Cyclistic Project Final Report

Case study: How does a bike-share navigate speedy success? (All querys)

Data Cleaning and Manipulation

I initially attempted to use Google Sheets to handle the data. However, due to the large size of the files and the numerous rows, the program kept freezing when trying to merge them into a single sheet. Given these limitations, I ultimately decided to switch to SQL in BigQuery

The first step in reviewing the data for errors was to open BigQuery and execute the following query:

SELECT *

FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_last_year` WHERE start_station_id IS NULL OR end_station_id IS NULL;

This resulted in 1,626,328 rows with null values in the columns: start_station_name, start_station_id, end_station_name, and end_station_id.

Preliminarily, we observed that the rows with null values belong to both casual and annual members, and that the rideable_type column contains electric_bike and electric_scooter. We then performed a query to determine what percentage of the total dataset contained null values to assess whether it would impact the analysis.

SELECT

(SUM(CASE WHEN start_station_id IS NULL OR end_station_id IS NULL THEN 1 ELSE 0 END) * 100.0) / COUNT(*) AS porcentaje_nulos FROM `decoded-tesla-418214.Data_cyclitisc_Data_cyclitisc_last_year`

Executing the query, we found that 27.77% of the data contained null values.

To determine which values appeared most frequently in this 27.77%, we conducted another query to identify which type of member had the most null values and what type of equipment they were using.

```
SELECT
member_casual,
rideable_type,
COUNT(*) AS num_registros,
ROUND((COUNT(*) * 100.0) / (SELECT COUNT(*) FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_last_year`), 2) AS porcentaje_total
FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_last_year`
WHERE start_station_id IS NULL OR end_station_id IS NULL
GROUP BY member_casual, rideable_type
ORDER BY num_registros DESC;
```

Resu	Resultados de la consulta											
INFOR	MACIÓN DEL TRABAJO	RE	SULTADOS	GRÁFICO	JSON	DETA	LLES DE LA EJECUCIÓN					
Fila	member_casual ▼	1	rideable_type ▼		num_registros	· /	porcentaje_total 🔻					
1	member		electric_bike		960	976	16.41					
2	casual		electric_bike		560	0921	9.58					
3	casual		electric_scooter		59	9475	1.02					
4	member		electric_scooter		37	7035	0.63					
5	casual		classic_bike		6	5194	0.11					
6	member		classic_bike		1	1727	0.03					

Considering that the top three results constitute a significant percentage of electric bikes (from both member types) and electric scooters used by casual members, we decided to retain this data for analysis, as removing it could introduce biases.

We then performed another query on the month and station columns to check if null values were more frequent in certain months or seasons.

SELECT

EXTRACT(MONTH FROM started_at) AS mes,

COUNT(*) AS num_nulos,

ROUND((COUNT(*) * 100.0) / (SELECT COUNT(*) FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_last_year`), 2) AS porcentaje_nulos FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_last_year` WHERE start_station_id IS NULL OR end_station_id IS NULL GROUP BY mes

ORDER BY mes;

Resultados de la consulta

INFOR	MACIÓN DEL TRABAJ	O RESULTADO	OS GRÁFICO
Fila	mes ▼	num_nulos ▼	porcentaje_nulos 🔻
1	1	31065	0.53
2	2	38428	0.66
3	3	71409	1.22
4	4	117227	2.0
5	5	167415	2.86
6	6	216405	3.7
7	7	208063	3.55
8	8	214481	3.66
9	9	283853	4.85
10	10	133332	2.28
11	11	87720	1.5
12	12	56930	0.97

The results indicated an increase in the percentage of null values from June to September, with the highest being 4.85%. These months coincide with the summer period, which could indicate a seasonal change in data recording or an increase in usage by tourists and casual riders.

Next, we conducted a query to determine whether null values were more common in short or long trips.

SELECT

member_casual, rideable type.

AVG(TIMESTAMP_DIFF(ended_at, started_at, MINUTE)) AS duracion_promedio_minutos,

ROUND((COUNT(*) * 100.0) / (SELECT COUNT(*) FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_last_year`), 2) AS porcentaje_nulos FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_last_year` WHERE start_station_id IS NULL OR end_station_id IS NULL GROUP BY member_casual, rideable_type;

Resultados de la consulta

INFORI	MACIÓN DEL TRABA	JO RESULTAI	DOS GRÁFICO	JSON D
Fila /	member_casual 🔻	rideable_type ▼ //	duracion_promedio_i	porcentaje_nulos 🍷
1	casual	electric_bike	13.14848258489	9.58
2	member	electric_bike	11.20367105942	16.41
3	member	electric_scooter	7.958849736735	0.63
4	casual	electric_scooter	11.72102564102	1.02
5	casual	classic_bike	1478.239263803	0.11
6	member	classic_bike	1337.153445280	0.03

We found a higher percentage of null values for both member types using electric bikes. However, an unusual result appeared for classic bike users, with trip durations of 1,337 and 1,478 minutes. We investigated further for potential registration errors or missing values.

To address this, we ran a query to identify trips longer than three hours.

