Review for Midterm 1

Nir Elber

Fall 2023

Abstract

This document condenses the major definitions and results from class and a couple extra things covered in the exercises.

Contents

Contents		
	Definitions 1.1 Basic Notions	. 2 . 3 . 4 . 5
2	Examples	7
3	Theorems 3.1 Building Models	. 8 . 8

1 Definitions

1.1 Basic Notions

Definition 1 (language). A *language* \mathcal{L} consists of the sets \mathcal{F} , \mathcal{R} , and \mathcal{C} of symbols. Here, \mathcal{F} are functions, \mathcal{R} are relations, and \mathcal{C} are constants. Notably, there is an arity function $n: (\mathcal{F} \cup \mathcal{R}) \to \mathbb{N}$.

Definition 2 (structure). Fix a language \mathcal{L} . Then an \mathcal{L} -structure \mathcal{M} consists of the following data.

- Domain: a nonempty set M.
- Functions: for each $f \in \mathcal{F}$, there is a function $f^{\mathcal{M}} \colon M^{n(f)} \to M$.
- Relations: for each $R \in \mathcal{R}$, there is a relation $R^{\mathcal{M}} \subseteq M^{n(r)}$.
- Constants: for each $c \in \mathcal{C}$, there is a constant $c^{\mathcal{M}} \in M$.

The various $(-)^{\mathcal{M}}$ data are called *interpretations*.

Definition 3 (homomorphism, embedding, isomorphism). Fix a language \mathcal{L} . Then an \mathcal{L} -homomorphism $\eta \colon \mathcal{M} \to \mathcal{N}$ of \mathcal{L} -structures \mathcal{M} and \mathcal{N} is a one-to-one map $\eta \colon M \to N$ preserving the interpretations, as follows.

- Functions: for each $f \in \mathcal{F}$, we have $\eta \circ f^{\mathcal{M}} = f^{\mathcal{N}} \circ \eta^{n(f)}$.
- Relations: for each $R \in \mathcal{R}$, if $\overline{m} \in R^{\mathcal{M}}$, then $\eta^{n(R)}(m) \in R^{\mathcal{N}}$.
- Constants: for each $c \in \mathcal{C}$, we have $\eta\left(c^{\mathcal{M}}\right) = c^{\mathcal{N}}$.

If $\eta\colon M\to N$ is one-to-one and the relations condition is an equivalence, then η is an \mathcal{L} -embedding. If $\eta\colon M\to N$ is the identity $M\subseteq N$, then we say that \mathcal{M} is an \mathcal{L} -substructure. In addition, if η is onto, then η is an \mathcal{L} -isomorphism.

Definition 4 (term). Let \mathcal{L} be a language. The set of \mathcal{L} -terms is the smallest set \mathcal{T} satisfying the following.

- Constants: for each $c \in \mathcal{C}$, we have $c \in \mathcal{T}$.
- Variables: $x_i \in \mathcal{T}$ for each $i \in \mathbb{N}$. Notably, we have only countably many variables.
- Functions: if $t_1, \ldots, t_n \in \mathcal{T}$ where n = n(f) for some $f \in \mathcal{F}$, then $f(t_1, \ldots, t_n) \in \mathcal{T}$.

Given an \mathcal{L} -structure \mathcal{M} and term $t \in \mathcal{T}$ with variables x_1, \ldots, x_n and elements $a_1, \ldots, a_n \in M$, we define $t^{\mathcal{M}}(\overline{a})$ in the obvious way.

Definition 5 (formula). The set of \mathcal{L} -formulae is the smallest set satisfying the following.

- Any atomic \mathcal{L} -formula φ is an \mathcal{L} -formula.
- For any $\mathcal L$ -formulae φ and ψ , then $\neg \varphi$ and $\varphi \wedge \psi$ and $\varphi \vee \psi$ are $\mathcal L$ -formulae.
- For any variable v_i for $i \in \mathbb{N}$, then $\exists v_i \varphi$ is an \mathcal{L} -formula.

Definition 6 (sentence). Fix a language \mathcal{L} . An \mathcal{L} -formula with no free variables is a sentence.

