	Linear Algebra
	• Vectors
	○ linear dependency, basis, norm, projection
	Matrix
	○ linear transformation, mat-vect, mat-mat,
	eigenvalues, eigenvectors, page rank
U	se Case:
Lo	oss function, Covariance matrix, SVM, PCA, SVD,
Ir	mage representation as tensors, convoluting & imag
pr	rocessing, etc

Vector
What is a vector?
CS View:
list of numbers, data, etc (list, array)
Math/Physics:
 A geometric object with magnitude and direction
 An element of a vector space
 Vector space: a set V together with vector addition and
scalar multiplication that satisfy associativity, commutativity,
identity, inverse, distributivity
Data Science:
A set of features of a data point

Consider a Coordinate system:

$$\overrightarrow{a} = \begin{pmatrix} 4 \\ -3 \end{pmatrix}$$

$$\overrightarrow{a} = 4\widehat{i} - 3\widehat{j}$$

$$= 4 \begin{pmatrix} 1 \\ 0 \end{pmatrix} - 3 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Let
$$\overrightarrow{c} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$$
, then
$$\overrightarrow{a} + \overrightarrow{c} = \begin{pmatrix} 4 \\ -3 \end{pmatrix} + \begin{pmatrix} 4 \\ 2 \end{pmatrix} = \begin{pmatrix} 8 \\ -1 \end{pmatrix}$$

$$2\overrightarrow{c} = 2\begin{pmatrix} 4 \\ 2 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$$

Scalar

- An element of a field.
- Field is a set on which addition, subtraction, multiplication and division are defined
- An object with only magnitude.
- A quantity that scales a vector

Vector Space

Let V be a vector space, then the following conditions hold.

For all
$$x, y, z \in V \& a, b \in F$$

- 1. Commutate: x + y = y + x
- 2. Associativity: (x + y) + z = x + (y + z)
- 3. Additive identity: 0 + x = x + 0 = x
- 4. Existence of additive inverse: x + (-x) = 0
- 5. Associativity of Scalar multiplication: a(b x) = (ab) x
- 6. Distributivity of scalar sums: (a + b) x = a x + b x
- 7. Distributivity of vector sums: a(x + y) = ax + ay
- 8. Scalar multiplicative identity: 1*x = x

Linear subspace

Let V be a vector space over a field F, and W be a subset of V. Then, W is said to be a linear subspace of V if under of the same operations of V, W is also a vector space over F.

Example

Kernel of a linear map

Let V and W be two vector spaces, and L be a linear map defined as -

$$L:V\to W$$

The kernel of the linear map (null space) is the linear subspace of the domain (V) of the map which is mapped to the zero vector, that is,

$$\ker(L) = \{ v \in V | L(v) = 0 \}.$$

Suppose A is a $(m \times n)$ matrix with coefficient in the field F. The kernel of the matrix is the set of solutions to the system Ax=0, where 0 is a zero-vector.

$$N(A) = Null(A) = \ker(A) = \{x \in F^n \mid Ax = 0\}$$

Span

Let S be a set of vectors. The span of S can be defined as the set of all finite linear combinations of elements of S.

Linearly Dependent vectors

Let
$$v_1, v_2, v_3, \ldots, v_n$$

be a collection of vectors. The vectors are said to be linearly dependent, if there exist scalars $a_1, a_2, a_3, \ldots, a_n$ not all zero such that

$$a_1v_1 + \ldots + a_nv_n = \overrightarrow{0}$$

Remark

Suppose a scalar, say "a_1' is nonzero, then

$$v_1 = -\frac{a_2}{a_1} \overrightarrow{v}_2 + \ldots + \frac{-a_n}{a_1} \overrightarrow{v}_n$$

$$v_1$$
 is a linear combination of $\{\overrightarrow{v}_2,\ldots,\overrightarrow{v}_n\}$

Linearly Independent
The set of vectors $v_1, v_2, v_3, \ldots, v_n$
are said to be linearly independent if Eq. (1) can be satisfied only with
$a_i=0, i=1,\ldots,n.$
\Rightarrow No vector in the collection can be written as a linear
combination of other vectors
•
Example:
Basis
The basis of a vector space is the set of all linearly
independent vectors that span the full space.
Q: Can we have more than one basis?

