Comparing multiple proportions

February 24, 2017

psych10.stanford.edu

Announcements / Action Items

- Practice and assessment problem sets will be posted today, might be after 5 PM
- Reminder of OH switch today

Last time

- Some ways to integrate previous material
- We can make better predictions about individual observations when considering the variable group, and we can quantify the improvement in these predictions using r²
- We can remove variance related to individual differences by using paired designs, but we must adjust our analysis approach to account for the fact that observations in each pair are not independent (single mean or single proportion)

variable(s)

Our final cycle with frequency (count) data and proportions

Categorical variable: responses or are categories or groups ("levels")

Goal: handle response variables with *any* number of categories and grouping variables with *any* number of groups *with a single statistic* (why not compare each possible pair? we'll discuss on Monday)

	one variable (a response variable)	two variables (one grouping, one response)
binary variable(s)	z-test for a single proportion (1 x 2 table)	z-test for a difference in proportions (2 x 2 table)
any categorical	chi-square test for goodness-of-fit	chi-square test for independence

(any # by any # table)

(1 x any # table)

- How can we test whether observed proportions are consistent with expected proportions?
- How can we use proportions to test whether two variables are associated?

- How can we test whether observed proportions are consistent with expected proportions?
- How can we use proportions to test whether two variables are associated?

Previously

converted non-binary variables to binary variables

rock-paper-scissors

rock	paper	scissors
1/3	1/3	1/3

rock-paper-scissors

not scissors	scissors
2/3	1/3

roll reported

1	2	3	4	5	6
1/6	1/6	1/6	1/6	1/6	1/6

roll reported

not 6	6
5/6	1/6

section called upon

1st	2nd	3rd	4th
1/4	1/4	1/4	1/4

section called upon

1st	not 1st
1/4	3/4

Today

assess fit of all categories to hypothesized distribution

rock-paper-scissors

rock	paper	scissors
1/3	1/3	1/3

rock-paper-scissors

not scissors	scissors
2/3	1/3

roll reported

1	2	3	4	5	6
1/6	1/6	1/6	1/6	1/6	1/6

roll reported

not 6	6
5/6	1/6

section called upon

1st	2nd	3rd	4th
1/4	1/4	1/4	1/4

section called upon

1st	not 1st
1/4	3/4

Chi square: goodness-of-fit

Goal: use observed *sample* proportions to test hypotheses about unobserved *population* proportions — looking at a single variable

General approach:

Generate a null hypothesis (H₀) about population proportions

Compute frequencies that we would expect if H₀ was true * usually the hardest step

Summarize the discrepancy between these with a single statistic (X²)

Use the distribution of all of the statistics that we could have observed if the null hypothesis was true to determine whether this statistic would be *unlikely* if the null hypothesis was true

Are cases of academic dishonesty evenly distributed across departments?

The Mercury News

News

Stanford finds cheating — especially among computer science students — on the rise

By LISA M. KRIEGER | lkrieger@bayareanewsgroup.com | PUBLISHED: February 6, 2010 at 1:22 pm | UPDATED: August 13, 2016 at 10:33 pm

Stanford CS department battles honor code violations

A simplified scenario. A university has four, equally sized departments: computer science, biology, sociology, and art history. They handle 100 honor code cases, as below.

observed frequencies, Oi

CS	Bio	Soc	Art	Total
35	30	20	15	100

A null hypothesis: students in each department are equally likely to be included in these cases

expected proportions

CS	Bio	Soc	Art	Total
0.25	0.25	0.25	0.25	1

A simplified scenario. A university has four, equally sized departments: computer science, biology, sociology, and art history. They handle 100 honor code cases, as below.

observed frequencies, Oi

CS	Bio	Soc	Art	Total
35	30	20	15	100

A null hypothesis: students in each department are equally likely to be included in these cases

expected frequencies, Ei (multiply expected proportion by n)

CS	Bio	Soc	Art	Total
0.25 * 100	0.25 * 100	0.25 * 100	0.25 * 100	1 * n = 100
= 25	= 25	= 25	= 25	

Do we expect the observed frequencies to perfectly match the expected frequencies if the null hypothesis is true?

