

TABLE OF CONTENTS

×

O1 CONCEITOS

02

MODELO DE DADOS

DW, Data Mart, ETL

03

OLAP

04

MINERAÇÃO DE DADOS

OLAP vs OLTP, MOLAP, ROLAP, HOLAP e esquemas

Definição e Técnicas

DATA WAREHOUSE

Armazenamento e Análise de um elevado número de dados

- Centralização de dados provenientes de diversas fontes.
- Facilitam a consulta dos dados.

PRINCIPAIS CARACTERÍSTICAS

SUBJECT-ORIENTED

Informação organizada por temáticas

VARÍAVEL COM O TEMPO

Os dados são relativos a um determinado tempo

PRINCIPAIS CARACTERÍSTICAS

×

Formato dos dados é padronizado

NÃO-VOLÁTIL

Os dados armazenados não se alteram

×

ETL

EXTRACT

Extração de dados

TRANSFORMATION

Transformação de acordo com o negócio

LOAD

Carregamento dos dados

ETL

// ETL

MODELO DE DADOS

É um modelo abstrato que organiza a descrição dos dados, a semântica dos dados e as restrições de consistência dos dados.

MODELAÇÃO DE DADOS

Os Modelos de Dados garantem

- a consistência nas convenções de nomenclatura,
- valores padrão,
- o semântica,
- o segurança,
- qualidade dos dados.

MODELO DE DADOS

NA DATA **WAREHOUSE**

Os clientes do data Warehouse podem visualizar as relações entre os dados do Warehouse.

Um esquema bem projetado equivale a uma estrutura de data Warehouse eficaz.

MODELOS DE DADOS NA DATA WAREHOUSE

RELACIONAL

MULTIDIMENIONAL

MODELO MULTIDIMENSIONAL

×

- É uma técnica de modelagem conceptual de negócios;
- Facilita a investigação, o resumo e a organização de dados para a análise de negócios;

MODELO MULTIDIMENSIONAL

- Cruzamento de dimensões de análise para uma métrica
- Técnica de concepção e visualização de um modelo de dados

ELEMENTOS DE UM MODELO MULTIDIMENSIONAL *

- Dimensões
- Factos
- Métrica

CICLO DE VIDA DA MODELAGEM DE DADOS

TIPOS DE MODELOS DE DADOS

Existem 3 tipos de modelos de data warehouse

WAREHOUSE EMPRESARIAL

DATA MART

WAREHOUSE VIRTUAL

Armazena diversas Informações de uma organização/empresa Projetado especialmente para uma determinada linha de negócios Conjunto de perceções sobre a base de dados operacional

DATABASE VS DATA WAREHOUSE

×

OLTP	Usa	OLAP
Normalizadas	Tabelas	Desnormalizadas
Aplicações	Orientado para	Tema
Guardar dados	Objetivo	Analisar dados

OLAP

- ONLINE ANALYTICAL PROCESSING

Sistema de armazenamento de dados agregados com capacidade para manipular e analisar um grande volume de dados sob múltiplas perspetivas.

VANTAGENS

FORNECE ÀS ORGANIZAÇÕES:

×

Método de aceder, visualizar e analisar os dados corporativos com alta flexibilidade e desempenho.

UTILIZADORES PODEM:

Rapidamente analisar inúmeros cenários

Gerar relatórios

Descobrir tendências e factos relevantes

CARACTERÍSTICAS DO OLAP

OLAP vs OLTP

OLAP

Processamento Analítico On-line

- É representado por um volume relativamente baixo de transações. As consultas são mais complexas e envolvem agregações.

OLTP

<u>Processamento de transações on-line</u> - É caracterizado por um grande número de transações curtas on-line (INSERT, UPDATE e DELETE).

Principais diferenças

MOLAP/ROLAP/HOLAP

Rolap

VANTAGENS

DESVANTAGENS

- Consegue suportar várias funcionalidades
- Não restringe o volume de armazenamento de dados.

