ChaNGa: Design Issues in High Performance Cosmology

Pritish Jetley
Parallel Programming Laboratory

Overview

- Why Barnes-Hut?
- Domain decomposition
- Tree construction
- Tree traversal
 - Overlapping remote and local work
 - Remote data caching
 - Prefetching remote data
 - Increasing local work
 - Efficient sequential traversal
- Load balancing
- Multistepping

Why Barnes-Hut?

- Gravity is a long-range force
 - Every particle interacts with every other
- Do not need N(N-1)/2 interactions
- Groups of distant particles ≈ point masses
- O(N Ig N) interactions

Parallel Barnes-Hut: Decomposition

- Distribute particles among objects
- To lower communication costs:
 - Keep particles that are close to each other on the same object
 - Make spatial partitions regularly shaped
- Balance number of particles per partition

Decomposition strategies

- SFC: Linearize particle coordinates
 - Convert floats/doubles to integers
 - Interleave bits of integers

SFC

- Interleaving leads to jagged line of particles
- Line is split among objects (*TreePieces*)

Oct

- Recursively divide partition into quadrants if more than τ particles within it
- Iterative histogramming of particle counts

$$\tau = 3$$

Tree construction

Tree construction issues

- Must distribute TreePieces evenly across processors
- Particles stored as structures of arrays
 - (Possibly) more cache friendly
 - Easier to vectorize accessing code
- Tree data structure layout?
 - new for each node BAD!
 - Better: allocate all children together
 - Better still: allocate in a DFS manner

Tree traversal

- A TreePiece performs depth-first traversal of tree for each bucket of particles
- For each node encountered,
 - Is node far enough?
 - Compute forces on bucket due to node
 - Pop node from stack
 - Node too close?
 - Push next child onto stack

Illustration

Yellow circles
Represent
Opening criterion
checks

Tree traversal

- Cannot have entire tree on every processor
 - Local nodes
 - Remote nodes
- Remote nodes must be requested from other TreePieces
 - Generate communication
- Give high priority to remote work
 - Do local work when waiting for remote nodes to arrive: overlap

Overlapping remote and local work

Remote data caching reduces communication

- Reuse requested data to reduce number of requests
- Cache requested remote data on processor
 - Data requested by one TreePiece used by others
 - Fewer messages
 - Less overhead for processing remote data requests
- Optimal cache line size (depth of tree beneath requested node)
 - About 2 for Octrees

Remote data caching

Remote data prefetching

- Estimate remote data requirements of TreePieces, prefetch before traversal
 - Reduces latency of node access during traversal

Increasing local work

- Division of tree into TreePieces reduces the amount of local work per piece
- Combine TreePieces in one processor to increase amount of local work
 - Without combination, 16% local work per TreePiece
 - With combination, 58%

Algorithmic efficiency

- Normally, walk entire tree once for each bucket
- However, proximal buckets have similar interactions with the rest of the universe
- Share lists between buckets as far as possible
 - Check distance between
 - Remote tree node
 - Local ancestor of buckets (instead of buckets)
- Improvements of 7-10% over normal traversal

Load balancing

- Density variations in input data create load imbalance
- Load balancing must account for computation as well as communication

Balancing Load to Improve Performance

LB algorithms must consider both computation and communication

Multistepping

- Group particles into rungs
 - Faster rung → more speed
 - Different rungs active at different times
- Update slower rung particles less frequently

Contro phases putation done than singlestepping

0: rung 0

1: rungs 0,1

2: rungs 0,1,2

Processors

Load imbalance with multistepping

Dwarf dataset

• 32 BG/L processors

• Different timestepping schemes

> Multistepped with load balancing (228 s)

Thank you

Questions?