Gaussian Random Field Generation for stochastic PDEs

March 5, 2019

Timo Schorlepp

Table of contents

- 1 Motivation
- 2 Theory
 - Basic Definitions
 - How to generate stationary GRFs
- 3 Numerical implementation
- 4 Results
- 5 Conclusion
- 6 Literature

RUB

Motivation: Exemplary applications

Vogelsberger et al. 2014, Illustris simulation

Murray 2017, 2D stochastic NSE vorticity

Kuennen, Wang 2008, KPZ surface growth

Wikimedia, aquifer sketch

Motivation: Mathematical examples

Deterministic incompressible NSE for $u : \mathbb{T}^d \times \mathbb{R}_+ \to \mathbb{R}^d$:

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p = \nu \Delta \mathbf{u} , \ \nabla \cdot \mathbf{u} = 0$$

Without forcing:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int \mathrm{d}V \, \frac{1}{2} |\boldsymbol{u}|^2 = -2\nu \int \mathrm{d}V \, \operatorname{tr}((\nabla \otimes \boldsymbol{u})^T (\nabla \otimes \boldsymbol{u})) \leq -2C\nu \int \mathrm{d}V \, |\boldsymbol{u}|^2$$

Gronwall: Energy decays exponentially, need forcing for interesting long-term behavior, e.g. Gaussian forcing with homogeneous, isotropic correlation matrix!

Similarly: Stochastic heat equation Why Gaussian? CLT, easy, approximation, algorithms exist

Definition 1

A random field ξ is an indexed family of random variables

$$\boldsymbol{\xi} = \left\{ \boldsymbol{\xi}(\boldsymbol{x}) : \Omega \to \mathbb{R}^m ; \; \boldsymbol{x} \in \mathcal{T} \subseteq \mathbb{R}^d \right\}.$$

Remark 2

- Generalization of stochastic processes
- No details on Kolmogorov Existence Theorem etc. here

Definition 3

A random field $\boldsymbol{\xi}$ is called Gaussian iff $\forall k \in \mathbb{N} : \forall \{\boldsymbol{x}^{(0)}, \cdots, \boldsymbol{x}^{(k-1)}\} \subseteq \mathcal{T} : \boldsymbol{\xi}(\boldsymbol{x}^{(0)}) =: \boldsymbol{\xi}^{(0)}, \cdots \boldsymbol{\xi}(\boldsymbol{x}^{(k-1)}) =: \boldsymbol{\xi}^{(k-1)}$ are jointly normally distributed, i.e.

$$\begin{aligned} p_{\boldsymbol{\xi}^{(0)},\cdots,\boldsymbol{\xi}^{(k-1)}}(\boldsymbol{y}^{(0)},\cdots\boldsymbol{y}^{(k-1)}) &= \det(2\pi\Sigma)^{-\frac{1}{2}} \cdot \\ &\cdot \exp\left(-\frac{1}{2}(\boldsymbol{y}-\boldsymbol{\mu})^T \Sigma^{-1}(\boldsymbol{y}-\boldsymbol{\mu})\right) \end{aligned}$$

where Σ is the $km \times km$ covariance matrix

$$\Sigma_{mr+i,ms+j} = \mathsf{Cov}\left(\xi_i^{(r)}, \xi_j^{(s)}\right) =: \chi_{ij}\left(\mathbf{x}^{(r)}, \mathbf{x}^{(s)}\right)$$

and μ is the km-dim. mean vector $\mu_{mr+i} = \left\langle \xi_i^{(r)} \right\rangle$.

