

Theory of Computation SY BTech

Unit V
Turing Machine

Course Objective & Course Outcomes

Course Objectives:

- 1. To Study computing machines by describing, classifying and comparing different types of computational models.
- 2. Encourage students to study Theory of Computability and Complexity.

Course Outcomes:

After successful completion of this course students will be able to:

- 1. Construct finite state machines to solve problems in computing
- 2. Write mathematical expressions for the formal languages
- 3. Apply well defined rules for syntax verification
- 4. Construct and analyze Push Down, Post and Turing Machine for formal languages
- 5. Express the understanding of the decidability and Undecidability problems
- 6. Express the understanding of computational complexity.

Text Books & Reference Books

Text Books

- 1. Michael Sipser "Introduction to the Theory of Computation" CENGAGE Learning, 3rd Edition ISBN-13:978-81-315-2529-6
- 2. Vivek Kulkarni, "Theory of Computation", Oxford University Press, ISBN-13: 978-0-19-808458-7

Reference Books

- 1. Hopcroft Ulman, "Introduction To Automata Theory, Languages And Computations", Pearson Education Asia, 2nd Edition
- 2. Daniel. A. Cohen, "Introduction to Computer Theory" Wiley-India, ISBN:978-81-265-1334-5
- 3. K.L.P Mishra ,N. Chandrasekaran ,"Theory Of Computer Science (Automata, Languages and Computation)", Prentice Hall India,2nd Edition
- 4. John C. Martin, "Introduction to Language and Theory of Computation", TMH, 3rd Edition ISBN: 978-0-07-066048-9
- 5. Kavi Mahesh, "Theory of Computation: A Problem Solving Approach", Wiley-India, ISBN: 978-81-265-3311-4

Church-Turing's Thesis

Everything that is algorithmically computable is computable by a Turing machine

Turing Machine

- Invented by Alan Turing in 1936
- A simple mathematical model of a general purpose computer
- It is capable of performing any calculation which can be performed by any computing machine

The Language Hierarchy

Language Accepted by TM

Elements of a Turing Machine

- A TM consists of the following:
 - A tape head : read / write a symbol at a time, move to left/right
 - An infinite tape: contains square cells in which symbols can be written
 - A finite set of symbols
 - A finite set of states

Turing Machine

- A TM consists of a finite control (i.e. a finite state automaton) that is connected to an infinite tape.
- Initially the input consists of a finite-length string of symbols and is placed on the tape.
- To the left of the input and to the right of the input, extending to infinity, are placed blanks.
- The tape head is initially positioned at the leftmost cell holding the input.

Turing Machine

- In one move the TM will:
 - Change state, which may be the same as the current state
 - Write a tape symbol in the current cell, which may be the same as the current symbol
 - Move the tape head left or right one cell

Formal Definition of TM

Formally, the Turing Machine is denoted by the 7-tuple:

$$M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$$

Q = finite states of the control

 Σ = finite set of input symbols, which is a subset of Γ below

 Γ = finite set of tape symbols

 δ = transition function. δ : ($\mathbf{Q} \times \mathbf{\Gamma}$) -> ($\mathbf{Q} \times \mathbf{\Gamma} \times \mathbf{D}$)

e.g. $\delta(q, X) = (p, Y, \{L, R, N\})$ Where p = next state, Y = new symbol written on the tape, D = direction to move the tape head(left, right, No move)

 q_0 = start state for finite control

B = blank symbol. This symbol is in Γ but not in Σ .

F = set of final or accepting states of Q.

The Tape

No boundaries -- infinite length

Read-Write head

The head moves Left or Right

The Tape

Read-Write head

The head at each time step:

- 1. Reads a symbol
- 2. Writes a symbol
- 3. Moves Left or Right

Transition Function

Takes two arguments:

- 1. A state, in Q
- 2. A tape symbol in Γ

$\delta(q, Z)$ is either undefined or a triple of the form (p, Y, D) where

p is a state

Y is the new tape symbol

D is a direction, L or R

Example:

Time 0

• • • • •		a	b	k	C		••••

- 1. Reads a
- 2. Writes k

Time 2

• • • • •		a	f	k	C		••••

1. Reads

b f

3: Writes Right

The Input String

'b' are treated as left and right brackets for the input written on the tape.

