(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

2001年11月8日 (08.11.2001) (43) 国際公開日

PCT

WO 01/83451 A1 (10) 国際公開番号

•			5
	3/06, 3/10, 13/02, 25/24	333/54, A61K 31/404, 31/343, 31/381, A61P 1/00, 3/04,	51) 国际特許分類?:
		31/381, A61P 1/00, 3/04,	C07D 209/08, 307/79,

3

代理人: 平木枯頼(HIRAKI, Yusuke); 〒105-0001 東京 都港区虎ノ門一丁目17番1号 虎ノ門5森ビル3階 Tokyo

(22) 国際出版日: (21) 国際出願番号 2001年4月25日(25.04.2001) PCT/JP01/03575

8

(26) 国際公開の言語 (25) 国際出願の言語 日本語 日本語

(30) 優先権データ:

特願2000-130414

2000年4月28日(28.04.2000)

₩

2

(71) 出願人 (米国を除く全ての指定国について): 旭化 成株式会社 (ASAHI KASE) KABUSHKI KAISHA) [PP/P]: 〒30-8205 大阪府大阪市北区登島浜一丁目2 番6号 Osaka (JP).

(81) 指定国 (国内): AE, AG, AL, AM, AT; AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, EI, GB, GD, GE, GH, GM, HR, HU, ID, II, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

84) 指定圏 (広境): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TI, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, PR, GB, GR, IE, IT, LU, MC, NL, FT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG)

添付公開書類: — 国際調査報告書

(72) 発明者; および (75) 発明者/出願人/米国についてのみ): 生田俊一(IKUTA,

Shunichi) [JP/JP]; 〒 Shizuoka (JP). 三好

Shizuoka (JP).

島市東大場2-24-12 Shizuoka (JP)

川行平 (OGAWA, Kohei) [JP/JP]; 〒411-0802 韓国県三

116-0946 静岡県富士市五貫島843-8 Shizuoka (JP).

好詩郎 (MIYOSHI, Shiro) [JP/JP]; 〒 〒416-0945 静岡県富士市宮島637-11

2文字コード及び他の路語については、) 各PCTガゼットの巻頭に掲載されている のガイダンスノード」を参照 、定期発行される る「コードと略語

(54) Title: NOVEL BICYCLIC COMPOUNDS

(54) 発明の名称: 新規2環性化合物

WO 01/83451 A1

3

is hydrogen, hydroxyl, or halogeno; R² is NHSO₂CH₃, SO₂NHCH₃, or the like; R³ methylene; Y is oxygen, NR7, sulfur, methylene, or a bond; and * represents an C₁₋₆ alkyl, optionally substituted phenyl and R6 are each independently hydrogen formula (I) or salts thereof (wherein (57) Abstract: Compounds of the general are useful as preventive and asymmetric carbon atom. X is NH, sulfur, oxygen, or Y is oxygen, NR7, sulfur, therapeutic

/装装有/

drugs for diabetes, obesity, hyperlipidemia, digestive diseases, depression, and urinary disturbances

WO 01/83451 PCT/JP01/03575

明細書

新規2環性化合物

技術分野

薬として有用な、新規化合物に関するものである 本発明は、糖尿病、肥満、高脂血症、消化器系疾患、 うつ病、排尿障害の予防治療

背景技術

ol. 288, pp1367-1373, 1999) 所された (J. Urinol., Vol.161, pp680-685, 1999、 J. Pharmacol. おいてβ3アドレナリンレセプターが発現し、β3作動薬で排尿筋が弛緩することが 数の増加、β2の刺激は、平滑筋組織の弛緩を誘起し、血圧を低下させ、β3は、 J. Clin. いる (Nature, Vol.309, pp163-165, 1984、Int. J. Obes. Relat. Metab. Disord. 作動薬が、糖尿病、肥満、高脂血症の予防、治療薬として有用であることが示されて 防細胞の脂肪分解を促進させ、熱産生を上昇させると考えられている。従って、β Vol. 20, pp191-199, 1996. Drug Development Research, Vol. 32, pp69-76, βアドレナリンレセプターは、β1、β2、β3に分類され、β1の刺激は、拍動 Invest., Vol. 101, pp2387-2393, 1998)。また、 最近になって、排尿筋に . Exp. Ther., V 1994

数増加や血圧低下などの副作用を引き起こすからである 考えた場合は、選択性の高いすなわちβ1, β3作動活性を有する化合物はいくつか知られているが、医薬品としての有用性を なぜなら先に述べたようにβ1, β 2刺激活性の低い化合物が特に求める β 2 刺激活性を併せ持し化合物は、心拍

戯された下記の構造式 従来β3に関係する化合物として、 フューチャー (Drugs of the future) , EP023385や文献(ドラッグス 1991年、 16巻、 797頁) に記 **4**7

CH₃ O CO₂H

を有する化合物 (BRL37344)、またEP0455006や文献 (ジャーナルオプ メディシナル ケミストリー (J. Med. Chem.)、1992年、35巻、3081頁) に記載された下記の構造式

を有する化合物 (CL316, 243)、またはWO9429290に記載された下記の構造式

を有する化合物、またEP0659737には種々の化合物が記載されているが、たとえば、その明細審実施例1には下記の構造式

(57) 展約:

一般式 (I)

9

[式中、 R^1 は水素原子、水酸基またはハロゲン原子を示し、 R^2 はNHSO $_2$ CH $_3$ またはSO $_2$ NHCH $_3$ 等を示し、 R^6 と R^6 は、各々独立に、水素原子、炭素数1から6のアルキル基、置換基を有していてもよいフェニル基またはペンジル基を示す。XはNH、硫黄原子、酸素原子またはメチレン基を示し、Yは酸素原子、NR 7 、硫黄原子、メチレン基または結合を示す。*は不斉炭素原子を意味する。]で示される化合物またはその塩。

上記化合物は、 糖尿病、肥満、高脂血症、消化器系疾患、うつ病、排尿障害の予防治療薬として有用である。

を有する化合物が例示されている。しかしながら、これらは本発明の化合物と明らかに構造を異にするものである。

また、心拍数増加作用、心筋収縮力増強作用および抗肥満作用がある化合物として、 EP171702に記載の下記の構造式

を有する化合物が知られているが、この化合物は心臓へ作用する化合物であり、本発 明化合物とは構造が異なり、かつ心臓への作用が強いという点で異なる。

さらに、 α 、 β 遮断作用、即ち血圧降下作用を有する化合物として、特開昭55-532628、特開昭58-41860号に記載された下記の構造式

を有する化合物が知られ、また、血管拡張作用を有する化合物として、ドイツ特許D E2651572に記載された下記の構造式

を有する化合物があるが、本発明化合物と構造および用途が相違するものである。 本発明者らは、先に優れたβ3活性を有する化合物を発明し、WO9725311 に、例えば下記構造式

を有する化合物を開示したが、本発明の化合物とは構造を異にする。

発明の開示

糖尿病、肥満症、高脂血症、排尿障害等の治療および予防に用いられる、新規かつ 有用なβ3選択的作動薬の発見が切望されてきた。

本発明者らは、かかる課題を解決するため鋭意検討を進めた結果、下記の一般式(I) で示される新規な化合物が、選択的な B 3 作動活性を示すことを発見し、本発明を完成するに至った。

すなわち、本発明は、一般式 (I)

 $[式中、R^1は水素原子、水酸基またはハロゲン原子を示し、<math>R^2$ は $NHSO_2R^3$ また

はSO2NR'R' を示す。ただし、R3は炭素数1から6のアルキル基、ベンジル基、フェニル基またはNR'R' を示し、R'およびR' は同一であっても異なっていてもよく、各々独立に、水素原子、または炭素数1から6のアルキル基を示す。R5とR6は同一であっても異なっていてもよく、各々独立に、水素原子、炭素数1から6のアルキル基、置換基を有していてもよいフェニル基または置換基を有していてもよいベンジル基を示す。XはNH、硫黄原子、酸素原子またはメチレン基を示す。Yは酸素原子、NR'、硫黄原子、メチレン基または結合を示す。 R'は水素原子、対比酸素原子、NR'、硫黄原子、メチレン基または結合を示す。 R'は水素原子、炭素数1から6のアルキル基または炭素数1から6のアシル基を意味する。*は不斉炭素質7を意味する。]で示される化合物またはその塩に関するものである。

本明細書においては特に断らない限り、ハロゲン原子とは、フッ素原子、塩素原子、臭素原子あるいはヨウ素原子を示す。また、炭素数1から6のアルキル基とは、1から6個の炭素を含む直鎖状もしくは分枝状の飽和炭化水素基を意味し、具体的にはメチル、エチル、ロープロピル、iープロピル、ロープチル、iープチル、sープチル、tープチル、ローベンチル、iープロピル、ロープチル、ローペキシル等を意味する。また、炭素数1から6のアシル基とは、水素原子または1から5個の炭素を含む直鎖状もしくは分枝状の飽和炭化水素基と結合したカルボニル基を意味し、具体的にはホルミル、アセチル、プロピオニル、プタノイル、ペンタノイル、ヘキサノイル等を意味する。

R'は水薬原子、水酸基またはハロゲン原子を示すが、 水素原子、水酸基、フッ素原子、塩素原子および臭素原子が好ましい例として挙げられる。 ベンゼン環上のR'の置換位置は特に限定されないが、アミノエタノール側鎖に対しオルト位またはパラ位である位置が好ましく、このうち置換位置がパラ位(2位)である場合が特に好ましい。

 R^2 はNHSO $_2R^3$ またはSO $_2$ NR 4 R 4 ? を示し、 R^3 は炭素数1から6のアルキル基、ベンジル基、フェニル基またはNR 4 R 4 ? を示し、 R^4 および R^4 ? は同一であっても異なっていてもよく、各々独立に、水素原子または炭素数1から6のアルキル基を示す。このうち、 R^2 の特に好ましい例としてはNHSO $_2$ CH $_3$ 、SO $_2$ NHCH $_3$ あるいはNHSO $_2$ N(CH $_3$) $_2$ が挙げられる。

R'とR'の組み合わせにおいて、R'の置換位置がパラ位(2位)で、かつ水素原

子、フッ素原子、塩素原子または臭素原子であり、RgがNHSO2K3である場合が好ましい。また、K1の置換位置がパラ位(2位)で、かつ水酸基であり、KgがSO5NK4K4、である場合も好ましい。

RºとRºは同一かもしくは互いに異なっていてもよい水素原子、炭素数1から6のアルキル基、置換基を有してもよいフェニル基または置換基を有してもよいペンジル基を示し、このうちRºがメチルで、Rºが置換基を有してもよいフェニル基である場合が特に好ましい。

上記したベンゼン環上の置換基とは水酸基、ハロゲン原子、トリフルオロメチル基低級アルキル基、低級アルコキシ基、低級アシル基、NRR'、ニトロ基またはシアノ基を示す。RおよびR'は同一かもしくは互いに異なっていてもよい水栗原子、低級アルキル基、低級アシル基、ベンジル基またはSO2R'、を示す。R'、は低級アルキル基またはベンジル基を示す。低級とは炭栗数1から6の直鎖状または分枝状の置換基を示す。フェニル基上の置換基の数は1から5個で、1から2個が好ましい。XはNH、酸素原子、硫黄原子またはメチレン基を示し、XはNHである場合がより好ましい。

Yは酸素原子、NR'、硫黄原子、メチレン基または結合を示す。また、R'は水素原子、炭素数1から6のアルキル基または炭素数1から6のアシル基を意味する。このうちYが酸素原子、NR'または硫黄原子である場合が好ましい。さらに、Yは酸素原子またはNHである場合がより好ましい。

上記の一般式 (1) において*は不斉炭素であり、R配置またはS配置いずれかの 鏡像異性体として存在する。光学的に純粋ないずれかの異性体のみならず、任意の比 率の2つの異性体の混合物も本発明の範囲内に包含される。薬理活性の発現という点 からは、不斉炭素*の好ましい配置は、R配置である。

さらに、一般式 (I) で示される本発明の化合物で、具体的な化合物としては、Nー[3-[2-[2-(2,3-ジメチル-]H-インドール-6-イルオキシ) エチルアミノ] -1-ヒドロキシエチル] フェニル] メタンスルホンアミド、Nーメチル-[5-[2-[2-(2,3-ジメチル-1H-インドール-6-イルオキシ) エチルアミノ] -1-ヒドロキシエチル] -2-ヒドロキシ] ベンゼンスルホンアミド、N-[5-[2-[2-(2,3-ジメチル-1H-インドール-6-イルオキ

PCT/JP01/03575

ルオキシ) エチルアミノ] ー1ーヒドロキシエチル] ー2ーフルオロフェニル] メタ ンアミド、N-[5-[2-[2-(2, 3-ジメチル-1H-インドール-6-4 シ) エチルアミノ] ー1ーヒドロキシエチル] ー2ークロロフェニル] メタンスルオ

ニル] メタンスルホンアミド、N-[3-[2-[2-(2, 3-ジメチルベンソウ ランー6ーイルオキシ) エチルアミノ] ー1ーヒドロキシエチル] フェニル] メタン チルー [5- [2- [2- (2-メチルー3-フェニルー1H-インドールー6-A エチルアミノ] ー1ーヒドロキシエチル] フェニル] メタンスルホンアミド、Nーメ タンスルホンアミド、Nーメチルー [5ー [2ー [2ー (3ーメチルー2ーフェニ) ンドールー6-イルオキシ) エチルアミノ] ー1-ヒドロキシエチル] フェニル] メ ンスルホンアミド、N- [3- [2- [2- (3-メチル-2-フェニル-1H-) ンー6-イルオキシ) エチルアミノ] -1-ヒドロキシエチル] -2-ヒドロキシ] 6ーイルオキシ) エチルアミノ] ー1ーヒドロキシエチル] ー2ークロロフェニル] スルホンアミド、Nーメチルー [5ー [2ー [2ー (2, 3ージメチルベンソフラン ルホンアミド、N-[5-[2-[2-(2-メチル-3-フェニル-1H-インド ルオキシ) エチルアミノ] ー1ーヒドロキシエチル] ー2ーヒドロキシ] ベンゼンス シエチル] -2-クロロフェニル] メタンスルホンアミド、N- [5- [2- [2-2ーフェニルー1Hーインドールー6ーイルオキシ) エチルアミノ] ー1ーヒドロキ 2-ヒドロキシ] ベンゼンスルホンアミド、N- [5- [2- [2- (3-メチル-**-1H-インドール-6-イルオキシ) エチルアミノ] -1-ヒドロキシエチル] -**ベンゼンスルホンアミド、N-[5-[2-[2-(2,3-ジメチルベンメチオロ ルホンアミド、N-メチルー[5-[2-[2-(2,3-ジメチルベンゾチオフェ ソー6-イルオキシ) エチルアミノ] -1-ヒドロキシエチル] フェニル] メタンフ メタンスルホンアミド、N-[3-[2-[2-(2,3-ジメチルベンゾチオフェ ンゼンスルホンアミド、N-[5-[2-[2-(2,3-ジメチルベンゾフラン-ールー6-イルオキシ) エチルアミノ] -1-ヒドロキシエチル] -2-クロロフェ -1-ヒドロキシエチル] -2-フルオロフェニル] メタンスルホンアミド、N- [3 ー6-イルオキシ) エチルアミノ] -1-ヒドロキシエチル] -2-ヒドロキシ] ベ (3-メチル-2-フェニル-1H-インドール-6-イルオキシ) エチルアミノ [2-[2-(2-メチル-3-フェニル-1H-インドール-6-イルオキシ)

