Design of Seismic-Resistant Steel Building Structures

6. Special Plate Shear Walls

Module prepared by: Rafael Sabelli DASSE Design, San Francisco

with the support of the American Institute of Steel Construction.

Design of Seismic-Resistant Steel Building Structures

- 1 Introduction and Basic Principles
- 2 Moment Resisting Frames
- 3 Concentrically Braced Frames
- 4 Eccentrically Braced Frames
- 5 Buckling Restrained Braced Frames
- 6 Special Plate Shear Walls

6 - Special Plate Shear Walls

- Introduction and background
- Mechanics of slender-web shear walls
- Design of Special Plate Shear Walls
- AISC Seismic Provisions for Special Plate Shear Walls
- History: Research and Applications
- Materials, Serviceability, and Configurations

Steel plate shear wall panel in Japan: Wall with horizontal panel stiffeners

Steel plate shear wall panel in Japan: Wall with horizontal and vertical stiffeners

U.S. Federal Courthouse, Seattle

Courtesy of John Hooper, MKA Seattle

Structural System for U.S. Federal Courthouse, Seattle

Courtesy of John Hooper, MKA Seattle

Steel plate shear walls in residential light-frame construction

Courtesy of Matt Eatherton, GFDS

Courtesy of Jon Brody Structural Engineers

Simplified Wall Analogy

Tension-Only Braced Frame Analogy

Plate-Girder Analogy

Plate-Girder Analogy

Diagonal tension in steel plate shear wall web plate

Boundary Tension and Shear Stresses (pure shear)

Boundary Tension and Shear Stresses (diagonal tension)

Angle α

$$\tan^{4} \alpha = \frac{1 + \frac{t_{w}L}{2A_{c}}}{1 + t_{w}h \left[\frac{1}{A_{b}} + \frac{h^{3}}{360 I_{c}L} \right]}$$

Mechanics of Slender Web Plates

Internal Forces

Reactions

Multi-Story Internal Forces

Expected Yield Mode

Development of tension diagonals

Shear buckling

Buckling of steel plate shear wall web plate at 1.82% Drift

Courtesy of Berman and Bruneau

Expected Yield Mode

Multi-story shear mode

"Flexural" mode: Axial yield at base

Testing of a multi-story steel plate shear wall

Courtesy of Behbahanifard

Inward Flexure of Boundary Elements

Inward flexure of steel plate shear wall beams and columns

Courtesy of Carlos Ventura, University of British Columbia, Vancouver, Canada

Effect of beam flexibility in long steel plate shear walls

Vertical Struts

$$P_{u(i)} = \sum_{i}^{n} \frac{1}{2} w_{u(i)} L_{cf}$$

Horizontal Strut

Flexural Forces

Frame Behavior

Frame Behavior

Tension-Strip Model

Calculate angle α

Use average of all stories (unless there is a wide range)

Divide plate into sufficient number of strips (10)

Calculate strip area

Locate intersection points

Strips models used in retrofit project using steel plate shear walls

Courtesy of Jay Love, Degenkolb Engineers

Progression of yielding across strips

Orthotropic Plate Model

Rotate local axes to α

Model diagonal tension behavior

Set modulus of elasticity in tension direction to 29,000 ksi

Remove plate diagonal compression resistance from model

Set modulus of elasticity in compression direction to 0 ksi

Remove plate overturning resistance from model

Set shear modulus to 0 ksi

Proposed blast- and impact-resistant air traffic control towers using steel plate shear walls

Courtesy of John Pao, BPA Group, Structural Engineers, Bellevue, Washington

HBE Design Axial Forces

$$P_{HBE(web)} = \frac{1}{2} R_{y} F_{y} [t_{i} \sin(2\alpha_{i}) - t_{i+1} \sin(2\alpha_{i+1})] L_{cf}$$

$$P_{HBE(VBE)} = \sum_{n=1}^{\infty} \frac{1}{2} h_c R_y F_y \sin^2(\alpha) t_w$$

HBE to VBE Design Axial Forces

$$R_{u(horiz)} \ge P_{HBE(VBE)} + \Omega_{o} P_{collector}$$

$$R_{u(horiz)} \ge P_{HBE(VBE)} + P_{HBE(web)}$$

HBE Design Flexural Forces

$$M_u = \frac{R_y F_y [t_i \cos^2(\alpha_i) - t_{i+1} \cos^2(\alpha_{i+1})] L_h^2}{8}$$
 (at midspan)

$$V_{HBE(web)} = \frac{R_{y}F_{y}[t_{i}\cos^{2}(\alpha_{i}) - t_{i+1}\cos^{2}(\alpha_{i+1})]L_{h}}{2}$$

$$V_{HBE(MF)} = \frac{2M_{pr}}{L_h}$$

VBE Design Axial Forces

Approximations of column axial force

VBE Design Flexural Forces

Flexural strength in the presence of high axial force.

$$M_{pr} \le \left[1.1R_{y}F_{y}Z\right]\left[1-\frac{1}{2}\frac{P_{u(HBE)}}{P_{y(HBE)}}\right]$$

$$M_{pr} \le \frac{9}{8} \left[1.1 R_{y} F_{y} Z \right] 1 - \frac{P_{u(HBE)}}{P_{y(HBE)}}$$

More exact column analysis

Irregular wall configurations to reduce overturning forces on columns

Outrigger and coupling beams used to reduce overturning forces on columns

Strong Column/Weak Beam

$$Z_{c} \ge \frac{1}{2} \frac{\sum_{b} M_{pb}^{*}}{\left[2F_{yc} - \frac{|P_{uC}| + |P_{uT}|}{A_{g}}\right]}$$

Section 17 Special Plate Shear Walls (SPSW)

- **17.1** Scope
- 17.2 Webs
- 17.3 Connections of Webs to Boundary Elements
- 17.4 Horizontal and Vertical Boundary Elements

17.1 Scope

Significant inelastic strain expected in web plates

HBE and VBE expected to be "essentially elastic" when subject to forces from fully yielded web plates

Exception: plastic hinges expected at each end of HBE

Consult Building Code for:

R

 $\Omega_{\rm o}$

 C_d

If Building Code does not have these, consult Appendix R

17.2 Webs

- 17.2a Shear Strength
- 17.2b Panel Aspect Ratio
- 17.2c Openings in Webs

17.2a Shear Strength

$$V_n = 0.42 F_y t_w L_{cf} \sin(2\alpha)$$

$$\phi = 0.9 \qquad \Omega = 1.67$$

$$\tan^{4} \alpha = \frac{1 + \frac{t_{w}L}{2A_{c}}}{1 + t_{w}h \left[\frac{1}{A_{b}} + \frac{h^{3}}{360 I_{c}L} \right]}$$

17.2b Panel Aspect Ratio

$$0.8 \le \frac{L}{h} \le 2.5$$

17.2c Openings in Webs

Local boundary elements around the opening are required

17.3 Connections of Webs to Boundary Elements

Must develop expected web strength

Connection to VBE

Tension: $R_v F_v t_w h_c \sin^2(\alpha)$

Shear: $\frac{1}{2} R_y F_y t_w h_c \sin(2\alpha)$

Connection to HBE

Tension: $R_y F_y t_w L_{cf} \cos^2(\alpha)$

Shear: $\frac{1}{2} R_y F_y t_w L_{cf} \sin(2\alpha)$

Typical connections of web plates

17.4 Horizontal and Vertical Boundary Elements

- 17.4a Required Strength
- 17.4b HBE-to-VBE Connections
- 17.4c Width-Thickness Limitations
- 17.4d Lateral Bracing
- 17.4e VBE splices
- 17.4f Panel Zones
- 17.4g Stiffness of Vertical Boundary Elements

17.4a Required Strength

Must develop expected web strength

VBE

Transverse load: $R_y F_y t_w \sin^2(\alpha)$

Distributed axial load:

 $\frac{1}{2} R_v F_v t_w h_c \sin(2\alpha)$ [+ force from above]

HBE

Transverse load:

$$R_y F_y [t_{w(i)} - t_{w(i+1)}] L_{cf} \cos^2(\alpha)$$

Distributed axial load:

$$\frac{1}{2} R_y F_y [t_{w(i)} - t_{w(i+1)}] L_{cf} \sin(2\alpha)$$

17.4a Required Strength

HBE to VBE connection must satisfy SMF Section 9.6

(Strong-column/weak-beam)

Purpose of strong column - weak girder requirement:

Prevent Soft Story Collapse

AISC Seismic Provisions - SMF 9.6 Column-Beam Moment Ratio

The following relationship shall be satisfied at beam-tocolumn connections:

$$\frac{\sum M_{pc}^{*}}{\sum M_{pb}^{*}} > 1.0$$
 Eqn. (9-3)

9.6 Column-Beam Moment Ratio

$$\frac{\sum M_{pc}^*}{\sum M_{pb}^*} > 1.0$$

 M_{pc}^* = the sum of the moments in the column above and below the joint at the intersection of the beam and column centerlines.

 $\sum M_{pc}^*$ is determined by summing the projections of the nominal flexural strengths of the columns above and below the joint to the beam centerline with a reduction for the axial force in the column.

It is permitted to take $\sum M_{pc}^* = \sum Z_c (F_{yc} - P_{uc}/A_g)$

 $\sum M_{pb}^*$ = the sum of the moments in the beams at the intersection of the beam and column centerlines.

 $\sum M_{pb}^*$ is determined by summing the projections of the expected flexural strengths of the beams at the plastic hinge locations to the column centerline. $\sum M_{pb}^* = \sum [Z_b (R_v F_{vb} - P_{ub}/A_g) + V_p (s_h + d_{col}/2)]$

 M_{pc}^* is based on minimum specified yield stress of column

 M^*_{pb} is based on expected yield stress of beam and includes allowance for strain hardening

 M_{pr} = expected moment at plastic hinge

 V_{HBE} = beam shear (includes effect of web plate)

 s_h = distance from face of column to beam plastic hinge location (specified in ANSI/AISC 358)

$$M_{pb}^* = Z_b (R_y F_{yb} - P_{HBE}/A_g) + V_{HBE}(s_h + d_{col}/2)$$

 M_{pc} = nominal plastic moment capacity of column, reduced for presence of axial force; can take M_{pc} = Z_c (F_{yc} - P_{uc} / A_g) [or use more exact moment-axial force interaction equations for a fully plastic cross-section]

 V_{HRE} = column shear

$$M_{pc}^* = M_{pc} + V_{HBE (top)} (d_{beam}/2)$$

17.4b HBE-to-VBE Connections

OMF beam-column connection per 11.2 (or better)

Minimum shear:

$$V_u = V_{HBE(web)} + V_{HBE(MF)}$$

$$V_{\text{HBE(web)}} = R_y F_y [t_{w(i)} - t_{w(i+1)}] L_{cf} \cos^2(\alpha) L_h/2$$

$$V_{\text{HBE(MF)}} = 2 M_{pr}/L_h$$

$$M_{pr} = 1.1 R_y Z_b (F_{yb} - P_{HBE}/A_g)$$

17.4c Width-Thickness Limitations

Flanges

$$\frac{b_f}{2t_f} \leq 0.30 \sqrt{\frac{E_s}{F_y}}$$

<u>Web</u>

$$\frac{P_u}{\phi P_v} \leq 0.125$$

$$\frac{h}{t_w} \le 3.14 \sqrt{\frac{E_s}{F_y}} \left[1 - 1.54 \frac{P_u}{\phi P_y} \right]$$

$$\frac{P_u}{\phi P_v} > 0.125$$

$$\frac{h}{t_w} \le 1.12 \sqrt{\frac{E_s}{F_y}} \left[2.33 - \frac{P_u}{\phi P_y} \right] > 1.49 \sqrt{\frac{E_s}{F_y}}$$

17.4d Lateral Bracing

Lateral torsional buckling controlled by:
$$\frac{L_b}{r_v}$$

 L_b = distance between beam lateral braces

 r_y = weak axis radius of gyration

17.4d Lateral Bracing

Both flanges of beams shall be laterally braced, with a maximum spacing of $L_b = 0.086 \, r_y \, E / F_y$

$$L_b \le 0.086 \left(\frac{E}{F_y}\right) r_y$$
 $\left(= 50 r_y \text{ for } F_y = 50 \text{ ksi}\right)$

17.4e VBE splices

17.4f Panel Zones

Comply with SMF requirement 9.3

AISC Seismic Provisions - SMF
9.3 Panel Zone of Beam-to-Column
Connections

9.3a	Shear S	trenath

- 9.3b Panel Zone Thickness
- 9.3c Panel Zone Doubler Plates

AISC Seismic Provisions - SMF - Panel Zone Requirements 9.3a Shear Strength

The minimum required shear strength, R_u , of the panel zone shall be taken as the shear generated in the panel zone when plastic hinges form in the beams.

To compute panel zone shear.....

Determine moment at beam plastic hinge locations

Project moment at plastic hinge locations to the face of the column (based on beam moment gradient, including the effects of web-plate induced HBE shear)

Compute panel zone shear force.

Projecting Moment to Column Face

 s_h = distance from face of column to beam plastic hinge location (specified in ANSI/AISC 358, or $d_{beam}/2$)

= beam shear (includes web-plate effect)

 V_{HBE}

 M_f = moment at column face

$$M_f = M_{pr} + V_{beam} \times s_h$$

$$M_{pr} = 1.1 R_y Z_b (F_{yb} - P_{HBE}/A_g)$$

$$V_c = \frac{1}{2} R_y F_y t_w h_c/2 \sin(2\alpha)$$

Panel Zone Required Shear Strength =
$$R_u = \frac{\sum_{i} M_f}{\left(d_b - t_f\right)} - V_c$$

Panel Zone Design Requirement:

$$R_u \le \phi_v R_v$$
 where $\phi_v = 1.0$

 R_{v} = nominal shear strength, based on a limit state of shear yielding, as computed per Section J10.6 of the AISC *Specification*

To compute nominal shear strength, R_{ν} , of panel zone:

When $P_u \le 0.75 P_y$ in column:

$$R_v = 0.6F_y d_c t_p \left[1 + \frac{3b_{cf} t_{cf}^2}{d_b d_c t_p} \right]$$
 (AISC Spec EQ J10-11)

Where: $d_c = \text{column depth}$

 d_b = beam depth

 b_{cf} = column flange width

 t_{cf} = column flange thickness

 F_{v} = minimum specified yield stress of column web

 t_p = thickness of column web including doubler plate

To compute nominal shear strength, R_{ν} , of panel zone:

When $P_u > 0.75 P_y$ in column (not recommended):

$$R_{v} = 0.6F_{y}d_{c}t_{p} \left[1 + \frac{3b_{cf}t_{cf}^{2}}{d_{b}d_{c}t_{p}}\right] \left[1.9 - \frac{1.2P_{u}}{P_{v}}\right]$$
 (AISC Spec EQ J10-12)

If shear strength of panel zone is inadequate:

- Choose column section with larger web area
- Weld doubler plates to column

Options for Web Doubler Plates

17.4g Stiffness of Vertical Boundary Elements

Olive View Hospital

Courtesy of ENR

Olive View Hospital

Courtesy of Naeim and Lobo

Steel plate shear wall with very strong column

Courtesy of Astaneh-Asl and Zhao

Testing of steel plate shear wall

Courtesy of Astaneh-Asl and Zhao

Steel plate shear walls in Canam Manac Group headquarters expansion

Courtesy of Richard Vincent, Canam Manac Group, St. George, Quebec, Canada

Steel plate shear walls and details at base of SPW, ING building

Courtesy of Louis Crepeau and Jean-Benoit Ducharme, Groupe Teknika, Montreal, Canada

Steel plate shear wall in ICRM building

Courtesy of Louis Crepeau and Jean-Benoit Ducharme, Groupe Teknika, Montreal, Canada

