USER AUTHENTICATION

MD. IFTEKHARUL ALAM EFAT

LEARNING OBJECTIVES

- Discuss the four general means of authenticating a user's identity
- Explain the mechanism by which hashed passwords are used for user authentication
- Understand the use of the Bloom filter in password management
- Present an overview of token-based user authentication
- Discuss the issues involved and the approaches for remote user authentication
- Summarize some of the key security issues for user authentication

USER AUTHENTICATION

- User authentication is the basis for most types of access control and for user accountability
- The process of verifying an identity claimed by or for a system entity has two steps:
 - Identification Presenting an identifier to the security system
 - **Verification** Presenting or generating authentication information that corroborates the binding between the entity and the identifier
- Distinct from Message Authentication

ELECTRONIC USER AUTHENTICATION

E-AUTHENTICATION ARCHITECTURAL MODEL

MEANS OF USER AUTHENTICATION

- Four means of authenticating user's identity based one something the individual
 - knows e.g. password, PIN
 - possesses e.g. key, token, smartcard
 - is (static biometrics) e.g. fingerprint, retina
 - · does (dynamic biometrics) e.g. voice, sign
- Can use alone or combined
- All can provide user authentication

RISK ASSESSMENT FOR USER AUTHENTICATION

An assurance level describes an organization's degree of certainty that a user has presented a credential that refers to his or her identity

MAXIMUM POTENTIAL IMPACTS FOR EACH ASSURANCE LEVEL

	Assurance Level Impact Profiles			rofiles
Potential Impact Categories for Authentication Errors	1	2	3	4
Inconvenience, distress, or damage to standing or reputation	Low	Mod	Mod	High
Financial loss or organization liability	Low	Mod	Mod	High
Harm to organization programs or interests	None	Low	Mod	High
Unauthorized release of sensitive information	None	Low	Mod	High
Personal safety	None	None	Low	Mod/ High
Civil or criminal violations	None	Low	Mod	High

PASSWORD-BASED AUTHENTICATION

PASSWORD AUTHENTICATION

- Widely used user authentication method
 - · user provides name/login and password
 - system compares password with that saved for specified login
- Authenticates ID of user logging and
 - that the user is authorized to access system
 - determines the user's privileges
 - is used in discretionary access control

PASSWORD VULNERABILITIES

Offline Dictionary Attack Specific Account
Attack

Popular Password Attack

Password
Guessing Against
Single User

Workstation Hijacking

Exploiting User Mistakes

Exploiting
Multiple
Password Use

Electronic Monitoring

COUNTERMEASURES

- Stop unauthorized access to password file
- Intrusion detection measures
- Account lockout mechanisms
- Policies against using common passwords but rather hard to guess passwords
- Training & enforcement of policies
- Automatic workstation logout
- Encrypted network links

USE OF HASHED PASSWORDS

UNIX Password Scheme

Password:

farm1990M00

Salt:

f1nd1ngn3m0

Salted input:

f1nd1ngn3m0farm1990M00

Hash (SHA-256):

7528ed35c6ebf7e4661a02fd98ab88d9 2ccf4e48a4b27338fcc194b90ae8855c

(a) Loading a new password

(b) Verifying a password

UNIX IMPLEMENTATION

- Original scheme
 - 8 character password form 56-bit key
 - 12-bit salt used to modify DES encryption into a one-way hash function
 - 0 value repeatedly encrypted 25 times
 - Output translated to 11 character sequence
- Now regarded as woefully insecure
 - E.G. Supercomputer, 50 million tests, 80 min
- Sometimes still used for compatibility

GENERATING A GOOD RANDOM SALT

- Generate a unique salt upon creation of each stored credential (not just per user or system-wide)
- Use cryptographically-strong random data
- As storage permits, use a 32-byte or 64-byte salt (actual size dependent on protection function)
- Scheme security does not depend on hiding, splitting, or otherwise obscuring the salt

IMPROVED IMPLEMENTATIONS

- Have other, stronger, hash/salt variants
- Many systems now use MD5
 - With 48-bit salt
 - Password length is unlimited
 - Is hashed with 1000 times inner loop
 - Produces 128-bit hash
- Openbsd uses blowfish block cipher based hash algorithm called bcrypt
 - Uses 128-bit salt to create 192-bit hash value

PASSWORD CRACKING

- Dictionary Attacks
 - Try each word then obvious variants in large dictionary against hash in password file
- Rainbow Table Attacks
 - Precompute tables of hash values for all salts
 - A mammoth table of hash values
 - E.G. 1.4GB table cracks 99.9% of alphanumeric windows passwords in 13.8 secs
 - Not feasible if larger salt values used

Dictionary Attack Trying apple : failed Trying blueberry : failed Trying justinbeiber : failed Trying letmein : failed Trying s3cr3t : success!

