МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ «МИСиС»

ИНСТИТУТ ИТКН

КАФЕДРА ИНЖЕНЕРНОЙ КИБЕРНЕТИКИ

НАПРАВЛЕНИЕ 01.03.04 ПРИКЛАДНАЯ МАТЕМАТИКА

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА БАКАЛАВРА

на тему: <u>Трехкомпонентные методы сопряженного градиента для решения задач оптимизации большой размерности</u>

Работа рассмотрена кафедрой и допущена к защите в ГЭК

Москва июнь 2021

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ «МИСиС»

Институт ИТКН

УТВЕРЖДАЮ

Кафедра Инженерной кибернетики

Зав. Кафедрой Ефимов А.Р.

Направление 01.03.04 Прикладная математика

«22» декабря 2020г.

ЗАДАНИЕ

НА ВЫПОЛНЕНИЕ ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ БАКАЛАВРА

Студенту группы БПМ-17-1 Егубовой Полине Андреевне

- 1. Тема работы: «Трехкомпонентные методы сопряженного градиента для решения задач оптимизации большой размерности».
- 2. Цель работы: «Разработать алгоритмическое и программное обеспечение для решения задач оптимизации большой размерности с помощью трехкомпонентного метода сопряженного градиента. Провести сравнительный анализ полученных результатов с результатами работы других методов на том же множестве исходных задач».
- 3. Исходные данные: множество функций большой размерности различного типа из библиотеки CUTE (The Constrained and Unconstrained Environment).
 - 4. Основная литература, в том числе:
 - 4.1 Jorge Nocedal, Stephen J. Wright. Numerical Optimization. New York, Springer Science + Business Media, LLC, 2006;
 - 4.2 Optimization Methods and Software. Great Britain, Taylor & Francis, 1992 2020;
 - 4.3 International Journal of Mathematical Modelling and Numerical Optimisation. Switzerland, Inderscience Publishers, 2009 2020.
- 5. Перечень основных этапов исследования и форма промежуточной отчетности по каждому этапу:
 - 5.1 Аналитический обзор литературы;
 - 5.2 Формулировка содержательной и математической постановки задачи;

- 5.3 Разработка функциональной схемы системы;
- 5.4 Программная реализация;
- 5.6 Отладка и тестирование;
- 5.7 Анализ полученных результатов;
- 5.8 Подготовка текста дипломной работы.
- 6. Аппаратура и методики, которые должны быть использованы в работе:
 - 6.1 Методы оптимизации;
 - 6.2 Программирование.
- 7. Использование ЭВМ:
 - 7.1 Установка библиотеки СUTE на виртуальной машине с операционной системой Linux Ubuntu, развернутой при помощи программного обеспечения VMWare Workstation;
 - 7.2 Разработка программного обеспечения на языке программирования Python в среде разработки РуСharm.
- 8. Перечень (примерный) основных вопросов, которые должны быть рассмотрены и проанализированы в литературном обзоре:
 - 8.1 Существующие методы оптимизации для решения задач большой размерности и их модификации;
 - 8.2 Алгоритм линейного поиска для вычисления длины шага метода;
 - 8.3 Основные характеристики работы методов оптимизации;
 - 8.4 Способы представления результатов работы методов.
 - 9. Перечень (примерный) графического и иллюстрированного материала:
 - 9.1 Схема разработанного алгоритма;
 - 9.2 Примеры исходных данных;
 - 9.3 Схема разработанного программного обеспечения;
 - 9.4 Результаты и их анализ.

Руководитель работы к.фм.н., доцент, Артемьева Людмила Анатольевна	
(подпись)	
Дата выдачи задания: «22» декабря 2020 г.	
Задание принял к исполнению студент	
(подпись)	

АННОТАЦИЯ

Выпускная квалификационная работа изложена на 75 страницах, содержит 13 рисунков, 1 таблицу, список использованных источников из 27 наименований, 3 приложений.

Ключевые слова: ТРЕХКОМПОНЕНТНЫЕ МЕТОДЫ ОПТИМИЗАЦИИ, МЕТОДЫ СОПРЯЖЕННОГО ГРАДИЕНТА, ТОЧКА МИНИМУМА, БОЛЬШАЯ РАЗМЕРНОСТЬ, ЧИСЛЕННЫЕ ЭКСПЕРИМЕНТЫ, ПРОФИЛЬ ПРОИЗВОДИТЕЛЬНОСТИ, ЛИНЕЙНЫЙ ПОИСК, УСЛОВИЯ АРМИХО, УСИЛЕННЫЕ УСЛОВИЯ ВОЛЬФЕ, РҮТНОN, CUTEST

Выпускная квалификационная работа посвящена исследованию трехкомпонентных методов сопряженного градиента для решения задач оптимизации.

Целью работы является разработка нового трехкомпонентного метода сопряженного градиента для решения задач оптимизации.

Результатом проведенного исследования является новый метод оптимизации, а также оценка качества его работы, полученная вследствие сравнения результатов серии численных экспериментов данного метода на множестве тестовых задач с характеристиками работы других алгоритмов.

Проведенные численные эксперименты доказали, что разработанный метод является крайне конкурентноспособным среди других методов сопряженного градиента. Данный факт позволяет рекомендовать полученный метод к использованию для решения задач оптимизации в любой области.

Результаты, полученные в рамках настоящей выпускной квалификационной работы, были опубликованы в тезисах студенческой конференции «76–е Дни Науки Студентов НИТУ «МИСиС» [1].

ANNOTATION

The graduation work is presented on 75 pages, contains 13 figures, 1 table, a list of used sources from 27 titles, 3 appendices.

Keywords: THREE–COMPONENT OPTIMIZATION METHODS, CONJUGATE GRADIENT METHODS, MINIMUM POINT, LARGE DIMENSION, NUMERICAL EXPERIMENTS, PERFORMANCE PROFILE, LINEAR SEARCH, ARMIJO CONDITIONS, STRONG WOLF CONDITIONS, PYTHON, CUTEST

The graduation work is devoted to the study of three–component methods of conjugate gradient for solving optimization problems.

The aim of this work is to develop a new three–component conjugate gradient method for solving optimization problems.

The result of the research is a new optimization method, as well as an assessment of the quality of its work, obtained by comparing the results of a series of numerical experiments of this method on a set of test problems with the performance characteristics of other algorithms.

The conducted numerical experiments proved that the developed method is extremely competitive among other methods of the conjugate gradient. This fact allows recommend the resulting method for use in solving optimization problems in any field.

The results obtained in the framework of this final qualification work were published in the abstracts of the student conference "76th Days of Science of NUST MISIS Students" [1].

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	8
1 Аналитический обзор литературы	10
1.1 Методы оптимизации	10
1.2 Длина шага метода	11
1.2.1 Разновидности условий остановки линейного поиска	12
1.2.2 Линейный поиск. Условия Армихо	15
1.2.3 Линейный поиск. Усиленные условия Вольфе	17
1.3 Разновидности методов сопряженного градиента	19
1.3.1. Метод Флетчера–Ривза	20
1.3.2 Метод Поляка–Рибьери	21
1.3.3 Метод Гестенса–Штифеля	22
1.3.4 Улучшенный метод Поляка–Рибьери	23
1.3.5 Гибридный метод сопряженного градиента	23
1.3.6 Трехкомпонентные методы	24
1.4 Тестирование метода	25
1.5 Анализ работы метода	25
1.6 Выводы	29
2 Содержательная постановка задачи	31
3 Математическая постановка задачи	32
4 Подготовка и анализ исходных данных	33
5 Описание разработанного алгоритма	35
6 Методы и инструменты информационных технологий	39
7 Разработанное программное обеспечение	41
8 Анализ полученных результатов	44
ЗАКЛЮЧЕНИЕ	49
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	50
ПРИЛОЖЕНИЕ А	52

ПРИЛОЖЕНИЕ Б	56
ПРИЛОЖЕНИЕ В	62

ВВЕДЕНИЕ

Понятия оптимальности и процесса оптимизации являются важнейшими аспектами в большом количестве различных наук от экономики и инженерного дела до менеджмента и бизнеса. В связи с этим область разработки методов, позволяющих находить оптимальное значение функции и аргумент, при котором это значение достигается, всегда интересовала математиков.

В последние годы методы оптимизации приобрели еще большую популярность в связи с использованием в машинном обучении. Интеллектуальные программы, возникшие на его основе – поисковые системы, рекомендательные платформы, программы распознавания речи и изображений – стали неотъемлемой частью современного общества. Благодаря этим разработкам повышается безопасность пластиковых карт банков за счет распознавания мошеннических операций и анализа финансовых транзакций в режиме реального времени; проводятся маркетинговые исследования, позволяющие более точно прогнозировать желания клиентов и спрос на новые продукты; настраиваются алгоритмы рекламы, прогноза пробок и фильтрации спама. Более того, использование современных методов оптимизации в задачах машинного обучения позволяет уменьшать погрешность моделей и увеличивать скорость сходимости при обучении [2].

Непрекращающийся рост размерности обрабатываемых моделями машинного обучения наборов данных вдохновляет исследователей на создание новых методов оптимизации, позволяющих все менее затратно с точки зрения вычислительной мощности и занимаемой памяти и в то же время все более быстро решать задачи поиска оптимума при наличии большого числа переменных.

На данный момент разработано большое количество различных методов оптимизации. В контексте решения задач оптимизации большой размерности популярностью пользуется квазиньютоновский метод в связи с его сверхлинейной скоростью сходимости, однако он требует большого количества ресурсов памяти ЭВМ. Вследствие этого для решения крупноразмерных задач была предложена модификация квазиньютоновского метода с ограниченной памятью, которая позволяет более экономно расходовать этот ресурс, но это привело к снижению скорости сходимости. Благодаря данному факту в некоторых случаях конкуренцию квазиньютоновскому методу оптимизации составить может метод сопряженного градиента за счет экономичного расходования памяти. У этого метода есть особое свойство: при генерации набора сопряженных векторов он вычисляет новый вектор направлений, используя только предыдущий вектор, в связи с чем необходимость в хранении матрицы всех предыдущих направлений отсутствует – последний вектор автоматически

сопряжен со остальными. Это свойство метода сопряженных градиентов позволяет ему быть экономичным и при этом иметь линейную скорость сходимости на некотором классе задач. Благодаря своей простой структуре и низким требованиям к памяти методы сопряженных градиентов широко используются для решения крупномасштабных задач оптимизации [3].

Существуют различные варианты методов сопряженного градиента, отличающиеся друг от друга различными способами выбора параметров. В связи с ростом размерности задач оптимизации усовершенствование имеющихся разновидностей и создание новых модификаций данного метода становится все более актуальным и необходимым.

В данной работе проводится поиск и анализ существующих методов сопряженного градиента, вследствие чего разрабатывается новый трехкомпонентный метод сопряженного градиента, для оценки качества работы которого впоследствии реализуется серия численных экспериментов на множестве тестовых задач оптимизации.

1 Аналитический обзор литературы

1.1 Методы оптимизации

Классическая задача оптимизации без ограничений заключается в минимизации целевой функции, зависящей от некоторого числа переменных, на значения которых не наложено никаких ограничений. Формула (1.1) представляет из себя ее математическую формулировку.

$$f(x) \to min, x \in \mathbb{R}^n,$$
 (1.1)

где f(x): $\mathbb{R}^n \to \mathbb{R}$ — гладкая функция и $x \in \mathbb{R}^n$ — вектор переменных с n > 1 компонентами. Решением такой задачи является $f^* = \inf f(x)$, $x^* = \arg \min f(x)$, $x \in \mathbb{R}^n$.

Численным методам оптимизации, способным вычислить приближение к точке минимума функции с некоторой точностью, для решения такой задачи достаточно иметь информацию о значении функции и ее градиента только в нескольких точках.

Классические методы оптимизации являются итерационными алгоритмами, шаг которых описывается формулой (1.2).

$$x_{k+1} = x_k + \alpha_k p_k \tag{1.2}$$

где x_k и x_{k+1} – приближения к точке минимума функции, полученные на k – ом и (k+1) – ом шагах соответственно, α_k – длина шага, а p_k – направление движения. Стоит отметить, что разновидности методов оптимизации отличаются друг от друга способами задания α_k и p_k .

В теории, спустя некоторое, часто бесконечно большое, количество итераций, метод сходится к точке минимума, в которой градиент функции равен нулю. На практике поиск прекращается, когда градиент равен нулю с заданной точностью, обычно равной 10^{-6} .

На данный момент разработано большое количество методов оптимизации различных типов. Безусловно, не существует метода, который решал бы все задачи одинаково успешно по сравнению с другими алгоритмами, в связи с чем изучение и постоянный поиск все новых усовершенствований существующих методов решения задач оптимизации пользуется большим интересом у исследователей.

В процессе анализа методов оптимизации будет обсуждаться их глобальная сходимость. Глобальная сходимость гарантирует, что при любом выборе начальной точки x_0 рассчитываемая методом последовательность приближений $x_1, x_2, ...$ сойдется к точке минимума функции.

1.2 Длина шага метода

В некоторых случаях бывает разумным выбрать в качестве длины шага α_k некоторое постоянное число, однако на практике это часто может привести к снижению скорости сходимости или даже к ее отсутствию. Поэтому большой популярностью в контексте выбора длины шага метода пользуются алгоритмы линейного поиска.

Говоря о длине шага метода α_k важно помнить о следующих ограничениях. С одной стороны, имеет смысл выбрать α_k такое, чтобы получить значительное уменьшение целевой функции, однако в то же время важно не тратить на этот выбор большое количество времени и вычислительной мощности. Наилучшим вариантом выбора альфа является глобальный минимизатор одномерной функции $\varphi(\alpha)$, заданной формулой (1.3).

$$\phi(\alpha) = f(x_k + \alpha p_k), \alpha > 0 \tag{1.3}$$

Однако для вычисления этой величины может потребоваться большое количество времени. Более того, для вычисления даже *покального* минимизатора функции $\varphi(\alpha)$, как правило, требуется слишком много вычислений целевой функции f и ее градиента [4]. Этот факт хорошо видно из рисунка 1.

Рисунок $1 - \Phi$ ункция, для которой вычисление глобального минимума крайне затратно [4]

На практике наилучшим вариантом является использование линейного поиска для определения длины шага, который обеспечит достаточное уменьшение функции при минимальных затратах на выполнение этого поиска.

Классические алгоритмы линейного поиска генерируют последовательность пробных значений α тем или иным образом, пока не выполнится заданное условие остановки.

1.2.1 Разновидности условий остановки линейного поиска

В качестве условий остановки для линейного поиска часто выбирается условие Армихо, другими словами, условие достаточного уменьшения, а также классические или усиленные условия Вольфе [4].

Условие Армихо гласит, что вычисленная длина шага α должна прежде всего давать достаточное уменьшение целевой функции f , то есть

$$f(x_k + \alpha_k p_k) \le f(x_k) + c_1 \alpha_k g_k^T p_k, \tag{1.4}$$

где g_k – градиент функции f в точке x_k, p_k – направление спуска, $c_1 \in (0;1)$. Иными словами, уменьшение f должно быть пропорционально как длине шага α , так и производной по направлению $g_k^T p_k$. Смысл этого условия проиллюстрирован на рисунке 2.

Рисунок 2 – Условие достаточного уменьшения [4]

На практике условия достаточного уменьшения недостаточно для обеспечения разумного прогресса алгоритма, поскольку оно выполняется для всех достаточно малых значений α [4]. Чтобы исключить слишком короткие шаги, часто вводится дополнительное требование, называемое условием кривизны (1.5).

$$g(x_k + \alpha_k p_k)^T p_k \ge c_2 g_k^T p_k, \tag{1.5}$$

для некоторой постоянной $c_2 \in (c_1; 1)$, где c_1 – постоянная из формулы (1.4). Очевидно, что левая часть неравенства (1.5) – это производная функции φ , заданной в (1.3), поэтому условие кривизны гарантирует, что наклон касательной к функции φ в точке α превышает больше чем в c_2 раза наклон касательной к φ в начальной точке. Это важно, поскольку если наклон касательной к φ сильно отрицательный, то при движении в выбранном направлении функция f значительно уменьшается. Напротив, если производная φ в точке α несильно отрицательна или даже положительна, это признак того, что большое уменьшение функции в заданном направлении не ожидается, поэтому стоит прекратить линейный поиск. Это свойство продемонстрировано на рисунке 3.

На практике значение c_1 выбирается довольно маленьким, чаще всего $c_1 = 10^{-4}$. При этом выбор c_2 отличается в зависимости от используемого метода оптимизации. В частности, для метода сопряженного градиента в качестве c_2 обычно принимают значение $c_2 = 0.1$ [4].

Рисунок 3 – Условие кривизны [4]

В совокупности условия достаточного уменьшения и кривизны известны как классические условия Вольфе:

$$(x_k + \alpha_k p_k) \le f(x_k) + c_1 \alpha_k g_k^T p_k,$$

$$g(x_k + \alpha_k p_k)^T p_k \ge c_2 g_k^T p_k,$$

$$(1.6)$$

где $0 < c_1 < c_2 < 1$.

Важное свойство заключается в том, что длина шага α может удовлетворять условиям Вольфе, не будучи особенно близкой к минимизатору φ , как показано на рисунке 4. В связи с этим имеет смысл изменить условие кривизны таким образом, чтобы α принадлежала по крайней мере широкой окрестности локального минимизатора или стационарной точки φ . Полученные в таком случае условия называют *усиленными* условиями Вольфе:

$$f(x_k + \alpha_k p_k) \le f(x_k) + c_1 \alpha_k g_k^T p_k,$$

$$|g(x_k + \alpha_k p_k)^T p_k| \le c_2 |g_k^T p_k|,$$

$$(1.7)$$

где $0 < c_1 < c_2 < 1$.

Рисунок 4 – Недостаток условий Вольфе [4]

Единственное отличие от классических условий Вольфе состоит в том, что производная функции φ теперь не может принимать большие по модулю положительные значения, исключая точки, далекие от стационарных точек φ .

Доказано, что длины шагов, удовлетворяющие условиям Вольфе, существуют для любой гладкой и ограниченной снизу функции f [4].

Разработаны различные методы поиска длины шага α , удовлетворяющей одному из описанных выше условий. Кроме того, считается, что p_k — направление уменьшения целевой функции, так что поиск может быть ограничен положительными значениями α . Все процедуры линейного поиска начинаются с оценки α_0 и после генерируют последовательность $\{\alpha_i\}$, которая либо сходится к длине шага, удовлетворяющей заданным условиям, либо определяет, что такой длины шага не существует.

В контексте методов сопряженного градиента, для формирования первоначального предположения о длине шага α_0 необходимо использовать текущую информацию о функции и алгоритме. Существует популярная стратегия, основанная на предположении о том, что изменение функции на итерации x_k будет таким же, как и на предыдущем шаге, то есть:

$$\alpha_0 g_k^T p_k = \alpha_{k-1} g_{k-1}^T p_{k-1}, \tag{1.8}$$

откуда

$$\alpha_0 = \alpha_{k-1} \frac{g_{k-1}^T p_{k-1}}{g_k^T p_k}. (1.9)$$

В другом случае полезно использовать квадратичную интерполяцию, основанную на информации о значении функции и ее производной в предыдущей и текущей точках и определяющую α_0 как минимизатор полученной квадратичной функции, то есть:

$$\alpha_0 = \frac{2(f_k - f_{k-1})}{\varphi'(0)}. (1.10)$$

1.2.2 Линейный поиск. Условия Армихо

Процедура линейного поиска, основанная на выполнении условия Армихо, использует интерполяцию известных значений функции и ее производной в точке. Цель алгоритма

состоит в вычислении значения длины шага α_k , которое при этом не будет *«слишком маленьким»*. Для этого генерируется убывающая последовательность значений $\{\alpha_i\}$ таким образом, чтобы каждое следующее значение α_i было ненамного меньше, чем его предшественник α_{i-1} [4].

Пусть задано начальное значение длины шага α_0 . Если выполняется условие достаточного уменьшения (1.11), то поиск прекращается.

$$\varphi(\alpha_0) \le \varphi(0) + c_1 \alpha_0 \varphi'(0) \tag{1.11}$$

В противном случае формируется *квадратичное* приближение $\varphi_q(\alpha)$ к φ путем интерполяции значений $\varphi(0)$, $\varphi'(0)$ и $\varphi(\alpha_0)$:

$$\varphi_q(\alpha) = \left(\frac{\varphi(\alpha_0) - \varphi(0) - \alpha_0 \varphi'(0)}{\alpha_0^2}\right) \alpha^2 + \varphi'(0)\alpha + \varphi(0). \tag{1.12}$$

Тогда новое пробное значение α_1 лежит в интервале (0; α_0) и равняется (1.13).

$$\alpha_1 = -\frac{\varphi'(0)\alpha_0^2}{2[\varphi(\alpha_0) - \varphi(0) - \varphi'(0)\alpha_0]}$$
(1.13)

После этого вновь проверяется выполнение условия достаточного уменьшения (1.11). Если оно выполняется, то поиск останавливается. В противном случае строится *кубическая* функция приближения $\varphi_c(\alpha)$ к φ путем интерполяции значений $\varphi(0)$, $\varphi'(0)$, $\varphi(\alpha_0)$ и $\varphi(\alpha_1)$. Эта кубическая функция всегда существует и уникальна [5]. Функция формируется следующим образом:

$$\varphi_c(\alpha) = a\alpha^3 + b\alpha^2 + \alpha\varphi'(0) + \varphi(0), \tag{1.14}$$

где

$$\begin{bmatrix} a \\ b \end{bmatrix} = \frac{1}{\alpha_0^2 \alpha_1^2 (\alpha_1 - \alpha_0)} \begin{bmatrix} \alpha_0^2 & -\alpha_1^2 \\ \alpha_0^3 & \alpha_1^3 \end{bmatrix} \begin{bmatrix} \varphi & (\alpha_1) - & \varphi(0) - \varphi'(0)\alpha_1 \\ \varphi & (\alpha_0) - & \varphi(0) - \varphi'(0)\alpha_0 \end{bmatrix}.$$
(1.15)

Тогда следующее пробное значение α_2 лежит в интервале $(0; \alpha_1)$ и равняется:

$$\alpha_2 = \frac{-b + \sqrt{b^2 - 3a\varphi'(0)}}{3a}. (1.16)$$

При необходимости кубическую интерполяцию повторяют, используя $\varphi(0), \varphi'(0), \varphi(\alpha_{i-1})$ и $\varphi(\alpha_i)$, где α_{i-1} и α_i – два последние вычисленные пробные значения длины шага, до тех пор, пока не будет найден α , удовлетворяющий условию Армихо.

Если на каком—либо шаге генерации пробных значений полученный α_i слишком близок к α_{i-1} , либо слишком сильно меньше его, то устанавливается

$$\alpha_{i-1} = \frac{\alpha_{i-1}}{2}. (1.17)$$

Эта защитная процедура гарантирует, что достигается разумный прогресс на каждой итерации, и при этом конечный α не слишком мал.

1.2.3 Линейный поиск. Усиленные условия Вольфе

Классические и усиленные условия Вольфе относятся к числу наиболее широко применимых и полезных остановочных условий для алгоритма линейного поиска [4].

Алгоритм поиска длины шага α , удовлетворяющий усиленным условиям Вольфе, состоит из двух этапов. Первый этап начинается с пробной оценки α_1 , которое впоследствии увеличивается до тех пор, пока полученное значение не будет удовлетворять условиям остановки, либо пока не найдется интервал, который заключает в себе желаемое значение α . Последний случай описывает второй этап, в котором используется так называемая функция zoom, последовательно уменьшающая размер интервала до тех пор, пока не будет определена приемлемая длина шага. Общее описание алгоритма представляет из себя следующее:

- устанавливается $\alpha_0=0,\ i=1,\$ выбирается $\alpha_{\max}>0,\$ где $\alpha_{\max}-$ максимально допустимая длина шага, и $\alpha_1\in(0;a_{max});$
 - вычисляется значение функции φ в текущей точке α_i ;
- если $\varphi(\alpha_i) > \varphi(0) + c_1 \alpha_i \varphi'(0)$ или $[\varphi(\alpha_i) \ge \varphi(\alpha_{i-1})$ и i > 1], то искомое α^* вычисляется с помощью формулы (1.18) и поиск прекращается;

$$\alpha^* = zoom(\alpha_{i-1}; \alpha_i) \tag{1.18}$$

- в противном случае вычисляется значение производной функции ϕ в текущей точке α_i ;
- если $|\varphi'(\alpha_i)| \le -c_2 \varphi'(0)$, то искомое α^* вычисляется с помощью формулы (1.19) и поиск прекращается;

$$\alpha^* = \alpha_i \tag{1.19}$$

- если $\varphi'(\alpha_i) \ge 0$, то искомое α^* вычисляется с помощью формулы (1.20) и поиск прекращается;

$$\alpha^* = zoom(\alpha_i; \alpha_{i-1}) \tag{1.20}$$

- если никакое условие не выполнилось, то выбирается новое $\alpha_{i+1} \in (\alpha_i; \alpha_{\max}), i = i + 1$ и процесс повторяется вновь с шага 2.

