2. 데이터 표현

- 1.1. 진법 [25]

- 1) 수와 숫자
 - 수(number)는 그 수를 의미하는 기호인 숫자(numeric character)로 나타낸다.
- 2) 진법

용어

진법

수를 숫자로 나타내는 방법으로 숫자의 위치에 따라 가중치(weight)를 부여하는 방법이다.

가중치(weight)

└ 가중치는 기수(radix 또는 base)의 승수(거듭제곱)를 이용한다.

기수(radix, base)

└ 기수(radix, base)는 2 이상의 양의 정수다.

r진번

└ 기수가 r(r >= 2)인 경우의 진법

r진수

r 진법으로 표현된 수

└ r개의 숫자 (0, 1, 2, ..., r-1)로 표현

기수r

└ r진수임을 나타내기 위해 r진수 오른쪽 아래 기수 r을 표기

· r진수 N은 정수부분이 n자리, 소수점 이하 부분이 m자리라 할 때 다음과 같이 표현됨

ak(a의 아래첨자 k) 는 진법에서 사용하는 숫자로, 각 자리의 계수

└ 0 ≤ a_k < r 이어야 함

여러가지 진법에 따른 수 표현

└ 16진수의 경우 10개의 숫자와 나머지 6개의 숫자(A,B,C,D,E,F)는 영문자에서 빌려쓰고 있음

- 3) 진수변환

(1) r진수의 10진수 변환

_ 16진수 9AB.C를 10진수로 변환하시오. 풀이 9AB.C₁₆ = 9×16² + 10×16¹ + 11×16º + 12×16⁻¹ = 2304 + 160 + _ 11 + 0.75 = 2475.75

(2) 10진수의 r진수 변환

증명[29-30]

문제풀이

(3) 2진수와 2^n진수 상호 변환

- 2진수를 구성하는 각 자릿수는 비트(bit : binary digit)로 표현한다.

n개의 비트는 2^n개의 수를 표현할 수 있다.

2진수의 각 비트를 소수점 중심으로 2비트씩 묶으면 4개의 수를 표현할 수 있는 숫자 조합(00, 01, 10, 11)을 얻을 수 있다.

└ 주어진 2진수를 4개의 숫자로 수를 표현하는 4진법으로 해석할 수 있다.

2진수의 2^n진수 변화

ᆸᆐᆐ

└ n비트씩 묶을 때 부족한 비트 수만큼 0이 있다고 가정하고 반드시 필요한 수만큼씩 묶어서 해석해야 함

- 2^n진수(n>=2)의 2진수 변환

└ 2^n진수의 각 자리의 수에 대응하는 n비트의 2진수로 모두 바꾸면 된다.

- 4) 기타 변환
 - └ r진수를 s진수로 변환하는 경우 (단, r!=s, r!=10, s!=10)
 - └ 1번 변환방법으로 r진수를 10진수로 변환한다음 2번 변환방법으로 다시 s진수로 변환한다.

1.1. 진법 (2)

└ 4) 산술연산 (arithmetic operations)

진수 r인 수에 대한 산술연산(arithmetic operations)은 10진수의 산술연산과 같다. 다만 r개의 숫자만 사용할 수 있음에 주의해야 한다.

두 개의 2진수에 대한 가산, 감산, 승산, 제산

두 개의 2진수에 대한 가산, 감산, 승산, 제산의 예는 다음과 같다.

가산

두 개의 2진수 가산은 모든 자리의 합의 결과가 0이거나 1이 된다는 것을 제외하고는 10진수의 경우와 같은 방법으로 계산하며, 주저인 자리에서 발생하는 올림수(carry)는 바로 윗자리에서 합산한다.

감산

주어진 자리 숫자에서의 내림수(borrow)가 피감수의 해당 자리에 2를 더해 주는 것을 제외하고는 10진수ᡂ의 경우와 같다

- 승산

_ 승수의 숫자가 항상 0이거나 1이므로 부분 곱셈의 결과는 피승수와 같거나 0이 되며, 이들을 자릿수에 맞추어 모두 더해 - 주면 된다.

