Avoiding irreversibility

Lossless interconversion of quantum resources

Kamil Korzekwa

Centre for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney NSW 2006, Australia

Team

Christopher Chubb
University of Sydney

Marco Tomamichel
University of Technology Sydney

Outline

1. Background

- a. Quantum technologies and resources
- b. Resource theories
- c. Asymptotic regime and beyond

2. Results

- a. Finite-size conversion rates
- b. Resonant conversion of resources
- 3. Outlook

Quantum technologies and resources

First Quantum Revolution

- laser systems
- nuclear power
- MRI imagers
- transistors
- semi-conductor electronics

- quantum computing
 Shor's & Grover's algorithm,
 simulating quantum systems
- quantum communication
 Secure BB84 & E91 protocols,
 quantum internet
- quantum thermodynamics

 Increased power of heat engines & efficiency of energy harvesting

New quantum technologies actively create, manipulate and read out quantum states

Quantum technologies and resources

Harnessing quantum resources

1. Identification

Technology \Leftrightarrow Particular resource

 $1 ext{ teleported qubit} = 1 ext{ entangled Bell pair}$

1 secure bit = 1 coherent state

Task: designing quantum protocols

2. Characterisation

Particular resource \Leftrightarrow General resource

x entangled Bell pairs = 5 entangled states $|\psi\rangle$

1 entangled Bell pair = y entangled states $|\psi\rangle$

Task: finding limits on resource manipulation

3. Implementation

General resource \Leftrightarrow Physical system

Task: Experimental realisation

Resource theories

Resource theory:

- Mathematical framework designed to study possible manipulation of resources
- Defined by physical constraints and the corresponding set of quantum operations

Resource theory	Physical constraint	Restricted set of operations	Free states
Entanglement	Space-like separation of distant parties	Local operations and classical communication	Separable states
Coherence	Creating superoposition of states in a particular basis is difficult	Incoherent operations	Incoherent states
Thermodynamics	1st and 2nd law of thermodynamics (energy conservation and growth of entropy)	Thermal operations	Thermal equilibrium state

Resource theories

Restricted set of operations induces partial ordering of quantum states

Resource theories

Transformations between most resource states are irreversible

Dissipation of resources – initial and final states have different resource content

Asymptotic regime and beyond

Single-shot regime

$$n = 1$$

Asymptotic regime

$$n \to \infty$$

$$n \square \xrightarrow{R_{\infty} = ?} R_{\infty} n \square$$

Reversibility in the asymptotic limit

$$R_{\infty}(\rho \to \sigma \to \rho) = 1$$

$$n \square \rightrightarrows R_{\infty} n \square$$

Optimal asymptotic rate:

$$R_{\infty}(\rho \to \sigma) = \frac{r(\rho)}{r(\sigma)}$$

 $r(\rho)$ - asymptotic resource measure

Resource theory	Asymptotic resource measure
Entanglement	Entropy of the reduced state
Coherence	Entropy of the decohered state
Thermodynamics	Free energy of the state

Asymptotic regime and beyond

Asymptotic analysis not suitable for:

- Near-future quantum technologies (limited resources)
- Studying quantum effects beyond the thermodynamic limit

Need for second-order asymptotic expansion

$$R_n(\rho \to \sigma) = R_{\infty}(\rho \to \sigma) - \frac{f(\rho, \sigma, \epsilon)}{n^{\alpha}}$$

 ϵ - accepted error level

Want: $\rho^{\otimes n} \to \sigma^{\otimes R_n n}$ Have: $\rho^{\otimes n} \to \tilde{\sigma}$, with $\delta(\tilde{\sigma}, \sigma^{\otimes R_n n}) \le \epsilon$

Second-order asymptotics and thermodynamic limit

$$\frac{\text{energy fluctuations}}{\text{average energy}} = \frac{\sqrt{\langle E^2 \rangle - \langle E \rangle^2}}{\langle E \rangle} \sim \frac{1}{n^{1/2}} \xrightarrow{n \to \infty} 0$$

