PCA Tutorial

Slides by Yawen Ma
Based on Sam & Marcus' tutorial notes

Image as n-Dimensional vector

- Image $X_i = [1,0,...]^T x_{i1} + [0,1,...]^T x_{i2} + \cdots$
- Image $X_i = B_1 y_{i1} + B_2 y_{i2} + \dots = \sum_{j=1}^{D} B_j y_{ij}$

Principle Component Analysis

- Intuition
 - Pixel intensities are related
 - -> in new basis, only a few of the coordinates are significant
 - Less computation

Algorithm

- Find optimal set of principle components (basis)
- Compute patch coordinate in new basis
- Discard the axes with near 0 coordinates

$$(X_i = B_1 y_{i1} + B_2 y_{i2} + \dots = \sum_{j=1}^{D} B_j y_{ij}, X_i' = \sum_{j=1}^{d} B_j y_{ij})$$

Find basis

- Compute the average \bar{X}
- Subtract average from each patch $Z_i = X_i \overline{X}$ (centralized)
- $Z = [Z_1, Z_2, ...]$
- B_1 , B_2 ... are the eigenvectors of ZZ^T corresponding to d largest eigenvalues

Face recognition using PCA (Eigenface)

- Database creation
 - Input: N face images
 - Compute d eigenfaces (basis) : B_i
 - d < 10-15
 - Compute new coordinates for each input: $y_{ij} = B^{jT} X_i$
 - Store $B_j \& y_{ij}$
- Recognition
 - Input: a new image T
 - Express T by B_j (Compute T's new coordinate): t_j
 - Find closest y_i of t, and return X_i

Theory

- $Z = [Z_1, Z_2, ...]$
- Column: ith patch
- Row: jth coordinate

- $Y = [Y_1, Y_2, ...]$
- We want coordinates in the new basis:
 - Variance for each coordinate to be large
 - Covariance between every 2 coordinate to be small
- We want YY^T diagonal

Derivation

- Z = BY
- $\bullet \ Y = B^{-1}Z$
- Let $A = B^{-1}$, so Y = AZ

- Proof:
- $A^T = [e_1, e_2...]$, where e_j is the jth eigenvector of ZZ^T
- .. Will make YY^T diagonal

- (Define $A = B^{-1}$, so we have Y = A * Z.)
- Then

$$Y * Y^T = (A * Z) * (A * Z)^T$$

= $A * Z * Z^T * A^T$ [transpose rule]
= $A * (Z * Z^T) * A^T$ [regroup]

• So we want $Y * Y^T = A * (Z * Z^T) * A^T$ to be diagonal.

• Examine the eigenvector decomposition of (Z*Z^T):

• Left-multiply this by E^T : $E^T*(Z*Z^T)*E=E^T*E*L$ $=(E^T*E)*L \text{ [regroup]}$ $=I*L \text{ [eigenvecs are orthogonal, } E*E^T=E^T*E=I]$ =L [eigenval matrix L is diagonal]

• Observe that setting $A = E^T$ gives us

$$E^T * (Z * Z^T) * E = A * (Z * Z^T) * A^T [A = E^T]$$

$$= (A * Z) * (A * Z)^T [transpose rule]$$

$$= Y * Y^T [Y = A * Z = E^T * Z]$$

$$= L [see above, note L is diagonal]$$

• and so satisfies our requirement that $Y * Y^T$ be diagonal.

Practical PCA

- Remember that Z is (M x N), with M >> N
 e.g. M = 75,000 pixels per face
 N = 200 faces in the database
- Compute eigenvectors of Z^TZ first
- Then compute eigenvectors of ZZ^T

Proof

• Definition of eigenvectors for the *much* smaller $Z^T * Z$ (N x N):

$$(Z^T*Z)*e_i=\lambda_i*e_i$$
 [def]
$$(Z^T*Z)*[e_1\dots e_N]=[e_1\dots e_N]*diag(\lambda_1,\dots,\lambda_n)$$
 [stack the eqns]
$$(Z^T*Z)*E=E*L$$
 [matrix notation]

Note: E and L are also (N x N)

Now a little algebra ...

$$Z*(Z^T*Z)*E = Z*E*L$$
 [left multiply by Z]
 $(Z*Z^T)*(Z*E) = (Z*E)*L$ [regroup]

- Define $e'_i = Z * e_i$, and E' = Z * E (M x N), and observe how this form
- gives us N eigenvector equations for the *huge* matrix $Z * Z^T$ (M x M):

• So to obtain N eigenvectors, E', for $Z*Z^T$, simply find the eigenvectors, E, for the "much" smaller Z^T*Z (all N of them), and then transform them according to E'=Z*E.

• This smaller set of N (<< M) eigenvectors actually covers all the "interesting"/non-degenerate eigenvectors available.

- Why?
- We know that $\operatorname{rank}(Z) <= N = \min(M,N)$, but it's also the case that $\operatorname{rank}(Z*Z^T) = \operatorname{rank}(Z^T*Z) = \operatorname{rank}(Z)$. So this tells us that the eigenvector decomposition for $Z*Z^T$ can have at most N non-zero λ_i 's, i.e. we've covered them all.