Definition 7 (truth). Fix an \mathcal{L} -structure \mathcal{M} . Further, fix an \mathcal{L} -formula $\varphi(x_1,\ldots,x_n)$ and a tuple $\overline{a}\in M^n$. Then we define truth as $\mathcal{M}\vDash\varphi(\overline{a})$ to mean that φ is true upon plugging in \overline{a} , where our definition is inductive on atomic formulae as follows.

- $\mathcal{M} \vDash (t_1 = t_2)(\overline{a})$ if and only if $t_1^{\mathcal{M}}(\overline{a}) = t_2^{\mathcal{M}}(\overline{a})$.
- $\mathcal{M} \vDash R(t_1, \dots, t_n)$ if and only if $(t_1^{\mathcal{M}}(\overline{a}), \dots, t_2^{\mathcal{M}}(\overline{a})) \in R^{\mathcal{M}}$.

We define truth inductively on formulae now as follows.

- $\mathcal{M} \vDash (\varphi \land \psi)(\overline{a})$ if and only if $\mathcal{M} \vDash \varphi(\overline{a})$ and $\mathcal{M} \vDash \psi(\overline{a})$.
- $\mathcal{M} \vDash (\varphi \lor \psi)(\overline{a})$ if and only if $\mathcal{M} \vDash \varphi(\overline{a})$ or $\mathcal{M} \vDash \psi(\overline{a})$.
- $\mathcal{M} \vDash \neg \varphi(\overline{a})$ if and only if we do not have $\mathcal{M} \vDash \varphi(\overline{a})$.
- $\mathcal{M} \vDash \exists v \varphi(\overline{a}, v)$ if and only if there exists $b \in M$ such that $\mathcal{M} \vDash \varphi(\overline{a}, b)$.

In this case, we say that $\mathcal M$ satisfies, models, etc. $\varphi(\overline a)$ and so on.

Definition 8 (definable). Fix an \mathcal{L} -structure \mathcal{M} and subset $B\subseteq M$. Then a subset $X\subseteq M^n$ is B-definable if and only if there is a formula $\varphi(v_1,\ldots,v_n,w_1,\ldots,w_k)$ and tuple $\bar{b}\in B^k$ such that $\bar{a}\in X$ if and only if $\mathcal{M}\vDash \varphi(\bar{a},\bar{b})$. The tuple \bar{b} might be called the *parameters*. We may abbreviate M-definable to simply definable.

Definition 9 (algebraic closure, definable closure). Fix an \mathcal{L} -structure \mathcal{M} and subset $A \subseteq M$.

• The definable closure dcl(A) of A is the set of all $b \in M$ such that there is a formula $\varphi(\overline{x},y)$ and $\overline{a} \in A$ such that

$$\{b' \in M : \mathcal{M} \vDash \varphi(\overline{a}, b')\}$$

is the set $\{b\}$.

• The algebraic closure dcl(A) of A is the set of all $b \in M$ such that there is a formula $\varphi(\overline{x},y)$ and $\overline{a} \in A$ such that

$$\{b' \in M : \mathcal{M} \vDash \varphi(\overline{a}, b')\}$$

is a finite set containing $\{b\}$.

1.2 Theories

Definition 10 (theory). Fix an \mathcal{L} -structure \mathcal{M} . Then the *theory* $\operatorname{Th}_{\mathcal{L}}(\mathcal{M})$ of \mathcal{M} is the set of all sentences φ such that $\mathcal{M} \models \varphi$.

Definition 11 (elementary equivalence). Fix \mathcal{L} -structures \mathcal{M} and \mathcal{N} . Then we say that \mathcal{M} and \mathcal{N} , written $\mathcal{M} \equiv \mathcal{N}$, are elementarily equivalent if and only if $\mathrm{Th}(\mathcal{M}) = \mathrm{Th}(\mathcal{N})$.

Definition 12 (elementary substructure). Fix a language \mathcal{L} and two structures \mathcal{M} and \mathcal{N} . Then we say that \mathcal{M} is an elementary substructure of \mathcal{N} , written $\mathcal{M} \leq \mathcal{N}$ if and only if \mathcal{M} is a substructure of \mathcal{N} and $\mathcal{M}_M \equiv \mathcal{N}_M$.

Definition 13 (theory). Fix a language \mathcal{L} . Then an \mathcal{L} -theory T is a set of \mathcal{L} -sentences. For an \mathcal{L} -structure \mathcal{M} , we say that \mathcal{M} models T, written $\mathcal{M} \models T$, if and only if $\mathcal{M} \models \varphi$ for all $\varphi \in \mathcal{M}$. We let $\operatorname{Mod}(T)$ denote the class of all models \mathcal{M} of T, and we call it an *elementary class*.

Definition 14 (logically implies). Fix a language \mathcal{L} and theory T. Then we say that T logically implies a sentence φ , written $T \vDash \varphi$, if and only if any \mathcal{L} -structure \mathcal{M} modelling T has $\mathcal{M} \vDash \varphi$.

Definition 15 (diagram). Fix a language \mathcal{L} and an \mathcal{L} -structure \mathcal{M} . The diagram $\mathrm{Diag}(\mathcal{M})$ is the set φ of atomic \mathcal{L}_M -sentences (in the expanded language \mathcal{L}_M) or negations of atomic sentences such that $\mathcal{M} \models \varphi$. The elementary diagram $\mathrm{elDiag}\,\mathcal{M}$ is the theory $\mathrm{Th}_{\mathcal{L}_M}(\mathcal{M}_M)$.

1.3 Adjectives for Theories

Definition 16 (satisfiable). Fix a language \mathcal{L} and theory T. Then T is *satisfiable* if and only if it has a model \mathcal{M} .

Definition 17 (finitely satisfiable). Fix a language \mathcal{L} and theory T. Then T is *finitely satisfiable* if and only if any finite subset of T is satisfiable.

Definition 18 (witness). Fix a theory T of a language \mathcal{L} . Then T has witnesses (or Henkin constants) if and only if each formula $\varphi(x)$ in one free variable x has a constant symbol c such that $\exists x \varphi(x) \to \varphi(c)$ lives in T.

Definition 19 (Skolem functions). An \mathcal{L} -theory T has built-in Skolem functions if and only if any \mathcal{L} -formula $\varphi(\overline{x},y)$ has a function symbol f_{φ} such that

$$\forall \overline{x}((\exists y \, \varphi(\overline{x}, y)) \to \varphi(\overline{x}, f_{\varphi}(\overline{x}))).$$

The theory T has definable Skolem functions if and only if any \mathcal{L} -formula $\varphi(\overline{x},y)$ has a function f with definable graph satisfying the above property.

Definition 20 (κ -categorical). A theory T of a language \mathcal{L} is κ -categorical if and only if T has exactly one isomorphism class of models of cardinality κ .

Definition 21 (complete). An \mathcal{L} -theory T is *complete* if and only if $T \vDash \varphi$ or $T \vDash \neg \varphi$ for any \mathcal{L} -sentence φ .

Definition 22 (model-complete). A theory T is model-complete if and only if any chain of models $\mathcal{M} \subseteq \mathcal{N}$ of models of T is in fact an elementary embedding.

Definition 23 (strongly minimal). A theory T is strongly minimal if and only if any definable subset of any model of T is either finite or cofinite.

Definition 24 (o-minimal). A theory T of ordered sets is o-minimal if and only if T, restricted to the language $\{<\}$, is DLO, and all definable subsets of any model of T is a finite union of points and intervals.

1.4 Ultraproducts

Definition 25 (filter). Fix a set I. Then a filter \mathcal{F} on I is a subset of $\mathcal{P}(I)$ satisfying the following.

- (a) $I \in \mathcal{F}$.
- (b) Finite intersection: for $X, Y \in \mathcal{F}$, we have $X \cap Y \in \mathcal{F}$.
- (c) Containment: if $X \in \mathcal{F}$ and $Y \subseteq I$ contains X, then $Y \in \mathcal{F}$ also.

Definition 26 (ultrafilter). Fix a set I. Then an *ultrafilter* \mathcal{F} on I is a nontrivial filter on I such that each subset $X \subseteq I$ has one of $X \in \mathcal{F}$ or $I \setminus X \in \mathcal{F}$. Equivalently, \mathcal{U} is maximal among the partially ordered set of nontrivial filters on I, ordered by inclusion.

Remark 27. For any nontrivial filter \mathcal{F} on a set I, there exists an ultrafilter \mathcal{U} containing \mathcal{F} .

Definition 28 (ultraproduct). Fix a language \mathcal{L} and some \mathcal{L} -structures $\{\mathcal{M}_{\alpha}\}_{\alpha\in I}$. The *ultraproduct* is the \mathcal{L} -structure defined as follows.

• The universe M is $\prod_{\alpha \in I} M_{\alpha}$ modded out by the equivalence relation \sim given by $(a_{\alpha}) \sim (b_{\alpha})$ if and only if

$$\{\alpha \in I : a_{\alpha} = b_{\alpha}\} \in \mathcal{U}.$$

- Functions are interpreted component-wise.
- For an n-ary relation R, $R^{\mathcal{M}}((a_{1\alpha}),\ldots,(a_{n\alpha}))$ if and only if the set of α such that $R^{M_{\alpha}}(a_{1\alpha},\ldots,a_{n\alpha})$ is in \mathcal{U} .

1.5 Ehrenfeucht-Fraissé games

Definition 29 (unnested). An atomic \mathcal{L} -formula φ is *unnested* if and only if it takes one of the following forms.

- Equalities: $t_i = t_i$ or $x_i = c$ where the t_{\bullet} are variables or constants.
- Relations: $R(t_1, \ldots, t_n)$ where the t_{\bullet} are variables or constants.
- Functions: $f(t_1, \ldots, t_n) = t_{n+1}$ where the t_{\bullet} are variables or constants.

Definition 30. Fix a language \mathcal{L} with two \mathcal{L} -structures \mathcal{A} and \mathcal{B} , and we fix a natural number n. The Ehrenfeucht–Fraissé game $EF_n(\mathcal{A}, \mathcal{B})$ of length n is played as follows.

- Player I picks $\mathcal A$ or $\mathcal B$ and chooses some $a_1 \in A$ or $b_1 \in B$. Then Player II chooses an element $b_1 \in B$ or $a_1 \in A$ from the opposite universe to the one Player I chose.
- Then the above move is repeated until we have two n-tuples (a_1, \ldots, a_n) or (b_1, \ldots, b_n) .
- Player II wins if, for any unnested atomic formula $\psi(x_1,\ldots,x_n)$, we have $\mathcal{A} \vDash \psi(\overline{a})$ is equivalent to $\mathcal{B} \vDash \psi(\overline{b})$. Otherwise, Player I wins.

1.6 Cell Decomposition

Definition 31 (cell). Fix a model \mathcal{R} of an o-minimal theory T. Then a *cell* is defined as follows.

- A 0-cell is a point.
- A 1-cell in \mathcal{R} is a set of the form (a,b) where $-\infty \leq a < b \leq \infty$.
- From n, an (n+1)-cell in \mathbb{R}^{n+1} is a set of one of the following forms.
 - We can have

$$\{(x_1,\ldots,x_n,y):(x_1,\ldots,x_n)\in X \text{ and } y=f(x_1,\ldots,x_n)\}$$

where $X\subseteq \mathcal{R}^n$ is an n-cell and $f\colon X\to \mathcal{R}$ is continuous and definable.

- We can have $(-\infty, f)_X$ or $(f, g)_X$ or $(g, \infty)_X$ where

$$(f,g)_X := \{(x_1, \dots, x_n, y) : f(\overline{x}) < y < f(\overline{y})\}$$

where X is an n-cell and $f,g\colon X\to \mathcal{R}$ is continuous and definable with $f(\overline{x})< g(\overline{x})$ always (where $(-\infty,f)_X$ and $(g,\infty)_X$ are defined analogously).

