ENM531: Data-driven modeling and probabilistic scientific computing

Lecture #9: Neural networks



### Confusion matrix





accuracy (ACC)

$$ACC = \frac{TP + TN}{P + N} = \frac{TP + TN}{TP + TN + FP + FN}$$

# Overfitting



Figure 5.9 Examples of two-layer networks trained on 10 data points drawn from the sinusoidal data set. The graphs show the result of fitting networks having  $M=1,\,3$  and 10 hidden units, respectively, by minimizing a sum-of-squares error function using a scaled conjugate-gradient algorithm.

# Overfitting



# Early stopping



### **Dropout**



With probability keep\_prob, outputs the input element scaled up by I / keep\_prob, otherwise outputs 0. The scaling is so that the expected sum is unchanged.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1), 1929-1958.

Gal, Y., & Ghahramani, Z. (2016, June). Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In international conference on machine learning (pp. 1050-1059).

# Dropout



#### Network initialization

#### Understanding the difficulty of training deep feedforward neural networks

#### **Xavier Glorot**

Yoshua Bengio

DIRO, Université de Montréal, Montréal, Québec, Canada

Whereas before 2006 it appears that deep multi-layer neural networks were not successfully trained, since then several algorithms have been shown to successfully train them, with experimental results showing the superiority of deeper vs less deep architectures. All these experimental results were obtained with new initialization or training mechanisms. Our objective here is to understand better why standard gradient descent from random initialization is doing so poorly with deep neural networks, to better understand these recent relative successes and help design better algorithms in the future. We first observe the influence of the non-linear activations functions. We find that the logistic sigmoid activation is unsuited for deep networks with random initialization because of its mean value, which can drive especially the top hidden layer into saturation. Surprisingly, we find that saturated units can move out of saturation by themselves, albeit slowly, and explaining the plateaus sometimes seen when training neural networks. We find that a new non-linearity that saturates less can often be beneficial. Finally, we study how activations and gradients vary across layers and during train- ing, with the idea that training may be more difficult when the singular values of the Jacobian associated with each layer are far from 1. Based on these considerations, we propose a new initialization scheme that brings substantially faster convergence.

#### Network initialization



Figure 6: Activation values normalized histograms with hyperbolic tangent activation, with standard (top) vs normalized initialization (bottom). Top: 0-peak increases for higher layers.



Figure 7: Back-propagated gradients normalized histograms with hyperbolic tangent activation, with standard (top) vs normalized (bottom) initialization. Top: 0-peak decreases for higher layers.

Glorot, X., & Bengio, Y. (2010, March). Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (pp. 249-256).

#### Tricks of the trade

### Efficient BackProp

Yann LeCun<sup>1</sup>, Leon Bottou<sup>1</sup>, Genevieve B. Orr<sup>2</sup>, and Klaus-Robert Müller<sup>3</sup>

- <sup>1</sup> Image Processing Research Department AT& T Labs Research, 100 Schulz Drive, Red Bank, NJ 07701-7033, USA
  - Willamette University, 900 State Street, Salem, OR 97301, USA
  - <sup>3</sup> GMD FIRST, Rudower Chaussee 5, 12489 Berlin, Germany {yann,leonb}@research.att.com, gorr@willamette.edu, klaus@first.gmd.de originally published in
    - Orr, G. and Müller, K. "Neural Networks: tricks of the trade", Springer, 1998.

Abstract. The convergence of back-propagation learning is analyzed so as to explain common phenomenon observed by practitioners. Many undesirable behaviors of backprop can be avoided with tricks that are rarely exposed in serious technical publications. This paper gives some of those tricks, and offers explanations of why they work.

Many authors have suggested that second-order optimization methods are advantageous for neural net training. It is shown that most "classical" second-order methods are impractical for large neural networks. A few methods are proposed that do not have these limitations.

