Lycée Stanislas Août 2023

Pré-rentrée ECG 2ème année

Mathématiques - Sujets de TD

Analyse

1 Fonctions usuelles, suites numériques

Exercice 1 - Pour réviser (début du sujet HEC 2023)

- **1.** Montrer que pour tout $x \in \mathbb{R}$, on a $\lim_{n \to +\infty} \frac{\lfloor nx \rfloor}{n} = x$.
- **2.** Montrer que $\lim_{n \to +\infty} \left(n \left\lfloor \frac{n}{2} \right\rfloor \right) = +\infty$.
- **3.** Montrer que pour tout $x \in [-1, 1]$, on a $\cos(\arcsin(x)) = \sqrt{1 x^2}$.
- **4.** Montrer que la fonction arcsin est continue sur [-1,1], dérivable sur]-1,1[, de dérivée $x\mapsto \frac{1}{\sqrt{1-x^2}}$.
- **5.** Soit $G: [0,1] \to \mathbb{R}$ la fonction définie par $G(x) = 2\arcsin(\sqrt{x})$.
 - (a). Montrer que G est continue sur [0,1], dérivable sur [0,1], de dérivée g donnée par

$$\forall x \in]0,1[g(x) = \frac{1}{\sqrt{x(1-x)}}.$$

(b). Etudier la fonction G et tracer son graphe.

Exercice 2 - Deux suites incontournables

Les deux questions suivantes sont indépendantes.

- **1.** Soit a, b > 0. Montrer que les suites $(u_n)_{n \ge 0}$ et $(v_n)_{n \ge 0}$ définies par $u_0 = a, v_0 = b$ et pour tout $n \in \mathbb{N}, \ u_{n+1} = \frac{u_n + v_n}{2}$ et $v_{n+1} = \sqrt{u_n v_n}$ convergent vers une même limite $M(a, b) \ge 0$.
- **2.** Etudier la limite de la suite définie par $u_0 > 0$ et $u_{n+1} = \frac{1}{2} \left(u_n + \frac{\alpha}{u_n} \right)$, pour $\alpha \in \mathbb{R}_+$.

indication : On pourra commencer par étudier le signe de $u_{n+1}^2 - \alpha$.

Exercice 3 - Edhec 2018

Soit $n \in \mathbb{N}^*$. On définit la fonction f_n par $f_n(x) = 1 - x - x^n$ pour $x \ge 0$.

- 1. Montrer que l'équation $f_n(x) = 0$ d'inconnue x admet une seule solution, notée u_n .
- **2.** (a). Vérifier que $u_n \in]0,1[$.
 - (b). En déduire le signe de $f_{n+1}(u_n)$ puis établir que la suite $(u_n)_{n\geq 0}$ est croissante.
 - (c). Conclure que la suite $(u_n)_{n\geq 0}$ converge et que sa limite appartient à [0,1].
 - (d). Montrer par l'absurde que $(u_n)_{n>1}$ converge vers 1.

- **3.** Pour tout $n \in \mathbb{N}^*$, on pose $v_n = 1 u_n$.
 - (a). Justifier que v_n est strictement positif, puis montrer que $\ln(v_n) \underset{n \to +\infty}{\sim} -nv_n$.
 - **(b).** Etablir que $\lim_{n \to +\infty} \frac{\ln\left(\frac{-\ln(v_n)}{nv_n}\right)}{-\ln(v_n)} = 0$ et en déduire que $\ln(v_n) \underset{+\infty}{\sim} -\ln(n)$.
 - (c). Montrer enfin que $v_n \underset{n \to +\infty}{\sim} \frac{\ln(n)}{n}$.

2 Intégration

Exercice 1 - Pour réviser

A) Calcul d'intégrales sur un segment

Soit $t \in [0, 1]$. Calculer les intégrales suivantes :

1.
$$\int_0^1 x e^{-x^2} dx$$
. 2. $\int_1^{e^2} \frac{\ln(x)}{x + x (\ln(x))^2} dx$. 3. $\int_1^3 \frac{1}{\sqrt{x} + \sqrt{x^3}} dx$.

