Final Exam April 5th 2019

Final exam: PDE part (2 pages)

Instructions

- Documents and draft papers brought with you are prohibited as well as electronic devices (cell phones, calculators, smart watches ...).
- Do not use correction fluids.
- Please use a blue or black pen (do not use a light blue fountain pen).
- Please fill in the title block very carefully and in block letters.
- Please write the sheet number on each sheet.
- The sheets must be handed out flat and in the same way (the cut corner should be top right).
- Any of your answers should be justified by an appropriate proof.
- The exercises 1 and 2 are independent.

Exercise 1

On [0,1], we study the following problem: find $w:[0,1]\to\mathbb{R}$ such that

$$\begin{cases} -\left(x \mapsto \frac{w'(x)}{1+x}\right)' + w = 0, \\ w(0) = 1, \quad w'(1) = 0. \end{cases}$$
 (Q)

- **Q.1.1** How do you reduce (Q) to a problem with a homogeneous (zero) condition at x = 0?
- **Q.1.2** Show that $H = \{v \in H^1(0,1) : v(0) = 0\}$ equipped with the inner product of $H^1(0,1)$ is a Hilbert space.
- **Q.1.3** Show that, on $H, v \mapsto ||v'||_{L^2(0,1)}$ is a norm that we will denote $||\cdot||_H$, and that, still on H, this norm is equivalent to the classical $H^1(0,1)$ norm.
- Q.1.4 Show the existence and uniqueness of the solution of class $C^{\infty}([0,1])$ of the problem (Q). You will prove rigorously that this solution satisfies the boundary conditions of the problem (Q).

Exercise 2

Recall that a square matrix B is monotone if for all vector y with non negative coefficients such that there exists x satisfying Bx = y, the coefficients of x are all non negative.

- **Q.2.1** (Basic question) Show that a monotone matrix B is invertible.
- **Q.2.2** (Basic question) Show that all the coefficients of the inverse of a monotone matrix B are non negative.

Let $J \geq 2$. Let h = 1/J be the discretization step and $x_j = jh$ for $j \in \{0, \dots, x_{J+1}\}$. We consider the following numerical scheme: we look for $V = (v_j)_{1 \leq j \leq J} \in \mathbb{R}^J$, knowing that $v_0 = 1$ is

fixed, such that

$$\begin{cases}
-\frac{1}{h} \left(\frac{v_{j+1} - v_j}{(1 + h(j+1/2))h} - \frac{v_j - v_{j-1}}{(1 + h(j-1/2))h} \right) + v_j = 0, \ j \in \{1, \dots, J\}, \\
v_{J+1} = v_{J-1}.
\end{cases}$$
(S)

Q.2.3 Write the scheme (S) as a linear system $A_h u_h = b_h$ of size J, detailing the matrix A_h and the vector b_h .

INDICATION: You can use the notations $\beta: x \mapsto (1+x)^{-1}$ and $\beta_{j-1/2} = \beta(h(j-1/2))/h^2$ for $j \in \{1, \ldots, J\}$.

- **Q.2.4** Write the matrix A_h and the vector b_h for J=4.
- **Q.2.5** Show that the matrix A_h is monotone.
- **Q.2.6** Show that, for all $x \in [h/2, 1 h/2]$ and $f \in C^2([0, 1])$,

$$f(x+h/2) - f(x-h/2) = f'(x) + O(h^2).$$

Q.2.7 Show that the scheme (S) is consistent at the order (at least) 1 with the equation

$$-\left(x \mapsto \frac{w'(x)}{1+x}\right)' + w = 0 \text{ sur }]0,1[.$$
 (E)

Q.2.8 Find the solution of class $C^{\infty}([0,1])$ of the following problem and show it is unique:

$$\begin{cases} -\left(x \mapsto \frac{w_1'(x)}{1+x}\right)' = 1, \\ w_1(0) = 1, \quad w_1'(1) = 0. \end{cases}$$
(Q1)

- **Q.2.9** Show that the matrix $A_h I$ is monotone.
- Q.2.10 (More difficult question) Show that the scheme (S) is stable for the $\|\cdot\|_{\infty}$ norm. INDICATION: You can use the properties of the function w_1 and the techniques that are used to show that the scheme is consistent with (E).
- Q.2.11 Using the previous questions, show that the numerical scheme converges to the solution of (Q).