VIRTUALISATION: MODULE-1

MAJEURE INFRASTRUCTURE 2020

Présentation du cours

- Présentation de VMware vSphere 6.7
- Installation et configuration d'un serveur ESXi
- Installation et configuration d'un vCenter
- vSphere et le réseau
- vSphere et le stockage
- Création et gestion de machines virtuelles
- Migration et import de machines virtuelles
- Gestion des logs

- vSphere 6.7 contient 2 composants :
 - VMware ESXi Server
 - Hyperviseur, peut fonctionner de manière autonome
 - VMware vCenter
 - Pilotage des hyperviseurs ESXi

Présentation de vSphere 6

Configuration des machines virtuelles :

	vSphere 5.0 ₽	vSphere 5.1 ₽	vSphere 5.5 ₽	vSphere 6.0 ₽	vSphere 6.5 ₽	vSphere 6.7 ₽
Virtual CPU	32	64	64	128	128	128
Virtual RAM	1 TB	1 TB	1 TB	4 TB	6128 GB	6128 GB
Max VMDK size	2 TB - 512 B	2 TB - 512 B	62 TB	62 TB	62 TB	62 TB
Virtual SCSI adapters	4	4	4	4	4	4
Virtual SCSI targets per adapter	15	15	15	15	15	64
Virtual SCSI targets	60	60	60	60	60	256
Virtual NVMe adapters	NA	NA	NA	NA	4	4
Virtual NVMe targets per adapter	NA	NA	NA	NA	15	15
Virtual NVMe targets	NA	NA	NA	Na	60	60
Virtual NICs	10	10	10	10	10	10

Présentation de vSphere 6

Configuration des ESXi :

	vSphere 5.0 ₽	vSphere 5.1 ₽	vSphere 5.5 ₽	vSphere 6.0 ₽	vSphere 6.5 ₽	vSphere 6.7 &
Logical CPU	160	160	320	480	576	768
Physical RAM	2 TB	2 TB	4 TB	12 TB	12 TB	16 TB
NUMA Nodes	8 nodes	8 nodes	16 nodes	16 nodes	16	16
Virtual CPU	2048	2048	4096	4096	4096	4096
Volumes	256	256	256	256	512	1024
Virtual disks	2048	2048	2048	2048	2048	2048
Virtual Machines	512	512	512	1024	1024	1024

vSphere

- Version la plus récente : 6.7 (2018)
- Plusieurs niveau de licences (essential, standard, enterprise plus, enterprise plus + operations, ROBO, ...)
- Voir : http://www.vmware.com/products/vsphere.html

- Avant l'installation, vérifier que votre matériel est dans la HCL :
 - Serveurs
 - Stockage
 - Cartes d'extension

- Méthodes d'installation :
 - Manuelle
 - DVD/USB
 - Silencieuse/Automatique
 - HTTP, NFS, FTP, DVD, Autodeploy
- On peut installer le serveur sur les disques locaux ou sur une clé USB/carte flash

TP

Installation d'un serveur ESXi

Installation et configuration d'un vCenter

- Le vCenter est le point central de la gestion d'une infrastructure vSphere
- Fonctionnalités:
 - Gestion des ressources
 - Template
 - Déploiement et gestion des VMs
 - Tâches planifiées
 - Statistiques
 - Alarmes
 - Management des hyperviseurs

Installation et configuration d'un vCenter

Virtualization Management with VMware vCenter

Infrastructure Management

Disponibilité du vCenter

- Solutions de haute disponibilité pour le vCenter :
 - HA vSphere (si c'est une VM)
 - Standby server
 - HA appliance (à partir de 6.5)

Types de vCenter

- Installation manuelle des composants sur un
 OS Windows server (ne sera plus supporté en vSphere 7)
 - BDD : Windows SQL, Oracle

- Virtual appliance (vApp) fournie par Vmware (architecture de référence en 6.7)
 - OS : Linux (Photon de Vmware)
 - BDD : postreSQL

Installation et configuration d'un vCenter

TP

Installation d'un serveur vCenter

vSphere et le réseau

- Définissez l'architecture dont vous avez besoin :
 - Type de trafic à véhiculer
 - Débit des liens réseaux
 - Besoins d'isolation
 - Nombre de cartes réseaux et ports de switchs disponibles
 - o ..

