Introduction to Firedrake

2022年10月22日

目录

1	Pois	sson e	quation	2
	1.1	Dirich	llet 问题	2
		1.1.1	简单算例	2
		1.1.2	Firedrake 内建网格生成函数	3
		1.1.3	UFL 表达式	5
		1.1.4	函数空间创建	7
		1.1.5	线性方程组参数设置	7
		1.1.6	查看高斯积分公式	9
		1.1.7	边界条件设置	10
		1.1.8	Gmsh 网格边界设置	12
	1.2	纯 Ne	umann 边界条件	14
		1.2.1	Use nullspace of solve	15
		1.2.2	Using Lagrange multiplier	16
	1.3	计算收	女敛阶	18
		1.3.1	生成网格序列	18
		1.3.2	投影到细网格上的空间中	20
		1.3.3	插值到细网格上的空间中	21
	1.4	构造等	等参元	23
		1.4.1	移动网格	23
		1.4.2	简单映射边界点	24
		1.4.3	同时移动边界单元的内点	25
		1.4.4	数值实验	25
	1.5	间断有	「限元方法	26
		1.5.1	UFL 符号	26
		1.5.2	UFL 测度	26
		1.5.3	变分形式	26
	1.6	自由度	⋶映射关系	28
		1.6.1	编号	28
		1.6.2	有限元自由度	28
		162	本套矩阵和向县 (DFTSa)	20

	2	NS	方程	29		
		2.1	函数空间	30		
		2.2	弱形式	30		
		2.3	定义 Solver	31		
		2.4	时间循环	32		
			2.4.1 Constant 用于时间依赖的表达式	32		
		2.5	ParaView 可视化计算结果	32		
			2.5.1 二维结果 (surf 图)	32		
			2.5.2 选择部分区域显示	33		
	3	多进	多进程并行			
		3.1	DMPlex	33		
		3.2	输出	33		
		3.3	communicator	34		
Γ1] :	1		oisson equation matplotlib.pyplot			

1.1 Dirichlet 问题

求解如下 Poisson 方程

$$\begin{split} -\Delta u &= f & \text{in} \quad \Omega, \\ u &= g_D & \text{on} \quad \partial \Omega_D, \\ \frac{\partial u}{\partial n} &= g_N & \text{on} \quad \partial \Omega_N, \end{split} \tag{1}$$

其中 $\partial\Omega_D\cap\partial\Omega_N=\partial\Omega,$ 并且 $\int_{\partial\Omega_D}\mathrm{d}s\neq0.$

试验和测试函数空间

$$\begin{split} H_E^1 &:= \{ u \in H^1 \, | \, u = g_D \ \, \text{ on } \, \, \partial \Omega_D \} \\ H_{E_0}^1 &:= \{ u \in H^1 \, | \, u = 0 \ \, \text{ on } \, \, \partial \Omega_D \} \end{split} \tag{2}$$

变分问题

求解 $u \in H_E^1$, 使得

$$\int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} f v + \int_{\partial \Omega_N} g_N v \qquad \forall v \in H^1_{E_0}. \tag{3}$$

1.1.1 简单算例

- $\boxtimes \ \Omega = (0,1) \times (0,1),$
- 右端项 $f = \sin(\pi x)\sin(\pi y)$

• 边界条件: $\partial \Omega_N = \emptyset$, $g_D = 0$ (齐次 Dirichlet)

```
from firedrake import *
[2]:
     import matplotlib.pyplot as plt
     N = 8
     test_mesh = RectangleMesh(nx=N, ny=N, Lx=1, Ly=1)
     x, y = SpatialCoordinate(test_mesh)
     f = sin(pi*x)*sin(pi*y)
     g = Constant(0)
     V = FunctionSpace(test_mesh, 'CG', degree=1)
     u, v = TrialFunction(V), TestFunction(V)
     a = inner(grad(u), grad(v))*dx
     L = inner(f, v)*dx
                                           # or f*v*dx
     bc = DirichletBC(V, g=g, sub_domain='on_boundary')
     u_h = Function(V, name='u_h')
     solve(a == L, u_h, bcs=bc)
                                         # 有不同求解方式, 可添加求解参数
     \# solve(a == L, u_h, bcs=(bc,))
     fig, ax = plt.subplots(figsize=[4, 4], subplot_kw=dict(projection='3d'))
     trisurf(u_h, axes=ax)
```

[2]: <mpl_toolkits.mplot3d.art3d.Poly3DCollection at 0x7fa87ed27400>

1.1.2 Firedrake 内建网格生成函数

UnitDiskMesh, IntervalMesh, RectangleMesh, CubeMesh ...

```
from firedrake import utility_meshes
[3]:
     from pprint import pprint
     pprint(utility_meshes.__all__)
     ['IntervalMesh',
      'UnitIntervalMesh',
      'PeriodicIntervalMesh',
      'PeriodicUnitIntervalMesh',
      'UnitTriangleMesh',
      'RectangleMesh',
      'TensorRectangleMesh',
      'SquareMesh',
      'UnitSquareMesh',
      'PeriodicRectangleMesh',
      'PeriodicSquareMesh',
      'PeriodicUnitSquareMesh',
      'CircleManifoldMesh',
      'UnitDiskMesh',
      'UnitTetrahedronMesh',
      'BoxMesh',
      'CubeMesh',
      'UnitCubeMesh',
      'PeriodicBoxMesh',
      'PeriodicUnitCubeMesh',
      'IcosahedralSphereMesh',
      'UnitIcosahedralSphereMesh',
      'OctahedralSphereMesh',
      'UnitOctahedralSphereMesh',
      'CubedSphereMesh',
      'UnitCubedSphereMesh',
      'TorusMesh',
      'CylinderMesh']
     查看帮助 1. ?<fun-name> 2. help(<fun-name>)
     ?CubeMesh
[4]:
    Signature:
    CubeMesh(
         nx.
         ny,
         nz,
         L,
         reorder=None,
         distribution_parameters=None,
         comm=<mpi4py.MPI.Intracomm object at 0x7fa88bdc2f10>,
         name='firedrake_default',
    Call signature: CubeMesh(*args, **kwargs)
    Type:
                     cython_function_or_method
                     <cyfunction CubeMesh at 0x7fa884559c70>
    String form:
                     ~/software/firedrake-mini-petsc/src/firedrake/firedrake/utility_meshes.py
    File:
    Docstring:
    Generate a mesh of a cube
     :arg nx: The number of cells in the x direction
     :arg ny: The number of cells in the y direction
```

