

COURSE OVERVIEW

Session	Торіс	Hilton / Platt
1	The Changing Role of Managerial Accounting	Chapter 1
	Basic Cost Management Concepts	Chapter 2
2	Product / Job Costing	Chapter 3
	Transfer Pricing	Chapter 13
3	Cost-Volume-Profit Analysis	Chapter 7
	Inventory Costing (Absorption vs. Variable Costing)	Chapter 8
4	Decision-Making: Relevant Costs and Benefits	Chapter 14
	Responsibility Center, Performance Measures & Controls	(Chapter 12/13)
5	Activity-Based Costing	Chapter 5
6	Activity Analysis, Cost Behavior, and Cost Estimation	Chapter 6
	Budgets – Financial Planning and Analysis	Chapter 9
7	Standard Costing and Direct Cost Variances	Chapter 10
8	Signaling Effects of Incentives	
	Sustainability and Controlling	

CHAPTER 3 PRODUCT COSTING

OUTLINE

PRODUCT & SERVICE COSTING

PRODUCT COSTING BY JOB ORDER / BATCH COSTING

APPLIED OVERHEAD

PRODUCT & SERVICE COSTING

 A product costing system accumulates the costs incurred in a production process and assigns those costs to the organization's final products

PRODUCT COSTING IN NONMANUFACTURING COMPANIES

- Merchandising companies must know transportation costs in/out
- Professional service firms must know their cost of delivering the services
- Transportation firms must know their full costs to move products, etc.

PRODUCT COSTING SYSTEMS: OVERVIEW

JOB-ORDER COSTING

- Products made individually (or in small batches)
- Each product/batch is clearly distinguishable
- Examples:
 - Manufacturing Custom homebuilding
 - Services Audits, airline flight, research projects

PROCESS COSTING (NOT COVERED)

Employed for mass production of like units (chemical or gasoline production, microchips)

PRODUCT COSTING SYSTEMS

JOB-ORDER COSTING

- Used for production of large, unique, high-cost items.
- Built to order rather than mass produced.
- Many costs can be directly traced to each job.
- Each distinct batch of production is called a job or job order.

TWO TYPES:

- Job-shop operations Products manufactured in very low volumes or one at a time (e.g., film production, aircraft manufacture, custom house).
- Batch-production operations Multiple products in batches of relatively small quantity (e.g., furniture manufacture, pleasure boat production).

PRODUCT COSTING SYSTEMS

PROCESS COSTING

- Used for production of small, identical, low cost items.
- Mass produced in automated continuous production process.
- Costs cannot be directly traced to each unit of product.
- Production costs are accumulated for a large number of units of output and then averaged over all of the units.
- Typical process cost applications: Petrochemical refinery, Paint manufacturer, Beer brewery
- Process Costing will not be covered in class!

E3-23: JOB ORDER OR PROCESS COSTING SYSTEM?

- 1. Manufacturing of household cleaning solutions
- 2. Manufacturing of custom hot tubs and spas
- 3. Architectural firm
- 4. Manufacturing of ceramic tiles
- 5. Producer of yogurt
- 6. Manufacturing of custom backyard tool sheds
- 7. Manufacturing of paper clips
- 8. Engineering consulting firm
- 9. Manufacturing of balloons
- 10. Manufacturing of custom sailboats

JOB COSTING

Service Sector	Merchandising Sector	Manufacturing Sector
 Audit engagements done by Price Waterhouse Coopers Consulting engagements done by McKinsey & Co. Advertising-agency campaigns run by Ogilvy and Mather Individual legal cases argued by Hale & Dorr Computer-repair jobs done by CompUSA Movies produced by Universal Studios 	 L. L. Bean sending individual items by mail order Special promotion of new products by Wal-Mart Walmart	Assembly of individual aircrafts at Boeing Construction of ships at Litton Industries BOEING
McKinsey&Company		

JOB COST RECORD

- A Job Cost Record is used to accumulate the actual direct materials, actual direct labor, and applied manufacturing overhead costs for each job.
- Source Documents
 - Material requisition forms: transfer direct materials
 - Time records: gather the amount of labor
 - Applied (i.e., estimated) manufacturing overhead: a heterogeneous pool of indirect production costs, such as indirect material, indirect labor, utility costs, and depreciation
- Often a source for customer billing when cost plus is a component of pricing

JOB COST RECORD

A Materials requisition form authorizes the use of materials on a job

Time records (time ticket) help accumulate direct labor costs

JOB COST RECORD

OVERHEAD ALLOCATION: STEPS

Purpose of predetermined overhead rates: quicker estimation of total job costs

- 1. Setting a predetermined overhead rate (standard cost)
 - Done at the beginning of the period
- 2. Total budgeted (estimated) overhead divided by estimated cost-driver units
 - Allocate overheads
 - Actual number of cost-driver units times estimated overhead rate

APPLIED MANUFACTURING OVERHEAD

1. Predetermined Overhead Rate (POHR)

2. Allocating/Applying overhead

Overhead applied = POHR × Actual activity

Based on estimates
 (determined before the period begins)

Based on actual, such as direct labor hours (incurred during the period)

OVERHEAD APPLICATION: EXAMPLE

- Budgeted manufacturing OH costs: \$ 360,000
- Budgeted Cost Driver: 40,000 machine hours
- Actual Machine hours: 3,200

What is POHR?

