Eksamen på Økonomistudiet. Vinteren 2012 - 2013

MATEMATIK B

1. årsprøve

Onsdag den 20. februar 2013

(3 timers skriftlig prøve med hjælpemidler. Dog må der ikke medbringes lommeregnere eller anvendes nogen form for elektroniske hjælpemidler)

Københavns Universitet. Økonomisk Institut

1. årsprøve 2013 V-1B rx

Skriftlig eksamen i Matematik B

Onsdag den 20. februar 2013

3 sider med 4 opgaver.

Løsningstid: 3 timer.

Alle sædvanlige hjælpemidler må benyttes, dog ikke lommeregnere eller casværktøjer.

Opgave 1. Vi betragter den symmetriske $\times 3$ matrix

$$A = \left(\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right).$$

- (1) Udregn determinanten for matricen A, og begrund, at A ikke er regulær.
- (2) Bestem egenværdierne for matricen A.
- (3) Bestem egenrummene for matricen A.
- (4) Bestem en diagonalmatrix D og en ortogonal matrix Q, så

$$D = Q^{-1}AQ.$$

(5) Vi betragter nu den kvadratiske form $K: \mathbf{R}^3 \to \mathbf{R}$, hvis tilhørende symmetriske matrix netop er matricen A.

Bestem en forskrift for den kvadratiske form K.

(6) Vi betragter dernæst den kvadratiske form $L: \mathbf{R}^2 \to \mathbf{R}$, som er defineret ved udtrykket

$$\forall (x_1, x_2) \in \mathbf{R}^2 : L(x_1, x_2) = K(x_1, x_2, -2x_2).$$

Opskriv en forskrift for den kvadratiske form L.

(7) Bestem den til den kvadratiske form L hørende symmetriske 2×2 matrix B, og afgør om L er positiv definit.

(8) Bestem værdimængden R(L) for den kvadratiske form L.

Opgave 2. Vi betragter mængden

$$D = \{(x, y) \in \mathbf{R}^2 \mid x^2 > y\}$$

og funktionen $f: D \to \mathbf{R}$, som er givet ved forskriften

$$\forall (x, y) \in D : f(x, y) = \ln(x^2 - y) + x^2 + y.$$

(1) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

af første orden for funktionen f i et vilkårligt punkt $(x, y) \in D$.

- (2) Vis, at funktionen f har netop et stationært punkt, og bestem dette punkt.
- (3) Bestem Hessematricen H(x,y) for funktionen f i et vilkårligt punkt $(x,y) \in D$.
- (4) Afgør, om det stationære punkt er et maksimums-, et minimums- eller et sadelpunkt for funktionen f.
- (5) Bestem værdimængden R(f) for f.
- (6) Bestem en ligning for tangentplanen til grafen for f gennem punktet (1,0,f(1,0)).

Opgave 3. For t > 0 betragter vi differentialligningen

(*)
$$\frac{dx}{dt} + \frac{6(\ln t)^2}{t}x = \sin(t)e^{-2(\ln t)^3 + \cos(t)}.$$

- (1) Bestem den fuldstændige løsning til differentialligningen (*).
- (2) Bestem den specielle løsning $\tilde{x} = \tilde{x}(t)$ til differentialligningen (*), så betingelsen $\tilde{x}(1) = 2 e^{\cos(1)}$ er opfyldt.
- (3) Lad x = x(t) være en vilkårlig (maksimal) løsning til differentialligningen (*).

Vis, at

$$\lim_{t \to \infty} x(t) = 0.$$

Opgave 4. Vi betragter de symmetriske 3×3 matricer

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 0 & 1 \\ 1 & 1 & -1 \end{pmatrix} \quad \text{og} \quad B = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 3 & 1 \\ 2 & 1 & 0 \end{pmatrix}.$$

- (1) Bestem matricen P = AB. Er matricen P symmetrisk?
- (2) Er matricen $S = PP^t$ symmetrisk? Her betegner P^t den til P transponerede matrix.

Idet $n \in \mathbb{N}$, betragter vi nu to vilkårlige symmetriske $n \times n$ matricer A og B.

- (3) Vis, at $n \times n$ matricen ABA er symmetrisk.
- (4) Vis, at $n \times n$ matricen ABABA er symmetrisk.