概率论与数理统计

庄玮玮 weizh@ustc.edu.cn

安徽 合肥

2021年9月

教材

陈希孺,《概率论与数理统计》, 中国科学技术大学出版社, 2009 年.

课程目的

- 掌握初等概率(基于微积分)的基本理论
- 掌握数理统计的基本概念和方法
- 激发对随机数学课程学习的兴趣
- 培养用基本统计方法解决实际问题的能力

成绩计算

平时作业 (30%) + 期末考试 (70%)

第一章 事件与概率

§1.1 概率论发展简史

- 自然与社会现象: 确定性现象、偶然性现象 \triangleright
- 偶然和必然是人们认识世界过程中一个永恒的话题 \triangleright

欧拉 L. Euler 1707-1783

爱因斯坦 A. Finstein (1879 - 1955)

最美的公式 $E = MC^2$

有规律 发现规律

自然科学的确定性

概率论的任务: 从偶然中悟出必然! \triangleright

概率论的起源

贵族De Mere在与一名宫廷卫士一次 赌博时关于如何分赌本的问题发生了 争执,于是请教他的好友著名的数学 家Blaise Pascal.

Pascal与他的另一名好友数学家Pierre Fermat通信讨论该问题, 形成了概率 论中一个重要的基本概念—数学期望. 概率论是一门研究随机现象 规律的数学分支,起源于17 世纪中叶.

1650年前后的法国, 赌博在贵族中风靡 一时,且无法律限制.

Fermat

赌本分配问题: 你和老K两人赌技相同,互不服输。一天二人相约各出赌注500元,约定:谁先胜3局,则拿走全部1000元。现已赌了3局,你以两胜一负的战绩领先。此时,老K以家中有急事为由要提前结束赌局。请问,这1000元赌注该如何分配?

概率论的起源

Christiaan Huygens在 1657年写了世界上第一 本关于概率论的著作 "On Reasoning in Games of Chance" 1713年, Jacob Bernoulli在 著作《猜度术》中对频率 和概率接近这一事实给予 了理论上的阐述, 建立了 概率论中的第一个大数定 律—Bernoulli大数律. 1718年, Abraham De Moivre 在他的著作《机会论》中 提出很多计算古典概率的 方法,包括乘法定理等. 最 早使用正态分布密度曲线.

概率论的起源

1812年, Pierre-Simon Laplace 在著作分析概率论》中最早 叙述了概率论的几个基本定 理,给出了古典概率的明确定 义. P·概率应用到赌博以外的 各个领域,包括人口统计,保 险等.

1933年, Andrey Kolmogorov 在著作"Foundations of the Theory of Probability")中正 式提出了概率论的公理体 系,从而使得概率论成为一 门严谨的数学分支。

概率论从此得到了迅速的发 展,被广泛地应用到了不同的 范畴和不同的学科. 今天, 概 率论已经成为一个非常庞大 的数学分支, 在此基础上, 数 理统计也得到了迅速的发展.

§1.2 随机现象和随机事件

► 随机现象: 自然界中的客观现象, 当人们观测它时, 所得结果 不能预先确定, 而仅仅是多种可能结果之一.

例子: 明天是否下雨.

- ▶ 随机试验: 一个试验称为随机试验, 若该试验满足以下三条:
 - 在相同条件下可重复进行:
 - 所有的试验结果是明确可知的, 结果至少有两个;
 - 每次试验恰好出现这些结果中的一个,但在试验之前无法预知该结果.

例子: 掷一个硬币, 掷两枚骰子, 在一副扑克牌中随机抽取两张.

§1.2 随机现象和随机事件

基本概念:

- 样本点(w)
- 样本空间 (Ω)
- 随机事件: 基本随机事件、复杂随机事件
- 特殊事件:必然事件Ω、不可能事件∅

样本点: 作试验的目的是考察试验出现的可能结果. 掷一枚硬币时, 用H (head) 表示硬币正面朝上, 用T (tail) 表示硬币反面朝上. 本试验的可能结果是H 和T. 称基本试验结果H 和T 是样本点(sample point).

样本空间: 为了叙述的方便和明确,下面把一个特定的试验称为试验S. 称试验S 的可能结果为样本点,用 ω 表示. 称试验S 的样本点 ω 构成的集合为样本空间(sample space),用 Ω 表示样本空间,有

▶【例 1.2.1】 抛掷两枚硬币,写成样本点与样本空间.

解:将硬币区分为第一枚和第二枚,用"H"表示一枚硬币正面朝上,用"T"表示反面朝上,于是样本点有4个:

HH: 第一枚硬币正面朝上, 第二枚正面朝上;

HT: 第一枚硬币正面朝上, 第二枚反面朝上;

TH: 第一枚硬币反面朝上, 第二枚正面朝上;

TT: 第一枚硬币反面朝上, 第二枚反面朝上.

样本空间: Ω = {HH, HT, TH, TT}. ■

样本空间: 为了叙述的方便和明确,下面把一个特定的试验称为试验S. 称试验S 的可能结果为样本点,用 ω 表示. 称试验S 的样本点 ω 构成的集合为样本空间(sample space),用 Ω 表示样本空间,有

▶【例 1.2.1】 抛掷两枚硬币,写成样本点与样本空间.

解:将硬币区分为第一枚和第二枚,用"H"表示一枚硬币正面朝上,用"T"表示反面朝上,于是样本点有4个:

HH: 第一枚硬币正面朝上, 第二枚正面朝上;

HT: 第一枚硬币正面朝上, 第二枚反面朝上;

TH: 第一枚硬币反面朝上, 第二枚正面朝上;

TT: 第一枚硬币反面朝上, 第二枚反面朝上.

