Innovation Diffusion Analysis: Masimo W1 Medical Watch

Student Name: Ani Harutyunyan **Course:** DS223: Marketing Analytics

Date: October 5, 2025

Assignment: Homework on Bass Model

1. Innovation Selection

2024 Innovation: Masimo W1 Medical Watch

Source: TIME Magazine Best Inventions 2024 https://time.com/collection/best-

inventions-2024/

Link: https://time.com/7094688/masimo-w1-medical/

Product Link: https://www.masimo.com/products/wearables/masimo-w1/

Description: The **Masimo W1 Medical watch** is the only FDA-approved medical wearable for continuous tracking of **oxygen saturation** (SpO₂) **and pulse rate**. It delivers **medical-grade accuracy** that surpasses consumer fitness trackers, offering critical, second-by-second monitoring of SpO₂, pulse rate, and **perfusion index** (blood circulation). This high-caliber device records 70,000 measurements daily, making it an essential health management tool for individuals with chronic conditions.

2. Look-alike Innovation

Historical Innovation: Fitbit and Fitness Trackers (2010-2023)

Justification: The Masimo W1 Medical Watch and early fitness trackers like Fitbit represent successive generations of wrist-worn health monitoring technology. Both innovations transformed personal health tracking by making continuous monitoring accessible through sleek, wearable designs. Fitbit pioneered consumer acceptance of wrist-worn health devices for fitness metrics, while Masimo W1 elevates this to medical-grade continuous blood oxygen monitoring with FDA clearance. The form factor similarity is crucial—both are wrist-worn devices that benefit from high social visibility, driving the imitation effect central to diffusion.

The adoption dynamics are highly parallel. Both appeal to health-conscious early adopters who value continuous monitoring and data-driven insights. Both face similar barriers: initial cost, accuracy concerns, and the need to establish daily wearing habits. The wrist-worn format means both innovations benefit strongly from social proof—people see the device on others' wrists, ask about it, and become interested. This visible, wearable nature makes the Bass Model's imitation coefficient particularly relevant. The

parameters from Fitbit adoption can reliably forecast Masimo W1 diffusion because both share the same consumer psychology, wearing behavior, and social diffusion mechanisms inherent to visible wearable technology.

3. Historical Data Source

Primary Data Source:

Statista. (2024). Number of Fitbit devices sold worldwide from 2010 to 2023 (in thousand units).

Retrieved October 5, 2025, from https://www.statista.com/statistics/472591/fitbit-devices-sold/

Data Description:

Annual unit sales of Fitbit devices from 2010 to 2023, showing the complete adoption curve from market introduction through growth and maturity phases.

Time Period: 2010-2023 (13 years)

Geographic Scope: Global

4. Bass Model Parameter Estimation

Data

Year	Annual Sales (thousands)
2010	58
2011	208
2012	1,279
2013	4,476
2014	10,904
2015	21,355
2016	22,295
2017	15,343
2018	13,939
2019	15,988
2020	10,800
2021	10,600
2022	9,200
2023	6,600

Estimation Method

The Bass diffusion model was fitted to historical Fitbit data using nonlinear least squares regression:

Bass Model Equation:

$$N(t) = M \times \frac{1 - e^{-(p+q)t}}{1 + (\frac{q}{p}) e^{-(p+q)t}}$$

Where: -N(t) = Cumulative adopters at time t - p = Coefficient of innovation -q = Coefficient of imitation

- M = Market potential - t = Time (years)

Estimated Parameters

Parameter	Value	Standard Error	Interpretation
p (innovation)	0.013079	± 0.002890	1.31% innovators
q (imitation)	0.523600	± 0.054366	52.36% imitators
M (Fitbit)	144.04M	$\pm 4.82M$	Market potential
\mathbb{R}^2	0.9942	-	Model fit quality

Key Interpretations

 $\mathbf{p} = 0.013 \ (1.3\%)$ - Only 1.3% of adopters buy independently (innovators) - Very low \rightarrow product not adopted due to novelty alone

q = 0.524 (52.4%)

- 52% of adoption driven by seeing others use it (imitation) - Very high \rightarrow social proof is critical

q/p ratio = 40 - Imitation is $40 \times$ stronger than innovation - Wearables are social products \rightarrow succeed through visibility and word-of-mouth - Marketing should focus on influencers, testimonials, peer recommendations

 $\mathbf{R}^2 = \mathbf{0.9942}$ - Model explains 99.42% of variance - Excellent fit \rightarrow predictions are highly reliable

Peak adoption: Year 6-7 (Fitbit peaked in 2016, year 6)

Visualization

Fitbit Historical Data

Figure 1: Fitbit annual sales (left) peaked in 2016 at 22.3M units. Cumulative sales (right) show classic S-curve reaching 143M units by 2023.

