THE HONG KONG POLYTECHNIC UNIVERSITY

Department of Mechanical Engineering

Programme	: BEng(Hons) in Mechanical Engineering (43478)						
Subject Title	: Numerical Methods for Engine	eers Subject Code: ME46002					
Session	Semester 2, 2017/2018						
Date	: 30 April 2018	Time : 15:15 pm – 18:15 pm					
Time Allowed	: 3 hours	Subject : Dr. G. P. Zheng Examiner(s) Dr. T. Y. Ng					
This question p	aper has <u>4</u> pages (attac	hments included).					
Instructions to Candidates: This paper has 5 questions. Answer all 5 questions.							
Constants	:						
Others	:						
Available from Invigilator	:						

DO NOT TURN OVER THE PAGE UNTIL YOU ARE TOLD TO DO SO

Question 1:

(a) Determine the root of the following equation

$$f(x) = \frac{1}{x} - \frac{x}{\sin(x) + 2} = 0$$
,

using bisection method with two initial guesses of a = 0.2 and b = 3. Perform the computation until the percentage relative error is less than 3%. x is in unit of radians.

(10 marks)

(b) Employ the Newton-Raphson method to determine the root for

$$f(x) = x^2 + \cos(2x) \cdot e^{-x} - 1 = 0$$

using an initial guess of $x_0 = 0.5$. Perform the computation until the percentage relative error is less than 0.1%. x is in unit of radians. (10 marks)

Question 2:

(a) Solve the simultaneous linear equations $A \mathbf{x} = \mathbf{b}$, where

$$A = \begin{bmatrix} 2 & 6 & 1 \\ 7 & 1 & 4 \\ 8 & 5 & 2 \end{bmatrix} \quad and \quad b = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} ,$$

using the Gaussian elimination with pivoting.

(7 marks)

(b) Assume any arithmetic computation must follow the five-digit chopping arithmetic which is defined as follows: given a real number q expressed in normalized decimal form as $q = \pm (0.d_1d_2d_3d_4d_5\cdots d_kd_{k+1}\cdots)\times 10^n$ the value of this number is $q = \pm (0.d_1d_2d_3d_4d_5)\times 10^n$, where $1 \le d_1 \le 9$, and $0 \le d_k \le 9$ for k > 1. Based on the five-digit chopping arithmetic, solve the simultaneous equation $A \mathbf{x} = \mathbf{b}$, where $\mathbf{x} = [x_1 \ x_2 \ x_3]^T$,

$$A = \begin{bmatrix} 12 & -6 & 0 \\ -3 & 1.501 & 5.626 \\ 5 & 0 & 5 \end{bmatrix} \quad and \quad b = \begin{bmatrix} 6.9 \\ 3.9 \\ 5.375 \end{bmatrix} ,$$

using naïve Gaussian elimination method.

(9 marks)

(c) Solve the following equations using the Gauss-Seidel method until the percent relative error falls below $\varepsilon_s = 7\%$.

$$-3x_1 + x_2 + 12x_3 = 50$$
$$6x_1 - x_2 - x_3 = 3$$
$$6x_1 + 9x_2 + x_3 = 40$$

(9 marks)

Question 3:

- (a) For a set of 5 data points $(\mathbf{x}_i, \mathbf{y}_i)$, i=1, 2, 3, 4, 5 with $\mathbf{x}_i=1.1, 2.4, 3.7, 4.6, 7.1$ and $\mathbf{y}_i=0.21, 0.5, 0.69, 0.73, 0.98$, linear least-squares regression is employed to find the fitting coefficients.
 - (i) Find the values of the coefficients a_0 and a_1 of the linear relation $y = (a_0 + a_1 x)$.

(6 marks)

(ii) Find the values of the coefficients k and n of the relation, as follows

$$y = 1 - e^{-k \cdot x^n} .$$

(7 marks)

(b) For a set of three data points (x_i, y_i) , i = 1, 2, 3, with $x_i = -4, 0, 4$ and $y_i = -16, 0, 16$. If the data are fitted with cubic splines $f(x) = a + bx + cx^2 + dx^3$ with the constraints f'(-4) = 12 and f'(4) = 12, determine the cubic functions.

(5 marks)

For an nth-order Newton's divided difference interpolating polynomial $f_n(x)$, the error of interpolation can be estimated by $R_n = |g[x_{n+1}, x_n, x_{n-1}, ..., x_0] \cdot (x - x_0)(x - x_1) \cdots (x - x_n)|$, where $(x_0, f(x_0))$, $(x_1, f(x_1))$,..., $(x_{n+1}, f(x_{n+1}))$ are data points; $g[x_{n+1}, x_n, x_{n-1}, ..., x_0]$ is the (n+1)th finite divided difference. To minimize R_n , if there are more than n+1 data points available for calculating $f_n(x)$ using the nth-order Newton's interpolating polynomial, n+1 data points $(x_0, f(x_0))$, $(x_1, f(x_1))$,..., $(x_n, f(x_n))$ should be chosen from the available data points such that $|(x - x_0)(x - x_1) \cdots (x - x_n)|$ is the smallest. Given the data

X _i	2	4	6	8	10	12 -
$f(x_i)$	2.2	5.1	8.1	10	7.8	3.2

Calculate $f_n(10.5)$ using Newton's divided difference interpolating polynomials with n=3. Estimate the error R_3 of $f_3(10.5)$.

(7 marks)

Question 4:

Let

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}.$$

- (a) Determine all the eigenvalues and their corresponding eigenvectors for matrix **A** using conventional method. (4 marks)
- (b) Perform 4 iterations using the Power method to estimate the dominant eigenvector and its corresponding eigenvector for the matrix with the initial vector $\mathbf{x}_0 = (1, 1, 1)^T$. Provide the details for the first two iterations. (6 marks)

Question 5:

Given the function

$$f(x) = e^{-x^3} \quad x \in R$$

- (a) With h = 0.01, estimate df/dx at x = 0.4 up to 5 decimal places by using the following methods:
 - (i) Forward and backward difference formulas;
 - (ii) Richardson extrapolation;
 - (iii) Analytical formula.

(7 marks)

(b) Find an approximate value for the integral

$$\int_{0.1}^{0.5} f(x) dx$$

using the following integration methods:

(i) 4-point Gaussian quadrature.

(4 marks)

(ii) Trapezoidal rule and Simpson's rule.

(4 marks)

(iii) Suppose that

$$\int_{0.1}^{0.5} f(x)dx = Q[f] + E[f] ,$$

where the error term is given by

$$E[f] = -\frac{1}{30} h^2 f''(\mu)$$

for some $\mu \in (0.1,0.5)$. If h = 2/(5n), determine the minimum n (integer) such that the absolute error is less than the tolerance $\varepsilon = 0.0001$.

(5 marks)