Package 'STrollR'

September 3, 2020

Title Correct Standard Errors for Computing Spatial and Temporal Correlation post-estimation							
Version 0.2.0							
Date 2020-09-03							
Author Jordan Adamson [aut, cre]							
Maintainer Jordan Adamson < jordan.m.adamson@gmail.com>							
Description A computationally efficient way to calculate covariance matrices that are corrected for spatial and temporal correlation.							
License MIT + file LICENSE							
<pre>URL <https: github.com="" jadamso="" strollr=""></https:></pre>							
Encoding UTF-8							
LazyData true							
Published 2020-09-03							
Roxygen list(markdown = TRUE)							
RoxygenNote 7.1.1							
Imports Matrix, spam, spam64, raster, sp, spdep							
R topics documented:							
bartlettSparse df2stack KNN make_spacetime_data make_space_data make_time_data mkGif model.frame.i NEIGH							
NEIGH							

2 df2stack

var2stack			•	•	•	•	•	•		•	•	•	•		•	•	•	•				•	•	•	•	•	٠
varioJ																											
vcovSHAC .																											
VonNeumann																											
weight_mat .																											
XOmegaX																											

16

bartlettSparse

Weighting Kernel

Description

Weighting Kernel

Usage

Index

```
bartlettSparse(d, dmax)
```

Arguments

d distance vector

dmax maximumm distance

Value

vector of bartlett weights

df2stack

Convert list of dataframes with to rasterstack

Description

Convert list of dataframes with to rasterstack

Usage

```
df2stack(sim_i, DF)
```

Arguments

sim_i which simulation
DF list of dataframe

Value

rasterstack

KNN 3

KNN

K nearest neighbours Calculate the number of neighbours within a neighbourhood.

Description

K nearest neighbours Calculate the number of neighbours within a neighbourhood.

Usage

```
KNN(w, h = w, type = "Moore")
```

Arguments

```
w number of neighbours wide (east-west).h number of neighbours long (north-south).type of neighbourhood; "Moore" or "VonNeumann"
```

Value

the number of nearest neighbours

Examples

```
KNN(4)
```

make_spacetime_data

Create Multivariate SpaceTime Data

Description

Create Multivariate SpaceTime Data

```
make_spacetime_data(
  dimS,
  dimT,
  Κ,
  xpars = c(0, 1),
  theta = 1:K,
  space_groups = round(sqrt(dimS)),
  time_groups = round(sqrt(dimT)),
  error_type = "distance",
  error_scale = 1,
  xy_mat = expand.grid(Loc_X = seq(0, 1, length.out = dimS), Loc_Y = seq(1, 0, 1, length.out = dimS)
    length.out = dimS)),
  ws_mat = exp(-1 * as.matrix(dist(xy_mat))),
  wt_mat = toeplitz((2/3)^(0:(dimT - 1))),
  wst_mat = kronecker(wt_mat, ws_mat),
  verbose = F
)
```

4 make_space_data

Arguments

dimS, dimT spatial dimension and temporal dimension Κ number of covariates xpars generate each Xvariable from uniform(xpar1,xpar2) parameter vector for Y=X%*%theta theta time_groups number of contiguous groups (e.g. countries, time-regimes) space_groups, error_type c('focal', 'distance') error_scale variance of errors (normally distributed) matrix specifing xy locations xy_mat ws_mat matrix specifing correlation structer of error_type='distance' matrix specifing correlation structer of error_type='distance' wt_mat wst_mat=kronecker(wt_mat, ws_mat)

Details

'focal' creates errors based on $e=u+\rho v$ 'distance' creates errors base on drawing e from a multivariate normal with covariance matrix wst_mat

