

Research-Based Principles of Multimedia Training

Richard E. Mayer

University of California, Santa Barbara

Collaborators

Robert K. Atkinson

Richard B. Anderson

Julie Campbell

Paul Chandler

Dorothy Chun

Gayle Dow

Joan Gallini

Stefan Hagmann

Shannon Harp

Julie Heiser

Joshua Jackson

Lewis Johnson

James Lester

Steve Lonn

Amanda Mathias

Patricia Mautone

Sarah Mayer

Roxana Moreno

Harold O'Neil

Jan Plass

William Prothero

Valerie Sims

Hiller Spires

1. Introduction: The promise of multimedia learning
2. Examples: What is multimedia learning?
3. Theory: How does multimedia learning work?
4. Predictions: How can we improve multimedia learning?
5. Techniques for Reducing Extraneous Processing
 - Coherence principle
 - Signaling principle
 - Redundancy principle
 - Spatial contiguity principle
 - Temporal contiguity principle
6. Techniques for Managing Essential Processing
 - Segmenting principle
 - Pre-training principle
 - Modality principle
7. Techniques for Fostering Generative Processing
 - Personalization principle
 - Voice principle
8. Conclusion

Take-Home Message

People learn better when multimedia messages are designed in ways that are consistent with how the human mind works and with research-based principles.

Three Views of Multimedia

<u>View</u>	<u>Example</u>	<u>Definition</u>
Delivery media	Two or more screen and speakers	Computer delivery devices amplified
Presentation modes	Verbal and pictorial representations	On-animation
Sensory modalities	Auditory and visual senses	Narration and animation

Two Approaches to Multimedia Design

<u>Approach</u>	<u>Starting point</u>	<u>Goal</u>	<u>Issues</u>
Technology-	How can we use access to technology multimedia	Capabilities of cutting edge information	Provide multimedia technology in designing presentations?
Learner- we adapt centered technology	How the human mind works	Aid to human cognition	How can multimedia assist?

Two Metaphors of Multimedia Learning

<u>Metaphor</u>	<u>Definition</u>	<u>Learner</u>	<u>Teacher</u>
<u>Goal of Media</u>			
Information information	Adding Deliver information information; to memory	Passive acquisition information	provider
delivery	receiver		act as vehicle
Knowledge construction cognitive	Building a Provide coherent	Active sense	Cognitive guide guidance;
	mental	maker	

Two Goals of Multimedia Learning

<u>Goal item</u>	<u>Definition</u>	<u>Test</u>	<u>Example test</u>
Remembering from passage you just	Retention or recognize presented material	Ability to reproduce Write down all you can remember the read.	
Understanding Transfer the reliability of the	List some ways to presented material in novel situations	Ability to use improve	device you

Three Kinds of Multimedia Learning Outcomes

Learning Transfer outcome score	Cognitive description	Retention test score	test
No learning	No knowledge	Poor	Poor
Rote learning	Poor knowledge	Fragmented	Good
Meaningful learning	Integrated knowledge	Good	Good

Two Kinds of Active Learning

		Level of Cognitive Activity	
		Low	High
Level of Behavioral Activity	Low	Does not foster meaningful learning outcome	Fosters meaningful learning outcome
	High	Does not foster meaningful learning outcome	Fosters meaningful learning outcome

lungs

brakes

"When the handle is pulled up, the piston moves up, the inlet valve opens, the outlet valve closes, and air enters the lower part of the cylinder."

"When the handle is pushed down, the piston moves down, the inlet valve closes, the outlet valve opens, and air moves out through the hose."

Retention and Transfer Questions for the Pump Lesson

Retention Test

Please write down all you can remember about how a bicycle tire pump works.

Transfer Test

1. What could be done to make a pump more reliable--that is, to make sure it would not fail?
2. What could be done to make a pump more effect--that is, to make it move more air more rapidly?
3. Suppose you push down and pull up the handle of a pump several times but no air comes out. What could have gone wrong?

"Cool moist air moves over a warmer surface and becomes heated."

"Warmed moist air near the earth's surface rises rapidly."

"As the air in this updraft cools, water vapor condenses into water droplets and forms a cloud."

"The cloud's top extends above the freezing level, so the upper portion of the cloud is composed

"Eventually, the water droplets and ice crystals become too large to be suspended by the updrafts."

"As raindrops and ice crystals fall through the cloud, they drag some of the air in the cloud downward, producing downdrafts."

"When downdrafts strike the ground, they spread out in all directions, producing the gusts of cool wind."

"Within the cloud, the rising and falling air currents cause electrical charges to build."

"The charge results from the collision of the cloud's rising water droplets against heavier,

"The negatively charged particles fall to the bottom of the cloud, and most of the positively charged

"A stepped leader of negative charges moves downward in a series of steps. It nears the ground."

"A positively charged leader travels up from such objects as trees and buildings."

"The two leaders generally meet about 165-feet above the ground."

"Negatively charged particles then rush from the cloud to the ground along the path created by the leaders. It is not very bright."

"As the leader stroke nears the ground, it induces an opposite charge, so positively charged

"This upward motion of the current is the return stroke. It produces the bright light that people

Retention and Transfer Questions for the Lightning

Retention Test

Please write down all you can remember about how lightning forms.

Transfer Test

1. What could you do to reduce the intensity of lightning?
2. Suppose you see clouds in the sky but no lightning. What does this tell you?
3. What does air temperature have to do with lightning?
4. What causes lightning?

When the driver steps on the car's brake pedal,

a piston moves forward inside the master cylinder

The piston forces brake fluid out of the master cylinder

and through the tubes to the wheel cylinders.

In the wheel cylinders,

the increase in fluid pressure,

makes a set of smaller pistons move.

These smaller pistons activate the brake shoes.

When the brake shoes press against the drum,

both the drum and the wheel stop

or slow down.

Retention and Transfer Questions for the Brakes Lesson

Retention Test

Please write down all you can remember about how a car's braking system works.

Transfer Test

Why do brakes get hot?

What could be done to make brakes more reliable--that is, to

make sure they would not fail?

What could be done to make brakes more effective--that is, to

reduce the distance needed bring a car to a stop?

Suppose you press on the brake pedal in your car but the brakes

Three Assumptions of a Cognitive Theory of Multimedia Learning

Assumption	Description
Dual channels	Humans possess separate channels for processing visual and auditory information.
Limited capacity	Humans are limited in the amount of capacity that they can process in each channel at one time.
Active learning	Humans engage in active learning by attending to processing relevant

Cognitive Theory of Multimedia Learning

Five Cognitive Processes for Meaningful Learning

1. Selecting words
2. Selecting images
3. Organizing words
4. Organizing images
5. Integrating

Three Types of Learning Outcomes

Type	Cognitive processing during learning	Retention performance
No learning	None	Poor
Rote learning	Selecting	Good
Meaningful learning	Selecting, organizing and integrating	Good

Three Demands on Multimedia Learning

Extraneous processing

Cognitive processing that is not related to the lesson.

Involves no learning processes.

Essential processing

Basic cognitive processing that is relevant to the lesson.

Involves selecting and some organizing.

Generative processing

Deep cognitive processing that is relevant to the lesson.

Involves organizing and integrating.

Reduce Extraneous Processing

Extraneous Processing + Essential Processing + G

Processing Exceeds Cognitive Capacity

Solution: Reduce Extraneous Processing

1. Coherence principle
2. Signaling principle
3. Redundancy principle
4. Spatial contiguity principle
5. Temporal contiguity principle

Cognitive Capacity = Extraneous Processing + Essential Processing + Generative Processing

Extraneous Overload

Extraneous processing exhausts cognitive capacity.
Occurs when lesson contains extraneous material not designed.

Essential Overload

Essential processing exhausts cognitive capacity.
Occurs when lesson is difficult, lesson is presented quickly, and the learner is unfamiliar with the material.

Generative Underutilization

Learner has cognitive capacity available but does not engage in sufficient generative processing.
Occurs when learner lacks motivation, does not care about the material, or is not interested.

Three Ways to Overcome Challenges to Multimedia

1. Reduce extraneous processing
2. Manage essential processing
3. Foster generative processing

Reduce Extraneous Processing

Extraneous Processing + Intrinsic Processing + Global Processing Exceeds Cognitive Capacity
Solution: Reduce Extraneous Processing

1. Coherence principle
2. Signaling principle
3. Redundancy principle
4. Spatial contiguity principle
5. Temporal contiguity principle

Coherence Principle

People learn more deeply when extraneous material is
rather than included.

Confirmed in: 11 of 12 tests

Median effect size: 1.13

Step4: Copyingthe Virus's Genetic Code

The injected genetic material recruits the host cell's enzymes to help copy the virus's genetic material. Thus, the host cell's enzymes produce parts, such as genetic instructions and proteins, for making more virus particles. The HIV virus is different in every infected person. Some people die soon after getting infected while others live fairly normal lives for many years, even after they "officially" have AIDS. A few HIV-positive people stay healthy for many years even without taking anti-HIV medications.

Step 5: Breaking Free from the Host Cell

The new parts are packaged into new virus within the host cell. The new viruses break free from the host cell. In some cases, they break the host cell open, destroying the host cell in the process, which is called lysis. In other cases, they punch out of the cell membrane surrounding them, which is called budding. A study conducted by researchers at Wilkes University in Wilkes-Barre, Pennsylvania, reveals that people who make love once or twice a week are more immune to colds than folks who abstain from sex. Researchers believe that the bedroom activity somehow stimulates an immune-boosting antibody called IgA.

Tests of Coherence Principle

<u>Source</u>	<u>Content</u>	<u>Form</u>	<u>ES</u>
Mayer, Bove et al. (1996, Expt. 1)	lightning	p	
Mayer, Bove et al. (1996, Expt. 2)	lightning	p	
Mayer, Bove et al. (1996, Expt. 3)	lightning	p	
Harp & Mayer (1997, Expt. 1)	lightning	p	1.
Harp & Mayer (1998, Expt. 1)	lightning	p	1.
Harp & Mayer (1998, Expt. 2)	lightning	p	1.
Harp & Mayer (1998, Expt. 3)	lightning	p	1.
Harp & Mayer (1998, Expt. 4)	lightning	p	1.
Moreno & Mayer (2000, Expt. 1)	lightning	c	
Moreno & Mayer (2000, Expt. 2)	brakes		
Mayer, Heiser et al. (2001, Expt. 3)	lightning		
Mayer & Jackson (in press, Expt. 1)		ocean w	
MEDIAN			1.13

Signaling Principle

People learn more deeply when cues are added than the main ideas and organization of the words.

Confirmed in: 3 of 3 tests

Median effect size: 0.60

Examples of Signaled Steps in Lift Lesson

Wing Shape: Curved Upper Surface is Longer
... surface on **top** of the wing is **longer** than

Air Flow: Air Moves Faster Across Top of Wing
...air traveling over the curved **top** of the wing
than air that flows under the **bottom** of the wing

Air Pressure: Pressure on the Top is Less
... the **top** surface of the wing now has **less**
against it than the **bottom** surface of the wing

Tests of Signaling Principle

<u>Source</u>	<u>Content</u>	<u>Form</u>	<u>ES</u>
Harp & Mayer (1998, Expt. 3a)	lightning p	1.	
Mautone & Mayer (2001, Expt. 3a)	airplane lif		
Mautone & Mayer (2001, Expt. 3b)	airplane lif		
MEDIAN			0.60

Redundancy Principle:

People learn more deeply from animation
and narration than
from animation, narration, and on-screen
text.

