

Universidade Estadual de Campinas

Faculdade de Engenharia Elétrica e de Computação

IA048 – Aprendizado de Máquina

13 de abril de 2024

Docentes: Levy Boccato & Romis Attux

Discente:

- Gabriel Toffanetto França da Rocha - 289320

Atividade 2 – Classificação

Sumário

1	Apresentação dos dados 1.1 Dados tratados	2 2
2	Classificação via Regressão Logística 2.1 Dados tratados	
3	Classificação via k neareast neighbours 3.1 Dados tratados	
4	Comparação entre os classificadores4.1 Dados tratados	
\mathbf{A}_{1}	nexos	13

1 Apresentação dos dados

O problema de classificação com o reconhecimento de atividades humanas utiliza como base de dados amostras tomadas do acelerômetro e do giroscópio do *smartphone* preso à cintura do candidato. Dessa forma, com base na leitura desses sensores, pode-se identificar se a pessoa está caminhando, subindo escadas, descendo escadas, sentada, de pé ou deitada, que representam as seis classes do problema.

Além dos dados brutos, é fornecido também os dados processados, com extração sobre os dados no tempo, na frequência, e também características estatísticas dos mesmos.

1.1 Dados tratados

Os dados tratados são formados por amostras de 561 atributos derivados da análise no tempo e na frequência dos dados provenientes do acelerômetro e do giroscópio do *smartphone*. São um total de 7352 amostras para treinamento e validação, e 2947 amostras para teste.

O balanceamento das classes nos conjuntos de dados foi realizado por meio do cálculo da taxa de ocorrência dos mesmos, dada de acordo com (1). A Figura 1 mostra a distribuição das classes, e pode-se ver que não existe um balanceamento homogêneo, onde a classe 3 é a que menos ocorre, enquanto a classe 6 é a que mais ocorre.

Devido a esse desbalanceamento, a métrica que será utilizada para a avaliação do desempenho de cada classificador será a acurácia balanceada, dada por (2).

$$Rate_i = \frac{N_i}{N} \tag{1}$$

Figura 1: Gráfico da ocorrência das classes nos conjuntos de dados de treinamento e teste.

$$BA = \frac{\sum_{i=1}^{Q} Recall_i}{Q} = \frac{\sum_{i=1}^{Q} \frac{\text{TP}_i}{N_i}}{Q} = \frac{\sum_{i=1}^{Q} \frac{\text{TP}_i}{N \cdot Rate_i}}{Q}$$
(2)

2 Classificação via Regressão Logística

A classificação multi-classe é feita de forma elegante ao ter um modelo, que dadas Q classes à serem reconhecidas, apresente Q saídas, onde cada saída é a probabilidade da amostra pertencer à classe em questão. Tal implementação se dá por meio da função softmax, enunciada em (3), e a saída é dada pela notação $one-hot\ encoding$.

$$\hat{y}_k(\mathbf{x}(i)) = \frac{e^{\left(\mathbf{\Phi}(\mathbf{x}(i))^T \mathbf{w}_k\right)}}{\sum_j e^{\left(\mathbf{\Phi}(\mathbf{x}(i))^T \mathbf{w}_j\right)}}$$
(3)

Onde o \mathbf{w}_k é o vetor de pesos para a classe k, e a matriz de pesos \mathbf{W} é dada por (4).

$$\mathbf{W} = \begin{bmatrix} \mathbf{w}_1 \\ \mathbf{w}_2 \\ \vdots \\ \mathbf{w}_Q \end{bmatrix} \tag{4}$$

Não existe forma fechada para a obtenção dos pesos de **W**, logo, o mesmo precisa ser feito de forma iterativa. A métrica utilizada como função de custo para o problema é a entropia cruzada, dada por (5). O otimização dos pesos se dá pela técnica do gradiente descendente, dado por (6).

$$J_{CE}(\mathbf{W}) = -\sum_{i=0}^{N-1} \sum_{k=1}^{Q} y_{i,k} \log \left[\hat{y}_k(\mathbf{x}(i)) \right]$$
 (5)

$$\frac{\partial J_{CE}(\mathbf{W})}{\partial \mathbf{w}_k} = \sum_{i=0}^{N-1} (y_{i,k} - \hat{y}_k(\mathbf{x}(i))) \, \mathbf{\Phi}(\mathbf{x}(i))^T$$
(6)

A atualização dos pesos é dada por (7), onde l é a iteração dos pesos.

$$\mathbf{W}[l+1] = \mathbf{W}[l] - \eta \nabla \mathbf{W} \tag{7}$$

Devido ao tamanho do conjunto de dados, foi proposto o treinamento por mini-batch, testadas com tamanhos de 500, 1000 e 2000 amostras, e um passo (η) de 0,01, que apresentou boa convergência nos testes realizados a priori. O processo de validação cruzada para o treinamento do modelo foi feito na forma holdout, considerando o conjunto de validação 30% do dataset de treinamento. A inicialização dos pesos foi feita de forma aleatória, seguindo uma distribuição gaussiana, nos entornos de 0.

