()	Preliminary	Specification
•	•		

(V) Final Specification

Module	27.0" Color TFT-LCD
Model Name	M270DAN02.0 (ES 7.0 from 00B)

Customer	Date	Ар	proved by	Date
		_		<u>Jan.1, 2016</u>
Approved by		Pr	epared by	Date
		_		<u>Jan.1, 2016</u>
Note: This Specification i change without not	s subject to tice.		AU Optronic	es corporation

Contents

ı	Handling Precautions	4
2	General Description	5
	2.1 Display Characteristics	5
	2.2 Absolute Maximum Rating of Environment	6
	2.3 Optical Characteristics	
3	TFT-LCD Module	13
	3.1 Block Diagram	13
	3.2 Interface Connection	14
	3.2.1 Connector Type	14
	3.2.2 Connector Pin Assignment	14
	3.3.1 Absolute Maximum Rating	17
	3.3.2 Recommended Operating Condition	17
	3.4 Signal Characteristics	18
	3.4.1 LCD Pixel Format	18
	3.4.2 LVDS Data Format	19
	3.4.3 Color versus Input Data	20
	3.4.4 LVDS Specification	21
	3.4.5 Input Timing Specification	23
	3.4.6 Input Timing Diagram	24
	3.5 Power ON/OFF Sequence	25
4	Backlight Unit	27
	4.1 Block Diagram	27
	4.2 Interface Connection	28
	4.2.1 Connector Type	28
	4.2.2 Connector Pin Assignment	30
	4.3 Electrical Characteristics	31
	4.3.1 Absolute Maximum Rating	31
	4.3.2 Recommended Operating Condition	31
	Reliability Test	
	Shipping Label	
	Mechanical Characteristics	
8	Packing Specification	37
	8.1 Packing Flow	37
	8.2 Pallet and shipment information	38

AU OPTRONICS CORPORATION

Record of Revision

Version	Date	Page	Old description New Description Rema	ark
0.1	2014/6/20	All	First version release -	
1.1	2014/07/21	5	31.6W (Typ.) LCD module : PDD (Typ.)=5.5W @ white pattern,Fv=60Hz Backlight unit : P_{BLU} (Typ.) =26.1W @ I_{RLED} =120mA 28.7W (Typ.) LCD module : PDD (Typ.)=5.5W@ white pattern,Fv=60Hz Backlight unit : P_{BLU} (Typ.) =23.2W @ I_{RLED} =110mA	
		29	4.3.2 Recommended Operating Condition Symbol Description Min. Typ. Max. Unit Remark. Is LED String Current - 100 132 ImAl 100% duty ratio of LED crop. Vs LED String Voltage Deviation of 1ght bar Power - 26.1 27.7 (Wett) Mode 4.3 LED Life Tian Power - 26.1 27.7 (Wett) Mode 4.4 LED Life Tian Power - 26.1 27.7 (Wett) Mode 4.4 OVP Over Voltage Protection In 100% - 100% duty ratio of Led Consumption In system board 100% - 100% duty ratio of LED consumption In system board 100% duty ratio of LED consumption In system board 100% duty ratio of LED consumption - 28.2 26.4 (Wett) Mode 4.3 LED Life Time 30.000 - ImAl Note 4.3 (Consumption In system board 100% duty ratio of LED consumption - 28.2 26.4 (Wett) Mode 4.3 (Consumption In system board 100% duty ratio of LED consumption - 28.2 26.4 (Wett) Mode 4.3 (Consumption In system board 100% duty ratio of LED consumption - 28.2 26.4 (Wett) Mode 4.3 (Consumption In system board 100% duty ratio of LED consumption - 28.2 26.4 (Wett) Mode 4.3 (Consumption In system board 100% duty ratio of LED consumption - 28.2 26.4 (Wett) Mode 4.3 (Consumption In system board 100% duty ratio of LED consumption - 28.2 26.4 (Wett) Mode 4.3 (Consumption In system board 100% duty ratio of LED consumption - 28.2 26.4 (Wett) Mode 4.3 (Consumption In system board 100% duty ratio of LED consumption - 28.2 26.4 (Wett) Mode 4.3 (Consumption In system board 100% duty ratio of LED consumption - 28.2 26.4 (Wett) Mode 4.3 (Consumption In system board 100% duty ratio of LED consumption - 28.2 26.4 (Wett) Mode 4.3 (Consumption In system board 100% duty ratio of LED consumption - 28.2 26.4 (Wett) Mode 4.3 (Consumption In system board 100% duty ratio of LED consumption - 28.2 26.4 (Wett) Mode 4.3 (Consumption In system board 100% duty ratio of LED consumption - 28.2 26.4 (Wett) Mode 4.3 (Consumption In system board 100% duty ratio of LED consumption - 28.2 26.4 (Wett) Mode 4.4 (Consumption In system board 100% duty ratio of LED consumption - 28.2 26.4 (Wett) Mode 4.4 (Consumption In system board 100% du	
1.2	2014/08/14	7	Color Coordinates	
1.3	2015/05/18	22	Symbol Description Min. Typ. Max. Unit. Remark	
1.4	2015/11/13	25	Add note 3-7	
2.0	2015/12/08	all	ES 7.0	