Confirmed in: 10 of 10 tests

Median effect size: 0.69

Animation and Narration

“As the air in this updraft cools,
water vapor condenses into water
droplets and forms a cloud”.

Animation, Narration, and On-Screen Text

As the air in this updraft cools,
water vapor condenses into water
droplets and forms a cloud.
“As the air in this updraft cools,
water vapor condenses into water
droplets and forms a cloud”.

Tests of Redundancy Principle

<u>Source</u>	<u>Content</u>	<u>Form</u>	<u>ES</u>
Mousavi, Low et al. (1995, Expt. 1)		math pr	
Mousavi, Low et al. (1995, Expt. 1)		math pr	
Kalyuga et al. (1999, Expt. 1)		enginee	
Kalyuga et al. (2000, Expt. 1)		enginee	
Craig, Gholson et al. (2002, Expt. 2)		lightni	
Mayer, Heiser et al. (2001, Expt. 1)		lightni	
Mayer, Heiser et al. (2001, Expt. 2)		lightni	
Moreno & Mayer (2002b, Expt. 2)	lightning		
Moreno & Mayer (2002a, Expt. 2a)	botany game		
Moreno & Mayer (2002a, Expt. 2b)	botany game		
MEDIAN			0.69

Spatial Contiguity Principle:

People learn more deeply when corresponding printed words and graphics are placed near rather than far from each other on the page or screen.

Confirmed in: 8 of 8 tests

Median effect size: 1.11

Separated Presentation

Integrated Presentation

Tests of Spatial Contiguity Principle

<u>Source</u>	<u>Content</u>	<u>Form</u>	<u>ES</u>
Mayer (1989)	brakes		
Sweller et al. (1990, Expt. 1)		math	pr
Chandler & Sweller (1991, Expt. 1)	engineering		
Mayer et al. (1995, Expt. 1)	lightning		
Mayer et al. (1995, Expt. 2)	lightning		
Mayer et al. (1995, Expt. 3)	lightning		
Tinsdall-Ford et al. (1997, Expt. 1)	enginee		
Moreno & Mayer (1999, Expt. 1)	lightning		
MEDIAN			1.11

Temporal Contiguity Principle:

People learn more deeply when corresponding graphics and text are presented simultaneously rather than successively.

Confirmed in: 8 of 8 tests

Median effect size: 1.31

Tests of Temporal Contiguity Principle

<u>Source</u>	<u>Content</u>	<u>Form</u>	<u>ES</u>
Mayer & Anderson (1991, Expt. 1)	pump	c	
Mayer & Anderson (1991, Expt. 2a)	pump	c	
Mayer & Anderson (1992, Expt. 1)	pump	c	
Mayer & Anderson (1992, Expt. 2)	brakes		
Mayer & Sims (1994, Expt. 1)	pump	c	0.
Mayer & Sims (1994, Expt. 2)	lungs	c	
Mayer, Moreno et al. (1999, Expt. 1)	lightning		
Mayer, Moreno et al. (1999, Expt. 2)	brakes		
MEDIAN			1.31

Manage Essential Processing

problem: Essential Processing + Generative Processing
Exceeds Cognitive Capacity

Solution: Manage Essential Processing

1. Segmenting principle
2. Pre-training principle
3. Modality principle

Segmenting Principle:

learn more deeply when a narrated animation is presented in learner-paced segments than as a continuous unit

Confirmed in: 3 of 3 tests

Median effect size: 0.98

moist air moves over a warmer surface and becomes h

Tests of Segmenting Principle

<u>Source</u>	<u>Content</u>	<u>Form</u>	<u>ES</u>
Mayer & Chandler (2001, Expt. 2)	lightning c		
Mayer, Dow et al. (2003, Expt. 2a)	electric mot		
Mayer, Dow et al. (2003, Expt. 2b)	electric mot		
MEDIAN			0.98

