Funk.An. Mandatory assignment 1.

Jonas Larsen: nlc947 14 12 2020

Problem 1 [24 points]

Let $(X, ||\cdot||_X)$ and $(Y, ||\cdot||_Y)$ be (non-zero) normed vector spaces over \mathbb{K} , where $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .

- a) [5 p]. Let T: X \to Y be a linear map. Set $||x||_0 = ||x||_X + ||Tx||_Y$, for all $x \in X$. Show that $||\cdot||_0$ is a norm on X. Show next that the two norms $||\cdot||_X$ and $||\cdot||_0$ are equivalent if and only if T is bounded.
- b) [4 p]. Show that any linear map T: $X \to Y$ is bounded, if X is finite dimensional.
- c) [5 p]. Suppose that X is infinite dimensional. Show that there exists a linear map T: $X \to Y$, which is not bounded (= not continuous). [Hint: Take a Hamel basis for X (see below).]
- d) [5 p]. Suppose again that X is infinite dimensional. Argue that there exists a norm $||\cdot||_0$ on X, which is not equivalent to the given norm $||\cdot||_X$, and which satisfies $||x||_X \le ||x||_0$, for all $x \in X$. Conclude that $(X,||\cdot||_0)$ is not complete if $(X,||\cdot||_X)$ is a Banach space.
- e) [5 p]. Give an example of a vector space X equipped with two inequivalent norms $||\cdot||$ and $||\cdot||'$ satisfying $||x||' \le ||x||$, for all $x \in X$, such that $(X, ||\cdot||)$ is complete, while $(X, ||\cdot||')$ is not. [Hint: Take $(X, ||\cdot||) = (\ell_1(\mathbb{N}), ||\cdot||_1)$ with a suitable choice of $||\cdot||'$; or take $(X, ||\cdot|| = (L_2([0, 1], m), ||\cdot||_2)$ with a suitable choice of $||\cdot||'$, where m is the Lebesgue measure.]

Answers

a)

We have that, since $||\cdot||_X$ and $||\cdot||_Y$ are norms that $||\cdot||_0$: $X \to (0, \infty)$ by definition, and then we check the first condition from definition 1.1 of the lecture notes, $||x+x'||_0 = ||x+x'||_X + ||Tx+Tx'||_Y \le ||x||_X + ||x'||_X + ||Tx||_Y + ||Tx'||_Y = ||x||_0 + ||x'||_0 \forall x, x' \in X$, since $||\cdot||_X$ and $||\cdot||_Y$ are norms. Then we chech the second condition, $||\alpha x||_0 = ||\alpha x||_X + ||T\alpha x||_Y = ||\alpha x||_X + ||\alpha Tx||_Y = ||\alpha||_X + ||\alpha||_X$

Now we check the third and last condition of the definition, $||x||_0 = 0 \Leftrightarrow ||x||_X + ||Tx||_Y = 0$, and $||x||_X = 0 \Leftrightarrow x = 0$, and $||Tx||_Y = 0 \Leftrightarrow Tx = 0 \Leftrightarrow x = 0$, since T is linear and since $||\cdot||_X$ and $||\cdot||_Y$ are norms, so by definition of $||x||_0$ we have that $||x||_0 = 0 \Leftrightarrow x = 0$. So $||\cdot||_0$ is a norm.

Now we need to show that $||x||_0$ and $||x||_X$ are equivalent \Leftrightarrow T is bounded. First lets assume that $||x||_0$ and $||x||_X$ are equivalent. This means that $C_0 ||x||_0 \le ||x||_X \le C_X ||x||_0$, for $0 < C_0 \le C_X < \infty$ by definition 1.4 in the lecture notes. So we have that $C_0 ||x||_X + C_0 ||Tx||_Y \le ||x||_X \le C_X ||x||_0 \implies ||x||_X + ||Tx||_Y \le \frac{1}{C_0} ||x||_X \le \frac{C_X}{C_0} ||x||_0 \implies ||Tx||_Y \le \frac{1}{C_0} \le \frac{C_X}{C_0} ||x||_0 - ||x||_X \le \frac{C_X}{C_0} ||x||_0 + ||Tx||_Y \le \frac{1}{C_0} ||x||_X \le \frac{C_X}{C_0} ||x||_0 + ||x||_X \le \frac{C_X}{C_0} ||x||_0 = ||x||_X + ||x||_X \le \frac{C_X}{C_0} ||x||_X + ||x||_X \le C_X = ||x||_X + ||x||_X \le C_X = ||x||_X + ||x||_X = ||x||_X + ||x||_X = ||x||_X + ||x||_X = ||x||_X + ||x||_X = ||$

b)

By theorem 1.6 we have that if X is a finite dimensional vector space, then any two norms are equivalent. Which by (a) means that T is bounded. Or more generally, we have that if X is finite dimensional we can find a minimal distance $\min(||x-y||) = D$, $\forall x, y \in X$ Then if we take some point $x_0 \in X$ and a $\epsilon > 0$, we can let $\delta = \frac{D}{2}$. Then if $||x-x_0|| < \delta \Longrightarrow ||Tx-Tx_0|| < \epsilon$. So T is continuous when X is finite dimensional, which by proporsition 1.10 in the lecture notes means that T is bounded for all linear maps T: X \to Y, when X is finite dimensional.

c)

Lets suppose that X is infinite dimensional. Then by Zorn's lemma X admits a Hamel basis, which means that $(e_i)_{i\in I}$ of elements in X for with the property that for each vector space Y over \mathbb{K} , and each family $(y_i)_{i\in I}$ in Y, there exists precisely one linear map $T: X \to Y$ satisfying $T(e_i) = y_i$ for all $i \in I$, or equivalently that for each $x \in X$, there is a unique family $(\lambda_i)_{i\in I}$ in \mathbb{K} for which the set $\{i \in I : \lambda_i \neq 0\}$ is finite and $x = \sum_{i \in I} \lambda_i e_i$.

The existence of a linear map is clear from the definition of an algebraic basis, so we only need to show that it has to be not bounded (not continuous). Since X is infinite dimensional we must have that some of the $\lambda_i's$ for all $i \in I$ has to be zero since we have finitely many $\lambda_i's$ which are non-zero for $i \in I$ and since the family of $(\lambda_i)_{i \in I}$ are unique, So we can for example look at the function $T: X \to Y$ defined by $T(x) = \frac{1}{||0-x||}$, where we define T(x) = 0 for x = 0. This map is obviously discontinuous in 0, so T is therefore not bounded.

d)

Since we by problem (a) showed that $||\cdot||_0$ was a norm on X so it exists, and that the norms $||\cdot||_X$ and $||\cdot||_0$ only are equivalent if and only if T was bounded, and by problem (b) we had that any linear map T was bounded if X was finite dimensional and problem (c) tells us that there exists a linear map which is not bounded when X is infinite dimensional. This means that since we can find a linear map T which is not bounded, so not every linear map is bounded when X is infinite dimensional. So since we can find such a linear map T which isn't bounded we have that the two norms can not be eqivalent by problem (a). And by definition of $||x||_0$ and the fact that $(X, ||\cdot||_X)$ and $(Y, ||\cdot||_Y)$ are (non-zero) normed vector space over \mathbb{K} , we have that $0 \le ||Tx||_Y$ for all $x \in X$, so obviously $||x||_X \le ||x||_0$, for all $x \in X$. If $(X,||\cdot||_X)$ is a Banach space, we can find a Cauchy sequence $(x_n)_{n\ge 1}$ with respect to the metric d i.e., $\forall \epsilon > 0 \exists n_{\epsilon} \ge 1$ such that $\forall m, n \ge n_{\epsilon}$, $d(x_n, x_m) = ||x_n - x_m||_X < \epsilon$, then there exists $x \in X$ such that $\lim_{n\to\infty} ||x_n - x||_X = 0$. And since T is unbounded and the two norms are not equivalent, then we wouldn't be able to find such a limit for a cauchy sequence with respect to the norm $||\cdot||_0$ since the limit wouldn't exist. We can for example look at the map I mentioned in problem (c) which was discontinuous at 0.

