

H O C H S C H U L E T R I E R

Master-Teamprojekt

Titel der Arbeit

Titel of the Thesis

Max Mustermann

Mat.Nr.: 420815

Betreuer:

Prof. Dr. rer. nat. E.-G. Haffner

Datum:

14. März 2022

Eidesstattliche Erklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit selbstständig verfasst ha-
be und keine anderen als die im Literaturverzeichnis angegebenen Quellen benutzt
habe. Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder noch nicht
veröffentlichten Quellen entnommen sind, sind als solche kenntlich gemacht. Die
Zeichnungen oder Abbildungen in dieser Arbeit sind von mir selbst erstellt wor-
den oder mit einem entsprechenden Quellennachweis versehen. Diese Arbeit ist in
gleicher oder ähnlicher Form noch bei keiner anderen Prüfungsbehörde eingereicht
worden.

Ort, Datum	 Unterschrift

Danksagung

Ich bedanke mich bei all denjenigen, die mich während der Anfertigung dieser Arbeit unterstützt und motiviert haben. Ein ganz besonderer Dank gilt meinem Betreuer Prof. Dr. rer. nat. E.-G. Haffner. Ebenfalls möchte ich der Projektgruppe eTRainer der Hochschule Trier, sowie meinen Korrekturlesenden danken.

Abstract

This is a summary of all the important points and achivements of this work.

Zusammenfassung

Hierbei handelt es sich um eine Zusammenfassung aller wichtigne Punkte und Errungenschaften dieser Arbeit.

Abkürzungsverzeichnis

ARSAudience Response SystemCGICommon Gateway InterfaceCSSCasscading Style SheetsHTMLHypertext Markup Language

ML Machine Learning

Inhaltsverzeichnis

1.	Einleitung	1
2.	Grundlagen 2.1. Generatuve Adversarial Netowrks 2.1.1. Ein Unterabschnitt 2.2. Pix2Pix 2.2.1. Pix2Pix-Kernkonzepte 2.2.2. Anwendungen von Pix2Pix	3 3 5 5 6
3.	Hauptteil - 1	7
4.	Hauptteil - 2	9
5.	Hauptteil - 3	11
6.	Evaluation	13
7.	Fazit und Ausblick 7.1. Fazit	15 15 15 19
Α.	Anhang - Code	21
В.	Anhang - Dokumentationen	23
Ve	Literaturverzeichnis	27 29

Einleitung

Hier wird in die Arbeit eingeleitet.

2Grundlagen

2.1. Generatuve Adversarial Netowrks

Generative Adversial Networks, kurz GANs, sind eine aufstrebende Technologie im Bereich des maschinellen Lernens und der künstlichen Intelligenz. Inspiriert von Ian Goodfellow und seinen Kollegen im Jahr 2014, bieten GANs eine effiziente Möglichkeit, tiefe Repräsentationen von Daten zu erlernen, ohne dass große Mengen an annotierten Trainingsdaten benötigt werden. Dies wird durch die Verwendung von Backpropagation und den Wettbewerb zwischen zwei neuronalen Netzen - dem Generator und dem Diskriminator - erreicht. Daraus ergeben sich zahlreiche neue Ansätze zur Generierung realistischer Inhalte. Die Anwendungen reichen von der Bildgenerierung bis hin zur Superauflösung und Textgenerierung.

Funktionsweise

Der Generator und der Diskriminator sind die Hauptkomponenten eines GAN. Die beiden neuronalen Netze werden gleichzeitig trainiert und konkurrieren miteinander, wobei der Generator versucht, den Diskriminator zu täuschen, indem er synthetische Inhalte erzeugt. Um die Glaubwürdigkeit des Generators zu erhöhen, so dass der Diskriminator nicht mehr zwischen den Eingaben unterscheiden kann, wird das gesamte Netz trainiert. Die Netze werden in der Regel als Mehrschichtnetze implementiert, die aus Faltungsschichten und vollständig verbundenen Schichten bestehen.

Generator

Der Generator dient zur Erzeugung künstlicher Daten wie Bilder und Texte. Der Generator ist nicht mit dem realen Datensatz verbunden und lernt daher nur durch die Interaktion mit dem Diskriminator. Wenn der Diskriminator nur noch 50% der Eingaben richtig vorhersagt, gilt der Generator als optimal.

