

Resolviendo problemas de Cauchy

Realizado por: Esteban Hernández Ramírez

En el curso: Ecuaciones diferenciales parciales

Trabajo presentado a PhD. Luz Myriam Echeverry Navarro.

Escuela de Ingeniería, Ciencia y Tecnología Matemática Aplicadas y Ciencias de la Computación Universidad del Rosario Noviembre 24 de 2021

1. La fórmula de d'Alembert resuelve el problema de Cauchy

Considere el problema de Cauchy:

$$u_{tt} - c^2 u_{xx} = F(x,t)$$

$$u(x,0) = f(x)$$

$$u_t(x,0) = g(x)$$

$$-\infty < x < \infty$$

$$0 < t$$
(1)

La fórmula de d'Alembert es la siguiente fórmula explícita:

$$u(x,t) = \frac{f(x+ct) + f(x-ct)}{2} + \frac{1}{2c} \int_{x-ct}^{x+ct} g(s)ds + \frac{1}{2c} \int \int_{\Delta} F(\xi,\tau)d\xi d\tau.$$
 (2)

Notemos que la ecuación 2 está definida para cualquier $-\infty < x < \infty$ y 0 < t.

Ahora bien, sabemos que el siguiente operador diferencial es, en efecto, un operador lineal:

$$L[u] = \frac{\partial^2 u}{\partial t^2} - c^2 \cdot \frac{\partial^2 u}{\partial x^2}.$$

Esto significa que el problema de Cauchy 1 está caracterizado por una ecuación NO homogénea.

No en vano, el **principio de superposición** garantiza que la solución al *problema de Cauchy* con f(x) = 0 = g(x):

$$u_{tt} - c^{2}u_{xx} = F(x,t) u(x,0) = 0 u_{t}(x,0) = 0 -\infty < x < \infty 0 < t,$$
 (3)

siempre puede combinarse linealmente con una solución del problema de Cauchy de ecuación homogénea:

$$L[U] = \frac{\partial^2 u}{\partial t^2} - c^2 \cdot \frac{\partial^2 u}{\partial x^2} = 0 \qquad \qquad y \qquad \qquad f(x), \ g(x) \ \text{ arbitrarias}.$$

Para, de esta manera, construir una solución al problema de Cauchy NO homogéneo original, con valores iniciales, f(x) y g(x), arbitrarios.

No en vano, para f(x) = 0 y g(x) = 0, la ecuación 2, que es la candidata a solución, se vuelve:

$$u(x,t) = \frac{1}{2c} \int \int_{\Delta} F(\xi,\tau) d\xi d\tau. \tag{4}$$

Así que, demostrar que la ecuación 2 es solución al *problema de Cauchy* 1, se reduce a verificar que la función 4 es solución al *problema de Cauchy* "simplificado", 3. Por lo tanto, demostraremos esto último.

Para empezar, tomemos

$$v(x,t) = \frac{1}{2c} \int \int_{\Lambda} F(\xi,\tau) d\xi d\tau.$$

Ahora bien, Δ es el **dominio de influencia** de la solución, el cual es el triangulo de vértice (x,t) y base el intervalo [x-ct, x+ct] sobre el eje-x. Así que las variables de integración ξ y τ varían en los intervalos [0,t]

(la altura del triángulo) y $\left[x-c\left(t- au\right),x-c\left(t+ au\right)\right]$ (la base del triángulo), respectivamente.

Así, podemos reescribir la función v(x,t), especificando sus límites de integración, como:

$$v(x,t) = \frac{1}{2c} \int \int_{\Delta} F(\xi,\tau) \ d\xi \ d\tau = \frac{1}{2c} \int_{0}^{t} \int_{x-c(t-\tau)}^{x+c(t-\tau)} F(\xi,\tau) \ d\xi \ d\tau.$$

No obstante, es fácil notar que v(x,0)=0, pues un triángulo de altura cero tiene un area de tamaño cero. \square

Ahora bien, el Teorema Fundamental del Cálculo establece que:

$$\frac{d}{dt}\left[\int_{a(t)}^{b(t)}G(s,t)\;ds\right]=\left[G\left(b(t),t\right)\cdot b^{'}(t)-G\left(a(t),t\right)\cdot a^{'}(t)\right]+\int_{a(t)}^{b(t)}G_{t}(s,t)\;ds.$$