1 Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open or modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) In case a TFT-LCD Module has to be put back into the packing container slot after once it was taken out from the container, do not press the center of the LED lightbar edge. Otherwise the TFT-LCD Module may be damaged.
- Insert or pull out the interface connector, be sure not to rotate nor tilt it of the TFT-LCD Module.
- 11) Do not twist nor bend the TFT -LCD Module even momentary. It should be taken into consideration that no bending/twisting forces are applied to the TFT-LCD Module from outside. Otherwise the TFT-LCD Module may be damaged.
- 12) Please avoid touching COF position while you are doing mechanical design.
- 13) When storing modules as spares for a long time, the following precaution is necessary: Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5 and 35 at normal humidity.
- 14) Do not apply the same pattern for a long time, it will enhance relevant defect.

AU OPTRONICS CORPORATION

2 General Description

This specification applies to the 27.0 inch wide Color a-Si TFT-LCD Module M270DAN02.0. The display supports the WQHD - 2560(H) x 1440(V) screen format and 1.07B colors (10bits RGB data input). The input interface is 4 port LVDS and this module doesn't contain an driver board for backlight.

2.1 Display Characteristics

The following items are characteristics summary on the table under 25 □ condition:

ITEMS	Unit	SPECIFICATIONS
Screen Diagonal	[mm]	684.7 (27.0")
Active Area	[mm]	596.74 (H) x 335.66 (V)
Pixels H x V	-	2560(x3) x 1440
Pixel Pitch	[um]	233.1 (per one triad) ×233.1
Pixel Arrangement	-	R.G.B. Vertical Stripe
Display Mode	-	Normally Black
White Luminance (Center)	[cd/m ²]	350 (Typ.)
Contrast Ratio	-	1000 (Typ.)
Response Time	[msec]	12ms (Typ., G/G)
Power Consumption (LCD Module + Backligh unit)	[Watt]	26.6W (Typ.) LCD module : PDD (Typ.)=5.5W@ white pattern,Fv=60Hz Backlight unit : P _{BLU} (Typ.) =21.1W @ I _{RLED} =100mA
Weight	[Grams]	2245g
Outline Dimension	[mm]	630(H) x 368.2(V) x 10.6(D) Typ.
Electrical Interface	-	4 channel LVDS (10bits RGB data input)
Support Color	-	1.07B colors
Surface Treatment	-	Anti-Glare, 3H
Temperature Range Operating Storage (Shipping)	[°C]	0 to +50 -20 to +60
RoHS Compliance	-	RoHS Compliance
TCO Compliance	-	TCO 7.0 Compliance

2.2 Absolute Maximum Rating of Environment

Permanent damage may occur if exceeding the following maximum rating.

Symbol	Description	Min.	Max.	Unit	Remark
TOP	Operating Temperature	0	+50	[°C]	Note 2-1
TGS	TGS Glass surface temperature (operation)		+65	[°C]	Note 2-1 Function judged only
HOP	Operation Humidity	5	90	[%RH]	Note 2-1
TST	Storage Temperature	-20	+60	[°C]	
HST	Storage Humidity	5	90	[%RH]	

Note 2-1: Temperature and relative humidity range are shown as the below figure.

- 1. 90% RH Max (Ta 39)
- 2. Max wet-bulb temperature at 39 or less. (Ta 39)
- 3. No condensation

Operating Range Storage Range + Storage Range

AU OPTRONICS CORPORATION

2.3 Optical Characteristics

The optical characteristics are measured on the following test condition.

