EARTHQUAKE ENGINEERING SUPPORT PHASE 5

Final Technical Report

by

R S Steedman

August 2002

United States Army

EUROPEAN OFFICE OF THE U.S. ARMY

London England

CONTRACT NUMBER: N68171-01-M-5037

PRINCIPAL INVESTIGATOR: DR R S STEEDMAN

Approved for Public Release; distribution unlimited

20020912 113

SUMMARY

This report summarizes the findings of an experimental study supported by the U.S. Army Centrifuge Research Center and Engineer Earthquake Engineering Research Program (EOEN) into the behavior of saturated sands under high initial effective confining stresses subjected to strong ground shaking. The research was conducted using the Army Centrifuge at the U.S. Army Engineering Research and Development Center (ERDC), located in Vicksburg, MS. A large dataset of the response of saturated sand to dynamic shaking under 'level ground' conditions has been compiled and a series of verification models have been conducted. Several techniques were used to investigate the response of deep soil sites (in excess of 70m) including surcharges, lowered water table and higher acceleration (gravities). The most effective approach was to test specimens at higher gravity, as the interpretation of data from specimens tested using a heavy surcharge on the ground surface, or a deep water table has proved difficult. Many deep samples showed a limit to the excess pore pressure generated during shaking at a level much less than 100% of the initial vertical effective stress. A range of explanations has been proposed, including container effects, saturation, compression of the soil, redistribution of pore pressure and dynamic response of the surcharge. The verification tests eliminated container effects, and parallel research by others has shown that there are several reasons for pore pressure generation at depth to be limited. However, as postulated in earlier stages of this research, there is no absolute limit: in a fully saturated specimen of broadly uniform permeability, liquefaction was observed within a few cycles of strong shaking throughout (to an equivalent field depth of around 65m). A second key finding indicates that dense layers overlying loose layers may still be readily liquefied as a consequence of the high excess pore pressures generated below. These findings are highly significant for designers.

LIST OF KEYWORDS

liquefaction centrifuge earthquake model experiment sand dam safety

TABLE OF CONTENTS

Summ	ary		1
	f Keywords		ii
Table	of Contents		iii
1	Backgroun	d	1
2	Introduction	n	1
3	The ERDC	centrifuge facility	3
4	Research P	rogram	4
5	Results		7
6	Determinat	tion of shear stress-strain histories	12
7	Conclusion	ns	16
8	References	and bibliography	16
Appe	ndix A	Earthquake dataset	A-1
Appe	ndix B	Summary of data	B-1

1.0 BACKGROUND

This research contract addressed a further phase in the completion of an experimental and analytical research programme in support of the Earthquake Engineering Research Program under the direction of the USAE ERDC (formerly the Waterways Experiment Station), Vicksburg, Mississippi. The phase was entitled Earthquake Induced Liquefaction in Deep Sand Deposits. This study was a continuation of earlier research under Contract Nos. N68171-98-C-9014, N68171-97-M-5710, N68171-97-C-9012, N68171-99-C-9021 and N68171-00-M-5505. The research involved further interpretation of the early experimental data, design of verification experiments, interpretation and analysis of new experimental data and preparation of technical papers for publication. The work was completed in September 2001.

2.0 INTRODUCTION

The current state-of-practice for the evaluation of liquefaction potential and for remediation design and analysis depends on empirical correlations of in-situ measurements of strength versus field experience of liquefaction at shallow depth and laboratory data of the behavior of confined elements under cyclic loading. (Liquefaction is defined here to mean the development of pore pressure equal to 100% of the initial vertical effective stress.) This approach is known as the "simplified procedure". Opinions vary as to the maximum depth in the field at which liquefaction has been observed, but there is no established field evidence from historic earthquakes of liquefaction at depths greater than a few tens of meters. The NCEER Workshop in 1996 on the Evaluation of Liquefaction Resistance of Soils noted that the simplified procedure was developed from evaluations of field observations and field and laboratory test data, Youd and Idriss (1997). The report notes, "These data were collected mostly from sites ... at shallow depths (less than 15m). The original procedure was verified for and is applicable only to these site conditions".

Hence, in design practice the assessment of liquefaction under high initial effective confining stress, such as might relate to the foundations of large earth dams, is based on the extrapolation of observed behavior and correlations at shallow depths. In practice, the behavior of saturated soil under these conditions is not well understood. Based on the results of laboratory tests, researchers have postulated that there is a reduction in the liquefaction resistance of such soil compared to shallow depths. This reduction is accounted for in standard approaches by a ratio known as K_{σ} , a "correction factor" developed by Seed (1983) in the simplified procedure. This strength ratio is postulated to reduce with increasing initial effective confining stress, which has a large impact potentially on the extent and method (hence cost) of remedial construction required to assure adequate seismic performance of large dams. For example, it may reduce the cyclic shear stress ratio predicted to cause liquefaction in a soil layer under a typical large dam (of the order of 30m high) to about 50% of its value in the absence of the dam. The predicted deformations and resistance and the remedial strength required are a direct function of the reduced shear strength. The K_{\sigma} strength reduction therefore

has a strong influence on the decision to remediate a large dam and on the costs of that remediation.

The factor K_{σ} quantifies the curvature in the cyclic shear strength envelope (cyclic shear stress required to cause liquefaction versus confining stress) for a soil as observed in laboratory tests on discrete specimens. Although some curvature may be expected, such large reductions in cyclic shear strength ratios are counterintuitive. It is generally accepted that increased confining stress should broadly improve the capacity of a soil to resist applied loads, not reduce it. Clearly the volume of soil that requires to be treated and the difficulty and expense of that treatment are highly dependent on an accurate assessment of the potential for and consequences of liquefaction.

There is therefore strong motivation for owners of large dams to investigate the behavior of saturated sands subject to strong ground shaking under high initial effective confining stresses. In the absence of field data, the use of a centrifuge was considered to be the only practical option to realistically represent a deep soil deposit subjected to earthquake shaking. The experiments reported herein relate exclusively to level ground initial stress conditions in a single layer (loose) or two-layer (dense over loose) deposit of clean, fine sand.

Liquefaction of a level sand bed has previously been the subject of research by many others. Experiments using Nevada sand were conducted at many centrifuge centers under the VELACS project, Arulanandan and Scott (1994). The objective of the ERDC study is to investigate the onset of liquefaction under much higher initial effective overburden stresses than used in the VELACS experiments. Nevada sand, which was used in the VELACS research and has been extensively studied in the laboratory, was adopted for the series of experiments under the ERDC centrifuge test program.

3.0 THE ERDC CENTRIFUGE FACILITY

The design specification for the ERDC centrifuge followed a review of the Army's research needs and a study of the available academic facilities, Ledbetter (1991). Many of the field problems with which the U.S. Army Corps of Engineers is concerned are physically large, such as earth dams, locks and river control structures, environmental problems and military research. It was determined that a new facility with a high payload capacity and high g capability was required to meet future Army needs. A large beam centrifuge was commissioned, Figure 1, termed the Acutronic 684, based on the French designed Acutronic 661, 665 and 680 series of geotechnical centrifuges, Ledbetter et al. (1994a). The capacity of the ERDC centrifuge is a payload of 8 tonnes at up to 143 g, reducing to 2 tonnes at 350 g, with a platform area of 1.3m square. This high capacity enables field problems of the order of up to 300m in breadth, 300m in depth, and 1000m in length to be simulated under a wide variety of loading conditions. The facility is equipped with a large range of equipment and appurtenances.

Figure 1. The WES centrifuge

The research approach for this high confining stress liquefaction study uses the large capacity of the WES centrifuge to investigate the generation of excess pore pressure and liquefaction under conditions that much more closely resemble those at depth in the field, Ledbetter et al. (1999). To do this required the design and construction of a large dynamic actuator. The history, design and characteristics of the actuator and specimen container have been discussed in a previous Technical Report, Steedman (2000) and are not repeated here.

4.0 RESEARCH PROGRAM

Table 1 summarises the experiments conducted during 1998 and 2001. The models are grouped in series, where each series corresponds to a different target range of vertical effective overburden stress in the loose layer.

Model series	Models in series	Effective overburden stress near bottom	Equivalent field depth (approx)	Depth of specimen	Notes (all specimens constructed from Nevada Sand, tested at 50g unless specified
2	a, b, c, d, e, f	110 KPa (1 tsf)	15 m	300 mm	Fully submerged
3	a, b, c, d, e, f	210 KPa (2 tsf)	26 m	525 mm	Fully submerged (3f at 100g)
4	a, b, c, d	320 - 540 KPa (3 - 5 tsf)	26 – 40 m	525 mm	Lowered phreatic surface or surcharge (weights)
	e, f, g, h, i, j	420 - 1040 KPa (3.9 - 9.7 tsf)	30 – 60 m	525 mm	Surcharge (weights) and fully submerged, tested up to 125g
	k	200 – 510 KPa (1.9 – 4.8 tsf)	25 – 39 m	525 mm	No surcharge, fully submerged, tested up to 125g
5	a, b, c, d, e	750 - 1070 Kpa (7 - 10 tsf)	54 – 63 m	525 mm	Surcharge (weights), fully submerged
	f, g	740 KPa (6.9 tsf)	41 m	525 mm	Surcharge (weights), fully submerged (5g reused Model 3e)
	h	610 KPa (5.7 tsf)	41 m	525 mm	No surcharge, fully submerged, tested up to 125g
	i	730 KPa (6.8 tsf)	41 m	460 mm	No surcharge, lowered phreatic surface, tested at 125g

