Samenvatting Numerieke Wiskunde

Tom Sydney Kerckhove

Started: 20 februari 2014 Compiled: 8 maart 2014

Hoofdstuk 1 Inleiding

NIETS UIT TE KENNEN

Hoofdstuk 2

Foutenanalyse

Definitie 1. Absolute fout Δx .

$$\Delta x = \overline{x} - x$$

Definitie 2. Relatieve fout δx .

$$\delta x = \frac{\overline{x} - x}{x}$$

Definitie 3. Klassieke voorstelling.

$$x = \sum_{i=m}^{n} c_i r^i$$

Grondtal (radix) r, Getallen voor de komma n, Getallen na de komma m.

Definitie 4. Bewegende kommavoorstelling.

$$x = yb^e$$

Mantisse m, Basis b, Exponent e. (be is de schaalfactor)

Definitie 5. Exacte waarde van x: x.

$$x = \sum_{i=m}^{n} c_i b^i$$

Mantisse m, Basis b, Exponent e.

Definitie 6. Benadering voor $x : \overline{x}$.

$$x = \sum_{i=m}^{n} \overline{c_i} b^i$$

Mantisse m, Basis b, Exponent e.

3

Definitie 7. Juist cijfer c_i :

$$|\overline{x} - x| \le \frac{1}{2}b^i$$

Definitie 8. Verband tussen absolute fout en aantal juiste cijfers na de komma.

$$\frac{1}{2}b^{-p-1} < |\overline{x} - x| \le \frac{1}{2}b^{-p}$$

Aantal juiste cijfers na de komma p.

Definitie 9. Verband tussen relatieve fout en aantal juiste cijfers na de komma.

$$\frac{1}{2}b^{j-k-1} < \frac{|\overline{x} - x|}{\overline{x}} \le \frac{1}{2}b^{j-k+1} \quad of \quad \frac{1}{2}b^{-q-1} < \frac{|\overline{x} - x|}{\overline{x}} \le \frac{1}{2}b^{-q+1}$$

Positie van het eerste beduidende cijfer k, Positie van het laatste beduidende cijfer j + 1, Aantal juiste beduidende cijfers q = k - j.

Definitie 10. Machineprecisie ϵ_{mach} .

$$\epsilon_{mach} = \frac{1}{2}b^{1-p}$$

Definitie 11. Elementaire bewerking τ .

$$fl(x\tau y) = (x\tau y)(1+\eta)$$

 $(|\eta| \le \epsilon_{mach} \ en \ x, y \in O_{real})$

Definitie 12. Absolute fout op een som.

$$\Delta\left(\sum_{i=1}^{n} x_i\right) = \sum_{i=1}^{n} \Delta x_i$$

Bovengrens:

$$\left| \Delta \left(\sum_{i=1}^{n} x_i \right) \right|_{max} = n\epsilon_+$$

Relatieve fout op een som.

$$\delta s = \frac{\Delta x + \Delta y}{x + y}$$

Definitie 13. Zij $\overline{x} = x(1 + \delta x)$ en $\overline{y} = x(1 + \delta y)$.

Absolute fout op een vermenigvuldiging.

$$\Delta p = y\Delta x + x\Delta y$$

Relatieve fout op een vermenigvuldiging.

$$\Delta xy = xy(\delta x + \delta y + \delta x \delta y) \approx \delta x + \delta y$$

Bovengrens:

$$|\delta(xy)| \le 2\epsilon$$
.

Definitie 14. Absolute fout op differentieerbare functies.

$$\Delta f(x) = f(\overline{x}) - f(x) = \Delta x f'(x') \approx f'(\overline{x}) \Delta x \text{ met } x' \text{ tussen } x \text{ en } \overline{x}$$

Bovengrens:

$$|\Delta f(x)|_{max} \approx |\Delta x|_{max} \max_{t} |f'(t)|$$

$$|\Delta f(x_1, ..., x_n)|_{max} \approx \sum_{i=1}^n |\Delta x_i|_{max} \max_{t_1, ..., t_n} |f'_i(t_1, ..., t_n)|$$

Definitie 15. *Norm* $\|\cdot\|$.

De norm van een mathematisch object geeft de 'grootte' ervan aan.

Definitie 16. Gegevens en resultaten.

Exact gegeven g.

Gewijzigd gegeven \overline{q} .