Test Condition:

1. Equipment setup: Please refer to Note 2-2.

2. Panel Lighting time: 30 minutes

3. VDD=5.0V, Fv=60Hz, ,ls=110mA, Ta=25 \square

Symbol	Description	Min.	Тур.	Max.	Unit	Remark	
L _w	White Luminance (Cent	White Luminance (Center of screen)			-	[cd/m2]	Note 2-2 By SR-3
L _{uni}	Luminance Uniformity (9 points)			80	-	[%]	Note 2-3 By SR-3
CR	Contrast Ratio (Cente	r of screen)	600	1000	-	-	Note 2-4 By SR-3
θ_{R}	Horizontal Viewing Angle	Right	75	89	-		
θL	(CR=10)	Left	75	89	-		
Фн	Vertical Viewing Angle	Up	75	89	-		
Φ_{L}	(CR=10)	Down	75	89	-	[degree]	Note 2-5
θ_{R}	Horizontal Viewing Angle	Right	75	89	-	. 0 1	By SR-3
θ_{L}	(CR=5)	Left	75	89	-		
Φ_{H}	Vertical Viewing Angle	Up	75	89	-		
Φ_{L}	(CR=5)	Down	75	89	-		
-	Response Time	Gray to Gray	-	12	-	[msec]	Note 2-6 By TRD-100
R _x		Red x	0.630	0.660	0.690		
R _y		Red y	0.301	0.331	0.361		
G _x		Green x	0.270	0.300	0.330		
Gy	Color Coordinates	Green y	0.602	0.632	0.662		_
B _x	(CIE 1931)	Blue x	0.118	0.148	0.178	-	By SR-3
By		Blue y	0.025	0.055	0.085		
W _x		White x	0.283	0.313	0.343		
W _y		White y	0.299	0.329	0.359		
	sRGB coverage ratio		100	-	[%]	By SR-3	
СТ	Crosstalk			-	1.5	[%]	Note 2-7 By SR-3
F _{dB}	Flicker (Center of	screen)	-	-	-20	[dB]	Note 2-8 By SR-3

Note 2-2: Equipment setup :

Note 2-3: Luminance Uniformity Measurement

Definition:

 $Luminance\ Uniformity = \frac{Minimum\ Luminance\ of\ 9\ Points\ (P1 \sim P9)}{Maximum\ Luminance\ of\ 9\ Points\ (P1 \sim P9)}$

a.Test pattern: White Pattern

Note 2-4: Contrast Ratio Measurement

Definition:

a. Measured position: Center of screen (P5) & perpendicular to the screen $(\theta \text{=} \Phi \text{=} 0^\circ)$

Note 2-5: Viewing angle measurement

Definition: The angle at which the contrast ratio is greater than 10 & 5.

a. Horizontal view angle: Divide to left & right ($\theta_L \& \theta_R$) Vertical view angle: Divide to up & down ($\Phi_H \& \Phi_L$)

Note 2-6: Response time measurement

The output signals of photo detector are measured when the input signals are changed from "Black" to "White" (rising time, T_R), and from "White" to "Black" (falling time, T_F), respectively. The response time is interval between the 10% and 90% of optical response. (*Black & White color definition: Please refer section*

The gray to gray response time is defined as the following table. The algorithm is Gray Level A – Gray Level B 256.

Gray Loyal to G	Gray Level to Gray Level		Falling Time						
Gray Level to C			G255	G511	G767	G1023			
	G0								
	G255								
Rising Time	G511								
	G767								
	G1023								

- T_{GTG tvp} is the total average time at rising time and falling time of gray to gray.
- \blacksquare T_{GTG max} is the maximum time at rising time or falling time of gray to gray.

Note 2-7: Crosstalk measurement

Definition:

 $CT = Max. (CT_H, CT_V);$

Where

a. Maximum Horizontal Crosstalk:

$$CT_H = Max. (|Y_{BL} - Y_{AL}| / Y_{AL} \times 100 \%, |Y_{BR} - Y_{AR}| / Y_{AR} \times 100 \%);$$

Maximum Vertical Crosstalk:

$$CT_V = Max. (|Y_{BU} - Y_{AU}| / Y_{AU} \times 100 \%, |Y_{BD} - Y_{AD}| / Y_{AD} \times 100 \%);$$

b. Y_{AU} , Y_{AD} , Y_{AL} , Y_{AR} = Luminance of measured location without Black pattern Y_{BU} , Y_{BD} , Y_{BL} , Y_{BR} = Luminance of measured location with Black pattern

Note 2-8: Flicker measurement

a. Test pattern: It is listed as following.

