1. Evaluate
$$\iiint x dV$$
, where E is enclosed by $z=0$, $Z=x+y+5$, and $X^2+y^2=4$, $X^2+y^2=9$.

Solution: In cylindrical coordinates,

$$E : \begin{cases} (r, \theta, \frac{1}{2}): & 2 \le r \le 3 \\ 0 \le \theta \le 2\pi \\ 0 \le \frac{1}{2} \le r \cos \theta + r \sin \theta + 5 \end{cases}.$$

This works since x+y+5>0 on the region $2 \le r \le 3$. [x+y is smallest when $x=y=\sqrt{9/2}$, or $x+y=-\sqrt{18}$, which is greater than -5. So the plane x+y+5=2 doesn't intersect 2=0 on for $x^2+y^2=9$.]

$$= \int \int (r^3 \cos^2 \theta + \frac{r^3 \sin \theta \cos \theta + 5 r^2 \cos \theta}{both \ \text{integrate to 0 over } 0 \le \theta \le 2\pi}.$$

$$= \int_{0}^{2\pi} \frac{1}{4} (3^{4} - 2^{4}) \cos^{2}\theta d\theta = \sqrt{\frac{65\pi}{4}}$$

$$E = \{(x,y,z): 0 \le x \le 1, 0 \le y \le \sqrt{2x-x^2}, 0 \le z \le \sqrt{x^2+z^2}\}.$$

Note that
$$0 \le y \le \sqrt{2x-x^2}$$
 is equivalent

to
$$x^2 + y^2 \le 2x$$
, or $(x-1)^2 + y^2 \le 1$ (and $y > 0$).

This is the inside of the circle of radius 1 contered at (1.0), for y>0 and x=1.

In polar, we can write the region

as a union of two regions D, and Dz.

D₁ is bounded by the polar curve
$$X^{2}+y^{2} = 2x \longrightarrow r^{2} = 2r\cos\theta, \text{ or } r = 2\cos\theta, \text{ for } \bar{q} \leq \theta \in \bar{q}.$$

Dz is bounded by the polar curve

X = 1 \rightarrow $r \in Sec \Theta$, for $O \in T / 4$.

Thus
$$\iiint f(x,y,z) dV = \iiint f(r,0,z) \cdot r dz dr d\theta$$

$$= T/2 2 \cos \theta r$$

$$+ \iiint f(r,0,z) \cdot r dz dr d\theta$$

6 Evaluate
$$\iiint dx^2+y^2+z^2 dV$$
, where

E is the region $x^2+y^2+z^2 \in 2z$.

Solution: E is the sphere centered at $(0,0,1)$ of radius 1 (can see this by completing)

the square: $x^2+y^2+z^2-2z+1=1$. In spherical coordinates, $x^2+y^2+z^2=2z+1=1$. In spherical coordinates, $x^2+y^2+z^2=2z+1=1$.

Thus, since E lies above the plane $z=0$, (and contains the origin),

 $E = \{(\rho,0,\phi): 0 \in \phi \in \pi/z \\ 0 \in \rho \in \mathcal{A}$ and $\rho \in \mathbb{R}$ and $\rho \in \mathbb{R}$

#8. Evaluate
$$\iiint xe^{x^2ty^2+z^2} dV$$
, where $K = 1$ is the part of $X^2+y^2+z^2 \le 1$ where $X \le 0$, $1 \le 1$ and $1 \le 1$ and $1 \le 1$ where 1

Solution: In spherical coordinates,
$$E$$
 is parameterized as $E = \{(\rho, 0, \phi): \begin{array}{l} 0 \le \rho \le 1 \\ \frac{\pi}{2} \le \phi \le \pi \end{array}$, and $\frac{\pi}{2} \le \phi \le \pi$

Thus

$$\iiint_{X} e^{x^{2}ty^{2}+2^{2}} dV = \iiint_{T_{2}} \pi_{h} \circ (\rho \cos \theta \sin \phi) e^{\theta^{2}} \cdot \rho^{2} \sin \phi d\rho d\theta d\theta.$$

$$= \int_{0}^{\pi} \cos \theta d\theta \cdot \int_{0}^{\pi} \sin^{2} \phi d\phi \cdot \int_{0}^{\pi} \rho^{2} d\rho \qquad (let \rho^{2} = u) \quad 2\rho d\rho = du)$$

$$= (-1) \cdot (\frac{\pi}{4}) \cdot \int_{0}^{1} u e^{u} du \qquad (now integrate by parts)$$

$$= (-1) \cdot \left(\frac{\pi}{4}\right) \cdot \int_{-2}^{2} du \, du \, du$$

$$= -\frac{\pi}{8} \left[ue^{u} \right]_{0}^{1} - \int_{0}^{1} e^{u} du$$

$$= \left[-\frac{\pi}{8} \right].$$

10. Substituting $u=\frac{x}{a}, v=\frac{y}{b}$ into $u^2+v^2\leq 1$ gives $\frac{x^2}{a^2}+\frac{y^2}{b^2}\leq 1, \text{ so the image of } u^2+v^2\leq 1 \text{ is the}$ elliptical region $\frac{x^2}{a^2}+\frac{y^2}{b^2}\leq 1.$

