CE 112 Exams Forumula Sheet

Axial Load

Stress in Pressure Vessel

Max In-Plane Shear	$\sigma_n = \frac{P}{A}$	Cylinder	$\sigma_1 = \frac{Pr}{t}$
Stress	$O_n = \frac{1}{A}$		
Displacement			$\sigma_2 = \frac{Pr}{2t}$
$\sigma = E\epsilon$	$\delta = \int_0^L \frac{P(x)}{A(x)E} dx$	Sphere	$\sigma_1 = \sigma_2 = \frac{Pr}{2t}$
$\delta_{th} = \alpha \Delta T L$	$\delta = \frac{PL}{AE}$	Stress Transformation	
Torsion	$\tau = G\gamma$	$\sigma_{x'} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$	
Shear Stress in a circular shaft	$\tau = \frac{Tp}{J}$	$\tau_{x'y'} = -\left(\frac{\sigma_x + \sigma_y}{2}\right) \sin 2\theta + \tau_{xy} \cos 2\theta$	
J for solid circle	$J = \frac{\pi}{2}C^4$		
J for hollow circle	$J = \frac{\pi}{2} (C_o^4 - C_i^4)$	Principal Stress	
Angle of Twist	$\phi = \int_0^L \frac{T(x)}{J(x)G} dx$	$tan2\theta_p = \frac{\tau_{xy}}{\frac{1}{2}(\sigma_x - \sigma_y)}$	
	$\phi = \frac{TL}{JG}$	$\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$	
	V G	Max In-Plane Shear Stress	
Bending		$tan2\theta_s = -\frac{\frac{1}{2}(\sigma_x - \sigma_y)}{\tau_{xy}}$	
Normal Stress	$\sigma = -\frac{My}{I}$	$\tau_{max} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$	
Shear		Absolute Maximum Shear Stress	
Average Shear Stress	$\tau_{avg} = \frac{V}{A}$	$\tau_{ max } = \frac{\sigma_x + \sigma_y}{2}$	
Transverse (Bending) Shear Stress	$\tau = \frac{VQ}{It}$	$\sigma_{avg} = \frac{\sigma_{max} + \sigma_{min}}{2}$	

Shear Flow	$q = \frac{VQ}{I}$	Geometric Properties of Shapes	
Material Properties		y y' Rect	angle $\bar{I}_{X'} = \frac{1}{12}bh^3$
waterial Properties	1		$\bar{I}_{y'} = \frac{1}{12}b^3h$
Poisson's Ratio	$\nu = -\frac{\epsilon_{tran}}{\epsilon_{long}}$		A = bh
Relations between w, V, M			
$\frac{dV}{dx} = -w(x)$	$\frac{dM}{dx} = V$	Tria	ingle
Elastic Curve	$\frac{l}{\rho} = \frac{M}{EI}$	$ \begin{array}{c c} h & C \\ \downarrow h \\ \hline & \frac{h}{3} & x \end{array} $	$\bar{I}_{x'} = \frac{1}{36}bh^3$ $A = \frac{1}{2}bh$
	$EI\frac{d^4\nu}{dx^4} = -\omega(x)$	← b →	
	$EI\frac{d^3v}{dx^3} = V(x)$	Y	rcle $ar{I}_{\scriptscriptstyle X}=ar{I}_{\scriptscriptstyle Y}=rac{1}{4}\pi r^4$
	$EI\frac{d^2v}{dx^2} = M(x)$	0 x	$egin{aligned} ar{I}_x &= ar{I}_y = rac{1}{4}\pi r^4 \ J_O &= rac{1}{2}\pi r^4 \ A &= \pi r^2 \end{aligned}$
Buckling			
Critical Axial Load	$P_{cr} = \frac{\pi^2 EI}{(KL)^2}$	y Semi-	-circle $I_x = I_y = \frac{1}{8}\pi r^4$ $J_O = \frac{1}{4}\pi r^4$
Critical Stress	$\sigma_{cr} = \frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2}$	$ \begin{array}{c c} & C \\ \hline & C \\ \hline & C \\ \hline & r \rightarrow \\ \end{array} $	$A = \frac{\pi r^2}{2}$
Radius of Gyration	$r = \sqrt{\frac{I}{A}}$	h C Tra	pezoid $C_{x} = \frac{h}{2}$ $C_{y} = \frac{1}{3} \left(\frac{2a+b}{a+b}\right) h$ $A = \frac{1}{2}h(a+b)$
Effective Length Factor, K		2	
2 V			
PIN 8		Parallel Axis Theorem	
PIN R K=1.0		$I_{x'} = I_x + A d^2$	x' 10 c+ -x'