제3장 화폐의 시간가치

1. 화폐의 시간가치

2. 미래가치와 현재가치의 계산

3. 연금의 미래가치와 현재가치

4. 특수한 경우의 현가계산과 응용

학습내용

- 화폐의 시간가치 개념
- 미래가치, 현재가치의 계산과 의미
- 연금의 미래가치와 연금의 현재가치, 영구연금과 정률성장연금의 현재 가치 계산
- 정기적금, 할부금의 계산
- 연 복리(할인) 횟수가 2회 이상인 경우의 미래가치, 현재가치 계산
- 표면이자율과 실효이자율
- 불규칙한 현금흐름의 현재가치와 순현재가치(NPV)
- 라이프사이클을 고려한 재무설계

1절 화폐의 시간가치

1. 가치평가와 화폐의 시간가치

- 가치평가(valuation)는 여러 자산들의 가치를 평가하는 것으로 재무분야의 의사결정에 가장 중요한 기초 작업
- 재무의사결정의 목표: 기업가치극대화

$$-V = \sum_{t=1}^{n} \frac{CF_t}{(1+R)^t} \leftarrow \frac{CF_t}{R}:$$
 미래 현금흐름

- 가치평가의 활용
 - 주식, 채권의 가치평가 → 과소/과대평가 여부의 판단
 - 개인투자자나 펀드매니저 같은 전문가의 자산운용에 활용
 - 금융기관의 신금융상품 개발
 - 재무설계, 자산운용전문가의 컨설팅
 - **가치경영**, IPO, M&A

1. 가치평가와 화폐의 시간가치 : 가치평가의 핵심

■ 가치평가의 핵심

- '가치(value)'의 결정요인
 - 미래에 발생할 현금흐름의 크기
 - 현금흐름 발생시점의 상이
 - 현금흐름의 위험도(불확실성)
- 화폐의 시간가치(time value of money)는 동일한 현금흐름이라도 시점이 다르면 가치가 다르기 때문에 이러한 시간적 차이를 조정해는 것을 의미

1. 가치평가와 화폐의 시간가치 : 유동성 선호 경향

- 동일한 1원이라도 오늘의 1원이 내일의 1원보다 보다 가치가 있다고 보는 이유, 즉 투자자들이 유동성선호를 갖는 이유는 다음과 같음
 - 시간선호(time preference) 경향
 - 동일한 조건이라면, 미래의 소비보다 현재의 소비를 선호
 - 일정한 현금을 미리 받으면 유리한 투자기회가 있을 경우, 이에 투자함
 으로써 높은 수익을 얻을 수 있음
 - 미래에는 물가상승에 따른 구매력감소의 가능성이 존재
 - 미래에는 불확실성으로 인한 위험이 존재

2. 가치환산방법과 시장이자율

- 동일한 현금흐름(CF)이라도 발생시점이 다르면 가치가 다르기 때문에 동일한 시점의 CF으로 환산해야 비교가 가능
- 서로 상이한 시점에서 발생하는 현금흐름을 동일시점의 가치로 환산하는 방법
 - 미래가치(future value)로 환산
 - 현재가치(present value)로 환산
- 미래가치 혹은 현재가치로 환산하는 데에는 환산율이 필요
 - 위험이 없는 상황의 경우: 무위험이자율 또는 무위험수익률
 - 개인: 시장이자율

2절 미래가치와 현재가치의 계산

미래가치와 현재가치의 계산

■ (상품 A) 현재 1,000만원을 6% 이자율의 3년 만기 금융상품

■ (상품 B) 5% 이자율 상황에서 3년후 1,120만원을 지급하는 금융상품

■ (상품 C) 4% 이자율 상황에서 3년간 매년 390만원을 지급하는 금융상품

1. 단일금액의 미래가치 계산

■ (상품 A) 미래가치의 계산 -1,000만원 6% 이자율 ?

