

Emne: IELET2106 Industriell instrumentering

Leveringsfrist: Se Blackboard

2 Øving:

Du kan bruke Matlab eller Excel til å tegne kurver.

Oppgave 1 (frivillig oppgave, men fortsatt pensum)

- a) Forklar kort hva de ulike begrepene under betyr:
 - Aktiv og passiv måleomformer
 - Analog og digital måleomformer
 - o Primær og sekundær måleomformer
 - o Direkte og inverse måleomformer
- b) Hvilke kriterier må man ta hensyn til ved valg av måleomformere?
- c) Hva er en instrumenteringsforsterker? Hvilke fordeler har den?
- d) Hva menes med 2-, 3-, og 4-leder måleomformere?
- e) Hva er smarte transmittere (HART-transmittere)? Forklar kort.

Oppgave 2

- a) Resistansfølere kan kobles opp etter 2-, 3- og 4-ledermetoden. Vis skisser av målebrooppkobling med 2-, 3- og 4-lederkobling og gi en kort forklaring.
- b) I en Wheatstone målebro-oppkobling med 2-leder er det tilkoblet en motstandsføler hvor resistansen $R_x = R_0 + \Delta R$ er en funksjon av den fysiske variabelen som måles. R_0 er nominell resistansverdi når målebroen er i balanse. De faste motstandene har også en resistans lik R₀.

Tegn figur og utled et uttrykk for målebroens utgangsspenning (V₀) som funksjon resistansendringen ΔR . Anta at $\Delta R \ll R_0$ og gjør fornuftige forenklinger.

Oppgave 3

En måleomformer som måler nivået har et måleområde [0,00 - 15,00]cm og et nominelt målesignalområde [0,00 - 10,00]V. Under kalibreringen (én kalibreringssyklus) måles følgende verdier:

Nivå, x[cm]	0,00	1,50	3,00	4,50	6,00	7,50	9,00	10,5	12,0	13,5	15,0
y[V], økende x	0,00	0,35	1,42	2,40	3,43	4,35	5,61	6,50	7,77	8,85	10,2
y[V], avtagende x	0,14	1,25	2,32	3,55	4,43	5,70	6,78	7,80	8,87	9,65	10,2

- a) Tegn kurven for én kalibreringssyklus.
- b) Finn et matematisk uttrykk for uavhengig referansekarakteristikk vha. regresjonsanalyse. Tegn uavhengig referansekarakteristikk på samme figur fra punkt a.
- c) Tegn hysteresen som en differanse mellom avtagende og økende kalibreringskurve på samme figur fra punkt a. Bestem maksimal hysterese i prosent av målesignalomfanget.

Oppgave 4

Resistansen i en platina temperaturføler (mer om det senere) kan tilnærmes med formelen:

$$R(t) = R_0 \cdot (1 + A \cdot t + B \cdot t^2) \qquad [\Omega]$$

hvor R₀ er resistansen ved 0°C, t er temperaturen i celsiusgrader [°C], A og B er konstanter.

Føleren er kalibrert ved vannets frysepunkt (0°C), vannets kokepunkt (100,0°C) og størkningspunktet til sink (419,6°C). De tilhørende resistansverdiene er målt til henholdsvis $100,0\Omega$, $138,5\Omega$ og $253,7\Omega$.

- a) Bestem de ukjente parametrene som inngår i formelen vha. regresjonsanalyse enten ved bruk av Matlab/Excel eller ved håndregning.
- b) Hvilken temperatur tilsvarer en resistans på $R = 175,8\Omega$?

Oppgave 5

Dimensjonene til en sylindrisk gjenstand med en halvkule i den ene enden er målt til følgende verdier med tilhørende standard usikkerhet:

 $\begin{array}{ll} \mbox{Lengde for sylinder:} & l = (10.0 \pm 0.1) \mbox{ cm} \\ \mbox{Radius for kule:} & R = (4.00 \pm 0.05) \mbox{ cm} \\ \mbox{Massetetthet for sylinder:} & \rho_1 = (3.50 \pm 0.10) \mbox{ g/cm}^3 \\ \mbox{Massetetthet for kule:} & \rho_2 = (2.50 \pm 0.05) \mbox{ g/cm}^3 \end{array}$

Beregn gjenstandens masse med tilhørende standard usikkerhet.

Oppgave 6

Den dynamiske viskositeten (mer om det senere) til en væske skal bestemmes ved å måle volumstrømmen gjennom et kapillarrør i et gitt tidsrom. Måleoppstillingen er skissert i figuren under.

Væskeinnstrømning

Væskestrømmen i kapillarrøret er gitt av formelen:

$$q = \frac{\pi \cdot D^4 \cdot \Delta p}{128 \cdot \mu \cdot L}$$

hvor q [m³/s] er væskestrømmen, D [m] er kapillarrørets diameter, Δp [Pa] er trykkfallet over kapillarrøret, μ [Ns/m²] er den dynamiske viskositeten og L [m] er kapillarrørets lengde.

Væskestrømmen bestemmes ved å måle endringen i væskevolumet i målesylinderen i et tidsrom som måles med stoppeklokke. Under forsøket måler vi at væskevolumet i målesylinderen økes med:

$$V = (56 \pm 1) \text{ ml i løpet av tiden } t = (10,0 \pm 0,2) \text{ s.}$$

Følgende parametere med tilhørende standard usikkerhet er gitt:

Høyden i væsketanken: $h = (50,0 \pm 0,5)$ cm Kapillarrørets diameter: $D = (2,2 \pm 0,1)$ mm Kapillarrørets lengde: $L = (40,0 \pm 0,5)$ cm Væskens densitet: $\rho = (875 \pm 5) \text{ kg/m}^3$

Bruk: Tyngdeakselerasjon, g = 9.81 N/kg (se bort fra usikkerheten i g).

Trykkfallet er gitt ved formelen: $\Delta p = \rho \cdot g \cdot h$

- a) Bestem væskens viskositet med tilhørende standard usikkerhet. Hint: Bruk relativ usikkerhet for å gjøre beregningene enklere.
- b) Den kombinerte usikkerheten i beregningen av viskositeten viser seg å være for stor. Foreslå et tiltak som kan redusere usikkerheten. Hint: Se den parameteren som bidrar mest i usikkerhetsberegningen.

```
Fasit:  2a \qquad V_o \approx -\frac{V_s}{4 \cdot R_o} \cdot \Delta R \\ 3b \qquad 0,69 \cdot x - 0,13 \\ 3c \qquad 13,2\% \\ 4a \qquad 100 \cdot (1+3,91 \cdot 10^{-3} \cdot t - 5,85 \cdot 10^{-7} \cdot t^2) \\ 4b \qquad 200^{\circ}C \\ 5 \qquad (2094 \pm 78)g \\ 6a \qquad (1,1 \pm 0,2) \cdot 10^{-3} \text{Ns/m}^2
```