San Francisco Crime Rates

SF Crime Forecasting

CS 133 - Data Visualization Member: Tang, Ho Lam Ruiyuan Li

1. Problem Definition & Inspiration

This project aims to analyze and predict crime trends in San Francisco using machine learning. By forecasting hourly crime counts and exploring spatial patterns, we provide insights to help improve public safety and resource planning.

Project Questions

Key Questions We Explore:

- 1. What are the spatial crime hotspots in San Francisco over the last 5 years?
- 2. What are the peak hours for different crime types?
- 3. Do neighborhoods show consistent patterns for specific crimes?
- 4. Are there seasonal patterns in crime trends?
- 5.Can we accurately predict the category of crime based on time, day of week, and police district?

2. Project Questions

Project Questions

Key Questions We Explore:

- 1. What are the spatial crime hotspots in San Francisco over the last 5 years?
- 2. What are the peak hours for different crime types?
- 3. Do neighborhoods show consistent patterns for specific crimes?
- 4. Are there seasonal patterns in crime trends?
- 5.Can we accurately predict the category of crime based on time, day of week, and police district?

3. Dataset Overview

Source: San Francisco Police Department Incident Reports (2018–Present)

Columns used: 9 key column

incident_category, incident_datetime, analysis_neighborhood, police_district, incident_day_of_week, incident_time, incident_description, longitude, latitude

Total rows: 952,286

crime_data_path = "/content/drive/Shareddrives/SF_Crime_Forecasting/Police_Department_Incident_Reports_2018_to_Present_20crime_df = pd.read_csv(crime_data_path) crime_df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 952287 entries, 0 to 952286 Data columns (total 35 columns):

#	Column	Non-Null Count	Dtype
0	Incident Datetime	952287 non-null	object
1	Incident Date	952287 non-null	object
2	Incident Time	952287 non-null	object
3	Incident Year	952287 non-null	int64
4	Incident Day of Week	952287 non-null	object
5	Report Datetime	952287 non-null	object
6	Row ID	952287 non-null	int64
7	Incident ID	952287 non-null	int64
8	Incident Number	952287 non-null	int64
9	CAD Number	741646 non-null	float64
10	Report Type Code	952287 non-null	object
11	Report Type Description	952287 non-null	object
12	Filed Online	185557 non-null	object
13	Incident Code	952287 non-null	int64
14	Incident Category	951133 non-null	object
15	Incident Subcategory	951133 non-null	object
16	Incident Description	952287 non-null	object
17	Resolution	952287 non-null	object
18	Intersection	900362 non-null	object
19	CNN	900362 non-null	float64
20	Police District	952287 non-null	object
21	Analysis Neighborhood	900119 non-null	object
22	Supervisor District	899893 non-null	float64
23	Supervisor District 2012	900228 non-null	float64
24	Latitude	900362 non-null	float64
25	Longitude	900362 non-null	float64
26	Point	900362 non-null	object
27	Neighborhoods	888210 non-null	float64
28	ESNCAG - Boundary File	10984 non-null	float64
29	Central Market/Tenderloin Boundary Polygon - Updated	127671 non-null	float64
30	Civic Center Harm Reduction Project Boundary	124884 non-null	float64
31	HSOC Zones as of 2018-06-05	200793 non-null	float64
32	Invest In Neighborhoods (IIN) Areas	0 non-null	float64
33	Current Supervisor Districts	900228 non-null	float64
34	Current Police Districts	899378 non-null	float64
dtyp	pes: float64(14), int64(5), object(16)		

