Problem 1 Determine the root-locus curve for the continuous-time feedback system with the system functions

$$H(s) = \frac{1}{s+1}$$
 and $G(s) = \frac{1}{s+2}$

for the forward and feedback path, respectively. Use the real adjustable gain parameter K. Determine K for a stable feedback system.

Problem 2 Determine the root-locus curve for the discrete-time feedback system with the system functions

$$H(z) = \frac{1}{1 - 0.5 \cdot z^{-1}}$$
 and $G(z) = \frac{z^{-1}}{1 - 0.25 \cdot z^{-1}}$

for the forward and feedback path, respectively. Use the real adjustable gain parameter K. Determine K for a stable feedback system.

Problem 3 Two continuous-time feedback systems

a)
$$G(s) \cdot H(s) = \frac{2}{(s+1) \cdot (s+2)}$$
 b) $G(s) \cdot H(s) = \frac{2(s+1)}{(s-1) \cdot (s+2)}$

shall be considered. Their NYQUIST plots $G(j\omega) \cdot H(j\omega)$ are given below. Derive stability requirements for the real adjustable gain parameter K.

Problem 4 The discrete-time feedback system

$$G(z) \cdot H(z) = \frac{z^{-2}}{1 + 0.5 \cdot z^{-1}}$$

shall be considered. The NYQUIST plot $G(e^{j\Omega}) \cdot H(e^{j\Omega})$ is shown on the right. Derive stability requirements for the real adjustable gain parameter K.

www.th-owl.de	Exercise - DSS	DSS-ex6-2
	Discrete Signals and Systems	18.01.2020
Prof. Dr. Uwe Meier	Applications	Page 2

Answers

Problem 1

$$K > -2$$

Problem 2

$$-\frac{3}{8} < K < \frac{15}{8}$$

Problem 3

- a) K > -1
- b) K > 1

Problem 4

$$-\frac{1}{2} < K < 1$$