Ejercicio 1

- Un resistor obtiene 3 A de una batería de 12 V ¿Cuánta potencia entrega la batería al resistor?
- ullet Cuanto debe ser la tensión sobre un resistor de $2.2\,\mathrm{k}\Omega$ para que éste disipe $4.1\,\mathrm{mW}$
- Un calentador eléctrico de 1.2 kW tiene una resistencia de 6 Ω . ¿Cuánta corriente requiere?

Ejercicio 2

Calcule el valor promedio de las siguientes señales. Vuelva a calcular el promedio mediante un método gráfico para los incisos a), d) y e).

a)
$$v = 1 \,\mathrm{V} \times sen(\frac{2\pi}{T}t); T = 20 \,ms$$

b)
$$v = 1 \text{ V} \times |sen(\frac{2\pi}{T}t)|; T = 20 \, ms$$

c)
$$v = 1 \text{ V} \times sen^2(\frac{2\pi}{T}t); T = 20 \, ms$$

d)
$$v = \begin{cases} 5 \text{ V} & si & 0 \text{ ms} < t \le 5 \text{ ms} \\ 0 \text{ V} & si & 5 \text{ ms} < t < 20 \text{ ms} \end{cases}$$

e)
$$v = \begin{cases} 2 \text{ V} & si & 0 \, ms < t \le 12 \, ms \\ -3 \text{ V} & si & 12 \, ms < t < 20 \, ms \end{cases}$$

Ejercicio 3

Calcule la tensión V_{AC} , es decir la tensión eficaz de la señal sin su valor promedio, de las siguientes señales.

a)
$$v = 1 \,\mathrm{V} \times sen(\frac{2\pi}{T}t); T = 20 \,ms$$

b)
$$v = \begin{cases} 5 \text{ V} & si & 0 \, ms < t \le 5 \, ms \\ 0 \text{ V} & si & 5 \, ms < t < 20 \, ms \end{cases}$$

c)
$$v = \begin{cases} 2 \text{ V} & si & 0 \, ms < t \le 12 \, ms \\ -3 \text{ V} & si & 12 \, ms < t < 20 \, ms \end{cases}$$

d)

Ejercicio 4

Calcule sin resolver integrales el valor eficaz de las siguientes señales (puede usar resultados conocidos):

a)

b)

Ejercicio 5

Demuestre que la tensión eficaz se puede escribir como

$$V_{ef} = \sqrt{V_{DC}^2 + V_{AC}^2}$$

Ayuda: observe que puede escribir una función $\boldsymbol{v}(t)$ como

$$v(t) = V_{DC} + (v(t) - V_{DC})$$
(1)