Федеральное государственное бюджетное образовательное учреждения высшего образования

«Сибирский государственный университет телекоммуникаций и информатики»

Кафедра Вычислительных систем

Расчётно-графическое задание

По дисциплине: «Архитектура вычислительных систем»

Вариант 13

Выполнил: студент III курса ИВТ, гр. ИП-713 Михеев Н.А.

Проверил: доцент кафедры ВС Ефимов А.В.

Оглавление 1. Постановка задачи 3 2. Задание №1 3 2.1 Ключевые возможности микроархитектуры ARM 3 2.2 Функциональная структура современного процессора Qualcomm 5 2.3 Итоги результатов анализа 8 3. Задание №2 8 4. Список литературы 12

1. Постановка задачи

- 1. Произвести анализ возможностей процессоров с микроархитектурой ARM. Привести пример функциональной структуры современного процессора.
- 2. Произвести численный расчет и построить графики для функций надежности r(t) и готовности s(i, t) ЭВМ, обладающей следующими техническими параметрами:
- средним временем безотказной работы $9 = 10^5$ ч,
- интенсивностью восстановления $\mu = 10 \ 1/v$.

2. Задание №1

2.1 Ключевые возможности микроархитектуры ARM

Процессоры на микроархитектуре ARM, в отличие от процессоров x86, выпускаются с набором команд RISC (Reduced Instruction Set Computer). Его преимущество в изначально небольшом наборе команд, которые могут обрабатываться с минимальными затратами.

Рисунок 1.1. Архитектурные отличия процессоров с набором CISC команд (x86) и набором команд RISC (ARM).

Процессоры с ARM архитектурой, в отличие от всех остальных микропроцессоров с RISC набором команд, обладают:

- Более широкой шириной шины: 32 бита либо 64 в более современных моделях процессоров.
- Поддерживают гораздо большее количество протоколов взаимодействия, таких как USB, Ethernet, SAI (serial audio interface последовательный аудио порт), DSP (digital signal processor цифровой сигнальный процессор).

• Имеется, помимо Flash памяти, также поддержка SDRAM - синхронной динамической памяти с произвольным доступом.

И в первую очередь ARM процессоры обладают высокой скоростью исполнения операций так как они сфокусированы на большой вычислительной мощности и вместе с этим обладают несколькими уровнями кэш-памяти, очень высокими частотами и многоядерностью. ARM процессоры разработаны в первую очередь для исполнения приложений, а не только для взаимодействия с какими-то внешними сенсорами, это и отличает процессоры с архитектурой ARM от остальных микропроцессоров с RISC набором команд.

С технической точки зрения чипы на микроархитектуре ARM называть процессорами не совсем верно, так как они помимо вычислительных ядер так же включают в себя целый ряд других компонентов. Уместнее бы было называть их SoC – System on a Chip (в пер. с англ. «Система на Кристалле»).

Так, новейшие однокристальные системы для смартфонов и планшетов включают в себя контроллер оперативной памяти, графический ускоритель, видеодекодер, аудиокодек и модули беспроводной связи. Так же узкоспециализированные чипы могут включать в себя контроллеры для взаимодействия с периферийными устройствами, например датчиками скорости, акселерометром.

Рисунок 1.2. Схема строения ARM чипа от Qualcomm – Snapdragon 845.

Процессоры архитектуры ARM, по лицензии, полученной от компании, выпускают следующие компании: Atmel, Broadcom, Freescale, Marvell, Nvidia, Qualcomm, Samsung, Texas Instruments, VIA, Миландр, ЭЛВИС, STMicroelectronics ARM limited и другие. Но такие гиганты как Apple, Samsung, Nvidia уже начинают выпускать собственные модификации ARM чипов.

Осенью 2018 года ARM анонсировала новые микроархитектуры: Deimos 7 нм и Hercules 7 и 5 нм. Эти процессоры используют новую технологию DynamiQ, которая заменит big.LITTLE. Чипы на этих микроархитектурах по планам ARM

должны приблизиться по производительности к обычным машинам на x86, но с меньшим энергопотреблением. Но, к сожалению, пока большинство программного обеспечения пишется и оптимизируется для x86, а под ARM работает через эмуляцию, что сразу дает x86 фору в производительности. Но ARM собирается устранить данную проблему в будущих архитектурах 2020 года, где процессоры будут изготавливаться по техпроцессу 5 нм. К 2020 году ARM планируют догнать и обогнать мобильные процессоры Core i5-4300U, Core i5-6300U и Core i5-7300U. Итак, с 2016 по 2020 годы производительность чипов вырастет в 2.5 раза.

