FORCE CENTRALE

Notation et hypothèses

Soit M un point matériel de masse m

On étudie le mouvement du point M dans un référentiel R galiléen

• On note \overrightarrow{OM} le vecteur position, \vec{v} la vitesse et \vec{a} l'accéleration de M

• On note \vec{p} la quantité de mouvement de M et $\overrightarrow{L_0}$ le moment cinétique appliqué au point O

Lois de Kepler

- Loi des orbites : Les planètes du système solaire décrivent des trajectoires elliptiques dont le soleil occupe l'un des foyers.
- Loi des aires: Les aires balayées par le segment [OM] pendant des intervalles de temps égaux sont égales.
- Loi des périodes : Le carré de la période de la révolution d'une planète autour du soleil est proportionnel au cube du demi-grand axe a de sa trajectoire elliptique :

$$\frac{T^2}{a^3} = Cste$$

Troisième loi de Kepler

	Mercure	Venus	Terre	Mars	Jupiter	Saturne	Uranus	Neptune
a (unité astronomique)	0,387	0,723	1	1,52	5,20	9,56	19,2	30,1
T (années)	0,241	0,615	1	1,88	11,9	29,5	84,0	165
T^2/a^3 (an^2/UA^3)	1,00	1,00	1,00	1,00	0.999	0,995	0,994	0,995