11. R is a parallelogram enclosed by the parallel lines y=2x-1, y=2x+1 and the parallel lines y=1-x, y=3-x. The first pair of equations can be written as y-2x=-1, y-2x=1. If we let u=y-2x then these lines are mapped to the vertical lines u=-1, u=1 in the uv-plane. Similarly, the second pair of equations can be written as x+y=1, x+y=3, and setting v=x+y maps these lines to the horizontal lines v=1, v=3 in the uv-plane. Boundary curves are mapped to boundary curves under a transformation, so here the equations u=y-2x, v=x+y define a transformation T^{-1} that maps T in the T-plane to the square T-plane enclosed by the lines T-1, T-

12. The boundaries of the parallelogram R are the lines $y=\frac{3}{4}x$ or 4y-3x=0, $y=\frac{3}{4}x+\frac{5}{2}$ or 4y-3x=10, $y=-\frac{1}{2}x$ or x+2y=0, $y=-\frac{1}{2}x+5$ or x+2y=10. Setting u=4y-3x and v=x+2y defines a transformation T^{-1} that maps R in the xy-plane to the square S enclosed by the lines u=0, u=10, v=0, v=10 in the uv-plane. Solving u=4y-3x, v=x+2y for x and y gives $2v-u=5x \Rightarrow x=\frac{1}{5}(2v-u)$, $u+3v=10y \Rightarrow y=\frac{1}{10}(u+3v)$. Thus one possible transformation T is given by $x=\frac{1}{5}(2v-u)$, $y=\frac{1}{10}(u+3v)$.

13. R is a portion of an annular region (see the figure) that is easily described in polar coordinates as $R = \{(r,\theta) \mid 1 \le r \le \sqrt{2}, 0 \le \theta \le \pi/2\}$. If we converted a double integral over R to polar coordinates the resulting r of integration is a rectangle (in the $r\theta$ -plane), so we can create a transformation T here by letting u play the role of r and role of θ . Thus T is defined by $x = u \cos v$, $y = u \sin v$ and T maps the rectangle $S = \{(u, v) \mid 1 \le u \le \sqrt{2}, 0 \le v \le 1\}$ in the uv-plane to R in the uv-plane.

14. The boundaries of the region R are the curves y=1/x or xy=1, y=4/x or xy=4, y=x or y/x=1, y=4x or y/x=4. Setting u=xy and v=y/x defines a transformation T^{-1} that maps R in the xy-plane to the square S enclose the lines u=1, u=4, v=1, v=4 in the uv-plane. Solving u=xy, v=y/x for x and y gives $x^2=u/v$ \Rightarrow $x=\sqrt{u/v}$ [since x, y, u, v are all positive], $y^2=uv$ \Rightarrow $y=\sqrt{uv}$. Thus one possible transformation T is given by $x=\sqrt{u/v}$, $y=\sqrt{uv}$.

15. $\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = 3$ and x - 3y = (2u + v) - 3(u + 2v) = -u - 5v. To find the region S in the uv-plane that corresponds to R we first find the corresponding boundary under the given transformation. The line through (0,0) and $y = \frac{1}{2}x$ which is the image of $u + 2v = \frac{1}{2}(2u + v) \implies v = 0$; the line through (2,1) and (1,2) is x + y = 3 which image of $(2u + v) + (u + 2v) = 3 \implies u + v = 1$; the line through (0,0) and (1,2) is y = 2x which is the image $u + 2v = 2(2u + v) \implies u = 0$. Thus S is the triangle $0 \le v \le 1 - u$, $0 \le u \le 1$ in the uv-plane and

$$\begin{split} \iint_{R} \left(x - 3y \right) dA &= \int_{0}^{1} \int_{0}^{1-u} \left(-u - 5v \right) \left| 3 \right| \, dv \, du = -3 \int_{0}^{1} \left[uv + \frac{5}{2} v^{2} \right]_{v=0}^{v=1-u} \, du \\ &= -3 \int_{0}^{1} \left(u - u^{2} + \frac{5}{2} (1-u)^{2} \right) \, du = -3 \left[\frac{1}{2} u^{2} - \frac{1}{3} u^{3} - \frac{5}{6} (1-u)^{3} \right]_{0}^{1} = -3 \left(\frac{1}{2} - \frac{1}{3} + \frac{5}{6} \right) = 0 \end{split}$$

