Метрические методы

Виктор Китов

victorkitov.github.io

Победитель конкурса VK среди курсов по IT

Курс поддержан фондом 'Интеллект'

Содержание

- 1 Метод ближайших центроидов
- 2 К ближайших соседей
- 3 Свойства K-NN
- 4 Взвешенный учет объектов
- 5 Популярные функции расстояния
- 6 Регрессия Надарая-Ватсона

Метод ближайших центроидов

- Рассмотрим обучающую выборку $(x_1, y_1), ... (x_N, y_N)$ с
 - N_1 представителями 1го класса
 - N_2 представителями 2го класса
 - и т.д.
- Обучение:

Рассчитать центроиды для каждого класса c=1,2,...C :

$$\mu_c = \frac{1}{N_c} \sum_{n=1}^{N} x_n \mathbb{I}[y_n = c]$$

- Классификация:
 - Для каждого объекта х найти ближайший центроид:

$$c = \arg\min_{i} \rho(x, \mu_i)$$

2 Назначить *x* самый распространенный класс в центроиде:

$$\widehat{y}(x) = c$$

Пример использования

```
from sklearn.neighbors import NearestCentroid from sklearn.metrics import accuracy_score

X_train, X_test, Y_train, Y_test = get_demo_classification_data()

model = NearestCentroid() # инициализация модели model.fit(X_train,Y_train); # обучение модели

Y_hat = model.predict(X_test) # построение прогнозов print(f'Tочность: \
{100*accuracy_score(Y_test, Y_hat):.1f}%')
```

Больше информации. Полный код.

Демонстрация работы

Решающее правило для 3-х классового метода ближайших центроидов.

Вопросы

- Чему равны дискриминантные ф-ции $g_c(x)$ метода?
- Какова сложность:
 - обучения?
 - предсказания?
- Что собой представляют границы между классами?
- Применимы ли схожие принципы к регрессии? (рассмотрите кластеризацию)
- Подвержен ли метод "проклятию размерности"?

Содержание

- Метод ближайших центроидов
- 2 К ближайших соседей
- 3 Свойства K-NN
- 4 Взвешенный учет объектов
- 5 Популярные функции расстояния
- 6 Регрессия Надарая-Ватсона

Метод ближайших соседей

Классификация:

- Найти К ближайших объектов в обучающей выборке к заданному х.
- Сопоставить х самый частотный класс среди К ближайших объектов.

Метод ближайших соседей

Классификация:

- Найти К ближайших объектов в обучающей выборке к заданному х.
- Сопоставить х самый частотный класс среди К ближайших объектов.

Регрессия:

- Найти К ближайших объектов в обучающей выборке к заданному х.
- Сопоставить х среднему отклику среди К ближайших объектов.

Комментарии

- Англ. K-nearest neighbors, сокращенно K-NN.
- K = 1: алгоритм ближайшего соседа.
- Базовое предположение: близким объектам соответствуют похожие отклики.
- Как будет работать алгоритм при K = N?
- Что вычислительно проще обучить метод или применять его?

Демонстрационная выборка

Пример: K-NN, регрессия $y = \sin x + \varepsilon$

Если два класса равноценно побеждают

Если два класса набирают одинаковый рейтинг, можно сопоставить класс:

Если два класса равноценно побеждают

Если два класса набирают одинаковый рейтинг, можно сопоставить класс:

- случайно
- более распространенный в обучающей выборке
- имеющий ближайшего представителя:
 - из ближайших среди К соседей
 - ближайшего среднего представителя среди К соседей
 - из самых удаленных среди *K* соседей (поощряем компактность распределения)

Параметры метода

- Параметры метода:
 - число ближайших соседей К
 - ullet метрика расстояния ho(x,x')
- Модификации:
 - возможный отказ, если прогноз неопределённый ¹
 - \bullet адаптивный выбор $K(x)^2$

 $^{^{1}}$ Предложите критерий неопределенности прогноза для классификации и для регрессии.

 $^{^{2}}$ Предложите, как именно K(x) мог бы меняться в зависимости от локальной плотности объектов.

Свойства K-NN

• Достоинства:

- для прогноза нужна только степень близости между объектами, а не конкретные признаковые представления.
 - может применяться к объектам произвольно сложной структуры (тексты, графы, ...).
- легко реализовать
- интерпретируемый (прогноз по похожим известным случаям)
 - важно, например, в медицине.
- не требует обучения (нужно только сохранить объекты)
 - может применяться в онлайн-сценариях
 - кросс-валидация может заменяться скользящим контролем (leave-one-out).