How likely is it to find a discrepancy this extreme or more if our null hypothesis is true?

→ summarize discrepancy with a single statistic, X² observed frequencies, O_i

CS	Bio	Soc	Art	Total
35	30	20	15	100

CS	Bio	Soc	Art	Total
0.25 * 100	0.25 * 100	0.25 * 100	0.25 * 100	1 * n = 100
= 25	= 25	= 25	= 25	

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

numerator: discrepancy, squared — why do we square it?

denominator: divided by expected frequency (normalized) — less surprised to be off by 4 if you expect 1000 than if you expect 8

sum terms from each level (each category)

observed frequencies, Oi

CS	Bio	Soc	Art	Total
35	30	20	15	100

CS	Bio	Soc	Art	Total
0.25 * 100	0.25 * 100	0.25 * 100	0.25 * 100	1 * n = 100
= 25	= 25	= 25	= 25	

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

$$\chi^2 = \frac{(35-25)^2}{25} + \frac{(30-25)^2}{25} + \frac{(20-25)^2}{25} + \frac{(15-25)^2}{25}$$

$$\chi^2 = \frac{100}{25} + \frac{25}{25} + \frac{25}{25} + \frac{100}{25} = 4 + 1 + 1 + 4 = 10$$

observed frequencies, Oi

CS	Bio	Soc	Art	Total
35	30	20	15	100

CS	Bio	Soc	Art	Total
0.25 * 100	0.25 * 100	0.25 * 100	0.25 * 100	1 * n = 100
= 25	= 25	= 25	= 25	

A (slightly less) simplified scenario. A university has four departments: computer science, biology, sociology, and art history, which include 30%, 30%, 20% and 20% of the students, respectively. They handle 100 honor code cases, as below.

observed frequencies, Oi

CS	Bio	Soc	Art	Total
35	30	20	15	100

A null hypothesis: students in each department are equally likely to be included in these cases

expected frequencies, Ei (multiply expected proportion by n)

CS	Bio	Soc	Art	Total
0.30 * 100	0.30 * 100	0.20 * 100	0.20 * 100	1 * n = 100
= 30	= 30	= 20	= 20	

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

$$\chi^2 = \frac{(35-30)^2}{30} + \frac{(30-30)^2}{30} + \frac{(20-20)^2}{20} + \frac{(15-20)^2}{20}$$

$$\chi^2 = \frac{25}{30} + \frac{0}{30} + \frac{0}{20} + \frac{25}{20} = .83 + 0 + 0 + 1.25 = 2.08$$

observed frequencies, Oi

CS	Bio	Soc	Art	Total
35	30	20	15	100

CS	Bio	Soc	Art	Total
0.30 * 100	0.30 * 100	0.20 * 100	0.20 * 100	1 * n = 100
= 30	= 30	= 20	= 20	

We must take the base rate into account when we specify what we expect to see

As a consumer of statistics, beware of raw counts!

Is $X^2 = 10$ unlikely? Is $X^2 = 2.08$ unlikely?

When some assumptions are met, the potential X^2 statistics we could observe if the null hypothesis is true are described by a X^2 distribution (\rightarrow a **sampling distribution** of X^2 statistics)

Like the *family* of t-distributions, we have a *family* of X^2 distributions, specified by degrees of freedom *(df)*

Here, df specifies how many cell counts are free to vary

For a goodness-of-fit test, df = # of categories - 1

observed frequencies, Oi

CS	Bio	Soc	Art	Total
35	30	20	15	100

Is
$$X^2 = 10$$
 unlikely?
Is $X^2 = 2.08$ unlikely?

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

Think about the distribution of X² values that we *could observe* ...

What shape do you expect? (Hint: can X² be negative?)

How does df affect central tendency?

How does df affect variability?

How does df affect shape?

