MACHINE LEARNING

mentorama.

@prof.felipeassuncao mentorama

$$\begin{array}{c} (x_1)^2 = x_1 \\ (x_2)^2 = x_2 \\ (x_3)^2 = x_3 \\ (x_4)^2 = x_4 \\ (x_4)^2 = x_4 \\ (x_5)^2 = x_5 \\ (x_5)^$$

Neste módulo

Aula 1 - Machine Learning

Aula 2 - Etapas

Aula 3 - Prática

Aula 4 - Projeto

mentorama.

Recursos e ferramentas

Sci-kit Learn, Pandas, Numpy, MatplotLib

mentorama.

1.MACHINE LEARNING

Machine Learning

- É a ciência (e arte) de programar computadores capazes de aprender com os dados
- É o campo de estudo que dá aos computadores a habilidade de aprender com os dados sem a necessidade de uma programação explicita

mentorama.

Linha evolutiva

Since an early flush of optimism in the 1950's, smaller subsets of artificial intelligence - first machine learning, then deep learning, a subset of machine learning - have created ever larger disruptions.

mentorama.

PRINCIPAIS DESAFIOS

Machine Learning

- Insuficiente quantidade de dados de treinamento
- Dados de treinamento n\u00e3o representativos
- Qualidade dos dados ruins
- Características irrelevantes dos dados
- Overfitting e underfitting

mentorama.

Machine Learning

Overfitting e underfitting

mentorama.

PRINCIPAIS APLICAÇÕES

mentorama.

Carros autônomos mentorama.

Processamento de linguagem mentorama.

mentorama.

Previsão de tendências do mercado de ações

TIPOS DE APRENDIZADO

Machine Learning em ação

Machine Learning em ação

Principais algoritmos

- Regressão linear
- SVM (Support Vector Machine)
- KNN (K-vizinhos mais próximos)
- Regressão Logística
- Árvore de decisão
- K-Means
- Random Forest
- Naive Bayes

BIBLIOTECAS

Bibliotecas

mentorama.

Bibliotecas

- Numpy
- Pandas
- Matplotlib
- Plotnine
- Seaborn
- ScikitLearn

mentorama.

Como instalar as bibliotecas

```
Anaconda Prompt (anaconda3) - conda install seaborn - conda install -c conda-forge plotnine
(base) C:\Users\felip>conda activate deeplearning
(deeplearning) C:\Users\felip>conda install seaborn
Collecting package metadata (current repodata.json): done
Solving environment: done
## Package Plan ##
 environment location: C:\Users\felip\anaconda3\envs\deeplearning
 added / updated specs:

    seaborn

The following packages will be downloaded:
                                          build
   package
   ca-certificates-2021.1.19
                                     haa95532 1
                                                       119 KB
   openssl-1.1.1k
                                     h2bbff1b 0
                                                       4.8 MB
                                         Total:
                                                       4.9 MB
The following packages will be UPDATED:
 ca-certificates
                                     2021.1.19-haa95532_0 --> 2021.1.19-haa95532_1
 openss1
                                        1.1.1j-h2bbff1b 0 --> 1.1.1k-h2bbff1b 0
                                                                                          mentorama
                                               mentorama.
```

Plotnine

passengers - - 600 - - 500 - - 400 - - 300 - - 200

mentorama.

Seaborn

mentorama.

ScikitLearn

Classification

Identifying which category an object belongs to.

Applications: Spam detection, image recognition. **Algorithms:** SVM, nearest neighbors, random forest, and more...

Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency Algorithms: k-Means, feature selection, non-negative matrix factorization, and more...

Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices.

Algorithms: SVR, nearest neighbors, random forest, and more...

Examples

Model selection

Comparing, validating and choosing parameters and models.

Applications: Improved accuracy via parameter tuning

Algorithms: grid search, cross validation, metrics, and more...

Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes

Algorithms: k-Means, spectral clustering, meanshift and more

Examples

Preprocessing

Feature extraction and normalization.

Applications: Transforming input data such as text for use with machine learning algorithms.

Algorithms: preprocessing, feature extraction, and more...

camples

mentorama.

Etapas básicas

- Formulação do problema
- Importar os dados
- Análise exploratória / Limpeza / Pré processamento
- Dividir o conjunto em treino e teste
- Selecionar e treinar o modelo
- Fazer a predição
- Avaliar e aprimorar o modelo

mentorama.