제산

피제수에서 제수를 계속 빼서 (피제수가 제수보다 작아지거나 0이 될 때까지), 그때까지 뺀 횟수가 몫이 되고, 빼고 남은 값이 나머지가 된다.

8진법, 16진법 또는 다른 r진법의 산술연산

8진법s, 16진법1s 또는 다른 진법의 산술 연산을 위해서는 두 개의 한 자릿수의 합과 곱의 값을 알 수 있는 표가 필요하다. 예를 들어 4진수4의 가산과 감산을 위해서는 (표 2.2)와 같은 산술 연산표를 이용하면 간편하다.

r진법의 두 수를 가산하는 보다 쉬운 방법

· 주어진 자리의 두 숫자를 10진수로 바꾸어 10진수 덧셈을 하고, 그 결과를 다시 r진법의 합과 올림수로 변환

예제

└ 진수가 r인 두 수의 승산은 10진법으로 산술연산하고, 그때마다의 중간 결과를 r진법으로 변환함으로써 이루어진다.

└ 예제 2.13 [37]

여기서 오른쪽 계산과정은 왼쪽의 두 8진수8의 각 곱셈 결과를 10진수10로 나타내고 다시 8진수8로 나타낸 것이다. 가장오른쪽의 8진수8에서 ○표를 한 숫자들은 각 자리에서의 올림수(carry)를 의미한다. 예를 들면, (4×4)8 = (20)8에서 왼쪽 숫자 2는 (4×7)8의 곱셈에 더해질 올림수이고, 마지막 자리 숫자 0만 8진수 부분 곱셈의 해당 자리에 놓이게 되는 숫자이다.

1.2. 보수 [38]

개요

보수의 개념, 보수를 이용한 r진수의 감산

2진수를 다루는 컴퓨터에서의 감산이 보수를 이용하여 가산만으로도 가능함

1) 보수의 개념

r진수(r) N을 r의 보수 (r's complement)와 (r−1)의 보수 ((r−1)'s complement) 등 두 가지 보수가 있다. 예를 들어, 2진 수₂에는 2의 보수와 1의 보수가 있고, 10진수₁₀에는 10의 보수와 9의 보수가 있다.

(1) r의 보수

└ 정수부분 n개의 자리로 구성된 r진수 N에 대한 r의 보수는 (식 2.2)와 같이 정의

예를 들어, - 10진수 $_{10}$ 35.34의 10의 보수는 10^2 – 35.34 = 64.66이고, - 2진수 $_2$ 110111의 2의 보수는 2^6 – (110111) $_2$ = (1000000 $_2$ – 110111 $_2$) = 001001 $_2$ 이다.

위의 공식과 다르게 (r-1)의 보수를 구한 다음 가장 낮은 자리에 1을 더하여 구할 수도 있다

즉, 10진수 678의 9의 보수는 10³ - 10° - 678 = 999 - 678 = 321 이므로 678의 10의 보수는 321 + 1 = 322 - 가 된다. 2진수 1110의 1의 보수는 1110의 1을 0으로, 0은 1로 바꿈으로써 0001을 구한다. 따라서 1110₂의 2의 보수는 0001 + 1 = 0010이 된다.

(2) (r-1)의 보수

· 정수부분이 n개의 자리로 구성되고 소수점 아래가 m개의 자리로 구성된 r진수 N에 대한 (r-1)의보수는 다음과 같다.

└ N에 대한 (r-1)의 보수 = r^n - r^(-m) - N

즉, r^n - r^- 에서 수 N을 빼면 (r-1)의 보수가 얻어진다. 예를 들면, 10진수 35.34에 대한 9의 보수는 10^2 - 10^{-2} - 35.34 = 99.99 - 35.34 = 64.65 이고, 2진수 1101.11의 1의 보수는 $(2^4$ - 2^{-2} - $1101.11)_2$ = (1111.11 - $1101.11)_2$ = $(0010.00)_2$

└ 일반적으로 2진수의 1의 보수는 2진수의 0을 1로, 1은 0으로 서로 바꾸면 쉽게 구할 수 있다.

