

Autonomous Blimp Navigation

L.E.D.D. Zeppelin
Dr. Fumin Zhang

Kristen McClelland, Sumit Mondal, Eric Yan, Josh Owens, Andrew Shutzberg

Introduction

- Navigation in an unknown environment can be confusing for humans
- Robots can help humans find their way
 - Quadcopters are dangerous in populated indoor environments
 - Wheeled/Walking Robots have to contend with navigating around objects and humans on the floor
 - Blimps are ideal for indoor spaces because they have long flight times and do not injure humans in collisions

Solution

- Enable speech recognition and feedback control on a blimp to guide users to desired destinations
- Eliminate the need for a fixed, expensive localization setup
- Remove barrier to intuitive human-robotic relationships
- Reduces learning curve for controlling the blimp by replacing an app with speech recognition

Design Schematic

Design Components

Speech Recognition

 Implemented Google's Speech-to-Text API on a Koss Communications USB microphone connected to a laptop

Image Recognition

- AprilTags will be used as markers on the walls as they are easily recognizable with a Robotics Operating System (ROS) AprilTags image classifier running on the blimp's camera
- Had to decide between two different image families

Localization

- Calculate the current position of the blimp given known image locations
- Experienced issue with too many false positives to calculate position accurately

Controls

 Used a feedback control loop to guide the blimp toward an image using the position of the image relative to the blimp camera to provide the feedback

Results

Distance Measurement Accuracy vs True Tag Distance

- Note the different lines are measurements from different tag shapes, and sizes
- In general, for large tag sizes, the blimp was able to localize from 20 ft distances

Conclusion

- The minimum size AprilTags image we need to use is **1.5** ft² which provides a maximum range of **20** ft
- The blimp went to the right destination 68% of the time which is just shy of the 70% success rate specification

Future Work

- Implement waypoint navigation to a destination not visible to the starting position
- Improve localization by using the positions of the images relative to each other