Prova di esame dei corsi di Fondamenti di Informatica e Informatica Teorica

21 gennaio 2019

Nota Bene: Non saranno corretti compiti scritti con una grafia poco leggibile.

Problema 1. Sia $L_1 \subseteq \Sigma^*$ un linguaggio decidibile, deciso dalla macchina T_1 , e sia $L_2 \subseteq \Sigma^*$ un linguaggio accettabile ma non decidibile, accettato dalla macchina T_2 . Si mostri (argomentando le proprie affermazioni) se il linguaggio

$$L = \{(x,k) : x \in \Sigma^* \land k \in \mathbb{N} \land T_1(x) \text{ accetta in } r \leq k \text{ passi } \land T_2(x) \text{ rigetta in } s \geq k \text{ passi} \}$$

è decidibile.

Problema 2. Si consideri il seguente problema: dato un grafo (non orientato) G = (V, E) decidere se esistono una partizione di V in tre sottoinsiemi V_1 , V_2 , V_3 e tre nodi distinti u_1 , u_2 , u_3 tali che gli insiemi di nodi $V_1 - \{u_1\}$, $V_2 - \{u_2\}$, e $V_3 - \{u_3\}$ sono insiemi indipendenti in G.

Dopo aver formalizzato il suddetto problema mediante la tripla $\langle I, S, \pi \rangle$, si risponda alle seguenti domande (nell'ordine che si ritiene opportuno), motivando in tutti i casi la propria risposta.

- a) Il problema è in **P**?
- b) Il problema è in **NP**?
- c) Il problema è in co**NP**?

Problema 3. Si dimostri che il complemento di un linguaggio NP-completo è coNP-completo.