Punjab College (Shalamar Campus)

Trigonometric Formulas

by Prof.Zeeshan Bashir

$$1^{\circ} = 60'$$
 (degree to minute)

$$1^{\circ} = 60'$$
 (degree to minute) $1^{\circ} = 3600''$ (degree to second)

$$1' = 60''$$
 (minute to second)

$$1' = 60''$$
 (minute to second) $1' = \left(\frac{1}{60}\right)^{\circ}$ (minute to degree)

$$1'' = \left(\frac{1}{3600}\right)^{\circ}$$
 (second to degree)

$$I = r\theta$$

$$1^{\circ} = \frac{\pi}{180} rad \approx 0.01745 rad$$
 (degree to radian)

1rad =
$$\frac{180^{\circ}}{\pi} \approx 57.296^{\circ}$$
 (radian to degree)

Trigonometric Ratios

$$\sin \theta = \frac{P}{H}, \cos \theta = \frac{B}{H}, \tan \theta = \frac{P}{B}$$

$$\csc \theta = \frac{H}{P}$$
 , $\sec \theta = \frac{H}{B}$, $\cot \theta = \frac{B}{P}$

Trigonometric Ratios and their values:

θ	0°	30°	45°	60°	90°	120°	180°	270°	360°
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	0	-1	0
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	-1	0	1
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞	$-\sqrt{3}$	0	8	0

Relation among Trigonometric Functions:

(a)
$$\sin^2\theta + \cos^2\theta = 1$$

(b)
$$sec^2\theta = 1 + tan^2\theta$$

(c)
$$\csc^2\theta = 1 + \cot^2\theta$$

(d)
$$\csc\theta = \frac{1}{\sin\theta}$$

(e)
$$\sec\theta = \frac{1}{\cos\theta}$$

(d)
$$\cot \theta = \frac{1}{\tan \theta}$$

The Fundamental Law of Trigonometry:

 $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$ is called fundamental law of trigonometry.

Addition formulas:

i.
$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

ii.
$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$

iii.
$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

iv.
$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

v.
$$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

Trigonometric Ratios of Allied Angles:

The angle associated with basic angles of measure θ to a right angle or its multiple are called allied angles.

Sine	Cosine	Tangent
$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$	$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$	$\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta$
$\sin\left(\frac{\pi}{2} + \theta\right) = \cos\theta$	$\cos\left(\frac{\pi}{2} + \theta\right) = -\sin\theta$	$\tan\left(\frac{\pi}{2} + \theta\right) = -\cot\theta$
$\sin(\pi-\theta) = \sin\theta$	$\cos(\pi-\theta) = -\cos\theta$	$\tan(\pi-\theta) = -\tan\theta$
$\sin(\pi+\theta) = -\sin\theta$	$\cos(\pi+\theta) = -\cos\theta$	$\tan(\pi+\theta) = \tan\theta$
$\sin\left(\frac{3\pi}{2} - \theta\right) = -\cos\theta$	$\cos\left(\frac{3\pi}{2} - \theta\right) = -\sin\theta$	$\tan\left(\frac{3\pi}{2} - \theta\right) = \cot\theta$
$\sin\left(\frac{3\pi}{2} + \theta\right) = -\cos\theta$	$\cos\left(\frac{3\pi}{2} + \theta\right) = \sin\theta$	$\tan\left(\frac{3\pi}{2} + \theta\right) = -\cot\theta$
$\sin(2\pi-\theta) = -\sin\theta$	$\cos(2\pi-\theta) = \cos\theta$	$\tan(2\pi-\theta) = -\tan\theta$
$\sin\left(2\pi+\theta\right) = \sin\theta$	$\cos(2\pi + \theta) = \cos\theta$	$\tan\left(2\pi+\theta\right) = \tan\theta$

Double Angle Identities	Half Angle Identities	Triple Angle Identities	
$\sin 2\alpha = 2\sin \alpha \cos \alpha$	$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}$	$\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha$	
$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$	$\cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{2}}$	$\cos 3\alpha = 4\cos^3 \alpha - 3\cos \alpha$	
$\tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha}$	$\tan\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}}$	$\tan 3\alpha = \frac{3\tan \alpha - \tan^3 \alpha}{1 - 3\tan^2 \alpha}$	