e)

Let us look at the vector space in the hint, i.e. the vector space $(X, ||\cdot||) = (\ell_1(\mathbb{N}), ||\cdot||_1)$. So I need to find a norm such that $||x||_1 \ge ||x||_n$, where $||x||_n$ and $||x||_1$ are inequivalent and where $||x||_n$ makes the normed vector space $(\ell_1(\mathbb{N}), ||\cdot||_n)$ not complete. We know that $||x||_2 \le ||x||_1$, so by taking the two norm $||\cdot||_2$ we would get that the normed vector space $(\ell_1(\mathbb{N}), ||\cdot||_2)$ would not be complete since we could find a cauchy sequence in $\ell_1(\mathbb{N})$ with no limit inside $\ell_1(\mathbb{N})$ with respect to the two norms since the completion of $(\ell_1(\mathbb{N}), ||\cdot||_2)$ with respect to $||\cdot||_2$ is $\ell_2(\mathbb{N})$, where $\ell_1(\mathbb{N}) \subset \ell_2(\mathbb{N})$. And these two norms are inequivalent with respect to $\ell_1(\mathbb{N})$, since any two p norms are not equivalent on $\ell_1(\mathbb{N})$ for different p. So we have what we wanted

Problem 2 [20 points]

Let $1 \le p < \infty$ be fixed, and consider the subspace M of the Banach space $(\ell_p(\mathbb{N}), ||\cdot||_p)$, considered as a vector space over \mathbb{C} , given by

$$M = \{(a, b, 0, 0, \dots) : a, b \in \mathbb{C}\}.$$

Let $f: M \to \mathbb{C}$ be given by $f(a, b, 0, 0, 0, \dots) = a + b$, for all $a, b \in \mathbb{C}$.

- a) [8 p]. Show that f is bounded on $(M, ||\cdot||_p)$ and compute ||f||. (answer depends on p.)
- b) [7 p]. Show that if 1 , then there is a unique linear functional <math>F on $\ell_p(\mathbb{N})$ extending f and satisfying ||F|| = ||f||.
- c) [5 p]. Show that if p = 1, then there are infinitely many linear functional F on $\ell_p(\mathbb{N})$ extending f and satisfying ||F|| = ||f||.

Answers

a)

f is obviously linear, since we can find $|x - x_0| < \delta$ for $\delta > 0$ such that $|f(x) - f(x_0)| < \epsilon$ for all $\epsilon > 0$, since every x in $\ell_p(\mathbb{N})$ is bounded and so is the sum by definition. So in particular $|(a, b, 0, 0, \dots) - (a_0, b_0, 0, 0, \dots)| < \delta$ for $\delta > 0$ such that $|f(a, b, 0, 0, \dots) - f(a_0, b_0, 0, 0, \dots)| = |a + b - (a_0 + b_0)| = |a - a_0 + b - b_0| < \epsilon$ for all $\epsilon > 0$ by definition of f. So f is bounded on $(M, ||\cdot||_p)$. Then we compute $||f|| = \sup\{||fx|| : ||x|| \le 1\}$ = $\inf\{C > 0 : ||fx|| \le C ||x||, x \in \ell_p(\mathbb{N})\}$. So we have that $||(a, b, 0, 0, \dots)||_p = (|a|^p + |b|^p)^{\frac{1}{p}} = |a + b|$. So for p = 1 we have that $||f|| = \inf\{C > 0 : |a + b| \le C(|a| + |b|), a, b \in \mathbb{C}\}$, and for $1 we have that <math>||f|| = \inf\{C > 0 : |a + b| \le C(|a|^p + |b|^p)^{\frac{1}{p}}, a, b \in \mathbb{C}\}$.

b)

Since f is bounded and hence continuous we have that $f \in M^* = \mathcal{L}(M, \mathbb{C})$ by definition of f, then by corollary 2.6 in the lecture notes we have that there exists $F \in (\ell_p(\mathbb{N}), ||\cdot||_p)^* = \mathcal{L}((\ell_p(\mathbb{N}), ||\cdot||_p)), \mathbb{C})$ such that $F \mid_M = f$ and ||F|| = ||f||. So we only need to show the uniqueness of F on $\ell_p(\mathbb{N})$ for $1 . By example 2.11 in the lecture notes we have that <math>L_p(X, \mu)$ is reflexive for $1 , so the same is the case for <math>(\ell_p(\mathbb{N}), ||\cdot||_p)$.

