Probabilidad y Estadística Matemática

Morfín Chávez Guillermo

1.

Muestre el siguiente teorema: Sean $X_1,...,X_n \stackrel{iid}{\sim} f(x)$ una muestra aleatoria de una densidad y sea $S_{n-1}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ la varianza muestral; entonces $E(S_{n-1}^2) = \sigma^2$ y $Var(S_{n-1}^2) = \frac{1}{n} \left(\mu_4 - \frac{n-3}{n-1} \mu_2^3 \right), \ n > 1$, donde μ y σ^2 son respectivamente la media y la varianza de la densidad de f(x).

```
#Mediante simulacion obtenemos el siguente script
n=1000
varmuestrales=c()
for(i in 1:100000)
{
    muestra <- rpois(n,2)
    varmuestral <- var(muestra)
    varmuestrales[i] <- varmuestral
}
mean(varmuestrales)
#De donde obtenemos
[1] 2.000154
var(varmuestrales)
#Por su parte para la varianza obtenemos
[2] 0.0009887233</pre>
```

En primera instancia sabemos que $\sigma^2 = 2$ cuando estamos tratando con una distribución de Poisson de paramentro $\lambda = 2$. Por tanto podemos notar que, mediante la simulación, a medida que aumentamos la muestra e iteramos un numero considerable de veces (mayor a 100,000) la media de las varianzas muestrales (que también forman una distribución) tiende a $\sigma^2 = 2$.

Por su parte, realizando el mismo proceso de iteración, observamos que la varianza de las varianzas muestrales tiende cero a medida que aumentamos el número de muestras aleatorias de la densidad (n), lo cual se corresponde con el teorema.

esto es
$$\frac{1}{n} \left(\mu_4 - \frac{n-3}{n-1} \mu_2^3 \right) \to 0$$
 si $n \to \infty$

Encuentre los respectivos estimadores por el método de momentos y sus correspondientes errores estándar estimados. Además mencione si los estimadores son insesgados y consistentes.

2.1. Sean $X_1, ..., X_n \sim Bin(m, p)$.

Sabemos que $\mu = mp$ y $\sigma^2 = mp(1-p)$, por el método de momentos obtenemos el siguiente sistema de ecuaciones:

$$\left. \begin{array}{c} \bar{X} = mp \\ S_{n-1}^2 = mp(1-p) \end{array} \right\}$$

Resolviendo para p:

$$\bar{X}(1-p) = S_{n-1}^2$$

$$1-p = \frac{S_{n-1}^2}{\bar{X}}$$

$$p = 1 - \frac{S_{n-1}^2}{\bar{X}} = \frac{\bar{X} - S_{n-1}^2}{\bar{X}}$$

Sustituyendo en la primera ecuación:

$$\bar{X} = m \left(\frac{\bar{X} - S_{n-1}^2}{\bar{X}} \right)$$

$$m = \frac{\bar{X}^2}{\bar{X} - S_{n-1}^2}$$

Ahora que conocemos los estimadores \hat{p} y \hat{m} podemos calcular $E(\hat{m}) = E(\frac{\bar{X}^2}{\bar{X} - S_{n-1}^2})$. Dado que $\frac{\bar{X}^2}{\bar{X} - S_{n-1}^2}$ es constante, tenemos que $E(\hat{m}) = \frac{\bar{X}^2}{\bar{X} - S_{n-1}^2}$ y se cumple la condición $E(\hat{m}) = m$. De forma análoga, podemos comprobar para $E(\hat{p}) = p$ y entonces podemos afirmar que ambos estimadores son insesgados. Dado que $Var(\bar{X}) = \frac{\sigma^2}{n} = \frac{mp(1-p)}{n}$ entonces el error estándar estimado $\sigma_{\hat{m},\hat{p}} = \sqrt{\frac{S_{n-1}^2}{n}}$. Como $\sigma_{\hat{m},\hat{p}} \to 0$ cuando $n \to \infty$ observamos que el estimador es consistente.

2.2. Sean $X_1, ..., X_n \sim Pois(\lambda)$

Para ésta distribución sabemos que $E(X)=Var(X)=\lambda$, entonces para calcular el estimador correspondiente tenemos un sistema de una sola ecuación $\bar{X}=\lambda$, así, obtenemos directamente el estimador de momentos $\hat{\lambda}$. Para verificar si éste estimador cumple las propiedades deseables, es decir, comprobar si es insesgado y consistente, es necesario comprobar si $E(\hat{\lambda})=\lambda$, dado que $E(\hat{\lambda})=E(\bar{X})=\lambda$ entonces el estimador es insesgado. Por otro lado, podemos obtener el error estándar estimado por el teorema de la distribución muestral de \bar{X} , como $Var(\hat{\lambda})=Var(\bar{X})=\frac{\sigma^2}{n}$ además $\lambda=\sigma^2$. Con esto, tenemos que el error estándar estimado $\sigma_{\lambda}=\sqrt{\frac{\lambda}{n}}=\sqrt{\frac{\bar{X}}{n}}$. Nótese que cuando $n\to\infty$ entonces $\sigma_{\lambda}\to 0$ y por tanto $\hat{\lambda}$ es consistente.

