电路实验报告

受控源特性的研究

专业班级:

姓名: _____

学号: ___

实验 受控源特性的研究

一. 实验目的

- 1. 加深对受控源电路的理解。
- 2. 通过对四类受控源的测试,加深对他们受控特性及负载特性的认识。
- 3. 熟悉由运算放大器组成受控源电路的分析方法, 了解运算放大器的应用。

二. 实验原理(25分)

1. 受控源

按控制变量与受控量的组合分类: <u>电压控制电压源(vccs)</u>、<u>电流控制电压源(ccvs)</u>、 <u>电压控制电流源(vccs)</u>和 <u>电流控制电流源(cccs)</u>。

- 2. 运算放大器
 - 2.1 运算放大器的同相输入端的含义: <u>同相输入端是指当反相输入端电压为零时,输出电压的极性</u>与该输入端的电压极性相同
- 2.2 运算放大器的反相输入端的含义: <u>反相输入端是指当同相输入端电压为零时,输出电压的极性和该输</u>入端电压的极性相反,
 - 2.3 运算放大器的两个重要特性: 运算放大器的"+"端和"-"端可以认为是等电位的, u+=u-, 即通常所说的"虚"短路与运算放大器的输入端电流等于零, i+=i-=0, 即通常所说的"虚断"
 - 3. 集成运算放大器(以LM741 为例)

引脚	引脚名称及作用描述
1/5	Offset: 接地端
2	Input -: 反向输入端
3	Input +: 同相输入端
4	V- : 负电源输入端
6	Output: 输出端
7	V+: 正电源输入端
8	NC (Not Connected) 空脚,不做连接

4. 使用运算放大器实现受控源

根据下列电路原理图,推导出控制量与被控量之间的关系

图 5.1.1 VCVS 原理图

上图为 VCVS,

请推导出输出电压与控制电压之间的关系由运算放大器输入端"虚短"特性可知:

 $u_{+}=u_{-}=u_{1},i_{R2}=u_{1}/R_{2}$

由运算放大器的"虚断"特性可知 iR1=iR2,

故 $u_1/R_2=(u_2-u_1)/R_1,u_2=u_1(1+R_1/R_2)$

转移电压比为 u=1+R₁/R₂

图 5.1.2 VCCS 原理图

上图为 VCCS,

请推导出输出电流与控制电压之间的关系 根据理想运算放大器"虚短""虚断"特性,输出电 流为 $i_2=i_R=u_1/R=gu_1$

上图为 CCVS,

请推导出输出电压与控制电流之间的关系根据理想运算放大器"虚短""虚断"特性,可推得: U2=-i_RR=-i₁R 即输出电压 u2 受输入电流 i1 的控制,转移电阻为 v=u2/i₁=-R

图 5.1.4 CCCS 原理图

上图为 CCCS,

请推导出输出电流与控制电流之间的关系 由于同向输入端"+"接地,根据"虚断""虚短"特性 可知,"-"端为虚地,电路中 a 点的电压为

 $u_a = -iR_1 \cdot R_1 = -i_1 \cdot R_1 = -i_{R2} \cdot R_2$

所以 i_{R2}=i₁(R₁/R₂)

输出电流:

 $I_2 = i_{R1} + i_{R2} = i_1 + i_1(R_1/R_2) = (1 + R_1/R_2)I_1$

即输出电流 i₂ 只受输入电流 i₁ 的控制, 与负载 R_L 无关

转移电流比: β=i₂/i₁=1+R₁/R2

三 . **实验仿真图** (10分)

2. 测试电压控制电流源特性实验仿真图

3. 测试电流控制电压源特性实验仿真图

4. 测试电流控制电流源特性实验仿真图

四. 实验数据记录(25分)

1 根据图 5.1.1 连接电路,自取 U_1 值进行实验,记录 U_2 值并计算 μ 值,完成 VCVS 的转移特性的测试

	$R_1 = R_2 = 1 \text{k}\Omega$			$R_L = 1$	LkΩ	计算理论 μ = <u>2.0</u>				
给定 值	U_1 (V)	4	3	2	1	0	-1	-2	-3	-4
测试 值	<i>U</i> ₂ (V)	8.0	6.0	4.0	2.0	0	-2.0	-4.0	-6.0	-8.0
计算 值	$\mu = \frac{U_2}{U_1}$	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

自行给 R_L 定根据下表给定的值,测试出 VCVS 的负载特性,计算出μ值

	$R_1 = 1 \text{k}\Omega$	Ω R	$c_2 = 2k\Omega$	$U_1 =$	$U_1 = 1 V$		
给定值	$R_L\left(k\Omega ight)$	3.0	4.7	10	15	33	
测试值	$U_{2}\left(\bigvee\right)$	1.5	1.5	1.5	1.5	1.5	
计算值	$\mu = \frac{U_2}{U_1}$	1.5	1.5	1.5	1.5	1.5	

2 根据图 5.1.2 连接电路,自取 U_1 值进行实验,记录 I_2 值并计算 g 值,完成 VCCS 的转移特性的测试

	$R_1 = 1 \mathrm{k}\Omega$			$R_L = 1$ k Ω			计算理论 g = 1×10 ⁻³			
给定值	U_1 (V)	4	3	2	1	0	-1	-2	-3	-4
测试值	<i>I</i> ₂ (mA)	4.0	3.0	2.0	1.0	0	-1.0	-2.0	-3.0	-4.0
计算值	$g = \frac{I_2}{U_1}$	1×10 ⁻³	1×10 ⁻³	1×10 ⁻³	1×10 ⁻³	1×10 ⁻³	1×10 ⁻³	1×10 ⁻³	1×10 ⁻³	1×10 ⁻³

