Nomerical Methods

83.88 topping criteria: when to stop iteration?

Ne'd like to stop when $|e_k| := |x_k - x| \le tol$ $|e_k| := |x_k - x|$ $|e_k| := |x_k - x|$

Last time: If we have a priori bond ey. |ek| & CA,

we can stop when CA < tol.

Other options:

Residual - based criterion:

Stop when |f(xk)| is sufficiently small.

residual - how well does xk

satisfy the equation f(x)=0?

For snooth f, relationship between error and residual depends on f'(x) near d.

| $f'(x)| \le |f'(x)| \le |f'(x)|$

The rem: Suppose
$$f: [a,b] \to R$$
 is differentiable.
Suppose also that $\exists L, U > 0$ s.t.
 $0 < L < |f'(x)| < U$ $\forall x \in [a,b]$.
Then $|f(x)| < |x-x| < \frac{1}{L}|f(x)|$ $\forall x \in [a,b]$.

Proof: By MUT 3 & between x and x s.t.

$$f(x) = f(x) - f(x) = f'(x)(x - x).$$
Then $[x - x] = \frac{|f(x)|}{|f'(x)|} \in [\frac{1}{|f(x)|}]$
So if we can find such on L, we know that stopping when $[\frac{1}{|f(x)|}] \in [\frac{1}{|f(x)|}]$

guarantee that $|e_{k}| \le -(o(\frac{1}{|f(x)|})$

|ek|
$$\leq \frac{1}{L} |f(xy)|$$
 is an a posteriori" error bound (beause the RHS) involves $\times k$

Another option: increment - based stopping criteria.

Here we might stop the algorithm when $|xk-xk+1|$ is sufficiently small.

For a fixed point method $|xk+1| = \phi(xk)$ with smooth ϕ , it holds that $ek \approx \frac{xk-xk+1}{1-\phi'(x)}$ so this is reasonable provided $\phi'(x)$ is not close to 1.

Matlab tips: le-3 means 1 x 10-3

2e-3 ---- 2 x 10-3

Ctrl-Enter runs the corrent section.

; suppresses output

In command window, Ctrl-c terminates current process!

If $ek = C \Lambda^k$ then $log_{10}(ek) = log_{10}C + k log_{10}\Lambda$ If $ek+1 = C ek^2$ then $log_{10}(ek+1) = log_{10}C + 2)og_{10}ek$