```
import matplotlib.pyplot as plt
plt.figure(figsize = (16,16))
img = plt.imread('/content/amer_sign2.png')
plt.imshow(img)
plt.show()
```



```
import keras
from keras.models import Sequential
from keras.layers import Dense,Flatten,Conv2D,MaxPool2D,Dropout
{\tt import\ matplotlib.pyplot\ as\ plt}
import seaborn as sns
from \ tensorflow.keras.preprocessing.image \ import \ ImageDataGenerator
import pandas as pd
train_df=pd.read_csv('/content/sign_mnist_train.csv')
test_df=pd.read_csv('/content/sign_mnist_test.csv')
train_df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 27455 entries, 0 to 27454
     Columns: 785 entries, label to pixel784
     dtypes: int64(785)
     memory usage: 164.4 MB
test_df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 7172 entries, 0 to 7171
     Columns: 785 entries, label to pixel784
     dtypes: int64(785)
     memory usage: 43.0 MB
```

train_df.describe()

train_df.head(6)

	label	pixel1	pixel2	pixel3	pixel4	pixel5	pixel6	pixel7	pixel8	pixel9	
0	3	107	118	127	134	139	143	146	150	153	
1	6	155	157	156	156	156	157	156	158	158	
2	2	187	188	188	187	187	186	187	188	187	
3	2	211	211	212	212	211	210	211	210	210	
4	13	164	167	170	172	176	179	180	184	185	
5	16	161	168	172	173	178	184	189	193	196	

6 rows × 785 columns

train_label=train_df['label'] train_label.head() trainset=train_df.drop(['label'],axis=1) trainset.head()

	pixel1	pixel2	pixel3	pixel4	pixel5	pixel6	pixel7	pixel8	pixel9	pixel10	• •
0	107	118	127	134	139	143	146	150	153	156	
1	155	157	156	156	156	157	156	158	158	157	
2	187	188	188	187	187	186	187	188	187	186	
3	211	211	212	212	211	210	211	210	210	211	
4	164	167	170	172	176	179	180	184	185	186	

5 rows × 784 columns


```
X_train = trainset.values
X_train = trainset.values.reshape(-1,28,28,1)
print(X_train.shape)
```

(27455, 28, 28, 1)

test_label=test_df['label'] X_test=test_df.drop(['label'],axis=1) print(X_test.shape) X_test.head()

(7172, 784)

	pixel1	pixel2	pixel3	pixel4	pixel5	pixel6	pixel7	pixel8	pixel9	pixel10	• •
0	149	149	150	150	150	151	151	150	151	152	
1	126	128	131	132	133	134	135	135	136	138	
2	85	88	92	96	105	123	135	143	147	152	
3	203	205	207	206	207	209	210	209	210	209	
4	188	191	193	195	199	201	202	203	203	203	

from sklearn.preprocessing import LabelBinarizer

lb=LabelBinarizer()

y_train=lb.fit_transform(train_label)

y_test=lb.fit_transform(test_label)

y_train

X_test=X_test.values.reshape(-1,28,28,1)

print(X_train.shape,y_train.shape,X_test.shape,y_test.shape)

```
(27455, 28, 28, 1) (27455, 24) (7172, 28, 28, 1) (7172, 24)
```

X_test=X_test/255

```
fig,axe=plt.subplots(2,2)
fig.suptitle('Preview of dataset')
axe[0,0].imshow(X_train[0].reshape(28,28),cmap='gray')
axe[0,0].set_title('label: 3 letter: C')
axe[0,1].imshow(X_train[1].reshape(28,28),cmap='gray')
axe[0,1].set_title('label: 6 letter: F')
axe[1,0].imshow(X_train[2].reshape(28,28),cmap='gray')
axe[1,0].set_title('label: 2 letter: B')
axe[1,1].imshow(X_train[4].reshape(28,28),cmap='gray')
axe[1,1].set_title('label: 13 letter: M')
```

Text(0.5, 1.0, 'label: 13 letter: M')

label: 3 letter: C

Preview of dataset


```
sns.countplot(train_label)
plt.title("Frequency of each label")
```

Text(0.5, 1.0, 'Frequency of each label')

Frequency of each label


```
model=Sequential()
model.add(Conv2D(128,kernel_size=(5,5),
                strides=1,padding='same',activation='relu',input_shape=(28,28,1)))
model.add(MaxPool2D(pool_size=(3,3),strides=2,padding='same'))
model.add(Conv2D(64,kernel_size=(2,2),
                strides=1,activation='relu',padding='same'))
model.add(MaxPool2D((2,2),2,padding='same'))
model.add(Conv2D(32,kernel_size=(2,2),
                strides=1,activation='relu',padding='same'))
model.add(MaxPool2D((2,2),2,padding='same'))
model.add(Flatten())
model.add(Dense(units=512,activation='relu'))
model.add(Dropout(rate=0.25))
model.add(Dense(units=24,activation='softmax'))
model.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 28, 28, 128)	3328
<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 14, 14, 128)	0
conv2d_1 (Conv2D)	(None, 14, 14, 64)	32832
<pre>max_pooling2d_1 (MaxPooling 2D)</pre>	(None, 7, 7, 64)	0
conv2d_2 (Conv2D)	(None, 7, 7, 32)	8224
<pre>max_pooling2d_2 (MaxPooling 2D)</pre>	(None, 4, 4, 32)	0
flatten (Flatten)	(None, 512)	0
dense (Dense)	(None, 512)	262656
dropout (Dropout)	(None, 512)	0
dense_1 (Dense)	(None, 24)	12312
		========

Total params: 319,352 Trainable params: 319,352 Non-trainable params: 0

model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'])

```
model.fit(train_datagen.flow(X_train,y_train,batch_size=200),
  epochs = 10,
  validation_data=(X_test,y_test),
  shuffle=1
  )
 Epoch 1/10
 Epoch 2/10
 Epoch 3/10
 Epoch 4/10
 Epoch 5/10
 Epoch 6/10
 Epoch 7/10
 Epoch 8/10
 Epoch 9/10
 Epoch 10/10
 <keras.callbacks.History at 0x791a734ef6d0>
 -∢-|
(ls,acc)=model.evaluate(x=X_test,y=y_test)
 print('MODEL ACCURACY = {}%'.format(acc*100))
 MODEL ACCURACY = 91.96876883506775%
```