На седьмом шаге для выбора $\alpha_{i+1} \in (\alpha_i; \alpha_{\max})$ можно использовать методы интерполяции, описанные выше, или же установить α_{i+1} в некоторое постоянное кратное α_i . При выборе стратегии важно, чтобы последовательные шаги увеличивались достаточно быстро, чтобы достичь верхнего предела α_{\max} за конечное число итераций.

Функция *zoom* в качестве аргументов принимает два значения – α_{lo} и α_{hi} , где:

- интервал (α_{lo} ; α_{hi}) содержит значения длин шагов, удовлетворяющие усиленным условиям Вольфе;
- при α_{lo} значение функции ϕ является наименьшим среди всех длин шагов, сгенерированных до сих пор и удовлетворяющих достаточному условию уменьшения;
 - α_{hi} выбирается так, что $\phi'(\alpha_{lo})(\alpha_{hi}-\alpha_{lo})<0$.

Алгоритм функции zoom представляет из себя следующий процесс:

- с помощью интерполяции вычисляется пробная длина шага α_j из интервала (α_{lo} ; α_{hi}), после чего считается $\varphi(\alpha_j)$;
 - если $\varphi(\alpha_j) > \varphi(0) + c_1 \alpha_j \varphi'(0)$ или $\varphi(\alpha_j) \ge \varphi(\alpha_{lo})$, то задается $\alpha_{hi} = \alpha_j$;
- иначе вычисляется $\varphi'(\alpha_j)$ и если $|\varphi'(\alpha_j)| \le -c_2 \varphi'(0)$, то искомое $\alpha^* = \alpha_j$ и поиск прекращается;
 - если $\varphi' (\alpha_j) (\alpha_{hi} \alpha_{lo}) \geq 0$, то $\alpha_{hi} = \alpha_{lo}$;
 - если ни одно из двух условий не выполнилось, то $\alpha_{lo}=\alpha_{j};$

- цикл повторяется с новыми значениями α_i , α_{lo} и α_{hi} .

Другими словами, если значение α_j удовлетворяет усиленным условиям Вольфе, то функция *zoom* верно выбрала длину шага и $\alpha^* = \alpha_j$. Иначе, если α_j удовлетворяет достаточному условию уменьшения и имеет меньшее значение функции, чем $\varphi(\alpha_{lo})$, то для поддержания второго условия для функции *zoom* устанавливаем $\alpha_{lo} = \alpha_j$. Если эта настройка приводит к нарушению третьего условия, то ситуация исправляется установкой $\alpha_{hi} = \alpha_{lo}$.

При использовании бесконечного цикла может возникнуть проблема, которая заключается в том, что по мере приближения алгоритма оптимизации к решению два последовательных значения функций $f(x_k)$ и $f(x_{k-1})$ могут быть неразличимы в арифметике конечной точности. В связи с этим в линейный поиск часто включают остановочный тест, если алгоритм не может получить более низкое значение функции после определенного числа итераций, обычно равного 10 [4]. Некоторые реализации алгоритма линейного поиска используют в качестве условия остановки факт близости относительного изменения x к машинной точности или к некоторому заданному порогу.

Практические реализации алгоритма линейного поиска помимо прочего используют свойства интерполирующих полиномов, чтобы сделать предположения о том, где должна лежать длина следующего шага [6].

На данный момент существует большое количество хороших реализаций алгоритмов линейного поиска. Например, в работе Денниса и Шнабеля [7], Лемарешаля [8], Флетчера [9], а также в работах [10, 11].

Стоит отметить, что для линейного поиска, опирающегося на классические условия Вольфе, потребуется такой же объем вычислений, как и для усиленных условий, однако последние имеют преимущество, поскольку, уменьшая c_2 , можно непосредственно контролировать качество поиска, заставляя принятое значение α лежать ближе к локальному минимизатору функции φ . Эта особенность важна для нелинейных методов сопряженного градиента, и поэтому процедура выбора шага, которая обеспечивает выполнение сильных условий Вольфе, имеет широкую применимость [4].

1.3 Разновидности методов сопряженного градиента

Методы сопряженного градиента названы таким образом из—за одного своего замечательного свойства, а именно способности крайне экономично с точки зрения занимаемой памяти генерировать наборы сопряженных векторов.

Набор ненулевых векторов $\{p_0,p_1,p_2,\cdots p_l\}$ сопряжен относительно симметричной положительно определенной матрицы A, если $\langle Ap_i,p_j\rangle=0$ для всех $i\neq j$. Стоит отметить, что

любой набор сопряженных векторов является также линейно независимым. Важность свойства сопряженности заключается в том, что можно минимизировать функцию за n шагов последовательно минимизируя ее вдоль отдельных направлений в сопряженном множестве.

Ключевой особенностью, благодаря которой этой метод является эффективным для задач большой размерности по сравнению с другими разновидностями методов оптимизации, является тот факт, что метод вычисляет новый вектор направления p_k , используя информацию только лишь о векторе p_{k-1} . В связи с этим нет необходимости хранить информацию о векторах $p_0, p_1, p_2, \cdots p_{k-2}$ — вектор p_{k-1} уже с ними сопряжен. Следовательно, этот метод является экономичным по используемой памяти и производимым вычислениям благодаря отсутствию матричного хранения и операций.

В классическом варианте метода сопряженного градиента направление спуска высчитывается по формуле (1.21).

$$p_k = -g_k + \beta_k p_{k-1} \tag{1.21}$$

Метод сопряженного градиента впервые был предложен Гестенсом и Штифелем [12] как итерационный метод для решения *линейных* систем уравнений с положительно определенной матрицей коэффициентов. Эффективность линейного метода сопряженных градиентов определяется распределением собственных значений матрицы коэффициентов. Преобразовав особым образом матрицу коэффициентов, можно сделать это распределение более благоприятным в контексте использования линейного метода сопряженных градиентов.

Впервые *нелинейный* метод сопряженного градиента был введен Флетчером и Ривзом в 60–х годах XX–го века [13]. Это один из самых ранних известных методов решения задач нелинейной оптимизации большой размерности. Ключевые особенности этого алгоритма заключаются в том, что он не требует матричного хранения и на практике сходится быстрее, чем метод скорейшего спуска.

1.3.1. Метод Флетчера-Ривза

Флетчер и Ривз [13] первыми доказали существование способа расширить область применения метода сопряженных градиентов на нелинейные функции, предложив следующий алгоритм:

- вычисляется значение функции f и ее градиент g в начальной точке x_0 ;
- начальное направление спуска устанавливается равным градиенту в начальной точке, взятым с противоположным знаком;

- вычисляется длина шага α_k с помощью алгоритма линейного поиска;
- новое приближение к точке минимума считается согласно классической итерационной формуле (1.2);
 - вычисляется значение градиента функции в полученной точке;
- если значение градиента функции в полученной точке равно нулю с заданной точностью, то точка минимума найдена и поиск прекращается;
- в противном случае вычисляется параметр β_k согласно формуле (1.22) и задается новое направление спуска (1.23), после чего алгоритм возвращается на этап вычисления длины шага α_k .

$$\beta_k^{FR} = \frac{g_k^T g_k}{g_{k-1}^T g_{k-1}} \tag{1.22}$$

$$p_k = -g_k + \beta_k^{FR} p_{k-1} \tag{1.23}$$

Данный алгоритм подходит для крупноразмерных задач нелинейной оптимизации, поскольку для выполнения итерации необходимо вычислить только значение целевой функции и ее градиента на текущем шаге. Для вычисления шага не требуется выполнение каких—либо матричных операций, а с точки зрения организации памяти необходимо хранить лишь несколько векторов.

Однако в работах Пауэлла [14] присутствует доказательство неэффективности метода Флетчера—Ривза, иллюстрирующее, как в некоторых случаях он может работать медленнее метода скорейшего спуска. В связи с этим появились другие модификации метода, призванные исправить описанный недостаток, в том числе метод Поляка—Рибьери, представленный ниже, который ведет себя иначе в подобных условиях, предотвращая наличие слишком коротких шагов.

1.3.2 Метод Поляка-Рибьери

Поляк и Рибьер предложили определять параметр β_k согласно формуле (1.24) [15]:

$$\beta_k^{PR} = \frac{g_k^T (g_k - g_{k-1})}{\|g_{k-1}\|^2} \tag{1.24}$$

В то время как для *линейных* функций оба описанных алгоритма вырождаются в идентичные друг другу, то применительно к общим *нелинейным* функциям поведение этих двух алгоритмов заметно отличается. Численные эксперименты показывают [4], что метод Поляка—Рибьери является более надежным и эффективным алгоритмом, чем метод Флетчера—Ривза. Однако существует пример, приведенный Пауэллом, доказывающий, что метод Поляка—Рибьери может не сходиться на невыпуклых задачах [16].

Следует отметить, что использование в качестве условий остановки линейного поиска усиленных условий Вольфе, не гарантирует, что p_k всегда является направлением спуска. Однако если задать $\beta_k^+ = \max\{\beta_k^{PR}; 0\}$, то это свойство сохраняется.

В статье у Гилберта и Носедаля [17] описывается реализация линейного поиска, которая всегда генерирует направление спуска, а также доказывается глобальная сходимость такого метода.

Не так давно в работах [18] и [19] соответственно были предложены и другие варианты метода сопряженного градиента. В формулах (1.25) и (1.26) приведены два варианта вычисления параметра β_k , которые обладают некоторыми полезными теоретическими и вычислительными свойствами:

$$\beta_k = \frac{\|g_k\|^2}{(g_k - g_{k-1})^T p_{k-1}},\tag{1.25}$$

$$\beta_k = \left(y_{k-1} - 2p_{k-1} \frac{\|y_{k-1}\|^2}{y_{k-1}^T p_{k-1}} \right)^T \frac{g_k}{y_{k-1}^T p_{k-1}},\tag{1.26}$$

где $y_{k-1} = g_k - g_{k-1}$. Полученные разновидности метода сопряженного градиента гарантируют, что p_k – это направление спуска, если длина шага α_k удовлетворяет условиям Вольфе.

1.3.3 Метод Гестенса-Штифеля

Гестенсом и Штифелем была предложена формула (1.27), определяющая новый вариант вычисления параметра β_k .

$$\beta_k^{HS} = \frac{g_k^T (g_k - g_{k-1})}{(g_k - g_{k-1})^T p_{k-1}}$$
(1.27)

Она задает алгоритм, который аналогичен алгоритму Поляка—Рибьери как с точки зрения его теоретических свойств сходимости, так и с точки зрения его практической эффективности [4].

1.3.4 Улучшенный метод Поляка-Рибьери

В 2009 году в работе [20] была предложена новая усовершенствованная формула вычисления параметра β_k , основанная на формуле Поляка—Рибьери:

$$\beta_k^{NPR} = \frac{\|g_k\|^2 - \frac{\|g_k\|}{\|g_{k-1}\|} |g_k^T g_{k-1}|}{\|g_{k-1}\|^2}$$
(1.28)

Нетрудно видеть, что предложенный метод сводится к методу Поляка–Рибьери, если целевая функция строго выпуклая, а линейный поиск точен. Кроме того, в работе [20] показано, что данный способ вычисления параметра β_k наследует все преимущества метода Флетчера–Ривза. Наконец, доказано, что данный метод удовлетворяет достаточному условию спуска и сходится глобально, если для выбора длины шага α используется линейный поиск, удовлетворяющий усиленным условиям Вольфе. Также в работе показана эффективность предложенного метода по сравнению с классическим методом Поляка–Рибьери.

1.3.5 Гибридный метод сопряженного градиента

Десятью годами позже в работе [21] предлагается новый гибридный метод сопряженного градиента для решения задач оптимизации без ограничений, формула параметра β_k для которого представлена в (1.29). Предлагаемый метод объединяет достоинства методов Флетчера–Ривза, Поляка–Рибьери и его улучшенной версии из исследования [20]. Помимо прочего, новый алгоритм удовлетворяет достаточному условию спуска независимо от результатов линейного поиска, а его глобальная сходимость гарантируется при использовании алгоритма линейного поиска, основанного на усиленных условиях Вольфе. Проведенные численные эксперименты показывают, что новый алгоритм является очень конкурентоспособным.

$$\beta_k^{EPF} = \begin{cases} \beta_k^{PR}, & \text{если } ||g_k||^2 > |g_k^T g_{k-1}| \\ (1 - \theta_k) \beta_k^{NPR} + \theta_k \beta_k^{FR} \end{cases}, \tag{1.29}$$

где
$$\beta_k^{PR} = \frac{g_k^T y_{k-1}}{\|g_{k-1}\|^2};$$

$$g_k$$
 — градиент функции $f(x_k)$; $y_{k-1} = g_k - g_{k-1}$; $\|\cdot\|$ — евклидова норма; $\theta_k = \frac{\lambda - \Gamma \beta_k^{NPR}}{\Gamma \rho}$; $\lambda = y_{k-1}^T g_k$; $\Gamma = y_{k-1}^T p_{k-1} - \lambda \frac{p_{k-1}^T g_k}{\|g_k\|^2}$; $\beta_k^{NPR} = \frac{\|g_k\|^2 - \frac{\|g_k\|}{\|g_{k-1}\|} |g_k^T g_{k-1}|}{\|g_{k-1}\|^2}$; $\beta_k^{FR} = \frac{\|g_k\|}{\|g_{k-1}\|} |g_k^T g_{k-1}|$; $\beta_k^{FR} = \frac{\|g_k\|}{\|g_{k-1}\|^2}$;

Кроме того, если $\theta_k > 1$, то $\theta_k = 1$, а если $\theta_k < 0$, то $\theta_k = 0$.

1.3.6 Трехкомпонентные методы

Большое влияние на работу методов оптимизации оказывает способ выбора направления спуска. Базовые алгоритмы Поляка—Рибьери, Флетчера—Ривза и Гестенса—Штифеля являются двухкомпонентными методами сопряженного градиента, получившими свое название от количества слагаемых в формуле направления спуска (1.21). Однако в работе [22] предлагается новый *трехкомпонентный* метод сопряженного градиента. Эта формула (1.30) является наиболее распространенной формой на данный момент.

$$p_k = \begin{cases} -g_k, & \text{если } k = 0 \text{ или } g_k^T p_{k-1} = 0, \\ -g_k + \beta_k p_{k-1} - \beta_k \frac{g_k^T p_{k-1}}{g_k^T g_k} g_k \text{ иначе} \end{cases}$$
 (1.30)

Основное достоинство предложенного способа выбора направления заключается в том, что условие достаточного уменьшения для такого метода выполняется всегда вне зависимости от выбора параметра β_k и результата линейного поиска длины шага α . В работе [22] также приводится доказательство глобальной сходимости предложенного метода и некоторые численные результаты исследования, демонстрирующие его конкурентоспособность.

1.4 Тестирование метода

Для оценки качества работы и сравнения между собой методов оптимизации необходимо провести серию численных экспериментов на разного рода задачах поиска минимума функции. Для стандартизации данного процесса и получения единообразных результатов исследователями были созданы различные тестовые функции. Важнейшим источником данных функций является библиотека СUTE, созданная и опубликованная Бонгарцем и другими [23]. Впоследствии исследователями были опубликованы расширенные версии данной библиотеки – CUTEr и CUTEst. Наличие таких библиотек позволяет сравнивать между собой различные методы оптимизации, поэтому использование СUTE является международной практикой в сфере разработки оптимизационного программного обеспечения уже не одно десятилетие.

Версия СUTEst библиотеки СUTE на данный момент является наиболее полной и содержит порядка 1500 различных задач оптимизации с ограничениями и без. Все функции разбиты на различные классы, что позволяет легко находить интересующие исследователя задачи. Признаками, по которым классифицируются задачи оптимизации, являются, например, тип целевой функции, наличие у нее ограничений, гладкость, количество существующих производных и так далее. Кроме того, для многих функций существует возможность вручную устанавливать различную размерность — в среднем от 2 до 20 000 переменных. Это позволяет оценивать изменения в результатах работы алгоритма в связи с ростом размерности задачи на примере одной функции. Наконец, каждая тестовая задача оптимизации из коллекции CUTEst сопровождается соответствующей ей начальной точкой x_0 , с которой начинается поиск точки минимума, что является очень важным фактором в контексте тестирования и сравнения различных методов.

1.5 Анализ работы метода

Для определения характеристик работы методов оптимизации необходимо провести серию численных экспериментов на различных тестовых задачах, после чего графически представить полученные результаты для наглядного сравнения различных алгоритмов.

Результаты тестирования методов оптимизации принято изображать с помощью профилей производительности. Такой способ иллюстрирования работы методов был предложен в работе [24]. Профиль производительности — это функция распределения характеристики, являющаяся инструментом для сопоставительного анализа показателей работы различных методов и сравнения оптимизационного программного обеспечения. В

работе [24] также показано, что такие графики сочетают в себе лучшие характеристики других инструментов оценки производительности.

Пусть имеется набор методов S и задач оптимизации P. В первую очередь вычисляется интересующая нас характеристика, например время работы метода, для каждой пары компонент из S и P, то есть, каждый метод решает каждую задачу оптимизации и в качестве результата получает параметр $t_{p,s}$ — вычислительное время, необходимое методу s для решения задачи оптимизации p. Затем для каждого значения $t_{p,s}$ рассчитывается коэффициент производительности по формуле (1.31), то есть, отношение полученного времени работы к наилучшему времени решения ∂a ной за ∂a чи среди рассматриваемых методов.

$$r_{p,s} = \frac{t_{p,s}}{\min\{t_{p,s} : s \in S\}}$$
 (1.31)

Для вычисления общей производительности метода определяется кумулятивная функция распределения коэффициента производительности, заданная формулой (1.32).

$$\rho_s(\tau) = \frac{1}{n_p} size\{p \in P: r_{p,s} \le \tau\}.$$
(1.32)

Здесь $\rho_s(\tau)$ — вероятность, что коэффициент производительности метода s для задачи p находится в пределах τ от наилучшего коэффициента, то есть, отношение количества задач, для которых полученный $r_{p,s}$ меньше, чем τ , к общему количеству задач. Если набор задач P достаточно велик и является репрезентативным, то качество работы метода тем лучше, чем больше его значение $\rho_s(\tau)$. Аналогично рассчитываются коэффициенты производительности и функции их распределения для любых других характеристик работы метода.

При исследовании работы различных методов оптимизации принято сравнивать производительность алгоритмов по количеству вычислений значений функции и ее градиента в точке, числу выполненных итераций, а также по времени решения задачи оптимизации.

Например, в работе [25] в заключительной части исследования представлены графики, изображенные на рисунках 5 и 6. Они основаны на времени решения задачи, количестве итераций и подсчетов значения функции и ее градиента в точке.

Рисунок 5 – Профили производительности по времени работы методов

Рисунок 6 — Профили производительности по числу итераций и подсчетов значений функции и ее градиента в точке

Профиль производительности ρ_s : $\mathbb{R} \mapsto [0;1]$ для метода оптимизации представляет собой неубывающую кусочно–постоянную функцию, непрерывную справа в каждой точке останова. Значение $\rho_s(1)$ – это вероятность того, что данный метод окажется *лучшим* среди методов с точки зрения рассматриваемой характеристики. Таким образом, если необходимо выбрать лучший метод с точки зрения количества раз, когда значение изучаемой метрики у него было лучше, чем у остальных алгоритмов, то необходимо сравнить значения ρ_s методов в точке $\tau=1$ и выбрать тот, чье значение окажется больше.

Предполагается, что $r_{p,s}$ ϵ [1; r_{\max}] и $r_{p,s}=r_{\max}$ только в том случае, если метод s не смог решить задачу p. Следовательно, $\rho_s(r_{\max})=1$ и $p_s^*=\lim_{\tau\to r_{\max}}\rho_s(\tau)$ — это вероятность того,

что метод *справится* с решением задачи. Таким образом, если необходимо выбрать лучший метод с точки зрения высокой вероятности успеха решения, то нам необходимо сравнить значения ρ_s для всех методов при достаточно больших значениях τ , и выбрать тот алгоритм, у которого данное значение окажется больше.

Кроме того, важными свойствами графиков профилей производительности является то, что они не только не чувствительны к *сильным* изменениям результатов по *небольшому* числу задач, но и то, что они в значительной степени не подвержены влиянию *небольших* изменений результатов по *многим* задачам оптимизации.

На основании вышесказанного очевидно, что для полноценного анализа работы методов оптимизации необходимо выводить как минимум два графика профилей производительности — на малых значениях τ , близких к единице, и на больших значениях τ , близких к r_{max} . Однако, иногда даже большие значения τ не позволяют в полной мере оценить производительность некоторых методов. В таком случае в работе [24] предлагается использовать логарифмическую шкалу для профилей производительности. Тогда кумулятивная функция распределения примет вид (1.33).

$$\rho_s(\tau) = \frac{1}{n_p} size\{p \in P: \log_2 r_{p,s} < \tau\}.$$
(1.33)

Такая формула позволяет оценить всю активность метода для $\tau < r_{\rm max}$. Поскольку нас интересует значения $\rho_s(1)$, то в качестве основания логарифма выбирается двойка. Такой график профиля производительности объединяет в себе все достоинства и особенности предыдущих двух графиков и, таким образом, позволяет составить полное представление о качестве работы того или иного метода оптимизации. Единственным недостатком такого типа графика является отсутствие интуитивной интерпретации результатов, поскольку вместо обычной шкалы вероятности в данном случае используется логарифмическая.

Помимо профилей производительности в рамках тестирования методов оптимизации принято предоставлять технический отчет по проведенным численным экспериментам. Данный отчет представляет из себя сводную таблицу о полученных значениях интересующих характеристик для каждого метода и задачи. Пример такого технического отчета изображен на рисунке 7. В нем приводятся метрики работы двух методов — VPRP и NPRP — на некотором множестве задач оптимизации, отраженных в первом столбце слева. Для каждой задачи также указана ее размерность во втором столбце. Для каждого метода и задачи, которую он решает, выводится 4 характеристики — количество выполненных итераций, число подсчетов значений функции и ее градиента в точке, а также затраченное на решение время.

Problem	п	VPRP				NPRP			
		iter	fn	gn	time	iter	fn	gn	time
DIXMAANA	6000	9	24	24	0.15	6	19	19	0.14
DIXMAANB	6000	6	21	21	0.16	6	21	21	0.16
DIXMAANC	6000	7	23	23	0.15	7	24	24	0.16
DIXMAAND	6000	8	25	25	0.15	8	25	25	0.14
FLETCBV2	5000	4142	8285	8285	27.81	436	885	885	3.02
FLETCBV2	10,000	7205	14,411	14,411	97.46	179	365	365	2.74
MOREBV	10,000	100	201	201	1.02	53	107	107	0.69
SPARSQUR	10,000	38	131	131	1.12	75	290	290	2.25
LIARWHD	5000	29	83	83	0.26	23	78	78	0.25
LIARWHD	10,000	34	107	107	1.08	23	68	68	0.74
BRYBND	10,000	46	109	109	1.11	28	67	67	0.93
HILBERTA	200	14	38	38	0.42	14	38	38	0.45
HILBERTB	200	5	13	13	0.24	5	13	13	0.24
PENALTY1	5000	22	98	98	0.18	22	99	99	0.18
PENALTY1	10,000	19	89	89	0.36	19	89	89	0.36
QUARTC	5000	33	113	113	0.13	33	119	119	0.14
QUARTC	10,000	40	133	133	0.30	41	154	154	0.38
NONDIA	5000	10	29	29	0.16	10	38	38	0.18
NONDIA	10,000	7	24	24	1.47	9	36	36	1.54
SROSENBR	10,000	11	30	30	0.18	10	28	28	0.18
BROWNAL	400	4	23	23	0.24	4	23	23	0.23
ARGLINA	300	1	5	5	0.29	1	5	5	0.29
COSINE	10,000	9	30	30	0.28	9	30	30	0.28
FMINSRF2	15,625	497	999	999	11.36	472	949	949	9.92
FMINSRF2	10,000	434	874	874	6.23	389	784	784	5.00
Average		509.2	1036.7	1036.7	6.09	75.3	174.2	174.2	1.22

Рисунок 7 – Технический отчет

Такого рода технические отчеты позволяют численно оценить разницу в работе различных методов и выделить интересные особенности, которые не позволяет сделать график, например классы задач, на которых определенный алгоритм справляется значительно хуже или лучше остальных.

