Определение местоположения с помощью инерционных датчиков

Зайнулина Э., Киселёва Е., Фатеев Д., Божедомов Н., Толканев А., Ночевкин В., Протасов В., Рябов А.

Московский физико-технический институт

9 декабря 2018 г.

Цель работы

Цель

Увеличение точности позиционирования в помещениях и других условиях, когда глобальная навигационная система не может быть использована, с использованием только инерционных датчиков телефона.

Литература

Основная статья

Hang Yan, Qi Shan, and Yasutaka Furukawa. Ridi: Robust imu double integration. CoRR, abs/1712.09004, 2017.

Дополнительная статья

Boyuan Wang, Xuelin Liu, Baoguo Yu, Ruicai Jia, and Xingli Gan. Pedestrian dead reckoning based on motion mode recognition using a smartphone. Sensors, 18(6):1811, 2018.

Постановка задачи

Модель

$$f: X \to Y$$

 $\mathbf{X} \in \mathbb{R}^{ extit{N} imes extit{T}}$ - матрица признаков.

- Объект положение в определенный момент времени і.
- Признаки объекта угловые скорости и линейные ускорения в стабилизированной системе координат датчиков в моменты времени $i-window_size,\ldots,i$, где $window_size$ размер окна (равен 200).

 $\mathbf{Y} \in \mathbb{R}^{2 imes T}$ - траектория пешехода, y(t) - координаты пешехода в момент времени t.

Постановка задачи

Подзадачи

- Определение класса P местоположения датчика: рука, нога, сумка, тело. ($P = \{0,1,2,3\}$)
- 2 Предсказание траектории на основе полученного класса

$$f \rightarrow f_1 \ f_2$$

$$f_1: X \rightarrow P = \{0, 1, 2, 3\}$$

$$f_2: X, \ P \rightarrow Y$$

Постановка задачи

Метод, используемый в решении

- Для классификации SVM-классификатор
- Для регрессии SVM- регрессор

Ядро:

$$K(x,x') = \exp\left(-\gamma \|x - x'\|^2\right)$$

Оценка качества модели

Критерий суммы квадратов отклонений предсказанных скоростей от истинных, а также корреляция между предсказанной и истинной траекториями пешехода.

Базовая модель

Базовая модель

Корректировка предсказанных скоростей

$$\min_{\{x_{I}^{1}, x^{5}1_{I}, \dots\}} V_{bias} = \min_{\{x_{I}^{1}, x^{5}1_{I}, \dots\}} \sum_{f \in F_{2}} \|v_{C}^{F} - v_{R}^{f}\| + \lambda \sum_{f \in F_{1}} \|x_{I}^{f}\|^{2},$$

$$v_{C}^{f} = R_{SW}^{f} \sum_{f'=1}^{f} R_{WI}^{f'} (a_{I}^{f'} + x_{I}^{f'}),$$

где x_I^f - смещение ускорения, f - единица блока выборки, F - блок выборки, v_C^F - скорректированное значение скорости, v_R^f - предсказанное значение скорости, I - система координат устройства, W - глобальная система координат, S - IMU-стабилизированная система координат, R_{AB} - матрица перехода из системы координат B в систему координат A.

Цель

Найти оптимальные параметры моделей

Оптимизируемые параметры

Был произведён поиск по сетке коэффициента штрафа ${\it C}$ и γ :

- $C \in [1, 10]$,
- $\gamma \in [0.0001, 0.001, 0.01, 0.1]$.

Качество получаемых моделей измерялось с помощью кросс-валидации.

Рука

Тело

Таблица: Зависимости MSE (m^2/s^2) от параметров моделей для выборки 1

Регрессор	C=1		C=10	
	$\gamma = 0.001$	$\gamma = 0.01$	$\gamma = 0.001$	$\gamma = 0.01$
Сумка, 0	0.00948	0.00944	0.01029	0.00703
Тело, 0	0.00205	0.00448	0.00212	0.00212
Рука, 0	0.00613	0.00604	0.00731	0.00702
Нога, 0	0.00464	0.00473	0.00457	0.00469

Таблица: Зависимости MSE (m^2/s^2) от параметров моделей для выборки 2

Регрессор	C=1		C=10	
	$\gamma = 0.001$	$\gamma = 0.01$	$\gamma = 0.001$	$\gamma = 0.01$
Сумка, 0	0.0125	0.01255	0.01232	0.01234
Тело, 0	0.00205	0.00206	0.00213	0.00212
Рука, 0	0.02699	0.02676	0.02176	0.02155
Нога, 0	0.0054	0.00546	0.00544	0.0055

Таблица: Зависимости MSE (m^2/s^2) от параметров моделей для выборки 3

Регрессор	C=1		C=10	
	$\gamma = 0.001$	$\gamma = 0.01$	$\gamma = 0.001$	$\gamma = 0.01$
Сумка, 0	0.00579	0.00573	0.00591	0.00583
Тело, 0	0.00379	0.00389	0.00384	0.00391
Рука, 0	0.02699	0.02676	0.02176	0.02155
Нога, 0	0.00395	0.00401	0.00403	0.00405

Оптимальные гиперпараметры

	Рука	Нога	Сумка	Тело
С	10	1	1	1
γ	0.01	0.001	0.01	0.001

С помощью оптимальных моделей были построены траектории для каждого из классов на тестовой выборке Zhicheng с дополнительной оптимизацией предсказанных скоростей (сиреневая линия) и без (синяя линия).

Класс-рука

Класс-тело

Класс-нога

Класс-сумка

Выводы

Выводы

- Предварительное определение класса расположения смартфона позволило установить более подходящие параметры моделей
- Дополнительное уточнение скоростей позволило лучше приблизить траектории

Планируется

- применить полученную модель на дополнительно собранных данных
- улучшить методы обработки для уменьшения шума (фильтр Калмана)
- рассмотреть другие способы оптимизации модели

