

### De onde importamos os dados para o R?













Data Science Academy

### De onde importamos os dados para o R?

- Arquivos Texto flat files (txt, csv)
- Arquivos Excel (xls, xlsx)
- Bancos de Dados (Oracle, SQL Server, MySQL, PostgreSQL, SQLite)
- Softwares Estatísticos (SAS, SPSS, Stata)
- Dados da Internet (Web Crawling)







A função dos algoritmos é automatizar os processos de análise



#### Aqui estão alguns dos padrões mais comumente observados

- Os cabeçalhos das colunas são valores e não nomes de variáveis
- Diversas variáveis são armazenadas em uma coluna
- As variáveis são armazenados em ambas as linhas e colunas
- Vários tipos de unidade experimental armazenados na mesma tabela
- Um tipo de unidade experimental armazenado em várias tabelas





Pacote data.table

read\_tsv()

read.delim()

fread()



www.datascienceacademy.com.br



#### Pacote utils

O pacote utils, que é automaticamente carregado na sua sessão R, pode importar arquivos simples em diferentes formas, através das funções:





### Pacote utils

| read.csv    | Para valores sepa <mark>rad</mark> os por vírgula <mark>e</mark> ponto como separador decimal |  |
|-------------|-----------------------------------------------------------------------------------------------|--|
| read.csv2   | Para valores separados por ponto e vírgula e vírgula como separador decimal                   |  |
| read.delim  | Para valores separados por tab e p <mark>o</mark> nto como separador decimal                  |  |
| read.delim2 | Para valores separados por tab e <mark>vírgul</mark> a e vírgula como separador decimal       |  |
| read.fwf    | Para valores com núm <mark>ero e</mark> xato de bytes por coluna                              |  |

read.table()



www.datascienceacademy.com.br





read.table()

Muito útil quando se está fazendo a leitura de arquivos ASCII, que contém dados em formato retangular







# read.table()

read.table("arquivo.txt", header = TRUE, sep = ",", stringsAsFactors = FALSE) read.table("arquivo.txt", header = TRUE, sep = "\t", stringsAsFactors = FALSE)







read.csv()

read.csv("arquivo.csv", stringsAsFactors = FALSE)
read.csv2("arquivo.csv", sep = ";", dec = ",", stringsAsFactors = FALSE)







read.delim()

read.delim("arquivo.txt")
read.delim2("arquivo.txt")





#### **Parâmetros**

header
col.names
na.string
colClasses
sep
stringsAsFactors





#### Pacote readr

Lançado em Abril/2015 pelos desenvolvedores do RStudio

install.packages("readr")

read\_table()
read\_csv ()
read\_delim ()







#### Pacote readr

arq1 <- read\_table("bigdatafile.txt", col\_names = c("DAY","MONTH","YEAR","TEMP"))

arq2 <- read.table("bigdatafile.txt", col.names = c("DAY","MONTH","YEAR","TEMP"))



# Manipulação de Arquivos Excel



### Pacote XLConnect

loadWorkbook()
 getSheets()
readWorksheet()
 createsheet()
writeWorksheet()







read.xlsx(file, sheetIndex, header=TRUE, colClasses=NA)

read.xlsx2(file, sheetIndex, header=TRUE, colClasses="character")





#### Pacote readxl

read\_excel()
Excel\_sheets()





Pacote gdata

read.xls()





## Atenção aos Detalhes

- Em seus arquivos, evite espaços em branco e números como título para as colunas
- Normalmente, a primeira linha de cada arquivo é o cabeçalho, a lista de nomes para cada coluna
- Para a concatenação de palavras, use . ou \_
- Use nomes curtos como título de coluna
- Evite o uso de caracteres especiais
- Dados NA podem existir no seu conjunto de dados e isso será tratado no processo de limpeza





# Atenção aos Detalhes

- Encoding
- Linha de cabeçalho
- Separador de colunas
- Quoting (aspas)
- Missing values
- Linhas em branco
- Espaços em branco em campos do tipo caracter
- Comentários



# Outros Pacotes para Importação de Arquivos:

- Pacote rison Leitura de arquivos JSON para o R
- Pacote XML Leitura de arquivos xml
- Pacote httr Leitura de páginas html para o R
- Pacote Rcurl Web Crawling (Capítulo 5)
- Pacote foreign Leitura de arquivos do SPSS, SAS (Capítulo 5)
- Pacote sas7bdat Leitura de arquivos SAS (Capítulo 5)



#### data.table

Fonece um rápido processo de carga de dados, pois as funções reconhecem automaticamente os parâmetros dos arquivos e decidem a melhor forma de carga

fread()





#### Resumindo:

Manipulação de Arquivos txt e csv

read.table()

Package utils read.csv()

read.delim()

read\_table()

Package readr read\_csv()

read\_delim()

Package data.table fread()

