

ECE2810J Data Structures and Algorithms

Dynamic Programming

Learning Objectives:

- Understand the basic idea of dynamic programming
- Know under what situation dynamic programming could be applied

Outline

- Dynamic Programming
 - Example 1: Fibonacci sequence
 - Example 2: 0/1 Knapsack problem
 - Exercise
 - Example 3: Matrix-Chain Multiplication
 - Summary

Limitation of Divide and Conquer

- Recursively solving subproblems can result in the same computations being repeated when the subproblems overlap.
- For example: computing the Fibonacci sequence

```
f_0 = 0; f_1 = 1; f_n = f_{n-1} + f_{n-2}, n \ge 2
```

Divide and conquer approach:

```
int fib(int n) {
  if(n <= 1) return n;
  return fib(n-1)+fib(n-2);
}</pre>
```

Fibonacci Sequence: Divide and Conquer Solution

Fibonacci Sequence Iterative Solution

We can also compute the Fibonacci sequence in iterative way:

```
int fib(int n) {
  f[0] = 0; f[1] = 1;
  for(i = 2 to n)
    f[i] = f[i-1]+f[i-2];
  return f[n];
}
```

▶ Time complexity is $\Theta(n)$.

Dynamic Programming

- Used when a problem can be divided into subproblems that overlap.
 - ▶ Solve each subproblem once and store the solution in a table.
 - ▶ If a subproblem is encountered again, simply look up its solution in the table.
 - Reconstruct the solution to the original problem from the solutions to the subproblems.
- ▶ The more overlap the better, as this reduces the number of subproblems.
- Dynamic programming can be applied to solve optimization problem.

Optimization Problem

- Many problems we encounter are optimization problems:
 - ▶ A problem in which some function (called the **objective function**) is to be optimized (usually minimized or maximized) subject to some **constraints**.
- The solutions that satisfy the constraints are called feasible solutions.
- The number of feasible solutions is typically very large.
- ▶ We obtain the optimal solution by **searching** the feasible solution space.

Optimization Problem Example

- Minimum spanning tree.
 - ▶ Objective function: the sum of all edge weights.
 - ► Constraints: a subgraph of a MST must also be MSTs.

Optimization Problem Example

- Shortest path.
 - Objective function: the sum of all edge weights.
 - Constraints: a subgraph of a shortest path must also be shortest paths.

Takeaway: Dynamic Programming is often linked with Induction! Book-keep partial results to avoid redundant computation!

Outline

- Dynamic Programming
 - Example 1: Fibonacci sequence
 - Example 2: 0/1 Knapsack problem
 - Exercise
 - Example 3: Matrix-Chain Multiplication
 - Summary

Item 5 Weight = 3kg Value = \$2

Item 4 Weight = 4kg Value = \$5

Weights

Empty	0				
Item 1 Weight = 3kg Value = \$2	1				
Item 2 Weight = 1kg Value = \$2	2				
Item 3 Weight = 3kg Value = \$4	3				
Item 4 Weight = 4kg Value = \$5	4				
Item 5 Weight = 2kg Value = \$3	5				

Items Included

Note: Row 2 means empty, item 1, item 2 can be included Row 3 means empty, item 1, item 2 and item 3 can be included

Weights

i	Empty
Item 1 Weight = 3kg Val	ue = \$2
Item 2 Weight = 1kg Val	ue = \$2
Item 3 Weight = 3kg Val	ue = \$4
Item 4 Weight = 4kg Val	ue = \$5

Item 5 Weight = 2kg Value = \$3

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	0	2	2	2	2	2
2	0	2	2	2	4	4	4	4
3	0	2	2	4	6	6	6	8
4	0	2	2	4	6	7	7	9
5	0	2	3	5	6	7	9	10

Items Included

Note: Row 2 means empty, item 1, item 2 can be included
Row 3 means empty, item 1, item 2 and item 3 can be included

Weights

Em	ntı
	PLy

Item 1 Weight = 3kg Value = \$2

Item 2 Weight = 1kg Value = \$2

Item 3 Weight = 3kg Value = \$4

Item 4 Weight = 4kg Value = \$5

Item 5 Weight = 2kg Value = \$3

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	0	2	2	2	2	2
2	0	2	2	2	4	4	4	4
3	0	2	2	4	6	6	6	8
4	0	2	2	4	6	7	7	9
5	0	2	3	5	6	7	9	10

Items Included

Backtrace solution:

- (1) Compare with the row above
- (2) Subtract the weight of current item

Weights

Empty

Item 1 Weight = 3kg Value = \$2

Item 2 Weight = 1kg Value = \$2

Item 3 Weight = 3kg Value = \$4

Item 4 Weight = 4kg Value = \$5

Item 5 Weight = 2kg Value = \$3

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	0	2	2	2	2	2
2	0	2	2	2	4	4	4	4
3	0	2	2	4	6	6	6	8
4	0	2	2	4	6	7	7	9
5	0	2	3	5	6	7	9	10

Items Included

Final Item pick: Item 2, Item 4, and item 5

Exercise 1

LeetCode: Problem 518

Outline

- Dynamic Programming
 - Example 1: Fibonacci sequence
 - Example 2: 0/1 Knapsack problem
 - Exercise
 - Example 3: Matrix-Chain Multiplication
 - Summary

- What is the cost of multiplying two matrices A and B?
 - ▶ Suppose A is a $p \times q$ matrix and B is a $q \times r$ matrix.
 - Since the time to compute C = AB is dominated by the number of scalar multiplications, we use the number of scalar multiplications as the complexity measure.
- - \triangleright We need q scalar multiplications to calculate C_{ij} .
 - ightharpoonup C is of size $p \times r$.
- \triangleright The number of scalar multiplications is pqr. (IMPORTANT!)

- Now how would you compute the multiplication of three matrices $A \times B \times C$?
 - ▶ Suppose A is of size 100×1 , B is of size 1×100 , and C is of size 100×1 .
- If we multiply as $(A \times B) \times C$, the number of scalar multiplications is 20000.
- ▶ If we multiply as $A \times (B \times C)$, the number of scalar multiplications is 200.

- If we want to multiply a chain of matrices $A_1 \times A_2 \times \cdots \times A_n$, where A_i is of size $p_{i-1} \times p_i$, what is the best order of multiplication to minimize the number of scalar multiplications?
- ▶ This is an optimization problem.
- It can be proved that number of different orders on n matrices is $\Omega(4^n/n^{1.5})$.
- Instead of <u>enumerating</u> all of the orders, can we do better to solve the optimization problem?

- For simplicity, define the problem of finding the optimal order to multiply $A_i \times A_{i+1} \times \cdots \times A_j$ as $Q_{i\sim j}$. The minimal number of scalar multiplications is $m_{i\sim j}$.
 - We ultimately want to solve $Q_{1\sim n}$.

- Suppose in the optimal order for $A_i \times \cdots \times A_j$, the <u>last</u> multiplication is $(A_i \times \cdots \times A_k) \times (A_{k+1} \times \cdots \times A_j)$.
- Then the order of computing $A_i \times \cdots \times A_k$ in the optimal order of computing $A_i \times \cdots \times A_j$ must be an optimal order to compute $A_i \times \cdots \times A_k$.
 - ► Why?
 - If not, then we copy and paste the better order \rightarrow we have a better order for computing $A_i \times \cdots \times A_j!$
 - ▶ Similar conclusion for computing $A_{k+1} \times \cdots \times A_i$.
- If we know k, we can divide the problem $Q_{i\sim j}$ into two smaller instances: $Q_{i\sim k}$ and $Q_{(k+1)\sim j}$.

- Assume we have known the minimum number of scalar multiplications for $Q_{i\sim k}$ and $Q_{(k+1)\sim j}$ as $m_{i\sim k}$ and $m_{(k+1)\sim j}$.
 - ► Then $m_{i\sim j} = m_{i\sim k} + m_{(k+1)\sim j} + p_{i-1}p_kp_j$.
- ▶ However, we don't know k! We need to consider all possible divisions, i.e., all $i \le k \le j-1$.
- Thus, in order to solve $Q_{i\sim j}$, we need to consider all subproblems $Q_{i\sim k}$ and $Q_{(k+1)\sim j}$, for all $i\leq k\leq j-1$.