Diskriminator

Die Unterscheidung zwischen echten und unechten Eingaben ist Aufgabe des Diskriminators. Der Diskriminator kann sowohl künstliche als auch reale Daten verwenden. Wenn der Diskriminator nicht mehr richtig unterscheiden kann, wird er als konvergierend bezeichnet. Andernfalls wird er als optimal bezeichnet, wenn seine Klassifizierungsgenauigkeit maximiert ist. Im Falle eines optimalen Diskriminators wird das Training des Diskriminators gestoppt und der Generator trainiert alleine weiter, um die Genauigkeit des Diskriminators wieder zu verbessern.

Training

Durch das Finden von Parametern für beide Netze wird das Training durchgeführt. Ziel ist die Optimierung beider Netze durch Anwendung von Backpropagation zur Verbesserung der Parameter. Das Training wird oft als schwierig und instabil beschrieben, da es einerseits schwierig erscheint, beide Modelle konvergieren zu lassen. Auf der anderen Seite kann der Generator sehr ähnliche Muster für verschiedene Eingaben erzeugen, und der Diskriminatorverlust kann schnell gegen Null konvergieren, so dass es keinen zuverlässigen Weg für die Gradientenaktualisierung zum Generator gibt. Zur Lösung dieser Probleme wurden verschiedene Ansätze vorgeschlagen, wie z.B. die Verwendung heuristischer Verlustfunktionen. Eine weitere Möglichkeit, die von Sonderby et al. vorgeschlagen wurde, besteht darin, den Datensatz vor der Verwendung zu verrauschen.

Anwendungen

GAN wurde ursprünglich für unüberwachtes maschinelles Lernen entwickelt. Die Architektur liefert jedoch ebenso gute Ergebnisse beim halbüberwachten Lernen und beim Reinforcement Learning. Aus diesem Grund wird sie in einer Vielzahl von Bereichen wie dem Gesundheitswesen, dem Maschinenbau und dem Bankwesen eingesetzt. Beispielsweise wird GAN in der Medizin zur Erkennung und Behandlung chronischer Krankheiten eingesetzt. Aber auch die Identifikation von 3D-Objekten und die Generierung von realen Bildern und Texten ist durch den Einsatz von GANs möglich.

Limitationen

Die Tatsache, dass ein Generative Adversial Network in der Lage ist, Inhalte zu erzeugen, die nahezu identisch mit realen Inhalten sind, kann in der realen Welt zu Problemen führen, insbesondere bei der menschlichen Bildsynthese. Diese Bilder können von Betrügern verwendet werden, um falsche Profile in sozialen Medien zu erstellen. Auch dies kann durch den Einsatz von GANs verhindert werden, indem einzigartige und pragmatische Bilder von nicht existierenden Personen erzeugt werden.

2.1.1. Ein Unterabschnitt

2.2. Pix2Pix

Pix2Pix, initiiert von Isola et al., hat sich als zentrales Framework für Bild-zu-Bild-Übersetzungen auf der Basis von bedingten generativen adversariellen Netzwerken (cGANs) etabliert. Es ermöglicht die Erstellung einer abstrakten Abbildung von einem Eingangsbild zu einem korrespondierenden Ausgangsbild und bewältigt dabei eine vielfältige Palette an Bildübersetzungsaufgaben, wie die Transformation von Skizzen in realistische Bilder oder die Konvertierung von Tages- zu Nachtaufnahmen.

Pix2Pix fungiert hier als Generative Adversarial Network (GAN), spezialisiert auf diverse Formen der Bildübersetzung. Darunter fallen die Umwandlung von Schwarz-Weiß-Fotos in Farbbilder, die Transformation von Skizzen in realistische Bilder, und relevant für diese Arbeit, die Konvertierung von Satellitenbildern in kartographische Darstellungen, ähnlich den Visualisierungen von Google Maps. Die Architektur von Pix2Pix besteht aus einem Generator und einem Diskriminator. Der Generator, der eine U-Net-Architektur verwendet, besteht aus einem Encoder und einem Decoder. Der Encoder komprimiert das Eingangsbild schrittweise zu einer niedrigdimensionalen Repräsentation, während der Decoder diese dazu nutzt, das Ausgangsbild zu rekonstruieren. Skip-Verbindungen zwischen Encoder und Decoder helfen dabei, sowohl globale als auch lokale Informationen im generierten Bild zu bewahren.

Der Diskriminator nimmt die Form eines PatchGAN-Modells an und bewertet Patches des Bildes, indem er die Wahrscheinlichkeit für die Echtheit jedes Patches ausgibt. Dies ermöglicht die Anwendung des Diskriminators auf Bilder unterschiedlicher Größen. Im Zuge des adversariellen Trainingsprozesses passen sowohl der Generator als auch der Diskriminator ihre Fähigkeiten fortlaufend an. Während der Generator lernt, immer realistischere Übersetzungen zu erzeugen, wird der Diskriminator stetig besser darin, zwischen echten und generierten Bildern zu unterscheiden.

2.2.1. Pix2Pix-Kernkonzepte

Die Bildverarbeitung hat in den letzten Jahren durch den Einsatz tiefer neuronaler Netzwerke erhebliche Fortschritte gemacht. Im Mittelpunkt vieler dieser Fortschritte steht die U-Net-Architektur, die, die speziell für die Bildsegmentierung entwickelt wurde. Diese Architektur zeichnet sich durch ihre angeklügelte Kombination aus Encoder- und Decoder- Strukturen sowie durch den Einsatz von Skip-Verbindungen aus.

Bei der Encoder-Decoder-Struktur handelt es sich um einen Ansatz, bei dem das Eingangsbild zunächst durch den Encoder schrittweise reduziert wird. Dieser Prozess dient dazu, wesentliche Merkmale des Bildes zu erfassen. Anschließend wird das Bild durch den Decoder wiederhergestellt, indem die zuvor extrahierten Merk-

2.2. Pix2Pix 2. Grundlagen

male verwendet werden. Während dieser Prozesse besteht jedoch das Risiko des Informationsverlustes, insbesondere in den tieferen Schichten des Netzwerks. Um dieses Problem zu adressieren, führt die U-Net-Architektur Skip-Verbindungen ein. Diese direkten Verbindungen zwischen korrespondierenden Schichten des Encoders und Decoders sorgen dafür, dass Detailinformationen nicht verloren gehen. Genauer gesagt, ermöglichen diese Verbindungen den direkten Informationsfluss zwischen jeweils äquivalenten Schichten, wodurch die Rekonstruktion des Bildes im Decoder mit einer höheren Genauigkeit erfolgt.

Die Bedeutung von Skip-Verbindungen zeigt sich insbesondere in Anwendungen wie der Bild-zu-Bild-Übersetzung. Hier muss oft ein Bild mit niedriger Auflösung in ein Bild mit hoher Auflösung überführt werden, ohne dass Details verloren gehen. Die U-Net-Architektur, die angereichert mit diesen Verbindungen ist, ermöglicht daher eine feinere Rekonstruktion, die sowohl globale als auch lokale Informationen berücksichtigt.

Somit kann die U-Net-Architektur durch ihre Kombination aus Encoder-Decoder-Struktur und Skip-Verbindungen ein effektives Werkzeug für die Bildsegemtierung darstellen. Ihre Fähigkeit, sowohl globale Muster als auch feine Details zu berücksichtigen, macht sie zu einer bevorzugten Wahl für viele Bildverarbeitungsaufgaben

2.2.2. Anwendungen von Pix2Pix

Hier können Sie über die Anwendungen von Pix2Pix schreiben.

Hauptteil - 1

Hier wird der Inhalt der Arbeit präsentiert.

Hauptteil - 2

Hier wird der Inhalt der Arbeit präsentiert.

5Hauptteil - 3

Hier wird der Inhalt der Arbeit präsentiert.

Evaluation

Hier wird die Arbeit evaluiert.

Fazit und Ausblick

Hier wird ein Fazit und ein Ausblick gegeben.

7.1. Fazit

Fazit.

7.2. Ausblick

Ausblick.

Generative Adversial Network

Generative Adversial Networks, kurz GANs, sind eine aufstrebende Technologie im Bereich des maschinellen Lernens und der künstlichen Intelligenz. Inspiriert von Ian Goodfellow und seinen Kollegen im Jahr 2014, bieten GANs eine effiziente Möglichkeit, tiefe Repräsentationen von Daten zu erlernen, ohne dass große Mengen an annotierten Trainingsdaten benötigt werden. Dies wird durch die Verwendung von Backpropagation und den Wettbewerb zwischen zwei neuronalen Netzen - dem Generator und dem Diskriminator - erreicht. Daraus ergeben sich zahlreiche neue Ansätze zur Generierung realistischer Inhalte. Die Anwendungen reichen von der Bildgenerierung bis hin zur Superauflösung und Textgenerierung.

