Disease Prediction Using Patient Data

Objective

To train and evaluate machine learning models to predict heart disease based on patient data.

Dataset Overview

- Source: heart.csv dataset
- Features:
 - o Numerical: age, trestbps, chol, thalach, oldpeak
 - o Categorical: cp, restecg, slope, thal, sex, fbs, exang
- Target: target (1: Disease, 0: No Disease)
- Dataset Size:
 - Total Samples: 1025
 Training Set: 820 samples
 Test Set: 205 samples

Methodology

1. Data Preprocessing

- Handling Missing Values: None present in this dataset.
- Scaling: Standardized numerical features.
- **Encoding**: One-hot encoded categorical features, resulting in 25 features post-encoding.

2. Model Training

Three machine learning models were trained:

- Logistic Regression: Baseline linear model.
- **Random Forest**: Ensemble learning method for high accuracy.
- Support Vector Machine (SVM): Non-linear model for better classification.

3. Evaluation Metrics

- **Precision**: Ratio of true positives to predicted positives.
- **Recall**: Ratio of true positives to actual positives.
- **F1-Score**: Harmonic mean of precision and recall.
- **Support**: Total number of samples.

Results

Model Precision Recall F1-Score

Logistic Regression	77.1%	77.1%	77.1%
Random Forest	100.0%	100.0%	100.0%
SVM	87.98%	87.80%	87.79%

Insights

- **Random Forest** achieved perfect performance, indicating possible overfitting.
- **SVM** offers a balanced trade-off between complexity and performance.
- Logistic Regression provides a simple but less accurate baseline.

Recommendations

- Use **Random Forest** for scenarios prioritizing high accuracy.
- Employ **SVM** for a robust and generalizable model.
- Further validation with cross-validation is recommended to confirm Random Forest's performance.

Deliverables

- 1. Code Repository:
 - o Preprocessing pipeline.
 - Training and evaluation scripts for Logistic Regression, Random Forest, and SVM.
- 2. Presentation Slides:
 - o Summary of dataset, analysis, and model performance.
- 3. **Insights Document**:
 - o Detailed analysis and recommendations for future improvements.

Next Steps

- Conduct cross-validation.
- Hyperparameter optimization for SVM and Random Forest.
- Deployment pipeline for real-world predictions.