

Neural Network Basics

Shi Yu, Chaoqun He, Jing Yi

THUNLP

- Neural Network Components
 - Simple Neuron; Multilayer; Feedforward; Non-linear; ...
- How to Train
 - Objective; Gradients; Backpropogation
- Word Representation: Word2Vec
- Common Neural Networks
 - RNN
 - Sequential Memory; Language Model
 - Gradient Problem for RNN
 - Variants: GRU; LSTM; Bidirectional;
 - CNN
- NLP Pipeline Tutorial (PyTorch)

Neural Network Components

Shi Yu

THUNLP

- (Artificial) Neural Network
- Inspired by the biological neural networks in brains

Source: Wikipedia

(Artificial) Neuron

• A neuron is a computational unit with n inputs and 1 output and parameters ${\it w}, {\it b}$

$$h_{\mathbf{w},b}(\mathbf{x}) = f(\mathbf{w}^T \mathbf{x} + b)$$

Single Layer Neural Network

 A single layer neural network: Hooking together many simple neurons

Matrix Notation

 A single layer neural network: Hooking together many simple neurons

$$a_1 = f(W_{11}x_1 + W_{12}x_2 + W_{13}x_3 + b_1)$$

$$a_2 = f(W_{21}x_1 + W_{22}x_2 + W_{23}x_3 + b_2)$$

$$a_3 = f(W_{31}x_1 + W_{32}x_2 + W_{33}x_3 + b_3)$$

In matrix form:

$$a = f(Wx + b)$$

Multilayer Neural Network

Stacking multiple layers of neural networks

Feedforward Computation

Feedforward Computation

Why use non-linearities (f)?

- Without non-linearities, deep neural networks cannot do anything more than a linear transform
 - Extra layers could just be compiled down into a single linear transform

$$h_1 = W_1 x + b_1$$
 $h_2 = W_2 h_1 + b_2$ $h_2 = W_2 W_1 x + W_2 b_1 + b_2$

 With non-linearities, neural networks can approximate more complex functions with more layers!

Choices of non-linearities

• Sigmoid

$$f(z) = \frac{1}{1 + e^{-z}}$$

• Tanh

$$f(z) = \tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

• ReLU

$$f(z) = \max(z, 0)$$

• ...

Output Layer

Output Layer

- Linear output
 - $y = \mathbf{w}^T \mathbf{h} + b$
- Sigmoid
 - $y = \sigma(\mathbf{w}^T \mathbf{h} + b)$
 - For binary classification
 - *y* for one class
 - 1 y for another

Output layer

 \boldsymbol{h} y

Output Layer

Softmax

- $y_i = \operatorname{softmax}(\mathbf{z})_i = \frac{\exp(z_i)}{\sum_j \exp(z_j)}$
- z = Wh + b
- For multi-class classification

Output layer

h

- Simple neuron
- Single layer neural network
- Multilayer neural network
 - Stack multiple layers of neural networks
- Non-linearity activation function
 - Enable neural nets to represent more complicated features
- Output layer
 - For desired output

How to Train a Neural Network

Shi Yu

THUNLP

Mean Squared Error

• Given N training examples $\{(x_i, y_i)\}_{i=1}^N$ where x_i and y_i are the attributes and price of a computer. We want to train a neural network $F_{\theta}(\cdot)$ which takes the attributes x as input and predicts its price y. A reasonable training objective is Mean Squared Error:

$$\min_{\theta} J(\theta) = \min_{\theta} \frac{1}{N} \sum_{i=1}^{N} (y_i - F_{\theta}(x_i))^2,$$

where θ is the parameters in neural network $F_{\theta}(\cdot)$.

Cross-entropy

• Given N training examples $\{(x_i, y_i)\}_{i=1}^N$ where x_i and y_i are the sentence and its sentiment label. We want to train a neural network $F_{\theta}(\cdot)$ which takes the sentence x as input and predicts its sentiment y. A reasonable training objective is Cross-entropy:

$$\min_{\theta} J(\theta) = \min_{\theta} -\frac{1}{N} \sum_{i=1}^{N} \log P_{\text{model}}(F_{\theta}(x_i) = y_i),$$

where θ is the parameters in neural network $F_{\theta}(\cdot)$.

