The finite subgroups of SU(3)

Patrick Otto Ludl

Faculty of Physics, University of Vienna

Workshop on flavor symmetries, Dortmund, July 3rd, 2012

FWF Project P 24161-N16

Finite groups in particle physics

Particle physics offers a wide range of applications for the theory of finite groups.

- \rightarrow In particular the finite subgroups of SU(3) have been intensively studied in the past.
 - Model building in hadron physics.
 - Computational tools in lattice QCD.
 - Flavour physics: quark and lepton sector, scalar sector.

Selection of contributions

- 1916 Miller, Blichfeldt, Dickson: Theory and applications of finite groups: Classification of the finite subgroups of SU(3) in terms of their generators.
- 1964 Fairbairn, Fulton, Klink: Analyzed a large set of finite subgroups of SU(3) for their usage as symmetries in particle physics. $\Delta(3n^2)$, $\Delta(6n^2)$ mentioned.
- 1981 Bovier, Lüling, Wyler: T_n , $\Delta(3n^2)$, $\Delta(6n^2)$.
- 2007 Luhn, Nasri, Ramond: $\Delta(3n^2)$, $I \cong A_5$, \widetilde{I} , $\Sigma(168) \cong \mathrm{PSL}(2,7)$.
- 2008 Escobar, Luhn: $\Delta(6n^2)$.
- 2009 POL: Groups of types (C) and (D). Zwicky, Fischbacher: Groups of type (D).
- 2010 POL: Finite subgroups of U(3) of order smaller than 512.
 Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto: Non-Abelian discrete symmetries in particle physics.
 Parattu, Wingerter: All finite groups of order smaller 100.
- 2011 Grimus, POL: Structure of groups of types (C) and (D).

 Luhn; Merle, Zwicky: Breaking of SU(3) to its finite subgroups.

The finite subgroups of SU(3)

H.F. Blichfeldt (1916)¹:

Classification of the finite subgroups of SU(3) into five types:

- (A) Abelian groups.
- (B) Finite subgroups of SU(3) with faithful 2-dimensional representations.
- (C) The groups C(n, a, b) generated by the matrices

$$E = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad F(n, a, b) = \operatorname{diag}(\eta^{a}, \eta^{b}, \eta^{-a-b}),$$

where $\eta = \exp(2\pi i/n)$.

 $^{^1}$ G.A. Miller, H.F. Blichfeldt and L.E. Dickson: Theory and applications of finite groups, New York (1916) $$^+$

The finite subgroups of SU(3)

(D) The groups D(n, a, b; d, r, s) generated by E, F(n, a, b) and

$$\widetilde{G}(d,r,s) = \left(egin{array}{ccc} \delta^r & 0 & 0 \ 0 & 0 & \delta^s \ 0 & -\delta^{-r-s} & 0 \end{array}
ight),$$

where $\delta = \exp(2\pi i/d)$.

- (E) Six exceptional finite subgroups of SU(3):
 - $\Sigma(60) \cong A_5$, $\Sigma(168) \cong PSL(2,7)$
 - $\Sigma(36\times3)$, $\Sigma(72\times3)$, $\Sigma(216\times3)$ and $\Sigma(360\times3)$,

as well as the direct products $\Sigma(60) \times \mathbb{Z}_3$ and $\Sigma(168) \times \mathbb{Z}_3$.

(A) Abelian groups

Simple (but powerful) theorem:

Abelian finite subgroups of SU(3)

Every finite Abelian subgroup A of SU(3) is isomorphic to

$$\mathbb{Z}_m \times \mathbb{Z}_n$$
,

where

$$m = \max_{a \in \mathcal{A}} \operatorname{ord}(a)$$

and n is a divisor of m.

 \Rightarrow Possible structures of Abelian finite subgroups of SU(3) are strongly restricted!

- Rotations about one axis (cyclic groups \mathbb{Z}_m)
- Klein's four group $\mathbb{Z}_2 \times \mathbb{Z}_2$.

(B) Groups with two-dimensional faithful representations

For every finite subgroup of SU(2) there is an isomorphic finite subgroup of SU(3).

$$A \in \mathrm{SU}(2) \Rightarrow \left(egin{array}{cc} 1 & 0 \\ 0 & A \end{array}
ight) \in \mathrm{SU}(3)$$

However, this is even true for the finite subgroups of U(2).

$$A \in \mathrm{U}(2) \Rightarrow \left(egin{array}{cc} \det A^* & 0 \ 0 & A \end{array}
ight) \in \mathrm{SU}(3)$$

- Dihedral groups D_n (finite subgroups of SO(3)).
- Double covers of the finite 3-dimensional rotation groups $(\widetilde{T}, \widetilde{O}, \widetilde{I}, \widetilde{D_n})$.

The groups of type (C)

Generated by

$$E = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad F(n, a, b) = \operatorname{diag}(\eta^{a}, \, \eta^{b}, \, \eta^{-a-b}),$$

where $\eta = \exp(2\pi i/n)$.

Structure: F(n, a, b) diagonal $\Rightarrow EF(n, a, b)E^{-1}$ also diagonal.