Are we interested in unusually low X², unusually high X², or both?

Is
$$X^2 = 10$$
 unlikely?
Is $X^2 = 2.08$ unlikely?

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

Think about the distribution of X² values that we could observe ...

What shape do you expect? (Hint: can X² be negative?) positively skewed

How does df affect central tendency? as df increases, central tendency increases

How does df affect variability? as df increases, variability increases

How does df affect shape? as df increases, the shape becomes less skewed

Are we interested in unusually low X^2 , unusually high X^2 , or both? only unusually high values, unusually low values are consistent with H_0 (imagine $X^2 = 0$, what would this mean?) \rightarrow only interested in the upper tail, which includes deviations in any direction

```
Is X^2 = 10 unlikely?
Is X^2 = 2.08 unlikely?
```

5

10

```
pchisq(10, df=3, lower.tail=FALSE)
```

```
[1] 0.01856614
```

Hide

```
# it doesn't work to take our previous shortcut
with z / t
# (a) because the distribution is not symmetric
# (b) because chisquare cannot be negative
pchisq(-10, df=3)
```

Is $X^2 = 10$ unlikely? p($X^2 \ge 10$) = .019

[1] 0

```
Is X^2 = 10 unlikely?
Is X^2 = 2.08 unlikely?
```



```
pchisq(2.08, df=3, lower.tail=FALSE)
```

```
[1] 0.5559695
```

Hide

it doesn't work to take our previous shortcut
with z / t
(a) because the distribution is not symmetric
(b) because chisquare cannot be negative
pchisq(-2.08, df=3)

```
[1] 0
```

Hypothesis test in simplified scenario

Two hypotheses:

- H₀: students in each department are equally likely to be included in honor code cases
 - → the proportions of students involved across departments are .(25, .25, .25, .25) for CS, biology, sociology, and art history
- H_A: the students in each department are not equally likely to be included in honor code cases
 - → it is not the case that the proportions of students involved across departments are (.25, .25, .25, .25) for CS, biology, sociology, and art history (this is not the same as saying that *none of these* proportions is .25)

Hypothesis test in simplified scenario

The probability of observing frequencies as or more extreme as our sample frequencies if the null hypothesis was true is .019

• if $\alpha = .05$, reject the null hypothesis and infer that the true proportions are not (.25, .25, .25)

We still do not know ...

- exactly which proportions are significantly different from what we expect
 - can perform follow-up tests
- why the proportions are not what we expect
 - this is observational
 - this is a measure of people who are "caught" and reported — why might this differ across departments?

\equiv Forbes

MAY 30, 2014 @ 07:47 AM

14,434 VIEWS

The Simple Mathematical Law That Financial Fraudsters Can't Beat

Daniel Fisher, FORBES STAFF ♥

I cover finance, the law, and how the two interact. **FULL BIO** ✓

https://www.forbes.com/sites/danielfisher/2014/05/30/the-simple-mathematical-law-that-financial-fraudsters-cant-beat/#56886f5b4612

How hard is it to ferret out securities fraud? It might be as easy as looking for how many times the digit `1' appears in a company's financial entries instead of '9.'

Benford's Law has been used in a large number of forensic applications, including voter fraud, Greece's effort to hide its debt, and determining whether digital photographs have been altered. It's also been in the toolkit of auditors for years, said Amiram, a former auditor, but only at the level of operating accounts. He said his paper is the first to apply the law to company-level financial reports accessible through databases like Compustat.

Class survey collected the first digit of your previous address

Does the distribution of digits follow Benford's law? (Does it deviate from the law *beyond* what we would expect by random fluctuations?).

H₀: the distribution of first digits follows Benford's law

H_A: the distribution of first digits does not follow Benford's law

What could it mean if we rejected the null hypothesis?

inaccuracy in reporting?

something non-random about Stanford student addresses?

