Introdução ao Data Cleaning

Eduardo Pena (ehmpena@inf.ufpr.br)

Graduate program in Informatics Department of Informatics Federal University of Paraná

3rd July 2018

Outline

1 Motivação

2 Data Cleaning Revisited

Section 1 Motivação

Data is Dirty!

Dados limpos poupam dinheiro ...e tempo

Dados limpos poupam dinheiro . . . e tempo

Dados sujos → bilhões de dolares perdidos todos os anos

S. Kandel and A. Paepcke and J. M. Hellerstein and J. Heer. Enterprise Data Analysis and Visualization: An Interview Study. IEEE TVCG, 2012.

Dados limpos poupam dinheiro . . . e tempo

- Dados sujos → bilhões de dolares perdidos todos os anos
- 2. "Janitor work" \rightarrow 30-80% do tempo gasto por analistas

S. Kandel and A. Paepcke and J. M. Hellerstein and J. Heer. Enterprise Data Analysis and Visualization: An Interview Study. IEEE TVCG, 2012.

Dados limpos poupam dinheiro . . . e tempo

- Dados sujos → bilhões de dolares perdidos todos os anos
- 2. "Janitor work" \rightarrow 30-80% do tempo gasto por analistas

Big <u>clean</u> data is the new oil!

S. Kandel and A. Paepcke and J. M. Hellerstein and J. Heer. Enterprise Data Analysis and Visualization: An Interview Study. IEEE TVCG, 2012.

Qualidade de dados

Esperamos dados com alta qualidade para tomada de decisão

- 1. Acurácia
- 2. Completude
- 3. Consistência
- 4. Atualização

Qualidade de dados

Esperamos dados com alta qualidade para tomada de decisão

- 1. Acurácia
- 2. Completude
- 3. Consistência
- 4. Atualização

Dados devem atender as necessidades dos usuários.

Qualidade de dados

Esperamos dados com alta qualidade para tomada de decisão

- 1. Acurácia
- 2. Completude
- 3. Consistência
- 4. Atualização

Dados devem atender as necessidades dos usuários.

	PNome	SNome	Salario	Bonus	Idade	Сер	End	Phone	Produto	Objetivo	Vendas
t_0	John	Miller	\$1000	\$300	48	5081	48 6th avenue	3324	Soda	\$10000	\$10000
t_1	Brad	Fuhrmann	\$1000	\$400	40	5082	12 Canyon Road	3323	Bread	\$12000	\$14000
t_2	Julio	Lopez	\$3000	\$1100	60	5083	15 Bourbon Street	3326	Yogurt	\$20000	\$30000
<i>t</i> ₃	Paul	Allen	\$1200	\$400	400	5001	20 Calle Ocho	3250	Soda	\$12000	\$13000
t_4	Greg	Miller	\$1000	\$300	05-05-1970	4081	48 6th avenue	3324	Soda	\$10000	\$10000
<i>t</i> ₅	Brad	Furman	\$1000	\$400	40	5082	80 Ocean Drive	3323	Bread	\$12000	\$14000
<i>t</i> ₆	Jeff	Jones	\$3000	\$2000	36	5056	100 Worth Avenue	4260	Yogurt	\$20000	\$20000

	PNome	SNome	Salario	Bonus	Idade	Сер	End	Phone	Produto	Objetivo	Vendas
t_0	John	Miller	\$1000	\$300	48	5081	48 6th avenue	3324	Soda	\$10000	\$10000
t_1	Brad	Fuhrmann	\$1000	\$400	40	5082	12 Canyon Road	3323	Bread	\$12000	\$14000
t_2	Julio	Lopez	\$3000	\$1100	60	5083	15 Bourbon Street	3326	Yogurt	\$20000	\$30000
<i>t</i> ₃	Paul	Allen	\$1200	\$400	400	5001	20 Calle Ocho	3250	Soda	\$12000	\$13000
t_4	Greg	Miller	\$1000	\$300	05-05-1970	4081	48 6th avenue	3324	Soda	\$10000	\$10000
<i>t</i> ₅	Brad	Furman	\$1000	\$400	40	5082	80 Ocean Drive	3323	Bread	\$12000	\$14000
<i>t</i> ₆	Jeff	Jones	\$3000	\$2000	36	5056	100 Worth Avenue	4260	Yogurt	\$20000	\$20000

