1.

a. Define half adder.

A half adder is a type of adder, an electronic circuit that performs the addition of numbers. The half adder can add two single binary digits and provide the output plus a carry value.

b. Draw a truth table for the sum and carry of half adder.

INPUT A	INPUT B	SUM	CARRY
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

c. Write the sop expression from the truth table.

d. Draw the circuit using logsim.

2. a. Draw the truth table for the outputs of the full adder.

INPUT A	INPUT B	CARRY IN	SUM	CARRY OUT	
0	0	0	0	0	
1	0	0	1	0	
0	1	0	1	0	
1	1	0	0	1	
0	0	1	1	0	
1	0	1	0	1	
0	1	1	0	1	
1	1	1	1	1	

b. Write the corresponding sop expression for sum and carry of full adder and simplify the expression

$$(A.B.C')+(A.B'.C)+(A'.B.C)+(A.B.C)$$

(A.B.C)+A.B'C)+(A'B.C)+(A.B.C)

V

c. Draw full adder using two half adder and an OR gate.

prepared by ABHISHEK

3. Using the three stages of design, construct the circuits for the following input /output values. Here A, B and C are the inputs whereas D, E, F, G, H and I are outputs. Note: Draw circuit diagram using logsim corresponding to the simplified expression of outputs D, E, F, G, H and I.

Α	В	С	D	E	F	G	Н	1
0	0	0	1	0	1	0	1	1
0	0	1	1	0	1	1	0	1
0	1	0	1	0	1	1	1	1
1	0	0	1	0	0	1	0	1
1	1	1	1	1	1	1	1	1
1	1	0	1	1	0	1	0	1
1	0	1	1	1	1	1	1	0
0	1	1	0	0	0	1	1	1

Output: E

OUTPUT: F

Output: G

Output: H

Output: I

