

No Free Lunch

STATS 303 Statistical Machine Learning

Spring 2022

Lecture 19

no free lunch

universal learner

- In previous discussion, we assume that there is a hypothesis class \mathcal{H} which serves as the search space for our model h.
- We then find the ERM $h_S \in \operatorname{argmin}_{h \in \mathcal{H}} L_S(h)$
- \mathcal{H} is a prior belief, determined by the task.
- Is this prior belief necessary? Is it possible to have a universal learner that works for any task? Specifically, is there an algorithm that outputs a low-risk h as long as it receives a large number of training data?

universal learner

More specifically, does there exist a learning algorithm A and a training set size m, such that:

• for every distribution \mathcal{D} , if A receives m i.i.d. examples from \mathcal{D} , there is a high chance it outputs a predictor h with a low risk?

This is impossible 🕾

no free lunch (NFL)

Theorem (No-Free-Lunch)

Let A be any learning algorithm for the task of binary classification w.r.t. the 0-1 loss over a domain \mathcal{X} . Let m, the size of the training set, be any number with $m < |\mathcal{X}|/2$. Then, there exists a distribution \mathcal{D} over $\mathcal{X} \times \{0,1\}$ such that:

- 1. There exists a function $f: \mathcal{X} \to \{0,1\}$ with $L_{\mathcal{D}}(f) = 0$;
- 2. With probability of at least $\frac{1}{7}$ over the choice of $S \sim \mathcal{D}^m$, we have $L_{\mathcal{D}}(h) \geq \frac{1}{8}$ where h = A(S) is the output of the algorithm.

TLDR version: "Any algorithm will fail for some reasonable data distribution."

no free lunch (NFL)

Theorem (No-Free-Lunch)

Let A be any learning algorithm for the task of binary classification w.r.t. the 0-1 loss over a domain \mathcal{X} . Let m, the size of the training set, be any number with $m < |\mathcal{X}|/2$. Then, there exists a distribution \mathcal{D} over $\mathcal{X} \times \{0,1\}$ such that:

- 1. There exists a function $f: \mathcal{X} \to \{0,1\}$ with $L_{\mathcal{D}}(f) = 0$;
- 2. With probability of at least $\frac{1}{7}$ over the choice of $S \sim \mathcal{D}^m$, we have $L_{\mathcal{D}}(h) \geq \frac{1}{8}$ where h = A(S) is the output of the algorithm.

Wordier version: "Every learner fails on some task, though the task can be successfully learned by another learner."

no free lunch (NFL)

Theorem (No-Free-Lunch)

Let A be any learning algorithm for the task of binary classification w.r.t. the 0-1 loss over a domain \mathcal{X} . Let m, the size of the training set, be any number with $m < |\mathcal{X}|/2$. Then, there exists a distribution \mathcal{D} over $\mathcal{X} \times \{0,1\}$ such that:

- 1. There exists a function $f: \mathcal{X} \to \{0,1\}$ with $L_{\mathcal{D}}(f) = 0$;
- 2. With probability of at least $\frac{1}{7}$ over the choice of $S \sim \mathcal{D}^m$, we have $L_{\mathcal{D}}(h) \geq \frac{1}{8}$ where h = A(S) is the output of the algorithm.

These numbers are not important, and we can change them to other numbers, say 1/16 and 1/5.

proof of NFL

- Let's proof the no-free-lunch theorem (NFL)!
- Consider $C \subset \mathcal{X}$ such that |C| = 2m.
- There are $T=2^{2m}$ possible function that maps from C to $\{0,1\}$. Let's call them f_1,\cdots,f_T .
- For each $i \in [T] = \{1, \dots, T\}$, define \mathcal{D}_i to be the following distribution:

$$\mathcal{D}_{i}(x,y) = \begin{cases} \frac{1}{|C|}, & \text{if } y = f_{i}(x) \\ 0, & \text{otherwise} \end{cases}$$

proof of NFL

Claim: For every algorithm A that receives a training set of m examples from $C \times \{0,1\}$,

$$\max_{i \in [T]} \mathbb{E}_{S \sim \mathcal{D}_i^m} [L_{\mathcal{D}_i}(A(S))] \ge \frac{1}{4}$$

This means that for every algorithm A' that receives a training set of m examples from $\mathcal{X} \times \{0,1\}$, there exists a function $f: \mathcal{X} \to \{0,1\}$ and a distribution \mathcal{D} such that $L_{\mathcal{D}}(f) = 0$ and

tion
$$\mathcal{D}$$
 such that $L_{\mathcal{D}}(f)=0$ and
$$\mathbb{E}_{S\sim\mathcal{D}^m}[L_{\mathcal{D}}(A'(S))]\geq \frac{1}{4} \qquad \text{chosen to be}$$
 there j is argmax chosen to be $\mathfrak{P}_{\tilde{j}}$ accordingly.

proof of NFL

Claim: For every algorithm A that receives a training set of m examples from $C \times \{0,1\}$,

$$\max_{i \in [T]} \mathbb{E}_{S \sim \mathcal{D}_i^m} [L_{\mathcal{D}_i}(A(S))] \ge \frac{1}{4}$$

This means that for every algorithm A' that receives a training set of m examples from $\mathcal{X} \times \{0,1\}$, there exists a function $f: \mathcal{X} \to \{0,1\}$ and a distribution \mathcal{D} such that $L_{\mathcal{D}}(f) = 0$ and

$$\mathbb{E}_{S \sim \mathcal{D}^m}[L_{\mathcal{D}}(A'(S))] \ge \frac{1}{4}$$

If we can prove this, then $\Rightarrow P\left(L_{\mathcal{D}}(A'(S)) \ge \frac{1}{8}\right) \ge \frac{1}{7}$

why
$$\Rightarrow P\left(L_{\mathcal{D}}(A'(S)) \ge \frac{1}{8}\right) \ge \frac{1}{7}$$
?

We only need to show the more general version: If a random variable X takes values in [0,1], and $\mathbb{E}[X] \geq \frac{1}{4}$, then $P\left(X \geq \frac{1}{8}\right) \geq \frac{1}{7}$. Markov inequality:

Proof:

$$P\left(X < \frac{1}{8}\right) = P\left(1 - X \ge \frac{7}{8}\right) \le \frac{\mathbb{E}[1 - X]}{7/8} \le \frac{1 - 1/4}{7/8} = \frac{6}{7}$$

Therefore,
$$P\left(X \ge \frac{1}{8}\right) \ge 1 - \frac{6}{7} = \frac{1}{7}$$
. \odot

Markov inequality:

If
$$Y \ge 0$$
, then

 $P(Y \ge a) \le \frac{E[Y]}{a}$

because

 $E[Y] = \int_{a}^{\infty} y p(y) dy$
 $\sum_{a}^{\infty} y p(y) dy$

Recall Claim: For every algorithm *A* that receives a training set of *m* examples from $C \times \{0,1\}$,

$$\max_{i \in [T]} \mathbb{E}_{S \sim \mathcal{D}_i^m} [L_{\mathcal{D}_i}(A(S))] \ge \frac{1}{4}$$

$$2m \text{ choices since } |C| = 2m$$

$$0 - \cdots 0$$

$$m \text{ examples}$$

- There are $k = (2m)^m$ possible sequences of m examples from C repetition allowed
- Denote them by S_1, \dots, S_k
- Say $S_i = (x_1, \dots, x_m)$. Denote $S_i^i = ((x_1, f_i(x_1)), \dots, (x_m, f_i(x_m)))$
- If the distribution is \mathcal{D}_i , then the possible training sets are $S_1^i, S_2^i, \cdots, S_k^i$.

