Tutorium zu Computer-Engineering im WS19

Termin 7

Jakob Otto

HAW Hamburg

12. Dezember 2019

Ablauf

- Neue Aufgabe
- SPI
- Flash-Speicher

Aufgabenzettel 🖸

SPI Dokumentation

SPI (I)

Was ist das?

- Kommunikationsprotokoll für Hardwarebausteine
- Master-Slave orientiertes Modell
- Full-Duplex gleichzeitig in beide Richtungen

5/16

SPI (II)

Wichtige SPI-pins

- CS Chip-Select
- SCLK Serial Clock
- MOSI Master Out Slave In
- MISO Master In Slave Out

SPI (III)

SPI (IV)

SPI (V)

Funktionsweise

- Master gibt takt vor
- Slave nutzt Takt um Dinge zu tun
- Pro tick wird ein bit übermittelt

Dies passiert im tausch!

SPI (VI)

- SPI lässt auch mehrere Slaves zu
- CS pin wählt einen Slave zur Zeit
 - → Wichtig für die Aufgabe.

STM32-SPI

- SPI ist in Hardware vorhanden.
- lesen/schreiben:
 - Byte in Dataregister schreiben
 - 2 Auf Übertragungsende warten
 - 6 Empfangene Daten zurückgeben

```
uint8_t spi_write_byte(uint8_t data) {
   SPI3->DR = data;
   while(!(SPI3->SR & SPI_SR_RXNE));
   return SPI3->DR;
}
```

Beispielcode 🗆

Flash-Memory-Datasheet

In der owncloud der gibts was einfacheres

