Rozmaite cierpienia

Spis treści

1	Defi	iniowanie rozmaitości	3		
	1.1	Rozmaitość topologiczna	3		
	1.2	Mapy, współrzędne lokalne	4		
	1.3	Rozmaitości gładkie (różniczkowalne)			
	1.4	Warianty pojęcia rozmaitości różniczkowalnej			
	1.5	Definiowanie rozmaitości gładkiej X za pomocą samego atlasu			
		Rozmaitość gładka z brzegiem			
2	Rozkład jedności				
	2.1	Lokalnie skończone rozdrobnienie	15		
	2.2	Twierdzenie o rozkładzie jedności			
3	Wek	ctory styczne	19		
	3.1	Przestrzeń styczna - definicja kinematyczna	19		
	3.2	Struktura wektorowa przestrzeni T _p M			
		Różniczka			

1. Definiowanie rozmaitości

1.1. Rozmaitość topologiczna

Definicja 1.1. Przestrzeń topologiczna M jest n-wymiarową rozmaitością (n-rozmaitością) topologiczną, jeśli:

- jest Hausdorffa
- · ma przeliczalną bazę topologii
- jest lokalnie euklidesowa wymiaru n, tzn. każdy punkt posiada otoczenie otwarte homeomorficzne z otwartym podzbiorem w \mathbb{R}^n

Warunkiem równoważnym do lokalnej euklidesowości jest posiadanie przez każdy punkt $p \in M$ otoczenia U takiego, że istnieje homeomorfizm U $\stackrel{\cong}{\longrightarrow} B_r \subseteq \mathbb{R}^n$. [ćwiczenia]

Hausdorffowość

Dzięki warunkowi Hausdorffowości wykluczone są np. patologie pokroju

gdzie punktów A i B nie da się rozdzielić za pomocą rozłącznych zbiorów otwartych.

Ogólniej, warunek ten mówi, że lokalnie topologiczne własności z \mathbb{R}^n przenoszą się na M przez homeomorfizmy, np dla podzbioru $U \subseteq M$ i homeomorfizmu $\phi : U \to \overline{U} \subseteq \mathbb{R}^n$:

Dodatkowo, dla dowolnego *zwartego* $\overline{K} \subseteq \overline{U}$ jego odpowiednik na M, czyli $K = \phi^{-1}(\overline{K}) \subseteq U$, jest *domknięty i zwarty* [ćwiczenia]. Jeśli zaś \overline{K} jest zbiorem domknięty w \overline{U} , ale niezwartym, to nie zawsze K jest domknięty w M. Weźmy np. $\phi: U \to \overline{U} = \mathbb{R}^n$ i zbiór domknięty $\overline{K} = \mathbb{R}^n$ (cała przestrzeń jest jednocześnie domknięta i otwarta). Wtedy $K = \phi^{-1}(\overline{K}) = U$ jest otwartym podzbiorem M mimo, że \overline{K} jest otwarte.

Skończone podzbiory rozmaitości będącej przestrzenią Hausdorffa są zawsze domknięte i co ważne, granice ciągów na rozmaitościach topologicznych są jednoznacznie określone.

Przeliczalna baza

Warunek przeliczalnej bazy został wprowadzony, by rozmaitości nie były "zbyt duże". Nieprzeliczalna suma parami rozłącznych kopii \mathbb{R}^n nie może być rozmaitością. Warunek ten implikuje, że każde pokrycie zbiorami otwartymi zawiera przeliczalne podpokrycie [ćwiczenia], co jest nazywane warunkiem Lindelöfa.

Przeliczalność bazy implikuje również, że każda rozmaitość topologiczna jest wstępującą sumą zbiorów otwartych

$$U_1\subseteq U_2\subseteq ...\subseteq U_n\subseteq ...,$$

które po domknięciu są nadal zawarte w niej. Pozwala ona również na włożenie M do \mathbb{R}^n dla odpowiednio dużego n. Czyli na przykład S², sfera, ma naturalne włożenie w \mathbb{R}^3 pomimo lokalnej euklidesowości z \mathbb{R}^2 .

Rodzina \mathscr{X} podzbiorów M jest *lokalnie skończona*, jeżeli każdy punkt $p \in M$ ma otoczenie, które przecina się co najwyżej ze skończoną liczbą zbiorów z \mathscr{X} . Jeżeli M ma dwa pokrycia: \mathscr{U} i \mathscr{V} takie, że dla każdego $V \in \mathscr{V}$ znajdziemy $U \in \mathscr{U}$ takie, że $V \subseteq U$, to \mathscr{V} jest *pokryciem włożonym/rozdrobnieniem* \mathscr{U} . Dzięki przeliczalności bazy M, każda rozmaitość jest **parazwarta**, czyli zawiera lokalnie skończone rozdrobnienie.

Lokalna euklidesowość

Twierdzenie 1.2. *Twierdzenie Brouwer'a* Dla m \neq n otwarty podzbiór \mathbb{R}^n nie może być homeomorficzny z żadnym otwartym podzbiorem \mathbb{R}^m .

Z twierdzenia wyżej wynika, że liczba n jest przypisana do M jednoznacznie i nazywa się **wymiarem** M (dim(M) = n). Jeśli wymiar rozmaitości M wynosi n, to nazywamy ją czasem n-rozmaitością.

Inne własności rozmaitości topologicznych:

- Każda rozmaitość ma przeliczalną bazę złożoną ze zbiorów homeomorficznych z kulami w \mathbb{R}^n , których domknięcia są zbiorami zwartymi.
- Każda rozmaitość jest lokalnie spójna, tzn. ma bazę otwartych zbiorów łukowo spójnych.
- Każda rozmaitość jest lokalnie zwarta (tzn. każdy punkt posiada zwarte otoczenie).

1.2. Mapy, współrzędne lokalne

Definicja 1.3. Mapą na rozmaitości topologicznej M nazywamy parę (U, ϕ), gdzie U jest otwartym podzbiorem M, zaś $\phi: U \to \overline{U} = \phi(U) \subseteq \mathbb{R}^n$ jest homeomorfizmem na otwarty podzbiór w \mathbb{R}^n . Zbiór U nazywamy wtedy **zbiorem mapowym**

Ponieważ każda rozmaitość topologiczna jest lokalnie euklidesowa, to M jest pokrywana zbiorami mapowymi.

Dla mapy (U, ϕ) takiej, że $p \in U$ i $\phi(p) = 0 \in \mathbb{R}^n$ mówimy, że jest *mapą wokół* p.

Mapy nazywa się też czasem lokalnymi współrzędnymi na M lub lokalną parametryzacją M.

Tutaj warto zaznaczyć, że zbiór pusty zaspokaja definicję rozmaitości topologicznej dla dowolnego n. Wygodnie jest go jednak móc użyć, więc w definicji niepustość M nie jest przez nas wymagana.

Przykłady:

- 1. Każdy otwarty podzbiór n-rozmaitości topologicznej jest n-rozmaitością [ćwiczenia].
- 2. Wykresy ciągłych funkcji: Niech U $\subseteq \mathbb{R}^n$ i f : U $\to \mathbb{R}^k$ jest funkcją ciągłą. Wykresem f nazywamy zbiór

$$\Gamma(f) = \{(x,y) : x \in U, y = f(x)\} \subseteq \mathbb{R}^n \times \mathbb{R}^k$$

Oznaczmy przez $\pi_1:\mathbb{R}^n\times\mathbb{R}^k\to\mathbb{R}^n$ projekcję na \mathbb{R}^n , tzn. $\pi_1(x,y)=x\in\mathbb{R}^n$. Wtedy funkcja $\phi:\Gamma(f)\to U$ będąca obcięciem π_1 do $\Gamma(f)$. Ponieważ ϕ jest obcięciem funkcji ciągłej, to samo również jest ciągłe. W dodatku, funkcja $\phi^{-1}:\mathbb{R}^n\to\Gamma(f)$ dana przez $\phi^{-1}(x)=(x,f(x))\in\Gamma(f)$, jest ciągłą funkcją odwrotną do ϕ . W takim razie, ϕ jest homeomorfizmem między U a $\Gamma(f)$ i wykres funkcji ciągłych jest lokalnie euklidesowy. Jako podzbiór $\mathbb{R}^n\times\mathbb{R}^k$ jest też przestrzenią Hausdorffa oraz ma przeliczalną bazę. W takim razie, wykres ciągłej funkcji jest rozmaitością topologiczną.

3. Sfery Sⁿ są n-rozmaitościami, które wkładają się w \mathbb{R}^{n+1} (Sⁿ = {($x_1,...,x_{n+1}$) $\in \mathbb{R}^{n+1}$: $\sum x_i^2$ = 1}).

Rozważmy rodzinę par $\{(U_i^{\pm},\phi_i^{\pm}): i$ = 1,..., n + 1 $\}$ na Sⁿ zdefiniowanych jako:

$$U_i^+ = \{x \in S^n : x_i > 0\}$$

$$U_i^- = \{x \in S^n \ : \ x_i < 0\}$$

Oznaczenie $\widehat{x_i}$ nacza "wyrzuc danej współrz

$$\phi_i^{\pm}(x) = (x_1, ..., x_{i-1}, \widehat{x_i}, x_{i+1}, ..., x_n).$$

Zbiory U_i^\pm pokrywają całe S^n , gdyż każdy punkt posiada co najmniej jedną niezerową współrzędną, a funkcje ϕ_i^\pm są ciągłe jako obcięcia rzutów \mathbb{R}^{n+1} na \mathbb{R}^n . Obrazem zbioru U_i^\pm przez ϕ_i^\pm jest zbiór

$$\overline{\mathsf{U}_{\mathsf{i}}^{\pm}}$$
 = $\phi_{\mathsf{i}}^{\pm}(\mathsf{U}_{\mathsf{i}}^{\pm})$ = {(x₁, ..., x_n) : $\sum \mathsf{x}_{\mathsf{i}}^2 < 1$ }

czyli otwarta kula w \mathbb{R}^n .

Odwzorowania ϕ_{i}^{\pm} są bijekcjami o odwzorowaniach odwrotnych:

$$(\phi_i^{\pm})^{-1}(x_1,...,x_n) = (x_1,...,x_{i-1},\pm\sqrt{1-\sum x_i^2},x_i,...,x_n)$$

które są ciągłe. W takim razie $\phi_{\bf i}^\pm$ są homeomorfizmami między otwartymi podzbiorami Sⁿ a otwartymi podzbiorami Rⁿ.

Pokazaliśmy lokalną euklidesowość S^n , natomiast bycie przestrzenią Hausdorffa o przeliczalnej bazie S^n dziedziczy z \mathbb{R}^{n+1} .

- 4. Produkt kartezjański dwóch (lub k) rozmaitości topologicznych rozmaitością topologiczną [ćwiczenia].
- 5. n-torus jest przestrzenią produktową $\mathbb{T}^n = S^1 \times ... \times S^1$ i n-rozmaitością topologiczną. \mathbb{T}^2 nazywamy po prostu torusem.

1.3. Rozmaitości gładkie (różniczkowalne)

Dla funkcji f : M $\to \mathbb{R}$ chcemy rozpoznawać je różniczkowalność za pomocą map (U, ϕ) na M.

Funkcja f : M $\to \mathbb{R}$ wyrażona w mapie (U, ϕ) to złożenie f $\circ \phi^{-1} : \overline{U} \to \mathbb{R}$.

Definicja 1.4. Funkcja f : $M \to \mathbb{R}$ jest **gładka**, jeśli dla każdej mapy (U, ϕ) na M f $\circ \phi^{-1}$ jest gładka.

W tej definicji pojawia się pewien problem: dla jednej mapy (U, ϕ) f może gładka, ale jeśli przejdziemy z obrazu mapy (U, ψ) to może się okazać, że f₂ = f₁ $\circ \psi \circ \phi^{-1}$ nie jest gładka:

Dlatego chcemy móc założyć, że $\phi \circ \psi^{-1}$ jest przekształceniem gładkim.

Definicja 1.5. Mapy (U, ϕ), (V, ψ) nazywamy (gładko) **zgodnymi**, gdy $\phi \circ \psi^{-1}$ i $\psi \circ \phi^{-1}$ są odwzorowaniami gładkimi.

Odwzorowania $\phi\psi^{-1}$ nazywamy *odwzorowaniami przejścia* z jednej mapy do drugiej. Jeśli $\phi\psi^{-1}$ i $\psi\phi^{-1}$ są gładkie, to są one wzajemnie do siebie odwrotnymi bijekcjami. Takie odwzorowania nazywamy **dyfeomorfizmami** pomiędzy otwartymi podzbiorami \mathbb{R}^n . Zauważmy, że w każdym punkcie Jakobian, czyli wyznacznik macierzy pochodnych cząstkowych, jest dla dyfeomorfizmów niezerowy [ćwiczenia].

W ogólnym przypadku, gdy U \cap V $\neq \emptyset$, rysunek wygląda:

Mapy (U, ϕ) i (V, ψ) nazywamy zgodnymi, jeśli:

- U ∩ V = ∅
- · odwzorowania przejścia

$$\phi\psi^{-1}:\psi(\mathsf{U}\cap\mathsf{V})\to\phi(\mathsf{U}\cap\mathsf{V})$$

oraz

$$\psi\phi^{-1}:\phi(U\cap V)\to\psi(U\cap V)$$

są gładkie (\iff są dyfeomorfizmami podzbiorów $\phi(U \cap V)$ i $\psi(U \cap V)$).

Definicja 1.6. Gładkim atlasem \mathscr{A} na rozmaitości M nazywamy zbiór map $\{(U_{\alpha}, \phi_{\alpha})\}$ takich, że:

- $\{U_{\alpha}\}$ pokrywają całe M
- · każde dwie mapy z tego zbioru są zgodne.

Przykłady:

Rodzina map {(U_i[±], φ_i[±])} na sferze Sⁿ jest atlasem gładkim na Sⁿ. Dla przykładu zbadamy zgodność map (U_i⁺, φ_i⁺) i (U_j⁺, φ_i⁺) dla i < j.

Popatrzmy jak wyglądają interesujące nas zbiory:

$$U_i^+ \cap U_i^+ = \{x \in S^n \ : \ x_i > 0, x_j > 0\}$$

$$\phi_i^{\scriptscriptstyle +}(\mathsf{U}_i^{\scriptscriptstyle +}\cap\mathsf{U}_j^{\scriptscriptstyle +}) = \{x\in\mathbb{R}^n \ : \ |x|<\text{1,} \, x_{j-1}>0\}$$

bo usuwamy i-tą współrzędną i numery poprzednich współrzędnych spadają o 1 w dół,

$$\phi_j^{\scriptscriptstyle +}(\mathsf{U}_i^{\scriptscriptstyle +}\cap\mathsf{U}_j^{\scriptscriptstyle +})$$
 = $\{x\in\mathbb{R}^n \ : \ |x|<1, x_i>0\}$

bo w tym przypadku usunęliśmy współrzędną na prawo od i, więc jej położenie nie zmienia się.

Czyli odwzorowanie przejścia jest zadane wzorem:

$$\phi_i^+(\phi_i^+)^{-1}(x_1,...,x_n) = (x_1,...,x_{i-1},x_{i+1},...,x_{i-1},\sqrt{1-|x|^2},x_i,...,x_n)$$

i widać, że jest ono gładkie. Pozostałe rachunki przechodzą analogicznie.

 Jeśli V jest przestrzenią liniową wymiaru n < ∞ nad ℝ, to dowolna norma określona na V zadaje metrykę, która pozwala określić na V topologię (identyczną dla równoważnych norm). Z taką topologią V jest n-rozmaitością z naturalnie zdefiniowaną strukturą.

Niech $(e_1,...,e_n)$ będzie bazą V. Rozważmy izomorfizm $E:\mathbb{R}^n \to V$ zadany przez

$$E(x) = \sum_{i \le n} x^i e_i.$$

Funkcja ta w kontekście topologicznym jest homeomorfizmem, więc (V, E^{-1}) jest mapą na V.

Jeśli $(\overline{e}_1, ..., \overline{e}_n)$ jest inną bazą na V, to mamy homeomorfizm

$$\overline{E}(x) = \sum x^j \overline{e}_j$$

Istnieje wtedy pewna odwracalna macierz (A;) taka, że

$$e_i = \sum A_i^j \bar{j}$$

dla każdego i.

Stąd modwzorowanie przejścia między tymi dwoma mapami jest zadana przez $\overline{E}^{-1} \circ E(x) = \overline{x}$, gdzie $\overline{x} = (\overline{x}^1, ..., \overline{x}^n)$ jest zadane przez

$$\sum_{j \leq n} \overline{x}^j \overline{e}_j = \sum_{i \leq n} x^i e_i = \sum_{i,j \leq n} x^i A_i^j \overline{e}_j \implies \overline{x}^j = \sum_{i \leq n} A_i^j x^i$$

W takim razie jakakolwiek mapa wysyłająca x na \bar{x} jest odwracalna i liniowa \implies jest dyfeomorfizmem. Stąd dowolne dwie mapy (V, E) są gładko zgodne i ich rodzina definiuje na V standardową gładką strukturę.

Definicja 1.7. Rozmaitością gładką nazywamy parę (M, \mathscr{A}), gdzie M jest rozmaitością topologiczną, zaś \mathscr{A} jest pewnym atlasem gładkim na M.