2.2 Функциональная структура современного процессора Qualcomm Snapdragon 855

Рисунок 1.3 – блочная диаграмма структуры чипа Snapdragon 855.

Процессор Snapdragon 855 имеет весьма необычную конфигурацию ядер вычислительного блока под названием Kryo 485. Она представляет собой трехкластерную структуру и включает в себя:

- Высокопроизводительный одноядерный кластер, основанный на Cortex-A76 с частотой до 2.84ГГц для выполнения самых сложных задач и для быстрого доступа к информации из Flash памяти устройства с кэш-памятью 512 КБ.
- Среднепроизводительный кластер с тремя ядрами, основанными так же на Cortex-A76 с частотой до 2.42ГГц для выполнения задач с повышенной сложностью, таких как работа камеры, запуск трудоемких приложений и игр. Каждому из ядер отведен кэш размером в 256 КБ.

• Энергоэффективный четырехядерный кластер, основанный на Cortex-A55 с частотой до 1.8ГГц, который служит для выполнения каких-то нетребовательных задач в фоновом режиме и для обеспечения работы операционной системы. Каждому ядру отведено 128 КБ кэш-пямяти.

Так же имеется общая кэш-пямять 3 уровня размером 2 МБ.

Рисунок 1.4 – компоновка ядер внутри вычислительного блока Kryo 485 процессора Snapdragon 855.

Такая компоновка позволяет процессору приспосабливаться к нагрузкам разного рода. При выполнении тяжелой задачи в одном потоке задействуется самое мощное ядро, а в многопотоке подключаются еще 3 ядра попроще. При обработки легких вычислений также же работают «маленькие» ядра. Как итог чип имеет хороший баланс между производительностью и экономичностью.

Контроллер памяти в Qualcomm SD855 рассчитан на работу с чипами LPDDR4(x) – (Low Power DDR – низкопотребляемый DDR), с эффективной тактовой частотой до 2133 МГц. Благодаря работе в 4-канальном режиме (4 канала по 16 бит) достигается пропускная способность до 34,13 ГБ/с. Максимальный объем оперативной памяти может составлять 16 ГБ.

В составе процессора используется графический процессор Adreno 640 в нем 384 вычислительных блока. Он способен выдать до 1 ТФЛОПС в 32-разрядных вычислениях с плавающей точкой. Это даже больше, чем у многих встроенных видео ускорителях х86 процессоров. Имеется поддержка 4К-дисплея с HDR, так же чип способен выводить изображение на внешние 4К-мониторы, до 2 штук одновременно.

Рисунок 1.5 – блок-схема структуры цифрового сигнального процессора Hexagon 690.

Обработкой сигналов бортовых систем занимается обновленный цифровой сигнальный процессор Hexagon 690. В котором было удвоено количество векторных ускорителей, необходимых для работы искусственного интеллекта и конвейерной обработки изображений. Еще он содержит в себе новый тензорный ускоритель (Tensor Xccelerator, как его назвали Qualcomm) для оптимизации работы систем искусственного интеллекта и машинного обучения, специальный сопроцессор для распознавания и обработки голосовых команд такими приложениями как Google Ассистент или китайского Baidu DuerOS и так же блок работы с сенсорами.

Обработкой сигнала камер занимается сопроцессор Spectra 380 с двойным 14-битным ISP. Также он содержит аппаратный ускоритель для машинного зрения. Есть поддержка технологий ZSL (нулевая задержка затвора) и MFNR (многокадровое шумоподавление). С ними максимальное разрешение достигает 48 Мп для одиночной и 22 Мп для двойной (с одновременной работой) камеры. Матрица, при этом, обновляется с частотой 30 FPS.

B Snapdragon 855 интегрирован Bluetooth 5.0, NFC, интегрирован LTE модем, предусмотрена установка дискретного приемопередатчика X50 для сетей 5G.

