

Red-Sequence Evolution of Galaxy Clusters

Gourav Khullar gkhullar@uchicago.edu with Lindsey Bleem and Mike Gladders

KICP, University of Chicago

Outline: Astrophysics and Cosmology

- Motivation
 - SPT, DES Projects
 - A DES Class Project Illustration, Autumn 2016, University of Chicago
- Cosmology with Galaxy Clusters Membership, Richness, Mass
- This work
 - Datasets
 - Datacuts selection functions
 - Analysis
- Red Sequence Evolution in motion

A. Kravtsov

Gladders et al. – Red Sequence Cluster Survey

Concepts: An Overview

$$M_{\Delta} = rac{4\pi}{3} \Delta
ho_{
m ref}(z) R_{\Delta}^3$$

$$T \propto rac{M_{\Delta}}{R_{\Delta}} \propto \Delta^{1/3}
ho_{
m ref}^{1/3}(z) M_{\Delta}^{2/3} \; \left\{ egin{array}{l} \propto
ho_{
m crit}^{1/3}(z) M_{\Delta {
m c}}^{2/3} \propto E^{2/3}(z) M_{\Delta {
m c}}^{2/3} \ \propto
ho_{
m mean}^{1/3}(z) M_{\Delta {
m mean}}^{2/3} \propto (1+z) \, M_{\Delta {
m mean}}^{2/3} \end{array}
ight.$$

$$\mu m_p \frac{GM_{\text{HE}}(\langle R)}{R} = kT(R) \left[-\frac{d\ln \rho_{\text{g}}}{d\ln R} - \frac{d\ln T}{d\ln R} \right]$$

$$\frac{GM_{\rm J}(< R)}{R} = \sigma_r^2(R) \left[-\frac{d \ln n_{\rm gal}}{d \ln R} - \frac{d \ln \sigma_r^2}{d \ln R} - 2\beta(R) \right]$$

Halo Mass Function

Current Constraints

WtG, Allen, Mantz et al

SPT, deHaan et al. 2017

SPT-SZ Cosmology

SPT-SZ Cosmology

This Work

DES RedMapper Galaxy Clusters

Example: SPT Cluster in DES

Distribution in color-magnitude space: 1 Cluster Tile

Background contamination

