FEM-EM Project Plan: Air + Spherical PML around Dielectric Microcube

Project: Validation of Pouria et al. (2025) — Figure 1

Overview

The objective of this project is to reproduce the normalized scattering cross section (σ_s/L^2) of a SiC microcube with side length $L=1\,\mu\text{m}$, illuminated by a plane wave of unit electric field amplitude $(E_0=1\,\text{V/m})$, polarized along $\hat{\mathbf{x}}$ and propagating in the $-\hat{\mathbf{z}}$ direction. This setup corresponds to Figure 1 of Pouria et al. (2025). We will implement this within the our MATLAB, using Nédélec edge elements and spherical PML absorption.

The process will be divided into clear, verifiable phases.

1 Phase 0 — Repository Audit and Ground Rules

Goal: Fix conventions, units, and identify which scripts to modify.

General conventions

• Units: SI.

$$L = 1 \,\mu{\rm m} = 1 \times 10^{-6} \,{\rm m}, \quad \lambda = 5 \,\mu{\rm m}, \quad k_0 = \frac{2\pi}{\lambda}, \quad \omega = c k_0.$$

- Harmonic convention: $e^{+i\omega t}$, so that $\mathbf{H} = \frac{1}{i\omega\mu_0}\nabla \times \mathbf{E}$.
- Incident field: $\mathbf{E}_{\text{inc}} = \hat{\mathbf{x}}e^{-ik_0z}$, with $|\mathbf{E}_0| = 1 \text{ V/m}$.

Relevant files

- Maxwell1.m: assembly and solver of ND1 edge elements.
- cubeMaxwell1.m, cubeMaxwell1final.m: reference drivers.
- uniformrefine3.m, dof3edge.m, gradbasis3.m: mesh and FE utilities.
- amg.m, amgMaxwell.m: optional solvers and preconditioners.

Outcome: Only Maxwell1.m will be extended (new SBC + tensor-aware path). A new driver will be created for the microcube/PML case.

2 Phase 1 — Geometry and Domain Definition

Goal: Build a three-region geometry: SiC cube \subset spherical air domain \subset spherical PML.

Domain structure

- SiC Cube: centered at origin, side $L = 1 \,\mu\text{m}$.
- Air Sphere: radius $r_{\rm SBC} \approx L + \lambda = 6 \,\mu{\rm m}$.
- PML Shell: thickness $t_{\text{PML}} \approx 0.4\lambda = 2 \,\mu\text{m}$, outer radius $r_{\text{PML}} = 8 \,\mu\text{m}$.

Meshing guidelines

- Air: $h_{\rm air} \approx \lambda/10 = 0.5 \,\mu{\rm m}$.
- SiC: $h_{\rm SiC} \approx 0.25 \,\mu{\rm m}$.
- PML: smooth grading from h_{air} to larger elements.

Implementation

- New driver: cube_sphAir_sphPML_driver.m.
- Tag element regions as:
 - 1. REG_SiC
 - 2. REG_AIR
 - 3. REG_PML
- Tag inner spherical boundary $(r = r_{SBC})$ as **SBC boundary**.

Checkpoints:

- Region IDs correct and nested.
- Mesh densities meet target h values.
- Visual inspection confirms geometry.

3 Phase 2 — Scattering Boundary Condition (SBC)

Goal: Implement the background-field (scattered-field) formulation on $r = r_{SBC}$.

Mathematical form

The Silver–Müller boundary condition in frequency domain:

$$(\mathbf{n} \times \nabla \times \mathbf{E}) - ik_0 \mathbf{n} \times (\mathbf{n} \times \mathbf{E}) = (\mathbf{n} \times \nabla \times \mathbf{E}_{inc}) - ik_0 \mathbf{n} \times (\mathbf{n} \times \mathbf{E}_{inc}),$$

applied on the boundary with outward normal n.

Implementation in Maxwell1.m

- Extend Robin/impedance BC branch to include a *nonzero* right-hand side (background injection).
- Create a helper file incidentPlaneWave.m providing \mathbf{E}_{inc} and $\nabla \times \mathbf{E}_{inc}$ at quadrature points.
- Add boundary assembly routine:
 - matrix term: $-ik_0(\hat{t}_i \cdot \hat{t}_j)A_{\text{face}}$,
 - vector term: SBC operator applied to \mathbf{E}_{inc} projected on edge tangents.

Checks:

- \bullet Without cube: total field inside equals $\mathbf{E}_{\mathrm{inc}}$.
- With cube: smooth field continuity at SBC, no reflection.

4 Phase 3 — Perfectly Matched Layer (PML)

Goal: Add a spherical PML shell absorbing outgoing waves.

