

Aula 01

Introdução à Pesquisa Operacional

Modelagem Matemática

O que é Pesquisa Operacional?

Definição

A Pesquisa Operacional (PO) é uma disciplina que utiliza métodos matemáticos e estatísticos para analisar e otimizar sistemas complexos, buscando a melhor solução para problemas reais.

História

Originada durante a Segunda Guerra Mundial, a PO evoluiu para um campo crucial em diversas áreas, como gerenciamento, logística, saúde e finanças.

Modelagem Matemática: A Base da PO

Abstração

A PO utiliza modelos matemáticos para representar problemas reais, simplificando-os e permitindo a análise sistemática.

Variáveis

Variáveis e relações matemáticas definem o problema, permitindo a identificação de restrições e objetivos a serem otimizados.

Soluções

As soluções obtidas através de modelos matemáticos fornecem insights valiosos para a tomada de decisões eficazes.

Programação Linear: Encontrando o Ótimo

Formulação

A Programação Linear (PL) é uma técnica para otimizar funções lineares, sujeitas a restrições lineares.

Resolução

Métodos como o Simplex são usados para encontrar a solução ótima, maximizando ou minimizando a função objetivo.

Aplicações

A PL é amplamente utilizada em diversas áreas, como produção, logística, planejamento e alocação de recursos.

Método Gráfico em Pesquisa Operacional: Uma Abordagem Visual

O que é o Método Gráfico e como aplicá-lo para resolver problemas de otimização linear

Definição

O método gráfico é uma técnica visual para solucionar problemas de otimização linear com duas variáveis de decisão.

Aplicações

É útil para empresas que precisam alocar recursos limitados para maximizar lucros ou minimizar custos.

Estudo de Caso: Maximizando Lucros em uma Fábrica de Fábrica de Móveis usando o Método Gráfico

Problema

Uma fábrica de móveis precisa decidir a quantidade de cadeiras e mesas a produzir para maximizar os lucros, considerando recursos limitados de madeira e mão de obra.

Solução Gráfica

O método gráfico ajuda a identificar a combinação ideal de cadeiras e mesas que maximiza o lucro, levando em conta as restrições de recursos.

Resultados

A fábrica pode aumentar seus lucros através da otimização da produção, usando o método gráfico para determinar a combinação ideal de produtos.

O Método Simplex: Um Potente Instrumento

1 Iterações

O método Simplex envolve iterações sucessivas para encontrar a solução ótima, movendo-se através de vértices do espaço de soluções.

Critério de Ótimo

O processo continua até que um critério de otimização seja atingido, indicando a solução com o maior valor da função objetivo.

3 ____ Aplicabilidade

O método Simplex é amplamente utilizado em softwares de PO, automatizando a resolução de problemas de programação linear.

Análise de Sensibilidade: Interpretando Resultados

Parâmetros

A análise de sensibilidade examina o impacto de alterações nos parâmetros do modelo, como custos, preços e restrições.

Robustez

Determina a robustez da solução ótima, verificando se pequenas mudanças nos parâmetros alteram significativamente o resultado.

Decisões

Essa análise fornece insights para a tomada de decisões mais informadas, considerando a flexibilidade do modelo.

Teoria das Filas: Otimizando o Atendimento

Chegadas

Modela o fluxo de clientes chegando a um sistema de atendimento, como filas em bancos ou caixas.

Atendimento

Analisa o tempo de atendimento, capacidade do servidor e tempo médio de espera dos clientes.

Otimização

Busca minimizar o tempo de espera, otimizar o número de servidores e melhorar a eficiência do atendimento.

Teoria dos Jogos: Tomada de Decisão Estratégica

Estratégias

A

Analisa as decisões estratégicas de múltiplos jogadores em um cenário competitivo, considerando as ações dos outros.

2

Equilíbrio

Busca encontrar o equilíbrio de Nash, onde nenhum jogador tem incentivo para mudar sua estratégia unilateralmente.

Aplicações

3

Aplicações em negócios, negociações, política e até mesmo em jogos, como xadrez e pôquer.

Aplicações Práticas da Pesquisa Operacional

Logistica

Otimização de rotas de entrega, gerenciamento de estoque e planejamento de cadeias de suprimentos.

