SCS 2210-DISCRETE MATHEMATICS 11 TUTORIAL 1

- O. Prove that for each a, b \in Z/309, a | b and b | a if and only if a= ±b.
- 3. Prove that for each a, b, c, d \ Z such that a \(\div \), if a | b and c | d, then ac | bd.
- 1. Prove that for each a, b, c \(\mathbb{Z} \) such that ac \(\dagger 0 \), if ac|bc, then a|b.
- A. Prove or disprove: For each a, b, c \ Z, if a | bc, then a | b or a | c.
- ⑤ Prove that for each a, b ∈ Z, if a|b and b ≠ 0, then |a| ≤ |b|.
- (b). Let $a,b \in \mathbb{Z}$. Suppose $a \equiv 11 \pmod{19}$ and $b \equiv 3 \pmod{19}$. Find the integer c with $0 \le c \le 18$ such that
- a), c = 13 a (mod 19) b). c = 8 b (mod 19) c). c = (a-b) (mod 19)
- d). $C \equiv (7a+3b) \pmod{19}$ e). $C \equiv (2a^2+3b^2) \pmod{19}$ f). $C \equiv (a^3+4b^3) \pmod{19}$
- Θ . Let $m \in \mathbb{Z}^{t}$ and let $a, b \in \mathbb{Z}$. Prove that $a \equiv b \pmod{m}$ if and only if a mod $m = b \pmod{m}$ (equivalently $a \equiv b \pmod{m}$ if and only if a and b leave the same nonnegative remainder when divided by m),
- (8). Show that if a is an integer and d is an integer greater than I, then the quotient and remainder obtained when a is divided by d are La/d] and a d La/d], respectively, where L. I is the floor function Ci.e., for x ∈ R, Lx] = the largest integer less than or equal to x).
 - 9. Find the integer a such that
 - a). a = 43 (mod 23) and -22 \ a \ 0.
 - 6). a = 17 (mod 29) and -14 ≤ a ≤ 14.
 - c) a = -11 (mod 21) and 90 5 9 5 110,

- (i) Let $a, b \in \mathbb{Z}$ and let $m, n \in \mathbb{Z}$ be such that m, n > 1. Prove that if $n \mid m$ and $a \equiv b \pmod{m}$, then $a \equiv b \pmod{n}$.
- Prove that if $a \equiv b \pmod{m}$, then $a \subseteq b \subset \pmod{m}$.
- 13. Find counterexamples to each of these statements about congruences.
- a). If $a \in b \in (mod m)$, where a, b, c and m are integers with $m \ge 2$, then $a \equiv b \pmod{m}$.
- b). If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, where $a, b, c, d, m \in \mathbb{Z}$ such that c, d > 0 and $m \ge 2$, then $a^c \equiv b^d \pmod{m}$.
- (4), a). Show that if $n \in \mathbb{Z}$, then $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$.
 - b). Use part (a) to show that if m is a positive integer of the form 4k+3, where $k \in \mathbb{Z}^t \cup \{0\}$, then m is not the sum of the squares of two integers.
- (B. Prove that if n is an odd positive integer, then n2 = 1 (mod &).
- (B). Show that if a, b, k, m $\in \mathbb{Z}$ such that $k \ge 1$, $m \ge 2$ and $a \equiv b \pmod{m}$, then $a^k \equiv b^k \pmod{m}$.