10

15

20

WHAT IS CLAIMED IS:

1. A compound of the structural formula I:

$$R_{5}$$
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{6}

Formula I

or a pharmaceutically acceptable salt, enantiomer, diastereomer or mixture thereof: wherein,

R represents hydrogen, or C₁₋₆ alkyl;

R₁ represents hydrogen or C₁₋₆ alkyl, CF₃, C₁₋₆ alkoxy, COR^c, CO₂R₈, CONHCH₂CO₂R, N(R)₂, said alkyl and alkoxy optionally substituted with 1-3 groups selected from R^b;

X represents -(CHR7)p-;

Y is not present, $-CO(CH_2)_{n-}$, or -CH(OR)-;

Q represents N, CRy, or O, wherein R2 is absent when Q is O;

Ry represents H, or C₁₋₆ alkyl;

25 R_w represents H, C₁₋₆ alkyl, -C(O)C₁₋₆ alkyl, -C(O)OC₁₋₆ alkyl, -SO₂N(R)₂, -SO₂C₁₋₆ alkyl, -SO₂C₆₋₁₀ aryl, NO₂, CN or -C(O)N(R)₂;

30

R2 represents hydrogen, C₁₋₁₀ alkyl, C₁₋₆ alkylSR, -(CH₂)_nO(CH₂)_mOR, -(CH₂)_nC₁₋₆ alkoxy, -(CH₂)_nC₃₋₈ cycloalkyl, -(CH₂)_nC₃₋₁₀ heterocyclyl, - (CH₂)_nC₅₋₁₀ heteroaryl, -N(R)₂, -COOR, or -(CH₂)_nC₆₋₁₀ aryl, said alkyl, heterocyclyl, aryl or heteroaryl optionally substituted with 1-3 groups selected from Ra;

- R3 represents hydrogen, C₁₋₁₀ alkyl, -(CH₂)_nC₃₋₈ cycloalkyl, -(CH₂)_nC₃₋₁₀ heterocyclyl, -(CH₂)_nC₅₋₁₀ heteroaryl, -(CH₂)_nCOOR, -(CH₂)_nC₆₋₁₀ aryl, (CH₂)_nNHR₈, -(CH₂)_nN(R)₂, -(CH₂)_nNHCOOR, -(CH₂)_nN(R₈)CO₂R, (CH₂)_nN(R₈)COR, -(CH₂)_nNHCOR, -(CH₂)_nCONH(R₈), aryl, -(CH₂)_nC₁₋₆ alkoxy, CF₃, -(CH₂)_nSO₂R, -(CH₂)_nSO₂N(R)₂, -(CH₂)_nCON(R)₂, (CH₂)_nCONHC(R)₃, -(CH₂)_nCOR₈, nitro, cyano or halogen, said alkyl, alkoxy, heterocyclyl, aryl or heteroaryl optionally substituted with 1-3 groups of R^a;
- or, when Q is N, R₂ and R₃ taken together with the intervening N atom form a 4-10 membered heterocyclic carbon ring optionally interrupted by 1-2 atoms of O, S, C(O) or NR, and optionally having 1-4 double bonds, and optionally substituted by 1-3 groups selected from R^a;
- 20 R4 and R5 independently represent hydrogen, C₁₋₆ alkoxy, OH, C₁₋₆ alkyl, COOR, SO₃H, O(CH₂)_nN(R)₂, O(CH₂)_nCO₂R, C₁₋₆ alkylcarbonyl, S(O)qRy, OPO(OH)₂, CF₃, N(R)₂, nitro, cyano or halogen;
- R6 represents hydrogen, C₁₋₁₀ alkyl, -(CH₂)_nC₆₋₁₀ aryl, -(CH₂)_nC₅₋₁₀ heteroaryl, (C₆₋₁₀ aryl)O-, -(CH₂)_nC₃₋₁₀ heterocyclyl, -(CH₂)_nC₃₋₈ cycloalkyl, -COOR, C(O)CO₂R, said aryl, heteroaryl, heterocyclyl and alkyl optionally substituted with 1-3 groups selected from R^a;
 - R7 represents hydrogen, C_{1-6} alkyl, -(CH₂)_nCOOR or -(CH₂)_nN(R)₂,
 - R8 represents - $(CH_2)_nC_3$ -8 cycloalkyl, - $(CH_2)_n$ 3-10 heterocyclyl, C_{1-6} alkoxy or - $(CH_2)_nC_{5-10}$ heteroaryl, said heterocyclyl, aryl or heteroaryl optionally substituted with 1-3 groups selected from R^a ;

