CSC373

Algorithm Design, Analysis & Complexity

Nisarg Shah

Introduction

- Instructors
 - Nisarg Shah
 - cs.toronto.edu/~nisarg, nisarg@cs, SF 2301C
 - o LEC 0101 and 0102
- TAs: Too many to list
- Disclaimer!
 - > First online version of the course, so expect a bumpy ride at the start, but hopefully, we'll get through together
 - > Use any of the feedback mediums (email, Piazza, ...) to let me know if you have any suggestions for improvement

Course Information

- Course Page www.cs.toronto.edu/~nisarg/teaching/373f20/
 - All the information below is in the course information sheet, available on Piazza
- Discussion Board piazza.com/utoronto.ca/fa112020/csc373
- Grading MarkUs
 - > Link will be distributed after about a week or two
 - > LaTeX preferred, scans are OK!
- All times in Eastern time zone, all zoom links on the course page

Lectures

• Time & Place: Tue 4-5pm, Thu 1-3pm, Zoom

Details

- > Delivered live
- > 10 minute break after every 50 minutes of lecture
- > Students can ask questions using Zoom's chat feature
- > One TA will be present to continuously answer questions
- > I might also answer questions once in a while

Tutorials

• Time & Place: Tue 5-6pm, Zoom

Details

- > Delivered live by TAs
- > Problem sets will be posted early on the course webpage
 - Easier problems that are warm-up to assignments/exams
- > Please try them before coming to the tutorials
- > TAs will explain the problems, allow you to discuss them in breakout rooms, and then go over key parts of the solutions
- Solutions will be posted later on the course webpage

Tutorials

Further details

- > Each section is divided into three parts (A,B,C)
- > Students divided by birth month: A = Jan-Apr, B = May-Aug, C = Sep-Dec
- > Feel free to attend a different tutorial than the one you're assigned
 - EXCEPT when the tutorial slot is being used for a test
- > If the attendance is low, the number of tutorials per section may be reduced

Office Hours

- Time & Place: Wed 4-5pm, Fri 10-11am, Zoom
 - > Do you have conflicts with these slots? Poll!

Details

- > I will conduct them
- > Use the "raise hand" feature
- > I will call upon the raised hands in order
- > When called upon, unmute and ask the question
- > Always phrase your question in a way that doesn't give away your solutions or approach to an assignment problem

Just like in a physical office

Tests

- 2 term tests, one end-of-term test (final exam)
- Time & Place: Tue 5-6pm (tutorial slot)
 - > Need to be able to attend live!
 - > I'm considering using part of the Tue 4-5pm lecture slot to give you more time

Tentative Plan

- > Open book, closed internet
- > You may be asked to join a zoom link and keep your video on
- > If you have a question, you can "raise hand", and I or a TA can take you to a breakout room to answer your question
- > Upload scanned answer sheet at the end (we'll do a mock run of this)

Assignments

- 4 assignments, best 3 out of 4
- Group work
 - > In groups of up to three students
 - > Best way to learn is for each member to try each problem
- Questions will be more difficult
 - > May need to mull them over for several days; do *not* expect to start and finish the assignment on the same day!
 - > May include bonus questions
- Submission on MarkUs, more details later
 - > May need to compress the PDF

Grading Policy

• 3 homeworks * 10% = 30%

• 2 term tests * 20% = 40%

• Final exam * 30% = 30%

NOTE: To pass, you must earn at least 40% on the final exam

Approximate Due Dates

Please note the word approximate!

> Assignment 1: Apx. Oct 9

> Assignment 2: Apx. Oct 30

> Assignment 3: Apx. Nov 13

Assignment 4: Apx. Nov 27

> Midterm 1: Apx. Oct 20

Midterm 2: Apx. Nov 17

Conflicts

- > The tests are during the tutorial slot, so there should ideally be no conflict
- > That said, if you think you'll have a conflict, let me know at the earliest

Textbook

Primary reference: lecture slides

- Primary textbook (required)
 - > [CLRS] Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms.

- Supplementary textbooks (optional)
 - > [DPV] Dasgupta, Papadimitriou, Vazirani: Algorithms.
 - > [KT] Kleinberg; Tardos: Algorithm Design.

Other Policies

Collaboration

- > Free to discuss with classmates or read online material
- > Must write solutions in your own words
 - Easier if you do not take any pictures/notes from discussions

Citation

- > For each question, must cite the peer (write the name) or the online sources (provide links), if you obtained a significant insight directly pertinent to the question
- > Failing to do this is plagiarism!

