

Competitive Programming

From Problem 2 Solution in O(1)

Combinatorial Game Theory Sprague – Grundy - Coin Turning Games

Mostafa Saad Ibrahim
PhD Student @ Simon Fraser University

Recall: Turning Turtles Game

- Given a horizontal line of N coins: Head/Tail
 - Move: Pick any head, and flip it to tail
 - Optionally, flip any coin on left of your chosen coin
- Solution
 - For every head at position k => pile of size k
 - Depdendent sub-games:
 - When the optional flipped coin goes from T to H, kind of dependency (e.h. TTHTTHH => HTHTTHT)
 - We proved they are actually indpdendent
 - So HTTHH = HTTTT + TTTHT + TTTTH
 - That is, every H is independent sub-game

Coin Turning Game

- Coin Turning Games
 - Turning Turtles Game is one example for it
 - There are many variations, where Nim-analysis is hard
 - So grundy analysis makes things easier
 - But the nim analysis for the easy version is critical
 - Extending to 2D variants create a new theory for nim-multiplication

- Variation of Turning Turtles Game
 - Now optionally turn up to 2 coins on your left
 - Assume $N = 10^9$
 - It is complex game now to prove nim equivalence
 - Better way, try to compute grundy value for the game
 - One might think, for every game, convert to mask
 - E.g.: HTTHH = 10011
 - Correct, but fits only up to small N (e.g. N = 20)
 - Recall, HTTHH is 3 independent subgames, each has 1 H
 - So compute grundy for a single position of head
 - Then game answer is xor of the H positions
 - Still N is so big? Try small N and find a pattern

- grundy(int pos)
 - Compute answer of single H (not whole input board)
 - We should try optionally flipping: 0, 1, 2 on our left
 - The tricky case, when flipping 2 positions
 - e.g. grundy(9) needs to flip 3 and 7
 - So a move created 2 independent sub-games
 - grundy(9) => grundy(3) $^$ grundy(7) => insert for mex

```
// let a grid with no heads (TTTTT) has grundy = \theta
// Compute grundy when 1 head at pos
int calcGrundyMockTurtle(int pos) {
 if (pos == 0)
   return 1; // notice grundy(\theta) = 1
 int &ret = grundy[pos];
 if (ret != -1)
   return ret;
 unordered set<int> sub nimbers;
 // 1: flip 1 coin. Now state us TTTTT => grundy = 0
 sub nimbers.insert(θ);
 // 2: flip 2 coins: me and another.
   // e.g. TTTTTTH => TTTHTTT
 for (int i = \theta; i < pos; ++i)
   sub nimbers.insert(calcGrundyMockTurtle(i));
 // 3: flip 3 coins: me and other 2 coins (tricky)
    // e.g. TTTTTTH => THTHTTT
     // THTHTTT has 2 heads, 2 independent game from 1 a single move
 for (int i = \theta; i < pos; ++i) /// I turn another 2
   for (int j = i + 1; j < pos; ++j)
     sub nimbers.insert(calcGrundyMockTurtle(i) ^ calcGrundyMockTurtle(j));
 return ret = calcMex(sub nimbers);
```

Running the code, we get values:

- Seems g(x) = either 2x or 2x+1
 - These are called **odious** numbers
 - It depends on number of 1's in its binary values
 - Select the value that has odd 1s
 - E.g. g(4) = 8 (8 has 3 ones, 9 has 2 1s)
 - E.g. g(12) = 25 (25 has 3 ones, 24 has 2 1s)

```
void calcGrundyMockTurtle_mina() {
   clr(grundy, -1);

for (int i = 0; i < 30; ++i) {
    int ans = calcGrundyMockTurtle(i);
    cout<<ans<<" ";
    int f = 1 - __builtin_popcount(i)%2;
    assert(ans == 2*i + f); // ith odious number
}
// g(x): 1 2 4 7 8 11 13 14 16 19 21 = odious sequence
   cout<<"\n";
}</pre>
```

Your turn

- Prove that if # of heads is odd => First always win
- Let N be evil if # of binary 1s is even (e.g. 9, 24)
- Investigate evil ^ evil, odious ^ odious, evil ^ odious
 - Is result evil or odious for above 3 cases?
 - Result of xoring odd # of odious numbers?
 - Recall: odious sequence elements > 0
- Prove that if # of heads is even: result is the same as nim using the positions of heads
 - E.g. HHHH => nim piles = $\{0, 1, 2, 3\}$
- Solution: <u>See</u>

