COMP3711: Design and Analysis of Algorithms

Tutorial 1

Asymptotic notations

Asymptotic upper bound

Definition (big-Oh)

f(n) = O(g(n)): There exists constant c > 0 and n_0 such that $f(n) \le c \cdot g(n)$ for $n \ge n_0$

Asymptotic lower bound

Definition (big-Omega)

 $f(n) = \Omega(g(n))$: There exists constant c > 0 and n_0 such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$.

Asymptotic tight bound

Definition (big-Theta)

$$f(n) = \Theta(g(n))$$
: $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$

Comparing time complexity

Example:

Algorithm 2 is clearly superior

- T(n) for Algorithm 1 is $O(n^3)$
- T(n) for Algorithm 2 is $O(n^2)$
- Since n^3 grows much more rapidly, we expect Algorithm 1 to take much more time than Algorithm 2 when n increases

Some Basic mathematic background on exponentials

For all real $a \neq 0$, m and n, we have the following identities:

$$a^{0} = 1$$

$$a^{1} = a$$

$$a^{-1} = 1/a$$

$$(a^{m})^{n} = (a^{n})^{m} = a^{mn}$$

$$a^{m}a^{n} = a^{m+n}$$

$$a^{1/n} = \sqrt[n]{a}$$

Some Basic mathematic background on logarithms

For all real a > 0, b > 0, c > 0, and n:

$$\begin{array}{ccc} (a) & = & b^{\log_b a} \\ \log_c(ab) & = & \log_c a + \log_c b \\ \log_b a^n & = & n \log_b a \\ \log_b a & = & \frac{\log_c a}{\log_c b} \\ \log_b(1/a) & = & -\log_b a \\ \log_b a & = & \frac{1}{\log_a b} \\ a^{\log_b n} & = & n^{\log_b a} \end{array}$$

For each of the following statement, answer whether the statement is true or false.

- (a) $1000n + n \log n = O(n \log n)$.
- (b) $n^2 + n \log(n^3) = O(n \log(n^3)).$
- (c) $n^3 = \Omega(n)$.
- (d) $n^2 + n = \Omega(n^3)$.
- (e) $n^3 = O(n^{10})$.
- (f) $n^3 + 1000n^{2.9} = \Theta(n^3)$
- (g) $n^3 n^2 = \Theta(n)$

- (a) True.
- (b) False.
- (c) True.
- (d) False.
- (e) True.
- (f) True.
- (g) False.

For each pair of expressions (A, B) below, indicate whether A is O, Ω , or Θ of B. Note that zero, one, or more of these relations may hold for a given pair; list all correct ones. Justify your answers.

- (a) $A = n^3 + n \log n$; $B = n^3 + n^2 \log n$.
- (b) $A = \log \sqrt{n}$; $B = \sqrt{\log n}$.
- (c) $A = n \log_3 n$; $B = n \log_4 n$.
- (d) $A = 2^n$; $B = 2^{n/2}$.
- (e) $A = \log(2^n)$; $B = \log(3^n)$.

A Relation: B

(a)
$$n^3 + n \log n$$
 Ω, Θ, O $n^3 + n^2 \log n$

(b)
$$\log \sqrt{n}$$
 Ω $\sqrt{\log n}$

(c)
$$n \log_3 n$$
 Ω, Θ, O $n \log_4 n$

(d)
$$2^n$$
 Ω $2^{n/2}$

(e)
$$\log(2^n)$$
 Ω, Θ, O $\log(3^n)$

Solution 2: Step by step

Notes:

- (a) Both are $\Theta(n^3)$, the lower order terms can be ignored. Note that if $A(n) = \Theta(B(n))$, then automatically A(n) = O(B(n)) and $A(n) = \Omega(B(n))$.
- (b) After simplifying, A is $(1/2) \log n$, and B is $\sqrt{\log n}$. Substituting $m = \log n$, we can see ratio A/B grows as $m/2\sqrt{m} = \sqrt{m}/2$ which tends to infinity as n (and hence m) tends to infinity, i.e., $A(n) = \Omega(B(n))$.
- (c) Log base conversion only introduces a constant factor.
- (d) The ratio is $2^n/2^{n/2} = (2)^{n/2}$ which goes to infinity in the limit.
- (e) After simplifying these are $n \log 2$ and $n \log 3$, both of which are $\Theta(n)$.

Suppose $T_1(n) = O(f(n))$ and $T_2(n) = O(f(n))$. Which of the following are true? Justify your answers.

(a)
$$T_1(n) + T_2(n) = O(f(n))$$

(b)
$$\frac{T_1(n)}{T_2(n)} = O(1)$$

(c)
$$T_1(n) = O(T_2(n))$$

- (a) True. Since $T_1(n) = O(f(n))$ and $T_2(n) = O(f(n))$, it follows from the definition that there exist constants $c_1, c_2 > 0$ and positive integers n_1, n_2 such that $T_1(n) \le c_1 f(n)$ for $n \ge n_1$ and $T_2(n) \le c_2 f(n)$ for $n \ge n_2$. This implies that, $T_1(n) + T_2(n) \le (c_1 + c_2) f(n)$ for $n \ge \max(n_1, n_2)$. Thus, $T_1(n) + T_2(n) = O(f(n))$.
- (b) False. For a counterexample to the claim, let $T_1(n) = n^2$, $T_2(n) = n$, $f(n) = n^2$. Then $T_1(n) = O(f(n))$ and $T_2(n) = O(f(n))$ but $\frac{T_1(n)}{T_2(n)} = n \neq O(1)$.
- (c) False. We can use the same counterexample as in part (b). Note that $T_1(n) \neq O(T_2(n))$

Let f(n) and g(n) be non-negative functions. Using the basic definition of Θ -notation, prove that $\max(f(n), g(n)) = \Theta(f(n) + g(n))$.

For any value of n, $\max(f(n), g(n))$ is either equal to f(n) or equal to g(n). Therefore, for all n,

$$\max(f(n),g(n)) \le f(n) + g(n).$$

Using c = 1 and $n_0 = 1$ in the big-oh definition, it follows that

$$\max(f(n),g(n)) = O(f(n) + g(n)).$$

Also, for all n,

$$\max(f(n),g(n)) \geq f(n)$$

and

$$\max(f(n), g(n)) \ge g(n).$$

Adding we have

$$2 \times \max(f(n), g(n)) \ge f(n) + g(n).$$

Therefore,

$$\max(f(n),g(n)) \geq \frac{1}{2}(f(n)+g(n)).$$

Using c=1/2 and $n_0=1$ in the Omega definition, it follows that

$$\max(f(n),g(n)) = \Omega(f(n)+g(n)).$$

Since
$$\max(f(n), g(n)) = O(f(n) + g(n))$$
 and $\max(f(n), g(n)) = \Omega(f(n) + g(n))$, it implies that $\max(f(n), g(n)) = \Theta(f(n) + g(n))$.