Finite-size conversion rates

Probability distribution representation of quantum states:

We want: $\rho \to \sigma$

We consider: $p \rightarrow q$

Single-shot conversion laws:

$$p \prec q$$

$$oldsymbol{p} \succ^{eta} oldsymbol{q}$$

Majorisation condition (entanglement & coherence)

Thermomajorisation condition

Resource theory	Probability distribution representation
Entanglement	Reduced state spectrum
Coherence	Decohered state spectrum
Thermodynamics	Distribution over energy eigenstates

Finite-size conversion rates

Probability distribution representation of quantum states:

We want: $\rho \to \sigma$

We consider: $p \rightarrow q$

Single-shot conversion laws:

$$p \prec q$$

$$m{p}\succ^eta m{q}$$

Majorisation condition (entanglement & coherence)

Thermomajorisation condition

Resource theory	Probability distribution representation
Entanglement	Reduced state spectrum
Coherence	Decohered state spectrum
Thermodynamics	Distribution over energy eigenstates

Finite-size conversion rates

Explicit analytic expressions for correction terms:

Constant error ϵ

Vanishing error
$$\epsilon = e^{-n^{\alpha}}, \ \alpha \in (0,1)$$

$$R_n \simeq R_\infty - \frac{r(\boldsymbol{p}, \boldsymbol{q}, \epsilon)}{\sqrt{n}}$$

$$R_n \simeq R_\infty - \frac{\tilde{r}(\boldsymbol{p}, \boldsymbol{q})}{\sqrt{n^{1-\alpha}}}$$

Both correction terms depend on *irreversibility* parameter $\nu(\boldsymbol{p},\boldsymbol{q})$:

$$r(\boldsymbol{p}, \boldsymbol{q}, \epsilon) \xrightarrow{\nu \to 1} 0 \qquad \qquad \tilde{r}(\boldsymbol{p}, \boldsymbol{q}) \xrightarrow{\nu \to 1} 0$$

Asymptotic rate achievable even for finite n and with vanishing error $\epsilon = 0$:

$$\nu = 1 \implies R_n \simeq R_\infty$$

Conclusion: Pairs of resource states satisfying $\nu = 1$ are in resonance (lossless conversion of resources is possible)

Can we properly tune initial and final states to avoid dissipation of resources?

Example 1 - Tuning resources to resonance

2 available initial states: $|\Psi_1\rangle$ and $|\Psi_2\rangle$

1 target state: $|\Phi\rangle$

Asymptotically same resource content:

$$|\Psi_1\rangle^{\otimes n} \to |\Phi\rangle^{\otimes n}, \qquad |\Psi_2\rangle^{\otimes n} \to |\Phi\rangle^{\otimes n}$$

Hence, for all $\lambda \in [0, 1]$:

$$|\Psi_1\rangle^{\otimes \lambda n}\otimes |\Psi_2\rangle^{\otimes (1-\lambda)n}\to |\Phi\rangle^{\otimes n}$$

Example 1 - Tuning resources to resonance

2 available initial states: $|\Psi_1\rangle$ and $|\Psi_2\rangle$

1 target state: $|\Phi\rangle$

Asymptotically same resource content:

$$|\Psi_1\rangle^{\otimes n} \to |\Phi\rangle^{\otimes n}, \qquad |\Psi_2\rangle^{\otimes n} \to |\Phi\rangle^{\otimes n}$$

Hence, for all $\lambda \in [0, 1]$:

$$|\Psi_1\rangle^{\otimes \lambda n} \otimes |\Psi_2\rangle^{\otimes (1-\lambda)n} \to |\Phi\rangle^{\otimes n}$$

Example 1 - Tuning resources to resonance

2 available initial states: $|\Psi_1\rangle$ and $|\Psi_2\rangle$

1 target state: $|\Phi\rangle$

Asymptotically same resource content:

$$|\Psi_1\rangle^{\otimes n} \to |\Phi\rangle^{\otimes n}, \qquad |\Psi_2\rangle^{\otimes n} \to |\Phi\rangle^{\otimes n}$$