Value

dataframe

Examples

```
DFst <- make_spacetime_data(11,6,2)
DFst[DFst$Space_ID==1,]</pre>
```

make_space_data

make_space_data

Description

Create Multivariate Spatial Data

```
make_space_data(
  dimS,
  K,
  t_id = NA,
  space_groups = round(sqrt(dimS)),
  xpars = c(0, 1),
  theta = 1:K,
  error_type = "focal",
  error_scale = 1,
  sar_factor = 0.5,
```

make_space_data 5

```
wf_mat = rbind(rep(sar_factor, 3), c(sar_factor, 0, sar_factor), rep(sar_factor, 3)),
  xy_mat = expand.grid(Loc_X = seq(0, 1, length.out = dimS), Loc_Y = seq(1, 0, 1, length.out = dimS)
    length.out = dimS)),
  ws_mat = exp(-as.matrix(dist(xy_mat)))
make_space_data.raster(
  dimS,
  Κ,
  t_id = NA,
  space_groups = round(sqrt(dimS)),
  xpars = c(0, 1),
  theta = 1:K,
  error_type = "focal",
  error_scale = 1,
  sar_factor = 0.5,
 wf_mat = rbind(rep(sar_factor, 3), c(sar_factor, 0, sar_factor), rep(sar_factor, 3)),
  xy_mat = expand.grid(Loc_X = seq(0, 1, length.out = dimS), Loc_Y = seq(1, 0,
    length.out = dimS)),
  ws_mat = exp(-as.matrix(dist(xy_mat)))
)
```

Arguments

dimS	spatial dimension
K	number of covariates
t_id	Time ID
space_groups	number of contiguous groups (e.g. countries)
xpars	generate each Xvariable from uniform(xpar1,xpar2)
theta	parameter vector for Y=X%*%theta
error_type	c('focal', 'distance', 'spherical')
error_scale	variance of errors (normally distributed)
sar_factor	parameter for error_type='focal'
wf_mat	matrix specifing weights to smooth when error_type='focal'
xy_mat	matrix specifing xy locations
ws_mat	matrix specifing correlation structer of error_type='distance'

Details

'focal' creates errors based on $e=u+\rho v$ 'distance' creates errors base on drawing e from a multivariate normal with covariance matrix ws_mat

Value

dataframe

Functions

• make_space_data.raster: make_space_data.df uses raster functions instead of matrices (primarily for transparent debugging)

6 make_time_data

Examples

```
set.seed(3)
DFs <- make_space_data.raster(10,2,error_type='distance')
set.seed(3)
DFs2 <- make_space_data(10,2,error_type='distance')</pre>
```

make_time_data

Create Multivariate Temporal Data

Description

Create Multivariate Temporal Data

Usage

```
make_time_data(
   dimT,
   K,
   s_id = NA,
   time_groups = round(sqrt(dimT)),
   xpars = c(0, 1),
   theta = 1:K,
   error_type = "focal",
   error_scale = 1,
   ar_factor = 2/3,
   wt_mat = toeplitz(c(1, ar_factor, ar_factor^2, rep(0, dimT - 3))),
   xy_mat = data.frame(Loc_X = NA, Loc_Y = NA)
)
```

Arguments

dimT	temporal dimension
K	number of covariates
s_id	Spatial ID
time_groups	number of contiguous groups (e.g. time-regimes)
xpars	generate each Xvariable from uniform(xpar1,xpar2)
theta	parameter vector for $Y=X\%$ *%theta
error_type	c('focal', 'distance', 'spherical')
error_scale	variance of errors (normally distributed)
ar_factor	parameter for error_type='focal'
wt_mat	matrix specifing correlation structer of error_type='distance'
xy_mat	matrix specifing xy locations (defaults to NA)

Details

'focal' creates errors based on $e=u+\rho v$ 'distance' creates errors base on drawing e from a multivariate normal with covariance matrix wt_mat

mkGif 7

Value

dataframe

Examples

```
DFt <- make_time_data(6,2)</pre>
```

mkGif

Create Gifs

Description

Create Gifs

Usage

```
mkGif(
   DFlist,
   ti,
   ti,
   fdir = "~/Desktop/Packages/STrollR/STsim/",
   pname = "STvarX",
   ind = 1,
   vw = FALSE
)
```

Arguments

DFlist
ti number of time periods
fdir, pname directory and file
ind which simulation
vw view output

Value

list of rasterstacks

model.frame.i

Model Frame with Regression Intercept

Description

Model Frame with Regression Intercept

```
## S3 method for class 'i'
model.frame(reg, check_int = T)
```

8 NEIGH

NEIGH

Calculate the weights objects

Description

Calculate the weights objects

Usage

```
NEIGH(
  coord_sp,
  neigh = 1,
  knn = TRUE,
  adj = FALSE,
  dnn = FALSE,
  rast = FALSE
  vario = FALSE,
  tracer = TRUE,
  tr_type = "mult",
  tr_m = 20,
  tr_p = 16,
  symm = TRUE,
  symm_check = TRUE,
  SAVE = NA,
  write_gwt = F
)
```

