- **1** (2 punts)
 - a) Empreu el polinomi de Taylor de grau 2 a l'origen de la funció $f(x) = \sqrt[3]{1728 + x}$ per tal d'obtenir un valor aproximat de $\sqrt[3]{1731}$.
 - b) Fiteu l'error comès en l'apartat anterior.

Resolució: a) Calculem les derivades primera i segona de $f(x) = (1728 + x)^{1/3}$:

$$f'(x) = \frac{1}{3}(1728 + x)^{-2/3}$$
; $f''(x) = -\frac{2}{9}(1728 + x)^{-5/3}$.

Avaluant en x = 0 s'obté

$$f(0) = \sqrt[3]{1728} = 12$$
; $f'(0) = \frac{1}{432}$; $f''(0) = -\frac{1}{1119744}$.

El polinomi de Taylor de grau 2 a l'origen és

$$P_2(x) = f(0) + f'(0)(x - 0) + \frac{f''(0)}{2}(x - 0)^2 = 12 + \frac{1}{432}x - \frac{1}{2239488}x^2$$

i, aleshores,

$$\sqrt[3]{1731} = \sqrt[3]{1728 + 3} = f(3) \approx P_2(3) \approx 12.00694043.$$

b) L'error comès és el valor absolut del residu $R_2(x)$ en el punt x=3.

Recordem que
$$R_2(x) = \frac{f'''(c)}{3!}x^3$$
, on $0 < c < x$.

Tenim $f'''(x) = \frac{10}{27} (1728 + x)^{-8/3}$ i per tant, amb 0 < c < 3,

$$R_2(3) = \frac{10}{27 \cdot 3!} (1728 + c)^{-8/3} 3^3 = \frac{5}{3 \cdot (1728 + c)^{8/3}}.$$

Com que c > 0, tindrem $(1728 + c)^{8/3} > (1728)^{8/3}$, i, per tant,

$$|R_2(3)| < \frac{5}{3 \cdot (1728)^{8/3}} = 3.9 \cdot 10^{-9}.$$

I per tant una fita superior de l'error és $3.9 \cdot 10^{-9}$.

- **2** (2 punts)
 - a) Per a la funció $f(x) = e^{x^2 1}$, demostreu que $0 < f^{(4)}(x) \le 76$ si $0 \le x \le 1$.
 - b) Fent ús del mètode de Simpson, calculeu l'àrea de la regió del pla limitada per les rectes y = 0, x = 0, x = 1 i la corba $y = e^{x^2 1}$, amb un error menor que 10^{-3} .

Resolució: (a) Calculem les derivades successives de la funció $f(x) = e^{x^2-1}$ tot aplicant la regla del producte i obtenim que

1.
$$f'(x) = 2xe^{x^2-1}$$
,

2.
$$f^{(2)}(x) = (4x^2 + 2)e^{x^2-1}$$
.

3.
$$f^{(3)}(x) = (8x^3 + 12x)e^{x^2-1}$$

4.
$$f^{(4)}(x) = (16x^4 + 48x^2 + 12)e^{x^2 - 1}$$
.

Anomenem per comoditat $g(x) = f^{(4)}(x) = (16x^4 + 48x^2 + 12)e^{x^2-1}$. Se'ns demana que estudiem la funció g(x) en l'interval [0,1] i que comprovem que $0 < g(x) \le 76$ en aquest interval. Observem que la funció g(x) és creixent en [0,1]: la seva derivada $g'(x) = (32x^5 + 160x^3 + 120x)e^{x^2-1}$ és positiva en l'interval perquè la funció exponencial sempre pren valors positius i el polinomi $32x^5 + 160x^3 + 120x$ és positiu per $0 \le x \le 1$.

Per tant els valors mínim i màxim que pren g(x) es troben en els extrems de l'interval: concretament

$$g(0) = 12/e > 0,$$
 $g(1) = 76e^0 = 76.$

Això demostra que efectivament $0 < g(x) \le 76$ ja que de fet es té $\frac{12}{e} \le g(x) \le 76$.

