PATENT ABSTRACTS OF JAPAN

(11)Publication number:

(43)Date of publication of application: 24.01.1995

(51)Int.CI.

G02F 1/133 G02F

(21)Application number: 05-189183

(71)Applicant:

TOSHIBA CORP

(22)Date of filing:

30.06.1993

(72)Inventor:

OKUMURA HARUHIKO

SUZUKI KOHEI

(54) LIQUID CRYSTAL DISPLAY DEVICE

(57)Abstract:

PURPOSE: To improve a response speed of a liquid crystal display device and to improve a hysterisis characteristic seen in a macromolecule distributed type liquid

CONSTITUTION: This device is constituted so as to be provided with a liquid crystal display part impressing an imparted signal to a liquid crystal for displaying, a compensation means 2 performing first signal processing for compensating a response characteristic of transmissivity of the liquid crystal for an applied voltage for an input image signal and impressing it to the liquid crystal part and a response estimating means 4 inputting the output of the compensation means 2 and performing second signal processing using a characteristic approximated to the voltage-responding characteristic of the liquid crystal to the input and impressing it to the compensation means 2, and the first signal processing is provided with the characteristic changed by at least either the output signal of the input image signal or that of the respondent estimating means 4, and the second signal processing is provided with the characteristic changed by the output signal of the compensation means 2.

LEGAL STATUS

[Date of request for examination]

04.11.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3346843

[Date of registration]

06.09.2002

[Number of appeal against examiner's decision of rejection] [Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-20828

(43)公開日 平成7年(1995)1月24日

(51) Int.Cl. ⁶ G 0 9 G	3/36	識別記号	庁内整理番号	FΙ	技術表示箇所
G02F 1/1	1/133	5 7 0 5 7 5	9226-2K 9226-2K		

審査請求 未請求 請求項の数2 FD (全 9 頁)

		工艺 (王 5 頁)
(21)出願番号	特願平5 -189183	(71) 出願人 000003078
(22)出願日	平成5年(1993)6月30日	株式会社東芝 神奈川県川崎市幸区堀川町72番地
		(72)発明者 奥村 治彦
		神奈川県横浜市磯子区新磯子町33番地 株式会社東芝生産技術研究所内
		(72)発明者 鈴木 公平
		神奈川県横浜市磯子区新磯子町33番地 株式会社東芝生産技術研究所内
		(74)代理人 弁理士 鈴江 武彦
		·
		i

(54) 【発明の名称】 液晶表示装置

(57)【要約】

【目的】 液晶ディスプレイの応答速度の向上と高分子 分散型液晶に見られるヒステリシス特性の改善を目的と する。

【構成】 本発明に係る液晶表示装置では、与えられた信号を液晶に印加して表示を行う液晶表示部と、入力画像信号に対して前記液晶の印加された電圧に対する透過率の応答特性を補償するための第1の信号処理を施して前記液晶表示部に与える補償手段2,22と、前記補償手段の出力を入力とし、この入力に前記液晶の電圧応答特性を近似した特性を用いた第2の信号処理を施して前記補償手段に与える応答予測手段4とを具備してなり、前記第1の信号処理は、前記入力画像信号および前記応答予測手段の出力信号のうちの少なくとも一方により変化される特性を有し、前記第2の信号処理は、前記補償手段の出力信号により変化される特性を有することを特徴とする。

【特許請求の範囲】

【請求項1】与えられた信号を液晶に印加して表示を行 う液晶表示部と、

入力画像信号に対して、前記液晶の印加電圧に対する透 過率応答特性を補償するための第1の信号処理を施して 前記液晶表示部に与える補償手段と、

前記補償手段の出力を入力とし、この入力に前記液晶の 電圧応答特性を近似した特性を用いた第2の信号処理を 施して前記補償手段に与える応答予測手段とを具備して なり、

前記第1の信号処理は、前記入力画像信号および前記応 答予測手段の出力信号のうちの少なくとも一方により変 化される特性を有し、

前記第2の信号処理は、前記補償手段の出力信号により 変化される特性を有することを特徴とする液晶表示装

【請求項2】前記応答予測手段は少なくとも1つの1フ ィールド遅延回路を備えた低域通過フィルターであり、 前記補償手段は高域強調フィルターであることを特徴と する請求項1に記載の液晶表示装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、液晶表示装置に関す

[0002]

【従来の技術】一般に液晶の応答速度は、液晶分子が印 加された電界によって立ち上がる速度trと、電界を零 にしたときに各分子間の力によって元の状態に復帰する 速度tdにより決まる。これらの速度tr、tdは以下 の式で表される。

[0003]

t $r = \eta d^2 / (\Delta \varepsilon V - K \pi^2)$... (1)

【数1】

[0007]

られている。

+ (f (θ) $\partial \theta / \partial z$) $/ \partial z$

 $\tau \cdot 1 \cdot \partial \theta / \partial t = f(\theta) (\partial^2 \theta / \partial z^2)$

 $+g(\theta)(\partial\phi/\partial z)^{2}$

+ e (θ) (∂φ/∂z)

+h (θ) Dz²/4 π ... (3)

[0008]

※40※【数2】

 $\gamma \cdot 1 \cdot \partial \phi / \partial t = (1/\cos^2 \theta) \cdot (u(\theta)(\partial \theta / \partial z))$

 $+v(\theta)/\partial z$

で記述される。上式は非線形偏微分方程式であり、解析 的に解くことはできないが、数値計算により解くことが できる。また電極間に印加される入力電圧Vは、a= ★

 \bigstar $(\varepsilon, -\varepsilon,)/\varepsilon,$ $\succeq 0$ [0009]

 $V = (Dz/\varepsilon_p) \qquad dZ/(1+a \sin^2 \theta)$

... (2)

 $* t d = n d' / K \pi'$ ここに、Kは、液晶の発散、ねじれ、曲げの弾性定数を

それぞれK1, K2, K3 としたときに、K=K1+ $(K_3 - 2K_2) / 4$ で表される定数である。 $\Delta \varepsilon$ は、 液晶分子の長軸方向の誘電率ε、と短軸方向の誘電率ε 。の差 ε 、 $-\varepsilon$ 。である。 η は液晶分子のねじれ粘性、

dは液晶セルの厚み(セルギャップ)、Vは印加電圧で

【0004】(1), (2) 式から明らかなように、液 晶の応答速度を速めるには、η、dを小さくするか、ま たはKを大きくすればよい。ただし、ヵ、Kは物質定数 であり、dは屈折率の異方性である△nとの兼ね合いで 最小透過率が決まってくるので、それ程小さくすること はできない。そこで種々の液晶物質のブレンドによって n、K、 An等を変化させて高速応答を実現する努力が 続けられている。また、立ち上がり速度trについて゛ は、 $\Delta \varepsilon$ またはVを変化させることにより高速化するこ とができ、立ち下がり速度tdについては、誘電率の異 方性が低周波では正、髙周波では負であることを利用し て、電圧OFF時に髙周波を重畳して高速化した例が知 20

【0005】以上のような液晶応答速度の改善は、ON /OFFの二値表示の場合有効であるが、中間調表示を 考慮した場合には状況は複雑になる。その事情を図面を 参照して以下に説明する。

【0006】図3は電極141、142間の一つの液晶 分子143を示している。液晶分子143は、x軸に対 してθ、x軸に対してφ傾いており、この状態で液晶分 子143に2軸方向の電界がかかったときの流体力学方 30 程式は、

で表される。D、は電束密度である。

【0010】以上の(3)~(5)式を連立して解くことにより、入力電圧変化による液晶分子の過渡応答特性を求めることができる。これらの式から、液晶分子の時間的変化量は、入力電圧に依存することがわかる。このようにして求められた液晶分子の時間的変化量 θ (z、t)および θ (z、t)をBarrmanの 4×4 マトリクスに入れて解くことにより、最終的な光学応答特性を導出することができる。

【0011】一方、図4は液晶の透過率-入力電圧特性 10を示している。この特性から、通常、100/1のコントラスト比をとるためには、ノーマリ・ホワイトの場合で5V程度の入力振幅を必要とするが、中間調レベルだけを考えると、振幅は1.5~2Vになる。以上のことは、中間調レベル表示においては、応答速度が二値表示の場合より遅くなることを示している。このことは、液晶をTV等のフルカラー表示に用いた場合問題になる。

【0012】すなわち液晶表示装置をTV等のフルカラー表示に用いる場合、中間調レベルでの応答速度を10msec程度にする必要があるが、現状は二値表示でも20msec程度にしかなっていない。このため、動画表示には著しく残像が目立ち、高画質が得られない。

【0013】以上のように従来の液晶表示装置では、中間調レベルでの応答速度が十分でなく、TV等のフルカラー表示に用いた場合に高画質が得られないという問題があった。

【0014】一方、これを改善するために、例えば図5に示すような液晶表示装置が提案されているが、この液晶表示装置にも以下のような問題点がある。なお、図5において、入力画像信号S(t)は、ビデオ信号をR、G、Bに分解した後の信号であるが、R、G、B信号に対して同じ処理になるので、ここではそのうちの1チャネルのみ示している。