- **X** Baixo desempenho
- Limitado pelas funcionalidades SQL

Molap

VANTAGENS

DESVANTAGENS

- X Alto desempenho
- Execução cálculos complexos

- Investimentos altos.
- Existem algumas restrições na limitação da quantidade dados a serem analisados

Holap

VANTAGENS

DESVANTAGENS

Maior custo

Não restringe o volume de armazenamento

ESQUEMAS

ESTRELA

	DimProduct ProductKey ProductAlternateKey	
imSalesTerritory	FactResellerSales	DimDate
SalesTerritoryKey	SalesOrderNumber	
SalesTerritoryAlternateKey		FullDateAlternateKey
	ProductKey	
	OrderDateKey	
	DueDateKey	
	ShipDateKey	
	ResellerKey	
	EmployeeKey	
	SalesTerritoryKey	
	OrderQuantity	
	TotalProductCost	
	SalesAmount	
DimEmployee	Į.	DimReseller
		ResellerKey
₹ EmployeeKey		
EmployeeKey EmployeeNationalIDAlternateKey		ResellerAlternateKey

ESTRELA

FLOCO DE NEVE

CONSTELAÇÃO DE FACTOS

// ESQUEMAS

CONSTELAÇÃO DE FACTOS

OPERAÇÕES

SLICE

DICE

Dice for (location = "Venice" or "Florence") and(season="Winter" or "Spring") and (item = "components" or "clothing")

Venice

470

Florence

Season of the year 975

ROLL UP

Components, clothing, bikes, accessories

Drill-up on location (from cities to countries)

×

DRILL DOWN

accessories

PIVOT

AS 14 OPERAÇÕES OLAP

×

×

DRILL-UP

DRILL-DOWN

SLICE

DICE

PIVOT

Scoping

Screening

Drill across

Drill through

Sort

Add measure

Drop measure

Union

Difference

MINERAÇÃO DE DADOS - DEFINIÇÃO

- Método para descobrir padrões em enormes quantidades de informação.
- Mistura computação e estatísticas, e utiliza bastante machine learning e inteligência artificial.
- O Dito isso, é uma buzzword.

MINERAÇÃO DE DADOS - DEFINIÇÃO

- Quase tudo o que envolva trabalhar com informação e Al/ML é chamado "data mining"
- Data mining refere-se apenas à extração de dados a partir de informação já existente.

Informação descoberta varia bastante, mas há algumas técnicas em comum

CLASSIFICATION

Colocar informação em categorias diferentes de acordo com certas características

Aplicações:

- Modelos descritivos
- Modelos preditivos

- Classificar email como "spam" ou "não-spam"
- Classificar células como <u>malignas</u> ou <u>não-malignas</u>

// CLASSIFICATION TECHNIQUES

DECISION TREES

RULE-BASED

NEAREST-NEIGHBOR

ASSOCIATION ANALYSIS

Descobrir ligações entre certas partes da informação

×

CLUSTER ANALYSIS

Agrupar informação em grupos de acordo com informação que tenham em comum

Usado para:

- Melhor categorizar partes da informação de modo conceptual;
- Modelos preditivos

TÉCNICAS *

REGRESSION

Fazer previsões de tendências futuras com base em informação atual

- Projetar valores de vendas para empresas
- Prever variações de ações no mercado

OUTER(ANOMALY) DETECTION

Conseguir descobrir e explicar/eliminar anomalias dentro da informação

- Descobrir transações financeiras fraudulentas
- Detetar problemas de saúde em indivíduos

TÉCNICAS *

DIMENSIONALITY REDUCTION

Simplificar problemas complexos diminuindo o número de variáveis a tratar

×

OPTIMIZATION

Permite maximizar ou minimizar uma certa função

- Descobrir a quantidade ideal de recursos para dispensar numa certa tarefa
- Descobrir como minimizar perdas de dinheiro

