Algebra liniowa 2

dr Joanna Jureczko

Zestaw zadań nr 2

Kongruencje Grupa Podgrupa Grupa C_n Grupa S_n

- **2.1.** Zbudować tabelki działań + oraz w zbiorze \mathbb{Z}_n , gdzie n=2,3,4,5,6,7.
- **2.2.** Czy dodawanie liczb jest działaniem w zbiorze liczb niewymiernych? Odpowiedź uzasadnić.
- **2.3.** Czy w zbiorze wielomianów stopnia n o współczynnikach rzeczywistych dodawanie jest działaniem? Odpowiedz uzasadnić.
- **2.4.** Ułożyć tabelkę funkcji $x \mapsto x^2 \le \mathbb{Z}_{11}$.
- **2.5.** Ułożyć tabelkę funkcji $x \mapsto x^{-1} \le \mathbb{Z}_{13}$.
- **2.6.** Ułożyć tabelkę funkcji $x \mapsto \frac{x+2}{2x-1} \le \mathbb{Z}_7$.
- **2.7.** Pokazać, że każdy element \mathbb{Z}_5 jest sześcianiem elementu \mathbb{Z}_5 . Czy tak samo jest dla \mathbb{Z}_{11} i \mathbb{Z}_{13} ?
- **2.8.** Sprawdzić czy istnieją (i wyznaczyć jeśli istnieją) pierwiastki kwadratowe z -1 w zbiorze \mathbb{Z}_n dla n=2,3,5,7,11,13.
- **2.9.** Sprawdzić, czy każdy różny od 0 element \mathbb{Z}_n dla n=5,7,11 podniesiony do pewnej potęgi daje 1.
- **2.10.** Wykonać działanie $(6^2 \cdot 3 + 5 \cdot 4^{-1})(5 \cdot 12 7) 1 \le \mathbb{Z}_n$ dla n = 17, 23.
- 2.11. Zapisać w postaci grafu następujące permutacje

a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 3 & 5 & 7 & 13 & 2 & 9 & 4 & 11 & 8 & 1 & 6 & 12 & 10 \end{pmatrix}$$
,

b)
$$\begin{pmatrix} a & b & c & d & e & f \\ b & c & a & e & d & f \end{pmatrix}$$
.

2.12. Zapisać w postaci cykli następujące permutacje zapisane w postaci dwuwierszowej

a)
$$\begin{pmatrix} a & b & c & d & e & f & g & h \\ b & d & a & e & c & f & h & g \end{pmatrix}$$

b)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 5 & 4 \end{pmatrix}$$

c)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 3 & 5 & 2 & 1 & 10 & 9 & 4 & 11 & 8 & 7 & 6 \end{pmatrix}$$
.

W każdym przypadku wyznaczyć rząd i parzystość permutacji.

2.13. Zapisać dany cykl ze zbioru S_6 w postaci tabelarycznej, tzn. dwuwierszowej a)(425), b)(354216), c)(45), d)(453)(21), e)(21)(34)(56).

- **2.14.** Niech dane będą dwie permutacje g = (13)(254)(6) oraz h = (1364)(25). Wyznaczyć a) gh, b) hg, c) gh^{-1} , d) ghg, e) $h^{-1}gh$, f) $(gh)^{-1}$. W każdym przypadku wyznaczyć rząd i parzystość permutacji.
- **2.15.** W grupie S_5 rozwiązać równania:
 - a) (153)x = (13)(254),
 - b) (2534)x(1254) = (13542),
 - $c)(15243)^{-1}x(14532) = (12453).$
- **2.16.** W grupie S_6 rozwiązać równanie $(13654)x(163542)^{-1} = (12643)$.
- **2.17.** Niech $M=\{1,2,3\}$. Funckję $f\colon M\to M$ określoną wzorem $f(x)=\frac{3}{2}x^2-\frac{11}{2}x+6$. Czy $f\in S_3$?
- **2.18.*** Niech $G = \{(1)(2)(3)(4), (12)(34), (13)(24), (14)(23)\}$ będzie podzbiorem S_4 (przedstawiającycm zbiór izometrii płaszczyzny odwzorowujący prostokąt). Czy G jest grupą? Odpowiedź uzasadnić.
- **2.19.** Dla grupy $S_3 = \{g_1, g_2, g_3, g_4, g_5, g_6\}$ gdzie $g_1 = e = (1)(2)(3), g_2 = (12)(3), g_3 = (13)(2), g_4 = (1)(23), g_5 = (123), g_6 = (132)$ utworzyć tabliczkę mnożenia.
- **2.20.*** Niech Φ będzie prostokątem ABCD. Wyznaczyć $D(\Phi)$ oraz $D^+(\Phi)$ i nazwać każdą z powstałych permutacji.

Odpowiedzi:

analogicznie dla $\mathbb{Z}_4, \mathbb{Z}_5, \mathbb{Z}_6, \mathbb{Z}_7$.

- **2.2.** Nie, np. $\sqrt{2} + (-\sqrt{2}) = 0$, a 0 nie jest liczbą niewymierną.
- **2.3.** Nie, bo np. $f(x) = x^2 + 2$, $g(x) = -x^2$, to f(x) + g(x) = 2, czyli st(f + g) < 2.

- **2.8.** Wskazówka: $\sqrt{-1} = x \leftrightarrow -1 = x^3$, dla \mathbb{Z}_2 , $1 = x^2$ czyli x = 1, tak; dla \mathbb{Z}_3 , $2 = x^2$ nie; dla \mathbb{Z}_5 , $4 = x^2$ czyli x = 2, tak; dla $\mathbb{Z}_76 = x^2$ nie; dla $\mathbb{Z}_{11}10 = x^2$ nie; dla $\mathbb{Z}_{13}12 = x^2$ x = 5, tak.
- **2.9.** np. dla \mathbb{Z}_5 mamy $1^2 = 1, 2^4 = 1, 3^4 = 1, 4^2 = 1$. Pozostałe analogicznie.
- **2.10.** w \mathbb{Z}_{17} , 5; w \mathbb{Z}_{23} , 22.
- **2.12.** a) (a b d e c)(g h)(f), (pojedyncze cykle można pominąć w zapisie); b) $(1\ 2)(4\ 5)(3)$; c) $(1\ 3\ 2\ 5\ 10\ 7\ 4)(6\ 9\ 8\ 11)$. Rząd i parzstość to zadanie z *.

2.13. a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 3 & 2 & 4 & 6 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 5 & 2 & 4 & 3 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 4 & 3 & 6 & 5 \end{pmatrix}$

- **2.14.** Uwaga: permutacje skłądamy z lewej strony na prawą wg książki: Klin, Poschel, Rosenbaum "Algebra stosowana dla matematyków i informatyków", WNT 1992.
- a) gh = (1645)(2)(3), b) hg = (1)(36254), c) $gh^{-1} = (1)(2)(3456)$, d) ghg = (16253)(4),
- e) $h^{-1}gh = (152)(36)(4)$, f) $(gh)^{-1} = (2)(3)(1546)$.
- **2.15.** $S_5 = \{1, 2, 3, 4, 5\}$. a) x = (1)(2534), b) x = (13542), c) (15)(24)(3).
- **2.16.** x = (1523)(4)(5).