SELECT *
FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_last_year`
WHERE TIMESTAMP_DIFF(ended_at, started_at, MINUTE) > 180

INFORMACIÓN	N DEL TRABAJO	RESULTADOS	GRÁFICO	JSON	DETALLES DE LA	EJECUCIÓN	GRÁFICO DE EJ	ECUCIÓN
ila ride_id	- ·	rideable_type	•	started_at •	,	ended_at ▼	/	start_station_name
1 33454	1814CF42BCA	electric_bike		2024-06-05 1	7:57:01.383000 U	2024-06-05 21:4	8:55.593000 U	null
2 4E1DF	CDAC968A44C	electric_bike		2024-04-11 1	6:28:38 UTC	2024-04-11 21:1	2:05 UTC	null
3 1DFC4	4CE21FCB2A56	electric_bike		2024-04-08 1	8:55:10 UTC	2024-04-08 22:0	7:39 UTC	null
4 20D40	D6D12E75F75	electric_bike		2024-06-19 1	0:33:29.422000 U	2024-06-19 15:4	3:34.997000 U	null
5 608C2	9C465EADA44	electric_bike		2024-07-09 1	2:20:11.939000 U	2024-07-09 15:3	9:20.679000 U	null
6 AA420	0585AA920AF6	electric_bike		2024-03-31 1	8:35:30 UTC	2024-04-01 02:3	5:26 UTC	null
7 506C9	D4F2BB39497	electric_bike		2023-11-08 1	6:49:18 UTC	2023-11-08 20:5	5:31 UTC	null
8 148D5	D5BFE940CCE	electric_scooter	r	2024-08-31 2	1:07:36.220000 U	2024-09-01 00:2	9:21.965000 U	null
9 DCB52	2A3D3C0B449A	electric_scooter	r	2024-09-20 1	7:23:52.717000 U	2024-09-20 21:0	7:24.234000 U	null

A total of 21,604 rows were found, which, considering the total dataset (5,854,544 rows), represents only 0.37%. We decided to remove these records, as such prolonged trip durations may be due to errors such as users forgetting to end their trips or technical issues. Removing these anomalies ensures that our dataset reflects typical vehicle usage.

DELETE FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_last_year`
WHERE TIMESTAMP_DIFF(ended_at, started_at, MINUTE) > 180;

SELECT COUNT(*)

FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_last_year` WHERE TIMESTAMP_DIFF(ended_at, started_at, MINUTE) > 180;

We executed the first query to delete trips longer than three hours, followed by a second query to confirm the deletion.

Additionally, we ran a query to identify trips where the end time was earlier than the start time.

SELECT *
FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_last_year`
WHERE ended_at < started_at;

INFOR	MACIÓN DEL TRABAJO	RES	SULTADOS	GRÁFICO	JSON	DETALLES DE	LAE	JECUCIÓN GR	ÁFICO DE E	JECUCIÓN
Fila	ride_id ▼	6	rideable_type	· /	started_at •		6	ended_at ▼	6	start_station_name ▼
17	E9ACB82CFA405203		electric_bike		2024-04-17 1	2:49:53 UTC		2024-04-17 12:49:51 U	тс	Michigan Ave & Pearson
18	17EC5C53A09BFE59		electric_bike		2023-12-10 1	6:35:31 UTC		2023-12-10 16:35:30 U	тс	Wacker Dr & Washington
19	B0528EC994C041E3		classic_bike		2023-10-16 0	6:26:44 UTC		2023-10-16 06:26:43 U	TC	Dearborn Pkwy & Delawa
20	32DBE31D7DB9F6EF		electric_bike		2024-04-14 1	2:35:43 UTC		2024-04-14 12:35:41 U	TC	Lakeview Ave & Fullerton
21	DE66BFB1053661E6		electric_bike		2024-04-17 1	1:10:03 UTC		2024-04-17 10:07:43 U	TC	Damen Ave & Thomas St
22	EB53842F17F73958		electric_bike		2023-11-05 0	1:52:56 UTC		2023-11-05 01:00:53 U	тс	Wolcott (Ravenswood) A
23	4EA6805ED4D9D98F		electric_bike		2024-01-21 2	2:25:24 UTC		2024-01-21 22:25:23 U	тс	null
24	C665D1E0C85E9EB2		electric_bike		2023-10-22 1	7:07:40 UTC		2023-10-22 17:07:39 U	тс	null
25	998B2907B57E46C8		electric_bike		2024-04-17 1	6:43:08 UTC		2024-04-17 15:33:48 U	TC	null

This resulted in 294 records. Since these were clearly errors, we removed them, as they represented a minimal percentage of the total dataset.

DELETE FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_last_year`
WHERE ended at < started at;

SELECT COUNT (*)

FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_last_year` WHERE ended_at < started_at;

Resultados de la consulta INFORMACIÓN DEL TRABAJO Fila f0 1 0

Correctly removed.

Next, we examined the start_lat and start_lng columns to identify locations with the most null values and determine the average location with the highest missing data.

SELECT
ROUND(start_lat, 2) AS lat_area,
ROUND(start_lng, 2) AS lng_area,
COUNT(*) AS num_nulos
FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_last_year`
WHERE start_station_id IS NULL OR end_station_id IS NULL
GROUP BY lat_area, lng_area
ORDER BY num_nulos DESC
LIMIT 10;

Resultados de la consulta											
INFOR	MACIÓN DEL TRABA	JO RESULTADO	OS GRÁFICO								
Fila /	lat_area ▼	Ing_area ▼	num_nulos ▼								
1	41.89	-87.63	53357								
2	41.88	-87.64	46022								
3	41.9	-87.63	44760								
4	41.94	-87.65	42085								
5	41.88	-87.63	41797								
6	41.91	-87.63	41599								
7	41.95	-87.65	40620								
8	41.89	-87.62	39326								
9	41.93	-87.64	35582								
10	41.89	-87.64	34933								

SELECT

AVG(start_lat) AS avg_start_lat, AVG(start_lng) AS avg_start_lng, AVG(end_lat) AS avg_end_lat, AVG(end_lng) AS avg_end_lng FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_last_year` WHERE start_station_id IS NULL OR end_station_id IS NULL;

Resu	ltados de la cor	ısulta		
INFOR	MACIÓN DEL TRABA	IO RESULTAD	OS GRÁFICO	JSON DE
Fila	avg_start_lat ▼	avg_start_lng ▼	avg_end_lat ▼	avg_end_lng ▼
1	41.90990352517	-87.6525927634	41.90990324033	-87.6527183776

After checking the coordinates, we confirmed that they correspond to Chicago, Illinois.

