

Table of Contents:

1.	Introduction	3
	A. Overview Goal	
	B. Motivation / Background Information	
2.	Preview of Both Dashboards	5
	A. John Hopkins' Initial Dashboard	
	B. Tom Fitzgerald's Power BI Dashboard	
3.	Dashboard Comparisons	7
	A. T-Chart Dashboard Comparison	
	B. John Hopkins' Comparison	
	C. Tom's Comparison	
	D. Tom's Dashboard – No Background	
	E. Tom's Dynamic Dashboard Example	
	F. County by Population Comparisons	
4.	Model View	13
5.	Power BI Challenges	14
6.	Appendix A. DAX Sample Calculation	15
7.	Appendix B. Gathering Data Setup	16

PowerPoint Overview Goal:

- Enable file sharing for this Power BI project
- Quick enough to compare John Hopkins & Tom's COVID-19 Dashboards
- Detailed enough to analyze beyond surface-level

John Hopkins' Dashboard (has been updated several times):

https://coronavirus.jhu.edu/map.html

Motivation / Background Information

- Watched weekly stats of COVID-19 around April 2020 on worldometer.info/coronavirus (basic graphs & tables)
- Came across John Hopkins' dashboard & enjoyed the dynamic visualizations
- Challenged myself to learn Power BI & recreate their dashboard
- Fun project to analyze the global pandemic while the world is impacted by it

- Raw time series data provided on GitHub by the University
- https://github.com/CSSEGISandData/COVID-19

John Hopkins' Initial Dashboard

Screenshot Date: 12/31/2020, created by CSSE at John Hopkins

Tom Fitzgerald's Power BI Dashboard

Screenshot Date: 1/6/2021, created by Tom

T-Chart Dashboard Comparison

John Hopkins:

- ArcGIS Dashboard (not free)
- Includes additional data like testing rate (blue box, next slide)
- Known dirty data not cleaned (green circle)
- Stopped providing US recovery data during Winter 2020 Holiday
- Map data points = Red

Tom:

- Power Bl Dashboard (Microsoft, free)
- Did not incorporate additional data / 85% completed (blue boxes)
- Cleaned daily cases data (green)
- Dashboard dependent on JHU data
- ArcGIS has features Power BI may not have (i.e. <u>Formatting, requires</u> <u>coding to manipulate the "look")</u>
- Map data points = Pink & Red

John Hopkins' Comparison:

- 1. ArcGIS Dashboard / Updated Data From March (Bottom Left)
- 2. Includes Incidence Rate, Case-Fatality Ratio, Testing Rate (Blue)
- 3. Daily Cases Data Not Cleaned (Green Circle on Bottom Right)

COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU)

Total Deaths in US Global Recovered Global Cases 543,023 70,256,708 123,810,630 57.622 deaths **11,181,253** recovered NORTH California US India Cases by 49,444 deaths 10.620,775 recovered Country/Region/Sovereignty New York US Brazil 9,870,995 US 47,446 deaths 4.041.716 recovered Texas US Russia Brazil 32,779 deaths 2,844,681 recovered 5 India Florida US AFRICA Turkey Russia 24,798 deaths **2,719,477** recovered France Global Recovered US Deaths **United Kingdom** AUSTI Italy Spain Esri, FAO, NOAA Turkey Cumulative Cases Case-Fatality Ratio Testing Rate Incidence Rate Admin0 Lancet Inf Dis Article: Here. Mobile Version: Here. Data sources: Full list. Downloadable database: GitHub, 192 Last Updated at (M/D/YYYY) Daily Cases 3/23/2021, 8:26 AM Lead by JHU CSSE. Technical Support: Esri Living Atlas team and JHU APL. Financial Support:

Tom's Comparison:

- 1. Power BI Dashboard (Jan 2021 Data)
- 2. Does not include additional data, "Bookmark Tabs" (Blue Rectangles)
- 3. Daily Cases Graph; Turkey Data Error Cleaned (Green Circle)

Tom's Dashboard - No Background

- Blue Rectangles show the "missing tabs"
- These tabs require Power BI "bookmarks" (i.e bottom right graph arrows to change the graph type)

Tom's Dynamic Dashboard Example:

John Hopkins' US Recovery

70,256,708

Global Recovered

No data available in this place

John Hopkins' March 2021 Data

US Only Maps (By County/ Pop)

Tom's
Jan 2021 Data

Deaths by Pop

Confirmed Cases

218 Yukon-Koyukuk, Alaska, US

Deaths

Model View

- Shows all tables, columns, & relationships in the model
- This is how we can link data between multiple data sets or tables
- One to Many Relationships:
 - COVID-19 Data to Calendar via Date
 - Location Table to COVID-19 Data via LocationID
 - Calendar to US Regional Recov... via Date
- The "Metrics" table enables <u>dynamic</u>
 visuals as the functions are
 calculated in each visual interaction

 All Data Sourced From John Hopkins's GitHub Page

https://github.com/CSSEGISandData/COVID-19

DAX Functions

Power BI Challenges:

- Troubleshooting DAX / Measure errors & verifying correct values
- Starting over 3 times after identifying a better way to model & add data (increasing speeds)
- Including US County data is more involved to combine it with global data (3 location tables were used for this)
 - Otherwise there would be 1 pink dot displayed in the US or 1 for each US state / territory (i.e. shown on pages 9,10,11)
- Format and aesthetics were trial and error & a 3rd of time spent
- Power BI has limits while constantly adding new features (i.e. not including a green recovered column label)
- Default (left) table cannot create the middle table by itself

Default Power BI

Countries/Regions	Recovered Globally	^
India	10,016,859	
Brazil	7,033,286	

Tom's Attempt

John Hopkins Uni

Appendix A. DAX Sample Calculation

Confirmed COVID-19 Cases =

var LatestDate = MAX('COVID-19 Data'[Date])

return

CALCULATE(SUM('COVID-19 Data'[Confirmed Cases]),'COVID-19 Data'[Date] = LatestDate)

= In English =

CALCULATE(SUM('Table Name'[Table Column]),'Table Name'[Column] = Filtered Data)

Data we want to examine

How we want to filter the data

- The calculate function is one way to filter data for:
 - Total Cases, Total Deaths, Total Recoveries...
 - Otherwise, our data would not be dynamic and contain inaccurate values

Appendix B. Gathering Data Setup

- Import time series data for global (confirmed, deaths, recovered) & ISO FIPS
 Lookup (this is the location table query to index countries / regions)
- This raw data is not efficient to model & must be reformatted
- Unpivot / pivot all columns that include date and COVID data to create 2 columns instead of having 100s
- Each individual confirmed, death, recovered query should look like this:

Time Series Data:

https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_time_series

Appendix B. Gathering Data Cont.

 At this point we can merge all 3 queries into one given identical format while extracting the columns of interest (COVID-19 Data)

• On the Location Query, create an index column starting with 1, merge onto COVID-19 Query, then remove duplicate geographic data on the COVID query as it can be linked to the Location Query via the index column

Location Query / Table Example:

