- Simple Linear Regression
- · Multiple Linear Regression
- Polynomial Regression
- · Logistic Regression
- Decision trees Regression
- Random Forest Regression
- Ridge Regression
- · Lasso Regression
- · Artificial Neural Networks for Regression analysis

- Regressão Linear Simples

Permite a geração de uma reta y = b0 + b1*x, onde y é o valor a ser previsto e x é o dado a ser considerado. A reta atravessa os valores correlacionados

Como a base possui mais de uma Array, o método não é aplicável.

- Regressão Linear Múltipla

Extensão da regressão linear simples, permite a geração da fórmula y = b0 + b1*x1 + b2*x2 + ... + bn*xn, a qual permite a extração de n dados de base para a previsão.

Para os dados de Hossain:

```
Fórmula obtida: y = (-1.0534540) + (0.0288384*x_1) + (-0.00109075*x_2) + (0.00144061x_3) + (7.34752x_4) + (-0.958468*x_5).
```

 X_1 = Inclination Angle

 X_2 = Speed S rpm

 X_3 = Feed fy mm/min

 X_4 = Feed fx mm

 X_5 = Depth of Cut t mm

Score = 0,7064% Training, 0,4510% Test

Mean Absolute Error = 0,8270

Mean Squared Error = 1,0607

Root Mean Squared Error = 1,0299

- Regressão Linear Polinomial

Permite a geração da fórmula $y = b0 + b1*x1 + b2*x1^2 + ... + bn*x1^2$. Pode haver mais de um valor x. No caso da regressão polinomial, não é gerada uma reta, mas sim uma curva, para que as previsões estejam mais próximas dos resultados.

Para os dados de Hossain:

Degree: 2

- Regressão com Árvores de Decisão

Com o gráfico dividido, determina diversas condições para que a saída seja estabelecida

-Regressão com Random Forest

Decisões randômicas, com aprendizagem em conjunto. Obtém a média de todas as decisões

Para os dados de Hossain:

N estimators = 10

- Maquinas de Vetores de Suporte

Procura o melhor hiperplano. Assim, obtem uma superfície com a ajuda de vetores de suporte

- Regressão utilizando DNN

Permite o estabelecimento de pesos para cada valor de entrada, que com o acréscimo do valor, aciona neurônios posteriores, até que um valor final seja atingido.

Configurações:

DNN (5-3-1)

Ativação: relu-relu-linear

Loss: mean_squared_error

Optimizer: adam

Metrics: mean_squared_error

Batch_size: 2

Epochs: 500

Tabela dos valores estatísticos utilizando os dados de Hossain

Método	MAE	MSE	RMSE	Score	Reprodutivel
Linear	Treino: 0,6279	Treino: 0,6096	Treino: 0,7808	Treino: 0,7064	Sim
Múltipla	Teste: 0,8271	Teste: 1,0607	Teste: 1,0299	Teste: 0,4510	
Polinomial	Treino: 0,5229	Treino: 0,3977	Treino: 0,6306	Treino: 0,8084	Sim
	Teste: 0,7889	Teste: 1,0083	Teste: 1,0041	Teste: 0,4782	

Árvore de	Treino: 0,0000	Treino: 0,0000	Treino: 0,0000	Treino: 1,0000	Pouco
Decisão	Teste: 0,7756	Teste: 1,0214	Teste: 1,0214	Teste: 0,4714	
Floresta	Treino: 0,1981	Treino: 0,0840	Treino: 0,2899	Treino: 0,9595	Não
Randômica	Teste: 0,8325	Teste: 0,9446	Teste: 0,9719	Teste: 0,5111	
SVR	Treino: 0,3634	Treino: 0,3224	Treino: 0,5678	Treino: 0,8331	Sim
	Teste: 0,7048	Teste: 0,7736	Teste: 0,8795	Teste: 0,5996	
DNN	Treino: 0,3110	Treino: 0,1809	Treino: 0,4254		Não
	Teste: 0,8112	Teste: 1,0175	Teste: 1,0087		