الحساب المثلثي – الجزء1 القدرات المنتظرة

الدورة الأولى 15 ساعة

استعمال المحسبة العلمية لتحديد قيمة مقربة ازاوية محددة بأحد نسبها المثلثية والعكس.

*- التمكن من النسب المثلثية للزوايا الاعتيادية وتطبيق مختلف العلاقات

<u>I- تذكير و اضافات</u>

<u>1- أنشطة للتذكير</u>

H و AB=3 و OA=4 و نعتبر الشُكُل التالي حيث (OB) على المسقط العمودي لـ A

1- أحسب *OB*

2- أ/ أحسب $\cos(\widehat{AOB})$ ثم استنتج قيمة مقربة

 $\left\lceil \widehat{AOB} \right\rceil$ لقياس الزاوية

ب/ استنتج المسافة OH

 $\sin\left(\widehat{AOB}\right)$ ثم استنتج $\tan\left(\widehat{AOB}\right)$ عند أحسب

EF = 4 و AB = 5 نعتبر الشكل التالي بحيث

 $\sin\left(\widehat{AOE}\right)$ ثم استنتج $\cos\left(\widehat{AOE}\right)$ أحسب

<u>1- وجدات قياس الزوايا و الاقواس الهندسية – زاوية مركزية </u>

C و B و A نعتبر. R و شعاعها O دائرة مركزها و 'A و 'B و M نقط من B بحيث lpha قياس للزاوية الهندسية بالدرجة $\left\lceil \widehat{AOM} \right
ceil$

$\left[\widehat{AOM}\right]$	$\left[\stackrel{\vee}{AOB}' \right]$	$\left[\widehat{AOC}\right]$	$\left[\widehat{AOB}\right]$	$\left[\widehat{AOA'}\right]$	الزاوية المركزية
α°					قياس الزاوية المركزية بالدرجة
l					طول القوس الهندسية المرتبطة بها

ين أن 90° و 90° و 90° و 90° متناسبة π و π و π و π و π و π على التوالي -2

Rو π و π و 3-4 و π

R هو AM'] هو القوس الهندسية M' هو -4

حدد eta قياس الزاوية المركزية $\lceil \widehat{AOM}' \rceil$ بالدرجة.

2- وحدات قياس الزوايا

لقياس الزوايا هناك ثلاث وحدات هي الدرجة و الغراد و الراديان.

ا/ <u>تعريف الراديان</u>

الراديان هو قياس زاوية مركزية، في دائرة شعاعها R ، تحصر قوسا دائرية طولها R . نرمز لها بـ rad او rad

(یرمز للغراد : gr)
$$\pi rd = 200gr = 180^{\circ}$$

ب/ <u>نتىحة</u>

$$\frac{x}{\pi} = \frac{y}{180} = \frac{z}{200}$$
 إذا كان x قياس زاوية بالراديان و y قياسـها بالدرجة و z

ج/ <u>قباس قوس هندسية</u> قياس قوس هندسية هو قياس الزاوية المركزية التي تحصره.

د/ <u>طول قوس</u> هندسىة

lpha R إذا كان lpha قياس قوس هندسية بالراديان، في دائرة شعاعها R أنان طول هذه القوس هو lpha

طول قوس هندسية، في دائرة شعاعها 1 هو قياس الزاوية المركزية التي تحصرها.

تمارين تطبيقيه تمرين1

اتمم الحدول التالي

0°	30°	45°		90°	قياس زاوية بالدرجة
			$\frac{\pi}{3}$		قياسـها بالراديان

ليكن ABC مثلثا متساوي الاضلاع حيث AB = 5cm و نعتبر (C) الدائرة التي مركزه ABC و تمر $\lceil \widehat{\mathit{BAC}} \rceil$ أحسب الهندسية المحصورة بالزاوية المركزية

II- الدائرة المثلثية

1- توجيه دائرة - توجيه مستوى

(C) دائرة مرکزها O و شعاعها R و I نقطة من (C)

(C) التكن (C) دائرة مركزها O و شعاعها R و I نقطة من (C) دائرة مركزها I و شعاعها I و التكن I لندور حول I ، لوجدنا أنفسنا أمام منحيين . (C) توجيه الدائرة (C) هو اختيار أحد المنحيين منحى موجبا

و الآخر منحي سالبا (أو غير مباشر).

