

凸优化在无人机轨迹规划中的应用

刘新福

内容概要

- > 无人机轨迹规划问题描述
- > 凸化处理
- > 保证收敛的序列二阶锥优化
- > 在线轨迹规划与仿真

内容概要

- > 无人机轨迹规划问题描述
- > 凸化处理
- > 保证收敛的序列二阶锥优化
- > 在线轨迹规划与仿真

1. 无人机轨迹规划问题描述

> 无人机动力学模型

无人机避障问题示意图

$$\dot{r} = v$$

$$\dot{v} = \frac{T}{m} + g$$

r: 无人机的位置向量

v: 无人机的速度向量

T: 无人机的推力向量

g: [0,0,-g]重力加速度

m: 无人机的质量

1. 无人机轨迹规划问题描述

> 过程约束

速度约束
$$\|\mathbf{v}\| \le v_{\text{max}}$$

推力约束
$$\|T\| \le T_{\text{max}}$$

防翻转约束
$$\sqrt{T_x^2 + T_y^2} \le \tan(\varphi_{\text{max}})T_z$$
, $\varphi_{\text{max}} \in (0, \frac{\pi}{2})$

避障约束
$$1 - \frac{(x - x_{ob,m})^2}{a_{ob,m}^2} - \frac{(y - y_{ob,m})^2}{b_{ob,m}^2} \le 0, m = 1, 2, ..., M$$

(椭球柱障碍物, M代表障碍物个数)

> 边界约束

初始与终端状态约束

$$\boldsymbol{r}(t_0) = \boldsymbol{r}_0, \boldsymbol{v}(t_0) = \boldsymbol{v}_0$$

$$r(t_f) = r_f, v(t_f) = v_f$$

1. 无人机轨迹规划问题描述

无人机避障轨迹优化问题:

P0:
$$J = t_f + k \int_{t_0}^{t_f} \left\| \frac{T}{m} + g \right\|^2 dt$$
s.t.
$$\dot{r} = v$$

$$\dot{v} = \frac{T}{m} + g$$

$$\|v\| \le v_{\text{max}}$$

$$\|T\| \le T_{\text{max}}$$

$$\sqrt{T_x^2 + T_y^2} \le \tan(\varphi_{\text{max}})T_z$$

$$1 - \frac{(x - x_{ob,m})^2}{a_{ob,m}^2} - \frac{(y - y_{ob,m})^2}{b_{ob,m}^2} \le 0, m = 1, 2, ..., M$$

$$r(t_0) = r_0, v(t_0) = v_0$$

$$r(t_f) = r_f, v(t_f) = v_f$$

问题PO是一个**时间自由**的最优控制问题。很明显,这个问题是非**凸**的,不存在解析解,需要用数值算法进行求解。

内容概要

- > 无人机轨迹规划问题描述
- > 凸化处理
- > 保证收敛的序列二阶锥优化
- > 在线轨迹规划与仿真

凸化处理的目的:

通过自变量选择、变量替换、等价转换以及线性化等方法,将原问题PO转化成为一个二阶锥优化(SOCP)问题,然后迭代求解该SOCP问题直至收敛,获得原问题PO的最优解。

> 自变量选择:

在问题P0中,飞行时间 t_f 是未知的,无法对P0中的动力学方程进行离散,可以将飞行时域 $[t_0,t_f]$ 映射到给定区间[0,1],如下

$$\tau = \frac{t - t_0}{t_f - t_0}, \ t \in [t_0, t_f]$$

对上式求导可得:

$$\frac{d\tau}{dt} = \frac{1}{t_f}, \ \tau \in [0,1]$$

以τ作为新的自变量后, 动力学方程变为:

$$r' = vt_f$$

$$v' = (\frac{T}{m} + g)t_f$$

边界条件变为:

$$r(0) = r_0, v(0) = v_0$$

 $r(1) = r_f, v(1) = v_f$

目标函数变为:

$$\mathbf{J} = t_f + k \int_0^1 \left\| \frac{\mathbf{T}}{m} + \mathbf{g} \right\|^2 t_f d\tau$$

其他约束形式保持不变(把自变量 t 换成 τ 即可)。

\triangleright **变量替换** (引入新变量 \bar{v} 、 \bar{a})