Finanças

Gestão de carteira de investimentos, análise de risco e tomada de decisões financeiras estratégicas.

Saúde

Otimização de recursos, planejamento de escalas de trabalho, gerenciamento de leitos e alocação de pacientes.

Modelagem Matemática e Pesquisa Operacional

Modelos Matemáticos: Tipos e Características

Modelos Lineares

Utilizados em situações onde as relações entre as variáveis são lineares.

Modelos Não Lineares

Aplicados quando as relações entre as variáveis são não lineares, como em funções exponenciais ou logarítmicas.

Modelos de Simulação

Usados para simular o comportamento de sistemas complexos, como redes de comunicação ou sistemas de produção.

Formulação de Problemas: Transformando a Realidade em em Modelos

Identificação

O primeiro passo é definir o problema a ser resolvido, identificando seus objetivos e restrições.

Abstração

Após a identificação, o problema é abstraído para um modelo matemático, utilizando variáveis, equações e inequações.

Validação

O modelo matemático é validado, analisando sua capacidade de representar o problema real de forma precisa.

Otimização Linear: Maximização Maximização e Minimização

Maximização

Encontrar a solução que maximiza uma função objetivo, como lucro ou produção.

Minimização

Encontrar a solução que minimiza uma função objetivo, como custos ou tempo de produção.

Resolução de Modelos: Métodos Métodos e Softwares

Métodos Algébricos

Utilizam técnicas matemáticas para encontrar a solução ótima.

Métodos Gráficos

Representam o problema em um gráfico, permitindo visualizar a solução ótima.

Softwares

Existem softwares
especializados em
resolver modelos
matemáticos
complexos,
facilitando o
processo de
otimização.

Exemplos Práticos: Casos de Sucesso

1 Logística

Otimizar rotas de entrega e gerenciar estoques.

Produção

Planejar a produção, minimizar custos e maximizar a eficiência.

3 Finanças

Gerenciar investimentos, minimizar riscos e maximizar retornos.

Variáveis de Decisão

É o primeiro passo do modelo, essas variáveis medem quantidade de diferentes recursos (produtos, pessoas, litros, horas de trabalho, caixas containers etc.)

Função Objetivo

Escolhidas as variáveis de decisão, o próximo passo é estruturar a função objetivo. Essa função mostra o que se quer otimizar.

Restrições

São as condições que limitam o problema, sejam elas de material, mão de obra etc. As variáveis de decisão ficam sujeitas às limitações que são impostas pelas possibilidades econômicas ou tecnológicas.

Condição de não negatividade

Os valores das variáveis serão não negativos. Essa é a condição lógica do modelo.

Variáveis de Decisão

É o primeiro passo do modelo, essas variáveis medem quantidade de diferentes recursos (produtos, pessoas, litros, horas de trabalho, caixas containers etc.)

Função Objetivo

Escolhidas as variáveis de decisão, o próximo passo é estruturar a função objetivo. Essa função mostra o que se quer otimizar.

Restrições

São as condições que limitam o problema, sejam elas de material, mão de obra etc. As variáveis de decisão ficam sujeitas às limitações que são impostas pelas possibilidades econômicas ou tecnológicas.

Formulação do Problema

Forma Padrão

onde X: $\{x_1, x_2, x_3, ..., x_n\}$: são as variáveis de decisão;

A: {a₁, a₂, a₃,..., a_m}: são os coeficientes das variáveis;

B: {b₁, b₂, b₃,..., b_m}: são os termos independentes que representam os recursos disponíveis.

Exemplo:

Min Z =
$$5x_1 + 7x_2 + 2x_3$$

Sujeito a: $x_1 + x_2 + x_3 = 9$
 $5x_1 + 3x_2 + x_3 = 19$
 $3x_1 + 5x_2 + 2x_3 = 11$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$

Forma Canônica

Exemplo:

Max.
$$Z = 4x_1 + 6x_2 + 9x_3$$

Sujeito a: $3x_1 + 4x_2 + 3x_3 \le 23$
 $2x_1 + 3x_2 + x_3 \le 16$
 $x_1 + 2x_2 + 4x_3 \le 28$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$

Certa empresa fabrica dois produtos P1 e P2. O lucro unitário do produto P1 é de R\$ 1.000,00 e o lucro unitário de P2 é R\$ 1.800. A empresa precisa de 20 horas para fabricar uma unidade de P1 e de 30 horas para fabricar uma unidade de P2. O tempo anual de produção disponível para isso é de 1200 horas. A demanda esperada para cada produto é de 40 unidades para P1 e 30 unidades para P2. Construa o modelo de programação linear que objetiva Maximizar o lucro.