Zdarza się, że różne atlasy na tej samej rozmaitości topologicznej M mogą zadawać tę samą rozmaitość gładką. Na przykład dla M = \mathbb{R}^n istnieje atlas zawierający jedną mapę $\{(\mathbb{R}^n, id_{\mathbb{R}^n})\}$ oraz atlas $\{(B_X(r), id_{B_X(r)}): x \in \mathbb{R}^n, r > 0\}$, który jest tak naprawdę "rozdrobnieniem" pierwszego atlasu.

Definicja 1.8. Niech A będzie gładkim atlasem na M.

- 1. Mapa (U, ϕ) jest zgodna z \mathscr{A} , jeśli jest zgodna z każdą mapą (V, ψ) $\in \mathscr{A}$.
- 2. Dwa atlasy \mathcal{A}_1 , \mathcal{A}_2 na M są zgodne, jeśli każda mapa z \mathcal{A}_1 jest zgodna z \mathcal{A}_2 .

Warto zaznaczyć, że zgodność atlasów jest relacją zwrotnią i przechodnią [ćwiczenia]. Zgodne atlasy zadają tę samą strukturę rozmaitości gładkiej na topologicznej rozmaitości M. Wszystkie zgodne atlasy należą do jednego większego atlasu, co było przyczyną powstania definicji atlasu maksymalnego.

Definicja 1.9. \mathscr{A} jest **atlasem maksymalnym** na rozmaitości M, jeśli każda mapa zgodna z \mathscr{A} należy do \mathscr{A} .

Każdy atlas \mathscr{A} na M zawiera się w dokładnie jednym atlasie maksymalnym, złożonym ze wszystkich map zgodnych z \mathscr{A} [ćwiczenia]. Dodatkowo, zgodne atlasy zawierają się w tym samym atlasie maksymalnym. Wtedy można definiować rozmaitość gładką jako parę (M, \mathscr{A}), gdzie M jest rozmaitością topologiczną, a \mathscr{A} jest pewnym gładkim atlasem maksymalnym.

Dopowiedzenie o funkcjach gładkich

Funkcja f : M $\to \mathbb{R}$ jest gładka względem atlasu \mathscr{A} na M, jeśli dla każdej mapy (U, ϕ) \in \mathscr{A} f \circ ϕ^{-1} jest gładka.

Fakt 1.10.

- Jeśli f : M $\to \mathbb{R}$ jest gładka względem \mathscr{A} , zaś (U, ϕ) jest mapą zgodną z \mathscr{A} , to f $\circ \phi^{-1}$ jest gładka.
- Jeśli \mathscr{A}_1 i \mathscr{A}_2 są zgodnymi atlasami, to $f: M \to \mathbb{R}$ jest gładka względem $\mathscr{A} \iff$ f jest gładka względem $\mathscr{A}_2 \iff$ f jest gładka względem atlasu maksymalnego \mathscr{A}_{max} zawierającego \mathscr{A}_1 i \mathscr{A} .

Dowód. Ćwiczenia

1.4. Warianty pojecia rozmaitości różniczkowalnej

Mówimy, że mapy (U, ϕ), (V, ψ) są C^k -zgodne jeśli $\phi \circ \psi^{-1}$ i $\psi \circ \phi^{-1}$ są funkcjami klasy C^k (posiadają pochodne cząstkowe rzędów \leq k). C^k -atlas to z kolei rodzina C^k -zgodnych map, która określa strukturę C^k -rozmaitości na M. Struktura C^k -rozmaitości jest słabsza niż rozmaitości gładkiej i nie da się na niej zdefiniować map klasy C^m dla m > k.

 C^0 rozmaitość to określenie na rozmaitość topologiczną, a $\text{C}^\infty\text{-rozmaitość}$ jest tym samym co rozmaitość gładka.

Dychotomia C^0 i C^k dla k > 0 aka dykresja

Z każdego maksymalnego atlasu C^1 -rozmaitości można wybrać atlas złożony z map C^∞ -zgodnych. Zatem, każda C^1 -rozmaitość posiada C^1 -zgodną strukturę C^∞ -rozmaitości [Whitney, 1940]. Istnieją jednak C^0 -rozmaitości, które nie dopuszczają żadnej zgodnej struktury gładkiej [Quinn '82, Friedmann '82].

- Na rozmaitości analitycznej mapy są analitycznie zgodne [C^{ω}]. Mapy są analitycznie zgodne, gdy wyrażają się za pomocą szeregów potęgowych.
- Rozmaitość zespolona ma mapy będące funkcjami w \mathbb{C}^n zamiast \mathbb{R}^n .
- W rozmaitości konforemnej mapy zachowują kąty między punktami.
- · Istnieją też rozmaitości kawałkami liniowe (PL)...

1.5. Definiowanie rozmaitości gładkiej X za pomocą samego atlasu

Lemat 1.11. Niech X będzie zbiorem (bez zadanej topologii) i $\{U_{\alpha}\}$ będzie kolekcją podzbiorów w X taką, że dla każdego α istnieje $\phi_{\alpha}:U_{\alpha}\to\mathbb{R}^n$ różniczkowalne takie, że

- 1. dla każdego α $\phi_{\alpha}(u_{\alpha}) = \overline{U_{\alpha}} \subseteq \mathbb{R}^{n}$ jest otwarty
- 2. dla dowolnych α , β $\phi_{\alpha}(U_{\alpha} \cap U_{\beta})$ oraz $\phi_{\beta}(U_{\alpha} \cap U_{\beta})$ są otwarte w \mathbb{R}^{n} .
- 3. jeśli $U_{\alpha} \cap U_{\beta} \neq \emptyset$, to $\phi_{\beta} \circ \phi_{\alpha}^{-1} : \phi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \phi_{\beta}(U_{\alpha} \cap U_{\beta})$ jest gładkie (a nawet dyfeomorficzne, bo odwzorowanie odwrotne $\phi_{\alpha} \circ \phi_{\beta}^{-1}$ też jest gładkie)
- 4. przeliczalnie wiele spośród U_lpha pokrywa X
- 5. dla każdego p, q \in X, jeśli p \neq q, to istnieją α , β oraz otwarte $V_p \subseteq \overline{U_\alpha}$ i $V_q \subseteq \overline{U_\beta}$ takie, że p $\in \phi_\alpha^{-1}(V_p)$, q $\in \phi_\beta^{-1}(V_q)$ oraz $\phi_\alpha^{-1}(V_p) \cap \phi_\beta^{-1}(V_q) = \emptyset$ (oddzielanie punktów otwartymi zbiorami mapowymi).

Wówczas na X istnieje jedyna struktura rozmaitości topologicznej, dla której zbiory U_{α} są otwarte. Ponadto rodzina $\{(U_{\alpha}, \phi_{\alpha})\}$ tworzy wtedy gładki atlas na X.

ny dowód w

Dowód. A dokładniej szkic dowodu.

Określimy topologię na X przy pomocy przeciwobrazów przez ϕ_{α} otwartych podzbiorów $\overline{\mathsf{U}_{\alpha}} = \phi_{\alpha}(\mathsf{U}_{\alpha}) \subseteq \mathbb{R}^{\mathsf{n}}$. Sprawdzenie, że jest to bazą topologii jest ćwiczeniem. Dzięki temu zbadanie lokalnej euklidesowości jest trywialne.

Dzięki warunkowi 4 nietrudno jest wybrać wtedy bazę przeliczalną [ćwiczenie], a warunek Hausdorffowości wynika z 5.

Przykłady:

1. \mathscr{L} jest zbiorem prostych na płaszczyźnie. Na takim zbiorze nie ma dogodnej topologii, którą możnaby od razu wykorzystać. Zdefiniujmy zbiory:

oraz funkcje ϕ_h , ϕ_V :

$$U_h \ni L = \{y = ax + b\} \stackrel{\phi_h}{\mapsto} (a, b) \in \mathbb{R}^2$$

$$U_{V} \ni L = \{x = cy + d\} \stackrel{\phi_{V}}{\mapsto} (c, d) \in \mathbb{R}^{2}$$

Obie te funkcje są różnowartościowe i ich obrazy to \mathbb{R}^2 , czyli warunek 1 jest spełniony. Ponieważ jest ich tylko 2 sztuki i pokrywają całęgo X, to również 4. został spełniony. Sprawdźmy teraz 2:

 $U_h \cap U_V = \{\text{proste niepionowe i niepoziome}\} = \{y = ax + b : a \neq 0\} = \{x = cy + d : c \neq 0\}$

$$\phi_h(U_h \cap U_V) = \{(a, b) \in \mathbb{R}^2 : a \neq 0\}$$

$$\phi_{V}(U_{h} \cap U_{V}) = \{(c, d) : c \neq 0\}$$

są otwarte, więc 2 jest spełniona. Teraz kolej na 3.

