ARM v7-M Architecture

Renato Ferrero, Paolo Bernardi, Ernesto Sanchez Politecnico di Torino

Dipartimento di Automatica e Informatica (DAUIN)

Torino - Italy

This work is licensed under the Creative Commons (CC BY-SA) License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/

What's Happening in Microcontrollers?

- Microcontrollers are getting cheap
 - 32-bit ARM Cortex-M3 Microcontrollers@ \$1
 - Some microcontrollers sell for less than \$0.65
- Microcontrollers are getting powerful
 - Lots of processing, memory, I/O in one package
 - Floating-point is even available in some!
- Microcontrollers are getting interactive
 - Internet connectivity, new sensors and actuators
 - LCD and display controllers are common

ARM generic Architecture

It has two read ports and one write port.

One additional read port and one additional write port are reserved for r15.

Data processing reg-reg instruction execution

- Instruction i is executed:
 - Two operands are read from registers Rn and Rm
 - One operand is possibly rotated
 - The ALU generates the result
 - The result is written to register *Rd*
 - A further instruction is fetched from memory
 - The PC is updated

Data processing reg-imm instruction execution

- Instruction i is executed:
 - One operand is read from register *Rn*, the other is an immediate
 - One operand is possibly rotated
 - The ALU generates the result
 - The result is written to register Rd
 - A further instruction is fetched from memory
 - The PC is updated

Data transfer instructions

- They require two clock cycles for the Execute stage
- In the first, the address is computed using one register and one immediate

Data transfer instructions

- In the second clock cycle:
 - The memory is accessed
 - The source register is sent to the memory (STR instruction)

Branch instructions

- These first compute the target address, adding an immediate (shifted by 2 positions) to the PC
- Then, the pipeline is flushed and refilled

(a) 1st cycle - compute branch taget

Branch and link instructions

 In this case, a further clock cycle is required (while the pipeline is refilled) to save the return address in r14

(b) 2nd cycle - save return addess

ARM Cortex-M3

Case of study for **Computer Architectures**

ARM family and architecture

ARM Cortex-M3

Cortex-M3 Datapath

Cortex-M3 Pipeline

 Cortex-M3 has 3-stage fetch-decode-execute pipeline

Branch Pipeline

- It takes 3 cycles to complete the branch
- Worst case scenario indirect branch taken
 - They always flush and refill the pipeline
 - No delayed branch mechanism is supported

Cycle				1	2	3	4	5	6	7	8	9
Address	Operation											
0x8000	BX r5	F	D	Е	l							
0x8002	SUB		F	D								
0x8004	ORR			F								
0x8FEC	AND				F	D	Е					
0x8FEE	ORR					F	D	Е				
0x8FF0	EOR						F	D	Е			

LDR Pipeline

 The read cycle must complete on the bus before the LDR instruction can complete since there is only one write-back port in the register file

ARM Cortex-M3 Processor block diagram with debug modules

ARM Cortex-M3 Processor – programmer view

- 18 x 32-bit registers
- Efficient interrupt handling
- Power management enabling idle mode
- Efficient debug and development support features
 - Breakpoints Watchpoints
 - Instruction Trace
- Strong OS support
 - User/Supervisor model
- Designed to be fully programmed in C
 - even reset, interrupts and exceptions

Cortex-M3 Register Set

- 18 registers 32-bit wide
- The following data types are supported:
 - byte: 8 bits
 - halfword: 16 bits
 - word: 32 bits

R13 used as stack pointer

R14 used as link register

R15 used as program counter

Main

The Thumb Instruction Set

- Some of the ARM processors (those with a T in the acronym) support the Thumb instruction set (together with the standard ARM instruction set)
- In the Thumb instruction set
 - Instructions are encoded on 16 bits
 - Instructions are less powerful
 - Instructions are less.

Thumb-2

- Thumb-2 is a further instruction set, introduced by ARM in 2003
- Thumb-2 is supported by the latest ARM processor cores, which build on the ARM7 architecture
- Thumb-2
 - is a superset of Thumb (thus guaranteeing backward compatibility
 - includes new 16-bit instructions
 - includes some 32-bit instructions.

Thumb-2 vs. Thumb

 Thumb-2 is faster than Thumb, but still produces a very compact code

AMBA Bus System

- The AMBA specification includes 3 busses:
 - The Advanced High-Performance Bus (AHB):
 - it is used to connect high-performance modules.
 - It supports burst mode data transfers and split transactions.
 - All timing is referenced to a single clock edge.
 - The Advanced System Bus (ASB):
 - it is an old specification, to be substituted by AHB (kind of legacy type of bus you can even find in some systems based on old architectures)
 - The Advanced Peripheral Bus (APB):
 - offers a simpler interface for low-performance peripherals.
 - APB is generally used as a local secondary bus which appears as a slave module on the AHB.

AMBA Bus System

Memory Map organization

- Very simple linear 4GB memory map
- The Bus Matrix partitions memory access via the AHB and PPB buses

NXP LPC176x/5x block diagram and

JTAG

TEST/DEBUG

INTERFACE

ARM Cortex-M3

Debug Port

interface

USB

device

host, OTG

Ethernet

10/100

MAC

DMA

controller

clocks

controls

and 4

clock generation,

power control.

and other

system functions

NXP LPC176x/5x memory map

Not all 4GB are used, there are some «holes» in the memory

Exception Handling

- Reset
- NMI
- Faults
 - Hard Fault
 - Memory Manage
 - Bus Fault
 - Usage Fault
- SVCall
- Debug Monitor

- PendSV
- SysTick Interrupt
- External Interrupt

Interrupt is a term used in the ARM scenario to identify an exception caused by an external event

Interrupt Handling

- One Non-Maskable Interrupt (INTNMI) supported
- A Nested Vectored Interrupt Controller (NVIC) is tightly coupled with processor core
 - 1-240 prioritizable interrupts supported

Clock distribution

- ARM systems like ARM v7-M then need two clocks
 - High frequency for CPU and high-speed system components
 - Low frequency for peripheral cores that requires less performance or must operate at limited speed (i.e., I/O communications)

 The CPU clock (CCLK) and peripheral clock (PCLK) gets clock input from a PLL (Phase Lock Loop), VPB (VLSI Peripheral Bus) Divider, or from external source.

Power Management capabilities

- Multiple sleep (idle) modes supported
 - Sleep Now Wait for Interrupt/Event instructions
 - Sleep On Exit Sleep immediately on return from last ISR
 - Deep Sleep
 - · Long duration sleep, so PLL can be stopped
- Cortex-M3 system is clock gated in all sleep modes
 - Sleep signal is exported allowing external system to be clock gated also
 - NVIC interrupt Interface stays awake
- Wake-Up Interrupt Controller (WIC)
 - External wake-up detector allows Cortex-M3 to be fully powered down
 - Effective with State-Retention / Power Gating (SRPG) methodology

The last bytes: Features of ARM Instruction Sets (to be detailed)

- Instructions are 32 (or 16) bits long.
- Every instruction can be conditionally executed.
- A load/store architecture
 - Data processing instructions act only on registers
 - Three operand format
 - Combined ALU and shifter
 - Memory access instructions with auto-indexing