UNCLASSIFIED

AD NUMBER AD287258 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; AUG 1962. Other requests shall be referred to US Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD 21010. **AUTHORITY** BRL, per DTIC Form 55

UNCLASSIFIED

AD 287 258

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

MEMORANDUM REPORT NO. 1423 AUGUST 1962

CALCULATED PEAK PRESSURE-DISTANCE CURVES FOR
PENTOLITE AND TNT

Raiph E. Shear Edwin Q. Wright

Department of the Army Project No. 503-04-002

BALLISTIC RESEARCH LABORATORIES

ABERDEIN PROVING GROUND, MARYLAND

ASTIA AVAILABILITY NOTICE Qualified requestors may obtain copies of this report from ASTIA. The findings in this report are not to be construed as an official Department of the Army position.

BALLISTIC RESEARCH LABORATORIES

MEMORANDUM REPORT NO. 1423

AUGUST 1962

CALCULATED PEAK PRESSURE-DISTANCE CURVES FOR PENTOLITE AND THT

Ralph E. Shear Edwin Q. Wright

Terminal Ballistics Laboratory

Department of the Army Project No. 503-04-002

ABERDEEN PROVING GROUND, MARYLAND

BALLISTIC RESEARCH LABORATORIES

MEMORANDUM REPORT NO. 1423

REShear/EQWright/ic Aberdeen Proving Ground, Md. August 1962

CALCULATED PEAK PRESSURE-DISTANCE CURVES FOR PENTOLITE AND THT

ABSTRACT

The Kirkwood-Brinkley shock propagation theory is used to obtain peak pressure-distance curves for Pentolite and TMT. The curve for Pentolite obtained by using the calculated initial pressure and flow energy at the charge surface as initial values is in excellent agreement with experiment for distances greater than 1.75 charge radii.

The curve for TMT obtained by using some approximate values of the peak pressure and energy at the charge surface is in excellent agreement with some recent free-air blast measurements. The curve is also compared with Brode's calculated pressure-distance curve.

TABLE OF CONTENTS

																				PAGE
ABSTRACT	•	•		•	•	•	•	•		•			•	•	•	•	•		•	3
SYMBOLS .	•	•		•	•	•		•		•	•	•		•	٠	•	•		•	6
INTRODUCT	ION	•	•	•		•	•		•			•	•	•	•	•	•	•	•	7
THE KIRKW	OOD-	-BR	INKI	ΈY	THE	ORY	?	•	•			,	•	•	•	•	•	•	•	9
INTEGRATI	ON (OF :	THE	KII	RKWC)OD-	BRI	NKI.	ΈY	EQU	JATI	ON	€.		•	•	•		• :	13
RESULTS	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• :	14
ACKNOVILED	GEM	ENT		•	•	•	•	•	•	•	•		•	•	. •	•	•	•	• :	16
REFERENCE	S	•	•	•	•	•	•	•		•	•	•		•	•	•	•	•	• :	17
FIGURE 1	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	19
FIGURE 2	•	•	•	•	•	•	•		•	•		•	•	•	•	•	•	•	• 1	20
DISTRIBUT	ION	LI	ST														_	_	_ :	21

LIST OF SYMBOLS

- c local sound velocity
- c sound velocity at 300°K and 1 atm.
- E energy
- h enthalpy
- p excess pressure
- p ambient pressure, 1 atm.
- r distance
- t time
- u mass velocity
- U shock velocity
- ρ density
- ρ density of air at 1 atm and 300°K

A STATE OF THE STA

INTRODUCTION

The prediction of damage to structures caused by blast waves in air requires knowledge of the peak pressure-distance, pressure-time, reflected pressure-time relations as well as the impulse-distance relation. Extensive experimental data exist for the propagation of the blast wave from bare spherical charges detonated in air and many of these data (for Pentolite) have been compiled by Goodman. The theoretical determination of the blast wave paramenters requires the numerical integration of the basic hydrodynamical equations describing the flow and until recently few satisfactory results were available. Brode has calculated the blast wave from a spherical charge of TMT and reports the shock line parameters as well as the flow properties behind the shock. In a less extensive calculation, Makino and Shear have calculated the flow properties behind an experimentally "known" shock line for Pentolite by the method of characteristics. The calculation of Makino and Shear gives the flow properties in the region bounded by the shock line, the explosion gas-air boundary and a terminal characteristic; hence does not include calculations of impulse. Neither of these calculations include shock reflection from a rigid boundary. Therefore, one must rely upon experimental data for the flow properties during reflection or estimates of the shock reflection parameters which are based upon knowledge of the peak reflected pressure or assumed time histories of pressure, (e.g., ref. 4).

