PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-145623

(43)Date of publication of application: 22.05.2002

(51)Int.CI.

C01G 53/00 // H01M 4/58

H01M 10/40

(21)Application number : 2000-337008

(71)Applicant : SEIMI CHEM CO LTD

(22)Date of filing:

06.11.2000

(72)Inventor: KAZUHARA MANABU

SUNAHARA KAZUO KIMURA TAKASHI MIHARA TAKUYA YUGAWA MEGUMI

(54) LITHIUM-CONTAINING TRANSITION METAL MULTIPLE OXIDE AND MANUFACTURING METHOD THEREOF

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a positive electrode active material for a lithium secondary cell having a wide usable voltage range, the excellent durability against charge/discharge cycle, high capacity and safety.

SOLUTION: The lithium-containing transition metal multiple oxide, in which the average number of valency of nickel-manganese-metal element M in a lithium-containing nickel-manganese-metal element M multiple oxide for a lithium secondary cell is 2.700-2.970, is used as the positive electrode active material for the lithium secondary cell. The lithium-containing nickel-manganese-metal element M multiple oxide for a lithium secondary cell is formed by firing a nickel-manganese-metal element M multiple compound and a lithium compound and is expressed by a general formula, LiNixMn1-x-yMyO2 (where, (x) and (y) are respectively $0.30 \le x \le 0.65$, $0 \le y \le 0.2$ and M represent a metal element selected from Fe, Co, Cr, Al, Ti, Ga, In and Sn).

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-145623

(P2002-145623A)

(43)公開日 平成14年5月22日(2002.5.22)

(51) Int.Cl.'	識別記号	FΙ	テーマコート ゙(参考)
C 0 1 G 53/00		C 0 1 G 53/00	A 4G048
// H01M 4/58		H 0 1 M 4/58	5 H O 2 9
10/40		10/40	Z 5H050

審査請求 未請求 請求項の数6 OL (全 8 頁)

(21)出願番号	特顏2000-337008(P2000-337008)	(71)出顧人	000108030		
			セイミケミカル株式会社		
(22)出顧日	平成12年11月6日(2000.11.6)		神奈川県茅ヶ崎市茅ヶ崎3丁目2番10号		
		(72)発明者	数原 学		
			神奈川県茅ヶ崎市茅ヶ崎三丁目2番10号 セイミケミカル株式会社内		
		(72)発明者	砂原 一夫		
			神奈川県茅ヶ崎市茅ヶ崎三丁目2番10号 セイミケミカル株式会社内		
		(74)代理人	100083404		
			弁理士 大原 拓也		
			最終頁に続		

(54) 【発明の名称】 リチウム含有遷移金属複合酸化物およびその製造方法

(57) 【要約】

【課題】 使用可能な電圧範囲が広く、充放電サイクル耐久性が良好であるとともに、容量が高くかつ安全性の高いリチウム二次電池用正極活物質を得る。

【解決手段】 リチウム二次電池用正極活物質として、ニッケルーマンガンー金属元素M複合化合物とリチウム 化合物とを焼成してなる一般式LiNixMni -x-y MyO2(ただし、0.30 \le x \le 0.65、0 \le y \le 0.2であり、MはFe,Co,Cr,Al,Ti,Ga,In,Snのいずれかから選択される金属元素。)で表されるリチウム二次電池用リチウム含有ニッケルーマンガンー金属元素M複合酸化物におけるニッケルーマンガンー金属元素Mの平均価数が2.700~2.970であるリチウム含有遷移金属複合酸化物を用いる。

30

【特許請求の範囲】

【請求項1】 一般式LiNixMn1-x-yMyO 2 (ただし、0. $30 \le x \le 0$. 65、 $0 \le y \le 0$. 2 0 cos Midfe, Co, Cr, Al, Ti, Ga. In, Snのいずれかから選択される金属元素。) で表 され、ニッケル、マンガンおよび金属元素Mからなる元 素の平均価数が2.700~2.970であることを特 徴とするリチウム二次電池正極活物質用のリチウム含有 遷移金属複合酸化物。

1

【請求項2】 R-3m菱面体構造でありかつ、比表面 10 積が2m2/g以下であることを特徴とする請求項1に 記載のリチウム含有遷移金属複合酸化物。

【請求項3】 a軸の格子定数が2.895~2.92 5 A であり、 c 軸の格子定数が14. 28~14. 38 Aであることを特徴とする請求項1または2に記載のリ チウム含有遷移金属複合酸化物。

【請求項4】 発熱開始温度が255℃以上であること を特徴とする請求項1ないし3のいずれか1項に記載の リチウム含有遷移金属複合酸化物。

【請求項5】 粉体プレス密度が2.9g/cm³以上 であることを特徴とする請求項1ないし4のいずれか1 項に記載のリチウム含有遷移金属複合酸化物。

【請求項6】 請求項1ないし5のいずれか1項に記載 のリチウム含有遷移金属複合酸化物を製造する方法であ って、ニッケルーマンガンー金属元素M共沈複合化合物 とリチウム化合物とを混合し、この混合物を不活性雰囲 気中で500~1000℃で焼成することを特徴とする リチウム含有遷移金属複合酸化物の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、リチウム二次電池 の正極活物質として用いられる改良されたリチウム含有 遷移金属複合酸化物に関する。