1.6 Выволы

В данной главе были рассмотрены существующие разновидности метода сопряженного градиента, их отличия и преимущества относительно друг друга. Методы отличаются друг от друга главным образом способом выбора направления спуска, а также параметром β_k .

Кроме того, было проведено исследование на тему выбора длины шага метода. Наиболее популярной методикой для этого на данный момент является алгоритм линейного поиска, вычисляющий параметр α , который удовлетворяет усиленным условиям Вольфе. Это позволяет методу достигнуть хорошей скорости сходимости, будучи при этом достаточно экономным с точки зрения производимых вычислений. Метод скорейшего спуска для вычисления α , очевидно, давал бы методу еще большую скорость сходимости, но при этом он гораздо менее экономичный, а выбор $\alpha_k = const$, безусловно, является самым экономичным, однако при этом обеспечивает методу наихудшую сходимость.

Помимо прочего, были изучены варианты выбора тестовых задач оптимизации для проведения серии численных экспериментов. Выявлено, что в своих работах различные

исследователи методов оптимизации во всем мире используют коллекцию функций CUTEst, которая является наиболее полной и удобной библиотекой для тестирования оптимизационного программного обеспечения.

Наконец, были найдены графические способы отображения результатов проведенных экспериментов, широко используемые при исследовании методов оптимизации в различных работах. Характеристики работы алгоритма наиболее часто представляются в виде трех типов графиков профилей производительности, а также технического отчета в формате сводной таблицы, содержащей информацию о метриках работы алгоритма.

2 Содержательная постановка задачи

Цель работы – разработать новый трехкомпонентный метод сопряженного градиента, вычисляющий приближение к точке минимума целевой функции.

Для достижения поставленной цели необходимо:

- провести анализ существующих разновидностей методов сопряженного градиента;
- разработать новый трехкомпонентный метод сопряженного градиента;
- выбрать существующие методы оптимизации для проведения сравнительного анализа с разработанным алгоритмом;
 - реализовать с помощью программных средств разработки данные алгоритмы;
 - сформировать набор тестовых задач оптимизации из библиотеки CUTEst;
 - провести серию численных экспериментов на множестве тестовых функций;
 - составить технический отчет по полученным результатам;
 - изобразить профили производительности рассматриваемых методов оптимизации;
- провести сравнительный анализ разработанного метода с другими алгоритмами оптимизации;
 - сделать выводы о применимости предлагаемого метода.

Входные данные:

- набор тестовых функций f с размерностью n и начальной точкой x_0 .

Выходные данные:

- $-x^*$ вычисленное приближение к точке минимума функции;
- f и ||x|| значение функции и нормы аргумента в точке x^* ;
- fcalls и gcalls количество вычислений значения функции и ее градиента в точке;
- iters количество выполненных итераций;
- time время решения задачи оптимизации.

Выполнить работу в соответствии с ГОСТ 2.111–68, оформить текст согласно ГОСТ 7.32–2001, страницы текста – ГОСТ 9327–60, а список источников – ГОСТ 7.1–2003.

3 Математическая постановка задачи

Разработать трехкомпонентный метод сопряженного градиента для поиска точки минимума функции без ограничений (3.1).

$$f(x) \to min, x \in \mathbb{R}^n,$$
 (3.1)

где f – выпуклая функция общего вида в пространстве \mathbb{R}^n .

Шаг метода задать с помощью итерационной формулы (3.2):

$$x_{k+1} = x_k + \alpha_k p_k, \tag{3.2}$$

где $x_k \in \mathbb{R}^n$ – это вектор k–го приближения решения $x^* \in \mathbb{R}^n$, α_k – положительный скаляр, задающий длину шага метода, $p_k \in \mathbb{R}^n$ – вектор направления поиска.

Вычислять с помощью алгоритма линейного поиска длину шага α_k , удовлетворяющую усиленным условиям Вольфе, сформулированным в (3.3).

$$f(x_k + \alpha_k p_k) \le f(x_k) + c_1 \alpha_k g_k^T p_k,$$

$$|g(x_k + \alpha_k p_k)^T p_k| \le c_2 |g_k^T p_k|,$$
(3.3)

где $0 < c_1 < c_2 < 1$.

В случае, если алгоритм линейного поиска при заданных параметрах не сходится, использовать в качестве критерия остановки условие Армихо, сформулированное в (3.4).

$$f(x_k + \alpha_k p_k) \le f(x_k) + c_1 \alpha_k g_k^T p_k, \tag{3.4}$$

Для задания направления спуска определить новую модификацию трехкомпонентной формулы, обеспечивающую разрабатываемому методу оптимизации высокую скорость сходимости и экономичность с точки зрения количества вычислений значений функции и ее градиента в точке в сравнении с другими методами.

4 Подготовка и анализ исходных данных

Для тестирования и сравнения новых методов оптимизации с существующими алгоритмами исследователями были разработаны различные тестовые функции. Важнейшим источником данных функций является библиотека *CUTE*, созданная и опубликованная Бонгарцем и другими [23]. Впоследствии исследователями были опубликованы расширенные версии данной библиотеки – *CUTEr* и *CUTEst*. В данной работе используется последняя и наиболее полная версия из всех.

На основании классификации тестовых функций данной библиотеки и общепринятой мировой практики для тестирования разрабатываемого метода был сформирован набор гладких задач оптимизации без ограничений с размерностью от 2 до 10 000 и явно заданной целевой функцией. Список исходных задач с описанием и наивысшей размерностью приведен в приложении А.

Помимо задач из коллекции CUTEst для тестирования и сравнения разрабатываемого метода с другими предлагается использовать собственные тестовые задачи, сгенерированные в большом количестве. В качестве задачи для данных тестов выбрана задача минимизации квадратичной функции с L_2 –регуляризатором, приведенная в (4.1).

$$f(x) = ||Ax - b||^2 + \lambda ||x||^2 \to \min, x \in \mathbb{R}^M$$
(4.1)

где A — прямоугольная матрица размера $N \times M$, $b \in \mathbb{R}^N$ — заданный вектор, λ — заданное число, а $\|Ax - b\|$ и $\|x\|$ — евклидовы нормы. Размерности таких задач в проведенном исследовании составляют от 10 до 1000. Для тестирования генерируется 1000 задач каждой размерности, то есть всего 10 000 задач.

При составлении тестовой задачи такого вида с заранее известным единственным точным решением x_* предлагается воспользоваться критерием оптимальности для x_* – условием Ферма, сформулированным в выражении (4.2).

$$2A^{T}(Ax_{*} - b) + 2\lambda x_{*} = 0 (4.2)$$

При $\lambda > 0$ решение x_* удовлетворяет условию (4.3).

$$x_* = A^T y_*, y_* \in \mathbb{R}^N \tag{4.3}$$

После подстановки (4.3) в (4.2) становится очевидна следующая схема составления тестовой задачи:

- генерируется матрица A размера $N \times M$, число $\lambda > 0$ и вектор $y_* \in \mathbb{R}^N$;
- вычисляется вектор $b = (AA^T + \lambda I)y_*$.

Задача оптимизации сформирована. Ее точное решение вычисляется по формуле (4.3).

Стоит отметить, что такую задачу решает одна из линейных моделей машинного обучения — регрессия Риджа, поэтому оценка качества работы разработанного метода на данном классе задач оптимизации является для данной работы еще более актуальной.

Таким образом, в данной работе оценка приводимых методов оптимизации производится двумя способами – на тестовых задачах из библиотеки CUTEst и на собственных квадратичных задачах машинного обучения. Такой подход позволяет с разных сторон оценить качество разработанного метода и сделать более объективный сравнительный анализ.

5 Описание разработанного алгоритма

В рамках выпускной квалификационной работы был разработан новый трехкомпонентный метод сопряженного градиента. Блок—схема данного алгоритма приведена на рисунке 8. Далее приведено подробное описание каждого этапа работы метода.

Рисунок 8 – Блок-схема разработанного метода оптимизации

Для целевой функции f дано начальное приближение x_0 к точке минимума. Прежде всего вычисляется значение функции f в точке x_0 : $f_0 = f(x_0)$, а также градиент функции f в точке x_0 : $g_0 = g(x_0)$. На нулевой итерации (k=0) начальное направление спуска p_0 задается градиентом в начальной точке x_0 , взятым с противоположным знаком, то есть $p_0 = -g_0$.

После этого с помощью алгоритма линейного поиска, основанного на усиленных условиях Вольфе, вычисляется длина шага α_k на основании текущих значений x_k и p_k . Если алгоритм не сошелся, то α_k высчитывается согласно условиям Армихо. Если α_k не удалось получить и в данном случае, метод прекращает работу, а задача оптимизации считается нерешенной.

Важной особенностью является тот факт, что при тестировании на квадратичных задачах с L_2 -регуляризатором длина шага α_k вычисляется по формуле (5.1). Известно, что такой выбор α_k является наилучшим из всех возможных, поэтому в использовании алгоритма поиска длины шага нет необходимости.

$$\alpha_k = -\frac{\langle Ax_k - b|Ap_k\rangle + \lambda \langle x_k|p_k\rangle}{\|Ap_k\|^2 + \lambda \|p_k\|^2}$$
(5.1)

Далее новое приближение к точке минимума функции рассчитывается по классической итерационной формуле (5.2).

$$x_{k+1} = x_k + \alpha_k p_k \tag{5.2}$$

Затем вычисляется градиент функции в полученной точке x_{k+1} , то есть $g_{k+1} = g(x_{k+1})$. Если полученный $g_{k+1} = 0$, то поиск прекращается, поскольку точка минимума найдена. В противном случае высчитывается параметр β_k с помощью гибридной формулы (5.3), предложенной в работе [26].

$$\beta_k = \begin{cases} \beta_k^{PR}, & \text{если } ||g_k||^2 > |g_k^T g_{k-1}| \\ (1 - \theta_k) \beta_k^{NPR} + \theta_k \beta_k^{FR} \end{cases}$$
 (5.3)

где
$$\beta_k^{PR} = \frac{g_k^T y_{k-1}}{\|g_{k-1}\|^2};$$
 g_k — градиент функции $f(x_k);$
 $y_{k-1} = g_k - g_{k-1};$
 $\|\cdot\|$ — евклидова норма;

$$\begin{split} \theta_k &= \frac{\lambda - \Gamma \beta_k^{NPR}}{\Gamma \rho}; \\ \lambda &= y_{k-1}^T g_k; \\ \Gamma &= y_{k-1}^T p_{k-1} - \lambda \frac{p_{k-1}^T g_k}{\|g_k\|^2}; \\ \beta_k^{NPR} &= \frac{\|g_k\|^2 - \frac{\|g_k\|}{\|g_{k-1}\|} |g_k^T g_{k-1}|}{\|g_{k-1}\|^2}; \\ \rho &= \frac{\|g_k\|}{\|g_{k-1}\|} |g_k^T g_{k-1}| \\ \beta_k^{FR} &= \frac{\|g_k\|^2}{\|g_{k-1}\|^2}; \end{split}$$

Кроме того, если $\theta_k > 1$, то $\theta_k = 1$, а если $\theta_k < 0$, то $\theta_k = 0$.

Направление спуска предлагается задавать новой трехкомпонентной формулой (5.4), разработанной в рамках данного исследования. Данная формула является модификацией классической трехкомпонентной формулы (5.5) с добавлением к первому и третьему слагаемому множителя ω (5.6). Впервые формула коэффициента ω была получена в работе [27]. Тогда исследователи предложили использовать данный множитель в двухкомпонентной формуле, такая модификация метода на серии численных экспериментов продемонстрировала более высокую производительность по сравнению с методом, направление спуска которого задано классической двухкомпонентной формулой. В данной работе предлагается расширить данные идеи на класс трехкомпонентных методов.

$$p_{k+1} = -\omega_k g_k + \beta_k p_k - \omega_k \beta_k \frac{g_k^T p_k}{\|g_k\|^2} g_k$$
(5.4)

$$p_{k+1} = -g_k + \beta_k p_k - \beta_k \frac{g_k^T p_k}{\|g_k\|^2} g_k$$
 (5.5)

$$\omega_k = \frac{p_k^T y_k}{\|g_{k-1}\|^2} \tag{5.6}$$

Условием остановки поиска точки минимума функции является равенство градиента функции в полученной точке нулю с заданной точностью, обычно 10⁻⁶. Кроме того, для предотвращения появления бесконечного цикла в случае, если соответствующий метод не

сходится к точке минимума тестовой функции, наложено дополнительное условие на количество итераций. В случае, когда метод оптимизации не сходится к решению задачи за 100~000 итераций, считается, что он работает плохо и для поиска минимума в подобного рода задачах не рекомендуется. Помимо описанных выше условий работа метода может прекратиться в случае отсутствия успеха при выборе длины шага α_k на какой—либо итерации, другими словами, в случае отсутствия сходимости у алгоритма линейного поиска, основанного на условиях Вольфе и Армихо. Тогда также полагается, что данный метод не справился с решением задачи оптимизации.

6 Методы и инструменты информационных технологий

Для работы с функциями из коллекции задач оптимизации *CUTEst* используется *PyCUTEst* — интерфейс *Python* для *CUTEst*, пакета *Fortran* для тестирования оптимизационного программного обеспечения. Он основан на интерфейсе, первоначально разработанном для *CUTEr* профессором Арпадом Бюрменом. Этот интерфейс позволяет получать данные из файла функции библиотеки формата *.sif* по ее названию, а также задавать различные параметры для вызова, в том числе размерность задачи. Это во многом ускоряет и упрощает процесс проведения тестирования работы исследуемых методов, особенно учитывая тот факт, что множество исходных задач является достаточно большим.

Для работы с интерфейсом *PyCUTEst* программное обеспечение реализуется на высокоуровневом языке программирования *Python*. Взаимодействие с данным интерфейсом возможно только на платформе *UNIX*—подобных операционных систем, поэтому в данном исследовании разработка программного кода осуществляется в системе *Linux*. Для упрощения процесса разработки и отладки используется современная среда разработки *PyCharm*, оснащенная широким функционалом и удобным пользовательским интерфейсом.

Помимо описанного выше интерфейса *PyCUTEst* при разработке программного обеспечения используются такие библиотеки, как *NumPy*, *Time*, *Random*, *PrettyTable*, *SciPy* и *MatplotLib*, подробное описание которых приведено ниже.

- *NumPy* фундаментальный пакет для научных вычислений на *Python*. Это библиотека Python, которая предоставляет такой объект как многомерный массив и различные производные объекты, а также набор процедур для быстрых операций с массивами, включая математические, логические, манипуляции с формой, сортировку, выбор, различные преобразования и многое другое. В разработанном программном обеспечении используются реализации *NumPy* для вычисления скалярного произведения, подсчета евклидовой нормы и абсолютного значения числа;
- *Time* модуль *Python*, предоставляющий различные функции для работы со временем. В контексте данной работы этот модуль используется для подсчета времени, потребовавшегося методу для решения задачи оптимизации;
- Random модуль Python, реализующий генераторы псевдослучайных чисел для различных распределений. Используется в данной работе для генерации тестовых квадратичных задач с L_2 —регуляризатором;

- *PrettyTable* библиотека *Python*, используемая для удобного отображения табличных данных в наглядном формате таблицы ASCII. В работе применяется для вывода технического отчета по серии численных экспериментов;
- SciPy библиотека с открытым исходным кодом на Python для математики, естественных наук и инженерии. В контексте данного исследования используется реализация алгоритма линейного поиска, вычисляющего длину шага α_k , удовлетворяющее условиям Армихо;
- *MatPlotLib* комплексная библиотека *Python* для создания статических, анимированных и интерактивных визуализаций. В разработанном программном обеспечении используется для построения графиков профилей производительности методов оптимизации.

Разработка, отладка и численные эксперименты проводятся на персональном компьютере с процессором и оперативной памятью 8.00Гб. Данный компьютер не обладает никакими специфическими характеристиками, поскольку вычислительная мощность ЭВМ не влияет на производительность методов с точки зрения количества итераций и расчетов функций и их градиентов, а именно они являются основными характеристиками работы методов оптимизации.

7 Разработанное программное обеспечение

Для достижения поставленных в работе целей реализовано программное обеспечение на высокоуровневом языке программирования Python в среде разработки PyCharm~2020.1. Проект состоит из двух отдельных модулей, один из которых посвящен тестированию на задачах CUTEst, а другой — на квадратичных задачах с L_2 —регуляризатором. Схема разработанного программного обеспечения приведена на рисунке 9.

Рисунок 9 – Схема разработанного программного обеспечения

Первый модуль разработанного программного продукта представляет собой два файла формата .pv и один файл формата .txt.

- problem_list.txt текстовый файл, содержащий список наименований тестовых задач из коллекции *CUTEst* и их размерностей. Для тех задач, размерность которых фиксирована, после имени функции параметр не указывается;
- *cute_methods.py* файл программного кода на языке *Python*, содержащий в себе реализацию разработанного алгоритма и всех методов оптимизации, с которым производился сравнительный анализ, а также функцию вызова задачи оптимизации из библиотеки *PyCUTEst*. Всего помимо предлагаемого в данной работе метода было реализовано 10

алгоритмов поиска минимума функции, 4 из которых являются базовыми двухкомпонентными методами оптимизации, еще 4 — их трехкомпонентными версиями. Остальные два метода являются алгоритмами, предложенными в работах [21, 25]. Для вычисления длины шага α_k в данном программном файле реализован линейный поиск на основе усиленных условий Вольфе. В случае, когда получить искомое значение не представляется возможным, совершается попытка вычисления параметра α_k , удовлетворяющего условиям Армихо, с помощью вызова функции $line_search_armijo$ из библиотеки SciPy. Если такое α_k также не может быть найдено, работа метода оптимизации над решением данной задачи прекращается и считается неуспешной;

- cute_main.py является исполняемым файлом первого модуля проекта. В рамках данного файла выполняется считывание списка имен и параметров тестовых задач из тестового файла problem_list.txt в двумерный массив, после чего вызывает все разработанные методы из файла cute_methods.py для каждой из задач оптимизации и обрабатывает полученные результаты, а именно формирует технический отчет в формате таблицы с указанием характеристик работы каждого метода на множестве тестовых функций и изображает графики профилей производительности методов.

Второй модуль разработанного программного обеспечения представляет из себя два файла с программным кодом для тестирования на квадратичных задачах с L_2 регуляризатором.

- $quad_methods.py$ содержит реализации вычисления значения функции и градиента тестовой квадратичной задачи, а также функцию для подсчета длины шага α_k , согласно формуле (5.1). Более того, в данном файле реализованы все те же методы оптимизации, что и в файле $cute_methods.py$. Реализации методов в двух представленных модулях программного обеспечения во многом отличаются в силу специфики работы с библиотекой PyCUTEst, а также в связи с использованием или отсутствием линейного поиска для подсчета длины шага алгоритма;
- quad_main.py является исполняемым файлом второго модуля программного обеспечения. В процессе работы данного файла происходит генерация тестовых задач в количестве 1000 штук для каждой из десяти различных размерностей. Таким образом, в сумме генерируется 10 000 тестовых задач. После этого происходит поочередный вызов методов оптимизации из файла quad_methods.py. Результаты, полученные в ходе работы каждого из методов, записываются в технический отчет и используются для построения графиков профилей производительности методов.

В процессе работы над реализацией программного обеспечения для проведения численных экспериментов были сформулированы постановки задач, а также определены инструменты и средства разработки.

Результатом, демонстрирующим достижение поставленных в работе целей, является разработанный программный продукт, выдающий в качестве выходного результата технический отчет о характеристиках решения методами задач оптимизации и графики профилей производительности, позволяющие провести сравнительный анализ методов оптимизации.

Фрагменты программного кода, а также текстовый файл со списком тестовых задач CUTEst приведены в приложении В.

8 Анализ полученных результатов

Основным результатом данной дипломной работы является разработанный трехкомпонентный метод для решения задач оптимизации. Для оценки качества его работы была проведена серия численных экспериментов на задачах оптимизации из коллекции CUTEst и на квадратичных задачах с L_2 —регуляризатором. Кроме того, были отобраны еще 10 методов оптимизации для проведения сравнительного анализа разработанного алгоритма с другими. Список всех реализованных в программном обеспечении методов оптимизации, включая разработанный в данном исследовании, приведен в таблице 1. Длина шага α_k для всех методов выбирается при помощи алгоритма линейного поиска, поэтому отличие методов заключается в способе выбора направления p_k и параметра β_k . Стоит отметить, что все методы относятся к группе методов сопряженного градиента.

Таблица 1 – Список рассматриваемых методов оптимизации

Название	Параметр eta_k	Направление p_k
1	2	3
1. Базовый двухкомпонентный метод Флетчера—Ривза	$\beta_k^{FR} = \frac{g_k^T g_k}{g_{k-1}^T g_{k-1}}$	$p_k = -g_k + \beta_k p_{k-1}$
2. Трёхкомпонентная форма базового метода Флетчера—Ривза	$\beta_k^{FR} = \frac{g_k^T g_k}{g_{k-1}^T g_{k-1}}$	$p_k = -g_k + \beta_k p_{k-1} - \beta_k \frac{g_k^T p_{k-1}}{g_k^T g_k} g_k$
3. Базовый двухкомпонентный метод Поляка-Рибьери	$\beta_k^{PR} = \frac{g_k^T(g_k - g_{k-1})}{\ g_{k-1}\ ^2}$	$p_k = -g_k + \beta_k p_{k-1}$
4. Трёхкомпонентная форма базового метода Поляка—Рибьери	$\beta_k^{PR} = \frac{g_k^T(g_k - g_{k-1})}{\ g_{k-1}\ ^2}$	$p_k = -g_k + \beta_k p_{k-1} - \beta_k \frac{g_k^T p_{k-1}}{g_k^T g_k} g_k$
5. Базовый двухкомпонентный метод Гестенса— Штифеля	$\beta_k = \frac{g_k^T (g_k - g_{k-1})}{(g_k - g_{k-1})^T p_{k-1}}$	$p_k = -g_k + \beta_k p_{k-1}$
6. Трёхкомпонентная форма базового метода Гестенса—Штифеля	$\beta_k = \frac{g_k^T (g_k - g_{k-1})}{(g_k - g_{k-1})^T p_{k-1}}$	$p_{k} = -g_{k} + \beta_{k} p_{k-1} - \beta_{k} \frac{g_{k}^{T} p_{k-1}}{g_{k}^{T} g_{k}} g_{k}$
7. Базовый двухкомпонентный метод Дай–Юань	$\beta_k = \frac{\ g_k\ ^2}{p_{k-1}^T (g_k - g_{k-1})}$	$p_k = -g_k + \beta_k p_{k-1}$
8. Трёхкомпонентная форма базового метода Дай-Юань	$\beta_k = \frac{\ g_k\ ^2}{p_{k-1}^T (g_k - g_{k-1})}$	$p_k = -g_k + \beta_k p_{k-1} - \beta_k \frac{g_k^T p_{k-1}}{g_k^T g_k} g_k$
9. Трёхкомпонентный метод из работы [25], основанный на базовом методе Дай–Ляо	$\beta_k = \frac{\ g_k\ ^2 - \frac{\ g_k\ }{\ g_{k-1}\ } g_k^T g_{k-1} }{\mu g_k^T p_{k-1} - p_{k-1}^T g_{k-1}} - t \frac{g_k^T s_{k-1}}{p_{k-1}^T y_{k-1}}$	$p_k = -g_k + \beta_k p_{k-1} - \beta_k \frac{g_k^T p_{k-1}}{g_k^T g_k} g_k$

Продолжение таблицы 1

1	2	3
10. Трехкомпонентный гибридный метод из работы [21], основанный на базовых методах Флетчера—Ривза и Поляка—Рибьери	$eta_k = egin{cases} eta_k^{PR}, & ext{если} \ g_k\ ^2 > g_k^T g_{k-1} \ & (1- heta_k) eta_k^{NPR} + heta_k eta_k^{FR} \end{cases}$	$p_k = -g_k + \beta_k p_{k-1} - \beta_k \frac{g_k^T p_{k-1}}{g_k^T g_k} g_k$
11. Новый разработанный трёхкомпонентный метод оптимизации	$eta_k = egin{dcases} eta_k^{PR}, & ext{если} \ g_k\ ^2 > g_k^T g_{k-1} \ (1- heta_k) eta_k^{NPR} + heta_k eta_k^{FR} \end{cases}$	$p_k = -oldsymbol{\omega}_k g_k + eta_k p_{k-1} - \ -oldsymbol{\omega}_k eta_k rac{g_k^T p_{k-1}}{g_k^T g_k} g_k$

Вследствие проведенных численных экспериментов из 11 описанных выше методов были отобраны 5 алгоритмов, включая предлагаемый в данной работе, наиболее успешно справляющихся с исходными задачами оптимизации. Этими методами являются двухкомпонентные базовые алгоритмы Флетчера—Ривза, Поляка—Рибьери, Гестенса—Штифеля, трехкомпонентный гибридный метод из работы [21] и метод, разработанный в данном исследовании.