【0015】入力画像信号S(t)は、少なくとも1フィールド分の画像信号を記憶する画像用記憶回路101 に保持される。差分器102は、入力画像信号S(t)と画像用記憶回路101とから、対応する各画素信号の差をとるもので、1フィールドの間の信号レベルの変化を検出するレベル変化検出回路となっている。この差分器102から得られる時間軸方向の差信号Sa(t)は、入力画像信号S(t)と共に時間軸フィルタ回路103に入力される。

【0016】時間軸フィルタ回路103は、差信号Sd(t)に応答速度に応じた重み係数αをかける重み付け回路132と、重み付けられた差信号と入力画像信号S(t)を加算する加算器131とから構成されている。これはレベル変動検出回路の出力と入力画像信号の各画素の入力レベルによりフィルタ特性が変化させられる適応型フィルタ回路である。この時間軸フィルタ回路103によって入力画像信号S(t)は時間軸方向の高域が50

強調される。こうして得られた高域強調信号は、極性反転回路104によって交流信号に変換されて液晶表示部105に供給される。液晶表示部105は、複数本のデータ信号配線とこれと交差する複数本の駆動信号配線の各交差部に表示電極を持つ、アクティブマトリクス方式の液晶表示部である。

【0017】図6は、図5に示す従来の液晶表示装置に より応答特性が改善される様子を示す信号波形である。 説明をわかり易くするため入力画像信号S(t)が1フ ィールド周期で変化するものとし、図では2フィールド で信号レベルが急激に変化している場合を示している。 との場合時間軸方向の入力信号変化すなわち差信号Sd (t)は図に示すように、入力画像信号が正に変化する ときに 1 フィールド間正になり、負に変化するときに 1 フィールド間負になる。基本的にはこの差信号を入力信 号に加えることにより、高域強調ができる。しかしなが ら実際には、液晶の応答速度によって入力信号変化がど の程度液晶セルの透過率変化になるかが変わってくるの で、オーバーシュートが生じない範囲で補正するように 重み係数αをかける。これにより図示のような高域が補 正された信号Sc(t)が得られる。 このように高域が 強調される信号が液晶表示部に入力されることにより、 光学応答特性I(t)は、破線で示す従来のものに対し て実線で示すように改善される。

【0018】具体的には、図7に示すように液晶の伝達関数をHLCD(ω t)とすると、高域強調関数Hc(ω t)が掛けられた後の周波数特性Ht(ω t)は以下のようになる。

[0019]

30 Ht (ωt) = HLCD $(\omega t) \cdot$ Hc (ωt) Hc (ωt) = $\alpha \{1 - \exp(j \cdot 2\pi\omega t / \omega c)\}$ + 1

 $\omega c = 2\pi/60$

40 になる。

すなわちこの従来例では、Ht (ωt) が広帯域化できるように、HLCD (ωt) が低下するところをHc (ωt) により補償することになる。実際にこの特性を求め、あるいは重み係数 α を決めるためには、従来技術で説明した液晶分子のダイナミック特性を記述する式(3) \sim (5) を α をバラメータとして解いていくこと

【0020】しかし、さらに応答速度が遅い場合や駆動電圧に制限があり1フィールド後に目的の輝度に達成していない場合には、入力の1フィールド遅延信号と実際の1フィールド後の信号電圧が等しくなくなり、誤差が生じる。その結果、図5に示す従来の液晶表示装置を用いた場合、高域強調量が不足し最高の応答速度を得るととができないという欠点があった。

[0021] 一方、液晶材料には色々な種類があり、最近高分子分散型液晶(以後PDLC)が偏光板を使わないため高輝度で広視野角であるとして注目されている。

5

しかし、PDLCは以下の問題がある。

[0022](1)入出力特性にヒステリシス特性がある。

【0023】(2)中間調の応答速度が遅い。

【0024】(3) しきい値V thの温度特性が悪い。 【0025】PDLCの入出力特性の一例を図8に示す。この図は駆動電圧がある電圧から異なる電圧に変化するときの特性を示している。この図より駆動電圧が変化する方向と基準となる電圧により特性が変化するヒステリシス特性を示していることがわかる。このような特性があると同じ電圧を加えても違った透過率となってしまうため、画像が忠実に再生されない。

【0026】次にPDLCの実際の特性を図9に、応答特性を図10に示す。応答特性は、図10の黒四角で示されるように2値駆動時ではある程度良いが、その他の中間調を表示する場合は極端に悪化する。

