L5a Singular Value Decomposition - Definitions and Facts

Ivan Slapničar

May 2, 2018

1 Singular Value Decomposition - Definitions and Facts

1.1 Prerequisites

The reader should be familiar with basic linear algebra concepts and notebooks related to eigenvalue decomposition.

1.2 Competences

The reader should be able to undestand and check the facts about singular value decomposition.

1.3 Selected references

There are many excellent books on the subject. Here we list a few:

References

[Dem97] J.W. Demmel, 'Applied Numerical Linear Algebra', SIAM, Philadelphia, 1997.

[GV13] G. H. Golub and C. F. Van Loan, 'Matrix Computations', 4th ed., The John Hopkins University Press, Baltimore, MD, 2013.

[Hig02] N. Higham, 'Accuracy and Stability of Numerical Algorithms', SIAM, Philadelphia, 2nd ed., 2002.

[Hog14] L. Hogben, ed., 'Handbook of Linear Algebra', CRC Press, Boca Raton, 2014.

[Ste01] G. W. Stewart, 'Matrix Algorithms, Vol. II: Eigensystems', SIAM, Philadelphia, 2001.

[TB97] L. N. Trefethen and D. Bau, III, 'Numerical Linear Algebra', SIAM, Philadelphia, 1997.

1.4 Singular value problems

For more details and the proofs of the Facts below see [Li14] and [Mat14] and the references therein.

References

[Li14] R. C. Li, Matrix Perturbation Theory, in L. Hogben, ed., 'Handbook of Linear Algebra', pp. 21.6-21.8, CRC Press, Boca Raton, 2014.

[Mat14] R. Mathias, Singular Values and Singular Value Inequalities, in L. Hogben, ed., 'Handbook of Linear Algebra', pp. 24.1-24.17, CRC Press, Boca Raton, 2014.

1.4.1 Definitions

Let $A \in \mathbb{C}^{m \times n}$ and let $q = \min\{m, n\}$.

The **singular value decomposition** (SVD) of A is

$$A = U\Sigma V^*$$

where $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ are unitary, and $\Sigma = \operatorname{diag}(\sigma_1, \sigma_2, \ldots) \in \mathbb{R}^{m \times n}$ with all $\sigma_i \geq 0$.

Here σ_j is the **singular value**, $u_j \equiv U_{:,j}$ is the corresponding **left singular vector**, and $v_j \equiv V_{:,j}$ is the corresponding **right singular vector**.

The **set of singular values** is $sv(A) = {\sigma_1, \sigma_2, \dots, \sigma_a}$.

We assume that singular values are ordered, $\sigma_1 \ge \sigma_2 \ge \cdots \sigma_q \ge 0$.

The Jordan-Wielandt matrix is the Hermitian matrix

$$J = \begin{bmatrix} 0 & A \\ A^* & 0 \end{bmatrix} \in \mathbb{C}^{(m+n)\times(m+n)}.$$

1.4.2 Facts

There are many facts related to the singular value problem for general matrices. We state some basic ones:

- 1. If $A \in \mathbb{R}^{m \times n}$, then U and V are real.
- 2. Singular values are unique (uniquely determined by the matrix).
- 3. $\sigma_j(A^T) = \sigma_j(A^*) = \sigma_j(\bar{A}) = \sigma_j(A)$ for j = 1, 2, ..., q.
- 4. $Av_j = \sigma_j u_j$ and $A^*u_j = \sigma_j v_j$ for $j = 1, 2, \dots, q$.
- 5. $A = \sigma_1 u_1 v_1^* + \sigma_2 u_2 v_2^* + \dots + \sigma_q u_q v_q^*$.
- 6. **Unitary invariance.** For any unitary $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$, sv(A) = sv(UAV).
- 7. There exist unitary matrices $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ such that A = UBV if and only if sv(A) = sv(B).
- 8. SVD of A is related to eigenvalue decompositions of Hermitian matrices $A^*A = V\Sigma^T\Sigma V^*$ and $AA^* = U\Sigma\Sigma^TU^*$. Thus, $\sigma_j^2(A) = \lambda_j(A^*A) = \lambda_j(AA^*)$ for j = 1, 2, ..., q.

