# Feature-Enhancing Aerial LiDAR Point Cloud Refinement





Zhenzhen Gao, Ulrich Neumann University of Southern California, USA

#### Outline

- \* Introduction
- Approach Overview
- \* Implementation Details
- \* Evaluation
- \* Conclusion and Future Work
- \* Acknowledgements

# Why Refinement?

#### Defects of raw point clouds

- \* Noise
- \* Under-sampling
- Visual artifacts in applications
  - \* Grainy planes
  - \* Gaps and holes
  - Bumpy boundaries



**Direct Rendering** 

### **Challenges of Aerial LiDAR Points**

- Sparse sampling density
- \* 2.5D nature



**Aerial LiDAR** 



Image courtesy to Qian-Yi Zhou

## **Preliminary Definitions**

- Normal discontinuous feature
  - \* Discontinuities in normals
  - \* The underlying surface is still continuous
- Position discontinuous feature
  - Discontinuities in positions
  - The underlying surface breaks



Normal discontinuous features



Position discontinuous features

#### **Related Work**

- \* Feature preserving bilateral filtering [Mederos2003] [Duguet2004] [Sun2007] [Nociar2010] [Huang2012]
  - \* Cannot handle position discontinuous features



- \* Explicit feature smoothing approaches [Pauly2003] [Daniels2007] [Zhou2008]
  - Replace points as lines/curves

### **Approach Overview**

#### Input

 An unoriented, piece-wise smooth aerial LiDAR point cloud of a single building

#### Output

- \* A new set of oriented points
- Providing
  - \* Smoothed noise
  - Filled gaps and holes
  - \* Enhanced normal discontinuous features
  - \* Enhanced position discontinuous features

# **Approach Overview (Cont.)**

#### Approach

- Explicitly extract and regularize position discontinuous features
- \* Two-step framework
  - \* Smoothing: handles noise
  - \* Up-sampling: handles under-sampling

# Position Discontinuous Feature Refinement

Detection: local environment analysis





- Boundary direction (B. direction) estimation
  - The direction of the underlying line formed by boundary points only
  - \* PCA over neighbors

# Step 1: Smoothing

#### Bilateral filtering

- \* The estimate for a point is the weighted average of prediction from neighboring points
- \* The weight of a neighbor depends on
  - \* Spatial distance (spatial weight)
  - \* Normal/B. direction difference (influence weight)

#### \* Two stage:

- \* Smooth normals/B. directions
- \* Smooth positions under the guidance of the filtered normals/B. directions

# **Smoothing for All Points**

(a)Input noisy points(b)Normal estimation(c)Normal smoothing(d)Position smoothing



## **Smoothing for Boundary Points**



12

# Step 2: Up-sampling

- Local gap detector: local environment analysis
- \* Bilateral projection operator: preserve features



(a) Locate gap



(b) Find end point



(c) Interpolate new point

# **Up-sampling**

(a)Input noisy points(b)Smoothed points(c)Interior up-sampling(d)Boundary up-sampling



## Feature Enhancing Up-sampling

Features can be enhanced if up-sampling is Restrained to regions near features



(a)Smoothed points(b)Interior enhancing(c)Boundary enhancing(d)Output points

#### **Evaluation Outline**

- \* Robustness
- \* Stability
- Versatility
- \* Extensibility
- \* Comparison with previous work
- \* Performance
- Applications

#### Robustness to Noise

The smoothing quality does not degrade much as the noise increases



| Data set | Interior-MD | Interior-SD | Boundary-MD | Boundary-SD |
|----------|-------------|-------------|-------------|-------------|
| (a)      | 0.028482    | 0.018486    | 0.051923    | 0.027182    |
| (b)      | 0.003169    | 0.003243    | 0.025885    | 0.015879    |
| (d)      | 0.036123    | 0.026051    | 0.060937    | 0.031821    |
| (e)      | 0.004458    | 0.004472    | 0.030655    | 0.019828    |

MD: mean distance SD: standard deviation

# Robustness to Non-homogeneous Point Density

- Achieve global uniform sampling with a single parameter
- Both inner and outer boundaries are well preserved



18

Original point

## **Stability**

 Most normal and position discontinuous features are sharply recovered for data sets with vastly different densities

Noisy input (a) 15,625 samples (c) 625 samples (b) 3,136 samples (f) 45,469 samples (d) 42,479 samples (e) 42,319 samples

Refined output

## Versatility

 Effective to buildings with various roof shapes and complexity



### **Extensibility**

- Extensible to objects other than buildings
- \* Extensible to large-scale data



# Comparison with Point-Based Refinements

- Comparable quality on non-boundary points
- \* Obviously less errors on boundaries



# Comparison with Geometry Modeling

- Comparable quality on straight boundaries
- \* Better quality on curved boundaries



#### Performance

#### Smoothing and up-sampling are fast

| Data set      | IP-N      | SM-T  | US-T  | US-N    | EU-T   | OP-N        |
|---------------|-----------|-------|-------|---------|--------|-------------|
| Figure 1 (b)  | 5,594     | 0.57  | 1.37  | 11,597  | 2.36   | 16,590      |
| Figure 6 (f)  | 23,500    | 2.07  | 5.84  | 52,303  | 2.57   | 57,461      |
| Figure 11 (e) | 9,079     | 1.23  | 1.68  | 15,603  | 5.80   | 25,720      |
| Figure 11 (f) | $7,\!546$ | 1.12  | 1.18  | 12,146  | 4.11   | 21,409      |
| Figure 11 (g) | 4,658     | 0.49  | 0.99  | 9,248   | 3.45   | 16,532      |
| Figure 11 (h) | 119,310   | 11.06 | 40.44 | 298,164 | 105.36 | $450,\!279$ |
| Figure 15 (b) | 4,498     | 0.76  | 0.54  | 6,403   | 0.70   | 7,913       |

IP-N: number of input points; NE-T: time for normal estimation; SM-T: time for smoothing; US-T: time for up-sampling; UP-N: number of points after up-sampling; EU-T: time for feature enhancement up-sampling; OP-N: number of output points. Time is measured in seconds.

### **Applications**

- Our approach provides
  - smoother planes
  - no gaps
  - sharpened both normal and position discontinuous features
- It is a useful pre-process to improve visual quality of
  - direct point rendering
  - \* surface reconstruction (e.g. APSS and RIMLS)



- (a) Before: points
- (b) After: points (c) Before: APSS
- (d) After: APSS (e) Before: RIMLS (f) After: RIMLS

#### Conclusion

- Explicitly extract and regularize position discontinuous features
- The smoothing step filters noise while preserves features
- The up-sampling step fills gaps while enhance features
- Experiments show improved rendering and surface reconstruction results

#### **Future Work**

- To improve performance: parallelize each refinement operation
- \* To improve quality:
  - incorporate other information such as aerial images
  - add more restricted geometric assumptions as in urban modeling
- Incorporate refinement into real-time cityscale point cloud visualization

### Acknowledgements

We thank the reviewers for their useful comments. We thank Airborne 1 Corp. for providing real LiDAR data. We appreciate the programming support from Miao Wang, useful comments, reviews and support from Dr. Luciano Nocera and Dr. Saty Raghavachary.