Definizione 1. Siano A e B insiemi. Si definisce prodotto cartesiano l'insieme:

$$A \times B = \{(a, b) : a \in A \land b \in B\}.$$

Osservazione 1. Si osservi che nella Definizione 1. le coppie sono **ordinate**, vale a dire $(x,y) \neq (y,x)$ se $x \neq y$. È quindi chiaro che $A \times B \neq B \times A$, se $A \neq B$. Risulta inoltre: $A \times \emptyset = \emptyset \times A = \emptyset$.

Definizione 2. Siano A e B insiemi. Si dice relazione tra gli A elementi di A e gli elementi di B un qualunque sottoinsieme del prodotto cartesiano $A \times B$. Se A = B, si parla semplicemente di relazione tra gli elementi di A; quindi, in questo

caso, $\mathcal{R} \subseteq A \times A$.

Esempio 1. L'insieme

$$\mathcal{R} = \{ (x, y) \in \mathbb{N} \times \mathbb{Z} : y = -x \}$$

è una relazione tra gli elementi di $\mathbb N$ e $\mathbb Z.$ Si ha

$$\mathcal{R} = \{(0,0), (1,-1), (2,-2), (3,-3), \dots\}.$$

Esempio 2. L'insieme

$$\mathcal{R}' = \{ (x, y) \in \mathbb{Z} \times \mathbb{Z} : y = -x \}$$

è una relazione tra gli elementi di \mathbb{Z} . Risulta

$$\mathcal{R}' = \{\dots, (-2, 2), (-1, 1), (0, 0), (1, -1), (2, -2), \dots\}.$$

Definizione 3. Siano A un insieme non vuoto, \mathcal{R} una relazione tra gli elementi di A. Si dice che \mathcal{R} è *riflessiva* se è verificata la sequente condizione:

$$(\forall a \in A) \ ((a, a) \in \mathcal{R}).$$

Osservazione 2. Ovviamente, perchè \mathcal{R} non sia riflessiva, basta che esista un solo elemento $x \in A$ tale che $(x, x) \notin A$.

Esempio 3. Non ha senso chiedersi se la relazione \mathcal{R} dell'Esempio 1 sia riflessiva, visto che si tratta di una relazione tra elementi di due insiemi diversi.

Esempi 1. Delle relazioni sull'insieme $A = \{\alpha, \beta, \gamma\}$

$$\mathcal{R}_{1} = \{(\alpha, \alpha), (\beta, \beta), (\gamma, \gamma), (\alpha, \beta), (\alpha, \gamma)\}$$

$$\mathcal{R}_{2} = \{(\alpha, \alpha), (\beta, \beta), (\alpha, \beta), (\beta, \gamma)\}$$

$$\mathcal{R}_{3} = \{(\alpha, \beta), (\beta, \alpha), (\gamma, \beta), (\beta, \gamma), (\gamma, \gamma)\}$$

$$\mathcal{R}_{4} = \{(\alpha, \beta), (\beta, \alpha), (\alpha, \gamma)\}$$

$$\mathcal{R}_{5} = \{(\alpha, \alpha), (\beta, \beta), (\gamma, \gamma), (\alpha, \beta), (\beta, \alpha)\}$$

sono riflessive \mathcal{R}_1 e \mathcal{R}_5 , mentre \mathcal{R}_2 , \mathcal{R}_3 , \mathcal{R}_4 non sono riflessive.

Definizione 4. Siano A un insieme non vuoto, \mathcal{R} una relazione tra gli elementi di A. Si dice che \mathcal{R} è simmetrica se è verificata la sequente condizione:

$$(\forall a, b \in A) \ ((a, b) \in \mathcal{R} \Rightarrow (b, a) \in \mathcal{R}).$$

Osservazione 3. Naturalmente è sufficiente che esista una sola coppia $(x,y) \in \mathcal{R}$, $x \neq y$, tale che $(y,x) \notin \mathcal{R}$ perchè \mathcal{R} non sia simmetrica.

Definizione 5. Si dice che \mathcal{R} è antisimmetrica se è verificata la sequente condizione:

$$(\forall a, b \in A) \ (((a, b) \in \mathcal{R} \land (b, a) \in \mathcal{R}) \Rightarrow a = b).$$

Osservazione 4. La condizione di antisimmetria può essere riscritta nel modo che segue:

$$(\forall a, b \in A, a \neq b)((a, b) \notin \mathcal{R})).$$

Esempi 2. \mathcal{R}_1 e \mathcal{R}_2 sono antisimmetriche, \mathcal{R}_3 e \mathcal{R}_5 sono simmetriche, \mathcal{R}_4 non è simmetrica ne' antisimmetrica.

