

MOVING BEYOND SIMPLE REGRESSION

- dealing with multiple predictors
- coding continuous predictors
- coding categorical predictors
 - one factor ANOVA using regression
- continuous-by-categorical interactions

MULTIPLE REGRESSION

General model for single-level data with *m* predictors:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_m X_{mi} + e_i$$

individual Xs can be any combination of continuous and categorical predictors (and their interactions)

Each β_j is the partial effect of X_j holding all other X_j constant

(NB: single-level data is rare in psychology)

EXAMPLE

Are lecture attendance and engagement with online materials associated with higher grades in statistics?

Does this relationship hold after controlling for overall GPA?

DATA IMPORT AND VISUALIZATION

grades.csv

```
# A tibble: 100 \times 4
           GPA lecture nclicks
   grade
   <dbl> <dbl>
                          <int>
                  <int>
   2.40 1.13
                              88
                      6
    3.67 0.971
                              96
    2.85 3.34
                            123
   1.36 2.76
                              99
    2.31 1.02
    2.58 0.841
                              99
    2.69 4
                              86
   3.05 2.29
                            118
   3.21 3.39
                              98
   2.24 3.27
                             115
# … with 90 more rows
```

```
library("corrr")
grades %>%
  correlate() %>%
  shave() %>%
  fashion()
```

```
Correlation method: 'pearson'
Missing treated using: 'pairwise.complete.obs'

rowname grade GPA lecture nclicks

1 grade

2 GPA .25

3 lecture .24 .44

4 nclicks .16 .30 .36
```

DATA IMPORT AND VISUALIZATION

grades %>%
 pairs()

ESTIMATION AND INTERPRETATION

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + ... + \beta_m X_{mi} + e_i$$

 $\text{Im}(Y \sim X1 + X2 + ... + Xm, data)$

```
my_model <- lm(grade ~ lecture + nclicks, grades)
summary(my_model)</pre>
```

```
Call:
lm(formula = grade ~ lecture + nclicks, data = grades)
Residuals:
    Min
           10 Median 30
                                      Max
-2.21653 -0.40603 0.02267 0.60720 1.38558
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                     0.571124 2.560 0.0120 *
(Intercept) 1.462037
           0.091501 0.045766 1.999 0.0484 *
lecture
nclicks
           0.005052
                     0.006051 0.835 0.4058
codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 ',' 0.1 ' ' 1
Residual standard error: 0.8692 on 97 degrees of freedom
Multiple R-squared: 0.06543, Adjusted R-squared: 0.04616
F-statistic: 3.395 on 2 and 97 DF, p-value: 0.03756
```

VISUALIZING PARTIAL EFFECTS

See ?predict.lm(),?tidyr::crossing()

STANDARDIZED COEFFICIENTS

Which predictor matters more?

```
grades2 <- grades %>%
  mutate(lecture c = (lecture - mean(lecture)) / sd(lecture),
         nclicks c = (nclicks - mean(nclicks)) / sd(nclicks))
summary(lm(grade ~ lecture c + nclicks c, grades2))
Call:
lm(formula = grade \sim lecture c + nclicks c, data = grades2)
Residuals:
              10 Median
    Min
                                 30
                                         Max
-2.21653 -0.40603 0.02267 0.60720 1.38558
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.59839 0.08692 29.895 <2e-16 ***
lecture_c 0.18734 0.09370 1.999 0.0484 *
nclicks_c 0.07823 0.09370 0.835 0.4058
codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.8692 on 97 degrees of freedom
Multiple R-squared: 0.06543, Adjusted R-squared: 0.04616
F-statistic: 3.395 on 2 and 97 DF, p-value: 0.03756
```

See ?base::scale()

MODEL COMPARISON

Is engagement (as measured by lecture attendance and downloads) positively associated with final course grade **above and beyond** student ability (as measured by GPA)?

STRATEGY

Create a "base" model with all control vars and compare to a "bigger" model with all control and focal vars

$$F(2, 96) = 1.31, p = .275$$

If $p < \alpha$, bigger model is better.

DUMMY CODING BINARY VARS

Arbitrarily assign one of the two levels to 0; assign the other to 1.

NB: sign of the variable depends on the coding!

See ?dplyr::if_else()

FACTORS WITH k > 2

Arbitrarily choose one level as "baseline" level.

•
$$k = 3$$

•
$$k = 4$$

	A2v1	A3v1		A2v:
A_1	0	0	A_1	0
A_2	1	0	A_2	1
A_3	0	1	A_3	0
			A_4	0

	A2v1	A3v1	A4v1
A_1	0	0	0
A_2	1	0	0
A_3	0	1	0
A_4	0	0	1

ONE FACTOR ANOVA USING REGRESSION

$$Y_{ij} = \mu + A_i + S(A)_{ij}$$
$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + e_i$$