Architetture dei Sistemi di Elaborazione

Delivery date:
October 29th 2021

Laboratory

Sepected delivery of lab_03.zip must include:
- program_2_a.s, program_2_b.s
and program_2_c.s
- this file compiled and if possible in pdf
format.

Please, configure the winMIPS64 simulator with the *Base Configuration* provided in the following:

- Code address bus: 12
- Data address bus: 12
- Pipelined FP arithmetic unit (latency): 4 stages
- Pipelined multiplier unit (latency): 8 stages
- divider unit (latency): not pipelined unit, 12 clock cycles
- Forwarding is enabled
- Branch prediction is disabled
- Branch delay slot is disabled
- Integer ALU: 1 clock cycle
- Data memory: 1 clock cycle
- Branch delay slot: 1 clock cycle.
- 1) Starting from the assembly program you created in the previous lab called **program 2.s**,:

```
for (i = 0; i < 40; i++){ v5[i] = v1[i]+(v2[i] * v3[i]); \\ v6[i] = v5[i]*v4[i]; \\ v7[i] = v6[i]/v2[i]; }
```

- a. Detect manually the different data, structural and control hazards that provoke a pipeline stall
- b. Optimize the program by re-scheduling the program instructions in order to eliminate as much hazards as possible. Compute manually the number of clock cycles the new program (program_2_a.s) requires to execute, and compare the obtained results with the ones obtained by the simulator.
- c. Starting from program_2_a.s, enable the *branch delay slot* and re-schedule some instructions in order to improve the previous program execution time. Compute manually the number of clock cycles the new program (program_2_b.s) requires to execute, and compare the obtained results with the ones obtained by the simulator.
- d. Unroll 4 times the program (program_2_b.s), if necessary re-schedule some instructions and renaming the used registers. Compute manually the number of clock cycles the new program (program_2_c.s) requires to

execute, and compare the obtained results with the ones obtained by the simulator.

Complete the following table with the obtained results:

Program	program_2.s	program_2_a.s	program_2_b.s	program_2_c.s
Clock cycle computation				
By hand	1926	1567	1527	1331
By simulation	1926	1567	1527	1331

Compare the results obtained in the point 1, and provide some explanation in the case the results are different.

Eventual explanation:
Quando pongo un istruzione dopo la branch, faccio in modo che quando la branch passi
nella pipeline eseguo un istruzione che sarebbe stata comunque fatta.
Con l'unrolling, essendo ciascuna iterazione indipendente dalla precedente, posso
riorganizzare le istruzione in modo tale da ridurre i data e structural hazard e diminuire il
numero delle volte che faccio una branch