Tournée de véhicule dans les réseaux tolérants aux délais

Omar Sy Messas Kouceila

Université d'Avignon

- 1 Introduction
 - Présentation du projet
 - Objectif du projet
 - Réalisation semestre 1
 - Objectif semestre 2
- 2 Problématique
 - Problématique
- 3 Problème?
- 4 Type de Méthodes de Résolution
- 5 Modèle
- 6 Méthodes de Résolution
 - Modèle
 - Variables et constantes
 - Variables et constantes
 - Contraintes
- 7 ORPA

- 1 Introduction
 - Présentation du projet
 - Objectif du projet
 - Réalisation semestre 1
 - Objectif semestre 2
- 2 Problématique
 - Problématique
- 3 Problème ?
- 4 Type de Méthodes de Résolution
- 5 Modèle
- 6 Méthodes de Résolution
 - Modèle
 - Variables et constantes
 - Variables et constantes
 - Contraintes
- 7 ORPA

Introduction

Présentation du projet

- √ Cadre
 - Projet Master 1
- ✓ Motivation
 - ▶ La recherche
 - Stage L3 Continuité
- √ Importance du Projet
 - La tournée de véhicule est un nouveau problème.
 - ▶ Le problème fait l'objet de plusieurs recherches.
 - ▶ Le logiciel pourra être utilisé par des chercheurs.

- 1 Introduction
 - Présentation du projet
 - Objectif du projet
 - Réalisation semestre 1
 - Objectif semestre 2
- 2 Problématique
 - Problématique
- 3 Problème ?
- 4 Type de Méthodes de Résolution
- 5 Modèle
- 6 Méthodes de Résolution
 - Modèle
 - Variables et constantes
 - Variables et constantes
 - Contraintes
- 7 ORPA

Objectif du projet

- Implémentation d'une Interface utilisateur.
- Implémentation de plusieurs méthodes de résolution.
- Générateur d'instance avec affichage graphique.
- ► Affichage des solutions sous forme graphiques et textuelles.

- 1 Introduction
 - Présentation du projet
 - Objectif du projet
 - Réalisation semestre 1
 - Objectif semestre 2
- 2 Problématique
 - Problématique
- 3 Problème ?
- 4 Type de Méthodes de Résolution
- 5 Modèle
- 6 Méthodes de Résolution
 - Modèle
 - Variables et constantes
 - Variables et constantes
 - Contraintes
- 7 ORPA

Réalisation semestre 1

- ► Conception et implémentation de l'interface graphique
- Implémentation du modèle
- ► Implémentation du générateur d'instance
- ▶ Intégration à l'IU.

- 1 Introduction
 - Présentation du projet
 - Objectif du projet
 - Réalisation semestre 1
 - Objectif semestre 2
- 2 Problématique
 - Problématique
- 3 Problème ?
- 4 Type de Méthodes de Résolution
- 5 Modèle
- 6 Méthodes de Résolution
 - Modèle
 - Variables et constantes
 - Variables et constantes
 - Contraintes
- 7 ORPA

Objectif semestre 2

- Proposer une nouvelle implémentation du générateur d'instance.
- ▶ Implémenter 2 méthodes heuristiques.
- Affichage graphique des solutions
- Comparaison des résultats entre modèle et heuristique

- 1 Introduction
 - Présentation du projet
 - Objectif du projet
 - Réalisation semestre 1
 - Objectif semestre 2
- 2 Problématique
 - Problématique
- 3 Problème ?
- 4 Type de Méthodes de Résolution
- 5 Modèle
- 6 Méthodes de Résolution
 - Modèle
 - Variables et constantes
 - Variables et constantes
 - Contraintes
- 7 ORPA

Problématique

Problématique

Problème?

- 1. Un ensemble de variables
- 2. Un ensemble de contraintes sur ses variables
- 3. Un objectif qui peut être soit maximiser ou minimiser un ensemble de variable.

