

CARNEIRO HIDRÁULICO O QUE É E COMO CONSTRUÍ-LO

Prof. Geraldo Lúcio Tiago Filho Revisão: Prof. Augusto Nelson Carvalho Viana

CERPCH - 2002

O QUE É O CARNEIRO HIDRÁULICO

O carneiro hidráulico é um dos dispositivos mais práticos e baratos usados para bombear água. É de simples manejo e de pouca manutenção. Para funcionar o carneiro hidráulico não necessita de energia elétrica ou de combustível fóssil. É uma máquina de funcionamento automático capaz de aproveitar o efeito do "golpe de aríete" para bombear água.

O "golpe de aríete" é um surto de pressão que ocorre em um tubo conduzindo água, cujo escoamento sofre uma interrupção abrupta.

O carneiro hidráulico é uma máquina muito simples que pode ser adquirido pronto no mercado ou ser construído a nível de propriedade rural. Conforme mostra o esquema da figura 1, ele é constituído basicamente das seguintes partes:

Um tubo de alimentação 1 Uma câmara de ar 4 Uma válvula de impulso 2, Tubo de recalque 5

Uma válvula de recalque 3

COMO FUNCIONA O CARNEIRO HIDRÁULICO

Ao ser instalado o carneiro hidráulico tem a válvula de impulso (2) fechada pela ação da pressão da água do tubo de alimentação (1) para iniciar a operação do carneiro hidráulico basta abrir, com a mão a válvula de impulso. O funcionamento do carneiro hidráulico é automático.

Para paralisar o carneiro, basta manter a válvula de impulso fechada.

A escolha do tamanho do carneiro está relacionada com a queda (h) e quantidade de água (Q) disponíveis.

A quantidade de água aproveitada, (q), será função do tamanho do carneiro e da relação entre a queda disponível e a altura de recalque. (h/H).

A tabela 1 fornece diâmetros de alimentação e de recalque necessários em função da quantidade de água (Q) disponível.

A tabela 2, fornece a porcentagem de água (R) a ser aproveitada em função da relação entre a queda disponível e a altura de recalque (h/H).

Tab.1 Diâmetros de entrada e de Tab.2 Porcentagem de água saída

Proporçã o	Aproveitame nto
(h/H)	R
1/2 1/3 1/4 1/5 1/6 1/7 1/8	0.60 0.55 0.50 0.45 0.40 0.35 0.30

Inicialmente esta mesma pressão força a abertura da válvula de recalque (3), que permite a entrada da água na câmara de ar (4). Desta forma o ar aí contido é comprimido até que as pressões se equalizem. Nesta situação o carneiro hidráulico está pronto para funcionar.

Para colocá-lo em funcionamento, basta acionar algumas vezes a válvula de impulso (2).

Com a válvula de impulso aberta a água começa sair em pequenos esguichos até que, com o aumento da velocidade da água, ocorre o seu fechamento.

A água que tinha uma velocidade crescente sofre uma interrupção brusca, causando um surto de pressão ou "Golpe de Aríete", que irá percorrer o carneiro e todo o tubo de alimentação (1).

Este surto de pressão provoca a abertura da válvula de recalque (3), que por sua vez, permite a entrada da água na câmara de ar(4). A medida que o ar contido no interior da câmara vai sendo

comprimido, uma resistência à entrada da água vai aumentando, até que a pressão no interior fique um pouco superior e provoque o fechamento da válvula de recalque (3). A água contida no interior da câmara, impedida de retornar ao corpo do carneiro, só tem como saída o tubo de recalque.

Em momento posterior ocorre a formação de uma onda de pressão negativa que provoca a abertura da válvula de impulso, dando condições para a ocorrência de um novo ciclo.

Com o desenrolar do ciclos sucessivos, a água começa encher o tubo de recalque (3) e sua elevação ocorre a medida que o ar da câmara (4) fica comprimido.

Figura 1 – Esquema e exemplo de instalação de um carneiro hidráulico

COMO DETERMINAR A VAZÃO DE RECALQUE

Dados

⇒ Relação entre queda disponível e altura de elevação:

$$(h/H) = 2/10 = 1/5$$

A porcentagem de aproveitamento da água igual a relação de 1/5, como é mostrado na tabela 2, corresponde a um aproveitamento

$$R = 0.45$$

⇒ Vazão de água recalcada é dada pela expressão

$$q = Q \cdot \left(\frac{h}{H}\right) \cdot R$$

onde: Q = 1800 litros por hora h = 2 metros H = 10 metros

$$R = 0.45$$

assim:

$$q = 1800 \cdot \left(\frac{2}{10}\right) \cdot 0,45$$

ou seja: q = 162 litros por hora

COMO DETERMINAR O CONSUMO DE ÁGUA EM UMA PROPRIEDADE

A título de orientação, a seguir, encontra-se a Tabela 3, "consumo aproximado de água no meio rural", que dá os valores necessários para um pré-dimensionamento. O consumo da água necessário à propriedade é dado pelo número de animais e a área a ser irrigada multiplicada pelos valores encontrados na tabela 3.