样本空间: Ω = {HH, HT, TH, TT}. ■

样本空间可以有限, 也可以无限。

- ▶【例 1.2.2】
- (1) 一盒中装有编号 1,2,...,n 的小球, 随机选取一个:

$$\Omega = \{1, 2, \ldots, n\}.$$

(2) 一段时间某部电话接受的电话呼叫:

$$\Omega = \{0, 1, 2, \ldots\}.$$

(3) 测量某地水温: $\Omega = [0, 100]$.

事件与随机事件的区别:

在通常意义下,事件是指对已发生的情况的描述;但随机事件是对某种或某些情况的一种陈述,可能已发生,也可能没有发生. 今后,随机事件简记为事件.

- ▶ 事件: 试验S 的样本空间 Ω 是一个全集, Ω 的元素 ω 是样本点, Ω 的子集是事件. 对于 $A \subset \Omega$, 如果元素(试验的结果) $\omega \in A$, 则称事件A发生, 否则称A不发生.

事件与随机事件的区别:

在通常意义下,事件是指对已发生的情况的描述;但随机事件是对某种或某些情况的一种陈述,可能已发生,也可能没有发生. 今后,随机事件简记为事件.

- ▶ 事件: 试验S 的样本空间 Ω 是一个全集, Ω 的元素 ω 是样本点, Ω 的子集是事件. 对于 $A \subset \Omega$, 如果元素(试验的结果) $\omega \in A$, 则称事件A发生, 否则称A不发生.
- * 事件是样本空间 Ω 的子集. 通常用大写字母A, B, C, D 或 $A_1, A_2, \dots, B_1, B_2, \dots$ 等表示事件.

▶【例 1.2.3】 投掷一枚骰子的样本空间是

$$\Omega = \{\omega \,|\, \omega = 1, 2, \cdots, 6\}.$$

- 用集合A = {3}表示掷出3点,则A是Ω的子集,称A是事件.如果掷出3点,则称事件A发生,否则称事件A不发生;
- 用集合B = {2,4,6}表示掷出偶数点,B是Ω的子集,B也是事件.如果掷出偶数点,则称事件B发生,否则称事件B不发生.

- 单个样本点构成的事件, 称为基本事件:
- 在随机试验中我们所关心的可能出现的各种结果,它由一个 或若干个基本事件组成,称为复杂事件;
- 空集Ø是Ω的子集.由于Ø中没有样本点,永远不会发生,所以称Ø是不可能事件;
- Ω 也是样本空间 Ω 的子集,包含了所有的样本点,因而总会发生,于是称 Ω 是必然事件.

事件的运算

对集合可以进行集合运算, 其结果仍然是集合. 由于事件是子集, 所以可以对事件进行集合的运算, 其结果仍然是事件.

- $\Pi \overline{A} = \Omega A$ 表示集合A的余集,则事件A发生和试验结果 $\omega \in A$ 是等价的,事件A不发生和试验结果 $\omega \in \overline{A}$ 是等价的;
- 当A, B是事件, 则

$$A \cup B$$
, $A \cap B$, $A - B = A\overline{B}$

都是事件, 用AB表示A∩B, 当AB = Ø, 也用A+B表 示A∪B;

• 当事件 $AB = \emptyset$, 称事件A, B 互斥或不相容. 特别称 \overline{A} 为A的对立事件. 如果多个事件 A_1, A_2, \cdots 两两不相容: $A_iA_j = \emptyset$, $i \neq j$, 则称他们互斥或互不相容.

事件的运算

- ▶ 事件的运算符号和集合的运算符号是相同的, 例如:
- (1) A = B表示事件 A, B 相等;
- (2) A∪B 发生等价于至少 A, B之一发生;
- (3) A∩B(或 AB) 发生等价于 A和 B 都发生;
- (4) $A B = A\overline{B}$ 发生等价于 A 发生和 B 不发生;
- (5) $\bigcup_{j=1}^{n} A_j$ 发生表示至少有一个 $A_j (1 \leq j \leq n)$ 发生;
- (6) $\bigcap_{j=1}^{n} A_j$ 发生表示所有的 $A_j (1 \leq j \leq n)$ 都发生.

事件的运算

设 $\{A_i, i = 1, ..., n\}$ 为一事件族 (n) 有限或无限), 则

▶ 并交运算满足交换律、结合律、分配律

$$B \cap \left(\bigcup_{j=1}^n A_j\right) = \bigcup_{j=1}^n (B \cap A_j), \quad B \cup \left(\bigcap_{j=1}^n A_j\right) = \bigcap_{j=1}^n (B \cup A_j).$$

▶ 对偶原理 (De Morgan 法则):

$$\left(\bigcup_{j=1}^n A_j\right)^c = \bigcap_{j=1}^n A_j^c, \qquad \left(\bigcap_{j=1}^n A_j\right)^c = \bigcup_{j=1}^n A_j^c.$$

- ▶ 概率: 设 Ω 是样本空间. 对于 Ω 的事件A,我们用 [0,1] 中的数 P(A) 表示 A 发生的可能性的大小, 称 P(A) 是事件 A 发生的概率, 简称为 A 的概率. 并且规定必然事件发生的概率等于1: $P(\Omega) = 1$.
 - 按照以上原则,如果事件A,B发生的可能性相同,则有P(A)=P(B).于是,投掷一枚均匀的硬币时,正面朝上的概率等于反面朝上的概率,都是1/2;
 - 以后总用 |A| 表示事件 A 的样本点个数, 用 $|\Omega|$ 表示 Ω 中的样本点个数.