На рисунках 10 и 11 приведены основные результаты работы первого модуля программы — графики профилей производительности методов на малых и больших значениях t соответственно.

Рисунок 10 – Профили производительности методов при решении задач CUTEst на малых значениях t

Рисунок 11 – Профили производительности методов при решении задач CUTEst на больших значениях t

Как уже было описано ранее, основной интерес на графиках профилей производительности представляют значения $p_s(1)$ и $p_s(r_{\rm max})$.

Значение $\rho_s(1)$ — это вероятность того, что данный метод окажется лучше других в данной метрике большее количество раз. На рисунке 10 видно, что разработанный метод демонстрирует лучшую производительность по всем четырем оцениваемым характеристикам — количеству вычислений значений функции и ее градиента в точке, числу выполненных итераций и затраченному времени. Другими словами, с точки зрения количества выполненных итераций разработанный метод с вероятностью около 70% является лучшим. Вероятность, что данный алгоритм выполнит меньше всех подсчетов значений функции и ее градиента в точке около 60%. Наконец, с точки зрения времени, затраченного на решения задачи оптимизации, разработанный метод также превосходит остальные алгоритмы.

Для оценки работы методов при $\tau \to r_{\text{max}}$ приведен рисунок 11. На нем видно, что с точки зрения высокой вероятности успеха решения разработанный метод также является лучшим. Ближайшим к нему по производительности является гибридный метод из работы [21], взятый за основу интересующего нас метода. Другими словами, эти два метода решают успешно большее количество задач оптимизации нежели все остальные методы. Об этом свидетельствует и таблица ошибок, приведенная в приложении Б, согласно которой разработанный метод и гибридный метод из работы [21] из 95 тестовых задач не справились с

минимизацией *двух* и *одной* функций соответственно, тогда как остальные методы не нашли решение в среднем в *шести* задачах.

На основании вышесказанного можно утверждать, что разработанный метод работает успешнее всех остальных рассмотренных в данной работе алгоритмов оптимизации из класса сопряженных градиентов по всем четырем характеристикам. Он является как самым быстрым и экономичным, так и самым надежным методом оптимизации среди всех изученных.

На рисунках 12 и 13 изображены профили производительности рассматриваемых пяти методов для числа итераций и затраченного времени на множестве квадратичных задач с L_2 регуляризатором. Сравнение количества выполненных вычислений значения функции и ее градиента в точке не имеет смысла, поскольку оно равно числу итераций в силу отсутствия алгоритма линейного поиска для выбора длины шага. Значение функции и градиента рассчитывается лишь единожды при получении нового значения x_k .

Рисунок 12 – Профили производительности методов при решении квадратичных задач на малых значениях t

На графике рисунке 12 при малых значениях τ видно, что с точки зрения числа итераций наиболее быстрыми являются разработанный в данном исследовании метод и двухкомпонентный алгоритм Гестенса—Штифеля. Больше всех шагов для решения квадратичной задачи требуется совершить двухкомпонентный алгоритм Флетчера—Ривза.

Рисунок 13 – Профили производительности методов при решении квадратичных задач на больших значениях t

Однако на рисунке 13 видно, что начиная с $\tau = 1.2$ все методы за исключением алгоритма Флетчера—Ривза начинают показывать одинаковую производительность. То есть, с точки зрения количества успешно решенных задач разработанный метод работает также успешно, как и остальные алгоритмы.

С точки зрения затраченного на решение задачи времени разработанный метод оптимизации работает медленнее большинства алгоритмов, обойдя лишь гибридный метод из работы [21].

Таким образом, если приоритетным является скорость получения результата, то для квадратичных задач с L_2 -регуляризатором рекомендуется использовать более простые базовые методы оптимизации. Однако если целью является сокращение числа итераций, то разработанный метод, безусловно, является более предпочтительным.

Технический отчет, полученный в ходе проведения численных экспериментов, приведен в приложении Б.

ЗАКЛЮЧЕНИЕ

В ходе данной работы был проведен аналитический обзор доступных источников информации в рамках исследуемой предметной области, сформулированы содержательная и математическая постановки задач, выбраны средства информационно-коммуникационных технологий для достижения поставленных целей и сформировано множество тестовых задач оптимизации. Вследствие проведенной работы был разработан новый трехкомпонентный метод сопряженного градиента, а также программное обеспечение, нацеленное на проведение тестирования данного алгоритма и обработку полученных результатов. В ходе серии численных экспериментов на множестве тестовых задач разработанный метод оптимизации продемонстрировал высокую производительность, что доказывает его конкурентоспособность и применимость в рамках задач оптимизации без ограничений.

В рамках исследования литературы были выделены наиболее популярные и успешные разновидности методов сопряженных градиентов, продемонстрированы их различия и преимущества относительно друг друга. Кроме того, был проведен анализ способов выбора множества задач для тестирования работы метода на основании популярных исследований в области методов оптимизации. Наконец, были рассмотрены различные способы представления полученных в ходе исследования результатов работы метода. Следующими этапами работы были разработка нового трехкомпонентного метода сопряженного градиента, его программная реализация и проведение серии численных экспериментов на множестве тестовых задач.

Результаты, полученные в ходе настоящего исследования, доказали высокую конкурентоспособность разработанного метода, что говорит о достижении всех поставленных в работе целей и выполнении всех сформулированных задач в полном объеме и качестве. Предложенный метод оптимизации может быть использован в любых сферах, решающих задачи поиска оптимального значения целевой функции без ограничений.

В рамках выполнения выпускной квалификационной работы были приобретены как профессиональные, так и системные и инструментальные компетенции, а именно были развиты способности поиска, изучения и анализа англоязычной научной литературы, усовершенствованы навыки структурированного и концептуального изложения изученной информации и получены новые компетенции в сфере разработки программного обеспечения и интерпретации полученных результатов.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 П.А. Егубова. Трехкомпонентные методы сопряженного градиента для решения задач оптимизации большой размерности. // 76–е Дни Науки Студентов НИТУ «МИСиС». –2021.
- 2 Z. Jijun, L. Haibo, C. Zhiwei. The technology of intelligent recognition for drilling formation based on neural network with conjugate gradient optimization and remote wireless transmission. // Computer Communications. –2020. –V.156. –P.35–45.
- 3 Y. Shengwei, F. Qinliang, L. Lue, X. Jieqiong. A class of globally convergent three-term Dai-Liao conjugate gradient methods. // Applied Numerical Mathematics. -2020. V.151. -P.354-366.
- 4 J. Nocedal, S. J. Wright. Numerical Optimization. New York: Springer Science+Business Media, 2006.
 - 5 R. Bulirsch, J. Stoer. Introduction to Numerical Analysis. New York: Springer-Verlag, 1980.
- 6 R. Brent. Algorithms for minimization without derivatives. NJ: Prentice Hall, Englewood Cliffs, 1973.
- 7 J. E. Dennis, R. B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. NJ: Prentice–Hall, Englewood Cliffs, 1983.
- 8 C. Lemarechal. A view of line searches. // Lecture Notes in Control and Information Science. -1981. V.30. -P.59-78.
 - 9 R. Fletcher. Practical Methods of Optimization. New York: JohnWiley & Sons, 1987.
- 10 J. More, D. Thuente. Line search algorithms with guaranteed sufficient decrease. // ACM Transactions on Mathematical Software. –1994. V.20. –P.286–307.
- 11 W. Hager, H. Zhang. A new conjugate gradient method with guaranteed descent and an efficient line search. // SIAM Journal on Optimization. –2005. V.16. –P.170–192.
- 12 M. Hestenes, E. Stiefel. Methods of conjugate gradients for solving linear systems. // Journal of Research of the National Bureau of Standards. –1952. V.49. –P.409–436.
- 13 R. Fletcher, C. Reeves. Function minimization by conjugate gradients. // Computer Journal. -1964. V.7. -P.149-154.
- 14 M. Powell. Some convergence properties of the conjugate gradient method. // Mathematical Programming. –1976. V.11. –P.42–49.
- 15 E. Polak, G. Ribiere. Note sur la convergence de methodes de directions conjuguees. // Revue Franc, aise d'Informatique et de Recherche Op'erationnelle. –1969. V.16. –P.35–43.
- 16 M. Powell. Nonconvex minimization calculations and the conjugate gradient method. // Lecture Notes in Mathematics. –1984. –V.1066. –P.122–141.

- 17 J. Gilbert, J. Nocedal. Global convergence properties of conjugate gradient methods for optimization. // SIAM Journal on Optimization. –1992. V.2. –P.21–42.
- 18 Y. Dai, Y. Yuan. A nonlinear conjugate gradient method with a strong global convergence property. // SIAM Journal on Optimization. –1999. V.10. –P.177–182.
- 19 W. Hager, H. Zhang. A new conjugate gradient method with guaranteed descent and an efficient line search. // SIAM Journal on Optimization. –2005. V.16. –P.170–192.
- 20 L. Zhang. An improved Wei–Yao–Liu nonlinear conjugate gradient method for optimization computation. // Applied Mathematics and Computation. –2009. V.215. –P.2269–2274.
- 21 P. Mtagulwa, P. Kaelo. An efficient modified PRP–FR hybrid conjugate gradient method for solving unconstrained optimization problems. // Applied Numerical Mathematics. –2019. V.145. –P.111–120.
- 22 Y. Narushima, H. Yabe, J. A. Ford. A Three–Term Conjugate Gradient Method with Sufficient Descent Property For Unconstrained Optimization. // SIAM Journal on Optimization. –2011. V.21. –P.212–230.
- 23 I. Bongartz, A. Conn, N. Gould, P. Toint. CUTE: constrained and unconstrained testing environment. // ACM Transactions on Mathematical Software. –1995. V.21. –P.123–160.
- 24 E. Dolan, J. More. Benchmarking optimization software with performance profiles. // Mathematical Programming. –2002. V.91. –P.201–213.
- 25 Y. Zheng, B. Zheng. Two New Dai–Liao–Type Conjugate Gradient Methods for Unconstrained Optimization Problems. // Journal of Optimization Theory and Applications. –2017. V.175. –P.502–509.
- 26 P. Mtagulwa, K. P. An efficient modified PRP–FR hybrid conjugate gradient method for solving unconstrained optimization problems. // Applied Numerical Mathematics. –2019. V.145. –P.111–120.
- 27 L. Zhang, W. Zhou, D. Li. Global convergence of a modified Fletcher–Reeves conjugate gradient method with Armijo–type line search. // Numerische Mathematik. –2006. V.104. –P.561–572.

ПРИЛОЖЕНИЕ А

Таблица А.1 – Задачи оптимизации для тестирования разрабатываемого метода

Задача	Описание	Размерность								
1	2	3								
	Тригонометрическая задача оптимизации. Представляет из себя сумму N									
ARGTRIGLS	групп наименьших квадратов, каждая из которых имеет $N+I$ нелинейных	200								
	элементов.									
	Задача оптимизации четвертой степени, матрица вторых производных									
	которой представляет собой стрелку, направленную вниз, с диагональной									
ARWHEAD	центральной частью и шириной границы 1.	5000								
	$f(x) = \sum_{i=0}^{n-2} ((x_i^2 + x_{n-1})^2 - 4x_i + 3)$									
	Задача настройки пучка из реконструктивной геометрии, в которой									
	коллекция фотографий используется для определения положения набора									
BA-L1LS	наблюдаемых точек. Каждая наблюдаемая точка видима через ее двумерные	57								
	проекции на подмножество фотографий. Представляет из себя нелинейную									
	задачу наименьших квадратов.									
	Задача оптимизации четвертой степени.									
BDQRTIC	$f(x) = \sum_{i=0}^{n-4} ((3-4x_i)^2 + (x_i^2 + 2x_{i+1}^2 + 3x_{i+2}^2 + 4x_{i+3}^2 + 5x_{n-1}^2)^2)$									
BOXPOWER	Задача оптимизации, матрица вторых производных которой является									
BOAFOWER	вырожденной, то есть, квадратной с определителем равным нулю.									
	Трехдиагональная система нелинейных уравнений Бройдена в форме									
DDOMDNING	наименьших квадратов.									
BROYDN3DLS	$f(x) = \sum_{i=1}^{n} ((3 - 2x_i)x_i - x_{i-1} - 2x_{i+1} + 1)$	10000								
	Почти линейная задача наименьших квадратов. Представляет из себя сумму									
	N групп наименьших квадратов, последняя из которых имеет нелинейный									
	элемент.									
BROWNAL	$f(x) = \sum_{i=1}^{n} \left(x_i + \sum_{j=1}^{n} x_j - (n+1) \right) + \prod_{j=1}^{n} x_j - 1$	10								
	Семидиагональный вариант трехлиагональной системы Бройдена с									
BROYDN7D	полосой, удаленной от диагонали.									
	$f(x) = (1 - 2x_1 + (3 - 2x_0)x_0)^{\frac{7}{3}} + (1 - x_{n-2} + (3 - 2x_{n-1})x_{n-1})^{\frac{7}{3}} + $ $0.5n - 1$ $n - 2$									
	$+ \sum_{i=0}^{0,5n-1} (x_i + x_{i+0.5n})^{\frac{7}{3}} + \sum_{i=1}^{n-2} (1 - x_{i-1} - 2x_{i+1} + (3 - 2x_i)x_i)^{\frac{7}{3}}$									

Продолжение таблицы А.1

1	2	3
BROYDNBDLS	Система нелинейных уравнений Бройдена, рассматриваемая в форме наименьших квадратов. $f(x) = \sum_{i=1}^n \left(x_i (2 + 5x_i^2) + 1 - \sum_{j \in J} \left(x_j (1 + x_j) \right) \right)$ $J = \{j: j \neq i, \max(1, i - 5) \leq j \leq \min(n, i + 1) \}$	10000
BRYBND	Система нелинейных уравнений Бройдена, рассматриваемая в форме наименьших квадратов. $f(x) = \sum_{i=1}^n \left(x_i (2 + 5x_i^2) + 1 - \sum_{j \in J} x_j (1 + x_j) \right)^2$ $J = \{j : j \neq i, \max(1, i - 5) \leq j \leq \min(n, i + 1) \}$	10000
CHNROSNB	Цепная функция Розенброка. $f(x) = \sum_{i=2}^{25} (4(x_{i-1} - x_i^2)^2 + (1 - x_i)^2)$	50
CHNRSNBM	Модифицированная цепная функция Розенброка. $f(x) = \sum_{i=2}^n (16(x_{i-1}-x_i^2)^2(1.5+\sin(i))^2 + (x_i-1)^2)$	10
COSINE	$f(x) = \sum_{i=0}^{n-2} \cos(x_i^2 - 0.5x_{i+1})$	10000
DIXON3DQ	Трехдиагональная квадратичная система Диксона. $f(x) = (x_0-1)^2 + (x_{n-1}-1)^2 + \sum_{i=1}^{n-2} (x_i-x_{i+1})^2$	10000
ECKERLE4LS	$f(x) = \frac{\beta_1}{\beta_2} e^{-\frac{(x-\beta_3)^2}{2\beta_2^2}}$	3
EGGCRATE	Пример задачи оптимизации из библиотеки SciPy. $f(x) = x_1^2 + x_2^2 + 25(\sin^2(x_1) + \sin^2(x_2))$	4
ELATVIDU	Пример задачи оптимизации из библиотеки SciPy. $f(x) = (x_1^2 + x_2 - 10)^2 + (x_1 + x_2^2 - 7)^2 + (x_1^2 + x_2^3 - 1)^2$	2
EXP2	Пример задачи оптимизации из библиотеки SciPy. $f(x) = \sum_{i=0}^9 \left(e^{-ix_1/10} - 5e^{-ix_2/10} - e^{-i/10} + 5e^{-i}\right)^2$	2
EXTROSNB	Расширенная функция Розенброка. $f(x) = (x_0-1)^2 + 100 \sum_{i=1}^{n-1} (x_i-x_{i-1}^2)^2$	1000

Продолжение таблицы А.1

1	2	3
FLETCBV2	Краевая задача. Представляет из себя симметричную систему уравнений. $f(x) = \frac{1}{2} \left(x_1^2 + \sum_{i=1}^{n-1} (x_i - x_i + 1)^2 + x_n^2 \right) - h^2 \sum_{i=1}^n (2x_i + \cos x_i) - x_n$	10000
FLETCHCR	Цепная функция Розенброка, заданная Флетчером. $f(x) = 100 \sum_{i=1}^{n-1} (x_{i+1} - x_i + 1 - x_i^2)^2$	1000
FREUROTH	Тестовая задача Фрейдентштейна и Рота. $f(x) = \sum_{i=0}^{n-2} (x_i - 13 + ((5-x)_{1+1})x_{i+1} - 2x_{i+1})^2 + (x_i - 29 + ((1+x_{i+1})x_{i+1} - 14)x_{i+1})^2$	1000
GULF	Тестовая задача оптимизации размерности 3. $f(x) = \sum_{i=0}^n e^{-\frac{(y_i i x_2)^{x_3}}{x_1}} - \frac{i}{100}, \text{где } y_i = 25 + \left(-50 \ln\left(\frac{i}{100}\right)\right)^{2/3}$	3
HATFLDD	Экспоненциальная задача тестирования методов оптимизации из	3
HILBERTA	руководства пользователя ОРТІМА. Квадратичная задача Гильберта.	10
HIMMELBG	Задача оптимизации Химмельблау размерности 2.	2
THINIVILLEDG	Дискретная интегральная задача без фиксированных переменных в форме	2
INTEQNELS	наименьших квадратов. $f(x) = \sum_{i=1}^n 1 x_i + 0.5 h \left((1-t_i) \sum_{j=1}^i t_j \big(x_j + t_j + 1 \big)^3 \right.$ $+ t_i \sum_{j=i+1}^n \big(1-t_j \big) \big(x_j + t_j + 1 \big)^3 \right)$	500
LANCZOS1LS	Задача нелинейной регрессии. $y = \beta_1 e^{-\beta_2 x} + \beta_3 e^{-\beta_4 x} + \beta_5 e^{-\beta_6 x}$	6
LANCZOS2LS	Задача нелинейной регрессии. $y = \beta_1 e^{-\beta_2 x} + \beta_3 e^{-\beta_4 x} + \beta_5 e^{-\beta_6 x}$	6
NONDQUAR	Недиагональная квадратичная тестовая задача. Матрица вторых производных сингулярна в решении. $f(x)=(x_0-x_1)^2+(x_{n-2}+x_{n-1})^2+\sum_{i=0}^{n-3}(x_i+x_{i+1}+x_{n-1})^4$	1000
OSBORNEB	$f(x) = y - \left(x_1 e^{-tx_5} + x_2 e^{-(t-x_9)^2 x_6} + x_3 e^{-(t-x_{10})^2 x_7} + x_4 e^{-(t-x_{11})^2 x_8}\right)$	11
OSCIPATH	Проблема "колебательного пути" Юрия Нестерова.	500

Продолжение таблицы А.1

1	2	3
PENALTY1	$f(x) = 10^{-5} \sum_{i=0}^{n-1} (x_i - 1)^2 + \left(\sum_{i=0}^{n-1} x_i^2 \right) - 0.25)^2$	500
QING	Пример задачи оптимизации из библиотеки SciPy. $f(x) = \sum_{i=1}^{n} (x_i^2 - i)^2$	1000
S308	$f(x) = (x_1^2 + x_2^2 + x_1 x_2)^2 + (\sin x_1)^2 + (\sin x_2)^2$	2
SISSER	$f(x) = (x_1 + 1)^2 + (x_2 - 4)^2$	2
SNAIL	Двухмерная задача оптимизации, график которой представляет из себя изображение спиральной долины. Посвящается городу Намюр, эмблемой которого является улитка (snail).	2
STRTCHDV	Пример задачи оптимизации из библиотеки SciPy. $f(x) = \sum_{i=1}^{n-1} x^{1/4} (\sin(50x^{0.1}) + 1)^2$	1000
TRIGON1	Пример задачи оптимизации из библиотеки SciPy. $f(x) = \sum_{i=1}^n \left(n - \sum_{j=1}^n \cos x_j + i(1 - \cos x_i - \sin x_i) \right)^2$	100
WATSON	Задача Ватсона. $f(x) = \sum_{j=2}^{n} (j-1)x_j t^{j-2} - (\sum_{j=1}^{n} x_j t^{j-1})^2 - 1$	31

приложение б

Результаты проведенных численных экспериментов представлены на рисунке Б.1.

+	+ function +	+	feva	+	+ iterations +	+ norm(gk) +	++ time ++
FR2	ARGTRIGLS	10	281	249	67	7.6e-06	0.0180456
HS2	ARGTRIGLS	10	194	161	1 45	8.7e-06	0.0077427
PR2	ARGTRIGLS	10	183	150	43	7.6e-06	0.0089839
PRP2019	INCINION	10	174	144	40	7e-07	0.0113862
test	ARGTRIGLS	10	148	120	35	8.4e-06	0.0072975
1 2112	ARGTRIGLS	50	869	844	217	7.2e-06	0.6528127
HS2	ARGTRIGLS	50	1040	1016	258	9.2e-06	0.7536392
1 2112	ARGTRIGLS	50	1199	1182 860	304	9.8e-06	0.8174611
test	ARGTRIGLS ARGTRIGLS	50 50	888 692	860 663	222 173	8.5e-06 8.7e-06	0.5786595 0.5123811
FR2	ARGIRIGES	100	1942	1 1928	517	9.9e-06	9.964655
I HS2	ARGTRIGLS	100	2051	2037	1 547	9.9e-06	1 10.2097464
PR2	ARGTRIGLS	100	2564	2550	1 676	9.5e-06	1 12.8684909
•	ARGTRIGLS	100	1844	1827	1 488	8.3e-06	9.1913504
test	ARGTRIGLS	100	1822	1806	476	9.4e-06	9.0607327
FR2	ARGTRIGLS	200	3448	3432	983	9e-06	162.4313692
HS2	ARGTRIGLS	200	4340	4324	1226	9.9e-06	204.5515587
PR2	ARGTRIGLS	200	5603	5587	1496	8e-06	264.0706191
PRP2019	ARGTRIGLS	200	4346	4324	1222	9.5e-06	203.9569446
•	ARGTRIGLS	200	4055	4035	1101	9.5e-06	190.250825
FR2	ARWHEAD	100	64	28	9	2.8e-06	0.0031858
HS2	ARWHEAD	100	53	29	9	0.0	0.003675
PR2	ARWHEAD	100	52	23	8	1 4e-07	0.0044329
PRP2019	ARWHEAD	100	48	21	7	l 1e-07	0.0026342
test	ARWHEAD	100	49	21	7	1e-07	0.002742
FR2	ARWHEAD	500	72	32	9 1 10	6.5e-06	0.1388467
HS2	ARWHEAD	500	75	37		0.0	0.1284459
PR2 PRP2019	ARWHEAD ARWHEAD	500 500	61 67	29 30	8 8	l 1e-07 l 0.0	0.1256874 0.097487
PRPZUI9 test	ARWHEAD	500	67	1 30 1 30	8 8	1 0.0 1 1e-07	0.097487
FR2	ARWHEAD	1000	75	1 32	1 8	8.2e-06	0.435556
HS2	ARWHEAD	1000	67	1 27	1 8	1 4e-07	0.3477883
PR2	ARWHEAD	1000	64	1 29	1 8	2e-07	0.5125465
PRP2019	ARWHEAD	1000	59	22	i 6	4.3e-06	0.284668
test	ARWHEAD	1000	59	22	6	4.2e-06	0.2825202
FR2	ARWHEAD	5000	93	42	10	4e-07	31.2376177
HS2	ARWHEAD	5000	70	30	8	7.9e-06	18.3769464
PR2	ARWHEAD	5000	84	45	10	0.2979291	34.9268709
PRP2019	ARWHEAD	5000	93	48	11	0.0	30.4432729
test	ARWHEAD	5000	185	28	1 7	1.8284304	18.4285349
FR2	BA-L1LS	57	267	222	61	8.9e-06	0.3492834
HS2	BA-L1LS	57	135	96	29	8.6e-06	0.0128743
PR2	BA-L1LS	57	154 139	111 98] 33 I 30	4.8e-06	0.0139537
PRP2019 test	BA-L1LS BA-L1LS	57 57	139	98 98	30	7.2e-06 5.1e-06	0.0161027 0.014926
FR2	BDORTIC	100	597	1 499	1 122	7.3e-06	0.0511111
HS2	BDORTIC	100	450	356	1 86	4.9e-06	0.0366799
PR2	BDQRTIC	100	487	402	99	8.8e-06	0.0387815
PRP2019	BDQRTIC	100	383	299	71	8.2e-06	0.0324194
test	BDQRTIC	100	380	302	75	9.1e-06	0.0334181
FR2	BDQRTIC	500	1596	754	211	3.49e-05	1.1026353
HS2	BDQRTIC	500	1397	942	227	8.13e-05	1.1584489
PR2	BDQRTIC	500	1244	791	200	0.0001204	1.0353535
PRP2019		500	1099456				403.2482912
test	BDQRTIC	500	425	313	70	6.9e-06	0.3835096
FR2	BDQRTIC	1000	1080	649	143	0.0005306	9.3078216
HS2	BDQRTIC	1000	999	596	135		8.1767302
PR2	BDQRTIC BDQRTIC	1000	24543	2782 332	1829		62.2459288 5.707044
PRP2019 test	BDQRTIC BDQRTIC	1000 1000	710 600	332 439	84 93		6.4015704
test FR2	BOXPOWER	1000	1323	439 1166	93 277	7.1e-06 8.3e-06	0.0382277
HS2	BOXPOWER	10	1323	1100	37		0.0382277
	BOXPOWER	10	337	272	56	3.2e-06 3e-07	0.0088979
PRP2019		10	192	1 157	31		0.0084217
test	BOXPOWER	10		202	37		0.0072475
FR2	BOXPOWER	100		16434	3569		1.1265951
HS2	BOXPOWER	100	294	227	1 45		0.0172299
PR2	BOXPOWER	100	400	323	70	0.0	0.0221262
PRP2019		100	412	311	51	4e-07	0.0247724
test	BOXPOWER	100	295	213	35		0.0150571
FR2	BROYDN3DLS	10	101	73	23	6.6e-06	0.0030085
HS2	BROYDN3DLS	10	100	74	23	9.7e-06	0.0029264
PR2	BROYDN3DLS	10	99	73	23		0.0028343
PRP2019		10	98	73	23	7.6e-06	0.003336
	BROYDN3DLS	10	96	67	21	3.3e-06	0.0047424
FR2	BROYDN3DLS	100	145	108	35		0.0075974
HS2	BROYDN3DLS BROYDN3DLS	100	129	96 96	31 31	7.3e-06 7.3e-06	0.0092323 0.0063221
	BROYDN3DLS BROYDN3DLS	100 100	129 129	96 96	31 31		0.0063221 0.0077931
	BROYDN3DLS		129	96	31		0.0077931