Así que, podemos afirmar que

$$\begin{split} v_t(x,t) &= \frac{\partial}{\partial t} v(x,t) \\ &= \frac{\partial}{\partial t} \left[\frac{1}{2c} \int_0^t \int_{x-c(t-\tau)}^{x+c(t-\tau)} F(\xi,\tau) \ d\xi \ d\tau \right] \\ &= \frac{1}{2c} \int_0^t \frac{\partial}{\partial t} \left[\int_{x-c(t-\tau)}^{x+c(t-\tau)} F(\xi,\tau) \ d\xi \ d\tau \right] \\ &= \frac{1}{2c} \int_0^t \left[c \cdot F \left(x + c(t-\tau), \tau \right) - (-c) \cdot F \left(x - c(t-\tau), \tau \right) + \int_{x-c(t-\tau)}^{x+c(t-\tau)} F(\xi,\tau) \ d\xi \right] \ d\tau \\ &= \frac{1}{2c} \int_0^t \left[c \cdot F \left(x + c(t-\tau), \tau \right) - (-c) \cdot F \left(x - c(t-\tau), \tau \right) \right] \ d\tau + \frac{1}{2c} \int_0^t \left[\int_{x-c(t-\tau)}^{x+c(t-\tau)} F(\xi,\tau) \ d\xi \right] \ d\tau \\ &= \frac{1}{2} \int_0^t \left[F \left(x + c(t-\tau), \tau \right) + F \left(x - c(t-\tau), \tau \right) \right] \ d\tau + \frac{1}{2c} \int_0^t \left[\int_{x-c(t-\tau)}^{x+c(t-\tau)} F(\xi,\tau) \ d\xi \right] \ d\tau \\ &= \frac{1}{2} \int_0^t \left[F \left(x + c(t-\tau), \tau \right) + F \left(x - c(t-\tau), \tau \right) \right] \ d\tau + \frac{1}{2c} \int_x^x F(\xi,\tau) \ d\xi \ d\tau \\ &= \frac{1}{2} \int_0^t \left[F \left(x + c(t-\tau), \tau \right) + F \left(x - c(t-\tau), \tau \right) \right] \ d\tau. \end{split}$$

Así que

$$v_t(x,t) = \frac{1}{2} \int_0^t \left[F(x + c(t - \tau), \tau) + F(x - c(t - \tau), \tau) \right] d\tau.$$

No en vano, es fácil notar que $v_t(x,0)=0$, ya que los límites de integración son iguales para t=0. \square

En este mismo orden de ideas,

$$\begin{split} v_{tt}(x,t) &= \frac{1}{2} \left\{ F(x,t) + F(x,t) + \int_0^t \frac{\partial}{\partial t} \left[F\left(x + c(t-\tau),\tau\right) + F\left(x - c(t-\tau),\tau\right) \right] \ d\tau \right\} \\ &= F(x,t) + \frac{1}{2} \int_0^t c \ F_x(x + c\left(t-\tau\right),\tau) + (-c) \ F_x(x - c\left(t-\tau\right),\tau) \ d\tau \\ &= F(x,t) + \frac{c}{2} \int_0^t \ F_x(x + c\left(t-\tau\right),\tau) - \ F_x(x - c\left(t-\tau\right),\tau) \ d\tau \end{split}$$

Por otro lado

$$\begin{split} v_x(x,t) &= \frac{\partial}{\partial x} v(x,t) \\ &= \frac{\partial}{\partial x} \left[\frac{1}{2c} \int_0^t \int_{x-c(t-\tau)}^{x+c(t-\tau)} F(\xi,\tau) \, d\xi \, d\tau \right] \\ &= \frac{1}{2c} \int_0^t \frac{\partial}{\partial x} \left[\int_{x-c(t-\tau)}^{x+c(t-\tau)} F(\xi,\tau) \, d\xi \, d\tau \right] \\ &= \frac{1}{2c} \int_0^t \left[F\left(x+c(t-\tau),\tau\right) - \cdot F\left(x-c(t-\tau),\tau\right) + \int_{x-c(t-\tau)}^{x+c(t-\tau)} F(\xi,\tau) \, d\xi \right] \, d\tau \\ &= \frac{1}{2c} \int_0^t \left[F\left(x+c(t-\tau),\tau\right) - \cdot F\left(x-c(t-\tau),\tau\right) \right] \, d\tau + \frac{1}{2c} \int_0^t \left[\int_{x-c(t-\tau)}^{x+c(t-\tau)} F(\xi,\tau) \, d\xi \right] \, d\tau \\ &= \frac{1}{2} \int_0^t \left[F\left(x+c(t-\tau),\tau\right) - F\left(x-c(t-\tau),\tau\right) \right] \, d\tau + \frac{1}{2c} \int_0^t \left[\int_{x-c(t-\tau)}^{x+c(t-\tau)} F(\xi,\tau) \, d\xi \right] \, d\tau \\ &= \frac{1}{2} \int_0^t \left[F\left(x+c(t-\tau),\tau\right) - F\left(x-c(t-\tau),\tau\right) \right] \, d\tau + \frac{1}{2c} \int_x^x F(\xi,\tau) \, d\xi \, d\tau \\ &= \frac{1}{2c} \int_0^t \left[F\left(x+c(t-\tau),\tau\right) - F\left(x-c(t-\tau),\tau\right) \right] \, d\tau. \end{split}$$