> ニル] メタンスルホンアミドのラセミ化合物またはそれらの光学異性体が例示される ェンー6ーイルオキシ) エチルアミノ] ー1ーヒドロキシエチル] ー2ークロロフェ 次に、一般式(1)で示される化合物の製造方法について例示する

造することができる。すなわち、第一工程として、一般式 (II) (製法A) W09725311およびW00058287に記載の方法に準じて製

はアミノ基の保護基を示す。] で示される化合物と一般式 (III) [式中、R⁵、R¢、XおよびYはそれぞれ前記と同じ意味を示し、Wは水素原子また

示し、W2は水衆原子またはアミノ基の保護基を示し、R3, R4およびR4'は、そ 示す。L²は、脱離基を意味する。 基であれば限定されないが、好ましい例としてはベンジル基、置換基を有するベンジ が得られる。L2の例としては塩素原子、臭素原子またはヨウ素原子などが挙げられ 基である場合はこれの脱保護を行うことにより、一般式 (1) で示される目的化合物 れぞれ前配と同じ意味を示す。]で示される化合物とを反応させ、アミノケトン(一 [式中、R1'は水素原子、OR®またはハロゲン原子を示し、R®は水酸基の保護基を ル基などが挙げられる。R1′がORºである場合の水酸基の保護基Rºについても通 る。WおよびW²がアミノ基の保護基である場合は通常の有機合成に用いられる保息 ン環上の水酸基の保護基Rºの脱保護、WおよびW²が水素原子でなくアミノ基の保器 $ミノアルコール(- CHOH- CH_2-NW-)とする。最後に、必要に応じベンゼ$ $CO-CH_2-NW-$)とする。第二工程として、得られたアミノケトンを還元しア R2' ItNW2SO2R3 that SO2NR4R4' &

甚、置換基を有するベンジル基などが挙げられる。第一工程において使われる一般式 常の有機合成に用いられる物であれば限定されないが、好ましい例としてはベンジル (II) で示される化合物の使用量は、一般式 (III) で示される化合物に対して等モ

れるが、ベンジル基、 使用される還元剤としては、水素化ホウ素ナトリウム、水素化シアノホウ素ナトリウ 活性な酸との付加塩とした後、分別結晶化することにより二種類の光学活性体に分離 **セミ混合物として得られる。ラセミ混合物を樟脳スルホン酸やマンデル酸などの光学** 除去が必要な場合は、使用している保護基の除去に通常使用される反応条件が用いら 好ましくは0 \mathbb{C} 〜30 \mathbb{C} の間の温度で、 $10<math>\mathcal{G}$ 〜24時間の間で行われる。第一工程 メチルホルムアミドが挙げられる。反応温度および反応時間は特に限定されないが、 ルホルムアミド、ジメチルスルホキシドなどが挙げられ、好ましくはエタノール、ジ ム、ボラン等が例示される。反応に用いられる溶媒の例としては、メタノール、エタ に用いることができるが、必要に応じ抽出、精製した後に還元反応に供してもよい。 および反応時間は特に限定されないが、-30℃から選択した容媒の沸点の間の温度 ホキシドなどが挙げられ、好ましくはジメチルホルムアミドが挙げられる。反応温度 **ルコール粋の低級アルコール、塩化メチレン、クロロボルム、1, 2 ージクロロエタ** は塩の状態であっても用いることができ、その際は先に例示した塩基の添加を必ず行 リウム等の無機塩基などが例として挙げられる。また一般式 (II) で示される化合物 ピリジン等の有機塩基、あるいは、炭酸カリウム、炭酸水素ナトリウム、水酸化ナト その際用いられる塩基としては、トリエチルアミン、ジインプロピルエチルアミン、 ル〜5倍モルである。反応により生成する酸を中和するために塩基を添加してもよく 10分~24時間の間で行われる。最終工程としてアミノ基および水酸基の保護基の -30 %から選択した溶媒の沸点の間の温度、好ましくは $0\% \sim 30\%$ の間の温度で ノール、インプロピルアルコール等の低級アルコール、テトラヒドロフラン、ジメチ で生じたアミノケトンは反応混合物から取り出すことなく第二工程である還元反応 ン等の塩素化炭化水素、テトラヒドロフラン、ジメチルホルムアミド、ジメチルスル う。反応に用いられる容媒の例としては、メタノール、エタノール、インプロピルア 例えばパラジウム活性炭を触媒とした水素添加により除去することができる。一 で示される化合物は*で示した不斉炭素を有するため、上述の方法ではラ 置換基を有するベンジル基が保護基として用いられている場合

> 体が得られる 還元の触媒の存在下、水栗供給化合物と共に不斉還元を行うことによっても光学活性 することができる。また、市販の光学活性カラムを用いても分離することができる。 さらに、上記第二工程において、WO0058287に記載の方法に増じて、不斉

第一工程として、一般式 (II) で示される化合物と一般式 (IV) 一般式(1)で示される化合物は、以下に示す別の方法でも製造できる。すなわち (製法B) WO9725311およびWO0104092に記載の方法に準じて

いても通常の有機合成に用いられる保護基であれば限定されないが、好ましい例とし 成する酸を中和するために塩基を添加してもよく、その際用いられる塩基としては、 についても前述の製法Aに記載した通りである。もう一つの水酸基の保護基R®につ 述の製法Aに記載した通りである。 R1'がOR®である場合の水酸基の保護基R® げられ、このうちョウ案原子である場合が特に好ましい。WおよびW²については前 R®の脱保護、必要に応じ水酸基の保護基R®の脱保護、WおよびW²が水素原子でな 例示した塩基の添加を必ず行う。反応に用いられる容媒の例としては、ジメチルホル 般式(II)で示される化合物は塩の状態であっても用いることができ、その際は先に 一般式 (IV) で示される化合物に対して等モル~1.5倍モルである。反応により生 てはトリエチルシリル基が挙げられる。一般式(II)で示される化合物の使用量は、 化合物が得られる。L²の例としては塩素原子、臭素原子またはヨウ素原子などが挙 **くアミノ基の保護基である場合はこれの脱保護を行い、一般式(I)で示される目的** はそれぞれ前記と同じ意味を示す。〕で示される化合物とを反応させアミノエーテル トリエチルアミン、ジイソプロピルエチルアミンなどが例として挙げられる。またー (-CHOR®-CH2-NHW-)とする。次いで第二工程として、水酸基の保護基 [式中、L²は脱離基を示し、R®は水酸基の保護基を示す。R1'、R2'および*

/03575

WO 01/83451

PCT/JP01/03575

ムアミド、ジメチルアセトアミド、ジメチルスルホキシドなどが挙げられ、好ましくはジメチルホルムアミドが挙げられる。反応温度および反応時間は特に限定されないが、0°C~90°Cの間の温度、好ましくは60°Cにおいて、10分~24時間の間で行われる。水酸基の保護基R®の除去、および必要に応じその他の保護基の除去が行われるが、その際使用している保護基の除去に通常使用される反応条件が用いることができる。R®としてトリエチルシリル基が用いられている場合は、これの除去として例えばテトラプチルアンモニウムフロリドを用いることができる。光学活性体の製法としては、製法Aで述べたと同様、光学活性な酸との付加塩としての分別結晶化あるいは市販の光学活性カラムによる分割などが挙げられる。

さらに、例えばWO9725311およびWO0104092に記載されている方法に準じて製造した一般式 (IV) で示される化合物の光学活性体を用いることによっても、一般式 (I) の光学活性な化合物を製造することができる。

一般式 (III) で示される化合物は公知であり、例えばWO9725311あるいは文献 (J. Med. Chem., Vol.10, p462 (1966)) に記載の方法により合成できる。また、一般式 (IV) で示される化合物は公知であり、例えばWO9725311に記載の方法により合成できる。

一方、一般式 (II) で示される化合物は、一般式 (I) で示される化合物合成の重要な中間体として特徴的であり、R 5およびR 6が同時に水素原子となる場合を除き、新規である。一般式 (II) で示される化合物の製造法を以下に例示する。

(製法 a) Yが酸素原子である一般式(A)で示される化合物は以下の方法により製造することができる。すなわち、一般式(A)

[式中、Yは酸素原子を意味し、R2、R2およびXはそれぞれ前記と同じ意味を示す。]で示される化合物と、一般式(A1)

F, (VI)

酢酸や塩酸等の酸が用いられる。 することができ、tープトキシカルボニル基が用いられている場合は、トリフルオロ ジルオキシカルボニル基、置換基を有するベンジルオキシカルボニル基が保護基とし 度で、10分~24時間の間で行われる。第二工程におけるアミノ基の保護基W¹の アセトニトリルなどが挙げられる。反応温度および反応時間は特に限定されないが、 トリエチルアミンなどが挙げられる。反応に用いられる容媒の例としては、テトラヒ モル~5倍モルである。使用される塩基の例としては、炭酸カリウム、炭酸ナトリウ 般式(VI)で示される化合物の使用量は、一般式(V)で示される化合物に対して等 選択については一般式(I)の製法Aで述べた通りである。第一工程で用いられる! るベンジルオキシカルボニル基、tープトキシカルボニル基などが挙げられる。Wの 子などが挙げられる。アミノ基の保護基W'は通常の有機合成に用いられる物であれ る。最後に必要に応じこのアミノ基を別の保護基であるWにて保護し直すことにより 塩基の存在下で反応させる。次いで第二工程としてアミノ基の保護基W'を脱保護す 除去は、使用している保護基の除去に通常使用される反応条件が用いられるが、ペン 反応は、0℃から選択した溶媒の沸点の間の温度、好ましくは室温~90℃の間の温 ム、水酸化カリウム、水酸化ナトリウム、水素化ナトリウム、ナトリウムメトキシド ば限定されないが、好ましい例としてはベンジルオキシカルボニル基、置換基を有す の反応に供することができる。L¹の例としては塩素原子、臭素原子またはヨウ素原 目的物が得られる。 Wが水素原子、すなわちアミノ基がフリーの状態であっても次 て用いられている場合は、例えばパラジウム活性炭を触媒とした水素添加により除去 ドロフラン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド [式中、L1は脱離基を示し、W1はアミノ甚の保護基を示す。] で示される化合物を

(製法 b) Yが硫黄原子である一般式 (II) で示される化合物は以下の方法により製造することができる。すなわち、一般式 (A)

る。] で示される化合物と、一般式 (VI) $[式中、Yは硫黄原子を意味し、<math>{f R}^{f 5}、{f R}^{f 6}$ および ${f X}$ はそれぞれ前記と同じ意味を有す

テトラヒドロフランとメタノールの混合溶媒が用いられる。反応温度および反応時間 チルスルホキシドなどが単独であるいは複数溶媒の混合状態で用いられ、好ましくは ロロエタン等の塩素化炭化水素、テトラヒドロフラン、ジメチルホルムアミド、ジメ 対して等モル~1.5倍モルである。反応は通常塩基の存在下で行われ、トリエチル れる。一般式 (VI) で示される化合物の使用量は、一般式 (V) で示される化合物に は特に限定されないが、反応は、-30℃から選択した溶媒の沸点の間の温度、好ま アルコール等の低級アルコール、酢酸、塩化メチレン、クロロホルム、1, 2ージク る。反応に用いられる溶媒としては例えば、メタノール、エタノール、インプロピル ウム、炭酸水素ナトリウム、水酸化ナトリウム等の無機塩基などが例として挙げられ アミン、ジインプロピルエチルアミン、ピリジン等の有機塩基、あるいは、炭酸カリ れる化合物の塩酸塩または臭化水素酸塩を反応させることにより、目的化合物が得ら しくは0°C~30°Cの間の温度で、10分~24時間の間で行われる。 [式中、W1は水素原子を示し、L1は塩素原子または臭素原子を意味する。] で示さ

することができる。すなわち、第一工程として、一般式 (V) (製法c) YがNR7である一般式 (II) で示される化合物は以下の方法により製造

有する。] で示される化合物と、一般式 (VII) [式中、YはNR7を意味し、R6、R6、R7およびXはそれぞれ前記と同じ意味を

HN CHO (VII)

れている場合は、トリフルオロ酢酸や塩酸等の酸が用いられる。 触媒とした水素添加により除去することができ、t-プトキシカルボニル基が用いら 応じこのアミノ基を別の保護基であるWにて保護し直すことにより目的物が得られ キシカルポニル基が保護基として用いられている場合は、例えばパラジウム活性炭を 反応条件が用いられるが、ベンジルオキシカルポニル基、置換基を有するベンジルオ 間は特に限定されないが、反応は、-30°Cから選択した溶媒の沸点の間の温度、好 クロロホルム、1, 2ージクロロエタン等の塩素化炭化水素、テトラヒドロフランな **ブ、エタノーブ、インプロポプアプローブ等の低級アプローブ、酢酸、塩化メチワン** ナトリウム、水栗化シアノホウ栗ナトリウム、水栗化ホウ栗ナトリウム、水栗化シア ジルオキシカルボニル基、tープトキシカルボニル基などが挙げられる。 Wの選択 されないが、好ましい例としてはベンジルオキシカルポニル基、置換基を有するベン 応させる。次いで第二工程としてアミノ基の保護基W'を脱保護する。最後に必要に おけるアミノ基の保護基W¹の除去は、使用している保護基の除去に通常使用される ましくは0 $\,$ C $\sim30\,$ Cの間の温度で、 $10分\sim24$ 時間の間で行われる。第二工程に どが挙げられ、好ましくはテトラヒドロフランが挙げられる。反応温度および反応時 1. 5倍モルである。使用される還元剤の例としては、水素化トリアセトキシホウ素 II)で示される化合物の使用量は、一般式(A)で示される化合物に対して等モル~ ついては一般式 (I) の製法Aで述べた通りである。第一工程で用いられる一般式 (V ことができる。アミノ基の保護基W1は通常の有機合成に用いられる物であれば限定 ノホウ素リチウムなどが挙げられる。反応に用いられる溶媒の例としては、メタノー [式中、W1はアミノ基の保護基を示す。]で示される化合物を還元剤の存在下で反 Wが水素原子、すなわちアミノ基がフリーの状態であっても次の反応に供する

Yがメチレン基または結合である一般式 (II) で示される化合物の製造は、文献 (T

WO 01/83451

PCT/JP01/0357

roxlerら、Helv. Chim. Acta., Vol.51, p1616, 1968) に記載されている公知の方法あるいは、それらに準じた方法を用いて製造することができる。さらにこの他のYがメチレン基または結合である場合の、一般式 (II) で示される化合物の製造については、それ自体公知であるところの、各種インドール誘導体合成法、ベンゾフラン誘導体合成法、ベンゾチオフェン合成法、インデン合成法に準じた方法で合成することもできる。

一般式 (V)

[式中、YはNR7を意味し、R6、R6、R7およびXはそれぞれ前記と同じ意味を有する。] で示される化合物は、以下に記す公知の方法あるいはそれらに準じて製造することができる。