The peak pressure-distance curve for Pentolite has been determined by extensive experimental data. This curve, given appropriate initial data, could be calculated by the method used by Brode in his calculations for TNT and comparisons made with the experimental data. The pressure-distance curve can be calculated by the shock propagation theory of Kirkwood-Brinkley⁵ if appropriate initial conditions are given. The early results of Kirkwood and Brinkley showed good agreement with experiment. Since that time the equations of state for air have been revised, experimental techniques have been improved and great mass of

experimental data has been accumulated. Thus, since the Kirkwood-Brinkley theory does provide a simple method of obtaining the peak pressure-distance curve, a comparison should be made with existing data. Also, comparisons should be made with the more refined calculations of the type performed by Brode, when such calculations become available.

In the following pages, the Kirkwood-Brinkley theory will be described briefly and used to obtain pressure-distance curves for Pentolite and TMT under various initial conditions. The initial conditions which are required in the integration are to be specified at (1) the charge surface or (2) at a given fixed distance from the center of the charge.

THE KIRKWOOD-BRINKLEY THEORY

The shock propagation theory of Kirkwood and Brinkley is based upon a similarity constraint imposed upon the energy-time curve of the shock wave. The use of this similarity constraint and the Eugoniot relations enables one to reduce the partial differential equations describing the flow process to a system of ordinary differential equations for peak pressure and shock wave energy as functions of distance from the explosive charge. Detailed derivations and analysis of this propagation theory may be found in references 5, 6, and 7; hence it will be sufficient to outline the basic relations involved in the approximation.

Kirkwood and Brinkley use the equations of continuity and motion, which describe the flow, in the form:

$$\frac{\rho r^2}{\rho_0 R^2} \left(\frac{\partial u}{\partial R} \right)_t + \frac{2u}{r} = -\frac{1}{\rho c^2} \left(\frac{\partial p}{\partial t} \right)_R$$

$$\frac{R^2}{r^2} \left(\frac{\partial u}{\partial t} \right)_T + \frac{1}{\rho_0} \left(\frac{\partial p}{\partial R} \right)_T = 0$$

where the variable R is the position in the undisturbed air of a volume element which has at time t the position r, thus at the shock front r = R. Thus, at the shock front the equations of continuity and motion become

$$\frac{\rho}{\rho_{o}} \left(\frac{\partial u}{\partial R} \right)_{t} + \frac{2u}{R} = -\frac{1}{\rho c^{2}} \left(\frac{\partial p}{\partial t} \right)_{R}$$

$$\left(\frac{\partial u}{\partial t} \right)_{R} + \frac{1}{\rho_{o}} \left(\frac{\partial p}{\partial R} \right)_{t} = 0$$

$$(1)$$

These equations provide two equations for $\frac{\partial p}{\partial t}$, $\frac{\partial p}{\partial R}$, $\frac{\partial u}{\partial t}$ and the Hugoniot relation

$$p = \rho_0 \text{ Vu}$$
 (2)

when differentiated in the direction of the shock path gives a third relation, viz.,

$$\left(\frac{\partial u}{\partial t}\right)_{R} + u\left(\frac{\partial u}{\partial R}\right)_{t} - u\frac{du}{dp}\left(\frac{\partial p}{\partial R}\right)_{t} - \frac{du}{dp}\left(\frac{\partial p}{\partial t}\right)_{R} = 0 \quad (3)$$

