PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-302437

(43)Date of publication of application: 14.11.1995

(51)Int.CI.

G11B 7/135

(21)Application number : 07-052999 13.03.1995

(71)Applicant: TOSHIBA CORP

(22)Date of filing:

(72)Inventor: HOSHINO ISAO

YAMADA HISASHI

(30)Priority

Priority number: 06 40753

Priority date : 11.03.1994

Priority country: JP

(54) OPTICAL HEAD DEVICE AND LENS

(57)Abstract:

PURPOSE: To execute good reproduction with plural information recording media varying in specifications in spite of the constitution small in size and low in cost by providing an objective lens having functions to form a condensed light spot on the recording surfaces of optical memories varying in specifications.

CONSTITUTION: The laser beam emitted from a laser 614 transmits a collimator lens 618 and is introduced to a beam splitter 616. The laser beam reflected by this beam splitter 616 is condensed by an objective lens 600 and the microspots are formed on the signal recording surfaces 620a, 622a of the optical disks 620, 622 having different disk thicknesses. The signal recording surfaces are formed on a transparent substrate. The light beams reflected by the optical disks 620, 622 propagate backward in the same optical paths. Namely, the reflected light beams are made incident via the objective lens 600 and a converging lens 626 on a holographic element(HOE) 624, by which the light beams are

diffracted. These light beams are detected by the photodetector 628.

LEGAL STATUS

[Date of request for examination]

11.03.2002

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

3435249 [Patent number] 30.05.2003 [Date of registration]

[Number of appeal against examiner's decision

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平7-302437

(43)公開日 平成7年(1995)11月14日

(51) Int.Cl.6

識別記号

庁内敷理番号

FΙ

技術表示箇所

G11B 7/135

z 7247-5D

A 7247-5D

審査請求 未請求 請求項の数16 OL (全 15 頁)

(21)出願番号

特膜平7-52999

(22)出願日

平成7年(1995)3月13日

(31) 優先権主張番号 特願平6-40753

(32)優先日

平6 (1994) 3月11日

(33)優先権主張国

日本(JP)

(71) 出願人 000003078

株式会社東芝

神奈川県川崎市幸区堀川町72番地

(72)発明者 星野 功

神奈川県川崎市幸区小向東芝町1番地 株

式会社東芝研究開発センター内

(72)発明者 山田 尚志

神奈川県川崎市幸区柳町70番地 株式会社

東芝柳町工場内

(74)代理人 弁理士 鈴江 武彦

(54) 【発明の名称】 光学ヘッド装置およびレンズ

(57) 【要約】

【目的】本発明は仕様、規格の異なる複数のディスクを 共通に少なくとも再生できる光学ヘッド装置を提供する ことである。

【構成】光源(614)と、光源から出射された光ビー ムを光ディスクの記録面に集束照射するための対物レン ズ(600)と、記録面からの反射光を光検出器(62 8) へと導いて信号検出をするように構成した光学へッ ド装置において、対物レンズ(600)は一方の面が厚 さの異なる複数の光ディスク(620、622)の記録 面(620a、622a)に集光スポットを形成するよ うに形状の異なる複数のレンズ面(602、604)に 分割されている。

【特許請求の範囲】

【請求項1】 光源と、前記光源から出射された光ビー ムを光メモリの記録面に集束照射するための対物レンズ と、前記記録面からの反射光を光検出手段へと導いて信 号検出をするように構成した光学ヘッド装置において、 前記対物レンズは仕様の異なる光メモリの記録面に集光 スポットを形成する機能を有する対物レンズであること を特徴とする光学ヘッド装置。

1

【請求項2】 前記対物レンズは、前記光源から出射さ れた光ビームを基板の厚さが異なる複数の光メモリの記 録面に集光スポットを形成する機能を有する対物レンズ であることを特徴とする請求項1に記載の光学ヘッド装 ₩.

【請求項3】 前記対物レンズは、前記光源から出射さ れた光ビームを記録密度が異なる複数の光メモリの記録 面に、記録密度に適合したサイズの集光スポットを形成 する機能を有する対物レンズであることを特徴とする語 求項1に記載の光学ヘッド装置。

【請求項4】 前記対物レンズは、レンズ面をリング形 状に複数の領域に分割してなり、それぞれの領域が仕様 の異なるレンズ面形状で構成したことを特徴とする請求 項1、2、3のいずれか1項に記載の光学ヘッド装置。

【請求項5】 仕様の異なる複数の光メモリの各々に対 して記録面に最適な集光スポットを形成するように設計 された複数の対物レンズをリング形状に分割した前記複 数の領域に配置したことを特徴とする請求項1、2、

3、4のいずれか1項に記載の光学ヘッド装置。

【請求項6】 前記対物レンズは、一方の面が共通なレ ンズ面形状であることを特徴とする請求項1、2、3、 4、5のいずれか1項に記載の光学ヘッド装置。

【請求項7】 前記対物レンズは、リング形状に分割し た複数の領域の境界部において、互いに段差を生じない レンズ面形状で構成したことを特徴とする請求項1、 2、3、4、6のいずれか1項に記載の光学ヘッド装 17

【請求項8】 前記対物レンズは、仕様の異なる複数の 光メモリの記録面に集光スポットを形成すると共に前記 対物レンズの出射面と前記複数の光メモリの入射面との 距離(作動距離)が一定であることを特徴とする請求項 1、2、4、5、6、7のいずれか1項に記載の光学へ 40 ッド装置。

【請求項9】 前記対物レンズを複数の領域に分割する に際して、仕様の異なる複数の光メモリの再生信号周波 数もしくは情報記録密度を基準にして面積配分したこと を特徴とする闘求項1、2、3、4、5、6、7、8の いずれか 1 項に記載の光学ヘッド装置。

【請求項10】 前記光源、前記対物レンズ、前記光検 出手段を一体として支持する手段をさらに具備し、前記 支持手段が移動しながら前記光検出手段が前記記録面か らの反射光を検出することを特徴とする請求項1、2、

3、4、5、6、7、8、9のいずれか1項に記載の光 学ヘッド装置。

光が入射される第1の面と、光を出射 【請求項11】 する第2の面とを具備し、前記第1の面と前記第2の面 との少なくとも一方が異なる光学特性を有する複数のレ ンズ面に同心円状に分割されていることを特徴とするレ

