- 1. Alice and Bob use the Diffie-Hellman key exchange technique with a common prime q=23 and a primitive root $\alpha=5$.
 - (a) If Bob has a public key $Y_B = 10$, what is Bob's private key X_B ? (5%)
 - (b) If Alice has a public key $Y_A = 8$, what is the shared key K with Bob? (5%)
 - (c) Show that 5 is a primitive root of 23. (5%)
- 2. Suppose Alice and Bob use an Elgamal scheme with a common prime q=157 and a primitive root $\alpha=5$.
 - (a) If Bob has public key $Y_B = 10$ and Alice chose the random integer k = 3, what is the ciphertext of M = 9? (5%)
 - (b) If Alice now chooses a different value of k so that the encoding of M=9 is $C=(25,C_2)$, what is the integer C_2 ? (5%)
- 3. Given 5 as a primitive root of 23, solve the following congruence:

$$7x^{10} + 1 \equiv 0 \pmod{23}$$
.

(10%)

- 4. This problem performs elliptic curve encryption/decryption using the scheme outlined in Section 10.4. The cryptosystem parameters are $E_{11}(1,7)$ and G=(3,2). B's private key is $n_B=7$.
 - (a) Find B's public key P_B . (5%)
 - (b) A wishes to encrypt the message $P_m = (10,7)$ and chooses the random value k = 5. Determine the ciphertext C_m . (5%)
 - (c) Show the calculation by which B recovers P_m from C_m . (5%)