Hence, for all $\lambda \in [0, 1]$:

$$|\Psi_1\rangle^{\otimes \lambda n} \otimes |\Psi_2\rangle^{\otimes (1-\lambda)n} \to |\Phi\rangle^{\otimes n}$$

Example 1 - Tuning resources to resonance

2 available initial states: $|\Psi_1\rangle$ and $|\Psi_2\rangle$

1 target state: $|\Phi\rangle$

Asymptotically same resource content:

$$|\Psi_1\rangle^{\otimes n} \to |\Phi\rangle^{\otimes n}, \qquad |\Psi_2\rangle^{\otimes n} \to |\Phi\rangle^{\otimes n}$$

Hence, for all $\lambda \in [0, 1]$:

$$|\Psi_1\rangle^{\otimes \lambda n} \otimes |\Psi_2\rangle^{\otimes (1-\lambda)n} \to |\Phi\rangle^{\otimes n}$$

Example 1 - Tuning resources to resonance

2 available initial states: $|\Psi_1\rangle$ and $|\Psi_2\rangle$

1 target state: $|\Phi\rangle$

Asymptotically same resource content:

$$|\Psi_1\rangle^{\otimes n} \to |\Phi\rangle^{\otimes n}, \qquad |\Psi_2\rangle^{\otimes n} \to |\Phi\rangle^{\otimes n}$$

Hence, for all $\lambda \in [0, 1]$:

$$|\Psi_1\rangle^{\otimes \lambda n} \otimes |\Psi_2\rangle^{\otimes (1-\lambda)n} \to |\Phi\rangle^{\otimes n}$$

Example 1 - Tuning resources to resonance

2 available initial states: $|\Psi_1\rangle$ and $|\Psi_2\rangle$

1 target state: $|\Phi\rangle$

Asymptotically same resource content:

$$|\Psi_1\rangle^{\otimes n} \to |\Phi\rangle^{\otimes n}, \qquad |\Psi_2\rangle^{\otimes n} \to |\Phi\rangle^{\otimes n}$$

Hence, for all $\lambda \in [0, 1]$:

$$|\Psi_1\rangle^{\otimes \lambda n}\otimes |\Psi_2\rangle^{\otimes (1-\lambda)n}\to |\Phi\rangle^{\otimes n}$$

Example 1 - Tuning resources to resonance

2 available initial states: $|\Psi_1\rangle$ and $|\Psi_2\rangle$

1 target state: $|\Phi\rangle$

Asymptotically same resource content:

$$|\Psi_1\rangle^{\otimes n} \to |\Phi\rangle^{\otimes n}, \qquad |\Psi_2\rangle^{\otimes n} \to |\Phi\rangle^{\otimes n}$$

Hence, for all $\lambda \in [0, 1]$:

$$|\Psi_1\rangle^{\otimes \lambda n}\otimes |\Psi_2\rangle^{\otimes (1-\lambda)n}\to |\Phi\rangle^{\otimes n}$$

Example 2 – Resonance in work extraction

Access to thermal bath at temperature T_h Gas of non-interacting spins at T_c

Asymptotically, perfect engine extracts:

$$W = F(\gamma_c) - F(\gamma_{c'})$$

while heating the gas to T'_c

For finite n quality of work is not perfect

Outlook

- Extend finite-size analysis to other resource-theories (asymmetry, contextuality)
- Design experimental protocols employing the resonance phenomenon
- Apply the results to thermodynamic problems involving finite-size heat baths (Landauer's erasure, fluctuation theorems, the third law of thermodynamics).
- Look for resonance phenomena in other quantum information processing tasks

Details:

Beyond the thermodynamic limit: finite-size corrections to state interconversion rates [arXiv:1711.01193]

Avoiding irreversibility: resonant conversion of quantum resources [soon on arXiv]

Thank you!