2.1 Dados tratados

Mini-batch 500 amostras

Para um primeiro caso, treinou-se o modelo de regressão logística utilizando o mini-batch de 500 amostras. A cada 500 amostras de treinamento, entregues em ordem aleatória a cada época, realiza-se a evolução da matriz de pesos **W**, calculando a nova função de custo (entropia cruzada), e o valor da acurácia balanceada, para todo conjunto de treinamento e validação.

A Figura 2a mostra o decaimento da entropia cruzada de treinamento e validação durante as épocas de treinamento. Para 500 épocas, observa-se que não há o estado de regime das métricas, ou a inversão do crescimento da entropia cruzada de validação, que indicaria overfitting. Porém, analisando a acurácia balanceada do modelo, exibida na Figura 2b, percebe-se que a medida de desempenho apresenta saturação, após aproximadamente 300 épocas de treinamento, sendo assim utilizada para a parada antecipada (early stopping) do treinamento do modelo.

Figura 2: Evolução da entropia cruzada e da acurácia balanceada durante o treinamento para mini-batch de 500 amostras e $\eta=0,01$.

Com o treinamento, obteve-se um classificador que ao aplicar os dados de teste, obteve uma acurácia balanceada média de 0,9162, com matriz de confusão mostrada na Tabela 1 e métricas de precisão e recall por classe listadas na Tabela 2. Observa-se facilmente o grande desempenho do classificador para a classe 6, possuindo total assertividade em identificar a classe, sem haver nenhum engano da classe com as outras, e vice-versa. Pela matriz, observa-se grande confusão da classe 1 com a classe 2 e 3, justificando a mesma possuir o menor recall. Já a classe 3 é a que possuí menor precisão, sendo classificada erroneamente como a classe 1 e 2.

$$BA = 0,9162$$
 (8)

	1	2	3	4	5	6
1	486	0	10	0	0	0
2	30	440	1	0	0	0
3	39	52	329	0	0	0
4	0	3	0	424	64	0
5	1	0	0	33	498	0
6	0	0	0	0	0	537

Tabela 1: Matriz de confusão do classificador com mini-batch de 500 amostras.

Classe	Precisão	Recall
1	0.9798	0.8741
2	0.9342	0.8889
3	0.7833	0.9676
4	0.8635	0.9278
5	0.9361	0.8861
6	1.0000	1.0000

Tabela 2: Precisão e Recall do classificador com mini-batch de 500 amostras por classe.

Mini-batch 1000 amostras

Ao aumentar o tamanho de amostras por atualização da matriz de pesos, observa-se uma convergência mais suave e mais assertiva, apresentando uma curva de acurácia balanceada (Figura 3b) mais bem comportada, devido à apresentar uma maior média de amostras para formar uma iteração de **W** pelo gradiente negativo da entropia cruzada (Figura 3a).

Figura 3: Evolução da entropia cruzada e da acurácia balanceada durante o treinamento para mini-batch de 1000 amostras e $\eta=0,01$.

Com a alteração do tamanho da batelada utilizada, o modelo obteve um decrescimento no seu desempenho, atingindo uma acurácia balanceada de 0,9042. O comportamento da matriz de confusão (Tabela 3) e das métricas de precisão e recall (Tabela 4) são similares, porém com menor desempenho comparados ao modelo anterior.

BA = 0,9042	(9))

	1	2	3	4	5	6
1	486	0	10	0	0	0
2	28	443	0	0	0	0
3	56	53	311	0	0	0
$oxed{4}$	0	3	0	426	61	1
5	0	1	0	54	477	0
6	0	0	0	0	0	537

Tabela 3: Matriz de confusão do classificador com mini-batch de 1000 amostras.

