Matematyczne aspekty wyborów

Na podstawie wykładu Krzysztofa Ciesielskiego

Skrypt autorstwa

Arkadiusza Dąbala

Wersja z dnia: 2025-01-18

Contents

1	Preliminaria	2
	1.1 Jak wyglądają aktualnie wybory?	2
	1.2 Prawo Ciesielskiego	
2	Treść właściwa	5
	2.1 Metody głosowania (system wyborczy)	5
	2.1.1 Metoda zwyciężcy	5
	2.1.2 MZU - Metoda zakładająca uporządkowanie	9
	2.1.3 Metoda TAK/NIE	19
	2.1.4 Metody porządkowe	22
	2.1.5 MR - Metoda rozdziału	29
3	Deser	12

1 Preliminaria

1.1 Jak wyglądają aktualnie wybory?

Komentarz

Materiał ten nie ma w żadnym stopniu charakteru politycznego, a wyłącznie charakter matematyczny.

Przykład 1.1 Rozważny poniższe dane, oparte na 6 partiach, 1000 głosach i 6 mandatów do rozdania:

Nazwa	Głosy	: 1	: 2	: 3	: 4	Otrzymane mandaty
Filateliści	380	380	190	127	87	3
Gitarzyści	192	192	96	64		2
Szachiści	180	180	90			1
Piłkarze	96	96	48			1
Lotniarze	90	90				0
Kolejarze	62	62				0

System ten działa w następujący sposób:

- Liczby głosów dzielone są przez kolejne liczby naturalne dodatnie (tak jak w tabeli).
- Wybierane są z tej tabeli 6 największych liczb (wytłuszczony druk).
- Liczba mandatów zależy od liczby wytłuszczonych liczb w wierszu partii.

Przykład 1.2 Rozważmy tę samą tabelę, ale załóżmy, że partia Gitarzyści nie przekroczyła progu 5%.

Nazwa	Głosy	: 1	: 2	: 3	: 4	Otrzymane mandaty
Filateliści	380	380	190	127	87	3
Gitarzyści	192	192	96	64	_	
Szachiści	180	180	90			2
Piłkarze	96	96	48			1
Lotniarze	90	90				1
Kolejarze	62	62				0

Przykład 1.3

Rozważmy następującą tabelę z 5 mandatami do rozdania:

Nazwa	Głosy:1	: 2	: 3	: 4	Mandaty
Rybacy	6000	3000	2000	1500	3
Myśliwi	5700	2850	1900		2
Artyści	1950	975			0

Partia **Rybacy** prowadziła kampanię przeciwko **Myśliwym**, w wyniku czego liczba otrzymanych głosów zmieniła się następująco:

- Partia **Rybacy** zyskała 400 głosów (+400)
- Partia **Myśliwi** straciła 600 głosów (-600)
- Partia **Artyści** zyskała 200 głosów (+200)

Nazwa	Głosy:1	: 2	: 3	: 4	Mandaty
Rybacy	6400	3200	2133		3
Myśliwi	5100	2550	1700		2
Artyści	2150	1075			0

Komentarz

Tym oto sposobem partia Myśliwi stracili jeden mandat na rzecz partii Artyści.

Przykład 1.4

Rozważmy wyniki głosowania dla dwóch partii z 6 mandatami do rozdania.

Nazwa	Głosy:1	: 2	: 3	: 4	: 5	Mandaty
Matematycy	1200	600	400	300	240	5
Politycy	201	101				1

Popatrzmy na głosy bezpośrednio na konkretnych kandydatów z każdej partii:

Nazwa	Głosy
Kwadrat	201
Trójkąt	200
Stożek	200
Walec	200
Suma	200
Iloczyn	199

Nazwa	Głosy
Magister	35
Magistra	34
Urzędnik	33
Urzędas	33
Pani Basia	33
Pan Andrzej	33

Komentarz

Tym oto sposobem mandatu nie otrzymuje **Iloczyn**, mimo że zdobył więcej głosów niż **Magister**.

Przykład 1.5

Rozważmy sytuację, w której państwo jest podzielone na dwa bloki, oba mające po 50% wpływu na wyniki wyborów. Każdy blok ma przyznać po 4 mandaty.

W bloku A znajdowały się dwie partie: PZK (Partia Zwolenników Kawy) i PZH (Partia Zwolenników Herbaty), z których każda otrzymała po 25% głosów w ogólnokrajowym głosowaniu. W bloku B znajdowała się partia PZA (Partia Zwolenników Alkoholu) oraz inne partie, które nie przekroczyły progu 5%. Przedstawmy liczbę uzyskanych głosów w PZA:

Nazwa	Głosy
Żubr	19995
Żubrówka	2
Soplica	2
Pan Tadeusz	1

Komentarz

I tym oto sposobem wygrywają osoby, które dostają 2 lub 1 głos.

1.2 Prawo Ciesielskiego

Rozważmy głosowanie względem 2 partii z 7 mandatami:

	Nazwa	Głosy:1	:3	:5	:7	:9	Mandaty
ľ	Kelnerzy	1050	350	210	150	117	4
	Sportowcy	1008	336	202	144		3

Partia **Sportowcy** postanowiła się rozdzielić na dwie partie i startować osobno:

Nazwa	Głosy:1	:3	:5	:7	:9	Mandaty
Kelnerzy	1050	350	210	150	117	3
Piłkarze	504	168	101			2
Siatkarze	504	168	101			2

Komentarz

Tym oto sposobem partia **Sportowcy** zdobyła większość.

2 Treść właściwa

2.1 Metody głosowania (system wyborczy)

Wprowadźmy kilka oznaczeń, niech:

W - zbiór wszystkich wyborców,

K - zbiór wszystkich kandydatów.

- Ten sam układ głosów (zestaw głosów) daje ten sam wynik (funkcja).
- Każdy układ głosów daje jakiś wynik (może być ∅).

Definicja 2.1 (Model)

Model to układ głosów (z przyporządkowanymi wyborcami).

Definicja 2.2 (Metoda anonimowa)

Metoda jest anonimowa, wtedy i tylko wtedy (w skrócie: \Leftrightarrow), gdy wszyscy wyborcy są traktowani tak samo, $\Leftrightarrow \forall_{x,y \in W}$ zamiana głosów x i y nie zmienia wyniku.

Komentarz

Alternatywnie, metoda nie jest anonimowa $\Leftrightarrow \exists_{x,y \in W}$ takie, że zamiana głosów x i y istotnie zmienia wynik.

Definicja 2.3 (Metoda neutralna)

Metoda jest neutralna, \Leftrightarrow wszyscy kandydaci są traktowani tak samo, \Leftrightarrow $\forall_{x,y\in K}$ zamiana ról x i y nie zmienia wyniku.

Komentarz

Alternatywnie, metoda nie jest neutralna $\Leftrightarrow \exists_{x,y \in K}$ takie, że zamiana ról x i y istotnie zmienia wynik, dokładniej definiując:

jeśli $\exists k_1, k_2 \in K : W_1 = \{w_1, w_2, \dots, w_i\}$ głosowali na k_1 , a $W_2 = \{w_{i+1}, w_{i+2}, \dots, w_j\}$ głosowali na k_2 to jeżeli kandydaci Ci "zamienią się" wyborcami (zbiorami W_1, W_2), to k_1 i k_2 zamienią się wynikami.

Definicja 2.4

Trzy rodzaje metod ze względu na wyniki:

- 1) Metoda zwycięzcy (MZ) wybiera zwycięzcę (zwycięzców),
- 2) Metoda porządkowa (MP) wynik to słaby porządek na zbiorze K,
- 3) Metoda rozdziału (MR) wynik to podział pewnych dóbr między kandydatów.

2.1.1 Metoda zwyciężcy

Definicja 2.5 (Klasyczna metoda zwycięzcy)

Klasyczna metoda zwycięzcy (klasyczna MZ) polega na tym, że każdy wyborca głosuje na dokładnie jednego kandydata. Zbiór

$$\Sigma = \{m : W \to K\}$$

jest zbiorem modeli, gdzie m jest modelem. Klasyczną metodę zwycięzcy możemy opisać funkcją

$$f: \Sigma \to P(K)$$
.

Definicja 2.6 (Semi-klasyczna metoda zwycięzcy)

Semi-klasyczna MZ polega na tym, że każdy wyborca głosuje na co najmniej jednego kandydata:

$$\Sigma = \{ m : W \to P(K) \setminus \emptyset \}.$$

Metodę tę można opisać funkcją

$$f: \Sigma \to P(K)$$
.

Definicja 2.7 (Metoda efektywna)

 $Metoda\ zwycięzcy\ jest\ efektywna \Leftrightarrow zawsze\ wyłania\ przynajmniej\ jednego\ zwycięzcę.$

Przykład 2.1 (Przykłady metod głosowania) Metody klasyczne:

- 1) Dyktatura $\exists p \in W$: wynik jest tożsamy z głosem p.
- 2) Monarchia dany kandydat $k \in K$ wygrywa niezależnie od głosowania.
- 3) Metoda większości wygrywa kandydat (lub kandydaci), który(a) otrzymał(a) najwięcej głosów.
- 4) Metoda bezwzględnej większości wygrywa kandydat $k \in K$, który otrzymał co najmniej $\lfloor \frac{\#W}{2} \rfloor + 1$ głosów.
- 5) Metoda super większości – wygrywa kandydat, który uzyskał co najmnie
jqgłosów, gdzie $q>\frac{\#W}{2}.$
- 6) Metoda status quo *Założenie:* ∃ pewien stan z jednym zwycięzcą. Głosowanie metodą większości (lub super większości):
 - jeśli metoda daje wynik, zwycięża "nowy" kandydat,
 - jeśli metoda nie daje wyniku, zwycięża dotychczasowy kandydat.

Przykład: referendum.

- 7) Metoda większości ważonej $(W = \{a_1, \ldots, a_n\})$, gdzie głos a_i ma wagę $w_i \ge 0$. Wygrywa ten, kto otrzyma ponad $\frac{w_1 + \cdots + w_n}{2}$ punktów.
- 8) Metoda głosowania blokowego $W = W_1 \cup \cdots \cup W_n$, gdzie W_k to zbiór wyborców bloku. W_k podejmuje decyzję większością głosów. W przypadku remisu wybierają zwycięzcę w W_k . Głos z W_k ma wagę i_k . Wygrywa kandydat z największą liczbą punktów.

Metody semi-klasyczne:

- 9) Metoda n-głosów każdy wyborca głosuje na n kandydatów, a zwycięża ten, kto uzyska najwięcej głosów.
- 10) Szeroka metoda n-głosów każdy głosuje na n kandydatów, ale mamy n zwyciężców (lub więcej w przypadku remisu na ostatnim "wygrywającym" miejscu)

Metoda ani klasyczna, ani semi-klasyczna:

11) Metoda punktowa – każdy wyborca $w \in W$ ma do rozdysponowania p punktów ($p \in \mathbb{N}$) między kandydatów. Zwycięża kandydat z największą liczbą punktów.

Definicja 2.8 (Metoda decyzyjna)

 $Metoda\ zwycięzcy\ jest\ decyzyjna \Leftrightarrow w\ każdym\ modelu\ wyłania\ dokładnie\ jednego\ zwycięzcę.$

Definicja 2.9 (Metoda prawie decyzyjna)

Metoda zwycięzcy jest prawie decyzyjna \Leftrightarrow w każdym modelu wyłania co najwyżej jednego zwycięzcę. Sytuacja, w której nie ma zwycięzcy, zachodzi wtedy, gdy więcej niż jeden kandydat uzyskał tę samą, najwyższą liczbę punktów.

Ćwiczenie 2.1 (Z ćwiczeń)

Zbadaj kto jest zwycięzcą w głosowaniu przez 99 osób na kandydatów: **Anastazy**, **Bermudy**, **Cezary**, jeśli otrzymano następujące wyniki metodą porządkową:

Liczba głosów	Wynik porządkowy
18	ABC
15	ACB
24	BAC
8	BCA
16	CAB
18	CBA

Ćwiczenie 2.2

Dane są wyniki głosowania:

Imię	$Liczba\ glos \acute{o}w$
$Ja\acute{s}$	100
Malgosia	1

Zrób tak, by Małgosia wygrała.

Ćwiczenie 2.3

Uzupełnij tabelę:

	An on imowa	Neutralna	Efektywna
Dyktatura	-	+	+
Monarchia	+	-	+
Metoda Większości	+	+	+

Definicja 2.10 (Kryterium jednoznacznej bezwzględnej większości)

Metoda zwycięzcy (MZ) spełnia kryterium jednoznacznej bezwzględnej większości, wtedy i tylko wtedy, gdy kandydat, który otrzyma ponad 50% głosów, jest jedynym zwycięzcą.

Stwierdzenie 2.1

Mamy klasyczną metodę zwycięzcy, taką że #K=2, a głosowanie odbywa się według zasady bezwzględnej większości. Wówczas metoda jest prawie decyzyjna.

Dowód:

- 1° Załóżmy, że liczba wyborców #W jest nieparzysta OK.
- 2° Liczba wyborców #W jest parzysta:
 - jeden kandydat ma więcej niż 50% głosów OK.
 - \bullet remis, czyli obaj mają po 50% nie ma zwycięzcy (dlatego metoda jest prawie decyzyjna).

Stwierdzenie 2.2

 $Metoda\ jest\ decyzyjna \Rightarrow metoda\ jest\ prawie\ decyzyjna.$

Definicja 2.11 (Metoda monotoniczna ze względu na zwycięzce)

Z: MZ - klasyczna lub semi-klasyczna. Metoda jest monotoniczna ze względu na zwycięzcę, wtedy i tylko wtedy, gdy kandydat A jest zwycięzcą, a jeśli wybierzemy kandydata B różnego od A ($B \neq A$) oraz jego grupę wyborców, to jeśli ta grupa zmieni swoje głosy bez straty dla A (czyli zmiana nastąpi zgodnie z następującymi dozwolonymi operacjami):

M	\Rightarrow	N
A B	\Rightarrow	A B
	\Rightarrow	
+ +	\Rightarrow	+ +
- +	\Rightarrow	+ -

 $to: \Rightarrow A \ nadal \ wygrywa.$

Komentarz

Czyli, jeżeli ktoś, kto nie głosował na zwycięzcę (A), a głosował na kandydata B, zmieni swój głos na zwycięzcę (A), to (A) nadal wygrywa.

Definicja 2.12 (Metoda kwoty)

MZ klasyczna lub semi-klasyczna jest metodą kwoty (większości kwalifikowanej), wtedy i tylko wtedy, gdy istnieje q (kwota), taka że liczba głosów o tej własności, że kandydat A jest zwycięzcą wtedy i tylko wtedy, gdy A otrzymał co najmniej q głosów.

Komentarz

Często kwota wyrażana jest w procentach, a wówczas stosuje się nieraz nierówność słabą.

Twierdzenie 2.1 (Maya - Kenneth Maya, 1952r)

Z: Klasyczna metoda zwycięzcy oraz #K = 2. Jeżeli metoda ta jest metodą:

- (1) anonimową
- (2) neutralna
- (3) monotoniczną ze względu na zwycięzcę
- (4) prawie decyzyjną
- ⇒ jest metodą bezwzględnej większości.

Dowód: Załóżmy, że A, B to kandydaci.

- $\stackrel{(1)}{\Rightarrow}$ interesują nas liczby głosów, które otrzymali kandydaci. Załóżmy:
- A a głosów
- B b głosów

Rozpatrzmy zatem przypadki:

- $1^{\circ} \#W = 2n \text{ (parzysta)}, \text{ rozważmy dwa podprzypadki:}$
 - a) Jeśli a = n, b = n.

Hipoteza: A wygrywa (analogicznie, jeżeli nie wygrywa B), a metoda jest neutralna, to przy wymianie wyborców $\stackrel{(2)}{\Rightarrow} B$ wygrywa (nie wygrywa A) $\Rightarrow A$ i B wygrywają jednocześnie (nie wygrywa żaden) \Rightarrow co prowadzi do \P (bo żaden z nich nie ma ponad 50%).

b) Jeśli a > b.

Hipoteza: B wygrywa, wtedy a-b wyborców zmienia głosy z A na B, $\stackrel{(3)}{\Rightarrow} B$ dalej wygrywa. Teraz B ma a głosów, $\stackrel{(2)}{\Rightarrow} A$ wygrywa, $\stackrel{(4)}{\Rightarrow} A$ wygrywa i ma ponad połowę głosów.

2° Niech #W = 2n + 1 (nieparzysta). Niech a > b.

Hipoteza: B wygrywa, a-b wyborców zmienia głosy i, jak w 1a), udowadniamy, że B musi mieć ponad połowę głosów.

Tak więc zawsze wygrywa ten, kto ma ponad połowę głosów.

2.1.2 MZU - Metoda zakładająca uporządkowanie

Definicja 2.13 (Metoda zakładająca uporządkowanie)

Metoda zwycięzcy jest metodą zakładającą uporządkowanie (MZU) wtedy i tylko wtedy, gdy $\forall_{w \in W}$ ustala K kandydatów w liniowym porządku, a jego głos zależy od tego porządku.

Zapis:

 $A \stackrel{w,m}{<} B$ w modelu m oznacza, że wyborca w stawia B wyżej niż A. $A \stackrel{w}{<} B$ - gdy wiadomo, jaki model.

Przykład 2.2

1. Metoda punktów Bordy (Jean Charles de Borda, 1733–1799, inżynier wojskowy) – Każdy wyborca przydziela punkty od n-1 do θ :

```
1 miejsce - n-1 punktów
2 miejsce - n-2 punktów
\vdots
n-1 miejsce - 1 punkt
n miejsce - 0 punktów
```

Zwycięża ten, kto otrzyma największą liczbę punktów.

- 2. Metoda Hare'a (Sir Thomas Hare, 1806–1891, Anglia, prawnik, 1857 r.) Polega na odrzucaniu tego kandydata (tych kandydatów), który ma najmniej pierwszych miejsc, i głosowaniu dalej (listy pozostają z usunięciem odrzuconego kandydata), aż ktoś uzyska ponad 50% głosów. Gdy następuje remis i nie ma kogo odrzucić, wszyscy wygrywają.
- 3. Metoda Coombsa (Clyde Coombs, 1912–1988, USA, psycholog) Wypisujemy kolejność wyników głosowania, odrzucamy kandydata (lub kandydatów jeżeli ktoś zostanie), który ma najwięcej ostatnich miejsc, i głosujemy dalej, aż ktoś uzyska ponad 50% pierwszych miejsc. Gdy nie można nikogo odrzucić, wygrywają wszyscy, którzy pozostali.
- 4. Metoda odrzuceń ostatniego Jak w metodzie Coombsa, przy czym odrzucamy "do oporu". Gdy nie można nikogo więcej odrzucić, wygrywają wszyscy, którzy pozostali.

Przykład 2.3

Różnica między metodą Coombsa a metodą odrzucania ostatniego.

Metoda Coombsa

Liczba:	4	2	3
I pozycja	C	\boldsymbol{B}	B
II pozycja	A	C	A
III pozycja	B	A	C

Wygrywa B, bo ma ponad 50% pierwszych miejsc.

Metoda odrzuceń ostatniego

Liczba:	4	2	3
I pozycja	C	В	B
II pozycja	/A/	C	A
III pozycja	B	/A/	C

Kolejność odrzuceń: B, A, C – C wygrywa.

5. Metoda Copelanda (Arthur H. Copeland, 1898–1970, matematyk) – Porównujemy parami kandydatów. Ten, kto więcej razy zostaje oceniony wyżej, dostaje 1 pkt, a w przypadku remisu obaj dostają po 0,5 pkt.

$$\#\{m: A \stackrel{m}{<} B\}$$

 $\#\{m: B \stackrel{m}{<} A\}$

Decyduje suma punktów (zwycięzców może być więcej niż jeden).

6. Metoda turniejowa (Z: #W = 2n+1 nieparzysta) – k_1 porównujemy z k_2 (metodą powyżej), a następnie zwycięzcę pierwszego porównania porównujemy z k_3 itd.

7. Metoda pozycyjna – Wyborcy przyznają punkty kandydatą w postaci $P(p_1, p_2, ..., p_n)$, gdzie $p_1 \geq p_2 \geq ... \geq p_n$. np.

 $p_1 \ge p_2 \ge \cdots \ge p_n$. np. $1 \ miejsce - p_1 \ punktów$ $2 \ miejsce - p_2 \ punktów$ itd.

Zwycięża ten z największą liczbą punktów.

 $UWAGA-w\ szczeg\'olno\'sci:$

Metoda Bordy: P(n-1, n-2, ..., 1, 0)Metoda większości: P(1, 0, ..., 0)Metoda k głosów: P(1, 1, ..., 0)

 $Metoda\ k\ glosów:\ P(1,1,\ldots,1,0,\ldots,0)$

 $Definicja \ 2.14 \ (Monotoniczność \ ze \ względu \ na \ transpozycję)$

MZU jest monotoniczna ze względu na transpozycje $\Leftrightarrow \forall_{M-model} \forall_{w \in W} \forall_{A,B \in K}$, jeśli w M głosuje się $[\Delta, B, A, *]$ i w M wygrywa A, to w N, gdzie zmiana polega na $[\Delta, A, B, *]$, również wygrywa A.

Komentarz

Zmiana polega na zamienieniu kolejności uporządkowania A i B. Dodatkowo porządek

ten był na wykładzie zapisany pionowo. $\begin{bmatrix} \Delta \\ A \\ B \\ * \end{bmatrix}$

Umowa: Jeśli nie jest zaznaczone inaczej, to w K,W różne oznaczenia oznaczają różnych kandydatów (wyborców).

Definicja 2.15 (Słaba zasada Pareto) MZU spełnia słabą zasadę Pareto $\Leftrightarrow \forall_M (\exists_{A,B \in K} \forall_{w \in W} A \overset{w,M}{<} B) \Rightarrow A$ nie wygrywa w M.

Definicja 2.16 (Kandydat Condorceta)

 $A \in K$ jest kandydatem Condorceta (zwycięzcą Condorceta) $\Leftrightarrow w$ "bezpośrednich porównaniach" A jest lepszy od każdego innego kandydata $\Leftrightarrow \forall_{B \in K} : B \neq A$ $\#\{w : B \overset{w,M}{<} A\} > \#\{w : B \overset{w,M}{>} A\}$.

Definicja 2.17 (Przegrany Condorceta)

 $A \in K$ to przegrany Condorceta (w modelu M) $\Leftrightarrow \forall_{B \in K} : B \neq A \quad \#\{w : B \overset{w,M}{<} A\} < \#\{w : B \overset{w,M}{>} A\}$.

Definicja 2.18 (Kryterium Condorceta)

Metoda spełnia kryterium Condorceta $\Leftrightarrow \forall_M$: Istnieje kandydat Condorceta $(w\ M) \Rightarrow A$ -jedyny zwycięzca $w\ M$.

Definicja 2.19 (Kryterium przegranych Condorceta)

Metoda spełnia kryterium przegranych Condorceta $\Leftrightarrow \forall_M$: Istnieje przegrany Condorceta A w $M \Rightarrow A$ nie wygrywa w M.

Definicja 2.20 (Metoda jednoznacznie większościowa)

Metoda jest jednoznacznie większościowa $\Leftrightarrow \forall_M \text{ kandydat } A \text{ w } M \text{ ma ponad połowę pierwszych } miejsc \Rightarrow A - jedyny zwycięzca.}$

Definicja 2.21 (Metoda słabo niezależna od ubocznych opcji)

Metoda słabo niezależna od ubocznych opcji spełnia warunek niezależności porażki od ubocznych opcji (spełnia słaby warunek IIA) \Leftrightarrow

$$\forall_{A,B \in K} \forall_{M,N-modele} \ spelnia \left[\begin{array}{c} \forall_{w \in W} (B \stackrel{w,M}{<} A) \Leftrightarrow (B \stackrel{w,N}{<} A) \\ A \ wygrywa \ w \ M, \ B \ nie \ wygrywa \ w \ M \end{array} \right] \Rightarrow B \ nie \ wygrywa \ w \ N.$$

Innymi słowy: zmiany nie wpływające na relacje przegrany-zwycięzca nie mogą dać przegrywającemu zwycięstwa.

Twierdzenie 2.2

MZU, anonimowa, neutralna \Rightarrow metoda nie jest decyzyjna.

Dowód. Rozważmy #K = 2, #W = 2n i otrzymane głosy.

Głosy	n	n
1	Α	В
2	В	Α

Hipoteza: Metoda decyzyjna to np. wygrywa $A \Rightarrow$ wygrywa B **7** Analogicznie zachodzi dla A.

Przykład 2.4 (Paradoks Condorceta)

Rozważmy następującą tabelę:

Glosy	9	10	11
1	A	B	C
2	В	C	A
3	C	A	B

 $Zachodzi \ A > B, \ B > C, \ C > A.$ Mamy więc grę w "kamień, papier, nożyce."

Twierdzenie 2.3

MZU spełnia kryterium Condorceta \Rightarrow jest jednoznacznie większościowa.

 $Dow \acute{o}d.$ A ma ponad połowę pierwszych miejsc \Rightarrow A - kandydat Condorceta \Rightarrow A jest jedynym zwycięzcą.

Twierdzenie 2.4

MZU spełnia słabe IIA, a A spełnia kryterium Condorceta ⇒ spełnia słabą zasadę Pareto.

Dowód. Rozważmy $M \forall_W A \overset{w,M}{<} B \overset{?}{\Rightarrow} A$ nie wygrywa w M.

Rozważmy model N: dla każdego wyborcy przesuwamy Ai Bna szczyt, [B,A,reszta] $A\stackrel{w,M}{<}B\Leftrightarrow A\stackrel{w,N}{<}B.$

W N: B jest kandydatem Condorceta.

W N: B jest jedynym zwycięzcą, B wygrywa, A nie wygrywa.

Słabe IIA A nie wygrywa w M.

Twierdzenie 2.5

MZU, monotoniczna ze względu na transpozycje, $\Leftrightarrow \forall_{M-model} \forall_{A \in K} \forall_{B_1,...,B_n \in A} (A \neq B, \text{ ale może być } B_i = B_i) \forall_{w_1,...,w_n \in W} \text{ (może być } w_i = w_i)$

Jeżeli w modelu M wygrywa A, to model N utworzony przez $[\Delta, B_i, A, *] \rightarrow [\Delta, A, B_i, *]$ dla $i = 1, ..., n \Rightarrow w$ N dalej wygrywa A.

 $Dow \acute{o}d. \Leftarrow oczywiste.$

 \Rightarrow Stosujemy założenie n razy (robimy n skoków i dalej wygrywa A).

Przykład 2.5

- 1. Metoda Blacka (1908-1991, ekonomista) jeśli istnieje kandydat Condorceta, to on wygrywa. Jeśli nie istnieje, stosujemy punkty Bordy.
- 2. Metoda Condorceta jeśli istnieje kandydat, który w "bezpośrednim porównaniu" wygrywa lub remisuje z każdym innym \Leftrightarrow on jest zwycięzcą.
- 3. Metoda nominacji każdy, kto ma co najmniej jedno pierwsze miejsce, wygrywa.
- 4. Metoda ostatnich miejsc każdy, kto nie ma żadnego ostatniego miejsca, wygrywa.
- 5. Metoda prezydencka rozważamy dwóch kandydatów z największą liczbą pierwszych miejsc. Porównujemy ich "bezpośrednio". Jeśli na drugim miejscu jest remis, wszyscy z drugiego miejsca "przechodzą do finału" i tam stosujemy metodę Copelanda.

Metoda punktów Bordy jest monotoniczna ze względu na transpozycję.

Awygrywa. Niech Azdobędzie 1 punkt więcej. Innym się nie zwiększyło $\Rightarrow A$ dalej wygrywa.

Metoda	Kryterium	Kryterium	Słaba	Monoto-	IIA	Jedno-
	Condorc-	prze-	zasada	niczność ze		znaczna
	eta	granego	Pareto	względu na		większość
		Condorc-		transpozy-		
		eta		cję		
Punkty	-(1)	+	+	+	-(2)	-(1)
Bordy						
Hare'a	-(3)	-(3)	+	-(4)	-(5)	+(O)
Coombsa	-(14)	-(15)	+	-(13)	-(13)	+(O)
Odrzuceń os-	-(11,12)	-(12)	+	-(13)	-(13)	-(11,12)
tatniego						
Copelanda	+	+	+	+	-(10)	+(O)
Większości	-(3)	-(3)	+(O)	+	-(6)	+
Dyktatura	-(7)	-(7)	+	+(O)	+	-(7)
Terminażowa	+	+	-(8)	+	-(9)	+

D1) Metoda Bordy, Kryterium przegranego Condorceta $\forall_w A < B$ Punkty A < Punkty B. W punktacji A zdobywa 1 punkt za każdą parę (B, w), w której wyborca w umieszcza B wyżej niż A.

A jest przegranym Condorceta. Mamy k kandydatów, n wyborców, a kandydat $K_1,...,K_{n-1}$ otrzyma mniej niż $\frac{n}{2}$ punktów. W sumie, A zdobywa mniej niż $\frac{k(k-1)}{2}$ punktów.

Łączna pula punktów do rozdziału wynosi $n \cdot \frac{k(k-1)}{2}$ (suma ciągu arytmetycznego). Wszyscy razem zdobywają mniej niż $\frac{n(k-1)}{2}$ punktów, czyli łącznie mniej niż $\frac{k \cdot n \cdot (k-1)}{2}$.

- D2) **Metoda Comba i Hare'a** Jeśli $\forall_w A \stackrel{w}{<} B$, to A wcześniej odpadnie od B.
- D3) **IIA dyktatura** Jeśli A wygrywa, $B \stackrel{d,M}{<} A$, to B nie może wygrać.
- D4) **Metoda terminarzowa Kryterium Condorceta** Kandydat Condorceta wygrywa z każdym i nie odda zwycięstwa.
- D5) **Terminażowa monotoniczność** Przy przesunięciu A również wygrywa.
- D6) **Metoda Copelanda** Gdy A wygrywa z każdym, to zdobywa maksymalną liczbę punktów. Zasada Pareto: $\forall_w B \stackrel{w}{<} A \stackrel{?}{\Rightarrow} B$ nie wygrywa.

Jeśli B wygrywa w pojedynku z C, to również A wygrywa z C. Wówczas punkty A > punkty B, ponieważ A zdobywa punkty za parę (A, B), a zatem punkty A są silniejsze.

D7) **Metoda Coombsa - Słaba zasada Pareto** Jeśli $\forall_w B \stackrel{w}{<} A$, to A nie odpadnie, zanim B nie odpadnie (czyli B odpadnie wcześniej niż A).

	3os	2os	Pkt		ΓΛ 6 ml.47
TZ 1 \	Α	В	2	A jest kandydatem Condorceta, natomiast otrzymano punkty:	A = 6 pkt
K1)	В	С	1		B = i pkt C = 2 pkt
	С	A	0		[C-2] pkt

K3)
$$\begin{array}{|c|c|c|c|c|c|} \hline 2os & 3os & 2os \\ \hline A & B & C \\ \hline C & A & A \\ \hline B & C & B \\ \hline B. \end{array} \end{array} \begin{bmatrix} A-\text{kandydat Condorceta} \\ B-\text{przegrany Condorceta} \end{bmatrix}, \text{ bo } A:B \ 4:3 \Rightarrow A:C \ 5:2, \text{ ale wygrywa}$$

K5)
$$\begin{vmatrix} 2\text{os} & 1\text{os} & 2\text{os} \\ B & A & A \\ \hline A & B & C \\ \hline C & C & B \end{vmatrix} B \text{ nie wygrywa, } A \text{ wygrywa} \Rightarrow \begin{vmatrix} 2\text{os} & 1\text{os} & 2\text{os} \\ B & A & C \uparrow \\ \hline A & B & A \\ \hline C & C & B \end{vmatrix}, \text{ wygrywa } B$$

 \boldsymbol{B} wygrywa.

	2os	2os	1os	1os				
	A	С	D	В		$\mathbf{A} > B (4:2)$	$\mathbf{B} > C(4:2)$	
K10)	D	Α	В	С	otrzymujemy kolejno wyniki:			
	В	В	С	D		$\mathbf{A} > D(4:2)$	$\mathbf{C} = \mathbf{D} (3:3) \rfloor$	
	С	D	Α	Α				

nano punkty
$$\begin{bmatrix} A - 2 & \text{pkt} \\ B - 1, 5 & \text{pkt} \\ C - 1, 5 & \text{pkt} \\ D - 1 & \text{pkt} \end{bmatrix}, \ A \ \text{wygrywa}, \ C \ \text{nie wygrywa}.$$

2os2os1osoraz punktacje: $\begin{bmatrix} A - 2 & \text{pkt} \\ B - 0.5 & \text{pkt} \\ C - 2.5 & \text{pkt} \\ D - 1 & \text{pkt} \end{bmatrix}, C \text{ wygrywa.}$ $\overline{\mathbf{C}}$ В Α D $\overline{\mathrm{C}}$ Po zmianie: В D Α D В $\overline{\mathrm{C}}$ \uparrow В D Α Α

	4os	2os	3os					
IZ 11)	С	В	В	B ma najwięcej głosów pierwszych, czyli jest kandydatem Condorceta,				
IX11)	A	С	Α	D ma najwięcej głosow pierwszych, czyn jest kandydatem Condorceta,				
	В	Α	С					
	ale kolejność odrzuceń to $B, A,$ więc wygrywa C .							

K12) $\begin{array}{|c|c|c|c|c|} \hline 2 & 3 & 1 & 2 & 3 \\ \hline C & B & B \\ \hline A & C & A \\ \hline B & A & C \\ \hline \end{array}$ C to przegrany Condorceta, ale C wygrywa.

	2os	1os	1os	1os	2os					
	Е	D	Α	С	В					
K14)	Α	В	В	В	С	B -kandydat Condorceta, B odpada w I turze				
K14)	D	Α	С	D	Α	D -kandydat Condorceta, D odpada w i turze				
	С	Е	Е	Е	D					
	В	С	D	A	Е					

Lemat 2.1 (Lemat o decyzyjności)

Z: MZU, efektywna, $\#K \geq 3$, $\#W \geq 2$. Metoda spełnia słabą zasadę Pareto i słabe IIA \Rightarrow jest decyzyjna.

Dowód: Wiemy, że zwycięzca istnieje (chcemy wykazać, że jest jedyny). Załóżmy, że A i B

Υ

Tworzymy model $\begin{bmatrix} X & Y \\ A & C \\ C & B \\ B & A \\ \dots & \dots \end{bmatrix}$

, w którym relacje A/B nie są zmienione.

Kto wygrywa w Q? Na pewno nie B, bo $\forall_w B \stackrel{w}{<} C$, ale również nie A (z IIA). Jeżeli w Q A wygrywa, B nie \Rightarrow w M B nie wygrywa \P Zatem wygrywa C.

Kto wygrywa w R? - A, B lub C (Pareto) Ale nie wygrywa C (z zasady Pareto). W R: relacje A/C są takie same jak w Q.

Załóżmy, że A wygrywa w $R \Rightarrow C$ nie wygrywa w Q. Wobec tego w R wygrywa B.

Porównajmy Mi R: relacje A-B w Mi Rsą takie same. Wobec tego z IIA \Rightarrow w M Anie wygrywa \P

Twierdzenie 2.6 (Twierdzenie Arrowa dla metod zwycięzcy (1951))

 $Załóżmy: \#K \geq 3, \#W \geq 2, MZU, efektywna, spełnia słabą zasadę Pareto i słabe IIA <math>\Rightarrow dyktatura.$

D: Z lematu o decyzyjności \Rightarrow jeśli zwycięzca istnieje, to jest jedyny.

Czy istnieje jedyny zwycięzca? (pytanie) dyktatura.

Definicja 2.22 (na potrzeby dowodu)

 $w \in W$ - dyktator A z kontrolerem $B \Leftrightarrow jeśli A \stackrel{w}{<} B \Rightarrow A$ nie wygrywa.

Podzielimy dówód na 3 kroki:

I krok - $\forall_{A,B\in K} \exists_{w\in W}$ dyktator nad A z kontrolerem B.

II krok - w-dyktator nad A z kandydatem $B \Rightarrow w$ dyktator nad B z kontrolerem A (dyktatora nad parą A, B oznaczamy d(A, B)).

III krok - Jeżeli $w = d(A, B) \Rightarrow \forall_{D,E} w = d(D, E)$ (gdzie D, E może być A lub B).

 Dow. I) Niech C będzie trzecim kandydatem.

C	
A	$\left\{ egin{aligned} ext{Wygrywa } C. ext{ Jeden wyborca} \end{aligned} ight.$
В	wygrywa C. Jeden wyborca
wszyscy	

prze-

Pierwsze przejście, po którym C nie wygrywa (musi takie zaistnieć).

X, Y - grupy wyborców.

X	W	Y		X	W	Y
C	C	A		C	A	A
A	A	В		A	B	B
B	B	C		B	C	C
	M_1		,		M_2	

Pokażemy, że w jest dyktatorem nad B z kontrolerem A.

Rozważmy P - dowolny model, w którym $B \stackrel{w,P}{<} A.$

Niech A/B oznacza pewną relację między A i B.