B) Etude d'intégrales impropres

Etudier la nature des intégrales suivantes :

$${\bf 1.}\, \int_0^{+\infty}\! \frac{t\,e^{-\sqrt{t}}}{1+t^2}\,dt. \quad {\bf 2.}\, \int_1^2\! \ln(\ln(t))\,dt. \quad {\bf 3.}\, \int_0^{+\infty}\! \sin\!\left(\frac{1}{t^2}\right)\!dt.$$

C) Changement de variable

Soit
$$\varphi : x \mapsto \int_{\pi/2}^{x} \frac{1}{\sin \theta} d\theta$$
.

- 1. Donner l'ensemble de définition de φ . On le notera I.
- **2.** Démontrer que si $u = \tan\left(\frac{\theta}{2}\right)$, alors $\sin(\theta) = \frac{2u}{1+u^2}$.
- 3. En déduire que

$$\forall x \in I \quad \varphi(x) = \ln\left(\tan\left(\frac{x}{2}\right)\right).$$

Exercice 2 - Une étude de fonction

Pour $x \in \mathbb{R}$, on note, sous réserve de convergence, $F(x) = \int_{1}^{+\infty} \frac{e^{-tx^2}}{1+t^3} dt$.

- 1. Montrer que, pour tout $x \in \mathbb{R}$, l'intégrale F(x) converge. Ainsi, F est une fonction définie sur \mathbb{R} .
- **2.** Montrer que F est paire.
- **3.** (a). Montrer que pour tout $(a,b) \in \mathbb{R}^2_+$, on a $|e^{-a} e^{-b}| \leq |a-b|$.
 - (b). En déduire que pour tout $(x,y) \in \mathbb{R}^2$, on a $|F(x) F(y)| \le C |x^2 y^2|$ avec C > 0.
 - (c). Montrer que F est continue sur \mathbb{R} .

Exercice 3 - Em Lyon 2004

1. Montrer que, pour tout réel $x \in]0, +\infty[$, et tout entier naturel k, l'application $t \mapsto t^k e^{-xt}$ est bornée sur $[0, +\infty[$. En déduire que l'intégrale $\int_0^{+\infty} \frac{t^k e^{-xt}}{1+t^2} dt$ converge.

On note, pour tout entier naturel k, B_k : $]0, +\infty[\to \mathbb{R}$ l'application définie, pour tout réel x strictement positif, par $B_k(x) = \int_0^{+\infty} \frac{t^k e^{-xt}}{1+t^2} dt$.

2. (a). Montrer que

$$\forall u\!\in\!\mathbb{R}\quad |e^u-1-u|\ \leq\ \frac{u^2}{2}e^{|u|}.$$

(b). En déduire que pour tout réel $x \in]0, +\infty[$, pour tout entier naturel k et pour tout réel h tel que $0 < |h| < \frac{x}{2}$, on a :

$$\left| \frac{B_k(x+h) - B_k(x)}{h} + B_{k+1}(x) \right| \le \frac{|h|}{2} B_{k+2} \left(\frac{x}{2} \right).$$

(c). Montrer que, pour tout entier naturel k, B_k est dérivable sur $]0, +\infty[$ et que

$$\forall x \in]0, +\infty[\quad B'_k(x) = -B_{k+1}(x).$$

(d). En déduire que B_0 est de classe \mathcal{C}^2 sur $]0, +\infty[$ et que, pour tout réel $x \in]0, +\infty[$ on a

$$B_0''(x) + B_0(x) = \frac{1}{x}.$$

3. Montrer que pour tout x > 0, on a :

$$0 \le B_0(x) \le \frac{1}{x}$$
 et $0 \le -B'_0(x) \le \frac{1}{x^2}$.

En déduire les limites de $B_0(x)$ et $B_0'(x)$ quand $x \to +\infty$.

