Алгебра 1 семестр ПИ, Лекция, 10/01/21

Собрано 4 октября 2021 г. в 17:55

Содержание

1.	Основы теории чисел	1
	1.1. Наименьшее общее кратное	1
	1.2. Математическая индукция	1
	1.3. Простые числа	1
	1.4. Основная теорема арифметики	2
	1.5. Непрерывные дроби (Пепные дроби)	3

1.1. Наименьшее общее кратное

Def. 1.1.1. Общим кратным $a_1, a_2, ..., a_n$ называется число M > 0: $a_i | M \ \forall i = 1, ..., n$ Наименьшее из общих кратных – HOK.

Теорема 1.1.2. $lcm(a,b) = \frac{ab}{\gcd(a,b)}$

Доказательство. $a = a_1 d, b = b_1 d, (a_1, b_1) = 1$

$$M = at = bs \Rightarrow \frac{M}{b} = \frac{at}{b} = \frac{a_1dt}{b_1d} = \frac{a_1t}{b_1} \Rightarrow M = \frac{b \cdot a_1t}{b_1}$$

t делится на b_1 , т.е. $t = b_1 k$

$$M=rac{ba_1b_1k}{b_1}=ba_1k$$
 - минимально при $k=1\Rightarrow M=ba_1=rac{ba_1d}{d}=rac{ab}{\gcd(a,b)}$

1.2. Математическая индукция

- 1. Аксоима. \forall подмножество $\mathbb N$ имеет наши элементы \Rightarrow ММИ.
- 2. Аксиома. $A_1, A_n \Rightarrow A_{n+1} \Rightarrow \forall A_n$

Следствие 1.2.1. Пусть $a_1, a_2, ..., a_n$ – попарно взаимно-простые $\Rightarrow \text{lcm}(a_1, a_2, ..., a_n) = a_1 \cdot a_2 \cdot ... \cdot a_n$

Доказательство. n=2. $\mathrm{lcm}(a_1,a_2)=\frac{a_1a_2}{\gcd(a_1,a_2)}=a_1\cdot a_2$ Пусть верно для n. Тогда для n+1

$$(a_i, a_n a_{n+1}) = (a_i, a_{n+1}) = 1 \Rightarrow a_1, a_2, ..., a_{n-1}, a_n a_{n+1} \Rightarrow$$

 $\Rightarrow \text{lcm}(a_1, ..., a_{n-1}, a_n \cdot a_{n+1}) = a_1 \cdot a_2 \cdot ... \cdot a_{n-1} \cdot a_n \cdot a_{n+1}$

1.3. Простые числа

Def. 1.3.1. Число p > 1 называется простым, если оно делится только на 1 и на p. Иначе число называется составным.

Теорема 1.3.2 (о наименьшем делителе). Наименьший делитель a>1 – простое число

Доказательство. $M = \{d|d>1, d|a\} \neq \emptyset$ Пусть p - наименьший элемент M. Предположим, что p - составное, т.е. $p = bq, q < p, q|p, p|a \Rightarrow q|a$ - противоречие.

Теорема 1.3.3. p - наименьший делитель > 1 числа $n \Rightarrow p \leqslant \sqrt{n}$

Доказательство.

$$n = mp, p \leqslant m \Rightarrow np \leqslant nm \Rightarrow mp \cdot p \leqslant nm \Rightarrow p^2 \leqslant n \Rightarrow p \leqslant \sqrt{n}$$

Теорема 1.3.4 (Теорема Евклида). Простых чисел бесконечно много

Доказательство. Пусть $p_1, p_2, ..., p_n$ – все простые числа, $a = p_1 \cdot p_2 \cdot ... \cdot p_n + 1$. Если $a : p_i$, то $1 : p_i \Rightarrow a$ – новое простое число.

1.4. Основная теорема арифметики

Lm 1.4.1. p – простое $\Rightarrow \forall a > 1 \rightarrow p | a \lor (p, a) = 1$

Доказательство.

$$(p,a)|p \Rightarrow (p,a) = 1 \lor (p,a) = p$$

<u>Lm</u> 1.4.2. p – простое, $p|a_1 \cdot a_2 \cdot ... \cdot a_n \Rightarrow \exists i = 1, ..., n : p|a_i$

Доказательство. Если $(p,a_i)=1, i=1,...,n\Rightarrow 1=(p,a_1)=(p,a_1a_2)=(p,a_1a_2a_3)=(p,a_1\cdot...\cdot a_n)=1\Rightarrow \exists a_i:p|a_i$

Теорема 1.4.3 (Основная теорема арифметики). 1. $\forall a > 1 \rightarrow a = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot ... \cdot p_k^{\alpha_k}, p_1, p_2, ..., p_k$ — различные простые, $\alpha_1, \alpha_2, ..., \alpha_k \geqslant 1$

2. с точностью до перестановки множителей это представление единственно

Доказательство. 1. из всех делителей a выбираем наименьший – p_1 - простое $\Rightarrow a = p_1 \cdot a_1$. Рассмотрим a_1 – наименьший делитель - $p_2 \Rightarrow a_1 = p_1 \cdot p_2 \cdot a_2$ и т.д.

$$a_1>a_2>a_3>...\Rightarrow \exists a_n=1\Rightarrow a=\;$$
 разложение на простые

2. Предположим, что представление не одно, то есть

$$a = p_1 \cdot p_2 \cdot \dots \cdot p_s = q_1 \cdot q_2 \cdot \dots \cdot q_n$$