• Недостатки:

- \bullet сложность прогноза O(ND)
- точность снижается с $\uparrow D$ ("проклятие размерности")

Пример использования для регрессии

```
from sklearn.neighbors import KNeighborsRegressor from sklearn.metrics import mean_absolute_error

X_train, X_test, Y_train, Y_test = get_demo_regression_data()
model = KNeighborsRegressor(n_neighbors=3) #
инициализация
model.fit(X_train,Y_train) # обучение модели
Y_hat = model.predict(X_test) # построение прогнозов
print(f'Cредний модуль ошибки (MAE): \
{mean_absolute_error(Y_test, Y_hat):.2f}')
```

Больше информации. Полный код.

Пример использования для классификации

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy score
from sklearn.metrics import brier score loss
X train, X test, Y train, Y test =
    get demo classification data()
model = KNeighborsClassifier(n neighbors=3) # инициализация
model.fit(X train, Y train) # обучение модели
Y hat = model predict(X test) # построение прогнозов
print(f'Точность прогнозов: {100*accuracy score(Y test,
   Y hat):.1 f}%')
P hat = model.predict proba(X test) # вероятности классов
# качество Бриера на вероятности положительного класса
loss = brier score loss(Y test, P hat[:,1])
print(f'Средняя ошибка прогноза вероятностей \
(по мере Бриера): {loss:.2f}')
```

Больше информации. Полный код.

Содержание

- К ближайших соседей
- Свойства К-NN

Зависимость от масштаба признаков

• Влияет ли масштабирование признаков на прогнозы K-NN?

Зависимость от масштаба признаков

- Влияет ли масштабирование признаков на прогнозы K-NN?
 - да, поэтому нужно нормализовывать их
- Единый масштаб => одинаковое влияние признаков
- Разный масштаб => различное влияние признаков.
 - Повышение масштаба увеличивает или уменьшает вклад признака в прогноз?

Распространенные нормализации признаков

Название	Преобразование	Выходные свойства
Стандартизация	$\frac{x_j - \mu_j}{\sigma_j}$	нулевое среднее и
		единичная
		дисперсия
Нормализация	$\frac{x_j - \mu_j}{\max(x_i) - \min(x_i)}$	нулевое среднее, с
средним	, , , , , , , ,	единичным
		диапазоном
Диапазонное	$\frac{x_j - \min(x_j)}{\max(x_i) - \min(x_i)}$	принадлежит
шкалирование	(),())	интервалу $\left[0,1\right]$

- Какой тип шкалирования более устойчив к выбросам?
- Какой тип шкалирования сохраняет свойство разреженности? (много нулевых значений)

Проклятие размерности: идея

- Проклятие размерности: $\uparrow D =>$ близких точек становится мало.
 - за счет повышения объема пространства
- Пример: оценка гистограмм³

 $^{^{3}}$ С какой скоростью должно расти N, чтобы с точки зрения точности компенсировать увеличение D?

Проклятие размерности: обоснование

- lacktriangle Предположим, точки распределены равномерно в \mathbb{R}^D .
- ② Шар радиуса R имеет объем $V(R) = CR^D$, где $C = \frac{\pi^{D/2}}{\Gamma(D/2+1)}$ (2R, πR^2 , $\frac{4}{3}\pi R^3$, ...).
- **③** Отношение объемов шаров радиуса $R \varepsilon$ и R:

$$\frac{V(R-\varepsilon)}{V(R)} = \left(\frac{R-\varepsilon}{R}\right)^D \stackrel{D\to\infty}{\longrightarrow} 0$$

- объем уменьшается вокруг центра (даже с малым ε) и концентрируется на поверхности.
- в K-NN: ближайшие соседи перестают быть близкими.
- в гистограмме: сложнее набрать сгусток точек в заданной окрестности.
- Хорошие новости: в практических задачах объекты распределены неравномерно, на многообразиях меньшей размерности.

Содержание

- Метод ближайших центроидов
- 2 К ближайших соседей