HS2	BROYDN3DLS	500	133	99	32	9.9e-06	0.0987857
PR2 PRP2019	BROYDN3DLS BROYDN3DLS	500	133	99 89	32 29	9.9e-06	0.1022958
		500	120		29	8.1e-06	0.0924116
test	BROYDN3DLS	500	119	88		5.8e-06	0.1145654
FR2	BROYDN3DLS	1000	190	158	46 33	9e-06 6.1e-06	2.3117752
HS2	BROYDN3DLS	1000	138	102	33	6.1e-06 6.3e-06	1.2982567
PR2 PRP2019	BROYDN3DLS BROYDN3DLS	1000	138	102	33		1.2998046
test		1000 1000	123 123	91 91	1 29 1	6.7e-06 6.3e-06	1.1763992
FR2	BROYDN3DLS BROYDN3DLS	5000	551	537	29	1e-05	339.718215
HS2	BROYDN3DLS	5000	184	1 152	1 44	6e-06	99.042306
PR2	BROYDN3DLS	5000	203	1 170	1 48 1	8e-06	1 120.537142
PRP2019	BROYDN3DLS	5000	199	1 170	1 48 1	7.3e-06	1 119.817000
test	BROYDN3DLS	5000	184	1 151	1 44 1	8.9e-06	95.045548
FR2	BROYDN3DLS	10000	200	1 169	1 48 1	9.4e-06	595.994188
HS2	BROYDN3DLS	10000	144	109	34	7.7e-06	1 428.707746
PR2	BROYDN3DLS	10000	164	123	37	8.8e-06	476.280569
PRP2019	BROYDN3DLS	10000	141	1 106	32	5.7e-06	372.466608
test	BROYDN3DLS	10000	191	143	I 38 I	9.7e-06	456.385518
FR2	BROWNAL	10	110	1 59	13	0.0	0.0035746
HS2	BROWNAL	10	93	54	13	6e-07	0.002964
PR2	BROWNAL	10	168	7	3	46.065287	0.0039783
PRP2019	BROWNAL	10	88	46	9	3.7e-06	0.0032843
test	BROWNAL	10	88	46	9	3.1e-06	0.0031593
FR2	BROYDN7D	25	387	374	98	8.9e-06	0.0196092
HS2	BROYDN7D	25	206	178	50	6.6e-06	0.0131085
PR2	BROYDN7D	25	206	180	50	9.4e-06	0.009260
PRP2019	BROYDN7D	25	192	166	46	9.5e-06	0.0123871
test	BROYDN7D	25	192	164	46	8.8e-06	0.0121883
FR2	BROYDN7D	50	396	384	99	8.6e-06	0.032382
HS2	BROYDN7D	50	213	193	52	7.3e-06	0.014675
PR2	BROYDN7D	50	218	196	53	8.6e-06	0.017499
PRP2019	BROYDN7D	50	210	182	51	7.1e-06	0.0177988
test	BROYDN7D	50	210	183	51	7e-06	0.0207145
FR2	BROYDN7D	250	400	382	100	8.7e-06	0.4625932
HS2	BROYDN7D	250	220	209	54	9.2e-06	0.22334
PR2	BROYDN7D	250 250	221	210	54 51	8.8e-06	0.220568
PRP2019	BROYDN7D		209	186 185	51 51	8.6e-06 7.8e-06	0.2066283
test FR2	BROYDN7D BROYDN7D	250 500	1 634	1 339	1 31 I	1.31e-05	1 4.9989056
HS2	BROYDN7D	500	221	203	55	9.1e-06	2.949994
PR2	BROYDN7D	500	221	201	55	8.6e-06	1 2.8984085
PRP2019	BROYDN7D	500	237	201	1 56 I	8.5e-06	3.013150
test	BROYDN7D	500	223	200	55	8.8e-06	1 2.9358539
FR2	BROYDN7D	2500	503	251	70	7.33e-05	1 172.438549
HS2	BROYDN7D	2500	431	1 178	51	7.8e-05	1 121.078986
PR2	BROYDN7D	2500	424	1 182	51	3.78e-05	1 125.700336
PRP2019	BROYDN7D	2500	455	1 168	51	5.41e-05	1116.628282
test	BROYDN7D	2500	441	1 167	49	6.78e-05	111.824605
FR2	BROYDNBDLS	100	161	125	39	7.1e-06	0.0143485
HS2	BROYDNBDLS	100	155	117	36	6.7e-06	0.0132866
PR2	BROYDNBDLS	100	134	98	31	6.8e-06	0.0097808
PRP2019	BROYDNBDLS	100	304	261	70	9e-06	0.0287548
test	BROYDNBDLS	100	274	231	61	4.8e-06	0.0249239
FR2	BROYDNBDLS	500	173	132	39	8.1e-06	0.1929932
HS2	BROYDNBDLS	500	289	260	69	9.7e-06	0.333426
PR2	BROYDNBDLS	500	262	228	l 60 l	9.1e-06	0.273273
PRP2019		500	141	106	32	8.4e-06	0.1289933
	BROYDNBDLS	500	129	93	28	5.4e-06	0.110961
FR2	BROYDNBDLS	1000	146	109	33	6.8e-06	1.394253
	BROYDNBDLS	1000	274	243	63	7.6e-06	3.122961
	BROYDNBDLS	1000	270	231	62	9.4e-06	2.9680628
PRP2019		1000	132	95	29	6.9e-06	1.21151
test	BROYDNBDLS	1000	139	98	30	8e-06	1.2545215
FR2	BROYDNBDLS	5000	158	111	34	5.8e-06	69.376098
HS2	BROYDNBDLS	5000	177	131	40	7.2e-06	84.799640
PR2 PRP2019	BROYDNBDLS	5000	170	124	36	7.1e-06	78.342342
		5000 5000	152	112	33	1e-05 8.8e-06	70.327449
0000			131	1	28		57.562964
FR2 HS2	BROYDNBDLS BROYDNBDLS	10000 10000	183 163	142 119	42 34	6.6e-06 7e-06	590.990388 508.687539
PR2	BROYDNBDLS	10000	1 147	1 103	34	7.5e-06	419.360325
PRP2019		10000	161	1112	34	8.5e-06	484.349573
test	BROYDNBDLS	10000	185	134	38	8.8e-06	548.146703
FR2	BRYBND	100	161	1 125	39	7.1e-06	0.017522
HS2	BRYBND	100	155	1 117	36	6.7e-06	0.01642
PR2	BRYBND	100	134	98	31	6.8e-06	0.0149648
PRP2019		100	304	261	70	9e-06	0.036757
test	BRYBND	100	274	231	61	4.8e-06	0.050413
FR2	BRYBND	500	173	1 132	39	8.1e-06	0.2745714
HS2	BRYBND	500	289	260	69	9.7e-06	0.5081159
PR2	BRYBND	500	262	228	60	9.1e-06	0.4630536
PRP2019		500	141	106	32	8.4e-06	0.209235
test		500	129	93	28	5.4e-06	0.2020723
FR2	BRYBND	1000	146	109	33	6.8e-06	2.3482515
HS2	BRYBND	1000	274	243	63	7.6e-06	4.8048873
PR2	BRYBND	1000	270	231	62	9.4e-06	4.5570975
PRP2019		1000	132	95	29	6.9e-06	1.7203835
test	BRYBND	1000	139	98	30	8e-06	1.90032
FR2	BRYBND	5000	158	111	34	5.8e-06	94.364986

PR2	BRYBND	5000	170	124	36	7.1e-06 1e-05	101.559387
PRP2019 test	BRYBND BRYBND	5000 5000	152 131	112 89	33 28	1e-05 8.8e-06	88.137295 65.205439
FR2	BRYBND	10000	183	142	42	6.6e-06	437.164047
HS2	BRYBND	10000	163	1119	34	7e-06	358.668486
PR2	BRYBND	10000	147	103	30	7.5e-06	337.393403
PRP2019	BRYBND	10000	161	112	34	8.5e-06	357.015898
test	BRYBND	10000	185	134	38	8.8e-06	408.026415
FR2	CHNROSNB	50		337035	100000	6.0499532	18.388893
HS2	CHNROSNB	50	1101	1059	266	9.7e-06	0.0604426
PR2	CHNROSNB	50	1714	1683	422	9.9e-06	0.0961479
PRP2019	CHNROSNB	50 50	1468 1276	1408 1227	350	8.9e-06 9.9e-06	0.120618
test FR2	CHNROSNB CHNRSNBM	10		1227	309 46962	9.9e-06 9.9e-06	1 5.7632654
HS2	CHNRSNBM	10	927	837	211	5.6e-06	0.0331006
PR2	CHNRSNBM	10	936	865	219	6.9e-06	0.0561543
PRP2019	CHNRSNBM	10	694	607	148	1.7e-06	0.0285039
test	CHNRSNBM	10	591	515	129	9.7e-06	0.0270422
FR2	COSINE	10	573	570	143	1e-05	0.0346869
HS2	COSINE	10	50	35	10	4.5e-06	0.0048329
PR2 PRP2019	COSINE	10 10	49 50	35 35	10	5.3e-06 1e-06	0.0032696
test	COSINE	10	50	1 35 1	10	1.1e-06	0.0031433
FR2	COSINE	100	1 135	1 102	33	7.5e-06	0.0075526
HS2	COSINE	100	47	32	10	4.1e-06	0.0025252
PR2	COSINE	100	1 47	32	10	3.7e-06	0.005471
PRP2019	COSINE	100	48	32	10	2.1e-06	0.0028496
test	COSINE	100	48	32	10	2.1e-06	0.0033862
FR2	COSINE	1000	65	42	13	5.3e-06	0.5803714
HS2	COSINE	1000	48	33	10	3.5e-06	0.4393029
PR2 PRP2019	COSINE	1000 1000	48 45	33 30	10 9	3.5e-06 4.2e-06	0.443484
test	COSINE	1000	1 45	1 30 1	9	4.2e-06 4.2e-06	0.386758
FR2	COSINE	10000	1 49	32	10	3.8e-06	1 125.510804
HS2	COSINE	10000	1 48	32	10	5.3e-06	113.02005
PR2	COSINE	10000	48	32	10	6.8e-06	115.040067
PRP2019	COSINE	10000	45	30	9	5.9e-06	110.802659
test	COSINE	10000	45	30	9	5e-06	86.410481
FR2	DIXON3DQ	100	1629	1625	438	8e-06	0.1061087
HS2 PR2	DIXON3DQ DIXON3DQ	100 100	1816 2586	1811 2581	475 677	8.5e-06 9.1e-06	0.146298
PRP2019	DIXON3DQ	100	1 1739	1733	460	1e-05	0.1525378
test	DIXON3DQ	100	1562	1551	406	9.6e-06	0.1292834
FR2	DIXON3DQ	1000	17561	17557	5197	9.9e-06	255.638317
HS2	DIXON3DQ	1000	30806	30802	9063	9.9e-06	477.814256
PR2	DIXON3DQ	1000	,	52972	14054	9.7e-06	686.887282
PRP2019	DIXON3DQ	1000	29560	29533	8538	8.9e-06	368.862037
test	DIXON3DQ	1000	24284	24277	5490	9.8e-06	370.834103
	ECKERLE4LS	3 3	19 65	17 51	3 15	2e-07 5e-07	0.0115205
	ECKERLE4LS	3	1 32	29 1	4	2e-07	0.0021071
	ECKERLE4LS	3	1 19	1 17 1	3	2e-07	0.0008789
	ECKERLE4LS	3	19	17	3	2e-07	0.0007171
FR2	EGGCRATE	4	90	66	22	9.6e-06	0.0075321
HS2	EGGCRATE	4	37	22	7	1e-07	0.0013592
PR2	EGGCRATE	4		22	7	2e-07	0.0060612
PRP2019	EGGCRATE	4	35	18	6	2.2e-06	0.0243707
test	EGGCRATE	4	35 159	18	6 35	2.2e-06 3.3e-06	0.0152842
FR2 HS2	ELATVIDU ELATVIDU	2 2	105	116 49	12	0.0	0.053454
PR2	ELATVIDU	2	99	55	13	2e-07	0.1150556
PRP2019	ELATVIDU	2	80	41	12	1.6e-06	0.0312381
test	ELATVIDU	2	79	39	12	4e-07	0.0321513
FR2	EXP2	2	47	44	10	5.3e-06	0.0289659
HS2	EXP2	2	248	26	7	0.0004132	0.0342822
PR2	EXP2	2	50	46	10	5e-07	0.0084656
PRP2019 test	EXP2 EXP2	2 2	51 51	49 48	11 11	1.5e-06 0.0	0.0330286
FR2	EXTROSNB	100	153	108	35	7.2e-06	0.0158846
HS2	EXTROSNB	100	151	104	34	7.8e-06	0.0079636
PR2	EXTROSNB	100	147	102	33	6.9e-06	0.0114243
PRP2019	EXTROSNB	100	158	111	36	6.2e-06	0.0131184
test	EXTROSNB	100	158	111	36	5.9e-06	0.0083604
FR2	EXTROSNB	1000	179	128	41	9.6e-06	1.7964449
HS2	EXTROSNB	1000	163	111	35	9.9e-06	1.5025308
PR2	EXTROSNB	1000	151	100	32	8.5e-06	1.3634783
PRP2019 test	EXTROSNB EXTROSNB	1000 1000	154 158	107 110	35 36	9.8e-06 9.1e-06	1.4639923
FR2	FLETCBV2	1000	610	1 607 1	171	9.1e-06 9.4e-06	0.0486854
HS2	FLETCBV2	100		629	177	8.9e-06	0.0457744
PR2	FLETCBV2	100	796	795	224	8.6e-06	0.0661843
PRP2019	FLETCBV2	100	608	607	170	9.8e-06	0.0495795
test	FLETCBV2	100	703	699	151	9.1e-06	0.0644631
FR2	FLETCBV2	5000	1	1	1	4.4e-06	4.32e-05
HS2	FLETCBV2	5000	1 1	1	1	4.4e-06	2.92e-05
PR2	FLETCBV2	5000	1 1	1 1	1	4.4e-06	3.07e-05
PRP2019 test	FLETCBV2 FLETCBV2	5000 5000	1	1	1	4.4e-06 4.4e-06	3.04e-05 2.58e-05
FR2	FLETCBV2	10000	1 1	1	1	1.6e-06	0.0001427
HS2	FLETCBV2	10000		1 1 1	1	1.6e-06	3.98e-05
	1		•		8		

PR2 PRP2019	FLETCBV2 FLETCBV2	10000 10000	1 1	1 1	1 1	1.6e-06 1.6e-06	5.27e-05 4.89e-05
test	FLETCBV2	10000	1		1 1	1.6e-06	1 4.3e-05
FR2	FLETCHCR	100	337575	. – . I 337567 I	100000	359.4142261	25.998091
HS2	FLETCHCR	100	2931	I 2903 I	739 i	8.5e-06	0.2323269
PR2	FLETCHCR	100	3392	I 3352 I	847 I	8.6e-06	0.2827112
PRP2019	FLETCHCR	100	4501	4136	995 i	1e-05	0.3855745
test	FLETCHCR	100	3978	I 3540 I	860 i	7e-06	0.3433066
FR2	FLETCHCR	1000	2859	I 2853 I	814	9.7e-06	44.219066
HS2	FLETCHCR	1000	1047	1026	248	9e-06	14.970519
PR2	FLETCHCR	1000	985	961	234	9.7e-06	13.868935
PRP2019	FLETCHCR	1000	1021	996	239	9.8e-06	14.860749
test	FLETCHCR	1000	553	I 486 I	128	9.1e-06	6.8850839
FR2	FREUROTH	50	1108	764	202	1.35e-05	0.0844581
HS2	FREUROTH	50	595	304	76 i	1.81e-05	0.0307041
PR2	FREUROTH	50	382	i 300 i	77	7.4e-06	0.025122
PRP2019	FREUROTH	50	211	131	32 i	3.1e-06	0.0156586
test	FREUROTH	50	181	108	25	9.9e-06	0.0172434
FR2	FREUROTH	100	1002	I 750 I	186	8.09e-05	0.0848981
HS2	FREUROTH	100	1 447	347	88	nan	0.0424612
PR2	FREUROTH	100	577	275	73	7.33e-05	0.0592458
PRP2019	FREUROTH	100	210	133	31	5.5e-06	0.0179329
test	FREUROTH	100	184	1112	27	5.2e-06	0.0157583
FR2	FREUROTH	500	533	241	64	0.0004734	0.3737282
HS2	FREUROTH	500	1 257	1 180	48	0.0003503	0.2661659
PR2	FREUROTH	500	1 491	100 193	55 I	1.71e-05	1 0.3595757
PRP2019	FREUROTH	500	1 1099865	193 100086	100000	1.61e-05	1 498.279672
test	FREUROTH	500	1 398	100066 116	32	2.93e-05	0.2421796
FR2	FREUROTH	1000	1 463	116 186	53 I	0.0019434	3.6043183
HS2	FREUROTH	1000	1 195	100 126	32	5.1e-06	1 2.0337133
PR2	FREUROTH	1000	1 407	124	32	7.09e-05	2.2132016
PRP2019	FREUROTH	1000	407	124 109	32 I	7.09e-05 5.72e-05	1 1.8286567
test	FREUROTH	1000	1 389	109 108	26 I	1.04e-05	1.8286567
FR2	GULF	3	399	108 313	26 I	1.04e-05 7.8e-06	0.0642611
HS2	GULF	3	1 60	313 45	11	0.8040159	0.0642611
PR2	GULF	3	1 1575	45 1468	325 I	0.8040159 5.3e-06	0.0153381
PRP2019	GULF	3	1 876	1 702 1	103	6.2e-06	0.0812858
test	GULF	3	357	1 261 1	42	3.4e-06	0.0361538
FR2	HATFLDD	3	72910	201 72857	19310	1e-05	2.9282257
HS2		3	1 328	72857 270	19310 58	8.7e-06	0.0148878
	HATFLDD	3		270 118	27	8.3e-06	
PR2	HATFLDD		147				0.0044572
PRP2019	HATFLDD	3 3	242	202	37	1.8e-06	0.0143463
test	HATFLDD		186	157	30	9e-06	0.0061886
FR2	HILBERTA	2	23	23	5	7e-06	0.0006012
HS2	HILBERTA	2	1534	1334	269	9.7e-06	0.1752955
PR2	HILBERTA	2	38	36	9	6.7e-06	0.0029647
PRP2019	HILBERTA	2	1 43	42	8	0.0	0.0012564
test	HILBERTA	2	43	42	8	0.0	0.0012682
FR2	HILBERTA	4	24	22	4	6.5e-06	0.0008242
HS2	HILBERTA	4	24	22	4	6.5e-06	0.0005988
PR2	HILBERTA	4	24	22	4	6.5e-06	0.0005562
PRP2019	HILBERTA	4	24	22	4	6.5e-06	0.00066
test	HILBERTA	4	24	22	4	6.5e-06	0.0006256
FR2	HILBERTA	5	147	132	27	9.8e-06	0.0078269
HS2	HILBERTA	5	371	353	55	8.5e-06	0.0096309
PR2	HILBERTA	5	94	86	12	3.7e-06	0.0019758
PRP2019		5	90	84	11	8.3e-06	0.0022259
test	HILBERTA	5	87	81	11	8.3e-06	0.0023655
FR2	HILBERTA	6	167	158	30	9.5e-06	0.0044668
HS2	HILBERTA	6	226	216	38	8.4e-06	0.011933
PR2	HILBERTA	6	382	366	68	6.7e-06	0.0092303
PRP2019	HILBERTA	6	91	87	12	2.9e-06	0.0024925
test	HILBERTA	6	91	87	12	2.9e-06	0.0024551
FR2	HILBERTA	10	100	91	17	8.2e-06	0.0074028
HS2	HILBERTA	10	565	413	72	9.9e-06	0.0381922
PR2	HILBERTA	10	79	74	10	3.1e-06	0.0020437
PRP2019		10	71	67	9	2.9e-06	0.0032594
test	HILBERTA	10	70	67	9	3.1e-06	0.00361
FR2	HIMMELBG	2	212	201	53	7.7e-06	0.0063615
HS2	HIMMELBG	2	30	25	7	3.1e-06	0.001891
PR2	HIMMELBG	2	32	26	8	4.2e-06	0.0029405
PRP2019	HIMMELBG	2	36	28	8	1e-06	0.0033759
test	HIMMELBG	2	32	25	7	4.7e-06	0.0013764
FR2	INTEQNELS	10	1 25	19	7	2.4e-06	0.0424522
HS2	INTEQNELS	10	21	16	6	8e-06	0.0009086
PR2	INTEQNELS	10	21	16	6	4.6e-06	0.0008419
PRP2019	INTEQNELS	10	21	16	6	6e-07	0.0013229
test	INTEQNELS	10	21	16	6	6e-07	0.0010576
FR2	INTEQNELS	50	25	19	7	4.8e-06	0.0114184
HS2	INTEQNELS	50	25	19	7	7e-07	0.0160972
PR2	INTEQNELS	50	21	16	6 1	9.3e-06	0.0125837
PRP2019	INTEQNELS	50	21	16	6 1	1.1e-06	0.0098357
test	INTEQNELS	50	21	16	6 1	1.1e-06	0.0081104
FR2	INTEQNELS	100	25	 19	7	6.7e-06	0.1132757
HS2	INTEQNELS	100	1 25	1 19 1	7	1e-06	0.1017193
PR2	INTEQNELS	100	25	1 19 1	7	7e-07	0.1009748
PRP2019		100	21	1 16	6 1	1.6e-06	0.0833454
test	INTEQNELS	100	1 21	16 16	6 1	1.6e-06	0.0842683
FR2	INTEQNELS	500	1 29	1 22 1	8	9e-07	25.020530
HS2	INTEQNELS	500	1 25	1 19 1	° 1	2.2e-06	19.908321
	INTEQNELS		1 25	19 1	7 1	1.5e-06	19.879490
PR2		.1111	. 4.0	1 12 I	1	T.OE-00	1 12.0/2420