The shock front parameters, U; p and u are given as functions of p by the Rugoniot relations. To solve equations (1) and (3) algebraically for the four partial derivations, a fourth relation among the partial derivatives is needed. Kirkwood and Brinkely obtain the desired fourth condition by considering the total work done by the explosive source and through their analysis express the energy-time integral

$$E = \int_{t_R}^{\infty} \mathbf{r}^2 \, \mathrm{pu} \, \mathrm{dt}$$

in terms of the peak pressure-distance curve of the shock wave at distances beyond R, that is,

$$E = \int_{t_R}^{\infty} r^2 pu dt = \int_{R}^{\infty} \rho_0 R^2 \Delta h dR \qquad (4)$$

where Ah is the specific enthalpy increment of a fluid element traversed by the shock wave; the shock leaves the element in a state of higher entropy and energy, from which state it returns adiabat: cally to ambient pressure. Hence Δh depends only on the peak pressure at R, i.e., Δh = Ah (pp). Normalizing the time integral in (4) by the shock front values $R^2 p_R u_R^{"}$ and choosing a reduced time τ given by $\tau = \frac{t - t_R}{u}$

$$\tau = \frac{t - t_R}{\mu} \tag{5}$$

where
$$\frac{1}{\mu} = -\left(\frac{\partial}{\partial t} - \ln (r^2 p u)\right) t = 0$$
 (6)

The energy-time integral, E, becomes

$$E(R) = R^2 p_R U_R \nu(R)_{\mu}$$
 (7)

where $v(R) = \int f(R, \tau) d\tau$ (8)

and
$$f(R,\tau) = \frac{r^2 pu}{R^2 p_R u_R}$$
 (9)

The basis of the Kirkwood-Brinkley shock propagation theory is the approximation of the integral ν (R) (eq. 8). Kirkwood and Brinkley (ref. 6) find as a satisfactory approximation that

$$v(R) = 1 - 1/3 \exp \left\{-p/p_{o}\right\}$$
 (10)

With this approximation and equations (6) and (7) the desired fourth condition among the partial derivatives is obtained. Thus, the equation

$$\frac{1}{u}\frac{\partial u}{\partial t} + \frac{1}{p}\frac{\partial p}{\partial t} + \frac{2u}{R} = -\frac{R^2 p \cdot u \nu(R)}{E(R)}$$
 (11)

and equations (1) and (3) supplemented by the Hugoniot relations give $\frac{\partial p}{\partial R}$, $\frac{\partial p}{\partial t}$, $\frac{\partial u}{\partial R}$ and $\frac{\partial u}{\partial t}$. Kirkwood and Brinkley give the propagation equation in the form

$$\frac{dy}{dx} = -1 + \Omega \qquad \frac{M (R/R_1)^2}{Q}$$

$$\frac{dz}{dx} = -\Omega + \frac{N (R/R_1)^2}{Q} \qquad (12)$$

where
$$\Omega = \Omega (p/p_0) = 1 - \frac{4(\rho_0/\rho) + 2(1 - \rho_0/\rho) G}{2(1 + g) - G}$$

$$M(p/p_0) = \frac{p}{p_0} v \left\{ \frac{12 G \gamma}{\gamma + 1} \left(\frac{c_0}{U} \right)^2 - \frac{1}{2(1 + g) - G} \right\}$$

$$N(p/p_0) = M - \frac{12 \gamma^3}{\gamma + 1} - \frac{\Delta h}{c_0^2} \frac{p_0}{p}$$

$$x = \ln (R/R_1) \qquad 1 + g = 2 - \frac{p}{U} \frac{dU}{dp}$$

$$y = \ln p/p_0$$

$$z = \ln Q \qquad G = 1 - \left(\frac{\rho_0 U}{\rho c} \right)^2$$

$$Q = \frac{4\gamma^2}{\gamma + 1} - \frac{E \rho_0}{R_0} R_1$$

R, = charge radius

 ρ_{A} = loading density of explosive.

and where $\gamma = 1.4$ is the specific heat ratio for air at 300° C and 1 atmosphere pressure.

INTEGRATION OF THE KIRKWOOD-BRINKLEY EQUATIONS

The coefficients Ω , M and N which occur in equations (12) are functions of the shock pressure only. These have been computed from the tables of Shear and Day. Equations (12) can then be solved by specifying either p and E at the charge surface or by specifying p and the slope of the pressure-distance curve at some fixed value of R.

Shear⁹ has calculated the initial pressure and flow energy for Pentolite detonating in free air; he reports the initial pressure to be 669 atm and the specific flow energy to be $47568 \text{ cm}^3 \text{atm/g}$. These values were used as initial conditions at $R/R_1 = 1$, (the charge surface) in the integration of equations (12) and the resulting pressure distance curve is presented in Figure 1.

