Study activities in Programming

Totals for Programming: 275 hours

Below you will find the details in relation for study activities for programming.

K1 activities: 110 hours

This includes teacher-centred education, which accounts for about 69 hours and guidance of students about 41 hours.

K2 activities: 150 hours

Preparation time and exercises as a K2 activity accounts for about 150 hours. This also includes project work.

K3 activities: 10 hours

The K3 activities account for 10 hours, which include self-study and knowledge sharing.

K4 activities: 5 hours

5 hours for process and profession guidance

Subject to change!

2nd semester – Spring 2018, dmab0917

Course contents::

Databases:

Introduction to relational databases and the SQL language Introduction to using SQL from Java ("embedded SQL")

Data structures and algorithms:

Introduction to graphs and graph algorithms

High order functions and lambda expressions:

Lambdas in Java

Parallel programming and streams in Java:

Threads – Thread, Runnable, Synchronized, etc. Stream framework

Software design patterns, e.g.:

Composite Pattern
Observer Pattern
Visitor Pattern
State Pattern (State machines and regular expressions)

Session	Subjects	Readings and other Materials
	Introduction to MS SQL Server Introduction to database systems, Concepts, terminology, and architecture The relational model	Elmasri 1, 2, 5
2018 02 12	Relational Algebra Introduction to SQL Embedded SQL. Embedded SQL. More about SQL.	Elmasri: Chap. 5, 6, 8.1, 8.2, 8.3.1, 8.3.2 + overview p. 288 Elmasri: Chap. 6, 7.1, 7.3, 7.4
2018 02 16 F	Embedded SQL. Architecture. Design Patterns related to Database Access	Elmasri: Chap 10.1, 10.3.2 Lecture note: Persistence, An example for Encapsulation of Database Access in Java Systems CompanyCode
2018 02 26	Workshop QA Day 1: LRL, Day 2: KNOL	
2018 03 01	Embedded SQL. Architecture. Design Patterns related to Database Access Transactions, prepared statements	Elmasri: Chap 10.1, 10.3.2 Lecture note: Persistence, An example for Encapsulation of Database Access in Java Systems CompanyCode
6 2018 03 08	Architecture + summing up SQL (Transactions, prepared statement)	
2018 03 13 2018 03 19	Mini Project Persistence Hand-in: 2018 03 19	
X 2017 03 21	Evaluation of Mini Project Persistence	
7	Data structures 1:	Chapters in parenthesis are recap from 1. Semester.

2018 04 09		
	Review (dynamic vs. static, hashing) Efficiency	Carrano, chap. (1, 2, 3, 5, 21, 22, 23, 24, 25 + Interlude 1 (generics)) Carrano, chap. 4
	Trees and Composite Pattern	Carrano, chap 23, (24, 25, 27 (only 2-3 trees))
		Larman, chap. 26.8
8	Data structures 2	
2018 04 12		
	Graphs, concepts, terminology, applications and representation	Carrano, chap. 28, 29
9	Data structures 3:	Carrano, chap. 28
	Graph algorithms	Lecture notes: Algorithm Patterns,
	Algorithm patterns	DivideAndConquer, Dyna-progr, GreedyEng
10	Data structures 4:	
2018 04 19	Implementation of graphs.	Carrano, chap. 29
11	Patterns 1	Slack: Carrano, pp 351, 355, chap. 26
	State machines, state pattern and regular	Patterns 1: Lecturenote
F	expressions	or: Grand pp. 357-364
12	Patterns and lambdas	http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
2018 04 25	Visitor and observer pattern	Grand pp. 347-356, 385-395
		or:
		Urma: http://it-ebooks.info/book/4428/ (relevant parts of chapter 1 – 5).
13	Parallelism 1	https://docs.oracle.com/javase/tutorial/c
2018 05 01		ollections/streams/index.html
14	Parallelism 2 – Lambdas, streams and	
2018 05 03	parallel streams	https://docs.oracle.com/javase/tutorial/collections/streams/reduction.html
		https://docs.oracle.com/javase/tutorial/c ollections/streams/parallelism.html

Elmasri:

Ramez Elmasri, Shamkant B. Navathe: Fundamentals of Database Systems. Seventh Edition. Pearson 2017Ramez

Carrano:

Timothy M Henry, Frank M. Carrano: Data Structures and Abstrations with Java, fourth edition, global edition. Pearson 2016.

Larman:

Craig Larman: Applying UML and patterns, 3rd Edition. Prentice-Hall 2005.

Grand:

Mark Grand: Patterns in Java, Vol. 1. Wiley 1998.

Urma:

Raoul-Gabriel Urma, Mario Fusco, Alan Mycroft: Java 8 In Action, Hanning 2015

Lecture notes:

Finn E. Nordbjerg:

Algorithm Patterns
OOD-Inheritance
DivideAndConquer
Dyna-progr
GreedyEng
RegExState

Lecture note

Persistence Architecture