Weźmy prostą L = $\{x = cy + d\} = \{y = \frac{1}{c}x - \frac{d}{c}\} \in U_h \cap U_v$.

$$\left(\frac{1}{c}, -\frac{d}{c}\right) \xleftarrow{\phi_{\mathsf{h}}} \mathsf{L} \xrightarrow{\phi_{\mathsf{V}}} (\mathsf{c}, \mathsf{d})$$

Zatem $\phi_h \phi_v^{-1}(c, d) = \left(\frac{1}{c}, -\frac{d}{c}\right)$ jest gładkie (podobnie $\phi_v \phi_h^{-1}$).

Warunek 5. jest łatwy do sprawdzenia [ćwiczenie].

Z tą naturalną (mimo wszystko) topologią $\mathscr L$ jest w istocie homeomorficzne z wnętrzem wstęgi Möbiusa. Stąd do opisania $\mathscr L$ nie wystarcza jedna mapa.

O notacjach:

- W dalszej części rozważań będziemy utożsamiać mapowe otoczenie $U \subseteq M$ z obrazem przez mapę, czyli $\overline{U} = \phi(U) \subseteq \mathbb{R}^n$. Można o tym myśleć, że przenosimy siatkę współrzędnych $(x_1,...,x_n)$ z \overline{U} przez ϕ^{-1} na $U \subseteq M$.
- Za pomocą translacji współrzędnych zawsze możemy przyjąć, że p = (0, ..., 0) w mapie, czyli możemy założyć, że (U, ϕ) jest mapą o początku w p.
- Często będziemy przechodzić do mniejszych zbiorów mapowych, za mapę biorąc odwzorowanie obcięte (jest to mapa zgodna z atlasem). Będziemy wtedy mówić, że przyjmujemy, iż mapa wokół p ma zbiór mapowy tak mały, jak nam akurat potrzeba, np. że jest rozłączny z pewnym zbiorem domkniętym F ⊆ M niezawierającym p.

1.6. Rozmaitość gładka z brzegiem

Rzeczywistą półprzestrzeń oznaczamy

$$H^n = \{(x_1, ..., x_n) \in \mathbb{R}^n : x_n > 0\},\$$

jej brzegiem nazywamy

$$\partial H^{n} = \{(x_{1},...,x_{n}) \in \mathbb{R}^{n} : x_{n} = 0\}$$

a wnętrzem:

$$int(H^n) = \{(x_1, ..., x_n) \in \mathbb{R}^n : x_n > 0\}.$$

Dla U \subseteq Hⁿ oznaczymy ∂ U = U \cap ∂ H oraz int(U) = U \cap int(Hⁿ), czyli definicja brzegu i wnętrza jest nieco inna niż na topologii. Użyjemy Hⁿ oraz definicji jej brzegu i wnętrza, by zdefiniować rozmaitość gładką z brzegiem.

Dla $U \subseteq H^n$ otwartego i $f: U \to \mathbb{R}^m$ mówimy, że f jest **gładka**, gdy jest obcięciem do U gładkiej funkcji $\hat{f}: \hat{U} \to \mathbb{R}^m$, $\hat{U} \subseteq \mathbb{R}^n$ otwartego, $U \subseteq \hat{U}$. Pochodne cząstkowe funkcji f są dobrze określone na int(U), a ponieważ są ciągłe, to są również dobrze określone na ∂U (tzn. nie zależą od wyboru rozszerzenia \hat{f}). Z analizy matematycznej wiemy, że rozszerzenia \hat{f} istnieje \iff wszystkie pochodne cząstkowe f w int(U) w sposób ciągły rozszerzają się do ∂U .

Definicja 1.12. M jest **gładką rozmaitością z brzegiem**, jeśli posiada atlas $\{(U_{\alpha}, \phi_{\alpha})\}$, $U_{\alpha} \subseteq M$ i $\phi_{\alpha} : U_{\alpha} \to H^{n}$ i $\overline{U_{\alpha}} = \phi_{\alpha}(U_{\alpha})$ jest otwarty w H^{n} , gdzie odwzorowania przejścia są gładkie (tzn. $\phi_{\alpha}\phi_{\beta}^{-1}$ są dyfeomorfizmami pomiędzy otwartymi podzbiorami w H^{n}).

Fakt 1.13. Jeśli w pewnej mapie (U_{α} , ϕ_{α}), ϕ_{α} (p) $\in \partial H^{n}$, to w każdej innej mapie (U_{β} , ϕ_{β}) zawierającej p ϕ_{α} (p) $\in \partial H^{n}$.

Dowód. Wynika to z twierdzenia o odwzorowaniu otwartym, wraz z nieosobliwością Jakobianu odwzorowań przejścia.

Dla rozmaitości topologicznych z brzegiem analogiczny fakt wymaga w dowodzie twardego twierdzenia Brouwera o niezmienniczności obrazu - analogicznego twierdzenia o odwzorowaniu otwartym dla ciągłych injekcji.

Definicja 1.14. Brzegiem n-rozmaitości M z brzegiem nazywamy zbiór

$$\partial M = \{ p \in M : w \text{ pewnej (każdej) mapie } p \in (U_{\alpha}, \phi_{\alpha}) \text{ zachodzi } \phi(p) \in \partial H^{n} \}$$

wnętrze M nazywa się

$$int(M) = \{p \in M : (\exists (U_{\alpha}, \phi_{\alpha}) \phi_{\alpha}(p) \in int(H^{n})\}$$

Fakt 1.15. Wnętrze int(M) n-rozmaitości gładkiej M jest n-rozmaitością bez brzegu.

Dowód. Jako atlas bierzemy $\{(U_{\alpha}',\phi_{\alpha}')\}$, gdzie

$$\mathsf{U}_\alpha' = \phi_\alpha^{-1}(\mathsf{int}(\overline{\mathsf{U}_\alpha})) = \mathsf{U}_\alpha \cap \mathsf{int}(\mathsf{M}), \quad \phi_\alpha' = \phi_\alpha \upharpoonright \mathsf{U}_\alpha'$$

Odwzorowania przejścia $\phi_{\alpha}'(\phi_{\beta}')^{-1}$ są obcięciami $\phi_{\alpha}\phi_{\beta}^{-1}$, więc są gładkie.

Przykłady:

1. Dysk D^n = { $x \in \mathbb{R}^n$: $|x| \le 1$ } jest n-rozmaitością z brzegiem ∂D^n = S^{n-1} = { $x \in \mathbb{R}^n$: |x| = 1}.

Dowód. Skonstruujemy mapy, pomijając sprawdzanie gładkości odwzorowań przejścia.

Mapa (U_0, ϕ_0):

$$U_0 = \{x : |x| < 1\}, \ \phi_0 : U_0 \to H^n, \ \phi_0(x_1, ..., x_n) = (x_1, ..., x_{n-1}, x_n + 2)$$

Mapy $(U_i^{\pm}, \phi_i^{\pm})$

2. Inny atlas na Dⁿ, składający się tylko z dwóch map:

Niech A i B będą punktami styczności dwóch prostych równoległych do dysku Dⁿ. Rozważmy zbiory

$$U_A = D^n \setminus \{A\}$$

$$U_B = D^n \setminus \{B\}$$

oraz odwzorowania $\phi_A:U_A\to H_A^n\,i\,\phi_B:U_B\to H_B^n$ będące inwersjami dysku względem sfer S^n o środkach w A i B oraz promieniu 2.

3. Tutaj warto zaznaczyć, że jeśli n = 0, to wtedy $\partial M = \emptyset$ i M jest 0-rozmaitością. W dodatku, zbiór rozmaitości gładkich z brzegiem można rozumieć jakoby zawierał zbiór rozmaitości topologicznych, gdyż $\partial M = \emptyset \iff M$ jest rozmaitością topologiczną.

2. Rozkład jedności

Rozważmy rozmaitość z brzegiem M. Chcielibyśmy mieć narzędzie, które pozwoli nam tworzyć gładkie funkcje $f: M \to \mathbb{R}$ takie, że f(p) = 0 gdy $p \in \partial M$ oraz f(p) > 0 dla dowolnego $p \in Int(M)$.

 ∂M

Bardziej ogólnie, możemy chcieć dla dowolnego zbioru domkniętego $D\subseteq M$ znaleźć funkcję, która dla $p\in D$ jest równa zero, a na $M\setminus D$ ma wartości ściśle dodatnie.

