

2015

MATEMATIKA

Valstybinio brandos egzamino užduotis

Pagrindinė sesija

2015 m. birželio 5 d.

Trukmė - 3 val. (180 min.)

MATEMATIKOS FORMULĖS

Greitosios daugybos formulės: $(a\pm b)^3=a^3\pm 3a^2b+3ab^2\pm b^3,\ a^3\pm b^3=(a\pm b)(a^2\mp ab+b^2).$

Aritmetinė progresija: $a_n = a_1 + d(n-1)$, $S_n = \frac{a_1 + a_n}{2} \cdot n$.

Geometrinė progresija: $b_n = b_1 q^{n-1}$, $S_n = \frac{b_1 - q b_n}{1 - q} = \frac{b_1 (1 - q^n)}{1 - q}$.

Nykstamoji geometrinė progresija: $S = \frac{b_1}{1-q}$.

Sudėtinių procentų formulė: $S_n = S \left(1 \pm \frac{p}{100} \right)^n$; čia S – pradinis dydis, p – procentai, n – kartai.

Trikampis: $a^2 = b^2 + c^2 - 2bc \cos A$, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$,

$$S = \frac{1}{2}ab\sin C = \sqrt{p(p-a)(p-b)(p-c)} = rp = \frac{abc}{4R};$$

čia a, b, c – trikampio kraštinių ilgiai, A, B, C – prieš jas esančių kampų didumai,

p – pusperimetris, r ir R – įbrėžtinio ir apibrėžtinio apskritimų spindulių ilgiai, S – trikampio plotas.

Skritulys, apskritimas: $S = \frac{\pi R^2}{360^{\circ}} \cdot \alpha$, $l = \frac{2\pi R}{360^{\circ}} \cdot \alpha$; čia α – centrinio kampo didumas laipsniais, S – išpjovos plotas, l – išpjovos lanko ilgis, R – spindulio ilgis.

Kūgis: $S_{\underline{son.pav.}} = \pi R l$, $V = \frac{1}{3}\pi R^2 H$; čia R – pagrindo spindulio ilgis, l – sudaromosios ilgis, H – aukštinės ilgis.

Rutulys: $S = 4\pi R^2$, $V = \frac{4}{3}\pi R^3$; čia R – spindulio ilgis.

Nupjautinis kūgis: $S_{\bar{son,pav.}} = \pi(R+r)l$, $V = \frac{1}{3}\pi H(R^2 + Rr + r^2)$; čia R ir r – pagrindų spindulių ilgiai, l – sudaromosios ilgis, H – aukštinės ilgis.

Nupjautinės piramidės tūris: $V = \frac{1}{3}H(S_1 + \sqrt{S_1S_2} + S_2)$; čia S_1 , S_2 – pagrindų plotai, H – aukštinės ilgis.

Rutulio nuopjova: $S = 2\pi RH$, $V = \frac{1}{3}\pi H^2(3R - H)$; čia R – rutulio spindulio ilgis, H – nuopjovos aukštinės ilgis.

Erdvės vektoriaus ilgis: $|\vec{a}| = \sqrt{x^2 + y^2 + z^2}$; čia $\vec{a} = (x; y; z)$.

Vektorių skaliarinė sandauga: $\vec{a} \cdot \vec{b} = x_1 x_2 + y_1 y_2 + z_1 z_2 = |\vec{a}| \cdot |\vec{b}| \cos \alpha$; čia α – kampo tarp vektorių $\vec{a} = (x_1; y_1; z_1)$ ir $\vec{b} = (x_2; y_2; z_2)$ didumas.