Training Objective

Cross-entropy

$$\min_{\theta} J(\theta) = \min_{\theta} -\frac{1}{N} \sum_{i=1}^{N} \log P_{\text{model}}(F_{\theta}(x_i) = y_i),$$

Output distribution

 ${oldsymbol{y}}$

h

If ground truth is y=1 (first class), then the loss for this instance is

$$-\log P_{\text{model}}(F_{\theta}(x) = 1) = -\log(0.6) = 0.74.$$

$$-\log P_{\text{model}}(F_{\theta}(x) = 2) = -\log(0.3) = 1.74.$$

$$-\log P_{\text{model}}(F_{\theta}(x) = 3) = -\log(0.1) = 3.32.$$

Stochastic Gradient Descent

Update rule:

$$\theta^{new} = \theta^{old} - \alpha \nabla_{\theta} J(\theta)$$
 α is step size or learning rate

- Just like climbing a mountain
 - find the steepest direction
 - take a step

Given a function with 1 output and n inputs:

$$F(x) = F(x_1, x_2 ... x_n)$$

• Its gradient is a vector of partial derivatives:

$$\frac{\partial F}{\partial x} = \left[\frac{\partial F}{\partial x_1}, \frac{\partial F}{\partial x_2} ... \frac{\partial F}{\partial x_n} \right]$$

Jacobian Matrix: Generalization of the Gradient

• Given a function with m outputs and n inputs:

$$F(\mathbf{x}) = [F_1(x_1, x_2 ... x_n), F_2(x_1, x_2 ... x_n) ... F_m(x_1, x_2 ... x_n)]$$

• Its Jacobian matrix is an $m \times n$ matrix of partial derivatives:

$$\frac{\partial F}{\partial x} = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \dots & \frac{\partial F_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial x_1} & \dots & \frac{\partial F_m}{\partial x_n} \end{bmatrix} \qquad \left(\frac{\partial F}{\partial x}\right)_{ij} = \frac{\partial F_i}{\partial x_j}$$

Chain Rule for Jacobians

For one-variable functions: multiply derivatives

$$z = 3y$$

$$y = x^{2}$$

$$\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx} = 3 \times 2x = 6x$$

For multiple variables: multiply Jacobians

$$h = f(z)$$

$$z = Wx + b$$

$$\frac{\partial h}{\partial x} = \frac{\partial h}{\partial z} \frac{\partial z}{\partial x} = \cdots$$

Back to Neural Network

• Given $s = u^T h$, h = f(z), z = Wx + b, what is $\frac{\partial s}{\partial b}$?

Back to Neural Network

- Given $s = u^T h$, h = f(z), z = Wx + b, what is $\frac{\partial s}{\partial b}$?
 - Apply the chain rule:

Backpropagation

Compute gradients algorithmically

 Used by deep learning frameworks (TensorFlow, PyTorch, etc.)

Computational Graphs

- Representing our neural net equations as a graph
 - Source node: inputs
 - Interior nodes: operations
 - Edges pass along result of the operation

$$s = u^{T}h$$

 $h = f(z)$
 $z = Wx + b$
 x input

- Go backwards along edges
 - Pass along gradients

$$s = u^{T}h$$

 $h = f(z)$
 $z = Wx + b$
 x input

Backpropagation: Single Node

- Node receives an "upstream gradient"
- Goal is to pass on the correct "downstream gradient"

Backpropagation: Single Node

- Each node has a local gradient
 - The gradient of its output with respect to its input

Backpropagation: Single Node

- Each node has a local gradient
 - The gradient of its output with respect to its input
- [downstream gradient] = [upstream gradient] x [local gradient]

$$\mathbf{h} = f(\mathbf{z})$$

$$f(x, y, z) = (x + y) \max(y, z)$$

 $x = 1, y = 2, z = 0$

Forward prop steps:

$$a = x + y = 3$$

$$b = \max(y, z) = 2$$

$$f = ab = 6$$

$$\frac{\partial a}{\partial x} = 1, \frac{\partial a}{\partial y} = 1$$

$$\frac{\partial b}{\partial y} = \mathbf{1}(y > z) = 1, \frac{\partial b}{\partial z} = \mathbf{1}(z > y) = 0$$