vSphere et le réseau

- □ vSwitch ≠ switchs physiques
 - Gestion différente des MAC
 - Pas de STP
 - Pas de négociation dynamique pour le Dynamic Trunking
 Protocol et Port Aggreation Protocol
- Quelques définitions :
 - Port/Port group :
 - Vmkernel port : port réseau virtuel délivrant des services pour l'hyperviseur
 - Virtual machine port group : groupe de ports qui partagent une configuration commune
 - Acces port : port réseau qui ne transport qu'un vlan

- Standard vSwitch
 - Communication entre les VMs d'un même hyperviseur
 - Communication entre les VMs d'hyperviseurs différents
 - Communication entre les VMs et les autres machines du réseau
 - Communication entre les Vmkernel et le reste du réseau
 - Les vSwitch sont propres à chaque ESXi

 Les switchs virtuels doivent être reliés à des cartes réseaux physiques (uplink) pour communiquer avec l'extérieur

- Techniques de répartition du trafic des VM:
 - Source MAC Load Balancing
 - Originating virtual port ID
 - IP Hash

- Trois possibilités pour gérer les Vlan :
 - Arrêt du tag au niveau du Switch (External Switch Tagging)
 - Arrêt du tag au niveau du vSwitch (Virtual Switch Tagging)
 - Arrêt du tag dans la VM (Virtula Guest Tagging)

- Traffic Shaping:
 - Permet de limiter le trafic sortant des VM
 - Trois paramètres :
 - Average Bandwith (Kbits/s)
 - Peak Bandwith (Kbits/s)
 - Burst size (Kbyte)

Limites des Standard vSwitch en v5

Elément	Limite
Nombre de vSwitch	248
Ports par vSwitch	4088
Ports par hôtes	4096
Port groups par vSwitch	512
Port groups par hôtes	512
Uplinks par vSwitch	32
Vmkernel nics	16
Virtual NICs par hôte	4096

TP Configuration de vSwitch

- Mêmes fonctionnalités de base que les vSwitchs...
- Avec en plus :
 - CDP/LLDP
 - Gestion de la sécurité par port
 - Statistiques avancées
 - Traffic shaping par port
 - Private vlan
 - Network I/O control
 - □ LACP (à partir de 5.5)
 - NetFlow

 Les dvSwitch sont bien plus puissants mais ... ne sont pas disponibles dans toutes les versions

 Ils ne se configurent pas sur chaque ESXi mais au niveau datacenter

 Le vCenter est chargé de distribuer leur configuration

Limites des Distributed vSwitch en v5

Elément	Limite
dvSwitch par vCenter	16
dvSwitch par hôte	16
dvPort group par dvSwitch	512
Nombre de ports par dvSwitch	8000
Nombre d'hôte par dvSwitch	300
VM par dvSwitch	3000
Vlans ou PVlans	512

TP

Configuration de dvSwitch

vSphere et le stockage

- 4 types de stockages utilisables :
 - □ Disques locaux (mécaniques, SSD, ..)
 - Partages NFS
 - □ iSCSI, FCoE
 - Fibre channel et FC-NVMe

Présentation du stockage aux VMs

- Via des disques durs virtuels hébergés dans des pools de stockage (Datastore, NAS)
- Directement à la VM
 - Physical Raw device mapping (pass-through)
 - Clusters Windows
 - Virtual Raw devide mapping (Vmware)
- Dans la VM
 - iSCSI
 - NFS

Présentation du stockage aux VMs

Le thin provisionning

Permet de faire de la sur allocation

- Plusieurs niveaux
 - Dans la VM (OS)
 - Sur le datastore (hyperviseur)
 - Sur les volumes (baie de stockage)
- Natif sur les NAS

Problème de suivi des différents niveaux

VMFS

- C'est un système de fichier développé par VMware
 - Version 5 en vSphere 5, 6 en vSphere 6.5
 - FS de type cluster
 - Système de verrouillage simplifié
 - Peut être créé sur du stockage local ou distant
 - Taille max : 64TB-512 bytes
- On peut agrandir un VMFS :
 - En ajoutant un lun/disque (on utilise un « extend »)
 - En agrandissant un lun (on parle d' « expand »)

