END TERM EXAMINATION

THIRD SEMESTER [B.TECH] DECEMBER 2024

_	Time: 3 Hours Subject: Signals		ım Marks: 6	
_		Attempt five questions in all including Q.No.1 which is compulsory one question from each unit. Assume missing data, if any.		
Q1	(a)	empt all questions: Check whether the signal x(t) = 2 cos(50πt) + sin (10πt) is periodic or aperiodic. If periodic, determine the fundamental	(4)	
	M St	period. A discrete time signal is described by $x[n]=[1, 2, 3, 2, 1]$. Determine $x[n/2]$. Find Discrete Time Fourier Transform of signal $x[n]=2^nu[n]$.	(4) (4)	
	-	State and prove final value theorem of Z-Transform.	(4)	
	史	Write the Dirichlet conditions for existence of Fourier Transform.	(4)	
Q2	: a)	UNIT-I A continuous time signal is expressed by $x(t) = 1 + \sin\omega_0 t + 2\cos\omega_0 t + \cos\left(2\omega_0 t + \frac{\pi}{4}\right), \text{ where } \omega_0 \text{ is the}$ fundamental frequency of the signal. Determine the Fourier series coefficients of $x(t)$. Also, sketch their magnitude plot.	(7)	
	b)	State and explain sampling theorem	(3)	
_		OR	. ,	
9 8		Let $x(t)=u(t-3)-u(t-5)$ and $h(t)=e^{-3t}u(t)$. Compute a) $y(t) = x(t)*h(t)$ b) $g(t) = [dx(t)/dt]*h(t)$ c) How is $g(t)$ related to $y(t)$?	(10)	
		UNIT-II		
Q4	مهو	Consider a causal LTI system with frequency response $H(j\omega) = \frac{1}{3+l\omega}$.	(7)	
~		For a particular input $x(t)$ this system is observed to produce the output $y(t) = e^{-3t}u(t) - e^{-4t}u(t)$. Determine $x(t)$.		
	甸	Find the Fourier Transform of signal of Signal $x(t) = \frac{1}{1+t^2}$. However, the Fourier Transform of $g(t) = e^{- t }$ is given as: $G(\omega) = \frac{2}{1+\omega^2}$.	(3)	
05	al	OR	(27)	
Q5	a)	Determine whether the signal y(t)=x(t)+x(t-2) is (a) Linear or nonlinear, (b) Static or dynamic, (c) Causal or non-causal and (d) Time variant or time invariant.	(7)	
		it) time variant	P.T.O.	

b) Consider an LTI system with the differential equation (3) $\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 3y(t) = \frac{dx(t)}{dt} + 2x(t).$ Find the frequency response & impulse response.

UNIT-III

Q6 a) Compute the Discrete Time Fourier Transform of the following (7) functions.

 \times x[n] = u[n-2]-u[n-6]

 \ddot{x} . $x[n] = (1/2)^{-n}u[-n-1]$

Find Inverse Discrete Time Fourier Transform of a signal (3)

 $X(e^{j\omega}) = \frac{e^{-j\omega} - \frac{1}{5}}{1 - \frac{1}{5}e^{-j\omega}}$

OR

Q7 a) Find the circular convolution of the following sequences: (7)

 $x_1[n] = \{1, -1, 2, 3\}; x_2[n] = \{0, 1, 2, 3\}$

b) Compute 4-point DFT of $x[n]=\{1, 2, 1, 2\}$ (3)

UNIT-IV

Q8 Determine the Z-Transform and ROC of the signal (7)

 $x[n] = 7(\frac{1}{3})^n u[n] - 6(\frac{1}{2})^n u[n]$

Write the properties of Region of Convergence. (3)

OR

Q9 Consider a signal y[n] which is related to two signals $x_1[n]$ and $x_2[n]$ (10) by

 $y[n] = x_1[n+3] * x_2[-n+1]$

Where $x_1[n] = (\frac{1}{2})^n u[n]$ and $x_2[n] = (\frac{1}{3})^n u[n]$

Given that

 $a^n u[n] \stackrel{z}{\leftrightarrow} \frac{1}{1 - az^{-1}}, |z| > |a|$

Use the properties of Z-Transform to determine the Z-Transform Y(z) of y[n].

https://www.ggsipuonline.com

Whatsapp @ 9300930012

Send your old paper & get 10/-

अपने पुराने पेपर्स भेजे और 10 रूपये पायें,

Paytm or Google Pay से