Manipulação de Arquivos excel

**XLConnect** 

xlsx

readxl

gdata

r2excel



# E como o R se conecta aos SGBD's?





### Bancos de Dados e Pacotes R

| Banco de Dados       | Pacote R    |                    |
|----------------------|-------------|--------------------|
| Oracle               | ROracle     |                    |
| Microsoft SQL Server | RSQLServer  |                    |
| PostgreSQL           | RPostgreSQL |                    |
| MySQL                | RMySQL      |                    |
| SQLite               | RSQLite     |                    |
| MongoDB              | RMongo      |                    |
| Conexão ODBC         | RODBC       | ta Science Academy |

www.datascienceacademy.com.br

### Bancos de Dados e Pacotes R

| Banco de Dados | Pacote R |
|----------------|----------|
| Conexão ODBC   | RODBC    |





Quais os passos necessários para conectar em um banco de dados usando R:

Conectar ao banco de dados → DBI.dbConnect ()



Quais os passos necessários para conectar em um banco de dados usando R:

- Conectar ao banco de dados
- Determinar o nome do banco de dados, endereço, porta, usuário e senha
- Listar e importar tabelas
- Manipular os dados
- Desconectar



# Bancos de Dados NoSQL (Not Only SQL)



NoSQL é uma tecnologia de banco de dados projetada para suportar os requisitos de aplicações em nuvem e arquitetado para superar em escala e desempenho as limitações de bancos de dados relacionais (RDBMS)





Os principais Bancos de Dados NoSQL são:

Graph Neo4J
FlockDB
GraphDB
ArangoDB

| Verre | Key-value | MemcacheDB |
|-------|-----------|------------|
| Key-v |           | Redis      |
|       |           | Voldemort  |
| 745   | 71        |            |
|       | LIBac     | •          |

Oracle NoSQL DB

| Document | MongoDB    |
|----------|------------|
|          | CouchDB    |
|          | RavenDB    |
|          | Terrastore |

|        | HBase      |
|--------|------------|
| Column | Cassandra* |
|        | Hypertable |
|        | Accumulo   |





















| MongoDB            | RDBMS           |
|--------------------|-----------------|
| Database           | Database        |
| Collection         | Tabela          |
| Document           | Linha/Tupla     |
| Field              | Coluna          |
| Embedded Documents | Join de Tabelas |
| Primary Key        | Primary Key     |



# Data Wrangling (Manipulação de Dados)









#### Qual o objetivo do Data Wrangling?



Cada Variável em uma coluna



Cada observação em uma linha



# E o que o R pode fazer para ajudar o Cientista de Dados?



# dplyr

- select()
- filter()
- group\_by()
- summarise()
- arrange()
- join()
- mutate()

# tidyr

- gather()
- spread()
- separate()
- unite()



tidyr

Remodelagem de Dados











| Country | 2011  | 2012  | 2013  |
|---------|-------|-------|-------|
| FR      | 7000  | 6900  | 7000  |
| DE      | 5800  | 6000  | 6200  |
| US      | 15000 | 14000 | 13000 |

| gother() | FR | 2011 | 7000  |
|----------|----|------|-------|
| gather() | DE | 2011 | 5800  |
| **       | US | 2011 | 15000 |
|          | FR | 2012 | 6900  |
|          | DE | 2012 | 6000  |
|          | US | 2012 | 14000 |
|          | FR | 2013 | 7000  |
|          | DE | 2013 | 6200  |
|          |    |      |       |



Data Science Academy









| storm   | wind | pressure | date       |
|---------|------|----------|------------|
| Alberto | 110  | 1007     | 2000-08-12 |
| Alex    | 45   | 1009     | 1998-07-30 |
| Allison | 65   | 1005     | 1995-06-04 |
| Ana     | 40   | 1013     | 1997-07-01 |
| Arlene  | 50   | 1010     | 1999-06-13 |
| Arthur  | 45   | 1010     | 1996-06-21 |



| storm   | wind | pressure | year | month | day |
|---------|------|----------|------|-------|-----|
| Alberto | 110  | 1007     | 2000 | 08    | 12  |
| Alex    | 45   | 1009     | 1998 | 07    | 30  |
| Allison | 65   | 1005     | 1995 | 06    | 04  |
| Ana     | 40   | 1013     | 1997 | 07    | 1   |
| Arlene  | 50   | 1010     | 1999 | 06    | 13  |
| Arthur  | 45   | 1010     | 1996 | 06    | 21  |







| storm   | wind | pressure | date       |
|---------|------|----------|------------|
| Alberto | 110  | 1007     | 2000-08-12 |
| Alex    | 45   | 1009     | 1998-07-30 |
| Allison | 65   | 1005     | 1995-06-04 |
| Ana     | 40   | 1013     | 1997-07-01 |
| Arlene  | 50   | 1010     | 1999-06-13 |
| Arthur  | 45   | 1010     | 1996-06-21 |

| storm   | wind | pressure | year | month | day |
|---------|------|----------|------|-------|-----|
| Alberto | 110  | 1007     | 2000 | 08    | 12  |
| Alex    | 45   | 1009     | 1998 | 07    | 30  |
| Allison | 65   | 1005     | 1995 | 06    | 04  |
| Ana     | 40   | 1013     | 1997 | 07    | 1   |
| Arlene  | 50   | 1010     | 1999 | 06    | 13  |
| Arthur  | 45   | 1010     | 1996 | 06    | 21  |





Talvez você ainda não tenha percebido.