Definizione 6. Siano A un insieme non vuoto, \mathcal{R} una relazione tra gli elementi di A. Si dice che \mathcal{R} è transitiva se è verificata la sequente condizione:

$$(\forall a, b, c \in A) \ (\ ((a, b) \in \mathcal{R} \ \land (b, c) \in \mathcal{R}) \ \Rightarrow \ (a, c) \in \mathcal{R} \).$$

Osservazione 5. Anche in questo caso è sufficiente che esistano $(x, y), (y, z) \in \mathcal{R}$ tali che $(x, z) \notin \mathcal{R}$ perchè \mathcal{R} non sia transitiva.

Esempi 3. \mathcal{R}_1 e \mathcal{R}_5 sono transitive, \mathcal{R}_2 , \mathcal{R}_3 e \mathcal{R}_4 non lo sono.

Esempio 4. La relazione \mathcal{R}' dell'Esempio 2 non è riflessiva perchè, per esempio, $(1,1) \notin \mathcal{R}$; non è neppure antiriflessiva perchè $(0,0) \in \mathcal{R}$. Sicuramente è simmetrica, perchè

$$(x,y) \in \mathcal{R}' \Rightarrow y = -x \Rightarrow x = -y \Rightarrow (y,x) \in \mathcal{R}'.$$

Infine \mathcal{R}' non è transitiva: $(1,-1) \in \mathcal{R} \land (-1,1) \in \mathcal{R}$ ma $(1,1) \notin \mathcal{R}$

Osservazione 6. Si osservi che spesso si usa la notazione $a\mathcal{R}b$ in luogo di $(a,b) \in \mathcal{R}$.

Definizione 7. Si dice che \mathcal{R} è una relazione d'ordine se è **riflessiva**, antisimmetrica e transitiva. La coppia ordinata (A, \mathcal{R}) (ovvero l'insieme A munito della relazione d'ordine) si chiama insieme ordinato.

Esempio 5. La relazione

$$\mathcal{R}_1 = \{(\alpha, \alpha), (\beta, \beta), (\gamma, \gamma), (\alpha, \beta), (\alpha, \gamma)\}\$$

è d'ordine.

Esempio 6. Sia X un insieme. Allora la relazione " \subset " è una relazione d'ordine su $\mathfrak{P}(X)$. Infatti si è osservato in precedenza che per ogni A, B, C sottoinsiemi di X

- (1) $A \subset A$
- (2) se $A \subset B$ e $B \subset A$ allora A = B
- (3) se $A \subset B$ e $B \subset C$ allora $A \subset C$

Quindi $(\mathfrak{P}(X), \subset)$ è un insieme ordinato.

Esempio 7. L'ordinamento naturale " \leq " sull'insieme $\mathbb Z$ dei numeri relativi è la relazione definita come segue:

$$\forall m, n \in \mathbb{Z}, m \le n \iff \exists h \in \mathbb{N} \text{ tale che } n = m + h$$

- . Si verifica che " \leq " è una relazione d'ordine su \mathbb{Z} :
 - riflessività: se $n \in \mathbb{Z}$, allora $\exists \ 0 \in \mathbb{N}$ tale che n = n + 0 e pertanto $n \le n$
 - antisimmetria: siano $n, m \in \mathbb{Z}$, in modo che $n \leq m \wedge m \leq n$. Si ha:

$$(n \le m \land m \le n) \Rightarrow (\exists h \in \mathbb{N} \text{ tale che } n = m + h) \land (\exists k \in \mathbb{N} \text{ tale che } n = m + k)$$

 $\Rightarrow n = m + h = n + k + h \Rightarrow h + k = 0 \Rightarrow h = k = 0 \Rightarrow n = m.$

• transitività: siano $n, m, p \in \mathbb{Z}$, in modo che $m \le n \land n \le p$. Allora:

$$(m \le n \land n \le p) \Rightarrow (\exists h \in \mathbb{N} \text{ tale che } m = m + h) \land (\exists k \in \mathbb{N} \text{ tale che } p = n + k)$$

 $\Rightarrow p = n + k = m + h + k \Rightarrow \exists h + k \in \mathbb{N} \text{ tale che } p = m + (h + k) \Rightarrow m \le p.$