[0002]

【従来の技術】近年、機器のポータブル化、コードレス 化が進むにつれ、小型、軽量でかつ高エネルギー密度を 有する非水電解液二次電池に対する期待が高まってい る。非水電解液二次電池用の活物質には、LiCo O2, LiNiO2, LiMn2O4, LiMnO2ta どのリチウムと遷移金属の複合酸化物が知られている。 【0003】その中で特に最近では、安全性が高くかつ 安価な材料として、リチウムとマンガンの複合酸化物の 研究が盛んに行なわれており、これらを正極活物質に用 いて、リチウムを吸蔵、放出することができる炭素材料 等の負極活物質とを組み合わせることによる、高電圧、 高エネルギー密度の非水電解液二次電池の開発が進めら れている。

【0004】一般に、非水電解液二次電池に用いられる 正極活物質は、主活物質であるリチウムにコパルト、ニ

複合酸化物からなる。その用いられる遷移金属の種類に よって、電気容量、可逆性、作動電圧、安全性などの電 極特性が異なる。

【0005】例えば、LiCoO2、LiNio. 8C 00.202のようにコパルトやニッケルを固溶させた R-3m菱面体岩塩層状複合酸化物を正極活物質に用い た非水電解液二次電池は、それぞれ140~160mA h/gおよび180~200mAh/gと比較的高い容 盤密度を達成できるとともに2. 7~4. 3 Vといった 高い電圧域で良好な可逆性を示す。

[0006]

【発明が解決しようとする課題】しかしながら、電池を 加温した際に、充電時の正極活物質と電解液溶媒との反 応により電池が発熱し易い問題や、原料となるコバルト やニッケルが高価であるので活物質のコストが高くなる 問題がある。

【0007】特開平10-027611号公報には、L i N i o. 8 C o o. 2 O 2 の特性を改良すべく、例え ばLiNio. 75 Coo. 20 Mno. 05 O2 の提 案がなされている。また、特開平10-81521号公 報には、特定の粒度分布を有するリチウム電池用ニッケ ルーマンガン2元系水酸化物原料の製造方法について提 案がなされているが、いずれのものにおいても、充放電 容量とサイクル耐久性と安全性の3者を同時に満足する 正極活物質は得られていない。

【0008】また、斜方晶Pmnm系あるいは単斜晶C 2/m系のLiMnO2、LiMno. 95Cr 0.05 O2 あるいはLiMno.9 Alo.1 O2を 用いた電池は、安全性が高く、初期容量が高く発現する 例はあるものの、充放電サイクルにともなう結晶構造の 変化が起こりやすく、サイクル耐久性が不充分となる問 題がある。

【0009】さらに、特開平5-283076号、特開 平8-171910号、特開2000-294240号 および特開2000-223157号の各公報にはLi NixMn1-xO2の提案がなされ、また、特開平1 1-25957号公報にはLiCobMncMaNi 1-(b+c+d) O2の提案がなされているが、いず れも重量あたり容量、体積あたり容量、充放電サイクル 耐久性および安全性のいずれも満足するものは得られて

【0010】本発明は、このような課題を解決するため になされたもので、その目的は、容量が高く、充放電サ イクル耐久性に優れた高安全性の非水電解液二次電池用 正極材料を提供することにある。

[0011]

【課題を解決するための手段】上記目的を達成するた め、本発明は、一般式LiNix Mn1-x-y My O 2 (ただし、0. $30 \le x \le 0$. 65、 $0 \le y \le 0$. 2 ッケル、マンガンをはじめとする遷移金属を固溶させた 50 0である。MはFe, Co, Cr, Al, Ti, Ga,

In, Sn のいずれかから選択される金属元素。)で表され、ニッケル、マンガンおよび金属元素Mからなる元素の平均価数が2.700~2.970であることを特徴とするリチウム二次電池正極活物質用のリチウム含有遷移金属複合酸化物(以下、「本発明の複合酸化物」とも言う。)を提供する。

【0012】上記平均価数が2.970より大きいと、 電池を充電したときに正極から活性酸素が放出されやす くなる結果、電解液の酸化反応が進みやすく、電池の安 全性が低下するので好ましくない。

【0013】また、上記平均価数が2.970より大きいと、リチウム化反応時に結晶成長が遅く、かつ、結晶の凝集による二次粒子の成長が遅くなる結果、活物質をプレス成型したときに緻密に充填できなくなるため、体積あたりの容量が低下したり、活物質粉末の比表面積が高くなり、マンガンの電解液への溶解が起こりやすくなるので好ましくない。