- ▶ 古典概型: 试验结果有限、等可能性.
 - → 试验结果的"等可能性":设一个试验有有限个试验结果 {w₁,...,w_n}. 若找不到理由认为一个试验结果比另一个试验结果 更易于发生.
 - 等可能性是一个理想的假设。以掷骰子为例,要求质地均匀、标准的正六面体、从足够高的高处下落等.
- ▶ 古典概型应用: 在概率论中占有重要地位.
 - 模型简单,有助于理解许多基本概念;
 - 在产品抽检和理论物理中有应用.
- ト 古典概率: 设试验S 的样本空间 Ω 是有限集合, $A \subset \Omega$. 如果 Ω 的每个样本点发生的可能性相同,则称

$$P(A) = \frac{|A|}{|\Omega|}$$

- 古典概型: 试验结果有限、等可能性.
 - 试验结果的"等可能性":设一个试验有有限个试验结果 $\{w_1,\ldots,w_n\}$. 若找不到理由认为一个试验结果比另一个试验结果 更易于发生.
 - 等可能性是一个理想的假设。以掷骰子为例,要求质地均匀、标 准的正六面体、从足够高的高处下落等.
- 古典概型应用:在概率论中占有重要地位。
 - 模型简单,有助于理解许多基本概念;
 - 在产品抽检和理论物理中有应用.
- ▶ 古典概率: 设试验S 的样本空间Ω是有限集合, $A \subset Ω$, 如果Ω的每 个样本点发生的可能性相同. 则称

$$P(A) = \frac{|A|}{|\Omega|}$$

为试验S下A发生的概率,简称为事件A的概率.

▶【例 1.3.1】 投掷一枚均匀的骰子, 样本空间是

$$\Omega = \{ \, \omega \, | \, \omega = 1, 2, \cdots, 6 \, \}.$$

用 $A = \{j\}$ 表示掷出点数j, $B = \{2, 4, 6\}$ 表示掷出偶数点. 则有

- $P(A) = \frac{|A|}{|\Omega|} = \frac{1}{6}$,
- $P(B) = \frac{|B|}{|\Omega|} = \frac{1}{2}$.

▶【例 1.3.2】 设试验S 的样本空间 Ω 是有限集合, 若 Ω 的每个样本点发生的可能性相同, 则对 $A \subset \Omega$, $B \subset \Omega$, 当 $AB = \emptyset$, 有

$$P(A + B) = P(A) + P(B).$$

 $P(A+B) = \frac{|A+B|}{|\Omega|} = \frac{|A|+|B|}{|\Omega|}$

▶【例 1.3.2】 设试验S 的样本空间 Ω 是有限集合, 若 Ω 的每个样本点发生的可能性相同, 则对 $A \subset \Omega$, $B \subset \Omega$, 当 $AB = \emptyset$, 有

$$P(A + B) = P(A) + P(B).$$

证明 因为 $AB = \emptyset$, 所以|A + B| = |A| + |B|,则由定义 $P(A + B) = \frac{|A + B|}{|\Omega|} = \frac{|A| + |B|}{|\Omega|}$ $= \frac{|A|}{|\Omega|} + \frac{|B|}{|\Omega|}$ = P(A) + P(B).

- ▶【例 1.3.3】 一批同型号的产品中, 一等品所占的比例是 p_1 , 二等品所占的比例是 p_2 , ···, n 等品所占的比例是 p_n . 从中随机抽取一件.
- (a) 抽到 j 等品的概率是多少?
- (b) 对于 $i \neq j$, 抽到 i 等品或者 j 等品的概率是多少?

解 设这批产品的数量是 N,则 $|\Omega|=N$. 抽到哪一件产品的可能性都是相同的,用 A_j 表示抽到 j 等品.因为 j 等品的数量是 Np_j ,所以 $|A|=Np_j$. 根据定义得到

$$P(A_j) = \frac{Np_j}{N} = p_j.$$

- ▶【例 1.3.3】 一批同型号的产品中, 一等品所占的比例是 p_1 , 二等品所占的比例是 p_2 , ···, n 等品所占的比例是 p_n . 从中随机抽取一件.
- (a) 抽到 j 等品的概率是多少?
- (b) 对于 $i \neq j$, 抽到 i 等品或者 j 等品的概率是多少?

解 设这批产品的数量是 N, 则 $|\Omega|=N$. 抽到哪一件产品的可能性都是相同的, 用 A_j 表示抽到 j 等品. 因为 j 等品的数量是 Np_j , 所以 $|A|=Np_j$. 根据定义得到

$$P(A_j) = \frac{Np_j}{N} = p_j.$$

事件 $B = A_i + A_j$ 表示抽到 i 等品或者 j 等品,由于抽到 i 等品就不能抽到 j 等品,所以 A_i 和 A_j 互不相容,即 $A_iA_j = \emptyset$.从例 1.3.2 的结论知

$$P(B) = P(A_i) + P(A_j) = p_i + p_j.$$

在本例中,每件产品是一个样本点,被抽到的可能性相同.本例还表明,在随机抽样时,概率等于比例.

▶【例1.3.4】 从5双不同尺码的鞋子中随机取出4只,求以下事件概率.

事件 A: 4 只鞋任意 2 只不成双;

事件 B: 2 只鞋成双, 另 2 只不成双;

事件 C: 4 只鞋恰成两双.