VMFS

VMFS

TP

Configuration d'un datastore VMFS

Les disques virtuels

- Fichiers composants une VM :
 - .vmx : fichier de configuration de la VM
 - .vmx.lck : fichier caché de lock
 - .nvram : configuration BIOS de la vM
 - .vmdk : disque de la VM
 - -000#.vmdk : fichier de post-snapshot
 - .vmsd : dictionnaire des snapshots
 - .vmem : mémoire la VM
 - .vmss : utilisé quand la machine est en pause
 - -Snapshot#.vmsn : snapshot de la mémoire
 - .vswp : swap virtuel de la VM

Les disques virtuels

- Format des disques :
 - Thin
 - Le disque virtuel augmente au fur et à mesure que la VM en a besoin
 - Tick (zeroedthick)
 - Le VMDK fait sa taille maximum au niveau du datastore mais pas sur le disque
 - EagerZeroedTick
 - Le VMDK fait sa taille maximum au niveau du datastore et sur le disque (il est rempli de 0 à sa création)

- Une VM utilise du matériel virtuel :
 - vSphere 6.7 = couche matérielle en version 14
 - Limites:
 - 128 vCPU
 - 6128Go de RAM
 - Limites en version 8 (vsphere 5.0) :
 - 8 vCPU
 - 256Go de RAM
- La version de matériel utilisé a un impact fort :
 - Sur les fonctionnalités disponibles (contrôleurs disques SAS, NVMe, ..)
 - Les instructions remontées dans le système d'exploitation invité : AVX, modes IBRS et STIBP pour les attaques spectre/meltdown

- Pour créer une nouvelle machine, il faut :
 - Un nom
 - Un type d'OS
 - Nombre de CPU
 - Taille de la RAM
 - Emplacement du disque virtuel et taille
- Le type d'OS permet à VMware de choisir automatiquement certains paramètres (ex : contrôleur SCSI)

Le VMM et les overhead :

Memory (MB)	1 VCPU	2 VCPUs	3 VCPUs	4 VCPUs	5 VCPUs	6 VCPUs	7 VCPUs	8 VCPUs
256	113.17	159.43	200.53	241.62	293.15	334.27	375.38	416.50
512	116.68	164.96	206.07	247.17	302.75	343.88	385.02	426.15
1024	123.73	176.05	217.18	258.30	322.00	363.17	404.34	445.52
2048	137.81	198.20	239.37	280.53	360.46	401.70	442.94	484.18
4096	165.98	242.51	283.75	324.99	437.37	478.75	520.14	561.52
8192	222.30	331.12	372.52	413.91	591.20	632.86	674.53	716.19
16384	334.96	508.34	550.05	591.76	900.44	942.98	985.52	1028.07
32768	560.27	863.41	906.06	948.71	1515.75	1559.42	1603.09	1646.76
65536	1011.21	1572.29	1616.19	1660.09	2746.38	2792.30	2838.22	2884.14
131072	1912.48	2990.05	3036.46	3082.88	5220.24	5273.18	5326.11	5379.05
262144	3714.99	5830.60	5884.53	5938.46	10142.83	10204.79	10266.74	10328.69

- Installation de la VM :
 - Utilisation d'une image iso visible par le vCenter
 - Utilisation du lecteur de CD de l'ESXi
 - Utilisation du lecteur de CD de la machine qui a lancée le vSphere Client
 - Utilisation du boot PXE dans la VM

- Les VMware Tools:
 - □ Pilotes graphique + souris
 - Drivers réseaux et disque
 - Driver pour le balooning mémoire
 - VM heart beat
 - Synchronisation du temps avec le serveur ESX (déprécié)
 - Arrêt/Démarrage/Reboot « propres »
 - Flush écritures disques lors des opérations de snapshot

TP

Installation d'une machine virtuelle

Les snapshots

- Permettent de capturer à un instant T l'état de la machine :
 - La RAM
 - Le disque
- Les fichiers de snapshot -0000X.vmdk
 contiennent le delta entre des blocs du disque à l'instant T et les blocs du disque à l'instant T2