Elevation of Kobe City Hall

Courtesy of Fujitana

Testing of SPSW

Fracture of steel plate shear wall web plate corner at 3.07% Drift

Courtesy of Berman and Bruneau

Perforated steel plate shear wall

Courtesy of Vian and Bruneau

Steel plate shear wall with corner openings

Courtesy of Vian and Bruneau

Web plate buckling

Courtesy of Robert Driver, University of Alberta, Edmonton, Canada

Local buckling and fracture of column

Courtesy of Robert Driver, University of Alberta, Edmonton, Canada

Testing of a multi-story steel plate shear wall

Courtesy of Behbahanifard

ASTM Designation	Specified Minimum Yield Stress F_y (ksi)	Specified Minimum Tensile Stress F_u (ksi)	Minimum Elongation in 2 in. Gage per ASTM A370 (percent)	Listed in AISC 341?	Ratio of Expected Yield to Specified Minimum R_y
A36	36	58	23	Yes	1.3
A572 Gr. 42	42	60	24	Yes	Not defined
A572 Gr. 50	50	65	21	Yes	1.1
A588 Gr. 50	50	70	21	Yes	1.1
A709 Gr. 36	36	58	23	Yes	Not defined
A709 Gr. 50	50	65	21	Yes	Not defined
A1011 CS	$(30-50)^1$	Not defined	$(25)^1$	No	Not defined
A1011 DS	$(30-45)^1$	Not defined	$(28)^1$	No	Not defined
A1011 SS Gr. 30	30	49	25 ² ; 24 ³ ; 21 ⁴	No	Not defined
A1011 SS Gr. 33	33	52	23 ² ; 22 ³	No	Not defined
A1011 SS Gr. 36 Type 1	36	53	22 ² ; 21 ³	No	Not defined
A1011 SS Gr. 36 Type 2	36	58	21 ² ; 20 ³	No	Not defined
A1011 SS Gr. 40	40	55	21 ² ; 20 ³	No	Not defined
A1011 HSLAS Gr. 45 Class 1	45	60	25 ⁵ ; 23 ⁶	No	Not defined
A1011 HSLAS Gr. 45 Class 2	45	55	25 ⁵ ; 23 ⁶	No	Not defined
A1011 HSLAS Gr. 50 Class 1	50	65	22 ⁵ ; 20 ⁶	No	Not defined
A1011 HSLAS Gr. 50 Class 2	50	60	22 ⁵ ; 20 ⁶	No	Not defined

			ASTM Designation														
TI. '. I	Constant		2 Gr. 42	2 Gr. 50	8	9 Gr. 36	9 Gr. 50	11 CS	11 DS	11 SS Gr. 30	11 SS Gr. 33	11 SS 6 Type 1	11 SS 6 Type 2	11 HSLAS 5 Type 1	11 HSLAS 5 Type 2	11 HSLAS 0 Type 1	11 HSLAS 0 Type 2
Thickness (in.)	Standard Gage	A36	A572	A572	A588	A709	A709	A1011	A1011	A101]	A1011	A1011 Gr. 36	A1011 Gr. 367	A1011 Gr. 45	A1011 Gr. 45	A1011 Gr. 507	A1011 Gr. 507
0.0598	16							•	•	•	•	•	•	•	•	•	•
0.0625		•															
0.0673	15							•	•	•	•	•	•	•	•	•	•
0.0747	14	•						•	•	•	•	•	•	•	•	•	•
0.0897	13							•	•	•	•	•	•	•	•	•	•
0.1046	12	•						•	•	•	•	•	•				
0.1196	11							•	•	•	•	•	•				
0.1250		•															
0.1345	10	•						•	•	•	•	•	•				
0.1495	9							•	•	•	•	•	•				
0.1644	8							•	•	•	•	•	•				
0.1793	7							•	•	•	•	•	•				
0.1875		•	•	•	•	•	•			•	•	•	•				
0.1943	6									•	•	•	•				
0.2092	5									•	•	•	•				
0.2242	4									•	•	•	•				
0.2391	3									•	•	•	•				
0.2500		•	•	•	•	•	•										
0.3125		•	•	•	•	•	•										
0.3750		•	•	•	•	•	•										
0.5000		•	•	•	•	•	•										