Table 1. Outline summary of centrifuge model test program

Model Code	Overall depth (mm)	Relative Density (D _r)*	σ _v ' near base of specimen (tsf)	OCR	Number of earthquakes	Comments (all models constructed from Nevad Sand and tested at 50g unless specified)
2a	300	44% loose, 83% dense	1	1	3	Fully submerged
2b	300	50% loose, 75% dense	I	1	2	Fully submerged
2c	300	49% loose, 74% dense	I	1	5	Fully submerged
2d	300	50% loose, 75% dense	1	1	4	Fully submerged
2e	300	49% loose, 73% dense	1	2.5	4	Fully submerged
2f	300	50% loose, 75% dense	1	2.5	4	Fully submerged
3a	525	34% loose, 73% dense	2	1	2	Fully submerged
3b	525	49% loose, 77% dense	2	1	3	Fully submerged
3c	525	49% loose, 79% dense	2	1	3	Fully submerged
3d	525	54% loose, 80% dense	2	2.5	4	Fully submerged
3e	525	50% loose, 75% dense	2	1	1	Fully submerged
3f	262	50% loose, 75% dense	2	1	1	182 mm dense layer overlying 80 mm loose layer, fully submerged, no surcharge, 100g
4a	525	49% loose, 80% dense	3	1	4	Saturated to top of loose layer only.
4b	525	56% loose, 74% dense	3	2.5	4	Saturated to top of loose layer only.
4c	525	50% loose, 75% dense	4.7	1	4	Fully submerged, surcharge (weights)
4d	525	50% loose, 68% dense	4.7	2.5	4	Fully submerged, surcharge (weights)
1e	525	47% uniform	3.9 – 7.8	1	2,1,1	Fully submerged, surcharge (weights), Shaking 50, 80, 100g
4 f	525	55% uniform	3.9 – 9.7	1	1,1,2,1	Fully submerged, surcharge (weights), Shaking 50, 80, 100, 125g
4g	525	50% uniform	3.9 – 9.7	1	1,1,1,2	Fully submerged, surcharge (weights), Shaking 50, 80, 100, 125g
4h	525	50% uniform	3.9 – 9.7	1	1,1, 1,1	Fully submerged, surcharge (weights), Shaking 50, 80, 100, 125g
4i	525	50% uniform	3.9 – 9.7	1	1,1, 1,1	Fully submerged, surcharge (weights), Shaking 50, 80, 100, 125g
4 j	525	50% uniform	3.9 – 9.7	1	1,1, 1,2	Fully submerged, surcharge (weights), Shaking 50, 80, 100, 125g.
4k	525	50% uniform	1.9 – 4.8	1	1,1, 1,2	Fully submerged, no surcharge, Shaking at 50, 80, 100, 125g.
\$ I	525	Densities uncertain	4.8	I	1	Fully submerged, surcharge (weights)
5a	525	51% loose, 72% dense	7.4	1	4	Fully submerged, surcharge (weights)
5b	525	49% loose, 76% dense	7.4	2.5	4	Fully submerged, surcharge (weights)
5c	525	52% loose, 75% dense	9.2	1	3	Fully submerged, surcharge (weights)
5d	525	57% loose, 80% dense	9.2	1	1	Fully submerged, surcharge (weights)
5e	525	50% uniform	8.4	1	7	Fully submerged, surcharge (weights)
5f	525	50% loose, 75% dense	6.9	1	1	Fully submerged, surcharge (weights)
5g	525	50% loose, 75% dense	6.9	1	1	Fully submerged, surcharge (same model as 3e with surcharge added)
5h	525	49% loose, 74% dense	5.7	1	1	Fully submerged, no surcharge, 125g
5i	460	50% loose, 75% dense	6.8	1	1	396 mm dense layer, saturated to depth of 250mm only, overlying 64 mm loose layer, no surcharge, 125g

*Relative density of the portion of the model termed 'loose', generally refers to a 160 mm thick layer placed at the bottom of the model. For the 'model of the model' experiments, this loose layer was reduced in depth. Relative density of the portion of the model termed 'dense', refers to that portion of the model above the 'loose' layer (ranged in thickness from 140 to 365 mm). Model 4I was understood to have been built to the standard specification, i.e. 75% dense over 50% loose.

Table 2. Summary description of centrifuge model test program

Generally, specimens were up to 525mm deep with the bottom 160mm placed at around 50% Relative Density (RD) and the upper portion at around 75% RD. The 'early' models were shaken at 50g; later models were shaken at up to 125g. During the verification phase modelling of models was carried out at 100g and 125g. Some models were overconsolidated by a factor of 2.5 prior to shaking (achieved by running the centrifuge up to 125g and then dropping back to 50g). The size of the dataset and number of repetitions provided the opportunity to characterise the data on the basis of the quality of the output. This is seen in Appendix A, where the summary data for each transducer and each earthquake analysed is presented. A quality rating of low/medium/high and * was assigned to each time history based on the consistency and reliability of the data and the quality of the experiment itself. For example, higher 'quality ratings' would be assigned to transducers which showed internal consistency in terms of static pore pressures, physical location in the model, response during shaking etc.

The Nevada sand used in the models was characterized by standard laboratory tests to determine parameters such as dry density and gradation. Table 3 presents key material parameters for this sand.

Specific gravity	2.64
Maximum void ratio	0.757 (density 93.8 pcf)
Minimum void ratio	0.516 (density 108.7 pcf)
D_{50}	0.18 mm (approx)
D_{10}	0.11 mm (approx)

Table 3. Nevada Sand (parameters as measured)

The pore fluid comprised a mixture of glycerine and water, 80% by weight for experiments conducted at 50g. Measurements of the viscosity of glycerine-water mixes at a range of temperatures and proportions show that the viscosity is sensitive to both parameters.

The density of a glycerine-water mix was calculated from:

$$\rho_{\rm m} = \rho_{\rm g}(m_{\rm g} + m_{\rm w})/(m_{\rm g} + \rho_{\rm g} m_{\rm w})$$

where ρ_m is the density of the mix, ρ_g is the density of glycerine, m_g is the mass of glycerine, and m_w is the mass of water. Table 4. summarizes the properties of the glycerine-water solution used as the pore fluid.

Density	1200 kg/m³
Viscosity	50 cs
Specific Gravity	1.26
Composition	80% glycerine-water mix (by weight)

Table 4. Parameters for pore fluid (as measured)

The models were poured dry from a hopper and saturated under vacuum, or slowly under gravity. Instrumentation was placed in the model as it was being constructed.

The typical arrangement of the model specimens for the different test series is shown in Figure 2. Instrumentation was positioned through the depth of the models, and comprised pore pressure transducers and accelerometers. The location of the instrumentation for Model 5b is shown in Figure 3.

Figure 2. Cross sections through the different model configurations

Figure 3. Instrumentation for Model 5b

5.0 RESULTS

Earlier reports, Steedman (1999), (2000) have presented analysis of the data using a range of approaches. In this report, the data from the verification models is summarized alongside the earlier experimental results, and in the same format.

Appendix A presents the dataset of limiting excess pore pressures, by model and by transducer. Comments are added concerning the quality of each record, and the experiment in general.

From this set a number of time histories were selected as of particularly high quality for possible future interpretation. This selection was made in part based on the internal consistency of the experimental results, and in part using subjective judgment based on past experience. These data are presented in Figures 4a and 4b, and 5a and 5b, below. In each case, the model reference number and earthquake is given, which can be checked against the commentary in Appendix A. Figures 4a and 5a present the pore pressure records; Figures 4b and 5b present the (matching) base input acceleration time history from the same model test.

A summary of selected data and recommendations for future centrifuge testing of level ground conditions under high effective confining stress has been prepared, Sharp and Steedman (2002).

Figure 4a. Selected pore pressure time histories (I)

Figure 4b. Matching acceleration (base input) time histories (I)

Figure 5a. Selected pore pressure time histories (II)

Figure 5b. Matching acceleration (base input) time histories (II)

6.0 DETERMINATION OF SHEAR STRESS-STRAIN HISTORIES

All of the experiments undertaken in this study addressed level ground conditions, with no initial static shear stress. The only shear stress and subsequent shear strain was that imposed by the loading. Level ground liquefaction is therefore a special case of the cyclic mobility phenomenon that occurs when the static shear stress is less than the shear strength of the liquefied soil. Level ground liquefaction failures are caused by the upward flow of water that occurs when seismically induced excess pore pressures dissipate. Depending on the length of time required to reach hydraulic equilibrium, level ground liquefaction failure may occur well after ground shaking has ceased and this was seen in a number of the experiments. References in Appendix A to transducers 'still climbing at the end of shaking' are evidence of pore pressure redistribution affecting the pore pressure generation caused by shaking.

A critical aspect in the assessment of these model experiments was to compute the stress strain time histories for comparison with laboratory element and field experience. This was done in collaboration with researchers at WES and RPI.

The method adopted to compute the stress and strain time histories was known as System Identification or SI. The method is described in a paper by Zeghal et. al. (1995), where the authors proposed that accelerometer and pore pressure time histories could offer a direct and effective means of evaluating seismic soil properties, in particular, a second order accurate estimation of shear stress and shear strain. This SI technique was utilized for analysis of the earthquake data.

Stress strain figures are shown here for Models 4k (Figure 6) and 5b (Figure 7), windowed during similar stages of shaking, Steedman and Sharp (2001).

The left column of plots are the traditional stress-strain loops computed for the early time data, as the excess pore pressures are developing strongly. This may be seen by comparison with the time history of vertical effective stress below the stress strain figures. For Model 4k this shows the largest amount of straining near the surface at nearly 1%, decreasing to a strain of 0.6% at a depth of 24 m. The remaining columns of figures show how the stress strain loops are altered by the development of excess pore pressure. In the case of Model 4k, the specimen reaches close to 100% excess pore pressure, and the upper layers become isolated from the straining at the base. In the case of Model 5b, the excess pore pressure is limited and the response of the soil column becomes nearly linear. The marked contrast in response between the two specimens confirm the observation that the stabilization of the excess pore pressure development in the deeper specimens is a genuine phenomenon associated with a stable cycling of applied load at a level significantly below 100% excess pore pressure, and with the soil retaining considerable reserves of strength and stiffness.

One explanation for the limiting level of excess pore pressure may be associated with upward drainage of the excess pore pressures.

Appendix B presents isochrones of stress and strain levels from each experiment, based on this method.

Figure 6. Stress strain time histories, Model 4k

Figure 7. Stress strain time histories, Model 5b

A very large dataset of the behavior of Nevada sand subject to shaking under level ground conditions has been accumulated as a result of this work. Review of the stress-strain data alongside the time histories of excess pore pressure provided considerable additional insight into the explanation of the pore pressure response in many cases. The verification models that were tested during 2000-2001 were successful in validating the performance of the specimen chamber and shaker in many respects. The verification models showed that the use of surcharges may indeed be having an effect on the response of the soil column, although exactly how the surcharge affects the soil column has not yet been conclusively

determined; many other factors, including soil density, compression and saturation may also be influencing the 'true' response under cyclic loading at high effective confining stress. It is clear that the most effective method of investigating the influence of very high effective confining stress is to use the centrifuge at high g, with or without dry sand surcharging, as for example was achieved with the final experiments in the series, Models 5h and 5i.

Figure 8. Liquefaction at 62m equivalent depth, Model 5h

Figure 8 presents data from PPT35, Model 5h, which shows 100% excess pore pressure reached after a few cycles of strong shaking in a fully saturated deep specimen without surcharge, at 125g. The shear stress ratio time history shown here was calculated using the simplified method, Steedman (2000) and may be compared to the isochrones of stress ratio calculated using the SI method, Appendix B. Appendix B also shows the long term response after the end of shaking, where consolidation effects and pore pressure redistribution last for a very long period after the end of the earthquake.