$$\frac{\partial f}{\partial a} = b = 2, \frac{\partial f}{\partial b} = a = 3$$

$$f(x, y, z) = (x + y) \max(y, z)$$

 $x = 1, y = 2, z = 0$

Forward prop steps:

$$a = x + y = 3$$

$$b = \max(y, z) = 2$$

$$f = ab = 6$$

$$\frac{\partial a}{\partial x} = 1, \frac{\partial a}{\partial y} = 1$$

$$\frac{\partial b}{\partial y} = \mathbf{1}(y > z) = 1, \frac{\partial b}{\partial z} = \mathbf{1}(z > y) = 0$$

$$\frac{\partial f}{\partial a} = b = 2, \frac{\partial f}{\partial b} = a = 3$$

$$f(x, y, z) = (x + y) \max(y, z)$$

 $x = 1, y = 2, z = 0$

Forward prop steps:

$$a = x + y = 3$$

$$b = \max(y, z) = 2$$

$$f = ab = 6$$

$$\frac{\partial a}{\partial x} = 1, \frac{\partial a}{\partial y} = 1$$

$$\frac{\partial b}{\partial y} = \mathbf{1}(y > z) = 1, \frac{\partial b}{\partial z} = \mathbf{1}(z > y) = 0$$

$$\frac{\partial f}{\partial a} = b = 2, \frac{\partial f}{\partial b} = a = 3$$

$$f(x, y, z) = (x + y) \max(y, z)$$

 $x = 1, y = 2, z = 0$

Forward prop steps:

$$a = x + y = 3$$

$$b = \max(y, z) = 2$$

$$f = ab = 6$$

$$\frac{\partial a}{\partial x} = 1, \frac{\partial a}{\partial y} = 1$$

$$\frac{\partial b}{\partial y} = \mathbf{1}(y > z) = 1, \frac{\partial b}{\partial z} = \mathbf{1}(z > y) = 0$$

$$\frac{\partial f}{\partial a} = b = 2, \frac{\partial f}{\partial b} = a = 3$$

$$f(x, y, z) = (x + y) \max(y, z)$$

 $x = 1, y = 2, z = 0$

Forward prop steps:

$$a = x + y = 3$$

$$b = \max(y, z) = 2$$

$$f = ab = 6$$

$$\frac{\partial a}{\partial x} = 1, \frac{\partial a}{\partial y} = 1$$

$$\frac{\partial b}{\partial y} = \mathbf{1}(y > z) = 1, \frac{\partial b}{\partial z} = \mathbf{1}(z > y) = 0$$
$$\frac{\partial f}{\partial a} = b = 2, \frac{\partial f}{\partial b} = a = 3$$

An Example

$$f(x, y, z) = (x + y) \max(y, z)$$

 $x = 1, y = 2, z = 0$

Forward prop steps:

$$a = x + y = 3$$

$$b = \max(y, z) = 2$$

$$f = ab = 6$$

Local gradients:

$$\frac{\partial a}{\partial x} = 1, \frac{\partial a}{\partial y} = 1$$

$$\frac{\partial b}{\partial y} = \mathbf{1}(y > z) = 1, \frac{\partial b}{\partial z} = \mathbf{1}(z > y) = 0$$

$$\partial f \qquad \partial f$$

$$\frac{\partial f}{\partial a} = b = 2, \frac{\partial f}{\partial b} = a = 3$$

$$\frac{\partial f}{\partial x} = 2 \qquad x \qquad 1 \qquad + \qquad = 3$$

$$\frac{\partial f}{\partial y} = 3 + 2 = 5 \qquad y \qquad 2 \qquad b = 2$$

$$\frac{\partial f}{\partial x} = 3 + 2 = 5 \qquad y \qquad 0 \qquad + \qquad = 3$$

Summary

 Forward pass: compute results of operation and save intermediate values

- Backpropagation: recursively apply the chain rule along computational graph to compute gradients
 - [downstream gradient] = [upstream gradient] x [local gradient]

Word Representation: Word2Vec

Shi Yu

THUNLP

- Word2vec uses shallow neural networks that associate words to distributed representations
- It can capture many linguistic regularities, such as:

Typical Models

- Word2vec can utilize two architectures to produce distributed representations of words:
 - Continuous bag-of-words (CBOW)
 - Continuous skip-gram

