

Search for single top production at CDF

University of Karlsruhe for the CDF Collaboration

SUSY07 27.07.2007 Karlsruhe

Single top quark production

At the Tevatron, top quarks are

primarily produced in pairs via the strong interaction

B.W. Harris et al. Phys. Rev. D 66, 054024 (2002), Z. Sullivan, Phys. Rev. D 70, 114012 (2004)
compatible results: Campbell/Ellis/Tramontano, Phys. Rev. D 70, 094012 (2004)
N. Kidonakis, Phys.Rev. D 74, 114012 (2006)

Why measure single top?

- Source of single ~100% polarized top quarks:
 - Test V-A structure of W-t-b vertex
 - Access to the top quark spin
- Test of the SM prediction. Does it exist?
 - Cross section $\sim |V_{tb}|^2$
 - \rightarrow allows direct measurment of V_{tb}
 - Test unitarity of the CKM matrix, .e.g. Hints for existence of a 4th generation?
 - Test of *b* quark structure function: DGLAP evolution

 $V_{ub}^2 + V_{cb}^2 + V_{tb}^2 = 1$

Sensitivity to new physics

Same final state signature as Higgs: WH, H → bbbar. Understanding single-top backgrounds is a prerequisite for Higgs searches at the Tevatron. Same tools can be applied for Higgs searches.

 $\sigma_{W\!H} \sim rac{1}{10} \sigma_{
m single\,top} \ ar{d}$

- Test non-SM phenomena
 - Search W' or H⁺ (s-channel signature)
 - Search for FCNC, e.g. $ug \rightarrow t$

...

Event signature and selection

Event Selection:

- •1 Lepton, $E_T > 15 \text{ GeV}$, $|\eta| < 2.0$
- •Missing $E_{T}(MET) > 25 \text{ GeV}$
- •2 Jets, $E_T > 15 \text{ GeV}$, $|\eta| < 2.8$
- **Veto** QCD, Conversions, Cosmics, Z-Veto $\Delta \phi$ (Et of leading jet and MET) vs. MET
- •At least one b-tagged jet, (secondary vertex tag)

Number of events / 955 pb ⁻¹	Single Top	Bkg	S/B
W(lv) + 2 jets	74	15500	~1/210
W(lv) + 2 jets + b-tag	38	540	~1/15

CDF Run II Preliminary

2 Jet bin Wbb Wcc $\overline{\text{Wc}}$ ttbar **Mistags**

Top/EWK (WW/WZ/Z→bb, ttbar)

•MC normalized to theoretical cross-section

Background composition

W+HF jets (Wbb/Wcc/Wc)

W+jets normalization from data and heavy flavor (HF) fractions from ALPGEN Monte Carlo, calibrated in generic multijet data

Mistags (W+2jets)

- Falsely tagged light quark or gluon jets
- Mistag probability parameterization obtained from inclusive jet data

Non-W (QCD)

- Multijet events with semileptonic *b*-decays or mismeasured jets
- Fit low missing E_T data and extrapolate into signal region

Event Yield

s-channel	15.4 ± 2.2
t-channel	22.4 ± 3.6
tt	58.4 ±13.5
Diboson	13.7 ± 1.9
Z + jets	11.9 ± 4.4
Wbb	170.9 ± 50.7
Wcc	63.5 ± 19.9
Wc	68.6 ± 19.0
Non-W	26.2 ± 15.9
Mistags	136.1 ± 19.7
Single top	37.8 ± 5.9
Total background	549.3 ± 95.2
Total prediction	587.1 ± 96.6
Observed	644

Single top hidden behind background uncertainty!

→ Makes counting experiment impossible!

Improved b jet identification

Fit to NN output for W + 2 jets events with one secondary vertex (955 pb⁻¹)

About 50% of the background in the W + 2 jets sample do **NOT** contain **b quarks** even though a secondary vertex was required!

Jet and track variables, e.g. vertex mass, decay length, track multiplicity, ...

neural network

powerful discriminant

Search strategy

"Combined Search"

t-channel and s-channel singletop regarded as one single top signal.

Cross section ratio is fixed to SM value.

"Separate Search"

t-channel and s-channel are regarded as separate processes 2D fit in $\sigma(s)$ vs. $\sigma(t)$ plane

Multivariate Analysis

Matrix elements

Likelihood discriminants

Neural Networks

Matrix Element Analysis

Idea: Compute an event probability P for signal and background hypotheses:

Leading Order matrix element (MadEvent)

 $W_j(E_j, E_p)$ is the probability of measuring a jet energy E_j if E_p was produced.

$$P(p_{\ell}^{\mu}, p_{j1}^{\mu}, p_{j2}^{\mu}) = \frac{1}{\sigma} \int dE_{j1} dE_{j2} dp_{\nu}^{z} \sum_{\text{comb}} |M(p_{i}^{\mu})|^{2} \frac{f(q_{1})f(q_{2})}{|q_{1}| \cdot |q_{2}|} \phi_{4} W_{j}(E_{j}, E_{p})$$

input: lepton and 2 jets 4-vectors!

integration over part of the phase space Φ_4

parton distribution functions (CTEQ5)

Computation of P for signal and background processes:

Matrix Element Discriminant

Combination of all matrix element probabilities to one discriminant:

$$\text{EPD} = \frac{b \cdot (\alpha P_{\text{tch}} + \beta P_{\text{sch}})}{b \cdot (\alpha P_{\text{tch}} + \beta P_{\text{sch}} + \gamma P_{Wbb}) + (1 - b)(\delta P_{Wcc} + \epsilon P_{Wcj})}$$

b = (1 + neural network b tagger output)/2

 α , β , γ , δ , ϵ = normalisation coefficients

a priori sensitivity: 2.5σ

Observation: 2.3 σ excess of single-top events

Neural Network Analysis

Idea: combine many variables into one more powerful discriminant

18 variables are used, among them $Q \cdot \eta$, reconstructed top quark mass, top quark polarisation angle, Jet E_T and η , NN b tagger output, W boson , ...