Tab. 3 - Consumo aproximado de água no meio rural

Especificação	Litros por dia
Sede da fazenda - por pessoa	70 a 100
Aves – cabeças	$0,2 \ a \ 0,3$
Caprinos - por cabeça	4 a 5
Suínos - por cabeça	5 a 8
Bovinos - por cabeça	30 a 35
Equinos - por cabeça	35 a 50
Suínos + higiene - por cabeça	12 a 15
Hortas e jardins - por m ²	3 a 5

EXEMPLO DE DIMENSIONAMENTO DO CARNEIRO HIDRÁULICO

⇒ Dados do Sítio:

TOTAL				=	2180 litros por dia
Horta	200 m^2	X	4 litros por dia	=	800 litros por dia
Curral	15 cabeças	X	30 litros por dia	=	450 litros por dia
Chiqueiro	20 cabeças	X	15 litros por dia	=	300 litros por dia
Galinheiro	100 aves	X	0,3 litros por dia	=	30 litros por dia
Sede do Sítio	6 pessoas	X	100 litros por dia	=	600 litros por dia

⇒ Vazão recalcada mínima necessária:

$$q = 2180$$
 litros por dia $= \frac{2180}{24} = 90,83$ litros por hora

q = 90,83 litros por hora

 \Rightarrow Elementos de campo: altura de queda: h = 2,5 metros altura de recalque H = 15 metros

• Relação das alturas de queda disponível e de recalque

$$\left(\frac{h}{H}\right) = \frac{2.5}{15} = \frac{1}{6}$$

• Aproveitamento da instalação

na tabela 2 para
$$\left(\frac{h}{H}\right) = \frac{1}{6} \rightarrow \boxed{R = 0,4}$$

Vazão de alimentação disponível para atender a vazão recalcada mínima:

Q.
$$\frac{q}{R} \cdot \left(\frac{h}{H}\right) = \frac{90,83}{0,40} \cdot \left(\frac{15}{25}\right) = 1362,45 \text{ litros por hora}$$

$$Q = 1362,45$$
 litros por hora

Diâmetros dos tubos de entrada e saída
 Na tabela 1 para Q = 1362,45 litros por hora

Diâmetro de entrada:
$$\varnothing$$
e = 1 $\frac{1}{4}$ " Diâmetro de saída: \varnothing s = $\frac{1}{2}$ "

O tamanho do carneiro hidráulico fabricado pela industria é definida em função dos diâmetros de entrada e saída. A tabela 4, a seguir, permite escolher o tamanho definido pelo número do carneiro hidráulico.

Tab. 4 – Tamanho e característica do carneiro hidráulico industrial.

Fabricantes: Cleverson, Queiroz Júnior e Marumby.					
tamanho	Diametro dos tubos (pol.)		1/min. Neces. Ao funcionamento		
	Entrada	saida	Minimo	Maximo	
2	3/4	3/8	3	10	
3	1	1/2	6	15	
4	1 1/2	1/2	10	25	
5	2	3/4	20	50	
6	2 1/2	1	42	90	
7	2 1/2	1 1/4	80	140	

Fabricantes: Jordão.					
tamanho	Diametro dos tubos (pol.)		1/min. Neces. Ao funcionamento		
	Entrada	saida	Minimo	Maximo	
0	3/4	1/2		10	
00	1	1/2	13	20	
000	1 1/2	1	7	45	
1	2	1/2	3	20	
1	1 1/2	1	7	45	
3	2	1 1/4	20	90	
4	3	2	40	200	
5	4	2	80	360	
6	6	3	200	800	

COMO CONSTRUIR UM CARNEIRO HIDRÁULICO DE ACESSÓRIOS DE TUBOS

Com os diâmetros de entrada e saída dos tubos, em uma loja de materiais de construção compra-se os materiais relacionados na tabela 5 na figura 2.

