Теория множеств

Теория множеств

- 1. Георг Кантор: 1877 год, «наивная теория множеств». Множество это «объединение в одно целое объектов, хорошо различаемых нашей интуицией или нашей мыслью».
- 2. Неограниченный принцип абстракции $\{x \mid P(x)\}$
- 3. Парадокс Бурали-Форте (1895, Кантор). Парадокс Рассела: $X:=\{x\mid x\notin x\};\ X\in X$?
- 4. Вариант решения парадокса: а, может, запретить все «опасные» ситуации?
- 5. Аксиоматика Цермело 1908 год, оставим только то, что используют математики.
- 6. Что такое множество? Неформально мы понимаем, формально:

Определение

Теория множеств — теория первого порядка, с дополнительным нелогическим двухместным функциональным символом ∈, и следующими дополнительными нелогическими аксиомами и схемами аксиом.

Аксиоматика ZF, равенство

Определение

Равенство «по Лейбницу»: объекты равны, если неразличимы.

Если нечто ходит как утка, выглядит как утка и крякает как утка, то это утка.

Определение

Принцип объёмности: объекты равны, если состоят из одинаковых частей

Определение

$$A \subseteq B \equiv \forall x. x \in A \rightarrow x \in B$$

$$A = B \equiv A \subseteq B \& B \subseteq A$$

Определение

Аксиома равенства: равные множества содержатся в одних и тех же множествах.

$$\forall x. \forall y. \forall z. x = y \& x \in z \to y \in z.$$

Аксиоматика ZF, конструктивные аксиомы

Определение

Аксиома пустого. Существует пустое множество Ø.

$$\exists s. \forall t. \neg t \in s$$

Определение

Аксиома пары. Существует $\{a,b\}$. Каковы бы ни были два множества а и b, существует множество, состоящее в точности из них.

$$\forall a. \forall b. \exists s. a \in s \& b \in s \& \forall c. c \in s \rightarrow c = a \lor c = b$$

Аксиоматика ZF, конструктивные аксиомы 2

Определение

Аксиома объединения: существует $\cup x$. Для любого непустого множества x найдется такое множество, состоящее в точности из тех элементов, из которых состоят элементы x.

$$\forall x. (\exists y. y \in x) \rightarrow \exists p. \forall y. y \in p \leftrightarrow \exists s. y \in s \& s \in x$$

Определение

Аксиома степени: существует $\mathcal{P}(x)$. Каково бы ни было множество x, существует множество, содержащее в точности все возможные подмножества множества x.

$$\forall x. \exists p. \forall y. y \in p \leftrightarrow y \subseteq x$$

Аксиоматика ZF. Схема аксиом выделения

Определение

Схема аксиом выделения: существует $\{t \in x \mid \varphi(t)\}$. Для любого множества x и любой формулы от одного аргумента $\varphi(y)$ (b не входит свободно в φ), найдется b, в которое входят те и только те элементы из множества x, что $\varphi(y)$ истинно.

$$\forall x. \exists b. \forall y. y \in b \leftrightarrow (y \in x \& \varphi(y))$$

Немного теорем

Теорема

Для любого множества X существует множество $\{X\}$, содержащее в точности X.

Доказательство.

Воспользуемся аксиомой пары: $\{X,X\}$

Теорема

Пустое множество единственно.

Доказательство.

Пусть $\forall p. \neg p \in s$ и $\forall p. \neg p \in t$. Тогда $s \subseteq t$ и $t \subseteq s$.

Теорема

Для двух множеств s и t существует множество, являющееся их пересечением.

Доказательство.

$$s \cap t = \{x \in s \mid x \in t\}$$

Упорядоченная пара

Определение

Упорядоченная пара. Упорядоченной парой двух множеств а и b назовём $\{\{a\},\{a,b\}\}$, или $\langle a,b\rangle$

Теорема

Упорядоченную пару можно построить для любых множеств.

Доказательство.

Применить аксиому пары, теорему о существовании $\{X\}$, аксиому пары.

Теорема

 $\langle a,b
angle = \langle c,d
angle$ тогда и только тогда, когда a=c и b=d .

