Design Details Document

University: Sister Nivedita University

Team Leader: Jishnu Baruah

Email Address: jsbaruah1@gmail.com

Mobile No. of Team Leader: +91-8638577811

Design of Robot-1 (R1) and Robot-2(R2)

A. Overall Bot Dimensions and Weight

• **Weight:** ~15-50 kg

• Dimensions:

Starting Height: 1500mm
Starting Width: 736mm
Starting Length: 629mm
Extended Height: 2400mm

Fig. 1: Chassis

B. Type of Drive

The bot uses 6-Wheel Omni-Directional Drive for agile and flexible movement. It is controlled through a wireless controller, with free-wheel encoders and an IMU for accurate localization.

Justification: Omni-directional wheels allow for smooth rotational and translational motion, ideal for precise movements and quick direction changes.

Fig 2: Omnidirectional wheel

C. Type of Actuators Integrated

Actuator	Specifications	Application
DC Motor	24V, Top Speed: 500 RPM	Wheel movement and dribbling mechanism
Servo Motor	5V, Torque: 10 Kg.cm	Shooting mechanism
Pneumatic Pistons	80mm Stroke, Extend Force: 150N	Jumping mechanism

D. Types of Sensors Integrated

Sensor	Specifications	Application
Detection sensors	Sensors	Ball and hoop detection
IMU	360-degree scanning, 5m range	Balance during jumps
Force Sensor	Force-sensitive resistor	Dribbling feedback

E. Ball Handling and Passing Mechanism

- Ball Handling: Rubberized rollers with adjustable pressure for consistent dribbling.
- Passing Mechanism: Uses a catapult or flywheel system to pass the ball accurately.

Justification: Adjustable rollers and flywheels provide precision control and high passing accuracy.

Fig 3: Ball handling Mechanism

F. Dribbling, Jumping, and Shooting Mechanism

- **Dribbling:** Two counter-rotating rollers with force feedback for controlled bouncing.
- **Jumping:** Telescoping legs with pneumatic pistons for vertical leaps up to 2400mm.
- **Shooting:** Adjustable-angle catapult or flywheel system for precise shots.

G.Control System

- Main Controller: NVIDIA Jetson Nano or Raspberry Pi 4 for AI/vision processing.
- Motor Drivers: CAN bus or PWM controllers for precise motor control.
- **Pneumatic Valves:** For jumping and dribbling mechanisms.

Key Highlights for Both Robots

- 1. Robot-1: Focuses on agility and precision with omni-directional wheels and advanced sensors
- **2. Robot-2:** Focuses on simplicity and reliability with differential drive and linear actuators.

Fig 4: Ball Holding State

Safety Features

- **Emergency Stop Button:** For immediate shutdown.
- Redundant Systems: Backup motor controllers and sensors.

Additional Notes

- **Innovation:** Both robots incorporate AI-powered vision systems for real-time ball and hoop detection.
- Safety: Includes emergency stop buttons and collision detection sensors.
- **Testing:** Prototypes will undergo rigorous testing to ensure performance under competition conditions

Key Components in the Diagram

- 1. **Funnel Receiver:** Wide opening at the top.
- 2. **Detection sensors:** Mounted near the top for vision and navigation.
- 3. **Dribbling Rollers:** Horizontal rollers with force sensors.
- 4. Articulated Grippers: Silicone grippers for ground pickup.
- 5. Conveyor Belt: Motorized belt for ball transport.
- 6. **Shooting Mechanism:** Flywheel system with adjustable angle.
- 7. **Telescoping Legs:** Pneumatic pistons or scissor lifts for jumping.
- 8. Omni-Directional Wheels: six wheels at the base.
- 9. Battery and Control Unit: Positioned at the rear.

Submission Details

- Repository Link: https://github.com/Mouli51ch/Robocon-2025
- Animation Files:

https://drive.google.com/drive/folders/1NGXzD2RY2YW5PxN41SipGCi0Jzv5619P?usp=sharing