States & Transitions

Example:

$$\begin{array}{ccc}
 & a \to b, \\
\hline
 & L
\end{array}$$

$$\begin{array}{ccc}
 & & & & & \\
\hline
 & & & & \\
\hline
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

Instantaneous Descriptions(ID) of a Turing Machine

- Sometimes it is useful to describe what a TM does in terms of its ID (instantaneous description), just as we did with the PDA
- The ID shows all non-blank cells in the tape, pointer to the cell the head is over with the name of the current state
 - use the turnstile symbol ├ to denote the move.
 - As before, to denote zero or many moves, we can use

Instantaneous Descriptions(ID) of a TM

- (1) For constructing the ID, we simply insert the current state in the input string to the left of the symbol under the R/W head.
- (2) We observe that the blank symbol may occur as part of the left or right substring.

$$q_2 xayb > x q_0 ayb$$

Fall 2006

Instantaneous Descriptions(ID) of a TM

Moves in a TM

As in the case of pushdown automata, $\delta(q, x)$ induces a change in ID of the Turing machine. We call this change in ID a move.

Suppose $\delta(q, x_i) = (p, y, L)$. The input string to be processed is $x_1x_2 \dots x_n$, and the present symbol under the R/W head is x_i . So the ID before processing x_i is

$$x_1x_2 \ldots x_{i-1}qx_i \ldots x_n$$

After processing x_i , the resulting ID is

$$x_1 \ldots x_{i-2} p x_{i-1} y x_{i+1} \ldots x_n$$

This change of ID is represented by

$$x_1x_2 \ldots x_{i-1} q x_i \ldots x_n \vdash x_i \ldots x_{i-2} p x_{i-1} y x_{i+1} \ldots x_n$$

If i = 1, the resulting ID is $p y x_2 x_3 \dots x_n$.

If $\delta(q, x_i) = (p, y, R)$, then the change of ID is represented by

$$x_1x_2 \ldots x_{i-1}q x_i \ldots x_n \vdash x_1x_2 \ldots x_{i-1} y p x_{i+1} \ldots x_n$$

- -

Example

Present state	Tape symbol								
	0	1	х	у	b				
$\rightarrow q_1$	xRq_2				bRq ₅				
q_2	$0Rq_2$	yLq_3		yRq_2					
q_3	$0Lq_4$		xRq_5	y L q_3					
q_4	$0Lq_4$		xRq_1						
q_5				yxRq ₅	bRq_6				
(q_6)									

(a)
$$q_1011 \vdash xq_211 \vdash q_3xy1 \vdash xq_5y1 \vdash xyq_51$$

(b)
$$q_10011 \vdash xq_2011 \vdash x0q_211 \vdash xq_30y1 \vdash q_4x0y1 \vdash xq_10y1$$
.
 $\vdash xxq_2y1 \vdash xxyq_21 \vdash xxq_3yy \vdash xq_3xyy \vdash xxq_5yy$
 $\vdash xxyq_5y \vdash xxyyq_5b \vdash xxyybq_6$

M halts. As q_6 is an accepting state, the input string 0011 is accepted by M.

(c)
$$q_1001 \vdash xq_201 \vdash x0q_21 \vdash xq_30y \vdash q_4x0y \vdash xq_10y \vdash xxq_2y \vdash xxyq_2$$

M halts. As q_2 is not an accepting state, 001 is not accepted by M.

Acceptance of Input

Accept Input

If machine halts in a final state

Reject Input

If machine halts in a non-final state or

If machine enters an *infinite loop*

Example 1 :aa*

Rejection Example

Time 1

Infinite Loop Example

Because of the infinite loop:

The final state cannot be reached

• The machine never halts

The input is not accepted

Design of TM steps

- 1. Definition of TM
- 2. Logic
- 3. Transition function
- 4. Instantaneous Description of a string

1. Design TM to recognize all strings of even number of 1's. Assume the string is made up of only 1's Solution

$$M = (\{q_0, q_1\}, \{1\}, \{1\}, \delta, q0, B, \{q_0\})$$

	1	В
\longrightarrow q_0	q_1BR	Accept
q_1	q_0BR	Reject

Instantaneous Description: $\mathbf{w} = \mathbf{1111}$ $q_0 1111B \mid -B q_1 111B \mid -BBq_0 11B \mid -BBB q_1 1B \mid -BBBBq_0 B \mid -Accept$

2. Design a TM which can compute a concatenation function over $\Sigma = \{1\}$

If the pair of words $\{w1,w2\}$ is the input, output has to be w1w2.

