

工科数学分析

刘青青

§3.1 导数的概念

- ▶ 异数概念的引入
- ▶ 导数的定义
- ▶ 导数的几何和物理意义
- ▶ 单侧导数

设质点运动的路程 s 与时间 t 满足函数关系

$$s = s(t)$$

求质点在 to 时刻的瞬时速率.

▶ 质点运动的平均速率公式

平均速率 =
$$\frac{路程}{\text{H间}}$$
.

▶ 取 Δt 很小,用质点从时刻 t_0 到时刻 $t_0 + \Delta t$ 的 平均速率近似在 t_0 的瞬时速率:

$$v(t_0) \approx \frac{s(t_0 + \Delta t) - s(t_0)}{\Delta t}.$$

▶ 当 $\Delta t \rightarrow 0$ 时,上式右端的极限就给出了质点在 t_0 时刻的瞬时速率.

$$v(t_0) = \lim_{\Delta t \to 0} \frac{s(t_0 + \Delta t) - s(t_0)}{\Delta t}.$$

导数概念的引入: 曲线的切线

求平面曲线 y = f(x)

在 $P := (x_0, f(x_0))$ 点的切线.

- ▶ 在曲线上取另一点 $O := (x_0 + \Delta x, f(x_0 + \Delta x)).$
- ▶ 当 Q 靠近 P 时, 割线 PQ 的斜率 近似切线的斜率.
- ▶ 当 $\Delta x \rightarrow 0$ 时, 割线 PQ 的斜率的 极限给出 P 点处切线的斜率.

$$k := \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

导数的定义

导数的定义

设函数f(x) 在点 x_0 的某个邻域有定义.

▶ 若极限

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

存在,则称f(x)在 x_0 可导.

- ▶ 这个极限值称为f(x) 在 x_0 处的导数,记为 $f'(x_0)$.
- 上述极限不存在时, 称 f(x) 在 x_0 处不可导. 特别地, 上述极限趋于正 (负) 无穷大时, 称 f(x) 在 x_0 的导数为正 (负) 无穷大.

导数定义的理解

- ▶ 讨论函数 f(x) 在 x_0 处的导数, f(x) 在 x_0 处必须有定义.
- $ightharpoonup \Delta x$ 是一个变量, 表示自变量 x 的变化量.
- ▶ $f(x_0 + \Delta x) f(x_0)$ 是函数值的变化量.
- ▶ 函数值在 x_0 和 x_0 + Δx 之间的平均变化率为

$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

► 导数就是函数值平均变化率的极限: 当自变量的变化量趋于 0 时, 函数值平均变化率的极限.

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 - h) - f(x_0)}{-h}.$$

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

利用导数的定义进行证明或计算时, 可选用任意一个定义式.

例

- ▶ 求 $f(x) = \sin x$ 和 $g(x) = \cos x$ 在 a 处的导数f'(a) 和 g'(a).
- ▶ 求 $f(x) = e^x$ 在 a 处的导数f'(a).
- ▶ 求 $f(x) = x^{\alpha}, \alpha \in \mathbb{R}$ 在 a > 0 处的导数 f'(a).

例

- ▶ 设函数 $\varphi(x)$ 在 a 点连续, $f(x) = (x a)\varphi(x)$, 求 f'(a).
- ▶ 已知函数 f(x) 在 a 的导数为 f'(a) = 2, 求极限

$$\lim_{x \to 0} \frac{f(a+3x) - f(a)}{5x}, \qquad \lim_{h \to 0} \frac{f(a+h) - f(a-h)}{h}.$$

▶ 已知函数f(x) 满足f(0) = 0 和f'(0) = 1, 求极限

$$\lim_{x \to 0} \frac{f(1 - \cos x)}{\ln(1 - x^2)}.$$

函数的导函数

- ▶ 设函数 f(x) 在区间 I 上有定义,若 f(x) 在区间 I 的每一点都可导,则称 f(x) 在区间 I 上可导.
- ▶ 若 f(x) 在区间 I 上可导,则 I 中的每一点 x 唯一确定函数 f(x) 在 x 点处的导数值 f'(x). 因此,对应法则 $x \to f'(x)$ 给出了 I 上的一个函数 f'(x):

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

导数的几何意义

函数f(x) 在 x_0 处的导数 $f'(x_0)$ 表示: 曲线 y = f(x) 在点 $P(x_0, f(x_0))$ 处的<mark>切线斜率</mark>.

导数的几何意义

- ▶ 若 $f'(x_0) = 0$, 曲线 y = f(x) 在 $(x_0, f(x_0))$ 点有水平切线 $y = f(x_0)$.
- ▶ 若 $f'(x_0) \neq 0$,曲线 y = f(x) 在 $(x_0, f(x_0))$ 点有切线 $y f(x_0) = f'(x_0)(x x_0).$
- ▶ 若 $f'(x_0) = \infty$, 曲线 y = f(x) 在 $(x_0, f(x_0))$ 点有垂直切线 $x = x_0$.

注:

导数为无穷大只是导数不存在的一种特殊情形, 导数不存在时未必有切线.

导数的几何意义

例

设曲线 $y = \frac{1}{x}$ 在点 $M\left(x_0, \frac{1}{x_0}\right), x_0 \neq 0$ 处的切线与 x 轴和 y 轴 分别交于 A, B. 证明: M 为线段 AB 的中点.

导数的物理意义

▶ 路程对时间的导数为质点的瞬时速率

$$v(t) = s'(t) = \frac{\mathrm{d}s(t)}{dt}.$$

▶ 电量对时间的导数为电流强度

$$i(t) = q'(t) = \frac{\mathrm{d}q(t)}{dt}.$$

▶ 质量对长度 (面积、体积) 的导数为物体的线 (面、体) 密度

$$\rho(t) = m'(t) = \frac{\mathrm{d}m(t)}{dt}.$$

▶ 左导数

$$f'_{-}(x_0) = \lim_{\Delta x \to 0^{-}} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
$$= \lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0}.$$

▶ 右导数

$$f'_{+}(x_0) = \lim_{\Delta x \to 0^{+}} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
$$= \lim_{x \to x_0^{+}} \frac{f(x) - f(x_0)}{x - x_0}.$$

定理

函数f(x) 在 x_0 可导

 \Leftrightarrow 左导数 $f'_{-}(x_0)$ 和右导数 $f'_{+}(x_0)$ 都存在, 且相等.

此性质常用于判断分段函数在分段点的可导性.

例

设

$$f(x) = \begin{cases} x^2 + 1, & x < 1, \\ 2x, & x \ge 1, \end{cases}$$

求f'(1).

例

- ▶ 讨论函数f(x) = |x| 在x = 0 处的可导性.
- ▶ 确定常数 a, b, 使得函数

$$f(x) = \begin{cases} x^2, & x \leqslant x_0, \\ ax + b, & x > x_0, \end{cases}$$

在 x_0 处可导.

可导性与连续性

定理

若函数f(x) 在 x_0 处可导,则f(x) 在 x_0 处连续.

但在x0处连续的函数未必在x0处可导.

- ▶ 函数 f(x) = |x| 在 0 处连续, 但在 0 处不可导.
- ▶ 函数

$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0, \end{cases}$$

在 0 处连续, 但在 0 处不可导.

作业:

▶ 习题 3.1 (A)

2.(3)

5.

10. (1)(2)

习题 3.1 (B)

1. (2)

2.