## Normalizing the inputs



Common data preprocessing pipeline. Left: Original toy, 2-dimensional input data. Middle: The data is zero-centered by subtracting the mean in each dimension. The data cloud is now centered around the origin. Right: Each dimension is additionally scaled by its standard deviation. The red lines indicate the extent of the data - they are of unequal length in the middle, but of equal length on the right.

#### Batch normalization

Input: Values of 
$$x$$
 over a mini-batch:  $\mathcal{B} = \{x_{1...m}\}$ ;

Parameters to be learned:  $\gamma$ ,  $\beta$ 

Output:  $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$ 

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}$$

**Algorithm 1:** Batch Normalizing Transform, applied to activation x over a mini-batch.

loffe, S., & Szegedy, C. (2015, June). Batch normalization: Accelerating deep network training by reducing internal covariants shift. In International conference on machine learning (pp. 448-456).

#### Batch normalization

$$\frac{\partial \ell}{\partial \widehat{x}_{i}} = \frac{\partial \ell}{\partial y_{i}} \cdot \gamma$$

$$\frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot (x_{i} - \mu_{\mathcal{B}}) \cdot \frac{-1}{2} (\sigma_{\mathcal{B}}^{2} + \epsilon)^{-3/2}$$

$$\frac{\partial \ell}{\partial \mu_{\mathcal{B}}} = \left(\sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot \frac{-1}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}}\right) + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} \cdot \frac{\sum_{i=1}^{m} -2(x_{i} - \mu_{\mathcal{B}})}{m}$$

$$\frac{\partial \ell}{\partial x_{i}} = \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot \frac{1}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}} + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} \cdot \frac{2(x_{i} - \mu_{\mathcal{B}})}{m} + \frac{\partial \ell}{\partial \mu_{\mathcal{B}}} \cdot \frac{1}{m}$$

$$\frac{\partial \ell}{\partial \gamma} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial y_{i}} \cdot \widehat{x}_{i}$$

$$\frac{\partial \ell}{\partial \beta} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial y_{i}}$$

Nowadays we can get the backward pass for free using automatic differentiation!

loffe, S., & Szegedy, C. (2015, June). Batch normalization: Accelerating deep network training by reducing internal covaria shift. In International conference on machine learning (pp. 448-456).

#### Batch normalization

Just a reminder for when you're doing mini-batch SGD in deep networks...



Computational graph of the BatchNorm-Layer. From left to right, following the black arrows flows the forward pass. The inputs are a matrix X and gamma and beta as vectors. From right to left, following the red arrows flows the backward pass which distributes the gradient from above layer to gamma and beta and all the way back to the input.

Ioffe, S., & Szegedy, C. (2015, June). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning (pp. 448-456).

#### **Motivation:**

- In many applications a large number of quality and error-free data is prohibitively expensive to obtain.
- Under this data-scarce and variable fidelity setting, state-of-the-art ML and SC algorithms are lacking robustness and fail to return predictions with quantified uncertainty.

#### Probabilistic scientific computing:

Recent work has demonstrated how conservation laws and numerical discretization schemes can be used as structured prior information that can enhance the robustness and efficiency of modern machine learning algorithms, and introduce a new class of data-driven solvers and model discovery techniques.

#### Being a field at its infancy, many fundamental questions arise:

- From a SC viewpoint: accuracy, convergence rates, complex dynamics, exascale computing.
- From a ML viewpoint: robustness/brittleness of prior assumptions, regularization of learning, interpretability and rigorous assessment of performance.



