

Лекция 8. Метрики машинного обучения

Проектирование машинного обучения

От: Пополнили счет <cijxwd@businesslife-online.ru>

Кому: cdg@mail.ru

Тема: Уведомление о зачислении 30 000 руб

От: Пополнили счет <cijxwd@businesslife-online.ru>

Кому: cdg@mail.ru

Тема: Уведомление о зачислении 30 000 руб

Уважаемые члены ученого совета! Очередное заседание №6 состоится 16.01.2024 в 14.00 в 305 лк. Прошу обратить внимание на нетрадиционное время заседания (в связи с сессией)

Повестка заседания:

- 1. Эффективные контракты с НПС анализ результативности в 2022-2023 гг. (вопрос прошлого заседания) (Гринченков)
- 2. Об итогах второй аттестации и ходе зимней сессии (Саенко)
- 3. Утверждение дополнительных программ к программе-минимум кандидатского экзамена
- 4. Конкурс (каф. ИИСТ)

Ученый секретарь Кузнецова А.В.

Классы
$$y \in \{0, 1\}$$
 $y = 0$ – не спам $y = 1$ – спам

Признаки х?

Выбрать 100 слов: распродажа, каталог, скидка, промокод, акция, предложение, сейчас, покупай, ...

Oт: mail@mosmexa.ru

Кому: cdg@mail.ru

Тема: Тотальная распродажа новой коллекции!

Московская меховая компания проводит январскую распродажу Новой коллекции пуховиков! В нашем каталоге более 260 женских и мужских моделей на разный вкус. Размеры - от 40 до 70, более 10 цветовых решений! И приятный бонус - до 21 января вы можете получить скидку в размере 30% на акционные пуховики, введя в корзине промокод 20240113.

$$x = \left[egin{array}{c} 0 \ 1 \ 1 \ \end{array}
ight] \qquad \begin{array}{c} \mbox{покупай} \ \mbox{распродажа} \ \mbox{скидка} \ \mbox{каталог} \ \mbox{сейчас} \ \mbox{:} \mbox{:} \ \mbox{:} \ \mbox{:} \ \mbox{:} \ \mbox{:} \ \mbox{:} \mbox{:} \ \mbox{:} \ \mbox{:} \ \mbox{:} \ \mbox{:} \ \mbox{:} \mbox{:} \ \mbox{:} \ \mbox{:} \ \mbox{:} \ \mbox{:} \ \mbox{:} \mbox{:} \ \mbox{:} \ \mbox{:} \ \mbox{:} \ \mbox{:} \ \mbox{:} \mbox{:} \ \mbox{:} \ \mbox{:} \ \mbox{:} \ \mbox{:} \mbox{:} \ \mbox{:} \ \mbox{:} \ \mbox{:} \ \mbox{:} \ \mbox{:} \ \mbox{:} \mbox{:} \ \mbox{:} \ \mbox{:} \ \mbox{:} \ \mbox{:} \ \mbox{:} \mbox{:} \mbox{:} \ \mbox{:} \ \mbox{:} \ \mbox{:} \ \mbox{:} \mbox{:} \mbox{:} \mbox{:} \mbox{:} \mbox{:} \mbox{:} \mbox{:} \mbo$$

Реальные системы:
$$x \in \mathbb{R}^{100}$$
 $x \in \mathbb{R}^{50\,000...100\,000}$

Как обучить этот классификатор и добиться минимальной ошибки?

Собрать много данных для обучения и контроля
 Сбор писем (honeypot), использование готовых БД спама

> Разработать более сложные признаки и алгоритмы из получения

Учитывающие источник письма, маршрут доставки и т.д.

Учитывающие склонения, множественное число и т.д. скидка / скидки выгода / выгодное

Разработать алгоритмы, учитывающие намеренные опечатки маскировки слов

эксклюзивное эксклюзивное эксклюзивное

Учитывающие пунктуацию

!!!Скидка!!!

Тестовая модель

Рекомендуется начать с простой быстро реализуемой модели, которая позволит получить сразу какой-то ответ, который можно проанализировать.

