浙江大学实验报告

2024/3/19

Lab4 光耦合电路及其应用实验

一、实验目的

- 1. 熟悉光耦合器件的结构、种类及其工作原理;
- 2. 掌握常用光耦合器件的使用方法;
- 3. 掌握基本光耦合器件应用电路的设计与调试方法。

二、实验内容与原理

(0) 光耦合器件基本原理

光电耦合器是一种把发光元件和光敏元件封装在同一壳体内,中间通过电→光→电的转换来传输电信号的半导体光电子器件。

本实验所使用的TLP521-2具体结构如上右图所示:使用二极管发光控制NPN三极管的导通与否/电流大小。具体光电耦合的性质将在下面进行细致讨论。

推荐使用参数如下:

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	v_{cc}	_	5	24	V
Forward Current	$I_{\mathbf{F}}$	_	16	20	mA
Collector Current	$I_{\mathbf{C}}$	_	1	10	mA
Operating Temperature	T_{opr}	-25	_	85	°C

(1) 光耦合器件的电流传输比测试和开关时间测试

电流传输比

电流传输比为: $CTR(\%) = \frac{I_C}{I_F}$

Coupled Electrical Characteristics (Ta = 25°C)

Characteristic	Symbol	Test Condition	Mln	Тур.	Max	Unit
Current transfer ratio	I _C / I _F	I_F = 5 mA, V_{CE} = 5 V Rank GB	50	_	600	%
			100	_	600	76
Saturated CTR	I _C / I _{F (sat)}	IF = 1 mA, V _{CE} = 0.4 V Rank GB	_	60	ı	%
			30	_	1	/0
Collector–emitter saturation voltage		I _C = 2.4 mA, I _F = 8 mA	_	_	0.4	
		I _C = 0.2 mA, I _F = 1 mA Rank GB	_	0.2	-	V
		Rank GB	_	_	0.4	

说明书所给的参考图如下:

开关时间测试

Switching Characteristics (Ta = 25°C)

Characteristic	Symbol	Test Condition	Min	Тур.	Max	Unit
Rise time	t _r		_	2	_	
Fall time	t _f	V _{CC} = 10 V I _C = 2 mA	_	3	_	μs
Turn-on time	t _{on}	R _L = 100Ω	_	3	_	
Turn-off time	t _{off}		_	3	_	
Turn-on time	toN		_	2	_	
Storage time	t _S	R_L = 1.9 kΩ (Fig.1) V_{CC} = 5 V, I_F = 16 mA	_	15	_	μs
Turn-off time	toff	00 / 1	_	25	_	

Fig.1: SWITCHING TIME TEST CIRCUIT

开关时间的定义如上, 做实验验证上述数据。

(2) 模拟量线性光耦隔离电路

Part 1

设计一单极性模拟量线性光耦隔离电路。要求输入模拟量电压范围为2~10V,对应的输出模拟量电压为2~10V。并测试此电路的电压传输特性和电压阶跃响应。

使用补偿式线性放大电路解决这一问题:

- 使用两个运放搭建实验电路
 - 第一个运放工作在负反馈状态(即正向输入端与反向输入端虚短,电位一致)
 - 第二个运放是电压跟随器,稳定光耦合管的非线性输出
- 使用两个基本一致 (在同一芯片中) 的光耦合管, 使得三极管端输出保持一致
 - o T1作为输出
 - o T2作为反馈

根据以上性质可以得出输入与输出的关系:

$$\dot{A}_v=rac{I_3 imes R_3}{I_2 imes R_2}=rac{R_3}{R_2}$$

Part 2

学会使用PSpice构建原件,并进行仿真,使用HCNR200,搭建一个去除直流分量的电路,具体示意图如下:

(1) 光耦合器件的电流传输比测试和开关时间测试

电流传输比

1. 使用OrCAD搭建仿真电路。

对V1进行电压扫描,以改变发光二极管的电流大小。

使用两个电流探针观察输入和输出电流之比。

得到仿真图像后,设定x轴为 I_F 的值,得到 $I_C - I_F$ 曲线

得到三组数据:

I_F/mA	I_C/mA	CTR
1.3972	3.2455	232%
2.5552	7.2652	284%
5.2034	9.810	/

实验总结

- 。 可以看到CTR的性质并不具有很好的线性性质,在光耦合正常处于放大状态下,CTR仍然会随着 I_F 的增大而增大。
- \circ 当 $I_C=0.981mA$ 时, $V_{CE}=0.2V$,进入饱和状态,因此集电极电流基本保持不变。
- 。 可以得知在该工作状态下, $CTR \approx 250$
- 2. 搭建实验电路,因为本实验要求测量电流,示波器两端共地,使用CH1、CH2并联在电阻两端的方法,通过电阻两端的电压大小反映电阻阻值

记录数据如下,由于,电阻大小均为1k,所以可以直接将电压数值等同于电流(单位为mA)