R: Red, G: Green, B:Blue

b. Measured position: Center of screen (P5) & perpendicular to the screen $(\theta\text{=}\Phi\text{=}0^\circ)$

Product Specification AU OPTRONICS CORPORATION

2.4 Mechanical Characteristics

Symbol	Description	Min.	Max.	Unit	Remark
P _{bc}	Backside Compression	2.5	-	[Kgf]	Note 2-9

Note 2-9: Test Method:

The point is at a distance from right-downside 25mm x 25mm defined as the Start Point of Measure Points, and the point is at a distance 25mm from left-side & around 10mm from PCB defined as the End Point.

Align 50mm x 50mm block from Start Point on the Bezel Back, and the corners of each block are Measure Points.

If the distance from the last block to each side of the End Point 25mm, add other blocks to make sure that most area of Bezel Back can be measured.

3 TFT-LCD Module

3.1 Block Diagram

The following shows the block diagram of the 27.0 inch Color TFT-LCD Module.

Control Board

AU OPTRONICS CORPORATION

3.2 Interface Connection

3.2.1 Connector Type

TFT-LCD	Manufacturer	Starconn	P-TWO	
Connector (CNT1)	Part Number	093G30-02001A-M4	AL230F-A0G1D-P	
TFT-LCD	Manufacturer	Starconn		
Connector (CNT2)	Part Number	115F40-R000RA-M3		
Mating	Manufacturer	JAE	STM	
Connector (CNT1)	Part Number	JAE_FI-X30HL	STM_PK2407P30V	
Mating	Manufacturer	JAE		
Connector (CNT2)	Part Number	FI-NX	440CL	

3.2.2 Connector Pin Assignment

LVDS CN1

PIN#	Symbol	Description	Remark
1	R1_0N	FIRST_ Negative LVDS differential data input	
2	R1_0P	FIRST_ Positive LVDS differential data input	
3	R1_1N	FIRST_ Negative LVDS differential data input	
4	R1_1P	FIRST_ Positive LVDS differential data input	
5	R1_2N	FIRST_ Negative LVDS differential data input	
6	R1_2P	FIRST_ Positive LVDS differential data input	
7	GND	Power Ground	
8	R1_CLKN	FIRST_ Negative LVDS differential clock input	
9	R1_CLKP	FIRST_ Positive LVDS differential clock input	
10	GND	Power Ground	
11	R1_3N	FIRST_ Negative LVDS differential data input	
12	R1_3P	FIRST_ Positive LVDS differential data input	
13	R1_4N	FIRST_ Negative LVDS differential data input	
14	R1_4P	FIRST_ Positive LVDS differential data input	
15	GND	Power Ground	
16	R2_0N	SECOND_ Negative LVDS differential data input	
17	R2_0P	SECOND_ Positive LVDS differential data input	
18	R2_1N	SECOND_ Negative LVDS differential data input	

AU OPTRONICS CORPORATION

R2_1P	SECOND_ Positive LVDS differential data input	
R2_2N	SECOND_ Negative LVDS differential data input	
R2_2P	SECOND_ Positive LVDS differential data input	
GND	Power Ground	
R2_CLKN	SECOND_ Negative LVDS differential clock input	
R2_CLKP	SECOND_ Positive LVDS differential clock input	
GND	Power Ground	
R2_3N	SECOND_ Negative LVDS differential data input	
R2_3P	SECOND_ Positive LVDS differential data input	
R2_4N	SECOND_ Negative LVDS differential data input	
R2 4P	SECOND Positive LVDS differential data input	
	R2_2N R2_2P GND R2_CLKN R2_CLKP GND R2_3N R2_3P R2_4N	R2_2N SECOND_ Negative LVDS differential data input R2_2P SECOND_ Positive LVDS differential data input GND Power Ground R2_CLKN SECOND_ Negative LVDS differential clock input R2_CLKP SECOND_ Positive LVDS differential clock input GND Power Ground R2_3N SECOND_ Negative LVDS differential data input R2_3P SECOND_ Positive LVDS differential data input