- ► Ser humano não vive 400 anos
- ▶ 05-05-1970 precisa de um casting

	PNome	SNome	Salario	Bonus	Idade	Сер	End	Phone	Produto	Objetivo	Vendas
t_0	John	Miller	\$1000	\$300	48	5081	48 6th avenue	3324	Soda	\$10000	\$10000
t_1	Brad	Fuhrmann	\$1000	\$400	40	5082	12 Canyon Road	3323	Bread	\$12000	\$14000
t_2	Julio	Lopez	\$3000	\$1100	60	5083	15 Bourbon Street	3326	Yogurt	\$20000	\$30000
<i>t</i> ₃	Paul	Allen	\$1200	\$400	400	5001	20 Calle Ocho	3250	Soda	\$12000	\$13000
t_4	Greg	Miller	\$1000	\$300	05-05-1970	4081	48 6th avenue	3324	Soda	\$10000	\$10000
<i>t</i> ₅	Brad	Furman	\$1000	\$400	40	5082	80 Ocean Drive	3323	Bread	\$12000	\$14000
<i>t</i> ₆	Jeff	Jones	\$3000	\$2000	36	5056	100 Worth Avenue	4260	Yogurt	\$20000	\$20000

 Brad Fuhrmann e Brad Furman são a mesma pessoa

	PNome	SNome	Salario	Bonus	Idade	Сер	End	Phone	Produto	Objetivo	Vendas
<i>t</i> ₀	John	Miller	\$1000	\$300	48	5081	48 6th avenue	3324	Soda	\$10000	\$10000
<i>t</i> ₁	Brad	Fuhrmann	\$1000	\$400	40	5082	12 Canyon Road	3323	Bread	\$12000	\$14000
t_2	Julio	Lopez	\$3000	\$1100	60	5083	15 Bourbon Street	3326	Yogurt	\$20000	\$30000
<i>t</i> ₃	Paul	Allen	\$1200	\$400	400	5001	20 Calle Ocho	3250	Soda	\$12000	\$13000
t_4	Greg	Miller	\$1000	\$300	05-05-1970	4081	48 6th avenue	3324	Soda	\$10000	\$10000
<i>t</i> ₅	Brad	Furman	\$1000	\$400	40	5082	80 Ocean Drive	3323	Bread	\$12000	\$14000
<i>t</i> ₆	Jeff	Jones	\$3000	\$2000	36	5056	100 Worth Avenue	4260	Yogurt	\$20000	\$20000

- ► Regra 1: *End* determina funcionalmente *Cep*.
 - ► Tuplas t₀ and t₄ violam essa dependência de atributo (i.e., t₀ e t₄ não estão **consistentes** com a regra 1).

	PNome	SNome	Salario	Bonus	Idade	Сер	End	Phone	Produto	Objetivo	Vendas
t_0	John	Miller	\$1000	\$300	48	5081	48 6th avenue	3324	Soda	\$10000	\$10000
<i>t</i> ₁	Brad	Fuhrmann	\$1000	\$400	40	5082	12 Canyon Road	3323	Bread	\$12000	\$14000
t_2	Julio	Lopez	\$3000	\$1100	60	5083	15 Bourbon Street	3326	Yogurt	\$20000	\$30000
<i>t</i> ₃	Paul	Allen	\$1200	\$400	400	5001	20 Calle Ocho	3250	Soda	\$12000	\$13000
t_4	Greg	Miller	\$1000	\$300	05-05-1970	4081	48 6th avenue	3324	Soda	\$10000	\$10000
<i>t</i> ₅	Brad	Furman	\$1000	\$400	40	5082	80 Ocean Drive	3323	Bread	\$12000	\$14000
<i>t</i> ₆	Jeff	Jones	\$3000	\$2000	36	5056	100 Worth Avenue	4260	Yogurt	\$20000	\$20000

- Rule 2: "Se dois vendedores vendem o mesmo produto e têm o mesmo salário, aquele com a menor venda não pode ter o maior bônus".
 - ► Tuplas t₂ e t₆ violam tal regra (i.e., elas são inconsistentes com relação a regra 2).

- Domínio incorreto
- Registro duplicado
- Dependência de atributo
- Regra de negócio para valores de atributo

Data cleaning

Definição

Data Cleaning é o processo de detecção e correção de registros incorretos em um banco de dados.

Operação

Data cleaning usa métodos computacionais que ajudam na <u>definição</u>, <u>identificação</u>, e <u>reparo</u> de uma variedade de erros.

Data cleaning

Definição

Data Cleaning é o processo de detecção e correção de registros incorretos em um banco de dados.