Type de Méthodes de Résolution

Méthodes de Résolution

Méthode exacte

- Solution optimale
- ► Coûteux en ressource

Heuristique

- ► Solution pas optimale
- ▶ Peu coûteux en ressource

Modèle

- 1. Description
- 2. Variables et Constantes
- 3. Contraintes
- 4. Fonctions objectives

Description

- ► Auteur : Luis Flores chercheur au CERI (Avignon) sur le problème de Tournée de véhicule dans les réseaux tolérants aux délais.
- ► PLNE (Programmation Linéaire en nombre Entier)

- 1 Introduction
 - Présentation du projet
 - Objectif du projet
 - Réalisation semestre 1
 - Objectif semestre 2
- 2 Problématique
 - Problématique
- 3 Problème ?
- 4 Type de Méthodes de Resolution
- 5 Modèle
- 6 Méthodes de Résolution
 - Modèle
 - Variables et constantes
 - Variables et constantes
 - Contraintes
- 7 ORPA

Méthodes de Résolution

Variables et constantes

UNIVERSITÉ D'AVIGNON ET DES PAYS DE VAUCLUSE

Constantes

- ▶ t_{ij}
- ▶ d_{ij}
- $ightharpoonup r_i$
- **•** 7
- ▶ R
- $\triangleright \alpha_{ij}$

Méthodes de Résolution

Variables et constantes

Variables

- ► X_{ijk}
- Z_{jk}
- $\blacktriangleright \ \Theta_{ijk}$
- qik
- ► f_{ijk}

Contraintes

Contraintes sur la route du véhicule

- $ightharpoonup \sum_{(i,j)\in A} x_{1jt_{1j}} = 1$
- $\blacktriangleright \sum_{(i,j)\in A} x_{1jT} = 1$
- $ightharpoonup z_{jk} + \sum_{(i,j) \in A} x_{ijk} \le 1, \forall j \in V, \forall k \in T$
- ► $z_{jk} + \sum_{(i,j) \in A} x_{ijk} = \sum_{(j,p) \in A} x_{jp(k+t_{jp})} + z_{j(k+1)}$

Contraintes sur le transfert d'information

- ▶ $\sum_{i \in range(i)} \Theta_{jik} \leq Mz_{ik} \forall i \in V, \forall k \in T$
- $f_{jik} \le \alpha_{ji} (\frac{1}{1+d_{ij}^2}) r_j \Theta_{jik}, \forall j \in V, \forall i \in range(j), \forall k \in T$
- ▶ $\sum_{j \in range(i)} f_{jik} \leq R$

UNIVERSITÉ D'AVIGNON

Contraintes

Contraintes sur la quantité d'informations

- ▶ $q_{j(k+1)} = q_{jk} + r_j \sum_{i \in range(j)} f_{jik}, \forall \in V, \forall k \in T$
- $ightharpoonup q_{jk} \ge r_j, \forall j \in V, \forall k \in T$
- $ightharpoonup x_{ijk}, z_{jk}, \Theta_{jik} \in 0, 1$

Inégalité valable

- ▶ $\Theta_{jik} \leq zik, \forall \in V, \forall k \in T$
- ▶ $\sum_{j \in range(i)} f_{jik} \leq Rzik, \forall_i \in V, \forall k \in T$

Méthodes de Résolution

Modèle

Fonction Objective

$$\mathsf{minimise} \sum_{j \in V} q_{jT}$$

Modèle Correction

Anciennes Contraintes sur la route du véhicule

- $\blacktriangleright \sum_{(i,j)\in A} x_{1jt_{1j}} = 1$
- $\triangleright \sum_{(i,j)\in A} x_{1iT} = 1$
- $ightharpoonup z_{jk} + \sum_{(i,j)\in A} x_{ijk} \leq 1, \forall j \in V, \forall k \in T$
- $ightharpoonup z_{jk} + \sum_{(i,j) \in A} x_{ijk} = \sum_{(j,p) \in A} x_{jp(k+t_{ip})} + z_{j(k+1)}$

Nouvelles contraintes sur la route du véhicule

- $\blacktriangleright \sum_{(i,j)\in A} x_{1jt_{1j}} = 1$
- $\triangleright \sum_{(i,j)\in A} x_{1iT} = 1$
- ► $z_{jk} + \sum_{(i,j) \in A} x_{ijk} \le 1, \forall j \in V, \forall k \in T$
- $ightharpoonup \sum_{(ii)\notin A} x_{ijk} = 0$

ET DES PAYS DE VAUCLU

Méthodes de Résolution

Heuristique 1

Méthodes de Résolution

Heuristique 2

Interface utilisateur

Générateur d'instance

Affichage graphique d'instance

Affichage graphique d'instance

Conclusion