[0027]

【発明が解決しようとする課題】以上のように、従来の液晶表示装置では、液晶の電圧応答特性が悪いとき、あるいは液晶の電圧・透過率特性にヒステリシスがあるときは、中間調表示を含む動画に対する液晶の応答性、忠実度を十分補償できないという問題があった。

[0028] 本発明は、このような点に鑑みなされたもので、応答特性が良く忠実に動画を再現できる液晶表示 装置を提供することを目的とする。

[0029]

【課題を解決するための手段】本発明にかかる液晶表示装置は、与えられた信号を液晶に印加して表示を行う液晶表示部と、入力画像信号に対して前記液晶の印加された電圧に対する透過率の応答特性を補償するための第1 30の信号処理を施して前記液晶表示部に与える補償手段と、前記補償手段の出力を入力とし、この入力に前記液晶の電圧応答特性を近似した特性を用いた第2の信号処理を施して前記補償手段に与える応答予測手段とを具備してなり、前記第1の信号処理は、前記入力画像信号および前記応答予測手段の出力信号のうちの少なくとも一方により変化される特性を有し、前記第2の信号処理は、前記補償手段の出力信号により変化される特性を有することを特徴とする。

【0030】液晶の電圧応答特性が悪いときには、前記 40 応答予測手段には少なくとも1つの1フィールド遅延回路を備えた低域通過フィルターを用い、前記補償手段には高域強調フィルターを用いると好ましい。

【0031】また、液晶の電圧応答特性が悪く、しかも電圧・透過率特性にヒステリシスがあるときは、前記応答予測手段には少なくとも1つの1フィールド遅延回路を備えた低域通過フィルターを用い、前記補償手段が前記液晶の電圧と透過率との間のヒステリシス特性の逆特性を有するように構成すると好ましい。さらに、前記応答予測手段には少なくとも1つの1フィールド遅延回路

を備えた低域通過フィルターを用い、前記補償手段が前記液晶の電圧と透過率との間のヒステリシス特性および 非線形特性(ガンマの特性)の逆特性を有するように構成することも可能である。

6

[0032]

【作用】本発明によれば、前記応答予測手段により得られる液晶の電圧応答特性の予測値を考慮して、前記補償 手段は当該液晶の印加電圧に対する透過率応答特性を補償するための処理を入力画像信号に対して施す。

【0033】したがって、画像の輝度およびその変化が 激しい動画、特にTV画像に対しても、ヒステリシス特 性や残像等の特性を改善でき、忠実な輝度を再現するこ とができる。

[0034]

20

【実施例】以下、図面を参照しながら、本発明の実施例 を説明する。

[0035]図1は、本発明の第1の実施例の要部構成を示す。同図における入力画像信号は、ビデオ信号をR、G、Bに分解した後の信号であるが、R、G、B信号に対して同じ処理を行うので、ととではそのうちの1チャンネルのみ示している。

【0036】との特性補償回路は、入力画像信号X。に対して液晶の印加電圧に対する透過率応答特性を補償するための処理を施す信号処理部2、および、この信号処理部2の出力Z。に対して図示しない表示部に含まれる液晶の電圧応答特性を近似した入出力特性による処理を施し、その出力信号Y。、を対応する液晶の応答電圧の予測値として当該信号処理部2にフィードバックするための応答予測部4からなる。

【0037】信号処理部2に設けられた図示しない記憶 手段、例えばROMには、入力画像信号X。および応答 予測部4からの信号Y ... に従って決定される補正特性 がテーブル化されて格納されており、信号処理部2は、 このテーブル値に従って、入力画像信号X。の電圧を調 整して出力する。との補正の内容は、例えば液晶として PDLCを用いた場合は図8に示したようなヒステリシ ス特性の逆特性である。すなわち、図8の静特性より明 らかなように、変化する前の液晶の電圧、および、変化 した後の電圧(または変化前後の電圧差)により、変化 後の透過率(輝度)が決定されるので、変化前の電圧を 予測した応答予測部4の出力電圧Yn-1と入力画像信号 の電圧値X。とから、入力画像信号の電圧値X。を予め 前記テーブル値に従って調整しておくことで、同一の入 力電圧値に対して液晶が同一の透過率を示すように補償 する。

【0038】 ことで、液晶の電圧応答特性が1フィール ド後に安定する場合は、補正特性テーブルは図10の特 性だけを基にして作成すれば良いが、図10に示したよ うに電圧応答特性が悪い場合は、駆動電圧と透過率特性 の対応が図8では表せなくなるので、電圧応答特性に応