Your turn: Ruler Turtles

- Variation of Turning Turtles Game
 - Now optionally turn up any number of coins but they must be consecutive to the original flipped H to T
 - TTTTH = {TTTTTT, TTTHT, TTHHT, THHHT, HHHHT}
 - Your turn:
 - Code it, but use 1-based indexing (e.g. HTT = g(1))
 - Identify the pattern function
 - Solution in next slides
 - Output sequence: 1 2 1 4 1 2 1 8 1 2 1 4 1 2 1 16 1 2 1

Your turn: Ruler Turtles

```
// let a grid with no heads (TTTTT) has grundy = \theta
// Compute grundy when 1 head at pos
// Assuming indexing from 1 (e.g. q(\theta) = \theta)
// This is different handling when we assumed θ-indexing
int calcGrundyRulerTurtle(int pos) {
 if (pos == 0)
   return \theta; // notice grundy(\theta) = 1
 int &ret = grundy[pos];
 if (ret != -1)
  return ret;
 unordered set<int> sub nimbers;
 // 1: flip 1 coin. Now state us TTTTT => grundy = 0
 sub nimbers.insert(θ);
 // 2: flip any left, but consecutive
   // e.g. TTTTH = {TTTTT, TTTHT, TTHHT, THHHT, HHHHT}
 int xorVal = \theta;
 for (int i = pos-1; i >= 0; --i)
   // Each move create pos-i independent sub-games
   xorVal ^= calcGrundyRulerTurtle(i);
    sub nimbers.insert(xorVal);
 return ret = calcMex(sub nimbers);
```

Your turn: Ruler Turtles

```
void calcGrundyRulerTurtle_main() {
   clr(grundy, -1);

for (int i = 1; i < 30; ++i) { // indexing from 1
   int ans = calcGrundyRulerTurtle(i);
   // g(x) is the largest power of 2 dividing x
   assert(ans == (i & -i) );
}

// g(x): 1 2 1 4 1 2 1 8 1 2 1 4 1 2 1 16 1 2 1
   cout<<"\n";
}</pre>
```

Your turn: Grunt Turtles

- Variation of Turning Turtles Game
 - In addition to your selected position H to T
 - Must select other 3 positions that makes the 4 positions are symmetric
 - One of these 3 positions is 0 position
 - E.g. one you selected n = 7
 - One group is: $x--xx--x => \{0, 3, 4, 7\}$
 - Notice symmetry of first 2 values to 2nd 2 values
 - Compare grundies with
 - 0 0 0 1 0 2 1 0 2 1 0 2 1 3 2 1 3 2 4 3 0
 - These are same grundies of Grundy's game
 - Don't compute pattern :) See link above

Your turn: Grunt Turtles

```
int calcGrundyGruntTurtle(int pos) {
  if (pos < 3)
    return θ:
  int &ret = grundy[pos];
  if (ret != -1)
    return ret:
  unordered set<int> sub nimbers:
  // E.g. \theta, x, n - x, n for some 1 \le x < n/2
  // handle even/odd cases carefully
  for (int i = 1; i \le pos / 2; ++i)
    if (i != pos - i)
      sub_nimbers.insert(calcGrundyGruntTurtle(i) ^ calcGrundyGruntTurtle(pos - i));
  return ret = calcMex(sub nimbers);
```

Acrostic Twins

- 2D generalization of Turning Turtles Game
 - The grid of coins is 2D of head and tails
 - Move: Flip 2 coins
 - Pick a cell of H to flip to T
 - Flip another one (either above or left it)
 - Code is straightforward
 - $\mathbf{F}(\mathbf{x}, \mathbf{y})$
 - Try every row above it
 - Try every column before it
 - Each call creates one game with 1 flipped T to H

Acrostic Twins

```
int grundy2[120][120];
int calcGrundyAcrosticTwins(int x, int y) {
  if (x == 0 & y == 0)
    return θ;
  int &ret = grundy2[x][y];
  if (ret != -1)
    return ret;
  unordered set<int> sub nimbers;
  for (int i = 0; i < y; i++)
    sub nimbers.insert(calcGrundyAcrosticTwins(x, i));
  for (int i = 0; i < x; ++i)
    sub nimbers.insert(calcGrundyAcrosticTwins(i, y));
  return ret = calcMex(sub nimbers);
```