Resumo

- Principais aplicações
- Linha evolutiva
- Tipos de aprendizado
- Bibliotecas
- Algoritmos
- Etapas

mentorama.

2.GOGGLE COLAB

O que é o Google Colab?

mentorama.

Principais características

- Não necessita configurações
- Já conta com bibliotecas pré instaladas
- Facilita o compartilhamento de código
- Utilidade em ML, IA, Data Science
- Conta com exemplos na plataforma
- Uso de GPU gratuitamente (Tensor Flow)
- O código é salvo no Google Drive
- Integração com GitHub / Gist

mentorama.

Vamos praticar?

- Como iniciar um Notebook?
- Como habilitar uma GPU?
- Como importar dados externos?
- Como integrar o Colaboratory com o GitHub?
- Como instalar bibliotecas externas?
- Como lidar com erros?

mentorama.

Resumo

- O que é o Google Colab
- Principais características
- Habilitação da GPU
- Hello World
- Importar base de dados
- Integrar com o GitHub
- Instalando bibliotecas
- Lidando com erros

mentorama.

2.ETAPAS

Etapas

- Formulação do problema
- Importar os dados
- Análise exploratória / Limpeza / Pré processamento
- Dividir o conjunto em treino e teste
- Selecionar e treinar o modelo
- Fazer a predição
- Avaliar e aprimorar o modelo

mentorama.

FORMULAÇÃO DO PROBLEMA

Algumas perguntas para classificação

- Como é o dataset?
- Quais são as classes?
- Como escolher o algoritmo de classificação?
- Como saber se o modelo perfomou bem?
- Como escolher as métricas de avaliação?

mentorama.

Escolhendo o estimador certo

mentorama.

OBTENDO OS DADOS

Obtenção dos dados

- Kaggle
- Google Dataset Search
- Microsoft Azure Public Datasets
- Sci-kit Learn datasets
- UCI Machine Learning Repository
- Public Datasets on Github

mentorama.

Sci-kit Learn datasets

```
load boston(* [,
                       Carregue e retorne o conjunto de dados de preços de casas em Boston (regressão).
return_X_y])
load iris(*[,
                       Carregue e retorne o conjunto de dados da íris (classificação).
return_X_y, as_frame])
load diabetes(* [,
                       Carregue e retorne o conjunto de dados de diabetes (regressão).
return_X_y, as_frame])
load digits(* [,
                       Carregue e retorne o conjunto de dados de dígitos (classificação).
n_class, return_X_y,
as frame])
load_linnerud(*[,
                       Carregue e retorne o conjunto de dados linnerud do exercício físico.
return_X_y, as_frame])
load wine(*[,
                       Carregue e retorne o conjunto de dados do vinho (classificação).
return_X_y, as_frame])
load breast cancer(*
                       Carregue e devolva o conjunto de dados de Wisconsin (classificação) do câncer de mama.
[, return_X_y,
as_frame])
```

mentorama.

digits = dataset.load_digits()

PRÉ PROCESSAMENTO

Pré-processamento

- Limpeza de dados
- Manipulando texto e atributos categóricos
- Transformações customizadas (combinar atributos por ex.)
- Dimensionamento das features (normalização / padronização)
- Pipelines de transformação (padronização por ex.)
- Operações morfológicas (dilatação e erosão por ex.)
- Retirar brilho, aumentar contraste
- Aumentar os dados (data augmentation)
- Converter imagens em tons de cinza ou outros espaços de cores
- Diminuir / Aumentar tamanho da imagem

mentorama.

SELECIONANDO E TREINANDO UM MODELO

Modelo de classificação

- Um classificador é basicamente um algoritmo que usa "conhecimento" obtido dos dados de treinamento para mapear os dados de entrada para uma categoria ou classe específica
- Classificadores podem ser binários ou multiclasses

mentorama.

SVM

O vetor de suporte é representado pela seta

SVM

 A partir de duas ou mais classes rotuladas de dados, o algoritmo busca encontrar um hiperplano ideal que separa todas as classes

mentorama.

Cross validation

mentorama.

Cross validation

mentorama.

AVALIAÇÃO DOS RESULTADOS

 Uma matriz de confusão é uma tabela que indica os erros e acertos do seu modelo, comparando com o resultado esperado (ou rótulos / labels).