Basis of a vector space:

The basis of a vector space over a field is a linearly independent subset of the space that spans the space.

$$\widehat{i} = (1,0)$$
 - unit vector in x-direction

$$\widehat{j}=(0,1)$$
 - unit vector in y-direction

Any vector in xy-plane can be written as a linear combination of $\widehat{i}\ \&\ \widehat{j}$

$$\overrightarrow{d} = a_1 \widehat{i} + a_2 \widehat{j}, \quad a_1, a_2 \in \mathbb{R}$$

Q: other than (1, 0) & (0, 1), can we have any basis for R^2?

The set of all linear combinations of $\widehat{i} \ \& \ \widehat{j}$ is the span of $\widehat{i} \ \& \ \widehat{j}$

In general, the standard basis in \mathbb{R}^d is given by

$$e_i = (0, 0, \dots, 0, 1, 0 \dots 0)$$

where
$$i=1,2,\ldots,d$$

i.
$$\{e_i\}_{i=1}^d$$
 is the standard basis of \mathbb{R}^d

Example (3D):

$$e_1 = (1, 0, 0)$$

$$e_2 = (0, 1, 0)$$

$$e_3 = (0, 0, 1)$$

Norm

Let
$$\overrightarrow{x} \in \mathbb{R}^n$$
, that is, $\overrightarrow{x} = (x_1, x_2, \dots, x_n)^T$
then the l_1 – norm of \overrightarrow{x} is defined by

$$||x||_1 := \sum_{i=1}^n |x_i|,$$

where $|\cdot|$ denotes the absolute

Use case: LASSO regularization

Similarly, $\|\cdot\|_2$, the l_2 – norm of x is defined by

$$\frac{\|x\|_{2}^{2} = \sum_{i=1}^{n} |x_{i}|^{2}}{= x^{T}x}$$

$$\|x\|_{2} = \sqrt{x^{T}x}$$

Use case: Ridge regularization

Similarly, $|\cdot|_{\infty}$, the l_{∞} – norm of x is defined by

$$|x|_{\infty} = \max_{i=1\dots n} \{|x_i|\}$$

Use case: Uniform convergence

What does the norm represent?

$$\begin{aligned} ||a||_1 &= |2| + |3| = 5\\ \hline ||a||_2 &= \sqrt{2^2 + 3^2} = \sqrt{13}\\ |a|_{\infty} &= \max\{|2|, |3|\} = 3 \end{aligned}$$

All norms are equivalent in a Finite dimensional, spece.

$$C, 11.11, \leq 11.11_2$$

Dot product (Inner Product)

Let v and w be two vectors of dimension n.

$$v \cdot w = v^T w = \sum_{i=1}^n v_i w_i$$
 $= v_1 w_1 + v_2 w_2 + \ldots + v_n w_n$

= (length of projected w on V) x (length of V)

Outer product

Let u and v be two vectors of dimension m and n, respectively.

$$u\otimes v=uv^T=egin{pmatrix} u_1v_1 & u_1v_2 & \dots & u_1v_n \ u_2v_1 & u_2v_2 & \dots & u_2v_n \ dots & dots & \ddots & dots \ u_mv_1 & u_mv_2 & \dots & u_mv_n \end{pmatrix}$$

https://colab.research.google.com/drive/1XPWkRq3sWbQ7LIGL7MGdiLdyQ5oJbu9O?usp=sharing

Cosine Similarity

Recall Dot product

Let v and w be two vectors of dimension n.

$$v \cdot w = v^T w = \sum_{i=1}^n v_i w_i = |v||w|\cos\theta$$

The Cosine similarity between v and w is defined by

$$S_c(v,\omega) = \cos \theta = \frac{v \cdot \omega}{|v| |\omega|}$$

Application of Cosine Similarity to NLP

https://colab.research.google.com/drive/1XPWkRq3sWbQ7LIGL7MGdiLdyQ5oJbu9O?usp=sharing

