Today

- Art of modeling: ants model
 - mapping to research questions
 - scope of inference

Exponential model

$$y = ae^{bx}$$

a is y intercept expecting b negative for downward trend

$$\log(y) = \log(a) + bx$$

log(a) is y intercept

y is richness x is latitude

Exponential model

$$\log(y_i) \sim \text{Normal}(\mu_i, \sigma)$$

$$\mu_i = \log(a_b) + b_b x_i : \text{bog}$$

$$\log(a_f) + b_f x_i : \text{forest}$$

y is richness x is latitude

Map science questions to model

- What model quantities answer questions?
- Could be:
 - parameters
 - derived quantities
 - a function of the parameters
 - predictions of the model
- Plus associated uncertainty

Map science questions to model

How does species richness vary with latitude?

Is this relationship different between habitats?

How different is species richness between habitats?

$$y_i \sim \text{Normal}(\mu_i, \sigma)$$

 $\mu_i = \beta_{0,b} + \beta_{1,b} x_i : \text{bog}$
 $\beta_{0,f} + \beta_{1,f} x_i : \text{forest}$

$$\log(y_i) \sim \text{Normal}(\mu_i, \sigma)$$

$$\mu_i = \log(a_b) + b_b x_i : \text{bog}$$

$$\log(a_f) + b_f x_i : \text{forest}$$

Identify model quantities that answer questions Sketch how you would visualize answer with uncertainty

Scope of inference

- Ants questions: descriptive inference
- What statistical population will this description generalize to?
- Generalization is determined by study design and assumptions we're willing to accept (wrt data → population)

"We sampled 22 high-grade, undisturbed bogs and their surrounding forests in Vermont, Massachusetts, and Connecticut"

Make a statement about scope. Justify your statement