Optimizing Mass Transit Bus Routes with Big Data

Matthew Schwartzer
Indiana University, School of Informatics, Computing, & Engineering
919 E 10th St
Bloomington, Indiana 47408
mabschwa@indiana.edu

ABSTRACT

Optimized public bus systems can reduce congestion and greenhouse gas emissions, while offering a safe, affordable, and convenient way to travel; however, in many cities people prefer to take private transportation over public buses. Big data analytics is important because new data collection and analytical techniques can efficiently optimize service routes, schedules, and infrastructure. From a customer's perspective, public buses are only an option if they are fast, reliable, and comfortable. Fortunately, big data analytical methods such as human mobility mining & clustering, ant colony and genetic algorithms, and Monte Carlo simulations make it more possible than ever to offer a dynamic and convenient public bus choice to compete with private vehicle transportation.

KEYWORDS

i523, hid225, LATEX, big data, bus route optimization

1 INTRODUCTION

Optimized public bus transit is one of the keys to bring a better quality of life (QOL) to small and medium sized urban areas. Urban resident's physical, psychological, social, and economic well-being fluctuate with the quality of their public transportation systems[3]. Currently, public transportation planning methods rely on human surveys to understand people's transportation needs. Despite the substantial time and cost spent on the survey process, the macroscopic analysis based on surveys is too static to reflect the fast development of urban areas [4]." Big data techniques can bridge this gap between static and dynamic planning methods and allow urban planners to keep pace with growing America urbanization rates. The United Nations estimates 87% of Americans will live in urban environment by 2050 compared to 82% in 2017[1]. In a competitive market to attract the next generation of high-paying jobs and talented workforces, urban areas with optimized transportation systems can leverage their resident's higher QOL.

Unfortunately, one major downfall of urbanization is frequent and intense traffic congestion due to more human activities within limited space, and consequently unnecessary energy consumption during traffic congestionLiu01. "The Nobel Prize winning 2007 Intergovernmental Panel on Climate Change report concluded that greenhouse gas emissions must be reduced by 50% to 85% by 2050 in order to limit global warming to four degrees Fahrenheit[2]." Optimizing public bus systems can play a major role in reducing greenhouse gas emissions. Compared to private vehicle transportation travel, average bus transit occupancy reduces CO2 emissions per passenger mile by 33.33%, but when bus transit is fully occupied, CO2 emissions per passenger mile are reduced by 81.25%[2]. Therefore, to reduce greenhouse gas emissions and traffic congestion

urban areas must attempt to convert users of private transportation to public bus transit.

Although current mass transit bus systems offer various QOL, environmental, and safety benefits, the current public bus system is far from perfect. Fortunately, new technology makes it easier to collect live bus trip data such as velocity, position, heading, and number of riders and locale data such as traffic patterns, road networks, and points of interest. Applying this data to big data analysis techniques gives urban planners the knowledge to optimize their public transit systems.

2 ROUTE & SCHEDULE OPTIMIZATION TECHNIQUES

- 2.1 Human Mobility Mining & Clustering
- 2.2 Ant Colony and Genetic Algorithms
- 2.3 Monte Carlo Simulations
- 3 INFRASTRUCTURE IMPROVEMENTS
- 3.1 Digital Signage
- 3.2 Roundabouts
- 4 CONCLUSION

Amid a major disruption in the transportation industry due to the introduction of self driving vehicles, public bus systems must adapt. For instance, public bus systems can leverage this new technology and create a network of smaller self driving buses that are highly optimized to local human mobility patterns. Using live traffic data, the Internet of Things, and fast computing big data algorithms, this system of public transportation could eliminate the need for private vehicle ownership all together. For several reasons, creating a highly optimized public bus system is good for QOL standards, sustainability, and safety.

ACKNOWLEDGMENTS

The author would like to thank Dr. Gregor von Laszewski for his support and suggestions to write this paper.