We know that there is an isometric isomorphism between $\ell_p(\mathbb{N})$ and $\ell_q(\mathbb{N})$ for every 1 by HW.1 problem 5. And we know that <math>F exists by corollary 2.6 in the lecture notes, so by isometry there exists a $y \in \ell_q(\mathbb{N})$ such that $F(x) = \sum_{n=1}^{\infty} x_n y_n$, for all $x \in \ell_p(\mathbb{N})$. Where y is such that ||Fx|| = ||x|| and ||f|| = ||F|| and $|F||_M = f$.

c)

Since f is bounded and hence continuous we have that $f \in M^* = \mathcal{L}(M,\mathbb{C})$ by definition of f, then by corollary 2.6 in the lecture notes we have that there exists $F \in (\ell_p(\mathbb{N}), ||\cdot||_p)^* = \mathcal{L}((\ell_p(\mathbb{N}), ||\cdot||_p), \mathbb{C})$ such that $F|_M = f$ and ||F|| = ||f||. So we only need to show that there are infinitely many F on $\ell_1(\mathbb{N})$ such that this is the case for p = 1. By example 2.11 in the lecture notes we have that $L_p(X, \mu)$ is not reflexive for p = 1, so the same is the case for $(\ell_p(\mathbb{N}), ||\cdot||_p)$ for p = 1.

So for F being the continuous extension on $\ell_1(\mathbb{N})$, i.e. $F \in \ell_1(\mathbb{N}) \cong \ell_\infty(\mathbb{N})$ we have that the duality gives us some $u \in \ell_\infty(\mathbb{N})$ such that $\forall x = (x_n) \in \ell_1(\mathbb{N})$ being a sequence, we have that $F_k(x) = \sum_{i=1}^k x_i$. These $F_k(x)$ are obviously linear by construction, since $F_k(\alpha x + \beta y) = \sum_{i=1}^k \alpha(x_i) + \beta(y_i) = \sum_{i=1}^k \alpha(x_i) + \sum_{i=1}^k \beta(y_i) = \alpha F_k(x) + \beta F_k(y)$. And since the $x = (x_n) \in \ell_1(\mathbb{N})$ the F_k are extentsion of f with the same norm as f. So we have infinitely many extensions F of f in this case.

Problem 3 [25 points]

Let X be an infinite dimensional normed vector space over \mathbb{K} , where $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . a) [5 p]. Let $n \geq 1$ be an integer. Show that no linear map $F: X \to \mathbb{K}^n$ is injective.

- b) [5 p]. Let $n \ge 1$ be an integer and let $f_1, f_2, \ldots, f_n \in X^*$. Show that $\bigcap_{j=1}^n \ker(f_j) \ne \{0\}$. [Hint: Consider the map $F: X \to \mathbb{K}^n$ given by $F(x) = (f_1(x), f_2(x), \ldots, f_n(x)), x \in X$.]
- c) [5 p]. Let $x_1, x_2, ..., x_n \in X$. Show that there exists $y \in X$ such that ||y|| = 1 and $||y x_j|| \ge ||x_j||$ for all j = 1, 2, ..., n. [Hint: Use Theorem 2.7 (b) from lectures to get started.]
- d) [5 p]. Show that one cannot cover the unit sphere $S = \{x \in X : ||x|| = 1\}$ with a finite family of closed balls in X such that none of the balls contains 0.
- e) [5 p]. Show that S is non-compact and deduce further that the closed unit ball in X is non-compact.

Answers

a)

We proof this by contradiction.

