

Evasión de detección en malware: implementación y análisis de técnicas de ocultación

Autor: Martín Díaz-Benito Álvarez

Tutor: Prof. Tomás Isasia Infante

14 de julio de 2025

Contenido

- Motivación
- Objetivos
- Marco teórico
- Metodología
- 6 Aspectos de diseño principales
- 6 Diseño de la comunicación en red
- Mecanismos de persistencia
- Mecanismos de propagación
- © Evasión de análisis
- Análisis de muestra
- Resultados
- Conclusión

Motivación

- Industrialización del malware (RaaS, APTs)
- Carrera armamentística entre malware y EDR
- Objetivo principal: entender cómo se ocultan los atacantes y cómo detectarlos

Objetivos

- Estudiar técnicas estáticas y dinámicas de evasión
- Desarrollar dropper evasivo con PowerShell
- Analizar una muestra real mediante ingeniería inversa
- Evaluar resultados de detección y reflexionar sobre las técnicas de análisis

Marco teórico

- Clasificación de técnicas
 - Estáticas: ofuscación, esteganografía, empaquetamiento, criptografía
 - Dinámicas: fileless, LoTL, evasiones sandbox/debuggers
- Frameworks: Mitre ATT&CK

Metodología

- Entorno adecuado
- Desarrollo de malware en C#, metodología no iterativa al tratarse de malware
- Visibilidad en red y servidor SMB para permitir propagación durante el desarrollo
- Sandboxing y aislamiento de VMs para ejecución de malware

Aspectos de diseño principales del malware

- Compilado a la plataforma .NET (C#), buena integración con Windows
- Downloader con keylogger en PowerShell como payload
- Carga por reflexión + evasión de AMSI
- Enfoque fileless

Diseño de la comunicación en red

- VM Kali: Servidor C2 ligero con Flask (HTTP) y ncat (HTTPS)
- VM Windows: Victima con servidor SMB dummy
- IP Dinámica del servidor C2 desde pastebin.com
- Tráfico cifrado con HTTP/S, esteganografía y enmascaramiento de archivos

Diagrama de Red

Mecanismos de persistencia

- Tareas programadas (LoTL)
- DLL Proxying sobre 7-Zip
- Simulación de legitimidad: nombres + ubicación

Mecanismos de propagación

- SMB: escritura en recursos compartidos sin contraseña
- Discos extraíbles: replicación automática
- Ingeniería social: nombre fileRecovery.exe

Tráfico SMB

194 78.358291710	192.168.0.38	192.168.0.55	NBNS	104 Name query response NB 192.168.0.38
195 78.358912177	192.168.0.38	192.168.0.55	NBNS	104 Name query response NB 192.168.0.38
196 78.359188499	192.168.0.55	192.168.0.38	TCP	66 60213 → 139 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_
197 78.359250965	192.168.0.38	192.168.0.55		54 139 → 60213 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
198 78.860849799				66 [TCP Port numbers reused] 60213 → 139 [SYN] Seq=0 Win=64240 L
199 78.860952531	192.168.0.38	192.168.0.55		54 139 → 60213 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	192.168.0.55	192.168.0.38		66 [TCP Port numbers reused] 60213 → 139 [SYN] Seq=0 Win=64240 L
201 79.373999991	192.168.0.38	192.168.0.55		54 139 → 60213 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
202 79.889442406				66 [TCP Port numbers reused] 60213 → 139 [SYN] Seq=0 Win=64240 L
203 79.889555863	192.168.0.38	192.168.0.55		54 139 → 60213 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
204 80.390139771	192.168.0.55	192.168.0.38		66 [TCP Port numbers reused] 60213 → 139 [SYN] Seq=0 Win=64240 L
205 80.390336493	192.168.0.38	192.168.0.55	TCP	54 139 → 60213 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
206 80.391729269	192.168.0.38	192.168.0.55	BROWSER	221 Get Backup List Response
- 207 80 393031138	192 168 0 38	192 168 0 55	BROWSER	221 Get Backup List Response

Evasión de entornos de análisis

- Detección de VM: MACs, procesos, BIOS
- Sandboxes: ratón inactivo, sleep-skipping
- Debuggers: APIs, timings anómalos

Análisis de muestra real

- Muestra obtenida de theZOO, proyecto para el análisis de malware en GitHub
- AZORult: espionaje, exfiltración de credenciales
- Herramientas: IISpy, DIE, VirusTotal, JoeSandbox
- Observaciones: inyección por reflexión con dropper personalizado, llamadas sospechosas

Ejecución de DetectItEasy

Resultados

- VirusTotal: mejora significativa de detección en malware ya conocido
- La evasión en el entorno de Telefónica no tuvo éxito
- La muestra no ofuscada fue la menos detectada

Comparación de detección por muestra

Sample 1: Original

Sample 2: ConfuserEx

Sample 3: Eazfuscator.NET

Conclusión

- Todos los objetivos del trabajo se cumplieron al menos parcialmente
- La detección por parte de los EDRs líderes y entornos corporativos presenta una dificultad significante
- Las técnicas de evasión son temporales
- EDRs necesitan combinación de técnicas de detección
- Es necesario conocer las técnicas de los atacantes para una buena detección

¿Preguntas?

¡Gracias!

¿Dudas o comentarios?