Deep Learning e Visão

Computacional com CNTK

VITOR MERIAT **WVITORMERIAT**

Visual Studio Summit

#VSSUMMIT

About me

Vitor is a computer scientist who is passionate about creating software that will positively change the world we live in.

Currently, he works as **Data Scientist and Machine Learning Engineer** at **ESX**, where he is helping to shape new disruptive services based in Cloud Computing. Data science enthusiast, he works with Big Data projects, data analytics and **Microsoft MVP Azure**.

vitormeriat.com.br

twitter.com/vitormeriat

github.com/vitormeriat

Visual Studio Summit

Agenda

O que é Visão Computacional e por que é uma assunto tão difícil;

Como Deep Learning e a Cloud Computing me ajudam com isso?

Visão é um problema inverso e mal-posto

- Pequenas variações na imagem levam a interpretações distintas;
- Visão é ambígua
- Ruído piora o problema

Visão Computacional é difícil

- Ambiguidades
- Distorções
- Paradoxos
- Ficções

Eu quero ensiar para o meu computador que isso é um gato

Vamos ensinar esse computar

Isso é um gato. Agora eu já sei.

WTF?!?!

WTF?!?!

Artificial Intelligence Machine Learning Deep Learning Cognitive Computing

O que é computação cognitiva?

Área da Computação que estuda e desenvolve algoritmos que "tentam" imitar o processo da Inteligência Humana, de aprender, sentir, identificar e resolver problemas.

39 137 0 152 147 37 41 160 250 255 235 162 255 238 206 9 150 251 45 21 184 159 154 255 233 40 0 145 146 0 11 124 253 255 107 15 236 216 0 38 109 247 240 169 0 253 253 23 62 224 241 255 164 3 252 250 228 255 255 234 112 28 0 21 255 253 251 255 172 31 0 163 225 251 255 229 120 0 21 162 255 255 254 255 126 3 79 242 255 141 66 255 245 189 26 221 237 98 0 67 251 255 144 125 255 141 0 87 244 255 208 145 248 228 116 235 255 141 34 85 237 253 246 255 210 21 6 23 112 157 114 32

Escalar

```
s = np.array(8)

s.shape = ()
```

Vetor

```
v = np.array([1,2,3])

v.shape = (3,)
```

[1,2,3]

Matriz

```
m = np.array([[1,2,3], [4,5,6], [7,8,9]])
m.shape = (3, 3)
```

```
[1,2,3]
[4,5,6]
[7,8,9]
```

Tensor

```
t = np.array([[[1],[2]],[[3],[4]],[[5],[6]]],

[[[7],[8]],[[9],[10]],[[11],[12]]],

[[[13],[14]],[[15],[16]],[[17],[17]]]))

t.shape = (3, 3, 2, 1)
```

't'	
'e'	
'n'	
's'	
'o'	
'r'	

3	1	4	1
5	9	2	6
5	3	5	8
9	7	9	3
2	3	8	4
6	2	6	4

Vetor Matriz

Tensor

What?

Generative Adversarial Networks

Multiple GPU Cards

Parallel Training

A faster, more efficient, more intelligent cloud

The need for **SCALE**

Data explosion: 2013 4.4 ZB - 2020 44 ZB ML, DNN, Al are driving requirements up faster

The need for **LOW-LATENCY**

Autonomous decision making Real-time insights into connected devices Interactive user experiences

The need for THROUGHPUT

Cloud-scale services
Searches and recommendations (Indexing the Internet!)

New Azure VM Sizes

Azure Batch Al Training

Al Training At Scale with Azure

Announcing Azure Batch Rendering Service

Silicon alternatives

TRAINING

CPUs and GPUs, limited FPGAs, ASICs under investigation

EVALUATION

CPUs and FPGAs, ASICs under investigation

FLEXIBILITY

EFFICIENCY

The power of deep learning on FPGA

Performance

Tens to hundreds of TOPS of effective inference throughput at low batch sizes

Ultra-low latency serving on modern DNNs

>10X better than CPUs and GPUs

Scale to many FPGAs in single DNN service

Flexibility

FPGAs ideal for adapting to rapidly evolving ML

CNNs, LSTMs, MLPs, reinforcement learning, feature extraction, decision trees, etc.

Inference-optimized numerical precision

Custom binarized, ternarized, tiny precision nets

Sparsity, deep compression for larger, faster models

Scale

Microsoft has the world's largest cloud investment in FPGAs Multiple Exa-Ops of aggregate AI capacity

We have built powerful DNN serving platform on our FPGA fabric

MUITO OBRIGADO!

#VSSUMMIT