Object Detection by MXNET

Chuck

Background I

- What is object detection?
 - Object Localization + Object classification
- Why object detection?
 - Self-driving car
 - Security Camera
 - Retailer
 - Robot
 - SkyNet/terminator
 - Many others

Background II

- Why image based Objection Detection (others can be Laser/Rader/LIDAR based)?
 - Cheap camera
- Why can Deep Learning help with this task?
 - Human visual system is fast and accurate to Object Detection task.
 - State-of-art image classification method is deep learning based method.

Background III

- Object Detection the traditional way:
 - Get a classifier-> do classification with a sliding window (Ref: <u>Keynote by Yan Lecun in ICML2013</u>)

Background IV

Keynote by Yan Lecun in ICML2013

Object Detection with Deep Learning

What is Object Detection again?

How many different Object Detection Deep Learning methods?

- RCNN
- Fast RCNN
- Faster RCNN
- SSD
- YOLO

Region Proposal Family

The basic idea

- Classify the object with classification.
- Localize the object with regression.
 - What is regression of object detection?

Input: image

Single Object Localization

But it can only detect one object each time.

How to measure detection accuracy

RCNN (really slow)

Fast RCNN

A new layer: ROI layer (hard to compute the gradients)

Faster RCNN(state-of-art)

A new layer: Region Proposal Network

How it works

- 1. RPN slides a small window (3x3) on the feature map, that classify what is under the window as object or not object, and also gives some bounding box location.
- 2. For every sliding window center it creates fixed k anchor boxes, and classify those boxes as been object or not.

Faster RCNN diagram

Speed Comparison

Faster RCNN results

The best result now is Faster RCNN with a resnet 101 layer.

	R-CNN	Fast R-CNN	Faster R-CNN
Test time per image (with proposals)	50 seconds	2 seconds	0.2 seconds
(Speedup)	1x	25x	250x
mAP (VOC 2007)	66.0	66.9	66.9

Pros & Cons

- Pros:
 - Accurate (state-of-art)
- Cons:
 - Slow, need much memory and computation expensive (not friendly to embed device)

So, we want to be faster but 'good' accuracy in our final project.

Everything in one network

The family:

- SSD: Uses different activation maps (multiple-scales) for prediction of classes and bounding boxes
- YOLO (v1, v2): Uses a single activation map for prediction of classes and bounding boxes
- R-FCN(Region based Fully-Convolution Neural Networks): Like Faster RCNN (400ms), but faster (170ms) due to less computation per box also it's Fully Convolutional (No FC layer)

YOLO (v1)

Understand YOLO

Paper:

https://pjreddie.com/media/files/papers/yolo
.pdf

A good blog to explain YOLO:

https://medium.com/diaryofawannapreneur/yolo-you-only-look-once-for-object-detection-explained-6f80ea7aaa1e

More

YOLO V2: https://pjreddie.com/darknet/yolo/

SSD (1)

SSD (2)

MXNet Project

- Cat Detection
- Goal: Build a neural network according to YOLO paper.
- More details next Tuesday.