

(43) International Publication Date 9 October 2003 (09.10.2003)

PCT

(10) International Publication Number WO 03/083047 A2

- (51) International Patent Classification7:
- C12N
- (21) International Application Number: PCT/US03/06025
- (22) International Filing Date: 28 February 2003 (28.02.2003)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/361,196

1 March 2002 (01.03.2002) US

- (71) Applicant (for all designated States except US): EX-ELIXIS, INC. [US/US]; P.O. Box 511, 170 Harbor Way, South San Francisco, CA 94083-0511 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): BELVIN, Marcia [US/US]; 921 Santa Fe Avenue, Albany, CA 94706 (US). FRANCIS-LANG, Helen [GB/US]; 1782 Pacific Avenue #2, San Francisco, CA 94109 (US). FRIEDMAN, Lori [US/US]; 113 Arundel Road, San Carlos, CA 94070 (US). PLOWMAN, Gregory, D. [US/US]; 35 Winding Way, San Carlos, CA 94070 (US). HEUER, Timothy, S. [US/US]; 581A Paloma Avenue, Pacifica, CA 94044 (US). LI, Danxi [CN/US]; 90 Behr Avenue, #302, San Francisco, CA 94131 (US). FUNKE, Roel, P. [NL/US]; 668 Sierra Point Road, Brisbane, CA 95005 (US).

- (74) Agents: SHAYESTEH, Laleh et al.; Exelixis, Inc., P. O. Box 511, 170 Harbor Way, South San Francisco, CA 94083-0511 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(57) Abstract: Human MP53 genes are identified as modulators of the p53 pathway, and thus are therapeutic targets for disorders associated with defective p53 function. Methods for identifying modulators of p53, comprising screening for agents that modulate the activity of MP53 are provided.

MP53s AS MODIFIERS OF THE p53 PATHWAY AND METHODS OF USE

REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. provisional patent application 60/361,196 filed 3/1/2002. The contents of the prior applications are hereby incorporated in their entirety.

BACKGROUND OF THE INVENTION

The p53 gene is mutated in over 50 different types of human cancers, including familial and spontaneous cancers, and is believed to be the most commonly mutated gene in human cancer (Zambetti and Levine, FASEB (1993) 7:855-865; Hollstein, et al., Nucleic Acids Res. (1994) 22:3551-3555). Greater than 90% of mutations in the p53 gene are missense mutations that alter a single amino acid that inactivates p53 function. Aberrant forms of human p53 are associated with poor prognosis, more aggressive tumors, metastasis, and short survival rates (Mitsudomi et al., Clin Cancer Res 2000 Oct; 6(10):4055-63; Koshland, Science (1993) 262:1953).

10

15

20

25

30

The human p53 protein normally functions as a central integrator of signals including DNA damage, hypoxia, nucleotide deprivation, and oncogene activation (Prives, Cell (1998) 95:5-8). In response to these signals, p53 protein levels are greatly increased with the result that the accumulated p53 activates cell cycle arrest or apoptosis depending on the nature and strength of these signals. Indeed, multiple lines of experimental evidence have pointed to a key role for p53 as a tumor suppressor (Levine, Cell (1997) 88:323-331). For example, homozygous p53 "knockout" mice are developmentally normal but exhibit nearly 100% incidence of neoplasia in the first year of life (Donehower et al., Nature (1992) 356:215-221).

The biochemical mechanisms and pathways through which p53 functions in normal and cancerous cells are not fully understood, but one clearly important aspect of p53 function is its activity as a gene-specific transcriptional activator. Among the genes with known p53-response elements are several with well-characterized roles in either regulation of the cell cycle or apoptosis, including GADD45, p21/Waf1/Cip1, cyclin G, Bax, IGF-BP3, and MDM2 (Levine, Cell (1997) 88:323-331).

The ability to manipulate the genomes of model organisms such as *Drosophila* provides a powerful means to analyze biochemical processes that, due to significant evolutionary conservation, have direct relevance to more complex vertebrate organisms.

5

10

15

20

25

30

Due to a high level of gene and pathway conservation, the strong similarity of cellular processes, and the functional conservation of genes between these model organisms and mammals, identification of the involvement of novel genes in particular pathways and their functions in such model organisms can directly contribute to the understanding of the correlative pathways and methods of modulating them in mammals (see, for example, Mechler BM et al., 1985 EMBO J 4:1551-1557; Gateff E. 1982 Adv. Cancer Res. 37: 33-74; Watson KL., et al., 1994 J Cell Sci. 18: 19-33; Miklos GL, and Rubin GM. 1996 Cell 86:521-529; Wassarman DA, et al., 1995 Curr Opin Gen Dev 5: 44-50; and Booth DR. 1999 Cancer Metastasis Rev. 18: 261-284). For example, a genetic screen can be carried out in an invertebrate model organism having underexpression (e.g. knockout) or overexpression of a gene (referred to as a "genetic entry point") that yields a visible phenotype. Additional genes are mutated in a random or targeted manner. When a gene mutation changes the original phenotype caused by the mutation in the genetic entry point, the gene is identified as a "modifier" involved in the same or overlapping pathway as the genetic entry point. When the genetic entry point is an ortholog of a human gene implicated in a disease pathway, such as p53, modifier genes can be identified that may be attractive candidate targets for novel therapeutics.

All references cited herein, including patents, patent applications, publications, and sequence information in referenced Genbank identifier numbers, are incorporated herein in their entireties.

SUMMARY OF THE INVENTION

We have discovered genes that modify the p53 pathway in *Drosophila*, and identified their human orthologs, hereinafter referred to as Modifier of p53 (MP53). The invention provides methods for utilizing these p53 modifier genes and polypeptides to identify MP53-modulating agents that are candidate therapeutic agents that can be used in the treatment of disorders associated with defective or impaired p53 function and/or MP53 function. Preferred MP53-modulating agents specifically bind to MP53 polypeptides and restore p53 function. Other preferred MP53-modulating agents are nucleic acid modulators such as antisense oligomers and RNAi that repress MP53 gene expression or product activity by, for example, binding to and inhibiting the respective nucleic acid (i.e. DNA or mRNA).

MP53 modulating agents may be evaluated by any convenient in vitro or in vivo assay for molecular interaction with an MP53 polypeptide or nucleic acid. In one

embodiment, candidate MP53 modulating agents are tested with an assay system comprising a MP53 polypeptide or nucleic acid. Agents that produce a change in the activity of the assay system relative to controls are identified as candidate p53 modulating agents. The assay system may be cell-based or cell-free. MP53-modulating agents include MP53 related proteins (e.g. dominant negative mutants, and biotherapeutics); MP53 -specific antibodies; MP53 -specific antisense oligomers and other nucleic acid modulators; and chemical agents that specifically bind to or interact with MP53 or compete with MP53 binding partner (e.g. by binding to an MP53 binding partner). In one specific embodiment, a small molecule modulator is identified using a binding assay. In specific embodiments, the screening assay system is selected from an apoptosis assay, a cell proliferation assay, an angiogenesis assay, and a hypoxic induction assay.

In another embodiment, candidate p53 pathway modulating agents are further tested using a second assay system that detects changes in the p53 pathway, such as angiogenic, apoptotic, or cell proliferation changes produced by the originally identified candidate agent or an agent derived from the original agent. The second assay system may use cultured cells or non-human animals. In specific embodiments, the secondary assay system uses non-human animals, including animals predetermined to have a disease or disorder implicating the p53 pathway, such as an angiogenic, apoptotic, or cell proliferation disorder (e.g. cancer).

The invention further provides methods for modulating the MP53 function and/or the p53 pathway in a mammalian cell by contacting the mammalian cell with an agent that specifically binds a MP53 polypeptide or nucleic acid. The agent may be a small molecule modulator, a nucleic acid modulator, or an antibody and may be administered to a mammalian animal predetermined to have a pathology associated the p53 pathway.

25

30

10

15

20

DETAILED DESCRIPTION OF THE INVENTION

Genetic screens were designed to identify modifiers of the p53 pathway in *Drosophila*, where a genetic modifier screen was carried out in which p53 was overexpressed in the wing (Ollmann M, et al., Cell 2000 101: 91-101). Modifiers of the p53 pathway were identified. Accordingly, vertebrate orthologs of these modifiers, and preferably the human orthologs, MP53 genes (i.e., nucleic acids and polypeptides) are attractive drug targets for the treatment of pathologies associated with a defective p53 signaling pathway, such as cancer. Table 1 (Example II) lists the modifiers and their orthologs.

In vitro and in vivo methods of assessing MP53 function are provided herein. Modulation of the MP53 or their respective binding partners is useful for understanding the association of the p53 pathway and its members in normal and disease conditions and for developing diagnostics and therapeutic modalities for p53 related pathologies. MP53-modulating agents that act by inhibiting or enhancing MP53 expression, directly or indirectly, for example, by affecting an MP53 function such as enzymatic (e.g., catalytic) or binding activity, can be identified using methods provided herein. MP53 modulating agents are useful in diagnosis, therapy and pharmaceutical development.

10 Nucleic acids and polypeptides of the invention

15

20

25

30

Sequences related to MP53 nucleic acids and polypeptides that can be used in the invention are disclosed in Genbank (referenced by Genbank identifier (GI) or RefSeq number), and shown in Table 1 (ExampleII).

The term "MP53 polypeptide" refers to a full-length MP53 protein or a functionally active fragment or derivative thereof. A "functionally active" MP53 fragment or derivative exhibits one or more functional activities associated with a full-length, wildtype MP53 protein, such as antigenic or immunogenic activity, enzymatic activity, ability to bind natural cellular substrates, etc. The functional activity of MP53 proteins, derivatives and fragments can be assayed by various methods known to one skilled in the art (Current Protocols in Protein Science (1998) Coligan et al., eds., John Wiley & Sons, Inc., Somerset, New Jersey) and as further discussed below. In one embodiment, a functionally active MP53 polypeptide is a MP53 derivative capable of rescuing defective endogenous MP53 activity, such as in cell based or animal assays; the rescuing derivative may be from the same or a different species. For purposes herein, functionally active fragments also include those fragments that comprise one or more structural domains of an MP53, such as a binding domain. Protein domains can be identified using the PFAM program (Bateman A., et al., Nucleic Acids Res, 1999, 27:260-2). Methods for obtaining MP53 polypeptides are also further described below. In some embodiments, preferred fragments are functionally active, domain-containing fragments comprising at least 25 contiguous amino acids, preferably at least 50, more preferably 75, and most preferably at least 100 contiguous amino acids of any one of SEQ ID NOs:57-112 (an MP53). In further preferred embodiments, the fragment comprises the entire functionally active domain.

The term "MP53 nucleic acid" refers to a DNA or RNA molecule that encodes a MP53 polypeptide. Preferably, the MP53 polypeptide or nucleic acid or fragment thereof is from a human, but can also be an ortholog, or derivative thereof with at least 70% sequence identity, preferably at least 80%, more preferably 85%, still more preferably 90%, and most preferably at least 95% sequence identity with human MP53. Methods of identifying orthlogs are known in the art. Normally, orthologs in different species retain the same function, due to presence of one or more protein motifs and/or 3-dimensional structures. Orthologs are generally identified by sequence homology analysis, such as BLAST analysis, usually using protein bait sequences. Sequences are assigned as a potential ortholog if the best hit sequence from the forward BLAST result retrieves the original query sequence in the reverse BLAST (Huynen MA and Bork P, Proc Natl Acad Sci (1998) 95:5849-5856; Huynen MA et al., Genome Research (2000) 10:1204-1210). Programs for multiple sequence alignment, such as CLUSTAL (Thompson JD et al, 1994, Nucleic Acids Res 22:4673-4680) may be used to highlight conserved regions and/or residues of orthologous proteins and to generate phylogenetic trees. In a phylogenetic tree representing multiple homologous sequences from diverse species (e.g., retrieved through BLAST analysis), orthologous sequences from two species generally appear closest on the tree with respect to all other sequences from these two species. Structural threading or other analysis of protein folding (e.g., using software by ProCeryon, Biosciences, Salzburg, Austria) may also identify potential orthologs. In evolution, when a gene duplication event follows speciation, a single gene in one species, such as Drosophila, may correspond to multiple genes (paralogs) in another, such as human. As used herein, the term "orthologs" encompasses paralogs. As used herein, "percent (%) sequence identity" with respect to a subject sequence, or a specified portion of a subject sequence, is defined as the percentage of nucleotides or amino acids in the candidate derivative sequence identical with the nucleotides or amino acids in the subject sequence (or specified portion thereof), after aligning the sequences and introducing gaps, if necessary to achieve the maximum percent sequence identity, as generated by the program WU-BLAST-2.0a19 (Altschul et al., J. Mol. Biol. (1997) 215:403-410) with all the search parameters set to default values. The HSP S and HSP S2 parameters are dynamic values and are established by the program itself depending upon the composition of the particular sequence and composition of the particular database against which the sequence of interest is being searched. A % identity value is determined by the number of matching identical nucleotides or amino acids divided by the sequence length for which the percent identity is

10

15

20

25

30

being reported. "Percent (%) amino acid sequence similarity" is determined by doing the same calculation as for determining % amino acid sequence identity, but including conservative amino acid substitutions in addition to identical amino acids in the computation.

5

10

15

20

25

30

A conservative amino acid substitution is one in which an amino acid is substituted for another amino acid having similar properties such that the folding or activity of the protein is not significantly affected. Aromatic amino acids that can be substituted for each other are phenylalanine, tryptophan, and tyrosine; interchangeable hydrophobic amino acids are leucine, isoleucine, methionine, and valine; interchangeable polar amino acids are glutamine and asparagine; interchangeable basic amino acids are arginine, lysine and histidine; interchangeable acidic amino acids are aspartic acid and glutamic acid; and interchangeable small amino acids are alanine, serine, threonine, cysteine and glycine.

Alternatively, an alignment for nucleic acid sequences is provided by the local homology algorithm of Smith and Waterman (Smith and Waterman, 1981, Advances in Applied Mathematics 2:482-489; database: European Bioinformatics Institute; Smith and Waterman, 1981, J. of Molec.Biol., 147:195-197; Nicholas et al., 1998, "A Tutorial on Searching Sequence Databases and Sequence Scoring Methods" (www.psc.edu) and references cited therein.; W.R. Pearson, 1991, Genomics 11:635-650). This algorithm can be applied to amino acid sequences by using the scoring matrix developed by Dayhoff (Dayhoff: Atlas of Protein Sequences and Structure, M. O. Dayhoff ed., 5 suppl. 3:353-358, National Biomedical Research Foundation, Washington, D.C., USA), and normalized by Gribskov (Gribskov 1986 Nucl. Acids Res. 14(6):6745-6763). The Smith-Waterman algorithm may be employed where default parameters are used for scoring (for example, gap open penalty of 12, gap extension penalty of two). From the data generated, the "Match" value reflects "sequence identity."

Derivative nucleic acid molecules of the subject nucleic acid molecules include sequences that hybridize to the nucleic acid sequence of any of SEQ ID NOs:1-56. The stringency of hybridization can be controlled by temperature, ionic strength, pH, and the presence of denaturing agents such as formamide during hybridization and washing. Conditions routinely used are set out in readily available procedure texts (e.g., Current Protocol in Molecular Biology, Vol. 1, Chap. 2.10, John Wiley & Sons, Publishers (1994); Sambrook et al., Molecular Cloning, Cold Spring Harbor (1989)). In some embodiments, a nucleic acid molecule of the invention is capable of hybridizing to a nucleic acid molecule containing the nucleotide sequence of any one of SEQ ID NOs:1-56 under high

stringency hybridization conditions that are: prehybridization of filters containing nucleic acid for 8 hours to overnight at 65° C in a solution comprising 6X single strength citrate (SSC) (1X SSC is 0.15 M NaCl, 0.015 M Na citrate; pH 7.0), 5X Denhardt's solution, 0.05% sodium pyrophosphate and 100 μ g/ml herring sperm DNA; hybridization for 18-20 hours at 65° C in a solution containing 6X SSC, 1X Denhardt's solution, 100 μ g/ml yeast tRNA and 0.05% sodium pyrophosphate; and washing of filters at 65° C for 1h in a solution containing 0.1X SSC and 0.1% SDS (sodium dodecyl sulfate).

In other embodiments, moderately stringent hybridization conditions are used that are: pretreatment of filters containing nucleic acid for 6 h at 40° C in a solution containing 35% formamide, 5X SSC, 50 mM Tris-HCl (pH7.5), 5mM EDTA, 0.1% PVP, 0.1% Ficoll, 1% BSA, and 500 μ g/ml denatured salmon sperm DNA; hybridization for 18-20h at 40° C in a solution containing 35% formamide, 5X SSC, 50 mM Tris-HCl (pH7.5), 5mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.2% BSA, 100 μ g/ml salmon sperm DNA, and 10% (wt/vol) dextran sulfate; followed by washing twice for 1 hour at 55° C in a solution containing 2X SSC and 0.1% SDS.

10

15

20

25

30

Alternatively, low stringency conditions can be used that are: incubation for 8 hours to overnight at 37° C in a solution comprising 20% formamide, 5 x SSC, 50 mM sodium phosphate (pH 7.6), 5X Denhardt's solution, 10% dextran sulfate, and 20 μ g/ml denatured sheared salmon sperm DNA; hybridization in the same buffer for 18 to 20 hours; and washing of filters in 1 x SSC at about 37° C for 1 hour.

<u>Isolation, Production, Expression, and Mis-expression of MP53 Nucleic Acids and Polypeptides</u>

MP53 nucleic acids and polypeptides, useful for identifying and testing agents that modulate MP53 function and for other applications related to the involvement of MP53 in the p53 pathway. MP53 nucleic acids and derivatives and orthologs thereof may be obtained using any available method. For instance, techniques for isolating cDNA or genomic DNA sequences of interest by screening DNA libraries or by using polymerase chain reaction (PCR) are well known in the art. In general, the particular use for the protein will dictate the particulars of expression, production, and purification methods. For instance, production of proteins for use in screening for modulating agents may require methods that preserve specific biological activities of these proteins, whereas production of proteins for antibody generation may require structural integrity of particular epitopes. Expression of proteins to be purified for screening or antibody production may

require the addition of specific tags (e.g., generation of fusion proteins). Overexpression of an MP53 protein for assays used to assess MP53 function, such as involvement in cell cycle regulation or hypoxic response, may require expression in eukaryotic cell lines capable of these cellular activities. Techniques for the expression, production, and purification of proteins are well known in the art; any suitable means therefore may be used (e.g., Higgins SJ and Hames BD (eds.) Protein Expression: A Practical Approach, Oxford University Press Inc., New York 1999; Stanbury PF et al., Principles of Fermentation Technology, 2nd edition, Elsevier Science, New York, 1995; Doonan S (ed.) Protein Purification Protocols, Humana Press, New Jersey, 1996; Coligan JE et al, Current Protocols in Protein Science (eds.), 1999, John Wiley & Sons, New York). In particular embodiments, recombinant MP53 is expressed in a cell line known to have defective p53 function (e.g. SAOS-2 osteoblasts, H1299 lung cancer cells, C33A and HT3 cervical cancer cells, HT-29 and DLD-1 colon cancer cells, among others, available from American Type Culture Collection (ATCC), Manassas, VA). The recombinant cells are used in cell-based screening assay systems of the invention, as described further below.

5

10

15

20

25

30

The nucleotide sequence encoding an MP53 polypeptide can be inserted into any appropriate expression vector. The necessary transcriptional and translational signals, including promoter/enhancer element, can derive from the native MP53 gene and/or its flanking regions or can be heterologous. A variety of host-vector expression systems may be utilized, such as mammalian cell systems infected with virus (e.g. vaccinia virus, adenovirus, etc.); insect cell systems infected with virus (e.g. baculovirus); microorganisms such as yeast containing yeast vectors, or bacteria transformed with bacteriophage, plasmid, or cosmid DNA. An isolated host cell strain that modulates the expression of, modifies, and/or specifically processes the gene product may be used.

To detect expression of the MP53 gene product, the expression vector can comprise a promoter operably linked to an MP53 gene nucleic acid, one or more origins of replication, and, one or more selectable markers (e.g. thymidine kinase activity, resistance to antibiotics, etc.). Alternatively, recombinant expression vectors can be identified by assaying for the expression of the MP53 gene product based on the physical or functional properties of the MP53 protein in in vitro assay systems (e.g. immunoassays).

The MP53 protein, fragment, or derivative may be optionally expressed as a fusion, or chimeric protein product (i.e. it is joined via a peptide bond to a heterologous protein sequence of a different protein), for example to facilitate purification or detection. A chimeric product can be made by ligating the appropriate nucleic acid sequences

encoding the desired amino acid sequences to each other using standard methods and expressing the chimeric product. A chimeric product may also be made by protein synthetic techniques, e.g. by use of a peptide synthesizer (Hunkapiller et al., Nature (1984) 310:105-111).

Once a recombinant cell that expresses the MP53 gene sequence is identified, the gene product can be isolated and purified using standard methods (e.g. ion exchange, affinity, and gel exclusion chromatography; centrifugation; differential solubility; electrophoresis). Alternatively, native MP53 proteins can be purified from natural sources, by standard methods (e.g. immunoaffinity purification). Once a protein is obtained, it may be quantified and its activity measured by appropriate methods, such as immunoassay, bioassay, or other measurements of physical properties, such as crystallography.

The methods of this invention may also use cells that have been engineered for altered expression (mis-expression) of MP53 or other genes associated with the p53 pathway. As used herein, mis-expression encompasses ectopic expression, over-expression, under-expression, and non-expression (e.g. by gene knock-out or blocking expression that would otherwise normally occur).

Genetically modified animals

5

10

15

20

25

30

Animal models that have been genetically modified to alter MP53 expression may be used in *in vivo* assays to test for activity of a candidate p53 modulating agent, or to further assess the role of MP53 in a p53 pathway process such as apoptosis or cell proliferation. Preferably, the altered MP53 expression results in a detectable phenotype, such as decreased or increased levels of cell proliferation, angiogenesis, or apoptosis compared to control animals having normal MP53 expression. The genetically modified animal may additionally have altered p53 expression (e.g. p53 knockout). Preferred genetically modified animals are mammals such as primates, rodents (preferably mice or rats), among others. Preferred non-mammalian species include zebrafish, *C. elegans*, and *Drosophila*. Preferred genetically modified animals are transgenic animals having a heterologous nucleic acid sequence present as an extrachromosomal element in a portion of its cells, i.e. mosaic animals (see, for example, techniques described by Jakobovits, 1994, Curr. Biol. 4:761-763.) or stably integrated into its germ line DNA (i.e., in the genomic sequence of most or all of its cells). Heterologous nucleic acid is introduced into

5

10

15

20

25

30

the germ line of such transgenic animals by genetic manipulation of, for example, embryos or embryonic stem cells of the host animal.

Methods of making transgenic animals are well-known in the art (for transgenic mice see Brinster et al., Proc. Nat. Acad. Sci. USA 82: 4438-4442 (1985), U.S. Pat. Nos. 4,736,866 and 4,870,009, both by Leder et al., U.S. Pat. No. 4,873,191 by Wagner et al., and Hogan, B., Manipulating the Mouse Embryo, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., (1986); for particle bombardment see U.S. Pat. No., 4,945,050, by Sandford et al.; for transgenic Drosophila see Rubin and Spradling, Science (1982) 218:348-53 and U.S. Pat. No. 4,670,388; for transgenic insects see Berghammer A.J. et al., A Universal Marker for Transgenic Insects (1999) Nature 402:370-371; for transgenic Zebrafish see Lin S., Transgenic Zebrafish, Methods Mol Biol. (2000);136:375-3830); for microinjection procedures for fish, amphibian eggs and birds see Houdebine and Chourrout, Experientia (1991) 47:897-905; for transgenic rats see Hammer et al., Cell (1990) 63:1099-1112; and for culturing of embryonic stem (ES) cells and the subsequent production of transgenic animals by the introduction of DNA into ES cells using methods such as electroporation, calcium phosphate/DNA precipitation and direct injection see, e.g., Teratocarcinomas and Embryonic Stem Cells, A Practical Approach, E. J. Robertson, ed., IRL Press (1987)). Clones of the nonhuman transgenic animals can be produced according to available methods (see Wilmut, I. et al. (1997) Nature 385:810-813; and PCT International Publication Nos. WO 97/07668 and WO 97/07669).

In one embodiment, the transgenic animal is a "knock-out" animal having a heterozygous or homozygous alteration in the sequence of an endogenous MP53 gene that results in a decrease of MP53 function, preferably such that MP53 expression is undetectable or insignificant. Knock-out animals are typically generated by homologous recombination with a vector comprising a transgene having at least a portion of the gene to be knocked out. Typically a deletion, addition or substitution has been introduced into the transgene to functionally disrupt it. The transgene can be a human gene (e.g., from a human genomic clone) but more preferably is an ortholog of the human gene derived from the transgenic host species. For example, a mouse MP53 gene is used to construct a homologous recombination vector suitable for altering an endogenous MP53 gene in the mouse genome. Detailed methodologies for homologous recombination in mice are available (see Capecchi, Science (1989) 244:1288-1292; Joyner et al., Nature (1989) 338:153-156). Procedures for the production of non-rodent transgenic mammals and other animals are also available (Houdebine and Chourrout, supra; Pursel et al., Science (1989)

244:1281-1288; Simms et al., Bio/Technology (1988) 6:179-183). In a preferred embodiment, knock-out animals, such as mice harboring a knockout of a specific gene, may be used to produce antibodies against the human counterpart of the gene that has been knocked out (Claesson MH et al., (1994) Scan J Immunol 40:257-264; Declerck PJ et al., (1995) J Biol Chem. 270:8397-400).

5

10

20

25

30

In another embodiment, the transgenic animal is a "knock-in" animal having an alteration in its genome that results in altered expression (e.g., increased (including ectopic) or decreased expression) of the MP53 gene, e.g., by introduction of additional copies of MP53, or by operatively inserting a regulatory sequence that provides for altered expression of an endogenous copy of the MP53 gene. Such regulatory sequences include inducible, tissue-specific, and constitutive promoters and enhancer elements. The knockin can be homozygous or heterozygous.

Transgenic nonhuman animals can also be produced that contain selected systems allowing for regulated expression of the transgene. One example of such a system that may be produced is the cre/loxP recombinase system of bacteriophage P1 (Lakso *et al.*, PNAS (1992) 89:6232-6236; U.S. Pat. No. 4,959,317). If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recombinase and a selected protein are required. Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase. Another example of a recombinase system is the FLP recombinase system of Saccharomyces cerevisiae (O'Gorman et al. (1991) Science 251:1351-1355; U.S. Pat. No. 5,654,182). In a preferred embodiment, both Cre-LoxP and Flp-Frt are used in the same system to regulate expression of the transgene, and for sequential deletion of vector sequences in the same cell (Sun X et al (2000) Nat Genet 25:83-6).

The genetically modified animals can be used in genetic studies to further elucidate the p53 pathway, as animal models of disease and disorders implicating defective p53 function, and for *in vivo* testing of candidate therapeutic agents, such as those identified in screens described below. The candidate therapeutic agents are administered to a genetically modified animal having altered MP53 function and phenotypic changes are compared with appropriate control animals such as genetically modified animals that receive placebo treatment, and/or animals with unaltered MP53 expression that receive candidate therapeutic agent.

In addition to the above-described genetically modified animals having altered MP53 function, animal models having defective p53 function (and otherwise normal MP53 function), can be used in the methods of the present invention. For example, a p53 knockout mouse can be used to assess, *in vivo*, the activity of a candidate p53 modulating agent identified in one of the *in vitro* assays described below. p53 knockout mice are described in the literature (Jacks et al., Nature 2001;410:1111-1116, 1043-1044; Donehower *et al.*, supra). Preferably, the candidate p53 modulating agent when administered to a model system with cells defective in p53 function, produces a detectable phenotypic change in the model system indicating that the p53 function is restored, i.e., the cells exhibit normal cell cycle progression.

Modulating Agents

5

10

15

20

25

30

The invention provides methods to identify agents that interact with and/or modulate the function of MP53 and/or the p53 pathway. Modulating agents identified by the methods are also part of the invention. Such agents are useful in a variety of diagnostic and therapeutic applications associated with the p53 pathway, as well as in further analysis of the MP53 protein and its contribution to the p53 pathway. Accordingly, the invention also provides methods for modulating the p53 pathway comprising the step of specifically modulating MP53 activity by administering a MP53-interacting or -modulating agent.

As used herein, an "MP53-modulating agent" is any agent that modulates MP53 function, for example, an agent that interacts with MP53 to inhibit or enhance MP53 activity or otherwise affect normal MP53 function. MP53 function can be affected at any level, including transcription, protein expression, protein localization, and cellular or extra-cellular activity. In a preferred embodiment, the MP53 - modulating agent specifically modulates the function of the MP53. The phrases "specific modulating agent", "specifically modulates", etc., are used herein to refer to modulating agents that directly bind to the MP53 polypeptide or nucleic acid, and preferably inhibit, enhance, or otherwise alter, the function of the MP53. These phrases also encompass modulating agents that alter the interaction of the MP53 with a binding partner, substrate, or cofactor (e.g. by binding to a binding partner of an MP53, or to a protein/binding partner complex, and altering MP53 function). In a further preferred embodiment, the MP53- modulating agent is a modulator of the p53 pathway (e.g. it restores and/or upregulates p53 function) and thus is also a p53-modulating agent.

Preferred MP53-modulating agents include small molecule compounds; MP53-interacting proteins, including antibodies and other biotherapeutics; and nucleic acid modulators such as antisense and RNA inhibitors. The modulating agents may be formulated in pharmaceutical compositions, for example, as compositions that may comprise other active ingredients, as in combination therapy, and/or suitable carriers or excipients. Techniques for formulation and administration of the compounds may be found in "Remington's Pharmaceutical Sciences" Mack Publishing Co., Easton, PA, 19th edition.

Small molecule modulators

10

15

20

25

30

Small molecules are often preferred to modulate function of proteins with enzymatic function, and/or containing protein interaction domains. Chemical agents, referred to in the art as "small molecule" compounds are typically organic, non-peptide molecules, having a molecular weight less than 10,000, preferably less than 5,000, more preferably less than 1,000, and most preferably less than 500. This class of modulators includes chemically synthesized molecules, for instance, compounds from combinatorial chemical libraries. Synthetic compounds may be rationally designed or identified based on known or inferred properties of the MP53 protein or may be identified by screening compound libraries. Alternative appropriate modulators of this class are natural products, particularly secondary metabolites from organisms such as plants or fungi, which can also be identified by screening compound libraries for MP53-modulating activity. Methods for generating and obtaining compounds are well known in the art (Schreiber SL, Science (2000) 151: 1964-1969; Radmann J and Gunther J, Science (2000) 151:1947-1948).

Small molecule modulators identified from screening assays, as described below, can be used as lead compounds from which candidate clinical compounds may be designed, optimized, and synthesized. Such clinical compounds may have utility in treating pathologies associated with the p53 pathway. The activity of candidate small molecule modulating agents may be improved several-fold through iterative secondary functional validation, as further described below, structure determination, and candidate modulator modification and testing. Additionally, candidate clinical compounds are generated with specific regard to clinical and pharmacological properties. For example, the reagents may be derivatized and re-screened using *in vitro* and *in vivo* assays to optimize activity and minimize toxicity for pharmaceutical development.

Protein Modulators

5

10

15

20

25

30

Specific MP53-interacting proteins are useful in a variety of diagnostic and therapeutic applications related to the p53 pathway and related disorders, as well as in validation assays for other MP53-modulating agents. In a preferred embodiment, MP53-interacting proteins affect normal MP53 function, including transcription, protein expression, protein localization, and cellular or extra-cellular activity. In another embodiment, MP53-interacting proteins are useful in detecting and providing information about the function of MP53 proteins, as is relevant to p53 related disorders, such as cancer (e.g., for diagnostic means).

An MP53-interacting protein may be endogenous, i.e. one that naturally interacts genetically or biochemically with an MP53, such as a member of the MP53 pathway that modulates MP53 expression, localization, and/or activity. MP53-modulators include dominant negative forms of MP53-interacting proteins and of MP53 proteins themselves. Yeast two-hybrid and variant screens offer preferred methods for identifying endogenous MP53-interacting proteins (Finley, R. L. et al. (1996) in DNA Cloning-Expression Systems: A Practical Approach, eds. Glover D. & Hames B. D (Oxford University Press, Oxford, England), pp. 169-203; Fashema SF et al., Gene (2000) 250:1-14; Drees BL Curr Opin Chem Biol (1999) 3:64-70; Vidal M and Legrain P Nucleic Acids Res (1999) 27:919-29; and U.S. Pat. No. 5,928,868). Mass spectrometry is an alternative preferred method for the elucidation of protein complexes (reviewed in, e.g., Pandley A and Mann M, Nature (2000) 405:837-846; Yates JR 3rd, Trends Genet (2000) 16:5-8).

An MP53-interacting protein may be an exogenous protein, such as an MP53-specific antibody or a T-cell antigen receptor (see, e.g., Harlow and Lane (1988)

Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory; Harlow and Lane (1999) Using antibodies: a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press). MP53 antibodies are further discussed below.

In preferred embodiments, an MP53-interacting protein specifically binds an MP53 protein. In alternative preferred embodiments, an MP53-modulating agent binds an MP53 substrate, binding partner, or cofactor.

Antibodies

In another embodiment, the protein modulator is an MP53 specific antibody agonist or antagonist. The antibodies have therapeutic and diagnostic utilities, and can be used in screening assays to identify MP53 modulators. The antibodies can also be used in

dissecting the portions of the MP53 pathway responsible for various cellular responses and in the general processing and maturation of the MP53.

Antibodies that specifically bind MP53 polypeptides can be generated using known methods. Preferably the antibody is specific to a mammalian ortholog of MP53 polypeptide, and more preferably, to human MP53. Antibodies may be polyclonal, monoclonal (mAbs), humanized or chimeric antibodies, single chain antibodies, Fab fragments, F(ab').sub.2 fragments, fragments produced by a FAb expression library, antiidiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the above. Epitopes of MP53 which are particularly antigenic can be selected, for example, by routine screening of MP53 polypeptides for antigenicity or by applying a theoretical method for selecting antigenic regions of a protein (Hopp and Wood (1981), Proc. Nati. Acad. Sci. U.S.A. 78:3824-28; Hopp and Wood, (1983) Mol. Immunol. 20:483-89; Sutcliffe et al., (1983) Science 219:660-66) to the amino acid sequence of any of SEQ ID NOs:57-112. Monoclonal antibodies with affinities of 10⁸ M⁻¹ preferably 10⁹ M⁻¹ to 10¹⁰ M⁻¹, or stronger can be made by standard procedures as described (Harlow and Lane, supra; Goding (1986) Monoclonal Antibodies: Principles and Practice (2d ed) Academic Press, New York; and U.S. Pat. Nos. 4,381,292; 4,451,570; and 4,618,577). Antibodies may be generated against crude cell extracts of MP53 or substantially purified fragments thereof. If MP53 fragments are used, they preferably comprise at least 10, and more preferably, at least 20 contiguous amino acids of an MP53 protein. In a particular embodiment, MP53specific antigens and/or immunogens are coupled to carrier proteins that stimulate the immune response. For example, the subject polypeptides are covalently coupled to the keyhole limpet hemocyanin (KLH) carrier, and the conjugate is emulsified in Freund's complete adjuvant, which enhances the immune response. An appropriate immune system such as a laboratory rabbit or mouse is immunized according to conventional protocols.

10

15

20

25

30

The presence of MP53-specific antibodies is assayed by an appropriate assay such as a solid phase enzyme-linked immunosorbant assay (ELISA) using immobilized corresponding MP53 polypeptides. Other assays, such as radioimmunoassays or fluorescent assays might also be used.

Chimeric antibodies specific to MP53 polypeptides can be made that contain different portions from different animal species. For instance, a human immunoglobulin constant region may be linked to a variable region of a murine mAb, such that the antibody derives its biological activity from the human antibody, and its binding specificity from the murine fragment. Chimeric antibodies are produced by splicing

together genes that encode the appropriate regions from each species (Morrison et al., Proc. Natl. Acad. Sci. (1984) 81:6851-6855; Neuberger et al., Nature (1984) 312:604-608; Takeda et al., Nature (1985) 31:452-454). Humanized antibodies, which are a form of chimeric antibodies, can be generated by grafting complementary-determining regions (CDRs) (Carlos, T. M., J. M. Harlan. 1994. Blood 84:2068-2101) of mouse antibodies into a background of human framework regions and constant regions by recombinant DNA technology (Riechmann LM, et al., 1988 Nature 323: 323-327). Humanized antibodies contain ~10% murine sequences and ~90% human sequences, and thus further reduce or eliminate immunogenicity, while retaining the antibody specificities (Co MS, and Queen C. 1991 Nature 351: 501-501; Morrison SL. 1992 Ann. Rev. Immun. 10:239-265). Humanized antibodies and methods of their production are well-known in the art (U.S. Pat. Nos. 5,530,101, 5,585,089, 5,693,762, and 6,180,370).

5

10

15

20

25

30

MP53-specific single chain antibodies which are recombinant, single chain polypeptides formed by linking the heavy and light chain fragments of the Fv regions via an amino acid bridge, can be produced by methods known in the art (U.S. Pat. No. 4,946,778; Bird, Science (1988) 242:423-426; Huston et al., Proc. Natl. Acad. Sci. USA (1988) 85:5879-5883; and Ward et al., Nature (1989) 334:544-546).

Other suitable techniques for antibody production involve in vitro exposure of lymphocytes to the antigenic polypeptides or alternatively to selection of libraries of antibodies in phage or similar vectors (Huse et al., Science (1989) 246:1275-1281). As used herein, T-cell antigen receptors are included within the scope of antibody modulators (Harlow and Lane, 1988, *supra*).

The polypeptides and antibodies of the present invention may be used with or without modification. Frequently, antibodies will be labeled by joining, either covalently or non-covalently, a substance that provides for a detectable signal, or that is toxic to cells that express the targeted protein (Menard S, et al., Int J. Biol Markers (1989) 4:131-134). A wide variety of labels and conjugation techniques are known and are reported extensively in both the scientific and patent literature. Suitable labels include radionuclides, enzymes, substrates, cofactors, inhibitors, fluorescent moieties, fluorescent emitting lanthanide metals, chemiluminescent moieties, bioluminescent moieties, magnetic particles, and the like (U.S. Pat. Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149; and 4,366,241). Also, recombinant immunoglobulins may be produced (U.S. Pat. No. 4,816,567). Antibodies to cytoplasmic polypeptides may

be delivered and reach their targets by conjugation with membrane-penetrating toxin proteins (U.S. Pat. No. 6,086,900).

When used therapeutically in a patient, the antibodies of the subject invention are typically administered parenterally, when possible at the target site, or intravenously. The therapeutically effective dose and dosage regimen is determined by clinical studies. Typically, the amount of antibody administered is in the range of about 0.1 mg/kg—to about 10 mg/kg of patient weight. For parenteral administration, the antibodies are formulated in a unit dosage injectable form (e.g., solution, suspension, emulsion) in association with a pharmaceutically acceptable vehicle. Such vehicles are inherently nontoxic and non-therapeutic. Examples are water, saline, Ringer's solution, dextrose solution, and 5% human serum albumin. Nonaqueous vehicles such as fixed oils, ethyl oleate, or liposome carriers may also be used. The vehicle may contain minor amounts of additives, such as buffers and preservatives, which enhance isotonicity and chemical stability or otherwise enhance therapeutic potential. The antibodies' concentrations in such vehicles are typically in the range of about 1 mg/ml to about10 mg/ml. Immunotherapeutic methods are further described in the literature (US Pat. No. 5,859,206; WO0073469).

Specific biotherapeutics

5

10

15

20

25

30

In a preferred embodiment, an MP53-interacting protein may have biotherapeutic applications. Biotherapeutic agents formulated in pharmaceutically acceptable carriers and dosages may be used to activate or inhibit signal transduction pathways. This modulation may be accomplished by binding a ligand, thus inhibiting the activity of the pathway; or by binding a receptor, either to inhibit activation of, or to activate, the receptor. Alternatively, the biotherapeutic may itself be a ligand capable of activating or inhibiting a receptor. Biotherapeutic agents and methods of producing them are described in detail in U.S. Pat. No. 6,146,628.

When the MP53 is a ligand, it may be used as a biotherapeutic agent to activate or inhibit its natural receptor. Alternatively, antibodies against MP53, as described in the previous section, may be used as biotherapeutic agents.

When the MP53 is a receptor, its ligand(s), antibodies to the ligand(s) or the MP53 itself may be used as biotherapeutics to modulate the activity of MP53 in the p53 pathway.

Nucleic Acid Modulators

5

10

15

20

25

30

Other preferred MP53-modulating agents comprise nucleic acid molecules, such as antisense oligomers or double stranded RNA (dsRNA), which generally inhibit MP53 activity. Preferred nucleic acid modulators interfere with the function of the MP53 nucleic acid such as DNA replication, transcription, translocation of the MP53 RNA to the site of protein translation, translation of protein from the MP53 RNA, splicing of the MP53 RNA to yield one or more mRNA species, or catalytic activity which may be engaged in or facilitated by the MP53 RNA.

In one embodiment, the antisense oligomer is an oligonucleotide that is sufficiently complementary to an MP53 mRNA to bind to and prevent translation, preferably by binding to the 5' untranslated region. MP53-specific antisense oligonucleotides, preferably range from at least 6 to about 200 nucleotides. In some embodiments the oligonucleotide is preferably at least 10, 15, or 20 nucleotides in length. In other embodiments, the oligonucleotide is preferably less than 50, 40, or 30 nucleotides in length. The oligonucleotide can be DNA or RNA or a chimeric mixture or derivatives or modified versions thereof, single-stranded or double-stranded. The oligonucleotide can be modified at the base moiety, sugar moiety, or phosphate backbone. The oligonucleotide may include other appending groups such as peptides, agents that facilitate transport across the cell membrane, hybridization-triggered cleavage agents, and intercalating agents.

In another embodiment, the antisense oligomer is a phosphothioate morpholino oligomer (PMO). PMOs are assembled from four different morpholino subunits, each of which contain one of four genetic bases (A, C, G, or T) linked to a six-membered morpholine ring. Polymers of these subunits are joined by non-ionic phosphodiamidate intersubunit linkages. Details of how to make and use PMOs and other antisense oligomers are well known in the art (e.g. see WO99/18193; Probst JC, Antisense Oligodeoxynucleotide and Ribozyme Design, Methods. (2000) 22(3):271-281; Summerton J, and Weller D. 1997 Antisense Nucleic Acid Drug Dev. :7:187-95; US Pat. No. 5,235,033; and US Pat No. 5,378,841).

Alternative preferred MP53 nucleic acid modulators are double-stranded RNA species mediating RNA interference (RNAi). RNAi is the process of sequence-specific, post-transcriptional gene silencing in animals and plants, initiated by double-stranded RNA (dsRNA) that is homologous in sequence to the silenced gene. Methods relating to the use of RNAi to silence genes in *C. elegans*, *Drosophila*, plants, and humans are known

in the art (Fire A, et al., 1998 Nature 391:806-811; Fire, A. Trends Genet. 15, 358-363 (1999); Sharp, P. A. RNA interference 2001. Genes Dev. 15, 485-490 (2001); Hammond, S. M., et al., Nature Rev. Genet. 2, 110-1119 (2001); Tuschl, T. Chem. Biochem. 2, 239-245 (2001); Hamilton, A. et al., Science 286, 950-952 (1999); Hammond, S. M., et al., Nature 404, 293-296 (2000); Zamore, P. D., et al., Cell 101, 25-33 (2000); Bernstein, E., et al., Nature 409, 363-366 (2001); Elbashir, S. M., et al., Genes Dev. 15, 188-200 (2001); WO0129058; WO9932619; Elbashir SM, et al., 2001 Nature 411:494-498).

Nucleic acid modulators are commonly used as research reagents, diagnostics, and therapeutics. For example, antisense oligonucleotides, which are able to inhibit gene expression with exquisite specificity, are often used to elucidate the function of particular genes (see, for example, U.S. Pat. No. 6,165,790). Nucleic acid modulators are also used, for example, to distinguish between functions of various members of a biological pathway. For example, antisense oligomers have been employed as therapeutic moieties in the treatment of disease states in animals and man and have been demonstrated in numerous clinical trials to be safe and effective (Milligan JF, et al, Current Concepts in Antisense Drug Design, J Med Chem. (1993) 36:1923-1937; Tonkinson JL et al., Antisense Oligodeoxynucleotides as Clinical Therapeutic Agents, Cancer Invest. (1996) 14:54-65). Accordingly, in one aspect of the invention, an MP53-specific nucleic acid modulator is used in an assay to further elucidate the role of the MP53 in the p53 pathway, and/or its relationship to other members of the pathway. In another aspect of the invention, an MP53-specific antisense oligomer is used as a therapeutic agent for treatment of p53-related disease states.

Assay Systems

5

10

15

20

25

30

The invention provides assay systems and screening methods for identifying specific modulators of MP53 activity. As used herein, an "assay system" encompasses all the components required for performing and analyzing results of an assay that detects and/or measures a particular event. In general, primary assays are used to identify or confirm a modulator's specific biochemical or molecular effect with respect to the MP53 nucleic acid or protein. In general, secondary assays further assess the activity of a MP53 modulating agent identified by a primary assay and may confirm that the modulating agent affects MP53 in a manner relevant to the p53 pathway. In some cases, MP53 modulators will be directly tested in a secondary assay.

In a preferred embodiment, the screening method comprises contacting a suitable assay system comprising an MP53 polypeptide or nucleic acid with a candidate agent under conditions whereby, but for the presence of the agent, the system provides a reference activity (e.g. binding activity), which is based on the particular molecular event the screening method detects. A statistically significant difference between the agent-biased activity and the reference activity indicates that the candidate agent modulates MP53 activity, and hence the p53 pathway. The MP53 polypeptide or nucleic acid used in the assay may comprise any of the nucleic acids or polypeptides described above.

Primary Assays

10

15

20

25

30

The type of modulator tested generally determines the type of primary assay.

Primary assays for small molecule modulators

For small molecule modulators, screening assays are used to identify candidate modulators. Screening assays may be cell-based or may use a cell-free system that recreates or retains the relevant biochemical reaction of the target protein (reviewed in Sittampalam GS et al., Curr Opin Chem Biol (1997) 1:384-91 and accompanying references). As used herein the term "cell-based" refers to assays using live cells, dead cells, or a particular cellular fraction, such as a membrane, endoplasmic reticulum, or mitochondrial fraction. The term "cell free" encompasses assays using substantially purified protein (either endogenous or recombinantly produced), partially purified or crude cellular extracts. Screening assays may detect a variety of molecular events, including protein-DNA interactions, protein-protein interactions (e.g., receptor-ligand binding), transcriptional activity (e.g., using a reporter gene), enzymatic activity (e.g., via a property of the substrate), activity of second messengers, immunogenicty and changes in cellular morphology or other cellular characteristics. Appropriate screening assays may use a wide range of detection methods including fluorescent, radioactive, colorimetric, spectrophotometric, and amperometric methods, to provide a read-out for the particular molecular event detected.

Cell-based screening assays usually require systems for recombinant expression of MP53 and any auxiliary proteins demanded by the particular assay. Appropriate methods for generating recombinant proteins produce sufficient quantities of proteins that retain their relevant biological activities and are of sufficient purity to optimize activity and assure assay reproducibility. Yeast two-hybrid and variant screens, and mass spectrometry

provide preferred methods for determining protein-protein interactions and elucidation of protein complexes. In certain applications, when MP53-interacting proteins are used in screens to identify small molecule modulators, the binding specificity of the interacting protein to the MP53 protein may be assayed by various known methods such as substrate processing (e.g. ability of the candidate MP53-specific binding agents to function as negative effectors in MP53-expressing cells), binding equilibrium constants (usually at least about 10⁷ M⁻¹, preferably at least about 10⁸ M⁻¹, more preferably at least about 10⁹ M in an immunogenicity (e.g. ability to elicit MP53 specific antibody in a heterologous host such as a mouse, rat, goat or rabbit). For enzymes and receptors, binding may be assayed by, respectively, substrate and ligand processing.

10

15

20

25

30

The screening assay may measure a candidate agent's ability to specifically bind to or modulate activity of a MP53 polypeptide, a fusion protein thereof, or to cells or membranes bearing the polypeptide or fusion protein. The MP53 polypeptide can be full length or a fragment thereof that retains functional MP53 activity. The MP53 polypeptide may be fused to another polypeptide, such as a peptide tag for detection or anchoring, or to another tag. The MP53 polypeptide is preferably human MP53, or is an ortholog or derivative thereof as described above. In a preferred embodiment, the screening assay detects candidate agent-based modulation of MP53 interaction with a binding target, such as an endogenous or exogenous protein or other substrate that has MP53 –specific binding activity, and can be used to assess normal MP53 gene function.

Suitable assay formats that may be adapted to screen for MP53 modulators are known in the art. Preferred screening assays are high throughput or ultra high throughput and thus provide automated, cost-effective means of screening compound libraries for lead compounds (Fernandes PB, Curr Opin Chem Biol (1998) 2:597-603; Sundberg SA, Curr Opin Biotechnol 2000, 11:47-53). In one preferred embodiment, screening assays uses fluorescence technologies, including fluorescence polarization, time-resolved fluorescence, and fluorescence resonance energy transfer. These systems offer means to monitor protein-protein or DNA-protein interactions in which the intensity of the signal emitted from dye-labeled molecules depends upon their interactions with partner molecules (e.g., Selvin PR, Nat Struct Biol (2000) 7:730-4; Fernandes PB, supra; Hertzberg RP and Pope AJ, Curr Opin Chem Biol (2000) 4:445-451).

A variety of suitable assay systems may be used to identify candidate MP53 and p53 pathway modulators (e.g. U.S. Pat. No. 6,165,992 (kinase assays); U.S. Pat. Nos. 5,550,019 and 6,133,437 (apoptosis assays); U.S. Pat. No. 6,020,135 (p53 modulation),

and U.S. Pat. Nos. 5,976,782, 6,225,118 and 6,444,434 (angiogenesis assays), among others). Specific preferred assays are described in more detail below.

Protein kinases, key signal transduction proteins that may be either membraneassociated or intracellular, catalyze the transfer of gamma phosphate from adenosine triphosphate (ATP) to a serine, threonine or tyrosine residue in a protein substrate. Radioassays, which monitor the transfer from [gamma-32P or -33P]ATP, are frequently used to assay kinase activity. For instance, a scintillation assay for p56 (lck) kinase activity monitors the transfer of the gamma phosphate from [gamma -33P] ATP to a biotinylated peptide substrate. The substrate is captured on a streptavidin coated bead that transmits the signal (Beveridge M et al., J Biomol Screen (2000) 5:205-212). This assay uses the scintillation proximity assay (SPA), in which only radio-ligand bound to receptors tethered to the surface of an SPA bead are detected by the scintillant immobilized within it, allowing binding to be measured without separation of bound from free ligand. Other assays for protein kinase activity may use antibodies that specifically recognize phosphorylated substrates. For instance, the kinase receptor activation (KIRA) assay measures receptor tyrosine kinase activity by ligand stimulating the intact receptor in cultured cells, then capturing solubilized receptor with specific antibodies and quantifying phosphorylation via phosphotyrosine ELISA (Sadick MD, Dev Biol Stand (1999) 97:121-133). Another example of antibody based assays for protein kinase activity is TRF (timeresolved fluorometry). This method utilizes europium chelate-labeled antiphosphotyrosine antibodies to detect phosphate transfer to a polymeric substrate coated onto microtiter plate wells. The amount of phosphorylation is then detected using timeresolved, dissociation-enhanced fluorescence (Braunwalder AF, et al., Anal Biochem 1996 Jul 1;238(2):159-64).

10

15

20

25

30

Protein phosophatases catalyze the removal of a gamma phosphate from a serine, threonine or tyrosine residue in a protein substrate. Since phosphatases act in opposition to kinases, appropriate assays measure the same parameters as kinase assays. In one example, the dephosphorylation of a fluorescently labeled peptide substrate allows trypsin cleavage of the substrate, which in turn renders the cleaved substrate significantly more fluorescent (Nishikata M et al., Biochem J (1999) 343:35-391). In another example, fluorescence polarization (FP), a solution-based, homogeneous technique requiring no immobilization or separation of reaction components, is used to develop high throughput screening (HTS) assays for protein phosphatases. This assay uses direct binding of the phosphatase with the target, and increasing concentrations of target-phosphatase increase

the rate of dephosphorylation, leading to a change in polarization (Parker GJ et al., (2000) J Biomol Screen 5:77-88).

Endogenous protease inhibitors may inhibit protease activity. In an example of an assay developed for either proteases or protease inhibitors, a biotinylated substrate is coated on a titer plate and hydrolyzed with the protease; the unhydrolyzed substrate is quantified by reaction with alkaline phosphatase-streptavidin complex and detection of the reaction product. The activity of protease inhibitors correlates with the activity of the alkaline phosphatase indicator enzyme (Gan Z et al., Anal Biochem 1999) 268:151-156).

Fatty acid desaturases catalyze the insertion of double bonds into saturated fatty acid molecules. In one application, radioassays for inhibitors of delta-5 and delta-6 fatty acid desaturase activity use thin layer chromatography to detect conversion of fatty acid substrates (Obukowicz et al., Biochem Pharmacol (1998) 55:1045-1058).

10

15

20

25

30

RNA folds into a myriad of tertiary structures that are responsible for its diverse functions in cells. In most instances, RNA is associated with RNA-binding proteins (RBPs) that protect, stabilize, package or transport RNA, mediate RNA interactions with other biomolecules or act catalytically on RNA. The structural information obtained for RNA alone and RNA-protein complexes has elucidated a variety of RNA tertiary structures and diverse modes for RNA-protein interaction. The specific interaction of proteins with highly structured RNAs makes it possible to target unique RNA motifs with small molecules, thus making RNA an interesting target for therapeutic intervention. Assays for RNA binding or processing may be based on homogeneous scintillation proximity (Liu J, et al., Anal Biochem 2001 289:239-245), chemiluminescense (Mazumder A, Nucleic Acids Res 1998 26:1996-2000), gel shift (Stull RA, et al., Antisense Nucleic Acid Drug Dev 1996 6:221-228; U.S. Pat. No: 6004749).

Adapter proteins are involved in a wide range of signaling and other cellular processes and generally facilitate protein-protein or protein-nucleic acid interactions via certain conserved motifs, including PDZ, SH2, SH3, PH, TRAF, WD40, LIM, ankyrin repeat, KH and annexin domains, etc. Assays for adapter protein activity may measure protein binding at the conserved motifs. For instance, exemplary assays for SH2 domain-containing proteins have measured binding using fluorescently labeled peptide substrate and fluorescence polarization or laser-scanning techniques (Lynch BA et al., Anal Biochem 1999, 275:62-73; Zuck P et al., Proc Natl Acad Sci USA 1999, 96: 11122-11127). An alternative SH2 binding assay uses radiolabeled peptide. An assay for protein-protein interaction at the LIM domain has used fluorescently labeled LIM-

containing proteins (FHL2 and FHL3) and the fluorescence resonance energy transfer (FRET) technique (Li HY, J Cell Biochem 2001, 80:293-303).

Transporter proteins carry a range of substrates, including nutrients, ions, amino acids, and drugs, across cell membranes. Assays for modulators of transporters may use labeled substrates. For instance, exemplary high throughput screens to identify compounds that interact with different peptide and anion transporters both use fluorescently labeled substrates; the assay for peptide transport additionally uses multiscreen filtration plates (Blevitt JM et al., J Biomol Screen 1999, 4:87-91; Cihlar T and Ho ES, Anal Biochem 2000, 283:49-55).

Ion channels mediate essential physiological functions, including fluid secretion, electrolyte balance, bioenergetics, and membrane excitability. Assays for channel activity can incorporate ion-sensitive dyes or proteins or voltage-sensitive dyes or proteins, as reviewed in Gonzalez JE et al. (Drug Discovery Today (1999) 4:431-439). Alternative methods measure the displacement of known ligands, which may be radio-labeled or fluorescently labeled (e.g., ScHMid EL et al., Anal Chem (1998) 70:1331-1338).

10

15

20

25

30

Transcription factors control gene transcription. Electrophoretic mobility shift assay (EMSA) or gel shift assay is one of the most powerful methods for studying protein-DNA interactions. High throughput gel shift assays for transcription factors may involve fluorescence (Cyano dye Cy5) labeled oligodeoxynucleotide duplexes as specific probes and an automatic DNA sequencer for analysis (Ruscher K, et al.; (2000) J Biotechnol 78:163-70). Alternatively high throughput methods involve colorimetric assays (Renard P, et al. (2001) Nucleic Acids Res 29(4):E21), or homogeneous fluorescence assays for the detection and quantification of sequence-specific DNA-binding proteins (Heyduk T, and Heyduk E (2001) Nat Biotechnol 20:171-6.)

Reductases are enzymes of oxidoreductase class that catalyze reactions in which metabolites are reduced. High throughput screening assays for reductases may involve scintillation (Fernandes PB. (1998) Curr Opin Chem Biol 2:597-603; Delaporte E et al. (2001) J Biomol Screen 6:225-231).

Assays for ATPase activity may be performed as described in Blackburn et al (Blackburn CL, et al., (1999) J Org Chem 64:5565-5570). The ATPase assay is performed using the EnzCheck ATPase kit (Molecular Probes). The assays are performed using an Ultraspec spectrophotometer (Pharmacia), and the progress of the reaction are monitored by absorbance increase at 360 nm. Microtubules (1.7 mM final), kinesin (0.11 mM final), inhibitor (or DMSO blank at 5% final), and the EnzCheck components (purine nucleotide

phosphorylase and MESG substrate) are premixed in the cuvette in a reaction buffer (40 mM PIPES pH 6.8, 5 mM paclitaxel, 1 mM EGTA, 5 mM MgCl2). The reaction is initiated by addition of MgATP (1 mM final).

High throughput assays based on photometric analysis of the activity of decarboxylase enzymes have been described (Breuer M et al (2002) Anal Bioanal Chem 374:1069-73).

High-throughput photometric assays for peroxidases have also been described (Smith AD et al (2001) Int J Vitam Nutr Res 71:87-92; Smith AD and Levander OA (2002) Methods Enzymol 347:113-21).

10

15

20

25

30

5

Apoptosis assays. Assays for apoptosis may be performed by terminal deoxynucleotidyl transferase-mediated digoxigenin-11-dUTP nick end labeling (TUNEL) assay. The TUNEL assay is used to measure nuclear DNA fragmentation characteristic of apoptosis (Lazebnik et al., 1994, Nature 371, 346), by following the incorporation of fluorescein-dUTP (Yonehara et al., 1989, J. Exp. Med. 169, 1747). Apoptosis may further be assayed by acridine orange staining of tissue culture cells (Lucas, R., et al., 1998, Blood 15:4730-41). An apoptosis assay system may comprise a cell that expresses an MP53, and that optionally has defective p53 function (e.g. p53 is over-expressed or under-expressed relative to wild-type cells). A test agent can be added to the apoptosis assay system and changes in induction of apoptosis relative to controls where no test agent is added, identify candidate p53 modulating agents. In some embodiments of the invention, an apoptosis assay may be used as a secondary assay to test a candidate p53 modulating agents that is initially identified using a cell-free assay system. An apoptosis assay may also be used to test whether MP53 function plays a direct role in apoptosis. For example, an apoptosis assay may be performed on cells that over- or under-express MP53 relative to wild type cells. Differences in apoptotic response compared to wild type cells suggests that the MP53 plays a direct role in the apoptotic response. Apoptosis assays are described further in US Pat. No. 6,133,437.

Cell proliferation and cell cycle assays. Cell proliferation may be assayed via bromodeoxyuridine (BRDU) incorporation. This assay identifies a cell population undergoing DNA synthesis by incorporation of BRDU into newly-synthesized DNA. Newly-synthesized DNA may then be detected using an anti-BRDU antibody (Hoshino et

al., 1986, Int. J. Cancer 38, 369; Campana et al., 1988, J. Immunol. Meth. 107, 79), or by other means.

Cell proliferation is also assayed via phospho-histone H3 staining, which identifies a cell population undergoing mitosis by phosphorylation of histone H3. Phosphorylation of histone H3 at serine 10 is detected using an antibody specific to the phosphorylated form of the serine 10 residue of histone H3. (Chadlee,D.N. 1995, J. Biol. Chem 270:20098-105). Cell Proliferation may also be examined using [³H]-thymidine incorporation (Chen, J., 1996, Oncogene 13:1395-403; Jeoung, J., 1995, J. Biol. Chem. 270:18367-73). This assay allows for quantitative characterization of S-phase DNA syntheses. In this assay, cells synthesizing DNA will incorporate [³H]-thymidine into newly synthesized DNA. Incorporation can then be measured by standard techniques such as by counting of radioisotope in a scintillation counter (e.g., Beckman LS 3800 Liquid Scintillation Counter). Another proliferation assay uses the dye Alamar Blue (available from Biosource International), which fluoresces when reduced in living cells and provides an indirect measurement of cell number (Voytik-Harbin SL et al., 1998, In Vitro Cell Dev Biol Anim 34:239-46).

10

15

20

25

30

Cell proliferation may also be assayed by colony formation in soft agar (Sambrook et al., Molecular Cloning, Cold Spring Harbor (1989)). For example, cells transformed with MP53 are seeded in soft agar plates, and colonies are measured and counted after two weeks incubation.

Involvement of a gene in the cell cycle may be assayed by flow cytometry (Gray JW et al. (1986) Int J Radiat Biol Relat Stud Phys Chem Med 49:237-55). Cells transfected with an MP53 may be stained with propidium iodide and evaluated in a flow cytometer (available from Becton Dickinson), which indicates accumulation of cells in different stages of the cell cycle.

Accordingly, a cell proliferation or cell cycle assay system may comprise a cell that expresses an MP53, and that optionally has defective p53 function (e.g. p53 is over-expressed or under-expressed relative to wild-type cells). A test agent can be added to the assay system and changes in cell proliferation or cell cycle relative to controls where no test agent is added, identify candidate p53 modulating agents. In some embodiments of the invention, the cell proliferation or cell cycle assay may be used as a secondary assay to test a candidate p53 modulating agents that is initially identified using another assay system such as a cell-free assay system. A cell proliferation assay may also be used to test whether MP53 function plays a direct role in cell proliferation or cell cycle. For example,

a cell proliferation or cell cycle assay may be performed on cells that over- or underexpress MP53 relative to wild type cells. Differences in proliferation or cell cycle compared to wild type cells suggests that the MP53 plays a direct role in cell proliferation or cell cycle.

5

10

15

20

25

30

Angiogenesis. Angiogenesis may be assayed using various human endothelial cell systems, such as umbilical vein, coronary artery, or dermal cells. Suitable assays include Alamar Blue based assays (available from Biosource International) to measure proliferation; migration assays using fluorescent molecules, such as the use of Becton Dickinson Falcon HTS FluoroBlock cell culture inserts to measure migration of cells through membranes in presence or absence of angiogenesis enhancer or suppressors; and tubule formation assays based on the formation of tubular structures by endothelial cells on Matrigel® (Becton Dickinson). Accordingly, an angiogenesis assay system may comprise a cell that expresses an MP53, and that optionally has defective p53 function (e.g. p53 is over-expressed or under-expressed relative to wild-type cells). A test agent can be added to the angiogenesis assay system and changes in angiogenesis relative to controls where no test agent is added, identify candidate p53 modulating agents. In some embodiments of the invention, the angiogenesis assay may be used as a secondary assay to test a candidate p53 modulating agents that is initially identified using another assay system. An angiogenesis assay may also be used to test whether MP53 function plays a direct role in cell proliferation. For example, an angiogenesis assay may be performed on cells that over- or under-express MP53 relative to wild type cells. Differences in angiogenesis compared to wild type cells suggests that the MP53 plays a direct role in angiogenesis. U.S. Pat. Nos. 5,976,782, 6,225,118 and 6,444,434, among others, describe various angiogenesis assays.

Hypoxic induction. The alpha subunit of the transcription factor, hypoxia inducible factor-1 (HIF-1), is upregulated in tumor cells following exposure to hypoxia in vitro. Under hypoxic conditions, HIF-1 stimulates the expression of genes known to be important in tumour cell survival, such as those encoding glyolytic enzymes and VEGF. Induction of such genes by hypoxic conditions may be assayed by growing cells transfected with MP53 in hypoxic conditions (such as with 0.1% O2, 5% CO2, and balance N2, generated in a Napco 7001 incubator (Precision Scientific)) and normoxic conditions, followed by assessment of gene activity or expression by Taqman®. For

example, a hypoxic induction assay system may comprise a cell that expresses an MP53, and that optionally has defective p53 function (e.g. p53 is over-expressed or under-expressed relative to wild-type cells). A test agent can be added to the hypoxic induction assay system and changes in hypoxic response relative to controls where no test agent is added, identify candidate p53 modulating agents. In some embodiments of the invention, the hypoxic induction assay may be used as a secondary assay to test a candidate p53 modulating agents that is initially identified using another assay system. A hypoxic induction assay may also be used to test whether MP53 function plays a direct role in the hypoxic response. For example, a hypoxic induction assay may be performed on cells that over- or under-express MP53 relative to wild type cells. Differences in hypoxic response compared to wild type cells suggests that the MP53 plays a direct role in hypoxic induction.

10

15

20

25

30

Cell adhesion. Cell adhesion assays measure adhesion of cells to purified adhesion proteins, or adhesion of cells to each other, in presence or absence of candidate modulating agents. Cell-protein adhesion assays measure the ability of agents to modulate the adhesion of cells to purified proteins. For example, recombinant proteins are produced, diluted to 2.5g/mL in PBS, and used to coat the wells of a microtiter plate. The wells used for negative control are not coated. Coated wells are then washed, blocked with 1% BSA, and washed again. Compounds are diluted to 2× final test concentration and added to the blocked, coated wells. Cells are then added to the wells, and the unbound cells are washed off. Retained cells are labeled directly on the plate by adding a membrane-permeable fluorescent dye, such as calcein-AM, and the signal is quantified in a fluorescent microplate reader.

Cell-cell adhesion assays measure the ability of agents to modulate binding of cell adhesion proteins with their native ligands. These assays use cells that naturally or recombinantly express the adhesion protein of choice. In an exemplary assay, cells expressing the cell adhesion protein are plated in wells of a multiwell plate. Cells expressing the ligand are labeled with a membrane-permeable fluorescent dye, such as BCECF, and allowed to adhere to the monolayers in the presence of candidate agents. Unbound cells are washed off, and bound cells are detected using a fluorescence plate reader.

High-throughput cell adhesion assays have also been described. In one such assay, small molecule ligands and peptides are bound to the surface of microscope slides using a

microarray spotter, intact cells are then contacted with the slides, and unbound cells are washed off. In this assay, not only the binding specificity of the peptides and modulators against cell lines are determined, but also the functional cell signaling of attached cells using immunofluorescence techniques in situ on the microchip is measured (Falsey JR et al., Bioconjug Chem. 2001 May-Jun;12(3):346-53).

5

10

15

20

25

30

Tubulogenesis. Tubulogenesis assays monitor the ability of cultured cells, generally endothelial cells, to form tubular structures on a matrix substrate, which generally simulates the environment of the extracellular matrix. Exemplary substrates include MatrigelTM (Becton Dickinson), an extract of basement membrane proteins containing laminin, collagen IV, and heparin sulfate proteoglycan, which is liquid at 4°C and forms a solid gel at 37°C. Other suitable matrices comprise extracellular components such as collagen, fibronectin, and/or fibrin. Cells are stimulated with a pro-angiogenic stimulant, and their ability to form tubules is detected by imaging. Tubules can generally be detected after an overnight incubation with stimuli, but longer or shorter time frames may also be used. Tube formation assays are well known in the art (e.g., Jones MK et al., 1999, Nature Medicine 5:1418-1423). These assays have traditionally involved stimulation with serum or with the growth factors FGF or VEGF. Serum represents an undefined source of growth factors. In a preferred embodiment, the assay is performed with cells cultured in serum free medium, in order to control which process or pathway a candidate agent modulates. Moreover, we have found that different target genes respond differently to stimulation with different pro-angiogenic agents, including inflammatory angiogenic factors such as TNF-alpa. Thus, in a further preferred embodiment, a tubulogenesis assay system comprises testing an MP53's response to a variety of factors, such as FGF, VEGF, phorbol myristate acetate (PMA), TNF-alpha, ephrin, etc.

Cell Migration. An invasion/migration assay (also called a migration assay) tests the ability of cells to overcome a physical barrier and to migrate towards pro-angiogenic signals. Migration assays are known in the art (e.g., Paik JH et al., 2001, J Biol Chem 276:11830-11837). In a typical experimental set-up, cultured endothelial cells are seeded onto a matrix-coated porous lamina, with pore sizes generally smaller than typical cell size. The matrix generally simulates the environment of the extracellular matrix, as described above. The lamina is typically a membrane, such as the transwell polycarbonate membrane (Corning Costar Corporation, Cambridge, MA), and is generally part of an

upper chamber that is in fluid contact with a lower chamber containing pro-angiogenic stimuli. Migration is generally assayed after an overnight incubation with stimuli, but longer or shorter time frames may also be used. Migration is assessed as the number of cells that crossed the lamina, and may be detected by staining cells with hemotoxylin solution (VWR Scientific, South San Francisco, CA), or by any other method for determining cell number. In another exemplary set up, cells are fluorescently labeled and migration is detected using fluorescent readings, for instance using the Falcon HTS FluoroBlok (Becton Dickinson). While some migration is observed in the absence of stimulus, migration is greatly increased in response to pro-angiogenic factors. As described above, a preferred assay system for migration/invasion assays comprises testing an MP53's response to a variety of pro-angiogenic factors, including tumor angiogenic and inflammatory angiogenic agents, and culturing the cells in serum free medium.

Sprouting assay. A sprouting assay is a three-dimensional in vitro angiogenesis assay that uses a cell-number defined spheroid aggregation of endothelial cells ("spheroid"), embedded in a collagen gel-based matrix. The spheroid can serve as a starting point for the sprouting of capillary-like structures by invasion into the extracellular matrix (termed "cell sprouting") and the subsequent formation of complex anastomosing networks (Korff and Augustin, 1999, J Cell Sci 112:3249-58). In an exemplary experimental set-up, spheroids are prepared by pipetting 400 human umbilical vein endothelial cells into individual wells of a nonadhesive 96-well plates to allow overnight spheroidal aggregation (Korff and Augustin: J Cell Biol 143: 1341-52, 1998). Spheroids are harvested and seeded in $900\mu l$ of methocel-collagen solution and pipetted into individual wells of a 24 well plate to allow collagen gel polymerization. Test agents are added after 30 min by pipetting 100 μ l of 10-fold concentrated working dilution of the test substances on top of the gel. Plates are incubated at 37°C for 24h. Dishes are fixed at the end of the experimental incubation period by addition of paraformaldehyde. Sprouting intensity of endothelial cells can be quantitated by an automated image analysis system to determine the cumulative sprout length per spheroid.

Primary assays for antibody modulators

10

15

20

25

30

For antibody modulators, appropriate primary assays test is a binding assay that tests the antibody's affinity to and specificity for the MP53 protein. Methods for testing antibody affinity and specificity are well known in the art (Harlow and Lane, 1988, 1999,

supra). The enzyme-linked immunosorbant assay (ELISA) is a preferred method for detecting MP53-specific antibodies; others include FACS assays, radioimmunoassays, and fluorescent assays.

In some cases, screening assays described for small molecule modulators may also be used to test antibody modulators.

Primary assays for nucleic acid modulators

10

15

20

25

30

For nucleic acid modulators, primary assays may test the ability of the nucleic acid modulator to inhibit or enhance MP53 gene expression, preferably mRNA expression. In general, expression analysis comprises comparing MP53 expression in like populations of cells (e.g., two pools of cells that endogenously or recombinantly express MP53) in the presence and absence of the nucleic acid modulator. Methods for analyzing mRNA and protein expression are well known in the art. For instance, Northern blotting, slot blotting, ribonuclease protection, quantitative RT-PCR (e.g., using the TaqMan®, PE Applied Biosystems), or microarray analysis may be used to confirm that MP53 mRNA expression is reduced in cells treated with the nucleic acid modulator (e.g., Current Protocols in Molecular Biology (1994) Ausubel FM et al., eds., John Wiley & Sons, Inc., chapter 4; Freeman WM et al., Biotechniques (1999) 26:112-125; Kallioniemi OP, Ann Med 2001, 33:142-147; Blohm DH and Guiseppi-Elie, A Curr Opin Biotechnol 2001, 12:41-47). Protein expression may also be monitored. Proteins are most commonly detected with specific antibodies or antisera directed against either the MP53 protein or specific peptides. A variety of means including Western blotting, ELISA, or in situ detection, are available (Harlow E and Lane D, 1988 and 1999, supra).

In some cases, screening assays described for small molecule modulators, particularly in assay systems that involve MP53 mRNA expression, may also be used to test nucleic acid modulators.

Secondary Assays

Secondary assays may be used to further assess the activity of MP53-modulating agent identified by any of the above methods to confirm that the modulating agent affects MP53 in a manner relevant to the p53 pathway. As used herein, MP53-modulating agents encompass candidate clinical compounds or other agents derived from previously identified modulating agent. Secondary assays can also be used to test the activity of a

modulating agent on a particular genetic or biochemical pathway or to test the specificity of the modulating agent's interaction with MP53.

Secondary assays generally compare like populations of cells or animals (e.g., two pools of cells or animals that endogenously or recombinantly express MP53) in the presence and absence of the candidate modulator. In general, such assays test whether treatment of cells or animals with a candidate MP53-modulating agent results in changes in the p53 pathway in comparison to untreated (or mock- or placebo-treated) cells or animals. Certain assays use "sensitized genetic backgrounds", which, as used herein, describe cells or animals engineered for altered expression of genes in the p53 or interacting pathways.

Cell-based assays

5

10

15

20

25

30

Cell based assays may use a variety of mammalian cell lines known to have defective p53 function (e.g. SAOS-2 osteoblasts, H1299 lung cancer cells, C33A and HT3 cervical cancer cells, HT-29 and DLD-1 colon cancer cells, among others, available from American Type Culture Collection (ATCC), Manassas, VA). Cell based assays may detect endogenous p53 pathway activity or may rely on recombinant expression of p53 pathway components. Any of the aforementioned assays may be used in this cell-based format. Candidate modulators are typically added to the cell media but may also be injected into cells or delivered by any other efficacious means.

Animal Assays

A variety of non-human animal models of normal or defective p53 pathway may be used to test candidate MP53 modulators. Models for defective p53 pathway typically use genetically modified animals that have been engineered to mis-express (e.g., over-express or lack expression in) genes involved in the p53 pathway. Assays generally require systemic delivery of the candidate modulators, such as by oral administration, injection, etc.

In a preferred embodiment, p53 pathway activity is assessed by monitoring neovascularization and angiogenesis. Animal models with defective and normal p53 are used to test the candidate modulator's affect on MP53 in Matrigel® assays. Matrigel® is an extract of basement membrane proteins, and is composed primarily of laminin, collagen IV, and heparin sulfate proteoglycan. It is provided as a sterile liquid at 4°C, but rapidly forms a solid gel at 37°C. Liquid Matrigel® is mixed with various angiogenic agents,

such as bFGF and VEGF, or with human tumor cells which over-express the MP53. The mixture is then injected subcutaneously(SC) into female athymic nude mice (Taconic, Germantown, NY) to support an intense vascular response. Mice with Matrigel® pellets may be dosed via oral (PO), intraperitoneal (IP), or intravenous (IV) routes with the candidate modulator. Mice are euthanized 5 - 12 days post-injection, and the Matrigel® pellet is harvested for hemoglobin analysis (Sigma plasma hemoglobin kit). Hemoglobin content of the gel is found to correlate the degree of neovascularization in the gel.

10

15

20

25

30

In another preferred embodiment, the effect of the candidate modulator on MP53 is assessed via tumorigenicity assays. Tumor xenograft assays are known in the art (see, e.g., Ogawa K et al., 2000, Oncogene 19:6043-6052). Xenografts are typically implanted SC into female athymic mice, 6-7 week old, as single cell suspensions either from a preexisting tumor or from in vitro culture. The tumors which express the MP53 endogenously are injected in the flank, 1 x 10⁵ to 1 x 10⁷ cells per mouse in a volume of 100 uL using a 27 gauge needle. Mice are then ear tagged and tumors are measured twice weekly. Candidate modulator treatment is initiated on the day the mean tumor weight reaches 100 mg. Candidate modulator is delivered IV, SC, IP, or PO by bolus administration. Depending upon the pharmacokinetics of each unique candidate modulator, dosing can be performed multiple times per day. The tumor weight is assessed by measuring perpendicular diameters with a caliper and calculated by multiplying the measurements of diameters in two dimensions. At the end of the experiment, the excised tumors maybe utilized for biomarker identification or further analyses. For immunohistochemistry staining, xenograft tumors are fixed in 4% paraformaldehyde, 0.1M phosphate, pH 7.2, for 6 hours at 4°C, immersed in 30% sucrose in PBS, and rapidly frozen in isopentane cooled with liquid nitrogen.

In another preferred embodiment, tumorogenicity is monitored using a hollow fiber assay, which is described in U.S. Pat No. US 5,698,413. Briefly, the method comprises implanting into a laboratory animal a biocompatible, semi-permeable encapsulation device containing target cells, treating the laboratory animal with a candidate modulating agent, and evaluating the target cells for reaction to the candidate modulator. Implanted cells are generally human cells from a pre-existing tumor or a tumor cell line. After an appropriate period of time, generally around six days, the implanted samples are harvested for evaluation of the candidate modulator. Tumorogenicity and modulator efficacy may be evaluated by assaying the quantity of viable cells present in the macrocapsule, which can be determined by tests known in the art, for example, MTT dye conversion assay, neutral

red dye uptake, trypan blue staining, viable cell counts, the number of colonies formed in soft agar, the capacity of the cells to recover and replicate in vitro, etc.

In another preferred embodiment, a tumorogenicity assay use a transgenic animal, usually a mouse, carrying a dominant oncogene or tumor suppressor gene knockout under the control of tissue specific regulatory sequences; these assays are generally referred to as transgenic tumor assays. In a preferred application, tumor development in the transgenic model is well characterized or is controlled. In an exemplary model, the "RIP1-Tag2" transgene, comprising the SV40 large T-antigen oncogene under control of the insulin gene regulatory regions is expressed in pancreatic beta cells and results in islet cell carcinomas (Hanahan D, 1985, Nature 315:115-122; Parangi S et al, 1996, Proc Natl Acad Sci USA 93: 2002-2007; Bergers G et al, 1999, Science 284:808-812). An "angiogenic switch," occurs at approximately five weeks, as normally quiescent capillaries in a subset of hyperproliferative islets become angiogenic. The RIP1-TAG2 mice die by age 14 weeks. Candidate modulators may be administered at a variety of stages, including just prior to the angiogenic switch (e.g., for a model of tumor prevention), during the growth of small tumors (e.g., for a model of intervention), or during the growth of large and/or invasive tumors (e.g., for a model of regression). Tumorogenicity and modulator efficacy can be evaluating life-span extension and/or tumor characteristics, including number of tumors, tumor size, tumor morphology, vessel density, apoptotic index, etc.

20

25

30

15

5

10

Diagnostic and therapeutic uses

Specific MP53-modulating agents are useful in a variety of diagnostic and therapeutic applications where disease or disease prognosis is related to defects in the p53 pathway, such as angiogenic, apoptotic, or cell proliferation disorders. Accordingly, the invention also provides methods for modulating the p53 pathway in a cell, preferably a cell pre-determined to have defective or impaired p53 function (e.g. due to overexpression, underexpression, or misexpression of p53, or due to gene mutations), comprising the step of administering an agent to the cell that specifically modulates MP53 activity. Preferably, the modulating agent produces a detectable phenotypic change in the cell indicating that the p53 function is restored. The phrase "function is restored", and equivalents, as used herein, means that the desired phenotype is achieved, or is brought closer to normal compared to untreated cells. For example, with restored p53 function, cell proliferation and/or progression through cell cycle may normalize, or be brought closer to normal relative to untreated cells. The invention also provides methods for

treating disorders or disease associated with impaired p53 function by administering a therapeutically effective amount of an MP53 -modulating agent that modulates the p53 pathway. The invention further provides methods for modulating MP53 function in a cell, preferably a cell pre-determined to have defective or impaired MP53 function, by administering an MP53 -modulating agent. Additionally, the invention provides a method for treating disorders or disease associated with impaired MP53 function by administering a therapeutically effective amount of an MP53 -modulating agent.

The discovery that MP53 is implicated in p53 pathway provides for a variety of methods that can be employed for the diagnostic and prognostic evaluation of diseases and disorders involving defects in the p53 pathway and for the identification of subjects having a predisposition to such diseases and disorders.

10

15

20

25

30

Various expression analysis methods can be used to diagnose whether MP53 expression occurs in a particular sample, including Northern blotting, slot blotting, ribonuclease protection, quantitative RT-PCR, and microarray analysis. (e.g., Current Protocols in Molecular Biology (1994) Ausubel FM et al., eds., John Wiley & Sons, Inc., chapter 4; Freeman WM et al., Biotechniques (1999) 26:112-125; Kallioniemi OP, Ann Med 2001, 33:142-147; Blohm and Guiseppi-Elie, Curr Opin Biotechnol 2001, 12:41-47). Tissues having a disease or disorder implicating defective p53 signaling that express an MP53, are identified as amenable to treatment with an MP53 modulating agent. In a preferred application, the p53 defective tissue overexpresses an MP53 relative to normal tissue. For example, a Northern blot analysis of mRNA from tumor and normal cell lines, or from tumor and matching normal tissue samples from the same patient, using full or partial MP53 cDNA sequences as probes, can determine whether particular tumors express or overexpress MP53. Alternatively, the TaqMan® is used for quantitative RT-PCR analysis of MP53 expression in cell lines, normal tissues and tumor samples (PE Applied Biosystems).

Various other diagnostic methods may be performed, for example, utilizing reagents such as the MP53 oligonucleotides, and antibodies directed against an MP53, as described above for: (1) the detection of the presence of MP53 gene mutations, or the detection of either over- or under-expression of MP53 mRNA relative to the non-disorder state; (2) the detection of either an over- or an under-abundance of MP53 gene product relative to the non-disorder state; and (3) the detection of perturbations or abnormalities in the signal transduction pathway mediated by MP53.

Thus, in a specific embodiment, the invention is drawn to a method for diagnosing a disease or disorder in a patient that is associated with alterations in MP53 expression, the method comprising: a) obtaining a biological sample from the patient; b) contacting the sample with a probe for MP53 expression; c) comparing results from step (b) with a control; and d) determining whether step (c) indicates a likelihood of the disease or disorder. Preferably, the disease is cancer, most preferably a cancer as shown in TABLE 2. The probe may be either DNA or protein, including an antibody.

EXAMPLES

5

15

20

25

30

The following experimental section and examples are offered by way of illustration and not by way of limitation.

I. <u>Drosophila p53 screen</u>

The Drosophila p53 gene was overexpressed specifically in the wing using the vestigial margin quadrant enhancer. Increasing quantities of Drosophila p53 (titrated using different strength transgenic inserts in 1 or 2 copies) caused deterioration of normal wing morphology from mild to strong, with phenotypes including disruption of pattern and polarity of wing hairs, shortening and thickening of wing veins, progressive crumpling of the wing and appearance of dark "death" inclusions in wing blade. In a screen designed to identify enhancers and suppressors of Drosophila p53, homozygous females carrying two copies of p53 were crossed to 5663 males carrying random insertions of a piggyBac transposon (Fraser M *et al.*, Virology (1985) 145:356-361). Progeny containing insertions were compared to non-insertion-bearing sibling progeny for enhancement or suppression of the p53 phenotypes. Sequence information surrounding the piggyBac insertion site was used to identify the modifier genes. Modifiers of the wing phenotype were identified as members of the p53 pathway. Modifiers (enhancers and suppressors of the wing phenotype). Orthologs of the modifiers are referred to herein as MP53.

II. Analysis of Table 1

BLAST analysis (Altschul et al., *supra*) was employed to identify orthologs of *Drosophila* modifiers. The columns "MP53 symbol", "MP53 name" and "MP53 name aliases" provide a symbol and the known name abbreviations for the Targets, where available, from Genbank. "MP53 RefSeq_NA or GI_NA", and "MP53 GI_AA", provide the reference nucleotide and amino acid sequences for the MP53s as available from

National Center for Biology Information (NCBI), and Genbank, where available.

Nucleotide and amino acid SEQ ID Nos of the sequences used in the application are also provided.

Names and Protein sequences of *Drosophila* modifiers of p53 from screen

5 (Example I), are represented in the "Modifier genetic Name", "Modifier physical Name" and "Modifier GI_AA" column by GI#, respectively.

Table 1

MP53 6	MP53 name	MP53	MP53	NA .	MP53	ÁA	Modifier	Modifier	Modifier
Symbol		name '		SFO	GT# AA	SEQ.	genetic	physical	GI# AA
				NO:		ID NO:	name.	name	这种是
ANXA13	annexin A13	ANX13	XM_052383	1	4757754	57	AnnIX_(A nnexin IX)		gi 17136266 ref NP_4766 04.1
ANXA4	annexin A4	ANX4	NM_001153	2	4502105	58	AnnIX_(A nnexin IX)		gi 17136266 ref NP_4766 04.1
АХОТ	axotrophin	DKFZP 586F11 22; axotrop hin	NM_022826	3	12383066	59	NA	CG14518	gi 7301726 g b AAF56839 .1
FLJ20085	hypothetical protein FLJ20085	-	XM_053238 .1	4	15308522		NA	CG7983	gi 7294806 g b AAF50140 .1
NYX	nyctalopin, alias: congenital stationary night blindness 4; Congenital stationary night blindness-1 (CSNB, complete)	dJ169I5 .2,CLR P, CSNB1, CSNB4	NM_022567	5	12314287		caps_(capr icious)		gi 3885974 g b AAC7814 4.1
FLJ21302	hypothetical protein FLJ21302	-	NM_022901	6	12597641	62	icious)		gi 3885974 g b AAC7814 4.1
GARP	glycoprotein A repetitions predominant	3E	XM_006198	7	5031707	63	caps_(caps icious)		ЫААС7814 4.1
GP1BA	glycoprotein Ib (platelet), alpha polypeptide		NM_000173		4504071	64	icious)	CG11282	b AAC7814 4.1
GP5	glycoprotein V (platelet)	CD42d	XM_002975	9	4758460	65	icious)	CG11282	b AAC7814 4.1
HT017	HT017 protein	-	XM_054557	10	10190722	66	caps_(caps icious)	CG11282	gi 3885974 g b AAC7814 4.1

12TA A041	KIAA0416		XM_003637	11	7662102	67	cans (capr	CG11282	gi 3885974 g
	protein		VIAT_002021	11	7002102	07	icious)		b AAC7814 4.1
LY64	lymphocyte antigen 64 homolog, radioprotecti ve 105kD (mouse)	RP105	XM_003933	12	13645378	68	caps_(capr icious)	CG11282	gi 3885974 g b AAC7814 4.1
LOC1126 84			XM_053144 .1	13	15301270	69	caps_(capr icious)	CG11282	gi 3885974 g b AAC7814 4.1
ISLR			NM_005545 .1	14	5031809	70	caps_(capr icious)	CG11282	gi 3885974 g b AAC7814 4.1
Unknown (protein for MGC:171			15489167	15	15489168	71	caps_(capr icious)	CG11282	gi 3885974 g b AAC7814 4.1
unnamed protein product CAC2178			12226531	16	12226532	72	caps_(capr icious)	CG11282	gi 3885974 g b AAC7814 4.1
5 KIAA146 5			XM_027396 .1	17	14752075	73	caps_(capr icious)	CG11282	gi 3885974 g b AAC7814 4.1
LOC1150 25)		XM_028612 .2	18	15294652	74	caps_(capr icious)	CG11282	gi 3885974 g b AAC7814 4.1
PAL			NM_015613 .1	19	14149694	75	caps_(capr icious)	CG11282	gi 3885974 g b AAC7814 4.1
KIAA124 6			XM_046690 .2	20	15300859	76	caps_(capr icious)	CG11282	gi 3885974 g b AAC7814 4.1
MGC265 6			NM_024509 .1	21	13375646	77	caps_(capr icious)	CG11282	gi 3885974 g b AAC7814 4.1
unnamed protein product CAC4997			15132048	22	15132049	78	caps_(capr icious)	CG11282	gi 3885974 g b AAC7814 4.1
KIAA191 0			XM_055514 .1	23	16163269	79	caps_(capr icious)	CG11282	gi 3885974 g b AAC7814 4.1
KIAA091 8			XM_054870 .1	24	16188327	80	caps_(capr icious)	CG11282	gi 3885974 g b AAC7814 4.1
bG256O2 2.1	2		5531259	25	6691962	81	caps_(capr icious)	CG11282	gi 3885974 g b AAC7814 4.1
KIAA084 8			NM_014926 .1	26	7662336	82	caps_(capr icious)	CG11282	
CASK			NM_003688 .1	27	4502567	83	caps_(capr icious)	CG11282	

						-		0011000	~il2005074la
APBA1			NM_001163	28	4502129	84		CG11282	gi 3885974 g b AAC7814
		,	.1				icious)		4.1
		MINT1,							*··1
		D9S411					l		İ
		E,							
1		XIIAL							Ĭ
T DI 7 C		PHA LIN-7-	NM_018362	20	8922944	85	cans (canr	CG11282	gi 3885974 g
LIN-7-C		C: LIN-		29	0922944	0.5	icious)	CG11202	b AAC7814
		7	.1				lorous,		4.1
		protein							•
		3		ŀ	ļ				
TRIM3	tripartite	RNF22	XM_044513	30	5453569	86	brat_(brai	CG10719	gi 17136846
	motif-						n_tumor)		ref NP_4769
	containing 3								45.1
		none	NM_014552	31	7657297	87	grh_grain	CG2094	7302703
	32		_				yhead		
PTBP2	polypyrimidi	PTB,	XM_042972	32	14722543	88	heph_hep	CG2094	7302108
		MIBP,	!			1	haestus		
	binding	nPTB,]
	protein 2	PTBLP,			į				
	II.	neural						:	
		polypyri		1	1	1	Ì	1	
1		midine		l					
		tract						İ	
		binding						1	
DODI	ROD1	protein	NM_005156	22	4826984	89	heph_hep	CG2094	7302108
ROD1	regulator of		MM_002120)	7620707	را	haestus	002071	
	differentiatio		[Indoords		
	n 1 (S.					1			•
	pombe)								
PTBP1	polypyrimidi	PTB:	NM_002819	34	4506243	90	heph_hep	CG2094	7302108
	ne tract	PTB2;	1	1			haestus		
	binding	PTB3;							
	protein 1	PTB4;	Į.	1					
İ		pPTB;		1	j		1		
		HNRPI;	1						
	1	PTB-1;							
		HNRNP	1		ļ		1		
		1	77.6 000016	100	4505565	1		CDOSSC4-	15292529
P4HA1	procollagen-	Р4НА	NM_000917	/32	4505565	16	none	2D02304F	13292329
	proline, 2-			1				1	
	oxoglutarate	1			-		1		1
	dioxygenase								
	(proline 4-	Į.							
	hydroxylase)	1							
1	alpha	1		1			1		
	polypeptide I		ŀ			<u> </u>			
P4HA2	procollagen-		NM_004199	36	4758868	92	none	SD05564p	15292529
	proline, 2-	4-							1
	oxoglutarate	hydroxy	·[1
	4-	lase,		İ					
	dioxygenase		1						
	(proline 4-	polypep							1
	hydroxylase)								1
	alpha	type 2;				ļ			
	polypeptide	prolyl				1	1		
L	Ш	4-	<u> </u>					ــــــــــــــــــــــــــــــــــــــ	

						——-		————	
	:	hydroxy lase, alpha polypep tide,							
1	metastasis suppressor	type II none	6539605	37	6539606	93	none	CG9469	7302324
LOC9215 4	protein similar to Unknown (protein for IMAGE	none	XM_043228	38	14779986	94	none	CG9469	7302324
LOC1236 76		none	XM_063793	39	17478005	95	none	CG5447	18488547
LOC5112	HSPC041 protein	none	NM_016099	40	7705821	96	none	CG5447	18488547
WFS1	Wolfram syndrome 1	WFS, WFRS, DIDMO AD	NM_006005	41	5174749	97		mod_@tra nsmembra ne wolfram syndrome wolframin .transcript _3 translation	
PPP1R16 A	protein phosphatase 1, regulatory (inhibitor) subunit 16A	, MGC14 333; likley ortholog of mouse myosin phospha tase targetin g subunit 3			14249672		none	CG6896	7293882
PPP1R16	protein phosphatase 1, regulatory (inhibitor) subunit 16B	ANKR	XM_028840)43	14770818	399	none	CG6896	7293882
CXorf9	chromosome X open reading frame 9		NM_018990	44	9506363	100	none	mod_@ki aa0790.tra nscript_11 translation	internal

E 0 0 : 5 (5)	· ., .		VA 044015	45 1	14751622	101	none	mod_@ki	Evelivie
LOC1349	similar to	none	XM_044015	45	14751637	101		aa0790.tra	
	KIAA0790							nscript_11	internai
	protein (H.								Į.
	sapiens)							translation	
SAMSN1		none	NM_022136	46	11545871	102	none	mod_@ki	Exelixis
	domain, SH3							aa0790.tra	internal
	domain and							nscript_11	
	nuclear							translation	l
	localisation								
	signals, 1								
MGC956	similar to		NM_080669	47	18087847	103	none	CG15553	7302010
	RIKEN								
	cDNA								
	1110002C08						ļ		
	gene								
FKSG16	none	none	16416763	48	16416764	104	none	CG15553	7302010
	BCL2-		NM_004281	49	14043024	105	none	CG10745	16076828
7		BAG-3,							
	athanogene 3						1		
		1,							
		DKFZp						[
		434E06							
		10; Bcl-							
		2-							
		binding							
		protein;							
		docking					İ	1	
Į.		protein		İ			ļ		
		CAIR-		1			İ	ļ	1
		1;	i					i	1
1		BCL2-							
1		binding		l	ļ				
		athanog	ŀ						
	ł	ene 3;					1		
		BAG-						1	
		family							
		molecul					1	l	
		ar					[1	
		chapero]			ł
İ		ne							i
		regulato						ŀ	
		r-3				l		İ	
BAG4	BCL2-		NM_004874	50	6631075	106	none	CG10745	16076828
DA04	associated	BAG-4;		٢					
1	athanogene 4			1	1				
	auranogene 4	of death		1					
	1	domains		1			1		
		; BAG-	Ï						
	1	family		1					
		molecul		1					
	1	1							
	1	ar		1					
		chapero		1					
1	1	ne				1	1		
	1	regulato						1	
TT. T0004	41	r-4	ND4 005146	51	13376733	107	none	mod_@dk	Evalivie
FLJ22944	4 hypothetical		NM_025145	bī	123/0/33	יטוןי	none	fzp434a20	
	protein	1				1	1	-	hucuai
1	FLJ22944	1				1		17	.
		1			1	1	1	flj11142.tr	
l	L	<u> </u>	1		<u> </u>	<u> </u>		anscript_3	J

		7			Т			translation	
		:						translation	
			!						
FLJ11142	hypothetical		NM_018338	52	8922897	108	none	mod_@dk	Exelixis
	protein		_					fzp434a20	internal
	FLJ11142							17	
								flj11142.tr	
								anscript_3	
								translation	
	bromodomai		NM_013448	53	7304919	109	. –	CG1966	7302099
		WALpl					P-		
	zinc finger	,					dependent		
1	domain, 1A	hACF1,					chromatin assemblyf	1	
	•	WCRF1 80,					actorlarge		
		DKFZP					subunit		
ļ		586E05					Subunt		
1		18							
BAZ1B	bromodomai		NM_023005	54	14670390	110	Acf1_AT	CG1966	7302099
	n adjacent to						P-		
		R9,					dependent		
•	domain, 1B	WBSC		ļ			chromatin	<u> </u>	
ŀ		R10;					assemblyf		
		William					actorlarge		
		s-					subunit		
		Beuren							
	i	syndro							
		me							
		chromos ome							
		region							
FI J21613	hypothetical	none	NM_021929	55	11345464	111	none	CG4065	7291750
	protein			٢					= 2 = 1 = 2
1	FLJ21613					1			
	similar to rat					l			
1	corneal								
Ì	wound								[
	healing					1			
}	related]
	protein			_					
1_	KIAA0483	none	NM_015176	56	7022998	112	попе	CG3428	7294925
3	protein	L				L		<u> </u>	L

III. High-Throughput In Vitro Fluorescence Polarization Assay

5

Fluorescently-labeled MP53 peptide/substrate are added to each well of a 96-well microtiter plate, along with a test agent in a test buffer (10 mM HEPES, 10 mM NaCl, 6 mM magnesium chloride, pH 7.6). Changes in fluorescence polarization, determined by using a Fluorolite FPM-2 Fluorescence Polarization Microtiter System (Dynatech Laboratories, Inc), relative to control values indicates the test compound is a candidate modifier of MP53 activity.

IV. <u>High-Throughput In Vitro Binding Assay.</u>

³³P-labeled MP53 peptide is added in an assay buffer (100 mM KCl, 20 mM HEPES pH 7.6, 1 mM MgCl₂, 1% glycerol, 0.5% NP-40, 50 mM beta-mercaptoethanol, 1 mg/ml BSA, cocktail of protease inhibitors) along with a test agent to the wells of a Neutralite-avidin coated assay plate and incubated at 25°C for 1 hour. Biotinylated substrate is then added to each well and incubated for 1 hour. Reactions are stopped by washing with PBS, and counted in a scintillation counter. Test agents that cause a difference in activity relative to control without test agent are identified as candidate p53 modulating agents.

10

15

20

25

30

5

V. <u>Immunoprecipitations and Immunoblotting</u>

For coprecipitation of transfected proteins, 3×10^6 appropriate recombinant cells containing the MP53 proteins are plated on 10-cm dishes and transfected on the following day with expression constructs. The total amount of DNA is kept constant in each transfection by adding empty vector. After 24 h, cells are collected, washed once with phosphate-buffered saline and lysed for 20 min on ice in 1 ml of lysis buffer containing 50 mM Hepes, pH 7.9, 250 mM NaCl, 20 mM -glycerophosphate, 1 mM sodium orthovanadate, 5 mM p-nitrophenyl phosphate, 2 mM dithiothreitol, protease inhibitors (complete, Roche Molecular Biochemicals), and 1% Nonidet P-40. Cellular debris is removed by centrifugation twice at 15,000 × g for 15 min. The cell lysate is incubated with 25 μ l of M2 beads (Sigma) for 2 h at 4 °C with gentle rocking.

After extensive washing with lysis buffer, proteins bound to the beads are solubilized by boiling in SDS sample buffer, fractionated by SDS-polyacrylamide gel electrophoresis, transferred to polyvinylidene difluoride membrane and blotted with the indicated antibodies. The reactive bands are visualized with horseradish peroxidase coupled to the appropriate secondary antibodies and the enhanced chemiluminescence (ECL) Western blotting detection system (Amersham Pharmacia Biotech).

VI. Kinase assay

A purified or partially purified MP53 is diluted in a suitable reaction buffer, e.g., 50 mM Hepes, pH 7.5, containing magnesium chloride or manganese chloride (1-20 mM) and a peptide or polypeptide substrate, such as myelin basic protein or casein (1-10 μ g/ml). The final concentration of the kinase is 1-20 nM. The enzyme reaction is conducted in microtiter plates to facilitate optimization of reaction conditions by

increasing assay throughput. A 96-well microtiter plate is employed using a final volume $30\text{-}100~\mu\text{l}$. The reaction is initiated by the addition of $^{33}\text{P-gamma-ATP}$ (0.5 $\mu\text{Ci/ml}$) and incubated for 0.5 to 3 hours at room temperature. Negative controls are provided by the addition of EDTA, which chelates the divalent cation (Mg2⁺ or Mn²⁺) required for enzymatic activity. Following the incubation, the enzyme reaction is quenched using EDTA. Samples of the reaction are transferred to a 96-well glass fiber filter plate (MultiScreen, Millipore). The filters are subsequently washed with phosphate-buffered saline, dilute phosphoric acid (0.5%) or other suitable medium to remove excess radiolabeled ATP. Scintillation cocktail is added to the filter plate and the incorporated radioactivity is quantitated by scintillation counting (Wallac/Perkin Elmer). Activity is defined by the amount of radioactivity detected following subtraction of the negative control reaction value (EDTA quench).

VII. Expression analysis

10

15

20

25

30

All cell lines used in the following experiments are NCI (National Cancer Institute) lines, and are available from ATCC (American Type Culture Collection, Manassas, VA 20110-2209). Normal and tumor tissues were obtained from Impath, UC Davis, Clontech, Stratagene, Ardais, Genome Collaborative, and Ambion.

TaqMan analysis was used to assess expression levels of the disclosed genes in various samples.

RNA was extracted from each tissue sample using Qiagen (Valencia, CA) RNeasy kits, following manufacturer's protocols, to a final concentration of 50ng/µl. Single stranded cDNA was then synthesized by reverse transcribing the RNA samples using random hexamers and 500ng of total RNA per reaction, following protocol 4304965 of Applied Biosystems (Foster City, CA).

Primers for expression analysis using TaqMan assay (Applied Biosystems, Foster City, CA) were prepared according to the TaqMan protocols, and the following criteria: a) primer pairs were designed to span introns to eliminate genomic contamination, and b) each primer pair produced only one product. Expression analysis was performed using a 7900HT instrument.

Taqman reactions were carried out following manufacturer's protocols, in 25 μl total volume for 96-well plates and 10 μl total volume for 384-well plates, using 300nM primer and 250 nM probe, and approximately 25ng of cDNA. The standard curve for result analysis was prepared using a universal pool of human cDNA samples, which is a

mixture of cDNAs from a wide variety of tissues so that the chance that a target will be present in appreciable amounts is good. The raw data were normalized using 18S rRNA (universally expressed in all tissues and cells).

For each expression analysis, tumor tissue samples were compared with matched normal tissues from the same patient. A gene was considered overexpressed in a tumor when the level of expression of the gene was 2 fold or higher in the tumor compared with its matched normal sample. In cases where normal tissue was not available, a universal pool of cDNA samples was used instead. In these cases, a gene was considered overexpressed in a tumor sample when the difference of expression levels between a tumor sample and the average of all normal samples from the same tissue type was greater than 2 times the standard deviation of all normal samples (i.e., Tumor – average(all normal samples) $> 2 \times \text{STDEV}(\text{all normal samples})$).

Results are shown in Table 2. Number of pairs of tumor samples and matched normal tissue from the same patient are shown for each tumor type. Percentage of the samples with at least two-fold overexpression for each tumor type is provided. ND indicates not done. A modulator identified by an assay described herein can be further validated for therapeutic effect by administration to a tumor in which the gene is overexpressed. A decrease in tumor growth confirms therapeutic utility of the modulator. Prior to treating a patient with the modulator, the likelihood that the patient will respond to treatment can be diagnosed by obtaining a tumor sample from the patient, and assaying for expression of the gene targeted by the modulator. The expression data for the gene(s) can also be used as a diagnostic marker for disease progression. The assay can be performed by expression analysis as described above, by antibody directed to the gene target, or by any other available detection method.

5

10

15

20

Table 2

SEQ	Brea	# of	Colo	# of	Head	# of	Kidn	# of	Lung	#.of	Ovary	# of	Pros	#.of	Skin	# of	Uteru	# of
IĎ:	st	Pai	ո	Pai	and	Pai	ey	Pai	160	Pairs	•	Pairs	tate	Pai	100	Pai	S	Pai
NO:	1 XX	rs .		rs	Neck	rs.		rs.	18				地	rs :		rs		rs
			13.	7.	8		4.5		100		3		354					.
48	5%	21	6%	33		8	12%	24	5%	21	9%	11	17%	12	0%	3	11%	19
52	5%	21	6%	33	12%	8	8%	24	0%	21	9%	11	17%	12	0%	3	21%	19
4	5%	21	6%	33	12%	8	8%	24	0%	21	9%	11	17%	12	0%	3	21%	19
6	33%	6	17%	30	ND	ND	ND	ND	8%	12	20%	5	ND	ND	ND	ND	ND	ND
55	33%	6	17%	30	ND	ND	ND	ND	8%	12	20%	5	ND	ND	ND	ND	ND	ND
51	33%	6	17%	30	ND	ND	ND	ND	8%	12	20%	5	ND	ND	ND	ND	ND	ND
7	0%	12	50%	30	ND	ND	ND	ND	0%	14	14%	7	ND	ND	ND	ND	ND	ND
8	33%	12	10%	29	ND	ND	ND	ND	21%	14	29%	7	ND	ND	ND	ND	ND	ND
9	8%	12	33%	30	ND	ND	ND	ND	7%	14	14%	7	ND	ND	ND	ND	ND	ND
10	100 %	1	0%	8	ND	ND	ND	ND	0%	2	ND	ND	ND	ND	ND	ND	ND	ND
11	0%	12	7%	28	ND	ND	ND	ND	7%	14	14%	7	ND	ND	ND	ND	ND	ND
56	0%	12	7%	28	ND	ND	ND	ND	7%	14	14%	7	ND	ND	ND	ND	ND	ND
31	5%	21	6%	33	25%	8	12%	24	5%	21	0%	11	8%	12	33%	3	5%	19
40	17%	18	22%	23	25%	8	20%	20	6%	18	10%	10	0%	8	33%	3	20%	15
38	17%	18	22%	23	25%	8	20%	20	6%	18	10%	10	0%	8	33%	3	20%	15
12	25%	12	17%	30	ND	ND	ND	ND	21%	14	0%	6	ND	ND	ND	ND	ND	ND
47	14%	21	18%	33	25%	8	29%	24	5%	21	10%	10	8%	12	67%	3	0%	19
5	8%	12	14%	14	ND	ND	ND	ND	18%	11	14%	7	ND	ND	ND	ND	ND	ND
42	10%	21	15%	33	25%	8	12%	24	14%	21	18%	11	8%	12	67%	3	5%	19
43	10%	21	15%	33	25%	8	12%	24	14%	21	18%	11	8%	12	67%	3	5%	19
34	10%	21	15%	33	25%	8	12%	24	14%	21	18%	11	8%	12	67%	3	5%	19
32	10%	21	15%	33	25%	8	12%	24	14%	21	18%	11	8%	12	67%	3	5%	19
33	10%	21	15%	33	25%	8	12%	24	14%	21	18%	11	8%	12	67%	3	5%	19
30	33%	21	67%	33	25%	8	83%	24	10%	21	36%	11	17%	12	33%	3	58%	19

5

WHAT IS CLAIMED IS:

5

10

20

30

1. A method of identifying a candidate p53 pathway modulating agent, said method comprising the steps of:

- (a) providing an assay system comprising a MP53 polypeptide or nucleic acid;
- (b) contacting the assay system with a test agent under conditions whereby, but for the presence of the test agent, the system provides a reference activity; and
- (c) detecting a test agent-biased activity of the assay system, wherein a difference between the test agent-biased activity and the reference activity identifies the test agent as a candidate p53 pathway modulating agent.
 - 2. The method of Claim 1 wherein the assay system comprises cultured cells that express the MP53 polypeptide.
- 3. The method of Claim 2 wherein the cultured cells additionally have defective p53 function.
 - 4. The method of Claim 1 wherein the assay system includes a screening assay comprising a MP53 polypeptide, and the candidate test agent is a small molecule modulator.
 - 5. The method of Claim 4 wherein the assay is a binding assay.
- 6. The method of Claim 1 wherein the assay system is selected from the group consisting of an apoptosis assay system, a cell proliferation assay system, an angiogenesis assay system, and a hypoxic induction assay system.
 - 7. The method of Claim 1 wherein the assay system includes a binding assay comprising a MP53 polypeptide and the candidate test agent is an antibody.
 - 8. The method of Claim 1 wherein the assay system includes an expression assay comprising a MP53 nucleic acid and the candidate test agent is a nucleic acid modulator.
 - 9. The method of Claim 8 wherein the nucleic acid modulator is an antisense oligomer.

10. The method of Claim 8 wherein the nucleic acid modulator is a PMO.

11. The method of Claim 1 additionally comprising:

10

25

- (d) administering the candidate p53 pathway modulating agent identified in (c) to a
 model system comprising cells defective in p53 function and, detecting a phenotypic change in the model system that indicates that the p53 function is restored.
 - 12. The method of Claim 11 wherein the model system is a mouse model with defective p53 function.
- 13. A method for modulating a p53 pathway of a cell comprising contacting a cell defective in p53 function with a candidate modulator that specifically binds to a MP53 polypeptide, whereby p53 function is restored.
- 15 14. The method of Claim 13 wherein the candidate modulator is administered to a vertebrate animal predetermined to have a disease or disorder resulting from a defect in p53 function.
- 15. The method of Claim 13 wherein the candidate modulator is selected from the groupconsisting of an antibody and a small molecule.
 - 16. The method of Claim 1, comprising the additional steps of:
 - (e) providing a secondary assay system comprising cultured cells or a non-human animal expressing MP53 ,
 - (f) contacting the secondary assay system with the test agent of (b) or an agent derived therefrom under conditions whereby, but for the presence of the test agent or agent derived therefrom, the system provides a reference activity; and
 - (g) detecting an agent-biased activity of the second assay system,
- wherein a difference between the agent-biased activity and the reference activity of
 the second assay system confirms the test agent or agent derived therefrom as a candidate
 p53 pathway modulating agent,

and wherein the second assay detects an agent-biased change in the p53 pathway.

17. The method of Claim 16 wherein the secondary assay system comprises cultured cells.

- 18. The method of Claim 16 wherein the secondary assay system comprises a non-humananimal.
 - 19. The method of Claim 18 wherein the non-human animal mis-expresses a p53 pathway gene.
- 20. A method of modulating p53 pathway in a mammalian cell comprising contacting the cell with an agent that specifically binds a MP53 polypeptide or nucleic acid.
 - 21. The method of Claim 20 wherein the agent is administered to a mammalian animal predetermined to have a pathology associated with the p53 pathway.

22. The method of Claim 20 wherein the agent is a small molecule modulator, a nucleic acid modulator, or an antibody.

- 23. A method for diagnosing a disease in a patient comprising:
- 20 (a) obtaining a biological sample from the patient;
 - (b) contacting the sample with a probe for MP53 expression;
 - (c) comparing results from step (b) with a control;
 - (d) determining whether step (c) indicates a likelihood of disease.
- 25 24. The method of claim 23 wherein said disease is cancer.
 - 25. The method according to claim 24, wherein said cancer is a cancer as shown in Table 2 as having >25% expression level.

30

15

SEQUENCE LISTING

<110>	EXEL	IXIS,	INC.					
<120>	MP53	s AS I	MODIFI	ERS OF THE	p53 PATHWAY	AND METHOD	S OF USE	
<130>	EX03	-018C	-PC					
<150> <151>		0/361 -03-0	•					
<160>	112							
<170>	Pate	ntIn '	versio	on 3.2				
<210> <211> <212> <213>	1 1587 DNA Homo	sapi	ens					
<400> gtaaac	1 tttg	cctgt	aggag	gactgatctc	ttgatgaaat	acagaaaaac	catctcagaa	60
aaaggaa	aaat	gggca	atcgt	catagccagt	cgtacaccct	ctcagaaggc	agtcaacagt	120
tgccta	aagg	ggact	cccaa	ccctcgacag	tcgtgcagcc	tctcagccac	ccatcacgga	180
atggaga	agcc	agagg	cccca	cagcctgcta	aagcgagcag	tcctcagggt	tttgatgtgg	240
atcgaga	atgc	caaaa	agctg	aacaaagcct	gcaaaggaat	ggggaccaat	gaagcagcca	300
tcattg	aaat	cttat	cgggc	aggacatcag	atgagaggca	acaaatcaag	caaaagtaca	360
aggcaa	cgta	cggca	aggag	ctggaggaag	tactcaagag	tgagctgagt	ggaaacttcg	420
agaaga	cagc	gttgg	ccctt	ctggaccgtc	ccagcgagta	cgccgcccgg	cagctgcaga	480
aggcta	tgaa	gggtc	tgggc	acagatgagt	ccgtcctcat	tgaggtcctg	tgcacgagga	540
ccaata	agga	aatca	tcgcc	attaaagagg	cctaccaaag	gctatttgat	aggagcctcg	600
aatcag	atgt	caaag	gtgat	acaagtggaa	acctaaaaaa	aatcctggtg	tctctgctgc	660
aggcta	atcg	caatg	aagga	gatgacgtgg	acaaagatct	agctggtcag	gatgccaaag	720
atctgt	atga	tgcag	gggaa	ggccgctggg	gcactgatga	gcttgcgttc	aatgaagtcc	780
tggcca	agag	gagct	acaag	cagttacgag	ccacctttca	agcctatcaa	attctcattg	840
gcaaag	acat	agaag	aagcc	attgaagaag	aaacatcagg	cgacttgcag	aaggcctatt	900
taactc	tcgt	gagaa	gtgcc	caggattgtg	aggactattt	tgctgaacgt	ttgtacaagt	960
ccatga	aggg	tgcgg	ggacc	gatgaggaga	cgttgattcg	cataatcgtg	accagggccg	1020
aggtgg	acct	tcagg	ggatc	aaagcaaagt	tccaaaagaa	gtatcagaag	tctctctctg	1080
acatgg	ttcg	ctcag	atacc	tccggggact	tccggaaact	gctagtagcc	ctcttgcact	1140
gagcca	agcc	agggc	aatag	gaacacaggg	tggaaccacc	tttgtcaaga	gcacattcca	1200
aatcaa	actt	ggaaa	tgaga	ctcccccaca	aaaaccctta	agagtcccgg	attactttct	1260

tggcagctta agtggcgcag ccaggccaag ctgtgtaagt taagggcagt aacgttaaga 1320

tygeagetta agtggegeag	ccaggccaag	ccycycaagc	caagggcagc	aacgttaaga	1320
tgcgtgggca gggcaccttg	aactctggct	tagcaagcat	ctaggctgcc	tcttcacttt	1380
cttttagcat ggtaactgga	tgttttctaa	acactaatga	aatcagcagt	tgatgaaaaa	1440
actatgcatt tgtaatggca	catttagaag	gatatgcatc	acacaagtaa	ggtacaggaa	1500
agacaaaatt aaacaattta	ttaattttcc	ttctgtgtgt	tcaatttgaa	agcctcattg	1560
ttaattaaag ttgtggatta	tgcctct				1587
<210> 2 <211> 1982 <212> DNA <213> Homo sapiens <400> 2					
gcagaggagg agcgcacgcc	ggcctcgaag	aacttctgct	tgggtggctg	aactctgatc	60
ttgacctaga gtcatggcca	tggcaaccaa	aggaggtact	gtcaaagctg	cttcaggatt	120
caatgccatg gaagatgccc	agaccctgag	gaaggccatg	aaagggctcg	gcaccgatga	180
agacgccatt attagcgtcc	ttgcctaccg	caacaccgcc	cagcgccagg	agatcaggac	240
agcctacaag agcaccatcg	gcagggactt	gatagacgac	ctgaagtcag	aactgagtgg	300
caacttcgag caggtgattg	tggggatgat	gacgcccacg	gtgctgtatg	acgtgcaaga	360
gctgcgaagg gccatgaagg	gagccggcac	tgatgagggc	tgcctaattg	agatcctggc	420
ctcccggacc cctgaggaga	tccggcgcat	aagccaaacc	taccagcagc	aatatggacg	480
gagccttgaa gatgacattc	gctctgacac	atcgttcatg	ttccagcgag	tgctggtgtc	540
tctgtcagct ggtgggaggg	atgaaggaaa	ttatctggac	gatgctctcg	tgagacagga	600
tgcccaggac ctgtatgagg	ctggagagaa	gaaatggggg	acagatgagg	tgaaatttct	660
aactgttctc tgttcccgga	accgaaatca	cctgttgcat	gtgtttgatg	aatacaaaag	720
gatatcacag aaggatattg	aacagagtat	taaatctgaa	acatctggta	gctttgaaga	780
tgctctgctg gctatagtaa	agtgcatgag	gaacaaatct	gcatattttg	ctgaaaagct	840
ctataaatcg atgaagggct	tgggcaccga	tgataacacc	ctcatcagag	tgatggtttc	900
tcgagcagaa attgacatgt	tggatatccg	ggcacacttc	aagagactct	atggaaagtc	960
tctgtactcg ttcatcaagg	gtgacacatc	tggagactac	aggaaagtac	tgcttgttct	1020
ctgtggagga gatgattaaa	ataaaaatcc	cagaaggaca	ggaggattct	caacactttg	1080
aatttttta acttcatttt	tctacactgc	tattatcatt	atctcagaat	gcttatttcc	1140
aattaaaacg cctacagctg	cctcctagaa	tatagactgt	ctgtattatt	attcacctat	1200
aattagtcat tatgatgctt	taaagctgta	cttgcatttc	aaagcttata	agatataaat	1260

ggagatttta	aagtagaaat	aaatatgtat	tccatgtttt	taaaagatta	ctttctactt	1320
tgtgtttcac	agacattgaa	tatattaaat	tattccatat	tttcttttca	gtgaaaaatt	1380
ttttaaatgg	aagactgttc	taaaatcact	tttttcccta	atccaatttt	tagagtggct	1440
agtagtttct	tcatttgaaa	ttgtaagcat	ccggtcagta	agaatgccca	tccagttttc	1500
tatatttcat	agtcaaagcc	ttgaaagcat	ctacaaatct	ctttttttag	gttttgtcca	1560
tagcatcagt	tgatccttac	taagtttttc	atgggagact	tccttcatca	catcttatgt	1620
tgaaatcact	ttctgtagtc	aaagtatacc	aaaaccaatt	tatctgaact	aaattctaaa	1680
gtatggttat	acaaaccata	tacatctggt	taccaaacat	aaatgctgaa	cattccatat	1740
tattatagtt	aatgtcttaa	tccagcttgc	aagtgaatgg	aaaaaaaat	aagcttcaaa	1800
ctaggtattc	tgggaatgat	gtaatgctct	gaatttagta	tgatataaag	aaaacttttt	1860
tgtgctaaaa	atactttta	aaatcaattt	tgttgattgt	agtaatttct	atttgcactg	1920
tgcctttcaa	ctccagaaac	attctaagat	gtacttggat	ttaattaaaa	agttcacttt	1980
gt						1982

<210> 3 <211> 272

<211> 2728 <212> DNA

<213> Homo sapiens

<400> 3 ggtggctggt tctgcgccgg atccgggaga ggggcgggcg ccattgtgct tcgctgccga 60 ctgcatttcc tcagtcacgg gcctagaact ccaaggagaa aggcggcgaa aaatctttaa 180 gaatggagtc taaaccttca aggattccaa gaagaatttc tgttcaacct tccagctcct taagtgctag gatgatgtct ggaagcagag gaagtagttt aaatgatacc tatcactcaa 240 gagactette atttagattg gattetgaat ateagtetac ateageatea geatetgegt 300 360 caccatttca atctgcatgg tatagtgaat ctgagataac tcagggagca cgctcaagat 420 cgcagaacca gcaacgggat catgattcaa aaagacctaa actttcctgt acaaactgta ctacctcagc tgggagaaat gttggaaatg gtttaaacac attatcagat tcatcttgga 480 ggcatagtca agttcctaga tcttcatcaa tggtacttgg atcatttgga acagacttaa 540 tgagagagag gagagatttg gagagaagaa cagattcctc tattagtaat cttatggatt 600 atagtcaccg aagtggtgat ttcacaactt catcatatgt tcaagacaga gttccttcat 660 720 attcacaagg agcaagacca aaagaaaact caatgagcac tttacagttg aatacatcat ccacaaacca ccaattgcct tctgaacatc agaccatact aagttctagg gattccagaa 780 attetttaag atcaaatttt tetteaagag aatcagaate tteeegaage aatacgeage 840 ctggattttc ttacagttca agtagagatg aagccccaat cataagcaat tcagaaaggg 900

ttgtttcatc	tcaaagacca	tttcaagaat	cttctgacaa	tgaaggtagg	cggacaacga	960
ggagattgct	gtcacgcata	gcttctagca	tgtcatctac	tttttttca	cgaagatcta	1020
gtcaggattc	cttgaataca	agatcattga	attctgaaaa	ttcttacgtt	tctccaagaa	1080
tcttgacagc	ttcacagtcc	cgtagtaatg	taccatcagc	ttctgaagtt	cccgataata	1140
gggcgtctga	agcttctcag	ggatttcgat	ttcttaggcg	aagatggggt	ttgtcatctc	1200
ttagccacaa	tcatagctct	gagtcagatt	cagaaaattt	taaccaagaa	tctgaaggta	1260
gaaatacagg	accatggtta	tcttcctcac	ttagaaatag	atgcacacct	ttgttctcta	1320
gaaggaggcg	agagggaaga	gatgaatctt	caaggatacc	tacctctgat	acatcatcta	1380
gatctcatat	ttttagaaga	gaatcaaatg	aagtggttca	ccttgaagca	cagaatgatc	1440
ctcttggagc	tgctgccaac	agaccacaag	catctgcagc	atcaagcagt	gccacaacag	1500
gtggctctac	atcagattcg	gctcaaggtg	gaagaaatac	aggaatatca	gggattcttc	1560
ctggttcctt	attccggttt	gcagtccccc	cagcacttgg	gagtaatttg	accgacaatg	1620
tcatgatcac	agtagatatt	attccttcag	gttggaattc	agctgatggt	aaaagtgata	1680
aaactaaaag	tgcgccttca	agagatccag	aaagattgca	gaaaataaaa	gagagcctcc	1740
ttttagagga	ctcagaagaa	gaagaaggtg	acttatgtag	aatttgtcaa	atggcagctg	1800
catcatcatc	taatttgctg	atagagccat	gcaagtgcac	aggaagtttg	cagtatgtcc	1860
accaagactg	tatgaaaaag	tggttacagg	ccaaaattaa	ctctggttct	tcattagaag	1920
ctgtaaccac	ctgtgaacta	tgtaaagaga	agttggagct	taacctggag	gattttgata	1980
ttcatgaact	acatagagct	catgcaaatg	aacaagctga	gtatgagttt	atcagctctg	2040
gtctctacct	agtggtgtta	ttgcacttgt	gcgaacaaag	cttttctgat	atgatgggaa	2100
atacaaatga	accaagcaca	cgtgtccgat	ttattaacct	tgcaagaact	cttcaggcac	2160
atatggaaga	tctcgaaact	tcagaggatg	attccgaaga	agacggagac	cataacagga	2220
catttgatat	tgcctaactt	catataagac	agatggatga	tctgtgaaca	taagtgttta	2280
ttaaaaatgg	caattaaata	taaattactt	ttgtggggga	atgcctaata	aatacattga	2340
ctatatataa	aatgaatata	tacatacaca	tgtatgcctg	tatatatata	ttcattctcc	2400
agtgttgctg	aattaaaatt	ctgctggact	ttttaacata	gcaaatccga	tgtttataaa	2460
ctggtaatca	aaaaggtttt	ttcttttagg	tgagtgggaa	agtattaccc	ttgttttaaa	2520
tatctaagca	atgcctatca	accettttt	gtgttatgat	tactgtagtc	atatttatga	2580
aaaaaggttt	gtgttttact	cttgctagtg	agaaaagtgg	gacaaaatat	acttttgaaa	2640
taaaatgcta	tatggcacct	aattatttt	tcttttaaaa	tgccttaagt	tgcagtctca	2700
ttttgataat	catttgcttc	cagtgttt				2728

<210> <211> 3441 <212> DNA <213> Homo sapiens <400> 4 60 ggagattgtt gccagggctc tggtgagttc agaatgaccg aagaagcatg ccgaacacgg 120 agtcagaaac gagcgcttga acgggaccca acagaggacg atgtggagag caagaaaata aaaatggaga gaggattgtt ggcttcagat ttaaacactg acggagacat gagggtgaca 180 240 cctgagccgg gagcaggtcc aacccaagga ttgctgaggg caacagaggc cacggccatg gccatgggca gaggcgaagg gctggtgggc gatgggcccg tggacatgcg cacctcacac 300 agtgacatga agtccgagag gagacccccc tcacctgacg tgattgtgct ctccgacaac 360 420 gagcagccct cgagcccgag agtgaatggg ctgaccacgg tggccttgaa ggagactagc 480 accgaggccc tcatgaaaag cagtcctgaa gaacgagaaa ggatgatcaa gcagctgaag 540 gaagaattga ggttagaaga agcaaaactc gtgttgttga aaaagttgcg gcagagtcaa 600 atacaaaagg aagccaccgc ccagaagccc acaggttctg ttgggagcac cgtgaccacc cctccccgc ttgttcgggg cactcagaac attcctgctg gcaagccatc actccagacc 660 720 tetteagete ggatgeeegg cagtgteata eeceegeeee tggteegagg tgggeageag gcgtcctcga agctggggcc acaggcgagc tcacaggtcg tcatgccccc actcgtcagg 780 ggggctcagc aaatccacag cattaggcaa cattccagca cagggccacc gccctcctc 840 900 ctggccccc gggcgtcggt gcccagtgtg cagattcagg gacagaggat catccagcag 960 ggcctcatcc gcgtcgccaa tgttcccaac accagcctgc tcgtcaacat cccacagccc accccagcat cactgaaggg gacaacagcc acctccgctc aggccaactc caccccact 1020 agtgtggcct ctgtggtcac ctctgccgag tctccagcaa gccgacaggc ggccgccaag 1080 ctggcgctgc gcaaacagct ggagaagacg ctactcgaga tcccccacc caagccccca 1140 gccccagaga tgaacttcct gcccagcgcc gccaacaacg agttcatcta cctggtcggc 1200 ctggaggagg tggtgcagaa cctactggag acacaaggca ggatgtcggc cgccactgtg 1260

5

ctgtcccggg agccctacat gtgtgcacag tgcaagacgg acttcacgtg ccgctggcgg

gaggagaaga gcggcgccat catgtgtgag aactgcatga caaccaacca gaagaaggcg

ctcaaggtgg agcacaccag ccggctgaag gccgcctttg tgaaggcgct gcagcaggaa

caggagattg agcagcggct cctgcagcag ggcacggccc ctgcacaggc caaggccgag

cccaccgctg ccccacaccc cgtgctgaag caggtcataa aaccccggcg taagttggcg

ttccgctcag gagaggcccg cgactggagt aacggggctg tgctacaggc ctccagccag

1320

1380

1440

1500

1560

1620

ctgtcccggg	gttcggccac	gacgccccga	ggtgtcctgc	acacgttcag	tccgtcaccc	1680
aaactgcaga	actcagcctc	ggccacagcc	ctggtcagca	ggaccggcag	acattctgag	1740
agaaccgtga	gcgccggcaa	gggcagcgcc	acctccaact	ggaagaagac	gcccctcagc	1800
acaggcggga	cccttgcgtt	tgtcagccca	agcctggcgg	tgcacaagag	ctcctcggcc	1860
gtggaccgcc	agcgagagta	cctcctggac	atgatcccac	cccgctccat	ccccagtca	1920
gccacgtgga	aatagtgcga	gccaggcccc	gtggaagacg	ggctccctcc	tccccacct	1980
ggcccctggt	ctagaaggac	ccactgcacc	accctccgct	ggctcgggaa	gacaccgtgc	2040
ccgccccaag	agcaagcacc	ggccatgctg	cagaggcaag	acctcaattc	ttggctgcaa	2100
agtttcatca	gggctagggg	gctggtgccg	cctcataggc	agacgaggat	catcgctggg	2160
ggacctttcc	cgtgggcttt	cttcctttct	ctctttgcct	ttagtttgcc	cgacaccagc	2220
agaaaagtgg	accttggggg	ctggttctgc	tcctggcccc	cttgttcagc	ccctgccggc	2280
acacgggcgg	ctcaccctgg	acactgtgat	gcgcatgggc	aaggccagcg	cccggggctt	2340
ctgaaccgag	cggggtgttt	catttttttg	cttttccctg	tcttaggctc	ccagtctttg	2400
actgccttcc	catggcgatc	tataagttga	aagattttt	tttttttaa	tcacctcatg	2460
atgatggagt	taaaagtaaa	ccgtgcagac	cctggggtcc	ctgttgtacg	ctgcatcatc	2520
ccgctggccc	tgtgccctgg	agggtgggcg	gctcatggtg	ccacagcccc	tggcagggac	2580
ggccggcccg	cccccgtgac	tgactgacag	atgcagggat	ggccgaggca	gccctcgctc	2640
cagctgaacg	cctccattgc	tgcttgttct	ggagaccccc	gcccccgcac	cttccagact	2700
tagcagaaga	acaaactgaa	gaacagaccc	agccagagaa	gcagggattc	cagaagctgc	2760
ccattaaggg	agaaggagag	gatccggtcg	gcagcagccc	tgagcagaaa	gctggagggg	2820
ggactgtcgc	ggggttttc	tgttgtggtt	tattttatta	aatttttcc	tttttctat	2880
tcatttcgat	ggacgcaatc	ttaagccacc	ctggccttgc	tcctgggagg	tgagcgtgca	2940
caggtgtgtg	caggtcagga	ggtgccgtcc	aggtgtgcgg	cgagccgctg	cgcacagatg	3000
tcaggatttc	cgtttgggtc	tagtttagaa	cctgtcctta	aacctagggg	ttgctgtcag	3060
gatttgcttt	cagacttttt	ttttttttgt	aattcccttt	agagtctaca	aaaatgtttt	3120
taaaaggatc	aggtctgctt	ttagtttcat	ttttgtttct	ttcccgtccc	actctttaaa	3180
aactggttcc	gtgaggaaag	gcagaagccg	ttccgtgtct	cttgcaggct	gggccggctt	3240
catgccagtg	cgagggcgtc	ccgtgcccac	gtacatacgt	atgtctccat	gagttctggg	3300
ctccactggt	tccaattgag	ctccagccct	ggttttccta	cccatgcagt	tagggacttt	3360
aatttaattt	tttttttgta	gggccaccgc	cttcaaacac	aactgctaca	acattctaat	3420
aaaggctcat	ttaaccccca	g				3441

<210> 5

<211> 2713 <212> DNA <213> Homo sapiens <400> 5 60 tggctgcctg acttgggaga tggatgggct gagggagtgg agggggacct cagaggagca ggaccaggga gactcccagg acggtaagca acatttgagg accattcact aacgcttctc 120 180 tgcaggggtt tcctctccat ccatttcctt gctgggttgt cagtgatgcc atctgagttg ctgtcagggc tgtagcctga caaagggttt cctaatagat ccaaactgtc catttgtggg 240 300 gagettetga ttttetgttg ttaetggttt ecettageee aacaccaggg teattaagaa 360 ggaaggaatg tgaggaagaa agaaaggcag ggcattcagg aagaagtgtg gaggcatggg agggttetea tggggeete etgggeaetg ggtgaeetgt cettteteec eteaggtagg 420 ggtcccacgg ctgggtggtc ctaagccact gggtggatga aaggccgagg gatgttggtc 480 540 etgettetge atgeggtggt ceteggeetg eccagegeet gggeegtggg ggeetgegee egegettgte eegeegeetg egeetgeage accettggage geggetgete ggtgegetge 600 gaccgcgcgg gcctcctgcg ggtgccggcc gagctcccgt gcgaggcggt ctccatcgac 660 720 ctggaccgga acggcctgcg cttcctgggc gagcgagcct tcggcacgct gccgtccttg egeegeetgt egetgegeea caacaacetg teetteatea egeeeggege etteaaggge 780 840 etgeegegee tggetgaget gegeetggeg cacaacggeg acetgegeta cetgeacgeg 900 cgcaccttcg cggcgctcag ccgcctgcgc cgcctagacc tagcagcctg ccgcctcttc 960 agogtgocog agogcotoct ggoogaactg coggocotgo gogaactogo cgcottogac aacctgttcc gccgcgtgcc gggcgcgctg cgcggcctgg ccaacctgac gcacgcgcac 1020 etggagegeg geegeatega ggeggtggee teeagetege tgeagggeet gegeegeetg .1080 1140 1200 tgtggcgtcc tggagcatct gctgctcaac gacaacctgc tggccgagct cccggccgac gccttccgcg gcctgcggcg cctgcgcacg ctcaacctgg gtggcaacgc gctggaccgc 1260 gtggcgcgcg cctggttcgc tgacctggcc gagctcgagc tgctctacct ggaccgcaac 1320 agcategeet tegtggagga gggegeette cagaacetet egggteteet egegetgeae 1380 ctcaacggca accgcctcac cgtgctcgcc tgggtcgcct tccagcccgg cttcttcctg 1440 1500 ggccgcctct tcctcttccg caacccgtgg tgctgcgact gccgtctgga gtggctgagg 1560 gactggatgg agggctccgg acgtgtcacc gacgtgccgt gcgcctcccc gggctccgtg gccggcctgg acctcagcca ggtgaccttc gggcgctcct ccgatggcct ctgtgtggac 1620 cccgaggagc tgaacctcac cacgtccagt ccaggcccgt ccccagaacc agcggccacc 1680

7

accgtgagca	ggttcagcag	cctcctctcc	aagctgctgg	ccccgagggt	cccggtggag	1740
gaggcggcca	acaccactgg	ggggctggcc	aacgcctccc	tgtccgacag	cctctcctcc	1800
cgtggggtgg	gaggcgcggg	ccggcagccc	tggtttctcc	tcgcctcttg	tetectgece	1860
agcgtggccc	agcacgtggt	gtttggcctg	cagatggact	gacctggcca	gaggggggaa	1920
agtttgctta	actgggcttg	agtgtgtttg	tggtaagggg	agaggagccg	gaatggaggg	1980
cagaggtgaa	aatcccagtg	gagggtggaa	ggaaccgttt	gcctccagag	atggccccag	2040
ggagaacaca	gggacgtgcc	actcgagggg	gaggatggta	tggatttctg	cttttgtcac	2100
acgggcatcc	attggaaaag	agaagcaaga	atgaacgtgg	gccctcgggt	gggaagacta	2160
ggaatcggaa	gcttctaggg	cttcacatcc	cttcccctcc	cctcccttc	ccctcatctt	2220
ccaggcaaca	gtgcctgcaa	ggcctgaatt	agagagactt	ccattggcta	agtagttaag	2280
agccgtccca	tttctcctgg	cggggtaacc	cattacaccg	aagtcctttg	ttttctacca	2340
caatcctcct	cctcctctcc	aggggcctgg	aaacactagg	attcaggaag	gtaggcagga	2400
cgtgagagaa	gggagatggg	agagagattt	aagacaaagg	gtggcggtgg	ttcctggggt	2460
ctgagatgtg	ttaggaggcg	tttaaaacaa	agatccagtt	catttactcc	acagttattc	2520
ccagggctgg	ccctagccac	aaaggaactt	tagggcaggg	tagggaaaaa	aggggcagca	2580
gggggtgtgt	ttgtggacaa	ataaatttgt	aaagtccgag	gattaaaaaa	aaaaaaaggt	2640
taaaccggtt	tctctactgc	tggacttttc	agagtctttc	atatgctaac	attcattgtg	2700
aatctcccaa	gag					2713
<210> 6 <211> 3160 <212> DNA <213> Homo	sapiens					
<400> 6 atacgatgta	ctttttttaa	tgccgttgaa	acagagttaa	tttcctttag	cacacaaqtc	60
ttagagacaa	aagaaaaaaa	ggtctgcaac	atgaaagtca	caggcatcac	aatcctcttt	120
tggcccctct	ccatgatatt	attatcagac	aaaatccagt	cttctaaaag	agaagtccaa	180
tgtaatttta	ctgaaaaaaa	ttataccttg	attccagcag	atatcaagaa	agatgttact	240
atacttgatc	tcagttataa	ccaaattact	cttaatggta	cagacacaag	agttctacag	300
acatactttt	tactcacaga	gctctatttg	attgagaaca	aggttactat	cttacataat	360
aacggttttg	gtaacctctc	cagtctagaa	attttaaata	tctgtagaaa	ctccatctat	420
gtaattcaac	agggtgcatt	tttaggctta	aataaactaa	aacagttata	tctctgccaa	480
aacaaaatag	aacaactgaa	tgctgatgta	tttgtgcctc	taagaagcct	aaaacttctg	540

aatctgcaag	gcaatttgat	tagctatttg	gatgtaccac	cactatttca	tctggaatta	600
ataactttat	atggaaacct	atggaactgo	: tcttgcagtc	tatttaattt	gcagaactgg	660
ttgaacacat	caaatgtgac	attagaaaat	gagaacatca	ccatgtgtag	ctaccccaac	720
agcctgcaga	gctacaatat	caaaacagta	cctcataagg	ctgaatgcca	ctcaaaattt	780
ccttcatcag	taactgaaga	tctttatatt	cattttcagc	ccatcagcaa	ttcaatattt	840
aatagctctt	cgaacaactt	aacaagaaat	tcagaacatg	aacctcttgg	aaaaagttgg	900
gcttttcttg	ttggtgttgt	tgtcactgta	ctgacgactt	cacttctcat	ttttattgct	960
atcaaatgcc	caatatggta	caatattctg	cttagttata	atcatcatcg	cctggaagag	1020
catgaagcag	aaacctatga	agatggtttt	actggaaatc	caagctctct	ttcacagata	1080
ccagaaacaa	actctgaaga	aactacagta	atatttgaac	aattacattc	atttgtggta	1140
gatgatgatg	gatttattga	agacaaatat	atagatatcc	atgaattatg	tgaagaaaat	1200
taatttcttt	caaagtttgc	tttttaaagc	aaagttatca	gctcactcag	tttagatatg	1260
gagattttgc	tatgtgacat	aacaaaatac	agctggcagg	cattcatatt	aatgacaaca	1320
tacatgaata	tcataaaatt	atgttctttg	cattatattg	agcaagcagg	ttcaaataca	1380
gtaactgaca	ctcctcggta	gttgacagtt	acatagtcta	caatactagc	actactattc	1440
ttagcagtgc	ttgggtgacc	atacgaacta	gtaaaaaggt	ctaaattatt	catgaattaa	1500
aatgaatgga	ttctcatatt	aacacaggta	tttgacataa	tatgtattaa	gttatactaa	1560
tgtttcaatc	agtaaagaaa	taaaagttta	ggatttatta	atatatggaa	gtcaaagtga	1620
ggaacagaga	tagcttaaat	aatacactaa	gattgatttt	atgctcccag	aataaaatca	1680
tagagttgga	aaatattttt	ttgaaatgct	tcctgaaata	gcacaataaa	tttcccttaa	1740
aatttcatag	caatttaaag	cacaagcaca	atgttcaggc	ataatcccta	ataagtcact	1800
attgattctg	gttataaaga	aaggctgtca	ccataatgca	ggatcactac	agtttaatgt	1860
catactggct	tccaaagtgg	gcatcacaat	tatctataaa	tcttgtttta	aaaatacata	1920
tttctacctc	tctctgggag	atttttattc	aaattggtct	gtgctgacac	taaggaatct	1980
tcatgtggtc	catggacagc	tatttctatc	tattcagtag	atagagcaat	gtttcccaaa	2040
ttgtttttct	agaatactaa	tttccagaga	gacattcaca	agtatttaca	gaagaagaag	2100
gaggtacatg	gtcaaattac	tacaggaaaa	actagtagtt	taaacaaggt	gaaacaagat	2160
tctttttctt	tttttttt	tttttttga	gacaaagtct	cgcactgtct	cccaggctgg	2220
actgcagcag	cgcagtctca	gatcactgca	acctccgcct	cctgggttca	agcaattctt	2280
ctgactcagc	ctcccgagta	gctgggagta	caggtgcaca	ccaccatgcc	tggctaattt	2340
ctgtatttt	agtagagaca	gggtttcacc	atgttggcca	ggctggtctc	gaacgcctga	2400

cctcatgatc	tacccgcctc	ggcctcccaa	agtgctggga	ttacaggcat	ggagcaccgt	2460
gcctggccaa	gattctttac	aataggattt	atgtaaaact	taactaagct	aaactgctct	2520
ctgattattc	aagagcaaag	tattaaaaat	ttctcgaact	tacttgacaa	caaaacccat	2580
tctttcagtt	acatctacta	agagctcgta	gttcaataac	attccaaaga	acgtagtttg	2640
gaaaacactg	gcctatcggc	tgtaatagga	agggtctaaa	gaaaattatt	tgctgagtcc	2700
tcataatcaa	ttggctataa	tcacaattta	ataatttatc	aatgcaaaca	gtacattaaa	2760
aactgtagca	caatctataa	tttttacctt	catatgcaga	gaaattaaga	atttacatct	2820
tttacaaata	tgtgtatctc	tgaaataatg	aaatatattg	atgggtgaaa	taatatttct	2880
ggtattttct	tcattataac	acgtggaatg	ggacagtggc	tagaggtatg	gatggagcaa	2940
ggtcaaatat	gagctgatgg	agctgggcgc	taaataaggg	tataatatgc	tacttctgtg	3000
tatgttgtgt	atggtatagt	atgctatttc	tgtgtatgtt	caaattgttt	atgtatataa	3060
taaagtttta	aaaatttgta	tgtacttgac	aattccttag	aaaaaagagg	ctaaaataaa	3120
atagatctac	gtcataaaaa	aaaaaaaaa	aaaaaaaaa			3160

<210> 7 <211> 4158 <212> DNA

<213> Homo sapiens

<400> 7 ttgatttggt atagtgggaa catttgcttt ggagacagat gaactggatt ctgatcgtga 60 ccctgctatt ttctccttgt gtgactttgg agccatgaga ccccagatcc tgctgctcct 120 ggccctgctg accctaggcc tggctgcaca acaccaagac aaagtgccct gtaagatggt 180 240 ggacaagaag gtctcgtgcc aggttctggg cctgctccag gtcccctcgg tgctcccgcc agacactgag accettgate tatetgggaa ceagetgegg agtateetgg ceteaceeet 300 gggcttctac acagcacttc gtcacctgga cctgagcacc aatgagatca gcttcctcca 360 420 gccaggagcc ttccaggccc tgacccacct ggagcacctc agcctggctc acaaccggct 480 ggcgatggcc actgcgctga gtgctggtgg cctgggcccc ctgccacgcg tgacctccct ggacctgtct gggaacagcc tgtacagcgg cctgctggag cggctgctgg gggaggcacc 540 cagcetgcat acceteteae tggcggagaa cagtetgaet cgceteacce gccacacett 600 ccgggacatg cctgcgctgg agcagcttga cctgcatagc aacgtgctga tggacatcga 660 ggatggcgcc ttcgagggtc tgccccgcct gacccatctc aacctctcca ggaattccct 720 cacctgcatc tecgaettea geeteeagea getgegggtg etagaeetga getgeaacag 780 catcgaggcc tttcagacgg cctcccagcc ccaggctgag ttccagctca cctggcttga 840 cctgcgggag aacaaactgc tccatttccc cgacctggcc gcgctcccga gactcatcta 900

cctgaacttg	tccaacaacc	tcatccggct	cccacaggg	ccaccccagg	acagcaaggg	960
catccacgca	ccttccgagg	gctggtcagc	cctgcccctc	tcagccccca	gcgggaatgc	1020
cagcggccgc	cccctttccc	agctcttgaa	tctggatttg	agctacaatg	agattgagct	1080
catccccgac	agctttcttg	agcacctgac	ctccctgtgc	ttcctgaacc	tcagcagaaa	1140
ctgcttgcgg	acctttgagg	cccggcgctt	aggctccctg	ccctgcctga	tgctccttga	1200
cttaagccac	aatgccctgg	agacactgga	actgggcgcc	agagccctgg	ggtctctgcg	1260
gacgctgctc	ctacagggca	atgccctgcg	ggacctgccc	ccatacacct	ttgccaatct	1320
ggccagcctg	cagcggctca	acctgcaggg	gaaccgagtc	agcccctgtg	gggggccaga	1380
tgagcctggc	ccctccggct	gtgtggcctt	ctccggcatc	acctccctcc	gcagcctgag	1440
cctggtggat	aatgagatag	agctgctcag	ggcaggggcc	ttcctccaca	ccccactgac	1500
tgagctggac	ctttcttcca	atcctgggct	ggaggtggcc	acgggggcct	tgggaggcct	1560
ggaggcctcc	ttggaggtcc	tggcactgca	gggcaacggg	ctgatggtcc	tgcaggtgga	1620
cctgccctgc	ttcatctgcc	tcaagcggct	caatcttgcc	gagaaccgcc	tgagccacct	1680
tecegeetgg	acacaggctg	tgtcactgga	ggtgctggac	ctgcgaaaca	acagcttcag	1740
cctcctgcca	ggcagtgcca	tgggtggcct	ggagaccagc	ctccggcgcc	tctacctgca	1800
ggggaatcca	ctcagctgct	gcggcaatgg	ctggctggca	gcccagctgc	accagggccg	1860
tgtggacgtg	gacgccaccc	aggacctgat	ctgccgcttc	agctcccagg	aggaggtgtc	1920
cctgagccac	gtgcgtcctg	aggactgtga	gaagggggga	ctgaagaaca	tcaacctcat	1980
catcatcctc	accttcatac	tggtctctgc	catcctcctc	accacgctgg	ccgcctgctg	2040
ctgcgtccgc	cggcagaagt	ttaaccaaca	gtataaagcc	taaagaagcc	gggagacact	2100
ctaggtcagt	gggggagcct	gaggtacaga	gaagagtgag	gactgactca	aggtcacaca	2160
gtgatccggg	atcccagaac	tetggtetee	aaattacagc	ccaggacacc	tttctctgcc	2220
gcctgctgca	tcagtgggtg	accccttcc	cgggctgcac	tttgggtcca	gctgtggaag	2280
ccagaagttg	ggcggtttca	gggacagccg	agaataatgt	tgacctgtca	gatcaacaaa	2340
tcttcactga	gcatgtattt	tgtgccacac	cctgctctgg	gcactgggaa	tgctgggaaa	2400
tgagatacat	tecegecete	aagaatctcc	cagtctggta	ggagagagtg	ctgcagagcc	2460
acgtggccgc	cacgcagtgt	gcttagggcc	tgaggtgtga	aagcccaggg	ctccagagct	2520
cggcaggccc	cgctggtttg	gtgcggtgag	tcctgccccg	gctgtgccag	ggtgagggag	2580
ggccaagccc	aggaggattt	gtctgagaca	tttccaagca	gactgtttgt	cacgtcttct	2640
gagaatgact	ttcagtctct	ctgaaaatga	aaagcttagg	accagaagag	agaattggag	2700
ctgtacgagt	gtgtctcgga	tctggtgttg	ttaggtgggc	cacggcggct	ccagcagggt	2760

ctggttaagg ggtccagccc agcactggac cattccg	tct cctgctctgg acttgccctc 2820
tecetteetg geacteteat gttgcatace etgacee	cag tgctgctcta agcaccgtcc 2880
ctgcccagcc ccacttctcc atcgcagccc caccttg	gct gctgagccag gagctaaaac 2940
cttagatatc tggttctgtt ttgcacccag cttggca	gat gtggatttga atccaagcct 3000
tgtgtctgcc cctatgtgac agctctatat tttatcc	ccg ttttataaaa gaggaaactg 3060
aagttctgaa aatctccttc cagggcccca gctaact	aat gccataggtg agattcaaac 3120
cttcatcctt ctgtctccag ggcctgatct ttaccac	tgc aggggctgca ggccgttaag 3180
tggacaggaa gtggccccac atagcccgag cagggtc	tgg aagcatcctg tgctgtgcac 3240
acctgctctc tcctctctcc caggcaggca gctgcag	gcg ctctcctcct tctctgcctg 3300
tttecctect ccettecttt ccaccetggt gtgggtt	ctc ctgttctctc tgtgctcttg 3360
cattetetea tteeetttte etetattgag cagagee	tgg agtttgagac tatggaatcc 3420
aaceteeca ttgcacagat ggggaaactg aggetta	gga agagaatgaa acttgtggag 3480
agcttataca gagcctctgg gggaaaaaag agccctt	att tgtggggtga gattgggggt 3540
tggaccagag tgatgtcctc tctcagctat cacatca	caa gataatgctg gctccaaact 3600
teetttetgt geeteateat geaaggatet tttttee	ctc ttacaaaaac aggtaaaaag 3660
cctcacccag atgaccccca tccctcatac catggag	tca tgagctgtct gggaagaatg 3720
gacgtgctgg gaccaactca agaccttgtt ttgctgt	ctt catcatctta cctgtgcttg 3780
gcccacagtc tggctcatga tgtgggctca gtaatgt	gcg agaaagtgaa aatgccactc 3840
tctccacccc attttacaga ggagaacacc aaggccc	aga ggaagttaag ggagagtcaa 3900
tgggcagagc cagggctagg ccctggtggt gtgtgga	gca cccaggcaga cccagtcctg 3960
gttgggatca cacccacggg tgctactgca cgtaaca	ctc ctccttaggc ctggaggcca 4020
aggtgtgggt ccccacgcct gatctttgaa aacacta	cac agggctgctg tcacttccca 4080
gggcccaggc ctcagcccag gcctcgggac caactct	ttg tataacctac ctgaatgtat 4140
taaaaactaa ttttggag	4158
<210> 8 <211> 2480 <212> DNA <213> Homo sapiens	
<pre><400> 8 gacgctctgt gccttcggag gtctttctgc ctgcctg</pre>	tcc tcatgcctct cctcctcttg 60
ctgctcctgc tgccaagccc cttacacccc cacccca	tct gtgaggtctc caaagtggcc 120
	100

agccacctag aagtgaactg tgacaagagg aatctgacag cgctgcctcc agacctgccg

180

240	cctggcaacc	acaccttctc	aacctcctgt	cctgagtgag	ccatcctcca	aaagacacaa
300	caccaagete	ggtgcgagct	aacctagata	cactcagctg	acactcgcct	ctgatgcctt
360	tcagctgcaa	tatcccacaa	accctggatc	agtgctgggg	ggacgctgcc	caggtcgatg
420	ctccttcaac	tcctggacgt	gctctcaccg	gacactgcct	tgctagggca	agcctgccct
480	agagctctac	gcgaactcca	cgtggtcttg	tggtgccctg	cgctgcctct	cggctgacct
540	acccaagctg	tgacgcccac	ccagggctcc	gaccctgccc	atgagctgaa	ctgaaaggca
600	cctgaatggg	ccgctgggct	actgagctcc	caacaacttg	gtctggctaa	gagaagctca
660	accaaagggc	tgtatacaat	gagaactcgc	tctcctccaa	tcgacaccct	ctggagaatc
720	gttatgcaac	ggaacccctg	tttctccacg	gccttttgct	cccacctcct	ttttttgggt
780	ctacgtatgg	ctgaaaatgt	caggacaatg	tegetggetg	tctattttcg	tgtgagatcc
840	gtgtgacaat	ccagtgtgca	tctaacgtgg	ggccatgacc	tggacgtcaa	aagcaaggtg
900	tggtgatgaa	gccccaccct	ggaaaggggt	caaataccca	ttcccgtcta	tcagacaagt
960	taaggtgcgt	ctgagggcga	gaagaggaca	ttactaccca	acctatatga	ggtgacacag
1020	gggtctattc	caaccccctg	aaagcccata	gttccccacc	ctgtggtcaa	gccacaagga
1080	tccaacacaa	cctccttgca	caaatgccct	tctagacagc	ccactgcttc	tactcatggt
1140	cacacttcac	ccccaaattt	cctagatgga	cacattccca	aggagcagac	gaatccacta
1200	cccaagcccg	ctgaaccaac	aaatccacta	caaaactcca	tcacattctc	atggaatcca
1260	gcccactcca	ccaccctgga	ccaaacatga	ggagcccgcc	agcccgtccc	accacctcag
1320	cccggagccc	gcccgaccac	cccgccccca	cacctcagag	ccccagagcc	agcccgacca
1380	aagcctgatc	tgtctgccac	accatcctgg	cacaagcccg	cgaccatcgc	accccaatcc
1440	atccaccaaa	cactcttaga	aaacccgtat	aactaccaca	gcacatttt	actccaaaaa
1500	agggcatttg	gggtgctcca	aagctccgtg	tcagccacca	ctgaacttga	aaaaccatcc
1560	cccctgggc	gctgcctcct	cccgactttt	ttttctccac	gaaatgaccc	gagageteca
1620	cctgctgctg	tggtcctcat	tttgcctctg	ctggctgctc	tgggtctctt	ttctatgtct
1680	tgctctgacc	gccaaggtgc	ctggactctg	accacaggcc	ggcatgtgaa	agctgggttg
1740	agtgccccgg	ggcaagtgac	cagaggggac	cctggagctg	aaaccacaca	acagccacac
1800	cttcctgtgg	gctccagcct	cccactttcc	aggttcgctt	tcttccttcg	gcctggctgc
1860	agctctgagt	ggaggccctc	gtggcaggaa	ggggcctcta	atggccgtgt	gtacggccta
1920	ccacagcete	ggtactctgg	gtgagcatta	gctgagcaca	gtcaggacct	cagggtcgtg
1980	attggaatct	gggctctcct	aagagcctgt	accttgagag	aggtttgggg	tgagggtggg
2040	agttcctttt	gaggggtctt	ggtgataggg	aggaacacag	tggaggggta	agttgggggt

tctgtatcag	aagccctgtc	ttcacaacac	aggcacacaa	tttcagtccc	agccaaagca	2100
gaaggggtaa	tgacatggac	ttggcggggg	gacaagacaa	agctcccgat	gctgcatggg	2160
gcgctgccag	atctcacggt	gaaccatttt	ggcagaatac	agcatggttc	ccacatgcat	2220
ttatgcacag	aagaaaatct	ggaaagtgat	ttatcaggat	gtgagcactc	gttgtgtctg	2280
gatgttacaa	atatgggtgg	ttttattttc	tttttccctg	tttagcattt	tctagttttc	2340
ttatcaggat	gtgagcactc	gttgtgtctg	gatgttacaa	atatgggtgg	ttttattttc	2400
tttttccctg	tttagcattt	tctagttttc	cactattatt	gtatattatc	tgtataataa	2460
aaaataattt	tagggttggg					2480

<210> 9 <211> 5223 <212> DNA

<213> Homo sapiens

<400> 9
agagttatat tgtgccattt atggaaaaac tctccccact gctcttggct ttgacagtag
gaatcaggtt atatatggtc tctcggtttg aagatatttg tcattaaaaa ccagaacaag
ggctctgaga tagggtcctt tcctgaccta ctctggtaaa gtctttatcc tcaggatgca
aggataccac cctcttcctg tggaaagtgt cgaatcacat gcagagctct aagtctttca

gttactttgg agtgcagaac catttcagac atgctgaggg ggactctact gtgcgcggtg

ctcgggette tgcgcgccca gecettecee tgtccgccag ettgcaagtg tgtettecgg 360 gacgccgcgc agtgctcggg gggcgacgtg gcgcgcatct ecgegctagg ectgcccace 420

60

120

180

240

300

aacctcacgc acatcctgct cttcggaatg ggccgcggcg tcctgcagag ccagagcttc 480 agcggcatga ccgtcctgca gcgcctcatg atctccgaca gccacatttc cgccgttgcc 540

cccggcacct tcagtgacct gataaaactg aaaaccctga ggctgtcgcg caacaaaatc 600

acgcatcttc caggtgcgct gctggataag atggtgctcc tggagcagtt gtttttggac 660

cacaatgcgc taaggggcat tgaccaaaac atgtttcaga aactggttaa cctgcaggag 720

ctcgctctga accagaatca gctcgatttc cttcctgcca gtctcttcac gaatctggag 780

aacctgaagt tgttggattt atcgggaaac aacctgaccc acctgcccaa ggggttgctt 840

ggagcacagg ctaagctcga gagacttctg ctccactcga accgccttgt gtctctggat 900

tcggggctgt tgaacagcct gggcgccctg acggagctgc agttccaccg aaatcacatc 960

cgttccatcg cacccggggc cttcgaccgg ctcccaaacc tcagttcttt gacgctttcg 1020

agaaaccacc ttgcgtttct cccctctgcg ctctttcttc attcgcacaa tctgactctg 1080

ttgactctgt tcgagaaccc gctggcagag ctcccggggg tgctcttcgg ggagatgggg 1140

ggcctgcagg agctgtggct gaaccgcacc cagctgcgca ccctgcccgc cgccgccttc 1200

cgcaacctga	gccgcctgcg	gtacttaggg	gtgactctga	gcccgcggct	gagcgcgctt	1260
ccgcagggcg	ccttccaggg	ccttggcgag	ctccaggtgc	tcgccctgca	ctccaacggc	1320
ctgaccgccc	tccccgacgg	cttgctgcgc	ggcctcggca	agctgcgcca	ggtgtccctg	1380
cgccgcaaca	ggctgcgcgc	cctgccccgt	gccctcttcc	gcaatctcag	cagcctggag	1440
agcgtccagc	tcgaccacaa	ccagctggag	accctgcctg	gcgacgtgtt	tggggctctg	1500
ccccggctga	cggaggtcct	gttggggcac	aactcctggc	gctgcgactg	tggcctgggg	1560
cccttcctgg	ggtggctgcg	gcagcaccta	ggcctcgtgg	gcggggaaga	gccccacgg	1620
tgcgcaggcc	ctggggcgca	cgccggcctg	ccgctctggg	ccctgccggg	gggtgacgcg	1680
gagtgcccgg	gcccccgggg	cccgcctccc	cgccccgctg	cggacagctc	ctcggaagcc	1740
cctgtccacc	cagccttggc	tcccaacagc	tcagaaccct	gggtgtgggc	ccagccggtg	1800
accacgggca	aaggtcaaga	tcatagtccg	ttctgggggt	tttattttct	gcttttagct	1860
gttcaggcca	tgatcaccgt	gatcatcgtg	tttgctatga	ttaaaattgg	ccaactcttt	1920
cgaaaattaa	tcagagagag	agcccttggg	taaaccaatg	ggaaaatctt	ctaattactt	1980
agaacctgac	cagatgtggc	teggagggga	atccagaccc	gctgctgtct	tgctctccct	2040
cccctcccca	ctcctcctct	cttcttcctc	ttctctctca	ctgccacgcc	ttcctttccc	2100
tcctcctccc	cctctccgct	ctgtgctctt	cattctcaca	ggcccgcaac	ccctcctctc	2160
tgtgtccccc	gcccgttcct	ggaaactgag	cttgacgttt	gtaaactgtg	gttgcctgcc	2220
ttccccagct	cccacgcggg	tgtgcgctga	cactgccggg	ggcgctggac	tgtgttggac	2280
ccatccgtgc	teegetgtge	ctggcttggc	gtctggtgga	gagaggggcc	tcttcagtgt	2340
ctactgagta	aggggacagc	tccaggccgg	ggcctgtctc	ctgcacagag	taagccggta	2400
aatgtttgtg	aaatcaatgc	gtggataaag	gaacacatgc	catccaagtg	atgatggctt	2460
ttcctggagg	gaaaggatag	gctgttgctc	tatctaattt	tttgtttttg	tttttggaca	2520
gtctagctct	gtggcccagg	ctggcgtgca	gtgggccgtc	tcagttcact	gcagcctccg	2580
cctcccaggt	tcaagtgatt	ctcatgcctc	agcgttctga	gtagctggga	ttagaggcgt	2640
gtgccactac	acccggctaa	tttttgtact	ttttaaagta	gagacggggc	tttgccatat	2700
tggcctggct	gatctcaaac	tcctggtctt	gaactcctgg	ccacaagtga	tctgcccgcc	2760
ttggcctccc	aaagtgctgg	gattacaggc	gtaagccact	acacctggcc	ctcttcatcg	2820
aattttattt	gagaagtaga	gctcttgcca	tttttccct	tgctccattt	ttctcacttt	2880
atgtctctct	gacctatggg	ctacttggga	gagcactgga	ctccattcat	gcatgagcat	2940
tttcaggata	agcgacttct	gtgaggctga	gagaggaaga	aaacacggag	ccttccctcc	3000
aggtgcccag	tgtaggtcca	gcgtgtttcc	tgagcctcct	gtgagtttcc	acttgcttta	3060

catccatgca acatgtcatt	ttgaaactgg	attgatttgc	atttcctgga	actctgccac	3120
ctcatttcac aagcatttat	ggagcagtta	acatgtgact	ggtattcatg	aatataatga	3180
taagcttgat tctagttcag	ctgctgtcac	agtctcattt	gttcttccaa	ctgaaagccg	3240
taaaaccttt gttgctttaa	ttgaatgtct	gtgcttatga	gaggcagtgg	ttaaaacagg	3300
ggctggcgag ttgacaactg	tgggttcaaa	tcccagctct	accacttact	aactgcatgg	3360
gactttgggt aagacacctg	cttacattct	ctaagccttg	gtttcctgaa	ccttaaaaca	3420
ggataacata gtacctgctt	cgtagagttt	ttgtgagaat	taaaggcaat	aaagcatata	3480
atgacttage ccageggeet	gcaggcaata	catgttaatg	aatgttagct	attattacta	3540
aaggatgagc aattattatt	ggcatcatga	tttctaaaga	agagctttga	gttggtattt	3600
ttctctgtgt ataagggtaa	gtccgaactt	tctcagactg	gaggttacat	tcacatcagt	3660
ctgtcttccc ctgcggatgg	cctcagccct	gggtggccag	actctgtgct	cacaatccag	3720
agcaatggat cctccaacac	caccaggtgg	atgtggagca	ggagagctgg	atcgtggcat	3780
ttgtttctgg gttctgcagc	tgtgggagtt	ggtttctggg	ttctccattg	gtctacttgt	3840
ctagtcccat accagactca	cggtctccat	tattggagct	ttaataattt	ttggtatagg	3900
gtcatctctc caccttgttt	ttcttctatt	cttggttctt	tgcaattcta	tgaatatttc	3960
agggtcagca tgtcaactco	attgaaaaac	cctgctggga	ttttaataga	acttacagct	4020
cacgcctgta atctcagcac	tttgggaggc	tgaggtgggt	ggatcacaag	gtcaggagtt	4080
tgagaccagc ctggccaaga	tggtaaaacc	ccgtctctac	taaaaataca	aaaattagct	4140
gggtgcggtg gcaggtgcct	gtaatcccag	ctacttggga	cactgaggca	ggagaatcac	4200
ttgaacccgg gaggcggagg	ttgcagtgag	ccgagatcgt	gccactgcac	tctagcctgg	4260
gcgacagagc gagactccat	ctcaaaaaaa	aaaaaaaaa	attgcagtaa	atttaaaact	4320
aatttgggga agaatctgta	ttttttacaa	tacctagtgt	tcttgccagt	aagcatggtt	4380
catcttccca tttatttacg	tcattttaaa	tctttcagtg	atgttttaga	attttttta	4440
taaaaacctt cactataaga	acagaaaacc	aaacaccgca	tgttctcact	cataggtggg	4500
aattgaacaa tgagaacact	tggacacagg	gcggggaacg	tcacacgcct	ggactgtcgg	4560
ggggtggggg gctgggagag	ggatagtgtt	aggagaaata	cctaatgtaa	atgacgagtt	4620
aatgggtgca gccaaccaac	ctggcacatg	tattcatatg	taacaaacct	gcacgttgtg	4680
cacatgtacc ctagaactta	aagtatataa	aaaaaagaaa	ccttgcactg	attttgttag	4740
atttattcct aggtatcctt	cctcttttt	gatttgtcat	tgctattgta	gatggcatct	4800
ttttaaaaag ttatatttt	taaagaaaaa	aataaaaaaa	gttgtatttt	ctaattttta	4860
ttaccaatat ataagaatgt	aatttattt	tacataatta	tcttatgtct	agtaataatt	4920

ctgataattt	gcttcttcct	attaaaacct	tacacccatt	attgatttat	ttttctgttt	4980
taaaatatct	tcctgcactg	gctaaaacct	ccactataat	gttgagcaga	acagtgagca	5040
tccttagaac	tatcttggtt	gcaaagggta	ggtctctaat	gtttcatcaa	taaatgtgat	5100
gtttctagtc	tgagtttgct	aagtatattt	taaaataatc	agtaaagtta	gattttatcc	5160
atttttatct	taactattga	gatgctcata	tcatttttct	tcttcaatgt	gttaaaatgg	5220
tga						5223
	s sapiens					
<400> 10 agaaaagcaa	gggcagggtt	cagaaagact	gaatgtaaag	ctgggctctg	agtctgccat	60
gcccttcgtg	tgttgctctg	cacattaatt	aaagggtcta	cgaggtcagc	aaggacgccc	120
aaggagactc	agtcatgaaa	ggtgaactgc	tcctgttttc	cagtgtgatt	gtcctgctcc	180
aggtggtatg	cagctgcccg	gacaagtgtt	actgtcagtc	atctacaaat	tttgtagact	240
gcagccagca	gggtctggcc	gaaatccctt	cccatttacc	tcctcagact	cgaacgctgc	300
atttacaaga	taatcagata	caccatcttc	ctgcttttgc	atttaggtca	gtgccatggc	360
tcatgacctt	aaacttgtcc	aacaattccc	tttcaaatct	ggcccctgga	gctttccatg	420
ggcttcagca	cttgcaggtt	ttaaatctaa	cccagaattc	actcctttcc	ctggaaagca	480
gacttttcca	ttccctccct	cagctgaggg	agcttgattt	gtcatcaaac	aacataagcc	540
accttcccac	atccttggga	gagacttggg	agaacctaac	tatacttgcg	gttcaacaaa	600
accagcttca	gcagcttgat	cgagcgctcc	tggaatccat	gcccagtgtg	aggcttttac	660
ttctcaagga	caacctctgg	aaatgcaatt	gccacttgct	cggtcttaaa	ctctggctgg	720
agaaatttgt	ctataaaggg	ggactaacag	acggcatcat	ctgtgaatca	ccagacacct	780
ggaagggaaa	ggacctcctt	aggatccctc	atgagctgta	ccagccctgc	cctcttcctg	840
ctcctgatcc	agtgtcctcg	caggeteagt	ggcccggctc	tgcccacggt	gtggtcctga	900
ggcctcctga	gaaccacaac	gcgggggagc	gagaactctt	ggagtgcgag	ctcaaaccca	960
agccaaggcc	ggccaacctg	cgtcatgcca	ttgccactgt	catcatcact	ggcgttgtgt	1020
gtgggattgt	gtgtctcatg	atgttggcag	ctgccatcta	tggctgcacc	tatgcggcaa	1080
tcacagccca	gtaccatggg	ggacccttgg	ctcaaaccaa	tgatcctggg	aaggtggaag	1140
aaaaagagcg	atttgacagc	tcaccagcct	gagagctttt	gtctcaaata	ggattggtca	1200
ttgcaggcca	gaagatagtg	tctgagtagg	gctgatgtgt	ttcctgttag	tctgattttg	1260

cttttgccaa aagac 1275

<210>	11	
<211>	5568	
<212>	DNA	
<213>	Homo	sa

piens <400> 11 ctcggaaaag cttttcagta aatgcactca tgctgctcca ggagctcttc tctgcaacaa 60 gccacccatc tgccatcaac aagttaagac caagagaact aacggctgcg gaaatgagac 120 180 tqaaqctttq attaaccaqc tqaqcaqtta gaggtggaga aatttaataa cttatattca 240 aaactgattt agggatcaga gcaatcacag aaaatgaaac caatgctttc cagagggata 300 tcctaaggaa aaaacaactc gtcctggtgg attcaatttt acttggaaag cctgggacac 360 agaaaacagg aaactggtca aaggctccta catgttagag ccttttacag actcactgcg 420 ttgagtctaa caaccgcgac tgaatgcagc ctccaatgtg ctcagaagaa tgggcttaca tttcaagtgg ccattagggg cccctatgct ggcagcaata tatgcaatga gtatggtttt 480 540 aaaaatgctg cctgccctgg gtatggcgtg tccacccaaa tgccgctgcg agaagctgct 600 cttctactgc gactctcagg gcttccactc agtgccaaac gccacagaca agggctctct 660 gggcctgtcc ctgaggcaca atcacatcac agagctcgaa agagatcaat ttgccagctt 720 cagtcaactt acttggctcc acttagatca caatcaaatt tcaacagtaa aagaagatgc 780 ttttcaagga ctatataaac ttaaggaatt aatcttaagt tccaacaaaa tattttactt gccaaacaca acttttaccc aactgattaa cctgcaaaat ttggacctgt cttttaatca 840 900 gctgtcatct ctgcacccag agctcttcta tggccttcgg aagctgcaga ccttgcattt 960 acgttccaac tccctgcgga ctatcccagt acgcctgttc tgggactgtc gtagtctgga 1020 gtttctggat ttgagcacaa atcgtttgcg aagtttggct cgcaatggat ttgcaggatt 1080 aattaaactg agagagcttc acctagagca caaccagctg acgaagatta attttgctca 1140 tttcctacgg ctaagcagtc tgcacacgct cttcttacaa tggaacaaaa tcagcaactt 1200 gacatgtggg atggagtgga cctggggcac tttagaaaag ctagacctga ctggaaatga aatcaaagcc atcgacttga cagtgtttga aacgatgccc aatcttaaaa tactcctcat 1260 1320 ggataacaac aagttaaaca gccttgattc caagatctta aactccctga gatccctcac aaccgttggt ctctctggca atctgtggga atgcagcgcc cgaatatgtg ctctggcctc 1380 ctggctgggc agtttccaag gtcggtggga acactccatc ctatgccaca gtcctgacca 1440 cacccaagga gaggatattc tagatgcagt ccatggattt cagctctgct ggaatttgtc 1500 aaccactgtc actgtcatgg ctacaactta tagagatcca accactgaat atacaaaaag 1560 aataagetea teaagttace atgtgggaga caaagaaate ceaactactg caggeatage 1620

agttactacc	gaggaacact	ttcctgaacc	agacaatgcc	atcttcactc	agcgggtaat	1680
tacgggaaca	atggctttat	tgttttcttt	cttttttatt	atttttatag	tgttcatctc	1740
caggaagtgc	tgccctccca	ctttaagaag	aattaggcag	tgctcaatgg	ttcagaacca	1800
caggcagctc	cgatcccaaa	cacgactcca	tatgtcaaac	atgtcagacc	aaggaccgta	1860
taatgaatat	gaacccaccc	atgaaggacc	cttcatcatc	attaatggtt	atggacagtg	1920
caagtgtcag	cagctgccat	acaaagaatg	tgaagtataa	tatctaccca	tcatcaaaaa	1980
tcacatcaga	taagtaacct	attttacata	gtagaggcta	aatacatatc	taatttttac	2040
caatggtgac	attaagccta	attttccaaa	ctaagtggag	acttagtttt	tgaagtgttg	2100
aagtatttt	aatttttaa	atgaaaccat	attttaagtg	ttaaatgaat	caatgctcac	2160
attaatttgc	actcctgttg	gaaagtctaa	aatgcttact	tcaaaataag	aaatgtacgt	2220
aattatatac	aatcgtgtgt	aaacctttac	actaaggtct	ccatatacta	tttttttcta	2280
ctgaaaacaa	tttagaaaga	agctattggg	cagaaacaga	tatagatcaa	tacctgtttg	2340
atcactgctc	tccatcccat	gtaccacaac	tatcttgctg	cttaaaagga	gacttagtaa	2400
agttctcttg	tatgataatt	tggtatttac	tcaaatcttc	aatttcttgc	cagggtggga	2460
agtagaattt	catgtatgct	gaagactggt	aaatattaaa	cattctcctt	ccagagtttc	2520
tgcctgggtt	agtagatatt	atcaaagtcc	atatcatgaa	ttcagaaccc	tttaatgtaa	2580
ttctaataag	ctgagtgact	ctttaatata	tttacacaat	gaatccaagt	gactgtgaaa	2640
aggtctcatt	acaatgaaac	caatcctaaa	taattacacc	aacttcttat	acatttctcg	2700
tttgacttat	aatggacatg	atttttgtgg	catttagaca	actgttttaa	actagcatta	2760
aactgtcatt	gtactaatta	atgtactaaa	tcctatgttt	acattaatat	gtgaaaaaag	2820
atttagaaga	tattttggag	ataaacaaga	caaactgagt	caatttaaca	atcctgacat	2880
gctccctcca	atttaaaagc	acacacacac	acacacac	acacacac	tctcgcgctc	2940
tctctctcaa	ctatcatgat	caaagatgcc	ttgacaaagg	ggtttaaacc	tetttettet	3000
gctttttcct	gatcttcaaa	cctcaaagag	ccaagttaaa	aataattggc	tagcaacagg	3060
cttaacactg	attcttattg	tattacaaag	gaaccatgaa	aaaaaacact	ttctaactat	3120
tatataatac	atttcgatct	ttcaataaag	atacgcattc	acgctgtaag	tgtagttcag	3180
tgtaggtgaa	gaaaacagca	ccactgagat	gaatctcatg	gcagaacaac	tcgacatgcc	3240
tatgcagcca	cacagtggta	acttgaaggc	agcacagagg	tgagggatta	aaaggaaagg	3300
cagattttga	aatctgactc	tcaggttagc	tggagttaca	aggcagccaa	caatgattat	3360
acacaatctg	caccaaacag	ggaaaggacc	tgctgctgaa	aagggaagag	gggtagatcc	3420
tccaatgtaa	atataaacat	gccatagtta	acaaatgata	aggatgccac	atttttcatg	3480

cagaaaagaa	ccacaggtat	tcagtttctt	gtattatgat	ttctaaagaa	aacctattaa	3540
atatttggaa	tttagatgca	agctactcat	tcacacagaa	cttttccata	aacattgttc	3600
cacatattga	aaaaactgta	aaattatagc	actaacttga	ttttagaaaa	tgagcatttt	3660
ttacaactgc	catttactgt	atgtagaaaa	aagacataaa	accttagaga	aagccactac	3720
catttttcaa	gttatctttt	ccccaacatc	aacatcaaca	tgatatcctt	cattcagggc	3780
atatttttc	ttcccaggat	caaactgaaa	acatgttaag	gctatagttt	agccagtaag	3840
atttaatcac	aatttttctt	ctttaatact	aagagatggg	taccttagta	cccttcacct	3900
aacatctctc	ggtaaaaagc	agacaagatc	acaaattaca	gtaaaaatgt	gctcttttt	3960
aaggtgggca	gattagtttg	tcaaagtctc	agcccagttc	aattcagttg	atctcgagtg	4020
gtgagtattt	tgtctcttgt	taaaccagac	cctgggcttg	tctgggcaga	gacagaagct	4080
gatttaacag	catagagcac	agcgccctac	ttccccacag	acaggctgaa	ttagaagccc	4140
ctattacaaa	taagagcacc	acgagctaaa	atttaccaac	ccatttatca	ggatgaccat.	4200
tgccatttgt	caggtgacag	acagcttggt	cacaacacaa	ctgtgtcctg	agcacacaag	4260
attccatcag	ccctgaagga	cagcagagga	gtattttcca	tcatttcaaa	ccacaaacaa	4320
aattaagatt	taaactgtgg	gatgggtaag	aaatcccctt	ctttggctgg	gaatctccac	4380
cttaatcctt	aaaggaccat	aactggcaaa	atccttagtg	tacggacaaa	agcaaattgg	4440
aaaagcaagc	catttactaa	ttcagaggaa	cagcatagcc	aaggctagcg	aggcatactt	4500
tccagttgaa	aaaaatcaaa	attttttgcc	ttccattttt	ctgggtaatg	tcctttaaga	4560
aaagtgaatg	acagtagtac	caaaaaggta	ttttcctttc	tcatttaaaa	gcaaaaacct	4620
ccctttttaa	ttgcctgtag	aaggcaagat	tttctttcat	ttttgtccat	ttgtgtttca	4680
gaatcagcac	aggtttgaag	attagactgt	tagtcatctg	tgctttcttt	accaactggc	4740
tagaacggaa	cagcatcaca	gcaacgctgc	ggatcttggt	tacacagtgt	cagagctttt	4800
gttttttgat	ggggttttat	cctcttcacc	accactaccc	actccatttt	ttttctattt	4860
ttaagattag	aggaaaatga	ccattaagaa	ccagaaaaat	aattaatctc	tctggaaaaa	4920
ggaaagctaa	agaagactat	gataccatac	ccatctagaa	accaagaact	agtttgaaat	4980
cgtttatatt	catttctgta	gcatgacagg	gatttcaatc	acctttctga	aaagagtggg	5040
ctgataaact	tgtaaatcca	cacacaactc	tgagaatacc	cactgccagc	atcaaaaagc	5100
aaagatacta	attttttaag	ccaaaaatct	gtactaacac	atgtaatttc	ttaatgtgcc	5160
taagttaatt	tctgtatcaa	ttcaataaat	ggaattgact	gaacttccca	acgccactaa	5220
ttattaaaat	ccatctgctt	attctaatgc	tagtcaccaa	gagctagact	ccatctttcc	5280
aataaaaatg	agccctatgt	agcactaggt	ttgaattcta	aaattcaaaa	caggcatttc	5340

attttcttaa ggcacacttc	ctacacacag	ctatcagggg	aaaaagctat	aaatgtcctg	5400
ttcttttct gaagtgtgga	tatcaatata	aaatttgtta	aagaatattt	ttaacagctg	5460
acttacatga tcgttttcct	aatacaggaa	tacagcgaca	gacctatctg	aaaagtctgt	5520
ttgggggcat acttttcata	tcttattgac	taaagccctt	gagccagg		5568
<210> 12 <211> 2698 <212> DNA <213> Homo sapiens					
<400> 12 gctgagcagt caacagcatt	tcttgttcca	agatcaccct	tctgagtacc	tctctggctg	60
ccaaattgcc agggccttca	cagtttgatt	ccatttctca	gctccaagca	ttaggtaaac	120
ccaccaagca atcctagcct	gtgatggcgt	ttgacgtcag	ctgcttcttt	tgggtggtgc	180
tgttttctgc cggctgtaaa	gtcatcacct	cctgggatca	gatgtgcatt	gagaaagaag	240
ccaacaaac atataactgt	gaaaatttag	gtctcagtga	aatccctgac	actctaccaa	300
acacaacaga atttttggaa	ttcagcttta	attttttgcc	tacaattcac	aatagaacct	360
tcagcagact catgaatct	acctttttgg	atttaactag	gtgccagatt	aactggatac	420
atgaagacac ttttcaaag	catcatcaat	taagcacact	tgtgttaact	ggaaatcccc	480
tgatattcat ggcagaaaca	tcgcttaatg	ggcccaagtc	actgaagcat	cttttcttaa	540
tccaaacggg aatatccaa	ctcgagttta	ttccagtgca	caatctggaa	aacttggaaa	600
gcttgtatct tggaagcaa	catatttcct	ccattaagtt	ccccaaagac	ttcccagcac	660
ggaatctgaa agtactgga	tttcagaata	atgctataca	ctacatctct	agagaagaca	720
tgaggtctct ggagcaggc	c atcaacctaa	gcctgaactt	caatggcaat	aatgttaaag	780
gtattgagct tggggcttt	gattcaacga	tcttccaaag	tttgaacttt	ggaggaactc	840
caaatttgtc tgttatatt	aatggtctgc	agaactctac	tactcagtct	ctctggctgg	900
gaacatttga ggacattga	gacgaagata	ttagttcagc	catgctcaag	ggactctgtg	960
aaatgtctgt tgagagcct	c aacctgcagg	aacaccgctt	ctctgacatc	tcatccacca	1020
catttcagtg cttcaccca	a ctccaagaat	tggatctgac	agcaactcac	ttgaaagggt	1080
taccctctgg gatgaaggg	t ctgaacttgo	tcaagaaatt	agttctcagt	gtaaatcatt	1140
tcgatcaatt gtgtcaaat	c agtgctgcca	atttcccctc	ccttacacac	ctctacatca	1200
gaggcaacgt gaagaaact	t caccttggtg	ttggctgctt	ggagaaacta	ggaaaccttc	1260
agacacttga tttaagcca	t aatgacatag	aggettetga	ctgctgcagt	ctgcaactca	1320
aaaacctgtc ccacttgca	a accttaaacc	: tgagccacaa	tgagcctctt	ggtctccaga	1380

gtcaggcatt	caaagaatgt	cctcagctag	aactcctcga	tttggcattt	acccgcttac	1440
acattaatgc	tccacaaagt	cccttccaaa	acctccattt	ccttcaggtt	ctgaatctca	1500
cttactgctt	ccttgatacc	agcaatcagc	atcttctagc	aggcctacca	gttctccggc	1560
atctcaactt	aaaagggaat	cactttcaag	atgggactat	cacgaagacc	aacctacttc	1620
agaccgtggg	cagcttggag	gttctgattt	tgtcctcttg	tggtctcctc	tctatagacc	1680
agcaagcatt	ccacagcttg	ggaaaaatga	gccatgtaga	cttaagccac	aacagcctga	1740
catgcgacag	cattgattct	cttagccatc	ttaagggaat	ctacctcaat	ctggctgcca	1800
acagcattaa	catcatctca	ccccgtctcc	tccctatctt	gtcccagcag	agcaccatta	1860
atttaagtca	taaccccctg	gactgcactt	gctcgaatat	tcatttctta	acatggtaca	1920
aagaaaacct	gcacaaactt	gaaggctcgg	aggagaccac	gtgtgcaaac	ccgccatctc	1980
taaggggagt	taagctatct	gatgtcaagc	tttcctgtgg	gattacagcc	ataggcattt	2040
tctttctcat	agtatttcta	ttattgttgg	ctattctgct	attttttgca	gttaaatacc	2100
ttctcaggtg	gaaataccaa	cacatttagt	gctgaaggtt	tccagagaaa	gcaaataagt	2160
gtgcttagca	aaattgctct	aagtgaaaga	actgtcatct	gctggtgacc	agaccagact	2220
tttcagattg	cttcctggaa	ctgggcaggg	actcactgtg	cttttctgag	cttcttactc	2280
ctgtgagtcc	cagagctaaa	gaaccttcta	ggcaagtaca	ccgaatgact	cagtccagag	2340
ggtcagatgc	tgctgtgaga	ggcacagagc	cctttccgca	tgtggaagag	tgggaggaag	2400
cagagggagg	gactgggcag	ggactgccgg	ccccggagtc	tcccacaggg	aggccattcc	2460
ccttctactc	accgacatcc	ctcccagcac	cacacacccc	gcccctgaaa	ggagatcatc	2520
agccccaca	atttgtcaga	gctgaagcca	gcccactacc	cacccccact	acagcattgt	2580
gcttgggtct	gggttctcag	taatgtagcc	atttgagaaa	cttacttggg	gacaaagtct	2640
caatccttat	tttaaatgaa	aaaagaaaag	aaaagcataa	taaatttaaa	agaaaagg	2698

<400> 13

60 tgcaggtgag caagaggatg ctggcggggg gcgtgaggag catgcccagc cccctcctgg 120 cctgctggca gcccatcctc ctgctggtgc tgggctcagt gctgtcaggc tcggccacgg 180 240 gctttgtggc agtccccgag ggcatcccca ccgagacgcg cctgctggac ctaggcaaga accgcatcaa aacgctcaac caggacgagt tcgccagctt cccgcacctg gaggagctgg 300 360 ageteaacga gaacategtg agegeegtgg ageceggege etteaacaac etetteaace

<210> 13 <211> 2233

<212> DNA

<213> Homo sapiens

tccggacgct	gggtctccgc	agcaaccgcc	tgaagctcat	cccgctaggc	gtcttcactg	420
gcctcagcaa	cctgaccaag	ctggacatca	gcgagaacaa	gatcgttatc	ctactggact	480
acatgtttca	ggacctgtac	aacctcaagt	cactggaggt	tggcgacaat	gacctcgtct	540
acatctctca	ccgcgccttc	agcggcctca	acagcctgga	gcagctgacg	ctggagaaat	600
gcaacctgac	ctccatcccc	accgaggcgc	tgtcccacct	gcacggcctc	atcgtcctga	660
ggctccggca	cctcaacatc	aatgccatcc	gggactactc	cttcaagagg	ctgtaccgac	720
tcaaggtctt	ggagatctcc	cactggccct	acttggacac	catgacaccc	aactgcctct	780
acggcctcaa	cctgacgtcc	ctgtccatca	cacactgcaa	tctgaccgct	gtgccctacc	840
tggccgtccg	ccacctagtc	tatctccgct	tcctcaacct	ctcctacaac	cccatcagca	900
ccattgaggg	ctccatgttg	catgagctgc	tccggctgca	ggagatccag	ctggtgggcg	960
ggcagctggc	cgtggtggag	ccctatgcct	teegeggeet	caactacctg	cgcgtgctca	1020
atgtctctgg	caaccagctg	accacactgg	aggaatcagt	cttccactcg	gtgggcaacc	1080
tggagacact	catcctggac	tccaacccgc	tggcctgcga	ctgtcggctc	ctgtgggtgt	1140
tccggcgccg	ctggcggctc	aacttcaacc	ggcagcagcc	cacgtgcgcc	acgcccgagt	1200
ttgtccaggg	caaggagttc	aaggacttcc	ctgatgtgct	actgcccaac	tacttcacct	1260
gccgccgcgc	ccgcatccgg	gaccgcaagg	cccagcaggt	gtttgtggac	gagggccaca	1320
cggtgcagtt	tgtgtgccgg	gccgatggcg	acccgccgcc	cgccatcctc	tggctctcac	1380
cccgaaagca	cctggtctca	gccaagagca	atgggcggct	cacagtcttc	cctgatggca	1440
cgctggaggt	gcgctacgcc	caggtacagg	acaacggcac	gtacctgtgc	atcgcggcca	1500
acgcgggcgg	caacgactcc	atgcccgccc	acctgcatgt	gcgcagctac	tegecegact	1560
ggccccatca	gcccaacaag	accttcgctt	tcatctccaa	ccagccgggc	gagggagagg	1620
ccaacagcac	ccgcgccact	gtgcctttcc	ccttcgacat	caagaccctc	atcatcgcca	1680
ccaccatggg	cttcatctct	ttcctgggcg	tegteetett	ctgcctggtg	ctgctgtttc	1740
tctggagccg	gggcaagggc	aacacaaagc	acaacatcga	gatcgagtat	gtgccccgaa	1800
agtcggacgc	aggcatcagc	tccgccgacg	cgccccgcaa	gttcaacatg	aagatgatat	1860
gaggccgggg	cggggggcag	ggacccccgg	gcggccgggc	aggggaaggg	gcctggccgc	1920
cacctgctca	ctctccagtc	cttcccacct	cctccctacc	cttctacaca	cgttctcttt	1980
ctccctcccg	cctccgtccc	ctgctgcccc	ccgccagccc	tcaccacctg	ccctccttct	2040
accaggacct	cagaagccca	gacctgggga	ccccacctac	acaggggcat	tgacagactg	2100
gagttgaaag	ccgacgaacc	gacacgcggc	agagtcaata	attcaataaa	aaagttacga	2160
actttctctg	taacttgggt	ttcaataatt	atggatttt	atgaaaactt	gaaataataa	2220

aaagagaaaa	aaa					2233
<210> 14 <211> 2110 <212> DNA <213> Homo) o sapiens					
<400> 14 caggccgagg	cagggagaac	tctccactcg	gaggaggagc	tggggtcctc	ttccatcccg	60
tcttcatcct	gcctggctgc	gtgacctcgg	gaggcaccat	gcaggagctg	catctgctct	120
ggtgggcgct	tctcctgggc	ctggctcagg	cctgccctga	gccctgcgac	tgtggggaaa	180
agtatggctt	ccagatcgcc	gactgtgcct	accgcgacct	agaatccgtg	ccgcctggct	240
tcccggccaa	tgtgactaca	ctgagcctgt	cagccaaccg	gctgccaggc	ttgccggagg	300
gtgccttcag	ggaggtgccc	ctgctgcagt	cgctgtggct	ggcacacaat	gagatccgca	360
cggtggccgc	cggagccctg	gcctctctga	gccatctcaa	gagcctggac	ctcagccaca	420
atctcatctc	tgactttgcc	tggagcgacc	tgcacaacct	cagtgccctc	caattgctca	480
agatggacag	caacgagctg	accttcatcc	cccgcgacgc	cttccgcagc	ctccgtgctc	540
tgcgctcgct	gcaactcaac	cacaaccgct	tgcacacatt	ggccgagggc	accttcaccc	600
cgctcaccgc	gctgtcccac	ctgcagatca	acgagaaccc	cttcgactgc	acctgcggca	660
tegtgtgget	caagacatgg	gccctgacca	cggccgtgtc	catcccggag	caggacaaca	720
tcgcctgcac	ctcaccccat	gtgctcaagg	gtacgccgct	gageegeetg	ccgccactgc	780
catgctcggc	gccctcagtg	cagctcagct	accaacccag	ccaggatggt	gccgagctgc	840
ggcctggttt	tgtgctggca	ctgcactgtg	atgtggacgg	gcagccggcc	cctcagcttc	900
actggcacat	ccagataccc	agtggcattg	tggagatcac	cagccccaac	gtgggcactg	960
atgggcgtgc	cctgcctggc	acccctgtgg	ccagctccca	geegegette	caggcctttg	1020
ccaatggcag	cctgcttatc	cccgactttg	gcaagctgga	ggaaggcacc	tacagctgcc	1080
tggccaccaa	tgagctgggc	agtgctgaga	gctcagtgga	cgtggcactg	gccacgcccg	1140
gtgagggtgg	tgaggacaca	ctggggcgca	ggttccatgg	caaagcggtt	gagggaaagg	1200
gctgctatac	ggttgacaac	gaggtgcagc	catcagggcc	ggaggacaat	gtggtcatca	1260
tctacctcag	ccgtgctggg	aaccctgagg	ctgcagtcgc	agaaggggtc	cctgggcagc	1320
tgcccccagg	cctgctcctg	ctgggccaaa	gcctcctcct	cttcttcttc	ctcacctcct	1380
tctagcccca	. cccagggctt	ccctaactcc	tccccttgcc	cctaccaatg	cccctttaag	1440
tgctgcaggg	gtctggggtt	ggcaactcct	gaggcctgca	tgggtgactt	cacattttcc	1500
tacctctcct	tctaatctct	tctagagcac	ctgctatccc	caacttctag	acctgctcca	1560

aactagtgac	taggatagaa	tttgatcccc	taactcactg	tctgcggtgc	tcattgctgc	1620
taacagcatt	gcctgtgctc	tcctctcagg	ggcagcatgc	taacggggcg	acgtcctaat	1680
ccaactggga	gaagcctcag	tggtggaatt	ccaggcactg	tgactgtcaa	gctggcaagg	1740
gccaggattg	ggggaatgga	gctggggctt	agctgggagg	tggtctgaag	cagacaggga	1800
atgggagagg	aggatgggaa	gtagacagtg	gctggtatgg	ctctgaggct	ccctggggcc	1860
tgctcaagct	cctcctgctc	cttgctgttt	tctgatgatt	tgggggcttg	ggagtccctt	1920
tgtcctcatc	tgagactgaa	atgtggggat	ccaggatggc	ttccttcctc	ttacccttcc	1980
tccctcagcc	tgcaacctct	atcctggaac	ctgtcctccc	tttctcccca	actatgcatc	2040
tgttgtctgc	tcctctgcaa	aggccagcca	gcttgggagc	agcagagaaa	taaacagcat	2100
ttctgatgcc						2110
<210> 15						
~211\ 2116	5					

<210> 15 <211> 2146 <212> DNA

<213> Homo sapiens

<400> 15 cggagatgga tgtctctctt tgcccagcca agtgtagttt ctggcggatt ttcttgctgg 60 gaagcgtctg gctggactat gtgggctccg tgctggcttg ccctgcaaat tgtgtctgca 120 gcaagactga gatcaattgc cggcggccgg acgatgggaa cctcttcccc ctcctggaag 180 ggcaggattc agggaacagc aatgggaacg ccagtatcaa catcacggac atctcaagga 240 300 atatcacttc catacacata gagaactggc gcagtcttca cacgctcaac gccgtggaca tggagctcta caccggactt caaaagctga ccatcaagaa ctcaggactt cggagcattc 360 420 agcccagage ctttgccaag aacccccatt tgcgttatat aaacctgtca agtaaccggc tcaccacact ctcgtggcag ctcttccaga cgctgagtct tcgggaattg cagttggagc 480 agaacttttt caactgcagc tgtgacatcc gctggatgca gctctggcag gagcaggggg 540 600 aggccaagct caacagccag aacctctact gcatcaacgc tgatggctcc cagcttcctc 660 tcttccgcat gaacatcagt cagtgtgacc ttcctgagat cagcgtgagc cacgtcaacc tgaccgtacg agagggtgac aatgctgtta tcacttgcaa tggctctgga tcaccccttc 720 ctgatgtgga ctggatagtc actgggctgc agtccatcaa cactcaccag accaatctga 780 840 actggaccaa tgttcatgcc atcaacttga cgctggtgaa tgtgacgagt gaggacaatg 900 gcttcaccct gacgtgcatt gcagagaacg tggtgggcat gagcaatgcc agtgttgccc tcactgtcta ctatcccca cgtgtggtga gcctggagga gcctgagctg cgcctggagc 960 actgcatcga gtttgtggtg cgtggcaacc ccccaccaac gctgcactgg ctgcacaatg 1020 ggcagcctct gcgggagtcc aagatcatcc atgtggaata ctaccaagag ggagagattt 1080

25

ccgagggctg cctgctcttc aacaagccca cccactacaa caatggcaac tataccctca	1140
ttgccaaaaa cccactgggc acagccaacc agaccatcaa tggccacttc ctcaaggagc	1200
cctttccaga gagcacggat aactttatct tgtttgacga agtgagtccc acacctccta	1260
tcactgtgac ccacaaacca gaagaagaca cttttggggt atccatagca gttggacttg	1320
ctgcttttgc ctgtgtcctg ttggtggttc tcttcgtcat gatcaacaaa tatggtcgac	1380
ggtccaaatt tggaatgaag ggtcccgtgg ctgtcatcag tggtgaggag gactcagcca	1440
gcccactgca ccacatcaac cacggcatca ccacgccctc gtcactggat gcggggcccg	1500
acactgtggt cattggcatg actcgcatcc ctgtcattga gaacccccag tacttccgtc	1560
agggacacaa ctgccacaag ccggacacgt gggtcttttc aaacatagac aatcatggga	1620
tattaaactt gaaggacaat agagatcatc tagtcccatc aactcactat atatatgagg	1680
aacctgaggt ccagagtggg gaagtgtctt acccaaggtc acatggtttc agagaaatta	1740
tgttgaatcc aataagcctt cccggacatt ccaagcctct taaccatggc atctatgttg	1800
aggatgtcaa tgtttatttc agcaaaggac gtcatggctt ttaaaaactc cttttaagcc	1860
tccttgtttt gatgtcacct tggtaggctg ggccctctga gaggttggaa gctctaggca	1920
ttgttctctt tggatccagg gatgctaagt agaaactgca tgagccacca gtgccccggc	1980
accetttaac accaccagat gggtgttttc ccccatccac cactggcagg gttgcccctt	2040
ccctccaatc atcactgtgc tcctttttc ccggcctacg aggcagetcc tgccactatc	2100
tttagagcca ataaagagaa ttaaaaacct gaaaaaaaaa aaaaaa	2146
<210> 16 <211> 1680 <212> DNA <213> Homo sapiens	
<400> 16 tgacaggccg gccggtgagg cgccgcggg agaggccgcg acggagctcc cagaccggcc	60
atgggetgag acacgtcete geegageagt gaccetteeg taccecacea gaacatgeee	120
gggtgacete eteceagate tteettgtgg cetteeteg caetecagt gacactatge	180
	240
acceccaccy tyaccegaga ggcctctggc tectgetgc gtccttgtcc ctgctgcttt	300
ttgaggtggc cagagctggc cgagccgtgg ttagctgtcc tgccgcctgc ttgtgcgcca	360
gcaacatcct cagctgctcc aagcagcagc tgcccaatgt gccccattcc ttgcccagtt	420
acacagcact actggacctc agtcacaaca acctgagccg cctgcgggcc gagtggaccc	420

480

540

ccacgcgcct gacccaactg cactccctgc tgctgagcca caaccacctg aacttcatct

cctctgaggc cttttccccg gtacccaacc tgcgctacct ggacctctcc tccaaccagc

tgcgtacact	ggatgagttc	ctgttcagtg	acctgcaagt	actggaggtg	ctgctgctct	600
acaataacca	catcatggcg	gtggaccggt	gcgccttcga	tgacatggcc	cagctgcaga	660
aactctactt	gagccagaac	cagatetete	gcttccctct	ggaactggtc	aaggaaggag	720
ccaagctacc	caaactaacg	ctcctggatc	tctcttctaa	caagctgaag	aacttgccat	780
tgcctgacct	gcagaagctg	ccggcctgga	tcaagaatgg	gctgtaccta	cataacaacc	840
ccctgaactg	cgactgtgag	ctctaccagc	tgttttcaca	ctggcagtat	cggcagctga	900
gctccgtgat	ggactttcaa	gaggatctgt	actgcatgaa	ctccaagaag	ctgcacaatg	960
tcttcaacct	gagtttcctc	aactgtggcg	agtacaagga	gcgtgcctgg	gaggcccacc	1020
tgggtgacac	cttgatcatc	aagtgtgaca	ccaagcagca	agggatgacc	aaggtgtggg	1080
tgacaccaag	taatgaacgg	gtgctagatg	aggtgaccaa	tggcacagtg	agtgtgtcta	1140
aggatggcag	tcttctttc	cagcaggtgc	aggtcgagga	cggtggtgtg	tatacctgct	1200
atgccatggg	agagactttc	aatgagacac	tgtctgtgga	attgaaagtg	cacaatttca	1260
ccttgcacgg	acaccatgac	accctcaaca	cagcctatac	caccctagtg	ggctgtatcc	1320
ttagtgtggt	cctggtcctc	atatacctat	acctcacccc	ttgccgctgc	tggtgccggg	1380
gtgtagagaa	gccttccagc	catcaaggag	acagcctcag	ctcttccatg	cttagtacca	1440
cacccaacca	tgatcctatg	gctggtggg	acaaagatga	tggttttgac	cggcgggtgg	1500
ctttcctgga	acctgctgga	cctgggcagg	gtcaaaacgg	caagctcaag	ccaggcaaca	1560
ccctgccagt	gcctgaggcc	acaggcaagg	gccaacggag	gatgtcggat	ccagaatcag	1620
tcagctcggt	cttctctgat	acgcccattg	tggtgtgagc	aggatgggtt	ggtggggaga	1680

<210> 17 <211> 3737

<211> 3/3/ <212> DNA

<213> Homo sapiens

<400> 17 60 ctcgatctga gccacaactt catatccagc tttccgtgga gcgacctgcg caacctgagc gcgctgcagc tgctcaaaat gaaccacaac cgcctgggct ctctgccccg ggacgcactc 120 ggtgcgctac ccgacctgcg ttccctgcgc atcaacaaca accggctgcg tacgctggcg 180 cetggcacet tegacgeget tagegegetg teacacttge aactetatea caateeette 240 cactgcggct gcggccttgt gtggctgcag gcctgggccg cgagcacccg ggtgtcctta 300 cccgagcccg actccattgc ttgtgcctcg cctcccgcgc tgcagggggt gccggtgtac 360 cgcctgcccg ccctgccctg tgcaccgccc agcgtgcatc tgagtgccga gccaccgctt 420 480 gaagcacccg gcaccccact gcgcgcagga ctggcgttcg tgttacactg catcgccgac 540 ggccacccta cgcctcgcct gcaatggcaa cttcagatcc ccggtggcac cgtagtctta

gagccaccgg	ttctgagcgg	ggaggacgac	ggggttgggg	cggaggaagg	agagggagaa	600
ggagatgggg	atttgctgac	gcagacccaa	gcccaaacgc	cgactccagc	acccgcttgg	660
ccggcgcccc	cagccacacc	gcgcttcctg	gccctcgcaa	atggctccct	gttggtgccc	720
ctcctgagtg	ccaaggaggc	gggcgtctac	acttgccgtg	cacacaatga	gctgggcgcc	780
aactctacgt	caatacgcgt	ggcggtggca	gcaaccgggc	ccccaaaaca	cgcgcctggc	840
gccgggggag	aacccgacgg	acaggccccg	acctctgagc	gcaagtccac	agccaagggc	900
cggggcaaca	gcgtcctgcc	ttccaaaccc	gagggcaaaa	tcaaaggcca	aggcctggcc	960
aaggtcagca	ttctcgggga	gaccgagacg	gagccggagg	aggacacaag	tgagggagag	1020
gaggccgaag	accagatcct	cgcggacccg	gcggaggagc	agcgctgtgg	caacggggac	1080
ccctctcggt	acgtttctaa	ccacgcgttc	aaccagagcg	cagagctcaa	gccgcacgtc	1140
ttcgagctgg	gcgtcatcgc	gctggatgtg	gcggagcgcg	aggcgcgggt	gcagctgact	1200
ccgctggctg	cgcgctgggg	ccctgggccc	ggcggggctg	gcggagcccc	gcgacccggg	1260
cggcgacccc	tgcgcctact	ctatctgtgt	ccagcggggg	gcggcgcggc	agtgcagtgg	1320
tcccgcgtag	aggaaggcgt	caacgcctac	tggttccgcg	gcctgcggcc	gggtaccaac	1380
tactccgtgt	gcctggcgct	ggcgggcgaa	gcctgccacg	tgcaagtggt	gttttccacc	1440
aagaaggagc	tcccatcgct	gctggtcata	gtggcagtga	gcgtattcct	cctggtgctg	1500
gccacagtgc	cccttctggg	cgccgcctgc	tgccatctgc	tggctaaaca	cccgggcaag	1560
ccctaccgtc	tgatcctgcg	gcctcaggcc	cctgacccta	tggagaagcg	catcgccgca	1620
gacttcgacc	cgcgtgcttc	gtacctcgag	tccgagaaaa	gctacccggc	aggcggcgag	1680
gcgggcggcg	aggagccaga	ggacgtgcag	ggggagggcc	ttgatgaaga	cgcggagcag	1740
ggagacccaa	gtggggacct	gcagagagag	gagagcctgg	cggcctgctc	actggtggag	1800
tcccagtcca	aggccaacca	agaggagttc	gaggcgggct	ctgagtacag	cgatcggctg	1860
cccctgggcg	ccgaggcggt	caacatcgcc	caggagatta	atggcaacta	caggcagacg	1920
gcaggctgaa	cctccgcccg	tccggcccgc	ccattcccga	cctccaccta	gggtgcctgg	1980
gagcagcagt	ctagggctgg	caggacttat	gtcccccgtc	cccaaccttc	acctactcct	2040
ccccttact	actccccaac	cttgactacc	agggacttct	attagggagt	gggccgattt	2100
caccagtccc	tgctacccac	ggctgccatt	ctccctgcgg	gctgaatccc	cttccccgcc	2160
aagcacagtg	tttatcttac	cccatgcaag	actccacccg	cagacggtgg	gcgatatcta	2220
tgtccctcca	ttcccgtcgc	gattatctgc	gaaatccacc	ccgcagcccg	ccccaccgtg	2280
ggctctggag	ccagaggaaa	cgagcgaaga	ctttggaaac	ctcgcggtaa	cgcggtggtt	2340
tegggggeca	gccaaggcca	gtggagtgct	gtggggtccc	acctcgaccc	ctcctcc	2400

ctttctttct ttccttttt tttattttt aattttattt atttattt	2400
acggagtett ggtetgtege caggetggag tgeagtggeg egatetegge teaetgeate	2520
ttccgcctcc cgggttcaag cgattctcct gcctcagcct gcctagtagc tgggactaca	2580
ggcgcgcgcc accacgacca gctaatttct tctattttta gtagagacgg ggtttcacca	2640
tgttggccag gatggtctgg atctcttgac ctcaggtgat ccatctgcct cggcctctca	2700
aagtgctggg attacaggcg tgaggcaccg cgcccggccc ctcctccctt tcaatcccta	2760
ctcccagaag ccgggattcg tggcaacccc tagtttttag ttccaaagcc tcctgccggc	2820
agggaaccaa atccttctgt ceteccacee ceaceceact tetggecagt tggagtecag	2880
cccggtgcct ggggcgcctt tcagctccgc gctcagattt tcctgttttc gttgtttca	2940
aagacagcga catttcgggt ctggtgctaa caccccttc ccagcctctg ggaaaatcga	3000
gtgtgtgtgt cggggggtag ggagggaatg cgttttctgt cgtctctctc ctaacttaaa	3060
gegeegeagg acegegege eettggegge tgageetgtg gaettggteg egggeeaatt	3120
tegttgteeg tgtgttggge ttteeggagg tetgtgegee caacagegee geteeeggg	3180
ctccacccga cccagaccct agctggaaag cgccggaggc ggaggaagct gactgtggcc	3240
tcccgggccg cggctctctg gagggctcgc gccctagttc gcacaaagcc tgctcgtgac	3300
tgtgcgactg tgcgacggga tccggatgga gccgagcccc tccgtcctcg cgtctcggtc	3360
ctcgcgtcgc cccgccccac ccgcccctgc ttcggcggga atcgtgtttg cccggcgtgt	3420
agtccctgac aagcgtgccc tgtaggagaa aagtctgtgt cctgtgaagt gtgaccgtgt	3480
agtgtagggg ggcgggcggatg ggcggggagg gagggaaggg gaggggcgcg	3540
gcgcggcgac tcggggcggg gttcttttt ccattttgaa agaaagcgtc ggggttgggg	3600
tggggggagt ttcagtcctc gggatcagcc ctctccgcga agcgcagcac aagcgcgggc	3660
ctgggacgga gtagcccccc ggagcccgtg cccttttcta aacgcgtctg tatgcagtca	3720
ataaaacaat cgatttg	3737
<210> 18 <211> 6072 <212> DNA <213> Homo sapiens	
<pre><400> 18 gttctgtgtt gtggcggccc tggatccggc gtcagggcga ccgggcggac gaggtggagc</pre>	60
cagagtctgt caggcgggcg cgatgaaggc actgatctta gtggggggct atgggacgcg	120
gctacggccg ctgacgctga gcacccgaa gccactggtg gacttctgca ataagcccat	180

cttgctgcac caagtggagg cgctagccgc ggcaggcgtg gaccacgtga tcctggccgt

gagctacatg	tcgcaggtgc	tggagaagga	aatgaaggca	caggagcaga	ggctgggaat	300
ccgaatctcc	atgtcccatg	aagaggagcc	tttggggaca	gctgggcccc	tggcgctggc	360
ccgtgaccta	ctctctgaga	ctgcagaccc	tttcttcgtc	ctcaacagtg	acgtgatctg	420
cgatttcccc	ttccaagcca	tggtgcagtt	ccaccggcac	catggccagg	agggctccat	480
cctggtgacc	aaggtggagg	aaccctccaa	gtacggtgtg	gtggtgtgtg	aggctgacac	540
aggccgcatt	caccggttcg	tggagaagcc	acaggtgttt	gtgtccaata	agatcaacgc	600
aggcatgtac	atcctgagcc	ctgcagtgct	gcagcgcatc	cagctgcagc	ctacgtccat	660
tgagaaggag	gtcttcccca	ttatggccaa	ggaggggcag	ctatatgcca	tggagttaca	720
ggcttctgga	tggacattgg	gcagcccaag	gacttcctca	ctggcatgtg	cctcttcctg	780
cagtcactga	ggcagaagca	gcctgagcgg	ctgtgctcag	gccctggcat	tgtgggcaac	840
gtgctggtgg	acccaagtgc	ccgcatcggc	cagaactgca	gcattggccc	caatgtgagc	900
ctgggacctg	gcgtggtggt	cgaagatggt	gtgtgtatcc	ggcggtgcac	ggtgctgcgg	960
gatgcccgga	tccgttccca	ttcctggctt	gagtcctgca	ttgtgggctg	gcgctgccgc	1020
gtgggtcagt	gggtacgcat	ggagaacgtg	acagtgctgg	gtgaggacgt	catagttaat	1080
gatgagctct	acctcaacgg	agccagcgtg	ctgccccaca	agtctattgg	cgagtcagtg	1140
ccagagcctc	gtatcatcat	gtgaggggat	gcagtggggc	tggccgagcc	ccggttttcc	1200
catcagcaag	gggagtgctg	gcctgacaca	tcagaagacc	ctggacttgt	cattatttgt	1260
ctggggggca	ctgggtgaag	ctgaagctgt	tggacacctg	ccttctcatg	tggacatcat	1320
ctggcaggat	ccctgctggg	cacaccccac	aaaccccact	ccctcaagaa	gggccagggc	1380
cagggctgta	tggaataata	atttaatgct	cactgtggcc	ctgactgaaa	gtcaagctca	1440
ggcacaatta	gggccatggc	tgggctccca	ccaatgagga	tacaggcagg	caaggaggtt	1500
ggatgtggtg	gtgtgggata	caggagaagg	gcaaagggag	ctcataaata	gggcccagcc	1560
tggctctggg	ttcaaaggtg	gaggttccag	gatggcacag	gctgtgaggg	ctaggcagct	1620
gaggaggtag	tactcgtatt	ggctcccttc	tcccagtcct	ctacagacac	gatggtggtt	1680
ttgcagaaga	agcagtcctt	gttgttcatc	aggtgctggt	tgatacaggc	tctacaacag	1740
gggaggggat	gaggactgcc	ctgcatgtac	ctactgctct	ccccaccacc	aagctgtggg	1800
gcccacttac	ttgcaggact	tgtggccaca	gggctggaac	acagcagaga	tggggtgggc	1860
atagcagatg	gggcagaggt	cctcctcact	ggtgggctgc	agggaggaga	gtgaagggtg	1920
ggctggagtt	ggatgcctgg	ctatgtggat	gtccgttgtg	cctgtgtagg	agtgcacaca	1980
tattcaagtg	gcatggacct	gtgcaccgtg	ttcccactca	ccagggaggc	agctgctgcc	2040
tgggcagatg	cagaggtcag	gtgcgccagc	atctgttcca	cttgggccag	ctcatcggca	2100

ctgatataat	ccgcatctgg	ggagtggtag	gtagtgtcaa	gtcagaggta	gctgaggatg	2160
tgatgcctct	tgaatattcc	cagcctagga	ctttgctgtt	cttaaggctc	ctgacccgac	2220
ccagccccag	atttccctga	cctgccccac	cagcccactc	acagctctgc	agggagaagc	2280
gcttccggtc	aggggctggc	agagcagtgc	caggtgctgg	gggctctggc	tgtcccagga	2340
gatagcatat	tgagcgtagc	tggaagcagg	gatctgccag	gagcactgat	gtggcttgct	2400
ctctcctagg	taggggaggg	tgcaagggca	gtcagaaggc	ttggggcctg	gctaaaagtc	2460
tctcttggga	ttgccaatga	ggagtgccat	ggctcgtaca	tgatcacccc	ccctgcatcc	2520
tttccgtctc	cctgcttccc	aaaccccaag	tcctgtattc	tagtaaggtg	ccacacagcc	2580
tgttttttt	tttttttct	tgagacgagt	ctcgctctgt	tgcccaggct	ggagtgcgat	2640
ggcacgatct	cggctcactg	caacctccac	ctcccgggtt	caagtgattc	tcctgcttta	2700
gcctcccgag	tagctggaat	tgcagacgcc	caccaccacg	cccggctaat	tgttgtattt	2760
ttagtagaga	cagggtttca	ccaggttggc	caggctggtc	tcgaattcct	gacctcaggt	2820
gatccacctg	ccttggcttc	ccaaagtgct	gggattacag	gcgtgagcca	ccgcgcccgg	2880
cctggggtac	cactttaaga	aggctcaggc	gaaccacctt	aagatagtga	gagtctgcct	2940
gccccataat	attatcagtc	cttcaaagtc	acttcaaata	aacactaaca	gcagcttgga	3000
gacattcttc	cagactcccc	cttttactcc	ccgaggaaaa	acgagcggcg	gagagctgcc	3060
agccaaaggc	tgacggggac	tttggggttg	gccttgctcc	ccatctggcg	gtcatgcggg	3120
gccattgggc	acaaagggat	gtagccgccc	cgcctcctca	aacgggaacc	aataggagcc	3180
cgggccccgc	ccctgggggg	agtatttagg	agccgatcag	gaactcgctt	ggagagggct	3240
agcgaagccg	aagggagcgc	ggctaagagt	gccgcaccgc	ctcacaacct	gggaaccgga	3300
gagtaggggc	cgtcggctgg	caagaacccg	ccgtgcctcc	tcggcaaggg	ccatccggtg	3360
ccacccatgt	cgcactagag	cagaagaggg	tgagtcctgg	aactgcaacc	tgcacagagc	3420
tgctctgtac	tgtccctggt	ggtcgccgcc	atgacctggt	tggtgctgct	ggggacactg	3480
ctctgcatgc	tgcgcgttgg	gttaggcacc	ccggactccg	agggtttccc	gccccgtgcg	3540
ctccacaact	gcccctacaa	atgtatctgo	gctgccgacc	tgctaagctg	cactggccta	3600
gggctgcagg	acgtgccago	: cgagttacct	gccgctactg	cggacctcga	cctgagccac	3660
aacgcgctcc	agcgcctgcg	cccggctgg	ttggcgcccc	tcttccagct	gegegeeetg	3720
cacctagacc	acaacgaact	: agatgcgctg	ggtcgcggcg	tcttcgtcaa	cgccagcggc	3780
ctgaggctgc	tcgatctatc	: atctaacacg	ttgcgggcgc	: ttggccgcca	a cgacctcgac	3840
gggctggggg	cgctggagaa	gctgcttctg	ttcaataaco	: gcttggtgca	a cttggacgag	3900
catgccttcc	acggcctgcg	g cgcgctcago	catctctacc	: tgggctgcaa	a cgaactcgcc	3960

tcgttctcct	tcgaccacct	gcacggtctg	agcgccaccc	acctgcttac	tetggacete	4020	
tcctccaacc	ggctgggaca	catctccgta	cctgagctgg	ccgcgctgcc	ggccttcctc	4080	
aagaacggcc	tctacttgca	caacaaccct	ttgccttgcg	actgccgcct	ctaccacctg	4140	
ctacagcgct	ggcaccagcg	gggcctgagc	gccgtgcgcg	actttgcgcg	cgagtacgta	4200	
tgcttggcct	tcaaggtacc	cgcgtcccgc	gtgcgcttct	tccagcacag	ccgcgtcttt	4260	
gagaactgct	cgtcggcccc	agctcttggc	ctagagcggc	cggaagagca	cctgtacgcg	4320	
ctggtgggtc	ggtccctgag	gctttactgc	aacaccagcg	tcccggccat	gcgcattgcc	4380	
tgggtttcgc	cgcagcagga	gcttctcagg	gcgccaggat	cccgcgatgg	cagcatcgcg	4440	
gtgctggccg	acggcagctt	ggccataggc	aacgtacagg	agcagcatgc	gggactcttc	4500	
gtgtgcctgg	ccactgggcc	ccgcctgcac	cacaaccaga	cgcacgagta	caacgtgagc	4560	
gtgcactttc	cgcgcccaga	gcccgaggct	ttcaacacag	gcttcaccac	actgctgggc	4620	
tgtgccgtgg	gccttgtgct	cgtgctgctc	tacctgttcg	ccccaccctg	ccgctgctgc	4680	
cgccgtgcct	gccgctgccg	ccgctggccc	caaacaccca	gcccgctcca	agagctgagc	4740	
gcacagtcct	cagtactcag	caccacaccg	ccagacgcac	ccagccgcaa	ggccagcgtc	4800	
cacaagcacg	tagtctttct	ggagccaggc	cggaggggcc	tcaatggccg	cgtgcagctg	4860	
gcagtagctg	aggaattcga	tctctacaac	cctggaggcc	tgcagctgaa	ggctggctct	4920	
gagtccgcca	gctccatagg	ctccgagggt	cccatgacaa	cctagactgc	ccagggctcc	4980	
cccacccagg	ccccaccct	cttgctgctc	gccctgctcc	ctgcttcggt	ccagagaact	5040	
ggcagatact	ggtgggaagc	actgtgcctg	gcccccagc	ttcctgtatg	ggcctcgaaa	5100	
cacaatgggc	cttctcgctc	actggtagag	acaggggttg	tggtccccaa	cctgccttct	5160	
gctctgcccc	tgcacaggac	ccaaaggccc	caggccctgc	aaggtgtgct	agttcctgct	5220	
ttcccgcgga	cttcctagtg	cccaaatgcc	ctgtgaggct	gagagaccca	ggcccctgtg	5280	
gctttcaaca	cagcacagct	gtggaagtgg	ctgtgttctt	ctacageetg	tggaagaacc	5340	
cctgtagcag	agcctcccgt	ccaccctcag	gggctgagac	agctctcgag	gagtggtgct	5400	
caagagctga	cgcagggcca	cctccccttc	ccaagggggt	gggagggagt	gggcccacag	5460	
ggaaaagaag	geggetetga	aggaagatct	cgcccacacc	ccaggacaga	aagaggaaac	5520	
aagcccgccc	: tctggtgaaa	tgggactccc	tccatccacc	aacacccaac	ctcctgaaag	5580	
cttcacaact	tcacgcagag	tccggtgggc	: aggcaccagg	caggaaaggc	tcctcaagag	5640	
gttcctggtg	gtctggccta	agececaged	: agaggccctg	ctctctctgg	cctggggcat	5700	
ccacccgttg	g ttctgaaggc	: agagcccatt	ctgtgggctc	acaagacaca	gtgaagggga	5760	
tcatggcctg	g cacccctgct	: tttcagcagt	aaaaagcccg	aaaagcctgg	cgagcatggc	5820	

cgagctggga gggccgagcc	ggaactccac	gtccctcgag	agcaggagcc	tcttaagggc	5880
tggcactggt ctcagcctaa	tggctgaggc	ggtaccctgg	cttcatatgc	atctcactgc	5940
tcccactgca ggggggcagg	gaaggggggt	ctgggagccc	ttcatgtgtg	ggggccgagc	6000
tgggggcccc catggccatc	ctggacctcg	ctgctccaga	gtttaataaa	ggtagcacat	6060
gcttattgct ag					6072
<210> 19 <211> 2100 <212> DNA <213> Homo sapiens				·	
<400> 19 ggccagagag gagccaggag	ccatgagggt	ggcattaggc	atgctctggc	tcttggccct	60
tgcgtggccc ccccaggccc	ggggcttctg	cccctctcaa	tgcagctgca	gcctccatat	120
catgggtgat ggcagcaagg	ccaggacagt	agtgtgcaac	gaccctgaca	tgaccctgcc	180
cccggcgtcc atcccccgg	acacctccag	actgcgcctg	gagcggacgg	ccatacgcag	240
ggttcctggc gaggccttca	ggcccctggg	ccgcctggag	cagctgtggc	tgccttacaa	300
cgccctcagc gagctcaacg	ccctcatgct	gcggggtctg	cgacgcctgc	gggagctgcg	360
gctgcccggg aaccgcctgg	ccgccttccc	ctgggcggcg	ctcagggacg	ccccaagct	420
geggetgetg gacetgeagg	ccaaccgcct	ctcggctgtg	cccgctgagg	ccgcgcgctt	480
cctggagaac ctcaccttcc	tcgacctctc	cagcaaccag	ctgatgaggc	tcccgcagga	540
gctcatcgtc tcctgggctc	acctggagac	cggtatcttt	cctcccggcc	accaccccag	600
gcgggtccta gggctacagg	acaacccctg	ggcatgtgac	tgccgactct	atgacctggt	660
tcatcttttg gatggctggg	ccccaaactt	ggccttcatt	gagactgaac	tgagatgtgc	720
cagcccacgt agcctggccg	gagtggcctt	cagccagctt	gaactgagga	agtgccaggg	780
cccagagctc catccaggag	tggccagcat	caggtccctt	ttgggtggca	cagcattgct	840
acgctgtgga gctactggag	tccctgggcc	cgagatgagc	tggaggaggg	ccaatggcag	900
gccccttaac ggtacagtgc	accaggaagt	ctccagtgac	ggcacgagct	ggactctgct	960
gggcctgcct gcagtgtccc	accttgactc	cggagactac	atctgccaag	ccaagaactt	1020
cctgggagcc tctgaaactg	ttatctcctt	gattgtcact	gagccgccga	cttccacaga	1080
acacagtggg agcccagggg	cactatgggc	aaggacaggt	ggcggagggg	aagctgctgc	1140
ttacaacaac aagctggtgg	ccaggcatgt	ccccagatt	cccaaacccg	ctgtcctggc	1200
cactggaccc tctgtgccca	gcacaaagga	ggagctgaco	cttgagcact	tccagatgga	1260
tgccctggga gagctctctg	atgggcgggc	aggaccctca	gaggcacgaa	tggtgaggtc	1320
tgtgaaggtg gtgggggaca	cttaccacag	cgtgtccttg	gtgtggaagg	caccccaggc	1380

taagaacaca actgccttca	gtgtcctcta	cgcggtcttt	gggcagcaca	gcatgcggcg	1440
ggtgattgtg cagcctggga	agaccagagt	gaccatcact	gggctgttgc	ccaagaccaa	1500
gtatgtggcg tgtgtctgtg	tgcagggcct	ggtgccccgg	aaggagcagt	gtgttatttt	1560
ctccaccaat gaagtggtgg	atgctgagaa	cactcagcag	cttatcaatg	tggtggtgat	1620
cagtgtggcc atcgtcattg	ccctgcctct	cacgctgctt	gtctgctgca	gtgctcttca	1680
gaagcgctgc cgaaagtgct	tcaacaagga	ctccactgag	gccacagtta	cctacgtcaa	1740
cctagagaga ctgggctaca	gcgaggacgg	cttggaggag	ctgtcccggc	acagtgtcag	1800
cgaggctgac aggcttctct	cagctcgttc	cagtgtggac	tttcaggcct	ttggagtcaa	1860
agggggcagg agaatcaatg	agtacttctg	ctgagggata	tgcctccgca	actcacacac	1920
ctgcctgccc acgctccttc	tttagctctg	acacctgagt	acacgatcac	ccactcttac	1980
ctgctcgggt acctgcttac	tcagatactt	acacacaaca	acagcagcag	caagctgcta	2040
ctgcaacaac cgctaacact	tgttaagcac	ttactacaga	ctagaaagtg	ttctaagtgc	2100
<210> 20 <211> 3144 <212> DNA <213> Homo sapiens <400> 20					
<pre><400> 20 gcctggctcc ctctcgctga</pre>	gacacacata	cactcacaca	tacacaaccc	ggcaggctcg	60
tctgaacttg aagacacccc	acattccaag	atgcccgagg	ttcctgggaa	tgcctggggt	120
tcttcgatcc ggaaaatcct	accggcatcc	tcctagggag	ggattattat	tattattttt	180
ctttaatctg gaagagaaga	gaacaagttg	tgcttttccc	cccttcttct	tgctaaatgc	240
catggatata actgaataag	cggctcaggg	ctttccccgc	gtggacgtcc	gaggccacca	300
tctgcctgca ttcgccggag	ccgccggagg	gtttagctcg	agtctgtctc	gggcggggaa	360
ggatgcgtgg ccgagccggg					
	gagcccgggc	gccccgcgga	gccggcctcg	gtgccaccca	420
gccgggggta gatgctgcct					420 480
	cgcccaggcg	ctgagtgacc	agaccatgga	gaccctgctt	
gccgggggta gatgctgcct	cgcccaggcg	ctgagtgacc	agaccatgga acgcctgccc	gaccctgctt caagtactgt	480
gccgggggta gatgctgcct ggtggcctgc tagcgtttgg	cgcccaggcg catggcgttt gtcactgggg	ctgagtgacc gccgtggtcg accctgtgcc	agaccatgga acgcctgccc cctccaaggg	gaccctgctt caagtactgt gctgctcttt	480 540
gccggggta gatgctgcct ggtggcctgc tagcgtttgg gtctgccaga atctgtctga	cgcccaggcg catggcgttt gtcactgggg gcggacagtg	ctgagtgacc gccgtggtcg accctgtgcc gagctgcgcc	agaccatgga acgcctgccc cctccaaggg tgggcggcaa	gaccetgett caagtactgt getgetettt cttcatcate	480 540 600
gccgggggta gatgctgct ggtggcctgc tagcgtttgg gtctgccaga atctgtctga gtacccctg atattgaccg	cgcccaggcg catggcgttt gtcactgggg gcggacagtg tgccaacatg	ctgagtgacc gccgtggtcg accctgtgcc gagctgcgcc acggggctgg	agaccatgga acgcctgccc cctccaaggg tgggcggcaa tggacctgac	gaccetgett caagtactgt getgetettt cttcatcate cctgtccagg	480 540 600 660
gccggggta gatgctgct ggtggcctgc tagcgtttgg gtctgccaga atctgtctga gtaccccctg atattgaccg cacatcagcc gccaggactt	cgcccaggcg catggcgttt gtcactgggg gcggacagtg tgccaacatg	ctgagtgacc gccgtggtcg accctgtgcc gagctgcgcc acggggctgg tttctggacc	agaccatgga acgcctgccc cctccaaggg tgggcggcaa tggacctgac tcgagagcct	gaccetgett caagtactgt getgetettt ctteatcate cetgtecagg cegetecetg	480 540 600 660 720

ctgcagcacc ttatcgtgaa caacaaccag ctgggcggca tcgcagatga ggcttttgag 900

gacttcctgc	tgacattgga	ggatctggac	ctctcctaca	acaacctcca	tggcctgccg	960
tgggactccg	tgcgacgcat	ggtcaacctc	caccagctga	gcctggacca	caacctgctg	1020
gatcacatcg	ccgagggcac	ctttgcagac	ctgcagaaac	tggcccgcct	ggatctcacc	1080
tccaatcggc	tgcagaagct	gccccctgat	cccatctttg	cccgctccca	ggcttcggct	1140
ttgacagcca	caccctttgc	cccacccttg	tcctttagtt	ttgggggtaa	cccacttcac	1200
tgcaattgtg	agcttctctg	gctgcggagg	ctcgagcggg	acgatgacct	ggaaacctgt	1260
ggctccccag	ggggcctcaa	gggtcgctac	ttctggcatg	tgcgtgagga	ggagtttgtg	1320
tgcgagccgc	ctctcatcac	ccagcacaca	cacaagttgc	tggttctgga	gggccaggcg	1380
gccacactca	agtgcaaagc	cattggggac	cccagccccc	ttatccactg	ggtagccccc	1440
gatgaccgcc	tggtagggaa	ctcctcaagg	accgctgtct	atgacaatgg	caccctggac	1500
atcttcatca	ccacatctca	ggacagtggt	gccttcacct	gcattgctgc	caatgctgcc	1560
ggagaggcca	cggccatggt	ggaggtctcc	atcgtccagc	tgccacacct	cagcaacagc	1620
accagccgca	ctgcaccccc	caagtcccgc	ctctcagaca	tcactggctc	cagcaagacc	1680
agccggggag	gtggaggcag	tgggggcgga	gagcctccca	aaagcccccc	ggaacgggct	1740
gtgcttgtgt	ctgaagtgac	caccacctcg	gccctggtca	agtggtctgt	cagcaagtca	1800
gcaccccggg	tgaagatgta	ccagctgcag	tacaactgct	ctgacgatga	ggtactgatt	1860
tacaggatga	tcccagcctc	caacaaggcc	ttcgtggtca	acaacctggt	gtcagggact	1920
ggctacgact	tgtgtgtgct	ggccatgtgg	gatgacacag	ccacgacact	cacggccacc	1980
aacatcgtgg	gctgcgccca	gttcttcacc	aaggctgact	acccgcagtg	ccagtccatg	2040
cacagccaga	ttctgggcgg	caccatgatc	ctggtcatcg	ggggcatcat	cgtggccacg	2100
ctgctggtct	tcatcgtcat	cctcatggtg	cgctacaagg	tctgcaacca	cgaggccccc	2160
agcaagatgg	cagcggccgt	gagcaatgtg	tactcgcaga	ccaacggcgc	ccagccaccg	2220
cctccaagca	gegeaceage	eggggeeeeg	ccgcagggcc	cgccgaaggt	ggtggtgcgc	2280
aacgagctco	: tggacttcac	cgccagcctg	gecegegeca	gtgactcctc	: ttcctccagc	2340
tccctgggca	gtggggaggc	tgcggggctg	ggacgggccc	cctggaggat	cccaccctcc	2400
gcccgcgc	ccaagcccag	ccttgaccgc	: ctgatggggg	ccttcgcctc	cctggacctc	2460
aagagtcaga	ı gaaaggagga	gctgctggac	: tccaggactc	cagccgggag	g aggggctggg	2520
acgtcggccc	ggggccacca	ctcggaccga	gagccactgo	tggggcccc	tgcggcccgg	2580
gccaggagco	tgctcccctt	gccgttggag	ggcaaggcca	aacgcagcca	ctccttcgac	2640
atgggggact	: ttgctgctgc	: ggcggcggga	ggggtcgtgc	: cgggcggcta	a cagtectect	2700
cggaaggtct	: cgaacatctg	gacgaagcgo	agcctctctc	tcaacggcat	gctcttgccc	2760

tttgaggaga gtgacctggt gg	ggggcccgg g	ggacttttg	gcagctccga	atgggtgatg	2820
gagagcacgg tctaggtggg gg	gtgggcatg c	tecetttee	tgtgcgcagg	gtgggagaag	2880
gggaaagaat ctcactggca ag	gtgtttgtg g	agtttccat	ggtgatgttt	acatccaggg	2940
acagtttcgt ctccctgtca at	tggcctcgt g	tcccccct	accccgcaac	acccacatca	3000
cctccccacc acccggccgg gg	gtgtgctca g	ggaatgtgg	actcgctcaa	atgccggact	3060
gagccctgag tgtttggaaa gg	gcgagactc c	gcctttcta	atcacaaatg	tagcctacaa	3120
gcaagcggct ttggattgct ta	atg				3144
<210> 21 <211> 2549 <212> DNA <213> Homo sapiens					
<400> 21 ccaaggggcc tgaacccgag t	ttgggcctg a	agtccttgc	tgcagacctg	agtgcttaaa	60
tctggggctt gagacctccc as	atcttgact c	cagcacccca	atatctgaat	gcagaacccc	120
gggatcggat ctcagactct a	aaccccacc g	gtttggctgc	ttagcatccc	aagactggac	180
ctgggagacc ctgaccctga a	.caacccaaa c	ctggacccgt	aaaactggac	cctagaggcc	240
caatatttag gggtctggaa c	cccgagtat t	aaggtctgg	agactccgtt	gccacagatt	300
tgagccgagt caggacacag t	ccctctaca g	gaagccttgg	ggacaggaaa	agcatgacca	360
gatgeteect ceagageect g	acctctgac t	cccctggag	ctaggactct	gctccctggg	420
gctgcttcta gctcaggaca c	ccctgcccg c	cgatggccat	cctcccgttg	ctcctgtgcc	480
tgctgccgct ggcccctgcc t	catececae e	ccagtcagc	cacacccagc	ccatgtcccc	540
gccgctgccg ctgccagaca c	agtcgctgc c	cctaagcgt	gctgtgccca	ggggcaggcc	600
tectgttegt gecaeceteg e	tggaccgcc g	gggcagccga	gctgcggctg	gcagacaact	660
tcatcgcctc cgtgcgccgc c	gcgacctgg c	ccaacatgac	aggcctgctg	catctgagcc	720
tgtcgcggaa caccatccgc c	acgtggctg c	ccggcgcctt	cgccgacctg	cgggccctgc	780
gtgccctgca cctggatggc a	accggctga c	cctcactggg	cgagggccag	ctgcgcggcc	840
tggtcaactt gcgccacctc a	tcctcagca a	acaaccagct	ggcagcgctg	gcggccggcg	900
ccctggatga ttgtgccgag a	acactggagg a	acctcgacct	ctcctacaac	aacctcgagc	960
agctgccctg ggaggccctg g	geegeetgg g	gcaacgtcaa	cacgttgggc	ctcgaccaca	1020
acctgctggc ttctgtgccc g	geeggegett t	tttcccgcct	gcacaagctg	gcccggctgg	1080
acatgaccte caaccgcctg a	accacaatcc o	caccegacec	actcttctcc	cgcctgcccc	1140
tgctcgccag gccccggggc t	egecegeet o	ctgccctggt	gctggccttt	ggcgggaacc	1200
ccctgcactg caactgcgag c	etggtgtggc t	tgcgtcgcct	ggcgcgggag	gacgacctcg	1260

300

aggeetgege gteeceaect getetgggeg geegetaett etgggeggtg ggegaggagg	1320
agtttgtctg cgagccgccc gtggtgactc accgctcacc acctctggct gtgcccgcag	1380
gtcggccggc tgccctgcgc tgccgggcag tgggggaccc agagccccgt gtgcgttggg	1440
tgtcacccca gggccggctg ctaggcaact caagccgtgc ccgcgccttc cccaatggga	1500
cgctggagct gctggtcacc gagccgggtg atggtggcat cttcacctgc attgcggcca	1560
atgcagctgg cgaggccaca gctgctgtgg agctgactgt gggtccccca ccacctcctc	1620
agctagccaa cagcaccage tgtgaccccc cgcgggacgg ggatcctgat gctctcaccc	1680
cacceteege tgeetetget tetgecaagg tggeegacae tgggeeecet acegacegtg	1740
gcgtccaggt gactgagcac ggggccacag ctgctcttgt ccagtggccg gatcagcggc	1800
ctatcccggg catccgcatg taccagatcc agtacaacag ctcggctgat gacatcctcg	1860
tctacaggat gatcccggcg gagagccgct cgttcctgct gacggacctg gcgtcaggcc	1920
ggacctacga tctgtgcgtg ctcgccgtgt atgaggacag cgccacgggg ctcacggcca	1980
cgcggcctgt gggctgcgcc cgcttctcca ccgaacctgc gctgcggcca tgcggggcgc	2040
cgcacgctcc cttcctgggc ggcacgatga tcatcgcgct gggcggcgtc atcgtagcct	2100
cggtactggt cttcatcttc gtgctgctaa tgcgctacaa ggtgcacggc ggccagcccc	2160
ccggcaaggc caagattccc gcgcctgtta gcagcgtttg ctcccagacc aacggcgccc	2220
tgggccccac gcccacgccc gccccgcccg ccccggagcc cgcggcgctc agggcccaca	2280
ccgtggtcca gctggactgc gagccctggg ggcccggcca cgaacctgtg ggaccctagc	2340
caggcgcccc cccctctaag ggtcctctgg ccccacggac agcaggaccc ggacaccctg	2400
tgggacctgg cctcaaactc accaaatcgc tcatggtttt taaaactctg atggggaggg	2460
tgtcggggac accggggcaa aacaagaaag tcctattttt ccaagcttgg gcgaaaaaaa	2520
aaaaaaaaa aaaaaaaaaaaaaaaa	2549
<210> 22 <211> 2022	
<211> 2022 <212> DNA	
<213> Homo sapiens	
<400> 22	60
atgtgctcca gggtccctct gctgctgccg ctgctcctgc tactggccct ggggcctggg	
gtgcaggget gcccatccgg ctgccagtgc agccagccac agacagtett ctgcactgcc	120
cgccagggga ccacggtgcc ccgagacgtg ccacccgaca cggtggggct gtacgtcttt	180
gagaacggca tcaccatgct cgacgcaggc agctttgccg gcctgccggg cctgcagctc	240

ctggacctgt cacagaacca gatcgccagc ctgcccagcg gggtcttcca gccactcgcc

aacctcagca a	acctggacct	gacagccaac	aggctgcatg	aaatcaccaa	tgagaccttc	360
cgtggcctgc (ggcgcctcga	gcgcctctac	ctgggcaaga	accgcatccg	ccacatccag	420
cctggtgcct	tcgacacgct	cgaccgcctc	ctggagctca	agctgcagga	caacgagctg	480
cgggcactgc (cccgctgcg	cctgccccgc	ctgctgctgc	tggacctcag	ccacaacagc	540
ctcctggccc	tggagcccgg	catcctggac	actgccaacg	tggaggcgct	gcggctggct	600
ggtctggggc	tgcagcagct	ggacgagggg	ctcttcagcc	gcttgcgcaa	cctccacgac	660
ctggatgtgt	ccgacaacca	gctggagcga	gtgccacctg	tgatccgagg	cctccggggc	720
ctgacgcgcc	tgcggctggc	cggcaacacc	cgcattgccc	agctgcggcc	cgaggacctg	780
gccggcctgg	ctgccctgca	ggagctggat	gtgagcaacc	taagcctgca	ggccctgcct	840
ggcgacctct	egggeetett	cccccgcctg	cggctgctgg	cagctgcccg	caaccccttc	900
aactgcgtgt	gccccctgag	ctggtttggc	ccctgggtgc	gcgagagcca	cgtcacactg	960
gccagccctg	aggagacgcg	ctgccacttc	ccgcccaaga	acgctggccg	gctgctcctg	1020
gagcttgact	acgccgactt	tggctgccca	gccaccacca	ccacagccac	agtgcccacc	1080
acgaggcccg	tggtgcggga	gcccacagcc	ttgtcttcta	gcttggctcc	tacctggctt	1140
agccccacag	agccggccac	tgaggccccc	agcccgccct	ccactgcccc	accgactgta	1200
gggcctgtcc	cccagcccca	ggactgccca	ccgtccacct	gcctcaatgg	gggcacatgc	1260
cacctgggga	cacggcacca	cctggcgtgc	ttgtgccccg	aaggcttcac	gggcctgtac	1320
tgtgagagcc	agatggggca	ggggacacgg	cccagcccta	caccagtcac	gccgaggcca	1380
ccacggtccc	tgaccctggg	catcgagccg	gtgagcccca	cctccctgcg	g cgtggggctg	1440
cagcgctacc	tccaggggag	ctccgtgcag	ctcaggagcc	teegteteac	ctatcgcaac	1500
ctatcgggcc	ctgataagcg	gctggtgacg	ctgcgactgc	ctgcctcgct	cgctgagtac	1560
acggtcaccc	agctgcggcc	caacgccact	: tactccgtct	gtgtcatgco	tttggggccc	1620
gggcgggtgc	cggagggcga	. ggaggcctgc	ggggaggccc	atacacccc	agccgtccac	1680
tccaaccacg	ccccagtcac	ccaggcccgc	gagggcaacc	tgccgctcct	cattgcgccc	1740
gccctggccg	cggtgctcct	ggccgcgctg	gctgcggtgg	gggcagccta	a ctgtgtgcgg	1800
cgggggcggg	ccatggcagc	: agcggctcag	gacaaagggc	aggtggggc	c aggggctggg	1860
cccctggaac	tggagggagt	gaaggtcccc	ttggagccag	gcccgaagg	c aacagagggc	1920
ggtggagagg	ccctgcccag	g cgggtctgag	g tgtgaggtgo	cactcatgg	g cttcccaggg	1980
cctggcctcc	agtcacccct	ccacgcaaag	g ccctacatct	aa		2022

<210> 23 <211> 5188 <212> DNA

<213> Homo sapiens

<400> 23 cgcgctctct	tectecetca	gacaactcgc	ccccgccct	cegececect	ccacgtaatt	60
ccgaaagagc	agaagaaaga	gaaggagaac	aggaaaagaa	gagctagtaa	gcgagagcga	120
gagcacagaa	aagaaaaaaa	aaagccttaa	gaggaccgaa	ggggaggaaa	ggaaaaggat	180
ggacaaccac	aaaacgcagc	gattgcggaa	attttccagc	gccattggct	gggcagcgtg	240
agtccttcgg	tcgggcgtga	tttcagcacc	gggggaactg	gacagcacct	cggggggact	300
tctgggcaac	ccgcaaccac	agcaagaact	ccaccagcag	cctcaacaac _.	agaagccgcg	360
gaaaaccctg	ctttgtatca	gagaggcaag	gtcagtccga	cgcacagcca	tgcacaggca	420
gtgcgcctgt	actacgctgc	aaaccctctg	cttgtttctc	taacatgcac	ttgcttctaa	480
ttactagcat	tgtttcattt	ctgatcagtg	aagatcagta	gatgagattc	tgtaagggtg	540
tacttttaat	ttatatgtat	atatttaact	tctttttctg	ttatttttaa	agtgttgtgg	600
gggagtgggg	tttttttcct	acttttttt	tttttttt	ttctttgctt	gccttgcact	660
acgtgcctgg	atagtttgtg	gatataatta	ttgactggcg	tctgggctat	tgcagtgcgg	720
gggggttagg	gaggaaggaa	tccaccccca	ccccccaaa	cccttttctt	ctcctttcct	780
ggcttcggac	attggagcac	taaatgaact	tgaattgtgt	ctgtggcgag	caggatggtc	840
gctgttactt	tgtgatgaga	tcggggatga	attgctcgct	ttaaaaatgc	tgctttggat	900
tctgttgctg	gagacgtctc	tttgttttgc	cgctggaaac	gttacagggg	acgtttgcaa	960
agagaagatc	tgttcctgca	atgagataga	aggggaccta	cacgtagact	gtgaaaaaaa	1020
gggcttcaca	agtctgcagc	gtttcactgc	cccgacttcc	cagttttacc	atttatttct	1080
gcatggcaat	. tccctcactc	gacttttccc	taatgagttc	gctaactttt	ataatgcggt	1140
tagtttgcac	: atggaaaaca	atggcttgca	tgaaatcgtt	ccgggggctt	ttctggggct	1200
gcagctggtg	aaaaggctgc	acatcaacaa	caacaagatc	aagtcttttc	gaaagcagac	1260
ttttctgggg	ctggacgatc	: tggaatatct	ccaggctgat	tttaatttat	tacgagatat	1320
agacccgggg	gccttccagg	acttgaacaa	. gctggaggtg	ctcattttaa	atgacaatct	1380
catcagcaco	c ctacctgcca	acgtgttcca	gtatgtgccc	atcacccacc	tcgacctccg	1440
gggtaacagg	g ctgaaaacgo	: tgccctatga	ggaggtcttg	gagcaaatco	ctggtattgc	1500
ggagatcctg	g ctagaggata	acccttggga	ctgcacctgt	gatctgctct	: ccctgaaaga	1560
atggctggaa	a aacattccca	a agaatgccct	gatcggccga	gtggtctgcg	g aagcccccac	1620
cagactgcag	g ggtaaagaco	tcaatgaaac	caccgaacag	g gacttgtgtc	ctttgaaaaa	1680
ccgagtggai	t tctagtctcc	e eggegeecc	c tgcccaagaa	a gagacctttg	g ctcctggacc	1740
cctgccaac	t cctttcaaga	a caaatgggca	a agaggatcat	gccacaccag	g ggtctgctcc	1800

aaacggaggt acaaagatcc caggcaactg gcagatcaaa atcagaccca cagcagcgat	1860
agcgacgggt agctccagga acaaaccctt agctaacagt ttaccctgcc ctgggggctg	1920
cagetgegae cacateceag ggtegggttt aaagatgaae tgeaacaaca ggaaegtgag	1980
cagettgget gatttgaage ceaagetete taaegtgeag gagettttee taegagataa	2040
caagatccac agcatccgaa aatcgcactt tgtggattac aagaacctca ttctgttgga	2100
tctgggcaac aataacatcg ctactgtaga gaacaacact ttcaagaacc ttttggacct	2160
caggtggcta tacatggata gcaattacct ggacacgctg tcccgggaga aattcgcggg	2220
gctgcaaaac ctagagtacc tgaacgtgga gtacaacgct atccagctca tcctcccggg	2280
cactttcaat gccatgccca aactgaggat cctcattctc aacaacaacc tgctgaggtc	2340
cctgcctgtg gacgtgttcg ctggggtctc gctctctaaa ctcagcctgc acaacaatta	2400
cttcatgtac ctcccggtgg caggggtgct ggaccagtta acctccatca tccagataga	2460
cctccacgga aacccctggg agtgctcctg cacaattgtg cctttcaagc agtgggcaga	2520
acgettgggt teegaagtge tgatgagega eeteaagtgt gagaegeegg tgaaettett	2580
tagaaaggat ttcatgctcc tctccaatga cgagatctgc cctcagctgt acgctaggat	2640
ctcgcccacg ttaacttcgc acagtaaaaa cagcactggg ttggcggaga ccgggacgca	2700
ctccaactcc tacctagaca ccagcagggt gtccatctcg gtgttggtcc cgggactgct	2760
gctggtgttt gtcacctccg ccttcaccgt ggtgggcatg ctcgtgttta tcctgaggaa	2820
ccgaaagcgg tccaagagac gagatgccaa ctcctccgcg tccgagatta attccctaca	2880
gacagtctgt gactcttcct actggcacaa tgggccttac aacgcagatg gggcccacag	2940
agtgtatgac tgtggctctc actcgctctc agactaagac cccaacccca ataggggagg	3000
gcagagggaa ggcgatacat ccttccccac cgcaggcacc ccgggggctg gaggggcgtg	3060
tacccaaatc cccgcgccat cagcctggat gggcataagt agataaataa ctgtgagctc	3120
gcacaaccga aagggcctga ccccttactt agctccctcc ttgaaacaaa gagcagactg	3180
tggagagctg ggagagcgca gccagctcgc tctttgctga gagccccttt tgacagaaag	3240
cccagcacga ccctgctgga agaactgaca gtgccctcgc cctcggcccc ggggcctgtg	3300
gggttggatg ccgcggttct atacatatat acatatatcc acatctatat agagagatag	3360
atatctattt ttcccctgtg gattagcccc gtgatggctc cctgttggct acgcagggat	3420
gggcagttgc acgaaggcat gaatgtattg taaataagta actttgactt ctgacaaaaa	3480
acaaaaagtg ctgcatggct cgcatggaat ccacgcgctc cagggactct gcccgccccc	3540
gcgactggag acggcatete gttcacagca eccacectet tacetgataa gttccategt	3600
atcaaacttt ctataaacaa aatacagtat aatcagaaag tgccatttcg ccattatttg	3660

tgatcggtag (gcagttcaga	gcataagtta	actgtgaaaa	aaatgtaaag	gttttattta	3720
ggacatttgc	atggctagtc	atcagtccat	tttatgagtt	aacaatgtat	tttgttgagg	3780
gaagttttta	ggggttgttt	tgggttcttt	tattttgatg	gtgatgtttt	attttatttt	3840
attttttca	gggggtcttt	ttttaatac	atatccaata	atgccttcca	tctgaatgta	3900
aaataagtac	ccatgatttc	tattatagta	tcagtgtaat	tatttaaaaa	atgattttga	3960
ggcagttaag	catgaccaat	taatgtcact	ctagtgctta	ggctgcgatc	ctatggtagc	4020
aattctgtgc	tggtataaat	cttacttata	aagtaggaaa	agagaaccga	ggaagcacgt	4080
gaaacttact	aattctattc	gaggatttta	taatggcata	ttttttcagt	attaaagcga	4140
aaatgttttc	aactctgggt	ccttaccttt	ttccagcttc	atatttgcaa	gtggtaaatt	4200
ggatttgcgg	tggaagagac	aggggaggga	aacggttggg	gttagatccc	ttcctgagct	4260
					tagctcctct	4320
tccctcgccc	ccaccctcta	cccaccccc	accttcgctc	agactttacc	ggctttcccc	4380
agtccataaa	ggtcttgccc	caacactcac	cccttcttt	tttcccctct	ccaaatgcag	4440
cagtgaatcc	ctttattaat	actggaaatc	cctctctgct	gcttttgttg	gtgctgccca	4500
cactgcagat	atattaagga	tgttaggaga	gatttgattt	aattgactct	gcctagatag	4560
gtctcattaa	acagagtgga	gatttcattg	gtcagcactc	: ctcaatgaaa	gacagaccta	4620
atgactggca	tttgagatgc	tgctggcatt	: ttgaattcaa	catctgctga	a aaacggtaaa	4680
actaattagt	gcccacccac	cctccccgc	ccagcaactg	g catattgaaa	a tttgttaaag	4740
cactcatctt	tatggaaatt	aatcattato	ctaaagaagt	gtttctctc	catcatccgg	4800
atttctggtt	gtggcccagc	aattaacaaa	a aacagcttca	a actgttcgaa	a ttttatgaac	4860
caatgtaact	ctggcctcaa	tcatattcct	ctgggatttc	c taaacagcag	g ttaagctaca	4920
aaaagcaaac	aaaaccacac	: atattgatgg	g agtctgcatt	ccaccacata	a tecaceettg	4980
agaagtatgt	caaaagactg	cagactatag	g atttttttt	t aatatagga	t tataaatcag	5040
ctagtgaaag	acctcagago	agttgtaag	t agatetgeea	a tctagaact	c atattctaaa	5100
gggaagtgat	ttctcagaac	agtgatgtt	c tggaatatg	t attatttat	t ttaacacttt	5160
tttaataaaa	tctttattat	aaaccatg				5188

<210> 24 <211> 4331 <212> DNA <213> Homo sapiens

<220> <221> misc_feature

<222> (2420)..(2519) <223> n is a, c, g, or t

<400> 24 60 cccggaaccc gcggtcgcca ccgcggcggc ggccccaggc tggaggcgtc cgggcgcctc tttcctccag cctctgggac tgcgctgctc gcagtctcct cgccctgcct gggcttgaga 120 aacctagtgc ataccccaaa gagggttttt gtgtatgtgt gtgtttttaa agggtggcta 180 tgatgactgg gccttggaga tgtgagactg ggaggtaaaa tgcacacttg ctgccccca 240 300 gtaactttgg aacaggacct tcacagaaaa atgcatagct ggatgctgca gactctagcg tttgctgtaa catctctcgt cctttcgtgt gcagaaacca tcgattatta tggggaaatc 360 tgtgacaatg catgtccttg tgaggaaaag gacggcattt taactgtgag ctgtgaaaac 420 cgggggatca tcagtctctc tgaaattagc cctccccgtt tcccaatcta ccacctcttg 480 ttgtccggaa accttttgaa ccgtctctat cccaatgagt ttgtcaatta cactggggct 540 tcaattttgc atctaggtag caatgttatc caggacattg agaccggggc tttccatggg 600 ctacggggtt tgaggagatt gcatctaaac aataataaac tggaacttct gcgagatgat 660 720 accttccttg gcttggagaa cctggagtac ctacaggtcg attacaacta catcagcgtc attgaaccca atgcttttgg gaaactgcat ttgttgcagg tgcttatcct caatgacaat 780 cttttgtcca gtttacccaa caatcttttc cgttttgtgc ccttaacgca cttggacctc 840 cgggggaacc ggctgaaact tctgccctac gtggggctct tgcagcacat ggataaagtt 900 960 gtggagctac agctggagga aaacccttgg aattgttctt gtgagctgat ctctctaaag 1020 gattggttgg acagcatctc ctattcagcc ctggtggggg atgtagtttg tgagaccccc 1080 ttccgcttac acggaaggga cttggacgag gtatccaagc aggaactttg cccaaggaga cttatttctg actacgagat gaggccgcag acgcctttga gcaccacggg gtatttacac 1140 accaccccgg cgtcagtgaa ttctgtggcc acttcttcct ctgctgttta caaaccccct 1200 ttgaagecce ctaaggggae tegecaaece aacaagecea gggtgegeee caeetetegg 1260 1320 cagccctcta aggacttggg ctacagcaac tatggcccca gcatcgccta tcagaccaaa 1380 tecceggtge etttggagtg teccaeegeg tgetettgea acetgeagat etetgatetg ggcctcaacg taaactgcca ggagcgaaag atcgagagca tcgctgaact gcagcccaag 1440 ccctacaatc ccaagaaaat gtatctgaca gagaactaca tcgctgtcgt gcgcaggaca 1500 gacttectgg aggecaeggg getggaeete etgeaeetgg ggaataaeeg catetegatg 1560 atccaggacc gcgctttcgg ggatctcacc aacctgaggc gcctctacct gaatggcaac 1620 1680 aggatcgaga ggctgagccc ggagttattc tatggcctgc agagcctgca gtatctcttc 1740 ctccagtaca atctcatccg cgagattcag tctggaactt ttgacccggt cccaaacctc

42

cagctgctat tcttgaataa caacctcctg caggccatgc cctcaggcgt cttctctggc 180 ttgaccctcc tcaggctaaa cctgaggagt aaccacttca cctccttgcc agtgagtgga 186 gttttggacc agctgaagtc actcatccaa atcgacctgc atgacaatcc ttgggattgt 192	50 20 30
	20 30
gttttggacc agctgaagtc actcatccaa atcgacctgc atgacaatcc ttgggattgt 192	30
acctgtgaca ttgtgggcat gaagctgtgg gtggagcagc tcaaagtggg cgtcctagtg 198	
gacgaggtga tctgtaaggc gcccaaaaaa ttcgctgaga ccgacatgcg ctccattaag 204	. U
teggagetge tgtgccctga ctattcagat gtagtagttt ccacgcccac accetectet 210	0
atccaggtcc ctgcgaggac cagcgccgtg actcctgcgg tccggttgaa tagcaccggg 216	60
geccegega gettgggege aggeggaggg gegtegtegg tgecettgte tgtgttaatt 222	0 :
ctcagcctcc tgctggtttt catcatgtcc gtcttcgtgg ccgccgggct cttcgtgctg 228	30
gtcatgaagc gcaggaagaa gaaccagagc gaccacacca gcaccaacaa ctccgacgtg 234	ŀO
agctccttta acatgcagta cagcgtgtac ggcggcggcg gcggcacggg cgggcaccca 240	0
cacgegeacg tgcattaten nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnn	50
nnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn	30
acagcagcag cccccgccgc agctgcagct gcagcccggg gaggaggaga ggcgggaaag 258	30
ccaccacttg cggagccccg cctacagcgt cagcaccatc gagccccggg aggacctgct 264	10
gtcgccggtg caggacgccg accgctttta caggggcatt ttagaaccag acaaacactg 270	0
ctccaccacc cccgccggca atagcctccc ggaatatccc aaattcccgt gcagccccgc 276	50
tgcttacact ttctccccca actatgacct gagacgcccc catcagtatt tgcacccggg 282	20
ggcaggggac agcaggctac gggaaccggt gctctacagc cccccgagtg ctgtctttgt 288	30
agaacccaac cggaacgaat atctggagtt aaaagcaaaa ctaaacgttg agccggacta 294	10
cctcgaagtg ctggaaaaac agaccacgtt tagccagttc taaaagcaaa gaaactctct 300	0
tggagctttt gcatttaaaa caaacaagca agcagacaca cacagtgaac acatttgatt 306	50
aattgtgttg tttcaacgtt tagggtgaag tgccttggca cgggatttct cagcttcggt 312	30
ggaagatacg aaaagggtgt gcaatttcct ttaaaattta cacgtgggaa acatttgtgt 318	30
aaactgggca catcactttc tcttcttgcg tgtggggcag gtgtggagaa gggctttaag 324	10
gaggccaatt tgctgcgcgg gtgacctgtg aaaggtcaca gtcatttttg tagtggttgg 330	0
aagtgctaag aatggtggat gatggcagag catagattet actetteete ttttgettee 336	50
tececetece eegeceetge eccacetete ttteteceet tttaageeat gggtgggtet 342	30
aactggcttt tgtggagaaa ttagcacacc ccaactttaa taggaaattt gttctctttt 348	30
teegeceete teettetete eteeceteee eteeettete atteettte titigititta 354	10
aaggatgtgt ttgtatgcat tctggacatt tgaattaaaa aaaaagtatt gtgatcctgt 360	00

aaaggatcac	catagatgtg	gacaaatcat	taaaattaca	gagctatatg	atccataatt	3660
gattagtcaa	aataacttat	tgatgaaata	tacaaatatt	ttattgtagc	acctatttt	3720
atatgcacat	ttagcattcc	tctttccttc	actatttagc	ctatgatttt	gcagaggtgt	3780
cacactgtat	taggatctgc	atttctaaaa	ctgacgtggt	atcaggaagg	cattttcaat	3840
cattcaaaat	gtggagaatt	taatggctaa	atctttaaaa	gccaatgcaa	cccacccaat	3900
tgaatctgca	ttttctttta	agaaaacaga	gctgattgta	tcccaatgta	ttttaaaaaa	3960
tagggcaatt	gattgggcca	ttccgagaga	attgtttgca	agttttgggt	tttattagaa	4020
aatatttgaa	agtatttta	ttaatgaacc	aaaatgacat	gttcatttga	ctactattgt	4080
agccgatttt	cgattgttta	accaaaccca	gttgcatttg	tacagatcca	cgtgtactgg	4140
cacctcagaa	gaccaaatca	tggactgtac	aagtctctat	acaatgtctt	tatccctgtg	4200
ggcagcaagc	aatgatgata	atgacaaaca	ggatatctgt	aagatggggc	tactgttgtt	4260
acagtctcat	atgtatccca	gcacatgtaa	ttttttaaat	agtttctgaa	taaacacttg	4320
ataactatgt	c					4331