In summary, we can divide the problem into subproblems of the same form.

Many subproblems are overlapped.

- The straightforward recursive algorithm has exponential time complexity.
 - ▶ However, it will encounter each subproblem many times in different branches of the tree.
- ▶ The total number of different subproblems is not exponential.
 - ▶ They are $Q_{i\sim j}$, for $1 \le i \le j \le n$.
 - ▶ The total number is n(n+1)/2.
- ▶ Instead, we use a <u>tabular</u>, <u>bottom-up</u> approach.

Matrix-Chain Multiplication Bottom-up Approach

Apply the recursive relation:

$$m_{i \sim j} = \min_{i \le k \le j-1} (m_{i \sim k} + m_{(k+1) \sim j} + p_{i-1} p_k p_j)$$

- lnitial situation $m_{1\sim 1}=m_{2\sim 2}=\cdots=m_{n\sim n}=0$.
- In the first round, we compute $m_{1\sim 2}, m_{2\sim 3}, ..., \overline{m_{(n-1)\sim n}}$.
- ▶ In the second round, we compute $m_{1\sim3}$, $m_{2\sim4}$, ..., $m_{(n-2)\sim n}$.
- So on and so forth. In the *l*-th round, we compute $m_{1\sim(l+1)}, m_{2\sim(l+2)}, ..., m_{(n-l)\sim n}$.
- Finally, we compute $m_{1\sim n}$.
- ▶ To obtain the multiplication order, we also record the partition k which gives the minimal $m_{i\sim j}$ as $s_{i\sim j}$.

- $p_0 = 10, p_1 = 1, p_2 = 10, p_3 = 1, p_4 = 20.$

	m_{ij}	1	<i>j</i> 2	3	4
	1	0			
i	2	_	0		
	3	-	_	0	
	4	_	_	_	0

		1	2 j	3	4
	1	-			
i	2	-	_		
	3	-	_	_	
	4	-	_	_	_

$$\qquad \qquad n = 4, \, A_1 \times A_2 \times A_3 \times A_4.$$

$$p_0 = 10, p_1 = 1, p_2 = 10, p_3 = 1, p_4 = 20.$$

	m_{ij}	1	2 j	3	4
	1	0			
i	2	-	0		
·	3	-	_	0	
	4	ı	_	_	0

$$m_{i\sim(i+1)} = m_{i\sim i} + m_{(i+1)\sim(i+1)} + p_{i-1}p_ip_{i+1}$$
$$= p_{i-1}p_ip_{i+1}$$

- $\qquad \qquad n = 4, \, A_1 \times A_2 \times A_3 \times A_4.$
- $p_0 = 10, p_1 = 1, p_2 = 10, p_3 = 1, p_4 = 20.$

	m_{ij}	1	2 j	3	4
	1	0	100		
i	2	-	0	10	
·	3	-	_	0	200
	4	-	_	_	0

		1	<i>j</i> 2	3	4
	1	-	1		
i	2	_	_	2	
	3	_	_	_	3
	4	_	_	_	_

$$m_{i\sim(i+1)} = m_{i\sim i} + m_{(i+1)\sim(i+1)} + p_{i-1}p_ip_{i+1}$$
$$= p_{i-1}p_ip_{i+1}$$

- $p_0 = 10, p_1 = 1, p_2 = 10, p_3 = 1, p_4 = 20.$

	m_{ij}	1	<i>j</i> 2	3	4
	1	0	100		
i	2	-	0	10	
L	3	_	_	0	200
	4	-	_	_	0

$$m_{i\sim(i+2)} = \min\{m_{i\sim i} + m_{(i+1)\sim(i+2)} + p_{i-1}p_ip_{i+2},$$

$$m_{i\sim(i+1)} + m_{(i+2)\sim(i+2)} + p_{i-1}p_{i+1}p_{i+2}\}$$

$$\qquad \qquad n = 4, \, A_1 \times A_2 \times A_3 \times A_4.$$

$$p_0 = 10, p_1 = 1, p_2 = 10, p_3 = 1, p_4 = 20.$$
 j

	m_{ij}	1	2	3	4
	1	0	100		
i	2	_	0	10	
	3	_	_	0	200
	1	_	_	_	0

$$m_{1\sim 3} = \min\{m_{1\sim 1} + m_{2\sim 3} + p_0 p_1 p_3,$$

$$m_{1\sim 2} + m_{3\sim 3} + p_0 p_2 p_3\} = \min\{20, 200\}$$

- $\qquad \qquad n = 4, \, A_1 \times A_2 \times A_3 \times A_4.$
- $p_0 = 10, p_1 = 1, p_2 = 10, p_3 = 1, p_4 = 20.$

