Münze in glatter Landschaft

Formeln

Alexander Artiga Gonzalez

13. Juli 2015

Inhaltsverzeichnis

1	Starrkörperbewegung	2
2	Münze und Landschaft	2
3	Differentialgleichungen3.1 Dynamische Zusammenhänge	
4	Munthe-Kaas Verfahren	4

1 Starrkörperbewegung

$$M(x) = Rx + c$$

R Rotationsmatrix, c Translationsvektor

2 Münze und Landschaft

Landschaftsfunktion:

$$f: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto f(x,y)$$

Landschaftsoberfläche:

$$\varphi: \mathbb{R}^2 \to \mathbb{R}^3, (x,y) \mapsto (x,y,f(x,y))$$

Normalenfeld:

$$N: \mathbb{R}^2 \to \mathbb{R}^3, (x,y) \mapsto \frac{\partial_1 \varphi \times \partial_2 \varphi}{\|\partial_1 \varphi \times \partial_2 \varphi\|_2}$$

Trägheitstensor:

$$T_{\bar{x}}^*(B) = m(B) \frac{r^2}{4} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$T_a = RT_{\bar{x}}^* R^T - mr^2 A(p)$$

$$v = T_a \omega$$

$$v = Re_2 \Longrightarrow \dot{v} = \dot{R}e_2 = A(\omega)Re_2 = A(\omega)v$$

$$q(\alpha, v) = (I - vv^T)N(\alpha)$$

$$\eta(\alpha, v) = \frac{q(\alpha, v)}{\|q(\alpha, v)\|_2}$$

$$p = \eta(\alpha, v)$$

$$\begin{pmatrix} 0 & -\omega_3 & \omega_2 \end{pmatrix}$$

$$A(\omega) := \left(\begin{array}{ccc} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{array} \right)$$

3 Differentialgleichungen

3.1 Dynamische Zusammenhänge

Winkelgeschwindigkeit:

$$\dot{R} = A(\omega)R$$

Schlupffreiheit:

$$\dot{M}_t(b) = 0 \Longrightarrow \dot{c} = rA(\omega)p$$

Drehimpulsbilanz:

$$(\dot{T_a\omega}) = mrA(p)q - mr^2A(\dot{p})A(p)\omega$$

3.2 Gleichungen

Kontaktpunkt:

$$\begin{split} (\varphi'(\alpha) + r\frac{\partial}{\partial\alpha}\eta(\alpha,\upsilon))\dot{\alpha} &= rA(\omega)p - r\frac{\partial}{\partial\upsilon}\eta(\alpha,\upsilon)\dot{\upsilon} \\ \text{Mit } L &= \varphi'(\alpha) + r\frac{\partial}{\partial\alpha}\eta(\alpha,\upsilon), \, E = L^TL, \\ \dot{\alpha} &= E^{-1}L^T(rA(\omega)p - l\dot{\upsilon}) \end{split}$$

Geschwindigkeit:

$$\dot{v} = mrA(p)g - mr^2A(A(\omega)p - \frac{1}{r}\varphi'(\alpha)\dot{\alpha})A(p)\omega$$

Differentialgleichung:

$$\frac{d}{dt} \left(\begin{array}{c} R \\ \alpha \\ v \end{array} \right) = F(R, \alpha, v)$$

4 Munthe-Kaas Verfahren

$$\frac{d}{dt} \left(\begin{array}{c} u \\ \alpha \\ v \end{array} \right) = F(u, \alpha, v)$$

mit $\dot{u} = (I - \frac{1}{12} A(u) (6I + A(u)) \omega$ für RK4. Für R gilt:

$$R_{t+1} = exp(A(u_{t+1}))R_t$$

(Rodriguez - Formel)

Hinweise

Es sollte gelten

- $\varphi'(\alpha)\dot{\alpha} = \dot{b}\perp p$
- $\bullet \|p\|_2 = 1$