Sultanoff and McVey have performed some very precise measurements of shock distance vs. time for Pentolite. At a distance corresponding to 20 charge radii the pressure is reported to be 10.408 atm. and the slope, $\frac{dy}{dx}$, calculated by a 5-point Lagrangian interpolated formula is -2.483. These values were used as initial values in equations (12) and the calculated pressure-distance curve curve is shown in Figure 1.

The initial conditions, at the charge surface, for TNT appear to be suspect. Brode² used an initial flow energy of 252.26 K cal/mole TNT in his calculations but because of inconsistencies in his Figure 1 and Figure 16 it is difficult to estimate the initial pressure. When the pressure-distance curve of Brode's Figure 1 is extrapolated back to the charge surface the initial pressure appears to be between 480 and 490 atmospheres, whereas Figure 16 of the same report shows a peak pressure slightly less than 400 atm.

Shear indicates that he obtained an approximate value of 515 atmospheres for the initial peak pressure from Jones and Miller's data and Brode reports on initial flow energy of 221.7 K cal/mole TNT that he calculated from the work of G.I. Taylor Since Taylor's and Jones and Miller's data are not in agreement, consistency is again lacking. However, using P = 515 atm and E = 221.7 cal/mole TNT at the charge surface, equations (12) were integrated and the resulting pressuredistance curve is presented in Figure 2.

RESULTS

The pressure-distance curve obtained from the Kirkwood-Brinkley equations (12) using Shear's initial data shows excellent agreement with experimental data except in the region of the charge surface (see Figure 1) i.e., except for R/R_1 between 1 and 1.75. The pressure-distance curve obtained using the pressure and the slope of the experimental pressure-distance curve 10 at 20 charge radii shows very good agreement with experiment for $R/R_1 \ge 8$. At $R/R_1 = 1$ the pressure is about 570 atm (see Figure 1).

Figure 2 shows some experimental pressure-distance data 13, 14 along with Brode's curve for TNT and the pressure-distance curve obtained from solving equations (12) with initial values of pressure and energy of 515 atm and 221.7 K cal/mole TNT, respectively. The data of reference 13 were obtained from the explosion of 7.9-pound spherical charges of TNT detonated in free air and the data of reference 14 were obtained from the detonation of a 20-ton hemispherical charge of TNT exploded on the ground. In plotting the data of reference 14, no corrections were made for shock interaction with the ground or the "so-called" reflectivity factors. Brode's curve seems to describe the measurements of reference 14 whereas the calculated Kirkwood-Brinkley curve reproduces the free-air measurements of reference 13. For $R/R_1 > 10$ Brode's curve and the data of reference 14 can be shifted to show agreement with the Kirkwood-Brinkley curve and the data of reference 13 but this requires an increase of approximately 30 percent in the energy used by Brode in his calculations. The difference in the shape of the initial protions of the two curves prohibits any possibility of overall agreement for the two curves.

Pressure-distance curves obtained by the Kirkwood-Brinkley theory with an initial energy of 252.2 K cal/mole TWT and initial pressures in the range 430-515 atm. did not differ greatly from the plotted curve in Figure 2 for values of $R/R_1 > 10$. For $R/R_1 > 720$ these calculations give pressures higher than the corresponding pressures of the plotted curve.

Kirkwood and Brinkley calculated a theoretical pressure-distance curve for cast TMT. (NURC. A-341). They used p=525 atm; and E=240.6 cal/mole TMT in their calculations; the resulting curve does not differ significantly from the curve plotted in Figure 2.

The excellent agreement of the pressure-distance curve for Pentolite, calculated from the data of Shear, with the experimental pressure-distance data indicates the need for re-investigation of the Kirkwood-Brinkley theory and further calculations of the detonation characteristics of explosives. For, if initial conditions for the Kirkwood-Brinkley theory can be prescribed by theory and the resulting shock line adequately describes the pressure-distance relation, this provides a quick and inexpensive method for prediction of the shock properties of explosives without need of any experimental data. Thus, the number of costly and time consuming experiments required to determine the blast properties of newly developed explosives could be reduced. The above described calculations could be performed in a few hours and the results could be used as initial conditions for a blast calculation of the type performed by Brode. The Kirkwood-Brinkley calculation required less than ten minutes of computation time.

Ralph E. Shear

EDWIN Q. WRIGHT

ACKNOWLEDGEMENT

The assistance of the members of C. Hauff's programming section, who were responsible for coding and programming this problem for the BRLESC Computer, is gratefully acknowledged.

