iMath Phần mềm Tao đề ngẫu nhiên

ĐỀ ÔN TẬP Môn thi: Toán Thời gian: phút Mã đề: 004

PHÂN I. Câu trắc nghiệm nhiều phương án lưa chon.

Câu 1. Đổi số đo của góc -465° sang radian ta được kết quả bằng

A.
$$-\frac{91\pi}{36}$$
.

B.
$$-\frac{31\pi}{12}$$
.

C.
$$-\frac{97\pi}{36}$$
. D. $-\frac{29\pi}{12}$.

D.
$$-\frac{29\pi}{12}$$

Áp dụng công thức chuyển đổi: $-465^{\circ} = \frac{\text{Lời giải.}}{180} = -\frac{31\pi}{12}$. Chọn đáp án B.

Câu 2. Tính $\sin \frac{103\pi}{3}$.

A.
$$\frac{\sqrt{3}}{2}$$
.

B.
$$\frac{1}{2}$$
.

C.
$$\frac{\sqrt{3}}{3}$$
. Lời giải.

D.
$$\sqrt{3}$$
.

Chọn đáp án A.

Câu 3. Cho b là góc lượng giác. Tìm khẳng định đúng trong các khẳng định sau.

A.
$$tan(-b) = -tan b$$
.

B.
$$\cos(-b) = -\cos b$$
.

C.
$$tan(-b) = \cot b$$
.

$$\mathbf{D.} \sin(\pi - b) = -\sin b \ .$$

Lời giải.

tan(-b) = -tan b là khẳng định đúng.

Chon đáp án A.

Câu 4. Cho β là góc lượng giác. Tìm khẳng định đúng trong các khẳng định sau.

$$\mathbf{A.} \, \cos 2\beta = \cos^2 \beta - \sin^2 \beta \, .$$

B.
$$\cos 2\beta = 1 - 2\cos^2\beta$$
.

C.
$$\tan 2\beta = \frac{\tan \beta}{1 - \tan^2 \beta}$$
.

D.
$$\sin 2\beta = \sin \beta + \cos \beta$$
.

Lời giải.

 $\cos 2\beta = \cos^2 \beta - \sin^2 \beta$ là khẳng định đúng.

Chon đáp án A.

Câu 5. Cho α, β là các góc lượng giác. Tìm khẳng định đúng trong các khẳng định sau.

A.
$$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$$

B.
$$\sin \alpha \sin \beta = -\frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$$
.

A.
$$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$$
.

B. $\sin \alpha \sin \beta = -\frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$.

C. $\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) - \sin(\alpha - \beta)]$.

D. $\cos \alpha \cos \beta = -\frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$.

D.
$$\cos \alpha \cos \beta = -\frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$$

 $\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$ là khẳng định đúng. Chọn đáp án A.

Câu 6. Cho $\sin x = \frac{5}{7}$ với $x \in (0; \frac{\pi}{2})$. Tính $\sin \left(x - \frac{\pi}{6}\right)$.

A.
$$-\frac{5}{14} + \frac{3\sqrt{2}}{7}$$

B.
$$\frac{\sqrt{6}}{7} + \frac{5\sqrt{3}}{14}$$

A.
$$-\frac{5}{14} + \frac{3\sqrt{2}}{7}$$
. **B.** $\frac{\sqrt{6}}{7} + \frac{5\sqrt{3}}{14}$. **C.** $-\frac{\sqrt{6}}{7} + \frac{5\sqrt{3}}{14}$. **D.** $\frac{2\sqrt{6}}{7} + \frac{5}{7}$. **Lòi giải.**

D.
$$\frac{2\sqrt{6}}{7} + \frac{5}{7}$$

Vì $x \in \left(0; \frac{\pi}{2}\right)$ nên $\cos x > 0$.

$$\cos x = \sqrt{1 - \frac{25}{49}} = \frac{2\sqrt{6}}{7}.$$

$$\sin\left(x - \frac{\pi}{6}\right) = \sin x \cos(-\frac{\pi}{6}) + \cos x \sin(-\frac{\pi}{6}) = \frac{5}{7}.(\frac{\sqrt{3}}{2}) + \frac{2\sqrt{6}}{7}.(-\frac{1}{2}) = -\frac{\sqrt{6}}{7} + \frac{5\sqrt{3}}{14}.$$
Chọn đáp án C.

Câu 7. Tìm tập xác định của hàm số $y = \tan(3x - 5\pi)$.

A.
$$D = \mathbb{R} \setminus \{1\pi + k\frac{1}{3}\pi\}$$
.
B. $D = \mathbb{R} \setminus \{\frac{11}{6}\pi + k\frac{1}{3}\pi\}$.
C. $D = \mathbb{R} \setminus \{2\pi + k\frac{1}{3}\pi\}$.
D. $D = \mathbb{R} \setminus \{\frac{11}{3}\pi + k\frac{1}{3}\pi\}$.
Lòi giải.

Chọn đáp án B.