:arg nz: The number of cells in the z direction

:arg L: The extent in the x, y and z directions

:kwarg reorder: (optional), should the mesh be reordered?

:kwarg comm: Optional communicator to build the mesh on (defaults to ${\tt COMM_WORLD}$).

:kwarg name: Optional name of the mesh.

The boundary surfaces are numbered as follows:

* 1: plane x == 0

* 2: plane x == L

* 3: plane y == 0

* 4: plane y == L

* 5: plane z == 0

* 6: plane z == L

1.1.3 UFL 表达式

算子 DOC: https://fenics.readthedocs.io/projects/ufl/en/latest/manual/form_language.html#tensoralgebra-operators)

1. dot

张量缩并, dot(u, v) 对 u 的最后一个维度和 v 的第一个维度做缩并.

2. inner

张量内积 (分量对应乘积之和). 对第二个张量取复共轭.

- 3. grad and nabla_grad
 - 1. grad

对张量求导, 新加维度为最后一个维度.

1. scalar

$$\operatorname{grad}(u) = \nabla u = \frac{\partial u}{\partial x_i} \mathbf{e}_i$$

2. vector

$$\operatorname{grad}(\mathbf{v}) = \nabla \mathbf{v} = \frac{\partial v_i}{\partial x_j} \mathbf{e}_i \otimes \mathbf{e}_j$$

3. tensor

设T 为秩为r 的张量,那么

$$\operatorname{grad}(\mathbf{T}) = \nabla \mathbf{T} = \frac{\partial \mathbf{T}_{\ell}}{\partial x_i} \mathbf{e}_{\ell_1} \otimes \cdots \otimes \mathbf{e}_{\ell_r} \otimes \mathbf{e}_i$$

其中 ℓ 是长度为 r 的多指标 (multi-index).

2. nabla_grad

类似 grad, 不过新加维度为第一个维度

1. scalar (same with grad)

$$\operatorname{nabla_grad}(u) = \nabla u = \frac{\partial u}{\partial x_i} \mathbf{e}_i$$

2. vector

$$\text{nabla_grad}(\mathbf{v}) = (\nabla \mathbf{v})^T = \frac{\partial v_j}{\partial x_i} \mathbf{e}_i \otimes \mathbf{e}_j$$

3. tensor

设T 为秩为r 的张量,那么

$$\operatorname{nabla_grad}(\mathbf{T}) = \frac{\partial \mathbf{T}_{\ell}}{\partial x_i} \mathbf{e}_i \otimes \mathbf{e}_{\ell_1} \otimes \cdots \otimes \mathbf{e}_{\ell_r}$$

- 4. div and nabla_div
 - 1. div

对最后一个维度的偏导数进行缩并.

设T 为秩为r 的张量,那么

$$\operatorname{div}(\mathbf{T}) = \sum_i \frac{\partial \mathbf{T}_{\ell_1 \ell_2 \cdots \ell_{r-1} i}}{\partial x_i} \mathbf{e}_{\ell_1} \otimes \cdots \otimes \mathbf{e}_{\ell_{r-1}}$$

2. nabla_div

类似 div, 不过对第一个维度的偏导数进行缩并.

- 5. 两个表达式:
 - 1. $(u \cdot \nabla)v \to \text{dot(u, nabla_grad(v))}$ or dot(grad(v), u)
 - 2. $\Delta u \rightarrow \text{div(grad(u))}$

非线性函数 https://fenics.readthedocs.io/projects/ufl/en/latest/manual/form_language.html#basic-nonlinear-functions

- abs, sign
- pow, sqrt
- exp, ln
- cos, sin, ...
- ...

Measures

- 1. dx: the interior of the domain Ω (dx, cell integral);
- 2. ds: the boundary $\partial\Omega$ of Ω (ds, exterior facet integral);
- 3. dS: the set of interior facets Γ (dS, interior facet integral).

在区域内部的边界上积分时,需要使用 dS 并使用限制算子 + 或 -, 如:

$$a = u('+')*v('+')*dS$$

1.1.4 函数空间创建

- FunctionSpace 标量函数空间
- VectorFunctionSpace 向量函数空间
- MixedFunctionSpace 混合空间

支持的单元类型: CG, DG, RT, BDM, ... (https://firedrakeproject.org/variational-problems.html#supported-finite-elements)