解:按组合计数,视所有鞋各不相同

$$|\Omega| = {10 \choose 4} = 210, \qquad |A| = {5 \choose 4} \cdot 2^4 = 80,$$

$$|B| = {5 \choose 1} {4 \choose 2} 2^2 = 120, \qquad |C| = {5 \choose 2} = 10,$$

$$\implies P(A) == \frac{|A|}{|\Omega|} = \frac{8}{21}, \quad P(B) = \frac{4}{7}, \quad P(C) = \frac{1}{21}$$

▶【例1.3.4】 从5双不同尺码的鞋子中随机取出4只,求以下事件概率.

事件 A: 4 只鞋任意 2 只不成双;

事件 B: 2 只鞋成双, 另 2 只不成双;

事件 C: 4 只鞋恰成两双.

解:按组合计数,视所有鞋各不相同.

$$|\Omega| = {10 \choose 4} = 210, \qquad |A| = {5 \choose 4} \cdot 2^4 = 80,$$

$$|B| = {5 \choose 1} {4 \choose 2} 2^2 = 120, \qquad |C| = {5 \choose 2} = 10,$$

$$\implies P(A) == \frac{|A|}{|\Omega|} = \frac{8}{21}, \quad P(B) = \frac{4}{7}, \quad P(C) = \frac{1}{21}.$$

▶【例1.3.5】 一笼子中有 10 只猫, 其中有 7 只白猫, 3 只黑猫. 把笼门打开一个小口, 使得每次只能钻出一只猫. 猫争先恐后往外钻. 如果 10 只猫全部钻出笼子, 以 A_k 记 "第 k 只钻出的猫是黑猫"的事件, 求 $P(A_k)$, $1 \le k \le 10$.

解法一: 按"猫可辨, 排列"计数:

$$|\Omega| = 10!, \qquad |A_k| = 3 \cdot 9! \implies P(A_k) = \frac{3}{10}$$

解法二: 按"同色猫不可辨"计数: 样本点 $(x_1, x_2, ..., x_{10})$ 是由 黑猫钻出笼子的时刻确定, $x_i = 0$ (第 i 次钻出白猫), $x_i = 1$ (第 i 次钻出黑猫), i = 1, ..., 10.

$$|\Omega| = {10 \choose 3} = 120, \qquad |A_k| = {9 \choose 2} = 36 \implies P(A_k) = \frac{3}{10}$$

▶【例1.3.5】 一笼子中有 10 只猫, 其中有 7 只白猫, 3 只黑猫. 把笼门打开一个小口, 使得每次只能钻出一只猫. 猫争先恐后往外钻. 如果 10 只猫全部钻出笼子, 以 A_k 记 "第 k 只钻出的猫是黑猫"的事件, 求 $P(A_k)$, $1 \le k \le 10$.

解法一: 按"猫可辨, 排列"计数:

$$|\Omega| = 10!, \qquad |A_k| = 3 \cdot 9! \implies P(A_k) = \frac{3}{10}.$$

解法二: 按"同色貓不可辨"计数: 样本点 $(x_1, x_2, ..., x_{10})$ 是由 黑猫钻出笼子的时刻确定, $x_i = 0$ (第 i 次钻出白猫), $x_i = 1$ (第 i 次钻出黑猫), i = 1, ..., 10.

$$|\Omega| = {10 \choose 3} = 120, \qquad |A_k| = {9 \choose 2} = 36 \implies P(A_k) = \frac{3}{10}$$

▶【例1.3.5】 一笼子中有 10 只猫, 其中有 7 只白猫, 3 只黑猫. 把笼门打开一个小口, 使得每次只能钻出一只猫. 猫争先恐后往外钻. 如果 10 只猫全部钻出笼子, 以 A_k 记 "第 k 只钻出的猫是黑猫"的事件, 求 $P(A_k)$, $1 \le k \le 10$.

解法一: 按"猫可辨, 排列"计数:

$$|\Omega| = 10!, \qquad |A_k| = 3 \cdot 9! \implies P(A_k) = \frac{3}{10}.$$

解法二: 按"同色猫不可辨"计数: 样本点 $(x_1, x_2, ..., x_{10})$ 是由 黑猫钻出笼子的时刻确定, $x_i = 0$ (第 i 次钻出白猫), $x_i = 1$ (第 i 次钻出黑猫), i = 1, ..., 10.

$$|\Omega| = {10 \choose 3} = 120, \qquad |A_k| = {9 \choose 2} = 36 \implies P(A_k) = \frac{3}{10}.$$

▶【例1.3.5】 一笼子中有 10 只猫, 其中有 7 只白猫, 3 只黑猫. 把笼门打开一个小口, 使得每次只能钻出一只猫. 猫争先恐后往外钻. 如果 10 只猫全部钻出笼子, 以 A_k 记 "第 k 只钻出的猫是黑猫"的事件, 求 $P(A_k)$, $1 \le k \le 10$.

解法三:按"猫可辨,排列"计数,只考虑前 k 只出笼的猫情况:

$$|\Omega| = {10 \choose k} k!, \qquad |A_k| = {3 \choose 1} {9 \choose k-1} (k-1)$$

$$\implies P(A_k) = \frac{3}{10}.$$

- * 对于一个问题的求解要采用同一模式去计算 |A| 和 $|\Omega|$;
- * "P(Ak)与 k 无关"说明了抽签中签的概率与抽签次序无关。

▶【例1.3.5】 一笼子中有 10 只猫, 其中有 7 只白猫, 3 只黑猫. 把笼门打开一个小口, 使得每次只能钻出一只猫. 猫争先恐后往外钻. 如果 10 只猫全部钻出笼子, 以 A_k 记 "第 k 只钻出的猫是黑猫"的事件, 求 $P(A_k)$, $1 \le k \le 10$.