Esempio 8. Si può considerare su \mathbb{Z} la seguente relazione: $\forall m, n \in \mathbb{Z}$, si pone m < n se e solo se $\exists h \in \mathbb{N}^*$ tale che n = m + h. Questa relazione <u>non è d'ordine</u> in quanto non riflessiva. Si osservi che

$$m < n \Leftrightarrow (m < n \land m \neq n).$$

Definizione 8. Siano $a, b \in \mathbb{Z}$, $a \neq 0$. Si dice che a divide b o che è un divisore di b o anche che b moltiplica a o b è un multiplo di a e si scrive $a \mid b$ se esiste $h \in \mathbb{Z}$ tale che b = ha. Quindi

$$a \mid b \iff \exists h \in \mathbb{Z} \text{ tale che } b = ha$$

Esercizio 1. La relazione " | " sull'insieme \mathbb{N}^* dei numeri naturali non nulli è una relazione d'ordine. Si tratta di provare che la relazione definita $\forall m, n \in \mathbb{N}^*$ da

$$m \mid n \iff \exists h \in \mathbb{N}^* \text{ tale che } n = hm$$

è riflessiva, antisimmetrica e transitiva. La verifica è del tutto analoga a quella dell'Esempio 7.

Definizione 9. Siano (A, \leq) un insieme ordinato, X un sottoinsieme di $A, X \neq \emptyset$, $x_0 \in X$. Si dice che x_0 è minimo di X se:

$$(\forall x \in X) \ (x_0 \le x).$$

Si dice che x_0 è massimo di X se

$$(\forall x \in X) \ (x \le x_0).$$

Se X = A, si parla di minimo o di massimo di A.

Proposizione 1. Siano (A, \leq) un insieme ordinato, X un sottoinsieme di $A, X \neq \emptyset$. Se esiste un massimo (o un minimo) di X, esso è unico.

Dimostrazione. Siano, infatti, x_0 e x_1 due massimi di X. Allora, poichè x_0 è massimo e $x_1 \in X$, si ha $x_1 \leq x_0$; d'altra parte, poichè x_1 è massimo e $x_0 \in X$, si ha $x_0 \leq x_1$. Allora, per la proprietà antisimmetrica delle relazioni d'ordine deve essere $x_0 = x_1$. (Analoga la dimostrazione dell'unicità del minimo.)

Siano (A, \leq) un insieme ordinato, X un sottoinsieme di $A, X \neq \emptyset, x_0 \in X$. Grazie alla Proposizione 1, è possibile utilizzare un simbolo specifico per il minimo (che si dice anche il più piccolo elemento) di X, e per il massimo (che si dice anche il più grande elemento) di X, quando esistono. Essi si indicano, rispettivamenete, con:

$$min(X)$$
 e $max(X)$.

Esempio 9.

- 1. Sia (A, \mathcal{R}_1) l'insieme ordinato dell'esempio 2. È evidente che $\alpha = min(A)$ ma non esiste il massimo di A.
- 2. se si considera l'insieme (\mathbb{N}, \leq) , dove " \leq " è l'ordinamento naturale di \mathbb{N} , risulta $0=min(\mathbb{N})$, ma non esiste il massimo
- 3. nell'insieme ordinato (\mathbb{N}^* , |) dell'esercizio 1, si ha $1=min(\mathbb{N}^*)$, ma non esiste il massimo di \mathbb{N}^*
- 4. considerando il sottoinsieme $X=\{2,3,9,18\}$ come sottoinsieme dell'insieme ordinato $(\mathbb{N}^*,\ |\)$, esiste max(X)=18 ma non esiste il minimo di X

Definizione 10. Siano (A, \leq) un insieme ordinato, $X \subseteq A$, $X \neq \emptyset$. Un elemento $y \in A$ si dice *minorante* di X se

$$(\forall x \in X)(y \leq x).$$

Definizione 11. Siano (A, \leq) un insieme ordinato, $X \subseteq A, X \neq \emptyset$. Un elemento $y \in A$ si dice maggiorante di X se

$$(\forall x \in X)(x \leq y).$$

Osservazione 7. Siano (A, \leq) un insieme ordinato, $X \subseteq A$, $X \neq \emptyset$. Si osservi che se X ha il minimo (rispettivamente il massimo), esso è sicuramente un minorante (rispettivamente un maggiorante), ma in generale un minorante (rispettivamente un maggiorante) non è un minimo (rispettivamente un massimo) perchè non appartiene a X.