【請求項12】 同心円状に分割された前記レンズ面の 各々の幅は光の波長より大きいことを特徴とする請求項 11に記載のレンズ。

異なる焦点距離を持っていることを特徴とする請求項1 1に記載のレンズ。

【韶求項14】 同心円状に分割された前記レンズ面は 異なる開口数を有することを特徴とする請求項11に記 載のレンズ。

【韜求項15】 プラスチックまたはガラスを用いてモ ールディングまたはインジェクションにより形成されて いることを特徴とする請求項11に記載のレンズ。

20 とする請求項11に記載のレンズ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は光学ヘッド装置に関し、 特に仕様、規格の異なる複数の光ディスク等の光メモリ の少なくとも再生を簡便に行なうことができる光学ヘッ ド装置およびそれに用いられるレンズに関する。

[0002]

【従来の技術】光ディスクに光ビームを照射し、その反 射光を検出して光ディスクに記録されている情報を再生 30 する技術は、CD(コンパクトディスク)、LD(レー ザディスク) 装置等として広く実用化されている。この ような光ディスク再生装置では、半導体レーザなどの光 源から出射された光ビームを対物レンズにより光ディス クの信号記録面に集束照射し、光ディスクからの反射光 を光検出器により検出することにより光ディスクに記録 されている情報を再生する。

【0003】このような光ディスクにおいては、記録密 度の髙密度化が図られており、従来の光ディスクとは規 格の異なる光ディスクが存在するようになってきた。例 えば、情報が記録される単位であるピットの大きさは、 現在は1ミクロン程度であるが、サブミクロン程度に縮 小される可能性が高い。

【0004】光ディスクの記録密度は、光ディスク上に 形成された情報記録用の微小なピットを読取るために光 学ヘッド (ピックアップ) により光ディスク上に照射さ れる記録・再生用の光スポットの大きさによって決ま る。

【0005】このスポットの径は、使用するレーザの波 長と、対物レンズの開口数(NA: Numerical Apertur

3

e) によって決まり、 スポット径= $k \times \nu$ ーザ波長/NAで表わされる。kは定数である。

【0006】このため、小さなスポットを用いて、より 高密度の光ディスクを説取ろうとすると、レーザ波長の 短いものを用いるか、またはNAの大きなレンズを用い る必要がある。

【0007】従来の光学ヘッド装置は、対物レンズを1つのみ有する構成であったため、高密度の光ディスクを、従来の光ディスクに対応した対物レンズを備えた光 10学ヘッドで読取ることはできなかった。

【0008】すなわち、高密度用の光学ヘッドが、NAの大きな対物レンズを用いている場合は、対物レンズに対する光ディスクの傾きがあると、スポットの乱れが大きくなるため、共通に用いることができない場合が多い。これは、従来の規格では、光ディスクの反りなどを、大きな値のものまで許容していたが、新しい光ディスクでは、反りの小さいものしか許容しないようになっているため、反りの大きな光ディスクは読めないということ等による。

【0009】なお、スポットの乱れは、光ディスクの厚さによって影響を受け、厚さの薄い光ディスクは、光ディスクが傾いてもスポットの乱れが小さいことから、厚さの薄い光ディスクを高密度の光ディスクの基板に用いる例もある。

【0010】また、同一の光ディスクであっても、記録時と再生時で、最適の対物レンズの仕様が異なる場合があるが、対物レンズを1つのみ有する構成であったため、これに対処できないといった問題があった。

【0011】また、基板厚みの異なるディスクも新たな 30 規格として誕生しており、新しい装置では従来規格のディスクの情報を記録または再生することがきなくなってしまう危険性がある。

【0012】規格としてはディスク基板の厚さがある。この種の光ディスクは、一般にピットなどの形で情報が記録された透明基板(以下、ディスク基板という)上に反射膜を形成し、その上に保護層を形成した構造を有する。光ビームは、透明基板側から信号記録面である反射膜に照射される。この場合、ディスク基板の厚さによって再生特性が変化する。同じ開口数の対物レンズであっても、ディスク基板が薄い方がディスク傾きによる透過波面収差は小さく、信号記録面上の集光スポットの集光特性がよいので、再生情報信号の品位も高いものが得られる。このため、ディスク基板の厚さを薄くした光ディスクを使った光ディスク装置が出現してきた。

【0013】このように仕様、規格の異なる複数種類の 光ディスクが存在するようになると、当然これらを同一 の装置で再生できるようにするという要求が生じる。そ のため、1台の記録・再生装置に光ディスクの種類に応 じた複数の光学ヘッドを設け、使用するディスクに応じ 50

てこれらを機械的に切り替えるという方法がとられてい る。

【0014】この方法は確実であるが、複数の光学へッドを用意する必要であるとともに、これらを駆動/切り替える機構も複数用意する必要があるので、記録・再生装置を複数台設けるのと同じコスト、設置スペースを要することになり、複数の仕様の光ディスクを同一の装置で記録・再生するという本来のメリットが損なわれる結果となってしまう。

10 【0015】一方、上述したようにNAを大きくすると、レンズの収差の影響がNAの3乗に比例して大きくなるため影響がでやすくなることと、レンズの光軸に対して光ディスクの基板が傾いた場合のスポットの歪が大きくなる欠点があるが、これを解決するために、「超解像」という技術が考案されている。例えば、米国特許第5,121,378号明細杏に記載されているように、レンズの中心部分を遮蔽して、ドーナツ状のレンズを構成した場合、レンズによるスポット径が覆わない場合に比較して10~20%小さくなることが報告されている。

【0016】特に、レーザ光を光源とする場合には、レンズの一部を覆うだけでなく、レンズの一部の厚みを、光の位相に影響する程度に変化させて、同心円状に構成することによって、同様の効果を得ることができるということも報告されている。

【0017】しかし、上記技術では、遮蔽部材が必要となるため、光学系の大型化、複雑化が生じてしまう。また、遮蔽部材により光効率が悪化するという問題点を有するものである。

り 【0018】このように、従来の光学ヘッド装置は、対物レンズを1つのみ有する構成であったため、記録密度、反りの許容量、基板の厚み等の相違など規格の異なる複数の光ディスクを使用したい場合、あるいは、同一の光ディスクであっても、記録時と再生時で、最適のレンズの仕様が異なる場合、これに対処できないといった問題点があった。