- 3 Свойства К-NN
- 4 Взвешенный учет объектов
- 5 Популярные функции расстояния
- 6 Регрессия Надарая-Ватсона

Равномерный учет объектов

• Обозначим K ближайших соседей к точке x:

$$(x_1, y_1), (x_2, y_2), ...(x_K, y_K)$$

 $\rho(x, x_1) \le \rho(x, x_2) \le ... \le \rho(x, x_K)$

• Регрессия:

$$\widehat{y}(x) = \frac{1}{K} \sum_{k=1}^{K} y_k$$

• Классификация:

$$g_c(x) = \sum_{k=1}^K \mathbb{I}[y_k = c], \quad c = 1, 2, ...C.$$

 $\widehat{y}(x) = \underset{c}{\text{arg max }} g_c(x)$

Взвешенное голосование

• Взвешенная регрессия:

$$\widehat{y}(x) = \frac{\sum_{k=1}^{K} w(k, \rho(x, x_k)) y_k}{\sum_{k=1}^{K} w(k, \rho(x, x_k))}$$

Взвешенное голосование

• Взвешенная регрессия:

$$\widehat{y}(x) = \frac{\sum_{k=1}^{K} w(k, \rho(x, x_k)) y_k}{\sum_{k=1}^{K} w(k, \rho(x, x_k))}$$

• Взвешенная классификация:

$$g_c(x) = \sum_{k=1}^K w(k, \rho(x, x_k)) \mathbb{I}[y_k = c], \quad c = 1, 2, \dots C.$$

$$\widehat{y}(x) = \arg \max_c g_c(x)$$

Популярные варианты весов

Веса, зависящие от ранга близости:

$$w_k = \alpha^k, \quad \alpha \in (0,1)$$

$$w_k = \frac{K + 1 - k}{K}$$

Веса, зависящие от расстояний до объектов:

$$w_k = \begin{cases} \frac{\rho(z_K, x) - \rho(z_k, x)}{\rho(z_K, x) - \rho(z_1, x)}, & \rho(x_K, x) \neq \rho(x_1, x) \\ 1 & \rho(x_K, x) = \rho(x_1, x) \end{cases}$$
$$w_k = \frac{1}{\rho(x_k, x)}$$

Пример: взвешенная классификация K=1

Пример: взвешенная классификация K=3

Пример: взвешенная регрессия K-NN

Содержание

- Метод ближайших центроидов
- 2 К ближайших соседей
- Овойства К-NN
- 4 Взвешенный учет объектов
- 5 Популярные функции расстояния
- 6 Регрессия Надарая-Ватсона

Популярные функции расстояния⁴

Название	$\rho(x,z)$
Евклидова	$\sqrt{\sum_{i=1}^{D}(x^{i}-z^{i})^{2}}$
L_p	$\sqrt[p]{\sum_{i=1}^{D} x^i-z^i ^p}$
L_{∞}	$\max_{i=1,2,\dots D} x^i - z^i $
L_1	$\sum_{i=1}^{D} x^i - z^i $
Канберра	$\frac{1}{D} \sum_{i=1}^{D} \frac{ x^i - z^i }{ x^i + z^i }$
Ланса-Уильямса	$\frac{\sum_{i=1}^{D} x^{i} - z^{i} }{\sum_{i=1}^{D} x^{i} + z^{i} }$

Часто определяют меру близости S(x,z), тогда $\rho(x,z)=K(S(x,z))$ для $\downarrow K$, например

$$\rho(x,z) = 1 - S(x,z)$$
 $\rho(x,z) = \frac{1}{S(x,z)}$

 $^{^4}$ Постройте единичные сферы по $L_{1,3}$ $\&_{25}$ $d_{-\infty}$ метрикам.

Косинусная мера близости

 Косинусная мера близости: объекты близки, если угол между их векторами мал.

$$sim(x, z) = \frac{x^T z}{\|x\| \|z\|} = \frac{\sum_{i=1}^{D} x^i z^i}{\sqrt{\sum_{i=1}^{D} (x^i)^2} \sqrt{\sum_{i=1}^{D} (z^i)^2}}$$

• $\langle x,z\rangle=x^Tz=\|x\|\,\|z\|\cos(\alpha)$, где α - угол между x и z.

- ullet метрика $\in [-1,1]$ и инвариантна к длинам $\|x\|,\|z\|.$
 - удобно для текстовых представлений в виде счетчиков слов.

Зависимые признаки

- Объекты вдоль оси y = x более похожи, чем вдоль y = -x. Как это учесть?
- Посчитаем Евклидово расстояние, но для декоррелированных признаков.

Декоррелирующее преобразование

- $x \sim F(\mu, \Sigma)$, $\mu = \mathbb{E}[\mu]$, $\Sigma = cov(x, x)$, $\mu \in \mathbb{R}^D$, $\Sigma \in \mathbb{R}^{D \times D}$
- Декоррелирующее преобразование:

$$z = \Sigma^{-1/2}(x - \mu)$$

- Технически делается через спектральное разложение:
 - ullet собственные вектора образуют ОНБ, т.к. $\Sigma=\Sigma^T$
 - собственные значение показывают растянутость данных вдоль осей собственных векторов.

$$\Sigma = Q \Lambda Q^{T},$$

$$z = Q \Lambda^{-1/2} Q^{T} (x - \mu)$$