すなわち、X=NH, Y=O, $R^{6}=H$, $R^{6}=H$ である化合物は文献(Sheppard ら、J. Med. Chem., Vol.37, p2011, 1994)に記載の方法により合成できる。以下、同様に、X=NH, Y=O, $R^{6}=CH_3$, $R^{6}=H$ である化合物は文献(Itoら、J. Am. Chem. Soc., Vol.117, p1485, 1995)に記載の方法、X=NH, Y=O, $R^{6}=CH_3$, $R^{6}=CH_3$ である化合物は文献(Ockendenら、J. Chem. Soc., p3175, 1957)に記載の方法、X=NH, Y=O, $R^{6}=H$, $R^{6}=CH_3$ およびX=O, $R^{6}=H$, $R^{6}=CH_3$ およびX=O, $R^{6}=H$, $R^{6}=CH_3$ およびX=O, $R^{6}=H$, $R^{6}=CH_3$ およびX=O, $R^{6}=H$, $R^{6}=D$ ェニルである化合物はドイツ国特計 DE2612057に記載の方法、X=NH, Y=O, $R^{6}=H$, X=NH, Y=O, X=NH, X=O, X=NH, X=O, X=

H, R⁶=フェニルである化合物は文献 (Angeloniら、Ann. Chim., Vol.55, p1028 4, 1952) に記載の方法、X=NH, Y=NH, R⁵=フェニル, R⁶=CH₃である化 H₃, R⁶=CH₃である化合物は文献 (Brownら、J. Am. Chem. Soc., Vol.74, p393 1.54, p1485, 1.527, p83, 1937) に記載の方法、X=S, Y=O, R⁵= フェニル, R⁶=フェニ H, R⁶=フェニルである化合物は文献 (Friesら、Justus Liebigs Ann. Chem., Vo eroldら、Chem. Ber., Vol.92, p293, 1959) に記載の方法、X=S, Y=O, R⁵= 79, 1975) に記載の方法、X=S, Y=O, R⁶=H, R⁶=Hである化合物は文献 (P ル、R⁶=フェニルである化合物は文献(Hishmatら、Indian J. Chem., Vol.13, p4 Bull. Soc. Chim. Fr., p942, 1961) に記載の方法、X=O, Y=O, R⁶= フェニ Lett., p1109, 1979) に記載の方法、X=O, Y=O, R⁵= フェニル, R⁶=H, awaseら、Bull. Chem. Soc. Japan, Vol.35, p1624, 1962) に記載の方法、X=O, 合物は文献 (Gansserら、Helv. Chim. Acta., Vol.37, p437, 1954) に記載の方法、 em. Soc., p1, 1958) に記載の方法、X=O, Y=NH, R⁵=H, R⁶=Hである化 合物は文献 (Borsheら、Chem. Ber., Vol.42, p611, 1909) に記載の方法、X=NH 記載の方法、X=NH, Y=NH, R⁶=H, R⁶=Hである化合物は文献 (Yeeら、J. ェニルである化合物は文献 (Ansteadら、J. Med. Chem., Vol.31, p1316, 1988) に R⁵= C₂H₅, R⁶=フェニルである化合物は文献 (Ansteadら、J. Org. Chem., Vo ルである化合物は文献(Marcuzziら、Synthesis, p451, 1976)、X=CH2, Y=O =HおよびX=S, Y=O, $R^5=CH_3$, $R^6=CH_3$ である化合物は文献(Royerら $X=0, Y=0, R^{\mathfrak{s}}= \mathcal{I}_{\mathfrak{I}}=\mathcal{I}_{\mathcal{V}}, R^{\mathfrak{s}}=CH_{\mathfrak{J}}, X=S, Y=0, R^{\mathfrak{s}}=CH_{\mathfrak{J}}, R^{\mathfrak{s}}$ Y=O, R⁵=H, R⁶=フェニルである化合物は文献 (Deschampsら、Tetrahedron 記載の方法、X=O,Y=O,R゚=H,R゚=インプロピルである化合物は文献(K ron Lett., Vol.38, p6379, 1997) に記載の方法、X=O, Y=O, R5=CH3, Y=NH, R⁵=フェニル, R⁶= フェニルである化合物は文献 (Kinsleyら、J. Ch 5=CH₃である化合物は文献 (Bisagniら、Bull. Soc. Chim. Fr., p925, 1962) Med. Chem., Vol.33, p2437, 1990) に記載の方法、X=NH, Y=NH, R⁵=C Soc. Japan, Vol. 44, p749, 1071) に記載の方法、X=O, Y=NH, R⁵= Y=NH, R⁵=CH₃, R⁶=CH₃である化合物は文献 (Kawaseら、Bull 1989) に記載の方法、X=CH₂, Y=O, R⁶= フェニル, R⁶=フ

PCT/JP01/03575

1965) に記載の方法、X=S, Y=NH, R⁵=H, R⁶=Hである化合物は文献(Hanschら、J. Org. Chem., Vol.21, p265, 1956) に記載の方法、X=CH₂, Y=NH, R⁵=H, R⁶=Hである化合物は文献(Millerら、J. Org. Chem., Vol.45, p5 312, 1980) に記載の方法、X=CH₂, Y=NH, R⁵=CH₃, R⁶=CH₃である化合物は文献(Millerら、Chem. Ber., Vol.23, p1885, 1890) に記載の方法、X=CH₂, Y=NH, R⁶=CH₃, R⁶=(4-OCH₃)フェニルである化合物は文献(Allenら、J. Chem. Soc., p1045, 1960) に記載の方法、X=NH, Y=O, R⁶=CH₃, R⁶=(4-OCH₃)フェニルである化合物は文献(Allenら、J. Chem. Soc., p1045, 1960) に記載の方法、X=NH, Y=O, R⁶=CH₃, R⁶=(3-OCH₃)フェニルである化合物は文献(Angererら、J. Med. Chem., p143 9, 1984) に記載の方法により合成できる。

このようにして得られる本発明化合物およびそれぞれの原料化合物、中間体は抽出晶出、蒸留、クロマトグラフィーおよび再結晶などの常法に従って単離精製することができる。

本発明における一般式 (1) の化合物の塩には、公知の塩が挙げられ、例えば塩酸塩、臭化水素酸塩、硫酸塩、硫酸水素塩、リン酸二水素塩、クエン酸塩、マレイン酸塩、酒石酸塩、フマル酸塩、グルコン酸塩、メタンスルホン酸塩や、あるいは樟脳スルホン酸、マンデル酸、置換マンデル酸のような光学的に活性な酸との付加塩が含まれるが、医薬的に許容される塩が特に好ましい。

一般式 (1) の化合物からその塩となす場合には、一般式 (1) の化合物をメタノール、エタノールなどのアルコール類に溶解し、当量もしくは数倍量の酸成分を加えることにより、それらの酸付加塩を得ることができる。用いられる酸成分としては、塩酸、臭化水素酸、硫酸、硫酸水素、リン酸二水素、クエン酸、マレイン酸、酒石酸、ファル酸、グルコン酸、メタンスルホン酸などの医薬的に許容される鉱酸または有機酸を挙げることができる。

本発明における化合物およびその薬学的に許容される塩は、毒性が認められず医薬として有用であって、例えば、β3受容体作動活性を有することから、β3受容体関連疾患の治療および予防に用いられる医薬として利用できる。β3受容体関連疾患は本受容体により媒介される作動活性により改善され得る疾患の総称であり、例えば、糖尿病、肥満、高脂血症、消化器系疾患(好ましくは消化器系の異常運動または潰瘍)

鬱病、排尿障害が挙げられる。

本発明における化合物およびその薬学的に許容される塩は合成的手法により得られたものであっても、生体内で代謝を受けた結果生成した場合でも同様に β 3 受容体作動活性を有する。従って、生体内での代謝の結果、本発明の化合物が生成するような化合物を医薬として用いることも有用である。

本発明の医薬を製造するに当たっては、有効量の一般式 (I) で示される化合物またはその塩に、必要により薬学的に許容される担体を添加して、医薬組成物となすことが好ましい。薬学的に許容される担体としては、賦形剤、カルボキシメチルセルロースなどの結合剤、崩壊剤、滑沢剤、添加剤などが例示される。

本発明化合物をヒトに投与する際は、錠剤、粉末、顆粒、カプセル、糖衣錠、液剤ショップ剤等の形で経口投与することができる。その他に注射剤等の非経口投与も可能である。その投与量は、患者の年齢、体重、症状の度合いによっても変わるが、一般には成人1日あたり、0.01~2000mgを1回または数回に分けて投与される。投与期間は、数週間~数ヶ月の連日投与が一般的であるが、患者の症状により、1日投与量、投与期間ともに増減することができる。

本明細書は、本願の優先権の基礎である日本国特許出願2000年130414号の明細書および/または図面に記載される内容を包含する。

発明を実施するための最良の形態

以下、実施例、参考例および試験例により本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。

以下の実施例において、種々の分析は下記のようにして行った。

(1) 髙速原子衝撃質量スペクトル (F A B – M S)

日本国日本電子株式会社製JMS-AX200型質量分析装置または同社製JMS-SX102型質量分析装置を用いて測定した。マトリックスはmーニトロペンジルアルコールを使用1ヶ

(2)液体クロマトグラフ質量分析スペクトル(LC-MS)

質量分析装置として、イギリス国Wicromass社製Platform-LC型質量分析装置(イオ

WO 01/83451

PCT/JP01/03575

1分から11分までB液を5~50%直線グラジェント

1 1分から16分までB液を50~100%直線グラジェント

tysil RP-18 GP 50-4.6 (製品番号25468-96) を用いた。溶出条件を以下に記す。 ンス国GILSON社製の装置を使用した。分離カラムは、日本国関東化学株式会社製Migh ン化はエレクトロスプレー(ESI)法を使用)を用いた。液体クロマト装置はフラ

流速;2m1/分

溶媒;A液=水、0.1%(v/v)酢酸含有

0分から5分までB液を5~100%(v/v)直線グラジェント

溶出時間を分で示した。

(3) プロトン核磁気共鳴 ('H-NMR) スペクトル

ーンは以下の例のように略表記した。s:一重線、d:二重線、t:三重線、d n a メチルシランを用いた。ケミカルシフトはる値(p pm)で示した。なお、分裂パタ rtet:四重線、 quintet:五重線、m:多重線、dd:二重二重線、 d 米国Varian社製Gemini-300型核磁気共鳴装置を用いて測定した。内部標準はテトラ

を用いた。展開後のTLCプレートを波長254mmの紫外線を照射することにより

混合容媒(nーヘキサン/酢酸エチルあるいはクロロホルム/メタノール)で目的物 シリカゲルカラムカラムによる精製は、ドイツ国Merck社製シリカゲル60を用い、

5-0520MT) を用い、水ーアセトニトリル(0.1%(v/v)酢酸含有) グラジェント溶 出により目的物を溶出した。以下に詳細な溶出条件を示す。

B液=アセトニトリル、0. 1%(v/v)トリフルオロ酢酸含有

0分から1分までB液を5%(v/v)に保持

B液=アセトニトリル、0.1%(v/v)酢酸含有

t :二重三重線、brs:広幅一重線

(4) 薄層クロマトグラフィー (TLC)

化合物の検出を行った。 ドイツ国Merck社製TLCプレート(シリカゲル60 F 254、製品番号1,05715)

(5) 分取液体クロマトグラフィー

を溶出した。

逆相カラムによる精製は、日本国YMC社製カラム(YMC CombiPrep ODS-A CCAASO

流速;20m1/分

溶媒;A液=水、0.1%(v/v)トリフルオロ酢酸含有

THF;テトラヒドロフラン DMSO;ジメチルスルホキシド

以下の実施例において、次のような略語を用いる。

DMF;ジメチルホルムアミド

下に合成法の記載されている文献とともに列挙する。 実施例または参考例中で合成法および引用文献を記述しない中間体については、以

Chem., Vol. 9, pp88-97, 1966) N- (3ープロモアセチルフェニル) メタンスルホンアミド (Larsenら、J. Med

(日本国公開特許公報、特開平9-249623) 2-ベンジルオキシー5-プロモアセチル-N-メチルベンゼンスルホンアミド

公開特許、特開平9-249623) N- (5-プロモアセチル-2-クロロフェニル) メタンスルホンアミド (日本国

91/12236) N- (3-プロモアセチル-4-フルオロフェニル) メタンスルホンアミド (WO

(実施例1)

ベンジルエステルの合成 2ー(2,3ージメチルー1Hーインドールー6-イルオキシ)エチルカルバミン酸

成。J. Chem. Soc., pp3175-3180, 1957) (2.0g)をピリジン塩酸塩(7.91 6-ヒドロキシー1H-インドール (1.868)を得た。 を加え、酢酸エチル(100m1)で抽出し、有機層を無水硫酸ナトリウム(10g) で乾燥した。減圧下溶媒を留去し、粗精製物として灰色結晶状の2,3-ジメチルg、関東化学社製) と混合し、200℃で15分間攪拌した。冷却後水(100ml) 2、3ージメチルー6ーメトキシー1Hーインドール (Ockendenらの方法により合

た2-プロモエチルカルバミン酸ベンジルエステル(480mg)および炭酸カリウ ム(3 4 3 m g)をDMF (2 m 1)に懸濁し、8 0 ℃で3 時間攪拌した。反応液を 上記化合物(200mg)、特開平9-249623に記載の方法に従って合成し

/03575

PCT/JP01/03575

冷却後、水(50m1)にあけ、酢酸エチル(50m1)で2回抽出した。有機層を無水硫酸ナトリウム(5g)で乾燥し、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=99:1)にて精製し、無色結晶状の標記化合物(214mg)を得た。

'H-NMR (DMSO-d₆); δ (ppm) 10. 42 (1H, s), 7. 49 (1H, t, J=5.3), 7. 36~7. 28 (5H, m), 7. 20 (1H, d, J=8.4), 6. 74 (1H, d, J=1.8), 6. 58 (1H, dd, J=2.1, 8.7), 5. 04 (2H, s), 3. 95 (2H, t, J=5.7), 3. 3 8 (2H, quartet, J=5.7), 2. 25 (3H, s), 2. 10 (3H, d, J=0.6)

TLC (クロロホルム: メタノール=99:1) Rf=0.34

LC-MS:溶出時間4,6分、m/z=337 (M-H)-

[実施例2]

2- (2, 3-ジメチル-1H-インドール-6-イルオキシ) エチルアミンの合成実施例1で取得した化合物(202mg)をエタノール(5m1)に溶かし、10%パラジウム活性炭(50mg)を加え、大気圧の水素ガス存在下、室温で一晩攪拌した。パラジウム活性炭を適別し、減圧下溶媒を留去した。残渣をインプロピルエーテルで洗浄し、減圧下乾燥して、無色結晶状の標記化合物(95mg)を得た。

¹H-NMR (DMSO-d₆); δ (ppm) 10.55 (1H, s), 8.26 (3H, bs), 7.24 (1H, d, J=8.4), 6.81 (1H, d, J=2.4), 6.65 (1H, dd, J=2.1, 8.7), 4.15 (2H, t, J=5.1), 3.19 (2H, quartet, J=5.1), 2.26 (3H, s), 2.