Аксиома бесконечности

Определение

Инкремент: $x' \equiv x \cup \{x\}$

Определение

Аксиома бесконечности. Существует $N: \varnothing \in N \ \& \ \forall x.x \in N \to x' \in N$

В N есть всевозможные множества вида \varnothing , $\{\varnothing\}$, $\{\varnothing,\{\varnothing\}\}$, $\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}\}$, . . .

(неформально) $\omega=\{\varnothing,\varnothing',\varnothing'',\dots\}$. Тогда $\mathit{N}_1=\omega\cup\{\omega,\omega',\omega'',\dots\}$ подходит.

Полный порядок (вполне упорядоченные множества)

- 1. Частичный: рефлексивность $(a \leq a)$, антисимметричность $(a \leq b \rightarrow b \leq a \rightarrow a = b)$, транзитивность $(a \leq b \rightarrow b \leq c \rightarrow a \leq c)$.
- 2. Линейный: частичный $+ \forall a. \forall b. a \leq b \lor b \leq a$.
- 3. Полный: линейный + в любом непустом подмножестве есть наименьший элемент.

Пример

 $\mathbb Z$ не вполне упорядочено: в $\mathbb Z$ нет наименьшего.

Пример

Отрезок [0,1] не вполне упорядочен: (0,1) не имеет наименьшего.

Пример

 \mathbb{N} вполне упорядочено.

Ординалы (порядковые числа)

Определение

Транзитивное множество $X: \forall x. \forall y. x \in y \& y \in X \rightarrow x \in X$.

Определение

Ординал (порядковое число) — вполне упорядоченное отношением (\in) транзитивное множество.

Пример

 Op диналы: \varnothing , \varnothing' , \varnothing'' , \ldots

Определение

Предельный ординал: такой x, что $x \neq \emptyset$ и нет y: y' = x

Определение

Ординал х конечный, если он меньше любого предельного.

Теорема

Если x, y — ординалы, то x = y, или $x \in y$, или $y \in x$.

Предельные ординалы, ω

Определение

 ω — наименьший предельный ординал.

Теорема

 ω существует.

Доказательство.

Пусть $\omega = \{x \in \mathbb{N} \mid x \text{ конечен}\}$. Пусть θ таков, что $\theta \in \omega$. Тогда θ конечен. Пусть θ таков, что $\theta' = \omega$. Тогда $\theta \in \omega$.

Пример

 ω' — тоже ординал.

Операции над ординалами

Определение

 $\sup x$ — наименьший ординал, содержащий $x: x \subseteq \sup x$.

Пример

$$\sup\{\varnothing',\varnothing'',\varnothing'''\}=\{\varnothing,\varnothing',\varnothing'',\varnothing''',\varnothing''''\}=\varnothing'''''$$

$$a+b\equiv \left\{egin{array}{ll} a,&b\equivarnothing\ (a+c)',&b\equiv c'\ \sup\{a+c\mid c\prec b\},&b-$$
 предельный ординал

$$\omega+1=\omega\cup\{\omega\};\,1+\omega=\sup\{1+\varnothing,1+1,1+2,\dots\}=\omega$$

Ещё операции над ординалами

$$\omega \cdot \omega = \sup\{\omega \cdot 0, \omega \cdot 1, \omega \cdot 2, \omega \cdot 3, \dots\} = \sup\{0, \omega, \omega \cdot 2, \omega \cdot 3, \dots\}$$

Ординалы (порядковые числа) и порядок

Определение

Будем говорить, что $\langle S, (\prec) \rangle$ имеет порядковое число (тип) X, если существует биекция $f: S \to X$, причём $a \prec b$ тогда и только тогда, когда $f(a) \in f(b)$.

- ightharpoonup Добавить элемент перед бесконечностью: \mathbb{N} и \mathbb{N}_0 . $1+\omega=\omega$.
- lacktriangle Добавить элемент после бесконечности $(+\infty)$. $\omega+1
 eq\omega$

Пары и списки

Пример

Упорядоченные пары натуральных чисел имеют порядковый тип ω^2 .

$$\langle 3,5 \rangle < \langle 4,3 \rangle$$
 $\omega \cdot 3 + 5 < \omega \cdot 4 + 3$.