じて異なる特性図を設けることが好ましい。すなわち、 液晶のヒステリシス特性および電圧応答特性の両方を加 味した補正特性をテーブル化すれば良いわけである。

【0039】応答予測部4は、前述のように液晶の電圧 に対する応答を予測するための手段である。通常、液晶 の応答特性は低域通過フィルター(以下、LPF)で近 似することができるが、実際の液晶の応答特性は電圧レ ベルによって特性が異なるので、このLPFも電圧レベ ル依存型のLPF群として近似した。このLPF群の構 成は色々考えられるが、その一例として図 1 では係数 lphaを電圧レベルにより変化させる構成を採用した。すなわ ち、この応答予測部4は、少なくとも1フィールド分の 画像信号を記憶するための画像用記憶回路6、重み係数 $1/(\alpha+1)$ を乗ずるための第1の重み係数乗算器 8、重み係数 α /(α +1)を乗ずるための第2の重み 係数乗算器10および加算器12からなる。この回路で は、加算器12の出力Y。が信号処理部2の出力2。に 対応する液晶の電圧応答の予測値となり、フィールドメ モリ6の出力Y₋₋₁ が1フィールド前の予測値すなわち 入力画像信号Xn に対する液晶の初期電圧となる。この 時のLPFの出力Y。は、以下のようになる。

 $[0040]Y_n = {\alpha/(\alpha+1)} *Y_{n-1} + {1}$ $/(\alpha+1)$ } *Z.

 $\alpha = \alpha (Z_n)$

このようにすれば、実際の1フィールド後の液晶の応答 電圧がこのLPF出力として近似でき、この電圧を次の フィールドでの初期電圧とすることで正確な特性シミュ レートを行うことができる。

【0041】以上のような構成において、入力画像信号 Xn は信号処理部2において1画素の電圧信号毎に、と れらが印加される液晶が初期電圧にかかわりなく同一の 入力電圧に対して同一の透過率を示すようにその電圧値 が調整される。信号処理部2の出力は、図示しない極性 反転回路を経由して液晶表示部に与えられると共に、応 答予測部4へ与えられる。

【0042】一方、応答予測部4は、この信号に液晶の 電圧応答特性を近似した低域通過処理を施し、1フィー ルド分遅延した出力を信号処理部2にフィードバックす る。

【0043】以下、順次、1フィールド分の入力画像信 号毎に、信号処理部2は与えられた当該入力画像信号X 。と応答予測部4からの信号Y。., を基に、当該入力画 像信号X。に前述のような特性補償のための処理を施し て出力する。

【0044】したがって、電圧・透過率特性にヒステリ シスがある液晶を用いた場合であっても、また、加えて その液晶の電圧応答特性が悪い場合であっても、本発明 では、忠実に動画を再現することが可能となる。

【0045】なお、上述した補正特性が近似式を用いて

いる代わりに、そのような近似式で表される入出力特性 を有する補正回路を用いても良い。

【0046】ととで、従来は、液晶の入出力特性が非線 形であるために、最終透過率精度として8ビット精度を 得るためには、駆動電圧精度としては10ビットが必要 であり、その信号に補正を行なおうとすると10ビット の信号処理となり大幅に回路規模が増大した。しかし、 本発明に基づいて、信号処理部2の記憶手段の中に逆の 非線形特性(ガンマの特性)およびヒステリシス補正特 性をテーブル化するように構成すれば、入力8ビットで 最終出力のみ10ビットとなり、10ビットの信号処理 を大幅に低減することができる。このように、補正特性 を一括してROMテーブル化する手法は、ビット精度を 上げるだけでなく、有効な回路規模低減法でもある。 【0047】次に、本発明に係る第2の実施例について 説明する。図2には、本実施例の要部構成を示す。とと では、図1と同様、R,G,B信号のうちの1チャンネ ルのみ示している。

【0048】この実施例では、ヒステリシス補正特性は 20 有しないが、印加された電圧に対する電圧応答性が悪 く、次のフィールドまでに応答しきれない液晶に対して 図1と同じように応答特性をLPFで近似して高域強調 フィルターでの強調量の誤差を低減しようとするもので ある。すなわち、この特性補償回路は、入力画像信号X 。に対し、液晶の印加電圧に対する透過率応答特性を補 償するための処理を施す信号処理部22、および、この 信号処理部22の出力Z。に対して図示しない表示部に 含まれる液晶の電圧応答特性を近似した入出力特性によ る処理を施し、その出力信号Y。-1 を1フィールド後の 液晶の応答電圧の予測値として当該信号処理部22にフ ィードバックするための応答予測部24からなる。な お、本実施例は第1の実施例とほぼ同様の構成を有して おり、特に応答予測部24に関しては同一の構成である ので、対応する部分には同一番号を付して詳細な説明は 省略する。