LC-MS:溶出時間1.8分、m/z=205 (MH) +

11 (3H, s)

. 参考例 1]

N- (3-アセチル-4-クロロフェニル) メタンスルホンアミドの合成

1-(5-アミノー2-クロロフェニル)エタノン (Radziejewskiらの方法により

合成。Heterocycles, Vol.26, pp1227-1238, 1987) (411 mg)をトルエン (5 ml)に容かし、ピリジン (235 μl)および塩化メタンスルホニル (225 μl)を加え、室温にて50分間攪拌した。反応液に水 (50 ml)を加え、酢酸エチル (500 ml)で抽出した。有機層を1規定塩酸水溶液(50 ml)、飽和食塩水(50 ml)で洗浄した後、無水硫酸ナトリウム (5g)で乾燥した。減圧下溶媒を留去し、無色結晶状の標記化合物(595 mg)を得た。

¹H-NMR (CDC1₃); δ (ppm) 7. 43~7. 33 (3H, m), 7. 10 (1H, bs), 3. 05 (3H, s), 2. 67 (3H, s)

TLC (nーヘキサン:酢酸エチル=1:1) R f = 0.31

LC-MS:溶出時間3.1分、m/z=246 (M-H)

N- (3-プロモアセチルー4-クロロフェニル)メタンスルホンアミドの合成参考例1で取得した化合物(300mg)をジオキサン(5ml)に溶かし、米冷下臭素(77μl)を摘下した。室温にて1時間攪拌した後、減圧下溶媒を留去し、残渣を水ーエタノール混液(1:1)にて洗浄した。減圧下乾燥し無色結晶状の標記化合物(312mg)を得た。

¹H-NMR (CDCl₃); δ (ppm) 7.46~7.36 (3H, m), 6. 90 (1H, bs), 4.52 (2H, s), 3.07 (3H, s)

TLC (nーヘキサン:酢酸エチル=4:1) R f=0.31

LC-MS:溶出時間3.5分、m/z=324 (M-H)-

[参兆例 3

N- (3-アセチル-5-アミノフェニル) メタンスルホンアミドの合成

3-アミノ-5-ニトロベンゾフェノン (Berendらの方法により合成。J. Prakt. Chem., Vol.69, p471, 1904) (4g)をピリジン (40ml)に溶解し50℃に保った。塩化メタンスルホニル (1.9ml)を加え2時間攪拌し、さらに塩化メタンスルホニル (1.7ml)を加え50℃で2時間攪拌した。反応液を室温まで冷却し、水 (200ml)に注いだ。析出した沈殿を濾取し、減圧下乾燥しNー (3-アセチ

ル(100ml)を加え、水(100ml)で3回洗浄をした。有機層を無水硫酸マ 酸(2m1)を加えたのち、4時間加熱還流した。反応液を濾過し、濾液に酢酸エチ の全量をエタノール(40m1)に溶解し、亜鉛末(20g)を加えた。さらに濃塩 フィー (クロロホルム:メタノール=95:5) にて精製し、標記化合物 (3.9g) グネシウムにて乾燥し、減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラ ルー5-二トロフェニル) メタンスルホンアミドの粗精製物(5. 4 g)を得た。こ

(1H, m), 6. 93 (1H, m), 6. 71 (1H, $^{1}H-NMR (DMSO-d_{6})$; $\delta (ppm) 8.27 (1H, brs), 6.$ B)

FAB-MS, m/z = 229 (M+H) +

N- (3-アセチル-5-クロロフェニル) メタンスルホンアミドの合成

酢酸エチル(100m1)にて抽出した。酢酸エチル層を水(100m1)で3回洗 淡褐色粉末状の標記化合物 (350mg) を得た 浄し、無水硫酸マグネシウムで乾燥した後に域圧下で溶媒を留去した。残渣をシリカ 終わった後、80°Cで30分間攪拌した。室温に戻した後に水(60m1)を加え、 m1)に溶解した溶液に、室温下で、 液を、氷冷下でゆっくり加えた。30分間室温で放置した後、40℃で30分間攪拌 ゲルカラムクロマトグラフィー (クロロホルム:メタノール=98:2) にて精製し し、暗紅色のジアゾニウム塩溶液とした。塩化第一鰯(0・95g)を濃塩酸(10 室温に戻した後、参考例3で取得した化合物(1g)を酢酸(8m1)に懸濁した溶 添加が終了した溶液を70℃で10分間攪拌し亜硝酸ナトリウムを完全に溶解した。 濃硫酸 (3.5 m l) に亜硝酸ナトリウム (0.3 4 g) を3回に分けて加えた。 ジアソニウム塩溶液をゆっくり加えた。発泡が

H, m), 7.55 (1H, m), 3.13 (3H, s), 2.61 (3H, s) $^{1}H-NMR (DMSO-d_{6})$; $\delta (ppm)$ 7. 72 (1H, m), 7. 68 (1

FAB-MS, m/z = 249 (M+H) +

[参考例5]

N- (3-アセチル-5-プロモフェニル) メタンスルホンアミドの合成

替わりに臭化水素酸を使用した。後処理も同様にして無色結晶状の標記化合物(3.5 製した。ただし、操作中塩化第一銅の替わりに臭化第一銅(1.5g)を、濃塩酸の 0 m g) を得た。 参考例3で取得した化合物(1g)を原料として用い、参考例4と同様の操作で調

s), 2.57 (3H, s) 3 (1H, m), 7, 73 (1H, m), 7, 60 (1H, m), 3, 08 (3H, $^{1}H-NMR (DMSO-d_{6})$; $\delta (ppm) 10.21 (1H, br), 7.8$

FAB-MS, m/z=293 (M+H) +

[参考例6]

結晶状の標記化合物(600mg)を得た。 浄した後、無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。残渣をシリカゲ 0℃に保った。臭素 (0.11ml)を加え、30分間攪拌した後に水 (50ml) ルカラムクロマトグラフィー (酢酸エチル:ヘキサン=1:2) により精製し、無色 N- (3-プロモアセチル-5-クロロフェニル) メタンスルホンアミドの合成 と酢酸エチル(50m1)を加え抽出した。酢酸エチル層を水(50m1)で2回洗 参考例4で取得した化合物(500mg)をジオキサン(10ml)に溶解し、5

0 (1H, m), 7. 70 (1H, m), 7. 50 (1H, m), 4. 92 (2H, s), 3.80 (3H, s) $^{1}H-NMR (DMSO-d_{6})$; $\delta (ppm) 10.29 (1H, br), 7.8$

TLC (n-ヘキサン:酢酸エチル=1:1) Rf=0.85

FAB-MS, m/z = 328 (M+H) +

[参考例7]

N- (3-プロモアセチル-5-プロモフェニル) メタンスルホンアミドの合成

WO 01/83451

PCT/JP01/03575

参考例5で取得した化合物(650mg)を出発原料として用い、参考例6と同様

s), 3.09 (3H, s) 1 (1H, m), 7. 75 (1H, m), 7. 63 (1H, m), 4. 91 (2H, $^{1}H-NMR (DMSO-d_{6})$; $\delta (ppm) 10.26 (1H, br), 7.9$

TLC (nーヘキサン:酢酸エチル=1:1) Rf=0.75

(実施例3)

エチルアミノ] ー1ーヒドロキシエチル] フェニル] メタンスルホンアミドトリフル オロ酢酸塩の合成 N-[3-[2-[2-(2, 3-ジメチル-1H-インドール-6-イルオキシ)

逆相カラムにより精製し、 無色結晶状の標記化合物 (4.3 mg)を得た。 残渣を希アンモニア水 (2.5%(w/v), 1m1) で2回洗浄し、滅圧下乾固した。 のエタノール(1m1)溶液を加え、室温で5時間攪拌した。減圧下溶媒を留去し、 2で取得した化合物(3 1 m g)およびトリエチルアミン(7 μ 1)をDMF(<math>1 m1) に加え、室温で1時間攪拌した。次いで水栗化ホウ栗ナトリウム (9.5 mg) N- (3-ブロモアセチルフェニル) メタンスルホンアミド (15mg)、実施例

LC-MS:溶出時間2.27分、m/z=418 (M+H) +

実施例3と同様な方法を用い、表1記載の化合物(実施例4~8)を合成した。

(以下余白)

表 1

実施例 番号	原料化合物	原料化合物	トリエチルアミン使用		LC-MS	LC-MS 保持時間
	(使用量mg)_	(使用量mg)	<u>Φ</u> (μ1)	(収量mg)	(m/e)	(分)
4	N-(5-プロモア セチルー2-クロロ フェニル)メタンス ルホンアミド(16m g)	ルー1H-イン ドールー6ーイル	7μ1	N- [5- [2- [2- (2, 3-ジメチルー1H-インドール-6-イルオキシ エチルアミノ] - 1-ヒドロキシエチル] - 2-クロロフェニル] メタンスルホンア ミドトリフルオロ酢酸塩 (7. 1mg)	452 (M+H) +	2. 36
5	Nー(3ープロモア セチルー4ーフル オロフェニル)メタン スルホンアミド(16 mg)	ルー1H-イン ドールー6ーイル	7μΙ	N-[3-[2-[2-(2,3-3)]ルー $[3-[2-[2-(2,3-3)]]$ ルー $[3-[3-2]]$ ルー $[3-[3-2]]$ ルー $[3-[3-2]]$ ルアミノ $[3-[3-2]]$ ルテンスルホンフミドトリフルオロ酢酸塩 $[3-[3-2]]$	436 (M+H) +	2. 33
6	N-(3-ブロモア セチルー4-クロロ フェニル)メタンス ルホンアミド(16m g)	ルー1H-イン ドールー6ーイル	7μΙ	N- [3- [2- [2- (2, 3-ジメチルー1H-インドールー6-イルオキシ エチルアミノ]-1-ヒドロキシエチル] -4-クロロフェニル]メタンスルホンア ミドトリフルオロ酢酸塩(10.3mg)	452 (M+H) +	2. 43
7	Nー(5ープロモア セチルー3ークロロ フェニル)メタンス ルホンアミド(16m g)	ルー1Hーイン ドールー6ーイル	7μ1	N- [5- [2- [2- (2, 3-ジメチルー1H-インドール-6-イルオキシ エチルアミノ] - 1 - ヒドロキシエチル] - 3 - クロロフェニル] メタンスルホンア ミドトリフルオロ酢酸塩 (6. 1mg)	452 (M+H) +	2. 48
8	N-(3-プロモー 5-プロモアセチル フェニル)メタンス ルホンアミド(19m g)	ルー1Hーイン ドールー6ーイル	7μ1	N-[5-[2-[2-(2,3-)]x于]ルー $1H-4)$ ドールー $6-4$ ルオキシ)エチルアミノ $]-1-E$ ドロキシエチル $]-3-7$ ロモフェニル $]$ メタンスルホンアミドトリフルオロ酢酸塩 $(6.1mg)$	496 (M+H) +	2. 52

25

PCT/JP01/03575

(実施例9]

Nーメチルー [5- [2- [2- (2, 3-ジメチルー1H-インドールー6-イルオキシ) エチルアミノ] ー1ーヒドロキシエチル] ー2ーヒドロキシ] ベンゼンスルホンアミドトリフルオロ酢酸塩の合成

Nーメチルー (2ーベンジルオキシー5ープロモアセチル) ベンゼンスルホンアミド (20mg)、 実施例2で取得した化合物 (31mg) およびトリエチルアミン (7μ1)をDMF (1m1)に加え、室温で1時間攪拌した。次いで水素化ホウ素ナトリウム (9.5mg)のエタノール (1m1) 溶液を加え、室温で5時間攪拌した。次いで水素化ホウ素ナトリウム (9.5mg)のエタノール (1m1) 溶液を加え、室温で5時間攪拌した。次いで水素化ホウ素 た。減圧下溶媒を留去し、残渣を希アンモニア水 (2.5%(w/v),1m1)で2回 洗浄し、減圧下乾固した。逆相カラムにより精製し、Nーメチルー [5ー[2ー[2ー(2,3ージメチルー1Hーインドールー6ーイルオキシ)エチルアミノ]ー1ーヒドロキシエチル]ー2ーベンジルオキシ]ベンゼンスルホンアミドトリフルオロ酢 酸塩 (16.5mg)を得た。この化合物をDMF (0.4ml)に溶かし、10%パラジウム活性炭を濾別した後、減圧下溶媒を留去し、無色シラップ状の標記化合物 (15.3mg)を得た。

LC-MS:溶出時間2.20分、m/z=434 (M+H) +

[実施例10]

(R)-N-[5-[2-[2-(2,3-ジメチル-1H-インドール-6-イルオキシ)エチルアミノ]-1-ヒドロキシエチル]-2-クロロフェニル]メタンスルホンアミド塩酸塩の合成

(工程A):(R)-N-[5-[2-[2-(2, 3-ジメチル-1H-インドール-6-イルオキシ)エチルアミノ]-1-トリエチルシリルオキシエチル]-2-クロロフェニル]メタンスルホンアミドの合成

実施例2で合成した化合物 (471mg)をアセトニトリル (16ml)に溶かしこれにWO9725311に記載の方法に従って合成した (R) -N-[5-[2-ヨード-1-(トリエチルシリルオキシ)エチル]-2-クロロフェニル]メタンスルホンアミド(960mg)及び炭酸カリウム(540mg)を加え、20時間加熱

選流した。反応液を濾過し濾液を減圧下に溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=100/1~75/1)で精製し標記化合物(690mg)を得た。

"H-NMR (CDC1₃); δ (ppm) 0.51~0.60 (6H, m), 0.89 (9H, t, J=7.7), 2.18 (3H, s), 2.32 (3H, s), 2.74~3.01 (4H, m), 2.94 (3H, s), 3.48 (1H, s), 4.07 (2H, t, J=5.1), 4.83 (1H, dd, J=4.4, 7.1), 6.67 (1H, dd, J=2.2, 8.5), 6.77 (1H, d, J=2.2), 7.12~7.17 (2H, m), 7.30 (1H, d, J=8.6), 7.37 (1H, d, J=8.3), 7.64~7.66 (2H, m)

FAB-MS, m/z = 566 (M+H) +

(工程B): (R) -N-[5-[2-[2-(2, 3-ジメチル-1H-インドール-6-イルオキシ)エチルアミノ]-1-ヒドロキシエチル]-2-クロロフェニル]メタンスルホンアミド塩酸塩の合成

上記工程Aで取得した化合物(640mg)をTHF(36m1)に溶かし、これにテトラーnープチルアンモニウムフルオリドの1mo1/THF溶液(7.5m1)及び酢酸(0.43m1)を加え、室温で2時間撹拌した。反応液を酢酸エチルで希釈後、飽和重曹水で3回、飽和食塩水で3回洗浄した。有機層を乾燥し減圧下に溶媒を留去した。残渣をエタノールに溶かしこれに0.5Nエタノール性塩酸を加え撹拌した。溶媒を減圧下留去し、残渣にクロロホルムを加えた。生成した沈殿を濾過後乾燥して標記化合物(381mg)を得た。

¹H-NMR (CD₃OD) ; δ (p pm) 2. 15 (3H, s), 2. 30 (3H, s), 2. 99 (3H, s), 3. 16~3. 55 (4H, m), 4. 30 (2H, t, J=6. 1), 5. 04 (1H, dd, J=2. 9, 10. 3), 6. 72 (1H, dd, J=2. 2, 8. 5), 6. 87 (1H, d, J=2. 2), 7. 26 (1H, d, J=8. 6), 7. 31 (1H, dd, J=2. 2, 8. 2), 7. 51 (1H, d, J=8. 3), 7. 66 (1H, d, J=2. 2)

WO 01/83451

PCT/JP01/03575

[実施例11]

(R) -N- [3- [2- [2- (2, 3-ジメチル-1H-インドールー6-イルオキシ) エチルアミノ] -1-ヒドロキシエチル] フェニル] メタンスルホンアミド塩酸塩の合成

(工程A): (R) -N-[3-[2-[2-(2, 3-ジメチル-1H-インドール-6-イルオキシ) エチルアミノ] -1-トリエチルシリルオキシエチル] フェニル] メタンスルホンアミドの合成