Tab. 5 - Material necessário para a construção de um carneiro hidráulico com ∅ entre 1", 2" e 3".

Peça Nº	Material	Diâm	Quant.		
_		1"	2"	3"	
1	Garrafa Pet 2 litros				01
2	Tampa da garrafa com furo Ø 15/mm				01
3	Bucha redução		1" x ¾"	2" x ¾"	01
4	Tê PVC branco rosca	3/4"	1"	1"	01
5	Bucha redução PVC branco rosca	3/4" x 1/2"	1" x ¾"	2" x 1"	01
6	Adaptador preto para mangueira	1/2"	3/4"	1"	01
7	Niple PVC branco	3/4"	1"	2"	01
8	Bucha de redução PVC branco rosca	1" x ¾"	2" x 1"	3" x 2"	01
9	Válvula retenção vertical (tipo Docol)	1"	2"	3"	01
10, 12	Niple galvanizado	1"	2"	3"	02
11	Tê galvanizado	1"	2"	3"	01
13	Válvula de poço docol (latão docol)	1"	2"	3"	01
14	Parafuso com três porcas e uma aruela	5/16 ou	5/16 ou	5/16 ou	01
		M8	M8	M8	
15	Mola do acionador da válvula de descarga para vaso sanitário marca (hydra)				01

Procedendo-se a montagem das peças de acordo com o esquema da figura 2, obtém-se um carneiro hidráulico feito totalmente de acessórios de tubos.

Na montagem deve-se ter atenção com relação a válvula de impulsão (peça 13, tabela5). Para que o tampão desta válvula funcione como válvula de impulso do carneiro hidráulico deve-se proceder da seguinte forma.

- 1- Furar a base do crivo, que acompanha a válvula de retenção, com um furo de diâmetro adequado a fazer uma rosca para o parafuso (peça nº 14).
- 2- Rosquear o orifício.
- 3- Rosquear uma das porcas até a posição intermediária do parafuso (nº 14).
- 4- Rosquear o parafuso (nº 14) até que a porca encoste no fundo do crivo.
- 5- Entre duas porcas, prender a arruela na ponta livre do parafuso.
- 6- Ao repor o crivo na válvula, inserir entre a arruela e o tampão da válvula a mola (nº 15).

Para colocá-lo em funcionamento deve-se ajustar a força da mola (peça 15), atuando-se na porca de aperto da haste (peça 14). O ajuste é feito procurando posicionar a porca onde ocorre a maior vazão de água recalcada.

Figura 2 - Carneiro hidráulico com garrafa PET

<u>Figura 3</u> – Carneiro com garrafa PET montado

RECOMENDAÇÕES IMPORTANTES

1) <u>Tubo de alimentação</u>:

O comprimento deste tubo de alimentação L_Q poderá ser calculado pela seguinte fórmula:

$$L_Q = \left(\frac{H}{h}.0,3\right) + H$$

Para o exemplo anterior:

H = 15 metros

h = 2,5 metros

$$L_Q = \left(\frac{15}{2.5}.0.3\right) + 15 = 16.8$$
 metros

- \Rightarrow O tubo de alimentação deverá ser o mais reto possível, devendo ser evitado o uso de curvas e joelhos.
- ⇒ O tubo de alimentação deverá estar mergulhado pelo menos 30 [cm] abaixo do nível da água para evitar a sucção de ar e deverá possuir uma tela para evitar entradas de objetos estranhos.
- ⇒ O tubo de alimentação deverá ser, preferencialmente feita em aço galvanizado. O uso de PVC ou outro material "mole" diminui a eficiência do carneiro hidráulico.

2) Tubos de Recalque:

⇒ O comprimento do tubo de recalque Lq deverá ser no máximo dez vezes o valor do comprimento do tubo de alimentação. No exemplo tem se:

$$Lq = 10$$
. $L_{O} = 10$. $16,8 = 168$ metros

Caso o comprimento de recalque Lq seja maior que dez vezes o comprimento de alimentação L_0 , deverá ser aumentado o diâmetro do tubo de recalque.

 \Rightarrow No tubo de recalque também deverá ser evitado o uso de joelhos e curvas, para minimizar as perdas.

Recomenda-se o uso de uma válvula de retenção logo no inicio do tubo de recalque.

CERPCH – Centro Nacional de Referência em Pequenos Aproveitamentos Hidroenergéticos Av. BPS, 1303. Cx. P. 50 - Itajubá - MG. CEP 37500-000 Fone: (035) 629 1157 - Fax: (035) 629 1265