Universidade Federal de Alfenas - UNIFAL-MG

Disciplina: Matemática Discreta 2025/1

Professor: Anderson José de Oliveira

Lista de Exercícios 6 - Relações

1. Prove: $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

- **2.** Seja $S = \{a, b\}, W = \{1, 2, 3, 4, 5\}$ e $V = \{3, 5, 7, 9\}$. Achar $(S \times W) \cap (S \times V)$.
- 3. Seja R a relação de $E = \{2, 3, 4, 5\}$ para $F = \{3, 6, 7, 10\}$ que é definida pela sentença aberta "x divide y".
 - (1) Escreva R como um conjunto de pares ordenados, isto é, ache o conjunto solução de R.
 - (2) Esboce R no diagrama coordenado $E \times F$.
- 4. Cada uma das sentenças seguintes define uma relação entre os números reais. Esboce cada relação no diagrama coordenado $\mathbb{R}^* \times \mathbb{R}^*$.
 - (1) $y = x^2$
 - (2) $y \le x^2$
 - (3) y < 3 x
 - (4) $y \ge \sin(x)$
 - (5) $y \ge x^3$
 - (6) $y > x^3$
- 5. Quando é que uma relação R em um conjunto A não é reflexiva?
- **6.** Seja $E = \{1, 2, 3\}$. Considere as seguintes relações em E: $R_1 = \{(1, 2), (3, 2), (2, 2), (2, 3)\}$, $R_2 = \{(1, 2), (2, 3), (1, 3)\}$, $R_3 = \{(1, 1), (2, 2), (2, 3), (3, 2), (3, 3)\}$, $R_4 = \{(1, 2)\}$, $R_5 = E \times E$. Diga se cada uma das relações é ou não reflexiva.
- 7. Seja $S = \{0, 1, 2, 4, 6\}$. Verifique se as relações binárias a seguir são reflexivas, antirreflexivas, simétricas, antissimétricas, ou transitivas.
 - (a) $R_1 = \{(0,0), (1,1), (2,2), (4,4), (6,6), (0,1), (1,2), (2,4), (4,6)\}$

- (b) $R_2 = \{(0,1), (1,0), (2,4), (4,2), (4,6), (6,4)\}$
- (c) $S = \{0, 1, 2, 3, 4, 5\}, xR_3y \leftrightarrow x + y = 5$
- 8. Prove que sendo R uma relação em um conjunto A, R é transitiva se, e somente se, R^{-1} é transitiva.
- 9. Para cada uma das relações binárias R a seguir, encontre o domínio, a imagem e a relação inversa R^{-1} .
 - (a) $A = \{a, b, c, d\}, B = \{1, 2, 3\} \in R = \{(b, 2), (b, 3), (d, 1), (d, 3)\}$
 - (b) $A = B = \{a, b, c, d\}$ e $R = \{(b, a), (c, d), (a, b), (a, d), (a, c)\}$
- 10. Prove que sendo R uma relação em um conjunto A, R é reflexiva se, e somente se, R^{-1} é reflexiva.
- 11. Seja R a relação nos números naturais \mathbb{N} definida pela sentença aberta "(x-y) é divisível por 5", isto é: $R = \{(x,y)|x \in \mathbb{N}, y \in \mathbb{N}, (x-y) \text{ é divisível por 5}\}$. Prove que R é uma relação de equivalência.
- 12. Ache todas as partições de $A = \{a, b, c, d\}$.
- 13. Seja R a relação em $\mathbb{N} \times \mathbb{N}$ que é definida por: (a,b) está relacionado a (c,d) que escrevemos da seguinte forma: $(a,b) \simeq (c,d)$ se, e somente se, a+d=b+c. Prove que R é uma relação de equivalência.
- 14. Quais das relações a seguir são relações de equivalência sobre o conjunto A dado?
 - (a) $A = \{a, b, c\} \in R = \{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}$
 - (b) $A = \{a, b, c\} \in R = \{(a, a), (a, b), (b, a), (b, b)\}$
 - (c) $A = \mathbb{N}$ e a ordem usual menor ou igual.
- **15.** Construa o diagrama de Hasse da relação de ordem por inclusão em $A = \wp(\{a, b, c, d\})$.
- **16.** Seja $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} | x \leq y\}$ sobre o conjunto dos números reais, ou seja, x está relacionado com y segundo R, se x é menor que y ou x é igual a y. Prove que essa relação é uma relação de ordem. Ela é de ordem total?
- 17. Seja R uma relação de equivalência em um conjunto A e seja $a \in A$. Prove que $a \in [a]$.
- 18. Seja R uma relação de equivalência em um conjunto A e sejam $a, b \in A$. Prove que aRb se e somente se, [a] = [b].

- ${\bf 19.}\,\stackrel{.}{\to}\,$ possível uma relação ser de ordem e ser de equivalência simultaneamente?
- **20.** Prove que sendo R uma relação em um conjunto A, então R é antissimétrica se, e somente se, $R\cap R^{-1}\subset I_A$.

Bom trabalho!