			1	W	V	inni
W	V	inni	ļ	C	\overline{A}	A/B
A/B	A	A/B		A/B	B	C
	B		\Rightarrow	· .		
:	:	:		:	C	•
•	P	•	J	:	:	:
	Ρ			•	Q	•

Kto wygrywa w Q? - A, B lub C. Jednak relacje B/C w modelach Q i M_1 są takie same \Rightarrow w Q B nie wygrywa (IIA). Z kolei relacje A/C w Q i M_2 są takie same $\stackrel{IIA}{\Rightarrow}$ w Q C nie wygrywa.

W Q wygrywa A, B nie wygyrwa.

Relacje A/B w P i Q są takie same. \Rightarrow w P B nie wygrywa.

Dow. II) w jest dyktatorem nad B z kontrolerem A, v jest dyktatorem nad A z kontrolerem B

W	V	inni
A	B	
B	A	
	:	

Wygrywa Alub B (z zasady Pareto). Bnie wygrywa (bo $w),\,A$ nie wygrywa (bov)

Dow. III) Niech w = d(A, B). 1. Zauważmy, że $\forall_{D,E} \exists d(D, E)$. 2. $\forall_{D,E} \ w = d(D, E)$.

D 2.1. Załóżmy, że C, oraz że v=d(B,C) i $v\neq w.$

W	V	inni
C	B	C
A	C	B
B	A	A
÷	•••	•

Wygrywa Blub C (z zasady Pareto). Bnie wygrywa (bo $w), \, C$ nie wygrywa (bov)

D 2.2. Zamieniamy A i B rolami, v=d(A,C), i w ten sam sposób pokazujemy, że w=d(A,C).

D 2.3. $C \neq A, B$ oraz w = d(A, B), w = d(A, C). Jeśli $D \neq A, C$, to podobne rozumowanie jak w 2.1 i 2.2 dla A, C, D pokazuje, że $w = d(A, C) \Rightarrow w = d(C, D)$. Dla $C, d \neq A, B$ OK. Jeden z C, D musi być równy A lub B (z 2.1 i 2.2).

Wniosek 2.6.1 (Twierdzenie Arrowa o niemożliwości)

Załóżmy, że $\#K \geq 3$, $\#W \geq 2$. Wówczas: nie istnieje metoda zakładająca uporządkowanie (MZU) efektywna, która jednocześnie spełnia następujące warunki:

- anonimowa,
- słabą zasadę Pareto,
- słabe kryterium niezależności od opcji ubocznych (IIA).

Przykład 2.6 (Przypadki szczególne w twierdzeniu Arrowa)

- 1. #K = 2, #W nieparzyste metoda większości jest decyzyjna.
- 2. #K = 3, #W = 5 regula ≥ 3 pierwsze miejsca" wyłania zwycięzcę.

Twierdzenie 2.7 (Twierdzenie Taylora o niemożliwości)

Dla $\#K \geq 3$, $\#W \geq 3$: nie istnieje MZU efektywna, która spełnia jednocześnie kryterium Condorceta oraz słabe kryterium niezależności od ubocznych opcji (IIA).

Dowód: Z założeń IIA i kryterium Condorceta wynika słaba zasada Pareto. Słaba zasada Pareto wraz z IIA prowadzi do dyktatury (zgodnie z twierdzeniem Arrowa). Jednak dla $\#W \ge 3$, dyktatura nie spełnia kryterium Condorceta.

Przypadek #W = 4 jest znacznie prostszy do rozważenia.

2.1.3 Metoda TAK/NIE

$$\begin{bmatrix} \Sigma = \{M : W \to K\} & \Sigma = \{M : W \to \{\text{TAK}, \text{NIE}\}\} \\ f : \Sigma \to P(K) & f : \Sigma \to \{\text{TAK}, \text{NIE}\} \end{bmatrix}$$

Przykład 2.7 (Szczególny przypadek metody status quo)

Przypadek z dwoma kandydatami.

Definicja~2.23~(Założenia~metody~TAK/NIE)

Założenia:

- $\forall_{w \in W} w : TAK \Rightarrow wynik: TAK$,
- $\forall_{w \in W} w : NIE \Rightarrow wynik: NIE$.

Definicja 2.24 (Koalicja wygrywająca)

Podzbiór $A \subset W$ jest koalicją wygrywającą wtedy i tylko wtedy, gdy:

$$\{x \in A : x \text{ glosuje } TAK\} \Rightarrow wynik: TAK.$$

Definicja 2.25 (Monotoniczność metody TAK/NIE)

Metoda TAK/NIE jest monotoniczna wtedy i tylko wtedy, gdy:

$$\begin{bmatrix} A \subset A_1 \\ A \text{ jest koalicją wygrywającą} \end{bmatrix} \Rightarrow A_1 \text{ jest koalicją wygrywającą.}$$

Definicja 2.26 (Wyborca decydujący)

Załóżmy, że A jest koalicją wygrywającą. Wyborca $p \in A$ jest decydujący dla A wtedy i tylko wtedy, $gdy \ A \setminus \{p\}$ nie jest koalicją wygrywającą.

Definicja 2.27 (Wskaźnik Banzhafa)

Załóżmy, że $W = \{a_1, \ldots, a_n\}$. Wskaźnik Banzhafa dla a_i jest równy liczbie:

$$B(a_i) = \#\{A : a_i \in A \ i \ a_i \ jest \ decydujący \ dla \ A\}.$$

Definicja 2.28 (Indeks Banzhafa (Penrose'a-Banzhafa))

Indeks Banzhafa dla a_i definiuje się jako:

$$I_B(a_i) = \frac{B(a_i)}{B(a_1) + \dots + B(a_n)}.$$

Przykład 2.8

Trzech wyborców:

- $w_1 = 50$,
- $w_2 = 45$,
- $w_3 = 1$.

Do podjęcia decyzji TAK potrzeba 51 głosów.

Komentarz

Zapis tego warunku: W(51; 50, 45, 1) — gdzie W(min; wagi wyborców).

Metoda liczenia wskaźnika Banzhafa (dla metod monotonicznych):

	$Koalicje \ wygrywające \setminus \ Wyborcy$	w_1	w_2	 w_n
	k_1	+	+	 -
ALGORYTM:	k_2	-	+	 -
	:	:	÷	÷
	k_{j}	+	-	 -

Legenda:

- + (wyborca należy do koalicji),
- - (wyborca nie należy do koalicji).

Komentarz

Policzymy teraz wskaźniki Banzhafa dla W(51; 50, 45, 1)

- **Koalicje wygrywające**:
- $\{w_1, w_2\},$
- $\{w_1, w_3\},$
- $\{w_1, w_2, w_3\}.$

 $Liczba\ znaków +\ dla\ wyborcy\ w_1\ minus\ liczba\ znaków -\ to\ wskaźnik\ Banzhafa.$

Wskaźniki Banzhafa:

$$B(w_1) = 3,$$

 $B(w_2) = 1,$
 $B(w_3) = 1.$

 w_1 jest decydującym wyborcą.

Indeksy Banzhafa:

$$I_B(w_1) = \frac{3}{5},$$

 $I_B(w_2) = \frac{1}{5},$
 $I_B(w_3) = \frac{1}{5}.$

Dlaczego to działa? Niech K to zbiór koalicji wygrywających, a $p \in W$. Dzielimy K na trzy podzbiory:

$$K_1 = \{A : p \notin A\},\$$

 $K_2 = \{A \cup \{p\} : A \in K_1\},\$
 $K_3 = K \setminus (K_1 \cup K_2).$

Zauważmy, że:

- $\bullet \ K = K_1 \cup K_2 \cup K_3,$
- zbiory K_1 , K_2 , K_3 są parami rozłączne,
- $\#K_1 = \#K_2$.

Wskaźnik Banzhafa:

$$B(p) = \#K_3,$$

gdzie p jest decydujący dla A wtedy i tylko wtedy, gdy $A \in K_3$.

Definicja 2.29 (Wskaźnik/Indeks Shapleya-Shubika)

Dla metody monotonicznej: Porządkujemy wyborców jako $W = (w_1, \ldots, w_n)$. W ciągu (w_1, \ldots, w_n) wyborca w_k jest wpływającym wyborcą, jeśli:

 $\{w_1,\ldots,w_{k-1}\}$ nie tworzy koalicji wygrywającej, a $\{w_1,\ldots,w_k\}$ już tak.

Wskaźnik Shapleya-Shubika:

$$S(w_k) = \#\{ciqqi, w \ kt\'orych \ w_k \ jest \ wpływającym \ wyborcą\}.$$

Indeks Shapleya-Shubika:

$$I_S(w_k) = \frac{S(w_k)}{n!}.$$

Przykład 2.9

Komentarz

Dalej działamy na przykładzie W(51; 50, 45, 1).

Ciągi decyzyjne:

$$(w_1, \mathbf{w_2} | , w_3)$$

 $(w_1, \mathbf{w_3} | , w_2)$
 $(w_2, \mathbf{w_1} | , w_3)$
 $(w_2, w_3, \mathbf{w_1} |)$
 $(w_3, \mathbf{w_1} | , w_2)$
 $(w_3, w_2, \mathbf{w_1} |)$

$$I_S(w_1) = \frac{4}{6}, \ I_S(w_2) = \frac{1}{6}, \ I_S(w_3) = \frac{1}{6},$$

 $Definicja \ 2.30 \ (Odporności \ na \ zamiane \ w \ metodzie \ TAK/NIE)$

Metoda TAK/NIE jest odporna na zamianę wtedy i tylko wtedy, gdy:

$$\forall_{A,B \ -\ koalicje\ wygrywające} \forall_{a \in A,b \in B} \ co\ najmniej\ jedna\ z\ koalicji\ \begin{bmatrix} (A \setminus \{a\} \cup \{b\}) \\ (B \setminus \{b\} \cup \{a\}) \end{bmatrix} \ jest\ wygrywająca.$$

Stwierdzenie 2.3

Większość ważona w metodzie TAK/NIE jest odporna na zamianę.

D: Niech A, B będą koalicjami wygrywającymi, $a \in A, b \in B$. Wagi głosów a i b oznaczamy jako W_a, W_b . Zakładamy, że $W_b \ge W_a$. Wówczas:

$$W(A \setminus \{a\} \cup \{b\}) \ge W(A)$$
.

Zadanie 1

Por'owna'e~W(5;4,3,2,1) z:

- a) W(9; 8, 7, 2, 1),
- b) W(9; 8, 7, 3, 2).

Zadanie 2

Niech A, B, C, D oznaczają wyborców w W(3; A, B, C, D), a pary AB i CD oznaczają koalicje wygrywające.

Wykazać, że to nie jest metoda z większością ważoną.

Zadanie 3

 $Dla\ grupy\ B+6r\ (burmistrz\ i\ 6\ radnych)\ wyznaczyć\ indeksy\ Shapleya-Shubika.$

2.1.4 Metody porządkowe

Definicja 2.31 (Słaby porządek)

Zbiór K jest słabo uporządkowany wtedy i tylko wtedy, $gdy \exists R$ — relacja równoważności w K taka, że K/R jest uporządkowany liniowo przez relację \leq .

 $Dla\ a,b\in K\ definiujemy$:

$$a < b \stackrel{def}{\Leftrightarrow} [a]_R < [b]_R$$

gdzie relacja jest przechodnia i słabo antysymetryczna.

Definicja 2.32 (Metoda porządkowa (MP))

Każdy wyborca porządkuje kandydatów w sposób liniowy.

Wynik wyborów jest słabym porządkiem w zbiorze K:

- $L(K) = \{(K, \leq) : \leq \text{ jest porzadkiem } w K\},$
- $S(K) = \{(K, \leq) : \leq \text{ jest słabym porządkiem } w K\}.$

Zapis formalny:

$$\Sigma = \{M : W \to L(K)\}, \quad f : \Sigma \to S(K).$$

Każda efektywna metoda z założeniem większości wyborców (MZU) jest metodą porządkową (MP).

Zapis notacyjny:

- \bullet $A \stackrel{w}{<} B$,
- $\bullet \ A \stackrel{w,M}{<} B,$

• A < B — w modelu M, po wyborach B znajduje się nad A.

Przykład 2.10

 $Dyktatura\ porządkowa.$

Wynik wyborów jest identyczny z głosem jednego wyborcy.