(b) Si dividim l'interval [a,b] en un nombre parell n de subintervals

$$[x_0 = a, x_1], [x_1, x_2], \dots, [x_{n-1}, x_n = b],$$

tots ells de la mateixa mida $h = \frac{b-a}{n}$, aleshores la regla de Simpson aproxima l'àrea que hi ha per sota la gràfica de f(x) entre les abcisses x = a i x = b per la fórmula

$$I(n) = \frac{h}{3}(f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + \dots + 4f(x_{n-1}) + f(x_n)).$$

En funció del n triat, l'error comès entre el valor real de la integral i el valor obtingut pel mètode de Simpson està fitat en valor absolut per l'expressió

$$E(n) = \frac{h^4(b-a)}{180} \max|f^{(4)}(\eta)|$$

on el màxim el prenem sobre els valors absoluts que pren la quarta derivada de f(x) en els punts $\eta \in [a,b]$.

En el nostre cas tenim a = 0, b = 1 i $f(x) = e^{x^2 - 1}$, així que si volem que

$$E(n) < 10^{-3} = 0.001$$

hem de trobar per quoin valor de n això es satisfà. A l'apartat anterior hem vist que el valor màxim que pot prendre $|f^{(4)}(\eta)|$ per $\eta \in [0,1]$ és 76. Per tant

$$E(n) = \frac{h^4(b-a)}{180} \max|f^{(4)}(\eta)| = \frac{76}{180n^4} < 10^{-3}$$

es satisfà quan

$$n^4 > \frac{76 \cdot 10^3}{180} \simeq 422.25,$$

és a dir, quan

$$n > \sqrt[4]{422.25} \simeq 4.533.$$

Com n ha de ser parell, prenem n = 6 i calculem el valor aproximat de la integral donada per la regla de Simpson:

$$I(6) = \frac{h}{3}(f(0) + 4f(\frac{1}{6}) + 2f(\frac{2}{6}) + 4f(\frac{3}{6}) + 2f(\frac{4}{6}) + 4f(\frac{5}{6}) + f(1)) =$$

$$= \frac{1}{18}(e^{-1} + 4e^{\frac{1}{36}-1} + 2e^{\frac{4}{36}-1} + 4e^{\frac{9}{36}-1} + 2e^{\frac{16}{36}-1} + 4e^{\frac{25}{36}-1} + e^{0}) \simeq 0.5382.$$

Tal com hem calculat el valor de n, podem assegurar que l'àrea és aquesta amb un error menor que 10^{-3} .

3 (2 punts)

- a) Feu un esboç de les corbes de nivell de la superfície $z=e^{y-x^2}$ corresponents als nivells $z=-1,\frac{1}{e},1,e,e^2.$
- b) Trobeu la derivada direccional de $f(x,y) = e^{y-x^2}$ en el punt $P = \left(\frac{1}{2}, \frac{1}{4}\right)$ i en la direcció $\overrightarrow{v} = (3,4)$.
- c) Quina és la direcció en la qual $f(x,y) = e^{y-x^2}$ creix més ràpidament en el punt $P = (\frac{1}{2}, \frac{1}{4})$? Trobeu el valor de la derivada direccional de f(x,y) en aquesta direcció.

Resolució: a) Las curvas de nivel de la función $z=e^{y-x^2}$ que corresponden a los niveles $z=-1,\frac{1}{e},1,e,e^2$ se obtienen haciendo $e^{y-x^2}=C,$ donde $C=-1,\frac{1}{e},1,e,e^2.$ Notemos que $e^{y-x^2}>0, \ \forall (x,y)\in\mathbb{R}^2 \implies e^{y-x^2}\neq -1, \forall (x,y)\in\mathbb{R}^2 \implies \nexists$ una curva que corresponde al nivel z=-1. En los demás casos

$$\begin{array}{lll} e^{y-x^2} = \frac{1}{e} & \Longleftrightarrow & y-x^2 = -1 & \Longleftrightarrow & y = x^2-1, \\ e^{y-x^2} = 1 & \Longleftrightarrow & y-x^2 = 0 & \Longleftrightarrow & y = x^2, \\ e^{y-x^2} = e & \Longleftrightarrow & y-x^2 = 1 & \Longleftrightarrow & y = x^2+1, \\ e^{y-x^2} = e^2 & \Longleftrightarrow & y-x^2 = 2 & \Longleftrightarrow & y = x^2+2. \end{array}$$