Acrostic Twins (Nim addition)

	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	0	3	2	5	4	7	6	9	8
2	2	3	0	1	6	7	4	5	10	11
3	3	2	1	0	7	6	5	4	11	10
4	4	5	6	7	0	1	2	3	12	13
5	5	4	7	6	1	0	3	2	13	12
6	6	7	4	5	2	3	0	1	14	15
7	7	6	5	4	3	2	1	0	15	14
8	8	9	10	11	12	13	14	15	0	1
9	9	8	11	10	13	12	15	14	1	0

Acrostic Twins

Analysis

- Any connection between 1D case and 2D case?
- 2D has the same 1D operations, once rows and other for columns
- Intuition: may be the 2D answer is based on 1D answer
- Recall 1D: pile(kth head) = k
- Observation: $F(x, y) = x^y$ (Nim addition (xor))
- Game logic
 - We have 2 piles (N x M). Each time, we either reduce in 1st one (row) or reduce in 2nd one (column)
 - actually is is just normal nim game :)

Turning Corners

- 2D generalization of Turning Turtles Game
 - The grid of coins is 2D of head and tails
 - Move: Flip all coins in any rectangular block of coins
 - Pick a cell (x, y) of H to flip to T
 - Flip other 3 such that the 4 positions = rectangle
 - E.g. (a, b), (a, y), (x, b) and (x, y),
 - where $0 \le a < x$ and $0 \le b < y$
 - Now, an H is flipped to T, and 3 T to H
 - So we have 3 recursive calls from a single move
 - xor the 3 calls first, before mex computation

Turning Corners

```
// aka nim multiplication
int calcGrundyTurningCorners(int x, int y) { // 0(N^4)
  if (x == 0 & v == 0)
    return θ:
  int &ret = grundy2[x][y];
  if (ret != -1)
    return ret:
  unordered set<int> sub nimbers;
  for (int a = \theta; a < x; ++a)
    for (int b = \theta; b < y; ++b)
      sub nimbers.insert(calcGrundyTurningCorners(a, b) ^
                          calcGrundyTurningCorners(a, y) ^
                          calcGrundyTurningCorners(x, b));
  return ret = calcMex(sub nimbers);
```

Turning Corners (Nim multiplication)

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2	0	2	3	1	8	10	11	9	12	14	15	13	4	6	7	5
3	0	3	1	2	12	15	13	14	4	7	5	6	8	11	9	10
4	0	4	8	12	6	2	14	10	11	15	3	7	13	9	5	1
5	0	5	10	15	2	7	8	13	3	6	9	12	1	4	11	14
6	0	6	11	13	14	8	5	3	7	1	12	10	9	15	2	4
7	0	7	9	14	10	13	3	4	15	8	6	1	5	2	12	11
8	0	8	12	4	11	3	7	15	13	5	1	9	6	14	10	2
9	0	9	14	7	15	6	1	8	5	12	11	2	10	3	4	13
10	0	10	15	5	3	9	12	6	1	11	14	4	2	8	13	7
11	0	11	13	6	7	12	10	1	9	2	4	15	14	5	3	8
12	0	12	4	8	13	1	9	5	6	10	2	14	11	7	15	3
13	0	13	6	11	9	4	15	2	14	3	8	5	7	10	1	12
14	0	14	7	9	5	11	2	12	10	4	13	3	15	1	8	6
15	0	15	5	10	1	14	4	11	2	13	7	8	3	12	6	9

Src: https://www.math.upenn.edu/~yuecheng/images/TomFergusonGametheory/GametheoryPartI.pdf

Nim multiplication

- Previous table has multiplication properties
 - 0 acts like a zero for multiplication
 - $\mathbf{x} \otimes 0 = 0 \otimes \mathbf{x} = 0$ for all \mathbf{x}
 - 1 acts like a unit for multiplication
 - $\mathbf{x} \otimes \mathbf{1} = \mathbf{1} \otimes \mathbf{x} = \mathbf{x} \text{ for all } \mathbf{x}$
 - **commutative** law obviously holds: $x \otimes y = y \otimes x$
 - **Associative** law holds $x \otimes (y \otimes z) = (x \otimes y) \otimes z$
 - Combined with nim addition, the distributive law holds
 - $X \otimes (y \oplus z) = (x \otimes y) \oplus (x \otimes z)$
 - multiplicative inverse for non zeros: $6 \otimes 9 = 1$
 - We may consider as a nim multiplication
 - It can be computed efficiently by Fermat 2-power.