7.0 CONCLUSIONS

- A large data-set of the behavior of loose saturated sands under high initial
 effective confining stresses and subject to earthquake-like shaking has been
 collected during an extensive experimental program on the ERDC
 Centrifuge, Vicksburg MS.
- 2. Early findings from the centrifuge experiments showed that under high effective confining stress, the potential to generate excess pore pressures was limited, and this may be of considerable importance if verified.
- 3. Detailed investigation into the early findings has provided a range of explanations for the limiting values, including experimental problems such as specimen saturation, chamber effects or the distorting effects of large surcharges on the soil surface. Of these possible effects, detailed investigation of the response of the chamber effectively eliminated movement, or distortion of the ESB container as an explanation.
- 4. The effect of surcharging was investigated by comparison with changing g level and using different methods of surcharging, or no surcharges at all. The use of dry sand appeared preferable to lead or steel weights; this method was used in early experiments as well as in later models.
- 5. In the final experiments, which were carried out at high g without the use of surcharges, liquefaction occurred throughout the entire depth within a few cycles. This experiment confirmed that with sufficient input shaking, large excess pore pressures are generated in a saturated soil column of broadly uniform permeability.
- 6. A key finding of the study has been to recognise the importance of pore pressure redistribution in deep soil columns, which can cause an 'upwelling' of excess pore pressure from lower layers leading to liquefaction of upper layers some time after shaking has ceased. This is an effect not widely considered in standard design methods.

7.0 REFERENCES AND BIBLIOGRAPHY

This research work has made use of a wide range of references; these are presented below for completeness:

Arulanandan, A. and Scott, R.F. (1994) editors, Proc. Int. Conf. on Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems, at U.C. Davis; Volumes 1 & 2; Balkema.

Arulmoli, K., Muraleetharan, K.K., Hossain, M.M., and Fruth, L.S., (1992). "VELACS Verification of Liquefaction Analyses by Centrifuge Studies Laboratory Testing Program Soil Data Report." National Science Foundation Report.

Butler, G.D. (2000). A dynamic analysis of the stored energy angular momentum actuator used with the equivalent shear beam container, PhD thesis, Engineering Department, Cambridge University.

Elgamal, A-W, Zeghal, M., Tang, H.T., and Stepp, J.C., (1995). "Lotung Downhole Array. I: Evaluation of Site Dynamic Properties", Journal of Geotechnical Engineering, Vol, 121, No. 4, pp. 350-362.

Finn, W.D.L. and Yogendrakumar, M., Yoshida, N. and Yoshida, H., (1986), "TARA-3: A Program to Compute the Response of 2-D Embankments and Soil-Structure Interaction Systems to Seismic Loadings", Department of Civil Engineering University of British Columbia, Canada.

Finn, W.D.L., Ledbetter, R.H., and Marcuson, W.F. III (1995). "Seismic Deformations in Embankments and Slopes", Symposium on Developments in Geotechnical Engineering - From Harvard to New Delhi, 1936-1994, Bangkok, Thailand, A.A. Balkema, Rotterdam.

Finn, W.D.L. and Yogendrakumar, M., (1989) "TARA-3FL; Program for Analysis of Liquefaction Induced Flow Deformations", Department of Civil Engineering, University of British Columbia, Vancouver, Canada.

Gonzals, L., Abdoun, T., and Sharp, M.K., (2002). "Modeling of Seismically Induced Liquefaction Under High Confining Stress", submitted International Journal of Physical Modeling and Geotechnics.

Harder, L.F., (1988). "Use of Penetration Tests to determine the Cyclic loading Resistance of Gravelly Soils during Earthquake Shaking", PhD Dissertation, University of California at Berkeley.

Hynes, M.E. and Olsen, R., (1998). "Influence of Confining Stress on Liquefaction Resistance." Proceedings of the International Symposium on the Physics and Mechanics of Liquefaction, John Hopkins University, Baltimore, MD, 10-11 September 1998.

Hynes, M.E., (1988). A Pore pressure characterization of gravels under undrained cyclic loading, PhD Dissertation, University of California at Berkeley.

Ledbetter, R.H. (ed) (1991) Large centrifuge: a critical Army capability for the future, Misc. Paper GL-91-12, Dept. of the Army, Waterways Experiment Station, Vicksburg, MS, May.

Ledbetter, R.H., and Finn, W.D.L. (1993). "Development and Evaluation of Remediation Strategies by Deformation Analysis", ASCE Specialty Conference on Geotechnical Practice In Dam Rehabilitation, Raleigh, North Carolina, April, pp 386 - 401.

Steedman, R.S. and Habibian A. (1987) Modelling the failure of coastal dykes during earthquakes. 9th European Conf. Soil Mech. Found. Eng. Vol 2, pp 633-636, Dublin, 31 Aug - 3 Sept.

Steedman, R.S. (1998) Initial earthquake centrifuge model experiments for the study of liquefaction, Final Technical Report, Contract No. N68171-97-M-5710, European Office of the U.S. Army, London, March.

Steedman, R.S. (1999) Earthquake engineering support, Phase 2, Final Technical Report, Contract No. N68171-98-C-9014, European Office of the U.S. Army, London, January.

Steedman, R.S. (1999) Earthquake engineering support, Phase 3, Final Technical Report, Contract No. N68171-99-C-9021, European Office of the U.S. Army, London, November.

Steedman, R.S. (2000) Earthquake Engineering Support Phase 4, Final Technical Report, USAE WES, Contract No. N68171-00-M-5505, European Office of the US Army, London, September.

Steedman, R.S., Ledbetter, R.H., and Hynes, M.E. (2000). "The influence of high confining stress on the cyclic behavior of saturated sand", ASCE Geotechnical Special Publication No. 107, Soil Dynamics and Liquefaction 2000, Eds. Ronald Y.S. Pak and Jerry Yamamura,pp. 35-57.

Steedman, R.S. and Sharp, M. (2001) Liquefaction of deep saturated sands under high effective confining stress, Proc 4th Int Conf Recent Advances in Geotech Earthquake Engineering and Soil Dynamics, San Diego, California, March 26-31, Univ Missouri-Rolla.

Taboada, V. and Dobry, R. (1998), "Centrifuge Modeling of Earthquake-Induced Lateral Spreading in Sand", *Jour. of Geotech. and Geoenv. Eng.*, ASCE, Vol. 120, No. 12, pp. 1195-1206.

Vaid, Y. P. and Thomas, J., (1995). "Liquefaction and post liquefaction behavior of sand." Journal of Geotechnical Engineering, ASCE, Vol. 121, No. 2, February, pg 163-173.

Vaid, Y.P., Chern, J.C. and Tumi, H., (1985). "Confining pressure, grain angularity, and liquefaction." Journal of Geotechnical Engineering, ASCE, October, Vol. 111, No. 10, pg 1229-1235.

Youd, L. and Idriss, I., Eds (1997) Workshop on Evaluation of Liquefaction Resistance of Soils, Proceedings, Salt Lake City, Technical Report NCEER-97-0022, sponsored by FHWA, NSF and WES, published by NCEER.

Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Finn, W.D.L., Harder, L.F., Hynes, M.E., Ishihara, K., Koester, J.P., Liao, S.C., Marcuson, W.F., Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power,

M.S., Robertson, P.K., Seed, R.B., Stokoe, K.H. (2001), "Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils, *Jour. Of Geotech. And Geoenv. Eng.*, ASCE, Vol. 127, No. 10, pp. 817-833.

Zeghal, M., Elgamal, A.-W., Tang, H.T., and Steep, J.C., (1995). Lotung downhole array. II: Evaluation of Soil Nonlinear Properties, J. Geotech. Engrg., ASCE, 121(4), 363-378.

APPENDIX A

EARTHQUAKE DATASET

Data of limiting pore pressures, Models and cycles (1998-2001)

Data of limiting pore pressures, Models and cycles

						Dinespin pink	1				to many the second second		Appelle and
Model, Earthquake	Centrifg Eq acc'n		Overburden		_	Upper limit	Upper	Stress	ratio	Density (%)	ow/med/nign/-	Comments	WES Model Ref
		(KPa)	(KPa)	Ĕ	excess	æ	(NPB)	ratio	U.OOXIPBBR	¥			
Model to 1		F.0	α	74	α 0.		59 20	20.05 0.105	0.068		70 low	31 Uncertain measured depth of transducers, showed double frequency	
Model 1a. 1			,		2							10 Stiff climbing at end of datacapture	
Model 1a 1	-											9 Still climbing at end of datacapture	
Model 1a. 2	- 64	50 67	67.6	35	12.4	-	100	35	0.0511		70 low	31 Ottawa sand. Second eq showed slow rise to final limit	
1 2 2	•											10 Still climbing at end of datacepture	
Model 1a. 2	. ~											9 Still climbing at end of datacapture	
Model 2a. 1	-				2.51		10 0	30 0.318	18 0.207		3 low	Near surface acceleration clearly shows Ilquefaction	20/2/1998, Ref 2
Model 2a, 2	. ~	50 70.3		88	2.48	-	100	30 0.			83 low na	Estimated as no ppts functioning	300mm depth
Model 2a. 3	m										8	Probably did not liquefy	44% loose, 83% dense
Model 2b. 1	-				10.719 2.1		110 11	116.6 0.	0.18 0.117		50 *	10 Clearly over 100%, large cycles affect 50% point	30/4/1998, Ref 5
Model 2b. 1	-			106 11.	11.529 2.3		105 11	111.3 0.181	81 0.118		• 20 •	30 Double frequency just over 100%, large cycles affect 50% point	300mm depth
Model 2b. 1	-		68.9		10.611 2.16			29.7 0.292	92 0.19		75 *	31 Clearly over 100%, large cycles affect 50% point	50% loose, 75% dense
Model 2b. 2	8			111	5.4		104 115.44		21 0.143		. 0	10 Very clearly 100%	
Model 2b. 2	8	50			4.59				16 0.141		• 09	30 Rapid rise to 100%	
Model 2b. 2	· 64	•			5.4	-			0.33 0.214		. 92	31 Clear 100%, rapid rise	
Model 2c. 1	-				27.5 13.095		100	98 0.092			49 high	46 Possibly just reached limit before being cut off	6/6/98, Ref 8
Model 2c. 1	-			86	27.5 8.343		103 100.94		97 0.063		49 high	41 Seems to be very close to limit at the end of the eq	300mm depth
Model 2c, 1	-	20	<i>.,</i>	66	21.978	78		0,0899	99 0.0585		49 high	49 Still clintoing when data cut off	49% loose, 74% dense
		9	,	ç	8 60 8 238		20	21 0 114	14 0.074		74 high	Reached upper limit early, unlike other depins, high freq rapid rise affects 37 50% boint	
Model 2c, 1	- +-				3		2						
Model 2c 1												39 Erratic response, still climbing at end	
Model 2c, 2	- ~		240	86	46		96	94.08 0.094	94 0.061		49 high	46 Very close to limit at end	
Model 2c. 2	2	20 25		86	46	_					49 high	41 Very close to limit at end	
Model 2c. 2	8										1	49 Still climbing at end of shaking	
	8	50 70	70.8 27	27.6	6.6		75 2	20.7 0.132	32 0.085		74 med	37 Reached upper limit early, unlike other depths	
2c, 2	7											42 Erratic response, still climbing at end	
12c. 2	8	50 74	74.1 30	30.3	12.8		90 27	27.27 0.123	23 0.08		74 med	39 Reached upper limit early, like ppt37	
Model 2c, 3	ဗ											46 Still climbing at end of shaking	
Model 2c, 3	ო											41 Still climbing at end of shaking	
Model 2c, 3	ဗ											49 Still climbing at end of shaking	
	က	50 70	70.8 27	27.6	7.7		70 19	19.32 0.127	27 0.083		74 med	37 Reached upper firit early, very noisy response	
Model 2c, 3	က											42 Erratic response, still climbing at end	
Model 2c, 3	က	50 74	74.1 30	30.3	15.4		80 24	24.24 0.069	69 0.045		74 med	39 Reached upper Irrit later than ppt37, very noisy	
Model 2c, 4	4											46 Still climbing at end of shaking	
Model 2c. 4	4											41 Still climbing at end of shalding	
Model 2c, 4	4											49 Still climbing at end of shaking	
Model 2c. 4	4	50 70	70.8 27	27.6	5.4		70 19	19.32 0.107		7 20.0	74 med	37 Reached upper limit early, very noisy response	
Model 2c, 4	4											42 Erratic response, still climbing at end	
Model 2c. 4	4	50 74	74.1 30	30.3	36.5		75 22.	22.725 (0.1 0.065		74 med	39 Possibly reached limit, very noisy	
Model 2c. 5	· w											46 No excess pore pressure	