The difference between one coordinate and another is a decimal, suggesting that null values may be due to technical errors or specific station registration issues. We decided to keep this data while considering this discrepancy in the analysis.

DELETE FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_last_year`
WHERE TIMESTAMP_DIFF(ended_at, started_at, SECOND) < 60;

To finalize our data cleaning process, we removed trips shorter than one minute, as these were likely user errors and provided little analytical value.

We then standardized the format of the start_lat, start_lng, end lat, and end lng columns,

limiting them to six decimal places to improve readability.

```
SELECT

ride_id,

rideable_type,

started_at,

ended_at,

start_station_name,

start_station_id,

end_station_id,

ROUND(start_lat, 6) AS start_lat,

ROUND(start_lng, 6) AS start_lng,

ROUND(end_lat, 6) AS end_lat,

ROUND(end_lng, 6) AS end_lng,

member_casual

FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_last_year`;
```

In the following query, we will identify anomalous trips that started or ended outside common coordinates. With this format change, we have renamed the table to decoded-tesla-418214. Data cyclitisc. Data cyclitisc cleaned.

SELECT * FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_cleaned` WHERE start_lat NOT BETWEEN 41.5 AND 42.5 OR start_lng NOT BETWEEN -88 AND -87 OR end_lat NOT BETWEEN 41.5 AND 42.5 OR end_lng NOT BETWEEN -88 AND -87;

Resu	ltados de la consult	а					▲ GUARDAR LOS R	RESULTADOS *	M EXPLORA
INFOR	MACIÓN DEL TRABAJO	RE	SULTADOS	GRÁFICO	JSON DET	ALLES DE LA EJECUCI	ÓN GRÁFICO	DE EJECUCIÓN	
Fila //	end_station_name ▼	/,	end_station_id	▼ //	start_lat ▼	start_lng ▼ //	end_lat ▼ //	end_lng ▼	member_ca
43	null		null		41.88	-87.64	42.53	-87.8	member
44	null		null		41.857926	-87.624336	42.14	-88.94	casual
45	null		null		41.880958	-87.616743	35.92	-82.94	casual
46	null		null		41.861267	-87.656625	40.85	-89.39	member
47	null		null		41.9	-87.63	21.79	-92.62	member
48	null		null		41.92	-87.7	42.51	-87.5	casual
49	null		null		41.81153	-87.70885	41.23	-88.28	member

This result gives us 49 rows of information, which represents a minimal percentage of the total table. We will proceed to delete them, but first, we will run another query to group the member type with the highest number of incidents.

SELECT
rideable_type,
member_casual,
COUNT(*) AS num_registros
FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_cleaned`
WHERE start_lat NOT BETWEEN 41.5 AND 42.5
OR start_lng NOT BETWEEN -88 AND -87
OR end_lat NOT BETWEEN 41.5 AND 42.5
OR end_lng NOT BETWEEN -88 AND -87
GROUP BY rideable_type, member_casual
ORDER BY num_registros DESC;

Resultados de la consulta

INFOR	MACIÓN DEL TRABAJO	RE	SULTADOS GRÁ	FICO	JSON	DETALLES I
Fila //	rideable_type ▼	h	member_casual ▼	11	num_registros	→ /4
1	electric_bike		member			30
2	electric_bike		casual			19

In the result, we can see that the type of vehicle used in all cases was the electric bike, and that 30 of the incidents were recorded by annual members, while the other 19 were casual members. Now, we proceed with the query to delete those 49 anomalous records.

DELETE FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_cleaned` WHERE start_lat NOT BETWEEN 41.5 AND 42.5 OR start_Ing NOT BETWEEN -88 AND -87 OR end_lat NOT BETWEEN 41.5 AND 42.5

Resultados de la consulta

OR end_Ing NOT BETWEEN -88 AND -87;

INFORMACIÓN DEL TRABAJO RESULTADOS GRÁFICO JSON

No hay datos para mostrar.

I ran the query again that grouped by member type and vehicle type, and we see that there are no data to display, confirming that the 49 rows were successfully deleted.

Following this, we identified and eliminated duplicate records by running queries on rider_id.

SELECT ride_id, COUNT(*) AS occurrences FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_cleaned` GROUP BY ride_id HAVING occurrences > 1;

Resultados de la consulta												
INFOR	MACIÓN DEL TRABAJO	RE	SULTADOS	GRÁFICO								
Fila	ride_id ▼	- //	occurrences	- /								
142	171D1ADC1F6AB687			2								
143	BE96DFD7724F59C5			2								
144	43CD52984AD22D99			2								
145	D115C403314536C4			2								
146	1D8856396862BE62			2								
147	57D54C76FF580E3C			2								
148	8A58BE5ACD18DA0B			2								
149	5322E55C9310A9D2			2								

We found 149 duplicates, mostly occurring twice.

SELECT

ride id.