41

Sliding Window

- Word2vec uses a sliding window of a fixed size moving along a sentence
- In each window, the middle word is the target word, other words are the context words
 - Given the context words, CBOW predicts the probabilities of the target word
 - While given a target word, skip-gram predicts the probabilities of the context words

An Example of the Sliding Window

43

Continuous Bag-of-Words

- In CBOW architecture, the model predicts the target word given a window of surrounding context words
- According to the bag-of-word assumption: The order of context words does not influence the prediction
 - Suppose the window size is 5
 - Never too late to learn
 - $P(late|[never, too, to, learn]) \dots$

Continuous Bag-of-Words

• Never too late to learn

Continuous Skip-Gram

- In skip-gram architecture, the model predicts the context words from the target word
 - Suppose the window size is 5
 - Never too late to learn
 - P([too, late]|Never), P([Never, late, to]|too), ...
 - Skip-gram predict one context word each step, and the training samples are:
 - P(too|Never), P(late|Never), P(Never|too), P(late|too), P(to|too), ...

Continuous Skip-Gram

• Never too late to learn

- When the vocabulary size is very large
 - Softmax for all the words every step depends on a huge number of model parameters, which is computationally impractical
 - We need to improve the computation efficiency

Improving Computational Efficiency

- In fact, we do not need a full probabilistic model in word2vec
- There are two main improvement methods for word2vec:
 - Negative sampling
 - Hierarchical softmax

- As we discussed before, the vocabulary is very large, which means our model has a tremendous number of weights need to be updated every step
- The idea of negative sampling is, to only update a small percentage of the weights every step

 Since we have the vocabulary and know the context words, we can select a couple of words not in the context word list by probability:

$$P(w_i) = \frac{f(w_i)^{3/4}}{\sum_{j=1}^{V} f(w_j)^{3/4}}$$

 $f(w_i)$ is the frequency of w_i , compared to $\frac{f(w_i)}{\sum_{j=1}^V f(w_j)}$, this can increase the probability of low-frequency words.

 Here is one training step of skip-gram model which computes all probabilities at the output layer

• Suppose we only sample 4 negative words:

- Then we can compute the loss, and optimize the weights (not all of the weights) every step
- Suppose we have a weight matrix of size $300\times10,000$, the output size is 5
- We only need to update 300×5 weights, that is only 0.05% of all the weights

Other Tips for Learning Word Embeddings

• **Sub-Sampling.** Rare words can be more likely to carry distinct information, according to which, sub-sampling discards words w with probability:

$$1 - \sqrt{t/f(w)}$$

f(w) is the word frequency and t is an adjustable threshold.

Other Tips for Learning Word Embeddings

- **Soft sliding window.** Sliding window should assign less weight to more distant words
- Define the max size of the sliding window as S_{max} , the actual window size is randomly sampled between 1 and S_{max} for every training sample
- Thus, those words near the target word are more likely to be in the window

Recurrent Neural Networks (RNNs)

Chaoqun He

THUNLP

Sequential Memory

- Key concept for RNNs: Sequential memory during processing sequence data
- Sequential memory of human:
 - Say the alphabet in your head

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Pretty easy

Sequential Memory

- Key concept for RNNs: Sequential memory during processing sequence data
- Sequential memory of human:
 - Say the alphabet backward

ZYXWVUTSRQPONMLKJIHGFEDCBA

Much harder

Sequential Memory

 Definition: a mechanism that makes it easier for your brain to recognize sequence patterns

 RNNs update the sequential memory recursively for modeling sequence data

Recurrent Neural Networks

Recurrent Neural Networks

RNN Cell

$$h_i = \tanh(W_x x_i + W_h h_{i-1} + b)$$
$$y_i = F(h_i)$$

RNN Language Model

RNN Language Model

RNN Language Model

output distribution

$$y_4 = softmax(Uh_4 + b_2) \in \mathbb{R}^{|V|}$$

word embeddings

$$x_i = Ew_i$$

one-hot vectors

$$w_i \in \mathbb{R}^{|V|}$$

code

read

Sequence Labeling

 Given a sentence, the lexical properties of each word are required

Sequence Prediction

 Given the temperature for seven days a week, predict the weather conditions for each day

