FEATURES

■ Access time: 35/70ns (max.)

Low power consumption:
 Operating: 60 mA (typical)
 Standby: 3mA (typical) normal
 2 μA (typical) L-version
 1 μA (typical) LL-version

■ Single 5V power supply

■ All inputs and outputs TTL compatible

Fully static operationThree state outputs

 Data retention voltage: 2V (min.)
 Package: 28-pin 600 mil PDIP 28-pin 330 mil SOP

GENERAL DESCRIPTION

The UT6264B is a 65,536-bit low power CMOS static random access memory organized as 8,192 words by 8 bits. It is fabricated using high performance, high reliability CMOS technology.

The UT6264B is designed for high-speed and low power application. It is particularly well suited for battery back-up nonvolatile memory application.

The UT6264B operates from a single 5V power supply and all inputs and outputs are fully TTL compatible.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

SYMBOL	DESCRIPTION
A0 – A12	Address Inputs
I/O1 – I/O8	Data Inputs/Outputs
CE#	Chip Enable Input
WE#	Write Enable Input
OE#	Output Enable Input
V_{CC}	Power Supply
V_{SS}	Ground
NC	No Connection

1

ABSOLUTE MAXIMUM RATINGS*

PARAMETER	SYMBOL	RATING	UNIT
Terminal Voltage with Respect to V _{SS}	VTERM	-0.5 to +7.0	V
Operating Temperature	TA	0 to +70	$^{\circ}\mathbb{C}$
Storage Temperature	Tstg	-65 to +150	$^{\circ}\mathbb{C}$
Power Dissipation	PD	1	W
DC Output Current	lout	50	mA
Soldering Temperature (under 10 sec)	Tsolder	260	$^{\circ}\!\mathbb{C}$

^{*}Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to the absolute maximum rating conditions for extended period may affect device reliability.

TRUTH TABLE

MODE	CE#	OE#	WE#	I/O OPERATION	SUPPLY CURRENT
Standby	Τ	Χ	Χ	High - Z	ISB, ISB1
Output Disable	L	Н	Н	High - Z	Icc
Read	L	Г	Ι	Dout	Icc
Write	L	Х	L	Din	Icc

Note: H = V_{IH}, L=V_{IL}, X = Don't care.

DC ELECTRICAL CHARACTERISTICS (Vcc = $5V\pm 10\%$, Ta = 0° C to 70° C)

PARAMETER	SYMBOL	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
Input High Voltage	ViH			2.2	-	Vcc+0.5	V
Input Low Voltage	VIL			- 0.5	-	0.8	V
Input Leakage Current	ILI	$V_{SS} \leqq V_{IN} \leqq V_{CC}$		- 1	-	1	μΑ
Output Leakage Current	ILO	Vss ≦V⊮o ≦Vcc		- 1	-	1	μA
		CE#=VIH or OE# = VIH or WE# = VIL					
Output High Voltage	Vон	Iон = - 1mA		2.4	-	-	V
Output Low Voltage	Vol	$I_{OL} = 4mA$		ı	-	0.4	V
Operating Power	Icc	$CE# = V_{IL}, I_{I/O} = 0mA$	- 35	-	60	100	mΑ
Supply Current		Cycle=Min.	- 70	-	40	70	mΑ
	IsB	CE# = V _{IH}	Normal	-	1	10	mA
Standby Dawer		CE#≧V _{CC} -0.2V	- L/- LL	1	0.3	3	mΑ
Standby Power Supply Current	I _{SB1}	CE# = V _{IH}	Normal	-	-	5	mΑ
Supply Current		CE#≧Vcc-0.2V	- L		2	100	μΑ
			- LL	-	1	50	μΑ

UTRON TECHNOLOGY INC. Nov.,2000

2

-3111002 1700.000-0-3111313

CAPACITANCE (TA=25°C, f=1.0MHz)

PARAMETER	SYMBOL	MIN.	MAX	UNIT
Input Capacitance	CIN	-	8	pF
Input/Output Capacitance	C _{I/O}	-	10	pF

Note: These parameters are guaranteed by device characterization, but not production tested.

AC TEST CONDITIONS

Input Pulse Levels	0V to 3.0V
Input Rise and Fall Times	5ns
Input and Output Timing Reference Levels	1.5V
Output Load	$C_L = 100 pF, I_{OH}/I_{OL} = -1 mA/4 mA$

AC ELECTRICAL CHARACTERISTICS (Vcc = $5V\pm 10\%$, TA = 0° C to 70° C)

(1) READ CYCLE

PARAMETER	SYMBOL	UT6264B-35		UT6264B-70		UNIT
		MIN.	MAX.	MIN.	MAX.	
Read Cycle Time	t _{RC}	35	-	70	-	ns
Address Access Time	t _{AA}	-	35	-	70	ns
Chip Enable Access Time	t _{ACE}	-	35	-	70	ns
Output Enable Access Time	toe	-	25	-	35	ns
Chip Enable to Output in Low Z	t _{CLZ*}	10	-	10	-	ns
Output Enable to Output in Low Z	tolz*	5	-	5	-	ns
Chip Disable to Output in High Z	tcHz*	-	25	-	35	ns
Output Disable to Output in High Z	t _{OHZ*}	-	25	-	35	ns
Output Hold from Address Change	tон	5	-	5	-	ns

(2) WRITE CYCLE

PARAMETER	SYMBOL	UT6264B-35		UT6264B-70		UNIT
		MIN.	MAX.	MIN.	MAX.	
Write Cycle Time	twc	35	-	70	-	ns
Address Valid to End of Write	t _{AW}	30	-	60	-	ns
Chip Enable to End of Write	tcw	30	-	60	-	ns
Address Set-up Time	tas	0	-	0	-	ns
Write Pulse Width	twp	25	-	50	-	ns
Write Recovery Time	twR	0	-	0	-	ns
Data to Write Time Overlap	t _{DW}	20	-	30	-	ns
Data Hold from End of Write Time	t _{DH}	0	-	0	-	ns
Output Active from End of Write	tow*	5	-	5	-	ns
Write to Output in High Z	twnz*	-	15	-	25	ns

^{*}These parameters are guaranteed by device characterization, but not production tested.