Trigonometrinių funkcijų sąryšiai:

$$1 + tg^2\alpha = \frac{1}{\cos^2\alpha}$$
, $1 + ctg^2\alpha = \frac{1}{\sin^2\alpha}$, $2\sin^2\alpha = 1 - \cos 2\alpha$, $2\cos^2\alpha = 1 + \cos 2\alpha$,

 $\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta, \ \cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta, \ \ tg(\alpha \pm \beta) = \frac{tg\alpha \pm tg\beta}{1 \mp tg\alpha \cdot tg\beta}$

Trigonometrinių funkcijų reikšmių lentelė:

α laipsniais	0°	30°	45°	60°	90°
α radianais	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin α	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos a	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tg α	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	-

Trigonometrinės lygtys:

$$\begin{vmatrix} \sin x = a, \\ x = (-1)^k \arcsin a + \pi k; & \text{``cia} \quad k \in \mathbb{Z}, \ -1 \le a \le 1; \\ \cos x = a, \\ x = \pm \arccos a + 2\pi k; & \text{``cia} \quad k \in \mathbb{Z}, \ -1 \le a \le 1; \\ \text{[tg } x = a, \end{aligned}$$

$$\begin{bmatrix}
\operatorname{tg} x = a, \\
x = \operatorname{arctg} a + \pi k; & \operatorname{cia} k \in \mathbb{Z}, a \in \mathbb{R}.
\end{bmatrix}$$

Išvestinių skaičiavimo taisyklės:

$$(cu)' = cu', \ (u \pm v)' = u' \pm v', \ (uv)' = u'v + uv', \ \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2};$$

čia u ir v – diferencijuojamosios funkcijos, c – konstanta

Funkcijų išvestinės:
$$(a^x)' = a^x \ln a$$
, $(\log_a x)' = \frac{1}{x \ln a}$.

Sudėtinės funkcijos h(x) = g(f(x)) išvestinė: $h'(x) = g'(f(x)) \cdot f'(x)$.

Funkcijos grafiko liestinės taške $(x_0; f(x_0))$ lygtis: $y = f(x_0) + f'(x_0) \cdot (x - x_0)$.

Pagrindinės logaritmų savybės: $\log_a(xy) = \log_a x + \log_a y$, $\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$, $\log_a x^k = k \log_a x$,

$$\log_a b = \frac{\log_c b}{\log_c a}.$$

Derinių skaičius: $C_n^k = C_n^{n-k} = \frac{n!}{k!(n-k)!}$

Gretinių skaičius: $A_n^k = \frac{n!}{(n-k)!}$

Tikimybių teorija: atsitiktinio dydžio X matematinė viltis $\mathbf{E}X = x_1 p_1 + x_2 p_2 + ... + x_n p_n$,

dispersija
$$\mathbf{D}X = (x_1 - \mathbf{E}X)^2 p_1 + (x_2 - \mathbf{E}X)^2 p_2 + \dots + (x_n - \mathbf{E}X)^2 p_n$$
.

I dalis

Kiekvienas šios dalies uždavinys (01–10) turi tik vieną teisingą atsakymą, vertinamą 1 tašku. Pasirinkite, jūsų nuomone, teisingą atsakymą ir pažymėkite jį atsakymų lape kryželiu \boxtimes .

B→**01.** Kuris iš pateiktų eskizų yra funkcijos $y = 2^x$ grafiko eskizas?

Α

В

C

D

Juodraštis

B→02. Sekos bendrasis narys¹ užrašomas formule $a_n = 3n - 1$ (n = 1, 2, 3,...). Šios sekos penktasis narys a_5 yra lygus:

A 5

B 14

C 15

D 34

¹ sekos bendrasis narys – ogólny wyraz ciągu – общий член последовательности

B→03. Diagramoje pavaizduotas šeimos vieno mėnesio visų išlaidų paskirstymas procentais. Tą mėnesį **maistui** šeima išleido 420 eurų. Kiek eurų šeima išleido rūbams?

Juodraštis

B\rightarrow04. Imties¹ 5; 14; 11; 6; 5; 10; 12 mediana yra:

A 10

B 9

- **C** 6
- **D** 5

Juodraštis

B→05. Vandens čiaupo pajėgumas yra toks, kad stačiakampio gretasienio² formos baseinas, kurio matmenys yra *a*, *b* ir *c*, pripildomas per 1 valandą. Per kiek laiko iš to paties vandens čiaupo, veikiančio tokiu pačiu pajėgumu, galima būtų pripildyti stačiakampio gretasienio formos 2*a*, 2*b* ir 2*c* matmenų baseiną?

