

Dataset ◆ Descriptions of each feature Feature **Description Description Feature** Physical location (coordinate) TC_{input} Toggle counts of input *x*, *y* w, h Width, height (dimension) Toggle counts of output TC_{output} Toggle counts of internal connection R_{eff} Effective resistance $TC_{intertal}$ SPRShortest path resistance Minimum arrival time $T_{arrival}$ Cell type Cell type Internal power $P_{internal}$ P_{leak} Leakage power Switching power P_{switch} Loading capacitance Transition time C_{load} $T_{transition}$ Pi_{c1} , Pi_{c2} , Pi_r Equivalent π model Peak current I_{peak} 2024/5/23 Andy Yu-Guang Chen 8

1/

Evaluation

- ◆The quality will be evaluated by 4 metrics
 - ➤ Mean absolute error (MAE)
 - ➤ Max error (MaxE)
 - ➤ Correlation Coefficient (CC)
 - ➤ Normalized root mean squared error (NRMSE)
- Public and hidden case will be calculated separately

2024/5/23

Andy Yu-Guang Chen

10

19

Evaluation

- **◆**Report
 - >You should at least include:
 - How you finish the 4 TODO spaces
 - Evaluation result (output of Sample_evaluation.py)
 - Hardness
 - Suggestion?
 - >We don't restrict the report format and length
 - English version is a plus
 - ➤ The grading of the report will compare yours with others

2024/5/23

Andy Yu-Guang Chen

20

Appendix

- ◆Here is some steps for students who don't know how to run python code
 - 1. Enter the python environment <cmd> source /home/CAD112/PA4/env.cshrc
 - 2. Run python code <cmd> python3 \${Your file name}

2024/5/23

Andy Yu-Guang Chen

23

23

Appendix

◆Mean absolute error (MAE)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} \left| y_i^p - y_i \right|$$

◆Max error (MaxE)

$$MaxE = \max(\sum_{i=1}^{n} (y_i^p - y_i))$$

2024/5/23

Andy Yu-Guang Chen

24

2/

Appendix

◆Correlation coefficient (CC)

$$CC = \frac{\sum_{i=1}^{n} \left(y_i^p - mean(y^p) \right) (y_i - mean(y))}{\sqrt{\sum_{i=1}^{n} \left(y_i^p - mean(y^p) \right)^2 (y_i - mean(y))^2}}$$

2024/5/23

Andy Yu-Guang Chen

25

25

Appendix

◆ Root mean squared error (RMSE)

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i^p - y_i)^2}$$

Normalized root mean squared error (NRMSE)

$$NRMSE = \frac{RMSE}{mean(y)} * 100\%$$

2024/5/23

Andy Yu-Guang Chen

26

