

Corrigé du devoir maison n°11

Exercice 1

1. $\lim_{x\to 2} \left(4x^2 + 2\sin\left(\frac{1}{x}\right)\right) = 4 \times 2^2 + 2\sin\left(\frac{1}{2}\right) = 16 + 2\sin\left(\frac{1}{2}\right)$ par continuité.

$$\lim_{x \to 2} \left(4x^2 + 2\sin\left(\frac{1}{x}\right) \right) = 16 + 2\sin\left(\frac{1}{2}\right).$$

2. $\lim_{x \to +\infty} \left(\frac{1}{x}\right) = 0$, donc $\lim_{x \to +\infty} \sin\left(\frac{1}{x}\right) = \sin 0 = 0$ par continuité de la fonction sin en 0. Par ailleurs $\lim_{x \to +\infty} 4x^2 = +\infty$, donc

$$\lim_{x \to +\infty} \left(4x^2 + 2\sin\left(\frac{1}{x}\right) \right) = +\infty.$$

3. Ici, il est maladroit d'utiliser la quantité conjuguée (ça rallonge inutilement la résolution). On écrit, pour $x \ge 1$ (il faut prendre $x \ge 1$ pour que le calcul ait un sens) :

$$\sqrt{x^2 - 1} - \sqrt{2x - 1} = \sqrt{x^2 \left(1 - \frac{1}{x^2}\right)} - \sqrt{x^2 \left(\frac{2}{x} - \frac{1}{x^2}\right)} = x\sqrt{1 - \frac{1}{x^2}} - x\sqrt{\frac{2}{x} - \frac{1}{x^2}} = x\left(\sqrt{1 - \frac{1}{x^2}} - \sqrt{\frac{2}{x} - \frac{1}{x^2}}\right).$$

Or $\lim_{x \to +\infty} \frac{1}{x^2} = 0$ et $\lim_{x \to +\infty} \frac{2}{x} = 0$, donc $\lim_{x \to +\infty} \sqrt{1 - \frac{1}{x^2}} = \sqrt{1 - 0} = 1$ et $\lim_{x \to +\infty} \sqrt{\frac{2}{x} - \frac{1}{x^2}} = \sqrt{0 - 0} = 0$ par continuité; et finalement :

$$\lim_{x \to +\infty} \left(\sqrt{x^2 - 1} - \sqrt{2x - 1} \right) = \alpha + \infty \times (1 - 0) \Rightarrow = +\infty.$$

4. Soit x > 0. On sait que $\lfloor x \rfloor > x - 1$, donc

$$\frac{\mathrm{e}^{\lfloor x \rfloor} - 1}{x} > \frac{\mathrm{e}^{x - 1} - 1}{x}$$

par croissance de exp sur \mathbb{R} . On a donc

$$\frac{e^{\lfloor x \rfloor} - 1}{x} > \frac{e^{x-1}}{x} - \frac{1}{x} = e^{-1} \times \frac{e^x}{x} - \frac{1}{x}.$$

Or $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$ par croissance comparée, donc

$$\lim_{x \to +\infty} \left(e^{-1} \times \frac{e^x}{x} - \frac{1}{x} \right) = +\infty.$$

Finalement, d'après le théorème de limite par comparaison :

$$\lim_{x \to +\infty} \frac{e^{\lfloor x \rfloor} - 1}{x} = +\infty.$$

Exercice 2

Partie I

On pose $g: x \mapsto 1 - x - \ln x$.

1. L'ensemble de définition de g est

$$D_g =]0, +\infty[$$
.

La fonction g est continue sur son ensemble de définition par opération sur des fonctions continues.

2. Pour tout $x \in]0, +\infty[$:

$$g'(x) = -1 - \frac{1}{x}.$$

On en déduit :

x	0	$x_0 = 1 + \infty$
g'(x)		-
g(x)		+\infty 0 \\ -\infty

Le calcul des limites est immédiat en appliquant les règles de calcul (on rappelle que $\lim_{x \to +\infty} \ln x = +\infty$ et que $\lim_{x \to 0, \ x > 0} \ln x = -\infty$).

3. La fonction g est continue et strictement décroissante, donc d'après le théorème de la bijection, elle réalise une bijection de $]0, +\infty[$ sur $]-\infty, +\infty[$.

Or $0 \in]-\infty, +\infty[$, donc

l'équation
$$g(x) = 0$$
 admet une unique solution x_0 dans $]0, +\infty[$.

4.
$$g(1) = 1 - 1 - \ln 1 = 0$$
, donc $x_0 = 1$.

Partie II

On pose $f: x \mapsto \frac{\ln x}{1 - x - \ln x}$.

- 5. Ici, il faut faire attention à deux choses :
 - au logarithme, qui impose de prendre x > 0:
 - au quotient, car on ne peut pas diviser par 0.

Or d'après la partie I, le dénominateur s'annule uniquement lorsque x=1, donc l'ensemble de définition de f est

$$D_f =]0,1[\,\cup\,]1,+\infty[\,.$$

La fonction f est continue sur son ensemble de définition par opération sur des fonctions continues.

6. Soit $x \in]0,1[\cup]1,+\infty[$. On écrit astucieusement :

$$f(x) = \frac{\ln x}{1 - x - \ln x} = \frac{\frac{\ln x}{1 - x}}{\frac{1 - x - \ln x}{1 - x}} = \frac{\frac{\ln x}{1 - x}}{1 - \frac{\ln x}{1 - x}}.$$

Or
$$\lim_{x \to 1} \frac{\ln x}{1-x} = -1$$
, donc

$$\lim_{x \to 1} f(x) = \frac{-1}{1 - (-1)} = -\frac{1}{2}.$$

Conclusion : on peut prolonger f par continuité en 1 en posant $f(1) = -\frac{1}{2}$.

Remarques:

• On obtient la limite $\lim_{x\to 1} \frac{\ln x}{1-x} = -1$ en écrivant

$$\frac{\ln x}{1-x} = -\frac{\ln(1+(x-1))}{x-1}$$

et en utilisant $\lim_{X\to 0}\frac{\ln(1+X)}{X}=1$.

• On peut aussi prolonger f par continuité en 0 en posant f(0)=-1 – on vous laisse en écrire la

