UNIVERSITY OF WATERLOO FINAL EXAMINATION FALL TERM 2003

	$\mathbf{Surname}:$	
]	First Name:	
	Id.#:	

Course Number	MATH 239				
Course Title	Introduction to Combinatorics				
Instructor	Professor Goulden 1:30 \square Professor Mosca 2:30 \square Professor Schellenberg 1:30 \square Professor Verstraete 12:30 \square				
Date of Exam	December 13, 2003				
Time Period	9 a.m. – 12 Noon				
Number of Exam Pages (including this cover sheet)	12 pages				
Exam Type	Closed Book				

ADDITIONAL INSTRUCTIONS:

- 1. Write your name and Id.# in the blanks above. Put a check mark in the box next to your instructor's name and lecture time.
- 2. There are 12 pages to this exam including the cover page. Please be sure you have all 12 pages.
- 3. Answer each of the problems in the space provided; use the back of the previous page for additional space.

4. You may only use a non-programmable calculator. Show the reasoning used in any calculation.

Problem	Value	Mark Awarded	Problem	Value	Mark Awarded
1	12		6	15	
2	15		7	13	
3	10		8	14	
4	13				
5	8		TOTAL	100	

- [5] **1(a)** For fixed positive integers n, k, determine the number of integer solutions to the equation $t_1 + \ldots + t_k = n$, where $t_1 \geq 2, \ldots, t_k \geq 2$.
- [7] **(b)** For fixed positive integers n, k, show that the number of integer solutions to the equation $t_1 + \ldots + t_k = n$, where $8 \ge t_1 \ge 2, \ldots, 8 \ge t_k \ge 2$ is given by

$$\sum_{i=0}^{\lfloor \frac{n-2k}{7} \rfloor} \binom{k}{i} (-1)^i \binom{n-k-7i-1}{k-1}.$$

[4] **2(a)** Let p_n , $n \ge 0$, be the number of $\{0,1\}$ -strings of length n in which all blocks have odd length. Prove that

 $\sum_{i \ge 0} p_i x^i = \frac{1 + x - x^2}{1 - x - x^2}.$

$$\sum_{i>0} s_i x^i = \frac{1 + 2x + x^3 - x^4}{1 - 2x^2 - x^3 + x^4}.$$

[3] (c) From part (b), deduce a linear recurrence equation for s_n , with initial conditions that uniquely determine $\{s_n\}_{n\geq 0}$.

- 3. Let $a_n = 5^n 2^{n+1}$, $n \ge 0$.
- [4] (a) Find a linear, homogeneous recurrence equation for a_n , with initial conditions that uniquely determine $\{a_n\}_{n\geq 0}$.
- (b) Let $b_n = a_n^2$, $n \ge 0$. Find a linear, homogeneous recurrence equation for b_n , with initial conditions that uniquely determine $\{b_n\}_{n\ge 0}$.

- **4.** Let Q_n , $n \ge 0$, denote the graph whose vertex set is the set of all $\{0,1\}$ strings of length n, and in which two vertices are joined by an edge if and only if they differ in exactly one position.
- [2] (a) Draw a planar embedding of Q_3 .
- [2] **(b)** Determine the number of vertices and edges in Q_n , for $n \geq 0$.
- [4] (c) Prove that Q_n is bipartite, for $n \geq 0$.
- [5] (d) Find a minimum cover of Q_n , and prove that it is a minimum cover, for $n \geq 0$.

[4] **5(a)** Draw four non-isomorphic trees with 7 vertices.

(b) Are the following two graphs isomorphic? Justify your answer.

[4]

[5]	6(a) Construct a breadth-first search tree for the graph G below, using the vertex labelled						
	1 as the root vertex. When considering the vertices adjacent to the active vertex, add then						
	to the tree in increasing order of label. Give a list of the vertices in the order that they join						
	the tree.						

[3] **(b)** Use the breadth-first search tree from (a) to determine the distance in G from vertex 1 to vertex v for each vertex v = 2, ..., 14. (Recall that the distance from vertex 1 to v is the length of the shortest path from 1 to v.)

[3] $\mathbf{6(c)}$ Is G 2–colourable? Justify your answer. Is G 3–colourable? Justify your answer.

[4] (d) Apply Kuratowski's Theorem to prove that G is not planar.

- [2] **7(a)** Prove that every 3–regular graph has an even number of vertices.
- [4] **(b)** Prove that every 3–regular graph has at least one cycle.
- [3] **(c)** Find an example of a 3–regular connected graph with a bridge.
- [4] (d) Let G be a connected 3-regular graph with at least one bridge, and a perfect matching M. Prove that every bridge is in M.

- [2] **8(a)** State König's Theorem for matchings.
- (b) Apply the bipartite matching algorithm to construct the sets X and Y for the following bipartite graph G, in which $A = \{2, 4, 6, 8, 10, 12, 14\}$, $B = \{1, 3, 5, 7, 9, 11, 13\}$, and the matching M consists of the thick edges.

[5] **8(c)** From your construction in part (b), find an augmenting path, and use it to find a larger matching M' for the graph G. Is M' a maximum matching? Justify your answer. (You may find the extra drawing of G, below, helpful.)

[3] (d) If a graph G has a matching and a cover of equal size, then must G be bipartite? Justify your answer.