Report RSS/J0101R04 Rev 0

Model 2c, 5 5 5 5 Model 2c, 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5											37 No excess pore pressure	
. S. S.												
											42 No excess pore pressure	
	02	188	75	9.45	2.0	106	80.56	0.26	0.169	74 *	9 boundary	12/8/98, Ref 9
Model 2d, 1	8 6	203	. 88	e vo	5:	83	73.04	0.174	0.113	49 •		300mm depth
		777	133	ţ	8	76	101 08	0 187	0 121	49 hiah	Difficult to identify upper limit, which rises slowly, large cycles affect 50% 46 point	50% loose, 75% dense
Model 2d, 1	S 53	124	<u> </u>	2 2	2.3	85	46	0.25	0.162	74 high	Sank during earthquake, clearly reached limit	
- ,	3 8	į (;			. 6	KE 242	0.040	0. 17.0	. 47	41 Clearly reached limit, dense/loose boundary, large cycles affect 50% point	
Model 2d, 1	2 5	061	4. 0	o (- c	8 8	103.04	407.0	9.79	40 high	51 Reached First cyclic response, large cycles affect 50% point	
Model 2d, 1	8	797	211	777	2. c	36	40.50	0.190	0 120	49 high	Still climbing slowly at end of shalding, large cycles affect 50% point	
_	2	ļ	55.	,	0.0	ş	00	9 60	20.00	19 1191	3 Good second depashose boundary	
Model 2d, 2 2	20	195	9/	2.5		8 8	99.88	0.338	2.00	•	2.4 Double framework of more first encounty. Avoise Dun	
_	20	204	96.6	4		80	69.28	0.299	461.0		3.) Double insquering at upper mint suggests to a caces prop.	
			!	;		8		0	0	7.5	40 our criticing at one or equipmend	
Model 2d, 2 2	20	132	49.7	4. i		85	40.754	0.388	0.252	/4 med	/ Cank Culling Barinquaka, Crashy rescribe Milit	
Model 2d, 2 2	20	154	59.4	5.1		8	53.46	0.364	0.236	. 4.	41 Crearly reacreed first, deriserbose boundary	
Model 2d, 2 2	20	267	112	9.7		8	100.8	0.286	0.186	49 high	51 Reached limit, cyclic response	
Model 2d, 2 2											S SIIII CHITICHING SIOWIY BY OND OF STRIKING	
Model 2d, 3 3	20	196	9/	7.7		88	66.88	0.309	0.201	. 4.	3 Good record, dense/loose boundary	
Model 2d, 3 3	20	203	87.8	3.6		78	68.484	0.266	0.173	• 64	31 Double frequency at upper limit suggests 100% excess pwp	
Model 2d, 3 3											46 Still climbing at end of earthquake	
e	20	133	20	ĸ		83	41.5	0.353	0.23	74 med	7 Sank during earthquake, clearly reached Imit	
e e	20	153	59.4	5.9		06	53.46	0.327	0.213	74 *	41 Clearly reached limit, dense/loose boundary	
e											51 Still climbing slowly at end of shaking	
											8 Still climbing slowly at end of shaking	
Model 2d, 4 4	92	196	92	7.7		84	63.84	0.281	0.183	74 •	3 Good record, dense/loose boundary	
Model 2d, 4 4	20	203	87.8	4.4		78	68.484	0.242	0.157	* 64	31 Double frequency at upper limit suggests 100% excess pwp	
Model 2d, 4 4											46 Still climbing at end of earthquake	
Model 2d, 4 4	20	133	49.7	ß		83	41.251	0.321	0.208	74 med	7 Sank during earthquake, clearly reached Irrat	
Model 2d, 4 4	9	154	59.6	co		88	52.448	0.297	0.193	74 •	41 Clearly reached limit, dense/loose boundary	
Model 2d, 4 4												
Model 2d, 4 4											Still climbing slowly at end of shaking	
Model 2e, 1 1	125	162	09	13.4	4.2	100	09	0.225	0.147	73 med	Kink in pore pressure time history, static readings at 50g unrelable	26/8/98, Ref 10
Model 2e. 1 1	125	270	129	13.2	6.8	72	92.88	0.153	 1.	49 high	Static readings at 50g not totally reliable	300mm depth
Model 2e, 1	125	373	175	22.4	9.7	9/	133	0.144	0.093	49 high		49% loose, 73% dense
. ,			o c		ć			0.163	100	73 med	Dense tayer, rose rapidly at first, but then started to drop after 0.2 seconds, 43 tance cycle affects 50%	
Model Ze, 1 1	67 5	9	0 9	۵	2	8	50 13	21,0	0.137		52 Good record	
Model Ze, Z	2 5	601	9.00			3 5	1 10	4 4	5 0	40 high	47 Clear limit, but static readings at 50g not totally reliable	
Model 2e, 2 2	67.	607	184	7 6		- g	126 BB	0 142	200	49 high	49 Very rapid rise to limit, but static readings at 50g not totally reliable	
Model 26, 2 2	2 2	- 0	5 5	9 0		3 5	20.02	1 2 2	0.103	73 med	43 Dense layer, reached some sort of limit but noisy signal	
Model 26, 2 2	5 5	96.9	1 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	9 6		. "	56.78	0.78	0.142	73 high	52 Limit, but with cyclic behaviour	
	3 4	690	120	14.7		2	808	0 163	0.106	49 high	47 Clear limit, but static readings at 50g not totally reliable	
י כ	3 5	38.5	1 2 2	. o		02	128.8	0.146	0.095		49 Very rapid rise to limit, but static readings at 50g not totally reliable	
י כ	125	5 89	424	6		8	26.712	0.163	0.106	73 med	43 Dense layer, reached some sort of limit but notsy signal	
۰ ۹	125	169	86.8	20.6		8	55.444	0.222	0.144	73 high	52 Limit, but with strong cyclic behaviour	
Model 2e 4	2 5	590	129	17.9		02	90.3	0.166	0.108	49 high	47 Good record, but static readings at 50g not totally reliable	
Model 2e, 4	5 5	381	184	=======================================		89	125.12	0.149	0.097	49 high	49 Very rapid immediate response, then slow rise to finit, as above	
	125	689	42.4	7.1		67	28.408	0.166	0.108	73 med	43 Dense layer, reached some sort of limit but noisy signal	
Model 2f 1 1	125	172	63	15.4	9.9	66	62.37	0.288	0.187	• 09	31 Excellent, loose/dense interface 2:	22/9/98, Ref 14
Model 21, 1	3 5	4 - 0	3 5	. 4	9 6	o a	88 88	0 237	0.154			300mm depth