【0019】なお、それぞれの規格や仕様に適応した専用の対物レンズを用いた専用の光学ヘッドを複数個用意して、切換えて使用することも考えられるが、このようにした場合には、機構が複雑化し、装置が大型化するばかりでなく、コストが上がるため、実用化し得ないという問題がある。

[0020]

【発明が解決しようとする課題】本発明は上述した事情に対処すべくなされたもので、その目的は、小型、かつ、安価な構成でありながら、仕様が異なる複数の情報記録媒体に対して、少なくとも良好な再生を行えるようにした光学ヘッド装置、およびそれに用いられるレンズを提供するものである。

0 [0021]

【課題を解決するための手段】本発明による光学ヘッド 装置は、光源と、光源から出射された光ビームを光メモ リの記録面に集束照射するための対物レンズと、記録面 からの反射光を光検出手段へと導いて信号検出をするよ うに構成した光学ヘッド装置において、対物レンズは仕 様の異なる複数の光メモリの記録面に集光スポットを形 成する機能を有する対物レンズであることを特徴とす

【0022】本発明の光学ヘッド装置において、対物レ ンズは、光源から出射された光ビームを基板の厚さが異 なる複数の光メモリの記録面に集光スポットを形成する 機能を有する対物レンズであることを特徴とする。

【0023】本発明の光学ヘッド装置において、対物レ ンズは、光源から出射された光ビームを記録密度が異な る複数の光メモリの記録面に、記録密度に適合したサイ ズの集光スポットを形成する機能を有する対物レンズで あることを特徴とする。

【0024】本発明の光学ヘッド装置において、対物レ ンズは、レンズ面をリング形状に複数の領域に分割して なり、それぞれの領域が仕様の異なるレンズ面形状で構 成したことを特徴とする。

【0025】本発明の光学ヘッド装置において、仕様の 異なる複数の光メモリの各々に対して記録面に最適な集 光スポットを形成するように設計された複数の対物レン ズをリング形状に分割した複数の領域に配置したことを 特徴とする。

【0026】本発明の光学ヘッド装置において、対物レ ンズは、一方の面が共通なレンズ面形状であることを特 徴とする。本発明の光学ヘッド装置において、対物レン ズは、リング形状に分割した複数の領域の境界部におい 30 て、互いに段差を生じないレンズ面形状で構成したこと を特徴とする。

【0027】本発明の光学ヘッド装置において、対物レ ンズは、仕様の異なる複数の光メモリの記録面に集光ス ポットを形成すると共に対物レンズの出射面と複数の光 メモリの入射面との距離(作動距離)が一定であること を特徴とする。

【0028】本発明の光学ヘッド装置において、対物レ ンズを複数の領域に分割するに際して、仕様の異なる複 数の光メモリの再生信号周波数もしくは情報記録密度を 基準にして面積配分したことを特徴とする。

【0029】本発明の光学ヘッド装置において、光源、 対物レンズ、光検出手段を一体として支持する手段をさ らに具備し、支持手段が移動しながら光検出手段が記録 面からの反射光を検出することを特徴とする。

【0030】本発明によるレンズは光が入射される第1 の面と、光を出射する第2の面とを具備し、第1の面と 第2の面との少なくとも一方が異なる光学特性を有する 複数のレンズ面に同心円状に分割されていることを特徴 とする。

6 【0031】本発明のレンズにおいて、同心円状に分割 されたレンズ面の各々の幅は光の波長より大きいことを

特徴とする。本発明のレンズにおいて、同心円状に分割 されたレンズ面は異なる焦点距離を持っていることを特

【0032】本発明のレンズにおいて、同心円状に分割 されたレンズ面は異なる開口数を有することを特徴とす る。本発明のレンズは、プラスチックまたはガラスを用 いてモールディングまたはインジェクションにより形成 されていることを特徴とする。本発明のレンズにおい て、分割数は3以上であることを特徴とする。

[0033]

【作用】本発明によれば、光源と、光源から出射された 光ビームを光メモリの記録面に集束照射するための対物 レンズと、記録面からの反射光を光検出手段へと導いて 信号検出をするように構成し、対物レンズは仕様の異な る複数の光メモリの記録面に集光スポットを形成する機 能を有する対物レンズであるとすることにより、小型、 かつ、安価な構成でありながら、仕様が異なる複数の情 報記録媒体に対して、1台の光学ヘッド装置により少な くとも良好な再生を行なうことができる。

[0034]

【実施例】以下、図面を参照して本発明による光学へッ ド装置の第1実施例を説明する。図1は第1実施例の光 学ヘッド装置に用いられる対物レンズの概略図である。 対物レンズ600は、その少なくとも一方の面が同心円 状に複数のレンズ面に分割され、各レンズ面が異なる光 学特性を有するように構成されている。図1 (a) は光 源側から見た対物レンズの平面図を示し、同図(b)は その断面図を示す。対物レンズ600の光源(図示せ ず) 側の面が同心円状に2つのレンズ面602、604 に分割されている。内側のレンズ面602は円形状であ り、外側のレンズ面604は輪状(ドーナツ状)であ る。他の面(ディスク側の面)606は通常の連続した レンズ面である。レンズ面602はレンズ面604より も外側に凸出しており、レンズ面602、604は異な る焦点距離を有する。内側のレンズ面602の焦点面6 08は外側のレンズ面604の焦点面610より遠方に ある。このように対物レンズ600は異なる焦点距離を 有する2つのレンズを同心円状に組み合わせたレンズと 等価である。

【0035】なお、ディスク側の面606は連続面とし たが、この面も同様に同心円状に2つのレンズ面に分割 してもよい。図1の対物レンズ600を用いる時は、光 ディスクの信号記録面を焦点面608、または610の いずれかに配置する必要がある。光ディスクの信号記録 面が焦点面610に位置するように構成した場合は、レ ンズ面604を通過した光のみが焦点面610で集束 し、レンズ面602を通過した光は焦点面610より遠 くで集束し、焦点面610ではぼける。したがって、レ

ンズ面602を通過した光は信号検出のための光電変換 630 b に ま子 (図1には不図示) には戻ってこない。あるいは、 にまたがっ 戻ってきたとしても、非常に弱い強度であるので、レン ズ面604を通過した光に基づく主信号に対しての干渉 信号、または雑音信号となることが無い。このようにレ 検出信号を ンズ600は2つの焦点距離を有するレンズとして使用 たとき、こ することができる。光ディスク装置においては、ディス 号Stおよ