Lokalnie, na zbiorze mapowym (U_{α} , ϕ) możemy funkcję spełniającą wymagania wyżej zadać przy pomocy funkcji wychodzącej z $\overline{U_{\alpha}} = \phi(U_{\alpha})$

$$f_{\alpha}:\overline{U_{\alpha}}\to\mathbb{R},\quad f(x_1,...,x_n)=x_n,$$

gdyż ostatnia współrzędna punktów z ∂M jest zawsze zerowa (gdyż są one w ∂H^n). Stąd w prosty sposób dostajemy funkcję:

$$f_{\alpha}: U_{\alpha} \to \mathbb{R}$$
, $f_{\alpha} = \overline{f_{\alpha}} \circ \phi$

która lokalnie spełnia nasze wymagania. Nie możemy jednak w prosty sposób przełożyć lokalne f_{α} na funkcję $f: M \to \mathbb{R}$.

2.1. Lokalnie skończone rozdrobnienie

Μ

Przypomnijmy definicje, które będą przydatne przy rozkładach jedności:

Definicja 2.1. Pokrycie $\{A_{\alpha}\}$ podzbiorami przestrzeni topologicznej X jest **lokalnie skończone**, jeśli dla każdego $p \in X$ istnieje otoczenie U_p takie, że $U_p \cap A_{\alpha} \neq \emptyset$ tylko dla skończenie wielu α .

Definicja 2.2. Pokrycie $\{V_{\beta}\}$ przestrzeni X zbiorami otwartymi nazywamy **rozdrobnie-niem pokrycia** $\{U_{\alpha}\}$, jeśli każdy V_{β} zawiera się w pewnym U_{α} .

Warto nadmienić, że relacja bycia rozdrobnieniem jest przechodnia. Będziemy oznaczać ją przez $\{V_{\beta}\} \prec \{U_{\alpha}\}$.

 $\{W_{\gamma}\} \prec \{V_{\beta}\} \prec \{U_{\alpha}\} \Longrightarrow$ $\Longrightarrow \{W_{\gamma}\} \prec \{U_{\alpha}\}$

Definicja 2.3. Przestrzeń topologiczna X jest **parazwarta**, jeśli każde jej pokrycie $\{U_{\alpha}\}$ zbiorami otwartymi posiada lokalnie skończone rozdrobnienie $\{V_{\beta}\}$.

Warto przypomnieć, że każda rozmaitość topologiczna jest parazwarta. Dowód tego lematu wykorzystuje w istotny sposób lokalną zwartość, czyli istnienie dla każdego punktu otoczeń prezwartych (po domknięciu zwartych). Własność ta została udowodniona na ćwiczeniach.

Dowód: patrz Lee strona 36-37

Uwaga 2.4. Rozdrobnienie wynikające z parazwartości rozmaitości topologicznych można z góry uznać za składające się z prezwartych zbiorów mapowych.

Dowód. Niech $\{U_{\alpha}\}$ będzie pokryciem M. Łatwo jest znaleźć rozdrobnienie $\{U_{\gamma}'\} \prec \{U_{\alpha}\}$ złożone ze zbiorów prezwartych mapowych. Wystarczy obraz każdego U_{α} w \mathbb{R}^n pokryć

zbiorami prezwartymi i wrócić z nimi na M. Z faktu, że rozmaitości są parazwarte dostajemy lokalnie skończone rozdrobnienie $\{V_{\beta}\} \prec \{U_{\gamma}'\}$, które z przechodności \prec jest też rozdrobnieniem $\{U_{\alpha}\}$. Dodatkowo, każdy V_{β} zawiera się w pewnym U_{γ}' , które były mapowe i prezwarte, więc i V_{β} taki jest.

Uwaga 2.5. Niech $\{A_{\alpha}\}$ będzie lokalnie skończoną rodziną parazwartych podzbiorów rozmaitości M. Wtedy dla każdego A_{α_0} podrodzina

$$\{A_{\alpha}: A_{\alpha} \cap A_{\alpha_0} \neq \emptyset\}$$

jest skończona.

Dowód. Załóżmy nie wprost, że dla pewnego A_{α_0} podrodzina $\{A_{\alpha}: A_{\alpha} \cap A_{\alpha_0} \neq \emptyset\}$ jest nieskończona. Możemy w takim razie wybrać z niej ciąg A_{α_i} oraz ciąg punktów $x_i \in A_{\alpha_i} \cap A_{\alpha_0}$. Ciąg x_i ma punkt skupienia w pewnym $p \in cl(A_{\alpha_0})$.

Ponieważ p jest punktem skupienia x_i , to dowolne otwarte otoczenie U_p punktu p zawiera nieskończenie wiele elementów x_i . W takim razie U_p przecina się z nieskończenie wieloma zbiorami A_α . Jest to sprzeczne z lokalną skończonościa $\{A_\alpha\}$.

W uwadze 2.4 pokazaliśmy mapowość i prezwartość zbiorów z rozdrobnienia $\{V_{\beta}\}$ wynikającego z parazwartości rozmaitości topologicznych. Możemy teraz dodatkowo zapewnić sobie istnienie interesujących nas zbiorów zwartych:

Uwaga 2.6. Niech $\{V_{\beta}\}$ będzie lokalnie skończonym rozdrobnieniem pokrycia M składającym się ze zbiorów mapowych. Wtedy dla każdego β istnieje zwarty zbiór $D_{\beta} \subseteq V_{\beta}$ taki, że

$$\bigcup D_{\beta} = M$$

to znaczy możemy wybrać "rozdrobnienie" przy pomocy zwartych zbiorów, które nadal pokrywa M.

Dowód. Ponieważ V_{β} są zbiorami mapowymi, to o każdym z nich możemy myśleć jak o otwartym podzbiorze w \mathbb{R}^n poprzez utożsamienie go z otwartym zbiorem $\overline{V_{\beta}} = \phi_{\beta}(V_{\beta})$ dla mapy $(V_{\beta}, \phi_{\beta})$.

Każdy V_{β_0} jest wstępującą suma mniejszych zbiorów $V_{\beta_0,k}$ dla $k \in \mathbb{N}$, które są otwarte i ich zwarte domknięcia zawierają się w V_{β_0} : $\mathrm{cl}(V_{\beta_0,k}) \subseteq V_{\beta_0}$. Możemy np. wybierać $V_{\beta_0,k} = \mathrm{B}(x_0,k) \cap \{x \in V_{\beta_0} : \mathrm{d}(x,V_{\beta_0^c} > \frac{1}{k}\},$ tzn. przekroje kul otwartych w \mathbb{R}^n o środku w $x_0 \in V_{\beta_0}$ i promieniu k ze zbiorami tych $x \in V_{\beta_0}$, które są odległe od dopełnienia V_{β_0} o co najmniej $\frac{1}{k}$.

Niech teraz V_{β_1} , ..., V_{β_m} będą zbiorami z $\{V_{\beta}\}$ niepusto krojącymi V_{β_0} . Jest ich skończenie na mocy 2.5. Wówczas V_{β_1} , ..., V_{β_m} wraz z wcześniej stworzonymi $V_{\beta_0,k}$ jest

pokryciem zwartego zbioru cl (V_{β_0}) . Możemy więc z niego wybrać skończone podpokrycie postaci: $V_{\beta_1},...,V_{\beta_m},...V_{\beta_0,k_0}$. Oznacza to, że zastępując w $\{V_{\beta}\}$ zbiór V_{β_0} przez zbiór V_{β_0,k_0} dostajemy nowe pokrycie M z cl $(V_{\beta_0,k_0}\subseteq V_{\beta_0})$. Powtarzamy to induktywnie dla wszystkich V_{β} i wybieramy pokrycie

$$D_{\beta} = cl(V_{\beta,k}),$$

które spełnia wymagania z uwagi.

Z uwag udowodnionych wyżej wynika więc, że dla dowolnego pokrycia otwartego $\{U_\beta\}$ rozmaitości topologicznej M istnieje

- lokalnie skończone rozdrobnienie $\{V_{\beta}\}$ składające się ze zbiorów mapowych i parazwartych oraz
- rodzina $\{D_{\beta}\}$ zwartych podzbiorów $D_{\beta} \subseteq V_{\beta}$, która dalej pokrywa M.

To samo dotyczy też rozmaitości z brzegiem.

