QUESTION 4: Méthode de Monte Carlo

Soit $I_2 = \int_0^1 \sqrt{(1-x^2)} \, dx$. Estimons I_2 par la méthode de Monte Carlo pour n=10000

Posons $h(x) = \sqrt{1 - x^2}$ et X une variable aléatoire suivant loi uniforme U(0,1)

On a : $E(h(x)) = \int_0^1 h(x)f(x)dx$ avec f(x) = 1 dans notre cas. L'idée serait de trouver un estimateur de E(h(x)) en simulation une distribution de loi suivant la loi de X et ensuite on pourra conclure que l'espérance de la distribution de h(x) converge vers la moyenne empirique quand $n \to +\infty$ d'après la loi faible des grands nombres.

En premier lieu, nous allons simuler un échantillon de 10000 observations suivant une loi uniforme U(0,1).

Soit (x_1, x_2, \dots, x_1) cette distribution.

D'après nos calculs sur python, un aperçue du vecteur aléatoire de h(x) donne le vecteur suivant :

array([0.75540237, 0.50124778, 0.97553376, ..., 0.77491008, 0.95771046, 0.49665921])

Notre intégrale I_2 peut donc être estimée par la moyenne empirique de ce vecteur. D'où

$$I_2 = 0.7866302381459547$$

Observons par graphique l'évolution de cette estimation lorsque n varie et vérifions la cohérence avec la valeur théorique $I_2=\frac{\pi}{4}$.

Evolution de la valeur de l'estimation de l'intégrle lorsque n varie

En observant le graphique, on constate que plus la taille de n augmente plus l'estimation plus l'intégrale est mieux estimée.