LVDS CN2

PIN#	Symbol	Description	Remark
1	R3_0N	THIRD_ Negative LVDS differential data input	
2	R3_0P	THIRD_ Positive LVDS differential data input	
3	R3_1N	THIRD_ Negative LVDS differential data input	
4	R3_1P	THIRD_ Positive LVDS differential data input	
5	R3_2N	THIRD_ Negative LVDS differential data input	
6	R3_2P	THIRD_ Positive LVDS differential data input	
7	GND	Power Ground	
8	R3_CLKN	THIRD_ Negative LVDS differential clock input	
9	R3_CLKP	THIRD_ Positive LVDS differential clock input	
10	GND	Power Ground	
11	R3_3N	THIRD_ Negative LVDS differential data input	
12	R3_3P	THIRD_ Positive LVDS differential data input	
13	R3_4N	THIRD_ Negative LVDS differential data input	
14	R3_4P	THIRD_ Positive LVDS differential data input	
15	GND	Power Ground	
16	R4_0N	FOURTH_ Negative LVDS differential data input	
17	R4_0P	FOURTH_ Positive LVDS differential data input	
18	R4_1N	FOURTH_ Negative LVDS differential data input	

AU OPTRONICS CORPORATION

19	R4_1P	FOURTH_ Positive LVDS differential data input
20	R4_2N	FOURTH_ Negative LVDS differential data input
21	R4_2P	FOURTH_ Positive LVDS differential data input
22	GND	Power Ground
23	R4_CLKN	FOURTH_ Negative LVDS differential clock input
24	R4_CLKP	FOURTH_ Positive LVDS differential clock input
25	GND	Power Ground
26	R4_3N	FOURTH_ Negative LVDS differential data input
27	R4_3P	FOURTH_ Positive LVDS differential data input
28	R4_4N	FOURTH_ Negative LVDS differential data input
29	R4_4P	FOURTH_ Positive LVDS differential data input
30	NC	No connection (for AUO test only. Do not connect)
31	NC	No connection (for AUO test only. Do not connect)
32	NC	No connection (for AUO test only. Do not connect)
33	GND	Power Ground
34	GND	Power Ground
35	GND	Power Ground
36	VDD	Power +5V
37	VDD	Power +5V
38	VDD	Power +5V
39	VDD	Power +5V
40	VDD	Power +5V

3.3 Electrical Characteristics

3.3.1 Absolute Maximum Rating

Permanent damage may occur if exceeding the following maximum rating.

Symbol	Description	Min	Max	Unit	Remark
VDD	Power Supply Input Voltage	GND-0.3	6.0	[Volt]	Ta=25□

3.3.2 Recommended Operating Condition

Symbol	Description	Min	Тур	Max	Unit	Remark
VDD	Power supply Input voltage	4.5	5.0	5.5	[Volt]	
IDD	Power supply	-	1.1	1.32	[A]	VDD= 5.0V,White Pattern, Fv=60Hz
וטט	Input Current (RMS)		1.3	1.56	[A]	VDD= 5.0V, White Pattern, Fv=75Hz
PDD	VDD Power	-	5.5	6.6	[Watt]	VDD= 5.0V, White Pattern, Fv=60Hz
FDD	Consumption		6.5	7.8	[Watt]	VDD= 5.0V, White Pattern, Fv=75Hz
IRush	Inrush Current	-	-	5.0	[A]	Note 3-1
VDDrp	Allowable VDD Ripple Voltage	-	-	500	[mV]	VDD= 5.0V, White Pattern, Fv=75Hz

Note 3-1: Inrush Current measurement:

The duration of VDD rising time: 470us.

document version 2.0 17

AU OPTRONICS CORPORATION

3.4 Signal Characteristics

3.4.1 LCD Pixel Format

Following figure shows the relationship between the input signals and LCD pixel format.

Note 1: The module use 4port-LVDS interface.

Port 1: 4N+1 (1, 5.. 2557 pixel)

Port 2: 4N+2 (2, 6.. 2558 pixel)

Port 3: 4N+3 (3, 7.. 2559 pixel)

Port 4: 4N+4 (4, 8.. 2560 pixel)