TIMING WAVEFORMS

READ CYCLE 1 (Address Controlled) (1,2,4)

READ CYCLE 2 (CE# and OE# Controlled) (1,3,5,6)

Notes:

- 1. WE# is HIGH for read cycle.
- 2. Device is continuously selected CE#=VIL.
- 3. Address must be valid prior to or coincident with CE# transition; otherwise tAA is the limiting parameter.
- 4. OE# is LOW.
- 5. t_{CLZ} , t_{OLZ} , t_{OLZ} and t_{OHZ} are specified with C_L =5pF. Transition is measured \pm 500mV from steady state.
- 6. At any given temperature and voltage condition, tcHz is less than tcLz, toHz is less than toLz.

WRITE CYCLE 1 (WE# Controlled) (1,2,3,5) Address CE# t_{CW} WE# t_{WHZ} High-Z DOUT DIN Data Valid WRITE CYCLE 2 (CE# Controlled) (1,2,5) t_{WC} Address t_{AW} CE# t_{CW} t_{WP} WE# High-Z DOUT

Notes:

DIN

- 1. WE# or CE# must be HIGH during all address transitions.
- 2. A write occurs during the overlap of a low CE# and a low WE#.
- 3. During a WE# controlled with write cycle with OE# LOW, twp must be greater than twHz+tpw to allow the I/O drivers to turn off and data to be placed on the bus.

Data Valid

- 4. During this period, I/O pins are in the output state, and input singals must not be applied.
- 5. If the CE# LOW transition occurs simultaneously with or after WE# LOW transition, the outputs remain in a high impedance state.
- 6. t_{ow} and t_{wHz} are specified with CL=5pF. Transition is measured \pm 500mV from steady state.

DATA RETENTION CHARACTERISTICS (TA = 0° C to 70° C)

PARAMETER	SYMBOL	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
Vcc for Data Retention	V _{DR}	CE# \geq Vcc-0.2V		2.0	-	5.5	V
Data Retention Current	IDR	Vcc=3V	- L	-	1	50	μA
		CE# \geq Vcc-0.2V	- LL	-	0.5	20	μA
Chip Disable to Data Retention Time	tcdr	See Data Retention Waveforms (below)		0	-	-	ns
Recovery Time	t _R			tRC*	-	-	ns

tRC* = Read Cycle Time

DATA RETENTION WAVEFORM

PACKAGE OUTLINE DIMENSION

28 pin 600 mil PDIP Package Outline Dimension

	UNIT	INCH(BASE)	MM(REF)
	A1	0.010 (MIN)	0.254 (MIN)
	A2	0.150± 0.005	3.810± 0.127
	В	0.020 (MAX)	0.508(MAX)
	B1	0.055 (MAX)	1.397(MAX)
	С	0.012 (MAX)	0.304 (MAX)
	D	1.430 (MAX)	36.322 (MAX)
Δ	Е	0.625 (MAX)	15.87 (MAX)
	E1	0.52 (MAX)	13.208 (MAX)
	е	0.100 (TYP)	2.540(TYP)
	eB	0.6 (TYP)	15.24 (TYP)
	L	0.180(MAX)	4.572(MAX)
	S	0.06 (MAX)	1.524 (MAX)
	Q1	0.08(MAX)	2.032(MAX)
	θ	15°(MAX)	15°(MAX)

28 pin 330 mil SOP Package Outline Dimension

	UNIT SYMBOL	INCH(BASE)	MM(REF)
	Α	0.120 (MAX)	3.048 (MAX)
	A1	0.002(MIN)	0.05(MIN)
	A2	$0.098\pm\ 0.005$	2.489± 0.127
	b	0.015 (MIN)	0.38 (MIN)
	D	0.020 (MAX)	0.50 (MAX)
	С	0.010 (TYP)	0.254(TYP)
	D	0.728 (MAX)	18.491 (MAX)
^	E	0.350 (MAX)	8.890 (MAX)
B	E1	0.465± 0.012	11.811± 0.305
	е	0.050 (TYP)	1.270(TYP)
\bigwedge	L	0.05 (MAX)	1.270 (MAX)
~~	L1	$0.067\pm\ 0.008$	1.702± 0.203
٨	S	0.047 (MAX)	1.194 (MAX)
Æ	У	0.003(MAX)	0.076(MAX)
	θ	$0^{\circ} \sim 10^{\circ}$	$0^{\circ} \sim 10^{\circ}$

ORDERING INFORMATION

PART NO.	ACCESS TIME	STANDBY CURRENT	PACKAGE
	(ns)	(μΑ)	
UT6264BPC-70	70	5mA	28PIN PDIP
UT6264BPC-70L	70	100 µA	28PIN PDIP
UT6264BPC-70LL	70	50 μA	28PIN PDIP
UT6264BSC-35	35	5mA	28PIN SOP
UT6264BSC-35L	35	100 µA	28PIN SOP
UT6264BSC-35LL	35	50 μA	28PIN SOP
UT6264BSC-70	70	5mA	28PIN SOP
UT6264BSC-70L	70	100 µA	28PIN SOP
UT6264BSC-70LL	70	50 µA	28PIN SOP