【0014】他方において、上記平均価数が2.700より小さいと、重量あたりの容量が低下するので好ましくない。本発明で、特に好ましい平均価数は2.850~2.950である。

【0015】また、本発明の複合酸化物の比表面積は、2m²/g以下であることが好ましい。比表面積が2m²/gを超えると、電池の高温使用時に正極中のマンガンが電解液に溶解しやすくなり、特に負極に炭素材料を用いるロッキングチェアー型のいわゆるリチウムイオン電池においては、電池容量が経時的に低下するので好ましくない。比表面積は1m²/g以下が特に好ましい。

【0016】本発明の複合酸化物は、特に充放電サイクル耐久性の面から、R-3m菱面体構造を有する活物質 30であることが好ましい。さらに本発明において、R-3m菱面体構造における a 軸の格子定数が 2.895~2.925 A であり、c 軸の格子定数が 14.28~14.38 A であることが好ましい。格子定数が、この範囲を外れると電池の安全性等が低下するので好ましくない。

【0017】また、本発明の複合酸化物は、発熱開始温度が255℃以上であり、この点も本発明の特徴の一つに挙げられる。本発明において、発熱開始温度とは、リチウムを対極として、50℃で4.3 Vにて充電した正極を溶媒で洗浄し、エチレンカーボネートとともに昇温した際に、電解液との反応が開始される温度を意味する。

【0018】本発明によると、上記のように発熱開始温度が特段に高く安全性の高い正極活物質が提供される。すなわち、従来のLiСоО2の発熱開始温度は155℃前後で、LiNi0.8Со0.2О2の場合にしても発熱開始温度は175℃前後であり、また、LiMn2〇4の発熱開始温度は235℃前後であるのに対し、それらに比べて、本発明の複合酸化物は、発熱開始温度

が255℃以上と著しく高いため、電池の安全性が高め られる

【0019】本発明の複合酸化物の粉体プレス密度は、2.9g/cm³以上であることが好ましく、これによれば、活物質粉末にバインダと溶剤とを混合してスラリーとなして集電体アルミ箔に塗工・乾燥・プレスした際に体積当たりの容量を高くすることができる。特に好ましい粉体プレス密度は3.1g/cm³以上である。

【0020】本発明における粉体プレス密度とは、粉末を1t/cm²の圧力で油圧プレスしたときの成型体の体積と重畳から求めた見かけ密度を意味する。本発明による正極活物質は、従来のマンガンスピネルLiMn2〇4や、リチウム層状マンガン化合物、例えばLiMn〇2の粉体プレス密度が高々約2.6g/cm³であるのに比べて、粉体プレス密度が数段と高いため、電池の体積あたりの容量密度をこれまでのリチウムーマンガン酸化物正極活物質よりも著しく高くできる特徴も有する。

【0021】上記一般式LiNixMni-x-yMy 20 O2において、xが0.30未満であると、安定なR-3m菱面体構造をとりにくくなるので好ましくない。また、xが0.65を超えると、安全性が低下するので好ましくない。xの特に好ましい範囲は0.40 \sim 0.55である。

【0022】金属元素Mは、Fe, Co, Cr, Al, Ti, Ga, In, Snのいずれかの金属元素原子であるのが充放電サイクル耐久性、安全性、容量等の向上が図れるので好ましい。M原子の添加量yは0 \leq y \leq 0.20であり、好ましくは0.01 \sim 0.18、特に好ましくは0.05 \sim 0.16である。

【0023】また、本発明は、上記したリチウム二次電池正極活物質用リチウム含有遷移金属複合酸化物を製造するにあたって、ニッケルーマンガンー金属元素M共沈複合化合物とリチウム化合物とを混合し、この混合物を不活性雰囲気中で500~1000℃で焼成することを特徴としている。反応に使用するリチウム化合物としては、水酸化リチウム、炭酸リチウム、酸化リチウムが好ましく例示される。

【0024】ニッケルーマンガンー金属元素M共沈複合 40 化合物としては、ニッケルーマンガンー金属元素M塩水溶液とアルカリ金属水酸化合物とアンモニウムイオン供給体とをそれぞれ連続的または間欠的に反応系に供給し、その反応系の温度を30~70℃の範囲内の一定温度とし、かつ、pHを10~13の範囲内の一定値に保持した状態で反応を進行させ、一般式NixMn1-x-yMy(OH)p(ただし、0.30 \le x \le 0.65、0 \le y \le 0.2 \bigcirc p \le 4である。MはFe,Co,Cr,Al,Ti,Ga,In,Snのいずれかから選択される。)で表されるニッケルーマンガンー金属元素M共沈複合水酸化物を折出させて得られる