Definicja 2.33 (Porządkowa zasada Pareto)

Metoda porządkowa (MP) spełnia (porządkową) zasadę Pareto wtedy i tylko wtedy, gdy:

$$\forall_M \forall_{A,B \in K} \left(\forall_w \ A \overset{w,M}{<} B \right) \Rightarrow A \underset{M}{<} B.$$

Definicja 2.34 (Metoda spełniająca postulat liberalizmu Sena)

Metoda spełnia postulat liberalizmu Sena, jeśli:

$$\forall_{w \in W} \exists_{A,B \in K \ (A \neq B)} \ \left(A \overset{w,M}{<} B \Rightarrow A \underset{M}{<} B \right) \ \mathit{oraz} \ \left(A \overset{w,M}{>} B \Rightarrow A \underset{M}{>} B \right).$$

Twierdzenie 2.8 (Twierdzenie Sena)

Niech $\#K \ge 2$ oraz $\#W \ge 2$. Wtedy: Nie istnieje metoda spełniająca jednocześnie:

- 1. zasadę Pareto,
- 2. postulat liberalizmu Sena.

D: Niech w,v będą wyborcami, a A,B,C,D będą elementami K. Rozważmy następujące przypadki:

- 1. Dla w, v i pary A, B: Jeśli $w: A \overset{w,M}{<} B \Rightarrow A \underset{M}{<} B$ oraz $w: B \overset{w,M}{<} A \Rightarrow B \underset{M}{<} A$, to mamy sytuację wzajemnej sprzeczności wynikającej z narzuconych preferencji.
 - 2. Kolejność preferencji dla w:

$$\begin{bmatrix} w : \\ C \\ B \\ A \\ D \end{bmatrix} \qquad \begin{bmatrix} \text{Reszta:} \\ A \\ C \\ B \\ D \end{bmatrix}$$

Z powyższego wynika, że nie można jednocześnie spełnić zasady Pareto i postulatu liberalizmu Sena

$$A \leq B, C \leq A, B \leq C$$
 (zasada Pareto).

Jednak:

jest sprzecznością.

3. Kolejność preferencji:

$$\begin{bmatrix} w : \\ D \\ A \\ B \\ C \\ \text{reszta} \end{bmatrix} \quad \begin{bmatrix} \text{reszta:} \\ B \\ C \\ D \\ A \\ \text{reszta} \end{bmatrix}$$

Z zasady Pareto:

$$B(w) < A < D < C < B$$

co prowadzi do sprzeczności.

Definicja 2.35 (Filtr)

Niech X będzie zbiorem. Podzbiór $F \subset P(X)$, gdzie $F \neq \emptyset$, nazywamy **filtrem**, jeśli spełnia następujące warunki:

- 1) $\emptyset \notin F$
- 2) Jeśli $A, B \in F$, to $A \cap B \in F$
- 3) Jeśli $A \in F$ oraz $A \subset B \subset X$, to $B \in F$

Przykład 2.11

1. Niech X będzie zbiorem oraz $p \in X$. Wówczas zbiór

$${A \subset X : p \in A}$$

jest filtrem.

2. Niech X będzie przestrzenią topologiczną, $p \in X$, a U otoczeniem punktu p. Wówczas zbiór wszystkich otoczeń p jest filtrem.

Definicja 2.36 (Ultrafiltr)

 $Podzbi\'or\ F \subset P(X)\ nazywamy\ **ultrafiltrem**,\ jeśli\ spełnia\ następujące\ warunki:$

- 1) F jest filtrem.
- 2) Dla każdego $A \subset X$ zachodzi dokładnie jedno z dwóch: $A \in F$ albo $X \setminus A \in F$.

Przykład 2.12

1. Zobacz przykład 2.11.1. Jest on Ultrafiltrem

Stwierdzenie 2.4

Ultrafiltr jest filtrem maksymalnym, tzn. jeśli F jest ultrafiltrem, to dla każdego filtra G, jeśli $F \subset G$, to G = F.

Załóżmy, że istnieje filtr G taki, że $\Rightarrow \forall_G F \subset G \Rightarrow G = F$. Wówczas istnieje $B \in G$, takie że $B \notin F$. Ponieważ F jest ultrafiltrem, mamy $X \setminus B \in F$. Z definicji filtra wynika, że $B \cap (X \setminus B) = \emptyset \in G$, co prowadzi do sprzeczności, ponieważ $\emptyset \notin G$.

Uwaga

 $\forall_{F \text{- filtr}} \exists_{G \text{- ultrafiltr}} F \subset G$

Twierdzenie 2.9

Niech X będzie zbiorem skończonym, a F ultrafiltrem. Wówczas $\exists_{p \in X}$ taki, że F jest generowany przez $\{p\}$.

D:

Przypadek 1) $\exists_{p \in X} \{p\} \in F \Rightarrow \forall_{B:p \in B} \ B \in F \quad (\{p\} \subset B) \text{ (własność 3 z definicji filtra)}.$

Załóżmy sprzecznie: $\exists_{C \in F} : p \notin C$. Wtedy $p \in X \setminus C \in F$. Ale $C \cap (X \setminus C) = \emptyset \in F$, co prowadzi do sprzeczności, ponieważ $\emptyset \notin F$.

Przypadek 2) $\forall_{p \in X} \{p\} \notin F$ Załóżmy, że $X = \{p_1, p_2, \dots, p_n\}$. Wówczas:

$$\begin{bmatrix} X \setminus \{p_1\} \in F, \\ X \setminus \{p_2\} \in F, \\ \vdots \\ X \setminus \{p_n\} \in F \end{bmatrix}$$

Jednak $X \setminus \{p_1\} \cap X \setminus \{p_2\} \cap \cdots \cap X \setminus \{p_n\} = \emptyset \notin F$, co jest sprzecznością.

Wprowadźmy oznaczenia: K, W - zbiory $L(K) = \{(K, \leq) : \leq \text{ liniowy porządek w } K\}$

 $S(K) = \{(K, \leq) : \leq \text{ słaby porządek w } K\} \Sigma = \{M : W \to L(K)\} f : \Sigma \to S(K)$ Notacja: a < b w porządku M(x) $W \ni x \overset{M}{\to} M(x)$ - porządek w K a < b < Moznacza a < b w słabym porządku wyznaczonym przez f(M).

 $\begin{array}{lll} \textbf{\textit{Definicja 2.37}} \\ (p) \ \forall_{M} (\forall_{x \in W} \ a \ < \ b) \Rightarrow a \leqslant b \ (I) \ \forall_{M,N} (\forall_{x \in W} \ (a \ < \ b \ \Longleftrightarrow \ a \ < \ b)) \ \Longleftrightarrow \ (a \leqslant b \ \Longleftrightarrow \ a \leqslant N) \end{array}$

Zbiór $T \subset W$ spełnia warunek (DEC) wtedy i tylko wtedy, gdy T jest zbiorem decyzyjnym:

$$\forall_{M \in \Sigma} \forall_{p,q \in K} \ (\forall_{x \in T} \ p \overset{x,M}{<} q) \Rightarrow p \underset{M}{<} q.$$

Twierdzenie 2.10 (Twierdzenie Arrowa w wersji ultrafiltrów)

Założenia: $\#W \geq 3, \#K \geq 3, f: \Sigma \rightarrow S(K)$ spełnia zasadę Pareto (P) oraz IIA (I). Teza: $\{T \subset W : T \text{ spelnia } (DEC)\}$ jest ultrafiltrem.

Dowód:

- 1. $D \neq \emptyset$: $W \in D$ (z P).
- 2. $\emptyset \notin D$: Weźmy $a \neq b \in K$,

$$\begin{bmatrix} \forall_{x \in W} a \overset{x,M}{<} b \Rightarrow a < b \\ \forall_{x \in \emptyset} b \overset{x,M}{<} a \Rightarrow b < a \end{bmatrix} \Rightarrow \text{sprzeczność}.$$

3. $T_1 \in D, T_1 \subset T_2 \stackrel{?}{\Rightarrow} T_2 \in D$:

$$a,b \in K, M \in \Sigma, \forall_{x \in T_2} a \stackrel{x,M}{<} b \Rightarrow \forall_{x \in T_1} a \stackrel{x,M}{<} b \stackrel{T_1 \in D}{\Rightarrow} a \underset{M}{<} b.$$

4. $T_1, T_2 \in D \stackrel{?}{\Rightarrow} T_1 \cap T_2 \in D$: Rozważmy $a, b \in K, M \in \Sigma$. Czy

$$\forall_{x \in T_1 \cap T_2} a \overset{x,M}{<} b \Rightarrow a < b$$
?

Weźmy $c \in K$, $c \neq a, b$. Czy istnieje $N \in \Sigma$ (model), w którym

$$\forall_{x \in T_1} a \overset{x,N}{<} c, \quad \forall_{x \in T_2} c \overset{x,N}{<} b, \quad \forall_{x \in W} a \overset{x,N}{<} b \Rightarrow a \overset{x,M}{<} b?$$

Jeśli tak, to:

- Pierwsza i druga część implikują $a \leq b$.
- Na mocy (I): a < b.

$$M - \text{dany}, \quad R := \{ x \in W : a \overset{x,M}{<} b \}.$$

Wtedy:

	,	$x \notin T_1$
$a \stackrel{x,M}{<} c \stackrel{x,M}{<} b$	$b \stackrel{x,M}{<} a \stackrel{x,M}{<} c$	$c \stackrel{x,M}{<} b \stackrel{x,M}{<} a$

5. Czy $\forall_{T \subset W} (T \in D \text{ lub } W \setminus T \in D)$? Dowód podzielimy na 4 lematy.

Lemat 2.2

 $\forall_{T \subset W}, \forall_{a,b \in K, a \neq b}$:

$$\begin{bmatrix} (\exists_{N \in \Sigma} : T = \{x \in W : a \overset{x,N}{<} b\} & i & a < b \} \\ \forall_{M \in \Sigma} : T = \{x \in W : a \overset{x,M}{<} b\} \Rightarrow a < b \end{bmatrix}.$$

Podane warunki są równoważne.

Dowód:

- (\Rightarrow): $M: x \in T \Leftrightarrow a \stackrel{x,N}{<} b \text{ i } a \leqslant b \stackrel{(I)}{\Rightarrow} a \leqslant b$.
- (\Leftarrow): Weźmy N spełniający założenia. Wtedy:

$$a \stackrel{x,N}{<} b \Leftrightarrow x \in T \Rightarrow a \stackrel{x}{<} b.$$

Lemat 2.3

 $\forall_{T \subset W}, \forall_{a,b,c \in K, a \neq b \neq c}$:

1.
$$(a * b \Rightarrow c * b)$$
,

2.
$$(a * b \Rightarrow a * c)$$
.

Dowód:

Ad 1. Rozważmy $M: x \in T \Leftrightarrow c \stackrel{x,M}{<} b$. Czy c < b? Rozważmy model N, gdzie:

$$c \stackrel{x,N}{<} a \stackrel{x,N}{<} b \text{ (gdy } c \stackrel{x,M}{<} b) \text{ i } a \stackrel{x,N}{<} b \Rightarrow c \leq b.$$

Ad 2. Analogicznie dla $M: x \in T \Leftrightarrow a \stackrel{x,M}{<} c$.