【0049】本実施例では、液晶はヒステリシス補正特 性を有しないので、液晶の印加電圧に対する透過率応答 特性の補償とは、すなわち液晶の印加電圧に対する電圧 応答特性の補償となるので、前述の第1の実施例におい て用いた補正テーブルを用いずに、信号処理部22とし て髙域強調フィルターを用いて処理の髙速化を図る。す なわち、この信号処理部22は、入力画像信号X。と応 答予測部24の出力Y,,, との差分をとる差分器22、 との差分器22の出力に対して強調量Bを乗じる強調量 乗算器32、入力画像信号X。 とこの強調量乗算器20 の出力とを加算して出力する加算器24からなる。

【0050】強調量βは、応答予測部24からの予測電 圧Y。、 と入力画像信号X。の電圧に対応して、液晶の 応答の時間軸特性を最適化するようにあらかじめ決定し パラメトリックに表せるときは、前記補正テーブルを用 50 ておく。この時の高域強調フィルターの特性は、以下の

式で表される。

 $[0.051]Z_n = \beta * (X_n - Y_{n-1}) + X_n = (\beta$ $+1) * X_n - \beta * Y_{n-1}$

$\beta = \beta (Z_n)$

一方、応答予測部24のLPFとしての出力Y。は、第 1の実施例と同様、以下のようになる。

 $[0052]Y_n = {\alpha/(\alpha+1)} *Y_{n-1} + {1}$ $/(\alpha+1)$ } *Z_n

$\alpha = \alpha (Z_n)$

以上のような構成において、信号処理部22には、画像 10 信号X。が与えられると共に、1フィールド後の実際の 駆動電圧を予測フィルターとして働く応答予測部4の出 カY。, が与えられる。入力画像信号X。は、信号処理 部22により、この応答予測部4からの予測電圧Y ... と入力画像信号の電圧値X。により決定された強調量B を用いた高域強調処理が施され、図示しない極性反転回 路を経由して液晶表示部に与えられる。

【0053】しかし、それでも1フィールド後には目的 の透過率に達成できない場合はその予測値Y。、をLP Fにより決定し記憶しておく。これを繰り返すことで応 20 答速度が遅い場合でも最適な制御をすることができる。 [0054] CCで、 $\alpha = \beta$ ならば最終的な透過率出力 Y, は

$Y_n = X_n$

となり、入力に等しくなり、完全に追従する。

【0055】この例では、液晶の応答特性を1次のLP Fで近似したが、実際の液晶の応答特性はより低域およ び高域成分を含んだ複雑な形であるので、1フィールド 毎の制御では完全に補償することができない。そこで、 $\alpha = \beta$ が最適制御ではなくなり、さらに人間の視覚特性 がバンドバスフィルターやローパスフィルター特性を持 つことから、視覚も含めた特性としてはオーバーシュー トを持たせて少し過補償気味する方が良い制御といえ る。

【0056】とのように、本発明によれば、液晶の電圧 応答を予測して入力画像信号に液晶の特性を補償するた めの信号処理を施すので、従来の液晶表示装置では補償* * しきれなかった遅い応答速度を有する液晶についても十 分補償をすることができ、画像の輝度およびその変化が 激しい動画特にTV画像に対しても忠実な輝度を再現す るととができる。

10

【0057】なお、設計上の都合などによって、信号処 理部22として高域強調特性をテーブル化した補正RO Mを用いても構わない。

[0058]また、本発明は上述した各実施例に限定さ れるものではなく、その要旨を逸脱しない範囲で、種々 変形して実施することができる。

[0059]

【発明の効果】以上詳細に説明してきたように、本発明 によれば、応答性の悪い液晶や過去の状態によって特性 の変化する液晶に対して、応答性も含めて最適な補正を 行うことができるため、動画に対する応答性および再現 性が良い高画質な液晶表示装置を提供することができ

