141,ДЗ 3 и ИДЗ. Многочлены, производная и интерполяция

Задачи

Задача 1. Найти наибольший общий делитель и его линейное разложение для многочленов $x^5 + x^4 + 1$ и $x^6 + x^2 + x^5 + x + x^4 + 1$ в кольце $\mathbb{F}_2[x]$.

Задача 2. Доказать, что полином

$$1 + x + \frac{1}{2}x^2 + \dots + \frac{1}{n!}x^n$$

не имеет кратных корней в \mathbb{C} .

Задача 3. Избавится от кратных множителей и найти разложение на неприводимые для многочлена с коэффициентами в $\mathbb{Z}/3$

$$x^4 + x^3 + 2x^2 + x + 1$$

Задача 4. Не раскрывая скобки докажите тождество

$$\frac{a}{(a-b)(a-c)} + \frac{b}{(b-c)(b-a)} + \frac{c}{(c-a)(c-b)} = 0$$

Задача 5. Найти сумму

$$\sum_{k\equiv 1(3)} (-1)^k C_n^k.$$

Задача 6. Разложите на простейшие над \mathbb{C} и над \mathbb{R} .

$$\frac{x^2}{x^6 + 27}.$$

Индивидуальное домашнее задание

Задача 1 (Бизиков Асланбек). Найдите интерполяционный многочлен принимающий значения

$$20, 0, -2, -4, 0$$

в точках -2, -1, 0, 1, 2 соответственно.

Задача 2 (Борисов Григорий). Найдите интерполяционный многочлен принимающий значения

$$18, -1, -2, -3, 2$$

в точках -2, -1, 0, 1, 2 соответственно.

Задача 3 (Вологин Дмитрий). Найдите интерполяционный многочлен принимающий значения

$$16, -2, -2, -2, 4$$

в точках -2, -1, 0, 1, 2 соответственно.

Задача 4 (Голубева Ольга). Найдите интерполяционный многочлен принимающий значения

$$14, -3, -2, -1, 6$$

в точках -2, -1, 0, 1, 2 соответственно.

Задача 5 (Гусев Егор). Найдите интерполяционный многочлен принимающий значения

$$19, -1, -1, 1, 11$$

в точках -2, -1, 0, 1, 2 соответственно.

Задача 6 (Дорожкин Сергей). Найдите интерполяционный многочлен принимающий значения

$$15, 1, -1, -3, 7$$

в точках -2, -1, 0, 1, 2 соответственно.

Задача 7 (Егорова Лада). Найдите интерполяционный многочлен принимающий значения

$$13, 0, -1, -2, 9$$

в точках -2, -1, 0, 1, 2 соответственно.

Задача 8 (Иванов Дмитрий). Найдите интерполяционный многочлен принимающий значения

$$11, -1, -1, -1, 11$$

в точках -2, -1, 0, 1, 2 соответственно.

Задача 9 (Ким Юния). Найдите интерполяционный многочлен принимающий значения

$$9, -2, -1, 0, 13$$

в точках -2, -1, 0, 1, 2 соответственно.

Задача 10 (Костин Павел). Найдите интерполяционный многочлен принимающий значения

$$7, -3, -1, 1, 15$$

в точках -2, -1, 0, 1, 2 соответственно.

Задача 11 (Мандельштам Дмитрий). Найдите интерполяционный многочлен принимающий значения

в точках -2, -1, 0, 1, 2 соответственно.

Задача 12 (Михайлов Артём). Найдите интерполяционный многочлен принимающий значения

в точках -2, -1, 0, 1, 2 соответственно.

Задача 13 (Плоткин Глеб). Найдите интерполяционный многочлен принимающий значения

в точках -2, -1, 0, 1, 2 соответственно.

Задача 14 (Родина Алина). Найдите интерполяционный многочлен принимающий значения

в точках -2, -1, 0, 1, 2 соответственно.

Задача 15 (Романов Владислав). Найдите интерполяционный многочлен принимающий значения

в точках -2, -1, 0, 1, 2 соответственно.

Задача 16 (Рыжков Александр). Найдите интерполяционный многочлен принимающий значения

$$5, -1, 1, 5, 29$$

в точках -2, -1, 0, 1, 2 соответственно.

Задача 17 (Симанюк Данила). Найдите интерполяционный многочлен принимающий значения

в точках -2, -1, 0, 1, 2 соответственно.

