M2 Bio-Informatic Internship

10/06/2025 Presentation

Iordan Dutel

Université Claude Bernard Lyon 1 Centre de Recherche en Cancérologie de Lyon (CRCL)

Team: Dr Pierre Saintigny Tutor : Dr Pierre Martinez

May 28, 2025

1 / 35

- Introduction
- 2 Results
 Phenotypic markers analysis
 Copy Number Alterations (CNA) analysi
- 3 Conclusions
- 4 Future Work

Introduction

B C TDLU Best prognosis Luminal A (~40%) HR+ (ER+ and/or PR+), HER2-TDLU Hyperplasia Normal-like (~2-8%) Duct HR+ (ER+ and/or PR+), HER2-Luminal B (~20%) HR+ (FR+ and/or PR+) HFR2+/-Carcinoma in situ HER2-enriched (~10-15%) HR (FR. PR.) HER2+ Stroma Triple Negative (~15-20%) Luminal cell HR (ER, PR.), HER2-Adipose Myopithelial cell Worst prognosis Basement membrane Invasive carcinoma

TNBC: Triple-Negative Breast Cancer TDLU: Terminal Duct Lobular Units

Source: Chang-Yun Li biomedcentral.com (CC BY 4.0)

MpBC (Metaplastic Breast Carcinomas) are rare forms of TNBC, lacking molecular diagnostic markers and specific therapies

Trans-differenciation

Introduction

00000000

MpBC can transdifferentiate into various aggressive tumor subtypes

Trans-differentiation

Introduction

- MpBC exhibits a remarkable plasticity
- Transdifferenciation into multiple aggressive tumor subtypes
- Mixed MpBC
 - Each sample contains at least 2 tumoral compartments

May 28, 2025

Research questions

Introduction

00000000

Unresolved questions

- Understanding the **evolutionary trajectories** in MpBC.
 - Internal determinants (genetic and epigenetic)
 - External determinants (tumor microenvironment)
- Identify molecular biomarkers to improve diagnostic precision.
- Oiscover genetic and epigenetic features that may serve as potential therapeutic targets.

Internship Aims

- Determine **expression markers** specific to different tumor sub-types.
- Analyze **genomic divergence** between tumoral compartments.

7 / 35

May 28, 2025

- Spatial transcriptomic counts (Visium, 10X Genomics)
- 16 mixed MpBC samples
- Different tumor transdifferentiation states captured

MpBC sample

Introduction 0000000

Expert annotations

Introduction

0000000

Mixed MpBC with several tumor cell types covered by **Visium spots**, grouped by k-means clustering and annotated by a pathologist.

- Introduction
- 2 Results

Phenotypic markers analysis Copy Number Alterations (CNA) analysis

- 3 Conclusions
- 4 Future Work

- 1 Introduction
- 2 Results

Phenotypic markers analysis

Copy Number Alterations (CNA) analysis

- 3 Conclusions
- 4 Future Work

Batch effect correction: Harmony

Improve integration with fewer isolated patients

Jordan Dutel M2 Bio-Informatic Internship May 28, 2025

UMAP Projection

Clear epithelial-mesenchymal axis (umap1), with few ambiguous spots

13 / 35

Expression markers

Analysis with **MAST** (Model-based Analysis of Single-cell Transcriptomics) **Some phenotypic markers identified are specific to clusters...**

Jordan Dutel M2 Bio-Informatic Internship May 28, 2025

14 / 35

Expression markers

Few phenotypic markers aren't specific enough (Visium limitations) Different spot purity depending on the subtypes

 Results
 Conclusions
 Future Work

 ○○○○○○○○○○○○
 ○○○○○○○○○

16 / 35

Markers specificities

Some cluster-specific markers are also patient-specific markers

Jordan Dutel M2 Bio-Informatic Internship May 28, 2025

Analysis conclusions

- Analysis reveals archetype-specific markers
 - **Epidermoid**
 - Epithelial
 - Osteosarcomatoid
- Some markers remain non-specific or not representative of the archetypes
 - Spindle-cell
 - Chondroid
 - Mesenchymal
- Spatial transcriptomics combined with pathologist annotations is promising, but still limited by the cellular purity of Visium spots.