動する必要がある。
【0036】図2は図1のレンズ600を対物レンズとして用いた光学ヘッド装置全体の概略図である。レーザ614から出射されたレーザ光はコリメータレンズ618を透過してビームスプリッタ616に導かれる。ビームスプリッタ616で反射されたレーザ光は図1に示す対物レンズ600により集束され、異なるディスク厚の光ディスク620、622の信号記録面620a、622a上に微小スポットが形成される。信号記録面は透明

クの位置は一定であるので、ディスクの信号記録面の位

☆が変化した場合は、対物レンズをフォーカス方向に移

基板上に形成される。 【0037】光ディスク620、622で反射された光は同じ光路を逆方向に伝搬する。すなわち、反射光は対物レンズ600、収束レンズ626を介して偏光素子であるホログラフィック素子(HOE)624に入射される。ホログラフィック素子624で回折を受けて光ビームは光検出器628により検出される。

【0038】光検出器628の出力信号は、増幅器と演算回路からなる信号処理回路630に入力される。信号処理回路630に入力される。信号処理回路630は光検出器628の出力信号に種々の演算を施し、フォーカス誤差信号、トラッキング誤差信号を生成する。フォーカス誤差信号とトラッキング誤差信号はアクチュエータ駆動回路(図示せず)を介してフォーカシングコイル632、トラッキングコイル634に供給される。これらのコイル632、634により対物レンズ600を動かし、光ディスク上の光スポットの位置を光軸方向とトラッキング方向に制御する。再生情報信号はデータ再生回路(図示せず)に供給される。

【0039】図3に示すように、ホログラフィック案子624は、トラック方向と同一方向の領域分割線623 cによって2つの領域625a、625bに分割されている。これらの領域625a、625bにおいては、焦点誤差検出に必要な光ビームの形状変化を生じさせるために、一方は糸巻き状に、他方は梅形状にそれぞれの間隔な格子を変形させた格子形状のホログラムが形成されている。また、領域625a、625bのそれぞれの回折光が光検出器628の受光面上で分離されるように、領域625aと領域625bとで平均的な格子問隔を異ならせている。これにより、領域625aからの回折光630aは光検出器628の受光面629aと629bにまたがった領域に集光し、領域625bからの回折光

8

630bは光検出器628の受光面629cと629dにまたがった領域に集光する。

【0040】ここで、光検出器628の受光面629 a、629b、629c、629dにそれぞれ対応する 検出信号を629A、629B、629C、629とし たとき、フォーカス誤差信号Sf、トラッキング誤差信 号Stおよび再生情報信号Siは、次式の演算により得 られる。

[0041]

10 S f = (629A-629B) + (629C-629D)

S t = (629A+629B) - (629C+629D)

Si=(629A+629B+629C+629D) 図2の光学ヘッド装置において、光検出器628は収束レンズ626の焦点面に配置されている。そのため、ディスク620の記録・再生時でも、ディスク622の記録・再生時でも、対物レンズ600を介した反射光は平行ビームである。焦点検出を、例えば非点収差法で行なった場合は、光検出器628の領域629a~629d上に照射されたビームの太さに関係なく、合焦点の検出が可能であるので、同一の検出器で2枚のディスクの焦点検出が可能である。

【0042】一方、トラッキング誤差の検出に関しては、従来から行なわれている3ビーム法、プッシュプル法等は光検出器上の光のスポットの大きさには関係せずトラッキング誤差信号を得ることができるので、このような構成で、両方のディスクに対して正しいトラッキング誤差信号を得るような光学ヘッドの設計が可能である。

【0043】以上は一般的な例であるが、次に具体的な例として、コンパクトディスク(CD)と高密度光ディスクの記録・再生を同一の光学へッド装置で行なう場合について説明する。コンパクトディスクの規格は、レーザ波長が780nm、NAが0.45、基板の厚さは1.2mmである。一方、動画情報を圧縮して記録する高密度光ディスクとしては、レーザ波長が680nm、NAが0.6、基板の厚さが0.6mmが考えられている。このようにディスク厚が異なる場合、ディスクとしンズとの間の距離(作動距離)がディスクが変わってもできる限り等しくなるように光学へッド装置を設計すれば、ディスクの変更に伴い対物レンズの位置を変更する必要がなく、全体の機構系の設計が楽になるという効果がある。

【0044】図4(a)は高密度光ディスクの一例を示す斜視図、同図(b)はコンパクトディスクと高密度光ディスクとを用いた場合の対物レンズ600の焦点距離の違いを示す図である。コンパクトディスクは基板厚さt2(=1.2mm)の透明基板720、反射層724、保護層722からなる。

50

10

30

ては、NAが大きくなるようにディスク上のビームスポットを極小化することが好ましい。また、ディスク厚が1.2mmの低密度CDに対しては、ディスク上のビームスポットを極小化する必要が無いので、小さいNAの

10

【0045】高密度光ディスク700はそれぞれが基板 厚さt2 (=0.6mm)の透明基板701、702、 反射層703、704、保護層705、706からなる 2枚のディスクを接着層707を介して保護層705、706が向き合うように貼り合わせてなる。透明基板としてはポリカーボネイトやアクリル等の透光性の樹脂が用いられ、反射層としてはアルミニウム等が用いられる。接着層707は数10μm厚の熱硬化型の接着剤からなる。高密度光ディスク700の中央にはクランピングのための穴708が開けられており、その周囲にクランピングゾーン709が設けられている。

対物レンズを使うことができる。 【0050】本実施例の対物レンズはレンズ面の分割数を増加するように変形するしてもよい。図5はレンズ面を5つの領域640a~640eに同心円状に5分割番目の領域640a、640c、640eの焦点は同じ、偶数番目の領域640b、640dの焦点は厚い光ディスク620の信号記録面622aに位置する。すなわち、のの信号記録面620aに位置する。すなわち、のの信号記録面620aに位置する。すなわち、の数番目のレンズ面640a、640c、640eは偶数番目のレンズ面640b、640dより外側に突出している。もちろん、この逆に、奇数番目のレンズ面640a、640c、640eの焦点が厚い光ディスク620の信号記録面620aに位置し、偶数番目のレンズ面640b、640dの焦点が薄い光ディスク622の信号