عَادة نأَخذ المنحى المُوجِب المنحيّ المعاكس لحركة عقارب الساعة .

(C)النقطة I تسمى أصل الدائرة

عندما توجه جميع دوائر المستوى توجيها موحدا فإننا نقول إن المستوى موجه.

<u>2- الدائرة ا</u>لمثلثية

تعریف الدائرة المثلثیة هی دائرة شعاعها1 مزودة بنقطة أصل و موجهة توجیها موجیا.

III– الأفاصيل المنحنية.

<u>1- الأفصول المنحني الرئيسي لنقط</u>ة على الدائرة المثلثية

لتكن (C) دائرة مثلثية أصلها I. نعتبر المجال $[-\pi;\pi]$ حيث $[\pi]$ أفصول $[\pi]$ في المحور العمودي على (OI). حدد محيط الدائرة وشعاع الدائرة.

إذا لففنا القطعة الممثلة للمجال $[-\pi;\pi]$ على الدائرة (C) نلاحظ أن كل عدد lpha من $[-\pi;\pi]$ ينطبق $-\pi;\pi$ مع نقطة وحيدة M من (C) و كل نقطة M من (C) تمثل عدد وحيد α من

خاصية و تعريف

I لتكن (C) دائرة مثلثية أصلها

کل نقطة M من C تمثل عدد وحید α من M و کل عدد α من $-\pi;\pi$ من $-\pi;\pi$ من $-\pi;\pi$

M العدد lpha يسمى الافصول المنحني الرئيسي لـ

ملاحظة قياس الزاوية الهندسية $\left| \widehat{a} \right|$ هو ملاحظة

تمرین1

على دائرة مثلثية C أصلها I أنشئ النقط A و B و B على دائرة مثلثية B و

و
$$\frac{3\pi}{4}$$
 و $\frac{\pi}{6}$ و $\frac{\pi}{6}$ و $\frac{\pi}{6}$ و $\frac{\pi}{6}$ على التوالي

<u>تمرىن2</u>

دائرة مثلثية أصلها oxdots . حدد الأفاصيل المنحنية الرئيسية oxdots للنقط oxdots oxdots , oxdots الممثلة في الشكل كما يلي

<u>2- الأفاصيل المنحنية لنقطة على الدائرة المثلثية</u>

 $(\Delta) = D(I,E)$ نعتبر المحور (C) دائرة مثلثية أصلها I. نعتبر المحور $(OI) \perp (\Delta)$ حيث $(OI) \perp (\Delta)$

lpha لتكن نقطة M من (C) أفصولها المنحني الرئيسي

لنحدد كل الأعداد التي تنطبق مع M اذا لففنا المستقيم العددي على $(C\,)$

M النقطة (C) على (C) النقطة المحظ اننا اذا لففنا المستقيم العددي الممثل لـ (C) النقطة تنطيق مع الأعداد

...... $\alpha - 4\pi$; $\alpha - 2\pi$; α ; $\alpha + 2\pi$; $\alpha + 4\pi$

M كل هذهِ الأعداد تسمى الأفاصيل المنحنية لنقطة

 $k\in\mathbb{Z}$ حيث $\alpha+2k$ حيث عام عل شكل عام عل حيث دي نلاحظ أن هذه الأعداد تكتب بشكّل عام

<u>تعریف</u>

lpha وليكن آ .I لتكن M نقطة من دائرة مثلثية ا

أفصولها المنحني الرئيسي

 \mathbb{Z} كل عدد يكتب على الشكل $\alpha+2k\,\pi$ بحيث k عنصر من $\alpha+2k\,\pi$ بسمى أفصولا منحنيا للنقطة M.