Заранее сложно выбрать сразу хорошее решение. Тестовая модель поможет лучше понять задачу.

Построить кривые обучения, оценить требуется ли больше данных или больше признаков и т.д.

Даже простая модель даст больше представления о особенностях задачи, чем безосновательная интуиция.

Выполнить анализ ошибок тестовой модели

Оценить на каких классах больше ошибок, проанализировать причины. Возможно нужны признаки, учитывающие особенности этих классов, возможно нужно больше данных именно этих классов и т.д.

Используем валидационный набор, $m_{CV} = 500$

Тестовая модель допустила 100 ошибок

Вручную рассматриваем эти ошибки. Например, к каким типам писем они относятся: реклама, вымогательство, кража личной информации и т.д.

Реклама товаров: 5

Приглашения на сайты: 11

Попытки украсть пароль: 42

Прочие: 36

Сосредоточиться на поиске особенностей этого типа

Пробуем варианты признаков:

- Выделить наличие ошибок в словах
- > Необычный маршрут доставки письма
- Оценивать однокоренные слова как один признак

Пробуем разные варианты и оцениваем их результативность на валидационной выборке

Тестовая модель

Почему рекомендуется выполнять анализ ошибок и оценивать эффективность применения различных вариантов решения на валидационном наборе по ошибке $J_{cv}(\theta)$, а не на тестовом наборе и ошибке $J_{test}(\theta)$?

- 🛂 Валидационный набор обычно больше тестового
- 💆 Ошибка на валидационном наборе обычно меньше
- **Е**сли мы подберем вариант решения по тестовому набору, то не сможем оценить обобщающую способность модели
- Использование валидационного набора даст меньший набор признаков

Используем валидационный набор, $m_{CV} = 500$

Тестовая модель допустила 100 ошибок, т.е. 20% ошибок

Реализуем вариант, проверяем на валидационном наборе, оцениваем эффект:

> Не учитывать регистр слов	9% ошибок	Отвергается
Оценивать однокоренные слова как один признак	7% ошибок	Принимается
> Необычный маршрут доставки письма	12% ошибок	Принимается
Выделить наличие ошибок в словах	15% ошибок	Принимается

Несимметричные классы

Рассмотрим задачу медицинской диагностики ракового заболевания:

y = 0 — пациент не имеет заболевания

y = 1 — пациент имеет рак

Построена модель, которая имеет 1% ошибок Достоверность A = 0.99

Достоверность (accuracy):

$$A = \frac{T}{m_{test}}$$

T — количество правильных предсказаний

Хороший ли это результат?

Представим, что в реальности 0.5% пациентов имеют рак. Является ли A = 0.99 по-прежнему хорошим результатом?

Возьмем гипотезу

$$h_{\theta}(x) = 0$$

A = 0.995

(алгоритм решения отсутствует)

0.5% ошибок

Какое решение лучше?

$$A_1 = 0.986$$

$$A_2 = 0.992$$

$$A_3 = 0.995$$

Несимметричные классы

Рассмотрим задачу медицинской диагностики ракового заболевания:

y = 0 — пациент не имеет заболевания

y = 1 — пациент имеет рак

Построена модель, которая имеет 1% ошибок

Достоверность A = 0.99

Достоверность (accuracy):

$$A = \frac{T}{m_{test}}$$

Т – количество правильных предсказаний

Если количество объектов одного класса существенно меньше, чем объектов другого класса ($\#[y=1] \ll \#[y=0]$), такие классы называют **несимметричными**.

Достоверность является плохим вариантом для сравнения решения при несимметричных классах!

Матрица ошибок

y = 1 — редкий класс в несимметричной задаче

$$m = TP + FP + TN + FN$$

Достоверность (accuracy):

$$A = \frac{TP + TN}{TP + FP + TN + FN}$$

TP (True Positive) – Истинно положительный

TN (True Negative) – Истинно отрицательный

FP (False Positive) – Ложно положительный

FN (False Negative) – Ложно отрицательный

Правильное предсказание

Ошибочное предсказание

y = 1 – редкий класс в несимметричной задаче (только так, не наоборот!)