1.1.5 线性方程组参数设置

三种求解方程组 Coding 方式 仍然以上述 Poisson 方程为例: Possion Example

可以使用 %load 加载文件内容到 notebook 中

%load possion_example1.py

```
# %load possion_example1.py
from firedrake import *
from firedrake.petsc import PETSc
methods = ['solve',
           'assemble',
           'LinearVariationalSolver']
# Get commandline args
opts = PETSc.Options()
case_index = opts.getInt('case_index', default=0)
if case_index < 0 or case_index > 2:
    raise Exception('Case index must be in [0, 2]')
case = methods[case_index]
test_mesh = RectangleMesh(nx=N, ny=N, Lx=1, Ly=1)
x, y = SpatialCoordinate(test_mesh)
f = sin(pi*x)*sin(pi*y)
g = Constant(0)
V = FunctionSpace(test_mesh, 'CG', degree=1)
u, v = TrialFunction(V), TestFunction(V)
a = inner(grad(u), grad(v))*dx
L = inner(f, v)*dx
                                      # or f*v*dx
bc = DirichletBC(V, g=g, sub_domain='on_boundary')
u_h = Function(V, name='u_h')
if case == 'solve':
    PETSc.Sys.Print('Case: solve')
    \# solve(a == L, u_h, bcs=bc)
    solve(a == L, u_h, bcs=bc,
          solver_parameters={
                                        # 设置方程组求解算法
              # 'ksp view': None,
              'ksp_type': 'preonly',
```

```
'pc_type': 'lu',
              'pc_factor_mat_solver_type': 'mumps'
          },
                                        # 命令行参数前缀
          options_prefix='test'
elif case == 'assemble':
   PETSc.Sys.Print('Case: assemble')
   A = assemble(a, bcs=bc)
   b = assemble(L, bcs=bc)
    solve(A, u_h, b,
          options_prefix='test'
elif case == 'LinearVariationalSolver':
   PETSc.Sys.Print('Case: LinearVariationalSolver')
    problem = LinearVariationalProblem(a, L, u_h, bcs=bc)
    solver = LinearVariationalSolver(problem,
                                     solver parameters={
                                          # 'ksp view': None,
                                          'ksp_monitor': None,
                                          'ksp_converged_reason': None,
                                          'ksp_type': 'cg',
                                          'pc_type': 'none'
                                     },
                                     options_prefix='test')
    solver.solve()
else:
    raise Exception(f'Unknow case: {case}')
File('pvd/poisson_example.pvd').write(u_h)
print('Done!')
```

Case: solve Done!

• KSP scalable linear equations solvers, Krylov subspace solver with preconditioner

参数: https://petsc.org/main/docs/manual/ksp/#tab-kspdefaults

• PC

参数: https://petsc.org/main/docs/manual/ksp/#tab-pcdefaults

- 外部包 pc 参数: https://petsc.org/main/docs/manual/ksp/#tab-externaloptions

命令行参数 参数说明

1. mat_type: aij 或 matfree

2. ksp_type: 设置迭代法

3. pc_type: 设置预处理方式

4. ksp_monitor: 输出每步迭代的残差

5. ksp_view: 迭代完成后输出 ksp 的设置等内容

6. ksp_converged_reason: 输出收敛的原因

LU 分解参数设置

Ref: https://petsc.org/release/src/dm/impls/stag/tutorials/ex4.c.html

```
-ksp_type -pc_type lu -pc_factor_mat_solver_type mumps
```

这里 pc_factor_mat_solver_type 设置 LU 分解使用的 package (如 petsc, mumps, umfpack, superlu). 其他选项见: https://petsc.org/release/docs/manualpages/Mat/MatSolverType/

多重网格

https://nbviewer.org/github/firedrakeproject/firedrake/blob/master/docs/notebooks/07-geometric-multigrid.ipynb

终端演示: 设置命令行参数控制线性方程组的求解

```
python possion_example1.py -case solve \
    -ksp_monitor -ksp_converged_reason \
    -ksp_type cg -pc_type jacobi

python possion_example1.py -case assemble \
    -ksp_monitor -ksp_converged_reason \
    -ksp_type gmres -pc_type none

python possion_example1.py -case LinearVariationalSolver \
    -ksp_monitor -ksp_converged_reason \
    -ksp_type minres -pc_type none
```

1.1.6 查看高斯积分公式

0.08333333])},

```
import FIAT
[6]:
     import finat
     ref_cell = FIAT.reference_element.UFCTriangle()
     from pprint import pprint
     ret = {}
     for i in range(0, 5):
         qrule = finat.quadrature.make_quadrature(ref_cell, i)
         ret[i] = {'points': qrule.point_set.points, 'weights': qrule.weights}
     pprint(ret)
     {0: {'points': array([[0.333333333, 0.33333333]]), 'weights': array([0.5])},
     1: {'points': array([[0.33333333, 0.33333333]]), 'weights': array([0.5])},
     2: {'points': array([[0.16666667, 0.16666667],
            [0.16666667, 0.66666667],
            [0.66666667, 0.16666667]]),
          'weights': array([0.16666667, 0.16666667, 0.16666667])},
     3: {'points': array([[0.65902762, 0.23193337],
            [0.65902762, 0.10903901],
            [0.23193337, 0.65902762],
            [0.23193337, 0.10903901],
            [0.10903901, 0.65902762],
            [0.10903901, 0.23193337]]),
          'weights': array([0.08333333, 0.08333333, 0.08333333, 0.08333333,
    0.08333333,
```

显示选择积分公式

```
mesh = RectangleMesh(nx=8, ny=8, Lx=1, Ly=1)
V = FunctionSpace(mesh, 'CG', 1)
cell = V.finat_element.cell

x, y = SpatialCoordinate(mesh)
f = x**3 + y**4 + x**2*y**2

for i in range(0, 5):
    qrule = finat.quadrature.make_quadrature(ref_cell, i)
    ret[i] = {'points': qrule.point_set.points, 'weights': qrule.weights}
    v = assemble(f*dx(rule=qrule))
    print(f'degree={i}, v = {v}', )

print('Default: v =', assemble(f*dx(rule=None)))
```

```
degree=0, v = 0.5579329125675148
degree=1, v = 0.5579329125675148
degree=2, v = 0.5611099431544168
degree=3, v = 0.5611100938585061
degree=4, v = 0.5611111111111102
Default: v = 0.56111111111111102
```

1.1.7 边界条件设置

内建网格边界编号

RectangleMesh:

- 1: plane x == 0
- 2: plane x == Lx
- 3: plane y == 0
- 4: plane y == Ly

```
from firedrake import *
import matplotlib.pyplot as plt

def plot_mesh_with_label(mesh, axes=None):
    if axes is None:
        fig, axes = plt.subplots(figsize=[4, 4])
    triplot(mesh, axes=axes, boundary_kw={'lw': 3})
    axes.set_aspect(aspect='equal')
```

```
# ax.set_axis_off()
axes.legend(loc='upper left', bbox_to_anchor=(1, 1))
axes.set_xlabel('x')
axes.set_ylabel('y')

N = 8
rect_mesh = RectangleMesh(nx=N, ny=N, Lx=1, Ly=1)
circ_mesh = UnitDiskMesh(2)

fig, ax = plt.subplots(1, 2, figsize=[8, 4])
plot_mesh_with_label(rect_mesh, axes=ax[0])
plot_mesh_with_label(circ_mesh, axes=ax[1])
fig.tight_layout()
```


设置边界条件

```
[10]: # plot the mesh and boundry conditions
fig, ax = plt.subplots(2, 2, figsize=[7, 7], subplot_kw=dict(projection='3d'))
ax = ax.flat
```

```
ax[0].remove()
ax[0] = fig.add_subplot(2, 2, 1)
plot_mesh_with_label(test_mesh, ax[0])

sub_domains = [(1, 2), (3, 4), 'on_boundary']
for i in range(3):
    trisurf_bdy_condition(V, g=g, sub_domain=sub_domains[i], axes=ax[i+1])
fig.tight_layout()
```


1.1.8 Gmsh 网格边界设置

需要在 gmsh 中给相应的边界加上标签 (Physical Tag) gmsh gui 濱示: 生成如下 geo 文件和 msh 文件

```
File: gmsh/rectangle.geo
     // Gmsh project created on Tue Sep 30 15:09:53 2022
     SetFactory("OpenCASCADE");
     //+
     Rectangle(1) = \{0, 0, 0, 1, 1, 0\};
     //+
     Physical Curve("lower", 1) = {1};
     //+
     Physical Curve("upper", 2) = {3};
     //+
     Physical Curve("left", 3) = {4};
     //+
     Physical Curve("right", 4) = {2};
     //+
     Physical Surface("domain", 1) = {1};
     Gmsh file: gmsh/rectangle.msh
[11]: # opts = PETSc.Options()
      # opts.insertString('-dm_plex_gmsh_mark_vertices True')
      gmsh_mesh = Mesh('gmsh/rectangle.msh')
      plot_mesh_with_label(gmsh_mesh)
```


使用 gmsh 的 python SDK: gmsh 或者 pygmsh

example: make_mesh_circle_in_rect.py

```
[12]: from make_mesh_circle_in_rect import make_circle_in_rect
```

```
[13]: h = 1/16
filename = 'gmsh/circle_in_rect.msh'
make_circle_in_rect(h, filename, p=3, gui=False)

cr_mesh = Mesh(filename)
plot_mesh_with_label(cr_mesh)
```

Info : Writing 'gmsh/circle_in_rect.msh'...
Info : Done writing 'gmsh/circle_in_rect.msh'

1.2 纯 Neumann 边界条件

求解如下 Poisson 方程

$$-\Delta u = f \quad \text{in } \Omega,$$

$$\frac{\partial u}{\partial x} = g_N \quad \text{on } \partial \Omega,$$
(4)

变分问题

求 $u \in H^1$, 且 $\int_{\Omega} u = 0$ 使得

$$\int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} f v + \int_{\partial \Omega} g_N v \qquad \forall v \in H^1. \tag{5}$$

兼容性条件

$$\int_{\Omega}fv+\int_{\partial\Omega}g_Nv=0$$

1.2.1 Use nullspace of solve

```
[14]:
      test_mesh = RectangleMesh(nx=N, ny=N, Lx=1, Ly=1)
      x, y = SpatialCoordinate(test_mesh)
      f = sin(pi*x)*sin(pi*y)
      subdomain_id = None # None for all boundray, 或者单个编号 如 1, 或者使用 list 或 tuple 如: (1, 2)
      if True:
          # 不满足兼容性条件
          g = Constant(1)
      else:
          # 满足兼容性条件
          L = assemble(1*ds(domain=test_mesh, subdomain_id=subdomain_id))
          g = Constant(-assemble(f*dx)/L)
      V = FunctionSpace(test_mesh, 'CG', degree=1)
      u, v = TrialFunction(V), TestFunction(V)
      a = inner(grad(u), grad(v))*dx
      L = inner(f, v)*dx + inner(g, v)*ds(subdomain_id=subdomain_id)
      u1_h = Function(V, name='u1_h')
      nullspace = VectorSpaceBasis(constant=True)
      solve(a == L, u1_h,
            solver_parameters={
                # 'ksp_view': None,
                'ksp_monitor': None,
            options_prefix='test1',
            nullspace=nullspace,
            transpose_nullspace=None)
      u2_h = Function(V, name='u2_h')
      solve(a == L, u2_h,
            solver_parameters={
                 # 'ksp_view': None,
                 'ksp_monitor': None,
            options_prefix='test2',
            nullspace=nullspace,
            transpose_nullspace=nullspace)
      fig, ax = plt.subplots(1, 2, figsize=[8, 4], subplot_kw=dict(projection='3d'))
      trisurf(u1_h, axes=ax[0])
      ax[0].set_title('only nullspace')
      trisurf(u2_h, axes=ax[1])
      ax[1].set_title('transpose nullspace')
```

```
Residual norms for test1_ solve.
0 KSP Residual norm 7.133205795309e-01
1 KSP Residual norm 4.463009742158e+01
Residual norms for test2_ solve.
0 KSP Residual norm 5.188828525840e-01
1 KSP Residual norm 1.256141430046e-14
```

