#### 2017/2018 SEMESTER ONE MID-SEMESTER TEST

SAS Code: MST

Diploma in Aerospace Electronics (DASE) 2<sup>nd</sup> Year FT Diploma in Engineering with Business (DEB) 3<sup>rd</sup> Year FT Diploma in Electrical & Electronic Engineering (DEEE) 2<sup>nd</sup> Year FT Diploma in Engineering Systems (DES) 2<sup>nd</sup> Year FT Diploma in Energy Systems and Management (DESM) 2<sup>nd</sup> Year FT

#### **CIRCUIT THEORY & ANALYSIS**

Time Allowed: 1.5 Hours

## Instructions to Candidates

- 1. The Singapore Polytechnic examination rules are to be complied with.
- 2. This paper consists of **TWO** sections:

Section A - 10 Multiple Choice Questions, 3 marks each.

Section B - 4 Short Questions

- 3. ALL questions are COMPULSORY.
- 4. All questions are to be answered in the answer booklet. Start each question in Sections B on a new page.
- 5. This paper consists 8 pages, inclusive of the formulae sheet.

## **SECTION A: MULTIPLE CHOICE QUESTIONS** (3 marks each)

- 1. Please **tick** your answers in the **MCQ box** behind the front cover of the answer booklet.
- 2. No marks will be deducted for incorrect answers.
- 1. Which one of the following is the correct Nodal Voltage equation for the network shown in Figure A1?

(a) 
$$\begin{bmatrix} \frac{1}{4} + \frac{1}{5} + \frac{1}{2} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} + \frac{1}{6} + \frac{1}{3} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} \frac{4}{4} \\ \frac{6}{3} - \frac{4}{4} \end{bmatrix}$$

(b) 
$$\begin{bmatrix} \frac{1}{4} + \frac{1}{5} + \frac{1}{2} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} + \frac{1}{6} + \frac{1}{3} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} \frac{4}{4} \\ \frac{6}{3} + \frac{4}{4} \end{bmatrix}$$





(d) 
$$\begin{bmatrix} \frac{1}{4} + \frac{1}{5} + \frac{1}{2} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{1}{4} + \frac{1}{6} + \frac{1}{3} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} \frac{4}{4} \\ \frac{6}{3} + \frac{4}{4} \end{bmatrix}$$

- 2. For the circuit shown in Figure A1, determine the expression for the current in the 6  $\Omega$  resistor.
  - (a)  $\frac{V_1}{6}$
  - (b)  $\frac{V_2}{6}$
  - $(c) \qquad \frac{V_2 V_1}{6}$
  - $(d) \qquad \frac{V_1 + V_2}{6}$

- 3. If a 7 A current source is connected across terminals  $V_1$  and  $V_2$  in Figure A1, which one of the following statements is true with regards to the matrix in Question 1?
  - (a) Only the admittance matrix will change.
  - (b) Only the current matrix will change.
  - (c) Only the voltage matrix will change.
  - (d) The admittance, voltage and current matrices will all change.
- 4. Determine the Norton's equivalent current source, I<sub>N</sub> across terminals A and B for the circuit given in Figure A4.



- (c) 2.5 A
- (d) 5 A



Figure A4

- 5. The value of the Norton's equivalent resistance,  $R_N$  across terminals A and B for the circuit shown in Figure A4 is
  - (a)  $6.67 \Omega$
  - (b)  $8\Omega$
  - (c)  $30 \Omega$
  - (d)  $50 \Omega$
- 6. Determine the value of the unknown resistor  $R_X$ , if the Norton's equivalent resistance  $R_N$  across terminals A and B for the circuit shown in Figure A6 is found to be 10  $\Omega$ .
  - (a)  $2\Omega$
  - (b)  $4\Omega$
  - (c)  $5\Omega$
  - (d)  $7 \Omega$



Figure A6

7. The frequency response curve of the RLC series circuit is as shown in Figure A7.







(d) 5 kHz and 11 kHz



8. For the same frequency response curve in Figure A7, determine the quality factor of the circuit at resonance.

A parallel RLC resonant circuit with a quality factor of 50 is connected to a 2 V source.
 Determine the circuit impedance at resonance when the current through the capacitor is 0.02 A.

(a) 
$$25 \Omega$$

(b) 
$$100 \Omega$$

(c) 
$$2.5 \text{ k}\Omega$$

(d) 
$$5 k\Omega$$

- 10. How does a decrease in the value of resistance affect the resonant frequency  $f_o$  and bandwidth of a parallel RLC circuit?
  - (a) No change in the resonant frequency  $f_o$  and bandwidth increases.
  - (b) No change in the resonant frequency  $f_o$  and bandwidth decreases.
  - (c) Resonant frequency  $f_o$  increases and bandwidth increases.
  - (d) Resonant frequency  $f_o$  increases and bandwidth decreases.

### **SECTION B: 4 QUESTIONS**

B1. Using the source conversion method, simplify the circuit shown in Figure B1 to its equivalent voltage source across terminals AB and calculate the current in the load, R<sub>L</sub>.