Pre-training Principle:

learn more deeply from a narrated animation when the pre-training in the names and characteristics of the main characters

Confirmed in: 7 of 7 tests

Median effect size: 0.92

Tests of Pre-training Principle

<u>Source</u>	<u>Content</u>	<u>Form</u>	<u>ES</u>
Pollack et al. (2002, Expt. 1)		engineered	
Pollack et al. (2002, Expt. 3)		engineered	
Mayer, Mathias et al. (2002, Expt. 1)		brakes	
Mayer, Mathias et al. (2002, Expt. 2)		brakes	
Mayer, Mathias et al. (2002, Expt. 3)		pump	
Mayer, Mautone et al. (2002, Expt. 2)	geology	geology	
Mayer, Mautone et al. (2002, Expt. 3)	geology	geology	
MEDIAN			0.92

Modality Principle:

People learn more deeply from graphics and narration than from graphics and on-screen text.

Confirmed in: 21 of 21 tests

Median effect size: 0.97

Words as Narration

"As the air in this updraft cools,
water vapor condenses into water
droplets and forms a cloud."

Words as On-Screen Text

Tests of Modality Principle

<u>Source</u>	<u>Content</u>	<u>Form</u>	<u>ES</u>
Jeung et al. (1997, Expt. 1)	math problem	math	problem
Jeung et al. (1997, Expt. 2)	math problem	math	problem
Jeung et al. (1997, Expt. 3)	math problem	math	problem
Mayer & Moreno (1998, Expt. 1)	lightning	lightning	
Mayer & Moreno (1998, Expt. 2)	lightning	lightning	
Kalyuga et al. (1999, Expt. 1)	engineering	engineering	
Moreno & Mayer (1999b, Expt. 1)	lightning	lightning	
Moreno & Mayer (1999b, Expt. 1)	lightning	lightning	
Kalyuga et al. (2000, Expt. 1)	engineering	engineering	
O'Neil, Mayer et al. (2000, Expt. 1)	aircraft	aircraft	
Moreno et al. (2001, Expt. 4a)	botany game	botany	game
Moreno et al. (2001, Expt. 4b)	botany game	botany	game
Moreno et al. (2001, Expt. 5a)	botany game	botany	game
Moreno et al. (2001, Expt. 5b)	botany game	botany	game
Craig, Gholson et al. (2002, Expt. 2)	lightning	lightning	

Tests of Modality Principle (Continued)

<u>Source</u>	<u>Content</u>	<u>Form</u>	<u>ES</u>
Moreno & Mayer (2002, Expt. 1a)	botany	game	
Moreno & Mayer (2002, Expt. 1b)	botany	game	
Moreno & Mayer (2002, Expt. 1c)	botany	game	
Moreno & Mayer (2002, Expt. 2a)	botany	game	
Moreno & Mayer (2002, Expt. 2b)	botany	game	
Mayer, Dow et al. (2002, Expt. 1a)	electric motor		
MEDIAN			0.97

Foster Generative Processing

Problem: Insufficient Generative Processing Although Cognitive Capacity is Available

Solution: Foster Generative Processing

1. Personalization principle
2. Voice principle

Personalization Principle:

learn more deeply when words are in conversational
rather than formal style.

Confirmed in: 10 of 10 tests

Median effect size: 1.30

Examples of Personalized and Non-Personalized Speech

Non-Personalized

“During inhaling, the diaphragm moves down creating more space for the lungs, air enters through the nose or mouth, moves down through the throat and bronchial tubes to tiny air sacs in the lungs...”

Personalized

“During inhaling, your diaphragm moves down creating more space for your lungs, air enters through your nose or mouth, moves down through your throat and bronchial tubes to tiny air sacs in your lungs...”