- 현재 일정 금액을 미래 특정시점의 화폐금액으로 환산
- 단리계산(simple interest)
 - 단순이자의 합과 원금지급으로 이자가 재투자되지 않음을 가정
 - 3년 후 원리금 = 1,000 + (60 + 60 + 60) = 1,180만원
- 복리계산(Interest on interest)
 - 이자도 원금에 포함되며, 이자의 재투자를 가정
 - 3년 후 원리금 = 1,000만원(1.06)(1.06)(1.06) = 1,000만원(1 + 0.06)³ = 1,191만원

	1년차	2년차	3년차	3년 후 원리금(미래가치)		
원금	1,000	1,060	1,123.6	4.404		
이자	60	63.6	67.4	1,191		
	1,000만	1,000만원(1.06)(1.06)				

1. 단일금액의 미래가치 계산

- **미래가치기본등식**: FV_n = PV₀(1+r)ⁿ
 - FV_n = n년 후의 미래가치
 - PV₀ = 현재가치
 - r = 소수로 표현된 1기간 이자율
 - n = **투자기간의** 수
- 미래가치 이자요소(Future Value Interest Factor) = (1+r)ⁿ
 - 미래가계수로도 불리며, FVIF_{r, n}로 표현
- PV₀, r% 이자율, n년 후의 FV_n은 어떻게 계산할 것인가?
 - 미래가치표 이용
 - EXCEL 이용
 - 재무계산기 이용

1. 단일금액의 미래가치 계산 : [예제 3-1] 미래가치의 계산

- 현금 100만원을 다음 조건의 정기예금에 저축할 때, 만기 때의 미래 가치는 각각 얼마나 되겠는가?
 - 연간 이자율 10%일 때, 1년, 5년, 10년, 30년, 50년 후의 미래가치
 - FV₁ = PV₀(1 + r)¹ = 100(1 + 0.10)¹ = 100(1.10) = 110만원 또는 FV₁ = PV₀(FVIF_{0.10, 1}) = 100(1.1000) = 110만원
 - $FV_5 = PV_0(1 + r)^5 = PV_0(FVIF_{0.10, 5}) = 100(1.6105) = 161.05$ **만원**
 - $FV_{10} = PV_0(1 + r)^{10} = PV_0(FVIF_{0.10, 10}) = 100(2.5937) = 259.37$ **만원**
 - $FV_{30} = PV_0(1 + r)^{30} = PV_0(FVIF_{0.10, 30}) = 100(17.449) = 1,744.94$ 만원
 - $FV_{50} = PV_0(1 + r)^{50} = PV_0(FVIF_{0.10, 50}) = 100(117.39) = 11,739.09$ 만원
 - 연간 이자율 4.6%일 때, 7.4년 후의 미래가치
 - FV_{7.4} = PV₀(1 + r)^{7.4} = PV₀(1 + 0.046)^{7.4} = 100(1.3949.39) = 139.49**만원**

1. 단일금액의 미래가치 계산 : 복리계산의 위력

■ 원금 100만원의 5년, 10년, 30년, 50년 후의 미래가치(단위: 만원)

구 분		5%			10%		
		연단리	연복리	월복리	연단리	연복리	월복리
원리금	5년	125.0	127.6	128.3	150.0	161.1	164.5
	10년	150.0	162.9	164.7	200.0	259.4	270.7
	30년	250.0	432.2	446.8	400.0	1,715.0	1,984.0
	50년	350.0	1,146.7	1,212.0	600.0	11,739.0	14,537.0

1. 단일금액의 미래가치 계산: 이자율수준과 미래가치

■ 복리계산의 위력

- 이자율의 크기
- 복리횟수
- _ 만기

<이자율 수준과 미래가치>

※ 이자율이 높고, 투자기간이 길수록 복리계산의 효과가 크다는 것을 확인할 수 있음

1. 단일금액의 미래가치 계산 : [예제 3-2] 인디언의 맨해튼 땅 매각

- 오늘날 뉴욕의 맨해턴(Manhattan)의 땅값은 \$510억 정도 되는 것으로 평가됨. 인디언들은 이 맨해턴을 1626년에 프랑스인 Peter Minuit에게 \$24에 팔아넘겼음
 - 지난 390년(1626~2015) 동안의 연간 이자율이 8%이었던 것으로 계산하면 누가 횡재하였는가?
 - \$24×(1.08)³⁹⁰ = \$260,301,027,018,004(약 \$260,301십억)
 - → **현재의 땅값** \$510**억**(2015년 기준)의 약 5,104배
 - 연간이자율이 4%라면, 결론은 어떻게 달라지는가?
 - \$24×(1.04)³⁹⁰ = \$105,490,553**로 반대의 결론**
 - 복리로 증식된 부의 금액은 단리로 증식된 부보다 얼마나 많은가?
 - 390년 동안 단리로 증식된 부: 24 + \$24(0.08)(390년) = \$772.8
 - 복리와 단리의 차이 = \$260,301,027,018,004 \$772.8

= \$260,301,027,017,231

2. 단일금액의 현재가치 계산 : 현재가치의 계산

■ (상품 B)미래 특정시점 발생할 일정 금액을 현재시점의 화폐액으로 환산한 금액

- 복리계산: (현재 1,000만원, 5%, 3년 후?)
 - FV₃ = 1,000만원(1 + 0.05)³ = 1,120만원
 - PV₀ ={1,120만원/(1+0.05)³} = 967.5만원
- 현재가치 계산은 미래가치(복리) 계산의 역수
- 투자자산(사업)의 가치(value) = 현재가치(present value)

2. 단일금액의 현재가치 계산 : 현재가치의 계산

- **현재가치기본등식**: PV₀ = FV_n X [1/(1+r)ⁿ] = FV_n / (1+r)ⁿ
 - PV₀ = 현재가치
 - FV_n = n**년 후의 미래가치**
 - r = 소수로 표현된 1기간 이자율(할인율)
 - n = **투자기간의 수**
- 현가이자요소(Present Value Interest Factor) = 1/(1+r)ⁿ = (1+r)⁻ⁿ
 - **현가계수로도 불리며**, PVIF, n**로 표현**
- PV₀, r% 이자율, n년 후의 PV₀은 어떻게 계산할 것인가?
 - 현재가치표 이용
 - EXCEL 이용
 - 재무계산기 이용

2. 단일금액의 현재가치 계산 : [예제 3-3] 현재가치의 계산

■ 연간이자율이 10%일 때, ①1년 후, ②3년 후, ③5년 후의 1,000만원에 대한 현재가치는 얼마인가?

- 현재가치는 투자기간이 장기가 될수록, 이자율(할인율)이 높을수록 더욱 낮아짐
- 김소망 씨는 7대 독자인 아들의 6년 후 대학교육비가 5,000만원 소요될 것으로 예상될 때, 연간이자율이 4%라면, 지금 얼마를 저축해야 하는가?
 - $PV_0 = 5,000 X 1/(1+0.04)^5 = 5,000 X PVIF_{0.04, 6} = 5,000(0.7903) = 3,951.6$ 만원

2. 단일금액의 현재가치 계산 : 이자율수준과 미래가치

<이자율(할인율)과 현재가치>

※ 이자율(할인율)이 높고, 투자기간이 길수록 현재가치의 차이가 매우 크다는 것을 확인할 수 있음

3절 연금의 미래가치와 현재가치

연금(annuity)이란 무엇인가?

- 연금이란 일정기간 동안 일정금액을 계속적으로 지급하는(지급받는) 현금흐름
 - 예를 들면, 차입금 상환, 자동차 할부금, 가계대출 및 주택담보대출 등은
 보통 매달 일정한 금액으로 상환되는 구조
 - 연금의 유형
 - 정상연금(ordinary annuity): 동일한 금액이 매기간 말에 발생하는 현금흐름
 - 선불연금(annuity due): 동일한 금액이 매기간 초에 발생하는 현금흐름
 - 영구연금(perpetuity): 동일한 금액이 영구적으로 발생하는 현금흐름

1. 연금의 미래가치 계산 : 정상연금의 미래가치 계산

- 정상연금의 미래가치는 일정금액 a를 기말에, n기간 동안 매번 지급 받고, 이를 n시점까지 동일한 이자율(r%)로 재투자하여 누적 증식시킨 부
- (상품 C) 투자가치는 1,217만원
 - 금융상품 C의 미래가치 계산

- 금융상품 C는 이전의 금융상품 A, B보다 미래가치가 큰 것으로 평가
 - 금융상품 A의 미래가치 1,191만원
 - 금융상품 B의 미래가치 1,120만원

