Homework Assignment 1

Due via canvas Feb 11th

SDS 384-11 Theoretical Statistics Please **do not** add your name to the HW submission.

- 1. (1+3+(1+1+2) pts) We will do some examples of convergence in distribution and convergence in probability here.
 - (a) Let $X_n \sim N(0, 1/n)$. Does $X_n \stackrel{d}{\to} 0$?

Solution. Yes, first we show that X_n converges in probability to 0.

$$\lim_{n \to \infty} \Pr(|X_n - 0| > \epsilon) = \lim_{n \to \infty} \Pr(|X_n|^2 > \epsilon^2)$$

$$\leq \lim_{n \to \infty} \frac{\operatorname{var}(X_n)}{\epsilon^2}$$

$$= \lim_{n \to \infty} \frac{1}{n\epsilon^2}$$

$$= 0$$

Thus $X_n \stackrel{p}{\to} 0$ which implies that $X_n \stackrel{d}{\to} 0$.

(b) Let $\{X_n\}$ be independent r.v's such that $P(X_n = n^{\alpha}) = 1/n$ and $P(X_n = 0) = 1 - 1/n$ for $n \ge 1$, where $\alpha \in (-\infty, \infty)$ is a constant. For what values of α , will you have $X_n \stackrel{q.m}{\to} 0$? For what values will you have $X_n \stackrel{p}{\to} 0$? Solution.

Convergence in quadratic mean:

$$E[|X_n|^2] = (n^{\alpha})^2 \frac{1}{n}$$
$$= \frac{n^{2\alpha}}{n}$$

The above will converge to zero if $2\alpha < 1$, or $\alpha < \frac{1}{2}$.

Convergence in Probability:

For $\epsilon \geq n^{\alpha}$ we have $\Pr(|X_n| > \epsilon) = 0$. For $\epsilon < n^{\alpha}$ we have $\Pr(|X_n| > \epsilon) = \frac{1}{n}$. This probability converges to zero for all values of α .

(c) Consider the average of n i.i.d random variables X_1, \ldots, X_n with $E[X_1] = \mu$ and $E[|X_1|] < \infty$. Write true or false. Explain.

1

- i. $\bar{X}_n = o_P(1)$ Solution. We know that \bar{X}_n converges to μ in probability. If $\mu \neq 0$, $\bar{X}_n = o_P(1)$ is false.
- ii. $\exp(\bar{X}_n \mu) = o_P(1)$ Solution. We know that $\bar{X}_n \mu$ converges to 0 in probability. By continuous mapping, If $\exp(\bar{X}_n \mu) \stackrel{P}{\to} 1$. So false.
- iii. $(\bar{X}_n \mu)^2 = O_P(1/n)$ Solution. Fix $\epsilon > 0$. Now $P((\bar{X}_n - \mu)^2 \ge \underbrace{\frac{\sigma^2}{\epsilon}}_{M_{\epsilon}}) \le \epsilon$. So, its true.
- 2. (8 pts) Consider random variables X_1, \ldots, X_n be IID r.v's with mean μ and variance $\sigma^2 := \text{var}(X_i)$. We will use the following statistic to estimate $\theta = \mu^2$.

$$\hat{\theta} = \frac{1}{\binom{n}{2}} \sum_{i < j} X_i X_j$$

(a) Find constants C_1, C_2 where

$$\hat{\theta} - \mu^2 = \frac{C_1}{\binom{n}{2}} \sum_{i < j} (X_i - \mu)(X_j - \mu) + \frac{C_2 \mu}{n} \sum_i (X_i - \mu)$$

Solution.

$$C_1 = 1, C_2 = 2.$$

(b) Show that the first term is $O_P(1/n)$ and the second term is $O_P(1/\sqrt{n})$.

Calculate variance of the first part to note that

$$\frac{1}{n^4} \operatorname{var} \left(\sum_{i \neq j} (X_i - \mu)(X_j - \mu) \right) = \sum_{i \neq j} E[(X_i - \mu)^2] E[(X_j - \mu)^2] \le \sigma^4 / n^2$$

Similarly compute the variance of the second part to see that it is c/n for some constant c. Note that a random var X with mean zero is always $O_P(\sqrt{\operatorname{var}(X)})$. To see this, note:

$$P(|X| \ge \sqrt{\operatorname{var}(X)/\epsilon}) \le \epsilon$$

- (c) Argue that $\hat{\theta} \stackrel{P}{\to} \mu^2$. Solution. So, by this logic, $\operatorname{var}(\hat{\theta} - \mu^2) \leq C/n$, which shows $\hat{\theta} \stackrel{P}{\to} \mu^2$ via convergence in quadratic mean. To see this note that $\operatorname{var}(A+B) \leq 2 \max(\operatorname{var}(A), \operatorname{var}(B))$.
- 3. (8 pts) If $X_n \stackrel{d}{\to} X \sim Poisson(\lambda)$, is it necessarily true that $E[g(X_n)] \to E[g(X)]$?