Пример

Списки натуральных чисел — порядковый тип ω^ω .

$$\langle \mathbf{3}, \mathbf{1}, \mathbf{4}, \mathbf{1}, \mathbf{5}, \mathbf{9} \rangle \qquad \omega^{\mathbf{5}} \cdot \mathbf{3} + \omega^{\mathbf{4}} \cdot \mathbf{1} + \omega^{\mathbf{3}} \cdot \mathbf{4} + \omega^{\mathbf{2}} \cdot \mathbf{1} + \omega^{\mathbf{1}} \cdot \mathbf{5} + \mathbf{9}$$

Дизъюнктные множества

Определение

Дизъюнктное (разделённое) множество — множество, элементы которого не пересекаются.

$$Dj(x) \equiv \forall y. \forall z. (y \in x \& z \in x \& \neg y = z) \rightarrow \neg \exists t. t \in y \& t \in z$$

Пример

Дизъюнктное: $\{\{1,2\},\{\rightarrow\},\{\alpha,\beta,\gamma\}\}$ Не дизъюнктное: $\{\{1,2\},\{\rightarrow\},\{\alpha,\beta,\gamma,1\}\}$

Прямое произведение множеств

Определение

Прямое произведение дизъюнктного множества a- множество $\times a$ всех таких множеств b, что:

- b пересекается с каждым из элементов множества а в точности в одном элементе
- ▶ b содержит элементы только из \u2212 a.

$$\forall b.b \in \times a \leftrightarrow (b \subseteq \cup a \& \forall y.y \in a \rightarrow \exists! x.x \in y \& x \in b)$$

$$\times \{\{\triangle, \Box\}, \{1, 2, 3\}\} = \{\{\triangle, 1\}, \{\triangle, 2\}, \{\triangle, 3\}, \{\Box, 1\}, \{\Box, 2\}, \{\Box, 3\}\}$$

Аксиома выбора

Определение

Прямое произведение непустого дизъюнктного множества, не содержащего пустых элементов, не пусто.

$$\forall t. Dj(t) \rightarrow (\forall x. x \in t \rightarrow \exists p. p \in x) \rightarrow (\exists p. p \in x)$$

Альтернативные варианты: любое множество можно вполне упорядочить, любая сюръективная функция имеет частичную обратную, и т.п.

Определение

Аксиоматика ZF + аксиома выбора = ZFC

Дискуссия вокруг аксиомы выбора

Пример

Парадокс Банаха-Тарского: трёхмерный шар равносоставен двум своим копиям.

Теорема

Теорема (Гёдель, 1938): аксиома выбора не добавляет противоречий в ZF.

Теорема

Teopema (Коэн, 1963): аксиома выбора не следует из других аксиом ZF.

Пример

Односторонние функции: Sha256 и т.п. У Sha256 есть обратная.

Теорема

Теорема Диаконеску: ZFC поверх интуиционистского исчисления предикатов содержит правило исключённого третьего.

Аксиома фундирования

Определение

Аксиома фундирования. В каждом непустом множестве найдется элемент, не пересекающийся с исходным множеством.

$$\forall x. x = \emptyset \lor \exists y. y \in x \& \forall z. z \in x \to z \notin y$$

Иными словами, в каждом множестве есть элемент, минимальный по отношению (\in) .

Идея Рассела: каждому множеству припишем *тип* (тип пустого 0, тип множеств 1, тип множеств множеств 2 и т.п.). Тогда конструкция невозможна: $\{x \mid x \in x\}$. Аксиома фундирования позволяет определить функцию ранга:

$$rk(x) = \sup\{rk(y) \mid y \in x\}$$

.

Схема аксиом подстановки

Определение

Схема аксиом подстановки. Пусть задана некоторая функция f, представимая в исчислении предикатов: то есть задана некоторая формула ϕ , такая, что f(x) = y тогда и только тогда, когда $\phi(x,y)$ & $\exists ! z. \phi(x,z)$. Тогда для любого множества S существует множество f(S) — образ множества S при отображении f.

 $\forall s. (\forall x. \forall y_1. \forall y_2. x \in s \& \phi(x, y_1) \& \phi(x, y_2) \rightarrow y_1 = y_2) \rightarrow (\exists t. \forall y. y \in t \leftrightarrow \exists x. x \in s \& \phi(x, y))$