The radioactive isotope 233 Pa can be produced following neutron capture by 232 Th when the resulting 233 Th decays to 233 Pa. In the neutron flux of a typical reactor, neutron capture in 1 g of 232 Th produces 233 Th at of a rate of 2.0×10^{11} s⁻¹.

- a) What are the activities (in Ci) of ²³³Th and ²³³Pa after this sample is irradiated for 1.5 hours?
- b) The sample is then placed in storage with no further irradiation so that the 233 Th can decay away. What are the activities (in Ci) of 233 Th and 233 Pa after 48 hours of storage?
- c) The decay of ²³³Pa results in ²³³U, which is also radioactive. After the above sample has been stored for 1 year what is the ²³³U activity in Ci? (Hint: it should not be necessary to set up an additional differential equation to find the ²³³U activity.)

Recall: 1 Ci = 3.7×10^{10} s⁻¹

Use the following masses for parts (a) and (b):

 $\begin{array}{l} {\rm n:~1.008665~u} \\ {}^1{\rm H:~1.007825~u} \\ {}^2{\rm H:~2.014102~u} \\ {}^{56}{\rm Fe:~55.934939~u} \\ {}^{98}{\rm Y:~97.922203~u} \\ {}^{135}{\rm I:~134.910048~u} \\ {}^{235}{\rm U:~235.043924~u} \end{array}$

Also, recall: $1\mathbf{u} \cdot c^2 = 931.502 \text{ MeV}$

a) Calculate the Q-value of the reaction:

$$^{235}{
m U}\,+\,n
ightarrow\,^{135}{
m I}\,+\,^{98}{
m Y}\,+\,3n$$

b) Calculate the average binding energy per nucleon in MeV of ²H, ⁵⁶Fe, and ²³⁵U.

a) Solve the first order differential equation

$$\frac{dy}{dx} + 3y = 0$$

b) Solve the second order differential equation (A and B are constants)

$$\frac{d^2y}{dx^2} - A^2y = B$$

The boundary condition is $y(\pm \frac{1}{A}) = 0$.

Answers

Problem 2

a) The Q-value of a reaction is given by:

$$Q = [m(x) + m(X) - m(y) - m(Y)]c^{2}.$$

$$\begin{aligned} ^{235}\mathrm{U} + n &\to ^{135}\mathrm{I} + ^{98}\mathrm{Y} + 3n \\ Q &= [m(^{235}\mathrm{U}) + m(n) - m(^{135}\mathrm{I}) - m(^{98}\mathrm{Y}) - 3m(n)]c^2 \\ Q &= [235.043924\mathrm{u} + 1.008665\mathrm{u} - 134.910048\mathrm{u} - 97.922203\mathrm{u} - 3(1.008665\mathrm{u})]c^2 \\ Q &= 0.194343\mathrm{u} \cdot c^2 \\ \hline Q &= 181.031 \ \mathrm{MeV} \end{aligned}$$

b) The binding energy B(Z,A) for any nuclei can be found approximately from the equation:

$$M(Z, A) = Zm(^{1}H) + (A - Z)m_n - B(Z, A)/c^{2},$$

where M(Z, A), $Zm(^{1}H)$ and m_n are experimentally calculated values. Per nucleon, the binding energy can be expressed as:

$$B_A(Z, A) = [Zm(^1H) + (A - Z)m_n - M(Z, A)]c^2/A.$$

 $^{2}\mathbf{H}$

$$B_A(1,2) = [m(^1H) + (2-1)m_n - M(1,2)]c^2/2$$

$$B_A(1,2) = [(1.007825\mathrm{u}) + (1.008665\mathrm{u}) - (2.014102\mathrm{u})]c^2/2$$

$$B_A(1,2) = 0.001194\mathbf{u} \cdot c^2$$

$$B_A(1,2) = 1.112 \text{ MeV}$$

 56 Fe

$$B_A(26,56) = [26m(^1\text{H}) + (56 - 26)m_n - M(26,56)]c^2/56$$

$$B_A(26,56) = [26(1.007825\mathrm{u}) + 30(1.008665\mathrm{u}) - (55.934939\mathrm{u})]c^2/56$$

$$B_A(26, 56) = 0.009437 \mathbf{u} \cdot c^2$$

$$B_Z(26, 56) = 8.791 \text{ MeV}$$

 ^{235}U

$$B_A(92,235) = [92m(^1\text{H}) + (235 - 92)m_n - M(92,235)]c^2/235$$

$$B_A(92,235) = [92(1.007825\mathrm{u}) + 143(1.008665\mathrm{u}) - (235.043924\mathrm{u})]c^2/235$$

$$B_A(92, 235) = 0.00814924u\mathbf{u} \cdot c^2$$

$$B_Z(92, 235) = 7.591 \text{ MeV}$$

a)

$$\frac{dy}{dx} = -3y\tag{1}$$

$$\frac{dy}{y} = -3 dx \tag{2}$$

$$\int \frac{dy}{y} = -3 \int dx \tag{3}$$

$$ln y = -3x + C$$
(4)

$$y = e^{-3x+C} \tag{5}$$

(6)

$$y = Ce^{-3x}$$

Solve the second order differential equation

$$\frac{d^2y}{dx^2} - A^2y = B$$

For the homogeneous equation, $\frac{d^2y}{dx^2} - A^2y = 0$, try $y_c = X_1e^{Ax} + X_2e^{-Ax}$ as the complementary solution (X_1 and X_2 are constants). Then

$$\frac{d^2y}{dx^2} = X_1 A^2 e^{Ax} + X_2 A^2 e^{-Ax}$$

and

$$(X_1 A^2 e^{Ax} + X_2 A^2 e^{-Ax}) - A^2 (X_1 e^{Ax} + X_2 e^{-Ax}) = 0$$
$$A^2 (X_1 e^{Ax} + X_2 e^{-Ax}) - A^2 (X_1 e^{Ax} + X_2 e^{-Ax}) = 0$$

This is true.

For the inhomogeneous equation, $\frac{d^2y}{dx^2} - A^2y = B$, $y_P = -B/A^2$ is the only particular solution satisfying the equation. The general solution is the sum of the complementary and particular solutions, $y = y_c + y_p$.

$$y = X_1 e^{Ax} + X_2 e^{-Ax} - \frac{B}{A^2}$$

Now we can solve for X_1 and X_2 .

$$y(\frac{1}{A}) = X_1 e^{A(\frac{1}{A})} + X_2 e^{-A(\frac{1}{A})} - \frac{B}{A^2} = 0$$

and

$$y(-\frac{1}{A}) = X_1 e^{A(-\frac{1}{A})} + X_2 e^{A(\frac{1}{A})} - \frac{B}{A^2} = 0$$

We can note that in these two equations, X_1 and X_2 can be interchanged freely, and so must be equal. We will say, $X_1 = X_2 = X$. Then, we have

$$0 = Xe^{A(-\frac{1}{A})} + Xe^{A(\frac{1}{A})} - \frac{B}{A^2}$$
$$0 = X(e^{-1} + e^1) - \frac{B}{A^2}$$
$$X = \frac{B}{A^2(\frac{1}{e} + e)}$$

The we plug this X into the final solution, which gives

$$y = \frac{B}{A^2(\frac{1}{e} + e)}(e^{Ax} + e^{-Ax}) - \frac{B}{A^2}$$

Note that $e^{Ax} + e^{-Ax}$ is similar in form to $\cosh(Ax)$ which we could have also used to solve this problem.