

The importance of considering **extreme** and rare events in decision making

Ullrika Sahlin, Centre of Environmental and Climate Research

Lund University, Sweden

Ullrika.Sahlin@cec.lu.se

http://www.cec.lu.se/ullrika-sahlin

What makes a decision?

- An agent
- Her values
- An idea of what is a good decision
- Decision alternatives
- Uncertainties (including certainty) in the outcomes of these alternatives

Outline

- Decisions are often far from simple
- Learning & forecasting to make decisions
- Extreme events and uncertainty
- Consider extreme events in system and knowledge dimensions
- More than one scientific perspective on extreme events

Coastline erosion and sea level rise

Caroline Fredriksson and Hans Hansson, LTH. Aktuella Frågor 27 April 2017

- It is desirable to live close to the sea, but coastline erosion cause
- Large economic loss
- Threatens biodiversity and recreation
- Loss of protection against high sea levels
- Requires coordinated management

Learning & Values Forecasting Perceptions Behaviour Uncertainty Cognitive bias & & heuristics Decision making

On the board

- The DM is interested in uncertainty in the event A
- Uncertainty in A is described using probability P(A|K)
- K is our knowledge
- $P(A|K) = P(A|\theta)P(\theta|K)$
- P(A | θ) "forecasting"
- P(θ | K) "learning"

Fishery managment

2126 M. Lindegren et al. Forecasting under climate change

Forecasting under climate change

Biodiversity by land-use management

1516

BIOLOGICAL CONSERVATION 141 (2008) 1505-1524

- Spatial planning
- Trade-offs and synergies
- Efficiency frontiers

Biodiversity by land-use management

1516

BIOLOGICAL CONSERVATION 141 (2008) 1505-1524

- Spatial planning
- Trade-offs and synergies
- Efficiency frontiers

Uncertainty in outcomes

Expectation:
Mean - a location
Prevision - a quantity
important for decisons

Kaplan and Garrick. 1981. On The Quantitative Definition of Risk. Risk Analysis

Klinke and Renn. 2002. Risk Analysis.

Slovic and Weber. 2002. Perception of risk posed by extreme events.

System dimension:

- Unlikely rare, low frequency
- Large consequence

Knowledge dimension:

- Unlikely low weight among possible outcomes, surprice in relation to central tendency
- Surprice large uncertainy due to lack of knowledge
- Unknown unknown the unforeseen

Taleb, N. 2007. The black swan: the impact of the highly improbable. Aven, T. 2013. Practical implications of the new risk perspectives. Reliability Engineering & System Safety 115:136-145.

Considering extreme events in Learning & Forecasting is required to make robust decisions

What is robust?

Lack of **Stressors** knowledge Deep **Events** uncertainty Robust to sources of Robust to risk sources uncertainty **SYSTEM DECISION** Hazards Poor quality in Threaths knowledge

 "Robust to uncertainty" refers to a decision's ability to be acceptable despite prevailing sources of uncertainty

Include extreme events in modelling

Short and long distance disperal

Marco, et al. 2011. Comparing short and long-distance dispersal: modelling and field case studies. Ecography

Include extreme events in modelling

Climate projections

Include extre

Climate projections

Climate CHIP

Home Your Area CHIPs Analysis Tools Resources About Us

Your Area: Today (switch to: Tomorrow)

Type a location in the left box below (e.g. "Delhi, India" or "29, 77" for lat/long) and click Search. Alternatively, simply scroll around and zoom the map below, then click on the desired location.

Lund, Sweden

Search

Latitude Longitude Parameter: Chart Type: Temperature Unit:

Mean Temperature
Monthly Distribution
Celsius

Show weather stations. Find closest weather station.

Orange markers indicate weather stations that have data for 90%+ of all days 1980-2013. Clicking a marker reveals more info.

Note: When interpreting charts that display dew-point temperature, or values derived from it, i.e. WBGT and UTCI, note that dew-point temperatures below 0 °C are often not reliable.

Save this Graph as an Image

nip.org/your-area-climate-data Q ☆ 8 :

imate CHIP

Home Your Area CHIPs Analysis Tools Resources About Us

Area: Today (switch to: Tomorrow)

Search

cation in the left box below (e.g. "Delhi, India" or "29, 77" for lat/long) and click Search. Alternatively, simply scroll around and zoom the map

en click on the desired location.

Latitude Longitude Parameter:

Maximum Temperature

Monthly Distribution

Chart Type:

Celsius

Temperature Unit:

Halmstad [3] Kristianstad Karishamn Helsingborg ppenhagen Lund Ystad ©2017 GeoBasis-DE/BKG (©2009), Google Terms of Use Report a map error

Maximum Temperature (Monthly Averages 1980 to 2011). Latitude: 55.75 & Longitude: 13.25 25 20 15 (0,) 10 September

Show weather stations. Find closest weather station.

Orange markers indicate weather stations that have data for of all days 1980-2013. Clicking a marker reveals more info.

