Analisi Matematica Limiti

Andrea Malvezzi 07 Ottobre 2024

Contents

1	La	nozione di limite	•
	1.1	Introduzione	•
		1.1.1 Esempi di punto di accumulazione	4
	1.2	Ma perché si toglie il centro?	ļ
	1.3	Definizione di limite finito al finito	ţ
2	Teoremi utili per operare con i limiti		
	2.1	Teorema di permanenza del segno	ļ
	2.2	Teorema del confronto (due carabinieri)	(
	2.3	Altre proprietà	(
3	Il li	mite più importante della goniometria	7

1 La nozione di limite

1.1 Introduzione

Avendo:

$$x_0 \in \mathbb{R}, r \in \mathbb{R} : r > 0 \text{ (molto piccolo)}$$

Si dice intorno di x_0 la parte di piano sferica avente centro x_0 e raggio r, tale che:

$$I_r(x_0) = x \in \mathbb{R} : |x - x_0| < r$$
 (1)

Inoltre un punto in un insieme A è detto di accumulazione quando facendo l'intersezione tra A stesso e l'intorno del punto MENO il punto stesso, si ottiene un insieme non-vuoto. Ovvero:

$$A \cap (I_r(\overline{x}) - \overline{x})! = \emptyset \tag{2}$$

E l'insieme di tutti i punti di accumulazione di un insieme A, anche detto **Derivato di** A, si indica con la seguente:

$$A = \overline{x} \in \mathbb{R} : \dots$$
 (definizione di punto di accumulazione, vedi (2)) (3)

1.1.1 Esempi di punto di accumulazione

A seguire alcuni esempi di punti di accumulazione di una funzione definita tra 1 (escluso) e 6 (incluso).

Figure 1: Esempi di punti di accumulazione di una funzione.

1.2 Ma perché si toglie il centro?

Il centro di un intorno si rimuove per esplicitare dal punto di vista matematico l'atto di avvicinarsi indefinitamente a tale punto, all'interno della funzione. Se non si rimuovesse tale valore, nell'esempio presentato a seguito 7 sarebbe punto di accumulazione altrimenti.

Figure 2: Esempio di punto non di accumulazione (7).

1.3 Definizione di limite finito al finito

Avendo:

$$f: A \to \mathbb{R}, \ x_0 \in \mathbb{D}(A), \ l \in \mathbb{R}$$

Si dice che:

$$\lim_{x \to x_0} f(x) = l$$

se:

$$\forall \theta > 0, \exists \delta = \delta(x_0, \theta) > 0 : \forall x \in a : 0 < 0 < |x - x_0| < \delta$$
(4)

2 Teoremi utili per operare con i limiti

2.1 Teorema di permanenza del segno

Avendo:

$$f: A \to \mathbb{R}, \ \overline{x} \in \mathbb{D}(A), \ \lim_{x \to \overline{x}} f(x) = l \in \mathbb{R}, \ l > 0 \text{ oppure } l < 0 \text{ (due casi)}$$

Allora:

$$\exists \delta > 0 : \forall x \in A, \ \overline{x} - \delta < x < \overline{x} + \delta, \ x! = \overline{x}$$
 (5)

Che essenzialmente significa che se si ha un limite tendente ad \overline{x} , vicino a \overline{x} la funzione studiata avrà un segno costante.

2.2 Teorema del confronto (due carabinieri)

Avendo:

$$f, g, h: A \to \mathbb{R}, x_0 \in \mathbb{D}(A)$$

Supponiamo che:

$$\lim_{x \to x_0} g(x) = \lim_{x \to x_0} h(x) = l \in \mathbb{R}$$
 (6)

Allora:

$$\exists \delta > 0 : g(x) \le f(x) \le h(x), \ \forall x \in [A \cup I_{\delta}(x_0)] - \{x_0\}$$
 (7)

Ed infine:

$$\lim_{x \to x_0} f(x) = l \tag{8}$$

2.3 Altre proprietà

Valgono inoltre le seguenti proprietà, utili a scomporre i limiti:

Figure 3: Proprietà dei limiti.

3 Il limite più importante della goniometria

Il limite più importante della goniometria è:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \tag{9}$$

E per dimostrare tale limite occorre anzitutto assumere che:

$$0 < x < \frac{\pi}{2}$$

E poi passare alla rappresentazione geometrica:

Figure 4: Si intuisce che $\stackrel{\triangle}{AOH}$. e $\stackrel{\triangle}{BOC}$ siano simili.

Ora, intuitivamente, si dimostra che:

$$\overline{AH} \leq |\overset{\cup}{AB}| \leq \overline{BC}$$

Ovvero, passando agli equivalenti nella goniometria:

$$\sin x \le x \le \tan x$$

Dividiamo ora per $\sin x$ per ottenere:

$$\frac{\sin x}{\sin x} \le \frac{n}{\sin x} \le \frac{\tan x}{\sin x} = \frac{\sin x}{\cos x} \cdot \frac{1}{\sin x} = \frac{1}{\cos x}$$