Arguments

```
matrix of coordinates or a SpatialPoints object
coord_sp
                  number of neighbours to use in calculation
neigh
knn
                  calculate weights using knn approach
adj
                  calculate vonneumann weights (see VonNeumann)
                  dnn approach unsupported
dnn
rast
                  raster approach unsupported
                  is coord_sp a weights matrix?
vario
tracer
                  create trace matrix objects?
                  type of trace matrix
tr_type
                  trace matrix m
tr_m
tr_p
                  trace matrix p
                  make weights symmetric
symm
                  check for symmetric weights matrix
symm_check
SAVE
                  filename to save to, NA (default) returns as object
                  create GWT objects used in spdep or sphet
write_gwt
```

Value

filename of saved objects, or returns objects if SAVE=NA

sim2stack 9

sim2stack

Convert simulation to rasterstack

Description

Convert simulation to rasterstack

Usage

```
sim2stack(e_spt, nsim, xyt)
```

Arguments

e_spt matrix of draws from spam.mvtnorm (each row a realization of a simulation)

xyt lattice structure
number of simulations

Value

list of rasterstacks

var2stack

Convert Dataframe with 1 variable to raster for one realization

Description

Convert Dataframe with 1 variable to raster for one realization

Usage

```
var2stack(df_i, sim_i)
```

Arguments

df_i dataframe

sim_i which simulation

Value

raster

10 vcovSHAC

varioJ

Variogram Calculation

Description

Variogram Calculation

Usage

```
varioJ(
  coords,
  cuttoff,
  E,
  latlon = FALSE,
  indices = FALSE,
  clean = FALSE,
  verbose = FALSE
```

Arguments

coords coordinate matrix

cuttoff cutoff from which to calculate variogram

E vector of values (i.e. OLS residuals) associated coords

latlon coordinates are lon,lat or x,y

indices return indices? clean unused currently

verbose

Value

data.frame of dij and (ei-ej)^2

vcovSHAC

Calculate a SHAC (Spatial Heteroskedastic and Autocorrelation Consistent) Variance Covariance Matrix

Description

Calculate a SHAC (Spatial Heteroskedastic and Autocorrelation Consistent) Variance Covariance Matrix

vcovSHAC 11

```
vcovSHAC(
  reg,
  wmat,
  method = "bruteforce_ll",
  cutoff_s,
  loc_lat,
  loc_lon,
  loc_y,
  loc_x,
  add_hc = T,
  add_cluster = F,
  add_hac = F,
  verbose = FALSE,
  manual_dist = T,
)
vcovSHACsep(
  reg,
  wmat,
  method = "bruteforce_llt",
  cutoff_s,
  cutoff_t,
  loc_lat,
  loc_lon,
  loc_y,
  loc_x,
  loc_t,
  add_hc = T,
  add_cluster = F,
  add_hac = F,
  verbose = FALSE,
  manual_dist = T,
)
vcovSTHAC(
  reg,
  wmat,
  method = "bruteforce_llt",
  cutoff_s,
  cutoff_t,
  loc_lat,
  loc_lon,
  loc_y,
  loc_x,
  loc_t,
  add_hc = T,
  add_cluster = F,
  add_hac = F,
  verbose = FALSE,
```

12 VonNeumann

```
manual_dist = T,
    ...
)
```

Arguments

reg an 'lm' object

wmat weights matrix

method c(rolled', semirolled', 'bruteforce_ll', 'bruteforce_xy')

cutoff_s include weights up to cutoff_s. Required to be in km if method='bruteforce_ll'

or in map-units if 'bruteforce_xy'.

loc_lat, loc_lon

required if method='bruteforce_ll'

loc_y, loc_x required if method='bruteforce_xy'

add_hc, add_cluster, add_hac

logical for adding HC correction (default=T), Cluster correction (default=F),

 $HAC\ correction\ (default=F)$

verbose show messages options passed to sandwich

Value

covariance matrix

Functions

- vcovSHACsep: similar to vcovSTHAC, but treats spatial autocorrelation seperately within each time period
- vcovSTHAC: Space and Time HAC. Also weights the time-dimension according to bartlett kernel (i.e., weight= K(space)*K(time)) for bartlett-kernel K.