	m_{ii}		j					j	
	v)	1	2	3	4		1	2	3
i	1	0	100	20		1	_	1	1
	2	_	0	10		_i 2	-	-	2
ı	3	-	_	0	200	3	_	-	_
	4	_	_	_	0	4	_	_	_

$$m_{1\sim 3} = \min\{m_{1\sim 1} + m_{2\sim 3} + p_0 p_1 p_3,$$

$$m_{1\sim 2} + m_{3\sim 3} + p_0 p_2 p_3\} = \min\{20, 200\}.$$

$$\qquad \qquad n = 4, \, A_1 \times A_2 \times A_3 \times A_4.$$

$$p_0 = 10, p_1 = 1, p_2 = 10, p_3 = 1, p_4 = 20.$$

$$m_{2\sim 4} = \min\{m_{2\sim 2} + m_{3\sim 4} + p_1 p_2 p_4, \\ m_{2\sim 3} + m_{4\sim 4} + p_1 p_3 p_4\} = \min\{400, 30\}$$

- $\qquad \qquad n = 4, \, A_1 \times A_2 \times A_3 \times A_4.$
- $p_0 = 10, p_1 = 1, p_2 = 10, p_3 = 1, p_4 = 20.$

		1	2 ^j	3	4
	1	0	100	20	
i	2	-	0	10	30
	3	1	_	0	200
	4	-	-	-	0

$$m_{2\sim 4} = \min\{m_{2\sim 2} + m_{3\sim 4} + p_1 p_2 p_4,$$

 $m_{2\sim 3} + m_{4\sim 4} + p_1 p_3 p_4\} = \min\{400, 30\}$

- $\qquad \qquad n = 4, \, A_1 \times A_2 \times A_3 \times A_4.$
- $p_0 = 10, p_1 = 1, p_2 = 10, p_3 = 1, p_4 = 20.$

		1	<i>j</i> 2	3	4
i	1	0	100	20	
	2	-	0	10	30
	3	I	_	0	200
	4	I	_	_	0

	k_{ij} j				
		1	2 1	3	4
i	1	-	1	1	
	2	-	_	2	3
	3	-	_	_	3
	4	I	_	_	_

$$m_{i\sim(i+3)} = \min_{i\leq k\leq i+2} (m_{i\sim k} + m_{(k+1)\sim(i+3)} + p_{i-1}p_k p_{(i+3)})$$

Matrix-Chain Multiplication Example

- $\qquad n = \overline{4, A_1 \times A_2 \times A_3 \times A_4}.$
- $p_0 = 10, p_1 = 1, p_2 = 10, p_3 = 1, p_4 = 20.$

		1	2 J	3	4
i	1	-	1	1	
	2	-	_	2	3
	3	_	_	_	3
	4	_	_	_	_

$$m_{1\sim 4} = \min_{1\leq k\leq 3} (m_{1\sim k} + m_{(k+1)\sim 4} + p_0 p_k p_4)$$
$$= \min\{230, 2300, 220\}$$

Matrix-Chain Multiplication Example

- $\qquad \qquad n = 4, \, A_1 \times A_2 \times A_3 \times A_4.$
- $p_0 = 10, p_1 = 1, p_2 = 10, p_3 = 1, p_4 = 20.$

		1	2 <i>j</i>	3	4	k_{ij} Optimal	1	2 ^j	3	4
i	1	0	100	20 (220	Value	-	1	1	3
	2	-	0	10	30	, 2	-	_	2	3
	3	-	-	0	200	3	_	_	_	3
	4	_	_	-	0	4	-	-	_	-

$$m_{1\sim 4} = \min_{1\leq k\leq 3} (m_{1\sim k} + m_{(k+1)\sim 4} + p_0 p_k p_4)$$
$$= \min\{230, 2300, 220\}$$