- 9. The eigenvalues of Jordan-Wielandt matrix are $\pm \sigma_1(A)$, $\pm \sigma_2(A)$, \cdots , $\pm \sigma_q(A)$ together with |m-n| zeros. The eigenvectors are obtained from an SVD of A. This relationship is used to deduce singular value results from the results for eigenvalues of Hermitian matrices.
- 10. trace($|A|_{spr}$) = $\sum_{i=1}^{q} \sigma_i$, where $|A|_{spr} = (A^*A)^{1/2}$.
- 11. If *A* is square, then $|\det(A)| = \prod_{i=1}^{n} \sigma_i$.
- 12. If *A* is square, then *A* is singular $\Leftrightarrow \sigma_i(A) = 0$ for some *j*.
- 13. Min-max Theorem. It holds:

$$\begin{split} \sigma_k &= \max_{\dim(W) = k} \min_{x \in W, \|x\|_2 = 1} \|Ax\|_2 \\ &= \min_{\dim(W) = n - k + 1} \max_{x \in W, \|x\|_2 = 1} \|Ax\|_2. \end{split}$$

- 14. $||A||_2 = \sigma_1(A)$.
- 15. For $B \in \mathbb{C}^{m \times n}$,

$$|\operatorname{trace}(AB^*)| \leq \sum_{j=1}^{q} \sigma_j(A)\sigma_j(B).$$

16. **Interlace Theorems.** Let B denote A with the one of its rows or columns deleted. Then

$$\sigma_{i+1}(A) \leq \sigma_i(B) \leq \sigma_i(A), \quad j = 1, \dots, q-1.$$

Let B denote A with the one of its rows and columns deleted. Then

$$\sigma_{j+2}(A) \leq \sigma_j(B) \leq \sigma_j(A), \quad j=1,\ldots,q-2.$$

17. **Weyl Inequalities.** For $B \in \mathbb{C}^{m \times n}$, it holds:

$$\sigma_{j+k-1}(A+B) \le \sigma_{j}(A) + \sigma_{k}(B), \quad j+k \le n+1,$$

$$\sum_{j=1}^{k} \sigma_{j}(A+B) \le \sum_{j=1}^{k} \sigma_{j}(A) + \sum_{j=1}^{k} \sigma_{j}(A), \quad k = 1, \dots, q.$$

1.4.3 Example - Symbolic computation

In [1]: using SymPy

```
In [3]: @vars x
Out[3]: (x,)
In [4]: B=A'*A
Out[4]: 3×3 Array{Int64,2}:
         59 11 33
         11
         33 6 21
In [5]: # Characteristic polynomial p_B(\lambda)
        p(x)=simplify(det(B-x*I))
        p(x)
Out[5]:
                                -x^3 + 85x^2 - 393x + 441
In [6]: \lambda = map(Rational, solve(p(x), x))
Out[6]: 3-element Array{Rational{Int64},1}:
                        3//1
         2064549086305011//1125899906842624
         5641202704674385//70368744177664
In [7]: V=Array{Any}(3,3)
        for j=1:3
            V[:,j]=nullspace(B-\lambda[j]*I)
        end
Out[7]: 3×3 Array{Any,2}:
         -3.2754f-7 -0.519818 -0.854277
          0.948684 0.270146 -0.164381
         -0.316227
                     0.810438 -0.493142
In [8]: U=Array(Any)(3,3)
        for j=1:3
            U[:,j]=nullspace(A*A'-\lambda[j]*I)
        end
        U
Out[8]: 3\times3 Array{Any,2}:
          0.912871 -0.154138 -0.378032
          0.182574 -0.67409
                                 0.71573
         -0.365148 -0.722388 -0.587215
```

```
In [9]: \sigma=sqrt.(\lambda)
Out[9]: 3-element Array{Float64,1}:
        1.73205
        1.35414
        8.95356
In [10]: A-U*diagm(\sigma)*V'
Out[10]: 3×3 Array{Float64,2}:
          2.02284e-7 3.05213e-7 9.51424e-7
          9.53544e-7 -6.66283e-7 -7.23387e-7
         -7.64795e-7 1.85427e-8 3.64772e-7
In [11]: S=svd(A)
Out[11]: ([-0.378032 -0.912871 -0.154137; 0.71573 -0.182574 -0.67409; -0.587215 0.365148 -0.7223
In [12]: typeof(S)
Out[12]: Tuple{Array{Float64,2},Array{Float64,1},Array{Float64,2}}
In [13]: U_1=S[1]
        \sigma_1=S[2]
        V_1 = S[3]
Out[13]: 3×3 Array{Float64,2}:
         -0.854277
                    0.0
                              -0.519818
         -0.164381 -0.948683 0.270146
         -0.493143 0.316228 0.810438
In [14]: V
Out[14]: 3×3 Array{Any,2}:
         -3.2754f-7 -0.519818 -0.854277
          0.948684 0.270146 -0.164381
          1.4.4 Example - Random complex matrix
In [15]: m=5
        s=srand(421)
        q=min(m,n)
```