Задача 18 (Соловьев Алексей). Найдите интерполяционный многочлен принимающий значения

в точках -2, -1, 0, 1, 2 соответственно.

Задача 19 (Щербак Максим). Найдите интерполяционный многочлен принимающий значения

$$20, 0, -2, -4, 0$$

в точках -2, -1, 0, 1, 2 соответственно.

Теория

Кольцо многочленов над полем по многим параметрам похоже на кольцо целых чисел. В основном все эти сходства происходят от того, что в кольце многочленов имеет место теорема о делении с остатком

Теорема 1 (Деление с остатком в кольце многочленов). Пусть R — область целостности. Рассмотрим два многочлена $f, g \in R[x]$, причём старший коэффициент g обратим. Тогда существуют единственные $q, r \in R[x]$ такие, что:

$$f = qg + r$$
 и $\deg r < \deg g$.

Как и всегда при вычислении остатка по модулю многочлена p(x) можно пользоваться соотношением p(x) = 0, иными словами – считать в кольце остатков K[x]/p(x).

Упражнение 1. Найти остаток от деления x^{500} на $x^7 + 2$ и $(x^7 + 1)^4$ на $x^7 - x^2 + 1$

Точно так же, как и для целых чисел работает алгоритм Евклида и алгоритм нахождения линейного разложения НОД-а.

Особенно важна связь между коэффициентами многочлена и его значениями. С алгоритмической точки зрения лучше всего вычислять значение многочлена по схеме Горнера. Более того – числа полученные в процессе – есть коэффициенты неполного частного.

Упражнение 2. Найдите сумму коэффициентов многочлена $(x^2 + 3x - 3)^{317}$.

Упражнение 3. Найти сумму

$$\sum 2^k C_n^k$$

Решение. Подставим в многочлен $(x+1)^n$ вместо x двойку. Тогда с одной стороны это равно указанной сумме, а с другой 3^n .

А что же с обратной задачей – восстановлением многочлена по его значениям?

Производная

Прежде чем преступить к решению задачи интерполяции – то есть восстановлению многочлена по его значениям обсудим понятие производной.

Определение (Производная). Пусть R — кольцо. Рассмотрим кольцо многочленов R[x]. Формальной производной назовём отображение $\frac{d}{dx} \colon R[x] \to R[x]$, заданное по правилу

$$\frac{d}{dx}(a_0 + a_1x + a_2x^2 + \dots + a_nx^n) = a_1 + 2a_2x + 3a_3x^2 + \dots + na_nx^{n-1}.$$

Применение производной к многочлену f будем так же обозначать как f'.

Понятие производной отлично приспособлено к отлову кратных корней многочленов

Теорема 2. Если многочлен $f(x) \in K[x]$ делится на $h(x)^l$ то $f'(x) : h(x)^{l-1}$. Более того, если h(x) неприводим, $f(x) = h(x)^l g(x)$, где (h,g) = 1 то, если char K = 0 или $K = \mathbb{Z}/p$ и $l \not / p$ (в частности, если deg f < p), то $f'(x) \not / h(x)^l$.

Упражнение 4. Найти кратный корень и его кратность $4x^6 - 30x^5 + 79x^4 - 72x^3 - 24x^2 + 64x - 16$

Упражнение 5. Найдите кратные множители многочлена $x^6 + x^4 + 2x^5 + x^3 + x^2 + 2x + 1$ над \mathbb{F}_5 .

Интерполяция

Наша текущая тема – интерполяция, то есть нахождение многочлена с заданными значениями (и не только) в точках. Довольно часто требуется решить следующую задачу: пусть K — некоторое поле. Пусть дан набор различных точек $x_0, \ldots, x_n \in K$ и дан набор значений $a_0, \ldots, a_n \in K$. Требуется построить многочлен $f \in K[x]$, такой что $f(x_i) = a_i$.

Прежде всего заметим, что у нас есть некоторая свобода выбора. А именно рассмотрим многочлен $\varphi(x) = (x - x_0) \dots (x - x_n)$. Тогда можно к любому решению интерполяционной задачи прибавить кратное многочлена $\varphi(x)$ и снова получить решение интерполяционной задачи. Таким образом можно любое решение заменить на остаток от деления на многочлен $\varphi(x)$. В частности, если есть какое-то решение, то есть решение степени строго меньше n.

Определение (Задача интерполяции). Пусть дан набор различных точек $x_0, \ldots, x_n \in K$ и дан набор значений $a_0, \ldots, a_n \in K$. Требуется построить многочлен $f \in K[x]$, такой что $f(x_i) = a_i$ и $\deg f \leq n$.

