计算机问题求解一论题3-7

- 树

2016年10月12日

Theorem 4.1 An edge e of a graph G is a bridge if and only if e lies on no cycle of G.

推论: Every edge in a tree is a bridge

从应用的角度看,上边掩论有何 指导意义? For an *n*-vertex graph G (with $n \ge 1$), the following are equivalent (and characterize the trees with n vertices).

- A) *G* is connected and has no cycles.
- B) G is connected and has n-1 edges.
- C) G has n-1 edges and no cycles.
- D) For $u, v \in V(G)$, G has exactly one u, v-path.

问题2:

如何证明一系列命题等价?

树的性质的"极限性"

- a) Every edge of a tree is a cut-edge.
- b) Adding one edge to a tree forms exactly one cycle.
- c) Every connected graph contains a spanning tree.

问题4:

什么样的图生成树是唯一的,为什么?

Theorem 4.4 Every tree of order n has size n - 1.

问题:有n-1条边的n点连通图,一定是树?

有n-1条边的无环连通图,一定连通n个点?

问题5: 如何构造一个连通图的生成树?

无向连通图遍历算法一定得到一棵树

Merging Two Vertices

Matrix Operation for Merging

Merging v_0 and v_1

Merging v_0 ' and v_2

Constructing a Spanning Tree

- 0. Let a be the starting vertex, selecting edges one by one in original R
- 1. Merging a and c into a'({a,c}), selecting (a,c)
- 2. Merging a' and b into a''($\{a,c,b\}$), selecting $\{c,b\}$
- 3. Merging a" and d into a" $(\{a,c,b,d\})$, selecting (a,d) or (d,b)

Ending, as only one vertex left

生成树:树"里"与树"外"的边

问题6:如何寻找一个连通图最"薄弱"的地方?

暗藏玄机: 两棵不同的生成树

生成树的"变换"

- 定理: T与T'均是图G的生成树,存在 $e \in E_T$,但 $e \not\in E_T$,证明: 必有 $e' \in E_T$,但 $e' \not\in E_T$,满足: T- $\{e\} \cup \{e'\} \cap T' \{e'\} \cup \{e\} \cup$
 - □ 证明概要:

设e=uv, T-{e}必含两个连通分支,设为 T_1 , T_2 。

::T'是连通图, T'中有uv-通路, 其中必有一边满足其两个端点x,y分别在 T_1 , T_2 中,设其为e',显然T-{e}U{e'}是生成树。

而 $T'U\{e\}$ 必含唯一回路,且该回路中必定包含 e' 。将 e' 从该回路中删去,得到 $T'=T'-\{e'\}U\{e\}$ 。显然, $T'-\{e'\}U\{e\}$ 是生成树。

问题7: 这个定理会被 用于证明最小生成树 算法的正确性, 你能 大致推测出怎么用吗?

问题8:

什么是最小生成树问题? 它有什么实际应用?

Generic Algorithm for MST Problem

Input: *G*: a connected, undirected graph

w: a function from V_G to the set of real number

```
Generic-MST(G, w)
```

- $1 A \leftarrow 0$
- 2 while A does not form a spanning tree
- do find an edge (u,v) that is safe for A
- 4 $A \leftarrow A \cup \{(u,v)\}$
- 5 return A

Output: a minimal spanning tree of G

Prim's Algorithm for MST

Step 1: $V = \{A\}, E = \{\}$

Step 2: Select the nearest neighbor of V, u, add the edge connecting u and some vertex in V into E Step 3: Repeat step 2 until E

End of Algorithm

contains *n*-1 edges

Kruskal's Algorithm for MST

Step 1: *E*={}

Step 2: Select the edge with the least weight, and not making a cycle with members of E

Step 3: Repeat step 2 until *E* contains *n*-1 edges

End of Algorithm

How to prove your greedy choice property?

Of course, we must prove that a greedy choice at each step yields a globally optimal solution. Typically, as in the case of Theorem 16.1, the proof examines a globally optimal solution to some subproblem. It then shows how to modify the solution to substitute the greedy choice for some other choice, resulting in one similar, but smaller, subproblem.

Theorem 4.12 Kruskal Algorithm produces a minimum spanning tree in a connected weighted graph.

证明要点:

- 1,假设算法得到的T不是最小生成树,找一个最小生成树T',尝试发现矛盾;
- 2,这个T'有其特殊性:将T的边按权不减序(也是算法选择的序)排好,将所有最小生成树也按边权不减序排列,取和T种e1,e2,...,ek相同的树中k最大的最小生成树T';
 - $3,e_{k+1}$ 是在T中但不在T'中的最小边;
- 4,针对 e_{k+1} ,必定存在T'中的边e',交换 e_{k+1} 和e',得到新树T"。按照算法,w(e')>=w(e_{k+1}).
- 5, w(T")=w(T')-w(e')+w(e_{k+1}). T"也是最小生成树。但同时,因T'最小,所以,w(e')=w(e_{k+1}).
 - 6,T"的前k+1条边和T相同。矛盾。

你认为要实现上述两个 算法,分别需要怎样的 数据结构? 问题10:

关于上述两个算法的时间复杂度你能说些什么吗?

问题11:

两个算法解决同样的问题,为什么两个都很有用?关于树的遍历也有类似情况,有什么不同吗?

Open Topics:

- 1,如果用相邻矩阵来表示一个图,你如何判断这个图是否是树?
- 2,设计一种用相邻矩阵表示权图的方案,并在这个方案基础上设计一个构造最小生成树的算法。