2.2. Twierdzenie o rozkładzie jedności

Definicja 2.7. Dla funkcji rzeczywistej $f: X \to \mathbb{R}$ określamy jej **nośnik** jako:

$$supp(f) := cl(\{x \in X : f(x) \neq 0\})$$

Fakt 2.8. [$z \mathbb{R}^n$] Dla dowolnego otwartego $\Omega \subseteq \mathbb{R}^n_+$ oraz dowolnego zwartego $D \subseteq \Omega$ istnieje gładka funkcja $f : \mathbb{R}^n \to \mathbb{R}$ taka, że:

- 1. f > 0
- 2. $supp(f) \subseteq \Omega$
- 3. $f(x) > 0 dla x \in D$

Twierdzenie 2.9. [O rozkładzie jedności] Dla każdego otwartego pokrycia $\{U_{\alpha}\}$ rozmaitości gładkiej M istnieje rodzina $\{f_i\}$ gładkich funkcji $f_i: M \to \mathbb{R}$ takich, że

- 1. $f_i \ge 0$
- 2. dla każdego i nośnik supp(f_i) zawiera się w pewnym U $_{\alpha}$
- 3. nośniki (supp(f_i)) tworzą lokalnie skończone pokrycie M
- 4. dla każdego $x \in M \sum f_i(x) = 1$ [suma ta jest skończona wokół każdego x dzięki 3.]

Dowód. Niech $\{V_j\} \prec \{U_\alpha\}$ będzie lokalnie skończonym pokryciem otwartym prezwartymi zbiorami mapowymi. Niech $D_j \subseteq V_j$ będą zbiorami zwartymi, które dalej pokrywają M (na mocy 2.6). Dzięki faktowi z \mathbb{R}^n 2.8 wiemy, że dla każdego j istnieje gładka funkcja $h_j: M \to \mathbb{R}$ taka, że:

- 1. $h \ge 0$
- 2. $supp(h_i) \subseteq V_i$
- 3. $h_i(x) > 0$ dla $x \in D_i$

Niech teraz h(x) = $\sum_j h_j(x)$. Jest to dobrze określona definicja, gdyż supp(h_j) tworzą rodzinę lokalnie skończoną (bo $\{V_j\}$ taka jest). Z lokalnej skończoności nośników wynika, że h jest gładka na M.

Dostajemy też h(x) > 0, bo D_j pokrywają całe M, a więc dla każdego $x \in M$ istnieje i takie, że $x \in D_j$, a więc $h_j(x) > 0$.

Określmy $f_j(x) = \frac{h_j(x)}{h(x)}$. Wiemy, że $f_j: M \to \mathbb{R}$ jest gładka na M, supp $(f_j) = \text{supp}(h_j) \subseteq V_j$, więc rodzina $\{\text{supp}(f_j)\}$ jest lokalnie skończona i każdy supp (f_j) zawiera się w pewnym U_α . Wreszcie mamy

$$\sum f_{j}(x) = \sum \frac{h_{j}(x)}{h(x)} = \frac{\sum h_{j}(x)}{h(x)} = \frac{\sum h_{j}(x)}{\sum h_{j}(x)} = 1$$

dla każdego $x \in M$.

3. Wektory styczne

Oznaczenia z analizy matematycznej:

• dla gładkiej funkcji $f:(a,b)\to\mathbb{R}^n$ takiej, że $f=(f_1,...,f_n)$ i dla $t\in(a,b)$ pochodną nazywamy wektor

$$f'(t) = \frac{\partial f}{\partial t}(t) = \begin{pmatrix} f'_1(t) \\ f'_2(t) \\ \dots \\ f'_n(t) \end{pmatrix}$$

• dla gładkiego odwzorowania $f:U\to\mathbb{R}^m$, $U\subseteq\mathbb{R}^n$ i $p\in U$ oznaczamy macierz pierwszych pochodnych cząstkowych w punkcie p przez D_pf . Dokładniej, jeśli $f=(f_1,...,f_m)$ i $f_i:U\to\mathbb{R}^m$ są wszystkie gładkie, to

$$D_{p}f = \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}}(p) & \frac{\partial f_{1}}{\partial x_{2}}(p) & \dots & \frac{\partial f_{1}}{\partial x_{n}}(p) \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}}(p) & \frac{\partial f_{m}}{\partial x_{2}}(p) & \dots & \frac{\partial f_{m}}{\partial x_{n}}(p) \end{pmatrix}$$

Tym samym symbolem oznaczamy też odwzorowanie liniowe $\mathbb{R}^n \to \mathbb{R}^m$ zadane tą macierzą (różniczka f w p).

3.1. Przestrzeń styczna - definicja kinematyczna

Przestrzeń styczną będziemy definiować przez styczność krzywych gładkich.

Niech M będzie gładką rozmaitością. **Krzywą gładką** na M nazywamy gładkie odwzorowanie $c:(a,b)\to M$. O krzywej gładkiej c takiej, że $c(t_0)=p$ mówimy, że jest zbazowana w p. Zbiór par (c,t_0) krzywych zbazowanych w p oznaczamy C_pM .

J.M. Lee definiuje przestrzeń styczną przy pomocy derywacji oraz przedstawia możliwość użycia m.in. kiełków funkcji gładkich

Definicja 3.1. Niech $\phi: U \to \mathbb{R}^n$ będzie mapą wokół p. Krzywe (c_1, t_1) i (c_2, t_2) zbazowane w p są do siebie styczne w mapie (U, ϕ) jeśli $(\phi \circ c_1)'(t_1) = (\phi \circ c_2)'(t_2)$.

Lemat 3.2. Jeżeli $(c_1, t_1), (c_2, t_2) \in C_pM$ są styczne w mapie (U, ϕ) wokół p, to są też styczne w dowolnej innej mapie (W, ψ) wokół p (zgodnej z (U, ϕ)).

Dowód.

$$\begin{split} (\psi \circ c_1)'(t_1) &= [(\psi \circ \phi^{-1}) \circ (\phi \circ c_1)(t_1)]' = D_{\phi(p)}(\psi \circ \phi^{-1}) \circ [(\phi \circ c_1)'(t_1)] = \\ &= D_{\phi(p)}(\psi \circ \phi^{-1})[(\phi \circ c_2)'(t_2)] = [(\psi \circ \phi^{-1}) \circ (\phi \circ c_2)(t_2)]' \\ &= (\psi \circ c_2)'(t_2) \end{split}$$

Definicja 3.3. Krzywe $(c_1, t_1), (c_2, t_2) \in C_pM$ są styczne, jeżeli są styczne w pewnej (równoważnie każdej) mapie wokół p.

Relacja styczności krzywych jest relacją równoważności na C_pM , bo jest zwrotnia, symetryczna i przechodnia ($(\phi \circ c_1)'(t_1) = (\phi \circ c_2)'(t_2)$ i $(\phi \circ c_2)'(t_2) = (\phi \circ c_3)'(t_3) \implies (\phi \circ c_1)'(t_1) = (\phi \circ c_3)'(t_3)$).

Definicja 3.4. Przestrzenią styczną do M w punkcie p nazywamy zbiór klas abstrakcji relacji styczności krzywych zbazowanych w p

$$T_pM := C_pM/stycznosc$$

Klasę abstrakcji krzywej $(c, t_0) \in C_pM$ oznaczamy przez $[c, t_0]$ lub $c'(t_0)$. Elementy przestrzeni T_pM nazywamy **wektorami stycznymi** do M w punkcie p.

3.2. Struktura wektorowa przestrzeni TpM

Dla mapy $\phi: U \to \mathbb{R}^n$ wokół $p \in M$ określamy dwa odwzorowania:

$$\begin{split} \phi_p^*: \mathsf{T}_p\mathsf{M} &\to \mathbb{R}^n \quad \phi_p^*([\mathsf{c},\mathsf{t}_0]) = (\phi \circ \mathsf{c})'(\mathsf{t}_0) \in \mathbb{R}^n \\ \lambda_{\phi,p}: \mathbb{R}^n &\to \mathsf{T}_p\mathsf{M} \quad \lambda_{\phi,p}(\mathsf{v}) = [\mathsf{c}_\mathsf{v},\mathsf{0}] \end{split}$$

gdzie $c_v(t) = \phi^{-1}(\phi(p) + tv)$.

Odwzorowanie $\phi_{\rm p}^*$ jest dobrze określone z definicji

T_pM (wszystkie krzywe z jednej klasy

abstrakcji mają tę samą pochodną w jednej mapie).

Lemat 3.5. $\phi_p^* \circ \lambda_{\phi,p} = \mathrm{id}_{\mathbb{R}^n}$ oraz $\lambda_{\phi,p} \circ \phi_p^* = \mathrm{id}_{\mathsf{T}_p\mathsf{M}}$, czyli ϕ_p^* i $\lambda_{\phi,p}$ są one wzajemnie jednoznacze i do siebie odwrotne.