Câu 8. Nghiệm của phương trình
$$\cos\left(2x + \frac{\pi}{4}\right) = \sin\left(-x - \frac{\pi}{6}\right)$$
 là

A. $x = \frac{5\pi}{12} + k\frac{\pi}{3}, x = -\frac{11\pi}{36} + k\pi(k \in \mathbb{Z})$.

B. $x = \frac{7\pi}{18} + k2\pi, x = -\frac{5\pi}{12} + k\frac{2\pi}{3}(k \in \mathbb{Z})$.

C. $x = \frac{7\pi}{18} + k2\pi, x = -\frac{5\pi}{12} + k2\pi(k \in \mathbb{Z})$.

D. $x = \frac{5\pi}{12} + k2\pi, x = -\frac{11\pi}{36} + k\frac{2\pi}{3}(k \in \mathbb{Z})$.

Lời giải.

$$\cos\left(2x + \frac{\pi}{4}\right) = \sin\left(-x - \frac{\pi}{6}\right) \Leftrightarrow \cos\left(2x + \frac{\pi}{4}\right) = \cos\left(x + \frac{2\pi}{3}\right)$$

$$\Leftrightarrow \begin{bmatrix} 2x + \frac{\pi}{4} = x + \frac{2\pi}{3} + k2\pi \\ 2x + \frac{\pi}{4} = -x - \frac{2\pi}{3} + k2\pi \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} x = \frac{5\pi}{12} + k2\pi \\ 3x = -\frac{11\pi}{12} + k2\pi \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} x = \frac{5\pi}{12} + k2\pi \\ x = -\frac{11\pi}{26} + k\frac{2\pi}{3} \end{bmatrix}, k \in \mathbb{Z}$$

Chọn đáp án D.

PHẨN II. Câu trắc nghiệm đúng sai.

Câu 1. Cho $\sin x = \frac{1}{4}, x \in \left(-\frac{3\pi}{2}; -\pi\right)$. Xét tính đúng-sai của các khẳng định sau.

Phát biểu	Ð	S
a) $\cos x = \frac{\sqrt{15}}{4}$.		X
$\mathbf{b)} \sin 2\gamma = -\frac{\sqrt{15}}{16} .$		X
$\mathbf{c}) \cos 2\gamma = -\frac{7}{8} .$		X
$\mathbf{d)} \sin\left(\gamma - \frac{2\pi}{3}\right) = \frac{1}{4} - \frac{\sqrt{15}}{4} .$		X

Lời giải.

a) Khẳng định đã cho là khẳng định sai.

$$\text{Vi } x \in \left(-\frac{3\pi}{2}; -\pi\right) \text{ nên } \cos x < 0.$$

$$\cos x = -\sqrt{1 - \frac{1}{16}} = -\frac{\sqrt{15}}{4}.$$

b) Khẳng định đã cho là khẳng định sai.

$$\sin 2\gamma = 2 \sin \gamma \cos \gamma = 2 \cdot \frac{1}{4} \cdot (-\frac{\sqrt{15}}{4}) = -\frac{\sqrt{15}}{8}.$$

c) Khẳng định đã cho là khẳng định sai.

$$\cos 2\gamma = 1 - 2\sin^2 \gamma = 1 - 2 \cdot \frac{1}{16} = \frac{7}{8}$$

d) Khẳng định đã cho là khẳng định sai.

$$\sin\left(\gamma - \frac{2\pi}{3}\right) = \sin\gamma\cos(-\frac{2\pi}{3}) + \cos\gamma\sin(-\frac{2\pi}{3}) = \frac{1}{4}.(-\frac{1}{2}) + (-\frac{\sqrt{15}}{4}).(-\frac{\sqrt{3}}{2}) = -\frac{1}{8} + \frac{3\sqrt{5}}{8}.$$

Chọn đáp án a sai | b sai | c sai | d sai.

Câu 2. Cho hàm số $y = \cos(7x) + 6$. Xét tính đúng-sai của các khẳng định sau.

Phát biểu	Ð	S
a) Tập xác định của hàm số là $D = [-1; 1]$.		X
b) Hàm số đã cho là hàm số chẵn.	X	
c) Tập giá trị của hàm số đã cho là $T = [5; 5]$.	X	
d) Đồ thị cắt trục tung tại điểm có tung độ bằng 10.		X

Lời giải.

a) Khẳng định đã cho là khẳng định sai.

Tập xác định của hàm số là $D = \mathbb{R}$.

b) Khẳng đinh đã cho là khẳng đinh đúng.

Ta có: Với moi $x \in \mathbb{R}$ thì $-x \in \mathbb{R}$.

 $f(-x) = \cos(7x) + 6 = \cos(7x) + 6$. Vậy hàm số $y = \cos(7x) + 6$ là hàm số chẵn.

c) Khẳng đinh đã cho là khẳng đinh đúng.

Ta có: $5 \le \cos(7x) + 6 \le 5$ nên tập giá trị là [5; 5]

d) Khẳng định đã cho là khẳng định sai.

Cho $x = 0 \Rightarrow y = 7$. Suy ra đồ thị cắt trục tung tại điểm có tung độ bằng 7.

Chọn đáp án a sai | b đúng | c đúng | d sai.

PHẨN III. Câu trắc nghiêm trả lời ngắn.

Câu 1. Một bánh xe của một loại xe có bán kính 47 cm và quay được 11 vòng trong 3 giây. Tính độ dài quãng đường (theo đơn vị mét) xe đi được trong 7 giây (kết quả làm tròn đến hàng phần mười).

Lời giải.

Một giây bánh xe quay được số vòng là: $\frac{11}{3}$. Một vòng quay ứng với quãng đường là $2\pi.0, 5 = 1, 0\pi$.

Sau 7 giây quãng đường đi được là: $\frac{11}{3}$.7.1, $0\pi = 80$, 6:

Câu 2. Số nghiệm thuộc khoảng $(-4\pi; 4\pi)$ của phương trình $\tan\left(x - \frac{\pi}{6}\right) = \sqrt{3}$ là

$$\tan\left(x - \frac{\pi}{6}\right) = \sqrt{3} \Leftrightarrow x - \frac{\pi}{6} = \frac{\pi}{3} + k\pi \Leftrightarrow x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}.$$

Do
$$x \in (-4\pi; 4\pi)$$
 nên $-4\pi < \frac{\pi}{2} + k\pi < 4\pi \Rightarrow -\frac{9}{2} < k < \frac{7}{2}$.

Có 8 số k thỏa mãn nên phương trình có 8 nghiêm.