実施例10工程Aに記載の方法に従い合成した化合物(233mg)をエタノール(16ml)に容かし、これに10%パラジウムカーボン粉末(22mg)を加え、水素雰囲気下室温で20時間撹拌した。反応液を濾過し濾液を減圧下溶媒を留去することで標記化合物(220mg)を得た。

"H-NMR (CDC1₃); δ (ppm) 0.50~0.59 (6H, m), 0.88 (9H, t, J=7.7), 2.18 (3H, s), 2.32 (3H, s), 2.77~3.03 (4H, m), 2.94 (3H, s), 4.08 (2H, t, J=5.1), 4.85 (1H, dd, J=4.4, 7.2), 6.70 (1H, dd, J=2.0, 8.5), 6.74 (1H, d, J=2.0), 7.15~7.33 (5H, m), 7.69 (1H, br)

FAB-MS, $m/z = 532 (M+H)^{+}$

(工程B):(R)-N-[3-[2-[2-(2,3-ジメチル-1H-インドール-6-イルオキシ)エチルアミノ]-1-ヒドロキシエチル]フェニル]メタンスルホンアミド塩酸塩の合成

上記工程Aで取得した化合物(2 2 0 m g)を実施例 1 0 工程 B と同様に反応を行い標記化合物(8 8 · 3 m g)を得た。

"H-NMR (CD₃OD); δ (ppm) 2. 15 (3H, s), 2. 30 (3H, s), 2. 94 (3H, s), 3. 19~3. 53 (4H, m), 4. 30 (2H, t, J=6. 1), 4. 99~5. 05 (1H, m), 6. 71 (1H, dd, J=2. 2, 8. 5), 6. 86 (1H, d, J=1. 8), 7. 18~7. 40 (5H, m)

FAB-MS, $m/z = 418 (M+H)^{+}$

29

実施例12]

N-メチル-(R)- [5- [2- [2- (2, 3-ジメチル-1H-インドール-6-イルオキシ) エチルアミノ] -1-ヒドロキシエチル] -2-ヒドロキシ] ベンゼンスルホンアミド塩酸塩の合成

(工程A):Nーメチルー(R) - [5-[2-[2-(2, 3-ジメチルー1Hーインドールー6ーイルオキシ) エチルアミノ] -1ートリエチルシリルオキシエチル] -2-ベンジルオキシ] ベンゼンスルホンアミドの合成

実施例2で合成した化合物(306mg)をアセトニトリル(10.4ml)に溶かし、これにWO9725311に記載の方法に従って合成したNーメチルー(R)ー[5-[2-ヨードー1-(トリエチルシリルオキシ)エチル]ー2ーペンジルオキシ]ベンゼンスルホンアミド(715mg)及び炭酸カリウム(351mg)を加え、22時間加熱遺流した。反応液を濾過し濾液を減圧下に溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=100/1~75/1)で特製し標記化合物(237mg)を得た。

¹H-NMR (CDC1₃); δ (ppm) 0. $49\sim0.58$ (6H, m), 0. 87 (9H, t, J=7.5), 2. 18 (3H, s), 2. 31 (3H, s), 2. 50 (3H, d, J=5.5), 2. 75~3.00 (4H, m), 4.06 (2H, t, J=5.1), 4.67 (1H, d, J=5.3), 4.80~4.86 (1H, m), 5.19 (2H, s), 6.70~6.73 (2H, m), 7.04~7.1 2 (1H, m), 7.25~7.55 (7H, m), 7.77 (1H, br), 7.96 (1H, br)

(工程B):Nーメチルー(R)ー[5-[2-[2-(2, 3-ジメチル-1Hーインドールー6ーイルオキシ)エチルアミノ]ー1ーヒドロキシエチル]ー2ーヒドロキシ」 ベンゼンスルホンアミド塩酸塩の合成

上記工程Aで取得した化合物 (234mg) をエタノール (15ml) に容かしこれに10%パラジウムカーボン粉末 (50mg) を加え、水素雰囲気下室温で5時間撹拌した。反応液を濾過し濾液の溶媒を減圧下に留去した。残渣をTHF (13ml)に溶かしこれにテトラーnープチルアンモニウムフルオリドの1mol/THF溶

/03575

PCT/JP01/03575

液(2.64m1)及び酢酸(0.15m1)を加え、室温で2時間撹拌した。反応液を酢酸エチルで希釈後、飽和重曹水で4回、飽和食塩水で2回洗浄した。有機層を乾燥し減圧下に溶媒を留去した。残渣をTHFに溶かしこれに0.5Nエタノール性塩酸を加え撹拌した。溶媒を減圧下留去し、残渣にクロロホルムを加えた。生成した
沈殿を濾過後乾燥して襟記化合物(102mg)を得た。

 $^{1}H-NMR (DMSO-d_{6}): \delta (ppm) 2. 10 (3H, s), 2. 25 (3H, s), 2. 39 (3H, s), 3. 00~3. 50 (4H, m), 4. 18~4. 25 (2H, m), 4. 88~4. 95 (1H, m), 6. 15 (1H, br), 6. 60~6. 68 (1H, m), 6. 78~6. 90 (2H, m), 7. 01~7. 04 (1H, m), 7. 21~7. 24 (1H, m), 7. 43~7. 67 (1H, m), 7. 68~7. 70 (1H, m), 10. 48 (1H, s)
 FAB-MS, m/z=434 (M+H) +$

(実施例13)

(R) -N- [3- [2- [2- (3-メチル-2-フェニル-1H-インドールー6-イルオキシ) エチルアミノ] -1-ヒドロキシエチル] フェニル] メタンスルホンアミド塩酸塩の合成

(工程A):6-ヒドロキシー3-メチルー2-フェニルー1H-インドールの合成文献 (テトラヘドロン (Tetrahedron)、41巻、1985年、4615頁) に記載の方法に従い合成した6-メトキシー3-メチルー2-フェニルー1H-インドール (5.00g) とピリジン塩酸塩 (11.56g)を180℃で1時間40分間撹拌した。反応混合物を放冷後、酢酸エチルと水を加え分液した。有機層を0.5規定塩酸水、飽和食塩水の順に洗浄し乾燥後減圧下に溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィーで精製し標記化合物 (4.50g) を得た。

 $^{1}H-NMR$ (DMSO-d₆); δ (p.p.m) 2. 36 (3H, s), 6. 54 (1H, dd, J=2. 2, 8. 5), 6. 73 (1H, d, J=2. 2), 7. 25~7. 32 (2H, m), 7. 46 (2H, t, J=7. 7), 7. 58~7. 64 (2H, m), 8. 95 (1H, s), 10. 74 (1H, br)

(工程B):6-[2-(N-ベンジルオキシカルボニル)アミノエトキシ]-3

メチルー 2ーフェニルー 1 Hーインドールの合成

上記工程Aで取得した化合物(2.0g)をN、Nージメチルアセトアミド(25ml)に容かし、これに特開平9-249623に記載の方法に従って合成したNーベンジルオキシカルボニルー2ープロモエチルアミン(2.95g)及び炭酸カリウム(2.47g)を加え、70°Cで15.5時間撹拌した。反応液に水を加えエーテルで抽出した。有機層を水、飽和食塩水で洗浄し乾燥後減圧下に溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=99/1)で精製し標記化合物(2.0g)を得た。

1H-NMR (DMSO-d₆); & (ppm) 2.38(3H, s), 3.41(2H, m), 4.01(2H, t, J=5.5), 5.05(2H, s), 6.67(1H, dd, J=2.2, 8.5), 6.84(1H, d, J=2.2), 7.28~7.52(9H, m), 7.61~7.65(2H, m), 10.97(1H, br)(工程C):6-(2-アミノエトキシ)-3-メチル-2-フェニル-1H-インドールの合成

上記工程Bで取得した化合物(2.0g)を30%臭化水素酸酢酸溶液(2.5m1)に溶かし室温で3時間撹拌した。反応液をエーテルで希釈し5N水酸化ナトリウム水溶液で中和した。有機層を水、飽和食塩水で洗浄後乾燥し減圧下に溶媒を留去し標記化合物(1.06g)を得た。

"H-NMR (DMSO-d_e); δ (ppm) 2.39 (3H, s), 3.25 (2 H, m), 4.18 (2H, t, J=5.5), 6.75 (1H, dd, J=2.2, 8.5), 6.91 (1H, d, J=2.2), 7.25~7.68 (6H, m), 8.05 (2H, br), 11.05 (1H, br)

(工程D): (R) -N-[3-[2-[2-(3-メチル-2-フェニル-1H-インドール-6-イルオキシ) エチルアミノ] -1-トリエチルシリルオキシエチル] フェニル] メタンスルホンアミドの合成

上記工程Cで取得した化合物(400mg)をN、Nージメチルアセトアミド(5m1)に容かし、これに(R)-N-[3-(2-ヨード-1-トリエチルシリルオキシエチル)フェニル]メタンスルホンアミド(752mg)及びジイソプロピルエチルアミン(640mg)を加え、70℃で20時間撹拌した。反応液を水で希釈し

WO 01/83451

PCT/JP01/03575

酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し乾燥後減圧下に溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=99/1~95/5)で精製し標記化合物(110mg)を得た。

 $^{1}H-NMR \ (DMSO-d_{6})$; $\delta \ (ppm) \ 0.47\sim 0.56 \ (6H, m)$, $0.85 \ (9H, t, J=8.2)$, $2.38 \ (3H, s)$, $2.65\sim 2.79 \ (2H, m)$, $2.86\sim 2.98 \ (2H, m)$, $2.94 \ (3H, s)$, $4.00\sim 4$. $0.66 \ (2H, m)$, $4.76\sim 4.80 \ (1H, m)$, $6.65 \ (1H, dd, J=2.2)$, $7.03\sim 7.15 \ (2H, m)$, $7.25\sim 7.35 \ (4H, m)$, $7.39 \ (1H, d, J=8.5)$, $7.49 \ (2H, t, J=7.7)$, $7.60\sim 7.64 \ (2H, m)$, $9.74 \ (1H, br)$

(工程E): (R)-N-[3-[2-[2-(3-メチル-2-フェニル-1H-インドール-6-イルオキシ)エチルアミノ]-1-ヒドロキシエチル]フェニル]メタンスルホンアミド塩酸塩の合成

上記工程Dで取得した化合物(110mg)をTHF(1m1)に溶かし、これにテトラーnープチルアンモニウムフルオリド(1MTHF溶液,370μ1)及び酢酸(21μ1)を加え、室温で4時間撹拌した。反応液をPTLC(クロロホルム/メタノール=4/1)で精製した。得られた粗精製物をエーテルに溶かしこれに0.5Nエタノール性塩酸を加え撹拌した。精製した沈殿を濾過し乾燥して標記化合物(33.9mg)を得た。

 $^{1}H-NMR (DMSO-d_{6}); \delta (ppm) 2. 39 (3H, s), 3. 00 (3H, s), 3. 02-d_{6}); \delta (ppm) 2. 39 (3H, s), 3. 00 (3H, s), 3. 02-d_{6}); \delta (2H, m), 3. 22-3. 34 (2H, m), 4. 30-4. 36 (2H, m), 4. 96-5. 04 (1H, m), 6. 25 (1H, br), 6. 75 (1H, dd, J=2. 2, 8. 5), 6. 91 (1H, d, J=2. 2), 7. 11-7. 18 (2H, m), 7. 30-7. 53 (6H, m), 7. 61-7. 67 (2H, m), 8. 90 (1H, br), 9. 09 (1H, br), 9. 85 (1H, s), 11. 06 (1H, br)$

(実施例14)

႘ၟ

(R)-N-[3-[2-[2-(2,3-ジフェニル-1H-インドール-6-イルオキシ)エチルアミノ]-1-ヒドロキシエチル]フェニル]メタンスルホンアミド塩酸塩の合成

(工程A):6-(2-アミノエトキシ)-2,3-ジフェニル-1H-インドールの合成

文献(ジャーナル オブ ケミカル ソサイエティ(J. Chem. Soc.)、1957年、5097頁)に記載の方法に従って合成した6-ヒドロキシー2、3-ジフェニルー1Hーインドール(2.50g)をN、Nージメチルアセトアミド(20ml)に溶かし、これにWO9725311に記載の方法に従って合成したNーベンジルオキシカルボニルー2ープロモエチルアミン(2.93g)及び炭酸カリウム(2.42g)を加え、70°Cで14.5時間撹拌した。反応液を水で希釈し酢酸エチルで油出した。有機層を飽和食塩水で洗浄後乾燥し歳圧下に溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=9/1~1/1)で2回精製して、褐色アモルファス状化合物(900mg)を得た。これを30%臭化水素酸酢酸溶液(10ml)に溶かし、室温で1時間撹拌した。反応液にエーテル(100ml)を加え、生成した沈殿を濾過した。濾取した化合物を酢酸エチルに溶かしたものを飽和重曹水、飽和食塩水で洗浄し乾燥後、溶媒を減圧下に留去して標記化合物(630mg)を得た。

¹H-NMR (DMSO-d₆) ; δ (ppm) 1. 99 (2H, br), 2. 92 (2H, t, J=5. 8), 3. 96 (2H, t, J=5. 8), 6. 72 (1H, dd, J=2. 2, 8. 5), 6. 92 (1H, d, J=2. 2), 7. 24~7. 43 (11H, m), 11. 36 (1H, br)

(工程B): (R) -N-[3-[2-[2-(2, 3-ジフェニル-1H-インドールー6-イルオキシ) エチルアミノ] -1-トリエチルシリルオキシエチル] フェニル] メタンスルホンアミドの合成
上記工程Aで取得した化合物 (328mg) をN, N-ジメチルアセトアミド (35ml) に溶かし、これにWO9725311に記載の方法に準じて合成した (R)-N-[3-(2-ョード-1-トリエチルシリルオキシエチル) フェニル] メタンスルホンアミド (592mg) 及びジイソプロビルエチルアミン (504mg) を加

PCT/JP01/03575

機層を飽和食塩水で洗浄後乾燥し溶媒を減圧下に留去した。残渣をシリカゲルカラム 標記化合物(257.8mg)を得た。 クロマトグラフィー (クロロホルム/メタノール=100/0~99/1) で精製し え、70℃で14.5時間撹拌した。反応液を水で希釈し酢酸エチルで抽出した。

b r) 6. Φ. 2. 0 7. 24~7. 44 (14H, m), 9. 70 (1H, br), 11. 35 (1H, $^{1}H-NMR (DMSO-d_{6})$; $\delta (ppm) 0.47\sim0.56 (6H, m)$, $76\sim4.81$ (1H, m), 6.69 (1H, dd, J=1.9, 7.9), 98 (2H, m), 2. 94 (3H, s), 4. $02\sim4$. 10 (2H, m), 91 (1H, d, J=1.9), 7.10 (2H, dd, J=1.9, 7.9) 85 (9H, t, J=7.7), 2.66~2.81 (2H, m), 2.86~

スルホンアミド塩酸塩の合成 ールー6ーイルオキシ) エチルアミノ] ー1ーヒドロキシエチル] フェニル] メタン (工程C): (R) -N-[3-[2-[2-(2,3-ジフェニル-1H-インド

e TLC, Merck社製)(クロロホルム/10%濃アンモニア水含有メタノール=5/1) 酸 (38 μ 1) を加え、室温で105分間撹拌した。 反応液をPTLC (Preparati テトラーnープチルアンモニウムフルオリド (1MTHF溶液、665μ1) 及び酌 で精製した。得られた粗精製物をエーテルに容かしこれに 0. 1 Nエタノール性塩酸 した。生成した沈殿を濾過し乾燥して標記化合物(1 2 5 m g)を得た (3.0ml)を加え撹拌した。溶媒を滅圧下に留去し、残渣にエーテルを加え撹拌 上記工程Bで取得した化合物(218mg)をTHF(2ml)に溶かし、これに

Ħ, 6 (1H, s), 11.49 (1H, br) $^{1}H-NMR (DMSO-d_{6})$; $\delta (ppm) 3.00 (3H, s), 3.04~$ m), 6. 27 (1H, br), 6. 79 (1H, dd, J=2. 2, 46 (13H, 00 (1H, d, J=2.2), 7. $12\sim7.18$ (2H, m), 7. 54 (4H, m), 4. $32\sim4$. 38 (2H, m), 4. $99\sim5$. m), 8. 97 (1H, br), 9. 20 (1H, br), 9.