Remark 4

- Gaussian random fields (GRF) are completely specified by $\mu(x)$ and $\chi(x',x)$ \Longrightarrow easy!
- We will assume $\mu(x) \equiv 0$ wlog in the following (also necessary for isotropy) as well as d=m
- lacksquare Σ needs to be positive semidefinite for all $m{x}^{(0)}, \cdots, m{x}^{(k-1)}$ since $\sum_{i,j} m{a}_i^T \chi\left(m{x}^{(i)}, m{x}^{(j)}\right) m{a}_j = \mathrm{Var}\left(\sum_i m{a}_i^T m{\xi}^{(i)}\right) \geq 0$

Example/Definition 5

- White noise $\chi_{ij}(\mathbf{x}',\mathbf{x}) = \delta(\mathbf{x}' \mathbf{x})\delta_{ij}$
- Homogeneous (translation-invariant, stationary), isotropic (O(n)-invariant) and solenoidal correlation tensor:

$$\chi_{ij}(\mathbf{x}',\mathbf{x}) = \chi_{ij}(\mathbf{x}'-\mathbf{x}) = \chi_{ij}(\mathbf{r}) = f(r)\delta_{ij} + \frac{rf'(r)}{d-1}\left(\delta_{ij} - \frac{r_i r_j}{r^2}\right)$$

lacksquare Stationary diagonal correlation $\chi_{ij}(m{x}',m{x})=\chi_0\exp\Bigl(-rac{|m{x}'-m{x}|}{\lambda}\Bigr)\delta_{ij}$

Remark 6

We do not distinguish between correlation and covariance matrices here (they differ by a constant factor in the stationary case)

Example 7

Assuming we can generate independent $\mathcal{N}(0,1)$ samples, how do we generate vectors $\boldsymbol{\xi} \sim \mathcal{N}(0,C)$ for a given covariance $d \times d$ -matrix C?

Answer: C is positive semidefinite, allowing for a Cholesky or eigenvalue/-vectors decomposition $C = B^T B$, so if we sample ϕ with independent $\mathcal{N}(0,1)$ entries, we get

$$\langle B^T \phi (B^T \phi)^T \rangle = B^T \underbrace{\langle \phi \phi^T \rangle}_{=l_d} B = B^T B = C$$

Theorem 8 (Direct method)

Let

$$G = \left\{ \left(j_1 \frac{L_1}{N_1}, \cdots, j_d \frac{L_d}{N_d} \right) \; ; j_s \in \{0, 1, 2, \cdots, N_s - 1\} \right\}$$

be a uniformly spaced grid in $[0,L_1] \times \cdots \times [0,L_d]$. Decomposing the overall $(N_1 \cdots N_d d) \times (N_1 \cdots N_d d)$ grid covariance matrix $\Sigma = \Lambda^T \Lambda$ of the grid and sampling $\phi \sim \mathcal{N}(0,I_{N_1 \cdots N_d d})$ yields

$$\Lambda^T \phi \sim \mathcal{N}(0, \chi)$$

Remark 9

Decomposing this matrix becomes prohibitively expensive really fast!

Example 10

Grid covariance matrix for stationary χ on 2D 8 \times 8 grid:

Block Toeplitz matrix (BTM)

Example 10 (continued, circulant embedding)

Idea: Embed the BTM into a block *circulant* matrix (BCM) by extending the grid with periodic boundary conditions. Goal: Use properties of BCMs (eigenvalues may be found via FFT of the individual $d \times d$ blocks)

Remark 10 (circulant embedding)

- The extended covariance matrix need not be positive (semi)definite! ⇒ Grid may need to be very large
- No further details here, check the literature list on last slide if you are interested in circulant embedding methods

Theorem 11 (Spectral method, continuous FT)

Let $\boldsymbol{\xi}$ be a stationary GRF on \mathbb{R}^d with correlation matrix χ . Denote by \boldsymbol{W} the d-dimensional white noise $\langle \boldsymbol{W}(\boldsymbol{x}') \boldsymbol{W}(\boldsymbol{x})^T \rangle = I_d \ \delta(\boldsymbol{x}' - \boldsymbol{x})$, and by \mathscr{F} the Fourier transform (FT) on \mathbb{R}^d . Decompose the correlation in Fourier space as $\hat{\chi}(\boldsymbol{k}) := \mathscr{F}\chi(\boldsymbol{k}) = \Lambda(\boldsymbol{k})\Lambda^{\dagger}(\boldsymbol{k})$. Then, the following statements hold:

- 2 \hat{W} has covariance $\langle \hat{W}(\mathbf{k}')\hat{W}(\mathbf{k})^{\dagger} \rangle = (2\pi)^{d}I_{d} \delta(\mathbf{k}' \mathbf{k})$ and pseudo-covariance $\langle \hat{W}(\mathbf{k}')\hat{W}(\mathbf{k})^{T} \rangle = (2\pi)^{d}I_{d} \delta(\mathbf{k}' + \mathbf{k})$.
- 3 $\hat{\boldsymbol{\xi}}$ has covariance $\left\langle \hat{\boldsymbol{\xi}}(\boldsymbol{k}')\hat{\boldsymbol{\xi}}(\boldsymbol{k})^{\dagger}\right\rangle = (2\pi)^{d}\hat{\chi}(\boldsymbol{k})\;\delta(\boldsymbol{k}'-\boldsymbol{k})$ and pseudo-covariance $\left\langle \hat{\boldsymbol{\xi}}(\boldsymbol{k}')\hat{\boldsymbol{\xi}}(\boldsymbol{k})^{T}\right\rangle = (2\pi)^{d}\hat{\chi}(\boldsymbol{k})\;\delta(\boldsymbol{k}'+\boldsymbol{k}).$

Theory:

How to generate stationary GRFs

Proof: (1) Standard computation

$$\langle \boldsymbol{\psi}(\boldsymbol{x}') \boldsymbol{\psi}(\boldsymbol{x})^{\dagger} \rangle = \left\langle \frac{1}{(2\pi)^{d}} \int d^{d}k' e^{i\boldsymbol{k}'\cdot\boldsymbol{x}'} \Lambda(\boldsymbol{k}') \int d^{d}y' e^{-i\boldsymbol{k}'\cdot\boldsymbol{y}'} \boldsymbol{W}(\boldsymbol{y}') \right.$$

$$\cdot \frac{1}{(2\pi)^{d}} \int d^{d}y \boldsymbol{W}(\boldsymbol{y})^{T} e^{i\boldsymbol{k}\cdot\boldsymbol{y}} \int d^{d}k \Lambda(\boldsymbol{k})^{\dagger} e^{-i\boldsymbol{k}\cdot\boldsymbol{x}} \right\rangle$$

$$= \frac{1}{(2\pi)^{2d}} \int d^{d}k' \int d^{d}k \int d^{d}y' \int d^{d}y e^{i\boldsymbol{k}'\cdot(\boldsymbol{x}'-\boldsymbol{y}')+i\boldsymbol{k}\cdot(\boldsymbol{y}-\boldsymbol{x})}$$

$$\cdot \Lambda(\boldsymbol{k}') \underbrace{\langle \boldsymbol{W}(\boldsymbol{y}') \boldsymbol{W}(\boldsymbol{y})^{T} \rangle}_{=l_{d}\delta(\boldsymbol{y}'-\boldsymbol{y})} \Lambda(\boldsymbol{k})^{\dagger}$$

$$= \frac{1}{(2\pi)^{d}} \int d^{d}k' \int d^{d}k \underbrace{\frac{1}{(2\pi)^{d}} \int d^{d}y' e^{i(\boldsymbol{k}-\boldsymbol{k}')\cdot\boldsymbol{y}'}}_{=\delta(\boldsymbol{k}-\boldsymbol{k}')} e^{i\boldsymbol{k}'\cdot\boldsymbol{x}'-i\boldsymbol{k}\cdot\boldsymbol{x}} \Lambda(\boldsymbol{k}') \Lambda(\boldsymbol{k})^{\dagger}$$

$$= \frac{1}{(2\pi)^{d}} \int d^{d}k e^{i\boldsymbol{k}\cdot(\boldsymbol{x}'-\boldsymbol{x})} \underbrace{\Lambda(\boldsymbol{k}) \Lambda(\boldsymbol{k})^{\dagger}}_{=\hat{\gamma}(\boldsymbol{k})} = \chi(\boldsymbol{x}'-\boldsymbol{x})$$