Note: When interpreting charts that display dew-point temperature, or values derived from it, i.e. WBGT and UTCI, note that dew-point temperatures below 0 °C are often not reliable.

Save this Graph as an Image

Home Your Area CHIPs Analysis Tools Resources About Us

rrow)

or lat/long) and click Search. Alternatively, simply scroll around and zoom the map

Chart Type: Temperature Unit: Parameter: Monthly Distribution Mean Temperature Celsius

Note: When interpreting charts that display dew-point temperature, or values derived from it, i.e. WBGT and UTCl, note that dew-point temperatures below 0 °C are often not reliable.

Save this Graph as an Image

Q & S

imate CHIP

Home Your Area CHIPs Analysis Tools Resources About Us

Area: Tomorrow (switch to: Today)

ocation in the left box below (e.g. "Delhi, India" or "29, 77" for lat/long) and click Search. Alternatively, simply scroll around and zoom the map

nen click on the desired location.

chip.org/your-area-tomorrow

Latitude Longitude Parameter: Search

55.75

Mean Temperature

Monthly Distribution

Chart Type:

Celsius

Temperature Unit:

Halmstad Ele Kristianstad Karlshamn Helsingborg Copenhagen Lund Ystad E47 + ©2017 GeoBasis-DE/BKG (©2009), Google | Terms of Use | Report a map error

Note: When interpreting charts that display dew-point temperature, or values derived from it, i.e. WBGT and UTCI, note that dew-point temperatures below 0 °C are often not reliable.

Home Your Area CHIPs Analysis Tools Resources About Us

rrow)

or lat/long) and click Search. Alternatively, simply scroll around and zoom the map

Chart Type: Temperature Unit: Parameter: Monthly Distribution Mean Temperature Celsius

Note: When interpreting charts that display dew-point temperature, or values derived from it, i.e. WBGT and UTCl, note that dew-point temperatures below 0 °C are often not reliable.

Save this Graph as an Image

Include extre

Climate projections

Your Area: Tomorrow (switch to: Today)

Type a location in the left box below (e.g. "Delhi, India" or "29, 77" for lat/long) and click Search. Alternatively, simply scroll around and zoom the map below, then click on the desired location.

Lund, Sweden Search Search Search Parameter: Chart Type: Temperature Unit:

Mean Temperature Temperature Unit:

Monthly Distribution Temperature Unit:

Note: When interpreting charts that display dew-point temperature, or values derived from it, i.e. WBGT and UTCI, note that dew-point temperatures below 0 °C are often not reliable.

O OTO C B X

imate CHIP

Home Your Area CHIPs Analysis Tools Resources About Us

Area: Tomorrow (switch to: Today)

ocation in the left box below (e.g. "Delhi, India" or "29, 77" for lat/long) and click Search. Alternatively, simply scroll around and zoom the map

en click on the desired location.

weden

hip.org/your-area-tomorrow

Latitude Longitude Parameter: 55.75

Maximum Temperature

Monthly Distribution

Chart Type:

Celsius

Temperature Unit:

Search

Note: When interpreting charts that display dew-point temperature, or values derived from it, i.e. WBGT and UTCI, note that dew-point temperatures below 0 °C are often not reliable.

Home Your Area CHIPs Analysis Tools Resources About Us

oday)

Q ☆ 8 :

or lat/long) and click Search. Alternatively, simply scroll around and zoom the map

Chart Type: Temperature Unit: Parameter: Mean Temperature Monthly Distribution Celsius

Note: When interpreting charts that display dew-point temperature, or values derived from it, i.e. WBGT and UTCI, note that dew-point temperatures below 0 °C are often not reliable.

Use statistical theory for extreme events

Use statistical theory for extreme events

outcome

Include extreme events in random processes

Illustration of population dynamic models that allow for heavy tails

Sean C. Anderson et al. PNAS 2017;114:3252-3257

Ignoring heavy tails can underestimate risk

Sean C. Anderson et al. PNAS 2017;114:3252-3257

Our knowledge is seldom ideal to make decisions

I asked four people in the street and three were happy. 75% of people are happy. MY HOBBY: EXTRAPOLATING

Consider extreme events in the knowledge dimension

Statistical population

• Sample mean: 24

29	13	10	22	45

- Statistical population
 - Sample mean: 24
- Analogy prediction
 - Friday & Maths: 13

29	13	10	22	45
Birds	Maths	Birds	Maths	Birds
Friday	Friday	Tuesday	Tuesday	Tuesday

- Statistical population
 - Sample mean: 24
- Analogy prediction
 - Friday & Maths: 13
- Just guess
 - Lower value: 10
 - Higher value: 100
 - Most likely value: 22

29	13	10	22	45
Birds	Maths	Birds	Maths	Birds
Friday	Friday	Tuesday	Tuesday	Tuesday

