Notas Teoria cuantica de campos

Daniel Vazquez Lago

 $11\ \mathrm{de}$ septiembre de 2024

Índice general

	Intr	roducción	5
1.		roducción a Fortran	7
	1.1.	Compilación y ejecucción	7
	1.2.	Formato código fuente	7
		Tipos de datos	
		1.3.1. Parámetros. Variables. Declaración. Asignación	8
		1.3.2. Arrays, subíndices, substrings	8
	1.4.	Operadores y expresiones	8
		1.4.1. Aritméticas	8
		1.4.2. Relacion y expresiones lógicas	9

,	
INDICE	GENERAL
IINI DICER	CFENERAL

Introducción

Usaremos N=500 particulas y una densidad de 0.5 N/V^3 . La variación máxima de energía permitida es 1/1000.

USaremos la aproximación de Lennard-Jones, hya que es suave, supone interacciones debiles ideales para los gases nobles.

$$v_{ij}(r_{ij}) = 4\epsilon \left[(\sigma/r_{ij})^{12} - (\sigma/r_{ij})^6 \right]$$
 (1)

"Usar una suma doble para luego dividirlo por dos es para pegarle en la cara". La parte de los sumatorios debe estar libre de polvo y paja para que corra veloz.

$$t_p = \frac{1}{2} \sum \sum v_{ij} = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} v_{ij}$$

,			
IN	DICE	GENER	ΛТ
111	\mathbf{I}		AI

1

Introducción a Fortran

1.1. Compilación y ejecucción

1.2. Formato código fuente

El formato de condigo guente puede ser libre o fijo, y no deben mezclarse ambos en un fichero de código. El código fijo se considera obsoleto en Fortran95. En cualquier caso existen ciertas normas básicas y típicas de fortran, ataño obligatorias, que todavía se mantienen, por lo que es importante mencionarlas. Estas son:

- Las sentencias de un programa se escribem en diferentes líneas.
- La posición de los caracterres dentro de las líneas es significativa.
- Columnas:
 - 1-5. Número de etiqueta (de 1 a 5 dígitos, se usan números usualmente).
 - 6. Carácter de continuación de línea.
 - Resto. Sentencia.

■ Comentarios:

- Las líneas en blanco se ignoran. Hacen más legible el programa.
- Si el primer carácter de una línea es *, c o C la línea es de comentario.
- Si aparece el carácter ! en una línea (salvo en la columna 6) lo que sigue es un comentario.
- Una línea puede contener varias sentencias separadas por punto y coma (;), el cual no puede estar en la columna 6. Sólo la primera de estas sentencias podría llevar etiqueta.
- Los espacios en blanco son significativos: IMPLICIT NONE, DO WHILE (obsoleto), CASE DEFAULT. Son opcionales en:
 - Palabras clave dobles quu comienzan por END o ELSE.

- DOUBLE PRECISION, GO TO, IN OUT, SELECT CASE.
- El indicador de continuación de una línea es el carácter &.

1.3. Tipos de datos

Fortran tiene los siguientes tipos de datos:

- Enteros (INTEGER)
- Reales (REAL, DOUBLE PRECISION)
- Complejos (COMPLEX)
- Lógicos (LOGICAL)
- Caracteres (CHARACTER, CHARACTER(LEN=n), CHARACTER*n)

1.3.1. Parámetros. Variables. Declaración. Asignación.

- Un parámetro tiene un valor que no se puede cambiar (PARAMETER).
- Una variable puede cambiar su valor cuantas veces sea necesario.
- Por defecto, todas las variables que empiecen por i,j,k,l,m o n son entreas y las demas reales. Es muy recomendable declarar las variables que se utilicen (la sentencia IMPLICIT NONE obliga a declarar todas las variables).

1.3.2. Arrays, subíndices, substrings

- Un array se define mediante su nombre y dimensiones (cantidad y límites).
- Por defecto el primer índice es 1. En otro caso hay que indicar el rango i1:i2.
- Los elementos del array se acceden por sus índices entre paréntesis.

1.4. Operadores y expresiones

1.4.1. Aritméticas

- Los operadores aritméticos son +, -, *, /, **.
- El orden de prioridades es el mismo que en el álgebra.
- No puede ver operadores seguidos (incorrecto a*-b, correcto a*(-b)).

Operador	.NOT.	.AND.	.OR.	.EQV.	.NEQV.
Prioridad	1	2	3	4	4

1.4.2. Relacion y expresiones lógicas

• Los operadores de expresiones son:

.EQ.	.NE.	.LT.	.LE.	.GT.	.GE.
==	/ =	<	<=	>	>=

- Los operadores lógicos son:
- Se pueden relacionar expresiones aritméticas con expresiones lógicas y expresiones de caracteres.
- Es recomendable utilizar paréntesis y/ó sustituir las expresiones complicadas por combinaciones de expresiones más simples.