└ r의 보수와 (r-1)의 보수의 관계

└ r의 보수 = (r-1)의 보수 + 가장 낮은 자리의 1

- 즉, 정수에서 **2**의 보수는 1의 보수에 1을 더한 것과 같다.

└ 위의 공식과 다르게 (r-1)의 보수를 구한 다음 가장 낮은 자리에 1을 더하여 구할 수도 있다

2) 보수를 이용한 감산

└ 감산을 보수와 가산으로 처리할 수 있는 이론적 근거

└ 즉, 감수(subtrahend)를 부호(sign)를 보함하여 r의 보수를 한 다음 피감수(minuend)에 가산한다.

10진수 감산 923-678

923-678=245인데 이것을 678의 10의 보수 322를 이용하여 923+322=1245를 구하고, 여기서 올림수 1을 무시 - 하면 동일한 답 245를 구할 수 있다. 그러나 이 경우 678의 10의 보수는 1000-678=322로 구해야 하므로 여전히 감산을 이용해야 한다.

2진수 감산 10112-01012

1011₂에 0101₂의 2의 보수를 구해 더해 준 다음 올림수만 무시하면 구할 수 있다. 그런데 여기서 0101₂의 2의 보수 - 는 먼저 0101₂의 1의 보수를 구한 다음 그 결과에 1만 더해 주면 구할 수 있다. 그리고 0101₂의 1의 보수는 앞에서 설명한 것처럼 0은 1로, 1은 0으로 바꿈으로써 구할 수 있다.

1.3. 부호 있는 2진수[41]

개요

수를 표현하는 방법 중 양수뿐만 아니라 음수를 표현하는 방법

L 수

부호

소수점

- 수의 크기

소수점의 위치 정하는 방법에 따른 수 표현방법

고정 소수점(fixed point)

└ 소수점의 위치가 고정

부동 소수점(floating point)

└ 소수점의 위치가 상대적으로 이동

└ 이 항에서는 고정소수점 표현 방법에 따라 양의 정수, 영, 음의 정수를 표현하는 방법만 다룬다.

부호 있는 정수를 2진수로 표현하기

- 우선 표현하고자 하는 수를 몇 비트로 표현할 것인지를 정해야 한다.

└ 4비트를 이용하여 부호 있는 2진수를 세 가지로 표현한 것

└ 어떤 표현방법을 사용하더라도 양수를 표현하는 2진수는 동일하지만, 음수를 표현하는 2진수는 각각 다르다.

1) 부호 있는 절대치 표현

└ 부호 있는 절대치 표현방법

수를 나타낼 때, 수의 크기(절대치)와 부호를 나타내는 비트(0 혹은 1) 구성하여 표현

10진수 5를 4자리 2진수로 표현하는 경우

└ 맨 왼쪽에 4번째 비트는 양수를 나타내기 위해 0으로 설정되고, 나머지 비트는 5의 절대치를 나타내기 위해 사용 └ (0101) 2

└ 10진수 -5를 4자리 2진수로 표현하는 경우

└ 맨 왼쪽에 있는 4번째 비트는 음수를 나타내기 위해 1로 설정, 나머지 비트는 -5의 절대치를 나타내기 위해 사용한다.

^L (1101) 2

2진수 4자리를 이용하여 부호 있는 절대치 표현으로 나타낼 수 있는 10진수의 범위는 -7 ~ +7이다. (1자리는 부호용)

일반적으로 부호 있는 절대치 표현방법의 경우 2진수 k자리를 이용하여 나타낼 수 있는 10진수의 범위는 $-(2^{k-1}-1)\sim +(2^{k-1}-1)$ 이다.