Производительность данного SoC уже приблизилась к большинству ноутбуков, при том, что это мобильный процессор. А ведь для них у Qualcomm имеется еще более мощный чип — Snapdragon 8cx.

2.3 Итоги результатов анализа

Исследовав глубже тему чипов на архитектуре ARM, я пришел к выводу, что развитие ARM процессоров идет большими шагами, все больше увеличивается количество команд, рабочие частоты, количество ядер, а производительность некоторых чипов уже вплотную догоняет ноутбучные процессоры Intel при рекордно низком электропотреблении. Но, к сожалению, пока что в данный момент распространение ARM чипов вне рынка носимой электроники тормозит увеличивающаяся дороговизна производства, в то время как стоимость производства x86 процессоров снижается, и медленный выпуск новых приложений конкретно под ARM, так как эмулированные с x86 архитектуры приложения сильно проигрывают в производительности. Возможно, в будущем, когда производительность ARM-процессоров станет уже существенно выше, чем у решений от AMD и Intel, переход и будет совершен, но пока что для каждой архитектуры есть свои типы устройств: для смартфонов и тонких планшетов это ARM, для ноутбуков и ПК — x86-64.

3. Задание №2

Функция (или вероятность безотказной работы) относится к основным показателям надежности ЭВМ. Характеризует производительность ЭВМ на промежутке времени, то есть эта функция обеспечивает потенциально возможную производительность. Функцией надежности ЭВМ называется

$$r(t) = P\{\forall \tau \in [0, t) \rightarrow \omega(\tau) = 1\},$$

где запись $P\{\forall \tau \in [0,t) \to \omega(\tau) = 1\}$ означает вероятность того, что для всякого τ , принадлежащего промежутку времени [0,t), производительность $\omega(\tau)$ ЭВМ равна единице, т.е равна потенциально возможной.

Функция r(t) обладает следующими свойствами:

- 1) r(0) = 1; Т.е. машина в момент начала функционирования находится в работоспособном состоянии.
- 2) $r(+\infty) = 0$; Событие, заключающееся в том, что ЭВМ работоспособна на конечном промежутке времени, является достоверным.
 - 3) $r(t_1) \ge r(t_2)$ для $t_1 \le t_2$;

Функцией ненадежности(или вероятностью отказа) ЭВМ называется q(t) = 1 - r(t).

Функция q(t) позволяет определить среднее время безотказной работы (средняя наработка до отказа). По определению, *среднее время 9 безотказной работы* ЭВМ и оценка $\widetilde{\mathcal{G}}$ соответственно равны:

$$\mathcal{G} = \int_{0}^{\infty} t dq(t) = -\int_{0}^{\infty} t dr(t) = -tr(t) \int_{0}^{\infty} + \int_{0}^{\infty} r(t) dt = \int_{0}^{\infty} r(t) dt; \qquad \widetilde{\mathcal{G}} = \frac{1}{N} \sum_{i=1}^{N} t_{i},$$

где t_i – время безотказной работы i -й машины, $i \in \{1, 2, ..., N\}$.

Интенсивностью отказов (лямбда-характеристикой) ЭВМ называется функция

$$\lambda(t) = \frac{1}{1 - q(t)} \frac{dq(t)}{dt} = -\frac{1}{r(t)} \frac{dr(t)}{dt}.$$

Практически установлено, что зависимость интенсивности отказов от времени имеет место на периоде приработки ЭВМ. После приработки ЭВМ интенсивность отказов остается постоянной (до вхождения в предельное состояние или, по крайней мере, в течение промежутка времени, перекрывающего время морального старения). Следовательно, в нормальных условиях эксплуатации ЭВМ $\lambda = const$, а функция надежности и математическое ожидание времени *безотказной работы* соответственно равны:

$$r(t) = \exp(-\lambda t); \quad \mathcal{G} = \int_{0}^{\infty} e^{-\lambda t} dt = -\frac{1}{\lambda} e^{-\lambda t} \int_{0}^{\infty} = \frac{1}{\lambda}.$$

 λ – среднее число отказов, появляющихся в машине в единицу времени.

