

Università degli Studi dell'Aquila

Prima Prova Parziale di Algoritmi e Strutture Dati con Laboratorio

Martedì 7 Novembre 2017 – Prof. Guido Proietti (Modulo di Teoria)

Scrivi i tuoi dati ⇒	Cognome:	Nome:	Matricola:	PUNTI
ESERCIZIO 1	Risposte Esatte:	Risposte Omesse:	Risposte Errate:	

ESERCIZIO 1: Domande a risposta multipla

Premessa: Questa parte è costituita da 10 domande a risposta multipla. Per ciascuna domanda vengono fornite 4 risposte, di cui soltanto una è corretta. Per rispondere utilizzare la griglia annessa, barrando con una \times la casella corrispondente alla risposta prescelta. È consentito omettere la risposta. In caso di errore, contornare con un cerchietto la \times erroneamente apposta (ovvero, in questo modo \otimes) e rifare la \times sulla nuova risposta prescelta. Se una domanda presenta più di una risposta, verrà considerata omessa. Per tutti i quesiti verrà attribuito un identico punteggio, e cioè: risposta esatta 3 punti, risposta omessa 0 punti, risposta sbagliata -1 punto. Il voto relativo a questa parte è ottenuto sommando i punti ottenuti e normalizzando su base 30. Se tale somma è negativa, verrà assegnato 0.

- 1. La dimensione dell'input degli algoritmi studiati per calcolare l'n-esimo numero della sequenza di Fibonacci è $k = \Theta(\log n)$. Qual è la complessità temporale in funzione di k dell'algoritmo ricorsivo basato sulla definizione della sequenza di Fibonacci (Fibonacci2)?
 - a) $\Theta(1)$ b) $\Theta(k \log k)$ c) $\Theta(\phi^k)$ *d) $\Theta(\phi^{2^k})$
- 2. Quale delle seguenti relazioni relative alla notazione asintotica è falsa:
 - *a) $O(f(n)) \subseteq o(f(n))$ b) $\omega(f(n)) \subseteq \Omega(f(n))$ c) $o(f(n)) \cap \omega(f(n)) = \emptyset$ d) $O(f(n)) \cap \Omega(f(n)) = \Theta(f(n))$
- 3. Si consideri l'algoritmo di ricerca binaria di un elemento in un insieme ordinato di n elementi. Quale delle seguenti opzioni descrive in modo preciso i costi nel caso migliore, peggiore e medio?
 - *a) $T_{\text{best}}(n) = O(1), T_{\text{worst}}(n) = \Theta(\log n), T_{\text{avg}}(n) = \Theta(\log n)$ b) $T_{\text{best}}(n) = O(1), T_{\text{worst}}(n) = \Theta(\log n), T_{\text{avg}}(n) = O(\log n)$ c) $T_{\text{best}}(n) = O(\log n), T_{\text{worst}}(n) = \Theta(\log n), T_{\text{avg}}(n) = \Theta(\log n)$ d) $T_{\text{best}}(n) = O(1), T_{\text{worst}}(n) = O(n), T_{\text{avg}}(n) = \Theta(\log n)$
- 4. Quale tra i seguenti rappresenta il caso 3 del Teorema Master?
 - a) $T(n) = \Theta(f(n))$ se $f(n) = \Omega(n^{\log_b a \epsilon})$ per qualche $\epsilon > 0$, e $f(n/b) \le cf(n)$ per qualche c < 1 ed n sufficientemente grande;
 - b) $T(n) = \Theta(f(n))$ se $f(n) = \Omega(n^{\log_b a + \epsilon})$ per qualche $\epsilon > 0$, e $f(n/b) \ge cf(n)$ per qualche c < 1 ed n sufficientemente grande;
 - *c) $T(n) = \Theta(f(n))$ se $f(n) = \Omega(n^{\log_b a + \epsilon})$ per qualche $\epsilon > 0$, e $f(n/b) \le cf(n)$ per qualche c < 1 ed n sufficientemente grande;
 - d) $T(n) = \Theta(n^{\log_b a} \log n)$ se $f(n) = \Omega(n^{\log_b a + \epsilon})$ per qualche $\epsilon > 0$, e $f(n/b) \le cf(n)$ per qualche c < 1 ed n sufficientemente grande.
- 5. A quale delle seguenti classi <u>non</u> appartiene la complessità dell'algoritmo MERGE SORT per istanze di dimensione n:

 *a) $\omega(n \log n)$ b) $\omega(n)$ c) $O(n \log n)$ d) $\Theta(n \log n)$
- 6. Siano f(n) e g(n) i costi dell'algoritmo INSERTION SORT 2 e HEAPSORT nel caso peggiore, rispettivamente. Quale delle seguenti relazioni asintotiche è vera:
 - a) f(n) = o(g(n)) b) $f(n) = \Theta(g(n))$ *c) $f(n) = \omega(g(n))$ d) f(n) = O(g(n))
- 7. Nell'algoritmo QUICKSORT, il numero atteso di confronti C(n) tra elementi è:
 - a) $\sum_{a=0}^{n-1} [n-1+C(a)+C(n-a-1)]$ b) $\frac{1}{n} [n-1+C(a)+C(n-a-1)]$
 - c) $\sum_{a=0}^{n-1} \frac{1}{n} [C(a) + C(n-a-1)]$ *d) $\sum_{a=0}^{n-1} \frac{1}{n} [n-1 + C(a) + C(n-a-1)]$
- 8. La procedura Heapify per la costruzione di un max-heap applicata ad A = [5, 7, 6, 8, 9] restituisce:
 - a) A = [9, 8, 7, 5, 6] *b) A = [9, 8, 6, 5, 7] c) A = [9, 7, 8, 6, 5] d) A = [9, 8, 5, 6, 7]
- 9. Quali sono, rispettivamente, i costi per implementare le operazioni di IncreaseKey, DecreaseKey, e Merge in una coda di priorità di n elementi implementata utilizzando un array ordinato?
 - a) O(n), O(n), O(n) b) O(1), O(1), O(n) *c) $O(n), O(n), \Theta(n)$ d) $O(n), \Theta(n), \Theta(n)$
- 10. Sia H_1 un heap binomiale costituito dagli alberi binomiali $\{B_0, B_1, B_5\}$, e sia H_2 un heap binomiale costituito dagli alberi binomiali $\{B_2, B_3, B_5\}$. Da quali alberi binomiali è formato l'heap binomiale ottenuto dalla fusione di H_1 e H_2 ?

 *a) $\{B_0, B_1, B_2, B_3, B_6\}$ b) $\{B_0, B_1, B_2, B_3, B_4, B_5\}$ c) $\{B_0, B_1, B_2, B_3, B_5\}$ d) $\{B_0, B_1, B_2, B_3, B_5, B_5\}$

Griglia Risposte

	Domanda									
Risposta	1	2	3	4	5	6	7	8	9	10
a										
b										
c										
d										