ICS Protocols Anomaly Behavior Analysis: Modbus

Modbus

Original Implementation

Modbus was introduced in 1979 by the company "Modicon"

- Master-slave protocol
 - A slave is typically a PLC
 - Masters are programming panels or host computers
- Only masters can initiate a message
- Messages issued by the master are called Query

Modbus has no multicast capability

Figure 1. Simplified Modbus message format.

Modbus Serial

ASCII

- Human readable
- Timing between characters is not an issue

Start of	Device	Function	Data	LRC	End of
Frame	Address	Code		Check	Frame
1 character (:)	2 characters	2 characters	n characters	2 characters	2 characters (CRLF)

Figure 3. ASCII framing of a Modbus message.

- RTU (Remote Terminal Unit)
 - Not human readable
 - Messages are compact and more efficient to send

Start of	Device	Function	Data	CRC	End of
Frame	Address	Code		Check	Frame
4 character times	8 bits	8 bits	n x 8 bits	16 bits	4 character times

Figure 4. RTU framing of a Modbus message.

Register Map

- The register map is a structured set of data points
- Devices use this map to organize and store information that can be read from or written to by other devices on the network

I/O Range	Description
00001 - 10000	Read/Write discrete output or coils
10001 – 20000	Read discrete inputs
30001 – 40000	Read input registers – 16-bit registers such as analog inputs
40001 – 50000	Read/Write holding registers – 16-bit storage or I/O

Figure 5. Typical Modbus Register Map.

Function Codes

 Function codes are a set of commands or requests used by the master to request specific actions or data from a slave

Code	1/16-bit	Description	I/O Range
01	1-bit	Read coils	00001 – 10000
02	1-bit	Read contacts	10001 – 20000
05	1-bit	Write a single coil	00001 – 10000
15	1-bit	Write mulitple coils	00001 – 10000
03	16-bit	Read holding registers	40001 – 50000
04	16-bit	Read input registers	30001 – 40000
06	16-bit	Write single register	40001 – 50000
16	16-bit	Write mulitple registers	40001 – 50000
22	16-bit	Mask write register	40001 – 50000
23	16-bit	Read/write mulitple registers	40001 – 50000
24	16-bit	Read FIFO queue	40001 – 50000

Figure 6. Data access function codes.

Modbus Serial (Updated)

- Operates over a physical connection
- Limited data transfer speeds
- Only supports communication over short distances
- Provides good data integrity with CRC

Layer	ISO/OSI Function	Modbus Function
7	Application	Modbus Application Protocol
3–6	Various	Null
2	Data Link	Modbus Serial Line Protocol
1	Physical	EIA-485, EIA-232C

Table 1. Modbus over Serial Line uses a three-layer model.

	Slave ddress	Function Code	Data	CF	RC
1	byte	1 byte	0 up to 252 bytes(s)	2 bytes	
				CRC Low	CRC Hi

Figure 2. RTU framing is more condensed than ASCII framing

Modbus TCP

- Based on Ethernet
- Client-server -> Master-slave
- Message exchange
 - A request is sent by the client to initiate a transaction
 - An indication is sent by the server to confirm that a request has been received
 - A response is sent by the server to comply with the client's request
 - A confirmation is sent by the client to acknowledge receipt of the response

Layer	ISO/OSI Function	Modbus Function
5,6,7	Application	Modbus Application Protocol
4	Transport	Transmission Control Protocol
3	Network	Internet Protocol
2	Data Link	IEEE 802.3
1	Physical	IEEE 802.3

Table 2. Modbus TCP uses a five-layer Internet model.

Modbus Vulnerabilities

- Complexity and real-time constraints
- Lack of confidentiality and integrity
- Authentication deficiencies
- Absence of anti-repudiation and anti-reply techniques
- These vulnerabilities can be exploited with the following key attacks
 - Unauthorized command execution
 - Denial-of-service
 - Man-in-the-middle
 - Reply attacks

Modbus attacks

- Attacks on Modbus systems and networks can be categorized into three main groups:
 - Attacks exploiting the Modbus protocol specifications.
 - Attacks targeting vendor implementations of the Modbus protocols.
 - Attacks focused on the support infrastructure, including IT, networking, and telecommunications assets.

 Primary targets include the master, field devices, serial communication links, network communication paths, and messages.

- Proposed by Nai Fovino, Carcano, Masera & Trombetta
- Aims to fulfill specific security requirements
 - Integrity
 - Authentication
 - Non-repudiation
 - Reply protection

Implementation of NTP timestamps for evaluation of packets

Introduction of Modbus secure gateway

Figure 3. Modbus Secure Gateway.

- When the Modbus Secure Gateway receives a packet on the process network interface:
 - It accepts only authenticated Secure Modbus TCP traffic from allowed masters
 - It extracts the Modbus packet from the Secure Modbus packet
 - It forwards the packet to the appropriate slave using the related point-topoint (serial or TCP) link

- When the Modbus Secure Gateway receives a packet on one of the point-to-point links connected with a slave:
 - It creates a Secure Modbus packet containing the received original Modbus packet
 - It signs the packet digest with the private key associated with the slave
 - It forwards the new packet to the appropriate master through its process network interface

- Steps involved in sending and verifying a Secure Modbus request message:
 - The master creates a valid Modbus request with a timestamp and the serial slave address
 - The master computes the digest of the Modbus request, encrypts the digest with its private key, and sends the request along with the encrypted digest to a slave or to the Modbus Secure Gateway
 - The slave or the Modbus Secure Gateway verifies that the Modbus request is genuine using the master's public key
- After verifying that the request is genuine, the Modbus Secure Gateway reads the unit identifier in the MBAP header and sends the Modbus request to the addressed slave

- Secure Modbus module
 - Modbus stream builder
 - RSA encryption/decryption unit
 - SHA2 validator
 - Modbus ADU builder/reader
 - Timestamp analyzer

Figure 4. Secure Modbus module.

References

- Thomas, George. "Introduction to the modbus protocol." The Extension 9.4 (2008): 1-4.
- Fovino, I. N., Carcano, A., Masera, M., & Trombetta, A. (2009). Design and implementation of a secure modbus protocol. In Critical Infrastructure Protection III: Third Annual IFIP WG 11.10 International Conference on Critical Infrastructure Protection, Hanover, New Hampshire, USA, March 23-25, 2009, Revised Selected Papers 3 (pp. 83-96). Springer Berlin Heidelberg.
- Huitsing, P., Chandia, R., Papa, M., & Shenoi, S. (2008). Attack taxonomies for the Modbus protocols. International Journal of Critical Infrastructure Protection, 1, 37-44.