Bias-Variance Tradeoff and Regularization

Original Slides by:

Courtney Anne Ngo Daniel Stanley Tan, PhD Arren Antioquia

Updated (AY 2023 – 2024 T3) by:

Thomas James Tiam-Lee, PhD

Linear Regression

Which of these data will linear regression be suitable in?

The Data

The Data

 Fitting a standard linear regression model

$$\hat{y} = w_1 x + w_0$$

Can we do better?

Alternative Model

$$\hat{y} = \theta_1 x + \theta_0$$

$$\hat{y} = \theta_1 x^2 + \theta_0$$

$$\hat{y} = \theta_1 x^2 + \theta_0$$

What happens to the model?

The Data

Fitting the updated model

$$\hat{y} = \theta_1 x^2 + \theta_0$$

Do you think it's a better model?

So Is It Still "Linear" Regression (?

here's two ways to frame what we did:

• 1 We change the model by changing x to x^2

So Is It Still "Linear" Regression (?

phere's two ways to frame what we did:

2 We keep the model, but change the features

Taking It a Step Further (1 feature)...

- Order = 1
 - Features: x_1
 - Model: $\hat{y} = \theta_1 x_1 + \theta_0$
- Order = 2
 - Features: x_1, x_1^2
 - Model: $\hat{y} = \theta_1 x_1 + \theta_2 x_1^2 + \theta_0$
- Order = 3
 - Features: x_1, x_1^2, x_1^3
 - Model: $\hat{y} = \theta_1 x_1 + \theta_2 x_1^2 + \theta_3 x_1^3 + \theta_0$

Taking It a Step Further (2 features)...

- Order = 1
 - Features: x_1, x_2
 - Model: $\hat{y} = \theta_1 x_1 + \theta_2 x_2 + \theta_0$
- Order = 2
 - Features: $x_1, x_2, x_1^2, x_1x_2, x_2^2,$
 - Model: $\hat{y} = \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_1 x_2 + \theta_5 x_2^2 + \theta_0$
- Order = 3
 - Features: $x_1, x_2, x_1^2, x_1x_2, x_2^2, x_1^3, x_1^2x_2, x_1x_2^2, x_2^3$
 - **Model**: $\hat{y} = \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_1 x_2 + \theta_5 x_2^2 + \theta_6 x_1^3 + \theta_7 x_1^2 x_2 + \theta_8 x_1 x_2^2 + \theta_9 x_2^3 + \theta_0$

Curse of DIMENER DINGLITY

As the dimensionality of the features space increases, the number Configurations can grow exponentially, and thus the number of configurations covered by an observation decreases.

ChrisAlbon

Another Way to Do It (2 features)

- Order = 1
 - Features: x_1, x_2
 - Model: $\hat{y} = \theta_1 x_1 + \theta_2 x_2 + \theta_0$
- Order = 2
 - Features: x_1, x_2, x_1^2, x_2^2 ,
 - Model: $\hat{y} = \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_0$
- Order = 3
 - Features: $x_1, x_2, x_1^2, x_2^2, x_1^3, x_2^3$
 - Model: $\hat{y} = \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1^3 + \theta_6 x_2^3 + \theta_0$

What Happens with Higher Order Models?

High Bias

- Model is too simple
- No matter how much you try to fit, it won't capture the patterns of the data

High Variance

- Model is too complex
- A large variety
 of models with
 the same
 complexity can
 fit the data just
 as nicely

Underfitting

Model did not fit the training data well.

Overfitting

Model fits the training data well, but performs poorly on the testing data, i.e. did not generalize

Training error Test error HIGH HIGH Underfit model **HIGH LOW** Overfit model

Bias-Variance Tradeoff

 Generally, we want to find a good balance between the bias and the variance.

Bias-Variance Tradeoff

Effect of Data Quantity to Bias/Variance

More data means the models are more likely to "listen" to the general trend

Typical Overfitting Plot

- The training error decreases as the degree of the polynomial increases (i.e. complexity of the hypothesis)
- The testing error, measured on independent data, decreases at first, then starts increasing.

Regularization

 Methods to reduce overfitting in machine learning models, without having to collect more data or change the learning algorithm.

