Avgjørelsesproblemer, P og NP

IN2010 – Algoritmer og Datastrukturer

Uke 45, 2020

Institutt for Informatikk

Avgjørelsesproblemer

Et avgjørelsesproblem hvor svaret er JA/NEI

"Sorted: Er en liste sortert?"

"Reachability: Finnes det en sti mellom to par av noder i en graf?"

• En instans av et problem er inputtet

So	orted
Instans:	En liste <i>L</i>
Spørsmål:	Er L sortert?

detec	
Reachability	
Instans:	En graf G og to noder
	v, w
Spørsmål:	Finnes det en sti fra <i>v</i>
	til w i <i>G</i> ?

- JA-instans: instans som fører til output JA
 1,2,5,7,8,13: JA-instans av Sorted
- NEI-instans: instans som fører til output NEI 1, 2, 5, 4: NEI-instans av Sorted

Avgjørelsesproblemer

Men problemene vi har sett på hadde ikke JA/NEI svar!

- "Finn et element i en liste"
- "Hvor mange sterkt sammenhengende komponenter har en graf?"

Vi kan oversette disse problemene til relaterte avgjørelsesproblemer:

Instans : En liste L og et element e
Spørsmål: Inneholder L elementet e?
SCC-k
Instans : En graf G og et tall k
Spørsmål : Har G minst k sterkt
sammenhengende kompo-
nenter?

C----

Kompleksitetsklasser

- man ønsker å klassifisere problemer etter hvor vanskelige de er å løse
- vi skal se på to klasser avgjørelsesproblemer: P og NP
- P: løsninger kan bli effektivt beregnet
- NP: løsninger kan bli effektivt verifisert
- med "effektivt" mener vi i polynomisk tid

Kompleksitetsklassen P

- Problemer som kan løses i polynomisk tid
- med andre ord: problemer der vi vet at det finnes en algoritme som er i $O(n^k)$ for et tall k > 0.
- alle problemer vi har sett algoritmer for er i P
 - sorteringsalgoritmene løser

	Sort
Instans:	To lister L_1 og L_2
Spørsmål:	Består L_2 av elementene fra L_1 i sortert rekkefølge?

minimale spenntrær:

	MST-k
Instans:	En graf G , et tall k
Spørsmål:	Finnes det et spenntre i G som koster mindre enn k ?

Løsning vs. verifisering

Instans:

Her er tanken at å løse et problem er minst like vanskelig som å verifisere en løsning.

Men hva betyr verifisering for avgjørelsesproblemer?

En algoritme som verifiserer et problem tar instansen og et sertifikat som input.
 Output blir JA hvis instansen er en JA-instans.

	Reac	habil	ity				
า	graf	G og	to	noder	v,	W	

Spørsmål: Finnes det en sti fra v til w i G?

- Instans: graf til høyre og to noder A og G
- mulig sertifikat: en sti fra A til G: A, C, F, G
- verifiseringsalgoritme: sjekk om sertifikatet er en sti fra A til G i grafen

Kompleksitetsklassen NP

- Problemer som kan verifiseres i polynomisk tid
- Ekvivalent definisjon: Problemer som kan løses av ikke-deterministiske algoritmer i polynomisk tid.¹
- Så et problem L er i NP hvis det finnes en algoritme V som tar som en instans av L og et sertifikat som input, og outputter JA for JA-instanser innen polynomisk tid $(O(n^k)$ for et tall k > 0).

¹mer om dette i en senere video, ikke eksamensrelevant

Kompleksitetsklassen NP: Eksempler

Reachability er i NP, siden verifikasjonen (sjekk om sertifikatet er en sti fra v til w
 i G) kan gjøres i polynomisk tid

```
Algorithm 1: Reachability Verifier
Input: En graf G, to noder v, w, og en liste L av noder
Output: JA hvis L er en sti fra v til w i G

Procedure Reachability-Verifier (G, v, w, L)

n = L.length

if L[0] \neq v or L[n-1] \neq w then

return NEI

for i from 1 to n-1 do

if (L[i-1], L[i]) not edge in G then

return NEI

return NEI
```

Reachability Instans: En graf G og to noder v, wSpørsmål: Finnes det en sti fra v til w i G?

P er i NP

- Hvis vi kan løse i polynomisk tid, så kan vi også verifisere i polynomisk tid!
- Verifiseringsalgoritmen kan da bare løse problemet, og trenger ingen sertifikat

```
Algorithm 2: Verifying by solving

Input: En graf G, to noder v, w, og en liste L av noder
Output: JA hvis L er en sti fra v til w i G

Procedure Reachability-Verifier2(G, v, w, L)

BFS(G,v)
return w.visited
```

- Men finnes det problemer i NP som ikke er i P?
- Vi vet ikke! (men de fleste antar $P \neq NP$)
- Clay Mathematics Institute gir ut \$1mill til den som løser problemet!

"Vanskelige" problemer i NP

- vi vet av noen (mange) problemer at de er de vanskeligste problemene i NP
- disse heter NP-komplette problemer

		Hamiltonsykel	
Instans:	En graf G		

Spørsmål: Finnes det en sykel i G som besøker alle noder nøyaktig en gang?

	Knapsack
Instans:	En mengde objekter med hver sin vekt og verdi, og to tall s og t
Spørsmål: Finnes det en mengde objekter som som tilsammen er verdt mer	
	enn t og veier mindre enn s?

	Sudoku
Instans:	Et ufullstendig fylt ut $n \times n$ Sudoku brett
Spørsmål:	Har inputbrettet en gyldig løsning?