ပ	
æ	
4	
0	
80	
5	
2	
2	
_	
RSS/JC	
7.6	
٠,	
α	
_	
⋤	
enoi	
_ ⊆	
ē	
\sim	
_	

50% lonse 75% dense																											Ref 3	400	24% lones 73% dense	196, 1378 delibe	Dofa	denth	49% loose, 77% dense						Ref 7	deptin	49% loose, 79% dense									
50% 100																											30/3/98, Ref 3	foot master	34% 10	5 4 5	A 16/00 Dof 8	525mm denth	49% lo						5/5/98, Ref 7	nideb mmczc	48% 10									
AG Excellent		64 Clear limit very rapid rise with one or two big cycles: affecting 50%	Closes sind, very lepton use with the colored colored to the colored colored to the colored colored to the colo	15 Good record, loose/dense interrace	41 Bottom of loose layer, rapid rise to limit, with cycles which may affect 50%	31 Excellent	47 Good record	46 Very rapid rise to Irrit	38 Clear Init, slightly noisy	51 Clear IIrit, again noisy	15 Two stage rise to final limit	41 Bottom of model, rapid rise to limit	31 Reached Imit near end of shaking, loose/dense Interface	47 Just reached Irrit near end	46 Bottom of model, very rapid rise to Imit	38 Clear limit, stightly noisy	51 Clear Init, again noisy	155 Still rising at end of shaking	4 Bottom of model, repaid rise to smit	31 Reached limit near and of shaking, cyclic response	47 Reached Intit rear end	46 Bottom of model, very rapid rise to limit	38 Clear limit, signify noisy	51 Clear limit, again noisy	15 Still rising at end of shaking	41 Bottom of model, slower rise to limit	Spikey accessization record, but excessor pore pressure date, reput need	Low static pore pressure value, good dynamic response, rapid rise affects	10 ours	G Story have contrasts when plants	10 Good and, spakey acceptation on eqs. 1 and 2.	16. Cationation adjusted to bring into the will page	11 Clearly reached limit	1 Just reached limit	16 Calbration adjusted to bring into line with ppt2	2 Good record	11 Clearly reached limit	1 Just reached limit	30 Excellent, exactly 100%, less than 1 cycle to 50% query amplitude	31 Excellent, again exactly 100%		T. Liftin inses stowny	16 Limit rises slowly	15 Kapa nse ume, squeración coura de anecceu dy loose layer delow	5 Clear first, noisy record and cts 50%	Z CORT RITE, HOLS FIGURE SHOULD SHOULD SO A	1 Limit rises slowly affects 50%	Carlot Charles to acces to	5.1 Voly taken to some the rock than rock to 82%.	
• 0	200	. u.		20	• 09	• 09	• 09	• 09	75 *	* 57	• 09	• 09	50 high	50 high	£05	. 52	* 57		• 09	50 high	50 high	• 09	. 97	75 *		• 09	34 high		34 nign	34 high	34 nign	49 med	Lgir 64	49 high	50 med	50 high	50 high	50 high	. 20	• 03	20	75 high	75 high	75 high	75 high	ngn c/	75 high	ngin oc	uğu oc	DB::
707	0.00	0.50	0.258	0.191	0.138	0.187	0.161	0.144	0.222	0.218	0.191	0.146	0.247	0.213	0.191	0.293	0.288		0.193	0.254	0.219	0.196	0.301	0.296		0.199	0.204		0.183	0.187	0.168	0.081	0.081	0.00	0.088	0.088	0.083	0.093	0.146	0.148	0.141	0.161	0.174	0.158	0.195	0.205	0.192	0.142	0.143	0.136 8
0	0.20	0.00	0.397	0.293	0.213	0.287	0.248	0.222	0.341	0.336	0.294	0.225	0.38	0.328	0.293	0.452	0.444		0.298	0.39	0.337	0.301	0.463	0.455		0.305	0.314		0.281	0.288	0.258	0.124	0.124	2.5	0.135	0.135	0.127	0.144	0.225	0.228	0.216	0.247	0.268	0.243	0.3	0.315	0.296	0.218	0.221	0.203
,	13.5	50.75	36,455	58.218	124.2	60.72	81.765	115.6	33.12	34.358	57.46	120.658	63.48	95.22	125.12	4.14	38.967		130.2	57.27	86.94	116.702	32.292	32.263		115.046	184.62		200.2	182.28	187.68	178.2	180	147.6	161.5	177.3	145.2	147.6	194	196	210.9	113.1	116.1	160	44.94	51.84	96	190.12	188.16	204.24
è	8 ;	<u>.</u>	115	93	8	88	62	82	8	82	82	88	92	85	92	5	93		69	83	8	98	78	77		82	102	5	19	86	102	8	8 8	8 8	8	6	99	90	100	5	92	84	6	5	8 8	96	8	86	96	85
;	E. 1	- ;	2.4	7.5	3.9																						6.	?	6										1.0	1.2	1.2	2.2	1.9	1.2	2.1	.	1.7			
	7.34	5.21	5.4	13.5	10.8	9.8	4	2.2	3.2	4.1	20.3	6.8	19.7	34.8	4.3	6.2	4.9		10.3	26.2	23.5	4.6	7.3	4.6		15.4	4.2	ų r	က စ	7.9	3.6	το 4. ι	, is	4. ñ	5.2	9.	6.5	19.7	4.3	4.	4.2	17.6	14.9	7.5	4.6	89 9	9.5	6.5	5.7	12.0
•	136	32.2	31.7	62.6	138	69	103.5	136	41.4	41.9	9.79	140.3	69	103.5	136	41.4	41.9		140	69	103.5	135.7	41.4	41.9		140.3	181	5	182	186	184	198	200	977	6 6	197	220	164	194	196	222	130	129	160	53.5	4	9	194	96	222
	320	104	102	172	337	171	254	320	113	112	177	339	177	254	320	113	112		339	177	254	320	113	112		339	47.4	ŗ ř	429	477	432	466	469	979	363 466	469	528	385	457	468	524	296	320	382	115	123	252	457	468	524
	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125		125	125	125	125	125	125		125	ç	2	22	22	20	22	<u>چ</u>	2 2	8 6	8 8	20	20	50	20	20	20	22	S	20	22	20	S,	20	90
	-	-	-	-	-	. ~	~	7	7	0	8	١ ٥	m	, m	ო	ო	ო	က	က	4	4	4	4	4	4	4	,	_	-	7	2	2	21	N (ч «	, m	, m	က	-	-	-	-	- -	-	-	-	-	7	7	8
	Model 2f, 1	Model 2f, 1	Model 2f, 1	Model 2f, 1	Model 2f 1	Model 2f. 2	Model 2f. 2	Model 2f, 2	Model 2f. 2	Model 2f. 2	Model 2f. 2	Model 2f. 2	Model 2f 3		Model 2f. 3	Model 2f, 3	Model 2f, 3	Model 2f, 3	Model 2f, 3	Model 2f, 4	Model 2f, 4	Model 21, 4	Model 2f, 4	Model 2f. 4	Model 2f, 4	Model 2f, 4	No de la constante de la const	Model 38, 1	Model 3a, 1	Model 3a, 2	Model 3a, 2	Model 3b, 2	Model 3b, 2	Model 3b, 2	Model 30, 2	Model 35, 3	Model 3b, 3	Model 3b, 3	Model 3c, 1	Model 3c, 1	Model 3c, 1	Model 3c, 1	Model 3c, 1	Model 3c, 1	Model 3c, 1	Model 3c, 1	Model 3c, 1	Model 3c, 2	Model 3c, 2	Model 3c, 2

															3/9/98, Ref 11	525mm depth	54% loose, 80% dense																					3/10/01, Ref 35	525mm depth	50% loose, 75% dense	No surcharge on flight 1	50g	See also Model 5g	16/10/01, Ref 37	262mm depth	50% loose, 75% dense	No surcharge 100a	14/9/98, Ref 12
11 Still climbing slowly at end of shaking	16 Still climbing slowly at end of shaking	15 Reached Imit, probably influenced by loose layer below	5 Clear first, noisy record	2 Clear Inst, noisy record	1 Close to 100% at end of shaking	30 Rapid rise to 90% +	31 Very rapid rise to 90% +	10 Again, double stage rise, as eq2	11 Still climbing slowly at end of shalding	16 Still climbing slowly at end of shaking	15 Probably influenced by loose layer below	5 Clear limit, noisy record	2 Clear Emit, noisy record	1 Still rising at end of shalding	48 Excellent	37 Slow buildup makes definition of limit difficult	35 Slow buildup makes definition of limit difficult	40 Excellent, cycles affect 50%	38 Still climbing at end of shaking	44 Still climbing at end of shaking	37 Rapid rise to 50%, then slow climb	35 Rapid rise to 60%, then slow climb	48 Still climbing slowly at end of shalding	40 Still climbing at end of shaking	38 Still climbing at end of shalding	44 Still climbing at end of shalding	37 Good record	35 Good record	48 Still Cambing Stowy at end of Shaking	40 Still curroing at end of snaking	Constitution at early of a second	44 Stat Ciritaing at end of snaking	AN Two states rise	48 Clear Inft	40 Clear limit	38 Still climbing at end of shalding	44 Still climbing at end of shalding	35 Classic rise to 100%, some cycling at limit	39 Noisy, no clear firth, steady rise	43 ws	48 ws	56 Classic response to near 100%	57 Good rsponse, slightly noisy	35 Classis rise to first near 100%, noisy	39 Static pore pressure u/s	56 Steady climb	57. Quick rise to early limit, flat then slow climb	45 Clearly reached upper limit
76 low	75 low	75 high	75 high	75 high	75 high	50 high	50 high	50 med	75 low	75 low	75 high	75 high	75 high		• •	54 med	54 high	• •			54 high	54 high					54 high	54 high				1-11	54 nign	54 high	54 high	,		£0 £	75	75	20	. 5.	75 high	• 09	20	75	75 high	49 high
0.156	0.169	0.153	0.189	0.198	0.186	0.134	0.136	0.129	0.148	0.16	0.145	0.179	0.188		0.09	0.095	0.097	0.092			0.106	0.11					0.109	0.113					0.10	0 111	0.112			0.424				0.538	0.465	0.222			0.213	0.051
0.239	0.26	0.235	0.29	0.305	0.286	0.207	0.209	0.199	0.227	0.246	0.223	0.275	0.29		0.147	0.147	0.149	0.141			0.163	0.169					0.168	0.174				9	20.0	12.0	0.172			0.652				0.828	0.716	0.341			0.327	9.00
117	118.68	160	41.195	44.82	95	188.18	192.08	210.9	119.6	119.97	160	40.66	44.28		142.38	191.1	182.25	144.95			198.1	199.29					198.1	204.75					192.96	159.34	156.77			235				85	22	178			91	278
06					95			98	85		001	9/	85	-	B			89				73					2					1	2 5	2 2	9 19			5				88	82	93			2 2	80
															6.4	6.4	3.4	4.2																														14.0
37.8	36.8	21.6	243	32.4	31.1	8.1	9.7	15.3	44.3	45.9	22.7	24.3	23.0		9.6	17.6	12.4	7.9			14.8	11.8					8.0	8.5				;	5 2 2	2.72	25.9			10.9				21.2	18.8	4.6			4 .1	24.8
130	129	160	53.5	3 4	8	194	196	222	130	129	160	53.5	54		526	245	243	223			283	273					283	273				;	7 28 7 28 7 29	2,4	257	i		235	170	239	329	105	29	191	426	131	169	347
296	320	382	115	123	252	457	468	524	296	320	382	115	123		434	515	522	434			523	522					523	522					508	222	438	2		521	369	239	359	231	108	471	394	316	375	477
50	2 2	3 6	3 5	8 6	2 22	2	20	20	20	20	20	20	20		125	125	125	125			125	125					125	125					125	621	125	į		20	20	20	20	20	20	100	5	9	100	90
c	۰ ،	۰,	, ,	۰,	۰ ۵	l m	· m	m	m	က	· го	ო	m	က	-	_	-	-	. -	-	7	7	7	7	7	~	ဗ	က	က	က	ო	ო	4 .	4 •	1 4	4	- 4	-	-	-	-	-	-	-	-	-	-	-
Model 30.0	Model 3c 2	Model 30, 2	Model 3c, 2	Model 3c, 2	Model 3c 2	Model 3c, 3	Model 3c, 3	Model 3c. 3	Model 3c, 3	Model 3c. 3	Model 3c, 3	Model 3c, 3	Model 3c, 3	Model 3c, 3	Model 3d, 1	Model 3d, 1	Model 3d, 1	Model 3d, 1	Model 3d, 1	Model 3d, 1	Model 3d, 2	Model 3d, 2	Model 3d, 2	Model 3d, 2	Model 3d, 2	Model 3d, 2	Model 3d, 3	Model 3d, 3	Model 3d, 3	Model 3d, 3	Model 3d, 3	Model 3d, 3	Model 3d, 4	Model 3d, 4	Model 3d, 4	Model 2d, 4	Model 3d, 4	Model 3e. 1	Model 3e, 1	Model 3e, 1	Model 3e, 1	Model 3e, 1	Model 3e, 1	Model 3f, 1	Model 3f, 1	Model 3f, 1	Model 3f, 1	Model 4a, 1