[14]: Text(0.5, 0.92, 'transpose nullspace')

only nullspace

20 15 10 5 0 1.0 0.8 $^{0.0}_{\ 0.2}_{\ 0.4}_{\ 0.6}_{\ 0.8}_{\ 1.0}$ 0.6 0.4 0.2 0.0

transpose nullspace

1.2.2 Using Lagrange multiplier

变分问题

求 $u \in H^1, \mu \in R$ 使得

$$\begin{split} &\int_{\Omega} \nabla u \cdot \nabla v + \mu \int_{\Omega} v - \int_{\Omega} f v - \int_{\partial \Omega} g_N v = 0, \quad \forall \in H^1 \\ &\eta \int_{\Omega} u = 0, \quad \forall \eta \in \mathbb{R} \end{split} \tag{6}$$

```
# %load possion_neumann_lagrange.py
[15]:
      from firedrake import *
      from firedrake.petsc import PETSc
      opts = PETSc.Options()
      N = opts.getInt('N', default=8)
      test_mesh = RectangleMesh(nx=N, ny=N, Lx=1, Ly=1)
      x, y = SpatialCoordinate(test_mesh)
      f = sin(pi*x)*sin(pi*y)
      g_N = Constant(1)
      V = FunctionSpace(test_mesh, 'CG', degree=1)
      R = FunctionSpace(test_mesh, 'R', 0)
```

```
W = MixedFunctionSpace([V, R]) # or W = V*R

u, mu = TrialFunction(W)
v, eta = TestFunction(W)

a = inner(grad(u), grad(v))*dx + inner(mu, v)*dx + inner(u, eta)*dx
L = inner(f, v)*dx + inner(g_N, v)*ds

w_h = Function(W)
solve(a == L, w_h, options_prefix='test')

u_h, mu_h = w_h.split()

filename = 'pvd/u_h_neumann.pvd'
PETSc.Sys.Print(f'Write pvd file: {filename}')
File(filename).write(u_h)
```

Write pvd file: pvd/u_h_neumann.pvd

```
fig, ax = plt.subplots(figsize=[4, 4], subplot_kw=dict(projection='3d'))
trisurf(u_h, axes=ax)
```

[16]: <mpl_toolkits.mplot3d.art3d.Poly3DCollection at 0x7fa879624700>

终端演示

 $\$ python possion_neumann_lagrange.py -test_ksp_monitor -test_ksp_converged_reason -N 64 Number of Dofs: 4226

 $\label{lem:complement} \mbox{ firedrake:WARNING Real block detected, generating Schur complement elimination PC Residual norms for test_ solve. }$

0 KSP Residual norm 2.501422711621e-01

1.3 计算收敛阶

- 和真解对比
- 和参考解对比
- 相邻三层之间对比 (Cauchy 序列): possion_convergence.py

1.3.1 生成网格序列

```
base = RectangleMesh(N, N, 1, 1)
meshes = MeshHierarchy(test_mesh, refinement_levels=4)
```

```
from firedrake import *
  import matplotlib.pyplot as plt

N = 8
  base = RectangleMesh(N, N, 1, 1)
  meshes = MeshHierarchy(base, refinement_levels=3)

n = len(meshes)
  m = min(2, n)
  fig, ax = plt.subplots(1, m, figsize=[4*m, 4])
  for i in range(m):
       triplot(meshes[i], axes=ax[i])
```



```
us = []
for mesh in meshes:
    x, y = SpatialCoordinate(mesh)
    f = sin(pi*x)*sin(pi*y)
    V = FunctionSpace(mesh, 'CG', degree=1)
    u = Function(V).interpolate(f)
    us.append(u)

m = min(4, n)
fig, ax = plt.subplots(2, 2, figsize=[4*2, 4*2], subplot_kw=dict(projection='3d'))
ax = ax.flat
for i in range(n):
    trisurf(us[i], axes=ax[i])
    ax[i].set_title(f'$h=1/{N*2**i}$')
```


1.3.2 投影到细网格上的空间中

目前 Firedrake 只能投影函数到相邻层的网格上 (由 MeshHierarchy 生成的网格), 和最密网格比较时可以多次投影, 直至最密网格, 然后比较结果.

下面我们仅比较相邻层的误差

```
errors = []
hs = []
for i, u in enumerate(us[:-1]):
    u_ref = us[i+1]
    u_inter = project(u, u_ref.function_space())
    error = errornorm(u_ref, u_inter)
    errors.append(error)
```

```
hs.append(1/(N*2**i))
hs, errors
```

[19]: ([0.125, 0.0625, 0.03125], [0.012284003199971324, 0.003100763810085325, 0.0007770614161052795])

```
[20]: from intro_utils import plot_errors plot_errors(hs, errors, expect_order=2)
```


1.3.3 插值到细网格上的空间中

- VertexOnlyMesh:
- PointCloud: https://github.com/lrtfm/fdutils

Example of PointCloud Interpolate function f1 on mesh m1 to function f2 on mesh m2

```
import firedrake as fd
from fdutils import PointCloud
from fdutils.tools import get_nodes_coords
import matplotlib.pyplot as plt

m1 = fd.RectangleMesh(10, 10, 1, 1)
V1 = fd.FunctionSpace(m1, 'CG', 2)
x, y = fd.SpatialCoordinate(m1)
f1 = fd.Function(V1).interpolate(x**2 + y**2)
```

```
m2 = fd.RectangleMesh(20, 20, 1, 1)
V2 = fd.FunctionSpace(m2, 'CG', 3)
f2 = fd.Function(V2)

points = get_nodes_coords(f2)
pc = PointCloud(m1, points, tolerance=1e-12)
f2.dat.data_with_halos[:] = pc.evaluate(f1)

fig, ax = plt.subplots(1, 2, figsize=[8, 4], subplot_kw=dict(projection='3d'))
fd.trisurf(f1, axes=ax[0])
fd.trisurf(f2, axes=ax[1])
```