Type I Error?

something else?

a small cautionary note about this example, it is best to have at least 10 observations per cell

Benford's law states that first digits follow a distribution of:

	1	2	3	4	5	6	7	8	9	total
expected probabilities	0.301	0.176	0.125	0.097	0.079	0.067	0.058	0.051		

Our class data of *first digits* of previous addresses:

	1	2	3	4	5	6	7	8	9	total
Oi	51	16	11	19	15	7	9	6	7	n = 141

Benford's law states that first digits follow a distribution of:

	1	2	3	4	5	6	7	8	9	total
expected probabilities	0.301	0.176	0.125	0.097	0.079	0.067	0.058	0.051	0.046	1
multiply by n → E _i	42.44	24.82	17.62	13.68	11.14	9.45	8.18	7.19	6.49	141

Our class data of *first digits* of previous addresses:

	1	2	3	4	5	6	7	8	9	total
Oi	51	16	11	19	15	7	9	6	7	n = 141

Benford's law states that first digits follow a distribution of:

	1	2	3	4	5	6	7	8	9	total
expected probabilities	0.301	0.176	0.125	0.097	0.079	0.067	0.058	0.051	0.046	1
multiply by n → E _i	42.44	24.82	17.62	13.68	11.14	9.45	8.18	7.19	6.49	141

Our class data of *first digits* of previous addresses:

	1	2	3	4	5	6	7	8	9	total
Oi	51	16	11	19	15	7	9	6	7	n = 141
(O _i - E _i) ² / E _i	1.73	3.13	2.49	2.07	1.34	0.63	0.08	0.20	0.04	X ² = 11.71

pchisq(11.71, df = 8, lower.tail = FALSE) \rightarrow p = .16

Class survey collected the first digit of your previous address

Does the distribution of digits follow Benford's law? (Does it deviate from the law *beyond* what we would expect by random fluctuations?).

H₀: the distribution of first digits follows Benford's law

H_A: the distribution of first digits does not follow Benford's law

Fail to reject the null hypothesis, conclude that we do **not** have evidence that the distribution of first digits is inconsistent with Benford's law

The role of sample size

law of large numbers \rightarrow ask, where is n in this calculation?

$$\chi^{2} = \sum \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

$$= \sum \frac{(n\hat{p}_{i} - n\pi_{i})^{2}}{n\pi_{i}}$$

$$= \sum \frac{n^{2}(\hat{p}_{i} - \pi_{i})^{2}}{n\pi_{i}}$$

$$= \sum \frac{n(\hat{p}_{i} - \pi_{i})^{2}}{\pi_{i}}$$

$$= \sum \frac{(\hat{p}_{i} - \pi_{i})^{2}}{\pi_{i}}$$

= sample size * effect size

Interim summary

variable(s)

We've extended the ideas behind asking whether an observed distribution of a *binary* variable is consistent with a hypothesized distribution to asking whether an observed distribution of *any categorical* variable is consistent with a hypothesized distribution!

	one variable (a response variable)	two variables (one grouping, one response)
binary variable(s)	z-test for a single proportion (1 x 2 table)	z-test for a difference in proportions (2 x 2 table)
any categorical	chi-square test for goodness-of-fit	chi-square test for independence

(1 x any # table)

(any # by any # table)

- How can we test whether observed proportions are consistent with expected proportions?
- How can we use proportions to test whether two variables are associated?

Previously

analyzed independence of 2 x 2 table, comparing difference in observed proportions to difference we would expect by random chance

	group 1	group 2
response A		
response B		

Today

analyzed independence of any size table, comparing difference in observed proportions to difference we would expect by random chance

	group 1	group 2	group 3	
response A				
response B				
response C				

Chi-square: independence

Goal: use observed *sample* proportions to test hypotheses about unobserved *population* proportions — specifically, are *two* variables *associated* or are they *independent?*

General approach:

Null hypothesis (H_0) is that our variables are *independent* (no association) between them \rightarrow we expect population proportions to follow certain rules due to this *independence*

Compute frequencies that we would expect if H₀ was true * usually the hardest step

Summarize the discrepancy between these with a single statistic (X²)