 $-rac{2\pi}{3}$ و $rac{\pi}{5}$ و $rac{\pi}{5}$ الافصولين المنحنيين الرئيسيين $rac{\pi}{5}$ و $rac{\pi}{5}$ و على التوالي

. I تمرین (C دائرة مثلثیة أصلها

M نعتبر $\frac{34\pi}{3}$ أفصول منحني لنقطة

<u>ں- خاصیات</u>

لتكن M نقطة من دائرة مثلثية (C) أصلها I. و ليكن α أفصولها المنحني الرئيسي $x-y=2\lambda\pi$ بين اذا كان α من α بحيث منحنيين للنقطة M فانه يوجد عنصر α من

 $x-y=2\lambda\pi$ فصولین منحنیین للنقطة M فانه یوجد عنصر x من z بحیث $x=y=2\lambda\pi$ بحیث x=y و نقرأ x=y و نقرأ x=y و نقرأ x=y

ية النقطة M منحني للنقطة M فان جميع الأفاصيل المنحنية للنقطة M منحني للنقطة x أفصول منحني x حيث x حيث x حيث x حيث x

 $\alpha = \frac{-227\pi}{6}$ تمرين حدد الأفصول المنحني الرئيسي للنقطة التي إحدى أفاصيلها المنحنية

يمرين مثل على الدائرة المثلثية النقط C;B;A التي أفاصيلها المنحنية على التوالي هي $\frac{-108\pi}{12}$; $\frac{37\pi}{3}$; 7π

. $k\in\mathbb{Z}$ حيث $-rac{\pi}{4}+rac{k\,\pi}{3}$ التي أفاصيلها المنحنية M_k حيث الدائرة المثلثية النقط

IV<u>– الزوايا الموجهة</u>

4- الزاوية الموجهة لنصفى مستقيم

أ- تعريف

في المستوى الموجه نعتبر [O;y[و [O;x[نصفي مستقيم لهما نفس الأصل $\widehat{(Ox;Oy)}$) يحدد زاوية موجهة لنصفي مستقيم و يرمز لها بالرمز

<u>ں- قباسات زاویة موجهة لنصفي مستقیم</u>

تعريف وخاصية

(C) زاویة موجهة لنصفي مستقیم ، و (C) زاویة موجهة لنصفي مستقیم ، و (C) و نصفي دائرة مثلثیة مرکزها (C) و (C) علی التوالي (C) و (C) علی التوالي

. ليكن α و β أفصولين منحنيين للنقطتين α و B على التوالي . $(\widehat{Ox};\widehat{Oy})$ يسمى قياسا للزاوية الموجهة $\beta-\alpha$

 $k\in\mathbb{Z}$ كل عدد حقيقي يكتب على الشكل $\beta-\alpha+2k\,\pi$ حيث يسمى قياسا للزاوية الموجهة $(\widehat{Ox},\widehat{Oy})$.

$$(\overline{Ox\:;Oy\:})=eta-lpha+2k\:\pi$$
 $k\in\mathbb{Z}$ نكتب $k\in\mathbb{Z}$ نكتب $(\overline{Ox\:;Oy\:})$ بالرمز $(\overline{Ox\:;Oy\:})$ بالرمز $(\overline{Ox\:;Oy\:})\equiveta-lpha$ $(\overline{Ox\:;Oy\:})\equiveta-lpha$

لكل زاوية موجهة لنصفي مستقيم قياس وحيد ينتمي إلى المجال $]-\pi;\pi]$ يسمى القياس الرئيسي لهذه الزاوية الموجهة.

<u>خاص</u>ىة

 $(\widehat{Ox};\widehat{Oy})$ فياس للزاوية الموجهة $(\widehat{Ox};\widehat{Oy})$ فان $\theta+2k$ حيث $\theta+2k$ قياس للزاوية الموجهة الموجهة أيدا كان $lpha-eta\equiv 0$ 2π فان $\widehat{(Ox;Oy)}$ إذا كان eta و eta قياسين للزاوية الموجهة $(k \in \mathbb{Z}/ \quad \alpha - \beta = 2k \pi)$ أي

- هي M نقطة من دائرة مثلثية أصلها I و مركزها O فان الأفاصيل المنحنية للنقطة M هي \star قياسـات الزاوية الموجهة $\left(\widetilde{OI};\widetilde{OM}
 ight)$ و أن الافصول المنحني الرئيسـي لـ M هو القياس الرئيسـي $(\widehat{OI;OM})$ للزاوية الموجهة
- . (\widehat{xOy}) هي قياس الزاوية المنسي للزاوية الموجهة $(\widehat{Ox};\widehat{Oy})$ هي قياس الزاوية الهندسية *