Other Policies

- "No Garbage" Policy
 - > Borrowed from: Prof. Allan Borodin (citation!)
 - 1. Partial marks for viable approaches
 - 2. Zero marks if the answer makes no sense
 - 3. 20% marks if you admit to not knowing how to approach the question ("I do not know how to approach this question")
- 20% > 0%!!

Other Policies

Late Days

- > 4 total late days across all 4 assignments
- Managed by MarkUs
- > At most 2 late days can be applied to a single assignment
- > Already covers legitimate reasons such as illness, university activities, etc.
 - o Petitions will only be granted for circumstances which cannot be covered by this

Zoom Features

- Just to get acquainted, let's try out the following features:
 - > Polls (already tried)
 - > Chat
 - > Reactions
 - > Raise hand
 - > Yes/No
 - > Breakout rooms

Enough with the boring stuff.

What will we study?

Why will we study it?

Muhammad ibn Musa al-Khwarizmi c. 780 – c. 850

Algorithms

- > Ubiquitous in the real world
 - From your smartphone to self-driving cars
 - From graph problems to graphics problems
 - O ...
- > Important to be able to design and analyze algorithms
- > For some problems, good algorithms are hard to find
 - o For some of these problems, we can formally establish complexity results
 - We'll often find that one problem is easy, but its minor variants are suddenly hard

Algorithms

- > Algorithms in specialized environments or using advanced techniques
 - Distributed, parallel, streaming, sublinear time, spectral, genetic...
- > Other concerns with algorithms
 - Fairness, ethics, ...
- > ...mostly beyond the scope of this course

Topics in this course

- > Divide and Conquer
- > Greedy
- > Dynamic programming
- > Network flow
- > Linear programming
- > NP-completeness (not really an algorithm design paradigm)
- > Approximation algorithms (if time permits)
- > Randomized algorithms (if time permits)

- How do we know which paradigm is right for a given problem?
 - > A very interesting question!
 - > Subject of much ongoing research...
 - Sometimes, you just know it when you see it...
- How do we analyze an algorithm?
 - > Proof of correctness
 - > Proof of running time
 - We'll try to prove the algorithm is efficient in the worst case
 - In practice, average case matters just as much (or even more)

- What does it mean for an algorithm to be efficient in the worst case?
 - > Polynomial time
 - > It should use at most poly(n) steps on any n-bit input
 - $o n, n^2, n^{100}, 100n^6 + 237n^2 + 432, ...$
 - \triangleright If the input to an algorithm is a number x, the number of bits of input is $\log x$
 - \circ This is because it takes $\log x$ bits to represent the input x in binary
 - \circ So the running time should be polynomial in $\log x$, not in x
 - > How much is too much?

Picture-Hanging Puzzles*

Erik D. Demaine[†] Martin L. Demaine[†] Yair N. Minsky[‡] Joseph S. B. Mitchell[§]
Ronald L. Rivest[†] Mihai Pătraşcu[¶]

Theorem 7 For any $n \ge k \ge 1$, there is a picture hanging on n nails, of length $n^{c'}$ for a constant c', that falls upon the removal of any k of the nails.

 $n^{6,100\log_2 c}$. Using the $c \leq 1,078$ upper bound, we obtain an upper bound of $c' \leq 6,575,800$. Using

So, while this construction is polynomial, it is a rather large polynomial. For small values of n, we can use known small sorting networks to obtain somewhat reasonable constructions.

Better Balance by Being Biased: A 0.8776-Approximation for Max Bisection

Per Austrin*, Siavosh Benabbas*, and Konstantinos Georgiou†

has a lot of flexibility, indicating that further improvements may be possible. We remark that, while polynomial, the running time of the algorithm is somewhat abysmal; loose estimates places it somewhere around $O(n^{10^{100}})$; the running time of the algorithm of [RT12] is similar.

- What if we can't find an efficient algorithm for a problem?
 - > Try to prove that the problem is hard
 - > Formally establish complexity results
 - > NP-completeness, NP-hardness, ...
- We'll often find that one problem may be easy, but its simple variants may suddenly become hard
 - > Minimum spanning tree (MST) vs bounded degree MST
 - > 2-colorability vs 3-colorability

I'm not convinced.

Will I really ever need to know how to design abstract algorithms?

