Opérations sur les limites

La difficulté réside dans le cas des *formes indéterminées* notées ici F.I., qu'il faut apprendre à lever par une astuce algébrique (simplification, factorisation, quantité conjuguée, etc.)

Limite d'une somme:

$\lim_{a} f$	L	L	L	$+\infty$	$-\infty$	$+\infty$
$\lim_{a} g$	L'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
$\lim_{a} (f+g)$	L + L'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	F.I.

Limite d'un produit :

$\lim_{a} f$	L	L > 0	L > 0	L < 0	L < 0	$+\infty$	$+\infty$	$-\infty$	0
$\lim_{a} g$	L'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$	$\pm \infty$
$\lim_{a} (f \times g)$	LL'	$+\infty$	$-\infty$	$-\infty$	$+\infty$	$+\infty$	$-\infty$	$+\infty$	F.I.

Limite d'un quotient : deux cas

1) le dénominateur a une limite non nulle :

a	L						
$\lim_{a} g$	$L' \neq 0$	$\pm \infty$	L' > 0	L' < 0	L' > 0	L' < 0	$\pm \infty$
$\lim_{g} (f/g)$	L/L'	0	$+\infty$	$-\infty$	$-\infty$	$+\infty$	F.I.

2) le dénominateur a une limite nulle : on doit étudier le signe du dénominateur

$\lim_{a} f$	$L>0$ ou $+\infty$	$L>0$ ou $+\infty$	$L<0$ ou $-\infty$	$L<0$ ou $-\infty$	0
$\lim_{a} g$	0 en restant positive	0 en restant négative	0 en restant positive	0 en restant négative	0
$\lim_{g} (f/g)$	$+\infty$	$-\infty$	$-\infty$	$+\infty$	F.I.

Remarque. L'écriture 0^+ (ou 0^-) est autorisée quand elle est présente sous le symbole lim : cela désigne alors un voisinage à droite de 0. Il n'est pas rigoureux en revanche d'écrire « $\lim_{x\to +\infty}\frac{1}{x}=0^+$ » car la limite de la fonction inverse en $+\infty$ est un réel et ce réel est 0 : le symbole 0^+ n'est pas un réel. Il suffit de dire « $\lim_{x\to +\infty}\frac{1}{x}=0$ et $\frac{1}{x}$ reste positif au voisinage de $+\infty$ ».