Percell NONDOURR 500 5750 5369 976 9.9-06 6.7267397	PRP2019	INTEQNELS	500	21	16	6	3.5e-06	16.8246655
PRINCE LANCOSCIES 6	•							
PRE	•							
PREPUID LANCOSCIES 6								
Tene	•							
PROPERTY LAMICHOSCAPER 6	•							
PRP2010 LANCKORGELS 6								
PREPAIR LANCIDOZIES 6	HS2	LANCZOS2LS	6	1597	1439	313	7.5e-06	0.1849296
Text	•							
FREZ								
HISS								
PRP2 WONNEQUAR 500 7799 7255 1511 9,28-06 0.937782 1661 NONDEQUAR 500 5002 4066 847 9,36-06 6,7147219 1661 NONDEQUAR 500 5002 4066 847 9,36-06 404.78219 1772 1661 NONDEQUAR 500 1000 20185 647 9,36-06 404.78219 1772								
PRP2019 NONDQUAR 500 5750 5569 976 9.9e-06 8.2867197 Face NONDQUAR 500 5002 4606 847 9.3e-06 6.727397 Face NONDQUAR 1000 30800 28185 6439 9.8e-06 440.789690 Face NONDQUAR 1000 7077 6602 1.397 8.5e-06 1.20739690 Face NONDQUAR 1000 5563 5167 974 9.2e-06 6.727397 Face 70.0000000000000000000000000000000000								1 10.9377823
FREZ								
REC								
PREZ	•							
Test NONDOURR 1000								
Test								
BSS2								72.3799375
PRPZ OSBONNEB	FR2	OSBORNEB	11	40648	40620	11337	9.9e-06	4.1430372
PREF2019 OSBORNEB		OSBORNEB						
Test								
FRE			'					
H82	•		•					0.1199022
PRP2 OSCIPATH 5	•							
Test OSCIPATH 5	•		5					4.6767639
FR2								
H82	•							
PRE2 OSCIPATH								
Lest OSCIPATH								
Test								
H82	test	OSCIPATH	10	56	28	10	3.8e-06	0.0018996
PRPZ								
Terror OSCIPATH 25 56 28 10 3.8e-06 0.0095555 FR2 OSCIPATH 25 56 28 10 3.8e-06 0.0025855 FR2 OSCIPATH 100 56 28 10 3.8e-06 0.0195274 FR2 OSCIPATH 100 56 28 10 3.8e-06 0.0195274 FR2 OSCIPATH 100 56 28 10 3.8e-06 0.0148827 FR2 OSCIPATH 100 56 28 10 3.8e-06 0.0026842 FR2 OSCIPATH 100 56 28 10 3.8e-06 0.0036365 Cest OSCIPATH 100 56 28 10 3.8e-06 0.0036365 Cest OSCIPATH 500 56 28 10 3.8e-06 0.0297010 FRE2019 OSCIPATH 500 56 28 10 3.8e-06 0.0297010 Cest OSCIPATH 500 56 28 10 3.8e-06 0.0271606 Cest OSCIPATH 500 56 28 10 3.8e-06 0.0271607 FR2 PENALITYI 4 4819 3695 612 6e-06 0.3547039 PR2 PENALITYI 4 4819 3695 612 6e-06 0.3547039 PR2 PENALITYI 4 4124 108 19 9.6e-06 0.0273378 PR2 PRALITYI 4 124 108 19 9.6e-06 0.0273378 PR2 PENALITYI 50 51048 35310 5134 4.2e-06 3.817031 PR2 PENALITYI 50 51048 35310 5134 4.2e-06 3.817031 PR2 PENALITYI 50 51048 35310 5134 4.2e-06 0.003319 PR2 PENALITYI 50 51048 35310 5134 4.2e-06 0.003319 PR2 PENALITYI 50 278 231 39 7e-06 0.005333 PR2 PENALITYI 50 278 231 39 7e-06 0.005333 PR2 PENALITYI 50 278 231 39 7e-06 0.005333 PR2 PENALITYI 50 268 592 90 9.6e-06 0.005333 PR2 PENALITYI 500 268 592 90 9.6e-06 0.005333 PR2 PENALIT								
Test	•							
FP2								
H82	•							
PRP2019	•							
Test	PR2	OSCIPATH	100		28	10	3.8e-06	0.0026842
FR2								
HS2								
PR2	•							
PRE2019 OSCIPATH 500 56 28 10 3.8e-06 0.0271606 1est OSCIPATH 500 56 28 10 3.8e-06 0.027828 FR2 PENALTY1 4 164 149 37 6e-07 0.006101 HS2 PENALTY1 4 4819 3695 612 6e-06 0.3547033 PR2 PENALTY1 4 6660 569 102 6e-06 0.0273378 PRE2019 PENALTY1 4 132 114 21 8.7e-06 0.0037319 PRE2019 PENALTY1 4 132 114 21 8.7e-06 0.0037319 FRE2 PENALTY1 50 149 112 28 1.2e-06 0.0037319 FR2 PENALTY1 50 149 112 28 1.2e-06 0.0037319 PR2 PENALTY1 50 51048 35310 5134 4.2e-06 3.817031 PR2 PENALTY1 50 272 35 8 59.085833 0.008534 PR2019 PENALTY1 50 272 35 8 59.085833 0.008534 PR2019 PENALTY1 50 274 35 8 59.085833 0.008534 PR2019 PENALTY1 50 274 35 8 4.9e-06 0.0135703 PR2 PENALTY1 50 274 381 39 7e-06 0.0146744 PR2019 PENALTY1 100 25152 17657 2766 1.1e-06 4.4145921 PR2019 PENALTY1 100 25152 17657 2766 1.1e-06 4.4145921 PR2019 PENALTY1 100 442 363 63 4.2e-06 0.0700744 PR2019 PENALTY1 100 442 363 63 4.2e-06 0.0700744 PR2019 PENALTY1 100 4658 592 90 9.6e-06 0.0700744 PR2019 PENALTY1 100 658 592 90 9.6e-06 0.0700744 PR2019 PENALTY1 500 426 359 70 100076791431.8745 803.042261 PR2019 PENALTY1 500 426 333 159 9.3e-06 0.066963 PR2019 P								
FR2	•							
HS2	test	OSCIPATH	500	56			3.8e-06	0.027882
PR2			'					
PRP2019 PENALTY1			•					
test	•		'					
FR2								
PR2								0.0081662
PRP2019 PENALTY1 50 278 231 39 7e-06 0.0146744 test PENALTY1 50 234 188 34 4.9e-06 0.0135703 FR2 PENALTY1 100 171 124 30 3.6e-06 0.0253833 HS2 PENALTY1 100 25152 17657 2766 1.1e-06 4.4145921 PR2 PENALTY1 100 442 363 63 4.2e-06 0.0564815 PRP2019 PENALTY1 100 716 633 96 5.2e-06 0.0710424 test PENALTY1 100 658 592 90 9.6e-06 0.0700741 FR2 PENALTY1 500 299998 100000 100000 1080676791431.8745 803.042261 HS2 PENALTY1 500 426 359 70 9.4e-06 1.2232117 PR2 PENALTY1 500 328 227 64 1e-07 0.9673063 PRP2019 PENALTY1 500 328 227 64 1e-07 0.9673063 PRP2019 PENALTY1 500 390 270 70 1e-06 1.0224124 FR2 QING 100 642 633 159 9.3e-06 0.0648765 HS2 QING 100 263 234 64 9.5e-06 0.0648765 HS2 QING 100 263 234 64 9.5e-06 0.0163861 test QING 100 265 235 64 7.6e-06 0.0163861 test QING 100 265 235 64 7.6e-06 0.0163861 test QING 100 265 233 64 7.4e-06 0.0163813 FR2 QING 100 899 878 220 9.6e-06 11.87530 PR2 QING 1000 899 878 220 9.6e-06 11.87530 PR2 QING 1000 899 878 220 9.6e-06 11.87530 PR2 QING 1000 899 878 220 9.6e-06 11.763716 PRP2019 QING 1000 889 878 220 9.6e-06 11.763716 PRP2019 QING 1000 878 851 221 9.8e-06 10.005373 PR2 RECIPELS 3 116 104 19 4e-07 0.003075 PRP2019 RECIPELS 3 116 104 19 4e-07 0.003075 PRP2019 RECIPELS 3 116 104 19 4e-07 0.003075 PRP2019 RECIPELS 3 116 104 19 4e-07								
Test								
FR2								
HS2								
PR2								
test	PR2	PENALTY1	100		363	63	4.2e-06	0.0564815
FR2								
HS2								
PR2								
PRP2019 PENALTY1 500 405 284 72 5.3e-06 1.027515 test PENALTY1 500 390 270 70 1e-06 1.0224124 FR2 QING 100 642 633 159 9.3e-06 0.0648765 RS2 QING 100 263 234 64 9.7e-06 0.0218191 PR2 QING 100 263 232 64 9.5e-06 0.0150535 PRP2019 QING 100 265 235 64 7.6e-06 0.0150535 PRP2019 QING 100 265 235 64 7.4e-06 0.0163861 test QING 100 265 233 64 7.4e-06 0.0163861 FR2 QING 1000 7383 7368 2096 9.9e-06 103.459435 PR2 QING 1000 899 878 220 9.6e-06 11.763716 PR2 QING 1000 899 878 220 9.6e-06 11.763716 PR2 QING 1000 899 878 220 9.6e-06 11.763716 PR2019 QING 1000 869 846 213 9.6e-06 12.07964 test QING 1000 878 851 221 9.8e-06 11.403753 FR2 RECIPELS 3 228 211 44 6.2e-06 0.0065963 PR2 RECIPELS 3 82 74 16 7.7e-06 0.0023793 PR2 RECIPELS 3 116 104 19 4e-07 0.003075 PR2019 RECIPELS 3 125 110 20 2.9e-06 0.0045357 PR2 S308 2 132 104 30 8.5e-06 0.0045357 PR2 S308 2 132 104 30 8.5e-06 0.0045357 PR2 S308 2 132 104 30 8.5e-06 0.0045357 PR2 S308 2 51 35 10 4.3e-06 0.0014138 PR2019 S308 2 54 38 11 0.0								0.9673063
test								
HS2	test	PENALTY1	500	390	270	70	1e-06	
PR2								
PRP2019 QING 100 265 235 64 7.6e-06 0.0163861 test QING 100 265 233 64 7.4e-06 0.01638313 FR2 QING 1000 7383 7368 2096 9.9e-06 103.459435 FR2 QING 1000 899 878 220 9.6e-06 11.763716 PR2 QING 1000 899 878 220 9.6e-06 11.763716 PR2 QING 1000 869 846 213 9.6e-06 12.07964 test QING 1000 878 851 221 9.8e-06 11.403753 FR2 RECIPELS 3 228 211 44 6.2e-06 0.0065963 PR2 RECIPELS 3 82 74 16 7.7e-06 0.0023793 PR2 RECIPELS 3 116 104 19 4e-07 0.003075 PR2019 RECIPELS 3 145 130 23 7.5e-06 0.0045357 PR2 S308 2 132 104 30 8.5e-06 0.0045357 PR2 S308 2 132 104 30 8.5e-06 0.0045357 PR2 S308 2 51 35 10 4.3e-06 0.0014138 PR2019 S308 2 54 38 11 0.0 0.0019746								
test QING 100 265 233 64 7.4e-06 0.0168313 FR2 QING 1000 7383 7368 2096 9.9e-06 103.459435 HS2 QING 1000 899 878 220 9.6e-06 11.877530 PR2 QING 1000 899 878 220 9.6e-06 11.763716 PR2 QING 1000 869 846 213 9.6e-06 11.763716 PR2 QING 1000 878 851 221 9.8e-06 12.07964 test QING 1000 878 851 221 9.8e-06 11.403753 FR2 RECIPELS 3 228 211 44 6.2e-06 0.0065963 FR2 RECIPELS 3 82 74 16 7.7e-06 0.0023793 PR2 RECIPELS 3 116 104 19 4e-07 0.003075 PR2019 RECIPELS 3 145 130 23 7.5e-06 0.0050008 test RECIPELS 3 125 110 20 2.9e-06 0.0045357 FR2 S308 2 132 104 30 8.5e-06 0.0045357 PR2 S308 2 132 104 30 8.5e-06 0.0040507 PR2 S308 2 51 35 10 4.3e-06 0.0014138 PR2019 S308 2 54 38 11 0.0 0.0019746								
FR2								0.0168313
HS2								103.4594353
PRP2019 QING 1000 869 846 213 9.6e-06 12.07964 test QING 1000 878 851 221 9.8e-06 11.403753 FR2 RECIPELS 3 228 211 44 6.2e-06 0.0065963 RECIPELS 3 82 74 16 7.7e-06 0.0023793 PR2 RECIPELS 3 116 104 19 4e-07 0.003075 PRP2019 RECIPELS 3 145 130 23 7.5e-06 0.0050008 test RECIPELS 3 125 110 20 2.9e-06 0.0045357 FR2 S308 2 132 104 30 8.5e-06 0.0045357 PR2 S308 2 132 104 30 8.5e-06 0.0045357 PR2 S308 2 51 35 10 3e-07 0.0019189 PR2 S308 2 47 35 10 4.3e-06 0.0014138 PRP2019 S308 2 54 38 11 0.0 0.0019746	HS2	QING	1000	899	878	220		11.8775307
test QING 1000 878 851 221 9.8e-06 11.403753 FR2 RECIPELS 3 228 211 44 6.2e-06 0.0065963 HS2 RECIPELS 3 82 74 16 7.7e-06 0.0023793 PR2 RECIPELS 3 116 104 19 4e-07 0.003075 PRP2019 RECIPELS 3 145 130 23 7.5e-06 0.0050008 test RECIPELS 3 125 110 20 2.9e-06 0.0045357 FR2 S308 2 132 104 30 8.5e-06 0.0040507 FR2 S308 2 51 35 10 3e-07 0.0019189 PR2 S308 2 47 35 10 4.3e-06 0.0014138 PRP2019 S308 2 54 38 11 0.0 0.0019746								11.7637162
FR2								
HS2								
PR2 RECIPELS 3								0.0023793
PRP2019 RECIPELS 3 145 130 23 7.5e-06 0.0050008 test RECIPELS 3 125 110 20 2.9e-06 0.0045357 FR2 S308 2 132 104 30 8.5e-06 0.0040507 HS2 S308 2 51 35 10 3e-07 0.0019189 PR2 S308 2 47 35 10 4.3e-06 0.0014138 PRP2019 S308 2 54 38 11 0.0 0.0019746	PR2		3					
FR2 S308 2 132 104 30 8.5e-06 0.0040507 HS2 S308 2 51 35 10 3e-07 0.0019189 PR2 S308 2 47 35 10 4.3e-06 0.0014138 PRP2019 S308 2 54 38 11 0.0 0.0019746								
HS2 S308 2 51 35 10 3e-07 0.0019189 PR2 S308 2 47 35 10 4.3e-06 0.0014138 PRP2019 S308 2 54 38 11 0.0 0.0019746								
PR2 S308 2 47 35 10 4.3e-06 0.0014138 PRP2019 S308 2 54 38 11 0.0 0.0019746								
PRP2019 S308 2 54 38 11 0.0 0.0019746								
60								- '

l test	I \$308	1	2	1	50	ı	35	ı	10	ı	5.1e-06	ı	0.0019508 I
FR2	I SISSER	i	2	i	22	i	19	i	4	i	6.3e-06	i.	0.0008837
i HS2	SISSER	i	2	i	48	i	45	i	7	i	9.1e-06	i	0.0011451
PR2	SISSER	i	2	i	53	i	45	i	8	i	2e=07	i.	0.0036611
PRP2019	SISSER	i	2	i	22	i	18	i	4	i	1e-06	i.	0.0008611
l test	SISSER	i	2	i	22	i	18	i	4	i	1e-06	i	0.0008724
FR2	SNAIL	i	2	i	36	i	27	i	9	i	5.4e-06	i	0.0011067
i HS2	SNAIL	i	2	i	32	i	24	i	8	i	0.0	i	0.0009502
PR2	SNAIL	i	2	i	32	i	24	i	8	i	0.0	i	0.0010026
PRP2019	SNAIL	i	2	i	20	i	15	i	5	i	3.8e-06	Ĺ	0.0007473
test	SNAIL	i	2	i	20	i	15	İ	5	i	3.8e-06	Ĺ	0.0008501
FR2	STRTCHDV	İ	100	Ĺ	1214	i	1167	Ì	110	Ĺ	9.9e-06	İ	0.1280772
HS2	STRTCHDV	Ĺ	100	Ĺ	669	İ	640	ĺ	64	Ĺ	9.6e-06	Ĺ	0.0700662
PR2	STRTCHDV	Ĺ	100	Ĺ	732	İ	701	ĺ	70	Ĺ	6.3e-06	Ĺ	0.0709596
PRP2019	STRTCHDV	Ĺ	100	Ĺ	753	İ	723	ĺ	73	Ĺ	6.9e-06	Ĺ	0.074916
test	STRTCHDV	Ĺ	100	Ĺ	697	İ	670	ĺ	68	Ĺ	5.9e-06	Ĺ	0.0693776
FR2	STRTCHDV	ĺ	1000	İ	1258	İ	1210	ĺ	115	ĺ	9.9e-06	ĺ	17.4961621
HS2	STRTCHDV	1	1000		690	1	656		65		9.5e-06		8.6515558
PR2	STRTCHDV	1	1000		582	1	553		58		0.0001099		8.4166515
PRP2019	STRTCHDV	1	1000		748	1	721		71		9.6e-06		10.5016674
test	STRTCHDV	1	1000		682	1	649		66		9.8e-06		9.1874532
FR2	TRIGON1	1	100		4295	1	4277		1141		8.7e-06		20.7484231
HS2	TRIGON1		100		2170		2153		571		9.7e-06		10.3470248
PR2	TRIGON1		100		3180		3164		841		9.9e-06		15.5912666
PRP2019	TRIGON1	1	100		2602	1	2585		700		9.6e-06		12.9070931
test	TRIGON1	1	100		2338	1	2318		612		8.7e-06		13.0226672
FR2	WATSON		31		11471		9699		2076		6.9e-06		2.0236314
HS2	WATSON		31		35721		31586		7171		9.3e-06		7.2062064
PR2	WATSON		31		31392		27111		5921		8.5e-06		4.8445817
PRP2019	WATSON		31		12326		9660		1840		9.5e-06		2.0962976
test	WATSON		31		11815	1	9224		1742		8.9e-06		2.3495793
+	+	-+-		-+-		-+-		+		+-		+-	+

Рисунок Б.1 – Технический отчет

Таблица Б.2 – Отчет о количестве нерешенных задач оптимизации

Название метода оптимизации	Количество нерешенных
	задач оптимизации
1	2
Двухкомпонентный метод Флетчера-Ривза	7
Двухкомпонентный метод Гестенса-Штифеля	4
Двухкомпонентный метод Поляка-Рибьери	5
Трехкомпонентный гибридный метод из работы [21]	1
Разработанный трёхкомпонентный метод оптимизации	2

