

AD-A184 133

ON COLOR POLYNOMIALS OF FIBONACCI GRAPHS(U) GEORGIA
UNIV ATHENS DEPT OF CHEMISTRY S EL-BASIL 11 AUG 87
TR-52 N00014-84-K-0365

1/1

UNCLASIFIED

F/G 12/1

NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

(12)
DTIC FILE COPY

OFFICE OF NAVAL RESEARCH

Contract N00014-84-K-0365

R & T Code 4007001-6

Technical Report No. 52

On Color Polynomials of Fibonacci Graphs

by

Sherif El-Basil

Prepared for Publication

in the

Journal of Computational Chemistry

DTIC
SELECTED
AUG 25 1987
S D
CSD

AD-A184 133

University of Georgia
Department of Chemistry
Athens, Georgia 30602

August 11, 1987

Reproduction in whole or in part is permitted for
any purpose of the United States Government

This document has been approved for public release
and sale; its distribution is unlimited.

87 8 25 031

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER Technical Report No. 52	2. GOVT ACCESSION NO. <i>AD-771844/133</i>	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) On Color Polynomials of Fibonacci Graphs	5. TYPE OF REPORT & PERIOD COVERED Technical Report	
7. AUTHOR(s) Sherif El-Basil	6. PERFORMING ORG. REPORT NUMBER	
9. PERFORMING ORGANIZATION NAME AND ADDRESS University of Georgia Department of Chemistry Athens, GA 30602	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 4007001-6	
11. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research Department of the Navy Arlington, VA 22217	12. REPORT DATE August 11, 1987	
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	13. NUMBER OF PAGES 11	
16. DISTRIBUTION STATEMENT (of this Report) This document has been approved for public release and sale; its distribution is unlimited.	15. SECURITY CLASS. (of this report)	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
18. SUPPLEMENTARY NOTES To be published in Journal of Computational Chemistry		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Graph Theory Fibonacci Graphs Color Polynomials King Polyomino Graphs		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) A recursion exists among the coefficients of the color polynomials of some of the families of graphs considered in recent work of Balasubramanian and Ramaraj ¹ . Such families of graphs have been called Fibonacci graphs. Application to king patterns of lattices is given. The method described here applies only to the so called Fibonacci graphs.		

On Color Polynomials of Fibonacci Graphs

Sherif El-Basil*

Chemistry Department, University of Georgia
Athens, GA 30602 U.S.A.

Abstract

A recursion exists among the coefficients of the color polynomials of some of the families of graphs considered in recent work of Balasubramanian and Ramaraj¹. Such families of graphs have been called Fibonacci graphs. Application to king patterns of lattices is given. The method described here applies only to the so called Fibonacci graphs.

Key words

Graph Theory

Fibonacci Graphs

Color Polynomials

King Polynomials Graphs

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
STIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Subscription	<input type="checkbox"/>
Other	<input type="checkbox"/>
Ref	
Date Received	
Classification	
Serial Number	
Date Entered	
Date Special	

A-1

1. Introduction

Recently Balasubramanian and Ramaraj¹ wrote an interesting paper on a newly defined color polynomial of certain graphs. They related their work to the pioneering work of Motoyama and Hosoya² on king polynomials. Their paper has its merits in both the areas of statistical mechanics and "chemical" graph theory.

The purpose of this communication is to cite an observation on a recursive relation occurring among the coefficients of the color polynomials of some of the families of graphs and their corresponding king patterns which they considered. The observation may be of value from both the computational and graph-theoretical viewpoints. The method which will be described here applies only to the so called Fibonacci graphs.³

2. Definition of Fibonacci Graphs³

In a homologous series of graphs the set $\{G_n, G_{n+1}, G_{n+2}, \dots\}$ where the number of vertices, n , may or may not be finite, has been called a set of Fibonacci graphs³ if the following recursion is satisfied:

$$\theta(G_{n+2}, k+1) = \theta(G_{n+1}, k+1) + \theta(G_n, k) \quad (1)$$

where $\theta(G, k)$ is some graph-theoretical invariant of G which may include the following:

- i) The number of k -matchings⁴ in a graph
- ii) The number of k mutually resonant but nonadjacent sextets when $G=B$, a benzenoid system
- iii) The number of k independent sets of vertices when $G=C$, the so called Clar graph^{5,6}.

Inter-relations among these invariants have been recently published⁷. Hosoya⁸ seems to be the first who observed recursive relations of the type of eqn. 1 but only for the paths and the cycles when $\theta(G,k)$ becomes the number of matchings and G is either a path or a cycle. Recently this author³ and Gutman⁹ generalized the concept to other types of graphs which obey eqn. (1) and to several graph invariants.

3. Construction of Fibonacci Graphs

The (finite or infinite) set $\{G_n, G_{n+1}, \dots, G_{n+s}\}$, $n \geq 0$, $s > n+1$ is called a set of Fibonacci graphs. Further, if either v_0 or v_1 is of degree one, then also $\{G_{-1}, G_0, \dots, G_n\}$ is a set of Fibonacci graphs. Such a set must possess at least three elements. The above construction is illustrated in Fig. 1 on the molecular graph of the benzyl radical. There are two modes of graph growth leading to Fibonacci graphs, i.e. "Fibonacci growth", viz., (a) external graph growth (path growth) and (b) internal graph growth (cycle growth).

4. Application to Color Polynomials¹ and king Patterns^{1,2}

First we observe that the color polynomials given in ref. 1 are equivalent to the independence polynomials^{5,6} introduced earlier. Thus $\theta(G,k)$ is defined^{5,6} to be the number of selections of k independent vertices from G . This is precisely the number of ways of coloring k vertices black so that no two black vertices are adjacent. Table VII of ref. 1 lists color polynomials of some cycles. Of course a homologous series of rings form a set of Fibonacci graphs and thus should conform to eqn. 1 where $I(G,k) = \theta(C;k)$, $C = \text{cycle}^*$. The coefficients (i.e. $\theta(C;k)$'s)

*Balasubramanian and Ramaraj¹ have shown that the coefficients of the color polynomials of the paths are the Fibonacci numbers while those of the cycles are magic numbers.

are reproduced here to demonstrate the validity of eqn. 1.

As a further application of the concept of Fibonacci graphs we calculate the color polynomial of $G_{10,14}$; a graph on 25 vertices.

There are a number of routes for the homologation to $G_{10,14}$ from smaller graphs.

One such route is indicated below

$G_{2,2} \xrightarrow{12 \text{ Internal - Growths in ring } A} G_{10,14}$

Homologation to $G_{2,14}$ is shown in Table 1. To obtain $G_{10,14}$ from $G_{2,14}$ we need the color polynomial of $G_{3,14}$ which is calculated using recursion 2⁷

$$C(G;x) = C(G-v;x) + xC(G \oplus v;v) \quad (2)$$

where $C(G;x)$ is the cycle polynomial^{1,6,7} of G and other symbols have their usual meanings. If one chooses the tetravalent vertex the polynomial is obtained in terms of (the known) path polynomials:

$$\begin{aligned} C(G_{3,14};x) = & 1 + 18x + 134x^2 + 535x^3 + 1243x^4 + 1708x^5 \\ & 1352x^6 + 575x^7 + 115x^8 + 8x^9 \end{aligned}$$

Then $G_{2,14}$ and $G_{2,15}$ are the first two leading Fibonacci graphs for the second internal growth in ring B (Table 2).

Obviously $G_{10,14}$ corresponds to the lattice in Fig. 2.

5. Conclusion

Recursive relations of form 1 are very helpful in construction of counting polynomials of potentially very large graphs. Such a buildup from very small units is conceptually similar to expanding the secular determinant of a graph by pruning it down to smaller fragments¹⁰. The identification of a particular family of a Fibonacci graph is certainly of topological and computational importance and is probably equivalent to a botanical identification of a plant family.

Acknowledgments

I thank the U.S. Office of Naval Research for partial support of this work. Illuminating discussions of Professor R.B. King are appreciated. Travel assistance from Fullbright Commission in Cairo is acknowledged.

