姓名: 赵文亮 学号: 2016011452 班级: 自 64

卷积性质: $\int_{-\infty}^{\infty} \delta'(t) f(t) dt = -f'(0), f^{(i)}(t) = f_1^{(j)}(t) * f_2^{(i-j)}(t)$

两函数奇偶性相同则卷积为奇函数, 否则偶函数

求解响应:

零状态包括自由和强迫, 强迫包括暂态和稳态

完全	零输入	零状态	强迫	自由
	\mathscr{L}		待定系数	完全 – 强迫

解卷积: y = x * h, 则有

$$x[0] = y[0]/h[0], x[1] = y[1] - x[0]h[1]/h[0]$$

 $x[n] = y[n] - \sum_{m=0}^{n-1} x[m]h[n-m]/h[0]$

傅里叶级数: 能量条件: 能量有限; 波形条件: 信号绝对可积、极值点 个数有限、间断点有限

 $FT \to FS : \omega \to n\omega_1$, 除以 T

$$a_0 = \frac{1}{T_1} \int_{t_0}^{t_0 + T_1} f(t) dt, a_n = \frac{2}{T_1} \int_{t_0}^{t_0 + T_1} f(t) \cos(n\omega_1 t) dt$$

$$b_n = \frac{2}{T_1} \int_{t_0}^{t_0 + T_1} f(t) \sin(n\omega_1 t) dt, |F_n| = \frac{1}{2} \sqrt{a_n^2 + b_n^2}$$

$$F_n = \frac{a - jb_n}{2} a_n = F_n + F_{-n}, b_n = j(F_n - F_{-n})$$

$$c_n = |F_n| + |F_{-n}|, a_0 = c_0 = F_0$$

罗 奇偶虚实: 奇 → 变虚实

方波	$a_n = \frac{E\tau\omega_1}{\pi} \operatorname{Sa}(\frac{n\omega_1\tau}{2}), b_n = 0$
半波余弦	$a_n = \frac{2E}{(1-n^2)\pi} \cos(\frac{n\pi}{2})$
锯齿	$a_n = 0, b_n = (-1)^{n+1} \frac{E}{n\pi}$
全波整流余弦	$a_n = (-1)^n \frac{4E}{(4n^2 - 1)\pi}, b_n = 0$
三角脉冲	$a_n = \frac{4E}{(n\pi)^2} \sin^2(\frac{n\pi}{2}), b_n = 0$
脉冲序列	$F_n = \frac{1}{T_1} = a_n$

傅里叶变换:

f(t)	$F(\omega)$
$E[G(t,\tau)]$	$E\tau \operatorname{Sa}(\frac{\omega\tau}{2})$
$E(1 - \frac{2 t }{\tau})$	$\frac{E\tau}{2}\mathrm{Sa}^2(\frac{\omega\tau}{4})$
$\frac{1}{2}(1+\cos\frac{\omega t}{2})$	$\frac{E\tau}{2} \frac{\operatorname{Sa}(\frac{\omega\tau}{2})}{1 - (\frac{\omega\tau}{2\pi})^2}$
$Ee^{-a t }$	$\frac{2aE}{a^2+\omega^2}$
奇对称指数函数	$\frac{-2\mathrm{j}\omega}{a^2+\omega^2}$
$-\operatorname{sgn}(t)$	$\frac{2}{j\omega}$
u(t)	$\frac{1}{\mathrm{j}\omega} + \pi\delta(\omega)$
$\sin(\omega_0 t)$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$
$\cos(\omega_0 t)$	$\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]$

傅里叶变换性质:

性质	时域 $f(t)$	频域 $F(\omega)$
尺度	f(at)	$\frac{1}{ a }F(\frac{\omega}{a})$
时移	$f(t-t_0)$	$F(\omega)e^{-\mathrm{j}\omega t_0}$
	$f(t)e^{\mathrm{j}\omega_0t}$	$F(\omega-\omega_0)$
频移	$f(t)\cos(\omega_0 t)$	$\frac{1}{2}(F(\omega+\omega_0)+F(\omega-\omega_0))$
	$f(t)\sin(\omega_0 t)$	$\frac{1}{2}(F(\omega+\omega_0)-F(\omega-\omega_0))$
积分	$\int_{-\infty}^{t} f(\tau) \mathrm{d}\tau$	$\frac{1}{\mathrm{j}\omega}F(\omega) + \pi F(0)\delta(\omega)$
频域微分	$-\mathrm{j}tf(t)$	$F'(\omega)$
时域抽样	$\sum_{n=-\infty}^{\infty} f(t)\delta(t-nT_s)$	$\frac{1}{T_s} \sum_{n=-\infty}^{\infty} F(\omega - n\omega_s)$
频域抽样	$\frac{1}{\omega_s} \sum_{n=-\infty}^{\infty} f(t - nT_s)$	$\sum_{n=-\infty}^{\infty} F(\omega)\delta(\omega - n\omega_s)$
相关	$R_{12}(au)$	$F_1(\omega)F_2^*(\omega)$
$\mathscr{F}(f(-t))$	$F(-\omega), \mathscr{F}(f^*(t)) = F^*(-\omega)$	$-\omega$), $\mathscr{F}(f^*(-t)) = F^*(\omega)$

拉普拉斯变换:

f(t)(t>0)	F(s)
t^n	$\frac{n!}{s^{n+1}}$
$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$
$\cos(\omega t)$	$\frac{s}{s^2+\omega^2}$
$t\sin(\omega t)$	$\frac{2\omega s}{(s^2 + \omega^2)^2}$
$t\cos(\omega t)$	$\frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}$

拉氏变换性质:

叶拉沙八	$\mathscr{L}[f'(t)] = sF(s) - f(0)$
时域微分	$\mathscr{L}[f^{(n)}(t)] = s^n F(s) - \sum_{r=0}^{n-1} s^{n-r-1} f^{(r)}(0)$
时域积分	$\mathscr{L}\left[\int_{-\infty}^{\tau} f(\tau) d\tau\right] = \frac{F(s)}{s} + \frac{f^{(-1)(0)}}{s}$
相乘	$\frac{1}{2\pi i} \int_{\sigma-j\infty}^{\sigma+j\infty} F_1(p) F_2(s-p) dp = \mathcal{L}[f_1(t) f_2(t)]$
频域积分	$\mathscr{L}\left[\frac{f(t)}{t}\right] = \int_{s}^{\infty} F(s) \mathrm{d}s$
初/终值定理	$f(0^+) = \lim_{s \to \infty} sF(s), f(\infty) = \lim_{s \to 0} sF(s)$

周期延拓除以 $1 - e^{-sT}$

逆变换:

k 重极点: $F_1(s) = (s-p_1)^k F(s)$, $K_{1i} = \frac{1}{(i-1)!} \cdot \frac{d^{i-1}}{ds^{i-1}} F_1(s)|_{s=p_1}$ 含有共轭虚根: 利用留数求出单根的项,再待定系数拆解,利用 sin 和 cos。

z 变换

z 受 快:	
$\frac{z}{x(n)}$ 要换:	X(z)
n	$\frac{z}{(z-1)^2}$
n^2	$\frac{z(z+1)}{(z-1)^3}$
na^n	$\frac{az}{(z-a)^2}$
n^2a^n	$\frac{az(z+a)}{(z-a)^3}$ z^2
$(n+1)a^n$	$\overline{(z-a)^2}$
$\frac{(n+1)\cdots(n+m)}{m!}a^n$	$\frac{z^{m+1}}{(z-a)^{m+1}}$
$\sin(n\omega_0)$	$\frac{z\sin\omega_0}{z^2 - 2z\cos\omega_0 + 1}$
$\cos(n\omega_0)$	$\frac{z(z-\cos\omega_0)}{z^2-2z\cos\omega_0+1}$

