Avaliação do Algoritmo Clonal (CLONALG) para o Problema do Caixeiro Viajante

Lucas Rocha

7 de julho de 2025

Resumo do Processo de Avaliação

Este relatório apresenta uma análise realizada sobre o Algoritmo Clonal (CLONALG) para a solução do problema do Caixeiro Viajante (TSP). Foram utilizadas duas instâncias distintas. A primeira é a $\mathbf{LAU15}$, a partir da qual foi obtida uma matriz 15×15 representando as ligações entre 15 cidades. A segunda é a instância $\mathbf{SGB128}$, com 128 cidades, também representada por uma matriz 128×128 .

Para avaliar a eficiência do algoritmo, foi realizado um teste fatorial completo, testando combinações de parâmetros com o objetivo de encontrar o conjunto ideal que proporcionasse o melhor desempenho. Os parâmetros utilizados para o teste foram: popSize, maxGenerations, mutationRate, beta, selectionSize (n) e replacementCount (d).

O Algoritmo Clonal se baseia nos princípios da teoria imunológica, onde soluções com maior afinidade (melhor desempenho) são selecionadas para clonagem, sofrendo mutações proporcionais à sua qualidade: quanto melhor o indivíduo, menor a taxa de mutação aplicada. Os clones então competem com a população original, podendo substituí-la parcialmente. Indivíduos com baixo desempenho também são periodicamente substituídos por novos.

Os conjuntos de parâmetros testados foram:

- popSize = $\{50, 100, 200\}$;
- maxGenerations = $\{300, 500\}$;
- mutationRate = $\{0.2, 0.5\}$;
- beta = $\{3, 4, 5\}$;
- selectionSize (n) = $\{30, 50\}$;
- replacementCount (d) = $\{20, 40\}$;

Diferente da abordagem anterior, foi possível aplicar o teste fatorial completo tanto na instância LAU15 quanto na instância SGB128, apesar do maior tempo de execução necessário para esta última. Isso permitiu uma análise mais ampla e precisa dos parâmetros ideais para diferentes tamanhos de instância.

Os melhores conjuntos de parâmetros foram posteriormente utilizados na análise de convergência.

Resultados e Observações

Instância LAU15: o valor ótimo conhecido é 291. A melhor combinação de parâmetros foi:

- popSize: 200
- maxGenerations: 500

• mutationRate: 0,5

• beta: 3

• selectionSize (n): 50

• replacementCount (d): 20

 \bullet averageFitness: 306,9

[H]

Tabela 1: Top 5 Combinações de Parâmetros para TSP (LAU15)

popSize	maxGen	mutationRate	beta	n	d	AvgFitness
200	500	0.5	3	50	20	306.0
100	100	0.5	2	50	40	309.4
100	500	0.2	3	50	20	309.7
100	500	0.5	2	50	20	310.5
200	500	0.2	2	50	40	312.4

Instância SGB128: com valor ótimo desconhecido, o objetivo foi minimizar a distância total. A melhor combinação obtida foi:

• popSize: 100

• maxGenerations: 500

• mutationRate: 0,5

• beta: 3

• selectionSize (n): 50

• replacementCount (d): 20

• averageFitness: 52812,4

[H]

Tabela 2: Top 5 Combinações de Parâmetros para TSP (SGB128)

popSize	\max Gen	$\\ mutation \\ Rate$	beta	n	d	AvgFitness
100	500	0.5	4	50	20	52812.2
200	500	0.5	4	50	40	52841.1
100	500	0.5	5	50	40	52969.4
200	500	0.5	3	50	20	53283.3
200	500	0.5	4	50	40	54972.3

Análise de Convergência

Com os melhores parâmetros encontrados, foram realizadas 10 execuções para cada instância, registrando a evolução do valor da função objetivo ao longo das gerações. Cada linha do gráfico representa a evolução da melhor solução em cada execução.

Figura 1: Distribuição dos custos em 10 execuções (LAU15)

Discussão

[H]

Na instância LAU15, composta por apenas 15 cidades e com valor ótimo conhecido (291), observou-se que o CLONALG não apresentou uma boa convergência. Em todas as execuções, o algoritmo convergiu para o valor 300, que, embora próximo do ótimo, ainda representa uma limitação importante, especialmente considerando a simplicidade da instância. O fato de nenhuma execução ter alcançado o valor ótimo indica um desempenho insatisfatório. Isso sugere que o algoritmo, em sua forma atual, carece de mecanismos mais eficazes de exploração e refinamento. Uma possível melhoria seria aprimorar a geração da população inicial, de modo a fornecer soluções mais promissoras desde o início e, assim, orientar melhor o processo de busca.

Na instância SGB128, o problema de convergência também se repetiu, mas em uma escala significativamente maior. Esse comportamento torna-se ainda mais evidente quando comparado aos gráficos de convergência do Algoritmo Genético (AG) e do Algoritmo de Colônia de Formigas (ACO), apresentados na seção seguinte. Por outro lado, nota-se que todas as execuções do CLONALG seguiram um padrão de comportamento bastante consistente, com curvas de convergência semelhantes. Isso indica que, embora o algoritmo não esteja atingindo soluções finais de alta qualidade, sua dinâmica de evolução é estável. Assim, os esforços de melhoria devem se concentrar em estratégias que aumentem a intensidade da convergência, como operadores de mutação mais adaptativos, abordagens híbridas ou mecanismos de intensificação mais agressivos durante o processo evolutivo.

Figura 2: Distribuição dos custos em 10 execuções (SGB128)

Comparação com AG e ACO

[H]

Ao observar os resultados obtidos pelos três algoritmos testados na instância **SGB128**, nota-se uma diferença expressiva de desempenho, que merece atenção. O **CLONALG**, apesar de apresentar um comportamento estável e coerente entre as execuções, não obteve bons resultados em termos de qualidade de solução. Suas melhores execuções permaneceram em torno de **50.000**, valor consideravelmente acima dos demais algoritmos.

Em contraste, o **Algoritmo Genético (AG)** demonstrou uma performance mais eficiente, com valores médios em torno de **23.000**, o que representa uma redução significativa em relação ao CLO-NALG. Ainda assim, o destaque principal vai para o **Algoritmo de Colônia de Formigas (ACO)**, que obteve os melhores resultados entre os três métodos. Em várias execuções, o ACO conseguiu ultrapassar a barreira dos **20.000**, consolidando-se como a abordagem mais promissora no contexto avaliado.

Essa diferença de desempenho reforça a importância de ajustes estruturais no CLONALG, ou até mesmo a necessidade de estratégias híbridas, para que ele possa competir em igualdade com os demais métodos bioinspirados avaliados.

Figura 3: Distribuição dos custos em 20 execuções ($\mathbf{SGB128}$)

Figura 4: Distribuição dos custos em 20 execuções ($\mathbf{SGB128}$)