Graphs

What is a Graph?

- Graphs consist of
 - Set of nodes (or vertices)
 - Set of links (or edges)
- Two nodes connected with direct edge are
 - Neighbors or adjacent nodes

Two Types of Graphs

undirected

directed

Source ____ target

Degree of a Node

The number of edges connected to a node.

$$deg(B) = 2$$

$$deg(B) = 1$$

$$deg(C) = 1$$

$$deg(A) = 2$$

$$deg(B) = 1$$

$$deg(C) = B$$

$$A$$

$$C$$

Paths in a Graph

- Cycle: A path that returns to a previously visited node Acyclic graph
- Cyclic graph: contains at least one cycle
- Acyclic graph: contains no cycle

(There are 2 ways to represent the graph)

O Adjacency Matrix Example 1

> Usually represented as 2-D sirry in Jeva

Colums: target

Adjacency Matrix Example 2

undirected: symmetric at diagonal

Adjacency List Example 1

Adjacency List Example 2

Implementation of Graphs

```
public class Graph
      boolean[][] adjacencyMatrix;
      Map<T,Integer> nodeIndices;
      OR
      Map (T), Graphnode < T>> vertexTable;
      protected class Graphnode
             protected T data;
             protected List<Graphnode<T>> adjacencyList;
```

Graph Traversals

Graph Traversals

Goal: Traverse graph by crossing edges to visit each node exactly once

- Points to consider
 - need to pick starting node
 - nodes might be unreachable from starting node
 - cycles can lead to infinite loops

Unreachable Nodes: Connected Components

Detecting Cycles

Detect cycles to avoid visiting nodes multiple times

- Strategy: check if node is unvisited before visiting it
 - need to keep track of visited nodes:
 - either with Boolean field in node type, or
 - additional data structure to keep track of visited nodes

adj. lest Depth First Traversal

| adj. watrix | adj. lest |
| der each Call to DET: across V Calls to DET: |
| Etor-log ites: |

- mark v as visited
- → for each unvisited neighbor u of v:

DFT(u)

Depth First Example

starting node: A

visit sequence: $A_1B_1C_1E_1T_1G_1H_1D_1$

Breadth First Traversal

Assume: all vertices are marked unvisited at start

BFT(v)

adj. matsix adj, lest for each while across Vuluile ites: ito: V for loop ites E for loop ites \rightarrow q = new Queue() → mark v as visited Viterations →q.enqueue(v) while (!q.isEmpty()): c= q.dequeue() for each unvisited neighbor u of c: mark u as visited q.enqueue(u)

Breadth First Example

starting node: A

queue:

visit sequence: $A_1B_1C_1D_1E_1F_1G_1H_2$

Time Complexity

 \underline{V} : # of nodes in graph

E:# of edges in graph

Depth First		Breadth First	
adjacency matrix	adjacency list	adjacency matrix	adjacency list
O(V2)	0 (V+E)	$O(V^2)$	O(V+E)

More Graph Terminology

Weighted Graphs

Weighted edges assign a cost or weight to each edge.


```
double[][] adjacencyMatrix;

List<Graphnode<T>> adjacencyList;
List<Double> edgeWeights;
```

Cost of a Path

For weighted graphs: sum of edge weights on path

$$A \xrightarrow{3} 3 \xrightarrow{4} C$$

$$Cost(ABC) = 3+4=7$$

For unweighted graphs: length of path (# of edges)

Connected Graph

(It nearly you can arrive at any node from

• In a connected graph, a path exists between every pair of nodes.

• For directed graphs:

• strongly connected: a path exists between every pair of nodes with edge directions respected

weakly connected: a path exists between every pair of nodes with edge directions ignored

Subgraphs

- G' is a subgraph of G if:
 - The set of nodes of G' is a subset of the nodes of G, and
 - The set of edges of G' is a subset of the edges of G.

