

UNIVERSIDADE FEDERAL DE RORAIMA CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

JOSEMAR ROCHA DA SILVA MATHEUS FELLYPE DE MOURA SILVA

PROJETO FINAL DE COMPUTAÇÃO GRÁFICA

Boa Vista, RR 2021

JOSEMAR ROCHA DA SILVA MATHEUS FELLYPE DE MOURA SILVA

PROJETO FINAL DE COMPUTAÇÃO GRÁFICA

Trabalho apresentado como requisito para obtenção de nota na disciplina de Computação Gráfica, ofertada pelo curso de Ciência da Computação, do Centro de Ciências e Tecnologia da Universidade Federal de Roraima.

Prof. Dr. Luciano Ferreira Silva

Boa Vista, RR 2021

SUMÁRIO

1.	INTRODUÇÃO	. 4
2.	ROTEIRO DO JOGO	. 5
3.	DETALHES DO JOGO	. 6
4.	FERRAMENTA	. 7
5.	TÉCNICAS DE COMPUTAÇÃO GRÁFICA	. 7
6.	CONCLUSÃO	11
7.	REFERÊNCIA	12

1. INTRODUÇÃO

Este trabalho apresentará a criação de um jogo para a disciplina de computação gráfica, como ele foi construído utilizando técnica de pixel art, implementado em C# até o estado final de entrega com o jogo funcionando.

O jogo desenvolvido é no estilo plataforma 2D utilizando o software chamado Unity, onde através dele abordaremos as técnicas de computação gráfica utilizadas em aula, como rasterização de linhas, circunferências, iluminação e sombras.

Para o desenvolvimento do jogo, os sprites utilizados foram encontrados de forma gratuita no site da assetstore da unity sendo disponibilizado pelo PIXEL FROG autor dos sprite que está disponível em: https://assetstore.unity.com/packages/2d/characters/pixel-adventure-1-155360#description>.

O repositório do projeto no Github está disponível em: https://github.com/Matheusf159/JosemarRocha_MatheusFellype_ProjectFinal_CG. git>.

2. ROTEIRO DO JOGO

Matias era um homem muito faminto, tão faminto que acabou com todas as laranjas de seu planeta natal, então Matias foi banido para o planeta VukuVuku, onde o principal alimento encontrado é convenientemente laranjas. Agora Matias tem que passar por várias áreas perigosas neste planeta desconhecido para conseguir continuar sobrevivendo à base de deliciosas e suculentas laranjas.

3. DETALHES DO JOGO

O jogo desenvolvido é considerado um jogo de plataforma 2D, possuindo 3 fases onde cada fase são implementadas dificuldades diferentes tendo plataformas que caem após certo tempo que o personagem fez contato com ela como também espinhos que ao contato o personagem morre levando-o a game over, onde o jogador tem a possibilidade de correr, pular, pular duas vezes entre as plataformas tendo o objetivo de coletar todas itens, no caso as laranjas presentes em cada fase.

Figura 1. Fase 1 do jogo

Fonte: Autoria própria (2021)

Figura 2. Fase 2 do jogo

Figura 3. Fase 3 do jogo

Fonte: Autoria própria (2021)

O jogo foi desenvolvido para computador, ou seja, temos o controle de motivação padrão básica "A", "D", sendo respectivamente se movimentar para esquerda e se movimentar para a direita e por fim a tecla "SPACE" responsável pelo pulo e pulo duplo do personagem.

4. FERRAMENTAS

A ferramenta utilizada para a implementação e criação do projeto foi a Unity, que é um motor gráfico que possibilita ao usuário a criação de jogos tanto em 2D como também em 3D, onde ela dá suporte para diversas plataformas como PC, mobile e consoles. A implementação é feita através de scripts usando linguagem de programação, sendo a mais usada a C#.

5. TÉCNICAS DE COMPUTAÇÃO GRÁFICA

Sabemos que uma imagem em tela é formada por vários pontos, que são, os pixels, que possuem em cada um deles led's RGB que em conjunto é possível gerar a imagem que podemos ver em tela. Ao criar o projeto do jogo, foram vistas a aplicação de técnicas estudadas em em aula, como rasterização de linhas e circunferências, iluminação e shaders.

Sobre a rasterização de linhas, podemos ver nas figuras 4 e 5 onde se tem, respectivamente, técnicas de rasterização sendo formadas, sendo na primeira

imagem utilizada para a criação dos sprites e na segunda sendo rasterizada para representar o colisor no personagem.

Figura 4. Linhas sprite

Fonte: Autoria própria (2021)

Figura 5. Linhas colisor

Fonte: Autoria própria (2021)

Foi utilizado um shader de difusão disponibilizado por padrão pela unity, a difusão faz com que uma superfície reaja com um ponto de luz de acordo com o ângulo entre o objeto e a luz, logo se esse ângulo diminuir, a quantidade de luz que bate no objeto também diminui, esse efeito pode ser visto nas figuras 6 e 7, onde podemos visualizar como a distância do ponto de luz em relação ao objeto influencia no quanto ele é iluminado.

Figura 6. Demonstração do ponto de luz iluminando o player.

Figura 7. Demonstra como o player perde a iluminação com o ponto afastado.

Fonte: Autoria própria (2021)

Também podemos ver a rasterização de circunferências sendo utilizadas no projeto, vemos na Figura 8 a rasterização sendo usada para dar forma a laranja e as bordas de baixo da grama como também temos na figura 9 o círculo rasterizado representando o colisor.

Figura 8. Circunferência

Fonte: Autoria própria (2021)

Figura 9. Circunferência colisor

Na Figura 10 vemos o método de recorte sendo usado, onde na parte esquerda desenhamos o polígono, mas no jogo, tela direita, ele só aparece a parte dentro da tela do jogo representando o viewport.

Figura 10. Recorte

6. CONCLUSÃO

Após a conclusão do projeto, pode-se perceber como as técnicas estudadas durante o curso se provaram úteis para a criação, não apenas de sprites e outros objetos utilizados na criação do jogo, mas também em funcionalidades como colisores ou shaders que trabalham com iluminação.

O resultado se demonstrou satisfatório, mesmo que simples, tem seu charme e consegue atender à expectativa que tínhamos ao iniciá-lo.

7. REFERÊNCIA

UNITY SPRITE DIFFUSE SHADER. **Github**, 2019. Disponível em: https://github.com/TwoTailsGames/Unity-Built-in-Shaders/blob/master/DefaultResourcesExtra/Sprites-Diffuse.shader. Acesso em 16 de maio de 2021.