Sum/Difference to Product formulas	Products to Sum/Difference formulas
$\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$	$2\sin\alpha\cos\beta = \sin(\alpha+\beta) + \sin(\alpha-\beta)$
$\sin \alpha - \sin \beta = 2\cos \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right)$	$2\cos\alpha\sin\beta = \sin(\alpha+\beta) - \sin(\alpha-\beta)$
$\cos \alpha + \cos \beta = 2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$	$2\cos\alpha\cos\beta = \cos(\alpha+\beta) + \cos(\alpha-\beta)$
$\cos \alpha - \cos \beta = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$	$-2\sin\alpha\sin\beta = \cos(\alpha+\beta) - \cos(\alpha-\beta)$

The law of sines	The law of cosine	The law of tangents
		$\frac{\tan\frac{\alpha-\beta}{2}}{\tan\frac{\alpha+\beta}{2}} = \frac{a-b}{a+b}$
$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$	$\cos \alpha = \frac{b^2 + c^2 - a^2}{2bc}$ $\cos \beta = \frac{a^2 + c^2 - b^2}{2ac}$	$\frac{\tan\frac{\gamma-\alpha}{2}}{\tan\frac{\gamma+\alpha}{2}} = \frac{c-a}{c+a}$
	$\cos \gamma = \frac{2ac}{b^2 + a^2 - c^2}$ $\cos \gamma = \frac{b^2 + a^2 - c^2}{2ab}$	$\frac{\tan\frac{\beta-\gamma}{2}}{\tan\frac{\beta+\gamma}{2}} = \frac{b-c}{b+c}$

Area of Triangles:

Two sides and their	One side and two	Three sides are given
included angle are given	angles are given	
$\Delta = \frac{1}{2} \text{ ab } \sin \gamma$ $\Delta = \frac{1}{2} \text{ bc } \sin \alpha$ $\Delta = \frac{1}{2} \text{ ac } \sin \beta$	$\Delta = \frac{a^2 \sin \beta \sin \gamma}{2 \sin \alpha}$ $\Delta = \frac{b^2 \sin \alpha \sin \gamma}{2 \sin \beta}$ $\Delta = \frac{c^2 \sin \beta \sin \alpha}{2 \sin \gamma}$	$\Delta = \sqrt{s(s-a)(s-b)(s-c)}$ $s = \frac{a+b+c}{2}$

$$R=rac{abc}{4\Delta}$$
 , $R=rac{a}{2Sin\alpha}=rac{b}{2Sin\beta}=rac{c}{2Sin\gamma}$ $r=rac{\Delta}{s}$, $r_1=rac{\Delta}{s-a}$, $r_2=rac{\Delta}{s-b}$, $r_3=rac{\Delta}{s-c}$

Half Angles Formulas:

Sine	Cosine	Tangent
$\sin\frac{\alpha}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$	$\cos\frac{\alpha}{2} = \sqrt{\frac{s(s-a)}{bc}}$	$\tan \frac{\alpha}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$
$\sin\frac{\beta}{2} = \sqrt{\frac{(s-a)(s-c)}{ac}}$	$\cos\frac{\beta}{2} = \sqrt{\frac{s(s-b)}{ac}}$	$\tan\frac{\beta}{2} = \sqrt{\frac{(s-a)(s-c)}{s(s-b)}}$
$\sin\frac{\gamma}{2} = \sqrt{\frac{(s-a)(s-b)}{ab}}$	$\cos\frac{\gamma}{2} = \sqrt{\frac{s(s-c)}{ab}}$	$\tan\frac{\gamma}{2} = \sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$

Addition and Subtraction Formulas:

$$\Rightarrow$$
 $sin^{-1}A + sin^{-1}B = sin^{-1}\left(A\sqrt{1-B^2} + B\sqrt{1-A^2}\right)$

$$\Rightarrow$$
 $sin^{-1}A - sin^{-1}B = sin^{-1}\left(A\sqrt{1-B^2} - B\sqrt{1-A^2}\right)$

$$\sim cos^{-1}A + cos^{-1}B = cos^{-1}\left(AB - \left(\sqrt{1-A^2}\right)\left(\sqrt{1-B^2}\right)\right)$$

$$\sim cos^{-1}A - cos^{-1}B = cos^{-1}\left(AB + \sqrt{(1-A^2)(1-B^2)}\right)$$

$$\Rightarrow tan^{-1}A + tan^{-1}B = tan^{-1}\frac{A+B}{1-AB}$$

$$\Rightarrow tan^{-1}A - tan^{-1}B = tan^{-1}\frac{A - B}{1 + AB}$$

$$2tan^{-1}A = tan^{-1} \left(\frac{2A}{1 - A^2} \right)$$