【0046】図示しないレーザダイオードから出射され、再生光学系を経て入射する再生用光ビームは、対物レンズ600を介してディスクに透明基板720、701、720側から入射し、反射膜722、703、704上に微小なビームスポットとして集束される。

記録面622aに位置するように設計してもよい。 【0051】各リング領域の幅、径は使用するレーザ光の波長より大きいことが望ましい。もしも、幅、径がレーザ光の波長より小さいと、回析のために光ビームがデ

【0047】高密度光ディスク700は、0.6mm厚 という薄い基板701および702を用いていることか ら、1.2mm厚の基板を用いるCDに比較して表面に 付着したゴミや汚れに弱くなることもあるので、図示し ないカートリッジに収容してもよい。髙密度光ディスク 700をカートリッジに収容する場合は、CDのように ディスクの持ち方や、ゴミ、指紋などに気を使わなくて 済むようになるし、ハンドリング、持ち運びの面でも有 利となる。CDのようにディスクが露出している場合 は、傷などの不測の事態も考えてエラー訂正能力を決め る必要があるが、カートリッジを用いる場合、そのよう な考慮は不要である。したがって、記録・再生が可能な 光ディスクで用いられているように、セクタ単位でLD Cリード・ソロモンエラー訂正方式を用いることができ る。これにより、例えば2K~4Kバイト単位で光ディ スクのフォーマッティングを行った場合、CDに比べて 記録効率を10%以上髙めることができる。

ィスクの信号記録面以外の位置に集束してしまう。 【0052】以上説明したように、第1実施例の光学へ ッド装置によれば、各領域毎に異なる焦点距離を有する 少なくとも一方の面を同心円状に複数の領域に分割した レンズを対物レンズとして用いているので、規格の異な るディスクに対しても同一の装置で少なくとも再生がで きる。

【0048】一例として、高密度光ディスク700に記録する情報の変調方式として、例えば4/9変調方式を用い、高密度光ディスク700上のトラックピッチを0.72μm、ピットピッチを0.96μmとすると、従来のCDフォーマットに比較して、ピットの密度比で3.84倍、変調方式で20%、フォーマット効率で10%の向上が期待されるから、トータルで約5.1倍の容量増加が望めることになる。映画等の動画像情報をSーVHS並みの高画質で記録・再生する場合、音時間の平となるので、2時間の再生に必要な容量は4Gバイトである。上述した5.1倍の容量が加により、この4Gバイトという容量をディスクを両面化すれば、一枚の光ディスクで最大4時間の記録が可能となる。

【0053】図6は図5に示した第1実施例の変形例に 係るレンズ640を用いた光学ヘッド装置の一例を示す 図である。上記実施例では、基板厚が異なる(1.2 m mと0.6mm)場合を対象としていたが、本実施例で は基板厚は同じであるもののトラックピッチが異なる場 合を対象とする。上述したように、レンズ640は2つ の焦点FA、FB (>FA)を有する。本装置では厚さ TB の低密度ディスク650と、厚さTA (=TB)の 高密度ディスク652が使用される。低密度ディスク6 50は焦点距離FB に配置され、ビームスポットが信号 記録面650aに集束される。高密度ディスク652は 焦点距離FA に配置され、ビームスポットが信号記録面 652aに集束される。これを実現するために、本装置 では、ディスクが載置されるディスクトレイ(図示せ ず) がディスクの種類に応じてフォーカス方向に上下移 動し、ディスクとレンズとの作動距離がディスクに応じ てWDA、WDB 間で変化するようになっている。

【0049】一般に、レンズの直径はNAと関連がある。ディスク厚が0.6mmの高密度光ディスクに対し

【0054】図7はレンズ640を用いた光学ヘッド装置の他の例を示す図である。本装置では、ディスクトレイの位置は固定され、レンズ640がディスクの種類に

応じてフォーカス方向に移動し、ディスクとレンズとの 作動距離がディスクに応じてWDA、WDB 間で変化す るようになっている。

11

【0055】図8は本発明によるレンズの第2実施例を 示す。レンズ660の光源(図示せず)に対向する面は 5 つのリング状レンズ面660a~660eに同心円状 に分割されている。第1実施例のレンズ640は2つの 焦点のレンズを重ねた構造でリング形状のレンズ面の境 界部は段差を生じていたが、本実施例では図8に示すよ うに、隣接レンズ面どうしが滑らかに連続し境界部で段 差が生じないように各レンズ面の表面形状が決められて いる。これは、各レンズ面660a~660eで各々異 なる焦点距離を有するレンズの組合せからなるものであ る。すなわち、中心から数えて奇数番目のレンズ面66 O a 、 6 6 O c 、 6 6 O e は光軸上に中心を有する円弧 上にあり、偶数番目のレンズ面660b、660dはレ ンズ面660a、660c、660eを斜めに結んでい る。すなわち、図8の例は実質的には3重の同心レンズ 面660a、660c、660eからなり、各レンズ面 の間が連続的に結ばれている。この連続部分も光が通過 可能であるので、レンズ面660b、660dとなる。

【0056】5つのレンズ面660a~660eの幅、径、曲率は奇数番目のレンズ面660a、660c、660eを通過した光が薄い高密度ディスク622の信号記録面622aに集束し、偶数番目のレンズ面660b、660dを通過した光が厚い低密度ディスク620の信号記録面620aに集束するように決められている。もちろん、この逆に、奇数番目のレンズ面660a、660c、660eを通過した光が厚い低密度ディスク620の信号記録面620aに集束し、偶数番目のレンズ面660b、660dを通過した光が薄い高密度ディスク622の信号記録面622aに集束するように5つのレンズ面660a~660eの幅、径、曲率を決めてもよい。

【0057】ここでは、2枚のディスク620、622が同一作動距離の位置に配置される。低密度ディスク620は、例えばコンパクトディスクであり、髙密度ディスク622は、例えば図4(a)に示すディスクである。

【0058】このようなレンズを用いた場合、図9に示すように、中心のメインビームから離れた位置に同心円状にサイドローブと呼ばれる光の強い部分ができる傾向がある。このため、実質的に光スポットが大きくなったのと同じ効果をもたらす場合がある。これを防ぐには、各レンズ面660a~660eの面積を厳密に設計する必要がある。設計の自由度を確保する意味でも、このような3重の同心円構造が好ましい。もちろん、同心構造の数は3に限定されず、4、または5つのレンズ面に分割してもよい。