Recall: Twins game

- It was 1D variant
 - We must flip 2 coins, the rightmost must be H
 - Assume we have 2 1D twins games
 - Lets call them G1, G2
 - Let G1[x] = H and G2[y] = H
 - Let a < x, b < y, the 2nd coin to be flipped
 - E.g. in G1, make move at x, a, in G2, make move at y, b
- Let move in $G = G1 \times G2$
 - G1 moves x G2 moves = all possible pairs of moves
 - E.g. (a, b), (a, y), (x, b) and (x, y) = 2x2 moves
 - Observe: Turning Corners = Twins x Twins

Games Multiplication

- Let
 - Given two 1D coin turning games, G1 and G
 - Define the tartan game $G = G1 \times G2$, a 2D game
 - Let x = [x1, x2, ... xm] is a legal move in G1
 - Let y = [y1, y2, ... xn] is a legal move in G2
 - Let z = x * y is a legal move in G
 - positions (xi, yj) for all $1 \le i \le m$ and $1 \le j \le n$
 - Note: the southeast coin goes from heads to tails
- Note, such games are not intuitive
 - And nim multiplication too (for me)

Tartan Game Theorem

- If we know Turning Corners = Twins x Twins
 - Can we compute the 1D answer only of each game
 - And find the overall answer? Yes, Nim Multiplication
- The Tartan Theorem (proof)
 - Let x be move in G1 and y in G2
 - And their grundies, g1(x) and g2(y)
 - Let $G = G1 \times G2$
 - Then grundy $(x, y) = g1(x) \otimes g2(y)$
 - Such theorem can save computations or easier coding
 - Also finding the winning move easier

- 2D generalization of Turning Turtles Game
 - The grid of coins is 2D of head and tails
 - Move: Flip all coins in any rectangular block of coins
 - Pick a cell (x, y) of H to flip to T
 - Find any rectangle with (x, y) in its **southeast**
 - Your turn: Code it (use 1-based)

```
// Probably using table method will reduce order to O(N^4)
int calcGrundyRugsSlow(int x, int y) { // 1-based
 if (x == \theta \&\& y == \theta)
    return θ:
 int &ret = grundy2[x][y];
 if (ret != -1)
    return ret;
 unordered set<int> sub nimbers;
  for (int a = 1; a <= x; ++a)
    for (int b = 1; b <= y; ++b) {
      int xorVal = θ; // compute rect xor value
      for (int i = a; i <= x; ++i)
        for (int j = b; j <= y; ++j)
          if (i != x || j != y)
            xorVal ^= calcGrundyRugsSlow(i, j);
      sub nimbers.insert(xorVal);
  return ret = calcMex(sub nimbers);
```

- Observation: Rugs = Ruler x Ruler
 - Recall: Ruler is any consecutive row ending with H
 - Grundy =1 2 1 4 1 2 1 8 1 2 1 4 1 2 1 16 1 2 1
 - So each G1xG2 covers any rectangle based at H(x, y)
 - So compute 1D ruler
 - Compute Nim Multiplication
 - Rugs(x, y) = NimMultiplication(ruler(x), ruler(y))

```
int solveTitanTheorem rugs(int x, int y) {
 int grundy1 = calcGrundyRulerTurtle(x);
 int grundy2 = calcGrundyRulerTurtle(y);
  int grundy = calcGrundyTurningCorners(grundy1, grundy2);
 return grundy;
void calcGrundyRugsTheorem main() {
  calcGrundyTurningCorners main(); // Compute nim multiplication
  calcGrundyRulerTurtle main(); // Compute 1D ruler
 int nimXor = \theta, heads:
  cin>>heads:
 for (int d = \theta; d < heads; ++d) {
    int x, y;
    cin>>x>>y; // 1-based
    nimXor ^= solveTitanTheorem rugs(x, y);
   // Recall, we xor among different grundies
   // We are doing Nim Additions over Nim Multiplications
 if(nimXor != θ) cout<<"First win";</pre>
            cout<< "Second win";
 else
```

Rugs Game (Ruler x Ruler)

