```
In [1]: import pandas as pd
import numpy as np
from sklearn import preprocessing
from sklearn.preprocessing import LabelEncoder
import seaborn as sns
train_data = pd.read_csv('training.csv')
test_data = pd.read_csv('test.csv')
```

Distribution of AMT_INCOME_TOTAL

```
import matplotlib.pylab as plt
x = np.log(train_data.AMT_INCOME_TOTAL)
fig, ax = plt.subplots(figsize = (8,6))
ax = sns.histplot(x,bins = 60)
plt.show()
```


The distribution of AMT_INCOME_TOTAL after log looks like normal distribution.

Missing Values

```
In [35]: def missing_values(df):
                 # Total missing values
                 mis_sum = df.isnull().sum()
                 # Percentage of missing values
                 mis_val_percent = 100 * df.isnull().sum() / len(df)
                 mis_val_table = pd.concat([mis_sum, mis_val_percent], axis=1)
                 # Rename the columns
                 new mis val table = mis val table.rename(
                 columns = {0 : 'Total missing', 1 : 'Percentage'})
                 # Sort the table by percentage of missing descending
                 new_mis_val_table = new_mis_val_table[
                     new_mis_val_table.iloc[:,1] != 0].sort_values(
                 'Percentage', ascending=False).round(1)
                 #summary information
                 print (str(new_mis_val_table.shape[0]) +
                       " columns have missing values.")
                 # Return the dataframe with missing information
                 return new_mis_val_table
         missing values = missing values(train_data)
         print(missing values.head(15))
```

60 columns have missing values.

	Total	missing	Percentage
COMMONAREA_MEDI		76069	70.4
COMMONAREA_AVG		76069	70.4
COMMONAREA_MODE		76069	70.4
NONLIVINGAPARTMENTS_MODE		75554	70.0
NONLIVINGAPARTMENTS_AVG		75554	70.0
NONLIVINGAPARTMENTS_MEDI		75554	70.0
LIVINGAPARTMENTS_AVG		74389	68.9
LIVINGAPARTMENTS_MODE		74389	68.9
LIVINGAPARTMENTS_MEDI		74389	68.9
FLOORSMIN_MEDI		73866	68.4
FLOORSMIN_MODE		73866	68.4
FLOORSMIN_AVG		73866	68.4
YEARS_BUILD_AVG		72466	67.1
YEARS_BUILD_MODE		72466	67.1
YEARS_BUILD_MEDI		72466	67.1

It can be seen from the table that some columns have over 70% missing values. Since it is impossible to know whether these columns will be useful to our model or not. All columns will be kept for now.

Distribution of Target

There are far more loans that were repaid on time than loans that were not repaid. So this is an imbalanced class.

Feature Types

```
In [5]: train_data.select_dtypes("object")
bool_features = train_data[train_data[train_data.columns[train_data.apply(1
    numerical_features = np.setdiff1d(train_data.select_dtypes(include=["int64"
```

```
In [34]: bool_features
Out[34]: array(['TARGET', 'FLAG_OWN_CAR', 'FLAG_OWN_REALTY', 'FLAG_EMP_PHONE',
                'FLAG WORK PHONE', 'FLAG CONT MOBILE', 'FLAG PHONE', 'FLAG EMAIL',
                'REG_REGION_NOT_LIVE_REGION', 'REG_REGION_NOT_WORK_REGION',
                'LIVE REGION NOT WORK REGION', 'REG CITY NOT LIVE CITY',
                'REG CITY NOT WORK CITY', 'LIVE CITY NOT WORK CITY',
                'FLAG_DOCUMENT_2', 'FLAG_DOCUMENT_3', 'FLAG_DOCUMENT_4',
                'FLAG_DOCUMENT_5', 'FLAG_DOCUMENT_6', 'FLAG_DOCUMENT_7',
                'FLAG_DOCUMENT_8', 'FLAG_DOCUMENT_9', 'FLAG_DOCUMENT_10',
                'FLAG_DOCUMENT_11', 'FLAG_DOCUMENT_12', 'FLAG_DOCUMENT_13',
                'FLAG_DOCUMENT_14', 'FLAG_DOCUMENT_15', 'FLAG_DOCUMENT_16',
                'FLAG_DOCUMENT_17', 'FLAG_DOCUMENT_18', 'FLAG_DOCUMENT_19',
                'FLAG_DOCUMENT_20', 'FLAG_DOCUMENT_21'], dtype=object)
In [6]: categorical_features = np.setdiff1d(train_data.columns.values,numerical_fea
         categorical_features = np.setdiff1d(categorical_features, bool_features)
         categorical features
Out[6]: array(['CODE_GENDER', 'EMERGENCYSTATE_MODE', 'FONDKAPREMONT_MODE',
                'HOUSETYPE MODE', 'NAME CONTRACT TYPE', 'NAME EDUCATION TYPE',
                'NAME_FAMILY_STATUS', 'NAME_HOUSING_TYPE', 'NAME_INCOME_TYPE',
                'NAME_TYPE_SUITE', 'OCCUPATION_TYPE', 'ORGANIZATION_TYPE',
                'WALLSMATERIAL MODE', 'WEEKDAY APPR PROCESS START'], dtype=object)
         Encoding categorical columns
In [7]: le = LabelEncoder()
         for col in train data:
             if train data[col].dtype == 'object':
                 # Train on the training data
                 le.fit(train data[col])
                 # Transform both training and testing data
                 train_data[col] = le.transform(train_data[col])
                 test data[col] = le.transform(test data[col])
In [9]: train data['DAYS EMPLOYED'].describe()
Out[9]: count
                 108000.000000
                  62031.638657
         mean
         std
                  139705.501529
                -17583.000000
         min
         25%
                  -2694.000000
         50%
                  -1186.500000
         75%
                   -298.000000
                  365243.000000
         max
         Name: DAYS EMPLOYED, dtype: float64
```

```
In [10]: train_data['DAYS_EMPLOYED'].replace({365243: np.nan}, inplace = True)
#check days employment now
train_data['DAYS_EMPLOYED'].plot.hist(title = 'Days Employment Histogram');
plt.xlabel('Days Employment');
```



```
In [11]: test_data["DAYS_EMPLOYED"].replace({365243: np.nan}, inplace = True)
```

