PORTFOLIO

JUSTIN DUHAMEL

Outline

Design

Manufacturing

Firmware

Software

Integration

Pedal Box

Stirling Engine

Dashboard

Object Recognition

Cube Thrower

Design Criteria

Pedal box for a FSAE Electric Racecar

- Target 900 Nm (663.81 ftlb) rotor torque from tire model simulations
- Pedal actuation needs to be measured to actuate regenerative braking
- Must have small footprint to fit in impact exclusion zone

Vertical cylinder orientation maximizes output force within Packaging requirements

Design Optimization

- Design optimized for maximum braking force
 - Selection of sintered steel pads for highest μ avg of .55 (CP4226D27-RX)
 - Smallest MC bore diameter possible with 70% F/R braking to maximize line pressure
 - Largest caliper bore diameter and effective rotor radius within packaging constraints (CP4226-2S0)

Driver foce on pedal MC Output Force	95 541.32	lb	_		
	Fro	Front		Rear	
Balance Bar Bias	0.6		0.400		
Master Cylinder Force	324.79	lb	216.53	lb	
Master Cylinder Bore Diameter	0.55	in	0.70	in	
Master Cylinder Piston Area	0.24	in^2	0.38	in^2	
Master Cylinder Output Pressure	1367.06	psi	562.63	psi	
Line Pressure	1367.06	psi	562.63	-	
Caliper Piston Diameter	1.00	in	1.00	in	
Caliper Piston Area	1.566	in^2	1.566	in^2	
Clamping Force on rotor	2140.14	lb	880.80	lb	
Rotor-pad CoF	0.55		0.55		
Friction Force on Rotor	1177.08	lb	484.44	lb	
Number of calipers on axle	2		2		
Effective Rotor Radius	3.34	in	3.34	in	
Rotor Braking Torque	3931.43		1618.04		
Tire Diameter	15.50		15.50		
Tire Radius	7.75		7.75		
Tire Longitudinal Force	507.28	lb	208.78	lb	
Front Rear braking ratio	0.71				

Preliminary Testing Data and Sensors

Initial testing of partial retrofit with 30-0 mph stops

= X acceleration (m/s²) Peak deceleration 13.5 m/s²

- Sensor suite used to measure braking forces
 - Pedal load cell mounted with zero force members
 - Line pressure sensors measure front/rear bias
- Hydraulic braking sensors used to calculate regen torque per corner

Zero force mounting pins

Load cell

Gamma Type Sterling Engine

 Machined 19 parts with manual milling, lathe and CNC toolpaths

• Engine spun at over 1800 rpm

Dashboard

- Bare metal GUI implementation backed by LittlevGL
 - Enhanced driver performance with pace meter and energy meter
- Enables instantaneous debugging
 - Displays all vehicle soft faults, hard faults and critical information
 - Reduced debugging time from minutes to seconds

FRC Vision Based Autonomous guidance

HSV color space and gaussian blur to close loose geometry

Contour masking - dynamically adjusted to lighting conditions

- 60 fps on a Jetson Tx1 co-processor with OpenCV
 - Position tracking performed with integration of onboard accelerometer
 - Cube and target zone positions mapped into 2d space
 - Linear path planner from cubes to scoring zones
- Integrated with powered cube thrower
 - Detection, grabbing and throwing a cube onto target zone

Stray contour removal, object bounding and centroid calculation

Powered Cube Thrower

- Automatic cube intake and hold
- Designed, manufactured, and tested
 - Aluminum MIG welded frame
 - PID angle controler Java
- Throws 5lb object over 15ft
 - Ingestion, aim and launch in under 3 seconds