1. 연금의 미래가치 계산 : 정상연금의 미래가치 공식 도출

■ 시점 1부터 동일한 현금흐름이 발생하는 경우, 연금의 미래가치

$$S_n = A (1+r)^{n-1} + A (1+r)^{n-2} + \dots + A (1+r)^1 + A (1+r)^0$$

$$= A \left[(1+r)^{n-1} + (1+r)^{n-2} + \dots + (1+r)^1 + 1 (1+r)^0 \right] \leftarrow$$
 등비가 $(1+r)$ 인 유한동비수열의 합
$$= A \left[\frac{(1+r)^n - 1}{r} \right] \rightarrow$$
 정상연금의 미래가계수 $(FVIFA_{r,\,n})$

1. 연금의 미래가치 계산 : [예제 3-4] 정상연금의 미래가치 계산

■ 올림픽 금메달리스트 A씨는 5년 동안 매년 말에 1,000만원씩 연금을 받음. A씨가 이를 10%의 이자율로 정기적금에 가입하여 연금지급이 끝나는 5년 후에 다시 찾는다면 그 총액은 얼마인가? 즉, 정상연금의 미래가치는 얼마인가?

$$-S_n = 1,000(1+0.1)^4 + 1,000(1+0.1)^3 + 1,000(1+0.1)^2 + 1,000(1+0.1)^1 + 1,000(1+0.1)^0$$
$$= 1,000 \left[\frac{(1+0.1)^5 - 1}{0.1} \right] = 6,105.1$$
만원

또는 1,000(FVIF_{0.1.5}) = 1,000(6.1051) = 6,105.1만원

1. 연금의 미래가치 계산 : [예제 3-5] 복리계산의 위력(2)

■ 매일 3,000원 저축의 위력

- 현재 25세인 한근면 씨는 매일 3,000원씩을 모아서 책상서랍에 보관하였다가 연말에 목돈 1,095,000원을 AAA증권회사에 기대수익률
 12% 상품에 투자하고 있음
 - (1) 매년 이와 같이 하여 40년 후 65세 정년 때에 찾으면 얼마가 될 것인가?
 - (2) 이여유 씨는 이와 동일한 방법으로 투자하되, 이를 45세일 때 시작하였는데, 이 투자액이 20년 후 65세에 얼마가 될 것인가?
 - (3) 이여유 씨는 45세에 시작하여 65세까지 매년 투자를 하되, 65세에 한근면 씨와 동일한 부((1)의 답)를 만들기 위해서는 매년 얼마씩의 투자(저축)를 해야 하는가?
 - (4) 위의 결과가 부의 증식에 대해서 시사하는 바는 무엇인가?

1. 연금의 미래가치 계산 : [예제 3-5] 복리계산의 위력(2) - 풀이

- (1) 매년 1,095,000원, 연간수익률 12%, 40년 후의 연금의 미래가치 계산
 - S₄₀ = 1,095천원 X FVIFA_{12%, 40년} = 1,095천원(767.09) = 839,965,110원
- (2) 매년 1,095,000원, 연간수익률 12%, 20년 후의 연금의 미래가치 계산
 - S₂₀ = 1,095천원 X FVIFA_{12%, 20년} = 1,095천원(72.052) = 78,897,420원
- (3) 이여유 씨가 20년 후에 한근면 씨처럼 839,963,550원의 부를 형성하는 데 필요한 매년 저축금액 A의 계산
 - A X FVIFA_{12%, 20년} = 839,965,110**원**
 - A = 839,965,110(원) / 72.052 = 11,657,690원
 - **한근면 씨의 연간저축액** 1,095,000원과 비교하면, 약 11배 정도의 차이
- (4) 복리계산(시간가치)의 위력: 부의 증식에서 시간의 위력을 확인
 - □ <u>빨리 시작하여 꾸준히 저축하여 저축(투자)기간이 보다 장기간이 되게</u> 하는 것이 중요함을 시사

2. 연금의 현재가치 계산 : 정상연금

- 정상연금의 현재가치 계산: 연금흐름이 기말에 발생할 경우
 - 일정금액 A를 n기간 동안 매번 지급받는 경우, 이들 모두의 현재시점의 가치, 즉 지금 당장 목돈으로 일시불로 받는 금액
- 기말에 동일한 현금흐름이 발생하는 경우, 시점 0에서의 현재가치