<210> 25 <211> 216215

<212> DNA

<213> Homo sapiens

<400> 25 aagctttaaa tgttactgtg tggttcagat taagctcata gttcacgctc ttccttttta 60 ggacaagaat aggaacgcct aacacagggg ctgttccttt agccaaggtc ccggaatcag 120 aacatatatg gaactaaatc agaagtaagg aaaactaagc agagtcacag tagctaccag 180 240 tgccctgaaa cttataacat gtaatgcaat ttcaaagtag atgttttttg taagtcattg 300 agatttgggg gctgttattg agaagaaata caggcacaat acacagtttt catcctgctt tttcacttag tattttgtaa tatatcagtt atctattgcc acttaaaaat gtcagcacaa 360 420 acttagttga ttgaaagaat acatacttat catcacacag tttttaggga tcgggagttt gataacagct taactggatc ctctctttca gcatctcaca aagctgcagt caagatgtta 480 540 gccaatggtg tggtcttatc tgaggctcaa ccagaggaga atttcctctc aagctccagt ggttgctggc agcattccat tttttgcagg ctatcggact aagggccaaa atttctcaat 600 660 ggccatctgc cgaagatacc cttcactttt ttgccatgtg gctttctcta taggaaaatc tcatgtcaat ttgctttatc aaatccagaa agggaattta tgtcctctag taagattggt 720 gctatgaact gtggagcatt atcacaataa agatattctg tcacatgtgc tgtattttat 780 840 tgattatatg aaagccatag ttactaacca tactcaaggg gaaagattat acaaaggcgt aaactccagg aggaagggat catgagggac caccttacag cctgttcacc gcagatagaa 900

tttctcatgt	tactaagcat	tcttcaaaaa	ggatgctttc	tgcatttatt	aaaatgttca	960
tgtatattt	tctttattt	gtgattgtca	taaaatatga	caaatggttt	ttctagggtt	1020
cacaaaatat	ataaatttta	gtgtttacac	aagacctcat	atgaatggat	aataatgtaa	1080
ttaatcagtg	tattgttcaa	taattagatg	gtttactact	tttaattatt	tgagttattc	1140
tgataattgt	gtacatccat	tttttccaca	tatttactta	ttttctttat	attgctagat	1200
gactactaaa	tcaaagaata	tgacttcttt	taatggcctt	aatgaatact	gtcacaataa	1260
tttccagaaa	tgtataacaa	tttacaattc	aaatgcccat	cagtaatgca	ctgtcttacc	1320
gtaactcagc	atgtgtgtgt	ctcttcacta	acaataggat	tctataccac	aaaattgcta	1380
aagattctgc	caaaagtccc	ctagacctaa	taaatgactt	tggtaaagtt	tcaggttaca	1440
aaagcaatgt	acaaaaatta	gcagcattta	gttttttct	tttttttaa	attttacttt	1500
aagttttggg	atacatatgc	agaacatgca	ggtttgttac	acagatatat	gtgtgccatg	1560
gtgctgctgc	acctattgac	ccgtcttcta	agttccctcc	cctcaccctc	cacccctcaa	1620
caggccccag	tgtgtgttgt	tecetetet	gtgtccatgt	gttctcattg	ttcaactccc	1680
acttatgagt	gagaacatgc	ggtgcttggt	tttctattcc	tgtgttagtt	ttctgagaat	1740
gatcattttc	agcttctgat	tttttgagat	acgttctatc	aatacctagt	ttattcagag	1800
tttttagcat	gaaggggtgt	tgaattttat	tgaaggcctt	ttctgcatct	attgagatta	1860
tcatgtggtt	tttgtcattg	gttctcttta	tgtgatgaac	tacgttcatt	gatttgagta	1920
tgttgaacca	gccttgcatc	ccagggatga	ggctgacttg	accgtggtgg	ataagctttt	1980
taatgtgctg	ctggaatcag	tttgccgata	ttttattgag	aaatttcaca	tcaatgttta	2040
tcagggatat	tggcctgaaa	ttttcctttt	taattgtgtc	tctgccaagt	tttggtaaca	2100
ggatgatgct	ggactcataa	aatgtgttag	ggagaagtcc	ctctttttct	attgtttgga	2160
atagtttcag	aaggaatggt	accagctcct	ctttgtatct	ctggtagaat	tcggctgtga	2220
atctgtctgg	tcttaggctt	tttttgcttg	gtaggctatt	aattactgcc	tcaatttcag	2280
aacttgttat	tggtctattc	aaggattcga	cttcttcctg	gtttcatctt	gggagggtgt	2340
atgtgtctag	gactttaacc	atttcttcta	gattttctag	tttgtttgca	tagaggtgtt	2400
tatagtattc	tctgatgtta	gtttgtattt	ctgggggatc	agtggtgata	ttccctttat	2460
cactttttat	tgcgtctatt	tgattcttct	cttttcttct	ttattagtct	ggctagtggt	2520
ctacctagtt	tgttaatctt	ttcaaaaaac	cagctcctgg	atcccttgat	tttttgaagg	2580
gattttcatg	tctctatctc	cttcaattct	gctctgatct	tagttatttc	ttctcttctg	2640
ctagattttg	aatatgtttg	ctcttgcttc	tctagttctt	ttaattgtga	tgttagggtg	2700
tcaattttag	atctttcctg	ctttctcctg	tgggcattta	gtgctgtaaa	tttccctcta	2760

aacactgctt	tagctgtgtc	cccaggatcc	tgctaccggt	agtgtctttg	ttctcattgg	2820
tttcaaataa	cttatttatt	tctgccttca	tttcgttatt	tacccagtaa	tcatttagga	2880
gaaggttgtt	cagtttccat	gtagttgtgc	ggttttgagt	gagtttctta	atcatgagtt	2940
ctaatttgat	tgcactgtag	tctgagagat	ggtttgtttt	gatttctgtt	cttttgcatt	3000
tgctgaggaa	tgttttactt	ccaattttat	ggtcgatttt	agaatacgtg	tgatgtggtg	3060
ctgagaagaa	tgtatattct	gttgatttgg	ggtggagagt	tctgtagatg	actattagat	3120
atgcttggtc	cagagctgag	ttcaagtcct	gaatatcctt	gttaattttc	tgtctcattg	3180
atctgtctaa	tattgacagt	ggggtgttaa	agtcccctc	tactattgtt	taggagtcta	3240
agtctctttg	tagatctcta	agaacttgct	ttatgaatct	gggtgctcct	gtatcaagtg	3300
catatataat	taggatagtt	agtccttctt	gttccattga	tcccttgacc	attatgtaat	3360
gcccttcttt	gtctttttt	tgtctttgtt	ggtttatagt	ctgtgttatc	agagactagg	3420
attgcaaccc	ctgtttttt	tttctgcttt	ccatttgctt	ggtaaatatt	cctccatccc	3480
ttcattttca	gcctatgtgt	gtctttgcac	gtgagatggg	tctactgaat	acagcacact	3540
gatgggtctt	gactctttat	ccaatttgcc	agtctgtgtc	ttttaattgg	ttcatttagc	3600
ccatttatat	ttaaggttaa	tattgttatg	tgtgaatttg	atcccgtcat	tatgatgctt	3660
gctggttact	ttgaccgtta	gttgatgcag	tttcttcata	gtgctaatgg	actttacaat	3720
ttggtatgtt	tttgcagtgg	ctggtaccag	tttttccttt	ccatatgtag	tgcttccttc	3780
aagagctctt	gtaaggcagg	cctggtggtg	acaaactctc	tcagcctttg	cttatctgta	3840
aagaatttca	tttctccttc	acttatgaag	cttagcttgg	ctggatatga	aattctgggt	3900
tgaaaattct	tttctttaag	aatgttgaat	attggccccc	actctcttct	ggcttgtagg	3960
atttctgaag	ggagatccac	tattagtctg	atgggcttcc	ctttgtgggt	aaccccatct	4020
ttctctctgg	ctgcccataa	cattttttc	cttaaattct	accttggtga	atctgttgat	4080
tatgtgtctc	agggttgctc	ttcttgagga	ctatctttgt	ggtgttctct	gtatttccag	4140
aatttgaatg	ctggcccatc	ttgctgagag	gtgacagcat	gctggcagcc	ctcactcgct	4200
ctcggcacct	cctcagcctc	ggcgcccact	ctggccatgc	ttgaggagcc	cttcagccca	4260
cggctgcact	gtgggagccc	ctctctgggc	tggccgaggc	cagageegge	tccctctgct	4320
tgtgggtagg	tgtggaggga	gaggcgcggg	taggaaccag	ggctgcacat	ggcactcgcg	4380
ggccagcgca	agttccaggt	gggtgcaggc	tcggcaggcc	ctgcacttgg	atcgtccccg	4440
ggcagtgagg	ggtgtagtac	ctgggccagc	agctgcggag	ggtgcaccag	gtcccccagc	4500
actgccggcc	cgcaccacgc	tcaaattctc	accaggcctc	agccacctcc	ctgcggggca	4560
ggacttggga	cctgcagccc	accatgcccg	agcctccccc	cacccacccc	atggactccc	4620

gcatggccag	agcctcccca	acgggcacca	cccctgctc	cgcggcacct	ggtcacatcc	4680
actgcccaag	ggctgaggag	tgtgggtgca	tggtgtggga	cgggcgggca	gctctgccca	4740
cggccctagc	gtgggatcca	ctaggtgaag	ccagcggggc	tcctgagtca	ggtggggact	4800
tggaggagtt	ttatgtctag	ctggagaatt	gtatatgcac	caatcagcac	tctgtgtcta	4860
gcttggggtt	tgtggatgca	ccaatcagca	ctctgtatct	agctaatctg	gtggggactt	4920
ggagaacttt	tatgtctagc	taaaggattg	taaaagcacc	aatcagcact	ctgtgtctag	4980
ctcaaggttt	gtaaacacat	caatcagtgc	tctgtgtcta	gctaatctag	tggggacttg	5040
gagaactttt	atgtctagct	gaaggattgt	aaatgcacca	atcagcactc	tgtgtctagc	5100
tcaaggtttg	taaacacacc	agtcagcacc	ctgtgtctag	ctcaaggttt	gtaaacgcac	5160
aaatcagtgc	tctgtgtcta	gctcatctag	tggggacttt	tgtggtgatt	gtaaatgcac	5220
caatcagtgc	tctgtgtcta	gctaatctag	tggggacttg	gagaactttt	gtgtctagct	5280
aaaggtttgt	aaatgcacca	atcagcaccc	tgtcaaaacg	gaccaatcag	ctctctgtaa	5340
aatggaccaa	tcagcaggat	gtgggtgggg	ccagataagg	gaataaaagc	aggctgcccc	5400
agtcagcagt	ggcaacccac	tcaggtcccc	ttccacgctg	tggaagcttt	gttatttcgc	5460
tcttcacaat	aaatcttgct	gctgctcact	ctttgggtcc	accetgeett	tatgagctgt	5520
aacactcact	gcgaaggtct	gcagcttcac	tcctaaagcc	agggagacca	cgaacccacc	5580
aggagggatg	aacaactccg	gacgggagga	acgaacaatt	ccagacgtgc	tgcctttaag	5640
agctgtaaca	ctcgccacca	acgtctgcag	cttcactcct	gaagtcagcg	agaccacgaa	5700
cccaccagaa	ggaagaaact	ccagacgcat	ctgaacatct	gaaggcacaa	actccggaca	5760
caccatcttt	aaaaactgta	acactcaccg	cgagggtctg	cagcttcatt	cttgaagtca	5820
gcgagaccaa	gaacccacta	attctggaca	cattgctagg	ctgtggaagt	tctgctggat	5880
aatatcctga	gagtgttttc	caacttggtt	ccattctccc	tgtcactttt	aggtacacca	5940
atcaaatgta	ggtttggtct	tttcacatag	tcccatattt	cttggaggct	ttgttcattc	6000
cttttcattc	ttttttctct	aatcttgtct	tcacacttta	tttcattaag	ttaatcttca	6060
atgtctgata	tgctttcttc	tgcttgatca	attcggctat	tgatatttgt	gtatgattca	6120
caaagttctt	gctctgtgtt	tttcaggtcc	atcaggtcat	ttatgttctt	ctctaaactg	6180
attattctag	ttgtcaattc	ctctaacctt	ttttcaaggt	tcttagcttc	cttgcattgg	6240
gttagaacat	gcttttttag	ctcggaggag	tttattatga	cccaccttct	gaagcctact	6300
tctgtcaatt	tgtcaaactc	attctccatc	cagttttgtt	ctcttgctgg	ggagttgtga	6360
tcctttggag	aagaaaaggt	gttctggttt	ttggaagttt	cagcttttt	gccctggctt	6420
ttcctcatct	tcatggattt	atctattatt	ggtctttgat	gttggtgacc	ttcagatggg	6480

gtttttgtgt	ggatgtcctt	tttgttgatg	ttgatgctat	tcctttctgt	ttgttttctt	6540
ctaacagtca	ggcccctgtg	ctgcaggtct	gctggagttt	gctggaggtc	cactccagac	6600
cctgtttgcc	tgggtatcac	cagcagaggc	tgcagaacag	caaatattgc	tgcctgttcc	6660
ttcttctgga	agcttcgttc	cagaggggca	cccaccacat	gccagccgga	gctctcctgt	6720
atgaagtgtc	tataaatccc	tccttggagg	tgtctcccag	tcaggaggca	tggtggtcag	6780
ggacccactt	gaggaggcag	tctgtccctt	agcagagctc	gagcattgtg	ctgggagatc	6840
cattgctctc	ttcagatcca	gtaggcagga	atgtttaagt	ccgctgtatc	tgcgcccaca	6900
gccacccctt	ccccaagtg	ctcggtccca	ggtacatgga	gttttatcta	taagcccctg	6960
actggggctg	ctgcctttct	ttcagagatg	ccctgctcag	agaggaggaa	tctaaagagg	7020
cagtctggct	acagcagctt	taccgagctg	gggtagggtc	cgcccagttg	aaacttccct	7080
gcagctttgt	tgacactgtg	aggggaaagc	cacctactca	accctcttaa	tggtggacac	7140
ccttctgccc	accaagctgg	agcatcccag	gtcgacttca	aactgctgtg	ctggcagtga	7200
gaatttcaag	ccagtggatc	ttcgcttgct	gagctccatg	gaggtgggat	ctgctgagct	7260
agactacttg	gctccctggc	ttcagccacc	tttccagggg	agtgaacggt	tctgtctcgc	7320
tagcattcca	ggcgccactg	gggtatgaaa	aaaaaaaact	cctgcagcta	gcttggtgtc	7380
tgcccaaacg	gctgcccagt	tttgtgcttg	aaacccaggg	ccctggtggc	ataggcaccc	7440
gagggaattt	cctggtctgc	agattgcaaa	gaccatgtga	aaagcatagt	atctgagcca	7500
gagtgcactg	ttcctcacag	cacagtccct	cacagettee	attggctagg	ggtgggagtt	7560
ccctgaccgc	ttgtacttcc	cagctgaggt	gacaccccac	cctcctttgg	cttgccctct	7620
gtagcctgca	cccactgcct	aaccagtctc	aatgagatga	gccaggtacc	tcacttggaa	7680
atgcagaaat	cacctgcctt	ctgcattgat	ctcgctggga	gctgcagacc	ggagctgttc	7740
ctatttggcc	atcttgccag	ccactccctt	taattgttta	ttattcattt	gggttgaaaa	7800
tataattact	gaagttttca	ataggagtta	ttctataaag	tacgttgtaa	tctttcaata	7860
gaaatatgca	ctaaatgttt	tcttaacatt	tggattaatt	ttccttggat	agtgatatac	7920
ccattgaaac	atttttggta	aacaaattta	gaaaacaatt	ttaaaaggta	gtaagacgat	7980
tgaaagctgt	tattttcaaa	aattgtaatc	agtttctgac	ttactgtgtt	tgatgtggca	8040
tatgcctttt	ggttttctgt	ttgttttgtt	ttccataaca	tgatatgaca	gggtgttatt	8100
ctcactgttg	attgcaggca	agagtacaaa	aaattattag	aagttagctt	gtgagcattt	8160
aataaatgga	attgttgaac	tatagacaat	gtctggggtt	cactaaaaat	gtatacctta	8220
ataagaatct	tcttttgatt	tgttaatgtt	tagatgacag	tcatgagaat	gcaataaatg	8280
ccttgtgtct	ggaggtcagc	ggggtatctt	tctaggcctt	tcttgttttt	atggtgtata	8340

aaataaagtt	atgtgagctt	gatgaacact	ggaacaaaat	tccagggtct	acttctcgtt	8400
tgtcttattt	ttagattttt	ttttttcatt	atcaggtttt	gtgacttctt	atagagaatg	8460
agacaagtgt	cagtcaacct	gtgggagaaa	tcctgggcca	tgccttctct	attttcggtc	8520
ctctttctta	ctgtctttta	aaatatttt	agatttttat	tttgaaacaa	ttataaattc	8580
acaagaagtt	tcaaagatac	gtacatggag	gccttttgta	cccttcaacc	agtctctccc	8640
aatagtaaaa	tcttcaatac	actaccacat	tacactatca	aaactagaac	attgacagtg	8700
atgcaatcca	gagcttttta	agattcaaca	cttttcttt	gactattcta	ggcactttat	8760
atttccatag	gaatattata	attatcttgt	caatttctat	taaaaaggct	ttttagaatt	8820
ttgattagaa	tttagttgaa	tccacagatg	aaattggaaa	taactgccat	tttacaatat	8880
tgaatcttcc	aaccgaaaat	caaagtatag	atctcaattt	ttttcttatg	tcattaattt	8940
atcattgtaa	atttttgtag	ttttaagtgt	acaagtcatt	tacatctttg	gtcagattta	9000
tccctaagcc	tttaatattt	ttagtgatat	tttaaattgc	actgttctta	gtttcaactt	9060
tcagttgttg	aaattaactt	ccagtccacc	ctaggactac	cattggctaa	aacattgtct	9120
cttctaatat	agaaacttct	catatgtaac	tgctaatata	taaacataca	attgatttgt	9180
gtgttgatct	cttactttgc	aattttgcta	acctcaatta	atgtagaacc	atttttttag	9240
attgactttt	ctacatatac	tctcaggtag	tctttgacaa	aagatacttt	tacttctccc	9300
tttccaatct	gaatgcattt	ttttttcttt	tacactggac	acaatctcca	gtacaaagta	9360
taactgtgcc	catactggtg	cacatgtggg	tcttagattg	tagcatcctg	caggtaaata	9420
ctcagaacaa	cttccagcac	ttgaatatcc	actccttccc	ccacccacat	actggcagaa	9480
ttcatgttgg	gatactacat	ttactatgaa	catagacccc	tgatttgaaa	caagactaag	9540
atacatggta	aagaaagttt	attcaccaaa	gttttgacag	actgaaggcc	attatttcag	9600
attggaaata	ggaaacttaa	aggaactaca	tggacattgg	gtaaaagaac	atgggttgaa	9660
atttgcctgg	cagtagccta	aaagtaaatg	gtcttcaagg	tgcatgtgaa	ggaactttag	9720
gaggaaatga	gataattcac	atctccacca	ataattaaat	gtagccacac	tagcttggag	9780
ggatttgagg	tgagacatct	aaaatactaa	gtcatggtga	gggctggaag	acaaaagaat	9840
gaatgacttc	ataggaatga	ctgtggggaa	gggcttgaag	gaatcatcct	ctcacttcca	9900
tgtgaaccat	gaacattaaa	catggagaaa	tgagcagcag	cagattagtt	tgggatgcat	9960
cttcagggga	tgctgaaaca	acaacagcat	ttggtttcct	ctacacccct	gtcatccgtc	10020
ccccacaagc	ccagggagtg	gtcagcagtg	gtgctttgtg	atgtctaagc	caccctagga	10080
ctgccattgg	ctgggacact	gcctgtatga	tcaaacaaag	ctcaagagtg	tggctttgcc	10140
ttgccaccag	gaaggtatac	atagggaggg	ccagagctct	gggacatcct	cctggcaagc	10200

ttcaatatag	ctgtggaagt	ctgcagtcta	caagagccta	ctatagacat	tctacaacca	10260
agcagaatca	tggaacagcc	gacttcaagc	accaatgggg	agaagaggaa	gagcccctgt	10320
gaatccaata	acaaaaaaaa	tgatgaggta	agattgttag	gttttgaagg	gaaggtgagg	10380
gtgaaagaaa	gacacacaga	gaagggacgg	ctcaaacagc	aacacaggaa	tactgcagac	10440
acctgtggaa	gtgggggacc	tgcttaatgc	cagaacccac	cgccgcttac	aggctggggt	10500
gcttataggt	atgggtggga	ggggccgggg	cagtatggct	tgctgcccgg	caggatattg	10560
ataagatgtt	tttatgatca	ggctgtttgg	tcctttttcc	agtgggatgt	cattgtggtg	10620
tttcttggaa	ctttgcccag	caagatacca	taggaaagtt	tctttagttg	gacctgtgtc	10680
cgccttgtgt	tacgacgatt	aggcaagatt	tttctcatgg	cccgaacccc	cgtggaatgt	10740
ttcactttga	tcaaggtctg	caaaatagca	gggtgcttac	taaatggtgg	tttggactca	10800
cattcttgcc	ttctacttta	gtataaaagg	aagaggggca	ttgttgatta	tctggctgct	10860
tgctgccgaa	taggggagct	gtaatcaggg	tttgggtttt	gaagcagggg	gtgacggact	10920
tcagagttgt	tttcctggag	gcactggtac.	cggacttggc	agaggagaag	gatggtatca	10980
atgtgttgct	gggtggctgc	ctggagaggg	gagtttagcc	ttcgggagat	aaagcaggat	11040
atgaaggtga	gtatacatcg	gccaaatgta	ctatcaggag	gaggaagatt	aacggcccta	11100
agaaagggac	cacctgctat	cccagtgctg	agtgcatcag	agatgtttag	ttctgctaac	11160
actagaatga	gatgtacagc	ctgcttagtg	tgtgtggagg	aagatgagac	agaagctact	11220
aaaggaacct	ggatggtctg	cttgttaggc	aaagtgttaa	tgtttagatt	gaaacacaag	11280
ggtgcatgtt	cctgaccaat	tggccagtag	gcagagataa	gagtttgtgc	cgcaaaggaa	11340
gaagacacta	ggggtggaca	gacaaaagtt	gtaggttatg	gtggcaagtc	atgagaaggt	11400
gggggttgaa	ttctgcacaa	accctttgtt	ttaactttta	tgtttttcca	agttgaatac	11460
ctgccagcaa	gggtagcccc	tctgaaggcc	tgataggaaa	tgttggtagt	ggaggaggtg	11520
aaggctgttt	ggttttggag	agagagcagg	aaatgggttt	ttgtaactaa	tagccattgc	11580
ggtcctgaca	gcgcagaagg	atacaggttg	cagttgaggg	aattgtttgt	ggatattttc	11640
cagggagcgc	ccttgacttg	gatacatgga	gagcggctcc	ggcagaaagg	ggaggggttg	11700
ataagaggta	ttttctggaa	tccgactggt	aacatgttta	gttaagaggc	tatgaggtga	11760
aggagggtga	cagccctgtg	tgtgacggtg	tgggtggatt	tgatggattg	gtggggggg	11820
aaaggtgatt	agccgagcaa	gattataagc	aggttttgcg	aatgaattgg	tcaattaggt	11880
gaaatgcagg	tttattttgg	acagggttca	tgtggccagg	ttaacaggaa	gggctgtgaa	11940
ctactggatt	tgtgtggaca	aacaaattta	acagttggaa	ggaagagggg	agtgtgactg	12000
atttaagagg	cagtgaggct	gatgaagggg	gctcatctgt	tagacgttcg	gggtggggac	12060

ttagaatatc	ccacagatag	agaggacaaa	aggagaaaga	ggagatttga	gtaggagtga	12120
aattttggaa	ggtgccctga	agtcatatct	ccttgattag	tgtgacaaat	tggcctggac	12180
tattcagggt	catggggaag	ggaaaccagg	aaagatctga	aataaagtag	gagacaaaag	12240
attggaaact	ggagacagag	agtgttatgg	actaaggtgt	tctggattgg	caacttctgg	12300
aattcttgtt	aagtacagtg	aggttggtct	tgtcagggaa	ggagaataat	ttgggggtga	12360
acaaatttct	agatgtggat	ctggtgctct	ttttagtttg	aaatgtgcat	tcagtgtgca	12420
aaggatgtta	gctttggcgc	tgtgggagta	gttagcatca	cctggtgaga	attcctccac	12480
ttaggttgga	gagcggggga	ggaggagtct	gtgattcaga	cccagcccgc	tggttgtagg	12540
gacagggagg	agtgttttga	ggatggactt	ttaggctggg	tcaagtaagc	atttgcgtac	12600
tgtcttatta	gatgttgggt	gaggtgtaac	gccggccaag	tattccatat	agaatggggg	12660
gaaaatacag	ggagattctg	gaggataaat	ggagcatttg	tacatgaatt	taaatgggct	12720
taggctgagc	gcttttagga	aatgactcat	aatcgcatga	ggaacaatgg	gagaagtgaa	12780
gtccaggcca	ttttaacctt	taaggagagt	ttggttagtt	gttgttttt	ataaaatttt	12840
tcctgaagat	tcggagtggt	aaggaatatg	gaaagcccat	ttaatgttta	gagcctttac	12900
cagctgttgg	ttaaactgaa	acaaattggc	ccattgtctg	actggatgca	agagggagt	12960
ttaaaccggt	ggataatatg	ggtggagaga	atagaagcga	tggtgtgtgc	ctttttggtg	13020
gtggtaggaa	aagcttttat	tcatccagag	aatgtatcta	ctattgttag	aatgtatagg	13080
aatcactttc	tggggagcat	gtgagtgatg	ttgatttgct	agtcctgccc	tagtaagtgt	13140
cctcaggtct	ggtgtgtggg	aaaggagatg	gtttgatagc	ttcctgaggg	gaagtttgag	13200
tgcaaaggga	acatgcctta	gtaatatctc	tgagatgggc	aaccatggtg	gaagaatgtc	13260
tagaagtttt	taaaagctgg	agtaggggca	gtaaccggca	tggaaatggt	tgtgcacata	13320
tgaaagtaca	gaaggttttt	taaacttggg	caagacactt	tatcagtgag	atcgaactat	13380
tttttcctga	atggcaccag	cctgggcaag	tgggttttt	tcctgctggg	tatatacagg	13440
gtgtatgctg	ggaaaaaaaa	tgagcaataa	cgatggggtt	ttaagggctg	cctgccaggc	13500
tgccgaattt	gttgaaaggt	ttttctcggt	tttggcatct	gtagcctttc	ggtgtccctt	13560
gcaatggata	atggtggcct	ttggtggtgg	tttatccacc	cccaacagct	tatgtgtaag	13620
tttgccattt	cttatggggg	ttccttttgt	agttaggaaa	ccctgttcct	gccagatgaa	13680
ggcatgagac	tgtaggacat	ggtatgcata	tttggaatgg	gtgtaaatgt	tgaccctctt	13740
tccctttgct	agggtgaggg	ccctggttag	ggcaactagc	tttgcctgtt	gagaggtagc	13800
atggggtgtg	agagcattcg	attctaggag	tttatcttca	gcactgatgg	aatagccagc	13860
tgctggacat	ggctgcctaa	aagaggttcc	attaactaac	cgtgtatgtg	ttccctgcaa	13920

aggggcatct	gaaatgtgtt	ggaaggggga	ggagagggag	tctaagaggt	ccagacagga	13980
gtgagagagc	ttagagtcgg	aagtgtttac	agggagaagg	gtggctgggt	agagaatttt	14040
atgtctctgg	aaggtgatta	gagggttacc	tatgaataag	gcatgcacct	gctgtaagca	14100
ggatggtggg	agggatagaa	gggattggtg	gtttatgagg	tcctgtagat	aatgggaaga	14160
tgcaatagta	atgtgttggt	agagaggag	tttccgtgca	tctaaggcca	gcaatgtggc	14220
catacccaag	atttttagtc	agagtgacca	gcctcggatg	acagagtcca	gttgttttga	14280
gaggcgtgca	atggcttctg	gggcgttgcc	atatgtttgg	cagagtagtc	caagggcaag	14340
gcgctggtca	gaatgtacat	agaaagtaac	aggcttggtg	aggtttggca	gtcccagtgc	14400
cagggccatt	aaaagggcat	ttttaagttt	ttaagttgga	gttgatgggg	caagctgggt	14460
tcaggggttt	taggatgggc	ccatgtgagg	ctacgtatag	tggcttggcc	agcaagtcaa	14520
agttaggaat	tcacagccag	aagtatccca	caaggcccaa	gaaggagggg	aggtcctttt	14580
tttttatgtg	gggaaggggc	atgtcccaaa	ctggctcctt	tcattgggtt	gggatggctc	14640
gagaattagg	ggttaggaca	aacccaaggt	aagtaacttt	gatttgggta	cctgagattt	14700
tgtgggttag	gcccaatata	cttgattatg	aaggaagttt	aaaacctgag	tggtgtgttg	14760
aatggacagg	ttaagaaagg	ggctacagag	aaggaggtca	ttgacatatt	ggaggagggt	14820
actaggagca	aggggaagtt	cagctaggtc	cttgatgagg	gcctgtctga	acaggtgggg	14880
cctatcccgg	aacccctcta	agagtacagt	ctaggtgtaa	gtccatgtgt	aagtcctgta	14940
agagtacagg	acatgtgagt	attaggattt	gaccaagtca	aagcaaaaag	actttggtaa	15000
gccagattta	agggaatagt	gaaatagttg	tcttttagtt	caatacaaag	gagtgtgtgg	15060
tagatggggc	aatacggtag	agtagagtat	attggttgag	gaccactaga	tggattggta	15120
ccacggcctg	gttaacgact	tggagatcct	agacaaaggg	gtaagtcccg	tctgtctttt	15180
ggaaagccag	aataggggtg	ttgtggggag	agttaacagg	cttgagaata	tgagcttgta	15240
aaagtttaca	gataataggt	ttgagacccc	ctaagcaagg	ctggattaag	gggatattga	15300
gactgatgaa	ggaaaatgga	ggggttttga	agggttattt	taactgggat	gtgatgtgtg	15360
gctattgtgg	gtttagaaac	attccaagct	ttagaattaa	cagaaggtaa	cagggtggat	15420
aatgaggatg	agtgggggga	gagggaagcg	tttgggtgtc	agagtaaaat	aaaaggggta	15480
gaattgtagg	agccacattg	catggagttc	tggaatttac	ttaatatgtc	ccatcccaag	15540
ataggggtag	gggactgagg	gataaccagg	aaagagtggg	tgaagggggc	tgctgaatag	15600
gttgtataat	aaaggaccag	tctgtttgtg	cctagagggg	attctattga	ttctcacaat	15660
agagatggaa	gaactgaaaa	aggttctaga	atattctggt	caaactgagt	aactagttgt	15720
cctattgagt	atccaatagg	aaagacatgg	gcttactaga	gactgacaga	attaccctgg	15780

gttccgaggt	ggtgatggca	gtaggggcgg	tggactccag	gccccacctg	tcttcaggta	15840
caggtggtga	agcaggatga	agagtttcag	tgagcacagt	ctgacttcca	gtgttgcttg	15900
ataccacaga	tggggcaaga	tttccagagt	gtcctgggat	taggctaggc	ttttgcccag	15960
tgtccctgtt	agacgaactt	gtaacaggct	cctggagttg	actgttgcca	agttgaggaa	16020
ttctgtaggc	cttgggaacc	ctgttgagtg	gcagctacca	gcatttggta	tttagcctgg	16080
tccttcttta	ggtttggatt	ttttagttct	tcctctctaa	tcttatagat	cttgaaggcc	16140
actttgatta	agtctctttg	gaaggtttga	gggccaccct	ccagttttt	aagtttttt	16200
caaatgtctg	ggtctgactg	ggagataaag	tataaatgga	ggtagttttt	gcccttattg	16260
gtattagggd	: ttaaggtggc	atatttagtt	gtgacttttg	aaaggcagga	gaggaaacga	16320
gcagggacag	ctttatttat	gccagctaga	aggcatgata	tcatatggcc	tgatttctgt	16380
ctgtctactg	aagttgcctg	ataattccaa	ctggggccag	ttctggggac	agctagggtc	16440
cctattggat	: tatgagcagc	atcttgttgg	tggagggtgt	tctcatggac	ctgggcaccc	16500
ataaagatgt	gttccctgtc	ctccagggtg	agggtagagg	agaggatgac	atatatgtca	16560
tgccaggtaa	a ggtcataaga	tttagggaag	tacaagaatt	ccttgtggaa	ggaggttgga	16620
tccattgaaa	a aggagtcaag	tctcctttca	atatgggaaa	actcagctag	agagaaggga	16680
acttgaatto	agattatgcc	tttagccctc	gcaacctcct	gcaagggaag	gactttggaa	16740
ggcctttggg	g catgtgcctg	gttcctagcg	aaagggggtt	gggtgtgaga	cctggtttga	16800
ggtggagaag	g gaagggggat	ggagggcgac	agtaaggggg	tggaggagcc	ggatccgaag	16860
gagaaggtg	g agggaatggg	agagggcagg	aggctgaaga	acgggtgtgt	tggccaggtt	16920
gaaattcaga	a ggaagaagac	ttgtccggag	gaagaggcat	tttggggggt	ttctccttga	16980
ggaggaaga	ttgaaaaggt	gaacaagatt	ggcagagaga	gagagagaga	gagagagagt	17040
gaggcatga	a aggagataag	caaagcactt	cagattattt	accattgcat	tgaagaaagt	17100
tttttagat	atgttgaatt	tggaagttga	atgttttgtt	ttttggaaga	ggggagtgaa	17160
tactctgga	gggagtgact	acccctgagg	aaagtgagta	ccctggaagg	gagtgagtac	17220
cccaggggt	g agcgagtact	ccagagagaa	gtgaataccc	catagggaag	tgagtacttg	17280
attcctcct	g ggagaaggga	cctggagagt	tggggcagcc	ccgtactatt	catgctcccc	17340
agaggccag	a gcagccagag	tggcaaacgt	tttgaaggtg	taccctaaga	agggaggctg	17400
cagtcacct	g gtgactgggg	agacctctca	cccagcactg	gaatttttg	gagaacgggc	17460
agaaataga	g aggaatctgg	aaaggaggaa	gagggagact	cacccactaa	ttgaagccca	17520
gtgttggat	g tgatgtccag	aaatgggggt	gatccttgtt	gcagctgccc	ggaaacagga	17580
aggaacaaa	a aataaggtgg	r cttgtttgat	cactatctgg	aggttagccc	aggtctggag	17640

aagactagag	aataaggaga	atgggactgg	gaacagggag	tacactcagg	atctggaagc	17700
aggccctggt	ctagtttgtg	ctgcttgctg	ctttccaggt	tgcaagagaa	aacttaccca	17760
ttagaaccca	atcaccactc	caggttttgg	caccaaaatg	ttaggttttg	aagggaaggc	17820
aaggatgaaa	gaaagacaca	cagggggcag	ctcaaacagc	aacacaggaa	tatggcagac	17880
acctatggaa	gtggaggaca	agcttaatgc	cagageceae	cgccgcttac	aggctggggt	17940
acttacaggg	atgggcagga	gggatctggg	caatgtggga	tgctatccgg	caggatattg	18000
ataagatgtt	cttatgatca	ggtggtttgg	cccttttcc	agtggaatat	cattgtggcg	18060
ttccttagaa	ctttgccaag	caagatatga	taggaatgtt	tctttagttg	ggcctttgtc	18120
cgccctgtgg	tcaggtggtt	aggcaggatg	tttctcacgg	cctgagcccc	catggagtgt	18180
ctcactttga	ccaaggtctg	caaaatagca	aagaacttgc	gaaatcgtgc	agtttggact	18240
aacagatgac	cctacccatg	ctcctcttct	tetteccat	agatcactac	cctatgattc	18300
caccttgttc	ttctctggca	cacacccctt	cctcaacctg	cattccttct	cataaagccc	18360
cccttgctat	ccagtctcta	ccctattcac	ccaaaataat	gactttctgg	cctctccctg	18420
ttttcttatc	agatgcagga	ggcaccgaac	agggtcttag	ccccaaaca	gagcttgcaa	18480
aagacaaaaa	caatagaata	tctaacaata	atagtgtatt	actacaggaa	gcatacgaaa	18540
ataaattcaa	atcaactgga	gaaggaccag	tcccgagaga	actccatcaa	tcccgtccaa	18600
gaggaggagg	acgaaggcct	agactcagct	gaaggatctt	cacaggagga	cgaagacctg	18660
gactcatctg	aaggatcttc	acaggaggac	gaagacctgg	actcatctga	aggatcttca	18720
caggaggacg	aagacctgga	ctcatctgaa	ggatcttcac	aggaggacga	agacctggac	18780
tcatctgaag	gatcttcaca	ggaggacgaa	gacctggacc	cacctgaagg	atcttcacag	18840
gaggacgaag	acctagactc	atctgaagga	tcttcacagg	agggtgggga	ggactagtca	18900
aacatggaga	aaccaaattg	gacaaatcct	cactaccaat	ggcgatgatt	acaataaaat	18960
caagtttgag	gagctgatga	ccgtgtatat	ctctgcctgt	tgtctgatgg	tgggaaggaa	19020
gggaagggaa	gaggtaggca	tttgagaagg	gaaggatatg	agatcctgta	gggttggcgg	19080
acagacccac	aggttgacag	tttcccagac	attgtaaata	aggcctgggg	gaggacttat	19140
tcctagagac	aaattttctt	cttaaaattt	tatctaacag	gagaggaaga	aaaggacttg	19200
gtgtttggag	catgtgaata	tgtagaaggg	catttaaaaa	gatctgtatt	ggccgggcac	19260
ggtggctcat	gcctataatc	ccagcacttt	gggaggccga	agcagacgat	ctcctgaggt	19320
caggagttcg	agaccagcct	gtccaacatg	gcaaacccca	gtctctacta	aaaaaaaaaa	19380
atacaaaaat	tagctgggag	tggtggcagg	tgcctgtaat	cccagctaca	tgcgaggctg	19440
aggcaggaga	atcacttgaa	cacaggaggc	ggaagttgta	gtgagctgag	atctggccac	19500

tgcactccag	tctgggggat	agagcgagac	tctgtcttca	aaaataaata	aataaaataa	19560
aatacaaaga	tctgtattgt	atgtaggtga	cagtgacact	ctttccaaaa	tgaagacatc	19620
aaaatcacca	cctccaggcc	acatacctca	tagtgatttg	ggttgcaact	caaccaatac	19680
tgtaagcaac	tgaagcccct	caaatggaca	aaaaacctca	ccctacatag	agtaagacag	19740
catgtcacac	acaccaaaat	aatggtgttt	ggaggccatg	gtcccaatac	tagggcattt	19800
ccttgttaag	aaactagtgg	ccattgtcta	ctgcaggcaa	taaatgaaag	catagtctac	19860
agagaatttg	aatataatga	tacaagtaaa	agttggtatt	tttattacca	cttccataca	19920
ccagcatttc	tatagaatgt	caatgattaa	gaattcttcc	cttgaaaaaa	atattgcttt	19980
tattgaaggg	aatacaatag	agtggtttgg	catcaatgta	gagggctgag	ttatatattc	20040
tttgagttaa	ttgctcaaga	ccctctccta	tttatttact	cattcactct	cctttatttc	20100
catgacccag	ttttatttct	cttgtctaca	ttggcaatca	ttgtaatgcg	tttgatgtgt	20160
attcttttct	ctgtatgagt	gttattacat	gttttttatt	gtttgtggac	atttgttttc	20220
aatttatgta	gccattgtca	atatttaatg	tttcactcag	acctgttttt	aagatgcatc	20280
tatttatata	taatctgttc	ttcccttgta	aatggatata	tcgggtacat	ttttgtattt	20340
tgtaactttt	agaaagatat	tttgatattt	aatatctgta	cccaccttct	ggtccatgtt	20400
ttgtttaatt	tatacctagt	attatatttt	ctttcaagtg	actgtaaata	gtatcatgtg	20460
tttaattttg	atttccacat	gttcaatgtt	agtatataga	agtgtgatgg	atttttatt	20520
tctattttaa	agaaatttta	ttgtgtatat	ttgaggttta	caacatgata	ttatgggata	20580
cataaagtaa	aatggttact	atggtgaagc	agattagcat	acctctcttc	ttagttttta	20640
agtgtgtgac	aatagcagct	aaaatctact	tatttaacaa	aaattcatga	tgcaatttca	20700
tcagctttag	tececetgta	cattagatct	ctatacttgt	tcatccgtat	tgtggcaaat	20760
gccaagatct	cttttcttta	agtctgaata	atatttagtt	ctgtacaact	ataaataact	20820
acacacacac	acacacacac	acacacacac	acacacacac	acacaccaca	ttttaaaatc	20880
cattcatcca	ttgatgggca	tttaagttgt	ttccatatct	tggctattgt	gaataatgct	20940
gtaatgaacg	tgagagtgca	tgtatctaca	tgaggccgtg	atttcatctc	ctttgggtat	21000
ctacccagaa	gaaggattgc	tgggtcatat	ggtagttacg	ttttaatttc	tttagaaacc	21060
tccacactgt	ttcacataat	ggttatacca	atctacattt	ccaccaagag	tgtactaggt	21120
ttgtttttc	ttcacactct	catcaaaatt	tgttatgcat	tgtttaattg	ataatagcca	21180
tcttaacaag	tgtgaagtga	tattctggtt	ttagtaggca	tttctctttt	gattaatgat	21240
gttgaacatc	ttttagtgtt	atctgttagc	atgccactgt	aagaaataat	atgaagagat	21300
accatactgt	atcttttact	caatttcctc	caattataag	atcttgcaaa	agtatagtac	21360

gtcacaacca	gaaaactggc	attagtatag	tccatctgtt	cagatcacca	attttacatg	21420
tgctcatttg	tgtgtgtgtg	tgtgtgtgtg	tgtgtgtgtg	tgtgtttagt	tatattcagt	21480
tttatcatat	gcctacattt	aagggacaac	caccataata	atacagaaga	gtttcatcaa	21540
cacaaggatc	tctcattttt	cctgtaatag	ccacacccaa	ctttcctctc	aagttcataa	21600
tccctagtga	ccactattct	cagcctatac	aattttgtta	ttttgagaat	cttatagaaa	21660
tggaatgatt	tgaacttgag	aaatatgatt	taggatatct	ggtaggggaa	atttctaaag	21720
atttctgaag	attatgcata	ttcagttata	tgcattcaca	aagagatggt	ttgctactgg	21780
aacatacatt	tgaaagggaa	gcagagcata	aaagtttgaa	aaattagcag	cccgatgatg	21840
tgataaaaga	gaaaacatca	ttttctgggg	aggaatttag	cacactacag	aaatttgcat	21900
aagtaatgag	gagccaaatg	ttaatcacca	agataatggg	caaaatgtct	tcagggcatg	21960
tcagagatct	tggctgccgt	ccctcccata	acaggccagg	aagcctagga	gaaaaaatgg	22020
tttctctggg	cccagggccc	ccgctgctct	ctgcagcctc	tggacatggc	accctgcatt	22080
ccagctgctt	cagcgccagt	cgtggctaaa	agggtggctt	ccatatgttg	ttgggcctgc	22140
agtgaacaaa	agtcaagaat	tgaggtttgg	gaacctccgc	ctagatttta	gaggatgtat	22200
gaaaatgccc	ggatgtccag	ccagaagtcg	gctgccttct	ttataaaatt	acaaaatttc	22260
tgaggccttg	ccagccatgc	agaactgtgt	gtcaataaaa	cctcctttgt	ttataaatta	22320
cacaggctca	ggtagtatct	ttatagccgt	gtgaaaacac	actaatacaa	atacttaact	22380
gggaacctag	ttcaggtgag	ttgggatata	gtgagaaaac	ataaaactac	tcaaagcata	22440
aaataactag	aattagatct	ttttcctgga	tgtatagctc	tatttttatc	atttggatta	22500
ccctttggcc	atctcacttt	actgtagtat	gctatgcatt	cctagcaaga	gatcatgtat	22560
agctacttac	aaaagagata	acttaagcat	acatatccat	gattaaaatt	gtaactaaat	22620
tcattatgaa	atacatgaga	gggaatctaa	atattgctat	tgctggatta	aacaggcaat	22680
gcatattctt	aataaacgta	actgtgttct	ttgatctgta	tcttagagtc	tgtaaaatat	22740
attaatactt	ctaccttaaa	aataatgcat	tgttttgtgt	agtcatatag	cactggatga	22800
gtgtcaactg	cgaacacact	ttcagaaata	ccaaaatctc	tcacctggct	ttctagaata	22860
ttcataatca	ccctccattt	tctttcttga	tctttctacc	aggttctttc	cattgctccc	22920
gtaaagtaaa	aagttttaaa	gactttcatg	gagtacagac	ttctcctatg	ctccatttct	22980
ttgacctcca	gctcacccca	acacagctta	cagaaacatt	ataagaggga	gaagaagcat	23040
agtgcattgc	agttaatggc	atgcactttg	gaaccactgt	ctagtttgtg	atttggggca	23100
agtaatatag	ccctgtatat	gcttcacttt	ccccacctca	tagagttatc	aggataatta	23160
aattaaatta	atgataactt	ttttgtaaag	cacttagaac	aatttcaggc	acataacagg	23220

tattacacag	aaagttttaa	aatcaacaaa	taagtctctc	taggcttagc	acagacattg	23280
ccacctccaa	gaatctttgc	ataattttgc	tctcacaaaa	ccaggttaca	tgccccttcc	23340
ccttaaattc	ctcctccgtg	tgctctggct	tctcgttata	ttcatcacac	tataacgtag	23400
ttgtcaattg	ttcttaggat	ttccccattg	gagtgataga	cagggaagat	gttctacagc	23460
tgataaatgg	aagtttcctt	atggcaggaa	ttttatcttt	tttccatcta	tcagatcccc	23520
agtgcctagg	atagtatcaa	gtacagacac	atgtaactaa	aaattttgtt	gaatgaattg	23580
tctaaatttt	tcatctgcta	agattcttac	tccttttata	cgctcaccta	ttatagtact	23640
tcacattata	gatacacaat	aataataata	ttaatagtaa	ttaatcaata	tatacctgtc	23700
atgaactgcc	ttggtctgtt	ttgtgctgat	acaactgaat	atctaagact	gtgtaattta	23760
taaatacaaa	aatgtttctc	ccacagttct	ggaggctagg	aagttcaaga	gcaggtcatg	23820
aggatgtgat	gaaggtcttc	ttgctctacc	ctcacatggt	ggaagtgaaa	ttttctgatg	23880
acataatctt	acataattac	aaatttgctg	atgacataat	gttacataaa	aaaaacctag	23940
agactttacc	ggaaaactgt	tagaattaat	aagtgaattg	cgaaaagttg	caggatacaa	24000
aatcaacatt	aaaaattagt	agcatttcta	tgtattagta	acaaataatc	tgaaaagaaa	24060
attatgaaaa	caatatgatt	tagggtagta	acaaaaaatt	aaatacctag	gtataaactc	24120
cactaaagag	gtaaaatacc	tgggtactga	aaactgtaaa	acactgataa	aagaaattta	24180
aaagacacaa	ataaatggaa	agattttccc	tgttcataaa	tactatgaaa	atgtccatat	24240
tactcaaagc	aatctaaagt	cttattgaaa	tctgtatcaa	aattccaatg	ctgtttgtaa	24300
catgaatgaa	aaagaaatgt	tatgaaattt	tttgggtatt	ccttttctgg	ttggaatcct	24360
ctgtggccag	gggtgcctat	gctcaagttc	ttgtcctgtg	tccaggaaga	atgaggtatg	24420
cacacaagta	gaaggtgagc	aagatgaaga	ggagctttat	tctgtgttag	aacagctcag	24480
agaagacctg	cagtgagtag	ctcctctctg	taggcaggtc	atcctgtcat	ctctgcagct	24540
ctcagcagag	tgggggcctg	aagtgaatgg	atcctctcgg	ccagcagggc	atcttgaaga	24600
gtgttcagct	ctcagcagag	aggaggcgct	ggagagggta	gcacttcttg	gcaactgact	24660
gtcccagtgt	ctgctgctcc	cagcagagaa	gaggccttgg	agagggtgct	cctctccgca	24720
agcatgccat	cccaacatct	gcagcaatta	gcagagagaa	aaccctggag	agggtagctc	24780
ttctctccag	ctggtcacct	tcatgtctgc	tctgccttgg	ctaagtctgg	ggtttttatg	24840
gtcttcagag	ggagaaagtg	catgctgatt	ggttcatgga	caaccatggg	cgggcctggg	24900
aaaaagcacc	accagttccc	tctctggtct	acagtactgg	cagaggagcc	cacaggette	24960
aggactttct	ggcctgaagg	tggggcttca	ccggggacct	gccgtcttct	gcccagagtc	25020
tgtctgcctc	ccactgccat	tcatggtgcc	cagactgtgc	caactggcac	ctgcaggcca	25080

acactgtgct	gcccactccc	cagctgcctc	ggcttccctc	ctatatacat	cagtgcccaa	25140
aattcagagg	gggccaaggt	ggcaggggcc	tagtgtcagc	actgcctcaa	gcgtgctctc	25200
acccagctgg	gctgcagtag	caccagagct	cagccccaac	tttgttccaa	gatcagagtg	25260
ggctctggta	gtggggagag	gccaagcaac	aggaacaggc	acttctgagc	ctcgagaggt	25320
acggggacct	acccaggtcc	ccaagagtac	agagaatcct	gggtctgcag	ccagatttgg	25380
atggctacag	ctgcatccag	ggacctccca	ccaatacaac	ttgaaagggg	tggggctccc	25440
acttgtaccc	agctcctgca	ggctctgtgg	agtgtgcatc	ctcagccata	cctctgttat	25500
tggagcaggt	gtcagcaacg	gggagaagcc	aggcagcggg	agaaggcact	tctgagtgtg	25560
aggggtagga	gaccatccca	ggaccccaat	agcacaaaga	cacccaaatc	tagagctgca	25620
gtgaagctcc	tgcctgctct	gtggaggagg	aggccccagc	tccatgggga	cagggctcct	25680
gcctgcttaa	tggagtgtat	agctctggct	gcacctccct	gctgcagtgg	catcttggca	25740
atggccactc	tagatgggcc	actgctaccg	tcaaaaatac	ttcaattact	atggaaccac	25800
aagagactct	acatagccaa	aacaatcttg	ggcaaaaaga	acaatgccaa	aggcaacaca	25860
ctccctgatt	ttaatatata	ttacaaacct	acaataaaca	atgcagcatg	gtactggcac	25920
aaagacagac	agacagacag	atagacagac	aaatggaaca	aaatagaaaa	ccccaaaat	25980
aaactaaact	atttatggtc	aactgatttt	gacaaaggta	ccaggaacat	acaatgggga	26040
aagaagagcc	tcttcaataa	atggtactga	gaaaactgga	tatacacatg	cagtgtaatg	26100
aaattagacc	cttttctcac	accatatata	aaattaaata	aaaaatgaat	tgaagacttt	26160
ttaaacatat	aaattcaggg	gtgtatttgc	agactgtgca	tgtttgttac	atagtaaaca	26220
tttgtgatag	gggatagtta	tacagattat	tttatcaccc	aggtattaag	tctagtatcc	26280
attagttagt	tagctttcct	gatcctttcc	cttctcttat	cttccatgcc	ccggtagacc	26340
ccagtgttct	ttgttcccct	ctatgtgtcc	atgtattctc	atcatttagc	tcctacttac	26400
aggtgagaac	atgctgtatt	tggtttactg	ttcctgcttt	agtttgctaa	gagtaattgc	26460
ctccagctct	atccatgtcc	ctgaaaagta	catgatcaaa	gacataaaga	cagaaatacc	26520
attcaatcca	gcaatcttat	tattgggtat	acacccaaag	caatataaat	cactctatta	26580
taaagataca	aatgtgcatg	ttcattgcaa	cactattcac	aatatcaaag	acatggaatc	26640
aatgtaaata	cccatcaatg	atacactgaa	taaagaaagt	acatacacac	catgaaatac	26700
tatgcagcca	taaaaaataa	atacttaaat	agaatacctg	aaactctaaa	actgcttctt	26760
aaaaagcgta	aagaaatagc	tctggccggg	gatggtggct	catgtctgta	atcccagcac	26820
ttttcgaggc	tgaggcaggt	gtatcgcctg	aggtcaggag	ttcaagacca	gcctggccaa	26880
cgggatgaaa	ccccgtctct	actaaaaaca	caaaaaatta	gctgggcttg	gtggcgggtg	26940

cctgtaatct	cagctacttg	ggaggctgag	gcaggagaac	tgcttgaacc	caggaggcgg	27000
aggttacagt	gagccaagat	cgtgccattg	cactccagcc	tgggcaataa	gagtgaaact	27060
ctgtctcagg	ggggaaaaaa	aagacatagc	tccatgacct	tgctcttagc	catgattgtt	27120
tggatataat	cctgaaaaca	agcaatgaaa	acaaaagtag	accaatagaa	tggcatcaaa	27180
ctgaaatgct	tctgcacagc	aaaaagacaa	ttaaccaaat	ggaaggacaa	cccacagaat	27240
gggagaaata	tttgcagacc	atacatctga	taaggggtta	atacccaaaa	tatatatgaa	27300
actcaaaaaa	ctcaatagta	agaaaacaaa	taatgtcatt	aaaaagtggg	caaagaacct	27360
aaacggatat	tttgtaaaag	acatacaaat	ggaaaatcag	cacattaaaa	tacatagaat	27420
taccaatcat	tagggaaatg	caaattacaa	ctaaagtgaa	atatctcttc	acactgttac	27480
aacggcttta	atacaaaaga	tgaaagataa	catgttttgg	aaagaatgca	gagaaaaggg	27540
aactcataca	ctgttggtgg	attgtaaatt	agtacactca	gtatggaaaa	cggtattgaa	27600
gttcctctaa	cacctaaaaa	tagaactacc	ctatgaccca	gttcttccac	ttctggatat	27660
gtactcaaag	aaacggaaag	caatacatca	cagtaatatc	tgcactccca	tgtccagtgc	27720
agcattattc	gcagtagtca	agatatggaa	acaacctaag	tgtacatcaa	tggatgaatg	27780
aataaagaaa	atgtgatata	catacacaac	aaaatactat	tcagccttaa	aacaggaggg	27840
aattactttt	tatttgtata	tatttaggat	gcagttttgt	tgcatggatg	tattgaatag	27900
tggtgaagtc	tgggctttta	gtgtagccat	cacttgagta	gcgtacgtgg	tatccattac	27960
acaattactc	atccatcacc	cctgtattag	gccattcttg	cattgccata	aaaaatgcct	28020
gagactgggt	aacttataag	aaaataggtt	taattggctg	acggttctgc	aggctgaaca	28080
gtaagcatag	tgtcaacatc	tgcttctagg	gacatgtcag	gaaactttca	atcatgacag	28140
aaggtgaagg	gtgagcagct	ttctcatata	gtgagagcaa	gagcaagaga	gagtgcaggg	28200
agtgtaccac	acattaaaac	agccatatct	catgagtact	cactcggtat	tgcaatggca	28260
acatcaaacc	ataagtaatc	tgctcccatg	atccaaaccc	ctcccaccag	gcccgatatt	28320
caacattggg	gataacattt	catcatgaga	ttggggtggg	aacatatgtc	caaactatat	28380
cattctgccc	cggcccctcc	caaatgtcac	atccttctta	cattgcaaaa	cataattatg	28440
acttttcaac	tttcccccaa	attttaactc	attctctcat	taactccaaa	gtccaaagtt	28500
tcattggaga	tgagacaaat	ttcttccacc	tataagccgg	taaaatcaaa	acaagttatt	28560
tacttccaag	atagaatgga	ggtgctggca	ttgggtaacc	actgacattc	ccaaagggat	28620
aaatcaacct	aaagaaagag	actagagaca	ctatgacaat	tcaaaaccca	ttaaatctta	28680
cagctccaaa	ataatccttg	agtccatgtc	tcacacccag	ggcatactac	tgcaaggggc	28740
tggctcccaa	agtcttaggc	agctccgttt	cagcccctgt	gtatctgcag	agtacagccc	28800

ccaaggctcc	tcttatgggc	tggagcagag	tggctgtggc	ttttccaggc	ccaaggtgca	28860
agctgctagt	ggatctaccc	attctagagt	ctgaaggatg	gtagttttct	tctcacagct	28920
ccactaggca	gttctccagc	ggagactcta	tgtggggcct	ccaaccccac	atttcccctc	28980
cacactctcc	tggtagaagt	tctctgtgag	ggctctaccc	ctgcagcagc	gctttcccag	29040
gacacccagg	ctttttcata	catcctctga	aatctagaag	gaggcgacca	agcctcattc	29100
actettgcac	teggtgcacc	tgcaggctta	gcaccatgtg	gaagacacaa	aagcttatgg	29160
ttcgcaccct	ctgaagcagt	ggcctgagaa	gtacctgggc	ccctttgagc	gaagactaaa	29220
gccagagtgg	ctggaatgtg	ggaagcagtg	tcctaaggct	atacagggca	gtgttaccct	29280
aggtctggtc	cctgaaacca	tttttcctc	ctaggcctca	gggcctgtga	tgggagggga	29340
tgctgcaaag	gtctctgaaa	tgacttctag	gcctttttcc	cattttgttg	ggtattagca	29400
cttggctccc	ttttagttat	gtgaattcct	ctagcaagtg	gttgctccac	aaagtgatta	29460
aattcctctc	ctaaataaac	tttttctttc	tccaacatgt	ggacaggctg	caaattttcc	29520
aaacttttat	gctctgcttt	cttttaaaat	ataagctcca	actttaactc	attcctttgc	29580
ttccacatgt	gagttaggtc	attcaaagca	gccaggccac	atcttgaatg	cattgctgct	29640
tagaaatttc	ttctgtcaga	tatcttaaat	catcactccg	atgttcaaac	ttccacatat	29700
ccatacagca	tgaacagaaa	gcaggtaagc	tctttgctaa	ggcataatat	gtgtcacttt	29760
tgctccaatt	cccaatgaat	tcctcattta	catctgagac	ctcatcagcc	tggacttcac	29820
tgtccatatc	aatatcagaa	ttttggtcac	aaccatttaa	ccagtgtcta	tgaaattcca	29880
aactttcttc	tgagacctcc	aaactcttcc	aacttctgcc	tgttacctag	ttccaaggcc	29940
actttcacat	tttcaggtac	ctttatagcc	tcacccatct	cctcagtata	agttttccat	30000
atttggccat	tcttgcattg	ccataaagaa	atacctgaga	ctatatagtt	tataagaaaa	30060
ttagtttaat	tggccgatgt	ttctacaggt	tgtacaggaa	gcattgtgtt	ggcatctgct	30120
tctcaagagg	tctcagcaag	ctttcttca	tggtggaagg	caaaggggga	gcaggcatct	30180
catgtgttgg	gagcaggagc	aagacagagt	gggatggaag	atgccccaca	cttaaacaac	30240
cagateteat	gagtactcac	tcactattgc	aaggacagtg	tcaagccata	agaggtctgt	30300
cctcatgacc	aaacacatct	caacaggcca	cacctcaaac	actagtgatt	acatttcaac	30360
atgagatttg	gtcaggaaca	aatatccaaa	ctgtatcaac	atccctccca	ccatcccacc	30420
cttccaagtc	tttgatgttt	attatttcac	tctctatgtc	catgtgcaca	cattatttag	30480
ctactattta	tgaattagat	gatacggtat	ctgactttct	gtttctgagt	tatttcattt	30540
aagagaaagg	cttctagttt	catccatgtt	gttgtaaaag	acatgatttc	attattttt	30600
atggctgaat	agtattccaa	ggtatacata	caccacattt	tctttattca	attatccact	30660

gatggacact	taggttgatt	caatatgtta	tcatgaatac	tgctgcaata	aaccgatgag	30720
tgcaggtatc	tttttaaata	atgatttatt	ttcctttggg	taggtacccc	atagtgaaat	30780
cactgaatca	aatgggtagt	ccaattatga	gttcattgaa	aagtctccat	actgttttcc	30840
acagagcttg	tgccaattca	cagtccaatg	aacagtgtat	aagcattccc	ttttctccac	30900
gatctcacca	acatctgcta	ttttttgact	tttcaataat	aaccactctg	actggtgtaa	30960
gagcatattt	cattgtggtt	ttaatttgca	tttctctgat	gattaacgat	ggtaagcctt	31020
ttttctgtaa	tttgtgacaa	catggatgaa	tatagtgggc	attacagtaa	gtgaaataat	31080
ccaggcacgg	aaatataaat	atcacatgat	ctcacttcta	tgtgaaatct	aataaatttg	31140
tactcacaga	aatagagtgt	ggaacaatgg	ttatcagagg	cttgggaggg	cttcaggagg	31200
gaaagaatgg	ggagtttttg	accaatgagt	acaaagtttc	aggtagacgg	gaggaaaagg	31260
ttttgaaatc	tattgcacag	cactgtgatt	atagtcaata	ataatgtatt	atatatttga	31320
aaaataacaa	agtaaacata	aaatatctca	ccataaaaat	aataggtaag	agatgtgatg	31380
ggtgtgctag	cttgtttaat	catgacacat	tgtatacata	tatcaaacat	cacattgtgc	31440
cccctagatg	catatattaa	taattatgat	ttgccagtta	aacataatat	taataatatt	31500
tttaaaagtc	aaaacaatag	tgataggaac	tagttttcag	tgttgtcaca	gtccagtagg	31560
ggaatagcag	gaaattaaca	gacatgaagg	aaatttgggg	gctgatgaaa	atattctcta	31620
tcataactgt	ggtggctaca	tgatatttgt	caaaggtcat	caaattatat	acaccaacaa	31680
taggtgaatt	ttactgaagg	taaactatgc	cttaataagc	ctgactttta	ggaaagaaat	31740
aatccagaac	aaagagtaag	gaaagtaaag	attggactct	aaatggataa	acttttatgg	31800
gatgtagaga	tagcagaaag	gagtctggaa	gaataccctg	gactgtggtt	taggtagtca	31860
cagtaacttc	ttatgtagtg	ccattgattc	ctggtaaaaa	acattttaga	agcagttgac	31920
agggccgaca	gaatggtcag	atagagtcat	agtatctgag	aagcacaggg	aaaatgtttg	31980
caatttgact	ctggcggtta	tgtgtggcca	ccaaacgatt	cccagtacac	tctcagtatt	32040
atacactttt	aattatttta	actaaggaca	tgtagtaaat	atgtaacata	atctaacgtt	32100
tatacattcg	cataatcatc	ttacaataca	tgatttaatc	atcttacaac	tgataattgg	32160
atcatcttac	aatcatcttc	aattagcttt	gaagtatatc	ttaccttaac	aaatgaataa	32220
attgaggcta	ttaaatatta	aataactttt	ggatggctat	acagagacta	agtgctgaag	32280
ccatatgtat	ttgacacctc	cgcttgagct	ccttctacct	tgcccttgag	tgttcacacg	32340
aggctaagag	aaggctgggt	acttttataa	aaattcccac	agtactacca	gagtatttca	32400
ggagataaaa	agactttatc	aattatttag	tctaacttct	gttttttaca	gatgaggtac	32460
ttaaatttga	aagtgtgtta	gcaacttggc	caaggttata	ggggcacatg	ttgaaacagc	32520

tcacttagaa	cctagatcca	gtaactccca	atcagttact	ttcttttcta	tttctgtcat	32580
tggaaatcta	ggaccactca	acaaaatgct	catcagacca	aggagataaa	cttgactcta	32640
atacacccat	agagetgete	ctcttgcaaa	tatatatata	tagaagtgcc	tctgctcacc	32700
atgggggcaa	tgttggaaag	tacaaccaaa	caaatacata	atgtaaaaag	aatttctata	32760
ttcacaatct	gctaagcata	tgtcaatgaa	gctatcttta	ccgtcaaacc	acccctaccc	32820
acctaacaat	tttactaaaa	gtaatctctt	atcaaggatc	ccaaaggtgg	aatgaaacta	32880
gccgctaaaa	aatggttaac	tttcttctaa	caggttacct	acagaatctc	ccagagaaac	32940
tgctcatcat	aatccaatct	ctaaaaagta	ggaagatttt	tttgtgagat	cagtgtcata	33000
aacaaataag	acatttattg	actettacca	cgaaccacac	actgttctaa	ggtctttaca	33060
tatattactt	tttaaaatct	tcatcatgat	tctatgaagc	taacataatt	attatgctaa	33120
tgttataatt	gaggaaacta	aggtgaaggc	aatttaagta	acttgcccaa	agctatacag	33180
tgataagaga	tggagagcca	gtcagggact	ttagattttg	cattcctagc	catcacacta	33240
cacctgaaac	cttctgatat	atctatggta	tgtttgaagg	gaggttcaac	tcaattttaa	33300
aatcagttat	acccatttac	atctattctg	aaatacatcc	ccttttcatt	caggtttcca	33360
ggtttcctat	ggatataatt	aatattgtta	ataggatgta	gcttgtggaa	caagctcccc	33420
ttagaagaaa	gagtcaagac	atgaaagtta	aaaaagactt	ttatttgatt	tctagctctc	33480
tcacttactg	agcaatttat	ttaattgtct	tagcctcagt	tcttcagcaa	ccaaaccaat	33540
ataattttat	tggctttagg	atttctatgc	atgccattca	gagtcctagt	atgattcaca	33600
ctaaaaagga	gtgatcggga	agtttcagtg	aagatattat	ttataagaca	tgggaaacca	33660
gcatggcttc	tgatcaataa	tgaggaacca	ttatcactcc	tcagctggaa	ggatcaaaga	33720
aaaggagtta	caagaaccca	aagaaattgt	ctttcactgt	ggataggata	aggctgccga	33780
agtggagctg	gaagctttag	ttgatgggca	cccacaagtt	cttggtgacc	atatgggagg	33840
aagccaggag	aacagtttcc	tgccctttct	ctcctccctt	gctacaatct	cctgagactt	33900
tttctgaatc	cagcagaagc	caaagggaaa	gagaaccaag	ctgttgcagc	ctatacaaat	33960
cagccccctg	gggtaccagg	aaaacaaggg	tgaagaaagg	atccacagga	cacacactga	34020
taacactata	agatgaacat	tacatgagaa	aatgctgtaa	tgcagcatgg	gcttaagaat	34080
tattaattta	ctttttcct	atagtggtca	ttttttgttt	ctgccagctc	tgcattgcat	34140
cctcttcttt	cagtaaaatc	acctttcctt	taataaacac	actaatccca	ggatagtaag	34200
agggttacat	gtaaaaatat	gtcagtgctt	gaaactttta	cttttaggga	gagattctgt	34260
agcatagtgg	tttaaaccaa	gggatttaga	atgaaagtgc	ctggatctga	atcacagttc	34320
acttactage	tgtgaccttg	ggtaagtttt	aggagcttgc	tgagcctcag	ttctcatttc	34380

tgtataaatg	gagcgtaata	ctaatagtga	ctcaacaggg	tgattttgaa	aattaaataa	34440
atcaatatat	atatgtatat	atataagtac	attatatagt	gactataaaa	aatagatgag	34500
tctgtatgca	agacttgcct	attattattc	catgtggtct	tgttaatatt	gacaatcagg	34560
taatccaccc	actgccttta	tgattgaacc	tccctttgga	taggtatgtg	tctctggctg	34620
ggccaatctg	actttttctc	ctgagaagct	gaattatgca	ctgaatgata	caaggttaaa	34680
acaaactgtt	gatgccgaag	tcactctgac	agcaaggccc	ttaagaaact	gccaattatt	34740
tctcactatt	caatccctgg	aattatcctg	gttttatact	tccagattgg	tcacttattc	34800
ctttgatgtt	taaacaaatt	ttttactttt	gatattttaa	acaactttat	ggagatataa	34860
ttctcatata	ctacagttca	cccattaaag	gcatacaatt	taatgttttt	agtaccttca	34920
tagagttgca	caaccattgc	caaaatctaa	ttttggaaca	ctttcaccac	tcccaaaaga	34980
aacaccttac	cttctttggt	actcacccct	cattcccttc	aaccacctct	ctctagtgcc	35040
tgacaatcat	taatctacat	tctgttccta	cagattttag	acaagggtgc	caagaaaatt	35100
caatgatgaa	aaggtaatat	ttttaaaata	cggtgttgag	acaactagat	gtccacatgc	35160
aaaagaatga	attttgaccg	gtacctcaca	gtctatacaa	aaattaattc	aaaatgttaa	35220
aatacctaaa	taaaggaagt	gaaactctta	gaagaaacat	aagtaaaaat	tttattcctg	35280
tgatttgtga	atcctttcaa	caatttcctt	ttagagtttg	ggtttgtcta	aaattctgtt	35340
ttgttttatt	gttattgttg	tttgcttgct	tgcaagcaga	ggactctaac	atatagctct	35400
ccagccgtta	ctcccttgca	gttagaatat	catcctactg	ataggagtaa	tatagtgttt	35460
tcttcctcaa	aagcatcccc	actaccactc	acatttccac	cccagataca	tgaagatgaa	35520
tgtatggcat	gattgaacta	gaacatgtta	tctcagctta	tgtctgattg	gatctgagaa	35580
caccattata	ggtatcttca	cctgccaagt	ggcaactgac	tattttcttg	agtaaaatac	35640
aacactgcta	agaatattca	tgaaagtttt	tattttgcaa	tttaactgta	agattcttgc	35700
ctaatacttt	gagcaggact	atttttctac	ctcttaagaa	acagactgga	ctccctgagt	35760
tgttgaccct	aggttattaa	ccttattgaa	aagctaaatt	taggcttaaa	ctcaagaaca	35820
ttttttctaa	gagttttcct	gagtcagcaa	tactaatctt	catggtatct	aactagtcaa	35880
tctctggcag	tgttttggca	tgtgttctta	cagggctaaa	tgaagttgca	atgaacttaa	35940
aataaaagac	aaataaaagt	taacaagttg	ttcagtttgg	caccgtgacc	attaaactca	36000
atgtatggaa	ctagagaagg	ctgctgtgaa	ttatggaatt	aagagaactt	atcacagaag	36060
aatactagtg	acttgctact	tagtgatagt	ctatttatta	ggcatttcaa	tttaacgtat	36120
atcggcaatt	ttaattttct	aaacaaattg	aataagaata	tgaaaaccct	ttaaatagta	36180
aaaccatata	tatctctctg	tgtctgtgtg	gtggtggagg	aggaggtgtt	ggaggaagaa	36240

atcaatctga tattaccatc agtaatatgg cattcttact gtaagagggt caaggatgaa	36300
catgtgtagt catagatcta aaacaaactg gtcaaatgat gatggtgttt gctgctttgc	36360
tgcttgaatc ataaatggta acattctttt actttgcaca ttgccacagc tgttcattaa	36420
atcgcataaa agaaaatgca aattgccttc cccataaagt aaatgcaaga gtattctcaa	36480
gtttggacca tcttgctgag aaagtgtaca acaactgcag aactcaaata ataataataa	36540
cagtaacaaa accttctgtt gtataggatg gaagatgcag tttcaacaat ttgcagggtt	36600
ctttttttct ctgagcaagt caattgaacc acatgcttga gaaaacatat ttttgttatt	36660
gtagaaaaat tattacagat ttttcacatg agaaaagtac agataaaaaa acagcaacga	36720
gtgcactgat atccatctaa agaagagaat aagcttgctg ttaagtgtgg gcaataagac	36780
agataaggat gtcaagtaat gcatcaacat atgtgagaaa aaaagaagag tacgtaaaaa	36840
taggaagtta actaaccatc teeteteetg etttttete ttatatettt tgetgeteet	36900
gcaatgaatt gtttctttct acctaagcat aaaatgctag tctcttgtta tccagtccta	36960
catacattta tactttacta taccttcttc ttgatgattc catttagtcc tacggcttca	37020
attattatct attccacata tacatagctt ccacatgtat aactccagct aagacatttc	37080
ttctgaattc tagaacaagt ctccatttgt ctcctgaacg tgtctacatg ggtacctgaa	37140
aggcatatca aattcagcgt gtctgaaact aaactcatga tcttctttcc ccaacatgct	37200
cttctggcaa ccccatctca aaatggcacc accattcatt tatctgtgaa agtcagaaac	37260
ccaagactca tccttgatat tcctaattca ttcatatccc acatgccatt cattagtggc	37320
agaagcacaa tttaaaccaa tatagtaact ttcagtttag tacaacctca ctattccaca	37380
gagtaataag gaccccagag tctaacaggc aaacatttaa tagatttaat ctcatcagac	37440
ctattttctc tatatttagt caccagtatt tgttcataat gcattcccag ggggagggta	37500
aggggacaca tactaaagaa gaattgtgaa aactgggcaa tattcccaga gagctaattt	37560
aaaaatgtta aaagttetta ateaeettte aetttgaaae ttaattttt attataatgt	37620
tatgggatac tgagtgagac ttttcctaat tctccagaat gataacctcc agtctacagc	37680
tgaggataaa gaggctctaa gaaacctata ttcttaagat acctgtcgaa aattttggcc	37740
caacactttc ctaaggactc actaaaatta ccaagtggta gcacatattg tactagtacc	37800
tccaacaatc atccccacat tttcccttcc tctaacttat cagtatattt ttaaaaactg	37860
cagaagagag agcaaaataa tcaaagtcaa gaacaattgt tgcaggagtg accggacttg	37920
tgtgcaggta tcacccaacc agagtgtact cttgccttgg tgctgaatca ggatactagg	37980
ggcctctcgc tatgccagat aggaccttca tatttgctgg atcttagagt tgagaggctg	38040
agtgggaggc ttcagaggag cactgatgtg agagacggag ggagagaggt gatataaagt	38100

tattggctat	ttgccaatga	ataaagacgt	atttcagtat	ttcaacaatg	tttctcagtg	38160
aagggaagat	actggcattg	ggatatcact	attccccagg	gactgcccat	gcactgcagg	38220
acgtttaata	tctcttactc	ctggaaatta	aatgctgttt	cagtcactcc	aagacaatca	38280
atatcccttc	acacatttta	ataggctccc	tgagtggcag	ggcagtactg	cacaccttgt	38340
gacccacttc	cacatccacc	acactaggga	actatacaac	taaataaatc	cagggagctt	38400
ctgaaaatct	aaaacatgag	ccaaaaaggg	aggcagcact	ttgattcctt	ttttgcagag	38460
aaacctgatg	gccaagacga	gttaacagaa	aagaagcaat	acaaacagca	acaaaaatca	38520
tcacagccaa	gaagtaaaga	gagacctgtt	aatacgttca	tttgctccac	tgtctgtcct	38580
cctcaacacc	ctgaaagaat	taggtcttga	aaaattagga	cagaagaagt	atctacctca	38640
gatcctgccc	tgccacatct	aaactaacag	cattccagtt	taagcttgtg	atgaagggaa	38700
aggaaaagaa	agaaaacttt	ggggattcag	ggggaagtat	actgcttgag	tgatgggggc	38760
accaaaatct	cacaaatcac	cactaaagaa	atttgtcatg	taaccaaaca	ccacctgttt	38820
cccaataacc	tatagaaaca	aaaaaaatat	ataaaaaaca	gacacatgat	catcagattc	38880
tccaagaccg	aagtgaaaaa	aaaaaaaaaa	gttaaatgca	gcaagagaga	agggacagat	38940
cacctactaa	gagaatctca	tcaggctaac	aagatacctg	tcagcagaaa	ccctacaagc	39000
cagaagagat	tgggtgccta	tattcaacat	tctttaaaaa	aaaaaaaaag	aacaattttc	39060
ttttcttttt	tttcttttt	tttttttt	tcctgagaca	gagtctcact	ctgtcaccca	39120
ggttggagtg	cagtggctgg	atttggctca	ctgcaagctc	cacctcccgg	gttcttgcca	39180
ttctcctgcc	tcagcctccc	aagtagctgg	gactacaggt	gcccaccaac	atgccaggct	39240
aattttttgt	atttttagta	gagatggggt	ttcactgtgt	tagccagaat	ggtctcgatc	39300
tcctgacctc	atgatectec	caccttggcc	tcccaaagtg	ctgggattac	aggcgtgagc	39360
caccgcgccc	ggccaagaaa	acaattttca	acgaagattt	tcatattcgg	ccaaactaag	39420
ctacataagc	aaataacaaa	taaaatccta	gtggggcaca	ttggctaatg	catgtaatcc	39480
tggcactttg	ggaggccaag	gcaagtggat	cacccgggat	caggagttcc	agaccagcct	39540
gaccaacatg	gagaaaccct	gcctctacta	aaaatacaaa	attagctggg	cgtggtggtg	39600
catgcctgta	atcccagcta	cttgggaggc	tgaggcagga	gaatcgcttg	aacctgggag	39660
gcagaggttt	cagtgagcca	agatcatacc	actgcactcc	agcctgggca	acaagagtga	39720
aactccatct	caaaaaaaa	aaaagattct	tttcatacat	acaagcaaat	gctaagggaa	39780
ttcattacta	ccagacctgc	cttacagtgc	ctcacaagag	atcctgaagg	gagtgctgaa	39840
taccaaaagg	aaaaactgtt	actggttact	acaaaaacac	aatcaagtac	acagacctgt	39900
tatgctatac	agcagccaca	caaacatgtc	tgcataataa	tcagctaata	acatggtaac	39960

aggatcaaat	tcacatcaat	actcaccttg	agtgtaaatg	agctaaatgc	cccaattaaa	40020
aggcacaaag	tggcaagttg	gataaaaaac	caaaacctga	cagtacgctg	tcttcaagac	40080
acccatctca	catgcaatga	tacccataga	ctcaaagtaa	agagatggaa	aaaatctatg	40140
aagcaaacaa	acgaacaaac	aaaaacagga	aaaaaagca	gaagctgcta	tcagttttaa	40200
ttttttagtg	agggatgttt	tttgtttgta	tcagttttaa	tttttattag	tgaggttata	40260
ggaaactggg	tatatttttg	ttattctcac	gggagcatta	aaagattgaa	aaagagattc	40320
aatcattctt	aaggtaaatt	tgacatcata	tttcaacaaa	cctgaaaggt	acaaggtagt	40380
tgagatgatt	tctatccgta	ggcatttacc	ccaaagaaat	gatcagagat	gagcataagc	40440
attgttgaaa	tattgtttaa	acattgatcc	aagagttatt	cacgagtgaa	gaaatttaga	40500
aacatctgaa	atggcacaaa	gaatgattgg	ggtgaatata	caaatagagt	ttgaccaaaa	40560
agtaagtgtg	atatggctgt	taaaaggttt	tttatggaga	atcatttaaa	gacattggga	40620
gatattcata	agattaagca	ggaaaaaaaa	agcaaaatgt	aaaccagaat	atacagtatt	40680
atcctagatt	tgctttaaag	taagtgtgtg	tgtgtgtgtg	tgtgtgtgtg	tgtgtgtgtg	40740
tgttacacat	cagaatatta	acagtgggga	tgcaattctt	actattttta	catttcactg	40800
tcgtagtgaa	aaataatgaa	taagtttaca	ataatgaata	tttattacat	atataattgg	40860
gaaaaataaa	gaggaaaata	gatttctttc	agaaatccag	aattcattaa	ttgaatggtg	40920
ggactgggta	catctggata	tgaggagatc	tcttatttgg	taatggtaag	ggtgtctggt	40980
gtactgcagc	aagaaagaga	aactgacaga	tctgggtgtg	agaagcaagg	aaaaagtcaa	41040
agataaattt	catacaaaca	ataatattag	cactaacaga	tagttaagga	aatgagaagt	41100
tagagcaaat	atgggaaaag	atgatgatgt	gcaagatttc	atgttctact	agtaactggt	41160
aatctaacgt	cttggtaacc	agccatcgga	cagtgtaaag	atggtcaggc	ataacaaaat	41220
catgacttga	gaaatgttca	tcaggatgtt	ataaacaata	cggaagtaga	agaggtttca	41280
gggacagaaa	tttaaggata	aaaatagaga	tataagaact	acgcctaaag	aatatgcttc	41340
atttaagagg	tttgttaaga	ggaaactatt	aaaatagtag	ttagcgatag	gtggaaaacc	41400
aaaacagact	ttaaactacc	aaagatccaa	aaagacagta	aagggctcag	ttcaacatga	41460
agacctaact	accttactta	catactcact	caagacagga	gcacccaggt	tcataaagca	41520
agttcttaga	gacctacaaa	aagacttaga	accacacagt	aatagtggga	gactttaaca	41580
ccccagtgac	aatattagat	agatcattga	ggcagaaaat	taacaaagat	atttgggacc	41640
ttaactcaac	acttgaccaa	atggacctaa	tagacatcta	cagaactttc	caccccaaaa	41700
caacaggata	tacattgttc	tcatcaccaa	atggcatgga	ctctaaaatc	caccacacaa	41760
ttgggcatga	aacagtcctc	agcaaattca	aaaaccagaa	atcatactag	ccatactctt	41820

ggaccgtatt	gcaataaaaa	tagaaatcaa	tgctaaggaa	attgctcaaa	agcatacaac	41880
ttaatggaaa	ttaaacaacc	tgctcctgaa	tgactttggg	gtaaataata	aaattaaggc	41940
agaaatcaat	aaattctttg	aaattaatga	gaaaaaatat	acaacatacc	ataatctcta	42000
ggacatagcc	aaagcagtgt	taagagggaa	ttttacagca	ctaaatgccc	acatcaaaaa	42060
gttaggaaga	tctcaaatta	acaacctaac	atcccaccta	gaggaactag	agcaacaaga	42120
gctaactgca	agctagtaaa	agacaaaaaa	aaaaaaaaa	tttggagctg	aagtgaggga	42180
aattgagaca	caaaaatcat	acaatagatt	taattttaat	aacaaaaagt	gaccagagag	42240
ttatgtaatc	tgtccaggac	ttcattaaat	gacgagaaac	ggagattcaa	taagtgtggt	42300
tgaaggcaat	gcctagagaa	aaaattaaaa	attattttat	gtttattatc	tcaacaagtc	42360
cagatgccac	aaaatactga	ttgtaatgca	cctttatcgt	ctcatgaatt	cccttaattc	42420
agctcttttc	cttcagattt	gaatataaag	ctattagaac	aacatctaaa	taaagctaac	42480
aattcgtatc	atttgagaga	ctaacttttt	ctccctcaat	tatacaggca	aatctgattt	42540
tattgctttt	tacttttatt	tagctttgaa	gatattgcat	tttttatttt	acaaattaaa	42600
agtttgtggc	aatcctgcgt	tgagaaagtc	tattggcacc	atttttccaa	cagcatgtgc	42660
tcactttgtg	tcgctgtgtc	acattttggt	aatccttgca	atattttaaa	ctttttcatt	42720
agtgttataa	cagttagggt	gatatgtgat	caatgatcct	taattttacc	attgtaattg	42780
tttcagggta	ccacaaacca	tggccatata	agatggcaaa	cttaatagat	acattttctg	42840
agtgttctca	ctgctccact	tcatctcttt	cecetecte	tgacctcccc	attccccgag	42900
acataacaat	attgaaatta	ggccagctaa	taactccaca	atggcctcta	agtgttcagg	42960
taaaaggagg	agtcacatgt	ctcccatttt	aaatcaaaag	ctagaaatga	ttaagtttag	43020
tgggcaaggc	ttaccaaaag	cttagatagg	ctgaaagtta	ggcctcctgt	gccaaacaat	43080
tatccaagtt	gtgaatgcaa	aggaaaagtt	cttgaaagac	actaaaagca	ctattccagt	43140
ttcgctgata	tggagaaagt	tttagtggtc	tgtacagaaa	atcaaaccag	ccacatgact	43200
cccttaagcc	aaagcctaat	gcagagcaaa	gcccttactc	tcttcaagtc	tatgaaggct	43260
gagataggtg	agaaaggtgc	agaggaaaag	tctgaagcca	gcatgaggtg	taagaaaaga	43320
agctgtctcc	ataacgaaaa	agcagcaagt	tctgataaaa	gttgggcagt	aagttatcct	43380
aaaaatctcg	ctaagataaa	tgatgaatgt	gactacacga	aacaaaatat	tctcaataga	43440
aacaaaacag	ccttctatta	gaagaagatg	ccatctggga	ctttaatagt	taaacaggag	43500
aagtcaatac	ctgccttcac	cacttcaaag	gacaggatga	ctttcctgat	aggagttaat	43560
acagcttctg	actttaaacg	gaagccaagg	cttatttatc	attccaaaaa	tcttagggca	43620
cttaagaatt	atgctaaatc	cattctgcct	gtgctctcta	catggaacaa	acataatgcg	43680

tttgcacacc	taacagacta	cagtgtaatg	caaacataat	ttttttt	tgagacagag	43740
tttcactctt	gttgcccagg	ctggagtgca	gtggtgtgat	cttggctcac	ctcaacctcc	43800
acctcctggg	ttcaagcgat	tctcctgcct	cagcctctca	agtagctggg	attacaggca	43860
tgagccacca	tgcccagcta	attttgtatt	ttcagtaggg	acggagtttc	tccatgttgg	43920
tcaggctggt	ctcaaactcc	cgacctcagg	tgatccaccc	gctttggcct	cccaaagtgc	43980
tggagttaca	ggtttgagcc	accgtgtccg	gccctgcaaa	cacaattttt	atatccaccg	44040
ggaaaatgaa	atttttgtgt	tactcattta	attttgatat	ttattgtggt	ggtctgggac	44100
tgaacctgca	atatctccaa	gttatgcctg	tattaaggtt	atgagacctg	tgcaacagca	44160
tgtatgattt	tctgttttcc	tctcatgtta	ttagctacat	gtttcctctc	atggtattag	44220
ctatacagac	agtataaaat	aaatataaaa	attcaaataa	ctatacaata	aaacttgata	44280
ttcactaaga	attgcaacac	tactcaagtt	gagctgatgt	ttgactggaa	gcaccactag	44340
gaaaggactc	aaaatatata	atacagtact	gattttctgg	atgttttaca	tccattcaaa	44400
atttgatgga	tgatagacag	tttagggatt	taacagtaaa	atgtgctaaa	gtgtgaatta	44460
ggcaaaatct	gagctatgac	gtgtgcatac	cacgttgtta	ataataacct	acctgttgtt	44520
gatatgaggg	ggagagagca	aggggctcac	ctgctctgtt	ttaccagcaa	tctataccca	44580
aatagctgag	gcctgaaaat	ccacttgaaa	gcctttattc	ttacagatca	gtattggaat	44640
caccttcatt	atgcaatcct	cactattcaa	agagttgcca	tagaattacc	agtcatttaa	44700
atcttaaagc	ttttacattt	taagttttaa	aaaaattggc	caatggactc	cattatgagt	44760
ctcattaaaa	gtatacacat	tattttcaaa	agaatgaaca	tagatacaat	tttgattaca	44820
gttgctattc	ctggaccagc	tctcggacta	ttcaaagagg	ccaggtagga	tagattgtat	44880
tttacaaaaa	tgacagcacc	aataatgacc	tcatcctgca	tgttcctctt	acaacatgag	44940
gttcacactc	tgccgttgag	aggtgggggc	tatgttgact	ctttttaatt	ctgggaacac	45000
ctttgtaatg	accaaggaaa	agaacaaatt	taaaccccta	cttcacagta	taaacaaaat	45060
taacttgaaa	cggatagaag	ggacctatat	gtaatagcca	aaagtataaa	acactttgaa	45120
gaaaatatta	gtgtaaatgt	tcatgatgct	gattaggcaa	tgacttatta	gatatgacga	45180
ctaaagtaca	agcaaccaaa	gaacaaatac	ataagtgaaa	cttcatcaaa	ataaaaaggt	45240
tttgtacatt	aaaagatacc	atcaagaaag	aaaagaaaac	ccgcaggata	tgaaaaataa	45300
ttctaatcat	ataccttata	agagactagt	atctagaata	tattctaaaa	ttttgcaact	45360
caatagtcaa	aagacaaata	acccattttt	taaatgggca	aatgatttga	agagacatgt	45420
ctctaaaatg	atataaaaat	ggtccataaa	gcacacaaaa	agtgcttgac	atcatttgcc	45480
atcagcgaaa	tgcaaatcaa	taccacaaac	ttcctatcca	ctaggatggc	tataacaaaa	45540

atacagatct	taagtattgg	tggggatgtg	agaaaattga	aacattgtgc	gttgttagtt	45600
gaaatttaaa	atggtacaac	tactttggga	aacagtgtat	aagaaaaaga	acagcaaaat	45660
aagctcaaag	aatgtggaca	taaaaatata	ataataataa	agttaacagc	agaagtaagt	45720
aaaatataaa	aattaaatta	aggatcactc	tgggcatggt	gcttcatgcc	tgtaatccca	45780
gcactttggg	aggccaaggt	gagatcactt	gaggtcagga	atttgagacc	agcctgggca	45840
acatagtgaa	accacttctg	tacaaaacat	ttaaaacttg	gccagttgtt	gtgacacacc	45900
cctgtaatct	cagctaatcg	gaaggctgag	gtaggaggat	ccatcgtcag	tttcactcaa	45960
cacaatataa	aaatcataag	caaagtatta	ccaaagtgaa	taaagcaata	tatacaaagg	46020
aaaatacact	gtaactgaat	tgactttatc	acataaatgc	acagttattc	tatcattaga	46080
ggctcaaata	atgtaaatca	aaatattacc	agataaacag	atttaaaaac	catgatttca	46140
atcgcctttt	aacatttggt	agaattcaac	atcaatttgt	tattttaaaa	aacagtaacg	46200
atgttaagaa	attgagagtg	taagaaaaat	cctcatagtc	tgacaaacgg	atgtgcaaac	46260
aaccaaagta	aatatacact	tatccgtgaa	aggttgaact	gcttcccctt	tgagaacagg	46320
attaagacaa	agatgcctgg	tgttatcagc	tatactcaac	attatactgg	atgttctagc	46380
cagttcggaa	agcaatcaaa	aggaaatgag	gaatgaagag	tgtagaaaaa	aaaatgtgta	46440
acatttttgt	gtttagagaa	tcctaacaaa	tctacagata	aattattagg	attaatgaga	46500
gtgtagcaaa	tttgtgggaa	aaaatcaata	ttcaaatatt	aattgcaccc	tttccttccc	46560
ttgcccttct	tccttttccc	tctcctactc	tcctttcctt	ctttttcttt	atgcacacag	46620
tagaatacta	cacaatctat	agccacatat	aaacattaat	gaatcatttc	acaaaccaaa	46680
tggagggcga	ataaagcaag	acacattata	cactgttcta	tttaaaaaaa	gtgcaaaatc	46740
tgtttaaact	aaagtatata	tttaggagtg	caaacctaga	aggttagacc	gcaaagaaaa	46800
tccaaaaagt	atagatacct	atttatttt	agtacttacg	cattttttta	aatgtgctac	46860
atagtactat	aaaataactg	aagatctcaa	aaaaatgtat	gtatgagaca	gagtagcatt	46920
gataaagagg	caatttcacc	tttggctctg	tatatttctg	tgttgtttaa	acatattaca	46980
caaagaatac	acattttcta	tgtatcatat	atgtaattta	cttttgaata	tcaatataga	47040
ttttacaaac	tataagaata	cccaaaaatt	gtttatataa	attttaagga	aaaaaagtt	47100
tcagaatgag	agaagacaca	atgattagag	gcaaaacaaa	aaataaaaag	ctaaaacatt	47160
tgaaggtccc	cattagtttg	atgaagctga	agaaaagggc	acatgtgtgg	ggacaaagcg	47220
gagctctctg	taatctgatc	tctgaagggc	tcgggctgta	ccacttaaat	gtggtttgag	47280
gtcacacaca	ctgaaccaca	tggcagtact	ctttttactt	tgaccctggt	gcccagacta	47340
tgatctaaac	ctcatcgtag	cttgtaataa	attccaaaat	tatcagcaat	tgtaacaaca	47400

gagagtcaaa	gaactgatga	ggccaggaga	agaggtctgc	cctttaatca	gaagctatac	47460
attcaaatca	ccttcaaggc	aattttctgg	ggcaaaccac	tgtccatgca	tttatatgtg	47520
gttaatgagt	agtgaaaagc	cctttggaat	gtttagaggc	ccttttcatt	tgcacacaat	47580
tagggtaaaa	atgaaatgtg	cagattaaca	ttgaatgaca	ttcttctgtt	atctttttct	47640
atcacatcat	gcatgaaaac	caaaggtctc	tttgtcataa	aagggactaa	attgcttaat	47700
ccatgaattt	ataaacttgc	atttttcccc	tcagagaatt	tgtcatggtt	tctgagttct	47760
caaaaactcc	cagaaagtga	taatgcgatc	aattgcatat	aaaacctcaa	aagtcatagc	47820
agaagactag	ttgagaaatt	taagttcaga	ggaggaagta	tgaaaggtaa	atcgtaaatg	47880
tttaatttgg	caatcgaacc	ttaaaagata	tatgtttccc	ggggatgagg	gctactgtga	47940
ccaaaacagc	atggtaatgg	tacaaaaaca	ggcacataga	ctaatggaac	agaatagaga	48000
gcccagaaat	aaggcgacac	atctacagtc	atctgatctt	tgacaaagct	gacaaaaaca	48060
agcaatgatg	aaaagactcc	ctgtgtaata	aatagtgctg	ggataactgg	ctagccatat	48120
gcagaagact	gaagctggac	cccttcctta	caccatatac	aaaaatcaac	tcaaaatgga	48180
ttaaagactt	aaatgtaaaa	cccaaaatta	taaaaaccct	ggaagacaac	ctaggcaata	48240
ccatcttggt	cctaggtatg	ggcaaatatt	tcatgacaaa	gacaccaaaa	gcaatcacaa	48300
caaaagcaaa	aattgacaaa	tagaatctaa	taaaacttaa	gagattctgc	acagcaaaag	48360
aaactataaa	cagagtaaac	tgtcaatcta	cagaatggga	gaaaatattt	tcaaactatg	48420
catctgacag	aggtctaata	tccagcgtct	acaagaaatt	taaacaagtt	tataagagaa	48480
aaaaacaacc	ccattaaaaa	gtgggcaaag	gacatgaaca	gacactttta	taaagaagac	48540
atacatgcag	ccaacaagtc	tatgaaaaaa	gatcaatatc	actgatcgtt	agagaaatgc	48600
aaatcaaaat	cacaatgaga	taccatctca	caccagtcag	aatggctact	attaaaagtc	48660
aaaaaataac	agatgctggc	aaggtctcag	agaaaaggga	acacttatac	actattggtg	48720
ggattgtaaa	ttagttcagc	cattgtggaa	ttcagtagca	tgattcctcg	aacagctaaa	48780
agcagaacta	ccccttgacc	cagcaatccc	ttactggtta	tatacccaga	taaatataaa	48840
tcattctatg	taaagacaca	tgcatgtgaa	tgttcattgc	agcactgttc	acaacagcaa	48900
agacatggga	tcaacctaaa	tgcccatcaa	tgacagactg	gacaaagaaa	ácgtggtaca	48960
tgtgtatcgt	ggaatattat	gcagccataa	aaatgaacat	gatcatgtct	tttgcgggaa	49020
cacggatgga	gctggaggct	atcattctaa	gagaagtaat	gtaggaacag	aaaaccagac	49080
actgtgtgtt	ctcaattata	agcggggagc	taaacaataa	gaactaagga	atatagagaa	49140
ggaaactcca	gacactgatg	tctacttgag	ggaggaggat	gggaggaggg	aaaggagcag	49200
caaagataac	tattgggtac	tgagcttact	acctgggtga	tgtaataata	tgtacaacaa	49260

acccctgtgc	cgtgtttatc	tgtgtaacaa	accttcacat	ttacccacaa	acctaaaatt	49320
aaaattaaaa	aaaaacaaga	aagagtttta	aaatactttt	cttgtggctc	acgcctgtaa	49380
tcccagcact	ttgggaggcc	gaggcaggcg	gatcacgagg	tcaggagagc	gagaccatcc	49440
tggctaacac	ggtgaaaccc	catctctact	aaaaatacaa	aaacaaaatt	agtcgggcgt	49500
ggtggcgggc	gcctgtagtc	ccagctactc	cgcaggctga	ggcaggagaa	tggcgtgaac	49560
ccgggaggcg	gagcttgcag	tgagccgaga	tcgcgccact	gcactccagc	cggggcgaca	49620
gagcaagact	ccgcctcaaa	aaaaaaaaa	aacaaaactt	ttcttaaaca	tggttttata	49680
tgtgattcta	ggcaactgga	cattgaacag	tctgcaactg	tttgttctgc	atctatcctg	49740
ttaactgctt	ccagcttacc	cacacctagg	ccatgggttt	catataaaaa	acttcataac	49800
tcatggagtt	cccgtaaacc	caagcccgga	gcctcatttt	ttctttcctt	ctgcagtctt	49860
taaaccattt	tgtgtagtct	cagcctacct	ttgtattgac	tctggagttg	gctgcaaacc	49920
ttaaggatgc	tgcctttgct	ctaagagtta	tctcagttac	ccatgtcccc	aaagaatggg	49980
gacagggtta	gggatgcagt	gccctaacct	actctctgtc	caggcttatg	cagggaaagc	50040
actgccaggc	agatctagaa	tcacactctt	ccccacccca	agccctaaag	gtccaaggag	50100
acataaatcg	aacaatgtct	acgattactt	caaacttttg	aaccactatc	ttataaagtg	50160
gaggcccgca	aactgcagcc	caatgtcaaa	atccagccct	tttcctgttt	tcatatggcc	50220
gttgagataa	gattagtttt	tccctattta	aaggatcgta	aaggaaaaag	gaggaggagg	50280
acagaaagga	ggaagaagag	aaggcaaagg	tggaggagga	ggtgaagcaa	agaagaaaat	50340
gaggcatatg	cagtgaagac	cacatgtggc	ctaccaaatc	ctaaaatgtt	taccatctgg	50400
ctctttacag	aaaaaaatgt	ttcctgaccc	ctgttctaaa	ccacaaactt	tgtcctttca	50460
agcccttgca	tgaaatgctc	ccatggcttt	ccatcactct	caggataagc	tctacattcc	50520
ttaacatagt	ctatgctcga	tcatctgacc	ctaactatca	cttagtccct	gtcaacttgg	50580
ccccaacata	cactgcctat	tcacagagcc	tgaattactt	gctcttttgt	gaacataaca	50640
taaactttca	ttccactgtg	cctgccctgt	tttaacattc	tctcctctcc	ctggaataca	50700
cttttcctct	ggccctcttg	gaaaactctt	ccttaaaggc	tcagctaaat	tgccacttct	50760
ctgaagcatt	ctctgagtgc	cccgagctga	attaagatct	cctctgcaca	tccacagcat	50820
ttcgttatgc	cttctcttag	ttcacttaat	atattactct	ctgagccacc	actctcagtt	50880
ggggactgaa	aggtttatca	tttccatcta	gctgtttata	tcccgcggac	agcctaaaag	50940
cagtcctagg	tttgaattta	cttctgcttc	tatttactgt	ttacttaatt	tgggaaaaca	51000
aaaaagatag	accaacagtc	ccaaattaga	tgaattgtca	gacagttgaa	aagaatatag	51060
tgcaggccta	gaaaatggtt	tgagaaagaa	tcaaaccctt	acctgcaaag	tgaagacatc	51120

ttaaagatat	tcttgggaaa	gaataagttt	tcattttata	gatatatgag	gcactccatt	51180
ccaagaaaat	tgatgctatg	ttaggaagtc	tcctacctgc	agtaccgaca	tgattaaagg	51240
gctctaaata	acatgatcac	tcatttataa	agatgaactc	aaaaataaaa	ttagttatac	51300
tgtacatatg	ctatttaatt	ttatgaaaat	ggtcaataag	atgaagtttt	gttttgtttg	51360
ttttgttttg	ttttgttttg	ttttgtttt	gtgtttttgg	ttttttttg	agatggagtc	51420
tagctcttgt	tgcccaggtt	ggagtgcagt	ggcaggatct	cggttcaccg	caacatccgc	51480
ctcccgggtt	taagcgattc	tcctgcctca	gcctcctgag	tagctgggat	tacaggcaag	51540
tgccaccacg	cccagctaat	ttttgtattt	ttagtaagtt	ggagtttcac	catgttggcc	51600
aggctggtct	cttatctcct	gacctcaggt	gatccaccca	ccttgaccac	ccaaagtgct	51660
gggattacag	gcatgagcca	ctgtgcccgg	ccaagatgaa	gtattaatat	ggaaaaaggt	51720
tcatggaaaa	gaagtaggtt	gaaaaaatat	atatactatg	actttttatg	tcacttattc	51780
gaaataaaag	attaaaacac	cctttatgtg	tatatgtgtg	tgtgtaaatg	tctccaaaaa	51840
tttacaaggt	atgcctgatt	agcaaaaatg	tttccttcgt	aaataaggga	ggagagtttg	51900
gggctgataa	tccaagagag	tcaaagggca	ctttaactgt	tacctttact	tgcgaattgt	51960
ttgacttctt	aaaaataatg	agcattttt	gtcaatttaa	attaaagcca	ataaaatgta	52020
cattcacctc	acatccagat	cctacaagac	ataacatttc	aacagggtct	aaatgaatag	52080
gtgatatatt	ctcattcatt	tagtttttaa	attgtctttc	ttaggtttta	aatatacata	52140
ataaaagaaa	atcatagacg	ctgaaatagg	tattccaaag	ctcaaagaca	agctgagaaa	52200
atcagaatta	aaaccacaca	ggttaaaaat	tattttcttt	aagaatgttg	aatgttggca	52260
cccactctct	cctggcttgt	aggttttctg	ctgagaggtc	tgctgttagc	ctgtgcagca	52320
aactgccatg	gcacacattt	acctatgtaa	caaacctgca	cattctgcac	atgtctcccg	52380
gaatctaaaa	taaaattaaa	attaaagaaa	cacatgaact	aaagcagttt	ctgttaaagg	52440
tgaatgaaac	aaacagtaga	tgaaagttgg	gttaccatgg	aagcaataga	catgaacatg	52500
taggaaaaaa	aaataaagga	gaagattttc	tgctcagtca	cggcaaagto	aggggtctag	52560
tctgtttcaa	tgtcagatcc	tgtaagagat	gatgatgttg	ggtgctgacg	gtggagcagg	52620
attcataacg	aaggtccaga	gattgcccta	gtcttgctca	gccaataaag	tgcagtggat	52680
ttttttctga	gtgcaaaatt	taaaataagg	ctcaacgtat	tcatttcatc	tacagcagag	52740
aaggcagacc	aagtggtgag	acttttgctg	aacttgagag	tatgaggtca	aattggccct	52800
gaaaaaaaga	caaagaaact	ataggacaca	gatatgtttc	: agtattcaag	tcaaacaatg	52860
ttgaaatgga	ttgggtgctg	aagcatagtg	gtccagatag	g ttctgacato	gccaatgatg	52920
gctttgtact	cccctttgaa	tgtagcaagg	aagaaattgt	tcagttcttc	: tcatggttgg	52980

aaatcgtgcc	aaatggcata	acactgatgg	tggatttcca	gggaaggagt	acaggggagg	53040
cctttgtgca	gtaggcttca	caggaaatag	ctgaaaatgc	tctagagaaa	cacaaggaaa	53100
gaataaggca	catgtatggg	cttatggcca	tgcagcagcc	aggtccctat	gacagacctg	53160
gggctggcaa	agagcataac	agcattagca	gaggagatgg	ctttgagagg	atgcggtgtg	53220
gtgcttatgg	tggaagctat	ggaggctata	atgattataa	tggttataat	gatggctatg	53280
aatgtgggtc	agatagattt	ggaagaaact	tcaattatag	ttttttagga	atgcctgatc	53340
atagatatga	agatggtggc	tctaccttcc	agagcacaat	gggacactgt	gtacacatgt	53400
gtggattacc	ttacagagct	actgagaatg	atatttataa	ttttttcac	tgctcagtca	53460
tggagagtac	acattgtaat	tggtcctgat	ggcagagtaa	ctggtgaagc	aaatgtcgag	53520
tttgtaactc	agaagatgct	gtggcagcta	cgtcaaaaga	caaagcaaat	atgcatcaca	53580
gatatgtaga	actcttcttg	gattctacag	taccaccaag	tggtggtggt	tatggtagcc	53640
aaatgatggg	agttataggc	ttgtcaaacc	agttcagtta	cagtggccca	gccagccaac	53700
agttgagtga	tggttatgca	ggcagctatg	gtggctagag	cagcatgagt	ggatacgatc	53760
aagttttgca	ggaaaactcc	agtaatcttc	aatcaaacat	tacataagta	gccaaggagc	53820
gataaacagc	agctactaca	gtagaggaag	ccatgcatct	atgggcgtga	acagcatggg	53880
agggatgtct	aacatgtctg	atatgagtgg	tggatgaaga	atgtaattga	tcctcatcac	53940
ggactcttgg	ccaactttt	tctaagaaaa	aaacttcagt	ttaacagttt	ttgaagtaca	54000
agctcgtggt	ttatgcttac	tctctaagtg	gaaatcagga	ttgttctgca	gacttaatta	54060
aggctcaatg	tttttgaaca	cagtactcct	ctaggatgta	acagtgaagt	cgagtaaact	54120
ataactgtta	aaaaagtttt	cgtttttctc	aagttagtta	tattgtacaa	tgtactgaag	54180
cagtaaatgt	atttaggtta	aagcagttga	attaagttag	ttgttgccct	tataccacgt	54240
tacattgaac	acagtttgga	tgcatgttga	aatacatgct	tttttttt	ttcataaaac	54300
tcaatataag	agctgtgtct	ggaattaaag	taaaaatttt	tggcacgttt	tttaattcta	54360
gtttcattta	ataacctgta	gggcatgttt	gtttaagctt	tatttaagtt	aatgggaaaa	54420
aattagagat	ccaataccaa	tactttagga	ttgtggtctt	ggtgtttata	tgaaattctt	54480
aggcctcgat	tttaatcttt	cattgtattg	tgattttctt	ctaggtatat	tataccataa	54540
gaaacttgtc	aaataaatct	ttctttttt	taatttttt	ttttgagatg	gagtcttgct	54600
ctgtcgccca	gcctgaagtg	cagtggcaca	atctcggctc	aaggcagcct	ctgcccactg	54660
ggttccagtg	attctcctgc	ctcagcctcc	tgggtagctg	ggattatggg	agcatgccac	54720
cacgcccggc	taagttttgt	atttttagta	gcgatggggt	ttccccatgt	tggccaggct	54780
ggtctcgaac	tectgaeete	aggtgatctg	cctgtctcag	cctccaaaag	tgctgggatt	54840

acaggcgtga	gccactgcac	ccggccaatc	ttccttttaa	aaactgaaag	aagaaaaagg	54900
aagaagaaga	agaacaacaa	caacaacaac	aacaacgaca	agaaggagga	gggaaaggag	54960
ggaggtatta	agacttggca	caactagtga	tatcaggtta	gaatagatcg	tcagggctat	55020
cacattttgt	aagccttgaa	aatcagtaaa	gctgaatagt	aaatttcagt	gcaggctaaa	55080
ttaaaatgta	aagtaatttt	ctcctctttg	attcataaat	tcatttattc	attcatccgc	55140
caaagattta	ctgagtgcct	aaaatttgcc	agaccctata	tgctgggtgt	gaaagataca	55200
gaaaagaaat	aactcatgcc	ttttcttgta	cttcaaaagc	tcagtctaac	caaggccttt	55260
acgtagagtc	aatgacttct	aagagactca	ctggctgtct	gggacaatat	tgttctcttt	55320
atttctcctt	actgttggtt	aagatttcct	ctaaatatat	tacagattca	actcctttta	55380
tgtagcaaga	actgacagtg	tggagtggag	ctgttcacca	cctgttcacc	atctctgctt	55440
tccgatttcc	aacatggagg	ttggcaaact	tttagtgtaa	aagggccaga	tagtaaatat	55500
tttaggcttt	gtgggataaa	agtctagggc	attacatagg	tacatataac	catttaaaat	55560
gtagaaacaa	ttcttagctt	gtaaaccata	tgaaaacagg	gccagatttg	tccaataatt	55620
tgccaacact	tgttctagta	gaaacatctg	aggatcagag	agggaagcag	caaagttgtt	55680
attcctagta	tttaaggtca	gatataacaa	agagcaaaat	aggcacggtc	cttgccttca	55740
cagagtttac	agagcaggca	cacagctagt	ccataaagga	ggtcttcgta	tctagtagca	55800
actgtaatcc	cttgagggta	tatgtttatc	ccatttctct	tgcatgtcac	aaaaagagca	55860
gctgtttgaa	agcttctctt	acacctacgc	catcattcta	aaatgcactg	cttgcatgtc	55920
tgtatcccca	ctaggtaaaa	acctctcata	agccaaggag	tatgttttat	ttatctttat	55980
attcttagtt	cctagcactc	cctgcacctt	gcgcatgtta	tacactcaat	aattgcttgt	56040
cagatgaatg	gaactaaact	gtttttataa	cattatgtgt	gtgccttttt	aggtggtcac	56100
ttgtctttt	gctagagtta	actgtgttgt	aaaaaagact	ctgaattcaa	agccttcact	56160
tttgagaatg	aaagggggcg	tatattcact	gcagttgaca	tcaacataag	gtctaaaaaa	56220
aatctttgtg	acatcctata	ttttcagctg	ggatttgcag	caaactattg	ttttcctttt	56280
ctccaagaaa	aactctgcct	aacgacaatt	ttcttgttgg	tttcacaagg	agattgcaca	56340
ctcttcttat	gagatcgatc	aggtcttata	tetttettte	cttattattt	cataaaggaa	56400
aaggacagct	ttttcttatg	ttgactattc	tgtctctgtg	ccctgtgggt	aaaactaaat	56460
acacaggtag	tgactactca	aaagcctatc	tggatggctg	aaactgacac	ttgtcttcta	56520
tttgaacatg	tgtgaagcta	aatgtgccct	tgtaagcatg	aaagacgcaa	atgcttttaa	56580
aagtatactc	tatttttacc	agtataaaag	gaatgcatat	tcattctaga	aaatttgaaa	56640
acgatagaaa	aatggaaagt	aggggaatag	attttgtata	tactcaccat	ctaaatatat	56700

ctgttgtaat	atttttctca	agtttaagct	ttatgtgcct	caggtttttc	atctataaat	56760
tcatttataa	atctataaac	aacaatacct	tccttaaagt	gttgtaatga	gtcttagaat	56820
aattaataca	tgcataatgc	ctaaaagata	tttttcttt	atttgaaaaa	cttgtatttt	56880
aggttcaggg	gtacatgtgc	atgtttgtta	tatagggaaa	ttcgggtcat	gggggtttgt	56940
tgtacagatt	attttatcat	ccagatacta	agcctaatac	ccaatagtta	ttttttctga	57000
tactctccct	tetectacee	tccaccccca	aatagacccc	agagtctgct	cttcccctcc	57060
taaaggagat	ttttacagag	tacatgctca	acaaatgtta	aatagtactc	ctcatactga	57120
atattatctt	ttagtgcctt	aacttgtttt	gttatcatta	tatcataata	acaaatattc	57180
cttatgtaat	taaaaatttt	acttataaca	tatttgggag	gccgaggcag	gtggatcacg	57240
aggtcaggag	ttcgacacca	gcctggccaa	catagtgaaa	ccccgtctct	actaaaaata	57300
caaaaattag	tcgggcatgg	tggtgcacac	ctgtagttcc	agctactcgg	gaggctgagg	57360
caggagaatt	acttgaacct	gggaggcaga	gattgcagtg	agctgagatt	gcgccactgc	57420
acttcagcct	gggcgacaga	gcaagactcc	atctcaaaaa	aaaaaaaaa	aatttactta	57480
acacaattat	ggtccaatgc	ctccaacaca	ttgttacaat	tagtaataat	atagaatatt	57540
atataaaaga	acccctaact	cttgcttatt	ttataaaaca	aactgaaatc	agttacaaaa	57600
ttcataaata	ctaacattgt	ttgaaacatt	gatcctattt	aaccacagtt	gccagaatag	57660
cctagaaaag	tctgttcatg	aaatatttat	agaaaacagc	taagttttca	actataccta	57720
ggtgactcta	agaccactta	taaaaacagc	atgctttgaa	attgtccaaa	gaaatcttca	57780
ttttaactaa	gcttcaaata	ggtaatttca	tatttgaata	cttatgggaa	ctgaatctga	57840
atattcaact	ctaaagtaac	ccatcaaact	tgccataatt	ttcttatatt	ttcttgaatc	57900
acagactatg	gattactctt	catcagttat	tagcttcttt	aatgatagca	ttttttggtt	57960
tatatactgt	ttgtcctcaa	ccttctacat	acttttccat	ttcagagaca	aactaatgtg	58020
taaaatagcc	agtggacaag	agttattcat	taaaactgtg	tctatgaatg	caaaatatga	58080
tatgtaattc	tggtaactgc	ctagatgaga	atcacatgaa	tgaagaaatg	taagtaataa	58140
caccaacttc	ccaggcaata	aattagcaat	tgacttgaag	tgtcagttct	cacaagaaat	58200
acaaatagta	aatatacata	acaaataagt	tcaacttggt	taaggggtta	aagaaatgca	58260
atatttaaca	aacatgagat	gcaaattttt	gtacagaaga	gaagaaaaaa	ataaatgaaa	58320
taagtcccaa	tcctggaaag	actgaaaaga	aatatgctta	tttatgacta	gcataatcct	58380
ttcaatgaat	aatttggtga	tgtatatcag	ggtagataaa	ataattatac	cctctggccc	58440
aacaattccc	cacatggaaa	tttaccctaa	gtgactaatc	aaagcagcga	agctatgtaa	58500
gattgcttta	ttaacatgtc	catggtggat	ggcagagcaa	gatggctgac	atcaatgcag	58560

ctctcttcca	cagaatggaa	ccaaaatagc	atgtagattg	acacttaaaa	tagattgtga	58620
aagagagaac	actggaatgc	aacagagcag	tggtgggaaa	gcactgaaag	caaagaagaa	58680
aaaagaagca	aggcagcctg	cttggcagag	atgcgctggg	agctgggaca	aggtcctgtt	58740
tggggaaatg	gtaagtgaga	gcccaccaag	gctgcacatt	tcgaccatgg	cgtcttgcaa	58800
tcctagctat	ggggagagcc	cttccactgt	catgggcctg	gagatgaaaa	cacaagaagt	58860
tgtctagaga	ttgtgcaggc	attgttccag	agagtgtact	catgctgagc	cccacaggct	58920
tctgagccct	gagcagctac	agcacggtat	cattggaaga	tcttggtctc	caaaggacgg	58980
tgtcctattc	tggggcccac	attgctcctg	ccactgctga	gttaaacaaa	caaacaaaca	59040
aacaaaaaag	gcagaaggag	accaggcaca	ttcacatatc	ccgagaacaa	attccaccac	59100
caccactgta	gcttgctgtg	ggtctcagac	acaagtaaac	tgtgccccc	acagcactgc	59160
acccactgag	agtgacccca	ccctcttcct	cagtagcaga	cccaaagtgg	gcaccagtct	59220
cagagccaaa	ccccgaaga	actgcatcct	gccctggggc	tgatgctgtg	gctgccacca	59280
ccaggccaag	gatggtagag	agaggagggt	gggcattttc	atgcaccctt	acctcttctg	59340
gaaagaggct	gctgtgggac	tgatgctgga	gaagatatgg	agaaaaggga	ccacttatat	59400
actgctggtg	ggaatgtaat	tgagtaaaat	cactatggaa	aacagtatgg	agatttctta	59460
aagaactaaa	aatagaacta	ccattctatc	cagcaatccc	actaaatcag	tatatcaaaa	59520
ggatacttgc	actctcatgt	ttgtggcagc	agtattccca	tagatttgga	agcaacgtaa	59580
gtgtccatca	acagaaaaat	tgatgatgaa	aatgtggtct	acatacacac	tggaatacta	59640
ttcagccata	aaaaagaatg	aagcctagca	atttgctgca	acatggatga	gcctgtagga	59700
cattatgcta	agtgaaataa	gccaggcaca	gaaaaatacc	acacgttctc	actcatatgt	59760
gggagctaaa	aaagagttaa	tctcataggc	atagagaata	gaatgataga	cactagaaag	59820
tgggaagggt	gggagggtga	gagtagagga	tgaagagatc	ctggctagtg	ggtaaaaaca	59880
cacagttaga	tagaagaaat	aaactccaat	attctataac	aaaacaggac	cactatagtt	59940
agcaacgatg	tattatatat	ttctggcaac	catcattcta	ctctctaact	ctatgagttc	60000
aattgtcttc	atttccagct	cccatagttc	aaagtagata	aaagagaggt	catgaaatgt	60060
tacaaacaca	cggccaggtg	tggtggctca	cgcctgtaat	cccagcactt	tgggaggcca	60120
aggcaggcag	atcacgaggt	caggagatcg	acaccatcct	ggctaatgca	gtgaaacccc	60180
atctctacta	aaaaatacaa	aaaattaggt	tggcatggtg	gcatgcacct	gtagtcccag	60240
ctacttggga	ggctgaggca	ggagaatcgc	atgaacccag	gagacggagg	ttgcagtgag	60300
ctgagattgc	gccactgcgt	tccagcctgg	gcaacagagc	gagactccgt	ctcaaaaaaa	60360
aaaaaaaaa	aaaagagaaa	gaaatgttac	aaacacatag	aatttacaaa	aactcaaggt	60420

gaaggatact	gtgaataccc	cgacttgatc	atttcagatt	ctattcataa	aacaaatgcc	60480
cacatatacc	ccgtaaatac	acaaaatatt	ttgcattaat	aaaaaagtca	tccatggtca	60540
tgttatttat	tgtggccaaa	aaactgtaaa	aatttaaatt	cttagccaaa	gacttgttca	60600
gtaaattgca	agaattaaat	tgctacaaca	taatattaag	catttatcat	aaataataca	60660
tcttgggatc	ctgtaaaagc	ttggaaaaca	gtttggagtt	aatattttgt	gagacataaa	60720
attggattaa	agtagatact	atacattttt	gaggaatcga	gtctaagact	aaaaatattt	60780
accttgcaag	ccactaaagc	aaataatttc	cctttaaaat	gcaataaaaa	taactaaaac	60840
atctaaccca	aaattaaata	ccatttttc	caatttctcc	gaattgttac	tggggtgcat	60900
gatgaatagc	tttatgaatt	actttttctt	gtttccatac	taagcattta	gtagacttgt	60960
tcatgccaga	agttcaaatt	gccactgaat	tcacacaatc	atttattttg	ctcaaaattt	61020
cgattttaga	actaaagaac	atgactttat	taaactcctc	atttccatca	ccagctctag	61080
aatttggctt	tattttagag	ccttttttt	tttcacagag	aaacttcatt	ttcgtaactc	61140
tttgatagct	actgtgtgag	taagagtgaa	tagagaagca	catgattggg	cagcaaccta	61200
ggctcactca	ctggtaagtg	gcttgctttg	attaatcagc	ctcagagtgt	gcatgcttca	61260
aacgcatgca	tctccaacaa	aaccttcttt	gctgcatgcg	atggaacaaa	cgtttgccat	61320
tcttaaaacg	tgccaaccat	tcatgatctg	ggaacttttt	tttatacata	ctgctccctc	61380
tactgggctg	ttcttatcct	caccttcata	tcaaattgct	agtcaccact	gaagtcaaag	61440
ttgaagcatg	actttcttta	tgaaacatac	tctgacacct	ccagggatgg	ctattcctgg	61500
tatcttctgc	ataatattgc	acgtgaagtg	agtacactca	agtcctgaac	tatgcttgct	61560
tatgggagtg	tttaatgata	ttaactatga	aacgtcatga	cagcaaaacc	agggatctat	61620
tttcagtttc	aattgaagtt	aaagggaatt	tctcacataa	gagaaccaca	catagtgtgt	61680
gatgaatagt	aaaagaatta	atgtatctgt	atgcgtagaa	gagattctca	cacatagtat	61740
gtgctcaaca	aatgttagac	aacgctttct	actattgcaa	atttcagaga	aaatggacat	61800
caaccttgta	gcattcaggt	taagtatggg	gagagtcatg	gtatcatgta	gtcatcacca	61860
gggctggtca	gcaagggtta	agaactctcc	aagattagta	attaatgaag	acaaagaaga	61920
tgtaaatatt	cccatgcaaa	caaaacctca	tggaacaggc	gaattgattc	agaaaagatg	61980
ggaaatattc	ctctcaccat	gctgtagact	gaaatcaggg	ccctctgcag	ccccgacaga	62040
ggtgattata	gataattata	tagactaagg	tactgagatc	atcagtccag	agtgggggaa	62100
cagttattct	caacagacct	tcttgtcatt	atcataaagc	ttcacattaa	gaaaccctca	62160
aattattatt	atagatattc	gggttgagga	gatcttactg	gttacatcca	agatctgtag	62220
caaaaatatg	taagaaagca	aaaaacatgt	aaaatacccc	agttacacat	ggatatatac	62280

atatacattg	acaacaagag	aaaataaaag	cctatctaga	cgaggcttct	ttatgactgg	62340
gtgtgttgca	tagcttttat	tgttccttca	catacttcag	taacatcttg	tgctatatct	62400
atcgaggcac	ttctcagact	ccattgtaat	aagttctgta	catgttaatt	gacatctttg	62460
catcctcttt	aagaatgtgg	gtattttaca	taagggtaaa	gtattgtttg	tcttgtataa	62520
ctctatcaaa	tatagccttg	tctattacta	tagccattca	cacaatgagg	gtgaaatgga	62580
agacagagaa	tcagttggtt	ggaagacatt	tatcctgaga	ttcatcttcc	ctgagagttc	62640
tcttaagaaa	ctgatcaatt	acaaggttgg	caccttaagt	accttgttct	atccttcagc	62700
cccactgaag	ggttgacaaa	ggccaatatt	ccaaaaagaa	atttaccaaa	taccagagaa	62760
gaagaaaagg	aaaataagct	caataagctc	agaaaatgct	aacagcatca	gatttctgaa	62820
gctagtataa	tctcattcca	catgttcagt	tgtgcatatg	tgtgtgtata	tatatataca	62880
catatatata	tacatatata	tgtgtatata	tatatgtata	ttcaacctta	cttgttttt	62940
ctatgattga	acacagtttc	aattttcagc	tgtcagtccc	tttgccttaa	ataaaccatc	63000
ttgaaaatgt	cggggttccc	tttgccattg	agtgacatct	aagttttaga	atgctaaaat	63060
ctactcaaga	cattgcaggg	tagagggcac	atattaacct	tgatggcatt	tgtccttgca	63120
gacgctcctt	tgtccatgaa	gacactcctt	gagacaattg	tggcctcatc	agtacagata	63180
aggtgcttat	gagatgacct	ttgctccacc	cataaaaccc	ctttaggtct	agtgttggca	63240
cacaggactc	tttctgatgc	ctttctacta	ctttgagttg	gataagtccc	tatgaggctc	63300
tctctaaggc	cccacgtgtc	tagactgact	acacagccac	ttattctctt	gggttttgtg	63360
cctccccaca	gcttcacctg	ggaagtagag	tattgaaact	ctggctctgg	aatacgacaa	63420
tgcctccttc	ctccccacac	agggatatct	aatctagcct	ctaggagaaa	cctgtttcct	63480
caaatcctca	gctcatattg	ttctgttttc	cccttgtatt	tttttttt	tttactatg	63540
tcaacagtca	tattcaacaa	agccaaacaa	. agacgttaca	agaaaagaac	attacaggcc	63600
atatccctaa	ı tgaaaatata	tgcaaaaatc	cccaacacaa	tactagcaaa	ccacgttcaa	63660
cagcacatta	a aaagaatcat	: tcactatgat	caagtgggat	ttacctctgg	gatgcaagga	63720
aggttcaata	tatacaaatt	: aaaaaattgt	gatataccac	attaacagaa	tggaggacaa	63780
aatctatato	g atcatctcaa	tagatgcaga	aaaaatcatt	tgacaaaatt	ctacatgctt	63840
tcattttaaa	a aactctcaac	aaattatgta	ı tagaaggaat	gtacctcaat	acaataaagg	63900
ctatataaca	a aaaacccaca	a gctgacatca	tattcaatgg	gggaaagtt	g aaagcatttc	63960
ctctaatato	c aggaacaagg	g caaggatgct	: cactctcgct	atagttgcca	a acataacatg	64020
gtactggcat	aaagacaga	c acatagacca	a atggaacgca	atagagagct	gcaaaatcaa	64080
tatgagcati	tacagtcaa	t tggtttttca	a caaagatgco	aagaacaca	agtgggggaa	64140

ggacactctc	tttattaagt	aatgttaaca	acaactggat	atccacatgc	agaagaaggg	64200
aattagactg	catgttacat	cacatacaaa	aagcaagtca	aaataaagtt	ttaaatataa	64260
gaaatataag	actttacact	gtgacactac	tataggaagc	attgtggaaa	gactccatga	64320
cattggcctt	ggcaatgatg	ttttgtatat	aaacccaaaa	acatgggaaa	caaaagcaaa	64380
aatagaaaaa	tgtgattgta	tccaactaaa	aagctcctgc	acagtaaaag	aaacgaatga	64440
cagtgtgaag	agacaaccta	cagaatgaga	gaaaatattt	gcaaactgca	catttaatca	64500
agggttaata	cccaaaatat	ataaggaatc	caagcaactc	aatagtaaga	aaacaaataa	64560
tctgatttat	aaaatgagga	aaggatctga	atagacattt	ctaaaaagag	gaaatacagg	64620
tggccaatag	gtatatgaaa	atattctcaa	catcactaat	tatcagggaa	atgaaaatta	64680
ataccacaat	gagatatcat	ctcccatccg	ttagaacggt	tattatcaaa	aagacaaaat	64740
ataacaagct	ttggcaagga	tatggagaaa	agggaatctt	tacacaccgt	tggtaggaaa	64800
gtaatttagt	acagccattg	tggaaaacag	tatggaactt	cctcagatta	aaaactaaac	64860
taatatatga	tccagcaatt	ctactactgt	gtgcatatcc	aatgaaaata	aaattattat	64920
gtggaagaga	tatctgcagt	gcaatgttca	cggcagatta	ttcacaatag	ccaagatatt	64980
gagtcaacct	aagtgtctat	caaggggtga	atagacaaat	aaaatggagt	gtatatatac	65040
acaatggaat	actattcagc	cttttggaac	atggaaattc	tgtcaatcgt	gataacaagg	65100
atgaacctgg	agaacatcat	gttaagtaaa	ataagcctgg	cacagaaaga	caaataccac	65160
atgatcttac	ttatacgtgg	aatcttaaaa	catcaaactc	atagaagcat	aaagcagaat	65220
ggtggttatc	aggggctggg	gtggaggcag	tgactgggga	catgctagtc	aaaggataca	65280
aaattgcgat	tagctagatg	gaataatttc	aaagggcctg	ttgtacaaca	tggtgactat	65340
agttaataac	aacttattgt	gtatccccaa	attgctaaga	aaatagactt	tatgtgttat	65400
cacaacaaag	aataataagt	gtatgaggta	gtgcatatgt	taattagcat	gattcagcca	65460
ttctgcagtg	tataatttca	aaacatcatg	ttgtacacca	taaatatata	caatttttt	65520
gtcaattaaa	aataagttta	gaaatagggc	atatcattta	gggtttgatt	aacagaataa	65580
atattttaa	aataggcatg	tcaatttcct	aaaagcttaa	tttttttga	aaaccctagc	65640
taagaacatt	tcatattctc	tgctttctgc	tttattattc	ttctgaatag	tgagcataaa	65700
aatggttatc	tacttggatt	tggggttaga	gatagaaaga	aaagtaaatt	attgagaaag	65760
aggaaaatag	taaatactat	cttgtcactt	tttcaaagac	ttcttcaccc	ccacaaggtt	65820
ggcacaactt	tataagcatc	tggttgccct	ttcttcccgt	ttttgtgata	agtcagatga	65880
aaagttaaat	ggtctaacaa	aattcactct	tttaagcaat	acggcagaga	atacttttgt	65940
agaataattt	ttggtaaaat	aaataattat	cctctaattg	ttcttaatat	ctggaagttt	66000

tctaaactac	agcctatttt	tacctttatt	tggtctgata	cttaggtaat	cgtgtgtgga	66060
tttatcactg	acaacctggg	ttataaatta	taataaaatt	gcgtatgtgg	gttttttacc	66120
ttcattttaa	aagaccagct	cattaaaaaa	aaaataatgc	tttaagttaa	gaaaatatac	66180
attaatgaaa	ctatgctcaa	ctactttaaa	tcaattataa	attttattta	tgagttcttt	66240
gctaggatca	ctgtctaccc	tgcagctccc	gactttaaat	gacatattca	taactatgaa	66300
atctattaca	atatagcttt	tcactgattg	aattcatgat	aaaaacatta	ttattttttg	66360
ttagatatgt	aaaattagat	agaattcatc	tcactagaat	acatctttag	ttacagtttc	66420
attgtatatt	ttctcagcaa	agcacatgcc	acctggtggc	tgaaagaagt	atgtaacata	66480
ataggtttcc	aaaatactgt	ggaaaaccaa	aggttccaca	atatcatttt	gaatccgttt	66540
ctaaaccagt	agcaaacgtg	tattttgggg	caagacgcac	cacagtggca	aatcttacac	66600
cttcaaaagt	taacacccag	tggagtctgt	gtcaaatgga	gacacgaaac	agcaatactc	66660
cattttaagt	attttttaaa	atctttccag	aattgttttg	cattttgaaa	tatgtttgct	66720
tctttatgtc	atgtccattt	tactaacaga	agtaaaattg	tttacatgca	gaattgcttg	66780
tcctggtaca	cacctagaaa	acggaggtaa	atatctattt	tttccttcaa	ctaactaaga	66840
agggaggtga	ttagccaatg	tgggaggcat	ttttttcttc	cagaatttt	actggagtag	66900
gccctatgtg	ttagattcca	tgctaacaga	gggtaaggtg	atagagagga	atctctggag	66960
gaactctcat	tgtattgaaa	ttcagaaaat	ctggcttccg	gctcacagcc	agctggttgt	67020
gtaagctctg	gcaagcctta	agccacctga	tgcacagata	agttacatat	gcaagtccta	67080
cattttaagg	ctttaagtgg	attgattttg	tgtgtgtgtg	tgtgtgtgtg	tatgtggcta	67140
cagtggaagt	ttcttttatt	tttcgttttt	aattatagta	aaaacacgta	atataaaaca	67200
tatcctctta	gccattttaa	gcatatattc	agtagtgtta	actatattca	tattattgta	67260
taacagatct	ctagaatttc	tcacttgcaa	aactgaagct	atacctactg	aattgaacaa	67320
cttttcattt	cccctaccg	cageceetca	taatcatcat	tctactttct	ttttctatgc	67380
ttttgactac	tccagatatc	taacttaaat	ggaatcatat	aatatttatc	tgtcagtgaa	67440
tggtttattt	cacttagcat	aaagtcctct	aggctcatcc	atgttttagc	atgtgacaga	67500
attttctttt	taaaaatgaa	ataatatgat	atgccattgt	acataccaca	ttttattcat	67560
ccatttatct	gtcaatggac	atttcgattg	cttctacctc	ttggctattg	ggaataatgc	67620
tgcaatgaac	atagatgtac	atatatctct	tcaagatcct	tttttcaatt	attttggaaa	67680
tatatccaga	agtgggattg	ctgggtcata	cggtaatggt	gtgtttaggt	gtttttgagg	67740
gatcttcact	ttgtcttcca	taatggctgc	atcattttac	attcccacca	gcaaggcaca	67800
agggttccaa	tttctccccg	ttcttgccaa	cgctcattaa	tttttgtttt	tgtttgtttt	67860

actaacgggt	gtcaggtgat	atctcattgt	cattttgatt	tgcatttctg	taatgattag	67920
tgatgtaggg	tctcctgtaa	tacacctgat	agccttttt	ttttttt	tttgagacct	67980
agttttgcac	ttgttgccca	tgctggagtg	caatggcgca	atcttggctc	actccaacct	68040
ccgcctcctg	ggttcaagtg	attctcctgc	ctcagcctcc	tgagtagctg	ggattacagg	68100
tatgtgccac	catgcctggc	taattttgta	tttttagtag	agacggggtt	tctccatgtt	68160
gatcaggctg	gtcttgaatt	cccgacctca	ggtgatctgc	ccgcctttgc	ctcccaaagt	68220
gctgggatta	caggcatgag	ccactgtacc	cggcctaact	tgatagccat	ttctatatcg	68280
cttttggaga	aatgtctatt	caaattcttt	gcctattttg	taatcaggtt	aacacctttg	68340
ttgtttattt	gtaggagtta	cttatatagt	ttgcatatta	accccttgtc	agatgtgtaa	68400
tttacaatta	tttttcttat	tctgtacatg	gattctgttt	tttattctgt	tgattctttt	68460
ctttaatgtg	tagcagtttt	taagtttgat	gtttgtttca	ttagtgtatt	tttgcttttg	68520
ttgcatgtga	ttttggtgtc	atatctaata	gattactgca	aaatctaatg	tcatgaagct	68580
tttctcgtat	gtttccctct	aggagtgttt	tagtttaġgg	cttatattta	tatctttaat	68640
ctattttgag	ttaattttta	taaagtataa	agtgagagtc	taacttcatt	ttttgcatgt	68700
gcctatccca	gcaccatgtt	ttgaaatgac	tatcctttcc	ccattgtggg	atcttcgcat	68760
cttgttatat	tatttgacca	tatacatgag	aatttatttt	ggggctctct	attctgttct	68820
attggtctat	atgcctgtct	ttatgctagc	accatactgt	tttgattact	atagtgttgt	68880
aatatgtata	gaaatcagca	agaatgaggt	ctccaattca	ttcttgttta	tcaagattgt	68940
tttggtaatt	cagggaccct	tgagattcta	tacaaatttt	agaattttt	tcctgtttct	69000
gaaaagggct	tagaataatt	taactaaata	tttaggttgt	aaagtgtagc	agtcagtgtt	69060
ttcttaacct	cttggttcac	tctagcacga	aaagctggcc	actgtatcta	atgattcaac	69120
ttcccttcac	tcctataaga	acatttattc	ttcacctact	cttccatgat	gatcagagca	69180
gattcacctc	tcattttcaa	aatatctcca	ccattcatta	ttcataccat	cctgagccta	69240
ttataggaac	ttaccaaatc	atccattttt	agccattgaa	tetecetget	gtgaattaca	69300
ccctacaatc	cttgtcccac	tttattttgt	ttgtgacttt	tattctgttt	agccagctgt	69360
ctcttcctcc	ttgggcttgc	cttgtgcatt	atcttctagg	cccttagcca	agcactaatc	69420
tttcactaat	tagctaacca	accactaacc	tgctgcagct	tcctgcatgg	gtcttaagct	69480
catcatctta	tccccagccc	caggacacca	gatactttcc	ttccctgaga	ctgtcacaaa	69540
gtatgcccca	ccaaatatag	tgactgagag	agtcactgag	ctgcacagtg	caatctttac	69600
atttatagtc	agctgaactt	aagaaacttt	ggacctttcc	tcaggactca	gtgaagtctg	69660
tgctacatct	gccggcagca	agatgcaaag	gctgactaag	ccttattatt	ctgttatctt	69720

caatagtaaa	tgacttgagg	ttacctaaga	ggatgcattc	actaaaagtg	gtaatgaaat	69780
gacttacaaa	tgcgatcaag	aggtttagaa	agttcaattt	tttgtggctt	atgcaaccaa	69840
cccacgagca	gtggaaatag	catcttagtc	catattatct	aaaaatttac	cttagttaac	69900
tattcattga	ttgttctgtt	atattcaagt	agtttcataa	aatagatcca	cgatttgaat	69960
gtgaaaatgt	gcttaaaagt	gtaaatgaat	tgtgatgata	gctactgttt	ggtgataaga	70020
tcactaactg	acaaatagtg	tgctaataaa	caatgaagag	attttaagca	gcagaactgc	70080
atcaatgttt	aaggatgtac	acagatttta	aatgatttt	aaagacacac	aaaaatacta	70140
ctaagagaaa	tattcatgga	cttgactatg	aaatcaatca	catatataga	tgtattgtag	70200
taagcagatc	caaggaaact	agcatgcatt	gaaacattat	aatgtggtag	gtgtttgtac	70260
atgtgagttt	acttaattat	cacaataagc	ctgtggtgta	gatggcatta	ttgtcccatt	70320
tcatatgtga	agcttttaaa	ccttaaagag	gttaagtgtc	taaggtcgca	gagctaatag	70380
aagggccaac	actaacaccc	gggtctgtat	gacagcaaaa	ttaattcgtt	ttctactata	70440
ccgagggtta	cgtgacagct	ttgaaggaag	aaggatacct	ctgtagctca	aagatgactg	70500
aggaattcag	tatgtgaggg	ttgaaaataa	agctgatatt	gaacattttg	aatatttgtt	70560
tctcgaagct	tatatgctaa	agatttctaa	cattaatatt	ttcagtataa	atacatatat	70620
acgttatata	tcttacagca	gcatgaatac	gcatgtatgg	gtcttttaca	taagtgactg	70680
tacatttttt	aaacattcta	tatattttgt	cactctagct	taatataact	tcttaaagat	70740
aaggtccatc	cttgatacac	aattgacttg	gcttctggct	tgtgtagaaa	tgtgtgcaag	70800
tccctcaaat	gctcatgttt	cccgagggga	tagagaaaaa	ggtaagcact	taccgtctat	70860
gtaccccacc	ccagctctgg	acagatcttg	gactctacaa	ccccattcac	tcattcagcc	70920
aatgttgttt	gactacctgt	tacatgcaat	gaactgtgct	aggcacaatg	ggaggcatgc	70980
aaagatgaaa	aataagacaa	aaaatggcct	cttgaattta	tattatcaga	tccaccaatc	71040
tgcctgaaaa	tgtcccagct	gtctttggtt	tatcaaatgt	atcacaagta	ccttgtcaga	71100
gtggttaagt	attatattca	ttcattctca	taaagcttgt	gggctccaaa	cttcaaccat	71160
gctgtaagag	catgggactc	taacttcaac	ccatttaaat	tattattgct	gtgacaagaa	71220
cattttaaaa	tctctcagtg	aatcaccagt	ggtagcagct	ttacttttta	acactaagca	71280
gcagttagaa	aatcatatca	aatattctgg	caatctgttt	taaaactaat	tcgataataa	71340
tgtaattagc	aaagtaagga	atatattact	attatgctgt	attatgactt	agctgaaatt	71400
gcacatgcag	atgtataatg	tggaatttct	aaaaattcca	tttagaaaat	ttagcagtgt	71460
atttaaatat	ttcttattca	caggcaccca	gctgtgatgg	aggaagctgt	atttaaatag	71520
tcaaaattga	aggtgccagc	agatttcaaa	cagaacacgt	gaaagggaac	tttttataaa	71580

ctttgttttc	cttcttggca	cggattatta	caacacactg	aaattgaggt	gtgaggttta	71640
ttttaaccat	ctaagtacat	ttaaacatta	catgatgtac	tactttctaa	atgcataact	71700
gtctgataat	attcactgaa	agtacttgtc	aacctgttca	cctgtgccag	atactattag	71760
cataagtggt	cactaaatta	gtgtacatat	tagagtacac	cgtgaacaag	gttttaccta	71820
aggtgtggcc	atagttattc	aaagctaaca	tgctttatgc	actattacat	atacatatat	71880
attacatatt	atatatatta	tatataaata	agatatatat	gtacacacat	atttgtgtgt	71940
atataataca	tatacatata	ttatatgcat	acgcatatta	tataaacatt	atatattata	72000
tatacatata	ttatatataa	tatacatata	tactatataa	tatattatat	attatatgta	72060
tacatagata	catatgtata	catgtataca	ttatatatac	tatatattat	atgtatacat	72120
atattatata	tattatatat	ttatatatac	atgtatatat	acatgcatat	atgtatacaa	72180
ttatataata	tataattgta	cacatattat	ataatatata	ctgtatatat	attatatata	72240
atatatactg	tatatatatt	atatataata	tatactgtat	atatattata	tataacacat	72300
aatgtgtata	tattatatat	aacacataat	gtatatatat	tatttataac	acataatgta	72360
tatatattat	ttataacaca	taatgtatat	atattattta	taatacataa	tgtatatata	72420
ttatttataa	tacataatgt	atatatatta	tttataatac	ataatgtata	tttattattt	72480
ataatacata	atgtatattt	attatttata	atacataatg	tatacatatt	ttataataca	72540
taatgtatac	atattttata	atatataatg	tatacatatc	atatataata	tataatgtat	72600
acatatcata	tataatatat	aatgtataca	tatcatatat	aatatataat	gtatacatat	72660
catatataat	atataatgta	tacatatcat	atataatata	taatgtatgt	atattatatg	72720
tatatgtgtg	tgtatatata	tatctttggg	ccagaatctg	tgtttcacta	caggaaactg	72780
taaggccgtt	tttaagtaca	ttatagcatt	actaagaaat	ctatacaagt	aagagtgcaa	72840
gcttcctcat	attaaggcag	gcatagaata	aaaatgcaag	aatcatatga	atttttttc	72900
tttttcttt	ggaaacgcag	agtggcagag	aacaggggat	ttttaaaaat	agtatctaat	72960
atttattgag	ggccgtgtgc	caagcaagat	attaggtgct	ttaacaaata	gtatctcctt	73020
aagtcctcaa	aataatacta	taaagtatct	taccatgccc	attttataga	gtaatgaggc	73080
agggaggatg	tgtgacttat	caaatatcac	atagctagta	agtagtggag	accagatttg	73140
aatccaatcg	atttggctct	cacatcttca	ctctttattt	tattttattt	tactttaagt	73200
tctggggtac	atatgcaggc	ttgtcacata	ggtacacatg	tgccatggtg	gtttgctgca	73260
cctatcaacc	tgtcatctag	gttttaagcc	ccacatgcat	taggtatttg	tcctaatgct	73320
ctccctcccc	ttgcccgcca	cccctgaca	ggccctggcg	tatgatgttt	ccctccttgt	73380
atccatgtga	gaacggagga	tgttttgggt	agtgaaacta	ctctacatga	tactataaca	73440

gtggacacca ttatagtgtc	· atatacaaaa	cccacagaat	gracacacc	aagagtgaac	73500
					73560
ccttttgtaa actatggact					
cagctctggt ggaggatgtt	gataaagggg	aaggtatgca	tgtttagggg	tagagggata	73620
tggaaaatct ctgtacctto	: tactaaactt	tcctgtgaat	tgaaaactgt	tctaaaaaat	73680
agtccattaa gaaaaaaaca	cacaacaaca	agttgtaaca	ctaggacaaa	taataattca	73740
gtcaaatcat cattaaagca	tgacgaagca	gacctcttct	attcaccaac	agatattaaa	73800
ttgacagaag catagatac	gttttcttt	taaaaaggca	tatttgccat	ttaaaataat	73860
tggaagtcta attttgtatg	gtcttgtacc	aaatgaataa	cataaattgc	ttcttggaac	73920
ctagcaacct atatcagaca	gtttaaaaaa	agaactaaaa	acacacaaaa	aatgggaacc	73980
aaacataaaa ccaagacat	, tacagagtaa	agtaacatga	aacaccattt	aacagccttt	74040
tagcaaagtg ctctacatga	ttagctagat	tgcaaaatgt	gtagaagttt	aatctctttt	74100
ctacaggata gtcttctaa	tgactgagga	cagttaaact	tctacttttg	catcattccc	74160
ttcagtggtt tgtcatctg	a catggttttc	agaaactcaa	agtttcctcc	tgggtacttt	74220
ctagtttaat atctctctt	g aaatatggta	gctggaactg	aatacacaac	tccagatatg	74280
ctatgtccaa cacaaaaca	g aagaaaatta	ttaacactta	ttcattatta	taaagccatt	74340
tgtatgaata aagcctgtt	tcatttgtgg	caatgacacc	caccactgag	tcacattgcg	74400
cttgtactca gttaattct	g aacatgaatc	tatatattac	agacataagt	tatcttacaa	74460
ggtgttaggt aaaagacca	g ccactaggat	cacacagcct	ccatgtgacc	ttgagcaaat	74520
cacctcaccc tctttggac	tcaatgtcct	cgtctataaa	atggagataa	taaaattgct	74580
ttttcatagg gttgctgtg	a ggagtaggta	gaattataca	tggaaatctc	ctcaaacaag	74640
gtctggcaga aggcaaatt	e aagagttata	aagaaccagg	gacagagaga	gatcacgtcc	74700
atagatgaag gttcattaa	c ctagaacaat	aggtaaaaga	atcacaattt	acttgaatac	74760
ggaatcagta tttaaatac	g tctagtaatg	ttttgagaaa	aaacattcag	tgcagaggcc	74820
agaaacagag aagaaagta	a gccttcttgg	atctggagat	ttcccaggag	agacgagaga	74880
aatgaaggca cgcaggaag	cacttgcttt	aagcaaggag	atcataaaag	taaagtttag	74940
gtgggagaga gggacatac	a gagattatga	aagtgaccct	gaaagagatt	gaaatttcca	75000
caattccaaa attacaact	g aacttcccaa	atattaatat	aatgatggtg	cgagcctgaa	75060
tctactttgc accagagtc	t aagcaggtaa	acttaacatt	gaatattata	tgactataag	75120
ttgcagtttt tctgaaact	a tttatttatt	tatttattt	gagatgaagt	cttgctctgt	75180
ggcccaggct ggagtgcag	t ggtgcgatgt	tggctcactg	aaacctctgc	ctcctgggtt	75240
caagtgattc tcttgcctc	a gcctcctgag	tagctgggat	tacaggcatg	tgccaccacg	75300

gctggctaat	ttttatattt	ttagtagaga	tggggtttcg	ccatgttggc	caggctggtc	75360
ttgactgcct	tacctcaggt	gatcttcccg	cctcggcctc	ccaaagtgct	aggattacag	75420
gcgtgagcca	ccatgcccgg	ccctctgaaa	tatttctgat	atcaaattgt	ctctcttaat	75480
atcagactgg	gggcaatttt	tgtttcgaaa	acagagacac	tatcttattc	tagcaagcat	75540
aagaaattat	agagaaagac	aatgagtgta	ataactttga	aagatggttg	agctctatat	75600
aaccaatatc	atgtgatttc	ctagaactag	aatctccata	agagcaagta	ctgtttggtt	75660
caactaccga	aaccataggg	gttagcacaa	ttcctggtat	gaagtaagtg	ttcagtgatg	75720
acctgttgag	tgaatgaagc	aaagacattt	gtattaacct	attaacctca	atattttccc	75780
catagtgatt	atgagaaaaa	cactttaatc	aagaagggta	tttgggagga	caacaaaaag	75840
agcaactgct	aagtcctatt	ttataaccag	tcttacagtg	aaaaggaccc	tcaagggcta	75900
caaagtattg	cagaaatgat	aaagatgaga	gaaacacagg	gtaatatatg	gaagcctgta	75960
tagaggaaaa	aagatgaagg	tccaaagatc	ttgtctggac	caaaggcatt	taacttgtgg	76020
aagggcagtg	tagctcccct	agatttaacc	attattaaaa	ttttcatatt	tacctgttat	76080
actgtaatca	actagacata	gccttagttt	cttactactg	caaataaaag	gtgaatgtaa	76140
tcttggaaat	tattataacc	actttaaaat	taaatttaaa	tatctaagca	aaatcaacct	76200
gctgagttct	ccagattttc	caccaggcac	acagacgtgt	gccactacct	atggtccttg	76260
ccagtgtgac	cacgtcacat	cctatgtaag	aacaggccaa	gagattcgga	aggttggcat	76320
caataaatgt	cgtaatttaa	taaactatat	tatggaacaa	tatgcctatg	aaagtcacct	76380
gccattgaca	gttttgtcat	ctcagaagat	gaatcctgat	taccaagaag	aatttttgtt	76440
gctgctacac	aatgtaaata	aaatcgaata	tgttcggaac	tgccttctta	gtacttccac	76500
gctgcctctt	aatcttttca	tcatcaagag	aaaagagtaa	cggaaaacta	actcaaaaag	76560
gaggaaggca	ggactaagga	ttcagaccct	ttgagaatgt	cactgtatag	gaaagaatac	76620
ctactaactg	agtcctggtt	acagcaaaga	aacatggaag	gagtattgga	agaaggtatt	76680
cataagaatt	atttgtaacc	tcatgaaaga	aaaagggctg	tatcagctat	gcctatttct	76740
tcccttgatt	tttgtgtgtg	tacacacaca	cacaaacaca	caaacatata	taataattca	76800
tacatatgta	tatatacacg	gtgtgtgggt	gtgtgcaagt	gcacacaatt	tctttttcc	76860
tctctgcaat	tttccccctt	gttattttat	atgaacattt	ttgctagcag	ttaagtttac	76920
aatgtaagct	ttagattata	aaatgttcag	gcggaattta	aggctattta	atatcagcta	76980
gagatggaca	tcttaaatgt	tggaactttg	tgttaggaga	aaggggaaaa	catctttatt	77040
tggaggaagg	atagaaagca	tagagttttg	ttttatagaa	gttaaatatt	tgtaggaagg	77100
ctacagatcg	taagtaatca	gagtaagctg	tggtgattgt	tattaagctg	ttgtctctca	77160