Operação

Data cleaning usa métodos computacionais que ajudam na <u>definição</u>, <u>identificação</u>, e <u>reparo</u> de uma variedade de erros.

Section 2 **Data Cleaning Revisited**

Abordagens em data cleaning

- Restrições de integridade. Expressam naturalmente regras de qualidade de dados; sua violação indica que dados estão sujos.
- ▶ Data cleaning quantitativo. Assume uma visão estatística dos dados para identificar outliers.
- Deduplicação. Consolida registros em uma ou mais relações que se referem a mesma entidade do mundo real.
- Outras abordagens. Todo o resto, de scripts que transformam dados até master data management.

Data cleaning quantitativo

A visão com relação ao dado

- Configuração univariada
- Configuração multivariada
- Séries temporais

Perspectivas de um SGBD

- Estatística e processamento de consulta
- ► Time Series Databases (TSDBs)

J. M. Hellerstein. Quantitative data cleaning for large databases. Tech report, 2008.

Deduplicação

▶ É o processo de combinar os registros de diversos bancos de dados, onde os registros se referem a mesma entidade do mundo real.

Abordagem básica

- Blocking keys
- Indexação
- Funções de similaridade
- Modelos de decisão

P. Christen. A Survey of Indexing Techniques for Scalable Record Linkage and Deduplication. IEEE TKDE, 2012.

Outras abordagens

- Data integration
- Data transformations (e.g., data Wrangling)
- Master data management

Cleaning para consistência

Restrições de integridade (RIs)

- 1. Uso de uma linguagem apropriada para expressar regras de qualidade de dados.
- 2. Detectar violações de RIs nos dados
- 3. Reparar violações de RIs, se possível
- 4. Descobrir automaticamente RIs dos dados

Chu, Xu and Ilyas, Ihab F. Qualitative Data Cleaning. PVLDB, 2016.

Expressando regras de qualidade de dados com uma restrição de negação(DCs)

Para verificar a regra "Se dois vendedores vendem o mesmo produto e têm o mesmo salário, aquele com a menor venda não pode ter o maior bônus"

	PNome	SNome	Salario	Bonus	Idade	Сер	End	Phone	Produto	Objetivo	Vendas
t_0	John	Miller	\$1000	\$300	48	5081	48 6th avenue	3324	Soda	\$10000	\$10000
<i>t</i> ₁	Brad	Fuhrmann	\$1000	\$400	40	5082	12 Canyon Road	3323	Bread	\$12000	\$14000
t ₂	Julio	Lopez	\$3000	\$1100	60	5083	15 Bourbon Street	3326	Yogurt	\$20000	\$30000
<i>t</i> ₃	Paul	Allen	\$1200	\$400	400	5001	20 Calle Ocho	3250	Soda	\$12000	\$13000
<i>t</i> ₄	Greg	Miller	\$1000	\$300	05-05-1970	4081	48 6th avenue	3324	Soda	\$10000	\$10000
<i>t</i> ₅	Brad	Furman	\$1000	\$400	40	5082	80 Ocean Drive	3323	Bread	\$12000	\$14000
<i>t</i> ₆	Jeff	Jones	\$3000	\$2000	36	5056	100 Worth Avenue	4260	Yogurt	\$20000	\$20000

 $\neg (t_x.Produto = t_y.Produto \land t_x.Salario = t_y.Salario \land t_x.Vendas > t_y.Vendas \land t_x.Bonus < t_y.Bonus)$

Restrição de negação/Denial constraints (DCs)

Intuição

- Definem um conjunto de predicados que um banco de dados precisa satisfazer para prevenir que atributos recebam valures considerados semânticamente inconsistêntes
 - Generalizam muitas outras RIs (FDs, CFDs, check constraints, etc)

Detectar violações de RIs nos dados

$$\varphi: \neg(t_x.Produto = t_y.Produto \land t_x.Salario = t_y.Salario \land t_x.Vendas > t_y.Vendas \land t_x.Bonus < t_y.Bonus)$$

