



| 1x2 d=2                                                                   |                                                                                             |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| $\left(\frac{1}{2},\frac{1}{2}\right)$                                    | X LUOI                                                                                      |
|                                                                           | X <sub>1</sub>                                                                              |
| [0,0]                                                                     |                                                                                             |
| ₩ <sup>T</sup> X <<0                                                      | $(: W^T X = 0$ $V = V X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y$                                |
|                                                                           |                                                                                             |
| Training Set                                                              |                                                                                             |
| $D = \{(X_1, y_1), \dots, X_{\hat{i}} \in \mathbb{R}^{dH}, y_{\hat{i}}\}$ | $(X_n, y_n)$                                                                                |
| $X\hat{c} \in \mathbb{R}^{n}$ , $\hat{y}\hat{c}$                          | = 4-()+15                                                                                   |
| Model Parameter:                                                          | W E IROH                                                                                    |
| Given (X, y)                                                              |                                                                                             |
| Output: [pmc x),                                                          | $p_{\mathbf{w}^{T_{\mathbf{X}}}}$                                                           |
|                                                                           | wix , ) C {-1,+1}                                                                           |
|                                                                           |                                                                                             |
| Loss Function                                                             | Example, given x and w                                                                      |
| Log Loss Function                                                         | output probability rector at                                                                |
|                                                                           | logistic regression is [0.8,02]                                                             |
| $-\log P_{W}(y X)$                                                        | $= \overrightarrow{\square}(1 \times), \overrightarrow{\square}(1 \times)$                  |
|                                                                           | If $y = 1$ , $loss = -log 0.8 \approx 0.20$<br>If $y = -1$ , $loss = -log 0.2 \approx 1.61$ |
|                                                                           |                                                                                             |

| Out If If | ри<br>У=<br>У=                | t=;<br>+1          | , li       | 990<br>225<br>35= |                  | y 0  | P.C                | 99.<br>H          | = 10<br>10 | )^-4                                                                           |       |                  |                    |          |  |  |
|-----------|-------------------------------|--------------------|------------|-------------------|------------------|------|--------------------|-------------------|------------|--------------------------------------------------------------------------------|-------|------------------|--------------------|----------|--|--|
| en(       | (W<br>on c<br>xn, y           | ) =<br>latap<br>n) | - <br>oint | 1                 | <u>Pw</u> (      | C)   | <u>uzn</u>         | _                 |            |                                                                                |       |                  |                    |          |  |  |
|           |                               | _                  |            | ) 89              | ) -              | 1    | -yn r              | r <sup>×</sup> Xη | -          |                                                                                |       |                  |                    |          |  |  |
|           |                               |                    | 10         | 90                | 1+               |      | nw <sup>T</sup> Xr |                   |            | La                                                                             | yarit | hm               | bas                | se 6     |  |  |
| Cn(       | W <sub>1</sub> X <sub>2</sub> | )=                 |            | () T              | W <sub>1</sub> X | n >> |                    |                   | Jn<br>+1   | Jn )<br>>>                                                                     | NTXn  | en o<br>≈<br>Lov | (w)                |          |  |  |
|           | 71711                         |                    |            | _                 |                  |      |                    |                   | -1         | >>><br>-</td <td>Ö</td> <td>La</td> <td>rge</td> <td></td> <td></td> <td></td> | Ö     | La               | rge                |          |  |  |
| Im        | (YY)                          |                    | 1          | <i>V</i> =1       | Cn(              |      | )=                 | N                 | N<br>N=1   | 1000                                                                           |       | e <sup>2</sup>   | ynw <sup>T</sup> x | <u> </u> |  |  |

| Training Phase  W = Gromin I  W ERdti  | Enc_w)                                                                        |  |
|----------------------------------------|-------------------------------------------------------------------------------|--|
| Recall Linear Regression Em(w) = N n=1 | $\frac{1}{(h-M^T \times n)^2}$                                                |  |
| En(w) is convei                        | $\times$ in $W$ $\nabla_{W} = 0$                                              |  |
|                                        | Equation In W                                                                 |  |
| Example, N=2                           | $X_{1} = (1, \xi, 10), y_{1} = X_{2} = (1, -\xi, -10), y_{2} = \xi = 10^{-4}$ |  |

| Casifier: X1=0                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| W = (O, I, O)                                                                                                                                         |
| Classifier: X=0 (Preferred)                                                                                                                           |
| $\gamma = (0,0,1)$                                                                                                                                    |
|                                                                                                                                                       |
| Compute En(w) for classifier I and 2                                                                                                                  |
| Classifier                                                                                                                                            |
| $\sum_{i} w_{i} = \frac{1}{2} \left( \cos \left( 1 + e^{-y_{i}} w_{i}^{T} x_{i} \right) + \log \left( 1 + e^{-y_{i}} w_{i}^{T} x_{i} \right) \right)$ |
|                                                                                                                                                       |
| $=\frac{1}{2}\left(\log\left(1+e^{-\epsilon}\right)+\log\left(1+e^{-\epsilon}\right)\right)$                                                          |
| $=  \infty  C + e^{-\epsilon}$                                                                                                                        |
| $\approx 0.693$                                                                                                                                       |
|                                                                                                                                                       |
| Classifier 2                                                                                                                                          |
| $\operatorname{En}(w) = \frac{1}{2} \left( \log(1 + e^{-y_1 w \overline{x}_1}) + \log(1 + e^{-y_2 w \overline{x}_2}) \right)$                         |
|                                                                                                                                                       |
| 2 (109 (1+ 2 ) + 109 (1+ 2 1))                                                                                                                        |
| $\approx 5 \times 10^4$                                                                                                                               |
|                                                                                                                                                       |