REFERENCES

- Bret Boyd. 2017. Urbanization And The Mass Movement Of People To Cities. Internet. (01 2017). https://graylinegroup.com/urbanization-catalyst-overview/
- [2] Tina Hodges. 2010. Public Transportationfis Role in Responding to Climate Change. Technical Report. U.S. Department of Transportation Federal Transit Administration. https://www.transit.dot.gov/sites/fta.dot.gov/files/docs/PublicTransportationsRoleInRespondingToClimateChange2010.pdf Editing/Design: Jarrett Stoltzfus.
- [3] Richard J. Lee and Ipek N. Sener. 2016. Transportation planning and quality of life: Where do they intersect? *Transport Policy* 48, Supplement C (2016), 146 – 155. https://doi.org/10.1016/j.tranpol.2016.03.004

[4] Yanchi Liu, Chuanren Liu, Nicholas Jing Yuan, Lian Duan, Yanjie Fu, Hui Xiong, Songhua Xu, and Junjie Wu. 2017. Intelligent Bus Routing with Heterogeneous Human Mobility Patterns. Knowl. Inf. Syst. 50, 2 (Feb. 2017), 383–415. https://doi.org/10.1007/s10115-016-0948-6

5 BIBTEX ISSUES

Warning-numpages field, but no articleno or eid field, in Liu01

(There was 1 warning)

6 ISSUES

DONE:

Example of done item: Once you fix an item, change TODO to DONE

6.1 Assignment Submission Issues

Do not make changes to your paper during grading, when your repository should be frozen.

6.2 Uncaught Bibliography Errors

Missing bibliography ffile generated by JabRef

Bibtex labels cannot have any spaces, _ or & in it

Citations in text showing as [?]: this means either your report.bib is not up-to-date or there is a spelling error in the label of the item you want to cite, either in report.bib or in report.tex

6.3 Formatting

Incorrect number of keywords or HID and i523 not included in the keywords

Other formatting issues

6.4 Writing Errors

Errors in title, e.g. capitalization

Spelling errors

Are you using *a* and *the* properly?

Do not use phrases such as *shown in the Figure below*. Instead, use *as shown in Figure 3*, when referring to the 3rd ffigure

Do not use the word I instead use we even if you are the sole author

Do not use the phrase *In this paper/report we show* instead use *We show*. It is not important if this is a paper or a report and does not need to be mentioned

If you want to say and do not use & but use the word and

Use a space after . ,:

When using a section command, the section title is not written in all-caps as format does this for you \section{Introduction} and NOT \section{INTRODUCTION}

6.5 Citation Issues and Plagiarism

It is your responsibility to make sure no plagiarism occurs. The instructions and resources were given in the class

Claims made without citations provided

Need to paraphrase long quotations (whole sentences or longer)

Need to quote directly cited material

6.6 Latex Errors

Erroneous use of quotation marks, i.e. use "quotes", instead of ""

To emphasize a word, use emphasize and not "quote'

When using the characters & # % _ put a backslash before them so that they show up correctly

Pasting and copying from the Web often results in non-ASCII characters to be used in your text, please remove them and replace accordingly. This is the case for quotes, dashes and all the other special characters.

6.7 Structural Issues

Acknowledgement section missing

Incorrect README file

In case of a class and if you do a multi-author paper, you need to add an appendix describing who did what in the paper

The paper has less than 2 pages of text, i.e. excluding images, tables and figures

The paper has more than 6 pages of text, i.e. excluding images, tables and figures

Do not artifficially inffate your paper if you are below the page limit

6.8 Details about the Figures and Tables

Capitalization errors in referring to captions, e.g. Figure 1, Table 2

Do use *label* and *ref* to automatically create figure numbers

Wrong placement of figure caption. They should be on the bottom of the figure

Wrong placement of table caption. They should be on the top of the table

Images submitted incorrectly. They should be in native format, e.g. .graffle, .pptx, .png, .jpg

Do not submit eps images. Instead, convert them to PDF

The image files must be in a single directory named "images"

2

In case there is a powerpoint in the submission, the image must be exported as PDF

Make the ffigures large enough so we can read the details. If needed make the ffigure over two columns

Do not worry about the ffigure placement if they are at a different location than you think. Figures are allowed to ffoat. For this class, you should place all ffigures at the end of the report.

In case you copied a ffigure from another paper you need to ask for copyright permission. In case of a class paper, you must include a reference to the original in the caption

Remove any ffigure that is not referred to explicitly in the text (As shown in Figure ..)

Do not use textwidth as a parameter for includegraphics

Figures should be reasonably sized and often you just need to add columnwidth

e.g.

/includegraphics[width=\columnwidth]{images/myimage.pdf}