	PNome	SNome	Salario	Bonus	Idade	Сер	End	Phone	Produto	Objetivo	Vendas
t_0	John	Miller	\$1000	\$300	48	5081	48 6th avenue	3324	Soda	\$10000	\$10000
<i>t</i> ₁	Brad	Fuhrmann	\$1000	\$400	40	5082	12 Canyon Road	3323	Bread	\$12000	\$14000
t ₂	Julio	Lopez	\$3000	\$1100	60	5083	15 Bourbon Street	3326	Yogurt	\$20000	\$30000
<i>t</i> ₃	Paul	Allen	\$1200	\$400	400	5001	20 Calle Ocho	3250	Soda	\$12000	\$13000
<i>t</i> ₄	Greg	Miller	\$1000	\$300	05-05-1970	4081	48 6th avenue	3324	Soda	\$10000	\$10000
<i>t</i> ₅	Brad	Furman	\$1000	\$400	40	5082	80 Ocean Drive	3323	Bread	\$12000	\$14000
<i>t</i> ₆	Jeff	Jones	\$3000	\$2000	36	5056	100 Worth Avenue	4260	Yogurt	\$20000	\$20000

► Como reparar os valores de atributo t₂. Bonus e t₀. Bonus?

Reparar violações de RIs

- ▶ Dado um conjunto de RIs ∑ definidas para um banco de dados sujo D
 - ► Encontre um banco de dados D' que seja consistente com Σ e que difira minimamente de D
 - ▶ dist(D, D') deve ser mínima

Reparando violações de RIs

 $\varphi : \neg (t_x.Product = t_y.Product \land t_x.Salary = t_y.Salary \land t_x.Sales > t_y.Sales \land t_x.Bonus < t_y.Bonus)$

	 Bonus	
<i>t</i> ₀	\$300	
<i>t</i> ₁	\$400	
<i>t</i> ₂	\$1100	
<i>t</i> ₃	\$400	
<i>t</i> ₄	\$300	
<i>t</i> ₅	\$400	
<i>t</i> ₅	\$2000	

		 Bonus	
	t_0	\$300	
	<i>t</i> ₁	\$400	
	<i>t</i> ₂	\$2100	
\rightarrow	<i>t</i> ₃	\$400	
	<i>t</i> ₄	\$300	
	<i>t</i> ₅	\$400	
	<i>t</i> ₅	\$2000	

	 Bonus	
t ₀	\$300	
t ₁	\$400	
t ₂	\$1100	
<i>t</i> ₃	\$400	
<i>t</i> ₄	\$300	
<i>t</i> ₅	\$400	
<i>t</i> ₅	\$2000	

		 Bonus	
	t ₀	\$300	
	t ₁	\$400	
	t ₂	\$1100	
>	<i>t</i> ₃	\$400	
	<i>t</i> ₄	\$300	
	<i>t</i> ₅	\$400	
	<i>t</i> ₅	\$1000	

. ...

Reparando violações de RIs

$$\varphi : \neg (t_x.Product = t_y.Product \land t_x.Salary = t_y.Salary \land t_x.Sales > t_y.Sales \land t_x.Bonus < t_y.Bonus)$$

	 Bonus		
t ₀	\$300	1	
t ₁	\$400	1	
t ₂	\$1100		7
t ₃	\$400		•
<i>t</i> ₄	\$300]	
<i>t</i> ₅	\$400	1	
<i>t</i> ₅	\$2000		

Reparando violações de RIs

$$\varphi : \neg (t_x.Product = t_y.Product \land t_x.Salary = t_y.Salary \land t_x.Sales > t_y.Sales \land t_x.Bonus < t_y.Bonus)$$

	 Bonus			
t_0	\$300		\rightarrow	?
<i>t</i> ₁	\$400			
<i>t</i> ₂	\$1100			
<i>t</i> ₃	\$400			
<i>t</i> ₄	\$300			
<i>t</i> ₅	\$400			
<i>t</i> ₅	\$2000			

- Equivalence classes
- Vertex covers
- Probabilistic models
- **•** . . .

Descoberta de RIs

Dado uma instância r de esquema R, encontre todas RIs que são válidas em r

Desafio

- ► Large search space
 - ▶ Descoberta de FDs em tabela com 100 colunas \rightarrow 2¹⁰⁰ 1 \rightarrow 1.3 nonillion combinações de colunas

Abordagens

- Schema Driven
 - Sensível ao tamanho do esquema
- Instance Driven
 - Sensível ao tamanho da instância
- Hybrid

Desafios de data cleaning

- Keeping track of data errors
- Big data cleaning
- Holistic approaches
- Trusting the IC discovery

Thank You

"If we just have a bunch of data sets in a repository, it is unlikely anyone will ever be able to find, let alone reuse, any of this data. With adequate metadata, there is some hope, but even so, challenges will remain . . ."

Agrawal et. al. Challenges and opportunities with Big Data. Technical report, Computing Community Consortium,2012.