COUNT(*) AS num_ocurrencias,

ARRAY_AGG(STRUCT(started_at, ended_at, start_station_id, end_station_id, rideable_type, member_casual)) AS detalles

FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_cleaned` GROUP BY ride_id

HAVING num_ocurrencias > 1;

A verification query confirmed that these duplicate rows contained the same information, except for variations in the started_at and ended_at columns due to double registration. We proceeded to delete these duplicates.

```
OR
                             REPLACE
                                                 TABLE
                                                                 `decoded-tesla-
CREATE
418214.Data cyclitisc.Data cyclitisc cleaned`AS
SELECT *
FROM (
 SELECT
  ROW NUMBER() OVER (
   PARTITION BY ride_id -- Group records with the same ride_id
   ORDER BY started at ASC -- Prioritize the record with the earliest start date
  ) AS row num
 FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_cleaned`
WHERE row_num = 1; -- Keep only one row per ride_id
                                                                           Data
                                                                    modified.
  Resultados de la consulta
  INFORMACIÓN DEL TRABAJO
                          RESULTADOS
                                        DETALLES DE LA EJECUCIÓN
                                                                GRÁI
      Esta declaración reemplazó la tabla denominada Data_cyclitisc_cleaned.
```

We will run one last query to verify the total number of records remaining in the table.

SELECT COUNT(DISTINCT ride_id) AS total_unicos, COUNT(*) AS total_registros FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_cleaned`;

This data is correct since, prior to the data deletions, we had 5,697,108 records.

Finally, we added two new columns:

• ride_length: Calculated as the difference between started_at and ended at, formatted as HH:MM:SS.

 day_of_week: Derived from started_at, indicating the day of the week for each trip.

SELECT

*, CONCAT(

LPAD(CAST(FLOOR(TIMESTAMP_DIFF(ended_at, started_at, SECOND) / 3600) AS STRING), 2, '0'), ':',

LPAD(CAST(FLOOR((TIMESTAMP_DIFF(ended_at, started_at, SECOND) - (FLOOR(TIMESTAMP_DIFF(ended_at, started_at, SECOND) / 3600) * 3600)) / 60) AS STRING), 2, '0'), ':'.

LPAD(CAST((TIMESTAMP_DIFF(ended_at, started_at, SECOND) - (FLOOR(TIMESTAMP_DIFF(ended_at, started_at, SECOND) / 3600) * 3600) - (FLOOR((TIMESTAMP_DIFF(ended_at, started_at, SECOND) - (FLOOR(TIMESTAMP_DIFF(ended_at, started_at, SECOND) / 3600) * 3600)) / 60) * 60)) AS STRING), 2, '0')

) AS ride_length

FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_cleaned`;

Resultad	esultados de la consulta ₫ guardar los resultados ▼													
INFORMACIÓN DEL TRABAJO RESU			OS G	GRÁFICO JS			DETALLES D	E LA EJECU	CIÓN	GRÁFICO DE EJECUCIÓN				
Fila / ▼ /	started_at ▼	ended_at ▼	start_stati	start_stat	end_stati	end_sta	start_lat	start_lng	end_lat >	end_lng	member_car	row_i	ride_length ▼	
1	2024-01-29 1	2024-01-29 13	null	null	null	null	42.0	-87.66	42.0	-87.66	member	1	00:03:14	
2	2024-08-08 1	2024-08-08 15	null	null	null	null	42.0	-87.66	42.0	-87.66	member	1	00:10:50	
3	2024-09-13 1	2024-09-13 15	null	null	null	null	41.98	-87.67	42.0	-87.67	member	1	00:09:17	
4	2023-10-12 1	2023-10-12 17	null	null	null	null	42.01	-87.67	42.0	-87.66	member	1	00:04:59	
5 :er	2024-09-21 1	2024-09-21 11	null	null	null	null	42.0	-87.68	42.0	-87.68	casual	1	00:03:42	
6	2024-07-15 1	2024-07-15 17	null	null	null	null	42.03	-87.71	42.0	-87.67	casual	1	00:15:41	
7 :er	2024-09-26 2	2024-09-27 00	null	null	null	null	42.01	-87.7	42.0	-87.69	casual	1	00:11:11	
8	2024-06-25 1	2024-06-25 12	null	null	null	null	42.0	-87.67	42.0	-87.68	casual	1	00:03:24	

SELECT

FORMAT_TIMESTAMP('%A', started_at) AS day_of_week
FROM `decoded-tesla-418214.Data cyclitisc.Data cyclitisc cleaned`;

Resu	ıltados de la cor	ARDAR LOS RESULTADOS 🔻						
INFOR	MACIÓN DEL TRABA	JO RESULTAD	OS GRÁFICO	JSON DE	ETALLES DE	LA EJECUCIÓN	GRÁFICO DE EJECUCIÓN	
Fila	start_lng ▼	end_lat ▼	end_lng ▼	member_casual ▼	/	row_num ▼	ride_length ▼	day_of_week ▼
1	-87.65	41.936253	-87.652662	casual		1	00:16:29	Sunday
2	-87.65	41.936253	-87.652662	member		1	00:02:34	Wednesday
3	-87.69	41.883043	-87.649931	member		1	00:22:30	Wednesday
4	-87.64	41.885837	-87.6355	member		1	00:01:05	Wednesday
5	-87.68	41.91461	-87.667968	member		1	00:09:51	Wednesday

We then sorted the dataset by ascending trip dates and saved it as a new table in BigQuery.

SELECT *

FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_cleaned`
ORDER BY started_at ASC
LIMIT 5;

We checked the last records.

SELECT started_at, ended_at, ride_length
FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_cleaned`
ORDER BY started_at DESC

Resultados de la consulta

INFORI	MACIÓN DEL TRABAJO	RES	ULTADOS	GRÁFICO	JSON	DETALLES DE LA E
Fila	started_at ▼	h	ended_at ▼		ride_length	· /
1	2024-09-30 23:54:05.552000	U	2024-09-30 23	:55:47.884000 U	00:01:42	
2	2024-09-30 23:53:46.550000	U	2024-09-30 23	:57:13.730000 U	00:03:27	
3	2024-09-30 23:53:31.833000	U	2024-09-30 23	:59:45.854000 U	00:06:14	
4	2024-09-30 23:52:58.172000	U	2024-09-30 23	:56:49.705000 U	00:03:51	
5	2024-09-30 23:52:36.941000	U	2024-09-30 23	:59:52.562000 U	00:07:15	

And we replace de table with the new one.

