Пример на основе класса документа

bomgost.cls

3 января 2018 г.

РЕФЕРАТ

Выпускная квалификационная работа содержит 13 страниц, 1 рисунок, 1 таблиц, 3 источника. В некоторых случаях количество приложений не указывается.

КЛЮЧЕВОЕ СЛОВО 1, КЛЮЧЕВОЕ СЛОВО 2, КЛЮЧЕВОЕ СЛОВО 3 и т. д.

Краткое описание работы.

СОДЕРЖАНИЕ

РЕФЕРАТ	2
ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ	4
ВВЕДЕНИЕ	5
ОСНОВНАЯ ЧАСТЬ	6
1 ТЕОРЕТИЧЕСКАЯ ЧАСТЬ	7
1.1 Первый подраздел	7
1.1.1 Максимальный уровень	7
2 ПРАКТИЧЕСКАЯ ЧАСТЬ	8
2.1 Дифференцирование	8
2.1.1 Дифференцирование квадратного уравнения	8
ЗАКЛЮЧЕНИЕ	9
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	10
ПРИЛОЖЕНИЕ	11

ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

ОДУ - обыкновенные дифференциальные уравнения.

СЛАУ - система линейных алгебраических уравнений.

введение

Текст введения.

ОСНОВНАЯ ЧАСТЬ

1 ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1.1 Первый подраздел

1.1.1 Максимальный уровень

Здесь какой - то текст. Квадратное уравнение.

$$f(x) = x^2 + x - 2. (1.1)$$

График представлен на рисунке ниже.

Рис. 1.1 График f(x).

Корни квадратного уравнения представлены в таблице 1.1.

Таблица 1.1 Корни квадратного уравнения.

Первый корень	Второй корень
1	-2

2 ПРАКТИЧЕСКАЯ ЧАСТЬ

2.1 Дифференцирование

2.1.1 Дифференцирование квадратного уравнения

$$\frac{df(x)}{dx} = 2x + 1. (2.1)$$

ЗАКЛЮЧЕНИЕ

Интересная статья, связанная с нейронными сетями, [3].

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Бард Й. Нелинейное оценивание параметров / Й. Бард, Москва: Статистика, 1979. 349 с.
- 2. Вольтерра В. Математическая теория борьбы за существование // Усп. физ. наук. 1928. № 1 (8). С. 13–34.
- 3. Cybenko G. Approximation by Superpositions of a Sigmoidal Function // Mathematics of Control, Signals, and Systems. 1989. (2). C. 303–314.

ПРИЛОЖЕНИЯ

Приложение 1

Программный код

```
#include <iostream>
using namespace std;
int main()
{
  auto b = 1;
  auto a = 2;
  cout << "2 + 1 = " << a + b << endl;
  return 0;
}</pre>
```

Приложение 2

Таблица

67	67	7	4
47	87	71	13
984	12	354	7
748	89	2	31
124	78	99	993431
56	12	33	1554
48	58	78	12
102	1205	1112	35
97	888	436	64
1	2	4	7
984	12	354	7
748	89	2	31
124	78	99	993431
56	12	33	1554
48	58	78	12
102	1205	1112	35
97	888	436	64
1	2	4	7
748	89	2	31
124	78	99	993431
56	12	33	1554
48	58	78	12
102	1205	1112	35
97	888	436	64
1	2	4	7