CTT009 Lưu trữ dữ liệu

Nội dung

- □ Tổng quan
 - □ Thông tin, dữ liệu và tri thức
- Lưu trữ dữ liệu cơ bản
 - ☐ Bit, gate và flip-flop
- □ Bộ nhớ

THÔNG TIN, DỮ LIỆU, VÀ TRI THỨC

Tổng quan

- Máy tính có thể biểu diễn bất kỳ thông tin nào nếu đã được rời rạc hóa và số hóa
- Thuật toán có thể xử lý/chuyển đổi các thông tin số bằng nhiều cách khác nhau
 - Xáo trộn dữ liệu số từ phần này sang phần khác của máy tính
 - □ Tìm kiếm các dạng mẫu, tạo mô phỏng, làm tương quan các kết nối để tạo ra *tri thức* mới và hiểu biết mới

Thuật ngữ liên quan

- ☐ Thông tin (information)
 - Là tất cả những gì đem lại sự hiểu biết về thế giới xung quanh
- □ Dữ liệu (data)
 - Là hình thức thể hiện của thông tin với một mục đích lưu trữ/xử lý nào đó
- □ Tri thức (knowledge)
 - Là mục đích của nhận thức trên cơ sở tiếp nhận thông tin
 - Quá trình xử lý thông tin = quá trình nhận thức để có tri thức

Câu hỏi đặt ra

- ☐ Máy tính lưu trữ dữ liệu số như thế nào?
 - Số, văn bản, hình ảnh, âm thanh, và video
- Làm thế nào mà máy tính có thể xấp xỉ dữ liệu tương tự trong thế giới thực?
- Làm sao máy tính có thể phát hiện và ngăn chặn lỗi trong dữ liệu?

LƯU TRỮ DỮ LIỆU CƠ BẢN

Bits

Thông tin được mã hóa dưới dạng mẫu (pattern) của các ký số 0 và ký số 1

 \square Ký số 0 : bit 0 \square Ký số 1 : bit 1 \square Bit = **Bi**nary digi**t**

□ Ví du

$$10.75_{10} = 1010.11_2$$

Bits

- Tại sao sử dụng 2 ký hiệu 0 và 1 để mã hóa (encode) thông tin?
 - □ Cài đặt điện tử

Nguồn: Computer System – A Programmer's Perspective, 3e

Bits

- □ Tại sao sử dụng 2 ký hiệu 0 và 1 để mã hóa (encode) thông tin?
- Một cách hình thức, rất dễ mã hóa
 - Numeric value : 1 & 0
 - Boolean value : đúng & sai
 - Voltage : cao & thấp
 - Punched card : có bấm lỗ & không bấm lỗ
- Dữ liệu trong thực tế được chuyển thành biểu diễn nhị phân để đưa vào máy tính

Phép toán Boolean

- Là những phép toán thực hiện trên các giá trị *True/False*
 - Bit 0 ~ False
 - □ Bit 1 ~ True
- Gồm có : AND, OR, XOR, NOT
- Tại sao lại là Boolean operations?
 - Máy tính được cấu tạo bởi nhiều thiết bị nhỏ
 - Những thiết bị này có thể thực hiện các phép toán Boolean cực kỳ nhanh

Phép toán Boolean

The AND operation

$$\frac{AND}{0}$$

The OR operation

The XOR operation

Cổng - Gates

- Là một thiết bị nhỏ thực hiện 1 phép toán Boolean nào đó
- Thường được lắp đặt dưới dạng các mạch điện tử nhỏ (electronic circuits)
 - □ 0 & 1 ~ mức điện áp

Nguồn: Wikipedia

Cổng - Gates

AND

Inputs Output

Inputs	Output
0 0	0
0 1	0
1 0	0
1 1	1

OR

Inputs	Output
0 0	0
0 1	1
1 0	1
1 1	1

XOR

Inputs Output

Inputs	Output
0 0	0
0 1	1
1 0	1
1 1	0

NOT

Inputs — Output

Inputs	Output
0	1 0

Ví dụ 1 mạch đơn giản

Truth Table

Input a, b, c	Output
000	1
001	1
010	0
011	1
100	0
101	0
110	1
111	1

Nguồn: Chun-Jen Tsai, ics12, National Chiao Tung University

- Là 1 mạch được xây dựng từ các cống để có thể lưu trữ được 1 bit
 - Một dòng đầu vào được sử dụng để thiết lập lưu trữ giá trị 1
 - Một dòng đầu vào được sử dụng để thiết lập lưu trữ giá trị 0
 - Khi cả 2 dòng đầu vào là
 0, giá trị được lưu trữ gần
 nhất sẽ được giữ nguyên

Hoạt động

- □ Câu hỏi
 - ☐ Tính chất nào làm mạch flip-flop lưu trữ được 1 bit?
- Kahoot-1
 - Cá nhân, chọn câu trả lời
- Thảo luận
 - □ Nhóm 2 sinh viên
- ☐ Kahoot-2
 - Nếu có thay đổi, chọn lại câu trả lời

Quiz-1

Tính chất nào làm mạch flip-flop lưu trữ được 1 bit?