Proof: (2) (and (3) analogously)

$$\left\langle \hat{\boldsymbol{W}}(\boldsymbol{k}')\hat{\boldsymbol{W}}(\boldsymbol{k})^{\dagger} \right\rangle = \int \mathrm{d}^{d}x' \int \mathrm{d}^{d}x e^{-\mathrm{i}\boldsymbol{k}'\cdot\boldsymbol{x}'} e^{\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{x}} \left\langle \boldsymbol{W}(\boldsymbol{x}')\boldsymbol{W}(\boldsymbol{x})^{T} \right\rangle = (2\pi)^{d}I_{d} \; \delta(\boldsymbol{k}'-\boldsymbol{k})$$

$$\mathbf{W}$$
 is real $\Longrightarrow \left\langle \hat{\mathbf{W}}(\mathbf{k}')\hat{\mathbf{W}}(\mathbf{k})^{T}\right\rangle = (2\pi)^{d}I_{d}\;\delta(\mathbf{k}'+\mathbf{k})$

Remark 12

Theorem 11 shows that the Fourier modes of a stationary GRF are "decoupled" (modulo symmetry, due to ξ being real). Thus, instead of decomposing a $(N_1 \cdots N_d d) \times (N_1 \cdots N_d d)$ matrix, we need to decompose (analytically, so far) a single $d \times d$ matrix.

Example 13

Homogeneous, isotropic, solenoidal correlation tensor

$$\chi_{ij}(\mathbf{x}',\mathbf{x}) = \chi_{ij}(\mathbf{x}'-\mathbf{x}) = \chi_{ij}(\mathbf{r}) = f(r)\delta_{ij} + \frac{rf'(r)}{d-1}\left(\delta_{ij} - \frac{r_i r_j}{r^2}\right)$$

with $f(r) := \chi_0 e^{-r^2/2\lambda^2}$ for d = 2:

$$\chi(\mathbf{r}) = \frac{\chi_0}{\lambda^2} e^{-\frac{r^2}{2\lambda^2}} \begin{pmatrix} \lambda^2 - y^2 & xy \\ xy & \lambda^2 - x^2 \end{pmatrix}$$

$$\Longrightarrow \hat{\chi}(\mathbf{k}) = 2\pi\chi_0 \lambda^4 e^{-\frac{1}{2}k^2\lambda^2} \begin{pmatrix} k_y^2 & -k_x k_y \\ -k_x k_y & k_x^2 \end{pmatrix}$$

Numerical implementation

What happens/changes if we want to apply the spectral method to generate GRF realizations on a grid in a bounded domain numerically, using the discrete Fourier transform (DFT)?

1 Sample discretized white noise:

$$\left\langle \mathbf{W}_{i}\mathbf{W}_{j}^{T}\right\rangle =\frac{1}{\Delta_{d}}\mathbf{I}_{d}\delta_{ij}$$
; $\Delta_{d}:=\frac{L_{1}\cdots L_{d}}{N_{1}\cdots N_{d}}$

- 2 Apply FFT to obtain discretized version of \hat{W} (alternatively: start in Fourier space, need to make sure though that symmetry is fulfilled!)
- 3 Multiply by $\Lambda(\mathbf{k})$ which was calculated analytically via continuous FT on \mathbb{R}^d (!)
- 4 Apply inverse DFT + normalization

 \Longrightarrow Conceptually, we start in Fourier space and impose the correlation $\hat{\chi}$ there! What kind of correlation do we obtain in real space with this method?

٠

Α

bla

R

bla

C

bla

Literature: Recommendations for further reading

- A. Yaglom, Correlation Theory of Stationary and Related Random Functions, Springer Series in Statistics, 1987.
- P. Abrahamsen, A Review of Gaussian Random Fields and Correlation Functions, Norsk Regnesentral/Norwegian Computing Center, 1997.
- G. Chan, A. T. A. Wood, Simulation of stationary Gaussian vector fields, Statistics and Computing, 1999.
- A. Lang, J. Potthoff, Fast simulation of Gaussian random fields, Monte Carlo Methods and Applications, 2011.
- J. Carron, M. Wolk, I. Szapudi, On fast generation of cosmological random fields, MNRAS, 2014.