2. 연금의 현재가치 계산 : 기초연금의 현재가치

■ 기초에 동일한 현금흐름이 발생하는 경우, 시점 0에서의 현재가치

$$- S_0 = A + \frac{A}{\left(1+r\right)^1} + \frac{A}{\left(1+r\right)^2} + \dots + \frac{A}{\left(1+r\right)^{n-1}} \qquad \leftarrow 5 \text{비가 } \frac{1}{\left(1+r\right)}$$
인 유한동비수열의 합
$$= A + A(r\%, n - 1년 \ \textbf{연금의 현가계수})$$

$$= A + \frac{A}{r} \left[\frac{\left(1+r\right)^{n-1} - 1}{\left(1+r\right)^{n-1}} \right]$$

$$= A \left[\frac{\left(1+r\right) - \frac{1}{\left(1+r\right)^{n-1}}}{r} \right] = A \left[\frac{1 - \frac{1}{\left(1+r\right)^n}}{r} \right] (1+r)$$

2. 연금의 현재가치 계산 : [예제 3-6] 정상연금의 현재가치 계산

■ 올림픽 금메달리스트인 A씨가 앞으로 5년간 매년 말에 1,000만원씩 지급받기로 계약한 금액을 현재 일시불(목돈)로 한꺼번에 지급받고 싶다면 얼마를 받아야만 하겠는가? 연시장이자율은 10%라고 가정할 때, 만약 매년 초에 받기로 하였다면 현재 목돈으로 얼마를 받아야 하는가?

$$-S_0 = 1,000/(1+0.1)^1 + 1,000/(1+0.1)^2 + • • • + 1,000/(1+0.1)^5$$

= 1,000 X (PVIFA_{0.1.5})= 1,000(3.7908) = 3,790.8**만원**

- 만약, 매년 초에 1,000만원씩 지급받기로 한 경우

2. 연금의 현재가치 계산 : 영구연금의 현재가치

■ 영구연금은 특수한 연금 형태로서 동일한 금액이 영구적으로 발생하는 구조(예를 들면, 제로성장 기업)

$$-$$
 영구연금의 현재가치 $= rac{A}{{(1+r)}^1} + rac{A}{{(1+r)}^2} + \cdots + rac{A}{{(1+r)}^n} + \cdots$ $= rac{A}{r}$ 등비가 $rac{1}{1+r}$ 인 무한등비수열

2. 연금의 현재가치 계산 : 정률성장연금의 현재가치

■ 정률성장영구연금은 현금흐름이 매기 일정비율로 영구히 성장하는 연금

- 증가율 또는 성장률을 g라고 하면, 영구연금 공식을 수정하여 아래와 같은
 연금의 현재가치를 계산할 수 있음
- 정률성장영구연금의 현재가치 $S_0=rac{A}{{(1+r)}^1}+rac{A(1+g)}{{(1+r)}^2}+\cdots+rac{A(1+g)^{n-1}}{{(1+r)}^n}+\cdots$ $=rac{A}{r-g}$ 등비가 $rac{1+g}{1+r}$ 인 무한등비수열

$$lacksymbol{\blacksquare}$$
 유한정률성장연금의 현재가치 $S_0 = rac{A}{r-g} imes \left[1 - rac{(1+g)^n}{(1+r)^n}
ight]$

2. 연금의 현재가치 계산 : [예제 3-7] 영구연금과 정률성장연금

- 5년차부터 매년 말 4,000만원씩 영구히 지급받는 연금이 있는데, 시장이자율은 10%라고 가정할 경우, ① 이 연금의 현재가치는 얼마인가?
 ② 만약 이 연금이 올해 말에 4,000만원이 지급되고, 지급액이 해마다 6%씩 증가한다면 이 연금의 현재가치는 얼마가 되겠는가?
 - ① 향후 5년 초 시점의 영구연금의 현재가치 = A/r = 4,000/0.1 = 4억원
 - 현재 시점의 영구연금의 현재가치 = 4억원/(1.1)⁴ = 2,732억원
 - ② 정률성장영구연금의 현재가치 = A/(r-g) = 4,000만원/(0.1 − 0.06) = 10억원