\mathbf{Classe}	Precisão	Recall
1	0.9798	0.8526
2	0.9406	0.8860
3	0.7405	0.9688
4	0.8676	0.8875
5	0.8966	0.8866
6	1.0000	0.9981

Tabela 4: Precisão e Recall do classificador com mini-batch de 1000 amostras por classe.

Mini-batch 2000 amostras

Aumentando ainda mais o número de amostras por *mini-batch*, observa-se uma envolução ainda mais comportada da acurácia balanceada, apresentando oscilações muito menos perceptíveis, como visto na Figura 4b. O decaimento da função de custo, Figura 4a se dá da mesma forma, uma vez que cada evolução do vetor de peso carrega a média da entropia cruzada para cada amostra da batelada.

O desempenho obtido ao utilizar 2000 amostras por *mini-batch* é ainda menor, chegando a uma acurácia balanceada de 0,8898. A matriz de confusão, como pode ser observado na Tabela 5 e precisão e *recall* das classes (Tabela 6), se apresentam da mesma forma, onde mesmo com a queda de *performance*, se observa o mesmo perfil de comportamento para as classes.

(b) Evolução da acurácia balanceada.

Figura 4: Evolução da entropia cruzada e da acurácia balanceada durante o treinamento para mini-batch de 2000 amostras e $\eta = 0,01$.

$$BA = 0,8898 (10)$$

	1	2	3	4	5	6
1	489	0	7	0	0	0
2	27	444	0	0	0	0
3	70	49	301	0	0	0
4	0	3	0	396	91	1
5	1	1	0	58	472	0
6	0	0	0	0	0	537

Tabela 5: Matriz de confusão do classificador com mini-batch de 2000 amostras.

Classe	Precisão	Recall
1	0.9859	0.8330
2	0.9427	0.8934
3	0.7167	0.9773
4	0.8065	0.8722
5	0.8872	0.8384
6	1.0000	0.9981

Tabela 6: Precisão e Recall do classificador com mini-batch de 2000 amostras por classe.

Análise

Foi realizado o treinamento do modelo para a mini-batch de 500 amostras em um range de 1000 épocas, para observar a acomodação da função de custo. Observa-se na Figura 5a que a taxa de decrescimento da entropia cruzada vai reduzindo, porém não chega a um estado de regime, também não obtendo o estado de *overfitting* com o aumento do custo para a validação. É possível aferir também que não há grande aumento da acurácia balanceada, se fazendo então, o treinamento de 500 épocas feito anteriormente, suficiente para a obtenção de um modelo que explora de forma suficiente o espaço de hipóteses (\mathcal{H}).

Figura 5: Entropia cruzada e acurácia balanceada para o treinamento do modelo com *minibatch* de 500 amostras por 1000 épocas.

2.2 Dados brutos

3 Classificação via k neareast neighbours

A classificação pelo método k neareast neighbours é baseada em inferir a classe do dado a ser classificado com base nos k dados mais próximos à ele. Como hiper-parâmetros para esse problema, têm-se principalmente o valor de k, a ordem p da distância de Minkowski entre os dados e o critério de classificação.

O critério de classificação pode se basear puramente na classe majoritária entre os k vizinhos, ou levar em consideração a distância como um peso, que normalmente é inversamente proporcional a distância, evidenciando o rótulo dos pontos mais próximos do dado teste.

3.1 Dados tratados

Para implementação do algoritmo de k-NN, foi escolhido a utilização da distância euclidiana no espaço dos atributos, e a decisão do rótulo vencedor por meio do voto majoritário dos k vizinhos mais próximos.

Para obtenção do valor de k, foi executada uma busca em grid do hiper-parâmetro, variando seu valor entre 1 e 29. Utilizando da técnica de validação cruzada k-fold, com quatro pastas, foi realizada a inferência das classes dos dados da pasta de validação com base nos vizinhos mais próximos encontrados nas pastas de treinamento, para cada valor de k testado. A Figura 6 exibe à evolução da acurácia balanceada para os valores de k, obtendo um conjunto de valores ótimos em (11).

Figura 6: Busca em grid do valor de k ótimo utilizando 4-fold validation.

A heurística escolhida para avaliar o melhor valor de k com base no conjunto obtido por meio da busca em grid com validação cruzada se dá em obter a acurácia balanceada média das

pastas e obter o número de vizinhos que maximiza essa combinação das pastas. A Figura 7 mostra a progressão da acurácia balanceada média de acordo com k, e assim se obtém o valor de k ótimo em k=15.

