Spoiler Alert: Using Deep Learning to Detect Spoilers in Text and Generate Similar Spoiler-Free Text

Abolfazl Eshagh, Mobina Salimipanah, Parnian Razavi, Ali Nikkhah, Sarina Zahedi, Ramtin Khoshnevis

Abstract											
1. Introduction	spoilers, in our main dataset [reference needed].										
	Additionally, we generate spoiler-free review										
	summaries from the initial review texts in the dataset										
	that contain spoilers.										
	Spoiler-free plot summary generation										
	First, we performed initial preprocessing on our										
	dataset [reference needed]. It is important to note that										
2. Related Work	some entries lacked values in the										
2. Related Work	'plot_synopsis' column, necessitating the										
	removal of those samples. We then defined our model										
	using the										
3. Datasets	'BartForConditionalGeneration'										
	[reference needed]. This model was fine-tuned over										
	10 epochs. Unfortunately, due to the limited size of										
	our available dataset, the model quickly overfitted,										
	making further fine-tuning beyond 10 epochs										
	impractical. The best state of the model, captured										
	during this training session, was saved and utilized										
4 Mathad	for evaluation. The results for this task are evaluated										
4. Method	using the metrics outlined in Section 5 and are										
Dataset preprocessing	presented in Table 2.										
	Spoiler-free review summary generation										
4.1. (3)	Similar to the plot summary generation process, we										
4.1. Classification	began by preprocessing this part of the dataset										
	[reference needed]. The only two features needed										
42.6	were the 'review_text' and										
4.2. Generation	'review_summary' columns, so all other columns										
In the generation phase, we tackle multiple tasks,	were discarded. It is worth mentioning that this part										
primarily focusing on generating spoiler-free plot											

of the dataset is significantly larger, containing more

summaries from the original plot, which contains

than 450,000 samples of review text and
corresponding summaries. Due to computational
resource constraints, we had to downsample this
dataset randomly. Next, we loaded the
'BartForConditionalGeneration'
[reference needed] model and fine-tuned it on the
prepared data. Unlike the plot summary task, the
larger dataset size allowed the Bart model to continue
achieving lower losses with each epoch. The results
for this task are evaluated using the metrics outlined
in Section 5 and are shown in Table 3.

	5.	•	N	1e	tı	ic	S															
								 	 	 ٠.	 		• •	 	 	 	٠.	 				
• • • •			٠.		٠.	٠.	٠.															

6.	Results
7.	Future Works
• • • • • • • • • • • • • • • • • • • •	
8.	Conclusion