3. 정기적금, 할부금의 계산 : 정기적금의 계산

■ 정기적금(부금)은 만기 때에 목돈(목표 금액)을 만들기 위해 정기적으로 일정금액의 부금을 불입하는 상품으로서, 정기적으로 얼마씩 적금을 불입하여야 하는지를 찾는 문제

$$-S_n = A(1+r)^{n-1} + A(1+r)^{n-2} + \dots + A(1+r)^1 + A(1+r)^0$$

$$= A\{(1+r)^{n-1} + (1+r)^{n-2} + \dots + (1+r)^1 + (1+r)^0\}$$

$$= A\{\frac{(1+r)^n - 1}{r}\}$$

$$= A\{\frac{(1+r)^n - 1}{r}\}$$

$$= S_n$$
FVIFA_{r, n}

3. 정기적금, 할부금의 계산 : 할부금의 계산

 할부금은 금융기관으로부터 일정액을 대출받아 정기적으로 얼마씩 상환하는 할부대출상품으로서, 정기상환액이 얼마인지 산출하는 문제

3. 정기적금, 할부금의 계산 : [예제 3-8] 정기적금액의 계산

■ 김소망 씨는 10년 후에 자영업을 할 계획인데, 필요한 10억원을 마련하기 위하여 매년 말에 한 번씩 불입하는 정기적금을 들고자 함. 이자율이 8%인 경우 정기적금(A)으로 얼마씩 불입해야 하는가?

$$-$$
 정기적금액 $A=\frac{S_n}{r\%, n$ 년 연금의 미래가계수

10억원 = A X FVIFA_{8%. 10년} = 10억원 / 14.487 = 6,902.9만원

3. 정기적금, 할부금의 계산 : [예제 3-9] 주택대출할부금의 계산

■ 5억원짜리 집을 구입하고, 이 중에서 4억원은 주택할부 금융회사에서 30년 만기로 매년 균등금액으로 갚아나가야 함. 연이자율은 12%일 때, 매년 말 상환하게 되는 금액은 얼마인가?

$$-$$
 할부금(정기상환액) $A = \frac{S_0}{r\%$, n년 연금의 현가계수

4**억원 = 매년 말 상환할부금** X PVIFA_{12%, 30년}

매년 말 상환할부금 = 400,000,000 / 8.0552 = 49,657,463원

4절 특수한 경우의 현가계산과 응용

1. 2회 이상의 복리횟수·할인횟수의 경우: 계산수식

■ 연 복리횟수가 m회인 경우의 미래가치 계산

$$-FV_n = PV_0(1+\frac{r}{m})^{mn}$$
 · $\frac{r}{m}$: $(\frac{1}{m})$ 년 동안 적용되는 이자율, $\frac{r}{m}$ 는 n년 동안의 연 복리횟수임

■ 연할인횟수가 m회인 경우의 현재가치 계산

$$- PV_n = PV_0(1+\frac{r}{m})^{mn}$$

■ 연간 복리횟수가 무한히 많은 경우의 미래가치 계산

$$- FV_n = \lim_{m \to \infty} PV_0 (1 + \frac{r}{m})^{mn} = PV_0 \cdot e^{rn}$$

- **증명** (proof)

•
$$FV_n = \lim_{m \to \infty} PV(1 + \frac{r}{m})^{mn} = \lim_{m \to \infty} PV(1 + \frac{r}{m})^{\frac{m}{r}rn} = PV \left[\lim_{m \to \infty} (1 + \frac{r}{m})^{\frac{m}{r}}\right]^{rn}$$

$$= PV \left[\lim_{x \to \infty} (1 + \frac{1}{x})^x\right]^{rr} \leftarrow e = \lim_{x \to \infty} (1 + \frac{1}{x})^x$$

$$= PV \cdot e^{rn} \qquad \text{단, } e = 2.7182818 \cdots \text{ 자연로그의 밀수}$$

1. 2회 이상의 복리횟수·할인횟수의 경우: [예제 3-10] 미래가치 계산

- 현재의 1,000만원에 대하여 연간 10% 이자율로 ① 연 1회(m=1), ② 연 2회 (m=2), 즉 반기, ③ 연 4회(m=4), 즉 분기, ④ 연 365회(m=365), 즉 일간,
 ⑤ 연속적(m=∞)으로 각각 복리계산한다고 할 때, 각각의 10년 후의 미래 가치를 구하시오
 - 연 1회 복리: FV₁₀ = 1,000(1+0.1)¹⁰ = 1,000(2.5937) = 2,593.7만원
 - 연 2회 복리: FV₁₀ = 1,000(1+0.1/2)^{2×10} = 1,000(2.6533) = 2,653.3만원
 - 연 4회 복리: FV₁₀ = 1,000(1+0.1/4)^{4×10} = 1,000(2.6851) = 2,685.1만원
 - 연 365회 복리: FV₁₀ = 1,000(1+0.1/365)^{365 × 10} = 1,000(2.7179) = 2,717.9만원
 - 연속적 복리: $FV_{10} = 1,000 \cdot e^m = 1,000(2.7183)^{0.1 \times 10} = 1,000(2.7183) = 2,718.3$ 만원