How much OH do we apply?

OVERHEAD APPLICATION: EXAMPLE

- Budgeted manufacturing OH costs: \$ 360,000
- Budgeted Cost Driver: 40,000 machine hours
- Actual Machine hours: 3,200

POHR: \$ 360,000/40,000 = \$ 9 per machine hour

OH Applied: 3,200 * \$ 9 = \$28,800

JOB-ORDER SYSTEM COST FLOWS

JOB-ORDER SYSTEM COST FLOWS

ACTUAL MANUFACTURING OVERHEAD

At the end of the period, all ACTUAL overhead costs have been incurred.

ACTUAL VS. APPLIED MANUFACTURING OVERHEAD

> At the end of the period: compare applied overhead with actual overhead

Mfg. Overhead

Indirect Material

Indirect Labor Overhead Applied to Work in

Process

Actual OH > applied OH: underapplied Actual OH < applied OH: overapplied

OVERHEAD APPLICATION: EXAMPLE

Applied Overhead: \$ 28,800

Actual Overhead: \$ 29,050

Actual OH exceeds applied OH by \$250. This difference is called underapplied overhead.

ACTUAL VS. APPLIED MANUFACTURING OVERHEAD

WHAT DO WE DO ABOUT UNDERAPPLIED OVERHEAD?

Recall: Actual OH exceed applied OH by \$ 250

Two Alternatives:

ACTUAL VS. APPLIED MANUFACTURING OVERHEAD

Closed to COGS example (OH underapplied by \$ 250)

ACTUAL VS. APPLIED MANUFACTURING OVERHEAD

ACCOUNTING ENTRIES: CLOSED TO COGS

Overapplied

•	Dr.	Manufacturing overhead	250
---	-----	------------------------	-----

• Cr. COGS 250

Underapplied

• Dr. COGS	250
------------	-----

• Cr. Manufacturing overhead 250

ACTUAL VS. APPLIED MANUFACTURING OVERHEAD

Schedule of Cost of Goods Sold

Schedule of Cost of Goods Sold	
Finished goods inventory, beginning	\$xxx
Add: Cost of goods manufactured*	XXX
Cost of goods available for sale	\$xxx
Deduct: Finished goods inventory, ending	XXX
Cost of goods sold	\$xxx
Add: Underapplied overhead	
or Deduct: Overapplied overhead	XXX
Cost of goods sold (adjusted)	<u>\$xxx</u>
* From Cost of Goods Manufactured Schedule	

OVER- / UNDERAPPLIED OVERHEAD: SUMMARY

If manufacturing overhead is	Alternative 1: Allocation	Alternative 2: Close to Cost of Goods Sold
UNDERAPPLIED	INCREASE	INCREASE
(Applied overhead is smaller than actual overhead)	Work in ProcessFinished GoodsCost of Goods Sold	Cost of Goods Sold
OVERAPPLIED	DECREASE	DECREASE
(Applied overhead is larger than actual overhead)	Work in ProcessFinished GoodsCost of Goods Sold	Cost of Goods Sold

P3-54

Biloxi Billiards Company uses normal costing. Manufacturing OH is applied based on machine hours.

Total budgeted manufacturing overhead: \$306,000

Total budgeted machine hours: 51,000 h

During January, the firm began production jobs.

M07: 1,200 machine hours T28: 3,000 machine hours

B19: 1,800 machine hours

- There is no beginning inventory for WIP. Actual manufacturing OH incurred in January: \$38,000.
 - 1. POHR?

- 3. Over- or underapplied?
- OH applied in January? 4. Close into COGS

E3-33

Aquarius Hotel Supply Co. for year ended:

•	Budgeted sales revenue	\$945,000
•	Budgeted mfg. O/H	\$650,000
•	Budgeted mach. Hours	20,000
•	Budgeted DL hours	25,000
•	Budgeted DL rate per hour	\$13
•	Actual mfg. O/H	\$690,000
•	Actual machine hours	22,000
•	Actual DL hours	26,000
•	Actual DL rate per hour	\$14

\$ 350,000 supervisor salaries

\$ 200,000 machine depreciation

\$ 100,000 factory cleaning

- 1. Compute POHR using machine hours, DL hours, DL dollars.
- 2. Compute over/underapplied OH for each cost driver.
- 3. Generally, what is the cause of over-/underapplied overhead?