Les snapshots

Snapshots

TP

Création et gestion de snapshots

La gestion des CPU

Les impacts des architectures NUMA

Le dimensionnement

Diagnostiquer les problèmes de performances

Les architectures NUMA

- Non-Uniform Memory Access
- Chaque CPU a une partie de RAM considérée comme « locale »
- Les CPU ont un accès privilégié à la RAM locale
- CPU récents (à partir de Nehalem, Opteron)
- Visible par ESXtop (mode mémoire)

NUMA vs UMA

NUMA - localité

Hardware-assisted CPU virtualization

- Le Binary translation (BT)
 - Permet de capturer les instructions privilégiées normalement gérées par l'OS dans le ring 0
 - On parle de « trap and emulate »

- Intel VT-x et AMD AMD-v (2006)
 - Hardware assisted virtualization (HV), on ajoute un ring (-1)

- Deux niveaux de mémoire dans la VM :
 - □ Mémoire virtuelle (utilisé pour la première fois en 1959)
 - Mémoire physique

 La correspondance virtuelle <> physique est stockée dans la « page table » qui est stockée en mémoire

 Si application a besoin de données, on fait un « page table walk » pour connaitre la correspondance virtuelle <> physique

 Si la donnée n'est pas dans la mémoire physique (exemple : swap), on la récupère et on la met en mémoire physique

 Le « page table walk » est assez lent alors pour résoudre le problème, on a inventé les Memory Management Unit et les Translation Look-aside Buffer (cache pour la MMU)

- Problème : dans le cas d'un hyperviseur, nous avons un niveau de correspondance supplémentaire :
 - Mémoire physique de l'hyperviseur <> mémoire
 « physique » de la VM
- La VM ne peut pas vraiment accéder à un MMU physique, il est émulé par le VMM

- Le VMM est alors responsable du maintien de la correspondance :
 - Mémoire physique hyperviseur <> mémoire
 « physique VM »

Virtualisation du MMU

**Repol WParche Astricularisation

EPT chez Intel

Transparent Page sharing

- Si on fait du HW assisted MMU :
 - Passage de 4KB à 2MB

Balooning

Les templates

- Permet de créer des « masters »
 - On sauvegarde une configuration de VM ainsi qu'un ou plusieurs disques
 - Attention aux identifiants uniques générés pas certains OS (utilisez sysprep, ..)
- Un template ne peut pas être démarré

 On peut utiliser des scripts de personnalisation lors du déploiement d'un template

Les clones

Permet de créer une copie identique d'une VM

 Peut être réalisé sur une VM en fonctionnement

Templates et clones

TP

Création et gestion de templates

Migration et import de VM

- Solution de P2V et V2V :
 - vCenter Converter :
 - Migration à chaud ou à froid
 - Pensez à faire le ménage après la migration
 - Adaptez la configuration matérielle de la VM
- Import d'appliances :
 - Open Virtual (Machine) Format
 - Exemples : wwww.vmware.com/appliances
 - F5, Cisco, Zimbra, ..

Les OVF

 Naissance en Septembre 2007 (Dell, IBM, Microsoft, VMware, XenSource) lors de la soumission à la DMTF

- Spec officielle depuis Janvier 2010
 - Supporté depuis ESX 3.5 (fin 2007)
- On parle de package OVF
 - Contient plusieurs fichiers dans un même répertoire (fichiers disques + xml)
 - OVA = OVF au format tar ou zip

Les OVF

La place des OVF :

- Utilisation de disques partagés et de fichiers delta
- La personnalisation lors du déploiement :

Product	Property	Description				
Linux	hostname	Network identity of the application, including IP				
	ip	address.				
	subnet					
	gateway					
	dns					
	netCoreRmemMax	Parameters to optimize the transfer rate of the IP stack				
	netCoreWmemMax					

Sécurité d'accès au vCenter et aux VMs

- Les utilisateurs possèdent un rôle qui leur permet de réaliser des actions (Allumer une VM, Créer une VM, ..)
- Rôles par défaut pour un ESXi:
 - No Access
 - Permet d'exclure des utilisateurs
 - Read-Only
 - Permet de voir certaines configurations
 - Administrator
 - « Full power »