Matrix-Chain Multiplication Constructing an Optimal Order

 \triangleright We can construct an optimal order based on the records s_{ij} .

```
Print_Order(s, i, j) {
   if(i == j) cout << "A<sub>i</sub>";
   else {
      cout << "(";
      Print_Order(s, i, s<sub>ij</sub>);
      cout << "*";
      Print_Order(s, s<sub>ij</sub>+1, j);
      cout << ")";
   }
}</pre>
```

Initial call is Print Order(s, 1, n);

Matrix-Chain Multiplication Example

- Construct an optimal order
 - \triangleright n = 4, $A_1 \times A_2 \times A_3 \times A_4$.
 - $p_0 = 10, p_1 = 1, p_2 = 10, p_3 = 1, p_4 = 20.$

$$k_{14} = 3$$
 $A_1 \times A_2 \times A_3 \times A_4 = (A_1 \times A_2 \times A_3) \times A_4$

$$k_{13} = 1$$
 $A_1 \times A_2 \times A_3 = A_1 \times (A_2 \times A_3)$

$$k_{23} = 2$$
 $A_2 \times A_3 = A_2 \times A_3$

$$A_1 \times A_2 \times A_3 \times A_4 = (A_1 \times (A_2 \times A_3)) \times A_4$$

Matrix-Chain Multiplication Time Complexity

- ▶ Get the minimum number of scalar multiplications:
 - We need to obtain all m_{ij} and s_{ij} , for $1 \le i \le j \le n$.
 - $\triangleright O(n^2)$ records
 - ▶ Each $m_{i\sim j}$ is the minimum of O(n) terms.
 - ▶ Total time complexity is $O(n^3)$.
- Obtain the optimal order:
 - \triangleright O(n)

Matrix-Chain Multiplication Summary

- Matrix-chain multiplication is an optimization problem.
- The solution is based on dynamic programming.
 - The original problem can be divided into same subproblems that overlap.
 - Each subproblem is solved once and stored in a table.
 - ▶ If a subproblem is encountered again, simply look up its solution in the table.
 - Reconstruct the solution to the original problem from the solutions to the subproblems.

Outline

- Dynamic Programming
 - Example 1: Fibonacci sequence
 - Example 2: 0/1 Knapsack problem
 - Exercise
 - Example 3: Matrix-Chain Multiplication
 - Summary

Dynamic Programming for Optimization

- There are two key ingredients that an optimization problem must have in order for dynamic programming to apply:
 - Optimal substructure;
 - Overlapping subproblems.

Optimal Substructure

- An optimal solution to the problem contains within it optimal solutions to subproblems.
 - In matrix-chain multiplication, the optimal order on calculating $A_i \times \cdots \times A_j$ that splits the product between A_k and A_{k+1} contains within it optimal solutions to the problem of ordering $A_i \times \cdots \times A_k$ and $A_{k+1} \times \cdots \times A_j$.
- You can show optimal substructure property by supposing that each of the subproblem solutions is not optimal and then deriving a contradiction.

Overlapping Subproblems

- A recursive algorithm for the problem solves the same subproblems over and over, rather than always generating new subproblems.
 - ▶ E.g., subproblems of matrix-chain multiplication overlap.
 - ▶ In contrast, a problem for which a divide-and-conquer approach is suitable usually generates brand-new problems at each step of the recursion.
- Dynamic-programming algorithms take advantage of overlapping subproblems by
 - solving each subproblem once ...
 - ... and then storing the solution in a table where it can be looked up when needed.

Designing a Dynamic-Programming Algorithm

- Characterize the structure of an optimal solution.
 Usually, we need to define a general problem.
- 2. Recursively define the value of an optimal solution.
- 3. Compute the value of an optimal solution, typically in a bottom-up fashion.
- 4. Construct an optimal solution from computed information.

Dynamic Programming

Learning Objectives:

- Understand the basic idea of dynamic programming
- Know under what situation dynamic programming could be applied

Exercise 2

Geeks for Geeks: exercise link

