BADANIE FILTRU RLC

T. Fas

19 marca 2018

STRESZCZENIE

Celem doświadczenia było skonstruowanie filtru RLC, zbadanie charakterystyki amplitudowej i fazowej oraz znalezienie częstości rezonansowej dla szeregowego i równoległego połączenia kondensatorów lub cewek. Otrzymane wyniki są zgodne z przewidywaniami.

WSTĘP

Filtry RLC składają się z opornika o oporze R, kondensatora o pojemności C oraz cewki o indukcyjności L. Schemat takiego filtra przedstawiono na Rysunku 1.

Rysunek 1: Schemat obwodu RLC.

Stosunek T amplitudy napięcia wyjściowego U_{wyj} do amplitudy napięcia wejściowego U_{wej} dla obwodu RLC, wraz z uwzględnieniem oporu pasożytniczego R_p pochodzącego od cewki i kondensatora, dany jest wzorem:

$$T = \frac{U_{wyj}}{U_{wej}} = \frac{R}{\sqrt{(R+R_p)^2 + \left(L\omega - \frac{1}{\omega C}\right)^2}},\tag{1}$$

gdzie ω jest częstością prądu wejściowego.

Z kole
i przesunięcie fazowe ϕ sygnału wyjściowego względem wejściowego d
ane jest wzorem:

$$\phi = \arctan \left(\frac{1 - \omega^2 LC}{(R + R_p) C\omega} \right) \tag{2}$$

Ważnym pojęciem jest częstość rezonansowa $\omega_{rez}=1/\sqrt{LC}$ dla której to transmitancja T przyjmuje wartość maksymalną wynoszącą $R/(R+R_p)$.

W doświadczeniu badano wartości T oraz ϕ dla różnych częstości ω napięcia wejściowego. Badano również te same wielkości dla innej wartości oporu. Zmierzono również wartości częstości rezonansowej dla układu z dwoma kondensatorami połączonymi równolegle lub szeregowo, jak i dla dwóch cewek łączonych szeregowo bądź równolegle.

UKŁAD DOŚWIADCZALNY

Układ doświadczalny składał się z obwodu RLC, złożonego według schematu z Rysunku 1, oscyloskopu oraz generatora sygnałów. Generator został podłączony do obwodu RLC, a dalej do oscyloskopu. Dodatkowo bezpośrednio podłączono generator i oscyloskop, aby móc jednocześnie obserwować sygnał wejściowy i wyjściowy. Schemat układu przedstawiono na Rysunku 2.

Rysunek 2: Schemat układu [1].

Po zakończeniu pomiarów zamieniono pierwszy opornik na inny, o niżej rezystancji i wykonano ponownie takie same pomiary. Po zakończeniu tej serii, do kondensatora podłączono raz równolegle, a raz szeregowo identyczny kondensator i dla każdego z tych układów zmierzono częstość rezonansową. Podobnie postąpiono w przypadku cewki.

Wszystkie badane wartości były mierzone przy pomocy oscyloskopu, za wyjątkiem częstości prądu, która była odczytywano z generatora.

WYNIKI POMIARÓW

Wartości amplitudy napięcia wejściowego, wyjściowego, fazy i częstości są przedstawione w Tabeli 1.

Tabela 1: Wyniki pomiarów.

$R = 500, 12 \ \Omega$			$R = 51,6 \Omega$				
U_{wej} [V]	U_{wyj} [V]	ϕ [deg]	$f = \omega/2\pi \text{ [Hz]}$	U_{wej} [V]	U_{wyj} [mV]	ϕ [deg]	$f = \omega/2\pi \text{ [Hz]}$
5,12	0,00412	-180	100	5,2	0,00284	-180	100
5,12	0,00608	-176	200	5,16	0,00316	-179	200
5,12	0,0102	-118	500	5,2	0,00348	-179	500
5,12	0,0172	-96	1000	5,2	0,00476	-179	1000
5,12	0,0322	-91	2000	5,2	0,0057	-108	2000
5,12	0,0751	-88	5000	5,16	0,0102	-95	5000
5,12	0,148	-87	10000	5,16	0,0179	-91	10000
5,08	0,295	-86	20000	5,16	0,0327	-90	20000
5,08	0,863	-80	50000	5,12	0,0922	-89	50000
4,76	3,4	-37	100000	4,88	0,606	-76	100000
5	1,3	74	200000	5,04	0,14	87	200000
4,88	2,6	-53	90000	5,04	0,344	-82	90000
4,8	3,01	-46	95000	5	0,441	-80	95000
4,72	3,84	-25	105000	4,68	0,903	-67	105000
4,64	4,09	-12	110000	3,96	1,46	-45	110000
4,64	4,09	16	120000	4,48	1,14	59	120000
4,64	4,2	3	115000	3,58	1,67	22	115000
4,64	4,18	0	113900	3,44	1,73	7	113900
5,04	0,34	90	500000	5,04	0,0361	90	500000
5,04	0,0855	96	1000000	5,07	0,0106	95	1000000
5,08	0,174	96	750000	5,04	0,0197	92	750000
5,08	0,259	93	600000	5,04	0,0284	89	600000
5,04	0,463	89	400000	5,07	0,049	90	400000
4,8	3,46	38	130000	4,95	0,584	75	130000
5	1,96	-63	80000	5,07	0,229	-86	80000

Wartość częstości rezonansowych przedstawione są w Tabeli 2.

Tabela 2: Częstości rezonansowe.

