Math 321 Lecture 29

Yuchong Pan

March 20, 2019

1 Proof of the Inverse Function Theorem

Proof. Given:

$$E \stackrel{\text{open}}{\subseteq} \mathbb{R}^n, \mathbf{a} \in E,$$

$$\mathbf{f}: E \to \mathbb{R}^n, f \in C^1(E), \overbrace{\underbrace{f'(\mathbf{a})}_{n \times n}}^{=\mathbf{A}}$$
 invertible.

Need to show:

1.

$$U \stackrel{\text{open}}{\subseteq} E, V = \mathbf{f}(U) \stackrel{\text{open}}{\subseteq} \mathbb{R}^n,$$

 $\mathbf{f}: U \to V$ is a bijection, and hence admits an inverse $\mathbf{g}: V \to U$; $\mathbf{g}(\mathbf{v}) = \mathbf{f}^{-1}(\mathbf{v}) \in U$.

Contraction Mapping Principle:

Definition 1. Let (X, d) be any metric space. We say $\varphi : (X, d) \to (X, d)$ is a **contraction** if there exists c < 1 such that

$$d(\varphi(x), \varphi(y)) \le cd(x, y), \quad \forall x, y \in X.$$
 (*)

Theorem 1 (Contraction mapping principle). Suppose (X, d) is complete and φ is a contraction on X. Then φ admits a unique **fixed point**; i.e., there exists a unique $x_0 \in X$ such that $\varphi(x_0) = x_0$.

Step 1: Associate local bijectivity of \mathbf{f} with the existence of an auxiliary function. Fix $\mathbf{y} \in \mathbb{R}^n$. Define

$$\varphi_{\mathbf{y}}(\mathbf{x}) = \mathbf{x} + \mathbf{A}^{-1}(\mathbf{y} - \mathbf{f}(\mathbf{x})), \quad \mathbf{x} \in E.$$

Note that:

$$\mathbf{y} = \mathbf{f}(\mathbf{x}) \Leftrightarrow \varphi_{\mathbf{y}}(\mathbf{x}) = \mathbf{x} \Leftrightarrow \mathbf{x} \text{ is a fixed point of } \varphi_{\mathbf{y}}.$$

Define $U = B(\mathbf{a}; \epsilon) \subseteq E$ for some $\epsilon > 0$ to be specified. Want to choose $\epsilon > 0$ so that $\varphi_{\mathbf{y}}$ is possible since E is open

a contraction on U; i.e., need c < 1 such that

$$\|\varphi_{\mathbf{y}}(\mathbf{x}_1) - \varphi_{\mathbf{y}}(\mathbf{x}_2)\| \le c \|\mathbf{x}_1 - \mathbf{x}_2\|, \quad \forall \mathbf{x}_1, \mathbf{x}_2 \in U.$$
 (**)

Math 321 Lecture 29 Yuchong Pan

Here, $\|\mathbf{x}\| = \sqrt{x_1^2 + \ldots + x_n^2}$.

Hope: This will hold if $\varphi'_{\mathbf{v}}$ is small.

$$\begin{split} \varphi_{\mathbf{y}}(\mathbf{x}) &= \mathbf{I} - \mathbf{A}^{-1} \mathbf{f}'(\mathbf{x}), \\ \varphi_{\mathbf{y}}(\mathbf{a}) &= \mathbf{I} - \mathbf{A}^{-1} \mathbf{A} = \mathbf{0}, \\ \|\varphi_{\mathbf{y}}(\mathbf{x})\| &= \|\mathbf{A}^{-1} (\mathbf{A} - \mathbf{f}'(\mathbf{x}))\| \le \|\mathbf{A}^{-1}\| \cdot \|\mathbf{A} - \mathbf{f}'(\mathbf{x})\| \end{split}$$

Recall that for any matrix $\mathbf{B}_{m \times n}$,

$$\|\mathbf{B}\| = \sup_{\mathbb{R}^n \ni \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{B}\mathbf{x}\|_{\mathbb{R}^m}}{\|\mathbf{x}\|_{\mathbb{R}^n}}.$$

Check: $\|BC\| \le \|B\| \cdot \|C\|$.

$$\leq \left\| \mathbf{A}^{-1} \right\| \lambda = \frac{1}{2},$$

where $\epsilon > 0$ is chosen so that $\|\mathbf{f}'(\mathbf{x}) - \mathbf{A}\| < \lambda$ whenever $\|\mathbf{x} - \mathbf{a}\| < \epsilon$.

Check (**):

$$\|\varphi_{\mathbf{y}}(\mathbf{x}_2) - \varphi_{\mathbf{y}}(\mathbf{x}_1) = \left\| \int_0^1 \frac{d}{dt} \varphi_{\mathbf{y}}(t\mathbf{x}_2 + (1-t)\mathbf{x}_1) dt \right\|$$

FTC:
$$\int_a^b g'(t)dt = g(b) - g(a)$$

$$= \left\| \int_{0}^{1} \varphi_{\mathbf{y}}'(t\mathbf{x}_{2} + (1-t)\mathbf{x}_{1}) \cdot (\mathbf{x}_{2} - \mathbf{x}_{1}) dt \right\|$$

$$\leq \int_{0}^{1} \underbrace{\left\| \varphi_{\mathbf{y}}'(t\mathbf{x}_{2} + (1-t)\mathbf{x}_{1}) \cdot (\mathbf{x}_{2} - \mathbf{x}_{1}) \right\|}_{\leq \underbrace{\left\| \varphi_{\mathbf{y}}() \right\| \cdot \left\| \mathbf{x}_{2} - \mathbf{x}_{1} \right\|}_{\leq \frac{1}{2}} dt$$

chain rule

Math 321 Lecture 29 Yuchong Pan

$$\leq \frac{1}{2} \|\mathbf{x}_2 - \mathbf{x}_1\|.$$

Summary: $\varphi_{\mathbf{y}}: U \to \mathbb{R}^n$ is a contraction with $c = \frac{1}{2}$. By CMP, there exists at most one point $\mathbf{x} \in U$ such that

$$\varphi_{\mathbf{y}}(\mathbf{x}) = \mathbf{x} \Leftrightarrow \mathbf{y} = \mathbf{f}(\mathbf{x}). \tag{1}$$

Set $V = \mathbf{f}(U)$. Then $f: U \to V$ is onto by definition. Further, given any $\mathbf{y} \in V$, there exists $\mathbf{x} \in U$ such that

 $\mathbf{y} = \mathbf{f}(\mathbf{x}) \Leftrightarrow \varphi_{\mathbf{y}}$ has a fixed point \mathbf{x} .

However, (1) \Rightarrow **x** is unique; i.e., **f** : $U \xrightarrow{1-1} V$ is a bijection.

Exercise: Check that V is open.

(Proof unfinished.)