				•.		77000
gctacaaata	aacaattcta	tacattgttt	tgtggtgctg	gcaccaggat	gggactctgc	77220
ataacacatg	tctcctttgc	tacctggttt	tgccaatagg	ggcactagag	ggaggctaca	77280
aaattgaaag	agaaagaaga	catctgatcc	ttcctgatta	cttgctaatc	ctgtcagcct	77340
tgcccaacca	ctgcccttta	ccctgccagt	agcagttagt	tccagtctca	attttccttc	77400
ccaaaaacgt	ttttttgttc	atccatgatg	actatactag	ttacctgcct	tatagagtca	77460
tcaaggaaaa	attttgtgca	tcatactgag	aaccaggaga	cacgggtttt	tttaattgtt	77520
gtttattttt	gtctttttct	tgttcctaac	ttacaggcta	atgtaacctt	aatcaagtta	77580
gctttgtgca	tttcttattt	tataaatagt	gatgtgtttt	ttataatcta	caagagtgtt	77640
gtaagcataa	ataagaaaat	acctgtgaaa	agccttagat	tcagaaaaga	ataaaatttt	77700
gtgctaagat	tcaatatggc	caaagaaata	attgttaata	ttaagccttt	tggaaaatat	77760
acaggcacca	atccagatga	atgactaata	aacagaaaat	cagtcaaata	aaagtacagc	77820
agtagtagca	gggaaaatat	gtttttttt	cttcccaaat	aatttattta	aagaaaaatt	77880
aaacttcaag	tagattgaat	agcaaaaggg	aatttcagta	taagatgcta	aacaccaaat	77940
attttggaat	ggctattttt	ttggctttca	tctatctttc	tttgtttatg	gaagagagta	78000
caagaggagg	tgggaggagt	ttgtttatat	agtaaagcta	tgaaactgag	aagagtaatg	78060
acaaatcttg	actactaaat	ttctaatgta	atctttgctc	aaactccagt	gcaacaatcc	78120
cataagaact	gtttatcggt	gctgggatga	ggaaaatcac	gagttaagta	ctatgttaga	78180
aaaaaaaaa	cagaaaattt	tttaaaaagg	gtaaaatctc	ttgacatcca	taaataacaa	78240
ttagtagaca	tcactgtcag	gctcaggtag	aagtcccaag	gctaaatggc	tataagaagt	78300
atatttaaag	tctgttttga	cctattaaaa	caatcaaaat	ataaagaaat	ccacatttta	78360
gccttgttaa	aataatttta	gtaggatttc	tetetttett	gaagtattta	tcaattggcc	78420
catttaaata	ttgaggcaca	tctgtgtata	ctggttaaaa	ataaaaagta	ataatgtaaa	78480
actagacctg	cttatattta	agatactatt	gccagctgct	cttgtttcct	gagaaccagt	78540
tgcagtttcc	tgcttgttat	ttctcaatca	ctagatacat	acatacatat	atgtatgtat	78600
aaagtagaga	agacagtttt	tattgtattt	ggctctcagt	tccactcggg	aagccaagtc	78660
cctaacacta	tatacactgt	atacagctgg	cgctcagtat	cagtgcattc	aaccaactgt	78720
ggacacaatg	agattgcatc	tcacgccagt	cagaatggca	attattaaaa	agtcaataaa	78780
caacagatgc	tggcaaggtt	gtggagaaat	aggaacactt	ttaccctgtt	ggtgggaatg	78840
taaattagtt	caagcattgt	ggaagacagt	gtggagattc	ctcaaagacc	tagaaccaga	78900
aatatcattc	gatccagtaa	tcccattact	gggtatatac	ccaaaggaat	ataaatcatt	78960
ctattataaa	gatatatgca	cgcatatgtt	cactgaagca	ctattcacaa	cagcaaaatc	79020

atggaaccaa	cccaaatacc	caccagtgat	agactggatg	aagaaaatgt	ggtccatata	79080
caccatggaa	tactatgcag	ccataaaaac	aaacgagatc	atgtcttttg	cagggacatg	79140
gatggagctg	gaagctatta	tcctcagaaa	actaatgcag	gaacagaaaa	ccaaacacca	79200
tgtgttctta	cttgtaagtg	ggagctgaac	aatgagaaca	catggacaca	gggaggggaa	79260
caacacacat	tggagcatgt	tggggggtgg	ggtatggaac	gcatcaggaa	aaatagctaa	79320
tgcatgctgg	gcttaacact	taggtgatgg	gttgatacgt	gcagcaaacc	accatggcac	79380
acgtatacct	atgtaacaaa	cctgcacatg	taccccagag	cttaaaatat	gaatttcaaa	79440
agatcttcat	aaaaataaca	atagaacaat	aaaaataata	cagtataaca	actatttaca	79500
tagcatttac	attgtattag	atattacaag	taatctagag	ataatttaaa	atatacagga	79560
gaatgggcat	aggttatata	caagtactat	gccattttat	gtaagggaat	tgagcatctt	79620
cgaattttgg	tatcctgggg	gttctgaaac	caactcccca	cagataccaa	gagaggactg	79680
taatgttcac	acccctgaaa	acaacatgag	gatctcttcc	tttttcatga	tttgcaaatc	79740
aaatttgaga	agacccttat	tgttttggta	tcttcttcca	ttttatttct	tttgcatatg	79800
tgaactactt	caatttctgg	cccttccaaa	tgattccatt	tcttatttta	tagaacattt	79860
cctgttaatg	tactttccaa	atatgcctgg	cacatggtaa	attttgactc	tatattctgg	79920
aggaatatca	aaaatttgga	ctgtgtcatc	tccagaagga	catacaagtt	gttgaccttg	79980
ccatgtgatg	gaaggcagtg	ttctgatttt	cttaatttcc	ttgaatatgt	gccatggaag	80040
cttaccatta	ttgcctttaa	ctatagtatt	tcacaacatt	ttataaaacc	gagaaattta	80100
gtaaagtttg	agaatgagcg	gtcagtagtt	aaaggacatg	ttcaatcaat	acattatata	80160
gtattgttta	ttataacaca	atacatgata	tagtattgtt	tagtataaca	tagtctcatc	80220
tgctttatca	ctaaactaag	tgatcttgga	ggacagaggc	agtttccttc	accttggcac	80280
ccaaagtctg	atgaattata	ggcattcaat	aaagatttaa	taaactgtac	tttatggttg	80340
agcagattat	ttgtagtcag	tcacctctac	taaaactcca	tatgttcttg	aaattcttgg	80400
agttcttgga	gaacaaaagg	aaagataatt	ttctattact	aggacagaat	aaaacatgct	80460
catttgtttt	aggtgtacat	tttgattctt	ccaatgtgca	gctatcaaat	caaccattag	80520
gatggggatg	gcaagggcga	gtggtactgg	tttgtttcaa	ttctggagag	cttatgtcta	80580
tgtggttcac	aatgtgatat	ggctcactag	gaagactagg	aagtctcagg	attaaatttg	80640
ccctttccca	gaaaagctct	gagtacaaat	gtgtttaatt	cagaattttc	aatcagtgat	80700
aaagaggaca	atatgcttcg	ttttttaaaa	aaaggtaatt	acttgaagtg	gttaatgagt	80760
tgactaagaa	caaaaacctg	cttgagagtt	atgtgtaatt	tagatattgt	gtgcacgagt	80820
atgctgaaat	gccatttgtt	tctcctttat	ccattttccc	ctgtaggctg	gtctgttctt	80880

gccactagtc	ttaataaatg	ataaaatcag	aatctcaaat	gaattggaga	taccttatat	80940
aatatttaat	aatgagctga	aaaagagacc	caaacacatt	cactattcac	tttttgagcc	81000
acaatccagt	taaccatcag	tccttgaccg	tcctttgtta	ctacaaaaat	actgtatgaa	81060
actatctcct	tacagagttt	ccactgctta	ccaaactcaa	cttgttttac	agtaagacac	81120
ccttacctcg	gaaatttctc	ttttacaaaa	tctgacaact	ttttacaaat	gcttttaaac	81180
caaagagaat	ttgtcaatat	atttaatttc	gtgtttaaat	tttggtagta	actttgagac	81240
cgtcaaacta	tcatgtaaat	ctttctgttc	gcaagacata	attggagaaa	agatcagcac	81300
aactctggcc	actcactaaa	ttttagattg	gaaaatggcg	tttctttgac	ctttgtccag	81360
atatcctctt	aaagtataca	aggaggggta	ggaatggaag	ataagagtcc	cagaaccatg	81420
gtcccctcac	agggatagcc	tgccatatgt	cacagaggac	agattctcaa	ggagaaaatc	81480
tggatgactg	tcaacaaaat	tectetectt	tcaaggctca	ggaaactcac	atctcaaaac	81540
acaggcaaag	aaatgaaagg	aataatcatt	atatggtcca	tttgtgattt	tttttcattg	81600
ccctgagtgg	ctgaatcctg	tagtttggct	ttctggatat	ttcttcatcc	ataaagataa	81660
taaaaatgaa	atttcataga	atagcttcag	ctataaatgg	aagtaaaatg	cccaaaaact	81720
tgaactatat	ggggaaaaaa	aaaagttgtc	tagaggccat	ccttagaata	tttttttta	81780
accttagaat	tgttttacta	gagaaggtat	aaatagaatc	gagatgatgt	aagttagatg	81840
tcaacatttc	caacaatgaa	tattgtaaga	aaagtcaatt	aacaatggat	acaataggca	81900
ctatatctgt	ctgaatagtt	attagatgat	tgagattgaa	ttaatttaca	cataatttat	81960
cacacgaatg	tgatcttagg	tataattgca	tcacaccttg	tcagatctga	cttgcttttc	82020
tctaaaaaca	gcatatgcta	ctcttatgac	aaaataatct	tagatagaac	aatactagtt	82080
cttcaatgag	aacacatgga	cacgggaaga	ggaacatcac	actctgggga	ctgttgtggg	82140
gtggggggag	tggggaggga	tagcattaag	agatatacct	aatgctaaat	gacgagttaa	82200
tgggtgcagc	acaccaacat	ggcacatgga	tacatatgta	acaaacctgc	acgttgtgca	82260
catgtaccct	agaacttaaa	gtataataat	aataaaataa	ataaatagaa	aaaaagaata	82320
ctagttcttt	aagtcattaa	gtttctaaaa	atatacattt	ccactggcaa	aatgataaaa	82380
ttagtgcccc	caactcactt	gaacttttt	tgcacatata	ttacaaacaa	taaagctata	82440
tacacgttgg	ttcattttt	tcctttcctt	tctctttcc	tgtttgcttc	cctaaaaaaa	82500
aaccagtgat	aagattcaga	aaaagatatt	tttaacattc	tctccagggc	cattatgagg	82560
aactttgttg	caataatgat	aatacccact	tttcgtgggt	ctgacatgta	gaggatgaga	82620
ttctaggtta	gtctggcaag	caaggcacgt	aagattattt	taaaaaatag	taatggagtc	82680
tgcaatcctc	aattctacag	agattgttgt	taaaattaac	ttttaaaaaa	actaataata	82740

tgtgaaataa	gaatagaaaa	gtaagtaaag	gataccaggt	ggggtaagaa	caggtggatt	82800
tatttttaaa	taatagttct	agcttttgaa	ataaacaaaa	gatacactga	attaatccaa	82860
ccactctctt	ctactcgcca	tccttagact	cgagaaggga	aataatacat	ggtctgaatt	82920
atttgtttt	ttgtatatgt	ggaagtcttt	tctgtttata	aacagaagga	aataaaaata	82980
ttctgccaga	aagacacagt	gctaggtgtt	tgtcaaacat	tatacttgtt	aatcctcata	83040
aactcaggac	tattgagttt	gtcctgccca	ctttacagaa	aaggcaatga	aagcgcagag	83100
aagttaactg	ccctaaatca	cagaactatt	aaatagtgaa	gcaagaaatt	aacaccaagt	83160
tcatctggtt	ccaaatttca	cactcctgaa	accctgatag	atctaatttt	atgtttcccg	83220
aatatttaca	aaacagcaac	aatttcaaaa	attctgtaat	taattttctg	aataattcac	83280
tggagagctt	accctcagtg	agctccccat	gactgggtgt	attcaagcac	tgagtgttca	83340
tttgataaga	tatcagtttt	gtgagtgctt	aaactagaag	aactttgagg	ttccttcaaa	83400
ccctgtttct	aattgataac	caaactgtgc	acctgaaaga	gaagaaattc	tctgtgatga	83460
caattttcc	tataccctga	tccctttaca	tgggacctga	ggactgttta	ctcacggcaa	83520
ccttacgtgg	gtagacatta	ctcaatttga	gtcagagttg	ggaattagca	gctccaaatt	83580
caaactgaaa	aagaaggtag	tcaatcacag	atgcatgaca	ctagcttaca	cagatgttct	83640
gctttcctct	gactcactct	ttgaggcttg	gaaagggata	aactttattt	taatatagca	83700
attgcaatac	agtcatacca	taactcatat	ttttatatta	tgccttttct	gccttgtttt	83760
atgcctccgg	ttttgaccca	acttttgaat	tgttcaagag	cctctaaaac	aaaggaggag	83820
gagctgagaa	caagatcaac	tttttattt	ttttatttt	aatttttgtg	ggtacatagt	83880
aggtatatat	atttatgggg	tacatgagat	gttttgatac	aggcatgcaa	tgtgaaataa	83940
gcgcatcatg	gagaatggga	tatgtatccc	ctcaagcatt	tgtcctttga	gttacaaaca	84000
atccaattac	tctttaaatt	atttaaatgt	acaattaagt	tattattgac	tatagccacc	84060
ctgttgtgct	atcaagtagt	gagtctcatc	cattctttca	agttatttt	cgatattatc	84120
tcactccagt	taagatcact	tttgaaagaa	agatttaagt	ttatatttct	aaggaaaagt	84180
aatattgtta	taaaagcatt	gaaaaaaaga	ccctcaatgc	ttttgcaaaa	caataatgtt	84240
ttgctagcta	gggacaacac	tgtggttccc	gagatagagt	ggaacacgat	aaaaacagaa	84300
agatttttat	caacttacta	tctctctgat	aaagcttcag	ttggtgttat	ggaactttta	84360
cagcccataa	gagtaattct	cacactagac	tgtttagcta	ttaacttcct	attttttatt	84420
ttatgatctt	tattatcttt	gagttgtctg	agggctgttg	agcttgtggc	tgggccctaa	84480
tctttgacag	tgagatttct	ccaagttaga	gaatatatag	aaaagagaca	ctattttgtc	84540
agcatccctg	gcttagcaat	attctaaacc	acataggtag	ttctagttag	ccatagggac	84600

aagtacccat	taggggccaa	agttacaaag	accctgcaaa	acaacatacc	cctctttatt	84660
attattctag	aaataataat	ttctgagtga	agtgttattt	gaaaaattag	ccaatgcctt	84720
gctacacaga	ctgtaataca	ttcacacctg	atgcctgagt	ttctgaaaag	gacaccaggt	84780
taccagctgt	actataaaga	agtctgagca	aaatggaagg	tcaggttaat	tgatataacc	84840
taatcaaata	atcaactagt	ctcacatttt	ccaattcatt	tggtatccta	ttttataaca	84900
atccttttgt	cttaactgga	ataagtctag	ggatgaacac	tactgctttg	cttggtgtgg	84960
tggttaataa	tgagcgtcaa	cttgattgga	ttaaaggatg	caaagtatcg	atcctggatg	85020
tgtctgtgag	ggtgttgcca	aaggagatta	acatttgagt	cagggggctg	ggaaaggcag	85080
acccaccctt	aatgtgggtg	ggcaccatct	aatcagctgc	cagggaatgt	aaagtaggca	85140
ggaaaatgta	aaaaggtgag	actggcttag	cctcccagcc	tacatcttcc	tcccatgctg	85200
gatgcttcct	gcccttgaac	atcagactcc	aagttcttta	gccttgcgac	tcagactgga	85260
ttccttgctc	ctcagcttgc	agacagccta	atgggggacc	ttgcgatcat	gtgagttaat	85320
actacttaat	aaactcccat	atatatatat	atatatatat	atatatatat	atatatatat	85380
atgtatgtat	atataaaata	tataagtgtg	tgtatatata	tatgtgtgtg	tgtgtgtgtg	85440
tgtgtatata	tatattagtt	ctgtccctct	agagaacact	gactaataca	catggcttca	85500
tttggtgata	gtgaaagtga	ttatccctaa	taaggaacat	ttgagacatc	atcacagatt	85560
cagaatcaac	tcaggtatga	gagttgaaag	agcagaatgg	atagaacaag	gctactattg	85620
gcaaagggta	aaatcagttg	attcaagaga	ccttgtcatg	cataattgat	gtgaactgtt	85680
tttaatgtca	tttatttgtt	tattcctgtg	ctgagtattc	atactttaat	acttgaaaac	85740
atttatgtct	caagtattca	tctttggaaa	atttattctg	ctttcaaatc	tatccctttc	85800
tcttttttg	agacagggtc	actctgtcgc	tcaggctaga	gtgcagtggc	ttgatgatgg	85860
ctcactgcag	ccttgacctc	ctaagcttga	gcgatcctcc	cacctcagcc	tccctagtac	85920
ctgggactac	aggtgcaccc	cacgatgcct	ggctattttt	ttaaatttat	tttttaaaga	85980
gatggctttt	caccttgctg	cccagactgt	ttgtcttggc	atcccaatgt	gctgagaata	86040
caggcgttaa	gtcaccctgc	ccagctttca	agtctattct	gctttcaaag	ttaaaaattc	86100
cctaatcccc	ctgtgaaaac	gaaaatgtgg	tgtactggaa	aaacctcaaa	gatctggggt	86160
caaatcttga	ccatcactta	ctcaccatgt	gacctcgggc	aaactgttta	ccttccctga	86220
attttattt	attttattt	attttatttt	attttgagag	agtctcagtc	tgttggctgg	86280
gctgcagcgc	agtggcatgg	ccacagetga	tggcagcctt	gacctcctgg	gctcaagtga	86340
teeteeegee	tcagccttcc	aagcagctgg	ggctacaagc	atgtgccacc	atgcaccact	86400
gatttttgta	tttgttgtag	agacgatttt	tcccatgttg	cccaggctgg	ttttgaaatc	86460

ctgggctcaa	gtgatctccc	cacctcagcc	tcccaaagtg	ctgggattac	aggaatgggc	86520
caccatgcct	ggtcacttaa	cctcattttt	aaaataagta	tgataatccc	ttccttgttc	86580
atagaactaa	gtgaaataat	atttgtaggc	agcacagcaa	agaagaggca	ctcaacagac	86640
agtagctact	attgaatggg	ttaattatga	tctgaaaact	tcctttcatg	ttctaaattc	86700
cagaaaattt	gtaaaaatgg	gctattagta	tgtttttcaa	attatataga	tagaaaaaag	86760
ggttccattg	ttaagtaagt	ctgtgaaatg	ccacatgcca	tatccctttt	cccttggtaa	86820
ataaaagttc	atttaaacat	aattaattgt	gttgaaaaat	cccaaagtaa	aaataaaatg	86880
tttagcttta	cggaaccaag	ggtcttttaa	acttatttga	tcatggaaac	atttcttccc	86940
agaagatata	ttaacatcct	aagaactttc	ttgtattcca	cttagagaaa	tagcaagtgt	87000
gtgaccggac	gcggtggcac	acgcctgtaa	tcccagaact	ttaggaggcc	gagatgggcg	87060
gatcacctga	ggtcagaaga	ttgagaacag	cctggacaac	atggtgaaac	tccatctcta	87120
ctaaaaatac	aaaaattaac	cgggcatggt	ggcacatgcc	tgtaatccca	gccactcagg	87180
tggctgaggg	aggagaattg	cttgaaccca	ggaggcagag	gttgcagtga	gccgagatca	87240
cactaacgca	ctccagcctg	ggtgacagag	tgagactctg	tctcaaaaat	aaataaataa	87300
aaatgaaaga	gaaatagcaa	gtttgtaact	gttaaaatgc	cagaatataa	ataaatcttc	87360
aatattaaaa	tacactgaat	catctgtgat	acctggatac	gaaaattaag	gctgatttga	87420
ttttgagcag	cagcctaaga	caaggcaaga	taaatgagga	atacagtgaa	agtgaaagac	87480
cgctgactag	ggccaagact	tggcattata	atcactttcg	gttggtagtg	ttttaatgac	87540
ttaattccaa	actgccttcg	gaacgaaggg	tatacaggat	cttgttgaaa	ttcttagtgc	87600
agttgtttt	ttccctgatg	gagggagaca	cagtatatca	gtgtagacct	acgattctgg	87660
ttgtactcct	aaaaagtcaa	gatgaaataa	ggtaaaacat	ttggaggaag	accgtgagag	87720
tattgcaaaa	ctcacaatat	ttgcatgctt	acattttagg	aagaacatca	attttgtttt	87780
tctttcaatg	gccataaata	gtgctggagt	tttcttaaca	cttttattta	tgtatatatt	87840
cacttccttt	gttaagctag	caattctgtg	tcatttccta	ctgttctatt	gggatgtcac	87900
ctgtagttct	aggggacgga	aaagggactg	tgggactaaa	ggattgggtt	aattactttg	87960
aaagcaaaat	aagcataaaa	catggaagtt	gttacttctg	ttttatttta	tgagtgtcca	88020
ctttatcttt	ttaagtagca	aaacatttta	ttttaaagca	ttcatttaaa	aaagttgaat	88080
attaatcaca	gataagttct	taggaatatt	atgaattgta	atttatcgat	gatctagcta	88140
cagtggcttt	cagatttgtc	tccatatcca	tatgaaaaat	aacatttcac	agttattgca	88200
gttaaatata	gccaagtctc	agaacagttt	ctaaagttga	ataaagatag	gcatttaaat	88260
catctgatat	ttactgtcca	aatctggcct	tttcagttat	cacattactt	agaattttca	88320

ggtaaacttt ttttgctcat tctattgact cttgttaaca tttgtagtaa aagacaaaca 88380 tttcacctat ctggataaaa tatattcagc ttcctgaatt gttagcattt agaataaatg 88440 ccaacttgtt ttgataccca ttactacttt caaactgcat tacacaataa aatgcaaatg 88500 tgagttatta attagcagga tctgttttgt ccaagtgtgc aagagtagag ggattttca 88560 acattctgca gctgttacct atgaaggaaa catcattcac tttgctaaaa ggagctgcac 88620 88680 aattacatac gctgttatag acaaatattt tagtgtttcc ttaatgctat ttcataatgg atttcacatt gaataagata aattttacca atgctgccca atttctgtct ctaggttgtt 88740 88800 tgtaaaagag aggatgatta cagttttcaa ggcaatgtgg agtgaaggta gagaaagagt tetteatgaa egacacaata tttagcaagg teataaagaa atatgeecat acaegcatat 88860 ctatttaagt attcatttac atattgtacg tgcatctctg tatacatgtt gtgcccggtg 88920 aacatttgtg tgaatataac ctgacggaag tcccataaaa tgacaaaaaa tgaaaaacaa 88980 tgaaacatgt atatgaatga ctactataga tgatacagaa ggtagaccat tattcacaaa 89040 taatgtaata aatcetttge ceatcagatg tttetaeeta gatttgggge etttaaacat 89100 caaccaatta tggtaaatgt ttaactgtag gagttcaggc agacagccaa attctggttt 89160 caaagctgtt gctagtttta gcttaaagat ttttttttt cattttaag caagaacatt 89220 tctggatacc ggttgtgctc tattgtggct agagccgctg ggatttgaat aagtaaattg 89280 89340 ggcaacacac tggtcctgaa gaaatgggcc tggcagtatt acctgaatgt ggcaaataat aggctaccaa gagtcctagg gaaatacttc ccatttataa cttagctcta cttacctaaa 89400 gctagtttat tcccacagac acgaagagag agagagttgt ttttcttagc caagctccta 89460 caaaaaacag caaggttggg ggatgggagc acatccaatg tttatgcctt ttgtttagga 89520 aagccaggta totgaaatac atacatgata gocaactcot ctotgotoco ctoccccagg 89580 tttatttatt ttcttaacaa gcttattaac gaaattatca atttgcatga aactggtttg 89640 aacattggcc cttcctcaga atatttctta tctcttgtgg aagcactaac aaaaagggta 89700 gaagaagggg cctagacaat ccacacgttg gatttgcagc cactggatat ttcagattca 89760 gctgctaaag cctctttggt atacacaatg aggggcgact gaagtgactt ttcttagtcc 89820 atttcctctc cttctccccg tctcccgaag gtactccgtg ggtcccttcc ctttctctct 89880 tcacagtccc tcctgagcag tcccaaagct tcaaaccttg ttctccaacc ccctttccct 89940 aatgteteee aactaceace ecetteeeca gteaaactee ecteeeggte accaceaaag 90000 cccggagaag tggaatgcac acaatgcctc ccttataggg cttgagctgg gaactgggca 90060 90120 geggeatete teccagtece aegeetetet ttecteaace cetateceet ateccetate 90180

cccaccccca	gctccaagat	catccggctt	aacccattct	gcaccaaagg	cccacggagt	90240
tctaaggtgc	ggataattaa	cccgtctcct	tctaacccgg	ctaaatagtc	tcactttagg	90300
ctaaagcctc	acactttcgc	cttaaagccc	ctggcccctt	acgcgcagac	aggtaggggg	90360
agtgcgaata	ctactggatc	ctaggaaatt	ggttcccaag	aaggctcctt	ccaggatcga	90420
ccgctacgga	gaagtattcc	aggagccctc	cgttctgcgg	ggtgacaatt	agccaaaggt	90480
accgtacccg	tgatacaaaa	tccaagtatg	attgttgcat	ttgaatgtca	ttgttgttga	90540
ctcattcccc	tccatcctgt	aattattcaa	ttccgcgtag	actcgacgac	cctatcgatc	90600
tccctcggcc	ccctcccc	aggeteteca	gtgtttcttt	ggcttttcct	ggcttcttgg	90660
ttgctctctc	aaaggaatgc	cccgtgtgtg	tgtgtgtgtg	tgtgtgtgtg	tgtgtgtgtg	90720
tgtgtgtgtg	tgtgttcctt	cgttattagg	ggactggaag	agaagaaaag	ggctcgagtg	90780
tgtgtgtatg	tggtgggggg	gatggaggcg	agtgcgccct	tgttagagga	ctggggtctc	90840
cacgcctgag	gaaaggggtc	gctcctccct	agggaatgtt	ttaggcaaaa	agagggggcg	90900
gatgccggga	ggaaagcgcg	ctgtctttct	gggtgtgtgg	gtagaagagg	aatcaaatgg	90960
gcatgtctgg	atgggggacg	ggggtaggag	ctcaggaatg	tgagggggtc	aaagtggtcg	91020
agtgtcggga	ggaaggactg	cttgtgtgcg	gggtggggg	gggtggtgga	gagcgggggc	91080
ggggattcag	cgcgtgtatg	taaaggtgca	gcccgtgtgc	taggcgctgg	gtgcgcgcgc	91140
ggtgtctgct	cgggtgcgcg	cgcgcgccgc	tgcccgcctg	cccgccggcc	cgcctgctcg	91200
cctgctgggg	ctgctccgtg	ggtttgacgg	gcgagcgggc	gcggaggagc	tctgtccgga	91260
atcacataga	taccatcgtg	gaaacagcag	cgcaggtcac	ggcgccgcgg	gccctgcacc	91320
agacgctggg	ctctagaggt	gggtgaattt	tcagcggggg	ctgcacaagc	tgcaccgaca	91380
cgcgtgctgc	ctcttccccg	ctcagctcag	tagcgcgtgt	gcctgcgtgt	gtgtgtgtga	91440
gagacagaga	gagagagaga	gatctcgcgc	gegegeaege	gagccgaggg	ggcaggtagc	91500
ttattatttt	tagtttgggt	cctgttggtt	tggggccggt	tgagtggcca	aagtggccga	91560
ggtggctaat	cctgccctcc	acctcccact	tgcctgccta	cgacgcggtc	tcatgccgct	91620
gaggaccgga	aaggatccgg	gtgtccttgg	catcgctgcc	cgccccccc	cgccccacca	91680
taccccaagc	ggccagggcg	gcggggcaag	ttgtacaggt	ctcgggtggc	teeggetgte	91740
gggccgctgg	gctgggttgg	gctttatttt	tgcaccccac	tcgcagccac	tttccgcaga	91800
cgtggatctg	aggctcgggg	cagtggcccg	cgggttggtc	ggagattgct	agcgctcggc	91860
aagactagga	ataccagagg	aagagccggt	gggtaactct	aaaagctctg	caaagccagg	91920
cgagcgctgc	cagcgcgact	ttgcaagggg	cctaaatgtt	gagctgattt	ctggcatggt	91980
gagagcagga	tttttgtagc	tggccaggga	gggagaacag	gcaaggggga	gcctgggccg	92040

ccgctcgcag	ccacaaaacc	acagggtcac	tctgcccgtg	gcaagcaggt	cagtgactcc	92100
ctagtgccaa	cgtcttcgag	gcggcctgat	ctggcctctc	ttcctcctca	cccaccgcac	92160
gcctgggtct	agagaggtcc	actgaaactc	cggcagctgc	cccttgtggg	acgggagcgc	92220
gcggagaaat	gtgtgagcgg	cgggactgaa	ggcccccgcg	acatcccgcg	cggtaccccg	92280
cctccgctac	acggaccgcc	aggctgctgc	ttgggcccct	gacgcggagg	gggctgagcg	92340
gccggctccg	ggaacaggga	tgcggcaaaa	cattgcggta	cgcgccagca	gcccctccag	92400
cctcctcgcc	gcccgcccga	ggtagcgcac	ccgggcggca	atggccgggt	ctctccgcga	92460
acctcttcca	cctccatccg	agccttaggc	gggccagcgg	ggtttcccga	gggagctctc	92520
ggggagccac	ctcggcccac	cgccctgaag	cccatcagtg	ttctgccccc	ctcaggccgc	92580
ttctctcctc	ccagtcgcgg	agtgccaggc	gctgcactcc	ggtggatgca	ggatttgttt	92640
ttggtcgggc	taggtttgtt	cagtcctggc	tggtcgtgag	agccaagggt	ctttcagggc	92700
accgagagga	agacggacag	ctcccagcag	ccacagagaa	ggctcttggt	acccagctgg	92760
tactttgtgg	gctttttctt	ttcttttttg	cgtttttccc	ttgatgttta	aatgtgcatg	92820
tttcagtggt	accaccggag	tgtgaggctt	tattcgcata	cattcagtgc	tccctttacc	92880
ctctttgtag	ctcccttctc	cgagttcttt	ttcttccttt	ctccacattt	ccatggtctc	92940
ttgccctttc	agtacctctt	tteetetete	cttggtggac	caactggact	ctttctctct	93000
cttgcctgcc	cctccagctg	cttgtggctt	cctctgtttc	acaagagctg	catttgggaa	93060
cttcctggct	cttactagtg	ccttttcccc	cccttgctac	ttaaagtagc	aatcaccagg	93120
aggagggcag	ctccttatgc	attttcagat	gtgttgagat	teetggttet	tgtttttgta	93180
ctgaattcgg	attataagga	tttttttt	tctgcgtttg	gtttttagtt	tggttgcttt	93240
tgggtttctt	tgttttgagg	tgggtggggt	ggtggtttag	taacaagaaa	tgactcaact	93300
gaaccaaaat	agctgttgaa	aaccacattc	ataacaaggc	aaaaaatatc	aagtgaaatt	93360
ttgattttac	aatgaaagtt	gctttaggtg	atgtcatagt	taagaattat	gacttctttt	93420
tgcaatgcca	atcatgctct	catggtgaat	aggggaaatg	cacgtctata	tggcagccaa	93480
atagcatctc	agcagtgctg	gctgtattct	gaaccaaact	acttaàaatg	caaatcctcc	93540
tgggtcatgg	ctaatgggtt	gtctaccttg	agacatgttc	ggttttacca	ctagctgatt	93600
cctcgtgggt	aaaataaaca	aaggagtttc	tgtgcgacac	ttctttcttt	gcatcatttc	93660
cttgttgtgt	gttcctgggt	attttatgta	tttaattaat	atttggagat	aacgatattg	93720
aaattgcacc	cagcttccca	ttcacaatgg	aaaagactaa	tattgctaaa	atagtatcaa	93780
taaaatgcac	tctgcttgtg	ttgtttaatc	ttttccagga	agcatcgtgt	atgtttgtgt	93840
atatatgcag	tatttaagga	cctgaaaacg	atgagttatt	ttgctaagca	ttaaactcta	93900

ccaacaagtg attctt	tatg cgtttacag	cagggacatg	gggtggtaat	attaggaagg	93960
gcgggtgggt gtttgg	gaact gatgatttt	a ggacgaaaaa	tgtgctgtac	tgaacatatt	94020
tggtgctgta gcaaaa	agcta ctcaaagat	gtgttgtgtg	aactcccctt	cctcagcagt	94080
tgcagtctgt ggtcaa	aagtg aaagagata	a agcagttaag	ccgaggatca	gtcggacctg	94140
ggttcaaaat ggtaaa	ataaa gatgtggga	g agggccaggg	aggcaagaga	gccagttctc	94200
aaagtggaaa gactgo	cctgg agattagct	a agcaatgcag	gagtaagcag	gttactctgc	94260
tgctttcaga ggctcc	caaga caaaaggct	tttgctccct	ctttgggaga	tgactgacag	94320
gaaattagag actgtt	tatt taccagaaa	a taaaatttgg	ccatccctta	ctcagttgtt	94380
tttctagaac cgcaca	agegt egtetgtgt	tttgaaggca	gcagtgtaca	ggtgtgaacc	94440
gattgacagc aatgat	tetta eetatgggg	c tacagcacaa	gcaaatctct	tcccaggtca	94500
ctgttcctta gtcttt	ttaac agtccctgc	acagcagccc	aatcctccca	tttccatcct	94560
ccagtgaact ctgggc	ctcta atgtttttg	ttttgtttt	ttaattcagc	ctctctatct	94620
agctgaagct tagaga	aatag atatccact	a atcaaaatgg	ctttgtggta	caaactcgat	94680
ggcatacttg atggto	ctcgg tcatttgaa	g tgcaagtagg	aagcttaagg	cctgtgttca	94740
agggcagagt ttgacg	ggtcc acgtggaaa	a aatattttca	gattgcaaga	tttaagcatg	94800
attgataata tattt	tccta ctgttagtt	g tgtgttctgc	acatgtgaat	ttggtataaa	94860
ccacaggtat ggaaaa	ataaa atgtatggc	a gttttagtgg	ttattattgt	tcgactgagt	94920
gagactattt ggaggt	tttga ttgccttac	a aatacaactc	tggtaattat	agccatgtgt	94980
tcactatggt atgatt	ttaca tacaagtaa	t ttttcaagta	atgaccattg	aaaaaatgtt	95040
ttctttttat ttttta	agatt atttctctt	t attcagaagc	atacagttgt	ttgctgattg	95100
caagaagatg tttctg	gtggc tgtttctga	t tttgtcagcc	ctgatttctt	cgacaaatgc	95160
agattctgac atatco	ggtgg aaatttgca	a tgtgtgttcc	tgcgtgtcag	ttgagaatgt	95220
gctctatgtc aactgt	tgaga aggtttcag	t ctacagacca	aatcagctga	aaccaccttg	95280
gtctaatttt tatcac	cctca atttccaaa	a taattttta	aatattctgt	atccaaatac	95340
attcttgaat ttttca	acatg cagtctccc	t gcatctgggg	aataataaac	tgcagaacat	95400
tgagggagga gccttt	tcttg ggctcagtg	c attaaagcag	ttgcacttga	acaacaatga	95460
attaaagatt ctccga	agctg acactttcc	t tggcatagag	aacttggagt	atctccaggc	95520
tgactacaat ttaato	caagt atattgaac	g aggagccttc	aataagctcc	acaaactgaa	95580
agttctcatt cttaat	tgaca atctgattt	c attccttcct	gataatattt	tccgattcgc	95640
atctttgacc catcto	ggata tacgaggga	a cagaatccag	aagctccctt	atatcggggt	95700
tctggaacac attgg	ccgtg tcgttgaat	t gcaactggaa	gataaccctt	ggaactgtag	95760

ctgtgattta	ttgcccttaa	aagcttggct	ggagaacatg	ccatataaca	tttacatagg	95820
agaagctatc	tgtgaaactc	ccagtgactt	atatggaagg	cttttaaaag	aaaccaacaa	95880
acaagagcta	tgtcccatgg	gcaccggcag	tgattttgac	gtgcgcatcc	tgcctccatc	95940
tcagctggaa	aatggctaca	ccactcccaa	tggtcacact	acccaaacat	ctttacacag	96000
attagtaact	aaaccaccaa	aaacaacaaa	tccttccaag	atctctggaa	tcgttgcagg	96060
caaagccctc	tccaaccgca	atctcagtca	gattgtgtct	taccaaacaa	gggtgcctcc	96120
tctaacacct	tgcccggcac	cttgcttctg	caaaacacac	ccttcagatt	tgggactaag	96180
tgtgaactgc	caagagaaaa	atatacagtc	tatgtctgaa	ctgataccga	aacctttaaa	96240
tgcgaagaag	ctgcacgtca	atggcaatag	catcaaggat	gtggacgtat	cagacttcac	96300
tgactttgaa	ggactggatt	tgcttcattt	aggcagcaat	caaattacag	tgattaaggg	96360
agacgtattt	cacaatctca	ctaatttacg	caggctatat	ctcaatggca	atcaaattga.	96420
gagactctat	cctgaaatat	tttcaggtct	tcataacctg	cagtatctgt	atttggaata	96480
caatttgatt	aaggaaatct	cagcaggcac	ctttgactcc	atgccaaatt	tgcagttact	96540
gtacttaaac	aataatctcc	taaagagcct	gcctgtttac	atcttttccg	gagcaccctt	96600
agctagactg	aacctgagga	acaacaaatt	catgtacctg	cctgtcagtg	gggtccttga	96660
tcagttgcaa	tctcttacac	agattgactt	ggagggcaac	ccatgggact	gtacttgtga	96720
cttggtggca	ttaaagctgt	gggtggagaa	gttgagcgac	gggattgttg	tgaaagaact	96780
gaaatgtgag	acgcctgttc	agtttgccaa	cattgaactg	aagtccctca	aaaatgaaat	96840
cttatgtccc	aaacttttaa	ataagccgtc	tgcaccattc	acaagccctg	cacctgccat	96900
tacattcacc	actcctttgg	gtcccattcg	aagtcctcct	ggtgggccag	tgcctctgtc	96960
tattttaatc	ttaagtatct	tagtggtcct	cattttaacg	gtgtttgttg	ctttttgcct	97020
tcttgtttt	gtcctgcgac	gcaacaagaa	acccacagtg	aagcacgaag	gcctggggaa	97080
tcctgactgt	ggctccatgc	agctgcagct	aaggaagcat	gaccacaaaa	ccaataaaaa	97140
agatggactg	agcacagaag	ctttcattcc	acaaactata	gaacagatga	gcaagagcca	97200
cacttgtggc	ttgaaagagt	cagaaactgg	gttcatgttt	tcagatcctc	caggacagaa	97260
agttgttatg	agaaatgtgg	ccgacaagga	gaaagattta	ttacatgtag	ataccaggaa	97320
gagactgagc	acaattgatg	agctggatga	attattccct	agcagggatt	ccaatgtgtt	97380
tattcagaat	tttcttgaaa	gcaaaaagga	gtataatagc	ataggtgtca	gtggctttga	97440
gatccgctat	ccagaaaaac	aaccagacaa	aaaaagtaag	aagtcactga	taggtggcaa	97500
ccacagtaaa	attgttgtgg	aacaaaggaa	gagtgagtat	tttgaactga	aggcgaaact	97560
gcagagttcc	cctgactacc	tacaggtcct	tgaggagcaa	acagctttga	acaagatcta	97620

ggtcatgtaa	tcttacttca	tacagaggac	atttatttaa	tgatgaaagt	gccttttgtt	97680
gacttctaac	ttccaaatac	tatattatca	ataggcatgg	aggcaggtgt	ttccaagggt	97740
gtctcattaa	ctgtagctgc	aaagatgtgt	caagtagaag	agaatttgtt	taatagattt	97800
tactacataa	aacctatact	gtggagtcct	gtggggatac	tgcaaactct	attgccaaag	97860
ggatgcttta	tacacataat	actgaattta	acctcaagag	gcaaatctgt	tttgtacccc	97920
aatgcaaaac	cttcgtctct	ttgtgctttg	taaagcaaac	tcaagaaaac	tggtacacct	97980
gtaccagctg	ggtcctttat	cttgcacgta	gattaagttg	gtggaactgg	aataatcctt	98040
ttgatttgtg	gcattgtaac	aactccgtgt	aaagattatc	tgaaaagtaa	aaaaaaaaa	98100
aaaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaagcatg	caaagagaga	acactcgata	98160
gtatttgtaa	attggtaacc	tttatggcct	gcatcttgaa	accgctggat	ttataatgtt	98220
aatttgtgca	aatacttgtt	taaaatataa	catacattac	ataactataa	aataaatttg	98280
aacactttaa	gcattacctg	tctatacata	aaaatctaaa	agaaaaaatc	aacgtgagtt	98340
agatagcatt	tgtgatgatc	tgaagaaata	tgtgacgttt	atcagaatta	aacatggctc	98400
aaattaaact	aacactagag	tttgttctca	gttacgtgaa	acacccacaa	tccttcaagg	98460
ttgtccaaaa	taagcagagt	gcttactgtg	tgagcgcacc	caaagctatt	tttgtaacat	98520
aattcatatt	tatgaagtac	tttgtatact	aaataggaaa	atatgtactc	cttaatatgt	98580
atttaatatg	cctgacttgt	tttcctgatc	acagtgaatt	tatcagtaag	tataaatgta	98640
gacagaaaga	aatatactaa	actgaaacaa	gctggtgtga	acagaaatat	tctggacttt	98700
gtgatcaggt	gtaacttaaa	aacaaaaaa	ttttaaaaca	aacagaaaag	aaaaaaatac	98760
aaaagaacag	tcaattctgt	gctattcttg	tgaatttagc	gtattatctt	cagatttgtt	98820
accaattgtg	cattcaaaaa	taagttcctt	agttttctag	tattgtgtct	ggggcagttg	98880
ttatttgcca	teggttgtet	tgcttttcag	gattctatga	gcttaattca	aatagttttc	98940
gctacaagta	tttaaaaaat	aatgaataag	gttaatagtt	atatcttgta	tgcatcagta	99000
tcctgttctt	tcatcattca	gactactatc	agataatcta	gtagaactgt	aaacatcatg	99060
gtaatcttgg	ctatgaaagc	cacactgtaa	aaatgcttgc	attggtttca	gatgagttca	99120
cagtctgcaa	ctacaaatga	tatgcccctg	tgtttgcttt	tgctaagatc	taagtcaaaa	99180
tttgttaaag	gaataaagta	actgataatg	ggtgatgtcg	gaacttttgt	aggagctccc	99240
gattaacaaa	gtgatattca	gaaacacatt	gtcttcttgg	cctgcctgca	tatatatata	99300
tagatatata	gatatatata	gatatacata	tatatatatg	tgtgtgtgta	tatatatatg	99360
cgtgtgtata	tatatgtgtg	tgtatatata	tacatatatg	tatgtgtgtg	tgtatacata	99420
tatatatagt	gtgtgtgtgt	gcatgtgtga	gagtgtgtgt	cctatctctt	ataattacct	99480

tatgaatcag	taagataacc	aagaaggtaa	acatagccat	tcctcatgat	tgcaagtggc	99540
atatttttc	tgttgcagct	tccaaaatga	tactatgttt	atagttgcag	tagctgttcc	99600
tttattaatc	actaatttca	gggctttatg	tgtttgttgc	aagacaaaaa	aagaagcttg	99660
gctttcttgg	gtgtgtgtgt	atgtgtgtgt	gtgtctgagt	gtgtgtatat	atatatatgt	99720
gggtatatat	tcatacatat	agataatttg	gaaatctttt	ttaaatagca	aaaaccgtct	99780
ccatgtgtat	gtgctggtgc	tcttaaaact	ttagtgtgta	attttaattt	ttatgacatc	99840
tgtgaaaact	ttatatgaat	ataaaataat	tcaaacaaat	aattgctttc	tgatcttgaa	99900
agaaaagaca	agatgtgtgc	ccaacagctt	ttttcatcta	caatttcata	aggacttttg	99960
atatgccatt	accatgcatg	cacacatcca	tggattaaag	ggctcctaat	gtatactgac	100020
aggataaaga	tgcaaaggct	tcaaagaaag	tgttttagtt	tagtctgtca	ataaagtatg	100080
gcttgaagga	tcttaaatag	acacttatag	gaggaatcag	aaagttccat	tcatggtctg	100140
gggataatag	gtcatttgaa	tgatactttt	attcagtgtg	gtgatgttct	gaagatgttt	100200
caaggtttct	gcagaattct	caatggcaag	agtacctgcc	accatctcaa	aagcttgctg	100260
tagcatattg	gctatctcat	actcttctgc	taaaaggtat	aaatgttcaa	cttttttaa	100320
aaagtaattt	aacatatgtg	gttatttgga	ggttcaaatt	gtaaatgaaa	gtaacaaatt	100380
cttggttaag	gctaatatat	tttccttaac	taaagtcatt	gtgcctacat	tatatagtgt	100440
acacaatttt	gcacctgtct	ctcattagtt	ctagttgtac	attttatgat	aatgtagtta	100500
ggtataagtt	ttgagttgag	tacaagaaca	gttaaaatac	tgtatctaca	ttttgttggc	100560
ttcaactata	accttgatgt	tagtttaacc	cctggaggta	tgatatgtac	atcagtacag	100620
catttttagt	ggaacttgga	tgcaaaccta	taaaatccaa	gaagtgctca	tttctaatgt	100680
gggctgacac	atcatgggct	tcttggcact	atagtcatgg	gtatggacta	cgttagaatg	100740
attgcaaaca	aatttagatc	ttatgaaatc	agtgaagggg	ttgagataat	atattgtgtc	100800
catgtaatat	aaatcaagtt	ttaaattatt	tttttatgaa	atcaataaag	atgattcaat	100860
tctttaaaag	taagactttg	tgtaatttta	tgagaaagca	gctattaaag	tagagtgatt	100920
caagtctata	aggcaattta	tattctatat	ttagtttttc	attctgaata	gactgaaaaa	100980
atatatgaat	tagaaattta	tttaagacca	tctttcttt	gttgcttttt	ttaaacattt	101040
acttttcttt	aagccataag	gatgcataaa	ttatacaggg	catgacctta	tgagtaacat	101100
caacaggtat	ttcagaaata	acagaacacg	tctagaaatg	tatggtggta	atattaatct	101160
ataacatttt	ttgcatgatt	tgtacattga	cattgtatga	aatgagcaca	ctgaggtttt	101220
tttgttgtta	ctgtcgcatc	caaagagttg	gggagaaact	atattaagaa	tgtatttata	101280
atcactattt	taaaataaag	taaaaaaaat	attgtattgt	ttttaccctg	atttgattat	101340

cagtatttta ggttaatttg taagagaaaa atcaagtaat gctgtaaaag ctcatgtaaa 101400 tcacagaaaa gaactgtttt aatgactttt gtttgctttt aataacatca aggtattaga 101460 atttattaat tgccattttt atgaaagtat taataaaatt gtttgctaca atgatatttc 101520 tgaagccaca gtttgttaaa tatatttgtc tttccattat ttttcagaaa aatataaagc 101580 agtaaccaaa ctgatcattt cacccagatt tgagggtaag atatagcttt agcctactgt 101640 ttatattcaa cttaactgct aaatctctgt taaaaaaaaa cgctttcttt agaaacatat 101700 tttcaatctg tgttccttcc cactggcagc ccctttggag aagagtctga cagtgccaag 101760 atcaacatgc tttgattctt gcccattctt ttgaatcagt tggattctga cataacttca 101820 gataagcaaa tactaatatt cagtcttaac tatctgctca aatactttta gaaacccttc 101880 agtacctctg tattccattg ccagtttgcc tggttacagg ttagttaccc acttatggag 101940 tgaattgtga tttgtatttg gttcttttaa agatgaccaa aattatcaat ccatgacttt 102000 acccaaatta ttactgttgt ggaaaatgaa ctaattgcat tacggttaac ttgagggcag 102060 aaatgaatgt aactgactat attgaccaat acggtgggtt taaggttcat atatttatgg 102120 taagaaaagt aaacacagaa acagagagag agagagaata taaattaaga ttgttgttgc 102180 tttacacgta tacataggta tgctgaaggt gtgaacagta tagatagcat atgcaagtac 102240 tatttatgag tactgagcac agagctttgg gttccagcca cttctgttat gtagacaagt 102360 ggcatcaaat caaggtttgg catcatttct agtgctcatc ccattagtca ctgtggtcag 102420 atgggctgaa ctaaaataaa atatcctgtt tgtggcttca cttacctaga ataactggtg 102480 acatatatca agttcacctg ataattgtta actctcaatt tcagatttcc taaggatcta 102540 ttctttgtta atttaaaagc taatgggaac tcaaatgaat tttaataact tactttgtac 102600 atttaatgtc tttttagttt ctactggttg ataggattgt gttttaaaag ggaaaatcga 102720 ggaagggaaa ttgtgttgtt tatcttatag gaaatgatgg ttttttttaa tttttaaaaa 102780 ttattttaac ctgttgttct tatgtctaca aggggaaaat aaagtagggc tctgaggcat 102840 ttgaatattt tagaccaaat aattgctatt gagaataaag attcaagctt ctcattaatc 102900 cataattgac atttccactg actgtaggac ccagaaccag gagagaatta ctcaaccctc 102960 cacttcagtt tacttttgta gacactgcct aaatagaaat agaaattctg gtgatttcaa 103020 taacatcaaa aatgacaaat tacctgttta acttaaaaag gtcatgaatg aggccttcag 103080 agaaataata ttaataatat aatgaataac catagagcag tgcctttaaa ttagctatag 103140 gaaggaaata gtcttttcaa gtttctgaac aatatatttc tcttagttgg cacctcacaa 103200

atactagatc atgtcagacg ctgctggtta atagctgcag gaaggcatgt tgtgcagtgg 103260 atattgctca tggaagtgtg tgaaaatcat agtaagcttt gttctccctg ctaagacttg 103320 ctatgtatat ttccatcatt gtttcatgta aactgaacca ttgtggtaaa cttttggagt 103380 tgatatggaa tcactttaat gctgttttca caaataaaag ttttttctta taggtcacat 103440 ttgtagccat tcagtgtgtt tattagtgtg gaattagtaa agctcaagct caaaaagaaa 103500 tgcaaatagt ctggttttta gctgatgcaa tcaatatatt agtttacatg gctaggccag 103560 gtctacctac acacatacac atgcatacac ataagaaaga tagagagtaa tgtgtgcaaa 103620 tagtgaatta tacacaaagg gaattatcta gttaatgtaa acaaaatatt tctatcttga 103680 ctacctactt gaccacctag atgtttcaaa tccaagtaga ttgggaccta aatattaatt 103740 gtcctttttt tttttttcgc ctacacttga aattaaaacc tgaccacttt gtcatatata 103800 gtagaaatta tgcccagctt atctcccaag acttctctgg gtttcagtta tttgttgtct 103860 tgagatttta ttttgatttt ctttgttaac atttttcatc actatcatct ccaaattata 103920 tgcttaataa atgtatagtg ctgtgtacaa ttttcaggca accagcccag gtgcaaatca 103980 gtgctgctac tacctttcac aaacgttatt cagagaaccg tgcaggagca tttaaatcca 104040 aaataatccc aggatgagga tttaattaga aattattgga acaggtatgt ttttttcccc 104100 ttaaagaagg aaaagttggt tgaaaattat gactaaagag cagcaggaga acaaaggagt 104160 attaagagaa aaaatattta cttatcagat ggaattcaga acttaaatac tgaacaaatg 104220 tatcataaaa taagtcaaat tatagatttc tttctcctta ttatttacct cggctttatt 104280 tcttttaaac agatatgaaa tctaggcttc gtcaacacaa tagtaattta tagcttttat 104340 agaatccact ggtcaattaa aacatttaat tacctttgca acccctatgg atttttttct 104400 tagttgacta acatcaagga ctgactgatt ctcaaagcct cccaatacag ttttagctgt 104460 caaaaaatga taagtagcat ttgtgtttaa tgagaataag aggtgaaaaa tgcatatcac 104520 agaaaaccat catgataggg agcaaaataa attagtacaa acatttgggt tcccagatac 104580 aaacacttgt ggtcaaaaag ctgccagacc ttttgggctg ttttcagaaa tcttattttt 104640 aaaaaaaata tatcaagtgc ctatttcaga agctatttcc tgtacgaatc cccaggaagc 104700 catgtatctg ccatggatcc ccttgctcca tagcaagatg tgtcacattt gccaagtcct 104760 ccctgctgga aatttttctc ttctgctgtt acaagcaacc aacactgtct atggcattgg 104820 ctagcttagg gagaattttt tcactgtttt ttggtagttg gtggtaatat ggacaaaaaa 104880 tctaggagtc tcaataccgg catatattta cctttgtaat attaccatac tggagagcat 104940 ttgggcctgt atattttaca cattgcatct ttgtttttat tcatcagttg tcctccatcc 105000 cacagaaget actagttatt ttatteatee etetetttea aagtagaage tgateaceat 105060

cctgaaatct cagttattta tagaaataat catcacactt ctatgtgtcc atttccttct 105120 ataacttcta gaaatataga aaatttagta cagtaagtga tggatttaaa aggaagtcct 105180 actgacacac aaaaaaatca tgatatgaag acagagtgac ttaccagaaa aaaacaactt 105240 taggaagtca tttcttaagt tttaggtttc cttgctttgc aattagactt cagtgccttc 105300 gcttgtgagc tggacccaat gaaatcagtt ttcactctgg ggccgcgcaa taactagaaa 105360 tgatattatt gctgacatgt gggcagcttt gccatgtgtt gccataaaca tggctgctat 105420 tttctccttg cactttctac ttcagaaaat attcattctc tcagatttgg cacagctgct 105480 gaaatgctgc tgtatcaatt ctcaccatga aaattcaaaa agaatttttt ttctatatgt 105540 aactgagcag ttacacaaaa atgtgtattg gaaactggat aaaaacatca ggataaagaa 105600 gataactagt gtgttcataa gaaaagaggg ttttaaggaa gtgaaatgca ggcattttat 105660 taaaaattac atctaccacc tccctttgaa cttgtcgact ttttgaagac tccagtgtat 105720 gcattataag gggaatagga ctctgtttat acgcagcatt ttcactctct gctcattctt 105780 cttggttgcc taggctgggc tgcagtggag aatgtgtgaa cagtaacttt gtttttaaat 105840 cccaaatgca tatatgattt cagttgctca tttgaatatt aacacattgg acatggccag 105900 tttctaacat aatattttta ctacagccaa ttgagacttc actgaatgac ctttatttca 105960 tcttaaaggt tatcagagca ggggtaaact aagaggctgt tggtcagttt caatgtttaa 106020 agaccatcac aggaagattg agtatatgta ctccgaattt ccaagtcaga ttatttggtc 106080 ccaatttctt ctcttttgaa agagtaacta gggctagaga gggcaagtga cttgcccaag 106140 gtcaaaaaat tattacagct agtctggtct aggacctgat tctcctcact cgcaggatca 106200 agttattttc attacactgc tttgtttgca agttccaggg aggaaaatga gcatctgtgg 106260 gtgaagcttc aggcagacat tccaatgcag cataaggaca ttttctgtaa ggttttagaa 106320 tgctctataa ctggaatgaa ctagatacaa aatgcagagc tcttagtcct tagaagtgtt 106380 caagctgagg atggttctaa caaggaggat ggatgttatt caagaaaatt tatttgaatg 106440 cgagcttgga ctaggtgatc ttggaggaca cttgaaactc ttaagacacc aaggattctg 106500 tagtgtatac actataatca tttaccaagc aagtcaaaac tatcaaatat ttttcatctg 106560 gaatatttaa ttaattgatc tttgtagttt aatgactagc agatgatctc tactagtaga 106620 ataacatatt aataactcca aaaataccag ttaggtatta ggcatcatga taaaagggac 106680 atagagtgaa atctccccca ctatataatg tttgtgtttt taagtgtcag catttcaaaa 106740 agaatagtct ctgatgttta atctttttac aaaggaaaaa caaattcttt tgtacattac 106800 actgaagatg gcactgtagt gacaacccca cactagaaat gctgagacat gccggtatat 106860 gttatttcaa tcctcaattt caattttgag aatatttctt gagcttggaa aacggaacac 106920

aaaggttaat atcttgtaac atcatctttg ctaattggag ttgggtgcat tttttttata 106980 atttactctc aataagatag aactgaactt tattccaaag aattgcagtt caggttgcag 107040 ctcaacagac tatattcaga atagaaactg caaattatct gacctgtaaa aattattaga 107100 aatatttatt tgaattttat tccataaaga tagttttctt ttaaaaaaaaa aaaaagtaaa 107160 gggaaaataa aaccattccg acctcaagga ctgtttgttc tatttatttg ggatgctatt 107220 aatttttaaa gattctgggt acacccagga tgactctgaa atgcaatttc taggttttct 107280 ttattccatc catatcatta actagagete cagegaatgt ggetaccatg caattcctgg 107340 tccctttaat cacaaagagt attccctcag gtaccagcaa ctcattcaaa attagcagtt 107400 ttatactttg gagtcgtact tcacttttaa atagtcacag tgttaaacat atacataacc 107460 tctgcccaag tgattttatg ttttagtaga gaagaataga agggaataaa aatatttact 107520 ttgacttaac actgatgtcc aaggcctgtt gaccctccgg ccttccctct ctcttcatct 107580 cacatgccta tggatgatac cactttatct gtctgctccc tgtgcagtct catagctcct 107640 cattcaaaca ttacctcttg tgacagtggc catatgcccc cacctcact aaaactgttt 107700 ctgtttaaca atgtttttt tttctgataa ttcaaattca gataccagat tcacatgctg 107760 ctaattcaca agcccgtcaa atatgtcagt actctgagac attttcaaga gaggacatcg 107820 gccgggtgcg gtggctcacg cctgtaatcc cagcactttg ggaggccgag gcgggcggat 107880 cacgaggtca ggagatcggg accatcctgg ctaacgcggt gaaaccccgt ctctactaaa 107940 aatacaaaaa attagccggg cgcggtggcg ggcacctgta gtcacagcta ctcgggaggc 108000 tgaggtggga gaatggtgtg aacccaggag gcggagcttg cagtgagccg agatggggcc 108060 aagagaggac atcgaggagt ggaagaggag accacgttag tcaaataatg gtgtttcagg 108180 cctgggacaa gcagtggact aggggacctc cttggtatcc ttcagtctta accatgggta 108240 aatctggtac agttcagacc aataaggaga gaggctgact ttaaccttct ctcaggaagt 108300 cccgtctggt gtctccttag tggctttcat tcattccata ttattcatat tagagtggaa 108360 ggagtgggag ccagttaggt aaggctctct tgtggaaatc acatttaaat gaaagtcttg 108420 aggggtgaag ttcatgagcg gctgagcagt agggttgagg agggcctctg aggttgagag 108480 aacaacatgg gctttgactg cagtgtggga attaactcac tatgtggtac tggtcaggta 108540 ggcagtgcct agatcaaggg ttggcaaact ttttcagaaa taattttctg aaatagcaaa 108600 tatttgaggt tttacagacc acactgtccg tgcttcgact agttaactgc tgttgtagca 108660 cagaagcaaa cacagacgac aggtacacaa atggatgtga ctgtgtgcca ataaaatttt 108720 gttgtccaaa ataaactagg ggatggattt gacctacagg ccagaggtgt caaccccttg 108780

gctagattct	gaagggtctt	gaaggagttt	tactttcagg	tgctttggga	agtcaatgaa	108840
gattttttaa	aagcagtgca	gtggcatgat	taggtttgtt	tccaacagac	ttccttctgc	108900
ttctggaggc	tggactagag	gtggtgagga	gcagagtata	agtggggaaa	gaagtcagga	108960
agctcttgca	atagtgccga	ccaattataa	acctaatccc	agctaagatg	aaggaagaat	109020
agggttgtga	gctatatttt	gaatgtcgac	tccatagcac	ttgccaatat	actggatatg	109080
aaggtcgagg	gtgacagtgg	aatcaaggaa	aaccctgagt	tctgtgccat	gagcacctgc	109140
gctgataaag	atgccattct	ctgagatgag	gacctctagg	ttagcagtgg	ctgtggaggg	109200
tagacattac	gagacaaaga	gtttcatttt	ggtggccggg	catggtggct	cacgcctgta	109260
atcctaacac	tttaggaagc	tgaggtgggc	ggattgcctg	agctcaggag	ttcaaaacca	109320
ccctgggcaa	catggtgaaa	caccatctct	tctaaaataa	aaaattagcc	gggtgtggtg	109380
gcatgcgcct	gtaatcctag	ctactcagga	ggctgaggcg	ggagaatcgc	ttgagctcgg	109440
gggacagaga	ttgcagtgag	ccaagattgt	gccactgcac	tccagcttgg	gagacaagag	109500
tgagactctg	tctcaaaaag	taaataaata	aataaataaa	taaataaata	aataaaataa	109560
agttccattt	tggacgtgtt	aaatttgaaa	tggctgagaa	tcttcaaatt	gtcagattgt	109620
tgactttgtt	caacaggatc	tctgaggaga	agcttaggcc	acagacagga	ttgagaatta	109680
ctatcgtttt	gaaactgaag	gtcatggagg	aaggtcacag	aatgaaaaaa	aaacaagacc	109740
ctgcaatgac	tgcaggtgct	tcagagcttt	ccttttcagt	gtcatctgta	ctgtgcgcat	109800
tctgcatcag	aatctcctga	ggtgcttgtt	aacattcaga	ctcttaggcc	ccatcccaga	109860
ccttctgagt	caaaattttt	gtggtcagga	ctcaaggaat	atccattttg	aagttcttag	109920
gttattctta	tttacattaa	actgtgagag	tgtctactgt	ttaggtaact	tagaagataa	109980
aatacctgca	aaaaagggaa	atggtgagca	gacagcatga	cagaaaacta	ggaagctgtg	110040
gggtcctggg	agcaaagaaa	aaaagagcat	tccgcaaagg	acgccgtgac	tgactatgtc	110100
cagtgttgct	gagcgacagc	agtgctattt	aagcatgctt	ttctggtatt	ggcctcactg	110160
agattgcatg	aaagactgat	gtcagaacag	ctgtgggatt	ccattcccta	acaagagaca	110220
gactcttgga	aagaaactcc	acagagagaa	gggatggtgg	atgagaaatg	ggagagaata	110280
atcaggacca	cagtagtggg	caaagtgaaa	gcaaaagatc	agtgcaagaa	agactttagg	110340
attccagtgg	tgagacatgg	aaacagcaaa	gccagcagca	ggattatacc	cagagtagga	110400
ggtcaaagtg	agcacctaga	gtcagcacca	gagggcaaca	ggggtgggct	gtggtggaag	110460
ctcaccaaac	tctagcactt	tataaatgac	tttatgtccc	acagtcctgc	cccaacagag	110520
atgaggaaca	cagagaggaa	tcttggagct	ttagctgttt	tetgtggtet	ttggacggaa	110580
acaaattcgg	ccaggaaaac	ccgactacca	cccctactct	gtcatggaaa	tttttcctta	110640

atagagaatg ctttttaaat tcaagttaat gcatatgcac tgaatgccta ctacgtgttt 110700 tctctgggct ggatgatgga agagacagga gagttatacc aagtcccacc cagttcccac 110760 ggagcttaca atctagtgga ggaggcaggt atgaaagtga ctaactagaa tatcacatcc 110820 ttaatgctgt aacataaagg gaatgtgctg cttgagcagg cgctgagcta tagggcacaa 110880 ggaaggette atggtagagg tacattatga cetaacettt gaaggatgga ttggattttg 110940 atagaagagg gatgttccag ctgagagaat agtgtgtgta aaagcagaga ggggtgggga 111000 agtttggtgt tctcgggata ttaggtggtt cagtgtggct ggagcatgta cctcctgagg 111060 ggtgtctcca ctgcttacct gccatgtccc tctgactcaa agggacccca agctcaaaat 111120 atgacatact gaattcatca ttctctctgc acagaatatt cttctagtct ttgctatcct 111180 agtggccagc ccctcagcta cctggatact ccagctagaa tcctgggcat catcctgagc 111240 ccctctatat ccttcacccc acagaagcaa gacctggggt ttctgagtgc ttcttaccta 111300 ccagtcattg ttctaagcac ttagaaggtg ccatttaaat taactctttt tttgccattt 111360 atactattta ttgaacccca gattaatgtt ttgtagtata tatttgtaag atgtacgaca 111420 tgatgttttg atatacatat acatagtgaa attattactg tagtcaagca aattcaccta 111480 tecateacet actatagtta cegtttgtge gtgtgtgtta agagtaceta aagtetacte 111540 tcttagcaaa tactcagtat ataatacaat atcattaact atagttgtca tgctgtacat 111600 tagatettea gaattattee tietaataaa egeaagitte tatetaacea titaeetaet 111660 tattcctagt tectecetet teetgeteet ggtaaceagg attetatetg tttetatgea 111720 ttagcttttt ttttttttt tttagattct ccatataagt gagataattt agtatttctt 111780 tctatgcttg acttatttca tttagcataa tgtcccctgg gctcattggc agtatttcca 111840 ttttaaaggc tgagcaatat tccattgtat gtatatacca catttccttt atctatttat 111900 atatacacaa gcatttatat tatttccatg tcttggacat tgtaagtaat gcagcagtga 111960 acacaggact gcagatatgt ctataggtgc tgattgtttc ctttgagtat acacccagca 112020 caggaattgc tagatcatat ggcagttcta gtttcaattt ttttaggaag ctccattatg 112080 ttttttataa cggctgtacc aatttacatt gccaccaata gtgtataaga attccctttt 112140 ctctatatcc ttaccaacac ttatctcttg tctttttgat aataacaatc ctagcaggtg 112200 tgaggtgata ggttgttgtt tctatttgta ttttcctgat gcttagtgat gttgagcacc 112260 tttccataca tctgttggcc atttttatgt cttctttgaa aaaatgtcta ttcaggtcct 112320 atgtccattt ttaatcaggt tttttttttg ttctgctatt gagctatgtg agttttaaaa 112380 attacattct agatatttac catttatctg atatatggtg tgcaaacatt ttctcccagt 112440 ttgtaggcta cctttttcac tttgttggtt gtttcctttg atgtgcagaa gcttttttgg 112500

tttgatatag tcctacttgt ttatttttgc tttggttgcc tgagattttg gcatgatatc 112560 aaacaaatgt tggcaagatc agtatcataa aacttttccc caatcttttc ttctggcaac 112620 tttatgttgt aggcactaca attgtcccta atttacagat taaaaatgga agcaaaagga 112680 gatttttaaa atttgcccaa acttgtacac tggtacactt gtacactggt tccagtgaca 112740 aagctggaaa acacaccag gcattttgac tatatatccc acacttttct gtatcatggt 112800 gtatggctcc tacaaaatgt aaactcttta ccatggtcta cataaccagt atggctgggc 112860 ctttgccaga ctctctagcc ttaactcaca ccatagactc cctttctttc ttaatatttt 112920 atgtgacatg gtgaactaaa tggacaaggc agtttgcatt cctctgtcta aaacactctt 112980 ctcccctaag aagccccacc tatatatccc catagtacac tgtgctaatg catttcagcc 113100 cttggcacct tgaatcaaaa aggcatgttt tcttatctgt aacctacaac taaaataaga 113160 gettetggag cacaggatet atattetgtt tatettttat caccaatgeg tageatagta 113220 cctagaaggt agtatgtggt aaacagatat ttgttgaatc aataaatata ttaatggtta 113280 tgacagcaaa tgagatgtga gagggttagt ttagagtcaa attattgaaa actttggagg 113340 acatgttaag atgtttgact ttttttttct gcaggcaatg gggagccatt gaagattttt 113400 gagaaaggag agacattatc tgacattttt attttgggaa gatgagtctg ctaatttgtg 113460 gagattggag agagaattat gaaggcaaga agataattag gatattataa agataattag 113520 aaaattaaaa tatcagtcaa cttttgctgc ctaaaatact gccttcaaac tcagctgcat 113580 acactgcagg ttggctactt cagccgatgg gtctgtaggt caattgcata ggctctgctt 113640 tagactgcag gtgcgtgggt tggctgatct agactgatct gggcggtttt attatcgaat 113700 tgaaggttca gttctatctt tttgatttgt cccttattct tctgggatat ttaggggaaa 113760 ctggacattc aggggaagct cttcacctag cattgtcacc agtacaagag gacaagccca 113820 actacacaag tatatatcaa gcccctgctt gtgtcttatc attgaccaaa gcaggtacaa 113880 aaggaagccc aacatcaacg aggcaggaaa aaaaagactc ttcccatgga agttaaaggg 113940 aaaggagtga ctgtttgatg aacaataatc accacagatg ctattgatat agtacagatc 114000 agtagttgtc aactggggag tacaaaggca tgctccacct tgaaaggtga aacaaaattt 114060 tagggaaggg gtaaccacgt atgtgtcttt taaatcgtac cttcacccct gcctttcaga 114120 atcgtttcta gtatgatttt tactaattag agtatcaaat ccatgaaatc tggtgggatg 114180 gaataaaagt ttggaaaata ttactgcaga ggataactga aacaggccta gaagatgaga 114240 ggagaaacac ataaaaaggc aaataattgg attcagcgga tagggaacaa gaaaagtcag 114300 tgacgacctg aagtgttaga gaccaagtga tcagtaacat agagatggtt tgaatgaaga 114360

tagtgaggga gaaaggcgtt tattaattga agaatcagga tgcattgatt atgtacaagc 114420 cccttattca cagacgtgga taagatgtgg tacctgtcca cacgtcttac agtccagtga 114480 acacaagact tgtgcaagta agacatatac acaggtaaat attagatgtt cttgaaagag 114540 gtgaatgcca tagggagaag aagaaattgc gagagcttaa ttccacctgt agaaatcagt 114600 agtggggaag atgacaataa atcttagtgc taatgtatag gtgaatttgg aaaagtagca 114660 gagaaggtca gggagatagc ctaagcaaag gtacagagaa acaagtgtct gggatgcatg 114720 caaggcagta tatatgaagg gatggtgaga aatggtgcta ggcatgttgg cattcttcag 114780 gcctcttgtg atggcaagag aaaaaaagtc caaactggat taggttagac aaaaagggaa 114840 ttttctagga agtgctaaag aatctcagga acccatgtga aggacagtgt attagtcaga 114900 gttcagtaga ggaacagaac atatacatat atattcatta agtattagct cacacgatca 114960 caagatccca caataggccg tccgctagct gaggagcaag gagagtcaga ccgagtccct 115020 aaactgaaga acttggagtc tgatgtttga gggcaggaag catccagcac aggagcaaga 115080 tgtaggctgg gaagctaggc cagtgtagtc ttttcatgtt tttctgcctg ctttatattc 115140 tagccacact ggcagctgat tagatggtgc ccacccagat aaatggtggg tctgcctttc 115200 ccagcccact gactcaaatg ttaatctcct ttggcaacaa cctcacagac acacatagga 115260 tcaacacttt gcatccttca atccaatcaa gttgacactc actcagcatt aaacaccaca 115320 gacagggaaa gtgtaaagtt ggctatgatg taatgacagg aagctactga gtatttctct 115380 tcagctgaca tctctacttg tctctatttt tttccttttc tgccactctt ttgtgccaaa 115440 ccaactgtct tagttcattt tttgcagcta taacagaata ccacaaactg ggtaatttat 115500 aaaccatata aatatatttg gttcatcatt ctggaggctg agaagtccaa gcgcatggtg 115560 cccacatcgg gtgagggtca tgccatgatg gaagacatcg catgatgaaa tctgtgtgca 115620 agacagagag aggaattggg ctgatcacat cctcattatg aggaacccat tcctttgata 115680 aactaaccaa ttcccaagat aaagacatta gtcctttcat gagggtgaag ctcttataac 115740 ctaatcacct cttaaagatc ttactcctta acaccactat aatagcaatt aaatttcagc 115800 atttgtttca gaggggatat tcaaactata gcaccaatcc atccacaaat tctgttaatt 115860 ataacttgaa catgtateca gaaactteee actteecact atteeacage tageacetag 115920 gtcaaaagct tcattttctg tttcctgtat aatgcactgg ccttcacact ggtctccctg 115980 cctctaccct tgtatttctt cagtctgttc ttaacatggt aggcaaaggg atattttaaa 116040 atgatgtaaa atgatatttt aaaatgaggt catgtcacct ctctcttcta aaccccattt 116100 tccactactg ttctgacctt accacctctt actttttcct cattcacttt gttctagcca 116220

tgctgttctt	tgaaaatgcc	atacagattt	tcattttctg	atctttataa	gtttcctctt	116280
catggaacac	tcttcctcca	ggaagcctaa	taattcactc	cttcatttcc	ttcattgagt	116340
ctttgttcaa	aggttacctt	ctcaacagaa	cctaccatga	ctgcttaatt	taaaactggg	116400
ccaggtgcag	tggctgacat	ctgtaatccc	agcactttgg	aaggccgagg	tgggcggatc	116460
acgaggtcag	aagattgaga	ccatcctggc	caacatggtg	aaaccccatc	tctactaaaa	116520
atacaaaaat	tagctgggag	tggtggtggg	cacctgtagt	cccagctact	cgggaggctg	116580
acgcaggaga	atcgctcgaa	cctgggaggt	ggaggttgca	ctgagccgag	gtcgcaccac	116640
tgcactccag	cctgggcaac	agagcaagac	tccgtctaaa	aaataataat	aataaaataa	116700
agtaaaatta	caacccgacc	cccacactcc	aaatcctatc	tttacccttc	tctatagtgt	116760
tatatgatta	acttactatg	ctttttattc	tccatctctt	tttctctaaa	atataaagtc	116820
cacaagagct	ggaatgttca	catgttttct	gtactttata	ttcctagtac	ctagactgat	116880
gtctggccag	aagtaggggc	ttaataattt	tgttgaatga	gttaatgaaa	ttgcaaagtg	116940
atagttctaa	cttttacatc	atagttagag	gatacattgg	tgaaggtcat	agggtagggg	117000
atagacaaac	agctagaaga	aaggtggtgt	ggtcctggca	aagaaaacga	ttattccact	117060
aggcccagct	acaatgtgaa	tttcctgtga	cacctacctg	accctcagtt	aggggtgctc	117120
ccctgtttac	tctcaaaggt	ctttgaacaa	tcctgcacaa	gagcacggat	ttgcatgctt	117180
gcttaattgg	tgatttacaa	gtcttttccc	ttaacagtgc	tgaactttac	ctgagccctg	117240
tgctcttgga	aacgaatgac	agttaagaaa	tatttctcct	acccttttgt	attccctaaa	117300
atgttttact	gtcataaacc	actctcccca	tatgactaag	actctggtga	atgtaccctt	117360
gaatacctat	gacaaggcca	gataaagacc	ctccacagtt	ccaccttttg	tcccataagt	117420
gattagctga	aatgtttgtc	tccactgaca	aatcaaaaca	aaatgcccac	taacttgacc	117480
aaatgttgtc	aggcttttgt	tttttccatg	ggctgctgat	ctttcaccct	cagcctgagc	117540
cagccgtcct	taaaggcttc	cattgagaat	aggctggatt	cagagcaaaa	ccttatatcc	117600
agtcgtgtca	ccctgactca	ctgattcatc	ccacttttt	tttttttt	tttttttt	117660
ttgagacgcg	gtcttgctct	gccacccagg	ctggagtgcg	gtggcgtgat	ctcagctcac	117720
tgcaacctcc	acctcctgag	ttcaagctat	tcttctgcct	cagcctcccg	agtagctggg	117780
actacaggcg	tgcaccccca	tgcccagcta	atttttgtat	ttttagtaga	gatggggttt	117840
caccatactg	gccagggtgg	tcttgaactc	ctgaccttgt	gatctgcctg	cctcagcctc	117900
ccaaagtgct	gggattacgg	gcgtgagcca	ctgtgactgg	ccctcatccc	acttctctac	117960
aaccagacct	ttctaggtgt	gtttatttct	ccatgtaaaa	gaaaaatctt	tcggccaggc	118020
agggtggctc	acgcctgtaa	tcccagcact	ttgggaggct	aaggcgggtg	gatcacctat	118080

ggtcaagagt	ttgagagcag	cctggcccac	atggcgaaat	ctcgcctcta	ctaaaaatac	118140
aaaaaaaaa	aaaaaaatag	ctggatgtgg	tggcacgcgc	ctgtagtccc	agctacccag	118200
gaggctgaga	caggagaatc	gcttgaaccc	aggaggcgaa	ggttgcagtg	agctgaggtc	118260
acgccactgc	actccagcct	gggtgataga	gcaagactcc	atctaaaaaa	aagaaaaaag	118320
aaagaaagaa	aaaaaagaaa	agaaaagtct	ttccaggcct	gaccattgag	acactagcag	118380
atgtcatgct	tggagccttc	tccctattac	aacaggcctc	cctctccact	gcagttttct	118440
cttttccctc	tcttccggca	gttctttcaa	gtaaattatc	tccttaccta	agctcagatt	118500
tttgttttta	ttggacatgc	ttggcttgat	tattttgttt	ttcttaagga	cagttgccat	118560
gtaggattca	gcacaggatc	tcagaacttc	gcaccaggcc	tgccagtata	gtacttgtta	118620
tatattagct	gaatgaactc	acccacacac	atatatgaat	gaataaatac	tgtgtcagta	118680
gcttggaaag	acaaaagaaa	aaactgggcc	tettececte	cttcaaagat	tctgtacctc	118740
agttcatttc	agtagctttt	ctcttaacac	agatatttag	cattgtttag	acaaaaatct	118800
cactatgcag	ctatgctaca	gaattagcct	aaatcatgca	tctgcctgta	tttttggcaa	118860
ttaattccca	atcttaatta	ggaataaagt	taaagtgttt	tctcaatcta	gtgcaaaagc	118920
ttgtatttcc	ttctacttca	gcaagaccct	ggagtgagtt	tgaggttact	gtttttaaaa	118980
ctttgaaagc	tgggatggtg	gtgcattact	cctacttcta	ttggtgggtg	tacttcacta	119040
agctcaagtt	aagcatttgt	tgcaggtatt	tgtgttgttc	taattctttg	caggcatctc	119100
tgtgatgaaa	aacctgagca	ttgcagactt	ttttaacagc	tctgaacaat	tccattcaag	119160
gcaaagtccc	tgcaccttcc	tctgtgaatt	ctatatattg	tctgtatgtg	tattagtcca	119220
ttttcacact	actataaaga	acttccttga	gactgggtaa	tctataaagg	aaaaaggttt	119280
aattgactaa	cagttctgcg	tggctgggga	ggcctcagga	aacttagaat	aatggtggaa	119340
gggaaagcag	ctacatctta	catggcagca	ggtaagagag	agcgtgttgg	aggaactgtc	119400
aaacacttat	aaaacaatca	gatcttgtga	aaactcacta	ccatgagaac	aacgtgggga	119460
aatctgcccc	catgatccaa	tcacctccca	ctagatccgt	ctcctgacat	gtggggatta	119520
tggagattac	aattcaagat	aagatttggg	tgcaggcaaa	gagccaaacc	gtatcattcc	119580
accccggccc	ctcccaaatt	tcacatcctt	tttacatttc	aaaactagtc	gtgccttccc	119640
aacagtcccc	caaagtctta	actcgtttca	gcattaactc	aaaagtccat	ggtccaaatc	119700
tcatctgaga	caaggcaaga	cccttccact	tatgaacctg	taaaatcaaa	aataagttcg	119760
cttcttccaa	gatacaatga	gggtacggta	aatacatcca	tttcaaatgg	gagagattgg	119820
ccaaaacaca	ggggctacag	gccccatgca	agtccaaaac	ccagtgggac	agtcattaaa	119880
tcttaaaagt	ccaaaatgat	ctcctttgac	tccacatctc	acatccaggg	cacgctgatg	119940

caaggggttg	gctcccacag	cttttggcag	ttcctccatt	ggctgacgtt	tagtgcctgt	120000
tgctcttcaa	agtgcacaat	gcaagctgtc	aatggatcta	ccaatctagg	gtgtgatgat	120060
ggtttccctc	ttctcacagc	tccactaacc	agtgccccag	tggggactct	gtgtgggggc	120120
tccaacccca	catttttctt	ccgcactgcc	ctagcagagg	ttctgcatga	agtttccact	120180
tctgcagcaa	gcttcttcct	ggacatccag	acatttccac	atatcctctg	aaatctaggt	120240
ggaggttccc	aaacttcaat	tttttacttc	tgtgcaccct	caaacccagc	actacatgga	120300
acccgcctgg	gcttggggct	tgcaccctct	gaagcaacag	cccaagctgc	aacttgggcc	120360
cttgtagcac	taatggagct	ggagaagctg	ggacacatgg	caccatgtcc	caaggctgca	120420
cagagcaggg	ggacccttgg	cccagcccag	gaaaccattt	ttccctccta	ggcctctggg	120480
cttataatgg	caggggctgc	catgaagatc	tctgacatgg	tgctgagacg	ttttccccat	120540
tgtcttggct	attaccatgt	gctcctcatt	acttatgcag	atttcttcag	ctggcttcaa	120600
tttctcccca	gaaaatgggt	ttitctttc	aactacatag	taaggctgcc	aattttccaa	120660
acttttatgc	tgttcttctc	ttttaattgt	aagttccaat	ttcaaatatt	ctctttgtga	120720
atgcatataa	ctgaacactt	tcagaataat	ccaggtcatg	tcttgaatac	atcgcttttt	120780
agaaatttct	tccaccagaa	acccataatc	atctctctca	agtttaaagt	tccacagatc	120840
tctagggcaa	gggcaaaatg	cctccaatct	ttttgctaaa	ctgtagcgag	agtgaccttt	120900
gcttcagttg	ccaagaagtt	cctcatctcc	atctgagacc	acctcatcct	ggacttcatt	120960
atccgtatca	ctctcagcat	tttggtcaaa	accattcgac	aactgtctag	gaagttccaa	121020
actttcccac	atcttcctgt	cttccaagcc	ttccaaagtg	ttccaacttc	tgcccattac	121080
ccagttccaa	agtaccttcc	acattctcag	gtatctcata	gcaatgcccc	actaccctca	121140
gtaccagttt	tttgaattag	tccgttttca	cactgctata	aagaacttcc	ctgagactgg	121200
gtaacttata	aaggaaagag	gtttaattga	cttatagttc	tgcatggctg	gggaagcctc	121260
aggaatctta	cagtcatggt	gtgagcggaa	gcaggaatgc	cttacatggc	agcagtcgag	121320
agagagtgtg	tgaaggagga	actgtcaaac	acataaaccc	atcagatctc	atgagatctc	121380
actcactatc	atgagaacag	catgggggac	actgccccca	tgattcaatc	aactcccact	121440
aggtccctcc	ctctacatgt	ggggattatg	gggattacaa	ttccagatga	gattttggtg	121500
gggacacaga	accaaaccat	atcagtatgt	ttaccagttt	gccctagcct	ctggcttcag	121560
aaaatagaaa	gggcatcttt	tcatttgttt	tttgccttca	ctttctgttt	ttcctcttac	121620
tctgtaagaa	agagtctgtt	tttgttttct	tttctgtgct	atctgctcta	ctgtttgagg	121680
aaggagggtc	ttgatgagtt	gtcacctttc	tgtgaacaga	gcttatattt	tgagtgtggc	121740
ttcacttttt	atcttagaaa	taaagcagca	agcagggtgt	tctaatcagt	cgcacttcgg	121800

tctcaaatac tacgtccatg taagtcaaat attaatagtg aagagaatga gccaactttc 121860 taaatcgagg ctgtatttcc atctctatgg ggtccaaaat aaaactggtt aaaaaaatgc 121920 catcttcact atgaaagact cactgtctac accatccctc ttcccatgga gtttctgttg 121980 acagagatgg agtcagtcat gtctcatggg aagcggactt gggcagaagg ttcccctgca 122040 aatgatgctc gatccccaca aagatgcagc agagaaaggc agaaaaccca gtcttcagtg 122100 caaaatggtg aggaggagcc tggcttagaa tctcagcctg aaatgacaag tgaaaaaaaag 122160 tctctgaata catttgttga ggctagatgg tgttacccac ccttgctgtt tcactcctct 122220 gaagtgttct ctctatattt tgctattttg caagggaggg gaagaaataa tatgtatgct 122280 tttctgtgtg gattttaaac aagttgctga attatcaata aagttttaaa gtgctctatc 122340 atttgtcatg ttatggtcag caatggttgt tcttttcttc ttacttcctt gtgtatgtag 122400 atttacctgt cactactggc aggactgaaa attgttttat agtcatggtc ttctatgtgg 122460 cagcccagga taggggtaaa cttttgggga tagaaagaaa gaaaaatgat aatagcattt 122520 tttggcatta aatatcatta cccactttat acagcaaaaa atgagaaatt tcaaggggcc 122580 aaattaattt ggaaagaaac tgactataaa tgacttgaat aaacaaattc aaatgactca 122640 ttataataga ataatagaat attagaaaaa aattatcttt ttattagaag atggaactgg 122700 atttettttt etettteae etteettaea tetaeeetea aettetagat aaatteaeaa 122760 ataaacactt cagacatttt tetgtgactt aatgtgttca gacactgttg ettgettgtt 122820 tgcattttct ttcagatttt actgttgtac atgctgcacg cagtctggct acatcttgag 122880 ctctgtcatt tatccaacag agacatcccc tatatggatc taaaagatat cataacactt 122940 gaaaggtcat gtgtggctaa tgcctttctc catctggtga tagatctttt tcttcctttt 123000 tgttgtctgt ccataagact gctgataaaa aaccaagagt gattaaatat actaaattgt 123060 ccaacttaag gaaattccag catatcaaag agctaataac ttcttggaaa atttatatgc 123120 ctcagcaaaa tgcacaattt tatctggttt gagagtttga gctggaaaaa aatttcagca 123180 actttagaaa atctaatcta ctggaatact ttacaaacgc tctatagctc cggcaccaag 123240 gattctatat atgcagtggc actagtagcc aagttgattg gttggttttc tgcagattaa 123300 acaactgatt gattcaggta gtccccttct tgtctaccac ctaactcctg tctaataatg 123360 atccaagttt tggcagttac tgagtcctac tatggactag ttcctggaca aataagttca 123420 ttagcatgat ctcaattaga cattttacct agaattttcg gaatggcttt ttctagagtt 123480 tgtatcctca tatgatgagt attataatac caaaatttta cttcactttt tatataactg 123540 aacaagtaaa taaaggacaa agcactatca tacctcatgc attactatta gactgtaatg 123600 attgtcattg ggactacttg ttacaatact ccccatcagg tctcaattgt acagactggg 123660

cctcctgtga tatttgtatc ctggaagata acaacatccc atttgctccc agaacaaatt 123720 attttttcaa ttattattat gaaagttttg ttttattgtc ttaagaacac ttaacatgag 123780 atgtatcccc taaacagatt tttatagcaa tggaatgaaa tttatttttc attataaact 123840 ctattgtact gtttgaattt attttgccat ttgcttgcat tacctgctag agaggcagag 123900 agaaagagaa acagagaaaa actatgagtg agttttcacc taattttcca acttaacctc 123960 ctactgaatc tcattttaca catgacaact cattgcttct caaagacact aagtatattc 124020 atattgagtg tgtgtttgtg tgtgtgtgtc taacattcca tcatccttga ctcacatgtt 124080 ttctgcctgt aaaaatccca tccctcaaaa gttcttctaa aacagatttt ttgcatttac 124140 atttcactat tcttaagtac agaaacaatt ctggacatca gatctctaga acttattcat 124200 gcgacaaaac tgaaaccact tgaatagaaa ctccccattt tcctctacct tcagccctg 124260 acagctacca ttctactctg cttctataaa tttgactatt ttagatactt catataagtg 124320 gaatcatgca gtattagttt ttctgtgact gatttatttc acttagcata atgtcctcca 124380 ggttcattca tgttgttgca tatggcaaaa tttccatatt tttgaaacca aataatactc 124440 ccttgtatgt atatattaaa atttatttat ccattcatct gttgatagac atttaggttg 124500 tttctacatt ttggctactg tgaataaggc tgcagtgaac atggaagtgc aaatatctct 124560 ttgaaatcat gattttaatt cttttgtaca aataaacaga ggtgagatta caggatcaca 124620 tagtggttct atttttaatt ttttaaagga atctccaaac tgtttttaat agcagctgca 124680 ccattgtgca ttaccacaac ggtgtacaag ggtcccagtt cctcaccatc ctttccagcg 124740 ctttttgtct ttttcctttt ttcttaataa tagccatcct aacagttgcg aggtggtatc 124800 tccttctggt tttgatttgc attgttatga ttattagtga cattgagcat cttttaatgt 124860 acctgttggt catttgtatg tcttctttgg ggaaatgtct attcaagtct ttagaccata 124920 ttttaattgg gctatcagtt ttagctgttg tgttatgtga gtttctaata tattttggat 124980 attaacetet tttcaactat atggtttgca aatatttttc ccattcatag gttgcctctt 125040 caactatatt gtttcctttg ctttgtagca ggtttttggt gtgatgtagt cctacttgtc 125100 cattttttct tttgttgcct gtgcttttaa tgtcatgtct cttaaatcat tgccgagact 125160 actgtcacaa agctttccct catgtcgtct tctgggagtt tacagtttca agtcttggat 125220 ttaagtettt agteeatttt gagttttttt gtgtgtgtat ggtgtaagat aagggtetga 125280 tttcattctt ttgcatgtgg atatccagtt tttccaacac cattttttaa agagattatc 125340 ctttccctat aatttattat ttgtaccttt atcaaaaatc agttgacttc tctcttgact 125400 ggagcagtga aacaaacgaa cataaataag ttgactatat atgtgggggt ttatttccag 125460 actitictatt tigctccatt ggtctigtat atcigtcttt attatgccag caccatattg 125520

ttttgattac agcagctttg taatatattt gcaaatcaga aagtgtgatg ctttcagctt 125580 ttttctgctt tctcaagact gttttggcta ttcagatttc tttgcatatg tgcatgaatt 125640 ttagaattgt tttttttct atttctgtaa atattgccat tgggattttc atagggatta 125700 aattgaatct gtagatcact ttaggtagta tggtcaattt gacaatatta agtcttctaa 125760 accgtgaaca cagaatattt tecettttga ttgtgtette tttaatttea tteaccaatg 125820 ttttgtagtg ttcagtgtac aagtcttttt acttctttag tttattccta agtatcgtat 125880 tcttaagtat cttatttttt gacactatag taaatagagt tgtcttccta attttctttt 125940 cagattattt gcttttaata tataagaaca gaactttttt ttgttcattg tgtatcctgc 126000 aacttcactg agattttaag tcagtattaa gagatttggg gtggggtctt taggatttct 126060 atgtataaga acacgtcatc tgcaaacaga gataatttca cttcttcctt tctgatttgg 126120 atgcattttt tttctcttac ctaattgctc tagctaggac ttctactact attttcttag 126180 tccatttcat attgctatac cagaatatca cagattgggt aatttacaaa gaacaaaagt 126240 ttatttggct cacagttctg gaggctgtga agacatcagg taaggaactt cattccacat 126300 tatcccatgg cagaagatat taaggcaaga gagggtgaga gggagagcaa gaattaaagg 126360 gagtggaatt tatcctgttt atcaggaaac tactcccaag ttaactaacc agttcctgta 126420 atagtaccat taatctattc acagggcaga gccttcatga cccagtcatc tcttaaaagt 126480 cccacttctt aacactgttg cattggggat aaagtttcca acacatgaac tttagagaaa 126540 cacatttaaa ccatagggac tatgttgaat agaagtggca agagtgggca tctttgtctt 126600 gttactgatc ttagagaaaa gcttttagtt tttcatcatc gataatgaag tgacctgtgg 126660 gcttgtcgta tatgaccttt tttgtgttca ggtacgttcc ttcttatacc taatttgttg 126720 agagttttat cataaaggga tgtagaattt tgtcagatgc ttttcttgca tttattgaaa 126780 tgaccatatg gttttcatat ttcattgtgt taatgtggta tatcacattt atagatttgc 126840 atatattgac cccttcttga ataccaggag ttaattcctc ttggtcatgg tgtataattc 126900 ttttactgtg ctgttgaatt ttttctgcta atgttataat ggaattttaa acatagtatt 126960 tctttaatta aaatatgtta ttgttataaa aaaataaaat aataacagtg aaactgaagt 127020 ctttctctta tctgtgacaa gaagagtccc tgagggtcaa agacaagtgg gataagaaag 127080 ctgaaagaaa actcaaacag ataagggtga tggttcttac tcaacaatta attatctcct 127140 tgaactcagt gtgtcccttc atttctccag gcctcagtcc cctgaatgtg ggtattattt 127200 tattttattc ttcccttaaa aagctagatg cctttgtagt tattatttgg tcaaaagtaa 127260 tacaggtgag aaataaagac aaacaaaac aaacaaaaac aaagatatat cacccatatt 127320 aagtetteet eteaceeaca gtettateee tgeteeetae tgacaaceae tgeteteggt 127380

ttcttggata tctttccagg acttttgtag tcatatccag gcatttgtac atattttcat 127440 tagtagttaa tatagtgcag tcttggaagc cagactcccc ggggttatat ctcctagttc 127560 ttttgctgtt tgaatttggc cttgtcactg aaacttttat ctcaaattcc tcatatgtga 127620 tatgggggtg ataatacagc ctgcctcata agtattgata taaagagtaa gggaattaat 127680 aaataattaa tagcacattc actcagtaag tgatcattaa atatgaatta atctacacct 127740 tctttatttc tttttatgta aggtatatct acctcggttc tttgtaatgg ctttatattt 127800 ttacagggta gcataattta tataaccagt ctcctactga aaaacactga agctttcagt 127860 cttttgttat tagaagcatt actgtaaaga aaatcctttc ccaaactgca tttgcccaca 127920 cttatgaaca tattgatata ataatttttg acaagcagaa ttcctgtgtt aaaaggacta 127980 tgtactcaaa tatcgatcag tactgccaaa tttacctcca ataagttata ccattttatt 128040 cttccattag cgttatatgg gagtcccagt ttacccacac ccacacaaac tttatattcc 128100 aataattttg ttttatatgt ttaccatttc aatgtgtaaa aaaaatatct ccttgctata 128160 ttaactttta tattttaaac tataattaaa gctaataatc ttttcctggg ggtaccagct 128220 attttaacta cctatttatg ttatttgaca attttgtgat tttaaaaata aatgatcatt 128280 tcaaaactat ttaaactaat cccattgttt ggaagccttc agaattttga ctcaaagata 128340 ataaaaaaca aataacaaaa caaaataata ggaaaaaaaa cctcacctgc aatacccatt 128400 tcatggagaa gaaaaccaat tctcaaagaa tgtaaacacc tcataaggtt agagctaact 128460 agtgacagag cttgcatttt aaaactccct tgcttttgtt ctgttttgtt ttcttttatg 128520 ggagcagctg cactgctttt tggacaacat gttctagctt ggctttgcta atatatagat 128580 atcaccataa tcacctctct accacccttt atttcactgt atagcagcca tatgttttag 128640 atgtggaatg gcctattaac ttggctttcg tgtaaaagtg tagagtgcta atgagtcagt 128700 aatcttacca gcagtttcta tttactaaag tcgccactga ctatttcctc ttgggaaata 128760 gtcaccattt cccaaggaat gtcttttcac atagcataca agttcttata atagtgtctt 128820 caacatctat ggctaactcc acaaagttta ttttgcttta gtgcttcttc atttgtcatg 128880 tettettgag agattagtgt cettacattg tattgtatta tttattgtte caaaataaca 128940 tactagggaa taatagggtc aatagatttg tttttattaa aatgaaactt gtcagaatgt 129000 gaatttcaga ccaacatgga tttgtataag tcagacatga atctggcggg atagcactgg 129060 ggaaaggggg aagtttgtat atgggggtgg gctgcaatgt ggtgagtgca agacaggatt 129120 tccttcattc tttattgaaa ataagcattt tgcattctca tctgtgaatg aaacgaatac 129180 tgccattatt tgagtgttac ctttctgggc actgtgctaa gcttttcaca tgtattatct 129240

tacttctcaa tactccttgt aagaagagtg ttattatatt aattttgtat atatagaaag 129300 aatgatgttc aggaagccta aataatgtct aaggtaatat agttaatagc tggtagagcc 129360 cctctatgta taaattatat gatctgaact aaggtgatac aagagacaga acaagatatg 129480 ctgatgcata tatgaacaga ggtggcaaaa atggaattat tagcctccaa ctctagtaag 129540 ttcttgccag aaaactggat aaggtattca tacatcagat gaacaatgcc caagatcatt 129600 gtttcccaaa attattccag agaacactaa ttgtttaggc taatgggtga tatttttgaa 129660 gggttctgtg ctctaataat ttttttaggt agatccattt attttttaaa tacaagtata 129720 cttctggaag ggctatttga caaattcagc attgactgcc aactttgtag acatttttaa 129780 caacaacaaa aaacaaggca tttactcttg gcccttttag tacaggccaa gggtcctatt 129840 gcatcacaag tgctagggat gcagtaacag acccaagcgc ataatattaa agattttttt 129900 tccaactgcg attcagttga aaaataatat agtacaaaca tatattaatg gtaatcgaga 129960 ccactagega tetgeagaat acetagaage etacetaett agaaggetga aactggtaaa 130020 agcatattaa aatcataatt tttaaaagtg ttaattttag taaaattaaa ctggtttatc 130080 tatgtaggac ttctcaaagt agtcattgtg caaatgtgca ggttaataca ccaagatata 130140 tgatataata ttccacgttt cccaatctaa tttaacttag taattccatt tttaagagtc 130200 ttgtgtggca gggaaatggg tcctagcctg ggtccttggg aaagcttgga gtcctggccc 130260 acgaacttga tecetgeeca ggtgttttee ggggggggge acttgaggee caatetttge 130320 tegaggeagg tgtaagaeae eteagaggga gaaeggeaet geeteetett teceaeetge 130380 ctctcatctc aatccttgac tggcgagttt aaagttgttc tgcaaccatg caaacctgtc 130440 cttctcatgc aactccaagg agcttgctgg ctctgcagcc acccttgggc ccccgccagc 130500 ctgccatgaa tcagatctct ttcccagaat ctgggccttt ctgaagtttt ggggagagcc 130560 gttgggactc atccagtgct ccagaaggtg gacttgcttc tcgtgggttt taaaggagac 130620 tccaggagat atgettaace aaccatgatg gattttgccc caactggact eggeagette 130680 acgtggaatc caggtgcagc ctccagtctg ggaaagtcac ccaacctagc agttgtcatg 130740 tgggtaacct caagcacctc taagcctgac ctggaagaat gaccagcagc ccctccagaa 130800 ctctgctcag gacagcagga gcctcctggc tctgggtttg gaagctgggg tgggtagcgg 130860 gtggtaagta ctatatgtgg ctctggaaaa acagccgcta cttccaaatc tattgtccat 130920 aatggtttct ttctgaggtt gtttcttggc ctcaaagggc cccaggggat gtttggaaat 130980 agcettetta ceettetgga geatggttta caaaageeag etgaettetg gaactgtetg 131040 tggaggatag tttgggtgta ggttactgat gtctcacctg agttttataa gctgctgttg 131100

agtagtatgc tgggaggaat cttcttttt atatattgta tttttgtatg cctttcggga 131160 agtggtgtta actgcttttg tacaagaaaa aactcatggg caattctcct gttgcaaggg 131220 tctgatttat tttgagaggc aagttcacct gaaattttgt atttagctgt gattactgat 131280 tgcctgattt taaaatattg ccttctggga catcttctaa taaaagattt ctcaaacaaa 131340 caaacaaaaa aacaaaaaga gtcttgtgtg ccatagatca tactgtggga aatgctgact 131400 aattggaatc tcaagtccct tctaacactg aacgcttaca attccatgat tctgttacag 131460 gccatgaaga tataggagaa tacagatata tacatatata tatatatgta tatatatctc 131520 ctgtgttctt ggattaatct gtgattggtc cactgtgtaa gtgcctaatt aacctcagtg 131580 tgatattttc tataaaatgt cttggcaaga ttgttgatag gtccaagcat tcaatagaag 131640 attgaactgg acctagctgc acatttgacc catctaaagt atttgttgta agtacagatt 131700 tetgagacaa atteecagga tttetgatte tataatttga gggaaagete tagaaacaat 131760 ttttaatggt cattccaggg gttctgcacc atatttggtc catatgtcaa tatttggaac 131820 aagtetaaga tataaagtea agaaageeta tgaggatget acagagttet teteaateet 131880 gtccatgcac cagttcctgg agctctaccc aagaccttgg aaacttgacc cagtagatcc 131940 aatggtgctg ggagtgggac ctgtggatgt ctccttaaga aaaaaaaatc tacaagtgaa 132000 tettatgttg etgggteaca gatatataat taggaceact ggettaaatg actteeaatt 132060 tetteettee aaccatatat ttttetacat tetgagtata atatgaette eetaaatgta 132120 cttagtgtga tggttaatac tgaatgtcaa ctcgattgga tagaaggata caaagtattg 132180 atcctatgtg tgtctgtgag gttgttgcca aaggagatta acatttgagt cagtgggctg 132240 ggaaaggcag acccatcctt aacctgagtg ggcacaatat aatcagctgc cagtgtggct 132300 agaatataaa tgggcagaaa aatgtgaaaa gagagactgg actagccttc cagcctacat 132360 ctttctcctg tgctggatgc ttccggccct cgaacattgg actccaagtt cttccgtttt 132420 ggaacttggg ctggctctcc ttgctcctta gcctgcagat ggcctatggt gggaccttgt 132480 gatcatgtaa gttaatactt aataaagtca tatatatata ttccattaat tctgtccctc 132540 tagagaacct aatacactta ttatgtgaag agaaacatga cgtgaggctg tttgtttata 132600 gtcccaactg taacctatgc tgatgaggct agaattgaga gcctgtgctc agatatgatt 132660 atcactctaa aaagaagcag cgacaaaccc gaataaaggt cagaggggag ggacgaaaat 132720 gataagggta ttcaaacaca tggcatatga ggaatcattg aaggaactgg ggtgtttagc 132780 ttggagaaga gaagaattgt gtgcagatag gaatattatc tttaaatatt caaaaggttg 132840 teetgtggag gaeetattag getggetgtt taggatgeta taaaaaagaa gaeaeeteta 132900 acagacagag gggaaagtgt tatgcttgag cacctgttag gccagggata gttctggata 132960

ttttaagcat gttattttat ttaacagtca tgcaaaatat gcaaaagagg tatagctgac 133020 ccattttaga aattaggaaa taggcccaga aatggtaaat tattccatgt tcctatgaat 133080 atatggataa tatggtagtc attaaagcta ctcacaaata ttccatttcc tcttcttcca 133140 gaaacatggt aggattgtac ttcccaacct tgtttgaagc taagggtagg cttgtggaat 133200 ccatatgcca agataaagca gaggttcccg gccaatatgg attggacata tagcaaaagt 133320 gagaaacaaa cttttttctc ttgtcatgaa aatccaagag aagcctgcta actatatgca 133380 ttcttagtct atgttcttgg tctaagtcat aggttgtata catttctgtt tgtcactggg 133440 aatttggagt tatttgttac tgtaggataa ttcagccctc ctggctgata atggcagaag 133500 tagaagagtc agagttaaac ctagcttatt ctgcttccca aatctgtgct cttcccattg 133560 taatacaaga cctcacagat aaccagtgtt aagctctata gcaatgaaag agagtattac 133620 agttcattca tgcaaatatt tgataaaaac ttgttgggac tgataaatct aatggctgaa 133680 ttgtaaccac ccagtgagtt tacctagccg actgcctaga cagagctgat ttatcaagac 133740 aagggaatta caatagagga agtttaattc acacagagct ggctacacgg gagactggag 133800 ttttattgtt gctcaaatca gtctccctaa gaattcaggg atcagagttt ttaagaatat 133860 tttggtgggt gtggaggcca gtgagtttgg agtgttgatt ggttgggtgg cagttgaaat 133920 catagggagt tgaagctgtc ctcatacact gagtcccttc atgggtggaa gccacaagac 133980 tagacaagcc agtttatcca tctgggtggt gccagctgac ccatcaggtg cagggtctgc 134040 aacatatcta aagcactgat ctcgttgcag tacatagcta gtcagacatg agcacagcag 134100 gagagtgacg ccccacccc atcaagaaag tcaggcaacc attagggtat ggtcaagcag 134160 ttgttaaacc atctctctaa aataatattt ggtcacagcc agtgacagag aaaggcagtc 134220 ctccaataga tagaaaacat ctgaaactta taatcagcag cttcccagta ggatctcagg 134280 agttgggcca gtgggcttaa gcttgcgcat taagaggcaa aatggcagag tttaactggt 134340 atatgacett etagggacat tggaetggta agagaagaaa acetetagtg ggeacgtgta 134400 caactccagt aaacacactg tgcatgcagc catttccaag tgctggcagg ccactgagca 134460 tgcagacagc ccactccaag agaagaatca ggggagaagg gatgcaggac cctggaagta 134520 caccaacata taaaacccta agtcaaaggt caaacatggc acttgatctc tcaggtcacc 134580 tgcctggccc tcttgcaagt atactttact tcctttcatt cctgatctaa agctttttaa 134640 tacgetttca etectgetet aaaatttace teggtetete ettetacett atgeetetea 134700 gttgaattct ttcttctgag aaggcaagaa ttgaggttgc tgcagacatg tacaaattca 134760 ccatcagtaa cataccttag tgcaagtttt aaagcagggg tgaaaattta ttaaaaagct 134820

gtaaagcaga aatgaaagga agtagagtac acttggaaga gggccaaata ggtgacttaa 134880 gagatcaagt gcacgccttg acttttgact tggggtttta ttagttggga ttcttctggc 134940 atctgaattt teteteeeet gattetteee ttgggatggg etgeetgeat geacagtgge 135000 ctgctagcac ttgggagtgg ccccatgtac agtgtgttta atggagttgt atacatgctt 135060 acttgaggca ttcttccctt accagtcaaa tgtccccaga aagtcataca ccagttaaac 135120 tggcattttg cctcttaatg agcatgcttg agccaactcg cccagctcct gagatcttat 135180 taggaagetg etgateacea getteaggtt ttttetatgt attgggggae eacettteee 135240 tggcactggc tgggactatc aactgcctga ccatcacttg atggtcccct gacactcctg 135300 ttttggtggg gctctcctgc actgctcatg tctgactagc tacctactgt aacaatctta 135360 gggtttacca atagtgaggt tatccccagg aacaatttgg tgagggtcag aatattgtag 135420 cttccagctg cgtgacacct aaaccatggt ttctaatctt gtggctaatt tgttagtctt 135480 acaaaggcat cctagtccct aggcaagtag ggggcttgtt ttggaaaagg gatattattg 135540 tetttgttte aaagttaaac tataaactaa gtteetteea aagttagttt ggeetaeace 135600 caggaatgaa caatgacagc ttggaggtta gaagcaagat agagtcagtt aggtcatatc 135660 tctttcactg taataatttt ctctgttgta attttcaatg gcagtttcag aatggtctct 135720 tccaactcta atattctatg atttcctgat tctgtgacag gttgtagaac ccaaatacaa 135780 aatctgtgtg tgtgtgtgt tgtgtgtgt tgtgtgtgtg tgtagtcacc ctttttctgt 135840 tttttaggcc taaggcatat tcactttatg tggacctttc ccagccccat ctcaattggt 135900 ctttttagga aaagagaagt tctgcttttt ttttttttt ttcctaacag ccatgaaatt 135960 tggcaccaag tcacaatgac cttttattcc taatgacttc cctgaggcgg ggggcggggg 136020 ggaaagcatt tgcatttcag ctcattcttt cctggagcat aatacattct tagatttatt 136080 tataattttg agggtttgcc tctccctgct ggttctcaaa gtttaatgct atcccaaaat 136140 atgtttatcc atttcatgtc acaatgggga catggggatg atttccggtt tgagaccttc 136200 ccatcactat aatcattttc atgtcatctt tgaagcagat atgctcttag gggtgacctc 136260 attagagcca aaatatgatg gcaatgaaga aacatattta tcacattctt atcctcttat 136320 actttaaata ctcttacttc ttatattggc tcttacttat gtaactcatc caattgcaga 136380 gacacttgaa aagactgtat ttcaacacac tttacaaaaa acagaagcca caaaattata 136440 acatacatta ttggcggcat ccttgaagat gactttcagt gcataggaca gggaatgtct 136500 acaaagactt acccctacgt ctttggaaca aaatctgaaa atatctctct aaaactgaac 136560 gaattettet tgggcaatat gagacatett caaaataaac taccatgatg aatggcatga 136620 aaatctggta ttactgagga aagcctacac cctacatctc taccatgaag atcagagtat 136680

ttctttattg aatacacaaa	tcagagtgcc	tttcaatcta	attaatgtca	ccagagtatg	136740
tgtgagctta ggaatgtaga	tatacagtta	gccaaagtat	gtttggtgct	cttgctggta	136800
aggcagtctg agaaaaacaa	gtcccatggc	caagttgcta	aaacatacct	cccactcaaa	136860
acttcaaaag gcatattagc	atatcaaagg	taataaaaag	acccatagaa	aagacacctc	136920
tttagctttg ttcaacccag	ctttagccaa	atgtatttgc	taataaacct	tttaaaaaat	136980
aatgctcatc gaaacagacc	aagaaacata	ttttggcaaa	taccaaatta	aggaaaaagc	137040
aagccataaa taaattgtct	ttcataagtg	taaaaagagt	aataaatagg	cttggcatga	137100
aaattctgct tcacacttga	attatcttta	agagcttatt	gatttttcc	tgtgagcctc	137160
aatatcctct tctataaaat	ggaaatcaaa	atgctgagtg	acgtaacgag	aggtaaagcc	137220
agctgggctc ctgggttgag	tggggacttg	gagaactttt	ctgtctagct	agaggattgt	137280
aaatgcacca atcagcgctc	tgtgcctagc	tagaggattg	taaatgcacc	aatcaacatt	137340
ctgtaaaaat ggaccaatca	gcactctgta	aaatggacca	gtcagcagga	catgggcggg	137400
gccaaataag ggaataaaag	ctggccaccc	acgccagcag	cagcaacccg	attgggtccc	137460
ctttcacgtt atgggagctt	tgttctttcg	ctcttcatca	taaatcttgc	tgctgctcac	137520
tetttgggte tgcgccacet	ttaagagctg	taacactcac	caccggggtc	tgtggcttcc	137580
ttcctgaagt cagcaagaca	acgaacccac	tgggaggaac	gaataactct	ggatgtgcca	137640
cttttaagag ctgtaacact	cactatgagg	tccgtggctt	cattcttaaa	gtcagcgaga	137700
ccaagaaccc accagaagga	agaaactcca	gacacggtaa	gttattcaga	cttaggaggg	137760
cagtagcaca tagtggttaa	gcccaaagat	tctggtgcca	cacctactgg	gtgtgaaatc	137820
tggcttcacc tctgcttact	tatgtgatgt	taggcaagtt	attgcagctt	acttttactt	137880
tgtttttttc acatttaaaa	tggaaaaaaa	tagtacctgc	catcaaagaa	aatgaccaag	137940
gcaagtctca atcattttag	gaggtttatt	tgccaaggtt	aaggacatgc	acctgggaga	138000
cagttetatg cettteteca	acgatgcttt	tgagggtttc	agtatttaaa	ggggaaaggc	138060
tgagatattg agaaatacac	aattttaatt	tgagagggtg	gtataggaaa	ataatcttac	138120
atgccattgt ctggctcaga	gtatccataa	ttgtacataa	tgtagaaagt	agaaaagttc	138180
ctcttcaaag ctcatcttgg	tttaaaaata	aaataacaga	cactagaaat	aatagcttct	138240
tactctaaag cctcctatca	actattagtt	cttacacttt	agcccagtta	gtggctttgg	138300
cttactccgg tatgtctgga	caggcccagg	caagtcttag	ctcatagctt	atgccccttt	138360
cttatttgga aatgttattg	cttccttgaa	cctttcataa	gcaacttcct	ctccttcttt	138420
gttcttcctt gcacttacct	atttaggaaa	gttttaggtt	attagcaaat	tggttattag	138480
tttaagactg tgaggtccag	ctctagccaa	tggatgcagg	acacagcagt	aaggacgacc	138540

