Subspaces

Similarly, any non-zero vector in \mathbb{R}^3 also spans a line going through the origin. In addition, any two linearly independent vectors span a **plane** going through the origin.

The Dot Product

If we rotate the two vectors such that one of them lies on the horizontal direction, we can draw a perpendicular line from \vec{u} to \vec{v} . Using trigonometry we get

$$\cos(\theta) = \frac{\vec{u}_{\parallel \vec{v}}}{\parallel \vec{u} \parallel},$$

where $\vec{u}_{\parallel \vec{v}}$ is the length of the projection of \vec{u} on \vec{v} .

The Cross Product

