

DATA STRUCTURES AND ITS APPLICATIONS UE21CS252A

Kusuma K V

Department of Computer Science & Engineering

Hashing: Collision Resolution Quadratic Probing, Double Hashing

Kusuma K V

Department of Computer Science & Engineering

Hashing: Quadratic Probing

Quadratic Probing (Open addressing, closed hashing) resolves collision by using the below formula:

$$h(key) = (h(key) + i^2) \%$$
 tableSize where $i = 1, 2, 3, ...$

Hashing: Quadratic Probing

Insert 7, 20, 41, 31, 18, 8, 9 into a hash table of size 7. Use key%tableSize as the hash function & quadratic probing to resolve collision.

$$h(7) = 7 \% 7 = 0$$

$$h(20) = 20 \% 7 = 6$$

$$h(41) = 41 \% 7 = 6$$
 collision

	_	_	3	-		
7	8	9	41	31	18	20

Resolving collision: $h(41)=((6+1^2)\%7)=0$, $h(41)=((6+2^2)\%7)=3$

$$h(31) = 31 \% 7 = 3$$
 collision

Resolving collision: $h(31)=((3+1^2)\%7)=4$

$$h(18) = 18 \% 7 = 4 \text{ collision}$$

Resolving collision: $h(18)=((4+1^2)\%7)=5$

$$h(8) = 8 \% 7 = 1$$

$$h(9) = 9 \% 7 = 2$$

Hashing: Double Hashing

Double Hashing (Open addressing, closed hashing) resolves collision by using a second hash function whenever there results a collision. The below formula is used:

hash(key) = (hash1(key) + i * hash2(key)) % tableSize

Here hash1() and hash2() are hash functions and tableSize is the size of hash table, i = 1, 2, ...

Hashing: Double Hashing

Insert 7, 20, 41, 31, 18, 8, 9 into a hash table of size 7.

Use **key%tableSize** as the **first hash function** & double hashing (closed hashing) to resolve collision. Use **key%5** as the **second hash**

function.

U	1	 3	4	3	O
7	41	31	18		20

$$h(7) = 7 \% 7 = 0$$

$$h(20) = 20 \% 7 = 6$$

$$h(41) = 41 \% 7 = 6$$
 collision

Resolving collision: 2nd hash function: h(41) = 41 % 5 = 1

Therefore,
$$h(41) = (6 + 1*1) \% 7 = 0$$
, $h(41) = (6 + 2*1) \% 7 = 1$

$$h(31) = 31 \% 7 = 3$$

$$h(18) = 18 \% 7 = 4$$

Hashing: Double Hashing

Insert 7, 20, 41, 31, 18, 8, 9 into a hash table of size 7.

Use **key%tableSize** as the **first hash function** & double hashing (closed hashing)to resolve collision. Use **key%5** as the **second hash function**.

contd..,

h(8) = 8 % 7 = 1 collision

0	1	2	3	4	5	6
7	41	8	31	18	9	20

Resolving collision: 2^{nd} hash function: h(8) = 8 % 5 = 3

Therefore,
$$h(8) = (1 + 1*3) \% 7 = 4$$
, $h(8) = (1 + 2*3) \% 7 = 0$, $h(8) = (1 + 3*3) \% 7 = 3$

$$h(8) = (1 + 4*3) \% 7 = 6, h(8) = (1 + 5*3) \% 7 = 2$$

$$h(9) = 9 \% 7 = 2$$
 collision

Resolving collision: 2^{nd} hash function: h(9) = 9 % 5 = 4

Therefore,
$$h(9) = (2 + 1*4) \% 7 = 6$$
, $h(9) = (2 + 2*4) \% 7 = 3$, $h(9) = (2 + 3*4) \% 7 = 0$

$$h(9) = (2 + 4*4) \% 7 = 4$$
, $h(9) = (2 + 5*4) \% 7 = 1$, $h(9) = (2 + 6*4) \% 7 = 5$

THANK YOU

Kusuma K V

Department of Computer Science & Engineering

kusumakv@pes.edu