ほぼ球状の粒子形状を有するニッケルーマンガンー金属元素M共沈複合水酸化物、もしくは上記ニッケルーマンガンー金属元素M共沈複合水酸化物に酸化剤を作用させて得られるニッケルーマンガンー金属元素M共沈複合オキシ水酸化物、または上記ニッケルーマンガンー金属元素M共沈複合水酸化物もしくは上記ニッケルーマンガンー金属元素M共沈複合オキシ水酸化物を焼成して得られるニッケルーマンガンー金属元素M共沈複合酸化物のいずれかであることが特に好ましい。

[0025]

【発明の実施の形態】本発明の複合酸化物は、例えばニッケルーマンガンー金属元素M共沈複合水酸化物、ニッケルーマンガンー金属元素M共沈複合オキシ水酸化物あるいはニッケルーマンガンー金属元素M共沈複合酸化物から選ばれるニッケルーマンガンー金属元素M共沈化合物粉末と、リチウム化合物粉末(好ましくは、水酸化リチウム、炭酸リチウム、酸化リチウム)との混合物を不活性ガス雰囲気下で固相法500~1000℃にて5~40時間焼成することにより得られる。

【0026】温度範囲は、特に好ましくは750~950℃である。また、酸素含有雰囲気、例えば大気中で焼成すると、所望のマンガンーニッケルー金属元素Mの平均価数が高くなるので好ましくない。本発明に規定するマンガンーニッケルー金属元素Mの平均価数2.70~2.97が得られる限りにおいて、不活性ガス中に低濃度の酸素を含有していてもよい。かかる許容酸素濃度は焼成温度と活物質組成にも依存するが、例えば、1%以下、1000ppm以下、10ppm以下等が適宜採用される。

【0027】本発明の複合酸化物の粉末に、アセチレンプラック、黒鉛、ケッチエンプラック等のカーボン系導電材と結合材とを混合することにより、正極合剤が形成される。結合材には、ポリフッ化ピニリデン、ポリテトラフルオロエチレン、ポリアミド、カルボキシメチルセルロース、アクリル樹脂等が用いられる。本発明の複合酸化物の粉末と導電材と結合材ならびに結合材の溶媒または分散媒からなるスラリーをアルミニウム箔等の正極集電体に塗工・乾燥およびプレス圧延せしめて正極活物質層を正極集電体上に形成する。

【0028】本発明の複合酸化物を正極活物質として用いたリチウム電池において、電解質溶液の溶媒としては炭酸エステルが好ましい。炭酸エステルは環状、鎖状いずれも使用できる。環状炭酸エステルとしてはプロピレンカーボネート、エチレンカーボネート等が例示される。鎖状炭酸エステルとしてはジメチルカーボネート、メチルプロピルカーボネート、メチルプロピルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート等が例示される。

【0029】上記炭酸エステルを単独でも2種以上を混合して使用してもよい。また、他の溶媒と混合して使用

してもよい。また、負極活物質の材料によっては、鎖状 炭酸エステルと環状炭酸エステルを併用すると、放電特性、サイクル耐久性、充放電効率が改良できる場合がある。また、これらの有機溶媒にフッ化ビニリデンーへキサフルオロプロピレン共重合体(例えばアトケム社製カイナー)、フッ化ビニリデンーパーフルオロプロピルビニルエーテル共重合体を添加し、下記の溶質を加えることによりゲルポリマー電解質としても良い。

【0030】溶質としては、C1O4一、CF3SO3一、BF4一、PF6一、AsF6一、SbF6一、CF3CO2一、(CF3SO2)2N一等をアニオンとするリチウム塩のいずれか1種以上を使用することが好ましい。上記の電解質溶液またはポリマー電解質は、リチウム塩からなる電解質を上記溶媒または溶媒含有ポリマーに0.2~2.0mol/Lの濃度で添加するのが好ましい。この範囲を逸脱すると、イオン伝導度が低下し、電解質の電気伝導度が低下する。より好ましくは0.5~1.5mol/Lが選定される。セパレータには多孔質ポリエチレン、多孔質ポリプロピレンフィルムが使用される。

【0031】負極活物質には、リチウムイオンを吸蔵、 放出可能な材料が用いられる。負極活物質を形成する材料は特に限定されないが、例えばリチウム金属、リチウム合金、炭素材料、周期表14、15族の金属を主体とした酸化物、炭素化合物、炭化ケイ素化合物、酸化ケイ素化合物、硫化チタン、炭化ホウ素化合物等が挙げられる。

【0032】炭素材料としては、様々な熱分解条件で有機物を熱分解したものや人造黒鉛、天然黒鉛、土壌黒鉛、膨張黒鉛、鱗片状黒鉛等を使用できる。また、酸化物としては、酸化スズを主体とする化合物が使用できる。負極集電体としては、銅箔、ニッケル箔等が用いられる。

【0033】正極及び負極は、活物質を有機溶媒と混練してスラリーとし、該スラリーを金属箔集電体に塗布、乾燥、プレスして得ることが好ましい。本発明の複合酸化物を用いるリチウム電池の形状には特に制約はない。シート状(いわゆるフイルム状)、折り畳み状、巻回型有底円筒形、ボタン形等が用途に応じて選択される。