Mas com apenas uma função, somos capazes de mudar completamente o formato (shape) dos nossos dados e isso pode fazer muita diferença no processo de análise



diplyr

Transformação de Dados







| storm   | wind | pressure | date       |
|---------|------|----------|------------|
| Alberto | 110  | 1007     | 2000-08-12 |
| Alex    | 45   | 1009     | 1998-07-30 |
| Allison | 65   | 1005     | 1995-06-04 |
| Ana     | 40   | 1013     | 1997-07-01 |
| Arlene  | 50   | 1010     | 1999-06-13 |
| Arthur  | 45   | 1010     | 1996-06-21 |

| wind | pressure | date       |
|------|----------|------------|
| 110  | 1007     | 2000-08-12 |
| 45   | 1009     | 1998-07-30 |
| 65   | 1005     | 1995-06-04 |
| 40   | 1013     | 1997-07-01 |
| 50   | 1010     | 1999-06-13 |
| 45   | 1010     | 1996-06-21 |







| storm   | wind | pressure | date       |
|---------|------|----------|------------|
| Alberto | 110  | 1007     | 2000-08-12 |
| Alex    | 45   | 1009     | 1998-07-30 |
| Allison | 65   | 1005     | 1995-06-04 |
| Ana     | 40   | 1013     | 1997-07-01 |
| Arlene  | 50   | 1010     | 1999-06-13 |
| Arthur  | 45   | 1010     | 1996-06-21 |

| storm   | wind | pressure | date       |
|---------|------|----------|------------|
| Alberto | 110  | 1007     | 2000-08-12 |
| Allison | 65   | 1005     | 1995-06-04 |







| country     | year | sex    | cases |
|-------------|------|--------|-------|
| Afghanistan | 1999 | female | 1     |
| Afghanistan | 1999 | male   | 1     |
| Afghanistan | 2000 | female | 1     |
| Afghanistan | 2000 | male   | 1     |
| Brazil      | 1999 | female | 2     |
| Brazil      | 1999 | male   | 2     |
| Brazil      | 2000 | female | 2     |
| Brazil      | 2000 | male   | 2     |
| China       | 1999 | female | 3     |
| China       | 1999 | male   | 3     |
| China       | 2000 | female | 3     |
| China       | 2000 | male   | 3     |

| country     | year | sex    | cases |
|-------------|------|--------|-------|
| Afghanistan | 1999 | female | 1     |
| Afghanistan | 1999 | male   | 1     |
| Afghanistan | 2000 | female | 1     |
| Afghanistan | 2000 | male   | 1     |
| Brazil      | 1999 | female | 2     |
| Brazil      | 1999 | male   | 2     |
| Brazil      | 2000 | female | 2     |
| Brazil      | 2000 | male   | 2     |
| China       | 1999 | female | 3     |
| China       | 1999 | male   | 3     |
| China       | 2000 | female | 3     |
| China       | 2000 | male   | 3     |



Data Science Academy







| Species    | Mean  | SD    | n  |
|------------|-------|-------|----|
| setosa     | 5.006 | 0.352 | 50 |
| versicolor | 5.936 | 0.516 | 50 |
| virginica  | 6.588 | 0.636 | 50 |









| Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species   |
|--------------|-------------|--------------|-------------|-----------|
| 7.9          | 3.8         | 6.4          | 2.0         | virginica |
| 7.7          | 3.8         | 6.7          | 2.2         | virginica |
| 7.7          | 2.6         | 6.9          | 2.3         | virginica |
| 7.7          | 2.8         | 6.7          | 2.0         | virginica |
| 7.7          | 3.0         | 6.1          | 2.3         | virginica |
| 7.6          | 3.0         | 6.6          | 2.1         | virginica |





mutate()

#### head(iris)

1.4

1.7



3.6

3.9

Sepal.Length Sepal.Width Petal.Length Petal.Width

| 17.85 |
|-------|
| 14.70 |
| 15.04 |
| 14.26 |
| 18.00 |
| 21.06 |

Sepal Area



**Species** 

setosa

setosa

setosa

setosa

setosa

setosa

0.2

0.4

Data Science Academy

5.4





| 17 | a  |   |    | )  |
|----|----|---|----|----|
| x1 | x2 |   | x1 | x2 |
| Α  | 1  |   | Α  | Т  |
| В  | 2  | 1 | В  | F  |
| С  | 3  |   | D  | Ť  |

| x1 | x2.x | x2.y |
|----|------|------|
| Α  | 1    | Т    |
| В  | 2    | F    |
| С  | 3    | NA   |
| D  | NA   | T    |



Existem outras funções e variações destas funções

O pacote dplyr permite que se realize operações complexas com dataframes e matrizes, utilizando apenas uma instrução



#### Operador %>%

filter(data, variable == numeric\_value)

<u>ou</u>

data %>% filter(variable == numeric\_value)