2) 부호 있는 1의 보수 표현

양수

└ 부호 있는 절대치 표현방법을 따름

_10진수 5를 4자리 2진수로 표현하는 경우 _ 5는 맨 왼쪽 비트(4번째 비트)를 양수를 나타내기 위해 0으로 설정하고, _ 나 머지 비트는 5를 나타내기 위해 사용된다. _ 따라서 결과는 (0101)₂가 된다.

음수

└ 부호를 제외한 그 수에 대한 1의 보수를 이용

_ 10진수 −5를 4자리 부호 있는 1의 보수로 표현하는 경우 _ 먼저 부호를 제외한 5에 대한 1의 보수를 구한다. 즉, 10진수 _ −5를 4자리 부호 있는 1의 보수로 표현하면 (1111₂ − 0101₂)= (1010)₂가 된다.

2진수 k자리를 이용하여 부호 있는 1의 보수로 나타낼 수 있는 10진수의 범위는 -(2^{k-1} − 1) ~ +(2^{k-1} − 1)이다.

3) 부호 있는 2의 보수 표현

양수

└ 부호 있는 절대치 표현방법을 따름

10진수 5를 4자리 2진수로 표현하는 경우, 5는 맨 왼쪽(4번째) 비트를 양수를 나타내기 위해 0으로 설정되고, 나머지 비트는 5를 나타내기 위해 사용된다. 따라서 결과값은 (0101)₂가 된다.

음수

- └ 부호를 제외한 그 수에 대한 **2**의 보수를 이용하여 표현
 - _10진수 −5를 4자리 부호 있는 2의 보수로 표현하는 경우, 부호를 제외한 5에 대한 2의 보수를 구하면 10000₂ − 0101₂ 기 된다. 따라서 결과값은 (1011)₂가 된다.
- 2진수 4자리를 이용하여 부호 있는 2의 보수 표현으로 나타낼 수 있는 10진수의 범위는 <표 2.3>과 같이 −8 ~ +7 이다.
- 2의 보수 절대치 표현방법의 경우, 2진수 k자리를 이용하여 나타낼 수 있는 10진수의 범위는 -2^{k-1} ~ +(2^{k-1} − 1) 이다.
 - 앞의 세 가지 표현방법 중 부호 있는 2의 보수 표현방법에서는 0의 표현이 항상 한 가지인 데 비해 나머지 두 방법은 +0과 - −0의 두 가지이다. 따라서 부호 있는 2의 보수 표현방법은 항상 나머지 두 방법에 비해 동일한 비트 수가 주어지는 경우 하나의 수를 더 표현할 수 있다.

예제

예제 2.14

- 부호 있는 절대치 표현
 - └ 부호 비트가 1이므로 음의 정수이고, 크기 부분은 다음과 같이 1178로 계산되므로 실제 저장된 정수는 −1178이다.
- 부호 있는 1의 보수 표현 방법
 - 먼저 비트열 **1000010010011010₂**의 1의 보수를 구한다. 이를 위해 각 비트에 대해 보수를 (0은 1로, 1은 0으로) - 취하면 **0111010110011010₂**이 되고, 위 방식처럼 자릿수를 이용하여 계산하면 **+31589**이 된다. 따라서 실 제 저장된 정수는 **−31589**이다.
- 부호 있는 2의 보수 표현
 - 해당 비트열에 대해 2의 보수를 구한다. 이것은 우선 1의 보수를 구한 다음 **1**만큼 더하면 된다. 위의 계산을 이용하면 2의 보수는 **01110110110110112**이 되고, 그 값은 **+315900**이므로, 실제 저장된 정수는 **-315900**이다.
 - │ 따라서 저장된 정수가 음수인 경우는 부호 있는 2의 보수 표현이 부호 있는 1의 보수 표현보다 **1**만큼 더 작은 값을 나타낸다.

예제 2-15.