يعض الزوايا الخاصة
$$\overline{(Ox;Ox)} \equiv 0 \quad [2\pi]$$
 $\overline{(Ox;Ox)} \equiv 0 \quad [2\pi]$ $\overline{(Oy;Ox)} \equiv \pi \quad [2\pi]$ $\overline{(Oy;Ox)} \equiv \pi \quad [2\pi]$ $\overline{(Ox;Oy)} \equiv \pi \quad [2\pi]$

.
$$\left(\overline{Ox;Oy}\right) \equiv \frac{\pi}{2} \quad \left[2\pi\right]$$
 - الزاوية $\left(\widehat{Ox;Oy}\right)$ زاوية قائمة موجبة

$$(\overline{Ox}; \overline{Oy}) \equiv -\frac{\pi}{2} [2\pi] -$$

الزاوية $\widehat{Ox;Oy}$ زاوية قائمة سالبة.

- $\frac{25\pi}{6}$; $\frac{-143\pi}{6}$; $\frac{601\pi}{6}$ نين أن القياسات التالية تمثل قياسات نفس الزاوية
- $-rac{25\pi}{3}$; $rac{52\pi}{5}$; -36π ; 47π ما هو القياس الرئيسي لزاوية موجهة قياسها أحد القياسات π
 - $\frac{-234\pi}{5}$ انشئ زاوية موجهة $(\widehat{Ox};\widehat{Oy})$ قياسها -3

 $\left(\overline{AB;AC}\right) = -\frac{\pi}{2}$ [2 π] أنشئ ABC مثلث متساوي الأضلاع حيث

<u>ج- علاقة شال ونتائحها</u> علاقة شا<u>ل</u>

إذا كانت [O;x] و [O;y] و [O;y] و أنصاف مستقيم لها نفس الأصل فان $(\overline{Ox;Oy}) + (\overline{Oy;Oz}) \equiv (\overline{Ox;Oz})$ $|2\pi|$

<u>نتائج</u>

- $(\overline{Ox;Oy}) \equiv -(\overline{Oy;Ox})$ [2 π] انصفي مستقيم فان [O;y] و [O;x] انصفي مستقيم فان
- $\left(\overline{Ox;Oy}\right)$ اذا کانت $\left[O;x\right]$ و $\left[O;y\right]$ و $\left[O;y\right]$ و $\left[O;y\right]$ و $\left[O;y\right]$ و $\left[O;x\right]$ فان [O;y] و [O;y] نصفي مستقيم منطبقان.

و هذا يعني أنه اذا كان Ox[نصف مستقيم و عددا حقيقيا فانه يوجد نصف مستقيم وحيد [Ox[بحيث Ox[بحيث Ox[بحيث Ox[

د- زاوية زوج متحهتين غير منعدمتين

تعريف

لتكن $ec{v}$ و $ec{v}$ متجهتين غير منعدمتين من المستوى الموجه .و [O;y[و [O;x[على التوالي بالمتجهتين $ec{v}$ و $ec{v}$.

 $\widehat{(Ox;Oy)}$ أوية زوج المتجهتين $\widehat{(u;v)}$ هي الزاوية الموجهة $\widehat{(u;v)}$. $\widehat{(u;v)}$ و يرمز لها بالرمز

مجموعة قياسـات الزاوية $\left(\widehat{ec{u}\,;\!ec{v}}
ight)$ هي مجموعة قياسـات

. $(\widehat{Ox}; \widehat{Oy})$ الزاوية

علاقة شال

إذا كانت \vec{v} و \vec{v} و \vec{v} ثلاثة متجهات غير منعدمة فان

$$\left(\overline{\vec{u};\vec{v}}\right) + \left(\overline{\vec{v};\vec{w}}\right) \equiv \left(\overline{\vec{u};\vec{w}}\right) \qquad [2\pi]$$