	1	2	1	4	1	2	1	8
1	1	2	1	4	1	2	1	8
2	2	3	2	8	2	3	2	12
1	1	2	1	4	1	2	1	8
4	4	8	4	6	$_4$	8	4	11
1	1	2	1	4	1	2	1	8
2	2	3	2	8	2	3	2	12
1	1	2	1	4	1	2	1	8
8	8	12	8	11	8	12	8	13

- Recall Mock Turtles
 - 1D game, turn H to T
 - Optionally turn up to 2 coins on your left
 - So overall turn 1, 2 or 3 coins
 - Recall its 1D sequence: 1, 2, 4, 7, 8, 11
- Defne Tartan Game = MockTur x MockTur
 - We can use tartan theorem to compute table trivially

		1	2	4	7	8	11
THTTT	1	1	2	4	7	8	11
TTTTT	2	2	3	8	9	12	13
TTTTT	4	4	8	6	10	11	7
TTTTT	7	7	9	10	4	15	1
ттттн	8	8	12	11	15	13	9

- Assume given grid on left, and its tartan grundies on left
- Are we on winning position? Yes. 2 ^ 9 = 11 (!= 0 ⇒ winning)
- Find 1 winning move?
- We need a move from 9 to make overall 2² = 0
 - E.g. move to 9 that creates 3 Heads and their nim-sum = 2
- How many available moves from H at (4, 5)
 - Using tartan style. 1D column has: 4C0 + 4C1 + 4C2 = 11
 - Same for 1D row: 5C0+5C1+5C2 = 16. Total moves: 11 x 16 = 176
 - Too much! Can tartan theorem help? Yes

- Here is an algorithm (based on proof)
 - \blacksquare suppose you are at position (x, y)
 - with SG-value $g1(x) \otimes g2(y) = v$
 - suppose you desire to replace v by grundy u < v
 - Let v1 = g1(x) and v2 = g2(y).
 - Find a move in **Turning Corners** that takes (v1, v2) into an SG-value u.
 - Denote the northwest corner of the move by(u1, u2)
 - Satisfy $(u1 \otimes u2) \oplus (u1 \otimes v2) \oplus (v1 \otimes u2) = u$.
 - This step can be $O(n^2)$ (or better order)

