NUMERICAL ANALYSIS PROGRAMING PROJECT DR. SONGMING HOU

JOHN EMORY

0. Introduction

Tom the Cat is chasing Jerry the Mouse, with an initial gap between them of 100m. Tom and Jerry's velocities are given as $v_c = 4 - at \text{ ms}^{-1}$ and $v_m = v_{max} - ks = 3 - 0.02s \text{ ms}^{-1}$, respectively, with 0 < a. The velocity of the change in the gap between Tom and Jerry, s, is given by $\frac{ds}{dt} = v_m - v_c = -1 - 0.02s + at \text{ ms}^{-1}$.

1. Problem

Find the true solution for when Tom will catch Jerry by plotting the gap distance.

First, we need to solve $\frac{ds}{dt}$. Noting that our equation is a linear first-order ODE, we need to put it into standard form:

$$\frac{ds}{dt} + 0.02s = at - 1$$

Next, we find the integration factor. Observing that in the second additive term on the left hand side we are multiplying by t^0 , we see the integration factor is $e^{0.02t}$. This gives us the form:

$$\frac{d}{dt}s \cdot e^{0.02t} = (at - 1) \cdot e^{0.02t}$$

Taking the antiderivative of both sides gives:

$$\int \frac{d}{dt} s \cdot e^{0.02t} dt = a \cdot \int t \cdot e^{0.02t} dt - \int e^{0.02t} dt$$
$$s \cdot e^{0.02t} = 50at \cdot e^{0.02t} = 2500a \cdot e^{0.02t} - 50e^{0.02t} + c$$

Then, canceling $e^{0.02t}$ gives:

$$s = 50a(t - 50) - 50 + c \cdot e^{-0.02t}$$

Solving for c at our initial value of s(0) = 100 m will yield an equation we can use software to plot. Since t = 0, we have:

$$100 = -2500a - 50 + c \cdot e^{-0.02t}$$
$$c = 2500a + 150$$

So, our final equaiton we want to plot is:

$$s(a,t) = 50a(t - 50 + 50 \cdot e^{-0.02t}) + 150 \cdot e^{-0.02t} - 50$$

Date: February 18, 2019.

FIGURE 1. Plot of solutions to $\frac{ds}{dt}$

The exact solutions to when Tom catches Jerry are the points on the surface in Figure 1 that intersect with the plane at s=0 with minimal t value .

2. Problem

For $a = 0.01 \text{ ms}^{-2}$, use the fourth-order Runge-Kutta method to compute when Tom will catch Jerry. Use an appropriate step size to ensure an accurate result.

3. Problem

Use the Adams-Bashforth forth-order predictor-corrector to compute when Tom will catch Jerry using the results form Runge-Kutta, above, for the initial values of Adams-Bashforth.

4. Problem

Suppose Tom's acceleration is unknown. If Tom does not catch Jerry in 120s, is it possible that Tom will catch Jerry?

Program of Mathematics and Statistics, Louisiana Tech University $Email\ address: {\tt jfe004@latech.edu}$