نتائج

- $\left(\overline{\vec{u};\vec{v}}\right) \equiv -\left(\overline{\vec{u};\vec{v}}\right)$ [2π] اذا کان \vec{v} و \vec{v} متجهتین غیر منعدمتین فان *
- $(\overrightarrow{u}; \overrightarrow{v}) \equiv (\overrightarrow{u}; \overrightarrow{w})$ [2π] اذا کانت \overrightarrow{u} و \overrightarrow{v} و \overrightarrow{v} و \overrightarrow{v} ادا کانت \overrightarrow{v} ادا کانت \overrightarrow{v} و \overrightarrow{v} ادا کانت \overrightarrow{v} ادا کانت \overrightarrow{v} و \overrightarrow{v} ادا کانت \overrightarrow{v} و \overrightarrow{v} و \overrightarrow{v} ادا کانت \overrightarrow{v} و \overrightarrow{v} و \overrightarrow{v} و \overrightarrow{v} و \overrightarrow{v} ادا کانت \overrightarrow{v} و \overrightarrow{v}

فان \vec{v} و \vec{w} مستقیمیتین ولهما نفس المنحی.

تمرين

لتكن (C) دائرة مثلثية مركزها O و أصلها I. نعتبر على (C) النقط التالية المعرفة بأفاصيلها

$$F\left(\frac{-17\pi}{3}\right)$$
 $E\left(\frac{23\pi}{4}\right)$ $B\left(\frac{3\pi}{2}\right)$ $A\left(\pi\right)$ المنحنية

أعط قياساً لكل من الزاويا التالية ، ثم حدد القياس الرئيسي لكل منهن

$$\left(\widehat{\overrightarrow{OE}};\widehat{\overrightarrow{OF}}\right)$$
 ; $\left(\widehat{\overrightarrow{OA}};\widehat{\overrightarrow{OE}}\right)$; $\left(\widehat{\overrightarrow{OB}};\widehat{\overrightarrow{OA}}\right)$; $\left(\widehat{\overrightarrow{OA}};\widehat{\overrightarrow{OA}}\right)$

۷ - النسب المثلثية

<u>1- المعلم المتعامد الممنظم المرتبط بالدائرة المثلثية</u>

. I التكن C و أصلها التكن (C و أصلها

ولتكن J من J بحيث J بحيث J واوية قائمة موجبة المعلم J المعلم المتعامد الممنظم المباشر المرتبط بالدائرة المثلثية J

لتكن J' من (C) بحيث $\widehat{OI;OJ'}$ زاوية قائمة سالبة . المعلم $(O;\overrightarrow{OI};\overrightarrow{OJ'},\overrightarrow{OJ'})$ يسمى المعلم المتعامد الممنظم الغير المباشر المرتبط بالدائرة المثلثية (C).

2- النسب المثلثية

1-2 <u>تعاریف</u>

لتكن ig(Cig) دائرة مثلثية و $ig(O; \overrightarrow{OI}; \overrightarrow{OJ}ig)$ المعلم المتعامد الممنظم المرتبط بها. لتكن M نقطة من

M و X أفصولا منحنيا لها . نعتبر X المسقط العمودي لـ X على X و X المسقط العمودي لـ X على X

 $egin{aligned} (O; \overrightarrow{OI}; \overrightarrow{OJ})$ العدد الحقيقي أفصول النقطة M في المعلم العدد الحقيقي x نرمز له بـ $\cos x$ بنرمز له بـ $-\infty$ - العدد الحقيقي أرتوب النقطة M في المعلم $-\infty$ - العدد الحقيقي $-\infty$ بنرمز له بـ $-\infty$ - $-\infty$ العدد الحقيقي $-\infty$ - $-\infty$ المماس لـ $-\infty$ - $-\infty$ عند $-\infty$ و النقطة $-\infty$ الكن $-\infty$ نقطة تقاطع $-\infty$ و $-\infty$ أي

$$k \in \mathbb{Z} \qquad x \neq \frac{\pi}{2} + k \, \pi$$

العدد الحقيقي أفصول T في المعلم (I;P)يسمى ظل العدد الحقيقي x نرمز له بـ $\tan x$

<u>ملاحظة و اصطلاحات</u>

 $M\left(\cos x\,;\sin x\,
ight)$ فصول منحني لنقطة M فان المراف أفصول -

- \cos الدالة $\mathbb{R} \to \mathbb{R}$ تسمى دالة جيب التمام حيز تعريفها $\mathbb{R} \to \mathbb{R}$ تسمى دالة جيب التمام حيز تعريفها $x \to \cos x$
 - \sin الدالة $\mathbb{R} \to \mathbb{R}$ تسمى دالة الجيب حيز تعريفها \mathbb{R} يرمز لها بـ $\frac{\mathbb{R} \to \mathbb{R}}{x \to \sin x}$ -
- tan يرمز لها بـ $\mathbb{R} \left\{ \frac{\pi}{2} + k \, \pi / k \in \mathbb{Z} \right\}$ تسمى دالة الظل حيز تعريفها $\mathbb{R} \to \mathbb{R}$ يرمز لها بـ الدالة $x \to \tan x$