 $N = 0, 1 \sim 639$

AU OPTRONICS CORPORATION

3.4.2 LVDS Data Format

RCLKP	
RCLKN	
KCLIM	
R1_ONP	X R1R0 X R1G0 X R1R5 X R1R4 X R1R3 X R1R2 X R1R1 X R1R0 X R1G0 X
R1_1NP	R1G1 R1B1 R1B0 R1G5 R1G4 R1G3 R1G2 R1G1 R1B1
R1_2NP	R1B2 DE R1B5 R1B4 R1B3 R1B2 DE
R1_3NP	R1R6 R1B7 R1B6 R1G7 R1G6 R1R7 R1R6
R1_4NP	R1R8 R1B9 R1B8 R1G9 R1G8 R1R9 R1R8
R2_ONP	R2R0 R2G0 R2R5 R2R4 R2R3 R2R2 R2R1 R2R0 R2G0
R2_1NP	R2G1 R2B1 R2B0 R2G5 R2G4 R2G3 R2G2 R2G1 R2B1
R2_2NP	R2B2 R2B4 R2B3 R2B2
R2_3NP	R2R6 R2B7 R2B6 R2G7 R2G6 R2R7 R2R6
R2_4NP	R2R8 R2B9 R2B8 R2G9 R2G8 R2R9 R2R8
R3_ONP	R3R0 R3R0 R3R5 R3R4 R3R3 R3R2 R3R1 R3R0 R3G0
R3_1NP	R3G1 R3B1 R3B0 R3G5 R3G4 R3G3 R3G2 R3G1 R3B1
R3_2NP	R3B2 R3B4 R3B3 R3B2
R3_3NP	R3R6 R3B7 R3B6 R3G7 R3G6 R3R7 R3R6
R3_4NP	R3R8
R4_ONP	R4R0 R4G0 R4R5 R4R4 R4R3 R4R2 R4R1 R4R0 R4G0
R4_1NP	R4G1 R4B0 R4G5 R4G4 R4G3 R4G2 R4G1 R4B1
R4_2NP	R4B2 R4B4 R4B3 R4B2
R4_3NP	R4R6 R4B7 R4B6 R4G7 R4G6 R4R7 R4R6
R4_4NP	R4R8 R4B9 R4B8 R4G9 R4G8 R4R9 R4R8

AU OPTRONICS CORPORATION

3.4.3 Color versus Input Data

The following table is for color versus input data (10bit). The higher the gray level, the brighter the color.

															Colo	or Inj	out [Data														
Color	Gary Level				(MS	RED B:R9										REE	V da	ta								B:B9		a 3:B0)	ı			Remark
		R9	R8	R7	R6	R5	R4	R3	R2	R1	RO	G9	G8	G7	G6	G5	G4	G3	G2	G1	G0	В9	В8	В7	В6	В5	В4	ВЗ	В2	В1	ВО	
Black	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
White	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
L511	-	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	
	LO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Black
Red	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	;	:	:	:	:	:	::	:	:	:	:	:	:	:	
	L1023	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	LO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Black
Green	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	- ;	:	:	:	:	:	:	:	:	:	:	:	:	:	
	L1023	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	
	LO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Black
Blue	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:			:	:	:	:	:	:	:	
	L1023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	

3.4.4 LVDS Specification

a. DC Characteristics:

Symbol	Description	Min	Тур	Max	Units	Condition
V_{TH}	LVDS Differential Input High Threshold	-	-	+100	[mV]	V _{CM} = 1.2V
V_{TL}	LVDS Differential Input Low Threshold	-100	-	1	[mV]	V _{CM} = 1.2V
V _{ID}	LVDS Differential Input Voltage	100	-	600	[mV]	
V _{CM}	LVDS Common Mode Voltage	+1.0	+1.2	+1.5	[V]	$V_{TH}-V_{TL} = 200 \text{mV}$

LVDS Signal Waveform:

Single-End

b. AC Characteristics:

Symbol	Description	Min	Max	Unit	Remark
F _{DEV}	Maximum deviation of input clock frequency during Spread Spectrum	-	± 3	%	
F _{MOD}	Maximum modulation frequency of input clock during Spread Spectrum	-	200	KHz	

Fclk: LVDS Clock Frequency

3.4.5 Input Timing Specification

It only support DE mode, and the input timing are shown as the following table.

Symbol	Descrip	tion	Min.	Тур.	Max.	Unit	Remark
Tv		Period	1452	1481	2299	Th	
Tdisp (v)	Vertical Section	Active	1440	1440	1440	Th	
Tblk (v)		Blanking	12	41	859	Th	
Fv		Frequency	49	60	76	Hz	
Th		Period	679	680	1023	Tclk	
Tdisp (h)	Horizontal Section	Active	640	640	640	Tclk	
Tblk (h)		Blanking	39	40	383	Tclk	
Fh		Frequency	71.3	88.8	112.6	KHz	Note 3-3
Tclk	LVDS Clock	Period	13.1	16.6	20.6	ns	1/Fclk
Fclk	1.20 0.00N	Frequency	48.4	60.4	76.5	MHz	Note 3-4

