

What we have learnt

- Low and High pass filters
 - Average Filtering
 - Gaussian Filtering
 - Non-linear Filtering
 - Laplacian Filter

- Image segmentation: Thresholding
 - Simple Thresholding
 - Adaptative Thresholding
 - Otsu

Content

- Gradient detection
- Edge detection

Gradients and Edge detection

- One of the most important tasks in computer vision is to recognize objects
- There are a set of techniques which allow to detect edges and identify objects
- Edge detector
 - Sobel gradient representation
 - Prewitt gradient representation
 - Laplacian gradient representation
 - Canny edge detector

Feature detection

- What kinds of features should we detect?
 - Specific locations in the images: mountain peaks, building corners, doorways, or interestingly shaped patches of snow.

How to do that?
We are interested in points, lines or edges detection

Gradient

- Formally, points, lines or edges are an abrupt transition in intensity values between two regions.
- From calculus, we know that the changes in intensity can be measured by using the first or second derivative.

Gradient Detection

$$\frac{\partial f}{\partial x} = f(x+1,y) - f(x,y)$$
 $\frac{\partial f}{\partial y} = f(x,y+1) - f(x,y)$

Gradient Detection

$$\frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) + 2f(x,y)$$

$$\frac{\partial^2 f}{\partial y^2} = f(x, y - 2) + f(x, y - 1) + 2f(x, y)$$

x,y	

Gradient Detection - Noise

- The noise can have a lot of influence in the results
- The process of edge detection consists of three main steps:
 - Noise reduction: smoothing techniques.
 - Detection of edge points.
 - Edge localization

Sobel Gradient Representation

Using the Sobel operator, we can compute gradient magnitude representations along the x and y axis, allowing us to find both horizontal and vertical edge-like regions.

Prewitt Gradient Representation

Laplacian Gradient Representation

The Laplacian gradient does not require the processing horizontal and vertical.

Sobel, Prewitt and Laplacian

Sobel Filter

-1	0	1
-2	0	2
-1	0	1

Prewitt Filter

-1	-1	-1
0	0	0
1	1	1

-1	0	1
-1	0	1
-1	0	1

Laplacian Filter

0	1	0
-1	4	-1
0	1	0

-1	-1	-1
-1	8	-1
-1	-1	-1

Canny edge detection

- One thing you'll notice in the previous subsections is that the edges are very "noisy". They are not clean and crisp.
- We'll remedy that by using the Canny edge detector.
- The Canny edge detector is a multi-step process:
 - blurring the image to remove noise,
 - computing Sobel gradient images in the x and y direction
 - suppressing edges
 - Hysteresis thresholding stage that determines if a pixel is "edge-like" or not

Canny edge detection

- 1. Any pixel in the image that has a value greater than T1 is presumed to be an edge pixel, and is marked as such immediately.
- 2. Any pixels that are connected to this edge pixel and that have a value greater than T2 are also selected as edge pixels.

A and C are edges. C is because it is conected to A

Canny edge detection

Counters

cv2.findContours()

Let's play with images!

Do conhecimento à prática.