A 2 val.

B 4 val.

C 6 val.

D 8 val.

¹ imties – próby – выборки

² stačiakampio gretasienio – prostopadłościanu – прямоугольного параллелепипеда

06. Išspręskite lygtį (x + 2011)(x + 2013)(x + 2014) = (x + 2013)(x + 2014)(x + 2015).

- **A** -2011; -2013; -2014; -2015
- B 2011; -2015
- $\mathbf{C} 2013; -2014$
- D sprendinių nėra

Juodraštis

07. Su kuria x reikšme vektoriai $\vec{a} = (x; 3)$ ir $\vec{b} = (-2; 6)$ yra kolinearūs?

- **A** -9
- **B** -1
- **C** 1

D 9

Juodraštis

08. Paveiksle pavaizduotas kubas $ABCDA_1B_1C_1D_1$. Raskite kampo tarp tiesių, kuriose yra kubo sienų įstrižainės A_1B ir B_1C , didumą.

- **A** 0°
- **B** 45°
- **C** 60°
- **D** 90°

¹ įstrižainės – przekatne – диагонали

09. Seifo kodą turi sudaryti trys skirtingi skaitmenys¹, užrašyti didėjimo tvarka. Kiek tokių skirtingų kodų galima sudaryti?

84

120

504 C

D 720

Juodraštis

10. Žinoma, kad funkcija f(x) yra lyginė², o g(x) – nelyginė³. Jei f(a) = -b, g(-b) = a, kur $a \neq 0, b \neq 0$, tai g(f(-a)) + f(g(b)) lygu:

a+b

B -a-b **C** b-a

D a-b

skaitmenys – cyfry – цифры

² lyginė – parzysta – чётная

³ nelyginė – nieparzysta – нечётная

II dalis

Kiekvieno šios dalies uždavinio (11–17) ar jo dalies teisingas atsakymas vertinamas **1 tašku** (kitu atveju vertinama 0 taškų). Išspręskite uždavinius ir gautus atsakymus įrašykite į atsakymų lapą.

B→11. Raskite aibių¹ A = [-2; 4) ir B = (-6; 3] sankirtą² $A \cap B$.

Juodraštis

B→12. Išspręskite lygtis:

12.1.
$$5^{2x} = 125$$
;

Juodraštis

12.2.
$$|x-2|=5$$
.

¹ aibių – zbiorów – множеств

² sankirtą – przecięcie – пересечение

- **B→13.** Taškas C priklauso apskritimui, kurio centras yra taškas O. Iš taško M, esančio apskritimo išorėje, nubrėžtos dvi tiesės, kurios liečia apskritimą taškuose A ir B, $\angle AOB = 80^{\circ}$ (žr. pav.).
 - **13.1.** Apskaičiuokite ∠ACB didumą.

Juodraštis

13.2. Apskaičiuokite ∠*AMB* didumą.

Juodraštis

B→14. Ritinio¹ pagrindo apskritimo ilgis lygus 30, o ritinio aukštinės² ilgis lygus 6 (žr. pav.). Apskaičiuokite šio ritinio šoninio paviršiaus plotą³.

¹ ritinio – walca – цилиндра

² aukštinės – wysokości – высоты

³ šoninio paviršiaus plotą – pole bocznej powierzchni – площадь боковой поверхности

151MAVU0

B \rightarrow **15.** Lentelėje pateikta informacija apie funkcijos f(x) išvestinės f'(x) reikšmes.

х	$(-\infty; -2)$	-2	(-2;1)	1	(1; 6)	6	$(6; +\infty)$
f'(x)	f'(x) > 0	0	f'(x) < 0	0	f'(x) > 0	0	f'(x) < 0

15.1. Užrašykite funkcijos f(x) reikšmių didėjimo intervalą $(-us)^2$.

Juodraštis

15.2. Užrašykite funkcijos f(x) minimumo tašką (-us).

Juodraštis

- **16.** Keturkampis *ABCD* yra rombas (žr. pav.).
- **16.1.** Užrašykite vektorių, lygų vektorių sumai $\overrightarrow{AB} + \overrightarrow{AD}$.