Lemat 2.4

$$Z: T \in W \exists_{a,b,a\neq b} a *_T b \Leftrightarrow \forall_{c,d,c\neq d} c *_T d$$

Dowód: (wynika bezpośrednio z wcześniejszego lematu, ale formalny dowód)

$$\Rightarrow a \underset{T}{*} b, \ c \neq d \ (1) \ c = a, d = b \ \text{OK} \ (2) \ c \neq a, d = b \ \text{wynika z} \ (2.1) \ (3) \ c = a, d \neq b \ \text{wynika z}$$

$$(2.2) \ (4) \ c \neq a, d \neq b \ (4.1) \ a \underset{T}{*} b \overset{(2.1)}{\Rightarrow} c \underset{T}{*} b \overset{(2.2)}{\Rightarrow} c \underset{T}{*} d \ (\text{jeśli} \ c \neq d) \ (4.2) \ b = c \ a \underset{T}{*} b \overset{(2.2)}{\Rightarrow} a \underset{T}{*} d \Rightarrow c \underset{T}{*} d$$

$$(\text{jeśli} \ a \neq d) \ (4.3) \ a = d, b = c, \ \# K \geq 3 \ e \neq a, b, c, d \ a \underset{T}{*} b \overset{(2.2)}{\Rightarrow} a \underset{T}{*} e \overset{(2.2)}{\Rightarrow} c \underset{T}{*} d$$

Lemat 2.5

$$S \subset W, S \neq \emptyset, \ \exists_{a \neq b} \ a \underset{S}{*} b \Rightarrow S \in D$$

Dowód:
$$M \in \Sigma$$
, $p, q \in K$, $\forall_{x \in S} p \stackrel{x,M}{<} q \stackrel{?}{\Rightarrow} p \stackrel{q}{\Rightarrow} q$

$$T := \{ x \in W : p \stackrel{x,M}{<} q \}, \ S \subset T$$

$$T:=\{x\in W: p\overset{x,M}{<}q\},\ S\subset T$$
1. $T=S$ 2. $T=W$ 3. $W=S\cup (T\setminus S)\cup (W\setminus T)$, przy czym $(T\setminus S), (W\setminus T)\neq\emptyset$

(1)
$$a * b \text{ (lemat 3)} \Rightarrow p * q \Rightarrow p \underset{M}{\leqslant} q$$

(2)
$$(P) \Rightarrow p \leqslant q$$

(3) $c \in K$, $c \neq p, q$ Definiujemy N:

$$x \in S \implies p \stackrel{x,N}{<} c \stackrel{x,N}{<} q$$

$$x \in (T \setminus S) \implies c \stackrel{x,N}{<} p \stackrel{x,N}{<} q$$

$$x \in (W \setminus T) \implies c \stackrel{x,N}{<} q \stackrel{x,N}{<} p \text{ (reszta dowolnie)}$$

$$\forall_{x \in W} \ c \overset{x,N}{<} \ q \overset{(P)}{\Rightarrow} c \overset{x,N}{<} \ q \ x \in S \Leftrightarrow p \overset{x,N}{<} c$$

Założenie: $a \underset{\varsigma}{*} b \overset{L.3}{\Rightarrow} p \underset{\varsigma}{*} c \overset{def????}{\Rightarrow} p \underset{\sim}{\leqslant} c \Rightarrow p \underset{\sim}{\leqslant} q$

Wniosek: $T = \{x \in W : p \overset{x,N}{<} q\} \text{ i } p \underset{N}{<} q \Rightarrow p \underset{T}{**} q \Rightarrow p \underset{T}{*} q \Rightarrow p \underset{N}{<} q$

Wracając do Twierdzenia Arrowa:

Dowód końcowy:

 $T \subset W \operatorname{Czy} T \in D \operatorname{lub} W \setminus T \in D$?

Weźmy
$$a, b, c \in K$$
 (różne), $M \in \Sigma$
$$x \in T : c \stackrel{x,M}{<} b \stackrel{x,M}{<} a \ x \in W \setminus T : a \stackrel{x,M}{<} c \stackrel{x,M}{<} b \text{ (reszta dowolnie)}$$

$$\forall_{x \in W} \ c \overset{x,M}{<} \ b \overset{?}{\Rightarrow} c \underset{M}{<} b \ (\Delta)$$

Są 3 możliwości:

1. b < a 2. a < b 3. a, b w tej samej klasie równoważności

$$(1) \Rightarrow b \underset{M}{<} a \Leftrightarrow x \in T, \ b \underset{T}{**} a \overset{\text{L1}}{\Rightarrow} b \underset{T}{*} a \overset{\text{L4}}{\Rightarrow} T \in D$$

$$(2) \Rightarrow a \overset{x,M}{<} b \Leftrightarrow x \in W \setminus T \Rightarrow a \underset{W \setminus T}{**} b \overset{L1}{\Rightarrow} a \underset{T}{*} b \overset{L4}{\Rightarrow} W \setminus T \in D$$

$$(3) \overset{(\Delta)}{\Rightarrow} c \underset{M}{\lessdot} a \text{ wtedy mamy: } c \overset{x,M}{\lessdot} a \Leftrightarrow x \in T \Rightarrow c \underset{T}{**} a \overset{L1}{\Rightarrow} c \underset{T}{*} a \overset{L4}{\Rightarrow} T \in D$$

Wniosek 2.10.1

Założenia: # $W \geq 3, \#K \geq 2, W$ skończony. Jeśli $f: \Sigma \rightarrow S(K)$ spełnia (P) i (I), to $\exists_{w \in W} \ \forall_{M \in \Sigma} \ M(w) = f(M).$

Dowód: Jeśli W jest skończony, to $\exists_w \{w\}$ spełnia warunek (DEC). Wówczas:

$$\forall_{a,b \in K} \forall_{M \in \Sigma} \ (a \overset{w,M}{<} b \Rightarrow a \underset{M}{<} b).$$

Wniosek 2.10.2 (Twierdzenie Arrowa, 1950)

Założenia: $\#W \geq 3, \#K \geq 3, W$ skończony. Jeśli metoda porządkowa (MP) spełnia zasadę Pareto oraz IIA, to MP jest dyktaturą porządkową.

Dowód: Z poprzedniego wniosku wynika, że dla w, dla którego $\{w\}$ jest zbiorem decyzyjnym, w jest dyktatorem.

Zadanie 4

Sprawdzić, czy

$$F := \{B : B \supset A\}$$

jest filtrem (lub ultrafiltrem).

Zadanie 5

Sprawdzić, czy następujące zbiory są filtrami:

a)
$$F_1 = \{D : \exists_{E \in S} E \subset D\}$$

$$b) \ F_2 = \{D : \exists_{E \in S} \ D \subset E\}$$

Definicja 2.38 (Liberalizm Senna)

$$\forall_{w \in W} \exists_{a,b \in K; a \neq b} \forall_M \ w \ decyduje \ o \ (a,b)$$

Twierdzenie 2.11

Dla K i W istnieje metoda spełniająca postulat liberalizmu Senna wtedy i tylko wtedy, gdy #W < #K.

$$Cz \not\in \acute{c}$$
 (\Leftarrow): Niech $K = \{k_1, \ldots, k_n\}$ oraz $W = \{w_1, \ldots, w_s\}$, gdzie $s \leq n - 1$. Przypisujemy:

$$w_1: k_1, k_n \quad w_2: k_2, k_n \quad \dots \quad w_s: k_s, k_n.$$

Metoda: k_n pozostaje ostatnim kandydatem, a k_1, \ldots, k_s w stosunku do k_n są ustalane przez odpowiednie w_1, \ldots, w_s . Pozostałe kandydaty ustawiamy numerami rosnąco:

$$\begin{bmatrix} \vdots \\ k_n \\ \vdots \end{bmatrix}.$$

 $Cze\acute{s}\acute{c}$ (\Rightarrow): Dowód graficzny (TODO). Wprowadźmy oznaczenia:

 \cdot oznacza k_i , | oznacza w_i , który łączy tych kandydatów, o których decyduje.

Załóżmy, że #"|" > #" · ".

- 1. Rysujemy odpowiedni graf.
- 2. Odrzucamy kropki bez kreski oraz te z jedną kreską. Pozostaje n kropek i l kresek, przy czym $l \geq n$.
- 3. Wybieramy $\cdot, |, \cdot, |, \cdot, |, \dots$ aż powstanie cykl.

Wówczas:

$$\begin{bmatrix} w_1 \text{ decyduje o } k_1, k_2 \\ w_2 \text{ decyduje o } k_2, k_3 \\ \vdots \\ w_s \text{ decyduje o } k_s, k_1 \end{bmatrix}$$

co prowadzi do:

$$\begin{bmatrix} k_1 \overset{w_1}{<} k_2 \\ k_2 \overset{w_2}{<} k_3 \\ \vdots \\ k_s \overset{w_s}{<} k_1 \end{bmatrix}.$$

MR - Metoda rozdziału 2.1.5

Definicja 2.39

Wprowadzamy oznaczenia:

S - liczba akcjonariuszy (stanów)

m - liczba akcji (foteli)

 P_1, \ldots, P_s - wkłady akcjonariuszy (populacje)

 a_1, \ldots, a_s - liczba akcji dla akcjonariuszy

$$(S, M, [p_1, \ldots, p_s]) \longmapsto (a_1, \ldots, a_s)$$

gdzie spełnione jest $p = p_1 + \cdots + p_s$, $a_1 + \cdots + a_s = m$

 $\frac{p_i}{p}$ - udzial akcjonariusza i

 $m \cdot \frac{p_i}{p} \quad (zazwyczaj \notin \mathbb{Z}) \quad \text{- to, co powinien dostać}$ $W = \frac{p}{m} \quad \text{- wartość akcji (jednej)}$ $q_1 := m \cdot \frac{p_1}{p} = \frac{p_1}{\frac{p}{m}} = \frac{p_1}{W} \quad \text{- quota}$ $\lfloor q_1 \rfloor = \lfloor \frac{m \cdot p_i}{p} \rfloor \quad \text{- dolna quota}$ $\lceil q_1 \rceil = \lceil \frac{m \cdot p_i}{p} \rceil \quad \text{- górna quota}$

Definicja 2.40 (Warunki sensowności metody rozdziału)

- 1. (Warunek quoty) $|q_i| \leq a_i \leq \lceil q_i \rceil$ (uwzględniając $q_i \in \mathbb{Z} \Rightarrow g_i = a_i$)
- 2. (Warunek monotoniczności) $p_i > p_j \Rightarrow a_i \geq a_j$ (analogicznie w drugą stronę)
- 3. (Warunek populacji) Dla S, m danych:

$$p_1, \ldots, p_s \longmapsto a_1, \ldots, a_s$$

jeśli nastąpiła zmiana:

$$\bar{p_1}, \ldots, \bar{p_s} \longrightarrow \bar{a_1}, \ldots, \bar{a_s},$$

to:

$$!\exists_{i,j}\bar{p}_i > p_i, \bar{a}_i < a_i \quad oraz \quad \bar{p}_j < p_j, \bar{a}_j > a_j$$

4. (Warunek monotoniczności akcji) Dla p_1, \ldots, p_n stałych, jeśli $\bar{m} > m$, to $\forall_i \bar{a}_i \geq a_i$. Nie mogą zajść wszystkie te warunki na raz.

Przykład 2.13

1) $Metoda\ reszt\ (metoda\ Hamiltona)$

$$a_i = \lfloor q_i \rfloor + \epsilon_i, \quad gdzie \ \epsilon_i = 0 \ lub \ 1,$$

bierzemy największe reszty $q_i - |q_i|$ aż do "wyczerpania" m.

Przykład: $S = 3, m = 10, W = \frac{1000}{10} = 100$

	p_i	q_i	$\lfloor q_i \rfloor$	r_i	Wynik
1	264	2,64	2	0,64	3
2	361	3,61	3	0,61	3
3	375	3,75	3	0,75	4
	$\Sigma = 1000$		8		10

Paradoks Alabamy

Dla S=3, m=10, W=100, po zmianie liczby akcji na m=11, W=90,9, wyniki się zmieniają:

p_i	q_i	$\lfloor q_i \rfloor$	Wynik
145	1,595	1	1
340	3,740	3	4
515	5,665	5	6
$\Sigma = 1000$		9	10

Paradoks Oklahomy

Po zmianie liczby akcjonariuszy i akcji, np. S=4, m=13, W=96,9, także mogą wystąpić sprzeczne wyniki.

2) Metoda Jeffersona

Bierzemy liczbę v (umowną wartość akcji), obliczamy:

$$\bar{q}_i = \frac{p_i}{v},$$

 $i\ dobieramy\ v,\ by\ suma\ dolnych\ kwot\ \lfloor ar{q}_i
floor\ wynosiła\ m.$

Bierzemy liczbę v - umowna wartość akcji (w-prawdziwa)

 $\frac{p_i}{a}$ - kwoty umowne

Dobieramy tak, by suma dolnych kwot umownych wynosiła m.

Niech S = 3, m = 10, W = 100, v = 90.

p_i	q_i	$ar{q_i}$	$\lfloor \bar{q}_i \rfloor$
264	2,64	1	2
361	3,61	3	3
375	3,75	5	5
$\Sigma = 1000$		9	10

Jak dobrać v?

- $za\ malo\ akcji \rightarrow zmniejszamy\ v,$
- $za\ du\dot{z}o\ akcji \rightarrow zwiększamy\ v$.