At the very least...

This will help you prepare for your technical job interview!

Real Microsoft interview question:

- Given an array a, find indices (i, j) with the largest j i such that a[j] > a[i]
- Greedy? Divide & conquer?

Disclaimer

- The course is theoretical in nature
 - > You'll be working with abstract notations, proving correctness of algorithms, analyzing the running time of algorithms, designing new algorithms, and proving complexity results.

- Something for everyone...
 - > If you're somewhat scared going into the course
 - > If you're already comfortable with the proofs, and want challenging problems

Related/Follow-up Courses

Direct follow-up

- > CSC473: Advanced Algorithms
- > CSC438: Computability and Logic
- > CSC463: Computational Complexity and Computability

Algorithms in other contexts

- > CSC304: Algorithmic Game Theory and Mechanism Design (self promotion!)
- > CSC384: Introduction to Artificial Intelligence
- > CSC436: Numerical Algorithms
- > CSC418: Computer Graphics

Divide & Conquer

History?

- Maybe you saw a subset of these algorithms?
 - \triangleright Mergesort $O(n \log n)$
 - \succ Karatsuba algorithm for fast multiplication $O(n^{\log_2 3})$ rather than $O(n^2)$
 - \triangleright Largest subsequence sum in O(n)
 - > ...
- Have you seen some divide & conquer algorithms before?
 - ➤ Maybe in CSC236/CSC240 and/or CSC263/CSC265
 - Write "yes"/"no" in chat

Divide & Conquer

General framework

- Break (a large chunk of) a problem into two smaller subproblems of the same type
- > Solve each subproblem recursively and independently
- > At the end, quickly combine solutions from the two subproblems and/or solve any remaining part of the original problem
- Hard to formally define when a given algorithm is divide-andconquer...
- Let's see some examples!

Master Theorem

- Here's the master theorem, as it appears in CLRS
 - > Useful for analyzing divide-and-conquer running time
 - > If you haven't already seen it, please spend some time understanding it

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n),$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Master Theorem

Intuition: Compare f(n) with $n^{\log_{h} a}$. The larger determines the recurrence solution.

Problem

> Given an array a of length n, count the number of pairs (i,j) such that i < j but a[i] > a[j]

Applications

- > Voting theory
- Collaborative filtering
- > Measuring the "sortedness" of an array
- > Sensitivity analysis of Google's ranking function
- > Rank aggregation for meta-searching on the Web
- > Nonparametric statistics (e.g., Kendall's tau distance)

Problem

- \triangleright Count (i, j) such that i < j but a[i] > a[j]
- Brute force
 - \triangleright Check all $\Theta(n^2)$ pairs
- Divide & conquer
 - \triangleright Divide: break array into two equal halves x and y
 - Conquer: count inversions in each half recursively
 - > Combine:
 - \circ Solve (we'll see how): count inversions with one entry in x and one in y
 - Merge: add all three counts

From Kevin Wayne's slides

SORT-AND-COUNT (L)

If list L has one element RETURN (0, L).

DIVIDE the list into two halves A and B.

$$(r_A, A) \leftarrow \text{SORT-AND-COUNT}(A)$$
.

$$(r_B, B) \leftarrow \text{SORT-AND-COUNT}(B)$$
.

$$(r_{AB}, L') \leftarrow \text{MERGE-AND-COUNT}(A, B).$$

RETURN
$$(r_A + r_B + r_{AB}, L')$$
.

- Q. How to count inversions (a, b) with $a \in A$ and $b \in B$?
- A. Easy if A and B are sorted!

Count inversions (a, b) with $a \in A$ and $b \in B$, assuming A and B are sorted.

- Scan A and B from left to right.
- Compare a_i and b_j .
- If $a_i < b_j$, then a_i is not inverted with any element left in B.
- If $a_i > b_j$, then b_j is inverted with every element left in A.
- Append smaller element to sorted list C.

- How do we formally prove correctness?
 - \triangleright Induction on n is usually very helpful
 - > Allows you to assume correctness of subproblems

- Running time analysis
 - \triangleright Suppose T(n) is the running time for inputs of size n
 - > Our algorithm satisfies T(n) = 2 T(n/2) + O(n)
 - \triangleright Master theorem says this is $T(n) = O(n \log n)$

Without Master Theorem

Let's say
$$T(n) = 2 T(n/2) + 2n$$

Overall: $2n \log n$

Problem:

 \triangleright Given n points of the form (x_i, y_i) in the plane, find the closest pair of points.