解法三:按"猫可辨,排列"计数,只考虑前 k 只出笼的猫情况:

$$|\Omega| = {10 \choose k} k!, \qquad |A_k| = {3 \choose 1} {9 \choose k-1} (k-1)!,$$

$$\implies P(A_k) = \frac{3}{10}.$$

- * 对于一个问题的求解要采用同一模式去计算 |A| 和 $|\Omega|$;
- * "P(Ak)与 k 无关"说明了抽签中签的概率与抽签次序无关

▶【例1.3.5】 一笼子中有 10 只猫, 其中有 7 只白猫, 3 只黑猫. 把笼门打开一个小口, 使得每次只能钻出一只猫. 猫争先恐后往外钻. 如果 10 只猫全部钻出笼子, 以 A_k 记 "第 k 只钻出的猫是黑猫"的事件, 求 $P(A_k)$, $1 \le k \le 10$.

解法三:按"猫可辨,排列"计数,只考虑前 k 只出笼的猫情况:

$$|\Omega| = {10 \choose k} k!, \qquad |A_k| = {3 \choose 1} {9 \choose k-1} (k-1)!,$$

$$\implies P(A_k) = \frac{3}{10}.$$

- * 对于一个问题的求解要采用同一模式去计算 |A| 和 |Ω|;
- * "P(Ak)与 k 无关"说明了抽签中签的概率与抽签次序无关.

▶ 排列组合

- 从n个不同的元素中有放回地每次抽取一个,依次抽取m个排成一列,可以得到nm个不同的排列.当随机抽取时,得到的不同排列是等可能的;
- 从n个不同的元素中(无放回)抽取m个元素排成一列时,可以得到 $A_n^m = \frac{n!}{(n-m)!}$ 个不同的排列. 当随机抽取和排列时,得到的不同排列是等可能的;
- 从n个不同的元素中(无放回)抽取m个元素,不论次序地组成一组,可以得到 $C_n^m = \frac{n!}{m!(n-m)!}$ 个不同的组合. 当随机抽取时,得到的不同组合是等可能的.
- 将n个不同的元素分成有次序的k组,不考虑每组中元素的次序,第 $i(1 \le i \le k)$ 组恰有 n_i 个元素的不同结果数是

$$\frac{n!}{n_1!n_2!\cdots n_k!}.$$

当随机分组时, 得到的不同结果是等可能的.

▶ 不相邻问题

现有 A、B 两类不同的个体做全排列, 使得 B 类中个体在排列中互不相邻. 求排列数.

引进等价排列机制: 先将 A 类个体做全排列, 然后在 A 类排列的每相邻两个个体之前插入一个空位, 在 A 类个体的最左侧和最右侧各插入一个空位, 再从这些空位中选取适当个数的空位来排列 B 类个体.

▶【例 1.3.6】 将 4 个男生和 3 个女生排成一排, 使得 3 个女士互不相邻, 求排列数.

解:现将 4 个男生做全排列(排列数为 4!),男生用 \square 表示,然后再插入空位(空位用 \triangle 表示),见下图.再从 5 个空位中选择出 3 个,把 3 个女生排列进去:

 $\triangle \Box \triangle \Box \triangle \Box \triangle \Box \triangle$,

所以总排列的个数为 4!(5)3!. ■

▶ 不相邻问题

现有 A、B 两类不同的个体做全排列, 使得 B 类中个体在排列中互不相邻. 求排列数.

引进等价排列机制: 先将 A 类个体做全排列, 然后在 A 类排列的每相邻两个个体之前插入一个空位, 在 A 类个体的最左侧和最右侧各插入一个空位, 再从这些空位中选取适当个数的空位来排列 B 类个体.

►【例 1.3.6】 将 4 个男生和 3 个女生排成一排, 使得 3 个女士互不相邻, 求排列数.

解:现将 4 个男生做全排列(排列数为 4!),男生用 \square 表示,然后再插入空位(空位用 Δ 表示),见下图.再从 5 个空位中选择出 3 个,把 3 个女生排列进去:

 $\triangle \Box \triangle \Box \triangle \Box \triangle \Box \triangle$,

所以总排列的个数为 4!(5)3!. ■

▶ 不相邻问题

现有 A、B 两类不同的个体做全排列, 使得 B 类中个体在排列中互不相邻. 求排列数.

引进等价排列机制: 先将 A 类个体做全排列, 然后在 A 类排列的每相邻两个个体之前插入一个空位, 在 A 类个体的最左侧和最右侧各插入一个空位, 再从这些空位中选取适当个数的空位来排列 B 类个体.

▶【例 1.3.6】 将 4 个男生和 3 个女生排成一排, 使得 3 个女士互不相邻, 求排列数.

解:现将4个男生做全排列(排列数为4!),男生用□表示,然后再插入空位(空位用△表示),见下图.再从5个空位中选择出3个,把3个女生排列进去:

 $\Delta \Box \Delta \Box \Delta \Box \Delta \Box \Delta$,

所以总排列的个数为 4!(5)3!. ■

▶ 接【例 1.3.6】 若将 4 个男生和 3 个女生排成一圈, 使得 3 个女士互不相邻, 求排列数.

解:现将4个男生排成一圈(排列数为3!),然后再插入空位. 再从4个空位中选择出3个,把3个女生排列进去,总排列的个数为3!(⁴3)3!.■

▶ 接【例 1.3.6】 若将 4 个男生和 3 个女生排成一圈, 使得 3 个女士互不相邻, 求排列数.

解:现将 4 个男生排成一圈(排列数为 3!),然后再插入空位. 再从 4 个空位中选择出 3 个,把 3 个女生排列进去,总排列的个数为 $3!\binom{4}{3}$ 3!. \blacksquare

▶【例 1.3.8】 n 双相异的鞋 2n 只,随机分成 n 堆,每堆 2 只,记 A 为"n 堆鞋恰分别配对",求 P(A).