		Detectada	
		Sim	Não
Real	Sim	Verdadeiro Positivo	Falso Negativo
		(VP)	(FN)
	Não	Falso Positivo	Verdadeiro Negativo
		(FP)	(VN)

mentorama.

	Fraude (sim)	Legitima (não)
Fraude (sim)	200 (VP)	50 (FP)
Legítima (não)	50 (FN)	700 (VN)

- True Positive (VP): classificação correta da classe Positivo.
- False Negative (FN): erro em que o modelo previu a classe Negativo quando o valor real era classe Positivo.
- False Positive(FP): erro em que o modelo previu a classe Positivo quando o valor real era classe Negativo.
- True Negative (VN): classificação correta da classe Negativo.

	Fraude (sim)	Legitima (não)
Fraude (sim)	200 (VP)	50 (FP)
Legítima (não)	50 (FN)	700 (VN)

- Total de registros: 1000.
- Total de transações com fraude: 250 25%.
- Total de transações legítimas: 750 75%.
- Taxa de acerto (acurácia): 90%.

A nomenclatura apresentada auxilia na compreensão para aplicação em diversas métricas como acurácia, recall, precision, F1 score dentre outros.

Acurácia

 A acurácia é uma boa indicação geral de como o modelo performou, e pode ser definida como:

Acurácia

- Nível de acurácia entre 0% e 30%
- Nível de acurácia entre 30% e 70%
- Nível de acurácia entre 70% e 100%

mentorama.

mentorama.

Acurácia

- Algumas perguntas:
 - Quanto maior a taxa de acurácia, melhor?
 - Uma taxa de acurácia alta permite saber se o modelo é bom ou ruim?

	Fraude (sim)	Legitima (não)
Fraude (sim)	200 (VP)	50 (FP)
Legítima (não)	50 (FN)	700 (VN)

Principais métricas

Métrica	Fórmula	Interpretação
Acurácia	$\frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN}}$	Desempenho geral do modelo
Precisão	$\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}}$	Quão precisas são as predições positivas
Revocação Sensibilidade	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$	Cobertura da amostra positiva real
Specificity	$\frac{\mathrm{TN}}{\mathrm{TN}+\mathrm{FP}}$	Cobertura da amostra negativa real
F1 score	$\frac{2\mathrm{TP}}{2\mathrm{TP} + \mathrm{FP} + \mathrm{FN}}$	Métrica híbrida útil para classes desequilibradas

APRIMORAR O MODELO

Aprimorar o modelo

- Verificar a base de dados
- Verificar o algoritmo
- Ajuste de parâmetros
- Treinar, Validar e Testar
- Avaliar os resultados
- Comparar com outros resultados

mentorama.

Aprimorando o modelo

mentorama.

Grid search

```
from sklearn.model_selection import GridSearchCV
    param grid = [
        {'n estimators': [3, 10, 30], 'max features': [2, 4, 6, 8]},
       {'bootstrap': [False], 'n_estimators': [3, 10], 'max_features': [2, 3, 4]},
    forest reg = RandomForestRegressor()
    grid_search = GridSearchCV(forest_reg, param_grid, cv=5,
                               scoring='neg_mean_squared_error',
                               return train score=True)
    grid_search.fit(housing_prepared, housing_labels)
>>> grid_search.best params
{'max features': 8, 'n estimators': 30}
```

mentorama.

Random search

- Vejamos o exemplo:
 - Se você permitir que a pesquisa aleatória seja executada por, digamos, 1.000 iterações, essa abordagem explorará 1.000 valores diferentes para cada hiperparâmetro (em vez de apenas alguns valores por hiperparâmetro com a abordagem de pesquisa em grade).
 - Simplesmente definindo o número de iterações, você tem mais controle sobre o quanto de recurso computacional você deseja alocar para a pesquisa de hiperparâmetros.

mentorama.

Resumo

- Principais etapas
- Obtenção dos dados
- Pré processamento
- SVM
- Treinamento, validação e teste
- Avaliação do modelo
- Grid Search e Random Search

mentorama.

3. PRATICA

Vamos praticar?

Nesta prática iremos explorar a utilização de algoritmos de Machine Learning para a tarefa de classificação de imagens para reconhecimentos de dígitos manuscritos.

mentorama.

Resumo

- Classificação de imagens com Mnist dataset
- Obtenção dos dados
- Construção do modelo
- Avaliação do modelo

mentorama.

PROJETO

