

La conduzione ossea

Amenta Daniele

Cataldo Cristian

D'Agosta Daniele

Indice

- Fisiologia dell'udito
- Vibrazione, propagazione, rilevazione
- Introduzione alla conduzione ossea
- Vantaggi e svantaggi
- Dispositivi a conduzione ossea

Fisiologia dell'udito

L'orecchio è diviso in tre parti principali:

- Orecchio esterno: padiglione e meato;
- Orecchio medio: timpano e ossicini;
- Orecchio interno: coclea.

Coclea

La coclea si divide in tre scale:

- Scala timpanica;
- Scala media;
- Scala vestibolare.

La vestibolare a la timpanica sono messe in comunicazione dall'elicotrema e sono riempite di perilinfa.

Nella scala media risiede l'organo del Corti.

Vibrazione, propagazione, rilevazione

La propagazione del suono ha origine da una sorgente sonora. Le onde si propagano in un mezzo e vengono rilevate da un ascoltatore.

Introduzione alla conduzione ossea

La **conduzione ossea** è la conduzione del suono all'orecchio interno attraverso le ossa del cranio.

Una delle prime testimonianze storiche di questo fenomeno risale al celebre compositore tedesco

Ludwig van Beethoven.

Come funziona la conduzione

Conduzione ossea di compressione

Poiché la membrana della finestra ovale è più sensibile alle vibrazioni rispetto alla staffa, queste si trasmettono nella perilinfa, liquido extra-cellulare presente all'interno della coclea, della scala vestibolare e stimolano l'organo di Corti.

Conduzione ossea inerziale

- Per quanto riguarda le frequenze più basse, il cranio si muove come un corpo rigido: gli ossicini sono meno colpiti e si muovono meno liberamente rispetto alla coclea e ai margini della finestra ovale.
- Il risultato è un movimento della finestra ovale rispetto alla catena dei tre ossicini, producendo lo stesso effetto di una vibrazione degli ossicini stessi.

Vantaggi

- Il condotto uditivo è libero, quindi si è in grado di percepire i rumori ambientali;
- Si prevengono danni all'udito, in quanto le cuffie a conduzione ossea fanno transitare le vibrazioni del suono attraverso le ossa anziché il padiglione auricolare.

Bone Conduction

Temporal oral Bone (skull)

Svantaggi

- Lo svantaggio principale sembra invece essere nella qualità del suono, sebbene si tratti di una questione molto soggettiva.
- Questo perché la conduzione ossea non sfrutta l'effetto da cassa di risonanza dell'orecchio esterno.

Dispositivi: Xtrainerz

- Affrontano lo svantaggio della qualità del suono.
- Nascono per essere utilizzate dagli appassionati di nuoto, in quanto la conduzione ossea si fa apprezzare soprattutto al mare o in piscina.

Dispositivi: IceBRKR

- Si tratta di una maschera da scii con un sistema Bluetooth.
- La trasmissione avviene attraverso

conduzione ossea.

Dispositivi: HUAWEI FreeBuds3

- Rivoluzionari auricolari di casa HUAWEI.
- Sfruttano la conduzione ossea per percepire i movimenti della mandibola durante le chiamate, rendendo la voce più chiara e udibile.

Conclusioni

Come abbiamo visto, la conduzione ossea è sempre più presente nei dispositivi elettronici, soprattutto in quelli utilizzati in ambito sportivo, perché permette di prestare sufficiente attenzione all'ambiente circostante non privandosi del piacere di ascoltare musica.

GRAZIE PER L'ATTENZIONE