caaatgcata aaggataaat atgtctgctt ttcctttgtt caagtgtgct ctcgccattg 138600 ttccatctgt gtgtagcacc ctttctgcag aaagtaaaga tggccttgct gagataatta 138660 aatttatatt caagtgctat ttctttgtgg cactggggaa caagcatttc taacacataa 138720 gataatgtag acaatacggc aaaggaaaca atcagatatg tatttgtctc aggtaggcag 138780 agtcataact ttgagttctg tcctgtttct caacagctgt gaagataagc tatcattctg 138840 ttaaagttta cattgccatg gtaaacttta acagaaacac actttagggt aaagatgttg 138900 gggcccacaa caaatttccc tgtgggaaaa aatataaggg aggtatgtcg cctttcatct 138960 ttgtagccat cttatttagg aacaaaaatg ggaggcaggt ttgcatgacc cagattccag 139020 cttgaatttt ccctttggct tagtgagttt ggggtcccag atttattttc ctttcacact 139080 gccaaagagg ttttctctga atattaaata gtattaaagt actttgagtg agcattccac 139140 tcaacataag ctgaggacta agctctgatt ctttttttt atttctatct tttttatctt 139200 gcccaaattc ctgtctaagg ggtctgggga gtcataccct accaatgatt aactatcatc 139260 agatgggttt tatttaaccc tatatatcat gacttacttt ccaatctgac tctggcataa 139320 cattatttga caaagaagaa aatcaaaata ttttacccaa aacatgtttc tttgccgtgt 139380 tttgaaatgg gcctgcaaga ccatccattg tgggggaaaa tttgcaactg tagaaattct 139440 ctattgatat agctagatct ttttcttcca ggctctccca atcctgaaga cattaattga 139500 gagtttagca ccttttaaag gtctgaatag aaaaaacatt tgtcatctat tgtctctaag 139560 ggcaaccact atgagacttc aaaagaacct tggtctccac aatcttttat cttaacctga 139620 acatttcctt tccattaatt ccaggcaaac tcaaccattt ataaaccaga aaatgtttaa 139680 atttacctat tgcctggaac cccctccca ccactccgct cgaattgtcc cacctttctg 139740 gaccaaaccc atgtattttt caaatgtatt tgattgatgt ctcagaatca ctttagggaa 139800 tgatgtttca tgcctcccta aaatgtgtaa aaccaagctg caccccaatt cctttgagca 139860 gatattettg ggaceteetg tgggetgtgt cacaggecat ggteacteat atttggeeta 139920 ggataaatct cttcaaatat tttacagagt ttgactcctg ttgttgacaa gctattgttt 139980 tagctttatc aaatacctgg gtcattgtaa ttgctcatgt attgtagtca aacctcagtc 140040 aaagagaaac atgttgatag aagggaagga gtctgtaaga aatttagggg aaaatgtaga 140100 gagaaaaccc aagagaagaa tagttcatat ttattcagca gcctggtata tggctgcttt 140160 gatcactgcc cacagagatt ttcttaccct tgacaggcta gctcgtaggg catcagtctg 140220 teteagttga aggacaetgt taaaattete agttttttae eteetggeea getteaeeet 140280 tatcaaacgc tcctctataa aacaccccaa gaatcattct tataaggtag agacacaagt 140340 tagggtaatt teetetacaa tatttetgea teaataetag etettaaggt geatttaaat 140400

attatttgta gttgcctatt tcccacagac tgactgtgag gaagctcaca gtaaaaatac 140460 attgatagag tggcttaaat atcaagaagg cctcaaaaac caaagagaga tggggaagat 140520 aattgtacca ggaaaaggga aagatataat tattgtaatt aagcactaat tttagctccg 140580 aagacattaa ggtctgaatt gcacttactt ttcaaactca gtcactattc tacgttttaa 140640 tcctttatac aattttgtac ctttatacaa gttagaatta tattggtaat ttattcaaat 140700 cttcttttat cagcattctc agttccctta agcccaatat ttaaatgttt aaaatgtcac 140760 tccctgctag tgattttta aaggaactat tatcatttta tgttcagtac acacacaca 140820 acagacacac acacacacac acacacgagt ttcctcttta gtatatgtcc tagatcaatg 140880 tgtctggtta ctattactct tggatcttct caactctcct caccccacta caatatcaca 140940 tctttccctt ccatcacatt gaaacatctg aaacagctct cataaggaaa atcacagcat 141000 acattttgcc aagcctatct tcatcctgct tgaattcaaa gcaccatttg acatcgctga 141060 ccattegett eteteetgte etggettetg ettgeatgtt ttettatttt tetttetace 141120 tcattaaaag catcttactc actctctgtc atcttttcca ggcctctaaa tatgggagtt 141180 tctcagcatt ctgttccaga attatgattc cttatatctc taagagtaaa acacaaaggc 141240 ctgcaagact ctatgcgatc tgcaccccac tccctttctg accaggtaga tacatttcta 141300 ggtacatcag tactctcctg gatatcaata ctcagaaata cttgtctcca cttaccatct 141360 ccattttctt tctttccatt ttctctagaa cccaccatga tcatgttttc atctgaagca 141420 cgccacacca ctgaacagct gttgtcaagg tcacaagtta ctacctagtt gccaatataa 141480 agcttgatct tcggtcctcc tctcatccga cctgtctgga gcatttgaaa agttgatcac 141540 tctcttcttt gtaaaatact gattcacgtg gttctaggac accactcatt cttttttctt 141600 ttcttacctt actggtctct ctcgttctgt atcttttgct tacaccttcc ccatcttcca 141660 gaccactaaa cattgaaatt cctaagatta gtcctggatc tattttcttc tctatttata 141720 ctcatttcct gggtgatctt atccagtcac atggctataa atatcatcta tatgctgaag 141780 acttccagat ttttatctcc tctctggact tcttaccaga aatacaaatt catatattta 141840 actgccaact acacatatgc actaataggc atttcaaatg tagtatgtcc ataccaaact 141900 gctaatactt tactcaaaaa ctcgctccat ctacattctt ctccatttta gcaaatggct 141960 gctcctttat ttttgttcag ttgttcaagc caaatgcttg ggagtcagct ttgcctccct 142020 ttttattcca caccacatac caatacttca gtaattcctg tcagtttcta cctttaagaa 142080 ataaaaatca aatcaaaata acaagaaaac tacagcagaa tctaatctgg ccacttctca 142140 ccgtaccatc tccattgctt ccaccttggt gcaatcatga cctcttgctt ggatgacttc 142200 cagagtette taactggett etaactagtg taactagtet getaactgge ttetactett 142260

gcctttctac aaactactct ctatatagca aagtgattct gttaaaaagt aagtcagact 142320 atgtcactcc tctgttccaa accatccaag ggaaccgccc tcattcagag aaagaaaaca 142380 aagtetttat accagetttt aaagatttae etaatecagt eetttgttte tetgacetea 142440 tettetatae eteettetet tgetetettt etteaagtea eacteacete ettgttatte 142500 gttgaacttg aaggtattag gcatgctact accttacgat attgttattt ttgctatttt 142560 ctctacctgg aatattgttc ccacaaatag tcacatgtcc cactcccttt ctttcaggtc 142620 tttattcaaa tatcaccttc tcagagagac cttcgctgat gactttatat taaaagcatc 142680 ctgtcacttt ctaaccctat tatgctgctt tatattcttc gtagcattta tcatcaactg 142740 aaatattaca tgtttatttg tttattgtct ttcccgccta actagaatat aagtttatgg 142800 agataggatt gccactgttt tgcttactga tatatcctca atacctagaa ttctccctgg 142860 catataggag atgeteacta agtactaggt caatgeatga aatggaettt etttteagte 142920 tacagetetg tteatagatt caaataeett egaeggeaet ttgaaaaeaa tteattttte 142980 tcqttaaacc attttagtat ttqttqaqct aggcqctqaa gctqcaataa qaaaaaataa 143040 ggtatttctt gctctcatag agttagatca gtttctcact ttcttcttcc cggtttcctc 143100 cccttgccac cactcacact gaaatgcagt ccttctgtgt tatacacgtt aatacaatgc 143160 tattactcat tatgtggcca gccaagttaa aaccagagtg ggtaatttta tctccttttt 143220 ccctatacct tcaaatccag tcacttaccc tgtccaatca gttctaccta gtatatctct 143280 aagatttatc atttccattt cacttctact ggcaaataga ttccactttc tccagtctca 143340 ccacgacctt cttaggctct cataataatc ttctacttaa aaactagttc aataaatttt 143400 cctgccttct tgcctgttcc ccttccctcc aatctatttt ctacattcca gccagggtgc 143460 tettteteaa atgeaaatae gaecagtete teetetgeta actaceettt gatggttete 143520 cattgctcac aggacaaaat tcaaatatct taaaatggtg tttaagacct taaatgatta 143580 ggcacctact tacttctcta gcactatatt ttattagttt ttaagtccag ctcacatatg 143640 actgtcttta agcatcttcc cagatcttct tctattccat ttacaccact ggcacaacct 143700 gatcacacta cattagaatg agtagtgtgc ccaggagact ggcagtcttt tcaactggag 143760 tgtcagctct agatactcac tatgcaattt caaatacctc ctctgctgaa attgtgttct 143820 ctcccttccc tgacctcatt ctgtgttttc cctcctttct cttaacacct tttattccag 143880 ctagtgctgt actgctctcc ccactacaga ctgaaagctc ctggagggca ggactgtgtg 143940 cctcctgcca tagtcaggtt tccaacctgt gtaccactgg tcctggtggt ttgctcagag 144000 tagtaggtac tcagtcagta cttgtcaaat gggcagattg tgcctataaa tatttgtact 144060 catattgcat ttctgtcttt tccttttgat gatatagttt catcatttac aagatgctgt 144120

tatgatattt atgtctatta gcctttctgc taaataattg cttggcgctc cctgtttttc 144180 taaatttggt aaaaatatca taaaaaagca tttggtaaat ttctcacaga aagccaaaca 144240 cttttatgat gtgagagact tgatttgttg tatttatatc aagtcaatat tggtttaatc 144300 ttaaattcac cattcaccat cttttttgtt tctcgttatc aaaactcatt ttttatgact 144360 aatttaatca ttgactgaac tcactcaaca gttgcccata gttactaaaa gatacaaaat 144420 gatactgttt ataagcattt aggtcaaaaa tgttcaaaag aaaaatcaac taaactgata 144480 cttttaatta gtattttgag ggttgaggat ttttaaaaat ttgtttttca ctgaaactgc 144540 tttggtaaaa atcagtacaa aaacaattga ttttttaatt gtctggtttg aagagacatg 144600 ttggagtaac agaaacagtc acaaccaaat gcagcttctt ctggtggtac acttcgttcc 144660 atgatgtgga tcagttctaa atatcattcc aactattctt agattcaagt tatgatacta 144720 ttttgttctt tatatttggc tctgtttgta actcaacaag tgtcttgggt aagtcccatg 144780 agtaatagaa actgagagta agctagatca gaaatactgg atatggacga tcattataaa 144840 atgcacatgt tgacttctca aattatgtca agtgacaagg ctctttttga cacattaaag 144900 tgatctgctc tcttcaatac ttaatttatt actaatgagg gactgcaatt gcttcaaatt 144960 aagtagccta cacttatcat aagatctggc acatttctac ttctgttttt aaaagaatat 145020 ttgaaattaa aaatgtagaa aattagatgc ataaaaatgc attgtctaat caataaccat 145080 aatcattacc agctgtcaaa atatatctta aaatgttatg agctaaatta tgctgtaaag 145140 acatgcataa ttttttatag agatttagct gtatttgttg acccattgat ctcactccag 145200 tacagcatga accaaggaaa taaaagggga acagaacata atggaagaaa gaacacttat 145260 ccaggaggca agaaactcag cttaaccatt tattggctgt ctgaatttgg gcaagtcact 145320 ctccactgta tgtttccatt ttcccacctg taacatgaga tggttggacc tgagcaaagg 145380 tttctgactg cctggtagcc catgctgatt ccatgattca gcccatgctg aaaattcaat 145440 tcagttccgt tcaagtcagt tcaatccaac aatcttgagg gacagctatt gaagcagaag 145500 ttaaaaagag aaaaacaagt tttcctatac ttggctgact cactccaagg ccagcaatag 145560 gcagggccct ggcaaagtct caataacact atctggaaag ccagagccca aaggaatgag 145620 ctccagagac tctcccaaca aaccctcccc ctccctggag caaggataag aaaaacaaat 145680 teetttaeta teteetette eecettaeea ttaeteagtg teteaagttt tgtaagttee 145740 tgttttccct tccatgcagc tgtaaggtca caagctatgc ttaggttaca aaacctgtca 145800 cagtttgatt aactgccttt gttctgcttc tgtaagcctg cctgcccgcc tcacaggttt 145860 tgtgccctca gtttcctgcc actgcattaa aactagccaa ttccctttca gaagtgtata 145920 taaaagtcaa gccctgtgtt tgttcagggc tcagcctttg gatgtgaatc tgctgtgcca 145980

gtagccacct aaataaaatc ctcctgttcc acccattggt ctctctggtc ttctgattcc 146040 cacaacacta cagcaccata ttataacata atactgccaa atgtaatata atataatatg 146100 aacatgataa aagtttttaa aatcagataa gaatttgact caacttacaa tctatatgat 146160 cataaagaag ccaattcaag ggaggtagag gaatatggtg gaatagaaag cttcactgat 146220 agttccccca gcaaggacat cagattaaca gctatctact cagaaaacac acctttataa 146280 gaaccaaaaa taaggtgagc actcagtacc tggttttagc ttcatatcac tgaaagaggc 146340 accaaaaagg tagaaaaaac agccttgaat tgctgatgcc acccctcctc aatctctggc 146400 agtggaatcc tggtacagag agtatctctg ggcactgggg gagggagaac acagcaattg 146460 tgaagcattg aactcagtgc tgctctgtta gagcagaaaa gaaaaaccag accaaactca 146520 gctgatgcct gcccacagag ggagcattca aatcagcctt agccagaggg gaatttccaa 146580 tcccagtggt tcaaacttga gtgcctgcaa accttgccac ccagggccaa agtgctctta 146640 gtctctaact aaacttgaaa ggcattctag cccataagca ctgcaactct taggtgagtt 146700 caagggetta actaggeeta gagataatgg attagaagge cacatgacat actgtgacae 146760 cagctttggc aggcaaaatg tgctggcatc acccctcccc taatcccagg ctgcacagct 146820 cacageteca aaaaagaeee ttttetteet ettgaggaga gtagagagaa gagtggggag 146880 gatcgtttct tgcacctgaa ataccagctt agccacagca ggatatggca ccagtcagag 146940 tcaagaggcc cccattccag gccctatcag ccagatgata tttatagata taccctgggc 147000 cagaagagaa cctatttgaa gaaagggatc cagtcctgct agcatgggct ctgaataacc 147060 agcagtaata tccaggtgct atgctacatc aagggttttg gtgagcctct gagacttgct 147120 ggcttcaagt accaacatca ccacaggggt gtagagcagc aagtcaagac tgtttactct 147180 tgaatgacat ttctggacct gccctgtgac agaggggagc gcactgccct gaaggatgag 147240 teccaggaca gacageacte accaeaaget gaettaagag acettgagae ttaagggaaa 147300 atcagtggta gtctggcagt actccttgtg gccaggggtg gctcctctgc ctttggaaaa 147360 gggagggaag agtgggaagg accaaagcaa atatggacaa atgggatcac gtcaagttaa 147420 aaagcttctg cacaaaagtt acaatcaaca aagtgaagag acaacccaca gaatggaaga 147480 aaatattggc aactaccctt ctgacaagga attaataacg agaatatata aggagattaa 147540 acagcactat agaaaaaat ctaataatct gatcaaaaga tggacaaaat atttgaatag 147600 atatttctca aaagaagtca tacaaatggc aaacagacat atgaaaatgt gctcaacatt 147660 agcatcagag aaatgcaaat ataaactaca atgagatatc atttcacccc aaatgtcttg 147720 gatatggctt atatccataa aacaggcaat aataaatgct agcaagtatg tggagaaaag 147780 ggaactettg gacactgtag gtggtaatgt aaattagtat aacaactatg aagaacgttt 147840

tgtacgtttc taaaccaagt gatttgagaa tcacaatgac caagagagaa atttcaactt 147900 ggagactcag aggaagacac atatattett teagtgatea tttaetgaac tgeattgtgc 147960 taagcagggg taaagtgatg gataagaaga aacacttgcc tttcttcaca aaaccaatga 148020 ttctatccct aaaaatatgg gcacatgatt ttgcatttaa gtgtaaagag ttcaagaact 148140 ctttggaaat ttattcttac atcccccagg cacatggact ccagattcaa acctcctaat 148200 ttagttgggg gttttattta aaaaggtagc atttgaataa agtcctgaaa aatggttaga 148260 atttcagatg ggagcaaaga acagtgttct tggactttga acctgtgatg gttattatta 148320 aatgtcaact tgattgtatt aaaggatgca aagtattgtt cctgggtgtg tctgtgaggg 148380 tggtgccaaa ggagattaac atttgagtca gtgaactgct agaggtggac ccaccctcaa 148440 tctgggtggg caccttctaa tcagttgcca acatggctag gataaaagca acaatacgtg 148500 gaaagactag actagctacg tettetggee tecatettte teetgtgetg gatgetteet 148560 gccctcgaac attggacttc caagttcttc aacttttgga ctcttggacc tataccagtg 148620 gtttgccagg ggctcttggg cctttggcca cagactgaat gctgcactgt cggcttccct 148680 acttttgagg tttggaactc agactggctt ccttgctcct cagcttgcag actacctatt 148740 gtgggacttc accttacgat cgcgtgagtc aatattcctt aataaactcc ctttcatata 148800 gccatctatc ttattagtcc tgtccctcta aagaaccctg actaatacag aactcatctt 148860 ttccagtctc ctggctcata ctgaccactt gcttttgcac gtttgttgcc ttgggacaaa 148920 gtgcctcatt tcttttcttg acattatcca tgtgttcctt gaattccgcc tgcttgcctg 148980 tettetgaat ceagetettt ageaacetea ggeetetgtg etateetagt etgeeaceet 149040 ccatctatgc atcaatgccc tcatatctag ttcctacttt tcattgctaa caaagtcttt 149100 ggtctcccat tctaactcct atgttggctc tatgatgcac tgccaacaaa tggcccagtg 149160 gtacaagtga acatagaggg aagaggtatg tatgagcaga agacctctct cagatccaaa 149220 gcctattctt aaaaagccag cctgacctat cagttctgct tttgcactgc cccaggtgtt 149280 gatctcttat gtctgtatag gactttatgg ctcacggagt agtagactaa ctacagtcac 149340 aaataaatcc caaatctcag tgtgttaacc caataaagat tagcattttg ctcatgcttc 149400 cgtccgatgc aggtaggcag agagggggct cagctccaag catcatttgg gtgcaagtct 149460 gaccacgttc cacacatggc tcccaagact gctctgggaa ttgacattga gatggcaaac 149520 agggaagaga gtcagtagca aggaaagtct ggcaggaact aaaacacatc ccatttcact 149580 ggccagaaca caactatgtg gcctttctaa ttgcagtggg gaggctagga aaggcagcct 149640 agctgtgtgt tcaaggggaa agtgaaaaga tgttaacaca tatcaactct gccacgcatg 149700

gccactacca tgttttgtgt gtgtgtgtgt gtgtgtgtgt gtgtgttttg agacagagtc 149760 ttgctctgtc acccagactg gagttcagtg gtgggatctt ggctcactgc aacctccacc 149820 tecaggaete aagegattet tetgeeteag teteetgaat agetgggatt acaggegtge 149880 accaccatgc ccagctaagt tttgtatttt tagtagagat ggggtttcac catgtttccc 149940 aggetagtet tgaacteetg aceteaagtg atetgeeeac ettggeetee caaagtgttg 150000 ggattacagg cgtgagccat ggcacctggc cgcctctctt attttatcct cctaagaact 150060 ctgggaggta catggcaata atttatatcc tctgttaata gatgaggcac taggatcata 150120 ttggtgaagt catttgccca aagccacaca gctggcaaat ggcagaatct atggtcaaac 150180 tcagtctgtc tgctctagta ctcaaactcc tcttatacaa catgacctat aggttatact 150240 aaaatataat gcctgcatgt cagaggaatt atatcaaagt gaaatttggg gatgacttac 150300 atcagaaata ttttaaggtg ttgtaagaat gcagattccc tcgttccaat ttatacctaa 150360 tcactgattc agcatctaga agggtcggct ggagaatctg cagatgattc ttatatactt 150420 gatacagttt gagacctcgc tgccttaaga ctttatatga tttttcacct gtatatttaa 150480 aagagaacaa attcatatgg aaccaaaaaa gagcctgcat tgcccagtca atcctaagcc 150540 aaaagaacaa agctggaggc atcacgctac ctgacttcaa actatactac aaggctacag 150600 agccctcaga aataatgcca catatgtaca actatctgat ctttgacaaa cctgaaaaaa 150720 acaagaaatg gggaaacaat tccttattta ataaatggtg ctgggaaaac tggctagcca 150780 tatgtagaaa gctgaaactg gatcccttcc ttacacctta cacaaaaatt aattcaagat 150840 ggattaaaga cttaaatgtt cgacctaaaa ccataaaaac cctagaagaa aacctaggca 150900 ataccattca ggacataggc atgggcaagg acttcatgtc taaaacacca aaagcattgg 150960 caacagaagc caaaattgac aaatgggatc taattaaact aaagagcttc tgcacagcaa 151020 aagaaactac catcagagtg aacatgcaac ctacagaatg ggagaaaatt tttgcaacct 151080 actcatctga caaagggcta atatccagaa tctacaaaga actcaaacaa atttacaaga 151140 aaaaaacaaa caaccccatc aaaaagtggg caaaggatat gaacagacac ttctccaaag 151200 aagacattta tgcagccaaa aaacacatga aaaaatgctc atcatcactg gccatcagag 151260 aaatgcaaat caaaaccaca atgagatacc atctcacacc agttagaatg gcgatcatta 151320 aaaagtcagg aaacaacagg tgctggagag gatgtggaga aataggaaca cttttacact 151380 gttggtggga ctgtaaacta gttcaaccat tgtggaagtc agtgtggtga ttcctcaggg 151440 atctagaact agaaatacca tttgacccag ccatcccatt actgggtata tacccaaagg 151500 aatataaaac atgctgctat aaagacacat gcacacgtat gtttattgtg gcactattca 151560

caatagcaaa	gacttggaag	caacccaaat	gtccaacaat	gatagactgg	attaagaaaa	151620
tgtggcacat	atacaccatg	gaatactatg	cagccataaa	aaaagatgag	ttcatgtcct	151680
ttgtagggac	atggatgaag	ctggaaacca	tcattctcag	caaactatcg	caaggacaaa	151740
aaaccaaaca	ctgcatgttc	tcactcatag	gtgggaattg	aacaatgaga	acacatggac	151800
acaggaaggg	gaaaatcaca	caccagggcc	tgttgtgggg	tggggagaag	ggggagggat	151860
agtattagga	gatataccta	atgttaaatc	atgagttgat	gtgtgcagca	caccaacatg	151920
gcacatgtat	acatatgtaa	caaacctgca	tgttgtgcaa	atgtacccta	aaacttaaac	151980
tataataaaa	aaagacacta	aaataaataa	ataaattaat	taattaatta	aaagagaaca	152040
aattaaaggt	ggttatagac	agaagcattt	tcactacttt	ttaatttggt	ctctgatgga	152100
agacctctaa	atctgacatt	gatgataaaa	tattcatttg	tatttcgatg	tttaaaaaca	152160
aaaggatttc	tttctaaaaa	tagtcatgta	ggggtagggg	agagcaaggg	tctatagcaa	152220
aatcatcatt	caggtggaga	gaagtttaat	aaaactagct	atctctattg	gcaaagtgac	152280
tagagacgtg	aatcacattc	tttggcaatt	caagtaaaaa	aatatttctt	tcttttgaat	152340
ttagagcttt	atgtgtaatt	ctgagataat	gctttaaatt	aaagataatt	ttagaatcaa	152400
tttagggaat	aggttctttc	cccgtcacat	tgcccaaata	ttgaatacag	attttacttc	152460
acacatagca	taaatattgt	acggtctgtg	acatcaggag	tataaatatt	tcataattca	152520
gaaacagata	cagtaatcac	tcatccagtt	taataagctt	ctcaatttgt	agctttgcat	152580
tccatcccca	aaatgtgaga	ctgctgataa	gcctcttaat	tatattttat	aatatttcat	152640
tttagtgtaa	aaattatcca	taatatttca	ctttcattca	gaaatcacta	ttaatttaag	152700
gactgttaag	taagctatct	aagagcttta	taaattactt	ggataatcaa	aatatttgct	152760
tttcacactt	caaggtggtt	ttacacatta	attgtattaa	ttctaacttt	aggcttaaaa	152820
tatccttcta	gtaattataa	tttagcgtga	attatttagt	ctttagaaga	atcacacata	152880
gagaaatgct	aagtcatcaa	atggtactca	tgacttctta	tggtagtgac	aatcattaac	152940
aagttacctc	gaatggttct	attttctgcc	ttagtagata	caggtggttt	gttggtacaa	153000
ccgaggccac	attgggggtg	tggaggggcc	actcttcatc	ttttctgaag	agggtgaatg	153060
attgggcatc	ctgatttgca	gaagactgag	gccagagttt	atttgtagca	caagctaaaa	153120
ccccagtttt	ctgcctggtc	ctgcttctta	caaattgagg	ccttagcatt	tccacttggc	153180
ttctaacagc	ctgataattt	tgaaggggtt	ttgggatggc	ctgattattt	ccgagtcagc	153240
atttgaggct	atcaggtctg	tttgcccatt	tccactcttg	caaagataca	cctgaataca	153300
aatgtaaata	tttcagtaaa	ttttatagct	gagttccatt	tggttctagt	ttatttgaat	153360
cttacgtgaa	gttggagagg	gcactatcta	ggaactgcac	tgtagtaaaa	tgtaataatc	153420

aagagcaaat	acttttaaat	taaaaaggct	tgggctcaag	tcatggttct	gtcatttacg	153480
aacgaggtaa	ccttgaaaaa	tttacttaat	ctctctgage	ctccttttct	ttgtgtaaat	153540
ataagtgatg	atagaatcat	aatatctatc	taataaagct	attactgcaa	ttaaggatct	153600
gtcttctctc	: ttaaggaatc	tatccatctg	tccatataca	catataacac	acacacatat	153660
agtgcttcac	atagtacttg	gcacgctata	agcactgaag	aatgaactat	ggcctggtgt	153720
ggtggctcac	gcctgtaatc	ccaacacttt	gggaggccga	ggtgggcata	ttacatgagg	153780
ctgggaggtc	aacacctgcc	tggccgacat	ggtgaaaccc	catctctact	aaaaatacaa	153840
aaaatgagct	gggtgcagtg	acatgtgcct	gtaatcccag	ctactctgga	ggctgaggca	153900
ggagaatcac	ttgaatccag	gaggtggaag	ttgcagtgag	ctgagatcac	accactgcac	153960
tcccgtctgg	gctacagagc	aagactttgt	Caaaaaaaaa	aaaaaaagaa	tgaactgtga	154020
ctacataggc	taagtgtaat	cttgtggacc	agaagaagga	aggtccagga	cagtaacttg	154080
aagcgtaacc	ttgactcagc	ttatcactca	ctagctctgt	gacctatggt	aaaaataatt	154140
aaattatctg	agcctctttc	tcctagctgt	aaaatggggc	taagaacagt	attgattaca	154200
caggtacata	cgatacttaa	cgtaatgtac	ttagaatagc	accggacaca	tacttaggac	154260
ttattagatg	ttagtacaga	gccaagagaa	tgtgctttag	aaggaaaaaa	tgggccgtgg	154320
cgtcaagagg	cccagttgaa	tatgaactgt	gaagtatcca	ttagctttag	catcaaggat	154380
gatgttgatg	actttggagg	aaactttttc	agtgaagggg	caggcacagc	ggggagaatg	154440
aatgagttgg	cagaaaggaa	gtgcaaaccg	taagtatagc	aacaacaaca	acgactacta	154500
ccactaccat	atatgaggtc	ttactatgag	tcagacttcc	ttaagcattc	ctcaggaatg	154560
atgccattca	cactatttct	acatcttaca	gatgagaaaa	ctgaggctca	ggaggcttaa	154620
gtaacatggg	cagtgttgca	gttagcaggt	gccataactg	gattacaaac	acaacttctt	154680
ttcacacctc	catgctagca	tagtgaaatg	ctagaaagct	ttgagacatt	tatttaacag	154740
cttccacaga	ttaggagaaa	ctgtgtattt	tagttttctt	agcaccaggg	caaggagaaa	154800
acacataaaa	aagtaacctt	ctaactcaaa	tagctgcatt	tcaaggctgg	ggctttgaac	154860
ccagggttct	acacatttgc	tgggatgact	aaaacttttc	agattccctc	taatgatgtg	154920
attgaaagac	agtgctactt	tagttatggt	gccccaaact	gacaatgttt	gaaacactgc	154980
caaacgttta	gttggaatca	cagagaacag	tcagggaaaa	aaaaaaaaa	aaaaaaaaa	155040
actcatagta	aagattttgc	aaaaatgagg	cacagagtca	ggaaacagct	gtgttttacc	155100
catttatatg	cactcctgct	tccttaatgt	ggatggatct	ttctatttga	acttcctcat	155160
gcagttcctt	cccagtttac	tccagtcact	gtctccattg	ggtacccagt	cacageette	155220
tagtggcaaa	ggtctacaag	gatgcaatca	caatgacaag	cagaaagtca	ctgggaagct	155280

gcagaaggag agggcagaag agctgtggtg aactgggtac agacttcatt ccactttatc 155340 cacccactat catgccacac cctaaacctc ataatcgtcc gcaattgcca acttgaaata 155400 ataactgcaa acceteetet atggeetgtg teagaaagta gagagaagea gagaetgaaa 155460 tcagactgat cacagctgtg ccactgctca gctctttgac cttgcacaca caatttgacc 155520 attgagtatc ttagtttcat cccatataaa atataaaaaa taacaatata tactcttagg 155580 gttattttta gatgtttgca tagaacagtg gctggattat agtgagtact agctcttgct 155640 actattgttc tctctctcct tcaacacctg ctttttataa cccatttgat acctcccaac 155700 tttagacttt ttcattttct cccaaaccat cagttttctt cagatttcac cccatcttct 155760 attttaatct aggtactaga tttatcttct caattagtta ctgtctaaac ccttcaccgc 155820 cttggatect teactgteet gegtateata eggeaaaatt ataaceetgg ateaateeag 155880 ctgttcacaa ttgtctggcc tcctgttcca tgcccttcct tcctcaatca tagtcaaaga 155940 ggtcttcact ctgaggcaga tcccagttct tatccctctt caaataattt aattcacaag 156000 tgatcccacc ttctgtatct tcaacttgtt tactaatttt ctatttcttt ctcatcagaa 156060 tttacaatgg cttagtttct cctgctatgg aacaaagtgc aaaacaccct ccccactacc 156120 atgtgtctct ctctagctac caacctagga cagcaatact tctagatttc acatttctag 156180 aatctaaaaa gagcaagtta cacaatgttg tattcacatt ctcattagca ttagttcctc 156240 agttaacagt ggtgtgcatt ttgcctttcg ttttttctga cgttgtcatg gcaaagtcac 156300 ctgtgcctta tgatggtatc aagggtagat cgatatggaa aaatgtttaa tctcccccat 156360 agggtacagt ataacaacac ctggcatgaa gtagaagctc agtaaatgct tcttagtagg 156420 aaagaagatg cacagtccaa cttattaaaa caaaaatgac ttgcaatgtt atttgtcttg 156480 ggcccgagtt ggcatatgaa attcaggaag aaaaaaacct ctcactggaa aaaatgggga 156540 ggctggagct gacttttatt aggtagcaac aacaaatggt ggcagttggc tttttaacgt 156600 tattttcatt atatattcgc gagtaaaatg ctaatttctt tagaaacaga agtatagaga 156660 gtggcttgta atcaagttga atgcattaag agggatgccc aggaaacttt gtgaaccaca 156720 gctgaagaca cactccttga aagctctaaa attttgtggg ggatgcgcca tcccctttca 156780 ccaattattc ctatettete tecettgeec cetteteaga tttgettget teettttac 156840 tcattgacat tcgtgagtgt tcatccatct attcatggag aggataccta ggctcagatc 156900 ccctgtgccg gtgccacccc agctcctggg aattttggct gctggcagct cccagatgct 156960 tttctcagct ggaaattgcc ataggcctcc cagacatgtt ttgccctggg atacttcctt 157020 tttagggact ggatgacgga ctacatctga gatacaaagg ccggtcagcc tgatacaaag 157080 gatgggtatt tttgcttcaa tttggaacaa ctttaaaggg ccatctcagc cctagatctc 157140

ccagtgaatc agatgaggca ctatttgcaa cctgattgca ggtcagaatc tctcactgct 157200 aaccctgcct ttctcaccct ttacaggcct gtcttttgtc agtgacataa tgcactcggc 157260 aattaagaag atgcctttgt tcaggctatt aaaatagtaa atgttaaaag acaaaattac 157320 aaaaaaaagc atagttttgc agaccttaat tggctttaat tgtgagtgca taatcagact 157380 ctactgaaaa tggttcaaaa tcctccaccc taccacacgt gcaggtcata tttatactca 157440 gagtaaatga agtgacatac aaaaataacc tgattggctg ccctctgcag ttgccttata 157500 tggtcatatt ctggcagctc tcagcctcat tggctggcca ttcagctgct atgattgact 157560 gagacttggc tacttgttgc aagagggtac agattaggct acaatctgtt tacacatcaa 157620 gttaggttac atttcactat acattgtaaa acttttagat caaacttaaa atacgatgga 157680 ggcagctttt aggcaaatct tagttcaagt taacaaggga ctgtgtatta ataaaaaagt 157740 tetcaaagee aaagaaggag gaetggtgtt ttatggaggt aggagacaag ggaateatet 157800 acatcattga ggagtcctgt aggggcaagt gaaagataga ggtgggtctt gtcttccaat 157860 acgtaaacat gtgagggtgg ggtggtccta agtggttagc catttccaga acagaaaagg 157920 gtggtgatcg tgtcagtggt agaggtggtg ggtgatggtg gctgtggttg tggtggttgt 157980 ggtagacttt ctatcttcca tcgccatctg aaactcatgg ctcaggtgca gttccacact 158040 gccactetca agagetttee etaateaace teetgcaage aactetegae eecagagtet 158100 gttttcaggt aacccactct gagaactctc tgccatccgg cagtatgaac caggtttgaa 158160 cttctctgtt tagaggcctg agcaccagaa atctacagaa ccgtacgctt atgagacaat 158220 ccgtgagatc ctgggtagag gttgagattc tagcccaaag ccttcgcatt tctttgggtg 158280 caatgagact ctggctgtga gctgggctgc ttcacagcca agctgggact ctgaattgga 158340 atctttaacc cagcaatgcc ctagcactct gaagatgata aagcatctag atgtaatacc 158400 cttggttctt ggtttttggt ttggacctag ggccttgtaa gatgggccat tgatgacagt 158460 gaaacctctt gcctctggct tcgagggtgg caacctgggg aagataaaac tgggaagaat 158520 gtagtggacc ttgcttgaag cctacaacta aaagttttgt ggggagcact agaaaagcgc 158580 cccaagatat acaaagagga cattttggaa attgtagctt aattgccagc agtcaggctg 158640 atagaggttt gagcttccat gctttggtca tgaatagtaa atgtaatctt tcaggctggt 158700 gaagtctggg atatcggtgt tacaatggta tctttaaata ggactcatta aaataatagt 158760 gttgtttctt ggcaagtgtg gtcacactta aataatatca aagatgagaa gactgttata 158820 gcaggatatg caggtttgtt acataggcaa atgtgtgcca tggtggtttg ctgcaactat 158940 cagcctatca cctagatatt aagcctagca tgcatcagtt atttttccta atgccttctc 159000

tecetecaca eccecacece caacaggeee cagtgtgtat tgttececte actgetgtgt 159060 ccatgtattc tcattgttca gctcccgctt ataagtgaga acatgaggtg tttggtttgc 159120 attagtttgc tgaggataat ggcttccagc tccatccacg tccctgcaaa gcacatgatc 159180 taatteettt ttatggatge atagtattee atggtgtata tgtaceaeat tttetttate 159240 ttgtgtatca ttgatgggca tttggattga ttccatgtct ttgctattgt gaatagtgct 159300 gcaataaaca tacatgtgca tatatcatta taatagaatg atttatatcc ttttgggtat 159360 atacctagta atgggattgc tgggtcaaat ggcatttctt gttctaggtg tttgaggaat 159420 tgccacactg tcttccacaa tggttgaact aatttacgtt cccaacaaca gtggaaaagt 159480 gtttctattt ctctaccacc ttgccagcat ctgttgtttc ctgacttttg agaagtgtct 159540 ggtcatgtct tttgcccact ttttaatgga tgatatggta tggctgtgtc cccacccaaa 159600 tctcatcttc agttgtagtt cccataatcc ccatgtgaca tggaaggaat ccagtgggag 159660 gtaattgaat catggggatg gtttccccta tgctattctt gtgatagtga atcagttctc 159720 atgaaatcta atgatattac aagtggcttt acccatcgct cagctctcat tcttctctct 159780 cgtgccgcca tgtgaagaag gatgtgttta cttcccccgt tctgccctga ttgtatgttt 159840 cctgtggcct ctcagccatg caaaagtgtg agtcagttaa acctcttttc tttataaatc 159900 atccaatttc agatatttca gatatgtctt tattagcaac acgagaatgg actaacacga 159960 tggggttttt cctgtaaatt tgtttaagtt ccttgtagat tctgaatatt agactttgtt 160020 agatgcataa attgcgaaag ttttctccca ctctctaggt tgcctgttgg ctctgatgat 160080 agtttatttt actgtgcaga actcttcatt taattagatc gtatttgtta atttttgctt 160140 ttgttgcaat tgcttttggc aattttgtca tgaaatcttt gcctgtgtct atgccctgaa 160200 tggtatcgcc tagattttct tttacggttt tcatagtgtt gagttttata ttgaagtctt 160260 taaccaacct tgagtttatt tttgtataag gtgtaaggaa ggagtccggt ttcaattttc 160320 tgcatatggc tatccaattc tcccagcacc atttatcaaa taggaaatta ttttcccatt 160380 gcttgttttt tgtcaggctt gccaaagatc agatggttgt aagtgcacaa ttttatttct 160440 gagtttttct attctgttcc attaatctat gtgtctgttt ttataccagt accatgctgt 160500 tttgattatt gtagccttgt agtattgtat caagtcgggt agtgagatgc ctgcctccag 160560 ctttgttcct tttgtttagg attgtcttgg gtatacaagt tattttttgg tttcacatga 160620 attttaaaat agtttcttct catgctatga aaaatgtcaa tggtagttta atggcaataa 160680 cattgactct ataaattact tcaggcagta tggccatttt catgatattg attcttcta 160740 tccatgagca tggaatgttt ttccacttgt ttgtgtcctc tctgatttcc tttagtagtg 160800 gtttgcagtt ctcctggaag aggtccttca ctttccttgt tagctgtatt cctaggtatt 160860

ctattctctt tgcagcaatt gtgaatgagt tcattcatta tttgctctct gattgtctgt 160920 tgttgtgtat agaaatgctt gtgatttttg cacattgatt ttgtatcctg atactgtcct 160980 gcagtagctt atcagcttaa gaagcttttg ggctgagttg atggggtttt ctagacatag 161040 gatatgtcat ctgcaaaaat ggacaatttc acttcctctg ttcctatatg aataccattt 161100 atttctttct cttgcctgat agccctggac agaacttcca atactaggtt taataggagt 161160 ggtaagagag ggcaccettg tttcgtgcca gttatcatgg ggaatgtttc cagctattgc 161220 ccatttagta tgatatttgc tgtgggtttg tcataaatgg ctcataattt tgaggttcct 161280 cttcaatacc taatttatca agagttttta acatgaagtg atattgaatt tgattaaagg 161340 ccttttctgc atctattgag ataatcatgt gttttttgta tttagttctg tttatgtgat 161400 gaattatgct tattgatttg tatatgtgaa accageetta cattecaagg atgaagetga 161460 cttaatcatg gtggattagc tttttgatgg gctgctggat tcagtttgcc agtattttat 161520 tgagaatttt tgcattgatg ttcacaagaa atattggcct gaagttttct tttactattc 161580 tatetecaca aggitetaat gieaggataa tgetggeete ataaaatgag itagagagaa 161640 gtccttcctt ttcaattttt tttgaatatt ttcagaagaa atggaaccag ctcatctttg 161700 tacctctggt agaattcagc tgtaaatcca tctggtcctg ggcttttttt gtttttttt 161760 ttttggttga caggctattt attactacct caatttcaga acttgttact agtctattca 161820 ggggtttaac ttcctcctgg ttcagttttg ggagggttta tgtgtccaga aatttatcaa 161880 tttcttctgg attttctagt ttatttgcat ggaggtgttt atagtattct ctggtggttt 161940 tattttttgg gggggtcaat ggtgatattc cctttatcat tatatattgt gtctatttga 162000 tttacctctc ttttcttctt tattagtcta gctagtgttt ttttttttt tttttttt 162060 tttttttttt ccagaaaacc agctcctgat tcattgattt ttttaaagaa tttttttgtt 162120 tetetateae ettaagttet getetgaget tggatatttt ttgtettetg etagetttag 162180 ggtttgtttg cttttggttc tgtagttctt ttagatgtaa tgttaggacg atgatttaag 162240 atttttatag ctttttgatg tgggcatttt gtgctataaa ttttcctctt aacactgctt 162300 tagctgcatc ccagagatcc ttgcacattg tctctttgtt ctcgttagtt tcaaagaact 162360 tettgattte tgeettaatt teattattta eecaggagee atteaaaate aggetgttea 162420 atttccatat agttgtgtgg ctttgagtga gtttattaat tttacgttct aatttgattg 162480 aactgtggtc tgagagactg ttatgatttc agttcttttg catttgctga ggcgtgtttt 162540 actttcaatt atgtgatcaa tgttagagta agtgccatgt ggcactgagg agaatgtata 162600 ttctgttatt tcagggggaa gagttctata gatatctatc aggtccactt gattcagagc 162660 tgagttcaat tcctaaacat ctatgttcat tttctgtcat ctaatattga taatctgtct 162720

aatattgaca gtggggtgtt aaagtctccc actattattg tgtggcagtt taagtccctt 162780 tgtagtttcc tgtgaacttg ctttatgaat ctgggtactc ctgtattggg tgcatatata 162840 tttaggatag ttagctcttc ttgttgaatc gaacccttta ccattatgta atgcccttct 162900 tcgtcttttt tgatcttggt tggtttaaag tctgttttat cagaaactag gattatgacc 162960 cctgcttttt tctatttttc atttgcttgg taaattttcc ttcattcctt tattttgagt 163020 ctatttgtgt cttggcacat aagatgggtc tcttgaatac agcacaccaa taggtcttga 163080 ctctttatcc agettgttat tctatgtctt ttaattgggc catttatcat atttacattt 163140 aaggttaatg ttgttatgtg tgaatttgat tctgtcatca tgatactggc tggttatttt 163200 gcagactcgt ttatgtagtt actttatagt gtccttggcc cgtgtacttc agtatgtttt 163260 tgtaatggcc ggtagcagtt tttttctttc tatatttagt gcttccttca ggagctcttg 163320 caaggcaggc caggtggtga tgaattccct cagcatttgc ttgtctgcaa aggattttat 163380 ttcaccttct cctataaaac ttagtttgtc cagatatgaa attctgtgtt ggaaattctt 163440 ttcattaaga atgctgaata ttggccccca atctcttgtg gcttgtaagg tttacactga 163500 gaggtccact gttagtctga tgagcttccc tttgcaggtg acctggcctt tctctctggc 163560 tgcccttaac attgtttctt tcatttcaac cttggagaat gtgatgatta tgtgtcttgg 163620 ggtttatett eteagggagt atettaetgg ggttetetgg attteetgaa tttgaatgtt 163680 agcctgtctt gccaggctgg ggatgttctt ctggatgata tcctgaagtg tgttttccaa 163740 cttggttcca ttctccctgt ctctttcagg taccccaatt agtagtaggt ttggtatttt 163800 tacataatca catagttete agaggttttt tteatteett tttattetgt ttttttttte 163860 ctctaatttt gtctgactgc cttgtttcag caagatagtc atcaagctct gatatttttc 163920 cttccgcttg gtcacttcag ccattgatac ttgtgtttgc attgtgaagt tctcttgtgt 163980 ttttcagctc catcaggtca cttatgttcc tctctaaact gtttattctg gttaacagct 164040 cctataatgt tttatcatgg ttcttagctt ctttgcattg ggttagaaca tatcccttta 164100 gctcagtgaa gtttgttatt acccacattc tgaagtctcc ttctctcaat tcatccatct 164160 cagcctcagc ccagttctcg gcccttgcag aagcagtgtt gtgatcattt ggaggagaag 164220 aggeactetg getttttgag tttttggeat ttttgegttg attettete atettttagg 164280 atttatctac cttcaatctt tgaggctgct gacctttgga tggggatttt atgggggttt 164340 tttcattgat gttgctgttg ttgctttctg tttgttcttc acgtagcaat cccaccactc 164400 ttccccaggg ctgctgaggt ttgctggtgg gtccacttca gattctattc atctgggtcc 164460 ctcccacaac ttgaggtatc accactgaag gctgcaaaac agcaaaggtg gctgcatact 164520 ccttcctcta tgagctctgt cccagaggtg cactgacctg atgctgacaa gaactctcct 164580

gtatgaggta tctagaggcc cctgttggga ggtctcaccc agtcaggagg aatgggatca 164640 gggacceact taaataagca gtctggttgt cccttggcag ggtgggtgtg ctgtgcgggg 164700 tgaatctccc tcttttgggc tgtctttact ctccatagct ggcaggcaga gtaatataaa 164760 attttaagac aattattatt gttcctgtaa aggctactgg gagttcaact ttgtggtcag 164820 gcatttttat tttggagtct ggcagatctg tgtaacttca gactagattt taaccagtgg 164880 ggaagccagg gagaagagaa caatttctag ggacttcagt cccccacat atgatgtctc 164940 aatagcccta tggtccacaa tccaacccat acttaagaat taatgaaaac taattgcttg 165000 atatgtgaat ggaacctcaa ggcaggtttt ctaatccaga gaaaatttta ttaaaaatgt 165060 aaaggatggc cagtgacgtt tacatatgta actaacctgc acattgtgca catgtaccct 165120 aaaacttaaa gtataataat aataataaaa gaggaaaaaa aacaacaaaa acatatgtaa 165180 ctaacctgca cattgtgcac atgtacccta aaacttaaag tataataata ataataataa 165240 aaagaaagag gaaaaaaaaa aacaaaaaac aaaacaaaac aaaacaaaaa tgtaaaggaa 165300 tatacatgcg tacactcaca caggcaaccc aaaattaaaa cacaaacaaa caaacaaaca 165360 aaaatcactg agtaaaaaca gtagattttc agacaaattt agcttcaaaa taagaaagtc 165420 ctttagccag cttctaccca cacagettac tcacttttgt gtttcttctc tactcctcta 165480 ccccaaacac atttttgcac aggggagtaa aggtctaaac ccttctgtat acagatgtgg 165540 tetecttaac tagetatatg taacttetet atgeeteaat tttecaatet gtgaagtgga 165600 aaaaataaga aacatttaat gagatettee acatatggtg ettaaagtgg gtgacceatt 165660 gtcagcatgc atgtatatgg aaaaatacag tattagaatt agatttttta taggttttat 165720 aaaatacctg gtaatgtatg tcatttatac taaaacattt gttgcatttt ttatatactt 165780 aaaggtagag tgagaggaaa atatttetet etgtetette etetgagtet ggaatteett 165840 ctacccatct gaatctggaa tcacttgatt gcaaggaaca aaaacagaaa tacttcagaa 165900 gageteaaaa gagaagaatg gatttattaa taaggaaate teetggaace caatttagga 165960 tgcacatatt ttacctggat tacttaattt aatgccctaa cataattagt caatattgtt 166020 tccattttaa agataagtaa aatgaaacac agagaggtaa tatagcttac tctttaaaaa 166080 taatcatttc cttattgttg gaattttcag ttgttttcat atgtttgtta ttattctaaa 166140 aacttcagga aatatttatg tgtgtattga ttttttattt ttaagtaatt ttgtcagaat 166200 aaatcctgaa gatatatatt atttagacaa agggtatgag cttttcaaca actcagtatg 166260 tgttctgttt tttgtttcat gaggtatttc cattaactaa gaaatagcct attattttgc 166320 caaagtagag atgctattgg cagcacttac taattgttta acactcgaat atattggatg 166380 ataaacattg gtattgaatt gtctgtgggc ttttcatcta gtgtatctat ttactcttcc 166440

tgattatett geatacetee tgagtacagg tettgteett geatgattea tacggteage 166500 ccctaagtca ggcatctcca atctctggag tcagagatct gcccctcat tgtggtagat 166560 tatcttctga agttttccca cagacacttt taggaaagaa atttgactgg aaaaatggaa 166620 acgttccact tgctttccca gctggttttg attaattata aggtagaata attataagtg 166680 taattaggtt attttgtctc tttggaataa aggttcagta ggaagaggag tgcagtaaga 166740 agagagaaat gatagcagtg ataacaatga taaagttggt gactgctgga ctggaagtga 166800 ggggtgatta catttette atttetetag etgagettea ttetggaate agaatatgaa 166860 catttggatt aatcattaca catgagaagc aaccactgag aatatactaa tttgccatta 166920 attcaacaaa tatttattaa gtaactctgt tgtgctagga gcgggttgtg gggagggagg 166980 agagactgct ctagcacaca cagtatgtcc agaatgaaaa cgaagaaaat aatatttcac 167100 tgcatgtagc agtctctatt aggaggataa cattaaggaa tagcaaggta agatgacatg 167160 cctaaggtca gactcctaaa aggtattaga gttggggttt taaatgaaat ctatctgact 167220 cccccttttc ccctaaagga cagtaactcc tagtgtcatg agaaaaataa tatacaatta 167280 aagggctatg agagtttagc agaggaattg attaattctt ttccaggagt caggaagggc 167340 ttagtgggaa cgtttaaatg ggacccctga tggatgagta gggtttgatt ggcaaggggt 167400 aacatgtagg tgggggcggg gggtgaaaag gctgatgata aaggttgaac agcagtatga 167460 gcaaaagtaa tggagtatta ttaatgtgtc tgaggttttc aaagcaagag cagtgtatgg 167520 cccttgtggg tggtccacag tttggatggg gcataggggg gtggtgatag acagcttgca 167580 tctccaaatg tagagagcct tggaatgcca tgccagaaag ttcagatttc attttatctg 167640 tagtaccaaa tgattgcaag gacaaatgtg agttgtaaga gcctgaaaca ttggttgcag 167700 caatgaaaac aaaaatgatt ggcaagattc caaagatagt ttaatggcag aattggctga 167760 ctttcattac ctttttttag agagaggaag agattgaaga tgctgaggtt tcagttttgg 167820 taaagagatt caccaaattc agttttattc agtttataca ccatttgctg ggtattcctg 167880 agttgtggca gcagacgaca gggaagtttg tttttgcaaa gacatttcta gaactggaag 167940 gctcaaagta aatgttttga tagtgtacta cctctaatca atataactcc atagtttaat 168000 aaagcactcc acagtttatc ttaccagatt ttctgacctt aaaaaaagaa tttcttattt 168060 cttatactcc atgaaatcaa ggattctttc aatggatgtt gcccccctc acacacaca 168120 atttcacact ttgacacctc cattaatctg aagaaatgat tgataccaat tcaaaacctt 168180 aggctggctg tacctgcctt ttaaaatatt ttttttttgt agtacatatt caaagtatgt 168240 tgttgggttt tttaatctct gaaaaccgtg aagcaaaaaa actcgggctc aggagaagag 168300

ttggaggaag cgaggctact gcaatggagt ggaagtttgc tgagcatttt cacaaggccc 168360 ttgttcagca attacctttg tctgtaccat ttatatatgc ttagaataag ctctattgta 168420 tcactcttgt tgcccaggct ggagtgcaat ggtgcgatct cacctcacca caacctccgc 168540 ctcccgggtt caagcgattc tcctgcctca gactccaagt agctgagatc acaggcatgt 168600 gccaccatgc ccggctaatt ttgtattttt aatagagacg gggtttctcc atgttggtcc 168660 ggctggtctc aaactcctga cctcaggtga tctgcccgcc ttcaggtgat ctgcctgcct 168720 tggcctccca aagtgctggg attacaggca tgagccaccg tgctcagcct aagaaagccc 168780 tctgtgacac ttggaatcat cagcgggaaa ctatcttaac acattagaaa tcggtaatgg 168840 aagtggacta acattttggt cttcagagaa tgctaaatga agtaaatggt gaccatctgg 168900 ttatcatttg taaatttagt gaaccttgta ggatgaaagc ttacctcgta cctggccatg 168960 gattacatac ttttaacatt tattgactgc ttactatatt tcaggcacca tgatgcaaag 169020 ttttgtttca catcttattc aatcctcaga acagctcagc gtggcagtat ggttattctt 169080 atctccgttt tactgaggag aaactggggc taaagacatg aagtgacttg cacaaggtca 169140 geotgactet actetiteta tgeotggetg tggetteetg tgagetgate tattaggeag 169200 tagttgaggt cttcacttac cctgaatttc ttctggttct ccactactgg taaacgacta 169260 gctctgtgaa ttgagtaatg gatgaagtca ggaatgagtc tattgcatgc gtgcatttat 169320 agaagaggct gcagtgccaa gactccttta gttttgtgtt tgcacattgt gtatggatga 169380 ggctatgcca gtgttctcta tctttatttc acataaaatg cagaggattt caggcctggg 169440 tgtagaccat catcactcat gtgttgttgt tgccatgttt ataggcaaca aagataggtt 169500 tagacaaagc ttgtccaacc cgtagcccat gggccacatg tggcccaaca caaactcgta 169560 aactttetta aaacattatg agatttteet tegattattt ttttaaaget cateagetgt 169620 cattagtgtt agtgtatttt gtgtgtggcc caagacaatt cttctttcaa tgtggttcag 169680 ggaagccaaa agattgggca gccctggttt agacagtgtt atgggttgaa ttgtgtctac 169740 taaaattett atgttgaagt tttaactgee ggtaeeteaa aatatgtett tatttaggea 169800 tacagcagcg gttcccaacc tttttgacac cagggcctgg tttcatgcag acagtatttc 169860 caccgatggg tggggggatg gtttcaggat gaaactgttt gacttcagat catcaggcat 169920 tagctggagt ctcataaaga cagcacagtc tagattcctc acatgtgcag ttcacagtac 169980 agtttgtgct cctgtgacaa tctaatgcca ctggtaagct cactcgccaa acactcacct 170040 cctgctgtgc ggcctagttt ccaacaggcc acgaaccggt ctggtccatg gcctggaggt 170100 tggggggcccc tgctttacac agtcaatcat gttaatcatg ttaagtgaga tccattgtga 170160

tggatgtctt tataaaaaaa ggaaatttgg gtagagagga atgcatagaa ggaagatgat 170220 gtgaagacac acggtgagaa gacagacatt tccaagccat ggagagagac ctgatataca 170280 teettatete aaageeaatt tatagtettg tgtgeaettg tacaaacaca atagatgaat 170340 aacatgggcg tggcgattat tattaatttg tgaggaagta gtagggagga ggtccaggga 170400 agattgtctg gaaataatga cacctgaggt gcagatgcat ggaggaacgg acgctaacct 170460 ggtggttggg atgcagtgtg ggagaagggt atcccaggca gaggagataa cttgagcaaa 170520 gtcagaggtg ggtaagagag gatggtatgc tcacgggact ccttcctgct ctgacctttg 170580 geetgacact teatgtteet ggtteteeat egeeteteet gageateatt tteteteea 170640 ttactcatgc taagcactgt gtaaagttcg gttcctggcc cagtgatatt ctccttttac 170700 tacttttgaa aaatttaaaa aatgccatta tataaaacag catccctccc aggacccccg 170760 ccgtatgaaa ctccagctga gtggcagttc ttgcctccag catttacatt tgcatagccc 170820 agetteaget caggeetgag atgecaaaat gacaccette accttteett ecaaattgtt 170880 gtctagattc tgtattttaa aaaatattct catcatcaat aagtgacctg gtcctaaaac 170940 ctggagtgat ctctgacttc tcctgctacc aaacaccttg tcaggattca gggccagaca 171000 aacagtgtta ctgtatacat cctcaattgt ttctttttct tgaaattcta agcaaccttc 171060 gtctctcccc attctgtgag catctctctc cagttttaca agccacgtca aaaattactg 171120 acagtgactg aaattatacc tgtaagatct tttcacactg ggaatttcat taggctggat 171180 ccaagagett geatttttgg taaatagtea gataatetee tgetatettt ttgttgatet 171240 gggtcgggaa ttgccctctt aaactgtctg ttctattctt tctaatttga agaacattac 171300 ctttcctgaa taaaataggc acacaataga aaattaatag ttggaacttt ttccgataat 171360 cagtgaacat cacgccttct tttttttatt atactttaag ttctggggta catgtgcaga 171420 acgtgcagtt atgttacata ggtacacatg tgccacggtg gtttgctgta cccatcaacc 171480 tgtcatctac attaggtatt tetectaatg ttatecetee getagettee caccecega 171540 caggeceegg gaacateaca tettettttg teeteattet etetgtetae agacattttt 171600 gcagtcattg acactgtgac taccctgttc ttgatacgac ttcgttcttg tttatgtgac 171660 atcattgtct cttggttttc tgtttctctc tgaggtcaat tctatttcaa actctgctac 171720 agaatctact ttctctgcta acattttaaa agtttaagtt tcctagtcat ttgccctgaa 171780 tccacttgtc atttttactc ttcagatttt atcttgtaat ttattggcag atctctactg 171840 ccaccaaacc cacacatctg aatctacaga tcagatctct cttctagaga ttcagctgcc 171900 acttcaacac ccctgctcgg attgtctaat agattcctta gcctcaatct accaaacact 171960 gatctattca cctattcctt cttttaagag ggacttatat tgttgttaga attgggaaaa 172020

cgtatagcaa actttgtttc ctgagaggtt aaagtgattt atatctgttc caatttggtt 172080 tctggccact atatttgagg taggttaaat aatattacct aaaaagcttc agaataggca 172140 gggaaggaat aaaagtggcc acagcagact tcagtactta ttcattcagt ctacaaatgt 172200 gtagtaagca ccaactttgc tccagggatg acagtcatca ctagtggtac atggctttaa 172260 ggtatggtcc cttccctcat ggagcttcga ctgtgagata ttgtgtagac tttccttaag 172320 aagcatcaca ttctttcaca taccgagata tcctcaactt gagtcttacc tgtgtgatta 172380 tctataatta acatactgta caattaacat ttgtgcatgg acagttttat gaattataac 172440 acatgtttag atttatgtaa ctacaacaca atctggatac acaacagttc catcaccccc 172500 tcacattgta agggggtaaa gagtcttgag aaactcttta ctgttaaact ctccgcacac 172560 ccagaacccg tggcagccac agatgtgttc tccttcctat agtttttgct tttaaaatgt 172620 tatataaatg gaatcctaca gtagatggtt ttttttgaga ctgtcttttt tcactcatca 172680 tetttetetg ataateatte aagttgettg tattagtatt tittaaaata titaatgetg 172740 agtattattc cattatatag atgtatcaca ttgtggttat caattctcca attgagggca 172800 tttatgttgt ttacagttta tggtgatttt gaataaatat gctactaaac actcatgaac 172860 agttattttg tgaatataat tcacttaggt aaattcctag ggtaaatata atagggatag 172920 gattgctggt ctatagagtg aatataactt aacttctaga aactgcaaaa ctgttatcaa 172980 gagggtgtac cattttgcat ccccatgagc aatgcatgag gaacccagct gttctgcctc 173040 cttgccagca cctggtgttc tctggttgtt gttatttttg ttctttgttc atcataacag 173100 aagtgttggg gtatcacttc gaggatttca tttgcatttt cttaatgact tacttttata 173160 tgttcatttg ccatccacat atcttctttg ttcgtgtctg ttcacatatt tgctatttga 173220 atgttttaat tgatttctaa aaagtcttta tatgtatatg tcacataaaa tttttctgtc 173280 agattggcaa atattttett teageteatt gettgteatt eagettttaa atggtagatt 173340 tctcagagaa aacatttctt ttttcttctt tttgataaag ttattgtatt agtttgttct 173400 cactctgcta tagagacata cctgagactg ggtaatttat gaagaaaaga ggctgaattg 173460 actcactgtt ttgcagtcta tacaggaagc atggctggag aggccttagg aaacttataa 173520 tcatggtgga aggtgaaggg gaagcaagca cttcttacca tggtggagca ggagagagaa 173580 agagagagag agagcaaacg ggaagtgcta cacacttttc aaacaaccag atcttgtgag 173640 aactctacta tgagacagca ctaggggaat gatgctaaac cattagatac aacccccatg 173700 atccactcac ctccaaccag gcccctcctc caacactaga aattacaatt tgacatgaga 173760 tttggatggg gatgcagaat caaaccattt cattttctcc ctggaccctc ccaaatctca 173820 tgtctttctc acattgtaaa atacaatcat cccatatcaa tagtccccca aagtcttaac 173880

tcattacagc attaactcta aagtccaagt tcaaagtctc atctgagaga agggaaatcc 173940 cttccaccta tgagcctgtg aaataaaaaa caagttagtt acattaaaga tacaatagag 174000 gtaaaggcat tgggtaaatg ctcccattcc aaaaggaata aatttgtcaa gcaaagctgc 174060 tacaggcccc atgcaaatcc aaaacccagc agggcagtca ttaaatctta aaccttggaa 174120 ataatctcct ttgacttcat gtctcacatc tagggaacac tgatgcaaaa ggtgggctcc 174180 caaggetttg ggeagettea eeeetgtgae tttgeagggt acageececa tgaetgettt 174240 cacaggetgg cattgtgtgc ctgtggcttt tccaggttca cagtgcatgc tatcagtgga 174300 tetaatatte tggaggetgg aggacattgg ceettttete acageteeae taggeagtga 174360 ctcagtgggg ctccacccc acatttcccc ttcacattgc cctagtagag gttctgcatg 174420 agggatccat ccctgcagct tatttctgcc tgaatgtcca ggcatttccg tacatctttt 174480 gaaatctagg cagggcctcc tgagcctcaa ctcttgccct ctgtacatat acaggcttaa 174540 caccatatgg aagccaccaa ggcttgcagc ttttactttc tggagcagca gcctgagaca 174600 catgtggggc ccttttagcc atggctggag ctggagcagc taggacacaa tgagtagtgt 174660 cctgaggtta ggcagggcaa cagggccctg ggcctggccc acgaaaccat tcttccctcc 174720 taggcctctg ggcctgtaat gggaggggct gctgtgaagg tctctgaaat gccctggagg 174780 catttgccca attgtcttca ctattaacac tctgctcctc tttacttatg caaatctctg 174840 gagttggctt gaatttctcc tcaaaagtga gtttttcttt tctcttgcat ggtcaggctg 174900 caaatttttc aagcttttat actctgcttt ccttttaaat atatgttcca atttcagacc 174960 atctttttgg aagtgcatat gagcataagc tgttagaggc agccaggcca tttcttgaac 175020 attitgctgc ttagaaatti tittitggta aacaccacag atcatctctc tcaaattcaa 175080 agttccacaa atccgtagag cagaggcgca atgccaccag tcactttgcc aaagcatagc 175140 aagagtgacc tttactccag tttccaataa gtttcccatc tccatctgag actacctcag 175200 cctgaccttt attgtgcata tcactatcag tattttagtc acaatcattc aacaagtctc 175260 taggaaattc caaacttttc ctcatcttcc tgtcttcttc tgagccctcg aaagtctttc 175320 agcetetgte categeeeag taccaaaget gettteacat ttteagtatt tttatageaa 175380 tgcctcactt ctctggtacc aattatctgt attagtttgt tgtcacactg ctataaagac 175440 atagctgaga ctgggtactt tataaagaaa agaggttaaa ttgactcact gttctgaagg 175500 ctgtgcagaa agcatggctg gggtgacctt aggaaactta caatcatggt ggaaggtgaa 175560 agggaagcaa gcacatccta ccatggtgga gcaggagaga gagagagaaa agtggaggtg 175620 ttacacactt ttcaaacaat caaatatcat gagaactgta tcataagaca atactgggga 175680 catggtgcta aaccatcaca aaccatcccc atgatccaaa cacctcctat caggctcctc 175740

ctctaacact aggaattaca attcaacatg agatttgggt ggggacacag agtcaaacca 175800 catcagtttt gtttacccat tetttettta caggteatae tttggtgtea tatetaagaa 175860 ctcttcacca agtcttaggt tacaaacatt tcctcctatg gtttctccta aaaaccttta 175920 tagttttatg ctatacatat tagtccaggt acaattttta attaatttta taaaacgtac 175980 aaggtttagg ttaagacagg ttttttccac ttatgaatat ccaatcattc caaccaaatt 176040 tcttgaaaaa agttagcctt tcttcattga tttgcctttg cacctttgtc aaaaatccat 176100 tgtccatata tgtgtatcca tttccggact ctctgttgtc ctgtgtgata tttaacttgg 176160 ctagtaatag cagctggtgt tggggtccta ctgaccactt agaagtgagc tgcccctatt 176220 tgaccagagg gctacttaaa ggatggagct gattctcatt ggttggacag ttctctcttc 176280 agacaggggt ataggaatct gaactaaaga aggatttagg aggagaagtt ttgttggaac 176340 tgctggtagt aagccatgag gaattgaata tacactaaca tcacagtgta taaattgctt 176400 gggttttttt ttttttttg agcatataga tctgtcaggg aaaattgact tcctaaattt 176460 ctttatgcag agaggtactt tcaaatgagt tgattaactt catttatcaa aaataactct 176520 ttctgcctcc ctctattcca tatgcccctg cttactttcc actgaacaaa tgccttgttc 176580 cctccatctc agcagcatct ccctctacct cctggctcct catggaggac tagtgttccc 176640 tcccagctcc tcatggagga ctagtgttcc ctccccaaca tctcacagtg ccttaggggg 176700 ctccttccag caggattcag tctgctccat ccctgaagca cctggccctc tgtagttact 176760 ctgtgtttgt tatacttgaa tttcttcctg attattttgg aagaaaataa gcaggatgaa 176820 atgtttagaa aacatttccc agaaagaaag gaagactgaa tgatgctgca agggagctaa 176880 actagaagtt gggcacccga gttcaaatcc cacctaccag aaagcagctg tgtaatggtg 176940 agtgattttt tttcatctcc atctcagctg ccatgttctt atctggaaaa ggaagaaact 177000 ggatgaaaac agcagttaga ataccaaggc ctatacagat cagacaggca acctaaatta 177060 gtgcaatatg acgtgtataa gaacaagtag acatagaagc acattgatga atggcaatta 177120 gtgttctgcc tctctgaggg atggaaggaa gtggtaggac tgggggtaac tcagactcaa 177180 ggccacctaa agtgatcaca atcatgtggc tgcagctgaa ttttgacctg aaagctcagt 177240 gttgacgtgt catctgattt ttctgaaaaa gccagaaatt tagctttcca tatgaaatcc 177300 cattttaaaa aagatgtgcc tcatgtttta aaagatcgtc atgcaggcaa aagaaaatcc 177360 caagaaaacc catctggggg ccagatctca gatacatcac ctctggagta aataaactcc 177420 atggctccca tgctgcaaag ttctggggct cctaggttct gctaagaaag taggaagttg 177480 gaataaataa tcaacttcta ctatagtctg aaaatttctg tctctccaaa attcaagtga 177540 atacttaatc cccaatgcaa atgttttaag aggtgtggcc tttaggaaat gattaagcca 177600

tgatgactgc cctcctaaat agaataagta ccctaataaa agggctctag ggaaccaggc 177660 agcccctcac cctctttcac catgtgggaa ctcagtgaca agatgtcatc tttccagcaa 177720 agageeetca acaaacacaa aatetgetga teetttgate ttggaettee etgeeteeag 177780 aaatgtgaga aataaatttc tgttatttat aaataattga aatacatttc tgtttcttat 177840 ttccactgta aggtatttta ttatagcacc tggaattgtg taagacaaca tcttagctga 177900 gggtacactt aatgtgcttt ttatgtcagc ccctttgaaa gttaaatatt ttattaaaat 177960 aaaaatagca gttttgtgtg ctattaaaat aacataatat ttacattcag gaggctgtat 178020 aaaagtcatt tgttcaaaca tttgttgcaa taataagatc ataaaagtat ttgttaccag 178080 aagtgettta tteatetttt agttgettat tteaetgeag aacetateta tagettggtg 178140 getegtagee aagtgtaaga accetgegtg atacteetea ettgaaagtg etecaaatgg 178200 gacactacat gaatggatta ggcactgacc ctgttgttcc tttcactatt ccctactttt 178260 gtgactacaa ggggaaacac caactettga atcagcattt acctggaage tgcaggtage 178320 cccgttaact gctcagcccc agggctgcct ctcagcctaa atgggcatcc tgttccctcc 178380 tettttettt etgeagatea taaggaetet eeteteetge agagetgeee atgteeacte 178440 cetettecag gegeetette etgeeaagae tggeetetga attggatgta geettteece 178500 tecegettee ttaaaageee aaaatacaag cacacagage ceatgtgtgt aettggtttt 178560 tetgttaate aetttggcaa aagacaaggg teataaettt caccaaceca gtgtaacagg 178620 gtgtcctgat ttcctgattc tttagcatca ttgtcccaag actctgattt cctactgtct 178680 ttacctagtg tgttttgacc ctcagcctta ctgtaaagaa atatttttt ttcagtcagg 178740 catagtggct cacacctgta atcccagcac tttgggaggc caaggcgggc agatcacgag 178800 gtcaagagat cgagaacatc ctggccaata tggtgaaacc ctgtctctac tataaataca 178860 aaaattagct gagcatggtg gtgcactcct gcagtcacag ctactcagga agttgagaca 178920 ggagaatcgc ttgaacccag gaggcagagg ttgcagtgag ctgagattgc gccactgcac 178980 agcaagaaag aaagaaagga attttttcaa tagcttttgg ggtacaagtg gtttctcatt 179100 acatggatga attatatagt ggtgaattct gagattttag tataccaatc acccgagtag 179160 tgtacaatgt acttaatgta gttaatttta tcccttgccc tcctctgacc ttcccccttc 179220 tgagtctcta aagtccataa tatcaatctg tatgcctttg catacttata gcttagctcc 179280 cattlataag tgagaatata cagttcttgg ttttccactc ctgagttact tcacttagaa 179340 taatggccta cagctatatc caagttgctg caaaagatat tatttcattt tttatggctg 179400 agtagtattc catggtgtac atataccaca ttttctttat tcacacatta gtcaatggga 179460

aattaggttg attccacacc tttgcaattg agaattgtgc tgctataaac atacaagtgc 179520 aggtgtcttt tttatataat gacttctttt cctttgggta gatatccagt agtgggcctg 179580 tgttgaatgc tgtgttgaac gttagatgta tttttagttc tttaaggaat ctccatactg 179640 gattccatag acgttgcaca aatttacatt cccaccagca gcgtataagc gtttcctata 179700 cettgtatce acaccaccat ctcttgtttt ttgactttta aatactgccc attcttggag 179760 aagtaaggca gtacctcgtt gtggttttac tttgcatttc cttgctgatt agtgatatgg 179820 tttggtctgt gtccctgccc aaatctcatg tcaaatttta atccccaatg ttaaaggtgg 179880 ggcctggtgg gaggtgattt gatcatgctg gtggatttcc catttggtgc agttcttgtg 179940 atagtgagtg agttaccatg agatetggtt gtttaaacgt ttgtaacact ttcaccetct 180000 gtagcactta ctcctgctct ggccgtgtaa gatcaacctg cttctctttt gccttctgcc 180060 atgattgaaa gtttcctgac ccctccccca ccacccccag ctatgcttct ttcacagcct 180120 gtggaactgg aagccaatta aactttttt ctatacaaat tacccagtct cagatatttc 180180 tttacagcag tgcaagaaca gactaatata gaaaattggt accaggagta gggtactgct 180240 ataaaggtac ctgaaaatgt gactttggaa ttgaataaca ggcgtaggtt ggaagagtgt 180300 agagggctta gaaaaaggca ggaagatgag ggaatgtctg gaacttccca gagacttgtt 180360 aaattgttgt gaccaaaatg ctgatagcga tattaacaat aaagtgtagg ctgaggtggt 180420 ctcagatgaa gatgagaaac ttattgggaa ctggagcagg ggccactttt gttatgcatt 180480 agcaaagagt ttggaggcat tgtgcccctg ccctaggaat ctttggaact ttgagcttga 180540 gagtaatgat ttagggtatt tggtagaaaa aaattctaag cagcaagtgt tcaagaattg 180600 gccaggctgc ttctaacagc gtatgctcat attcattctc agagtgacgg tctgaaattg 180660 aaacttatat ttaaaaggga agagagtctg gaagtttgga aaatttgcag cctggccatg 180720 tgaaagaaaa gaaacatcca ttttctgggg aggaattcaa gctgcctgca gaaatttgca 180780 tgtgtaaaga tcagccaaat gttgatagcc aagatcgtgg ggaaaatgcc tcaaatgcct 180840 ttcagagact ttcccagcag ctcctcccat cacaggcctg gaggcctaag agagaagaat 180900 gattttgtgg gccaggccca gggcactgct gccttgtgca gccttggaac atggtgccct 180960 gcatcccagc tgcaccagct ccagccttga ctaaaaggga ctatggtaca gttcacgcta 181020 ttgctttaga tagtgcaagc cccaagcctt ggtggcttct gcatggtgtt gggcctgtga 181080 cagtgcagaa ggcaaaaatt gaggcttagg agcctctgcc tagattccag cacagcagta 181140 gaaaggggtc aggtgggatt ggattcccca cacagagtcc ccacaggggc actgcctagt 181200 ggagctttga gaagacgacc actgtcctct ggcccacaga atggtagatc cactgacagc 181260 ttgcactgtg cactcagaaa agccacagga actcaacacc aatccatgaa agcagtcatt 181320

ggacctgtac cctgcagagc catagaggtg gagctttcca aggccttggg agcctacccc 181380 ttgagtcagt gtggcctgga tgtgagacat ggagtcaaag gaattatttt ggagctttaa 181440 gatttaatga ctgccttgct gggtttcaaa ctttcatggg gcctgtagcc cctttgtttt 181500 ggctgattta tcccttttga agcaggtgta tttacccaat gcctgtaccc tcattgtatc 181560 ttggaagtaa ttatcttgcc cttaatttta caggctcata ggcagaaggg acttgccttg 181620 tcttatctca gatgagattt tggacttgga catttgagtt aatgctggaa tgagttaaaa 181680 ctttgggtga ctgttgggat agcatgattg ttttgaaatg tgagaaagac atgcgatttg 181740 ggaggggcag gaggtgaaat gatacgtttt ggctttgtct ccatccaaat tttatgtcaa 181800 attgtaattc ctggtgttga aggaggggcc tggtgggagt ggattggatc atgggggcag 181860 atttcctttt tggtactttt cttgtgatac tgagtgagtt actgtgagat atggttgttt 181920 aaaagtgtgt agcacttccc ctctctctgt cttgctcctg ctttggccat gtaagatgtg 181980 cctgcttccc cttcaccttc cgccatgact gtaagtttcc tgaggcctcc ccagccacac 182040 cgtttgtaag gcctgtgaaa ccaggagcca agtaagcctc ttttctgtat acatttccta 182100 gtctcaggta tttctttata gcagtgcaag aatggactaa tacaattagt gaggttgaac 182160 attttttgat atgtttgttg gccatttcta tatatgtatt ttttgacata aagtcttgct 182220 ctgccaccta ggctggcgtg cagtgtcata atctcggggg tttactgcag cctctaattc 182280 ctaggeteaa gtgateetee aetgteagee ttecaagtag ttgggaetae aggtacagat 182340 attttaatta taacattcac agctacagaa ctaattatat tttatatccc ctttgaagca 182400 actaccatac ctgaataact ttcatatttt ttgtaaagat aggttttcac tgtgttgccc 182460 aggcaggtat caaactcctg ggctcaagcc atctgcctgc ctggacctcc caaagtgcta 182520 agattacagg catgagccat catgactggt atttatattt cttcttctgg gaaatgtcca 182580 ttcctgtcat ttttccactt tttgatggaa ttgtttattt cttgctgatt tgtttgagtt 182640 ccttatagat tacatggata ctagtcctat gtcagatgca gatgcatagt ttgcaaatat 182700 tttcttctat tctgtgggtt ggctatttac tctgattatt atttcttttg ctgtacaaac 182760 ctttttagtt taattaggtt ccatttattt atttttgttt ttattccatt tgctttttgg 182820 gtcttagtca taaattctct tctacactga tgtctagaat agttttttcc atgatatatt 182880 ctagaatttt tatggtctca aatcttatat ttaaggtttt gaaacatttt gagttgattt 182940 ttatataagg tgagaggtac ggatccagtt tcatccttct acatgcggct tgccagcttt 183000 cccagcacca tttattaaat aggttttcca ttccccaact tatatttttg aatgcattgt 183060 cagagatcag ttggctgtat gtatttggct ttatttctgt ttcttattct gtttcaaaac 183120 taggtctatg tgcctacttt tatatcagta ccatgcaata tgggtaactc tagccttgta 183180

gtataatttg aagtetggta atgtgatgte tecagatttg etetttttge ttaggattge 183240 tctgactaat caggetettt tttggtteca tgtgaatttt agaatttgtt tttctaattt 183300 ggtgaaaaat gatgttggta ttttgatggg aattgcattg aatctgtaga ttgctttggg 183360 tagtatgatt atttttgcaa tattgatttt ttcaatccat gagcatagga tgggtttcta 183420 tttgcttgtg tcatatatga tttctttctg cagtgtcttt tagttctctt gtaggaatct 183480 ttcacctcct tggctaagta tatttctagg tatttcattt atttccagct cttattaaag 183540 gaattaagtg tttgatttga ttctcagcat ggtaattgtt tgagcatagc agtgctactg 183600 atttgtgtac actaattttg taatctgaaa tgtactgact ttttttatca aacataacaa 183660 ttttttggag gcatctttaa aattttctag acatatttaa aattttctaa attgtgccat 183720 attatctgta gatgatatga tacaatgata tcatctacaa gcagtgataa tttgacttca 183780 tetttttee aatttgtatg ecegttatte ttttetettg eetgattaet etggetagga 183840 cctccagaac tatgttgaat aggagtagga aaatgggcat acttgtcttg tttcagttct 183900 tagggggaat gctttcaact cttccccatt cattatgatg ttggccgtgg gattgtcata 183960 tatggctttc attattttga ggttagtccc ttctatgctt agttttttga gagtgtctgt 184020 cataacagga tgctggattt tttcaaatgc tttctctgca tctattgaga tgatcatatg 184080 ccttttgctt ttaatgctgt ttatttaata tatcacattt attgatttgc atatgttata 184140 ctatctctga atccctggga taaaatgcac ttgatcatgt tgtgttatct ttctgatgtg 184200 ctattagatt cagttagcta gttttctgct caggtttttt gaatctatgt tcatcagagt 184260 tattgggctg tagttttttt ggtggtgttg taatgtcctt tactggattt ggtaacaggg 184320 tgatactggc ttcactgaat tttttaggga ggattccctc tttctcattt ttttttcccg 184380 tgggattggt accaattctc ctttgaatgt ctggtagaat cagctgtgaa tccatctggt 184440 tgtaggctat tttttgtttg ttggcaattt taaaattact gattcaatat tgctgcatgt 184500 catttgtctg ttcagggttt ctatttcttc ctgatttaat ctaggaggct tttatgtttc 184560 ctgaaattaa tccatttcct ctaagttttc tagtttgtgc acataaaggt gttcatagta 184620 gtctcaaatg atcttttgta tttctgtggt gttgtaatat cttcagcttc atttctaatt 184680 gaacttattt gaagettete tgttetttte ttggttaate tagetaatgg tgtateagtt 184740 ttgtttatct tttctaagaa ccagctgttt gtttcattgt tcttttgtat ttttgtttga 184800 atttaattct cctctaattt ttgttattc ttttcttctg ctatctttgg gtttagtttg 184860 ttcttgtttc tctagtttct tcaggtatat aattagactg tcaagttgtg ctctttcaga 184920 ctttttttt ttctttgaga cagagtctca ttctgttgcc gaggctggag cacagtggtg 184980 tgatctccgc tcactgcaac ctccacctcc tgggttcaag cgattctcct gcctcagctg 185040

ctggagtagc tgggacaaca ggcgcatacc accacactgg caaatttttg tatttttgt 185100 agagacgggg tttcaccatg ttggccaggt ttgtctcaaa ctcctggcct taagtgatcc 185160 accageettg geeteecaaa atgttgggat taaaggaatg agceaeggta eccageetet 185220 ttcagacttt ttgacgtagg catttagtac tataaaattt cctgttagca cagtttttgc 185280 ttcatcacag aggttttgat aactcgtatc attatcattc aataattaat ttccatcttg 185340 atttcatttt ttttttgttt tttgagatgg agtttcactc gtcactcagg ctggagtgca 185400 atggcacgat ctcagctcac tgcaacttcc acctcccagg ttcaagcaat tctcctgcct 185460 tagetteeca agtagetggg attatgggea eetgegaeca tgeecaggta attettgtgt 185520 ttttagtaga gacggggttt caccatgttg gccaggctag tcttaaactt ctgacctcag 185580 gtggtccacc cacctcggcc tcccaaagtg ctgggattat aggtgtcagc caccgcacct 185640 gacctcaatc ttaatttctt cattaaccca taaatcattc aagaaaaaat tatttaattt 185700 ccatgtattt gtatagtttt gaggattcct tttggtgttg gtttctagtt ttactccatg 185760 gtggtctgag tagatagctg atataatttc acttttttct tgattgagat ttgttttggg 185820 gcctatcata tggtccgtct ttggagaatg ttccatgtgc tgatgagaag aatgtatatt 185880 ctacaatgct tgggtagaat ttctgtaaat atctgttaag tccatttttt ctactatgtc 185940 atttaagtcc atttttttgt tgacttcctg tcttgataat ctgtctagtg ctgtaagctg 186000 tgtattgaat tctcccgcta ttattgtgtt gctgtctatc tcattgaata ggtgtagtag 186060 tagttgtttt atgaatccgg ctattacagt gtttggtgca tataagttta gaattgtggt 186120 atcttcatgt tggattgatt atttaatcat tttataatta ccttctttgt cttttttaac 186180 tgttattgct ttgaaatctg ttttctctga tataagaata gttctgcttg cttttggttt 186240 tcatgtacat agaatatctt tttccacccc tttaccttga gtttatatga atccttgtgt 186300 tttaggtgag tttcttatag acagcatata tttggtttgt gatttttcat ccattctgcc 186360 attgtgtaca ttttaagtgg agcatttagg tcatttatat tcaacactaa tattgagata 186420 tgaggtaatg ctctcttcat catgttaact gttaacaaga tagtttttt ttcattatat 186480 tattgtttag taggccctgt gagttttaag ctttcaagca tttgtatttt ggcatatatt 186540 gaacttttgc ttcaatattt agaacttctt ttagcattat ttgtagtgct gatttgggag 186600 tgacaaattc cctaagcatt tgtttgtatg aaaatgattt tatttctctt tcatttatga 186660 aacagcttta ctggatacaa aacttttagc tgacaattat tctgtttaag aaggctgaaa 186720 attggacctc catttcttct ggcttttaaa gtttctgcca agaagtctgc tgttagtctg 186780 ataggttttc ctttacaggt tactttgtac ttttgtctta ttgctctttg aattatttcc 186840 ttcatgttga aattagatag cctgatgact gtgtgccttg tgaagatcta tttgtaatga 186900

tgaagttttc ctcaattatt ccctcaaata agatatccag acttttttt tttctcttct 187020 ctctcaggaa caccaattat tcttaggttt agccttttta cataatccga tatttcttgg 187080 acactttgtt cttttgattc ttttttcttt atttttctct gattatgtta atttaaaagc 187140 cttgtctttg aactctgaag tttttcttct agttcttcta gtctgttgta aaaatttccc 187200 actacatttt gtaattccct ttgtatttca cttccagaag ttttaattag ttttccttta 187260 tgatatctat ctctctagaa catcatttat tcatatgctg aactgtttgt aaagtcatct 187320 atgategett teacetttee ttggtatate ettgaatage ttaataatga geettetgaa 187380 ttctttatct gatattttaa agatttcatc ttaatttgaa tccattactg gacagctggt 187440 gtgatctttt gaaggcattg tagaaccctg ttttgtcata ttaccagaat tacttttctg 187500 atttttttc tcatttgggt agtgtttctt ctaattatta ttgaatttat gttgatttga 187560 ctgtgtttat ttgtttttaa atttttttct cttaagtatg ctactttaat gcttatagtg 187620 aaacatagcc taattcagtt actggttctt tcatgggtgg agactgtaag gttcctaggt 187680 tatatagagt ctttgtataa tagttttatc gtatgctggt tgtagtagca atgtgttcat 187740 tgtgtgagca aatttactgt ctcctataag gttggaatgg tagaggactc ttgaagctta 187800 tttcatttcc ccatggtgta cacttttttg catatttatt tttccccagt attttcttta 187860 agcettttcc tgtttagaaa aaaatagtgc agattgctgc caccacattt tacataaaca 187920 cactetetga ggetgaagca aatetgactg atttteagtg taaaaataaa atataaacte 187980 ttggagttat ttctaaacag aacaaacatc agaatcatct cagtcatcag attgtctatg 188040 tctgaaaaat cggattcatc aagtaagtct ctggccaaca actgttcatg gctgatgtta 188100 acatcatgca aaggaaagct atattttcta ggatttgaca ttttcagcaa ttgagaatta 188160 ctacattttt aagtggaaat accatttcta aaaacagaat gctatgaata gaatgatgta 188220 tttagtttcc aaagttcata tactagagtg atgtgaaaat aataataaaa gtgagatatt 188280 tcatagcaaa gttatctcat aataaatgct tcaaccacaa gcaccaccaa tgagtattct 188340 tggggcaaaa gggaaaaggg ttaatgattt gatagttcag ttttcaggcc agtaggggag 188400 gtttccctga gtaagaattg gttgtggcta aagctagtgg gtaaatgaaa tactcaatgg 188460 ttttttgaga cggagtctcg ctctgtcacc caggctggag tgcagtggca cgtgatctcg 188580 gctcactcca agctctgcct cccaggttca cgccattctc ctgcctcagc ctcccgagta 188640 gctgggacta caggtgccca ccaccacgcc cggctaattt tttgtatttt tagtagagac 188700 ggggtttcac catgttagcc aggatggtct tgatctcctg acctcgtgat ccacccgcct 188760

cggcctccca aagtgctggg attacaggcg tgagccactg cgcccggctg tgtccctgtc 188820 ttgacaaagg tggctggaga agctttcagt gaatcacact gaggtcttat cgggggaagg 188880 attagagcca cctcggctcc cctggcaggt cagcagggaa gctatccact tctcagacat 188940 actectgttc cagtgeteca getattegga ccacacaggt acetettttc atetgtagaa 189000 atgtagattt ttcaagttga gaggaattgt gactctatct tgaaagcctg aacctttagg 189060 atgtcctcct gcagggatgc tctcacccta aagtgttcca gaaaggttgt ctatagttgc 189120 acccatgcaa agctcccatg ggagaagccc caactgtgct catggtggtg aacaaagggg 189180 gaaagttgtt teetteteea agaeeettea egtgeactaa ggetgeetga etgttagatt 189240 agagetgeag aetttaettg etgageceag caetgegaet gtgeetetge tgaaactgee 189300 caccagcaga aggatatggt actcaaggcc tgtcatctat attcttttgt ttcatgggcc 189360 gttcccttga tgtggtgcac tccctcttcc ccgaggagtc gaagtccctg ggagccagat 189420 gactgtgagt attgttgctc cactgggtct agctgcctag tgaaattgcc atactccagg 189480 ctggtgctag ggaatgagat caagggatcc agtgatgtga cctgttctca tgcctcccgg 189540 aagtgggtag cagcaccagc tctactgcta gtggcagggg agtgacctat actctgggat 189600 tccttgattt tagaaagcct tagtgtgttg gctttctcga atgccactta tcatagtaat 189660 aaactgatca tttggacaga atcaggacct cttgattagc cagagtggtg caggcagtgg 189720 tgatagctta ggccacacag aaattttctc cttcctagac tcagtgttat tctaccagga 189780 gatgctgtaa tggactgtgt cggttggcct ccagccagga ggtggcactt gccaaagagc 189840 accagetgtg geagtageag tgagagtttt gettgeettg tgetgeeeag agggggtaet 189900 ccagtttatc aggcaatggg tgaggccata cagttcccaa atgtttcttt cctttgtgtt 189960 aagctagcag ggcaggtggc agggcaaagc caggtgtggt ctaggtcagg cgggtttgtg 190020 aactgacttt ccacatgcag ggcaagcagc agttcctgtg ggtgtcaggg gaagggggtg 190080. gttctcaggc cactgggttt gtgctccaga ggggagtgtt gctgtctctg ctgcacagaa 190140 gagtttgagc agggagtgga gagtagcaga ctgcagtaag ccccacacgg atcccacaca 190200 tttggtgagg gagateteae teccaetgtg ttecaetage ageagegate taagtteeag 190260 gcagcctgca cttagaattt gcaactgccc caagtcatag gctttcccca gggagatagc 190320 aactgcatat ttcaggccac gcccctccgg gtccattcac aaagccaggc tcccagcccc 190380 tgtgcttgtg gctgtggccc atgtttcact tgaacaggct ggccttggtc aagagagttc 190440 atecceacce aaggtgacat cateaaacce agettgggge ttetttecae etgegaceae 190500 tgcctgaact atttggctga cctccacagt gtcccctgtg aggatcaata gggagtggct 190560 ttccttgctt tgcactggag actggaggtg catacaaggg tcttcctgct gctgttccta 190620

ctattatgtt ccacaaccct cccccagtca gtttctgtgc tgggtaggct taaggctttc 190680 ccgatggcct ggtctttcag gctctctggt cacggtgtga atctgagaag cagtctctcc 190740 ccctcatatt tttggggact cacagccctt tgcctggctc agtgtaggct gcagcctgct 190800 getteetteg gaggetgtgt gggtteette aacttteetg tteagtteet geattgette 190860 ttgaaaaaaa aagtttgtgg tgtgaatctc tacacaatat tttccaagtg ggagaggtat 190920 gcgaacaatt cctctagtac accatcttgg gaaaaaaaat aaaaacctca gcctcacttt 190980 gatcctttgt ttagatgcaa taaggcctgg agaagcaatc agcccagatg gctgttgctc 191040 cctacccca gccataggaa caattggcat gttcatggaa gaactggagc gtgggaccag 191100 caagttcacc aggtaccttc cctgcccaga aatgagcttc ttttgcactt tttttactca 191160 cacgtttgtg gatgtgtagg agggtggggc tacttgccca gtggtagttg ggtaccccta 191220 gcaggtaccc ctctggatga tgggtaatcc caggaggatc tgtgggaagg actcaaagac 191280 tttgatctct ttaccttgtg agtctctttt atcatctgtg aaatgggaat gatcacagtg 191340 cttccttcac ttcgtggagc tgttgggaat ttcaaggaga ttcatgcctt tagagctcct 191400 ggcgcaaagg gagcctccat aagtcagccc gatttgttat catgatgact aggaagaact 191460 agcacagagt ctggctgtgg tccttctgga gggctctgtg gccttggtgc tcatggtcat 191580 ctcccttcag ccatccccta cttcatgaat caagaaggtt ctttggaaac tcagtgccag 191640 tgtgtggtgc tccaggactc agccccatgc ttgtctgagt gcaggtgcac gtcctataag 191700 ctagggggat tgcaaaaata ttgaacatcg gcaatgacat gggccctgac aaattggaaa 191760 agtgtgtact gcagagaacc cacaccctac ctcacctaca acattcacat gcaaaatcca 191820 gtcttatgac caaatcctca ctttcccagt ggcagtttca ggcacatgct aaccctgatt 191880 gaatcaatat acagacccta caccatgtta agtcttaaca aacaccaagc tattggcgag 191940 tgtgcactcc ccattgcaac tcctgcctga ggagctccct tccactcctc tgccttgagt 192000 ttggttgggg gaggacgggc acatctgttt gagtaactgg acctgacatg gacaggacgt 192060 gtaggtcaca ggcacttctt cactggctct tgttattcac catggtgact cttcacagca 192120 taccgctggc attattcct gaggaaacag gctgagagtt agtgaatgtg ccccaagtca 192180 cataggtagc aagtggcctt gctgggactc gagcctacct ctgtggactt caatgcatca 192240 tectgaette ceetttgtta taggtattat gegeettaac ceaggeaatt geteeatttg 192300 aaccgtgcag cacagatacg ggtggatgtg aacacttggc tgtctcagga tgcctcctgc 192360 ttccctcgta attaagacag cccctttctc caatcccaca ataaagcaaa cagtgagtga 192420 tgaccaggtg tgatgttcat gatttctatt ccacgtggtg ggaagagatg atgcttcata 192480

acttetetet ectagtattt getetgetee teaggggete teateacata gtgttttaaa 192540 teccaggatt tggagttagt caaaetttgg tetggtttee agetetteea etteetaagt 192600 gtgcctggcc ttgggccact cactttcacc tatacatcca tcagttgaac aaatattgat 192660 gactctcttg attgtcaaat tgccacatgt tattttatgc tagaaatggg gctaaggaga 192720 tgagcacatg ctggattcta ctcacatgga ggtcacagtg ctgagacaga gtccgagcag 192780 tgagcacatg agggtagagg agtgacgtac gtgtgacatg ggcagggctg tgatggtgca 192840 gagaggagtc aacctgcccc acatcccctt cccccgtgct gttccttctt gaacagcttc 192900 cttcttcacc actaaagaag agctcctcca tccataaaac cccttccaga tacaacttcc 192960 tccatagatc caatctgcct tctgagatct atccttcttt gagcctcaag gacatcctat 193020 accttcctta aaatgcagtc ccttggtcat gccatatttc accttatttt ccacagggaa 193080 teegtgtetg acteatetet aggtttttat ggttttaggt etaactaate catteeteac 193140 agttcagtgg ctggcacaga aagaagttca gtagatgttt ataggtttca actgggaaca 193200 cactcaaata attctgcctt tcccaaatgc ttcctctggt atggaaatta aatgcagggc 193260 ctggaagaat gcattctggt taaaagtgca gctgaatgtc cattaatacg atacaggtgt 193320 gttcgtgact ctaattggtg accacatggg atggtattgc tgtttctaat cctagttatt 193380 cagaaatgca cccatatttt ttcatactga taagattcat ctaggcaaat gtaagcatat 193440 tectgtgtaa tgacaaaatg aatttaaete caaacatttt ttgaaacaaa acattattag 193500 tgaaaatcat attttactct attattgcca gtggctaagt ttcatttccc tcgccaagct 193560 taacaaggtg gaaactttgt taattctagg ctatttttt gaaacctgga aacctctctg 193620 cetetatttt teteeteete etagagtgge eecageagag aatgeggtaa eeacgtteae 193680 ccctgtaatg tccttcaaga ttttgcaaat gttagctttt ggttcccatt taagtgaaag 193740 ggcttctgag ggaatgtgat gactcacaga tgagagatgg attgcgtcct ccatggtagg 193800 gacagaatgg ctgttagaag cgaagatctt tatatgttcc tgcaaatgta cccagcagca 193860 cattgttctg ctgaatgtac atgtcaaagg tatttccgtt ccctttccat cctatatttt 193920 cccaggttag aaatacctgc tttataaagc aggtattata aatgttctgt aaaatacaaa 193980 gcacaataca aaagaagaca gcagatgtag gagtaagtaa acagcaggaa aacgttgctt 194040 acaatgaaat gattaaaaag cccattctaa aacaaaattt tcaatgcatc ttaaatattt 194100 atgttactgt ggtaatgacc tcaacagtct ttgaccaagc taaatatgct ttagaaatat 194160 gttgatatct gcaaagtgtg aatattcaaa attgccatga tttgggaaaa ggaaagtaaa 194220 acacteteag tatgaggage ttttcccatg gaatgtgaac tgcaaggtgg tgagaagggt 194280 taggtgtgat gtggtgagat catttttaga ccagtgtgtc tattattagc tttattacac 194340

tcccactggg cattataatt tcctgaaatt catcatttaa ttaaggctat gggttttgat 194400 taaatttttt taaatgtcaa acagcataat atttatagtg aaaaagaaaa ctgcttggtg 194460 gatacacatt ggttagcagg acgaggcatc ttagggattc agcatggagt cagctgtgga 194520 tggggtttta gtttctgtct ttgaattgac cttcacatag tgtctacctc ttgagagttc 194580 aggggatgtt ggagagataa ttaggtaaaa caggaagatc ttctcaggat acatgaggga 194640 gttaaataaa aatgcaggag caattacaat tttagttatt tgtaactgtt gtttgctaag 194700 togtaacatt gtoactgata acatgaaaaa ataaaatata otaaatatca atagacaaaa 194760 accagttttc ttttctccat ccaaatacct aaatacctag cactaatatc cagaacaaaa 194820 tcccccaaat accatctttg gaataaaaga atattctttc aacttatcaa ggccacaagg 194880 taaaaacaac aacaacaaaa aacaacaatg ctttttttct tacactttaa tatgtgcagt 194940 tgaaggtatt tctcattgca aactaagatt tccatccagc atgtgacatt aaagcactgt 195000 tcatattagg atagtaataa gggatcacac tggttagcct taggcgtttc agaggaaaaa 195060 aaattaaggt gagagaggtg gggcaagaaa agcagaatag aaggctgcac agatcagccc 195120 cctcgcaagg acacaattt aacaactatc cacacagaac aaaacacctt tataagaacc 195180 aaaaatcggc cgggcgcggt ggttcacgcc tgtaatccca gcactttggg aggctgaggc 195240 gggcggatca cgaggtcagg aaatcgagac catcctggct aacacggtga aaccccgtct 195300 ctactaaaaa taaaaaaaa ttagccgggc gtggtggcgg gcgcctgtag tcccagctac 195360 tcgggaggct gaggtaggag aatcgcttga acccgggagg cagagcttgc agtgagccga 195420 gatcccgcca ttgcactcca gcctgggcga cagagtgaga ctccgtctca gaaaaaaaa 195480 aaaaaaaaca aaattagggg aactctctta gtacctggtt gtatcactga aaaaggcact 195540 gaagagttag aaaaaacagt ctcaaatcgc tgaccccacc ccttccctac cctaggcagt 195600 ggcagtatgg tgtaaagagc atctccggaa gctggaagag caagagcaga gcagttgtga 195660 gcagagcagt ctcttacagg agaaaggaaa accagaccaa acttagctga ctcccatctg 195720 ggaagggagc attgaaacca cctctagcca gagggaaatt acccatccca ggaatcagaa 195780 cttgagtttc tgcaaacctt gccactaaag gctaaactgt tccgggtttc tcagaaaacc 195840 ttaaaggcag tctgggccat aaggactgca acgcttaggt gagttctagc attgaactga 195900 gcccagagac agtgttttgt ggcagggatg tggaggggtg cagatgacct accgagatac 195960 cagctggggc agccaaggga gtgctggcgc cacccctgcc ctagctccag actgccccag 196020 ctagcggctc cataaaagag cacttccttc cacttgagga gaggagatgg aatggtgagg 196080 agcatttttt ttcttgcatc ttgaatacca gctcaaccgc agcaggacag ggcaccggtc 196140 agggttgtga agcccctgct ccaggcacta gctcctggat aacatttcta ggcacaccct 196200

gggccagaaa gcaacctgct gccttgaaag aaatgaccaa gccctggcag cattcatcac 196260 tggccacctg aatagccctt ggttcctgaa tagacagcag cgatacccag gtactgcatc 196320 aaggacettg ggtgaaccac tgagacatac tggcttcagg taccagtatg gtaagagggg 196380 aatagcgtaa caagcgggct cttggggtcc ccaattccag gacttaactc ttggacagca 196440 tttctagacc tgcccgtgac cagacaggtg cccacagccc tgaagggtga gtcccagtcc 196500 aggcagcatt caccatgagc tgacttaaga acacttggga cttaagggag catcagtggt 196560 agtgttgcag tactctccat ggcctgcaat aggggtggct acaggttgag gctcccctgc 196620 ctttgaaaaa gggaggaggg aagtgtggga agaacggctt cttgtggttt gagttatggt 196680 ttgagtgtcg gctcagctgc agtacagtag aacaccaggt agatttctag gatctttaac 196740 tctaatteet gaeteeagga tggeatetet gaaceeacet gggggaacte actgeeetga 196800 aaggaaagac acaggcctgg atagctttgc cacctgctga ttatagagcc tcaggggttt 196860 gagcaaataa aggcagcagc cagggagtgg ttacagaagg ccttgggcaa gacccagaac 196920 tatgcttgct tcaggcctga cccagcacag tcatagtgtt catagtgttg gtggccagag 196980 gagtgcctgt gttactccat ccccagcttt agatggctca gaacatggag agagagaga 197040 agagagagag agagagaga agagagagag agagagagag agagagacag tttgtctggg 197100 agaaagtaag gggagagaac aagagtetet geetgataae eeagagaett eteetggate 197160 atgtccaaga ccgtcaaggt gggacctcca cgagtatgta agaactgcag cattactggg 197220 cttgggtgcc cacaaaagca gatacagatt aaaatgaaac acccaagtat ttgtaaatat 197280 ctggaaaaca ttctcaatta gaatggctac aaacaagctc agacagtgaa gactacaata 197340 gatacctaaa tetteaatga ecagatgeea aagaatatet aetageatea acaccateea 197400 ggaaaacata acctcaccaa atgaagtaaa taaaccacat ggaccaattc tggagaaaca 197460 gatatgtgac ctttcaaaca gaaaattcaa aatagctgtg ttgatcaaac tcaaagaaat 197520 tcagtataac acagaagaat tcagaattct atcagagaga ttaacaatga gtttgaaaca 197580. attgaatcaa gcagaaattc tggagctgaa aaatgcaagt gacaggttgc agcatctgtc 197640 aaattctctt aatagcagaa tcaatcaagg agaagaaaga attagtaagc gtgaagacag 197700 gctatttaaa aatatacagt caggaaagac aaaattaaaa aatagtagaa agcaatgaag 197760 catgcatata ggatctaaaa aaaatagctt caaaaggaca aatctaagag ttattggcct 197820 taaagaggag gtagagaaaa acatatgggt agaaagtttc ttcaaatgga taataataga 197880 gaactttcca aacctagaga aaggtatcaa tatccaagta taagaatatt atagaatacc 197940 aagcagattt aactcaaaga agtctacctc aagtcattta ataatcaaac tcctgaaaat 198000 caaggataaa gaaaggttct taaagcagca agataagagc tccaatatgt ctggcagcag 198060

acttttcagt tgaaacctta caggccagga gaaaggcatg acatatttaa agtgctgaaa 198120 gataaaaatc ttttacctta gaaaatatat ctgaaaaaat atctttcaaa catgaaagag 198180 aaataaagat ggtcccagag aaacaagagc tgagggattt aatcaacacc agccctgtcc 198240 tacaagaaat gctaaaagga gtatttcagt cagaaataaa aggatgttaa ttaccaatat 198300 gcaatcatct aaaagcataa aactcaatgg taattgtaag tacacagaaa aaatagaata 198360 ttataacaat gtaactgtag tgtgtaaact gctgttattc taagtagaaa gactaaagac 198420 taaaccaaaa ataataacta caacttttca agacatagtc aatacaataa gatatgaata 198480 aaaacaacaa aaagtcaaaa agcagtgaga tgaagatgca gtttttatta gttttctttc 198540 tgcttacttc tttgtttata caaatagtct taagtagtta tcagattaaa ataatgggtt 198600 ataagatagt atttgcaagc ctcatggtaa cctcaaacca aaaaacatac aacggataca 198660 caaaaaatta aaggcaagaa actaaatcat atacccacag aaaaatcatc tttactaaag 198720 gaagacagga aggaaagaaa gaagaaggag aagatcacaa aaccatcaga aaataaataa 198780 caaaatgaca ggagtaagtt tttacttatc aataataaca ttgaatgtaa atgagctaaa 198840 ctctccaatt aaaatacata gagtggctga atgtatgaaa aaacaagaca cattgatctg 198900 ttgcctacca gaaacacact tcatctataa agaaacacat acactgaaaa taaagggatg 198960 gaaaaagata ctccatgcca atggaaacca aaaaagaagc aggattagct atactcatag 199020 cagacaaaat agatttcaag acaaaaagta taagaagaaa aaaaaggtca ctatataata 199080 ataaagaaat cagttcagca agaggatata acaattttac atatatatgc acccaacact 199140 ggagcaccaa gatatataaa ggaaatagta ttagaactaa tgagagagag aggtcccaac 199200 acaataatag ctggagactt caacaccca ctttcaggat tggacacatt ttccagacat 199260 aaaatcaaaa aagaaacatc agacttcatc tgcattatag accaagtgga tctaataaac 199320 atttacaaaa tgctttttcc aaagactgca gaatacacct tcttttactc agcacatgga 199380 tcattctcaa ggatagaata tacgttaggt catataccaa gtttgaaaac atgtaaacaa 199440 attgaaataa tatcaagcat cttctctgac caccaaaaaa tgaaaatgga aattaataac 199500 aaaaataatt ctggaaacta tacatataca tagaaattaa ataatatgct cctgaattac 199560 cagtgggtca atgaagaaat taagaggtaa attgaagttt cttaaatgat aatggaaaca 199620 caacatacta aaacccatgg gatacagcaa aagcagtatt aagtaggaag tttatagcta 199680 taagtgccta cattaaaaaa gaggaacaac tccaaataaa taattttatg gtgcatctta 199740 aaaaaactag aaaaatgaga tcaaactgaa cccaaaattc atagaagaaa ataaataata 199800 aagatcagag cagaaataaa tgaaactaaa atgaagaaaa tcaatacaga atatcaataa 199860 aacaaaaagt tggttttttg aaaagctaca caaaatgacg aaactttagc cagagtaagt 199920

aagaaaaagc agagaagatc caaataaata aaagcagaga ttaaaaggag acattacaac 199980 agatacggca gaaattcaga ggatcgttag tggcgaccat gagaaactat atgtcaataa 200040 attggaaaat ctccaagaaa tgcataaatt cttacccata ccacctacca agtttgcatg 200100 aagatatcca aaacctgaat aaaccaaagg gatgtaacaa gataaaagct gtaataagca 200160 gtctctcagt aaaggaaagc ccaggacctg atggcttcac tgttgaattc taccaaacat 200220 ttaaagagga gctaatacca attttactca aactgttcca aaaaatagag gagaaggaaa 200280 tactttcaac atcattctaa aatgcctgtt ttaccctgat aaccaaaacc ggacaaagac 200340 acataaaaaa ggaaaaacaa aaactacagg ccaaaattct gatggatatt aatatgaaaa 200400 tcctcaatga aatactagca aatcatatta aacaatacat ttgaaagata attcatcatg 200460 accaagtaga atttatcact gggatgcaaa aaggtctcaa catgcacaaa tcagtcaatg 200520 taatacatca tatcaacaga atgaaagcta aaaaccataa gatcatttca attgatgctg 200580 aaaagacatt tgataaaatt caatataatt tcatgttaag aaccctgaaa aaaaactgca 200640 tatagaatga acatatatca acataataaa agccatatgt gtcagaccca catctagtat 200700 catactgaat ggaaaaaaa gtgaaagtct ttatgatctg aaacacaaca aggatgccca 200760 ctttcaccat tgttatatag tgcttgaagt tctagctaga ataatcaagc aagagaaaga 200820 aagggcattt aaattggaat ggaagaagtg aaattatctg tgtttgcaga tgatacaatc 200880 ttctatttgg aaaaacctag agactctacc aaaaaactct cagaactcct aaacaaatta 200940 tttaaagttg caggatacga aatcaacaca caaaaatctg tagcatttat atatgccacc 201000 agtgaacaac ctgaaaaata aattttaaaa attattttat ttacattagc cacacgtaaa 201060 atgaaatacc taggaattaa cttcaccaaa gaagtgaaca atctgtataa tgaaaactaa 201120 aacactgatg aaagaaatta aagaggatgc caaaaaatgg aaatatattc cattttaatg 201180 gattgaaagg attaataatt ttaacatggc cctactaccc aaagcaatct acagattcaa 201240 ttccatctct atcaaagtac caatgagatt cttcacagga atagaaaaac caatcctaaa 201300 atttatatgg aaccacaata gatccagaat agctaacact atcctgtgca aaaagaacaa 201360 aactgaagga atcacattaa ctggcttcaa actatactac agagctgtag taaccaaaac 201420 agcatagtac tggtatcaaa acagactcat agaccaatgg aacaaaatag agaacatatt 201480 tacacatcta gggtgaacta attttcaaca aaagtaccaa gaacatacat tgggacatag 201540 acagtgtctt caataaatgg tgctggggaa actggatatc catatacaga agaatgaaac 201600 tagaccccta tttctctcca tatacataat tcaaatctaa atagaataaa aacttaaatc 201660 taagaccaca aacgtgaaat tgctacaaga aaacattgtg gaaaatttcc aggactttgg 201720 tctgcacaaa aattccttgg gcaatatctt atatcttaca agtgcaggca acctaggcaa 201780

acatggagaa atgagattat gtcaagttaa agagcttctg tgaacagtta ataaattgaa 201840 gagacaactc acaggatggg agaaaatatt tgcaaacaag ctgtggcaca agggattaat 201900 aaccagaata tacaaaaagc tcaaacaaca ctatgagata caaatataat aatctgatca 201960 aaaaatgggt aaaagatttg aatagacttt tctcaaagga agacatacaa atggcaaaca 202020 ggcatatgaa aaggtgctca acatcattga tcatcaggga aatgcaaata taactagaat 202080 gagatatcat ctcaccccag ttaaaatgac ttttatccaa aagacaggca attacaaatg 202140 ctggcgagga tacggagaaa agagaaccct tgtacactgt tggtgggaat ataaactaat 202200 acaaccatag ttcgaaggtt cctcaaaaac ctaaatagag ccaccatgtg atccaacaca 202260 cctactattg ggtatatacc caaaagtaag gaattcatta tattgaaaag acacctgcat 202320 tctcatgttt gttgcaggat tgttcacaat agctaagagt tggaagcaac ctaaatgtcc 202380 accaatagat aaatgaagaa aaaatggggt acatatacac agttgagtac tattcagcca 202440 tgaaaagaat gagatcccgt catttgcaac cacgtggatg ggactggaaa ccattatgct 202500 tagtgaaaca agccaggcac agaaagacaa gcatcacatg ttggcattta tttgggggat 202560 ctaaatatca aaacaattga actattcgac atattcgaaa tatcaaaaca attgaacatc 202620 ctctgaccag aggatgggat gtgtatttag gggttggggg aaatgtggga aaagttatgg 202680 ttataaaaaa tagaaagaat gagtaagacc tactatttga tagcacaaca gagtgacttc 202740 agccaatagt aacttaattg tacatttcaa aataaccaaa aggacattat tggattgttt 202800 gtaacatgaa gaataaattc ttgaagggat gagtacccca ttcttcatga tgtgattatt 202860 ctttattgta tgcatgtacc aaaacatctc atgtactcca taaatacatg cacctactat 202920 gtactcacaa gaattaaaaa taaaacaaaa ttaaaaagaa aaaagttaaa atgttgagca 202980 ctgtagaaaa tttctgatga ctcagaatgt ttgattgtaa ggagtatgtt ttatttttc 203040 tcaggctgga cattacttca gtatatcttt tcaatatgcc atatatggaa tatacttttg 203100 ggatggcatg gagaacgatt ttcttcaaaa agtgcaggat gaggaccatg gtctttatat 203160 ccctatgact agtccagtgc ttgaaacaga atatgtgctc acttaagagt tgttgagaga 203220 cttgatggtc tttgatagct tacttctgtc taaagcatcc tagttttggg ctaatcctcc 203280 atattaaacc aacagcttta ttcttagggg ctagtattct cccagtggta atagaatcag 203340 aaggaagaac cacgatagtt caaggcagga tagccccacc acacatagtt ttacactgtg 203400 gagttgtaag tetggttgge tggatteata atataaceta aagtttaaag gaateattaa 203460 gaaaacctag gcaataccat tcaggacata ggcatgggca aggacttcat gtctaaaaca 203520 ccaaacgcat tggcaacaaa agccaaaatt gacaaatggg atctaattaa actaaagagc 203580 ttctgcacag caaaagaaac taccatcaga gtgaacaggc aacctacaga atgggagaaa 203640

atttttgcaa cctactcatc tgacaaaggg ctaatatcca gaatctacaa agaactcaaa 203700 caaatttaca agaaaaaac aaacaactcc atcaaaaagt gggcaaagga tatgaacaga 203760 cactteteca aagaagacat ttatgcagee aaaaaacaca tgaaaaaatg etcateatea 203820 ctggccatca gagaaatgca aatcaaaacc acaatgagat accatctcac accagttaga 203880 atggcgatca ttaaaaagtc aggaaacaac aggtgccgga gaggatgtgg agaaatagga 203940 acacttttac actgttgatg ggactgtaaa ctagttcaac catcgtggaa gtcagtgtgg 204000 caatteetca gggatetaga actagaaate ceatttgace cagecatece attactgggt 204060 atatacccaa aggattagaa agcatgctgc tataaagaca catgcacacg tatgtttatt 204120 gcagcactat tcacaatagc aaagacttgg aaccaaccca aatgtccaac aacgatagac 204180 tggattaaga aaatgtggca catatacacc atggaatact atgcagccat aaaaaaatga 204240 tgacttcatg teetttgtag ggacatggat gaaactggaa agcatcatte teagcaaact 204300 atcacaagga caaaaaacca aacaccgcat gttctcactc ataggtggga attgaacaat 204360 gagaacacat ggacacagga aggggaacat cacacaccgg gggctgttgt ggggtcgggg 204420 gagacgggag ggatagcatt aggagatata cctaatacta aatgacgagt taatgggtgc 204480 agcacaccaa catggcacat gtatacatat gtaacaaacc tgcacgttgt gcacatgtac 204540 cctaaaactt aaagtataat aataataaaa tttttaaaaa gtgaggatta tagaatcata 204600 ccacccagge tggagtgcat tggccccatc tcagctcact gcaaccccca cctcctgggt 204720 tcaagcaatt ctcgttcttc agtttcctga gtagctggga ctctagggat gtgccaccat 204780 gcttgtctaa tttttggaat ttttagtaga gatggggttt tgccatattg cccaggctgg 204840 tetegaacte etaageteag geaatetget egeeteaget teceaaagtg etgggattac 204900 agctgtgagc cactgtgccc ggcctcatag catattttta aaaaatgaca ttggttgttc 204960 caattgactc atgctacagc tgagggatct gaagcctaca gaaggtacgc agtttaccca 205020 gagtaccaga aagaatatga gatgtagggc agcttgaact tggtttgaac actgtttcac 205080 aattactgtg ttattgagct tctctgagcc tcaatttcct tatcagtaaa tcagacccgc 205140 atgatgatat ctacctcctt ggactgctgt gagtattgca tctctgctga acatcttccc 205200 tetgeettte cagatecaet caccaccatt etteacetgt getgteetga gaggetattt 205260 aggaaggatt ctctcaatgg gctcctggac tctggtgtcc actgggtttg gctaatgaaa 205320 agccccaagg agagttggag gtgggaggga gaaaggaagg agagtgaggg ctgtggacct 205380 attecectgg ctecatecet gtgagteace ttgagetgga tgagtetett ggtggaggte 205440 actgtacttc tgaagacagc aattttctca tgattattga tttttccaga ttctagtaac 205500

cactteetee etgeteteat teetttgggt teggagttat ggeagetget actageacaa 205560 tctctgacgt tccccctgca tctacctgtt tatagatggt ccctttgcag acaaatattt 205620 gtcaaatatc ccattttgga tgtatcatct gtttgaccta gatactatgt gcttagagca 205680 gagcctgaca tataataggt tcttggtgta tagaatctat ggctagtagt agtattaata 205740 . ttagtgtaga ggtagtggtg gttgcagtgg aggtaatcgt gctggtattt ttcaaagcca 205800 ctcattcagt cacacgtaaa gccagtagta ggatgtattt ctctttcata ctcaactctt 205860 tctcaatgat tgcttttcaa ctgtctgtgc tccagaggga aatatacggt tggcttctaa 205920 caccttgctc tttgtggcca tggaatgctg cacatcccaa gcagatccta tcctgtgtct 205980 ggtactttgt gtggtgttta aacctacctt agataaaaat tgtaacaaaa atcattaaga 206040 atgcagttga gggttattat tataactaaa ctaatgtcag tctgtaatat cacttgtaca 206100 aaggctcaaa aacaagaggt gaaaaggttt aaaggagtcc ctggttctga ccctgggtcc 206160 atctctgact tacagcatga tatgggagag tcactttgag tagttcctca acctgatatg 206220 aaaaagaaga atattettaa aaactgaaca cataagaaat ttaaaaaaaa atcaatacaa 206280 tgaactcgtt gtacactgat gacctttaat tctttattat tcattttagt ggaaaatata 206340 acataatcac taagtttttc aataggagtt attttataaa gtaagttgta atctttcaat 206400 agaaatatgc cactgaatgt gttcctaaca ttttgatgaa ttttcactgg atagtgatat 206460 acccatcaaa atattttttg taaacaaatt tagaaaacaa tcataaaagg taataaggta 206520 attgaaagct gttattttca gcaattttaa tcaatttttg acctacccta tttgatacgg 206580 catggctgtt ggttcttgct tgttttgttt tgttttgttt tgtttttat gacacgacag 206640 tttgatgttc tcactgttaa ttgcaggcaa aagtccaaaa gaaataaata cttagatgtt 206700 agtttgtaag aatttactaa atggagttgt taatctgtag acaacatctg gaattcacta 206760 aggaaaaaa atgtatacaa ggttcgcttg gtttgttagt gtttagatgg cagtcatggg 206820 agtgctataa attatttgtt tctggagggt cagcagcgta ttttgctagg cttttattga 206880 ttttatggtg tatgaagtaa agatatgtga gcttgacgaa caccggaaca aaaatccagg 206940 gtctacttca cttttgttct atttttaaat ttttttttc cgttattgcg ttttgtgact 207000 tcctatagag aatggacaag tgtcaaccta tgggaggaat ctagggccat gccttcttta 207060 tetttggccc tetetettat tetettttaa aacattttta getttttatt ttgaaacaat 207120 tataagttca caagaagttt caaagatatg tacatggagg ccttatgtac ccttcaacca 207180 gcctctccca atggtaaaat cttcagtaca ctaccacatt acactatcaa aactagaaca 207240 ttgacagtga tgcaatccag agctttttaa gattcaacac ttttcttttg gctgttctag 207300 gcactteaca tttccatatg actattataa ttatcttgtc aatttctatt aaaaatcctt 207360

tttagaattt tgattagaat tgagttgaac ttacagatga atttggaata actgccactt 207420 tacaatattg aatcttccaa ccgaaaatca aagtatacat ctggattttt gatgtcatta 207480 acttatcatt gcaatttttt tgtagtttta agtgtacaag tcatttacat ctttggtcag 207540 atttatccct aagactttaa tatttttagt gatattttaa attgcactgt tcttagtttc 207600 aactttcatt tgttgaaatt aacttccagt ccaccctagg actaccatta gctgaaacac 207660 tgcctcttct aatatataaa catacaattg atttgtgtat tgatctctta ctctgcaatc 207720 ttgctaacct caattattgt agaagctttt ttatagattg acttttctac atatactttc 207780 atgtagtctt tgacaaaaga cacttttact tctccccttc caaactcaat gcatttttct 207840 ttttgcactg gacacaatct ccagtacaaa gtataactat gcccatactg gtgcacatgt 207900 gggtcttaga ttgtagcatc ctgcatgtaa acactgagaa caacttccag cacttgaata 207960 tccactcctt cccccaccca catactggga gaattcatgt tgggagacta catttactat 208020 gaacatacac ccctcatttg aaacaagact aggatacaca gtaaagaatg tttattcact 208080 aaaattttga cagactgaag gccattattg cagattggaa ataggaaatt taaaagaact 208140 acacggacat tgagtaaaat aacatgggtt gaaatttgcc tggcagtagc ctaaaagtaa 208200 atggtcttca aggtgcatat gaaggaactg taggagggaa atgggataat taattattaa 208260 ttattaaatg taactagtaa ttaataacta ataattaaat gtagccacac tagcttggag 208320 ggatttgagg tgagacatct aagatactaa gtcatggtga gggctggaag acaaaagaat 208380 gaatcacttc ataggaatga ctgcggggaa gggcttgaag gaatcatcct ctcgcttcca 208440 tgtgaaccgt gaacattaaa catggagaaa tgaggagtgg tggcagatca gtttgggatg 208500 catcttcagg ggatgctgaa acaacaacag catttggttt cctctacatc cctgtcaccc 208560 ctccccaca agcccaggga gtggtcagca gtggtgcttt gtgatgtcaa agccacctta 208620 ggaccgccat tggctgggac actgcctgta tgatcaaaca aagctcaagg gtgtggcttt 208680 gccttgtcac caggagggta tatataggga gggcaagagc tctgggacat cccactggga 208740 agetteaaca tagetgtgga agtetgeagt etacaggage etactataga cattetacaa 208800 ccaaccagaa tcatggaaca gccaacttcc agcaccaatg gggagaagac gaagagcccc 208860 tgtgaatcca ataacaaaaa aaatgatgag gtaagattgt caggttttga agggaaggtg 208920 agggtgaaag aaagacacac agagaggggg tggctcaaac agcaacacag gaatactgca 208980 gacacctgtg gaagtggggg acccgcttaa tgccagagcc caccgccgct tacaggctgg 209040 ggtgcttgta ggtaggggtg ggaggggcct gggcagtatg gcttgctgcc cggcaggata 209100 ttgataagat gtttttatga tcaggctgtt tggtcctttt tccagtggga tgtcattgtg 209160 gtgtatcttg gaactttgcc cagcaagata tgataggaaa gtttctttag ttggaccttt 209220

gtccgtcttg tgttacgacg attaggcaag atttttctca tggcccgaac ccccgtggaa 209280 tgtttcactt tgaccaaggt ctgaaaaata gcagggtgct tactaaatgg tggtttggac 209340 tcacattctt gccttctact ttagtataaa aggaagaggg gcattgttga ttatctggct 209400 gcttcctgcc gaatagggga gctgtaatca gggtttgggt tttgaagcag tgggtgttgg 209460 acttcagagt tgttttcctg gaggcactgg tactggactt ggcagaggag aaggatggta 209520 tcaatgtgtt gctgggtggc cgcctggaca ggggagttta gccttcggga gataaagcgg 209580 gatatgaagg taaatataca tgggccaatt gtagtattag gaggaggaaa attaagggtc 209640 ctaagaaagg ggccccctgc tatctcagtg ctgactgcag cagagatgtt tacttctgct 209700 aacactagaa tgagatgtag agcctgctta gtgtgtgtgg aggaagatga gacagaagct 209760 actaaaggaa cctggatggt ctgcttgtta ggcaaaatgt taatgtttag gctgaaacac 209820 cagggtgtat gttcctgacc atttggccag taggcagaga taagagtttg tggcacaaaa 209880 gaagaagaca ctgggggtgg acagacaaaa gttgtaggtt atggtggcaa gccatgagaa 209940 ggtgggtgtt gaattctgca gaaattcttt gttttaactt ttatattttt ccaagttgaa 210000 tagctgccag caagggtagc ccctctgacg gcctgatagg aaatgttggt ggtggaggag 210060 atggaggctg tttggttttg gagagagag gataaatggg tttttgtaac taatagccat 210120 tgtagccctg acagggcaga aggatatagg ttgcacttga gggaattgtt tgtgcatgtt 210180 tttctaaaag gtgttttatg gaatccgttt gtaacatatt cagttaagag gctatgaggc 210300 gagggagggt gacagccctg tatgtgatgg tgtggggtgga tttgatggat tggggggaaaa 210360 agagtttagc tgatcaagat tataaacagg tttgggaatg aactggtcaa gtaggtgaga 210420 tgcaggttta ttttggaccg agttcatgtg gccaggttga caggaagggc tgtgaattgc 210480 tggatttgtg tggacaaaca agtttaacag ttggaaggaa gaggggagtg tgactgattt 210540 aagaggaaag gtgtgaggct gatgaagggg gctcaactgt cagaggttgg gggtggggac 210600 ttagagtatc ccacagacaa agaggacaaa agaagaaaga ggagatttga gtaggagtga 210660 aattttggaa ggtgccctgc agtcatacct cctggattag tatgacgaat tggcatggac 210720 tattcaggga catggggaag ggtagccagg aaagatctga aataaagtag gagataaaag 210780 attggaaatt ggagacagag agtgttatgg actaaggtgt tctggattgg caacttctgg 210840 aattettgtt aagtacagtg aggttggtee tgteggggaa ggagaataat atgggggtga 210900 ggaaatttct agatgtgggt ctggtgctct ttttagtttg gaatggtgta ttcagtgtgg 210960 aaaggatgtt agctttgccc cagtcggagt agttaggata acctggtggg aacatttccg 211020 cttaggttgg agagggagg aggaggagtc tgtgattcag acccagtccc ctggttgtag 211080

ggacagggag gagtgttttg aggatggact tttaggctgg gtcaagtaag catttgcgta 211140 ctgtcttatt agatgttggg tgaggtgtaa cgccggccaa gtattccata tagaatgggg 211200 ggaaaataca gggagattct ggaggataaa agggcatttg tacatgagtt taaatgggct 211260 taggctgagg agcttttggg aaatgactca taaatgcatg aggaacaatg ggagaagtga 211320 agtccaggcc attttaacct ttagggaaga ttggtcagtt gctgttttct aaaaaagttt 211380 ccctgaagat tcggggtggt aaggaatatg caaagccaat ttaatgttta cagcctttac 211440 cagctgttgg ttaaactgtg aaacaaattg gcccgttgtc tgactggatg caagagggga 211500 gtttaaaccg gtggataata tgggtgaaga gaatagaagc aatggtgtgt gccttttcgg 211560 tggtggtggg aaaagctttt atccatccag agaatgtatc tactattgtc agaaggtata 211620 ggaatcactt tctgggggac atgtgagtga cgttgatttg ctagtcctgc cctggtaagt 211680 gtcctcagac cttgtgtgtt ggaaaggagg tggtttgata gcttcctgag gggaagtttg 211740 agtgcaaagg gaacatgcct tagtaatata tttcagattg gcagccatgg cagaagaatg 211800 tatataattt tctaaaagct ggagtagggg cagtaagcag catggaaatg gttgtgcaca 211860 tatgaaagta cagaaggttt tttaaacttg gacaagacac tttatcactg agatcaaaca 211920 atttttcct gaatggcgcc agcccgggca agtggggttc attccttctg ggtatataca 211980 ggaaaaaatg agcaataacg atggggtttt aagggctgcc tgccaggctg ccaaatttgt 212040 tgaaaggttt ctctcggtta tggcatcttt agactttcgg caccccttgc aatggataat 212100 ggtggccttt ggtggtagtt tatccaccc cagcagctta tgtataagtt tgccatttct 212160 tatgggagtt ccttttgtag ttaggaaacc ctgttcctgc cagatgaagg catgagactg 212220 taggacatgg tatgcatatt tggaatgggt gtaaatgttg accetettte cetttgctag 212280 ggtgagggcc ctggttaggg caactagctt aggctgttga gaggtagcat ggggtggcag 212340 agcattggat tctaggagtt tattttcagc aatgatggaa tagccagctg ctggacatgg 212400 ctccctaaaa gagcttccat taactaaccg tgtatgtgtt ccctgcaaag gggcatgtga 212460 aatgtgttgg aaggaggagg agagggagtc taagaggtcc agacaggagt gagagagcct 212520 agaatcggaa gtgtttacag ggaggagggt ggctgggttg agagttttat atctctggaa 212580 ggggattaga tggctaccta ggaataaggc atgtacctgt tataagcagg atggtaggag 212640 ggatagaagg gattgatggt ttatgaggtc ctgtaggtaa tgggaagatg caatagtaat 212700 gtgttggtaa agagggagtt tccgtgcctc taaggccagc gatgtggcca cagccaagat 212760 ttttagtcag agtgaccagc cttggtcaca caaaacaaca gagtccagtt gttttgagag 212820 aagtgcagtg gcttgtgtgg cgttgccgta tgtttggcag agtagtccaa gggcaaggcc 212880 ctggtcagaa tgtacataca aagtaacggg cttggtgagg ttgggcagtc cctgtgccag 212940

ggccattaaa agggcatttt taagttttta agtgggagtt gatggggcaa gctgggttta 213000 ggggttttag gatgggccca tgtgaggccc tgtttagtgg cttggccagc aagtcaaaat 213060 tgggaactga cagccagaag taacccacaa ggccagagaa ggagagaagg tactttttt 213120 tgtgaggaaa gggcatgtcc caaattagct cctttcattg ggttgggatg gctcgagaat 213180 taggggttag gacaaaccca aggtaagtaa ctttggtttg ggctacctga aatattgtgg 213240 gctaggccca aactttggtt tgggctacct gagatttcct ctattatgga ggaagtttaa 213300 aacctaagtg gtgtgttgga tggacaggtt aaggaagggg ctacagagaa ggagtttgac 213360 atgttgcagg agggtgctag cagcaaggga aagttcacct aggtccttga tgagggcaag 213420 tctgaatagg tgggggctat cctggaaccc ctgtaagagt acagtccact ctagttgggt 213480 gcacatgtga gtattaggac ttgaccaagt taaagcaaaa agacttctgt aagccggatt 213540 taagggaatg gtgaaatagg catctttcag ttccaataca gaggagtgtg tagtagattt 213600 aggaatatgg gagagtagag catattggtt gaggaccact agatgtattg gtaccactgc 213660 ctggtcaaca acttggagat cctggacaaa ggggtaagtc ccgtctgtct tttggaaagc 213720 cagaataggg gtgttctggg gagagttaac aggcttgaga atatgagctt gttaaagttt 213780 acaaataata ggtttgaggc ccctaagcac ggctggatta aggggatatt gagactgaaa 213840 gggtttagaa acattccaag ctttagaatt aacagaaggt aacagggtgg ataatgagga 213960 tgagtagggg gagagggaag cgtttgggtg tcggagtaaa ataaaagggg tagaattgta 214020 ggagccgcat tgcatggagg cctggaattt acttaatatg tcccacccca agataggggt 214080 aggggactga gggataacca ggaaacagtg ggtgaagggg gctgttgaat aggttgcata 214140 ataaaggacg agtctgtgcc tagaggggat tttattgatt ctcacaatag agatcgaaga 214200 acagaaaaag ggtctagaat attctggtaa aaccgagtaa ctagttgtcg tattgagtat 214260 ccaataggaa agacatggac ttactagaga ctgacagaat taccctgggt tccgaggtgg 214320 tgatggcagt aggggtggtg gactctaggc cccacctgtc ttcaggtaca ggtggtgaag 214380 ctagatgaag agtttcactg agcacagtct gacttccagt gttgcttgat atcacagatg 214440 gggcaagget tecagagtgt caegggatta ggccaggett ttgeteagtg teeetgttgg 214500 atgcacttat aacaggctcc tggagttgac tgttgccaag ttgaggaatt ctgtatgcct 214560 tgggaaccct gttgagtggc agctatcagc atttgatatt tagcctggcc cttttttagg 214620 tttgggtttt ttagttcttc ctctctaatc ttatagacct taaaggccac tttgattaag 214680 tctctttgga ggtttgaggg ccatcctcca ctttttaaag tttttttca aatgtctggg 214740 gctgactggg agataaagtg taaatggagg tcgattttgc ccttaatggt attagggctt 214800

aaggtggcat atttagttgt gacctttgaa aaggcgggag aggaaaagag caggggcgac 214860 tttatttatg ccagctagaa ggcatgatat catatggcct ggtttctgcc tgtctacaga 214920 agttgcctga taattccgat tgaggtcagt tctggggaca gctagggtcc ctactgggtt 214980 atgagcagca tettgttggt ggagggtgtt etcatgggee tgggcacceg taaatatgtg 215040 ttccctgtcc tccagggtga gggtagagga gaggatgaca tatatgtcat gccaggtaag 215100 gtcataagat ttagggaagt acagacattc cttgaggaag gaggtaggat ccattgaaaa 215160 ggagcaaagt ctcttttcag tatgggagaa gtcagctagg gaacttgaat tcagattatg 215220 ccttcagtcc ttgcaacctc ctgcaaggga aagactttgg aaggcctttg ggcatgtgtc 215280 tggttttcgg caaaagaggg ttgggcgtga gacctggttt gaggtggaga aggaaggggg 215340 atggagggtg acagtgaggg ggtggaggag ccggatccga aggagaaggt ggagggaatg 215400 ggagagggca ggagccagac gaaggggttt gttggccagg ttgaaattca gaggaggaag 215460 gcttgtcccg aggaggaggc attttggggg gtttctcctt gaggaggaag atttgaaaag 215520 gcgaacaaga ttggcaggag agtgagtgag gcatgagcgg agataagcaa agcacttcag 215580 atcatttacc attgtgttgg agaaagattt ttagatgatg ttgaatttga aagttgaatg 215640 ttttgttttt tagaagaggg gagtgaatac tctggatggg agtgaatact ctgggggaaag 215700 tgagtacccc agaagggagt gaatacccca gaggggagtg agttctccag agggaagtga 215760 ataccccaga ggaaagtgag tactggattc cacctgggag aagggacctg gagagttggg 215820 gcagccccgt agctattcat gctccccaga ggacggagcg gccagaatgg caagtgttct 215880 gaggetgtee cetgagaagg gaggetgeag teacetggtg actggggaga ceteteacee 215940 agcactggaa tttttttgga gaacaagcag aaatagaaag gaatccagaa aggaagaata 216000 gggagactca cccacgaatt gaagcccagt gttggatgtg atgtccagca atgggggtga 216060 tcctggttgc agctgcttgg gaagggaag gaaggaaaaa taagatggag agtttgatca 216120 atatctggag gttagtccag ggctggagaa gatgagagaa taggggaaac aggactggga 216180 216215 acagacagtc cactcaggat ctggaagtag gcccc