Still cintring at end of shaking Wary title excess pore pressure generated Very title excess pore pressure generated Ne excess pore pressure at all Amost no excess pore pressure Good record: In or tesponse in samy Model 4c eq) Still cintring at end of shaking S	Model 4a, 1	20	505	340	7.07	7.77	0		5			:	
2 50 469 338 40 15 844 0.008 0.004 49 med 45 Statement and the following control of the followin	4a. 1											52 Still climbing at end of shaking	49% loose, 80% dense
2 5 0 469 319 40 15 1 15 15 15 10 0 0 0 0 0 0 0 0 0 0 0	48.1											43 Still climbing at end of shaking	
2 56 474 340 40 105 544 0.006 0.004 40 mod 2 20 streaming and control manual but sure set 1 2 2 10 streaming and control manual but sure set 1 2 2 10 streaming and control manual but sure set 2 2 2 10 streaming and control manual but sure set 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	٠,	50	469	339	40		27	91.53	0.098	0.064	49 med	45 Reached some sort of limit, much less than eq1	
4. See element of a shading of a seed and a seed a shading of		<u> </u>	474	340	40		16	54.4	860.0	0.064	49 med	35 Reached some sort of limit, much less than eq1	
6 (**) With the sense part presents personnel control of the contr		3		!	!							52 Still climbing at end of shaking	
1,000 1,00	۷ (A3 Still climbing at end of shating	
2 (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	7											AE Very INC. accessor accessors and areastalent	
2 3 19 19 19 19 19 19 19 19 19 19 19 19 19	m											note all all a property and a proper	
45 Why the series propressed general and a series and a series propressed and	က											35 Very little excess pore pressure generated	
4 5 No treats page persons or all 4 No treats page	e											52 Very Ittle excess pore pressure generated	
1	٠,											43 Very Ittle excess pore pressure generated	
25 (b) becoses post post results and all control of the control	, -											45 No excess pore pressure at all	
2 125 465 389 244 85 313.65 0.165 0.107 56 lbw 1940 disting uses por presure at al. 2.2 the stress por presu												AR No excess core pressure at all	
4 Newton proposed at a second	4											He to an indicate of the control of	
4 0 for motive plant, informative state port preserve 4 0 for motive plant, informative state port preserve 4 0 for motive plant, informative state port preserve 4 0 for motive plant, informative state port preserve 4 0 for motive plant, informative state port preserve 4 0 for motive plant, informative state port preserve 4 0 for motive plant of entire plant of en	18, 4												
2 125 465 369 24.4 86 313.65 0.165 0.107 56 low 30 characteristics persons 4.0 We note yellout, internal access por pressure 4.4 Which is the characteristic persons and a characteristic pers	18, 4											43 No excess pole pressure at an	
4 Very right years, infinite secrets propression and a control of secret post years infinite secrets propression and a control of secret post years infinite secret propression and a control of secret post years infinite secret propression and a control of secret post years and a control of secret yea	tb, 1											39 Very noisy signal, minimal excess pore pressure	15/9/98, Ref 13
4 4 Vivo training a consist processors and a consist processor of control and a consist processor of consist processor of control and a control and a contro	4b, 1								٠			40 Very noisy signal, minimal excess pore pressure	525mm dapth
2 (125 465 369 244 85 313.65 0.165 0.107 56 low 39 charts upon line red 1 2 2 2 2 2 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2	4b. 1 1											44 Very noisy signal, minimal excess pore pressure	58% loose, 74% dense
4 Chriticity at and of settlement 2	4b. 2 2	125	465	369	24.4			313.65	0.165	0.107	56 low	39 Clear limit, surprising after eq1	
4 d. Christol to brease por pressure 4 d. Arrest for access por pressure 5 d. Sind christop at cof of shaking 6 d. Sind christop at cof of shaking 6 d. Sind christop at cof of shaking 7 d. Sind christop at cof of shaking 8 d. Sind christop at cof of shaking 9 d. Sind christop at cof of shaking 9 d. Sind christop at cof of shaking 1 d. Sind christop a												40 Climbing at end of earthquake	
2 3 No known or a season of pressure at all 40 American converses prior pressure at 41 American converses prior pressure at 42 American converses prior pressure at 43 American converses prior pressure at 44 American converse prior pressure a												44 Cirribing at end of earthquake	
4 Chimber to excess pore pressure 4 A Chimber to excess pore pressure 4 A Chimber to excess pore pressure at al 5 B A Chimber to excess pore pressure 4 A Chimber to excess pore pressure 5 B A B B B B B B B B B B B B B B B B B												30 No excess note pressure at all	
4 Christip of and of settinguals 4 A christip of settinguals 4 A christian of settinguals	,											40 Above to avose rote reserve	
2 3 4 A Christoy for screen gross pressure at 4 A Abrantin or services at 5 3 4 Abrantin or screen gross pressure at 4 Abrantin or screen gross pressure at 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5													
4 d No receives programme at a 1 d Sh received programme at a 2 d Sh received programme at a 3 d Sh received programme at a	e											44 Cambing at end of earthquake	
4 America no access prior pressure 1 1 50 806 534 206 15.903 59 315.06 0.073 0.048 50 high 5 Good record: (e) deter prair in upper layer showed 1 1 1 50 806 534 20.6 15.903 59 315.06 0.073 0.048 50 high 7 Sind critaring at rad of shaking 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	tb, 4 4											39 No excess pore pressure at all	
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	tb, 4 4											40 Amost no excess pore pressure	
1 1 50 808 533 19.5 13.38 80 0.073 0.048 50 high 51 Conditional proper layer showed 1 1 50 806 534 20.6 15.903 59 315.06 0.073 0.048 50 high 57 State christop at end of shaking 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	tb, 4 4											44 Amost no excess pore pressure	
1 50 806 534 20.6 15.903 59 315.06 0.073 0.048 50 high 38 dood decended in surptome in many Model (4 cm)	10, 1	20	808	533		13.338		319.8	0.073	0.048	50 high	51 Good record : (6 other ppts in upper layer showed	22/10/98, Ref 17
4 5 still criticity at end of habiding 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	lc, 1	တ္	806	534		15.903		315.06	0.073	0.048	50 high	38 Good record: no response in any Model 4c eq.)	525mm depth
46 Still chirthing at end of shaking 51 Still chirthing at end of shaking 52 2 2 2 3 Still chirthing at end of shaking 52 2 2 2 3 Still chirthing at end of shaking 52 2 2 3 Still chirthing at end of shaking 52 2 2 3 Still chirthing at end of shaking 52 2 2 4 Still chirthing at end of shaking 52 2 2 4 Still chirthing at end of shaking 52 2 2 4 Still chirthing at end of shaking 53 Still chirthing at end of shaking 54 Still chirthing at end of shaking 55 Still chirthing at end of shaking 56 Still chirthing at end of shaking 57 Still chirthing at end of shaking 58 Still chirthing at end of shaking 59 Still chirthing at end of shaking 59 Still chirthing at end of shaking 50 Still chirthing at end of shaking 50 Still chirthing at end of shaking 51 Ahmat no access pone pressure 52 Ahmat no access pone pressure 53 Ahmat no access pone pressure 54 A Ahmat no access pone pressure 54 A Ahmat no access pone pressure 55 Ahmat no access pone pressure 65 Ahmat no access pone pressure 65 Ahmat no access pone pressure 66 Ahmat no access pone pressure 66 Ahmat no access pone pressure 67 A Ahmat no access pone pressure 67 A Ahmat no access pone pressure 68 Ahmat no access pone pressure 69 Ahmat no access pone pressure	10, 1											47 Stiff cimbing at end of shaking	50% loose, 75% dense
	10,1											46 Still climbing at end of shaking	292 lb surcharge
- u u u u u u u u u u u u u u u u u u u	- 1											50 Still climbing at end of shaking	
- UUUUUU OO	-											41 Stift climbing at end of shatding	
, a a a a a a a a a a a a a a a a a a a	- c											51 Still climbing at end of shaldno	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7											Schlade & bre to coldina and Oc	
00000000000000000000000000000000000000	7											Constituting at eith of stienting	
	7											47 Stiff cirribing at end of shaking	
ии т т т т т т т т т т т т т т т т т т	7											46 Still climbing at end of shaking	
О п п п п п п п п п п п п п п п п п п п	2												
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												41 Still climbing at end of shaking	
, w w w w w a a a a a a a a a a a a a a	. «												
, w w w & & & & & &	, ,											38 Still climbing at end of shaking	
, m m m m m m m m m m m m m m m m m m m	, ,											47 Still climbing at end of shaddo	
იიი ძძძძ ძ	, T												
ο ο α α α α α α α α α α α α α α α α α α	e0											46 Suit cirraing at end of sharong	
लिक्यव्य व्	e											50 Still climbing at end of shaking	
4 4 4 4 4												41 Still climbing at end of shaking	
4 4 4 4	4c. 4 4											51 Almost no excess pore pressure	
. 4 4 4	40.4											38 Almost no excess pore pressure	
• • •												47 Amost no excess pore pressure	
. 4												46 Amost no excess pore pressure	
												50 Atnost no excess pore pressure	
	4 .												