Correlation between columns and Income

```
In [12]: | # Find correlations with the target and sort
            correlations = train data.corr()['AMT INCOME TOTAL'].sort values()
            # Display correlations
            print('Most Positive Correlations:\n', correlations.tail(15))
            print('\nMost Negative Correlations:\n', correlations.head(15))
            Most Positive Correlations:
             NONLIVINGAREA_AVG 0.076074
            COMMONAREA_MODE
                                          0.082129
           LIVINGAPARTMENTS_MEDI 0.104011
LIVINGAPARTMENTS_AVG 0.106068
AMT_ANNUITY 0.119103
FLOORSMIN_MODE 0.139135
FLOORSMIN_MEDI 0.146638
FLOORSMIN_AVG 0.148520
AMT_INCOME_TOTAL 1.000000
FLAG MOBIL Nam
            FLAG MOBIL
                                                   NaN
            Name: AMT_INCOME_TOTAL, dtype: float64
           Most Negative Correlations:
             OWN CAR AGE
                                                  -0.103104
            REGION_RATING_CLIENT_W_CITY -0.057794
           NAME_EDUCATION_TYPE -0.057024
REGION_RATING_CLIENT -0.054221
ORGANIZATION_TYPE -0.038228
HOUSETYPE_MODE -0.033072
EMERGENCYSTATE_MODE -0.033036
WALLSMATERIAL_MODE -0.039737
```

Name: AMT_INCOME_TOTAL, dtype: float64

```
In [31]: correlations = train_data.corr()['TARGET'].sort_values()
         # Display correlations
         print('Most Positive Correlations:\n', correlations.tail(15))
         print('\nMost Negative Correlations:\n', correlations.head(15))
         Most Positive Correlations:
          EMERGENCYSTATE MODE
                                        0.060247
         FLAG_DOCUMENT_3
                                       0.060367
                                       0.063485
         FLAG EMP PHONE
         NAME INCOME TYPE
                                       0.066247
         REG CITY NOT WORK CITY
                                      0.069068
         DAYS ID PUBLISH
                                       0.069901
         CODE_GENDER
                                       0.074942
         DAYS_LAST_PHONE_CHANGE
                                       0.076270
         NAME_EDUCATION_TYPE
                                       0.076871
         REGION_RATING_CLIENT
                                       0.081153
         REGION RATING CLIENT W CITY 0.083135
         DAYS EMPLOYED
                                        0.102496
                                        0.107622
         DAYS_BIRTH
         TARGET
                                        1.000000
         FLAG MOBIL
                                             NaN
         Name: TARGET, dtype: float64
         Most Negative Correlations:
          EXT SOURCE 3
                                       -0.237890
         EXT SOURCE 2
                                      -0.214573
         EXT SOURCE 1
                                     -0.210953
         FLOORSMAX AVG
                                     -0.060002
         FLOORSMAX_MEDI -0.059595
FLOORSMAX_MODE -0.058879
AMT_GOODS_PRICE -0.053854
         REGION_POPULATION_RELATIVE -0.053670
                          -0.046322
-0.045815
-0.045216
-0.044108
         ELEVATORS AVG
         ELEVATORS MEDI
         NAME_CONTRACT_TYPE
         LIVINGAREA AVG
         FLOORSMIN AVG
                                     -0.044047
```

Name: TARGET, dtype: float64

FLOORSMIN_MEDI

Ext sources

TOTALAREA MODE

Since all three ext sources have negative correlation with Target, a visualized heatmap is plotted between ext_sources and days birth since days_birth has the largest value of correlation with target.