 \Rightarrow Subgroup N(n, a, b) of diagonal matrices is a normal subgroup.

$$\Rightarrow C(n, a, b) \cong N(n, a, b) \rtimes \mathbb{Z}_3.$$

We also know that N(n, a, b) is an Abelian finite subgroup of SU(3), thus

$$C(n, a, b) \cong (\mathbb{Z}_m \times \mathbb{Z}_p) \rtimes \mathbb{Z}_3.$$

The groups of type (C)

$$C(n, a, b) \cong (\mathbb{Z}_m \times \mathbb{Z}_p) \rtimes \mathbb{Z}_3.$$

Special cases:

- $p = 1 \Rightarrow$ Groups of the type² $T_m \cong \mathbb{Z}_m \rtimes \mathbb{Z}_3$.
- $p = m \Rightarrow$ Groups of the type $(\mathbb{Z}_m \times \mathbb{Z}_m) \rtimes \mathbb{Z}_3 \cong \Delta(3m^2)$.

- Well-known groups such as $A_4 \cong T \cong \Delta(12), \ \Delta(27), \ T_7, \ T_{13}$.
- Smallest group of type (C) which is neither of the form T_n nor of the form $\Delta(3n^2)$:

$$C(9,1,1)\cong (\mathbb{Z}_9\times\mathbb{Z}_3)\rtimes\mathbb{Z}_3.$$

 $^{^2}m$ must be a product of powers of primes of the form 6k+1.

The groups of type (D)

The group D(n, a, b; d, r, s) is generated by the generators of C(n, a, b) and

$$\widetilde{G}(d,r,s) = \left(\begin{array}{ccc} \delta^r & 0 & 0 \\ 0 & 0 & \delta^s \\ 0 & -\delta^{-r-s} & 0 \end{array} \right),$$

where $\delta = \exp(2\pi i/d)$.

W. Grimus, POL $(2011)^3$: By means of a unitary transformation one obtains a different set of generators:

- Three diagonal matrices,
- and the two S_3 -generators

$$E = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}.$$

³W. Grimus, POL: *Finite flavour groups of fermions, J. Phys. A* 45 (2012) 233001; [arXiv:1110.6376].

The groups of type (D)

$$\Rightarrow D(n, a, b; d, r, s) \cong N(n, a, b; d, r, s) \rtimes S_3$$

\Rightarrow D(n, a, b; d, r, s) \approx (\mathbb{Z}_m \times \mathbb{Z}_{m'}) \times S_3.

Special cases:

• $m = m' \Rightarrow$ Groups of the type $(\mathbb{Z}_m \times \mathbb{Z}_m) \rtimes S_3 \cong \Delta(6m^2)$.

- Well-known groups such as $S_4 \cong \Delta(24)$, $\Delta(54)$.
- Smallest group of type (D) which is neither a direct product nor of the form $\Delta(6n^2)$:

$$D(9,1,1;2,1,1) \cong (\mathbb{Z}_9 \times \mathbb{Z}_3) \rtimes S_3.$$

Dimensions of the irreps of the groups of types (C) and (D)

$$D(n, a, b; d, r, s) \cong N(n, a, b; d, r, s) \rtimes S_3,$$

- *N* is the normal subgroup of all diagonal matrices in the group.
- S_3 is generated by the matrices E and B.
- ullet \Rightarrow Every element of the group can be written as

$$FB^{j}E^{k}$$
 $(F \in N; j = 0, 1; k = 0, 1, 2)$

 \rightarrow Allows to determine the dimensions of the irreps of the group⁴. Consider an irrep $\mathcal D$ of the group.

$$\mathcal{D}: N \mapsto \overline{N}, B \mapsto \overline{B}, E \mapsto \overline{E}.$$

 \bar{N} is Abelian \Rightarrow There is at least one simultaneous eigenvector x of all $\bar{F} \in \bar{N}$.

⁴W. Grimus, POL: *Finite flavour groups of fermions, J. Phys. A* 45 (2012) 233001; [arXiv:1110.6376].

Dimensions of the irreps of the groups of types (C) and (D)

 \bar{N} is Abelian \Rightarrow There is at least one simultaneous eigenvector x of all $\bar{F} \in \bar{N}$.

- \Rightarrow Also $\bar{E}x$, \bar{E}^2x , $\bar{B}x$, $\bar{B}\bar{E}x$ and $\bar{B}\bar{E}^2x$ simultaneous eigenvectors of all $\bar{F} \in \bar{N}$.
- $\Rightarrow \{x, \ \bar{E}x, \bar{E}^2x, \bar{B}x, \bar{B}\bar{E}x, \bar{B}\bar{E}^2x\}$ closed under the action of the group.

$$\mathcal{D}$$
 irreducible $\Rightarrow V_{\mathcal{D}} = \operatorname{span}\{x, \bar{E}x, \bar{E}^2x, \bar{B}x, \bar{B}\bar{E}x, \bar{B}\bar{E}^2x\}$

- \Rightarrow Dimension of an irrep of a group of type (D) is at most 6.
- \Rightarrow Dimension of an irrep of a group of type (C) is at most 3.

Dimensions of the irreps of the groups of types (C) and (D)

- \Rightarrow Dimension of an irrep of a group of type (D) is 1,2,3 or 6.
- \Rightarrow Dimension of an irrep of a group of type (C) is 1 or 3.

Summary: The finite subgroups of SU(3)

double covers of rotation groups \widetilde{T} , \widetilde{O} , \widetilde{I} , $\widetilde{D_n}$

Thank you for your attention!