CREATE OR REPLACE TABLE `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_cleaned` AS SELECT *
FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_cleaned` ORDER BY started_at ASC;

Fila	ride_id	rideable_type	started_at	ended_at
1	B541441FAF64B31C	classic_bike	2023-10-01 00:00:05 UTC	2023-10-01 00:32:19 UTC
2	163D8093FDDEBBC8	classic_bike	2023-10-01 00:00:06 UTC	2023-10-01 00:17:53 UTC
3	46803FC8C419FBB0	classic_bike	2023-10-01 00:00:12 UTC	2023-10-01 00:02:02 UTC
4	0ED9A33B7B80912D	classic_bike	2023-10-01 00:00:20 UTC	2023-10-01 00:05:32 UTC
5	0FBFC8BCF712A9B1	classic_bike	2023-10-01 00:00:24 UTC	2023-10-01 00:39:35 UTC
6	5F08B2CEF05DAF9F	classic_bike	2023-10-01 00:00:25 UTC	2023-10-01 00:04:56 UTC
7	D9A4DDCEAC712087	classic_bike	2023-10-01 00:00:29 UTC	2023-10-01 00:07:33 UTC
8	EF6EB5AA908EAAC6	electric_bike	2023-10-01 00:00:34 UTC	2023-10-01 00:07:52 UTC
9	43829211A58A614C	electric_bike	2023-10-01 00:00:34 UTC	2023-10-01 00:21:06 UTC
10	7F36C633R8D1R8D6	electric hike	2023-10-01 00:00:38 HTC	2023-10-01 00:09:15 HTC

Analyze Phase

As recommended in the exercise, we will perform some calculations to gain a better understanding of the data we are working with. We will start by calculating the average ride length using the following query:

SELECT

AVG(TIMESTAMP_DIFF(ended_at, started_at, SECOND)) / 60 AS avg_ride_length_minutes FROM `decoded-tesla-418214.Data cyclitisc.Data cyclitisc cleaned`;

This gives us an average of

14.64 minutes.

Resultados de la consulta INFORMACIÓN DEL TRABAJO Fila avg_ride_length_minutes 1 14.644278216904803

Next, we will calculate the maximum ride length.

SELECT

MAX(TIMESTAMP_DIFF(ended_at, started_at, SECOND)) / 60 AS max_ride_length_minutes FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_cleaned`;

Now, we will determine the minimum value in the ride length column.

SELECT

MIN(TIMESTAMP_DIFF(ended_at, started_at, SECOND)) / 60 AS min_ride_length_minutes FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_cleaned`;

The query results indicate that the shortest trip duration was 1 minute. Previously, during the data cleaning phase, all trips shorter than 1 minute were removed, as they were likely caused by recording errors and did not provide relevant insights for the analysis.

We will now calculate the mode of day of week.

SELECT
day_of_week,
COUNT(*) AS occurrences
FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_cleaned`
GROUP BY day_of_week
ORDER BY occurrences DESC
LIMIT 7;

The initial results show that Saturdays have the highest number of recorded trips, followed by the other days in descending order.

Resultados de la consulta

INFORMACIÓN DEL TRABAJO RESULTADOS GRÁI Fila day_of_week ✓ occurrences ✓ 1 Saturday 874808 2 Wednesday 861873 3 Thursday 830610 4 Friday 803776 5 Tuesday 786032 6 Monday 775379 7 Sunday 764432					
1 Saturday 874808 2 Wednesday 861873 3 Thursday 830610 4 Friday 803776 5 Tuesday 786032 6 Monday 775379	INFOR	MACIÓN DEL TRABAJO	RESULTADOS	GRÁF	
2 Wednesday 861873 3 Thursday 830610 4 Friday 803776 5 Tuesday 786032 6 Monday 775379		day_of_week ▼	occurrences ▼	11	
3 Thursday 830610 4 Friday 803776 5 Tuesday 786032 6 Monday 775379	1	Saturday	8748		
4 Friday 803776 5 Tuesday 786032 6 Monday 775379	2	Wednesday	8618	73	
5 Tuesday 786032 6 Monday 775379	3	Thursday	8306	10	
6 Monday 775379	4	Friday	8037	76	
	5	Tuesday	7860	32	
7 Sunday 764432	6	Monday	7753	79	
	7	Sunday	7644	32	

Next, we will calculate the average trip duration for both types of members.

```
SELECT
member_casual,
AVG(TIMESTAMP_DIFF(ended_at, started_at, SECOND)) / 60 AS
avg_ride_length_minutes
FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_cleaned`
GROUP BY member casual;
```

Resultados de la consulta

INFOR	MACIÓN DEL TRABAJO	RE	GI	
Fila	member_casual ▼	le	avg_ride_leng	th_min
1	casual		19.506500512	227
2	member		11.908408339	917

We observe that casual members have an average trip duration of 19.50 minutes, whereas annual members have an average of 11.90 minutes.

