Laboratorium z kryptografii

Zajęcia 13-14: Funkcje skrótu i podpisy cyfrowe

1 Funkcje skrótu

W procesie przetwarzania cyfrowych informacji bardzo łatwo spotkać się sytuacją, w której niezbędnym jest aby utworzyć stosunkowo krótki "odcisk palca" dużo dłuższego dokumentu. Taki "odcisk palca", czyli pewnego rodzaju unikatową informację, która pozwoli na jednoznaczne (z bardzo dużym prawdopodobieństwem) przypisanie jej do danego dokumentu uzyskuje się przy wykorzystaniu tzw. funkcji (algorytmów) skrótu h: $\Sigma^X \to \Sigma^Y$ (ang. hash functions/algorithms). Dobra funkcja skrótu powinna posiadać następujące własności:

- 1. Dla dowolnego tekstu m_{in} , otrzymanie $h(m_{in})$ jest zadaniem obliczeniowo łatwym.
- 2. Wynik h jest stałej długości funkcja skrótu zwraca ciąg znaków $m_{out} \in Y$ o stałej długości dla dowolnego wejściowego tekstu $m_{in} \in X$ o do dowolnej długości. (np. |Y| = 256 bitów)
- 3. Odporność na kolizje znalezienie dwóch znaczących tekstów $m_1 \in \Sigma^{X_1}, m_2 \in \Sigma^{X_2}$ takich, że $h(m_1) = h(m_2)$ musi być zadaniem obliczeniowo "niewykonalnym".
- 4. Jednokierunkowość dla dowolnego skrótu $h(m_{in})$, odtworzenie dokumentu m_{in} musi być zadaniem obliczeniowo "trudnym".

Przykładowe funkcje skrótu:

Nazwa	Długość skrótu	Względna szybkość
MD4	128	1.00
MD5	128	0.68
RIPEMD-128	128	0.39
SHA-1	160	0.28
RIPEMD-160	160	0.24

Tabela 1: Przykładowe funkcje skrótu, długości zwracanych przez nie skrótów oraz względna szybkość.

1.1 Funkcja skrótu JHA

Funkcja skrótu JHA jest algorytmem utworzonym na potrzeby dydaktyczne przez prof. J. Holdena 1 . Dla zadanego tekstu m niech

- $n_1(m)$ liczba samogłosek j. angielskiego ($\{a,e,i,u,o,A,E,I,U,O\}$) występujących w tekście m
- $n_2(m)$ liczba spółgłosek j. angielskiego ({b,c,d,...,x,y,z,B,C,D,...,X,Y,Z}) występujących w tekście m
- \bullet SP(m) Liczba spacji występujących w teście m

wtedy JHA(m,p,q) zdefiniujemy poprzez

$$JHA(m, p, q) = q^{7*n_1(m) - 3*n_2(m) + (SP(m))^2} \mod p$$
(1)

Uwaga! Wyrażenie postaci $(a^{-k}) \mod p$ jest liczbą naturalną i oznacza k-tą potęgę modulo p elementu odwrotnego do a w ciele \mathbb{Z}_p , tzn:

$$a^{-k} \mod p = b^k \mod p \tag{2}$$

$$a \cdot b = 1 \pmod{p} \tag{3}$$

¹https://www.rose-hulman.edu/~holden/Preprints/jha-paper.pdf

lp.	Tekst m	$n_1(m)$	$n_2(m)$	SP(m)	р	q	JHA(m,p,q)
m_1	Aaaa aAAA	8	0	1	541	5	368
m_2	aEEE AEIU O	9	0	2	101	5	54
m_3	Aa A ee cCc	5	3	3	1 223	47	70
m_4	Aa ABb cde	4	4	2	1 583	113	256
m_5	ABCdefgh	2	6	6	1 987	331	1 674
m_6	AaBBB BBB cdcd	2	10	2	2 741	137	2 126
m_7	A bcdf GH IJK	2	8	3	$3\ 571$	17	3 361
m_8	aA BBBa CDEE eee	8	5	3	5 279	29	3 249
m_9	BbBbBb CcCcCcCc DdDdDdD	0	21	2	6 997	53	4 070
m_{10}	ABCD abcd ABCD BBBB	3	13	3	8 831	883	4 778
m_{11}	AAaaAA bB iuo	9	2	2	12 553	523	3 194
m_{12}	A,B, , C?!eee iuo!DA	8	3	3	27 449	73	19 032
m_{13}	?? AaaA,.cdef BBBB?#@	5	7	2	127	7	64
m_{14}	2Mama2 i ?Tata? :D	5	5	3	29	7	7

Tabela 2: Przykładowe teksty oraz wartości ich skrótów.