Теорема 3. Задача интерполяции разрешима и притом единственным образом. Более того, справедлива формула

$$f(x) = \sum_{i=0}^{n} \frac{a_i \varphi(x)}{(x - x_i) \prod_{j \neq i} (x_j - x_i)} = \sum_{i=0}^{n} \frac{a_i \varphi(x)}{\varphi'(x_i)(x - x_i)},$$

где
$$\varphi(x) = (x - x_0) \dots (x - x_n).$$

Последняя формула называется интерполяционной формулой Лагранжа. Так же есть способ Ньютона для решения интерполяционной задачи, который позволяет добавлять точки постепенно. А именно, пусть уже построен многочлен f(x), что $f(x_i) = \lambda_i$ для $i \le k$. Мы хотим модифицировать этот многочлен так чтобы он принимал нужное значение в точке x_{k+1} . Для этого добавим к многочлену f(x) поправку вида $c(x-x_1)\cdots(x-x_k)$. Необходимо найти c. Подставив $x=x_{k+1}$ получаем условие

$$c(x_{k+1}-x_1)\cdots(x_{k+1}-x_k)+f(x_{k+1})=\lambda_{k+1}.$$

Откуда

$$c = \frac{\lambda_{k+1} - f(x_{k+1})}{(x_{k+1} - x_1) \cdots (x_{k+1} - x_k)}.$$

Peшение. Будем решать задачу методом Ньютона. Будем добавлять точки не по порядку, а так как нам удобнее. Рассмотрим точки -2, -1, 1, 2. Несложно угадать многочлен маленькой степени который принимает в них подходящие значения, а именно, подходит многочлен

$$f(x) = -2x - 1$$

Осталось позаботиться о точках 0 и -3. Разберёмся с -3. Имеем добавку $c(x+2)(x+1)(x-1)(x-2)=c(x^2-4)(x^2-1)$. Тогда

$$c = \frac{-5 - 5}{5 \cdot 8} = \frac{-1}{4}.$$

Теперь многочлен

$$f(x) = -2x - 1 + \frac{-1}{4}(x^2 - 4)(x^2 - 1).$$

Разберёмся с 0. Имеем

$$c = \frac{-2 - \left(-1 - \frac{4}{4}\right)}{4 \cdot 3} = 0.$$

Итого получаем ответ:

$$f(x) = -2x - 1 + \frac{-1}{4}(x^2 - 4)(x^2 - 1)$$

. Замечу, что многочлен получился четвёртой, а не пятой степени, как ожидалось.

Заметим следующий факт, который позволяет применять технику интерполяции к доказательству разных тождеств.

Замечание. Пусть многочлен g(x) принимает в точках x_i значения λ_i . Тогда решение интерполяционной задачи есть остаток от деления многочлена g(x) на $\varphi(x) = (x - x_0) \dots (x - x_n)$.

Упражнение 7. Найти сумму $C_n^1 + C_n^4 + C_n^7 + \dots$

Упражнение 8. Найти сумму $\sum_{k=1}^{[n/2]} (-1)^k 3^k C_n^{2k-1}$.

Peшение. Пусть $f(x)=(x+1)^n.$ Тогда остаток от деления $(x+1)^n$ на x^2+3 будет иметь вид

$$f(x) \equiv \sum_{k=0}^{\lfloor n/2 \rfloor} (-3)^k C_n^{2k} + \left(\sum_{k=1}^{\lfloor n/2 \rfloor} (-3)^{k-1} C_n^{2k-1} \right) x = a_0 + a_1 x.$$

Итого, необходимо найти $(-3)a_1$. Воспользуемся интерполяционной формулой для нахождения остатка. Найдём корни $x^2 + 3$. Это $\pm i\sqrt{3}$. Тогда остаток от деления f на $x^2 + 3$ равен

$$(i\sqrt{3}+1)^n \frac{x+i\sqrt{3}}{2i\sqrt{3}} + (-i\sqrt{3}+1)^n \frac{x-i\sqrt{3}}{-2i\sqrt{3}}$$

Найдём коэффициент при х. Это

$$\frac{2^n}{\sqrt{3}} \frac{e^{i2\pi n/3} - e^{-i2\pi n/3}}{2i} = \frac{2^n \sin \frac{2\pi n}{3}}{\sqrt{3}}$$

Часто бывает ситуация когда некоторое выражение напоминает интерполяционный многочлен или какой-то из его коэффициентов. В этом случае выражение часто можно упростить. Например, можно утверждать, что

$$a^{2}\frac{(x-b)(x-c)}{(a-b)(a-c)} + b^{2}\frac{(x-c)(x-a)}{(b-c)(b-a)} + c^{2}\frac{(x-a)(x-b)}{(c-a)(c-b)} = x^{2}$$

Так как и справа и слева стоят многочлены степени 2, которые принимают в точках a,b,c одинаковые значения. По единственности для решения интерполяционной задачи они равны.