Dowód. Niech $v \in \mathbb{R}^n$, wtedy

$$\begin{split} \phi_{p}^{*} \circ \lambda_{\phi,p}(v) &= \phi_{p}^{*}([c_{v}, 0]) = (\phi \circ c_{v})'(0) = \frac{d}{dt}|_{t=0} \phi(\phi^{-1}(\phi(p) + t \cdot v)) = \\ &= \frac{d}{dt}|_{t=0} (\phi(p) + tv) = v \end{split}$$

Niech $[c, t_0] \in T_pM$

$$\lambda_{\phi,p} \circ \phi_p^*([c,t_0]) = \lambda_{\phi,p}((\phi \circ c)'(t_0)) = [c_{(\phi \circ c)'(t_0)},0]$$

gdzie $c_{(\phi \circ c)'(t_0)}(t) = \phi^{-1}(\phi(p) + t(\phi \circ c)'(t_0))$. W mapie ϕ zachodzi więc:

$$(\phi \circ \mathsf{c}_{(\phi \circ \mathsf{c})(\mathsf{t}_0)})'(0) = \frac{\mathsf{d}}{\mathsf{d}\mathsf{t}}_{|\mathsf{t}=0}[\phi(\mathsf{p}) + \mathsf{t} \cdot (\phi \circ \mathsf{c})'(\mathsf{t}_0)] = (\phi \circ \mathsf{c})'(\mathsf{t}_0)$$

W takim razie (c, t_0) i $(c_{(\phi \circ c)'(t_0)}, 0)$ są krzywymi stycznymi i mamy $[c, t_0] = [(c_{(\phi \circ c)'(t_0)}, 0]$ i w takim razie $\lambda_{\phi,p} \circ \phi_p^*([c, t_0]) = [c, t_0]$ \checkmark .

Fakt 3.6. Na przestrzeni stycznej T_pM istnieje dokładnie jedna struktura przestrzeni wektorowej, dla której odwzorowania ϕ_p^* oraz $\lambda_{\phi,p}$ dla wszystkich map ϕ wokół p są liniowymi izomorfizmami.

Struktura ta jest zadana przez operacje dodawania wektorów i mnożenia ich przez skalary następująco:

- dla X, Y \in T_pM: X + Y := $\lambda_{\phi,p}(\phi_p^*(X) + \phi_p^*(Y))$ (suma w środku jest sumą w \mathbb{R}^n)
- dla a $\in \mathbb{R}$: a · X := $\lambda_{\phi,p}$ (a · ϕ_p^* (X)) (mnożenie przez skalar w \mathbb{R}^n).

Dowód. Struktura przestrzeni wektorowej musi być przeniesiona z \mathbb{R}^n przez $\lambda_{\phi,p}$. Wystarczy więc uzasadnić, że dla różnych map ϕ , ψ wokół p przeniesione z \mathbb{R}^n na T_pM struktury liniowe pokrywają się, to znaczy złożenie odwzorowań

$$\mathbb{R}^{n} \xrightarrow{\lambda_{\phi,p}} \mathsf{T}_{p}\mathsf{M} \xrightarrow{\psi_{p}^{*}=\lambda_{\psi,p}^{-1}} \mathbb{R}^{n}$$

jest liniowe.

$$\begin{split} \psi_{p}^{*} \circ \lambda_{\phi,p}(v) &= \psi_{p}^{*}([c_{v}, 0]) = (\psi \circ c_{v})'(0) = \frac{d}{dt}_{|t=0} \psi \circ \phi^{-1}(\phi(p) + tv) = \\ &= D_{\phi(p)}(\psi \circ \phi^{-1})[\frac{d}{dt}_{|t=0}(\phi(p) + tv)] = D_{\phi(p)}(\psi \circ \phi^{-1})(v) \end{split}$$

Przekształcenie $\psi_p^* \circ \lambda_{\phi,p}$ pokrywa się z działaniem macierzy $D_{\phi(p)}(\psi \circ \phi^{-1})$, a więc jest liniowe.

₩

O odwzorowaniu $\phi_p^*: T_pM \to \mathbb{R}^n$ można myśleć jak o "mapie" dla T_pM stowarzyszonej z mapą ϕ otoczenia punktu p. W tej mapie działania na wektorach z T_pM sprowadzają się do zwykłych działań na wektorach w \mathbb{R}^n .

Przykład:

- Dla M = \mathbb{R}^n mamy wyróżnioną mapę $\phi: M = \mathbb{R}^n \to \mathbb{R}^n$, $\phi = \mathrm{id}_{\mathbb{R}^n}$. Dla każdego p $\in M$ mapa ta, poprzez $\phi_p^* = (\mathrm{id}_{\mathbb{R}^n})^*$ kanonicznie utożsamia $T_p\mathbb{R}^n$ z \mathbb{R}^n .
- Analogiczna sytuacja zachodzi z M = U $\subseteq \mathbb{R}^n$ otwartego podzbioru i p \in U, gdzie inkluzja i : U $\to \mathbb{R}^n$ jest traktowana jako mapa.

Dla rozmaitości M z brzegiem i $p \in \partial M$ dopuszczamy dodatkowo krzywe gładkie $c:[t_0,b) \to M$ oraz $c:(a,t_0[\to M \text{ takie, } \dot{z}e\,c(t_0)=p \text{ oraz pary } (c,t_0) \text{ jako elementy } C_pM.$ Inaczej dla niektórych "kierunków" wektorów nie istniałyby odpowiednie krzywe reprezentujące te wektory. Styczność na T_pM określa się potem w sposób analogiczny jak dla rozmaitości bez brzegu.

Wektory styczne do M = \mathbb{R}^n (lub U $\subseteq \mathbb{R}^n$) w punkcie p odpowiadające wektorom bazowym e_1 = (1,0,0,...,0), e_2 = (0,1,0,...,0), ..., e_n = (0,0,0,...,1) oznaczamy przez $\frac{\partial}{\partial x_1}(p), \frac{\partial}{\partial x_2}(p), ..., \frac{\partial}{\partial x_n}(p)$. Tworzą one bazę $T_p\mathbb{R}^n$ (T_p U), zaś dowolny wektor z $T_p\mathbb{R}^n$ (T_p U) ma postać $\sum_{i=1}^n a_i \frac{\partial}{\partial x_i}(p)$. [0cm]

Analogicznie, dla dowolnej rozmaitości M i p \in M oraz mapy ϕ wokół p przeciwobraz przez $\phi_p^*: T_pM \to \mathbb{R}^n$ wersorów $e_1,...,e_n$ oznaczamy:

Sens wprowadzenia takiego oznaczenia stanie się jasny później, gdy wektory utożsamimy z tzw. derywacjami

$$(\phi_{\mathbf{p}}^*)^{-1}(\mathbf{e_i}) = \frac{\partial}{\partial \phi_{\mathbf{i}}}(\mathbf{p}).$$

Elementy te tworzą bazę T_pM i dowolny wektor z T_pM ma postać $\sum a_i \frac{\partial}{\partial \phi_i}(p)$.

3.3. Różniczka

Rozważmy funkcję gładką $f: M \to N \ i \ p \in M, f(p) = q \in N.$ Dla krzywej zbalansowanej $(c, t_0) \in C_p M$ mamy $(f \circ c, t_0) \in C_q N.$

Lemat 3.7. Jeżeli $(c_1,t_1),(c_2,t_2)\in C_pM$ są styczne, to $(f\circ c_1,t_1),(f\circ c_2,t_2)\in C_qN$ też są styczne

Dowód. Niech ϕ będzie mapą wokół p, $\phi: U \to \mathbb{R}^m$, zaś ψ mapą wokół q, $\psi: W \to \mathbb{R}^n$

$$\begin{split} (\psi \circ f \circ c_1)'(t_1) &= [(\psi \circ f \circ \phi^{-1}) \circ (\phi \circ c_1)]'(t_1) = D_{\phi(p)}(\psi \circ f \circ \phi^{-1}) \cdot [(\phi \circ c_1)'(t_1)] = \\ &= D_{\phi(p)}(\psi \circ f \circ \phi^{-1}) \cdot [(\phi \circ c_2)'(t_2)] = [(\psi \circ f \circ \phi^{-1}) \circ (\phi \circ c_2)]'(t_2) = \\ &= (\psi \circ f \circ c_2)'(t_2) \end{split}$$

Zatem krzywe (f \circ c₁, t₁) i (f \circ c₂, t₂) są styczne.

Definicja 3.8. Różniczką f w punkcie p nazywamy odwzorowanie $df_p: T_pM \to T_{f(p)}N$ określone przez $df_p([c,t_0]) = [f \circ c,t_0].$

Odwzorowanie różniczkowe jest dobrze określone na mocy Lematu 3.7.

Lemat 3.9. $df_p: T_pM \to T_{f(p)}N$ jest odwzorowaniem liniowym.

