Problem Statement

Linear Regression

Import Libraries

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
a=pd.read_csv("horse1.csv")
a
```

Out[2]:

	Dato	Track	Race Number	Distance	Surface	Prize money	Starting position	Jockey	Jockey weight	Country	 Tr
0	03.09.2017	Sha Tin	10	1400	Gress	1310000	6	K C Leung	52	Sverige	
1	16.09.2017	Sha Tin	10	1400	Gress	1310000	14	C Y Ho	52	Sverige	
2	14.10.2017	Sha Tin	10	1400	Gress	1310000	8	СҮНо	52	Sverige	
3	11.11.2017	Sha Tin	9	1600	Gress	1310000	13	Brett Prebble	54	Sverige	
4	26.11.2017	Sha Tin	9	1600	Gress	1310000	9	C Y Ho	52	Sverige	
37003	44.06.0000	Sha	11	1200	0,000	1450000	٥	Α	E٥	Australia	>

To display top 10 rows

In [3]:

```
c=a.head(15)
c
```

Out[3]:

	Dato	Track	Race Number	Distance	Surface	Prize money	Starting position	Jockey	Jockey weight	Cou
0	03.09.2017	Sha Tin	10	1400	Gress	1310000	6	K C Leung	52	Sve
1	16.09.2017	Sha Tin	10	1400	Gress	1310000	14	C Y Ho	52	Sve
2	14.10.2017	Sha Tin	10	1400	Gress	1310000	8	C Y Ho	52	Sve
3	11.11.2017	Sha Tin	9	1600	Gress	1310000	13	Brett Prebble	54	Sve
4	26.11.2017	Sha Tin	9	1600	Gress	1310000	9	C Y Ho	52	Sve
5	10.12.2017	Sha Tin	1	1800	Gress	1310000	4	C Y Ho	52	Sve
6	01.01.2018	Sha Tin	9	1800	Gress	1310000	9	C Schofield	54	Sve
7	04.02.2018	Sha Tin	5	1800	Gress	1310000	6	Joao Moreira	57	Sve
8	03.03.2018	Sha Tin	8	1800	Gress	1310000	3	C Y Ho	56	Sve
9	11.03.2018	Sha Tin	10	1600	Gress	1310000	8	C Y Ho	57	Sve
10	28.03.2018	Happy Valley	8	1800	Gress	1310000	9	M F Poon	53	Sve
11	11.04.2018	Happy Valley	6	1650	Gress	1310000	11	W M Lai	55	Sve
12	25.04.2018	Happy Valley	3	2200	Gress	1310000	2	W M Lai	54	Sve
13	09.05.2018	Happy Valley	7	1650	Gress	1310000	3	W M Lai	54	Sve
14	22.09.2018	Sha Tin	4	1600	Gress	920000	11	СҮНо	57	Sve
15 r	ows × 21 cc	lumns								
4										•

To find Missing values

In [4]:

c.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 15 entries, 0 to 14
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	Dato	15 non-null	object
1	Track	15 non-null	object
2	Race Number	15 non-null	int64
3	Distance	15 non-null	int64
4	Surface	15 non-null	object
5	Prize money	15 non-null	int64
6	Starting position	15 non-null	int64
7	Jockey	15 non-null	object
8	Jockey weight	15 non-null	int64
9	Country	15 non-null	object
10	Horse age	15 non-null	int64
11	TrainerName	15 non-null	object
12	Race time	15 non-null	object
13	Path	15 non-null	int64
14	Final place	15 non-null	int64
15	FGrating	15 non-null	int64
16	Odds	15 non-null	object
17	RaceType	15 non-null	object
18	HorseId	15 non-null	int64
19	JockeyId	15 non-null	int64
20	TrainerID	15 non-null	int64
		. (0)	

dtypes: int64(12), object(9)

memory usage: 2.6+ KB

To display summary of statistics

In [5]:

a.describe()

Out[5]:

	Race Number	Distance	Prize money	Starting position	Jockey weight	Horse age
count	27008.000000	27008.000000	2.700800e+04	27008.000000	27008.000000	27008.000000
mean	5.268624	1401.666173	1.479445e+06	6.741447	55.867373	5.246408
std	2.780088	276.065045	2.162109e+06	3.691071	2.737006	1.519880
min	1.000000	1000.000000	6.600000e+05	1.000000	47.000000	2.000000
25%	3.000000	1200.000000	9.200000e+05	4.000000	54.000000	4.000000
50%	5.000000	1400.000000	9.670000e+05	7.000000	56.000000	5.000000
75%	8.000000	1650.000000	1.450000e+06	10.000000	58.000000	6.000000
max	11.000000	2400.000000	2.800000e+07	14.000000	63.000000	12.000000
4						•

To display column heading

In [6]:

```
a.columns
```

Out[6]:

Pairplot

In [7]:

```
s=a.dropna(axis=1)
s
```

Out[7]:

	Dato	Track	Race Number	Distance	Surface	Prize money	Starting position	Jockey	Jockey weight	С
0	03.09.2017	Sha Tin	10	1400	Gress	1310000	6	K C Leung	52	;
1	16.09.2017	Sha Tin	10	1400	Gress	1310000	14	C Y Ho	52	;
2	14.10.2017	Sha Tin	10	1400	Gress	1310000	8	C Y Ho	52	;
3	11.11.2017	Sha Tin	9	1600	Gress	1310000	13	Brett Prebble	54	;
4	26.11.2017	Sha Tin	9	1600	Gress	1310000	9	C Y Ho	52	:
27003	14.06.2020	Sha Tin	11	1200	Gress	1450000	6	A Hamelin	59	Α
27004	21.06.2020	Sha Tin	2	1200	Gress	967000	7	K C Leung	57	Α
27005	21.06.2020	Sha Tin	4	1200	Gress	967000	6	Blake Shinn	57	Α
27006	21.06.2020	Sha Tin	5	1200	Gress	967000	14	Joao Moreira	57	Ž
27007	21.06.2020	Sha Tin	11	1200	Gress	1450000	7	C Schofield	55	Ž
27008	27008 rows × 21 columns									
4										•

In [8]:

```
s.columns
```

Out[8]:

In [9]:

```
sns.pairplot(c)
```

Out[9]:

<seaborn.axisgrid.PairGrid at 0x1a583088af0>

Distribution Plot

In [10]:

sns.displot(c['Dato'])

Out[10]:

<seaborn.axisgrid.FacetGrid at 0x1a589d70910>

Correlation

In [11]:

Out[11]:

<AxesSubplot:>

Train the model - Model Building

```
In [12]:
```

To split dataset into training end test

```
In [13]:
```

```
from sklearn.model_selection import train_test_split
g_train,g_test,h_train,h_test=train_test_split(g,h,test_size=0.6)
```

To run the model

```
In [14]:
```

```
from sklearn.linear_model import LinearRegression
```

```
In [15]:
```

```
lr=LinearRegression()
lr.fit(g_train,h_train)
```

Out[15]:

LinearRegression()

In [16]:

```
print(lr.intercept_)
```

6687.0

Coeffecient

In [17]:

```
coeff=pd.DataFrame(lr.coef_,g.columns,columns=['Co-effecient'])
coeff
```

Out[17]:

	Co-effecient
Distance	0.0
Prize money	0.0
Starting position	0.0
Horseld	0.0
Jockeyld	0.0

Best Fit line

```
In [18]:
```

```
prediction=lr.predict(g_test)
plt.scatter(h_test,prediction)
```

Out[18]:

<matplotlib.collections.PathCollection at 0x1a58d0b1790>

To find score

```
In [19]:
```

```
print(lr.score(g_test,h_test))
```

1.0

Import Lasso and ridge

```
In [20]:
```

```
from sklearn.linear_model import Ridge,Lasso
```

Ridge

```
In [21]:
```

```
ri=Ridge(alpha=5)
ri.fit(g_train,h_train)
```

Out[21]:

Ridge(alpha=5)

```
In [22]:
ri.score(g_test,h_test)
Out[22]:
1.0
In [23]:
ri.score(g_train,h_train)
Out[23]:
1.0
Lasso
In [24]:
l=Lasso(alpha=6)
1.fit(g_train,h_train)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_coordinat
e_descent.py:530: ConvergenceWarning: Objective did not converge. You migh
t want to increase the number of iterations. Duality gap: 0.0, tolerance:
0.0
  model = cd_fast.enet_coordinate_descent(
Out[24]:
Lasso(alpha=6)
In [25]:
1.score(g_test,h_test)
Out[25]:
1.0
In [27]:
ri.score(g_train,h_train)
Out[27]:
```

ElasticNet

1.0

```
In [28]:

from sklearn.linear_model import ElasticNet
e=ElasticNet()
e.fit(g_train,h_train)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_coordinat
e_descent.py:530: ConvergenceWarning: Objective did not converge. You migh
t want to increase the number of iterations. Duality gap: 0.0, tolerance:
```

model = cd_fast.enet_coordinate_descent(

Out[28]:

ElasticNet()

Coeffecient, intercept

```
In [29]:
print(e.coef_)

[0. 0. 0. 0. 0.]

In [30]:
print(e.intercept_)

6687.0
```

Prediction

```
In [31]:

d=e.predict(g_test)
d

Out[31]:
    array([6687., 6687., 6687., 6687., 6687., 6687., 6687.])

In [32]:
    print(e.score(g_test,h_test))
1.0
```

Evaluation

```
In [33]:
from sklearn import metrics
print("Mean Absolute error:",metrics.mean_absolute_error(h_test,d))
Mean Absolute error: 0.0
```

```
In [34]:
print("Mean Squared error:",metrics.mean_squared_error(h_test,d))
Mean Squared error: 0.0
In [35]:
print("Mean Squared error:",np.sqrt(metrics.mean_squared_error(h_test,d)))
Mean Squared error: 0.0
In []:
```