2.3. Sean $X_1, ..., X_n \sim U(a, b)$

Conocemos que para la distribución uniforme $\mu = \frac{a+b}{2}$ y $\sigma^2 = \frac{(b-a)^2}{12}$, por lo tanto es posible encontrar el estimador por el método de momentos con el sistema:

$$\bar{X} = \frac{a+b}{2}$$

$$S_{n-1}^2 = \frac{(b-a)^2}{12}$$

De la primera ecuación tenemos $b = 2\bar{X} - a$, podemos sustituir esto en la segunda ecuación para despejar a:

$$S_{n-1}^2 = \frac{(2\bar{X} - 2a)^2}{12}$$

$$3S_{n-1}^2 = (\bar{X} - a)^2$$
$$\sqrt{3}S_{n-1} = \bar{X} - a$$
$$a = \bar{X} - \sqrt{3}S_{n-1}$$

Sustituyendo en la primera ecuación:

$$b = 2\bar{X} - \bar{X} + \sqrt{3}S_{n-1}$$
$$b = \bar{X} + \sqrt{3}S_{n-1}$$

2.4. Sean $X_1,...,X_n \sim N(\mu,\sigma)$

Resulta inmediato que los estimadores respectivos son: $\hat{\mu}=\bar{X}$ y $\hat{\sigma}^2=S_{n-1}^2$ de donde:

$$Var(\bar{X}) = Var\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right),$$

aplicando el teorema $Var(aX+bY)=a^2Var(X)+b^2Var(Y)$ obtenemos:

$$Var\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n^{2}}nVar(X) = \frac{\sigma^{2}}{n} \Longrightarrow \sigma_{\hat{\mu}} = \frac{\sigma}{\sqrt{n}}.$$

Que es el error estandar del estimador $\hat{\mu}$

Por su parte, usando el Teorema de Cochran obt
nemos que $(n-1)\frac{S_{n-1}^2}{\sigma^2}\sim\chi_{n-1}^2.$ Por lo tanto:

$$Var\left((n-1)\frac{S_{n-1}^2}{\sigma^2}\right) = Var(\chi_{n-1}^2),$$

$$\frac{(n-1)^2}{\sigma^4} Var(S_{n-1}^2) = 2(n-1),$$

finalmente

$$Var(S_{n-1}^2) = \frac{2\sigma^4}{n \cdot 1} \Longrightarrow \sigma_{\hat{\sigma}^2} = (\sigma^2)^2 \frac{2}{n-1}$$

Distribución	θ	μ	σ^2	$\hat{ heta}$	$\hat{\sigma}_{\hat{ heta}}$	Propiedades de $\hat{\theta}$
Bernoulli	p	p	p(1 - p)	$\hat{p} = \bar{X}$	$\sqrt{\bar{X}(1-\bar{X})/n}$	$E(\hat{p}) = p \Longrightarrow \hat{p}$ es insesgado
						$\sigma_{\hat{p}} = \sqrt{p(1-p)/n} \Longrightarrow \hat{p} \text{ es consistente}$
Binomial	m, p	mp	mp(1-p)	$\hat{m} = \frac{\bar{X}^2}{\bar{X} - S^2}$	S_{n-1}/\sqrt{n}	$E(\hat{m}) = m \Longrightarrow \hat{m}$ es insesgado
						$\sigma_{\hat{m}} \to 0 \text{ si } n \to \infty \Longrightarrow \hat{m} \text{ es consistente}$
				v 22		
				$\hat{p} = \frac{\bar{X} - S^2}{\bar{X}}$		$E(\hat{p}) = p \Longrightarrow \hat{p} \text{ es insesgado}$
						$\sigma_{\hat{p}} \to 0 \text{ si } n \to \infty \Longrightarrow \hat{p} \text{ es consistente}$
Poisson	λ	λ	λ	$\hat{\lambda} = \bar{X}$	$\sqrt{\bar{X}/n}$	$E(\hat{\lambda}) = \lambda \Longrightarrow \hat{\lambda} \text{ es insesgado}$
						$\sigma_{\hat{\lambda}} = \sqrt{\lambda/n} \Longrightarrow \hat{\lambda} \text{ es consistente}$
Uniforme	a, b	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\hat{a} = \bar{X} - \sqrt{3}S$	Sólo por simulación	No cumple ninguna
		_	12			
				$\hat{b} = \bar{X} + \sqrt{3}S$		
Normal	μ, σ	μ	σ^2	$\hat{\mu} = \bar{X}$	S_{n-1}/\sqrt{n}	$E(\hat{\mu}) = \mu \Longrightarrow \hat{\mu} \text{ es insesgado}$
						$\sigma_{\hat{\mu}} = \sigma/\sqrt{n} \to 0 \Longrightarrow \hat{\mu} \text{ es consistente}$
				$\hat{\sigma}^2 = S_{n-1}^2$	$S_{n-1}^2 \sqrt{\frac{2}{(n-1)}}$	$E(\hat{\sigma}^2) = \sigma^2 \Longrightarrow \hat{\sigma}^2$ es insesgado
					, , ,	$\sigma_{\hat{\sigma}^2} = \sigma^2 \sqrt{2/(n-1)} \to 0 \Rightarrow \hat{\sigma}^2 \text{ es consistente}$