приложение в

Фрагменты кода разработанного программного обеспечения

Файл problem_list.txt

ARGTRIGLS; 10 ARGTRIGLS; 50 ARGTRIGLS; 100 ARGTRIGLS; 200 ARWHEAD; 100 ARWHEAD; 500 ARWHEAD; 5000 BA-L1LS; BDQRTIC; 100 BDQRTIC; 1000 BOXPOWER; 10 BOXPOWER; 10 BOYDN3DLS; 100 BROYDN3DLS; 1000 BROYDN3DLS; 1000 BROYDN3DLS; 5000 BROYDN3DLS; 1000 BROYDN7D; 25 BROYDN7D; 25 BROYDN7D; 25 BROYDN7D; 500 BROYDN7D; 500 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBD; 5000 BROYDNBD; 5000 BRYBND; 1000 COSINE; 1000 COSINE; 100 COSINE; 100 COSINE; 100 COSINE; 1000 COSINE; 1000 COSINE; 1000 FLETCBV2; 10000 FLETCBV2; 10000 FLETCBV2; 10000 FLETCBV2; 10000 FLETCBV2; 10000 FLETCBV2; 10000 FLETCBV2; 10000 FLETCBV2; 10000 FLETCBV2; 10000 FLETCBV2; 10000 FLETCBV2; 10000 FLETCBV2; 10000 FLETCBV2; 10000	
ARGTRIGLS; 100 ARGTRIGLS; 200 ARWHEAD; 100 ARWHEAD; 500 ARWHEAD; 5000 BA-L1LS; BDQRTIC; 100 BDQRTIC; 500 BDQRTIC; 1000 BOXPOWER; 10 BOXPOWER; 10 BROYDN3DLS; 100 BROYDN3DLS; 1000 BROYDN3DLS; 1000 BROYDN3DLS; 1000 BROYDN3DLS; 1000 BROYDN3DLS; 1000 BROYDN3DLS; 1000 BROYDN3DLS; 10000 BROYDN3DLS; 10000 BROYDN7D; 25 BROYDN7D; 25 BROYDN7D; 50 BROYDN7D; 50 BROYDN7D; 500 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BRYBND; 100 BRYBND; 100 BRYBND; 500 BRYBND; 100 COSINE; 1	ARGTRIGLS;10
ARGTRIGLS; 200 ARWHEAD; 100 ARWHEAD; 500 ARWHEAD; 5000 BA-L1LS; BDQRTIC; 100 BDQRTIC; 500 BDQRTIC; 1000 BOXPOWER; 10 BOXPOWER; 10 BROYDN3DLS; 100 BROYDN3DLS; 500 BROYDN3DLS; 1000 BROYDN3DLS; 1000 BROYDN3DLS; 1000 BROYDN3DLS; 1000 BROYDN3DLS; 1000 BROYDN3DLS; 5000 BROYDN3DLS; 10000 BROYDN7D; 25 BROYDN7D; 25 BROYDN7D; 25 BROYDN7D; 500 BROYDN7D; 500 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 5000 BROYDNBDLS; 5000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BRYBND; 100 BRYBND; 500 BRYBND; 100 BRYBND; 500 BRYBND; 1000 CHNROSNB; 50 CHNRSNBM; 10 COSINE; 10 COSINE; 10 COSINE; 100 COSINE; 100 COSINE; 100 COSINE; 100 DIXON3DQ; 100 DIXON3DQ; 100 DIXON3DQ; 100 DIXON3DQ; 100 FLETCBV2; 1000 FLETCBV2; 1000 FLETCBV2; 1000 FLETCBV2; 10000	ARGTRIGLS;50
ARWHEAD; 100 ARWHEAD; 500 ARWHEAD; 5000 BA-L1LS; BDQRTIC; 100 BDQRTIC; 500 BDQRTIC; 1000 BOXPOWER; 10 BOXPOWER; 10 BROYDN3DLS; 100 BROYDN3DLS; 1000 BROYDN3DLS; 5000 BROYDN3DLS; 1000 BROYDN3DLS; 10000 BROYDN3DLS; 10000 BROYDN3DLS; 10000 BROYDN3DLS; 10000 BROYDN7D; 25 BROYDN7D; 25 BROYDN7D; 25 BROYDN7D; 500 BROYDN7D; 500 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 5000 BROYDNBDLS; 5000 BROYDNBDLS; 1000 BROYDNBDLS; 10000 BROYDNBDLS; 10000 BROYDNBDLS; 10000 BRYBND; 1000 BRYBND; 500 BRYBND; 1000 BRYBND; 500 BRYBND; 1000 COSINE; 100	ARGTRIGLS;100
ARWHEAD; 500 ARWHEAD; 1000 ARWHEAD; 5000 BA-L1LS; BDQRTIC; 500 BDQRTIC; 500 BDQRTIC; 500 BDQRTIC; 1000 BOXPOWER; 10 BOXPOWER; 10 BROYDN3DLS; 100 BROYDN3DLS; 1000 BROYDN3DLS; 5000 BROYDN3DLS; 10000 BROYDN3DLS; 10000 BROYDN7D; 25 BROYDN7D; 25 BROYDN7D; 25 BROYDN7D; 2500 BROYDN7D; 2500 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 5000 BROYDNBDLS; 5000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BRYBND; 5000 BRYBND; 1000 BRYBND; 5000 BRYBND; 1000 CCHNROSNB; 50 CHNRSNBM; 10 COSINE; 100 COSINE; 100 COSINE; 100 COSINE; 1000 COSINE; 1000 DIXON3DQ; 1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB; 1000 FLETCBV2; 1000 FLETCBV2; 10000	ARGTRIGLS;200
ARWHEAD; 500 ARWHEAD; 1000 ARWHEAD; 5000 BA-L1LS; BDQRTIC; 500 BDQRTIC; 500 BDQRTIC; 500 BDQRTIC; 1000 BOXPOWER; 10 BOXPOWER; 10 BROYDN3DLS; 100 BROYDN3DLS; 1000 BROYDN3DLS; 5000 BROYDN3DLS; 10000 BROYDN3DLS; 10000 BROYDN7D; 25 BROYDN7D; 25 BROYDN7D; 25 BROYDN7D; 2500 BROYDN7D; 2500 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 5000 BROYDNBDLS; 5000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BRYBND; 5000 BRYBND; 1000 BRYBND; 5000 BRYBND; 1000 CCHNROSNB; 50 CHNRSNBM; 10 COSINE; 100 COSINE; 100 COSINE; 100 COSINE; 1000 COSINE; 1000 DIXON3DQ; 1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB; 1000 FLETCBV2; 1000 FLETCBV2; 10000	ARWHEAD; 100
ARWHEAD; 1000 ARWHEAD; 5000 BA-L1LS; BDQRTIC; 100 BDQRTIC; 500 BDQRTIC; 1000 BOXPOWER; 10 BOXPOWER; 10 BOXPOWER; 100 BROYDN3DLS; 100 BROYDN3DLS; 1000 BROYDN3DLS; 1000 BROYDN3DLS; 1000 BROYDN3DLS; 10000 BROYDN7D; 25 BROYDN7D; 25 BROYDN7D; 25 BROYDN7D; 250 BROYDN7D; 2500 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 5000 BROYDNBDLS; 5000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BRYBND; 5000 BRYBND; 1000 CHNROSNB; 50 CHNRSNBM; 10 COSINE; 100 COSINE; 100 COSINE; 100 COSINE; 1000 COSINE; 1000 COSINE; 1000 COSINE; 1000 DIXON3DQ; 1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB; 1000 FLETCBV2; 10000	ARWHEAD: 500
ARWHEAD; 5000 BA-L1LS; BDQRTIC; 100 BDQRTIC; 500 BDQRTIC; 1000 BOXPOWER; 10 BOXPOWER; 10 BOYDN3DLS; 10 BROYDN3DLS; 100 BROYDN3DLS; 500 BROYDN3DLS; 5000 BROYDN3DLS; 10000 BROYDN3DLS; 10000 BROYDN7D; 25 BROYDN7D; 25 BROYDN7D; 500 BROYDN7D; 500 BROYDN7D; 2500 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 5000 BROYDNBDLS; 5000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 BROYDNBDLS; 1000 COSINE; 1000 COSINE; 10	
BA-L1LS; BDQRTIC;100 BDQRTIC;500 BDQRTIC;1000 BOXPOWER;10 BOXPOWER;100 BROYDN3DLS;100 BROYDN3DLS;500 BROYDN3DLS;500 BROYDN3DLS;5000 BROYDN3DLS;10000 BROYDN3DLS;10000 BROYDN7D;25 BROYDN7D;25 BROYDN7D;25 BROYDN7D;250 BROYDN7D;2500 BROYDN7D;2500 BROYDNBDLS;1000 BROYDNBDLS;1000 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;1000 BROYDNBDLS;1000 BROYDNBDLS;1000 BROYDNBDLS;1000 BROYDNBDLS;1000 BROYDNBDLS;1000 BROYDNBDLS;1000 BROYDNBDLS;1000 BROYDNBDLS;1000 BRYBND;1000 CHNROSNB;50 CHNRSNBM;10 COSINE;100 COSINE;100 COSINE;1000 COSINE;1000 DIXON3DQ;1000 DIXON3DQ;1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB;1000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000	
BDQRTIC;100 BDQRTIC;500 BDQRTIC;1000 BOXPOWER;10 BOXPOWER;100 BROYDN3DLS;100 BROYDN3DLS;500 BROYDN3DLS;500 BROYDN3DLS;5000 BROYDN3DLS;5000 BROYDN3DLS;10000 BROYDN7D;25 BROYDN7D;25 BROYDN7D;25 BROYDN7D;250 BROYDN7D;2500 BROYDNBDLS;1000 BROYDNBDLS;1000 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;1000 BROYDNBDLS;1000 BROYDNBDLS;1000 BROYDNBDLS;1000 BROYDNBDLS;1000 BROYDNBDLS;1000 BROYDNBDLS;1000 BROYDNBDLS;1000 BROYDNBDLS;1000 BROYDNBDLS;1000 BRYBND;1000 CHNRONB;50 CHNRSNBM;10 COSINE;100 COSINE;1000 COSINE;1000 COSINE;1000 DIXON3DQ;1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB;1000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000	
BDQRTIC;500 BDQRTIC;1000 BOXPOWER;10 BOXPOWER;100 BROYDN3DLS;100 BROYDN3DLS;500 BROYDN3DLS;5000 BROYDN3DLS;5000 BROYDN3DLS;5000 BROYDN3DLS;10000 BROYDN7D;250 BROYDN7D;250 BROYDN7D;500 BROYDN7D;500 BROYDN7D;500 BROYDNBDLS;1000 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;1000 BROYDNBDLS;5000 BROYDNBDLS;10000 BROYDNBDLS;10000 BROYDNBDLS;10000 BROYDNBDLS;10000 BROYDNBDLS;10000 BROYDNBDLS;10000 BRYBND;1000 BRYBND;1000 CHNROSNB;50 CHNRSNBM;10 COSINE;100 COSINE;1000 COSINE;1000 DIXON3DQ;1000 DIXON3DQ;1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB;1000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;100000 FLETCBV2;10000 FLETCBV2;10000	
BDQRTIC;1000 BOXPOWER;10 BOXPOWER;100 BROYDN3DLS;100 BROYDN3DLS;500 BROYDN3DLS;5000 BROYDN3DLS;5000 BROYDN3DLS;5000 BROYDN3DLS;10000 BROYDN3DLS;10000 BROYDN7D;25 BROYDN7D;25 BROYDN7D;250 BROYDN7D;250 BROYDN7D;2500 BROYDNBDLS;1000 BROYDNBDLS;1000 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;1000 BROYDNBDLS;1000 BROYDNBDLS;1000 BROYDNBDLS;1000 BROYDNBDLS;1000 BROYDNBDLS;1000 BROYDNBDLS;1000 BROYDNBDLS;1000 BROYDNBDLS;1000 BRYBND;1000 BRYBND;1000 CHNROSNB;50 CHNRSNBM;10 COSINE;100 COSINE;100 COSINE;1000 COSINE;1000 DIXON3DQ;1000 DIXON3DQ;1000 DIXON3DQ;1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB;1000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000	
BOXPOWER;10 BOXPOWER;100 BROYDN3DLS;100 BROYDN3DLS;500 BROYDN3DLS;5000 BROYDN3DLS;5000 BROYDN3DLS;5000 BROYDN3DLS;10000 BROYDN3DLS;10000 BROYDN7D;25 BROYDN7D;25 BROYDN7D;250 BROYDN7D;2500 BROYDN7D;2500 BROYDNBDLS;1000 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;10000 BROYDNBDLS;10000 BRYBND;1000 BRYBND;5000 BRYBND;5000 BRYBND;5000 BRYBND;5000 BRYBND;10000 CHNROSNB;50 CHNRSNBM;10 COSINE;100 COSINE;100 COSINE;1000 COSINE;1000 DIXON3DQ;1000 DIXON3DQ;1000 DIXON3DQ;1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB;1000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;100000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000	BDQRTIC;500
BOXPOWER;100 BROYDN3DLS;100 BROYDN3DLS;500 BROYDN3DLS;5000 BROYDN3DLS;5000 BROYDN3DLS;5000 BROYDN3DLS;10000 BROYDN3DLS;10000 BROWNAL;10 BROYDN7D;25 BROYDN7D;250 BROYDN7D;250 BROYDN7D;2500 BROYDN7D;2500 BROYDNBDLS;1000 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;10000 BRYBND;1000 BRYBND;1000 BRYBND;5000 BRYBND;1000 CHNROSNB;500 CHNROSNB;500 CHNRSNBM;10 COSINE;100 COSINE;100 COSINE;1000 COSINE;1000 DIXON3DQ;1000 DIXON3DQ;1000 DIXON3DQ;1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB;1000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000	
BROYDN3DLS;10 BROYDN3DLS;100 BROYDN3DLS;500 BROYDN3DLS;5000 BROYDN3DLS;5000 BROYDN3DLS;5000 BROYDN3DLS;10000 BROYDN7D;25 BROYDN7D;25 BROYDN7D;250 BROYDN7D;250 BROYDN7D;2500 BROYDNBDLS;1000 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;10000 BRYBND;1000 BRYBND;5000 BRYBND;5000 BRYBND;5000 BRYBND;5000 CHNROSNB;50 CHNRSNBM;10 COSINE;100 COSINE;1000 COSINE;1000 COSINE;1000 DIXON3DQ;1000 DIXON3DQ;1000 DIXON3DQ;1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB;1000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000	
BROYDN3DLS;10 BROYDN3DLS;100 BROYDN3DLS;500 BROYDN3DLS;5000 BROYDN3DLS;5000 BROYDN3DLS;5000 BROYDN3DLS;10000 BROYDN7D;25 BROYDN7D;25 BROYDN7D;250 BROYDN7D;250 BROYDN7D;2500 BROYDNBDLS;1000 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;10000 BRYBND;1000 BRYBND;5000 BRYBND;5000 BRYBND;5000 BRYBND;5000 CHNROSNB;50 CHNRSNBM;10 COSINE;100 COSINE;1000 COSINE;1000 COSINE;1000 DIXON3DQ;1000 DIXON3DQ;1000 DIXON3DQ;1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB;1000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000	BOXPOWER; 100
BROYDN3DLS;500 BROYDN3DLS;1000 BROYDN3DLS;5000 BROYDN3DLS;10000 BROYDN3DLS;10000 BROWNAL;10 BROYDN7D;25 BROYDN7D;50 BROYDN7D;500 BROYDN7D;500 BROYDNBDLS;1000 BROYDNBDLS;500 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;10000 BRYBND;5000 BRYBND;5000 BRYBND;5000 BRYBND;5000 BRYBND;5000 BRYBND;5000 CHNROSNB;50 CHNRSNBM;10 COSINE;100 COSINE;100 COSINE;1000 DIXON3DQ;1000 DIXON3DQ;1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB;1000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;100000 FLETCBV2;10000	
BROYDN3DLS;500 BROYDN3DLS;1000 BROYDN3DLS;5000 BROYDN3DLS;10000 BROYDN3DLS;10000 BROWNAL;10 BROYDN7D;25 BROYDN7D;50 BROYDN7D;500 BROYDN7D;500 BROYDNBDLS;1000 BROYDNBDLS;500 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;10000 BRYBND;5000 BRYBND;5000 BRYBND;5000 BRYBND;5000 BRYBND;5000 BRYBND;5000 CHNROSNB;50 CHNRSNBM;10 COSINE;100 COSINE;100 COSINE;1000 DIXON3DQ;1000 DIXON3DQ;1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB;1000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;100000 FLETCBV2;10000	BROYDN3DLS;100
BROYDN3DLS;1000 BROYDN3DLS;5000 BROYDN3DLS;10000 BROWNAL;10 BROYDN7D;25 BROYDN7D;500 BROYDN7D;500 BROYDN7D;2500 BROYDNBDLS;1000 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;10000 BROYDNBDLS;10000 BRYBND;5000 BRYBND;5000 BRYBND;5000 BRYBND;5000 BRYBND;5000 CHNROSNB;50 CHNRSNBM;10 COSINE;100 COSINE;100 COSINE;1000 COSINE;1000 COSINE;1000 DIXON3DQ;1000 DIXON3DQ;1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB;1000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000	
BROYDN3DLS;5000 BROYDN3DLS;10000 BROWNAL;10 BROYDN7D;25 BROYDN7D;500 BROYDN7D;500 BROYDN7D;2500 BROYDNBDLS;1000 BROYDNBDLS;500 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;10000 BRYBND;5000 BRYBND;5000 BRYBND;5000 BRYBND;5000 BRYBND;10000 CHNROSNB;50 CHNRSNBM;10 COSINE;100 COSINE;100 COSINE;1000 COSINE;1000 COSINE;1000 DIXON3DQ;1000 DIXON3DQ;1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB;1000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000	
BROYDN3DLS;10000 BROWNAL;10 BROYDN7D;25 BROYDN7D;50 BROYDN7D;500 BROYDN7D;500 BROYDN7D;2500 BROYDNBDLS;1000 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;10000 BROYDNBDLS;10000 BRYBND;1000 BRYBND;5000 BRYBND;5000 BRYBND;10000 CHNROSNB;50 CHNRSNBM;10 COSINE;100 COSINE;100 COSINE;1000 COSINE;1000 DIXON3DQ;1000 DIXON3DQ;1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB;1000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000	
BROWNAL;10 BROYDN7D;25 BROYDN7D;50 BROYDN7D;500 BROYDN7D;500 BROYDN7D;500 BROYDNBDLS;100 BROYDNBDLS;500 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;10000 BROYDNBDLS;10000 BRYBND;1000 BRYBND;5000 BRYBND;5000 BRYBND;10000 CHNROSNB;50 CHNRSNBM;10 COSINE;100 COSINE;100 COSINE;1000 COSINE;1000 DIXON3DQ;1000 DIXON3DQ;1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB;1000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000	
BROYDN7D;25 BROYDN7D;50 BROYDN7D;500 BROYDN7D;500 BROYDN7D;500 BROYDNBDLS;1000 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;10000 BROYDNBDLS;10000 BRYBND;1000 BRYBND;5000 BRYBND;5000 BRYBND;10000 CHNROSNB;50 CHNRSNBM;10 COSINE;100 COSINE;100 COSINE;1000 COSINE;1000 DIXON3DQ;1000 DIXON3DQ;1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB;1000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;100000 FLETCBV2;10000	
BROYDN7D;50 BROYDN7D;250 BROYDN7D;500 BROYDN7D;2500 BROYDNBDLS;100 BROYDNBDLS;500 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;10000 BRYBND;1000 BRYBND;1000 BRYBND;5000 BRYBND;10000 CHNROSNB;50 CHNRSNBM;10 COSINE;100 COSINE;100 COSINE;100 COSINE;1000 DIXON3DQ;1000 DIXON3DQ;1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB;1000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000	
BROYDN7D;250 BROYDN7D;500 BROYDN7D;2500 BROYDNBDLS;100 BROYDNBDLS;500 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;10000 BRYBND;1000 BRYBND;5000 BRYBND;5000 BRYBND;5000 BRYBND;10000 CHNROSNB;50 CHNRSNBM;10 COSINE;100 COSINE;100 COSINE;100 COSINE;1000 DIXON3DQ;1000 DIXON3DQ;1000 DIXON3DQ;1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB;1000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000	
BROYDN7D;500 BROYDN7D;2500 BROYDNBDLS;100 BROYDNBDLS;500 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;10000 BRYBND;1000 BRYBND;500 BRYBND;5000 BRYBND;5000 BRYBND;5000 BRYBND;5000 CHNROSNB;50 CHNRSNBM;10 COSINE;100 COSINE;100 COSINE;1000 COSINE;1000 DIXON3DQ;1000 DIXON3DQ;1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB;1000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;100000 FLETCBV2;10000 FLETCBV2;100000 FLETCBV2;100000 FLETCBV2;100000 FLETCBV2;100000 FLETCBV2;100000 FLETCBV2;100000 FLETCBV2;100000 FLETCBV2;100000 FLETCBV2;100000 FLETCBV2;100000 FLETCBV2;100000 FLETCBV2;100000 FLETCBV2;100000 FLETCBV2;100000 FLETCBV2;100000	
BROYDN7D;2500 BROYDNBDLS;100 BROYDNBDLS;500 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;10000 BRYBND;100 BRYBND;500 BRYBND;5000 BRYBND;5000 BRYBND;5000 BRYBND;10000 CHNROSNB;50 CHNRSNBM;10 COSINE;10 COSINE;100 COSINE;1000 COSINE;1000 DIXON3DQ;1000 DIXON3DQ;1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB;1000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000	BROYDN7D;250
BROYDNBDLS;100 BROYDNBDLS;500 BROYDNBDLS;5000 BROYDNBDLS;5000 BROYDNBDLS;10000 BRYBND;100 BRYBND;500 BRYBND;5000 BRYBND;5000 BRYBND;5000 BRYBND;5000 CHNROSNB;50 CHNRSNBM;10 COSINE;100 COSINE;100 COSINE;1000 COSINE;1000 DIXON3DQ;1000 DIXON3DQ;1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB;1000 FLETCBV2;1000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000	
BROYDNBDLS;500 BROYDNBDLS;1000 BROYDNBDLS;5000 BROYDNBDLS;10000 BRYBND;100 BRYBND;500 BRYBND;5000 BRYBND;5000 BRYBND;5000 BRYBND;5000 CHNROSNB;50 CHNRSNBM;10 COSINE;100 COSINE;100 COSINE;1000 COSINE;1000 DIXON3DQ;1000 DIXON3DQ;1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB;1000 FLETCBV2;1000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000	
BROYDNBDLS;1000 BROYDNBDLS;5000 BROYDNBDLS;10000 BRYBND;100 BRYBND;500 BRYBND;5000 BRYBND;5000 BRYBND;5000 BRYBND;10000 CHNROSNB;50 CHNRSNBM;10 COSINE;100 COSINE;100 COSINE;100 COSINE;1000 DIXON3DQ;1000 DIXON3DQ;1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB;1000 FLETCBV2;1000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000	
BROYDNBDLS;5000 BROYDNBDLS;10000 BRYBND;100 BRYBND;500 BRYBND;5000 BRYBND;5000 BRYBND;5000 CHNROSNB;50 CHNRSNBM;10 COSINE;100 COSINE;100 COSINE;1000 COSINE;1000 DIXON3DQ;1000 DIXON3DQ;1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB;1000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000	
BROYDNBDLS;5000 BROYDNBDLS;10000 BRYBND;100 BRYBND;500 BRYBND;5000 BRYBND;5000 BRYBND;5000 CHNROSNB;50 CHNRSNBM;10 COSINE;100 COSINE;100 COSINE;1000 COSINE;1000 DIXON3DQ;1000 DIXON3DQ;1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB;1000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000	BROYDNBDLS;1000
BRYBND; 100 BRYBND; 500 BRYBND; 5000 BRYBND; 5000 BRYBND; 10000 CHNROSNB; 50 CHNRSNBM; 10 COSINE; 100 COSINE; 100 COSINE; 1000 DIXON3DQ; 1000 DIXON3DQ; 1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB; 1000 FLETCBV2; 1000 FLETCBV2; 10000 FLETCBV2; 10000 FLETCBV2; 10000 FLETCBV2; 10000 FLETCBV2; 10000 FLETCBV2; 10000	BROYDNBDLS;5000
BRYBND; 100 BRYBND; 500 BRYBND; 5000 BRYBND; 5000 BRYBND; 10000 CHNROSNB; 50 CHNRSNBM; 10 COSINE; 100 COSINE; 100 COSINE; 1000 DIXON3DQ; 1000 DIXON3DQ; 1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB; 1000 FLETCBV2; 1000 FLETCBV2; 10000 FLETCBV2; 10000 FLETCBV2; 10000 FLETCBV2; 10000 FLETCBV2; 10000 FLETCBV2; 10000	BROYDNBDLS; 10000
BRYBND; 500 BRYBND; 1000 BRYBND; 5000 BRYBND; 5000 BRYBND; 10000 CHNROSNB; 50 CHNRSNBM; 10 COSINE; 100 COSINE; 1000 COSINE; 1000 DIXON3DQ; 1000 DIXON3DQ; 1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB; 100 EXTROSNB; 1000 FLETCBV2; 5000 FLETCBV2; 10000 FLETCBV2; 10000 FLETCBV2; 10000 FLETCBV2; 10000 FLETCBV2; 10000	
BRYBND; 1000 BRYBND; 5000 BRYBND; 5000 CHNROSNB; 50 CHNRSNBM; 10 COSINE; 10 COSINE; 100 COSINE; 1000 COSINE; 1000 DIXON3DQ; 100 DIXON3DQ; 100 DIXON3DQ; 1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB; 100 EXTROSNB; 100 FLETCBV2; 1000 FLETCBV2; 10000 FLETCBV2; 10000 FLETCBV2; 10000 FLETCHCR; 100	BRYBND;500
BRYBND; 5000 BRYBND; 10000 CHNROSNB; 50 CHNRSNBM; 10 COSINE; 10 COSINE; 100 COSINE; 1000 COSINE; 1000 DIXON3DQ; 100 DIXON3DQ; 100 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB; 100 EXTROSNB; 100 FLETCBV2; 100 FLETCBV2; 1000 FLETCBV2; 10000 FLETCBV2; 10000 FLETCBV2; 10000	
BRYBND; 10000 CHNROSNB; 50 CHNRSNBM; 10 COSINE; 10 COSINE; 100 COSINE; 1000 COSINE; 1000 DIXON3DQ; 100 DIXON3DQ; 1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB; 100 FLETCBV2; 100 FLETCBV2; 10000 FLETCBV2; 10000 FLETCBV2; 10000 FLETCBV2; 10000	
CHNROSNB;50 CHNRSNBM;10 COSINE;10 COSINE;100 COSINE;1000 COSINE;10000 DIXON3DQ;100 DIXON3DQ;1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB;1000 EXTROSNB;1000 FLETCBV2;1000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000	
CHNRSNBM;10 COSINE;100 COSINE;1000 COSINE;10000 DIXON3DQ;1000 DIXON3DQ;1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB;1000 EXTROSNB;1000 FLETCBV2;1000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;100000 FLETCHCR;100	
COSINE;10 COSINE;1000 COSINE;10000 DIXON3DQ;1000 DIXON3DQ;1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB;1000 FLETCBV2;1000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000	
COSINE; 100 COSINE; 1000 COSINE; 10000 DIXON3DQ; 100 DIXON3DQ; 1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB; 100 EXTROSNB; 1000 FLETCBV2; 1000 FLETCBV2; 10000 FLETCBV2; 10000 FLETCBV2; 10000 FLETCCBV2; 10000	
COSINE;1000 COSINE;10000 DIXON3DQ;100 DIXON3DQ;1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB;100 EXTROSNB;1000 FLETCBV2;1000 FLETCBV2;10000 FLETCBV2;10000 FLETCCBV2;10000	COSINE, 100
COSINE;10000 DIXON3DQ;1000 DIXON3DQ;1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB;100 EXTROSNB;1000 FLETCBV2;1000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000	
DIXON3DQ;100 DIXON3DQ;1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB;100 EXTROSNB;1000 FLETCBV2;100 FLETCBV2;5000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000	
DIXON3DQ;1000 ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB;100 EXTROSNB;1000 FLETCBV2;100 FLETCBV2;5000 FLETCBV2;10000 FLETCBV2;10000 FLETCBV2;10000	
ECKERLE4LS; EGGCRATE; ELATVIDU; EXP2; EXTROSNB;100 EXTROSNB;1000 FLETCBV2;100 FLETCBV2;5000 FLETCBV2;10000 FLETCBV2;10000 FLETCHCR;100	
EGGCRATE; ELATVIDU; EXP2; EXTROSNB;100 EXTROSNB;1000 FLETCBV2;100 FLETCBV2;5000 FLETCBV2;10000 FLETCBV2;10000	
ELATVIDU; EXP2; EXTROSNB;100 EXTROSNB;1000 FLETCBV2;100 FLETCBV2;5000 FLETCBV2;10000 FLETCHCR;100	
EXP2; EXTROSNB;100 EXTROSNB;1000 FLETCBV2;100 FLETCBV2;5000 FLETCBV2;10000 FLETCHCR;100	
EXTROSNB;100 EXTROSNB;1000 FLETCBV2;100 FLETCBV2;5000 FLETCBV2;10000 FLETCHCR;100	ELATVIDU;
EXTROSNB;1000 FLETCBV2;100 FLETCBV2;5000 FLETCBV2;10000 FLETCHCR;100	EXP2;
FLETCBV2;100 FLETCBV2;5000 FLETCBV2;10000 FLETCHCR;100	
FLETCBV2;5000 FLETCBV2;10000 FLETCHCR;100	EXTROSNB;1000
FLETCBV2;5000 FLETCBV2;10000 FLETCHCR;100	FLETCBV2;100
FLETCHCR;100	FLETCBV2;5000
FLETCHCR;100	FLETCBV2;10000

```
FREUROTH; 50
FREUROTH; 100
FREUROTH; 500
FREUROTH; 1000
GULF;
HATFLDD;
HILBERTA; 2
HILBERTA; 4
HILBERTA; 5
HILBERTA; 6
HILBERTA; 10
HIMMELBG;
INTEQNELS; 10
INTEQNELS; 50
INTEQNELS; 100
INTEQNELS; 500
LANCZOS1LS;
LANCZOS2LS;
NONDQUAR; 500
NONDQUAR; 1000
OSBORNEB;
OSCIPATH; 5
OSCIPATH; 10
OSCIPATH; 25
OSCIPATH; 100
OSCIPATH; 500
PENALTY1;4
PENALTY1;50
PENALTY1:100
PENALTY1;500
OING: 100
OING: 1000
RECIPELS;
S308;
SISSER;
SNAIL;
STRTCHDV;100
STRTCHDV; 1000
TRIGON1;100
WATSON; 31
```