 $a^n u[n], -a^n u[-n-1]$ 的 z 变换表达式相同而收敛域不同 $x(3n) \to \frac{1}{3}(X(z^{1/3}) + X(\omega z^{1/3}) + X(\omega^2 z^{1/3}))$ 此处 ω 为三次单位根

DTFT: 定义在单位圆上的 ZT

$$\begin{split} X(e^{j\omega}) &= \sum_{n=-\infty}^{\infty} x[n] e^{-\mathrm{j}n\omega}, x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{\mathrm{j}\omega}) \,\mathrm{d}\omega \\ x[n] \cdot h[n] &= \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{\mathrm{j}\theta}) H(e^{\mathrm{j}(\omega-\theta)}) \,\mathrm{d}\theta = X(e^{\mathrm{j}\omega}) \bigotimes H(e^{\mathrm{j}\omega}) \end{split}$$

 $(-1)^n x(n) \to X[k \pm \frac{N}{2}]$ $x(n) + x(n + \frac{N}{2}) \to X[2k]$

 $\mathcal{L} \to \mathcal{F}:$ $F(s) = F_a(s) + \sum_{n=1}^{N} \frac{K_n}{s - j\omega_n}$ $\mathcal{F}(f(t)) = F(s)|_{s = j\omega} + \sum_{n=1}^{N} K_n \pi \delta(\omega - \omega_n)$

$$F(s) = F_a(s) + \frac{K_0}{(s - j\omega_0)^k}$$

$$\mathscr{F}[f(t)] = F(s)|_{s = j\omega} + \frac{K_0\pi_j^{k-1}}{(k-1)!} \delta^{(k-1)}(\omega - \omega_0)$$

总结 我在这门课中学会了许多分析信号与系统的思想和方法,尤其是时域与变换域的联合分析,往往可以将复杂的问题研究得更为透彻。卓老师用自己开发的软件授课,丰富的功能极大地提高了我们上课的积极性。我在另一门课《数学模型》中充分利用 FFT 进行信号的处理与建模,得到了很好的效果。

建议 可以在课上通过 MATLAB 进行简单的演示。例如通过 FFT 函数来演示栅栏现象等。此外,相信很多同学和我一样对 Teasoft 的原理和使用十分感兴趣,希望卓老师能够有机会简单介绍一下其功能的实现方法。

z 变换性质

~ 文铁压坝		
位移	x[n-m]	$z^{-m}[X(z) + \sum_{k=-m}^{-1} x[k]z^{-k}]$
指数加权	$a^n x[n]$	X(z/a)
反褶	x[-n]	X(1/z)
线性加权	nx[n]	$-z\frac{\mathrm{d}}{\mathrm{d}z}X(z)$
共轭	$x^*[n]$	$X^*(z)$
初值定理	x[0]	$\lim_{z\to\infty}(z-1)X(z)$
终值定理	$\lim_{n\to\infty} x[n]$	$\lim_{z\to 1}(z-1)X(z)$
变换域卷积定理	x[n]y[n]	$\frac{1}{2\pi i} \int_C X(v) Y(\frac{z}{v}) v^{-1} dv$

傅里叶变换补充:

tu(t)	$\int j\pi\delta'(\omega)-rac{1}{\omega^2}$
Sa(Wt)	$\frac{\pi}{W}[u(\omega+W)-u(\omega-W)]$
$\sin(\omega_0 t)u(t)$	$\left[\frac{\mathrm{j}\pi}{2}[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]-\frac{\omega_0}{\omega^2-\omega_0}\right]$
$\cos(\omega_0 t)u(t)$	$\frac{\pi}{2}[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]-\mathrm{j}\frac{\omega}{\omega^2-\omega_0^2}$

z 变换补充:

$x[n] = \frac{1}{2\pi i} \oint_C$	$X(z)z^{n-1}\mathrm{d}z$
$\beta^n \sin(n\omega_0)$	$\frac{\beta z \sin(\omega_0)}{z^2 - 2\beta z \cos \omega_0 + \beta^2}$
$\beta^n \cos(n\omega_0)$	$\frac{z(z-\beta\cos\omega_0)}{z^2-2\beta z\cos\omega_0+\beta^2}$
$\sin(n\omega_0 + \theta)$	$\frac{z[z\cos\theta - \cos(\omega_0 - \theta)]}{z^2 - 2z\cos\omega_0 + 1}$
$\cos(n\omega_0 + \theta)$	$\frac{z[z\sin\theta + \sin(\omega_0 - \theta)]}{z^2 - 2z\cos\cos\omega_0 + 1}$
$na^n\sin(n\omega_0)$	$\frac{z(z-a)(z+a)a\sin(\omega)}{(z^2-2az\cos\omega_0+a^2)^2}$
$na^n\cos(n\omega_0)$	$\frac{az[z^{2}\cos\omega_{0} - 2az + a^{2}\cos\omega_{0}]}{(z^{2} - 2az\cos\omega_{0} + a^{2})^{2}}$
$\sinh(n\omega_0)$	$\frac{z \sinh \omega_0}{z^2 - 2z \cosh \omega_0 + 1}$
$\cosh(n\omega_0)$	$\frac{z(z-\cosh\omega_0)}{z^2-2z\cosh\omega_0+1}$
$\frac{a^n}{n!}$	$e^{\frac{a}{z}}$
$\frac{1}{(2n)!}$	$\cosh z^{-\frac{1}{2}}$
$\frac{(\ln a)^n}{n!}$	$a^{1/z}$
$\frac{1}{n}(n=1,2,\ldots)$	$\ln(\frac{z}{z-1})$
$\frac{n(n-1)}{2!}$	$\frac{z}{(z-1)^3}$
$\frac{n(n-1)\cdots(n-m)}{m!}$	$\frac{z}{(z-1)^{m+1}}$

公式法: $X(z) = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + j\infty} \frac{X(s) ds}{1 - z^{-1} e^{sT_s}}$

冲击响应不变法

$x(t) = \sum_{i=1}^{N} A_i e^{p_i t}$	$X(s) = \sum_{i=1}^{N} \frac{A_i}{s - p_i}$
$x[nT] = \sum_{i=1}^{N} A_i e^{p_i nT} u[nT]$	$X(z) = \sum_{i=1}^{N} \frac{A_i}{1 - e^{p_i T} z^{-1}}$

对于因果信号,需要在 t=0 补足 $\frac{A_i}{2}$ 。

双线性变换法

$$z = \frac{1+sT_s/2}{1-sT_s/2}, s = \frac{2}{T_s} \left(\frac{1-z^{-1}}{1+z^{-1}}\right)$$

LT、ZT 初值定理条件: 真分式

LT 终值定理条件: 极点在左半平面或在虚轴上仅在 s=0 处有一级极点。

ZT 终值定理条件: 序列收敛 (X(z) 极点位于单位圆内或者在 z=1 处有且只有一级极点)

 $ZT \xrightarrow{z=e^{\mathrm{j}\omega}} DTFT \xrightarrow{\text{频率离散}} DTFS \xrightarrow{\text{借用公式}} DFT \xrightarrow{\text{快速算法}} FFT$

稳定性的 Routh 判据

对于一阶、二阶、三阶特征方程: $a_3s^3 + a_2s^2 + a_1s + a_0 = 0$, 稳定性结论: 对于一阶二阶,所有系数均为正; 三阶补充 $a_1a_2 > a_0a_3$ 条件。

调制与解调

正弦调制 類率混叠 复指数载波调制 节省能量 单边带调制

单边带-滤波法/移相法: 经余弦调制的原信号与经正弦调制的希尔伯特变换后的信号相加减。希尔伯特变换使得信号相位滞后 $\pi/2$

采样与重建 f(t) 被周期矩形脉冲 p(t) 采样得到 $f_s(t)$, 分两种情况:

平顶采样: $F_s(\omega) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} F(\omega - n\omega_s) P(\omega)$

自然采样: $F_s(\omega) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} F(\omega - n\omega_s) P(n\omega_s)$

频域采样定理: 时间受限, $T_s \geq 2T_m$ 或 $\omega_s < \omega_m/2$

帯通抽样定理: 频带限制在 $ω_1 \sim ω_2$, 则 $ω_s = \frac{2ω_2}{m}$, 其中 $m = \lfloor \frac{ω_2}{ω_2 - ω_1} \rfloor$ 欠采样产生频率混叠,虚假的低频分量,采样前抗混叠滤波器滤波。

信号恢复: 零阶保持/一阶保持级联补偿滤波器。

计算次数

71 25 0124				
	复数乘法	复数加法	实数乘法	实数加法
DFT	N^2	N(N-1)	$4N^2$	$4N^2 - 2N$
FFT	$\frac{N}{2}\log_2 N$	$N \log_2 N$	$2N\log_2 N$	$3N\log_2 N$
普通卷积	复数乘法:	N_1N_2		
快速卷积	复数乘法:	$\frac{3N'}{2}\log(N') + 1$	$N', N' = N_1 +$	$N_2 - 1$

序列相差很多时: 重叠相加法—1. 长序列分成若干小段, 每段长度接近于短段长度; 2. 进行快速卷积后将结果累加起来。

全通系统:零极点关于虚轴对称分布。

非最小相位系统可以表示成最小相位系统与全通系统的级联。

无失真传输:幅频特性为常量,相频为线性函数

匹配滤波器: 已知波形, h(t) = s(T - t)。自相关越窄越好。

IIR: 递归, 非线性相位, 直接结构 II 型。级联、并联。

FIR: 非递归,线性相位 (*h*(*n*) 奇对称或偶对称)。窗函数:截止频率、理想低通、阻带衰减选窗、过渡带宽求长、与理想低通的平移相乘。

系统综合与可实现:

佩利—维纳准则: $\int_{-\infty}^{\infty} |H(j\omega)|^2 d\omega < \infty$, $\int_{-\infty}^{\infty} \frac{|\ln|H(j\omega)||}{1+\omega^2} d\omega < \infty$ 因果信号实部虚部为 Hilbert 变换对:

$$R(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{X(\lambda)}{\omega - \lambda} d\lambda, \ X(\omega) = -\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{R(\lambda)}{\omega - \lambda} d\lambda$$

一些概念:

Most rewarding, exciting, and useful.

反馈系统输入输出表达式: $y(t) = \frac{A}{1+AE}x(t)$ 。

认为积分系统可逆,微分只有给定 $f(-\infty) = 0$ 才可逆。

齐次性与叠加性相互独立。

微分是因果; 平滑、滤波、预测(只有滤波是因果的)。

Sa(x) 周期延拓变成升余弦(从频谱考虑)。

1807年傅里叶提出论文, 1822年才发表了研究成果。

k 阶导不连续,则随 $\frac{1}{\omega^{k+1}}$ 衰减

脉冲波形传输问题:全占空脉冲传输(减少频谱宽度)、四电平传输(增加码率)、时域信号设计(减少高频能量)、单边带调制(减少信道低频限制的影响)

低通滤波器:通带容差、阻带衰减、过渡带宽、截止频率

DFT 误差及解决:

DEI 庆左及胜认·			
ì	吴差	原因	解决方法
步	须率泄漏	截取信号	增加截断信号长度 采用平滑窗口截取
ħ	册栏现象	周期信号频谱离散	补零增加频谱计算数量
步	须率混叠	时间离散	增加采样频率 采用抗混叠滤波器
娄	数值变化	时域采样	修正,乘以 T_s

码位倒读: 04261573。输入倒读顺序,输出自然顺序。即位运算。