Robot Motion Planning

http://voronoi.sbp.ri.cmu.edu/~motion

Howie Choset

http://voronoi.sbp.ri.cmu.edu/~choset

Things Digital Computers Do Well

- Arithmetic
 - ALU capable of billions of calculations / sec
- Search
 - systematic exploration of discrete possibilities
- Storage and Retrieval of Data
 - manage huge databases of information
 - storage capacities increasing rapidly and getting cheaper every year...

Blocks World (1960s)

RI 16-735 Robot Motion Planning

http://voronoi.sbp.ri.cmu.edu/~motion

STRIPS Action Planning (1960s)

RI 16-735 Robot Motion Planning

http://voronoi.sbp.ri.cmu.edu/~motion

STRIPS Action Planning (1960s)

RI 16-735 Robot Motion Planning

http://voronoi.sbp.ri.cmu.edu/~motion

- Shakey the Robot
 (SRI, 1966 1972)
- Triangulating range-finder for sensing obstacles
- STRIPS based A* planner for navigating to a goal
- Wireless radio and video camera

RI 16-735 Robot Motion Planning

What is Motion Planning?

Determining where to go

...more than a search (or a geometric search)

Live Motion Planning Experiments

- Person 1 walks through some obstacles
- Person 1, looking at Person 2, directs Person 2 through obstacles
- Person 1, looking at Person 2 with eyes closed, directs Person 2 through obstacles
- Person 1, looking at a map and not Person 2, whose eyes are still closed, directs Person 2 through obstacles
- Person 1, looking at an object and Person 2, whose eyes are closed, directs Person 2 to grab an obstacle
- How do we do the last experiment with a map?

What did we assume?

- Perfect sensors?
 - What information
 - Uncertainty
- Perfect control?
 - What controls?
 - Uncertainty
- Perfect thinking?
 - Knowledge of the world? Complete?
 - Processing the world? Everything?

What else?

Robots

Robots

http://voronoi.sbp.ri.cmu.edu/~motion

Robots

RI 16-735 Robot Motion Planning

http://voronoi.sbp.ri.cmu.edu/~motion

Trends in Robotics/Motion Planning

Classical Robotics (mid-70's)

- exact models
- no sensing necessary

Reactive Paradigm (mid-80's)

- no models
- relies heavily on good sensing

Hybrids (since 90's)

- model-based at higher levels
- reactive at lower levels

Probabilistic Robotics (since mid-90's)

- seamless integration of models and sensing
- inaccurate models, inaccurate sensors

Overview

- Planning tasks
 - Navigation
 - Coverage
 - Localization
 - Mapping
- Properties of the robot
 - degrees of freedom,
 - holonomic or not,
 - kinematic vs. dynamic
- Properties of Algorithms
 - Optimality
 - Computational complexity
 - Completeness
 - Resolution completeness
 - Probabilistic completeness
 - Online vs. offline
 - Sensor-based vs. not
 - Feedback or not RI 16-735 Robot Motion Planning

Mathematical Rigor

		Г	Christoffel symbol
		RM	roadmap
		\mathcal{W}	workspace
		Q	configuration space
Symbol	Meaning	Q_{free}	free space
3	there exists	x(k)	state at time k
A	for all	x	norm of x
∞	infinity	_ ⊆	subset of
€	element	_ C	strict subset of
∉	not in	cl(A)	closure of A
s.t.	such that	T^n	n-dimensional torus
R	real numbers	S^n	n -dimensional sphere in \mathbb{R}^{n+1}
R"	m-dimensioned real numbers	SO(n)	special orthogonal group
Ŭ.	union	SE(n)	special Euclidean group
Ú	intersection	$B_{\epsilon}(q)$	open ball of radius ϵ centered at q
\	set difference	Df	differential of f
⇒	implies. $p \to q$ is p implies q	∇f	gradient of f
←	implies. $q \to p$ is q implies p	▼ <i>y</i>	affine connection
$\stackrel{\Longleftrightarrow}{s_1}$	if and only if a circle	$\nabla_{Y_1} Y_2$	covariant derivative of Y_2 with respect to Y_1
∇		C^0	continuous
D D	gradient	C ⁿ	n times differentiable
D	differential or distance to closest obstacle (depending on context)		
d_i	distance to obstacle i in either the workspace or	$\langle x, y \rangle$ \mathcal{I}	inner product of x and y
u_i	configuration space (depending on context)		identity matrix
d(x, y)	distance between the two points x and y	atan2(y, x)	returns angle to (x, y) in the plane in range $[-\pi, \pi)$
Null	null space	$T_x\mathcal{M}$	tangent space of \mathcal{M} at x
14411	nun space	$T\mathcal{M}$	tangent bundle of \mathcal{M}
		[f,g]	Lie bracket of vector fields f , g
		$\overline{\text{Lie}}(\mathcal{G})$	the Lie algebra of a set of vector fields $\mathcal G$
		$\overline{\mathcal{D}}$	involutive closure of the distribution $\mathcal D$
		\mathcal{U}_{\pm}	control set positively spanning \mathbb{R}^m
			4 80.00