Juodraštis

16.2. Apskaičiuokite vektorių skaliarinę sandaugą $\overrightarrow{BD} \cdot \overrightarrow{AC}$.

¹ išvestinės – pochodnej – производной

² reikšmių didėjimo intervalą (-us) – odstęp(y) wzrastania wartości – интервал(ы) возрастания значений

151MAVU0

2015 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

- **17.** Vandens lygis d (metrais) uoste laiko momentu t paros laikotarpyje, pradedant nuo vidurnakčio, apskaičiuojamas pagal formulę $d(t) = 10 + 1.8 \cos\left(\frac{\pi}{6}t\right)$, $0 \le t \le 24$.
- **17.1.** Apskaičiuokite vandens lygį uoste 9 valandą ryto.

Juodraštis

17.2. Nustatykite didžiausią galimą d reikšmę.

2	
01	
5 I	
М	
МΔ	
TFM	
ΔTII	
KOS	
VΔ	
I ST	
ΓYF	
RINIC	
) RE	
ΙΝΔ	
าดร	
FG	
7 4 N	
ЛINC	
) II	
ŽΠ	
HO.	
TIS	
:	

151MAVU0

III dalis

Išspręskite 18–25 uždavinius. Sprendimus ir atsakymus perrašykite į atsakymų lapą.

18. Duota funkcija $g(x) = x^3 - 6x^2$.

B \rightarrow **18.1.** Apskaičiuokite g'(2).

(2 taškai)

Juodraštis

18.2. Raskite funkcijos g(x) pirmykštę funkciją G(x).

(1 taškas)

151MAVU0	2015 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS
B→19. Raskite lygties $2\sin x =$	= -1 sprendinius, priklausančius intervalui [-180°; 360°].
	(3 taškai)

151MAVU0

20. Duotas reiškinys $\log_{0,2}(2x+3) + \log_{0,2}(4x-5)$.

B→20.1. Parodykite, kad šio reiškinio apibrėžimo sritis¹ yra intervalas (1,25; +∞).

(2 taškai)

Juodraštis

20.2. Išspręskite nelygybę² $\log_{0,2}(2x+3) + \log_{0,2}(4x-5) \ge \log_{0,2} 13$.

(5 taškai)

¹ apibrėžimo sritis – dziedzina – область определения

² nelygybę – nierówność – неравенство

151MAVU0

2015 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

- **21.** Dėžėje yra raudoni, mėlyni ir geltoni rutuliukai. Iš dėžės atsitiktinai¹ išimamas vienas rutuliukas, lape užrašoma jo spalva ir jis padedamas atgal į dėžę. Tikimybė², kad lape bus užrašyta "raudona", lygi $\frac{5}{12}$, o kad užrašyta "mėlyna", lygi $\frac{1}{3}$.
- **B→21.1.** Apskaičiuokite tikimybę, kad lape bus užrašyta arba "raudona", arba "mėlyna". (*1 taškas*) *Juodraštis*
- **B→21.2.** Apskaičiuokite tikimybę, kad lape bus užrašyta "geltona".

 (1 taškas)

 Juodraštis
 - **21.3.** Iš dėžės atsitiktinai išimamas vienas rutuliukas, lape užrašoma jo spalva ir jis padedamas atgal į dėžę. Tai kartojama tris kartus. Kuri tikimybė yra didesnė: lape bus užrašytos trys vienodos ar trys skirtingos spalvos? Atsakymą pagrįskite.

(5 taškai)

Juodraštis

1

¹ atsitiktinai – losowo – случайно

² tikimybė – prawdopodobieństwo – вероятность

151MAVU0

22. Lygiakraščio trikampio¹ *ABC* kraštinės ilgis lygus 10. Kraštinėse *BC*, *AC* ir *AB* pasirinkti taškai *K*, *L* ir *M* taip, kad trikampis *KLM* yra lygiakraštis (žr. pav.).