Verfahren

Der Generator und der Diskriminator sind die Hauptkomponenten eines GAN. Die beiden neuronalen Netze werden gleichzeitig trainiert und konkurrieren miteinander, wobei der Generator versucht, den Diskriminator zu täuschen, indem er synthetische Inhalte erzeugt. Um die Glaubwürdigkeit des Generators zu erhöhen, so dass der Diskriminator nicht mehr zwischen den Eingaben unterscheiden kann, wird das gesamte Netz trainiert. Die Netze werden in der Regel als Mehrschichtnetze implementiert, die aus Faltungsschichten und vollständig verbundenen Schichten bestehen.

Generator

Der Generator dient zur Erzeugung künstlicher Daten wie Bilder und Texte. Der Generator ist nicht mit dem realen Datensatz verbunden und lernt daher nur durch die Interaktion mit dem Diskriminator. Wenn der Diskriminator nur noch 50% der Eingaben richtig vorhersagt, gilt der Generator als optimal.

Diskriminator

Die Unterscheidung zwischen echten und unechten Eingaben ist Aufgabe des Diskriminators. Der Diskriminator kann sowohl künstliche als auch reale Daten verwenden. Wenn der Diskriminator nicht mehr richtig unterscheiden kann, wird er als konvergierend bezeichnet. Andernfalls wird er als optimal bezeichnet, wenn seine Klassifizierungsgenauigkeit maximiert ist. Im Falle eines optimalen Diskriminators wird das Training des Diskriminators gestoppt und der Generator trainiert alleine weiter, um die Genauigkeit des Diskriminators wieder zu verbessern.

Training

Durch das Finden von Parametern für beide Netze wird das Training durchgeführt. Ziel ist die Optimierung beider Netze durch Anwendung von Backpropagation zur Verbesserung der Parameter. Das Training wird oft als schwierig und

instabil beschrieben, da es einerseits schwierig erscheint, beide Modelle konvergieren zu lassen. Auf der anderen Seite kann der Generator sehr ähnliche Muster für verschiedene Eingaben erzeugen, und der Diskriminatorverlust kann schnell gegen Null konvergieren, so dass es keinen zuverlässigen Weg für die Gradientenaktualisierung zum Generator gibt. Zur Lösung dieser Probleme wurden verschiedene Ansätze vorgeschlagen, wie z.B. die Verwendung heuristischer Verlustfunktionen. Eine weitere Möglichkeit, die von Sonderby et al. vorgeschlagen wurde, besteht darin, den Datensatz vor der Verwendung zu verrauschen.

Anwendung

GAN wurde ursprünglich für unüberwachtes maschinelles Lernen entwickelt. Die Architektur liefert jedoch ebenso gute Ergebnisse beim halbüberwachten Lernen und beim Reinforcement Learning. Aus diesem Grund wird sie in einer Vielzahl von Bereichen wie dem Gesundheitswesen, dem Maschinenbau und dem Bankwesen eingesetzt. Beispielsweise wird GAN in der Medizin zur Erkennung und Behandlung chronischer Krankheiten eingesetzt. Aber auch die Identifikation von 3D-Objekten und die Generierung von realen Bildern und Texten ist durch den Einsatz von GANs möglich.

Limitationen

Die Tatsache, dass ein Generative Adversial Network in der Lage ist, Inhalte zu erzeugen, die nahezu identisch mit realen Inhalten sind, kann in der realen Welt zu Problemen führen, insbesondere bei der menschlichen Bildsynthese. Diese Bilder können von Betrügern verwendet werden, um falsche Profile in sozialen Medien zu erstellen. Auch dies kann durch den Einsatz von GANs verhindert werden, indem einzigartige und pragmatische Bilder von nicht existierenden Personen erzeugt werden.

7.2.1. Pix2Pix-Kernkonzepte

Die Bildverarbeitung hat in den letzten Jahren durch den Einsatz tiefer neuronaler Netzwerke erhebliche Fortschritte gemacht. Im Mittelpunkt vieler dieser Fortschritte steht die U-Net-Architektur, die, die speziell für die Bildsegmentierung entwickelt wurde. Diese Architektur zeichnet sich durch ihre angeklügelte Kombination aus Encoder- und Decoder- Strukturen sowie durch den Einsatz von Skip-Verbindungen aus.