1. 2회 이상의 복리횟수·할인횟수의 경우: 그림으로 표현

■ 복리회수가 연 1회, 2회, 무수한 경우의 미래가치 차이

1. 2회 이상의 복리횟수·할인횟수의 경우 : [예제 3-11] 현재가치 계산

- 미래 10년 후의 1,000만원에 대하여 연간 12% 이자율로 ① 연 1회,
 - ② 연 2회(반기마다), ③연 4회(분기마다), ④ 연 365회(일간), ⑤ 연속 적으로 각각 할인한다고 할 때, 각각의 현재가치를 구하시오
 - 연 1회 할인: PV₀ = 1,000/(1.12)¹⁰ = 1,000(0.3220) = 322.0만원
 - 연 2회 할인: PV₀ = 1,000/(1+0.12/2)^{2×10} = 1,000(1+0.06)⁻²⁰ = 1,000(0.3118) = 311.8만원
 - 연 4회 할인: PV₀ = 1,000/(1+0.12/4)^{4×10} = 1,000(1+0.03)⁻⁴⁰ = 1,000(0.3066) = 306.6**만원**
 - 연 365회 할인: PV₀ = 1,000/(1+0.12/365)^{365 × 10} = 1,000(1+0.000329)^{-3,650} = 1,000(0.3013) = 301.3만원
 - **연속적 할인**: PV₀ = 1,000/*e*^m = 1,000(2.7183)^(-0.12 × 10) = 301.2**만원**
- 연 1회 할인과 연속적 할인의 현재가치의 차이는 322 301.2 = 20.8만원

2. 표면이자율과 실효이자율

- 표면이자율(stated interest rate)
 - 자금공급자가 요구하는 이자율로서 복리계산을 감안하지 않는 이자율
- 실효이자율(effective interest rate)
 - 기간 중 2회 이상 복리계산될 경우, 이자의 재투자를 전제로 계산된 이자율
 로서, 연초 화폐액과 연말화폐액을 일치시켜 주는 이자율

$$- r_e = \left(1 + \frac{r_s}{m}\right)^m - 1$$

2. 표면이자율과 실효이자율: [예제 3-12] 실효이자율의 계산

■ 표면이자율(r_s)이 연 8%일 때, ① 반기(m=2), ② 분기(m=4), ③ 매월 (m=12), ④ 매월(m=365) 별로 복리로 계산된다고 할 때, 각각의 실효 이자율(r_s) 은 얼마인가?

- **반기 복리**:
$$r_e = (1 + 0.08)^2 - 1 = 0.0816 \rightarrow 8.16\%$$

- **분기 복리**:
$$r_e = (1 + 0.08)^4 - 1 = 0.0824 \rightarrow 8.24\%$$

- 매월 복리:
$$r_e = (1 + 0.08)^{12} - 1 = 0.0830 \rightarrow 8.30\%$$

- 매일 복리:
$$r_e = (1 + 0.08)^{365} - 1 = 0.0833 \rightarrow 8.33\%$$

$$r_e = \left(1 + \frac{r_s}{m}\right)^m - 1$$

3. 불규칙한 현금흐름의 현재가치와 순현재가치(NPV)

- lacktriangle 불규칙한 현금흐름의 현재가치 $PV_0 = rac{CF_1}{(1+r)^1} + rac{CF_2}{(1+r)^2} + \cdots + rac{CF_n}{(1+r)^n}$
- 불규칙한 현금흐름의 순현재가치(NPV: Net Present Value)
 - 순현재가치(NPV)는 현재가치(PV₀)에서 투자액(I₀)을 차감한 값

$$NPV_0 = PV_0 - I_0 = \frac{CF_1}{(1+r)^1} + \frac{CF_2}{(1+r)^2} + \dots + \frac{CF_n}{(1+r)^n} - I_0$$

