CDC Places

Unlocking Health Insights: Analyzing
Indiana and Kentucky CDC PLACES
Data for Informed Public Health
Interventions

Project Introduction

In this project, our objective is to identify outliers and analyze how health trends vary over time across different geographic areas, such as counties, places, census tracts, and ZIP Code Tabulation Areas (ZCTAs). By focusing on a detailed analysis of health trends across various geographic scales—from counties to ZIP Code Tabulation Areas (ZCTAs)—this initiative aims to provide actionable insights for improving community health outcomes.

Our analysis begins with a comprehensive acquisition of relevant health data from the CDC PLACES database, focusing primarily on Indiana. This data, representing a range of health metrics such as disease prevalence and access to healthcare, is meticulously cleaned and prepared to ensure accuracy and reliability in our findings.

The project leverages advanced statistical and geospatial analysis methods to explore and illustrate the complex relationships between health outcomes and demographic factors. This approach not only highlights current health conditions but also helps predict future health trends, providing a crucial tool for policymakers and public health officials.

Project Methodology:

Our methodology encompasses several key stages:

Workflow:

Results:

Our findings are presented through a series of detailed visualizations, each highlighting different aspects of public health in Indiana and Kentucky:

Top 10 Highest Populated

Total Population

- 1. **Data Sorting:** Code likely sorts counties by population to identify top 10.
- 2. Trace Assignment:
 Each bar is
 assigned a
 separate trace,
 unusual for similar
 data.
- 3. **Data Mapping:**Maps county
 names to y-axis
 and populations to
 x-axis values.
- 4. Dynamic Data
 Fetching: Pulls
 population data
 dynamically,
 perhaps from an
 external source.
- 5. Interactive
 Elements:
 Potentially
 interactive,
 allowing for
 detailed views on
 hover.

Deepak Rajput's Workspace Untitled

O Observable

ACCESS2_CrudePrev

Top 10 Highest Counties - ACCES

- 1. Interactive Bar Chart: Visualizes top counties by a selected health condition.
- 2. Dropdown for Condition Selection: Allows filtering by different health metrics.
- 3. Dynamic Data
 Update: Chart
 updates based on
 selected health
 condition.
- 4. Color Coded: Each bar uses unique colors to distinguish between counties.
- 5. Hover Details: Shows precise values on hover, enhancing data readability.

Deepak Rajput's Workspace Untitled

O Observable

- Scatter Plot
 Visualization:
 Shows correlation
 between two
 identical health
 indicators.
- 2. Dual Dropdown
 Selection: Allows
 comparison of the
 same metric
 across different
 data sets.
- 3. Linear
 Relationship
 Display: Points
 align closely with a
 straight line,
 indicating strong
 correlation.
- 4. Interactive Elements: Users can select

Health Indicator 1: ACCESS2_CrudePrev

Health Indicator 2: ACCESS2_CrudePrev

V

Scatter Plot for ACCESS2_CrudePrev vs

- different indicators for comparison.
- 5. Clear Axis Labels: Each axis clearly labeled with the health indicator, enhancing understanding.

Scatter Plot for ACCESS2_CrudePrev vs AC

- 1. Comparison of Two Metrics: Visualizes the same health indicator (ACCESS2_CrudePrev) across two axes.
- 2. Identifies Outliers and Clusters: Helps to easily spot variations or consistencies in the data.
- 3. Interactive Tooltips: Hovering over points provides exact values for easier data interpretation.
- 4. Simple and Clean
 Layout: Ensures that
 the data
 presentation is
 straightforward and
 easy to understand.

Deepak Rajput's Workspace Untitled

County Name: Adams

O Observable

Summary:

Through our rigorous analysis of the CDC PLACES data, we have identified key trends and patterns that underline the health challenges and disparities in Indiana and Kentucky. These insights are invaluable for developing targeted interventions aimed at improving health outcomes and promoting health equity across these states. Our project highlights the power of data-driven approaches in public health and sets the stage for ongoing improvements in health policy and practice.

MEET THE

Project Team

Name	Role	Email
Hasaranga Jayathilake Dilshan	Project Lead	hdjayath@iu.edu
Pericherla Supraja	Project Lead	sperich@iu.edu
Jay Colbert	Project Advisor	jtcolber@iu.edu
Vahini Matlakunta	Project Manager	vmatlaku@iu.edu
Deepak Shersingh Rajput	Team Member	drajput@iu.edu
Oam Chandra Laasya Tummala	Team Member	otummala@iu.edu
Soumya Shanigarapu	Team Member	sshaniga@iu.edu
Nasiruddin Khazi	Team Member	naskhazi@iu.edu
Saksham Rajput	Web Developer	sarajput@iu.edu

Source Code

Our project's complete analysis and visualization code is available on Github.