

ĐẠI HỌC BÁCH KHOA HÀ NỘI VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

APPLIED STATISTICS AND EXPERIMENTAL DESIGN

Elements of Statistics

TITLE AND CONTENT SLIDE

Elements of Statistics

III. Statistics – parameter estimation

- 3.1. Introduction to Statistics
- 3.2. Parameter estimation
- 3.3. Hypothesis testing

Definitions

- Probability building an abstract models and its conclutions are deductions based on system of axioms
- Statistics applications of theory to real world problems and its conclutions are inferences based on observations.
 - Statistics: analysis + design
 - Analysis mathematical statistics involving repeated trials and events the probability of which close to 0 or 1.
 - Design –applied statistics deals with data collection and construction of experiments that can be adequately described by probabilistic models
 - Scope of study: mathematical statistics

- Probabilistic concepts and reality
 - Probability of event A:
 - P(A) is estimated by P(A)≈N_A/N
 - This empirical formula is used for relative frequency interpretation of all probabilistic concepts
 - Example:
 - the mean η of a r.v can be estimated by
 - $\eta^{\prime} = (1/n)\sum x_i$, where x_i are observed value of a r.v X.
 - Distribution function $F_X(x)$ can be estimated by
 - $F_X^{(x)} = n_x/n$, where n_x is number of $x_i \le x$.
 - The relationship are empirical point estimates of the parameter η and $F_X(x)$ and a major objective of statistics is to give them an exact interpretation

- Problems of statistics:
 - First class of problems:
 - Predict future observations when probabilistic model is known.
 - We proceed from models to observations.
 - Example:
 - Distribution functtion $F_X(x)$ of X is known, and we wish to predict average X of its n future samples
 - Probability *P* of an event *A* is known, and we wish to predict number of occurences of *A* in *n* future trials

Predict x

- Second class of problems:
 - One or more parameters θ_i of the model are unknown
 - Estimate values of parameters (parameter estimation)
 - Decide whether θ_i is a set of known constants θ_{0i} (hypothesis testing).
 - We proceed from observations to models

Estimate θ

Example:

- A coin is tossed 1000 times and heads show 475 times.
 - + Estimate value of the probability of heads or
 - + Decide whether the coin is fair.
- The values x_i of r.v X are observed.
 - + Estimate mean η of X or
 - + Decide whether to accept the hypothesis that η =5.3.

- Prediction problems
 - Given r.v X with known F_X(x)
 - Predict its value at future trials
 - Point prediction of X:
 - Determine constant c: (X-c) min.
 - If criterion of selecting c is to minimize the MS error E{(X-c)²}, then c=E{X} MSE -mean square error
 - $MSE = E\{(X-c)^2\} = E\{X^2 2Xc + c^2\} = \psi(c)$ min.
 - $d\psi(c)/dc = 0$: $E\{2c 2X\} = 0 => E\{c-X\} = 0 =>$
 - $c E\{X\} = 0$: $c = E\{X\}$.

- Interval prediction of X:
 - Determine constants c_1 and c_2 :

$$P\{c_1 < X < c_2\} = \gamma = 1 - \delta$$
 (1)

- Where γ is a given constant called the confidence coefficient. $\gamma 100\%$
- Predict: $x_i \in (c_1, c_2)$,
 - Correct prediction in 100γ% of the cases.
- Interval prediction: find c_1 , c_2 : $(c_2 c_1)$ min and (1)

- Selection of γ:
 - If $\gamma \approx 1$, $X \in (c_1, c_2)$ is reliable, but $(c_2 c_1)$ is large.
 - If $\gamma \downarrow \Rightarrow (c_2 c_1) \downarrow$, the estimation is less reliable.
 - For optimum prediction: assign value to γ and determine c₁, c₂: (c₂ – c₁) min and (1).
 - If $f_X(x)$ has single maximum $(c_2 c_1)$ is minimum if $f_X(c_1) = f_X(c_2)$

Suboptimal solution: if we determine c₁ and c₂:

$$P\{X < c_1\} = \delta/2 \text{ and } P\{X > c_2\} = \delta/2$$

- \Rightarrow $c_1 = x_{\delta/2}$ and $c_2 = x_{1-\delta/2}$
- This solution is optimum if the $f_X(x)$ is symmetrical about its mean η
- If X is normal: $X_{u}=\eta+z_{u}\sigma$

- Parameter estimation problem
 - X r.v with p.d.f $F_X(x, \theta)$ of known form which is depends on parameter θ .
 - θ scalar or vector
 - Estimate parameter θ .
 - Repeat experiment n time and x_i is observed value of x.
 - Based on observed value, find point estimate and interval estimate of θ.

