

DW_ram_r_w_s_lat

Sync. Write-Port, Async. Read-Port RAM (Latch-Based)

Version, STAR and Download Information: IP Directory

Features and Benefits

- Parameterized word depth
- Parameterized data width
- Synchronous static memory

Description

DW_ram_r_w_s_lat implements a parameterized synchronous, dual-port static RAM. The RAM can perform simultaneous read and write operations.

Table 1-1 Pin Description

Pin Name	Width	Direction	Function
clk	1 bit	Input	Clock
cs_n	1 bit	Input	Chip select, active low
wr_n	1 bit	Input	Write enable, active low
rd_addr	ceil(log ₂ [depth]) bit(s)	Input	Read address bus
wr_addr	ceil(log ₂ [depth]) bit(s)	Input	Write address bus
data_in	data_width bit(s)	Input	Input data bus
data_out	data_width bit(s)	Output	Output data bus

Table 1-2 Parameter Description

Parameter	Values	Description
data_width	1 to 256 Default = none	Width of data_in and data_out buses
depth	2 to 256 Default = none	Number of words in the memory array (address width)

Table 1-3 Synthesis Implementations

Implementation Name	Function	License Feature Required
str	Synthesis model	DesignWare

Table 1-4 Simulation Models

Model	Function	
DW06.DW_RAM_R_W_S_LAT_CFG_SIM	VHDL simulation configuration	
dw/dw06/src/DW_ram_r_w_s_lat_sim.vhd	VHDL simulation model source code	
dw/sim_ver/DW_ram_r_w_s_lat.v	Verilog simulation model source code	

Write data enters the RAM through the data_in input port and is read out at the data_out port. The RAM is constantly reading regardless of the state of cs_n.

The rd_addr and wr_addr ports are used to address the *depth* words in the memory. For rd_addr beyond the maximum depth (for example, rd_addr = 7 and depth = 6), the data_out bus is driven low. For wr_addr beyond the scope of the depth, nothing occurs and the data is lost. No warnings are given during simulations when an address beyond the scope of depth is used.

This component contains enable signals for internal latches that are derived from the wr_n port. To keep hold times to a minimum, you should consider instances of this component to be individual floor planning elements.

Chip Selection, Reading and Writing

The cs_n input is the chip select, active low signal, that enables data to be written to the RAM. The RAM is constantly reading, regardless of the state of cs_n.

When cs_n, wr_n (write enable, active low), and clk are LOW, data_in is transparent to the internal memory cell being accessed by wr_addr (data_in = output data of the memory cell). Therefore, during the period when clk is LOW, a change in data in is reflected on the output of the internal memory cell being accessed. If rd_addr = wr_addr and wr_n is LOW, data passes through the RAM (data_in = data_out) when clk is LOW. The data is captured into the memory cell on the rising edge of clk.

When cs_n is high, writing to the RAM is disabled.

Application Notes

DW_ram_r_w_s_lat is intended to be used as small scratch-pad memory, programmable lookup tables, and writable control storage. Because DW_ram_r_w_s_lat is built from the cells within the ASIC cell library, it should be kept small to obtain an efficient implementation. If a larger memory is required, you should consider using a hard macro RAM from the ASIC library in use.

Timing Waveforms

Figure 1-1 shows timing diagrams for various conditions of DW_ram_r_w_s_lat.

Figure 1-1 Instantiated RAM Timing Waveforms

Write Timing, cs_n = 0, Normal Data Input and Output

write thru is seen only when rd_addr = wr_addr.

Write Timing, cs_n = 0, Changing Data Input and Output

^{*} Write thru is seen only when rd_addr = wr_addr.

Read Timing, address controlled, cs_n = don't care

Related Topics

- Memory Synchronous RAMs Listing
- DesignWare Building Block IP Documentation Overview

HDL Usage Through Component Instantiation - VHDL

```
library IEEE, DWARE, DWARE;
use IEEE.std logic 1164.all;
use DWARE.DWpackages.all;
use DWARE.DW foundation comp.all;
entity DW_ram_r_w_s_lat_inst is
  generic (inst data width : INTEGER := 8;
           inst depth
                           : INTEGER := 8 );
  port (inst_clk : in std_logic;
        inst cs n
                    : in std logic;
        inst_wr_n : in std_logic;
        inst_rd_addr : in std_logic_vector(bit_width(inst_depth)-1 downto 0);
        inst wr addr: in std logic vector(bit width(inst depth)-1 downto 0);
        inst_data_in : in std_logic_vector(inst_data_width-1 downto 0);
        data_out_inst : out std_logic_vector(inst_data_width-1 downto 0) );
end DW ram r w s lat inst;
architecture inst of DW_ram_r_w_s_lat_inst is
begin
  -- Instance of DW_ram_r_w_s_lat
  U1 : DW_ram_r_w_s_lat
    generic map ( data_width => inst_data_width,    depth => inst_depth )
   port map (clk => inst_clk, cs_n => inst_cs_n, wr_n => inst_wr_n,
              rd_addr => inst_rd_addr, wr_addr => inst_wr_addr,
              data in => inst data in, data out => data out inst );
end inst;
-- pragma translate off
configuration DW_ram_r_w_s_lat_inst_cfg_inst of DW_ram_r_w_s_lat_inst is
  for inst
  end for; -- inst
end DW_ram_r_w_s_lat_inst_cfg_inst;
-- pragma translate on
```

HDL Usage Through Component Instantiation - Verilog

```
module DW_ram_r_w_s_lat_inst(inst_clk, inst_cs_n, inst_wr_n, inst_rd_addr,
                             inst_wr_addr, inst_data_in, data_out_inst );
  parameter data_width = 8;
  parameter depth = 8;
  `define bit_width_depth 3 // ceil(log2(depth))
  input inst_clk;
  input inst_cs_n;
  input inst_wr_n;
  input [`bit_width_depth-1 : 0] inst_rd_addr;
  input [`bit_width_depth-1 : 0] inst_wr_addr;
  input [data_width-1 : 0] inst_data_in;
  output [data_width-1 : 0] data_out_inst;
  // Instance of DW_ram_r_w_s_lat
  DW ram r w s lat #(data width, depth)
    U1 (.clk(inst_clk), .cs_n(inst_cs_n),
                                              .wr_n(inst_wr_n),
        .rd_addr(inst_rd_addr), .wr_addr(inst_wr_addr),
        .data_in(inst_data_in),
                                .data_out(data_out_inst) );
endmodule
```

Copyright Notice and Proprietary Information

© 2018 Synopsys, Inc. All rights reserved. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc. and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All other use, reproduction, modification, or distribution of the Synopsys software or the associated documentation is strictly prohibited.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable regulations and to comply with them.

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks

Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at https://www.synopsys.com/company/legal/trademarks-brands.html.

All other product or company names may be trademarks of their respective owners.

Third-Party Links

Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse and is not responsible for such websites and their practices, including privacy practices, availability, and content.

Synopsys, Inc. 690 E. Middlefield Road Mountain View, CA 94043

www.synopsys.com