REFERENCES

- 1. Goodman, H. Compiled Free-Air Blast Data on Bare Spherical Pentolite, BRL Report No. 1092, 1960.
- 2. Brode, H. A Calculation of the Blast Wave from a Spherical Charge of TNT, Rand Report RM 1965, The Rand Corp., Santa Monica, California 1957.
- Makino, R. and Shear, R. Unsteady Spherical Flow Behind a Known Shock Line BRL Report No. 1154, 1961.
- 4. a. Shear, R. E. and McCane, P. Normally Reflected Shock Parameters BRLM 1273, 1960.
 - b. Chandrasekher, S. Normal Reflection of a Blast Wave, BRL Report No. 439, 1943
 - c. Finkelstein, R. Normal Reflection of Shock Waves, Explosive Research Report No. 6, Navy Department, Bureau of Ordnance, Washington, D.C. 1944.
 - d. Makino, R. and Shear, R. Estimation of Normal Reflected Impulse of Blast Waves, BRL Technical Note No. 1010, 1955.
- 5. a. Kirkwood, J. and Brinkley, S. R., Jr. Theory of the Propagation of Shock Waves from Explosive Sources in Air and Water OSRD Report No. 4814, Office of Scientific Research and Development 1945.
 - b. See also The Physical Review Vol. 71, 1947, P. 606.
- 6. Cole, R. M. Underwater Explosions Princeton University Press, 1948.
- 7. Makino, R. The Kirkwood-Brinkley Theory of the Propagation of Spherical Shock Waves, and its Comparison with Experiment BRL Report No. 750, 1951.
- 8. Shear, R. E. and Day, B. D. Tables of Thermodynamic and Shock Front Parameters for Air, BRL Memo Report No. 1206, 1959.
- 9. Shear, R. E. Detonation Properties of Pentolite, BRL Report No. 1159, 1961.
- 10. a. Sultanoff, M. and McVey, G. Shock Pressure at and Close to the Surface of Spherical Pentolite Charges Inferred from Optical Measurements, BRL Report No. 917, 1954.
 - b. Sultanoff, M. and McVey, G. Observations of the Shock From Spherical Pentolite Charges, BRL Report No. 984, 1956.

- 11. Jones, H. and Miller, A. R. The Detonation of Solid Explosives Proc. Foy. Soc. (London) A-194, 1948, P. 480.
- 12. Taylor, G. I. The Dynamics of the Combustion Products Behind Plane and Spherical Detonation Fronts in Explosives, Proc. Roy. Soc, (London) A-200, 1950, P. 235.
- 13. Fisher, E.M. And Pittman, J. F. Air Blast from the Detonation of Small TNT Charges NAVORD Report 2890, U.S. Naval Ordnance Laboratory, White Oak, Maryland 1953.
- 14. Canadian Observations on 20 Ton TNT Explosion, Suffield Experimental Station, Ralston, Alberta, Canada, Draft Copy, Jan. 1961.