With the above notation,

$$\mathbb{E}_{S \sim \mathcal{D}_i^m} \left[L_{\mathcal{D}_i}(A(S)) \right] = \frac{1}{k} \sum_{j=1}^k L_{\mathcal{D}_i} \left(A(S_j^i) \right)$$

• Only need to show: the max of the above is no less than $\frac{1}{4}$.

But

$$\max_{i \in [T]} \frac{1}{k} \sum_{j=1}^{k} L_{\mathcal{D}_i} \left(A(S_j^i) \right) \ge \frac{1}{T} \sum_{i=1}^{T} \frac{1}{k} \sum_{j=1}^{k} L_{\mathcal{D}_i} \left(A(S_j^i) \right)$$

$$= \frac{1}{k} \sum_{j=1}^{k} \frac{1}{T} \sum_{i=1}^{T} L_{\mathcal{D}_i} \left(A(S_j^i) \right)$$

$$\geq \min_{j \in [k]} \frac{1}{T} \sum_{i=1}^{T} L_{\mathcal{D}_i} \left(A(S_j^i) \right)$$

keep in mind that:

- *i* is the index for functions,
- j is the index for datasets

We allow repetition. So we used $\leq m$ unique x's

• But

$$\max_{i \in [T]} \frac{1}{k} \sum_{j=1}^{k} L_{\mathcal{D}_i} (A(S_j^i)) \ge \frac{1}{T} \sum_{i=1}^{T} \frac{1}{k} \sum_{j=1}^{k} L_{\mathcal{D}_i} (A(S_j^i))$$

$$= \frac{1}{k} \sum_{j=1}^{k} \frac{1}{T} \sum_{i=1}^{T} L_{\mathcal{D}_i} \left(A(S_j^i) \right)$$

$$\geq \min_{j \in [k]} \frac{1}{T} \sum_{i=1}^{T} L_{\mathcal{D}_i} \left(A(S_j^i) \right)$$

- Fix some $j \in [k]$. Denote $S_j = (x_1, \dots, x_m)$.
- Let v_1, \dots, v_p be the examples in \mathcal{C} not appearing in S_i .
- Since |C| = 2m, we have $p \ge m$.
- Therefore, for every $h: C \to \{0,1\}$ and every i, we have

$$\mathbf{1}_{A} = \begin{cases} 1 & \text{if } & \text{if } \\ 0 & \text{if } \end{cases} \times \in A$$

$$L_{D_{i}}(h) = \frac{1}{2m} \sum_{x \in C} \mathbf{1}_{[h(x) \neq f_{i}(x)]}$$

$$\geq \frac{1}{2m} \sum_{r=1}^{p} \mathbf{1}_{[h(v_{r}) \neq f_{i}(v_{r})]}$$

$$\geq \frac{1}{2p} \sum_{r=1}^{p} \mathbf{1}_{[h(v_{r}) \neq f_{i}(v_{r})]}$$

Hence

$$\frac{1}{T} \sum_{i=1}^{T} L_{\mathcal{D}_{i}} \left(A(S_{j}^{i}) \right) \geq \frac{1}{T} \sum_{i=1}^{T} \frac{1}{2p} \sum_{r=1}^{p} \mathbf{1}_{\left[A(S_{j}^{i})(v_{r}) \neq f_{i}(v_{r}) \right]}$$

$$= \frac{1}{2p} \sum_{r=1}^{p} \frac{1}{T} \sum_{i=1}^{T} \mathbf{1}_{\left[A(S_{j}^{i})(v_{r}) \neq f_{i}(v_{r}) \right]}$$

$$\geq \frac{1}{2} \min_{r \in [p]} \frac{1}{T} \sum_{i=1}^{T} \mathbf{1}_{\left[A(S_{j}^{i})(v_{r}) \neq f_{i}(v_{r}) \right]}$$

Since f_i exhausts all possibilities as i goes from 1 to T, this is equal to 1 for half the time, and equal to 0 for the other half.

Hence

$$\frac{1}{T} \sum_{i=1}^{T} L_{\mathcal{D}_i} \left(A \left(S_j^i \right) \right) \ge \frac{1}{T} \sum_{i=1}^{T} \frac{1}{2p} \sum_{r=1}^{p} \mathbf{1}_{\left[A \left(S_j^i \right) (v_r) \ne f_i(v_r) \right]}$$

$$= \frac{1}{2p} \sum_{r=1}^{p} \frac{1}{T} \sum_{i=1}^{T} \mathbf{1}_{\left[A(S_{j}^{i})(v_{r}) \neq f_{i}(v_{r})\right]}$$

$$\geq \frac{1}{2} \min_{r \in [p]} \frac{1}{T} \sum_{i=1}^{T} \mathbf{1}_{\left[A\left(S_{j}^{i}\right)(v_{r}) \neq f_{i}(v_{r})\right]} = \frac{1}{4}$$

Recall Claim: For every algorithm A that receives a training set of m examples from $C \times \{0,1\}$,

$$\max_{i \in [T]} \mathbb{E}_{S \sim \mathcal{D}_i^m} [L_{\mathcal{D}_i}(A(S))] \ge \frac{1}{4}$$

But we have showed:

$$\max_{i \in [T]} \mathbb{E}_{S \sim \mathcal{D}_i^m} \left[L_{\mathcal{D}_i}(A(S)) \right] \ge \min_{j \in [k]} \frac{1}{T} \sum_{i=1}^T L_{\mathcal{D}_i} \left(A(S_j^i) \right) \ge \min_{j \in [k]} \frac{1}{4} = \frac{1}{4}$$

Therefore, we are done with the proof! We are done!

summary

Theorem (No-Free-Lunch)

Let A be any learning algorithm for the task of binary classification w.r.t. the 0-1 loss over a domain \mathcal{X} . Let m, the size of the training set, be any number with $m < |\mathcal{X}|/2$. Then, there exists a distribution \mathcal{D} over $\mathcal{X} \times \{0,1\}$ such that:

- 1. There exists a function $f: \mathcal{X} \to \{0,1\}$ with $L_{\mathcal{D}}(f) = 0$;
- 2. With probability of at least $\frac{1}{7}$ over the choice of $S \sim \mathcal{D}^m$, we have $L_{\mathcal{D}}(h) \geq \frac{1}{8}$ where h = A(S) is the output of the algorithm.

no restriction on $\mathcal{H} \Rightarrow$ not PAC learable

Corollary

Let \mathcal{X} be an infinite domain set and let \mathcal{H} be the set of all functions from \mathcal{X} to $\{0,1\}$. Then, \mathcal{H} is not PAC learnable.

Proof: Apply NFL. Consider $\epsilon < \frac{1}{8}$, $\delta < \frac{1}{7}$. Done!

In other words, we cannot have a larger than $\frac{6}{7}$ probability that the error is smaller than $\frac{1}{8}$.

More specifically, to prove the corollary, we could simply take $\varepsilon = \frac{1}{9}$, $\delta = \frac{1}{8}$.

Assume by contradiction that H is PAC learnable.

Then there is an algorithm A and an integer $m=m(\xi,\delta)$, such that,

• for any data distribution \mathfrak{D} , if there is an f for which $L_{\mathfrak{D}}(f)=0$, then

$$\mathbb{P}_{\mathfrak{D}}(L_{\mathfrak{D}}(A(S)) \leq \varepsilon) \geq 1 - \delta.$$

This means

$$P_{\mathcal{B}}(L_{\mathcal{B}}(A(S)) \leq \frac{1}{9}) \geq 1 - \frac{1}{8}$$

That is, $P_{\mathcal{B}}(L_{\mathcal{B}}(A(S)) > \frac{1}{9}) < \frac{1}{8}$

$$P_{S}(L_{S}(A(s)) \ge \frac{1}{8}) < \frac{1}{8}$$

Questions?

Reference

- No Free Lunch:
 - [S-S] Ch 5.1

