Biología de sistemas - Tarea 1

1. Cinética molecular, balance detallado y cooperatividad (10)

D es un segmento de ADN con dos sitios, A y B, a los cuales la proteína X puede pegarse en cualquier orden.

- a. En el dibujo, los K_i representan las constantes de asociación en unidades de concentración inversa. Por balance detallado, las reacciones individuales están en equilibrio. Encuentre dos expresiones diferentes para la taza en equilibrio de $[DX_AX_B]/[D][X]^2$ que correspondan a los dos caminos de unión. ¿Pueden ser especificadas independientemente las cuatro constantes?
- b. La concentración total de ADN es $[D_{tot}] = [D] + [DX_A] + [DX_B] + [DX_AX_B]$. Si $K_2 >> K_1$ y $K_4 >> K_3$, muestre que las formas con unión sencilla $[DX_A]$ y $[DX_B]$ forman una fracción despreciable del total. Esto corresponde a un sistema cooperativo donde la segunda unión es facilitada por la primera unión.
- c. Asumiendo que $[D_{tot}] \approx [D] + [DX_AX_B]$, encuentre la fracción unida $f = [DX_AX_B]/[D_{tot}]$ en función de [X] y las constantes.

2. Dilución de proteínas debido al crecimiento celular (10)

Una bacteria tiene volumen V_0 cuando t=0. Después de un tiempo T_D , el tiempo de duplicación, la célula ha crecido y se divide en dos células cada una de tamaño V_0 , después de otro intervalo T_D hay cuatro células, y así sucesivamente.

- a. Muestre que el volumen total de células en el tiempo t se puede escribir como $V(t) = V_0 e^{\gamma t}$. Encuentre γ en términos de T_D .
- b. La proteína X es creada a una tasa k(t), de modo que el total de moléculas de X satisface la ecuación $dn_x/dt = k(t)$. Muestre que la concentración $[X] = n_x/V$ sigue entonces la ecuación

$$\frac{d}{dt}[X] = \frac{k(t)}{V} - \gamma[X].$$

Explique el origen del término de decaimiento.

3. Retroalimentación positiva y biestabilidad (40)

Suponga que la proteína X es un activador transcripcional y D el promotor controlado por X. Si el promotor D es el mismo que controla la producción de X, la retroalimentación resultante puede conducir a la biestabilidad.

a. Sea v_1 la tasa de expresión del ADN unido a dos proteínas (DX_AX_B) y $v_0 < v_1$ la tasa de expresión del ADN libre (D). Use los problemas anteriores para demostrar que la dinámica de x, la concentración de X, es

$$\frac{dx}{dt} = \underbrace{\frac{v_0 + v_1 K_1 K_2 x^2}{1 + K_1 K_2 x^2}}_{f(x)} - \gamma \cdot x$$

b. Las soluciones en estado estable o puntos fijos (no confundir con "estables") ocurren cuando las tasas de creación f(x) y degradación g(x) son iguales. Tomando y = 1 y $K_1K_2=1$, use el código de Matlab provisto (ptarea1.m) para explorar la intersección de f(x) y g(x) a medida que varían los parámetros v_0 y v_1 . Las imágenes i a v muestran los tipos de comportamientos posibles. Dibuje (en Matlab) un ejemplo para los tipos i, iii y v, indicando los parámetros usados para generarlos. Indique con flechas sobre el eje si x aumenta o disminuye y la estabilidad de los puntos de equilibrio. Que pasaría si no hubiera cooperatividad?

- c. La frontera entre monoestabilidad y biestabilidad está dada por los parámetros para los cuales hay exactamente dos puntos fijos (casos ii y iv). Tomando $\gamma = 1$ y $K_1K_2=1$, escriba la condición f(x)=g(x) como una cubica. Si se factorizara en la forma $(x a_1)(x a_2)(x a_3)$, ¿qué condición deben obedecer las raíces a_i para que el comportamiento del sistema sea el caso ii o iv?
- d. Utilice esta condición (resolviendo las raices) para encontrar ecuaciones parametrizadas para v_0 y v_1 , y muestre en una gráfica de v_0 vs. v_1 la región de biestabilidad.

4. Protocolos de medicion (20)

Describa en un parrafo el protocolo para realizar cada una de las técnicas siguientes:

- Western Blot
- Yeast two-hybrid
- Electroforesis en gel bidimensional

5. Organismos modelo (20)

Escoja uno de los siguientes organismos y escriba un reporte (1 página) sobre su modo de vida natural y su uso como organismo modelo:

- Caenorhabditis elegans
- Drosophila melanogaster
- Dictyostelium discoideum