CHAPTER 15 REVIEW - 601 **25.** Letting u = y - x, v = y + x, we have $y = \frac{1}{2}(u + v)$, $x = \frac{1}{2}(v - u)$. Then $\frac{\partial(x, y)}{\partial(u, v)} = \begin{vmatrix} -1/2 & 1/2 \\ 1/2 & 1/2 \end{vmatrix} = -\frac{1}{2}$ and R is the image of the trapezoidal region with vertices (-1,1), (-2,2), (2,2), and (1,1). Thus

$$\iint_{R} \cos \frac{y - x}{y + x} dA = \int_{1}^{2} \int_{-v}^{v} \cos \frac{u}{v} \left| -\frac{1}{2} \right| du \, dv = \frac{1}{2} \int_{1}^{2} \left[v \sin \frac{u}{v} \right]_{u = -v}^{u = v} dv = \frac{1}{2} \int_{1}^{2} 2v \sin(1) \, dv = \frac{3}{2} \sin 1$$

26. Letting u=3x, v=2y, we have $9x^2+4y^2=u^2+v^2, x=\frac{1}{3}u$, and $y=\frac{1}{2}v$. Then $\frac{\partial(x,y)}{\partial(u,v)}=\frac{1}{6}$ and R is the image of the quarter-disk D given by $u^2 + v^2 \le 1$, $u \ge 0$, $v \ge 0$. Thus

$$\iint_{R} \sin(9x^{2} + 4y^{2}) dA = \iint_{D} \frac{1}{6} \sin(u^{2} + v^{2}) du dv = \int_{0}^{\pi/2} \int_{0}^{1} \frac{1}{6} \sin(r^{2}) r dr d\theta = \frac{\pi}{12} \left[-\frac{1}{2} \cos r^{2} \right]_{0}^{1} = \frac{\pi}{24} (1 - \cos 1)$$

$$\text{t } u = x + y \text{ and } v = -x + y \text{ Then } v = -x + y$$

27. Let u=x+y and v=-x+y. Then $u+v=2y \Rightarrow y=\frac{1}{2}(u+v)$ and $u-v=2x \Rightarrow x=\frac{1}{2}(u-v)$.

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \end{vmatrix} = \frac{1}{2}. \text{ Now } |u| = |x+y| \le |x| + |y| \le 1 \implies -1 \le u \le 1, \text{ and}$$

 $|v|=|-x+y|\leq |x|+|y|\leq 1 \quad \Rightarrow \quad -1\leq v\leq 1.$ R is the image of the square region with vertices (1, 1), (1, -1), (-1, -1), and (-1, 1).

28. Let u=x+y and v=y, then x=u-v, y=v, $\frac{\partial(x,y)}{\partial(u,v)}=1$ and R is the image under T of the triangular region with vertices (0,0), (1,0) and (1,1). Thus

$$\iint_{R} f(x+y) dA = \int_{0}^{1} \int_{0}^{u} (1) f(u) dv du = \int_{0}^{1} f(u) \left[v \right]_{v=0}^{v=u} du = \int_{0}^{1} u f(u) du \quad \text{as desired.}$$

Review

CONCEPT CHECK

- 1. (a) A double Riemann sum of f is $\sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^*, y_{ij}^*) \Delta A$, where ΔA is the area of each subrectangle and (x_{ij}^*, y_{ij}^*) is a sample point in each subrectangle. If $f(x,y) \geq 0$, this sum represents an approximation to the volume of the solid that lies above the rectangle R and below the graph of f
- (b) $\iint_{R} f(x,y) dA = \lim_{m,n \to \infty} \sum_{i=1}^{m} \sum_{i=1}^{n} f(x_{ij}^{*}, y_{ij}^{*}) \Delta A$
- (c) If $f(x,y) \ge 0$, $\iint_R f(x,y) \, dA$ represents the volume of the solid that lies above the rectangle R and below the surface z=f(x,y). If f takes on both positive and negative values, $\iint_R f(x,y) \, dA$ is the difference of the volume above R but below the surface z=f(x,y) and the volume below R but above the surface z=f(x,y).
- (d) We usually evaluate $\iint_R f(x,y) dA$ as an iterated integral according to Fubini's Theorem (see Theorem 15.2.4).