	0	<pre>from nltk.corpus import stopwords from nltk.tokenize import word_tokenize</pre>
	0	<pre># X = input("Enter first string: ").lower(), # Y = input("Enter second string: ").lower() X ="I love India" Y ="India is a beautiful country"</pre>
	[]	<pre>#tokenization X_list = word_tokenize(X) Y_list = word_tokenize(Y)</pre>
	[]	<pre>print (X_list) print (Y_list)</pre>
	[]	<pre># sw contains the list of stopwords sw = stopwords.words('english') l1 =[]; l2 =[]</pre>
-	[]	<pre># remove stop words from the string X_set = {w for w in X_list if not w in sw} Y_set = {w for w in Y_list if not w in sw}</pre>

Projection

Scalar Projection

Let a and b be two vectors

The scalar projection of "a" onto "b" is given by

$$S = |\vec{a}| |\vec{b}| = |\vec{a}| |\vec{b}|$$
magnitude of a
$$= |\vec{a}| |\vec{b}| = |\vec{a}| |\vec{b}|$$

$$= |\vec{a}| |\vec{b}| = |\vec{a}| |\vec{b}|$$

The vector projection of "a" onto "b" is given by

$$\overrightarrow{a}_{1} = s\widehat{b} = s\frac{\overrightarrow{b}}{|b|}$$

$$= \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|b|} \frac{\overrightarrow{b}}{1b1} = (\overrightarrow{a} \cdot \widehat{b}) \widehat{b}$$

Remark

The vector projection implies that $\overline{\mathfrak{a}}$ and $\overline{\mathfrak{b}}$ are parallel but may have different direction when $90^{\circ} \leq \theta \leq 180^{\circ}$.

Orthogonal Projection (vector rejection)

Let a = a, + a2

orthogonal projection of a onto B.

ie
$$a_2 = a - \left(\frac{a \cdot b}{b \cdot b}\right)b$$

=> and b are or thogonal

1. Amoldi 2. Grann-shariat In.GS

Recap Poll:	
Q1: Any vector in R^n can be written as a linear combination of the ba	 lsis
of R ⁿ (True/False)	
Q2: Let u be a n-by-1 vector, then uu^T will be an n-by-n matrix with linearly independent rows. (True/False)	_ ` n
Q3: Standard basis is the only basis of a vector space. (True/False)	
Q4: Vector projection of a vector "u" onto "v" increases the magnitude "v" by the mag. Of u. (True/False)	of
Q3: Standard basis is the only basis of a vector space. (True/False) Q4: Vector projection of a vector "u" onto "v" increases the magnitude	of

Major challenge in Data science

- How to represent and perform operation on high-dimensional data?
- How to extract key features/ information from highdimensional data "efficiently"?

Matrix

Matrix is a linear transformation of (basis) vector.

Rotation

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -y \\ x \end{bmatrix}$$

In general

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

$$\theta = 0 \Rightarrow ?$$
 $\theta = 90^0 \Rightarrow ?$

$$\theta = 180^0 \Rightarrow ?$$

Shear:

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+y \\ y \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$$

		• • •	
1)0	hn	nti	on
		• • • •	

	Let	m, n	EN.	A Ireal	valued	matrix	A	这
a	mn-t	uple 6	oler	rents				

aij ER, 15 i 5m, 15 i 5n, which is ordered as m rows & n Columns.

