2

NGC-259/22-0153 RECEIVED CENTRAL FAX CENTER

CLAIM AMENDMENTS

MAY 3-1 2007

1 1. (Original) A method of processing a signal with frequencies within a 2 frequency band having a bandwidth B, the signal including a plurality of messages. 3 each message having frequencies within a unique frequency band, where the frequency 4 bands of the plurality of messages occupy the bandwidth B, and where messages with 5 adjacent frequency bands may have different bandwidths, said method comprising: 6 receiving the signal; 7 separating the signal into groups of messages having frequency bands 8 with the same bandwidth, all messages in any group occupy non-adjacent frequency 9 bands: 10 combining the messages of each group; 11 applying each combined group of messages to a separate amplifier to 12 amplify each combined group of messages; and 13 separating each amplified group of messages into separate messages. l 2. (Original) A method as claimed in claim 1, further comprising transmitting

each separated message to a respective receiving station.

3

NGC-259/22-0153

1	3. (Original) A method of communicating a plurality of messages from an
2	originating station, through a relaying station, to a plurality of receiving stations, said
3	method comprising transmitting the plurality of messages from the originating station to
4	the relaying station in a signal with frequencies within a frequency band having a
5	bandwidth B, with each message having frequencies within a unique frequency band,
6	where the frequency bands of the plurality of messages occupy the bandwidth B, and
7	where messages with adjacent frequency bands may have different bandwidths; and at
8	the relaying station:
9	separating the messages into groups of messages having the same
10	bandwidth, where all messages in any group occupy non-adjacent frequency bands;
11	combining the messages of each group;
12	applying each combined group of messages to a separate amplifier to
13	amplify each combined group of messages;
14	separating each amplified group of messages into separate messages;
15	and
16	transmitting each separated message to a respective receiving station.

NGC-259/22-0153

1 4. (Currently amended) An article, comprising a storage medium having 2 instructions stored thereon, the storage medium being readable by an apparatus for 3 processing signals, the instructions when executed processing a signal with frequencies 4 within a frequency band having a bandwidth B, the signal including a plurality of 5 messages, each message having frequencies within a unique frequency band, where the frequency bands of the plurality of messages occupy the bandwidth B, and where 6 7 messages with adjacent frequency bands may have different bandwidths, the 8 instructions processing the signal by receiving the signal; separating the signal into 9 groups of messages having frequency bands with the same bandwidth, where all 10 messages in any group occupy non-adjacent frequency bands; combining the 11 messages of each group; applying each combined group of messages to a separate amplifier to amplify each combined group of messages; and separating each amplified 12 13 group of messages into separate messages.

4

5. (Original) An article as claimed in claim 4, wherein the instructions when executed further transmit each separated message to a respective receiving station.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

NGC-259/22-0153

6. (Currently amended) An article, comprising a storage medium having instructions stored thereon, the storage medium being readable by an apparatus for processing signals, the instructions when executed communicating a plurality of messages from an originating station, through a relaying station, to a plurality of receiving stations, the instructions communicating the messages by transmitting the plurality of messages from the originating station to the relaying station in a signal with frequencies within a frequency band having a bandwidth B, with each message having frequencies within a unique frequency band, where the frequency bands of the plurality of messages occupy the bandwidth B, and where messages with adjacent frequency bands may have different bandwidths; and at the relaying station separating the messages into groups of messages having the same bandwidth, where all messages in any group occupy non-adjacent frequency bands; combining the messages of each group; applying each combined group of messages to a separate amplifier to amplify each combined group of messages; separating each amplified group of messages into separate messages; and transmitting each separated message to a respective receiving station.

5

6 NGC-259/22-0153

•	(Original) A apparatus for processing a signal with frequencies within a
2	frequency band having a bandwidth B, the signal including a plurality of messages,
3	each message having frequencies within a unique frequency band, where the frequency
4	bands of the plurality of messages occupy the bandwidth B, and where messages with
5	adjacent frequency bands may have different bandwidths, said apparatus comprising:
6	an antenna to receive the signal;
7	a first demultiplexor to separate the messages;
8	a filter unit to filter and group the separated messages into groups of
9	messages having the same bandwidth, where all messages in a group occupy non-
10	adjacent frequency bands;
11	a combining circuit to combine the messages of each group;
12	an amplifier for each group of messages to amplify each combined group
13	of messages; and
14	a second demultiplexor to separate each amplified group of messages into
15	separate messages.
1	8. (Original) An apparatus as claimed in claim 7, wherein the amplifier
2	comprises a traveling wave tube amplifier.
۷	comprises a traveling wave tube amplifier.
l	9. (Original) An apparatus as claimed in claim 7, further comprising a
2	transmitting antenna to transmit the separated messages.
	·
1	10. (Original) An apparatus as claimed in claim 7, comprising an earth-

2 orbiting satellite.

NGC-259/22-0153

11. (Original) A communication system, comprising:

1

4

5

6

7

8

9

10

11

12

13

14

15

an originating station to transmit a signal including a plurality of messages, 2

3 the signal having frequencies within a frequency band having a bandwidth B, with each

message having frequencies within a unique frequency band, where the frequency

bands of the plurality of messages occupy the bandwidth B and where messages with

adjacent frequency bands may have different bandwidths;

a plurality of receiving stations to receive the plurality of messages; and

a relaying station including an antenna to receive the signal, a first

demultiplexor to separate the messages, a filter unit to filter and group the separated

messages into groups of messages having the same bandwidth, where all messages in

any group occupy non-adjacent frequency bands, a combining circuit to combine the

messages of each group, an amplifier for each group of messages to amplify each

combined group of messages, a second demultiplexor to separate each amplified group

of messages into separate messages, and means for transmitting the separated

messages to their respective receiving stations.

- 1 12. (Original) An apparatus as claimed in claim 11, wherein the amplifier
- 2 comprises a traveling wave tube amplifier.
- 1 13. (Original) A communication system as claimed in claim 11, wherein said
- 2 relaying station comprises an earth-orbiting satellite.

8

NGC-259/22-0153

ı 14. (New) An apparatus for processing a signal with frequencies within a 2 frequency band having a bandwidth B, the signal including a plurality of messages, 3 each message having frequencies within a unique frequency band, where the frequency 4 bands of the plurality of messages occupy the bandwidth B, and where messages with 5 adjacent frequency bands may have different bandwidths, comprising: 6 means for receiving the signal; 7 means for separating the signal into groups of messages having 8 frequency bands with the same bandwidth, all messages in any group occupy non-9 adjacent frequency bands; 10 means for combining the messages of each group; 11 means for applying each combined group of messages to a separate 12 amplifier to amplify each combined group of messages; and 13 means for separating each amplified group of messages into separate 14 messages. 1 15. (New) The apparatus of claim 14, further comprising means for 2 transmitting each separated message to a respective receiving station.