# Retail Giant Sales Forecasting Assignment

### **Problem Statement & Analysis Approach**

#### **Business Problem:**

• As a sales manager for this store, you have to forecast the sales of the products for the next 6 months, so that you have a proper estimate and can plan your inventory and business processes accordingly.

#### Analytical Approach:

- The Analysis is basically performed as follows
  - We need to use Naïve, SA, SMA, SES, Holt methods, and Auto Regressive Methods with MAPE Score so that we can find the best model to grow the Sale

#### **Seasonal Patterns and Trends**



- Sales data have the Seasonal Patterns in an every 06 months
- Sales trend is growing from beginning

#### 21 Market Segments & COV's

| Market Segment     |          |
|--------------------|----------|
| APAC_Consumer      | 0.522725 |
| APAC_Corporate     | 0.530051 |
| APAC_Home Office   | 1.008219 |
| Africa_Consumer    | 1.310351 |
| Africa_Corporate   | 1.891744 |
| Africa_Home Office | 2.012937 |
| Canada_Consumer    | 1.250315 |
| Canada_Corporate   | 1.786025 |
| Canada_Home Office | 2.369695 |
| EMEA_Consumer      | 2.652495 |
| EMEA_Corporate     | 6.355024 |
| EMEA_Home Office   | 7.732073 |
| EU_Consumer        | 0.595215 |
| EU_Corporate       | 0.722076 |
| EU_Home Office     | 0.938072 |
| LATAM_Consumer     | 0.683770 |
| LATAM_Corporate    | 0.882177 |
| LATAM_Home Office  | 1.169693 |
| US_Consumer        | 1.010530 |
| US_Corporate       | 1.071829 |
| US_Home Office     | 1.124030 |

- APAC\_Consumer is the lowest COV Value – 0.522725, followed by APAC\_Corporate – 0.530051
- Highest COV value is of EMEA\_Home
  Office 7.732073

 APAC\_Consumer market segment is more profitable because the Sale is continuously increasing and the Coefficient of Variance is also low

#### Flow Chart - Best fit Models



- Holt Winter's Method is the best fit model because we have Greater than 10 observations → ARIMA or Exponential smoothing → Trend → Seasonal Patterns in the data set
- Another model we can choose "SARIMA", because have Greater than 10 observations → ARIMA or Exponential smoothing → ARIMA → Seasonal Patterns → Exogenous variables



|   | Method                                | MAPE  |
|---|---------------------------------------|-------|
| 0 | Naive method                          | 17.47 |
| 0 | Simple average method                 | 34.34 |
| 0 | Simple moving average forecast        | 16.10 |
| 0 | Simple exponential smoothing forecast | 15.99 |
| 0 | Holt's exponential smoothing method   | 34.57 |
| 0 | Holt Winters' additive method         | 8.84  |
| 0 | Holt Winters' multiplicative method   | 10.12 |

 "Holt Winters' additive method" model is best fit and the lowest MAPE Value













#### **ARIMA Techniques and MAPE Values**



|   | Method                                         | MAPE  |
|---|------------------------------------------------|-------|
| 0 | Autoregressive (AR) method                     | 13.56 |
| 0 | Moving Average (MA) method                     | 33.93 |
| 0 | Autoregressive moving average (ARMA) method    | 32.40 |
| 0 | Autoregressive integrated moving average (ARIM | 32.40 |
| 0 | Seasonal autoregressive integrated moving aver | 12.79 |

 "SARIMA" model is best fit and the lowest MAPE Value

### **ARIMA Techniques and MAPE Values**





### **ARIMA Techniques and MAPE Values**