2-2- خاصيات

[H'] النقطة C تنتمي الى القطعة (C) أفصولها منحي x النقطة C تنتمي الى القطعة *

$$Iig(1;0ig)$$
 ; $I'ig(-1;0ig)$; $J'ig(0;-1ig)$; $Jig(0;1ig)$ حيث $J(0;1)$ حيث S

 $-1 \le \cos x \le 1$ $-1 \le \sin x \le 1$ $x \in \mathbb{R}$ لكل

$$\cos^2 x + \sin^2 x = 1 \qquad x \in \mathbb{R}$$
 لکل -*

$$\tan x = \frac{\sin x}{\cos x}$$
 $x \in \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi / k \in \mathbb{Z} \right\}$ حکل -*

نعلم أنُ جميع الأعداد الحقيقية التي تكتب $x+2k\,\pi$ حيث $x+2k\,\pi$ ، أفاصيل منحنية لنفس النقطة M

$$\cos(x+2k\pi) = \cos x$$
 ; $\sin(x+2k\pi) = \sin x$ $x \in \mathbb{R}$ لکل

an x هو T مهما كانت $M\left(x+k\,\pi
ight)$ لدينا أفصــول -

$$\tan(x+k\pi) = \tan x$$
 $x \in \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi/k \in \mathbb{Z} \right\}$ لکل

$$an(x+\pi) = \tan x$$
 $x \in \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi/k \in \mathbb{Z} \right\}$ کال

*- بتوظيف الدائرة المثلثية نحصل على

$$x \in \mathbb{R}$$
 لکل $\cos(-x) = \cos x$; $\sin(-x) = -\sin x$

نعبرعن هذا بقولنا ان الدالة cos زوجية و أن الدالة sin فردية.

$$x \in \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi/k \in \mathbb{Z} \right\}$$
 کل $\tan(-x) = -\tan x$

نعبر عن هذا بقولنا ان الدالة tan فردية.

$$x \in \mathbb{R}$$
 لکل $\sin(\pi - x) = \sin x$; $\cos(\pi - x) = -\cos x$

$$x \in \mathbb{R}$$
 لکل $\sin(\pi + x) = -\sin x$; $\cos(\pi + x) = -\cos x$

$$x \in \mathbb{R}$$
 لکل $\sin\left(\frac{\pi}{2} - x\right) = \cos x$; $\cos\left(\frac{\pi}{2} - x\right) = \sin x$

$$x \in \mathbb{R}$$
 لکل $\sin\left(\frac{\pi}{2} + x\right) = \cos x$; $\cos\left(\frac{\pi}{2} + x\right) = -\sin x$

3-2- نسب مثلثية اعتبادية

Х	0	$\frac{\pi}{}$	$\frac{\pi}{}$	$\frac{\pi}{}$	$\frac{\pi}{}$	$\frac{2\pi}{}$	$\frac{3\pi}{}$	$\frac{5\pi}{}$	
		6	4	3	2	3	4	6	π
sinx	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
cosx	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
tanx	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	غیر معرف	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0

<u>تمارىن</u>

$$\cos\frac{34\pi}{3}$$
 ; $\cos\frac{-37\pi}{4}$; $\sin\frac{53\pi}{6}$; $\sin\frac{-7\pi}{2}$ تمرین $\cos\frac{1}{3}$ أحسب $\cos\frac{\pi}{6} + \cos\frac{2\pi}{6} + + \cos\frac{11\pi}{6}$ أ- حدد $\sin\left(\frac{7\pi}{2} + x\right) + \cos\left(\frac{27\pi}{2} - x\right) + \sin\left(3\pi + x\right) - \cos\left(7\pi - x\right)$ ب- بسط