Point estimate

- Point estimate: $\hat{\theta} = g(x_1, ..., x_n) \text{observation vector};$
- point estimator of θ ; • R.v
- Any funĝtion of yector X=[x₁, ..., x_n] statistic;
- Point estimator is statistic.
- - unbias estimator of parameter θ if

$$E\{\hat{\theta}\} = \theta$$

- Otherwise biased estimator with bias $E\{\hat{\theta}\} = \theta$ If g(X) is properly selected, the estimation $error b = E\{\hat{\theta}\} \theta$ \downarrow when $n\uparrow$.
- Of-estimation error when $n \rightarrow \infty$ then called consistent estimator $\theta \rightarrow 0$

- Example: sample mean \overline{X} of X
 - \overline{X} is unbiased estimator of η_X
 - Its variance $\sigma^2/n \rightarrow 0$ when $n\rightarrow \infty$
 - $\overline{X} \rightarrow \eta_X$ in MS sense, also in probability.
 - \overline{X} is consistent estimator of η_X
- The best estimator: $\hat{\theta} = g(X)$

$$e = E\{[g(X) - \theta]^2\} = \int_R [g(X) - \theta]^2 f(X, \theta) dX$$

g(X) is usualy selected empirically.

- Empirically determination of g(X)
 - Suppose θ is the mean $\theta = E\{q(X)\}$ of some function q(X) of X.
 - Sample mean of q(X) is consistent estimator of θ

 $\hat{\theta} = \frac{1}{-}\sum_{i} q(x_i)$ • If sample mean of q(X) is used as the point estimator of θ , the estimate will be satisfactory at least for n large

Interval Estimates

- Definition
 - Interval estimate of parameter θ is an interval (θ_1, θ_2) , the end points of which are function $\theta_1 = g_1(X)$, $\theta_2 = g_2(X)$ of the observation vector X.
 - Random interval (θ_1, θ_2) is an interval estimator of θ .
 - If $P\{\theta_1 < \theta < \theta_2\} < \gamma$, (2) (θ_1, θ_2) is γ confidence interval of θ .
 - The constant γ confidence interval of the estimate and the difference δ = 1 γ is confidence level
 - The objective of interval estimation is determination of functions $g_1(X)$ and $g_2(X)$ so as to minimize the length $(\theta_2 \theta_1)$ subject to constrain (2)

Mean estimate

- R.v X with mean value η
- The point estimate of mean value
- The interval estimator of mean value
 - Normality assumption of \overline{X} .
- Known variance
 - Suppose that the variance σ^2 of x is known.
 - z_u the u percentile of the standard normal density, we have:

$$P\{\eta - z_{1-\delta/2} \frac{\sigma}{\sqrt{n}} < \overline{x} < \eta + z_{1-\delta/2} \frac{\sigma}{\sqrt{n}}\} = G(z_{1-\delta/2}) - G(-z_{1-\delta/2}) = 1 - \frac{\delta}{2} - \frac{\delta}{2}$$

- Confidence coefficient γ:
 - η is in the interval $x \pm z_{1-\delta/2} \sigma / \sqrt{n}$

$$P\{\overline{\mathbf{x}} - z_{1-\delta/2} \frac{\sigma}{\sqrt{n}} < \eta < \overline{\mathbf{x}} + z_{1-\delta/2} \frac{\sigma}{\sqrt{n}}\} = 1 - \delta = \gamma$$
 • Determination of a confidence coefficient for η :

- - Observe the sample x_i của x
 - Form their average x.
 - Select a number γ =1- δ
 - Find the standard percentile z_u for $u=1-\delta/2$.
 - Form the interval $x \pm z_u \sigma / \sqrt{n}$.
- If the discrete type r.v provided that n is large, this also holds.