2 Podpisy cyfrowe - podstawy

Podpis cyfrowy dokumentu powinien spełniać analogiczną funkcję jak podpis ręczny dokumentu papierowego, tzn. stanowić publicznie uznane oraz prawnie wiążące narzędzie pozwalające na utworzenie unikatowej informacji bezpośrednio związanej z podpisywanym dokumentem oraz podmiotem podpisującym. Każda taka unikatowa informacja powinna przede wszystkim zapewniać bezpieczeństwo (być obliczeniowo niemożliwa do podrobienia) oraz łatwa do sprawdzenia (każda osoba otrzymująca taki podpis powinna w prosty sposób sprawdzić jego autentyczność), podpis cyfrowy najczęściej powiązany jest ze zbiorem dwóch protokołów:

- ullet Właściwego protokołu podpisu cyfrowego $SG_{private}(m)$ wiadomości m przy wykorzystaniu tajnej informacji private.
- Protokołu weryfikacji $VER_{public}(\tilde{m})$ podpisu \tilde{m} przy wykorzystaniu publicznej informacji public (np. składowanej w tzw. publicznym rejestrze kluczy (PRK) stanowiacym źródło informacji powszechnie wiarygodnych i dostępnych).

Ponieważ podpis cyfrowy, jak każda informacja cyfrowa, może być z łatwością powielany, przesyłany i przetwarzany po jego wykonaniu (często bez wiedzy osoby podpisującej), protokół podpisu $SG_{private}$ oraz weryfikacji VER_{public} powinny m.in. spełniać poniższe kryteria bezpieczeństwa

- 1. Łatwość wykonania podpisu przy znajomości tajnej informacji private podpisanie $SG_{private}(m)$ dokumentu m jest zadaniem obliczeniowo łatwym
- 2. Łatwość weryfikacji podpisu przy znajomości publicznej informacji public wykonanie protokołu sprawdzenia autentyczności $VER_{public}(\tilde{m})$ podpisu \tilde{m} jest zadaniem obliczeniowo łatwym
- 3. Odporność na podstawienia znalezienie dwóch par $\{(private_1, m_1), (private_2, m_2)\}$ takich, że $SG_{private_1}(m_1) = SG_{private_2}(m_2)$ jest zadaniem obliczeniowo niewykonalnym.
- 4. Odporność na podrobienia utworzenie podrobionego podpisu \tilde{m} takiego, że protokół weryfikacji $VER_{public}(\tilde{m}$ potwierdza autentyczność wiadomości jest zadaniem obliczeniowo niewykonalnym.

3 Digital Signature Standard (DSS)

DSA oparty jest na zmodyfikowanej wersji podpisu cyfrowego opartego o algorytm ElGamal. W swojej pełnej wersji algorytm DSS można podzielić na trzy etapy.

 $\textbf{Etap I} \ Generacja \ publicznie \ dostępnej \ informacji \ (\ w \ PRK \) \ pozwalającej \ dowolnej \ osobie \ na \ sprawdzenie \ wiarygodności \ podpisu.$

- 1. wybór dużej liczby pierwszej p (sugerowana liczba pierwsza powinna być długości co najmniej 512 bitów!)
- 2. wybór 160 bitowej liczby pierwszej q dzielącej liczbę p-1

3. wybór liczby naturalnej g, będącej q-tym pierwiastkiem modulo p, tzn. spełniającej:

$$g^q = 1 \mod p \tag{4}$$

$$g^{q} = 1 \mod p$$

$$\forall_{\alpha < q} \quad g^{\alpha} \neq 1 \mod p$$

$$\tag{5}$$

- 4. Wybór tajnej liczby naturalnej k < q
- 5. Obliczenie klucza publicznego $g^k \mod p$ i zdeponowanie czwórki (g^k, g, p, q) w publicznym rejestrze (PRK)

Etap II Podpis dokumentu.