References

1. K. Balasubramanian and R. Ramaraj, J. Comput. Chem. 6, 447 (1985).
2. A. Motoyama and H. Hosoya, J. Math. Phys. 18, 1485 (1985).
3. S. El-Basil, Theoret. Chim. Acta 65, 191 (1984), 65, 199 (1984).
4. H. Hosoya, Bull. Chem. Soc. Japan, 44, 2332 (1971).
5. I. Gutman, Z. Naturforsch 37a, 69 (1982).
6. I. Gutman and S. El-Basil, Z. Naturforsch 39a, 276 (1984).
7. S. El-Basil, J. Chem. Soc., Faraday Trans. 2, 82, 299 (1986).
8. H. Hosoya, The Fibonacci Quarterly, 14, 173 (1976).
9. I. Gutman and S. El-Basil, Math. Chem. in press.
10. K. Balasubramanian and M. Randić, Theoret. Chim. Acta, 61, 307 (1982).

Fig. Legends

Fig. 1

The two types of Fibonacci growths of graphs:

(a) External subdivision and (b) Internal subdivision.

Fig. 2

The lattice graph corresponding to $G_{10,14}$. There are 34362 king patterns generated when 6 kings assume nontaking positions. (c.f. Tables 1 and 2). Observe that $G_{10,14}$ is the dualist graph of the above lattice.

Table 1

Homologation from $G_{2,2}$ to $G_{2,14}$. Numbers are coefficients of color polynomials.

Relation 1 is observed throughout. The computation involves 12 "Fibonacci-growths".

1	5	4	0								
1	6	8	2	0							
1	7	13	6	0							
1	8	19	14	2	0						
1	9	26	27	8	0						
1	10	34	46	22	2	0					
1	11	43	72	49	10	0					
1	12	53	106	95	32	2	0				
1	13	64	149	167	81	12	0				
1	14	76	202	273	176	44	2	0			
1	15	89	266	422	343	125	14	0			
1	16	103	342	624	616	301	58	2	0		
1	17	118	431	890	1038	644	183	16	0		

Table 2

Homoligation $G_{2,14} \rightarrow G_{10,14}$ via 8 internal Fibonacci growths. Numbers are coefficients of color polynomials.

1	17	118	431	890	1038	644	183	16	0
1	18	134	535	1243	1708	1352	575	115	8
1	19	151	653	1674	2598	2390	1219	298	24

1, 25, 274, 1732, 6989, 18822, 34362, 42344,
34438, 17689, 5320, 819, 48, 0.

DL/1113/87/2

TECHNICAL REPORT DISTRIBUTION LIST, GEN

	<u>No. Copies</u>		<u>No. Copies</u>
Office of Naval Research Attn: Code 1113 800 N. Quincy Street Arlington, Virginia 22217-5000	2	Dr. David Young Code 334 NORDA NSTL, Mississippi 39529	1
Dr. Bernard Douda Naval Weapons Support Center Code 50C Crane, Indiana 47522-5050	1	Naval Weapons Center Attn: Dr. Ron Atkins Chemistry Division China Lake, California 93555	1
Naval Civil Engineering Laboratory Attn: Dr. R. W. Drisko, Code L52 Port Hueneme, California 93401	1	Scientific Advisor Commandant of the Marine Corps Code RD-1 Washington, D.C. 20380	1
Defense Technical Information Center Building 5, Cameron Station Alexandria, Virginia 22314	12 high quality	U.S. Army Research Office Attn: CRD-AA-IP P.O. Box 12211 Research Triangle Park, NC 27709	1
DTNSRDC Attn: Dr. H. Singerman Applied Chemistry Division Annapolis, Maryland 21401	1	Mr. John Boyle Materials Branch Naval Ship Engineering Center Philadelphia, Pennsylvania 19112	1
Dr. William Tolles Superintendent Chemistry Division, Code 6100 Naval Research Laboratory Washington, D.C. 20375-5000	1	Naval Ocean Systems Center Attn: Dr. S. Yamamoto Marine Sciences Division San Diego, California 91232	1

END

10-87

DTIC