Now, we will execute a query to determine the average number of trips per member type per day of the week.

```
SELECT
day_of_week,
member_casual,
AVG(TIMESTAMP_DIFF(ended_at, started_at, SECOND)) / 60 AS
avg_ride_length_minutes
FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_cleaned`
GROUP BY day_of_week, member_casual
ORDER BY day_of_week, member_casual;
```

Resultados de la consulta

INFOR	MACIÓN DEL TRABAJO	RE	SULTADOS	GRÁFICO	JSON	DETA
Fila	day_of_week ▼	h	member_casual	~	avg_ride_len	gth_min
1	Friday		casual		18.7438046	5507
2	Friday		member		11.6015158	1818
3	Monday		casual		18.9911007	9606
4	Monday		member		11.3802019	0382
5	Saturday		casual		22.1880327	8012
6	Saturday		member		13.2281043	9207
7	Sunday		casual		22.5887278	3381
8	Sunday		member		13.2340654	0692

We can see that casual users have a higher average usage than annual members on all days of the week.

Finally, we will analyze the total number of trips per user type by day of the week.

```
SELECT
day_of_week,
member_casual,
COUNT(ride_id) AS total_trips
FROM `decoded-tesla-418214.Data cyclitisc.Data cyclitisc cleaned`
```

GROUP BY day_of_week, member_casual ORDER BY day_of_week, member_casual;

Resultados de la consulta

We observe that annual members have more recorded trips per weekday than casual members.

INFOR	INFORMACIÓN DEL TRABAJO RESULTADOS							
Fila	day_of_week 🔻	member_casual	total_trips ▼					
1	Friday	casual	294689					
2	Friday	member	509087					
3	Monday	casual	245919					
4	Monday	member	529460					
5	Saturday	casual	412506					
6	Saturday	member	462302					
7	Sunday	casual	352019					
8	Sunday	member	412413					

These are the general data insights for the entire year. Next, we will conduct the same analysis on a monthly basis, paying close attention to seasonal trends, holidays, and patterns.

We will execute queries to separate the dataset month by month, starting from October 2023 to September 2024.

CREATE TABLE `decoded-tesla-418214.Data_cyclistic_cleaned.2024_09` AS SELECT *

FROM `decoded-tesla-418214.Data_cyclitisc.Data_cyclitisc_cleaned` WHERE DATE(started_at) BETWEEN '2024-09-01' AND '2024-09-30' ORDER BY started at ASC;

We used these queries to create a new folder within "decoded-tesla-418214" called "Data_cyclistic_cleaned," which corrects a typo in the word "Cyclistic" and moves our database into a new folder containing all our cleaned data. This includes the general dataset from October 2023 to September 2024 as well as the monthly datasets. We used the previous query while modifying the month and year parameters accordingly and adjusting the table name.

We will now execute a query that consolidates all previous commands, allowing us to view the required results in a single output. Additionally, we will include a command to add the rideable_type column, which will provide insights into users' vehicle preferences.

```
SELECT
```

```
day_of_week,
member_casual,
rideable_type,
```

ROUND(AVG(TIMESTAMP_DIFF(ended_at, started_at, SECOND)) / 60, 2) AS avg_ride_length_minutes,

```
ROUND(MAX(TIMESTAMP_DIFF(ended_at, started_at, SECOND)) / 60, 2)
AS max_ride_length_minutes,
   ROUND(MIN(TIMESTAMP_DIFF(ended_at, started_at, SECOND)) / 60, 2) AS
min_ride_length_minutes,
   COUNT(ride_id) AS total_trips
FROM
   `decoded-tesla-418214.Data_cyclistic_cleaned.2023_10`
GROUP BY
   day_of_week, member_casual, rideable_type
ORDER BY
   day of week ASC, member casual ASC, rideable_type ASC;
```

Fila	day_of_week ▼	member_casual ▼	rideable_type ▼	avg_ride_length_mii	max_ride_length_mir	min_ride_length_min	total_trips ▼
1	Friday	casual	classic_bike	20.56	179.65	1.0	8971
2	Friday	casual	electric_bike	11.98	135.73	1.0	10972
3	Friday	member	classic_bike	11.21	169.42	1.0	20978
4	Friday	member	electric_bike	10.33	178.82	1.0	21360
5	Monday	casual	classic_bike	22.09	180.9	1.0	10815
6	Monday	casual	electric_bike	12.67	172.37	1.0	12501
7	Monday	member	classic_bike	11.19	172.22	1.0	31096
8	Monday	member	electric_bike	10.03	178.73	1.0	26820
9	Saturday	casual	classic_bike	23.22	178.85	1.0	12314

We need to adjust the query since, although the results are correct, saving it as a table in BigQuery separates data by member type, and the days of the week are not in a logical order. To address this, we will use the CASE command to assign numerical values to the days in our day_of_week column so that they can be logically ordered from Monday to Sunday.

```
SELECT
  day_of_week,
  member_casual,
 rideable type
  ROUND(AVG(TIMESTAMP DIFF(ended at, started at, SECOND)) / 60, 2)
AS avg ride length minutes.
  ROUND(MAX(TIMESTAMP DIFF(ended at, started at, SECOND)) / 60, 2)
AS max ride length minutes,
  ROUND(MIN(TIMESTAMP DIFF(ended at, started at, SECOND)) / 60, 2) AS
min_ride_length_minutes,
  COUNT(ride id) AS total trips,
  CASE
    WHEN day_of_week = 'Monday' THEN 1
    WHEN day_of_week = 'Tuesday' THEN 2
    WHEN day_of_week = 'Wednesday' THEN 3
    WHEN day_of_week = 'Thursday' THEN 4
    WHEN day_of_week = 'Friday' THEN 5
    WHEN day_of_week = 'Saturday' THEN 6
    WHEN day of week = 'Sunday' THEN 7
  END AS day order
FROM
```

`decoded-tesla-418214.Data_cyclistic_cleaned.2023_10` GROUP BY day_of_week, day_order, member_casual, rideable_type ORDER BY day_order ASC, member_casual ASC;

Fila	day_of_week	member_casual	avg_ride_	max_ride_l	min_rj	total_trip	day_o
1	Monday	casual	17.04	180.9	1.0	23316	1
2	Monday	member	10.65	178.73	1.0	57916	1
3	Tuesday	casual	16.45	180.48	1.0	26098	2
4	Tuesday	member	11.33	180.68	1.0	67116	2
5	Wednesday	casual	15.87	180.2	1.0	22363	3
6	Wednesday	member	11.2	179.9	1.0	54686	3

Now, we can see the table organized by day and member type results. We will repeat this process for the other months, using the same query while adjusting the year and month parameters for each table to ensure easy access to results when comparing different months.