4. (a). Montrer que pour x > 0, on a

$$e^{-\sqrt{x}} \int_0^{\frac{1}{\sqrt{x}}} \frac{dt}{1+t^2} \le B_0(x) \le \int_0^{+\infty} \frac{dt}{1+t^2}.$$

(b). Justifier, pour tout réel $y \in \left[0, \frac{\pi}{2}\right[$, que

$$\int_0^y du = \int_0^{\tan(y)} \frac{dt}{1+t^2}.$$

En déduire que $\int_0^{+\infty} \frac{dt}{1+t^2} = \frac{\pi}{2}$.

(c). En déduire la limite de $B_0(x)$ lorsque x tend vers 0 par valeurs strictement positives.

3

3 Séries numériques

Exercice 1 - Pour réviser

Déterminer la nature des séries suivantes :

1.
$$u_n = \frac{(-1)^n}{n^{\frac{4}{3}} + \cos(n)}$$
. 2. $u_n = \frac{1}{\sqrt{n}} \ln\left(1 + \frac{1}{\sqrt{n}}\right)$. 3. $u_n = \sin\left(\sqrt{1 + n^2 \pi^2}\right)$.

Exercice 2 - Eml 2016

On s'intéresse à la série $\sum_{n\in\mathbb{N}^*}\frac{(-1)^{n+1}}{n^x},$ pour $x\in\mathbb{R}.$

1. Justifier que pour $x \in \mathbb{R}_-$, la série $\sum_{n \in \mathbb{N}^*} \frac{(-1)^{n+1}}{n^x}$ diverge.

2. Soit $x \in \mathbb{R}_+^*$. On note, pour tout $n \in \mathbb{N}^*$, $u_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k^x}$.

(a). Montrer que les suites $(u_{2p})_{p\in\mathbb{N}^*}$ et $(u_{2p+1})_{p\in\mathbb{N}^*}$ sont adjacentes, puis en déduire qu'elles convergent vers une même limite notée S(x).

(b). En déduire : $\forall \varepsilon > 0 \quad \exists n_0 \in \mathbb{N}^*, \ \forall n \geq n_0 \quad |u_n - S(x)| \leq \varepsilon.$

(c). Justifier alors que la série $\sum_{n \in \mathbb{N}^*} \frac{(-1)^{n+1}}{n^x}$ converge et que l'on a $S(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n^x}$.

(d). Justifier que $\forall p \in \mathbb{N}^*$, $u_{2p} \leq S(x) \leq u_{2p+1} \leq u_{2p-1}$.

(e). En déduire que $\forall n \in \mathbb{N}^*, |S(x) - u_n| \leq \frac{1}{(n+1)^x}$.

Exercice 3 - Escp 2010

1. On considère une suite réelle $(a_n)_{n\in\mathbb{N}}$ de limite $l\in\mathbb{R}$.

(a). Montrer que pour tout $\varepsilon > 0$, il existe $n_0 \in \mathbb{N}^*$ tel que pour tout $n \geqslant n_0$ on ait :

$$\left| \frac{1}{n} \sum_{k=0}^{n-1} a_k - l \right| \le \left| \frac{1}{n} \sum_{k=0}^{n_0 - 1} (a_k - l) \right| + \frac{\varepsilon}{2}$$

(b). En déduire la limite de la suite $(v_n)_{n\in\mathbb{N}^*}$ définie par :

$$v_n = \frac{1}{n} \sum_{k=0}^{n-1} a_k$$

2. Dans cette question, on considère la suite $(u_n)_{n\geqslant 0}$ définie par :

$$u_0 = \frac{\pi}{4}$$
 et $\forall n \ge 1$ $u_{n+1} = \sin(u_n)$

(a). Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge, et donner sa limite.

(b). Montrer qu'il existe un réel α tel que $\lim_{n\to+\infty} \left(\frac{1}{u_{n+1}^{\alpha}} - \frac{1}{u_n^{\alpha}}\right)$ existe et soit un réel non nul.

4

(c). Quelle est la nature de la série de terme général u_n ?