(実施例15)

႘ၟ

ホンアミド塩酸塩の合成 -6-イルオキシ) エチルアミノ] -1-ヒドロキシエチル] フェニル] メタンスル (R) -N- [3- [2- [2- (2- t -ブチル-3-メチル-1H-インドール

78 (1H, d, J=2.2), 7.23 (1H, d, J=8.5), 10.19 (1 s), 3. 72 (3H, s), 6. 57 (1J, dd, J=2. 2, 8. 5), 6. 浄し、乾燥後蔵圧下に溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー 液を水で希釈しエーテルで抽出した。有機層を飽和塩化アンモニウム水溶液、水で洗 Nージメチルアセトアミド (50ml) に溶かし100°Cで20時間撹拌した。反応 炭酸カリウム (3.45g) およびトリフェニルホスフィン (65.6mg) をN, mg)、テトラーnープチルアンモニウムクロリド(1.39g、東京化成社製)、 法に従って合成した2ープロモー5ーメトキシアニリン(1.01g)、2,2ージ メチルー3ーペンチン(480mg、Chemsampco社製)、酢酸パラジウム(28.1 (ヘキサン/酢酸エチル=5/1) で2回精製し標記化合物(202mg)を得た。 ¹H-NMR (CDCl₃); δ (ppm) 1.38 (9H, s), 2.27 (3H (工程 A) :2 - t -プチル-6 -メトキシ-3 -メチル-1 H-インドールの合成 文献 (J.H.Tidwellら、J. Am. Chem. Soc.,116, pp11797-11810,1994) に記載の方

(工程B) :2 -- t - プチルー6 -- ヒ ヒ ロ キシー3 - メチルー1 H - インドールの合

エチル= 5 / 1 ~ 4 / 1) により精製し標記化合物(1 7 0 m g)を得た 下に溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸 出じた。有機層を合わせ、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧 レアルゴン雰囲気下に0°Cで撹拌した。これに1N三臭化ホウ素の塩化メチレン溶液 く撹拌しながら水(10m1)を滴下した。有機層を分離し、水層を酢酸エチルで抽 (5 m l)を商下し徐々に室温に戻しながら2時間撹拌した。反応液を氷冷し、激し 上記工程Aで取得した化合物(200mg)を脱水塩化メチレン(5m1)に溶解

75 (1H, d, J=2.2), 7.31 (1H, d, J=8.5), 7.67 (1 s), 4.62 (1H, br), 6.63 (1H, dd, J=2.2, 8. ¹H-NMR (CDCl₃); δ (ppm) 1. 43 (9H, s), 2. 35

WO OTA

PC I/JPOJ/035/3

H, br)

(工程C):(R)-2-[N'-ベンジル-N'-[2-(2-t-ブチル-3-メチル-1H-インドール-6-イルオキシ)エチル]アミノ]-1-[3-(N-ベンジル-N-メチルスルホニルアミノ)フェニル]エタノールの合成

WOO104092に記載の方法に従って合成した(R) -2-[N' -ベンジル-N' -(2-ヒドロキシエチル) アミノ] -1-[3-(N-ベンジルーNーメチルスルホニルアミノ) フェニル] エタノール(173mg) とトリフェニルホスフィン(103mg) を脱水塩化メチレン(5ml)に容かし-20℃で撹拌した。これにN-プロモスクシンイミド(69.9mg)を一度に加え、10分間撹拌した。反応液をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=5/1~3/1)で特製し(R) -2-[N' -ベンジルーN' -(2-プロモエチル) アミノ] -1-[3-(N-ベンジルーNーメチルスルホニルアミノ) フェニル] エタノールを得た。直ちにこれをアセトニトリル(2.5ml)に容かし、これに上記工程Bで取得した化合物(79.8mg)および1N水酸化ナトリウム水溶液(392μl)を加え、室温で14時間撹拌した。反応液を濃縮し残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=4/1~2/1)で精製し標記化合物(132.2mg)を得た。

 $^{1}H-NMR (CDCl_{3}): \delta (ppm) 1. 43 (9H, s), 2. 36 (3H, s), 2. 55\sim2. 84 (2H, m), 2. 86 (3H, s), 2. 90\sim3. 1$ 4 (2H, m), 3. 67 (1H, d, J=13. 5), 3. 93 (1H, d, J=13. 5), 4. 06 (2H, t, J=6. 0), 4. 65 (1H, dd, J=3. 3, 10. 1), 4. 77 (2H, s), 6. 75 (1H, dd, J=2. 2, 8. 5), 6. 82 (1H, d, J=2. 2), 7. 07~7. 37 (15H, m), 7. 87 (1H, br)

(工程D):(R)-N-[3-[2-[2-(2-t-ブチル-3-メチル-1H -インドール-6-イルオキシ) エチルアミノ] -1-ヒドロキシエチル] フェニル] メタンスルホンアミド塩酸塩の合成

上記工程Cで取得した化合物 (100mg) をTHF (1ml) とメタノール (1ml) の混合溶媒に溶かし、これに20%水酸化パラジウムカーボン粉末 (50%含)

水品、40mg)を加えた。系内を水素置換し室温で20時間撹拌した。反応液を濾過し、濾液を減圧下に溶媒を留去した。残渣に0.1Nエタノール性塩酸(16ml)を加え、室温で10分撹拌後に溶媒を留去した。残渣にエーテルを加え、折出した結晶を濾過し乾燥することで標記化合物(76.6mg)を得た。

"H-NMR (DMSO-d₆); δ (ppm) 1. 39 (9H, s), 2. 28 (3 H, s), 3. 00 (3H, s), 3. 00~3. 30 (2H, m), 3. 40~3 50 (2H, m), 4. 25~4. 29 (2H, m), 4. 98~5. 11 (1H, m), 6. 20 (1H, br), 6. 66 (1H, dd, J=2. 2, 8. 5), 6 84 (1H, d, J=2. 2), 7. 11~7. 18 (2H, m), 7. 26~7. 38 (3H, m), 8. 91 (1H, br), 9. 15 (1H, br), 9. 85 (1H, br), 10. 29 (1H, br)

(実施例16)

(R) -N-[3-[2-[2-(2-メチル-3-フェニル-1H-インドールー6-イルオキシ)エチルアミノ]-1-ヒドロキシエチル]フェニル]メタンスルホンアミド塩酸塩の合成

(工程A):3-プロモー2-メトキシカルボニル-6-メトキシ-1H-インドールの合成

2-メトキシカルボニルー6-メトキシー1H-インドール(1.00g、アルドリッチ社製)をアルゴン雰囲気下、DMF(51.2ml)に溶かし0℃で撹拌した。これにN-プロモスクシンイミド(1.02g)のDMF(21.7ml)溶液を30分間かけて滴下した。反応液を0℃に保ち2.5時間撹拌した。反応液を氷水に空け撹拌した。これを酢酸エチルで抽出した。有機層を飽和重曹水、飽和食塩水で洗浄後乾燥し減圧下に溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=4/1~3/1)で精製し標記化合物(760mg)を得た。

1H-NMR (CDC1₃); \(\delta\) (ppm) 3.86 (3H, s), 3.97 (3H, s), 6.79 (1H, d, J=2.2), 6.89 (1H, dd, J=2.2, 8.8) 7.53 (1H, d, I=8, 8), 8.87 (1H, hr)

8), 7. 53 (1H, d, J=8. 8), 8. 87 (1H, br)

(工程B) 2-メトキシカルボニル-6-メトキシ-3-フェニル-1H-インドー

PCT/JP01/03575

プの合成

上記工程Aで取得した化合物(700mg)をトルエン(10ml)に溶かし、これにフェニルホウ酸(1.43g、アルドリッチ社製)、炭酸カリウム(649mg)およびテトラキストリフェニルホスフィンパラジウム(0)(271.3mg、ナカライ社製)を加え5時間加熱遺流した。反応液を酢酸エチルで希釈し30%過酸化水素水(5ml)を加えた水(100ml)で分液した。有機層を飽和重曹水、飽和食素水(5ml)を加えた水(100ml)で分液した。有機層を飽和重曹水、飽和食塩水で洗浄し乾燥後減圧下に溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=5/1~2/1)で精製し標記化合物(560mg)を組ゃ

1H-NMR (CDCl₃); & (ppm) 3.80(3H, s), 3.88(3H, s), 6.81(1H, dd, J=2.2, 8.5), 6.85(1H, d, J=2.2), 7.35~7.57(6H, m), 8.82(1H, br)

(工程 C):2-ヒドロキシメチル-6-メトキシ-3-フェニル-1H-インドールの合成

上記工程Bで取得した化合物(560mg)を脱水THF(20m1)に溶かし、これに水素化リチウムアルミニウム(151mg)を加え、40℃で90分間撹拌した。反応液に1N水酸化ナトリウム水溶液をゆっくり加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し減圧下に溶媒を留去して標記化合物の粗精製物(1.40g)を得た。

 $^{1}H-NMR$ (CDCl₃); δ (ppm) 1. 90 (1H, t, J=5. 8), 3. 86 (3H, s), 4. 88 (2H, d, J=5. 8), 6. 81 (1H, dd, J=2. 2, 8. 5), 6. 87 (1H, d, J=2. 2), 7. 29~7. 36 (1H, m), 7. 42~7. 48 (4H, m), 7. 58 (1H, d, J=8. 5), 8. 40 (1H, br)

(工程D): 2ーメチルー6ーメトキシー3ーフェニルー1Hーインドールの合成上記工程Cで取得した化合物(253.3mg)を脱水ジオキサン(12ml)に溶かし、これに水素化リチウムアルミニウム(379mg)を加え、100℃で47時間撹拌した。反応液を放冷し氷水中にゆっくり滴下した。5N水酸化ナトリウム水溶液(100ml)を加え、エーテルで抽出した。有機層を飽和食塩水で洗浄後に乾

燥し蔵圧下に溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=5/1~1/1)で精製し標記化合物(146mg)を得た。

 $^{1}H-NMR$ (CDC1₃); δ (ppm) 2. 48 (3H, s), 3. 86 (3H, s), 6. 78 (1H, dd, J=2. 2, 8. 5), 6. 85 (1H, d, J=2. 2), 7. 26~7. 32 (1H, m), 7. 42~7. 55 (5H, m), 7. 8 1 (1H, br)

(工程E):6-ヒドロキシー2-メチルー3-フェニルー1H-インドールの合成上記工程Dで取得した化合物(146mg)をアルゴン雰囲気下、脱水塩化メチレン(5ml)に溶かし0℃で撹拌した。これに三臭化ホウ素の1M塩化メチレン溶液(2ml)を加え、徐々に室温に戻しながら3.5時間撹拌した。反応液を氷冷し水(20ml)をゆっくり滴下した。酢酸エチルで抽出し有機層を飽和食塩水で洗浄し乾燥後、減圧下に溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=5/1~3/1)で精製し標記化合物(116mg)を得た。1H-NMR(CDCl₃); δ (ppm)2.46(3H,s),4.77(1H,br),6.66(1H,dd,J=2.2),7.24~7.32(1H,m),7.41~7.51(5H,m),7

(工程F): (R) -2-[N' -ベンジル-N' - [2-(2-メチル-3-フェニル-1H-インドール-6-イルオキシ) エチル] アミノ] -1-[3-(N-ベンジル-N-メチルスルホニルアミノ) フェニル] エタノールの合成

WO0104092に記載の方法に従って合成した(R)-2-[N'-ベンジル-N'-(2-ヒドロキシエチル)アミノ]-1-[3-(N-ベンジル-N-メチルスルホニルアミノ)フェニル]エタノール(273mg)とトリフェニルホスフィン(162mg)をアルゴン雰囲気下脱水塩化メチレン(8ml)に溶かし-20℃で撹拌した。これにN-プロモスクシンイミド(110mg)を一度に加え、10分間撹拌した。反応液をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=5/1~3/1)で精製し(R)-2-[N'-ベンジル-N'-(2-プロモエチル)アミノ]-1-[3-(N-ベンジル-N-メチルスルホニルアミノ)フェニル]エタノールを得た。直ちにこれをアセトニトリル(4ml)に溶かし、これに上ル

033/3

PCT/JP01/03575

記工程Eで取得した化合物(116mg)および1N水酸化ナトリウム水溶液(521μ1)を加え、室値で16時間撹拌した。反応液を濃縮し残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=5/1~1/1)で精製し標記化合物(243mg)を得た。

 1 H-NMR (CDCl₃); δ (ppm) 2. 44 (3H, s), 2. 55~2. 63 (1H, m), 2. 77~2. 83 (1H, m), 2. 87 (3H, s), 2. 91~2. 99 (1H, m), 3. 04~3. 12 (1H, m), 3. 67 (1H, d, J=13. 7), 4. 06 (2H, d, J=6. 3), 4. 65 (1H, dd, J=3. 3, 9. 9), 4. 77 (2H, s), 6. 77 (1H, dd, J=2. 2, 8. 5), 6. 85 (1H, d, J=2. 2), 7. 08~7. 12 (1H, m), 7. 16~7. 34 (15H, m), 7. 41~7. 54 (4H, m), 8. 10 (1H, br)

(工程G): (R)-N-[3-[2-[2-(2-メチル-3-フェニル-1H-インドール-6-イルオキシ)エチルアミノ]-1-ヒドロキシエチル]フェニル]メタンスルホンアミド塩酸塩の合成

上記工程Fで取得した化合物(135mg)をTHF(2m1)とメタノール(2m1)の混合溶媒に溶かし、これに20%水酸化パラジウムカーボン粉末(50%含水品、67.5mg)を加えた。系内を水素置換し室温で19時間撹拌した。反応液を濾過し、濾液を減圧下に溶媒を留去した。残渣に0.1Nエタノール性塩酸(20.4ml)を加え、室温で10分間撹拌後に溶媒を留去した。残渣にエーテルを加え、折出した結晶を濾過し乾燥することで標記化合物(69.1mg)を得た。

¹H-NMR (DMSO-d₆); δ (ppm) 2. 44 (3H, s), 3. 00 (3 H, s), 3. 00~3. 48 (4H, m), 4. 27~4. 34 (2H, m), 4. 95~5. 02 (1H, m), 6. 26 (1H, br), 6. 74 (1H, dd, J=2. 2, 8. 5), 6. 91 (1H, d, J=2. 2), 7. 12~7. 17 (2 H, m), 7. 23~7. 47 (7H, m), 8. 88 (1H, br), 9. 03 (1 H, br), 9. 85 (1H, br), 11. 06 (1H, br)

〔無莵例17〕

41

(R) -N-[5-[2-[2-(3-メチル-2-フェニル-1H-インドールー6-イルオキシ)エチルアミノ]-1-ヒドロキシエチル]-2-クロロフェニル」メタンスルホンアミド塩酸塩の合成

