Skeach
$$f(x) = \frac{1}{4}x^4 - 2x^3 + \frac{9}{2}x^2 + 1$$

(a) asymptotics:

$$|x| \text{ close to } 0: f(x) \approx 1$$

 $|x| \rightarrow \infty: f(x) \approx \frac{1}{4}x^4$

Set
$$f(x)=0 \Rightarrow \frac{1}{4}x^4 - 2x^3 + \frac{9}{2}x^2 + 1 = 0$$

 $x^4 - 8x^3 + (8x^2 + 4 = 0)$
 $x^2(x^2 - 8x + 18) + 4 = 0$

Discriminant
$$\Delta = (-8)^2 + 4.18 = 64 - 4.18 = 4.16 - 4.18 = -8 < 0$$

$$\Rightarrow \chi^2 - g_{X+1}g > 0, \ \forall x$$

$$f'(x) = x^3 - 6x^2 + 9x = x(x^2 - 6x + 9) = x(x - 3)^2$$
. Set $f'(x) = 0$
 $\Rightarrow x = 0, 3$ — CPs

(3) potential IPs:

$$f''(x) = 3x^2 - 12x + 9 = 3(x^2 - 4x + 3) = 3(x - 1)(x - 3)$$
 Set $f''(x) = 0$
 $\Rightarrow x = 1, 3$ — possible IPs

FDT: **Mo f(x) has a local nin at x=0, f(0)=1

f(x) has LPs at x=1,3.

 $f(1) = \frac{15}{4}$ $f(3) = \frac{31}{4}$

Worksheet: Sketching functions using calculus tools Math 102 Section 102

Oct. 3, 2018

Sketch the following function (You may need more than one piece of paper)

$$f(x) = \frac{(x-1)^2}{x^3}$$

Tips:

- Step 0: asymptotics and discontinuities
- Step 1: identify zeros
- Step 2: first derivative: identify CPs
- Step 3: second derivative: identify potential IPs
- Step 4: make a table: classify all the special points and characterize the shape of the function
- Step 5: sketch

Sketch
$$\frac{(x-1)^2}{x^3}$$

(v) asymptotics:

$$x \to 0-$$
: $f(x) \to -\infty$ } blow-up
 $x \to 0+$: $f(x) \to +\infty$ } discontinuity

$$\lambda \rightarrow -\infty$$
: $f(x) \rightarrow \sigma$

1 zeros:

Set
$$f(x) = 0 \Rightarrow \frac{(x-1)^2}{x^3} = 0 \Rightarrow x=1$$
 — zero

(2) CPs:

$$f'(x) = \frac{2(x-1) \cdot x^3 - (x-1)^2 \cdot 3x^2}{x^6} = \frac{2x(x-1) - 3(x-1)^2}{x^4}$$

$$= \frac{(x-1)(2x-3x+3)}{x^4} = -\frac{(x-1)(x-3)}{x^4}$$

Set
$$f'(x)=0 \implies -\frac{(x-1)(x-3)}{x^4}=0 \implies x=1,3$$

Hence,
$$x=0,1,3$$
 are CPs.

(3) potential IPs:

$$f'(x) = -\frac{(x-1)(x-3)}{x^4} = -\frac{x^2 4x + 3}{x^4}$$

$$f''(x) = -\frac{(x-4) \cdot 4x^4 - (x^2 + 4x + 3) \cdot 4x^3}{x^8}$$

$$= -\frac{2x^2-4x-4(x^2-4x+3)}{x^5}$$

$$f''(x) = -\frac{-2x^2 + 12x - 12}{x^5} = \frac{2}{x^5}(x^2 - 6x + 6)$$

$$= \frac{2}{x^{5}}(x-3+\sqrt{3})(x-3-\sqrt{3})$$

Set
$$f''(x)=0 \Rightarrow \frac{2}{x^5}(x-3+\sqrt{3})(x-3-\sqrt{3})=0 \Rightarrow x=3\pm\sqrt{3}$$

Hence, $x=0$, $3\pm\sqrt{3}$ are possible IPs.

(4) classify

x FDT: f(x) has local min (a) x=1local max (a) x=3f(1)=0 $f(3)=\frac{9}{27}$ f(x) has 1Ps (a)

x=0, $3\pm\sqrt{3}$ f(x) blows up as $x \to 0$ $f(3-\sqrt{3}) \approx 0.0352$ $f(3+\sqrt{3}) \approx 0.1314$