Exercice 4 - Oral Escp 2018

Soit A et λ deux réels strictement positifs. Soit I = [0, A].

1. Soit $t \in \mathbb{R}_+$ et $(u_n(t))_{n \ge 1}$ la suite définie par

$$\forall n \in \mathbb{N}^* \quad u_n(t) = \frac{(-1)^{n+1}}{n!} e^{n\lambda t}.$$

Montrer que la série $\sum_{n\geq 1} u_n(t)$ est convergente et calculer sa somme $S(t) = \sum_{n=1}^{+\infty} u_n(t)$.

2. On pose $R_n(t) = \sum_{k=n}^{+\infty} u_k(t)$. Soit f une fonction continue sur I à valeurs réelles.

(a). Montrer qu'il existe M>0 tel que pour tout $t\in I,$ on ait :

$$|f(t) R_n(t)| \le \frac{M}{n!} e^{n\lambda A} \sum_{q=0}^{+\infty} \frac{e^{q\lambda A}}{q!}.$$

(b). En déduire l'égalité :

$$\sum_{k=1}^{+\infty} \frac{(-1)^{k+1}}{k!} \int_0^A e^{k\lambda t} f(t) dt = \int_0^A (1 - \exp(-e^{\lambda t})) f(t) dt.$$

3. Soit $t \in \mathbb{R}_+$. Déterminer $\lim_{\lambda \to +\infty} (1 - \exp(-e^{\lambda t}))$.

4. En découpant l'intervalle [0,A] en deux intervalles $[0,\delta]$ et $[\delta,A]$ avec $\delta > 0$ bien choisi, montrer que l'on a :

$$\int_0^A f(t) \, dt = \lim_{\lambda \to +\infty} \sum_{k=1}^{+\infty} \frac{(-1)^{k+1}}{k!} \int_0^A e^{k\lambda t} \, f(t) \, dt.$$

Algèbre linéaire

1 Applications linéaires & Polynômes

Exercice 1 - Pour réviser

Les questions 1 et 2 sont indépendantes.

- **1.** Soit E l'espace vectoriel des fonctions continues sur \mathbb{R} . Pour tout $k \in \mathbb{N}^*$, on pose $f_k : x \mapsto e^{kx}$. Démontrer que (f_1, \ldots, f_n) constitue une famille libre de E.
- 2. Déterminer l'image et le noyau des applications linéaires suivantes :
 - (a). $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par f(x, y) = (2x 3y, 4x 6y).
 - **(b).** $f: \mathbb{R}[X] \to \mathbb{R}[X]$ définie par f(P) = P'.

Exercice 2 - Eml 2015

On définit l'ensemble $E = \{P \in \mathbb{R}_4[X] : P(0) = P(4) = 0\}$, et le polynôme W = X(X - 4).

1. Montrer que E est un sous-espace vectoriel de $\mathbb{R}_4[X]$.

Pour tout polynôme $Q \in \mathbb{R}_2[X]$, on note $\phi(Q) = WQ$.

- **2.** Montrer que l'application $\phi: Q \mapsto WQ$ est un isomorphisme de $\mathbb{R}_2[X]$ sur E.
- **3.** En déduire une base de E et la dimension de E.

Pour tout polynôme $Q \in \mathbb{R}_2[X]$, on considère le polynôme $\Delta(Q)$ défini par

$$\Delta(Q) = Q(X+1) - Q(X).$$

- **4.** (a). Montrer que l'application Δ est un endomorphisme de $\mathbb{R}_2[X]$.
 - (b). Déterminer, pour tout polynôme Q de $\mathbb{R}_2[X]$, le degré de $\Delta(Q)$ en fonction du degré de Q.
 - (c). Déterminer le noyau et l'image de Δ .
 - (d). Etablir : $\Delta \circ \Delta \circ \Delta = 0$.

On définit l'endomorphisme f de E suivant : $f = \phi \circ \Delta \circ \phi^{-1}$.

- **5.** (a). Montrer que $f \circ f \circ f = 0$.
 - (b). Déterminer une base du noyau et de l'image de f.

