MAI 5100: Fundamentals of Artificial Intelligence

Instructor: Dr. Christopher Clarke

Overview & Agenda

1. What is AI?

- Definitions
- Al vs. Human Intelligence

2. Historical Developments

- Early days, Al winter, modern revival
- Key milestones & breakthroughs

3. Fundamental Issues & Challenges

Data, computational limitations, ethics, bias

Overview & Agenda (Contd.)

4. Course Objectives & Content

- Topics from search to deep learning
- Weekly schedule & major assignments

5. Implications for Developing Nations

Resource constraints, local solutions

6. Careers & Pathways in Al

- Local & global opportunities
- Research vs. industry

Introductions

Instructor:

• Name: Dr. Christopher Clarke

Email: christopher.clarke@uog.edu.gy

• Profile: csclarke.com

 Research Interests: Natural Language Processing, Human-Al Interaction

Your Turn

- Share your name, background, and why you're interested in Al.
- Icebreaker: What's your favorite Al application or technology?

What is Al?

The science of making machines that:

- Think like humans?
- Act like humans?
- Think rationally?
- Act rationally?

"A computer would deserve to be called intelligent if it could deceive a human into believing that it was human." – **Alan Turing**

In this course, we adopt a rational agent viewpoint:

- An agent perceives its environment, reasons about it, and acts to maximize its goals.
- Al is about designing such intelligent agents.

Brief History of Al

1940s - 1960s: The Beginnings

- McCulloch & Pitts: Boolean circuits as "neurons"
- Turing's famous paper on "Computing Machinery and Intelligence"
- Emergence of symbolic AI, problem solving, and rule-based systems

1970s - 1980s: Knowledge & Expert Systems

- Surge of expert systems (e.g., MYCIN for medical diagnosis)
- First "Al Winter" after hype fails to meet expectations

1990s - 2000s: Statistical & Probabilistic Turn

- Probabilistic reasoning (Bayes Nets, Markov Models)
- MAI 5100 FUBM's Deep Blue defeats Kasparov in Chess (1997)

Brief History of Al (Contd.)

2000s - 2010: Rise of Machine Learning

- Support Vector Machines, Random Forests, and other ML algorithms
- Google's self-driving car project (2009), now Waymo
- IBM's Watson wins Jeopardy! (2011)

2010 - Present: Deep Learning & Big Data

- Neural networks, GPUs, & breakthroughs in speech, vision
- AlphaGo beats Lee Sedol in Go (2016)
- Large Language Models (LLMs) & generative Al

We've come a long way, from punch cards to [ChatGPT]!

Artificial Intelligence

Machine Learning

Deep Learning

Generative Al

The Al Landscape

Al Applications

- **Healthcare**: Diagnostics, personalized medicine, and telemedicine.
- Agriculture: Crop monitoring, pest detection, predictive analytics for better yields.
- Finance: Credit scoring, fraud detection, automated customer service.

- Education: Intelligent tutoring systems, adaptive learning platforms.
- Natural Language Processing: Translation, virtual assistants, sentiment analysis.
- Transportation: Self-driving cars, logistics optimization.

Al in a Developing Nation Context **>**

"Sometimes constraints are the mother of innovation!"

Resource Constraints

- Limited high-performance computing infrastructure.
- Opportunities for lightweight models, low-power solutions, and creative problemsolving.

Localized Solutions

- Focusing on agriculture, healthcare, and education to create immediate community impact.
- Developing chatbots that converse in local dialects.

Al in a Developing Nation Context (Contd.)

Skill Gaps & Education

- Necessity for building foundational digital literacy.
- Community-driven projects, open-source collaborations.

• Ethical & Cultural Implications

- Ensuring Al respects local traditions and languages.
- Mitigating bias and misinformation, bridging the digital divide.

10

Al Hype vs. Reality

Reality

Uncertainty

Perceptions

Fundamental Al Issues

1. Data & Representation

- "Garbage in, garbage out"
- Need for high-quality, representative data

2. Computational Resources

- Al can be computationally expensive
- Efficient algorithms & specialized hardware are key

3. Uncertainty & Probabilistic Reasoning

Real-world data is messy, incomplete, noisy

Fundamental Al Issues (Contd.)

4. Ethics & Bias

- Al systems can reflect and amplify societal biases
- Ethical frameworks, fairness, explainability

5. Planning & Decision-Making

- Many real-world tasks require multi-step reasoning
- Search algorithms, constraint satisfaction

6. Societal Impact

- Automation fears, labor shifts
- Regulatory & governance questions
 MAI 5100 Fundamentals of Al

Why Study AI?

1. We are in the 4th Industrial Revolution

- Al is transforming industries, economies, and societies.
- Mechanization -> Electrification -> Computerization -> Al

2. Field is rapidly evolving, but still in its infancy

- New algorithms, models, and applications emerge daily.
- Opportunities for innovation, research, and entrepreneurship.