Ra represents F, Cl, Br, I, CF₃, N(R)₂, NO₂, CN, -COR₈, -CONHR₈, -CON(R₈)₂, -O(CH2)nCOOR, -NH(CH2)nOR, -COOR, -OCF3, -NHCOR, -SO2R, -SO2NR2, -SR, $(C_1-C_6 \text{ alkyl})O-, -(CH_2)_nO(CH_2)_mOR, -(CH_2)_nC_{1-6} \text{ alkoxy, (aryl})O-, -OH, (C_1-C_6)_nO(CH_2)_mOR$ alkyl)S(O)_m-, H₂N-C(NH)-, (C₁-C₆ alkyl)C(O)-, (C₁-C₆ alkyl)OC(O)NH-, -(C₁-C₆ 5 alkyl)NR_w(CH₂)_nC₃₋₁₀ heterocyclyl-R_w, -(C₁-C₆ alkyl)O(CH₂)_nC₃₋₁₀ heterocyclyl-R_w, -(C₁-C₆ alkyl)S(CH₂)_nC₃₋₁₀ heterocyclyl-R_w, -(C₁-C₆ alkyl)-C₃₋ 10 heterocyclyl- R_w , -(CH₂)_n- Z^1 -C(= Z^2)N(R)₂, -(C₂₋₆ alkenyl)NR_w(CH₂)_nC₃₋₁₀ heterocyclyl-R_w, -(C₂₋₆ alkenyl)O(CH₂)_nC₃₋₁₀ heterocyclyl-R_w, -(C₂₋₆ alkenyl)S(CH₂)_nC₃₋₁₀ heterocyclyl-R_w, -(C₂₋₆ alkenyl)-C₃₋₁₀ heterocyclyl-R_w, -. 10 $(C_{2-6} \text{ alkenyl})-Z_{1-C}(=Z_{2})N(R)_{2}$, $-(CH_{2})_{n}SO_{2}R$, $-(CH_{2})_{n}SO_{3}H$, $-(CH_{2})_{n}PO(OR)_{2}$, cyclohexyl, morpholinyl, piperidyl, pyrrolidinyl, thiophenyl, phenyl, pyridyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, thienyl, furyl, isothiazolyl, C2-6 alkenyl, and C₁-C₁₀ alkyl, said alkyl, alkenyl, alkoxy, phenyl, pyridyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, thienyl, furyl, and isothiazolyl optionally substituted with 1-3 15 groups selected from C₁-C₆ alkyl, CN, (CH₂)_ntetrazolyl, COOR, SO₃H, OH, F, Cl,

Z¹ and Z² independently represents NR_w, O, CH₂, or S;

20 Rb represents C₁₋₆ alkyl, -COOR, -SO₃R, -OPO(OH)₂, -(CH₂)_nC₆₋₁₀ aryl, or -(CH₂)_nC₅₋₁₀ heteroaryl; R^c represents hydrogen, C₁₋₆ alkyl, or -(CH₂)_nC₆₋₁₀ aryl; m is 0-3;

n is 0-3;

- 25 q is 0-2; and p is 0-1.
- 2. A compound of the structural formula I wherein X represents CHR7.
- 3. A compound according to claim 1 wherein Y is -CO(CH₂)_n.

- 4. A compound according to claim 1 wherein Y is CH(OR).
- 5. A compound according to claim 1 wherein Q is N.

- 6. A compound according to claim 1 wherein Q is CH.
- 7. A compound according to claim 2 wherein R6 is (CH2)_nC6-10 aryl, (CH2)_nC5-10 heteroaryl, (CH2)_nC3-10 heterocyclyl, or (CH2)_nC3-8 cycloalkyl,
 said aryl, heteroaryl, heterocyclyl and alkyl optionally substituted with 1 to 3 groups of R^a.
 - 8. A compound according to claim 6 wherein R7 is hydrogen or C₁₋₆ alkyl.

