

UNIVERSIDAD NACIONAL DEL ALTIPLANO

INGENIERÍA ESTADÍSTICA E INFORMÁTICA

> MÉTODOS DE OPTIMIZACIÓN

Actividad N° 3 cap
2 - Optimización y Complejidad

Desarrolle un ejercicio o mas del material del cap2,el presentar el procedimiento

Andree Alessandro Chili Lima [229071] https://github.com/antartida15l

04/10/2024

Ejercicio 2.2

Demostrar que si $f: \mathbb{R}^n \to \mathbb{R}$ y $x^* = (x_1^*, \dots, x_n^*) \in \mathbb{R}^n$, entonces $f(x^*)$ es un máximo de f si y solo si $-f(x^*)$ es un mínimo de -f.

Entonces...

- $f(x^*)$ es un **máximo** de f si:

$$f(x^*) \ge f(x), \quad \forall x \in \mathbb{R}^n.$$

- $-f(x^*)$ es un **mínimo** de -f si:

$$-f(x^*) \le -f(x), \quad \forall x \in \mathbb{R}^n.$$

Demostración

 $f(x^*)$ es un máximo de f.

Por definición de máximo, tenemos que:

$$f(x^*) \ge f(x), \quad \forall x \in \mathbb{R}^n.$$

Multiplicamos ambos lados de la desigualdad por -1:

$$-f(x^*) \le -f(x), \quad \forall x \in \mathbb{R}^n.$$

Esto muestra que $-f(x^*)$ es un mínimo de -f(x), :

$$-f(x^*) \le -f(x), \quad \forall x \in \mathbb{R}^n.$$

 $-f(x^*)$ es un mínimo de -f.

Por definición de mínimo, tenemos que:

$$-f(x^*) \le -f(x), \quad \forall x \in \mathbb{R}^n.$$

Multiplicamos nuevamente ambos lados por -1:

$$f(x^*) \ge f(x), \quad \forall x \in \mathbb{R}^n.$$

Esto muestra que $f(x^*)$ es un máximo de f(x), ya que satisface la definición de máximo.

Rpta

Hemos demostrado que:

- Si $f(x^*)$ es un máximo de f(x), entonces $-f(x^*)$ es un mínimo de -f(x). como tambien si $-f(x^*)$ es un mínimo de -f(x), entonces $f(x^*)$ es un máximo de f(x).

Por lo tanto si se puede demostrar que:

 $f(x^*)$ es un máximo de $f(x) \iff -f(x^*)$ es un mínimo de -f(x).

Matemáticamente

$$f(x^*) \ge f(x) \quad \forall x \in \mathbb{R}^n \iff -f(x^*) \le -f(x) \quad \forall x \in \mathbb{R}^n.$$

Ejercicio 2.3

Se nos pide demostrar que si s_1 y s_2 son supremos de un conjunto $S \subseteq \mathbb{R}$, entonces $s_1 = s_2$, estableciendo que el supremo de un conjunto es único.

Entonces

supremo como el menor de los límites superiores de un conjunto $S \subseteq \mathbb{R}$. Formalmente, se dice que un número a es el supremo de un conjunto S si:

- $a \ge s$ para todo $s \in S$, es decir, a es un límite superior de S.
- Para cualquier otro límite superior M de S, se tiene que $a \leq M$. Esto significa que a es el menor de todos los límites superiores.

Demostración

 s_1 es el supremo de S:

- $s_1 \ge s$ para todo $s \in S$ es un límite superior.
- Además, dado que s_2 también es un límite superior de S, por la definición de supremo, se debe cumplir que $s_1 \leq s_2$, ya que s_1 es el menor de los límites superiores.

 s_2 es el supremo de S:

- $s_2 \geq s$ para todo $s \in S$ también es un límite superior);
- Y dado que s_1 es un límite superior de S, por la definición de supremo, se tiene que $s_2 \leq s_1$.

Rpta

- De los puntos anteriores, tenemos dos desigualdades: $s_1 \le s_2$ y $s_2 \le s_1$.
- Estas desigualdades solo son posibles si $s_1 = s_2$.

se demostro que $s_1 = s_2$ cuando s_1 y s_2 son supremos de un conjunto $S \subseteq \mathbb{R}$ con las definiciones que se encientran en el pdf y un poco de desigualdades

Ejercicio 2.4

Demostrar que si $S \subseteq \mathbb{R}$ es un conjunto no vacío, cerrado y acotado, entonces $\sup(S)$ y $\inf(S)$ pertenecen a S.

Entonces...

1. **Supremo** $(\sup(S))$:

$$\sup(S) = \min\{M \in \mathbb{R} \mid M \ge s \ \forall s \in S\}$$

2. **Ínfimo** $(\inf(S))$:

$$\inf(S) = \max\{m \in \mathbb{R} \mid m \le s \ \forall s \in S\}$$

3. Conjunto cerrado: S es cerrado si contiene todos sus puntos límite, es decir:

$$\lim_{x \to x_0} f(x) = f(x_0) \quad \text{para todo } x_0 \in \partial S.$$

4. Conjunto acotado: S es acotado si existen $m, M \in \mathbb{R}$ tales que:

$$m \le s \le M \quad \forall s \in S.$$

Demostración

1. S es acotado:

Dado que S es un conjunto acotado, existen dos números reales m y M tales que:

$$m < s < M \quad \forall s \in S.$$

Esto implica que S tiene tanto un límite superior M como un límite inferior m.

2. Supremo de S:

Por la definición de supremo, $\sup(S)$ es el **menor** límite superior de S, es decir:

$$\sup(S) = \min\{M \in \mathbb{R} \mid M \ge s \ \forall s \in S\}.$$

dado que S es cerrado, por lo tanto:

$$\sup(S) \in S$$
 (por definición de conjunto cerrado).

3. Ínfimo de S:

Por la definición de ínfimo, $\inf(S)$ es el **mayor** límite inferior de S, es decir:

$$\inf(S) = \max\{m \in \mathbb{R} \mid m \le s \ \forall s \in S\}.$$

dado que S es cerrado, por lo tanto:

$$\inf(S) \in S$$
 (por definición de conjunto cerrado).

Rpta

Hemos demostrado que si $S\subseteq\mathbb{R}$ es un conjunto no vacío, cerrado y acotado, entonces:

$$\sup(S) \in S \quad \text{y} \quad \inf(S) \in S.$$

Esto se sigue de las propiedades de acotación y cerradura del conjunto, que garantizan que tanto el supremo como el ínfimo están dentro de S.