PAGE REPLACEMENT ALGORITHMS:

* The Longest time period repeated pages are to be replaced first.

* page fault: The CPV will demand for the particular page number; If it is not present in the reference String (RAM/main memory). Then it is going to be Page Fault.

* Page Hit: The CPU will demand for the particular page number; If it is present in the RAM/ main memory. Then it is going to be Page Hit.

TYPES: >> FIFO: First. In First out. \ with the help of \\
-> LRV: Least Recently Used. This &, we can \\
-> Optimal Algorithm. \\
FIFO: \\
Hit ratio,

* First In First Out.

* From the name itself we can recognize that which page has to be replaced first and which page has to be Deleted first.

* Replace the pages that has been in the RAM/ main memory for the longest time period.

* The Example as follows,

Reference String:

0 3 0 4 2 3 0 3 1 2 0 7012

* These page numbers are present in the RAM/memory * Because the main memory size is lesser than the logical memory.

* The main memory can't store all the pages at a time.

* If the particular demanded page number not present in main menuory. It has to be borrowed from Secondary memory, by deleting the longest time repeated page number.

* If the page faults are more than RAM gets slower.

(left side).

701203042303120															
个日	(F)	7	7	2	2	2	2	4	4	4	0	0	O	0	Present
F2		0	0	0	Present	(3)	3	3	2	2	2	2	1	1	1
F3				ı	1	1	0	0	0	3	3	3	3	2	2
2.5	*	*	*	*	Hit	*	*	*	*	*	*	Hit	*	*	Hit

Page Hit: Hits → 3

.pag faults: * -> 12

Reference string -> 15.

Explanation for FIFO:

* Starting RAM/Main memory is free. It does not contains any page numbers.

* It contains (RAM) only three frames for Replacing the longest time period page numbers.

* The CPV is demanding for Page no: 7.

The RAM doesn't contains any page no in the Staiting.

So CPV will borrow the particular page number from RAM.

So page no. 7 is not there in RAM. Then it is going.

to be Page fault *

* The process continuous like this

* Now the CPU is demanding for Page '0'.
701203042303120

> It is present in the given Reference String
Then it is going to be 'page Hit-Hit'.

Hit vatio = No. of Hits

total no. of Reference String

= $\frac{3}{15} \times 100 = 20\%$ (approx)

Page fault = No. of fault

Ref. String

= $\frac{12}{15} \times 100 = 80\%$ (approx).

LRU:

* Least Recently Used.

* Note: 3 Frames = 3 page numbers. (compare)

* Left side page numbers are replaced with

another.

Example:			(consider two zono's as 1)											
2.0	Ŧ	D	-	2	0	3	0 4	2	. 3	D	3	1	2	<u>D</u>
3		(1	G,	ų,		1.	1.	1	(cons	iden to	10 3'5		1	<u>)</u> .
FF	7	E	2	2	2	2	4	4	4	σ	0	0	2	2
Fa	0	p	0	0	D	0	0	0	3	3	3	3	3	0
F3		1	1		3	3	3	2	2	2	2	1 -	1	1
*	*	*	*	Hit	*	捐让	*	*	*	*	Hit	*	*	*

* step 1: 701 (frame) = 701 (page no) check
the Arrow [Reference].

* Step 2: compare the page numbers and frames in left direction.

* Don't compare the France Fz for the particular time period.

* Check the frames with given page numbers.

For example: 701 (1 is most recently used. 7 is Least recently used. so relect '7' and replace with next page number '2'.)

The process continuous.

* Now, check the frame: 4 0 2 and page 5 number (0 4 2). In frames 2 is very most recently used; 4 is mostly recently used (only 2 times seperated. We should replace the frame with another page number only if particular page number repeats 3 × above times). So In this condition you just delete the frame (F2) - 'O'. with '3'.

The process continuous.....

page Hit = 3

page fault = 12.

OPTIMAL ALGORITHM:

* This algorithm represents the longest time period page number in Future (Right Direction).

Example:					Longest time in Future.											→			
Ŧ	0	1	2	0	3	0	4,	2	3	0	3	2	ľ,	2	0	1	7		
7	দ	(F)	2	2	2	2	2	2	2	2	2	2	2	2	2	2	7		
	0	0	0	0	0	0	4	4	4	0	0	0	0	0	0	0	0		
		1	1	1	3	3	3	3	3	3	3	(3)	1	1	1	1	1		
	*	1	- JX	11ºL	*	Hit	*	Hit	Hit	*	Hit	Hil	- V	1111	1124	IR-	1		

Explanation:

* The process starts as usual;

* Now, check for longest time in future. => 7 0 1 (frames); comparing these numbers in given Reference string. 7 is most longest traveled page number (i.e., Repeated in future).

These processes are continues ----

* Now, page number 4 is not there in future reference string. In this condition just replace the longest time sepeated frame with another page number (i.e) o' is replaced with 4.

* Then process repeats. After that 4 is not there in future reference string. So if it is in frames also no use. So just delete that page number and replace 'O'.

2 (4) 3 replace with 2 0 3

* The process continuous. Last 7 is not there in future. So just replace with longest traveled page number (2) with 7.

> Page Hit - 9 : Page fault - 9.