2.2. 디지털 코드 [45]

개요

- 디지털 코드(digital code)
 - 사람이 사용하는 데이터를 표현하기 위해 비트를 필요한 수만큼 묶어서 각 묶음에 유일한 의미를 부여하는 것
 - 10진 코드
 - 영숫자 코드
- 1. 10진 코드
 - 10진 코드(decimal code)
 - 나 사람의 입장에서 진수변환이라는 부담을 줄이기 위해 컴퓨터 내부에 10개의 숫자를 2진코드로 만들어 활용임의의 r진수를 2진 코드로 나타내려면 2^{k-1} < r ≤ 2^k 을 만족하는 k개의 비트가 필요해진다.
 - └ r = 10인 경우를 고려하면, k = 4가 되므로 10진수를 2진 코드로 나타내려면 4개의 비트가 필요하다.
 - 10진수를 표현하는 대표적인 2진 코드 유형
 - BCD 8421 코드
 - BCD 2421 코드
 - 84-2-1 코드
 - 3초과(excess -3) 코드
 - 그레이 코드
 - 1) BCD 8421 코드
 - BCD 8421 코드는 단순히 BCD 코드라고도 부르는데, 2진화 10진(binary-coded decimal: BCD) 코드의 형식으로 10진수 한 자리를 2진수 4비트로 표시한 것이며, 비트의 위치에 따라 8, 4, 2, 1(2^3, 2^2, 2^1, 2^0)의 가중치(weight)가 할당된다.
 - └ 가중치 코드(weighted code)
 - ַ 각 비트 위치에 가중치가 할당되어 코드화된 조합에서 모두 1의 가중치 합을 더함으로써 10진수 한 자리 수치를 구할 ○수 있도록 설계된 코드
 - 주의 : 여러 자리로 구성되는 10진수 전체가 2진법으로 표현되는 것은 아니다.
 - 10진수 14는 BCD 코드로 표현하면 (0001 0100)_BCD이고 2진법으로 표현하면 1110₂이라는 점에 유의해야 한다.
 - 14 = (0001 0100)_BCD = 1110₂ ≠ (1110)_BCD
 - └ BCD 코드에서는 1110이라는 비트 조합을 코드로 사용하지 않음
 - 대부분의 컴퓨터에서는 10진수를 BCD 코드로 변환하여 저장한다.
 - BCD 코드로 표현되는 2진수에 대한 산술연산이 필요하다.

- └ 산술연산 중에서 덧셈에 대한 연산이 가장 중요하다.
 - └ 산술연산 중 뺄셈, 곱셉, 나눗셈은 덧셈과 보수를 이용하여 모두 계산되기 때문이다.

BCD 코드에 대한 덧셈과정

- 1. 2진수의 덧셈 규칙에 따라 두 수를 더한다.
- 2. 연산 결과 4비트의 2진수 값이 9 이하이면 그 값을 그대로 사용한다.
- 3. 연산 결과 4비트의 2진수의 값이 9보다 크면 BCD 코드에서는 사용되지 않는 값이므로, 이 경우 그 결과값에 6(0110)을 더한다.
 - 6만큼 더하는 이유? 사용되지 않는 비트의 조합이 6개 있기 때문
 - └ 만약 올림수가 발생하면 한 자리 높은 자릿수에 올림수를 더한다.
- 예제

2) BCD 2421 코드

BCD 2421 코드는 BCD 8421 코드와 마찬가지로 10진수를 각 자릿수마다 4비트로 구성하여 표현하되 가증치를 2, 4, 2, 1로 하는 가증치 코드이다.

예시

10진법의 5는 가중치를 2, 4, 2, 1로 하여 5 = 1×2 + 0×4 + 1×2 + 1×1 이므로 2421 코드로 5는 (1011)₂로 표현된다.

_ 5 = 0×2 + 1×4 + 0×2 + 1×1 이므로 5를 (0101)₂로 표현할 수도 있겠으나, 동일한 수 하나에 대해 오직 하나의 코드 _ 만 대응시켜야 하므로 비트 조합 (0101)₂는 BCD 2421 코드에서 사용되지 않는다.