CALLES OF SEPTEMBER OF CONTROL OF STREET

FIG. 1
PEAK EXCESS PRESSURE RATIO VS. DISTANCE IN CHARGE RADII
FOR PENTOLITE AT A LOADING DENSITY OF 1.65 g/cm⁵

FIG. 2

PEAK EXCESS PRESSURE RATIO VS DISTANCE IN CHARGE RADII
FOR INT AT A LOADING DENSITY OF 1.5 g/cm³

No. of Copies		No. of Copies	Organization
10	Commander Armed Services Technical Information Agency ATTN: TIPCR		Chief of Engineers Department of the Army ATTN: ENGMC-EB Washington 25, D. C.
	Arlington Hall Station Arlington 12, Virginia	1	Commanding General White Sands Missile Range, New Mexico
1	Director of Defense Research and Engineering (OSD) ATTN: Director/Ordnance		ATMN: ORDBS-OM, Technical Library, PR-10
1	Washington 25, D. C. Director	1	Commanding General U. S. Army Combat Developments Command Fort Belvoir, Virginia
	IDA/Weapon Systems Evaluation Group Room IE880, The Fentagon Washington 25, D. C.	7	Army Research Office Arlington Hall Station Arlington, Virginia
1	Director Research & Development Division Army Materiel Command ATTN: AMCOR-TB Washington 25, D. C.	1	Commander U. S. Naval Crdnance Test Station ATTN: Code 4541 China Lake, California
1.	Commanding General Frankford Arsenal ATTN: Library Branch, 0270, Bldg. Philadelphia 37, Pennsylvania	3 40	Chief, Bureau of Naval Weapons ATTN: DIS-33 Department of the Navy Washington 25, D. C.
3	Commanding Officer Picatinny Arsenal ATTN: Feltman Research and Engineering Laboratories Dover, New Jersey	1	Chief of Naval Operations ATTN: Op 374 - Dr. J. Steinhardt Department of the Navy Washington 25, D. C.
1	Commanding Officer Diamond Ordnance Fuze Laboratories ATTN: Technical Information Office Branch Ol2 Washington 25, D. C.	3	Commander Neval Ordnance Laboratory ATTN: Mr. Wm. Filler Mr. Peter Hanlon - Exp. Research Department Air Ground Exp. Division White Cak, Silver Spring 19, Maryland
1	Research Analysis Corporation ATTN: Document Control Office 6935 Arlington Road Bethesda, Maryland Washington 14, D. C.	2:	Commanding Officer Naval Ordnance Laboratory ATTN: Dr. H. A. Thomas Library Corona, California

No. of Copies	Organization	No. of Copies	Organization
1	Commanding Officer U. S. Naval Air Development Center Johnsville, Pennsylvania	2	Director Air University Library ATTN: AUL (3T-AUL-60-118) Maxwell Air Force Base, Alabama
2	Commander U. S. Naval Ordnance Test Station ATTN: Technical Library China Lake, California		Commander Air Force Missile Test Center ATTN: J. R. Atkins - MRSS Patrick Air Force Base, Florida
2	Commander U. S. Naval Weapons Laboratory Dahlgren, Virginia	3	Commander Aeronautical Systems Division ATIN: WWAD
2	Commander Air Force Systems Command ATTN: SCRR2 Andrews Air Force Base Washington 25, D. C.	1	WWY WWDS Wright-Patterson Air Force Base, Ohio Commander
ı	Commander Arnold Engineering Development Cente ATTN: AEOI Arnold Air Force Station Tullahoma, Tennessee		Foreign Technology Division ATTN: Associated Equipment Section, ATIAS Wright-Patterson Air Force Base, Ohio Director, Project RAND
1	Commander Air Force Ballistic Missile Division Norton Air Force Base, California	n	Department of the Air Force 1700 Main Street Santa Monica, California
ı	Commander Air Proving Ground Center ATTN: PGAPI Eglin Air Force Base, Florida		Chief of Staff U. S. Air Force ATTN: AFDRT AFCOA AFORQ The Pentagon
	Of Interest to: PGTWR PGTW	1	Washington 25, D. C. Director of Research and Development U. S. Air Force
2	Commander Air Force Cambridge Research Laboratory ATTN: CRRDM - Lt. G. Meltz L. G. Hanscom Field Bedford, Massachusetts		ATTN: AFDRT Washington 25, D. C.

or in the first in the state of the state of

No. of Copies	Organization	No. of Copies	Organization
ή	University of California Lawrence Radiation Laboratory Technical Information Division ATTN: Clovis G. Craig P. O. Box 808	2.	Aircraft Ammaments, Inc. ATTN: Dr. Wilfred Baker Mr. R. R. Mills, Jr. P. O. Box 126 Cockeysville, Maryland
	Dr. Sidney Fernbach Dr. John Foster	2	Armour Research Foundation Illinois Institute of Technology Center ATTA: F. Forzel - Volpe Chicago 16, Illinois
1	Director National Aeronautics and Space Administration 1520 H Street	ī	Broadview Research Corporation ATTN: Mr. Kenneth Kaplan 1811 Trousdale Drive Burlingame, California
,. 1	Washington 25, D. C. Director	1	CONVAIR, A Division of General Dynamics Corporation P. O. Box 1950
_	National Aeronautics and Space Administration ATTN: Mr. Peirce Langley Research Center Langley Field, Virginia	1	Sar. Diego 12, California
1	U. S. Atomic Energy Commission Sandia Corporation Sandia Base Albuquerque, New Mexico	1	Cornell Aeronautical Laboratory, Inc. ATTN: Mr. Joseph Desmond, Librarian Buffalo 5, New York
4	U. S. Atomic Energy Commission Los Alamos Scientific Leboratory P. O. Box 1663 Los Alamos, New Mexico	3	General Electric Research Laboratory P. O. Box 1088 Schenectady, New York Grumman Aircraft Engineering
1	Aerojet-General Corporation 6352 North Irwindale Road Azusa, California	*	Corporation ATTN: Armament Group Bethpage, Long Island, New York
ı	Aerojet-General Corporation Technical Information Office ATTN: R. G. Weitz Sacramento Plants P. O. Box 1947 Sacramento 9, California	1	Lockheed Aircraft Corporation Military Operations Research Division ATTN: Mr. R. A. Bailey - Division Engineer Burbank, California

