

La Cinétique chimique

$$M = \frac{m}{M}$$

$$M = \frac{V}{VM}$$

$$\int_{L_{mol}}^{V} \int_{L_{mol}}^{V} \int_{L_{mol}}^{V}$$

$$m = \frac{m}{\Pi} \Rightarrow \Pi = \frac{me^q}{me}$$
 $g m e^q$
 $g m e^q$

$$a + b = 0$$
 $\rightarrow c + d = 0$

* Romarque:

Smf (I) = 0 => I frum moachif himitant

$$M = (S_2 \circ 3^2) + 0 => S_2 \circ 3^2 - 48$$
 un roachifen exces

* le réachif limitant dispersation, toholement à la fin de la réaction,

* Déterminer le mouchet limitent:

=0 I-80 le rédachif limitant.

* Remarque ?

$$\frac{m_0(I^-)}{\varepsilon} = \frac{m_0(S_2 \circ g^2)}{1}$$

les méachifs sont en proportions shoéchione tripues.

* la Réaction totale:

An moins l'un des Meachfe

et limitout.

* la Réaction l'initée:

les Jeux neachfe sont en exces

* L'avancement molaire X J'une Machion chimipue

· c'et le nombre de fois que la Réaction a avancé depuis l'obst l'initiale.

•
$$X_{1}(1 = b_{1}) = \frac{m(x)}{2} = \frac{2}{2} = 1$$

$$x^{1}(1) = \frac{1}{m(121082-)} = \frac{1}{1} = 1$$

$$\star_{\gamma}(E_{\gamma}) = \frac{m(\Sigma_{\gamma})}{1} = \frac{1}{1} = 1$$

$$X_1(h) = \frac{m(SO_{\nu}^{-})}{2} = \frac{\nu}{2} = 1.$$

•
$$x_f = \frac{4}{1} = 4$$

•
$$x_1 = \frac{4}{7} = 4$$

•
$$= \frac{8}{2} = 4$$

*Tablean molaine ?

epustion		$\begin{array}{c} S_2 O_8^2 - + 2 I^- \longrightarrow I_2 + 280_4^- \end{array}$					
eld	arance ment	quantité de matière en mole					
	0	M1	Me	٥	0		
۴>>	×	m_1 - X	^2 -2X	×	2×X		
tf	Xp	M1 - X1	M2-2xg	×f	2/X		

$$\begin{cases} M_{t}(S_{2} \circ g^{2}) = M_{1} - X \\ M_{t}(I^{2}) = M_{2} - X \\ M_{t}(S_{2} \circ g^{2}) = X \\ M_{t}(S_{2} \circ g^{2}) = X \end{cases}$$

$$\begin{cases} M_{1}(S_{2}\partial S_{2}) = M_{1} - X_{1} \\ M_{1}(S_{2}) = M_{2} - X_{1} \\ M_{1}(S_{2}) = X_{1} \\ M_{1}(S_{2}) = X_{1} \\ M_{2}(S_{2}) = X_{1} \\ M_{3}(S_{2}) = X_{4} \\ M_{4}(S_{2}) = X_{4} \\ M_{5}(S_{2}) = S_{4} \\ M_{5}(S_{2}) = S_{$$

* les courbes:

* les courbes de la concentration ?

* Exemple: Determiner X(ty)???

epuelion		S2082 + 2 I I2 + 2804					
eld	over cl ment	quantité de matière en mole					
to	0	Ma	Me	٥	0		
F>>o	×	m_1 - X	~2 -2×	×	2×		
to	Xe	m1 - x6	n2xg	×f	v×ŧ		

$$mf(I) = m_2 - 2 \times f$$

$$enf = m_2 - mf(I)$$

$$\times f = m_2 - mf(I)$$