Todas estas curvas son parábolas, mírese el dibujo siguiente:

Exercici 3. Corbes de nivell.

b) La derivada direccional de f en el punto P en la dirección del vector u se calcula como sigue: $D_u f(P) = \nabla f(P) \cdot u$, si f'_x , $f'_y \in \mathcal{C}(P)$ y el vector u es unitario. En nuestro caso las derivadas parciales $f'_x(x,y) = -2xe^{y-x^2}$ y $f'_y(x,y) = e^{y-x^2}$ son continuas $\forall (x,y) \in \mathbb{R}^2$ por ser la composición de una función exponencial y un polinomio. El vector v no es unitario ya que su norma $\|v\| = \sqrt{(3^2 + 4^2)} = 5$. El vector unitario que tiene la dirección de v será $u = \frac{v}{\|v\|} = \frac{(3,4)}{5} = (\frac{3}{5},\frac{4}{5})$. Por lo tanto,

$$D_u f(P) = \nabla f(P) \cdot u = (f_x'(P), f_y'(P)) \cdot u = (-1, 1) \cdot (\frac{3}{5}, \frac{4}{5}) = -\frac{3}{5} + \frac{4}{5} = \frac{1}{5}.$$

c) La dirección en la cual la función f crece más rápido en el punto P coincide con la dirección del vector gradiente de f en el punto P, es decir, es $\nabla f(P) = (-1,1)$. El valor de la derivada direccional de f en el punto P en esta dirección es igual a la norma del vector gradiente, es decir,

$$D_{\nabla f(P)}f(P) = \parallel \nabla f(P) \parallel = \parallel (-1,1) \parallel = \sqrt{(-1)^2 + 1^2} = \sqrt{2}.$$

4 (4 punts) Considereu la funció $f(x,y) = x^2 + y^2 - 2y$ i el conjunt

$$\mathcal{K} = \{(x, y) \in \mathbb{R}^2 : y \ge |x|, x^2 + y^2 \le 2\}.$$

- a) Representeu gràficament el conjunt \mathcal{K} .
- b) Justifiqueu l'existència d'extrems absoluts de f en K.
- c) Determineu tots els candidats a màxim i a mínim absoluts de f en K.
- d) Trieu els punts on f assoleix el màxim i el mínim absoluts en \mathcal{K} i digueu quins són aquests valors.

Resolució:

a) Representem gràficament el conjunt $K = \{(x, y) \in \mathbb{R} : y \ge |x|, x^2 + y^2 \le 2\}$:

Exercici 4. Recinte \mathcal{K} .

- b) f és una funció polinòmica i per tant contínua en tot \mathbb{R}^2 i, en particular en el conjunt K. El conjunt K és tancat $(Fr(K) \subset K)$ i fitat $(K \subset B((0,0),2))$, i per tant és un conjunt compacte. En aquestes condicions, el Teorema de Weierstrass assegura l'existència d'extrems absoluts de f en K.
- c) Hi ha tres tipus de candidats:

Primer, els punts crítics de f a l'interior del conjunt K: igualant a zero les dues derivades parcials de f s'obté un únic punt, (x,y)=(0,1), que és el primer candidat.

Segon, els punts crítics de f condicionats a estar en la frontera del conjunt K: En els dos segments rectes de la frontera, s'obtenen els punts $(\frac{1}{2},\frac{1}{2})$ i $(-\frac{1}{2},\frac{1}{2})$. En el segment circular, utilitzant el mètode dels multiplicadors de Lagrange, s'obté el punt $(0,\sqrt{2})$.

Tercer, els tres vèrtexs: (0,0), (1,1) i (-1,1).

 $Per\ tant,\ en\ total\ hi\ ha\ set\ candidats:\ (0,1),(\frac{1}{2},\frac{1}{2}),(-\frac{1}{2},\frac{1}{2}),(0,\sqrt{2}),(0,0),(1,1)\ i\ (-1,1).$

d) Calculant les imatges per la funció f dels set candidats trobats a l'apartat anterior, veiem que el mínim absolut de f en K és -1 i s'assoleix al punt (0,1) i el màxim absolut de f en K és 0 i s'assoleix als punts (0,0),(1,1) i (-1,1).