4.Data Cleaning & Preparation

1.Handling missing values

2. Simplifying categories

3. Feature creation

4.Before/after table or bullet list

	Incident Datetime	Incident Date	Incident Time	Incident Year	Incident Day of Week	Report Datetime	Row ID	Incident ID	Incident Number	CAD Number		Longitude	Point	Neighborhoods	ESNCAG - Boundary File	Central Market/Tenderloin Boundary Polygon - Updated	Civic Center Harm Reduction Project Boundary	HSOC Zones as of 2018- 06-05	Invest In Neighborhoods (IIN) Areas	Current Supervisor Districts	Current Police Districts
0	2023/03/01 05:02:00 AM	2023/03/01	05:02	2023	Wednesday	2023/03/11 03:40:00 PM	125379506374	1253795	236046151	NaN		NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1	2023/03/14 06:44:00 PM	2023/03/14	18:44	2023	Tuesday	2023/03/14 06:45:00 PM	125402407041	1254024	230176728	NaN		NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	2023/02/15 03:00:00 AM	2023/02/15	03:00	2023	Wednesday	2023/03/11 04:55:00 PM	125378606372	1253786	236046123	NaN	***	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
3	2023/03/11 03:00:00 PM	2023/03/11	15:00	2023	Saturday	2023/03/13 08:29:00 AM	125420606244	1254206	236045937	NaN	***	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
4	2023/03/13 07:30:00 AM	2023/03/13	07:30	2023	Monday	2023/03/14 07:11:00 AM	125412306244	1254123	236047096	NaN		NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
5	2023/03/16 09:26:00 AM	2023/03/16	09:26	2023	Thursday	2023/03/16 09:26:00 AM	125467916780	1254679	230185672	230750962.0	300	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
6	2023/03/16 05:30:00 PM	2023/03/16	17:30	2023	Thursday	2023/03/16 06:02:00 PM	125482604134	1254826	230187101	230752550.0	222	-122.401324	POINT (-122.40132418490647 37.76228996810526)	54.0	NaN	NaN	NaN	NaN	NaN	9.0	2.0
7	2023/03/16 01:49:00 PM	2023/03/16	13:49	2023	Thursday	2023/03/16 01:49:00 PM	125473107041	1254731	230178047	NaN	***	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
8	2023/03/16 10:15:00 PM	2023/03/16	22:15	2023	Thursday	2023/03/17 12:03:00 PM	125561906374	1255619	236049456	NaN	***	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
9	2023/02/11 02:00:00 PM	2023/02/11	14:00	2023	Saturday	2023/03/18 01:20:00 PM	125564606244	1255646	236050049	NaN	(27)	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

5.Feature Engineering

Parsed incident_datetime into: hour, day, month, year, date_of_week

Cleaned column names for consistency

Aggregated incidents by hour to create the target: crime_count_hourly

Label-encoded categorical columns:incident_category, analysis_neighborhood, police_district

	hour	day	month	year	date_of_week	analysis_neighborhood_label	<pre>police_district_label</pre>	<pre>incident_category_label</pre>	crime_count_hourly
0	0	1	1	2018	0	18	3	17	121
1	0	1	1	2018	0	0	0	19	121
2	0	1	1	2018	0	19	8	12	121
3	0	1	1	2018	0	25	2	22	121
4	0	1	1	2018	0	15	4	21	121

6.Data Cleaning Confirmation

Confirm data cleanliness and structure.

No missing (null) values in any of the 12 columns — that means the dataset is fully cleaned.

Verifying that the dataset is clean and ready.

Rows before drop: 952287 Rows after drop: 899225

Rows dropped: 53062

5.57% of rows have been lost

	0
incident_category	0
analysis_neighborhood	0
police_district	0
incident_date	0
incident_day_of_week	0
longitude	0
latitude	0
hour	0
day	0
month	0
year	0
date_of_week	0

dtype: int64

7.DATA TRANSFORMATION

- 1. This table shows that our dataset is complete.
- 2.many different crime types

incident_category	4
analysis_neighborhood	4
police_district	1
incident_date	267
incident_day_of_week	
longitude	1204
latitude	1253
hour	2
day	3
month	1
year	
date_of_week	
crime_count_hourly	8
crime_count_neighborhood	3
crime_count_police_district	3
crime_count_incident_category	3
dtype: int64	

dtype: int64

8.Data Exploration

1.Shows top 10 crime types in 10 high-crime neighborhoods.

