Varmeberegning i sammensatte sjikter

Haidar Hosamo

October 2, 2024

Innledning

Denne guiden tar deg gjennom de nødvendige stegene for å beregne varmegjennomgang og fuktighet i en konstruksjon med sammensatte sjikter. Følg stegene nøye for å oppnå en nøyaktig løsning.

Steg 1: Tegn sjiktene

Det første steget er å tegne alle sjiktene i konstruksjonen. Hvert sjikt bør være tydelig merket med materiale, tykkelse og plassering.

Eksempel på sjikter:

- 13 mm gips
- 0,15 mm diffusjonssperre
- 48x198 mm stenderverk med isolasjon (-verdi = 0.037 W/mK)
- 12 mm porøs treplate
- Utlekting og utvendig kledning

Tegn disse sjiktene som en skisse før du går videre til neste steg.

Steg 2: Beregn den kombinerte λ -verdien for sjiktene

I dette steget skal du beregne den effektive varmeledningsevnen (λ_F) for de sammensatte sjiktene. Dette gjøres ved å vekte hver λ -verdi basert på areal-prosenten til hvert materiale, som vist i formelen nedenfor:

$$\lambda_F = \lambda_a \cdot A_a \% + \lambda_b \cdot A_b \%$$

Hvor:

- λ_a : Varmeledningsevne for tre $(\lambda = 0, 12 W/mK)$
- λ_b : Varmeledningsevne for isolasjon, som avhenger av isolasjonsklassen (for eksempel $\lambda = 0,037 \, W/mK$ for klasse 37)
- $A_a\%$: Arealprosent for tre (stendere)
- $A_b\%$: Arealprosent for isolasjon

Eksempel: Hvis treverk (stendere) dekker 12% av veggen, og isolasjonen dekker de resterende 88%, kan den kombinerte λ -verdien beregnes slik:

$$\lambda_F = (0, 12 \cdot 12\%) + (0, 037 \cdot 88\%) = 0,0144 + 0,03256 = 0,04696 \, W/mK$$

Steg 3: Beregn øvre og nedre grenseverdi for termisk motstand

For å beregne den totale termiske motstanden (R_T) , må vi først beregne både øvre og nedre grenseverdier.

Øvre grenseverdi $(R_{T\emptyset})$

Den øvre grenseverdien for den totale motstanden kan beregnes ved hjelp av følgende formel:

$$R_T' = R_{T\emptyset} = \frac{\sum A}{\frac{A_a\%}{R_{Ta}} + \frac{A_b\%}{R_{Tb}}}$$

Hvor:

- $R_{T\emptyset}$: Øvre grenseverdi for termisk motstand.
- $A_a\%$: Arealprosent for tre (stendere, spikerslag, etc.).
- R_{Ta} : Termisk motstand for tre.
- $A_b\%$: Arealprosent for isolasjon.
- R_{Tb} : Termisk motstand for isolasjon.

Eksempel på beregning:

Hvis vi har 12% tre ($R_{Ta}=2.17$) og 88% isolasjon ($R_{Tb}=5.87$), vil øvre grenseverdi være:

$$R_T' = \frac{1}{\left(\frac{0.12}{2.17} + \frac{0.88}{5.87}\right)} = 4.87$$

Nedre grenseverdi (R_{TN})

Den nedre grenseverdien for termisk motstand kan beregnes ved hjelp av summeringen av motstandene gjennom alle sjiktene.

$$R_{TN} = \Sigma (R_i)$$

Fra eksemplet ovenfor kan vi oppsummere verdiene for sjiktene for å finne den nedre grenseverdien. For eksempel:

$$R_{TN} = 4.73 (total fratabellen).$$

Gjennomsnittlig termisk motstand (R_T)

Når både øvre og nedre grenseverdi er beregnet, kan den gjennomsnittlige termiske motstanden beregnes som:

$$R_T = \frac{R_{TN} + R_{T\emptyset}}{2}$$

Eksempel:

$$R_T = \frac{4.73 + 4.87}{2} = 4.8$$

Dette er den gjennomsnittlige termiske motstanden som skal brukes i den endelige varmeberegningen.