A=rand(m,n)+im*rand(m,n)

```
Out [15]: 5\times3 Array{Complex{Float64},2}:
         0.345443+0.915812im
                               0.77247+0.198694im 0.958365+0.37833im
           0.68487+0.605095im 0.17008+0.854638im
                                                     0.560486+0.834811im
          0.650991+0.83639im 0.525208+0.905889im
                                                     0.608612+0.353274im
          0.973053+0.766264im 0.785847+0.0936446im 0.346561+0.831302im
          0.105135+0.810683im 0.135538+0.651562im 0.561248+0.217897im
In [16]: U, \sigma, V=svd(A, thin=false)
         IJ
Out [16]: 5 \times 5 Array{Complex{Float64},2}:
          -0.326131-0.323713im -0.214728+0.0378561im
                                                         ... -0.304393-0.109676im
          -0.204849-0.411755im 0.124224-0.410762im
                                                            -0.123119-0.163377im
          -0.277774-0.399041im -0.235078+0.0866662im
                                                           -0.181124+0.460827im
          -0.342932-0.328115im 0.718399+0.105642im
                                                            0.147071+0.0774263im
          -0.109764-0.321934im -0.42215-0.00780174im
                                                            0.736473-0.195654im
In [17]: \sigma
Out[17]: 3-element Array{Float64,1}:
          3.30202
          0.965571
          0.76542
In [18]: V
Out[18]: 3×3 Array{Complex{Float64},2}:
          -0.657411-0.0im
                                  0.461649-0.0im
                                                       -0.595559-0.0im
          -0.525502-0.0714762im -0.021837+0.45993im
                                                        0.563152+0.435416im
          -0.523002-0.114098im
                                 -0.496126-0.573347im
                                                        0.192746-0.318484im
In [20]: vecnorm(A-U[:,1:q]*diagm(\sigma)*V'), vecnorm(U'*V-I), vecnorm(V'*V-I)
Out[20]: (2.3784520229865113e-15, 8.022528754873721e-16, 9.528291430178565e-16)
In [21]: # Fact 4
         @show k=rand(1:q)
         norm(A*V[:,k]-\sigma[k]*U[:,k],Inf), norm(A'*U[:,k]-\sigma[k]*V[:,k],Inf)
k = rand(1:q) = 1
Out [21]: (1.2947314098277873e-15, 9.305364597889227e-16)
In [22]: \lambda_1, V_1 = eig(A'*A)
```

```
Out[22]: ([0.585867, 0.932328, 10.9034], Complex{Float64}[-0.308357-0.509516im -0.302079+0.34908
In [23]: sqrt.(\lambda_1)
Out[23]: 3-element Array{Float64,1}:
          0.76542
          0.965571
          3.30202
In [24]: \lambda U, U_1 = eig(A*A')
Out[24]: ([1.66533e-16, 3.61372e-16, 0.585867, 0.932328, 10.9034], Complex{Float64}[-0.257033-0.
In [25]: V
Out[25]: 3×3 Array{Complex{Float64},2}:
          -0.657411-0.0im
                                  0.461649-0.0im -0.595559-0.0im
          -0.525502-0.0714762im -0.021837+0.45993im 0.563152+0.435416im
          -0.523002-0.114098im -0.496126-0.573347im 0.192746-0.318484im
In [26]: V<sub>1</sub>
Out [26]: 3\times3 Array{Complex{Float64},2}:
           -0.308357-0.509516im -0.302079+0.349097im -0.642304+0.140124im
          -0.0809315+0.707232im -0.333508-0.317467im -0.528661+0.0421748im
            0.372268-0.0im
                                    0.7582 + 0.0 im
                                                     -0.535303-0.0im
In [27]: abs.(V'*V_1)
Out[27]: 3×3 Array{Float64,2}:
          2.65135e-16 3.19189e-16 1.0
          1.73089e-15 1.0
                                    3.92523e-16
          1.0
                       2.02635e-15 4.8473e-16
Explain non-uniqueness of U and V!
In [28]: # Jordan-Wielandt matrix
         J=[zeros(A*A') A; A' zeros(A'*A)]
Out[28]: 8×8 Array{Complex{Float64},2}:
               0.0 + 0.0 im