Applications:

- > Basic primitive in graphics and computer vision
- > Geographic information systems, molecular modeling, air traffic control
- > Special case of nearest neighbor

• Brute force: $\Theta(n^2)$

Intuition from 1D?

- In 1D, the problem would be easily $O(n \log n)$
 - > Sort and check!
- Sorting attempt in 2D
 - > Find closest points by x coordinate
 - > Find closest points by y coordinate
- Non-degeneracy assumption
 - > No two points have the same x or y coordinate

Intuition from 1D?

- Sorting attempt in 2D
 - > Find closest points by x or y coordinate
 - > Doesn't work!

- Let's try divide-and-conquer!
 - > Divide: points in equal halves by drawing a vertical line L
 - Conquer: solve each half recursively
 - \triangleright Combine: find closest pair with one point on each side of L
 - > Return the best of 3 solutions

Seems like $\Omega(n^2)$ \odot

Combine

> We can restrict our attention to points within δ of L on each side, where δ = best of the solutions in two halves

- Combine (let δ = best of solutions in two halves)
 - \gt Only need to look at points within δ of L on each side,
 - > Sort points on the strip by y coordinate
 - > Only need to check each point with next 11 points in sorted list!

Why 11?

• Claim:

> If two points are at least 12 positions apart in the sorted list, their distance is at least δ

• Proof:

- > No two points lie in the same $\delta/2 \times \delta/2$ box
- > Two points that are more than two rows apart are at distance at least δ

Recap: Karatsuba's Algorithm

- Fast way to multiply two n digit integers x and y
- Brute force: $O(n^2)$ operations
- Karatsuba's observation:
 - > Divide each integer into two parts

$$0 x = x_1 * 10^{n/2} + x_2, y = y_1 * 10^{n/2} + y_2$$

$$0 xy = (x_1y_1) * 10^n + (x_1y_2 + x_2y_1) * 10^{n/2} + (x_2y_2)$$

 \rightarrow Four n/2-digit multiplications can be replaced by three

$$x_1y_2 + x_2y_1 = (x_1 + x_2)(y_1 + y_2) - x_1y_1 - x_2y_2$$

> Running time

$$\circ T(n) = 3 T(n/2) + O(n) \Rightarrow T(n) = O(n^{\log_2 3})$$

Strassen's Algorithm

- Generalizes Karatsuba's insight to design a fast algorithm for multiplying two $n \times n$ matrices
 - > Call *n* the "size" of the problem

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} * \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

 \triangleright Naively, this requires 8 multiplications of size n/2

$$\circ A_{11} * B_{11}, A_{12} * B_{21}, A_{11} * B_{12}, A_{12} * B_{22}, \dots$$

- > Strassen's insight: replace 8 multiplications by 7
 - Running time: $T(n) = 7 T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\log_2 7})$

Strassen's Algorithm

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} * \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

```
STRASSEN(n, A, B)
                        IF (n = 1) RETURN A \times B.
assume n is
                        Partition A and B into 2-by-2 block matrices.
a power of 2
                        P_1 \leftarrow \text{STRASSEN}(n / 2, A_{11}, (B_{12} - B_{22})).
                                                                                                 keep track of indices of submatrices
                        P_2 \leftarrow \text{STRASSEN}(n/2, (A_{11} + A_{12}), B_{22}).
                                                                                                      (don't copy matrix entries)
                        P_3 \leftarrow \text{STRASSEN}(n / 2, (A_{21} + A_{22}), B_{11}).
                        P_4 \leftarrow \text{STRASSEN}(n / 2, A_{22}, (B_{21} - B_{11})).
                        P_5 \leftarrow \text{STRASSEN}(n / 2, (A_{11} + A_{22}) \times (B_{11} + B_{22})).
                        P_6 \leftarrow \text{STRASSEN}(n/2, (A_{12} - A_{22}) \times (B_{21} + B_{22})).
                        P_7 \leftarrow \text{STRASSEN}(n/2, (A_{11} - A_{21}) \times (B_{11} + B_{12})).
                        C_{11} = P_5 + P_4 - P_2 + P_6.
                        C_{12} = P_1 + P_2.
                        C_{21} = P_3 + P_4.
                        C_{22} = P_1 + P_5 - P_3 - P_7.
                        RETURN C.
```

Median & Selection

Selection:

- \triangleright Given array A of n comparable elements, find kth smallest
- > k = 1 is min, k = n is max, $k = \lfloor (n+1)/2 \rfloor$ is median
- > O(n) is easy for min/max

What about k-selection?