└ 장점 : 자보수 코드(self - complement code)

└ 10진수에 대한 9의 보수를 코드에서 0은 1로, 1은 0으로 바꾸어서 쉽게 구할 수 있다.

예를 들어, 10진수 28은 BCD 2421 코드로 (0010 1110)₂₄₂₁이고, 28의 9의 보수는 99 - 28 = 71이므로 BCD 2421 코드로는 (1101 0001)₂₄₂₁이 된다. 여기서 (0010 1110)₂₄₂₁에서 0을 1로, 1을 0으로 바꾸면 9의 보수인 71의 BCD 2421 코드를 쉽게 구할 수 있다.

3) BCD 84-2-1 코드

BCD 8421 코드와 마찬가지로 각 자릿수마다 4비트로 구성하여 표현하되 가중치를 8, 4, -2, -1로 한다.

└ 예) 10진수 2는 84-2-1 코드로 0110으로 표현된다.

자보수 코드

└ 10진수에 대한 9의 보수를 코드에서 0을 1로, 1을 0으로 바꿔서 구할 수 있음

4) 3초과 코드

3초과(excess-3) 코드는 비가중치 코드(unweighted code)이며, BCD 8421 코드에 10진수 3에 해당하는 2진수 0011을 각각 더해서 만든다.

└ 예를 들어, 10진수 13은 각 자리에 3을 더해서 46을 만든 후 BCD 8421 코드에서 찾으면 0100 0110이 된다.

자보수 코드

5) 그레이 코드

그레이 코드(gray code)는 가증치를 갖고 있지 않은 비가증치 코드이며, 산술연산에는 부적합하지만 한 숫자에서 다음 숫자 로 이동될 때 오직 한 비트만 변하는 특징이 있으므로 입출력장치, A/D 변환기 등에 많이 쓰이고 있다.

그레이 코드는 4비트 2진수로부터 다음과 같이 정의된다.

① 맨 왼쪽의 자리에 있는 2진 숫자를 그대로 가져온다.

© 맨 왼쪽에서부터 시작하여 오른쪽의 인접 자릿수에 있는 2진 숫자와 합해진 올림수는 무시하여 코드의 해당 자리 숫자를 만들어 낸다(이것은 XOR 연산으로도 가능).

③ 오른쪽 인접 자릿수가 없을 때까지 ②번을 반복한다.

- 예시

└예제

2.2. 디지털 코드 (2) [50]

└ 2. 영숫자 코드

영숫자 코드(alphanumeric code)

10진 숫자 10개와 영문자 26개, 특수문자 및 기호 등으로 구성되어 최소한 36개 이상의 원소로 구성됨

분류

영문자의 대문자와 소문자를 구별하지 않는 경우

영문자의 대문자와 소문자를 구별하지 않고 오직 영문자 26개와 10진 숫자 10개만으로 구성되는 영숫자 코드 집합인 - 경우, 정확히 36개의 영숫자만 표현하면 되므로 비트 6개로써 이들을 모두 나타낼 수 있다. (2^{k-1} < 36 ≤ 2^k을 만족하는 k를 구해 보라).