Sécurité d'accès au vCenter et aux VMs

- Rôles par défaut pour un vCenter:
 - Même que sur les ESX plus :
 - Virtual Machine Power user
 - Permet de faire toutes les opérations sur les VM
 - Virtual Machine User
 - Permet d'interagir avec la VM mais pas de la modifier
 - Resource Pool Administrator
 - Permet de gérer un Resource Pool et ses machines
 - VMware Consolidated Backup User
 - Permet d'utiliser des opérations de backup
 - Datastore Consumer
 - Permet d'utiliser de l'espace sur le(s) datastore(s)
 - Network Consumer
 - Permet de rattacher une VM a un réseau

TP

Gestion de la sécurité sous vSphere

Les alarmes

- Une alarme est caractérisée par :
 - Le ou les objet(s) sur lequel(s) elle s'applique
 - Un ou plusieurs « trigger »
 - L'action à réaliser
- 3 états :
 - Normal
 - Warning
 - Alert
- Réponses utilisateur :
 - Ignorer
 - Acknowledge (grisée)
 - Clear (disparait)

Les alarmes

- Les objets :
 - VM, Datastore, ...
 - Notion d'héritage
- Les triggers :
 - Condition
 - Evénement

- Actions
 - Mail, trap, script, action sur la VM

TP Gestion des alarmes

Gestion des logs

- Plusieurs types de logs :
 - vCenter
 - Différents services
 - ESXi
 - Stockés localement
 - Ephéméres quand on utilise autodeploy

Les logs du vCenter

- Fichiers principaux de log du vCenter :
 - Vpxd
 - fichier de log principal
 - Vpx-profiler
 - Fichier de log des performances du vCenter
- Les fichiers sont visibles via le vSphere client

Les logs des ESXi

- Fichiers de log principaux :
 - /var/log/messages
 - Log de l'OS
 - /var/log/vmware/hostd.log
 - Log du Host Agent
 - /var/log/vmware/vpx/vpxa.log
 - Log de l'agent vCenter
- Rotation des fichiers de log

Les logs des ESXi

- Les logs sont accessibles :
 - Via la console du serveur
 - Via le vSphere client en cas de connexion directe
 - □ Via SSH (tail, ..)
 - Via Syslog (si activé)

Collecte des logs

- vCenter log bundle
 - Start -> Programs -> Vmware
- ESXi log bundle
 - vSphere Client -> Administration -> Export system log
 - vm-support

TP Gestion des logs

Outils d'administration

- Accès direct à l'ESX
 - vSphere Client
 - SSH
 - API
- Accès indirect
 - vCenter

SSH

- ESXi en mode console
- Accès aux commandes :
 - Esxcli
 - Esxcfg
 - Net-dvs
 - □ ..

TP Utilisation SSH

Gestion des hôtes ESXi

- VMware Update Manager
- Les VIB
- Les Host profile
- Image builder
- VMware AutoDeploy

VUM

- VMware Update Manager
 - Application de patchs
 - Déploiement de mises à jour majeures d'ESXi
 - Mise à jour de Virtual Appliance
- Nécessite une installation du service et le déploiement du plugin

VUM

- Une baseline regroupe un ou plusieurs patchs
- Les baselines groups regroupent des baselines
- 4 status pour les patchs :
 - Unknow
 - Non-compliant
 - Compliant
 - Incompatible

VUM

- Les patchs sont stockés dans un dépôt
- Les patchs Vmware sont téléchargés automatiquement à intervale régulier
- On peut déposer des patchs dans le dépôt ou des images d'ESXi

Les VIB

- vSphere Installation Bundle
- Packages logiciels pour les ESXi
 - Une archive
 - Un fichier XML de description
 - Un fichier de signature
- Peuvent intégrés aux images via l'image builder

Les VIB

- 2 méthodes de déploiement
 - VUM
 - Esxcli (esxcli software vib install)
- Plusieurs niveaux d' 'acceptance'
 - Vmware certified
 - Vmware Accepted
 - Parner Supported
 - Community supported

TP Déploiement d'un vib