BIMM143class05 Data Visualization with ggplot2

A15827934

Using GGPLOT

##The ggplot2 package needs to be installed as it does not come with R "out of the box". # #We use the 'install-packages()' function to do this.

```
head(cars)
```

##To use ggplot I need to load it up before I can call any of the functions in the package. I do this with the library() function.

```
library(ggplot2)
ggplot()
```

 $\#\#{\rm All}$ ggplot figures have at least three things: $\#\#{\rm -data}({\rm the~stuff~we~want~to~plot})$ $\#\#{\rm -aesthetics~mapping}({\rm aes~values})$ $\#\#{\rm -geometry}$

```
ggplot(cars) +
  aes(x=speed, y=dist) +
  geom_point()
```


##ggplot is not the only graphing system in R there are lots of others. There is even "base R" graphics.

plot(cars)


```
library(ggplot2)
ggplot(cars) +
aes(x=speed, y=dist) +
geom_point() +
labs(title="Speed and Stopping Distance of Cars", x="Speed (MPH)", y="Stopping Distance (figeom_smooth(method="lm", se=FALSE) +
theme_bw()
```

`geom_smooth()` using formula = 'y ~ x'

Speed and Stopping Distance of Cars

As speed increases stopping distance increases!

url<-"https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"
genes<-read.delim(url)
head(genes)</pre>

```
Gene Condition1 Condition2 State
1 A4GNT -3.6808610 -3.4401355 unchanging
2 AAAS 4.5479580 4.3864126 unchanging
3 AASDH 3.7190695 3.4787276 unchanging
4 AATF 5.0784720 5.0151916 unchanging
5 AATK 0.4711421 0.5598642 unchanging
6 AB015752.4 -3.6808610 -3.5921390 unchanging
```

nrow(genes)

[1] 5196

colnames(genes)

[1] "Gene" "Condition1" "Condition2" "State"

```
ncol(genes)
[1] 4
  table(genes$State)
      down unchanging
                               up
                 4997
        72
                              127
  round(table(genes$State)/nrow(genes)*100, 2)
      down unchanging
                               up
      1.39
                96.17
                             2.44
  p <- ggplot(genes) +</pre>
      aes(x=Condition1, y=Condition2, col=State) +
      geom_point()
```

p


```
p + scale_colour_manual( values=c("blue", "gray", "red") ) + labs(title="Gene Expression Ch
```

Gene Expression Changes Upon Drug Treatment


```
library(gapminder)
# install.packages("dplyr") to install dplyr
library(dplyr)
```

```
Attaching package: 'dplyr'
```

```
The following objects are masked from 'package:stats':
```

```
filter, lag
```

The following objects are masked from 'package:base':

```
intersect, setdiff, setequal, union
```

```
gapminder_2007 <- gapminder %>% filter(year==2007)
ggplot(gapminder_2007)+
```

aes(x=gdpPercap, y=lifeExp, color=continent, size=pop)+geom_point(alpha=0.5)


```
ggplot(gapminder_2007) +
  aes(x = gdpPercap, y = lifeExp, color = pop) +
  geom_point(alpha=0.8)
```



```
ggplot(gapminder_2007) +
  aes(x=gdpPercap, y=lifeExp, size=pop) + geom_point(alpha=0.5) +
  scale_size_area(max_size=10)
```



```
library(dplyr)
gapminder_1957 <- gapminder %>% filter(year==1957 | year==2007)

ggplot(gapminder_1957)+
  aes(x= gdpPercap, y=lifeExp,color=continent, size=pop) +
  geom_point(alpha=0.7) +
  scale_size_area(max_size=10) +
  facet_wrap(~year)
```



```
gapminder_top5<- gapminder %>%
  filter(year==2007) %>%
  arrange(desc(pop)) %>%
  top_n(5,pop)
gapminder_top5
```

A tibble: 5 x 6

	country	continent	year	lifeExp	pop	gdpPercap
	<fct></fct>	<fct></fct>	<int></int>	<dbl></dbl>	<int></int>	<dbl></dbl>
1	China	Asia	2007	73.0	1318683096	4959.
2	India	Asia	2007	64.7	1110396331	2452.
3	United States	Americas	2007	78.2	301139947	42952.
4	Indonesia	Asia	2007	70.6	223547000	3541.
5	Brazil	Americas	2007	72.4	190010647	9066.

```
ggplot(gapminder_top5) +
aes(x=country, y=pop) +
geom_col()
```



```
ggplot(gapminder_top5) +
  aes(x=country, y=lifeExp) +
  geom_col()
```



```
ggplot(gapminder_top5) +
  aes(x=country, y=pop, fill=continent) +
  geom_col()
```



```
ggplot(gapminder_top5) +
aes(x=country, y=pop, fill=lifeExp) +
geom_col()
```



```
ggplot(gapminder_top5) +
  aes(x=reorder(country, -pop), y=pop, fill=country) +
  geom_col(col="gray30") +
  guides(fill="none")
```


head(USArrests)

	Murder	${\tt Assault}$	UrbanPop	Rape
Alabama	13.2	236	58	21.2
Alaska	10.0	263	48	44.5
Arizona	8.1	294	80	31.0
Arkansas	8.8	190	50	19.5
California	9.0	276	91	40.6
Colorado	7.9	204	78	38.7

```
USArrests$State <- rownames(USArrests)
ggplot(USArrests) +
  aes(x=reorder(State,Murder), y=Murder) +
  geom_col() +
  coord_flip()</pre>
```



```
##library(gapminder)
##library(gganimate)
## Setup nice regular ggplot of the gapminder data
ggplot(gapminder, aes(gdpPercap, lifeExp, size = pop, colour = country)) +
  geom_point(alpha = 0.7, show.legend = FALSE) +
  scale_colour_manual(values = country_colors) +
  scale_size(range = c(2, 12)) +
  scale_x_log10() +
  # Facet by continent
  facet_wrap(~continent) +
  # Here comes the gganimate specific bits
  labs(title = 'Year: \{frame\_time\}', x = 'GDP per capita', y = 'life expectancy') +
  transition_time(year) +
  shadow_wake(wake_length = 0.1, alpha = FALSE)
::: {.cell}
```{.r .cell-code}
library(patchwork)
use car data
```

```
p1 <- ggplot(mtcars) +
 geom_point(aes(mpg, disp))
p2 <- ggplot(mtcars) +
 geom_boxplot(aes(gear, disp, group = gear))
p3 <- ggplot(mtcars) +
 geom_smooth(aes(disp, qsec))
p4 <- ggplot(mtcars) +
 geom_bar(aes(carb))

##use patchwork to merge them all

(p1|p2|p3)/p4

`geom_smooth()` using method = 'loess' and formula = 'y ~ x'</pre>
```



:::