Use the distribution of all of the statistics that we could have observed if the null hypothesis was true to determine whether this statistic would be *unlikely* if the null hypothesis was true

Hand washing and city

hand washing study:

a 2005 study observed hand-washing behavior in public restrooms in four major cities

http://www.cleaninginstitute.org/assets/1/AssetManager/2005_Hand_Washing_Findings_rev.pdf

Observed		Chicago	NY	SF	Total
Washed	1175	1329	1169	1521	5194
Did not wash	413	180	334	215	1142
Total	1588	1509	1503	1736	6336

Marginal probabilities

ignoring city

probability of washing, 5194 / 6336 = .82 probability of not washing, 1142 / 6336 = .18

*caution of self-report, in a parallel telephone survey 91% of people reported washing

ignoring washing

probability of *Atlanta*, 1588 / 6336 = .25 probability of *Chicago*, 1509 / 6336 = .24 probability of *New York*, 1503 / 6336 = .24 probability of *San Francisco*, 1736 / 6336 = .27

Observed	Atlanta	Chicago	NY	SF	Total
Washed	1175	1329	1169	1521	5194
Did not wash	413	180	334	215	1142
Total	1588	1509	1503	1736	6336

Conditional probabilities

```
p(washing | Atlanta) = 1175 / 1588 = .74
```

$$p(washing | Chicago) = 1329 / 1509 = .88$$

$$p(washing | NY) = 1169 / 1503 = .78$$

$$p(washing | SF) = 1521 / 1736 = .88$$

comparing distributions

all cities have a mode of 'washing'

Chicago and SF have lower variability (higher relative freq. at the mode)

Observed	Atlanta	Chicago	NY	SF	Total
Washed	1175	1329	1169	1521	5194
Did not wash	413	180	334	215	1142
Total	1588	1509	1503	1736	6336

two hypotheses:

H₀: there is no association between city and washing

H_A: there is an association between city and washing

Observed	Atlanta	Chicago	NY	SF	Total
Washed	1175	1329	1169	1521	5194
Did not wash	413	180	334	215	1142
Total	1588	1509	1503	1736	6336

Reminder: independence of A and B

If A and B are independent then p(A) * p(B) = p(A and B)

```
\rightarrow p(A \mid B) = p(A \text{ and } B) / p(B)
= p(A) * p(B) / p(B)
= p(A)
\rightarrow p(A \mid \text{not } B) = p(A \text{ and not } B) / p(\text{not } B)
= p(A) * p(\text{not } B) / p(\text{not } B)
= p(A)
```

Here, "independent" means there is "no relationship between the grouping variable and the response variable"

what frequencies would we expect to see if city and washing were independent? p(A and B) = p(A) * P(B)

consider frequency of (Atlanta and washed)

```
= n * p(Atlanta and washed)
```

- = n * p(Atlanta) * p(washed) = n * (# Atlanta / n) * (# washed / n)
- = (# Atlanta * # washed) / n
- = (5194 * 1588) / 6336 = 1301.78

	Atlanta	Chicago	NY	SF	Total
Washed					5194
Did not wash					1142
Total	1588	1509	1503	1736	6336

what frequencies would we expect to see if city and washing were independent? p(A and B) = p(A) * P(B)

more generally, **frequency** of (A and B)

$$= (# A * # B) / n$$

= (# row * # column) / n

	Atlanta	Chicago	NY	SF	Total
Washed					5194
Did not wash					1142
Total	1588	1509	1503	1736	6336

what frequencies would we expect to see if city and washing were independent? p(A and B) = p(A) * P(B)

more generally, **frequency** of (A and B)

- = (# A * # B) / n
- = (# row * # column) / n

Expected	1 1 1	Chicago	NY	SF	Total
Washed	5194 * 1588 / 6366	5194 * 1509 / 6336	5194 * 1503 / 6336	5194 * 1736 / 6336	5194
Did not wash	1142 * 1588 / 6336	1142 * 1509 / 6336	1142 * 1503 / 6336	1142 * 1736 / 6336	1142
Total	1588	1509	1503	1736	6336

what frequencies would we expect to see if city and washing were independent? p(A and B) = p(A) * P(B)

more generally, **frequency** of (A and B)

