实践五 逆累积分布函数——求概率表达式{X≤C}中待定参数

一、实践问题

1. 问题背景

已知随机变量的概率分布函数,或者说知道事件{X≤x}的概率 F(x),反求其中的 x,是我们在学习和工作以及科研中经常遇到的一个问题.例如,取多少只灯泡才可能满足抽到的灯泡燃烧寿命超过 1200 小时的概率达到 98%?装多少袋水泥可以保证不超过卡车的载重量?配制多少门炮才可能一次击中敌机?这些问题可以通过求解随机变量概率分布的逆累积分布函数来解决.

2. 实践目的与要求

- (1) 掌握根据概率分布函数反求临界值 x, 即求解随机变量的逆累积分布函数的方法;
- (2) 会求解概率表达式中的参数;
- (3) 会对图形指定区域完成填色;
- (4) 会对图形指定位置标注文字, 标注数字式文字;
- (5) 该实践题目旨在训练学生求解逆累积积分分布函数和处理图形填色、文字标注的能力.

二、实践操作过程

MATLAB 中的逆累积分布函数是已知累积分布函数(即概率) $F(x)=P\{X \le x\}$, 求x. 逆累积分布函数值的计算有两种方法.

1. 通用函数计算逆累积分布函数值 x

调用格式

• icdf('name', P, a1, a2, a3) % 返回分布为 name, 参数为 a1,a2,a3, 累积概率值为 P 的临界值, 这里 name 为分布函数名, 其取值见表 5-1.

注意: 如果 P=cdf('name', x, a1, a2, a3), 则 x=icdf('name', P, a1, a2, a3)

表 5-1 常见分布函数表

- · · · · · · · · · · · · · · · · · · ·	
name 的取值	函数说明
'beta' 或 'Beta'	Beta 分布
'bino' 或 'Binomial'	二项分布
'chi2' 或 'Chisquare'	χ^2 分布
'exp' 或 'Exponential'	指数分布
'f 或 'F'	F分布
'gam' 或 'Gamma'	Γ分布
'geo' 或 'Geometric'	几何分布
'hyge' 或 'Hypergeometric'	超几何分布
'logn' 或 'Lognormal'	对数正态分布
'nbin' 或 'Negative Binomial'	负二项式分布
'ncf' 或 'Noncentral F'	非中心F分布
'nct' 或 'Noncentral t'	非中心 t 分布
'ncx2' 或 'Noncentral Chi-square'	非中心卡方分布
'norm' 或 'Normal'	正态分布
'poiss' 或 'Poisson'	泊松分布
'rayl' 或 'Rayleigh'	瑞利分布
't' 或 'T'	t 分布

'unif' 或 'Uniform'	连续型均匀分布
'unid' 或 'Discrete Uniform'	离散型均匀分布
'weib' 或 'Weibull'	Weibull 分布

例 5-1 在标准正态分布中, 若已知 $\Phi(x)=0.975$, 求x.

解 在命令窗口中输入:

x=icdf('norm', 0.975, 0, 1)

回车后显示:

x =

1.9600

例 5-2 在 χ^2 分布中, 若自由度为 10, α =0.025, 求上分位点 λ .

解 因为给出的上分位点满足 $P\{\chi^2>\lambda\}=\alpha$,而逆累积分布函数 icdf 求满足 $P\{\chi^2<\lambda\}=P$ 的 临 界 值 λ . 所 以 , 逆 累 积 分 布 函 数 的 $P=P\{\chi^2<\lambda\}=1-P\{\chi^2>\lambda\}=1-P\{\chi^2>\lambda\}=0.975$,即

lambda=icdf('chi2',0.975,10)

回车后显示:

lambda =

20.4832

例 5-3 在假设检验中, α =0.05, 查自由度为 10 的双边检验 t 分布上分位点.

解 题目要求 P{t>t_{0.025} (10)}=0.025, 参考例 5-2, 用命令 icdf('t',0.975,10).

在命令窗口中输入:

lambda=icdf('t',0.975,10) % 注意 0.975 的来由.

回车后显示:

lambda =

2.2281

2. 专用函数-inv 计算逆累积分布函数

正态分布逆累积分布函数

调用格式

• x=norminv(p, mu, sigma) % p 为累积概率值, mu 为均值, sigma 为标准差, x 为临界值, 满足: p=P{X≤x}.

例 5-4 设 $X \sim N(3, 2^2)$, 确定 c 使得 $P\{X > c\} = P\{X < c\}$.

解 由 $P\{X \ge c\} = P\{X < c\} = 1 - P\{X \ge c\}$,得 $P\{X \ge c\} = P\{X < c\} = 0.5$. 所以. 在命令窗口输入:

c=norminv(0.5, 3, 2)

回车后显示:

C=

3

结果表明:c=3

关于常用临界值函数可查下表 5-2.

表 5-2 常用临界值函数表

函数名	调用形式	注 释
unifinv	x=unifinv (p, a, b)	连续型均匀分布逆累积分布函数(P=P{X≤x},求x)
unidinv	x=unidinv (p, n)	离散型均匀分布逆累积分布函数,x为临界值
expinv	x=expinv (p,lambda)	指数分布逆累积分布函数

		マナハナ 安田 担ハ ナマツ
norminv	x=norminv(x,mu,sigma)	正态分布逆累积分布函数
chi2inv	x=chi2inv (x, n)	χ^2 分布逆累积分布函数
tinv	x=tinv (x, n)	t 分布累积分布函数
finv	x=finv (x, n1, n2)	F分布逆累积分布函数
gaminv	x=gaminv (x, a, b)	Γ分布逆累积分布函数
betainv	x=betainv (x, a, b)	β分布逆累积分布函数
logninv	x=logninv (x, mu, sigma)	对数正态分布逆累积分布函数
nbininv	x=nbininv(x, r,p)	负二项式分布逆累积分布函数
ncfinv	x=ncfinv (x, n1, n2, delta)	非中心 F 分布逆累积分布函数
nctinv	x=nctinv (x, n, delta)	非中心 t 分布逆累积分布函数
ncx2inv	x=ncx2inv (x, n, delta)	非中心 χ^2 分布逆累积分布函数
raylinv	x=raylinv (x, b)	瑞利分布逆累积分布函数
weibinv	x=weibinv (x, a, b)	韦伯分布逆累积分布函数
binoinv	x=binoinv (x, n,p)	二项分布的逆累积分布函数
geoinv	x=geoinv (x,p)	几何分布的逆累积分布函数
hygeinv	x=hygeinv (x,m,k,n)	超几何分布的逆累积分布函数
poissinv	x=poissinv (x,lambda)	泊松分布的逆累积分布函数

例 5-5 χ^2 分布的逆累积分布函数的综合应用:

绘制 χ^2 分布的概率密度图形, 在指定区域对图形填色, 在指定位置标注文字、标注数字. **解** 在命令窗口中输入:

fill([xx,xa], [pxx,0], 'g') %在区域[xx,xa], [pxx,0]填绿色, 点(xa,0)使得填色区域封闭. 注意,不是区域[xx,xa], [0,pxx].

text(xa*1.01,0.01, num2str(xa)) %在起始点(xa*1.01,0.01) 标注临界值点的具体数值. 命令 num2str(xa) 是将 xa 的数值转换为字符串.

text(10,0.10, ['\fontsize{16}X~{\chi}^2(5)']) %在图中指定位置标注文字,字号是 fontsize{16}.

text(1.5,0.05, '\fontsize{22}alpha=0.9') %在图中指定位置标注文字 "alpha=0.9".

结果显示如图 5-1.

用.

图 5-1 函数图形填色、标注文字等的综合应用

三、 实践结论与总结

已知事件 $\{X \le x\}$ 的概率 F(x),反求其中的临界值 x,方法有两种: 一种方法是利用通用函数计算逆累积分布函数值: icdf('name',P, a1, a2, a3),它返回分布为 name,参数为 a1,a2,a3,累积概率值为 P 的临界值,这里 name 为分布函数名,其取值见表 5-1. 另一种方法是利用专用函数-inv 计算逆累积分布函数. 常用临界值函数见表 5-2.