1. wybór (jednorazowej) liczby naturalnej r < q oraz obliczenie liczby x zadanej przez:

$$x = (g^k \mod p) \mod q \tag{6}$$

2. dla wiadomości $m \in \mathbb{Z}_q^*$ obliczenie liczby yzadanej przez:

$$y = r^{-1} (m + k \cdot x) \pmod{q} \tag{7}$$

3. Podpisem wiadomości m jest para (x, y) tzn:

$$s = SG_k(m) = (x, y) \tag{8}$$

Etap II Weryfikacja podpisu

1. Dla otrzymanego podpisu $\tilde{s} = (\tilde{x}, \tilde{y})$ oraz wiadomości \tilde{m} , obliczenie

$$\alpha = \tilde{m}\tilde{y}^{-1}(\mod q) \tag{9}$$

$$\beta = \tilde{x}\tilde{y}^{-1}(\mod q),\tag{10}$$

gdzie q pochodzi z publicznego rejestru podpisów.

2. Autentyczność podpisu sprawdzana jest poprzez warunek (???). Jeżeli (???) jest prawdą to para $(\tilde{x}, \tilde{y}) = (x, y)$ jest autentycznym podpisem wiadomości \tilde{m} .

$$VER(\tilde{m}, \tilde{s}) = \left(\tilde{x} \stackrel{?}{=} (g^{\alpha} \cdot (g^{k})^{\beta} \mod p) \mod q\right)$$
(11)

Wartości (g^k, g, p, q) pochodzą z publicznego rejestru kluczy.

lp.	Tekst m	р	q	JHA	g	k	r	PRK	Podpis
m_1	Aaaa aAAA	541	5	368	140	3	4	(48, 140, 541, 5)	(3, 3)
m_2	aEEE AEIU O	101	5	54	84	2	3	(87, 84, 101, 5)	(2, 1)
m_8	aA BBBa CDEE eee	5 279	29	3 249	2 160	23	17	$(1\ 186,\ 2\ 160,\ 5\ 279,\ 29)$	(26, 25)
m_9	BbBbBb CcCcCcCc DdDdDdD	6 997	53	4 070	1 001	48	33	$(2\ 328,\ 1\ 001,\ 6\ 997,\ 53)$	(49, 34)
m_{10}	ABCD abcd ABCD BBBB	8 831	883	4 778	6 275	700	500	$(5\ 343,\ 6\ 275,\ 8\ 831,\ 883)$	(45, 839)

Tabela 3: Przykładowe wyniki DSS.

Zadania 4

1. Dla zadanych w konsoli liczb(p,g,k,r) (liczba pierwsza $p<\!32~000)$ zaimplementować program dokonujący skrótu wiadomości h = JHA(m, p, q) oraz podpisujący otrzymany skrót algorytmem DSS.

Wytyczne implementacji:

- \bullet Wszystkie zmienne wejściowe (tzn. p, g, k oraz r) powinny być podawane w konsoli!
- Program powinien automatycznie obliczać q (dla skrótu oraz podpisu!) jako najwiekszą liczbe pierwszą dzielącą p-1 (np. wykorzystując algorytm fermata).
- Program powinien automatycznie dokonywać kontroli błędów dla liczb wejściowych (p, g, k, r), w razie wykrycia błędu wyświetlać odpowiedni komunikat i prosić o nową wartość dla zmiennej.
- Program powinien pobierać tekst m z pliku (oceniany plik: tekst_dlugi.txt oraz pomocnicze pliki testowe tekst_krotkix.txt dostępne są na e-nauczaniu).
- ullet Program ma wyświetlać: skrót h wiadomości m, podpis s wiadomości h oraz utworzony publiczny rejestr klucza $(g^k, g, p, q)!$

5 Punktacja

- 1 punkt wczytywanie (p,g,k,r)w konsoli i tekstu mz pliku
- $\bullet\,$ 3 punkty poprawnie zaimplementowana kontrola błędów
- 3 punkty poprawnie otrzymany skrót wiadomości
- 3 punkty poprawnie otrzymany rejestr klucza publicznego oraz podpis skrótu wiadomości