Definizione 12. Sia A insieme, naturalmente non vuoto, \mathcal{R} relazione su A. Si dice che \mathcal{R} è una relazione di equivalenza se è riflessiva, simmetrica e transitiva.

Esercizio 2. Sono di equivalenza le seguenti relazioni:

- (1) $\mathcal{R} = \{(\alpha, \alpha), (\beta, \beta), (\gamma, \gamma), (\alpha, \beta), (\beta, \alpha)\}$ sull'insieme $A = \{\alpha, \beta, \gamma\}$
- $(2) \mathcal{R}' = \{(n,m) \in \mathbb{Z} \times \mathbb{Z} : 2 \mid (n-m)\}$
- (3) $\mathcal{R}'' = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : a^2 = b^2\}$ (4) $\mathcal{R}''' = \{(x, y) \in \mathbb{Z}^* \times \mathbb{Z}^* : x \cdot y > 0\}.$

Esercizio 3. Siano A un insieme non vuoto, $f:A\to B$ un'applicazione. La relazione \mathcal{R}_f così definita:

$$\forall x, y \in A \ (x, y) \in \mathcal{R}_f \Leftrightarrow f(x) = f(y)$$

è una relazione di equivalenza.

Definizione 13. Siano A un insieme, $\mathcal{A} = \{A_i : i \in I\}$ un sottoinsieme dell'insieme $\mathfrak{P}(A)$ delle parti di A. Si dice unione degli elementi di \mathcal{A} o unione degli $A_i, i \in I$, l'insieme

$$\bigcup_{i \in I} A_i := \{ a \in A : \exists i \in I \text{ tale che } a \in A_i \}$$

Osservazione 8. Ovviamente si ha

$$\bigcup_{i \in I} A_i \subset A; \quad \forall j \in I, \ A_j \subset \bigcup_{i \in I} A_i$$

Definizione 14. Siano A un insieme, \mathcal{R} una relazione di equivalenza su $A, a \in A$. Si dice classe di equivalenza di a il sottoinsieme di A:

$$[a]_{\mathcal{R}} = \{ x \in A : (a, x) \in \mathcal{R} \}.$$

Esempio 10. Considerata sull'insieme $A = \{a, b, c, d\}$ la relazione di equivalenza

$$\mathcal{R}_1 = \{(a, a)(b, b), (c, c)(d, d), (a, b)(b, a), (a, c), (c, a), (b, c), (c, b)\}$$

si ha: $[a]_{\mathcal{R}_1} = [b]_{\mathcal{R}_1} = [c]_{\mathcal{R}_1} = \{a, b, c\}; [d]_{\mathcal{R}_1} = \{d\}.$

Esempio 11. Sia Σ l'insieme delle rette di un piano fissato e \mathcal{E} la relazione su Σ così definita: per ogni $r, s \in \Sigma$,

$$(r,s) \in \mathcal{E} \Leftrightarrow r$$
 è parallela a s.

Sapendo che ogni retta è parallela a sè stessa, si si vede subito che \mathcal{E} è una relazione di equivalenza. Inoltre fissata una retta r, la sua classe di equivalenza è

$$[r]_{\mathcal{E}}$$
 = insieme di tutte le rette parallele a r.

Esempio 12. Nell'insieme Σ dell'Esempio 11, la perpendicolarità tra rette non è una relazione di equivalenza: infatti non è riflessiva ne' transitiva.

Proposizione 2. Siano A un insieme, R una relazione di equivalenza su A. Allora si ha:

- (1) $(\forall a \in A) ([a]_{\mathcal{R}} \neq \emptyset)$
- $(1) (\forall a \in A) ((a,b) \notin \mathcal{R} \iff [a]_{\mathcal{R}} \cap [b]_{\mathcal{R}} = \emptyset)$ $(2) (\forall a,b \in A) ((a,b) \notin \mathcal{R} \iff [a]_{\mathcal{R}} = [b]_{\mathcal{R}})$ $(3) (\forall a,b \in A) ((a,b) \in \mathcal{R} \iff [a]_{\mathcal{R}} = [b]_{\mathcal{R}})$
- $(4) \quad \bigcup [a]_{\mathcal{R}} = A.$