V_F	$(V_{FR})\ I_F/mA$	$(V_{CR})\ I_C/mA$	CTR
2	0.905	1.1	121.55%
2.5	1.39	1.99	143.17%
3.5	2.32	4.34	187.07%
4	2.8	5.46	195.00%
4.5	3.24	6.67	205.86%
5	3.87	7.89	203.88%
6	4.69	9.56	203.84%
7.5	6.11	9.79	160.23%
9	7.53	10.2	135.46%

实验结论

- 得到与仿真基本一致的实验数据,CTR在150~200%左右。
- 根据记录数据,也可以得出发光二极管正常工作时的压降为1.3V左右。
- 实际使用时,三极管的饱和压降似乎可以非常接近于0 (上述最后一个实验数据)。

开关时间测试

Switching Characteristics (Ta = 25°C)

Characteristic	Symbol	Test Condition	Min	Тур.	Max	Unit
Rise time	t _r		_	2	_	
Fall time	tf	V _{CC} = 10 V I _C = 2 mA	_	3	_	μs
Turn-on time	t _{on}	R _L = 100Ω	_	3	_	
Turn-off time	t _{off}		_	3	_	
Turn-on time	t _{ON}		_	2	_	
Storage time	t _S	R_L = 1.9 kΩ (Fig.1) V_{CC} = 5 V, I_F = 16 mA	_	15	_	μs
Turn-off time	toff		_	25	_	

Fig.1: SWITCHING TIME TEST CIRCUIT

- 1. 按照手册中的电路图搭建实验电路,其中左端电阻选用1k,右端电阻选用2k,CH1连接在输入,CH2连接在三极管CE两端;
- 2. 输入10Hz, Vpp为5V的矩形波。

示波器显示如下图所示:

 $t_r = 9.5uS, t_f = 1.6uS$

当二极管导通发光,三极管导通,压降减小。

使用cursor测量各位置数据

测量 t_{on}

 $t_{\it on}=2.9uS$

测量 t_{off}

 $t_{off}=25.6uS$

 $t_s = 14uS$

实验总结

• 数据记录如下: (单位均为uS)

	t_r	t_f	t_{on}	t_s	t_{off}
Manual	2	3	2	15	25
实际使用	9.5	16	2.9	14	25.6

可以看到实际使用数据与手册中的记录基本相符合

- 光耦合器件的开关性质会比理想状态有所延迟,但是数量级在uS左右,可以忽略不计。
- 三极管的导通反应时间比截止迅速

(2) 模拟量线性光耦隔离电路

1. 使用OrCAD搭建线性光耦隔离电路,并进行仿真

由于 R_2 和 R_4 相等所以输入和输出电压应保持一致,则输入输出电压比为1。

可以看到输入输出两条曲线重合,此时输入电源的频率为10Hz,电压传输性质如下:

当电源频率增加到1kHz时,可以观察到输出电压失真。

2. 在负输入端增加一个小电容(2000pF),可以看到失真现象有所改善,但是输出电压相位有偏移和滞后。小电容的作用是使输出电压在幅频保持不变的同时,将输出电压的相位滞后,从而避免产生自激振荡:

2. 搭建实验电路同仿真电路,输入Vpp为8V,偏置为6V,f为1kHz的电压使用示波器观察输入输出结果:

输入输出电压基本一致。电压传输特性如下:

可见输入输出电压有一定的相位差。但是幅值基本一致

3. 由于现在的电路无法输入小于0的电压, 因此修改电路为下图:

在输入端增加一个电容滤除直流成分,后增加一个直流偏置;在输出部分增加一个电容,滤除直流成分,还原原输入信号。

频率扫描,得到幅频相频特性曲线,可知该电路的带宽约为240kHz。

4. 搭建实验电路,测量频率响应图线:

可以看到输出结果与仿真电路基本一致。由于电容的加入,所以幅频、相频曲线均有一段先上升后下降的过程。

5. 输入阶跃响应,观察输出性质:

V1 = 0 V2 = 5V TD = 0 TR = 0.0001uS TF = 0.00001uS PW = 0.05S PER = 0.1

输入如上脉冲信号,观察输出性质:

可见输出部分,刚刚输出时有一定的震荡,随后稳定输出。且有一定的延时。

将第一个运放的负反馈接入电容更换为更大的电容,则得到没有震荡,但激越更明显的波形:

6. 搭建实验电路, 重复上述实验:

。 实验电路有比仿真电路更明显的延时, 但是结果基本一致 (实验中选取得小电容为0.01uF)

(3) 新建元器件

- 1. 编辑HCNR200元器件参数
- 2. 将其改为lib文件,并使用Model Editor软件打开,导出olb文件:

3. 使用OrCAD,导入该元器件

4. 使用OrCAD软件编辑芯片,使其更像实际芯片

5. 调节电路参数使得最后输出结果符合预期,实验电路图如下:

输入4V, 10Hz正弦波, 得到如下图线:

实验结果符合预期,但是可以看到输出图线相位有所提前幅频相频曲线如下图:

阶跃响应如下:

