Улучшение робастности динамической системы в продольном канале управления с применением обратной динамики

А.Е. Пащенко

Московский авиационный институт

Задачи дипломной работы

Задачи дипломной работы

Задачи

- Расчет ЛТХ, ВПХ, а также характеристик манёвренности
- Синтез системы автоматического управления
- Рассмотреть один из основных способов улучшения робастности динамической системы с применением обратной динамики при помощи PI-котроллера.

Объект исследования

В расчёт ЛТХ входит

В расчёт ЛТХ входит

• Расчёт области установившихся горизонтальных полётов

В расчёт ЛТХ входит

- Расчёт области установившихся горизонтальных полётов
- 2 Расчёт траектории полёта

В расчёт ЛТХ входит

- Расчёт области установившихся горизонтальных полётов
- 2 Расчёт траектории полёта
- 3 Расчёт транспортных возможностей самолёта

Расчёт области возможных полётов

Основные ограничения

- ullet Ограничение по $M_{min\ P}$
- ullet Ограничение по M_{max} $_P$

Дополнительные ограничения

- ullet Ограничение по C_y доп
- ullet Ограничение по $M_{\text{пред}}$
- ullet Ограничение по q_{max}

Результаты расчётов M_{C_y} доп и $M_{min\ P}$, $\overline{M_{max\ P}}$, $M_{\text{наев}}$

Результаты расчётов $q_{\text{ч}\ min}$ и $q_{\text{км}\ min}$

Результаты расчётов $M_{V_{_{V}}}$ $_{_{max}}$

Расчёт области возможных полётов

Расчёт области возможных полётов

Определение области

- $M_{min} = \max\{M_{min\ p},\ M_{C_{y\ gon}}\}$
- $M_{max} = \\ \min\{M_{max\ P},\ M_{\rm npeg},\ M_{q_{max}}\}$

Определение теоретического и практического потолка

Определение теоретического и практического потолка

Потолки

Расчёт теоретического и практического потолка производится по $V_{y_{max}}^{st}$

Определение теоретического и практического потолка

Потолки

Расчёт теоретического и практического потолка производится по $V_{y_{max}}^{*}$

 $H_{\scriptscriptstyle T}=19,8$ км

Определение теоретического и практического потолка

Потолки

Расчёт теоретического и практического потолка производится по $V_{y_{max}}^{st}$

 $H_{\scriptscriptstyle T}=19,8$ км

 $H_{\mathsf{np}} = 19,5$ км

Максимальные значения часового и километрового расходов

^расчёт траектории полёта

Траектория

Расчёт траектории полёта

Траектория

Траеткорию полёта принято разделять на три этапа

- Набор высоты
- Крейсерский полёт
- Снижение

Расчёт траектории набора

Выбор начальных параметров

Начальные значения H и M определяются следующим образом: $H_0 = 0$ км $M_0 = 1,2 \cdot M_{min\ don}$, а конечные значения выбираются из условия минимума километрового расхода топлива в установившемся горизонтальном полете. Высота и число Маха, при которых километровый расход топлива принимает наименьшее значение, определены в предыдущих слайдах

Расчёт траектории набор

Расчёт траектории набора

Результаты расчётов

Параметр	Значение	Единицы
$m_{T_{Ha6}}$	7225,6	КГ
L _{наб}	278,04	KM
Тнаб	20,06	мин

Расчёт крейсерского полёта

Выбор начальных параметров

 $ar{m}_{T_{\mathsf{Ha6}}} = 0,5$ — относительная масса пустого снаряженного самолета

 $ar{m}_{ ext{цн}} = 0.15$ — относительная масса целевой нагрузки

 $ar{m}_{\text{снп}} = 0.015$ — относительная масса топлива расходуемая при снижении и посадке

 $ar{m}_{T_{\mathsf{Ha6}}}$ – относительная масса топлива, расходуемая при наборе высоты

Расчёт крейсерского полёта

Выбор начальных параметров

 $ar{m}_{T_{
m Ha6}} = 0,5$ — относительная масса пустого снаряженного самолета $ar{m}_{
m ЦH} = 0,15$ — относительная масса целевой нагрузки

 $ar{m}_{\text{снп}} = 0.015$ — относительная масса топлива расходуемая при снижении и посадке

 $ar{m}_{T_{\mathsf{Ha6}}}$ – относительная масса топлива, расходуемая при наборе высоты