With the dataset cleaned and containing the required data, we will run a query to view the results for a specific vehicle type initially, and later, for the other types. If a comparison is needed, we can refer directly to the cleaned monthly table, which contains all this information.

```
SELECT

*

FROM

`decoded-tesla-418214.Data_cyclistic_cleaned.2023_10_results`
WHERE

rideable_type IN ('classic_bike')
ORDER BY

day_order ASC, member_casual ASC, rideable_type ASC;
```

day_of_week	member_casu	rideable_type 🏅	avg_ride_	max_ride_	min_ri	total_trips	day_o
Monday	casual	classic_bike	22.09	180.9	1.0	10815	1
Monday	member	classic_bike	11.19	172.22	1.0	31096	1
Tuesday	casual	classic_bike	21.0	180.48	1.0	11935	2
Tuesday	member	classic_bike	11.84	180.15	1.0	34997	2
Wednesday	casual	classic_bike	20.5	180.2	1.0	9696	3
Wednesday	member	classic_bike	11.58	179.9	1.0	27944	3
Thursday	casual	classic_bike	18.19	180.27	1.0	8149	4
Thursday	member	classic_bike	11.22	176.28	1.0	25032	4

This method allows us to visualize the data. We will apply this to all months, modifying the month names in the table accordingly.

```
SELECT
*

FROM
`decoded-tesla-418214.Data_cyclistic_cleaned.2023_12_results`
WHERE
    rideable_type IN ('electric_bike')
ORDER BY
    day_order ASC, member_casual ASC, rideable_type ASC;
```

For the next step, we will use the CREATE OR REPLACE TABLE function to combine these 12 tables into a single file for future reference.

```
CREATE
               OR
                          REPLACE
                                           TABLE
                                                         `decoded-tesla-
418214.Data_cyclistic_cleaned.all_months` AS
SELECT * FROM `decoded-tesla-418214.Data cyclistic cleaned.2023 10`
UNION ALL
SELECT * FROM `decoded-tesla-418214.Data cyclistic cleaned.2023 11`
UNION ALL
SELECT * FROM `decoded-tesla-418214.Data cyclistic cleaned.2023 12`
UNION ALL
SELECT * FROM `decoded-tesla-418214.Data cyclistic cleaned.2024 01`
UNION ALL
SELECT * FROM `decoded-tesla-418214.Data cyclistic cleaned.2024 02`
UNION ALL
SELECT * FROM `decoded-tesla-418214.Data cyclistic cleaned.2024 03`
UNION ALL
SELECT * FROM `decoded-tesla-418214.Data cyclistic cleaned.2024 04`
UNION ALL
SELECT * FROM `decoded-tesla-418214.Data_cyclistic_cleaned.2024_05`
UNION ALL
SELECT * FROM `decoded-tesla-418214.Data cyclistic cleaned.2024 06`
UNION ALL
SELECT * FROM `decoded-tesla-418214.Data_cyclistic_cleaned.2024_07`
UNION ALL
```

Using the following query, we will generate a complete dataset with the most relevant data for our analysis, including month, user type, vehicle type, and the calculated averages. We will save this table as all months cleaned.

SELECT * FROM `decoded-tesla-418214.Data cyclistic cleaned.2024 08`

SELECT * FROM `decoded-tesla-418214.Data cyclistic cleaned.2024 09`;

UNION ALL

```
ROUND(AVG(TIMESTAMP_DIFF(ended_at, started_at, SECOND)) / 60, 2)
AS avg_ride_length_minutes,
ROUND(MAX(TIMESTAMP_DIFF(ended_at, started_at, SECOND)) / 60, 2)
AS max_ride_length_minutes,
```

```
ROUND(MIN(TIMESTAMP_DIFF(ended_at, started_at, SECOND)) / 60, 2) AS min_ride_length_minutes,
    COUNT(ride_id) AS total_trips
FROM
    `decoded-tesla-418214.Data_cyclistic_cleaned.all_months`
GROUP BY
    month, day_of_week, member_casual, rideable_type
ORDER BY
    month ASC, day_of_week ASC, member_casual ASC, rideable_type ASC;
```

