LV 11.4500 - UBUNG 6

U6.1 An rv X on \mathbb{R}^d can be uniquely described by its distribution \mathbb{P}_X , its cdf F_X , or, when it exists, its pdf π_X . The characteristic function $\varphi: \mathbb{R}^d \to \mathbb{C}$ defined by

$$\varphi(t) = \mathbb{E}\left[\exp(i\langle t, X\rangle)\right] \quad \forall t \in \mathbb{R}^d$$

where $i = \sqrt{-1}$ and $\langle x, y \rangle := \sum_{i=1}^{d} x_i y_i$, is yet another way to uniquely describe the rv X.

The characteristic function of a Gaussian rv $X \sim N(m, C)$ is given by

$$\varphi(t) = \exp(i\langle t, m \rangle - \langle t, Ct \rangle/2).$$

- a) Show that if $X \sim N(m_1, C_1)$ and $Y \sim N(m_2, C_2)$ are independent rv on \mathbb{R}^d and $A \in \mathbb{R}^{d \times d}$, then Z = X + AY is also Gaussian. Determine the mean and covariance of Z.
 - b) Consider the following dynamics

$$V_{j+1} = AV_j + \xi_j$$
$$V_0 \sim N(m_0, C_0)$$

with $A \in \mathbb{R}^{d \times d}$, an iid sequence $\xi_j \sim N(0, \Sigma)$ and $V_0 \perp \{\xi_j\}$. Show that for any $j \in \mathbb{N}$, V_j is Gaussian, and determine its mean and covariance.

Hint: Argue by induction and use a) to verify Gaussianity.

c) Consider the scalar-valued special case of the above dynamics

$$V_{j+1} = \lambda V_j + \xi_j$$
$$V_0 \sim N(m_0, \sigma_0^2)$$

with an iid sequence $\xi_j \sim N(0, \sigma^2)$ that is independent from V_0 , and a scalar-valued λ satisfying $|\lambda| < 1$.

Verify that

$$\mathbb{P}_{V_n} \Rightarrow N(0, \frac{\sigma^2}{1 - \lambda^2})$$

Hint: First verify that $\{\mathbb{E}[V_j]\}_j$ and $\{\mathbb{E}[V_j^2]\}_j$ are Cauchy sequences.

U6.2 In its original form (but still keeping our parameter lettering a,b,r rather than the original σ,β,ρ) the Lorenz '63 model is given by

$$\dot{v}_1 = a(v_2 - v_1)
\dot{v}_2 = rv_1 - v_2 - v_1v_3 \qquad t \ge 0,
\dot{v}_3 = v_1v_2 - bv_3$$

with a, b, r > 0 and $v(0) \in \mathbb{R}^3$.

a) Show that by a change of variables the system can be rewritten

(1)
$$\begin{aligned} \dot{v}_1 &= a(v_2 - v_1) \\ \dot{v}_2 &= -av_1 - v_2 - v_1v_3 \\ \dot{v}_3 &= v_1v_2 - bv_3 - b(r+a) \end{aligned} \} =: f(v), \qquad t \ge 0,$$

with a, b, r as above, and $v(0) \in \mathbb{R}^3$.

b) Determine $\alpha, \beta > 0$ (as functions of a, b, r) such that

$$f(v)^T v < \alpha - \beta |v|^2$$
.

c) Assuming a solution v exists for all times $t \ge 0$ with $|v(0)|^2 \le \alpha/\beta$, show that

$$|v(t)|^2 \le \alpha/\beta \quad \forall t \ge 0.$$

d) Assuming that $|v(0)|^2 \le \alpha/\beta$, prove that there exists a locally unique solution up until the first time when $|v(t)|^2 > \alpha/\beta$. Conclude from c) that a unique solution exists for all times.

Hint: Apply the Picard-Lindelöf theorem.

Let $D = \{v \in \mathbb{R}^3 | |v|^2 \le \alpha/\beta\}$. Then the restriction of the above vector field $f: D \to \mathbb{R}^3$ is uniformly Lipschitz continuous on D.

e) As a very simplified numerical study of how partial observations may improve the stability of ODE, consider the Lorenz '63 dynamics (1) with (a,b,r)=(10,8/3,28) with either v(0)=(1,1,1) or perturbed initial data $\tilde{v}(0)=(1,1,1+10^{-5})$. To study the stability of the dynamics, we consider $|v(20)-\tilde{v}(20)|$ solved by numerical integration in the following Matlab implementation:

```
options = odeset('RelTol',1e-12,'AbsTol',1e-10); a = 10; b = 8/3; r = 28; f = @(t,v) [a*(v(2)-v(1)); -a*v(1)-v(2)-v(1)*v(3); v(1)*v(2)-b*v(3)-b*(r+a)]; [t,v]=ode45(f,[0 20],[1 1 1], options); [t2,vTilde] = ode45(f,[0 20],[1 1 1+1e-5], options); finalTimeError = norm(v(end,:) - vTilde(end,:)) This yields |v(20) - \tilde{v}(20)| \approx 15.7.
```