Дополнительно. Интерполяция по Эрмиту

Рассмотрим более общий вариант интерполяционной задачи. А именно, пусть задан набор точек x_0,\ldots,x_n и для каждой точки x_i задан набор чисел $a_{i,0},a_{i,1},\ldots,a_{i,k_i}$. Интерполяционная задача состоит в следующем: найти f такой, что j-тая производная $f^{(j)}(x_i)=a_{i,j}$. Заметим, что решение можно свободно поменять на кратное многочлена

$$\varphi(x) = \prod_{i=1}^{n} (x - x_i)^{k_i + 1},$$

следовательно, степень решения f можно ограничить $\deg f < \sum_{i=1}^n (k_i+1)$. Такая задача интерполяции называется задачей интерполяции по Эрмиту.

Теорема 4. Пусть K — поле характеристики 0 (или достаточно большой положительной характеристики). Решение задачи интерполяция по Эрмиту существует и единственно среди многочленов степени меньше $\sum_{i=1}^{n} (k_i + 1)$.

Есть несколько способов решать интерполяционную задачу по Эрмиту – прежде всего это метод Ньютона. Действительно, если уже задача решения для набора точек x_1,\ldots,x_s с кратностями k_1,\ldots,k_s , то её решения f несложно модифицировать для решения задачи для точек x_1,\ldots,x_s и увеличенной кратности в точке x_i на 1. Без ограничения общности будем считать, что i=1. Добавим дополнительное слагаемое вида $c\varphi(x)=c(x-x_1)^{\alpha_1}\cdots(x-x_n)^{\alpha_n}$. Добавление такого слагаемого не поменяет значения f и его производных в точках x_i , так как x_i является будет являться корнем кратности α_i-k у $\varphi^{(k)}(x)$. Теперь константа c ищется из условия

$$f^{(\alpha_1+1)}(x_1) + c\varphi^{(\alpha_1+1)}(x_1) = a_{1,\alpha_1+1}.$$

Откуда

$$c = \frac{a_{1,\alpha_1+1} - f^{(\alpha_1+1)}(x_1)}{\varphi^{(\alpha_1+1)}(x_1)}.$$

Однако можно скомбинировать метод Ньютона и метод Лагранжа следующим образом. Будем решать задачу для каждой точки по отдельности. Точнее, найдём многочлены $f_i(x)$, что $f_i^{(j)}(x_l)=0$ при $l\neq i$ и $j\leq k_l$, но $f_i^{(j)}(x_i)=a_{i,j}$, $j\leq k_l$. Рассмотрим многочлен

$$\varphi_i(x) = \prod_{l \neq i} (x - x_l)^{k_l + 1}.$$

Понятно как написать начальное приближение при $k_i = 0$ для $f_i(x)$. А именно, будем искать $f_i(x)$ в виде $f_i(x) = c\varphi_i(x)$. Найдём константу c, так, чтобы $a_{i,0} = c\varphi_i(x_i)$ Теперь в решении же этой задачи разумно использовать идею из метода

Ньютона — сначала решить задачу, где есть условия на k_i-1 производную , а затем добавить поправку, чтобы добиться равенства для k_i -ой производной.

После того, как все $f_i(x)$ найдены ответом будет

$$f(x) = \sum_{i=0}^{n} f_i(x).$$

Разложение на простейшие

Поговорим о разложении на простейшие рациональной функции. Прежде всего сформулируем основные результаты.

Определение (Простейшие дроби). Пусть K — поле, $p \in K[x]$ — неприводимый многочлен со страшим коэффициентом единица. Тогда дробь

$$\frac{f(x)}{p(x)^k}$$
 называется простейшей, если $f \neq 0$ и $\deg f < \deg p$.