3) Przybliżanie do wartościami umownymi do górnych quot (Metoda Adamsa)

Niech S = 2, m = 10, W = 100, v = 115.

	p_i	q_i		$ar{q_i}$	Wynik
A	120	1,8	2	1,04	2
B	880	8,8	9	7,65	8
	$\Sigma = 1000$		11		10

4) Zaokrąglenie do bliższej dolnej/górnej (Metoda Webstera)

Niech S=3, m=5.

	p_i	q_i	Wynik
A	480	2,66	3
B	240	1,33	1
C	100	0.55	1
	$\Sigma = 820$		5

$$\begin{array}{l} \bar{q}_i > \frac{\lfloor \bar{q}_i \rfloor + \lceil \bar{q}_i \rceil}{2} \nearrow \lceil \bar{q}_i \rceil \\ \bar{q}_i < \frac{\lfloor \bar{q}_i \rfloor + \lceil \bar{q}_i \rceil}{2} \searrow \lfloor \bar{q}_i \rfloor \end{array}$$

5) Metoda Hilla

Jak w metodzie Webstera, ale

$$\bar{q}_i > \sqrt{\lfloor \bar{q}_i \rfloor \cdot \lceil \bar{q}_i \rceil} \nearrow \lceil \bar{q}_i \rceil$$

$$\bar{q}_i < \sqrt{\lfloor \bar{q}_i \rfloor \cdot \lceil \bar{q}_i \rceil} \searrow \lfloor \bar{q}_i \rfloor$$

6) Metoda Deana - ze średnią harmoniczną (to samo, ale ze średnią harmoniczną)

Twierdzenie 2.12

 $Metoda\ Jeffersona \Leftrightarrow wyznacznie\ liczby\ akcji\ za\ pomocq\ ilorazów.$

t - największy z wyników nie dający akcji

T - najmniejszy z wyników dający akcje

Stwierdzenie 2.5

 $\forall_{v \in (t,T)} Metoda Jeffersona z wartością umowną v daje nam w sumie m akcji <math>t < v < T$.

 p_i : $układ\ i\ daje\ a_i\ akcji$

v - umowna wartość akcji $q=rac{p_i}{v}$ - umowna quota

 $Metoda\ Jeffersona = Metoda\ d'Hondta$

Dzielimy wtedy przez kolejne dodatnie liczby całkowitych m największych liczb wyznczone liczby przypisywanych akcji.

$$\begin{array}{c} \frac{p+i}{1}, \frac{p+i}{2}, \dots, \frac{p+i}{a_i}, \frac{p+i}{a_i+1} \\ \frac{p+i}{a_i} - \text{daje TAK} \\ \frac{p+i}{a_i+1} - \text{daje NIE} \\ \frac{p+i}{a_i} \geq T, \qquad \frac{p+i}{a_i+1} \leq t \end{array}$$

$$\begin{array}{l} \frac{p+i}{a_i+1} \leq t < v < T \leq \frac{p+i}{a_i} \\ \frac{p+i}{a_i+1} < v < \frac{p+i}{a_i} \\ \frac{1}{a_i} < \frac{v}{p_i} < \frac{1}{a_i} \\ a_i < \frac{p+i}{v} < 1 + a_i \\ a_i = \lfloor \frac{p+i}{v} \rfloor \text{ - przy tym } v \text{ odpowiedni efekt} \end{array}$$

 ${\cal S}$ - liczba akcjonariuszy

m - liczba akcji

$$p_1, \ldots, p_S$$
 - układy $(p = p_1 + \cdots + p_S)$

 a_1, \dots, a_S - akcje

D:
$$S \ge 4, m \ge 7, \epsilon < \frac{1}{2}(\epsilon > 0), b, c > 0$$

Model - zakładamy, że spełniane są warunki quoty i monotoniczności

 $\frac{(m-7)b}{mb}$ i jest ich m-7

Zachodzi również $p_1 > p_2 > p_3 > p_4$ $a_1 \ge a_2 \ge a_3 \ge a_4 \Rightarrow a_4 = 0$, bo $a_1 + a_2 + a_3 = 7$ Ma być $p_i, \bar{p}_i \in \mathbf{Z}$ Np. $c = 6 \cdot 13 \cdot 600$ $b = 6 \cdot 10 \cdot 600$ $z = \frac{1}{600}$ $\frac{c}{d} = \frac{13}{10}$ 1, 25 < 1, 3 < 1, 33 $p_1 = 6 \cdot 10 \cdot 600 \cdot \frac{3001}{600} = 6 \cdot 30010 < 6, 13 \cdot 600 \cdot \frac{2399}{600} = 6 \cdot 31187 = \bar{p}_1$ $p_4 = 6 \cdot 10 \cdot 600 \cdot \frac{2}{3} \cdot \frac{599}{600} = 40 \cdot 5599 = 23960 > 6 \cdot 13 \cdot 600 \cdot \frac{301}{600} = 23478 = \bar{p}_4$ $p_4 > \bar{p}_4$

Twierdzenie 2.13 (Tw Balińskiego-Younga)

 $Dla~S \geq 4~i~m \geq 7~nie~istnieje~metoda~spełniająca~jednocześnie~warunki$

- quoty
- monotniczności
- populacji

 $\bar{p}_1 > \bar{p}_2 > \bar{p}_3 > \bar{p}_4 \ \bar{a}_1 \ge \bar{a}_2 \ge \bar{a}_3 \ge \bar{a}_4 \ \Sigma = 7, \bar{a}_4 = 1$

 $a_1 > \bar{a_1}, a_n < \bar{a_n}$ Jeśli można tak dobrać $b_1, b_2: p_1 < \bar{p_1}, p_n > \bar{p_n}$ $b(5+\epsilon) > c(4-\epsilon)$ $b(\frac{2}{3} - \frac{2\epsilon}{3} > c(\frac{1}{2} + \epsilon)) \Rightarrow \frac{c}{b} \ge \frac{3}{4} \text{ i } \frac{c}{b} \le \frac{4}{3}$ daje sprzeczność z warunku populacji

Jak wyglądało głosowanie w USA?

\mathbf{Rok}	\mathbf{Stany}	${f Miejsca}$	
1789	13	66	
1791	15	$105 Metoda \ Jefferso$	na
1840		$223 Metoda \ Webster$	a
1850		234 Metoda Hamilto	na
1880		$325 Paradox \ Alaban$	iy^*

1880 - Paradox Alabamy:

• Przedział miejsc: 275-350

• Przydział dla Alabamy:

299 8 miejsc 300 7 miejsc

1901: 386 miejsc, Metoda Hamiltona-Webstera

	350-356	357	358-382	383-385	386	387-388	389-390	399-400
Main	3	3	3	4	3	4	3	4
Colorado	3	2	3	3	3	3	3	3

1907: 391 miejsc, Paradox Oklahomy (+5 miejsc dla 357), Metoda Webstera

1910: 433 miejsca, Metoda Hilla

1910-1920: Dyskusja: Metoda Webstera czy Metoda Hilla?

W 1930 roku uznano, że Metoda Webstera-Hilla daje te same rezultaty.

1940: Porównanie metod dla dwóch stanów:

Stan	Metoda Hilla	Metoda Webstera
Arkansas	7	6
Michigan	17	18

Od 1940 roku obowiązuje Metoda Hilla.

Definicja 2.41

Metoda rozdziału nazywana jest metodą dzielników, jeśli istnieje funkcja $f:[0,\infty)\to\mathbb{N}$, taka że:

a)
$$x \in \mathbb{Z} \Rightarrow f(x) = x$$

b) Funkcja jest rosnąca: $x \leq y \Rightarrow f(x) \leq f(y)$

Przydziały są obliczane jako $a_i = f\left(\frac{p_i}{v}\right)$, gdzie v dobierane jest tak, aby $\sum_{i=1}^s a_i = m$. Poszczególne metody:

• Metoda Jeffersona: f(x) = |x|

• Metoda Adamsa: $f(x) = \lceil x \rceil$

• Metoda Webstera:

$$f(x) = \begin{cases} k & x \in [k, \frac{2k+1}{2}) \\ k+1 & x \in [\frac{2k+1}{2}, k+1) \end{cases}, \quad k \in \mathbb{Z}$$

• Metoda Hilla:

$$f(x) = \begin{cases} k & x \in [k, \sqrt{k(k+1)}) \\ k+1 & x \in [\sqrt{k(k+1)}, k+1) \end{cases}$$

• Metoda Deana:

$$f(x) = \begin{cases} k & x \in [k, \frac{2k(k+1)}{2k+1}) \\ k+1 & x \in [\frac{2k(k+1)}{2k+1}, k+1) \end{cases}$$

33

Twierdzenie 2.14

Metoda dzielników spełnia:

- a) warunek populacji,
- b) warunek monotoniczności.

Dowód:

a) Dowód nie wprost:

Załóżmy, że $\exists \bar{a_i} < a_i \text{ i } \bar{a_j} > a_j \text{ (oznaczmy to jako (*)), oraz że:}$

$$\bar{p}_i > p_i, \quad \bar{p}_j < p_j$$

Rozważmy:

- Dla a_i, a_j : parametr v,
- Dla $\bar{a_i}, \bar{a_j}$: parametr u.

Przydziały są obliczane jako:

$$\bar{a}_i = f\left(\frac{\bar{p}_i}{u}\right), \quad \bar{a}_j = f\left(\frac{\bar{p}_j}{u}\right),$$

oraz

$$a_i = f\left(\frac{p_i}{v}\right), \quad a_j = f\left(\frac{p_j}{v}\right).$$

Funkcja f jest rosnąca, co oznacza, że:

$$g(x) > g(y) \implies x > y.$$

Z założenia (*) wynika:

$$f\left(\frac{\bar{p_i}}{u}\right) < f\left(\frac{p_i}{v}\right), \quad f\left(\frac{\bar{p_j}}{u}\right) > f\left(\frac{p_j}{v}\right).$$

Z rosnącego charakteru f mamy:

$$\frac{\bar{p_i}}{u} < \frac{p_i}{v}, \quad \frac{\bar{p_j}}{u} > \frac{p_j}{v}.$$

Przekształcając:

$$\bar{p_j} < \frac{u}{v} \cdot p_j, \quad \bar{p_j} > \frac{u}{v} \cdot p_j.$$

Z (1): $\frac{u}{v}>1,$ a z (2): $\frac{u}{v}<1,$ co prowadzi do sprzeczności.

b) Jeśli $p_i < p_j$, to:

$$\frac{p_i}{v} > \frac{p_j}{v} \implies f\left(\frac{p_i}{v}\right) > f\left(\frac{p_j}{v}\right).$$

Założenie metody dzielników oraz rosnący charakter f prowadzą do tezy.

Wniosek 2.14.1

Metoda dzielników nie spełnia warunku kwoty.

Dowód: Twierdzenie Belińskiego-Younga.

Twierdzenie 2.15

Metoda Hamiltona spełnia:

- a) warunek kwoty,
- b) warunek monotoniczności.

Dowód:

a) Rozważmy:

$$q_i = \lfloor g_i \rfloor, \quad g_i - \lfloor g_i \rfloor = 0.$$

W takim przypadku nie nie dodajemy lub:

$$q_i < \lfloor g_i \rfloor, \quad a_i = \begin{cases} \lfloor g_i \rfloor, \\ \lceil g_i \rceil. \end{cases}$$

b) Jeśli $p_i > p_j$, to:

$$m \cdot \frac{p_i}{p} > m \cdot \frac{p_j}{p} \implies q_i > q_j.$$

Rozważmy dwa przypadki:

- a) $\lfloor q_i \rfloor > \lfloor q_j \rfloor$ lub $\lfloor q_j \rfloor + 1 \ge a_j$,
- b) $\lfloor q_i \rfloor = \lfloor q_j \rfloor$, ale:

$$q_i - \lfloor q_i \rfloor > q_j - \lfloor q_j \rfloor \implies a_i \ge a_j.$$

Wniosek 2.15.1

Metoda Hamiltona nie spełnia warunku populacji.

Dowód: Twierdzenie Belińskiego-Younga.

Twierdzenie 2.16

 $Metoda\ Webstera\ dla\ S=2, m=2\ spełnia\ warunki:$

- a) kwoty,
- b) monotoniczności,
- c) populacji.

Dowód:

a) Dla S=2 mamy:

$$q_B = k + a,$$

$$q_C = l + b,$$

gdzie $k, l \in \mathbb{Z}$ oraz $a, b \in [0, 1)$. Rozważmy przypadki:

a) Jeśli a = b = 0, to:

$$B \mapsto k, \quad C \mapsto l.$$

b) Jeśli k + l + 1 = m oraz a + b = 1, to:

$$B \mapsto k \text{ lub } k + 1,$$

 $C \mapsto l \text{ lub } l + 1.$

- c) Tabela przydziałów (TAB1) (należy dodać tabelę dla jasności dowodu).
- b) Zastosowanie metody dzielników.
- c) Rozważanie zgodności z warunkiem populacji.

Definicja 2.42 (Metoda wartościująca – XXI wiek)

Niech S będzie zbiorem stopni (ocen wartości). Metoda $M:W\to \{f:K\to S\}$ polega na tym, że wyborca każdemu kandydatowi przypisuje ocenę.

Przykłady metod:

- Przyznawanie punktów metodą Brody.
- Metoda n-głosów, np. (1, 1, 1, 1, 0, 0, 0).
- \bullet Metoda wartościująca: wynik to słaby porządek w K (w tym wyłonienie zwycięzcy).