Let's suppose that $F: X \to \mathbb{K}^n$ is injective. Then we can take $x_1, \ldots, x_{n+1} \in X$, where x_1, \ldots, x_{n+1} are linear independent in X, since X is infinite dimensional and we have that $F(x_1), \ldots, F(x_{n+1})$ is linear dependent in \mathbb{K}^{n+1} , since we have that n+1 vectors in a n+1 dimensional vector space are linear dependent. Then $\exists \alpha_1, \ldots, \alpha_{n+1} \in \mathbb{K}^{n+1}$ not all being 0 such that $\sum_{i=1}^{n+1} \alpha_i F(x_i) = \alpha_1 F(x_1) + \cdots + \alpha_{n+1} F(x_{n+1}) = F(\alpha_1 x_1 + \cdots + \alpha_{n+1} x_{n+1}) = 0$ by linear dependence and since F is a linear map. Then since F was assumed injective we deduce that $\alpha_1 x_1 + \cdots + \alpha_{n+1} x_{n+1} = 0$, but $\alpha_i = 0$ for some $i \in \mathbb{N}$, since x_1, \ldots, x_{n+1} is linear independent, which is a contradiction, so there is no linear map $F: X \to \mathbb{K}^n$ which is injective.

b)

Let's look at the opposite of what we want. For $\bigcap_{j=1}^n \ker(f_j) = \{0\}$, means that the only $x \in X$ making $f_j(x) = 0$ for $1 \le j \le n$ where $j, n \in \mathbb{N}$ would be $x = \{0\}$, by definition of the kernel and intersection. If we look at the map $F: X \to \mathbb{K}^n$ given by $F(x) = (f_1(x), f_2(x), \dots, f_n(x)), x \in X$ as in the hint, we get that F is a linear map since it consists of linear maps by definition of the dual space which says that $X^* = \mathcal{L}(X, \mathbb{K})$. So by these facts we actually have that F isn't injective. This means that f_j aren't injective either $\forall j$.

So lets assume that $f_j(x) = 0 \,\forall j$ for x = 0 since f_j are linear maps $\forall j$, so in particular we have that $F(\{0\}) = (f_1(0), f_2(0), \dots, f_n(0)) = \{0\}$ then by the non-injectivety we have that $\exists x_i \in X$ such that $f_j(x_i) = 0$ $\forall j$ and for some i, so in particular we have that $\exists x_i \in X$ such that $F(x_i) = (f_1(x_i), f_2(x_i), \dots, f_n(x_i)) = \{0\}$. This means that $\bigcap_{j=1}^n \ker(f_j) \neq \{0\}$, since there is another point in X where F(x) = 0 by the injectivity of F.

c)

We have by Theorem 2.7 in the lecture notes, that if $0 \neq x \in X$, then there exists $f \in X^*$ such that ||f|| = 1 and f(x) = ||x||, so since X is infinite dimensional we can find a $0 \neq y \in X$ so we get that $\exists f \in X^* = \mathcal{L}(X, \mathbb{K})$ such that ||f|| = 1 and f(y) = ||y||. And by remark 1.11 from the lecture notes we also have that $||f|| = \sup\{||f(y)|| : ||y|| \le 1\}$, which should be equal to 1 when we combine these two. So this means that $\sup\{||y|| = 1\} = \{||y|| : ||y|| \le 1\} = 1$, which means that ||y|| = 1. And by the previous results we have that there is finitely many $0 \neq x_j \in X$ for $1 \leq j \leq n$ since we can find a Hamel basis. This means that $||x_j|| \le 1$ by theorem 2.7 (b) in the lecture notes. Then we use remark 1.2 from the notes, which gives that, $||y-x_j|| \ge ||y|| - ||x_j|| \ge 1 - ||x_j|| \ge 1 \ge ||x_j||$.

d)

By the note below remark 5.3 in the lecture notes we have that S is weakly dense in the closed unit ball $\overline{B_X(0,1)} = \{x \in X : ||x|| \le 1\}$ of X.