Note 3-3: The equation is listed as following. Please don't exceed the above recommended value.

```
Fh (Min.) = Fclk (Min.) / Th (Min.);
Fh (Typ.) = Fclk (Typ.) / Th (Typ.);
Fh (Max.)= Fclk (Max.) / Th (Min.);
```

Note 3-4: The equation is listed as following. Please don't exceed the above recommended value.

```
Fclk (Min.) = Fv (Min.) x Th (Min.) x Tv (Min.);
Fclk (Typ.) = Fv (Typ.) x Th (Typ.) x Tv (Typ.);
Fclk (Max.) = Fv (Max.) x Th (Typ.) x Tv (Typ.);
```


AU OPTRONICS CORPORATION

3.4.6 Input Timing Diagram

3.5 Power ON/OFF Sequence

VDD power,LVDS signal and backlight on/off sequence are as following. LVDS signals from any system shall be Hi-Z state when VDD is off.

Power Sequence Timing

Symbol		Value		l lmit	Remark
Symbol	Min.	Тур.	Max.	Unit	
T1	0.5	-	10	[ms]	
T2	0	-	50	[ms]	
Т3	500	-	-	[ms]	
T4	100	-	-	[ms]	
T5	0		50	[ms]	Note 3-5 Note 3-6
T6	0	-	150	[ms]	Note 3-6 Note 3-7
T7	1000	-	-	[ms]	

Note 3-5: Recommend setting T5 = 0ms to avoid electronic noise when VDD is off.

Note 3-6: During T5, please keep the level of input LVDS signals with Hi-Z state.

Note 3-7: Voltage of VDO must decay smoothly after power-off. (customer system decide this value)

document version 2.0 25

M270DAN02.0

AU OPTRONICS CORPORATION

4 Backlight Unit

4.1 Block Diagram

The following shows the block diagram of 27 inch Backlight Unit. And it includes 68 LED in the LED light bar. (4 strings and 17 pcs LED of one string).

4.2 Interface Connection

4.2.1 Connector Type

Backlight Connector	Manufacturer	ENTERY					
Backing it Confidence	Part Number	3707K-S06N-21R					
Mating Connector	Manufacturer	ENTERY					
Mating Connector	Part Number	H112K-P06N-13B (Locked Type)					

Backlight Connector dimension:

 $H \times V \times D = 7.9 \times 3.0 \times 4.25$; Pitch = 1.0 (unit:mm) 3707K-S06N-21R

AU OPTRONICS CORPORATION

Mating Connector dimension:

AU OPTRONICS CORPORATION

4.2.2 Connector Pin Assignment

Pin#	Symbol	Description	Remark
1	Ch1	LED Current Feedback Terminal (Channel 1)	
2	Ch2	LED Current Feedback Terminal (Channel 2)	
3	V_{SLED}	LED Power Supply Voltage Input Terminal	
4	V_{SLED}	LED Power Supply Voltage Input Terminal	
5	Ch3	LED Current Feedback Terminal (Channel 3)	
6	Ch4	LED Current Feedback Terminal (Channel 4)	

4.3 Electrical Characteristics

4.3.1 Absolute Maximum Rating

Permanent damage may occur if exceeding the following maximum rating.

(Ta=25□)

Symbol	Description	Min	Max	Unit	Remark	
	LED String Current	0	150	[mA]	100% duty ratio	
Is			300	[mA]	Duty ratio 10% Pulse time=10 ms	

Duty ratio= (A / B) X 100%; (A: Pulse time, B: Period)

4.3.2 Recommended Operating Condition

(Ta=25)

Symbol	Description	Min.	Тур.	Max.	Unit	Remark
Is	LED String Current	-	100	110	[mA]	100% duty ratio of LED chip
Vs	LED String Voltage	47.6	52.7	57.8	[Volt]	Is=100mA @ 100% duty ratio; <i>Note 4-1, Note 4-5</i>
ΔVs	Maximum Vs Voltage Deviation of light bar	-	-	3.4	[Volt]	Is=100mA @ 100% duty ratio; <i>Note 4-2</i>
P _{BLU}	LED Light Bar Power Consumption	-	21.1	23.1	[Watt]	Note 4-3
LT _{LED}	LED Life Time	30,000	-	-	[Hour]	Note 4-4
OVP	Over Voltage Protection in system board	110% Vsmax	-	-	[Volt]	Note 4-5

AU OPTRONICS CORPORATION

Note 4-1: Vs (Typ.) = V_F (Typ.) X LED No. (one string);

