X-Ray Image Classification

Identifying Pneumonia from Chest X-Rays

Agenda

- 1. Objective & Approach
- 2. The Data
- 3. Data Exploration
- 4. Modeling
- 5. Performance
- 6. Limitations and Next Steps
- 7. Conclusion

Objective & Approach

Goal

- Identify pneumonia

Methodology:

- Analyze database of chest x-rays
- Create models (neural networks)
- Optimize models based on performance metrics

The Data

Source

- "Large Dataset of … Chest X-Ray Images" from <u>Mendeley</u> <u>Data</u>

Key Attributes

- Over 5,800 images
- Labeled as "normal" or "pneumonia"

Data Exploration: Example Images

Normal

Pneumonia

Modeling

- Dozens of neural network models tested
- "Black box" models make identifying the "why" behind a classification hard
- Overall 96% accuracy

Performance

- Correctly classifies 96% of images
- "Misses" case of pneumonia only 1 in 240 times
- Most mistakes are false positives (preferable)

Limitations & Next Steps

Limitations

- Black box model
- X-rays provided by only one study (limited scope)

Next Steps

- Add image processing step to identify region in image that shows pneumonia

Contact Information