【0059】分割数を可能な限り増加していくと、各レ

ンズ面の光学特性は図1に示した2つのレンズ面60 2、604の特性に漸近していくことは明かである。そ のため、上述したサイドローブの影響を防ぐためには、 分割数はできるだけ多い方が好ましい。しかし、各分割 リング形状領域の幅がレーザ光の波長に近付くと、レン ズは本来の機能以外にも回析格子としての機能も呈し、 回析光の影響が現われるので、各領域をあまり小さくす ることはできない。したがって、分割数は分割領域が光 の波長に対して充分大きい幅を有することができる範囲 に限定される。

12

【0060】もちろん、逆に回析格子として設計して対物レンズの役割をさせることも可能であるが、この場合には光の利用効率が低下するため、設計の思想としては別の手法が必要となる。

【0061】このような同心円状の構成は、通常、超解像と呼ばれるレンズの場合に用いられる構成であり、この場合は、先に述べたサイドローブが出来易いものの、メインビームは小さくなる傾向にあり、適当な設計ではより小さなスポットサイズが得られる。このため、この性質を利用することによって、さらに小さなスポットサイズを実現することも可能である。

【0062】上述の説明では、ディスクと反対側のレンズの面を複数の面に分割し、レンズに対向する面は連続面としたが、図8のような場合は、両方のレンズの境界部では同じ面を光が通過することがあるからである。例えば、ディスクと反対側のレンズ面を5つのレンズ面660a、660c、660eを通過する光と、レンズ面660b、660dを通過する光と、レンズ面660b、660dを通過することがあるからである。しかし、で同じ領域を通過することがあるからである。しかし、ディスクの反対側ではなくディスクに対向する面を複数のレンズ面に分割し、ディスクの反対側の面を連続面としてもよい。

【0063】図8の例は厚さの異なるディスクを同じ作助距離で使う場合を示す。図10は厚さが同じでトラックピッチ(記録密度)が異なる2枚のディスク650、652の記録面650a、652aにビームスポットを40 集束させるために作動距離をWDA、WDB間で変化させる光学ヘッドを示す。トラックピッチが細かい高ででである。レンズ面660a、660c、660eを通過をリンズに近い位置にある。レンズ面660a、660c、660eを記録録過でままが、手前側にある高密度ディスク652の信号記録録過した光が違くにある低密度ディスク650の信号記録の150aに集束する。したがって、ディスクが破置されるディスクトレイ(図示せず)がディスクの種類に応じてフォーカス方向に上下移動し、ディスクとレンズとの作

30

13

動距離がディスクに応じてWDA、WDB 間で変化する。

【0064】図9はレンズ660を用いた光学ヘッド装置の他の例を示す図である。本装置では、ディスクトレイの位置は固定され、レンズ660がディスクの種類に応じてフォーカス方向に移動し、ディスクとレンズとの作動距離がディスクに応じてWDA、WDB間で変化するようになっている。

【0065】本発明のレンズは金型を幇密工作機械で削り出し、その型を元にプラスチックインジェクションを行なって成型するか、ガラスモールドを行なう必要がある。この製法そのものは、現在用いられている非球面レンズの製法と同じであり、要求幇度も変わらないので、製造上の問題は少ない。

【0066】図12は本発明による光学ヘッド装置の第3実施例の平面図である。情報の記録再生に供されるディスク101 (光ディスク、光磁気ディスクなど)は、ベース102に固定されたスピンドルモータ103に対してマグネットチャック等のチャッキング手段により保持されており、記録再生時にはスピンドルモータ103によって安定に回転駆動される。

【0067】ディスク101の下部には近接した位置に 可動体104が配置されている。可動体104は、第1 可動体105と第2可動体106とからなっており、後 述するように、ディスク101の径方向および厚み方向 に移動可能に支持されている。

【0068】第1可動体105は、ディスク101面に対向する略楕円形をなす平板状のブレード105aと、ブレード105a下部に固定される筒状のコイルボビン105bとからなる。また、これらブレード105aおよびコイルボビン105bの中心には滑り軸受105cが設けられている。

【0069】滑り軸受105cには、一端を第2可動体106に固定し立設された回転軸107が微小隙間(10ミクロン以下)を介して挿入嵌合され、滑り軸受機構(軸摺動機構)を構成している。そして、第1可動体105はこの回転軸107回りの回転運動および軸方向への並進運動が可能となっている。

【0070】ブレード105a上にはカウンタウェイト732と上述したレンズ600、640、660のいず40れかからなる対物レンズ730とが設けられている。対物レンズ730は複数の異なる光学的な特性を有するように構成されている。例えば、開口数(NA)が0.45と0.6を有するように構成されている。対物レンズ730とカウンタウェイト732の取り付け位置は、第1可助体105の全質量の重心が回転軸107にほぼ一致する位置となるように、回転軸107を通過する直径上に中心軸から等距離に配置されている。すなわち、第1可助体105は、対物レンズ730とカウンタウェイト732とによって回転軸107に対し重点バランスの50

とれた構造となっている。

【0071】コイルボビン105bの周囲にはフォーカ スコイル109が巻装されている。フォーカスコイル1 09の周囲には、平面的に巻装された矩形状の2枚のト ラッキングコイル200a、200bが、それぞれ所定 間隔で貼設されている。フォーカスコイル109および トラッキングコイル200a、200bの周囲であり第 2可動体106上には、ちょうど回転軸107に対して 対称な位置関係に、永久磁石110a、110bおよび ヨーク111a、111bからなる磁気回路112a、 10 112bが設けられ、所定長さの磁気ギャップを介して フォーカスコイル109およびトラッキングコイル20 O a 、 2 O O b と対向配置されており、フォーカスコイ ル109およびトラッキングコイル200a、200b に対して磁界が付与されている。なお、2つの磁気回路 112a、112bは同一構造をなしており、永久磁石 110a、110bの着磁の向きは磁気ギャップの厚み 方向と一致している。

【0072】フォーカスコイル109が通電されるとともに磁気回路112a、112bから磁束を受けることによりローレンツ力が発生し、第1可動体105はディスク101の厚み方向(回転軸107の軸方向)に向かって微かに並進駆動される。また、トラッキングコイル200a、200bが通電されるとともに磁気回路112a、112bから磁束を受けることによりローレンツ力が発生し、第1可動体105はディスク101の径方向(回転軸107回り)に向かって微かに回転駆動される。

