Optimizacion de Arboles de busqueda Binarios Investigacion de Operaciones (2 semestre - 2016)

Leonardo Mendoza - Patrick Maynard 16 de mayo de 2016

Resumen

Un rbol binario de bsqueda tambin llamados BST (acrnimo del ingls Binary Search Tree) es un tipo particular de rbol binario que presenta una estructura de datos en forma de rbol usada en informtica. Basado en la probabilidad de acceder que se desee localziar cada nodo, este algoritmo reordena el arbol de busqueda optimo para cada caso.

1. Datos iniciales

Estos son los datos iniciales ordenados y normalizados:

Australia	0,02564
Brazil	0,03846
Canada	0,03846
China	0,16667
France	0,05128
Germany	0,06410
India	0,03846
Italy	0,03846
Mexico	0,03846
Rest of the world	0,11538
Russia	0,03846
USA	0,29487
United Kingdom	0,05128

2. Tabla A

Esta es la table A completa.

0,00	0,03	0,09	0,17	0,44	0,54	0,72	0,83	0,99	1,14	1,56	1,69	2,46	2,62
0,00	0,00	0,04	0,12	0,36	0,46	0,64	0,76	0,91	1,06	1,47	1,59	2,36	2,51
0,00	0,00	0,00	0,04	0,24	0,35	0,53	0,64	0,79	0,95	1,32	1,44	2,21	2,36
0,00	0,00	0,00	0,00	0,17	0,27	0,45	0,56	0,72	0,86	1,21	1,32	2,08	2,23
0,00	0,00	0,00	0,00	0,00	0,05	0,17	0,24	0,36	0,47	0,78	0,90	1,53	1,68
0,00	0,00	0,00	0,00	0,00	0,00	0,06	0,14	0,24	0,36	0,63	0,73	1,36	1,46
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,04	0,12	0,19	0,42	0,50	1,06	1,17
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,04	0,12	0,31	0,38	0,91	1,01
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,04	0,19	0,27	0,76	0,86
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,12	0,19	0,64	0,74
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,04	0,37	0,47
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,29	0,40
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,05
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

3. Tabla R

Esta es la tabla que contiene el arbol optimo.

0	1	2	2	4	4	4	4	4	4	4	6	10	10
0	0	2	3	4	4	4	4	4	4	6	6	10	10
0	0	0	3	4	4	4	4	4	4	6	6	10	10
0	0	0	0	4	4	4	4	4	6	6	6	10	10
0	0	0	0	0	5	6	6	6	6	8	8	10	12
0	0	0	0	0	0	6	6	7	8	8	10	12	12
0	0	0	0	0	0	0	7	8	8	10	10	12	12
0	0	0	0	0	0	0	0	8	9	10	10	12	12
0	0	0	0	0	0	0	0	0	9	10	10	12	12
0	0	0	0	0	0	0	0	0	0	10	10	12	12
0	0	0	0	0	0	0	0	0	0	0	11	12	12
0	0	0	0	0	0	0	0	0	0	0	0	12	12
0	0	0	0	0	0	0	0	0	0	0	0	0	13
0	0	0	0	0	0	0	0	0	0	0	0	0	0

4. Conclusion

Finalmente usando la tabla R se puede deducir el r
bol de busca ptimo para este caso específico.