[21]: <mpl_toolkits.mplot3d.art3d.Poly3DCollection at 0x7fa86b874fa0>

计算误差

```
[22]:
from fdutils.tools import errornorm as my_errornorm

my_errors_0 = []
for i, u in enumerate(us[:-1]):
    # 和相邻层结果比较
    my_errors_0.append(my_errornorm(u, us[i+1], tolerance=1e-12))

my_errors_0
```

[22]: [0.012284003212205772, 0.003100763847789638, 0.0007770614201377909]

```
[23]:
from fdutils.tools import errornorm as my_errornorm

my_errors = []
for i, u in enumerate(us[:-1]):
    # 和最密层结果比较
    my_errors.append(my_errornorm(u, us[-1], tolerance=1e-12))
```

my_errors

[23]: [0.015349062780286471, 0.0037181920308195534, 0.0007770614201377909]

```
[24]: from intro_utils import plot_errors plot_errors(hs, my_errors, expect_order=2)
```


1.4 构造等参元

Firedrake 中坐标是通过函数 Function 给出的,可以通过更改该函数的值来移动网格或者构造等参元对应的映射.

1.4.1 移动网格

```
坐标的存储 (numpy 数组)

mesh = RectangleMesh(10, 10, 1, 1)

mesh.coordinates.dat.data

mesh.coordinates.dat.data_ro

mesh.coordinates.dat.data_with_halos

mesh.coordinates.dat.data_ro_with_halos
```

```
[25]: import numpy as np

# test_mesh = UnitDiskMesh(refinement_level=3)
test_mesh = RectangleMesh(10, 10, 1, 1)
```


1.4.2 简单映射边界点

等参元映射通过更改坐标向量场实现: 从线性网格开始构造, 把边界上的自由度移动到边界上.

```
def make_high_order_mesh_map_bdy(m, p):
    coords = m.coordinates
    V_p = VectorFunctionSpace(m, 'CG', p)
    coords_p = Function(V_p, name=f'coords_p{i}').interpolate(coords)

    bc = DirichletBC(V_p, 0, 'on_boundary')
    points = coords_p.dat.data_ro_with_halos[bc.nodes]
    coords_p.dat.data_with_halos[bc.nodes] = points2bdy(points)

    return Mesh(coords_p)

def points2bdy(points):
    r = np.linalg.norm(points, axis=1).reshape([-1, 1])
    return points/r
```

1.4.3 同时移动边界单元的内点

Reference: 1. M. Lenior, Optimal Isoparametric Finite Elements and Error Estimates For Domains Involving Curved Boundaries. SIAM. J. Numer. Anal. 23(3). 1986. pp 562–580.

等参元映射通过更改坐标向量场实现:从线性网格开始构造,把边界上的自由度移动到边界上,同时移动边界单元的内部自由度.

注: 这是一个简单的实现,并不完全符合文献 [1] 中等参元映射构造方式,一个完整的实现方式见文件 make_mesh_circle_in_rect.py 中的函数 make_high_order_coords_for_circle_in_rect: 该函数实现了内部具有一个圆形界面的矩形区域上的等参映射.

1.4.4 数值实验

精确解为 $u = 1 - (x^2 + y^2) \{3.5\}$ \$

```
[26]: %run possion_convergence_circle.py
```

```
p = 1; Use iso: False; Only move bdy: False.
   orders: [2.01284527 2.01420928]
p = 2; Use iso: False; Only move bdy: False.
    orders: [2.07953299 2.0391775 ]
p = 2; Use iso: True; Only move bdy: False.
   orders: [3.07968268 3.04739627]
p = 3; Use iso: False; Only move bdy: False.
    orders: [2.06225857 2.03084755]
p = 3; Use iso: True; Only move bdy: True.
    orders: [3.63334435 3.56916446]
p = 3; Use iso: True; Only move bdy: False.
    orders: [4.15838886 4.09188043]
p = 4; Use iso: False; Only move bdy: False.
    orders: [2.05924173 2.02916455]
p = 4; Use iso: True; Only move bdy: True.
   orders: [3.50007466 3.49278383]
```

```
p = 4; Use iso: True; Only move bdy: False.
    orders: [5.19566749 5.10742164]
```

1.5 间断有限元方法

1.5.1 UFL 符号

- +: u('-')
- -: u('+')
- avg:(u('+') + u('-'))/2
- jump:
 jump(u, n) = u('+')*n('+') + u('-')*n('-')
 jump(u) = u('+') u('-')
- FacetNormal:边界法向
- CellDiameter:

网格尺寸

1.5.2 UFL 测度

- 1. ds 外部边
- 2. dS 内部边

1.5.3 变分形式

$$\begin{split} \int_{\Omega} \nabla u \cdot \nabla v - \int_{EI} (\{\nabla u\}[vn] + [un]\{\nabla v\}) - \frac{\alpha}{h} \int_{EI} [un][vn] \\ - \int_{EO} (vn\nabla u + un\nabla v) - \frac{\alpha}{h} \int_{EO} uv \\ - \int_{\Omega} fv - \int_{\partial \Omega_N} g_N v = 0 \end{split} \tag{7}$$