Exercice 3 - Edhec 2016

- 1. Dans cette question, f est un endomorphisme de \mathbb{R}^n qui vérifie $f \circ (f \operatorname{Id})^2 = 0$, où Id désigne l'endomorphisme identité de \mathbb{R}^n .
 - (a). Déterminer $(f \operatorname{Id})^2 + f \circ (2\operatorname{Id} f)$.
 - **(b).** En déduire que $\forall x \in \mathbb{R}^n$, $x = (f \mathrm{Id})^2(x) + (f \circ (2\mathrm{Id} f))(x)$.
 - (c). Utiliser ce dernier résultat pour établir que $\mathbb{R}^n = \operatorname{Ker}(f) \oplus \operatorname{Im}(f)$.
- **2.** Dans cette question, f est un endomorphisme de \mathbb{R}^n tel que $f \circ (f \mathrm{Id}) \circ (f 4\mathrm{Id}) = 0$.
 - (a). Déterminer un polynôme P du premier degré vérifiant $\frac{1}{4}(X-1)(X-4)+XP(X)=1$.

6

- **(b).** En déduire que $\mathbb{R}^n = \text{Ker}(f) \oplus \text{Im}(f)$.
- **3.** Dans cette question, f est un endomorphisme de \mathbb{R}^n et P est un polynôme annulateur de f, de degré égal à $p \geq 2$, vérifiant P(0) = 0 et $P'(0) \neq 0$.
 - (a). Montrer qu'il existe p réels a_1, a_2, \ldots, a_p avec $a_1 \neq 0$ tels que $P = a_1 X + \cdots + a_p X^p$.
 - (b). En déduire que $\operatorname{Ker}(f) \cap \operatorname{Im}(f) = \{0\}$, puis établir que $\mathbb{R}^n = \operatorname{Ker}(f) \oplus \operatorname{Im}(f)$.
 - (c). En quoi cette question est-elle une généralisation des deux précédentes?

Exercice 4 - HEC 2004

On note $E = C^0([0, 1], \mathbb{R})$, et pour $f \in E$, on note $||f||_{\infty} = \sup_{x \in [0, 1]} |f(x)|$.

On fixe $q \in E$ et on pose :

$$F(q) = \{ f \in \mathcal{C}^2([0,1], \mathbb{R}) \mid \forall t \in [0,1] \quad f''(t) = q(t)f(t) \}.$$

Il est clair que F(q) est un sous-espace vectoriel de E.

Pour $f \in E$, on définit $\Phi(f)$ par $\Phi(f)(t) = \int_0^t (t-u) \, q(u) \, f(u) \, du$ pour tout $t \in [0,1]$.

- **1.** Montrer que $\Phi \in \mathcal{L}(E)$, que $\Phi(f) \in \mathcal{C}^2([0,1],\mathbb{R})$ et calculer $\Phi(f)'$ et $\Phi(f)''$ pour $f \in E$.
- **2.** Soit $f \in E$. On définit la suite $(f_n)_{n \in \mathbb{N}}$ par $f_0 = f$ et pour tout $n \in \mathbb{N}$ $f_{n+1} = \Phi(f_n)$.
 - (a). Démontrer que $|f_n(t)| \leq ||q||_{\infty}^n ||f_0||_{\infty} \frac{t^n}{n!}$ par récurrence sur $n \in \mathbb{N}$.
 - (b). Montrer que pour tout $t \in [0,1]$, la suite $(f_n(t))_{n \in \mathbb{N}}$ converge vers zéro.
- 3. On définit l'application Δ : $\begin{cases} F(q) \to \mathbb{R}^2 \\ f \mapsto (f(0), f'(0)) \end{cases}.$
 - (a). Montrer que Δ est linéaire et injective.
 - (b). Que peut-on en déduire quant à la dimension de F(q)?

2 Matrices

Exercice 1 - Pour réviser

Calculer l'inverse de $\begin{pmatrix} 1 & 3 & 1 \\ 2 & -1 & 1 \\ -1 & 1 & 2 \end{pmatrix}$.

