Name:		ID:	
General Physics I (151)	Discussion Questions #6 Work and Energy		

1. A box of mass M slides across a horizontal table. It collides with a spring, compresses the spring, and then the box-spring system rebounds. This system can be used to find the spring constant k. When the box first hits the spring it has speed v_0 , and take this to be at x = 0. **No friction:** Analyze what happens if there is no friction between the box and the table.

- a) Suppose that the box comes to a stop after compressing the spring a distance L. What is the spring constant in terms of v_0 , M, and L?
- b) Then the spring expands, pushing the box back. When the box passes through x = 0, what is its speed?

With friction: Now include the effect of friction between the box and the table. Let the coefficient of kinetic friction be μ_k . With friction, the spring plus box compresses to a smaller distance l, rebounds, and will eventually stop. Hint: Use the work-energy relation, $W_{\text{non-conservative}} = \Delta PE + \Delta KE$.

- c) First consider the "round trip", where the initial position is the first time the box hits the spring at x = 0, and the final position is when the box returns to x = 0 and stops. Use the above equation to find μ_k in terms of l, v_0 and g.
- d) Second, consider just half the above cycle, with the initial place as in (c), but the final position where the box stops is at x = l. Find μ_k in terms of l, v_0 , k and g.

e) Use the results of (c) and (d) to eliminate l, giving the spring constant k in terms of μ_k , ν_0 and g.

 Young Albert Jr. takes a running start at a tire swing, which is hanging at rest. He jumps onto the tire and rides it up to a height Δh above where the tire started, at which point he starts to swing back down. Assuming Albert Jr. has a mass of mA and the tire has a mass of mT you are asked to calculate Albert's speed right before he jumped onto the tire. You may neglect the mass of the rope. a) In terms of Δh, mA and mT, what is the speed vA+T of Albert Jr. and the tire right after Albert has jumped on? What assumptions are you making and why? 	
b) What is the initial speed v_A of Albert Jr. right before he jumps on the swing, in terms of v_{A+T} , m_A , and m_T ? What assumptions are you making and why? Don't forget that little Albert clings to the tire, making this a totally inelastic collision.	
c) Solve for v_A in terms of Δh , m_A , and m_T .	