Matrix-vector multiplication

y, = R1. b

$$\begin{bmatrix}
 0_{11} & 0_{12} & 0_{13} \\
 0_{21} & 0_{22} & 0_{23} \\
 0_{31} & 0_{32} & 0_{32}
 \end{bmatrix}
 \begin{bmatrix}
 0_{12} & 0_{32} \\
 0_{31} & 0_{32} & 0_{33}
 \end{bmatrix}
 \begin{bmatrix}
 0_{13} & 0_{32} \\
 0_{31} & 0_{32} & 0_{33}
 \end{bmatrix}
 \begin{bmatrix}
 0_{13} & 0_{32} \\
 0_{31} & 0_{32} & 0_{33}
 \end{bmatrix}
 \begin{bmatrix}
 0_{13} & 0_{32} \\
 0_{31} & 0_{32} & 0_{33}
 \end{bmatrix}
 \begin{bmatrix}
 0_{13} & 0_{13} \\
 0_{31} & 0_{32} & 0_{33}
 \end{bmatrix}
 \begin{bmatrix}
 0_{13} & 0_{13} \\
 0_{21} & 0_{22} & 0_{23}
 \end{bmatrix}
 \begin{bmatrix}
 0_{13} & 0_{13} \\
 0_{21} & 0_{22} & 0_{23}
 \end{bmatrix}
 \begin{bmatrix}
 0_{13} & 0_{13} \\
 0_{21} & 0_{22} & 0_{23}
 \end{bmatrix}
 \begin{bmatrix}
 0_{13} & 0_{13} \\
 0_{21} & 0_{22} & 0_{23}
 \end{bmatrix}
 \begin{bmatrix}
 0_{13} & 0_{13} \\
 0_{21} & 0_{22} & 0_{23}
 \end{bmatrix}
 \begin{bmatrix}
 0_{13} & 0_{13} \\
 0_{21} & 0_{22} & 0_{23}
 \end{bmatrix}
 \begin{bmatrix}
 0_{13} & 0_{13} \\
 0_{21} & 0_{22} & 0_{23}
 \end{bmatrix}
 \begin{bmatrix}
 0_{13} & 0_{13} \\
 0_{21} & 0_{22} & 0_{23}
 \end{bmatrix}
 \begin{bmatrix}
 0_{13} & 0_{13} \\
 0_{21} & 0_{22} & 0_{23}
 \end{bmatrix}
 \begin{bmatrix}
 0_{13} & 0_{13} \\
 0_{21} & 0_{22} & 0_{23}
 \end{bmatrix}
 \begin{bmatrix}
 0_{13} & 0_{13} \\
 0_{21} & 0_{22} & 0_{23}
 \end{bmatrix}
 \begin{bmatrix}
 0_{13} & 0_{13} \\
 0_{21} & 0_{22} & 0_{23}
 \end{bmatrix}
 \begin{bmatrix}
 0_{13} & 0_{13} \\
 0_{21} & 0_{22} & 0_{23}
 \end{bmatrix}
 \begin{bmatrix}
 0_{13} & 0_{13} \\
 0_{21} & 0_{22} & 0_{23}
 \end{bmatrix}
 \begin{bmatrix}
 0_{13} & 0_{13} \\
 0_{21} & 0_{22} & 0_{23}
 \end{bmatrix}
 \begin{bmatrix}
 0_{13} & 0_{13} \\
 0_{21} & 0_{22} & 0_{23}
 \end{bmatrix}
 \begin{bmatrix}
 0_{13} & 0_{13} \\
 0_{21} & 0_{22} & 0_{23}
 \end{bmatrix}
 \begin{bmatrix}
 0_{13} & 0_{13} \\
 0_{21} & 0_{22} & 0_{23}
 \end{bmatrix}
 \begin{bmatrix}
 0_{13} & 0_{13} \\
 0_{21} & 0_{22} & 0_{23}
 \end{bmatrix}
 \begin{bmatrix}
 0_{13} & 0_{13} \\
 0_{21} & 0_{22} & 0_{23}
 \end{bmatrix}
 \begin{bmatrix}
 0_{13} & 0_{13} \\
 0_{21} & 0_{22} & 0_{23}
 \end{bmatrix}$$

Column - operation:

Matrix-Matrix multiplication	

$$C = AB$$

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \qquad 1 \le i, j \le n$$

Note that
$$AB \neq BA$$

$$(AB) C = A (BC)$$

$$(A+B) C = AC + BC$$

$$A (B+C) = AB + AC$$

Identity matrix

The square matrix I is said to be an identity matrix of

$$I_n = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{else.} \end{cases}$$

$$IA = AI = A$$

Inverse of a matrix

Let A be a square matrix of order n. Suppose a matrix B is said to be an inverse of A then

$$BA = I = AB$$
.

Further, B is denoted as A.

