NWEN242 Assignment 4

Vincent Yu —— 300390526

October 22, 2017

$\mathbf{Q}\mathbf{1}$

\mathbf{a}

It can store 4 Integers. 32-bit =4- byte $\frac{16}{4}$ =4 Hence it can store four integers.

b

The variables i and j are accessed through each iteration. I and J exhibits temporal locality in the inner loop function. We also use B[I][0] through each iteration. Hence B[I][0] also exhibits temporal locality.

\mathbf{c}

A[I][J] exhibits spatial locality. Because in the inner loop J changes through each iteration and the value placed next to each other, once J reaches 7999 it will start again from 0.

$\mathbf{Q2}$

 \mathbf{a}

Word Address	Binary Address	Tag	Index	Hit/Miss
3	0000 0011	0	3	\mathbf{M}
180	1011 0100	11	4	${ m M}$
43	0010 1011	2	11	${ m M}$
2	0000 0010	0	2	${ m M}$
191	1011 1111	11	15	${ m M}$
88	0101 1000	5	8	${ m M}$
190	1011 1110	11	14	\mathbf{M}
14	0000 1110	0	14	\mathbf{M}
181	1011 0101	11	5	${ m M}$
44	0010 1100	2	12	${ m M}$
186	1011 1010	11	10	${ m M}$
253	1111 1101	15	13	${ m M}$

b

Word Address	Binary Address	Tag	Index	Hit/Miss
3	0000 0011	0	1	${ m M}$
180	1011 0100	11	2	${ m M}$
43	0010 1011	2	5	${ m M}$
2	0000 0010	0	1	H
191	1011 1111	11	7	${ m M}$
88	0101 1000	5	4	${ m M}$
190	1011 1110	11	7	${ m H}$
14	0000 1110	0	7	${ m M}$
181	1011 0101	11	2	${ m H}$
44	0010 1100	2	6	${ m M}$
186	1011 1010	11	5	${ m M}$
253	1111 1101	15	6	${f M}$

 \mathbf{c}

			Cache1		Cache2		Cache3	
Word Address	Binary Address	Tag	Index	$\mathrm{Hit}/\mathrm{Miss}$	Index	$\mathrm{Hit}/\mathrm{Miss}$	Index	Hit/Miss
3	0000 0011	0	3	${ m M}$	1	${f M}$	0	${ m M}$
180	1011 0100	22	4	${ m M}$	2	${f M}$	1	${ m M}$
43	0010 1011	5	3	${f M}$	1	${f M}$	0	${f M}$
2	0000 0010	0	2	${f M}$	1	${f M}$	0	${f M}$
191	1011 1111	23	7	${f M}$	3	${f M}$	1	${f M}$
88	0101 1000	11	0	${ m M}$	0	${ m M}$	0	\mathbf{M}
190	1011 1110	23	6	${f M}$	3	${ m H}$	1	${ m H}$
14	0000 1110	1	6	${f M}$	3	${f M}$	1	${f M}$
181	1011 0101	22	5	${f M}$	2	${ m H}$	1	${f M}$
44	0010 1100	5	4	${ m M}$	2	${f M}$	1	${ m M}$
186	1011 1010	23	2	${ m M}$	1	${f M}$	0	${ m M}$
253	1111 1101	31	5	\mathbf{M}	2	${f M}$	1	${ m M}$

Cache 1:

Miss Rate: 100%

Total Cycle : $12 \times 25 + 12 \times 2 = 324$

Cache 2:

Cache 2: Miss Rate: $\frac{10}{12} \approx 83\%$ Total Cycle: $10 \times 25 + 12 \times 3 = 286$ Cache 3: Miss Rate: $\frac{10}{12} \approx 92\%$ Total Cycle: $11 \times 25 + 12 \times 5 = 335$

From the information shown above, cache2 provides the best performance.

d

Cache Data Size: 32 KiB Cache Block Size : 2 words block numbers= $\frac{2^{15}}{2^3} = 2^{12}$

(Note: here I divide three because each word have 2 byte and the cache is 2-word cache, it can hold 2 words per block so I divide it by 2 again. In order to find how many blocks we have.)

So the index is 12 bits to identify each block.

Because of 2 words block, the offset is 1 bit.

Tag = 32 - index - offset = 32 - 12 - 1 = 19 bits

Total block size : 1 + 19 + 64 = 84 bits Total cache size : $\frac{84 \times 2^{12}}{8 \times 1024} \approx 42$ KiB

Q3

\mathbf{a}

The cache block size = 2^5 =32 bytes In words : $\frac{32}{4}$ =8

b

From the 5-bits index, it shows the cache has 32 blocks $(2^5=32)$.

\mathbf{c}

For each block it has 8 words (8 \times 4=32 bytes), 32 \times 8 =256-bits Data storage : 32 \times 256 = 8192 bits Total storage: (256 + 22 + 1) \times 32 = 8928 bits The ratio is $\frac{8298}{8192}$ = 1.089

Q_5

From three way associative cache, it determines we have a 8 sets cache. So the index is 3 bits. Because the cache we have is a two-word cache so the less significant bit is the offset.

Word Address	Binary Address	Tag	Index	Hit/Miss	Block0/Way0	Block1/Way1	Block2/Way2
3	0000 0011	0	1	Miss	T(1)=0		
180	1011 0100	11	2	Miss	T(1)=0/T(2)=11		
2	0000 0010	0	1	Hit	T(1)=0/T(2)=11		
191	1011 1111	11	7	Miss	T(1)=0/T(2)=11/T(7)=11		
14	0000 1110	0	7	Miss	T(1)=0/T(2)=11/T(7)=11	T(7)=0	
31	0001 1111	1	7	Miss	T(1)=0/T(2)=11/T(7)=11	T(7)=0	T(7)=1
190	1011 1110	11	7	Hit	T(1)=0/T(2)=11/T(7)=11	T(7)=0	T(7)=1
158	1001 1110	9	7	Miss	T(1)=0/T(2)=11/T(7)=9	T(7)=0	T(7)=1