 (a) $g(x) = 1(x \in (0, 10))$

Solution. It is not necessarily true that $E[g(X_n)] \to E[g(X)]$ because there is a discontinuity in g at 0 and 10. Take the following counter example:

Let $X_n = X + \frac{1}{n}$. It is simple to show that $X_n \stackrel{P}{\to} X$, thus $X_n \stackrel{d}{\to} X$.

$$\lim_{n \to \infty} \Pr(|X_n - X| > \epsilon) = \lim_{n \to \infty} \Pr(|X + \frac{1}{n} - X| > \epsilon) = \lim_{n \to \infty} \Pr(\frac{1}{n} > \epsilon) = 0$$

Now we need to show that $E[g(X_n)] \not\to E[g(X)]$. We pick a convenient λ to show that the result doesn't hold. For simplicity let $\lambda \to 0$. Thus $E[g(X)] = \Pr(X \in (0,10)) = 0$ as $\lambda \to 0$, however

$$E[g(X_n)] = \Pr(X_n \in (0, 10)) = 1$$

as $\lambda \to 0$, thus $E[g(X_n)] \not\to E[g(X)]$.

- (b) $g(x) = e^{-x^2}$ Solution. Yes, from the Portmanteau Theorem it is true that $E[g(X_n)] \to E[g(X)]$ because g(x) is bounded by 0 and 1 and continuous on the real line.
- (c) g(x) = sgn(cos(x)) [sgn(x) = 1 if x > 0, -1 if x < 0 and 0 if x = 0.] Solution. Yes it is true that $E[g(X_n)] \to E[g(X)]$. First the function g(x) is bounded as it only takes on the values (-1,0,1). Second the discontinuities only occur when $\cos(x) = 0$ which can be defined by the set $A = \{\pi(\frac{1}{2} + n)\}_{n=0}^{\infty}$. We define $C(g) = \mathbb{R} - A$ to be the set of values on which g(x) is continuous. Since X only takes on integer values $\Pr(X \in C(g)) = 1$, thus by the Portmanteau theorem $E[g(X_n)] \to E[g(X)]$.
- (d) g(x) = x Solution. Since g(x) is not bounded, it is not necessarily true that $E[g(X_n)] \to E[g(X)]$. Take the following counter example: Let

$$= \begin{cases} X & \text{w.pr. } \frac{n-1}{n} \\ n & \text{w.pr. } \frac{1}{n} \end{cases}$$
 (1)

Clearly $X_n \xrightarrow{d} X$, however

$$\lim_{n \to \infty} E[g(X_n)] = \lim_{n \to \infty} E[X_n]$$

$$= \lim_{n \to \infty} (\frac{1}{n}n + E[X]\frac{n-1}{n})$$

$$= 1 + E[X]$$

$$\neq E[X]$$

Therefore $E[g(X_n)] \not\to E[g(X)]$.

4. (6 pts) Let X_1, \ldots, X_n be independent r.v's with mean zero and variance $\sigma_i^2 := E[X_i^2]$ and $s_n^2 = \sum_i \sigma_i^2$. If $\exists \delta > 0$ s.t. as $n \to \infty$,

$$\frac{\sum_{i} E|X_{i}|^{2+\delta}}{s_{n}^{2+\delta}} \to 0,$$

then $\sum_{i} X_i/s_n$ converges weakly to the standard normal.

Soln.

Proof. We want to show that

$$\frac{\sum_{i} E|X_{i}|^{2+\delta}}{s_{n}^{2+\delta}}$$

shows up in the upper bound on the quantity in the Lindeberg condition. If the above quantity converges to 0 as $n \to \infty$ then the Lindeberg must also be satisfied and thus $\sum_i X_i/s_n \stackrel{d}{\to} N(0,1)$.

$$\frac{1}{s_n^2} \sum_{i=1}^n E[|X_i|^2 1(|X_i| \ge \epsilon s_n)] = \frac{1}{s_n^2} \sum_{i=1}^n E\left[|X_i|^2 1(|X_i|^\delta \ge \epsilon^\delta s_n^\delta)\right]
\le \frac{1}{s_n^2} \sum_{i=1}^n E\left[|X_i|^2 \frac{|X_i|^\delta}{\epsilon^\delta s_n^\delta}\right]
= \frac{1}{\epsilon^\delta} \frac{\sum_{i=1}^n E|X_i|^{2+\delta}}{s_n^{2+\delta}}$$

We used the fact that for a positive number X,

$$1(X \ge \epsilon) \le X/\epsilon$$
.

Thus, under the condition, the Lindeberg condition is also met.