Figura 7: Busca em grid do valor de k ótimo utilizando 4-fold validation.

Uma vez definido o classificador ótimo, obtém-se os indicadores de performance do classificador com base nos dados de teste. A acurácia balanceada encontrada foi de 0,8991 e a matriz de confusão do classificador por ser vista na Tabela 7.

	1	2	3	4	5	6
1	488	0	8	0	0	0
2	39	427	5	0	0	0
3	51	44	325	0	0	0
4	0	4	0	389	98	0
5	0	0	0	31	501	0
6	0	0	0	1	1	535

BA = 0,8991 (12)

Tabela 7: Matriz de confusão do classificador k-NN com k = 15.

Extraindo da matriz de confusão as métricas de precisão e recall, obtém-se a Tabela 8. Pode-se observar que a classe 3 foi a que apresentou menor precisão, sendo muito confundida com a classe 1 e 2. Já a classe 1 possuí o pior recall, uma vez que as classes 2 e 3 se confundem com a 1. A classe 6 foi a que apresentou o melhor desempenho, apresentando recall unitário, logo, nenhuma classe se confunde com ela, e a maior precisão, muito próxima de 1.

\mathbf{Classe}	Precisão	Recall
1	0.9839	0.8443
2	0.9066	0.8989
3	0.7738	0.9615
4	0.7923	0.9240
5	0.9417	0.8350
6	0.9963	1.0000

Tabela 8: Precisão e *Recall* do classificador por classe.

Comparação com a regressão logística

Ao comparar os classificadores utilizando a regressão logística e o k-NN, observa-se que a acurácia balanceada para a regressão logística de melhor desempenho foi superior, mas para ter uma comparação mais minuciosa entre os dois classificadores, deve-se analisar também suas matrizes de confusão. Comparando a precisão e o recall, o desempenho das classes em ranking se apresenta da mesma forma, porém, para a regressão logística a classe 6 conseguiu obter tanto precisão quanto recall máximo.

A regressão logística apresentou um desempenho relativo 1,87% maior que o k-NN para a acurácia balanceada, porém possuí uma complexidade muito maior. Para obter o modelo de regressão logística multi-classe com softmax, é necessário realizar o treinamento do modelo, buscando variar os hiper-parâmetros para se conseguir o melhor desempenho. Essa etapa demanda de muito processamento, porém garante uma utilização do classificador mais leve, uma vez que é necessária apenas o vetor de pesos. Já o k-NN, não demanda treinamento, sendo necessária apenas a inferência da classe com base nos vizinhos mais próximos, o que apesar de consumir armazenamento para manter o dataset, não precisa de tanto processamento prévio, sendo uma solução simples e rápida. Porém, devido a busca em grid utilizando a validação k-fold para obter o melhor k para os dados de treinamento, tal etapa demandou bastante processamento, o que elevou consideravelmente a complexidade do k-NN.

Comparação com o k ótimo

Somente a título de comparação, foi realizada a busca em grid do melhor valor de k, utilizando os próprios dados de teste do problema. A Figura 8 mostra a evolução da acurácia balanceada dos dados de teste para o aumento do número de vizinhos, chegando ao valor ótimo em k = 8, com BA = 0,9028.

Em comparação com o número de vizinhos obtidos via validação em k-pastas, observa-se que o número de vizinhos é perto da metade do obtido anteriormente, e apresentando uma performance melhor. Porém, ao se realizar uma busca de um hiper-parâmetro com métodos de busca em grid utilizando validação cruzada, busca-se obter o melhor valor com base nos dados de treinamento, que são os únicos conhecidos na etapa de treinamento/modelagem do classificador. Espera-se que os dados de treinamento sejam suficiente para generalizar os dados

como um todo, fazendo com que a solução ótima para o *dataset* de treinamento tenda a ser a solução ótima para todos os dados inéditos que o modelo irá receber.

Dessa forma, mesmo o valor de k tendo mudado consideravelmente, a acurácia não apresentou grandes mudanças, sendo ainda sim um bom modelo para conseguir fazer a classificação dos dados de teste.

Figura 8: Busca em grid do valor de k ótimo para o conjunto de testes.

3.2 Dados brutos

4 Comparação entre os classificadores

4.1 Dados tratados

4.2 Dados brutos

Anexos

Códigos fonte

Todos os códigos fonte e arquivos de dados utilizados para a elaboração deste documento podem ser encontrados no repositório do GitHub no link: github.com/toffanetto/ia048.