Результаты расчётов характеристик крейсерского полёта

Параметр	Значение	Единицы
Н _{к кр}	19.3	KM
L_{kp}	7610,74	КГ
$T_{\kappa p}$	403,43	мин

Расчёт траектории спуска

Расчёт траектории спуска

Результаты расчётов

Параметр	Значение	Единицы
$m_{T_{ m cnyck}}$	756,936	КГ
L _{cпуск}	314,16	KM
Тспусе	41,929	мин

Расчёт траектории полёта

Расчёт транспортных возможностей самолёта

Расчёт транспортных возможностей самолёта

Основные положения

Расчёт транспортных возможностей самолёта

Основные положения

Расчёт ведётся для трёх режимов

Расчёт транспортных возможностей самолёта

Основные положения

Расчёт ведётся для трёх режимов

• Полет с максимальной коммерческой нагрузкой

Расчёт транспортных возможностей самолёта

Основные положения

Расчёт ведётся для трёх режимов

- Полет с максимальной коммерческой нагрузкой
- Полёт с максимальным запасом топлива

Расчёт транспортных возможностей самолёта

Основные положения

Расчёт ведётся для трёх режимов

- Полет с максимальной коммерческой нагрузкой
- Полёт с максимальным запасом топлива
- Полёт без коммерческой нагрузки ($m_{
 m цн}=0$) с максимальным запасом топлива

Диаграмма транспортных возможностей самолёта

Расчет взлетно-посадочных характеристик самолета

Результаты расчётов

$V_{\text{отр}}$, м/с	<i>L</i> _p , м	<i>L</i> _{вд} , м	$V_{\rm кас}$, м/с	<i>L</i> _{проб} , м	<i>L</i> _{пд} , м
88,85	1125,37	1392	64,58	576	1200,78

Расчёт характеристик манёвренности

Основные положения

Для неманёвренного самолёта характеристики предельного правильного виража рассчитываются для высоты H= 6км. Характеристики маневренности рассчитываются при 50%-ом выгорании топлива для массы самолета:

$$\bar{m}_c = 1 - 0, 5\bar{m}_{\scriptscriptstyle T}$$

Расчёт характеристик манёвренности

Графики

№ э.	σ_e^2 , cm ²	σ_c^2 см 2	n_e см 2
1	0.103	13.54	0.0254
2	0.125	15.14	0.037
3	0.131	12.74	0.047

№ э.	Нули	Полюса	ξ	ω_c , 1/c
1	-2	-	1.0	0.5
	-1.9392	-0.7537		$1.59 \cdot 10^{-4}$
2	-0.7473	-0.0161	1.0	$1.64 \cdot 10^{-2}$
	-0.0164	0		$ 7.47 \cdot 10^{-1} $
	0			1.94
	-1.8207	0.8255		0
3	-0.8033	-0.0177	1.0	$1.85 \cdot 10^{-2}$
	-0.0185	0		$8.03 \cdot 10^{-1}$
	0			1.82

Улучшение робасности с применением РІ-контроллера

Схема

Улучшение робасности с применением PI-контроллера

№ э.	σ_e^2 , cm ²	$\sigma_c^2 \text{ cm}^2$	$n_e \text{ cm}^2$
1	0.0886	5.913	0.01611
2	0.0952	6.01	0.01591
3	0.0943	6.004	0.01712

№ э.	Полюса	Нули	ξ	ω_c , 1/c
1	-3.0000 + 1.0000i	-2.5	0.95	3.16
	-3.0000 - 1.0000 <i>i</i>			
2	-2.8660 + 1.1287i	-0.0161	1.0	0
	-2.8660 - 1.1287 <i>i</i>	-0.7537	1.0	$1.61 \cdot 10^{-2}$
	-0.7547 + 0.0000i	-2.5000	1.0	$7.51 \cdot 10^{-2}$
	0	0.0000	0.93	3.08
	-0.0161 + 0.0000i		0.93	
3	-2.5975 + 1.3096i	-0.0177	1	0
	-2.5975 - 1.3096 <i>i</i>	-0.8255	1	$1.77 \cdot 10^{-2}$
	-0.8292 + 0.0000i	-2.5000	1	$8.29 \cdot 10^{-1}$
	0	0	0.893	2.91
	-0.0177 + 0.0000i			

Благодарность

Спасибо за внимание