	Równolegle	Szeregowo
Kondensatory	80,5 kHz	160,8 kHz
Cewki	$160,4~\mathrm{kHz}$	79,8 kHz

ANALIZA DANYCH

Dla danych z Tabeli 1 obliczono wartości T oraz wykonano wykresy zależności $T(\omega)$ i $\phi(\omega)$. Do tych danych dopasowano zależności kolejno Równania 1 i Równania 2. Kierując się instrukcją oscyloskopu za niepewność napięcia przyjęto 2% z kolei dla pomiarów fazy przyjęto 3° ze względu na wahania tej wartości w trakcie pomiaru. W trakcie dopasowywania założono, iż C=0,895 nF, a $R_p=55$ Ω . Wartość R_p oszacowano na podstawie wartości częstości rezonansowej z Tabeli 1 ($\phi=0$) i związku $T(\omega_{rez})=R/(R+R_p)$.

Dane wraz z krzywymi najlepszego dopasowania przedstawiono na Rysunkach 3-6.

Rysunek 3: Dopasowanie: transmitancja T dla $R = 500, 12 \Omega$.

Rysunek 4: Dopasowanie: faza ϕ dla $R = 500, 12 \Omega$.

Wartości parametru L wynikłe z dopasowania przedstawiono w Tabeli 3.

Krzywe sprawiają wrażenie dobrze dopasowanych do punktów i można uznać je za zgodne z teorią. Korzystając z wyznaczonych wartości indukcyjności oraz ze znanej pojemności kondensatora obliczono wartości

Rysunek 5: Dopasowanie: transmitancja T dla $R=51,6~\Omega.$

Rysunek 6: Dopasowanie: faza ϕ dla $R=51,6~\Omega$.

Tabela 3: Wartości indukcyjności.

$R [\Omega]$	500,12	51,6
Z transmitancji [mH]	$2,25 \pm 0,11$	$2,198 \pm 0,061$
Z fazy [mH]	$2,18 \pm 0,16$	$2,198 \pm 0,068$

częstości rezonansowych wraz z niepewnościami. Niepewność pojemności obliczono, korzystając z instrukcji do miernika [2]. Wartości obliczonych częstości znajdują się w Tabeli 4.

Tabela 4: Częstości rezonansowe.

$R\left[\Omega\right]$	500,12	51,6
Z transmitancji [Hz]	705401 ± 51637	712937 ± 42194
Z fazy [Hz]	715796 ± 63742	713044 ± 43405

Założywszy, iż zmierzona wartość częstości rezonansowej wynosi $\omega/(2\pi)=113,9\pm0,2$ kHz, to wszystkie częstości z Tabeli 4 są z nią zgodne na mocy testu 3σ . Tak więc wyznaczone wartości są zgodne z oczekiwaniami.

Zmierzone częstości rezonansowe z Tabeli 2 również są zgodne z przewidywaniami. Dla połączenia równoległego kondensatorów otrzymana wartość powinna być mniejsza od wartości podstawowej o czynnik $\sqrt{2}$, z kolei dla łączenia szeregowego powinna być większa o ten czynnik. W przypadku cewek sytuacja jest odwrotna: dla łączenia szeregowego częstość jest mniejsza, a dla równoległego większa o $\sqrt{2}$.

W Tabeli 5 przedstawiono odpowiednio przemnożone wartości. Przy założeniu, że pomiar tych wielkości był

obarczony błędem 0,2 kHz, to wszystkie te wartości są zgodne z wartością 113,9 kHz na mocy testu 3σ .

Tabela 5: Wartości częstości po odpowiednim przemnożeniu.

	Równolegle	Szeregowo
Kondensatory	$113,8~\mathrm{kHz}$	113,7 kHz
Cewki	$112,9~\mathrm{kHz}$	$113,4~\mathrm{kHz}$

Dodatkowo obliczono szerokość pasma przenoszenia, czyli różnicę między dwoma częstościami granicznymi, dla których Równanie (2) przyjmuje wartość $\pi/4$. Obliczenia przeprowadzono, korzystając z wartości indukcyjności L=2,25 mH. Otrzymane wartości przedstawiono w Tabeli 6.

Tabela 6: Częstości graniczne.

	ω_1 [Hz]	$\omega_2 [\mathrm{Hz}]$	Różnica [Hz]
$R = 500, 12 \Omega$	94306	133652	39346
$R = 51, 6 \Omega$	108554	116109	7556

Tak jak oczekiwano, otrzymana wartość szerokości pasma przenoszenia dla opornika 51 Ω jest znacznie niższa, niż dla większego opornika. Dodatkowo, średnia obliczona z częstości granicznych w obu przypadkach zwraca przybliżoną wartość zmierzonej częstości rezonansowej. Tak więc również i te wyniki można uznać za zgodne z przewidywaniami.

DYSKUSJA WYNIKÓW I WNIOSKI

Układ RLC zachowywał się zgodnie z przewidywaniami teoretycznymi, jego częstości rezonansowe, zmierzone i obliczone pokrywały się za sobą dla każdego rozpatrywanego przypadku, transmitancja oraz przesunięcia fazowe również nie przeczyły wyznaczonym wzorom. W każdym przypadku osiągnięto pełną zgodność między wynikami, a oczekiwaniami.

Literatura

- [1] Praca zbiorowa, Instrukcja do ćwiczenia "Badanie szeregowego filtru rezonansowego RLC", FUW, Warszawa, 2018, s. 1.
- [2] Praca zbiorowa, User's Guide: DM3058 Digital Multimeter, RIGOL, 2008, s. 130.