<210> 26 <211> 4220

<212> DNA <213> Homo sapiens

<400> 26
ctgatggatt tgcattcagg ttccagccct gcgtttccta tattgactcc ttatacacga 60

cctggcgctc cagtttagga ggagacgttg ttttgtaatc aaccacgaac gatgaaacct 120

tccatagctg agatgcttca cagaggaagg atgttgtgga taattcttct aagcacaatt 180

gctctaggat	ggactacccc	gattccccta	atagaggact	cagaggaaat	agatgagccc	240
tgttttgatc	catgctactg	tgaagttaaa	gaaagcctct	ttcatataca	ttgtgacagt	300
aaaggattta	caaatattag	tcagattacc	gagttctggt	caagaccttt	taaactgtat	360
ctgcagagga	attctatgag	gaaattatat	accaacagtt	ttcttcattt	gaataatgct	420
gtgtctatta	atcttgggaa	caatgcattg	caggacattc	agactggagc	tttcaatggt	480
cttaagattt	taaagagact	atatctacat	gaaaacaaac	tagatgtctt	cagaaatgac	540
accttccttg	gcttggaaag	tctagaatat	ctgcaggcag	attacaatgt	cattaaacgt	600
attgagagtg	gggcatttcg	gaacctaagt	aaattgaggg	ttctgatttt	aaatgataat	660
ctcatcccca	tgcttccaac	caatttattt	aaggctgtct	ctttaaccca	tttggaccta	720
cgtggaaata	ggttaaaggt	tcttttttac	cgaggaatgc	tagatcacat	tggcagaagc	780
ctgatggagc	: tccagctgga	agaaaaccct	tggaactgta	catgtgaaat	tgtacaactg	840
aagagttggc	tggaacgcat	tccttatact	gccctggtgg	gagacattac	ctgtgagacc	900
cctttccact	tccatggaaa	ggacctacga	gaaatcagga	agacagaact	ctgtcccttg	960
ttgtctgact	ctgaggtaga	ggctagtttg	ggaattccac	attcgtcatc	aagtaaggag	1020
aatgcatggo	caactaagcc	ttcctcaatg	ctatcctctg	ttcattttac	tgcttcttct	1080
gtcgaataca	a agtcctcaaa	taaacagcct	aagcccacca	aacagcctcg	aacaccaagg	1140
ccaccctcca	a cctcccaagc	tttatatcct	ggtccaaacc	agcctcccat	tgctccttat	1200
cagaccagad	c caccaatccc	cattatatgc	cccactgggt	gtacctgtaa	tttgcacatc	1260
aatgacctt	g gcttgactgt	caactgcaaa	gagcgaggat	ttaataacat	ttctgaactt	1320
cttccaagg	c ccttgaatgc	: caagaaactg	tatctgagta	gcaatctgat	tcagaaaata	1380
taccgttct	g atttttggaa	tttttcttcc	: ttggatctct	tgcatctggg	gaacaatcgt	1440
atttcctate	g tccaagatgg	ggcctttato	: aacttgccca	acttaaagag	cctcttcctt	1500
aatggcaac	g atatagagaa	gctgacacca	ggcatgttcc	gaggcctaca	gagtttgcac	1560
tacttgtac	t ttgagttcaa	tgtcatccgg	gaaatccago	: ctgcagcctt	cagcctcatg	1620
cccaacttg	a agctgctatt	cctcaataat	: aacttactga	ggactctgcc	aacagacgcc	1680
tttgctggc	a catccctgg	c ccggctcaac	ctgaggaaga	actacttcct	ctatcttccc	1740
gtggctggt	g tcctggaaca	a cttgaatgco	attgtccaga	tagacctcaa	tgagaatcct	1800
tgggactgc	a cctgtgacct	t ggtcccctti	aaacagtgga	a togaaaccat	cagctcagtc	1860
agtgtggtt	g gtgatgtgc	t ttgcaggago	cctgagaaco	tcacgcacco	g tgatgtgcgc	1920
actattgag	c tggaagttc	t ttgcccagaq	g atgetgeacg	g ttgcaccago	tggagaatcc	1980
ccagcccag	c ctggagatt	c tcaccttat	t ggggcaccaa	a ccagtgcato	c accttatgag	2040

ttttctcctc	ctgggggccc	tgtgccactt	tctgtgttaa	ttctcagcct	gctggttctg	2100
tttttctcag	cagtctttgt	tgctgcaggc	ctctttgcct	acgtgctccg	aaggcgtcga	2160
aagaagctgc	ccttcagaag	caagcggcag	gaaggtgtgg	accttactgg	catccaaatg	2220
caatgccaca	ggctgtttga	ggatggtgga	ggtggtggtg	gcggaagtgg	gggtggtggt	2280
cgaccaactc	tttcctctcc	agagaaggcc	cctcccgtgg	gtcatgtgta	tgagtacatc	2340
ccccacccgg	ttacccaaat	gtgcaacaac	cccatctaca	agcctcgtga	ggaggaggag	2400
gtggctgttt	catcagccca	agaagcaggg	agtgcagaac	gtgggggtcc	agggacacaa	2460
ccaccgggaa	tgggtgaggc	tctcctagga	agtgagcagt	ttgctgagac	acccaaggag	2520
aaccatagta	actaccggac	cttgctggaa	aaagagaagg	agtgggccct	agcagtgtcc	2580
agctcccagc	ttaacaccat	agtgacggtg	aatcaccatc	accctcacca	cccagcagtt	2640
ggtggggttt	caggagtagt	tgggggaact	gggggagact	tggcagggtt	ccgccaccat	2700
gagaaaaatg	gtggggtggt	gctgtttcct	cctgggggag	gctgtggtag	tggcagtatg	2760
ctactagatc	gagagaggcc	acageetgee	ccctgcacag	tgggatttgt	ggactgtctc	2820
tatggaacag	tgcccaaatt	aaaggaactg	cacgtgcacc	ctcctggcat	gcaataccca	2880
gacttacagc	aggatgccag	gctcaaagaa	accettetet	tctcggctga	aaagggcttc	2940
acagaccacc	aaacccaaaa	aagtgattac	ctcgagttaa	gggccaaact	tcaaaccaag	3000
ccggattacc	tcgaagtcct	ggagaagaca	acatacaggt	tctaacagag	agaagaaaat	3060
atattagtgc	tttttttt	tcaaaagaaa	aggaaaataa	aagaaatata	tcccttgctc	3120
cctttacact	tgtcccagta	actccatcct	cacgatcttt	cctaccctga	acaaaactaa	3180
aaccgcatga	taactagaga	atacagatgt	atgctctccc	ctctcagatg	cgatttggag	3240
gaagggccat	actcagatca	ttaatcaatg	aaagtgcctt	cgcagacttt	tgccagcaaa	3300
tgttatcatt	attttttat	actgaaactt	gagactttga	ctgtgccatg	tataagatat	3360
actggggatc	attgtatgga	tcctaattaa	gtaaaattca	atgtgtcttt	ttattttcag	3420
taactatttt	tttatagtt	gtagttttga	. tttaaagggg	gggaaacaag	ttgacatttg	3480
tcatttgtgg	ctttctttct	tatcatcatg	gcacagattc	tgtacatgta	ttaacaatgc	3540
agtttgctgc	atgcctggaa	actgcaagat	ggggagggag	ggggcgggtc	ttgctcgaat	3600
gttctcactc	actatcttgt	ctctcataca	catatccatc	tgcagaccat	ggtccctaaa	3660
cctgcagttt	cttcctgctg	gtgcaggtac	: acacacacac	acacacacac	acacacacac	3720
acacacacac	tccataccat	ttccattcaa	ctcaatctgo	: ttagttcggg	tttgatccat	3780
ttttctcctc	tccatagttc	: taccaccctt	cactgctagt	gtacagctca	cagcatetet	3840
cctaccaccc	tgggaaaagt	cacattctag	gctggattct	: actgaagtag	aggcctggtg	3900
	aagaagctgc caatgccaca cgaccaactc ccccacccgg gtggctgttt ccaccgggaa aaccatagta agctcccagc ggtggggttt gagaaaaatg ctactagatc tatggaacag gacttacagc acagaccacc ccggattacc atattagtgc cctttacact aaccgcatga gaagggcat tgttatcatt actggggatc tcattgggatc ttttctcctc	agaagctgc cettcagaag caatgccaca ggctgtttga cgaccaactc tttcctccc ccccacccgg ttacccaaat gtggctgttt catcagcca ccaccgggaa tgggtgaggc aaccatagta actaccggac agctccagc ttaacaccat ggtggggttt caggagtagt gagaaaaatg gtggggtggt ctactagatc gagagaggcc tatggaacag tgccaaatt gacttacagc aggatgccag acagaccacc aaacccaaaa ccggattacc tcgaagtcct atattagtgc ttttttttt cctttacact tgtcccagta aaccgcatga taactagaga gaagggcat actcagatca tgttatcatt attttttat actggggatc attgtatgga taactattt ttttatagtt tcatttgtgg ctttcttct agtttgctgc atgcctggaa gttctcactc actatcttgt cctgcagttt cttcctgctg acacacacac tccataccat ttttctcctc tccatagttc	aagaagctgc cettcagaag caagcggcag caatgccaca ggetgtttga ggatggtgga cgaccaacte ttteetetee agagaaggee cececacegg ttacccaaat gtgcaacaac gtggetgtt catcagaca agaagcaggg ccacegggaa tgggtgagge teteetagga aaccatagta actaceggae ettgetggaa ageteccage ttaacaccat agtgacggtg ggtggggtt caggaggagge teteetagga aaccatagta actaceggae ettgetggaa ageteccage ttaacaccat agtgacggtg ggtgggggtt caggaggagge acagcetgee tatggaacag ggtgggggggt getgtteet etactagac gagaagagge acagcetgee tatggaacag tgeccaaatt aaaggaactg gacttacage aggatgccag getcaaagaa acagaccace aaacccaaaa aagtgattac eeggattace tegaagteet ggagaagaca actattagtge tttttttt teaaaagaaa ecettacact tgteccagta actecateet aaccgcatga taactagaga atacagatgt gaagggecat acteagaga atacagatgt gaagggecat acteagaga atacagatgt gaagggecat acteagaga ttaatcaatg tgttateatt attttttat actgaaactt actggggate attgtatgga tectaattaa taactattt ttttatagtt gtagtttga tecattegg etteetteet tatcatcatg agtteges atgeetggaa actgcaagat gttetcacte actatettg etectgagat tectaatcat ectgcagtt etteetteet tatcatcatg acacacaca tecataccat ttecatacatacatacatacatacatacatacatacatac	caatgacacac agacacacacacacacacacacacacacacac	tittiteteag eagtetitgt tgetgeagge etetitgeet aegtgeteeg aagaagetge etetitgaa gaaggtgag gaaggtgag aeettaetgg caatgecaca ggetgttiga ggatggtga ggtggtggig gegaaagtgg egaceaacte titeetee agagaaggee eeteeegig gteatgtga gegaagtgag ggagaagtgg gegacaacte titeetee agagaaggee eeteeegig gteatgtga gegaagtgag gtggetgtit eateageea agaageaggg agtgeagaac gtgggggtee eeaeegggaa tgggtgagge teteetagga agtgeagaac gtgggggtee eeaeegggaa tgggtgagge teteetagga agtgagagag ttgetgagac aaceatagta actaceggae etigetggaa aaagagaagg agtgggggtt eaggtgagget teaggggagaet ggggggggtt eagggagagt tggggggagaet gggggggtt gagagaaaaatg gtggggtgg getgtiteet eetggaggag getgtggaggt tatggagaaaaaatg gtggggtgg getgtiteet eetggaggag getggggagt tatggagaaaaaatg gagagaggee aeageetgee eeetgeacag tgggattgt tatggaacaag tgeceaaatt aaaggaactg eaegtgeaee eteetggaatga getgagaaaaaaa aeeetaeaga aggatgeag geteaaagaa aeeetteet teeteggetga aeagaceaee aaaeeeaaaa aagtgattae etegagttaa gggeeaaaet eeggaateee tegaagteet ggagaagaaa aeataeaggt tetaaacagag atattaagtge tittititit teaaaagaaa aggaaaaataa aagaaaataa eeettaeaee tggeaggtee tggaagggaa aeteaaeee taaeeaaaa aaceegaaaa aeeeggaatga taaetagaga ataaeagagt atgeteeee eteetgaagteet ggaagggeea aeeggaeett eeetaaaeaggg agaggggaggaggaagaagaagaagaagaagaaaaeagaaga	tittiteteete etgggggee tgtgeaacti tetgtgttaa titeteaget getggttetg tittiteteag eagtetitgt tgetgeagge etetitgeet acgtgeteeg aaggegtega aagaagetge cetteagaag caageggeag gaaggtgtgg acettactgg catecaaatg caatgecaca ggetgtitga ggatggtgga ggtggtggt geggaagtgg gggtggtgt cgaccaacte titeetetee agagaaggee cetecegtgg gteatgtgta tgagtacate ceceacecgg ttacceaaat gtgeaacaac eccatetaca ageetegtga ggagagagag gtggetgtit cateageeca agaageagga agtgeagaac gtgggggee aggagagag geggetgtit cateageeca agaageagga agtgeagaac gtgggggee ageaggaga aaccatagta actaceggae etteetagga agtgagacat tgetgagae acceaaggag aaccatagta actaceggae ettgetggaa aaagagaagg agtgggeet ageagtgee aggteecaag ttaacaccat agtgacggtg aatcaceae acceteacea eccageagtit ggtggggtt caggagagt tgggggaac ggggggagaet tggeagggtt ecgeaacat gagaaaaatg gtggggtgg getgtteet ectgggggag getggggat tggeaggatt ggagaaaaatg gtggggtgg getgtteet ectgggggag getgggtgt ggaatatg ctactagate gagagagge acageetgee ecctgeacag tgggattitg ggaetgtee tatggaacag tgeecaaatt aaaggaactg eacgtgeace etcetggeat geaataceaa gaettacagae aggatgeeag geteaaagaa accettetet teteggetga aaagggette acagaacace aaacceaaaa aagtgattac etcgagttaa gggecaaact teaaaccaag ecggattace tegaagteet ggagaagaa accateacagt tetaacagag agaagaaaat atattagtge ttittittit teaaaagaaa aggaaataa aagaaataa tecettgete ectttacact tgteecagta actecateet eacqateett ectaacagag agaagaaaat aacagaatga taactagaga atacagatg agaacttee etcteagatg egatttggag gaagggeeat acteagatea ttaateaatg aaagtgeett ectaacaga egatttggag gaagggeeat acteagatea ttaateaatg aaagtgeett ectacagatg egatttggag gaagggeeat acteagata ttaateaatg aaagtgeett ectacagatg egatttggag gaagggeeat acteagata ttaateaatg aaagtgeett ectacagatg egatttggag gaaggggeet tettettet tateateatg gaacagatet tetaacagatg ttactatt ttittatagt gtagttttga tttaaagggg ggggagget ttgetegaat gtteteact accatectg etceataca eacacacae eacacacae accacacae tecataceat tecatacae eacacacae acacacacae acacacacae tecataceat tecatacae etcaatecae ttagteegg tttgateet ectacacace tecataceat tecatacaet tecatacaet taacacacte taacacacae ectaca

gtttaacagc cgaagacaca cgcctaggga tgagcaccct ctttgtgaca cttcatcctg	3960
atgccaagat tttttggaga acatctgcac tttcttatat atatatata tattaaaaaa	4020
agcaactggg tatatatcac taacagcttt gtaggaagca cttttaatgt tttctctctc	4080
acacacaaag attcaaaaga aatgtgcata tatttattct gtaatttcag tgattataaa	4140
ttgtaaaggt aatgtttaat cattgtatag tgattatgcc tctggtatag ctttcctaat	4200
aaaaagtttt tgaaaaacat	4220
<210> 27 <211> 3122 <212> DNA <213> Homo sapiens	
<400> 27 cgctgcggcc gctatcccct ccggaccatg gccgacgacg acgtgctgtt cgaggatgtg	60
tacgagctgt gcgaggtgat cggaaagggt cccttcagtg ttgtacgacg atgtatcaac	120
agagaaactg ggcaacaatt tgctgtaaaa attgttgatg tagccaagtt cacatcaagt	180
ccagggttaa gtacagaaga tctaaagcgg gaagccagta tctgtcatat gctgaaacat	240
ccacacattg tagagttatt ggagacatat agctcagatg gaatgcttta catggttttc	300
gaatttatgg atggagcaga tctgtgtttt gaaatcgtaa agcgagctga cgctggtttt	360
gtgtacagtg aagctgtagc cagccattat atgagacaga tactggaagc tctacgctac	420
tgccatgata ataacataat tcacagggat gtgaagcccc actgtgttct ccttgcctca	480
aaagaaaact cggcacctgt taaacttgga ggctttgggg tagctattca attaggggag	540
tctggacttg tagctggagg acgtgttgga acacctcatt ttatggcacc agaagtggtc	600
aaaagagagc cttacggaaa gcctgtagac gtctgggggt gcggtgtgat cctttttatc	660
ctgctcagtg gttgtttgcc tttttacgga accaaggaaa gattgtttga aggcattatt	720
aaaggaaaat ataagatgaa tccaaggcag tggagccata tctctgaaag tgccaaagac	780
ctagtacgtc gcatgctgat gctggatcca gctgaaagga tcactgttta tgaagcactg	840
aatcacccat ggcttaagga gcgggatcgt tacgcctaca agattcatct tccagaaaca	900
gtagagcagc tgaggaaatt caatgcaagg aggaaactaa agggtgcagt actagccgct	960
gtgtcaagtc acaaattcaa ctcattctat ggggatcccc ctgaagagtt accagatttc	1020
tecgaagace ctaceteete agggetteta geageagaaa gageagtete acaggtgetg	1080
gacagcctgg aagagattca tgcgcttaca gactgcagtg aaaaggacct agattttcta	1140
cacagtgttt tccaggatca gcatcttcac acactactag atctgtatga caaaattaac	1200
acaaagtett caccacaaat caggaateet ccaagegatg cagtacagag agccaaagag	1260
gtattggaag aaatttcatg ttaccctgag aataacgacg caaaggaact aaagcgtatt	1320

ttaacacaac ctcatttcat ggccttactt cagactcacg acgtagtggc acatgaagtt	1380
tacagtgatg aagcattgag ggtcacacct cctcccacct ctccctattt aaacggcgat	1440
tctccagaaa gtgctaacgg aggcatggat atggagaatg tgaccagagt tcggctggta	1500
cagtttcaaa agaacacaga tgaaccaatg ggaatcactt taaaaatgaa tgaactaaat	1560
cattgtattg ttgcaagaat tatgcatggg ggcatgattc acaggcaagg tacacttcat	1620
gttggtgatg aaattcgaga aatcaatggc atcagtgtgg ctaaccaaac agtggaacaa	1680
ctgcaaaaaa tgcttaggga aatgcggggg agtattacct tcaagattgt gccaagttac	1740
cgcactcagt cttcgtcctg tgagagagat tccccttcca cttccagaca gtccccagct	1800
aatggtcata gcagcactaa caattctgtt tcggacttgc catcaactac ccaaccaaaa	1860
ggacgacaga tctatgtaag agcacaattt gaatatgatc cagccaagga tgacctcatc	1920
ccctgtaaag aagctggcat tcgattcaga gttggtgaca tcatccagat tattagtaag	1980
gatgatcata attggtggca gggtaaactg gaaaactcca aaaatggaac tgcaggtctc	2040
atteettett etgaaettea ggaatggega gtagettgea ttgeeatgga gaagaecaaa	2100
caggagcagc aggccagctg tacttggttt ggcaagaaaa agaagcagta caaagataaa	2160
tatttggcaa agcacaatgc agatcttgtc acatatgaag aagtagtaaa actgccagca	2220
ttcaagagga aaacactagt cttattaggc gcacatggtg ttgggagaag acacataaaa	2280
aacactctca tcacaaagca cccagaccgg tttgcgtacc ctattccaca tacaaccaga	2340
cctccaaaga gagacgaaga aaatggaaag aattattact ttgtatctca tgaccaaatg	2400
atgcaagaca tctctaataa cgagtacttg gagtacggca gccacgagga tgcgatgtat	2460
gggacaaaac tggagaccat ccggaagatc cacgagcagg ggctgattgc aatactggac	2520
gtggagcctc aggcactgaa ggtcctgaga actgcagagt ttgctccttt tgttgttttc	2580
attgctgcac caactattac tccaggttta aatgaggatg aatctcttca gcgtctgcag	2640
aaggagtctg acatettaca gagaacatat geacaetaet tegateteae aattateaae	2700
aatgaaattg atgagacaat cagacatctg gaggaagctg ttgagctcgt gtgcacagcc	2760
ccacagtggg tccctgtctc ctgggtctat taggcctctc cccagatatc tgagcataac	2820
tgggagcacc tcatttgtgg aaaagcctct ttgttatcgg ccttgtgtca gcaggtcatg	2880
gtccctagag actacctagt tgtagtgtga cctacattta taattattgt catgtccgaa	2940
tagataggag gagaaaaaca attacacact aatttaaaga gacagtatct tttttaatca	3000
gttctcctaa actttaataa aatgtatctt taaatgtatg tattattcaa tcctttggaa	3060
tgttatattt ttggaaatca tagcttttta tttccaaggc ccctaaaact gcacaaaata	3120
ga	3122

<210> 28 <211> 3753 <212> DNA <213> Homo sapiens

<400> 28 60 ggcttggcac cagcgctgtc actagcgccg cctgctcccg cgggcccgcg gacccagctg 120 180 tcaggcaagc ccagtggagc aaaatgagag cgcagtgagc cgggcccagc ttctctccta gccgttccga ctcccaccat gaaccacttg gaggggtctg cggaggtgga ggtgaccgac 240 300 gaggcggcag gtggggaggt gaacgagtcg gtggaggccg acctggagca ccccgaggtg gaagaggaac agcagcagcc gccgcagcag cagcactatg tgggccgcca ccagcgcggg 360 420 cgagccctcg aggacctccg cgcccagctc ggccaggagg aagaggagcg cggggaatgc ctggcgcgct cagccagcac ggagagcggc ttccacaacc acacggacac cgccgagggc 480 540 gacgtgateg ccgcggcccg cgacggctac gatgcggagc gcgcgcagga ccccgaggac gagagegeet atgetgtgea gtaceggeee gaggeegagg agtacaegga geaggeagag 600 geegageaeg eegaggeeae geaeegeege gegetgeeea accaeetgea etteeaeteg 660 ctggagcacg aggaagccat gaatgcggcc tactcaggct acgtctacac gcaccggctc 720 780 ttccaccgcg gtgaggacga gccctactcc gagccctatg ccgactacgg cggcctccag gagcacgtgt acgaggagat aggggacgcg cccgagctgc acgcacgcga cggtctgcgg 840 ctctacgagc aggagcgcga cgaggcggcc gcgtaccgcc aggaggccct gggcgcgcgg 900 ctgcaccatt acgacgagcg ctccgacggc gagtccgaca gccccgagaa ggaggccgag 960 ttcgcgccct acccgcgcat ggacagctac gagcaggagg aggacatcga ccagatagtg 1020 gccgaggtga agcagagcat gagctcgcag agcctcgaca aggcagccga ggacatgcct 1080 gaggeegage aggacetgga gegteeceet acceeggeeg ggggtegeee egacageeee 1140 gggctgcagg cgccggcggg gcagcagcgg gcggtgggcc ccgcggggcgg cggcgaggcg 1200 gggcagcggt acagcaagga gaagcgcgat gccatctcgc tggccatcaa ggacatcaag 1260 gaggccatcg aggaggtgaa aaccaggacc atccgttcgc cttacacccc cgacgagccc 1320 aaagagccca tctgggtcat gcgccaggac attagcccca ccagggactg tgacgaccag 1380 aggeegatgg aeggagatte teegteteet ggeageteet eeeeettggg tgeagagtea 1440 tcaagcacat ctcttcaccc cagtgaccct gtggaagtgc ccattaataa agagtcaaga 1500 aaaagettgg cttcattccc aacctacgtt gaagttccgg gaccctgcga ccccgaagac 1560 ttgatcgatg gaatcatttt tgccgccaat taccttggct ccactcagct gctctcagac 1620

aaaactcctt ccaaaaacgt gcgcatgatg caggcccagg aagccgtaag caggatcaag	1680
atggcccaga aattagccaa aagcaggaag aaggctcctg aaggcgaatc tcagccaatg	1740
actgaagtgg acctetteat tettacecag agaatcaaag tgetgaaege egacacaeag	1800
gagacaatga tggaccaccc tctgaggacc atttcctaca ttgcggacat tgggaacatc	1860
gttgtgctga tggcccgccg gcggatacct cgctccaact cccaggagaa cgtggaagcg	1920
teceacecat eccaggatgg gaaaaggeag tacaagatga tetgecaegt ettegagtet	1980
gaggatgete agetgattge acagtecate ggacaggeat ttagegtgge ataccaggaa	2040
ttcctcaggg ccaatgggat taaccccgaa gatctcagcc agaaggagta tagtgacctg	2100
ctcaataccc aggacatgta caacgatgac ctgatccact tctccaagtc ggaaaactgt	2160
aaagatgttt tcatagagaa gcagaaagga gaaatcctag gtgtggtgat tgtggagtct	2220
ggctggggat ccatcctccc caccgtgatc attgccaaca tgatgcatgg tggccctgcg	2280
gagaaatctg ggaagctgaa tatcggtgac cagatcatgt ccattaatgg caccagcctg	2340
gtgggcctgc ctctgtccac ctgccagagc attattaagg gcttagagaa tcagtcccga	2400
gtcaagctga atatcgtgag atgtcctccg gtgaccaccg tgttaatcag aagaccagac	2460
cttcgctacc agctcggttt cagcgtccag aatggaatta tctgcagcct catgcgaggg	2520
ggaatagctg agagaggagg cgtccgtgtg gggcaccgga tcattgaaat caatggacag	2580
agcgtcgtgg ccaccccca cgagaagatc gtccacattc tctccaatgc tgttggggag	2640
attcatatga agacaatgcc agccgcgatg tacaggctgc tgacggccca ggagcagcct	2700
gtttacatct gaccgcggcc acacgcggtg gcatgcatgg aggactctcc tcttcgtggt	2760
tgtgtttctc gtgctgcatc cctgtgtcca ctgagacttt cccctctcgc gcccagcatt	2820
tggttttaca caggaagaga agaatccaca aggacctctt tactctccc gatttgcttt	2880
ttttttttt tttttcaat accagggaag tttcgtatgc actcccttga ggatggagag	2940
cagccagcac ccacctggta ctgacccagg accatcctgg agggctttct gggtgtgtcc	3000
agggggtggg ctgtcactgc ttgagggaga atcctccctt cccaggaggt gcagacttct	3060
taaaaggagc tcgcggggca gcaaagcagc tgattcagca gtgcctaaaa cccagttgct	3120
gateeetget etetgagttt atetgtggga atgtggtagt acceagggee ageeeacgte	3180
attaaggtta tgcactgcct gccatgtagt tggggcacca tacattattt cttcccagaa	3240
tctctgagcc aaccttaaac ctcttctatt gctagttcta atttcaacgt atgtgtgttt	3300
tctaatacga gccttctcac cccaggataa aaggggaaat aactgccttg ggcaaggaca	3360
ccatagtgtc acagagagct tggcaattca tggggcatct gaagctttac caggttgtcc	3420
tcaagttatc aaccattaga taaacacagg caggtactgt ctgcttctct ctctctcaca	3480

cacacacaca cacacacagt cccattcgga tatcaccctt ccctgctccc accaccagtg	3540
agacaagctg aagattaggc acacagatcc cctggaaacc cacctctctg gaaggtccct	3600
tccctggcag gtggtcaggc aggcgggggc tgttcagcct catcctgaga gacctgtcct	3660
ctctgtgctg aggtccagcc cctccagcac cactttggct tatcgtatcc tcctcctgga	3720
cttaccctct ctgccgaaca cacatcccag gcg	3753
<210> 29 <211> 2372 <212> DNA <213> Homo sapiens	
<400> 29 gtctgtaggt taagggagaa gatggcggcg ctaggggaac ccgtgcggct ggagagagat	60
atttgtagag caattgaatt attggaaaaa ctacaaagga gtggagaagt accaccacag	120
aaacttcagg ctttgcaaag agtccttcaa agtgaattct gcaatgctgt gagagaggta	180
tatgaacatg tctatgagac tgtggacatc agtagcagtc ctgaagtgag agcgaacgct	240
actgcaaagg ctactgttgc tgcatttgct gccagtgaag gacattctca tcctcgagtt	300
gttgagctac caaaaacaga agagggcctt ggattcaata ttatgggagg caaagaacaa	360
aactctccaa tctatatatc ccgaataatt ccaggtggaa ttgctgatag acatgggggc	420
ctcaaacgtg gagatcaact cctctctgtt aatggagtga gtgttgaagg agaacatcat	480
gaaaaagctg tagaactgct gaaagccgca caaggaaagg ttaaattagt ggtacgatac	540
acacccaaag tettagaaga aatggagteg egetttgaaa aaatgagate agcaaaaege	600
aggcaacaga cctaatacat ttcaaaactt gatatttcat tttgcgtttt agctagagaa	660
gttttccttg tgacttacta atggctgcaa tgccaatgat tgtaagaaaa caaacaaatt	720
tatcatgaaa ttctccttgt cattttataa atgcctattt taacatcatt tatggttcca	780
gagatgcata cacttttttc tgacaagaaa aagtaaaagg tgatgagggc aattctgtcc	840
tactgttttt acaggccttt ttcaaatgca gattttgtca taaagttgtt atagattttt	900
taaaatgctt ttttaatatt aaaatgtact tttacattct taatcttttt ttagaaagga	960
aaagttttct tcatttagct gctgatttaa aagtaaagtt ctccaattct ttttttttgc	1020
ttactctatt ttttttaacc tgtgaaattt ctttacagtt ttccaagaaa ttaagcataa	1080
cagtctcatc tacggcagtt cattacactg tcaatgttaa catcattgct gcattttgta	1140
ctttgaacac acacataata tatataacca gtggtaaatc atgactcagt acagtgcaag	1200
ttttttcact tttacttaaa cataatatat aatggatatt catttatact gatttatgaa	1260
agtaagtttt taaacactga aacaatcatt gctaaaatac atattcttaa tatttgagca	1320
ttgaggcaag aggatgtaat tgatagcatt acttattaca tccctattta tgttcaaccg	1380

tacatcaaat tataaatgo	ca aaacaggttc	agatttcatc	ttttgtgatt	tcttttaaat	1440
actattcatt tttattta	aa tgcacagtat	ttcccctata	ttttagtcct	tccattccta	1500
gagacaaacc agttattt	gg tggtgggaag	tagctgaagc	aaagaaggaa	aagtaatacc	1560
tttaacctca ctagcttca	aa gagtagacat	tcttactagc	tcaatttaaa	taattgattt	1620
taaataggaa gaaaagag	ga tatatttaag	atacatagaa	attatgatgc	gaagtattca	1680
tgagaatctg tagattcc	at caaaataagt	aggaactcat	actaaaattg	ttggatttaa	1740
agaggcaact tttgttta	tg attcaaatat	gggaatttga	gaaatatttc	atttgtccac	1800
tggatgtcac tattttac	ta aaaggcagct	attagtgtgg	gactgtgact	gaggtcttaa	1860
agactgaaag agttgggg	tt cattttctgt	tacaacttac	aggaacattt	gtactttaag	1920
aaaaatttaa gtgacaaa	tg ttagaagatg	atggattgaa	aaatataagt	aatttggcat	1980
attgacccta tataaaaa	ag tgggcatttt	gtaacattcc	ttcaggaaga	atagaattgt	2040
atgctttttt ctgcatgt	tt gtgatcactg	tgagtctcag	atgattattc	cagttttcaa	2100
tgatttttca aaataaaa	gt caatcagcat	tgttatttat	cattaaggta	ttgaacactg	2160
gattgcatgg ttgaatgt	gt ctttaattca	ctacaaaatg	tgcttgttat	tgataggatc	2220
atgttgttaa attgtaaa	tt ttcaaaatta	attgatgttt	taaaaatgtt	gagaccaaag	2280
tagtatagaa gtatggac	tt aatttaattg	taaaattatt	agaggtattt	gttgtagagc	2340
tttatatatt aaagagag	gt attggtgcat	at			2372
<210> 30 <211> 2260					
<212> DNA					
<213> Homo sapiens	3				
<400> 30		anastas:ss	. caatooacaa	a deadtteetd	60
atggcaaaga gggagga	ag ccctggccca	gaggiccagc	, caarggacat		
	ras togataccas	tacccasac	r ttattaatta	cctgcacacc	120

gtatgcagca tetgcetgga teggtaccag tgccccaagg ttetteettg cetgcacace 120 ttctgtgaga gatgtctcca aaactatatc cctgcccaga gcctgacgct atcctgtcca 180 gtatgccggc agacgtccat cctcccagag cagggcgtct cggcactgca gaacaacttc 240 ttcatcagca gcctcatgga ggcaatgcag caggcacctg atggggccca cgacccggag 300 gaccccacc ccctcagtgt agtggctggc cgccctctct cctgccccaa ccatgaaggc 360 aagacgatgg agttttactg tgaggcctgt gagacggcca tgtgtggtga gtgccgcgcc 420 ggggagcatc gtgagcatgg cacagtgctg ctgagggatg tggtggagca gcacaaggcg 480 gccctgcagc gccagctcga ggctgtgcgt ggccgattgc cacagctgtc cgcagcaatt 540 gccttagtcg ggggcatcag ccagcagctg caggagcgca aggcagaggc cctggcccag 600

atcagtggag	cattcaagga	cctggagcaa	gcactgcagc	agcgcaagca	ggctctggtc	660
				tgcaaagcca		720
				ttgcagagca		780
						840
				tgcgagagcg		900
				cacagctgga		
				cactgctcac		960
actgcacacg	aaacggtggc	cacgggagag	ggcctgcgcc	aggcgctagt	gggccagcct	1020
gcctcgctca	ctgtcactac	caaagacaag	gacgggcggt	tggtgcgcac	aggcagcgct	1080
gagctgcgtg	cagagatcac	cggcccggac	ggcacgcgcc	ttccggtgcc	agtggtggac	1140
cacaagaatg	gcacatatga	gctagtgtac	acagcgcgca	cggaaggcga	gctgctcctc	1200
teggtgetge	tctacggaca	gccagtgcgc	ggcagcccct	teegegtgeg	tgccctgcgt	1260
ccgggggacc	tgccaccttc	cccggacgat	gtgaagcgcc	gtgtcaagtc	ccctggcggc	1320
cccggcagcc	atgtgcgcca	gaaggcagtg	cgtaggccca	gctccatgta	cagcacaggc	1380
ggcaaacgaa	aggacaaccc	aattgaggat	gagctcgtct	tccgtgttgg	cagtcgtgga	1440
				cagccagcag		1500
gtggtagcag	acagcaacaa	ccagtgtatt	caggttttct	ccaatgaggg	ccagttcaag	1560
					aggtgtggca	1620
					cagcatcttc	1680
					ccccaaggga	1740
					ctgcgtcttt	1800
					cactgaccgc	1860
					agtaacggac	1920
					caagtttggc	1980
						2040
					ggactccaat	2100
					cagctctggc	
					gggcctggca	2160
ctgacctcgg	g atggccatgt	ggtggtggct	gatgctggca	a accactgctt	: taaagcctat	2220
cgctacctcc	agtagctgta	a cagaggccct	gcctggcttg	J		2260

<210> 31 <211> 2250 <212> DNA <213> Homo sapiens

<400> 31 ccgccgctcc	ggacccgcag	ccgccgccgc	cgcctcctcc	cccggatcg	ggtgtactgt	60
cctaacccga	aagtccagtt	ctgcggcccg	gcagcggcga	gcgggcgcga	tgacacagga	120
gtacgacaac	aaacggccag	tgttggctct	tcagaatgaa	gcactttatc	cacagcggcg	180
gtcctacact	agtgaggatg	aggcctggaa	atccttcctg	gaaaaccctc	tcactgcagc	240
gaccaaagcg	atgatgagca	tcaatggaga	tgaagacagc	gccgctgcgc	tgggcctgct	300
ctatgactac	tacaaggttc	caagagagag	aaggtcatca	acagcaaagc	cagaggtgga	360
gcaccctgag	ccagatcaca	gcaaaagaaa	cagcatacca	attgtgacag	agcagcccct	420
catctctgct	ggagaaaaca	gagtgcaagt	actgaaaaat	gtgccattta	acattgtcct	480
tccccatggc	aaccagctgg	gcattgataa	gagaggccat	ctgacagctc	cagatacgac	540
agtcactgtc	tccatagcaa	cgatgcctac	ccactccatc	aagacagaaa	cccagcctca	600
tggcttcgct	gtgggaatcc	ccccagcagt	gtatcatcct	gagcccactg	agcgggtggt	660
ggttttcgat	cggaatctca	atactgacca	gttcagctct	ggtgctcaag	ccccaaatgc	720
tcaaaggcga	actccagact	cgaccttctc	agagaccttc	aaggaaggcg	ttcaggaggt	780
tttcttcccc	tcggatctca	gtctgcggat	gcctggcatg	aattcagagg	actatgtttt	840
tgacagtgtt	tctgggaaca	actttgaata	taccctagaa	gcttcaaaat	cacttcgaca	900
gaagccagga	gacagtacca	tgacgtacct	gaacaaaggc	cagttctatc	ccatcacctt	960
gaaggaggtg	agcagcagtg	aaggaatcca	tcatcccatc	agcaaagttc	gaagtgtgat	1020
catggtggtt	tttgctgaag	acaaaagcag	agaagatcag	ttaaggcatt	ggaagtactg	1080
gcactcccgg	cagcacaccg	ctaaacaaag	atgcattgac	atagctgact	ataaagaaag	1140
cttcaacact	atcagtaaca	tcgaggagat	tgcgtataac	gccatttcct	tcacatggga	1200
catcaacgat	gaagcaaagg	ttttcatctc	tgtgaactgc	ttaagcacag	atttctcttc	1260
ccagaaggga	gtgaaggggt	tgcctcttaa	cattcaagtt	gatacctata	gttacaacaa	1320
ccgcagcaac	aagcctgtgc	accgggccta	ctgccagato	aaggtcttct	gtgacaaggg	1380
agctgagcgg	aaaatcaggg	atgaagaacg	aaagcaaagc	aaaagaaaag	tttctgatgt	1440
taaagtgcca	ctgcttccct	ctcacaagcg	aatggatato	acagttttca	aacccttcat	1500
tgatctcgat	actcagcctg	tectetteat	: tcctgacgtg	cactttgcca	acttgcagcg	1560
gggcactcat	gtccttccca	ttgcctctga	agaattggag	ggtgaaggct	ctgtcttgaa	1620
aagggggccg	tacggcacag	aagatgactt	: tgctgtccct	ccttctacca	agctggcccg	1680
gatagaagaa	ccaaagagag	tgctgctcta	cgttcgaaag	gagtcagaag	aagtctttga	1740
tgccctgatg	ctcaaaaccc	: catctttgaa	gggcttgatg	gaagctatct	cagacaaata	1800
cgatgttccc	catgacaaga	ttgggaaaat	: attcaagaag	g tgtaaaaagg	ggatcctggt	1860

gaacatggac gacaacattg	tgaagcatta	ctccaatgag	gacaccttcc	agctgcagat	1920
tgaagaagcc ggggggtctt	acaagctcac	cctgacggag	atctaaaggc	ctgcgggcca	1980
cageteecea ggagtteagt	gcaggtgttt	ctagatctta	cggtttggca	actgcaggta	2040
accccagtca gccatgtcgc	cagcacaggt	ctatgtcgag	ggaatgggtt	ccttgcaggt	2100
tggaggcggg gctgcatctg	gcttggtggt	agcatttaat	ctattgcatt	ggtgtttttc	2160
agatgaaaga gaaatccata	taccattatg	tttgaatttc	ctgatatata	caggatttaa	2220
agtgaaaact ttattccaag	agttaacaga				2250
<210> 32 <211> 3063 <212> DNA <213> Homo sapiens					
<400> 32 cagccgccat tttctcgccg	cttgtgtggc	tegetggetg	cgtggctcgg	ttcttgtgag	60
cgaagctttg tccggttcgg	caatggacgg	aatcgtcact	gaggttgcag	ttggcgtgaa	120
gagaggatct gacgaacta	: tctcaggcag	tgttctcagt	agtccgaact	ctaatatgag	180
cagcatggta gttacagcc	a atggtaatga	tagtaaaaaa	tttaaaggag	aagataaaat	240
ggatggtgct ccttctcgt	g tacttcatat	tcgaaaatta	cctggggaag	taacagaaac	300
tgaagttatt gctttaggc	taccttttgg	taaggtgacc	aacatcctta	tgctgaaagg	360
aaaaaatcag gcatttttg	g aactagcaac	cgaggaagca	gctattacta	tggttaatta	420
ctattctgct gtgacacct	c atcttcgtaa	ccaaccaata	tatatccagt	actcgaatca	480
caaagaacta aagacagat	a atacattaaa	ccaacgtgct	caggcagtto	ttcaagctgt	540
gacagctgtc cagacagca	a atactcctct	tagtggcacc	acagttagcg	agagtgcagt	600
gactccagcc cagagtcca	g tacttagaat	aattattgac	aacatgtact	accctgtaac	660
acttgatgtt cttcaccaa	a tattttctaa	gtttggtgct	gtattgaaga	taatcacatt	720
tacaaaaaat aaccagttt	c aagctttgct	ccagtatggt	gatccagtaa	atgctcaaca	780
agcaaaacta gccctagat	g gtcagaatat	ttataatgcc	tgctgtacco	: taaggattga	840
tttttccaaa cttgtgaat	t tgaatgtaaa	atacaacaat	gataaaagta	gggattatac	900
tcgacctgat cttccatct	g gggatggaca	acctgcattg	gacccagcta	ttgctgcagc	960
atttgccaag gagacatco	c tcttagctgt	tccaggagct	: ctgagtcctt	: tggccattcc	1020
aaatgctgct gcagcagct	g ctgcagctgc	tgctggccga	gtgggtatgo	ctggagtctc	1080
agctggtggc aatacagto	c tgttggttag	caatttaaat	gaagagatg	g ttacgcccca	1140
aagtetgttt accetette	g gtgtttatgg	agatgtgcag	g cgtgtgaaga	a ttttatacaa	1200

taagaaagac	agcgctctaa	tacagatggc	tgatggaaac	caatcacaac	ttgccatgaa	1260
tcatcttaat	ggacagaaaa	tgtatggaaa	aattattcgt	gttactctgt	ctaaacatca	1320
gactgtacag	ctacctcgag	agggacttga	tgatcaaggg	ctaacaaaag	attttggtaa	1380
ttccccattg	catcgtttta	agaaacctgg	atccaaaaat	tttcaaaaca	tttttcctcc	1440
ttctgccacc	cttcacctat	ctaatatccc	tccatcagta	gcagaagagg	atctacgaac	1500
actgttcgct	aacactgggg	gcactgtgaa	agcatttaag	ttttttcaag	atcacaaaat	1560
ggctcttctt	cagatggcaa	cagtggaaga	agctattcag	gccttgattg	atcttcataa	1620
ttataacctt	ggagaaaacc	atcatctgag	agtgtctttc	tccaagtcaa	caatttaaaa	1680
atgggaagat	gaagattggg	ggtgaatcac	attgttcaat	gtcatcacct	atttgactgt	1740
tcagaaaagt	ggggaccaga	gtttgatttt	ttttgtttt	gtttttttgg	ggtttctttt	1800
ttttttccat	gctgttatca	ttccttggtt	ataaaatgaa	atggcatatg	taaaggcaga	1860
gttgttaact	gctatatttc	atctgttcta	tagggaagcc	attttgtctg	tttaaaattt	1920
cagtttaatt	ttgcttttt	tttttttt	tttttccttt	caacttagtt	gacatacgtg	1980
ccttaaaaag	gaaaactagt	gttgctattg	tgcatttact	agaaaaaagg	aattggttgt	2040
ttagggcaca	ctgttatatg	ggaattaaaa	tatgtttagg	caggggtgtg	taaaaaggtt	2100
aagtttttgt	ttctcctgct	tggaacttat	tttgaattac	tggcttgtca	ccttttttc	2160
tatttaatca	aataagatac	atgatattga	aagaataaag	cagcattttt	agtttttact	2220
accttaggct	ttattgcttt	gaaaacaaca	ttggcctttt	gtatctcaca	attctggtct	2280
agattcagtt	atgaatgtag	gcattagtta	aaattaacaa	gatgcagagt	attaatttct	2340
taagacaaca	aagtgatttc	tgtaagtttg	agccctatgt	ggaaagcatt	gtggaatctt	2400
aaccttttcg	tacacactct	tgtgggacgt	atcatataaa	tgtcagcact	aagtaatgtc	2460
ttgtttgtgg	ctgaatattt	ttcgtagatg	tttttgaagt	tgacatgact	tacgtgcatt	2520
taaatatata	ttgccatcct	tagtttgtaa	ttaagatttg	gaatatggtt	gtggatttct	2580
gagcatgtgc	agactggtct	agctagttca	ggaactggtg	catgtatttt	tcaaagataa	2640
agaaagtgta	ctgcgaaaat	atgcaggaag	attaattttg	tggcagtttt	. ctaaaactga	2700
caaccaggtg	ggaccaaagt	ttatgtgcct	: ttagtcttaa	tttaccttgo	: attgtaatat	2760
tcagttttaa	taaatcttca	aaatattttg	r tatttaggaa	tagatctgad	: tttaataaaa	2820
acatggctca	gaatctacag	gtcaaattaa	tttgaacagt	tcttgtcaat	ccgaattgtt	2880
gattctgttt	aaatgaccaa	tactttttga	aattgatgta	cttagtttca	a agattcatag	2940
attctgttat	ctatgtagac	agaatggtca	a tgtatattt	ctattagttg	g agtttttaca	3000
tctttagaaa	tgtaaaatto	agtatagttt	gaaagcggca	a caattaaaaa	ttaattttct	3060

WO 03/083047	PCT/US03/06025
--------------	----------------

aac	3063
<210> 33 <211> 1680 <212> DNA <213> Homo sapiens	
<400> 33 atctgatgag cttctttctt ctggcatcat taacggacct tttaccatga atagttctac	60
tccttctaca gctaatggga atgacagcaa gaaatttaaa cgagatagac ctccctgttc	120
gccttcccgt gttctccatc ttcgaaaaat tccatgtgat gtcaccgaag cagagatcat	180
atcattaggt ctaccatttg gcaaagtaac taatcttttg atgttgaaag gaaaaagcca	240
ggetttetta gaaatggett etgaggaage tgeegttaet atggtgaatt attacaetee	300
tattactcct caccttcgaa gccagcctgt ttatattcag tattccaatc acagagaact	360
taagactgac aatctaccta atcaagctcg agcccaagct gcactgcagg ctgtcagtgc	420
cgtccaatca ggaagcctgg ccctttctgg aggtccttcc aatgaaggca cagtcctacc	480
tgggcagagc cctgtgcttc gaataattat tgaaaacctc ttttaccctg ttaccctgga	540
agttcttcat cagatatttt ctaaatttgg cacagtcttg aagattatca cctttacaaa	600
gaataatcag tttcaagcct tgcttcagta tgctgaccca gtaaatgcac attatgccaa	660
aatggctctg gatggccaga atatctataa tgcatgctgc actctgcgca ttgacttctc	720
caagctcacc agccttaatg tgaaatataa taatgacaaa agcagagact tcactcgctt	780
agaccttcct actggtgatg gccagccatc ccttgaaccc cctatggctg ctgcttttgg	840
tgcaccgggt ataatttett caccatatge aggggetget ggatttgeee cagecattgg	900
atttcctcaa gctacaggtc tatcagttcc agctgttcct ggagctcttg gtcctctcac	960
aatcacctct tctgctgtca ctggaaggat ggccattcct ggggctagtg gtataccagg	1020
aaattotgtt otactogtoa caaatotoaa tootgatott atcacaccac atgggotttt	1080
tatcctattt ggagtctatg gtgatgtaca tcgagtgaag attatgttta ataagaaaga	1140
aaatgccttg gttcagatgg cggatgcaaa tcaagctcag ctagcaatga accatctaag	1200
tggtcagaga ctttatggga aagtgetteg tgctacaetg tecaaacate aageagtaca	1260
getteetega gagggacaag aagaccaagg tetgactaag gattteagea atagteettt	1320
gcatcgcttt aaaaagccgg gctctaaaaa cttccagaat atctttccac catcagccac	1380
tctgcatctt tccaacattc ccccttctgt tacagtggat gatctgaaga accttttcat	1440
agaagctgga tgttcagtga aggcttttaa attctttcag aaagatcgca aaatggcgct	150
cattcaattg ggatctgtgg aagaagcaat tcaggccctc attgagcttc ataaccatga	156
ccttggagaa aatcaccacc tcagagtttc cttctcaaaa tctacaatct gacttttctg	162

1680 tgattttctc ctaaactgga ccataatttc aaaaccttca gacatagact gaaaaaaaaa <210> 34 3322 <211> <212> DNA <213> Homo sapiens <400> 34 cttgtgagtc tataactcgg agccgttggg tcggttcctg ctattccggc gcctccactc 60 cgtccccgc gggtctgctc tgtgtgccat ggacggcatt gtcccagata tagccgttgg 120 tacaaagcgg ggatctgacg agcttttctc tacttgtgtc actaacggac cgtttatcat 180 240 gagcagcaac teggettetg cagcaaacgg aaatgacage aagaagttea aaggtgacag ccgaagtgca ggcgtcccct ctagagtgat ccacatccgg aagctcccca tcgacgtcac 300 ggagggggaa gtcatctccc tggggctgcc ctttgggaag gtcaccaacc tcctgatgct 360 gaaggggaaa aaccaggcct tcatcgagat gaacacggag gaggctgcca acaccatggt 420 gaactactac acctcggtga cccctgtgct gcgcggccag cccatctaca tccagttctc 480 caaccacaag gagetgaaga eegacagete teecaaccag gegegggeee aggeggeeet 540 600 gcaggcggtg aactcggtcc agtcggggaa cctggccttg gctgcctcgg cggcggccgt 660 ggacgcaggg atggcgatgg ccgggcagag ccccgtgctc aggatcatcg tggagaacct cttctaccct gtgaccctgg atgtgctgca ccagattttc tccaagttcg gcacagtgtt 720 gaagatcatc accttcacca agaacaacca gttccaggcc ctgctgcagt atgcggaccc 780 840 cgtgagcgcc cagcacgcca agctgtcgct ggacgggcag aacatctaca acgcctgctg cacgctgcgc atcgactttt ccaagctcac cagcctcaac gtcaagtaca acaatgacaa 900 gagccgtgac tacacacgcc cagacctgcc ttccggggac agccagccct cgctggacca 960 1020 gaccatggcc gcggccttcg gtgcacctgg tataatctca gcctctccgt atgcaggagc 1080 tggtttccct cccacctttg ccattcctca agctgcaggc ctttccgttc cgaacgtcca cggcgccctg gcccccctgg ccatcccctc ggcggcggcg gcagctgcgg cggcaggtcg 1140 gategecate cegggeetgg egggggeagg aaattetgta ttgetggtea geaaceteaa 1200 cccagagaga gtcacacccc aaagcctctt tattcttttc ggcgtctacg gtgacgtgca 1260 1320 gcgcgtgaag atcctgttca ataagaagga gaacgcccta gtgcagatgg cggacggcaa 1380 ccaggcccag ctggccatga gccacctgaa cgggcacaag ctgcacggga agcccatccg catcacgctc tcgaagcacc agaacgtgca gctgccccgc gagggccagg aggaccaggg 1440 cctgaccaag gactacggca actcacccct gcaccgcttc aagaagccgg gctccaagaa 1500 cttccagaac atattcccgc cctcggccac gctgcacctc tccaacatcc cgccctcagt 1560

ctccgaggag	gatctcaagg	tcctgttttc	cagcaatggg	ggcgtcgtca	aaggattcaa	1620
gttcttccag	aaggaccgca	agatggcact	gatccagatg	ggctccgtgg	aggaggcggt	1680
ccaggccctc	attgacctgc	acaaccacga	cctcggggag	aaccaccacc	tgcgggtctc	1740
cttctccaag	tccaccatct	aggggcacag	gccccacgg	ccgggccccc	tggcgacaac	1800
ttccatcatt	ccagagaaaa	gccactttaa	aaacagctga	agtgacctta	gcagaccaga	1860
gattttattt	ttttaaagag	aaatcagttt	acctgttttt	aaaaaaatta	aatctagttc	1920
accttgctca	ccctgcggtg	acagggacag	ctcaggctct	tggtgactgt	ggcagcggga	1980
gttcccggcc	ctccacaccc	ggggccagac	cctcggggcc	atgccttggt	ggggcctgtg	2040
tcgggcgtgg	ggcctgcagg	tgggcgcccc	gaccacgact	tggcttcctt	gtgccttaaa	2100
aaacctgcct	tcctgcagcc	acacacccac	ccggggtgtc	ctggggaccc	aaggggtggg	2160
ggggtcacac	cagagagagg	cagggggcct	ggccggctcc	tgcaggatca	tgcagctggg	2220
gcgcggcggc	cgcggctgcg	acaccccaac	cccagccctc	taatcaagtc	acgtgattct	2280
cccttcaccc	cgccccagg	gccttccctt	ctgcccccag	gcgggctccc	cgctgctcca	2340
gctgcggagc	tggtcgacat	aatctctgta	ttatatactt	tgcagttgca	gacgtctgtg	2400
cctagcaata	tttccagttg	accaaatatt	ctaatctttt	ttcatttata	tgcaaaagaa	2460
atagttttaa	gtaacttttt	atagcaagat	gatacaatgg	tatgagtgta	atctaaactt	2520
ccttgtggta	ttaccttgta	tgctgttact	tttattttat	tccttgtaat	taagtcacag	2580
gcaggaccca	gtttccagag	agcaggcggg	gccgcccagt	gggtcaggca	cagggagccc	2640
cggtcctato	ttagagcccc	tgagcttcag	ggaaggggcg	ggcgtgtcgc	cgcctctggc	2700
ategeeteeg	gttgccttac	accacgcctt	cacctgcagt	cgcctagaaa	acttgctctc	2760
aaacttcagg	gttttttctt	ccttcaaatt	ttggaccaaa	gtctcatttc	: tgtgttttgc	2820
ctgcctctga	tgctgggacc	cggaaggcgg	gegeteetee	tgtcttctct	gtgctctttc	2880
taccgcccc	gegteetgte	ccgggggctc	: tcctaggatc	ccctttccgt	aaaagcgtgt	2940
aacaagggtg	, taaatattta	taattttta	tacctgttgt	gagacccgag	gggcggcggc	3000
gcggttttt	atggtgacac	aaatgtatat	: tttgctaaca	gcaattccaç	g gctcagtatt	3060
gtgaccgcgg	g agccacaggg	gaccccacgo	acattccgtt	gccttacccg	g atggcttgtg	3120
acgcggagag	g aaccgattaa	aaccgtttga	a gaaactcctc	ccttgtctag	g ccctgtgttc	3180
gctgtggac	g ctgtagaggo	aggttggcca	a gtctgtacct	: ggacttcgaa	a taaatcttct	3240
gtatcctcg	c teegtteege	: cttaaaaaa	a aaaaaaaaa	aaaaaaaaa	a aaaaaaaaaa	3300
aaaaaaaaa	a aaaaaaaaa	aa				3322

<211> 2722 <212> DNA <213> Homo sapiens

<400> 35 60 gagcgggctg agggtaggaa gtagccgctc cgagtggagg cgactggggg ctgaagagcg 120 cgccgccctc tcgtcccact ttccaggtgt gtgatcctgt aaaattaaat cttccaagat gatetggtat atattaatta taggaattet getteeccag tetttggete atecaggett 180 ttttacttca attggtcaga tgactgattt gatccatact gagaaagatc tggtgacttc 240 tctgaaagat tatattaagg cagaagagga caagttagaa caaataaaaa aatgggcaga 300 gaagttagat cggctaacta gtacagcgac aaaagatcca gaaggatttg ttgggcatcc 360 agtaaatgca ttcaaattaa tgaaacgtct gaatactgag tggagtgagt tggagaatct 420 ggtccttaag gatatgtcag atggctttat ctctaaccta accattcaga gaccagtact 480 ttctaatgat gaagatcagg ttggggcagc caaagctctg ttacgtctcc aggataccta 540 600 caatttggat acagatacca tctcaaaggg taatcttcca ggagtgaaac acaaatcttt tctaacggct gaggactgct ttgagttggg caaagtggcc tatacagaag cagattatta 660 720 ccatacggaa ctgtggatgg aacaagccct aaggcaactg gatgaaggcg agatttctac catagataaa gtctctgttc tagattattt gagctatgcg gtatatcagc agggagacct 780 ggataaggca cttttgctca caaagaagct tcttgaacta gatcctgaac atcagagagc 840 taatggtaac ttaaaatatt ttgagtatat aatggctaaa gaaaaagatg tcaataagtc 900 960 tgcttcagat gaccaatctg atcagaaaac tacaccaaag aaaaaagggg ttgctgtgga ttacctgcca gagagacaga agtacgaaat gctgtgccgt ggggagggta tcaaaatgac 1020 ccctcggaga cagaaaaaac tcttttgccg ctaccatgat ggaaaccgta atcctaaatt 1080 tattctggct ccagctaaac aggaggatga atgggacaag cctcgtatta ttcgcttcca 1140 tgatattatt tctgatgcag aaattgaaat cgtcaaagac ctagcaaaac caaggctgag 1200 ccgagctaca gtacatgacc ctgagactgg aaaattgacc acagcacagt acagagtatc 1260 taagagtgcc tggctctctg gctatgaaaa tcctgtggtg tctcgaatta atatgagaat 1320 1380 acaagatcta acaggactag atgtttccac agcagaggaa ttacaggtag caaattatgg 1440 agttggagga cagtatgaac cccattttga ctttgcacgg aaagatgagc cagatgcttt caaagagctg gggacaggaa atagaattgc tacatggctg ttttatatga gtgatgtgtc 1500 1560 tgcaggagga gccactgttt ttcctgaagt tggagctagt gtttggccca aaaaaggaac 1620 tgctgttttc tggtataatc tgtttgccag tggagaagga gattatagta cacggcatgc 1680 agcctgtcca gtgctagttg gcaacaaatg ggtatccaat aaatggctcc atgaacgtgg 1740 acaagaattt cgaagacctt gtacgttgtc agaattggaa tgacaaacag gcttcccttt

ttctcctatt gttgtactct tatgtgtctg atatacacat ttccatagtc ttaactttca	1800
ggagtttaca attgactaac actccatgat tgattcagtc atgaacctca tcccatgttt	1860
catctgtgga caattgctta ctttgtgggt tcttttaaaa gtaacacgaa atcatcatat	1920
tgcataaaac cttaaagttc tgttggtatc acagaagaca aggcagagtt taaagtgagg	1980
aattttatat ttaaagaact ttttggttgg ataaaaacat aatttgagca tccagtttta	2040
gtatttcact acatctcagt tggtgggtgt taagctagaa tgggctgtgt gataggaaac	2100
aaatgcctta cagatgtgcc taggtgttct gtttacctag tgtcttactc tgttttctgg	2160
atctgaagac tagtaataaa ctaggacact aactgggttc catgtgattg ccctttcata	2220
tgatcttcta agttgatttt tttcctccca agtctttttt aaagaaagta tactgtattt	2280
taccaacccc ctctctttc ttttagctcc tctgtggtga attaaacgta cttgagttaa	2340
aatatttcga ttttttttt tttttaatg gaaagtcctg cataacaaca ctgggccttc	2400
ttaactaaaa tgctcaccac ttagcctgtt tttttatccc ttttttaaaa tgacagatga	2460
ttttgttcag gaattttgct gtttttctta gtgctaatac cttgcctctt attcctgcta	2520
cagcagggtg gtaatattgg cattetgatt aaatactgtg cettaggaga etggaagttt	2580
aaaaatgtac aagtcctttc agtgatgagg gaattgattt tttttaaaag tctttttctt	2640
agaaagccaa aatgtttgtt tttttaagat tctgaaatgt gttgtgacaa caatgaccta	2700
tttatgatct taaatctttt tt	2722
<210> 36 <211> 2194 <212> DNA <213> Homo sapiens	
<400> 36 ggggaaggaa cactgtaggg gatagctgtc cacggacgct gtctacaaga ccctggagtg	60
agataacgtg cctggtactg tgccctgcat gtgtaagatg cccagttgac cttcgcagca	120
ggagcctgga tcaggcactt cetgcctcag gtattgctgg acagcccaga cacttccctc	180
tgtgaccatg aaactctggg tgtctgcatt gctgatggcc tggtttggtg tcctgagctg	240
tgtgcaggcc gaattcttca cctctattgg gcacatgact gacctgattt atgcagagaa	300
agagctggtg cagtctctga aagagtacat ccttgtggag gaagccaagc tttccaagat	360
taagagetgg gecaacaaaa tggaageett gaetageaag teagetgetg atgetgaggg	420
ctacctggct caccctgtga atgcctacaa actggtgaag cggctaaaca cagactggcc	480
tgcgctggag gaccttgtcc tgcaggactc agctgcaggt tttatcgcca acctctctgt	540

gcagcggcag ttcttcccca ctgatgagga cgagatagga gctgccaaag ccctgatgag

PCT/US03/06025 WO 03/083047

acttcaggac	acatacaggc	tggacccagg	cacaatttcc	agaggggaac	ttccaggaac	660
caagtaccag	gcaatgctga	gtgtggatga	ctgctttggg	atgggccgct	cggcctacaa	720
tgaaggggac	tattatcata	cggtgttgtg	gatggagcag	gtgctaaagc	agcttgatgc	780
cggggaggag	gccaccacaa	ccaagtcaca	ggtgctggac	tacctcagct	atgctgtctt	840
ccagttgggt	gatctgcacc	gtgccctgga	gctcacccgc	cgcctgctct	cccttgaccc	900
aagccacgaa	cgagctggag	ggaatctgcg	gtactttgag	cagttattgg	aggaagagag	960
agaaaaaacg	ttaacaaatc	agacagaagc	tgagctagca	accccagaag	gcatctatga	1020
gaggcctgtg	gactacctgc	ctgagaggga	tgtttacgag	agcctctgtc	gtggggaggg	1080
tgtcaaactg	acaccccgta	gacagaagag	gcttttctgt	aggtaccacc	atggcaacag	1140
ggccccacag	ctgctcattg	ccccttcaa	agaggaggac	gagtgggaca	gcccgcacat	1200
cgtcaggtac	tacgatgtca	tgtctgatga	ggaaatcgag	aggatcaagg	agatcgcaaa	1260
acctaaactt	gcacgagcca	ccgttcgtga	tcccaagaca	ggagtcctca	ctgtcgccag	1320
ctaccgggtt	tccaaaagct	cctggctaga	ggaagatgat	gaccctgttg	tggcccgagt	1380
aaatcgtcgg	atgcagcata	tcacagggtt	aacagtaaag	actgcagaat	tgttacaggt	1440
tgcaaattat	ggagtgggag	gacagtatga	accgcacttc	gacttctcta	ggaatgatga	1500
gcgagatact	ttcaagcatt	tagggacggg	gaatcgtgtg	gctactttct	taaactacat	1560
gagtgatgta	gaagctggtg	gtgccaccgt	cttccctgat	ctgggggctg	caatttggcc	1620
taagaagggt	acagctgtgt	tctggtacaa	cctcttgcgg	agcggggaag	gtgactaccg	1680
aacaagacat	getgeetgee	ctgtgcttgt	gggctgcaag	tgggtctcca	ataagtggtt	1740
ccatgaacga	ggacaggagt	tcttgagacc	ttgtggatca	acagaagttg	actgacatcc	1800
ttttctgtco	ttccccttcc	tggtccttca	gcccatgtca	acgtgacaga	cacctttgta	1860
tgttccttgt	atgttcctat	caggctgatt	: tttggagaaa	. tgaatgtttg	tctggagcag	1920
agggagacca	a tactagggcg	actcctgtgt	gactgaagtc	ccagcccttc	: cattcagcct	1980
gtgccatcco	tggccccaag	gctaggatca	aagtggctgc	agcagagtta	gctgtctagc	2040
gcctagcaag	g gtgcctttgt	acctcaggto	f ttttaggtgt	gagatgtttc	agtgaaccaa	2100
agttctgata	a ccttgtttac	: atgtttgttt	ttatggcatt	tctatctatt	gtggctttac	2160
caaaaaataa	a aatgtcccta	ccagaagcct	taaa			2194

tgcgagcaac agatccggac gccgcgagct gacccgctct gctgttgggc gattttttt 60

<210> 37 <211> 4932 <212> DNA <213> Homo sapiens

<400> 37

taattgcaga	aaaatttatt	aaattggaaa	atcttgcgtt	tttcaatggc	gctggccccg	120
ggtcagcggg						180
	•					240
		cttctcccgg				300
		agcggtttgg				
		accccgtcct				360
		teettetggg				420
agcggccccg	cgtgtgtgcc	ctcgccctgc	cggagccggg	aaaatggagg	ctgtgattga	480
gaaggaatgc	agcgcgctcg	gaggcctctt	ccagaccatc	atcagcgaca	tgaaggggag	540
ctatccagtt	tgggaagatt	tcataaacaa	agcaggaaag	ctgcagtccc	agcttcggac	600
aacagtagta	gcagcagctg	ccttcttgga	cgcctttcag	aaagtggctg	acatggccac	660
caacacacgt	ggtgggacca	gggagattgg	atctgctctc	accaggatgt	gcatgaggca	720
cagaagcatt	gaagccaagc	tgaggcagtt	ttcgagcgct	ttaattgatt	gtctgataaa	780
cccacttcaa	gaacagatgg	aagaatggaa	gaaagtggcc	aaccagctgg	ataaagacca	840
cgcaaaagaa	tataagaaag	cccgccaaga	gataaaaaag	aagtcctcgg	atacgctgaa	900
actgcagaag	aaagcaaaaa	aagggagagg	tgatatccag	cctcagttgg	acagtgctct	960
ccaagatgtc	aatgataagt	atctcttatt	ggaagaaaca	gaaaagcagg	ctgtccggaa	1020
		gccgattctg				1080
		: taggggaaat				1140
					tgattctgga	1200
					ccagcaccac	1260
					gtgactcccg	1320
					gctccaacct	1380
					gattcatatc	1440
					ccaaccagtt	1500
					: ccacgggtgc	1560
						1620
					cctctgtcca	1680
•					catctcagat	1740
					g tgaacaccct	
					a ctaccgccag	1800
					g tatcggctgc	1860
caccaggcct	ggtgaggag	a tggaggctt	g tgaggagct	g gccctggcc	c tgtctcgggg	1920

cctgcagctg (gacacccaga	ggagcagccg	ggactcgctt	cagtgctcca	gcggctacag	1980
cacccagaca a	accaccccct	gctgctctga	ggacaccatc	ccttcccaag	tttcagatta	2040
tgattatttc	tctgtaagtg	gtgaccagga	ggcagatcag	caggagttcg	acaagtcctc	2100
caccattcca	agaaacagcg	acatcagcca	gtcctaccga	cggatgttcc	aagccaagcg	2160
tccagcctca	actgctggcc	tccccaccac	cctgggacct	gctatggtca	ctccaggggt	2220
tgcaactatc	cgacggaccc	cttccaccaa	gccttctgtc	cgccggggaa	ccattggagc	2280
tggtcccatc	cccatcaaga	cacccgtgat	ccctgtcaag	accccaaccg	tcccagacct	2340
cccaggggtg	atgccagccc	ctccagatgg	gccagaagag	cggggggagc	acagccctga	2400
gtcgccatct	gtgggtgagg	gccccaagg	tgtcaccagc	atgccctcct	caatgtggag	2460
cggccaagct	tccgttaacc	ctccacttcc	aggcccgaag	cccagtatcc	ctgaggagca	2520
cagacaggca	attccagaaa	gtgaagctga	agaccaggaa	cgggaacccc	caagtgccac	2580
tgtctcccca	ggccagattc	cagagagtga	ccctgcagac	ctgagcccaa	gggatactcc	2640
acaaggagaa	gacatgctga	acgccatccg	aaggggcgtg	aaactgaaga	agaccacgac	2700
aaacgatcgc	tcagcccctc	gcttttctta	ggttcacaag	aaatgcgccg	gtggggaatg	2760
aactgtttca	ttaataaaac	ctaatttgtc	ttgatccatt	ccactctata	ataaaacaaa	2820
agattttgta	ggcaactcgg	aatatagctc	ttttgaaagt	actcgacacc	tttagataag	2880
aattaaaacc	aacctatgta	actgacataa	tcttgatctt	ttaatttgta	aatattgaca	2940
attttctttc	tgcacatttt	aatcttagtt	tcccttttga	tttttctgaa	ggtgccaaat	3000
tccatttaac	tttttacaa	gtctttgtaa	aattttaaat	gcataaaggg	ggttggggca	3060
ggggaaccac	gaagtagtta	attttagaaa	aggatttact	atacttcact	cttcttttt	3120
tttccccaca	agcttttgta	gatgcattgt	agtagtctag	cttagaagca	aatgcaagtt	3180
attttaatgt	acaaactaaa	tgggtaagag	gtaaaatctt	catttaaata	tactatgttc	3240
tggatgaaaa	gagcaggagt	aacaattgat	gagcaatatt	cagagtgaag	taaatctgga	3300
aatggtagac	tgtgttggga	ttggggggag	ggccatggga	ggggtacato	gtcaacatag	3360
ccgatcctgt	tacatttaag	agtagcctcg	taggttgaat	ttcttctggt	agcttcatgg	3420
taaatgcatc	cgaataagcc	atactggatt	gcagtgtttg	tttctgtagg	gtgtttaagg	3480
acttgacttc	ctttctccca	tgattcctct	ggactgcaca	cagcacccac	aaccagcccc	3540
atgcatgctg	ctgcctctgg	gcagtcgtag	aatctcccac	ttcagtttct	cgttgattgt	3600
actcaccttt	atggaatcca	aatacatcca	aaagggtaag	gcagttttaa	a aaatgtgaaa	3660
acatttaaaa	atgataatag	g cagggaatto	: ttagattata	gtaaatgcci	: tttacttaac	3720
tgtgcccagc	aggctgggtg	g cgttaaaaag	g cccaagtatt	ttgaaaaaa	tcgaacagat	3780

				+-+- 	a a t a t a a a a a a	3840
	tagccagctt					
cttgttttc	ttttcttctt	tcaaataaat	ggcagttaac	tggctttaca	gtaaacattg	3900
aagagaggag	gatttgttta	ttgtcactgg	gaatctgacc	actatactgt	cctttttttg	3960
tattctgggt	aatgttttt	ggaaaagatt	tgtcttttct	aagtggaagt	taaatttgtt	4020
atactgccca	tcccctaaag	ccaacagaga	tttgtagatt	taaagggatc	acatttgaag	4080
acaatagtgt	ttaagaaagc	aagcaagtcc	cttagcagtc	aggtcataac	agggcacatt	4140
tctgaccgaa	ccctctcaag	gcagaggagg	agtttggtgg	gtttcataca	ccctgcagat	4200
tcctgttggc	tctaaccctc	aattacctaa	tcttatgctt	taacacataa	ctgcattgga	4260
tgtgagagta	acgtaccgta	tggtcattgt	tctatatatt	aacattgaac	actgctgcga	4320
ttgctcaagg	acattttatg	ttacggcttt	aaagcaaagg	catgattatt	agaaactatt	4380
taagcttttt	tctttgaaaa	acaagcttct	tttacagaat	ataaacaaca	gtagtgcctg	4440
tggtttagcc	caccaatctt	gatgactaaa	agtagctgat	gcattgtgca	tatgatgctt	4500
gagatggttt	ttgcaaaagc	agaaatcgct	gcaaggtaat	cacaatagat	aaaagtggta	4560
ttttaaacct	ttgaaataaa	tggatgtaac	tgtaccttgg	tacagctttt	cacttgttta	4620
gtttttaaac	gttagtataa	tctgaataaa	taaaatgttg	ccaaattcaa	tgtagaaaga	4680
atgtgacaac	acaccttggg	tagttctgct	tgtgtttttg	catattgtaa	aagcagtgtc	4740
acagctaaaa	agaaagaaat	cgtttctaac	agtaaattat	tgtgctttag	ttgctagttt	4800
gtactgagag	ttgacctctc	cctgtgcagt	tttttgttct	aaacttgtat	aaataacaat	4860
tgtgtaatgt	gtetecetee	tacattgtaa	caattgcttc	agcctacgtt	ataaataaag	4920
aaccactaga	tt					4932
<210> 38						
<211> 879 <212> DNA						
	o sapiens					
<400> 38						
agagctccta	ccctatctgg	gaggacttca	actccaaggc	cacgaagctg	cattcccagc	60
tgaggaccac	cgtgctggct	gctgtggcct	tcctggatgc	cttccagaaa	gtggctgaca	120
tggctaccaa	cacccgaggg	gccacgaggg	acatcggctc	ggcgctcaca	cgcatgtgca	180
tgcgccaccg	cagcattgag	accaagetge	ggcagttcac	caacgcactg	ctggagagcc	240
tcatcaacco	gctgcaggag	cgcatcgagg	actggaagaa	ggcggccaac	cagctggaca	300
aggaccacgo	: gaaagagtac	: aaacgagccc	ggcatgagat	caaaaagaag	tcgtcggaca	360

420

cgctgaagct gcagaagaag gcgcgcaaag ggaaaggaga cctgcagccc cagctggaca

gtgccctgca ggacgtcaac gacatg	tacc tgctgctgga	ggagacggag	aagcaggccg	480
tgcgccgggc gctgatcgag gagcgg	ggcc gcttctgcac	cttcatcacc	ttcctgcagc	540
ctgtggtgaa tggagagctg accatg	ctgg gagagatcac	ccacctgcag	ggcatcatcg	600
acgacttggt ggtgctgaca gcagaa	cccc acaaactgcc	tcccgccagc	gagcaggtaa	660
tcaaagacct aaagggctcg gactac	agct ggtcctacca	gaccccaccc	ctccgtccca	720
tctgaaccat ttgtttcttt tctttc	cgtc agattttgga	aaaattctcc	tetectecee	780
gcccctcca caccatcctc cccgat	ttaa atatagtcac	tgctacaagt	aacagatgca	840
ctgtgaagat tccagtatta ataaag	gtgt actgtaatt			879
<210> 39 <211> 354 <212> DNA <213> Homo sapiens				
<400> 39 atgaggetge ggeaggeace agagte	caga aaggtgttca	ttcagcgaga	ctacagcagt	60
ggcacaggct gccagttcca gaccat	gttc tccatggago	: tggagaacca	gattgatagg	120
cagcagtttg aagaaatagt tcaaac	tcta aataaccttt	: atgcagaagc	agagaagctt	180
ggtggccaat catatctcga aggttg	tttg gcttgtttaa	cagcatatac	catcttccta	240
tgcttggaaa ctcattacca gaagc	tctg aagaaagtct	ccaaatgcat	tcaagagcag	300
aatgagaaga tctatgttcc acaagg	geett eteetgacag	g actccattga	gtaa	354
<210> 40 <211> 1898 <212> DNA <213> Homo sapiens				
<400> 40 agctggaggg cagaggaggc ggcgc	ggggt gtcctgtcc	t cgccatgagg	ccgcagcagg	60
cgccggtgtc cggaaaggtg ttcat	tcagc gagactaca	g cagtggcaca	cgctgccagt	120
tccagaccaa gttccctgcg gatgg	agaac cggattgat	a ggcagcagtt	tgaagaaaca	180
gttcgaactc taaataacct ttatg	cagaa gcagagaag	c tcggcggcca	gtcatatctc	240
gaaggttgtt tggcttgttt aacag	catat accatcttc	c tatgcatgga	aactcattat	300
gagaaggttc tgaagaaagt ctcca	aatac attcaagag	c agaatgagaa	gatctatgct	360
ccacaaggcc tecteetgae agace	ctatt gagcgagga	c tgcgagttat	tgaaattacc	420
atttatgaag acagaggcat gagca	gtgga agataaacc	g aagaattaaa	a gatcccactt	480
ccageeggge eecteatgta tecae	tggcc gaccgcaga	g tgtccctaco	tcctctccag	540
agcatcattc ctttctatct gctgc	cagag ccacggtgc	c atttactcca	a aggactcact	600

PCT/US03/06025 WO 03/083047

ttctaaaatt	ccacacctgg	agtgacctct	agtcgctcag	catccacttt	gtgtctccaa	660
attgtgtagg	actctgtaat	cttttgatta	gtttctgaga	aaacacaatg	aagcacttca	720
cttttttta	ttcaaagcca	tttaataaaa	cacagttggt	cagcccagtg	caaagcttgt	780
tatctgccac	cagtacatac	cattggttct	cttcattcct	tgggccagct	tctcaggtgg	840
ctttagacct	caacaagccg	tatcttcacc	agtgttctat	cttgttcccc	taaattaata	900
aaatgttttt	ctccaggatt	ttggtgaggg	ttggctgtgg	ctgtcgtttt	gcacctccca	960
gatttcaaag	aattactggt	tttaccatga	ctcaaatctt	aagatctgtt	tctactattc	1020
agttcctcaa	actgaagctt	attgaaaaaa	aaatgtataa	tgttatttgt	tttattatag	1080
caattattcc	taattaaagc	agtatttaat	gcaatttcca	gttatttctt	tggagaattt	1140
tatgtcattg	ttccattacc	ttgaatgttg	gaaagatatg	atacgtgctg	cttgttcatc	1200
acaaaaatca	gtaagcacaa	taaagtggat	gccaaaccat	cagacacata	aatgttcccg	1260
ctgtgtccct	ggatatggaa	taagcaggta	taaaaaatat	tttaattata	gttttgttat	1320
aaatataact	: tatgagaaaa	aaatttgata	ggaataatac	tgtatattac	taatttttaa	1380
ctatccctaa	ggcaaacctt	atgacccaca	gaattttctc	atatacagta	ttcagtgcac	1440
agaaatctta	tgattggctc	aagtacagta	agttacttct	cagtaaaact	ctcaagtctg	1500
agtccatatt	tgtagctctg	cttttggctg	tacgttccta	ggatcggggc	tgcttatgcc	1560
tttcgtttat	ccttggggtt	tgagagcgct	gtatttggga	gagagtttaa	aaatacatta	1620
ggagagaga	a accattaaaa	gtttcactgt	cagagatatt	gtaggtgcta	atactggatt	1680
tcgtctcaga	a tttaatttct	tttatgggtc	tgttagtcat	tcaacaaatc	ccataagtat	1740
gtgttaata	tttaattgtg	taaaactcat	ttgttacttt	acagcctgta	atagtgtgtc	1800
tgcattttca	a acctgttgca	ataactttgc	: tgaaatatta	acacattaat	aaaacttttc	1860
ttaaacaaa	a aaaaaaaaa	aaaaaaaaa	aaaaaaaa			1898

<210> 41

<211> 3640

<212> DNA

<213> Homo sapiens

<400> 41 gtgcagaagg ccgcgctagc cggctcttca gcagcgagtg cagattgctc ccccgcggcc 60 gcagatctcc cgtttgcgcc gcgttcagct gctcccgaac aacttttctg ccggcccaga 120 ggccccaggg cgtcgcagcg ccgcgtgcgg cccactcacg ggccggcagg atggactcca 180 acactgctcc gctgggcccc tcctgcccac agcccccgcc agcaccgcag ccccaggcgc 240 gttcccgact caatgccaca gcctcgttgg agcaggagag gagcgaaagg ccccgagcac 300 ccggacccca ggctggccct ggccctggtg ttagagacgc agcggccccc gctgaacccc 360

aggcccagca	taccaggagc	cgggaaagag	cagacggcac	cgggcctaca	aagggagaca	420
tggaaatccc	ctttgaagaa	gtcctggaga	gggccaaggc	cggggacccc	aaggcacaga	480
ctgaggtggg	gaagcactac	ctgcagttgg	ccggcgacac	ggatgaagaa	ctcaacagct	540
gcaccgctgt	ggactggctg	gtcctcgccg	cgaagcaggg	ccgtcgcgag	gctgtgaagc	600
tgcttcgccg	gtgcttggcg	gacagaagag	gcatcacgtc	cgagaacgaa	cgggaggtga	660
ggcagctctc	ctccgagacc	gacctggaga	gggccgtgcg	caaggcagcc	ctggtcatgt	720
actggaagct	caaccccaag	aagaagaagc	aggtggccgt	ggcggagctg	ctggagaatg	780
teggeeaggt	caacgagcac	gatggagggg	cgcagccagg	ccccgtgccc	aagtccctgc	840
agaagcagag	gcggatgctg	gagcgcctgg	tcagcagcga	gtccaagaac	tacatcgcgc	900
tggatgactt	tgtggagatc	actaagaagt	acgccaaggg	cgtcatcccc	agcagcctgt	960
tcctgcagga	cgacgaagat	gatgacgagc	tggcggggaa	gagccctgag	gacctgccac	1020
tgcgtctgaa	ggtggtcaag	taccccctgc	acgccatcat	ggagatcaag	gagtacctga	1080
ttgacatggc	ctccagggca	ggcatgcact	ggctgtccac	catcatcccc	acgcaccaca	1140
tcaacgcgct	catcttcttc	ttcatcatca	gcaacctcac	catcgacttc	ttcgccttct	1200
tcatcccgct	ggtcatcttc	tacctgtcct	tcatctccat	ggtgatctgc	accctcaagg	1260
tgttccagga	cagcaaggcc	tgggagaact	tccgcaccct	caccgacctg	ctgctgcgct	1320
tcgagcccaa	cctggatgtg	gagcaggccg	aggttaactt	cggctggaac	cacctggagc	1380
cctatgccca	tttcctgctc	tetgtettet	tcgtcatctt	ctccttcccc	atcgccagca	1440
aggactgcat	cccctgctcg	gagetggetg	tcatcaccgg	cttctttacc	gtgaccagct	1500
acctgagcct	gagcacccat	gcagagccct	acacgcgcag	ggccctggcc	accgaggtca	1560
ccgccggcct	gctatcgctg	ctgccctcca	tgcccttgaa	ttggccctac	ctgaaggtcc	1620
ttggccagac	cttcatcacc	gtgcctgtcg	gccacctggt	. cgtcctcaat	gtcagcgtcc	1680
cgtgcctgct	ctatgtctac	ctgctctato	tettetteeg	catggcacag	ctgaggaatt	1740
tcaagggcad	c ctactgctac	cttgtgccct	acctggtgtg	cttcatgtgg	tgtgagctct	1800
ccgtggtcat	cctgctggag	tccaccggc	: tggggctgct	ccgcgcctcc	e atcggctact	1860
tectettee	ctttgccct	cccatcctgg	g tggccggcct	ggccctggtg	ggcgtgctgc	1920
agttcgccc	g gtggttcac	g tctctggago	c tcaccaagat	cgcagtcacc	: gtggcggtct	1980
gtagtgtgc	c cctgctgtt	g cgctggtgga	a ccaaggccag	g cttctctgtg	gtggggatgg	2040
tgaagtccc	t gacgcggage	e tecatggte	a agctcatcct	ggtgtggctd	acggccatcg	2100
tgctgttct	g ctggttcta	t gtgtaccgc	t cagagggcat	gaaggtctad	aactccacac	2160
tgacctggc	a gcagtatgg	t gegetgtge	g ggccacgcg	ctggaaggag	g accaacatgg	2220

cgcgcaccca gatcc	tctgc agccacctgg	agggccacag	ggtcacgtgg	accggccgct	2280
tcaagtacgt ccgcg	tgact gacatcgaca	acagcgccga	gtctgccatc	aacatgctcc	2340
cgttcttcat cggcg	actgg atgcgctgcc	tctacggcga	ggcctaccct	gcctgcagcc	2400
ctggcaacac ctcca	cggcc gaggaggagc	tctgtcgcct	taagctgctg	gccaagcacc	2460
cctgccacat caaga	agttc gaccgctaca	agtttgagat	taccgtgggc	atgccattca	2520
gcagcggcgc tgacg	geteg egeageegeg	aggaggacga	cgtcaccaag	gacatcgtgc	2580
tgcgggccag cagcg	gagttc aagagcgtgc	tgctcagcct	gcgccagggc	agcctcatcg	2640
agttcagcac catco	tggag ggccgcctgg	gcagcaagtg	gcctgtcttc	gagctcaagg	2700
ccatcagctg cctca	aactgc atggcccago	tctcacccac	caggcggcac	gtgaagatcg	2760
agcacgactg gcgca	agcacc gtgcatggcg	ccgtgaagtt	cgccttcgac	ttctttttct	2820
teccatteet gtegg	geggee tgaggatggt	ccgccacgag	gagcttccag	tgcatgttgc	2880
catgaggcct ttccc	ccagtg tggccccago	ccgacaggca	tgcaccagtg	ccgcctgtgc	2940
ccacgtgtgc agact	tgtggc tgcagagaco	ttgcgaccat	gtgtagattg	cgtggacccc	3000
gacaaaggga aggct	tgctgt gtagctctgt	ccactctgaa	taccaagtgt	gttgggaatt	3060
gcatgccatc tccac	ccctga gcctgacct	t tctgagtgac	atgggtgtgc	caggctagac	3120
taggaggttc cggtg	gtctgg aaaagcact	t tacagatgag	attccctctc	ctcccccacc	3180
ttcaagcacc ctgtt	teecte tttetttet	t ttgtgttgga	tttgtttaaa	aaccaaataa	3240
gcatctgtgt aacct	tccaca gtagcattt	c ttatttgttt	ggtcactgct	acaccttagc	3300
agctcttccc ctttc	cctggg ggatgtgca	c ggcagcttga	gcctgtcacg	tggtcaaggc	3360
ccggccccat caga	ggctgg gggaggcgg	c acattggcag	tgtgtcacac	: tgagctgggc	3420
accacagget geete	catgac cctcctgtc	c agcaggtagt	gggtgaatgt	gtgaaggtct	3480
tgcctgaatc catca	aggact tgggaaaca	g agaaccctgt	gggggcggct	gtgggggagg	3540
tccctgccag tgtt	tagaag agcctgact	g tgttcagtgo	cttggagcag	g aaagccaggg	3600
tcctgagtgg ctga	aataaa agcctctgg	t ggaacctgca	L		3640
<210> 42 <211> 1976 <212> DNA <213> Homo sap	oiens				
<400> 42 ggcacgagga agct	ctggga aggggatgo	c cccgagggtg	g ccagtccag	c tagctgcccc	60
	gcctgg cccccaago				120

185

ggcaagcage cgccgccatg gccgagcacc tggagctgct ggcagagatg cccatggtgg

180

gcaggatgag	cacacaggag	cggctgaagc	atgcccagaa	gcggcgcgcc	cagcaggtga	240
agatgtgggc	ccaggctgag	aaggaggccc	agggcaagaa	gggtcctggg	gagcgtcccc	300
ggaaggaggc	agccagccaa	gggctcctga	agcaggtcct	cttccctccc	agtgttgtcc	360
ttctggaggc	cgctgcccga	aatgacctgg	aagaagtccg	ccagttcctt	gggagtgggg	420
tcagccctga	cttggccaac	gaggacggcc	tgacggccct	gcaccagtgc	tgcattgatg	480
atttccgaga	gatggtgcag	cagctcctgg	aggctggggc	caacatcaat	gcctgtgaca	540
gtgagtgctg	gacgcctctg	catgctgcgg	ccacctgcgg	ccacctgcac	ctggtggagc	600
tgctcatcgc	cagtggcgcc	aatctcctgg	cggtcaacac	cgacgggaac	atgccctatg	660
acctgtgtga	tgatgagcag	acgctggact	gcctggagac	tgccatggcc	gaccgtggca	720
tcacccagga	cagcatcgag	gccgcccggg	ccgtgccaga	actgcgcatg	ctggacgaca	780
tccggagccg	gctgcaggcc	ggggcagacc	tccatgcccc	cctggaccac	ggggccacgc	840
tgctgcacgt	cgcagccgcc	aacgggttca	gcgaggcggc	tgccctgctg	ctggaacacc	900
gagccagcct	gagcgctaag	gaccaagacg	gctgggagcc	gctgcacgcc	gcggcctact	960
ggggccaggt	gcccctggtg	gagctgctcg	tggcgcacgg	ggccgacctg	aacgcaaagt	1020
ccctgatgga	cgagacgccc	cttgatgtgt	gcggggacga	ggaggtgcgg	gccaagctgc	1080
tggagctgaa	gcacaagcac	gacgccctcc	tgcgcgccca	gageegeeag	cgctccttgc	1140
tgcgccgccg	cacctccagc	gccggcagcc	gcgggaaggt	ggtgaggcgg	gtgagcctaa	1200
cccagcgcac	cgacctgtac	cgcaagcagc	acgcccagga	ggccatcgtg	tggcaacagc	1260
cgccgcccac	cagcccggag	ccgcccgagg	acaacgatga	ccgccagaca	ggcgcagagc	1320
tcaggccgcc	gcccccggag	gaggacaacc	ccgaagtggt	caggccgcac	aatggccgag	1380
tagggggctc	cccagtgcgg	catctatact	ccaagcgact	agaccggagt	gtctcctacc	1440
agctgagccc	cctggacagc	accacccccc	acaccctggt	ccacgacaag	gcccaccaca	1500
ccctggctga	cctgaagcgc	cagcgagctg	ctgccaagct	gcagcgaccc	ccacctgagg	1560
ggcccgagag	ccctgagaca	gctgagcctg	gcctgcctgg	tgacacggtg	acccccagc	1620
ctgactgtgg	cttcagggca	ggcggggacc	cacccctgct	caagctcaca	gccccggcgg	1680
tggaggctcc	cgtggagagg	aggccgtgct	gcctgctcat	gtgaggctgt	tgctcagcat	1740
gcaggggccc	tgtcgcgggc	acagcccaag	gctgcctccc	cacggtgcgt	gccctggtgc	1800
tgcgggtgca	gcacggaaac	cccggcttct	actgtacagg	acactggccc	ctctcaggtc	1860
agaagacatg	cctggaggga	tgtctggctg	caaagactat	ttttatcctg	caactcttga	1920
taaagggctg	ttttgccatg	gaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaa	1976

<211> 6162 <212> DNA <213> Homo sapiens

<400> 43 gccacaccat gaggccccag ccccaccaga ggccccgcgc tgccctggcc cccggtgcac 60 cgtgctagcc cccagccagg gcgttgggga gggcggtggc catggccagt cacgtggacc 120 tgctgacgga gctgcagctg ctggagaagg tgcccacgct ggagcggctg cgggctgccc 180 240 agaagcgccg ggcccagcag ctgaagaaat gggcacagta cgagcaggac ttgcagcacc 300 gcaagcgaaa gcatgagcgg aagcgcagca cgggcggccg ccgcaagaaa gtgtccttcg aggccagcgt ggccctgctg gaggcctcgc tgaggaacga cgccgaggaa gtacgctact 360 tcctgaagaa taaggtcagc cctgatttgt gcaatgagga cggactcaca gccctacacc 420 agtgctgcat cgacaacttt gaggaaattg tgaagctgct cctctcccat ggtgccaatg 480 tgaacgccaa ggacaacgag ctgtggacac ctctccatgc tgcagccacc tgcggccaca 540 tcaacctggt gaagatcctc gttcagtatg gggccgactt gcttgctgtc aactcggatg 600 ggaacatgcc atatgacctc tgcgaggatg aacccaccct ggatgtcatc gagacctgca 660 720 tggcatacca gggcatcacc caagagaaaa tcaacgagat gcgggtggct cctgagcagc 780 agatgattgc ggacatccac tgcatgatcg cagcgggcca ggacctggac tggatagatg cccagggtgc cacactgctg cacatagctg gagccaatgg atacctgcgg gcagctgagc 840 tcctcctgga ccatggagtg cgtgtggatg tgaaggactg ggatggctgg gagcccctgc 900 960 atgcagctgc cttctgggga cagatgcaga tggcagagct attggtgtcc catggagcta 1020 gtctcagtgc aaggacatcc atggatgaga tgccaataga cctgtgcgag gaggaagagt 1080 tcaaggtcct gctgctggag ctaaaacaca agcatgatgt gatcatgaag tcacagctga 1140 ggcacaagtc atccttgagc cggaggacct ccagcgcagg cagccgtggg aaggtggtgc ggcgagccag cctgtcggac aggaccaacc tgtataggaa ggagtatgag ggagaggcca 1200 tcctgtggca gcggagtgca gctgaggatc agcggacctc cacctacaac ggggacatca 1260 1320 gggagaccag gacagaccaa gagaataagg accctaaccc caggctggag aagcccgtgc 1380 tactctccga atttcctacc aagatcccac gaggtgaact ggacatgcct gttgagaatg 1440 gcctccgggc tccggtcagt gcctaccagt atgcgctggc caacggggat gtctggaagg tgcatgaggt gcctgactac agcatggcct atggcaaccc tggcgtggcc gacgccaccc 1500 1560 cgccctggag cagctacaag gaacagagcc ctcagacgct tctggagctg aagcggcagc gggctgcagc caagctgctc agccacccct tccttagcac acacctgggc agcagcatgg 1620 ccaggacggg cgagagtagc agtgaaggca aggccccctt gatcggaggc agaacttcac 1680 cgtacagcag caatgggacc tcggtatatt acacggtcac cagcggagat cccccactct 1740

taaagttcaa	ggcccccata	gaggagatgg	aggagaaggt	gcatggctgt	tgccgtatct	1800
cctagtctcc	gtgtgatgga	ggagggagat	gcctggggag	gggctcctgg	aatccaggcc	1860
agcccaacag	ccctggctgg	ggaggtgtca	gggcagctgg	ggagaggtgg	gctctgcttt	1920
tcagaggaac	tcagacccca	gccctcagct	ggctgcccat	agcatcccat	gtcccacgtc	1980
ccgtggttct	gcttcctgct	gcatcgtctg	ccatctgaca	caaggcctgt	cgtggcctcc	2040
tggttcactc	tgctgtctga	tcttgggagg	gtgggcttga	gateccaget	ctattcttgg	2100
tataaaggct	tctccggatc	agtacatgca	tgtcacatta	acacacacac	acacacacat	2160
atacacacac	acacaagctc	gatcagtgtg	tgtaggaatg	acatacctgg	gctcagggga	2220
agcaaggggg	cttagaattt	gtggggtatt	cccaaaagga	tggaagttaa	gactcagagt	2280
ctcattacca	ctgccaatgt	ggttttagca	ggggaggga	cctgctaagc	tgagacccat	2340
agtcctgctc	agagttatcc	caaagtctga	gccaccagcc	acacctgaca	ggggtgagaa	2400
gtcctcgctg	tgttcagagg	gagccaggaa	tctacatggg	tagatgagat	agacacagac	2460
ctgctccccg	cagccttgtt	gagagccaca	cttctgccca	tgccaggagc	cagctgtgtg	2520
accatccagg	ggtggagggg	gaaaaccagg	caatttcgtt	cctggaatca	accaaatcat	2580
gttttcctct	tggatggaag	tgtcaaaggc	agaagggtgt	gggagggga	caaggtcagt	2640
atttaccaaa	gtgtatctga	ttttaaaaat	tcctttagtc	tgtaaaactc	ctagagggag	2700
ggaggtaact	gaattcactt	ctttttgtgg	atcgtatcaa	ggtcactggg	ttttactggc	2760
tggtgctggg	aaaatgaagc	taagtgagga	gcttccattg	gaatgctttt	ccagggagag	2820
aggccagtta	atttaaaaaa	aacagtcgct	agttaacagc	gacagagccc	agcaccctgg	2880
ggtctttgtg	aatatccaga	ctgtttcagc	ccagcccatc	tcagccaacc	ctccttagac	2940
tgagctgtca	gagcaagcaa	ttaggggcca	gcctgcctcc	acctcccacc	cccttccacc	3000
tccatcagtc	atgtgtgcag	agtcagtgct	cgggatcccg	ggcccagctt	ttgccttttt	3060
ggggatgctt	ggtgagacag	atttgccagt	cagccctttt	gagttcccgc	ctcacccagg	3120
ggctcccagc	ctgcacttgc	aggagtggtg	atgccccaag	tctgcgaatc	cagggtgcac	3180
gtggtcaata	tecectectg	cattcaggag	agccatggta	gggctagagt	tgggtcttgc	3240
ccagccctgc	agtttcatag	tcccagcctt	cctggtgctg	gggagggagg	actgtgaatg	3300
gctgttctcc	cctcactgct	gagtctccca	ggaccccctt	tggagatgcc	catggcatgg	3360
gcactgccca	caggctcagc	: cagaacctct	: tggtgtaccc	gataagctgo	aggttatccc	3420
ttgctctgtg	cgccttttat	: ttgtccttaa	actacctcct	tagagetetg	aaggggtctc	3480
ctagttccag	attttaattt	ggggaacaga	tctgggttct	tttaaccct	cttctttctc	3540
agtctatgag	aaacttgcco	tgaggggcac	ctgggctagg	ggcttgggad	: tggaagacca	3600

teceegeett	gtgccacaac	tttggtcatg	ggatctgctc	tttgtcattc	ttagccccct	3660
actgtggccc	ccatagcccc	ataacccaga	gagggagctg	gacttcaggg	agcctgagtg	3720
atgctttccc	aggagcaggg	cagctggctg	gaccagaaag	tagagggccc	atgggagtga	3780
ctgcaccctt	ggtggctgct	ggaaggggag	aggttctcag	catcaggcca	cctccacccc	3840
aatgccagga	tagatgtatt	ctagagtagg	ggtggaggcg	gcccaggagg	ctgaagacag	3900
gtgcacagat	gcttcccacg	accttgccat	ttggggtggg	ctcttcaaca	tctcaggctg	3960
tggctggaac	aggacaggat	gatctaaaac	acacgtacca	ttggctgtaa	aacagtatga	4020
gcccagactg	acgctgaaat	ccctcatgag	ccaaccttag	ctacaaggta	gggagttctg	4080
agggaagccg	cgtgctcctc	aggagagagc	tgtttaggtt	ttccgatctt	tttgctcagg	4140
ggccaaacac	tgaaggcacg	tactgcccaa	cccactgagc	gcctgaggcc	attccctcct	4200
tttccgcatg	cctcctgcct	cctgggctat	tectetecae	ccagaaggct	gggaatccca	4260
gctgattccc	tgacaggagc	cgacttcaca	cacaggtgac	tctcaggcat	tggctcatgt	4320
tttcagccag	ggataaacca	tcccttcttg	gggctttaag	tccctgggga	gctttccctg	4380
taggtetect	gggtgttgag	agacaagttg	gagaccaacc	tccaatgaat	gagccgcggt	4440
cattcattaa	ttcactcacg	taatttactg	agtagctgca	acatgccagc	ctctacgtta	4500
ggttctgcgg	ataaaggagg	aataagacag	agtcaggaga	actgttcctt	gtggtttccg	4560
tecettgggg	accacaggca	tcagcagtcc	cattcaagtc	acctgaggca	aagtgtctgc	4620
atcttcgtcc	agcgaccctt	tgcttttcgg	ctcctagaat	ccttagagtc	tgaattcctt	4680
tagctgggaa	cagctgtcat	ggtcacccct	ggataacatt	tgccaccaag	tatagatgct	4740
ggatcttggg	ttccaggcag	acatcatcca	ggtccatctg	gaactttcag	tgatagctgc	4800
cttcagccag	catctttggg	ggactctata	. atagcagctt	gagatcagtg	tctagaagac	4860
tgttctgcaa	tttgctgcca	aatgcatctc	aggtttttaa	agtcattgtt	tcttgctcat	4920
ggtggctcat	ttattacata	gtcccctcac	cccactaatg	gataatggga	ggaaaagttg	4980
ctgcttcctt	cagcatcaaa	gcctttcctt	gggaatctgc	ctccctccat	ggcaggggtg	5040
gattcgggag	ctgggagtaa	ccaggcaaag	r tcaaccagat	gcctagctco	tgctgagacc	5100
caggtcctat	ggcagctcct	cattagatta	aaggagacca	cttccaaago	aggtgctgca	5160
tggctcacca	tcatatgccc	: caaacaactg	aaagttggcg	gttatcacca	ı gactgtgagt	5220
ttctggcaag	tagcttgggg	aagctgaata	aactctaggc	ccagggctac	: taaagacttc	5280
aggatagaat	tctccatcaa	atatacagca	taagtaaaac	tgctctgcac	tgtttaatcc	5340
atttccaagg	g ggcttagaaa	agctaacaag	ggtgtgtccc	ctgtcctgcc	ccaccggttt	5400
gctggctttg	g taataacata	agaccattgt	ggttgttggt	gtcagataco	ttcccatcct	5460

					LLLL	5520
gagetetete						
ggtgctcctt	ttaagatgcc	cagaaaagct	gtatttaact	cttgctattt	gtaacttggg	5580
gatggtctcc	cctgccccag	ggcacataag	agcaaaggct	ccaatggtca	gtggatgact	5640
ctgcaaaagt	gaccccctgt	gccagaagct	atagccctct	ccccaacagg	tctctcttgt	5700
tggccagagg	gcctgcttcc	catgggcatt	gcaagtgcca	ccgtgcgggg	cctggctctg	5760
cacacccagg	aaaagtctgc	agacccccag	ccctccgcaa	taattcacca	gaccagaagc	5820
cactggtgta	cagagaacac	ttaaaaaaat	gtattttatg	tgaaaaaaaa	ttaaaactct	5880
gtatactgta	tcagcagctt	tgtgtaaaaa	tggcaatcaa	gagagtctaa	tatatttaaa	5940
acttttttaa	aaaaaatctt	cgcagatctt	tgatatcgta	ctgaggtaac	ttccacgtag	6000
ccccttgcca	cgcggcaccg	gtgggccttg	ggtccaaaac	tgtggctcag	ccacatccca	6060
aagggggcac	atgtccctgg	agttgcttcc	agctgccaag	gcctgtgaca	gaattcgctg	6120
ttaagagttt	ttaattaaaa	ttattaaatt	ccttttaata	ac		6162
	sapiens					
	tgccgtgccc	ccgggcagtt	ctggtgaggc	taagcaagag	gcctctgcat	60
cttgacacct	aggagagcag	ggacggagtc	tcccagggtg	gaggaccatg	ctgcgccgca	120
agccctccaa	tgccagtgag	aaggagccca	ctcagaagaa	aaagctctcc	cttcagcgct	180
ccagcagctt	caaggatttt	gccaaatcca	aacccagctc	ccccgtggtg	agcgagaagg	240
agtttaatct	ggatgataac	attccagaag	atgactcagg	tgtccccacc	ccagaagatg	300
ctgggaagag	tggcaaaaag	ctggggaaga	agtggagggc	agtgatttcc	cgaaccatga	360
acaggaagat	gggcaagatg	atggtgaagg	ccctgtcaga	agagatggca	gacactctgg	420
aggagggctc	tgcctccccg	acatctccag	actacagcct	ggacagccct	ggccctgaga	480
agatggcgct	ggccttttct	gagcaagagg	agcatgaact	tccggtgctc	agccgccagg	540
catcaacagg	cagtgagctc	tgcagcccca	gcccaggttc	tggcagcttc	ggggaggaac	600
cacctgcccc	ccagtacaca	gggcctttct	gtggccgggc	acgagtccac	accgacttca	660
ctcccagccc	ctatgaccac	gactcgctga	aactgcagaa	aggagatgtg	atccagatca	720
ttgaaaagcc	acctgtgggc	acgtggctgg	gcctactcaa	tggcaaggtg	ggctctttca	780
aattcatcta	tgtggatgtg	ctgcccgagg	aggccgtggg	gcatgcccgc	: cccagccgcc	840
						000

gacagagcaa gggcaagagg cccaagccta agaccctgca tgagctgctg gagcgcatcg

900

gcctggagga gca	acacatcc	accctcctgc	tcaatggcta	ccagacactg	gaagacttca	960
aagagctgcg aga	aaacacac	ctcaatgagc	tgaacatcat	ggatccacag	caccgggcca	1020
agctgctcac gg	ccgccgag	ctgctgctgg	actatgacac	tggcagtgag	gaggctgaag	1080
agggcgccga gag	gcagccag	gagccagtgg	cacacacagt	gtcggaaccc	aaggtggaca	1140
tecegegega etc	caggctgc	tttgagggct	cggagagcgg	gcgcgatgac	gcagagctgg	1200
caggcactga gg	agcagctg	caaggcctct	ccctggccgg	ggcaccttga	ggtggcggtg	1260
gcaataggcc aa	ggctggga	cccagctgca	aaggctgtag	gagtgggccc	agcctcccgt	1320
ggtggcccag gt	cctgagga	ctggcactga	gcctggccct	gcttccccag	ggacacttag	1380
ggccacagag gc	caggccag	ggccctacag	gttccaggct	cagctggagt	ggttggggag	1440
tcgcccaagg gc	acatccca	cctgcctgag	ccccgccctc	caccagcgac	tgacagcgca	1500
gcccctcctg gc	accaactg	ctcccctgcc	atggccacgg	ccacagcaag	tggggcactg	1560
ggaaaccctg cc	catgtccc	tcaccaacaa	ggcctccaaa	tcctcctcac	cccacacc	1619

<210> 45

<211> 4726

<212> DNA

<213> Homo sapiens

<400> 45 attttgaaga gaggggtccc ggggagctcc ctccaagatc tagaggctcc gcggccaccc 60 ctgccgggtc ctgccaagac ttgctagaag gaacgagtcg cgtgccttag ttagttggtt 120 cccgtcacag gaagaaacgc ctttgcagtg ggtttaattg cttctgggcc gagcgaattc 180 cccgccgtac aactcagtgg tgcggacttt gcctcctgct accctgttgc tgcgccgagc 240 300 ggggtgggaa agtttctgga gttgtcagtc gcgcagcccg tggccaccta gacccgaggt gcgggcgcct gcgaagggcc cccgcggggt ggccggggcc gccggggcat gcagcgcggg 360 ggcgcggctc ggtgacgccg cgggcgggga cccggcatcc gggcaggctg cgcgcgggtg 420 cggggcgagg gcgccgcggg gactgggacg cacggcccgc gcgcgggaca cggccatgga 480 ggacgcggga gcagctggcc cggggccgga gcctgagccc gagcccgagc cggagcccga 540 600 gecegegeeg gageeggaac eggageecaa geegggtget ggeacateeg aggegttete ccgactctgg accgacgtga tgggtatcct ggacggttca ctgggaaaca tcgatgacct 660 ggcgcagcag tatgcagatt attacaacac ctgtttctcc gacgtgtgcg agaggatgga 720 780 ggagctgcgg aaacggcggg tttcccagga cctggaagtg gagaaacccg atgctagccc cacgtcactt cagctgcggt cccagatcga agagtcgctt ggcttctgta gcgccgtgtc 840 900 aaccccagaa gtggaaagaa agaaccctct tcataaatca aactcagaag acagctctgt aggaaaagga gactggaaga agaaaaataa gtatttctgg cagaacttcc gaaagaacca 960

gaaaggaata a	atgagacaga	cttcaaaagg	agaagacgtt	ggttatgttg	ccagtgaaat	1020
aacgatgagc	gatgaggagc	ggattcagct	aatgatgatg	gtcaaagaaa	agatgatcac	1080
aattgaggaa	gcacttgcta	ggctcaagga	atacgaggcc	cagcaccggc	agtcggctgc	1140
cctggaccct	gctgactggc	cagatggttc	ttacccaacg	tttgatggct	catcaaactg	1200
caattcaaga	gaacaatcgg	atgatgagac	tgaggagtcg	gtgaagttta	agaggttaca	1260
caagctggta	aactccactc	gcagagtcag	aaagaaacta	attagggtgg	aagaaatgaa	1320
aaaacccagc	actgaaggtg	gggaggagca	cgtgtttgag	aattcgccgg	tcctggatga	1380
acggtccgcc	ctctactctg	gcgtgcacaa	gaagcccctt	ttctttgatg	gctctcctga	1440
gaaacctccc	gaagatgact	cagactctct	caccacgtct	ccatcctcca	gcagcctgga	1500
cacctggggg	gctggccgga	agttggtcaa	aaccttcagc	aaaggagaga	gccggggcct	1560
gattaagccc	cccaagaaga	tggggacatt	cttctcctac	ccagaagaag	aaaaggccca	1620
gaaagtgtcc	cgctccctca	ccgaggggga	gatgaagaag	ggtctcgggt	ccctaagcca	1680
cgggagaacc	tgcagttttg	gaggatttga	cttgacgaat	cgctctctgc	acgttggcag	1740
taataattct	gacccaatgg	gtaaagaagg	agactttgtg	tacaaagaag	tcatcaaatc	1800
acctactgcc	tctcgcatct	ctcttgggaa	aaaggtgaaa	tcagtgaaag	agacgatgag	1860
aaagagaatg	tctaaaaaat	acagcagctc	tgtctctgag	caggactcgg	gccttgatgg	1920
aatgcctggc	tecceteege	cttcacagcc	cgaccccgaa	cacttggaca	agcccaagct	1980
caaggccggg	ggttctgtag	aaagtcttcg	cagttctctc	agtgggcaga	gctccatgag	2040
cggtcaaaca	gtgagcacca	ctgattcctc	aaccagcaac	cgggaaagcg	tcaagtcgga	2100
agatggggat	gacgaagagc	cgccttaccg	aggcccgttc	tgcgggcgtg	ccagggtgca	2160
caccgacttc	accccagtc	cctatgacac	agactcactc	aagctcaaga	aaggagatat	2220
catcgatata	atcagcaagc	cacccatggg	gacctggatg	ggcctgctga	acaacaaagt	2280
cggcacgttc	aagttcatct	acgtggacgt	gctcagtgaa	gacgaggaga	aacccaaacg	2340
ccccaccagg	aggcgtcgga	aaggacgacc	accccagccc	aagtctgtgg	aggatctcct	2400
ggatcggatt	aacctaaaag	agcacatgcc	cactttcctg	ttcaatggat	atgaagattt	2460
ggacaccttt	aagctgctgg	aggaggaaga	cttggatgag	ttaaatatca	gggacccgga	2520
acacagagct	gttctcttga	cagcagtgga	gctgttacaa	gagtatgaca	gtaacagcga	2580
ccagtcagga	tcccaggaga	agctgctcgt	tgacagccag	ggcctgagtg	gatgctcacc	2640
ccgagactca	ggatgctacg	, aaagcagtga	gaacctggaa	aacggcaaga	ctcggaaagc	2700
tagcctccta	tctgccaagt	: catccaccga	gcccagcttg	aagtcttta	gcagaaacca	2760
gttgggcaat	tacccaacat	tgcctttaat	gaaatcaggg	gatgcactga	agcagggaca	2820

ggaggagggc	aggctgggtg	gtggccttgc	cccagacacg	tccaagagct	gtgacccacc	2880
tggtgtgact	ggtttgaata	aaaaccgaag	aagcctccca	gtttccatct	gccggagctg	2940
tgagaccctg	gagggccccc	agactgtgga	cacttggccc	cgatcccatt	ccctggatga	3000
ccttcaagtg	gagcctggtg	ctgagcaaga	cgtgcctacc	gaggtgacag	aaccgccccc	3060
tcagattgta	cctgaagtgc	cacagaagac	gaccgcctct	tccacgaagg	cccagcccct	3120
ggagcaagac	tctgctgtcg	acaatgcatt	gctactgacc	caaagcaaga	gattttctga	3180
acctcagaaa	ttgacaacta	agaaactgga	gggctcaatc	gcagcctctg	gtcgcggcct	3240
gtcaccccct	cagtgtttgc	ccagaaacta	tgatgctcag	cctcctggag	ctaaacacgg	3300
tttagcaagg	acgcctctgg	agggccacag	aaaaggacac	gagtttgaag	gaacacacca	3360
tcccctgggc	accaaagaag	gggtagatgc	tgagcagaga	atgcagccca	aaattccatc	3420
acagcctcca	cctgttcctg	ccaaaaagag	cagagaacgc	cttgctaacg	gactccaccc	3480
tgttcccatg	ggccccagtg	gggccctccc	cagtcccgat	gcgccatgcc	tgccagtgaa	3540
aaggggcagc	cccgccagcc	ccaccagece	tagcgactgt	ccccagcac	tggctcccag	3600
gcctctctca	gggcaggcgc	ctggcagccc	accaagcaca	aggccgcccc	cctggctctc	3660
agageteece	gagaacacaa	gcctccagga	gcacggtgtg	aagctgggcc	cggctttgac	3720
caggaaggtc	tcctgtgccc	ggggagtgga	tctagaaacg	ctcactgaaa	acaagctgca	3780
cgctgaaggc	atcgatctca	cggaggagcc	gtattctgat	aagcatggcc	gctgtgggat	3840
tcctgaagcc	ctggtgcaga	gatacgcaga	ggacttggat	cagcccgagc	gggacgtcgc	3900
cgccaacatg	gaccagatcc	gggtgaagca	gcttcggaag	cagcaccgca	tggcgattcc	3960
aagtggtgga	ctcacggaaa	tctgccgaaa	gcccgtctct	cctgggtgca	tttcgtctgt	4020
gtcagattgg	ctcatttcca	teggtetgee	catgtacgcc	ggcaccctct	ccaccgcggg	4080
cttcagcaca	ctgagccaag	tgccttctct	gtctcacact	tgccttcagg	aggccggcat	4140
cacagaggag	g agacacataa	gaaagctcct	atctgcagco	agactcttca	aactgccgcc	4200
aggccctgag	gccatgtagc	caggcccgga	atgggcctct	ctggacaaga	gccacccttt	4260
cactgtgcat	atgatgctga	tgcaattcct	ccatcatctc	: tggacgtgca	gaccagatcc	4320
agaagaaagg	g cctggcgtgt	ggccaaacag	cgtgaaacct	: tggcacagga	ctgaggatcc	4380
tctcctccag	g aaaagccccc	: tcgaggaaat	aaattagtgo	ggttctcttt	gacccccaaa	4440
gacaagacaa	a gcacttattt	ttattttcag	g aagacaaaag	g aaccaagato	g ccaactggct	4500
gcgaatgcto	tatctccagt	ctgtctctgt	gtactggtag	g aggctgggag	g gagtaggggg	4560
cageetgtte	c catttctgat	agtgcccttg	g ctcttctgtc	tgtcatcttg	g caggatgece	4620
gagggccaga	a tgggcttago	: taggccaaag	g taacagacto	aagagttatt	gtacattact	4680

gaccacgctc atttgttcaa	aagttagaac	atctggctgc	accagg		4726
<210> 46 <211> 2216 <212> DNA <213> Homo sapiens					
<400> 46 ggaagctcag cagtgtccac	tgtcgccatt	ccttggccat	agaaaacaat	gtatttgaat	60
tttgatgtaa gcatagcaaa	ttgaagatga	agatgacacg	ttgatttctt	gtttgaaatt	120
aaccaagtcc cgagaaaaga	aagtgaatag	tgttagcacg	aggaggaagg	aagaaatgga	180
gattagattg gatactcttt	ctgcatcact	gggtagatcc	agcactttaa	atgactgcaa	240
cttggaagat aaattagctt	ggtatgaagg	tgaagcttac	atgtggcatc	actggaagcc	300
ttttcctgaa aaccctctct	ggacatgtct	tgatttccaa	atagcacaag	ttggaccctg	360
ggactactgc tcctcttgta	ttcgccacac	acgtctcaag	tcttcctgct	cagatatgga	420
tctcctacat tcatggcgaa	gcagcagttt	tgggaatttc	gatcgttttc	ggaataattc	480
tttatcaaaa ccagatgatt	. caactgaggc	acatgaagga	gatcccacaa	atggaagtgg	540
agaacaaagt aaaacttcaa	ataatggagg	cggtttgggt	aaaaaaatga	gagctatttc	600
atggacaatg aagaaaaaag					660
tgaggaagat ggagagaatg					720
cacagagaag gtgtccctca					780
ctcatcaagt ggcataacaa					840
ggatgacgat ggcccctatt					900
cacgccaagt ccctatgaca					960
tatttgcaaa acaccaatgg					1020
caaattcatt tatgtggatg					1080
aaaccgaagg agtaacagca					1140
tctgcaggaa tacacctcaa					1200
agatataaaa gagagtcac					1260
gttactatca gctgctgaa					1320
acctgagece ctatecttg					1380
cccaagggac tctggttgc					1440
ggagtctgaa aatctgtct					150
aacacgcatt cccaactat					156

aacgtcaaat	aggagaggaa	gataagataa	atatttgtaa	ataaaaccta	aagtttaaat	1620
gttttaatct	gaataattgt	acataaaatt	ttgtatctct	aacattccaa	attactgtca	1680
ataaaatata	tatttattat	tttaaatgct	atgtgttaat	atttcacttg	cttgtattag	1740
aaaggcaaaa	tgtaagactt	tggtatgtgt	gacatatgct	ttatttggct	ttattttaca	1800
agtacagtat	ctgcaaaaaa	caaagtaacc	ttttttcata	cctgccagtt	ttgaatttat	1860
atatgttatt	gaacaaatag	taatagagga	ttcgctgttg	aaacaagttg	tccaagcaat	1920
gttatattca	tttttatact	tattgggaaa	gtgtgagtta	atattggaca	cattttatcc	1980
tgatccacag	tggagtttta	gtaattatat	tttgttgatt	tcttcatttt	gttttctggt	2040
ataaaagtag	agataatgtg	tagtcacttc	tgatttagtg	aaaccaattg	taataattgt	2100
ggaaatgttt	tgtctttaag	tgtaaatatt	ttaaaatttg	acatacccta	atgttaataa	2160
taaaaagaac	tatttgcata	aaaaaaaaa	aaaaaaaaaa	aaaaaaaaa	aaaaaa	2216
<210> 47						
<210> 47 <211> 201	8					
<212> DNA						

<213> Homo sapiens

<400> 47 gececaegee aegegteget ggteceagge agegagtege tegegegeee egeegeeege 60 ctggcgacag ctccgccgcg cacgcacatg gaggggagcg cgagcccccc ggaaaagccc 120 cgcgcccgcc ctgcggctgc cgtgctgtgc cggggcccgg tagagccgct ggtcttcctg 180 gccaactttg cettggteet gcagggeecg etcaccaege agtatetgtg gcaccgette 240 300 agcgccgacc tcggctacaa tggcacccgc caaagggggg gctgcagcaa ccgcagcgcg gaccccacca tgcaggaagt ggagaccctt acctcccact ggaccctcta catgaacgtg 360 420 ggcggcttcc tggtggggct cttctcgtcc accctgctgg gagcttggag cgacagtgtg 480 ggccgccgcc cgctgctagt gctggcctcg ctgggcctgc tgctccaggc cctagtgtcc 540 gtttttgtgg tgcagctgca gctccacgtc ggctacttcg tgctgggtcg catcctttgt gccctcctcg gcgacttcgg tggccttctg gctgctagct ttgcgtccgt ggcagatgtc 600 agctccagtc gcagccgcac cttccggatg gccctgctgg aagccagcat cggggtggct 660 720 gggatgctgg caagcctcct cgggggccac tggctccggg cccagggtta tgccaacccc 780 ttctggctgg ccttggcctt gctgatagcc atgactctct atgcagcttt ctgctttggt gagacettaa aggagecaaa gtecaceegg etetteaegt teegteaeca eegateeatt 840 gtccagctct atgtggctcc cgccccagag aagtccagga aacatttagc cctctactca 900 960 ctggccatct tcgtggtgat cactgtgcac tttggggccc aggacatctt aaccctttat

1020

gaactaagca cacccctctg ctgggactcc aaactaatcg gctatggttc tgcagctcag

catctcccct acctcaccag cctgctggcc ctgaagctcc tgcagtactg cctggccgat 1080

caccecoor asses			• -		
gcctgggtag ctgag	gategg eetggeet	tc aacatcctg	g ggatggtggt	ctttgccttt	1140
gccactatca cgcct	ctcat gttcacag	gt gctctctt	t ctgctgtggc	ctgtgtgaat	1200
agectggeca tgctg	gaegge eteeggea	tc ttcaactca	c tctacccagc	cactctgaac	1260
tttatgaagg ggtto	cecett cetectgg	ga gctggccto	c tgctcatccc	ggctgttctg	1320
attgggatgc tggaa	aaaggc tgatcctc	ac ctcgagtto	c agcagtttcc	ccagagcccc	1380
tgatctgcct ggaco	cagaag acagaggg	ca agaggagca	a agtgaacacc	aagcaactgg	1440
aggtctgcag ctgga	aagccc agcccaca	gc aggacaag	a actcttgtct	aagggcagtg	1500
ctctctttgg acgag	ggtagt caagagag	ac caaggcac	a ccccatccac	agctgaccca	1560
gcctctgtct aggat	tctaga atcataac	cc acacaggo	c actgcaggac	aggtggcaga	1620
ggagctattt gggad	caggag tcagttct	cc ctttctgc	a tocatoactt	ataaccccac	1680
aggccagagg agagg	gtcctg agagaggt	ga cacttcag	gg accagaggca	gcacgagggc	1740
tggcatctct cctto	ccagcc caaactgo	ac agccccaa	cc aggttcccaa	cacgtgtagc	1800
agtcatcagc catto	ccttaa caatgaat	gt ggtacctg	gt tagtgccago	: cttgggaagg	1860
agggagggag gtaa	gagggg cttggtga	atc tctggagg	aa gagtgttgco	: tttgctgtgg	1920
ttggggaatc gatc	cttggc tatggcct	ac ccactccc	ct ggctgaagag	g tgccaatcat	1980
tacaaatcag cttc	agcaaa ctgaaaaa	aaa aaaaaaaa			2018
<210> 48 <211> 1748 <212> DNA <213> Homo sap	iens				
<400> 48 tgcccttgaa cccg	ggcgcg cacgagc	gca gggcatcc	ga ggcgacagc	c cctggcacgg	60
cccgacctgt accc	agcctg gcaggaa	gac tgtaatcg	tg ggaatacago	c tacctaccca	120
ggcaatatga agat	tttatt tgtagaa	cct gccatttt	cc ttagtgcat	t tgctatgact	180
ttgaccggtc cact	gacaac gcaatat	gtt tatcggag	aa tatgggaag	a aactggcaac	240
tacacttttt catc	tgatag caatatt	tct gagtgtga	aa aaaacaaaa	g cagcccaatt	300
tttgcattcc agga	aggaagt tcagaaa	aaa gtgtcacg	tt ttaatctgc	a gatggacata	360
agtggattaa ttcc	tgggct agtgtct	aca ttcatact	tt tgtctatta	g tgatcactac	420
ggacgaaaat tccc	ctatgat tttgtct	tcc gttggtgd	tc ttgcaacca	g cgtttggctc	480

540 600

tgtttgcttt gctattttgc ccttccattc cagcttttga ttgcatctac cttcattggt

gcaatttgtg gcaattatac cacattttgg ggagcttgct ttgcctatat agttgatcag

						660
tgtaaagaac	acaaacaaaa	aacaattcga	atagctatca	ttgactttct	acttggactt	880
gttactggac	taacaggact	gtcatctggc	tattttatta	gagagctagg	ttttgagtgg	720
tcgtttctaa	ttattgctgt	gtctcttgct	gttaatttga	tctatatttt	attttttctc	780
ggagatccag	tgaaagagtg	ttcatctcag	aatgttacta	tgtcatgtag	tgaaggcttc	840
aaaaacctat	tttaccgaac	ttacatgctt	tttaagaatg	cttctggtaa	gagacgattt	900
ttgctctgtt	tgttactttt	tacagtaatc	acttatttt	ttgtggtaat	tggcattgcc	960
ccaattttta	tcctttatga	attggattca	ccactctgct	ggaatgaagt	ttttataggt	1020
tatggatcag	ctttgggtag	tgcctctttt	ttgactagtt	tcctaggaat	atggcttttt	1080
tcttattgta	tggaagatat	tcatatggcc	ttcattggga	tttttaccac	gatgacagga	1140
atggctatga	ccgcgtttgc	cagtacaaca	ctgatgatgt	ttttagccag	ggtgccgttc	1200
cttttcacta	ttgtgccatt	ctctgttcta	cggtccatgt	tgtcaaaagt	ggttcgttcg	1260
actgaacaag	gtaccctgtt	tgcttgtatt	gctttcttag	aaacacttgg	aggagtcact	1320
gcagtttcta	cttttaatgg	aatttactca	gccactgttg	cttggtaccc	tggcttcact	1380
ttcctgctgt	ctgctggtct	gttactactt	ccagccatca	gtctatgtgt	tgtcaagtgt	1440
accagctgga	atgagggaag	ctatgaactt	cttatacaag	aagaatccag	tgaagatgct	1500
tcagacagag	cctgttaagc	tgctattgat	agtcggagct	tatatactgt	gacttctgaa	1560
gactatacat	gaattcccca	atcagtgctt	tgttgataca	aaatccttaa	aagggaggca	1620
ctttaaagaa	tatgtatttt	tcacttttct	taatatgttt	catcggtgac	aggcatgata	1680
atatttctat	atgtaatggg	taattgggaa	aaaatagatg	ataaataaaa	ttgctctaaa	1740
gaagttaa						1748

