

Spacecraft Attitude Dynamics

Prof. Franco Bernelli

Magnetic disturbance torque

Task 1: Implement approximate orbit models

Define your spacecraft orbit with respect to the Earth in the body frame

$$r_N = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = R \begin{bmatrix} \cos \theta \\ \sin \theta \cos i \\ \sin \theta \sin i \end{bmatrix} \qquad R = \frac{a(1 - e^2)}{1 + e \cos \theta} \qquad \dot{\theta} = \frac{n(1 + e \cos \theta)^2}{(1 - e^2)^{3/2}},$$

$$n - Earth$$

$$\hat{r}_B = A_{B/N} \hat{r}_N$$

Task 2: Update the gravity gradient torque with your new elliptic orbit for 12 U Cubesat with magnetic torque

$$I_{x}\dot{\omega}_{x} + (I_{z} - I_{y})\omega_{z}\omega_{y} = \frac{3Gm_{t}}{R^{3}}(I_{z} - I_{y})c_{3}c_{2}$$

$$I_{y}\dot{\omega}_{y} + (I_{x} - I_{z})\omega_{x}\omega_{z} = \frac{3Gm_{t}}{R^{3}}(I_{x} - I_{z})c_{1}c_{3}$$

$$I_{z}\dot{\omega}_{z} + (I_{y} - I_{x})\omega_{y}\omega_{x} = \frac{3Gm_{t}}{R^{3}}(I_{y} - I_{x})c_{2}c_{1}$$

$$\begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = A_{B/L} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$A_{L/N} = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos i & \sin i \\ 0 & -\sin i & \cos i \end{bmatrix}$$

$$J_{depl} = \begin{bmatrix} 100.9 & 0 & 0 \\ 0 & 25.1 & 0 \\ 0 & 0 & 91.6 \end{bmatrix} \cdot 10^{-2} [Kgm^2].$$

Task 2: Simple magnetic disturbance model

1. Compute magnetic field in the inertial frame

$$\underline{b}_{N} = \frac{R^{3}H_{0}}{r^{3}} \left[3(\underline{\widehat{m}} \cdot \underline{\hat{r}})\underline{\hat{r}} - \underline{\widehat{m}} \right]$$

$$H_0 = \left((g_1^0)^2 + (g_1^1)^2 + (h_1^1)^2 \right)^{1/2}$$

$$\widehat{m} = \begin{bmatrix} \sin 1 \cdot 1.5^{\circ} \cos \omega_{\oplus} t \\ \sin 1 \cdot 1.5^{\circ} \sin \omega_{\oplus} t \\ \cos 1 \cdot 1.5^{\circ} \end{bmatrix}$$

		IGRF 1995		IGRF 2000	
n	m	$g_n^{\ m}$	h_n^{m}	$g_n^{\ m}$	h_n^m
1	0	-29682	-	-29615	ı
1	1	-1789	5318	-1728	5186
2	0	-2197	-	-2267	-
2	1	3074	-2356	3072	-2478
2	2	1685	-425	1672	-458
3	0	1329	-	1341	-
3	1	-2268	-263	-2290	-227
3	2	1249	302	1253	296
3	3	769	-406	715	-492
4	0	941	-	935	-
4	1	782	262	787	272
4	2	291	-232	251	-232
4	3	-421	98	-405	119
4	4	116	-301	110	-304

2. Compute magnetic field in the body fixed frame

$$\underline{b}_B = A_{B/N}\underline{b}_N$$

3. Compute the parasitic magnetic torque

$$\underline{M} = \underline{m} \times \underline{b}$$

$$\underline{m} = [0.01 \quad 0.05 \quad 0.01]^T A m^2$$

Note IGRF data is in nT