其中 $[vn] = v^+n^+ + v^-n^-, \{u\} = (u^+ + u^-)/2$

```
x, y = SpatialCoordinate(mesh)
f = sin(pi*x)*sin(pi*y)
h = Constant(2.0)*Circumradius(mesh)
alpha = Constant(1)
gamma = Constant(1)
n = FacetNormal(mesh)
a = inner(grad(u), grad(v))*dx \
 - dot(avg(grad(u)), jump(v, n))*dS \setminus
  - dot(jump(u, n), avg(grad(v)))*dS \
 + alpha/avg(h)*dot(jump(u, n), jump(v, n))*dS \
  - dot(grad(u), v*n)*ds \
  - dot(u*n, grad(v))*ds \
  + gamma/h*u*v*ds
L = f*v*dx
u_h = Function(DG1, name='u_h')
bc = DirichletBC(DG1, 0, 'on_boundary')
solve(a == L, u_h, bcs=bc)
```

```
fig, ax = plt.subplots(figsize=[8, 4], subplot_kw=dict(projection='3d'))
trisurf(u_h, axes=ax)
```

coll. <mpl_toolkits.mplot3d.art3d.Poly3DCollection at 0x7fa86b3f34f0>

1.6 自由度映射关系

1.6.1 编号

```
• V.dim(): 自由度个数
        • V.cell node list: 局部编号与全局编号
[29]: mesh = RectangleMesh(8, 8, 1, 1)
      V = FunctionSpace(mesh, 'CG', 1)
      V.dim(), V.cell_node_list[:5]
      (81,
[29]:
       array([[0, 1, 2],
              [1, 2, 3],
              [2, 3, 4],
              [1, 3, 5],
              [3, 4, 6]], dtype=int32))
      Example: 第一个三角形的坐标
      coords = mesh.coordinates
[30]:
      # get the cell node map
[31]:
      V_c = coords.function_space()
      V_c.cell_node_list[:2]
[31]: array([[0, 1, 2],
             [1, 2, 3]], dtype=int32)
      # another way to get the cell node map
[32]:
      coords.cell_node_map().values[:2]
      array([[0, 1, 2],
[32]:
             [1, 2, 3]], dtype=int32)
      coords.dat.data_ro_with_halos[[0, 1, 2]]
[33]: array([[0.
                  , 0. ],
             [0. , 0.125],
             [0.125, 0. ]])
      1.6.2 有限元自由度
      V = FunctionSpace(mesh, 'CG', 2)
[34]:
      # V.dim(), V.cell_node_list[:5]
      element = V.finat_element
      element.degree, element.cell,
[34]: (2, <FIAT.reference_element.UFCTriangle at 0x7fa86be29a60>)
      V.finat_element.entity_dofs()
[35]:
```

```
{0: {0: [0], 1: [1], 2: [2]}, 1: {0: [3], 1: [4], 2: [5]}, 2: {0: []}}
      V.finat_element.entity_support_dofs()
[36]:
[36]: {0: {0: [0], 1: [1], 2: [2]},
       1: {0: [1, 2, 3], 1: [0, 2, 4], 2: [0, 1, 5]},
       2: {0: [0, 1, 2, 3, 4, 5]}}
      1.6.3 查看矩阵和向量 (PETSc)
      Introduction to PETSc
      DOC: https://web.corral.tacc.utexas.edu/CompEdu/pdf/pcse/petsc_p_course.pdf
      PETSc git repo: petsc4py demo
      保存矩阵到文件: matvecio.py
[37]: test_mesh = RectangleMesh(nx=4, ny=4, Lx=1, Ly=1)
      x, y = SpatialCoordinate(test_mesh)
      f = sin(pi*x)*sin(pi*y)
      V = FunctionSpace(test_mesh, 'CG', degree=1)
      u, v = TrialFunction(V), TestFunction(V)
      a = inner(grad(u), grad(v))*dx
      L = inner(f, v)*dx
      A = assemble(a)
[38]:
      b = assemble(L)
      type(A), type(b)
      (firedrake.matrix.Matrix, firedrake.function.Function)
      type(A.petscmat)
[39]:
      petsc4py.PETSc.Mat
      with b.dat.vec_ro as vec:
[40]:
          print(type(vec))
```

<class 'petsc4py.PETSc.Vec'>

2 NS 方程

Navier-Stocks 方程:

$$\begin{cases} \partial_t u - \mu \Delta u + (u \cdot \nabla)u + \nabla p = f, & \text{in} \quad \Omega \times (0, T] \\ \nabla \cdot u = 0, & \text{in} \quad \Omega \times (0, T] \end{cases}$$
(8)

初边值条件

$$\begin{cases} u=0, & \text{on} \quad \partial\Omega\times(0,T] \\ u_0=(y,-x) & \text{in} \quad \Omega \quad \text{at} \quad t=0 \end{cases} \tag{9}$$

```
[41]: from firedrake import *
mu = 1
T = 0.25

N_S = 16
N_T = 128

tau = T/N_T
h = 1/N_S

mesh = RectangleMesh(N_S, N_S, 1, 1)

x = SpatialCoordinate(mesh)
# u_O = as_vector((x[1] - 0.5, - x[0] + 0.5))
u_O = as_vector((x[1], - x[0]))
f = as_vector([0, -1])
```

2.1 函数空间

采用 MINI 元, 即 P1 × P1b.

P1b 由 P1 加上 Bubble 组成.

NodalEnrichedElement, EnrichedElement

VectorFunctionSpace 构造向量空间

```
[42]: cell = mesh.ufl_cell()
tdim = cell.topological_dimension()

# Mini element: P1 X P1b
P1 = FiniteElement("CG", cell, 1)
B = FiniteElement("B", cell, tdim+1)
P1b = P1 + B # or P1b = NodalEnrichedElement(P1, B)

V_u = VectorFunctionSpace(mesh, P1b)
V_p = FunctionSpace(mesh, "CG", 1)
V = MixedFunctionSpace([V_u, V_p])
```

2.2 弱形式

$$\begin{cases} \frac{1}{\tau}(u^n-u^{n-1},v)+\mu(\nabla u^n,\nabla v)+((u^n\cdot\nabla)u^n,v)-(p^n,\nabla\cdot v)=(f^n,v)\\ (q,\nabla\cdot u^n)=0 \end{cases} \tag{10}$$

• TrialFunctions, TestFunctions:

以 tuple 返回函数空间中的试验/测试函数,

主要用于 MixedFunctionSpace.