B \rightarrow **22.1.** Pagriskite, kad $\angle AML = \angle CLK$.

(1 taškas)

Juodraštis

B \rightarrow **22.2.** Pagriskite, kad trikampiai *AML* ir *CLK* yra lygūs.

(1 taškas)

Juodraštis

22.3. Pažymėję atkarpos² AM ilgį x, o atkarpos LM ilgį y, pagrįskite, kad $y = \sqrt{3x^2 - 30x + 100}$, $0 \le x \le 10$.

(2 taškai)

¹ lygiakraščio trikampio – trójkąta równobocznego – равностороннего треугольника

² atkarpos – odcinka – отрезка

151MAVU0	2015 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS				
	Nustatykite, su kuria x reikšme LM ilgis yra mažiausias.	(3 taškai			
Juodraštis					

23. Figūra yra ribojama parabolės $y = x^2 + 1$ ir tiesės y = ax + 1; čia a > 0 (žr. pav.). Su kuria a reikšme šios figūros plotas lygus 36?

(5 taškai)

24. Taisyklingosios keturkampės piramidės¹, kurios visos briaunos² lygios, tūris³ lygus $972\sqrt{2}$ cm³. Plokštuma⁴, lygiagreti piramidės pagrindui⁵ *ABCD*, piramidės briaunas kerta taškuose A_1 , B_1 , C_1 ir D_1 , o aukštinę SO – taške O_1 taip, kad SO_1 : $O_1O = 1: 2$ (žr. pav.). Apskaičiuokite nupjautinės⁶ piramidės $ABCDA_1B_1C_1D_1$ tūrį. (3 taškai)

 $A_{1} \xrightarrow{I} C_{1}$ $A_{1} \xrightarrow{I} C_{1}$ $A_{2} \xrightarrow{I} C_{1}$ $A_{3} \xrightarrow{I} C_{4}$ $A_{4} \xrightarrow{I} C_{5}$ $A_{5} \xrightarrow{I} C_{5}$ $A_{7} \xrightarrow{I} C_{1}$ $A_{1} \xrightarrow{I} C_{2}$ $A_{2} \xrightarrow{I} C_{3}$ $A_{3} \xrightarrow{I} C_{4}$ $A_{4} \xrightarrow{I} C_{5}$ $A_{5} \xrightarrow{I} C_{5}$ $A_{7} \xrightarrow{I} C_{7}$ $A_{7} \xrightarrow{I} C_{7}$ $A_{1} \xrightarrow{I} C_{7}$ $A_{2} \xrightarrow{I} C_{7}$ $A_{3} \xrightarrow{I} C_{7}$ $A_{4} \xrightarrow{I} C_{7}$ $A_{5} \xrightarrow{I} C_{7}$ $A_{7} \xrightarrow{I}$

¹ taisyklingosios keturkampės piramidės – prawidłowego czworokątnego ostrosłupu – правильной четырёхугольной пирамиды

² briaunos – krawędzi – pëбpa

³ tūris – objętość – объём

⁴ plokštuma – płaszczyzna – плоскость

⁵ lygiagreti piramidės pagrindui – równoległe podstawie ostrosłupu – параллельная основанию пирамиды

⁶ nupjautinės – ściętej – усечённой

151MAVU0

25. Tuo pačiu metu iš miestelių *A* ir *B* pastoviais greičiais vienas priešais kitą išvažiavo du dviratininkai. Pirmasis važiavo iš miestelio *A* į miestelį *B*, o antrasis – iš miestelio *B* į miestelį *A*. Pakeliui jie susitiko. Po susitikimo pirmasis dviratininkas į miestelį *B* atvyko po 36 minučių, o antrasis į miestelį *A* atvyko po 25 minučių. Kiek minučių pirmasis dviratininkas važiavo iš miestelio *A* iki susitikimo su antruoju dviratininku?

(3 taškai)