

Introduction to machine learning

Associated notebook: https://github.com/keeeto/reading-ml-chemistry/blob/master/01_classification_decision_tree.ipynb

Course overview

- Intro to machine learning
- Classical Machine Learning
- Deep Machine Learning
- Notebooks to work through the lectures

What you (don't) need

- Don't need
 - Strong mathematical background
 - Any particular computer programming experience
- Do need
 - A google account
 - Curiosity about the content

Overview Today(ish)

- Define ML
- Types of ML
- Parameters and hyperparameters
- Features
- Decision trees

Setting up a notebook

- You will need a Google account to do this
- Go to https://colab.research.google.com/
- Search for https://github.com/keeeto/reading-ml-chemistry

Showcase

- A model is trained to generate new drug molecules from scratch
- Trained to design molecules which are drug-like but have not been tested before
- The method can develop previously un-explored molecules
- Probable activities are promising

Showcase

- Directly predicts the atomic environment labels from the X-ray absorption near-edge structure
- Accuracy exceeding 80%
- Accelerated or even on-the-fly interpretation of spectra directly from experiments

Showcase

- Interpreting electron diffraction crystallography using supervised ML
- Models trained on simulated diffraction patterns
- Can narrow down possible spacegroups to the top two with 95% confidence
- Even peaks in low signal-to-noise images can be potentially used

Science Advances 2019, 5, eaaw1949

What is machine learning?

ML = Representation + Evaluation + Optimisation

Tapping into the "folk knowledge" needed to advance machine learning applications.

BY PEDRO DOMINGOS

A Few Useful Things to Know About Machine Learning

ML = Representation + Evaluation + Optimisation

Representation

- How we represent the knowledge.
- What type of model do you use.
- What data do you use in what format
- Hypothesis space.
- Eg. Neural network, decision tree ...

ML = Representation + Evaluation + Optimisation

Evaluation

- Objective function or scoring function.
- Distinguish good from bad models.

ML = Representation + Evaluation + Optimisation

Optimisation

- Searches between models.
- Updates the parameters of a model to improve performance.
- Identifies the highest-scoring one.
- Determines the efficiency of a learner.

ML = Representation + Evaluation + Optimisation

- Representation
 - Choice of model
 - Choice of hyper-parameters
 - Choice of features

Supervised ML

- Data plus labels
- Learning a function that maps an input to an output based on example input-output pairs.

Unsupervised ML

- Data do not have labels
- Identifying trends in unlabelled datasets
- E.g. cluster analysis, is used for exploratory data analysis to find hidden patterns or grouping in data

Classification

- Identifying to which of a set of categories a new sample belongs, on the basis of a training set
- E.g. spam filter or which crystal structure gives a certain pattern

Regression

 Models a target prediction value based on independent variables

Classical/deep methods

- Classical: linear regression, trees etc...
- Deep: neural network type models

Parameters and hyper-parameters

- Parameters properties of the model that are modified during training
- Hyperparameters set of values that define the model and how it trains. Do not update during training
 - E.g. loss function, learning rate, number of parameters

Features

- In ML approaches the data will typically consist of several or more features
- Features are simply the input variables for the model – x in f(x) = y
 - "...some machine learning projects succeed and some fail. What makes the difference? Easily the most important factor is the features used."

Feature engineering

- Transforming raw data into features that better represent the underlying problem
- Make inputs into things that an algorithm can understand
- E.g. Convert a date-time stamp into something more useful 2014-09-20T20:45:40Z -> Day: Tuesday; Year: 2014; Month: Sept
- Note that 'Tuesday' and 'Sept' are not particularly algorithm ready – how can we convert them to something more useful?

One hot encoding

- Classification problems
- Vector of length = number of categories
- Each element is the probability that the data represents a given class

Material	Ortho	Rhomb
b=a	1	0
β c	0	1

Decision trees

Decision trees

$$Q_{left}(\theta) = (x, y)|x_f \le t_j$$

$$Q_{right}(\theta) = Q \setminus Q_{left}(\theta)$$

Data is split according to a threshold value tj.

$$C(Q,\theta) = \frac{n_{left}}{N_j} H(Q_{left}(\theta)) + \frac{n_{right}}{N_j} H(Q_{right}(\theta))$$

The cost of the split is calculated based on some impurity function H() e.g. RMSD of the data.

$$\theta^* = \underset{\theta}{\operatorname{argmin}} C(Q, \theta)$$

The splitting parameters are chosen to minimise C at each split.

Go to notebook

Concept checklist

- Supervised/unsupervised machine learning
- Classical machine learning/deep learning
- Parameters/hyperparameters
- Features and feature engineering
- Decision trees