<210> 49

<211> 2605

<212> DNA

<213> Homo sapiens

<400> 49 60 ctagccggcc agttgctacc tccctttatc tcctccttcc cctctggcag cgaggaggct 120 atttccagac acttccaccc ctctctggcc acgtcacccc cgcctttaat tcataaaggt 180 gcccggcgcc ggcttcccgg acacgtcggc ggcggagagg ggcccacggc ggcggcccgg 240 300 ccagagactc ggcgcccgga gccagcgccc cgcacccgcg ccccagcggg cagaccccaa 360 cccagcatga gcgccgccac ccactcgccc atgatgcagg tggcgtccgg caacggtgac 420 cgcgaccctt tgcccccgg atgggagatc aagatcgacc cgcagaccgg ctggcccttc ttcgtggacc acaacagccg caccactacg tggaacgacc cgcgcgtgcc ctctgagggc 480

cccaaggaga	ctccatcctc	tgccaatggc	ccttcccggg	agggctctag	gctgccgcct	540
gctagggaag	gccaccctgt	gtacccccag	ctccgaccag	gctacattcc	cattcctgtg	600
ctccatgaag	gcgctgagaa	ccggcaggtg	caccetttcc	atgtctatcc	ccagcctggg	660
atgcagcgat	tccgaactga	ggcggcagca	geggeteete	agaggtccca	gtcacctctg	720
cggggcatgc	cagaaaccac	tcagccagat	aaacagtgtg	gacaggtggc	agcggcggcg	780
gcagcccagc	ccccagcctc	ccacggacct	gagcggtccc	agtctccagc	tgcctctgac	840
tgctcatcct	catcctcctc	ggccagcctg	ccttcctccg	gcaggagcag	cctgggcagt	900
caccagctcc	cgcgggggta	catctccatt	ccggtgatac	acgagcagaa	cgttacccgg	960
ccagcagccc	agccctcctt	ccaccaagcc	cagaagacgc	actacccagc	gcagcagggg	1020
gagtaccaga	cccaccagcc	tgtgtaccac	aagatccagg	gggatgactg	ggagccccgg	1080
cccctgcggg	cggcatcccc	gttcaggtca	tctgtccagg	gtgcatcgag	ccgggagggc	1140
tcaccagcca	ggagcagcac	gccactccac	tcccctcgc	ccatccgtgt	gcacaccgtg	1200
gtcgacaggc	ctcagcagcc	catgacccat	cgagaaactg	cacctgtttc	ccagcctgaa	1260
aacaaaccag	aaagtaagcc	aggcccagtt	ggaccagaac	tecetectgg	acacatccca	1320
attcaagtga	tccgcaaaga	ggtggattct	aaacctgttt	cccagaagcc	cccacctccc	1380
tctgagaagg	tagaggtgaa	agttccccct	gctccagttc	cttgtcctcc	tcccagccct	1440
ggcccttctg	ctgtcccctc	ttcccccaag	agtgtggcta	cagaagagag	ggcagccccc	1500
agcactgccc	ctgcagaagc	tacacctcca	aaaccaggag	aagccgaggc	tccccaaaa	1560
catccaggag	tgctgaaagt	ggaagccatc	ctggagaagg	tgcaggggct	ggagcaggct	1620
gtagacaact	ttgaaggcaa	gaagactgac	aaaaagtacc	tgatgatcga	agagtatttg	1680
accaaagagc	tgctggccct	ggattcagtg	gaccccgagg	gacgagccga	tgtgcgtcag	1740
gccaggagag	acggtgtcag	gaaggttcag	accatcttgg	aaaaacttga	acagaaagcc	1800
attgatgtcc	caggtcaagt	ccaggtctat	gaactccagc	ccagcaacct	tgaagcagat	1860
cagccactgc	aggcaatcat	ggagatgggt	gccgtggcag	cagacaaggg	caagaaaaat	1920
gctggaaatg	cagaagatcc	ccacacagaa	acccagcagc	cagaagccac	agcagcagcg	1980
acttcaaacc	ccagcagcat	gacagacacc	cctggtaacc	cagcagcacc	gtagcctctg	2040
ccctgtaaaa	atcagactcg	gaaccgatgt	gtgctttagg	gaattttaag	ttgcatgcat	2100
ttcagagact	ttaagtcagt	tggtttttat	tagctgcttg	gtatgcagta	acttgggtgg	2160
aggcaaaaca	ctaataaaag	ggctaaaaag	gaaaatgatg	cttttcttct	atattcttac	2220
tctgtacaaa	taaagaagtt	gcttgttgtt	tgagaagttt	aaccccgttg	cttgttctgc	2280
agccctgtct	acttgggcac	ccccaccacc	tgttagctgt	ggttgtgcac	tgtcttttgt	2340

agctctggac	tggaggggta	gatggggagt	caattaccca	tcacataaat	atgaaacatt	2400
tatcagaaat	gttgccattt	taatgagatg	attttcttca	tctcataatt	aaaatacctg	2460
actttagaga	gagtaaaatg	tgccaggagc	cataggaata	tctgtatgtt	ggatgacttt	2520
aatgctacat	tttaaaaaaa	gaaaataaag	taataatata	actcaaaaaa	aaaaaaaaa	2580
aaaaaaaaa	aaaaaaaaa	aaaaa				2605
<210> 50 <211> 2182 <212> DNA <213> Homo	sapiens					
<400> 50 aggtaagagg	aaactccatt	ggataaatgg	cgaggaaacg	tatactccct	cttaaggaac	60
acggtgtctt	ccttcgtctc	cgggttcccg	agaccccaga	gtcactgacc	teegteeete	120
agctttcggg	gttcggcagc	agaaggggcg	ggcccgggcc	tgggattggc	tggcgtcgtc	180
cgaccccctt	cgctgctctc	cattcgcaat	cgcccgcggg	cgcctgcgcg	atgggtcggc	240
cgtggggagc	ggggcgggaa	gcgcttcagg	gcagcggatc	ccatgtcggc	cctgaggcgc	300
tcgggctacg	gccccagtga	cggtccgtcc	tacggccgct	actacgggcc	tgggggtgga	360
gatgtgccgg	tacacccacc	tccaccctta	tatcctcttc	gccctgaacc	tccccagcct	420
cccatttcct	ggcgggtgcg	cgggggcggc	ccggcggaga	ccacctggct	gggagaaggc	480
ggaggaggcg	atggctacta	teceteggga	ggcgcctggc	cagagcctgg	tcgagccgga	540
ggaagccacc	aggagcagcc	accatatcct	agctacaatt	ctaactattg	gaattctact	600
gcgagatcta	gggctcctta	cccaagtaca	tatcctgtaa	gaccagaatt	gcaaggccag	660
agtttgaatt	cttatacaaa	tggagcgtat	ggtccaacat	accccccagg	ccctggggca	720
aatactgcct	catactcagg	ggcttattat	gcacctggtt	atactcagac	cagttactcc	780
acagaagtto	caagtactta	ccgttcatct	ggcaacagcc	caactccagt	ctctcgttgg	840
atctatcccc	agcaggacto	tcagactgaa	gcaccccctc	ttagggggca	ggttccagga	900
tatccgcctt	cacagaacco	tggaatgaco	ctgccccatt	atccttatgg	agatggtaat	960
cgtagtgttc	: cacaatcagg	g accgactgta	cgaccacaag	aagatgcgtg	ggcttctcct	1020
ggtgcttatg	gaatgggtgg	g ccgttatccc	tggccttcat	: cagcgccctc	agcaccaccc	1080
ggcaatctct	acatgactga	a aagtacttca	a ccatggccta	gcagtggcto	tccccagtca	1140
					r ccaatcagat	1200
					ctcggggaca	1260
gtgaacaatq	g atgattcag	a tcttttgga	t tcccaagtc	agtatagtgo	tgagcctcag	1320

ctgtatggta	atgccaccag	tgaccatccc	aacaatcaag	atcaaagtag	cagtcttcct	1380
gaagaatgtg	taccttcaga	tgaaagtact	cctccgagta	ttaaaaaaat	catacatgtg	1440
ctggagaagg	tccagtatct	tgaacaagaa	gtagaagaat	ttgtaggaaa	aaagacagac	1500
aaagcatact	ggcttctgga	agaaatgcta	accaaggaac	ttttggaact	ggattcagtt	1560
gaaactgggg	gccaggactc	tgtacggcag	gccagaaaag	aggctgtttg	taagattcag	1620
gccatactgg	aaaaattaga	aaaaaaagga	ttatgaaagg	atttagaaca	aagtggaagc	1680
ctgttactaa	cttgaccaaa	gaacacttga	tttggttaat	taccctcttt	ttgaaatgcc	1740
tgttgatgac	aagaagcaat	acattccagc	tttcctttga	ttttatactt	gaaaaactgg	1800
caaaggaatg	gaagaatatt	ttagtcatga	gttgttttca	gttttcagac	gaatgaatgt	1860
aataggaaac	tatggagtta	ccaatattgc	caagtagact	cactccttaa	aaaatttatg	1920
gatatctaca	agctgcttct	taccagcagg	agggaaacac	acttcacaca	acaggcttat	1980
cagaaaccta	ccagatgaaa	ctggatataa	tctgagacaa	acaggatgtg	tttttttaaa	2040
catctggata	tcttgtcaca	tttttgtaca	ttgtgactgc	tttcaacata	tacttcatgt	2100
gtaattatag	cttagacttt	agccttcttg	gacttctgtt	ttgttttgtt	atttgcagtt	2160
tacaaatata	gtattattct	ct				2182

<210> 51 <211> 2899

<212> DNA

<213> Homo sapiens

<400> 51 60 ccgacccgcc ctggggtgct gcgtgcgctg cctgctcccg cctgaggaaa acactgccca tggcgcaagg ccgggagcgc gacgaaggcc cccactccgc cggcggcgcg tccttgtccg 120 tgagatgggt gcaaggattc cctaagcaga atgttcattt gtcaacgaca acaccatttg 180 ctacccttgt gggaattatg taatatttat taatattgaa accaagaaaa agactgtact 240 gcagtgtagt aatggaattg tgggcgtcat ggcaactaac atcccctgtg aagttgtggc 300 tttttctgac cggaagctaa aacctctcat ctacgtatac agctttccag gattgaccag 360 aaggaccaaa ttgaaaggca acattctcct ggactacact ttactttcat tcagttactg 420 tggcacctac ctggctagtt actcctctct cccagaattt gaactggccc tttggaactg 480 ggaatcgagt atcattttgt gtaagaaatc acagcctgga atggatgtga accaaatgtc 540 ttttaacccc atgaactggc gccagctgtg cttatcaagt ccaagtacag tgagcgtgtg 600 gaccattgaa agaagtaacc aggagcattg tttcagagca aggtcggtga aattacctct 660 720 agaagatggg tcattttta atgaaacgga tgtcgttttc ccccagtcgt tgccgaaaga 780 tctcatctat ggtcccgtgc tgccactgtc agccattgcc gggctggtag gcaaagaggc

agagactttc	cggccgaaag	atgatctata	tcctttgctt	cacccgacta	tgcattgctg	840
gactccaaca	agtgacttgt	acattggctg	tgaagagggt	catcttttaa	tgattaatgg	900
agacaccttg	caagtgactg	tacttaataa	gatagaagag	gaatcgccat	tggaagacag	960
aagaaatttt	atcagtccag	taaccttggt	atatcagaag	gagggcgtgc	tggcttctgg	1020
aattgatggc	tttgtgtatt	cttttattat	taaagataga	agttacatga	tcgaggattt	1080
tcttgagatt	gaaagacctg	tagaacatat	gacattttct	cccaattata	cagtgttgct	1140
gattcaaaca	gacaagggat	ctgtttatat	ctacactttt	ggtaaggagc	caaccttaaa	1200
taaagtccta	gatgcttgtg	atgggaaatt	tcaggcaatt	gactttatca	cacctggaac	1260
ccaatacttc	atgacactta	catattcagg	ggaaatttgt	gtttggtggc	tggaggattg	1320
tgcttgtgta	agcaagattt	atctgaatac	cctagcaacg	gttctggctt	gctgtccatc	1380
ctccctctct	gcagccgtgg	gcacggagga	tggctcggtc	tacttcatca	gcgtatatga	1440
taaggaatcc	cctcaggtcg	tgcacaaggc	ctttctctcg	gaatcgtccg	tgcagcacgt	1500
cgtgtaagtc	ctttctgcct	ccaggagcgg	ctccgtgtca	cacccgtctg	ttgaaaattc	1560
tagtgaagcc	atcctttctt	ttaattttaa	gttttacgtg	tttcatttgt	tttgaatgtt	1620
aatatattca	cacagttcaa	cactcaaaag	gtacagaggg	ctgtgtagta	aagtaccccc	1680
catacccagg	tctgtccttg	caggcagcct	ggtaccaatt	tctcatgtct	ctcctgagat	1740
gttttatcca	tgaacaagca	aaacataata	agcacttctt	tttacttgta	tcaatggcca	1800
tcatgtgtgt	atagtgtgcc	aggcacttct	gctgtattaa	ctccatgagg	taaacactct	1860
tgttgtctct	atttgacagg	tgaggaagat	aaggcacaag	gattttaaat	aacttgctca	1920
atagtacaca	gatagtgaat	ggcaaatgtt	gggatttgaa	cccaggtagt	tgggctgcag	1980
agtcactgcc	tttgctctta	aaaggagaaa	actatgtaca	atgcctcatt	tctttttca	2040
cttaatcgta	tatcttggag	aatgttttat	atccacacat	aaagaccagc	ctgattattt	2100
gtatagccac	atagtattcc	attatatgaa	tatactatca	tttttaaaa	acggtatatt	2160
aatgaacatt	tagagtattt	caaaactttt	gaagcaatac	ttttaagatg	ataatataga	2220
gacattagat	ttggacttgt	aggtgctatc	attattactg	tttctttta	atttattata	2280
ttattaggta	ttaataagaa	cagacatttg	tattctgctt	tacagcttga	gatcactgta	2340
gcttgtggca	tgtgatecte	aaaacaccag	tcagaaaggt	gttattctta	tccctattag	2400
acaaattagg	gaattcaggg	ttagagaggt	gaggaaaagc	attgtccaag	attacacatt	2460
acacagctag	cacactgagg	agctggccct	gccactgtgg	actgcccago	tccaccaccc	2520
tagctcagtg	gggaaggatg	gataacctcc	ttccatttac	ccctgcctt	tctgcactgt	2580
catttttttg	tgcctttcct	ttctcagato	ctcttattct	aatttacatc	ttcccacttt	2640

ttctaatttg ataaagttgt	agacatgttt	cactacattc	ttcctcccac	tgccaggtac	2700
cagacacagg gtaatgaaat	gtcacaccca	ccactaattt	gagaattgct	tatttgcgct	2760
tgaaacatca agaaagctct	accgacagac	atgtttcatt	cacttatgat	gaaccaactg	2820
cccatcttta ctgaatcttc	ttgactgtat	ttattaaagt	tgcaatttgg	aaataaaaaa	2880
aaaaaaaaaa aaaaaaagg					2899
<210> 52 <211> 2218 <212> DNA <213> Homo sapiens		·			
<400> 52 tcgatgcaga actccgtctc	cttagacatc	agaaactaaa	actagatact	cagatgaaat	60
tatctgacct gcaccatgtc					120
aacaggagaa catacttcaa					180
aatggaaaat aaatgaaact	cttaaagaga	tggaagagaa	aaagaatgaa	atcaccaaac	240
tccaggagca agaaaaggca	ctctatgctg	gttttcaagc	agccattgga	gaaaacaata	300
aatttgcaaa cttcctcatg	aaggtcctaa	agaagaggat	taaacgggta	aagaaaaaag	360
aagttgaagg agatgctgat	gaagatgagg	agagtgagga	atcaagtgaa	gaagaatcta	420
gcttggagag tgatgaagat	gagtctgaat	cagaagatga	ggtttttgat	gattctattt	480
gcccaacaaa ttgtgatgtg	getettttg	agctggccct	tcaccttcga	gagaaaaggc	540
tggacattga ggaggcttta	gttgaagaaa	agaaaattgt	tgataacctc	aaaaaggaat	600
atgatacatt gtcaaaaaaa	gtgaaaattg	tggcaactaa	tctgaatgca	gcagaggagg	660
ccctggaggc ttatcagcga	a gagaagcagc	agcggctgaa	tgaactgcta	gttgtgattc	720
cgctcaagct ccaccagata	a gagtatgtgg	tatttggaga	aatacctagc	gatctttctg	780
gtactttggt cttctctaa	c catgccttga	gacggctgca	agaacgaatc	cgtgagctcc	840
aggaggaaaa ttccaagcag	g caaaaactta	acaaagaatg	gagagagaga	cgtaaacagc	900
tcatccgaga aaagagaga	a atgacaaaaa	ccatacacaa	aatggaggaa	acagtccggc	960
agctcatgat cagcaagtt	t ggccgtgtgg	taaatctaga	agcccttcaa	acgctttctg	1020
ttaatacaac acttgaaga	a ctgaagatca	gaaaacttcg	aaaggagcta	gcaaatgcga	1080
aagagatgaa gatgtggga	g gaaaagattg	ctcaaatgcg	atgggaactg	atgatgaaga	1140
caaaagaaca caccagaaa	g ctttatcaga	tgaatgattt	gtgtattgaa	aagaagaaac	1200
ttgattctcg gttgaatac	a ctacagaatc	agcagaacco	tggaaatggt	ctaagctaag	1260
tgttccaaca gtttggtcc	t ctgaagaaga	gcatcagcat	cacctgggaa	cttgtttaaa	1320

PCT/US03/06025 WO 03/083047

atggcaatgc	cttccagggc	cctcgggaag	cagatgttgt	ggcaagagag	gaggtcactg	1380
aattgatcca	actccaggcg	gaaaggattt	cggccttaaa	ggaggagatt	gctcttttgc	1440
gtaggaaagg	cggtcttatc	ctcccaccca	ttcagtctcc	acgagagaaa	gagatacagc	1500
ccgcagacct	ttgagtttgc	tattttctca	aacccataca	aaatttctga	cataactcac	1560
tggaagttct	gtctcctcat	cacctccaac	aatcttatta	ctttaaactg	aacttgcctg	1620
aaagtgtaaa	accagatcca	gtcacgttaa	gtcactttaa	gaatctctct	acaatttggt	1680
tatcttagaa	ctgactgcag	cacccaacct	ctgttatgaa	actgaatcat	tttagatgtt	1740
tcgaacctac	tagattgaat	atgaagtctc	ggaaggctgt	gtttcatgat	tgcagcaaat	1800
cacctgtaat	atattttgtt	ttaggaaaat	ttgatttggg	ggtatcctga	atttttagcc	1860
cttggcaaga	aaaactatca	ttcagcaatt	catgagaaaa	ctttgttttc	ttgatcctta	1920
gaaaataaac	ttagatgtta	ttaagtgttc	tctgagagga	tgcaggagaa	aaggacattt	1980
tgtcagctat	atcttagaat	agaaatgcaa	atttcagttt	tggcattgtt	gacttcataa	2040
agcagtgttt	tgagggctca	ggattcagga	aatacaaaca	gacatggcag	agcagtttgc	2100
tttgggttgg	cagaaagcag	gaaaataacc	agccttcttg	gattgcccac	agtttttgta	2160
gactcctcag	ttctgagtgg	agcagagggg	catgcttaat	aaaacagtca	ataaagag	2218

<210> 53 <211> 5925

<220>

<221> misc_feature

<222> (5402)..(5402) <223> n is a, c, g, or t

cttttcccat cgtgtagtca agagtctgtg ccagacttga aggctttact ttgttagcca 60 tgtgtttatg aacccccagc gctttcccta gatcttttgg ctgataatct caaacatgga 120 ggatgcttct gaatcttcac gaggggttgc tccattaatt aataatgtag ttctcccagg 180 ctctccgctg tctcttcctg tatcagtgac aggctgtaaa agtcatcgag tagccaataa 240 300 aaaggtagaa gcgaggagtg aaaagctcct cccaacagct cttcctcctt cagagccgaa agtagatcag aaacttccca ggagctccga gaggcgggga agtggcggtg ggacgcaatt 360 ccccgcgcgg agtcgggcag tggcagcggg agaagcggca gccaggggcg cggcggggcc 420 ggagagaggc agtcccctgg gaagacgggt ctcccctcgt tgcctttgta gtggagaagg 480 tggacaagtg gcagtcggcg tgatcgcagg gaagcggggc cggcgcgggc gcgacgggtc 540 caggcgagcc ccgggcggac gggagatgcc gctgctacac cgaaagccgt ttgtgagaca 600

<212> DNA <213> Homo sapiens

gaagccgccc gcggacctgc ggcccgacga ggaagttttc tactgtaaag tcaccaacga	660
gatetteege cactacgatg acttttttga acgaaccatt etgtgcaaca geettgtgtg	720
gagttgtgct gtgacgggta gacctggact gacgtatcag gaagcacttg agtcagaaaa	780
aaaagcaaga cagaatcttc agagttttcc agaaccacta attattccag ttttatactt	840
gaccagcctt acccatcgtt cgcgcttaca tgaaatttgt gatgatatct ttgcatatgt	900
caaggatcga tattttgtcg aagaaactgt ggaagtcatt aggaacaatg gtgcaaggtt	960
gcagtgtacg attitggaag tectecetee ateacateaa aatggttitg etaatggaca	1020
tgttaacagt gtggatggag aaactattat catcagtgat agtgatgatt cagaaacaca	1080
aagctgttct tttcaaaatg ggaagaaaaa agatgcaatt gatcccttac tattcaagta	1140
taaagtgcaa cccactaaaa aagaattaca tgagtctgct attgttaaag caacacaaat	1200
cagccggaga aaacacctat tttctcgtga taaactaaag ctttttctga agcaacactg	1260
tgaaccacaa gaaggagtca ttaaaataaa ggcatcatct ctttcaacgt ataaaatagc	1320
agaacaagat ttttcttatt tcttccctga tgatccaccc acatttatct tcagtcctgc	1380
taacagacga agagggagac ctcccaaacg aatacatatt agtcaagagg acaatgttgc	1440
taataaacag actcttgcaa gttataggag caaagctact aaagaaagag ataaactttt	1500
gaaacaagaa gaaatgaagt cactggcttt tgaaaaggct aaattaaaaa gagaaaaagc	1560
agatgcccta gaagcgaaga aaaaagaaaa agaagataaa gagaaaaaga gggaagaatt	1620
gaaaaaaatt gttgaagaag agagactaaa gaaaaaagaa gaaaaagaga ggcttaaagt	1680
agaaagagaa aaggaaagag agaagttacg tgaagaaaag cgaaagtatg tggaatactt	1740
aaaacagtgg agtaaaccta gagaagatat ggaatgtgat gaccttaagg aacttccaga	1800
accaacacca gtgaaaacta gactacctcc tgaaatcttt ggtgatgctc tgatggtttt	1860
ggagttcctt aatgcatttg gggaactttt tgatcttcaa gatgagtttc ctgatggagt	1920
aaccctagaa gtattagagg aagctcttgt tggaaatgac agtgaaggcc cactgtgtga	1980
attgcttttt ttcttcctga ctgcaatctt ccaggcaata gctgaagaag aagaggaagt	2040
agccaaagag caactaactg atgctgacac caaaggctgc agtttgaaaa gtttggatct	2100
tgatagctgc actctttcag aaatcctcag actgcacatc ttagcttcag gtgctgatgt	2160
aacatcagca aatgcaaagt atagatatca aaaacgagga ggatttgatg ctacagatga	2220
tgcttgtatg gagcttcgtt tgagcaatcc cagtctagtg aagaaactgt caagcacctc	2280
agtgtatgat ttgacaccag gagaaaaaat gaagatactc catgctctct gtggaaagct	2340
actgacccta gtttcaacta gggattttat tgaagattat gttgatatat tacgacaggc	2400
aaagcaggag ttccgggaat taaaagcaga acaacatcga aaagagaggg aagaagcagc	2460

tgccagaatt	cgtaaaagga	aggaagaaaa	acttaaggag	caagaacaaa	aaatgaaaga	2520
gaaacaagaa	aaactgaaag	aagatgagca	aagaaattca	acggcagata	tatctattgg	2580
ggaggaagaa	agggaagatt	ttgatactag	cattgagagc	aaagacacag	agcaaaagga	2640
attagatcaa	gatatgttca	ctgaagatga	agatgaccca	ggatcacata	aaagaggcag	2700
aagggggaaa	agaggacaaa	atggatttaa	agaatttaca	aggcaagaac	agatcaactg	2760
tgtaacaaga	gagcttctta	ctgctgatga	ggaagaagca	ttaaaacagg	aacaccaacg	2820
aaaagagaaa	gagctcttag	aaaaaatcca	aagtgccata	gcctgtacca	atatctttcc	2880
cttgggtcgc	gaccgcatgt	atagacgata	ctggattttc	ccttctattc	ctggactctt	2940
tattgaagag	gattattctg	gtcttactga	agacatgctg	ttgcctagac	cttcatcatt	3000
tcagaataat	gtacagtctc	aagatcctca	ggtatccact	aaaactggag	agcctttgat	3060
gtctgaatct	acctccaaca	ttgaccaagg	tccacgtgac	cattctgtgc	agctgccaaa	3120
accagtgcat	aagccaaatc	ggtggtgctt	ttacagttct	tgtgaacagc	tagaccagct	3180
tattgaagct	cttaattcta	gaggacatag	agaaagtgcc	ttaaaagaaa	ctttgttaca	3240
agagaaaagc	agaatatgtg	cacagctagc	ccgtttttct	gaagagaaat	ttcatttttc	3300
agacaaacct	cagcctgata	gcaaaccaac	atatagtcgg	ggaagatctt	ccaatgcata	3360
tgatccatct	cagatgtgtg	cagaaaagca	acttgaacta	aggctgagag	attttctttt	3420
agatattgaa	gatagaatct	accaaggaac	attaggagcc	atcaaggtta	cagatcgaca	3480
tatctggaga	tcagcattag	aaagtggacg	gtatgagctg	ttaagtgagg	aaaacaagga	3540
aaatgggata	attaaaactg	tgaatgaaga	cgtagaagag	atggaaattg	atgaacaaac	3600
aaaggtcata	gtaaaagaca	gacttttggg	gataaaaaca	gaaactccaa	gtactgtatc	3660
aacaaatgca	agtacaccac	aatcagtgag	cagtgtggtt	cattatctgg	caatggcact	3720
ctttcaaata	gagcagggca	ttgagcggcg	ttttctgaaa	gctccacttg	atgccagtga	3780
cagtgggcgt	tcttataaaa	cagttctgga	ccgttggaga	gagtctctcc	tttcttctgc	3840
tagtctatco	: caagtttttc	ttcacctato	caccttggat	cgtagcgtga	tatggtctaa	3900
atctatactg	aatgcgcgtt	gcaagatatg	tcgaaagaaa	ggcgatgctg	aaaacatggt	3960
tctttgtgat	. ggctgtgata	ggggtcatca	tacctactgt	gttcgaccaa	agctcaagac	4020
tgtgcctgaa	ı ggagactggt	tttgtccaga	atgtegacea	aagcaacgtt	gtagaagact	4080
gtcctttaga	cagagaccat	ccttggaaag	, tgatgaagat	gtggaagaca	gtatgggagg	4140
tgaggatgat	gaagttgatg	gcgatgaaga	agaaggtcaa	agtgaggagg	aagagtatga	4200
ggtagaacaa	a gatgaagatg	, actctcaaga	agaggaagaa	gtcagcctad	ccaaacgagg	4260
aagaccacaa	ı gttagattgo	cagttaaaac	aagagggaaa	cttagctctt	ctttctcaag	4320

tcgtggccaa	caacaagaac	ctggaagata	cccttccagg	agtcagcaga	gcacacccaa	4380
aacaactgtt	tcttctaaaa	ctggtagaag	cctaagaaag	ataaactctg	ctcctcctac	4440
agaaacaaaa	tctttaagaa	ttgccagtcg	ttctactcgc	cacagtcatg	gcccactgca	4500
agcagatgta	tttgtggaat	tgcttagtcc	tcgtagaaaa	cgcagaggca	ggaaaagtgc	4560
taataataca	ccagaaaata	gtcccaactt	ccctaacttc	agagtcattg	ccacaaagtc	4620
aagtgaacag	tcaagatctg	taaatattgc	ttcaaaactt	tctctccaag	agagtgaatc	4680
caaaagaaga	tgcagaaaaa	gacaatctcc	agagccatcg	cctgtgacac	tgggtcgaag	4740
gagttctggc	cgacagggag	gagttcatga	attgtctgct	tttgaacaac	ttgttgtaga	4800
attggtacga	catgatgaca	gctggccttt	tttgaaactt	gtttctaaaa	tccaggtccc	4860
agactactat	gacatcatca	aaaagcccat	tgccttaaat	ataattcgtg	aaaaagtgaa	4920
taagtgtgaa	tataaattag	catctgagtt	tattgatgac	attgagttaa	tgttttcgaa	4980
ctgctttgaa	tacaaccctc	gtaacacaag	tgaagcaaaa	gctggaacta	ggcttcaagc	5040
attttttcat	attcaggctc	aaaagcttgg	actccacgtc	acacccagta	atgtggacca	5100
agttagcaca	ccaccggctg	cgaaaaagtc	acgaatctga	ctttgtcctt	ctaaaggata	5160
tatttgaaga	aaaacaaatt	gttcatgaaa	atggaacatt	aaatcatgct	gtataaagca	5220
ataacaaaca	attgattgac	cacatgaaag	tgtggcctgc	actatattct	caattttaat	5280
attaagcact	caggagaatg	taggaaagat	atcctttgct	acagttttgt	tcagtatcta	5340
ataagtttga	tagatgtatt	ggatacagta	ctggtttaca	gaggtttttg	tacatttttg	5400
anatcattca	tgtgtccaga	gatcttggaa	aatattttt	cacccacgat	ttattttgtt	5460
attgatgatt	tatttttaaa	gtggtggtat	taagggagag	ttatctacat	ggatgagtct	5520
tccgctatag	cacagtttag	aaaaggtgtt	tatgtcttaa	ttaattgttt	gagtacattc	5580
tttcaacact	acacatgaat	gaatccaatc	ttataacctt	gaagtgctgt	accagtgctg	5640
gctgcaggta	ttaagtccaa	gtttattaac	tagatattta	tttagtattg	agagtaattt	5700
gtgaatttgt	tttgtattta	taaaatttat	acctggaaaa	tgttccttaa	tgttttaaac	5760
cttttactgt	gtttttattc	ctctaacttc	cttaatgatc	aatcaaaaaa	agtaacaccc	5820
tccctttttc	ctgacagttc	tttcagcttt	acagaactgt	attataagtt	ctatgtataa	5880
ttttaactgt	tcaaataaaa	tacatttttc	caataaaaaa	aaaaa		5925

<210> 54

<211> 6079

<212> DNA <213> Homo sapiens

<400> 54

cgttggccgg	gcccggggga	ggaggggaat	ctcccgccat	ttttcaataa	tttcctccgg	60
tgctgctgag	gagagtcgtg	actgccggcc	gccgggaccc	gaagcggagg	tcggcggggg	120
gctgctggga	ggcgcggcgg	tgtgcgcggg	agctctgcgc	cggtggcgtt	ccgctccatg	180
actgtcgcgc	ggccgcgccg	gcggtgaggg	agccggagtt	egegeegeee	tctcacccct	240
cccttcaccc	accccacccc	cgggcgcctg	gcgctcgctc	cgggccgcgg	ggcctagtgc	300
tgcgccgcgg	ggccggcccc	agcagccgcc	agtccccacc	gccgccgccg	cgatggcgcc	360
gctcctgggc	cgcaagccct	tcccgctggt	gaagccgttg	cccggagagg	agccgctctt	420
caccatcccg	cacactcagg	aggccttccg	cacccgggaa	gagtatgaag	cccgcttgga	480
aaggtacagt	gagcgcattt	ggacgtgcaa	gagtactgga	agcagtcagc	taacacacaa	540
ggaagcctgg	gaggaagaac	aggaagttgc	tgagcttttg	aaggaggagt	ttcctgcctg	600
gtatgagaag	cttgttctgg	aaatggttca	ccataacaca	gcctccttag	agaagttagt	660
agatactgct	tggttggaga	tcatgaccaa	atatgctgtg	ggagaagagt	gtgacttcga	720
ggttgggaag	gagaaaatgc	tcaaggtgaa	gattgtgaag	attcatcctt	tggagaaagt	780
ggatgaagag	gccactgaga	agaaatctga	tggtgcctgt	gattctccat	caagtgacaa	840
agagaactcc	agtcagattg	ctcaggacca	tcagaagaag	gagacagttg	tgaaagagga	900
tgaaggaagg	agagagagta	ttaatgacag	agcacgtaga	tcgccacgaa	aacttcctac	960
ttcattaaaa	aaaggagaaa	ggaaatgggc	tcctccaaaa	tttctgcctc	acaaatatga	1020
tgtgaaacta	caaaatgaag	ataagatcat	cagtaacgtg	ccagcagaca	gcttgattcg	1080
tacagagcgc	ccaccaaata	aggagatagt	tcgatacttt	atacggcata	atgcattacg	1140
agctggtact	ggtgaaaatg	caccttgggt	cgtagaagat	gaattggtga	agaaatactc	1200
tctgcccagc	aagttcagtg	actttttact	tgatccatac	aagtatatga	ctctcaaccc	1260
ttctactaag	aggaagaata	ctggatcccc	agacaggaag	ccctcaaaga	aatccaagac	1320
agacaactct	tctcttagtt	caccactaaa	tcctaagtta	tggtgtcacg	tacacttgaa	1380
gaagtcattg	agtggctcgc	cactcaaagt	gaagaactca	aagaattcca	aatctcctga	1440
agaacatcta	gaagaaatga	tgaagatgat	gtcgcccaat	aagctgcaca	ctaactttca	1500
cattcctaaa	aaaggcccac	ctgccaagaa	accagggaag	cacagtgaca	agcctttgaa	1560
ggcaaagggc	agaagcaaag	gcatcctgaa	tggacagaaa	tccacaggga	attccaaatc	1620
tcccaaaaaa	ggactgaaga	ctcctaaaac	caaaatgaag	cagatgactt	tgttggatat	1680
ggccaaaggc	acgcagaaga	tgacacgago	cccacggaat	tetgggggta	cacctaggac	1740
ctctagtaaa	cctcataaac	atctgcctcc	: tgcagcccta	cacctcattg	catactacaa	1800
agaaaacaaa	gacagggagg	g acaagaggag	cgccctgtcc	tgtgttatct	ccaaaacagc	1860

tegtettete	tctagtgaag	atagagctcg	tctcccagaa	gaattgcgaa	gtcttgttca	1920
aaaacgctat	gaacttctag	agcacaaaaa	gaggtgggct	tctatgtctg	aagaacaacg	1980
gaaagaatat	ttgaaaaaga	aacgggagga	gctgaaaaag	aagttgaagg	aaaaagccaa	2040
agaacgaaga	gagaaagaaa	tgcttgagag	attagaaaaa	cagaagcggt	atgaggacca	2100
agagttaact	ggcaaaaacc	ttccagcatt	cagattggtg	gatacccctg	aagggctgcc	2160
caacacgctg	tttggggatg	tggccatggt	ggtggaattc	ttgagctgtt	attctgggct	2220
acttttacca	gatgctcagt	atcctattac	tgctgtgtcc	cttatggaag	ccttgagtgc	2280
agataagggt	ggctttttat	accttaacag	ggtgttggtc	atcctcttac	agaccctcct	2340
acaagatgag	atagcagaag	actatggtga	attgggaatg	aagctgtcgg	aaatcccctt	2400
gactctgcat	tctgtttcag	agctggtgcg	gctctgcttg	cgcagatctg	atgttcagga	2460
ggaaagcgag	ggctcagaca	cagatgacaa	taaagattca	gctgcatttg	aggataatga	2520
ggtacaagat	gagttcctag	aaaagctgga	gacctctgaa	ttttttgagc	tgacgtcaga	2580
ggagaagcta	cagatcttga	cagcactgtg	ccaccggatc	ctcatgacat	actcagtgca	2640
agaccacatg	gagaccagac	agcagatgtc	tgcagagttg	tggaaggaac	ggcttgctgt	2700
gttgaaggaa	gaaaatgata	agaagagagc	agagaaacag	aaacggaaag	aaatggaagc	2760
caaaaataaa	gaaaatggaa	aagttgagaa	tgggttaggc	aaaactgata	ggaaaaaaga	2820
aattgtgaag	tttgagcccc	aagtagatac	agaagctgaa	gacatgatta	gtgctgtgaa	2880
gagcagaagg	ttgcttgcca	ttcaagctaa	gaaggaacgg	gaaatccagg	aaagagaaat	2940
gaaagtgaaa	ctggaacgcc	aagctgaaga	agaacgaata	cggaagcaca	aagcagctgc	3000
tgagaaagct	ttccaggaag	ggattgccaa	ggccaaacta	gtcatgcgca	ggactcctat	3060
tggcacagat	cgaaaccata	atagatactg	gctcttctca	gatgaagttc	caggattatt	3120
cattgaaaaa	ggctgggtac	atgacagcat	tgactaccga	ttcaaccatc	actgcaaaga	3180
ccacacagtc	tctggtgatg	aggattactg	tcctcgcagt	aagaaagcaa	acttaggtaa	3240
aaatgcaagc	.atgaacacac	aacatggaac	agcaacagaa	gttgctgtag	agacaaccac	3300
acccaaacaa	ggacagaacc	tatggttttt	atgtgatagt	caaaaggagc	tggatgagtt	3360
gctaaactgt	cttcaccctc	agggaataag	agaaagtcaa	cttaaagaga	gactagagaa	3420
gaggtaccag	gacattattc	actctattca	tctagcacgg	aagccaaatt	tgggtctaaa	3480
atcttgtgat	ggcaaccagg	agcttttaaa	cttccttcgt	agtgatctca	ttgaagttgc	3540
aacaaggtta	caaaaaggag	gacttggata	tgtggaagaa	acatcagaat	ttgaagcccg	3600
ggtcatttca	ttagagaaat	tgaaggattt	tggtgagtgt	gtgattgccc	ttcaggccag	3660
tgtcataaag	aaatttctcc	aaggcttcat	ggctcccaag	caaaagagaa	gaaaactcca	3720

aagtgaagat tcagcaaaaa ctgaggaagt ggatgaagag aagaaaatgg tagaggaagc	3780
aaaggttgca tctgcactgg agaaatggaa gacagcaatc cgggaagctc agactttctc	3840
caggatgcac gtgctgcttg ggatgcttga tgcctgtatc aagtgggata tgtccgcaga	3900
aaatgctagg tgcaaagttt gtcgaaagaa aggtgaggat gacaaattga tcttgtgtga	3960
tgagtgtaat aaagcettee acetgttttg tetgaggeeg geeetetatg aagtaceaga	4020
tggtgagtgg cagtgcccag cttgccagcc cgctactgcc aggcgcaact cccgtggcag	4080
gaactatact gaagagtctg cttctgagga cagtgaagat gatgagagtg atgaagagga	4140
ggaggaggaa gaagaggagg aggaggaaga agattatgag gtggctggtt tgcgattgag	4200
acctcgaaag accatccggg gcaagcacag cgtcatcccc cctgcagcaa ggtcaggccg	4260
gegecegggt aagaagecae aetetaeeag gaggteteag eecaaggeae eacetgtgga	4320
tgatgctgag gtggatgagc tggtgcttca gaccaagcgg agctcccgga ggcaaagcct	4380
ggagctgcag aagtgtgaag agatcctcca catgatcgtg aagtaccgct tcagctggcc	4440
cttcagggag cctgtgacca gagatgaggc cgaggactac tatgatgtga tcacgcaccc	4500
catggacttt cagacagtgc agaacaaatg ttcctgtggg agctaccgct ctgtgcagga	4560
gtttcttact gacatgaagc aagtgtttac caatgctgag gtttacaact gccgtggcag	4620
ccatgtgcta agctgcatgg tgaagacaga acagtgtcta gtggctctgt tgcataaaca	4680
ccttcctggc cacccatatg tccgcaggaa gcgcaagaag tttcctgata ggcttgctga	4740
agatgaaggg gacagtgagc cagaggccgt tggacagtcc aggggacgaa gacagaagaa	4800
gtagagaggc agggccgtgg tgacagtatc agtgagtgcc atacagaatt gtgtattcac	4860
cagcatcatg aaacagttgt ggtcttttga gttgatcttg gcagagtaaa gggacgtgtc	4920
ctggagccat tectgaatet eeeettettt gtgacagete eteccaeeee eecaaaaaat	4980
aaaaaaacca caaaaaacaa aaaaacaaaa ctaaggcact tcacttagag actggagtcc	5040
tgcttataat catgcatata acctttactt tgatggatct ggccagaggg gtgttggagc	5100
ccagcccacc cacataccag tcaagctctt aggggagcag aagaaaagca ggaagaattt	5160
aaatgtttaa ttttttttt aaattgactt ttctagttat taaaagttgc ttgtttcagc	5220
agtgatattg tataaagaac atcttgtaag atactcctga catcttgctt tagcacatgt	5280
acagtacagt ttctatgata atgtgtttgc tctaacttcc ctggcttctc cttcagccca	5340
tccactctcc tctagagcag ttgggttgga ggctcattga ggcaagcagc aacattggag	5400
ggggagcagg gcagtgctgt gtctgctgcc tcccatgccc gttctgacct cagccttgga	5460
actcctcaag aacctgaaga ttgagagcgg cagagaagct ctgagagccc cttcccccac	5520
aacaaatcta gctctagttg ttatatttag gcaaaacttt gtagtcttct ttccctttta	5580

tgatggattt tgataaaagt	acaaaacagg	gtttttcttt	tttatcacct	ttgaatttgg	5640
aaattttgag cacccaagct	cttctgtacc	tatttaaagt	ccaccaaggg	gactgcagct	5700
cctagaacat gagaatcaag	cctcttaatt	ttaaactgcg	gaatgtggcc	tctgcttcct	5760
ccgtcctcct gcccaaggac	gacgaggatt	gctccagggc	tgctgggtag	tttaccgtcc	5820
cttctatagg catggagttg	gcactgacat	cacagettca	taaccccacc	accgccagct	5880
tcccctgcct cctacatcca	gtctgttctt	gttcatagtg	agaatcctgt	gttcccactt	5940
cagtgacacc tgaattgttt	gttgttgttt	tttttttta	ttgtcttcaa	agaggaaggg	6000
ccccattaaa gggtgaactt	gtaataaatt	ggaatttcaa	ataaacctca	tgtacttgtg	6060
tttataaaga agaaaccaa					6079
<210> 55 <211> 1839 <212> DNA <213> Homo sapiens				-	
<400> 55 atacgcatgc gtgcacgctg	ccggtcgggc	tgggctgaga	ggggagggg	cggcggcggc	60
cgaggcggcg tcgttatttc	cgtggtccgg	acagtgcgtg	gcggcgcggg	tgaccacggg	120
agaagtaggc ataatggtta	tgaaagcttc	tgtagatgat	gacgattcag	gatgggagct	180
cagtatgcca gaaaaaatgg	agaaaagcaa	tacaaactgg	gtggacatta	cccaagattt	240
tgaagaagct tgtcgagaat	taaagttggg	agaactactt	catgataagc	tatttggtct	300
ttttgaagcc atgtctgcta	ttgaaatgat	ggatcccaag	atggatgctg	gcatgattgg	360
aaaccaagtt aatcgaaaag	ttctcaattt	tgaacaagct	atcaaggatg	gcactattaa	420
aattaaagat ctcaccttgc	ctgaactgat	agggattatg	gatacatgtt	tttgctgttt	480
gataacgtgg ttagaaggcc	attcactggc	acagacagta	tttacgtgcc	tttacattca	540
taatccagac tttatagaag	atcctgctat	gaaggctttt	gctctgggaa	tcttgaaaat	600
ctgtgacatt gcaagggaaa	aagtaaataa	agctgctgtt	tttgaagagg	aagattttca	660
gtcaatgact tatggattta	aaatggctaa	cagtgtgaca	gatcttcgag	ttacaggcat	720
gctaaaagat gtggaggatg	acatgcaaag	aagagtaaag	agtactcgaa	gtcgacaagg	780
agaagaaaga gatccagaag	ttgaactaga	acaccaacga	tgtttagcag	tattcagcag	840
agtgaaattt actcgtgtgt	tactgacagt	gcttatagcc	tttactaaga	aagagaccag	900
tgctgttgca gaagctcaaa	aattgatggt	tcaagcagca	gatcttcttt	ctgccattca	960
taattcattg catcatggca	tccaggccca	gaatgatact	acaaaaggag	atcatccaat	1020
tatgatgggt tttgaacccc	ttgtgaacca	gaggctactt	ccacctacct	tccctcgata	1080
tgcaaaaata attaaaaggg	aagaaatggt	gaactatttt	gcaagattaa	tagatagaat	1140

aaaaactgtc tgtgaggttg	tgaatttaac	aaatttacat	tgtatcctgg	attttttctg	1200
tgaatttagt gaacagtcac					1260
ggtggataac aaaaaggtct					1320
teggtetttt gteagteete					1380
ggctaaggac tgtatcgact					1440
tcagatccat ggacataaca					1500
					1560
atttgccacc ttgcaggatg					1620
gaaacaggaa ccccaaaggc					
ccttcgcatt atgatacagt					1680
cgagatacta ttacatatat	tggtatctct	ctgaattcct	ttacgcatgg	ttgatgtcaa	1740
cattgagtcg tgccgatggc	tctcaaatgg	cagaggaaag	gataatggaa	gagcagcaga	1800
aaggccgtag tagtaaaaaa	acaaaaaaaa	aaaaaaaaa			1839
<210> 56 <211> 2923 <212> DNA <213> Homo sapiens					
<400> 56 aaggaatcaa gcccccaaga	tggcggcagc	ggcggaggag	cggatggcag	aggaaggagg	60
					60 120
aaggaatcaa gcccccaaga	gttcctcttt	ggcctccggc	tctacccagc	gacagcctcc	
aaggaatcaa gcccccaaga	gttcctcttt	ggcctccggc	tctacccagc	gacagcetee cegegetgge	120
aaggaatcaa gcccccaaga cggcggccaa ggcgacggcg accgcccgcg ccacagcacc	gttcctcttt cgcagccggg acaacacgct	ggcctccggc gtcccaggcg tgtggcgctg	tctacccagc ctcccagccc cccatcgtag	gacagcetee cegegetgge ccategagaa	120 180
aaggaatcaa gcccccaaga cggcggccaa ggcgacggcg accgcccgcg ccacagcacc tccggaccag ctgcctcaaa	gttcctcttt cgcagccggg acaacacgct acgacgaaat	ggcctccggc gtcccaggcg tgtggcgctg tagccagctc	tctacccagc ctcccagccc cccatcgtag cgcctggttt	gacagcetee cegegetgge ccategagaa gtaaaagaat	120 180 240
aaggaatcaa gcccccaaga cggcggccaa ggcgacggcg accgcccgcg ccacagcacc tccggaccag ctgcctcaaa catcctcagc tttatgtcct	gttcctcttt cgcagccggg acaacacgct acgacgaaat tgttgaatca	ggcctccggc gtcccaggcg tgtggcgctg tagccagctc gggatttctg	tctacccagc ctcccagccc cccatcgtag cgcctggttt aaagtggaga	gacagcetee cegegetgge ccategagaa gtaaaagaat ggtaccataa	120 180 240 300
aaggaatcaa gccccaaga cggcggccaa ggcgacggcg accgccgcg ccacagcacc tccggaccag ctgcctcaaa catcctcagc tttatgtcct ggacttggtc tgccagagaa	gttcctcttt cgcagccggg acaacacgct acgacgaaat tgttgaatca aagcacaact	ggcctccggc gtcccaggcg tgtggcgctg tagccagctc gggatttctg cccaaggaga	tctacccagc ctcccagccc cccatcgtag cgcctggttt aaagtggaga gagtcagaaa	gacagcetee cegegetgge ceategagaa gtaaaagaat ggtaccataa ggagaaacca	120 180 240 300 360
aaggaatcaa gccccaaga cggcggccaa ggcgacggcg accgccgcg ccacagcacc tccggaccag ctgcctcaaa catcctcagc tttatgtcct ggacttggtc tgccagagaa tctatgtcag aaacaagtta	gttcctcttt cgcagccggg acaacacgct acgacgaaat tgttgaatca aagcacaact acattcttgc	ggcctccggc gtcccaggcg tgtggcgctg tagccagctc gggatttctg cccaaggaga tgctgttgaa	tctacccagc ctcccagccc cccatcgtag cgcctggttt aaagtggaga gagtcagaaa acaaggctgt	gacagcetee cegegetgge ceategagaa gtaaaagaat ggtaccataa ggagaaacca cactattaaa	120 180 240 300 360 420
aaggaatcaa gccccaaga cggcggccaa ggcgacggcg accgccgcg ccacagcacc tccggaccag ctgcctcaaa catcctcagc tttatgtcct ggacttggtc tgccagagaa tctatgtcag aaacaagtta ttcattagct cgtcatgcag	gttcctcttt cgcagccggg acaacacgct acgacgaaat tgttgaatca aagcacaact acattcttgc	ggcctccggc gtcccaggcg tgtggcgctg tagccagctc gggatttctg cccaaggaga tgctgttgaa tctctgttgc	tctacccagc ctcccagccc cccatcgtag cgcctggttt aaagtggaga gagtcagaaa acaaggctgt ttcatcccag	gacagcetee cegegetgge ceategagaa gtaaaagaat ggtaccataa ggagaaacca cactattaaa gaaaggtgat	120 180 240 300 360 420 480
aaggaatcaa gccccaaga cggcggccaa ggcgacggcg accgccgcg ccacagcacc tccggaccag ctgcctcaaa catcctcagc tttatgtcct ggacttggtc tgccagagaa tctatgtcag aaacaagtta ttcattagct cgtcatgcag tatgactttc atgaaatatg	gttcctcttt cgcagccggg acaacacgct acgacgaaat tgttgaatca aagcacaact acattcttgc tggattccaa tgagatatgt	ggcctccggc gtcccaggcg tgtggcgctg tagccagctc gggatttctg cccaaggaga tgctgttgaa tctctgttgc caattctacc	tctacccagc ctcccagccc cccatcgtag cgcctggttt aaagtggaga gagtcagaaa acaaggctgt ttcatcccag agagccctc	gacagcetee cegegetgge ceategagaa gtaaaagaat ggtaccataa ggagaaacca cactattaaa gaaaggtgat aacgagetea	120 180 240 300 360 420 480 540
aaggaatcaa gccccaaga cggcggccaa ggcgacggcg accgccgcg ccacagcacc tccggaccag ctgcctcaaa catcctcagc tttatgtcct ggacttggtc tgccagagaa tctatgtcag aaacaagtta ttcattagct cgtcatgcag tatgactttc atgaaatatg tgatgagatt tatcgtgtgt	gttcctctt cgcagccggg acaacacgct acgacgaaat tgttgaatca aagcacaact acattcttgc tggattccaa tgagatatgt gggatatatc	ggcctccggc gtcccaggcg tgtggcgctg tagccagctc gggatttctg cccaaggaga tgctgttgaa tctctgttgc caattctacc ctctatggca	tctacccagc ctcccagccc cccatcgtag cgcctggttt aaagtggaga gagtcagaaa acaaggctgt ttcatcccag agagccctc atggagtact	gacagcetee cegegetgge ceategagaa gtaaaagaat ggtaccataa ggagaaacca cactattaaa gaaaggtgat aacgagetea ttgatgaaaa	120 180 240 300 360 420 480 540
aaggaatcaa gccccaaga cggcggccaa ggcgacggcg accgccgcg ccacagcacc tccggaccag ctgcctcaaa catcctcagc tttatgtcct ggacttggtc tgccagagaa tctatgtcag aaacaagtta ttcattagct cgtcatgcag tatgactttc atgaaatatg tgatgagatt tatcgtgtgt tgaagtactt caagaattaa	gttcctctt cgcagccggg acaacacgct acgacgaaat tgttgaatca aagcacaact acattcttgc tggattccaa tgagatatgt gggatatatc	ggcctccggc gtcccaggcg tgtggcgctg tagccagctc gggatttctg cccaaggaga tgctgttgaa tctctgttgc caattctacc ctctatggca aggatcagat	tctacccagc ctcccagccc cccatcgtag cgcctggttt aaagtggaga gagtcagaaa acaaggctgt ttcatcccag agagccctc atggagtact gttctggaa	gacagcetee cegegetgge ceategagaa gtaaaagaat ggtaccataa ggagaaacca cactattaaa gaaaggtgat aacgagetea ttgatgaaaa gactcatggg	120 180 240 300 360 420 480 540 600
aaggaatcaa gccccaaga cggcggccaa ggcgacggcg accgccgcg ccacagcacc tccggaccag ctgcctcaaa catcctcagc tttatgtcct ggacttggtc tgccagagaa tctatgtcag aaacaagtta ttcattagct cgtcatgcag tatgacttc atgaaatatg tgatgagatt tatcgtgtgt tgaagtactt caagaattaa gattgttcca atttaaaga	gttcctctt cgcagccggg acaacacgct acgacgaaat tgttgaatca aagcacaact acattcttgc tggattccaa tgagatatgt gggatatatc	ggcctccggc gtcccaggcg tgtggcgctg tagccagctc gggatttctg cccaaggaga tgctgttgaa tctctgttgc caattctacc ctctatggca aggatcagat	tctacccagc ctcccagccc cccatcgtag cgcctggttt aaagtggaga gagtcagaaa acaaggctgt ttcatcccag agagccctc atggagtact gttctggaa atgcagctct	gacagcetee cegegetgge ceategagaa gtaaaagaat ggtaccataa ggagaaacca cactattaaa gaaaggtgat aacgagetea ttgatgaaaa gactcatggg tetecaagea	120 180 240 300 360 420 480 540 600 660 720

acagcttcaa	gaccaggacc	agaaactgct	agagcagacc	cagatcatag	gtgaacaaaa	960
tgcacggttg	gcagagctag	aacgcaaact	acgagaagta	atggaaagtg	ctgtaggaaa	1020
ttcctcaggg	tccgggcaga	atgaggagtc	tcctcggaaa	cgaaaaaagg	ccacggaagc	1080
catagactct	cttaggaaat	ctaaacgtct	tcggaataga	aagtaaattg	gaatgtggtt	1140
ctagttccag	aggaagacac	agcttagtag	cttaagcagt	tatgcatatc	aggatactgt	1200
gagcaacatg	gtgtccctta	agcttctagg	ctttcagaac	acaacttaaa	cttgaactct	1260
tatggttggg	acattctttt	cctgcttctc	ctgattgaac	tgatgcacag	aatcttttta	1320
ctttgcaata	gatttgtact	aaccagacct	gttctatcat	gttttgagga	gttaactttt	1380
ttctgtgcag	ataatgttga	aagtaagtta	atttgtttct	gcatatatgc	acatacatac	1440
gtaaggatct	taaacccagt	cttgacagac	tagaagttaa	gtttaataca	gaaaatgtcc	1500
tgttcacttg	aaagaaaaga	cctacttttt	aaatggacac	tatcttggtt	ctttttttt	1560
aagtcatctt	tttgttataa	gtgacctttg	tctggaatgt	ctgaaaagta	gttaatgctt	1620
tttggtattg	aagtaatggg	taactaaaat	ggacttccat	agtattgact	gtagaaggag	1680
cctctacaat	attgactata	tatttttata	aactactggc	aaggaactta	cccagctgtt	1740
atacatgttt	tcagttctct	ttgggggcca	tgtcctacat	ttgcatggat	ggatgcatgc	1800
attgcctagt	caactcactt	aaaaagctct	tgcactggta	ttgatcttga	acctctatac	1860
ttctccactt	tttagagcgg	cgtcttagtt	tatttaaacg	cttaacatct	tccaccgcaa	1920
cagettgeet	ctagaggggg	aattgttcat	ccatttgtcc	tccagtttta	taggaacaag	1980
agactattaa	agcccattgc	tttatctgct	ctctgtaggg	ttcaggtaca	ctggctaagg	2040
cagaacccca	aatttcaagg	ctctttctat	caatattgga	cctctgggag	ctaatactcc	2100
tetttgetea	ccaccatgtg	atcattgato	agatgtggtg	agtgagtagg	ggactcgact	2160
tgcgggatgc	agttttgcca	ttgcagcaaa	gttcattgag	gaaaattgta	ccatgaaaaa	2220
gcattttgat	: tatttcattt	ctggaggatg	accttgaggg	aagcttttta	atattagttt	2280
caagctttcc	: ttaccctaca	actttaaaca	aaagctttaa	ttttgtttgc	actcctattt	2340
tgagcttgta	actggaaaag	catgtcttgc	actgttcaac	ctcctgagtg	gtcgctttaa	2400
caacctccaa	attgtgtaca	gtggttattt	: tccccagttg	tatagttttg	g agacattcaa	2460
ttatcactgt	cttagttgta	ttttaattta	ctaaattatg	, tagctatcto	g actgttaagt	2520
tcttttaaac	aactgtttcc	: ttgggcttca	a gttatttaaa	gtaaatttag	g gtgtaatata	2580
gaaaactgto	c cctttccagg	, tgggagctta	a acacctgtat	: aaaacctaa	g gttttagtaa	2640
gtaccttagt	tgaataaaag	g cacaaggtta	a tcacctttt	tatccgtcca	a ccgtgacatg	2700
gttatgcato	ctttagatta	acctcacca	a atgaagcttt	ttctatcca	ttttaatatt	2760

gtccttacat aatattgtcc ttagattttg atcaattcta tgtctgactt tgaaatacca 2820
tttacaatgt agtatgtttt caatgaaaaa ccataaagta acatccaagt gtttcatggt 2880
ttgttgggaa ggtaatttta aaataaaaca atttccaaaa aac 2923

<210> 57

<211> 316

<212> PRT

<213> Homo sapiens

<400> 57

Met Gly Asn Arg His Ala Lys Ala Ser Ser Pro Gln Gly Phe Asp Val

Asp Arg Asp Ala Lys Lys Leu Asn Lys Ala Cys Lys Gly Met Gly Thr 20 25 30

Asn Glu Ala Ala Ile Ile Glu Ile Leu Ser Gly Arg Thr Ser Asp Glu 35 40 45

Arg Gln Gln Ile Lys Gln Lys Tyr Lys Ala Thr Tyr Gly Lys Glu Leu 50 55 60

Glu Glu Val Leu Lys Ser Glu Leu Ser Gly Asn Phe Glu Lys Thr Ala 65 70 75 80

Leu Ala Leu Leu Asp Arg Pro Ser Glu Tyr Ala Ala Arg Gln Leu Gln 85 90 95

Lys Ala Met Lys Gly Leu Gly Thr Asp Glu Ser Val Leu Ile Glu Phe 100 105 110

Leu Cys Thr Arg Thr Asn Lys Glu Ile Ile Ala Ile Lys Glu Ala Tyr 115 120 125

Gln Arg Leu Phe Asp Arg Ser Leu Glu Ser Asp Val Lys Gly Asp Thr 130 135 140

Ser Gly Asn Leu Lys Lys Ile Leu Val Ser Leu Leu Gln Ala Asn Arg 145 150 155 160

Asn Glu Gly Asp Asp Val Asp Lys Asp Leu Ala Gly Gln Asp Ala Lys 165 170 175

Asp Leu Tyr Asp Ala Gly Glu Gly Arg Trp Gly Thr Asp Glu Leu Ala 180 185 190

213

Phe Asn Glu Val Leu Ala Lys Arg Ser Tyr Lys Gln Leu Arg Ala Thr 200

Phe Gln Ala Tyr Gln Ile Leu Ile Gly Lys Asp Ile Glu Glu Ala Ile 215

Glu Glu Glu Thr Ser Gly Asp Leu Gln Lys Ala Tyr Leu Thr Leu Val 235 230

Arg Cys Ala Gln Asp Cys Glu Asp Tyr Phe Ala Glu Arg Leu Tyr Lys 245

Ser Met Lys Gly Ala Gly Thr Asp Glu Glu Thr Leu Ile Arg Ile Val 260 265

Val Thr Arg Ala Glu Val Asp Leu Gln Gly Ile Lys Ala Lys Phe Gln 280 285

Glu Lys Tyr Gln Lys Ser Leu Ser Asp Met Val Arg Ser Asp Thr Ser 290 295 300

Gly Asp Phe Arg Lys Leu Leu Val Ala Leu Leu His

<210> 58 <211> 321 <212> PRT <213> Homo sapiens

<400> 58

Met Ala Met Ala Thr Lys Gly Gly Thr Val Lys Ala Ala Ser Gly Phe

Asn Ala Met Glu Asp Ala Gln Thr Leu Arg Lys Ala Met Lys Gly Leu 25

Gly Thr Asp Glu Asp Ala Ile Ile Ser Val Leu Ala Tyr Arg Asn Thr

Ala Gln Arg Gln Glu Ile Arg Thr Ala Tyr Lys Ser Thr Ile Gly Arg

Asp Leu Ile Asp Asp Leu Lys Ser Glu Leu Ser Gly Asn Phe Glu Gln 70

Val Ile Val Gly Met Met Thr Pro Thr Val Leu Tyr Asp Val Gln Glu 85 90

Leu Arg Arg Ala Met Lys Gly Ala Gly Thr Asp Glu Gly Cys Leu Ile 100 105 110

Glu Ile Leu Ala Ser Arg Thr Pro Glu Glu Ile Arg Arg Ile Ser Gln 115 120 125

Thr Tyr Gln Gln Gln Tyr Gly Arg Ser Leu Glu Asp Asp Ile Arg Ser 130 135 140

Asp Thr Ser Phe Met Phe Gln Arg Val Leu Val Ser Leu Ser Ala Gly 145 150 155 160

Gly Arg Asp Glu Gly Asn Tyr Leu Asp Asp Ala Leu Val Arg Gln Asp 165 170 175

Ala Gln Asp Leu Tyr Glu Ala Gly Glu Lys Lys Trp Gly Thr Asp Glu 180 185 190

Val Lys Phe Leu Thr Val Leu Cys Ser Arg Asn Arg Asn His Leu Leu 195 200 205

His Val Phe Asp Glu Tyr Lys Arg Ile Ser Gln Lys Asp Ile Glu Gln 210 215 220

Ser Ile Lys Ser Glu Thr Ser Gly Ser Phe Glu Asp Ala Leu Leu Ala 225 230 235 240

Ile Val Lys Cys Met Arg Asn Lys Ser Ala Tyr Phe Ala Glu Lys Leu 245 250 255

Tyr Lys Ser Met Lys Gly Leu Gly Thr Asp Asp Asn Thr Leu Ile Arg 260 265 270

Val Met Val Ser Arg Ala Glu Ile Asp Met Leu Asp Ile Arg Ala His 275 280 285

Phe Lys Arg Leu Tyr Gly Lys Ser Leu Tyr Ser Phe Ile Lys Gly Asp 290 295 300

Thr Ser Gly Asp Tyr Arg Lys Val Leu Leu Val Leu Cys Gly Gly Asp 305 310 315 320

Asp

<210> 59

<211> 704

<212> PRT

<213> Homo sapiens

<400> 59

Met Glu Ser Lys Pro Ser Arg Ile Pro Arg Arg Ile Ser Val Gln Pro 1 5 10 15

Ser Ser Ser Leu Ser Ala Arg Met Met Ser Gly Ser Arg Gly Ser Ser 20 25 30

Leu Asn Asp Thr Tyr His Ser Arg Asp Ser Ser Phe Arg Leu Asp Ser 35 40 45

Glu Tyr Gln Ser Thr Ser Ala Ser Ala Ser Ala Ser Pro Phe Gln Ser 50 55 60

Ala Trp Tyr Ser Glu Ser Glu Ile Thr Gln Gly Ala Arg Ser Arg Ser 65 70 75 80

Gln Asn Gln Gln Arg Asp His Asp Ser Lys Arg Pro Lys Leu Ser Cys 85 90 95

Thr Asn Cys Thr Thr Ser Ala Gly Arg Asn Val Gly Asn Gly Leu Asn 100 105 110

Thr Leu Ser Asp Ser Ser Trp Arg His Ser Gln Val Pro Arg Ser Ser 115 120 125

Ser Met Val Leu Gly Ser Phe Gly Thr Asp Leu Met Arg Glu Arg Arg 130 135 140

Asp Leu Glu Arg Arg Thr Asp Ser Ser Ile Ser Asn Leu Met Asp Tyr 145 150 155 160

Ser His Arg Ser Gly Asp Phe Thr Thr Ser Ser Tyr Val Gln Asp Arg 165 170 175

Val Pro Ser Tyr Ser Gln Gly Ala Arg Pro Lys Glu Asn Ser Met Ser 180 185 190

Thr Leu Gln Leu Asn Thr Ser Ser Thr Asn His Gln Leu Pro Ser Glu 195 200 205

His Gln Thr Ile Leu Ser Ser Arg Asp Ser Arg Asn Ser Leu Arg Ser 210 215 220

Asn Phe Ser Ser Arg Glu Ser Glu Ser Ser Arg Ser Asn Thr Gln Pro Gly Phe Ser Tyr Ser Ser Ser Arg Asp Glu Ala Pro Ile Ile Ser Asn Ser Glu Arg Val Val Ser Ser Gln Arg Pro Phe Gln Glu Ser Ser Asp Asn Glu Gly Arg Arg Thr Thr Arg Arg Leu Leu Ser Arg Ile Ala Ser Ser Met Ser Ser Thr Phe Phe Ser Arg Arg Ser Ser Gln Asp Ser Leu Asn Thr Arg Ser Leu Asn Ser Glu Asn Ser Tyr Val Ser Pro Arg Ile Leu Thr Ala Ser Gln Ser Arg Ser Asn Val Pro Ser Ala Ser Glu Val Pro Asp Asn Arg Ala Ser Glu Ala Ser Gln Gly Phe Arg Phe Leu Arg Arg Arg Trp Gly Leu Ser Ser Leu Ser His Asn His Ser Ser Glu Ser Asp Ser Glu Asn Phe Asn Gln Glu Ser Glu Gly Arg Asn Thr Gly Pro Trp Leu Ser Ser Ser Leu Arg Asn Arg Cys Thr Pro Leu Phe Ser Arg Arg Arg Arg Glu Gly Arg Asp Glu Ser Ser Arg Ile Pro Thr Ser Asp Thr Ser Ser Arg Ser His Ile Phe Arg Arg Glu Ser Asn Glu Val Val His Leu Glu Ala Gln Asn Asp Pro Leu Gly Ala Ala Asn Arg Pro Gln Ala Ser Ala Ala Ser Ser Ser Ala Thr Thr Gly Gly Ser Thr Ser Asp Ser Ala Gln Gly Gly Arg Asn Thr Gly Ile Ser Gly Ile Leu Pro

Gly	Ser	Leu	Phe	Arg 485	Phe	Ala	Val	Pro	Pro 490	Ala	Leu	Gly	Ser	Asn 495	Leu
									_	_		_		_	•

- Thr Asp Asn Val Met Ile Thr Val Asp Ile Ile Pro Ser Gly Trp Asn 500 505 510
- Ser Ala Asp Gly Lys Ser Asp Lys Thr Lys Ser Ala Pro Ser Arg Asp 515 520 525
- Pro Glu Arg Leu Gln Lys Ile Lys Glu Ser Leu Leu Glu Asp Ser 530 540
- Glu Glu Glu Glu Gly Asp Leu Cys Arg Ile Cys Gln Met Ala Ala Ala 545 550 555 560
- Ser Ser Ser Asn Leu Leu Ile Glu Pro Cys Lys Cys Thr Gly Ser Leu 565 570 575
- Gln Tyr Val His Gln Asp Cys Met Lys Lys Trp Leu Gln Ala Lys Ile 580 585 590
- Asn Ser Gly Ser Ser Leu Glu Ala Val Thr Thr Cys Glu Leu Cys Lys 595 600 605
- Glu Lys Leu Glu Leu Asn Leu Glu Asp Phe Asp Ile His Glu Leu His 610 620
- Arg Ala His Ala Asn Glu Gln Ala Glu Tyr Glu Phe Ile Ser Ser Gly 625 630 635 640
- Leu Tyr Leu Val Val Leu Leu His Leu Cys Glu Gln Ser Phe Ser Asp 645 650 655
- Met Met Gly Asn Thr Asn Glu Pro Ser Thr Arg Val Arg Phe Ile Asn 660 665 670
- Leu Ala Arg Thr Leu Gln Ala His Met Glu Asp Leu Glu Thr Ser Glu 675 680 685
- Asp Asp Ser Glu Glu Asp Gly Asp His Asn Arg Thr Phe Asp Ile Ala 690 695 700

<210> 60

<211> 490

<212> PRT

<213> Homo sapiens

<400> 60

Met Ile Lys Gln Leu Lys Glu Glu Leu Arg Leu Glu Glu Ala Lys Leu 1 5 10 15

Val Leu Leu Lys Lys Leu Arg Gln Ser Gln Ile Gln Lys Glu Ala Thr 20 25 30

Ala Gln Lys Pro Thr Gly Ser Val Gly Ser Thr Val Thr Thr Pro Pro 35 40 45

Pro Leu Val Arg Gly Thr Gln Asn Ile Pro Ala Gly Lys Pro Ser Leu 50 55 60

Gln Thr Ser Ser Ala Arg Met Pro Gly Ser Val Ile Pro Pro Pro Leu 70 75 80

Val Arg Gly Gln Gln Ala Ser Ser Lys Leu Gly Pro Gln Ala Ser 85 90 95

Ser Gln Val Val Met Pro Pro Leu Val Arg Gly Ala Gln Gln Ile His 100 105 110

Ser Ile Arg Gln His Ser Ser Thr Gly Pro Pro Pro Leu Leu Leu Ala 115 120 125

Pro Arg Ala Ser Val Pro Ser Val Gln Ile Gln Gly Gln Arg Ile Ile 130 135 140

Gln Gln Gly Leu Ile Arg Val Ala Asn Val Pro Asn Thr Ser Leu Leu 145 150 155 160

Val Asn Ile Pro Gln Pro Thr Pro Ala Ser Leu Lys Gly Thr Thr Ala 165 170 175

Thr Ser Ala Gln Ala Asn Ser Thr Pro Thr Ser Val Ala Ser Val Val 180 185 190

Thr Ser Ala Glu Ser Pro Ala Ser Arg Gln Ala Ala Ala Lys Leu Ala 195 200 205

Leu Arg Lys Gln Leu Glu Lys Thr Leu Leu Glu Ile Pro Pro Pro Lys 210 215 220

Pro Pro Ala Pro Glu Met Asn Phe Leu Pro Ser Ala Ala Asn Asn Glu 225 235 240

Phe Ile Tyr Leu Val Gly Leu Glu Glu Val Val Gln Asn Leu Leu Glu 245 250 255

Thr Gln Gly Arg Met Ser Ala Ala Thr Val Leu Ser Arg Glu Pro Tyr 260 265 270

Met Cys Ala Gln Cys Lys Thr Asp Phe Thr Cys Arg Trp Arg Glu Glu 275 280 285

Lys Ser Gly Ala Ile Met Cys Glu Asn Cys Met Thr Thr Asn Gln Lys 290 295 300

Lys Ala Leu Lys Val Glu His Thr Ser Arg Leu Lys Ala Ala Phe Val 305 310 315 320

Lys Ala Leu Gln Gln Glu Gln Glu Ile Glu Gln Arg Leu Leu Gln Gln 325 330 335

Gly Thr Ala Pro Ala Gln Ala Lys Ala Glu Pro Thr Ala Ala Pro His 340 345 350

Pro Val Leu Lys Gln Val Ile Lys Pro Arg Arg Lys Leu Ala Phe Arg 355 360 365

Ser Gly Glu Ala Arg Asp Trp Ser Asn Gly Ala Val Leu Gln Ala Ser 370 375 380

Ser Gln Leu Ser Arg Gly Ser Ala Thr Thr Pro Arg Gly Val Leu His 385 390 395 400

Thr Phe Ser Pro Ser Pro Lys Leu Gln Asn Ser Ala Ser Ala Thr Ala 405 410 415

Leu Val Ser Arg Thr Gly Arg His Ser Glu Arg Thr Val Ser Ala Gly
420 425 430

Lys Gly Ser Ala Thr Ser Asn Trp Lys Lys Thr Pro Leu Ser Thr Gly 435 440 445

Gly Thr Leu Ala Phe Val Ser Pro Ser Leu Ala Val His Lys Ser Ser 450 455 460

Ser Ala Val Asp Arg Gln Arg Glu Tyr Leu Leu Asp Met Ile Pro Pro 465 470 475 480

Arg Ser Ile Pro Gln Ser Ala Thr Trp Lys

485 490

<210> 61

<211> 495

<212> PRT

<213> Homo sapiens

<400> 61

Met Ser Ser Glu Ile Pro Gln Gly Leu Gln Thr Thr Asn Pro Gln Gly 1 5 10 15

His Ile Leu Val Phe Pro Asp Gln Thr Glu Ala Val Val Leu Gly Leu 20 25 30

Pro Ser Ala Trp Ala Val Gly Ala Cys Ala Arg Ala Cys Pro Ala Ala 35 40 45

Cys Ala Cys Ser Thr Val Glu Arg Gly Cys Ser Val Arg Cys Asp Arg 50 55 60

Ala Gly Leu Leu Arg Val Pro Ala Glu Leu Pro Cys Glu Ala Val Ser 65 70 75 80

Ile Asp Leu Asp Arg Asn Gly Leu Arg Phe Leu Gly Glu Arg Ala Phe 85 90 95

Gly Thr Leu Pro Ser Leu Arg Arg Leu Ser Leu Arg His Asn Asn Leu 100 105 110

Ser Phe Ile Thr Pro Gly Ala Phe Lys Gly Leu Pro Arg Leu Ala Glu 115 120 125

Leu Arg Leu Ala His Asn Gly Asp Leu Arg Tyr Leu His Ala Arg Thr 130 140

Phe Ala Ala Leu Ser Arg Leu Arg Leu Asp Leu Ala Ala Cys Arg 145 150 155 160

Leu Phe Ser Val Pro Glu Arg Leu Leu Ala Glu Leu Pro Ala Leu Arg 165 170 175

Glu Leu Ala Ala Phe Asp Asn Leu Phe Arg Arg Val Pro Gly Ala Leu 180 185 190

Arg Gly Leu Ala Asn Leu Thr His Ala His Leu Glu Arg Gly Arg Ile 195 200 205

Glu Ala Val Ala Ser Ser Ser Leu Gln Gly Leu Arg Arg Leu Arg Ser Leu Ser Leu Gln Ala Asn Arg Val Arg Ala Val His Ala Gly Ala Phe Gly Asp Cys Gly Val Leu Glu His Leu Leu Leu Asn Asp Asn Leu Leu Ala Glu Leu Pro Ala Asp Ala Phe Arg Gly Leu Arg Arg Leu Arg Thr Leu Asn Leu Gly Gly Asn Ala Leu Asp Arg Val Ala Arg Ala Trp Phe Ala Asp Leu Ala Glu Leu Glu Leu Leu Tyr Leu Asp Arg Asn Ser Ile Ala Phe Val Glu Glu Gly Ala Phe Gln Asn Leu Ser Gly Leu Leu Ala Leu His Leu Asn Gly Asn Arg Leu Thr Val Leu Ala Trp Val Ala Phe Gln Pro Gly Phe Phe Leu Gly Arg Leu Phe Leu Phe Arg Asn Pro Trp Cys Cys Asp Cys Arg Leu Glu Trp Leu Arg Asp Trp Met Glu Gly Ser Gly Arg Val Thr Asp Val Pro Cys Ala Ser Pro Gly Ser Val Ala Gly Leu Asp Leu Ser Gln Val Thr Phe Gly Arg Ser Ser Asp Gly Leu Cys Val Asp Pro Glu Glu Leu Asn Leu Thr Thr Ser Ser Pro Gly Pro Ser Pro Glu Pro Ala Ala Thr Thr Val Ser Arg Phe Ser Ser Leu Leu Ser Lys Leu Leu Ala Pro Arg Val Pro Val Glu Glu Ala Ala Asn Thr Thr

Gly Gly Leu Ala Asn Ala Ser Leu Ser Asp Ser Leu Ser Ser Arg Gly

Val Gly Gly Ala Gly Arg Gln Pro Trp Phe Leu Leu Ala Ser Cys Leu 465 470 475 480

Leu Pro Ser Val Ala Gln His Val Val Phe Gly Leu Gln Met Asp 485 490 495

<210> 62

<211> 370

<212> PRT

<213> Homo sapiens

<400> 62

Met Lys Val Thr Gly Ile Thr Ile Leu Phe Trp Pro Leu Ser Met Ile 1 5 10 15

Leu Leu Ser Asp Lys Ile Gln Ser Ser Lys Arg Glu Val Gln Cys Asn 20 25 30

Phe Thr Glu Lys Asn Tyr Thr Leu Ile Pro Ala Asp Ile Lys Lys Asp 35 40 45

Val Thr Ile Leu Asp Leu Ser Tyr Asn Gln Ile Thr Leu Asn Gly Thr 50 55 60

Asp Thr Arg Val Leu Gln Thr Tyr Phe Leu Leu Thr Glu Leu Tyr Leu 65 70 75 80

Ile Glu Asn Lys Val Thr Ile Leu His Asn Asn Gly Phe Gly Asn Leu 85 90 95

Ser Ser Leu Glu Ile Leu Asn Ile Cys Arg Asn Ser Ile Tyr Val Ile 100 105 110

Gln Gln Gly Ala Phe Leu Gly Leu Asn Lys Leu Lys Gln Leu Tyr Leu 115 120 125

Cys Gln Asn Lys Ile Glu Gln Leu Asn Ala Asp Val Phe Val Pro Leu 130 135 140

Arg Ser Leu Lys Leu Leu Asn Leu Gln Gly Asn Leu Ile Ser Tyr Leu 145 150 155 160

Asp Val Pro Pro Leu Phe His Leu Glu Leu Ile Thr Leu Tyr Gly Asn 165 170 175

Leu Trp Asn Cys Ser Cys Ser Leu Phe Asn Leu Gln Asn Trp Leu Asn

> 190 180 185

Thr Ser Asn Val Thr Leu Glu Asn Glu Asn Ile Thr Met Cys Ser Tyr 205 200

Pro Asn Ser Leu Gln Ser Tyr Asn Ile Lys Thr Val Pro His Lys Ala 215

Glu Cys His Ser Lys Phe Pro Ser Ser Val Thr Glu Asp Leu Tyr Ile 230 225

His Phe Gln Pro Ile Ser Asn Ser Ile Phe Asn Ser Ser Ser Asn Asn 250 245

Leu Thr Arg Asn Ser Glu His Glu Pro Leu Gly Lys Ser Trp Ala Phe 265

Leu Val Gly Val Val Val Thr Val Leu Thr Thr Ser Leu Leu Ile Phe 280

Ile Ala Ile Lys Cys Pro Ile Trp Tyr Asn Ile Leu Leu Ser Tyr Asn 295 300

His His Arg Leu Glu Glu His Glu Ala Glu Thr Tyr Glu Asp Gly Phe 310 315

Thr Gly Asn Pro Ser Ser Leu Ser Gln Ile Pro Glu Thr Asn Ser Glu 330 325

Glu Thr Thr Val Ile Phe Glu Gln Leu His Ser Phe Val Val Asp Asp 340

Asp Gly Phe Ile Glu Asp Lys Tyr Ile Asp Ile His Glu Leu Cys Glu 360

Glu Asn 370

<210> 63

<211> 662 <212> PRT <213> Homo sapiens

<400> 63

Met Arg Pro Gln Ile Leu Leu Leu Leu Ala Leu Leu Thr Leu Gly Leu 5 10

Ala Ala Gln His Gln Asp Lys Val Pro Cys Lys Met Val Asp Lys Lys 20 25 30

- Val Ser Cys Gln Val Leu Gly Leu Leu Gln Val Pro Ser Val Leu Pro 35 40 45
- Pro Asp Thr Glu Thr Leu Asp Leu Ser Gly Asn Gln Leu Arg Ser Ile 50 55 60
- Leu Ala Ser Pro Leu Gly Phe Tyr Thr Ala Leu Arg His Leu Asp Leu 65 70 75 80
- Ser Thr Asn Glu Ile Ser Phe Leu Gln Pro Gly Ala Phe Gln Ala Leu 85 90 95
- Thr His Leu Glu His Leu Ser Leu Ala His Asn Arg Leu Ala Met Ala 100 105 110
- Thr Ala Leu Ser Ala Gly Gly Leu Gly Pro Leu Pro Arg Val Thr Ser 115 120 125
- Leu Asp Leu Ser Gly Asn Ser Leu Tyr Ser Gly Leu Leu Glu Arg Leu 130 135 140
- Leu Gly Glu Ala Pro Ser Leu His Thr Leu Ser Leu Ala Glu Asn Ser 145 150 155
- Leu Thr Arg Leu Thr Arg His Thr Phe Arg Asp Met Pro Ala Leu Glu 165 170 175
- Gln Leu Asp Leu His Ser Asn Val Leu Met Asp Ile Glu Asp Gly Ala 180 185 190
- Phe Glu Gly Leu Pro Arg Leu Thr His Leu Asn Leu Ser Arg Asn Ser 195 200 205
- Leu Thr Cys Ile Ser Asp Phe Ser Leu Gln Gln Leu Arg Val Leu Asp 210 215 220
- Leu Ser Cys Asn Ser Ile Glu Ala Phe Gln Thr Ala Ser Gln Pro Gln 225 230 235 240
- Ala Glu Phe Gln Leu Thr Trp Leu Asp Leu Arg Glu Asn Lys Leu Leu 245 250 255
- His Phe Pro Asp Leu Ala Ala Leu Pro Arg Leu Ile Tyr Leu Asn Leu 260 265 270

Ser Asn Asn Leu Ile Arg Leu Pro Thr Gly Pro Pro Gln Asp Ser Lys Gly Ile His Ala Pro Ser Glu Gly Trp Ser Ala Leu Pro Leu Ser Ala Pro Ser Gly Asn Ala Ser Gly Arg Pro Leu Ser Gln Leu Leu Asn Leu Asp Leu Ser Tyr Asn Glu Ile Glu Leu Ile Pro Asp Ser Phe Leu Glu His Leu Thr Ser Leu Cys Phe Leu Asn Leu Ser Arg Asn Cys Leu Arg Thr Phe Glu Ala Arg Arg Leu Gly Ser Leu Pro Cys Leu Met Leu Leu Asp Leu Ser His Asn Ala Leu Glu Thr Leu Glu Leu Gly Ala Arg Ala Leu Gly Ser Leu Arg Thr Leu Leu Gln Gly Asn Ala Leu Arg Asp Leu Pro Pro Tyr Thr Phe Ala Asn Leu Ala Ser Leu Gln Arg Leu Asn Leu Gln Gly Asn Arg Val Ser Pro Cys Gly Gly Pro Asp Glu Pro Gly Pro Ser Gly Cys Val Ala Phe Ser Gly Ile Thr Ser Leu Arg Ser Leu Ser Leu Val Asp Asn Glu Ile Glu Leu Leu Arg Ala Gly Ala Phe Leu His Thr Pro Leu Thr Glu Leu Asp Leu Ser Ser Asn Pro Gly Leu Glu Val Ala Thr Gly Ala Leu Gly Gly Leu Glu Ala Ser Leu Glu Val Leu Ala Leu Gln Gly Asn Gly Leu Met Val Leu Gln Val Asp Leu Pro Cys

Phe Ile Cys Leu Lys Arg Leu Asn Leu Ala Glu Asn Arg Leu Ser His 520 525

Leu Pro Ala Trp Thr Gln Ala Val Ser Leu Glu Val Leu Asp Leu Arg 535 · 540

Asn Asn Ser Phe Ser Leu Leu Pro Gly Ser Ala Met Gly Gly Leu Glu 550

Thr Ser Leu Arg Arg Leu Tyr Leu Gln Gly Asn Pro Leu Ser Cys Cys 575 570

Gly Asn Gly Trp Leu Ala Ala Gln Leu His Gln Gly Arg Val Asp Val 590 580 585

Asp Ala Thr Gln Asp Leu Ile Cys Arg Phe Ser Ser Gln Glu Glu Val 600 595

Ser Leu Ser His Val Arg Pro Glu Asp Cys Glu Lys Gly Gly Leu Lys 615 620 610

Asn Ile Asn Leu Ile Ile Ile Leu Thr Phe Ile Leu Val Ser Ala Ile 630 625

Leu Leu Thr Thr Leu Ala Ala Cys Cys Cys Val Arg Arg Gln Lys Phe 650

Asn Gln Gln Tyr Lys Ala 660

<210> 64

<211> 626 <212> PRT <213> Homo sapiens

<400> 64

Met Pro Leu Leu Leu Leu Leu Leu Leu Pro Ser Pro Leu His Pro 5 10

His Pro Ile Cys Glu Val Ser Lys Val Ala Ser His Leu Glu Val Asn

Cys Asp Lys Arg Asn Leu Thr Ala Leu Pro Pro Asp Leu Pro Lys Asp 40

Thr Thr Ile Leu His Leu Ser Glu Asn Leu Leu Tyr Thr Phe Ser Leu 55

227

Ala Thr Leu Met Pro Tyr Thr Arg Leu Thr Gln Leu Asn Leu Asp Arg 70 75 Cys Glu Leu Thr Lys Leu Gln Val Asp Gly Thr Leu Pro Val Leu Gly 90 85 Thr Leu Asp Leu Ser His Asn Gln Leu Gln Ser Leu Pro Leu Leu Gly 105 100 Gln Thr Leu Pro Ala Leu Thr Val Leu Asp Val Ser Phe Asn Arg Leu 115 Thr Ser Leu Pro Leu Gly Ala Leu Arg Gly Leu Gly Glu Leu Gln Glu 135 Leu Tyr Leu Lys Gly Asn Glu Leu Lys Thr Leu Pro Pro Gly Leu Leu 150 Thr Pro Thr Pro Lys Leu Glu Lys Leu Ser Leu Ala Asn Asn Asn Leu 170 Thr Glu Leu Pro Ala Gly Leu Leu Asn Gly Leu Glu Asn Leu Asp Thr 180 185 Leu Leu Gln Glu Asn Ser Leu Tyr Thr Ile Pro Lys Gly Phe Phe 200 195 Gly Ser His Leu Leu Pro Phe Ala Phe Leu His Gly Asn Pro Trp Leu 215 210 Cys Asn Cys Glu Ile Leu Tyr Phe Arg Arg Trp Leu Gln Asp Asn Ala 225 235 Glu Asn Val Tyr Val Trp Lys Gln Gly Val Asp Val Lys Ala Met Thr 245 Ser Asn Val Ala Ser Val Gln Cys Asp Asn Ser Asp Lys Phe Pro Val Tyr Lys Tyr Pro Gly Lys Gly Cys Pro Thr Leu Gly Asp Glu Gly Asp 280 Thr Asp Leu Tyr Asp Tyr Tyr Pro Glu Glu Asp Thr Glu Gly Asp Lys 295

Val Arg Ala Thr Arg Thr Val Val Lys Phe Pro Thr Lys Ala His Thr

Thr Pro Trp Gly Leu Phe Tyr Ser Trp Ser Thr Ala Ser Leu Asp Ser Gln Met Pro Ser Ser Leu His Pro Thr Gln Glu Ser Thr Lys Glu Gln Thr Thr Phe Pro Pro Arg Trp Thr Pro Asn Phe Thr Leu His Met Glu Ser Ile Thr Phe Ser Lys Thr Pro Lys Ser Thr Thr Glu Pro Thr Pro Ser Pro Thr Thr Ser Glu Pro Val Pro Glu Pro Ala Pro Asn Met Thr Thr Leu Glu Pro Thr Pro Ser Pro Thr Thr Pro Glu Pro Thr Ser Glu Pro Ala Pro Ser Pro Thr Thr Pro Glu Pro Thr Pro Ile Pro Thr Ile Ala Thr Ser Pro Thr Ile Leu Val Ser Ala Thr Ser Leu Ile Thr Pro Lys Ser Thr Phe Leu Thr Thr Lys Pro Val Ser Leu Leu Glu Ser Thr Lys Lys Thr Ile Pro Glu Leu Asp Gln Pro Pro Lys Leu Arg Gly Val Leu Gln Gly His Leu Glu Ser Ser Arg Asn Asp Pro Phe Leu His Pro Asp Phe Cys Cys Leu Leu Pro Leu Gly Phe Tyr Val Leu Gly Leu Phe Trp Leu Leu Phe Ala Ser Val Val Leu Ile Leu Leu Ser Trp Val Gly His Val Lys Pro Gln Ala Leu Asp Ser Gly Gln Gly Ala Ala Leu Thr Thr Ala Thr Gln Thr Thr His Leu Glu Leu Gln Arg Gly Arg

Gln Val Thr Val Pro Arg Ala Trp Leu Leu Phe Leu Arg Gly Ser Leu 565 570 575

Pro Thr Phe Arg Ser Ser Leu Phe Leu Trp Val Arg Pro Asn Gly Arg 580 585 590

Val Gly Pro Leu Val Ala Gly Arg Arg Pro Ser Ala Leu Ser Gln Gly 595 600 605

Arg Gly Gln Asp Leu Leu Ser Thr Val Ser Ile Arg Tyr Ser Gly His 610 615 620

Ser Leu 625

<210> 65

<211> 560

<212> PRT

<213> Homo sapiens

<400> 65

Met Leu Arg Gly Thr Leu Leu Cys Ala Val Leu Gly Leu Leu Arg Ala 1 5 10 15

Gln Pro Phe Pro Cys Pro Pro Ala Cys Lys Cys Val Phe Arg Asp Ala 20 25 30

Ala Gln Cys Ser Gly Gly Asp Val Ala Arg Ile Ser Ala Leu Gly Leu 35 40 45

Pro Thr Asn Leu Thr His Ile Leu Leu Phe Gly Met Gly Arg Gly Val 50 55 60

Leu Gln Ser Gln Ser Phe Ser Gly Met Thr Val Leu Gln Arg Leu Met 65 70 75 80

Ile Ser Asp Ser His Ile Ser Ala Val Ala Pro Gly Thr Phe Ser Asp 90 95

Leu Ile Lys Leu Lys Thr Leu Arg Leu Ser Arg Asn Lys Ile Thr His 100 105 110

Leu Pro Gly Ala Leu Leu Asp Lys Met Val Leu Leu Glu Gln Leu Phe 115 120 125

Leu Asp His Asn Ala Leu Arg Gly Ile Asp Gln Asn Met Phe Gln Lys 130 135 140

Leu Val Asn Leu Gln Glu Leu Ala Leu Asn Gln Asn Gln Leu Asp Phe 1.50 Leu Pro Ala Ser Leu Phe Thr Asn Leu Glu Asn Leu Lys Leu Leu Asp Leu Ser Gly Asn Asn Leu Thr His Leu Pro Lys Gly Leu Leu Gly Ala Gln Ala Lys Leu Glu Arg Leu Leu Leu His Ser Asn Arg Leu Val Ser Leu Asp Ser Gly Leu Leu Asn Ser Leu Gly Ala Leu Thr Glu Leu Gln Phe His Arg Asn His Ile Arg Ser Ile Ala Pro Gly Ala Phe Asp Arg Leu Pro Asn Leu Ser Ser Leu Thr Leu Ser Arg Asn His Leu Ala Phe Leu Pro Ser Ala Leu Phe Leu His Ser His Asn Leu Thr Leu Leu Thr Leu Phe Glu Asn Pro Leu Ala Glu Leu Pro Gly Val Leu Phe Gly Glu Met Gly Gly Leu Gln Glu Leu Trp Leu Asn Arg Thr Gln Leu Arg Thr Leu Pro Ala Ala Ala Phe Arg Asn Leu Ser Arg Leu Arg Tyr Leu Gly Val Thr Leu Ser Pro Arg Leu Ser Ala Leu Pro Gln Gly Ala Phe Gln Gly Leu Gly Glu Leu Gln Val Leu Ala Leu His Ser Asn Gly Leu Thr Ala Leu Pro Asp Gly Leu Leu Arg Gly Leu Gly Lys Leu Arg Gln Val Ser Leu Arg Arg Asn Arg Leu Arg Ala Leu Pro Arg Ala Leu Phe Arg

Asn Leu Ser Ser Leu Glu Ser Val Gln Leu Asp His Asn Gln Leu Glu 395 Thr Leu Pro Gly Asp Val Phe Gly Ala Leu Pro Arg Leu Thr Glu Val

Leu Leu Gly His Asn Ser Trp Arg Cys Asp Cys Gly Leu Gly Pro Phe 425

Leu Gly Trp Leu Arg Gln His Leu Gly Leu Val Gly Gly Glu Glu Pro 435 440

Pro Arg Cys Ala Gly Pro Gly Ala His Ala Gly Leu Pro Leu Trp Ala 450 455 460

Leu Pro Gly Gly Asp Ala Glu Cys Pro Gly Pro Arg Gly Pro Pro Pro 480 475 470

Arg Pro Ala Ala Asp Ser Ser Ser Glu Ala Pro Val His Pro Ala Leu 490 485

Ala Pro Asn Ser Ser Glu Pro Trp Val Trp Ala Gln Pro Val Thr Thr 500 505

Gly Lys Gly Gln Asp His Ser Pro Phe Trp Gly Phe Tyr Phe Leu Leu 525 520 515

Leu Ala Val Gln Ala Met Ile Thr Val Ile Ile Val Phe Ala Met Ile 535 530

Lys Ile Gly Gln Leu Phe Arg Lys Leu Ile Arg Glu Arg Ala Leu Gly 550 545

<210> 66

<211> 345 <212> PRT <213> Homo sapiens

<400> 66

Met Lys Gly Glu Leu Leu Phe'Ser Ser Val Ile Val Leu Leu Gln 5 10

Val Val Cys Ser Cys Pro Asp Lys Cys Tyr Cys Gln Ser Ser Thr Asn 25

Phe Val Asp Cys Ser Gln Gln Gly Leu Ala Glu Ile Pro Ser His Leu 40

232

Pro Pro Gln Thr Arg Thr Leu His Leu Gln Asp Asn Gln Ile His His 50 55 60

- Leu Pro Ala Phe Ala Phe Arg Ser Val Pro Trp Leu Met Thr Leu Asn 65 70 75 80
- Leu Ser Asn Asn Ser Leu Ser Asn Leu Ala Pro Gly Ala Phe His Gly 85 90 95
- Leu Gln His Leu Gln Val Leu Asn Leu Thr Gln Asn Ser Leu Leu Ser 100 105 110
- Leu Glu Ser Arg Leu Phe His Ser Leu Pro Gln Leu Arg Glu Leu Asp 115 120 125
- Leu Ser Ser Asn Asn Ile Ser His Leu Pro Thr Ser Leu Gly Glu Thr 130 135 140
- Trp Glu Asn Leu Thr Ile Leu Ala Val Gln Gln Asn Gln Leu Gln Gln 145 150 155 160
- Leu Asp Arg Ala Leu Leu Glu Ser Met Pro Ser Val Arg Leu Leu Leu 165 170 175
- Leu Lys Asp Asn Leu Trp Lys Cys Asn Cys His Leu Leu Gly Leu Lys
 180 185 190
- Leu Trp Leu Glu Lys Phe Val Tyr Lys Gly Gly Leu Thr Asp Gly Ile 195 200 205
- Ile Cys Glu Ser Pro Asp Thr Trp Lys Gly Lys Asp Leu Leu Arg Ile 210 215 220
- Pro His Glu Leu Tyr Gln Pro Cys Pro Leu Pro Ala Pro Asp Pro Val 225 230 235 240
- Ser Ser Gln Ala Gln Trp Pro Gly Ser Ala His Gly Val Val Leu Arg 245 250 255
- Pro Pro Glu Asn His Asn Ala Gly Glu Arg Glu Leu Leu Glu Cys Glu 260 265 270
- Leu Lys Pro Lys Pro Arg Pro Ala Asn Leu Arg His Ala Ile Ala Thr 275 280 285
- Val Ile Ile Thr Gly Val Val Cys Gly Ile Val Cys Leu Met Met Leu

290 295 300

Ala Ala Ala Ile Tyr Gly Cys Thr Tyr Ala Ala Ile Thr Ala Gln Tyr 305 310 315 320

His Gly Gly Pro Leu Ala Gln Thr Asn Asp Pro Gly Lys Val Glu Glu 325 330 335

Lys Glu Arg Phe Asp Ser Ser Pro Ala 340 345

<210> 67

<211> 516

<212> PRT

<213> Homo sapiens

<400> 67

Met Gly Leu His Phe Lys Trp Pro Leu Gly Ala Pro Met Leu Ala Ala 1 5 10 15

Ile Tyr Ala Met Ser Met Val Leu Lys Met Leu Pro Ala Leu Gly Met 20 25 30

Ala Cys Pro Pro Lys Cys Arg Cys Glu Lys Leu Leu Phe Tyr Cys Asp 35 40 45

Ser Gln Gly Phe His Ser Val Pro Asn Ala Thr Asp Lys Gly Ser Leu 50 55 60

Gly Leu Ser Leu Arg His Asn His Ile Thr Glu Leu Glu Arg Asp Gln 65 70 75 80

Phe Ala Ser Phe Ser Gln Leu Thr Trp Leu His Leu Asp His Asn Gln 85 90 95

Ile Ser Thr Val Lys Glu Asp Ala Phe Gln Gly Leu Tyr Lys Leu Lys 100 105 110

Glu Leu Ile Leu Ser Ser Asn Lys Ile Phe Tyr Leu Pro Asn Thr Thr 115 120 125

Phe Thr Gln Leu Ile Asn Leu Gln Asn Leu Asp Leu Ser Phe Asn Gln 130 135 140

Leu Ser Ser Leu His Pro Glu Leu Phe Tyr Gly Leu Arg Lys Leu Gln 145 150 155 160

Thr Leu His Leu Arg Ser Asn Ser Leu Arg Thr Ile Pro Val Arg Leu 165 170 175

- Phe Trp Asp Cys Arg Ser Leu Glu Phe Leu Asp Leu Ser Thr Asn Arg 180 185 190
- Leu Arg Ser Leu Ala Arg Asn Gly Phe Ala Gly Leu Ile Lys Leu Arg 195 200 205
- Glu Leu His Leu Glu His Asn Gln Leu Thr Lys Ile Asn Phe Ala His 210 215 220
- Phe Leu Arg Leu Ser Ser Leu His Thr Leu Phe Leu Gln Trp Asn Lys 225 230 235 240
- Ile Ser Asn Leu Thr Cys Gly Met Glu Trp Thr Trp Gly Thr Leu Glu 245 250 255
- Lys Leu Asp Leu Thr Gly Asn Glu Ile Lys Ala Ile Asp Leu Thr Val 260 265 270
- Phe Glu Thr Met Pro Asn Leu Lys Ile Leu Leu Met Asp Asn Asn Lys 275 280 285
- Leu Asn Ser Leu Asp Ser Lys Ile Leu Asn Ser Leu Arg Ser Leu Thr 290 295 300
- Thr Val Gly Leu Ser Gly Asn Leu Trp Glu Cys Ser Ala Arg Ile Cys 305 310 315 320
- Ala Leu Ala Ser Trp Leu Gly Ser Phe Gln Gly Arg Trp Glu His Ser 325 330 335
- Ile Leu Cys His Ser Pro Asp His Thr Gln Gly Glu Asp Ile Leu Asp 340 345 350
- Ala Val His Gly Phe Gln Leu Cys Trp Asn Leu Ser Thr Thr Val Thr 355 360 365
- Val Met Ala Thr Thr Tyr Arg Asp Pro Thr Thr Glu Tyr Thr Lys Arg 370 375 380
- Ile Ser Ser Ser Tyr His Val Gly Asp Lys Glu Ile Pro Thr Thr 385 390 395 400
- Ala Gly Ile Ala Val Thr Thr Glu Glu His Phe Pro Glu Pro Asp Asn 405 410 415

Ala Ile Phe Thr Gln Arg Val Ile Thr Gly Thr Met Ala Leu Leu Phe 425 420

Ser Phe Phe Phe Ile Ile Phe Ile Val Phe Ile Ser Arg Lys Cys 440

Pro Pro Thr Leu Arg Arg Ile Arg Gln Cys Ser Met Val Gln Asn His 455 450

Arg Gln Leu Arg Ser Gln Thr Arg Leu His Met Ser Asn Met Ser Asp 475

Gln Gly Pro Tyr Asn Glu Tyr Glu Pro Thr His Glu Gly Pro Phe Ile

Ile Ile Asn Gly Tyr Gly Gln Cys Lys Cys Gln Gln Leu Pro Tyr Lys 505 500

Glu Cys Glu Val 515

<210> 68 <211> 661 <212> PRT <213> Homo sapiens

<400> 68

Met Ala Phe Asp Val Ser Cys Phe Phe Trp Val Val Leu Phe Ser Ala 1

Gly Cys Lys Val Ile Thr Ser Trp Asp Gln Met Cys Ile Glu Lys Glu 25

Ala Asn Lys Thr Tyr Asn Cys Glu Asn Leu Gly Leu Ser Glu Ile Pro 40

Asp Thr Leu Pro Asn Thr Thr Glu Phe Leu Glu Phe Ser Phe Asn Phe

Leu Pro Thr Ile His Asn Arg Thr Phe Ser Arg Leu Met Asn Leu Thr 75

Phe Leu Asp Leu Thr Arg Cys Gln Ile Asn Trp Ile His Glu Asp Thr 85

Phe Gln Ser His His Gln Leu Ser Thr Leu Val Leu Thr Gly Asn Pro

100 105 110

Leu Ile Phe Met Ala Glu Thr Ser Leu Asn Gly Pro Lys Ser Leu Lys 115 120 125

His Leu Phe Leu Ile Gln Thr Gly Ile Ser Asn Leu Glu Phe Ile Pro 130 135 140

Val His Asn Leu Glu Asn Leu Glu Ser Leu Tyr Leu Gly Ser Asn His 145 150 155 160

Ile Ser Ser Ile Lys Phe Pro Lys Asp Phe Pro Ala Arg Asn Leu Lys 165 170 175

Val Leu Asp Phe Gln Asn Asn Ala Ile His Tyr Ile Ser Arg Glu Asp 180 185 190

Met Arg Ser Leu Glu Gln Ala Ile Asn Leu Ser Leu Asn Phe Asn Gly 195 200 205

Asn Asn Val Lys Gly Ile Glu Leu Gly Ala Phe Asp Ser Thr Ile Phe 210 215 220

Gln Ser Leu Asn Phe Gly Gly Thr Pro Asn Leu Ser Val Ile Phe Asn 225 230 235 240

Gly Leu Gln Asn Ser Thr Thr Gln Ser Leu Trp Leu Gly Thr Phe Glu 245 250 255

Asp Ile Asp Asp Glu Asp Ile Ser Ser Ala Met Leu Lys Gly Leu Cys 260 265 270

Glu Met Ser Val Glu Ser Leu Asn Leu Gln Glu His Arg Phe Ser Asp 275 280 285

Ile Ser Ser Thr Thr Phe Gln Cys Phe Thr Gln Leu Gln Glu Leu Asp 290 295 300

Leu Thr Ala Thr His Leu Lys Gly Leu Pro Ser Gly Met Lys Gly Leu 305 310 315 320

Asn Leu Leu Lys Lys Leu Val Leu Ser Val Asn His Phe Asp Gln Leu 325 330 335

Cys Gln Ile Ser Ala Ala Asn Phe Pro Ser Leu Thr His Leu Tyr Ile 340 345 350

Arg Gly Asn Val Lys Lys Leu His Leu Gly Val Gly Cys Leu Glu Lys 355 360 365

- Leu Gly Asn Leu Gln Thr Leu Asp Leu Ser His Asn Asp Ile Glu Ala 370 380
- Ser Asp Cys Cys Ser Leu Gln Leu Lys Asn Leu Ser His Leu Gln Thr 385 390 395 400
- Leu Asn Leu Ser His Asn Glu Pro Leu Gly Leu Gln Ser Gln Ala Phe 405 410 415
- Lys Glu Cys Pro Gln Leu Glu Leu Leu Asp Leu Ala Phe Thr Arg Leu 420 425 430
- His Ile Asn Ala Pro Gln Ser Pro Phe Gln Asn Leu His Phe Leu Gln 435 440 445
- Val Leu Asn Leu Thr Tyr Cys Phe Leu Asp Thr Ser Asn Gln His Leu 450 455 460
- Leu Ala Gly Leu Pro Val Leu Arg His Leu Asn Leu Lys Gly Asn His 465 470 475 480
- Phe Gln Asp Gly Thr Ile Thr Lys Thr Asn Leu Leu Gln Thr Val Gly 485 490 495
- Ser Leu Glu Val Leu Ile Leu Ser Ser Cys Gly Leu Leu Ser Ile Asp 500 505 510
- Gln Gln Ala Phe His Ser Leu Gly Lys Met Ser His Val Asp Leu Ser 515 520 525
- His Asn Ser Leu Thr Cys Asp Ser Ile Asp Ser Leu Ser His Leu Lys 530 535
- Gly Ile Tyr Leu Asn Leu Ala Ala Asn Ser Ile Asn Ile Ile Ser Pro 545 550 555 560
- Arg Leu Leu Pro Ile Leu Ser Gln Gln Ser Thr Ile Asn Leu Ser His 565 570 575
- Asn Pro Leu Asp Cys Thr Cys Ser Asn Ile His Phe Leu Thr Trp Tyr 580 585 590
- Lys Glu Asn Leu His Lys Leu Glu Gly Ser Glu Glu Thr Thr Cys Ala

595 600 605

Asn Pro Pro Ser Leu Arg Gly Val Lys Leu Ser Asp Val Lys Leu Ser 610 615 620

Cys Gly Ile Thr Ala Ile Gly Ile Phe Phe Leu Ile Val Phe Leu Leu 625 630 635 640

Leu Leu Ala Ile Leu Leu Phe Phe Ala Val Lys Tyr Leu Leu Arg Trp 645 650 655

Lys Tyr Gln His Ile 660

<210> 69

<211> 614

<212> PRT

<213> Homo sapiens

<400> 69

Met Leu Ala Gly Gly Val Arg Ser Met Pro Ser Pro Leu Leu Ala Cys 1 10 15

Trp Gln Pro Ile Leu Leu Leu Val Leu Gly Ser Val Leu Ser Gly Ser 20 25 30

Ala Thr Gly Cys Pro Pro Arg Cys Glu Cys Ser Ala Gln Asp Arg Ala 35 40 45

Val Leu Cys His Arg Lys Arg Phe Val Ala Val Pro Glu Gly Ile Pro 50 55 60

Thr Glu Thr Arg Leu Leu Asp Leu Gly Lys Asn Arg Ile Lys Thr Leu 65 70 75 80

Asn Gln Asp Glu Phe Ala Ser Phe Pro His Leu Glu Glu Leu Glu Leu 85 90 95

Asn Glu Asn Ile Val Ser Ala Val Glu Pro Gly Ala Phe Asn Asn Leu 100 105 110

Phe Asn Leu Arg Thr Leu Gly Leu Arg Ser Asn Arg Leu Lys Leu Ile 115 120 125

Pro Leu Gly Val Phe Thr Gly Leu Ser Asn Leu Thr Lys Leu Asp Ile 130 135 140

Ser Glu Asn Lys Ile Val Ile Leu Leu Asp Tyr Met Phe Gln Asp Leu Tyr Asn Leu Lys Ser Leu Glu Val Gly Asp Asn Asp Leu Val Tyr Ile Ser His Arg Ala Phe Ser Gly Leu Asn Ser Leu Glu Gln Leu Thr Leu Glu Lys Cys Asn Leu Thr Ser Ile Pro Thr Glu Ala Leu Ser His Leu His Gly Leu Ile Val Leu Arg Leu Arg His Leu Asn Ile Asn Ala Ile Arg Asp Tyr Ser Phe Lys Arg Leu Tyr Arg Leu Lys Val Leu Glu Ile Ser His Trp Pro Tyr Leu Asp Thr Met Thr Pro Asn Cys Leu Tyr Gly Leu Asn Leu Thr Ser Leu Ser Ile Thr His Cys Asn Leu Thr Ala Val Pro Tyr Leu Ala Val Arg His Leu Val Tyr Leu Arg Phe Leu Asn Leu Ser Tyr Asn Pro Ile Ser Thr Ile Glu Gly Ser Met Leu His Glu Leu Leu Arg Leu Gln Glu Ile Gln Leu Val Gly Gly Gln Leu Ala Val Val Glu Pro Tyr Ala Phe Arg Gly Leu Asn Tyr Leu Arg Val Leu Asn Val Ser Gly Asn Gln Leu Thr Thr Leu Glu Glu Ser Val Phe His Ser Val Gly Asn Leu Glu Thr Leu Ile Leu Asp Ser Asn Pro Leu Ala Cys Asp Cys Arg Leu Leu Trp Val Phe Arg Arg Trp Arg Leu Asn Phe Asn Arg Gln Gln Pro Thr Cys Ala Thr Pro Glu Phe Val Gln Gly Lys Glu

Phe Lys Asp Phe Pro Asp Val Leu Leu Pro Asn Tyr Phe Thr Cys Arg 405 410 415

Arg Ala Arg Ile Arg Asp Arg Lys Ala Gln Gln Val Phe Val Asp Glu
420 425 430

Gly His Thr Val Gln Phe Val Cys Arg Ala Asp Gly Asp Pro Pro Pro 435 440 445

Ala Ile Leu Trp Leu Ser Pro Arg Lys His Leu Val Ser Ala Lys Ser 450 455 460

Asn Gly Arg Leu Thr Val Phe Pro Asp Gly Thr Leu Glu Val Arg Tyr 465 470 475 480

Ala Gln Val Gln Asp Asn Gly Thr Tyr Leu Cys Ile Ala Ala Asn Ala 485 490 495

Gly Gly Asn Asp Ser Met Pro Ala His Leu His Val Arg Ser Tyr Ser 500 505 510

Pro Asp Trp Pro His Gln Pro Asn Lys Thr Phe Ala Phe Ile Ser Asn 515 520 525

Gln Pro Gly Glu Gly Glu Ala Asn Ser Thr Arg Ala Thr Val Pro Phe 530 535 540

Pro Phe Asp Ile Lys Thr Leu Ile Ile Ala Thr Thr Met Gly Phe Ile 545 550 555 560

Ser Phe Leu Gly Val Val Leu Phe Cys Leu Val Leu Leu Phe Leu Trp 565 570 575

Ser Arg Gly Lys Gly Asn Thr Lys His Asn Ile Glu Ile Glu Tyr Val 580 585 590

Pro Arg Lys Ser Asp Ala Gly Ile Ser Ser Ala Asp Ala Pro Arg Lys 595 600 605

Phe Asn Met Lys Met Ile 610

<210> 70

<211> 428

<212> PRT

<213> Homo sapiens

<	л	Λ	Λ	_	7	n
<	4	u	u	>	- /	υ

Met Gln Glu Leu His Leu Leu Trp Trp Ala Leu Leu Leu Gly Leu Ala 1 5 10 15

Gln Ala Cys Pro Glu Pro Cys Asp Cys Gly Glu Lys Tyr Gly Phe Gln 20 25 30

Ile Ala Asp Cys Ala Tyr Arg Asp Leu Glu Ser Val Pro Pro Gly Phe 35 40 45

Pro Ala Asn Val Thr Thr Leu Ser Leu Ser Ala Asn Arg Leu Pro Gly 50 55 60

Leu Pro Glu Gly Ala Phe Arg Glu Val Pro Leu Leu Gln Ser Leu Trp 65 70 75 80

Leu Ala His Asn Glu Ile Arg Thr Val Ala Ala Gly Ala Leu Ala Ser 85 90 95

Leu Ser His Leu Lys Ser Leu Asp Leu Ser His Asn Leu Ile Ser Asp 100 105 110

Phe Ala Trp Ser Asp Leu His Asn Leu Ser Ala Leu Gln Leu Leu Lys 115 120 125

Met Asp Ser Asn Glu Leu Thr Phe Ile Pro Arg Asp Ala Phe Arg Ser 130 135 140

Leu Arg Ala Leu Arg Ser Leu Gln Leu Asn His Asn Arg Leu His Thr 145 150 155 160

Leu Ala Glu Gly Thr Phe Thr Pro Leu Thr Ala Leu Ser His Leu Gln 165 170 175

Ile Asn Glu Asn Pro Phe Asp Cys Thr Cys Gly Ile Val Trp Leu Lys 180 185 190

Thr Trp Ala Leu Thr Thr Ala Val Ser Ile Pro Glu Gln Asp Asn Ile 195 200 205

Ala Cys Thr Ser Pro His Val Leu Lys Gly Thr Pro Leu Ser Arg Leu 210 215 220

Pro Pro Leu Pro Cys Ser Ala Pro Ser Val Gln Leu Ser Tyr Gln Pro 225 230 235 240

Ser Gln Asp Gly Ala Glu Leu Arg Pro Gly Phe Val Leu Ala Leu His 245 250 255

Cys Asp Val Asp Gly Gln Pro Ala Pro Gln Leu His Trp His Ile Gln 260 265 270

Ile Pro Ser Gly Ile Val Glu Ile Thr Ser Pro Asn Val Gly Thr Asp 275 280 285

Gly Arg Ala Leu Pro Gly Thr Pro Val Ala Ser Ser Gln Pro Arg Phe 290 295 300

Gln Ala Phe Ala Asn Gly Ser Leu Leu Ile Pro Asp Phe Gly Lys Leu 305 310 315 320

Glu Glu Gly Thr Tyr Ser Cys Leu Ala Thr Asn Glu Leu Gly Ser Ala 325 330 335

Glu Ser Ser Val Asp Val Ala Leu Ala Thr Pro Gly Glu Gly Glu 340 345 350

Asp Thr Leu Gly Arg Arg Phe His Gly Lys Ala Val Glu Gly Lys Gly 355 360 365

Cys Tyr Thr Val Asp Asn Glu Val Gln Pro Ser Gly Pro Glu Asp Asn 370 380

Val Val Ile Ile Tyr Leu Ser Arg Ala Gly Asn Pro Glu Ala Ala Val 385 390 395 400

Ala Glu Gly Val Pro Gly Gln Leu Pro Pro Gly Leu Leu Leu Gly 405 410 415

Gln Ser Leu Leu Phe Phe Phe Leu Thr Ser Phe 420 425

<210> 71 <211> 612

<212> PRT

<213> Homo sapiens

<400> 71

Met Asp Val Ser Leu Cys Pro Ala Lys Cys Ser Phe Trp Arg Ile Phe 1 5 10 15

Leu Leu Gly Ser Val Trp Leu Asp Tyr Val Gly Ser Val Leu Ala Cys 20 25 30

Pro Ala Asn Cys Val Cys Ser Lys Thr Glu Ile Asn Cys Arg Arg Pro 35 40 45

- Asp Asp Gly Asn Leu Phe Pro Leu Leu Glu Gly Gln Asp Ser Gly Asn 50 55 60
- Ser Asn Gly Asn Ala Ser Ile Asn Ile Thr Asp Ile Ser Arg Asn Ile 65 70 75 80
- Thr Ser Ile His Ile Glu Asn Trp Arg Ser Leu His Thr Leu Asn Ala 85 90 95
- Val Asp Met Glu Leu Tyr Thr Gly Leu Gln Lys Leu Thr Ile Lys Asn 100 105 110
- Ser Gly Leu Arg Ser Ile Gln Pro Arg Ala Phe Ala Lys Asn Pro His 115 120 125
- Leu Arg Tyr Ile Asn Leu Ser Ser Asn Arg Leu Thr Thr Leu Ser Trp 130 135 140
- Gln Leu Phe Gln Thr Leu Ser Leu Arg Glu Leu Gln Leu Glu Gln Asn 145 150 155 160
- Phe Phe Asn Cys Ser Cys Asp Ile Arg Trp Met Gln Leu Trp Gln Glu 165 170 175
- Gln Gly Glu Ala Lys Leu Asn Ser Gln Asn Leu Tyr Cys Ile Asn Ala 180 185 190
- Asp Gly Ser Gln Leu Pro Leu Phe Arg Met Asn Ile Ser Gln Cys Asp 195 200 205
- Leu Pro Glu Ile Ser Val Ser His Val Asn Leu Thr Val Arg Glu Gly 210 215 220
- Asp Asn Ala Val Ile Thr Cys Asn Gly Ser Gly Ser Pro Leu Pro Asp 225 230 235 240
- Val Asp Trp Ile Val Thr Gly Leu Gln Ser Ile Asn Thr His Gln Thr 245 250 255
- Asn Leu Asn Trp Thr Asn Val His Ala Ile Asn Leu Thr Leu Val Asn 260 265 270

Val Thr Ser Glu Asp Asn Gly Phe Thr Leu Thr Cys Ile Ala Glu Asn 275 280 285

- Val Val Gly Met Ser Asn Ala Ser Val Ala Leu Thr Val Tyr Tyr Pro 290 295 300
- Pro Arg Val Val Ser Leu Glu Glu Pro Glu Leu Arg Leu Glu His Cys 305 310 315
- Ile Glu Phe Val Val Arg Gly Asn Pro Pro Pro Thr Leu His Trp Leu 325 330 335
- His Asn Gly Gln Pro Leu Arg Glu Ser Lys Ile Ile His Val Glu Tyr 340 345 350
- Tyr Gln Glu Gly Glu Ile Ser Glu Gly Cys Leu Leu Phe Asn Lys Pro 355 360 365
- Thr His Tyr Asn Asn Gly Asn Tyr Thr Leu Ile Ala Lys Asn Pro Leu 370 375 380
- Gly Thr Ala Asn Gln Thr Ile Asn Gly His Phe Leu Lys Glu Pro Phe 385 390 395 400
- Pro Glu Ser Thr Asp Asn Phe Ile Leu Phe Asp Glu Val Ser Pro Thr 405 410 415
- Pro Pro Ile Thr Val Thr His Lys Pro Glu Glu Asp Thr Phe Gly Val 420 425 430
- Ser Ile Ala Val Gly Leu Ala Ala Phe Ala Cys Val Leu Leu Val Val 435 440 445
- Leu Phe Val Met Ile Asn Lys Tyr Gly Arg Arg Ser Lys Phe Gly Met 450 455 460
- Lys Gly Pro Val Ala Val Ile Ser Gly Glu Glu Asp Ser Ala Ser Pro 465 470 475 480
- Leu His His Ile Asn His Gly Ile Thr Thr Pro Ser Ser Leu Asp Ala 485 490 495
- Gly Pro Asp Thr Val Val Ile Gly Met Thr Arg Ile Pro Val Ile Glu 500 505 510
- Asn Pro Gln Tyr Phe Arg Gln Gly His Asn Cys His Lys Pro Asp Thr 515 520 525

Trp Val Phe Ser Asn Ile Asp Asn His Gly Ile Leu Asn Leu Lys Asp 535 530

Asn Arg Asp His Leu Val Pro Ser Thr His Tyr Ile Tyr Glu Glu Pro 555

Glu Val Gln Ser Gly Glu Val Ser Tyr Pro Arg Ser His Gly Phe Arg 570 565

Glu Ile Met Leu Asn Pro Ile Ser Leu Pro Gly His Ser Lys Pro Leu

Asn His Gly Ile Tyr Val Glu Asp Val Asn Val Tyr Phe Ser Lys Gly

Arg His Gly Phe 610

<210> 72 <211> 493 <212> PRT <213> Homo sapiens

<400> 72

Met His Pro His Arg Asp Pro Arg Gly Leu Trp Leu Leu Pro Ser

Leu Ser Leu Leu Leu Phe Glu Val Ala Arg Ala Gly Arg Ala Val Val 25

Ser Cys Pro Ala Ala Cys Leu Cys Ala Ser Asn Ile Leu Ser Cys Ser 40

Lys Gln Gln Leu Pro Asn Val Pro His Ser Leu Pro Ser Tyr Thr Ala 50

Leu Leu Asp Leu Ser His Asn Asn Leu Ser Arg Leu Arg Ala Glu Trp 75 70

Thr Pro Thr Arg Leu Thr Gln Leu His Ser Leu Leu Leu Ser His Asn 90 85

His Leu Asn Phe Ile Ser Ser Glu Ala Phe Ser Pro Val Pro Asn Leu

Arg Tyr Leu Asp Leu Ser Ser Asn Gln Leu Arg Thr Leu Asp Glu Phe

115 120 125

Leu Phe Ser Asp Leu Gln Val Leu Glu Val Leu Leu Leu Tyr Asn Asn 130 135 140

His Ile Met Ala Val Asp Arg Cys Ala Phe Asp Asp Met Ala Gln Leu 145 150 155 160

Gln Lys Leu Tyr Leu Ser Gln Asn Gln Ile Ser Arg Phe Pro Leu Glu 165 170 175

Leu Val Lys Glu Gly Ala Lys Leu Pro Lys Leu Thr Leu Leu Asp Leu 180 185 190

Ser Ser Asn Lys Leu Lys Asn Leu Pro Leu Pro Asp Leu Gln Lys Leu 195 200 205

Pro Ala Trp Ile Lys Asn Gly Leu Tyr Leu His Asn Asn Pro Leu Asn 210 215 220

Cys Asp Cys Glu Leu Tyr Gln Leu Phe Ser His Trp Gln Tyr Arg Gln 225 230 235 240

Leu Ser Ser Val Met Asp Phe Gln Glu Asp Leu Tyr Cys Met Asn Ser 245 250 255

Lys Lys Leu His Asn Val Phe Asn Leu Ser Phe Leu Asn Cys Gly Glu 260 265 270

Tyr Lys Glu Arg Ala Trp Glu Ala His Leu Gly Asp Thr Leu Ile Ile 275 280 285

Lys Cys Asp Thr Lys Gln Gln Gly Met Thr Lys Val Trp Val Thr Pro 290 295 , 300

Ser Asn Glu Arg Val Leu Asp Glu Val Thr Asn Gly Thr Val Ser Val 305 310 315 320

Ser Lys Asp Gly Ser Leu Leu Phe Gln Gln Val Gln Val Glu Asp Gly 325 330 335

Gly Val Tyr Thr Cys Tyr Ala Met Gly Glu Thr Phe Asn Glu Thr Leu 340 345 350

Ser Val Glu Leu Lys Val His Asn Phe Thr Leu His Gly His His Asp 355 360 365

Thr Leu Asn Thr Ala Tyr Thr Thr Leu Val Gly Cys Ile Leu Ser Val 370 375 380

Val Leu Val Leu Ile Tyr Leu Tyr Leu Thr Pro Cys Arg Cys Trp Cys 385 390 395 400

Arg Gly Val Glu Lys Pro Ser Ser His Gln Gly Asp Ser Leu Ser Ser 405 410 415

Ser Met Leu Ser Thr Thr Pro Asn His Asp Pro Met Ala Gly Gly Asp 420 425 430

Lys Asp Asp Gly Phe Asp Arg Val Ala Phe Leu Glu Pro Ala Gly 435 440 445

Pro Gly Gln Gly Gln Asn Gly Lys Leu Lys Pro Gly Asn Thr Leu Pro 450 455 460

Val Pro Glu Ala Thr Gly Lys Gly Gln Arg Arg Met Ser Asp Pro Glu 465 470 475 480

Ser Val Ser Ser Val Phe Ser Asp Thr Pro Ile Val Val 485 490

<210> 73

<211> 616

<212> PRT

<213> Homo sapiens

<400> 73

Met Asn His Asn Arg Leu Gly Ser Leu Pro Arg Asp Ala Leu Gly Ala 1 5 10 15

Leu Pro Asp Leu Arg Ser Leu Arg Ile Asn Asn Asn Arg Leu Arg Thr 20 25 30

Leu Ala Pro Gly Thr Phe Asp Ala Leu Ser Ala Leu Ser His Leu Gln 35 40 45

Leu Tyr His Asn Pro Phe His Cys Gly Cys Gly Leu Val Trp Leu Gln 50 60

Ala Trp Ala Ala Ser Thr Arg Val Ser Leu Pro Glu Pro Asp Ser Ile 65 70 75 80

Ala Cys Ala Ser Pro Pro Ala Leu Gln Gly Val Pro Val Tyr Arg Leu 85 90 95

Pro Ala Leu Pro Cys Ala Pro Pro Ser Val His Leu Ser Ala Glu Pro 100 105 110

- Pro Leu Glu Ala Pro Gly Thr Pro Leu Arg Ala Gly Leu Ala Phe Val 115 120 125
- Leu His Cys Ile Ala Asp Gly His Pro Thr Pro Arg Leu Gln Trp Gln 130 135 140
- Leu Gln Ile Pro Gly Gly Thr Val Val Leu Glu Pro Pro Val Leu Ser 145 150 155 160
- Gly Glu Asp Asp Gly Val Gly Ala Glu Glu Gly Glu Gly Glu Gly Asp 165 170 175
- Gly Asp Leu Leu Thr Gln Thr Gln Ala Gln Thr Pro Thr Pro Ala Pro 180 185 190
- Ala Trp Pro Ala Pro Pro Ala Thr Pro Arg Phe Leu Ala Leu Ala Asn 195 200 205
- Gly Ser Leu Leu Val Pro Leu Leu Ser Ala Lys Glu Ala Gly Val Tyr 210 215 220
- Thr Cys Arg Ala His Asn Glu Leu Gly Ala Asn Ser Thr Ser Ile Arg 225 230 235 240
- Val Ala Val Ala Ala Thr Gly Pro Pro Lys His Ala Pro Gly Ala Gly 245 250 255
- Gly Glu Pro Asp Gly Gln Ala Pro Thr Ser Glu Arg Lys Ser Thr Ala 260 265 270
- Lys Gly Arg Gly Asn Ser Val Leu Pro Ser Lys Pro Glu Gly Lys Ile 275 280 285
- Lys Gly Gln Gly Leu Ala Lys Val Ser Ile Leu Gly Glu Thr Glu Thr 290 295 300
- Glu Pro Glu Glu Asp Thr Ser Glu Gly Glu Glu Ala Glu Asp Gln Ile 305 310 315 320
- Leu Ala Asp Pro Ala Glu Glu Gln Arg Cys Gly Asn Gly Asp Pro Ser 325 330 335

Arg Tyr Val Ser Asn His Ala Phe Asn Gln Ser Ala Glu Leu Lys Pro 340 345 350

- His Val Phe Glu Leu Gly Val Ile Ala Leu Asp Val Ala Glu Arg Glu 355 360 365
- Ala Arg Val Gln Leu Thr Pro Leu Ala Ala Arg Trp Gly Pro Gly Pro 370 375 . 380
- Gly Gly Ala Gly Gly Ala Pro Arg Pro Gly Arg Arg Pro Leu Arg Leu 385 390 395 400
- Leu Tyr Leu Cys Pro Ala Gly Gly Gly Ala Ala Val Gln Trp Ser Arg 405 410 415
- Val Glu Glu Gly Val Asn Ala Tyr Trp Phe Arg Gly Leu Arg Pro Gly 420 425 430
- Thr Asn Tyr Ser Val Cys Leu Ala Leu Ala Gly Glu Ala Cys His Val 435 440 445
- Gln Val Val Phe Ser Thr Lys Lys Glu Leu Pro Ser Leu Leu Val Ile 450 455 460
- Val Ala Val Ser Val Phe Leu Leu Val Leu Ala Thr Val Pro Leu Leu 465 470 475 480
- Gly Ala Ala Cys Cys His Leu Leu Ala Lys His Pro Gly Lys Pro Tyr 485 490 495
- Arg Leu Ile Leu Arg Pro Gln Ala Pro Asp Pro Met Glu Lys Arg Ile 500 505 510
- Ala Ala Asp Phe Asp Pro Arg Ala Ser Tyr Leu Glu Ser Glu Lys Ser 515 520 525
- Tyr Pro Ala Gly Gly Glu Ala Gly Gly Glu Glu Pro Glu Asp Val Gln 530 · 540
- Gly Glu Gly Leu Asp Glu Asp Ala Glu Gln Gly Asp Pro Ser Gly Asp 545 550 555 560
- Leu Gln Arg Glu Glu Ser Leu Ala Ala Cys Ser Leu Val Glu Ser Gln 565 570 575
- Ser Lys Ala Asn Gln Glu Glu Phe Glu Ala Gly Ser Glu Tyr Ser Asp 580 585 590

Arg Leu Pro Leu Gly Ala Glu Ala Val Asn Ile Ala Gln Glu Ile Asn 595 600 605

Gly Asn Tyr Arg Gln Thr Ala Gly 610 615

<210> 74

<211> 504

<212> PRT

<213> Homo sapiens

<400> 74

Met Thr Trp Leu Val Leu Leu Gly Thr Leu Leu Cys Met Leu Arg Val 1 5 10 15

Gly Leu Gly Thr Pro Asp Ser Glu Gly Phe Pro Pro Arg Ala Leu His 20 25 30

Asn Cys Pro Tyr Lys Cys Ile Cys Ala Ala Asp Leu Leu Ser Cys Thr 35 40 45

Gly Leu Gly Leu Gln Asp Val Pro Ala Glu Leu Pro Ala Ala Thr Ala 50 55 60

Asp Leu Asp Leu Ser His Asn Ala Leu Gln Arg Leu Arg Pro Gly Trp 65 70 75 80

Leu Ala Pro Leu Phe Gln Leu Arg Ala Leu His Leu Asp His Asn Glu 85 90 95

Leu Asp Ala Leu Gly Arg Gly Val Phe Val Asn Ala Ser Gly Leu Arg 100 105 110

Leu Leu Asp Leu Ser Ser Asn Thr Leu Arg Ala Leu Gly Arg His Asp 115 120 125

Leu Asp Gly Leu Gly Ala Leu Glu Lys Leu Leu Leu Phe Asn Asn Arg 130 135 140

Leu Val His Leu Asp Glu His Ala Phe His Gly Leu Arg Ala Leu Ser 145 150 155 160

His Leu Tyr Leu Gly Cys Asn Glu Leu Ala Ser Phe Ser Phe Asp His
165 170 175

Leu His Gly Leu Ser Ala Thr His Leu Leu Thr Leu Asp Leu Ser Ser

180 185 190

Asn Arg Leu Gly His Ile Ser Val Pro Glu Leu Ala Ala Leu Pro Ala 195 200 205

Phe Leu Lys Asn Gly Leu Tyr Leu His Asn Asn Pro Leu Pro Cys Asp 210 215 220

Cys Arg Leu Tyr His Leu Leu Gln Arg Trp His Gln Arg Gly Leu Ser 225 230 235 240

Ala Val Arg Asp Phe Ala Arg Glu Tyr Val Cys Leu Ala Phe Lys Val 245 250 255

Pro Ala Ser Arg Val Arg Phe Phe Gln His Ser Arg Val Phe Glu Asn 260 265 270

Cys Ser Ser Ala Pro Ala Leu Gly Leu Glu Arg Pro Glu Glu His Leu 275 280 285

Tyr Ala Leu Val Gly Arg Ser Leu Arg Leu Tyr Cys Asn Thr Ser Val 290 295 300

Pro Ala Met Arg Ile Ala Trp Val Ser Pro Gln Gln Glu Leu Leu Arg 305 310 315 320

Ala Pro Gly Ser Arg Asp Gly Ser Ile Ala Val Leu Ala Asp Gly Ser 325 330 335

Leu Ala Ile Gly Asn Val Gln Glu Gln His Ala Gly Leu Phe Val Cys 340 345 350

Leu Ala Thr Gly Pro Arg Leu His His Asn Gln Thr His Glu Tyr Asn 355 360 365

Val Ser Val His Phe Pro Arg Pro Glu Pro Glu Ala Phe Asn Thr Gly 370 375 380

Phe Thr Thr Leu Leu Gly Cys Ala Val Gly Leu Val Leu Val Leu Seu 385 390 395 400

Tyr Leu Phe Ala Pro Pro Cys Arg Cys Cys Arg Arg Ala Cys Arg Cys 405 410 415

Arg Arg Trp Pro Gln Thr Pro Ser Pro Leu Gln Glu Leu Ser Ala Gln 420 425 430

Ser Ser Val Leu Ser Thr Thr Pro Pro Asp Ala Pro Ser Arg Lys Ala 435 440 445

Ser Val His Lys His Val Val Phe Leu Glu Pro Gly Arg Arg Gly Leu 450 455 460

Asn Gly Arg Val Gln Leu Ala Val Ala Glu Glu Phe Asp Leu Tyr Asn 465 470 475 480

Pro Gly Gly Leu Gln Leu Lys Ala Gly Ser Glu Ser Ala Ser Ser Ile 485 490 495

Gly Ser Glu Gly Pro Met Thr Thr 500

<210> 75

<211> 623

<212> PRT

<213> Homo sapiens

<400> 75

Met Arg Val Ala Leu Gly Met Leu Trp Leu Leu Ala Leu Ala Trp Pro 1 5 10 15

Pro Gln Ala Arg Gly Phe Cys Pro Ser Gln Cys Ser Cys Ser Leu His 20 25 30

Ile Met Gly Asp Gly Ser Lys Ala Arg Thr Val Val Cys Asn Asp Pro 35 40 45

Asp Met Thr Leu Pro Pro Ala Ser Ile Pro Pro Asp Thr Ser Arg Leu 50 55 60

Arg Leu Glu Arg Thr Ala Ile Arg Arg Val Pro Gly Glu Ala Phe Arg 65 70 75 80

Pro Leu Gly Arg Leu Glu Gln Leu Trp Leu Pro Tyr Asn Ala Leu Ser 85 90 95

Glu Leu Asn Ala Leu Met Leu Arg Gly Leu Arg Arg Leu Arg Glu Leu 100 105 110

Arg Leu Pro Gly Asn Arg Leu Ala Ala Phe Pro Trp Ala Ala Leu Arg 115 120 125

Asp Ala Pro Lys Leu Arg Leu Leu Asp Leu Gln Ala Asn Arg Leu Ser 130 135 140

Ala Val Pro Ala Glu Ala Ala Arg Phe Leu Glu Asn Leu Thr Phe Leu Asp Leu Ser Ser Asn Gln Leu Met Arg Leu Pro Gln Glu Leu Ile Val Ser Trp Ala His Leu Glu Thr Gly Ile Phe Pro Pro Gly His His Pro Arg Arg Val Leu Gly Leu Gln Asp Asn Pro Trp Ala Cys Asp Cys Arg Leu Tyr Asp Leu Val His Leu Leu Asp Gly Trp Ala Pro Asn Leu Ala Phe Ile Glu Thr Glu Leu Arg Cys Ala Ser Pro Arg Ser Leu Ala Gly Val Ala Phe Ser Gln Leu Glu Leu Arg Lys Cys Gln Gly Pro Glu Leu His Pro Gly Val Ala Ser Ile Arg Ser Leu Leu Gly Gly Thr Ala Leu Leu Arg Cys Gly Ala Thr Gly Val Pro Gly Pro Glu Met Ser Trp Arg Arg Ala Asn Gly Arg Pro Leu Asn Gly Thr Val His Gln Glu Val Ser Ser Asp Gly Thr Ser Trp Thr Leu Leu Gly Leu Pro Ala Val Ser His Leu Asp Ser Gly Asp Tyr Ile Cys Gln Ala Lys Asn Phe Leu Gly Ala Ser Glu Thr Val Ile Ser Leu Ile Val Thr Glu Pro Pro Thr Ser Thr Glu His Ser Gly Ser Pro Gly Ala Leu Trp Ala Arg Thr Gly Gly Gly Gly Glu Ala Ala Ala Tyr Asn Asn Lys Leu Val Ala Arg His Val Pro