【0073】コイルボビン105bの周囲の180°離 間した位置でトラッキングコイル200a、200b上には、鉄片などからなる2枚の磁性体201a、201bが設けられている。磁性体201a、201bは、対物レンズ730、カウンタウェイト732と90°離間した位置に回転軸107に対して対称な関係に貼設されている。対物レンズ730が光路内にある時には、これら磁性体201a、201bはちようど磁気回路112a、112bの磁気ギャップに対向配置される。

【0074】一方、第2可動体106は前述したように、回転軸107を介して第1可動体105と接続している。第2可動体106の両端部には、ちょうど第2可動体106の重心位置から等しい距離に一対のラジアルコイル113a、113bが取り付けられている。ラジアルコイル113a、113bには、ベース102に固定されたラジアル磁気回路114a、114bから磁界が付与されている。

【0075】ラジアル磁気回路114a、114bは、 バックヨーク115a、115bとセンターヨーク11 6a、116bと、永久磁石117a、117bとから なり、ラジアルコイル113a、113bはセンターヨ -0116a、116bと永久磁石117a、117b とで規定される磁気ギャップ内に移動可能に挿通されている。なお、2つのラジアル磁気回路114a、114 bは同一構造をなしており、永久磁石117a、117 bの着磁の向きは磁気ギャップの厚み方向と一致している。

【0076】第2可動体106の左右には2対4個の沿り軸受119a、119bが設けられ、これら沿り軸受に挿通される関係に2本のガイドレール118a、118bが平行配置されている。なお、ガイドレール118a、118bの両端はベース102に固定されている。第2可動体106はこれらガイドレール118a、118bに沿って移動可能に支持されている。

【0077】ラジアルコイル113a、113bが通電されるとともにラジアル磁気回路114a、114bから磁束を受けることによりローレンツ力が発生し、第2可動体106はディスク101の径方向に向かって並進駆動される。

【0078】ラジアル磁気回路114a、114bの磁気ギャップ幅は、第2可動体106がガイドレール118a、118bの長手方向に必要な距離だけ移動できるように、換言すれば対物レンズ108a、108bをディスク101の最外周から最内周までラジアル方向に移動できるように、同方向に十分に長く形成されている。

【0079】この装置の光学系および信号処理系については、特願平6-83788号「対物レンズ駆動装置」に記載のものを用いることができる。図13は本発明による光学へッド装置の第4実施例の平面図である。本装置は、情報記録媒体である光ディスク10(一部のみを二点鎖線で示す)を保持して回転駆動するディスク駆動手段としてのスピンドルモータを有する。スピンドルモータにより回転される光ディスク10の下面側には、カウンタウェイト742と上述したレンズ600、640、660のいずれかからなる対物レンズ740及び光学系を搭載し、光ディスク10の半径方向(矢印A方向)に直線的に移動可能なピックアップ20が設けられている。

【0080】ピックアップ20は、リニアモータ74を 駆動源として、トラッキング制御方向である光ディスク 10の半径方向(矢印A方向)に移動可能な移動手段と してのキャリッジ60を有する。

【0081】キャリッジ60の両側部には、板ばねを介して支持された2個を対とした複数の(ここでは2対の)支持ローラ62…が設けられ、これら支持ローラ62…を光ディスク10の半径方向に沿って水平かつ平行に配設された2本のガイドシャフト64、64に転接させることで、光ディスク10の半径方向(矢印A方向)に移動可能に支持されている。

【0082】さらに、キャリッジ60の両側部には、ラジアルコイル66、66が取付けられており、これらラジアルコイル66、66は、磁気回路の形成部材である

16

内ヨーク68、68に外嵌した状態となっている。また、内ヨーク68、68は、外側に設けられた外ヨーク70、70と接続した状態となっており、外ヨーク70、70の内側にはマグネット72がそれぞれ取着された状態となっており、リニアモータ74を構成している。

【0083】ラジアルコイル66、66に電力を供給することにより、推進力(ローレンツカ)が発生し、キャリッジ60をトラッキング制御方向に往復移動させることができるようになっている。

【0084】図14は図13のピックアップ20の構成を示したものであり、大きく分けて、可動支持部材である回転ブレード82および磁気回路1411により構成されるレンズアクチュエータからなる。回転ブレード82は光ディスク装置に装填される光ディスク(図14には示さず)の記録面に垂直な軸を中心に回転可能で、かつ光ディスクに照射される光ビームの光軸方向に移動可能に設けられている。半導体レーザのような光源1403、コリメーティングレンズ1404およびビームスプリッタ1405から送光光学系が構成され、集光レンズ1408と回折型光学案子(HOE: Holographic Optical Element)1409および光検出器1410により、光ディスクで反射した光ビームを検出するための検出系が構成されている。

【0085】回転ブレード82は少なくとも図中上端部が閉塞した有底筒状の形状をなし、この上端部に対物レンズ740とカウンタウェイト742とが回転軸を中心に等距離、かつ重量バランスがとれるように配設されている。磁気回路1411は、回転ブレード82の周囲の180°対向する位置に配設された一対の半弧状ヨーク1412a、1412bの内周側に被着された磁石1413a、1413bと、回転ブレード82の磁石1413a、1413bに対向し得る位置に配設されたトラッキングコイル1414a~1414fからなる。

【0086】送光光学系と検出系との間には、ビームスプリッタ1405と対物レンズ740との間の光路を形成するための反射鏡1406が配置されている。このような構成において、光源1403から出射した光は、コリメーティングレンズ1404で平行光束となり、ビームスプリッタ1405および反射鏡1406を経て対物レンズ740で集光して、回転プレード82の上部に配置されて回転する光ディスクの情報記録面上に微小ビームスポットを形成する。

【0087】光ディスクの記録面で反射した光は、往路 つまり光源1403からコリメーティングレンズ140 4、ビームスプリッタ1405、反射鏡1406、対物 レンズ740を経て光ディスクの記録面に向かう入射光 の経路と逆に、対物レンズ740および反射鏡1406 を経てビームスプリッタ1405で反射して検出系に導 かれる。検出系は、光ディスクの記録面上のピット列に 対して、対物レンズ740で集束した微小スポットの位 置を光軸方向 (フォーカス方向) と光ディスクの半径方 向 (トラッキング方向) に制御するための誤差信号を生 成すると共に、光ディスクに記録された情報信号を再生 するためのものである。

