$$T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$$

$$\vec{v} \longmapsto T(\vec{v}) : A\vec{v} \Rightarrow ||\vec{v}|| : ||T(\vec{v})|| \quad \text{if } A : \text{ orthogonal}$$

$$T_{\underline{z}} \xrightarrow{T:C} \xrightarrow{n} C^{n}$$

$$\overline{z} \xrightarrow{T} T(\overline{z}) = U\overline{z} \Rightarrow \|\overline{z}\| = \|T(\overline{z})\| \quad \text{if } U : \text{unitary}$$

Def

H: hermitian if
$$H^* = H$$

H: hermitian $\Rightarrow U^*HU = D$

Cross Product

La in
$$\mathbb{C}^3$$
, \vec{a} , \vec{b} , 我 \vec{c} s.f. $\angle \vec{a}$, \vec{c} >=0 = $\angle \vec{b}$, \vec{c} >

pick \vec{c} = $\vec{a} \times \vec{b}$ = $\begin{vmatrix} \vec{\lambda} & \vec{j} & \frac{1}{2} \\ \vec{a}_1 & \vec{a}_2 & \vec{a}_3 \\ \vec{a}_1 & \vec{a}_2 & \vec{a}_3 \end{vmatrix}$ = 0

The \vec{b} check $\angle \vec{a}$, \vec{c} > = $\begin{vmatrix} \vec{a}_1 & \vec{a}_2 & \vec{a}_3 \\ \vec{a}_1 & \vec{a}_2 & \vec{a}_3 \\ \vec{b}_1 & \vec{b}_2 & \vec{b}_3 \end{vmatrix}$ = 0

A: $n \times n$ real . $A \vec{V} = \lambda \vec{V}$, $\vec{V} \neq 0$, λ : eigenvalue , \vec{V} : eigenvector corr. to λ : $0 \neq \lambda$: sol $p(\lambda) = |A - \lambda I| = 0$

③ to null (A-AI) 得 EAL

in C v.s.

$$A: n \times n$$
, $A \vec{v} = \lambda \vec{v}$, $\vec{v} = igenvector corr. $\vec{v} = igenvector$ corr.$

③ to null (A-入江) 猬 Ex

$$p(\lambda) = \begin{vmatrix} 1-\lambda & 0 & \lambda \\ 0 & 2-\lambda & 0 \\ -\lambda & 0 & (-\lambda) \end{vmatrix} = (2-\lambda)(1-\lambda)^2 - (2-\lambda)\lambda(-\lambda) = -\lambda(2-\lambda)^2$$

$$\therefore \lambda = 0, 2, 2$$

$$\begin{bmatrix} A - 0 \ I \end{bmatrix} = \begin{bmatrix} 1 & 0 & \dot{\lambda} \\ 0 & 2 & 0 \\ -\dot{\lambda} & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & \dot{\lambda} \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \longrightarrow E_{\bullet} = SP(\begin{bmatrix} -\dot{\lambda} \\ 0 \\ 1 \end{bmatrix}) \in dim 1$$

$$\begin{bmatrix} A - 2 \end{bmatrix} = \begin{bmatrix} -1 & 0 & \dot{\Lambda} \\ 0 & 0 & 0 \\ -\dot{\lambda} & 0 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -\dot{\Lambda} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \longrightarrow E_2 = sp\left(\begin{bmatrix} \dot{\Lambda} \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}\right) \in dim 2$$

$$\therefore C = \begin{bmatrix} \begin{pmatrix} \dot{A} \\ 0 \\ 1 \\ 0 \end{bmatrix} & D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \Rightarrow D = C^{1}AC$$

let
$$U = \begin{bmatrix} \frac{-i}{\sqrt{2}} & \frac{i}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$
 : unitary s.t. $D = U^* A U$

$$\begin{bmatrix} A-2 \end{bmatrix} = \begin{bmatrix} -1 & 0 & \lambda \\ 0 & 0 & 0 \\ -\lambda & 0 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -\lambda \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} X & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{vmatrix} A & A & A & B & B \\ A & B & B &$$

in IR C

A: diagonalizable iff & C: invertible, D: diag. st. D= CAC

Count invertible iff $\operatorname{rank}(C) = n$ linear conductor $\operatorname{cond}(C) = n$ iff $\operatorname{grank}(C) = n$ if $\operatorname{gran$

D AC = CD , if C: invertible

 \Rightarrow iff { column vector of C}: basis for Cⁿ eigenvectors for A

: for eigenvalue \ , dim(Ex) ≤ alg. multi. of \

and I dim (Ex) = n

:. for each eigenvalue λ , $\dim(E_{\lambda}) = geo. multi of <math>\lambda = alg.$ multi of λ

geo. multi of λ = alg. multi of λ \Rightarrow A: diagonalizable

ex: A = [i c 1] , A: diagonalizable , icc.

 $\begin{bmatrix} A - \lambda I \end{bmatrix} = \begin{bmatrix} 0 & C & 1 \\ 0 & 0 & 2\lambda \\ 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 0 & A & 1 \\ 0 & 0 & A \\ 0 & 0 & 0 \end{bmatrix}$

: A: diag-able iff c=0

Schur's Lemma

Thm

A: hermitian > 7 U: Unitary s.t. U*A U: diag.

Moreover, all eigenvalues of A ove real.

pf. of Thm

②
$$(U^*AU)^* = U^*A^*(U^*)^* = U^*A^*U = U^*AU = R$$

A: hermitian, i.e. $A^* = A$

$$R^* = R \qquad R = \begin{bmatrix} r_{11} & r_{12} & 0 \\ 0 & r_{1m} \end{bmatrix} = R^* = \begin{bmatrix} r_{11} & r_{22} & 0 \\ 0 & r_{1m} \end{bmatrix}$$

$$V = \begin{bmatrix} r_{11} & r_{22} & 0 \\ 0 & r_{1m} \end{bmatrix}$$

:. U* A U= R: real diag.

Cor.

pf.

: A : real symmetric : A : hermitian : all eigenvalue are real

. A-
$$\lambda_i I$$
 : real matrix $\sim []$: real : E_{λ_i} : has basis in \mathbb{R}^n

let
$$C: [\vec{V}_1 ... \vec{V}_n]$$
, $\{\vec{V}_i\}$; basis for each E_{X_j} , then C ; orthogonal.

Thm.

H: hermitian has
$$SH\vec{V}_1 = \lambda_1 \vec{V}_1$$
, $\vec{V}_{1 \neq 0}$, $\vec{V}_{3 \neq 0}$, $\lambda_1 \neq \lambda_2$
 $H\vec{V}_3 = \lambda_2 \vec{V}_3$

P.f. $\lambda_{2}\langle\vec{V}_{1},\vec{V}_{2}\rangle = \lambda_{2} \vec{V}_{1}^{*} * \vec{V}_{2} = \vec{V}_{1}^{*}(\lambda_{2}\vec{V}_{2}) = \vec{V}_{1}^{*}(H\vec{V}_{2}) = \vec{V}_{1}^{*} H\vec{V}_{2}$ $|| \in H: hermitian$ $\lambda_{1}\langle\vec{V}_{1},\vec{V}_{2}\rangle = \vec{\lambda}_{1} \vec{V}_{1}^{*} * \vec{V}_{2} = (\lambda_{1}\vec{V}_{1})^{*} \vec{V}_{2} = (H\vec{V}_{1})^{*} \vec{V}_{2} = \vec{V}_{1}^{*} H^{*} \vec{V}_{2}$ all eigenvalues for hermitian one real