- **14.1.** Постройте последовательность в единичной сфере пространства C[a,b], у которой нет сходящейся подпоследовательности.
- **14.2. 1)** Пусть X нормированное пространство, $f \in X^* \setminus \{0\}$ и $X_0 = \text{Ker } f$. Докажите, что в X существует 0-перпендикуляр к X_0 тогда и только тогда, когда f достигает нормы.
- **2)** Приведите пример банахова пространства X и собственного замкнутого векторного подпространства $X_0 \subset X$, к которому не существует 0-перпендикуляра.
- **14.3.** Пусть X нормированное пространство и множества $M,N\subset X$ вполне ограничены. Докажите, что множества λM (где $\lambda\in\mathbb{K}$) и M+N вполне ограничены.
- 14.4. Докажите, что равномерно непрерывный образ вполне ограниченного метрического пространства вполне ограничен.
- **14.5.** Докажите, что метрическое пространство вполне ограничено тогда и только тогда, когда для каждого $\varepsilon > 0$ в нем есть вполне ограниченная ε -сеть.
- **14.6.** Пусть X, Y метрические пространства, причем X компактно. Сформулируйте и докажите критерий полной ограниченности подмножества в пространстве C(X,Y), обобщающий теорему Арцела—Асколи.
- **14.7. 1)** Докажите, что подмножество $S \subset \ell^p$ (где $1 \leqslant p < \infty$) вполне ограничено тогда и только тогда, когда оно ограничено и

$$\sup_{x \in S} \sum_{k=n+1}^{\infty} |x_k|^p \to 0 \quad \text{при } n \to \infty$$

(т.е. нормы «хвостов» последовательностей из S равномерно стремятся к нулю).

- **2)** Сформулируйте и докажите аналогичный критерий для пространства c_0 .
- **14.8-b.** Докажите, что подмножество $S\subset L^p[a,b]$ (где $1\leqslant p<\infty$) вполне ограничено тогда и только тогда, когда оно ограничено и для каждого $\varepsilon>0$ найдется такое $\delta>0$, что для всех $|h|<\delta$ и всех $f\in S$ выполнено

$$\int_{a}^{b} |f(x+h) - f(x)|^{p} dx < \varepsilon.$$

Указание (достаточность). Для $f \in L^p[a,b]$ функции $f_h(x) = \frac{1}{2h} \int_{x-h}^{x+h} f(t) dt$ непрерывны и сходятся к f в $L^p[a,b]$. Примените к ним теорему Арцела–Асколи.

Определение 14.1. Пусть X — метрическое пространство. $Paccmoshuem\ Xaycdop \phi a$ между ограниченными подмножествами $A,B\subset X$ называется величина

$$\rho_H(A,B) = \max \Big\{ \sup_{a \in A} \rho(a,B), \sup_{b \in B} \rho(b,A) \Big\}.$$

14.9-b. Пусть X — метрическое пространство, $A \subset X$ и r > 0. Положим $U_r(A) = \{x \in X : \rho(x,A) < r\}$. Докажите, что для любых ограниченных множеств $A, B \subset X$

$$\rho_H(A, B) = \inf\{r > 0 : A \subset U_r(B), B \subset U_r(A)\}.$$

- **14.10-b. 1)** Докажите, что расстояние Хаусдорфа является метрикой на множестве $\mathfrak{F}(X)$ всех замкнутых ограниченных подмножеств метрического пространства X.
- 2) Верно ли предыдущее утверждение, если убрать условие замкнутости?
- **14.11-b.** Докажите, что если X полно, то и $\mathfrak{F}(X)$ полно.
- **14.12-b.** Докажите, что если X вполне ограничено, то и $\mathfrak{F}(X)$ вполне ограничено.