Fila	month	day_of_week	member_casual	rideable_type	avg_ride_length_	max_ride_length	min_ride_length_	total_trips
1	2023-10	Friday	casual	classic_bike	20.56	179.65	1.0	8971
2	2023-10	Monday	casual	classic_bike	22.09	180.9	1.0	10815
3	2023-10	Saturday	casual	classic_bike	23.22	178.85	1.0	12314
4	2023-10	Sunday	casual	classic_bike	25.81	180.63	1.0	19026
5	2023-10	Thursday	casual	classic_bike	18.19	180.27	1.0	8149
6	2023-10	Tuesday	casual	classic_bike	21.0	180.48	1.0	11935
7	2023-10	Wednesday	casual	classic_bike	20.5	180.2	1.0	9696
8	2023-11	Friday	casual	classic_bike	18.02	178.83	1.0	5318
9	2023-11	Monday	casual	classic_bike	18.65	180.53	1.12	4409
10	2023-11	Saturday	casual	classic_bike	22.02	180.93	1.02	8738
11	2023-11	Sunday	casual	classic_bike	22.92	177.63	1.02	6499
12	2023-11	Thursday	casual	classic_bike	17.8	179.15	1.0	7294
13	2023-11	Tuesday	casual	classic_bike	16.06	179.47	1.02	4057
14	2023-11	Wednesday	casual	classic_bike	16.33	180.42	1.0	5181
15	2023-12	Friday	casual	classic_bike	18.45	179.4	1.08	3553
16	2023-12	Monday	casual	classic_bike	18.4	180.58	1.1	1920
17	2023-12	Saturday	casual	classic_bike	18.68	176.38	1.02	4078
18	2023-12	Sunday	casual	classic_bike	18.8	178.9	1.02	3016

Although we have saved the tables in BigQuery, they may not always appear in the desired order. To ensure proper sorting, we will use the following query so that the table always appears in order by the day of the week.

```
SELECT
*

FROM
`decoded-tesla-418214.Data_cyclistic_cleaned.2023_12_results`
WHERE

rideable_type IN ('electric_bike')
ORDER BY

day_order ASC, member_casual ASC, rideable_type ASC;
```

At this point, we switch to Tableau to visualize these data more graphically and intuitively.

After downloading the data from BigQuery as a CSV file, we import it into Tableau Public. For the first general visualization, we place total_trips in the columns and Month in the rows. The result is as follows:

We observe that the total number of trips begins to decline in November (354,133) compared to October (523,616). This downward trend continues until January, which has the lowest number of trips (139,753). From February onward, the number of trips begins to increase, reaching 218,282 in February and continuing to rise until September. This decline may be due to seasonal factors, with usage increasing as temperatures rise and seasons change.

We experimented with different column, row, filter, and color configurations and created detailed bar charts displaying total trips per month, vehicle type, and filtering options by member type.

By hovering over the bars, we can see the total trips for each vehicle type. On the right, a color legend is displayed, with blue representing classic_bike, orange for electric_bike, and red for electric_scooter. Additionally, there is a filter to select casual members, annual members, or both. Adding total_trips to the label section returns numerical trip totals for each bar.

For a comparative analysis, we placed member_casual and avg_ride_length in the columns, month and day_of_week in the rows, and applied member_casual and month as filters. The show option was selected to make them visible on the right side of the screen. Finally, rideable_type was assigned to color, and total_trips was set as detail. This setup provides the following visualization. It allows for a comparative analysis of users, displaying vehicle usage averages, total trips by day of the week, and monthly trends. The filter options allow us to focus on specific months for further insights.

When analyzing the general data, we observe that **annual members** complete a **higher number of total trips** than casual users, suggesting that annual members use Cyclistic as **their primary mode of transportation**.

However, during the **launch month of electric scooters**, **casual users** recorded a significantly higher number of trips with this vehicle type, **surpassing annual members** by **30,000 trips**. This indicates a **rapid adoption** of scooters among casual users, likely driven by their interest in trying new transportation options.

Additionally, casual members exhibit longer average usage times compared to annual members, particularly for classic_bikes. A pattern is also observed on Saturdays and Sundays.

We will change the filter from member_casual to day_of_week to focus on weekday trends and examine the higher weekend usage pattern.

This graph highlights a higher average usage of classic_bikes among casual users, as well as a greater, though less pronounced, usage of electric_bikes. This trend increases during the summer months. We will compare three winter months against three summer months.

We can observe that casual members increase their average usage during the summer months, particularly with classic_bikes rather than electric_bikes. We also note higher usage of electric_scooters.

This graph displays complete data for August and September. We clearly see that casual members have a higher average usage time compared to annual members when using electric_scooters. Combined with previous insights, we conclude that during the first month of the electric_scooter launch, casual members took more trips and had a longer average usage compared to annual members.

We can conclude that casual members use the Cyclistic service primarily for recreational purposes, tourism, or infrequent travel, whereas annual members use it for short and frequent commutes.

In summary, we performed various analyses, including calculating the average trip duration, maximum and minimum trip durations, and ride frequency per day of the week for both member types.

Key findings:

1. User trends:

Annual members completed a higher number of trips throughout the year, totaling 3,645,605, which accounts for **63.99%** of the total. This suggests a more frequent and consistent use of the service, likely as a **primary mode of transportation**.

Casual members recorded a significantly longer average trip duration, exceeding that of annual members by **54.45%**. This indicates a more recreational or tourism-oriented use of the service.

2. Seasonal Decline During Winter Months:

A drop in service usage was observed during the winter months. Between December and February, **casual members** completed a total of 119,623 trips, representing only **2.10**% of the annual trips. In contrast, **annual members completed** 457,053 trips in the same period, accounting for **8.02**% of **total trips for the year.**

3. Successful Launch of the Electric Scooter:

In its launch month, the **electric scooter** received an **excellent response**, particularly among casual members, who completed 81,406 trips, representing **22.43%** of their **total trips for the month**. In comparison, **annual members** recorded 56,130 trips, making up **12.07%** of **their total trips for the month**.

4. Increased Summer Usage by Casual Members:

During the summer, casual members significantly increased both the total number of trips and their average ride duration, particularly on weekends. Compared to the rest of the year, the number of trips taken by casual members rose by 85.25% for classic bikes and 38.48% for electric bikes. Additionally, the average trip duration increased by 22.52% for classic bikes and 29.06% for electric bikes on Saturdays and Sundays, reinforcing the seasonal recreational trend.