## CS & IT CINTED IN

ENGINEERING

Graph Theory

Discrete Mathematics

DPP 07

Discussion notes



SATISH YADAV SIR



TOPICS TO BE COVERED

01 Question

02 Discussion



If G is a bipartite graph with 9 vertices and maximum number of edges, then vertex connectivity of G = 4.



$$K(km.n) = min(m.n)$$



Which of the following options is/are correct?



[MSQ]

- A. A graph G is Euler iff it is connected and  $\forall v \in G$  degree (v) = even.
- B. A K regular graph is Euler iff K is even
- A wheel graph (w<sub>n</sub>) can have Euler circuit/
- A graph will contain an Euler path if it contains at most two vertices of odd degree.

Q.3

A forest is disconnected graph in which each component is a tree. Let F be a forest on 80 vertices with 21 connected components.

Then number of edges in G is \_\_\_\_.

[MCQ]



58







$$e = n - k$$
.
= 80 - 21
= 59



## For the graph shown below



Which of the following statements is/are true?

 $S_1$ : Euler path exists  $(\top)$ 

 $S_2$ : Euler circuit exists  $( \leftarrow )$ 

S<sub>3</sub>: Hamiltonian cycle exists ( T

 $S_4$ : Hamiltonian path exists  $(\top)$ 



- B.  $S_1$ ,  $S_2$  and  $S_3$
- $S_1$ ,  $S_2$  and  $S_4$
- D.  $S_2$ ,  $S_3$  and  $S_4$



## Which of the following is Euler Graph?



A. 
$$K_{51}$$
 50,50,50.....50 (F.G)  $\checkmark$ 



If G is not a simple connected graph with n vertices then w maximum number of edges possible in G is \_\_\_.



[MCQ]

A. 
$$\frac{n(n-2)}{2}$$

B. 
$$\frac{(n-1)n}{2}$$

$$\frac{(n-1)(n-2)}{2}$$

$$\frac{(n-1)(n-2)}{4}$$

$$e = (n-k)(n-k+1)/2$$
.  
 $k=2$ 

$$e = (n-2)(n-2+1)/2$$

$$=(n-2)(n-1)/2.$$