No. of Copies	Organization	No. of Coples	Organization
7	McDonnell Aircraft Corporation ATTN: Armament Group P.O. Box 516 St. Louis 3, Missouri	1	Chance-Vought Aircraft Company ATTN: Dr. C.C. Wan P.O. Box 5907 Dallas, Texas
1	Northrop Aircraft, Inc. 1001 E. Broadway Hawthrone, California	1	Douglas Aircraft Company Long Beach, California
2	Republic Aviation Corporation Farmingdale, Long Island, New York	1 s	Hughes Aircraft Company ATTN: Mr. Dana Johnson Research and Development Laboratories
2	The Rand Corporation ATTN: H.L. Brode F.R. Gilmore	4	Florence Avenue at Teale Street Culver City, California
	1700 Main Street Santa Monica, California	4	The Martin Company ATTN: Mr. S.L. Rosing Mail No. 356
1	Space Technology Laboratories, Inc ATTN: Technical Information Center Document Processing P.O. Box 95001 Los Angeles 45, California		Middle River, Maryland Mr. Dobray - Mail No. X813 Library Mr. Denkle - Mail No. J3149 Baltimore 3, Maryland
1	Applied Physics Laboratory The Johns Hopkins University ATTN: J. Juracek, Jr. 8621 Georgia Avenue Silver Spring, Maryland	2	North American Aviation, Inc. ATTN: Mr. D.H. Mason Mr. J. Ward Engineering Technical File 12214 Lakewood Boulevard Downey, California
1	California Institute of Technology Guggenheim Aeronautical Laboratory ATTN: H.W. Leipmann Pasadena 4, California		Midwest Research Institute ATTN: B.L. Rhodes 425 Volker Boulevard Kansas City 10, Missouri
1	Boeing Airplane Company ATTN: Mr. W.A. Pearce Wichita, Kansas	1	The Johns Hopkins University Institute for Cooperative Research 3506 Greenway
1	Boeing Airplane Company ATTN: Mr. J. Christian - Armament Unit Mr. Ray Elain - Aerospace Division Seattle 24, Washington	2	Baltimore 18, Maryland Massachusetts Institute of Technology ATTN: Dr. James Mar, Bldg. 23-111 Dr. Emmett A. Witmer, Rm. 41-219 Cambridge 39, Massachusetts

No. of Copies		No. of Copies	Organization
1	Time Time I To describe days	1	Professor W. Hold
1	Furdue University	_	
	Director of Statistical Laboratory		Brown University
	ATTN: Dr. Kossach		Graduate Division of Applied
	Lafayette, Indiana		Mathematics
l	Stanford Research Institute		Providence 12, Rhode Island
1	Menlo Park, California	1	Professor W. Sears
	mento rank, cattiornia	1	Cornell University
2	Stevens Institute of Technology		Graduate School of
=	Davidson Laboratory		Aeronautical Engineering
	ATTN: Dr. S.J. Lukasik		Ithaca, New York
	Mr. L.H. Weeks		Tonaca, New Tork
	Hoboken, New Jersey	1	Professor G.B. Whitham
	noconce, new sersey	~	New York University
1	University of Michigan		Institute of Mathematical Sciences
_	Department of Engineering		25 Waverly Place
	ATTN: Dr. O. Laporte		New York 3, New York
	Ann Arcor, Michigan		,
	,	l	Dr. Paul Richards
1	University of Utah		Technical Operations, Inc.
	Institute of Rate Processes		Brulington, Massachusetts
	ATTN: M.A. Cook		- ·
	Salt Lake City, Utah	1	Dr. J.S. Rinehart
			University of Colorado
1	Professor W. Bleakney		School of Mines
	Palmer Physical Laboratory		Golden, Colorado
	Princeton University		
	Princeton, New Jersey	1	Mr. F.T. Bodurtha
-			E.I. DuPont de Nemours and Company
1	Ir. S.R. Brinkley	-	Louviers Building
	Combustion and Explosives Research	, inc.	Wilmington 98, Delaware
	Alcoa Building	,	Mary T. G., No. Labor.
	Pittsburgh 19, Pennsylvania	1	Mr. H.G. Leistner -
1	Professor J.P. Hirschfelder		Civil Engineer
7-	University of Wisconsin		Pan American World Airways, Inc.
	Department of Chemistry		Patrick Air Force Base, Florida
	Madison, Wisconsin	1	Mr. Robert McAlevy
	PERCEPORT NECORDER	1	Princeton University
1	Professor K.O. Friedrichs		Forrestal Research Center
-	New York University		Department of Aeronautical Engineering
	Applied Mathematics Panel		Princeton, New Jersey
	New York, New York		ALLEGOVOLS MOR GOLD U