(工程A): (R) -N-[5-[2-[2-(3-メチル-2-フェニル-1H-インドールー6-イルオキシ) エチルアミノ] -1-トリエチルシリルオキシエチル] -2-クロロフェニル] メタンスルホンアミドの合成

実施例13工程Cで取得した化合物(266mg)をアセトニトリル(5ml)に溶かし、これにWO9725311に記載の方法に準じて合成した(R)-N-[5-(2-ヨードー1ートリエチルシリルオキシエチル)-2-クロロフェニル]メタンスルホンアミド(490mg)及びジイソプロピルエチルアミン(646mg)を加え、80°Cで16.5時間撹拌した。反応液を水で希釈し酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し乾燥後減圧下に溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=99/1)で特製し標記化合物(99mg)を得た。

1H-NMR (CDC1₃); & (ppm) 0.52~0.60(6H, m), 0.89(9H, t, J=7.9), 2.43(3H, s), 2.75~2.91(2H, m), 2.95(3H, s), 3.01(2H, t, J=5.2), 4.10(2H, t, J=5.2), 4.10(2H, t, J=5.2), 4.10(2H, t, J=5.2), 4.83(1H, m), 6.77(1H, dd, J=2.2, 8.5), 6.86(1H, d, J=2.2), 7.15(1H, dd, J=2.2, 8.5), 7.29~7.38(2H, m), 7.43~7.58(5H, m), 7.67(1H, d, J=2.2), 8.05(1H, br)

(工程B): (R) -N-[5-[2-[2-(3-メチル-2-フェニル-1H-

ロフェニル] メタンスルホンアミド塩酸塩の合成 上記工程Aで取得した化合物(99mg)を実施例13工程Eと同様の操作を行い

インドールー6-イルオキシ) エチルアミノ] -1-ヒドロキシエチル] -2-クロ

標記化合物 (50mg) を得た。

¹H-NMR (DMSO-d_e);δ (ppm) 2.39 (3H, s), 3.06 (3H, s), 3.04~3.52 (4H, m), 4.29~4.36 (2H, m), 5.00~5.08 (1H, m), 6.36 (1H, m), 6.75 (1H, dd, J=

PCT/JP01/03575

2. 2, 8. 5), 6. 91 (1H, d, J=2. 2), 7. 28~7. 36 (2H, m), 7. 43~7. 65 (7H, m), 8. 96 (1H, br), 9. 03 (1H, br), 9. 55 (1H, s), 11. 05 (1H, s)

[無据例18]

(R)-N-[3-[2-[2-(2,3-ジメチルベンゾフラン-6-イルオキシ) エチルアミノ]-1-ヒドロキシエチル]フェニル]メタンスルホンアミド塩酸塩の 今は

(工程A):6-[2-(N-ベンジルオキシカルボニル)アミノエトキシ]-2,3-ジメチルベンソフランの合成

文献(ジャーナル オブ ヘテロサイクリック ケミストリー(J. Heterocyclic Chem)36巻、1999年、509頁)に記載の方法に従い合成した6-ヒドロキシー2、3-ジメチルベンゾフラン(324mg)とWO9725311に記載の方法に従って合成したN-ベンジルオキシカルボニルー2-プロモエチルアミン(516mg)及び炭酸カリウム(691mg)から実施例13工程Bと同様に反応を行い標記化合物(398mg)を得た。

 $^{1}H-NMR (CDC1_{3}) ; \delta (ppm) 2. 10 (3H, s), 2. 33 (3H, s), 3. 59 (2H, quartet, J=5. 2), 4. 03 (2H, t, J=4. 9), 5. 10 (2H, s), 5. 29 (1H, br), 6. 78 (1H, dd, J=2. 2, 8. 2), 6. 88 (1H, d, J=2. 2), 7. 23 (1H, d, J=8. 2), 7. 24~7. 36 (5H, m)$

(工程B):6-(2-アミノエトキシ)-2,3-ジメチルベンゾフラン臭化水素 際哲の今中

上記工程Aで取得した化合物(393mg)を30%臭化水素酸酢酸溶液(5m1)に溶かし室温で2.5時間撹拌した。反応液にエーテルを加え、生じた沈殿を濾過した。沈殿をエーテルで洗浄後乾燥し標記化合物(255mg)を得た。

 $^{1}H-NMR (DMSO-d_{6})$; $\delta (ppm) 2.10 (3H, s), 2.33 (3H, s), 3.20~3.30 (2H, m), 4.17 (2H, t, J=4.9), 6.89 (1H, dd, J=2.2, 8.5), 7.13 (1H, d, J=2.2), 43$

7. 37 (1H, d, J=8.5), 7. 97 (3H, br)

(工程C): (R) -N-[3-[2-[2-(2, 3-ジメチルペングフラン-6-イルオキシ) エチルアミノ] -1-トリエチルシリルオキシエチル] フェニル] メタンスルホンアミドの合成

1H-NMR (CDCl₃); & (ppm) 0.50~0.61 (6H, m), 0.88 (9H, t, J=7.9), 2.11 (3H, s), 2.34 (3H, s), 2.74~3.06 (4H, m), 2.96 (3H, s), 4.08 (2H, t, J=5.2), 4.81~4.86 (1H, m), 6.79 (1H, dd, J=2.2, 8.5), 6.90 (1H, d, J=2.2), 7.13~7.34 (5H, m) (T程D): (R) -N-[3-[2-[2-(2, 3-ジメチルベンソフランー6-イルオキシ) エチルアミノ] -1-ヒドロキシエチル] フェニル] メタンスルホンアミド塩酸塩の合成

上記工程Cで取得した化合物 (38.9mg) から実施例13工程Eと同様に反応を行い標記化合物 (14.8mg)を得た。

 $^{1}H-NMR (DMSO-d_{e}); \delta (ppm) 2. 10 (3H, s), 2. 34 (3H, s), 3. 00 (3H, s), 3. 00~3. 46 (4H, m), 4. 28~4. 34 (2H, m), 4. 92~4. 99 (1H, m), 6. 20~6. 24 (1H, m), 6. 89 (1H, dd, J=2. 2, 8. 5), 7. 11~7. 17 (3H, m), 7. 29~7. 39 (3H, m), 8. 87 (2H, br), 9. 84 (1H, s)$

(実施例19)

(R) -N- [3- [2- [2- (2, 3-ジメチルベングチオフェン-6-イルオキシ) エチルアミノ] -1-ヒドロキシエチル] フェニル] メタンスルホンアミド塩

酸塩の合成

(工程A):6-[2-(N-ベンジルオキシカルボニル)アミノエトキシ]-23-ジメチルベンゾチオフェンの合成

文献(ホスホラス、サルファ アンド シリコン(Phosphorus, Sulfur and Silicon)153-154巻、1999年、397頁)に記載の方法に従い合成した6-ヒドロキシー2、3-ジメチルベンソチオフェン(356mg)とWO9725311に記載の方法に従って合成したN-ベンジルオキシカルボニルー2-プロモエチルアミン(516mg)及び炭酸カリウム(691mg)から実施例13工程Bと同様に反応を行い標記化合物(356mg)を得た。

"H-NMR (CDC1₃); δ (ppm) 2. 25 (3H, s), 2. 43 (3H, s), 3. 62 (2H, quartet, J=5. 2), 4. 07 (2H, t, J=4. 9), 5. 11 (2H, s), 5. 26 (1H, br), 6. 93 (1H, dd, J=2. 2, 8. 5), 7. 20 (1H, d, J=2. 2), 7. 28~7. 38 (5H, m), 7. 44 (1H, d, J=8. 5)

(工程B):6-(2-アミノエトキシ)-2,3-ジメチルベンゾチオフェン臭化水素酸塩の合成

上記工程Aで取得した化合物(356mg)から実施例18工程Bと同様に反応を行い標記化合物(237mg)を得た。

¹H-NMR (DMSO-d_e); δ (ppm) 2. 23 (3H, s), 2. 41 (3 H, s), 3. 20~3. 30 (2H, m), 4. 21 (2H, t, J=4. 9), 7. 03 (1H, dd, J=2. 5, 8. 8), 7. 50 (1H, d, J=2. 5), 7. 57 (1H, d, J=8. 8), 7. 97 (3H, br)

(工程C):(R)-N-[3-[2-[2-(2,3-ジメチルベンソチオフェン-6-イルオキシ) エチルアミノ]-1-トリエチルシリルオキシエチル] フェニル] メタンスルホンアミドの合成

上記工程Bで取得した化合物(151mg)とWO9725311に記載に方法に準じて合成した(R)-N-〔3-(2-ヨード-1-トリエチルシリルオキシエチル)フェニル〕メタンスルホンアミド(227mg)及びジイソプロピルエチルアミン(323mg)から実施例13工程Dと同様に反応を行い標記化合物(41.6m

WO 01/83451 PCT/JP01/03575

g) を得た。

1H-NMR (CDCl₃); & (ppm) 0.50~0.59(6H, m), 0.88(9H, t, J=7.7), 2.25(3H, s), 2.43(3H, s), 2.74~3.05(4H, m), 3.01(3H, s), 4.10(2H, t, J=52), 4.81~4.85(1H, m), 6.92(1H, dd, J=2.2, 8.5), 7.13~7.34(5H, m), 7.44(1H, d, J=8.5)
(T程D):(R)-N-[3-[2-[2-(2, 3-ジメチルベンゾチオフェン-6-イルオキシ)エチルアミノ]-1-ヒドロキシエチル]フェニル]メダンスル

上記工程Cで取得した化合物(41.6mg)から実施例13工程Eと同様に反応を行い標記化合物(15.6mg)を得た。

ホンアミド塩酸塩の合成

"H-NMR (DMSO-d₆); δ (ppm) 2. 24 (3H, s), 2. 41 (3 H, s), 2. 96~3. 48 (4H, m), 3. 00 (3H, s), 4. 32~4. 38 (2H, m), 4. 92~5. 00 (1H, m), 6. 21~6. 26 (1H, m), 7. 03 (1H, dd, J=2. 2, 8. 5), 7. 11~7. 17 (2H, m), 7. 29~7. 31 (1H, m), 7. 35 (1H, t, J=7. 7), 7. 51 (1H, d, J=2. 2), 7. 57 (1H, d, J=8. 8), 8. 90 (2 H, br), 9. 84 (1H, br)

また、WO9725311およびWO0104092に記載の中間体を用い、本明細書に記載の操作を行うことにより、表2に示す他の本発明化合物も製造することがにきる。

表2

₹ <u>₹</u>
* - 5 + - 5
(3)

							_					_								
39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	実施例番号
F	=	Н	H	H	=	91	유	유	HO	꾸	'n	F	F	Ŧ	CI	CI	Cl	Cl	CI	R 1
NHSO ₂ CH ₃	SO2NHCH3	SO ₂ NHCH ₃	SO2NHCH3	SO2NHCH3	NHSO2CH3	NHSO ₂ CH ₃	R ²													
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	۲
HN	HN	HN	HN	HN	HN	S	0	HN	HN	S	0	HN	HN	HIN	S	0	HN	HN	HN	×
CH2CH3	СН	CH ₃	сн ₂ сн ₃	CH ₃	CH ₃ ·	CH ₃	CH ₃	Ph	CH ₃	CH ₃	CH ₃	Ph	CH ₃	CH ₃	CH ₃	CH ₃	Ph	CH ₃	CH ₃	R ⁵
4-0H-Ph	3-0H-Ph	4-0H-Ph	4-0Me-Ph	3-0Me-Ph	4-0Me-Ph	CH ₃	CH ₃	CH ₃	Ph	CH3	CH ₃	CH ₃	Ph	CH ₃	CH ₃	CH ₃	CH ₃	t Bu	Ph	R 6

[試験例1]

ヒトβ3作動活性

組織 c DNA(クローンテック社製)を用いP CRによりヒトβ 3 断片を得、これを を用いて行った。ヒトβ3遺伝子は、まずβ3のプライマー(Kriefら、J・C ochimicals International) 社より購入した。表3の結果 対括性(%)を示した。 イソプロテレノールは、RBI(Research Bi を行った。実施例のうち5化合物については、表1にイソプロテレノールに対する相 き取り、1N NaOHを0.5ml加え、20分放置した。1N 酢酸を0.5m を含むハムF-12で10% Mに希釈し、細胞に加えた。30分培養後、培地を抜 DMS Oで溶かした後、1 mMイソプチルメチルキサンチン、1 mMアスコルピン酸 入れ、24時間培養後、無血情のハムF-12培地で2時間放置した。化合物を最初 イシンを含むパムF-12培地で培養した。この細胞を6穴プレートに5×10° β3遺伝子を得た。この細胞を10%ウシ胎児血清、400μ8/mlジェネチシン プロープとしてヒトゲノミックライブラリー (クローンテック社製) より全長のヒト に挿入したものをトランスフェクトしたCHO(チャイニーズハムスター卵巣)細胞 より、これらの化合物にヒトβ3活性があることがわかった。 lin. Invest. vol. 91, p344-349 (1993)) でヒト脂肪 (GibcoBRL)、100U/mlペニシリン、100μg/mlストレプトマ l 加え、撹拌後遠心をし、cAMPEIAキット(ケイマン社製)でcAMPの定量 ヒトβ3作動活性は、ヒトβ3遺伝子をpcDNA3 (in vitrogen)

[試験例2]

心臓に対する作用

体重180~250gの雄性モルモットから心臓を摘出し、右心房標本を作製し、5%CO2/95%O2混合ガスで通気したクレプス液の入った器官浴槽にセットした。自動能は、ポリグラフ(日本光館 MR-6000)に接続した等尺性トランスチューサー(日本光電 TB-611T)を用いて測定した。実施例の化合物は、10-6Mで右心房標本の自動能に影響を与えなかった。従って、これらの化合物は、2数折的であり、心拍数を上昇させることが極めて少なく、副作用が少ないことが期待

WO 01/83451

PCT/JP01/03575

された。

(試験例3)

ヒトβ3を発現するトランスジェニックマウスでの薬理効果

β 3は、種特異性があり (Strosbergら、Trends Pharmacol. Sci., vol.17,pp373-381, 1996。Strosbergら、Annu. Rev. Pharmacol. Toxicol., vol.37, pp421-450, 1997)、正常マウスやラットを使って薬理試験を行うよりヒトβ 3を発現するトランスジェニックマウスでの薬理試験を行う方がより効率的である。Itoらは、マウスβ 3をノックアウトしたマウスにヒトβ 3遺伝子を導入し、褐色脂肪にヒトβ 3が発現するリプレイスメントマウスを作製した (Itoら Diabetes, Vol.47, pp1464-1471, 1998)。本発明の化合物は、トランスジェニックマウスを使って、以下の手順に従って、抗肥満作用、抗糖尿病作用について試験することができる。

試験管内で脂肪分解作用を調べる場合は、Rodbellの方法(J. Biol. Chem., vol. 239, pp375-380, 1964)に従って、このトランスジェニックマウスより副睾丸白色脂肪組織などを採取し、4%ウシ血膏アルブミンを含むクレブスーリンガー緩衝液を用いて、細胞濃度を2 x 1 0 ⁵ 細胞/m l にし、エッペンドルフチューブに3 0 0 μ l ずつ分注する。このチューブに化合物を溶かした培地を3 0 0 μ l ずつ分注する。このチューブに化合物を溶かした培地を3 0 0 μ l ずつがら3 7 ℃で1時間保温する。米冷により刺激を停止し、遠心後、脂肪細胞ををアスピレーターで除去し、遊離グリセロールをFーキットグリセロール(ベーリンガー・マンハイム)で定量する。

