

TEMA 4 - Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

ÁRVORES - Conceitos Básicos

- Uma árvore consiste em um conjunto de elementos chamados de NÓS ou VÉRTICES.
 Em cada nó da árvore pode ser guardado qualquer tipo de informação.
- Um dos nós da árvore é chamado de RAIZ.
- Os demais nós formam m >= 0 conjuntos, onde cada um deles é uma árvore.

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

ÁRVORES - Conceitos Básicos

- Cada nó da árvore é a raiz de uma subárvore. O número de subárvores de um nó é o grau daquele nó.
- Um nó de grau igual a zero é chamado folha ou nó terminal.
- O nível de um nó pode ser determinado da seguinte forma, a raiz é nível 0 e os demais tem um nível que é uma unidade maior que o nível de seu pai. Assim sendo nível é o número de nós do caminho mais curto que vai desde a raiz até esse nó.

Aula 12- ALGORITMOS E COMPLEXIDADE

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Aula 12- ALGORITMOS E COMPLEXIDADE

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

ÁRVORES – Conceitos Básicos

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

ÁRVORES – Conceitos Básicos

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

ÁRVORES – Representações

Existem diversas maneiras de representar árvores. Uma representação que reflete a ideia de árvores como conjuntos aninhados é mostrado na figura

abaixo.

Diagrama de Venn (ou digrama de inclusão ou conjuntos aninhados)

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

ÁRVORES – Representações

Diagrama de Venn (ou digrama de inclusão ou conjuntos aninhados)

Identação

A B D E F C G

Parênteses Aninhados

(A (B(D, E, F) C(G)))

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

ÁRVORES BINÁRIAS

Dentre as estruturas de dados dinâmicas, as árvores binárias estão entre as mais conhecidas, sendo uma estrutura muito eficiente para organização e busca de dados.

Sua principal característica, que justifica o nome "binária", advêm do fato de que cada nó pode possuir no máximo dois filhos, um à esquerda e um à direita.

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

ÁRVORES – Representações

- 1 Estritamente Binária : todo nó interno tem exatamente 2 filhos.
- 2 Completa (Cheia) : estritamente binária, e todas as folhas estão no mesmo nível.
- 3 Balanceada : para todo nó, a diferença de altura de suas subárvores é de no máximo 1.
- Degenerada: todos os nós têm no máximo 1 filho (lista encadeada).

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

EXERCÍCIO 1

Informe o grau de cada nó, quem são as folhas e quem são os nós internos.

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

EXERCÍCIO 1

Informe o grau de cada nó, quem são as folhas e quem são os nós internos.

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

EXERCÍCIO 2

Sobre estruturas de dados do tipo árvore binária, analise as assertivas abaixo.	
I. Diferente das listas simplesmente encadeadas, as árvores binárias permitem que cada nó tenha dois nós sucessores (filhos).	
II. Raiz (root) é o nó mais inferior da árvore binária que não possui sucessores (filhos).	
III. Folha (<i>leaf</i>) é qualquer nó da árvore binária que não tenha sucessores (filhos).	
É correto o que se afirma em:	
() I, II e III.
() I, apenas.
() II, apenas.
() II e III, apenas.
() I e III, apenas.

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

EXERCÍCIO 2

Sobre estruturas de dados do tipo árvore binária, analise as assertivas abaixo.	
I. Diferente das listas simplesmente encadeadas, as árvores binárias permitem que cada nó tenha dois nós sucessores (filhos).	
II. Raiz (root) é o nó mais inferior da árvore binária que não possui sucessores (filhos).	
III. Folha (<i>leaf</i>) é qualquer nó da árvore binária que não tenha sucessores (filhos).	
É correto o que se afirma em:	
() I, II e III.	
() I, apenas.	
() II, apenas.	
() II e III, apenas.	
(X) I e III, apenas.	

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

EXERCÍCIO 3

Analise a seguinte árvore binária e assinale a alternativa correta.

- () "A" é filho de todos.
- () "B" e "C" são caules da árvore.
- () "B" tem grau de saída 3 e "C" grau 2.
- () Árvore enraizada em "A".
- () Com exceção do nó "A", que é raiz, os demais nós são conhecido como folhas.

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

EXERCÍCIO 3

Analise a seguinte árvore binária e assinale a alternativa correta.