[0034]

【実施例】次に、本発明の具体的な実施例 $1\sim9$ および比較例 $1\sim3$ について説明するが、本発明はこれらの実施例に限定されない。

【0035】《実施例1》硫酸ニッケルと硫酸マンガンを含有する金属硫酸塩水溶液、アンモニア水溶液、苛性ソーダ水溶液を反応槽内のpHが11.35になるように連続的に供給した。温度は50℃に保持した。反応後、スラリーを濾過・水洗・乾燥して球状で平均粒径8μmのニッケルーマンガン共沈水酸化物粉体を550℃で大50のニッケルーマンガン共沈水酸化物粉体を550℃で大

30

40

30

気中で焼成・粉砕し、ニッケルーマンガン共沈酸化物粉 末を得た。このニッケルーマンガン共沈酸化物粉末と水 酸化リチウム粉末とを混合し、窒素ガス努囲気中830 ℃で焼成・粉砕して平均粒径7μmのLiNio.50 Mno. 50 O2 を合成した。この粉末のCu Kαによ るX線回折分析の結果、R-3m菱面体層状岩塩型構造 であることが判った。リートベルト解析により、a軸の 格子定数は2.902Å、c軸の格子定数は14.32 Aであった。また、この粉末について、FeSO4とK Mn〇4を用いた酸化還元滴定とキレート滴定により二 ッケルとマンガンの平均価数を求めたところ2.917 であった。この粉末の比表面積は0.78m²/gであ った。得られたLiNiO、50Mno、50O2粉末 を1 t/cm2の圧力で油圧プレスして体積と重量から 粉体プレス密度を求めたところ3.15g/cm3であ った。このLiNio.50Mno.50O2粉末と、 アセチレンブラックとポリフッ化ビニリデンとを83/ 10/7の重量比でN-メチルピロリドンを加えつつボ ールミル混合し、スラリーとした。このスラリーを厚さ 20μmのアルミニウム箔正極集電体上に塗布し、15 0℃にて乾燥してN-メチルピロリドンを除去した。し かる後に、ロールプレス圧延をして正極体を得た。セパ レータには厚さ25μmの多孔質ポリエチレンを用い、 厚さ300μmの金属リチウム箔を負極に用い負極集電 体にニッケル箔を使用し、電解液には1M LiPF6 **/EC+DEC(1:1)を用いてコインセル2030** 型をアルゴングロープポックス内で組立てた。そして、 60℃の温度雰囲気下で、正極活物質1gにつき30m Aで4. 3Vまで定電流充電し、正極活物質1gにつき 30mAにて2. 7Vまで定電流放電して充放電サイク ル試験を30回行ない、2回充放電後の放電容量と30 回充放電後の放電容量との比率から容量維持率を求め た。また、電池安全性評価のため、同じ正極とセパレー タと負極と電解液を用い、簡易型密閉セルをアルゴング ロープボックス内で組立てた。この簡易型セルを50℃ の温度雰囲気下で4. 3 Vまで充電した後セルを室温下 で解体し、正極をエチレンカーポネートとともに密閉容 器に入れて試料となし、示差走査熱量測定装置を用い、 昇温せしめた時の発熱開始温度を求めた。初期容量は1 49mAh/g、容量維持率は92%、発熱開始温度は 283℃であった。

【0036】《実施例2》金属硫酸塩水溶液として、硫酸ニッケル、硫酸マンガンおよび硫酸コパルトを含有する金属硫酸塩水溶液を用いた他は、上記実施例1と同様にして平均粒径8μmのニッケルーマンガンーコパルト共沈水酸化物粉体を得た。このニッケルーマンガンーコパルト共沈水酸化物粉体を550℃で大気中で焼成・粉砕し、ニッケルーマンガンーコパルト共沈酸化物粉末を得た。このニッケルーマンガンーコパルト共沈酸化物粉末と水酸化リチウム粉末を混合し、窒素ガス雰囲気中8