【0088】これらの3つの信号(フォーカス誤差信 号、トラッキング誤差信号、再生情報信号)を得るため の検出系は、例えば特開平3-257号「光メモリ装 置」に詳細に記載されているようなもので構成すること ができる。この検出系そのものは本発明の要旨に関係し ないが、動作の概略を説明する。本実施例の検出系は、 前述したように集光レンズ1408とHOE1409お よび光検出器1410で構成される。光ディスクからの 反射光は、集光レンズ1408で光検出器1410上に 集光される。

【0089】集光レンズ1408と光検出器1410の 間に配置されたHOE1409には、光ディスク142 0 a または1420 b 上のトラックと同じ方位の分割線 で2分割された領域に、異なる格子形状のホログラムが 20 形成されている。具体的には、一方の格子形状が糸巻き 状に内側に湾曲した形状であるときは、残りの一方は樽 形状に外側に湾曲した形状であるようなホログラムであ る。また、それぞれのホログラムの回折光が光検出器1 410の検出面上の異なる位置に回折するように格子ピ ッチを異ならせている。HOE1409上のホログラム をこのような格子形状に設定すると、光検出器1410 上の光ビームがフォーカスずれに応じて特徴的な形状の 変化をきたすようにすることができるので、光検出器1 410を2組の2分割光受光素子により構成し、それぞ れの回折光を2分割光受光案子で差動検出することによ り、フォーカス誤差を検出することができる。また、ト ラッキング誤差についてはそれぞれのホログラムの回折 光の差分から検出できる。さらに、再生情報信号につい ては光検出器1410の出力の総和から容易に検出でき る。本実施例ではHOEを用いた検出系としたがこの検 出系に限らず、集光レンズと円柱レンズを組み合わせた 非点収差法と呼ばれるフォーカス誤差検出系など、いか なる公知の検出光学系も同様に用いることができる。

【0090】光検出器1410を構成する2組の2分割 40 受光索子から出力される4つの出力信号は検出信号処理 回路1501に入力され、ここで増幅と演算が行われる ことにより、上記のようにして再生情報信号とフォーカ ス誤差信号およびトラッキング誤差信号が生成される。 これらのうち再生情報信号は、復号化などを行う図示し ない信号処理部へ出力される。一方、フォーカス誤差信 号とトラッキング誤差信号は、図示しないホストシステ ムと接続している制御信号発生回路1502に入力さ れ、フォーカス引き込み時のシーケンス制御やトラック 検索時のトラッキング制御信号への特殊動作信号の重畳

18

などの信号処理が施された後、アクチュエータ制御回路 1503を介してフォーカス制御動信号とトラッキング 制御信号となる。

【0091】これらのフォーカス制御信号およびトラッ キング制御信号に従って、磁気回路1411中のフォー カスコイル1416およびトラッキングコイル1414 a~1414cに流れる電流が制御される。これにより 電磁作用で発生する駆動力に従って、回転プレード82 が光ディスクに照射される光ビームの光軸方向(フォー カス方向)と光ディスクの半径方向(トラッキング方 向) に制御され、光ディスクのトラック上に光スポット を位置するように制御がなされる。

【0092】これらの一連の構成および動作は、従来の 光学ヘッドと基本的な部分においては同じである。本発 明は上述した実施例に限定されず、種々変形して実施可 能である。例えば、上述の説明では、各分割領域が有す る異なる光学的特性としては焦点距離を説明したが、こ れに限らず、NA等でもよい。また、ディスクの記録密 度、反りの許容量、基板の厚み等の相違など規格の異な る複数のディスクの処理に適した複数の対物レンズに限 らず、同一のディスクに対して記録時と再生時で、それ ぞれ対物レンズの仕様が異なる場合にも本発明のレンズ を用いた光学ヘッドは有効である。さらに、記録媒体も 再生専用の光ディスクに限らず、追記型の光ディスク、 沓換えが可能な光磁気ディスク等でもよい。

[0093]

【発明の効果】以上説明したように本発明によれば、小 型、かつ、安価な構成でありながら、対物レンズの仕様 が異なる複数の情報記録媒体に対して、少なくとも良好 な再生を行える光学的ヘッド装置が提供される。

【図面の簡単な説明】

【図1】本発明によるレンズの第1実施例を示す概略 図。

【図2】第1実施例に係るレンズを用いた光学ヘッド装 置の概略を示す図。

【図3】図2の光学ヘッド装置に用いられる光検出器の 検出原理を示す図。

【図4】図2の光学ヘッド装置が再生する高密度光ディ スクの構成を示す図。

【図 5】 第 1 実施例のレンズの変形例を示す図。

【図6】図5に示した変形例に係るレンズを用いた光学 ヘッド装置の一例を示す図。

【図7】図5に示した変形例に係るレンズを用いた光学 ヘッド装置の他の例を示す図。

【図8】本発明によるレンズの第2実施例を示す概略

【図9】第2実施例に係るレンズの特性を示す図。

【図10】第2実施例に係るレンズを用いた光学ヘッド 装置の一例を示す図。

【図11】第2実施例に係るレンズを用いた光学ヘッド

50

装置の他の例を示す図。

【図12】本発明による光学ヘッド装置の第3実施例の 平面図。

19

【図13】本発明による光学ヘッド装置の第4実施例の 平面図。

【図14】第4実施例の光学系の詳細を示す図。

【図15】異なる密度のディスクを再生する場合の原理 を示す図。

【図16】異なる密度のディスクにおけるトラッキング

制御の原理を示す図。

【符号の説明】

600…対物レンズ、602、604…レンズ面、608、610…焦点面、614…レーザ、618…コリメータレンズ、616…ビームスプリッタ、620、622…光ディスク、620a、622a…記録面、626…収束レンズ、624…ホログラフィック索子、628…光検出器、630…信号処理回路、632…フォーカシングコイル、634…トラッキングコイル。

[図2]

TL $_1$ TL $_2$ TH $_1$ TH $_2$ TH $_3$ TL $_3$ (a)

(b)

TL $_3$ TL $_4$ T

[図16]

[図12]

