GATE 2

1

AI24BTECH11033 - Tanishq

- 1) Let R be a ring. If R[x] is a principal ideal domain, then R is necessarily a
 - a) Unique Factorization Domain
 - b) Principal Ideal Domain
 - c) Euclidean Domain
 - d) Field
- 2) Consider the group homomorphism $\varphi: M_2(\mathbb{R}) \to \mathbb{R}$ given by $\varphi(A) = \operatorname{trace}(A)$. The kernel of φ is isomorphic to which of the following groups?
 - a) $M_2(\mathbb{R}) / \{A \in M_2(\mathbb{R}) : \varphi(A) = 0\}$
 - b) \mathbb{R}^2
 - c) \mathbb{R}^3
 - d) $GL_2(\mathbb{R})$
- 3) Let X be a set with at least two elements. Let τ and τ' be two topologies on X such that $\tau' \neq \{\phi, X\}$. Which of the following conditions is necessary for the identity function id: $(X, \tau) \to (X, \tau')$ to be continuous?
 - a) $\tau \subseteq \tau'$
 - b) $\tau' \subseteq \tau$
 - c) no conditions on τ and τ'
 - d) $\tau \cap \tau' = {\phi, X}$
- 4) Let $A \in M_3(\mathbb{R})$ be such that $\det(A I) = 0$, where I denotes the 3x3 identity matrix. If the trace(A) = 13 and $\det(A)$ = 32,then the sum of squares of the eigenvalues of A is
- 5) Let V denote the vector space $C^5[a,b]$ over \mathbb{R} and $W = \left\{ f \in V : \frac{d^4f}{dt^4} + 2\frac{d^2f}{dt^2} f = 0 \right\}$. Then
 - a) $\dim(V) = \infty$ and $\dim(W) = \infty$
 - b) $\dim(V) = \infty$ and $\dim(W) = 4$
 - c) dim(V) = 6 and dim(W) = 5
 - d) $\dim(V) = 5$ and $\dim(W) = 4$
- 6) Let *V* be a real inner product space of dimension 10. Let $x, y \in V$ be non-zero vectors such that $\langle x, y \rangle = 0$. Then the dimension of $\{x\}^{\perp} \cap \{y\}^{\perp}$ is _____
- 7) Consider the following linear programming problem: Minimize $x_1 + x_2$ Subject to:

$$2x_1 + x_2 \ge 8 \tag{7.1}$$

$$2x_1 + 5x_2 \ge 10\tag{7.2}$$

$$x_1, x_2 \ge 0 \tag{7.3}$$

The optimal value to this problem is _____.

8) Let

$$f(x) := \begin{cases} -3\pi & \text{if } -\pi < x \le 0\\ 3\pi & \text{if } 0 < x < \pi \end{cases}$$
 (8.1)

be a periodic function of period 2π . The coefficient of $\sin 3x$ in the Fourier series expansion of f(x) on the interval $[-\pi, \pi]$ is

9) For the sequence of functions

$$f_n(x) = \frac{1}{x^2} \left(\sin \frac{1}{nx} \right), \quad x \in [1, \infty),$$
 (9.1)

consider the following quantities expressed in terms of Lebesgue integrals:

- I. $\lim_{n \to \infty} \int_{1}^{\infty} f_{x}(x) dx.$ II. $\int_{1}^{\infty} \lim_{n \to \infty} f_{n}(x) dx.$

Which of the following is **TRUE**?

- a) The limit in I does not exist.
- b) The integrand in II is not integrable on $[1, \infty)$.
- c) Quantities I and II are well-defined, but $I \neq II$.
- d) Quantities I and II are well-defined and I = II.
- 10) Which of the following statements about the spaces l^p and L^p [0, 1] is **TRUE**?
 - a) $l^3 \subset l^7$ and $L^6[0,1] \subset L^9[0,1]$
 - b) $l^3 \subset l^7$ and $L^9[0,1] \subset L^6[0,1]$
 - c) $l^7 \subset l^3$ and $L^6[0,1] \subset L^9[0,1]$
 - d) $l^7 \subset l^3$ and $L^9[0,1] \subset L^6[0,1]$
- 11) The maximum modulus of e^{z^2} on the set $S = \{z \in \mathbb{C} : 0 \le \text{Re}(z) \le 1, 0 \le \text{Im}(z) \le 1\}$ is
 - a) $\frac{2}{e}$
 - b) e
 - c) e + 1
 - d) e^2
- 12) Let d_1, d_2 and d_3 be matrices on a set X with at least two elements. Which of the following is **NOT** a metric on X?
 - a) $\min\{d_1, 2\}$
 - b) $\max\{d_2, 2\}$
- 13) Let $\Omega = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$ and let C be a smooth curve lying in Ω with initial point -1 + 2i and final point 1 + 2i. The value of $\int_C \frac{1+2z}{1+z} dz$ is

 - a) $4 \frac{1}{2} \ln 2 + i \frac{\pi}{4}$ b) $-4 + \frac{1}{2} \ln 2 + i \frac{\pi}{4}$ c) $4 + \frac{1}{2} \ln 2 i \frac{\pi}{4}$ d) $4 \frac{1}{2} \ln 2 + i \frac{\pi}{2}$