Larceny Theft is the most common crime.

Mission & Tenderloin have high counts across many crime types.

Data Exploration

	Hourly Crime Count in Top 10 Neighborhoods														
0 -	5919	4844	4936	2981	3590	1544	948	1818	1896	1592	1665	1314	818	1142	979
н -	3584	2218	2422	1507	1327	700	672	664	1175	1010	1023	641	436	396	534
7 -	2996	2033	2004	1425	1200	589	551	660	999	781	689	557	406	390	525
ო -	2238	1622	1580	1059	1059	494	306	561	713	595	478	581	380	365	441
4 -	1869	1368	1208	990	905	471	277	472	628	543	422	431	321	303	368
ν -	1452	1284	1077	1003	825	449	247	429	507	414	405	365	256	256	331
φ-	1831	1837	1358	1145	1150	571	286	418	534	508	460	391	283	269	338
	2384	2770	2176	1485	1618	702	393	616	651	739	569	527	326	329	447
œ -	3433	3631	3084	2195	2322	1272	727	1005	934	1013	780	895	561	632	664
ი -	3578		3621	2460	2673	1252	1029	1203	939	1043	842	952	763	655	775
연 -	3665	4250	3927	2926	2849	1445	1509	1311	997	1108	1160	1131	1195	856	743
Hour 12 11		4905		3379	2891	1477	1986	1315	1045	1041	1410	1307	1418	1107	705
운 건 -	5955	6811	4978	4459	3978	1963	2178	1973	1420	1557	1663	1609	1638	1387	1250
E -	4748	6053			3067	1510	1761	1269	1041	1051	1142	1297	1241	992	848
4 -	4619	5840	4551		3110	1589	1640	1302	1020	1057	1205	1110	1160	914	918
51 -	4785	6031	4574		3247	1704	1622	1504	1112	1217	1247	1233	1084	1062	951
- 19	5259	5785			3518	1836	1683	1427	1228	1251	1302	1261	1134	1096	1076
17	5614	5503	4559	4528	3627	1907	1825	1553	1281	1378	1417	1423	1283	1276	1323
8 -	5655	5101	4238	4355	3274	1957	1935	1534	1373	1418	1468	1593	1322	1316	1199
- 13	5231	4552	3601	3853	2868	1869	1921	1340	1274	1372	1298	1613	1311	1146	1042
- 20	4711	4043	3251	3331	2580	1633	1705	1241	1320	1198	1163	1403	1123	1072	978
21	4675		3195	2600	2461	1344	1371	1287	1228	1220	1025	1147	1008	919	894
22	4519	3597	3432	2277	2546	1250	1080	1253	1357	1162	1045	1030	768	800	817
- 23	4438	3381	3261	1908	2138	1057	878	905	1373	1023	1064	861	586	581	727
	Mission -	Tenderloin -	South of Market -	Financial District/South Beach -	Bayview Hunters Point -	Western Addition -	North Beach -	Sunset/Parkside -	Nob Hill	Castro/Upper Market -	Marina -	Hayes Valley -	Russian Hill .	Outer Richmond -	Bernal Heights -

2. Hourly Crime Count in Top 10 Neighborhoods

Crime peaks in late afternoon and evening.

Mission and Tenderloin stay high all day

- 3000

-2000

- 1000

Data Exploration

3.Line Chart: Monthly Crime Trend Over Time

Crime dropped sharply around 2020.

Seasonal ups & downs are visible each year.

9.CLUSTERING

The main goal for this part is to find out two different pattern

- 1. Using DBSCAN Clustering to Visualize and understand crime hotspots
- 2. Find out the crime density or frequency context Include features that indicate how active or dangerous a time/place is

10.CLUSTERING

Crime Type Clusters (PCA 2D)

K-Distance

We used this K-Distance Graph to pick the eps value for DBSCAN. The elbow point (around 0.05) shows the best distance threshold for detecting crime clusters.

