Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour

Priya Goyal Lukasz Wesolowski Piotr Dollár Aapo Kyrola Ross Girshick Andrew Tulloch Pieter Noordhuis Yangqing Jia Kaimin

Facebook

An argument in favor of strong scaling for deep neural networks with small datasets

Renato L. de F. Cunha, Eduardo R. Rodrigues, Matheus Palhares Viana, Dario Augusto Borges Oliveira IBM Research

Abstract

Deep learning thrives with large neural networks and large datasets. However, larger networks and larger datasets result in longer training times that impede research and development progress. Distributed synchronous SGD offers a potential solution to this problem by dividing SGD minibatches over a pool of parallel workers. Yet to make this scheme efficient, the per-worker workload must be large, which implies nontrivial growth in the SGD minibatch size. In this paper, we empirically show that on the

Weak scaling vs. strong scaling

Strong scaling

#GPUs GPUs IDs		per-GPU batch size effective batch size		
1	0	1024	1024	
2	0,1	512	1024	
4	0,1,2,3	256	1024	
8	0,1,2,3,4,5,6,7	128	1024	

Weak scaling

#GPUs GPUs IDs		per-GPU batch size effective batch size		
1	0	128	128	
2	0,1	128	256	
4	0,1,2,3	128	512	
8	0,1,2,3,4,5,6,7	128	1024	

Weak scaling

- Unet, data parallel, weak scaling: BS per process fixed:16, 12 cpus per job, 50 epochs
- Point of interest and emphasis: performance and/on small datasets

Train test loss: after linear scaling (+ warm up)

Tensorflow train loss: LS+ warm up for 10 epochs + scheduling

Pytorch train loss: LS+ warm up for 10 epochs + scheduling

400

600

800

log_1.csv

log_10.csv

log_12.csv

log_2.csv log 4.csv

log_6.csv

log_8.csv

1000

Tensorflow train and test loss: LS+ scheduling

Pytorch train and test loss: LS+ scheduling

Possible avenues:
1- A larger dataset for testing both strong and weak scaling effect on performance
2- Rule of thumb for when the performance falls
3- Horovod and a full comparative study