Наивный баесовский классификатор

Анна Алтынова, 331

Май 2021

1 Постановка задачи

Дано:

- Множество объектов X, обладающих конечным набором признаков $\{E_i\}$.
- Каждый признак E_i принимает некоторое численное значение, например $k \in \{0, 1, ... n\}$.
- Определен конечный набор классов объектов $\{F_j\}$, на которые делится X
- Для подмножества $X_t \subset X$ знаем, к какому классу принадлежат его объекты, также знаем значения признаков объектов.

Найти:

Научиться определять, к какому классу относится данный объект $x \in X, x \notin X_t$, зная значения его признаков $\{E_i\}$.

1.1 Пример: Классификация спама

Рассмотрим набор писем, в которых выделен набор ключевых слов $\{E_i\}$, являющихся маркерами спама. Тогда E_i может принимать значения $\in \{0,1\}$ - входит или не входит слово в документ, F_0, F_1 - классы спама и не-спама. Необходимо по тексту письма определить, является ли оно спамом.

2 Модель

Построим функции $g_i \, \forall i$, которые по данному $x \in X$ определят вероятность вхождения x в класс F_i . Тогда для ответа останется выбрать F_i т.ч. $max_j\{g_j(x)\}$ достигается при i(принцип максимального правдоподобия).

Пусть x обладает набором характеристик $E_x := \{e_i\}$. Нужно посчитать $g_i(x) = P(F_j|E_x) = \frac{Bayes'Th}{P(E_x)} = \frac{P(E_x|F_j)*P(F_j)}{P(E_x)}$, если предположить, что $\{E_i\}$ независимы("наивность"), т.е. $P(F_j|E_i,E_k) = P(F_j|E_i)*P(F_j|E_k) \ \forall i,k,j,$ то

 $P(F_j|E_x)=P(F_j|e_1)*(P(F_j|e_2)*...*P(F_j|e_n)=\frac{P(e_1|F_j)*...*P(e_n|F_j)*P(F_j)}{P(e_1)*...*P(e_n)}$ Причем распределение вероятностей

 $P(E_i = k|F_j)$, т.е. вероятность, с которой признак E_i принимает значение k в классе F_j , а также $P(E_i = k), P(F_i)$ мы можем вычислить непосредственным подсчетом с помощью тренировочного множества.

Классификация спама 2.1

Возвращаясь к примеру писем, $P(F_0)$ это отношение количества спама $x \in X_t$ к общему количеству писем $x \in X_t$,

$$P(F_1) = 1 - P(F_0),$$

 $P(E_i=1)$ это отношение количества писем $x\in X_t$, в которых есть маркер-слово E_i к общему количеству писем $x \in X_t$

$$P(E_i = 0) = 1 - P(E_i = 1)$$

 $P(E_i = 1|F_0)$ это отношение количества спама, в котором есть маркер-слово E_i к общему количеству

$$P(E_i = 0|F_0) = 1 - P(E_i = 1|F_0)$$

$$P(E_i = 1|F_1), P(E_i = 0|F_1)$$
 - аналогично для не-спама,

тогда
$$\forall x \notin X_t$$
 обладающего набором маркеров $E_x = \{e_i\}$ $P(F_0|E_x) = \frac{P(e_1|F_0)*...*P(e_n|F_0)*P(F_j)}{P(e_1)*...*P(e_n)}$ - можем вычислить.

Чтобы определить, является ли письмо спамом, остается установить границу α , такую что

$$P(F_0|E_x) >= \alpha \Rightarrow x \in F_0$$
, иначе $x \in F_1$

3 Замечания

- На практике может произойти ситуация, в которой $P(E_i = k|F_j) = 0$, однако тестовый объект, в котором $E_i=k$ относится к F_j , но согласно формуле вероятность принадлежности x к F_j будет нулевой. Чтобы этого не происходило, нулевые $P(E_i = k|F_j)$ можно заменить на небольшое число $\omega > 0$
- ullet Для замены умножения на сложение можно использовать логарифм, т.е все P(A) заменить на ln(P(A))