VonNeumann

Compute VonNeumann Neighbours

Description

Compute VonNeumann Neighbours

Usage

```
VonNeumann(coord_sp, directions = 4)
```

Arguments

coord_sp SpatialPoints object or coordinate-matrix

directions see adjacent

Value

sparse weights matrix

weight_mat 13

weight_mat

Compute Sparse Spatial Weights Matrix

Description

Compute Sparse Spatial Weights Matrix

Usage

```
weight_mat(
  XY_Mat,
  latlon = FALSE,
  cutoff_s,
  cutoff_km2angles = FALSE,
  cutoff_angles2km = FALSE,
  verbose = F
weight_mat.df(
  DFs,
  xy_n = c("Loc_X", "Loc_Y"),
  latlon = FALSE,
  cutoff_s,
  cutoff_km2angles = FALSE,
  cutoff_angles2km = FALSE,
  verbose = F
)
```

Arguments

Value

the number of nearest neighbours

Functions

• weight_mat.df: weight_mat.df is a wrapper of weight_mat for dataframes

Examples

```
weight\_mat(expand.grid(\ list(x=1:10,\ y=1:10)),\ cutoff\_s=.5)
```

14 XOmegaX

XOmegaX

XOmegaX Meat Matrix Calculations

Description

XOmegaX Meat Matrix Calculations

Usage

```
XOmegaX_rolled(X, WMAT, E)
XOmegaX_semirolled(X, WMAT, E)
XOmegaX_bruteforce_ll(X, E, loc_lat, loc_lon, cutoff_s, manual_dist = T)
XOmegaX_bruteforce_xy(X, E, loc_y, loc_x, cutoff_s, manual_dist = T)
XOmegaX_bruteforce_llt(
  Χ,
  Ε,
  loc_lat,
  loc_lon,
  loc_t,
  cutoff_s,
  cutoff_t,
  manual_dist = T
)
XOmegaX_bruteforce_xyt(
  Χ,
  Ε,
  loc_y,
  loc_x,
  loc_t,
  cutoff_s,
  cutoff_t,
  manual_dist = T
)
```

Arguments

```
Χ
                   design matrix
WMAT
                   weighting matrix (preferably sparse sparse)
Ε
                   vector of residuals
loc_lat,
                   loc_lon spatial-coordinate vectors
{\sf cutoff\_s}
                   how far to extend bartlett kernel in spatial dimention (in km)
                   loc_x spatial-coordinate vectors
loc_y,
loc_t
                   time-coordinate vector
cutoff_t
                   how far to extend bartlett kernel in time dimension (in time units)
```

XOmegaX 15

Details

XOmegaX_rolled Fully is for Sparse-Matrix Meat-Matrix Calculation (Whole Matrix At Once) XOmegaX_semirolled is for Sparse-Matrix Meat-Matrix Calculation (One Row At A Time) XOmegaX_bruteforce_ll is for latlon data. XOmegaX_bruteforce_llt is for latlon and time data. XOmegaX_bruteforce_xy is for projected data. XOmegaX_bruteforce_xy is for projected and time data. XOmegaX_bruteforce_*t weights the time-dimension according to bartlett kernel

Value

object to be used in vcov* functions

Index

```
1, 4–6
2, 4–6
bartlettSparse, 2
df2stack, 2
KNN, 3
make_space_data, 4
make_spacetime_data, 3
make_time_data, 6
mkGif, 7
model.frame.i,7
NEIGH, 8
sim2stack, 9
var2stack, 9
varioJ, 10
vcovSHAC, 10
vcovSHACsep (vcovSHAC), 10
vcovSTHAC (vcovSHAC), 10
VonNeumann, 12
weight\_mat, \\ 13
XOmegaX, 14
XOmegaX_bruteforce_ll (XOmegaX), 14
XOmegaX_bruteforce_llt(XOmegaX), 14
XOmegaX_bruteforce_xy (XOmegaX), 14
XOmegaX_bruteforce_xyt (XOmegaX), 14
XOmegaX_rolled(XOmegaX), 14
XOmegaX_semirolled(XOmegaX), 14
```