SENG 457 / CSC 557 Lab 3: Gate Properties, Two-Qubit Systems, and Bases

Prashanti Priya Angara, Maziyar Khadivi

Contact email: mazy1996@uvic.ca

May 27, 2025

Agenda for Today

- Explore gate properties using the IBM Quantum Composer
- Understand two-qubit systems and tensor products
- Complete the remaining PennyLane exercises
- (Time permitting) Learn about computational bases
- Sign the attendance sheet

Gate properties

Activity 1: Unitary and Hermitian Gates

- Input: A qubit in the $|0\rangle$ state
- Apply the Pauli gates or the Hadamard gates twice
- What do we see under:
 - Probabilities: ?

Activity 2: Non-Hermitian Gates (Still Unitary!)

- Input: A qubit in the $|1\rangle$ state
- Apply the S gate twice

$$S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$$

- ullet Remove the S gates and apply the S and S^\dagger gates
- Observe the changes in the Q-Sphere and Statevector

Activities 3, 4, 5: Properties of Pauli Gates

Anti-commuting Property

- Input: A qubit in the $|1\rangle$ state
- Apply Pauli-X, then Pauli-Z; then reverse the order
- Observe Statevector and Q-Sphere

Product of Two Pauli Gates

- Input: A qubit in the $|0\rangle$ state
- Apply Pauli-Y, then Pauli-X; then reverse the order

Product of Three Pauli Gates

- Input: A qubit in the $|0\rangle$ state
- Apply Pauli-Z, then Pauli-Y, then Pauli-X; reverse and observe

Anti-commuting Pauli Gates Property

• Different Pauli gates anti-commute:

$$XZ = -ZX$$
, $XY = -YX$, $YZ = -ZY$

Product of Two Pauli Gates

• A product of any two Pauli gates equals the third gate with an extra i (or -i) phase:

$$XY = iZ$$
, $YZ = iX$, $ZX = iY$

Product of Three Pauli Gates

• A product of all three Pauli gates equals identity with an extra *i* phase:

$$XYZ = iI$$

 \bullet Applying XYZ to a state $|\psi\rangle$ means applying Z, then Y, then X

Activity 6: Phase Shift Gates (Part 1)

- Input: A qubit in the $|1\rangle$ state
- Pauli-Z Gate
 - Apply the Pauli-Z gate and observe results (Statevector, Q-Sphere)
- S Gate
 - Remove the Z gate
 - Apply the S gate and observe
 - Apply another S gate and observe

Activity 7: Phase Shift Gates (Part 2)

- Input: A qubit in the $|1\rangle$ state
- T Gate
 - Apply the T gate and observe
 - Apply another T gate and observe
 - Repeat two more times and observe (total of 4 T gates)

PennyLane Exercises

PennyLane Exercises

- Open the PennyLane-fillable_Lab2 notebook
- Follow the instructions to complete the hands-on tasks

Two-Qubit Systems

Tensor Product

A general single-qubit state:

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$
, where $|\alpha|^2 + |\beta|^2 = 1$

Consider two qubits:

$$|\psi_1\rangle = \begin{bmatrix} \alpha_1 \\ \beta_1 \end{bmatrix}, \quad |\psi_2\rangle = \begin{bmatrix} \alpha_2 \\ \beta_2 \end{bmatrix}$$

Tensor product:

$$|\Psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle = egin{bmatrix} lpha_1lpha_2 \ lpha_1eta_2 \ eta_1lpha_2 \ eta_1eta_2 \end{bmatrix}$$

In Dirac notation:

$$|\Psi\rangle = \alpha_1 \alpha_2 |00\rangle + \alpha_1 \beta_2 |01\rangle + \beta_1 \alpha_2 |10\rangle + \beta_1 \beta_2 |11\rangle$$

Example

- ullet The tensor product \otimes combines multiple qubits into a joint system.
- Example:

$$|0
angle = egin{bmatrix} 1 \ 0 \end{bmatrix}, \quad |1
angle = egin{bmatrix} 0 \ 1 \end{bmatrix}$$

• Tensor product of $|0\rangle \otimes |1\rangle$ gives:

$$|01
angle = egin{bmatrix} 1 \cdot 0 \ 1 \cdot 1 \ 0 \cdot 0 \ 0 \cdot 1 \end{bmatrix} = egin{bmatrix} 0 \ 1 \ 0 \ 0 \end{bmatrix}$$

Tensor Product of Two Quantum Gates

- The tensor product is also used to combine quantum gates acting on different qubits.
- ullet Example: Tensor product of Hadamard gate H and Identity gate I

$$H = rac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \quad I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

• Tensor product $H \otimes I$:

$$H \otimes I = rac{1}{\sqrt{2}} egin{bmatrix} 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 1 \ 1 & 0 & -1 & 0 \ 0 & 1 & 0 & -1 \end{bmatrix}$$

• This acts on 2-qubit systems, where H acts on the first qubit and I on the second.

Bases

Basis States

The general quantum state of a qubit can be represented by a linear superposition of its two orthonormal basis states $|x\rangle$ and $|y\rangle$ for example:

$$|\psi\rangle = \alpha|x\rangle + \beta|y\rangle$$

Computational Basis

- ullet Computational Basis $\{|0
 angle, |1
 angle\}$ for a single qubit system
- Measurement in the computational basis will only distinguish between the states $\{|0\rangle,|1\rangle\}$
- Sometimes measuring in another basis might be helpful
- Some other bases:
 - $\{|+\rangle, |-\rangle\}$
 - $\{|i+\rangle, |i-\rangle\}$

Some Common Bases

Pauli Measurements

Pauli Measurement	Unitary transformation
Z	1
X	H
Y	HS^{\dagger}

Multi-Qubit Bases

• For a two qubit system, the computational basis is:

$$\{|00\rangle,|01\rangle,|10\rangle,|11\rangle\}$$

In general, for an n-qubit system, the computational basis is composed of 2ⁿ elements:

$$\{|000...0\rangle_n, |000...1\rangle_n, ... |11...1\rangle_n\}$$

Bell Basis

In	Out
$ 00\rangle$	$(00\rangle + 11\rangle)/\sqrt{2} \equiv \beta_{00}\rangle$
$ 01\rangle$	$(01\rangle + 10\rangle)/\sqrt{2} \equiv \beta_{01}\rangle$
$ 10\rangle$	$(00\rangle - 11\rangle)/\sqrt{2} \equiv \beta_{10}\rangle$
$ 11\rangle$	$(00\rangle + 11\rangle)/\sqrt{2} \equiv \beta_{00}\rangle$ $(01\rangle + 10\rangle)/\sqrt{2} \equiv \beta_{01}\rangle$ $(00\rangle - 11\rangle)/\sqrt{2} \equiv \beta_{10}\rangle$ $(01\rangle - 10\rangle)/\sqrt{2} \equiv \beta_{11}\rangle$