Теорема 5 (О разложении на простейшие). Пусть K — поле. Тогда для любой несократимой дроби $0 \neq \frac{f}{g} \in K(x)$ существуют единственные многочлен $h \in K[x]$, неприводимые многочлены p_1, \ldots, p_n со старшим коэффициентом 1, натуральные числа $\alpha_1, \ldots, \alpha_n$ и многочлены h_{ij} , где $i \in \overline{1, n}$, и $j \in \overline{0, \alpha_i}$, что дроби

$$rac{r_{ij}}{p_i^j}$$
 — простейшие и $rac{f}{g} = h + \sum_{i,j} rac{r_{ij}}{p_i^j}.$

При этом, если $r_{i\alpha_i}$ не ноль и старший коэффициент g равен 1, то $g = \prod p_i^{\alpha_i}$.

Рассмотрим теперь конкретные поля \mathbb{C} . Так как поле \mathbb{C} алгебраически замкнуто, то все неприводимые многочлены над \mathbb{C} имеют степень 1. Это заметно упрощает жизнь, так как в числителе простейшей дроби могут стоять только константы.

Самый стандартный, но далеко не самый эффективный способ нахождения разложения на простейшие — метод неопределённых коэффициентов. Приведём пример нахождения некоторого разложения, которое использует конструкцию интерполяции.

Упражнение 9. Разложите на простейшие дробь $\frac{1}{x^n-1}$ над комплексными числами.

Peшение. Корни многочлена x^n-1 нам известны — это $x_l=e^{\frac{2i\pi l}{n}},\ l\in \overline{0,n-1}.$ Кратных корней нет. Многочлен g(x)=1 восстанавливается по своим значениям в точках $e^{\frac{2i\pi l}{n}}$ по формуле Лагранжа

$$1 = \sum_{l=0}^{n-1} \frac{1}{nx_l^{n-1}} \prod_{i \neq l} (x - x_i) = \sum_{l=0}^{n-1} \frac{x_l}{n} \prod_{i \neq l} (x - x_i).$$

Тогда

$$\frac{1}{x^n-1} = \frac{\sum_{l=0}^{n-1} \frac{x_l}{n} \prod_{i \neq l} (x-x_i)}{x^n-1} = \sum_{l=0}^{n-1} \frac{x_l}{n(x-x_l)}.$$

Продолжая данное рассуждение, как можно заметить, транслируется в некий общий ответ на вопрос

Вопрос: как разложить дробь на простейшие, если $K = \mathbb{C}$ и у знаменателя нет кратных множителей В этом случае можно просто явно выписать ответ благодаря наличию интерполяционной формулы. А именно пусть $g(x) = (x - x_1) \dots (x - x_n)$ и пусть f(x) имеет степень меньше, чем g(x). Тогда $f(x) = \sum_{g'(x_i)(x - x_i)} \frac{f(x_i)g(x)}{g'(x_i)(x - x_i)}$. Разделив одно на другое получаем

$$\frac{f(x)}{g(x)} = \sum \frac{f(x_i)}{g'(x_i)(x - x_i)},$$

что и завершает рассмотрение.

Теперь несложно получить ответ на вещественный вопрос

Вопрос: как разложить дробь на простейшие, если $K=\mathbb{R}$ и у знаменателя нет кратных множителей Этот случай довольно прост. У знаменателя g(x) бывают множители вида x^2+ax+b , где $a^2-4b<0$. Обычно сама

возможность нахождения вида этих множителей подразумевает, что нам известны комплексные корни g(x). Так или иначе над $\mathbb C$ многочлен x^2+ax+b представляется в виде $(x-\lambda)(x-\overline{\lambda})$ и это λ легко найти зная a и b.

Воспользуемся комплексным разложением для дроби

$$\frac{f(x)}{g(x)} = \sum_{\lambda_i \in \mathbb{R}} \frac{A_i}{x - \mu_i} + \sum_{\lambda_i \notin \mathbb{R}} \frac{B_i}{x - \lambda_i} + \frac{\overline{B_i}}{x - \overline{\lambda_i}}.$$

То, что коэффициенты для λ и $\overline{\lambda}$ сопряжены, следует из единственности разложения и того, что оно переходит в себя при сопряжении, так как вся дробь – вещественная. Осталось сгруппировать слагаемые $\frac{B_i}{x-\lambda_i}+\frac{\overline{B_i}}{x-\overline{\lambda_i}}$ и получить разложение над \mathbb{R} .

Все остальные вопросы можно побороть при помощи интерполяции по Эрмиту, то есть смотря на производные числителя дроби в корнях(комплексных) знаменателя.