- $\rightarrow O(nk)$ by modifying bubble sort
- $> O(n \log n)$ by sorting
- $> O(n + k \log n)$ using min-heap
- $> O(k + n \log k)$ using max-heap
- Q: What about just O(n)?
- A: Yes! Selection is easier than sorting.

QuickSelect

- Find a pivot p
- Divide A into two sub-arrays
 - $> A_{less}$ = elements $\leq p$, A_{more} = elements > p
 - > If $|A_{less}| \ge k$, return kth smallest in A_{less} , otherwise return $(k |A_{less}|)$ th smallest in A_{more}

Problem?

- > If pivot is close to the min or the max, then we basically get $T(n) \le T(n-1) + O(n)$, which only gives $T(n) = O(n^2)$
- > Want to reduce n-1 to a fraction of n (like n/2, 5n/6, etc)

• Divide n elements into n/5 groups of 5 each

- Divide n elements into n/5 groups of 5 each
- Find the median of each group

- Divide n elements into n/5 groups of 5 each
- Find the median of each group

• Find the median of n/5 medians

- Divide n elements into n/5 groups of 5 each
- Find the median of each group
- Find the median of n/5 medians
- Use this median of medians as the pivot in quickselect

Q: Why does this work?

- How many elements can be $\leq p^*$?
 - \gt Out of n/5 medians, n/10 are $\gt p^*$

- How many elements can be $\leq p^*$?
 - \gt Out of n/5 medians, n/10 are $\gt p^*$

- n/10 of the n/5 medians are $\leq p^*$
 - > For each such median, there are 3 elements $\leq p^*$
 - > So there can be at most $^{7n}/_{10}$ elements that can be $> p^*$

- Thus, $|A_{more}| \le ^{7n}/_{10}$
 - > Similarly, $|A_{less}| \le ^{7n}/_{10}$
 - > (These are rough calculations...)

How does this factor into overall algorithm analysis?

- Divide n elements into n/5 groups of 5 each
- Find the median of each group
- Find p^* = median of n/5 medians
- Create A_{less} and A_{more} according to p^*
- Run selection on one of A_{less} or A_{more}

$$O(n)$$

$$T(n/5)$$

$$O(n)$$

$$T(7n/10)$$

•
$$T(n) \le T(n/5) + T(7n/10) + O(n)$$

- Note: $n/5 + \frac{7n}{10} = \frac{9n}{10}$
 - > Only a fraction of n, so by the Master theorem, T(n) = O(n)

- Best algorithm for a problem?
 - > Typically hard to determine
 - > We still don't know best algorithms for multiplying two n-digit integers or two $n \times n$ matrices
 - Integer multiplication
 - Breakthrough in March 2019: first $O(n \log n)$ time algorithm
 - It is conjectured that this is asymptotically optimal
 - Matrix multiplication
 - 1969 (Strassen): $O(n^{2.807})$
 - 1990: $O(n^{2.376})$
 - 2013: $O(n^{2.3729})$
 - 2014: $O(n^{2.3728639})$

- Best algorithm for a problem?
 - > Usually, we design an algorithm and then analyze its running time
 - > Sometimes we can do the reverse:
 - \circ E.g., if you know you want an $O(n^2 \log n)$ algorithm
 - Master theorem suggests that you can get it by

$$T(n) = 4 T(n/2) + O(n^2)$$

 \circ So maybe you want to break your problem into 4 problems of size n/2 each, and then do $O(n^2)$ computation to combine

Access to input

- > For much of this analysis, we are assuming random access to elements of input
- > So we're ignoring underlying data structures (e.g. doubly linked list, binary tree, etc.)

Machine operations

- > We're only counting the number of comparison or arithmetic operations
- So we're ignoring issues like how real numbers are stored in the closest pair problem
- > When we get to P vs NP, representation will matter

Size of the problem

- > Can be any reasonable parameter of the problem
- \triangleright E.g., for matrix multiplication, we used n as the size
- \triangleright But an input consists of two matrices with n^2 entries
- \triangleright It doesn't matter whether we call n or n^2 the size of the problem
- > The actual running time of the algorithm won't change

373F20 - Nisarg Shah <u>68</u>