The group G is isomorphic to the projective special linear group PSL(2,11). Ordinary character table of $G \cong PSL(2,11)$:

	10	a = 2a	3a	5a	5b	6a	11a	11b
χ	1	1	1	1	1	1	1	1
χ_2	$_{2}$ \int 5	1	-1	0	0	1	$E(11) + E(11)^3 + E(11)^4 + E(11)^5 + E(11)^9$	$E(11)^2 + E(11)^6 + E(11)^7 + E(11)^8 + E(11)^{10}$
χ	$\frac{1}{3}$	1	-1	0	0	1	$E(11)^2 + E(11)^6 + E(11)^7 + E(11)^8 + E(11)^{10}$	$E(11) + E(11)^3 + E(11)^4 + E(11)^5 + E(11)^9$
χ_2	1 10	-2	1	0	0	1	-1	-1
χ	5 10) 2	1	0	0	-1	-1	-1
χ_{ϵ}	3 11	-1	-1	1	1	-1	0	0
χ	7 12	2 0	0	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	1	1
χ_{8}	3 12	2 0	0	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	1	1

Trivial source character table of $G \cong PSL(2,11)$ at p = 5:

Normalisers N_i	N_1							N_2	
p-subgroups of G up to conjugacy in G	P_1						P_2		
Representatives $n_j \in N_i$	1a	2a	3a	6a	11a	11b	1a	$\overline{2a}$	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8$	25	1	1	1	3	3	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8$	35	-1	-1	-1	2	2	0	0	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	5	1	-1	1	$E(11) + E(11)^3 + E(11)^4 + E(11)^5 + E(11)^9$	$E(11)^2 + E(11)^6 + E(11)^7 + E(11)^8 + E(11)^{10}$	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	5	1	-1	1	$E(11)^2 + E(11)^6 + E(11)^7 + E(11)^8 + E(11)^{10}$	$E(11) + E(11)^3 + E(11)^4 + E(11)^5 + E(11)^9$	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	10	-2	1	1	-1	-1	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	10	2	1	-1	-1	-1	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	1	1	1	1	1	1	1	1	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	11	-1	-1	-1	0	0	1	-1	

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(2, 6, 8, 7, 10)(3, 5, 9, 4, 11)]) \cong C5$

 $N_1 = Group([(2,10)(3,4)(5,9)(6,7),(1,2,11)(3,5,10)(6,8,9)]) \cong PSL(2,11)$ $N_2 = Group([(2,6,8,7,10)(3,5,9,4,11),(3,11)(4,5)(6,10)(7,8)]) \cong D10$