EAIiIB	Piotr Morawiecki, Tymoteusz Paszun		Rok II	Grupa 3a	Zespół 6
Temat: Wahadła fizyczne			Numer ćwiczenia: 0		
Data wykonania: 26.10.2017r.	Data oddania: 8.11.2017r.	Zwrot do poprawki:	Data oddania:	Data zaliczenia:	Ocena:

1 Cel ćwiczenia

Celem ćwiczenia jest wyznaczenie momentu bezwładności brył sztywnych przez pomiar okresu drgań wahadła oraz na podstawie wymiarów geometrycznych.

2 Wstęp teoretyczny

2.1 Wahadło fizyczne

Wahadłem fizycznym nazywamy bryłę sztywną mogącą obracać się wokół osi obrotu O nie przechodzącej przez środek masy S. Wahadło odchylone od pionu o kąt θ , a następnie puszczone swobodnie będzie wykonywać drgania zwane ruchem wahadłowym. W ruchu tym mamy do czynienia z obrotem bryły sztywnej wokół osi O, opisuje go zatem druga zasada dynamiki dla ruchu obrotowego. Zasada dynamiki dla ruchu obrotowego wyrażona jest wzorem

$$I\varepsilon = M$$

gdzie I - moment bezwładności, ϵ - przyspieszenie kątowe, M - moment siły. Wartość przyspieszenia kątowego opisuje wzór

$$\varepsilon = \frac{d^2\theta}{dt^2}$$

2.2 Moment bezwładności na podstawie okresu drgań

Dla wahadła fizycznego moment siły powstaje pod wpływem siły ciężkości. Dla wychylenia θ jest równy

$$M = mga\sin\theta$$

gdzie a - odległość środka masy S od osi obrotu O. Zatem równanie ruchu wahadła można zapisać jako

$$I_0 \frac{d^2 \theta}{dt^2} = -mga \sin \theta$$

gdzie I_0 - moment bezwładności względem osi obrotu przechodzącej przez punkt zawieszenia O. Jeżeli ograniczyć ruch do małych kątów wychylenia, to sinus kąta można zastąpić samym kątem w mierze łukowej, czyli $\sin\theta\approx\theta$. Przyjmując częstość określoną wzorem $\omega_0^2=\frac{mga}{I_0}$ równanie ruchu przyjmuje postać równania oscylatora harmonicznego

$$\frac{d^2\theta}{dt^2} + \omega_0^2 \theta(t) = 0$$

. Okres drgań związany z częstością wynosi

$$T = 2\pi \sqrt{\frac{I_0}{mga}}$$

Przekształcając wzór otrzymujemy wzór na moment bezwładności

$$I_0 = (\frac{T}{2\pi})^2 mga = \frac{mgaT^2}{4\pi^2}$$

2.3 Moment bezwładności na podstawie prawa Steinera

Dla wyznaczenia momentu bezwładności I_S względem równoległej osi przechodzącej przez środek masy możemy posłużyć się związkiem między I_0 i I_S znanym jako twierdzenie Steinera:

$$I_0 = I_S + ma^2$$

Wzór na moment bezwładności cienkiego pręta względem osi obrotu umieszczonej na końcu pręta to

$$I = \frac{1}{3}mL^2$$

gdzie L - długość pręta.

Wzór na moment bezwładności pierścienia względem osi obrotu przechodzącej przez jego środek to

$$I = \frac{1}{2}m(R^2 + r^2)$$

gdzie R - zewnętrzny promień, r - wewnętrzny promień.

3 Opis doświadczenia

4 Wyniki pomiarów

Tablica 1: Pomiary dla wahadła o długości $l = 485 \,\mathrm{mm}$, czas mierzony co 20 okresów

Lp.	Liczba okresów k	Czas t dla k okresów [s]	Czas t' dla 20 okresów [s]	Czas 1 okresu [s]
1	20	27,52	27,52	1,38
2	40	62,36	34,84	1,74
3	60	98,67	36,31	$1,\!82$
4	80	$133,\!45$	$34,\!78$	1,74
5	100	168,08	34,63	1,73
6	120	$202,\!58$	34,50	1,73
7	140	$235{,}92$	33,34	$1,\!67$
8	160	$275,\!92$	40,00	2,00
9	180	311,98	36,06	1,80
10	200	349,08	37,10	1,86

Tablica 2: Pomiary dla wahadła o długości $l=485\,\mathrm{mm},$ czas mierzony co 30 okresów

Lp.	Liczba okresów k	Czas t dla k okresów [s]	Czas t' dla 30 okresów [s]	Czas 1 okresu [s]
1	30	40,11	40,11	1,34
2	60	90,39	$50,\!28$	1,68
3	90	$144,\!45$	$54,\!06$	1,80
4	120	193,17	48,72	$1,\!62$
5	150	245,76	$52,\!59$	1,75

Tablica 3: Pomiary dla zmiennej długości wahadła

Długość wahadła [mm]	Czas 20 okresów [s]	Czas 1 okresu [s]	Wartość $g \left[\frac{\text{m}}{\text{s}^2} \right]$
135	14,23	0,71	10,53
175	16,10	0,81	10,66
215	18,40	$0,\!92$	10,03
255	19,09	$0,\!96$	11,05
295	$20,\!56$	1,03	11,02
335	23,00	$1{,}15$	10,00
375	24,81	$1,\!24$	9,62
415	$25,\!59$	1,28	10,00
455	26,75	$1,\!34$	10,04
485	27,73	1,39	9,96

5 Opracowanie wyników

6 Wnioski