                                                     ... 0.958365+0.37833im
                                    0.0 + 0.0 im
               0.0 + 0.0 im
                                    0.0 + 0.0 im
                                                        0.560486+0.834811im
               0.0 + 0.0 im
                                    0.0 + 0.0 im
                                                        0.608612 + 0.353274im
                                                        0.346561+0.831302im
               0.0 + 0.0 im
                                    0.0 + 0.0 im
               0.0+0.0im
                                     0.0 + 0.0 im
                                                        0.561248+0.217897im
          0.345443-0.915812im 0.68487-0.605095im ...
                                                              0.0+0.0im
           0.77247-0.198694im 0.17008-0.854638im
                                                            0.0 + 0.0 im
          0.958365-0.37833im 0.560486-0.834811im
                                                             0.0 + 0.0 im
```

```
In [29]: round.(abs.(J),2)
Out[29]: 8×8 Array{Float64,2}:
          0.0
                0.0
                      0.0
                            0.0
                                  0.0
                                        0.98 0.8
                                                    1.03
          0.0
                0.0
                      0.0
                            0.0
                                  0.0
                                        0.91 0.87 1.01
          0.0
                0.0
                            0.0
                                  0.0
                                        1.06 1.05 0.7
                      0.0
          0.0
                0.0
                      0.0
                            0.0
                                  0.0
                                        1.24 0.79 0.9
          0.0
                0.0
                      0.0
                            0.0
                                  0.0
                                        0.82 0.67 0.6
          0.98 0.91 1.06 1.24 0.82 0.0
                                             0.0
                                                    0.0
                0.87 1.05 0.79 0.67
          0.8
                                        0.0
                                              0.0
                                                    0.0
          1.03 1.01 0.7
                            0.9
                                        0.0
                                  0.6
                                              0.0
                                                    0.0
In [30]: \lambda J, UJ = eig(J)
Out[30]: ([-3.30202, -0.965571, -0.76542, -7.50067e-17, 2.84505e-17, 0.76542, 0.965571, 3.30202]
In [31]: \lambda J
Out[31]: 8-element Array{Float64,1}:
          -3.30202
          -0.965571
          -0.76542
          -7.50067e-17
           2.84505e-17
           0.76542
           0.965571
           3.30202
1.4.5 Example - Random real matrix
In [32]: m=8
         q=min(m,n)
         A=rand(-9:9,m,n)
Out[32]: 8×5 Array{Int64,2}:
          -8
             -5
                 -7
                     -6 -7
          -9
             -5 -8
                      6
                           2
           5
             -5
                  0
                     -8 -4
           1
             7
                     0 -9
                  0
                  4 -9 -5
          -5
              5
                     3 -9
          -1 -5
                   6
              8
                  3
                         3
          -8
                     -2
```