- The choice of the confidence interval γ is dictated by two conflicting requirements:
 - If $\gamma \approx 1$, the estimate is reliable but the size $2z_u\sigma/\sqrt{n}$ of the confidence interval is large.
 - If γ is reduced, z_u is reduced, but the estimate is less reliable.
 - The final choice is a compromise bazed on the applications.

- Tchebycheff inequality
 - Suppose that the distribution of \overline{X} is unknown.
 - From Tchebycheff inequality:

$$P\{|x-\eta| \ge \epsilon\} \le \sigma^2/\epsilon^2$$

- Substitute X by \overline{X} , σ by σ/\sqrt{n} and set $\varepsilon = \sigma/n\delta$
- We have:

$$P\{\overline{\mathbf{x}} - \frac{\sigma}{\sqrt{n\delta}} < \eta < \overline{\mathbf{x}} + \frac{\sigma}{\sqrt{n}}\} > 1 - \delta = \gamma$$

• This shows that, the exact $\underline{\gamma}$ confidence interval of η is contained in the interval ($X\pm\sigma\sqrt{n\delta}$).

- Unknown variance σ^2
 - To estimate η:
 - Sample variance is unbiased estimator of variance σ^{2} .
 - It tens to σ^2 when $n \rightarrow \infty$

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

- For n large, we can use approximation s≈σ
- Confidence interval:

$$\overline{x} - z_{1-\delta/2} \frac{s}{\sqrt{n}} < \eta < \overline{x} + z_{1-\delta/2} \frac{s}{\sqrt{n}}$$

- Maximum likelihood estimation
 - R.v X has density $f(x, \theta)$.
 - Estimate θ in terms of a single observation of the r.v X.
 - Assume that the joint p.d.f of $X_1, ..., X_n$ given by $f_X(x_1, ..., x_n; \theta)$ depends on θ .
 - Observations $x_1, ..., x_n$ are given. The value of θ that maximizes f_x is the most likely value for θ .
 - This value is chosen as the ML estimate for θ

- Given $X_1 = x_1, ..., X_n = x_n$
- The likelihood function $f_x(x_1, ..., x_n; \theta)$,
- Determination of the ML estimate by:

$$\sup_{\hat{\theta}_{ML}} f_X(x_1, x_2, \dots, x_n; \theta)$$

• Or $L(x_1, x_2, \cdots, x_n; \theta) = \log f_X(x_1, x_2, \cdots, x_n; \theta)$. • If $L(x_1, \dots, x_n; \theta)$ is differentiable and a supremium $\theta \land_{ML}^n$.

exists, then following equation must be satisfied:

$$\left. \frac{\partial \log f_X(x_1, x_2, \dots, x_n; \theta)}{\partial \theta} \right|_{\theta = \hat{\theta}_{MI}} = 0.$$

Example

- $X_i = \theta + w_i$, i=1,...,n: n observations
 - θ unknown parameter
 - w_i n independent norrmal r.v with μ_i =0 and variance σ^2 .
 - ML estimate of θ?
- Solution:
 - Likelihood function
 - Each X_i is normal r.v with $f_X \in A_i$, x_i , and x_i , and x_i , $f_X \in A_i$.

$$f_{X_i}(x_i;\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x_i-\theta)^2/2\sigma^2}.$$

Likelihood function.

$$f_X(x_1,x_2,\cdots,x_n;\theta) = \frac{1}{(2\pi\sigma^2)^{n/2}}e^{-\sum_{i=1}^n(x_i-\theta)^2/2\sigma^2}.$$
 • Log-likelihood function:

$$L(X;\theta) = \ln f_X(x_1, x_2, \dots, x_n; \theta) = \frac{n}{2} \ln(2\pi\sigma^2) - \sum_{i=1}^n \frac{(x_i - \theta)^2}{2\sigma^2},$$
• ML requirement:

$$\left. \frac{\partial \ln f_X(x_1, x_2, \cdots, x_n; \theta)}{\text{And we like}} \right|_{\theta = \hat{\theta}_{ML}} = 2 \sum_{i=1}^n \frac{(x_i - \theta)}{2\sigma^2} \right|_{\theta = \hat{\theta}_{ML}} = 0,$$

$$\hat{\theta}_{ML}(X) = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

ML estimator is a r.v with expected value:

$$E[\hat{\theta}_{ML}(x)] = \frac{1}{n} \sum_{i=1}^{n} E(X_i) = \theta,$$

- This estimator is unbiased estimator for θ .
- The variance of the estimator:

$$Var(\hat{\theta}_{ML}) = E[(\hat{\theta}_{ML} - \theta)^2] = \frac{1}{n^2} E\left\{ \left(\sum_{i=1}^n X_i - \theta \right)^2 \right\}$$

$$= \frac{1}{n^2} \left\{ \sum_{i=1}^n E(X_i - \theta)^2 + \sum_{i=1}^n \sum_{j=1, i \neq j}^n E(X_i - \theta)(X_j - \theta) \right\}$$

We have

$$Var(\hat{\theta}_{ML}) = \frac{1}{n^2} \sum_{i=1}^{n} E(X_i - \theta)^2 = \frac{1}{n^2} \sum_{i=1}^{n} Var(X_i) = \frac{1}{n^2} n\sigma^2 = \frac{\sigma^2}{n}$$
• When $n \to \infty$,

$$\underset{\text{The estimator is consistent}}{Var(\hat{\theta}_{M})} \rightarrow 0$$

- Best Unbiased Estimator:
 - From last example of estimating mean, we have an unbiased estimator for θ with variance σ^2/n .
 - It is possible that, for a given n, there may be other unbiased estimators to this problem with even lower variances.
 - Question: In a given scenario, is it possible to determine the lowest possible value for the variance of any unbiased estimator?
 - A theorem by Cramer and Rao (Rao 1945; Cramer 1948) gives a complete answer to this problem.

- Cramer Rao Bound:
 - Variance of any unbiased estimator based opposervations for θ must satisfy the lower bound $X_1 = x_1, \cdots, X_n = x_n$

$$Var(\hat{\theta}) \geq \frac{1}{E\left(\frac{\partial \ln f_X(x_1, x_2, \cdots, x_n; \theta)}{\text{This important result states that the right side of the inequality acts as a lower bound on the variance of all unbiased estimator for θ, provided their joint p.d.f satisfies certain regularity restrictions.$$

- Any unbiased estimator whose variance coincides with that in inequality above, must be the best.
- Such estimates are known as efficient estimators.
- Example
 - Let examine whether θ_{ML}° for mean represents an efficient estimator. We have:

$$\left(\frac{\partial \ln f_X(x_1,x_2,\cdots,x_n;\theta)}{\partial \theta}\right)^2 = \frac{1}{\sigma^4} \left(\sum_{i=1}^n (X_i - \theta)\right)^2;$$

$$E\left(\frac{\partial \ln f_X(x_1, x_2, \dots, x_n; \theta)}{\partial \theta}\right)^2 = \frac{1}{\sigma^4} \left\{ \sum_{i=1}^n E[(X_i - \theta)^2] + \sum_{i=1}^n \sum_{j=1, i \neq j}^n E[(X_i - \theta)(X_j - \theta)] \right\}$$
$$= \frac{1}{\sigma^4} \sum_{i=1}^n \sigma^2 = \frac{n}{\sigma^2},$$

• After substitution this into Cramer-Rao inequality, we obtain the Cramer-Rao lower bound for this problem to be σ^2/n

- Hypothesis test
 - Statistical hypothesis:
 - Assumption about the values of parameters of a statistical models
 - Hypothesis testing is process for establishing the validity of a hypothesis.

- Problem
 - R.v X has known distribution function $F(x, \theta)$ depending on parameter θ .
 - Test assumption $\theta = \theta_0$ against $\theta \neq \theta_0$
 - Hypothesis $\theta = \theta_0$ null hypothesis H_0
 - Hypothesis $\theta \neq \theta_0$ alternative hypothesis H₁
 - $\theta \in \Theta_{l}$.
 - Simple hypothesis: Θ_1 consists of single points
 - Otherwise composite
 - Null hypothesis is simple in most cases.
- Hypohesis testing: whether observations reject null hypothesis?

- Decision regions:
 - Based on observed sample x of X.
 - Suppose that under hypothesis H₀, the density f(x, θ₀) of the sample x is negligible in a certain region D_c of the sample space, taking significant values only in complement D_c of D_c.
 - This is resonable to reject H₀ if x in D_c and to accept H₀ if x is in D_c.
 - The set D_c is called the critical region of the test and D_c is called the region of acceptance H₀.