Uma empresa de informática tem em seu quadro de pessoal 25 engenheiros e 40 técnicos. Ela venceu uma concorrência para instalar todo o sistema de computação de um "edificio inteligente" e está preparando as equipes para trabalharem nessa obra. Dos estudos realizados para o emprego de mão-de-obra chegou-se à conclusão de que haveria viabilidade para a empresa trabalhar com três tipos de equipes com as seguintes composições:

- Tipo I: 2 engenheiros e 6 técnicos;
- Tipo II: 4 engenheiros e 8 técnicos;
- Tipo III: 3 engenheiros e 9 técnicos.

O emprego de cada equipe do tipo I, diariamente, dá uma receita para a empresa no valor de R\$ 2000,00; da equipe do tipo II, R\$ 3000,00; e da equipe III, R\$ 2800,00. Qual deve ser a quantidade a ser empregada de cada tipo de equipe na obra para que a receita de uma empresa de informática seja máxima? **Modele este problema de programação linear.**

Um sapateiro faz 6 sapatos por hora, se fizer somente sapatos, e 5 cintos por hora, se fizer somente cintos. Ele gasta 2 unidades de couro para fabricar 1 unidade de sapato e 1 unidade de couro para fabricar uma unidade de cinto. Sabendo-se que o total disponível de couro é de 6 unidades e que o lucro unitário por sapato é de \$5,00 e o do cinto é de \$2,00, pede-se: o modelo do sistema de produção do sapateiro, se o objetivo é maximizar seu lucro por hora.

Uma metalúrgica produz três componentes para geladeira: A, B e C. Ela pode fabricar por hora 25 unidades do componente A ou 30 de B ou 40 de C.

- Cada componente A gasta 40 unidades do recurso I e 30 do recurso II
- Cada componente B gasta 25 unidades do recurso I e 15 do recurso II
- Cada componente C gasta 18 unidades do recurso I e 10 do recurso II

As disponibilidades do recurso I e II são 712 e 450 unidades respectivamente. Toda a produção da metalúrgica é absorvida pela fábrica de geladeiras. O lucro de A, B e C são R\$ 25,00 , R\$ 15,00 e R\$ 11,00 , respectivamente.

Qual deverá ser a produção da metalúrgica para gerar o lucro máximo?

A Óleos Unidos S.A é uma empresa do ramo de derivados de petróleo que manufatura três combustíveis especiais com base na mistura de dois insumos: um extrato mineral e um solvente. No processo de produção não existe perda de material, de forma que a quantidade de litros de extrato mineral somada à quantidade de litros do solvente utilizada para a fabricação de um tipo de combustível resulta no total de litros daquele combustível. A proporção da mistura está descrita na tabela a seguir:

Suponha que a Óleos Unidos tenha disponível 120 litros de extrato mineral e 200 litros de solvente e que os lucros esperados para os três combustíveis sejam de R\$ 20,00, R\$ 22,00 e R\$ 18,00, respectivamente. Estabeleça um modelo de programação linear que determine a quantidade de cada combustível a ser fabricada.

	Combustível A	Combustível B	Combustível C
Extrato mineral	8 litros	5 litros	4 litros
Solvente	5 litros	4 litros	2 litros

Uma refinaria produz 3 tipos de gasolina: verde, azul e comum. Cada tipo requer gasolina pura, octana e aditivo que são disponíveis na quantidade de 9.600.000, 4.800.000 e 2.200.000 litros por semana, respectivamente.

