Abbiene vistos

$$\begin{cases}
\dot{x} = Ax \\
\chi(o) = \chi_0
\end{cases}$$

11x(t)11 & Clixoll ed, Ht 20

dove

$$\alpha > \alpha_0 := \max_{i=1,...n} \{ Re(\lambda_i) : \lambda_i \text{ autovolone di } A \}$$

Considerians il caso « = 0 ~ c'é almono un autovalore di A con parte resle nulla.

$$|(e^{tB})_{ij}| = |e_{ij}(e^{\lambda ijt})|$$
 lemma: $e^{\lambda ijt}|$ con men, $e^{\lambda ijt}|$ $e^{\lambda ijt}| = e^{\lambda ijt}|$ $e^{\lambda ijt}|$

Osserviano che il fattore t^{mij} compare solo se il corrispondente blocco di Irdan di B non è diaporale. Se since il blocco è diaporale allora i fattori dollo forma t^{mij} non compaiono. Un blocco di Iordan colletivo nol un conto antovolore l'è diaporale quando le molte plicità algebrica e geometrica di la coinciobuo mon la somplica.

Se $\propto 0$ e pli autovalori con parte reale mille sous sempliar allore:

- · i termini | cij t^{mi} e^{dijt} | comispondon à a dij t.c. Re(dij)<0 si stimano con e^{xt} e si può prendere x<0;
- · i termini cornispondenti a lij t.c. Re(lij)=0 e lij e surplice sono della forma |Cijelist| e si stimano diretta = mente con e kot ~> do=0 ~> 5i stimano con 1 (omoro una costante).

Complessivemente, se pli autovalori di A con parte reale nulle sono semplici possiamo stimare:

$$|(e^{+B})_{ij}| \in C$$
 (costante)

e quindi

 $\|x(t)\| \leq C \|x_0\|.$

Di consequente, x(t) si nautieue limitate per t→+00.

Configurazione di eputibres di un sistema di ODE

Def. Un punto $x \in \mathbb{R}^n$ si chiama punto (o configurazione) di equilibrio del sistemo $\dot{x} = f(x)$ se

$$f(\bar{x}) = 0$$
.

Oss. Se \overline{x} è un punto di equilibrio di x = f(x) allore la funtibue costante $x(t) = \overline{x}$ é solutione del sisteme di QDE.

Escupi

- 1) Modelle di Malthus: $\dot{x} = rx$, f(x) = rx punti di equilibris: $f(\bar{x}) = 0$ (=) $\bar{x} = 0$.
- 2) Modelle di Verhulst: $\ddot{x} = \text{Ro} \times \left(1 \frac{x}{k}\right)$, $f(x) = \text{Ro} \times \left(1 \frac{x}{k}\right)$ funti di epenlibuo: $f(\bar{x}) = 0$ (=) $\bar{x} = 0$, $\bar{x} = k$
- 3) sixtema lineare: $\dot{x} = Ax$, $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$ f(x) = Ax

pour di equilibris: f(x) =0 (=) x ∈ Ker A

Oss. $\overline{x} = 0$ è sempre une prendo di equilibrilo per il sistema $\dot{x} = Ax$. Se poi A è suipolore ce ve sono infiniti altri con un grado di infinito che dipende dal naupo di A.

Consideriaux mi generale

$$\dot{x} = f(x), \quad x(0) = x_0$$

e sia $x \in \mathbb{R}^n$ un punto di equilibrio.

Def. Diciamo che x é stabile se:

00 + 3> ||x-(+)x|| (= B> ||x-ax || : 00 BE, 00 3 H

Def. Diciamo de 7 é atrothus se:

 $\exists 8>0: \|x_0-\overline{x}\|<8 \Rightarrow \lim_{t\to +\infty} x(t)=\overline{x}.$

Oss. Nou c'é aloure relatione a priorité le statutité e l'associate di en punto di eperilibre ».

Def. Se \times é attrattion e 820 si probable arbitrariament te grande allors diciams de \times e globalmente attrattion.

Oss. In questo caso:

$$\lim_{t\to +\infty} x(t) = \overline{x} \quad \forall x_0 \in \mathbb{R}^n.$$

Def. Se x é sit stabile sit afrattivo diciamo che è cosintoticamente stabile.

Def. Se x é six stabile six globalmente attrattivo divians che é globalmente asietoticamente stabile.

Stabilità dell'epentibuo di un sistema di ODE lineare

$$\begin{cases} \dot{x} = Ax, + \infty \\ x(0) = x_0 \in \mathbb{R}^n, \end{cases} \qquad f(x) = Ax: \mathbb{R}^n \to \mathbb{R}^n$$

Poiche $\bar{x} = 0$ é sou pre un pouto di quilibrio, studie veus le propriété di stabilité e all'attivité dell'origine.

Oss. Suppositante che esiste un altre punto di equilibre

 $\% \neq 0$. Albra:

$$\ddot{x} = Ax \longrightarrow \underbrace{\frac{d}{dt}(x - \tilde{x})}_{A\tilde{x} = 0} = A(x - \tilde{x})$$

Povendo: $y(t) := x(t) - \hat{x}$ offerious

$$\dot{y} = Ay$$

e quivoli la statulità e attrattività di \hat{x} si possono stu = dione come statulità e attrattività di $\hat{y} = 0$.

Teorema Se tutti pli autorabri di A hamo parte resle negative allore $\bar{x}=0$ è globalmente asintoticamente stabile.

Dim. Sapprous in pour se che

dove $\alpha > \alpha_0 = \max_i \{ Re(\lambda_i) : \lambda_i \text{ autovolor oli } A \}.$

Poiché « co per èpotes, possiano prondere « « o e othere.

$$\|x(t)\| \xrightarrow{t\to +\infty} 0 \iff x(t) \xrightarrow{t\to +\infty} 0 \quad \forall x_0 \in \mathbb{R}^n$$

 \Rightarrow attatività globale di $\bar{x}=0$.

Volians che $\bar{x}=0$ è anche stabile. Fissiano $\varepsilon>0$ e considerians:

 $||x(t)|| < \varepsilon \leftarrow C||x_0|| e^{ct} < \varepsilon \leftarrow C||x_0|| < \varepsilon$

perció se fosso $S < \frac{E}{G}$ e poi proudo $||x_0|| < S < \frac{E}{G}$ ottempo ||x(t)|| < E $\forall t > 0$. Quindi x = 0 é sto tribe.