Theory

Complex radial stretch:

$$s(r) = 1 + i \frac{\sigma(r)}{\omega \varepsilon_0}, \quad \sigma(r) = \sigma_0 \left(\frac{r - r_{\text{SBC}}}{t_{\text{PML}}}\right)^m,$$

with polynomial order m = 3.

Effective tensors:

$$\tilde{\varepsilon} = \varepsilon_{\text{bg}} (s \mathbf{P}_r + s^{-1} (\mathbf{I} - \mathbf{P}_r)), \qquad \tilde{\mu} = \mu_0 (s \mathbf{P}_r + s^{-1} (\mathbf{I} - \mathbf{P}_r)),$$

where $\mathbf{P}_r = \hat{\mathbf{r}}\hat{\mathbf{r}}^T$ is the radial projector.

Implementation

- Modify Maxwell1.m element assembly to handle 3×3 tensor ε and μ by quadrature.
- Preserve the scalar path for non-PML regions.
- Create helper pmlSphericalTensors.m returning flattened 3 × 3 tensors for given coordinates.

Checks:

- No-scatterer: reflection < 1% at the SBC.
- Field decays smoothly in PML.

5 Phase 4 — Post-Processing: Scattering Cross Section

Goal: Compute σ_s/L^2 at $\lambda = 5 \,\mu\mathrm{m}$ with a constant test permittivity.

Definitions

$$\begin{split} I_0 &= \frac{|E_0|^2}{2\eta_0}, \\ \mathbf{H}_s &= \frac{1}{i\omega\mu_0} \nabla \times \mathbf{E}_s, \\ P_{\text{scat}} &= \oint_S \frac{1}{2} \Re[(\mathbf{E}_s \times \mathbf{H}_s^*) \cdot \mathbf{n}] \ dS, \\ \sigma_s &= \frac{P_{\text{scat}}}{I_0}, \qquad \frac{\sigma_s}{L^2} = \text{normalized scattering cross section.} \end{split}$$

Implementation

- Create utility sigma_s_post.m:
 - 1. Build evaluation sphere at $r_{\rm eval} \approx 0.8 r_{\rm SBC}$.
 - 2. Interpolate \mathbf{E} , subtract \mathbf{E}_{inc} .
 - 3. Compute \mathbf{H}_s and the Poynting flux integral.
- Optional: power_balance.m verifying $\sigma_{\rm ext} = \sigma_s + \sigma_{\rm abs}$.

Checks:

- σ_s/L^2 insensitive to probe radius and mesh refinement.
- Field continuity across interfaces.

6 Phase 5 — Mesh and Domain Convergence

Goal: Verify numerical stability before wavelength sweep.

- Vary mesh density: coarse \rightarrow fine, record DOFs.
- Change PML thickness: 0.3λ , 0.4λ , 0.5λ .
- Change SBC radius: adjust air thickness $0.8\lambda-1.2\lambda$.

Acceptance:

- $\Delta(\sigma_s/L^2) < 2\%$ for last two refinements.
- PML reflection $\ll 1\%$.

7 Phase 6 — Real Material Data and Comparison

Goal: Replace the test permittivity by real $\varepsilon_r(\lambda, 400^{\circ}\text{C})$ for 6H–SiC.

- Insert dataset via function eps_SiC_6H_400C.m with interpolation.
- Sweep over wavelength range used in COMSOL (2–16 μ m).
- Plot σ_s/L^2 versus λ and overlay COMSOL results.

Acceptance:

• Peak positions and magnitudes agree with COMSOL within a few percent.

8 Implementation Summary

Files to revise

- Maxwell1.m:
 - 1. Add SBC with background injection.
 - 2. Add tensor-aware (anisotropic) ε , μ path.

Files to add

- cube_sphAir_sphPML_driver.m
- incidentPlaneWave.m
- pmlSphericalTensors.m
- sigma_s_post.m
- power_balance.m (optional)
- eps_SiC_6H_400C.m

9 Milestones

- 1. M0: Geometry validated.
- 2. M1: SBC injects plane wave correctly.
- 3. M2: PML reflection < 1%.
- 4. **M3:** Stable σ_s/L^2 for test permittivity.
- 5. M4: Mesh/PML convergence achieved.
- 6. **M5:** Real $\varepsilon_r(\lambda)$ sweep matches COMSOL.

10 Notes

- Start with constant $\varepsilon_r = 4 + 0.1i$ for the cube.
- Once validated, substitute the real 6H–SiC permittivity dataset.
- Always verify energy conservation and PML absorption.
- All lengths are expressed in micrometers for convenience, but simulations use SI meters.