Подставляя известные нам данные получим следующую функцию для расчета надежности:

$$r(t) = \exp(-1/\vartheta * t)$$

$$r(t) = \exp(-t/10^5);$$

Рассчитаем значения функции и построим график:

t, ч.	r(t)
0	1,000000
1	0,999990
5	0,999950
10	0,999900
100	0,999000
1000	0,990050
10000	0,904837
20000	0,818731
30000	0,740818
40000	0,670320
50000	0,606531
60000	0,548812

70000	0,496585
80000	0,449329
90000	0,406570
100000	0,367879
150000	0,223130
200000	0,135335
250000	0,082085
300000	0,049787
350000	0,030197
400000	0,018316
450000	0,011109
500000	0,006738
1000000	0,000045

Таблица 2.1. Значения функции r(t).

Рисунок 2.1. График функции надежности r(t).

Теперь рассчитаем значения функции готовности. Функция готовности ЭВМ

$$s(i, t) = P_1(i, t) = P\{i; \quad \omega(t) = 1\},$$

 $P\{i; \omega(t) = 1\}$, есть вероятность того, что (в условиях потока отказов и восстановлений) машина будет иметь в момент времени $t \ge 0$ производительность, равную единице, т.е. равную потенциально возможной.

Функция готовности ЭВМ обладает следующими свойствами:

- 1) s(0,0) = 0, s(1,0) = 1;
- 2) $s(i, +\infty) = s = const, o < s < 1, i \in E_0^1$;
- 3) $s(0,t_1) \le s(0,t_2)$, $s(1,t_1) \ge s(1,t_2)$ для $t_1 \le t_2$.

Расчет будем производить по следующим формулам:

$$s(0,t) = \frac{\mu}{\lambda + \mu} - \frac{\mu}{\lambda + \mu} e^{-(\lambda + \mu) \cdot t} ;$$

$$s(1,t) = \frac{\mu}{\lambda + \mu} + \frac{\lambda}{\lambda + \mu} e^{-(\lambda + \mu) \cdot t} .$$

для начальных состояний ЭВМ i = 0, i = 1, причем i = 0 соответствует состоянию отказа, а i = 1 – работоспособному состоянию машины, где $\lambda = 1/9$.

Расчетные формулы соответственно равны:

$$s(0, t) = \frac{10}{10} / (10 + \frac{1}{10^5}) - \frac{10}{10^5} / (10 + \frac{1}{10^5}) * \exp((-t) * (10 + \frac{1}{10^5}))$$

$$s(1, t) = \frac{10}{10^5} / (10 + \frac{1}{10^5}) / (10 + \frac{1}{10^5}) * \exp((-t) * (10 + \frac{1}{10^5}))$$

t, ч	s(0,t)
0	0
0,001	0,00995
0,01	0,095163
0,05	0,393469
0,1	0,63212
0,2	0,864664
0,3	0,950212

t, ч	s(1, t)
0	1,0000000
0,001	1,0000000
0,01	0,9999999
0,05	0,9999996
0,1	0,9999994
0,2	0,9999991
0,3	0,9999990

Таблица 2.2. Значения функий s(0, t) и s(1, t).

Рисунок 2.2. График функции готовности ЭВМ s(i, t).

4. Список литературы

- 1. Хорошевский В.Г. Архитектура вычислительных систем. –М.: МГТУ им. H.Э. Баумана, 2008. - 520 с.
- 2. Snapdragon 855 Mobile Platform [Электронный ресурс] https://www.qualcomm.com/products/snapdragon-855-mobile-platform (Дата обращения 24.12.2019)
- 3. Новые процессоры ARM смогут потягаться с Core i5 [Электронный ресурс] https://habr.com/ru/post/420489/ (Дата обращения 24.12.2019)
- 4. Introducing the Arm architecture [Электронный ресурс] https://developer.arm.com/architectures/learn-the-architecture/introducing-the-arm-architecture/single-page (Дата обращения 24.12.2019)
- 5. Харрис Дэвид М., Харрис Сара Л. Цифровая схемотехника и архитектура компьютера. Дополнение по архитектуре ARM ДМК Пресс, 2018. 356 с.
- 6. Snapdragon 855 Qualcomm. Semiconductor and Computer Engineering [Электронный ресурс] https://en.wikichip.org/wiki/qualcomm/snapdragon_800/ (Дата обращения 20.01.2020)