- B2. (a) By inspection, **write** the mesh current equations for  $I_1$ ,  $I_2$  and  $I_3$  in matrix form for the network shown in Figure B2. (15 marks)
  - (b) Write an expression in terms of the mesh currents for:
    - (i) the voltage across the 4  $\Omega$  resistor, and (2 marks)
    - (ii) the current in the j8  $\Omega$  inductor. (3 marks)



- B3. For the circuit shown in Figure B3,
  - (a) convert the delta-connected resistors as shown in the dotted box into an equivalent star-connection, and hence (9 marks)
  - (b) determine the total circuit resistance. (6 marks)



- B4. (a) Apply Thevenin's Theorem to find the Thevenin equivalent circuit parameters  $V_{TH}$  and  $Z_{TH}$  between terminals A and B for the circuit shown in Figure B4. (Include circuit diagrams for finding  $V_{TH}$  and  $Z_{TH}$ ) (17 marks)
  - (b) Draw the Thevenin's equivalent circuit obtained above. (3 marks)



- End of Paper -

# <u>Formulae</u>

| Resistors in series                     | $R_{T} = R_{1} + R_{2} + R_{3} + \dots$                                                                                 |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Resistors in parallel                   | $R_{T} = R_{1} + R_{2} + R_{3} + \dots$ $\frac{1}{R_{T}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} + \dots$ |
| Resistors in parallel (for 2 resistors) | $R_{\mathrm{T}} = \frac{R_{1} R_{2}}{R_{1} + R_{2}}$                                                                    |
| Voltage Divider Rule                    | $V_{X} = \frac{R_{X}}{R_{T}} V_{S}$                                                                                     |
| Current Divider Rule                    | $\mathbf{I}_1 = \frac{\mathbf{R}_2}{\mathbf{R}_1 + \mathbf{R}_2} \mathbf{I}_{\mathrm{T}}$                               |
| Source Conversion                       | $E = I_S R_S 	 I_S = \frac{E}{R_S}$                                                                                     |
| Mesh Current Analysis                   | [Z] [I] = [V]                                                                                                           |
| Nodal Voltage Analysis                  | [Y] [V] = [I]                                                                                                           |
| Delta to Star Conversion                | $Z_1 = \frac{Z_A Z_C}{Z_A + Z_B + Z_C}$                                                                                 |
|                                         | $Z_2 = \frac{Z_A Z_B}{Z_A + Z_B + Z_C}$                                                                                 |
|                                         | $Z_3 = \frac{Z_B Z_C}{Z_A + Z_B + Z_C}$                                                                                 |
| Star to Delta Conversion                | $Z_{A} = Z_{1} + Z_{2} + \frac{Z_{1}Z_{2}}{Z_{3}}$                                                                      |
|                                         | $Z_{\rm B} = Z_2 + Z_3 + \frac{Z_2 Z_3}{Z_1}$                                                                           |
|                                         | $Z_{\rm C} = Z_1 + Z_3 + \frac{Z_1 Z_3}{Z_2}$                                                                           |
| Inductive Reactance                     | $X_L = 2\pi f L$                                                                                                        |
| Capacitive Reactance                    | $X_{C} = \frac{1}{2 \pi f C}$                                                                                           |

| Series RLC Resonant Circuit   | 7 - D I - \//D                                                          |
|-------------------------------|-------------------------------------------------------------------------|
|                               | Z = R $I = V/R$                                                         |
|                               | $f_o = \frac{1}{2\pi\sqrt{LC}}$                                         |
|                               | $Q_0 = \frac{X_L}{R} = \frac{X_C}{R}$ $= \frac{V_L}{V} = \frac{V_C}{V}$ |
|                               | Bandwidth (BW) = $\frac{f_o}{Q_o} = f_2 - f_1$                          |
|                               | $f_1 = f_o - \frac{BW}{2} \qquad f_2 = f_o + \frac{BW}{2}$              |
| Parallel RLC Resonant Circuit | Z = R $I = V/R$                                                         |
|                               | $f_o = \frac{1}{2\pi\sqrt{LC}}$                                         |
|                               | $Q_0 = \frac{R}{X_L} = \frac{R}{X_C}$                                   |
|                               | $=\frac{I_{L}}{I}=\frac{I_{C}}{I}$                                      |
|                               | Bandwidth (BW) = $\frac{f_o}{Q_o} = f_2 - f_1$                          |
|                               | $f_1 = f_o - \frac{BW}{2} \qquad f_2 = f_o + \frac{BW}{2}$              |

#### **ANSWERS:**

| A                                    |                 |
|--------------------------------------|-----------------|
| 1                                    | C               |
| 2                                    | В               |
| 3                                    | В               |
| 4                                    | D               |
| 5                                    | В               |
| 6                                    | A               |
| 7                                    | С               |
| 8                                    | D               |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | B B D B A C D D |
| 10                                   | A               |

**B1** 
$$V_S = 8.4 \text{ V}, R_S = 6.6 \Omega, I_L = 0.54 \text{ A}$$

$$\begin{bmatrix} 8 & 0 & -3 \\ 0 & 4 & j8 \\ -3 & j8 & 10 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} 20\angle 0^0 - 10\angle 0^0 \\ 20\angle 0^0 \\ -15\angle 90^0 \end{bmatrix}$$

$$V_{4\Omega} = 4I_2$$
 or  $-4I_2$  
$$I_{j8\Omega} = I_2 + I_3$$
 or  $I_{j8\Omega} = -(I_2 + I_3)$ 

**B3** 
$$R_1 = 30\Omega, R_2 = 10\Omega, R_3 = 7.5\Omega$$
  
 $R_T = 23.98\Omega$ 

**B4** 
$$V_{TH} = 50 \angle 0^{0} V$$
  $Z_{TH} = 14.8 Ω$ 

Thevenin's Equivalent Circuit