-0.044000

-0.043995

```
In [15]: # Extract the EXT_SOURCE variables and show correlations
    ext_data = train_data[['TARGET', 'EXT_SOURCE_1', 'EXT_SOURCE_2', 'EXT_SOURC
    ext_data_corrs = ext_data.corr()
    ext_data_corrs
```

Out[15]:

	TARGET	EXT_SOURCE_1	EXT_SOURCE_2	EXT_SOURCE_3	DAYS_BIRTH
TARGET	1.000000	-0.210953	-0.214573	-0.237890	0.107622
EXT_SOURCE_1	-0.210953	1.000000	0.222042	0.200372	-0.597115
EXT_SOURCE_2	-0.214573	0.222042	1.000000	0.126572	-0.101087
EXT_SOURCE_3	-0.237890	0.200372	0.126572	1.000000	-0.213923
DAYS_BIRTH	0.107622	-0.597115	-0.101087	-0.213923	1.000000

```
In [16]: plt.figure(figsize = (8, 6))
# Heatmap of correlations
sns.heatmap(ext_data_corrs, vmin = -0.25, annot = True, vmax = 0.6)
plt.title('Correlation Heatmap');
```


From row 1 we can see that EXT_SOURCE have negative correlations with target, when the value of the EXT_SOURCE increases, the client is more likely to repay the loan.

Polynomial Features

```
In [17]: poly = train_data[['EXT_SOURCE_1', 'EXT_SOURCE_2', 'EXT_SOURCE_3', 'DAYS_BI
         poly test = test data[['EXT_SOURCE 1', 'EXT_SOURCE 2', 'EXT_SOURCE 3', 'DAY
         #imputer for missing value
         from sklearn.impute import SimpleImputer
         imputer = SimpleImputer(strategy = 'median')
         poly target = poly['TARGET']
         poly = poly.drop(columns = ['TARGET'])
         # Need to impute missing values
         poly = imputer.fit_transform(poly)
         poly_test = imputer.transform(poly_test)
         from sklearn.preprocessing import PolynomialFeatures
         # Create the polynomial object with specified degree
         poly transformer = PolynomialFeatures(degree = 3)
In [18]: # Train the polynomial features
         poly_transformer.fit(poly)
         # Transform the features
         poly = poly_transformer.transform(poly)
         poly_test = poly_transformer.transform(poly_test)
         print('Polynomial Features shape: ', poly.shape)
         Polynomial Features shape: (108000, 35)
         All polynomial features names
In [19]: poly_columns = poly_transformer.get_feature_names(input_features = ['EXT_SO
```

```
In [20]: # Create a dataframe of the features
         poly_features = pd.DataFrame(poly, columns = poly_columns)
         poly_features['TARGET'] = poly_target
         # Find the correlations with the target
         poly_corrs = poly_features.corr()['TARGET'].sort_values()
         # Display most negative and most positive
         print(poly_corrs.head(10))
         print(poly_corrs.tail(5))
         EXT_SOURCE_2 EXT_SOURCE_3
                                                   -0.261721
         EXT_SOURCE_1 EXT_SOURCE_2 EXT_SOURCE_3 -0.258110
         EXT_SOURCE_2^2 EXT_SOURCE_3
                                                  -0.240964
         EXT_SOURCE_2 EXT_SOURCE_3^2
                                                  -0.234978
                                                  -0.225554
         EXT_SOURCE_1 EXT_SOURCE_2
         EXT SOURCE 1 EXT SOURCE 3
                                                  -0.222443
         EXT SOURCE 2
                                                  -0.214422
         EXT_SOURCE_1 EXT_SOURCE_2^2
                                                  -0.214253
         EXT_SOURCE_3
                                                  -0.207714
         EXT_SOURCE_1 EXT_SOURCE_3^2
                                                  -0.206252
         Name: TARGET, dtype: float64
         EXT_SOURCE_2 DAYS_BIRTH
                                                  0.213572
         EXT_SOURCE_1 EXT_SOURCE_2 DAYS_BIRTH
                                                  0.213581
         EXT_SOURCE_2 EXT_SOURCE_3 DAYS_BIRTH
                                                  0.247759
         TARGET
                                                  1.000000
         1
                                                      NaN
         Name: TARGET, dtype: float64
```