3. Interdisciplinary Nature

- Al draws from computer science, statistics, psychology, philosophy.
- Al touches every domain: healthcare, finance, agriculture, education etc.

Why Study AI? (Contd.)

4. Massive Demand for Al Talent

- Shortage of Al professionals worldwide.
- High salaries, job security, and opportunities for growth.

5. Guyana ≥ needs your expertise!!!

- Oil & gas won't last forever. Al can drive sustainable development.
- Opportuninity to accelerate local innovation, solve unique problems.

Course Objectives

By the end of MAI5100 you should be able to:

- 1. Explain foundational Al concepts
- 2. **Apply** search algorithms, knowledge representation, and machine learning approaches
- 3. Design intelligent agents capable of problem solving under uncertainty
- 4. Evaluate Al solutions with appropriate metrics and ethical considerations
- 5. **Develop** small-scale Al projects (research or applied focus)

Disclaimer: This course is a **starting point** and does not cover modern Al in its entirety! However, many of the principles covered are the foundation of most of the state-of-the-art Al systems you see today.

Weekly Roadmap (Weeks 1 - 4)

Week	Topics	Readings / Activities
1	Intro to AI - Historical context, challenges	Chapter 1; HW0 released
2	Search Techniques - BFS, DFS, A*, heuristics	Chapter 3; Group project formation
3	Advanced Search & CSPs - Adversarial search	Chapters 5 & 6
4	Knowledge & Reasoning - Logic, Bayes Theorem	Chapters 7 & 8; HW1 released

Weekly Roadmap (Weeks 5 - 8)

Week	Topics	Readings / Activities
5 - 6	Probabilistic Reasoning - Bayesian Networks, MDPs, RL	Chapters 13 - 14; Guest lecture by Dr. Roland Daynuath
7	Planning in AI - Classical planning, scheduling	Chapter 11
8	Mid-term Exam	No new readings

Weekly Roadmap (Weeks 9 - 12)

Week	Topics	Readings / Activities
9	Machine Learning (Part 1) - Supervised & Unsupervised	Chapters 19 - 20; HW2
10	No Class (May 3)	_
11	Machine Learning (Part 2) - Neural Networks & Optimization	Chapter 21; Project progress
12	Deep Learning Advanced - CNNs, RNNs, Transformers	Chapter 21.6 - 21.8

19

Weekly Roadmap (Weeks 13 - 15)

Week	Topics	Readings / Activities
13	Deep Learning Advanced - CNNs, RNNs, Transformers	Chapter 21.6 - 21.8
14	Special Topics in Al	TBD
15	Project Presentations	Final project & presentation

Note: The instructor reserves the right to adjust this schedule as needed.

Assignments & Projects

Homeworks

- 4 total; best 3 count
- Covers search, probabilistic reasoning, reinforcement learning, ML

Mid-term Exam

- Week 8
- Focus on early modules (search, logic, probability)

Course Project

- 1. Research-Oriented (investigate an Al question, experiments, write-up)
- 2. Applied AI (develop or enhance a real-world AI application)

Milestones:

- Week 2: Group formation
- Week 6: Proposal
- Week 11: Progress Report
- Weeks 14-15: Final Presentation & Demo

Grading & Assessment

Assessment Structure

Component	Weight
Homeworks/Assignments	30%
Participation	5%
Mid-term Exam	20%
Course Project	40%
Total	100%

Grading & Assessment (Contd.)

Letter Grade Cutoffs

Grade	Percentage
Α	80% – 100%
В	70% – 79%
С	60% – 69%
F	< 60%

Lowest homework score dropped. You will get out of this course what you put into it!

Career Opportunities in Al

"The future is Al. But remember, you are the mind behind the machine."

1. Research-Oriented Careers

- Academia, research institutions, think tanks
- Focus on advancing AI theory, algorithms, and applications

2. Industry & Applied Al

- Tech companies, startups, consulting firms
- Building Al products, solutions, and services

25

Career Opportunities in AI (Contd.)

3. Government & Policy

- Regulatory bodies, public sector
- Shaping Al policy, governance, and ethics

4. Al for Social Good

- Non-profits, NGOs, humanitarian organizations
- Leveraging Al for sustainable development, social impact

Regardless of the path you choose, AI skills unlock doors to innovation, creativity, and lasting impact.

Key Takeaways

1. Al's Breadth

From logic & search to machine learning & ethics

2. This Course as a Roadmap

Methodical approach to core techniques, hands-on projects

3. Context Matters

Consider resource constraints, ethical frameworks, local impact

4. Stay Inquisitive

Engage with peers, bring your ideas, shape AI for Guyana & beyond

Next Steps

- Review the syllabus/README & these slides
- Read Chapter 1 (Russell & Norvig) on Al basics, Being readied for Week 2 on search algorithms!
- **HWO**: Released later this week, due in week 4
- Brainstorm project directions research vs. applied Al

Thank you for joining Week 1!

Prepare for an exciting journey into the world of Al. Send questions anytime to christopher.clarke@uog.edu.gy