S is dense in $\overline{B_X(0,1)}$ in the weak topology means that the closure of S in this particular topology is equal to $\overline{B_X(0,1)}$. This, by basics of point-set topology, means that every point in $\overline{B_X(0,1)}$ is a limit (in the weak topology) of a net of points in S.

If we let B_i for $i=1,\ldots,n$ be closed balls not containing 0, which are closed convex sets, since any closed ball in a normed vector space is convex. In particular $||tx+(1-t)y-x_0|| \le t ||x-x_0|| + (1-t) ||y-x_0|| \le r$ for $x,y\in B(x_0,r), 0\le t\le 1$. Hence we can find continuous functionals λ_i , such that $\operatorname{Re} \lambda_i(x)\ge 1$ for $x\in B_i$. The vector space $V=\bigcap_{i=1}^n \ker(\lambda_i)$ does not intersect any of the B_i , since if $x\in V$, then $\lambda_i(x)=0$, for all i. But $x\in B_i$ implies that $\operatorname{Re} \lambda_i(x)\ge 1$. But $y\ne 0$, because X is infinite-dimensional. So we find an $x\in V\cap S$.

And in particular we have by subproblem (c) that there exists $y \in B_i$ such that ||y|| = 1 and $||y - x_j|| \ge ||x_j||$ for all j = 1, 2, ..., n, where $||y - x_j|| = 0$ means that $||x_j|| = 0$ which can only be the case if $x_j = 0$. Therefore, no finite number of closed balls can cover S without one of them containing 0.

 $\mathbf{e})$

We have that S is a subset of the closed unit ball $S \subset \overline{B_X(0,1)} = \{x \in X : ||x|| \le 1\}$ of X.

For S being compact means that every infinite subset of S has a complete accumulation point, but since S is dense in $\overline{B_X(0,1)}$ in the weak topology, this cann't be true, so S is non-compact.

By Riesz's lemma which says that for X being a normed space and S being a closed proper subspace of X and a be a real number with 0 < a < 1, then there exists an $x \in X$ with ||x|| = 1 such that $||x - y|| \ge a$ for all $y \in S$. So we have that since X is an infinite dimensional normed vectorspace, the closed unit ball $\overline{B_X(0,1)}$ of X is non-compact, since we can take an element $x_1 \in S$, and pick an element $x_n \in S$ such that $d(x_n, S_{n-1}) > a$ for a constant 0 < a < 1 where S_{n-1} is the linear span of $\{x_1, \ldots, x_{n-1}\}$ and $d(x_n, S) = \inf_{y \in S} |x_n - y|$. We easily see that $\{x_n\}$ contains no convergent subsequence, since S is non-compact, which means that the closed unit ball in X is non-compact.

Problem 4 [20 points]

Let $L_1([0,1],m)$ and $L_3([0,1],m)$ be the Lebesgue spaces on [0,1]. Recall from HW2 that $L_3([0,1],m) \subseteq L_1([0,1],m)$. For $n \ge 1$, define

$$E_n := \{ f \in L_1([0,1], m) : \int_{[0,1]} |f|^3 dm \le n \}.$$

- a) [5 p]. Given $n \ge 1$, is the set $E_n \subset L_1([0,1],m)$ absorbing? Justify.
- b) [5 p]. Show that E_n has empty interior in $L_1([0,1], m)$, for all $n \ge 1$.
- c) [7 p]. Show that E_n is closed in $L_1([0,1], m)$, for all $n \ge 1$.
- d) [3 p]. Conclude from (b) and (c) that $L_3([0,1],m)$ is of first category in $L_1([0,1],m)$.