- 1 Introduction
- 2 Results

Phenotypic markers analysis

Copy Number Alterations (CNA) analysis

- 3 Conclusions
- 4 Future Work

CNA in cancer

- Frequent in cancer: CNA are a hallmark of cancer cells.
- Types of alterations:
 - Can be **focal** (targeting specific genes or regions)
 - Or broad, affecting entire cytobands or chromosome arms
- Functional impact:
 - CNA can lead to oncogene amplification or tumor suppressor loss
- Clonal evolution insight:
 - CNA profiles help reconstruct evolutionary trajectories
 - Reveal selection of clones and subclones in tumor

Raw InferCNVPlus results

Raw CNA scores in tumoral (obs) or non tumoral (ref) spots for each gene expressed

Jordan Dutel M2 Bio-Informatic Internship May 28, 2025

20 / 35

Heatmap

CNA scores in each tumoral compartments for each cytoband

Jordan Dutel M2 Bio-Informatic Internship May 28, 2025

21 / 35

RNA sequencing depth per spot

Normalization to correct for differences in RNA sequencing depth across spots

Genomic CNA profil

Some genomic regions are highy altered even after the normalisation

Jordan Dutel M2 Bio-Informatic Internship May 28, 2025 Results 000000000000000000

VolcanoPlot

Some chromosomic arms significatively altered for few patients

Jordan Dutel M2 Bio-Informatic Internship May 28, 2025

25 / 35

Correlation Plot

Significant cytobands deviate from other cytoband distributions

Analysis Conclusions

- Limited divergence in CNA profiles between paired tumor compartments
 - Suggests a **shared clonal origin** for tumor subtypes
- Rare cases of chromosomal arm-level divergence between compartments
 - May reflect **subclonal evolution**, where one compartment originates from the other

- Introduction
- 2 Results
 Phenotypic markers analysis
 Copy Number Alterations (CNA) analysis
- 3 Conclusions
- 4 Future Work

Conclusion

Main results

- Identified **phenotypic markers** specific to subtypes, but there is still limits (Visium resolutions).
 - Emphasizes the need for single-cell resolution.
- Limited genomic divergence suggests a common clonal origin and transdifferentiation in MpBC.

- Introduction
- 2 Results
 Phenotypic markers analysis
 Copy Number Alterations (CNA) analysis
- 3 Conclusions
- 4 Future Work

1. Perform snRNA-seg on MpBC

- Characterize MpBC subtypes using more specific molecular markers.
- Build a **MpBC-specific transcriptomic atlas** for each tumor subtype.

2. Visium Spot Deconvolution

- Apply **spot deconvolution algorithms** (e.g., RCTD) to estimate cell type composition per spot.
- Improve the assignment of transcriptomic profiles to specific tumor subtypes.

Future Work

3. Microdissection of Tumoral Compartments

- Perform exome sequencing to explore intrinsic molecular determinants.
- Detect point mutations, driver alterations, and validate CNA findings.
- Conduct epigenetic profiling, including methylome analysis.

4. Long-term Objectives: Clinical Applications

- Discover subtype-specific molecular markers.
- Identify targetable pathways relevant to MpBC.

Thank you for listening!

Tutor: Dr Pierre Martinez

jordan.dutel@lyon.unicancer.fr

FFPE-Visium workflow

Source: 10x Genomics

Probe hybridization and ligation to capture RNA in each spots

Jordan Dutel M2 Bio-Informatic Internship May 28, 2025 33 / 35

RCTD deconvolution

Source: Ines Kardous M2 Internship 2024

34 / 35

Xenium

Source: 10x Genomics