- a. V_F : LED chip forward voltage, V_F (Min.)=2.8 V, V_F (Typ.)=3.1V, V_F (Max.)=3.4V;
- b. The same equation to calculate Vs(Min.) & Vs(Max.) for respective $V_F(Min.)$ & $V_F(Max.)$;

Note 4-2: ΔVs (Max.) = $\Delta V_F X$ LED No. (one string);

a. ΔV_{E} LED chip forward voltage deviation; (0.2 V, each Bin of LED V_{E})

Note 4-3: P_{BLU} (Typ.) = [Vs (Typ.) X Is (Typ.)] X 4 P_{BLU} (Max.) = [Vs (Max.) X Is (Typ.)] X 4 ("4" is total LED Light bar string of single Backlight Unit.)

Note 4-4: Definition of life time:

- a. Brightness of LED becomes to 50% of its original value
- b. Test condition: Is = 100mA and 25 (Room Temperature)

Note 4-5: Recommendation for LED driver power design:

Due to there are electrical property deviation in LED & monitor set system component after long time operation. AUO strongly recommend the design value of LED driver board OVP (over voltage protection) should be 10% higher than max. value of LED string voltage (Vs) at least

Note 4-6: AUO strongly recommend "Analog Dimming" method for backlight brightness control for Wavy Noise Free. Otherwise, recommend that Dimming Control Signal (PWM signal) should be synchronized with Frame Frequency.

5 Reliability Test

AUO reliability test items are listed as following table. (Bare Panel only)

Items	Condition	Remark	
Temperature Humidity Bias (THB)	Ta= 50□, 80%RH, 300hours		
High Temperature Operation (HTO)	Ta= 50□, 50%RH, 300hours		
Low Temperature Operation (LTO)	Ta= 0□, 300hours		
High Temperature Storage (HTS)	Ta= 60 □, 300hours		
Low Temperature Storage (LTS)	Ta= -20□, 300hours		
Vibration Test (Non-operation)	Acceleration: 1.5 Grms Wave: Random Frequency: 10 - 200 Hz Sweep: 30 Minutes each Axis (X, Y, Z)		
Shock Test (Non-operation)	Acceleration: 50 G Wave: Half-sine Active Time: 20 ms Direction: ±X, ±Y, ±Z (one time for each Axis)		
Thermal Shock Test (TST)	-20□/30min, 60□/30min, 100 cycles	Note 5-1	
On/Off Test	On/10sec, Off/10sec, 30,000 cycles		
ESD (Electro Static Discharge)	Contact Discharge: ± 15KV, 150pF(330Ω) 1sec, 8 points, 25 times/ point.	Note 5-2	
	Air Discharge: ± 15KV, 150pF(330Ω) 1sec 8 points, 25 times/ point.		
Altitude Test	Operation:18,000 ft Non-Operation:40,000 ft		

- **Note 5-1**: a. A cycle of rapid temperature change consists of varying the temperature from -20 to 60 do and back again. Power is not applied during the test.
 - b. After finish temperature cycling, the unit is placed in normal room ambient for at least 4 hours before power on.

Note 5-2: EN61000-4-2, ESD class B: Certain performance degradation allowed

No data lost

Self-recoverable

No hardware failures.

6 Shipping Label

The label is on the panel as shown below:

- **Note 6-1:** For Pb Free products, AUO will add for identification.
- Note 6-2: For RoHS compatible products, AUO will add RoHS for identification.
- Note 6-3: For China RoHS compatible products, AUO will add for identification.
- **Note 6-4:** The Green Mark will be presented only when the green documents have been ready by AUO Internal Green Team.

7 Mechanical Characteristics

Avoid stressing front bezel position when doing mechanical design

8.1 Packing Flow

8.2 Pallet and shipment information

Item		Remark			
item	Q'ty	Dimension	Weight (kg)	Nemark	
Panel	1	630(H) x 368.2(V) x 10.6(D)	2.245		
Cushion	1	-	3.7		
Вох	1	720(L)mm x 264(W)mm x 460(H)mm	1.35	without Panel & cushion	
Packing Box	9 pcs/Box	720(L)mm x 264(W)mm x 460(H)mm	25.26	with panel & cushion	
Pallet	1	1070(L)mm x 740(W)mm x 138(H)mm	13.85		
Pallet after Packing	8 boxes/pallet	1070(L)mm x 740(W)mm x 1060(H)mm	215.97		