Có cấu trúc đặc biệt, bất chấp giá trị đầu vào là gì

Đầu ra của cống AND là 1 dòng đầu vào của cổng OR

Có 1 dòng trong mạch luôn không đổi, khi các đầu vào trở về 0

Khi đầu vào thay đổi, mạch chuyển sang giá trị khác

☐ Thiết lập đầu ra của flip-flop là 1

☐ Thiết lập đầu ra của flip-flop là 1

☐ Thiết lập đầu ra của flip-flop là 0

Quiz-2

□ Tính chất nào làm mạch flip-flop lưu trữ được 1 bit?

Có cấu trúc đặc biệt, bất chấp giá trị đầu vào là gì

Đầu ra của cống AND là 1 dòng đầu vào của cổng OR

Có 1 dòng trong mạch luôn không đổi, khi các đầu vào trở về 0

Khi đầu vào thay đổi, mạch chuyển sang giá trị khác

Mạch này có là Flip-Flop không?

Mạch này có là Flip-Flop không?

Nguồn: wikipedia

Quiz-3

□ Tính chất nào làm mạch flip-flop lưu trữ được 1 bit?

Có cấu trúc đặc biệt, bất chấp giá trị đầu vào là gì

Đầu ra của cống AND là 1 dòng đầu vào của cổng OR

Có 1 dòng trong mạch luôn không đổi, khi các đầu vào trở về 0

Khi đầu vào thay đổi, mạch chuyển sang giá trị khác

Thuật ngữ liên quan

- Very Large-Scale Integration VLSI
 - Công nghệ cho phép hàng triệu thành phần điện được nối kết với nhau nằm trên một miếng mỏng (chip)
- Sử dụng VLSI để tạo ra các thiết bị thu nhỏ chứa hàng triệu flip-flops cùng với mạch điều khiển

BỘ NHỚ

Giới thiệu

- ☐ Chúng ta đã biết
 - Máy tính mã hóa thông tin dưới dạng chuỗi bits như thế nào
 - □ Thiết bị lưu trữ cơ bản của máy tính là gì
- □ Như vậy
 - □ Để lưu trữ dữ liệu, máy tính cần có hàng triệu mạch lưu trữ (mỗi mạch lưu 1 bit)
 - → Nơi chứa các bits này gọi là bộ nhớ chính

Giới thiệu

- Ngoài flip-flops, ta còn có những thiết bị lưu trữ khác (bộ nhớ ngoài)
 - ☐ Từ tính, quang học, flash
- ☐ Thiết bị lưu trữ
 - □ Bộ nhớ khả biến (volatile memory)
 - Lưu trữ giá trị cho đến khi điện tắt
 - □ Bộ nhớ bất biến (non-volatile memory)
 - Vẫn lưu trữ được giá trị sau khi điện tắt

Cấu trúc bộ nhớ chính

- Gồm nhiều *ô nhớ* (cells)
- Một ô nhớ ~ 1 đơn vị truy xuất bộ nhớ
 - ☐ Có kích thước là 8 bits (hay 1 byte)
 - Các bits có thứ tự

Source: Computer Science - An Overview, 12e

Địa chỉ bộ nhớ chính

- Địa chỉ (address)
 - Là "tên gọi" để xác định duy nhất 1 ô nhớ
 - □ Tên gọi là những con số
 - Các số này được gán liên tiếp và bắt đầu từ số 0
 - □ Đánh số các ô nhớ theo cách này ~ thứ tự của các ô nhớ

Source: Computer Science - An Overview, 12e

Thuật ngữ liên quan

- □ Random Access Memory (RAM)
 - Là bộ nhớ mà từng ô nhớ có thể được truy xuất dễ dàng ở bất cứ thứ tự nào
- Dynamic Memory (DRAM)
 - Là bộ nhớ cấu thành bộ nhớ chính

Dung lượng bộ nhớ

 \square Kilobyte : 2^{10} bytes = 1024 bytes

 \square Megabyte: 2^{20} bytes = 1,048,576 bytes

☐ Gigabyte : 2^{30} bytes = 1,073,741,824 bytes

- Terabyte
- Petabyte
- Exabyte

Bộ nhớ ngoài

- Uu điểm so với bộ nhớ chính
 - Dung lượng lớn hơn
 - □ Rẻ hơn
 - Dữ liệu không bị mất khi cúp điện
 - Có thể xóa được (trong nhiều trường hợp)
- ☐ Khuyết điểm ?

Đĩa từ

Source: Computer Science - An Overview, 12e

Đĩa từ

- Đặc trưng
 - ☐ Thời gian tìm kiếm (seek time)
 - Thời gian di chuyển đầu đọc tới đúng rãnh
 - ☐ Thời gian chờ (latency time)
 - Thời gian đĩa xoay 1 nửa chu kỳ
 - ☐ Thời gian truy xuất (access time)
 - Bằng thời gian tìm kiếm + thời gian chờ
 - □ Tốc độ truyền tải (transfer rate)
 - Tốc độ dữ liệu truyền tới đĩa hay từ đĩa truyền đi

TÓM TẮT

Bài giảng hôm nay

- □ Cơ bản
 - Mã hóa và lưu trữ trong máy tính
 - Chuỗi bits
 - Flip-flop
- □ Bộ nhớ
 - Bộ nhớ chính
 - □ Đĩa từ

Bài giảng lần tới

- □ Lưu trữ dữ liệu (chapter 1)
 - □ Biểu diễn dữ liệu
 - Lưu trữ số nguyên
 - Lưu trữ phân số