As especificações de cada tipo são:

- >um litro de gasolina verde requer 0,22 L de gasolina pura, 0,50 L de octana e 0,28 L de aditivo
- ➤um litro de gasolina azul requer 0,52 L de gasolina pura, 0,34 L de octana e 0,14 L de aditivo
- >um litro de gasolina comum requer 0,74 L de gasolina pura, 0,20 L de octana e 0,06 L de aditivo
- Como regra de produção, baseada em demanda de mercado, o planejamento da refinaria estipulou que a quantidade de gasolina comum deve ser no mínimo igual a 16 vezes a quantidade de gasolina verde e que a quantidade de gasolina azul seja no máximo igual a 600.000 litros por semana.
- A empresa sabe que cada litro de gasolina verde, azul e comum dá uma margem de contribuição para o lucro de \$ 0,30, \$ 0,25 e \$ 0,20 respectivamente, e seu objetivo é determinar o programa de produção que maximiza a margem total de contribuição para o lucro.

A empresa *Afia Bem Ltda*. produz em uma seção três modelos de facas: Padrão (P), Média (M) e Grande(G). No processo de fabricação são utilizada, primeiramente, três máquinas que fazem o corte da lâmina, modelagem e afiação. Uma quarta máquina faz o cabo das facas e uma quinta a montagem. Os tempos gastos, em segundos, gastos em cada máquina são a seguir especificadas:

Tempos	de máquin	as por tipo de fo	іса.	Start (Arrigin	reiniteren. 5
Máquina Modelo	Corte	Modelagem	Afiação	Cabo	Montagem
Padrão	10	10	12	19	19
Médio	10	15,5	16	21	21
Grande	12	17	19	24	22

Os tempos disponíveis, diariamente de cada máquina são no mínimo de 4 horas para o corte, 6 para modelagem, 6 para afiação, 8 para o cabo e 8 para a montagem. Uma faca padrão tem uma lâmina de 25 cm², 32 cm² do modelo médio e 45 cm² do modelo grande. Cada chapa metálica que da origem às lâminas tem 2,00m m x 1,00 m. A disponibilidade das chapas é de 2,5 chapas.

As contribuições para o lucro são de R\$ 3,00, R\$ 4,00 e R\$ 4,70 unidades monetárias para os modelos Padrão, Médio e Grande, respectivamente. Deseja-se formular o modelo para calcular as quantidades a serem produzidas de cada tipo que maximizem o lucro da empresa.

Uma companhia fabrica dois produtos P1 e P2 que utilizam os mesmos recursos produtivos: matéria-prima, forja e polimento. Cada unidade de P1 exige 4 horas de forjaria, 2 horas de polimento e utiliza 100 unidade de matéria-prima. Cada unidade de P2 requer 2 horas de forjaria, 3 horas de polimento e 200 unidade de matéria-prima. O preço de venda de P1 é de R\$ 1900,00 e de P2 é R\$ 2100,00. Toda produção tem mercado garantido. As disponibilidades são de : 20 horas de forja, 10 horas de polimento e 500 unidade de matéria-prima, por dia.

Elabore o modelo matemático.

Uma empresa de transportes recebeu a proposta de transportar trabalhadores de uma indústria para uma nova fábrica que está sendo inaugurada. São 600 funcionários que deverão ser transportados de uma só vez. A empresa dispõe de 8 ônibus de tamanho G que comportam 60 pessoas cada e 12, de tamanho P, com 40 lugares. Cada ônibus G custa para a fábrica, por viagem, R\$ 190,00 e cada ônibus de tamanho P, R\$ 140,00. A empresa transportadora, devido a outros contratos assinados anteriormente, dispõe de 13 motoristas. Como poderá ser realizado esse transporte pelo mínimo custo: **Modele este problema.**

Duas fábricas produzem 3 diferentes tipos de papel. A companhia que controla as fábricas tem um contrato para produzir 16 toneladas de papel fino, 6 toneladas de papel médio e 28 toneladas de papel grosso. Existe uma demanda para cada tipo de espessura. O custo de produção na primeira fábrica é de R\$1.000,00 e o da segunda fábrica é de R\$2.000,00, por dia. A primeira fábrica produz 8 toneladas de papel fino, 1 tonelada de papel médio e 2 toneladas de papel grosso por dia, enquanto a segunda fábrica produz 2 toneladas de papel fino, 1 tonelada de papel médio e 7 toneladas de papel grosso. Quantos dias cada fábrica deverá operar para suprir os pedidos mais economicamente?

Faça a modelagem desse problema.