RI 16-735 Robot Motion Plannir $_{_}$ $(Y_1:Y_2)$

Jacobian

control set spanning \mathbb{R}^m

the symmetric product of vector fields Y_1 and Y_2

Example of a World (and Robot)

RI 16-735 Robot Motion Planning

Basic Path Planning

Path

Problem Statement:

Compute a continuous sequence of collision-free robot configurations

2D EXAMPLE: connecting the initial and goal configurations

Collision-free path

Geometry of environment

Geometry and kinematics of robot

Initial and goal configurations

RI 16-735 Robot Motion Planning

http://voronoi.sbp.ri.cmu.edu/~motion

Motion Planning Statement

If W denotes the robot's workspace,
And WO_i denotes the i'th obstacle,
Then the robot's free space, W_{free}, is
defined as:

$$W_{free} = W - (\bigcup WO_i)$$

And a path c C^0 is $c : [0,1] \rightarrow W_{free}$
where $c(0)$ is q_{scart}^{\in} and $c(1)$ is q_{goal}

Topics

- Bug Algorithms
- Curve Following
- Sensors
- Configuration Space for Round Mobile Robot
- Potential Functions
- Graph Search (A* D*)
- Pixel Maps
- Configuration Space for non-Round Robots
- Roadmaps
- Coverage
- Sample-based Methods
- Kalman Filtering (for Localization, SLAM)
- Bayesian Techniques (for Localization, SLAM)
- Dynamics and Non-holonomic Constraints, if time permits

Homework Assignments

- HW 1: Getting started
- HW 2: Bug Algorithm
- HW 3: Two-dimensional Potential Function
- HW 4: A*
- HW 5: Visibility Graph
- HW 6: Voronoi Diagram
- HW 7: Probabilistic Roadmap

Homework Ground Rules

- Make a web site, with scanned in solutions and images/videos showing your work
- Get your own display programs
- Due at 9pm on the due dates (mail to TA)
- Worth 100 points
- Up to 30 bonus points for best assignment at the discretion of the TA

Class Project

- On a real robot
 - Subject to negotiation
 - Find a friend with a robot
- Implement a Bayesian or Kalman Filter or Comparable mapping method
- Videos, Possible Live Demos, Class Presentation
- Proposal (can work in groups)

Grading

- 70% Homework
- 30% Project

Book

http://motionplanning.com

Principles of Robot Motion: Theory, Algorithms, and Implementations

H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki and S. Thrun,

MIT Press, Boston, 2005.

Other Books

Robot Motion Planning, Jean-Claude Latombe, Kluwer, 1991.

Planning Algorithms
Steven Lavalle,
Cambridge University
Prress, 2006

Free download: http://planning.cs.uiuc.edu/

Probabilistic Robotics
S. Thrun, W. Burgard, D. Fox
MIT Press, 2006

An Introduction to Al/Robotics
Robin Murphy
MIT Press, 2006

16-735 Robot Motion Planning

http://voronoi.sbp.ri.cmu.edu/~motion

My Goals for Class

- Teach people motion planning
- Learn about motion planning
 - From teaching, book
 - From class
- See impressive demonstrations
- Understand the right "level" and "capability" of motion planning
- Have fun (Demos are fun)