

1 mage filtering

cimage	tithering: changes by			ixel values	
transportuatio	war bing:	charges	6. nel	location	
_	Atterior				

- lower contrast
$$(x/2)$$

- non-linear ruise $(\frac{x}{255})^2$ 255)

Correlation

Convolution

correlation. — low-pass fittering,

Goussian Filter -> smoothing

$$g(x) = e^{\frac{-x^2}{2x^4}}$$

$$g(x,y) = e^{\frac{-(x^2+y^2)}{2x^4}}$$

Ly mask values for govesion filter

- O WORL COMMON WORLD MORE
- Oit was infinite number of derivatives
- Ofourrier of a Gaussian is Gaussian. I if we want to look at image in frequency level.
- OConvolution of Gaussian with itself is Gaussian.

It is bold image and the kernel is goussion for ex.

As T increases more pixels are involved in aug. As & increases image is more blurred LAS T increases noise is more effectively suppressed.

Kernel
$$\Rightarrow$$
 $\frac{1}{16}$ $\frac{121}{242}$ $=$ $\frac{1}{2}$ \Rightarrow 121

Laplace Filter - second derivative pilter

10 derivative \Rightarrow $\int_{-\infty}^{\infty} \frac{1}{(x)} = \lim_{x \to \infty} \frac{1}{f(x+asn) - f(x-asn)}$

Laplace =>
$$f'(x) = fim \frac{f(x+n)-2f(x)+f(x-n)}{n^2}$$

Image Gradients

Mynitude =
$$\sqrt{(S_x^2 + S_y^2)}$$

direction = $\Theta = -\tan^{-1} \frac{S_y}{S_x}$

· gradient is perpendicular to the eage

Filtering

image & kernel = pilter output

Goversion Altering: weighted overlying.

(byou works work center pixel were important time others.

we use Edge Detectors -> derivative filters

- Compate derivatives in x and I direction

- Find gradient and magnitude -Threshold gradient magnitude

Premitt and Sobel

blurred

neizzuca) po neiselgel

-coplacion litters are derivative pilvers to find areas of emples. Since over institute through the image

edges in x

(eg. using a Goussian) before applying the captacian.