Answers

 \mathbf{a}

First we check that E_n is convex. We see that $\forall f_1, f_2 \in E_n$ and $\forall 0 \leq \alpha \leq 1$, $\alpha f_1 + (1-\alpha)f_2 \in E_n$, since $\int_{[0,1]} |\alpha f_1 + (1-\alpha)f_2|^3 dm \leq \int_{[0,1]} |\alpha f_1|^3 + |(1-\alpha)f_2|^3 dm \leq \int_{[0,1]} |\alpha f_1|^3 dm + \int_{[0,1]} |(1-\alpha)f_2|^3 dm \leq \int_{[0,1]} |\alpha|^3 |f_1|^3 dm + \int_{[0,1]} |(1-\alpha)|^3 |f_2|^3 dm \leq |\alpha|^3 \int_{[0,1]} |f_1|^3 dm + |(1-\alpha)|^3 \int_{[0,1]} |f_2|^3 dm \leq \alpha^3 n + (1-\alpha)^3 n \leq \alpha n + (1-\alpha)n = n$, since $0 \leq \alpha \leq 1$ for all α . So E_n is convex.

 E_n is absorbing if and only if $\forall \ 0 \neq f \in L_1([0,1],m)$, $\exists t > 0$ such that $f \in tE_n$, equivalently $t^{-1}f \in E_n$. To show this we can take $f \in L_1([0,1],m)$, then $\int_{[0,1]} |f| dm < \infty$ and then $\int_{[0,1]} |\frac{1}{t}f|^3 dm = \int_{[0,1]} |f|^3 dm = |\frac{1}{t^3}|\int_{[0,1]} |f|^3 dm \leq n$, for t large enough where $0 < 1 \leq t$, since that $\frac{1}{t}\int_{[0,1]} |f| dm < \infty$ for $t \geq 1$ by assumption.

b)

Firstly we notice that $E_1 \subseteq E_2 \subseteq \cdots \subseteq E_n$, and we can find an open subset of E_n for every $n \ge 1$. The subset $U_1 \subset E_1$, where $U_1 = \{f \in L_1([0,1],m) : \int_{[0,1]} |f|^3 dm < n\}$. By definition of an interior point we have that if f is an interior point of E_n , then E_n is a neighbourhood of f, i.e. $f \in U_n \subset E_n$. So we easily see that $U_1 \subset E_1$ where U_1 also is an absorbing set since E_1 is absorbing in $L_1([0,1],m)$ by (a). Then lemma 3.5 in the lecture notes gives us that $f \in U_1 \Leftrightarrow p_{U_1}(f) < 1$, where $p_{U_1}(f) = \inf\{t > 0 : f \in tU_1\}$ = $\inf\{t > 0 : t^{-1}f \in U_1\}$. Then by the same calculations as in problem (a) we can get that $t^{-1}f \in U_1 \Rightarrow |f| \le 1$ for $f \in U_1$ has empty interior in $f \in U_1$ for all $f \in U_1$. So $f \in U_1$ has empty interior in $f \in U_1$ for all $f \in U_1$.

c)

For E_n to be closed in $L_1([0,1],m)$ for all $n \ge 1$, we need to have that any cauchy sequence in E_n has limit in E_n . We take (f_n) to be any cauchy sequence of funtions where each $f_n \in E_n$. Then there exists f such that $\lim(f_n) = f$ and there exists $n \ge 1$ such that (f_n) converges uniformly to f since $f_n \in E_n$ and by definition of E_n and f is continuous by definition, since $f \in L_1([0,1],m)$.

Then we can let $|f(x) - f_n(x)| < \frac{\epsilon}{2}$ and $|f_n(x) - n| < \frac{\epsilon}{2}$, for $\epsilon > 0$. So we have that $|f(x) - n| = |f(x) - f_n(x) + f_n(x) - n| \le |f(x) - f_n(x)| + |f_n(x) - n| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$, for $\epsilon > 0$. So $f \in E_n$ which means that E_n is closed in $L_1([0,1],m)$ for all $n \ge 1$.

d)

By definition 3.12 in the lecture notes, we need to show that there exists a sequence $(E_n)_{n\geq 1}$ of nowhere dense sets such that $L_3([0,1],m) = \bigcup_{n\geq 1}^{\infty} E_n$.

If we combine the result from (b) and (c) we get that $E_n = \bar{E_n}$, since E_n is closed in $L_1([0,1],m)$ for all $n \ge 1$ and that $\mathrm{Int}(E_n) = \mathrm{Int}(\bar{E_n}) = \emptyset$ for all $n \ge 1$, which means that $E_n \subset L_1([0,1],m)$ is nowhere dense for all $n \ge 1$ by definition 3.12 (i) in the lecture notes.