血糖低下作用は、4時間絶食したトランスジェニックマウスに 10%ヒドロキシブロビルーβーサイクロデキストリン(アルドリッチ)に溶解した被験化合物を、体重10g当たり0、1mlの用量で経口投与する。0分、30分、1時間、2時間後に眼底静脈叢より採血する。

糖負荷試験の場合は、一晩絶食したトランスジェニックマウスにグルコース(和光純薬社製)1.5g/kgを腹腔内投与し、10%とドロキシプロピルーβーサイクロデキストリン(アルドリッチ)に溶解した被験化合物を、体重10g当たり0.1mlの用量で経口投与する。0分、30分、60分、1時間、2時間後に眼底静脈叢より採血する。血糖値は、グルコーステストBテストワコー(和光純薬)を用いて該試料中の血

情グルコース濃度の測定をする。 [血糖低下(%) = (A-B) / (A-C) x100 但し、A: 糖負荷時のグルコース濃度、B: 薬物投与時のグルコース濃度、C:正常時のグルコース濃度である。] インスリンは、インスリン測定キット (EIA、 森永生科学研究所) を用い、マウスインスリンを標準として測定する。

脂肪分解作用は、4時間絶食したトランスジェニックマウスに10%とドロキシブロビルーβーサイクロデキストリン(アルドリッチ)に溶解した被験化合物を、体重10g当たり0.1mlの用量で経口投与する。0分、30分、1時間、2時間後に眼底静脈兼より採血する。上記試料から得た血清につき、NEFA HAテストワコー(和光純薬社製)を用いて、該試料中の遊離脂肪酸量を測定する。

熟産生は、Largisら (Drug Development Research, vol.32, pp69-76, 1994) の方法に従い、OXYMAXシステム(コロンバス社)を用いて測定する。この装置は、酸素消費量および二酸化炭素生成量からカロリー計算により、熟産生量を求めるものである。薬物投与後、120分間(15ポイント)測定し、後ろの90分(10ポイント)の平均値を体重で換算して熟産生の値とする。連投試験を行う場合は、1日1回、1日2回等を選択できる。投与期間も1週間、2週間またはそれ以上を選択できる。連投試験においては、Largisら (Drug Development Research, vol.32, pp69-76, 1994)のように体重、血糖値、インスリン値を経時的に追うことも可能であるし、投与終了後、解剖して脂肪重量を測定し、また切片を作製して、顕微鏡観察をすることもできる。また、Nagaseらの方法(J.Clin.Invest., vol.97, pp2898-2904, 1996)によりUCP-1の発現量を試験できる。

トランスジェニックマウスに本発明化合物を3-10mg/kgで経口投与し、熱産生を測定したところ実施例10化合物は、15%、実施例11化合物は、17%、実施例13化合物は、15%、コントロールに比べて熱産生が増加したことより、本発明化合物に熟産生増加作用があることがわかった。

[試験例4]

毒性試験

実施例3、9、10の各化合物は6週齡の雄性 d d yマウス (日本チャールスリバー社製) に100m g/k g経口投与し、8匹中全例に死亡例は認められず、他の化

合物も同様であって、本発明の化合物が毒性の低いことが示された。

紫公

実施例17化合物	実施例13化合物	実施例12化合物	実施例11化合物	実施例10化合物	実施例9化合物	実施例4化合物	実施例3化合物	化合物
4. 4	14	5. 3	4.8	4. 5	16	10	8. 7	E D 50 (n M)
94	96	7 1	8 0	7 8	6 2	73	100	内括性* (%)

*インプロアフノーラに対する相対活在(%)

本明細書で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書に取り入れるものとする.

産業上の利用可能性

本発明化合物は新規な化合物であり、かつヒトβ3アドレナリン受容体刺激活性が強い。よって、糖尿病薬、肥満薬、高脂血症薬、排尿障害等のβ3アドレナリン受容体関連疾患の治療および予防に用いられる医薬として有用である。

請求の範囲

1. 一般式 (1)

[式中、R¹は水素原子、水酸基またはハロゲン原子を示し、R²はNHSO₂R³またはSO₂NR⁴R⁴'を示す。ただし、R³は炭素数1から6のアルキル基、ペンジル基、フェニル基またはNR⁴R⁴'を示し、R⁴およびR⁴'は同一であっても異なっていてもよく、各々独立に、水素原子または炭素数1から6のアルキル基を示す。R⁵とR⁶は同一であっても異なっていてもよく、各々独立に、水素原子、炭素数1から6のアルキル基を有していてもよいフェニル基または置換基を有していてもよいペンジル基を示す。XはNH、硫黄原子、酸素原子またはメチレン基を示す。Yは酸素原子、NR⁷、硫黄原子、メチレン基または結合を示す。R⁷は水素原子、炭素数1から6のアルキル基または炭素数1から6のアルキル基または炭素数1から6のアンル基を意味する。+は不斉炭素原子を意味する。]で示される化合物またはその塩。

2. 一般式 (I)

[式中、R¹は水衆原子、水酸基またはハロゲン原子を示し、R²はNHSO₂R³またはSO₂NR⁴R⁴'を示す。ただし、R³は炭素数1から6のアルキル基またはNR⁴R⁴"を示し、R⁴およびR⁴'は同一であっても異なっていてもよく、各々独立

PCT/JP01/03575

に、水素原子または炭素数1から6のアルキル基を示す。R5とR6は同一であっても異なっていてもよく、各々独立に、水素原子、炭素数1から6のアルキル基またはフェニル基を示す。XはNH、硫黄原子、酸素原子またはメチレン基を示す。Yは酸素原子、NR7、硫黄原子、メチレン基または結合を示す。R7は水素原子、炭素数1から6のアルキル基または炭素数1~6のアシル基を意味する。*は不斉炭素原子を意味する。]で示される化合物またはその塩。

- 3. 一般式(I)において、Yが酸素原子、NR7または硫黄原子を示し、R7は水素原子、炭素数1から6のアルキル基または炭素数1~6のアシル基を意味する請求項1または2に記載の化合物またはその塩。
- 4. 一般式(I)において、R'の置換位置がアミノアルコール側鎖に対してパラ位(2位)である請求項1~3のいずれかに記載の化合物またはその塩。
- 5. 一般式 (I) において、Yが酸素原子またはNR 7 (R 7 は水素原子) である請求項 $1\sim4$ のいずれかに記載の化合物またはその塩。
- 6. 化合物が、

> ベンゼンスルホンアミド、N- [5- [2- [2- (2, 3-ジメチルベンゾチオフ ンー6ーイルオキシ) エチルアミノ] ー1ーヒドロキシエチル] ー2ーヒドロキシ] ルホンアミド、N-メチル-[5-[2-[2-(2,3-ジメチルベンゾチオフェ ンー6ーイルオキシ) エチルアミノ] ー1ーヒドロキシエチル] フェニル] メタンス メタンスルホンアミド、N-[3-[2-[2-(2, 3-ジメチルベンソチオフェ 6ーイルオキシ) エチルアミノ] ー1ーヒドロキシエチル] ー2ークロロフェニル] ンゼンスルホンアミド、N-[5-[2-[2-(2,3-ジメチルベンゾフラン-スルホンアミド、N-メチルー [5- [2- [2- (2, 3-ジメチルベンソフラン ランー6ーイルオキシ) エチルアミノ] -1-ヒドロキシエチル] フェニル] メタン ニル] メタンスルホンアミド、N-[3-[2-[2-(2, 3-ジメチルベンゾフ ルホンアミド、N- [5- [2- [2- (2-メチル-3-フェニル-1H-インド エチルアミノ] ー1ーヒドロキシエチル] フェニル] メタンスルホンアミド、Nーメ **- [2- [2- (2-メチル-3-フェニル-1H-インドール-6-イルオキシ)** ラセミ化合物およびその光学異性体またはその塩。 ニル] メタンスルホンアミドからなる群より選ばれた化合物である請求項5に記載の ェンー6ーイルオキシ) エチルアミノ] ー1ーとドロキシエチル] ー2ークロロフェ -6-イルオキシ) エチルアミノ] -1-ヒドロキシエチル] -2-ヒドロキシ] ベ ールー6-イルオキシ) エチルアミノ] -1-ヒドロキシエチル] -2-クロロフェ ルオキシ) エチルアミノ] ー1ーヒドロキシエチル] ー2ーヒドロキシ] ベンゼンス チルー [5ー] [2ー] [2ー] (2ーメチルー3ーフェニルー1Hーインドールー6ーイ ー1-ヒドロキシエチル] -2-フルオロフェニル] メタンスルホンアミド、N- [3 (3ーメチルー2ーフェニルー1Hーインドールー6ーイルオキシ) エチルアミノ]

7. 一般式 (11)

[式中、Wは水素原子またはアミノ基の保護基を示す。R 5とR 6は同一であっても異

PCT/JP01/03575

なっていてもよく、各々独立に、水素原子、炭素数1から6のアルキル基、置換基を有してもよいフェニル基または置換基を有していてもよいベンジル基を示す。ただしR⁵およびR⁶が同時に水素原子となる場合を除く。XはNH、硫黄原子、酸素原子またはメチレン基を示す。Yは酸素原子、NR⁷、硫黄原子、メチレン基または結合を示す。R⁷は水素原子、炭素数1から6のアルキル基または炭素数1から6のアシル基を意味する。]で示される化合物またはその塩。

8. 一般式 (11)

[式中、Wは水素原子またはアミノ基の保護基を示す。R⁶とR⁶は同一であっても異なっていてもよく、各々独立に、水素原子、炭素数1から6のアルキル基、置換基を有してもよいフェニル基または置換基を有していてもよいペンジル基を示す。ただしR⁶およびR⁶が同時に水素原子となる場合を除く。XはNH、硫黄原子、酸素原子またはメチレン基を示す。Yは酸素原子、NR⁷または減黄原子を示す。R⁷は水素原子、炭素数1から6のアルキル基または炭素数1から6のアシル基を意味する。]で示される化合物またはその塩。

9. 化合物が、

2 - (2、3 - ジメチル - 1 H - インドール - 6 - イルオキシ) エチルカルバミン酸 ベンジルエステル、2 - (2、3 - ジメチル - 1 H - インドール - 6 - イルオキシ) エチルアミン、N - ベンジルーN - [2 - (2、3 - ジメチル - 1 H - インドール - 6 - イルオキシ) エチル] アミン、2 - (3 - メチル - 2 - フェニル - 1 H - インドーー 6 - イルオキシ) エチルカルバミン酸ベンジルエステル、2 - (3 - メチル - 2 - フェニル - 1 H - インドール - 6 - イルオキシ) エチルカルバミン酸ベンジルエステル で - イルオキシ) エチルカルバミン酸ベンジルー N - [2 - (3 - メチル - 2 - フェニル - 1 H - インドール - 6 - イルオキシ) エチルカルバミン酸ベンジルエステル、2 - (2 - メチル - 3 - フェニル - 1 H - インドール - 6 - イルオキシ) エチルカルバミン酸ベンジルエステル、2 - (2 - メチル - 3 - フェニル - 1 H - インドール - 6 - イルオキシ)

ンドールー6ーイルオキジ)エチルアミン、2 - (2、3 - ジメチルベンソフランー6 - イルオキジ)エチルカルバミン酸ペンジルエステル、2 - (2、3 - ジメチルベンフランー6 - イルオキジ)エチルアミン、N - ベンジルーN - [2 - (2、3 - ジメチルベンソフラン - 6 - イルオキジ)エチルアミン、N - ベンジルーN - [2 - (2、3 - ジメチルベンソフラン - 6 - イルオキジ)エチルカルバミン酸ペンジルエステル、2 - (2、3 - ジメチルベンソチオフェン - 6 - イルオキジ)エチルカルバミン酸ペンジルエステル、2 - (2、3 - ジメチルベンソチオフェン - 6 - イルオキジ)エチルアミン、N - ベンジルーN - [2 - (2、3 - ジメチルベンソチオフェン - 6 - イルオキジ)エチル] アミンからなる群より選ばれた化合物である請求項8に記載の化合物またはその塩。

- 10. 請求項1に記載の化合物またはその塩を有効成分とし、該有効成分と医薬上許容される担体とを含有する医薬組成物である医薬。
- 11. 医薬が糖尿病、肥満、高脂血症、消化器系疾患、うつ病または排尿障害のいずれかの治療または予防剤である請求項10に記載の医薬。

INTERNATIONAL SEARCH REPORT

International application No.

Form PCT/ISA/210 (second sheet) (July 1992)

国際調查報告

国際出願番号 PCT/JP01/03575

						·				
国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 野便番号100-8915 東京都千代田区霞が関三丁目4番3号	国際調査を完了した日 28.06.01	* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示するのもの。 もの 「E」国際出願目前の出願または特許であるが、国際出願目 以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行 「自者しくは他の特別な理由を確立するために引用する 文献(理由を付す) 文献(理由を付す)	x) C棚の焼きにも文献が列挙されている。	A WO, 97/25311, A1 (ASAH ISIA), 17.7B. 1997 (17 JP, 9-249623, A&CA, JP, 2000-239255, A&EP, 882707, A1&CN, 1 NO, 9803197, A&US, 6	引用文献の カテゴリー* 引用文献名 及び一部の箇所が関連するときは	C. 関連すると認められる文献	国際調査で使用した電子データベース(データベースの名称、 CAPLUS, REGISTRY (STN)	最小限資料以外の資料で調査を行った分野に含まれるもの	B. 調査を行った分野 調査を行った最小限資料(国際特許分類(I PC)) Int.Cl' COTD209/08, 307/79, 333/54, A61K31/404, 343, 381, A61P1/00, 3/04, 3/06, 3/10, 13/02, 25/24	A. 発明の具する分野の分類(国際特許分類(IPC)) Int.Cl' C070209/08, 307/79, 333/54, A61K31/404, 343, 381, A61P1/00, 3/04, 3/06, 3/10, 13/02, 25/24
特許庁審査官 (権限のある職員) (4P 9159 富永 保 電話番号 03-3581-1101 内線 3490	国際調査報告の発送日 10.07.01	の日の後に公表された文献 「丁」 国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの 「X」 特に関連のある文献であって、当談文献のみで発明 の新規性又は連歩性がないと考えられるもの 「Y」 特に関連のある文献であって、当談文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの もって進歩性がないと考えられるもの	□ パテントファミリーに関する別紙を参照。	(ASAHI KASEI KOGYO KABUSHIKI KA 1-11 (17.07.97) & CARLON CABUSHIKI KA 1-11 (17.07.97) & CARLON CARLO	きは、その関連する箇所の表示 精束の範囲の番号		調査に使用した用額)		IPI/00, 3/04, 3/06, 3/10, 13/02, 25/24	.P1/00, 3/04, 3/06, 3/10, 13/02, 25/24

模式PCT/ISA/210 (第2ページ) (1998年7月)

12, A1&JP, 04649, A&EP, 04649, A&C, 887, A&AU, 170, A&AU,	96/35670, A1)6 (14. 11. 96) 8	* 引用文献名 及び一部の箇所が関	C (校含) . 関連すると認められる文献 引用文献の
24519, A1& 11-504648, N, 1144801, 9652185, A& 5977124, A& 9947475, A	TZER INC.), 1,	その関連する	
	1-11	圖。	関連する

模式PCT/ISA/210 (第2ページの続き) (1998年7月)