| $\gamma_1 = (0, 0, 10)$                                                 |
|-------------------------------------------------------------------------|
| $W_{\cdot}^{T} \times = 0$                                              |
| 10x2=0, x2=0                                                            |
| Fin (w <sub>1</sub> ) < 5×10 <sup>-4</sup>                              |
| Cucinnin (Fig. (n. ) + 211 m 112)                                       |
| aromin (Em(w) + 711 w 1P)  11 m 11 Regularized Loss Function            |
|                                                                         |
| Maximum Likelihood Yiewpoint                                            |
| Training set                                                            |
| $D = \{(X_1, Y_1), (X_2, Y_2), \dots, (X_N, Y_N)\}$                     |
| Pr(label Sequence Data Vector Sequence)                                 |
| =Pr (J1, J2 JN X1 X2 Xn)                                                |
| Select a model that maximizes probability assigned to label             |
| sequence given duta vector sequence                                     |
| Assume that all olations also are assumed as doubt as                   |
| Assume that all data samples are generated independently of one another |
| Pr (yi ya, yn XiXa Xn)                                                  |
|                                                                         |
| $= \prod_{n=1}^{\infty} \frac{p_n}{p_n} \left( y_n \mid x_n \right)$    |
| Probability assign to data vector xn                                    |
|                                                                         |
|                                                                         |

| Max Likelihaad Objective  Select W that maximizes  N Pu (In Xn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $ \frac{N}{M} = \frac{1}{M} \frac$ |  |
| $= \underset{Y \in \mathbb{R}^{d+1}}{\operatorname{argmax}} \log \left( \prod_{n=1}^{N} \overrightarrow{P_n} \left( y_n \mid x_n \right) \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| $= \underset{W \in \mathbb{R}^{d+1}}{\text{CAYCIMOX}} \sum_{n=1}^{N}  _{OG} \widehat{P}_{m} (y_{n}  _{X_{n}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| $= (1) \frac{1}{N} \frac{1}{N$     |  |
| - aromin Fin (W) W CIRCHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

| Cross Intropy Viewpoint                                                                |
|----------------------------------------------------------------------------------------|
| S= {S1, S2, S3,, Sn3 be a discrete alphabet                                            |
| Let P= (P(Si), P(SD),, P(SM))                                                          |
| $Q=(q(s_1),q(s_2),,q(s_M))$<br>be two probability vectors over $S$                     |
|                                                                                        |
| $(E(P,Q) = - \sum_{i=1}^{n} P(S_i) \log q(S_i)$                                        |
|                                                                                        |
| Log Loss Function Can be viewed as a cross entropy                                     |
| $e_n(w) = -\log \frac{2}{N} (3n \times m)$                                             |
| $e_{n}(w) = -\left\{1\left(y_{n} + y_{n}\right)   y_{n}(y_{n}) + y_{n}(y_{n})\right\}$ |
|                                                                                        |
| $14y_n - 3/99 \hat{P}_{w} (1/x_n)$                                                     |
|                                                                                        |
| $P_n = (1 + 5), 1 + 5)$                                                                |
| $Q_n = (\hat{P}_{\underline{w}}(1 X_n), \hat{P}_{\underline{w}}(-1 X_n))$              |
|                                                                                        |
| $\lambda_0 = \pm 1$                                                                    |
| In=+1  R=(1,0) (Ideal Output for (In, yn)                                              |
| Jn=-1 Atomic Pn  D=(0,1)                                                               |
| P= (0, 1) /                                                                            |

|      | =(    | Mp   | tge      | ener        | cte | db | you | rn    | ode |    |   |      |   |  |  |
|------|-------|------|----------|-------------|-----|----|-----|-------|-----|----|---|------|---|--|--|
| Cn   |       | ) _  | (+       | <b>(</b> 1) |     | \  |     | Pn    | = ( | Pn | ) | P(2) | ) |  |  |
|      |       |      |          |             |     | 1) |     | 7 7 2 |     |    | , |      |   |  |  |
| Know | rledo | je D | listi II | atior       | \   |    |     |       |     |    |   |      |   |  |  |
|      |       |      |          |             |     |    |     |       |     |    |   |      |   |  |  |
|      |       |      |          |             |     |    |     |       |     |    |   |      |   |  |  |
|      |       |      |          |             |     |    |     |       |     |    |   |      |   |  |  |
|      |       |      |          |             |     |    |     |       |     |    |   |      |   |  |  |
|      |       |      |          |             |     |    |     |       |     |    |   |      |   |  |  |
|      |       |      |          |             |     |    |     |       |     |    |   |      |   |  |  |
|      |       |      |          |             |     |    |     |       |     |    |   |      |   |  |  |
|      |       |      |          |             |     |    |     |       |     |    |   |      |   |  |  |
|      |       |      |          |             |     |    |     |       |     |    |   |      |   |  |  |
|      |       |      |          |             |     |    |     |       |     |    |   |      |   |  |  |
|      |       |      |          |             |     |    |     |       |     |    |   |      |   |  |  |
|      |       |      |          |             |     |    |     |       |     |    |   |      |   |  |  |
|      |       |      |          |             |     |    |     |       |     |    |   |      |   |  |  |
|      |       |      |          |             |     |    |     |       |     |    |   |      |   |  |  |
|      |       |      |          |             |     |    |     |       |     |    |   |      |   |  |  |
|      |       |      |          |             |     |    |     |       |     |    |   |      |   |  |  |