2 pages 1

```
Source | Model | Option | Model_Option | Help on mc methods | Archived Tests
```

# mc\_alfonsi\_bates\_out

#### Input parameters

- $\bullet$  Number of iterations N
  - $\bullet$  Number of discretization steos M
  - Generator type
  - Increment inc
  - Confidence Value

#### Output parameters

- $\bullet$  Price P
- Error price  $\sigma_P$
- Delta  $\delta$
- Error delta  $\sigma_{delta}$
- Price Confidence Interval: *ICp* [Inf Price, Sup Price]
- Delta Confidence Interval: *ICp* [Inf Delta, Sup Delta]

### Description

Computation of a european option in the Heston stochastic volatility model. This model is given by,

$$dS_t = (r - q)S_t dt + \sqrt{v_t} S_t dW_t^1,$$
  
$$dv_t = k(\theta - v_t) dt + \sigma \sqrt{v_t} dW_t^2,$$

2 pages 2

where  $W^1$  and  $W^2$  are two correlated brownian motions with  $\langle W^1, W^2 \rangle_t = \rho t$ , and k,  $\theta$  and  $\sigma$  Description of the algorithm is given in there

## References