30℃で焼成・粉砕して平均粒径6μmのLiNio . 45 M n o . 45 C o o . 1 o O 2 を合成した。この 粉末のCuKαによるX線回折分析の結果、R-3m菱 面体層状岩塩型構造であることが判った。リートベルト 解析により、 a 軸の格子定数は 2. 903 Å、 c 軸の格 子定数は14.34Åであった。また、この粉末につい て、上記実施例1と同様にニッケルとマンガンとコバル トの平均価数を求めたところ2.873であった。この 粉末の比表面積は0.79m2/gであった。粉体プレ ス密度は3.08g/cm³であった。上記実施例1の LiNio. 50Mno. 50O2の代わりにLiNi 0.45 Mn 0.45 C 0 0.10 O 2 を使用した他 は、上記実施例1と同様にして正極体および電池を作製 し特性を評価した。初期容量は155mAh/g、容量 維持率は96%、発熱開始温度は275℃であった。 【0037】《実施例3》上記実施例2の金属硫酸塩水 溶液中の硫酸コバルトの代わりに硫酸アルミニウムを使 用した他は、上記実施例2と同様にニッケル-マンガン - アルミニウム共沈酸化物を合成し、ついで上記実施例 1と同様に平均粒径5μmのリチウムーニッケルーマン ガンーアルミニウム複合酸化物粉末(LiNio.45 Mno. 45 Alo. 10 O2) を合成した。この粉末 のCuKαによるX線回折分析の結果、R-3m菱面体 層状岩塩型構造であることが判った。リートベルト解析 により、a軸の格子定数は2.896A、c軸の格子定 数は14.29Aであった。また、この粉末について、 上記実施例1と同様にニッケルとマンガンとコバルトの 平均価数を求めたところ2.923であった。この粉末 の比表面積は $0.85m^2/g$ であった。粉体プレス密 度は3. 07g/cm³であった。上記実施例1のLi Nio. 50Mno. 50O2の代わりにLiNi 0. 45 Mno. 45 Alo. 10 O2 を使用した他 は、上記実施例1と同様にして正極体および電池を作製 し特性を評価した。初期容量は150mAh/g、容量 維持率は94%、発熱開始温度は286℃であった。 【0038】《実施例4》上記実施例2の金属硫酸塩水 溶液中の硫酸コパルトの代わりに硫酸鉄を使用した他 は、上記実施例2と同様にニッケル-マンガン-鉄共沈 酸化物を合成し、ついで上記実施例1と同様に平均粒径 5 μ m の リチウムーニッケルーマンガンー鉄複合酸化物 粉末 (LiNio. 45Mno. 45Fe 0.10 O2) を合成した。この粉末のCu Kαによる X線回折分析の結果、R-3m菱面体層状岩塩型構造で あることが判った。リートベルト解析により、a軸の格 子定数は2.901Å、c軸の格子定数は14.33Å であった。また、この粉末について、上記実施例1と同 様にニッケルとマンガンとコバルトの平均価数を求めた ところ2.927であった。この粉末の比表面積は0. 83m²/gであった。粉体プレス密度は3.05g/

cm³であった。上記実施例1のLiNio.50Mn

50

30

0.50 O2 の代わりにLiNio.45 Mno.45 Fe0.10 O2 を使用した他は、上記実施例1と同様にして正極体および電池を作製し特性を評価した。初期容量は151mAh/g、容量維持率は94%、発熱開始温度は280℃であった。

【0039】《実施例5》上記実施例2の金属硫酸塩水 溶液中の硫酸コパルトの代わりに硫酸チタンを使用した 他は、上記実施例2と同様にニッケルーマンガン-チタ ン共沈水酸化物を合成し、ついで上記実施例1と同様に 平均粒径 5 μ mのリチウムーニッケルーマンガンーチタ ン複合酸化物粉末(LiNio. 45 Mno. 45 Ti 0. 10 O2) を合成した。この粉末のCuKαによる X線回折分析の結果、R-3m菱面体層状岩塩型構造で あることが判った。リートベルト解析により、a軸の格 子定数は2.904Å、c軸の格子定数は14.34Å であった。また、この粉末について、上記実施例1と同 様にニッケルとマンガンとコバルトの平均価数を求めた ところ2.918であった。この粉末の比表面積は0. 75m²/gであった。粉体プレス密度は3.11g/ ·cm³であった。上記実施例1のLiNio.50Mn 0.50O2の代わりにLiNio, 45Mno, 45 Tio. 10 O2 を使用した他は、上記実施例1と同様 にして正極体および電池を作製し特性を評価した。初期 容量は151mAh/g、容量維持率は94%、発熱開 始温度は285℃であった。

【0040】《実施例6》上記実施例2の金属硫酸塩水 溶液中の硫酸コパルトの代わりに硫酸クロムを使用した 他は、上記実施例2と同様にニッケルーマンガンークロ ム共沈水酸化物を合成し、ついで上記実施例1と同様に 平均粒径 5 μ mのリチウムーニッケルーマンガンークロ ム複合酸化物粉末(LiNio. 45Mno. 45Cr o. 1 o O 2) を合成した。この粉末のC u K α による X線回折分析の結果、R-3m菱面体層状岩塩型構造で あることが判った。リートベルト解析により、a軸の格 子定数は2.902Å、c軸の格子定数は14.32Å であった。また、この粉末について、上記実施例1と同 様にニッケルとマンガンとコバルトの平均価数を求めた ところ2.920であった。この粉末の比表面積は0. 79m²/gであった。粉体プレス密度は3.14g/ cm³であった。上記実施例1のLiNio. 50Mn 0.50O2の代わりにLiNio.45Mno.45 Cro. 10O2を使用した他は、上記実施例1と同様 にして正極体および電池を作製し特性を評価した。初期 容量は153mAh/g、容量維持率は94%、発熱開 始温度は288℃であった。