Свойства⁵.

$$Ez = 0$$
, $cov[z, z] = I$.

⁵ Локажите

Евклидово расстояние в декоррелированном пространстве

• Расстояние между x и x'= Евклидовому расстоянию в декоррелированном пространстве между $z=\Sigma^{-1/2}(x-\mu)$ и $z'=\Sigma^{-1/2}(x'-\mu)$:

$$\rho_{M}(x, x') = \rho_{E}(z, z') = \sqrt{(z - z')^{T}(z - z')} =
= \sqrt{(\Sigma^{-1/2}(x - x'))^{T} \Sigma^{-1/2}(x - x')}
= \sqrt{(x - x')^{T} \Sigma^{-1/2} \Sigma^{-1/2}(x - x')}
= \sqrt{(x - x')^{T} \Sigma^{-1}(x - x')}$$

• Это расстояние Махаланобиса⁶

⁶Как расстояние упроститься для нескоррелированных признаков разной дисперсии? Проинтерпретируйте.

Идея расстояния Махаланобиса

Множество равноудаленных объектов от (0,0)

(A): в декоррелированном пространстве $\{z: \rho_E(z,0)^2 = 1\}.$

(В): в исходном пространстве

$$\{x: \rho_M(x,\mu)^2 = (x-\mu)^T \Sigma^{-1}(x-\mu) = 1\}^7.$$

 $^{^{7}}$ Докажите, что это действительно будет эллипс (используйте спектральное разложение и свойства Σ).

Функция близости между множествами

- Часто нужно сравнивать множества (корзины товаров, множества пискселей в задаче сегментации и детекции)
- Функция близости между множествами S_1, S_2 близость Жаккарда (Jaccard coefficient):

$$sim(S_1, S_2) = \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|}$$

ullet \in [0,1]. 0-нет общих элементов, 1-одинаковые множества.

Обобщение расстояния Махаланобиса

• Заменим Σ^{-1} на матрицу M:

$$\rho_M(x,x') = \sqrt{(x-x')^T M(x-x')}$$

• Нужна неотрицательность под корнем, поэтому ищем M в виде

$$M = LL^T$$

- Тогда $M = M^T$ и M > 0.
- Выберем такую L, чтобы K-NN давал максимальную точность на кросс-валидации.
- Возможны и другие параметризации $\rho(x, x')$.
- Пример важности выбора расстояния:
 - классификация человека по фото
 - определение позы по фото

Более сложные типы данных

- Сравнение строк:
 - редакторское расстояние (edit distance, Levenstein distance): минимальное число правок для перевода одной строки в другую.
 - каждому типу правки можно давать свой вес

• длина наибольшей общей подпоследовательности (longest common subsequence, используется в git):

$$MaxSubsequence(ABCDE, AXCYE) = ACE$$

- Сравнение графов: редакторское расстояние и наибольший общий подграф.
- Реализуются эффективно методами динамического программирования.

Сравнение временных рядов

 Алгоритм динамической трансформации временной шкалы: перед сравнением ищем оптимальное локальное сжатие-растяжение рядов. (англ. dynamic time warping)

- Можно сравнивать спектры (коэффициенты разложения в ряде Фурье или др. базисе)
- Пример: распознавание речи.

Содержание

- Метод ближайших центроидов
- 2 К ближайших соседей
- Овойства К-NN
- 4 Взвешенный учет объектов
- 5 Популярные функции расстояния
- 6 Регрессия Надарая-Ватсона

Оптимальный константный прогноз

Найдем для обучающей выборки $(x_1, y_1), ... (x_N, y_N)$ оптимальный константный прогноз $\widehat{y} \in \mathbb{R}$:

$$\widehat{y} = \arg\min_{\widehat{y} \in \mathbb{R}} \sum_{i=1}^{N} (\widehat{y} - y_i)^2 = \frac{1}{N} \sum_{n=1}^{N} y_n$$

Оптимальный константный прогноз

Найдем для обучающей выборки $(x_1, y_1), ... (x_N, y_N)$ оптимальный константный прогноз $\widehat{y} \in \mathbb{R}$:

$$\widehat{y} = \arg\min_{\widehat{y} \in \mathbb{R}} \sum_{i=1}^{N} (\widehat{y} - y_i)^2 = \frac{1}{N} \sum_{n=1}^{N} y_n$$

Но нам нужно моделировать нелинейные закономерности:

Оптимальный константный прогноз