영문자의 대문자와 소문자를 구별하는 경우

특수문자 및 기호 등을 포함시키고 영문자의 대문자와 소문자를 구별해야 한다면 최소한 7개 이상의 비트가 필요하다. 따라서 일반적으로 영숫자 코드 집합을 만들기 위해서 각 코드는 7비트 혹은 8비트로 구성되어야 한다. ASCII. EBCDIC 코드 1) ASCII(American Standard Code for Information Interchange) 코드 하나의 영숫자 코드가 7비트로 구성되어 있으며, 전체적인 코드의 수는 128(=2^7)개 10진 숫자: '0' ~ '9' (10개) 10진 숫자에 대한 코드는 전체 비트 중 맨 왼쪽 3비트 (비트 위치 6, 5, 4)가 011이고 나머지 비트(비트 위치 3, 2, 1, 0)는 BCD 코드와 동일한 값이다. 입력된 10진 숫자의 ASCII 코드는 맨 왼쪽의 3비트(011)만 제거하면 BCD 코드와 동일해지므로 BCD 코드에 대 한 연산을 직접적으로 할 수 있다. 영문자: 대문자 'A'~'Z'(26개), 소문자 'a'~'z'(26개) · 기호문자 : 'SP'(space), '!', '"', '#', '\$', '%' 등(33개) └ 제어문자 : NUL, SOH, STX, ETX, EOT, DEL 등(33개) 제어문자(control character)는 데이터 전송 시 필요한 제어기능과 컴퓨터 또는 외부장치의 기능을 제어하고자 할 때 사용한다. DEL(111 1111)을 제외한 모든 제어문자는 맨 왼쪽 3비트가 000과 001로 되어 있다 특징 └ 전체 7비트 + 1비트로 구성된 패리티 비트(parity bit)를 포함시켜 8비트로 전송한다. 대부분의 컴퓨터가 정보의 기본단위로 바이트(byte = 8 bit)를 사용하기 때문에, 패리티 비트를 포함한 ASCII 코드를 사용하는 것이 매우 효율적이다. 2) EBCDIC 코드 **EBCDIC(Extended Binary Coded Decimal Interchange Code)** 하나의 영숫자 코드가 8비트로 구성되어 있으며, 총 256개의 문자 코드를 구성할 수 있으나, 실제로 사용되는 문자 코드의 수는 ASCII 코드와 동일한 128개이다. └ 10진 숫자 코드는 전체 비트 중 맨 왼쪽 4비트가 1111이고 나머지 비트는 BCD 코드와 동일한 값을 가지고 있다. └ 맨 왼쪽의 4비트(1111)만 제거하면 BCD 코드와 동일해지므로 BCD 코드에 대한 연산을 직접적으로 할 수 있다. 단점 전체 구성 비트 수가 8비트이기 때문에 에러 검출을 위한 패리티 비트를 추가하면 총 9비트가 된다. 그런데 대부분의 컴퓨 터가 정보의 기본 단위로 바이트를 사용하기 때문에 이 경우 ASCII 코드에 비해 데이터 전송 시 비효율적일 수 있다. 3) 유니코드 유니코드(unicode) └ 사용 중인 플랫폼, 프로그램, 언어에 관계없이 문자마다 고유한 숫자를 부여하는 방법을 제공하는 문자 인코딩 표준 └ ASCII는 알파벳만을 부호화하는 데 사용하지만 유니코드는 전 세계의 문자를 표현하는 총체적 문자 코드 체계 └ 인코딩 방식 **UTF('UCS Transformation Format')** └ 뒤에 붙는 숫자는 인코딩에 사용되는 단위의 비트 수 UFT-8 (8 bit), UTF-16 (16 bit), UTF-32 (32bit) 공통적으로 문자를 표현하는데 4비트를 사용함 UTF-8 ASCII 모든 문자 호환, 기존 소프트웨어에서도 소프트웨어를 수정하지 않고 사용 가능 └ 유니코드 문자를 1바이트에서 4바이트 형태로 가변적으로 인코딩 └ 대행 문자(surrogate) 2개의 쌍으로 1개의 문자를 인코딩 **UTF-32** 고정길이 인코딩 └ 메모리 공간에 제약이 없을 때 사용 4) 기타 영숫자 코드 5비트 보도 코드(Baudot code) 문자 모드

└ 도형 모드 6비트 코드 천공카드 코드 천공카드를 이용하여 영숫자 정보를 컴퓨터에 입력시킬 때 사용되는 12비트로 구성되는 홀러리스 코드(Hollerith code) 가 대표적

천공카드는 12행과 80열로 구성되는데, 각 열의 적절한 행이 천공된 부분은 1로 감지되며, 천공되지 않은 부분은 0으로 감지된다.

용어

존 천공(zone punch)

숫자 천공(numberic punch)