Exercice 2 - Exercice d'oral sans préparation

Soit $n \ge 2$, A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$ telles que $A^3 = 0$, AB = BA et B est inversible. Montrer que A + B est inversible.

Exercice 3 - *Eml 2013*

Pour toute matrice $A \in \mathcal{M}_n(\mathbb{R})$, on appelle trace de A et on note Tr(A) la somme des coefficients diagonaux de A, c'est-à-dire $\text{Tr}(A) = \sum_{i=1}^n a_{ii}$.

7

Pour $j \in [1, n]$, on note $C_j(A)$ la matrice colonne constituée des coefficients de la $j^{\text{ème}}$ colone de A.

- **1.** Montrer que l'application $\operatorname{Tr}: \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}, A \mapsto \operatorname{Tr}(A)$ est linéaire.
- **2.** Montrer que $\forall A, B \in \mathcal{M}_n(\mathbb{R}), \operatorname{Tr}(AB) = \operatorname{Tr}(BA)$.
- **3.** Démontrer que $\forall A \in \mathcal{M}_n(\mathbb{R})$, $\operatorname{Tr}({}^t A A) = \sum_{i=1}^n \sum_{j=1}^n a_{ij}^2$, où ${}^t A$ désigne la transposée de A.
- **4.** Soit $U, V \in \mathcal{M}_{n,1}(\mathbb{R})$ deux matrices colonnes non nulles.
- (a). Justifier que $U^tV \in \mathcal{M}_n(\mathbb{R})$. Déterminer les coefficients de U^tV à l'aide des coefficients de U et de V.
 - (b). Exprimer $Tr(U^tV)$ à l'aide des coefficients de U et de V.
 - (c). Quel est le rang de $U^{t}V$?
- **5.** Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice de rang 1.
 - (a). Montrer qu'il existe $j_0 \in [1, n]$ tel que pour tout $j \in [1, n]$, il existe $\alpha_j \in \mathbb{R}$ vérifiant

$$C_j(A) = \alpha_j C_{j_0}(A).$$

(b). En déduire qu'il existe deux matrices colonnes non nulles U et V de $\mathcal{M}_{n,1}(\mathbb{R})$ telles que :

$$A = U^t V$$
.

- **6.** Enoncer une caractérisation des matrices de $\mathcal{M}_n(\mathbb{R})$ de rang 1.
- 7. Montrer que si $A \in \mathcal{M}_n(\mathbb{R})$ est de rang 1 alors $A^2 = \operatorname{Tr}(A) A$.

Exercice 4 - Une formule de dénombrement

Soit $n \in \mathbb{N}^*$, $E = \mathbb{R}_n[X]$, et m un entier relatif non nul. On considère $f_m: E \to E$ définie par $f_m(P) = P(X + m)$.

- 1. Montrer que f_m est un endomorphisme de E.
- **2.** On note \mathcal{B} la base canonique de E. Déterminer $A = \operatorname{Mat}_{\mathcal{B}}(f_m)$.
- **3.** (a). On note $\varphi = f_1$ et $T = \operatorname{Mat}_{\mathcal{B}}(\varphi)$. Vérifier que $f_m = \varphi^m$.
 - **(b).** En déduire que pour tout $(i, j) \in [1, n]^2$, on a $A(i, j) = T^m(i, j) = m^{j-i} T(i, j)$.
- **4.** Montrer que A est inversible et calculer A^{-1} .
- **5.** Montrer que pour tout $(p,q) \in [0,n]^2$ tels que p < q, on a :

$$\sum_{k=p}^{q} (-1)^{q-k} \binom{k}{p} \binom{q}{k} = 0.$$

Probabilités

Exercice 1 - Edhec 2014

On considère une variable aléatoire X définie sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$. On admet que l'on définit une variable aléatoire Y sur $(\Omega, \mathcal{A}, \mathbb{P})$ en posant, pour tout $\omega \in \Omega$:

$$Y(\omega) = \int_0^1 \max(X(\omega), t) dt.$$

- 1. Vérifier que si X suit une loi géométrique, alors on a Y = X.
- **2.** On suppose, dans cette question, que $X(\Omega) = \{-1, 0, 1\}$ et que l'on a

$$\mathbb{P}(X = -1) = \mathbb{P}(X = 1) = \frac{1}{4}.$$

- (a). Déterminer la valeur de $\mathbb{P}(X=0)$.
- (b). Vérifier que $Y(\Omega) = \{\frac{1}{2}, 1\}$ puis donner la loi de Y, ainsi que son espérance et sa variance.
- (c). Compléter la déclaration de la fonction Python suivante pour qu'elle simule la variable aléatoire Y:

$$\begin{array}{l} \operatorname{import\,numpy.random\,as\,rd} \\ \operatorname{def} Y() \colon \\ u = \operatorname{rd.random}() \\ \operatorname{if}(\cdots) \colon \\ \dots \\ \operatorname{else:} \\ y = \dots \\ \operatorname{return}(y) \end{array}$$

- 4. On suppose, dans cette question, que X suit une loi de Poisson de paramètre $\lambda > 0$.
 - (a). Vérifier que $Y(\Omega) = \left\{\frac{1}{2}\right\} \cup \mathbb{N}^*$ puis donner la loi de Y.
 - (b). En déduire l'espérance et la variance de Y.

Exercice 2 - HEC 2001, Voie E

Soit (Ω, \mathcal{A}) un espace probabilisable. Soit $(A_n)_{n\geq 1}$ une suite d'évènements telle que la série de terme général $\mathbb{P}(A_n)$ converge. On pose pour tout $n\geq 1$, $B_n=\bigcup_{k=n}^{+\infty}A_k$. On pose $B=\bigcap_{n=1}^{+\infty}B_n$.

- **1.** Soit $\omega \in \Omega$. Montrer que $\omega \in B$ si et seulement si $\omega \in A_k$ pour une infinité de valeurs de k.
- 2. Montrer que

$$\mathbb{P}(B_n) \le \sum_{k=n}^{+\infty} \mathbb{P}(A_k).$$

3. Calculer $\mathbb{P}(B)$.

Exercice 3 - HEC 2016

Soit X une variable aléatoire discrète à valeurs dans \mathbb{N} , définie sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$.

1. Montrer que pour tout $n \in \mathbb{N}^*$,

$$\sum_{k=0}^{n} k \mathbb{P}(X = k) = \sum_{k=0}^{n-1} \mathbb{P}(X > k) - n \mathbb{P}(X > n).$$

 ${f 2.}$ En déduire que si X admet une espérance, alors

$$\mathbb{E}[X] = \sum_{k=0}^{+\infty} \mathbb{P}(X > k).$$

3. Réciproquement, montrer que si la série $\sum_{k\in\mathbb{N}}\mathbb{P}(X>k)$ converge, alors X admet une espérance qui vaut

$$\mathbb{E}[X] = \sum_{k=0}^{+\infty} \mathbb{P}(X > k).$$

Exercice 4 - Majorations de la fonction de survie

Soit $\lambda > 0$ et X une variable aléatoire de loi de Poisson de paramètre λ .

1. Montrer que $\mathbb{P}(X \ge 2\lambda) \le \frac{1}{\lambda}$.

2. (a). Soit $x \ge 0$, a > 0 et Z une variable aléatoire discrète d'espérance nulle et de variance σ^2 . Montrer que $\mathbb{P}(Z \ge a) \le \frac{\sigma^2 + x^2}{(a+x)^2}$. On pourra poser pour cela $Y = (Z+x)^2$.

(b). En déduire que $\mathbb{P}(Z \ge a) \le \frac{\sigma^2}{\sigma^2 + a^2}$.

(c). En déduire que $\mathbb{P}(X \ge 2\lambda) \le \frac{1}{\lambda + 1}$.

