1. If f(n) = O(g(n)), then, by the formal definition of Big-Oh, this is only true when there exists positive constants c and n_0 such that $f(n) \le c \cdot g(n)$ for $n \ge n_0$.

If $f(n) = \Omega(g(n))$, then, by the formal definition of Big-Omega, this is only true when there exists positive constants c and n_0 such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$.

Therefore, if both of the above statements are true, then we can conclude that $c_1 \cdot g(n) \le c_2 \cdot g(n)$ for $n \ge n_0$.

This final statement is the definition of Big-Theta, which only holds true if g(n) is both the lower bound (Big-Omega) and upper bound (Big-Oh) of f(n), for some constants c_1 and c_2 , respectively. If either of these statements were false, which they are not – as we have shown, then $f(n) \neq \Theta(g(n))$.

2. Let $f_1(n) = \Omega(g_1(n))$ and $f_2(n) = \Omega(g_2(n))$. From this, it follows that there are constants c_1 and c_2 , both positive integers, such that $f_1(n) \ge c_1 \cdot g_1(n)$ and $f_2(n) \ge c_2 \cdot g_2(n)$ for all $n \ge n_0$.

It is inherently true that It then follows that

 $f_1(n) + f_2(n) \ge f_1(n) + f_2(n).$

 $f_1(n) + f_2(n) \ge c_1 \cdot g_1(n) + c_2 \cdot g_2(n)$

 $f_1(n) + f_2(n) \ge \min(c_1, c_2) \cdot g_1(n) + \min(c_1, c_2) \cdot g_2(n)$

 $f_1(n) + f_2(n) \ge \min(c_1, c_2) \cdot (g_1(n) + g_2(n))$

 $f_1(n) + f_2(n) = \Omega(g_1(n) + g_2(n))$, for $c = minimum(c_1, c_2)$ and $n \ge n_0$, which is the definition of Big-Omega, as shown below.

 $f(n) = \Omega(g(n))$ if $f(n) \ge c \cdot g(n)$