Hourly Crime Pattern for Top DBSCAN Clusters

This chart shows the hourly crime counts for the top DBSCAN clusters.

Cluster 0 (orange line) has the highest crime activity, peaking around noon and early evening.

Other clusters (13, 15, 37) have much lower crime counts and flatter patterns.

Preparation For Training

5

This table shows the crime categories grouped into 4 crime type groups.

- **Group 3 (Larceny Theft)** is the largest, with over 250,000 cases.
- Group 2 includes common crimes like Assault, Burglary, and Motor Vehicle Theft.
- Group 1 covers smaller categories such as Warrant and Drug Offense.
- **Group 0 (Human Trafficking)** is rare, with only 3 cases.

		Count
crime_type_group	incident_category	
0	Human Trafficking - Involuntary Servitude	3
1	Other Miscellaneous	64765
	Warrant	28770
	Drug Offense	25798
	Weapons Offense	12008
	Traffic Violation Arrest	8599
2	Malicious Mischief	61539
	Assault	59704
	Non-Criminal	54216
	Burglary	52287
	Motor Vehicle Theft	51536
3	Larceny Theft	252675

count

dtype: int64

Model Training

(keras, src, callbacks, history, History at 0x7d9cdaa58a10)

DecisionTre	e precision	recall	f1-score	support	LogisticRegr	cession precision	recall	f1-score	support	RandomFores	t precision	recall	f1-score	support
1 2 3	0.46 0.78 0.81	0.53 0.75 0.80		30104 99206 50535	1 2 3	0.36 0.78 0.78	0.55 0.63 0.83	0.43 0.70 0.81	30104 99206 50535	1 2 3	0.64 0.78 0.89	0.44 0.89 0.82	0.52 0.83 0.85	30104 99206 50535
accuracy macro avg weighted avg		0.69 0.73		179845 179845 179845	accuracy macro avg weighted avg	0.64 0.71	0.67 0.67	0.67 0.65 0.69	179845 179845 179845	accuracy macro avg weighted avg	0.77 0.79	0.71 0.79	0.79 0.73 0.78	179845 179845 179845
8992/8992			204s 20ms/step 200s 20ms/step 182s 20ms/step	o - accuracy: 0.5 o - accuracy: 0.5 o - accuracy: 0.5	5820 - loss: 0.9284 - va 5831 - loss: 0.9266 - va 5836 - loss: 0.9256 - va 5821 - loss: 0.9272 - va 5827 - loss: 0.9267 - va	1_accuracy: 0.5806 1_accuracy: 0.5794 1_accuracy: 0.5802	- val_loss: - val_loss: - val_loss:), 9316), 9324), 9330		RandomFore	st – Confusion Matri 15950	937	-80000 -70000 -60000	

Based on accuracy and F1-scores, RandomForest is the best-performing model, achieving 79% accuracy and the highest scores across all classes.

183s 20ms/step - accuracy: 0.5828 - loss: 0.9264 - val accuracy: 0.5804 - val loss: 0.9313

216s 22ms/step - accuracy: 0.5834 - loss: 0.9256 - val_accuracy: 0.5801 - val_loss: 0.9324

185s 20ms/step - accuracy: 0.5836 - loss: 0.9252 - val accuracy: 0.5816 - val loss: 0.9309

182s 20ms/step - accuracy: 0.5851 - loss: 0.9239 - val_accuracy: 0.5807 - val_loss: 0.9319

11.Challenges

• Parameter Tuning for DBSCAN:

Choosing the optimal eps value was tricky. We used a K-Distance Graph to guide our selection, but it required trial and error to correctly interpret the elbow point.

Data Imbalance:

Some crime categories and clusters had very few data points, making it difficult to build balanced and accurate models.

• Finding the Right Approach:

One of the biggest challenges was figuring out the best way to approach the problem. We explored different clustering methods, visualizations, and machine learning models before deciding what was most effective for our data.