【0041】《実施例7》上記実施例2の金属硫酸塩水溶液中の硫酸コパルトの代わりに硫酸ガリウムを使用した他は、上記実施例2と同様にニッケルーマンガンーガリウム共沈水酸化物を合成し、ついで上記実施例1と同様に平均粒径5μmのリチウムーマンガンーガリウム複50

合酸化物粉末 (LiNio. 45 Mno. 45 Ga 0. 10 O2) を合成した。この粉末のCu Kαによる X線回折分析の結果、R-3 mの菱面体層状岩塩型構造 であることが判った。リートベルト解析により、a軸の格子定数は2.899Å、c軸の格子定数は14.30 Åであった。また、この粉末について、上記実施例1と同様にニッケルとマンガンとコバルトの平均価数を求めたところ2.923であった。この粉末の比表面積は 0.75 m²/gであった。粉体プレス密度は3.06 g/cm³であった。上記実施例1のLiNio.50 Mno.50 O2の代わりにLiNio.45 Mn 0.45 Gao.10 O2を使用した他は、上記実施例 1と同様にして正極体および電池を作製し特性を評価した。初期容量は150 mAh/g、容量維持率は93%、発熱開始温度は281℃であった。

【0042】《実施例8》上記実施例2の金属硫酸塩水 溶液中の硫酸コパルトの代わりに硫酸インジウムを使用 した他は、上記実施例2と同様にニッケル-マンガン-インジウム共沈酸化物を合成し、ついで上記実施例1と 同様に平均粒径5μmのリチウム-マンガン-インジウ ム複合酸化物粉末(LiNio. 45 Mno. 45 In 0. 10 O2) を合成した。この粉末のCu Kαによる X線回折分析の結果、R-3mの菱面体層状岩塩型構造 であることが判った。リートベルト解析により、a軸の 格子定数は2.922人、c軸の格子定数は14.36 Aであった。また、この粉末について、上記実施例1と 同様にニッケルとマンガンとコバルトの平均価数を求め たところ2.932であった。この粉末の比表面積は 0. 71m²/gであった。粉体プレス密度は3. 13 g/cm³であった。上記実施例1のLiNio.50 Mno. 50O2の代わりにLiNio. 45Mn 0.45 I n o.10 O 2 を使用した他は、上記実施例 1と同様にして正極体および電池を作製し特性を評価し た。初期容量は155mAh/g、容量維持率は95 %、発熱開始温度は282℃であった。

【0043】《実施例9》上記実施例2の金属硫酸塩水溶液中の硫酸コバルトの代わりに硫酸錫を使用した他は、上記実施例2と同様にニッケルーマンガンー錫共沈酸化物を合成し、ついで上記実施例1と同様に平均粒径 5μ mのリチウムーマンガンー錫複合酸化物粉末(LiNio. 45Mno. 45Sno. 10O2)を合成した。この粉末のCuK α による X線回折分析の結果、R-3mの菱面体層状岩塩型構造であることが判った。リートベルト解析により、a軸の格子定数は2. 910 A、c 軸の格子定数は14. 35 Aであった。また、この粉末について、実施例1と同様にニッケルとマンガンとコバルトの平均価数を求めたところ2. 900であった。この粉末の比表面積は0. 85m²/gであった。粉体プレス密度は3. 10g/cm³であった。上記実施例1のi0. i0. i0.

LiNio. 45 Mno. 45 Sno. 10 O2 を使用 した他は、上記実施例1と同様にして正極体および電池 を作製し特性を評価した。初期容量は152mAh/ g、容量維持率は94%、発熱開始温度は284℃であ った。

【0044】 (比較例1) 上記実施例1と同様にニッケ ルーマンガン共沈酸化物を合成し、ついでこのニッケル -マンガン共沈酸化物粉末と水酸化リチウム粉末を混合 し、大気中830℃で8時間焼成・粉砕して平均粒径7 μmのLiNio. 50Mno. 50O2を合成した。 この粉末の $CuK\alpha$ によるX線回折分析の結果、R-3m菱面体層状岩塩型構造であることが判った。リートベ ルト解析により、a軸の格子定数は2.888A、c軸 の格子定数は14.32Åであった。また、この粉末に ついて、上記実施例1と同様にしてニッケルとマンガン の平均価数を求めたところ2.997であった。この粉 末の比表面積は9.62m²/gであった。粉体プレス 密度は2. 42g/cm³であった。上記実施例1のL iNio. 50Mno. 50O2の代わりに大気中焼成 により得られたこのLiNio.50Mno.50O2 使用した他は、上記実施例1と同様に正極体および電池 を作製し特性を評価した。初期容量は149mAh/ g、容量維持率は92%、発熱開始温度は238℃であ った。

