LAB ACTIVITIES

Name: Kulsoom Khurshid

Reg#: Sp20-BCS-044

Course: DATABASE SYSTEM-1

Activity 1:

Write the Relational algebra expressions for the following information needs over IMDB-sample Database:

list the first and last name of all the female actors.
 π first_name, last_name σ gender = 'F' actors

List movie names along with their directors name of all the movies with a rank greater than 8.5.
 π movies.name, directors.first_name, directors.last_name (σ movies.id =
 movies_directors.movie_id Λ rank > 8.5 (movies × (σ directors.id =
 movies_directors.director_id (movies_directors × directors))))

 π movies.name, directors.first_name, directors.last_name (σ movies.id = movies_directors.movie_id and rank > 8.5 (movies \times (σ directors.id = movies_directors.director_id (movies_directors \times directors)))

movies.name	directors.first_name	directors.last_name
Or. Strangelove or: How I Learned to Stop Worrying and Love the Bomb'	'Stanley'	'Kubrick'
'Paths of Glory'	'Stanley'	'Kubrick'
'Pulp Fiction'	'Quentin'	'Tarantino'

3. List titles of all the movies that are released after 2000, have a rank greater than 8, and that belong to Action genre.

π movies.name σ movies.id = movies_genres.movie_id Λ year > 2000 Λ rank > 8 Λ genre = 'Action' (movies × movies_genres)

 π movies.name σ movies.id = movies_genres.movie_id and year > 2000 and rank > 8 and genre = 'Action' (movies \times movies_genres)

4. List the first and last names of all the actors who played a role in the movie Reservoir Dogs, and the roles they played in it.

 π actors.first_name, actors.last_name, roles.role (σ actors.id = roles.actor_id (actors × (σ movies.id = roles.movie_id \wedge movies.name = 'Reservoir Dogs' (movies × roles))))

 $\begin{array}{l} \pi_{\text{ actors.first_name, actors.last_name, roles.role} \text{ (} \sigma_{\text{ actors.id = roles.actor_id}} \text{ (actors} \times \text{ (} \sigma_{\text{ movies.id = roles.movie_id and movies.name = 'Reservoir Dogs'} (movies \times roles \text{))))) } \end{array}$

5. List the first and last names of all the actors who acted in the movies of the director Quentin Tarantino but not in the movies of director Stanley Kubrick.

 π actors.first_name, actors.last_name σ roles.movie_id = movies_directors.movie_id \wedge

((directors.first_name = 'Quentin' \land directors.last_name = 'Tarantino') \lor (directors.first_name = 'Stanley' \land directors.last_name = 'Kubrick')) ((σ actors.id = roles.actor_id (actors \times roles)) \times (σ directors.id = movies_directors.director_id (directors \times movies_directors)))

_

 π actors.first_name, actors.last_name σ roles.movie_id = movies_directors.movie_id Λ directors.first_name = 'Stanley' Λ directors.last_name = 'Kubrick' ((σ actors.id = roles.actor_id (actors × roles)) × (σ directors.id = movies_directors.director_id (directors × movies_directors)))

actors.first_name	actors.last_name
'Dick (I)'	'Miller'
'Antonio'	'Banderas'
'Lawrence'	'Bender'
'Paul'	'Calderon'
'Quinn Thomas'	'Kellerman'
'Marc (I)'	'Lawrence'
'David'	'Proval'
'Tim'	'Roth'
'Paul'	'Skemp'
'Quentin'	'Tarantino'

Write the Relational Algebra expressions for the following information needs over University Database:

1. Retrieve the title of the course that is pre-req of 'Database System Concepts'.

σ prereq.prereq_id = course_id (course x π prereq_id

(σ prereq.course_id= course.course_id (prereq x (σ title = 'Database System Concepts' (course)))))

course.course_id	course.title	course.dept_name	course.credits	prereq.prereq_id
'CS-101'	'Intro. to Computer Science'	'Comp. Sci.'	4	'CS-101'
		(1)		

2. Retrieve the semester and the year in which 'Einstein' taught the course 'Physical Principles'. π semester , year (σ teaches.ID = instructor.ID Λ instructor.name = 'Einstein' (instructor × (σ course.course_id = teaches.course_id Λ course.title = 'Physical Principles' (course × teaches))))

teaches.semester	teaches.year
'Fall'	2009

3. Retrieve the ID and the title of all the courses taken by 'Shankar' in 'Fall 2009'.

π course.course_id, course.title (σ course.course_id = takes.course_id (course × (σ student.ID = takes.ID Λ semester = 'Fall' Λ year = 2009 Λ student.name = 'Shankar' (student × takes))))

 π course.course_id, course.title (σ course.course_id = takes.course_id (<code>COURSE</code> \times (σ student.ID = takes.ID and semester = 'Fall' and year = 2009 and student.name = 'Shankar' (<code>student</code> \times takes))))

course.course_id	course.title
'CS-101'	'Intro. to Computer Science'
'CS-347'	'Database System Concepts'

4. List the name of students who did not take any course in 'Fall 2009'.

 π student.name student - (π student.name (σ takes.ID = student.ID \wedge semester = 'Fall' \wedge takes.year = 2009 (student × takes)))

 π student.name student - (π student.name (σ takes.ID = student.ID and semester = 'Fall' and takes.year = 2009 (student \times takes)))

5. Find building, room number, and capacity of all classrooms in which student 'Tanaka' took all his classes.

 π classroom.building , classroom.room_number , classroom.capacity σ student.dept_name = department.dept_name Λ student.name = 'Tanaka' (σ department.building = classroom.building (classroom × department) × student)

classroom.building	classroom.room_number	classroom.capacity
'Watson'	100	30
'Watson'	120	50