自行给 RL 定根据下表给定的值,测试出 VCCS 的负载特性,计算出 g 值

	R ₁	= 2kΩ		$U_1 = 1 V$		
给定值	$R_L\left(k\Omega ight)$	3.0	4.7	10	15	20
测试值	<i>I</i> ₂ (mA)	0.50	0.50	0.50	0.50	0.50
计算值	$g = \frac{I_2}{U_1}$	5×10 ⁻⁴				

3 根据图 5.1.3 连接电路,自取 I_1 值进行实验,记录 U_2 值并计算 γ 值,完成 CCVS 的转移特性的测试

	$R_1 = R_2 = 1$ k Ω			$R_L = 1 \mathrm{k}\Omega$			计算理论γ= <u>-1×10³</u>			
给定 值	<i>I</i> ₁ (mA)	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2
测试 值	<i>U</i> ₂ (V)	2.0	1.5	1.0	0.5	0	-0.5	-1	-1.5	-2.0
计算值	$\gamma = \frac{U_2}{I_1}$	-1×10 ³	-1×10 ³	-1×10 ³	-1×10 ³	-1×10 ³	-1×10 ³	-1×10 ³	-1×10 ³	-1×10 ³

自行给 RL 定根据下表给定的值,测试出 CCVS 的负载特性,计算出 r 值

	$R_1 = 2k\Omega$ $I_1 = 1.5mA$												
给定值	$R_L(k\Omega)$	3.0	4.7	10	15	33							
测试值	$U_{2}\left(\bigvee \right)$	-3.0	-3.0	-3.0	-3.0	-3.0							
计算值	$\gamma = \frac{U_2}{I_1}$	-2×10 ³											

4 根据图 5.1.4 连接电路,自取 1₁值进行实验,记录 1₂值并计算β值,完成 CCCS 的转移特性的测试

	$R_1 = 1 k\Omega$		$R_2 = 1k\Omega$		$R_L = 1 \mathrm{k}\Omega$		计算理论 β= <u>2.0</u>			
给定值	<i>I</i> ₁ (mA)	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2
测试值	I ₂ (mA)	-4.0	-3.0	-2.0	-1.0	0	1.0	2.0	3.0	4.0
计算值	$\beta = \frac{I_2}{I_1}$	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

自行给 RL 定根据下表给定的值,测试出 CCCS 的负载特性,计算出 β值

	$R_1 = 2k\Omega$	R	₂ = 1kΩ	11:		
给定值	$R_L (k\Omega)$	1	2	2.4	3.0	4.7
测试值	<i>I</i> ₂ (mA)	1.5	1.5	1.5	1.5	1.5
计算值	$\beta = \frac{I_2}{I_1}$	3.0	3.0	3.0	3.0	3.0

五. 实验结果与误差分析(20分)

1. 根据实验测量结果所得出的计算值 μ 、g、 γ 、 β ,与理论值相比较。如果没有误差,请写出 μ 、g、 γ 、 β 的相应计算过程;如果存在误差,尝试分析误差产生的原因。

没有误差,

$$\mu = \frac{U_2}{U_1}, \qquad g = \frac{I_2}{U_1}, \qquad \gamma = \frac{U_2}{I_1} \quad , \qquad \beta = \frac{I_2}{I_1}$$

2. 根据实验结果,观察受控源的负载特性是否与理论课所学的相符,若相符,分析负载特性;若不相符,分析原因?

受控源的负载特性与理论课所学的相符

受控源的受控量仅随控制量的变化而变化、与外接负载无关。

3.总结运算放大器的特点。

运算放大器的"+"端和"-"端可以认为是等电位的, u+=u-, 即通常所说的"虚"短路

运算放大器的输入端电流等于零, i+=i-=0, 即通常所说的"虚断"

理想运算放大器的输出电阻很小,可以认为是零。

六. 实验思考题(10分)

1. 受控源如何对响应进行控制? 如果对于一个线性电路,它的响应与激励的比值一定是常数倍吗,为什么?

受控源通过控制激励对响应进行控制

- 一定是常数倍,因为电路是线性的,输出电压(或电流)与输入电压(或电流)成正比变化,比值是一个常数
- 2. 受控源作为一个整体,表现出什么样的伏安特性? 如何运用受控源进行电路分析? 受控源作为一个整体的伏安特性曲线是一条过原点的直线,即电压与电流成正比 利用支路电流法、网孔电流法、节点电压法分析计算含有受控源电路时,可将受控源和独立源同样对待,列出方程后求解,但利用电压源和电流源的等效变换、叠加定理、戴维南定理分析含有受控源电路时不能把它当作独立源来处理。

七. 实验总结(10分)

通过本次实验,加深了对受控源电路的理解;通过对四类受控源的测试,加深了对他们受控特性及负载特性的认识;并且熟悉了由运算放大器组成受控源电路的分析方法,了解了运算放大器的应用,自己收获很多