Exercise 6.2

Show that
$$\frac{1}{2^n}(\kappa_1 - \kappa_2) \cdot (\kappa_1) = 0$$
 for local linear regression before $b_1(\kappa_1) = \frac{1}{2^n}(\kappa_1 - \kappa_2) \cdot (\kappa_1) = 0$ for local linear regression before $b_1(\kappa_1) = \frac{1}{2^n}(\kappa_1 - \kappa_2) \cdot (\kappa_1) = 0$ for local linear regression before $b_1(\kappa_1) = \frac{1}{2^n}(\kappa_1 - \kappa_2) \cdot (\kappa_1 - \kappa_2) \cdot (\kappa_1) = 0$ for $k \in \mathbb{N}$ fine $k \in \mathbb{N}$. The converge of the $k \in \mathbb{N}$ fine $k \in \mathbb{N}$ for $k \in \mathbb{N}$