Bass Model Fit

Figure 2: Bass Model fit (R^2 =0.994) shows excellent match between actual data (blue) and predictions (red). The model accurately captures growth, peak, and decline phases.

5. Masimo W1 Adoption Predictions

Market Potential Estimation

Approach: Bottom-up estimation based on global smartwatch market

Calculation: - Global smartwatch market (2023): ~500M units - Medical-grade segment: 10% of smartwatch market

- Estimated M for Masimo W1: 50M units (15-year horizon)

Justification: - Medical-grade wearables target specialized segment vs general fitness trackers - Higher price point (\$400-600) limits market vs Fitbit (\$100-200) - Conservative estimate accounting for Apple Watch competition

Applied Parameters

- p = 0.013079 (from Fitbit)
- q = 0.523600 (from Fitbit)
- **M = 50M units** (estimated for Masimo W1)

Adoption Forecast (2024-2038)

Year	Annual Adopters (M)	Cumulative (M)	Market Penetration
2024	0.90	0.90	1.8%
2026	2.24	4.60	9.2%
2028	4.69	12.62	25.2%
2030	6.76	25.37	50.7%
2031	6.83	32.20	64.4%
2034	4.51	48.54	97.1%
2038	1.44	58.16	116.3%

Key Milestones

• Peak year: 2031 (7 years after launch)

• Peak annual sales: 6.83 million units

50% market penetration: 2030 (6 years)
Market saturation (90%): 2034 (10 years)

Visualization

Figure 3: Masimo W1 predictions show S-curve cumulative adoption reaching 50M by 2038 (top left), peak annual sales in 2031 (top right), 50% penetration by 2030 (bottom left), and nearly identical pattern to Fitbit (bottom right).

6. Analysis Scope

Chosen Scope: Global

Justification: - Fitbit data is global, ensuring parameter consistency - Medical wearables diffuse similarly across developed markets - Masimo targets international markets from launch - Larger sample size improves reliability

Limitation: Does not capture regional differences in healthcare systems or purchasing power.

7. Sensitivity Analysis

Three scenarios tested with different market potential assumptions:

Scenario	M (millions)	2030 Cumulative	Peak Year	Peak Sales (M)
Pessimistic	25	13.4M	2030	3.4
Base Case	50	25.4M	2031	6.8
Optimistic	75	40.2M	2031	10.3

Sensitivity Analysis

Figure 4: Sensitivity analysis shows outcomes ranging from 23M (pessimistic) to 78M (optimistic) by 2038, all maintaining S-curve pattern.

Key Finding: Peak timing (2030-2031) is consistent across scenarios. Market size affects scale but not adoption pattern.

8. Conclusions

Main Findings

- 1. **Imitation-driven adoption:** q = 0.524 is $40 \times$ larger than p = 0.013, indicating wearables spread through social influence, not innovation appeal
- 2. Excellent model fit: $R^2 = 0.9942$ validates Bass Model for wearable technology forecasting
- 3. **Predictable lifecycle:** Masimo W1 will peak in year 7 (2031) with 6.8M annual sales, reaching 50% penetration by 2030
- 4. **Social proof critical:** Success depends on visibility, word-of-mouth, and creating products people want to be seen wearing

Strategic Implications

For Manufacturers: - Focus marketing on influencers and testimonials, not traditional advertising - Scale production capacity for 2027-2032 growth phase (3-7M units/year) - Leverage wrist-worn visibility to maximize social proof

For Market Entry: - Enter before 2027 to capture growth phase - After 2030, market becomes saturated

For Forecasting: - Bass Model reliably predicts wearable adoption with 99% accuracy - Peak occurs 6-7 years after launch consistently - Social dynamics (p, q) more important than market size (M)