

Universidade Federal do Espírito Santo
Departamento de Informática
Programa de Educação Tutorial – PET EngComp
E-mail: petengcomp@inf.ufes.br
Home-Page: www.inf.ufes.br/~pet
Tel. (27) 4009-2161

WARM UP

Realização:

Apoio:

Patrocínio:

PROBLEMA A Colorindo com menos cores

Uma redução de cor é o mapeamento de um conjunto de cores discretas para um menor. A solução para esse problema exige que você execute apenas tal mapeamento em um espaço de cores padrão de vinte e quatro bits RGB.

A entrada é composta por um conjunto de destino de dezesseis valores de cor RGB e uma coleção de cores arbitrárias RGB a serem mapeados para sua cor mais próxima no conjunto de destino.

Para os nossos propósitos, uma cor RGB é definida como um trio ordenado (R,G,B) onde cada valor é um inteiro de 0 a 255. A distância entre duas cores é definida como a distância Euclidiana entre dois pontos tridimensionais. Isto é, dadas duas cores (R1, G1, B1) e (R2, G2, B2), sua distância D é dada pela equação.

$$D = \sqrt{(R_2 - R_1)^2 + (G_2 - G_1)^2 + (B_2 - B_1)^2}$$

A ENTRADA

O arquivo de entrada é uma lista de cores RGB, uma cor por linha, especificada como três inteiros de 0 a 255 delimitados por um espaço único. As dezesseis primeiras cores formam o conjunto de destino de cores para o qual as cores restantes serão mapeadas. A entrada é terminada por uma linha contendo três valores – 1.

A SAÍDA

Para cada cor a ser mapeada, retorne a cor e sua cor mais próxima do conjunto de destino.

EXEMPLO DE ENTRADA

7º Torneio de Programação de Computadores — TOPCOM 7 PET Engenharia de Computação - UFES

	1 E 1 Engennaria de Compatação	CLES
0 0 0 255 255 255		
0 0 1		
111		
128 0 0		
0 128 0		
128 128 0		
0 0 128		
126 168 9		
35 86 34		
133 41 193		
128 0 128		
0 128 128		
128 128 128		
255 0 0		
0 1 0		
0 0 0		
255 255 255		
253 254 255		
-1 -1 -1		
EVEMDI O DE CAÍDA		

EXEMPLO DE SAÍDA

```
(0,0,0) maps to (0,0,0)
(255,255,255) maps to (255,255,255)
(253,254,255) maps to (255,255,255)
```

PROBLEMA B Palíndromos

Um palíndromo regular é uma seqüência de números ou letras que é a mesma lida de frente para trás como de trás para frente. Por exemplo, a cadeia "ABCDEDCBA" é um palíndromo, porque ele é o mesmo quando a cadeia é lida da esquerda para direita como quando a cadeia é lido da direita para a esquerda.

Uma cadeia espelhada é uma seqüência para a qual quando cada um dos elementos da cadeia de caracteres é alterada para sua inversa (se ele tiver um inverso) e a cadeia é lida para trás o resultado é o mesmo que a cadeia original.

Por exemplo, a cadeia de caracteres "3AIAE" é uma sequência espelhada porque "A" e "I" são seus próprios inversos, e "3" e "E" são inversos um do outro.

Um palíndromo espelhado é uma sequência que satisfaça os critérios de um palíndromo regular e os critérios de uma cadeia espelhada. A cadeia "ATOYOTA" é um palíndromo espelhado porque se a cadeia é lida de trás para frente, a cadeia é a mesmo que o original e porque se cada um dos caracteres é substituído pelo seu reverso e o resultado é lido de trás para frente, o resultado é o mesmo que a cadeia original. Evidentemente, "A", "T", "O" e "Y" são todos os seus próprios inversos.

Uma lista de todos os caracteres válidos e seus inversos é a seguinte.

Caracter	Inverso	Caracter	Inverso	Caracter	Inverso
A	A	M	M	Y	Y
В		N		Z	5
С		О	О	1	1
D		P		2	S
Е	3	Q		3	Е
F		R		4	
G		S		5	Z
Н	Н	Т	Т	6	
I	I	U	U	7	
J	L	V	V	8	8
K		W	W	9	
L	J	X	X		

^{*} Observe que 0 (zero) e O (a letra) são considerados o mesmo caracter e, portanto, apenas a letra "O" é um caractere válido.

A ENTRADA

A entrada consiste em cadeias de caracteres (uma por linha) cada uma das quais terá de um a vinte caracteres válidos. Não haverá nenhum caractere inválido em qualquer das cadeias de caracteres. Seu programa deve ler até o final do arquivo.

A SAÍDA

Para cada cadeia de entrada, você deve imprimir a cadeia começando na coluna 1 imediatamente seguida de exatamente um dos seguintes textos.

" -- is not a palindrome."

Se a cadeia não é um palíndromo e não é uma sequência espelhada.

" -- is a regular palindrome."

Se a cadeia de caracteres é um palíndromo e não é uma sequência espelhada.

" -- is a mirrored string."

Se a cadeia não é um palíndromo e é uma seqüência espelhada.

" -- is a mirrored palindrome."

Se a cadeia de caracteres é um Palíndromo e é uma cadeia espelhada.

Note que a linha de saída deve incluir os traços(-) e o espaçamento exatamente como mostrado acima e demonstrado na saída de exemplo abaixo.

Além disso, depois de cada linha de saída, você tem que imprimir uma linha vazia.

EXEMPLO DE ENTRADA

NOTAPALINDROME ISAPALINILAPASI

A3MEA

ATOYOTA

EXEMPLO DE SAÍDA

NOTAPALINDROME -- is not a palindrome

ISAPALINILAPASI -- is a regular palindrome

2A3MEAS -- is a mirrored string

ATOYOTA -- is a mirrored palindrome

PROBLEMA C Caminho mínimo

Dada duas localidades, o programa deve calcular a rota de menor custo para se visitar uma série de pontos, respeitando a ordem de visita. O programa deve ler a série de pontos a ser visitados, e um conjunto de trajetos que ligam vários pontos com o custo associado a cada trajeto. A saída do programa deve ser os trajetos que compõem a rota de menor custo e o custo total da rota. Em caso de mais de uma rota com custos iguais, deve-se verificar a rota com a menor quantidade de trajetos.

A ENTRADA

A primeira linha consiste da série de pontos a serem visitados. As linhas seguintes definem os caminhos, cada caminho em uma linha, entre os pontos s e seus respectivos custos.

A SAÍDA

A saída consiste do menor caminho que passa pelos pontos desejados. Cada parte do caminho está em uma linha. A última linha deve ter "Custo Total = 7".

EXEMPLO DE ENTRADA ABH AB8 AC 2 AD3 BH 5 BC 4 BE 1 CB 2 CE 2 CF 3 EF 1 EG 2 EH 2 FG 5 FH 6

EXEMPLO DE SAÍDA

AC

CB

BE

EH

Custo Total = 7