As a comparison, try to update the value of the third component of the dynamics \tilde{v} at every integer time t = 1, 2, ..., 19 with an exact observation of v_3 . That is, set v(0) = (1, 1, 1) and $\tilde{v}(0) = (1, 1, 1 + 10^{-5})$ and for t = 0, 1, ..., 19:

- 1. compute $v(t+1) = \Psi(v(t);1)$ and $\tilde{v}(t+1) = \Psi(\tilde{v}(t);1)$
- 2. update/correct third component of the perturbed dynamics with exact observation, $\tilde{v}_3(t+1) = v_3(t+1)$
- 3. set $t \mapsto t+1$ and return to step 1.

Here, $\Psi(\cdot;\tau)$ is defined as on page 13 of Lecture 13.

Implement this algorithm in your favorite computer language and compute the resulting final time error $|v(20) - \tilde{v}(20)| = ?$.

Rather than updating the value of the third component of \tilde{v}_3 , try updating any of the other components and see whether that improves the stability to the same degree.

U6.3 Consider the $V_0|Y_{1:J}=y_{1:J}$ smoothing problem on page 35 of Lecture 13 with $|\lambda|=1$. Verify that $V_0|Y_{1:J}=y_{1:J}\sim N(m(j),\sigma_{post}^2(j))$ and show that

$$\sigma_{post}^2(j) \to 0$$
 as $J \to \infty$.

Interpret the result.

- U6.4 The derivation of smoothing densities treated in the lectures considers dynamics additive Gaussian noise: $V_{j+1} = \Psi(V_j) + \xi_j$ with $\xi \sim N(0, \Sigma)$. This may be extended to more general Markov chain dynamics:
 - a) Assume that $V_0 \sim \pi_{V_0}$ and that V_j is a time-homogeneous Markov chain described in terms of the transition kernel density $k : \mathbb{R}^d \times \mathbb{R}^d \to [0, \infty)$, and that we have observations

$$Y_i = V_i + \eta_i, \quad j = 1, 2, \dots$$

with iid $\eta_j \sim N(0,\Gamma)$ and $\{\eta_j\} \perp \{V_j\}$. Using the kernel density, derive, up to a constant, an expression for the smoothing posterior

$$\pi(v_{0:J}|y_{1:J}).$$

b) Consider d=1 and the kernel density $k(x,y)=e^{-2|x-y|}$, and that the observations are given by

$$Y_i = V_i + \eta_i, \quad j = 1, 2, \dots$$

with iid η_j where $\pi_{\eta}(x) = e^{-2|x|}$ and $\{\eta_j\} \perp \{V_j\}$. Derive up to a constant, an expression for the smoothing posterior

$$\pi(v_{0:J}|y_{1:J}).$$

and show that if $\tilde{y}_{1:J}$ is a perturbed observation sequence of $y_{1:J}$, then there exists a c > 0 depending on $y_{1:J}$ and $\tilde{y}_{1:J}$ such that

$$d_H(\pi(\cdot|y_{1:J}), \pi(\cdot|\tilde{y}_{1:J})) \le c \sum_{j=1}^{J} |y_j - \tilde{y}_j|.$$

U6.5 Consider the dynamics

$$V_{j+1} = \sin(V_j)V_j + \xi_j$$
 $j = 0, 1, ...$
 $V_0 \sim N(0, 1)$

with iid $\xi_j \sim N(0, 1/4)$ and observations

$$Y_j = V_j + \eta_j, \quad j = 1, 2, \dots$$

with iid $\eta_j \sim N(0,0.04)$ and $V_0 \perp \{\xi_j\} \perp \{\eta_j\}$. For any J>0, we define the distance (functional) of a path $v_{0:J} \in \mathbb{R}^{J+1}$ by

$$D(v_{0:J}) = \sqrt{\sum_{k=0}^{J-1} |v_{k+1} - v_k|^2}$$

Given the observation

 $y_{1:9} = (0.2781, 0.8839, 1.1496, 0.6607, 0.1846, -0.5131, 0.0733, 1.3827, 0.8426, 0.4538)$

the task of this exercise is to provide a numerical estimate of the average distance of a path $V_{0:10}$ given $Y_{1:10} = y_{1:10}$. In other words, to approximate

$$\mathbb{E}\left[D(V_{0:10})|Y_{1:10}=y_{1:10}\right].$$

Hint: First derive the posterior $\pi(v_{0:10}|y_{1:10})$ up to a constant. Then sample the posterior by e.g. Markov Chain Monte Carlo.