Не умаляя общности, пусть $n \geqslant s \Rightarrow p_1|q_1...q_n$. Тогда, по лемме $2 p_1|q_i \Rightarrow p_1 = q_i$. Перенумеруем $i = 1 \Rightarrow p_2p_3...p_s = q_2q_3...q_n \Rightarrow$ все p_s сократятся, т.е. $1 = q_{s+1}...q_n \Rightarrow s = n$

Def. 1.4.4. $a = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot p_k^{\alpha_k}$ — каноническое разложение числа a

Cледствие 1.4.5. Любой делитель $a=p_a^{\alpha_1}...p_k^{\alpha_k}$ имеет вид $b=p_1^{\beta_1}\cdot...\cdot p_k^{\beta_k}, 0\leqslant \beta_i\leqslant \alpha_i$

Доказательство. $b|a \Rightarrow b$ содержит в разложении p_i

Следствие 1.4.6. $\gcd(a_1,...,a_n)$ имеет вид $p_1^{\alpha_1}p_2^{\alpha_2}...p_k^{\alpha_k}$, где $a_i = \min \left\{ \max$ азатель степени p_i , с которым p_i входит в разложение $a_1, a_2, ..., a_n \right\}$ Следствие 1.4.7. $\operatorname{lcm}(a_1,...,a_n)$ имеет вид $p_1^{\alpha_1}p_2^{\alpha_2}...p_k^{\alpha_k}$, где $a_i = \max \left\{ \max$ азатель степени p_i , с которым p_i входит в разложение $a_1, a_2, ..., a_n \right\}$

1.5. Непрерывные дроби (Цепные дроби)

Def. 1.5.1. Выражение вида

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}$$

называется непрерывной дробью. Обозначение: $[a_0, a_1, a_2, ...]$

Теорема 1.5.2. Любое вещественное число может быть представлено в виде непрерывной дроби.

Если число иррационально – в виде бесконечной дроби, если рациональное – в виде конечной.

Доказательство. a > b

$$\frac{a}{b} = a_0 + \frac{r_1}{b} = a_0 + \frac{1}{\frac{b}{r_1}} = a_0 + \frac{1}{a_1 + \frac{r_2}{r_1}} = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{r_3}{r_2}}}$$
 и т.д.

где

$$a = b \cdot a_0 + r_1$$
$$b = r_1 \cdot a_1 + r_2$$
$$r_1 = r_2 \cdot a_2 + r_3$$

Def. 1.5.3. Для $\frac{a}{b}$ $\delta_0 = \frac{a_0}{1}$, $\delta_1 = a_0 + \frac{1}{a_1}$, $\delta_2 = a_0 + \frac{1}{a_1 + \frac{1}{a_2}}$ u m. d. называются подходящими дробями.

Теорема 1.5.4 (Формулы подходящих дробей). $\delta_k = \frac{p_k}{q_k}, p_{-1} = 1, q_{-1} = 0, p_0 = a_0, q = 1$

$$\Rightarrow \begin{cases} p_k = a_k \cdot p_{k-1} + p_{k-2} \\ q_k = a_k \cdot q_{k-1} + q_{k-2} \end{cases}$$

 \mathcal{A} оказательство. $\delta_1=a_0+\frac{1}{a_1}=\frac{a_0a_1+1}{a_1\cdot 1+0}=\frac{a_1\cdot p_0+p_{-1}}{a_1\cdot q_0+q_{-1}}$ Предположим, что для k верно. Тогда для k+1

$$\delta_{k+1} = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots + \frac{1}{a_{k+1}}}} = \frac{(a_k + \frac{1}{a_{k+1}}) \cdot p_{k-1} + p_{k-2}}{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1} + q_{k-2}} = \frac{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1} + p_{k-2}}{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1} + q_{k-2}} = \frac{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1} + p_{k-2}}{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1} + q_{k-2}} = \frac{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1} + p_{k-2}}{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1} + q_{k-2}} = \frac{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1} + q_{k-2}}{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1} + q_{k-2}} = \frac{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1} + q_{k-2}}{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1} + q_{k-2}} = \frac{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1} + q_{k-2}}{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1} + q_{k-2}} = \frac{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1} + q_{k-2}}{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1} + q_{k-2}} = \frac{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1} + q_{k-2}}{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1} + q_{k-2}} = \frac{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1} + q_{k-2}}{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1} + q_{k-2}} = \frac{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1} + q_{k-2}}{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1} + q_{k-2}} = \frac{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1} + q_{k-2}}{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1} + q_{k-2}}} = \frac{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1} + q_{k-2}}{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1} + q_{k-2}}} = \frac{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1} + q_{k-2}}{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1} + q_{k-2}}} = \frac{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1} + q_{k-2}}{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1}}} = \frac{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1} + q_{k-2}}{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1}}} = \frac{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1}}{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1}}} = \frac{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1}}{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1}}} = \frac{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1}}{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1}}} = \frac{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1}}{(a_k + \frac{1}{a_{k+1}}) \cdot q_{k-1}}}$$

$$=\frac{(a_{k+1}\cdot a_k+1)\cdot p_{k-1}+p_{k-2}\cdot a_{k+1}}{(a_{k+1}\cdot a_k+1)\cdot q_{k-1}+q_{k-2}\cdot a_{k+1}}=\frac{a_{k+1}(a_k\cdot p_{k-1}+p_{k-2})+p_{k-1}}{a_{k+1}(a_kq_{k-1}+q_{k-2})+q_{k-1}}=\frac{a_{k+1}\cdot p_k+p_{k-1}}{a_{k+1}\cdot q_k+q_{k-1}}$$