Brought to you by: I-57	Fakultet elektrotehnike i računarstva Zavod za automatiku i računalno inženjerstvo	20. listopad 2011.
	Osnove robotike	
	1. Domaća zadaća B grupa	

Za robotsku ruku prikazanu na slici 1.1 najprije izrađen kinematički model, prikazan na slici 1.2

Slika 1.1 Shema robotske ruke

Slika 1.2 Kinematički model robotske ruke

a) Nakon označavanja zglobova i pridruživanja desno orijentiranih koordinatnih sustava pojedinim člancima, određeni su njihovi kinematički parametri:

1:
$$\theta_1 = q_1$$
 $d_1 = d_1$ $a_1 = 0$ $\alpha_1 = 0$

2:
$$\theta_2 = 0$$
 $d_2 = q_2$ $a_2 = 0$ $\alpha_2 = -\frac{\pi}{2}$

3:
$$\theta_3 = 0$$
 $d_3 = q_3$ $a_3 = 0$ $\alpha_3 = 0$

4:
$$\theta_4 = q_4$$
 $d_4 = d_4$ $a_4 = 0$ $\alpha_4 = 0$

Pritom su q_1, q_2, q_3, q_4 promjenjivi parametri zglobova, dok su d_1 i d_4 konstrukcijski parametri odgovarajućih zglobova čije je postojanje pretpostavljeno na temelju sheme na slici 1.1, iako nisu eksplicitno zadani. Također, element Δd ustvari se može protumačiti kao dio parametra q_3 , a njegova veličina ovisi o tome gdje pozicioniramo koordinatni sustav Z_2 odnosno zglob 3. Drugim riječima, on predstavlja minimalnu dozvoljenu duljinu translacijskog zgloba q_3 .

b) Opći oblik matrice transformacije između susjednih koordinatnih sustava dobiveni su umnoškom matrica translacije ili rotacije za pojedini kinematički parametar:

$$\begin{split} \mathbf{T_{k-1}^{k}} &= \mathbf{Rot}(\boldsymbol{\theta_{k}}, \mathbf{3}) \mathbf{Tran}(\mathbf{d_{k}}) \mathbf{Tran}(\mathbf{a_{k}}) \mathbf{Rot}(\boldsymbol{\alpha_{k}}, \mathbf{1}) \\ &= \begin{bmatrix} C\theta_{k} & -S\theta_{k} & 0 & 0 \\ S\theta_{k} & C\theta_{k} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{k} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_{k} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} C\theta_{k} & -S\theta_{k}C\alpha_{k} & S\theta_{k}S\alpha_{k} & a_{k}C\theta_{k} \\ S\theta_{k} & C\theta_{k}C\alpha_{k} & -C\theta_{k}S\alpha_{k} & a_{k}S\theta_{k} \\ 0 & S\alpha_{k} & C\alpha_{k} & d_{k} \end{bmatrix} \end{split}$$

Iz 1.2 dobivaju se matrice transformacije:

$$\boldsymbol{T}_0^1 = \begin{bmatrix} \cos q_1 & -\sin q_1 & 0 & 0 \\ \sin q_1 & \cos q_1 & 0 & 0 \\ 0 & 0 & 1 & d_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 1.3a

$$\boldsymbol{T}_{1}^{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & q_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 1.3b

$$\boldsymbol{T}_{2}^{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & q_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 1.3c

$$T_3^4 = \begin{bmatrix} \cos q_4 & -\sin q_4 & 0 & 0\\ \sin q_4 & \cos q_4 & 0 & 0\\ 0 & 0 & 1 & d_4\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 1.3d

c) Matrica translacije koja povezuje alat robota sa njegovom bazom dobiva se kao umnožak matrica 1.3a do 1.3d:

$$\begin{split} \mathbf{T_{baza}^{alat}} &= \mathbf{T_0^4} = \mathbf{T_0^1} \ \mathbf{T_1^2} \ \mathbf{T_2^3} \ \mathbf{T_3^4} \\ &= \begin{bmatrix} \cos q_1 \cos q_4 & -\cos q_1 \sin q_4 & -\sin q_1 & -\sin q_1 (q_3 + d_4) \\ \sin q_1 \sin q_4 & -\sin q_1 \cos q_4 & \cos q_1 & \cos q_1 (q_3 + d_4) \\ -\sin q_4 & \cos q_4 & 0 & d_1 + q_2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{split}$$

d) Početna stanaja promjenjivih kinematičkih parametar bi trebala moći biti očitana sa sheme 1.1. Prema tome, imamo da je $q_{1,0}$, = 0, a q_2 i q_3 su u maksimalno razvučenim pozicijama. Parametar $q_{4,0}$ može biti 0 ili $\frac{\pi}{2}$, ovisno da li alat hvata vodoravno ili okomito.