【図面の簡単な説明】

【図1】本発明の第1の実施例の構成を示す図

【図2】本発明の第2の実施例の構成を示す図

【図3】液晶の応答速度を説明するための図

【図4】液晶の透過率の入力電圧依存性を示す図

【図5】従来の液晶表示装置の概略構成を示す図

【図6】従来の駆動波形と効果を示す図

【図7】従来の補正特性を示す図

【図8】高分子分散型液晶材料の入出力特性の例を示す

【図9】実際の高分子分散型液晶材料の入出力特性を示 す図

【図10】高分子分散型液晶材料の応答特性を示す図 【符号の説明】

2…信号処理部

4…応答予測部

6…画像用記憶回路

8…第1の重み係

数乗算器

10…第2の重み係数乗算器

12…加算器

20…強調量乗算器

24…加算器

22…差分器

【図9】

【図7】

[図10]

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第6部門第2区分 【発行日】平成13年6月8日(2001.6.8)

[公開番号] 特開平7-20828

[公開日] 平成7年1月24日(1995.1.24)

【年通号数】公開特許公報7-209

【出願番号】特願平5-189183

【国際特許分類第7版】

G09G 3/36

G02F 1/133 570

575

[FI]

G09G 3/36

G02F 1/133 570

575

【手続補正書】

【提出日】平成11年11月4日(1999.11.4)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】駆動信号が液晶に印加されることにより表示を行う液晶表示部と、

入力画像信号を前記液晶の応答特性に基づいて補償して 前記駆動信号を生成する補償手段とを具備する液晶表示 装置。

【請求項2】前記補償手段は、

前記液晶の電圧応答特性を予測して予測信号を生成する 応答予測手段と、前記入力画像信号に対して該入力画像 信号と前記予測信号とに基づき前記液晶の印加電圧に対 する透過率応答特性を補償するための信号処理を施して 前記駆動信号を生成する信号処理手段とを有する請求項 1記載の液晶表示装置。

【請求項3】前記応答予測手段は、

前記駆動信号に重み係数 1/(1+α)を乗じる第1の乗算手段と、前記予測信号に重み係数 α/(1+α)を乗じる第2の乗算手段と、前記第1及び第2の乗算手段の出力信号を加算する加算手段と、この加算手段の出力信号を所定時間遅延させて前記予測信号を生成する遅延手段とを含む請求項2記載の液晶表示装置。

【請求項4】前記信号処理手段は、

前記入力画像信号と前記予測信号との差信号を得る減算 手段と、前記差信号を重み付けする重み付け手段と、こ の重み付けされた差信号と前記入力画像信号とを加算し て前記駆動信号を生成する加算手段とを含む請求項2記 載の液晶表示装置。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0029

【補正方法】変更

【補正内容】

[0029]

【課題を解決するための手段】本発明にかかる液晶表示装置は、駆動信号が液晶に印加されることにより表示を行う液晶表示部と、入力画像信号を前記液晶の応答特性に基づいて補償して前記駆動信号を生成する補償手段とを具備することを特徴とする。より具体的には、前記補償手段は、前記液晶の電圧応答特性を予測して前記予測信号を生成する応答予測手段と、前記入力画像信号に対して該入力画像信号と前記予測信号とに基づき前記液晶の印加電圧に対する透過率応答特性を補償するための信号処理を施して前記駆動信号を生成する信号処理手段とを有する。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0030

【補正方法】変更

【補正内容】

【0030】液晶の電圧応答特性が悪いときには、前記応答予測手段には少なくとも1つの1フィールド遅延回路を備えた低域通過フィルターを用い、前記信号処理手段には高域強調フィルターを用いると好ましい。具体的には、前記応答予測手段は、前記駆動信号に重み係数1/(1+α)を乗じる第1の乗算手段と、前記予測信号に重み係数α/(1+α)を乗じる第2の乗算手段と、前記第1及び第2の乗算手段の出力信号を加算する加算手段と、この加算手段の出力信号を所定時間遅延させて

前記予測信号を生成する遅延手段とを含んで構成される。また、前記信号処理手段は、前記入力画像信号と前記予測信号との差信号を得る減算手段と、前記差信号を重み付けする重み付け手段と、との重み付けされた差信号と前記入力画像信号とを加算して前記駆動信号を生成する加算手段とを含んで構成される。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0031

【補正方法】変更

【補正内容】

【0031】また、液晶の電圧応答特性が悪く、しかも電圧・透過率特性にヒステリシスがあるときは、前記応答予測手段には少なくとも1つの1フィールド遅延回路を備えた低域通過フィルターを用い、前記信号処理手段が前記液晶の電圧と透過率との間のヒステリシス特性の逆特性を有するように構成すると好ましい。さらに、前記応答予測手段には少なくとも1つの1フィールド遅延回路を備えた低域通過フィルターを用い、前記補償手段が前記液晶の電圧と透過率との間のヒステリシス特性および非線形特性(ガンマの特性)の逆特性を有するように構成することも可能である。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】0032