- Example
 - Experiment of fair coin tossing.
 - Toss a coin n times
 - The heads show k times
 - If k << n/2, so the coin is not fair
 - If $k \approx n/2$, so we can accept H_0 .

- Type of error, which may be occurred depending on location of x.
 - First, suppose H_0 is true, if $x \in D_c$, we reject H_0 even though it is true.
 - Error type 1.
 - α significance level of the test the probability for the such an error

$$\alpha = P\{\mathbf{x} \in D_c \mid H_0\}$$

The difference

Equals the probability that we accept H When true.

- Second, suppose that H₀ is false.
 - If $x \notin D_c$, we accept H_0 even though it is false.
 - Error type 2.
 - The probability for such an error is denoted by function $\beta(\theta)$, where θ is called the operating characteristics of the test.
 - The difference $(-\beta(\theta))$ is the probability that we reject hypothesis H_0 when false.
 - $P(\theta)$ power of the test:

$$P(\theta) = 1 - \beta(\theta) = P\{x \notin D_c \mid H_1\}$$

- Critical region
 - The region D_c is chosen so as to keep the probabilities of both types of errors are small.
 - The selection of the region D_c proceeds as follows:
 - Assign value to typer I error α and search for region D_c of the sample space so as to minimize type II error probability for specific θ .
 - If the resulting value $\beta(\theta)$ is too large, increase α to its tolerable value.
 - If $\beta(\theta)$ still too large, increase the number n of samples.

- The test is called most powerful if $\beta(\theta)$ is minimum.
 - In general, the critical region of a most powerful test depends on θ .
 - If it is the same for every $\theta \in \Theta_{l}$, the test is uniformly most powerful.
 - Such a test does not always exist.
 - The determination of the critical region of the most powerful test involve a search in the n-dimentional sample space.

Test statistic

- Prior to any experiment, we select a function q = g(X) of a sample vector X.
- We find a set R_c of the real line where under the hypothesis H_0 , the density of q is negligible.
- We reject H₀ if the value q=g(X) of q is in R_c.
- R_c is the critical region of the test.
- The r.v q is the test statistic.
- In the selection of function g(X), we are giuded by the point estimate of θ .

- Distribution
 - Hypothesis: the distribution function F(x) of a r.v X equals a given function $F_0(x)$.
 - H_0 : $F(x) \equiv F_0(x)$;
 - H_1 : $F(X) \neq F_0(x)$.
 - Kolmogoroff-Smirnov test
 - Anderson-Zanderling test
 - Chi-square χ^2 test

- Kolmogoroff-Smirnov test
 - Form the random process F[^](x) as in the estimation problem and use as the test statistic the r.v

$$q = \max_{x} |F'(x) - F_0(x)|$$
 (1)

 For a specific ζ, the function F[^](x) is the empirical estimate of F(x) and it tends to F(x) as n tends to ∞. From this, it follows that:

$$E{F^{(x)}} = F(x)$$
 and

- It shows that, for large n,
 - q is close to 0 if H₀ is true and
 - It is close to F(x) − F₀(x) if H₁ is true

$$\hat{F}(x) \underset{n \to \infty}{\longrightarrow} F(x)$$

- Conclusion: we must reject H₀ if q is larger than some constant c.
 - Constant c is determined in terms of the significance level α=P{q>c|H₀} and the distribution q.
 - Under hypothesis H₀, the test statistic q equals r.v w in equation w=max_x|F[^](x)-F(x)|.
 - Using Kolmogoroff approximation, we obtain:

$$\alpha = P\{q > c \mid H_0\} = 1 - e^{-2nc^2}$$

- K-S test procedure:
 - Form the empirical estimate F[^](x) of F(x)
 - Determine $q = \max_{x} |F^{(x)} F_0(x)|$
 - Accept H₀ if and only if
 - The resulting error type II error probability is reasonably small only if n large

 $q > \sqrt{-\frac{1}{2n}} \ln\left(\frac{\alpha}{2}\right)$

• Chi-square χ^2 test

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Thank you for your attentions!