#### **Example:** Burgers' equation in 1D

$$u_t + uu_x - (0.01/\pi)u_{xx} = 0, \quad x \in [-1, 1], \quad t \in [0, 1],$$
  
 $u(0, x) = -\sin(\pi x),$   
 $u(t, -1) = u(t, 1) = 0.$  (3)

Let us define f(t,x) to be given by

$$f := u_t + uu_x - (0.01/\pi)u_{xx},$$

```
def u(t, x):
    u = neural_net(tf.concat([t,x],1), weights, biases)
    return u
```

Correspondingly, the physics informed neural network f(t,x) takes the form

```
def f(t, x):
    u = u(t, x)
    u_t = tf.gradients(u, t)[0]
    u_x = tf.gradients(u, x)[0]
    u_xx = tf.gradients(u_x, x)[0]
    f = u_t + u*u_x - (0.01/tf.pi)*u_xx
    return f
```

The shared parameters between the neural networks u(t, x) and f(t, x) can be learned by minimizing the mean squared error loss

$$MSE = MSE_u + MSE_f, (4)$$

where

$$MSE_u = \frac{1}{N_u} \sum_{i=1}^{N_u} |u(t_u^i, x_u^i) - u^i|^2,$$

and

$$MSE_f = \frac{1}{N_f} \sum_{i=1}^{N_f} |f(t_f^i, x_f^i)|^2.$$

Here,  $\{t_u^i, x_u^i, u^i\}_{i=1}^{N_u}$  denote the initial and boundary training data on u(t, x) and  $\{t_f^i, x_f^i\}_{i=1}^{N_f}$  specify the collocations points for f(t, x). The loss  $MSE_u$  corresponds to the initial and boundary data while  $MSE_f$  enforces the structure imposed by equation (3) at a finite set of collocation points.



Figure 1: Burgers' equation: Top: Predicted solution u(t,x) along with the initial and boundary training data. In addition we are using 10,000 collocation points generated using a Latin Hypercube Sampling strategy. Bottom: Comparison of the predicted and exact solutions corresponding to the three temporal snapshots depicted by the white vertical lines in the top panel. The relative  $\mathcal{L}_2$  error for this case is  $6.7 \cdot 10^{-4}$ . Model training took approximately 60 seconds on a single NVIDIA Titan X GPU card.

| $N_u$ | 2000    | 4000    | 6000    | 7000    | 8000    | 10000   |
|-------|---------|---------|---------|---------|---------|---------|
| 20    | 2.9e-01 | 4.4e-01 | 8.9e-01 | 1.2e+00 | 9.9e-02 | 4.2e-02 |
| 40    | 6.5e-02 | 1.1e-02 | 5.0e-01 | 9.6e-03 | 4.6e-01 | 7.5e-02 |
| 60    | 3.6e-01 | 1.2e-02 | 1.7e-01 | 5.9e-03 | 1.9e-03 | 8.2e-03 |
| 80    | 5.5e-03 | 1.0e-03 | 3.2e-03 | 7.8e-03 | 4.9e-02 | 4.5e-03 |
| 100   | 6.6e-02 | 2.7e-01 | 7.2e-03 | 6.8e-04 | 2.2e-03 | 6.7e-04 |
| 200   | 1.5e-01 | 2.3e-03 | 8.2e-04 | 8.9e-04 | 6.1e-04 | 4.9e-04 |

Table 1: Burgers' equation: Relative  $\mathcal{L}_2$  error between the predicted and the exact solution u(t,x) for different number of initial and boundary training data  $N_u$ , and different number of collocation points  $N_f$ . Here, the network architecture is fixed to 9 layers with 20 neurons per hidden layer.

| Neurons Layers | 10      | 20                 | 40      |
|----------------|---------|--------------------|---------|
| 2              | 7.4e-02 | 5.3e-02            | 1.0e-01 |
| 4              | 3.0e-03 | 5.3e-02<br>9.4e-04 | 6.4e-04 |
| 6              |         | 1.3e-03            |         |
| 8              | 2.5e-03 | 9.6e-04            | 5.6e-04 |

Table 2: Burgers' equation: Relative  $\mathcal{L}_2$  error between the predicted and the exact solution u(t,x) for different number of hidden layers and different number of neurons per layer. Here, the total number of training and collocation points is fixed to  $N_u = 100$  and  $N_f = 10,000$ , respectively.

## Physics-informed neural networks



## **Applications**

#### Classification



#### Unsupervised learning





