DETR: End-to-End Object Detection with <u>Transformers</u>

Facebook AI France, 2020: Nicolas Carion, Francisco Massa et al.

Мария Тимонина БПМИ192

Vision Transformer (ViT) [2020, Dosovitskiy]

- Патчи с помощью обучаемой свертки вытягиваются в векторы
- Изображение как фраза из 256 слов
- Нулевой эмбеддинг через backprop выучит класс всей картинки

Transformer Encoder

MLP

Norm

Multi-Head Attention

Norm

Embedded Patches

Lx

Object Detection

- 2D-оболочка
- Хотим ограничить в bounding box все объекты заранее известного списка классов и разметить их
- В отличие от сегментации, обнаруживаем только объекты (без фона, stuff)

Правильно отделить объекты не просто

- Вариантов рамки объекта квадрат от числа пикселей
- Правильный контейнер может иметь разное отношение сторон
- Объекты на фото могут перекрываться другими

Как оценить качество ответа детектора?

- Уверенность модели в ответе
 Sure > threshold (0.5-0.7)
- [Recall] прямоугольник-кандидат считаем правильным, если:

IoU > threshold

• [Precision] учитываем объект **один раз**, остальные – false positives

Non-Maximum Suppression

- Дано множество пар {(Coords_i, score_i)}
- Одному истинному объекту должно соответствовать не более одной рамки
- 1. Сортируем пары по убыванию score_i
- 2. Перебираем прямоугольники
 - 1. Выбираем очередную рамку в ответ
 - 2. Все рамки из оставшихся в очереди, у которых IoU с выбранной больше threshold, удаляем из очереди

DETR: Detection using Transformers

Как считать ошибку? Нужно сопоставить результат и разметку

Bipartite Matching

Венгерский алгоритм

$$\hat{\sigma} = \underset{\sigma \in \mathfrak{S}_N}{\operatorname{arg\,min}} \sum_{i}^{N} \mathcal{L}_{\operatorname{match}}(y_i, \hat{y}_{\sigma(i)})$$

$$-\mathbb{1}_{\{c_i\neq\varnothing\}}\hat{p}_{\sigma(i)}(c_i)+\mathbb{1}_{\{c_i\neq\varnothing\}}\mathcal{L}_{\text{box}}(b_i,\hat{b}_{\sigma(i)})$$

- Лучшая перестановка выходов трансформера
- Максимизирует уверенности в ответе
- И минимизирует потери от искажения рамки

Bounding Box Loss

- Маленькие и большие рамки объектов, в отличие от других (якорных) архитектур обучаются вместе
- Решение от авторов: обобщенная IoU

$$GIoU = IoU - rac{|C \setminus (A \cup B)|}{|C|}$$

SSD: Single-Shot Detector (якорная)

$$b_i \in [0,1]^4$$

$$\mathcal{L}_{\text{box}}(b_i, \hat{b}_{\sigma(i)}) = \lambda_{\text{iou}} \mathcal{L}_{\text{iou}}(b_i, \hat{b}_{\sigma(i)}) + \lambda_{\text{L1}} ||b_i - \hat{b}_{\sigma(i)}||_1$$

Финальная функция потерь

$$\mathcal{L}_{\text{Hungarian}}(y, \hat{y}) = \sum_{i=1}^{N} \left[-\log \hat{p}_{\hat{\sigma}(i)}(c_i) + \mathbb{1}_{\{c_i \neq \varnothing\}} \mathcal{L}_{\text{box}}(b_i, \hat{b}_{\hat{\sigma}}(i)) \right]$$

$$y_i \; = \; (c_i,b_i)$$
 • Правильный прямоугольник задается как

$$b_i \in [0,1]^4$$
 • Координаты центра, высота и ширина

 c_i • Метка класса

DETR: Encoder & Decoder

- Вход: векторы признаков
- Стандартный трансформер:
 - multi-head self-attention
 - Полносвязный слой

- Вход: N токенов, N = 100
- Для каждого токена предсказать координаты рамки и класс
 - + степень уверенности в ответе
- No object class

DETR Decoder

- Берет на вход N=100 различных обучаемых токенов
- Есть как Self-Attention блоки, так и
- Encoder-Decoder блоки (K, V из энкодера и Q из декодера)

Полная архитектура DETR

- CNN ResNet50 или ResNet101
- FFN для предсказания 3-слойный MLP + ReLU для координат центра, softmax для уверенности в классе

Сравнение с другими моделями

Model	GFLOPS/FPS	s #params	s AP	$\overline{\mathrm{AP_S}}$	AP_{M}	$\overline{\mathrm{AP_L}}$
Faster RCNN-DC5 Faster RCNN-FPN Faster RCNN-R101-FPN	320/16 $180/26$ $246/20$	166M 42M 60M	39.0 40.2 42.0	24.2	43.5 43.5 45.6	52.0
Faster RCNN-DC5+ Faster RCNN-FPN+ Faster RCNN-R101-FPN+	320/16 $180/26$ $246/20$	166M 42M 60M	41.1 42.0 44.0	22.9 26.6 27.2		
DETR DETR-DC5 DETR-R101 DETR-DC5-R101	86/28 $187/12$ $152/20$ $253/10$	41M 41M 60M 60M	42.0 43.3 43.5 44.9	20.5 22.5 21.9 23.7		61.1 61.8

[•] Сверточная сеть лучше работает на маленьких объектах, но глобальное внимание показывает лучшее качество на средних и больших

[•] AP – Average Precision

Токены декодера: как выучивают позицию рамки?

Для 14 выходов из N=100

Визуализация центров всех предсказанных ими прямоугольников для набора данных валидации из СОСО 2017

Encoder отделяет объекты от фона

• Карты распространения внимания для выходов первого блока

Decoder уже смотрит на выступы – яркие черты класса

- Визуализация ключей декодера (выходов энкодера), наиболее релевантных для того токена, из которого получилась рамка объекта
- В фокусе оказываются края объекта — ноги, холка

Задача сегментации с DETR

- Выделяются классы не только объектов, но и фона
- Карты распространения внимания (выходы декодера) подаются в сверточную голову

Как идея развивалась дальше?

- 2017 Attention is All You Need (машинной перевод)
- 2020 ViT (глобальное внимание для классификации картинок)
- 2020 DETR (детекция объектов, тоже глобально) мы здесь
- 2021 SWIN (Shifted WINdows, локальное внимание best paper ICCV21)
- Апрель 2021 DINO (DETR with Improved DeNoising Anchor Boxes)
- Object Detection SOTA сейчас DINO (Swin-L, multi-scale)