Problème – Hec 2017 partie 1

Pour tout $n \in \mathbb{N}^*$, et $k \in [0, n]$, on note $B_{n,k}$ le polynôme de $\mathbb{R}_n[X]$ défini par

$$B_{n,k}(X) = \binom{n}{k} X^k (1-X)^{n-k}.$$

On pose, pour tout $k \in [0, n]$, $A_k = X^k$ et on note $C_n = (A_0, \dots, A_n)$ la base canonique de $\mathbb{R}_n[X]$.

Soit T_n l'application définie sur $\mathbb{R}_n[X]$ par $(T_n(P))(X) = \sum_{k=0}^n P\left(\frac{k}{n}\right) B_{n,k}(X)$.

- 1. Dans cette question uniquement, on suppose n=2.
 - (a). Déterminer la matrice K_2 de la famille $(B_{2,0}, B_{2,1}, B_{2,2})$ dans la base C_2 .
 - (b). En déduire que la famille $(B_{2,0}, B_{2,1}, B_{2,2})$ est une base de $\mathbb{R}_2[X]$.
 - (c). Calculer $T_2(A_0)$, $T_2(A_1)$ et $T_2(A_2)$ et déterminer la matrice H_2 de T_2 dans la base C_2 .
- **2.** On revient au cas général où n est un entier supérieur ou égal à 1.
 - (a). Montrer que la famille $(B_{n,0},\ldots,B_{n,n})$ est libre, en déduire que c'est une base de $\mathbb{R}_n[X]$.
 - (b). Montrer que l'application T_n est un automorphisme de $\mathbb{R}_n[X]$.
 - (c). Calculer $T_n(A_0)$ et montrer que $T_n(A_1) = A_1$.
- (d). Montrer que pour tout $k \in [0, n]$, le degré du polynôme $T_n(A_k)$ est égal à k. Pour établir ce résultat, on pourra utiliser sans la démontrer la propriété suivante :

$$\forall k \in [0, n-1] \quad (T_n(A_{k+1}))(X) = \frac{1}{n}X(1-X)(T_n(A_k))'(X) + X(T_n(A_k))(X).$$

- (e). Pour tout $k \in [0, n]$, on note α_k le coefficient de X^k du polynôme $T_n(A_k)$. Calculer α_k en fonction de k et de n.
- **3.** Soit f une fonction continue sur [0,1]. On pose $\forall n \in \mathbb{N}^*, \ \forall z \in [0,1], \ f_n(z) = \sum_{k=0}^n f\left(\frac{k}{n}\right) B_{n,k}(z)$.

On se place dans un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$.

Soit $z \in [0,1]$. Pour tout $n \in \mathbb{N}^*$, on note Z_n une variable aléatoire définie sur cet espace, et suivant la loi binomiale de paramètre n et z. Pour tout $n \in \mathbb{N}^*$, on pose $\overline{Z_n} = \frac{Z_n}{n}$.

- (a). Montrer que pour tout $\varepsilon > 0$, on a $\lim_{n \to +\infty} \mathbb{P}(|\overline{Z_n} z| > \varepsilon) = 0$.
- (b). Justifier l'existence de $M = \max_{\zeta \in [0,1]} |f(\zeta)|$.
- (c). Soit $\varepsilon > 0$. Pour tout $n \in \mathbb{N}^*$, on note U_n l'évènement $U_n = \{|f(\overline{Z_n}) f(z)| > \varepsilon\}$. On note $\mathbf{1}_{U_n}$ la variable indicatrice de l'évènement U_n et $\overline{U_n}$ l'évènement contraire de U_n . Etablir l'inégalité

$$|f(\overline{Z_n}) - f(z)| \le 2M \times \mathbf{1}_{U_n} + \varepsilon \times \mathbf{1}_{\overline{U_n}}.$$

(d). Montrer que $\lim_{n \to +\infty} \mathbb{E}[f(\overline{Z_n})] = f(z)$. En déduire que $\lim_{n \to +\infty} f_n(z) = f(z)$.