E3-35

The following information pertains to Paramus Metal Works for the year just ended.

Budgeted direct-labor cost: 77,000 hours (practical capacity) at \$17 per hour

Actual direct-labor cost: 79,000 hours at \$18 per hour

Budgeted manufacturing overhead: \$993,300 Budgeted selling and administrative expenses: \$417,000

Actual manufacturing overhead:

Depreciation	\$225,000
Property taxes	19,000
Indirect labor	79,000
Supervisory salaries	210,000
Utilities	58,000
Insurance	32,000
Rental of space	295,000
Indirect material (see data below	79,000

Indirect material:

Beginning inventory, January 1 46,000 Purchases during the year 95,000 Ending inventory, December 31 62,000

E3-35

- 1. Compute the firm's predetermined overhead rate, which is based on direct-labor hours.
- **2.** Calculate the overapplied or underapplied overhead for the year.

DETERMINING THE ALLOCATION BASE

PLANT-WIDE OVERHEAD RATE

 Direct labor (either hours or dollars) or machine hours generally used as the overhead allocation base

DEPARTMENTAL OVERHEAD RATES

- Different production departments have different cost drivers labor hours, machine hours, units produced, etc.
- Key is what makes the most sense for that department (see "activity-based costing")
- Two-stage allocation process pools and products

TWO-STAGE ALLOCATION PROCESS: OVERHEAD

Stage One: Costs assigned to pools

Cost pools

Stage Two: Costs applied to products

MC-QUESTIONS – EXAMPLE QUESTION

Aquarius Hotel Supply Co. for year ended:

Budgeted mfg. O/H

\$650,000

Budgeted mach. Hours

20,000

Actual mfg. O/H

\$690,000

Actual machine hours

22,000

What is POHR based on machine hours? (1 point)

A) 32,5

B) 29,55

C) 31,36

D) 34,5

CHAPTER 13 TRANSFER PRICING

GENERAL COMMENT

- Transfer price: a price charged between divisions
- In large corporations, divisions of the organization transfer goods and services to each other.

What is the effect of a transfer price, assuming the transfer takes place, on divisional profit and company profit?

FOUR CRITERIA FOR A GOOD SOLUTION TO TRANSFER-PRICING PROBLEMS

- 1. Motivates managers to do what is best for the firm (Goal congruence)
 - 2. Motivate units to save costs and to use resources efficiently
 - Help top managers to evaluate the performance of individual subunits

4. Preserve autonomy of subunits (Decentralisation)

PROFIT EFFECT

A transfer price affects profits of both the selling and the buying divisions.

PROFIT EFFECT

Transfer price affects profits of both the selling and the buying divisions

PROFIT EFFECT

• There is no effect on the overall company profit, as the lower profit in one division is offset by a higher profit in the other division.

IMPORTANCE OF TRANSFER PRICING

- Why is transfer pricing important given that it does not directly impact company profits?
- The transfer price affects whether a transfer takes place.
- The transfer price affects the income of the divisions and therefore affects ...
 - the performance evaluations of both managers
 - the operating decisions of both managers
- If division managers maximize profit, they may not transact at some prices.

PERFECT TRANSFER PRICES

- A perfect transfer price allows each division to make decisions that maximize divisional profit and company profit.
- A perfect transfer price is the opportunity cost of a unit to the selling division.

Transfer price

Additional outlay cost per unit per unit to the selling division b/c of the transfer

PRICE DEPENDENCE ON CAPACITY RESTRICTIONS

TRANSFER PRICING UNDER TWO SCENARIOS

- No excess capacity
- Excess capacity

SCENARIO I: NO EXCESS CAPACITY

The Battery Division produces standard 12-volt batteries.

Production capacity 300,000 units

\$40 (to outsiders) Selling price per battery

Variable costs per battery

Fixed costs per battery \$7 (at 300,000 units)

The Auto Division can use 100,000 of these batteries in its X-7 model.

\$18

What should the supplying division charge?

SCENARIO I: NO EXCESS CAPACITY

SCENARIO I: NO EXCESS CAPACITY

SCENARIO I: NO EXCESS CAPACITY

GENERAL RULE

- When the selling division is operating at capacity, the transfer price should be set at the market price.
- (Or at some slight discount to the market price if synergies to transferring goods exist within the firm)

SCENARIO II: EXCESS CAPACITY

The Battery Division produces standard 12-volt batteries.

Production capacity 300,000 units

Selling price per battery \$40 (to outsiders)

Variable costs per battery \$18

Fixed costs per battery \$7 (at 300,000 units)

The Auto Division can use 100,000 batteries in its X-7 model.

What should the selling division charge?

SCENARIO II: EXCESS CAPACITY

SCENARIO II: EXCESS CAPACITY

GENERAL RULE

• When the selling division is operating below capacity, the minimum transfer price is the variable cost per unit (including transfer costs).

SCENARIO II: EXCESS CAPACITY

WILL A TRANSFER TAKE PLACE?

Capacity at battery division	Auto division can purchase battery from an external supplier		
(sell outside \$40, var. cost \$18)	42	at \$	15
	42	35	15
NO Excess			
Excess			

WILL A TRANSFER TAKE PLACE?

With no excess capacity the battery devision sets the transfer price to the market price (40\$). This is cheaper than the price of batteries the auto divison needs to pay to an external supplier – both accept.

With excess capacity the battery devision only needs to charge a transfer prive above var. costs. This is cheaper than the price of batteries the auto divison needs to pay to an external supplier – both accept

FOUR APPROACHES FOR CALCULATING TRANSFER PRICES

Market-based

e.g., the price the selling unit charges to outside customers; or the price the buyer would have to pay outsiders

Cost-based

e.g., full manufacturing costs

Negotiated

both business units are free to negotiate the price

Dual-pricing

e.g., buying unit pays market price, selling unit gets costs, difference paid by headquarter

(not covered in class)

MARKET-BASED TRANSFER PRICES

 Transferring products or services at market prices generally leads to optimal decisions under the following circumstances:

CONDITIONS FOR OPTIMAL MARKET-BASED TRANSFER PRICES

- There is a (perfectly) competitive external market for the transferred product.
- No additional costs or benefits to the company as a whole from buying or selling in the external market instead of transacting internally.

IMPERFECT COMPETITION

Under imperfect competition for the intermediate good:

TRANSFER PRICING

- below the external market price ...
- ... and above the selling division's variable cost ...
- ... induces efficient transfers.

COST-BASED TRANSFER PRICES

Top management chooses a transfer price based on the costs of producing the intermediate product

EXAMPLES

- Variable production costs
- Full costs (VC + allocated fixed overhead)
- One of the above plus some markup

COST-BASED TRANSFER PRICES

- Transfer prices will not fluctuate with the opportunity cost per unit for the selling division.
- It is hence important to set transfer prices at standard costs → otherwise, no incentive to produce efficiently for the selling division is provided.
- Often a mark-up is granted to allocate profits between divisions.
- Full costs can lead to inefficient decisions for special orders as fixed costs should be disregarded in these cases.

NEGOTIATED TRANSFER PRICES

ADVANTAGES

- Takes into account both cost and market information.
- Often start with market prices and then make adjustments for internal savings, etc.

DRAWBACKS

- Can undermine spirit of cooperation
- Impacted by negotiation skills

INTERNATIONAL PERSPECTIVE

Since tax rates and import duties are different in different countries, companies have incentives to set transfer prices to ...

- Increase revenues in low-tax countries.
- Increase costs in high-tax countries.
- Reduce cost of goods transferred to high-import-duty countries.

E13-47

Weathermaster Window Company manufactures windows for the home-building industry. The window frames are produced in the Frame Division. The frames are then transferred to the Glass Division, where the glass and hardware are installed. The company's best-selling product is a three-by-four-foot, doublepaned operable window. The Frame Division can also sell frames directly to custom home builders, who install the glass and hardware. The sales price for a frame is \$160. The Glass Division sells its finished windows for \$380. The markets for both frames and finished windows exhibit perfect competition.

The standard cost of the window is detailed as follows:

	Frame Division	Glass Division
Direct material	\$30	\$60*
Direct labor	40	30
Variable overhead	60	60
Total	\$130	\$150

^{*}Not including the transfer price for the frame.

E13-47

- 1. Assume that there is no excess capacity in the Frame Division.
 - a. Use the general rule to compute the transfer price for window frames.
 - b. Calculate the transfer price if it is based on standard variable cost with a 10 percent markup.
- 2. Assume that there is excess capacity in the Frame Division.
 - a. Use the general rule to compute the transfer price for window frames.
 - b. Explain why your answers to requirements (1 α) and (2 α) differ.
 - c. Suppose the predetermined fixed-overhead rate in the Frame Division is 125 percent of direct labor cost. Calculate the transfer price if it is based on standard full cost plus a 10 percent markup.

Frankfurt School of Finance and Management gGmbH

Adickesallee 32-34

60322 Frankfurt am Main

Timo Vogelsang

Associate Professor

Telefon: +49 69 154008-0

Fax: +49 69 154008-650

E-Mail: t.vogelsang@fs.de

www.frankfurt-school.de