Mientras que,

$$v_{tt}(x,t) = \frac{1}{2} \left\{ F(x,t) - F(x,t) + \int_0^t \frac{\partial}{\partial x} \left[F(x + c(t-\tau), \tau) + F(x - c(t-\tau), \tau) \right] d\tau \right\}$$
$$= \frac{1}{2c} \int_0^t F_x(x + c(t-\tau), \tau) - F_x(x - c(t-\tau), \tau) d\tau.$$

De esta manera, se comprueba que:

$$v_{tt} - c^{2}v_{xx}$$

$$= F(x,t) + \frac{c}{2} \int_{0}^{t} F_{x}(x + c(t - \tau), \tau) - F_{x}(x - c(t - \tau), \tau) d\tau - c^{2} \left(\frac{1}{2c} \int_{0}^{t} F_{x}(x + c(t - \tau), \tau) - F_{x}(x - c(t - \tau), \tau) d\tau\right)$$

$$= F(x,t). \square$$

Por lo tanto, hemos demostrado que la función

$$v(x,t) = \frac{1}{2c} \int_0^t \int_{x-c(t-\tau)}^{x+c(t-\tau)} F(\xi,\tau) \ d\xi \ d\tau,$$

satisface que

$$v_{tt} - c^2 v_{xx} = F(x,t), \quad v(x,0) = 0 \quad y \quad v_t(x,0) = 0.$$

Y de paso, también hemos demostrado que la fórmula 2 de d'Alembert es solución al problema de Cauchy 1. ■

Remark: note que, durante toda la demostración anterior, hemos asumido que $F, F_x \in C(\mathbb{R})$. No obstante, basta solamente con estas hipótesis para que los argumentos anteriores sean validos, por lo que la demostración sigue siendo lo suficientemente general.

2. Página 73. Ejercicio 3.3

Consideremos la ecuación diferencial parcíal líneal de segundo orden:

$$u_{xx} + 4u_{xy} + u_x = 0 (5)$$

2.1. Forma canónica de la ecuación

La parte principal de la ecuación 5 es

$$u_{xx} + 4u_{xy}$$

de modo que, los coeficientes

$$a = 1$$
$$2b = 4$$
$$c = 0.$$

son independientes del punto (x,y). Por lo tanto, su discriminante

$$\Delta = b^{2} - ac$$

$$= (2)^{2} - (1)(0)$$

$$= 4$$

$$> 0$$

nos dice que la ecuación 5 es una ecuación **hiperbólica** en todo el plano. No en vano, en clase demostramos que es posible transformar la ecuación 5 a una ecuación hiperbólica en **forma estándar**,

$$L\left[w\right] = w_{\xi\eta} + l_1(w) = G\left(\xi,\eta\right) \qquad \quad con \quad l_1 \text{ un operador lineal,}$$

mediante un cambio de variables apropiado, $(x,y) \mapsto (\xi,\eta)$, por medio del **operador lineal**:

$$A = a \xi_x^2 + 2b \xi_x \xi_y + c \xi_y^2$$

$$L[w] = Aw_{\xi\xi} + 2Bw_{\xi\eta} + Cw_{\eta\eta} + Dw_{\xi} + Ew_{\eta} + Fw \qquad con \qquad B = a \xi_x \eta_x + b (\xi_x \eta_y + \xi_y \eta_x) + c \xi_y \eta_y$$

$$C = a \eta_x^2 + 2b \eta_x \eta_y + c \eta_y^2.$$

Así que, en realidad, buscamos un cambio de variables $\xi(x,y)$ y $\eta(x,y)$, tal que

$$A = a \xi_x^2 + 2b \xi_x \xi_y + c \xi_y^2 = 0,$$

$$C = a \eta_x^2 + 2b \eta_x \eta_y + c \eta_y^2 = 0.$$

Mientras que, no exigimos ninguna otra condición sobre B, a parte de que $B \neq 0$. De esta manera, garantizamos que este coeficiente puede factorizarse para incluirlo en la parte lineal $l_1(w)$ o en el término de amortiguamiento, $G(\xi, \eta)$.