Solution

$$M = (\{q_0, q_1\}, \{1\}, \{1\}, \delta, q0, B, \{q_0\})$$

Logic: Replace separating symbol 'B' by '1'
Replace rightmost '1' by 'B'

δ:

	1	В
\longrightarrow q_0	$q_0 1R$	q_1 1R
q_1	q ₁ 1R	q_2BL
q2	q_3BR	
*q3		Accept

3. Design TM that will replace every occurrence of substring 11 by 10 keeping everything intact Solution

$$M = (\{q_0, q_1\}, \{0,1\}, \{0,1\}, \delta, q_0, B, \{q_0\})$$

	0	1	В
\rightarrow q_0	$q_0 0R$	q ₁ 1R	Accept
q_1	$q_0 0R$	$q_0 0R$	Accept

Instantaneous Description: w= 01101110110

4. Design a TM for $L = \{0^n1^n | n \ge 1\}$

	0	1	X	У	В
q_0	q_1, x, R	-	-	q ₃ , y, R	q _{4,} B, N(accept)
q_1	$q_1, 0, R$	q ₂ , y, L	-	q_1, y, R	-
q_2	$q_2, 0, L$	-	q_0, x, R	q ₂ , y, L	-
q_3	-	-	-	q ₃ , y, R	q ₄ , B, R(accept)
q_4	-	-	-	-	-

Instantaneous Description: w= 0011

Practice Problems

- 5. Design TM that recognizes strings containing equal number of 0's and 1's
- 6. Design TM that checking if a set of parentheses are well-formed

5. Design TM that recognizes strings containing equal number of 0's and 1's

Solution Instantaneous Description: w= 01101110110

 $\mathbf{M} = (\{q_0, q_1, q_2, q_3, q_4\}, \{0,1\}, \{0,1, *\}, \delta, q_0, B, \{q_0\})$

(<u>40</u>	<u>, 41. 42, 43. </u>	(3,1,1), 3, 40, 5, (40)			
	0	1	*	;	
\longrightarrow q_0	q ₁ *R	q ₃ *R	q ₀ *R	q ₄ N(Accept)	
q_1	$q_1 0R$	q ₂ *L	q ₁ *R	q ₄ N(Reject)	
q_2	q_20L	q_21L	q ₂ *L	q ₀ ; R	
q_3	q ₂ *L	q_31R	q ₃ *R	q ₄ N(Reject)	
q_4	-	-	-	-	

6. Design TM that checking if a set of parentheses are well-formed

$$M = (\{q_0, q_1, q_2, q_3,\}, \{(,)\}, \{(,), *, ;, O, R_p, L_p\}, \delta, q_0, B, \{q_3\})$$
Simplified Functional Matrix:

	(*)	;	Rp	Lp	0
 $\rightarrow q_0$	R	R	q_1^*L	q_2L	-	-	-
q_1	q_0 *R	L	L	q_3R_pN	-	-	-
q_2	q_3L_pN	L	L	q_3ON	-	-	-
q_3	q ₃ Final state						

Instantaneous Description: w= (())

Complexity of Turing Machine

The complexity of a TM is directly proportional to the size of the functional matrix. In other words, we can say that the complexity of a TM depends on the number of symbols that are being used and the number of states of the TM. Hence:

If $[=\{1, 0, a, c, ;, \}]$ and $[Q=\{q_0, q_1, q_2, q_3, q_4=\}]$

Then, the complexity of the TM = $| | \times | Q | = 6 \times 5 = 30$

A TM recognizes a language iff it accepts all and only those strings in the language.

A language L is called Turing-recognizable or recursively enumerable <u>iff</u> some TM <u>recognizes</u> L.

A TM *decides* a language L iff it accepts all strings in L and rejects all strings not in L.

A language L is called <u>decidable or recursive</u> iff some TM <u>decides</u> L.

Definition:

A language is recursive if some Turing machine accepts it and halts on any input string

In other words:

A language is recursive if there is a membership algorithm for it

Recursive and Recursively Enumerable Languages

To summarize we can say that,

yRecursively Enumerable Set

 \square A set *S* of words over Σ is said to be recursively enumerable, if there is a TM over Σ, which accepts every word in *S* and either rejects or loops for every word in ~*S* (~*S* = Σ* - *S*). This can be represented as:

```
УAccept TM = S
```

 \checkmark Reject (TM) \cup loop (TM) = Σ * - S

♥Recursive Set

 \square A set S of words over Σ is said to be recursive, if there is a TM over Σ , which accepts every word in S and rejects every word in S (S)

= Σ^* - S). This can be represented as:

```
\forallAccept (TM) = S
```

$$\checkmark$$
Reject (TM) = Σ *- S

$$\checkmark$$
Loop (TM) = ϕ

A language is called Turing-recognizable or recursively enumerable (r.e.) if some TM recognizes it

A language is called decidable or recursive if some TM decides it

Multi Tape Turing Machine

- *Multi-tape Turing machines have k number of independent tapes, having their own read/write heads. These machines have independent control over all the heads—any of these can move and read/write their own tapes. All these tapes are unbounded at both the ends just as in the single- tape TM.