【0045】〈比較例2〉上記実施例2と同様にニッケ ルーマンガンーコバルト共沈酸化物を合成し、ついでこ のニッケルーマンガン共沈酸化物粉末と水酸化リチウム 粉末を混合し、大気中830℃で8時間焼成・粉砕して 平均粒径7μmのLiNio. 45Mno. 45Co 0. 10 O2 を合成した。この粉末のCu KαによるX 線回折分析の結果、R-3m菱面体層状岩塩型構造であ ることが判った。リートベルト解析により、a軸の格子*

*定数は2.885Å、c軸の格子定数は14.31Åで あった。また、この粉末について、上記実施例1と同様 にしてニッケルとマンガンの平均価数を求めたところ 2. 986であった。この粉末の比表面積は9. 89m ²/gであった。粉体プレス密度は2.41g/cm³ であった。上記実施例1のLiNio.50Mn 0.50〇2の代わりに大気中焼成により得られたこの LiNio. 45 Mno. 45 Coo. 10 O2 を使用 した他は、上記実施例1と同様に正極体および電池を作 製し特性を評価した。初期容量は153mAh/g、容 量維持率は95%、発熱開始温度は229℃であった。 【0046】〈比較例3〉上記実施例2の金属硫酸塩水 溶液中の硫酸ニッケルと硫酸マンガンの濃度を変えて、 上記実施例2と同様にニッケル-マンガン-コバルト共 沈酸化物を合成し、ついで上記比較例2と同様に大気中 焼成により、平均粒径5μmのリチウムーニッケルーマ ンガンーコパルト複合酸化物粉末(LiNio、70M no. 20 Coo. 10 O2) を合成した。この粉末の CuKαによるX線回折分析の結果、R-3m菱面体層 20 状岩塩型構造であることが判った。また、この粉末につ いて、上記実施例1と同様にしてニッケルとマンガンの 平均価数を求めたところ3.002であった。この粉末 の比表面積は1.26m²/gであった。上記実施例1 のLiNio. 50Mno. 50O2の代わりにLiN io. 70 Mno. 20 Coo. 10 O2 使用した他 は、上記実施例1と同様に正極体および電池を作製し特 性を評価した。初期容量は180mAh/g、容量維持 率は87%、発熱開始温度は181℃であった。 【0047】参考までに、上記実施例1~9と比較例1

30 ~3の結果を次表にまとめて示す。

【表1】

	a 特の格子定数 (人)	c軸の格子定数 (A)	平均债数	比較面積 (m²/g)	粉体プレス型度 (g/cm ³)	初期容量 (mAh/g)	日本 日本 日本 日本 日本 日本	見際開始速度 (C)
炭施例1	2.902	14.32	2.917	0.78	3.15	149	92	283
実施例2	2.903	14.34	2.873	0.79	3.08	155	96	275
実施例3	2.896	14.29	2.923	0.85	3.07	150	94	286
实施例4	2.901	14.33	2.927	0.83	3.05	151	94	280
実施例5	2.904	14.34	2918	0.75	3,11	151	94	285
爽施例6	2902	14.32	2.920	0.79	3.14	153	94	288
実施例7	2899	14.30	2.923	0,75	3,06	150	93	281
実施例8	2922	14.36	2.932	0,71	3,13	155	95	282
実施例9	2910	14.35	2900	0,85	3.10	152	94	284
比較例1	2.888	14.32	2.997	9.62	2.42	149	92	238
比較例2	2885	14.31	2.986	9,89	241	153	95	229
比較例3	_	_	3,002	1.26		180	87	181

[0048]

【発明の効果】本発明のリチウム含有ニッケルーマンガ ンー金属元素M複合酸化物を、リチウム二次電池の正板 活物質として用いることにより、使用可能な電圧範囲が 広く、充放電サイクル耐久性が良好であるとともに、容 量が高くかつ安全性の高い電池が得られる。

フロントページの続き

(72) 発明者 木村 貴志

神奈川県茅ヶ崎市茅ヶ崎三丁目2番10号

セイミケミカル株式会社内

(72) 発明者 三原 卓也

神奈川県茅ヶ崎市茅ヶ崎三丁目2番10号

セイミケミカル株式会社内

(72) 発明者 湯川 めぐみ

神奈川県茅ヶ崎市茅ヶ崎三丁目2番10号

セイミケミカル株式会社内

Fターム(参考) 4G048 AA04 AB01 AB05 AC06 AD06

AE05

5H029 AK03 AL01 AL02 AL04 AL06

AL07 AL12 AM03 AM05 AM07

CJ02 CJ03 CJ08 CJ11 CJ28

DJ16 DJ17 HJ02 HJ07 HJ08

HJ13 HJ14

5H050 AA07 AA08 AA15 BA17 CA08

FA19 GA02 GA03 GA10 GA11

GA27 HA02 HA07 HA08 HA13

HA14