-) "A" é filho de todos.
- () "B" e "C" são caules da árvore.
- () "B" tem grau de saída 3 e "C" grau 2.
- (X) Árvore enraizada em "A".
- () Com exceção do nó "A", que é raiz, os demais nós são conhecido como folhas.

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

EXERCÍCIO 4

A imagem a seguir representa uma estrutura de dados chamada árvore binária. Há vários tipos de árvores binárias. Qual é o tipo de árvore binária que tal imagem representa?

- () Árvore binária em largura.
-) Árvore binária em profundidade.
- () Árvore binária cheia.
- () Árvore binária completa.
- () Árvore estritamente binária.

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

EXERCÍCIO 4

A imagem a seguir representa uma estrutura de dados chamada árvore binária. Há vários tipos de árvores binárias. Qual é o tipo de árvore binária que tal imagem representa?

- () Árvore binária em largura.
-) Árvore binária em profundidade.
- () Árvore binária cheia.
- () Árvore binária completa.
- X) Árvore estritamente binária.

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

- Árvore Ordenada
 - Os filhos de cada nó estão ordenados (assume-se ordenação da esquerda para a direita)

Aula 12- ALGORITMOS E COMPLEXIDADE

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Árvores Binárias

Árvore Binária: Uma árvore binária é uma árvore que pode ser nula, ou então tem as seguintes características:

- Existe um nó especial denominado raiz;
- Nenhum nó tem grau superior a 2 (dois), isto é, nenhum nó tem mais de dois filhos;
- Existe um "senso de posição", ou seja, distingue-se entre uma subárvore esquerda e uma subárvore direita.

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Árvores Binárias

Atravessamento (ou caminhamento) de árvore é a passagem de forma sistemática por cada um de seus nós;

Diferentes formas de percorrer os nós de uma árvore:

- Pré-ordem ou prefixa (busca em profundidade);
- Em ordem ou infixa (ordem central);
- Pós-ordem ou posfixa;
- Em nível.

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Árvores Binárias

Pré-ordem (prefixa)

- visitar a raiz;
- caminhar na subárvore à esquerda, segundo este caminhamento;
- caminhar na subárvore à direita, segundo este caminhamento.

1 3 5 7

4 2 1 3 6 5 7

Aula 12- ALGORITMOS E COMPLEXIDADE

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Árvores Binárias

Pré-ordem (prefixa)

- visitar a raiz;
- caminhar na subárvore à esquerda, segundo este caminhamento;
- caminhar na subárvore à direita, segundo este caminhamento.

Aula 12- ALGORITMOS E COMPLEXIDADE

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Árvores Binárias

Atravessamento em ordem (infixa)

- caminhar na subárvore à esquerda, segundo este caminhamento;
- visitar a raiz;
- caminhar na subárvore à direita, segundo este caminhamento

1 2 3 4 5 6 7

Aula 12- ALGORITMOS E COMPLEXIDADE

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Árvores Binárias

Atravessamento em ordem (infixa)

- caminhar na subárvore à esquerda, segundo este caminhamento;
- visitar a raiz;
- caminhar na subárvore à direita, segundo este caminhamento

1 2 3 4 5 6 7

Aula 12- ALGORITMOS E COMPLEXIDADE

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

OUTRO EXEMPLO

Escreva a sequência de visitação sobre essa árvore pelo caminhamento central (infixado).

$$15 - 10 - 40 - 33 - 5 - 8 - 21 - 2$$
.

Aula 12- ALGORITMOS E COMPLEXIDADE

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Árvores Binárias

Atravessamento pós-ordem (posfixa)

- a) caminhar na subárvore à esquerda, segundo este caminhamento;
- b) caminhar na subárvore à direita, segundo este caminhamento;
- c) visitar a raiz.

1 3 2 5 7 6 4

Aula 12- ALGORITMOS E COMPLEXIDADE

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Árvores Binárias

Atravessamento pós-ordem (posfixa)

- a) caminhar na subárvore à esquerda, segundo este caminhamento;
- b) caminhar na subárvore à direita, segundo este caminhamento
- c) visitar a raiz.

1 3 2 5 7 6 4

Aula 12- ALGORITMOS E COMPLEXIDADE

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Árvores Binárias

Atravessamento em nível

 Percorre-se a árvore de cima para baixo e da direita para a esquerda.

1 3 5 7

4 2 6 1 3 5 7

Aula 12- ALGORITMOS E COMPLEXIDADE

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Árvores Binárias

Atravessamento em nível

 Percorre-se a árvore de cima para baixo e da direita para a esquerda.

4 2 6 1 3 5 7

Aula 12- ALGORITMOS E COMPLEXIDADE

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Árvores Binárias

Árvore Estritamente Binária:

 É uma árvore binária na qual todo nó tem 0 ou 2 subárvores, ou seja, nenhum nó tem "filho único".

Aula 12- ALGORITMOS E COMPLEXIDADE

Estruturas de dados dos tipos Árvore Binária e Árvore AVL Árvores Binárias

Árvore Binária Cheia

- Todos os nós, exceto os do último nível, possuem exatamente duas subárvores.
- Uma árvore binária cheia de altura h tem 2h 1 nós.

Aula 12- ALGORITMOS E COMPLEXIDADE

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Árvores Binárias

Árvore Degenerada

 Cada nó possui exatamente um filho, e a árvore tem o mesmo número de níveis que de nós

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

EXERCÍCIO 5

Considere a árvore binária da figura a seguir:

Os resultados das consultas dos nós dessa árvore binária em pré-ordem e pós-ordem são, respectivamente:

- () (2 4 6 8 12 16) e (2 6 8 4 16 12).
- () (12 4 2 8 6 16) e (2 4 6 8 12 16).
- () (2 6 8 4 16 12) e (12 4 2 8 6 16).
- () (2 4 6 8 12 16) e (12 4 2 8 6 16).
- () (12 4 2 8 6 16) e (2 6 8 4 16 12).

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

EXERCÍCIO 5

Considere a árvore binária da figura a seguir:

Os resultados das consultas dos nós dessa árvore binária em pré-ordem e pós-ordem são, respectivamente:

- () (2 4 6 8 12 16) e (2 6 8 4 16 12).
- () (12 4 2 8 6 16) e (2 4 6 8 12 16).
-) (2 6 8 4 16 12) e (12 4 2 8 6 16).
- () (2 4 6 8 12 16) e (12 4 2 8 6 16).
- (X) (12 4 2 8 6 16) e (2 6 8 4 16 12).

Em **pré-ordem** percorre-se primeiro visitando a raiz e depois a sub-árvore da esquerda depois da direita. Ou seja: 12, 4, 2, 8,6 16

Em **pós-ordem** a raiz é a ultima a ser visitada:

Sendo assim: 2,6,8,4,16,12

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

EXERCÍCIO 5

Considere a árvore binária da figura a seguir:

Os resultados das consultas dos nós dessa árvore binária em pré-ordem e pós-ordem são, respectivamente:

- () (2 4 6 8 12 16) e (2 6 8 4 16 12).
- () (12 4 2 8 6 16) e (2 4 6 8 12 16).
- () (2 6 8 4 16 12) e (12 4 2 8 6 16).
- () (2 4 6 8 12 16) e (12 4 2 8 6 16).
- (X) (12 4 2 8 6 16) e (2 6 8 4 16 12).

Em **pré-ordem** percorre-se primeiro visitando a raiz e depois a sub-árvore da esquerda depois da direita. Ou seja: 12, 4, 2, 8,616

Em **pós-ordem** a raiz é a ultima a ser visitada:

Sendo assim: 2,6,8,4,16,12

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

EXERCÍCIO 6

A operação de destruição de uma árvore requer um tipo de percurso em que a liberação de um nó é realizada apenas após todos os seus descendentes terem sido também liberados. Segundo essa descrição, a operação de destruição de uma árvore deve ser implementada utilizando o percurso.

-) em ordem.
-) pré-ordem.
- () central.
- () simétrico.
-) pós-ordem.

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

EXERCÍCIO 6

A operação de destruição de uma árvore requer um tipo de percurso em que a liberação de um nó é realizada apenas após todos os seus descendentes terem sido também liberados. Segundo essa descrição, a operação de destruição de uma árvore deve ser implementada utilizando o percurso.

() em ordem.() pré-ordem.() central.() simétrico.(X) pós-ordem.

Considerando que a raiz das árvores contém o ponteiro para os dois nós associados (sub-árvore da esquerda e sub-árvore da direita) então é necessário visitar todas subárvores e liberando os nós folha e posteriormente os nós raiz. Ou seja, esse percurso deve deixar a raiz por último, caracterizando o percurso pós-ordem.

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

EXERCÍCIO 7

Observe a Árvore Binária de Busca (ABB) a seguir.

Assinale a alternativa que apresenta, corretamente, a sequência de inserção que gera essa ABB.

- () 30, 15, 40, 10, 20, 60, 80
- () 30, 15, 40, 10, 20, 80, 60
- () 30, 15, 60, 10, 20, 40, 80
- () 30, 60, 20, 80, 15, 10, 40
- () 30, 60, 40, 10, 20, 15, 80

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

EXERCÍCIO 7

Observe a Árvore Binária de Busca (ABB) a seguir.

Assinale a alternativa que apresenta, corretamente, a sequência de inserção que gera essa ABB.

- () 30, 15, 40, 10, 20, 60, 80
- () 30, 15, 40, 10, 20, 80, 60
- (X) 30, 15, 60, 10, 20, 40, 80
- () 30, 60, 20, 80, 15, 10, 40
- () 30, 60, 40, 10, 20, 15, 80

É preciso inserir os nós raiz primeiro, a seguir inserir as folhas.

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Árvores AVL

- Árvores Balanceadas
- Balanceamento estático e dinâmico!
- Árvores AVL
- Fator de Balanceamento (Fatbal)
- Rotação Simples(Esquerda e direita)
- Rotação Dupla (Esquerda e Direita)
- Exemplos
- · Referências.

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Árvores

Balanceadas

- Uma arvore é considerada balanceada quando suas sub-arvores à esquerda e à direita possuem a mesma altura.
- A árvore não balanceada é definida como degenerada

Árvore Binária Balanceada

Árvore Binária Degenerada

Aula 12- ALGORITMOS E COMPLEXIDADE

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Arvores

Balanceadas

Balanceamento Estático:

- Este balanceamento consiste em, depois de um certo tempo de uso da árvore, destruir sua estrutura, guardando suas informações em uma lista ordenada e reconstruí-la de forma balanceada.

Balanceamento Dinâmico:

- Tem por objetivo reajustar os nós de uma árvore sempre que uma inserção ou remoção provocar desbalanceamento.
- Um exemplo de Balanceamento dinâmico são as árvores AVL.

Aula 12- ALGORITMOS E COMPLEXIDADE

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Árvores AVL

- O termo AVL vem de seus fundadores Adel'son, Vel'skii e Landis (1962). Foi a primeira estrutura de dados a oferecer operações de inserção, remoção e busca em tempo logaritmo ou seja é um algoritmo muito rápido.
- Em uma árvore degenerada de 10.000 nós, são necessárias 5.000 comparações para efetuar uma busca, já numa árvore AVL, com o mesmo número de nós, essa média baixa para 14 comparações.
- A árvore AVL é uma árvore binária de busca e sua estrutura foi construída de forma que a altura da subárvore direita é diferente da altura da sub-árvore esquerda de no máximo 1.

Aula 12- ALGORITMOS E COMPLEXIDADE

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Árvores AVL Fator de Balanceamento

 Sendo assim, para cada nó define-se um fator de balanceamento(fatbal), que deve ser -1,0 ou 1.

Fatbal = altura (sub-arvore direita) – altura (sub-árvore esquerda)

- -> Fatbal = -1, quando a sub-árvore da esquerda é um nível mais alto que a direita.
- -> Fatbal = 0, quando as duas sub-árvores tem a mesma altura.
- -> Fatbal = 1, quando a sub-árvore da direita é um nível mais alto que a esquerda.

Aula 12- ALGORITMOS E COMPLEXIDADE

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Balanceamento em AVL

- Inserimos um novo nodo na árvore.
- Esta inserção pode ou não alterar as propriedades de balanceamento.
- Caso a inserção desse novo nodo não viole alguma propriedade de balanceamento, podemos continuar inserindo novos nodos.
- Se a inserção afetar as propriedades de balanceamento devemos restaurar o balanço da árvore. Esta restauração é efetuada através de ROTAÇÕES na árvore.

Aula 12- ALGORITMOS E COMPLEXIDADE

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

ROTAÇÃO: Rotação simples a esquerda

Aula 12- ALGORITMOS E COMPLEXIDADE

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

ROTAÇÃO: Rotação simples a direita

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

ROTAÇÃO: Rotação dupla a esquerda

(rotação simples à direita + rotação simples à esquerda)

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

ROTAÇÃO: Rotação dupla a direita

(rotação simples à esquerda + rotação simples à direita)

Aula 12- ALGORITMOS E COMPLEXIDADE

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Rotação:

Dicas:

- a) Para identificar quando uma rotação é **simples** ou **dupla** deve-se observar os sinais do Fb:
 - Sinal for igual, a rotação é simples
 - Sinal for diferente a rotação é dupla
- b) Se **Fb** for positivo (+) a rotação para à esquerda
- c) Se Fb for negativa (-) a rotação para à direita

Aula 12- ALGORITMOS E COMPLEXIDADE

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Caso I: Rotação Simples

 Suponha que inserimos os números 50, 40 e 30 em uma árvore. Obteremos então:

- A inserção novamente produziu um desbalanceamento.
- Neste caso, como os sinais dos FB são os mesmos, significa que precisamos fazer apenas uma ROTAÇÃO SIMPLES à direita no nodo com FB -2.
- No caso simétrico (nodo com FB 2) faríamos uma rotação simples à esquerda.

Aula 12- ALGORITMOS E COMPLEXIDADE

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Caso I: Rotação Simples

Após a rotação simples teremos:

A árvore está balanceada dentro das propriedades de AVL.

Aula 12- ALGORITMOS E COMPLEXIDADE

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Exemplo:

Considerando a árvore abaixo:

- A árvore está balanceada, como podemos observar pelos Fb de cada nodo.
- São dois os possíveis casos de desbalancemento

Aula 12- ALGORITMOS E COMPLEXIDADE

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Caso II: Rotação Dupla

 Ao inserir o número 5 na árvore teremos a seguinte árvore:

- O nodo 8 fica com o FB -2 e tem um filho com FB +1. Neste caso para manter o balanceamento devemos aplicar duas rotações, também denominada ROTAÇÃO DUPLA.
- Primeiro rotaciona-se o nodo com FB 1 para a esquerda.

Aula 12- ALGORITMOS E COMPLEXIDADE

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Caso II: Rotação Dupla

 Logo rotaciona-se o nodo que possuía FB -2 na direção oposta, nesse caso a direita.

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Uma árvore AVL é um tipo de árvore binária balanceada na qual a diferença entre as alturas de suas subárvores da esquerda e da direita não pode ser maior do que 1 para qualquer nó. Após a inserção de um nó em uma AVL, a raiz da subárvore de nível mais baixo no qual o novo nó foi inserido é marcada. Se a altura de seus filhos diferir em mais de uma unidade, é realizada uma rotação simples ou uma rotação dupla para igualar suas alturas.

LAFORE, R. Data Structures & algorithms in Java. Indianópolis: Sams Publishing, 2003 (adaptado).

A seguir, é apresentado um exemplo de árvore AVL.

Aula 12- ALGORITMOS E COMPLEXIDADE

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Uma árvore AVL é um tipo de árvore binária balanceada na qual a diferença entre as alturas de suas subárvores da esquerda e da direita não pode ser maior do que 1 para qualquer nó. Após a inserção de um nó em uma AVL, a raiz da subárvore de nível mais baixo no qual o novo nó foi inserido é marcada. Se a altura de seus filhos diferir em mais de uma unidade, é realizada uma rotação simples ou uma rotação dupla para igualar suas alturas.

LAFORE, R. Data Structures & algorithms in Java. Indianópolis: Sams Publishing, 2003 (adaptado).

A seguir, é apresentado um exemplo de árvore AVL.

Foi a primeira estrutura de dados a oferecer operações de inserção, remoção e busca em tempo logaritmo ou seja é um algoritmo muito rápido .

Em uma árvore degenerada de 10.000 nós, são necessárias 5.000 comparações para efetuar uma busca, já numa árvore AVL, com o mesmo número de nós, essa média baixa para 14 comparações. —

A árvore AVL é uma árvore binária de busca e sua estrutura foi construída de forma que a altura da sub-árvore direita é diferente da altura da sub-árvore esquerda de no máximo 1.

Aula 12- ALGORITMOS E COMPLEXIDADE

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Uma árvore AVL é um tipo de árvore binária balanceada na qual a diferença entre as alturas de suas subárvores da esquerda e da direita não pode ser maior do que 1 para qualquer nó. Após a inserção de um nó em uma AVL, a raiz da subárvore de nível mais baixo no qual o novo nó foi inserido é marcada. Se a altura de seus filhos diferir em mais de uma unidade, é realizada uma rotação simples ou uma rotação dupla para igualar suas alturas.

LAFORE, R. Data Structures & algorithms in Java. Indianópolis: Sams Publishing, 2003 (adaptado).

Aula 12- ALGORITMOS E COMPLEXIDADE

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Uma árvore AVL é um tipo de árvore binária balanceada na qual a diferença entre as alturas de suas subárvores da esquerda e da direita não pode ser maior do que 1 para qualquer nó. Após a inserção de um nó em uma AVL, a raiz da subárvore de nível mais baixo no qual o novo nó foi inserido é marcada. Se a altura de seus filhos diferir em mais de uma unidade, é realizada uma rotação simples ou uma rotação dupla para igualar suas alturas.

LAFORE, R. Data Structures & algorithms in Java. Indianópolis: Sams Publishing, 2003 (adaptado).

Aula 12- ALGORITMOS E COMPLEXIDADE

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Uma árvore AVL é um tipo de árvore binária balanceada na qual a diferença entre as alturas de suas subárvores da esquerda e da direita não pode ser maior do que 1 para qualquer nó. Após a inserção de um nó em uma AVL, a raiz da subárvore de nível mais baixo no qual o novo nó foi inserido é marcada. Se a altura de seus filhos diferir em mais de uma unidade, é realizada uma rotação simples ou uma rotação dupla para igualar suas alturas.

LAFORE, R. Data Structures & algorithms in Java. Indianópolis: Sams Publishing, 2003 (adaptado).

Aula 12- ALGORITMOS E COMPLEXIDADE

Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Uma árvore AVL é um tipo de árvore binária balanceada na qual a diferença entre as alturas de suas subárvores da esquerda e da direita não pode ser maior do que 1 para qualquer nó. Após a inserção de um nó em uma AVL, a raiz da subárvore de nível mais baixo no qual o novo nó foi inserido é marcada. Se a altura de seus filhos diferir em mais de uma unidade, é realizada uma rotação simples ou uma rotação dupla para igualar suas alturas.

LAFORE, R. Data Structures & algorithms in Java. Indianópolis: Sams Publishing, 2003 (adaptado).


```
#include <stdio.h>
#include <stdLib.h>
                                           EXEMPLO
typedef struct arvore
   int info;
   struct arvore *esq, *dir;
void insere(struct arvore **inicio, int info)
   struct arvore *aux;
   /* Como a função é recursiva, em alguem momento receberá um início igual a NULL,
       ou caso a árvore esteja vazia. */
   if (!*inicio)
       if((aux = (struct arvore*) malloc(sizeof(struct arvore))) != NULL)
           aux -> info = info;
            aux -> dir = NULL;
           aux -> esq = NULL;
           *inicio = aux;
       else
            printf("Nao foi possivel alocar memoria");
   else
       /* Se o info atual for MAIOR que o valor a ser inserido, então esse
          valor será inserido do lado ESQUERDO. */
       if ((*inicio)->info > info)
       insere(&((*inicio)->esq), info);
   else
       /* Se o info atual for MENOR que o valor a ser inserido, então esse
              valor será inserido do lado DIREITO. */
       if((*inicio)->info < info)
```

insere(&((*inicio)->dir), info);

EXEMPLO (CONTINUAÇÃO...)

```
if((*inicio)->info < info)
           insere(&((*inicio)->dir), info);
        /* Caso ele seja igual, isso significa que já pertece a árvore.*/
        else
        printf("%d ja pertence a arvore \n", info);
int main()
   struct arvore *oi = NULL;
   insere(&oi, 3);
   insere(&oi, 5);
   insere(&oi, 1);
   insere(&oi, 3);
   system("pause");
```

AO COMPILAR E EXECUTAR APARECERÁ NA TELA:

```
3 ja pertence a arvore
Pressione qualquer tecla para continuar. . .
```