Файл cute methods.py

```
maxiter = 100000
prec = 1e-5

def problem(name, params):
    """
    Import test functions from the CUTEst library.

    :param name: CUTEst problem name
    :param params: SIF file parameters to use

    :return: a reference to the Python interface class for this problem (class pycutest.CUTEstProblem)
    """
    if ('ROSENBR' in name) or ('MODBEALE' in name) or ('BROYDN7D' in name):
        return cute.import_problem(name, sifParams={'N/2': int(params)})
    elif (name == 'FMINSURF') or (name == 'LMINSURF') or (name == 'NLMSURF') or (name == 'MSQRTA'):
        return cute.import_problem(name, sifParams={'P': int(params)})
```

```
elif name == 'WOODS':
        return cute.import problem(name, sifParams={'NS': int(params)})
    elif params:
        return cute.import problem(name, sifParams={'N': int(params)})
    else:
       return cute.import problem(name)
def FR2 (function, params):
    p = problem(function, params)
    x0 = p.x0
    f0, g0 = p.obj(x0, gradient=True)
    feva, geva, it = 1, 1, 1
    gk, pk, xk old, xk = g0, -g0, x0, x0
    start time = process time()
   while it < maxiter and norm(gk) > prec:
        # alpha
        fk old = p.obj(xk old)
        feva += 1
        alpha, fc, gc = line search(p, xk, pk, fk old)
        if alpha is None:
            result = linesearch.line search armijo(p.obj, xk, pk, gk, fk old)
            alpha = result[0]
            feva += result[1]
        else:
            feva += fc
            geva += gc
        if alpha is None:
           break
        # step
        xk old = xk
        xk = xk + alpha * pk
        gk old = gk
        gk = p.gradhess(xk)[0]
        geva += 1
        # beta
       beta = norm(gk) ** 2 / norm(gk old) ** 2
        # direction
        pk = -gk + beta * pk
        it = it + 1
    if params:
       return function, params, feva, geva, it, round(norm(gk), 7),
round(process_time() - start_time, 7)
    else:
        return function, cute.problem properties(function)['n'], feva, geva, it,
round(norm(gk), 7), \
              round(process time() - start time, 7)
def PRP2019(function, params):
   p = problem(function, params)
   0x.q = 0x
    f0, g0 = p.obj(x0, gradient=True)
    feva, geva, it = 1, 1, 1
   gk, pk, xk old, xk = g0, -g0, x0, x0
   start time = process time()
   while it < maxiter and norm(gk) > prec:
        # alpha
```

```
fk old = p.obj(xk old)
        feva += 1
        alpha, fc, gc = line search(p, xk, pk, fk old)
        if alpha is None:
            result = linesearch.line search armijo(p.obj, xk, pk, gk, fk old)
            alpha = result[0]
            feva += result[1]
        else:
            feva += fc
            geva += gc
        if alpha is None:
            break
        # step
        xk old = xk
        xk = xk + alpha * pk
        gk old = gk
        gk = p.gradhess(xk)[0]
        geva += 1
        # beta
        yk = gk - gk old
        if (norm(gk)) ** 2 > abs(dot(gk.T, gk old)):
           beta = ((norm(gk)) ** 2 - dot(gk.T, gk old)) / (norm(gk old)) ** 2
        else:
            numNPRP = (norm(gk)) ** 2 - (norm(gk) / norm(gk old)) *
abs(dot(gk.T, gk old))
            betaNPRP = numNPRP / (norm(gk old)) ** 2
            betaFR = (norm(gk)) ** 2 / (norm(gk old)) ** 2
            ro = ((norm(gk) / norm(gk old)) * abs(dot(gk.T, gk old))) /
(norm(gk old)) ** 2
            G = dot(yk.T, pk) - dot(yk.T, gk) * (dot(pk.T, gk) / (norm(gk)) **
2)
            tetta = (dot(yk.T, gk) - betaNPRP * G) / dot(G, ro)
            if tetta > 1:
                tetta = 1
            elif tetta < 0:
                tetta = 0
            beta = (1 - tetta) * betaNPRP + tetta * betaFR
        # direction
        if abs(dot(gk.T, gk old)) >= 0.2 * (norm(gk))**2:
            pk = -gk
        else:
            ratio = dot(pk.T, gk) / (norm(gk))**2
            pk = -gk + beta * pk - beta * ratio * gk
        it += 1
    if params:
        return function, params, feva, geva, it, round(norm(gk), 7),
round(process_time() - start_time, 7)
        return function, cute.problem properties(function)['n'], feva, geva, it,
round(norm(gk), 7), \
               round(process time() - start_time, 7)
def test(function, params):
   p = problem(function, params)
   x0 = p.x0
    f0, g0 = p.obj(x0, gradient=True)
    feva, geva, it = 1, 1, 1
   gk, pk, xk old, xk = g0, -g0, x0, x0
```

```
start time = process time()
    while it < maxiter and norm(gk) > prec:
        # alpha
        fk old = p.obj(xk old)
        feva += 1
        alpha, fc, gc = line search(p, xk, pk, fk old)
        if alpha is None:
            result = linesearch.line search armijo(p.obj, xk, pk, gk, fk old)
            alpha = result[0]
            feva += result[1]
        else:
            feva += fc
            geva += gc
        if alpha is None:
            break
        # step
        xk old = xk
        xk = xk + alpha * pk
        gk old = gk
        gk = p.gradhess(xk)[0]
        geva += 1
        # beta
        yk = gk - gk old
        if (norm(gk)) ** 2 > abs(dot(gk.T, gk old)):
            beta = dot(gk.T, yk) / norm(gk_old)**2
        else:
            numNPRP = (norm(gk)) ** 2 - (norm(gk) / norm(gk old)) *
abs(dot(gk.T, gk old))
            betaNPRP = numNPRP / (norm(gk old)) ** 2
            betaFR = (norm(gk)) ** 2 / (norm(gk old)) ** 2
            ro = ((norm(gk) / norm(gk old)) * abs(dot(gk.T, gk old))) /
(norm(gk\_old)) ** 2
            G = dot(yk.T, pk) - dot(yk.T, gk) * (dot(pk.T, gk) / (norm(gk)) **
2)
            tetta = (dot(yk.T, gk) - betaNPRP * G) / dot(G, ro)
            if tetta > 1:
                tetta = 1
            elif tetta < 0:
                tetta = 0
            beta = (1 - tetta) * betaNPRP + tetta * betaFR
        if beta < 0:
            beta = 0
        # direction
        omega = dot(pk.T, yk) / norm(gk old)**2
        if abs(dot(gk.T, gk old)) >= 0.2 * (norm(gk))**2:
            pk = -gk
        else:
            ratio = dot(pk.T, gk) / norm(gk)**2
            pk = -omega * gk + beta * pk - omega * beta * ratio * gk
        it = it + 1
    if params:
        return function, params, feva, geva, it, round(norm(gk), 7),
round(process time() - start time, 7)
   else:
```

```
return function, cute.problem properties(function)['n'], feva, geva, it,
round(norm(gk), 7), \
               round(process time() - start time, 7)
def line_search(p, xk, pk, prev_f, extra_condition=None):
    extra_condition2 = None
    fc, gc = [0], [0]
    gfk, gfk_alpha = [None], [None]
    def derivative evaluation(alpha):
        gfk[0] = p.gradhess(xk + alpha * pk)[0]
        gc[0] += 1
        gfk alpha[0] = alpha
        return np.dot(gfk[0], pk)
    def f evaluation(alpha):
        fc[0] += 1
        return p.obj(xk + alpha * pk)
    alpha star = scalar search (f evaluation, derivative evaluation, prev f,
extra condition2)
    return alpha star, fc[0], gc[0]
def scalar search (f evaluation, derivative evaluation, prev f,
extra condition=None):
    c\overline{1}, c2 = 1e-4, 0.1
    f 0 = f evaluation(0.)
    derivative0 = derivative evaluation(0.)
    alpha0 = 0
    alpha1 = min(1, 1.01 * 2 * (f 0 - prev f) / derivative0)
    if alpha1 == 0:
        alpha1 = 1.0
    f a1 = f evaluation(alpha1)
    f_a0 = f_0
    derivative a0 = derivative0
    extra_condition = lambda alpha, f: True
    for i in range(10):
        if (f a1 > f 0 + c1 * alpha1 * derivative0) or \setminus
                ((f a1 >= f a0) and (i > 1)):
            alpha star = \
                _zoom(alpha0, alpha1, f_a0,
                       f_a1, derivative_a0, f_evaluation, derivative_evaluation,
                       f 0, derivative0, c1, c2, extra condition)
        derivative a1 = derivative evaluation(alpha1)
        if abs(derivative a1) <= -c2 * derivative0:
            alpha star = alpha1
            break
        if derivative a1 >= 0:
            alpha star = \
                zoom(alpha1, alpha0, f a1,
                      f_a0, derivative_a1, f_evaluation, derivative_evaluation,
                       f 0, derivative0, c1, c2, extra condition)
            break
        alpha2 = 2 * alpha1
        alpha0 = alpha1
```

```
alpha1 = alpha2
        f a0 = f a1
        f a1 = f evaluation(alpha1)
        derivative a0 = derivative a1
    else:
        alpha star = alpha1
        # warn('The line search algorithm did not converge', LineSearchWarning)
    return alpha star
def cubicmin(a, fa, fpa, b, fb, c, fc):
    with np.errstate(divide='raise', over='raise', invalid='raise'):
            C = fpa
            db = b - a
            dc = c - a
            denom = (db * dc) ** 2 * (db - dc)
            d1 = np.empty((2, 2))
            d1[0, 0] = dc ** 2
            d1[0, 1] = -db ** 2
            d1[1, 0] = -dc ** 3
            d1[1, 1] = db ** 3
            [A, B] = np.dot(d1, np.asarray([fb - fa - C * db,
                                            fc - fa - C * dc]).flatten())
            A /= denom
            B /= denom
            radical = B * B - 3 * A * C
            xmin = a + (-B + np.sqrt(radical)) / (3 * A)
        except ArithmeticError:
           return None
    if not np.isfinite(xmin):
        return None
    return xmin
def quadmin(a, fa, fpa, b, fb):
    with np.errstate(divide='raise', over='raise', invalid='raise'):
        try:
            d = fa
            c = fpa
            db = b - a
            b = (fb - d - c * db) / (db * db)
            x min = a - c / (2.0 * b)
        except ArithmeticError:
            return None
    if not np.isfinite(x min):
        return None
    return x_min
def _zoom(a_lo, a_hi, f_lo, f_hi, derivative_lo,
          f evaluation, derivative evaluation, f 0, derivative0, c1, c2,
extra_condition):
    i = 0
    delta1 = 0.2 \# cubic
    delta2 = 0.1 # quadratic
    f rec = f 0
    a rec = 0
    while True:
        dalpha = a_hi - a_lo
        if dalpha < 0:
```

```
a, b = a hi, a lo
        else:
            a, b = a lo, a hi
        cchk = delta1 * dalpha
        a_j = cubicmin(a_lo, f_lo, derivative_lo, a_hi, f_hi, a_rec, f_rec)
        if (i == 0) or (a_j is None) or (a_j > b - cchk) or (a_j < a + cchk):
            qchk = delta2 * dalpha
            a_j = quadmin(a_lo, f_lo, derivative_lo, a_hi, f_hi)
            if (a_j is None) or (a_j > b - qchk) or (a_j < a + qchk):
                a j = a lo + 0.5 * dalpha
        f aj = f evaluation(a j)
        if (f aj > f 0 + c1 * a j * derivative0) or (f aj >= f lo):
            f rec = f hi
            a rec = a hi
            a hi = a j
            f hi = f aj
            derivative aj = derivative evaluation(a j)
            if abs(derivative aj) \le -c2 * derivative0 and extra condition(a j,
f aj):
                a star = a j
                break
            if derivative aj * (a hi - a lo) >= 0:
                f rec = f hi
                a rec = a hi
                a hi = a lo
                f hi = f lo
            else:
                f rec = f lo
                a rec = a lo
            a lo = a j
            f lo = f aj
            derivative lo = derivative aj
        i += 1
        if i > 20:
            a star = None
            break
    return a star
     Файл cute main.py
problem list = []
with open ('problem list.txt') as file:
    for line in file:
        problem list.append(line.rstrip().split(';'))
problems = len(problem list)
solvers = {'FR2': cute methods.FR2, 'HS2': cute methods.HS2, 'PR2':
cute methods.PR2, 'PRP2019': cute methods.PRP2019,
           'test': cute methods.test}
methods = len(solvers)
method names = np.array(list(solvers))
feva = np.zeros((problems, methods))
geva = np.zeros((problems, methods))
iterations = np.zeros((problems, methods))
solution_time = np.zeros((problems, methods))
error = np.zeros((problems, methods))
```

```
report = PrettyTable()
report.field_names = ["method", "function", "dimension", "feva", "geva",
"iterations", "norm(gk)", "time"]
def save_results(method, problem, function, dim, f, g, it, gk, time):
    report.add row([method names[method], function, dim, f, g, it, gk, time])
    if gk > 1e-4 or gk is None:
        error[problem][method] = 1
    feva[problem][method] = f
    geva[problem][method] = g
    iterations[problem][method] = it
    solution time[problem][method] = time
for problem in range(problems):
    function = problem list[problem][0]
    params = problem list[problem][1]
    for method in range(methods):
        function, dim, f, g, it, gk, time =
solvers[method names[method]](function, params)
        save results (method, problem, function, dim, f, g, it, gk, time)
   print(problem+1)
for problem in range(problems):
    for method in range(methods):
        if error[problem] [method]:
            feva[problem][method] = np.max(feva)
            geva[problem][method] = np.max(geva)
            iterations[problem][method] = np.max(iterations)
            solution time[problem][method] = np.max(solution time)
print(report)
errors = PrettyTable()
errors.field names = method names
errors.add row([sum(error[:, 0]), sum(error[:, 1]), sum(error[:, 2]),
sum(error[:, 3]), sum(error[:, 4])])
print(errors)
for problem in range (problems):
    fmin = np.min(feva[problem, :])
    gmin = np.min(geva[problem, :])
    itmin = np.min(iterations[problem, :])
    timemin = np.min(solution time[problem, :])
    for method in range (methods):
        feva[problem] [method] /= fmin
        geva[problem][method] /= gmin
        iterations[problem] [method] /= itmin
        solution time[problem][method] /= timemin
def perfomance(t, method, metric):
   ps = np.zeros((len(t)))
    k = 0
    for tau in t:
        count = 0
        for r in metric[:, method]:
            if r <= tau:</pre>
                count += 1
        ps[k] = count / problems
        k += 1
```

```
def perfomance log2(t, method, metric):
    ps = np.zeros((len(t)))
    k = 0
    for tau in t:
       count = 0
       for r in metric[:, method]:
           if np.log2(r) <= tau:
              count += 1
       ps[k] = count / problems
       k += 1
    return ps
############################## [0; 2] #############################
plt.figure('close to 1')
t = np.linspace(0, 2, 100000)
line_styles = ['-', '--', '-', '--', '--']
line_colors = ['b', 'g', 'r', 'y', 'm', 'k']
plt.subplot(2, 2, 1)
for method in range (methods):
   plt.plot(t, perfomance(t, method, feva), linestyle=line styles[method],
color=line colors[method],
           label=method names[method])
plt.title("function evaluations")
plt.xlabel("t")
plt.ylabel("P(t)")
plt.grid(True)
plt.subplot(2, 2, 2)
for method in range (methods):
   plt.plot(t, perfomance(t, method, geva), linestyle=line styles[method],
color=line colors[method],
            label=method names[method])
plt.title("gradient evaluations")
plt.xlabel("t")
plt.ylabel("P(t)")
plt.grid(True)
plt.subplot(2, 2, 3)
for method in range (methods):
    plt.plot(t, perfomance(t, method, iterations),
linestyle=line styles[method], color=line colors[method],
            label=method names[method])
plt.title("iterations")
plt.xlabel("t")
plt.ylabel("P(t)")
plt.grid(True)
plt.subplot(2, 2, 4)
for method in range (methods):
    plt.plot(t, perfomance(t, method, solution time),
linestyle=line styles[method], color=line colors[method],
            label=method names[method])
plt.title("time")
plt.xlabel("t")
plt.ylabel("P(t)")
plt.grid(True)
plt.legend()
```

return ps

```
plt.show()
```

Файл quad_methods.py

```
maxiter = 100000
prec = 1e-5
def feva (x, A, b, 1):
    return (norm(dot(A, x) - b)) ** 2 + 1 * ((norm(x)) ** 2)
def geva(x, A, b, 1):
    return 2 * dot(A.T, (dot(A, x) - b)) + 2 * 1 * x
def aeva(xk, pk, A, b, 1):
    axb = dot(A, xk) - b
    ap = dot(A, pk)
    num = -dot(axb.T, ap) - dot(l, dot(xk.T, pk))
    den = (norm(ap)) ** 2 + 1 * (norm(pk)) ** 2
    return num / den
def FR2 (A, b, 1, n):
    x0 = np.zeros((n, 1))
    it = 1
    gk = geva(x0, A, b, 1)
    pk, xk = -gk, x0
    start time = process time()
    while it < maxiter and norm(gk) > prec:
        alpha = aeva(xk, pk, A, b, 1)
        xk = xk + alpha * pk
        gk_old = gk
        gk = geva(xk, A, b, 1)
beta = norm(gk) ** 2 / norm(gk_old) ** 2
        pk = -gk + beta * pk
        it = it + 1
    return xk, it, norm(gk), round(process time() - start time, 7)
def PRP2019(A, b, 1, n):
    x0 = np.zeros((n, 1))
    it = 1
    gk = geva(x0, A, b, 1)
    pk, xk old, xk = -gk, x0, x0
    start time = process time()
    while it < maxiter and norm(gk) > prec:
        alpha = aeva(xk, pk, A, b, 1)
        xk = xk + alpha * pk
        gk old = gk
        gk = geva(xk, A, b, 1)
        yk = gk - gk old
        if (norm(gk)) ** 2 > abs(dot(gk.T, gk old)):
            beta = dot(gk.T, yk) / norm(gk old)**2
        else:
```

```
numNPRP = (norm(gk)) ** 2 - (norm(gk) / norm(gk old)) *
abs(dot(gk.T, gk old))
            betaNPRP = numNPRP / (norm(gk old)) ** 2
            betaFR = (norm(gk)) ** 2 / (norm(gk old)) ** 2
            lam = dot(yk.T, gk)
            ro = ((norm(gk) / norm(gk old)) * abs(dot(gk.T, gk old))) /
(norm(gk old)) ** 2
            G = dot(yk.T, pk) - lam * (dot(pk.T, gk) / (norm(gk)) ** 2)
            tetta = (lam - betaNPRP * G) / dot(G, ro)
            if tetta > 1:
                tetta = 1
            elif tetta < 0:
                tetta = 0
            beta = (1 - tetta) * betaNPRP + tetta * betaFR
        if abs(dot(gk.T, gk old)) >= 0.2 * (norm(gk)) ** 2:
           pk = -gk
        else:
            numerator = dot(pk.T, gk)
            denominator = (norm(gk)) ** 2
            ratio = numerator / denominator
            pk = -gk + beta * pk - beta * ratio * gk
        it = it + 1
    return xk, it, norm(gk), round(process time() - start time, 7)
def test(A, b, l, n):
   x0 = np.zeros((n, 1))
    it = 1
   gk = geva(x0, A, b, 1)
   pk, xk old, xk = -gk, x0, x0
   start time = process time()
    while it < maxiter and norm(gk) > prec:
        alpha = aeva(xk, pk, A, b, 1)
        xk = xk + alpha * pk
        gk old = gk
        gk = geva(xk, A, b, 1)
        yk = gk - gk \text{ old}
        if (norm(gk)) ** 2 > abs(dot(gk.T, gk old)):
            beta = dot(gk.T, yk) / norm(gk old)**2
        else:
            numNPRP = (norm(gk)) ** 2 - (norm(gk) / norm(gk old)) *
abs(dot(gk.T, gk old))
            betaNPRP = numNPRP / (norm(gk old)) ** 2
            betaFR = (norm(gk)) ** 2 / (norm(gk old)) ** 2
            ro = ((norm(gk) / norm(gk_old)) * abs(dot(gk.T, gk_old))) /
(norm(gk old)) ** 2
            G = dot(yk.T, pk) - dot(yk.T, gk) * (dot(pk.T, gk) / (norm(gk)) **
2)
            tetta = (dot(yk.T, gk) - betaNPRP * G) / dot(G, ro)
            if tetta > 1:
                tetta = 1
            elif tetta < 0:
                tetta = 0
            beta = (1 - tetta) * betaNPRP + tetta * betaFR
        if beta < 0:
            beta = 0
```

```
# direction
        omega = dot(pk.T, yk) / norm(gk old) ** 2
        if abs(dot(gk.T, gk old)) >= 0.\overline{2} * (norm(gk)) ** 2:
            pk = -gk
        else:
            ratio = dot(pk.T, gk) / norm(gk) ** 2
            pk = -omega * gk + beta * pk - omega * beta * ratio * gk
        i + += 1
    return xk, it, norm(gk), round(process time() - start time, 7)
     Файл quad main.py
solvers = {'FR2': quad methods.FR2, 'HS2': quad methods.HS2, 'PR2':
quad methods.PR2, 'PRP2019': quad methods.PRP2019,
           'test': quad methods.test}
methods = len(solvers)
method names = np.array(list(solvers))
N = np.array([10, 100, 500, 1000, 10, 500, 1000, 10, 500, 1000])
dimensions = len(M)
circles = 1000
tasks = dimensions * circles
iterations = np.zeros((dimensions, circles, methods))
solution time = np.zeros((dimensions, circles, methods))
report = PrettyTable()
report.field names = ["method", "M", "N", "iteration", "norm(gk)", "deviation",
"time"]
def save_results(dim, circle, method, m, n, it, gk, xmin, xk, time):
    report.add row([method names[method], m, n, it, qk, norm(abs(xmin - xk)),
time])
    iterations[dim][circle][method] = it
    solution time[dim][circle][method] = time
for dim in range(dimensions):
    m = M[dim]
    n = N[dim]
    for circle in range(circles):
        A = np.zeros((m, n))
        for i in range(m):
            for j in range(n):
                A[i][j] = random.uniform(0, 1)
        l = random.uniform(0, 1)
        y = np.zeros((m, 1))
        for i in range(m):
            y[i][0] = random.uniform(0, 1)
        I = np.eye(m)
        b = dot((dot(A, A.T) + 1 * I), y)
        xmin = dot(A.T, y)
        for method in range(methods):
            xk, it, gk, time = solvers[method names[method]](A, b, l, n)
            save results(dim, circle, method, m, n, it, gk, xmin, xk, time)
print(report)
```

```
for dim in range (dimensions):
    itmin = np.min(iterations[dim, :, :])
    timemin = np.min(solution time[dim, :, :])
    for method in range (methods):
        for circle in range(circles):
            iterations[dim][circle][method] /= itmin
            solution time[dim][circle][method] /= timemin
def perfomance(t, method, metric):
    ps = np.zeros((len(t)))
    k = 0
    for tau in t:
        count = 0
        for dim in range (dimensions):
            for circle in range(circles):
                if metric[dim][circle][method] <= tau:</pre>
                    count += 1
        ps[k] = count / tasks
        k += 1
    return ps
plt.figure()
t = np.linspace(0, 2, 100000)
line_styles = ['-', '--', '-', '--', '--']
line colors = ['b', 'g', 'r', 'y', 'm', 'k']
plt.subplot(1, 2, 1)
for method in range (methods):
    plt.plot(t, perfomance(t, method, iterations),
linestyle=line styles[method], color=line colors[method],
             label=method names[method])
plt.title("iterations")
plt.xlabel("t")
plt.ylabel("P(t)")
plt.grid(True)
plt.subplot(1, 2, 2)
for method in range (methods):
    plt.plot(t, perfomance(t, method, solution time),
linestyle=line styles[method], color=line_colors[method],
             label=method names[method])
plt.title("time")
plt.xlabel("t")
plt.ylabel("P(t)")
plt.grid(True)
plt.legend()
plt.show()
```