No en vano, dado $a \neq 0$, podemos reescribir a A de la siguiente manera:

$$A = a\xi_x^2 + 2b\xi_x\xi_y + c\xi_y^2$$

= $\frac{1}{a}\left(a\xi_x + \xi_y\left(b + \sqrt{b^2 - ac}\right)\right)\left(a\xi_x + \xi_y\left(b - \sqrt{b^2 - ac}\right)\right)$

Así que,

$$\left(a\,\xi_x + \xi_y\left(b + \sqrt{b^2 - ac}\right)\right) = 0 \qquad \qquad \lor \qquad \qquad \left(a\,\xi_x + \xi_y\left(b + \sqrt{b^2 - ac}\right)\right) = 0$$

$$\eta = 4x - y.$$

De modo que

$$\eta_x = 4 \qquad \qquad \eta_y = -1.$$

Ahora bien, ξ nos quedó libre. Debemos escogerlo tal que el jacobiano

$$J = \left| \begin{array}{cc} \xi_x & \xi_y \\ \eta_x & \eta_y \end{array} \right|$$

sea distinto de cero.

Para facilitar los cálculos podemos tomar $\xi=y$, de modo que $\xi_x=0$ y $\xi_y=1$.

Con lo cual

$$J = \left| \begin{array}{cc} \xi_x & \xi_y \\ \eta_x & \eta_y \end{array} \right| = \left| \begin{array}{cc} 0 & 1 \\ 4 & -1 \end{array} \right| = -4 \neq 0$$

Por lo tanto, hemos conseguido un cambio de variable invertible, que a su vez, conserva la clasificación (hiperbólica) de la ecuación original.

Ahora bien, reescribamos la ecuación 5 en términos de las nuevas variables: por comodidad en los cálculos siguientes, tomemos $w(\xi, \eta) = u(\xi(x, y), \eta(x, y))$.

Entonces tenemos que

$$u_x = w_\xi \cdot \xi_x + w_\eta \cdot \eta_x = 4w_\eta$$

Por lo cual

$$\begin{aligned} u_{xx} &= (w_{\xi} - 4w_{\eta})_x = (w_{\xi})_x + (-4w_{\eta})_x \\ &= (w_{\xi\xi} \cdot \xi_x + w_{\xi\eta} \cdot \eta_x) - 4(w_{\eta\xi} \cdot \xi_x + w_{\eta\eta} \cdot \eta_x) \\ &= w_{\xi\xi} - 4w_{\xi\eta} - 4(w_{\eta\xi} - 4w_{\eta\eta}) \\ &= w_{\xi\xi} - 4w_{\xi\eta} - 4w_{\eta\xi} + 16w_{\eta\eta}. \end{aligned}$$

Mientras que

$$\begin{aligned} u_{xy} &= (w_{\xi} - 4w_{\eta})_{y} = (w_{\xi})_{y} + (-4w_{\eta})_{y} \\ &= (w_{\xi\xi} \cdot \xi_{y} + w_{\xi\eta} \cdot \eta_{y}) - 4(w_{\eta\xi} \cdot \xi_{y} + w_{\eta\eta} \cdot \eta_{y}) \\ &= w_{\xi\eta} - 4w_{\eta\eta}. \end{aligned}$$

Con lo anterior, podemos reescribir la parte principal de la ecuación 5 en términos de las nuevas variables como:

$$u_{xx} + 4u_{xy} = (w_{\xi\xi} - 4w_{\xi\eta} - 4w_{\eta\xi} + 16w_{\eta\eta}) + 4(w_{\xi\eta} - 4w_{\eta\eta})$$

= $w_{\xi\xi} - 4w_{\xi\eta} - 4w_{\eta\xi} + 16w_{\eta\eta} + 4w_{\xi\eta} - 16w_{\eta\eta}$
= $w_{\xi\xi} - 4w_{\eta\xi}$

Por lo tanto, la ecuación 5 puede reescribirse como:

$$u_{xx} + 4u_{xy} + u_x = w_{\xi\xi} - 4w_{\eta\xi} + (w_{\xi} - 4w_{\eta}) \tag{6}$$