解: 有如下两种解法。

方法一: 按排列问题求解, 把 2n 只鞋从左到右排成一列, 1、2 号位置鞋合成第 1 堆, 3、4 位置鞋合成第 2 堆, 余类推. 因此,

$$|\Omega| = (2n)!,$$
 $|A| = 2n \cdot (2n - 2) \cdot \cdot \cdot 2 = (2n)$

$$\implies P(A) = \frac{1}{(2n - 1)!!}.$$

方法二: 按分堆问题求解. 易知,

$$|A| = n!, \qquad |\Omega| = \frac{(2n)!}{2^n},$$

于是 P(A) = 1/(2n-1)!!. ■

▶【例 1.3.8】 n 双相异的鞋 2n 只,随机分成 n 堆,每堆 2 只,记 A 为"n 堆鞋恰分别配对", 求 P(A).

解: 有如下两种解法。

方法一:按排列问题求解,把2n只鞋从左到右排成一列,1、2号位置鞋合成第1堆,3、4位置鞋合成第2堆,余类推.因此,

$$|\Omega| = (2n)!,$$
 $|A| = 2n \cdot (2n-2) \cdot \cdot \cdot 2 = (2n)!!,$

$$\implies P(A) = \frac{1}{(2n-1)!!}.$$

方法二: 按分堆问题求解. 易知,

$$|A|=n!, \qquad |\Omega|=\frac{(2n)!}{2^n},$$

于是 P(A) = 1/(2n-1)!!. ■

▶【例 1.3.8】 n 双相异的鞋 2n 只,随机分成 n 堆,每堆 2 只,记 A 为"n 堆鞋恰分别配对", 求 P(A).

解: 有如下两种解法。

方法一:按排列问题求解,把2n只鞋从左到右排成一列,1、2号位置鞋合成第1堆,3、4位置鞋合成第2堆,余类推.因此,

$$|\Omega| = (2n)!,$$
 $|A| = 2n \cdot (2n-2) \cdot \cdot \cdot 2 = (2n)!!,$

$$\implies P(A) = \frac{1}{(2n-1)!!}.$$

方法二: 按分堆问题求解. 易知,

$$|A|=n!, \qquad |\Omega|=\frac{(2n)!}{2^n},$$

于是 P(A) = 1/(2n-1)!!. ■

▶【例 1.3.9】 盒中有 r 个红球,b 个黑球,从中随机取出 n 个 $(r+b \ge n)$. 分别对有放回和无放回情形求"恰取出 k 个红球"的概率 $(k \le r)$.

解: 无放回情形对应超几何分布

$$P(A) = \frac{\binom{r}{k} \binom{b}{n-k}}{\binom{r+b}{n}}.$$

有放回情形对应二项分布

$$P(A) = \frac{\binom{n}{k} r^k b^{n-k}}{(r+b)^n} = \binom{n}{k} \left(\frac{r}{r+b}\right)^k \left(\frac{b}{r+b}\right)^{n-k}.$$

▶【例 1.3.10】 将 10 本不同的书随机分给 5 个人, 试求以下事件的概率: (1) 甲、乙、丙各得2本, 丁得 3 本, 戊得 1 本; (2) 有 3 人各得 2 本, 有 1 人得 3 本, 有 1 人得 1 本.

解:将书和人编号,样本点为 $(x_1, ..., x_{10})$,其中 x_j 表示第 j 本书分给的人编号. 题中两事件分别记为 A, B,则 $|\Omega| = 5^{10}$.

(1) 求 |A|: 先将 10 本书分成 5 堆,从左至右每堆数分别为 2,2,2,3,1;再将每堆书分别给甲乙丙丁戊,故

$$|A| = \frac{10!}{(2!)^3 3! 1!}.$$

(2) 求 |B|: 先将 10 本书按 (1) 分成 5 堆,从左至右每堆数分别为 2, 2, 2, 3, 1; 再将 5 个人分成 3 组,每组人数分别为 3, 1, 1 (每组内的人按甲乙丙丁戊先后顺序排列好); 最后将每堆书分别发给以站好顺序的 5 个人, 故

$$|B| = \frac{10!}{(2!)^3 3! 1!} \cdot \frac{5!}{3! 1! 1!} = \frac{5! 10!}{2^3 6^2}$$

▶【例 1.3.10】 将 10 本不同的书随机分给 5 个人, 试求以下事件的概率: (1) 甲、乙、丙各得2本, 丁得 3 本, 戊得 1 本; (2) 有 3 人各得 2 本, 有 1 人得 3 本, 有 1 人得 1 本.

解:将书和人编号,样本点为 (x_1,\ldots,x_{10}) ,其中 x_j 表示第 j 本书分给的人编号. 题中两事件分别记为 A,B,则 $|\Omega|=5^{10}$.

(1) 求 |A|: 先将 10 本书分成 5 堆,从左至右每堆数分别为 2,2,2,3,1; 再将每堆书分别给甲乙丙丁戊,故

$$|A| = \frac{10!}{(2!)^3 3! 1!}.$$

(2) 求 |B|: 先将 10 本书按 (1) 分成 5 堆,从左至右每堆数分别为 2, 2, 2, 3, 1; 再将 5 个人分成 3 组,每组人数分别为 3, 1, 1 (每组内的人按甲乙丙丁戊先后顺序排列好); 最后将每堆书分别发给以站好顺序的 5 个人, 故

$$|B| = \frac{10!}{(2!)^3 3! 1!} \cdot \frac{5!}{3! 1! 1!} = \frac{5! 10!}{2^3 6^2}$$

▶【例 1.3.10】 将 10 本不同的书随机分给 5 个人, 试求以下事件的概率: (1) 甲、乙、丙各得2本, 丁得 3 本, 戊得 1 本; (2) 有 3 人各得 2 本, 有 1 人得 3 本, 有 1 人得 1 本.