– Lastly, we can have all of \mathbb{R}^n .

2 Examples

Example 32. Any finite structure can be aximoatized by a single \mathcal{L} -formula. The point is to write down explicitly what all the interpretations are.

Example 33. Let T be any theory in any language (such that < is definable) with $\mathbb{N} \models T$. Then \mathbb{N} has arbitrarily large elements, so compactness produces a model of T which is elementarily superstructure to \mathbb{N} but with an element larger than any element of \mathbb{N} .

Example 34. The class of torsion groups is not elementarily definable in the language $\mathcal{L}=\{e,*\}$ of groups. The idea is that torsion groups can have elements of arbitrarily large order, so any theory T containing every torsion group as a model will also have as a model of

Example 35. The theory DLO of dense linear orders is complete, \aleph_0 -categorical, not \aleph_1 -categorical, and eliminates quantifiers. This theory is o-minimal.

Example 36. The theory DAG of divisible abelian groups eliminates quantifiers, is not \aleph_0 -categorical, but it is κ -categorical for any $\kappa \geq \aleph_1$. This theory is strongly minimal.

Example 37. The theory ACF is not complete (though ACF_p is), κ -categorical for any infinite κ , and eliminates quantifiers.

Example 38. The theory of discrete linear orders without endpoints is complete (by the Ehrenfeucht–Fraïssé game) but not κ -categorical for any infinite κ .

Example 39. The theory Tor_2 of 2-torsion groups is κ -categorical for any infinite κ (because it has finite models) but not complete. In contrast, the theory of infinite 2-torsion groups is complete.

Example 40. Let $\mathcal U$ be a non-principal ultrafilter on the set $\mathcal P$ of primes. Then we have a field isomorphism

$$\mathbb{C}\cong\prod_{\mathcal{U}}\overline{\mathbb{F}_p}.$$

Example 41. The theory RCF of real closed fields eliminates quantifiers and is thus o-minimal.

Example 42. The theory ODAG of ordered divisible abelian groups eliminates quantifiers and is thus o-minimal.

Example 43. The theory of sets with infinitely many equivalence classes of size 2 and 3 (and all classes have this size) does not eliminate quantifiers, but it does eliminate quantifiers after adding predicates corresponding to the size of the equivalence class. This theory κ -categorical for any infinite κ and thus complete.

Example 44. The theory of sets where every equivalence class has infinite size is not \aleph_0 -categorical, but it is κ -categorical for any $\kappa \geq \aleph_0$. This theory eliminates quantifiers.

3 Theorems

We begin by listing some quick implications and coherence checks. between our definitins.

- Finitely satisfiable implies satisfiable by compactness.
- If T is finitely axiomatizable, then there is a finite subset of T axiomatizing T.
- A theory T is \forall -axiomatizable if and only if it goes down substructures.
- A theory T is $\forall \exists$ -axiomatizable if and only if any chain of models $\mathcal{M}_0 \subseteq \mathcal{M}_1 \subseteq \cdots$ has its union a model of T.
- If a theory T is κ -categorical for infininite κ and has no finite models, then T is complete.
- If T eliminates quantifiers, and there is a common substructure to any model of T, then T is complete.
- If T is model-complete (e.g., T eliminates quantifiers), then T is $\forall \exists$ -axiomatizable.
- If T eliminates quantifiers, and \mathcal{L} has no relation symbols, then T is strongly minimal.

3.1 Building Models

Theorem 45 (compactness). Fix a language \mathcal{L} and theory T. If T is finitely satisfiable, then T is satisfiable. Furthermore, T has a model \mathcal{M} with cardinality at most $|\mathcal{L}| + \aleph_0$.

