$$\frac{\partial}{\partial x} = \frac{\partial}{\partial x} = \frac{\partial$$

$$B_{1x} = B_{1} \cos \theta = \frac{M_{0} i \cos \theta}{2\pi Z_{1}} \cos \theta$$

$$Z_{1} \cos \theta = Q_{1} F_{2}$$

$$\cos \theta = \frac{Q_{1}}{Z_{1}} F_{2}$$

$$i = 1A$$
 $l = 10 \text{ cm}$
 $\beta_{\epsilon}(\vec{0}) = ?$
 $\beta_{\epsilon}(\vec{0}) = ?$

$$\nabla_{1} = \sqrt{\frac{2}{4}} - \frac{\ell^{2}}{4}$$

$$\nabla_{1} = \frac{\ell}{2} \frac{1}{480} = \frac{\ell}{2} \frac{1}{4\sqrt{\frac{\pi}{6}}}$$

1)
$$\oint \vec{H} \cdot d\vec{5} = (N\vec{i}), \oint \vec{H} \cdot d\vec{5} = H 2 \pi 2 + >$$

H =
$$\frac{Ni}{2\pi^2}$$
, B = μ H = $\frac{\mu Ni}{2\pi^2}$, M = χ_m H = $\frac{\chi_m}{2\pi^2}$
 $\chi_m = (K_m - 1)$ ruscettrate magnetice
2) $\lambda_m = \int \vec{H} \cdot d\vec{S} = H 2\pi 2 = \chi_m \lambda$

2)
$$i_{m} = 6\pi \cdot d\vec{5} = M 2\pi 2 = \chi_{m} i$$

Solenoide lineare [m] = m⁻¹

B = M.M.A

Solenoide toroidale [N] = numer

B = MoiN

2712

$$\theta = \frac{\pi}{6} = 30^{\circ}$$

vousse intervité delle i che deve scorrere offinché il lets mobile resti un equilibris

$$\begin{array}{cccc}
\Lambda & & \Lambda & & \Lambda \\
\Xi & \times (-\gamma) & = & X
\end{array}$$

$$\vec{B} // -\hat{y}$$
 y
 y
 y
 y

$$\vec{B} / -\hat{y}$$
 $\vec{b} = \vec{b} / -\hat{y}$
 \vec{b}

$$z \xrightarrow{x} y \left(\theta \right)$$