BITWISE OPERATIONS (PART)

```
1) Shift- and - Add Multiplication
                 1. Decompose the multiplies into a sum of powers of 2
2. Multiply by powers of 2 by shifting
3. Sum the results
                 \mathcal{E}_{X} = 3 \cdot 21 = 3 \cdot 10101,
= 3 \cdot (2^{4} + 2^{2} + 2^{6})
                                     = 3.2" + 3.2" + 3.2"
= (3«4) + (3«2) + (3«0)
                                      = 110000 + 1100z + 112
                                      = 1111112
                                      = 63
 (2) Zeroing a Register
                  Fact: a ⊕ a = 0
                                                                € Why? Smaller encoding B8 00 00 00 00
                    xor eax, eax sets 69x to 0
                                                                                              NOT EAX, eay 33 CO
3 Swap Without a Temporary
                                                                        (a 0 a = 0
                   Pact: a & b & a = b
                                                                        a @ a @ b = b
                    Can swap EAX & EBX W
                                                                        a $ 50 a = b since & is compatative,
                     a sequence of 3 xoR's:
                              ; assume n, in EAX, No in EBX
                              XOR eax, ebx; EAX = n_1 \oplus n_2 EBX = n_2

XOR ebx, eax; EBX = n_2 \oplus (n_1 \oplus n_2) = n_1

XOR eax, ebx; EAX = (n_1 \oplus n_2) \oplus n_1 = n_2
                     In real life:
                              xchq eax, ebx
```

(4) Absolute Value w/o a Conditional (32-bit integer)

VEF. abs
$$(x) = \begin{cases} -x & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$$

F. Reall Two's Complement:
$$-X = 7x + 1 = 7x - (-1)$$

This Bils is Add 1

· Can flip bits using XOR
$$\chi \oplus -1 = 7\chi$$
 (1)
· rutain $\chi \oplus 0 = \chi$
· $\chi \gg^5 31 = \begin{cases} -1 & \text{if } \chi < 0 \\ \text{of } \chi \geqslant 0 \end{cases}$

$$So \times \oplus (x > 31) = \begin{cases} 7x & \text{if } x < 0 \\ x & \text{if } x > 0 \end{cases}$$

· Thus,
$$\chi \oplus (x \gg^5 31) - (x \gg^5 31) = \begin{cases} \neg x - (-1) & \text{if } x < 0 \\ x & \text{if } x > 0 \end{cases}$$

THM.
$$abs(x) = \chi \oplus (x > 31) - (x > 31)$$

Def.
$$min(a,b) = \begin{cases} a & \text{if } a < b \\ b & \text{if } a > b \end{cases}$$

The min
$$(a,b) = b \oplus (a \oplus b) \& ((a-b) \Rightarrow^3 31)$$

Pf.
$$a-b < 0$$
 when $a < b$
So $(a-b) \Rightarrow 31 = \begin{cases} -1 & \text{if } a < b \end{cases}$

$$(a \oplus b) \ b \ ((a-b) \Rightarrow^5 31) = \begin{cases} a \oplus b & \text{if } a < b \\ 0 & \text{if } a > b \end{cases}$$

So formula @ gives
$$\begin{cases} b \oplus a \oplus b & \text{if } a < b = \\ b \oplus 0 & \text{if } a \ge b \end{cases}$$
 $\begin{cases} a & \text{if } a < b \\ b & \text{if } a \ge b \end{cases}$

ACTIVITY 15

Algebraic Properties	0 (00000000	120	01111000	-127	10000001	
of Bitwise Operations	0 (00000000	-120	10001000	-126	10000010	
of bitwise Operations					-125	10000011	
Commutativity	1 (00000001	121	01111001	-124	10000100	
• a b = b a		11111111	-121	10000111	-123	10000101	
• $a \oplus b = b \oplus a$					-122	10000110	
• a & b = b & a	2 (00000010	122	01111010		10000111	
		11111110		10000110		10001000	
Associativity				10000110			
• (a b) c	3 (00000011	123	01111011	-16	11110000	
$=a \mid (b \mid c)$		11111101		10000101		11110001	
• (a ⊕ b) ⊕ c	-5.	11111101	-125	10000101		11110001	
$= a \oplus (b \oplus c)$	1 (00000100	124	01111100		11110010	
• (a & b) & c						11110011	
= a & (b & c)	-4 .	11111100	-124	10000100		11110100	11.1
Distributivity	r ,	00000101	125	04444404			70 add I: Flip nightmost 0-bit + all
• a & (b c)		00000101		01111101		11110110	Flip Rightmost
= (a & b) (a & c)	-5 .	11111011	-125	10000011			a-hit + all
• a & (b ⊕ c)			405	0444440		11111000	bits to its
= (a & b) ⊕ (a & c)		00000110		01111110		11111001	6775 10 113
• a (b & c)	-6	11111010	-126	10000010		11111010	night
= (a b) & (a c)						11111011	11000
		00000111		01111111		11111100	
Identities	-7 :	11111001	-127	10000001		11111101	
• a 0 = a						11111110	
• a ⊕ 0 = a		00001000				11111111	
• $a \& -1 = a$	-8 :	11111000				00000000	
Inverse					1	00000001	
a ⊕ a = 0		00001001			2	00000010	
	-9 :	11110111			3	00000011	
Annihilator					4	00000100	
• a &c $0 = 0$	10 (00001010			5	00000101	
Cancellation	-10	11110110					2. subtract 1:
$ \neg (\neg a) = a $					7	00000111	To subtract 1: This nightnos
· (· · · / · · · ·	11 (00001011			8	00001000	tip ing
Complement	-11 :	11110101	WIESE W 0720	a) e) •//	. 9	00001001	1-bit + all
• a ¬a = −1	722		Turks Con	nglement:	10	00001010	bits to its
• a $& \neg a = 0$	12	00001100	1.00 5 00	1	11	00001011	115
Idempotency	-12	11110 100	Flip	the bits to	12	00001100	right
• a & a = a			10	16 11	13	00001101	•
• a a = a	13 (00001101	the	left of the	14	00001110	
	-13	11110011		nightmost	15	00001111	
Absorption				the bits to left of the rightmost	16	00010000	
• $a \mid (a \& b) = a$	14 (00001110		1-617			
• a & (a b) = a		11110010			120	01111000	
DeMorgan's Laws						01111001	
• ¬(a & b) = ¬a ¬b	15 (00001111				01111010	
$ \neg (a \mid b) = \neg a & \neg b $		11110001				01111011	
						01111100	
Other Properties of 0, -1	16 (00010000				01111101	
• a -1 = -1		11110000				01111110	
• ¬0 = -1	10.					01111111	
• ¬-1 = 0					d- 6 /		

Manipulating Rightmost Bits	
· Clean the rightmost 1-bit	x b (x-1) F 15 0 if x=0 or x is a power of 2
. Set the nightmost 0-bit	×
· Isolate the rightmost 1-bit	x & (-x)