- = (# A * # B) / n
- = (# row * # column) / n

Expected	Atlanta	Chicago	NY	SF	Total
Washed	1301.78	1237.02	1232.10	1423.10	5194
Did not wash	286.22	271.98	270.90	312.90	1142
Total	1588	1509	1503	1736	6336

 $X^{2} = \Sigma((O_{i}-E_{i})^{2}/E_{i}) = (1175 - 1301.78)^{2} / 1301.78 + ... + (215-312.90)^{2} / 312.90$

Observed	Atlanta	Chicago	NY	SF	Total
Washed	1175	1329	1169	1521	5194
Did not wash	413	180	334	215	1142
Total	1588	1509	1503	1736	6336
Expected	Atlanta	Chicago	NY	SF	Total
Expected Washed	Atlanta 1301.78	Chicago 1237.02	NY 1232.10	SF 1423.10	Total 5194

```
X^2 = \Sigma((O_i - E_i)^2 / E_i) = (1175 - 1301.78)^2 / 1301.78 + ... + (215-312.90)^2 / 312.90
X^2 =
\Sigma((O_i-E_i)^2/E_i) =
(1175 - 1301.78)^2 / 1301.78 +
(413 - 286.22)^2 / 286.22 +
(1329 - 1237.02)^2 / 1237.02 +
(180 - 271.98)^2 / 271.98 +
(1169 - 1232.10)^2 / 1232.10 +
(334 - 270.90)^2 / 270.90 +
(1521 - 1423.10)^2 / 1423.10 +
(215 - 312.90)^2 / 312.90 =
161.74
```

Degrees of freedom

how many cells are free to vary?

```
df = (# rows - 1) * (# columns - 1)
= (2 - 1) * (4 - 1)
= 1 * 3
= 3
> pchisq(161.74, df = 3, lower.tail = FALSE)
[1] 7.719954e-35
```

Observed	Atlanta	Chicago	NY	SF	Total
Washed	1175	1329	1169	constraint	5194
Did not wash	constraint	constraint	constraint	constraint	1142
Total	1588	1509	1503	1736	6336

two hypotheses:

H₀: there is no association between city and washing

H_A: there is an association between city and washing

but we don't know which cities have different proportions from each other → inference or estimation with *pairwise* proportion differences

Observed		Chicago	NY	SF	Total
Washed	1175	1329	1169	1521	5194
Did not wash	413	180	334	215	1142
Total	1588	1509	1503	1736	6336

Placebic information

A researcher attempts to cut someone in line for the photocopier to make copies of 5 pages with three strategies (adapted from Langer et al., 1978)

- (1) no info 'may I use the Xerox machine'
- (2) real info 'may I use the Xerox machine, because I'm in a rush'
- (3) 'placebic' info 'may I use the Xerox machine, because I need to make copies'

is form of request associated with rate of compliance?

Observed	none	real	placebic	Total
Yes	50	90	87	227
No	40	10	15	65
Total	90	100	102	292

Marginal probabilities

```
ignoring form of request probability of yes, 227 / 292 = .78 probability of no, 65 / 292 = .22
```

ignoring *compliance*probability of *none*, 90 / 292 = .31
probability of *real*, 100 / 292 = .34
probability of *placebic*, 102 / 292 = .35

Observed	none	real	placebic	Total
Yes	50	90	87	227
No	40	10	15	65
Total	90	100	102	292

Conditional probabilities

 $p(yes \mid none) = 50 / 90 = .56$

p(yes | real) = 90 / 100 = .90

p(yes | placebic) = 87 / 102 = .85

comparing distributions

all request types have a mode of 'yes' 'no information' has greatest variability (lowest relative freq. at the mode)