1	Y
•	4
	2
6	×
•	=
·	2
•	=
,	?
7	
ì	55
	느
	epol
	믓
	Ψ.
- 1	Ş

125	212	5	9.		1	9				
125	813	543	12.42	84	260.64	0.079	0.051	50 high	51 Excellent : almost no response in any 4d eq)	525mm depth
									4/ Circing at end of earthquake	202 th eurchana
									40 Ciliang at an a contradate	eginicialige
									OO SUIT CHILDING BY BIND OF SHEARING	
	;						i.	4	4 Community at one of parameter	
125	813	543	12.4	4	238.92	0.085	0.055	ngin oc	2000 000	
125	813	543	11.8		244.35	0.085	0.055	ugu oe	Diggs special	
									47 Chritising at end of earthquake	
									46 Cirriong at end of earthquake	
									50 Still climbing slowly at end of shalding	
									41 Still climbing slowly at end of shaking	
125	813	543	47		200.91	0.083	0.054	50 med	38 Possible finit at end of shaking	
125	813	543	47	38	206.34	0.083	0.054	50 med	51 Possible first at and of shaking	
•	?	!							47 Climbing at end of earthquake	
									46 Cirrbing at end of earthquake	
,	100	7	37.0		211 15	0.083	0.054	50 high	50 Access to reach Imit near end of shaking	
071	65.1	2 2	n (6	; ;	2 6		7 000	o de de	A4 American to reach first near and of shaking	
125	/41	512	ę,		203.32	0.083	400.0	uĝii ne	Survey of the su	
									38 SUB CHITISHING BY OND OF STRICTING	
									51 Still climbing at end of shalding	
									47 Climbing at end of earthquake	
									46 Climbing at end of earthquake	
									50 Still climbing at end of shaking	
									41 Still climbing at end of shaking	
5	730	007	200	63	27.4	0.430	0.285	* 05	39 Excellent early response	14/7/00 Ref 24
2 3		0.4	70.7	î 6	5 6	5 4	0.220	S doi:	22 Classic das to near 100%	525mm death
ន	84 c	410 014	30.6		350	5	0.270	ufill oc	50 Classic test to from 100%	50% uniform density
2		33/		ì	į	,	000	4	10 County described in the clinical proposed by	Odd it american
20		353	13.1	74	261	0.464	0.302	ngin oc	40 Rapid rise to early littin, singin increase rates	27 1 ID SUICHBIGH
20		310							6 Steady Cilmb Infoughout duration	50, 80, 100, 125g
50		346							54 Steady climb throughout duration	
9	313	267						low	1 No significant excess pore pressure	2/8/00, Ref 25
22		220							8 n/s	525 mm depth
22		37.1	6.0	2	78	0.178	0.116	55 high	10 Quick rise to early limt, then flat	Densities uncertain
20		555							16 u/s	211 lb surcharge
20		445	12.4	83	396	0.173	0.112	. 22	38 Excellent response, absolutely flat limit	50, 80, 100, 125g
20	472	379	5.6	24	9	0.15	0.098	55 med	39 Quick rise to limit, very noisy	Average RD = 54.7%
2		431							14 u/s	
6		314	13.6	17	53	0.171	0.111	55 high	41 Quick rise to limit, then flat	
3 6		237	<u>.</u>					, NO	48 Very noisy	
92	647	407	6	17	69	0.176	0.114	55 high	54 Quick rise to limit, then steady climb	
8		342	9.1	101	345	0.273	0.177	÷ 09	53 Excellent early response, slight rise later	5,7/8/00, Ref 26
S	562	383	4	19	73	0.206	0.134	50 high	43 Clear early limit, flat then long rise	525mm depth
92		385	6.9	78	300	0.233	0.151	50 high	37 Good early rise to limit, then slow rise later	50% uniform density
200		336	6	15	20	0.221	0.144	50 high	6 Good early rise to limit, then steady rise later	50, 80, 100, 125g
200	751	403	10.4	. 26	326	0.24	0.156	50 high	35 Good early rise to limit, then slow climb, noisy	
3 6		220						, wol	13 Rise, drop and rise	
8 6		338	7.5	14	47	0.219	0.142	50 high	42 Good early rise, flat then steady climb	
2 :		9 .	? ;	<u>:</u> :	ì	0.00	7 1 7	200	Condeside det the steady climb	
S 1	450	291	6.4	12	8	0.237	0.154 4.	ngin oc	50 Good early rise, rial titeli steady ciling	
20		247							46 No significant excess pore pressure	
20	631	446	31.5	81	361	0.183	0.119	48 high	43 Steady convex rise to limit	23/8/00, Ref 27
				8	1					

Rev
4
0
×
_
0
_
0
_
ss
~
Ë
×
-
-
ഥ,

Nodel 411, F	-	3	- 5	200	,		S		2.4.0		100		
Model 4h, 1	-	20	432	317	10.1		20	63	0.202	0.131	51 high	50 Quick rise to limit	50% uniform density
Model 4h, 1	-	20	607	625								8 n/s	50, 80, 100, 1259
Model 4h. 1	-	20	219	229	4		34	78	0.172	0.112	51 med	10 Quick rise to limit, then steady fall	
Model 4h. 1	-	22	711	457	31.5		98	393	0.194	0.126	48 high	35 Rapid initial rise, then steady climb	
Model 4h, 1	-	20	624	452	29.8		88	398	0.179	0.116	48 med	48 Good but slow rise to high limit	
Model 4h, 1	-	22	322	263	11.2	¥	9.0	28	0.199	0.129	51 med	41 Noisy, but clear limit, then slow rise	
Model 4h, 1	-	20	497	354	11.2		15	53	0.199	0.129	51 med	42 Clear limit, then flat and long steady rise	
Model 4i, 1	-	55	242	237							50 med	6 No excess pore pressure	25/8/00, Ref 28
Model 4i, 1	-	20	629	402	13.1		59	237	0.21	0.137	50 high	46 Good limit, held for about 0.2 sec before rising again	525mm depth
Model 4i. 1	-	20	431	452								38 u/s	211 lb surcharge
Model 4i, 1	_	9	656	407	13.7		89		0.206	0.134	50 high	39 Clear limit	50% uniform density
Model 4i. 1	-	20	574	370	8.7		39		0.208	0.135	50 high	54 Clear limit	50, 80, 100, 125g
Model 4i. 1		209	502	343	10.9		. 72	72	0.205	0.133	50 high	8 Clear limit	
Model 41	-	. C	320	264	8.4		œ		0.195	0.127	50 med	1 Very noisy, but clear limit	
Model 4i, 1	٠.	8 2	720	437	·		,	i		<u>;</u>		37 No limit, steady rise to 300kps plus	
del 4i, -		8 6	376	4 01								14 u/s	
Model 41	-	25	593	342	8.6		76	260	0.251	0.163	50 high	48 Limit held for 0.2 secs before rising again	8/9/00, Ref 29
Model 4i 1		G	445	960	4.5		32	104	0.238	0.155	50 high	54 Limit held for about 0.1 secs before rising	525mm depth
Model 4,	٠.	3 6	8.5	323	11.2	4	9.		0 242	0.157	50 high	43 Limit held for about 0.1 secs before rising	211 lb surcharge
Model 4).		2 2	330	244	!		:		!		•	6 No clear early limit, but steady rise	50% uniform density
Model 4).		3 6	333	240									50, 80, 100, 125a
Model 4j, 1			670	080	15.9		87		0.237	0.154	50 high	37 Note 70% at 4.1 cycles, rising to 97% at 42.8 cycles	
Model 4i. 1		9	736	412	98		8		0.238	0.155	50 high	35 Sharp early rise, then slow rise to final limit	
Model 4i. 1	-	200	238	211	15.6	٠.	8.2		0.214	0.139	50 high	42 Pretty much constant over the duration	
Model 4i. 1	-	8	699	387	83	5	7.1	105	0.239	0.155	50 high	39 Sharp early rise to 50% plus, then slow rise to limit	
Model 4i, 1	-	8	519	317	29	•	4.4	4	0.248	0.161	50 high	50 Limit at 29%, but then rose steadily later	
Model 4k. 1	-	200	232	91	21		8		0.401	0.261	48 high	41 Very rapid rise to c. 60% then slower rise to 100%	14/9/00, Ref 30
Model 4k, 1	-	20	447	193	41		06	174	0.299	0.194	50 high	10 Rise to 80% in 5.1 cycles, then slower rise to 90/100%	525 mm depth
Model 4k, 1	-	20										16 u/s	No surcharge
Model 4k, 1	-	20	521	226	16.4		88	199	0.284	0.185	50 high	1 Steady rise to 88/100%	50% uniform density
Model 4k, 1	-	20	455	179	6.9	-	8	179	0.328	0.213	- 20	13 Straight to 100% exactly	50, 80, 100, 125g
Model 4k, 1	-	20	313	109	7		82	89	0.42	0.273	48 high	53 Straight to 82%, then later to 130%	
Model 4k, 1	-	20	298	131	26.3		87	114	0.332	0.216	48 high	8 Rise to 60% in 5 cycles, then slower rise to 90/100%	
Model 4k, 1	-	20	38	15	13	•	90	16	0.581	0.378	48 high	46 Very noisy, but straight to 100%	
Model 4k, 1	-	8	113	20	70		8	4	0.423	0.275	48 high	42 Good steady rise to high limit	
Model 4I, 1	-	20	510	388	32		21	81	0.62	0.403	54 med	53 Initial limit, but noisy and slowly continued to climb	15/2/01, Ref 33
Model 4I, 1	-	22	394	339									525 mm depth
Model 4I, 1	-	92	813	515								37 Steady climb	295 lb surcharge
Model 4I, 1	-	8	648	446	52		48	8	0.631	0.410	54 med	43 Initial good rise, then upper limit reached very slowly	Densities uncertain
Model 4I, 1	-	20	732	481								48 Steady climb	Average used here
Model 4I, 1	-	22	582	418	25		16	29	0.628	0.408	54 med	41 Good upper limit	
Model 41, 1	-	20	732	481								39 Noisy, steady climb	
Model 4I, 1	-	20	813	515		Ì						35 Noisy, steady climb	
Model 5a, 1	-	20	1101	823	13.9 14.067		50	411.5	0.055	0.036	51 high	51 Shows double frequencies: (note upper 4 ppts showed minimal	7/10/98, Ref 15
Model 5a, 1	-	20	1105	825				412.5	0.055	0.036		38 Shows double frequencies: dynamic response) only just reached 50%	525mm depth
del 5a, 1	-	20	1040	797	34			239.1	0.055	0.036		41 Still climbing slowly at end of shaking	586 lb surcharge
Model 5a,1	-	20	1038	797	34			247.07	0.055	0.036	51 low	50 Still climbing slowly at end of shalding	51% loose, 72% dense
Model 5a, 1	-											13 Still climbing at end of shaking	
Ani 50 1												A.4. Dolla carefulne at each of election	
	_											Birrania o Dio 18 Birrania o III	

G.
Z
2
2
Ξ
=
≘
Ù,
2
7
č
-

																										14/9/98, Ref 16	525mm depth	586 lb surcharge	49% loose, 76% dense	125, then 50g																			11/12/08 Bef 10	11/12/98, Keit 19 525mm dooth	SZSMini uepini
46 Still Cirching sit and of shaking 64 Reaches Irrit shruyion double fransmov behaviour	Section and designed of the section and the se	SG Note strong to the desired beneating the strong	41 Just reached limit	50 Just reached firmt	13 Still climbing at end of shaking	11 Still climbing at end of shaking	47 Still cambing at end of shalding	46 Still of Intoing at end of shaking	5.1 Still circulus stowly at end of shadon	3.8 Still cluthon shown at end of shaking	AA Otta camping at and of about the	Children Carlotte at a carlott	CO STIR CHITCHIG AT GIVE OF STRAIGHT			47 Still climbing at end of shaking	46 Still climbing at end of shaking	51 Very small excess pore pressure, still climbing at end	38 Very small excess pore pressure, still climbing at end	41 Still climbing at end of shaking	50 Still climbing at end of shaking	13 Aknost no excess pore pressure	11 Almost no excess pore pressure	47 Still climbing at end of shaking	46 Still cirribing at end of shalding	51 Reaches Infl which rises slowly : (note 8 ppls in upper layer showed	38 Reaches Imit which rises slowly : no dynamic excess pore pressure)	47 Very Ittle excess pore pressure	46 Very Ittle excess pore pressure	50 Rising steadily at end of shaking	41 Rising steadily at end of shaking	51 Rising steadily at end of shaking		47 Rising steadily at end of shalding	46 Kising steadily at end of shaning	Converse are and or selecting streaming and selecting streaming streaming and selecting streaming streamin	4) Histig steady at end of standing	Of Christian Avenue por a presente, italia escadir el end of estado.	30 Chiman access pore pressure, many account at one or an arming A7 Small average note present a faint steadily at and of shallon		Solitate decrease price (Appointed to the State of the St	OU PRINCE IN EXCESS DOIG (MESSALIS) SEER ING STORY OF STREETING	A Very Ittle avises note presents	OD Very fitte expess note tressing	or a second and account to the DO	4/ Arrest to excess pore pressure	40 Failust in excess pore pressure	A4 Var. Itta avease note presente	AE Ahmet to excess this creasure notes along	45 Arrost no excess pore presents, noisy signal	4 Alliast in axcass por proseure, recey ourse
7. 1.			51 med	51 med																						49 high	49 high																								
980	900	0.036	0.036	0.036																						0.044	0.044																								
990				0.055 (0.068																									
207.04				209.3																							282.2																								
			24																							33	34																								
ç	6.00	30.9	35	35																						20	18.25																								
č	70	825	799	805																						830	830			801	799																				
4	2	1113	1044	1047																						1118	1119			1043	1042																				
i	2	20	20	20																						50	2			90	20																				
- (7	~	7	7	8	,			v (,	m	က	3	9	e e	e e	4	4	4	4	4	7	. 4	•	-	· -	-	-	-	-	7		7	7	0	0	თ (m (י פיז	m	ຫ ຫ	 	4 .	4	4	4 -	4 .	4	_	-
Model 5a,	Model 5a,	Şa	Model 5a,	Model 5a,	Model 5a.	å	ğ	1		e i	œ ,			Model 5a,	Model 5a,	Model 5a,	Model 5a, 3	Model 5a.	Model 58, 4	Model 5a.	Model 5a 4	Model 5a. 4	Model 5s 4	Model 5a 4	Model 5a, 4	Model 5b	Model 5b.	Model 5b.	Model 5b,	Model 5b,	Model 5b,	Model 5b,	Model 5b,		Model 5b,	Model 5b,		Model 5b,	Model 5b,	Model 5b	Model 5b	Model 5b,	Model 5b, 3	Model 5b, 4	Model 55,	Model 5b,	Model 5b,	Model 5D	Model 5D	Model 5c.	Model 5c,

775 lb surcharge 52% loose, 75% dense 50g	17/12/99, Ref 20 525mm depth 775 lb surcharge 57% loose, 80% dense	10/7/00, Ref 23 525mm depth 708 lb surcharge 50% density, assumed	31/8/01, Ref 34 625mm depth 495 lb surcharge 50% losee, 74% dense 50g	4/10/01, Ref 35 525mm depth 495 lb surcharge on 2nd flight only (eq2) 48%, loose, 74% dense 50g, 2 llights 51/10/01, Ref 38	52Mm depth No surcharge 49% loose, 74% dense 125g	14/11/01, Ref 39 460mm total depth No surcharge, 64mm 50% loose, 75% dense phreatic surface at 250mm depth, 125g
41 Still cirribing at end of shaking 50 Still cirribing at end of shaking 38 Starting to cirrib steeply at end of shaking 51 Starting to cirrib steeply at end of shaking 46 Cirribing at end of earthquake 47 Cirribing at end of earthquake 50 Cirribing at end of earthquake 50 Cirribing at end of earthquake 51 Cirribing at end of earthquake 52 Cirribing at end of earthquake 47 Cirribing at end of earthquake 47 Cirribing at end of earthquake 47 Cirribing at end of earthquake 50 Cirribing at end of earthquake 51 Cirribing at end of earthquake 53 Cirribing at end of earthquake 54 Cirribing at end of shaking, but possible flat top just at end 55 Cirribing at end of shaking, but possible flat top just at end 51 Cirribing at end of shaking, but possible flat top just at end	31 Filtered soceleration record: (note 6 pats in upper fayer showed 43 Filtered acceleration record: no significant response during shaking) 39 Filtered acceleration record 13 Carraing at end of shaking	37 initial Inft around 27%, then drift upwards 43 initial Inft around 25%, then drift upwards 35 Good response, clear flat top 10 Less than 5%, than steady drift upwards	35 Good response, with cycles at upper first 48 u/s 43 u/s 37 u/s 39 u/s	35 Shows strong cyclic behaviour 39 Quite noisy, but clearly limited response 43 u/s 48 u/s 56 Very low response, with drop after peak 57 Very low response, but clear flat upper limit 35 Sharp rise to forwishchon	53 Start has to agreement of 54 Market and 55 Market and 56 Market and 56 Market and 56 Market and 56 Market and 57 Market by uncertain static pore pressure	10374 Characterised by falling acceleration Input. Depth of phreatic 10375 surface probably cheser to 390mm/deep, rether than the intended 10376 250mm, hence 10374-10378 probably unsaturated. 10378 10379 Delayed peak due to redistribution 56 Good rise to peak 57 Strong rise to peak
52 low	39 high 39 high 39 high	50 high	50 high	48 high 48 med 74 med 74 med 79 high	49 high	50 med 50 high 50 high
0.028	0.06 0.059 0.047	0.132	0.370	0.161 0.162 0.163 0.155	0.158	0.075 0.075 0.079
0.042	0.092 0.091 0.088	0.203	0.569	0.249 0.249 0.251 0.239	0.251	0.115 0.116 0.122
171.53	322.74 344.75 539.24	456	440	527 300 67 67	230	256 420 534
11	33 35 52	50	19	74 46.5 11.5 8)6 26	32 50 64
	34.4 26.918 22.79				:	
78	47.3 37 34.4	31.3	17.6	16.4 1.5 1.9 1.27	4. 6. 4. 8.	38 11 11
974 975 1009	978 985 1037	925 900 911 851	722	712 645 579 570 540	546 374 317 546	581 740 437 645 800 839 835
1222 1221 1291 1291	1223 1217 1280	1125 1140 1224 1070	1012 724 784 661 865	1021 870 730 850 733 610	733 954 554 1119	597 737 473 695 803 881
9 9 9 9	50 50 50	50 50 50	50 50 50 50 50 50	S S S S S S S	125 125 125 125	125 125 125 125 125 125
Model 5c, 1 Model 5c, 1 Model 5c, 2 Model 5c, 3 Model 5c, 3 Model 5c, 3	Model 5d,1 Model 5d,1 Model 5d,1	Model 5e, 1 Model 5e, 1 Model 5e, 1 Model 5e, 1	Model 5f, 1 Model 5f, 1 Model 5f, 1 Model 5f, 1	Model 59, 1 Model 59, 1 Model 59, 1 Model 59, 1	Model 5h, 1 Model 5h, 1 Model 5h, 1 Model 5h, 1	Model 51, 1 Model 51, 1 Model 51, 1 Model 51, 1 Model 51, 1 Model 51, 1

APPENDIX B

SUMMARY OF DATA

Time histories of acceleration, excess pore pressure and model configurations
Stress and strain histories

Model 2a-eq1

Cyclic Stress Ratio

Model 2a Stress and strain isochrones

Model 2a-eq1

Cyclic Shear Stress, kPa

Model 2b-eq1

Time, sec

Cyclic Shear Strain, %

Model 2b-eq1

Cyclic Shear Stress, kPa

Model 2b Stress and strain isochrones

Model 2c

Model 2c-eq1

Cyclic Shear Strain, %

Model 2c Stress and strain isochrones

Model 2c-eq1

Model 2d

Model 2e

16

B-10

Model 2e Stress and strain isochrones

16

Model 2f

Model 2f Stress and strain isochrones

B-12

Model 3a

B-14

B-15

Model 3b Stress and strain isochrones

B-17

Model 3c Stress and strain isochrones

B-19

Model 3d Stress and strain isochrones

B-23

Model 3f Stress and strain isochrones

Model 4a

Model 4a Stress and strain isochrones

B-27

B-28

Model 4c Stress and strain isochrones

Model 4d Stress and strain isochrones

B-34

B-36

B-40

Model 4i Stress and strain isochrones

B-43

Model 4j Stress and strain isochrones

B-45

Model 4k Stress and strain isochrones

B-47

B-48

B-50

Soil Depth = 6 m Equivalent Depth = 34m-Soil Depth = 11.5 mEquivalent Depth = 39m -1 -2 -3 -4 10 MwwMm -1 -2 -3 -4 Equivalent Depth = 43mSoil Depth = 15° m 40 30 Soil Depth = 18.3 m20 Equivalent Depth = 46m 10 0 Soil Depth = 22.5 mEquivalent Depth = 50.2m Soil Depth = 26.3 mEquivalent Depth = 54m -0 20 40 60 80 100 120 140

Model 5b

B-52

This test generated no useable data, Eq1 and 2 were particularly poor, Eq3 may have produced some information.

Model 5c

B-55

B-57

B-58

Model 5g (Archtest 2b, with weight)

B-61

Model 5h Stress and strain isochrones

80

80

B-65