CS231A Computer Vision: From 3D Reconstruction to Recognition

Optical and Scene Flow

Learning Goals for Upcoming Lectures

Representations & Representation Learning

Optical & Scene Flow

Monocular Depth Estimation, Feature Tracking

Optimal Estimation

Neural Radiance Fields

What will you learn today?

Optical Flow

What is it and why do you care?

Assumptions

Formulating the optimization problem

Solving it

Scene Flow

Learning-based Approaches to Estimating Motion

Optical Flow - What is it?

J. J. Gibson, The Ecological Approach to Visual Perception

Optical Flow - What is it?

Image Credit: Wikipedia. Optical Flow.

Motion Field

Motion field = 2D motion field representing the projection of the 3D motion of points in the scene onto the image plane.

B. Horn, Robot Vision, MIT Press

6

Optical flow

Optical flow = 2D velocity field describing the **apparent** motion in the images.

B. Horn, Robot Vision, MIT Press

What is the motion field? What is the apparent motion?

Lambertian (matte) ball rotating in 3D

What does the 2D motion field look like?

What does the 2D optical flow field look like?

Slide Credit: Michael Black

Image source: http://www.evl.uic.edu/aej/488/lecture12.html

What is the motion field? What is the apparent motion?

Stationary Lambertian (matte) ball

Moving Light Source

What does the 2D motion field look like?

What does the 2D optical flow field look like?

Optical flow - What is it?

Motion Displacement of all image pixels

Image pixel value at time t and Location $\mathbf{x} = (x, y)$: I(x, y, t)

u(x,y) horizontal component v(x,y) vertical component

Key

Painterly effect

Face morphing in matrix reloaded

George Borshukov, Dan Piponi, Oystein Larsen, J.P.Lewis, Christina Tempelaar-Lietz ESC Entertainment

SIGGRAPH'03

<u>Caren Marzban</u> and <u>Scott Sandgathe</u>
Optical Flow for Verification, Weather and Forecasting, Volume 25 No. 5, October 2010

Slide Credit: CS223b – Sebastian Thrun

Compute Optical Flow

Goal

Compute the **apparent** 2D image motion of pixels from one image frame to the next in a video sequence.

Compute (Sparse) Optical Flow

Also see CS131a

Simple KLT Tracker

History of the

Kanade-Lucas-Tomasi (KLT) Tracker

An Iterative Image Registration Technique with an Application to Stereo Vision.

The original KLT algorithm

Tomasi

Good Features to Track. 1994

16-385 Computer Vision (Kris Kitani)

Simple KLT Tracker

- 1. Find good points to track (Harris corners)
- For each Harris corner compute motion (translation or affine) between consecutive frames
- 3. Link motion vector of successive frames to get a track for each Harris point
- 4. Introduce new Harris points by running detector every 10-15 frames
- 5. Track old and new corners using step 1-3

Computing (Sparse) Optical Flow

Jean-Yves Bouguet, Ph.D. CalTech

Compute (Dense) Optical Flow

Step 1 - Assumptions

Step 2 - Objective Function Step 3 - Optimization

Source: Wikipedia.

Assumption 1 - Brightness Constancy

$$I(x + u, y + v, t + 1) = I(x, y, t)$$

u,v = pixel offset t = time x,y = pixel position

Assumption 2 - Spatial Smoothness

- Neighboring pixels in the image are likely to belong to the same surface.
- Surfaces are mostly smooth.
- Neighboring pixels will have similar flow.

Assumption 3 – Temporal Coherence

Figure 1.8: Temporal continuity assumption. A patch in the image is assumed to have the same motion (constant velocity, or acceleration) over time.

Compute Optical Flow

Step 1 - Assumptions

Step 2 - Objective Function

Source: Wikipedia.

Objective Function – Data term - Brightness Constancy

u,v = optical flow field

$$E_D(\mathbf{u}, \mathbf{v}) = \sum_{S = \text{all pixels}} (I(x_S + u_S, y_S + v_S, t + 1) - I(x, y, t))^2$$

New Assumption: Quadratic error implies Gaussian noiseQuadratic penalty

Alternative: Huber/L1 Loss

Objective Function – Spatial Term – Spatial Smoothness

$$E_S(\mathbf{u}, \mathbf{v}) = \sum_{n \in G(s)} (u_s - u_n)^2 + \sum_{n \in G(s)} (v_s - v_n)^2$$

G(s) = Pixel Neighborhood

New Assumptions:
Flow field smooth
Gaussian Deviations
First order smoothness good enough
Flow derivative approximated by first differences

Objective Function

Optimization Variables
$$E(u,v) = E_D(u,v) + \lambda E_S(u,v)$$

$$E(u,v) = \sum_{s} (I(x_s + u_s, y_s + v_s, t + 1) - I(x,y,t))^2 + \lambda \left(\sum_{n \in G(s)} (u_s - u_n)^2 + \sum_{n \in G(s)} (v_s - v_n)^2\right)$$

Data term

Spatial term

Nonlinear Optimization

Compute Optical Flow

Step 1 - Assumptions

Step 2 - Objective Function Step 3 - Optimization

Source: Wikipedia.