Observed	none	real	placebic	Total
Yes	50	90	87	227
No	40	10	15	65
Total	90	100	102	292

two hypotheses:

H₀: there is no association between request type and compliance

H_A: there is an association between request type and compliance

Observed	none	real	placebic	Total
Yes	50	90	87	227
No	40	10	15	65
Total	90	100	102	292

what frequencies would we expect to see if request type and compliance were independent? p(A and B) = p(A) * P(B)

more generally, **frequency** of (A and B)

$$= (# A * # B) / n$$

= (# row * # column) / n

	none	real	placebic	Total
Yes				227
No				65
Total	90	100	102	292

what frequencies would we expect to see if request type and compliance were independent? p(A and B) = p(A) * P(B)

more generally, **frequency** of (A and B)

$$= (# A * # B) / n$$

= (# row * # column) / n

Expected	none	real	placebic	Total
Yes	292 = 69.97	227 * 100 / 292 = 77.74	292 = 79.29	227
No	00 00, _0_	65 * 100 / 292 = 22.26	65 * 102 /	65
Total	90	100	102	292

 $X^2 = \Sigma((O_i - E_i)^2 / E_i) = (50 - 69.97)^2 / 69.97 + ... + (15 - 22.71)^2 / 22.71$

Observed	none	real	placebic	Total
Yes	50	90	87	227
No	40	10	15	65
Total	90	100	102	292
Expected	none	real	placebic	Total
Expected Yes	none 69.97	real 77.74	placebic 79.29	Total 227

$$X^{2} = \Sigma((O_{i}-E_{i})^{2}/E_{i}) = (50 - 69.97)^{2} / 69.97 + ... + (15 - 22.71)^{2} / 22.71$$

$$X^{2} = \Sigma((O_{i}-E_{i})^{2}/E_{i}) = (50 - 69.97)^{2} / 69.97 + (40 - 20.03)^{2} / 20.03 + (90 - 77.74)^{2} / 77.74 + (10 - 22.26)^{2} / 22.26 + (87 - 79.29)^{2} / 79.29 +$$

37.66

 $(15 - 22.71)^2 / 22.71 =$

how many cells are free to vary?

```
df = (# rows - 1) * (# columns - 1)
= (2 - 1) * (3 - 1)
= 1 * 2
= 2
> pchisq(37.66, df = 2, lower.tail = FALSE)
[1] 6.641022e-09
```

Observed	none	real	placebic	Total
Yes	50	90	87	227
No	40	10	15	65
Total	90	100	102	292

two hypotheses:

H₀: there is no association between request type and compliance

H_A: there is an association between **request type** and **compliance**

but we don't know (*for* sure) which request types have different proportions from each other → inference or estimation on *pairwise* proportion differences

Observed	none	real	placebic	Total
Yes	50	90	87	227
No	40	10	15	65
Total	90	100	102	292

Interim summary

We've extended the ideas behind asking whether there is an association between two *binary* variables to asking whether there is an association between *any categorical* variables!

	one variable (a response variable)	two variables (one grouping, one response)
binary variable(s)	z-test for a single proportion (1 x 2 table)	z-test for a difference in proportions (2 x 2 table)
any categorical variable(s)	chi-square test for goodness-of-fit (1 x any # table)	chi-square test for independence (any # by any # table)

If you're curious ...

- A X² distribution with k degrees of freedom describes the the distribution of k independent observations that come from normal distributions with a mean of 0 and a standard deviation of 1 (a z-distribution) that are squared and summed
- The distribution of SS = $\Sigma(x \mu)^2$ can be linked to a X^2 distribution (after some maneuvering)
- The t-distribution and F-distribution (coming up) are derived in part by using the X² distribution

Recap

- If we have a single categorical variable, we can use a X² test for goodness-of-fit to compare the proportions of responses in each category to a hypothesized model
- If we have multiple categorical variables, we can use a X² test for independence to ask whether the two variables are associated (not independent) or not associated (independent)

Questions