Theorem 46 (Łoś). Fix a language \mathcal{L} and \mathcal{L} -structures $\{\mathcal{M}_{\alpha}\}_{\alpha\in I}$, and expand \mathcal{L} to the language $\mathcal{L}' := \mathcal{L}_{\prod_{\alpha\in I}M_{\alpha}}$. Now, let \mathcal{U} be an ultrafilter on I so that $\mathcal{M} := \prod_{\mathcal{U}}M_{\alpha}$ is an \mathcal{L}' -structure. Then for any \mathcal{L} -formula $\varphi(x_1,\ldots,x_n)$ has $\mathcal{M} \models \varphi\left(a_1^{\mathcal{M}},\ldots,a_n^{\mathcal{M}}\right)$ if and only if

$$\{\alpha \in I : \mathcal{M}_{\alpha} \vDash \varphi(a_1, \dots, a_n)\} \in \mathcal{U}.$$

Lemma 47 (Tarski–Vaught test). Fix an \mathcal{L} -structure \mathcal{M} and a subset $A\subseteq M$. The following are equivalent.

- There is an elementary substructure $A \leq M$ with universe A.
- Any \mathcal{L} -formula $\varphi(x_1,\ldots,x_n,y)$ and n-tuple $\overline{a}\in A^n$ has $\mathcal{M}\vDash (\exists y\varphi(\overline{x},y))(\overline{a})$ if and only if there is some $b\in A$ such that $\mathcal{M}\vDash \varphi(\overline{a},b)$.

Theorem 48 (Löwenheim–Skolem). Fix a language \mathcal{L} and infinite structure \mathcal{M} .

- Downward: For all subsets $A \subseteq M$, there exists an elementary substructure $\mathcal{N} \leq \mathcal{M}$ containing A with $|N| = |A| + |\mathcal{L}| + \aleph_0$.
- Upward: For any cardinal $\kappa \geq |M| + |\mathcal{L}|$, there exists an \mathcal{L} -structure \mathcal{N} with cardinality κ and $\mathcal{M} \leq \mathcal{N}$.

3.2 Analyzing Structure

Proposition 49. Fix an \mathcal{L} -theory T which is κ -categorical for cardinality κ . If T has only infinite models, then T is complete.

Proposition 50. Fix a finite language \mathcal{L} . For any structures \mathcal{A} and \mathcal{B} , Player II has a winning strategy in the $EF_n(\mathcal{A},\mathcal{B})$ game for all n>0 if and only if $\mathcal{A} \vDash \psi$ is equivalent to $\mathcal{B} \vDash \psi$ for all sentences ψ .

Theorem 51 (cell decomposition). Fix a model \mathcal{R} of an o-minimal theory T.

- (a) Given a finite collection $X_1, \ldots, X_m \subseteq \mathbb{R}^n$ of definable subsets, then there is a cell decomposition \mathcal{C} of \mathbb{R}^n such that each X_{\bullet} is a union of some of these cells.
- (b) Any definable function $f: \mathcal{R}^n \to \mathcal{R}$ is piecewise continuous. In other words, there is a cell decomposition \mathcal{C} of \mathcal{R}^n such that f is continuous upon restriction to each cell.

Can I use this?

Theorem 52. Fix an \mathcal{L} -theory T and an \mathcal{L} -formula $\varphi(\overline{x})$. The following are equivalent.

- There is a quantifier-free formula $\psi(\overline{x},y)$ such that $T \vDash \forall \overline{x}(\varphi(\overline{x}) \leftrightarrow \psi(y))$. (This y is only needed when \mathcal{L} has no constant symbols.)
- If \mathcal{M} and \mathcal{N} are models of T with a common substructure \mathcal{A} of T, then for any $\overline{a} \in \mathcal{A}$, we have $\mathcal{M} \models \varphi(\overline{a})$ if and only if $\mathcal{N} \models \varphi(\overline{a})$.

Corollary 53. Let T be an \mathcal{L} -theory. Suppose that, for any quantifier-free formula $\varphi(\overline{x}, y)$, if \mathcal{M} and \mathcal{N} are models of T with a common substructure \mathcal{A} of T, then for any $\overline{a} \in \mathcal{A}$, we have $\mathcal{M} \vDash \exists y \ \varphi(\overline{a}, b)$ if and only if $\mathcal{N} \vDash \exists y \ \varphi(\overline{a}, y)$. Then T eliminates quantifiers.