Tests of Personalization Principle

<u>Source</u>		<u>Content</u>	<u>Form</u>	<u>ES</u>
Moreno & Mayer (2000, Expt. 1)		lightning	c	
Moreno & Mayer (2000, Expt. 2)		lightning	c	
Moreno & Mayer (2000, Expt. 3)		botany	game	
Moreno & Mayer (2000, Expt. 4)		botany	game	
Moreno & Mayer (2000, Expt. 5)		botany	game	
Moreno & Mayer (2004, Expt. 1a)		botany	game	
Moreno & Mayer (2000, Expt. 1b)		botany	game	
Mayer, Fennell et al. (2004, Expt. 1)		lungs		
Mayer, Fennell et al. (2004, Expt. 1)		lungs		
Mayer, Fennell et al. (2004, Expt. 1)		lungs		
MEDIAN				0.97

Voice Principle:

learn more deeply when the narration is spoken in
standard-accented human voice than a machine voice or
foreign-accented human voice.

Confirmed in: 4 of 4 tests

Median effect size: 0.79

Tests of Voice Principle

<u>Source</u>	<u>Content</u>	<u>Form</u>	<u>ES</u>
Mayer, Sobko et al. (2003, Expt 1)	lightning		
Mayer, Sobko et al. (2003, Expt. 2)	lightning		
Atkinson, Mayer et al. (2004, Expt 1)	math problem		
Atkinson, Mayer et al. (2004, Expt. 2)	math problem		
MEDIAN			0.79

Summary of Research Evidence

<u>Principle</u>	<u>Median ES (d)</u>	<u>Tests</u>
Coherence	1.13	11 of 12
Signaling	0.60	3 of 3
Redundancy	0.69	10 of 10
Spatial Contiguity	1.11	8 of 8
Temporal Contiguity	1.31	8 of 8
Segmenting	0.98	3 of 3
Pre-training	0.92	7 of 7
Modality	0.97	21 of 21
Personalization	1.30	10 of 10
Voice	0.79	4 of 4

Research-Based Principles for the Design of Multimedia Messages

Coherence principle: People learn more deeply when extraneous words, pictures, or sounds are excluded rather than included. (11 of 12; ES = 1.13)

Signaling principle: People learn more deeply when cues are added that highlight the main ideas and the organization of the words. (3 of 3; ES = 0.60)

Redundancy principle: People learn more deeply from animation and narration than from animation, narration, and on-on-screen text. (10 of 10; ES = 0.69)

Spatial contiguity principle: People learn more deeply when corresponding words and pictures are presented near rather than far from each other on the page or screen. (8 of 8; ES = 1.11)

Segmenting principle: People learn more deeply when a narrated animation is presented in learner-paced segments than as a continuous unit. (3 of 3; ES 0.98)

Pre-training principle: People learn more deeply from a narrated animation when they have had training in the names and characteristics of the main concepts. (7 of 7; ES = 0.92)

Modality principle: People learn more deeply from graphics and narration than from graphics and on-screen text. (21 of 21; ES = 0.97)

Personalization principle: People learn more deeply when the words are in conversational style rather than formal style (10 of 10; ES = 1.30)

Conclusions About the Design of Multimedia Learning

1. *Theory-based.* The design of multimedia messages should be based on a theory of how the human mind works.
2. *Research-based.* The design of multimedia messages should be based on research findings.

Bottom line: People learn better when multimedia messages are designed in ways that are consistent with how the human mind works and with research-based principles.

Suggested Readings

- Mayer, R. E. (2001). *Multimedia learning*. New York: Cambridge University Press.
- Clark, R. C., & Mayer, R. E. (2003). *E-learning: the science of instruction*. San Francisco: Jossey-Bass.
- Mayer, R. E. (2003). *Learning and instruction*. Upper Saddle River. NJ: Prentice Hall.
- Mayer, R. E. (Ed.). (2005). *Cambridge handbook of learning*. New York: Cambridge University Press.

Research Funding

- National Science Foundation
Office of Naval Research