COAHub

Computer Architecture Cheat Sheet

Basic Components of a Computer System

- CPU (Central Processing Unit):
 - o Arithmetic Logic Unit (ALU): Performs arithmetic and logical operations
 - o Control Unit (CU): Directs operations, fetches instructions, and controls data flow.
 - Registers: Small, fast storage locations within the CPU. Key registers include:
 - Accumulator (AC): Stores results of operations.
 - **Program Counter (PC):** Points to the next instruction to execute.
 - Memory Address Register (MAR): Holds memory addresses for data/instructions.
 - Memory Data Register (MDR): Temporarily holds data fetched from or to be written to memory.
 - Current Instruction Register (CIR): Holds the current instruction being decoded/executed.
 - Status/Flag Register: Indicates conditions like zero, carry, overflow.

• Memory Hierarchy:

- o Cache: Small, fast memory close to the CPU for frequently accessed data.
- Main Memory (RAM): Stores data and instructions for currently running programs.
- Secondary Storage: Large, slower storage (HDD, SSD, optical disks).
- **Input/Output (I/O) Devices:** Interfaces for user interaction and external communication (keyboard, mouse, monitor, printer).

• Bus System:

- Data Bus: Transfers actual data.
- Address Bus: Transfers memory addresses.
- o **Control Bus:** Transfers control signals and status information.

Key Computer Architectures

Architecture	Memory for Data & Instructions	Speed & Usage
Von Neumann	Shared	Simpler, traditional computers[2]
Harvard	Separate	Faster, used in embedded systems ^[2]

Instruction Cycle

1. **Fetch:** Get instruction from memory $(PC \rightarrow MAR, \text{ fetch to MDR}, \text{ then CIR})^{l}$.

2. **Decode:** CU interprets the instruction.

3. **Execute:** ALU performs operation, result stored in register or memory.

4. **Store:** Result written back to memory or register if needed.

Types of Instructions

• Data Transfer: MOV, LOAD, STORE

• **Arithmetic:** ADD, SUB, MUL, DIV

• Logical: AND, OR, NOT

• Control: JMP, CALL, RET

Addressing Modes

• Immediate: Operand is part of instruction

• **Direct:** Address of operand given directly

• Indirect: Address field points to a memory location containing the address of the operand

• Indexed: Uses base address plus offset

Memory Organization

• Cache: Closest to CPU, fastest access.

• **RAM:** Volatile, used for active processes.

• Secondary Storage: Non-volatile, large capacity.

Performance Concepts

• Clock Speed: Determines how many instructions per second CPU can execute.

• **Pipelining:** Overlapping instruction execution to improve throughput.

• RISC vs. CISC:

RISC: Simple instructions, faster, more registers

o CISC: Complex instructions, fewer registers, more addressing modes

The Von Neumann Model

• Main Memory: Stores both data and instructions.

• **ALU:** Performs binary operations.

• **Control Unit:** Executes instructions from memory.

• **I/O Devices:** Managed by CU.

Quick Reference Table

Component	Function
ALU	Arithmetic/logic operations
CU	Directs data flow, fetch/decode/execute
Registers	Fast, small storage for instructions/data
Cache	High-speed memory for frequent access
RAM	Main memory for running programs
Secondary	Long-term storage
Data Bus	Transfers data
Address Bus	Transfers addresses
Control Bus	Transfers control signals