- split, Function.split
 - split: 以索引的方式获取 MixedFunctionSpace 中函数的分量 (保留 UFL 关联信息, 用于定义变分形式)
 - Function.split: 以存储共享的方式获取分量 (生成新的变量, 只是共享原存储空间)

由于该问题是非线性问题, 我们打算用 Nonlinear Variational Solver 进行求解, 所以下面定义 w 使用了Function 而不是 Trial Function/Trial Functions.

```
w = Function(V) # u and p
[43]:
      u, p = split(w)
      v, q = TestFunctions(V)
      w_nm1 = Function(V)
      u_nm1, p_nm1 = w_nm1.split()
      u_nm1.rename('u_h') # for visualization in paraview
      p_nm1.rename('p_h')
      Re = Constant(mu)
      F = \
             Constant(1/tau)*inner(u - u_nm1, v)*dx \
           + Re*inner(grad(u+u_nm1)/2, grad(v))*dx \
          + inner(dot(grad(u), (u+u_nm1)/2), v)*dx \
           - p*div(v)*dx \
           + div(u)*q*dx \
           - inner(f, v)*dx
```

2.3 定义 Solver

类似于纯 Neumann 问题, 我们将使用 nullspace 参数.

注意下面混合空间中, 边界条件和 nullspace 的定义.

2.4 时间循环

```
[45]: from tqdm.notebook import tqdm # progress bar

u_, p_ = w.split()

output = File('pvd/ns-equation.pvd')

u_nm1.project(u_0)
output.write(u_nm1, p_nm1, time=0)

for i in tqdm(range(N_T)):
    t = tau*(i+1)

    solver.solve()

    u_nm1.assign(u_)
    p_nm1.assign(p_)

output.write(u_nm1, p_nm1, time=t)
```

0%| | 0/128 [00:00<?, ?it/s]

2.4.1 Constant 用于时间依赖的表达式

```
from firedrake import *
    mesh = RectangleMesh(10, 10, 1, 1)
    C1 = Constant(0)

x, y = SpatialCoordinate(mesh)
    expr = C1*(x+y)

v = []
    for i in range(5):
        t = i*0.1
        C1.assign(t)
        v.append(
            assemble(expr*dx)
        )
    print(v)
```

[0.0, 0.09999999999991, 0.19999999999999, 0.29999999999966, 0.3999999999999

2.5 ParaView 可视化计算结果

ParaView 演示

Pipeline 和 Filter

2.5.1 二维结果 (surf 图)

Filter: Wrap by scalar

2.5.2 选择部分区域显示

View -> Find Data

3 多进程并行

使用 mpiexec 运行 python 文件即可

此时网格会被划分成不同的块, 分配到各个进程.

网格由 PETSc 中的 DMPlex 管理.

DMPlex Reference: 1. Lange, M., Mitchell, L., Knepley, M. G., & Gorman, G. J. Efficient mesh management in firedrake using PETSC DMPLEX. SISC, 2016, 38(5), S143-S155. 2. Hapla, V., Knepley, M. G., Afanasiev, M., Boehm, C., van Driel, M., Krischer, L., & Fichtner, A. Fully parallel mesh I/O using PETSc DMPlex with an application to waveform modeling. SISC, 2021, 43(2), C127-C153.

3.1 DMPlex

```
%%px --block
[48]:
      from firedrake import *
      mesh = RectangleMesh(8, 8, 1, 1)
      mesh.topology_dm.view()
                          | 0/2 [00:00<?, ?tasks/s]
      %px:
             0%1
      [stdout:0] DM Object: firedrake_default_topology 2 MPI processes
      firedrake_default_topology in 2 dimensions:
        Number of O-cells per rank: 45 45
        Number of 1-cells per rank: 108 108
        Number of 2-cells per rank: 64 64
      Labels:
        depth: 3 strata with value/size (0 (45), 1 (108), 2 (64))
        celltype: 3 strata with value/size (0 (45), 1 (108), 3 (64))
        Face Sets: 2 strata with value/size (1 (8), 3 (8))
        exterior_facets: 1 strata with value/size (1 (16))
        interior_facets: 1 strata with value/size (1 (92))
```

3.2 输出

```
intro_utils.py
```

```
[49]: %px --block
       from firedrake import *
       from firedrake.petsc import PETSc
       from mpi4py import MPI
       PETSc.Sys.Print('This is first line (from rank 0)')
      [stdout:0] This is first line (from rank 0)
[50]: %%px --block
       PETSc.Sys.syncPrint('This is second line (from all rank)')
       PETSc.Sys.syncFlush()
      [stdout:0] This is second line (from all rank)
      This is second line (from all rank)
      %%px --block
[51]:
       print('This msg from all rank')
      [stdout:0] This msg from all rank
      [stdout:1] This msg from all rank
      3.3 communicator
[52]: %%px --block
       mesh = RectangleMesh(8, 8, 1, 1)
       PETSc.Sys.syncPrint(mesh.comm.rank, mesh.comm.size)
      PETSc.Sys.syncFlush()
      [stdout:0] 0 2
      1 2
      %%px --block
「531:
       PETSc.Sys.syncPrint(COMM_WORLD.rank, COMM_WORLD.size)
       PETSc.Sys.syncFlush()
      [stdout:0] 0 2
      1 2
 []: %%px --block
       PETSc.Sys.syncPrint(COMM_SELF.rank, COMM_SELF.size)
       PETSc.Sys.syncFlush()
      [stdout:0] 0 1
      0 1
```

有些时候需要在某个进程上,做指定的操作或运算,如只在第0个进程上画图

if COMM_WORLD.rank == 0:
 plot(...)