- Here is an algorithm (cont)
 - Find a move M1 in G1 from x to grundy(M1) = u1
 - E.g. $O(n^2)$ in Mock Turtles (i.e. 5C0+5C1+5C2)
 - Find a move M2 in G2 from y to grundy(M2) = u2
 - Then the move M1 \times M2 in g1 \times g2 moves to an SG-value u as desired
 - Notice, M1xM2 will contains (x, y)
 - So 1 (x, y) flips from H to T
 - Other coins flip from current to anti

```
// Find a move from (v1, v2) that has grundy target u > 0
 // return only its top-left corner
  Fixed in our method
   We may implement this method in more efficient ways for queries
  // (u1⊗u2)⊕(u1⊗v2)⊕(v1⊗u2)=u. // Add v1⊗v2 to both sides
  // (ulou2)e(ulov2)e(vlou2)e(vlov2)=ue(vlov2)
 // (ulev1)⊗(u2ev2)=ue(v1ev2) => Decoupled to 2 ld processing
 // See: http://www.stat.berkeley.edu/~mlugo/stat155-f11/tartan2.pdf
pair<int, int> findTurningCornersMove(int v1, int v2, int target u) {
 for (int ul = \theta; ul < vl; ++ul)
    for (int u2 = \theta; u2 < v2; ++u2) {
      int grundy = calcGrundyTurningCorners(u1, u2) ^
                    calcGrundyTurningCorners(ul, v2) ^
                    calcGrundyTurningCorners(v1, u2);
      if (grundy == target u)
       return {ul, u2};
```

```
// Find a move from pos that has grundy target u
// From problem to another, write yours
vector<int> findMockTurtleMove(int pos, int target u) {
  vector<int> ret = {pos};
  for (int i = \theta; i < pos; ++i) {
    int grundy = calcGrundyMockTurtle(i);
    if (grundy == target u)
      ret.push back(i);
      return ret;
  for (int i = \theta; i < pos; ++i)
    for (int j = i + 1; j < pos; ++j) {
      int grundy = calcGrundyMockTurtle(i) ^
                    calcGrundyMockTurtle(j);
      if (grundy == target u)
        ret.push back(i);
        ret.push back(j);
        return ret;
  return ret;
```

```
vector< pair<int, int> > findMockTurtleSquaredMove(int x, int y, int u) {
  int v1 = calcGrundyMockTurtle(x);
  int v2 = calcGrundyMockTurtle(y);
  pair<int, int> p = findTurningCornersMove(v1, v2, u);
 if(p.first < \theta | | p.second < \theta)
    return {};
  vector<int> ml = findMockTurtleMove(x, p.first);
  vector<int> m2 = findMockTurtleMove(y, p.second);
  vector< pair<int, int> > moves;
  int computed u = \theta;
  for(auto xx : ml) for(auto yy : m2) // move multiplication
    moves.push back({xx, yy});
    if(xx == x \&\& yy == y)
     continue:
    computed u ^= solveTitanTheoremMockTurtlesSquared(xx, yy);
 assert(u == computed u);
  return moves;
```

```
void calcGrundyMockTurtleSquaredTheorem main() {
// Compute nim multiplication
  calcGrundyTurningCorners main();
// Compute 1D Mock Turtle
  calcGrundyMockTurtle main();
// Now solve whole input given H's
  int nimXor = θ, heads;
  cin >> heads;
  vector< pair<int, int> > inputPos;
  for (int d = \theta; d < heads; ++d) {
    int x, y;
    cin >> x >> y; // \theta-based
    nimXor ^= solveTitanTheoremMockTurtlesSquared(x, y);
    inputPos.push back({x, y});
```

```
if (nimXor != θ)
  // Based on game, the closest H to (0, 0) won't have moves
  // Let's randomize as a general handling (hopefully faster)
  random shuffle(inputPos.begin(), inputPos.end());
  bool foundMove = false:
  for (int d = \theta; d < heads; ++d) {
    int x = inputPos[d].first, y = inputPos[d].second;
    int curg = solveTitanTheoremMockTurtlesSquared(x, y);
    vector< pair<int, int> > moves =
        findMockTurtleSquaredMove(x, y, nimXor ^ curg);
    if(moves.size() > 0) {
      foundMove = true:
      cout << "\n\n\nFirst win\n";
      for(auto p : moves)
        cout<<"Flip coin at "<<p.first<<", "<<p.second<<"\n";
      break:
  assert (foundMove);
else
  cout << "Second win";
```

Your turn

• Let $G = G1 \times G2$

- G1 to flip exactly 2 coins (most right is H), and **distance** between the 2 coins <= 4
 - E.g. Flip H at 10 and any of {9, 8, 7, 6, 5}
 - Do you notice correspondence to a nim variant?
 - its grundy in 1-based: g1(x) = (x-1) % 5
- G2: Ruler
- Initially we have heads at (100, 100) and at (4, 1).
- coin (100, 100) has value $4 \otimes 4 = 6$
- coin at (4, 1) has value $(3 \otimes 1) = 3$
- Validate this winning move:
 - $G1 = \{98, 100\} \times G2 = \{97, 98, 99, 100\}$

Games indexing

- Through the different examples we used different indexing (0 vs 1 based indexing)
 - E.g. Sometimes 1-based shows the pattern easily
 - May be coding is easier
 - If you are asked a new problem, try both and see
- When constructing Tartan Game, recall used indexing for each game
 - E.g. Let $G = (Mock Turtles) \times Ruler$
 - Mock Turtles is 0-based
 - Ruler is 1-based

Solving impartial game

- If not impartial game (use search technique)
- Otherwise
 - Is it reasonable search space? E.g. do it with search
 - Is it a Nim game? Nim variant? Reduction?
 - Identify useless information (cancellation strategy, xor nature in cancelling equal piles, ..)
 - Think in concrete examples and come up with strategy
 - May use win/lose positions properties to prove solution
 - You may identify a pattern
 - If sub-games looks dependent, decouple them
 - Let grundy computation be your friend

Other Readings

- Winning Ways for Your Mathematical Plays
 - Major book in the field to read (I think vol2)
- Other Books: <u>See1</u>, <u>See2</u>, <u>See3</u>
 - See more coin turn games in see1
- Articles: <u>See1</u>, <u>See2</u>, <u>See3</u>, <u>See4</u>, <u>See5</u>
- Minimax / alpha beta: See1, See2

تم بحمد الله

علمكم الله ما ينفعكم

ونفعكم بما تعلمتم

وزادكم علمأ