Точность (precision):

$$P = \frac{TP}{TP + FP}$$

Среди всех ответов h(x) = 1, какая часть совпадает с актуальными y = 1

Из всех пациентов, кому модель предсказала рак, какая часть действительно им больна

Возьмем гипотезу

$$h_{\theta}(x) = 0$$

$$R = 0$$
 $P = 0$

Полнота (recall):

$$R = \frac{TP}{TP + FN}$$

Среди всех актуальных y = 1, какая часть совпадает с ответами h(x) = 1

Из всех пациентов больных раком, кому модель правильно поставила диагноз

Достоверность (accuracy):

$$A = \frac{TP + TN}{TP + FP + TN + FN}$$

Точность (precision):

$$P = \frac{TP}{TP + FP}$$

Полнота (recall):

$$R = \frac{TP}{TP + FN}$$

Какова **точность** решения в соответствии с представленной таблицей ошибок?

Достоверность (accuracy):

$$A = \frac{TP + TN}{TP + FP + TN + FN}$$

Точность (precision):

$$P = \frac{TP}{TP + FP}$$

Полнота (recall):

$$R = \frac{TP}{TP + FN}$$

Какова **полнота** решения в соответствии с представленной таблицей ошибок?

Достоверность (ассигасу):

$$A = \frac{TP + TN}{TP + FP + TN + FN}$$

Точность (precision):

$$P = \frac{TP}{TP + FP}$$

Полнота (recall):

$$R = \frac{TP}{TP + FN}$$

Какова достоверность решения в соответствии с представленной таблицей ошибок?

Достоверность (ассигасу):

$$A = \frac{TP + TN}{TP + FP + TN + FN} = \mathbf{0.90}$$

Точность (precision):

$$\boldsymbol{P} = \frac{TP}{TP + FP} = \mathbf{0.80}$$

Полнота (recall):

$$R = \frac{TP}{TP + FN} = \mathbf{0.50}$$

Какую метрику выбрать?

Достоверность не годится для несимметричных классов. В чем разница между точностью и полнотой?

Компромисс между точностью и полнотой

Модель логистической регрессии: $0 \le h(x) \le 1$

Предсказываем 1, если $h(x) \ge 0.5$ 0.7 0.3

Предсказываем 0, если h(x) < 0.5 0.7 0.3

1) Предположим, мы хотим говорить пациенту, что у него рак (y = 1), только если очень в этом уверены (избегать ложно-положительного результата)

Точность повышается, полнота уменьшается

2) Предположим, мы не хотим «пропустить» ни одного пациента с раком (избегать ложно-отрицательного результата)

Точность понижается, полнота повышается

Точность (precision):

$$P = \frac{TP}{TP + FP}$$

Полнота (recall):

$$R = \frac{TP}{TP + FN}$$

Компромисс между точностью и полнотой

Модель логистической регрессии: $0 \le h(x) \le 1$

Предсказываем 1, если $h(x) \ge \tau$

Предсказываем 0, если $h(x) < \tau$

Как обосновано выбрать значение τ ?

Точность (precision):

$$P = \frac{TP}{TP + FP}$$

Полнота (recall):

$$R = \frac{TP}{TP + FN}$$

F-мера

Подобрать τ по валидационному набору, чтобы сочетание P и R было наилучшим Сравнивать два число сложно, желательно из них получить одно число

Решение	Точность Р	Полнота <i>R</i>	Среднее	F_1 -мера	
Алгоритм 1	0.5	0.4	0.45	0.44	лучший вариант
Алгоритм 2	0.7	0.1	Ø.4	0.17	
Алгоритм 3	0.02	1.0	0.51	0.04	худший вариант
			$h_{\theta}(z)$	x) =1	

Среднее:
$$Avg = \frac{P+R}{2}$$

$$F_{\beta}$$
-mepa: $F_{\beta} = (1 + \beta^2) \frac{PR}{\beta^2 P + R}$

Нам достаточно
$$\beta = 1$$

$$F_1 = 2\frac{PR}{P+R}$$

$$P = 0, R = 0 \Rightarrow F_1 = 0$$

$$P = 1, R = 1 \Rightarrow F_1 = 1$$

$$F_1 \in [0,1]$$

Существуют и другие меры, F_1 – одна из множества распространенных

F-мера

Модель логистической регрессии: $0 \le h(x) \le 1$

$$0 \le h(x) \le 1$$

Предсказываем 1, если $h(x) \ge \tau$

Предсказываем 0, если $h(x) < \tau$

При различных значениях τ мы получим разные величины точности P и полноты R. Как подобрать наилучшее значение для порога τ ?