Przykład 2.14

a) Metoda mediany

Dla kandydata A, gdzie #W = n, oceny kandydata to s_1, \ldots, s_n , uporządkowane w rankingu od najlepszej.

Wartość mediany (multivalue) definiujemy jako:

$$m(A) = \begin{cases} S_{\lfloor \frac{n}{2} + 1 \rfloor}, & \text{gdy } n \text{ nieparzyste}, \\ niższa z dwóch środkowych, & \text{gdy } n \text{ parzyste}. \end{cases}$$

Przykład dla n nieparzystego:

- Oceny: S świetny, D dobry, P przeciętny, Z zły, F fatalny.
- Dla 5 wyborców:

$$A: S, D, \mathbf{D}, F, F, B: S, S, \mathbf{D}, Z, F, C: D, D, \mathbf{Z}, Z, Z.$$

Przykład dla n parzystego:

- Oceny: W wyborny, S smaczny, Z zjadliwy, N niejadalny.
- Dla 4 wyborców:

$$A:W,W,\mathbf{Z},Z,$$

 $B:W,S,\mathbf{Z},N,$
 $C:Z,N,\mathbf{N},N.$

Metoda znajduje zastosowanie w jury konkursów, gdzie dąży się do zadowolenia większości.

b) Metoda symetrycznej mediany

Analogiczna do metody mediany, jednak w przypadku n parzystego wybieramy lepszą z dwóch środkowych ocen:

$$m^*(A) = S_{\frac{\lfloor n+1 \rfloor}{2}}.$$

c) Metoda Balińskiego-Larakiego (2011)

Procedura:

Przykład:

- a) Wyznaczamy m(A) i m(B).
- b) Jeśli m(A) jest lepsze od m(B), to A jest lepszy od B. Notacja: $m(A) < m(B) \Rightarrow A \leq B$
- c) $Jeśli\, m(A)=m(B),\, usuwamy\,\, te\,\, ocene\,\, z\,\, rankingu\,\, i\,\, powtarzamy\,\, procedure\,\, z\,\, n-1\,\, ocenami.$

 $A: S, D, \mathbf{D}, F, F,$ $B: S, S, \mathbf{D}, Z, F,$ $C: D, D, \mathbf{Z}, Z, Z \quad (odpada).$

Po kolejnych iteracjach wyłaniamy zwycięzcę.

Wniosek: Remis jest możliwy tylko w przypadku tych samych ocen.

Definicja 2.43 (Metoda rankingowo niezależna od ubocznych opcji)

 $Metoda\ wartościująca\ jest\ rankingowo\ niezależna\ od\ ubocznych\ opcji\ wtedy\ i\ tylko\ wtedy\ (w.i.t.w.),\ gdy:$

$$\forall M, N \, \forall A, B \begin{bmatrix} M, N - modele \\ K_M = K_N \cup \{C\}, \ C \notin K_M \\ \forall v \in W \ \ \textit{oceny} \ v \ w \ M = \ \textit{oceny} \ v \ w \ N \end{bmatrix} \Rightarrow (A \leqslant B \ \textit{w.i.t.w.} \ A \leqslant B).$$

Twierdzenie 2.17

Metoda mediany i metoda Balińskiego-Larakiego (B=L) są rankingowo niezależne od ubocznych opcji.

Dowód: Dodanie kandydata nie zmienia ocen.

Lemat 2.6

Metoda punktów Bordy nie jest rankingowo niezależna od ubocznych opcji.

Model M:

$$\begin{array}{c|c}
3 & 2 \\
\hline
A & B \\
\hline
B & A
\end{array}
\qquad
\begin{bmatrix}
A - 3 \text{ glosy} \\
B - 2 \text{ glosy}
\end{bmatrix}
\quad
A > B \\
M$$

Model N:

$$\begin{array}{c|c} 3 & 2 \\ \hline C & B \\ \hline A & C \\ \hline B & A \\ \end{array} \qquad \begin{bmatrix} A-3 \text{ glosy} \\ B-4 \text{ glosy} \end{bmatrix} \quad A < B$$

Definicja 2.44 (Metoda odporna na nieobecność)

Metoda (MP, MW) jest odporna na nieobecność wtedy i tylko wtedy (w.i.t.w.), gdy:

$$\forall_{M,N}\forall_{A,B}\begin{bmatrix} M,N-modele \\ W_N=W_M\cup W^*, & W^*\cap W_M\neq\emptyset \\ v\in W_M\Rightarrow & \textbf{gtos}\ v\ w\ M=& \textbf{gtos}\ v\ w\ N \\ A\leqslant B \quad oraz \quad \forall_{v\in W^*}A\stackrel{v,N}{B} \end{bmatrix}\Rightarrow A\leqslant B.$$

Twierdzenie 2.18

Metoda punktów Bordy jest odporna na nieobecność.

Dowód: Kandydat B dostaje jeszcze więcej punktów niż A.

Lemat 2.7

Metoda Balińskiego-Larakiego (B-L) nie jest odporna na nieobecność. Metody mediany również nie są odporne na nieobecność.

Wyniki głosowania w modelu M:

Wyniki głosowania w modelu N (po dodaniu głosu):

Twierdzenie 2.19 (Twierdzenie Saariego (1992))

 $Z: K = \{k_1, \ldots, k_n\}, n \geq 3.$ T: Istnieje model, w którym k_i wygrywa samodzielnie metodą i-głosów $(i = 1, \ldots, n-1),$ natomiast k_n wygrywa metodą punktów Bordy. (Bez dowodu)

Przykład 2.15

Metoda 1-głosu - wygrywa A (5 głosów)

Metoda 2-głosów - wygrywa B (9 głosów)

Metoda punktów Bordy - wygrywa C (12 punktów)

	2	2	2	3
b)	Α	Α	С	D
	В	D	В	В
	С	С	D	С
	D	В	Α	Α

Metoda 1-głosu - wygrywa A (4 głosy) Metoda 2-głosów - wygrywa B (7 głosów) Metoda 2-głosów - wygrywa C (9 głosów) Metoda punktów Bordy - wygrywa D (15 punktów)

Definicja 2.45 (Grupowa metoda n-głosów)

 $Grupowa\ metoda\ n$ -głosów - wyborca głosuje na n $\ kandydatów,\ wygrywa\ n\ z$ największą liczbą głosów.

Przykład 2.16

	30	30	20	20
1	Α	Α	V	С
2	В	С	С	В
3	С	В	Α	Α

Głosowanie na 1 głos

A - 60 - wygrywa

B - 20

C - 20

Głosowanie na 2 głosy

A - 60

B - 70 - wygrywa

C - 70 - wygrywa

Twierdzenie 2.20

 $\#K \ge 2n+1, \ n \ge 1, \ \#W \ odpowiednio \ duża.$

Dla kandydatów k_1, \ldots, k_{2n+1} istnieje model, w którym:

- w glosowaniu grupowa metoda n glosowwygrywaja k_1, \ldots, k_n ,
- w glosowaniu grupową metodą (n+1) glosów wygrywają $k_{n+1}, \ldots, k_{2n+1}$ (w obu przypad-kach każdy kandydat ma ponad 50% glosów).

Dowód: Idea dla n = 3, 2n + 1 = 7:

		1400	· CLIC	, ,	\sim , $-$		• •			
	0	0	0							
1	k_1	k_2	k_3	k_4	k_5	k_6	k_7			
2	k_2	k_3	k_1	k_5	k_6	k_7	k_4			
3	k_3	k_1	k_2	k_6	k_7	k_4	k_5			
4				k_7	k_4	k_5	k_6			
5	Wy	Wypełniamy odpowiedno rzędami,								
6	dając kandydata w tej kulumnie,									
7	w której go jeszcze nie było.									

Zbiory \circ i \square są równoliczne.

Zarys ogólny:

		n g	grup			n+1	grup	
	p	p		p	q	q		q
1	k_1	k_2		k_n	k_{n+1}	k_{n+1}		k_{2n+1}
2	k_2	k_3		k_1	k_{n+2}	k_{n+2}		k_{n+1}
3	k_3	k_4		k_2	k_{n+3}			k_{n+2}
:								
n-1	k_{n-1}	k_n		k_{n-2}	k_{2n-2}	k_{2n-1}	k_{2n-1}	k_{2n-1}
$\mid n \mid$	k_n	k_1		k_{n-1}	k_{2n-1}	k_{2n+1}		k_{2n-1}
n+1			*		k_{2n}	k_{n+1}		k_{2n}
n+2								
:					Δ			
2n+1								

* - W tych grupach mamy po p wyborców, każdy z k_{n+1},\ldots,k_{2n+1} pojawia się z częstotliwością $w\left(\frac{1+2n\epsilon}{2(n+1)}\right)$.

 Δ - W każdym rzędzie (miejsca $n+1,\ldots,2n+1$) każdy z kandydatów k_{n+1},\ldots,k_{2n+1} pojawia się $w\left(\frac{2n\epsilon+1}{2(n+1)}\right)$ razy, a każdy z k_1,\ldots,k_n pojawia się $w\left(\frac{1}{2n}-\epsilon\right)$ razy. Wstawiamy każdego w kolumnę, w której go jeszcze nie było.

Możemy zadać sobie pytania co do poprawności takiego rozkładu, mianowicie:

1) Dobrze zdefiniowane

2)
$$nw\left(\frac{1}{2n} + \epsilon\right) > nw\left(\frac{1}{2(n+1)} - \epsilon + \frac{\epsilon}{n+1}\right)$$
, czyli $p > q$.

3)
$$nw\left(\frac{1}{2n} + \epsilon\right) < nw\left(\frac{1}{2(n+1)} - \epsilon + \frac{\epsilon}{n+1}\right).$$

4)
$$nw\left(\frac{1}{2n} + \epsilon\right) > \frac{w}{2}$$
.

5)
$$nw\left(\frac{1}{2(n+1)} - \epsilon + \frac{\epsilon}{2(n+1)}\right) + \frac{2}{n+1} > \frac{w}{2}$$
.

Okaże się, że dla $\epsilon < \frac{1}{2(2n^2+2)}$ będzie ok. Dobieramy n tak, aby wyszły liczby całkowite.

D:

1) a) Suma w rzędzie = w:

$$np + (n+1)q = nw\left(\frac{1}{2n} + \epsilon\right) + (n+1)w\left(\frac{1}{2(n+1)} - \epsilon + \frac{\epsilon}{n+1}\right) =$$

$$= w\left[\frac{1}{2} + n\epsilon + \frac{n+1}{2(n+1)} - (n+1)\epsilon + \frac{(n+1)\epsilon}{n+1}\right] = w.$$

b) Czy w każdym miejscu liczba > 0? Dla p jest ok:

$$\frac{1}{2(n+1)} + \frac{\epsilon(1-n-1)}{n+1} > 0, \quad n\epsilon < \frac{1}{2}, \quad \epsilon < \frac{1}{2n}.$$

c) Czy suma każdego przy n+1 miejsc jest $\leq w$:

$$wn\left(\frac{1}{2n} + \epsilon\right) = w\left(\frac{1}{2} + n\epsilon\right) < w, \quad n\epsilon < \frac{1}{2}, \quad \epsilon < \frac{1}{2n}.$$

$$w\left(\frac{n}{2(n+1)} - \epsilon n + \frac{\epsilon n}{n+1} + \frac{1}{n+1}\right) = w\left(\frac{n+2}{2(n+1)} - \epsilon n\left(1 + \frac{1}{n+1}\right)\right) < w.$$

Głosy na k_i do miejsc n+1, $(i=n+1,\ldots,2n+1)$.

- 2) $w\left(\frac{1}{2n+1}+\epsilon\right)>w\left(\frac{1}{2(n+1)}-\epsilon+\frac{\epsilon}{n+1}\right)$ oczywiste (prawa strona jest silnie mniejsza od lewej).
- 3) $nw\left(\frac{1}{2n} + \epsilon\right) < nw\left(\frac{1}{2(n+1)} \epsilon + \frac{\epsilon}{n+1}\right)$:

$$\frac{1}{2} + n\epsilon < \frac{n+1}{2(n+1)} - (n+1)\left(\frac{n+1\epsilon - \epsilon}{n+1}\right) + \frac{1}{n+1}.$$

$$n\epsilon < \frac{1}{n+1} - n\epsilon$$
, $2n\epsilon < \frac{1}{n+1}$, $\epsilon < \frac{1}{2n(n+1)}$.

Sprawdzenie (4), (5) do domu.

3 Deser

W sumie to deseru jeszcze nie ma, ale ma być na ostatnim wykładzie!!!

Egzamin 31 stycznia 11:00 $\,$