Convolutions

© 2019 Philipp Krähenbühl and Chao-Yuan Wu

Images and structure

 Fully connected networks are not shift invariant

Finding shift-invariant patterns

Convolutions

• "Sliding" linear transformation

*

a	b	С
d	e	f
g	h	i

Examples of convolutions

Original

Vertical edges

Horizontal edges

Laplace filter

-1	-1	-1
-1	8	-1
-1	-1	-1

Convolutions on multiple channels

Original

Vertical edges

Horizontal edges

Laplace filter

-1	0	1
-1	0	1
-1	0	1

_	-1	-1	-1
()	0	0
	1	1	1

-1	-1	-1
-1	8	-1
-1	-1	-1

Formal definition

- Input: $\mathbf{X} \in \mathbb{R}^{H \times W \times C_1}$
- Kernel: $\mathbf{w} \in \mathbb{R}^{h \times w \times C_1 \times C_2}$
- Bias: $\mathbf{b} \in \mathbb{R}^{C_2}$
- Output: $\mathbf{Z} \in \mathbb{R}^{(H-h+1)\times (W-w+1)\times C_2}$

$$\mathbf{Z}_{a,b,c} = \mathbf{b}_c + \sum_{i=0}^{h} \sum_{j=0}^{w} \sum_{k=0}^{C_1} \mathbf{X}_{a+i,b+j,k} w_{i,j,k,c}$$

Stacking multiple layers

Convolution as a linear layer

input: $3 \times 3 \times 1$

kernel: 2 x 2 x 1 x 1

a	b
С	d

output: 2 x 2 x 1

input: 9

weight: 4 x 9

a	b		С	d				
	a	b		С	d			
			a	b		С	d	
				a	b		С	d

output: 4

Special case: 1x1 convolution

 Pixel-wise linear transformation

• Kernel: $1 \times 1 \times C_1 \times C_2$