Neural Network Results

a priori sensitivity: 2.6 σ

$$\sigma$$
 (t-chan.) = 0.2 ^{+1.1} _{-0.2} pb (SM: 1.98 pb)

$$σ$$
 (s-chan.) = 0.7 +1.5 _{-0.7} pb (SM: 0.88 pb)

histogram based t-channel likelihood discriminant

Observe deficit in the signal region!

Likelihood Discriminants

Use t- and s-channel likelihood discriminants in a 2D fit

	p-value	95% C.L. limit
observed	58.3%	2.7 pb
expected	$2.3\%~(2.0\sigma)$	2.9 pb

p-value = probability that observation is
due to background fluctuation alone

Expected limits: assume no single-top present in ensemble tests

Best fit:

$$\sigma_{\text{tchan}} = 0.2^{+0.9}_{-0.2} \, \text{pb}$$

$$\sigma_{\rm schan} = 0.1^{+0.7}_{-0.1}\,{\rm pb}$$

Overview and compatibility

Method	Neural N	Vetworks	Matrix Elements	Likelihood Function
	1D	2D	1D	2D
Expected p-value	0.5% ≅ 2.6 σ	0.4% ≅ 2.6 σ	0.6% ≅ 2.5 σ	2.5% ≅ 2.0 σ
Observed p- value	54.6%	21.9%	1.0% ≅ 2.3 σ	58.5%

At present, CDF results (955 pb⁻¹) differ: two analyses see no evidence, one has a signal at almost the SM rate.

Consistency of 4 analyses based on common ensemble tests assuming the SM ratio of t-channel to s-channel: 1%.

correlation

Why do the results differ

Analyses were essentially ready in July 2006.

Differing results caused a multitude of cross checks.

ME = Matrix Element NN = Neural Network LD = Likelihood Discriminant

Background estimate was completely redone. Background modeling was refined.

Results remained essentially unchanged.

Analyses are correlated (60 - 70%), but there are conceptual differences which allow to retrace why NN/LD classify the highest purity ME events as background like.

1. Neutrino reconstruction

NN/LD use measured MET, ME does not, but integrates over all p_z values. NN chooses the smaller p_z solution, LD uses best χ^2 of kinematic fit.

2. Choice of b jet for top quark reconstruction

LD chooses based on kinematic fit. In 1-tag events NN takes the tagged jet, in 2-tag events NN chooses according to $\mathbf{q}\cdot$.

ME calculates weighted sum over both possibilities.

- 3. NN uses soft jet information ($8 \text{ GeV} < E_T < 15 \text{ GeV}$), ME and LD do not.
- 4. ME uses transfer functions, NN/LD use standard jet corrections.

Search for W' → tb events

- W' occurs in some extensions of the SM with higher symmetry.
- Complementary to searches in W' ev / μν (e.g. W' of leptophobic nature).
- Select W + 2 or 3 jets events.
- Background estimate same as SM singel top search.
- Use M(l jj) as discriminant
- Neglect interference with SM W boson.

Mass limits on W'

Observe no evidence for resonant W' production.

Experimental result: Upper limits on $\sigma \cdot BR(W' \rightarrow tb)$ range from 2.5 pb to 0.4 pb.

Mass limits: Based on the theoretical cross section prediction

(Z. Sullivan, Phys. Rev. D 66, 075011, 2006)

Improved mass limits:

 $M(W') > 760 \text{ GeV if } M(W'_R) > M(v_R)$

 $M(W') > 790 \text{ GeV if } M(W'_R) < M(v_R)$

latest DØ limits:

 $M(W'_1) > 610 \text{ GeV}$

 $M(W'_{R}) > 630 \text{ GeV} (670 \text{ GeV})$

Phys. Lett. B 641, 423 (2006)

Previous limit of CDF Run I:

 $M(W'_R) > 566 \text{ GeV}$

Phys. Rev. Lett. 90, 081802 (2003)

Conclusion & Outlook

- Exciting times for single-top analysts! sensitivity of individual analyses: $\approx 2.5 \, \sigma$ (955 pb⁻¹)
- 3 CDF analyses give different results:

matrix elements	neural networks	likelihood ratio
$2.3 \sigma excess$	no evidence	no evidence
σ (s+t) = 2.7 ^{+1.5} _{-1.3} pb	σ (s+t) < 2.6 pb	σ (s+t) < 2.7 pb
	$\sigma(t) < 2.6 \text{ pb}$	
	σ (s) < 3.7 pb	

- Single-top analyses are a benchmark for Higgs searches, especially WH at the Tevatron.
- Updated analyses using 1.5 fb⁻¹ are imminent! Sensitivity will be well above 3 σ for each single analysis.
- New, improved mass limits on W' \rightarrow tb: $M(W') > 760 \text{ GeV if } M(W'_R) > M(\nu_R)$ $M(W') > 790 \text{ GeV if } M(W'_R) < M(\nu_R)$

Backup

Top mass reconstruction

1) Neutrino Pz: $(p_l + p_v)^2 = m_W^2$

- Neutrino p_x, p_y from MET
- •P_z from W-mass constraint
- This yields two solutions: Smaller solution is correct 67.6%

2) M₁₅ reconstruction:

- Assumption that tagged jet is from top
- In double tagged events, take jet with larger $Q_{\rm lep}\,x\,\eta_{\rm iet}$

Parton/Jet matching	t-channel	s-channel
1 tag	96.6%	51.1%
2 tags	61.9%	68.5%

Works well for t-channel only