Clasificación Binaria

Índices de Desempeño o Métricas. Matriz de confusión.

DeepData

¿Para qué las métricas de los clasificadores?

- Ayudan a comprender cómo se desempeña un clasificador.
- Útiles para comparar distintos tipos de clasificadores.
- Selección de hiperparámetros.
- Análisis del comportamiento en distintos conjuntos de datos.

Métricas para clasificadores binarios

- Accuracy
- Precision
- Recall o Sensitivity
- F1

- Matriz de confusión
- Curva ROC y AUC
- Curva PR y AUPRC

¿Qué métricas utilizar?

- ¿Qué representa la métrica?
- ¿Qué características del clasificador son invisibles a la métrica?
- Selección de métrica en base a la aplicación del clasificador.
- Uso de más de una métrica.
- Es la manera de presentar tu clasificador.

Verdaderos Positivos (TP), Falsos Positivos (FP), Verdaderos Negativos (TN) y Falsos Negativos (FN)

- TP (True Positive): Cantidad de instancias positivas que son clasificadas (correctamente) como positivas.
- FP (False Positive): Cantidad de instancias negativas que son clasificadas (incorrectamente) como positivas.
- TN (True Negative): Cantidad de instancias negativas que son clasificadas (correctamente) como negativas.
- FN (False Negative): Cantidad de instancias positivas que son clasificadas (incorrectamente) como negativas.

Verdaderos Positivos (TP), Falsos Positivos (FP), Verdaderos Negativos (TN) y Falsos Negativos (FN)

- TP (True Positive): Cantidad de instancias positivas que son clasificadas (correctamente) como positivas.
- FP (False Positive): Cantidad de instancias negativas que son clasificadas (incorrectamente) como positivas.
- TN (True Negative): Cantidad de instancias negativas que son clasificadas (correctamente) como negativas.
- FN (False Negative): Cantidad de instancias positivas que son clasificadas (incorrectamente) como negativas.

Practiquemos esto con un ejemplo en Python!

Matriz de Confusión

Ejemplo

 Se armará la matriz de confusión desde cero con los valores de TP, FP, TN y FN previamente obtenidos.

• Se comparan los resultados obtenidos aplicando los conocimientos aprendidos con funciones implementadas en scikitlearn.

Vamos a Python!

Conclusiones y continuación

• Conocemos la importancia de las métricas de clasificación.

• Pudimos computar los valores de TP, FP, TN y FN y armar la matriz de confusión.

• Estamos en condiciones de definir e interpretar el resto de las métricas.