What Happens When We Increase the Order of the Polynomial?

poly degree	weight_1	weight_2	weight_3	weight_4	weight_5	
1	-0.87	-0.17				
3	-2.15	0.89	0.34	-0.50		
5	13.40	-1.31	-17.28	1.36	3.79	
7	31.30	-5.53	-37.29	4.48	6.87	
10	179.74	94.89	-378.87	-185.43	259.32	
12	-540.45	-1015.67	1487.13	2623.60	-1490.51	
30	-14156072.98	16329720.76	21300299.24	-14967132.99	13066492.56	

Linear Regression Loss Function

$$l(\theta, X, y) = \frac{1}{2n} \sum (\hat{y} - y)^2$$

Linear Regression Loss Function

Regularization Term

Ridge Regression (L2 regularization):

$$R(\theta) = \sum_{j=1}^{a} \theta_j^2$$

Lasso Regression (L1 regularization):

$$R(\theta) = \sum_{j=1}^{a} |\theta_j|$$

Regularized Linear Regression

Regularized Linear Regression

Regularized Linear Regression

Effect of λ

$$l(\theta, X, y) = \frac{1}{2n} \sum_{j=1}^{n} (\hat{y} - y)^2 + \lambda \sum_{j=1}^{n} \theta_j^2$$

- If λ is large...
- If λ is 0...
- If λ is negative...
- If λ is small...

training error has little impact on loss

regularization has no effect

The higher the weights, the better (!?)

regularization is considered in the loss

Two Common Regularization Methods

- Ridge regression
 - (L2 regularization)

$$l(\theta, X, y) = \frac{1}{2n} \sum_{i=1}^{n} (\hat{y} - y)^2 + \frac{1}{2} \lambda \sum_{i=1}^{n} \theta_i^2$$

- Lasso regression
 - (L1 regularization)

$$l(\theta, X, y) = \frac{1}{2n} \sum_{i=1}^{n} (\hat{y} - y)^2 + \lambda \sum_{i=1}^{d} |\theta_i|$$

Gradient Descent Update Rule:

$$\theta \coloneqq \theta - \alpha(\frac{1}{n}(X\theta - y)^T X + \lambda\theta)$$

Although absolute value is not differentiable, there are ways to generalize gradient descent to non-differentiable functions (will not be covered in this class)

poly degree	weight_1	weight_2	weight_3	weight_4	weight_5	
1	-0.87	-0.17				
3	-2.15	0.89	0.34	-0.50		
5	13.40	-1.31	-17.28	1.36	3.79	
7	31.30	-5.53	-37.29	4.48	6.87	
10	179.74	94.89	-378.87	-185.43	259.32	
12	-540.45	-1015.67	1487.13	2623.60	-1490.51	
30	-14156072.98	16329720.76	21300299.24	-14967132.99	13066492.56	

Effect of Ridge Regression

poly degree	weight_1	weight_2	weight_3	weight_4	weight_5	weight_6	weight_7	weight_8	weight_9 w	eight_10
1	-0.44									
3	0.17	0.22	-0.27							
5	1.90	0.34	-2.16	-0.08	0.42					
7	0.30	0.03	0.84	0.28	-1.16	-0.09	0.24			
10	1.78	-0.46	-3.06	-0.59	2.11	1.35	-0.82	-0.61	0.12	0.08
12	1.95	0.06	-3.43	-1.35	2.22	1.31	-0.70	-0.15	0.05	-0.12
20	2.78	-1.04	-6.02	1.21	4.23	-0.73	-0.68	0.15	-0.27	0.06

Effect of Lasso Regression

poly degree	weight_1	weight_2	weight_3	weight_4	weight_5	weight_6	weight_7	weight_8	weight_9 w	eight_10
1	-0.44									
3	0.17	0.22	-0.27							
5	1.90	0.34	-2.16	-0.08	0.42	0.00				
7	0.29	0.03	0.85	0.28	-1.16	-0.09	0.24			
10	2.44	0.57	-4.84	-3.22	3.63	3.49	-1.32	-1.30	0.17	0.16
12	4.99	-1.21	-15.19	0.00	18.06	0.60	-10.16	0.00	2.61	-0.13
20	3.97	-1.58	-9.05	-0.03	5.82	2.95	0.00	-2.38	-0.77	0.26

Ridge Vs. Lasso Regression