【補正方法】変更

【補正内容】

[0032]

【作用】本発明によれば、前記応答予測手段により得られる液晶の電圧応答特性の予測値を考慮して、前記<u>信号処理</u>手段は当該液晶の印加電圧に対する透過率応答特性を補償するための処理を入力画像信号に対して施す。

【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】0038

【補正方法】変更

【補正内容】

【0038】とこで、液晶の電圧応答特性が1フィール ド後に安定する場合は、補正特性テーブルは図8の特性 だけを基にして作成すれば良いが、図10に示したよう に電圧応答特性が悪い場合は、駆動電圧と透過率特性の 対応が図8では表せなくなるので、電圧応答特性に応じ て異なる特性図を設けることが好ましい。すなわち、液 晶のヒステリシス特性および電圧応答特性の両方を加味 した補正特性をテーブル化すれば良いわけである。

【手続補正7】

【補正対象書類名】明細書

【補正対象項目名】0048

【補正方法】変更

【補正内容】

【0048】との実施例では、ヒステリシス補正特性は 有しないが、印加された電圧に対する電圧応答性が悪 く、次のフィールドまでに応答しきれない液晶に対して 図1と同じように応答特性をLPFで近似して髙域強調 フィルターでの強調量の誤差を低減しようとするもので ある。すなわち、この特性補償回路は、入力画像信号X 。に対し、液晶の印加電圧に対する透過率応答特性を補 償するための処理を施す信号処理部2、および、この信 号処理部2の出力2。に対して図示しない表示部に含ま れる液晶の電圧応答特性を近似した入出力特性による処 理を施し、その出力信号Y。- 1 を 1 フィールド後の液晶 の応答電圧の予測値として当該信号処理部22にフィー ドバックするための応答予測部4からなる。なお、本実 施例は第1の実施例とほぼ同様の構成を有しており、特 に応答予測部4に関しては同一の構成であるので、対応 する部分には同一番号を付して詳細な説明は省略する。

【手続補正8】

【補正対象書類名】明細書

【補正対象項目名】0049

【補正方法】変更

【補正内容】

【0049】本実施例では、液晶はヒステリシス補正特性を有しないので、液晶の印加電圧に対する透過率応答特性の補償とは、すなわち液晶の印加電圧に対する電圧応答特性の補償となるので、前述の第1の実施例において用いた補正テーブルを用いずに、信号処理部2として高域強調フィルターを用いて処理の高速化を図る。すなわち、この信号処理部2は、入力画像信号X。と応答予測部4の出力Y。」との差分をとる差分器22、この差分器22の出力に対して強調量βを乗じて重み付けを行う強調量乗算器20、入力画像信号X。とこの強調量乗算器20の出力とを加算して出力する加算器24からなる。

【手続補正9】

【補正対象書類名】明細書

【補正対象項目名】0050

【補正方法】変更

【補正内容】

【0050】強調量βは、応答予測部4からの予測電圧 Y_{n-1}と入力画像信号X。の電圧に対応して、液晶の応 答の時間軸特性を最適化するようにあらかじめ決定して おく。この時の高域強調フィルターの特性は、以下の式 で表される。

【手続補正10】

【補正対象書類名】明細書

【補正対象項目名】0051

【補正方法】変更

【補正内容】

 $[0051]Z_n = \beta * (X_n - Y_{n-1}) + X_n = (\beta + 1) * X_n - \beta * Y_{n-1}$

 $\beta = \beta (Z_n)$

一方、応答予測<u>部4</u>のLPFとしての出力Y。は、第1の実施例と同様、以下のようになる。

【手続補正11】

【補正対象書類名】明細書

【補正対象項目名】0052

【補正方法】変更

【補正内容】

 $[0052]Y_n = {\alpha/(\alpha+1)} *Y_{n-1} + {1}/(\alpha+1)} *Z_n$

 $\alpha = \alpha (Z_n)$

以上のような構成において、信号処理<u>部2</u>には、画像信号X。が与えられると共に、1フィールド後の実際の駆動電圧を予測フィルターとして働く応答予測部4の出力 Y_{n-1} が与えられる。入力画像信号X。は、信号処理<u>部</u>2により、この応答予測部4からの予測電圧Y_{n-1} と入力画像信号の電圧値X。により決定された強調量βを用いた高域強調処理が施され、図示しない極性反転回路を

経由して液晶表示部に与えられる。 【手続補正12】 【補正対象書類名】図面 【補正対象項目名】図2 【補正方法】変更 【補正内容】

