Exerice 3

$$f_n(x) = \frac{1}{1 + nx^2}$$

• Soit
$$x \in \mathbb{R}_+$$
 on a que
si $x \neq 0$ $\frac{1}{1 + nx^2} \underset{n \to \infty}{\longrightarrow} 0$
Si $x = 0$ $\frac{1}{1 + n0^2} = 1 \underset{n \to \infty}{\longrightarrow} 1$

$$Si x = 0 \frac{1}{1 + n0^2} = 1 \xrightarrow[n \to \infty]{1}$$

Donc f_n converge simplement vers la fonction $f := \begin{cases} 0 \text{ si } x > 0 \\ 1 \text{ sinon} \end{cases}$

•
$$f_n(x)' = -\frac{2nx}{(1+nx^2)^2}$$

• $f_n(x)' = -\frac{2nx}{(1+nx^2)^2}$ Or $-2nx \le 0$ et $(1+nx^2)^2 \ge 0$ donc $f_n(x)' \le 0$

$$f_n(0) = 1$$

$$f_n(x) \underset{x \to \infty}{\longrightarrow} = 0$$

x	0	∞
$f_n(x)'$	_	
$f_n(x)$	1	<u> </u>

On a donc que $||f_n(x) - f(x)||_{\infty} = \sup_{x \in \mathbb{R}_+} |f_n(x) - f(x)|$ <u>Cas 1</u>: x = 0 on $|f_n(0) - f(0)| = 1 - 1 = 0$

Cas 1:
$$x = 0$$
 on $|f_n(0) - f(0)| = 1 - 1 = 0$

Cas 2:
$$x \neq 0$$
 on a $\sup_{x \in \mathbb{R}_+^*} |f_n(x) - f(x)| = \sup_{x \in \mathbb{R}_+^*} |f_n(x)|$

Car si $x \neq 0$ on a f(x) = 0

Donc
$$|f_n(x) - f(x)||_{\infty} = \sup_{x \in \mathbb{R}^*_+} |f_n(x)|$$

Donc
$$|f_n(x) - f(x)||_{\infty} = \sup_{x \in \mathbb{R}_+^*} |f_n(x)|$$

Comme $f_n(x) \underset{x \to 0}{\longrightarrow} 1$, on a que $\sup_{x \in \mathbb{R}_+^*} |f_n(x)| = 1 \neq 0$

Donc f_n ne converge pas uniformement vers f sur \mathbb{R}_+

Soit a > 0

$$|f_n(x) - f(x)||_{\infty,[a,+\infty[} = \sup_{x \in [a,+\infty[]} |f_n(x)| = f_n(a)$$

 $|f_n(x) - f(x)||_{\infty,[a,+\infty[} = \sup_{x \in [a,+\infty[} |f_n(x)| = f_n(a)$ Or $f_n(a) \underset{n \to \infty}{\longrightarrow} 0$ donc f_n converge uniformement vers f sur $[a,+\infty[$