In [33]: $U, \sigma, V=svd(A)$

-6 -1

7 -5

```
Out[33]: ([-0.200296 0.785765 ... -0.0531203 0.214687; 0.441635 0.58177 ... 0.140171 -0.108251;
In [34]: # Fact 10
         trace(sqrtm(A'*A)), sum(\sigma)
Out [34]: (78.87502223506586, 78.87502223506581)
In [35]: # Fact 11
         B=rand(n,n)
         det(B), prod(svdvals(B))
Out [35]: (-0.2458771005140237, 0.24587710051402362)
In [36]: # Fact 14
         norm(A), \sigma[1]
Out [36]: (19.45078341709841, 19.450783417098403)
In [37]: # Fact 15
         B=rand(m,n)
         abs(trace(A*B')), sum(svdvals(A)·svdvals(B))
Out [37]: (50.64537766210586, 99.0009477844518)
In [38]: # Interlace Theorems (repeat several times)
         j=rand(1:q)
         \sigmaBrow=svdvals(A[[1:j-1;j+1:m],:])
         \sigmaBcol=svdvals(A[:,[1:j-1;j+1:n]])
         j, \sigma, \sigmaBrow, \sigmaBcol
Out[38]: (4, [19.4508, 17.9708, 17.4113, 12.9019, 11.1402], [18.7887, 17.9646, 17.1446, 11.2341,
In [39]: \sigma[1:end].>=\sigmaBrow, \sigma[1:end-1].>=\sigmaBcol, \sigma[2:end].<=\sigmaBrow[1:end-1], \sigma[2:end].<=\sigmaBcol
Out[39]: (Bool[true, true, true, true], Bool[true, true, true, true], Bool[true, true, true]
In [40]: # Weyl Inequalities
         B=rand(m,n)
         \mu=svdvals(B)
         \gamma=svdvals(A+B)
         [\gamma \sigma \mu]
Out[40]: 5×3 Array{Float64,2}:
          19.1934 19.4508 3.34773
          17.4086 17.9708 0.767945
          15.7687 17.4113 0.675385
          12.858 12.9019 0.370378
          11.0203 11.1402 0.211886
```

```
In [41]: @show k=rand(1:q) sum(\gamma[1:k]), sum(\sigma[1:k]) + sum(\mu[1:k]) k = rand(1:q) = 4 Out[41]: (65.22873167893384, 72.89621356549667)
```

1.5 Matrix approximation

Let $A = U\Sigma V^*$, let $\tilde{\Sigma}$ be equal to Σ except that $\tilde{\Sigma}_{jj} = 0$ for j > k, and let $\tilde{A} = U\tilde{\Sigma}V^*$. Then $\operatorname{rank}(\tilde{A}) \leq k$ and

$$\min\{\|A - B\|_2 : \operatorname{rank}(B) \le k\} = \|A - \tilde{A}\|_2 = \sigma_{k+1}(A)$$

$$\min\{\|A - B\|_F : \operatorname{rank}(B) \le k\} = \|A - \tilde{A}\|_F = \left(\sum_{j=k+1}^q \sigma_j^2(A)\right)^{1/2}.$$

This is the **Eckart-Young-Mirsky Theorem**.

```
In [42]: A
Out[42]: 8×5 Array{Int64,2}:
         -8 -5 -7 -6 -7
         -9 -5 -8 6 2
         5 -5 0 -8 -4
         1 7 0 0 -9
         -5 5 4 -9 -5
        -1 -5 6 3 -9
         -8 8 3 -2 3
        -6 -1 7 -5 4
In [43]: \sigma
Out[43]: 5-element Array{Float64,1}:
         19.4508
         17.9708
         17.4113
         12.9019
         11.1402
In [44]: @show k=rand(1:q-1)
        B=U*diagm([\sigma[1:k];zeros(q-k)])*V'
```

```
k = rand(1:q - 1) = 2
Out[44]: 8×5 Array{Float64,2}:
         -8.76602 -5.51867
                                      -4.51139 -7.74616
                           -5.3996
         -8.46919 -5.62061 -8.52415
                                      4.41628
                                               3.12919
          3.66858 -2.36294
                            0.670024 -3.41882 -7.50717
          1.41571 1.12119 2.80764
                                      -4.27887 -4.74724
         -5.24483 4.53814
                            4.6882
                                      -8.69105
                                               -5.05354
          1.98163 -2.68496 -0.406102 -2.62736 -6.28064
         -7.77341 6.57427
                             3.46896
                                      -3.3301
                                                4.20708
         -5.37598 4.44032 2.70188
                                      -3.38539 1.47365
In [45]: A
Out[45]: 8×5 Array{Int64,2}:
         -8
            -5
                -7
                    -6 -7
         -9
            -5
                -8
                    6
                         2
          5
                    -8 -4
            -5
                 0
          1
            7
                    0 -9
                 0
         -5
            5
                 4 -9 -5
         -1 -5
                 6 3 -9
                 3 -2 3
         -8
            8
                 7 -5 4
         -6 -1
In [46]: norm(A-B), \sigma[k+1]
Out [46]: (12.901878235505487, 12.901878235505484)
In [47]: vecnorm(A-B), vecnorm(\sigma[k+1:q])
Out [47]: (17.045925026559797, 17.045925026559797)
In []:
```