解:将书和人编号,样本点为 (x_1,\ldots,x_{10}) ,其中 x_j 表示第 j 本书分给的人编号. 题中两事件分别记为 A,B,则 $|\Omega|=5^{10}$.

(1) 求 |A|: 先将 10 本书分成 5 堆, 从左至右每堆数分别为 2,2,2,3,1; 再将每堆书分别给甲乙丙丁戊, 故

$$|A| = \frac{10!}{(2!)^3 3! 1!}.$$

(2) 求 |B|: 先将 10 本书按 (1) 分成 5 堆,从左至右每堆数分别为 2, 2, 2, 3, 1; 再将 5 个人分成 3 组, 每组人数分别为 3, 1, 1 (每组内的人按甲乙丙丁戊先后顺序排列好); 最后将每堆书分别发给以站好顺序的 5 个人, 故

$$|B| = \frac{10!}{(2!)^3 3! 1!} \cdot \frac{5!}{3! 1! 1!} = \frac{5! 10!}{2^3 6^2}.$$

▶【例 1.3.11】 (抽签问题) n 个签中有m 个标有"中",无放回依次随机抽签时,第j次抽到"中"的概率是m/n.

解 设想将这n个签放入一个口袋中摇匀,则无论用什么方法抽出一个时,抽到"中"的概率是m/n. 现在在袋中依次抽取第1,第2,…,第j-1个签攥在手中不拿出,将抽取的第j个拿出,该签是"中"的概率仍是m/n.

▶【例 1.3.11】 (抽签问题) n 个签中有m 个标有"中",无放回依次随机抽签时,第j次抽到"中"的概率是m/n.

解 设想将这n个签放入一个口袋中摇匀,则无论用什么方法抽出一个时,抽到"中"的概率是m/n. 现在在袋中依次抽取第1,第2,…,第j-1个签攥在手中不拿出,将抽取的第j个拿出,该签是"中"的概率仍是m/n.

- ▶【例 1.3.12】 (生日问题) 全班有n个同学, 计算
- (a) 至少有一个同学的生日在今天的概率qn;
- (b) 至少有两个同学生日相同的概率 p_n .

解 认为每个人的生日等可能地出现在365天中的任一天,则样本空间 Ω 的元素数为 $|\Omega|=365^n$.

(a) 用A表示没有一个人的生日在今天,则 $|A| = 364^n$,于是 $P(A) = (364/365)^n$. 因为 $P(\overline{A}) + P(A) = 1$,所以要计算的概率是

$$q_n = P(\overline{A}) = 1 - P(A) = 1 - (364/365)^n.$$

对于不同的n, 可以计算出下面结果.

П	50	60		100		600	
q_n	0.128	0.152	0.197	0.240	0.561	0.807	0.915

- ▶【例 1.3.12】 (生日问题) 全班有n个同学, 计算
- (a) 至少有一个同学的生日在今天的概率qn;
- (b) 至少有两个同学生日相同的概率 p_n .

解 认为每个人的生日等可能地出现在365天中的任一天,则样本空间 Ω 的元素数为 $|\Omega|=365^n$.

(a) 用A表示没有一个人的生日在今天,则 $|A|=364^n$,于是 $P(A)=(364/365)^n$. 因为 $P(\overline{A})+P(A)=1$,所以要计算的概率是

$$q_n = P(\overline{A}) = 1 - P(A) = 1 - (364/365)^n$$
.

对于不同的n, 可以计算出下面结果.

n	50	60	80	100	300	600	900
q_n	0.128	0.152	0.197	0.240	0.561	0.807	0.915

▶【例 1.3.12】 (生日问题)

(b) 用C表示n个人的生日互不相同,则作为 Ω 的子集, $|C|=A_{365}^n$. 因为 $P(\overline{C})+P(C)=1$,所以要求的概率

$$p_n = P(\overline{C}) = 1 - P(C) = 1 - A_{365}^n/365^n.$$

对k > n, 这里和以后规定 $A_n^k = 0$, $C_n^k = 0$. 对于不同的n, 可以计算出以下结果.

n	20	30	40	50	60	70	80
p_n	0.411	0.706	0.891	0.970	0.994	0.999	0.9999

从中看出,全班有50个同学时,我们以97%的把握保证至少有两个人生日相同.全班有60个同学时,我们以99.4%的把握保证至少有两个人生日相同.

§1.4 概率的公理化

设 Ω 是试验S 的样本空间. 因为在实际问题中往往并不需要关心 Ω 的所有子集, 所以只要把关心的子集称为事件就够了. 但是事件必须是 Ω 的子集, 并且满足以下条件:

- Ω和空集Ø是事件;
- 事件经过有限次集合运算得到的集合是事件;
- 如果 A_j 是事件, 则 $\bigcup_{j=1}^{\infty} A_j$ 是事件. 这里的运算

$$\bigcup_{j=1}^{\infty} A_j = A_1 \cup A_2 \cup \cdots$$

称为可列并运算, 这是因为求并的运算可以依次进行.

§1.4 概率的公理化

对于事件A, 概率P(A)是表示A发生的可能性的大小的实数, 必须满足以下三个条件.

