Internal relational parametricity, without an interval

Ambrus Kaposi

Eötvös Loránd University, Budapest

j.w.w. Thorsten Altenkirch, Mike Shulman, and Elif Üsküplü

TYPES 2024 Copenhagen 11 June 2024

Parametricity

- \blacktriangleright (A : Type) \rightarrow A \rightarrow A
- $ightharpoonup (N : Type) \rightarrow N \rightarrow (N \rightarrow N) \rightarrow N$
- ▶ Preservation of relations: Reynolds (1983), Wadler (1989), Plotkin–Abadi (1993), Bernardy–Jansson–Paterson (2010)
- ▶ $f: (A: \mathsf{Type}) \to A \to A$ preserves predicates:

$$f^{\mathsf{P}}: (A:\mathsf{Type})(P:A\to\mathsf{Type})(a:A)\to Pa\to P(fAa)$$

fix an A and an a: A, then:

$$f^{\mathsf{P}} A (\lambda x. x = a) a \operatorname{refl} : f A a = a$$

Internal parametricity

▶ Pioneered by Bernardy–Moulin (2012)

New syntax:
$$\frac{A : \text{Type}}{A^{P} : A \to A \to \text{Type}} \qquad \frac{a : A}{a^{P} : A^{P} a a}$$
$$(A \to B)^{P} f_{0} f_{1} = (a_{0} : A)(a_{1} : A) \to A^{P} a_{0} a_{1} \to B^{P} (f_{0} a_{0}) (f_{1} a_{1})$$

 $\mathsf{Type}^\mathsf{P} A_0 A_1 = A_0 \to A_1 \to \mathsf{Type}$

 \triangleright Higher dimensional cubes appear when we iterate $-^{P}$:

$$\frac{a_{2} : A^{P} a_{0} a_{1}}{a_{2}^{P} : (A^{P} a_{0} a_{1})^{P} a_{2} a_{2}} = \frac{(\lambda a. a^{P}) : (a : A) \to A^{P} a a}{(\lambda a. a^{P})^{P} a_{0} a_{1} a_{2} : (A^{P} a a)^{P} a_{0}^{P} a_{1}^{P}} = \frac{(\lambda a. a^{P})^{P} a_{0} a_{1} a_{2} : (A^{P} a a)^{P} a_{0}^{P} a_{1}^{P}}{(\lambda a. a^{P})^{P} a_{0} a_{1} a_{2} : A^{P} a_{0}^{P} a_{0} a_{1} a_{2} a_{0}^{P} a_{1}^{P}} = \frac{a_{1}}{a_{1}} = \frac{a_{1}}{a_{2}} = \frac{a_{1}}{a_{2}} = \frac{a_{2}}{a_{2}} = \frac{a_{1}}{a_{2}} = \frac{a_{2}}{a_{2}} = \frac{a_{2}}{a_{2}} = \frac{a_{1}}{a_{2}} = \frac{a_{2}}{a_{2}} = \frac{a_{1}}{a_{2}} = \frac{a_{2}}{a_{2}} = \frac{a_{1}}{a_{2}} = \frac{a_{2}}{a_{2}} = \frac{a_{1}}{a_{2}} = \frac{a_{2}}{a_{2}} = \frac{a_{2$$

Dealing with higher dimensional cubes

paper	substructural interval	model	rel/span
Bernardy–Moulin (2012)	no		rel
Bernardy–Moulin (2013)	yes		rel
Bernardy–Coquand–Moulin (2015)	yes	Reedy fibrant presheaf	rel
Reboullet (2024)			
Nuyts–Devriese (2018)	yes	ordinary presheaf	rel
Cavallo–Harper (2021)	yes	ordinary presheaf	rel
Altenkirch-Chamoun-Kaposi-	no	ordinary presheaf	span
Shulman (2024)			

Relation vs. span

 $A^{\mathsf{P}}:A\to A\to \mathsf{Type}$ $\forall A: \mathsf{Type}$ together with $A\overset{0_A}{\longleftarrow} \forall A\overset{1_A}{\longrightarrow} A$

▶ In this talk we define a relation-based variant of the ACKS theory.

An excerpt of the rules

- ► like Bernardy–Jansson–Paterson (2010)
- ▶ like cubical type theory: " $\forall B = \mathbb{I} \rightarrow B$ "

$$\frac{f: A \to B}{\operatorname{ap} f: \forall A \to \forall B} \qquad \frac{a: (b_x: B) \to A b_x}{\operatorname{apd} a: (b_2: \forall B) \to \operatorname{Br}_A b_2 (a (0_B b_2)) (a (1_B b_2))}$$

$$\frac{\textit{A}: \mathsf{Type}}{\mathsf{R}_{\textit{A}}: \textit{A} \rightarrow \forall \textit{A}} \qquad \frac{\textit{A}: \mathsf{Type}}{\mathsf{S}_{\textit{A}}: \forall (\forall \textit{A}) \rightarrow \forall (\forall \textit{A})}$$

Some equations on k, R, S

$$\overline{k_A(R_A a)} = a$$

$$\overline{S_A(R_{\forall A} a_2)} = ap R_A a_2$$

$$\overline{S_A(S_A a_{22}) = a_{22}}$$

$$\overline{S_{\forall A} (ap S_A (S_{\forall A} a_{222}))} = ap S_A (S_{\forall A} (ap S_A a_{222}))$$

Computing Bridge

$$\overline{\mathsf{Br}_{A\circ f}\,c_2\ = \mathsf{Br}_A\,(\mathsf{ap}\,f\,c_2)}$$

$$\mathsf{Br}_{\mathcal{A}c.\,(a:A\,c)\to B\,(c,a)}\,c_2\,f_0\,f_1 \ \cong \ (a_0:A\,(0\,c_2))(a_1:A\,(1\,c_2))(a_2:\mathsf{Br}_A\,c_2\,a_0\,a_1)\to \mathsf{Br}_B\,(c_2,a_2)\,(f_0\,a_0)\,(f_1\,a_1)$$

$$\mathsf{Br}_{\lambda X.X} : \mathsf{Br}_{\lambda_{-}.\mathsf{Type}} * A_0 A_1 \ \leftrightarrow \ A_0 \to A_1 \to \mathsf{Type} : \mathsf{Gel}$$

gel : $R a_0 a_1 \cong Br_{\lambda X.X}$ (Gel R) $a_0 a_1$: ungel

Polymorphic identity example

Assume

$$f: ig(w: \Sigma(A: \mathsf{Type}).Aig) o \pi_1 \, w,$$
 $A: \mathsf{Type},$ $P: A o \mathsf{Type},$ $a: A,$ $p: P \, a,$

using the unary version of our theory, we have

$$\operatorname{ungel}(\operatorname{apd} f(A,\operatorname{Gel} P,a,\operatorname{gel} p)): f(A,a)=a.$$

when setting

$$P := \lambda x. x = a$$
 and $p := refl,$

Summary

- ► A type theory with internal parametricity:
 - relational (indexed)
 - there is no substructural interval
 - parametricity relations compute up to isomorphism, except for the universe:
 - up to weak section-retraction
- \blacktriangleright We use telescopes for \forall , see the abstract for details.
- ▶ Any model of our previous span-based theory is a model of the relation-based theory.
- Implementation: github.com/mikeshulman/narya
- Future work:
 - stricter theory
 - ► H.O.T.T.: adding transport