Linear Approximation

$$E(u,v) = E_D(u,v) + \lambda E_S(u,v)$$

$$E(u,v) = \sum_{s} (I(x_s + u_s, y_s + v_s, t + 1) - I(x,y,t))^2 + \lambda (\sum_{n \in G(s)} (u_s - u_n)^2 + \sum_{n \in G(s)} (v_s - v_n)^2)$$

$$u_s = dx, v_s = dy, dt = 1$$

Partial Derivative Partial Derivative in x direction in y direction

$$I(x,y,t) + dx \frac{\delta}{\delta x} I(x,y,t) + dy \frac{\delta}{\delta y} I(x,y,t) + dt \frac{\delta}{\delta t} I(x,y,t) - I(x,y,t) = 0$$

Constraint Equation for Optical Flow

Example Image Gradient

Optical Flow Constraint Equation

Linearized cost function

$$u\frac{\delta}{\delta x}I(x,y,t) + v\frac{\delta}{\delta y}I(x,y,t) + \frac{\delta}{\delta t}I(x,y,t) = 0$$

$$I_x u + I_y v + I_t = 0$$
 = Constraint at every pixel

New Assumptions:
Flow is small
Image is differentiable
First order Taylor series is a good approximation

Optical Flow Constraint Equation

Notation

$$I_{x}u + I_{y}v + I_{t} = 0$$

$$\nabla I^{T}\mathbf{u} = -I_{t}$$

$$\mathbf{u} = \begin{bmatrix} u \\ v \end{bmatrix} \quad \nabla I = \begin{bmatrix} I_x \\ I_y \end{bmatrix}$$

At a single image pixel, we get a line:

Aperture Problem

Slide Credit: CS223b – Sebastian Thrun

Aperture Problem

Slide Credit: CS223b – Sebastian Thrun

What are the constraint lines?

Multiple Constraints

Each pixel gives us a constraint: $I_x u + I_v v = -I_t$

Slide Credit: Michael Black

How do we solve this optimization problem?

$$E(u,v) = \sum_{x,y \in R} (I_x(x,y,t)u + I_y(x,y,t)v + I_t(x,y,t))^2$$

$$\frac{\partial E}{\partial u} = \sum_{R} (I_x u + I_y v + I_t) I_x = 0$$

$$\frac{\partial E}{\partial v} = \sum_{R} (I_x u + I_y v + I_t) I_y = 0$$

Horn-Schunk Method

How do we solve this optimization problem?

Rearrange in Matrix form

$$\begin{split} & \left[\sum_{R} I_{x}^{2} \right] u + \left[\sum_{R} I_{x} I_{y} \right] v = -\sum_{R} I_{x} I_{t} \\ & \left[\sum_{R} I_{x} I_{y} \right] u + \left[\sum_{R} I_{y}^{2} \right] v = -\sum_{R} I_{y} I_{t} \end{split}$$

$$\begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_y I_x & \sum I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} -\sum I_x I_t \\ -\sum I_y I_t \end{bmatrix}$$

How do we solve this optimization problem?

$$\begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_y I_x & \sum I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} -\sum I_x I_t \\ -\sum I_y I_t \end{bmatrix}$$

How do we solve this optimization

problem?
$$\begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_y I_x & \sum I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} -\sum I_x I_t \\ -\sum I_y I_t \end{bmatrix}$$

$$\mathbf{A}\mathbf{u} = \mathbf{b}$$

If A was invertible

$$\mathbf{A}^{-1}\mathbf{A}\mathbf{u} = \mathbf{A}^{-1}\mathbf{b}$$
$$\mathbf{u} = \mathbf{A}^{-1}\mathbf{b}$$

$$Au = b$$

$$\mathbf{A}^T \mathbf{A} \mathbf{u} = \mathbf{A}^T \mathbf{b}$$

$$\mathbf{u} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$$

Pseudoinverse

Image Gradient Examples - Edge

Image Gradient Examples – Low texture

Image Gradient Examples – Low texture

Small motion assumption

Reduce Resolution

^{*} From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Reduce Resolution

^{*} From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Reduce Resolution

^{*} From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Spatial Pyramides

Scene Flow = 3D Optical Flow

What are the main challenges with this traditional formulation?

- Assumptions
 - Brightness constancy
 - Small motion
 - Etc
- Occlusions
- Large motion

Learning-based approaches

- Since 2015 FlowNet
- Availability of synthetic data, e.g. Sintel

FlowNet - Learning Optical Flow with Convolutional Networks

Image Pair

Optical Flow

Supervised Learning with Labeled Data Set

Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, P. Häusser, C. Hazırbaş, V. Golkov, P. Smagt, D. Cremers, Thomas Brox. IEEE International Conference on Computer Vision (ICCV), 2015

FlowNet - Learning Optical Flow with Convolutional Networks

Supervised Optical Flow using traditional principles

Pyramidal Processing, Image Warping & Cost volume processing

Deging Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. "PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume." CVPR 201

Spatial Pyramides

Supervised Optical Flow using traditional principles

Pyramidal Processing, Image Warping & Cost volume processing

Deging Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. "PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume." CVPR 201

Cost Volume

Template

Supervised Optical Flow using traditional principles

Pyramidal Processing, Image Warping & Cost volume processing

Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. "PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume." CVPR 201

Supervised Optical Flow using traditional principles

Pyramidal Processing, Image Warping & Cost volume processing

Deging Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. "PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume." CVPR 201

CS231A Computer Vision: From 3D Reconstruction to Recognition

Next lecture:

Optimal Recursive Estimation