- Statistical population
 - Sample mean: 24
- Analogy prediction
 - Friday & Maths: 13
- Just guess
 - Lower value: 10
 - Higher value: 100
 - Most likely value: 22
 - 1% chance 200 sets are too few

29	13	10	22	45
Birds	Maths	Birds	Maths	Birds
Friday	Friday	Tuesday	Tuesday	Tuesday

LogT(2.84,0.578)

- Statistical population
 - Sample mean: 24
- Analogy prediction
 - Friday & Maths: 13
- Just guess
 - Lower value: 10
 - Higher value: 100
 - Most likely value: 22
 - 1% chance 200 sets are too few

29	13	10	22	45
Birds	Maths	Birds	Maths	Birds
Friday	Friday	Tuesday	Tuesday	Tuesday

LogT(2.84,0.578)

- Statistical population
 - Sample mean: 24
- Analogy prediction
 - Friday & Maths: 13
- A simple guess
 - Lower value: 10
 - Higher value: 100
 - Most likely value: 22

Relative		Personal
frequency		probability

29	13	10	22	45
Birds	Maths	Birds	Maths	Birds
Friday	Friday	Tuesday	Tuesday	Tuesday

LogT(2.84,0.578)

Different types of uncertainty

Irreducable uncertainty

- Variability
- Inherent randomness
- Stochasticity
- Aleatory uncertainty

Reducable uncertainty

- Lack of knowledge
- Ignorance
- Incertitude
- Epistemic uncertainty

Different types of uncertainty

Decision making under risk

- Maximise prevision taken over a relative frequency
- Risk aversion

Decision making under uncertainty

- Maximise prevision taken over probability representing our believes (personal probability)
- Cautionary principles

Decision making under deep uncertainty

- Apply robust decision criteria
- Adapt management
- Precautionary principle

Different types of uncertainty

Decision making under risk

Decision making under uncertainty

Decision making under deep uncertainty

Strength in knoweldge

Assess strenght in knowledge

Table 2: Example of quality indicators for scientific evidence (after Bowden, 2004).

			Indicators of	of evidence q	uality		
		Theoretical basis	Scientific method	Auditability	Calibration	Calibration	Objectivity
	Very high	Well established theory	Best available practice: large sample; direct measure	Well documented trace to data	An exact fit to data	Independent measurement of sample variable	No discernable bias
y rank	High	Accepted theory; high degree of consensus	Accepted reliable method; small sample; direct measure	Poor documented but traceable to data	Good fit to data	Independent measurement of high correlation variable	Weak bias
Quality	Moderate	Accepted theory; low consensus	Accepted method; derived or surrogate data; analogue; limited reliability	Traceable to data with difficulty	Moderately well correlated with data	Validation measure not truly independent	Moderate bias
	Low	Preliminary theory	Preliminary method of unknown reliability	Weak and obscure link to data	Weak correlation to data	Weak indirect validation	Strong bias
	Very low	Crude speculation	No discernable rigour	No link back to data	No apparent correlation	No validation presented	Obvious bias

Adapt management

Klinke and Renn. 2002. A new approach to risk evaluation and management: Risk-based, precaution-based, and discourse-based strategies. Risk Analysis.

			Risk Tradeoff Analysis and Deliberation Necessary
		Risk Balancing Necessary	Risk Balancing Necessary
		Risk Assessment Necessary	Risk Assessment Necessary
	Scientific Risk Assessment Necessary	Type of Conflict: cognitive evaluative	Type of Conflict: cognitive evaluative normative
Routine Operation	Type of Conflict: cognitive	Actors: Agency Staff External Experts	Actors: Agency Staff External Experts Stakeholders such as Industry, Directly
Actors: Agency Staff	Actors: Agency Staff External Experts	Stakeholders such as Industry, Directly Affected Groups	Affected Groups Representatives of the Public(s)
Discourse: internal	Discourse: cognitive	Discourse: reflective	Discourse: participatory
Simple	Complex	Uncertain	Ambiguous

Difficult issues and values

Strength in knoweldge

Broaden the uncertainty concept

complexity and natural hazards. Journal of Risk Research:1-18.

Broaden the uncertainty concept

ડક્ટ

Table 4. Maximum likelihood estimation of parameters for the GEV and Gumbel (ξ =0) model (with standard error within brackets), estimated 100-years return level relative mean sea level (with 95 % confidence interval within brackets), and estimated return period for

	Location, µ	Scale, σ	Shape, ξ	Estimated water level 100 years return period	Estimated return period 1872-storm
Skanör 1992–2015	85.9 (4.1)	19.1 (3.0)	0	174 (143–204)	3200 years
Klagshamn 1961–2015	85.3 (3.5)	23.3 (2.7)	-0.47 (0.1)	129 <i>(125–144)</i>	Exceeds the upper limit of distribution (135 cm)
Ystad 1886-1987	77.9 (1.8)	17.4 (1.3)	0	158 (144-171)	7000 years

the 1872 storm.