Absolut verschil in gegevens Δq .

$$\Delta q = \overline{q} - q$$

Relatief verschil in gegevens δg .

$$\delta g = \frac{\overline{g} - g}{\|g\|} = \frac{\Delta g}{\|g\|}$$

Exact resultaat r.

$$r = F(g)$$

Berekend resultaat \bar{r}

$$\overline{r} = F(\overline{q})$$

Absoluut verschil in resultaat Δr

$$\Delta r = F(\overline{g}) - r = \overline{r} - r$$

Relatief verschil in resultaat δr

$$\delta r = \frac{F(\overline{g}) - r}{\|r\|} = \frac{\Delta r}{\|r\|}$$

5

Definitie 17. Conditie van een probleem. Absoluut Conditiegetal k_A .

$$k_A = \lim_{\epsilon \to 0} \sup_{\|\Delta g\| \le \epsilon} \frac{\|r\|}{\|g\|}$$

Relatief Conditiegetal k_R

$$k_R = \lim_{\epsilon \to \|\Delta q\| < \epsilon} \frac{\|r\|}{\|g\|}$$

Het conditiegetal van een probleem geeft aan hoeveel een fout op de gegevens wordt opgeblazen in de resultaten.

Voorbeeld: Als het relatieve conditiegetal van een probleem F a is, dan worden fouten op de gegevens met een factor a opgeblazen.

Definitie 18. Benaderingen.

De exacte berekening van een resultaat F.

$$r = F(g)$$

De exacte berekening van het resultaat gebaseerd op een gewijzigd gegeven \overline{g} .

$$\overline{r} = F(\overline{q})$$

Eindige discretisatie van F, exact berekend: \widetilde{F} . Discretisatiefout $err_{dis} = \widetilde{F} - F$.

$$\widetilde{F} = F + err_{dis}$$

$$\widetilde{r} = \widetilde{F}(\overline{g})$$

Implementatie van \widetilde{F} in eindige precisie.

$$\overline{\widetilde{r}} = \overline{F}(\overline{g})$$

De waarde van de gegevens als $\overline{\tilde{r}}$ een exacte berekening zou zijn: $\overline{\bar{g}}$.

$$\overline{F}(\overline{g}) = \overline{\widetilde{r}} = \widetilde{F}(\overline{\overline{g}})$$

Definitie 19. Stabiliteit van een methode

• Voorwaartse/Sterke Stabiliteit.

Absolute voorwaartse stabiliteit: De absolute grootte van het verschil tussen het berekende resultaat van de methode toegepast op een gewijzigd resultaat \overline{g} in eindige precisie: $\overline{F}(\overline{g})$ en het exacte resultaat van de methode toegepast op een gewijzigd resultaat \overline{g} : $\widetilde{F}(\overline{g})$.

$$\|\overline{F}(\overline{g}) - \widetilde{F}(\overline{g})\|$$

Relatieve voorwaartse stabiliteit: De relatieve grootte van het verschil tussen het berekende resultaat van de methode toegepast op een gewijzigd resultaat \overline{g} in eindige precisie: $\overline{F}(\overline{g})$ en het exacte resultaat van de methode toegepast op een gewijzigd resultaat \overline{g} : $\widetilde{F}(\overline{g})$.

$$\frac{\|\overline{F}(\overline{g}) - \widetilde{F}(\overline{g})\|}{\|\widetilde{F}(\overline{g})\|}$$

 $Kleine\ waarde(n) \Rightarrow\ Voorwaarts\ stabiele\ methode\ \widetilde{F}.$

• Achterwaartse Stabiliteit.

Absolute achterwaartse stabiliteit: De grootte van het verschil tussen de gegevens zoals ze zouden zijn als $\overline{\tilde{r}}$ een exact resultaat was $\overline{\bar{g}}$ en de echte (gewijzigde) gegevens \overline{g} .

$$\|\overline{\overline{g}} - \overline{g}\|$$

Relatieve achterwaartse stabiliteit: De relatieve grootte van het verschil tussen de gegevens zoals ze zouden zijn als $\overline{\tilde{r}}$ een exact resultaat was $\overline{\bar{g}}$ en de echte (qewijziqde) qegevens \overline{q} .

$$\frac{\|\overline{\overline{g}} - \overline{g}\|}{\|\overline{g}\|}$$

Relatieve waarde is $O(\epsilon_{mach}) \Rightarrow Achterwaarts stabiele methode.$

• Zwakke Stabiliteit.

Het de grootte van het verschil tussen \overline{r} en \widetilde{r} . ten opzichte van de grootte van het verschil tussen $\overline{\widetilde{r}}$ en \widetilde{r} : S.

$$S = \frac{\|\overline{\overline{r}} - \widetilde{r}\|}{\|\overline{\widetilde{r}} - \widetilde{r}\|}$$

 $S \approx 1 \Rightarrow zwak \ stable methode.$

Hoofdstuk 3

Stelsels Lineaire Vergelijkingen

3.1 Conditie van een stelsel lineaire vergelijkingen

Norm van een matrix A: ||A||

$$||A|| = \max_{X \neq 0} \frac{||AX||}{||X||}$$

Het conditiegetal van een matrix A: $\kappa(A)$

$$\kappa(A) = ||A|| ||A^{-1}||$$

Residu van een stelsel lineaire vergelijkingen AX = B: R

$$R = AX - B$$

Hoofdstuk 4 Veelterminterpolatie