Adaptive Passivity Based Controller Algorithm

- A) Generate Trajectories, Initial states and XLO)
- B) Calculater r= e+ re r= e+ re
- C) calculate Z(0) = [-1 YT r

T: 3x3 symmetric Positive definite matrix

Y = [sind V a]

a = 9 - r

V=9-r

D) $\bar{\alpha}(1) = \bar{\alpha}(0) + \bar{\alpha}(0) * \Delta E$

substitute in Torque

E) T= Y Q(i) - Kor

Feed it to the original system.

F) &= I(T-fue-mgdsine)

solve using the ODE

Robert invese Dynamics Controller Algorithm

A) Generate Trajectory, initial states.

KP : Positive definite gain matrix - in this case scalar

Ko: Positive definite gain matrix -> in this case scalar.

c) calculate v Base on the following condition:

where: 3 is a Picked UP Positive value.

P. Positive definite matrix.

X: error state vector

ag = 9d - Kpe - KDe+ () to overcome D) Calculate ag

Mostafa Atalla

Adaptive Passivity Based Controller

Robust Inverse Dynamics Controller

```
gama=[10 10 10 10];
p=[1 0;0 1];
B=[0;1];
kp=40;
kd=30;
```


Mostafa Atalla

Mostafa Atalla

The input torque to the system using the **Adaptive Passivity Based Controller** . (plotted point by point) From a high level, we can observe that the profile goes to be like the desired trajectory which makes sense.

The input torque to the system using the Robust Inverse Dynamics Controller.

Mostafa Atalla

Although we can see here that there are points violating the disturbance bound of the robust controller, it can converge. So it is no a sufficient bound.

For $x0=[-5 \ 0.5]$;

Mostafa Atalla

Mostafa Atalla

For the input trajectory we can see that the input torque is eventually following the sinusoidal desired trajectory. The same note: the input is then following a sinusoidal trajectory according to the desired trajectory. The same we get for the robust inverse dynamics controller.