And we have that $\bigcup_{n\geq 1}^{\infty} E_n = \bigcup_{n\geq 1}^{\infty} \{f \in L_1([0,1],m) : \int_{[0,1]} |f|^3 dm \leq n\} = \{f : [0,1] \to \mathbb{K} \text{ measureable } : ||f||_1 := (\int_{[0,1]} |f(x)|^3 dm) < \infty\} = \{f : [0,1] \to \mathbb{K} \text{ measureable } : ||f||_3 := (\int_{[0,1]} |f(x)|^3 dm)^{\frac{1}{3}} < \infty\} = L_3([0,1],m).$ So $L_3([0,1],m)$ is of first category in $L_1([0,1],m)$ by definition 3.12 (ii) in the lecture notes.

Problem 5 [11 points]

Let H be an infinite dimensional separable Hilbert space with associated norm $||\cdot||$, let $(x_n)_{n\geq 1}$ be a sequence in H, and let $x\in H$.

- a) [2 p]. Suppose that $x_n \to x$ in norm, as $n \to \infty$. Does it follow that $||x_n|| \to ||x||$, as $n \to \infty$? Give a proof or a counterexample.
- b) [5 p]. Suppose that $x_n \to x$ weakly, as $n \to \infty$. Does it follow that $||x_n|| \to ||x||$, as $n \to \infty$? Give a proof or a counterexample. [Hint: Consider an orthonormal basis $(e_n)_{n\geq 1}$ in H, and use HW4.]
- c) [4 p]. Suppose that $||x_n|| \le$, for all $n \ge 1$, and that $x_n \to x$ weakly, as $n \to \infty$. Is it true that $||x|| \le 1$? Give a proof or a counterexample.

Answers

a)

Since $x_n \to x$ in norm, as $n \to \infty$, then $\lim_{n \to \infty} ||x_n - x|| = 0$. And we have that $||x_n|| - ||x|| \le ||x_n - x||$, so by the squeeze lemma, we get that $||x_n|| \to ||x||$ as $n \to \infty$.

b)

By proposition 5.28 and 5.29 in Folland we have that any Hilbert space has an orthonormal basis where any orthonormal basis countable when H is separable. So we can find an countable basis $(e_n)_{n\geq 1}$ in H. And we have by definition of weak convergense that $x_n\to x$ weakly, as $n\to\infty$ means that $< x_n,y>\to < x,y>\forall y\in H$. Then if we consider an orthonormal basis $(e_n)_{n\geq 1}$ in H such that $< e_n,e_m>=1$ if n=m and 0 otherwise. Then for $x\in H$ we have that $\sum_{n\geq 1}|< e_n,x>|^2\leq ||x||^2$, with equality when e_n is a basis for a Hilbert space as it is in our case. So we have that $|< e_n,x>|^2\to 0$, i.e. $< e_n,x>\to 0$. Which means that since H is an infinite dimensional separable Hilbert space we have that $x_n\to 0$ as $n\to\infty$. Then by HW4 problem 4 we have that the Hilbert space $\ell_2(\mathbb{N})$ is separable. And by HW4 problem 3 (a) we have that the sequence $(x_n)_{n\geq 1}$ is bounded in $||\cdot||_2$, which means that there is a constant K>0 such that $||x_n||_2 \leq K$, for all $n\geq 1$. So we have that $||x_n||\to ||0||$ as $n\to\infty$, since $||0||_2=0 \leq K$ for K>0. So the statement that $||x_n||\to ||x||$, as $n\to\infty$ as $x_n\to x$ weakly, as $n\to\infty$ is true.

c)

This is also true by calculations and arguments in problem (b), since we can choose K > 0 where K = 1 such that $||x_n|| \le 1$ for all $n \ge 1$, since we are in the same situation as in problem (b) since we again assume that $x_n \to x$ weakly, as $n \to \infty$.