- \bullet δ is called the **transition function**, which is a function

$$\delta: Q \times (\Sigma \cup \{ \square \}) \times \Gamma \rightarrow \mathcal{P}_f (Q \times \{N, R\} \times \Gamma^*)$$

where $\mathcal{P}_f(Q \times \{N, R\} \times \Gamma^*)$ is the set of all **finite** subsets of $Q \times \{N, R\} \times \Gamma^*$

Non-Deterministic PDA – Transition Function

$$\delta: Q \times (\Sigma \cup \{ \square \}) \times \Gamma \rightarrow \mathcal{P}_f (Q \times \{N, R\} \times \Gamma^*)$$

Given a current configuration, δ allows to determine the **set successor configurations**

$$\delta(r, a, A) = \{ (r'_1, \tau_1, W_1), \dots, (r'_n, \tau_n, W_n) \}$$

$$r \in Q, a \in \Sigma \cup \{ \Box \}, A \in \Gamma \quad r'_i \in Q, \tau_i \in \{R, N\}, W_i \in \Gamma^*, \forall 1 \le i \le n \}$$

Instruction notation:

$$raA
ightarrow r_1' au_1 W_1 \ \cdots \ raA
ightarrow r_n' au_n W_n$$

A non-deterministic PDA M accepts a string w if there exists an accepting run over w (M terminates, at time of termination tape head points at \square)

Construct a DPDA M that accepts the language

$$L = \{w : w \text{ is a string of properly nested brackets}\}$$

over the alphabet
$$\Sigma = \{a, b\}$$
 where $a = ($ and $b =)$

Strings $w \in L$ can be equivalently defined as follows:

- in w the number of a's is equal to the number of b's
- in each prefix of w the number of a's is greater than or equal to the number of b's

Construction idea for *M*:

- each time an **a** is read on the tape, **push** a symbol *S* onto the stack
- each time a **b** is read on the tape, **pop** a symbol from the stack

If there is a prefix with more \mathbf{b} 's, then \$ will be popped before \square is read

DPDA $M = (Q, \Sigma, \Gamma, \delta, q)$ with $Q = \{q\}$, $\Sigma = \{a, b\}$, $\Gamma = \{\$, S\}$, and δ :

- ① $qa\$ \rightarrow qR\S : **a** is read, **push S**
- 2 $qaS \rightarrow qRSS$: a is read, push S
- **3** $qbS \rightarrow qR\epsilon$: **b** is read and **S** is **on top** of stack, **pop S**
- $qb\$ \rightarrow qN\epsilon$: **b** is read and \$ is **on top**, **pop** \$ and **no move** more **b**'s than **a**'s have been read, termination in **non-accepting** configuration
- o $q \square S \rightarrow qNS$: \square is read and **S** on top, no stack operation and no move entire string has been read but stack still contains an **S**, PDA will loop forever in non-accepting configuration

Construct a DPDA M that accepts the language

$$L = \{0^n 1^n \in \{0, 1\}^* : n \ge 0\} \text{ over } \Sigma = \{0, 1\}$$

Construction idea for M:

- M uses two states q_0 and q_1 , where q_0 is the initial state
- for each ${\bf 0}$ that is read, ${\bf push}$ a symbol S onto the stack and stay in state q_0
- when first ${\bf 1}$ is read, ${\bf pop}$ a symbol from stack and ${\bf switch}$ to state q_1 From then on:
 - for each ${f 1}$ that is read, ${f pop}$ a symbol from stack and ${f stay}$ in state q_1
 - ▶ if a **0** is read **again**, loop forever in **non-accepting** configuration

DPDA $M=(Q,\Sigma,\Gamma,\delta,q_0)$ with $Q=\{q_0,q_1\}$, $\Sigma=\{0,1\}$, $\Gamma=\{\$,S\}$, and δ :

1) $q_00\$ \rightarrow q_0R\S push S onto the stack 2) $q_0 0S \rightarrow q_0 RSS$ push S onto the stack 3) $q_01\$ \rightarrow q_0N\$$ first symbol in the input is 1; loop forever 4) $q_0 1S \rightarrow q_1 R\epsilon$ first 1 is encountered 5) $q_0 \square \$ \to q_0 N \epsilon$ input string is empty; accept 6) $q_0 \square S \rightarrow q_0 NS$ input only consists of 0s; loop forever 7) $q_10\$ \rightarrow q_1N\$$ 0 to the right of 1; loop forever 8) $q_1 0S \rightarrow q_1 NS$ 0 to the right of 1; loop forever 9) $q_1 1\$ \rightarrow q_1 N\$$ too many 1s; loop forever 10) $q_1 1S \rightarrow q_1 R\epsilon$ pop top symbol from the stack 11) $q_1 \square \$ \rightarrow q_1 N \epsilon$ accept 12) $q_1 \square S \to q_1 NS$ too many 0s; loop forever