Universal Turing Machine

⊌Universal Turing Machine (UTM)

- Turing machine that can simulate any other Turing Machine
- ☐It accepts the *encoded* Functional Matrix of any other TM as input on
 - its tape (**Program area**)
- ☐ It also accepts the data on which the other TM needs to be simulated (**Data area** of the tape)
- UTM needs an **imitation algorithm** that can simulate the functional matrix of any other TM (**System area**)
- Functional Matrix of such a UTM is analogous to an Operating System
- **UTM** is analogous to a modern Computer!

Universal Turing Machine

Non-Deterministic Turing Machine

A nondeterministic Turing Machine (NTM) differs from the deterministic variety by having a transition function δ such that for each state q and tape symbol X, $\delta(q, X)$ is a set of triples $\{(q_1, Y_1, D_1), (q_2, Y_2, D_2), \dots, (q_k, Y_k, D_k)\}$

Where k is any finite integer. The NTM can choose, at each step, any of the triples to be the next move. It cannot, however, pick a state from one, a tape symbol from another, a the direction from yet another.

NTM and DTM

Theorem: Every NTM has an equivalent (deterministic) TM

Proof: Simulate NTM with a deterministic TM

- computations of M are a tree
- nodes are configurations
- fanout is b = maximum number
 of choices in transition function
- leaves are accept/reject configurations.

Simulating NTM M with a deterministic TM:

Breadth-first search of tree

- if M accepts: we will encounter accepting leaf and accept
- if M rejects: we will encounter all rejecting leaves, finish traversal of tree, and reject
- if M does not halt on some branch: we will not halt as that branch is infinite...

Simulating NTM M with a deterministic TM:

- O use a 3 tape TM:
 - tape 1: input tape (read-only)
 - tape 2: simulation tape (copy of M's tape at point corresponding to some node in the tree)
 - tape 3: which node of the tree we are exploring (string in {1,2,...b}*)
- O Initially, tape 1 has input, others blank

NTM and DTM

Here is the transition function of a nondeterministic TM $M = (\{q_0, q_1, q_2\}, \{0, 1\}, \{0, 1, B\}, \delta, q_0, B, \{q_2\})$:

Show the ID's reachable from the initial ID if the input is:

- * a) 01.
 - b) 011.

Solvable and Semi-Solvable Problems

- **Solvable** problem: TM when applied to such a problem, always
 - eventually terminates with the correct "yes" or "no" answer
 - □A class of all such problems is called as Recursive language
 - ☐The mathematical functions that denote these type of problems are called as **Total Recursive Functions**
 - □Simple Examples multiplication, addition, concatenation and many other
- **Semi-solvable** problem: TM when applied to such a problem, always eventually terminates with correct answer when answer is "yes" and may or may not terminate when the correct answer is "no"
 - □A class of all such problems is called as **Recursively Enumerable language**
 - ☐ The mathematical functions that denote these type of problems are called as **Partial Recursive Functions**
 - ☐Simple Examples division, factorial and many other

Halting Problem and Unsolvablity

- For a given input for any general TM two cases arise,
 - ☐The machine may halt after a finite number of steps
 - ☐The machine may not ever halt no matter how long it runs
- Given any TM, problem of algorithmically determining whether it ever halts or not, is called as the Halting Problem
- **Y**The halting problem is unsolvable

A halts for input (t, d_T)

- Proof by contradiction
- There is a Turing machine T that will decide the halting problem.<M> this is the description of Turing machine M and string W. T write "accept" when M halts on w, and reject If M does not halts on W

We build a Turing machine Tm and here we standardizing T so when T write yes and halt then Tm will goes into loop forever

we build Tc with the help of TM. Here we take Tc as input which is the description of Turing machine M and we write it in this way d(M) now we copies it to obtain the string d(M)*d(M), where * is a symbol that break up the two copies of d(M) and then provide d(M)*d(M) to the Turing machine Tm .

Turing machine T

What Turing machine Tc does when a string given to it which describe Tc itself

d(Tc) is given as input to Tc it make copy of it and build the string d(Tc)*d(Tc) and allot to standardized T.so the altered T is specified a description of Tc and string d(Tc)

Turing machine T on input d(T)

END