Найдем для обучающей выборки $(x_1, y_1), ... (x_N, y_N)$ оптимальный константный прогноз $\widehat{y} \in \mathbb{R}$:

$$\widehat{y} = \operatorname*{arg\;min}_{\widehat{y} \in \mathbb{R}} \sum_{i=1}^{N} (\widehat{y} - y_i)^2 = \frac{1}{N} \sum_{n=1}^{N} y_n$$

Но нам нужно моделировать нелинейные закономерности:

Регрессия Надарая-Ватсона - локальный константный прогноз.

Регрессия Надарая-Ватсона

• Найдем локальный оптимальный константный прогноз:

$$\widehat{y}(x) = \operatorname*{arg\ min}_{\widehat{y} \in \mathbb{R}} \sum_{i=1}^{N} w_i(x) (\widehat{y} - y_i)^2 = \frac{\sum_{i=1}^{N} y_i w_i(x)}{\sum_{i=1}^{N} w_i(x)}$$

• Веса \downarrow при $\uparrow \rho(x,x_i)$ за счет убывающей K(u) ("ядра"):

$$w_i(x) = K\left(\frac{\rho(x,x_i)}{h}\right)$$

- h параметр "ширины окна ^{™8}
 - при $K(u) = \mathbb{I}[u \le 1]$ решение зависит только от окрестности радиуса h вокруг x.
- Англ. local constant regression, kernel regression.

⁸Как он влияет на сложность модели?

Функция ядра

Ядро <i>K</i> (<i>u</i>)	Формула
top-hat	$\mathbb{I}[u <1]$
линейное	$\max\{0,1- u \}$
Епанечникова	$\max\{0, 1 - u^2\}$
экспоненциальное	$e^{- u }$
Гауссово	$e^{-\frac{1}{2}u^2}$
квартичное	$(1-u^2)^2\mathbb{I}[u <1]$

Комментарии

- Веса обеспечивают нелинейность прогноза, но требуют пересчета для каждого x.
- При достаточно общих условиях $\widehat{v}(x) \stackrel{P}{\to} E[v|x]$
- Конкретный вид K(u) не так важен для точности, как выбор h.
- Выбор K(u) влияет на вычислительную сложность.
- Возможен динамический выбор h(x).
 - h(x) ниже, если локальная плотность точек выше, например h(x) - расстояние до K ближайшего соседа x.

 $^{^{9}}$ При каком выборе h(x) и K(u) метод превращается в K-NN?

Локальная линейная регрессия

Вместо локальной константы можно оптимизировать локально линейную регрессию:

$$\sum_{i=1}^{N} w_i(x) (x_i^{\mathsf{T}} \beta - y_i)^2 \to \min_{\beta \in \mathbb{R}}; \quad \widehat{y}(x) = x^{\mathsf{T}} \beta$$

Она устойчивее, лучше аппроксимирует области низкой плотности объектов, но вычислительно сложнее.

Достоинства метрических методов

Метрические методы стоит использовать, если

- N мало
- важна быстрая подстройка к новым данным
- важна интерпретируемость
- ullet есть разумная ho(x,x'), отвечающая y
- сложно придумать признаки, но есть $\rho(x, x')$
 - тексты, графы (editor distance), временные ряды (dynamic time warping)
- есть много классов, но мало примеров для каждого
 - ullet сложно выучивать свою $g_c(x)$ для каждого класса

Недостатки метрических методов

Метрические методы не стоит использовать, если

- D велико
 - $\rho(x, x')$ долго считается
 - проклятие размерности
 - проблема решается ↓ размерности пространства (feature selection, PCA)
- N велико
 - \bullet сложность прогнозов O(N)
 - проблема решается
 - фильтрацией неинформативных объектов (prototype selection)
 - упорядочиванием объектов в пространстве (KD-tree, Ball-tree, MinHash)

Заключение

- Масштаб признаков влияет на прогноз.
- Проклятие размерности ухудшает качество локальных метрических методов.
- Метод ближайших центроидов простая базовая модель.
- Метод К ближайших соседей:
 - К контролирует сложность модели
 - $\rho(x, x')$: выбирается из смысла задачи
 - быстрое обучение, медленный прогноз (возможны ускорения)
 - взвешенный учет соседей
- Регрессия Надарая-Ватсона
 - h контролирует сложность модели
 - обобщение: локальная линейная регрессия