- Вычислить значения *P* и *R* на **тестовом** наборе данных и выбрать значение τ при котором достигается максимум $\frac{P+R}{2}$
- Вычислить значения *P* и *R* на валидационном наборе данных и выбрать значение τ при котором достигается максимум $\frac{P+R}{2}$
- Вычислить значения *P* и *R* на **тестовом** наборе данных и выбрать значение τ при котором достигается максимум $2\frac{PR}{R+R}$
- Вычислить значения P и R на валидационном наборе данных и выбрать значение τ при котором достигается максимум $2\frac{PR}{P+R}$

«**Большие** данные» (Big Data) – подход в машинном обучении, когда для настройки алгоритма используются очень большие обучающие наборы (миллионы, миллиарды и более) – получил большие распространение в XXI веке.

«Побеждает не лучший алгоритм, а тот, у кого было больше данных» (из жизни специалистов по ИИ и ML)

Большой объем данных не всегда работает:

Если модель имеет высокое смещение (проблема смещения) → увеличение объема данных не поможет.

Для BigData необходимо выполнение ряда условий

Исследование Бэнко и Брилл, 2001

Классификация одинаково звучащих (в речи) слов на английском языке:

two, to, too

For breakfast I ate eggs.

Использовались алгоритмы:

- > Персептрон
- Алгоритм просеивания (устаревший)
- На основе памяти (устаревший)
- > Наивный байесовский классификатор

Выводы:

- 1) Все алгоритмы примерно равны
- 2) Чем больше данных, тем выше достоверность

Особенности:

задача сложна, большой размер вектора x

Когда использование BigData оправдано?

Когда вектор параметров х содержит достаточно информации для точного предсказания у

Интуитивно: Если человек-эксперт на основе этой информации х может дать уверенное предсказание у, то ее скорее всего достаточно.

two, to, too Задача Бэнко и Брилл: For breakfast I ate ____eggs.

Задача предсказания стоимости дома только по его площади

Не достаточно

Достаточно

Почему BigData работает?

Для решения сложной задачи используем модель с большим числом параметров (линейная/логистическая регрессия с большим числом признаков; нейронная сеть с множеством скрытых слоев и нейронов)

Модель с малым смещением и возможно большой дисперсией $J_{train}(\theta)$ будет мало

Почему BigData работает?

Для решения сложной задачи используем модель с большим числом параметров (линейная/логистическая регрессия с большим числом признаков; нейронная сеть с множеством скрытых слоев и нейронов)

Модель с малым смещением и возможно большой дисперсией

Для устранения проблемы дисперсии один из хороших путей – увеличение объема данных (уменьшает вариабельность)

Какие задачи не решить с помощью BigData?

Задачи с большим смещением

> Задача предсказания стоимости дома только по его площади

Стоимость зависит еще от большого числа факторов (возраст, число комнат, этаж и пр.)

Задача предсказания курса акций/валюты на основе прошлых значений

Стоимость зависит от политической, экономической, социальной ситуации, но не от старых значений

> Задача распознавания эмоций человека по фотографии

Статического изображения не достаточно для полноценной идентификации эмоций

Если исходных данных для решения **не достаточно** (вектор параметров x не содержит достаточно информации для точного предсказания y, человек эксперт не может дать верное решение по этой информации), то задача очень вероятно **не решается** с привлечением больших данных.

В каких ситуациях из перечисленных ниже использование больших данных вероятно не поможет решить задачу?

- Используется алгоритм с большим числом параметров
- Признаки x не содержат достаточно информации для достоверного предсказания, но используется алгоритм с большим числом параметров
- \blacksquare Не используется регуляризация (или $\lambda = 0$)