By comparing with previous correlations with single feature, polynomial columns have greater absolute correlations with Target, which could use in feature selection later

Add domain features

```
In [21]: train domain = train data.copy()
         test_domain = test_data.copy()
         train_domain['AMT_INCOME_TOTAL'].replace({np.nan: 0}, inplace = True)
         train_domain['AMT_CREDIT'].replace({np.nan: 0}, inplace = True)
         train_domain['AMT_ANNUITY'].replace({np.nan: 0}, inplace = True)
         train_domain['DAYS_EMPLOYED'].replace({np.nan: 0}, inplace = True)
         train domain['CREDIT INCOME PERCENT'] = train domain['AMT CREDIT']/train do
         train_domain['ANNUITY_INCOME_PERCENT'] = train_domain['AMT_ANNUITY']/train_
         train_domain['CREDIT_TERM'] = train_domain['AMT_ANNUITY']/train_domain['AMT
         train_domain['DAYS_EMPLOYED_PERCENT'] = train_domain['DAYS_EMPLOYED']/train
         test domain['CREDIT INCOME PERCENT'] = test domain['AMT CREDIT']/test domai
         test_domain['ANNUITY_INCOME_PERCENT'] = test_domain['AMT_ANNUITY'] / test_d
         test_domain['CREDIT_TERM'] = test_domain['AMT_ANNUITY'] / test_domain['AMT_
         test_domain['DAYS_EMPLOYED_PERCENT'] = test_domain['DAYS_EMPLOYED'] / test_
In [22]: |train_labels = train_data['TARGET']
In [24]: from sklearn.preprocessing import MinMaxScaler
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.metrics import classification_report,accuracy_score
```

Fit a random forest classifier and get an accuracy

```
In [25]: if 'TARGET' in train domain:
             train domain = train domain.drop(['TARGET'], axis = 1)
         else:
             train_domain = train_domain.copy()
         if 'TARGET' in test_domain:
             y_test = test_domain.TARGET
             test_domain = test_domain.drop(['TARGET'],axis = 1)
         else:
             test_domain = test_domain.copy()
         domain_features_names = list(train_domain.columns)
         # Impute the domainnomial features
         imputer = SimpleImputer(strategy = 'median')
         train_domain = imputer.fit_transform(train_domain)
         test_domain = imputer.transform(test_domain)
         # Scale the domainnomial features
         scaler = MinMaxScaler(feature_range = (0, 1))
         train_domain = scaler.fit_transform(train_domain)
         test_domain = scaler.transform(test_domain)
         random forest domain = RandomForestClassifier(n estimators = 100, random st
         random forest domain.fit(train_domain, train_labels)
         # Extract feature importances
         feature importance values domain = random forest domain.feature importances
         feature importances domain = pd.DataFrame({'feature': domain features names
         # Make predictions on the test data
         y pred = random forest domain.predict(test domain)
```

```
In [26]: from sklearn.metrics import classification_report,accuracy_score
    print("Accuracy: "+str(accuracy_score(y_test, y_pred)))
    print(classification_report(y_test,y_pred))
```

```
Accuracy: 0.837
             precision
                          recall f1-score
                                              support
           0
                   0.84
                             0.99
                                       0.91
                                                10000
           1
                   0.64
                             0.05
                                       0.09
                                                 2000
                                       0.84
                                                12000
    accuracy
                   0.74
                             0.52
                                       0.50
                                                12000
   macro avg
weighted avg
                   0.81
                             0.84
                                       0.77
                                                12000
```

```
In [27]: def feature_importance(data):
             # Sort features according to importance
             data = data.sort_values('importance', ascending = False).reset_index()
             # Normalize the feature importances to add up to one
             data['new_importance'] = data['importance'] / data['importance'].sum()
             # Make a horizontal bar chart of feature importances
             plt.figure(figsize = (8, 6))
             ax = plt.subplot()
             # reverse the index
             ax.barh(list(reversed(list(data.index[:15]))),
                     data['new_importance'].head(15),
                     align = 'center', edgecolor = 'k')
             # Set the yticks and labels
             ax.set_yticks(list(reversed(list(data.index[:15]))))
             ax.set yticklabels(data['feature'].head(15))
             # Plot labeling
             plt.xlabel('Normalized Importance'); plt.title('Feature Importances')
             plt.show()
             return data
```


It can be seen in the plot that some of the domain features such as annuity_income_percent has a greater correlation with target. So that the domain features is relatively useful. In my code I use select Kbest method to choose 30 best features to train.