新变量
$$\overline{v}$$
 定义为: $\overline{v} = vt_f$

新变量
$$\overline{a}$$
 定义为: $\overline{a} = (\frac{T}{m} + g)t_f^2$

$$r' = vt_f$$

$$v' = (\frac{T}{m} + g)t_f$$

$$r'=\overline{v}$$

运动学方程变为:
$$\overline{v}'=\overline{a}$$

线性运动学

速度大小约束变为:
$$\|\overline{v}\| \le v_{\max} t_f$$

二阶锥约束

$$m{r}(0) = m{r}_0, \overline{m{v}}(0) = m{v}_0 t_f$$

边界约束变为:
$$r(1) = r_f, \overline{v}(1) = v_f t_f$$

线性等式

推力大小约束变为:
$$m(\frac{\overline{a}}{t_f^2} - g) \le T_{\text{max}}$$

$$\overline{\boldsymbol{a}} = (\frac{\boldsymbol{T}}{m} + \boldsymbol{g})t_f^2$$

$$\left\|\overline{a}_x^2 + \overline{a}_y^2 + (\overline{a}_z + gt_f^2)^2\right\| \le T_{\text{max}}t_f^2 / m$$

非凸

防翻转约束变为:
$$\sqrt{\overline{a}_x^2}$$

防翻转约束变为:
$$\sqrt{\overline{a}_x^2 + \overline{a}_y^2} \le \tan(\varphi_{\text{max}})(\overline{a}_z + gt_f^2)$$

非凸

避障约束保持不变:

$$1 - \frac{(x - x_{ob,m})^2}{a_{ob,m}^2} - \frac{(y - y_{ob,m})^2}{b_{ob,m}^2} \le 0, m = 1, 2, ..., M$$

目标函数变为:
$$\mathbf{J} = t_f + k \int_0^1 \|\overline{\boldsymbol{a}}\|^2 / t_f^3 d\tau$$

> 等价变换

此部分的**目的**是通过引入中间变量将非凸约束转换成为**凸约束**以及一**类不等式约束**($f \le 0$,f为凹函数)。

1. 对于非凸的推力大小约束

$$\left\|\overline{a}_x^2 + \overline{a}_y^2 + (\overline{a}_z + gt_f^2)^2\right\| \le T_{\text{max}}t_f^2 / m$$

2. 对于防翻转约束

$$\sqrt{\overline{a}_x^2 + \overline{a}_y^2} \le \tan(\varphi_{\max})(\overline{a}_z + gt_f^2)$$

3. 对于避障约束

$$1 - \frac{(x - x_{ob,m})^2}{a_{ob,m}^2} - \frac{(y - y_{ob,m})^2}{b_{ob,m}^2} \le 0 \quad 四函数 f_3 \le 0$$

4. 对于目标函数

$$J = t_f + k \int_0^1 \left\| \overline{\boldsymbol{a}} \right\|^2 / t_f^3 d\tau$$

$$\begin{cases} \mathbf{J} = t_f + k \int_0^1 \alpha_1 d\tau \\ \left\| \overline{\mathbf{a}} \right\|^2 / t_f^3 \le \alpha_1 \end{cases}$$

$$\begin{cases}
 J = t_f + k \int_0^1 \alpha_1 d\tau \\
 \|\overline{a}\|^2 \le 2\alpha_1 \alpha_2, \ \alpha_2 \ge 0 \\
 2\alpha_2 - t_f^3 \le 0
\end{cases}$$

线性目标函数

旋转二次锥

凹函数 $f_4 \leq 0$

凹函数 $f_1 \sim f_4$ 的图像如下(均为<mark>凹函数</mark>):

> 线性化

对于上述非凸约束($\underline{\mathbf{U}}\underline{\mathbf{O}}\underline{\mathbf{M}}\leq\mathbf{0}$),使用线性化技术进行凸化。

对于非凸约束 $f(x) \leq 0$,在给定点 x^* 进行线性化,可得:

$$f(x^*) + \nabla f^T(x^*)(x - x^*) \le 0$$
$$\left| x - x^* \right| \le \rho$$

其中, $\nabla f^T(x^*)$ 是函数f在点 x^* 处的梯度, ρ 是可信赖半径(其维数等于x的维数)。上述约束均是凸约束。

在经过上述变换后,一个新的问题P1如下:

其中,x是状态变量,u是控制变量, λ 为中间变量。上述最优控制问题 P1的动力学是线性的,不等式约束是线性约束或二阶锥约束的形式,目标函数是线性的。

> 离散化

采用欧拉法或梯形法等对上述问题进行离散化,可以得到SOCP问题P2:

P2:
$$\min_{\mathbf{y}} \mathbf{c}^{T} \mathbf{y}$$

s.t. $H\mathbf{y} = P$

$$f(\mathbf{y}^{[k]}) + \nabla f^{T}(\mathbf{y}^{[k]})(\mathbf{y} - \mathbf{y}^{[k]}) \le 0$$

$$|\mathbf{y} - \mathbf{y}^{[k]}| \le \rho$$

$$\Lambda \mathbf{y} - \mathbf{b} \succeq_{K} 0$$

其中,y包含了所有离散点上的状态量、控制量以及中间变量。所有的等式约束都包含在Hy = P中。上述问题是一个SOCP子问题,需要迭代求解至收敛才能够获取原问题PO的最优解。

内容概要

- > 无人机轨迹规划问题描述
- > 凸化处理
- > 保证收敛的序列二阶锥优化
- > 在线轨迹规划与仿真

3. 保证收敛的序列二阶锥优化

> 迭代求解算法

- 1. 设置k = 0。选择一个初始剖面 $\{x^{[0]}, y^{[0]}, t_f^{[0]}\};$
- 2. 在第(k+1)次迭代,求解SOCP问题P2获得解 $y^{[k+1]}$;
- 3. 检查下列收敛条件是否满足:

$$\max |x^{[k+1]} - x^{[k]}| \le \varepsilon_{\chi}$$

$$\max |y^{[k+1]} - y^{[k]}| \le \varepsilon_{\chi}$$

$$\max |t_f^{[k+1]} - t_f^{[k]}| \le \varepsilon_{t_f}$$

其中, ε_x 、 ε_y 和 ε_{t_f} 是用户定义收敛阈值;当满足上式时,跳转到第4步;否则,用 $\{x^{[k+1]},y^{[k+1]},t_f^{[k+1]}\}$ 替换剖面 $\{x^{[k]},y^{[k]},t_f^{[k]}\}$,令k=k+1,跳转回第2步。

4. 算法退出,获得原问题PO的最优解。

3. 保证收敛的序列二阶锥优化

> 初始剖面的选取

首先连接 无人机的起始 与 终端位置,并且等距分为 N 个点。利用这N个点的横纵坐标作为 $\{x^{[0]},y^{[0]}\}$,再利用下述公式确定 $t_f^{[0]}$

$$t_f^{[0]} = \frac{\sqrt{(x_0 - x_f)^2 + (y_0 - y_f)^2}}{v_{\text{max}}}$$

得到初始剖面 $\{x^{[0]}, y^{[0]}, t_f^{[0]}\}$ 。

> 迭代算法的收敛性

在上述特殊变换下,能够证明该算法一定收敛,证明过程参考以下文献:

Xinfu Liu and Ping Lu "Solving Nonconvex Optimal Control Problems by Convex Optimization," *Journal of Guidance, Control, and Dynamics*, Vol. 37, No. 3, pp. 750-765, 2014.

内容概要

- > 无人机轨迹规划问题描述
- > 凸化处理
- > 保证收敛的序列二阶锥优化
- > 在线轨迹规划与仿真

> 无人机参数设置

$$m=1$$
 kg, $T_{\rm max}=15$ N, $v_{\rm max}=10$ m/s, $\varphi_{\rm max}=45$ deg

> 初始条件

初始位置	初始速度	终端位置	终端速度
(0,0,10) m	(0,0,0) m/s	(50,50,50) m	(0,0,0) m/s

> 障碍物设置

	圆柱中心	半径	高度
障碍物1	(15, 20) m	10 m	50 m
障碍物2	(30, 40) m	15 m	50 m

> 计算平台与软件

CPU 1.7Ghz 的笔记本电脑, ECOS

与GPOPS的结果进行对比(目标函数中加权系数k设为1/2):

序列SOCP求解时间: 0.20 s

GPOPS求解时间: 5.24 s

无人机飞行轨迹

序列SOCP每次迭代得到的解:

收敛阈值: $\{\varepsilon_{\mathbf{x}} \ \varepsilon_{y} \ \varepsilon_{t_f}\} = \{1,1,1\}$

迭代	$\{\Delta x, \Delta y, \Delta t_f\}$	求解时间
1	{9.6,9.0,9.6}	66 ms
2	{3.0,1.9,1.1}	60 ms
3	{0.1,0.2,0.3}	67 ms

序列SOCP迭代过程

Gazebo 仿真