Determinant of a matrix:

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$|A| = \det A = 6 \Rightarrow ?$$

Quantifies the change in the measure (area in 2d, volume in 3d) due to linear transformation.

How about

$$|A| = 0?$$

How about

$$|A| < 0$$
?

$$\Rightarrow$$
?

Same as above but the orientation got flipped

$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

$$|A| = \det(A) = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & n \end{vmatrix}$$

$$= aei + bfg + cdn - ceg - bdi - afh$$

Suppose

Transpose of a matrix

- writes Rows of A into Columns of A

$$AA^{-1} = I = A^{-1}A$$

$$(AB)^{-1} = B^{-1}A^{-1}$$

$$(AB)^{T} = B^{T}A^{T}$$

$$(AB)^{T} = B^{T}A^{T}$$

$$(A+B)^{T} = A^{T} + B^{T}$$

$$(A+B)^{T} = A^{T} + B^{T}$$

=) A is symmetric

Multiplication of a matrix by a scalar.

$$- \lambda \in \mathbb{R}, \& A \in \mathbb{R}^{n \times n}$$

Then
$$\lambda A = K$$

$$[k]_{ij} = \lambda a_{ij}, 1 \le i, j \le n$$

Suppose we have

$$2x_1 + 3x_2 + 4x_3 = 5$$

$$6x_1 - 2x_2 - 7x_3 = 2$$

$$-5x_1 + 6x_2 + 8x_3 = 5$$

We know the linear transformation (A), then question is where should we start (x) to land at an expected position (b)?

$$x = A^{-1}b$$
inverse transformation

Eigenvalues & Eigenvectors

Let A be a square matrix. Multiply the matrix A by a vector "X", where AX is parallel to X.

$$Ax = \lambda x, \lambda \in \mathbb{R}$$

Such a vector x is an eigenvector, where lambda is an eigenvalue.

$$Ax = \begin{bmatrix} 3 & 1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix} x_1 + \begin{pmatrix} 1 \\ 2 \end{pmatrix} x_2$$

Let
$$x = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \lambda Ax = \begin{pmatrix} 3 \\ 0 \end{pmatrix} 1 + \begin{pmatrix} 1 \\ 2 \end{pmatrix} 0 = 3 \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 3x$$

$$DC = \begin{pmatrix} -1 \\ 1 \end{pmatrix} = Ax = \begin{pmatrix} -2 \\ 2 \end{pmatrix} = 2\begin{pmatrix} -1 \\ 1 \end{pmatrix} = 2x$$

Recall:

$$Ax = \lambda x, \lambda \in \mathbb{R}$$
 — (1)

LHS: roratrix - vector routiplication

RHS: scalar times a vector

books awkward?

$$(A-7I)x=0-2$$

- what does it mean?
- It will always be true when x=0
- how about for x != 0?

If there exists a non-trivial solution (x!=0) for (2), it
implies that the matrix is not invertible or is singular,
that is,

$$\det\left(A - \lambda I\right) = 0.$$

Remark:

A matrix need not have (real) eigenvectors always.

Eg:
$$0 - 1$$
 (rotation matrix)
 $0 - 2 - 1 = 2 + 1 = 0$
 $1 - 2 = 1$

A matrix has one eigenvalues with many eigenvectors
Eg: [1] =) 2 = 1
How about the eigenvalue & eigenvectors of a diagonal matrix?
 a is Eigen value & every vector in the xy-plane is an
eigenvector
all basis vectors are eigenvectors with diagonal entry
being their eigenvalues

What is the significance of eigenvectors in Data matrix	What	is	the	significance	of	eigenvectors	in	Data	matrix
---	------	----	-----	--------------	----	--------------	----	------	--------

Let Asc->b

Suppose or is an eigen vector

$$A^2x = A(2x) = 2Ax = 2x$$

Anx = 2nx

⇒ The matrix "A" push the input vector "x" (initial guess of eigenvector) towards the true (dominant) eigenvector.

Applications:

Pagerank, axis of rotation, etc.

Pagerank Algorithm

How to rank webpages?

A page that gets more referrals!

==> the transition matrix

vous initially is 12 (12), 1/2 1/2