Dowód. Wystarczy sprawdzić, że odwzorowanie

$$\mathbb{R}^m \xrightarrow{\lambda_{\phi,p}} \mathsf{T}_p\mathsf{M} \xrightarrow{\mathsf{df}_p} \mathsf{T}_{\mathsf{f}(p)}\mathsf{N} \xrightarrow{\psi_{\mathsf{f}(p)}^*} \mathbb{R}^n$$

jest liniowe (analogicznie jak przy dowodzie 3.6).

$$\begin{split} \psi_{f(p)} \circ df_p \circ \lambda_{\phi,p}(v) &= \psi_{f(p)}^* \circ df_p([c_v,0]) = \psi_{f(p)}^*([f \circ c_v,0]) = \\ &= (\psi \circ f \circ c_v)'(0) = [(\psi \circ f \circ \phi^{-1}) \circ (\phi \circ c_v)]'(0) = \\ &= D_{\phi(p)}(\psi \circ f \circ \phi^{-1}) \cdot [(\phi \circ c_v)'(0)] = \\ &= D_{\phi(p)}(\psi \circ f \circ \phi^{-1})[v] \end{split}$$

jest to przekształcenie zadane macierzą, a więc liniowe.

Dla gładkiej funkcji $f: M \to N$ odwzorowanie $df_p: T_pM \to T_{f(p)}N$ wyznaczyliśmy w mapach ϕ wokół p i ψ wokół f(p) jako

$$\psi_{f(p)}^* df_p \lambda_{\phi,p}(p) = D_{\phi(p)}(\psi f \phi^{-1})(v).$$

Stąd, odwzorowanie df $_p$ w bazach $\{\frac{\partial}{\partial \phi_i}(p)\}$ w T $_p$ M i $\{\frac{\partial}{\partial \psi_j}(p)\}$ w T $_{f(p)}$ N zapisuje się macierzą

$$\begin{split} D_{\phi(p)}(\psi f \phi^{-1}) &= \left(\frac{\partial (\psi f \phi^{-1})_{i}}{\partial x_{j}}(\phi(p))\right)_{ij} \\ df_{p} \left[\sum a_{i} \frac{\partial}{\partial \phi_{i}}(p)\right] &= \sum_{i} \left[\sum_{j} \frac{\partial (\psi f \phi^{-1})}{\partial x_{j}}(\phi(p)) \cdot a_{j}\right] \frac{\partial}{\partial \psi_{i}}(f(p)) \end{split}$$

Przykłady:

• Niech $\phi: U \to \mathbb{R}^n$ będzie mapą wokół $p \in M$. Możemy ją potraktować jako gładkie odwzorowanie między dwiema rozmaitościami. Wówczas różniczka d $\phi_p: T_pU \to T_pM$

 $\mathsf{T}_{\phi(\mathsf{p})}\mathbb{R}^\mathsf{n}$ jest wówna odwzorowaniu "mapowemu" $\phi_\mathsf{p}^*:\mathsf{T}_\mathsf{p}\mathsf{M}\to\mathbb{R}^\mathsf{n}.$

Dowód. Niech $[c, t_0] \in T_pM$, wtedy

$$d\phi_p([c,t_0]) = [\phi \circ c,t_0] \in T_{\phi(p)}\mathbb{R}^n$$

Mapę $(\mathrm{id}_{\mathbb{R}^n})^*_{\phi(p)}:\mathsf{T}_{\phi(p)}\mathbb{R}^n o\mathbb{R}^n$ kanonicznie utożsamiliśmy z $\mathrm{id}_{\mathbb{R}^n}$, stąd też

$$d\phi_p([c,t_0]) = (id_{\mathbb{R}^n} \circ \phi \circ c)'(t_0) = (\phi \circ c)'(t_0),$$

a z kolei

$$\phi_p^*([\mathsf{c},\mathsf{t}_0])$$
 = $(\phi \circ \mathsf{c})'(\mathsf{t}_0) \in \mathbb{R}^n$

z definicji tego odwzorowania.

- Dla gładkiej krzywej $c:(a,b)\to M$ oraz $t_0\in(a,b)$, różniczka $dc_{t_0}:T_{t_0}(a,b)\to T_{c(t_0)}M$ jest jedynym przekształceniem liniowym, które wersor z $\mathbb{R}\cong T_{t_0}(a,b)$ przekształca na wersor $[c,t_0]=c'(t_0)\in T_{c(t_0)}M$.
- Rozważmy gładką funkcję $f:M\to\mathbb{R}$ i $p\in M$. Różniczka $df_p:T_pM\to T_{f(p)}\mathbb{R}\cong\mathbb{R}$ jest funkcjonałem liniowym na T_pM .

Definicja 3.10. Dla funkcji $f: M \to \mathbb{R}$ możemy wybrać wektor styczny $X = [c, t_0] \in T_pM$ i zdefiniować **pochodną kierunkową** funkcji f w kierunku wektora X:

$$Xf = df_p(X) = df_p([c, t_0]) = (f \circ c)'(t_0).$$

Pochodna kierunkowa ma następujące własności:

- X(f + g) = Xf + Xg
- $X(f \cdot g) = g(p) \cdot Xf + f(p) \cdot Xg (reguła Leibniza)$

Dowód.

$$X(f \cdot g) = [(f \cdot g) \circ c]'(t_0) = [(f \circ c) \cdot (g \circ c)]'(t_0) =$$

$$= (f \circ c)'(t_0) \cdot (g \circ c)(t_0) + (f \circ c)(t_0) \cdot (g \circ c)'(t_0) =$$

$$= Xf \cdot g(p) + f(p) \cdot Xg$$

- dla $a \in \mathbb{R}$ (aX)f = a(Xf)
- jeśli X, Y \in T_pM, to (X + Y)f = Xf + Yf

Dowód.

$$(X + Y)f = df_{p}(X + Y) = df_{p}(X) + df_{p}(Y) = Xf + Yf$$

Stąd oznaczenie $\frac{\partial}{\partial x_i}(p)$, które ma charakter operatorowy związany z działaniem tego wektora na funkcjach f_n

 $rac{\partial f}{\partial \phi_i}$ jest to i-ta pochodna cząstkowa f w mapie ϕ w punkcie p

Przykłady:

- Jeśli X = $\frac{\partial}{\partial x_i}(p) \in T_p\mathbb{R}^n$ i mamy gładką funkcję $f:\mathbb{R}^n \to \mathbb{R}$, to wówczas Xf = $\frac{\partial f}{\partial x_i}(p)$.
- Jeśli X = $\frac{\partial}{\partial \phi_i}(p) \in T_pM$ i $f:M \to \mathbb{R}$ jest funkcją gładką, to oznaczamy

$$Xf = \frac{\partial (f\phi^{-1})}{\partial x_i}(\phi(p) =: \frac{\partial f}{\partial \phi_i}(p)$$

• Podobnie jak wyżej, jeśli X = $\sum a_i \frac{\partial}{\partial \phi_i}$ (p), to

$$Xf = \sum a_i \frac{\partial f}{\partial \phi_i}(p) = \sum a_i \frac{\partial f \circ \phi^{-1}}{\partial x_i}(\phi(p))$$

Spis twierdzeń

1.1	Definicja: przestrzeń topologiczna	3
1.2	Twierdzenie: twierdzenie brouwer'a	4
1.3	Definicja: mapa	
1.4	Definicja: $funkcja \ f: M o \mathbb{R}$ $jest \ gładka \dots \dots$	6
1.5	Definicja: zgodność map	
1.6	Definicja: atlas gładki	7
1.7	Definicja: rozmaitość gładka	9
1.8	Definicja: zgodność atlasów, mapy z atlasem	9
1.9	Definicja: atlas maksymalny	9
1.10	Fakt: gładkość względem atlasu	
1.11	Lemat	
1.12	Definicja: rozmaitość z brzegiem	12
1.13	Fakt: raz w brzegu, zawsze w brzegu	12
1.14	Definicja: brzeg, wnętrze	12
1.15	Fakt	13
2.1	Definicja: pokrycie lokalnie skończone	15
2.2	Definicja: rozdrobnienie	15
2.3	Definicja: przestrzeń parazwarta	15
2.4	Uwaga	15
2.5	Uwaga	16
2.6	Uwaga	16
2.7	Definicja: nośnik funkcji	17
2.8	Fakt	
2.9	Twierdzenie: o rozkładzie jedności	17
2.10	Definicja: rozkład jedności	
3.1	Definicja: styczność krzywych w mapie	19
3.2	Lemat: styczność w jednej mapie ←⇒ styczność w każdej mapie	19
3.3	Definicja: styczność krzywych	
3.4	Definicja: przestrzeń styczna	19
3.5	Lemat	20
3.6	Fakt: struktura przestrzeni wektorowej na przestrzeni stycznej	20
3.7	Lemat: krzywe styczne po przejściu przez f:M->N są nadal styczne	
3.8	Definicja: różniczka	
3.9	Lemat: df jest odwzorowaniem liniowym	
3.10	Definicja: pochodna kierunkowa	