- [예제 3-13] 올해 400억원을 투자하면, 앞으로도 3년 동안 매년 300억원, 100억원, 200억원의 현금유입이 발생하는 투자안의 실행을 고려 중임. 적절한 할인율이 12%라면, 이 투자안의 현재가치(PV)와 순현재가치(NPV)는 얼마인가?
 - 투자안의 현재가치 $PV_0 = \frac{300}{(1.12)^1} + \frac{100}{(1.12)^2} + \frac{200}{(1.12)^3} = 489.93$ 억원
 - **투자안의 순현재가치** NPV₀ = 489.93억원 400억원 = 89.93억원

4. 내재이자율과 소요기간의 추정 : [예] 내재이자율

- 내재이자율(implied rate of return)은 아래의 미래가치기본등식을 만족하는 이자율 r을 말함
 - **단일금액의 미래가치기본등식**: $FV_n = PV_0(1+r)^n$
- 예를 들면, 현재 10억원을 예치하여 5년 후 20억원의 사업자금 마련하기 위해서 필요한 이자율 수준은 얼마인가?

$$- r = \left[\frac{FV_n}{PV_0}\right]^{\frac{1}{n}} - 1$$
$$= \left[\frac{20 \mathbf{9}}{10 \mathbf{9}}\right]^{\frac{1}{5}} - 1$$
$$= 0.1487 \rightarrow 14.87\%$$

4. 내재이자율과 소요기간의 추정 : [예] 소요기간

- 미래가치기본등식으로 PV₀, FV_n, r이 주어졌을 때, 이를 만족하는 소요기 간 n을 구할 수 있음
 - 단일금액의 미래가치기본등식 $FV_n = PV_0(1+r)^n$ 을 통해 n을 계산
- 예를 들어, 현재까지 15억원을 모은 사람이 20억원의 주택을 구입하고자 하는데, 10%의 수익률 상품에 투자할 수 있다면, 목표금액을 만드는 데 필요한 기간은 얼마인가?

$$-n = \frac{\ln\left[\frac{FV_n}{PV_0}\right]}{\ln(1+r)} = \frac{\ln\left[\frac{20억원}{15억원}\right]}{\ln(1.1)} = 3.02년$$

■ 72법칙(rule of 72)은 원금의 부가 두 배로 늘어나는 데 소요되는 기간과 이자율의 관계로서, 72를 이자율로 나누어 구할 수 있음

5. 생애재무설계 : [예제 3-15] 라이프사이클을 고려한 개인재무설계

- 현재 35세인 김소망 씨의 연간소득은 매년 말 기준으로 30,000천원, 30년 후인 65세말에 퇴직, 80세까지 15년을 더 사는 것으로 가정하고, 현재 연간소득 30,000천원은 퇴직 때까지 계속된다고 할 때, 어떻게 저축과 소비로 배분할 것인지를 결정하라.
 - 단, 세금은 무시하고, 65세까지의 인플레이션율은 소득증가율과 동일하며,
 또한, 45년간(35세~80세) 매년 동일한 금액을 소비하고, 실질이자율은
 연3%

5. 생애재무설계: [예제 3-15] 라이프사이클을 고려한 개인재무설계_풀이

(1)=(2)가 되어야 한다. 식으로 표현하면 다음과 같다.

$$\sum_{n=1}^t$$
연간저축액 $(1+r)^n = \sum_{n=1}^T \frac{$ 연간소비액}{(1+r)^n}

(단, t : 은퇴시점, T : 은퇴 후 소비기간)

연간소비액을 C라 하면, 연간저축액은 (30,000-C)천원이다.

65세까지 저축액의 적립금을 66세 이후에 C만큼 연간소비하는 것이므로 65세까지 30년간의 연금(저축액) 미래가치와 66세 이후 15년간의 연금(소비액) 현재가치가 같아야 한다.

(30,000-C)×연금의 미래가치계수(FVIFA 3%, 30년)=C×연금의 현재가치계수(PVIFA 3%, 15년) (30,000-C)(47.575)=C(11.938)

∴ C=23,982(천원) (45년간의 매년 소비수준)

따라서 연간저축액=6,018천원 (65세가 될 경우 총저축액은 286,309천원임)