Photograph Description

 Given a photograph, create a sentence that describes the photograph

Text Classification

 Given a sentence, distinguish whether the sentence has a positive or negative emotion

Advantages:

- Can process any length input
- Model size does not increase for longer input
- Weights are shared across timesteps
- Computation for step i can (in theory) use information from many steps back

• Disadvantages:

- Recurrent computation is slow
- In practice, it's difficult to access information from many steps back

Gradient Problem for RNN

Gradient vanish or explode

$$h_i = \tanh(W_x x_i + W_h h_{i-1} + b)$$

$$\Delta w_1 = rac{\partial Loss}{\partial w_2} = rac{\partial Loss}{\partial h_n} rac{\partial h_n}{\partial h_{n-1}} rac{\partial h_{n-1}}{\partial h_{n-2}} \dots rac{\partial h_3}{\partial h_2} rac{\partial h_2}{\partial w_2}$$

Too many chain derivations

>1. As the number of layers increases, the gradient update will increase exponentially, i.e., a gradient explosion occurs

<1. As the number of layers increases, the gradient update will decay exponentially, i.e., gradient disappearance occurs.

RNN Variants

Chaoqun He

THUNLP

Solution for Better RNNs

- Better Units!
- The main solution to the Vanishing Gradient Problem is to use a more complex hidden unit computation in recurrence
 - GRU
 - LSTM
- Main ideas:
 - Keep around memories to capture long distance dependencies

Gated Recurrent Unit (GRU)

Chaoqun He

THUNLP

 Vanilla RNN computes hidden layer at next time step directly:

$$h_i = \tanh(W_{\mathcal{X}}x_i + W_h h_{i-1} + b)$$

- Introduce gating mechanism into RNN
- Update gate

$$z_i = \sigma(W_x^{(z)} x_i + W_h^{(z)} h_{i-1} + b^{(z)})$$

Reset gate

$$r_i = \sigma(W_x^{(r)} x_i + W_h^{(r)} h_{i-1} + b^{(r)})$$

 Gates are used to balance the influence of the past and the input

Update gate

$$z_i = \sigma(W_x^{(z)} x_i + W_h^{(z)} h_{i-1} + b^{(z)})$$

Reset gate

$$r_i = \sigma(W_x^{(r)} x_i + W_h^{(r)} h_{i-1} + b^{(r)})$$

• New activation \tilde{h}_i

$$\tilde{h}_i = \tanh(W_{\chi} x_i + r_i * W_h h_{i-1} + b)$$

• Final hidden state h_i

$$h_i = z_i * h_{i-1} + (1 - z_i) * \tilde{h}_i$$

Where * refers to element-wise product

• If reset r_i is close to 0 $\tilde{h}_i \approx \tanh(W_x x_i + 0 * W_h h_{i-1} + b)$

$$\tilde{h}_i \approx \tanh(W_x x_i + b)$$

• Ignore previous hidden state, which indicates the current activation is irrelevant to the past.

• E.g., at the beginning of a new article, the past information is useless for the current activation.

- Update gate z_i controls how much of past state should matter compared to the current activation.
- If z_i close to 1, then we can copy information in that unit through many time steps!

$$h_i = 1 * h_{i-1} + (1-1) * \tilde{h}_i = h_{i-1}$$

• If z_i close to 0, then we drop information in that unit and fully take the current activation.

Long Short-Term Memory Network (LSTM)

Chaoqun He

THUNLP

- Long Short-Term Memory network (LSTM)
- LSTM are a special kind of RNN, capable of learning long-term dependencies like GRU

• The key to LSTMs is the cell state C_t

- Extra vector for capturing long-term dependency
- Runs straight through the entire chain, with only some minor linear interactions
- Easy to remove or add information to the cell state

- The first step is to decide what information to throw away from the cell state
- Forget gate f_t

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

- Where $[h_{t-1}, x_t]$ is the concatenation of vectors
- Forget past if $f_t = 0$

- The next step is to decide what information to store in the cell state
- Input gate i_t and new candidate cell state $ilde{C}_t$

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

• Recall z_t and \tilde{h}_t in GRUs

- Update the old cell state C_{t-1}
- Combine the results from the previous two steps

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

- The final step is to decide what information to output
- Adjust the sentence information for a specific word representation