Bei der Encoder-Decoder-Struktur handelt es sich um einen Ansatz, bei dem das Eingangsbild zunächst durch den Encoder schrittweise reduziert wird. Dieser Prozess dient dazu, wesentliche Merkmale des Bildes zu erfassen. Anschließend wird das Bild durch den Decoder wiederhergestellt, indem die zuvor extrahierten Merkmale verwendet werden. Während dieser Prozesse besteht jedoch das Risiko des Informationsverlustes, insbesondere in den tieferen Schichten des Netzwerks. Um dieses Problem zu adressieren, führt die U-Net-Architektur Skip-Verbindungen ein. Diese direkten Verbindungen zwischen korrespondierenden Schichten des Encoders und Decoders sorgen dafür, dass Detailinformationen nicht verloren gehen. Genauer gesagt, ermöglichen diese Verbindungen den direkten Informationsfluss zwischen jeweils äquivalenten Schichten, wodurch die Rekonstruktion des Bildes im Decoder mit einer höheren Genauigkeit erfolgt.

Die Bedeutung von Skip-Verbindungen zeigt sich insbesondere in Anwendungen wie der Bild-zu-Bild-Übersetzung. Hier muss oft ein Bild mit niedriger Auflösung in ein Bild mit hoher Auflösung überführt werden, ohne dass Details verloren gehen. Die U-Net-Architektur, die angereichert mit diesen Verbindungen ist, ermöglicht daher eine feinere Rekonstruktion, die sowohl globale als auch lokale Informationen berücksichtigt.

Somit kann die U-Net-Architektur durch ihre Kombination aus Encoder-Decoder-Struktur und Skip-Verbindungen ein effektives Werkzeug für die Bildsegemtierung darstellen. Ihre Fähigkeit, sowohl globale Muster als auch feine Details zu berücksichtigen, macht sie zu einer bevorzugten Wahl für viele Bildverarbeitungsaufgaben

Hier sehen Sie den gesamten Quellcode!

B

Anhang - Dokumentationen

Hier sehen Sie die gesamten Dokumentationen zu den erstellten Programmen.

Literaturverzeichnis

[Haf18] HAFFNER, E.G.: Lineare Algebra für Dummies. Wiley, 2018 (Für Dummies). https://books.google.de/books?id=XfWADwAAQBAJ. - ISBN 9783527819430

Abbildungsverzeichnis

Tabellenverzeichnis

Code-Auszugs-Verzeichnis

Glossar

• C++:

Hardwarenahe, objektorientierte Programmiersprache.

• HTML:

Hypertext Markup Language - textbasierte Auszeichnungssprache zur Strukturierung elektronischer Dokumente.

• HTTP:

Hypertext Transfer Protocol - Protokoll zur Übertragung von Daten auf der Anwendungssicht über ein Rechnernetz.

• iARS:

innovative Audio Response System - System mit zwei Applikationen (iARS-master-App; iARS-student-App), dass sich zum Einsetzten von e-TR-ainer-Inhalten in Vorlesungen eignet.

• ISO:

Internationale Vereinigung von Normungsorganisationen.

• JavaScript:

Skriptsprache zu Auswertung von Benutzerinteraktionen.

• Konstruktor:

Beim Erzeugen einer Objektinstanz aufgerufene Methode zum Initialisieren von Eigenschaften.

• MySQL:

Relationales Datenbankverwaltungssystem.

• OLAT:

Online Learning and Training - Lernplattform für verschiedene Formen von webbasiertem Lernen.

• OOP:

Objektorientierte Programmierung - Programmierparadigma, nach dem sich die Architektur eine Software an realen Objekten orientiert.

• Open Source:

Software, die öffentlich von Dritten eingesehen, geändert und genutzt werden kann.

• PHP:

Skriptsprache zur Erstellung von Webanwendungen.

• Python:

Skript- und Programmiersprache, die unter Anderem objektorientiertes Programmieren ermöglicht.

• Shell:

Shell oder auch Unix-Shell - traditionelle Benutzerschnittstelle von Unix-Betriebssystemen

• Spyder:

Entwicklungsumgebung für wissenschaftliche Programmierung in der Programmiersprache Python.

• SymPy:

Python-Bibliothek für symbolische Mathematik.