Lecture J. Regularization & Model Selection.
· Introduction:
(1) different model - learning problem.
(2) finite sets of models.
e.g. linear model, SVM, CNN.
· Cross validation:
cu empirical risk minimization.
(2) simple cross validations
Otraining set S:
split into Strain / Scv
e train on Strain
B select Mi:
min Escr (h;) (retrain Mi)
x: sensitive model: no retrain.
(3) drawback: wasting data (30%)
clata is scarce (e.g. m=30)
promoted idea: k-fold.
O S: randomly split into disjoint subset
S1. S2. S3 Sk.
@ For j=1.2 k

train Mi on $S/S_j \Rightarrow h_{ij}$
$+ 2 \cdot 2 $
3) pick min $\sum_{k=1}^{k} \hat{\epsilon}_{s_{j}}(h_{ij})$
X: retrain on the whole set.
(Computational expensive)
(4) leave-one-ont:
only hold out one training example.
· Feature Selection:
co small number of features -> relevant.
n features → 2 ⁿ Subsets. → heuristic search.
(2) forward seatch.
$0 F = \Phi$ (feature set)
O Repeat:
i=1·2, ··· n and i ¢ F
find Fi = FUSib optimal.
B Dutput F. (O(n))
Similarly: backward
(3) Filter feature selection:
score sci) - how informative.
mutual information:
$MI(X_i, y) = \sum_{x_i} \sum_{y_i} P(X_i, y) \log \frac{P(X_i) P(y)}{P(X_i) P(y)}$

KL (P(Xi, 4) P(Xi) P(9))
Chow different distributions are)
rank - chouse k (using CV)
· Bayesian statistics & regularization:
co maximum likelihood:
OME = arg max Tip P(b; Xi, D)
view o as an unknown parameter.
constant value but unknown
o not random.
task: statistical procedure, frequentist.
→ estimate parameter 0.
(z) Bayesian View:
D is random
task: prior belief> posterior
$P(\theta S) = \frac{P(s \theta) P(\theta)}{P(S)}$
$= \left(\prod_{i=1}^{m} P(y_i \mid X_i, \theta) \right) P(0)$
P(s) usually: 0~N(0, 221)
(3) Maximum a Posteriori.
QMAP= arg max TI P(b; Xi, 0) P(0)
smaller norm => less likely to overfit.
Officer Holin > 1033 Herry TV OVOICH.