PASSWORD CHOICES

- Users may pick short passwords
 - E.G. 3% were 3 chars or less, easily guessed
 - System can reject choices that are too short
- Users may pick guessable passwords
 - So crackers use lists of likely passwords
 - E.G. One study of 14000 encrypted passwords guessed nearly 1/4 of them
 - Would take about 1 hour on fastest systems to compute all variants, and only need 1 break!

PASSWORD FILE ACCESS CONTROL

- Can block offline guessing attacks by denying access to encrypted passwords
 - Make available only to privileged users
 - Often using a separate shadow password file
- Still have vulnerabilities
 - Exploit O/S bug
 - Accident with permissions making it readable
 - Users with same password on other systems
 - Access from unprotected backup media
 - Sniff passwords in unprotected network traffic

PASSWORD SELECTION STRATEGIES

- Clearly have problems with passwords
- Goal to eliminate guessable passwords
- Whilst still easy for user to remember
- Techniques:
 - User education
 - Computer-generated passwords
 - Reactive password checking
 - Proactive password checking

PROACTIVE PASSWORD CHECKING

- Rule enforcement plus user advice, e.g.
 - 8+ chars, upper/lower/numeric/punctuation
 - May not suffice
- Password cracker
 - Time and space issues
- Markov model
 - Generates guessable passwords
 - Hence reject any password it might generate
- Bloom filter
 - Use to build table based on dictionary using hashes
 - Check desired password against this table

TOKEN-BASED AUTHENTICATION

TOKEN AUTHENTICATION

User Authentication

23

MEMORY CARD

- Store but do not process data
- · Magnetic stripe card, e.g. Bank card
- Electronic memory card
- Used alone for physical access
- With password/PIN for computer use
- Drawbacks of memory cards include:
 - Need special reader
 - Loss of token issues
 - User dissatisfaction

SMARTCARD

- · Credit-card like, has own processor, memory, I/O ports
 - Wired or wireless access by reader
 - May have crypto co-processor
 - ROM, EEPROM, RAM memory
- Executes protocol to authenticate with reader/computer
- Also have USB dongles

SMART CARDS

Physical Characteristics

Smart tokens include an embedded microprocessor

User Interface

Manual interfaces include a keypad and display for human/ token interaction

Electronic Interface

Contact

Contactless

Authentication Protocol

Static

Dynamic Password Generator

Challengeresponse

ELECTRONIC IDENTITY CARDS

Smart Card/Reader Exchange

Human-Readable Data Printed on Smartcard

ELECTRONIC FUNCTIONS AND DATA FOR EID CARDS

Function	Purpose	PACE Password	Data	Uses	
ePass (mandatory)	Authorized offline inspection systems read the data	CAN or MRZ	Face image; two fingerprint images (optional); MRZ data	Offline biometric identity verification reserved for government access	
aID (activation	Online applications read the data or access functions as authorized	eID PIN	Family and given names; artistic name and doctoral	names; artistic	
eID (activation optional)	Offline inspection systems read the data and update the address and community ID	CAN or MRZ	place of birth; address and community ID; expiration date	cation; restricted identification (pseudonym); revocation query	
eSign (certificate optional)	A certification authority installs the signature certificate online	eID PIN	Signature key; X.509 certificate	Electronic signature creation	
•	Citizens make elec- tronic signature with eSign PIN	CAN			

USER AUTHENTICATION WITH EID

BIOMETRIC AUTHENTICATION

BIOMETRIC AUTHENTICATION

Authenticate user based on one of their physical characteristics

OPERATION OF A BIOMETRIC SYSTEM

BIOMETRIC ACCURACY

- Never get identical templates
- Problems of false match / false non-match

BIOMETRIC ACCURACY

- Can plot characteristic curve
- Pick threshold balancing error rates

REMOTE USER AUTHENTICATION

PASSWORD PROTOCOL

- Authentication over network more complex
 - Problems of eavesdropping, replay
- Generally use challenge-response
 - User sends identity
 - Host responds with random number
 - User computes f(r,h(p)) and sends back
 - Host compares value from user with own computed value, if match user authenticated
- Protects against a number of attacks

BASIC CHALLENGE-RESPONSE PROTOCOLS FOR REMOTE USER AUTHENTICATION

BASIC CHALLENGE-RESPONSE PROTOCOLS FOR REMOTE USER AUTHENTICATION

User Authentication

AUTHENTICATION SECURITY ISSUES

- Client Attacks
- Host Attacks
- Eavesdropping
- Replay
- Trojan Horse
- Denial-of-Service

PRACTICAL APPLICATION

CASE STUDY: ATM SECURITY

SUMMARY

- Introduced user authentication
 - Using passwords
 - Using tokens
 - Using biometrics
- Remote user authentication issues
- Example application and case study