- (a) 非负性: 对于任何事件A, P(A)≥0;
- (b) 完全性: $P(\Omega) = 1$, $P(\emptyset) = 0$;
- (c) 可加性: 对于互不相容的事件 A_1, A_2, \cdots , 有

$$\mathrm{P}\left(\bigcup_{j=1}^{n}A_{j}\right)=\sum_{j=1}^{n}\mathrm{P}\left(A_{j}\right),\ \ \mathrm{P}\left(\bigcup_{j=1}^{\infty}A_{j}\right)=\sum_{j=1}^{\infty}\mathrm{P}\left(A_{j}\right).$$

条件(a), (b), (c)称为概率的公理化条件. 不满足公理化条件的 P不是概率.

§1.4 概率的公理化

- ▶ 定理 概率 P 有如下的性质:
 - (1) $P(\overline{A}) = 1 P(A) \leq 1$;
 - (2) 单调性: 如果B ⊂ A, 则P(B) ≤ P(A);
 - (3) 次可加性: 对于事件A₁, A₂, · · · , 有

$$P\left(\bigcup_{j=1}^{n} A_{j}\right) \leqslant \sum_{j=1}^{n} P\left(A_{j}\right), \ P\left(\bigcup_{j=1}^{\infty} A_{j}\right) \leqslant \sum_{j=1}^{\infty} P\left(A_{j}\right).$$

如果用F表示样本空间 Ω 的事件的全体, 用P表示概率, 则称 (Ω, \mathcal{F}, P) 为概率空间.

概率与频率

古典概型的两个条件往往不能满足,此时如何定义概率?常用的一种方法是把含有事件A的随机试验独立重复做 N 次 (Bernoulli试验), 称

$$f_N = \frac{N \chi ; \text{ When } A \text{ Kethology}}{N}$$

是N次独立重复试验中,事件A发生的<mark>频率</mark>(frequency). 当N越来越大时,频率会在某个值P(A)附近波动,且波动越来越小,这个值P(A)就定义为事件A的概率.

当N → ∞, f_N 会收敛到P(A)?

概率与频率

例1.4.1 下表是用计算机进行的投掷一枚均匀的骰子的试验的总结,其中N是试验的次数,表中的百分数是频率.例如表中第2行第2列的17.00%,表示试验次数 $N=10^2$ 时,点数1出现的频率是17.00%.

表1.4.1

点	$N = 10^2$	$N = 10^3$	<i>N</i> = 5000	$N = 10^4$	$N = 10^5$	$N = 10^6$
1	17.00%	16.50%	16.28%	16.61%	16.72%	16.69%
2	15.00%	15.50%	17.12%	16.62%	16.44%	16.62%
3	18.00%	17.10%	16.78%	16.94%	16.84%	16.69%
4	18.00%	16.00%	16.68%	16.97%	16.76%	16.64%
5	13.00%	16.60%	15.50%	15.94%	16.69%	16.64%
6	19.00%	18.30%	17.64%	16.92%	16.56%	16.71%

从表1.4.1可以看出,随着试验次数N的增加,每个点数出现的频率 f_N 在概率 1/6=16.667% 附近波动

- ▶ 古典概型: 试验结果有限. 等可能性.
- ▶ 几何概型:取消"试验结果有限",对"等可能性"作不同假设. 一个自然的引申:等长度(等面积、等体积),等概率.

【例 1.5.1】 甲乙两人约定于某日 6 时至 7 时到达某处,每人在该处停留 10 分钟,求他们可在该处见面的概率.

- ▶ 古典概型: 试验结果有限,等可能性.
- ▶ 几何概型:取消"试验结果有限",对"等可能性"作不同假设. 一个自然的引申:等长度(等面积、等体积),等概率.

【例 1.5.1】 甲乙两人约定于某日 6 时至 7 时到达某处,每人在该处停留 10 分钟, 求他们可在该处见面的概率.

解: 设x,y表示两人到达的时刻,则

$$\Omega = \{(x, y) : 6 \le x, y \le 7\}.$$

记两人在此相遇的事件为 A, 则

$$A = \{(x, y) : |x - y| \le 1/6, (x, y) \in \Omega\}.$$

利用等面积等可能性, 得 $P(A) = L(A)/L(\Omega) = 11/36$. ■

【例 1.5.2】 (蒲丰(Buffon)投针问题) 平面上画满了间距为 a 的平行线,向该平面随机投掷一枚长为 ℓ 的针 ($\ell < a$),求针与直线相交的概率.

解:记"针与直线相交"的事件为 A, 针与直线的夹角为 φ , 针的中心到最近一条直线的距离为 x, 则

$$\Omega = \left\{ (x, \varphi) : 0 \le x \le \frac{a}{2}, 0 \le \varphi \le \pi \right\}.$$

【例 1.5.2】 (蒲丰(Buffon)投针问题) 平面上画满了间距为 a 的平行线,向该平面随机投掷一枚长为 ℓ 的针 ($\ell < a$),求针与直线相交的概率.

解:记"针与直线相交"的事件为 A, 针与直线的夹角为 φ , 针的中心到最近一条直线的距离为 x, 则

$$\Omega = \left\{ (x, \varphi) : 0 \le x \le \frac{a}{2}, 0 \le \varphi \le \pi \right\}.$$

【例 1.5.2】 (蒲丰(Buffon)投针问题)

注意到 A 发生当且仅当 $x \leq \frac{\ell}{2} \sin \varphi$, 即

$$A = \left\{ (x, \varphi) : x \leq \frac{\ell}{2} \sin \varphi, (x, \varphi) \in \Omega \right\}.$$

利用等面积等可能,于是 $P(A) = S_g/S_G = 2\ell/(\pi a)$.