Dimostrazione. (1) discende subito dalla riflessività: infatti

$$\forall a \in A, (a, a) \in \mathcal{R} \implies a \in [a]_{\mathcal{R}}$$

Per provare (2), si considerino $a, b \in A$ in modo che $(a, b) \notin \mathcal{R}$. Usando la tecnica di dimostrazione per assurdo, si suppone che esista $c \in [a]_{\mathcal{R}} \cap [b]_{\mathcal{R}}$. Allora, per la definizione

di classe di equivalenza, risulterebbe: $(a,c) \in \mathcal{R} \land (b,c) \in \mathcal{R}$ e quindi, per la simmetria di $\mathcal{R}(a,c) \in \mathcal{R} \land (c,b) \in \mathcal{R}$ da cui, per la transitività di $\mathcal{R}, (a,b) \in \mathcal{R}$, in contraddizione con $(a,b) \notin \mathcal{R}$.

Viceversa, se $[a]_{\mathcal{R}} \cap [b]_{\mathcal{R}} = \emptyset$, non può essere $(a,b) \in \mathcal{R}$, altrimenti $a \in [a]_{\mathcal{R}} \cap [b]_{\mathcal{R}}$, e risulterebbe $[a]_{\mathcal{R}} \cap [b]_{\mathcal{R}} \neq \emptyset$.

Per dimostrare (3), si considerino $a, b \in A$, con $(a, b) \in \mathcal{R}$. Poichè si deve provare che i due insiemi $[a]_{\mathcal{R}}$ e $[b]_{\mathcal{R}}$ coincidono, si dimostrano le due inclusioni:

$$[a]_{\mathcal{R}} \subset [b]_{\mathcal{R}} \wedge [b]_{\mathcal{R}} \subset [a]_{\mathcal{R}}.$$

Sia $x \in [a]_{\mathcal{R}}$; questo vuol dire che $(a,x) \in \mathcal{R}$. Però anche $(a,b) \in \mathcal{R}$ e quindi, per la simmetria, $(b,a) \in \mathcal{R}$. Per la transitività di \mathcal{R} , $(b,x) \in \mathcal{R}$ e ciò significa che $x \in [b]_{\mathcal{R}}$, pertanto $[a]_{\mathcal{R}} \subset [b]_{\mathcal{R}}$. L'inclusione $[b]_{\mathcal{R}} \subset [a]_{\mathcal{R}}$ si prova nella stessa maniera.

Viceversa, se $[a]_{\mathcal{R}} = [b]_{\mathcal{R}}$, allora $a \in [a]_{\mathcal{R}} = [b]_{\mathcal{R}}$ e quindi $(a, b) \in \mathcal{R}$. Infine per l'Osservazione 8, si ha

$$\bigcup_{a\in A} [a]_{\mathcal{R}} \subset A.$$

Per provare l'altra inclusione, si fissi $x \in A$; per $(1), x \in [x]_{\mathcal{R}}$ e quindi

$$x \in \bigcup_{a \in A} [a]_{\mathcal{R}}.$$

Pertanto le due inclusioni sono verificate e quindi vale (4).

Definizione 15. Siano A un insieme, \mathcal{R} una relazione di equivalenza su A. L'insieme

$$A/\mathcal{R} = \{ [a]_{\mathcal{R}} : a \in A \}$$

si chiama insieme quoziente di A per \mathcal{R} .

Definizione 16. Siano A un insieme, $\mathcal{A} = \{A_i : i \in I\}$ un sottoinsieme (non vuoto) dell'insieme $\mathfrak{P}(A)$ delle parti di A. Si dice che \mathcal{A} è una partizione se

- $\forall i \in I, \ A_i \neq \emptyset$
- $\forall i, j \in I, i \neq j, A_j \cap A_j = \emptyset$ $\bigcup_{i \in I} A_i = A.$

Osservazione 9. Sia A un insieme, \mathcal{R} una relazione di equivalenza su A. Per la Proposizione 2, sicuramente l'insieme quoziente di A rispetto ad una relazione di equivalenza \mathcal{R} è una partizione. Si può verificare anche il viceversa: sia $\mathcal{A} = \{A_i : i \in I\}$ una partizione sull'insieme A. Si definisce la relazione \mathcal{R} nel modo che segue:

$$(a,b) \in \mathcal{R} \iff \exists i \in I \text{ tale che } a,b \in A_i.$$

Si prova che \mathcal{R} è di equivalenza e che $A/\mathcal{R} = \mathcal{A}$.