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

 Powerful especially when stacked and made even deeper (each hidden layer is already computed by a deep internal network)

Very useful if you have plenty of data

Bidirectional RNNs

Chaoqun He

THUNLP

Bidirectional RNNs

• In traditional RNNs, the state at time *t* only captures information from the past

$$h_t = f(x_{t-1}, \dots, x_2, x_1)$$

- Problem: in many applications, we want to have an output y_t depending on the whole input sequence
- For example
 - Handwriting recognition
 - Speech recognition

Bidirectional RNNs

- Recurrent Neural Network
 - Sequential Memory
 - Gradient Problem for RNN
- RNN Variants
 - Gated Recurrent Unit (GRU)
 - Long Short-Term Memory Network (LSTM)
 - Bidirectional Recurrent Neural Network

Convolutional Neural Networks (CNNs)

Chaoqun He

THUNLP

CNN for Sentence Representation

- Convolutional Neural Networks (CNNs)
 - Generally used in Computer Vision (CV)
 - Achieve promising results in a variety of NLP tasks:
 - Sentiment classification
 - Relation classification
 - ...
- CNNs are good at extracting local and positioninvariant patterns
 - In CV, colors, edges, textures, etc.
 - In NLP, phrases and other local grammar structures

CNN for Sentence Representation

- CNNs extract patterns by:
 - Computing representations for all possible n-gram phrases in a sentence.
 - Without relying on external linguistic tools (e.g., dependency parser)

The plane is taking off

- Input Layer
- Convolutional Layer
- Max-pooling Layer

- Transform words into input representations x via word embeddings
- $\mathbf{x} \in \mathbb{R}^{m \times d}$: input representation
 - *m* is the length of sentence
 - *d* is the dimension of word embeddings

The		
students		
opened		
their		
books		
and		

Convolution Layer

- Extract feature representation from input representation via a sliding convolving filter
 - $\mathbf{x} \in \mathbb{R}^{m \times d}$: input representation
 - $\mathbf{x}_{i:i+j} \in \mathbf{R}^{(j+1)d}$: (j+1)-gram representation, concatenation of $\mathbf{x}_i, \mathbf{x}_{i+1}, \dots, \mathbf{x}_{i+j}$
 - $\mathbf{w} \in \mathbb{R}^{h \times d}$: convolving filter, b is a bias term (h is window size)
 - $\mathbf{f} \in \mathbb{R}^{n-h+1}$: convolved feature representation
 - · is dot product

Convolution Layer

 Extract feature representation from input representation via a sliding convolving filter

$$\mathbf{f}_{i} = \mathbf{w} \cdot \mathbf{x}_{i:i+h-1} + \mathbf{b}, \quad i = 1, 2, ..., n - h + 1$$

Convolution Layer

 Extract feature representation from input representation via a sliding convolving filter

$$\mathbf{f}_{i} = \mathbf{w} \cdot \mathbf{x}_{i:i+h-1} + \mathbf{b}, \quad i = 1, 2, ..., n - h + 1$$

Input window $\mathbf{x}_{i:i+h-1}$

Object Detection

You Only Look Once: Unified, Real-Time Object
 Detection

Video Classification

 Large-scale Video Classification with Convolutional Neural Networks

Speech Recognition

 Convolutional, Long Short-Term Memory, fully connected Deep Neural Networks

Text Classification

 Convolutional Neural Networks for Sentence Classification

• CNN vs. RNN

	CNNs	RNNs
Advantages	Extracting local and position-invariant features	Modeling long-range context dependency
Parameters	Less parameters	More parameters
Parallelization	Better parallelization within sentences	Cannot be parallelized within sentences

- Convolutional Neural Network
 - Architecture
 - Input layer
 - Convolution layer
 - Max-pooling layer
 - Non-linear layer
 - Extract local features
 - Capture different n-gram patterns

NLP Pipeline Tutorial (PyTorch)

Jing Yi

THUNLP

Pipeline for Deep Learning

- prepare data
- build model

- train model
- evaluate model
- test model

word language model

- target: to predict next word
 - input: never too old to learn
 - output: too old to learn English
- model: LSTM
- loss: cross_entropy

task: sentiment analysis

• dataset: glue-sst2

• model: RNN or any other you interested in.

Thanks

THUNLP