No. of Copies	Organization
10	The Scientific Information Officer Defence Research Staff British Embassy 3100 Massachusetts Avenue, N.W. Washington 8, D.C.
	Of Interest to: Mr. G. Simm R.A.E. Mr. James Fort Halstead, England
14	Defence Research Member Canadian Joint Staff 2450 Massachusetts Avenue, N.W. Washington 25, D.C.

The Kirkwood-Brinkley shock propagation theory is used to obtain peak pressure-distance curves for Pentolite and TML. The curve for Pentolite obtained by using the calculated initial pressure and flow energy at the charge surface at initial values is in excellent agreement with experiment for distances greater Mathematical Analysis Explosions - Pressure UNCLASSIFIED Air Blest Rellistic Research Laboratories, APG CALCULATED FYAK PRESSURE-DISTANCE CHAVES FOR PERFOLITE August 1962 Accession No. BRU Memorandum Report No. 1425 K.E. Chear, E. Q. Wright DA Proj. No. 503-04-002 THE CHA The Kirkwood-Brinkley shock propagation theory is used to obtain peak pressure-distance curves for Pentolite and UNF. The curve for fentolite obtained by using the calculated initial pressure and flow energy at the charge surface as initial values is in excellent agreement with experiment for distances greater Air Elmet - Mathematical Analysis Explosions - Pressure UNCLASSIFIED CALCULATED FIGHT PRESSURE-DISTANCE CHRYES FOR PERMICITUE August 1962 Balliatic Research Laboratories, APC 1423 BRL Memorandum Report Ho. B. Q. Wright DA Proj. No. 503-04-002 than 1.75 charge radiff. R.E. Shear,

The curve for TMT obtained by using some approximate values of the peak pressure and energy at the charge surface is in excellent agreement with some recent free-air blast measurements. The curve is also compared with Brode's calculated pressure-distance curve.

AD Accession Bo.

Ballistic Research Laboratories, ARC
CALCULATED FEAR PRESSURE-DISTANCE CHRYSS FOR FERFOLLTE
AND TET.

R.E. Shear, E. Q. Wright

Explosions - Pressure

BRG Memorandum Report No. 1425 August 1962

DA Project No. 503-04-002

The Kirkwood-Brinkley shock propagation theory is used to obtain peak pressure-dintance curven for Pentolite and TWF. The curve for Pentolite obtained by insing the calculated initial pressure and flow energy at the charge surface as initial values is in excellent agreement with experiment for dintances greater than 1.75 charge radio.

The curve for INT obtained by using some approximate values of the peak pressure and energy at the charge surface is in excellent agreement with some recout free-air blast measurements. The curve is also compared with Brode's calculated pressure-distance curve.

AND THE Shear, E. q. Wright

R.E. Shear, E. G. Wright

R.E. Shear, E. q. Wright

R.E. Shear, E. Wright

R.E. Shear,

The curve for TMT obtained by using some approximate values of the peak pressure and energy at the charge surface is in excellent agreement with some recent free-air blast measurements. The curve is also compared with Brode's calculated pressure-distance curve.

The state of the s

11-4-

O CONTRACTOR CONTRACTOR OF THE CONTRACTOR