Steg 4: Beregn U-verdien

Når du har funnet den totale termiske motstanden (R_T) , kan du beregne Uverdien ved å bruke følgende formel:

$$U = \frac{1}{R_T} + \Delta U$$

Hvor:

- U: Varmegjennomgangskoeffisient (U-verdi) i W/(m²K).
- R_T : Total termisk motstand, som vi har beregnet i forrige steg.
- \bullet ΔU : Korreksjonstillegg som tar hensyn til luftspalter, festemidler, osv.

Eksempel på beregning:

Hvis $R_T = 4.8$ og $\Delta U = 0$, kan U-verdien beregnes slik:

$$U = \frac{1}{4.8} + 0 = 0.21 \, W/(mK)$$

Dette er den endelige U-verdien for den sammensatte konstruksjonen.

Steg 5: Beregning av fuktighet og damptrykk

I dette steget skal vi fylle ut en tabell som inkluderer temperaturforskjeller, damptrykk, fuktmotstand og relativ fuktighet (RF) for forskjellige sjikt i konstruksjonen.

ΔT	T Sjikt.	Metn.Trykk	Dampmotstand	Δp	Damptr.Sjikt	RF
0.9	19.1	2335	0.34	1.3	1401	60%
0.4	18.7	2155	360	1350	1399.7	65%
0.2	18.5	2178	0.198	5.0	49.6	23%

Formler for beregning:

1. Temperaturforskjell:

$$\Delta T = \frac{T_i - T_e}{R_{Tb}} \cdot R_i$$

Hvor:

• T_i : Innvendig temperatur

• T_e : Utvendig temperatur

• R_{Tb} : Termisk motstand

• R_i : Termisk motstand i sjiktet

2. Metningstrykk ved interpolering: Hvis metningstrykket ved en spesifikk temperatur ikke finnes i tabellen, kan det beregnes ved hjelp av følgende interpolasjonsformel:

 $P(x) = P_1 + \left(\frac{P_2 - P_1}{x_2 - x_1}\right) \cdot (x - x_1)$

Hvor:

• P(x) er trykket ved ønsket temperatur x.

• P_1 er trykket ved temperatur x_1 (for eksempel 2195 ved 19°C).

• P_2 er trykket ved temperatur x_2 (for eksempel 2335 ved 20°C).

• x_1 er den første temperaturen (f.eks. 19°C).

• x_2 er den andre temperaturen (f.eks. 20°C).

 \bullet x er temperaturen du vil beregne metningstrykket for.

Eksempel på beregning: Hvis vi ønsker å beregne metningstrykket ved 19.2° C, bruker vi de kjente verdiene $P_1 = 2195$ ved 19° C og $P_2 = 2335$ ved 20° C:

$$P(19.2) = 2195 + \left(\frac{2335 - 2195}{20 - 19}\right) \cdot (19.2 - 19)$$

Dette gir et metningstrykk på:

$$P(19.2) = 2195 + (140 \cdot 0.2) = 2195 + 28 = 2223 \,\mathrm{Pa}$$

3. Damptrykkforskjell (Δp):

$$\Delta p = \frac{p_i - p_e}{\Sigma \zeta p} \cdot \zeta p_i$$

Hvor:

• p_i : Damptrykk på innsiden

 \bullet p_e : Damptrykk på utsiden

• $\Sigma \zeta p$: Total dampmotstand

• ζp_i : Dampmotstand i hvert sjikt

4. Relativ fuktighet (RF): Relativ fuktighet beregnes som forholdet mellom det aktuelle damptrykket og metningstrykket:

$$RF = \frac{p_{aktuell}}{p_{metning}} \cdot 100\%$$

Eksempel: Hvis det faktiske damptrykket ved et punkt er $p_{aktuell}=1401$, og metningstrykket ved samme punkt er $p_{metning}=2335$, vil relativ fuktighet være:

$$RF = \frac{1401}{2335} \cdot 100\% = 60\%$$