Paper Reading Seminar

Yan Wang

August 30, 2012

RGB-(D) Scene Labeling: Features and Algorithms

▶ Problem: indoor scene, optical photo + depth image ⇒ pixel-wise label

Evaluation: NYU Depth Dataset (13 categories), Stanford Background Dataset (8 categories, no depth info), Mean AP.

Intuition

- ▶ Kernel Descriptor + Efficient Matching Kernel: pixel level features in different domains ⇒ superpixel level feature
- Segmentation tree: different scales of superpixel
- Contextual refinement

- Segmentation trees
 - ▶ gPb: local + global contrast cues ⇒ pixel-level probability-of-boundary map
 - Extend to depth frames
 - ▶ Linear fusion for RGB-D frames
- Feature design
 - Gradient, color, local binary pattern, depth gradient, spin/surface normal, KPCA/self-similarity

- Kernel descriptors
 - ▶ Intuition: pixel features ⇒ superpixel

$$F_{\mathsf{grad}}^t = \sum_{z \in \mathcal{Z}} \tilde{m}_z k_o(\tilde{\theta}_z, p_i) k_s(z, q_j)$$

▶ Use image gradient + spin/normal

- Classification
 - Efficient Match Kernel for fixed-length features on superpixels
 - Linear SVM
 - ▶ Normalize on superpixel area (A_s)

$$A_s/(\sum_{q\in Q_c}A_q)^p$$

- Segmentation tree
 - ▶ Different level (t) of segmentation tree ⇔ different scale of superpixels
 - ► Tree(s) = $\{f_{t,c}(s_t)\}, t, c$

- Segmentation tree
 - Accumulate features along paths for better accuracy

- Superpixel MRF with gPb
 - ▶ Data term: $-f_{c,t}$
 - Smoothing term

$$V_{s,r} = \beta \exp(-\gamma \cdot \mathsf{gPb}_{\mathsf{rgbd}}(s,r))$$

► Solve with graph-cut