15

- 9. A compound according to claim 6 wherein Q is N and n is 0.
- 10. A compound according to claim 1 wherein Y is -CO(CH₂)_n, Q is N, n is 0, R₂ is C₁₋₁₀ alkyl or C₁₋₆ alkylOH and R₃ is (CH₂)_nC₃₋₁₀ heterocyclyl,
 20 said heterocyclyl and alkyl optionally substituted with 1 to 3 groups of R^a.
 - 11. A compound selected from Tables 1 through 14 which is:

25

30

Table 1

Wherein R represents:

and R* represents:

Table 2

Wherein R represents:

R* represents:

HOOC

and R^ represents hydrogen or methyl

;

Table 3

10

Wherein R represents:

R* represents:

and R^ represents hydrogen or methyl;

Table 4

R represents methyl or methoxy and R* represents methyl, H or COOH;

R' represents methyl or methoxy; R^ represents hydrogen or COOEt; R'" represents COOH or COOtBu; ar R" represents: COOMe, H, COOH, or

R* represents hydrogen or methyl;

 R^y represents methyl or CF_3 ; 3/0, 3/0, OH

R represents methyl, (CH2)₂SCH3,

R^ represents:

$$O$$
 R
 O
 $CH_2)_n$
 O
 R
 $CH_2)_n$
 $CH_2)_n$
 R'

Wherein n represents 1-2;

R^ represents hydrogen or methyl

R represents:

10

 $Y=OCH_3$, CI, Br, CH_2CH_3 , or CN

R is:

5

Y=CH₃ or CH₂CH₃

R is:

5

Y=OCH₃, CN,or CI; X=H, or F; Z=Ph, CH(CH₃)₂, CH₂CH(CH₃)₂

·R is:

Wherein R represents:

R₁ represents:

R2 represents: hydrogen or methyl

Wherein R represents:

R₁ represents:

R2 represents: hydrogen or methyl

or a pharmaceutically acceptable salt, enantiomer, diastereomer or mixture thereof.

- 12. A method for treating ocular hypertension or glaucoma comprising administration to a patient in need of such treatment a therapeutically effective amount of a compound of claim 1.
 - 13. The method according to Claim 12 wherein the compound of formula I is applied as a topical formulation selected from solution topical formulation and a suspension topical formulation.
 - 14. A method according to claim 13 in which the topical formulation optionally contains xanthan gum or gellan gum.
- 15. A method according to claim 13 wherein an active ingredient belonging to the group consisting of: β-adrenergic blocking agent, parasympathomimetic agent, EP4 agonist, carbonic anhydrase inhibitor, and a prostaglandin or a prostaglandin derivative is optionally added to the formulation.
- 20 16. A method according to claim 15 wherein the β-adrenergic blocking agent is timolol; the parasympathomimetic agent is pilocarpine; the carbonic anhydrase inhibitor is dorzolamide, acetazolamide, metazolamide or brinzolamide; the

prostaglandin is latanoprost or rescula, and the prostaglandin derivative is a hypotensive lipid derived from PGF2α prostaglandins.

17. A method for treating macular edema, macular degeneration, increasing retinal and optic nerve head blood velocity, increasing retinal and optic nerve oxygen tension, and/or providing a neuroprotective effect comprising administration to a patient in need of such treatment a pharmaceutically effective amount of a compound of claim 1; or a pharmaceutically acceptable salt, enantiomer, diastereomer or mixture thereof.

- 18. The method according to Claim 17 wherein the compound of formula I is applied as a topical formulation.
- 19. A method according to claim 18 in which the topical15 formulation optionally contains xanthan gum or gellan gum.
- 20. A method of preventing repolarization or hyperpolarization of a mammalian cell wherein the cell contains a potassium channel comprising the administration to a mammal, including a human, in need thereof, of a pharmacologically effective amount of a compound according to claim 1, or a pharmaceutically acceptable salt, enantiomer, diastereomer or mixture thereof.
- 21. A method of treating Alzheimer's Disease, depression, cognitive disorders, arrhythmia disorders and/or diabetes in a patient in need thereof comprising administering a pharmaceutically effective amount of a compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, diastereomer or mixture thereof.