Digital Integrated Circuit HW#6. 20175138 임경독

gute capacitance = 50 (at each input) parasitic capacitance = C+C+4C=6C

tpef = Rx (6+th) C = (6+th) RC

tpdr = R . 4C+ (R + R) x (6+th) C = (8+5h) RC

Answer)
$$t_{pol}f = (6+th)RC$$
, $t_{pol}f = (8+th)RC$
(2-input NOR Gote is sketched above)

Exercise 4.4.

$\frac{2R}{\alpha} \cdot M = \frac{R}{\beta} = R$ $\alpha = 2N , \beta = 1$ porositic expactance = 2nC + nxC = 3nC

$$t_{Pd} = \sum_{i=1}^{n-1} (\frac{iR}{n})(2nC) + 3nRC$$

$$= \sum_{i=1}^{n-1} 2iRC + 3nRC$$

$$= 2RC \cdot \frac{h(nH)}{a} + 3nRC = (n^2 + 2n)RC$$

Exercise 4.9

Reprose 4.9]

A
$$-0$$
[2 B -0 [2 C -0 [2 D -0 [2 Y gate expaction/ $e = 2$ Ct $+4$ C $= 6$ C

A -1 [4 B -1 [4 Logical effort, $\frac{1}{3}$ C -1 [4 -1 [4 $\frac{1}{3}$ C -1 [4

Exercise 4.10.

(a) would be faster than (b) because NAMD gate in (a) has lower logical effort than the NOR gate in (b).

At (a),
$$G = \frac{4}{3} \cdot 1 = \frac{4}{3}$$

 $B = 1$ $\Rightarrow F = \frac{4}{3} \cdot 1 \cdot G = 8$
 $H = G$

$$D = ((Q+1) + 2 \cdot 8^{\frac{1}{2}})_{C} = 8.6c, \quad 8^{\frac{1}{2}} = \frac{6c}{x} \Rightarrow x = 2.12 C$$

At (b),
$$G = 1 \cdot \frac{1}{3} = \frac{5}{3}$$

 $B = 1$
 $A = 6$
 $A = \frac{5}{3} \cdot 1 \cdot 6 = 10$

$$D = ((2+1) + 2 \cdot 10^{\frac{1}{2}})\tau = 9.3\tau, \quad 10^{\frac{1}{2}} = \frac{t}{3} \frac{6c}{y} = \frac{10c}{y} = \frac{5}{2} \frac{3.16C}{y}$$

Answer) path effort in (a):
$$8$$
, path effort in (b): 10. delay in (a): 8.67 , delay in (b): 9.37 $1=9.12$ C, $1=9.16$ C

Exercise 4.11

	N	9	f	D (H=1)	D (H=5)	D(H=20)
(a)	Q	3-1=3	1+6=9	/O . 2 ^h /	14.30	21.61
(P)	2	\$ 3= 25	312=5	8.33	/2.45	19.91
(c)	2	$\frac{4}{3} \cdot \frac{7}{3} = \frac{28}{9}$	2+3 <i>=</i> }	8, 53	12.89	20.78
(4)	4	\$ 1. 3 1 = 20	3+1+2+1=7	//· 48	14.30	17.33

Answer) At H=1, U) is the fastest.

At H=t, (b) is the fastest.

At H=20, (d) is the fastest.

Exercise 5.1.

 $P = \alpha CV_{po}^2 f = 0.1 \times 450 \times 10^{-12} \times 70 \times 6.9^2 \times 450 \times 10^6 = 1.148 W$ Answer) 1.148 W

Exercise 5.4.

clock rate = $1GH_2$ => period = 10^{-9} s

The signal makes 4 transflows in 10 cycles. $\alpha = \frac{1}{2} \times \frac{4}{10} = 0.2$

Answer) 0.2

Exercise 5.5

A two slage will use the least energy.

stage	delay (=20)	Energy		
2	ot 64/x+7	1+ × =	x=4.88,	E = 5.88.

Answer) 2 stage, transistor width = 4.88.

Exercise 5.6

stage	delay(=30)	Energy.	_
2	2+2(+ 2	 k+	> x would be imaginary number
			= 1= 5.00, y= 32.09 = E = 38.09

Answer) 3 stage, translator width = 5.00, 32.09.