Gln Ile Pro Lys Pro Ala Val Leu Ala Thr Gly Pro Ser Val Pro Ser 385 390 395 400

Thr Lys Glu Glu Leu Thr Leu Glu His Phe Gln Met Asp Ala Leu Gly
405 410 415

Glu Leu Ser Asp Gly Arg Ala Gly Pro Ser Glu Ala Arg Met Val Arg 420 425 430

Ser Val Lys Val Val Gly Asp Thr Tyr His Ser Val Ser Leu Val Trp 435 440 445

Lys Ala Pro Gln Ala Lys Asn Thr Thr Ala Phe Ser Val Leu Tyr Ala 450 455 460

Val Phe Gly Gln His Ser Met Arg Arg Val Ile Val Gln Pro Gly Lys 465 470 475 480

Thr Arg Val Thr Ile Thr Gly Leu Leu Pro Lys Thr Lys Tyr Val Ala 485 490 495

Cys Val Cys Val Gln Gly Leu Val Pro Arg Lys Glu Gln Cys Val Ile 500 505 510

Phe Ser Thr Asn Glu Val Val Asp Ala Glu Asn Thr Gln Gln Leu Ile 515 520 525

Asn Val Val Val Ile Ser Val Ala Ile Val Ile Ala Leu Pro Leu Thr 530 540

Leu Leu Val Cys Cys Ser Ala Leu Gln Lys Arg Cys Arg Lys Cys Phe 545 550 555

Asn Lys Asp Ser Thr Glu Ala Thr Val Thr Tyr Val Asn Leu Glu Arg 565 570 575

Leu Gly Tyr Ser Glu Asp Gly Leu Glu Glu Leu Ser Arg His Ser Val 580 585 590

Ser Glu Ala Asp Arg Leu Leu Ser Ala Arg Ser Ser Val Asp Phe Gln 595 600 605

Ala Phe Gly Val Lys Gly Gly Arg Arg Ile Asn Glu Tyr Phe Cys 610 615 620

<210> 76 <211> 789

<212> PRT

<213> Homo sapiens

<400> 76

Met Glu Thr Leu Leu Gly Gly Leu Leu Ala Phe Gly Met Ala Phe Ala 1 5 10 15

Val Val Asp Ala Cys Pro Lys Tyr Cys Val Cys Gln Asn Leu Ser Glu 20 25 30

Ser Leu Gly Thr Leu Cys Pro Ser Lys Gly Leu Leu Phe Val Pro Pro 35 40 45

Asp Ile Asp Arg Arg Thr Val Glu Leu Arg Leu Gly Gly Asn Phe Ile 50 55 60

Ile His Ile Ser Arg Gln Asp Phe Ala Asn Met Thr Gly Leu Val Asp 65 70 75 80

Leu Thr Leu Ser Arg Asn Thr Ile Ser His Ile Gln Pro Phe Ser Phe 85 90 95

Leu Asp Leu Glu Ser Leu Arg Ser Leu His Leu Asp Ser Asn Arg Leu 100 105 110

Pro Ser Leu Gly Glu Asp Thr Leu Arg Gly Leu Val Asn Leu Gln His 115 120 125

Leu Ile Val Asn Asn Asn Gln Leu Gly Gly Ile Ala Asp Glu Ala Phe 130 135 140

Glu Asp Phe Leu Leu Thr Leu Glu Asp Leu Asp Leu Ser Tyr Asn Asn 145 150 155 160

Leu His Gly Leu Pro Trp Asp Ser Val Arg Arg Met Val Asn Leu His
165 170 175

Gln Leu Ser Leu Asp His Asn Leu Leu Asp His Ile Ala Glu Gly Thr 180 185 190

Phe Ala Asp Leu Gln Lys Leu Ala Arg Leu Asp Leu Thr Ser Asn Arg 195 200 205

Leu Gln Lys Leu Pro Pro Asp Pro Ile Phe Ala Arg Ser Gln Ala Ser 210 220

Ala Leu Thr Ala Thr Pro Phe Ala Pro Pro Leu Ser Phe Ser Phe Gly

225					230					235					240
Gly	Asn	Pro	Leu	His 245	Cys	Asn	Cys	Glu	Leu 250	Leu	Trp	Leu	Arg	Arg 255	Leu
Glu	Arg	Asp	Asp 260	Asp	Leu	Glu	Thr	Cys 265	Gly	Ser	Pro	Gly	Gly 270	Leu	Lys
Gly	Arg	Tyr 275	Phe	Trp	His	Val	Arg 280	Glu	Glu	Glu	Phe	Val 285	Cys	Glu	Pro
Pro	Leu 290	Ile	Thr	Gln	His	Thr 295	His	Lys	Leu	Leu	Val 300	Leu	Glu	Gly	Gln
Ala 305	Ala	Thr	Leu	Lys	Cys 310	Lys	Ala	Ile	Gly	Asp 315	Pro	Ser	Pro	Leu	Ile 320
His	Trp	Val	Ala	Pro 325	Asp	Asp	Arg	Leu	Val 330	Gly	Asn	Ser	Ser	Arg 335	Thr
Ala	Val	Tyr	Asp 340	Asn	Gly	Thr	Leu	Asp 345	Ile	Phe	Ile	Thr	Thr 350	Ser	Gln
Asp	Ser	Gly 355		Phe	Thr	Cys	Ile 360	Ala	Ala	Asn	Ala	Ala 365	Gly	Glu	Ala
Thr	Ala 370		Val	Glu	Val	Ser 375	Ile	Val	Gln	Leu	Pro 380	His	Leu	Ser	Asn
Ser 385		Ser	Arg	Thr	Ala 390		Pro	Lys	Ser	Arg 395	Leu	Ser	Asp	Ile	Thr 400
Gly	Ser	Ser	. P À s	Thr 405		Arg	Gly	Gly	Gly 410		Ser	Gly	Gly	Gly 415	Glu
Pro	Pro	Lys	Ser 420		Pro	Glu	Arg	Ala 425		. Leu	Val	Ser	Glu 430	Val	Thr
Thr	Thr	Ser 435		. Leu	ı Val	. Lys	Trp		· Val	. Ser	Lys	Ser 445	Ala	n Pro	Arg
Val	. Lys 450		тух	- Glr	ı Lev	Gln 455		Asn	ı Cys	s Ser	Asp 460	Asp	Glu	ı Val	. Leu

257

Ile Tyr Arg Met Ile Pro Ala Ser Asn Lys Ala Phe Val Val Asn Asn 465 470 475 480

Leu Val Ser Gly Thr Gly Tyr Asp Leu Cys Val Leu Ala Met Trp Asp 485 490 495

- Asp Thr Ala Thr Thr Leu Thr Ala Thr Asn Ile Val Gly Cys Ala Gln 500 505 510
- Phe Phe Thr Lys Ala Asp Tyr Pro Gln Cys Gln Ser Met His Ser Gln 515 520 525
- Ile Leu Gly Gly Thr Met Ile Leu Val Ile Gly Gly Ile Ile Val Ala 530 540
- Thr Leu Leu Val Phe Ile Val Ile Leu Met Val Arg Tyr Lys Val Cys 545 550 555 560
- Asn His Glu Ala Pro Ser Lys Met Ala Ala Ala Val Ser Asn Val Tyr 565 570 575
- Ser Gln Thr Asn Gly Ala Gln Pro Pro Pro Pro Ser Ser Ala Pro Ala 580 585 590
- Gly Ala Pro Pro Gln Gly Pro Pro Lys Val Val Val Arg Asn Glu Leu 595 600 605
- Leu Asp Phe Thr Ala Ser Leu Ala Arg Ala Ser Asp Ser Ser Ser Ser 610 615 620
- Ser Ser Leu Gly Ser Gly Glu Ala Ala Gly Leu Gly Arg Ala Pro Trp 625 630 635 640
- Arg Ile Pro Pro Ser Ala Pro Arg Pro Lys Pro Ser Leu Asp Arg Leu 645 650 655
- Met Gly Ala Phe Ala Ser Leu Asp Leu Lys Ser Gln Arg Lys Glu Glu 660 665 670
- Leu Leu Asp Ser Arg Thr Pro Ala Gly Arg Gly Ala Gly Thr Ser Ala 675 680 685
- Arg Gly His His Ser Asp Arg Glu Pro Leu Leu Gly Pro Pro Ala Ala 690 695 700
- Arg Ala Arg Ser Leu Leu Pro Leu Pro Leu Glu Gly Lys Ala Lys Arg 705 710 715 720
- Ser His Ser Phe Asp Met Gly Asp Phe Ala Ala Ala Ala Gly Gly

725 730 735

Val Val Pro Gly Gly Tyr Ser Pro Pro Arg Lys Val Ser Asn Ile Trp 740 745 750

Thr Lys Arg Ser Leu Ser Val Asn Gly Met Leu Leu Pro Phe Glu Glu 755 760 765

Ser Asp Leu Val Gly Ala Arg Gly Thr Phe Gly Ser Ser Glu Trp Val 770 780

Met Glu Ser Thr Val

<210> 77

<211> 628

<212> PRT

<213> Homo sapiens

<400> 77

Met Ala Ile Leu Pro Leu Leu Leu Cys Leu Leu Pro Leu Ala Pro Ala 1 5 10 15

Ser Ser Pro Pro Gln Ser Ala Thr Pro Ser Pro Cys Pro Arg Arg Cys 20 25 30

Arg Cys Gln Thr Gln Ser Leu Pro Leu Ser Val Leu Cys Pro Gly Ala 35 40 45

Gly Leu Leu Phe Val Pro Pro Ser Leu Asp Arg Arg Ala Ala Glu Leu 50 55 60

Arg Leu Ala Asp Asn Phe Ile Ala Ser Val Arg Arg Arg Asp Leu Ala 65 70 75 80

Asn Met Thr Gly Leu Leu His Leu Ser Leu Ser Arg Asn Thr Ile Arg 85 90 95

His Val Ala Gly Ala Phe Ala Asp Leu Arg Ala Leu Arg Ala Leu 100 105 110

His Leu Asp Gly Asn Arg Leu Thr Ser Leu Gly Glu Gly Gln Leu Arg 115 120 125

Gly Leu Val Asn Leu Arg His Leu Ile Leu Ser Asn Asn Gln Leu Ala 130 135 140

Ala Leu Ala Ala Gly Ala Leu Asp Asp Cys Ala Glu Thr Leu Glu Asp 145 150 155 160

- Leu Asp Leu Ser Tyr Asn Asn Leu Glu Gln Leu Pro Trp Glu Ala Leu 165 170 175
- Gly Arg Leu Gly Asn Val Asn Thr Leu Gly Leu Asp His Asn Leu Leu 180 185 190
- Ala Ser Val Pro Ala Gly Ala Phe Ser Arg Leu His Lys Leu Ala Arg 195 200 . 205
- Leu Asp Met Thr Ser Asn Arg Leu Thr Thr Ile Pro Pro Asp Pro Leu 210 215 220
- Phe Ser Arg Leu Pro Leu Leu Ala Arg Pro Arg Gly Ser Pro Ala Ser 225 230 235 240
- Ala Leu Val Leu Ala Phe Gly Gly Asn Pro Leu His Cys Asn Cys Glu 245 250 255
- Leu Val Trp Leu Arg Arg Leu Ala Arg Glu Asp Asp Leu Glu Ala Cys 260 265 270
- Ala Ser Pro Pro Ala Leu Gly Gly Arg Tyr Phe Trp Ala Val Gly Glu 275 280 285
- Glu Glu Phe Val Cys Glu Pro Pro Val Val Thr His Arg Ser Pro Pro 290 295 300
- Leu Ala Val Pro Ala Gly Arg Pro Ala Ala Leu Arg Cys Arg Ala Val 305 310 315 320
- Gly Asp Pro Glu Pro Arg Val Arg Trp Val Ser Pro Gln Gly Arg Leu 325 330 335
- Leu Gly Asn Ser Ser Arg Ala Arg Ala Phe Pro Asn Gly Thr Leu Glu 340 345 350
- Leu Leu Val Thr Glu Pro Gly Asp Gly Gly Ile Phe Thr Cys Ile Ala 355 360 365
- Ala Asn Ala Ala Gly Glu Ala Thr Ala Ala Val Glu Leu Thr Val Gly 370 375 380
- Pro Pro Pro Pro Gln Leu Ala Asn Ser Thr Ser Cys Asp Pro Pro 385 390 395 400

Arg Asp Gly Asp Pro Asp Ala Leu Thr Pro Pro Ser Ala Ala Ser Ala 405 410 415

- Ser Ala Lys Val Ala Asp Thr Gly Pro Pro Thr Asp Arg Gly Val Gln 420 425 430
- Val Thr Glu His Gly Ala Thr Ala Ala Leu Val Gln Trp Pro Asp Gln 435 440 445
- Arg Pro Ile Pro Gly Ile Arg Met Tyr Gln Ile Gln Tyr Asn Ser Ser 450 455 460
- Ala Asp Asp Ile Leu Val Tyr Arg Met Ile Pro Ala Glu Ser Arg Ser 465 470 475 480
- Phe Leu Leu Thr Asp Leu Ala Ser Gly Arg Thr Tyr Asp Leu Cys Val 485 490 495
- Leu Ala Val Tyr Glu Asp Ser Ala Thr Gly Leu Thr Ala Thr Arg Pro 500 505 510
- Val Gly Cys Ala Arg Phe Ser Thr Glu Pro Ala Leu Arg Pro Cys Gly 515 520 525
- Ala Pro His Ala Pro Phe Leu Gly Gly Thr Met Ile Ile Ala Leu Gly 530 535 540
- Gly Val Ile Val Ala Ser Val Leu Val Phe Ile Phe Val Leu Leu Met 545 550 555 560
- Arg Tyr Lys Val His Gly Gly Gln Pro Pro Gly Lys Ala Lys Ile Pro 565 570 575
- Ala Pro Val Ser Ser Val Cys Ser Gln Thr Asn Gly Ala Leu Gly Pro 580 585 590
- Thr Pro Thr Pro Ala Pro Pro Ala Pro Glu Pro Ala Ala Leu Arg Ala 595 600 605
- His Thr Val Val Gln Leu Asp Cys Glu Pro Trp Gly Pro Gly His Glu 610 615 620

Pro Val Gly Pro 625

<210> 78

<211> 673 <212> PRT <213> Homo sapiens

<400> 78

Met Cys Ser Arg Val Pro Leu Leu Leu Pro Leu Leu Leu Leu Ala

Leu Gly Pro Gly Val Gln Gly Cys Pro Ser Gly Cys Gln Cys Ser Gln

Pro Gln Thr Val Phe Cys Thr Ala Arg Gln Gly Thr Thr Val Pro Arg

Asp Val Pro Pro Asp Thr Val Gly Leu Tyr Val Phe Glu Asn Gly Ile

Thr Met Leu Asp Ala Gly Ser Phe Ala Gly Leu Pro Gly Leu Gln Leu

Leu Asp Leu Ser Gln Asn Gln Ile Ala Ser Leu Pro Ser Gly Val Phe 90

Gln Pro Leu Ala Asn Leu Ser Asn Leu Asp Leu Thr Ala Asn Arg Leu 105 100

His Glu Ile Thr Asn Glu Thr Phe Arg Gly Leu Arg Arg Leu Glu Arg 120 115

Leu Tyr Leu Gly Lys Asn Arg Ile Arg His Ile Gln Pro Gly Ala Phe 130

Asp Thr Leu Asp Arg Leu Leu Glu Leu Lys Leu Gln Asp Asn Glu Leu 150 145

Arg Ala Leu Pro Pro Leu Arg Leu Pro Arg Leu Leu Leu Asp Leu

Ser His Asn Ser Leu Leu Ala Leu Glu Pro Gly Ile Leu Asp Thr Ala

Asn Val Glu Ala Leu Arg Leu Ala Gly Leu Gly Leu Gln Gln Leu Asp 200

Glu Gly Leu Phe Ser Arg Leu Arg Asn Leu His Asp Leu Asp Val Ser 220 215

Asp Asn Gln Leu Glu Arg Val Pro Pro Val Ile Arg Gly Leu Arg Gly Leu Thr Arg Leu Arg Leu Ala Gly Asn Thr Arg Ile Ala Gln Leu Arg Pro Glu Asp Leu Ala Gly Leu Ala Ala Leu Gln Glu Leu Asp Val Ser Asn Leu Ser Leu Gln Ala Leu Pro Gly Asp Leu Ser Gly Leu Phe Pro Arg Leu Arg Leu Leu Ala Ala Ala Arg Asn Pro Phe Asn Cys Val Cys Pro Leu Ser Trp Phe Gly Pro Trp Val Arg Glu Ser His Val Thr Leu Ala Ser Pro Glu Glu Thr Arg Cys His Phe Pro Pro Lys Asn Ala Gly Arg Leu Leu Glu Leu Asp Tyr Ala Asp Phe Gly Cys Pro Ala Thr Thr Thr Thr Ala Thr Val Pro Thr Thr Arg Pro Val Val Arg Glu Pro Thr Ala Leu Ser Ser Ser Leu Ala Pro Thr Trp Leu Ser Pro Thr Glu Pro Ala Thr Glu Ala Pro Ser Pro Pro Ser Thr Ala Pro Pro Thr Val Gly Pro Val Pro Gln Pro Gln Asp Cys Pro Pro Ser Thr Cys Leu Asn Gly Gly Thr Cys His Leu Gly Thr Arg His His Leu Ala Cys Leu Cys Pro Glu Gly Phe Thr Gly Leu Tyr Cys Glu Ser Gln Met Gly Gln Gly Thr Arg Pro Ser Pro Thr Pro Val Thr Pro Arg Pro Pro Arg Ser Leu

Thr Leu Gly Ile Glu Pro Val Ser Pro Thr Ser Leu Arg Val Gly Leu

PCT/US03/06025 WO 03/083047

475 480 470 465

Gln Arg Tyr Leu Gln Gly Ser Ser Val Gln Leu Arg Ser Leu Arg Leu 490 485

Thr Tyr Arg Asn Leu Ser Gly Pro Asp Lys Arg Leu Val Thr Leu Arg 505 500

Leu Pro Ala Ser Leu Ala Glu Tyr Thr Val Thr Gln Leu Arg Pro Asn 520 515

Ala Thr Tyr Ser Val Cys Val Met Pro Leu Gly Pro Gly Arg Val Pro 535 530

Glu Gly Glu Glu Ala Cys Gly Glu Ala His Thr Pro Pro Ala Val His 550 545

Ser Asn His Ala Pro Val Thr Gln Ala Arg Glu Gly Asn Leu Pro Leu 565

Leu Ile Ala Pro Ala Leu Ala Ala Val Leu Leu Ala Ala Leu Ala Ala 585

Val Gly Ala Ala Tyr Cys Val Arg Arg Gly Arg Ala Met Ala Ala Ala 600

Ala Gln Asp Lys Gly Gln Val Gly Pro Gly Ala Gly Pro Leu Glu Leu 615 610

Glu Gly Val Lys Val Pro Leu Glu Pro Gly Pro Lys Ala Thr Glu Gly 630 625

Gly Gly Glu Ala Leu Pro Ser Gly Ser Glu Cys Glu Val Pro Leu Met 650

Gly Phe Pro Gly Pro Gly Leu Gln Ser Pro Leu His Ala Lys Pro Tyr 665 660

Ile

<210> 79

<211> 696 <212> PRT <213> Homo sapiens

<400> 79

Met Leu Leu Trp Ile Leu Leu Leu Glu Thr Ser Leu Cys Phe Ala Ala Gly Asn Val Thr Gly Asp Val Cys Lys Glu Lys Ile Cys Ser Cys Asn Glu Ile Glu Gly Asp Leu His Val Asp Cys Glu Lys Lys Gly Phe Thr Ser Leu Gln Arg Phe Thr Ala Pro Thr Ser Gln Phe Tyr His Leu Phe Leu His Gly Asn Ser Leu Thr Arg Leu Phe Pro Asn Glu Phe Ala Asn Phe Tyr Asn Ala Val Ser Leu His Met Glu Asn Asn Gly Leu His Glu Ile Val Pro Gly Ala Phe Leu Gly Leu Gln Leu Val Lys Arg Leu His Ile Asn Asn Asn Lys Ile Lys Ser Phe Arg Lys Gln Thr Phe Leu Gly Leu Asp Asp Leu Glu Tyr Leu Gln Ala Asp Phe Asn Leu Leu Arg Asp Ile Asp Pro Gly Ala Phe Gln Asp Leu Asn Lys Leu Glu Val Leu Ile Leu Asn Asp Asn Leu Ile Ser Thr Leu Pro Ala Asn Val Phe Gln Tyr Val Pro Ile Thr His Leu Asp Leu Arg Gly Asn Arg Leu Lys Thr Leu Pro Tyr Glu Glu Val Leu Glu Gln Ile Pro Gly Ile Ala Glu Ile Leu Leu Glu Asp Asn Pro Trp Asp Cys Thr Cys Asp Leu Leu Ser Leu Lys Glu Trp Leu Glu Asn Ile Pro Lys Asn Ala Leu Ile Gly Arg Val Val Cys Glu Ala Pro Thr Arg Leu Gln Gly Lys Asp Leu Asn Glu Thr Thr

Glu Gln Asp Leu Cys Pro Leu Lys Asn Arg Val Asp Ser Ser Leu Pro 260 Ala Pro Pro Ala Gln Glu Glu Thr Phe Ala Pro Gly Pro Leu Pro Thr 280 Pro Phe Lys Thr Asn Gly Gln Glu Asp His Ala Thr Pro Gly Ser Ala 295 Pro Asn Gly Gly Thr Lys Ile Pro Gly Asn Trp Gln Ile Lys Ile Arg 310 315 Pro Thr Ala Ala Ile Ala Thr Gly Ser Ser Arg Asn Lys Pro Leu Ala 330 Asn Ser Leu Pro Cys Pro Gly Gly Cys Ser Cys Asp His Ile Pro Gly 350 345 Ser Gly Leu Lys Met Asn Cys Asn Asn Arg Asn Val Ser Ser Leu Ala 360 355 Asp Leu Lys Pro Lys Leu Ser Asn Val Gln Glu Leu Phe Leu Arg Asp 375 370 Asn Lys Ile His Ser Ile Arg Lys Ser His Phe Val Asp Tyr Lys Asn 390 395 385 Leu Ile Leu Leu Asp Leu Gly Asn Asn Ile Ala Thr Val Glu Asn 410 405

Asn Tyr Leu Asp Thr Leu Ser Arg Glu Lys Phe Ala Gly Leu Gln Asn 435 440 445

Asn Thr Phe Lys Asn Leu Leu Asp Leu Arg Trp Leu Tyr Met Asp Ser

425

420

Leu Glu Tyr Leu Asn Val Glu Tyr Asn Ala Ile Gln Leu Ile Leu Pro $450 \hspace{1.5cm} 455 \hspace{1.5cm} 460 \hspace{1.5cm}$

Gly Thr Phe Asn Ala Met Pro Lys Leu Arg Ile Leu Ile Leu Asn Asn 465 470 475 480

Asn Leu Leu Arg Ser Leu Pro Val Asp Val Phe Ala Gly Val Ser Leu 485 490 495

Ser Lys Leu Ser Leu His Asn Asn Tyr Phe Met Tyr Leu Pro Val Ala 505 500

- Gly Val Leu Asp Gln Leu Thr Ser Ile Ile Gln Ile Asp Leu His Gly 520
- Asn Pro Trp Glu Cys Ser Cys Thr Ile Val Pro Phe Lys Gln Trp Ala 535
- Glu Arg Leu Gly Ser Glu Val Leu Met Ser Asp Leu Lys Cys Glu Thr 555
- Pro Val Asn Phe Phe Arg Lys Asp Phe Met Leu Leu Ser Asn Asp Glu 570 565
- Ile Cys Pro Gln Leu Tyr Ala Arg Ile Ser Pro Thr Leu Thr Ser His 590 585 580
- Ser Lys Asn Ser Thr Gly Leu Ala Glu Thr Gly Thr His Ser Asn Ser 600 595
- Tyr Leu Asp Thr Ser Arg Val Ser Ile Ser Val Leu Val Pro Gly Leu 620 615 610
- Leu Leu Val Phe Val Thr Ser Ala Phe Thr Val Val Gly Met Leu Val 625 630
- Phe Ile Leu Arg Asn Arg Lys Arg Ser Lys Arg Arg Asp Ala Asn Ser 650 645
- Ser Ala Ser Glu Ile Asn Ser Leu Gln Thr Val Cys Asp Ser Ser Tyr 660 665
- Trp His Asn Gly Pro Tyr Asn Ala Asp Gly Ala His Arg Val Tyr Asp 680 685 675
- Cys Gly Ser His Ser Leu Ser Asp 690 695
- <210> 80

- <211> 834 <212> PRT <213> Homo sapiens
- <220>
- <221> misc_feature
- <222> (734)..(767)
- <223> Xaa can be any naturally occurring amino acid

- 4	_	٥>	- 8	^

Met His Thr Cys Cys Pro Pro Val Thr Leu Glu Gln Asp Leu His Arg 1 5 10 15

Lys Met His Ser Trp Met Leu Gln Thr Leu Ala Phe Ala Val Thr Ser 20 25 30

Leu Val Leu Ser Cys Ala Glu Thr Ile Asp Tyr Tyr Gly Glu Ile Cys 35 40 45

Asp Asn Ala Cys Pro Cys Glu Glu Lys Asp Gly Ile Leu Thr Val Ser 50 55 60

Cys Glu Asn Arg Gly Ile Ile Ser Leu Ser Glu Ile Ser Pro Pro Arg 65 70 75 80

Phe Pro Ile Tyr His Leu Leu Leu Ser Gly Asn Leu Leu Asn Arg Leu 85 90 95

Tyr Pro Asn Glu Phe Val Asn Tyr Thr Gly Ala Ser Ile Leu His Leu 100 105 110

Gly Ser Asn Val Ile Gln Asp Ile Glu Thr Gly Ala Phe His Gly Leu 115 120 125

Arg Gly Leu Arg Arg Leu His Leu Asn Asn Asn Lys Leu Glu Leu Leu 130 135 140

Arg Asp Asp Thr Phe Leu Gly Leu Glu Asn Leu Glu Tyr Leu Gln Val 145 150 155 160

Asp Tyr Asn Tyr Ile Ser Val Ile Glu Pro Asn Ala Phe Gly Lys Leu 165 170 175

His Leu Leu Gln Val Leu Ile Leu Asn Asp Asn Leu Leu Ser Ser Leu 180 185 190

Pro Asn Asn Leu Phe Arg Phe Val Pro Leu Thr His Leu Asp Leu Arg 195 200 205

Gly Asn Arg Leu Lys Leu Leu Pro Tyr Val Gly Leu Leu Gln His Met 210 215 220

Asp Lys Val Val Glu Leu Gln Leu Glu Glu Asn Pro Trp Asn Cys Ser 225 230 235 240

Cys	Glu	Leu	Ile	Ser 245	Leu	Lys	Asp	Trp	Leu 250	Asp	Ser	Ile	Ser	Tyr 255	Ser
Ala	Leu	Val	Gly 260	Asp	Val	Val	Cys	Glu 265	Thr	Pro	Phe	Arg	Leu 270	His	Gly
Arg	Asp	Leu 275	Asp	Glu	Val	Ser	Lys 280	Gln	Glu	Leu	Cys	Pro 285	Arg	Arg	Leu
Ile	Ser 290	Asp	Tyr	Glu	Met	Arg 295	Pro	Gln	Thr	Pro	Leu 300	Ser	Thr	Thr	Gly
Туг 305	Leu	His	Thr	Thr	Pro 310	Ala	Ser	Val	Asn	Ser 315	Val	Ala	Thr	Ser	Ser 320
Ser	Ala	Val	Tyr	Lys 325	Pro	Pro	Leu	Lys	Pro 330	Pro	Lys	Gly	Thr	Arg 335	Gln
Pro	Asn	Lys	Pro 340	Arg	Val	Arg	Pro	Thr 345	Ser	Arg	Gln	Pro	Ser 350	Lys	Asp
Leu	Gly	Туr 355	Ser	Asn	Tyr	Gly	Pro 360	Ser	Ile	Ala	Tyr	Gln 365	Thr	Lys	Ser
Pro	Val 370		Leu	Glu	Cys	Pro 375	Thr	Ala	Cys	Ser	Cys 380	Asn	Leu	Gln	Ile
Ser 385		Leu	Gly	Leu	Asn 390	Val	Asn	Cys	Gln	Glu 395	Arg	Lys	Ile	Glu	Ser 400
Ile	. Ala	Glu	Leu	Gln 405		Lys	Pro	Tyr	Asn 410		Lys	Lys	Met	Tyr 415	Leu
Thr	Glu	Asn	Tyr 420		Ala	Val	Val	Arg 425		Thr	Asp	Phe	Leu 430	Glu	Ala
Thr	Gly	Leu 435		Lev	. Leu	His	Leu 440		Asn	Asn	Arg	Ile 445	Ser	Met	Ile
Glr	a Asr 450		, Ala	Phe	e Gly	Asp 455		Thr	Asn	. Leu	Arg 460	Arg	Leu	Tyr	Leu
As:		/ Asr	a Arg	ı Ile	Glu 470				Pro	Glu 475		Phe	туг	Gly	Leu 480
Glı	ı Sei	. Lei	ı Glr	ı Tyı	. Lev	ı Phe	/ Lev		туг	: Asr	ı Lev	Ile	. Arg	g Glu	ılle

485 490 495

Gln Ser Gly Thr Phe Asp Pro Val Pro Asn Leu Gln Leu Leu Phe Leu 500 505 510

- Asn Asn Asn Leu Leu Gln Ala Met Pro Ser Gly Val Phe Ser Gly Leu 515 520 525
- Thr Leu Leu Arg Leu Asn Leu Arg Ser Asn His Phe Thr Ser Leu Pro 530 535 540
- Val Ser Gly Val Leu Asp Gln Leu Lys Ser Leu Ile Gln Ile Asp Leu 545 550 555 560
- His Asp Asn Pro Trp Asp Cys Thr Cys Asp Ile Val Gly Met Lys Leu 565 570 575
- Trp Val Glu Gln Leu Lys Val Gly Val Leu Val Asp Glu Val Ile Cys 580 585 590
- Lys Ala Pro Lys Lys Phe Ala Glu Thr Asp Met Arg Ser Ile Lys Ser 595 600 605
- Glu Leu Leu Cys Pro Asp Tyr Ser Asp Val Val Val Ser Thr Pro Thr 610 615 620
- Pro Ser Ser Ile Gln Val Pro Ala Arg Thr Ser Ala Val Thr Pro Ala 625 630 635 640
- Val Arg Leu Asn Ser Thr Gly Ala Pro Ala Ser Leu Gly Ala Gly Gly 645 650 655
- Gly Ala Ser Ser Val Pro Leu Ser Val Leu Ile Leu Ser Leu Leu Leu 660 665 670
- Val Phe Ile Met Ser Val Phe Val Ala Ala Gly Leu Phe Val Leu Val 675 680 685
- Met Lys Arg Arg Lys Lys Asn Gln Ser Asp His Thr Ser Thr Asn Asn 690 695 700
- Ser Asp Val Ser Ser Phe Asn Met Gln Tyr Ser Val Tyr Gly Gly 705 710 715 720
- Gly Gly Thr Gly Gly His Pro His Ala His Val His Tyr Xaa Xaa Xaa 725 730 735

Ala Ala Ala Pro Ala Ala Ala Ala Ala Ala Ala Arg Gly Gly Glu 770 775 780

Ala Gly Lys Pro Pro Leu Ala Glu Pro Arg Leu Gln Arg Gln His His 785 790 795 800

Arg Ala Pro Gly Gly Pro Ala Val Ala Gly Ala Gly Arg Arg Pro Leu 805 810 815

Leu Gln Gly His Phe Arg Thr Arg Gln Thr Leu Leu His His Pro Arg 820 825 830

Arg Gln

<210> 81

<211> 853

<212> PRT

<213> Homo sapiens

<400> 81

Tyr Phe Ser Leu Phe Arg Ser Ile Gln Leu Phe Ala Asp Cys Lys Lys 1 5 10 15

Met Phe Leu Trp Leu Phe Leu Ile Leu Ser Ala Leu Ile Ser Ser Thr 20 25 30

Asn Ala Asp Ser Asp Ile Ser Val Glu Ile Cys Asn Val Cys Ser Cys 35 40 45

Val Ser Val Glu Asn Val Leu Tyr Val Asn Cys Glu Lys Val Ser Val 50 55 60

Tyr Arg Pro Asn Gln Leu Lys Pro Pro Trp Ser Asn Phe Tyr His Leu 65 70 75 80

Asn Phe Gln Asn Asn Phe Leu Asn Ile Leu Tyr Pro Asn Thr Phe Leu 85 90 95

Asn Phe Ser His Ala Val Ser Leu His Leu Gly Asn Asn Lys Leu Gln 100 105 110

Asn Ile Glu Gly Gly Ala Phe Leu Gly Leu Ser Ala Leu Lys Gln Leu His Leu Asn Asn Asn Glu Leu Lys Ile Leu Arg Ala Asp Thr Phe Leu Gly Ile Glu Asn Leu Glu Tyr Leu Gln Ala Asp Tyr Asn Leu Ile Lys Tyr Ile Glu Arg Gly Ala Phe Asn Lys Leu His Lys Leu Lys Val Leu Ile Leu Asn Asp Asn Leu Ile Ser Phe Leu Pro Asp Asn Ile Phe Arg Phe Ala Ser Leu Thr His Leu Asp Ile Arg Gly Asn Arg Ile Gln Lys Leu Pro Tyr Ile Gly Val Leu Glu His Ile Gly Arg Val Val Glu Leu Gln Leu Glu Asp Asn Pro Trp Asn Cys Ser Cys Asp Leu Leu Pro Leu Lys Ala Trp Leu Glu Asn Met Pro Tyr Asn Ile Tyr Ile Gly Glu Ala Ile Cys Glu Thr Pro Ser Asp Leu Tyr Gly Arg Leu Leu Lys Glu Thr Asn Lys Gln Glu Leu Cys Pro Met Gly Thr Gly Ser Asp Phe Asp Val Arg Ile Leu Pro Pro Ser Gln Leu Glu Asn Gly Tyr Thr Thr Pro Asn Gly His Thr Thr Gln Thr Ser Leu His Arg Leu Val Thr Lys Pro Pro Lys Thr Thr Asn Pro Ser Lys Ile Ser Gly Ile Val Ala Gly Lys Ala Leu Ser Asn Arg Asn Leu Ser Gln Ile Val Ser Tyr Gln Thr Arg Val

Pro Pro Leu Thr Pro Cys Pro Ala Pro Cys Phe Cys Lys Thr His Pro 355 360 365

Ser Asp Leu Gly Leu Ser Val Asn Cys Gln Glu Lys Asn Ile Gln Ser 370 380

Met Ser Glu Leu Ile Pro Lys Pro Leu Asn Ala Lys Lys Leu His Val 385 390 395 400

Asn Gly Asn Ser Ile Lys Asp Val Asp Val Ser Asp Phe Thr Asp Phe 405 410 415

Glu Gly Leu Asp Leu Leu His Leu Gly Ser Asn Gln Ile Thr Val Ile 420 425 430

Lys Gly Asp Val Phe His Asn Leu Thr Asn Leu Arg Arg Leu Tyr Leu 435 440 445

Asn Gly Asn Gln Ile Glu Arg Leu Tyr Pro Glu Ile Phe Ser Gly Leu 450 455 460

His Asn Leu Gln Tyr Leu Tyr Leu Glu Tyr Asn Leu Ile Lys Glu Ile 465 470 475 480

Ser Ala Gly Thr Phe Asp Ser Met Pro Asn Leu Gln Leu Leu Tyr Leu 485 490 495

Asn Asn Asn Leu Leu Lys Ser Leu Pro Val Tyr Ile Phe Ser Gly Ala 500 505 510

Pro Leu Ala Arg Leu Asn Leu Arg Asn Asn Lys Phe Met Tyr Leu Pro 515 520 525

Val Ser Gly Val Leu Asp Gln Leu Gln Ser Leu Thr Gln Ile Asp Leu 530 535 540

Glu Gly Asn Pro Trp Asp Cys Thr Cys Asp Leu Val Ala Leu Lys Leu 545 550 555 560

Trp Val Glu Lys Leu Ser Asp Gly Ile Val Val Lys Glu Leu Lys Cys 565 570 575

Glu Thr Pro Val Gln Phe Ala Asn Ile Glu Leu Lys Ser Leu Lys Asn 580 585 590

Glu Ile Leu Cys Pro Lys Leu Leu Asn Lys Pro Ser Ala Pro Phe Thr 595 600 605

Ser	Pro 610	Ala	Pro	Ala		Thr 615	Phe	Thr	Thr	Pro	Leu 620	Gly	Pro	Ile	Arg
Ser 625	Pro	Pro	Gly	Gly	Pro 630	Val	Pro	Leu	Ser	Ile 635	Leu	Ile	Leu	Ser	Ile 640
Leu	Val	Val	Leu	Ile 645	Leu	Thr	Val	Phe	Val 650	Ala	Phe	Cys	Leu	Leu 655	Val
Phe	Val	Leu	Arg 660	Arg	Asn	Lys	Lys	Pro 665	Thr	Val	Lys	His	Glu 670	Gly	Leu
Gly	Asn	Pro 675	Asp	Cys	Gly	Ser	Met 680	Gln	Leu	Gln	Leu	Arg 685	Lys	His	Asp
His	Lys 690	Thr	Asn	Lys	Lys	Asp 695	Gly	Leu	Ser	Thr	Glu 700	Ala	Phe	Ile	Pro
Gln 705	Thr	Ile	Glu	Gln	Met 710	Ser	Lys	Ser	His	Thr 715	Cys	Gly	Leu	Lys	Glu 720
Ser	Glu	Thr	Gly	Phe 725	Met	Phe	Ser	Asp	Pro 730	Pro	Gly	Gln	Lys	Val 735	Val
Met	Arg	Asn	Val 740		Asp	Lys	Glu	Lys 745	Asp	Leu	Leu	His	Val 750	Asp	Thr
Arg	Lys	Arg 755		Ser	Thr	Ile	Asp 760		Leu	Asp	Glu	Leu 765	Phe	Pro	Ser
Arg	Asp 770		Asn	. Val	Phe	Ile 775		Asn	Phe	Leu	Glu 780	Ser	Lys	Lys	Glu
Туг 785		Ser	·Ile	: Gly	Val 790		Gly	Phe	Glu	. Ile 795		Tyr	Pro	Glu	Lys 800
Gln	Pro	Asp	. Lys	805		Lys	Lys	Ser	Leu 810	ı Ile	: Gly	Gly	Asn	His 815	Ser
Lys	: Ile	e Val	Va]		. Gln	Arg	l Lys	Ser 825		туз	r Phe	Glu	Leu 830	ı Lys	Ala
Lys	s Leu	ı Glr 835		: Ser	Pro) Asp	Тут 840		Glr	ı Val	l Leu	Glu 845	ı Glu	ı Glr	Thr

Ala Leu Asn Lys Ile 850

<210> 82 <211> 977 <212> PRT <213> Homo sapiens

<400> 82

Met Lys Pro Ser Ile Ala Glu Met Leu His Arg Gly Arg Met Leu Trp

Ile Ile Leu Leu Ser Thr Ile Ala Leu Gly Trp Thr Thr Pro Ile Pro 25

Leu Ile Glu Asp Ser Glu Glu Ile Asp Glu Pro Cys Phe Asp Pro Cys 40

Tyr Cys Glu Val Lys Glu Ser Leu Phe His Ile His Cys Asp Ser Lys

Gly Phe Thr Asn Ile Ser Gln Ile Thr Glu Phe Trp Ser Arg Pro Phe

Lys Leu Tyr Leu Gln Arg Asn Ser Met Arg Lys Leu Tyr Thr Asn Ser 90

Phe Leu His Leu Asn Asn Ala Val Ser Ile Asn Leu Gly Asn Asn Ala 105 100

Leu Gln Asp Ile Gln Thr Gly Ala Phe Asn Gly Leu Lys Ile Leu Lys 115

Arg Leu Tyr Leu His Glu Asn Lys Leu Asp Val Phe Arg Asn Asp Thr 130

Phe Leu Gly Leu Glu Ser Leu Glu Tyr Leu Gln Ala Asp Tyr Asn Val 150 145

Ile Lys Arg Ile Glu Ser Gly Ala Phe Arg Asn Leu Ser Lys Leu Arg

Val Leu Ile Leu Asn Asp Asn Leu Ile Pro Met Leu Pro Thr Asn Leu 185

Phe Lys Ala Val Ser Leu Thr His Leu Asp Leu Arg Gly Asn Arg Leu 200 195

Lys Val Leu Phe Tyr Arg Gly Met Leu Asp His Ile Gly Arg Ser Leu Met Glu Leu Gln Leu Glu Glu Asn Pro Trp Asn Cys Thr Cys Glu Ile Val Gln Leu Lys Ser Trp Leu Glu Arg Ile Pro Tyr Thr Ala Leu Val Gly Asp Ile Thr Cys Glu Thr Pro Phe His Phe His Gly Lys Asp Leu Arg Glu Ile Arg Lys Thr Glu Leu Cys Pro Leu Leu Ser Asp Ser Glu Val Glu Ala Ser Leu Gly Ile Pro His Ser Ser Ser Lys Glu Asn Ala Trp Pro Thr Lys Pro Ser Ser Met Leu Ser Ser Val His Phe Thr Ala Ser Ser Val Glu Tyr Lys Ser Ser Asn Lys Gln Pro Lys Pro Thr Lys Gln Pro Arg Thr Pro Arg Pro Pro Ser Thr Ser Gln Ala Leu Tyr Pro Gly Pro Asn Gln Pro Pro Ile Ala Pro Tyr Gln Thr Arg Pro Pro Ile Pro Ile Ile Cys Pro Thr Gly Cys Thr Cys Asn Leu His Ile Asn Asp Leu Gly Leu Thr Val Asn Cys Lys Glu Arg Gly Phe Asn Asn Ile Ser Glu Leu Leu Pro Arg Pro Leu Asn Ala Lys Lys Leu Tyr Leu Ser Ser Asn Leu Ile Gln Lys Ile Tyr Arg Ser Asp Phe Trp Asn Phe Ser Ser Leu Asp Leu Leu His Leu Gly Asn Asn Arg Ile Ser Tyr Val Gln

Asp Gly Ala Phe Ile Asn Leu Pro Asn Leu Lys Ser Leu Phe Leu Asn

450 455 460

Gly Asn Asp Ile Glu Lys Leu Thr Pro Gly Met Phe Arg Gly Leu Gln 465 470 475 480

Ser Leu His Tyr Leu Tyr Phe Glu Phe Asn Val Ile Arg Glu Ile Gln 485 490 495

Pro Ala Ala Phe Ser Leu Met Pro Asn Leu Lys Leu Leu Phe Leu Asn 500 505.

Asn Asn Leu Leu Arg Thr Leu Pro Thr Asp Ala Phe Ala Gly Thr Ser 515 520 525

Leu Ala Arg Leu Asn Leu Arg Lys Asn Tyr Phe Leu Tyr Leu Pro Val 530 535 540

Ala Gly Val Leu Glu His Leu Asn Ala Ile Val Gln Ile Asp Leu Asn 545 555 5560

Glu Asn Pro Trp Asp Cys Thr Cys Asp Leu Val Pro Phe Lys Gln Trp 565 570 575

Ile Glu Thr Ile Ser Ser Val Ser Val Val Gly Asp Val Leu Cys Arg 580 585 590

Ser Pro Glu Asn Leu Thr His Arg Asp Val Arg Thr Ile Glu Leu Glu 595 600 605

Val Leu Cys Pro Glu Met Leu His Val Ala Pro Ala Gly Glu Ser Pro 610 615 620

Ala Gln Pro Gly Asp Ser His Leu Ile Gly Ala Pro Thr Ser Ala Ser 625 630 635 640

Pro Tyr Glu Phe Ser Pro Pro Gly Gly Pro Val Pro Leu Ser Val Leu 645 650 655

Ile Leu Ser Leu Leu Val Leu Phe Phe Ser Ala Val Phe Val Ala Ala 660 665 670

Gly Leu Phe Ala Tyr Val Leu Arg Arg Arg Lys Lys Leu Pro Phe 675 680 685

Arg Ser Lys Arg Gln Glu Gly Val Asp Leu Thr Gly Ile Gln Met Gln 690 695 700

Cys 705	His	Arg	Leu	Phe	Glu 710	Asp	Gly	Gly	Gly	Gly 715	Gly	Gly	Gly	Ser	Gly 720
Gly	Gly	Gly	Arg	Pro 725	Thr	Leu	Ser	Ser	Pro 730	Gl u	Lys	Ala	Pro	Pro 735	Val
Gly	His	Val	Tyr 740	Glu	Tyr	Ile	Pro	His 745	Pro	Val	Thr	Gln	Met 750	Cys	Asn
Asn	Pro	Ile 755	Tyr	Lys	Pro	Arg	Glu 760	Glu	Glu	Glu	Val	Ala 765	Val	Ser	Ser
Ala	Gln 770	Glu	Ala	Gly	Ser	Ala 775	Glu	Arg	Gly	Gly	Pro 780	Gly	Thr	Gln	Pro
Pro 785	Gly	Met	Gly	Glu	Ala 790	Leu	Leu	Gly	Ser	Glu 795	Gln	Phe	Ala	Glu	Thr 800
Pro	Lys	Glu	Asn	His 805	Ser	Asn	Tyr	Arg	Thr 810	Leu	Leu	Glu	Lys	Glu 815	Lys
Glu	Trp	Ala	Leu 820	Ala	Val	Ser	Ser	Ser 825	Gln	Leu	Asn	Thr	Ile 830	Val	Thr
Val	Asn	His 835		His	Pro	His	His 840	Pro	Ala	Val	Gly	Gly 845	Val	Ser	Gly
Val	Val 850		· Gly	Thr	Gly	Gly 855		Leu	Ala	Gly	Phe 860	Arg	His	His	Glu
Lys 865		Gly	Gly	Val	Val 870		Phe	Pro	Pro	Gly 875	Gly	Gly	Cys	Gly	Ser 880
Gly	ser Ser	Met	: Leu	Leu 885		Arg	Glu	Arg	Pro 890	Gln	Pro	Ala	Pro	Cys 895	Thr
Va]	L Gly	r Phe	• Val 900		Cys	Leu	Tyr	Gly 905		Val	Pro	Lys	Leu 910	Lys	Glu
Leı	ı His	915		Pro) Pro	Gly	7 Met 920		Tyr	Pro	Asp	Leu 925		Gln	Asp
Ala	a Arg 930		ı Lys	s Glı	ı Thr	935		ı Phe	e Ser	: Ala	Glu 940	Lys '	: Gly	Phe	Thr
Ası	o His	s Gli	n Thi	c Glı	ı Lys	s Sei	: Asr	туг	. Let	ı Glu	Leu	Arg	, Ala	Lys	Leu

Gln Thr Lys Pro Asp Tyr Leu Glu Val Leu Glu Lys Thr Thr Tyr Arg

Phe

<210> 83

<211> 921 <212> PRT

<213> Homo sapiens

<400> 83

Met Ala Asp Asp Val Leu Phe Glu Asp Val Tyr Glu Leu Cys Glu

Val Ile Gly Lys Gly Pro Phe Ser Val Val Arg Arg Cys Ile Asn Arg

Glu Thr Gly Gln Gln Phe Ala Val Lys Ile Val Asp Val Ala Lys Phe

Thr Ser Ser Pro Gly Leu Ser Thr Glu Asp Leu Lys Arg Glu Ala Ser

Ile Cys His Met Leu Lys His Pro His Ile Val Glu Leu Leu Glu Thr

Tyr Ser Ser Asp Gly Met Leu Tyr Met Val Phe Glu Phe Met Asp Gly

Ala Asp Leu Cys Phe Glu Ile Val Lys Arg Ala Asp Ala Gly Phe Val

Tyr Ser Glu Ala Val Ala Ser His Tyr Met Arg Gln Ile Leu Glu Ala

Leu Arg Tyr Cys His Asp Asn Asn Ile Ile His Arg Asp Val Lys Pro

His Cys Val Leu Leu Ala Ser Lys Glu Asn Ser Ala Pro Val Lys Leu

Gly Gly Phe Gly Val Ala Ile Gln Leu Gly Glu Ser Gly Leu Val Ala

Gly Gly Arg Val Gly Thr Pro His Phe Met Ala Pro Glu Val Val Lys 180 185 190

- Arg Glu Pro Tyr Gly Lys Pro Val Asp Val Trp Gly Cys Gly Val Ile 195 200 205
- Leu Phe Ile Leu Leu Ser Gly Cys Leu Pro Phe Tyr Gly Thr Lys Glu 210 215 220
- Arg Leu Phe Glu Gly Ile Ile Lys Gly Lys Tyr Lys Met Asn Pro Arg 225 230 235 240
- Gln Trp Ser His Ile Ser Glu Ser Ala Lys Asp Leu Val Arg Arg Met 245 250 255
- Leu Met Leu Asp Pro Ala Glu Arg Ile Thr Val Tyr Glu Ala Leu Asn 260 265 270
- His Pro Trp Leu Lys Glu Arg Asp Arg Tyr Ala Tyr Lys Ile His Leu 275 280 285
- Pro Glu Thr Val Glu Gln Leu Arg Lys Phe Asn Ala Arg Arg Lys Leu 290 295 300
- Lys Gly Ala Val Leu Ala Ala Val Ser Ser His Lys Phe Asn Ser Phe 305 310 315 320
- Tyr Gly Asp Pro Pro Glu Glu Leu Pro Asp Phe Ser Glu Asp Pro Thr 325 330 335
- Ser Ser Gly Leu Leu Ala Ala Glu Arg Ala Val Ser Gln Val Leu Asp 340 345 350
- Ser Leu Glu Glu Ile His Ala Leu Thr Asp Cys Ser Glu Lys Asp Leu 355 360 365
- Asp Phe Leu His Ser Val Phe Gln Asp Gln His Leu His Thr Leu Leu 370 380
- Asp Leu Tyr Asp Lys Ile Asn Thr Lys Ser Ser Pro Gln Ile Arg Asn 385 390 395 400
- Pro Pro Ser Asp Ala Val Gln Arg Ala Lys Glu Val Leu Glu Glu Ile 405 410 415
- Ser Cys Tyr Pro Glu Asn Asn Asp Ala Lys Glu Leu Lys Arg Ile Leu 420 425 430

Thr Gln Pro His Phe Met Ala Leu Leu Gln Thr His Asp Val Val Ala 435 440 445

His Glu Val Tyr Ser Asp Glu Ala Leu Arg Val Thr Pro Pro Pro Thr 450 455 460

Ser Pro Tyr Leu Asn Gly Asp Ser Pro Glu Ser Ala Asn Gly Gly Met 465 470 475 480

Asp Met Glu Asn Val Thr Arg Val Arg Leu Val Gln Phe Gln Lys Asn 485 490 495

Thr Asp Glu Pro Met Gly Ile Thr Leu Lys Met Asn Glu Leu Asn His 500 505 510

Cys Ile Val Ala Arg Ile Met His Gly Gly Met Ile His Arg Gln Gly 515 520 525

Thr Leu His Val Gly Asp Glu Ile Arg Glu Ile Asn Gly Ile Ser Val 530 535 540

Ala Asn Gln Thr Val Glu Gln Leu Gln Lys Met Leu Arg Glu Met Arg 545 550 555 560

Gly Ser Ile Thr Phe Lys Ile Val Pro Ser Tyr Arg Thr Gln Ser Ser 565 570 575

Ser Cys Glu Arg Asp Ser Pro Ser Thr Ser Arg Gln Ser Pro Ala Asn 580 585 590

Gly His Ser Ser Thr Asn Asn Ser Val Ser Asp Leu Pro Ser Thr Thr 595 600 605

Gln Pro Lys Gly Arg Gln Ile Tyr Val Arg Ala Gln Phe Glu Tyr Asp 610 615 620

Pro Ala Lys Asp Asp Leu Ile Pro Cys Lys Glu Ala Gly Ile Arg Phe 625 630 635 640

Arg Val Gly Asp Ile Ile Gln Ile Ile Ser Lys Asp Asp His Asn Trp 645 650 655

Trp Gln Gly Lys Leu Glu Asn Ser Lys Asn Gly Thr Ala Gly Leu Ile 660 665 670

Pro Ser Ser Glu Leu Gln Glu Trp Arg Val Ala Cys Ile Ala Met Glu 675 680 685

- Lys Thr Lys Gln Glu Gln Gln Ala Ser Cys Thr Trp Phe Gly Lys Lys 690 695 700
- Lys Lys Gln Tyr Lys Asp Lys Tyr Leu Ala Lys His Asn Ala Asp Leu 705 710 715 720
- Val Thr Tyr Glu Glu Val Val Lys Leu Pro Ala Phe Lys Arg Lys Thr 725 730 735
- Leu Val Leu Gly Ala His Gly Val Gly Arg Arg His Ile Lys Asn 740 745 750
- Thr Leu Ile Thr Lys His Pro Asp Arg Phe Ala Tyr Pro Ile Pro His 755 760 765
- Thr Thr Arg Pro Pro Lys Arg Asp Glu Glu Asn Gly Lys Asn Tyr Tyr 770 775 780
- Phe Val Ser His Asp Gln Met Met Gln Asp Ile Ser Asn Asn Glu Tyr 785 790 795 800
- Leu Glu Tyr Gly Ser His Glu Asp Ala Met Tyr Gly Thr Lys Leu Glu 805 810 815
- Thr Ile Arg Lys Ile His Glu Gln Gly Leu Ile Ala Ile Leu Asp Val 820 825 830
- Glu Pro Gln Ala Leu Lys Val Leu Arg Thr Ala Glu Phe Ala Pro Phe 835 840 845
- Val Val Phe Ile Ala Ala Pro Thr Ile Thr Pro Gly Leu Asn Glu Asp 850 855 860
- Glu Ser Leu Gln Arg Leu Gln Lys Glu Ser Asp Ile Leu Gln Arg Thr 865 870 875 880
- Tyr Ala His Tyr Phe Asp Leu Thr Ile Ile Asn Asn Glu Ile Asp Glu 885 890 895
- Thr Ile Arg His Leu Glu Glu Ala Val Glu Leu Val Cys Thr Ala Pro 900 905 910
- Gln Trp Val Pro Val Ser Trp Val Tyr 915 920

<210> 84 <211> 837 <212> PRT <213> Homo sapiens

<400> 84

Met Asn His Leu Glu Gly Ser Ala Glu Val Glu Val Thr Asp Glu Ala

Ala Gly Gly Glu Val Asn Glu Ser Val Glu Ala Asp Leu Glu His Pro 20

Glu Val Glu Glu Glu Gln Gln Pro Pro Gln Gln Gln His Tyr Val 40

Gly Arg His Gln Arg Gly Arg Ala Leu Glu Asp Leu Arg Ala Gln Leu

Gly Gln Glu Glu Glu Arg Gly Glu Cys Leu Ala Arg Ser Ala Ser

Thr Glu Ser Gly Phe His Asn His Thr Asp Thr Ala Glu Gly Asp Val 90

Ile Ala Ala Ala Arg Asp Gly Tyr Asp Ala Glu Arg Ala Gln Asp Pro 105

Glu Asp Glu Ser Ala Tyr Ala Val Gln Tyr Arg Pro Glu Ala Glu Glu 120 115

Tyr Thr Glu Gln Ala Glu Ala Glu His Ala Glu Ala Thr His Arg Arg 135 130

Ala Leu Pro Asn His Leu His Phe His Ser Leu Glu His Glu Glu Ala 145

Met Asn Ala Ala Tyr Ser Gly Tyr Val Tyr Thr His Arg Leu Phe His

Arg Gly Glu Asp Glu Pro Tyr Ser Glu Pro Tyr Ala Asp Tyr Gly Gly

Leu Gln Glu His Val Tyr Glu Glu Ile Gly Asp Ala Pro Glu Leu His 200

Ala Arg Asp Gly Leu Arg Leu Tyr Glu Gln Glu Arg Asp Glu Ala Ala

210 215 220

Ala Tyr Arg Gln Glu Ala Leu Gly Ala Arg Leu His His Tyr Asp Glu 225 230 235 240

Arg Ser Asp Gly Glu Ser Asp Ser Pro Glu Lys Glu Ala Glu Phe Ala 245 250 255

Pro Tyr Pro Arg Met Asp Ser Tyr Glu Glu Glu Glu Asp Ile Asp Glu 260 265 270

Ile Val Ala Glu Val Lys Gln Ser Met Ser Ser Gln Ser Leu Asp Lys 275 280 285

Ala Ala Glu Asp Met Pro Glu Ala Glu Gln Asp Leu Glu Arg Pro Pro 290 295 300

Thr Pro Ala Gly Gly Arg Pro Asp Ser Pro Gly Leu Gln Ala Pro Ala 305 310 315 320

Gly Gln Gln Arg Ala Val Gly Pro Ala Gly Gly Gly Glu Ala Gly Gln 325 330 335

Arg Tyr Ser Lys Glu Lys Arg Asp Ala Ile Ser Leu Ala Ile Lys Asp 340 345 350

Ile Lys Glu Ala Ile Glu Glu Val Lys Thr Arg Thr Ile Arg Ser Pro 355 360 365

Tyr Thr Pro Asp Glu Pro Lys Glu Pro Ile Trp Val Met Arg Gln Asp 370 375 380

Ile Ser Pro Thr Arg Asp Cys Asp Asp Gln Arg Pro Met Asp Gly Asp 385 390 395

Ser Pro Ser Pro Gly Ser Ser Ser Pro Leu Gly Ala Glu Ser Ser Ser 405 410 415

Thr Ser Leu His Pro Ser Asp Pro Val Glu Val Pro Ile Asn Lys Glu 420 425 430

Ser Arg Lys Ser Leu Ala Ser Phe Pro Thr Tyr Val Glu Val Pro Gly 435 440 445

Pro Cys Asp Pro Glu Asp Leu Ile Asp Gly Ile Ile Phe Ala Ala Asn 450 455 460

Tyr Leu Gly Ser Thr Gln Leu Leu Ser Asp Lys Thr Pro Ser Lys Asn 465 470 475 480

- Val Arg Met Met Gln Ala Gln Glu Ala Val Ser Arg Ile Lys Met Ala 485 490 495
- Gln Lys Leu Ala Lys Ser Arg Lys Lys Ala Pro Glu Gly Glu Ser Gln 500 505 510
- Pro Met Thr Glu Val Asp Leu Phe Ile Leu Thr Gln Arg Ile Lys Val 515 520 525
- Leu Asn Ala Asp Thr Gln Glu Thr Met Met Asp His Pro Leu Arg Thr 530 535 540
- Ile Ser Tyr Ile Ala Asp Ile Gly Asn Ile Val Val Leu Met Ala Arg 545 550 555 560
- Arg Arg Ile Pro Arg Ser Asn Ser Gln Glu Asn Val Glu Ala Ser His 565 570 575
- Pro Ser Gln Asp Gly Lys Arg Gln Tyr Lys Met Ile Cys His Val Phe 580 585 590
- Glu Ser Glu Asp Ala Gln Leu Ile Ala Gln Ser Ile Gly Gln Ala Phe 595 600 605
- Ser Val Ala Tyr Gln Glu Phe Leu Arg Ala Asn Gly Ile Asn Pro Glu 610 615 620
- Asp Leu Ser Gln Lys Glu Tyr Ser Asp Leu Leu Asn Thr Gln Asp Met 625 630 635 640
- Tyr Asn Asp Asp Leu Ile His Phe Ser Lys Ser Glu Asn Cys Lys Asp 645 650 655
- Val Phe Ile Glu Lys Gln Lys Gly Glu Ile Leu Gly Val Val Ile Val 660 665 670
- Glu Ser Gly Trp Gly Ser Ile Leu Pro Thr Val Ile Ile Ala Asn Met 675 680 685
- Met His Gly Gly Pro Ala Glu Lys Ser Gly Lys Leu Asn Ile Gly Asp 690 695 700
- Gln Ile Met Ser Ile Asn Gly Thr Ser Leu Val Gly Leu Pro Leu Ser

705 · 710 715 720

Thr Cys Gln Ser Ile Ile Lys Gly Leu Glu Asn Gln Ser Arg Val Lys
725 730 735

Leu Asn Ile Val Arg Cys Pro Pro Val Thr Thr Val Leu Ile Arg Arg 740 745 750

Pro Asp Leu Arg Tyr Gln Leu Gly Phe Ser Val Gln Asn Gly Ile Ile 755 760 765

Cys Ser Leu Met Arg Gly Gly Ile Ala Glu Arg Gly Gly Val Arg Val 770 780

Gly His Arg Ile Ile Glu Ile Asn Gly Gln Ser Val Val Ala Thr Pro 785 790 795 800

His Glu Lys Ile Val His Ile Leu Ser Asn Ala Val Gly Glu Ile His 805 810 815

Met Lys Thr Met Pro Ala Ala Met Tyr Arg Leu Leu Thr Ala Gln Glu 820 825 830

Gln Pro Val Tyr Ile 835

<210> 85

<211> 197

<212> PRT

<213> Homo sapiens

<400> 85

Met Ala Ala Leu Gly Glu Pro Val Arg Leu Glu Arg Asp Ile Cys Arg 1 5 10 15

Ala Ile Glu Leu Leu Glu Lys Leu Gln Arg Ser Gly Glu Val Pro Pro 20 25 30

Gln Lys Leu Gln Ala Leu Gln Arg Val Leu Gln Ser Glu Phe Cys Asn 35 40 45

Ala Val Arg Glu Val Tyr Glu His Val Tyr Glu Thr Val Asp Ile Ser 50 55 60

Ser Ser Pro Glu Val Arg Ala Asn Ala Thr Ala Lys Ala Thr Val Ala 65 70 75 80

PCT/US03/06025 WO 03/083047

Ala Phe Ala Ala Ser Glu Gly His Ser His Pro Arg Val Val Glu Leu 90

Pro Lys Thr Glu Glu Gly Leu Gly Phe Asn Ile Met Gly Gly Lys Glu 105 110

Gln Asn Ser Pro Ile Tyr Ile Ser Arg Ile Ile Pro Gly Gly Ile Ala 115 120 125

Asp Arg His Gly Gly Leu Lys Arg Gly Asp Gln Leu Leu Ser Val Asn 130 135

Gly Val Ser Val Glu Gly Glu His His Glu Lys Ala Val Glu Leu Leu 150 155

Lys Ala Ala Gln Gly Lys Val Lys Leu Val Val Arg Tyr Thr Pro Lys 165 170 175

Val Leu Glu Glu Met Glu Ser Arg Phe Glu Lys Met Arg Ser Ala Lys 190 185

Arg Arg Gln Gln Thr 195

<210> 86 <211> 744 <212> PRT <213> Homo sapiens

<400> 86

Met Ala Lys Arg Glu Asp Ser Pro Gly Pro Glu Val Gln Pro Met Asp

Lys Gln Phe Leu Val Cys Ser Ile Cys Leu Asp Arg Tyr Gln Cys Pro 25

Lys Val Leu Pro Cys Leu His Thr Phe Cys Glu Arg Cys Leu Gln Asn 45

Tyr Ile Pro Ala Gln Ser Leu Thr Leu Ser Cys Pro Val Cys Arg Gln

Thr Ser Ile Leu Pro Glu Gln Gly Val Ser Ala Leu Gln Asn Asn Phe

Phe Ile Ser Ser Leu Met Glu Ala Met Gln Gln Ala Pro Asp Gly Ala 90

His Asp Pro Glu Asp Pro His Pro Leu Ser Val Val Ala Gly Arg Pro 100 105 110

- Phe Ser Cys Pro Asn His Glu Gly Lys Thr Met Glu Phe Tyr Cys Glu 115 120 125
- Ala Cys Glu Thr Ala Met Cys Gly Glu Cys Arg Ala Gly Glu His Arg 130 135 140
- Glu His Gly Thr Val Leu Leu Arg Asp Val Val Glu Gln His Lys Ala 145 150 155 160
- Ala Leu Gln Arg Gln Leu Glu Ala Val Arg Gly Arg Leu Pro Gln Leu 165 170 175
- Ser Ala Ala Ile Ala Leu Val Gly Gly Ile Ser Gln Gln Leu Gln Glu 180 185 190
- Arg Lys Ala Glu Ala Leu Ala Gln Ile Ser Ala Ala Phe Glu Asp Leu 195 200 205
- Glu Gln Ala Leu Gln Gln Arg Lys Gln Ala Leu Val Ser Asp Leu Glu 210 215 220
- Thr Ile Cys Gly Ala Lys Gln Lys Val Leu Gln Thr Gln Leu Asp Thr 225 230 235 240
- Leu Arg Gln Gly Gln Glu His Ile Gly Ser Ser Cys Ser Phe Ala Glu 245 250 255
- Gln Ala Leu Arg Leu Gly Ser Ala Pro Glu Val Leu Leu Val Arg Lys 260 265 270
- His Met Arg Glu Arg Leu Ala Ala Leu Ala Ala Gln Ala Phe Pro Glu 275 280 285
- Arg Pro His Glu Asn Ala Gln Leu Glu Leu Val Leu Glu Val Asp Gly 290 295 300
- Leu Arg Arg Ser Val Leu Asn Leu Gly Ala Leu Leu Thr Thr Ser Ala 305 310 315 320
- Thr Ala His Glu Thr Val Ala Thr Gly Glu Gly Leu Arg Gln Ala Leu 325 330 335
- Val Gly Gln Pro Ala Ser Leu Thr Val Thr Ala Lys Asp Lys Asp Gly

340 345 350

Arg Leu Val Arg Thr Gly Ser Ala Glu Leu Arg Ala Glu Ile Thr Gly 355 360 365

Pro Asp Gly Thr Arg Leu Pro Val Pro Val Val Asp His Lys Asn Gly 370 375 380

Thr Tyr Glu Leu Val Tyr Thr Ala Arg Thr Glu Gly Glu Leu Leu 200 385 390 395 400

Ser Val Leu Leu Tyr Gly Gln Pro Val Arg Gly Ser Pro Phe Arg Val 405 410 415

Arg Ala Leu Arg Pro Gly Asp Leu Pro Pro Ser Pro Asp Asp Val Lys 420 425 430

Arg Arg Val Lys Ser Pro Gly Gly Pro Gly Ser His Val Arg Gln Lys 435 440 445

Ala Val Arg Arg Pro Ser Ser Met Tyr Ser Thr Gly Gly Lys Arg Lys 450 455 460

Asp Asn Pro Ile Glu Asp Glu Leu Val Phe Arg Val Gly Ser Arg Gly 465 470 475 480

Arg Glu Lys Gly Glu Phe Thr Asn Leu Gln Gly Val Ser Ala Ala Ser 485 490 495

Ser Gly Arg Ile Val Val Ala Asp Ser Asn Asn Gln Cys Ile Gln Val 500 505 510

Phe Ser Asn Glu Gly Gln Phe Lys Phe Arg Phe Gly Val Arg Gly Arg 515 520 525

Ser Pro Gly Gln Leu Gln Arg Pro Thr Gly Val Ala Val Asp Thr Asn 530 535 540

Gly Asp Ile Ile Val Ala Asp Tyr Asp Asn Arg Trp Val Ser Ile Phe 545 550 555 560

Ser Pro Glu Gly Lys Phe Lys Thr Lys Ile Gly Ala Gly Arg Leu Met 565 570 575

Gly Pro Lys Gly Val Ala Val Asp Arg Asn Gly His Ile Ile Val Val 580 585 590

Asp Asn Lys Ser Cys Cys Val Phe Thr Phe Gln Pro Asn Gly Lys Leu 595 600 605

Val Gly Arg Phe Gly Gly Arg Gly Ala Thr Asp Arg His Phe Ala Gly 610 615 620

Pro His Phe Val Ala Val Ser Asn Lys Asn Glu Val Val Val Thr Asp 625 630 635 640

Phe His Asn His Ser Glu Lys Val Tyr Ser Ala Asp Gly Glu Phe Leu 645 650 655

Phe Lys Phe Gly Ser His Gly Glu Gly Asn Gly Gln Phe Asn Ala Pro 660 665 670

Thr Gly Val Ala Val Asp Ser Asn Gly Asn Ile Ile Val Ala Asp Trp 675 680 685

Gly Asn Ser Arg Ile Gln Val Phe Asp Ser Ser Gly Ser Phe Leu Ser 690 695 700

Tyr Ile Asn Thr Ser Ala Glu Pro Leu Tyr Gly Pro Gln Gly Leu Ala 705 710 715 720

Leu Thr Ser Asp Gly His Val Val Val Ala Asp Ala Gly Asn His Cys 725 730 735

Phe Lys Ala Tyr Arg Tyr Leu Gln 740

<210> 87

<211> 618

<212> PRT

<213> Homo sapiens

<400> 87

Met Thr Gln Glu Tyr Asp Asn Lys Arg Pro Val Leu Ala Leu Gln Asn 1 5 10 15

Glu Ala Leu Tyr Pro Gln Arg Arg Ser Tyr Thr Ser Glu Asp Glu Ala 20 25 30

Trp Lys Ser Phe Leu Glu Asn Pro Leu Thr Ala Ala Thr Lys Ala Met 35 40 45

Met Ser Ile Asn Gly Asp Glu Asp Ser Ala Ala Ala Leu Gly Leu Leu 50 55 60

Tyr Asp Tyr Tyr Lys Val Pro Arg Glu Arg Arg Ser Ser Thr Ala Lys 75 80 70 Pro Glu Val Glu His Pro Glu Pro Asp His Ser Lys Arg Asn Ser Ile 85 Pro Ile Val Thr Glu Gln Pro Leu Ile Ser Ala Gly Glu Asn Arg Val Gln Val Leu Lys Asn Val Pro Phe Asn Ile Val Leu Pro His Gly Asn 120 Gln Leu Gly Ile Asp Lys Arg Gly His Leu Thr Ala Pro Asp Thr Thr 135 140 Val Thr Val Ser Ile Ala Thr Met Pro Thr His Ser Ile Lys Thr Glu 155 150 Thr Gln Pro His Gly Phe Ala Val Gly Ile Pro Pro Ala Val Tyr His 175 170 165 Pro Glu Pro Thr Glu Arg Val Val Phe Asp Arg Asn Leu Asn Thr 185 180 Asp Gln Phe Ser Ser Gly Ala Gln Ala Pro Asn Ala Gln Arg Arg Thr 200 195 Pro Asp Ser Thr Phe Ser Glu Thr Phe Lys Glu Gly Val Gln Glu Val 215 210 Phe Phe Pro Ser Asp Leu Ser Leu Arg Met Pro Gly Met Asn Ser Glu 240 230 225 Asp Tyr Val Phe Asp Ser Val Ser Gly Asn Asn Phe Glu Tyr Thr Leu 255 245 Glu Ala Ser Lys Ser Leu Arg Gln Lys Pro Gly Asp Ser Thr Met Thr 265 260 Tyr Leu Asn Lys Gly Gln Phe Tyr Pro Ile Thr Leu Lys Glu Val Ser 280 275 Ser Ser Glu Gly Ile His His Pro Ile Ser Lys Val Arg Ser Val Ile 300

295

290

Met Val Val Phe Ala Glu Asp Lys Ser Arg Glu Asp Gln Leu Arg His 305 310 315 320

- Trp Lys Tyr Trp His Ser Arg Gln His Thr Ala Lys Gln Arg Cys Ile 325 330 335
- Asp Ile Ala Asp Tyr Lys Glu Ser Phe Asn Thr Ile Ser Asn Ile Glu 340 345 350
- Glu Ile Ala Tyr Asn Ala Ile Ser Phe Thr Trp Asp Ile Asn Asp Glu 355 360 365
- Ala Lys Val Phe Ile Ser Val Asn Cys Leu Ser Thr Asp Phe Ser Ser 370 380
- Gln Lys Gly Val Lys Gly Leu Pro Leu Asn Ile Gln Val Asp Thr Tyr 385 390 395 400
- Ser Tyr Asn Asn Arg Ser Asn Lys Pro Val His Arg Ala Tyr Cys Gln 405 410 415
- Ile Lys Val Phe Cys Asp Lys Gly Ala Glu Arg Lys Ile Arg Asp Glu
 420 425 430
- Glu Arg Lys Gln Ser Lys Arg Lys Val Ser Asp Val Lys Val Pro Leu 435 440 445
- Leu Pro Ser His Lys Arg Met Asp Ile Thr Val Phe Lys Pro Phe Ile 450 455 460
- Asp Leu Asp Thr Gln Pro Val Leu Phe Ile Pro Asp Val His Phe Ala 465 470 475 480
- Asn Leu Gln Arg Gly Thr His Val Leu Pro Ile Ala Ser Glu Glu Leu 485 490 495
- Glu Gly Glu Gly Ser Val Leu Lys Arg Gly Pro Tyr Gly Thr Glu Asp 500 505 510
- Asp Phe Ala Val Pro Pro Ser Thr Lys Leu Ala Arg Ile Glu Glu Pro 515 520 525
- Lys Arg Val Leu Leu Tyr Val Arg Lys Glu Ser Glu Glu Val Phe Asp 530 535 540
- Ala Leu Met Leu Lys Thr Pro Ser Leu Lys Gly Leu Met Glu Ala Ile 545 550 555 560

Ser Asp Lys Tyr Asp Val Pro His Asp Lys Ile Gly Lys Ile Phe Lys 565 570 575

Lys Cys Lys Lys Gly Ile Leu Val Asn Met Asp Asp Asn Ile Val Lys 580 585 590

His Tyr Ser Asn Glu Asp Thr Phe Gln Leu Gln Ile Glu Glu Ala Gly 595 600 605

Gly Ser Tyr Lys Leu Thr Leu Thr Glu Ile 610 615

<210> 88

<211> 531

<212> PRT

<213> Homo sapiens

<400> 88

Met Asp Gly Ile Val Thr Glu Val Ala Val Gly Val Lys Arg Gly Ser 1 5 10 15

Asp Glu Leu Ser Gly Ser Val Leu Ser Ser Pro Asn Ser Asn Met 20 25 30

Ser Ser Met Val Val Thr Ala Asn Gly Asn Asp Ser Lys Lys Phe Lys 35 40 45

Gly Glu Asp Lys Met Asp Gly Ala Pro Ser Arg Val Leu His Ile Arg 50 55 60

Lys Leu Pro Gly Glu Val Thr Glu Thr Glu Val Ile Ala Leu Gly Leu 65 70 75 80

Pro Phe Gly Lys Val Thr Asn Ile Leu Met Leu Lys Gly Lys Asn Gln 85 90 95

Ala Phe Leu Glu Leu Ala Thr Glu Glu Ala Ala Ile Thr Met Val Asn 100 105 110

Tyr Tyr Ser Ala Val Thr Pro His Leu Arg Asn Gln Pro Ile Tyr Ile 115 120 125

Gln Tyr Ser Asn His Lys Glu Leu Lys Thr Asp Asn Thr Leu Asn Gln 130 135 140

Arg Ala Gln Ala Val Leu Gln Ala Val Thr Ala Val Gln Thr Ala Asn

145					150					155					160
Thr	Pro	Leu	Ser	Gly 165	Thr	Thr	Val	Ser	Glu 170	Ser	Ala	Val	Thr	Pro 175	Ala
Gln	Ser	Pro	Val 180	Leu	Arg	Ile	Ile	Ile 185	Asp	Asn	Met	Tyr	Tyr 190	Pro	Val
Thr	Leu	Asp 195	Val	Leu	His	Gln	Ile 200	Phe	Ser	Lys	Phe	Gly 205	Ala	Val	Leu
Lys	Ile 210	Ile	Thr	Phe	Thr	Lys 215	Asn	Asn	Gln	Phe	Gln 220	Ala	Leu	Leu	Gln
Tyr 225	Gly	Asp	Pro	Val	Asn 230	Ala	Gln	Gln	Ala	Lys 235	Leu	Ala	Leu	Asp	Gly 240
Gln	Asn	Ile	Tyr	Asn 245	Ala	Cys	Cys	Thr	Leu 250	Arg	Ile	Asp	Phe	Ser 255	Lys
Leu	Val	Asn	Leu 260	Asn	Val	Lys	Tyr	Asn 265	Asn	Asp	Lys	Ser	Arg 270	Asp	Tyr
Thr	Arg	Pro 275	Asp	Leu	Pro	Ser	Gly 280	Asp	Gly	Gln	Pro	Ala 285		Asp	Pro
Ala	Ile 290	Ala	Ala	Ala	Phe	Ala 295	Lys	Glu	Thr	Ser	Leu 300	Leu	Ala	Val	Pro
Gly 305	Ala	Leu	Ser	Pro	Leu 310		Ile	Pro	Asn	Ala 315		Ala	Ala	Ala	Ala 320
Ala	Ala	Ala	Ala	Gly 325		Val	Gly	Met	Pro 330		Val	Ser	Ala	Gly 335	G1y
Asn	Thr	Val	Leu 340		. Val	Ser	· Asn	Leu 345		Glu	Glu	Met	Val 350		Pro
Gln	Ser	Leu 355		Thr	Leu	Phe	Gly 360		Tyr	Gly	Asp	Val 365		Arg	Val
Lys	Ile 370		Туг	Asn	Lys	Lys 375	Asp	Ser	Ala	. Leu	380		. Met	Ala	Asp
Gly 385		Gln	Ser	Gln	Leu 390		ı Met	. Asn	His	Lev 395		Gly	Gln	Lys	Met 400

Tyr Gly Lys Ile Ile Arg Val Thr Leu Ser Lys His Gln Thr Val Gln 410 405

Leu Pro Arg Glu Gly Leu Asp Asp Gln Gly Leu Thr Lys Asp Phe Gly 425

Asn Ser Pro Leu His Arg Phe Lys Lys Pro Gly Ser Lys Asn Phe Gln 440

Asn Ile Phe Pro Pro Ser Ala Thr Leu His Leu Ser Asn Ile Pro Pro 455 450

Ser Val Ala Glu Glu Asp Leu Arg Thr Leu Phe Ala Asn Thr Gly Gly 475 465 470

Thr Val Lys Ala Phe Lys Phe Phe Gln Asp His Lys Met Ala Leu Leu 490 485

Gln Met Ala Thr Val Glu Glu Ala Ile Gln Ala Leu Ile Asp Leu His

Asn Tyr Asn Leu Gly Glu Asn His His Leu Arg Val Ser Phe Ser Lys

Ser Thr Ile 530

<210> 89

<211> 521 <212> PRT

<213> Homo sapiens

<400> 89

Met Asn Ser Ser Thr Pro Ser Thr Ala Asn Gly Asn Asp Ser Lys Lys 5

Phe Lys Arg Asp Arg Pro Pro Cys Ser Pro Ser Arg Val Leu His Leu 25 20

Arg Lys Ile Pro Cys Asp Val Thr Glu Ala Glu Ile Ile Ser Leu Gly 35

Leu Pro Phe Gly Lys Val Thr Asn Leu Leu Met Leu Lys Gly Lys Ser 50

Gln Ala Phe Leu Glu Met Ala Ser Glu Glu Ala Ala Val Thr Met Val 75 70 65

Asn Tyr Tyr Thr Pro Ile Thr Pro His Leu Arg Ser Gln Pro Val Tyr 85 Ile Gln Tyr Ser Asn His Arg Glu Leu Lys Thr Asp Asn Leu Pro Asn 105 Gln Ala Arg Ala Gln Ala Ala Leu Gln Ala Val Ser Ala Val Gln Ser 120 Gly Ser Leu Ala Leu Ser Gly Gly Pro Ser Asn Glu Gly Thr Val Leu 135 Pro Gly Gln Ser Pro Val Leu Arg Ile Ile Ile Glu Asn Leu Phe Tyr 155 150 Pro Val Thr Leu Glu Val Leu His Gln Ile Phe Ser Lys Phe Gly Thr 175 1.70 Val Leu Lys Ile Ile Thr Phe Thr Lys Asn Asn Gln Phe Gln Ala Leu 185 180 Leu Gln Tyr Ala Asp Pro Val Asn Ala His Tyr Ala Lys Met Ala Leu 205 200 195 Asp Gly Gln Asn Ile Tyr Asn Ala Cys Cys Thr Leu Arg Ile Asp Phe 215 210 Ser Lys Leu Thr Ser Leu Asn Val Lys Tyr Asn Asn Asp Lys Ser Arg 240 235 230 225

- Asp Phe Thr Arg Leu Asp Leu Pro Thr Gly Asp Gly Gln Pro Ser Leu 245 250 255
- Glu Pro Pro Met Ala Ala Ala Phe Gly Ala Pro Gly Ile Ile Ser Ser 260 265 270
- Pro Tyr Ala Gly Ala Ala Gly Phe Ala Pro Ala Ile Gly Phe Pro Gln 275 280 285
- Ala Thr Gly Leu Ser Val Pro Ala Val Pro Gly Ala Leu Gly Pro Leu 290 295 300
- Thr Ile Thr Ser Ser Ala Val Thr Gly Arg Met Ala Ile Pro Gly Ala 305 310 315 320

Ser Gly Ile Pro Gly Asn Ser Val Leu Leu Val Thr Asn Leu Asn Pro 325 330 335

- Asp Leu Ile Thr Pro His Gly Leu Phe Ile Leu Phe Gly Val Tyr Gly 340 345 350
- Asp Val His Arg Val Lys Ile Met Phe Asn Lys Lys Glu Asn Ala Leu 355 360 365
- Val Gln Met Ala Asp Ala Asn Gln Ala Gln Leu Ala Met Asn His Leu 370 375 380
- Ser Gly Gln Arg Leu Tyr Gly Lys Val Leu Arg Ala Thr Leu Ser Lys 385 390 395 400
- His Gln Ala Val Gln Leu Pro Arg Glu Gly Gln Glu Asp Gln Gly Leu 405 410 415
- Thr Lys Asp Phe Ser Asn Ser Pro Leu His Arg Phe Lys Lys Pro Gly 420 425 430
- Ser Lys Asn Phe Gln Asn Ile Phe Pro Pro Ser Ala Thr Leu His Leu 435 440 445
- Ser Asn Ile Pro Pro Ser Val Thr Val Asp Asp Leu Lys Asn Leu Phe 450 455 460
- Ile Glu Ala Gly Cys Ser Val Lys Ala Phe Lys Phe Phe Gln Lys Asp 465 470 475 480
- Arg Lys Met Ala Leu Ile Gln Leu Gly Ser Val Glu Glu Ala Ile Gln 485 490 495
- Ala Leu Ile Glu Leu His Asn His Asp Leu Gly Glu Asn His His Leu 500 505 510
- Arg Val Ser Phe Ser Lys Ser Thr Ile 515 520
- <210> 90
- <211> 557
- <212> PRT
- <213> Homo sapiens
- <400> 90
- Met Asp Gly Ile Val Pro Asp Ile Ala Val Gly Thr Lys Arg Gly Ser 1 5 10 15

Asp Glu Leu Phe Ser Thr Cys Val Thr Asn Gly Pro Phe Ile Met Ser 20 25 30

- Ser Asn Ser Ala Ser Ala Ala Asn Gly Asn Asp Ser Lys Lys Phe Lys 35 40 45
- Gly Asp Ser Arg Ser Ala Gly Val Pro Ser Arg Val Ile His Ile Arg 50 55 60
- Lys Leu Pro Ile Asp Val Thr Glu Gly Glu Val Ile Ser Leu Gly Leu 65 70 75 80
- Pro Phe Gly Lys Val Thr Asn Leu Leu Met Leu Lys Gly Lys Asn Gln 85 90 95
- Ala Phe Ile Glu Met Asn Thr Glu Glu Ala Ala Asn Thr Met Val Asn 100 105 110
- Tyr Tyr Thr Ser Val Thr Pro Val Leu Arg Gly Gln Pro Ile Tyr Ile 115 120 125
- Gln Phe Ser Asn His Lys Glu Leu Lys Thr Asp Ser Ser Pro Asn Gln 130 135 140
- Ala Arg Ala Gin Ala Ala Leu Gin Ala Val Asn Ser Val Gin Ser Gly 145 150 155 160
- Asn Leu Ala Leu Ala Ala Ser Ala Ala Val Asp Ala Gly Met Ala 165 170 175
- Met Ala Gly Gln Ser Pro Val Leu Arg Ile Ile Val Glu Asn Leu Phe 180 185 190
- Tyr Pro Val Thr Leu Asp Val Leu His Gln Ile Phe Ser Lys Phe Gly 195 200 205
- Thr Val Leu Lys Ile Ile Thr Phe Thr Lys Asn Asn Gln Phe Gln Ala 210 215 220
- Leu Leu Gln Tyr Ala Asp Pro Val Ser Ala Gln His Ala Lys Leu Ser 225 230 235 240
- Leu Asp Gly Gln Asn Ile Tyr Asn Ala Cys Cys Thr Leu Arg Ile Asp 245 250 255
- Phe Ser Lys Leu Thr Ser Leu Asn Val Lys Tyr Asn Asn Asp Lys Ser

260 265 270

Arg Asp Tyr Thr Arg Pro Asp Leu Pro Ser Gly Asp Ser Gln Pro Ser 275 280 285

Leu Asp Gln Thr Met Ala Ala Ala Phe Gly Ala Pro Gly Ile Ile Ser 290 295 300

Ala Ser Pro Tyr Ala Gly Ala Gly Phe Pro Pro Thr Phe Ala Ile Pro 305 310 315

Gln Ala Ala Gly Leu Ser Val Pro Asn Val His Gly Ala Leu Ala Pro 325 330 335

Leu Ala Ile Pro Ser Ala Ala Ala Ala Ala Ala Ala Ala Gly Arg Ile 340 345 350

Ala Ile Pro Gly Leu Ala Gly Ala Gly Asn Ser Val Leu Leu Val Ser 355 360 365

Asn Leu Asn Pro Glu Arg Val Thr Pro Gln Ser Leu Phe Ile Leu Phe 370 375 380

Gly Val Tyr Gly Asp Val Gln Arg Val Lys Ile Leu Phe Asn Lys Lys 385 390 395 400

Glu Asn Ala Leu Val Gln Met Ala Asp Gly Asn Gln Ala Gln Leu Ala 405 410 415

Met Ser His Leu Asn Gly His Lys Leu His Gly Lys Pro Ile Arg Ile 420 425 430

Thr Leu Ser Lys His Gln Asn Val Gln Leu Pro Arg Glu Gly Gln Glu 435 440 445

Asp Gln Gly Leu Thr Lys Asp Tyr Gly Asn Ser Pro Leu His Arg Phe 450 455 460

Lys Lys Pro Gly Ser Lys Asn Phe Gln Asn Ile Phe Pro Pro Ser Ala 465 470 475 480

Thr Leu His Leu Ser Asn Ile Pro Pro Ser Val Ser Glu Glu Asp Leu 485 490 495

Lys Val Leu Phe Ser Ser Asn Gly Gly Val Val Lys Gly Phe Lys Phe 500 505 510

Phe Gln Lys Asp Arg Lys Met Ala Leu Ile Gln Met Gly Ser Val Glu 515 520 525

Glu Ala Val Gln Ala Leu Ile Asp Leu His Asn His Asp Leu Gly Glu 530 535 540

Asn His His Leu Arg Val Ser Phe Ser Lys Ser Thr Ile 545 550 555

<210> 91

<211> 534

<212> PRT

<213> Homo sapiens

<400> 91

Met Ile Trp Tyr Ile Leu Ile Ile Gly Ile Leu Leu Pro Gln Ser Leu
1 10 15

Ala His Pro Gly Phe Phe Thr Ser Ile Gly Gln Met Thr Asp Leu Ile 20 25 30

His Thr Glu Lys Asp Leu Val Thr Ser Leu Lys Asp Tyr Ile Lys Ala 35 40 45

Glu Glu Asp Lys Leu Glu Gln Ile Lys Lys Trp Ala Glu Lys Leu Asp 50 55 60

Arg Leu Thr Ser Thr Ala Thr Lys Asp Pro Glu Gly Phe Val Gly His 65 70 75 80

Pro Val Asn Ala Phe Lys Leu Met Lys Arg Leu Asn Thr Glu Trp Ser 85 90 95

Glu Leu Glu Asn Leu Val Leu Lys Asp Met Ser Asp Gly Phe Ile Ser 100 105 110

Asn Leu Thr Ile Gln Arg Pro Val Leu Ser Asn Asp Glu Asp Gln Val 115 120 125

Gly Ala Ala Lys Ala Leu Leu Arg Leu Gln Asp Thr Tyr Asn Leu Asp 130 135 140

Thr Asp Thr Ile Ser Lys Gly Asn Leu Pro Gly Val Lys His Lys Ser 145 150 155 160

Phe Leu Thr Ala Glu Asp Cys Phe Glu Leu Gly Lys Val Ala Tyr Thr 165 170 175

Glu Ala Asp Tyr Tyr His Thr Glu Leu Trp Met Glu Gln Ala Leu Arg 180 185 190

- Gln Leu Asp Glu Gly Glu Ile Ser Thr Ile Asp Lys Val Ser Val Leu 195 200 205
- Asp Tyr Leu Ser Tyr Ala Val Tyr Gln Gln Gly Asp Leu Asp Lys Ala 210 215 220
- Leu Leu Thr Lys Lys Leu Leu Glu Leu Asp Pro Glu His Gln Arg 225 230 235 240
- Ala Asn Gly Asn Leu Lys Tyr Phe Glu Tyr Ile Met Ala Lys Glu Lys 245 250 255
- Asp Val Asn Lys Ser Ala Ser Asp Asp Gln Ser Asp Gln Lys Thr Thr 260 265 270
- Pro Lys Lys Gly Val Ala Val Asp Tyr Leu Pro Glu Arg Gln Lys 275 280 285
- Tyr Glu Met Leu Cys Arg Gly Glu Gly Ile Lys Met Thr Pro Arg Arg 290 295 300
- Gln Lys Lys Leu Phe Cys Arg Tyr His Asp Gly Asn Arg Asn Pro Lys 305 310 315 320
- Phe Ile Leu Ala Pro Ala Lys Gln Glu Asp Glu Trp Asp Lys Pro Arg 325 330 335
- Ile Ile Arg Phe His Asp Ile Ile Ser Asp Ala Glu Ile Glu Ile Val 340 345 350
- Lys Asp Leu Ala Lys Pro Arg Leu Ser Arg Ala Thr Val His Asp Pro 355 360 365
- Glu Thr Gly Lys Leu Thr Thr Ala Gln Tyr Arg Val Ser Lys Ser Ala 370 375 380
- Trp Leu Ser Gly Tyr Glu Asn Pro Val Val Ser Arg Ile Asn Met Arg 385 390 395 400
- Ile Gln Asp Leu Thr Gly Leu Asp Val Ser Thr Ala Glu Glu Leu Gln 405 410 415

Val Ala Asn Tyr Gly Val Gly Gly Gln Tyr Glu Pro His Phe Asp Phe 420

Ala Arg Lys Asp Glu Pro Asp Ala Phe Lys Glu Leu Gly Thr Gly Asn

Arg Ile Ala Thr Trp Leu Phe Tyr Met Ser Asp Val Ser Ala Gly Gly 455

Ala Thr Val Phe Pro Glu Val Gly Ala Ser Val Trp Pro Lys Lys Gly 475 470

Thr Ala Val Phe Trp Tyr Asn Leu Phe Ala Ser Gly Glu Gly Asp Tyr 485

Ser Thr Arg His Ala Ala Cys Pro Val Leu Val Gly Asn Lys Trp Val 505 510

Ser Asn Lys Trp Leu His Glu Arg Gly Gln Glu Phe Arg Arg Pro Cys 520

Thr Leu Ser Glu Leu Glu 530

<210> 92 <211> 535 <212> PRT <213> Homo sapiens

<400> 92

Met Lys Leu Trp Val Ser Ala Leu Leu Met Ala Trp Phe Gly Val Leu

Ser Cys Val Gln Ala Glu Phe Phe Thr Ser Ile Gly His Met Thr Asp 25

Leu Ile Tyr Ala Glu Lys Glu Leu Val Gln Ser Leu Lys Glu Tyr Ile

Leu Val Glu Glu Ala Lys Leu Ser Lys Ile Lys Ser Trp Ala Asn Lys

Met Glu Ala Leu Thr Ser Lys Ser Ala Ala Asp Ala Glu Gly Tyr Leu

Ala His Pro Val Asn Ala Tyr Lys Leu Val Lys Arg Leu Asn Thr Asp 90 85

Trp Pro Ala Leu Glu Asp Leu Val Leu Gln Asp Ser Ala Ala Gly Phe
100 105 110

- Ile Ala Asn Leu Ser Val Gln Arg Gln Phe Phe Pro Thr Asp Glu Asp 115 120 125
- Glu Ile Gly Ala Ala Lys Ala Leu Met Arg Leu Gln Asp Thr Tyr Arg 130 140
- Leu Asp Pro Gly Thr Ile Ser Arg Gly Glu Leu Pro Gly Thr Lys Tyr 145 150 155 160
- Gln Ala Met Leu Ser Val Asp Asp Cys Phe Gly Met Gly Arg Ser Ala 165 170 175
- Tyr Asn Glu Gly Asp Tyr Tyr His Thr Val Leu Trp Met Glu Gln Val 180 185 190
- Leu Lys Gln Leu Asp Ala Gly Glu Glu Ala Thr Thr Thr Lys Ser Gln 195 200 205
- Val Leu Asp Tyr Leu Ser Tyr Ala Val Phe Gln Leu Gly Asp Leu His 210 215 220
- Arg Ala Leu Glu Leu Thr Arg Arg Leu Leu Ser Leu Asp Pro Ser His 225 230 235 240
- Glu Arg Ala Gly Gly Asn Leu Arg Tyr Phe Glu Gln Leu Leu Glu Glu 245 250 255
- Glu Arg Glu Lys Thr Leu Thr Asn Gln Thr Glu Ala Glu Leu Ala Thr 260 265 270
- Pro Glu Gly Ile Tyr Glu Arg Pro Val Asp Tyr Leu Pro Glu Arg Asp 275 280 285
- Val Tyr Glu Ser Leu Cys Arg Gly Glu Gly Val Lys Leu Thr Pro Arg 290 295 300
- Arg Gln Lys Arg Leu Phe Cys Arg Tyr His His Gly Asn Arg Ala Pro 305 310 315 320
- Gln Leu Leu Ile Ala Pro Phe Lys Glu Glu Asp Glu Trp Asp Ser Pro 325 330 335
- His Ile Val Arg Tyr Tyr Asp Val Met Ser Asp Glu Glu Ile Glu Arg

340 345 350

Ile Lys Glu Ile Ala Lys Pro Lys Leu Ala Arg Ala Thr Val Arg Asp 355 360 365

Pro Lys Thr Gly Val Leu Thr Val Ala Ser Tyr Arg Val Ser Lys Ser 370 380

Ser Trp Leu Glu Glu Asp Asp Asp Pro Val Val Ala Arg Val Asn Arg 385 390 395 400

Arg Met Gln His Ile Thr Gly Leu Thr Val Lys Thr Ala Glu Leu Leu 405 410 415

Gln Val Ala Asn Tyr Gly Val Gly Gly Gln Tyr Glu Pro His Phe Asp 420 425 430

Phe Ser Arg Asn Asp Glu Arg Asp Thr Phe Lys His Leu Gly Thr Gly 435 440 445

Asn Arg Val Ala Thr Phe Leu Asn Tyr Met Ser Asp Val Glu Ala Gly 450 455 460

Gly Ala Thr Val Phe Pro Asp Leu Gly Ala Ala Ile Trp Pro Lys Lys 465 470 475 480

Gly Thr Ala Val Phe Trp Tyr Asn Leu Leu Arg Ser Gly Glu Gly Asp 485 490 495

Tyr Arg Thr Arg His Ala Ala Cys Pro Val Leu Val Gly Cys Lys Trp 500 505 510

Val Ser Asn Lys Trp Phe His Glu Arg Gly Gln Glu Phe Leu Arg Pro 515 520 525

Cys Gly Ser Thr Glu Val Asp 530 535

<210> 93

<211> 755

<212> PRT

<213> Homo sapiens

<400> 93

Met Glu Ala Val Ile Glu Lys Glu Cys Ser Ala Leu Gly Gly Leu Phe 1 5 10 15

Gln Thr Ile Ile Ser Asp Met Lys Gly Ser Tyr Pro Val Trp Glu Asp 20 25 30

- Phe Ile Asn Lys Ala Gly Lys Leu Gln Ser Gln Leu Arg Thr Thr Val 35 40 45
- Val Ala Ala Ala Phe Leu Asp Ala Phe Gln Lys Val Ala Asp Met 50 55 60
- Ala Thr Asn Thr Arg Gly Gly Thr Arg Glu Ile Gly Ser Ala Leu Thr 65 70 75 80
- Arg Met Cys Met Arg His Arg Ser Ile Glu Ala Lys Leu Arg Gln Phe 85 90 95
- Ser Ser Ala Leu Ile Asp Cys Leu Ile Asn Pro Leu Gln Glu Gln Met 100 105 110
- Glu Glu Trp Lys Lys Val Ala Asn Gln Leu Asp Lys Asp His Ala Lys 115 120 125
- Glu Tyr Lys Lys Ala Arg Gln Glu Ile Lys Lys Lys Ser Ser Asp Thr 130 135 140
- Leu Lys Leu Gln Lys Lys Ala Lys Lys Gly Arg Gly Asp Ile Gln Pro 145 150 155 160
- Gln Leu Asp Ser Ala Leu Gln Asp Val Asn Asp Lys Tyr Leu Leu Leu 165 170 175
- Glu Glu Thr Glu Lys Gln Ala Val Arg Lys Ala Leu Ile Glu Glu Arg 180 185 190
- Gly Arg Phe Cys Thr Phe Ile Ser Met Leu Arg Pro Val Ile Glu Glu 195 200 205
- Glu Ile Ser Met Leu Gly Glu Ile Thr His Leu Gln Thr Ile Ser Glu 210 215 220
- Asp Leu Lys Ser Leu Thr Met Asp Pro His Lys Leu Pro Ser Ser Ser 225 230 235 240
- Glu Gln Val Ile Leu Asp Leu Lys Gly Ser Asp Tyr Ser Trp Ser Tyr 245 250 255
- Gln Thr Pro Pro Ser Ser Pro Ser Thr Thr Met Ser Arg Lys Ser Ser 260 265 270

Val Cys Ser Ser Leu Asn Ser Val Asn Ser Ser Asp Ser Arg Ser Ser 275 280 285

Gly Ser His Ser His Ser Pro Ser Ser His Tyr Arg Tyr Arg Ser Ser 290 295 300

Asn Leu Ala Gln Gln Ala Pro Val Arg Leu Ser Ser Val Ser Ser His 305 310 315 320

Asp Ser Gly Phe Ile Ser Gln Asp Ala Phe Gln Ser Lys Ser Pro Ser 325 330 335

Pro Met Pro Pro Glu Ala Pro Asn Gln Leu Ser Asn Gly Phe Ser His 340 345 350

Tyr Ser Leu Ser Ser Glu Ser His Val Gly Pro Thr Gly Ala Gly Leu 355 360 365

Phe Pro His Cys Leu Pro Ala Ser Arg Leu Leu Pro Arg Val Thr Ser 370 375 380

Val His Leu Pro Asp Tyr Ala His Tyr Tyr Thr Ile Gly Pro Gly Met 385 390 395 400

Phe Pro Ser Ser Gln Ile Pro Ser Trp Lys Asp Trp Ala Lys Pro Gly 405 410 415

Pro Tyr Asp Gln Pro Leu Val Asn Thr Leu Gln Arg Arg Lys Glu Lys 420 425 430

Arg Glu Pro Asp Pro Asn Gly Gly Gly Pro Thr Thr Ala Ser Gly Pro
435 440 445

Pro Ala Ala Ala Glu Glu Ala Gln Arg Pro Arg Ser Met Thr Val Ser 450 455 460

Ala Ala Thr Arg Pro Gly Glu Glu Met Glu Ala Cys Glu Glu Leu Ala 465 470 475 480

Leu Ala Leu Ser Arg Gly Leu Gln Leu Asp Thr Gln Arg Ser Ser Arg 485 490 495

Asp Ser Leu Gln Cys Ser Ser Gly Tyr Ser Thr Gln Thr Thr Pro 500 505 510

Cys Cys Ser Glu Asp Thr Ile Pro Ser Gln Val Ser Asp Tyr Asp Tyr 515 520 525

Phe Ser Val Ser Gly Asp Gln Glu Ala Asp Gln Glu Phe Asp Lys 530 535 540

Ser Ser Thr Ile Pro Arg Asn Ser Asp Ile Ser Gln Ser Tyr Arg Arg 545 550 555 560

Met Phe Gln Ala Lys Arg Pro Ala Ser Thr Ala Gly Leu Pro Thr Thr 565 570 575

Leu Gly Pro Ala Met Val Thr Pro Gly Val Ala Thr Ile Arg Arg Thr 580 585 590

Pro Ser Thr Lys Pro Ser Val Arg Arg Gly Thr Ile Gly Ala Gly Pro 595 600 605

Ile Pro Ile Lys Thr Pro Val Ile Pro Val Lys Thr Pro Thr Val Pro 610 615 620

Asp Leu Pro Gly Val Met Pro Ala Pro Pro Asp Gly Pro Glu Glu Arg 625 630 635 635

Gly Glu His Ser Pro Glu Ser Pro Ser Val Gly Glu Gly Pro Gln Gly 645 650 655

Val Thr Ser Met Pro Ser Ser Met Trp Ser Gly Gln Ala Ser Val Asn 660 665 670

Pro Pro Leu Pro Gly Pro Lys Pro Ser Ile Pro Glu Glu His Arg Gln 675 680 685

Ala Ile Pro Glu Ser Glu Ala Glu Asp Gln Glu Arg Glu Pro Pro Ser 690 695 700

Ala Thr Val Ser Pro Gly Gln Ile Pro Glu Ser Asp Pro Ala Asp Leu 705 710 715 720

Ser Pro Arg Asp Thr Pro Gln Gly Glu Asp Met Leu Asn Ala Ile Arg 725 730 735

Arg Gly Val Lys Leu Lys Lys Thr Thr Thr Asn Asp Arg Ser Ala Pro 740 745

Arg Phe Ser 755

<210> 94

<211> 211

<212> PRT

<213> Homo sapiens

<400> 94

Met Cys Met Arg His Arg Ser Ile Glu Thr Lys Leu Arg Gln Phe Thr 1 5 10 15

Asn Ala Leu Leu Glu Ser Leu Ile Asn Pro Leu Gln Glu Arg Ile Glu 20 25 30

Asp Trp Lys Lys Ala Ala Asn Gln Leu Asp Lys Asp His Ala Lys Glu 35 40 45

Tyr Lys Arg Ala Arg His Glu Ile Lys Lys Lys Ser Ser Asp Thr Leu 50 55 60

Lys Leu Gln Lys Lys Ala Arg Lys Gly Lys Gly Asp Leu Gln Pro Gln 65 70 75 80

Leu Asp Ser Ala Leu Gln Asp Val Asn Asp Met Tyr Leu Leu Glu 85 90 95

Glu Thr Glu Lys Gln Ala Val Arg Arg Ala Leu Ile Glu Glu Arg Gly
100 105 110

Arg Phe Cys Thr Phe Ile Thr Phe Leu Gln Pro Val Val Asn Gly Glu 115 120 125

Leu Thr Met Leu Gly Glu Ile Thr His Leu Gln Gly Ile Ile Asp Asp 130 135 140

Leu Val Val Leu Thr Ala Glu Pro His Lys Leu Pro Pro Ala Ser Glu 145 150 155 160

Gln Val Ile Lys Asp Leu Lys Gly Ser Asp Tyr Ser Trp Ser Tyr Gln 165 170 175

Thr Pro Pro Ser Val Pro Ser Glu Pro Phe Val Ser Phe Leu Ser Val 180 185 190

Arg Phe Trp Lys Asn Ser Pro Leu Leu Pro Ala Pro Ser Thr Pro Ser 195 200 205

Ser Pro Ile

210

<210> 95

<211> 117 <212> PRT

<213> Homo sapiens

<400> 95

Met Arg Leu Arg Gln Ala Pro Glu Ser Arg Lys Val Phe Ile Gln Arg

Asp Tyr Ser Ser Gly Thr Gly Cys Gln Phe Gln Thr Met Phe Ser Met 25

Glu Leu Glu Asn Gln Ile Asp Arg Gln Gln Phe Glu Glu Ile Val Gln 40

Thr Leu Asn Asn Leu Tyr Ala Glu Ala Glu Lys Leu Gly Gly Gln Ser

Tyr Leu Glu Gly Cys Leu Ala Cys Leu Thr Ala Tyr Thr Ile Phe Leu 70

Cys Leu Glu Thr His Tyr Gln Lys Leu Leu Lys Lys Val Ser Lys Cys 85

Ile Gln Glu Gln Asn Glu Lys Ile Tyr Val Pro Gln Gly Leu Leu 105

Thr Asp Ser Ile Glu 115

<210> 96

<211> 104 <212> PRT

<213> Homo sapiens

<400> 96

Met Glu Asn Arg Ile Asp Arg Gln Gln Phe Glu Glu Thr Val Arg Thr

Leu Asn Asn Leu Tyr Ala Glu Ala Glu Lys Leu Gly Gln Ser Tyr

Leu Glu Gly Cys Leu Ala Cys Leu Thr Ala Tyr Thr Ile Phe Leu Cys

Met Glu Thr His Tyr Glu Lys Val Leu Lys Lys Val Ser Lys Tyr Ile

55 60 50

Gln Glu Gln Asn Glu Lys Ile Tyr Ala Pro Gln Gly Leu Leu Thr 75 70 65

Asp Pro Ile Glu Arg Gly Leu Arg Val Ile Glu Ile Thr Ile Tyr Glu 90 85

Asp Arg Gly Met Ser Ser Gly Arg 100

<210> 97

<211> 890 <212> PRT

<213> Homo sapiens

<400> 97

Met Asp Ser Asn Thr Ala Pro Leu Gly Pro Ser Cys Pro Gln Pro Pro

Pro Ala Pro Gln Pro Gln Ala Arg Ser Arg Leu Asn Ala Thr Ala Ser 25

Leu Glu Gln Glu Arg Ser Glu Arg Pro Arg Ala Pro Gly Pro Gln Ala 45 40

Gly Pro Gly Pro Gly Val Arg Asp Ala Ala Ala Pro Ala Glu Pro Gln 55

Ala Gln His Thr Arg Ser Arg Glu Arg Ala Asp Gly Thr Gly Pro Thr 75 70

Lys Gly Asp Met Glu Ile Pro Phe Glu Glu Val Leu Glu Arg Ala Lys 85

Ala Gly Asp Pro Lys Ala Gln Thr Glu Val Gly Lys His Tyr Leu Gln 105

Leu Ala Gly Asp Thr Asp Glu Glu Leu Asn Ser Cys Thr Ala Val Asp 115

Trp Leu Val Leu Ala Ala Lys Gln Gly Arg Arg Glu Ala Val Lys Leu 135 140 130

Leu Arg Arg Cys Leu Ala Asp Arg Arg Gly Ile Thr Ser Glu Asn Glu 155 145 150

Arg Glu Val Arg Gln Leu Ser Ser Glu Thr Asp Leu Glu Arg Ala Val 165 170 175

- Arg Lys Ala Ala Leu Val Met Tyr Trp Lys Leu Asn Pro Lys Lys Lys 180 185 190
- Lys Gln Val Ala Val Ala Glu Leu Leu Glu Asn Val Gly Gln Val Asn 195 200 205
- Glu His Asp Gly Gly Ala Gln Pro Gly Pro Val Pro Lys Ser Leu Gln 210 215 220
- Lys Gln Arg Arg Met Leu Glu Arg Leu Val Ser Ser Glu Ser Lys Asn 225 230 235 240
- Tyr Ile Ala Leu Asp Asp Phe Val Glu Ile Thr Lys Lys Tyr Ala Lys 245 250 255
- Gly Val Ile Pro Ser Ser Leu Phe Leu Gln Asp Asp Glu Asp Asp Asp 260 265 270
- Glu Leu Ala Gly Lys Ser Pro Glu Asp Leu Pro Leu Arg Leu Lys Val 275 280 285
- Val Lys Tyr Pro Leu His Ala Ile Met Glu Ile Lys Glu Tyr Leu Ile 290 295 300
- Asp Met Ala Ser Arg Ala Gly Met His Trp Leu Ser Thr Ile Ile Pro 305 310 315 320
- Thr His His Ile Asn Ala Leu Ile Phe Phe Phe Ile Ile Ser Asn Leu 325 330 335
- Thr Ile Asp Phe Phe Ala Phe Phe Ile Pro Leu Val Ile Phe Tyr Leu 340 345 350
- Ser Phe Ile Ser Met Val Ile Cys Thr Leu Lys Val Phe Gln Asp Ser 355 360 365
- Lys Ala Trp Glu Asn Phe Arg Thr Leu Thr Asp Leu Leu Leu Arg Phe 370 375 380
- Glu Pro Asn Leu Asp Val Glu Gln Ala Glu Val Asn Phe Gly Trp Asn 385 390 395 400
- His Leu Glu Pro Tyr Ala His Phe Leu Leu Ser Val Phe Phe Val Ile 405 410 415

Phe Ser Phe Pro Ile Ala Ser Lys Asp Cys Ile Pro Cys Ser Glu Leu 420 425 430

- Ala Val Ile Thr Gly Phe Phe Thr Val Thr Ser Tyr Leu Ser Leu Ser 435 440 445
- Thr His Ala Glu Pro Tyr Thr Arg Arg Ala Leu Ala Thr Glu Val Thr 450 455 460
- Ala Gly Leu Leu Ser Leu Leu Pro Ser Met Pro Leu Asn Trp Pro Tyr 465 470 475 480
- Leu Lys Val Leu Gly Gln Thr Phe Ile Thr Val Pro Val Gly His Leu 485 490 495
- Val Val Leu Asn Val Ser Val Pro Cys Leu Leu Tyr Val Tyr Leu Leu 500 505 510
- Tyr Leu Phe Phe Arg Met Ala Gln Leu Arg Asn Phe Lys Gly Thr Tyr 515 520 525
- Cys Tyr Leu Val Pro Tyr Leu Val Cys Phe Met Trp Cys Glu Leu Ser 530 535 540
- Val Val Ile Leu Leu Glu Ser Thr Gly Leu Gly Leu Leu Arg Ala Ser 545 550 555 560
- Ile Gly Tyr Phe Leu Phe Leu Phe Ala Leu Pro Ile Leu Val Ala Gly 565 570 575
- Leu Ala Leu Val Gly Val Leu Gln Phe Ala Arg Trp Phe Thr Ser Leu 580 585 590
- Glu Leu Thr Lys Ile Ala Val Thr Val Ala Val Cys Ser Val Pro Leu 595 600 605
- Leu Leu Arg Trp Trp Thr Lys Ala Ser Phe Ser Val Val Gly Met Val 610 615 620
- Lys Ser Leu Thr Arg Ser Ser Met Val Lys Leu Ile Leu Val Trp Leu 625 630 635 640
- Thr Ala Ile Val Leu Phe Cys Trp Phe Tyr Val Tyr Arg Ser Glu Gly 645 650 655

Met Lys Val Tyr Asn Ser Thr Leu Thr Trp Gln Gln Tyr Gly Ala Leu 660 665 670

Cys Gly Pro Arg Ala Trp Lys Glu Thr Asn Met Ala Arg Thr Gln Ile 675 680 685

Leu Cys Ser His Leu Glu Gly His Arg Val Thr Trp Thr Gly Arg Phe 690 695 700

Lys Tyr Val Arg Val Thr Asp Ile Asp Asn Ser Ala Glu Ser Ala Ile 705 710 715 720

Asn Met Leu Pro Phe Phe Ile Gly Asp Trp Met Arg Cys Leu Tyr Gly 725 730 735

Glu Ala Tyr Pro Ala Cys Ser Pro Gly Asn Thr Ser Thr Ala Glu Glu
740 745 750

Glu Leu Cys Arg Leu Lys Leu Leu Ala Lys His Pro Cys His Ile Lys 755 760 765

Lys Phe Asp Arg Tyr Lys Phe Glu Ile Thr Val Gly Met Pro Phe Ser 770 780

Ser Gly Ala Asp Gly Ser Arg Ser Arg Glu Glu Asp Asp Val Thr Lys 785 790 795 800

Asp Ile Val Leu Arg Ala Ser Ser Glu Phe Lys Ser Val Leu Leu Ser 805 810 815

Leu Arg Gln Gly Ser Leu Ile Glu Phe Ser Thr Ile Leu Glu Gly Arg 820 825 830

Leu Gly Ser Lys Trp Pro Val Phe Glu Leu Lys Ala Ile Ser Cys Leu 835 840 845

Asn Cys Met Ala Gln Leu Ser Pro Thr Arg Arg His Val Lys Ile Glu 850 855 860

His Asp Trp Arg Ser Thr Val His Gly Ala Val Lys Phe Ala Phe Asp 865 870 875 880

Phe Phe Phe Pro Phe Leu Ser Ala Ala 885 890

<210> 98 <211> 528

<212> PRT

<213> Homo sapiens

<400> 98

Met Ala Glu His Leu Glu Leu Leu Ala Glu Met Pro Met Val Gly Arg
1 5 10 15

Met Ser Thr Gln Glu Arg Leu Lys His Ala Gln Lys Arg Arg Ala Gln 20 25 30

Gln Val Lys Met Trp Ala Gln Ala Glu Lys Glu Ala Gln Gly Lys Lys 35 40 45

Gly Pro Gly Glu Arg Pro Arg Lys Glu Ala Ala Ser Gln Gly Leu Leu 50 55 60

Lys Gln Val Leu Phe Pro Pro Ser Val Val Leu Leu Glu Ala Ala Ala 65 70 75 80

Arg Asn Asp Leu Glu Glu Val Arg Gln Phe Leu Gly Ser Gly Val Ser 85 90 95

Pro Asp Leu Ala Asn Glu Asp Gly Leu Thr Ala Leu His Gln Cys Cys 100 105 110

Ile Asp Asp Phe Arg Glu Met Val Gln Gln Leu Leu Glu Ala Gly Ala 115 120 125

Asn Ile Asn Ala Cys Asp Ser Glu Cys Trp Thr Pro Leu His Ala Ala 130 135 140

Ala Thr Cys Gly His Leu His Leu Val Glu Leu Leu Ile Ala Ser Gly 145 150 155 160

Ala Asn Leu Leu Ala Val Asn Thr Asp Gly Asn Met Pro Tyr Asp Leu 165 170 175

Cys Asp Asp Glu Gln Thr Leu Asp Cys Leu Glu Thr Ala Met Ala Asp 180 185 190

Arg Gly Ile Thr Gln Asp Ser Ile Glu Ala Ala Arg Ala Val Pro Glu 195 200 205

Leu Arg Met Leu Asp Asp Ile Arg Ser Arg Leu Gln Ala Gly Ala Asp 210 215 220

Leu His Ala Pro Leu Asp His Gly Ala Thr Leu Leu His Val Ala Ala

225					230					235					240
Ala	Asn	Gly	Phe	Ser 245	Glu	Ala	Ala	Ala	Leu 250	Leu	Leu	Glu	His	Arg 255	Ala
Ser	Leu	Ser	Ala 260	Lys	Asp	Gln	Asp	Gly 265	Trp	Glu	Pro	Leu	His 270	Ala	Ala
Ala	Tyr	Trp 275	Gly	Gln	Val	Pro	Leu 280	Val	Glu	Leu	Leu	Val 285	Ala	His	Gly
Ala	Asp 290	Leu	Asn	Ala	Lys	Ser 295	Leu	Met	Asp	Glu	Thr 300	Pro	Leu	Asp	Val
Cys 305	Gly	Asp	Glu	Glu	Val 310	Arg	Ala	Lys	Leu	Leu 315	Glu	Leu	Lys	His	Lys 320
His	Asp	Ala	Leu	Leu 325	Arg	Ala	Gln	Ser	Arg 330	Gln	Arg	Ser	Leu	Leu 335	Arg
Arg	Arg	Thr	Ser 340	Ser	Ala	Gly	Ser	Arg 345		Lys	Val	Val	Arg 350	Arg	Val
Ser	Leu	Thr 355	Gln	Arg	Thr	Asp	Leu 360	Tyr	Arg	Lys	Gln	His 365	Ala	Gln	Glu
Ala	Ile 370	Val	Trp	Gln	Gln	Pro 375	Pro	Pro	Thr	Ser	Pro 380		Pro	Ьio	Glu
Asp 385	Asn	Asp	Asp	Arg	Gln 390	Thr	Gly	Ala	Glu	Leu 395		Pro	Pro	Pro	Pro 400
Glu	Glu	Asp	Asn	Pro 405		Val	Val	Arg	Pro 410		Asn	Gly	Arg	Val 415	Gly
Gly	Ser	Pro	Val 420		His	Leu	Tyr	Ser 425		Arg	Leu	Asp	Arg 430	Ser	Val
Ser	Tyr	Gln 435		Ser	Pro	Leu	Asp 440		Thr	Thr	Pro	His 445	Thr	Leu	Val
His	Asp 450		Ala	His	His	Thr 455		Ala	Asp	Lev	1 Lys 460		, Gln	Arg	, Ala
Ala 465		Lys	Lev	Glr	Arg 470		Pro	Pro	Glu	Gly 475	Pro	Glu	Ser	Pro	Glu 480

Thr Ala Glu Pro Gly Leu Pro Gly Asp Thr Val Thr Pro Gln Pro Asp 485 490 495

Cys Gly Phe Arg Ala Gly Gly Asp Pro Pro Leu Leu Lys Leu Thr Ala 500 505 510

Pro Ala Val Glu Ala Pro Val Glu Arg Arg Pro Cys Cys Leu Leu Met 515 520 525

<210> 99

<211> 567

<212> PRT

<213> Homo sapiens

<400> 99

Met Ala Ser His Val Asp Leu Leu Thr Glu Leu Gln Leu Glu Lys
1 5 10 15

Val Pro Thr Leu Glu Arg Leu Arg Ala Ala Gln Lys Arg Arg Ala Gln 20 25 30

Gln Leu Lys Lys Trp Ala Gln Tyr Glu Gln Asp Leu Gln His Arg Lys 35 40 45

Arg Lys His Glu Arg Lys Arg Ser Thr Gly Gly Arg Arg Lys Lys Val 50 60

Ser Phe Glu Ala Ser Val Ala Leu Leu Glu Ala Ser Leu Arg Asn Asp 65 70 75 80

Ala Glu Glu Val Arg Tyr Phe Leu Lys Asn Lys Val Ser Pro Asp Leu 85 90 95

Cys Asn Glu Asp Gly Leu Thr Ala Leu His Gln Cys Cys Ile Asp Asn 100 105 110

Phe Glu Glu Ile Val Lys Leu Leu Ser His Gly Ala Asn Val Asn 115 120 125

Ala Lys Asp Asn Glu Leu Trp Thr Pro Leu His Ala Ala Ala Thr Cys 130 135 140

Gly His Ile Asn Leu Val Lys Ile Leu Val Gln Tyr Gly Ala Asp Leu 145 150 155 160

Leu Ala Val Asn Ser Asp Gly Asn Met Pro Tyr Asp Leu Cys Glu Asp 165 170 175

Glu Pro Thr Leu Asp Val Ile Glu Thr Cys Met Ala Tyr Gln Gly Ile 180 185 190

- Thr Gln Glu Lys Ile Asn Glu Met Arg Val Ala Pro Glu Gln Gln Met 195 200 205
- Ile Ala Asp Ile His Cys Met Ile Ala Ala Gly Gln Asp Leu Asp Trp 210 215 220
- Ile Asp Ala Gln Gly Ala Thr Leu Leu His Ile Ala Gly Ala Asn Gly 225 230 235 240
- Tyr Leu Arg Ala Ala Glu Leu Leu Leu Asp His Gly Val Arg Val Asp 245 250 255
- Val Lys Asp Trp Asp Gly Trp Glu Pro Leu His Ala Ala Phe Trp 260 265 270
- Gly Gln Met Gln Met Ala Glu Leu Leu Val Ser His Gly Ala Ser Leu 275 280 285
- Ser Ala Arg Thr Ser Met Asp Glu Met Pro Ile Asp Leu Cys Glu Glu 290 295 300
- Glu Glu Phe Lys Val Leu Leu Leu Glu Leu Lys His Lys His Asp Val 305 310 315
- Ile Met Lys Ser Gln Leu Arg His Lys Ser Ser Leu Ser Arg Arg Thr 325 330 335
- Ser Ser Ala Gly Ser Arg Gly Lys Val Val Arg Arg Ala Ser Leu Ser 340 345 350
- Asp Arg Thr Asn Leu Tyr Arg Lys Glu Tyr Glu Gly Glu Ala Ile Leu 355 360 365
- Trp Gln Arg Ser Ala Ala Glu Asp Gln Arg Thr Ser Thr Tyr Asn Gly 370 375 380
- Asp Ile Arg Glu Thr Arg Thr Asp Gln Glu Asn Lys Asp Pro Asn Pro 385 390 395 400
- Arg Leu Glu Lys Pro Val Leu Leu Ser Glu Phe Pro Thr Lys Ile Pro 405 410 415

Ser Ala Tyr Gln Tyr Ala Leu Ala Asn Gly Asp Val Trp Lys Val His
435 440 445

Glu Val Pro Asp Tyr Ser Met Ala Tyr Gly Asn Pro Gly Val Ala Asp 450 455 460

Ala Thr Pro Pro Trp Ser Ser Tyr Lys Glu Gln Ser Pro Gln Thr Leu 465 470 475 480

Leu Glu Leu Lys Arg Gln Arg Ala Ala Ala Lys Leu Leu Ser His Pro 485 490 495

Phe Leu Ser Thr His Leu Gly Ser Ser Met Ala Arg Thr Gly Glu Ser 500 505 510

Ser Ser Glu Gly Lys Ala Pro Leu Ile Gly Gly Arg Thr Ser Pro Tyr 515 520 525

Ser Ser Asn Gly Thr Ser Val Tyr Tyr Thr Val Thr Ser Gly Asp Pro 530 535 540

Pro Leu Leu Lys Phe Lys Ala Pro Ile Glu Glu Met Glu Glu Lys Val 545 550 555 560

His Gly Cys Cys Arg Ile Ser 565

<210> 100

<211> 380

<212> PRT

<213> Homo sapiens

<400> 100

Met Leu Arg Arg Lys Pro Ser Asn Ala Ser Glu Lys Glu Pro Thr Gln
1 5 10 15

Lys Lys Lys Leu Ser Leu Gln Arg Ser Ser Ser Phe Lys Asp Phe Ala 20 25 30

Lys Ser Lys Pro Ser Ser Pro Val Val Ser Glu Lys Glu Phe Asn Leu 35 40 45

Asp Asp Asn Ile Pro Glu Asp Asp Ser Gly Val Pro Thr Pro Glu Asp 50 55 60

Ala Gly Lys Ser Gly Lys Lys Leu Gly Lys Lys Trp Arg Ala Val Ile 65 70 75 80

- Ser Arg Thr Met Asn Arg Lys Met Gly Lys Met Met Val Lys Ala Leu 85 90 95
- Ser Glu Glu Met Ala Asp Thr Leu Glu Glu Gly Ser Ala Ser Pro Thr 100 105 110
- Ser Pro Asp Tyr Ser Leu Asp Ser Pro Gly Pro Glu Lys Met Ala Leu 115 120 125
- Ala Phe Ser Glu Gln Glu Glu His Glu Leu Pro Val Leu Ser Arg Gln 130 135 140
- Ala Ser Thr Gly Ser Glu Leu Cys Ser Pro Ser Pro Gly Ser Gly Ser 145 150 155 160
- Phe Gly Glu Glu Pro Pro Ala Pro Gln Tyr Thr Gly Pro Phe Cys Gly 165 170 175
- Arg Ala Arg Val His Thr Asp Phe Thr Pro Ser Pro Tyr Asp His Asp 180 185 190
- Ser Leu Lys Leu Gln Lys Gly Asp Val Ile Gln Ile Ile Glu Lys Pro 195 200 205
- Pro Val Gly Thr Trp Leu Gly Leu Leu Asn Gly Lys Val Gly Ser Phe 210 215 220
- Lys Phe Ile Tyr Val Asp Val Leu Pro Glu Glu Ala Val Gly His Ala 225 230 235 240
- Arg Pro Ser Arg Gln Ser Lys Gly Lys Arg Pro Lys Pro Lys Thr 245 250 255
- Leu His Glu Leu Leu Glu Arg Ile Gly Leu Glu Glu His Thr Ser Thr 260 265 270
- Leu Leu Leu Asn Gly Tyr Gln Thr Leu Glu Asp Phe Lys Glu Leu Arg 275 280 285
- Glu Thr His Leu Asn Glu Leu Asn Ile Met Asp Pro Gln His Arg Ala 290 295 300
- Lys Leu Leu Thr Ala Ala Glu Leu Leu Leu Asp Tyr Asp Thr Gly Ser

PCT/US03/06025 WO 03/083047

315 320 310 305

Glu Glu Ala Glu Glu Gly Ala Glu Ser Ser Gln Glu Pro Val Ala His 330 325

Thr Val Ser Glu Pro Lys Val Asp Ile Pro Arg Asp Ser Gly Cys Phe 345

Glu Gly Ser Glu Ser Gly Arg Asp Asp Ala Glu Leu Ala Gly Thr Glu 360

Glu Gln Leu Gln Gly Leu Ser Leu Ala Gly Ala Pro 370

<210> 101 <211> 1247 <212> PRT <213> Homo sapiens

<400> 101

Met Glu Asp Ala Gly Ala Ala Gly Pro Gly Pro Glu Pro Glu Pro Glu 10

Pro Glu Pro Glu Pro Glu Pro Glu Pro Glu Pro Glu Pro Lys 25

Pro Gly Ala Gly Thr Ser Glu Ala Phe Ser Arg Leu Trp Thr Asp Val 45 35 40

Met Gly Ile Leu Asp Gly Ser Leu Gly Asn Ile Asp Asp Leu Ala Gln 60 50 55

Gln Tyr Ala Asp Tyr Tyr Asn Thr Cys Phe Ser Asp Val Cys Glu Arg 70 75

Met Glu Glu Leu Arg Lys Arg Arg Val Ser Gln Asp Leu Glu Val Glu 85

Lys Pro Asp Ala Ser Pro Thr Ser Leu Gln Leu Arg Ser Gln Ile Glu 100 105 110

Glu Ser Leu Gly Phe Cys Ser Ala Val Ser Thr Pro Glu Val Glu Arg 115 120 125

Lys Asn Pro Leu His Lys Ser Asn Ser Glu Asp Ser Ser Val Gly Lys 140 130 135

320

Gly Asp Trp Lys Lys Lys Asn Lys Tyr Phe Trp Gln Asn Phe Arg Lys 145 150 155 160

- Asn Gln Lys Gly Ile Met Arg Gln Thr Ser Lys Gly Glu Asp Val Gly 165 170 175
- Tyr Val Ala Ser Glu Ile Thr Met Ser Asp Glu Glu Arg Ile Gln Leu 180 185 190
- Met Met Met Val Lys Glu Lys Met Ile Thr Ile Glu Glu Ala Leu Ala 195 200 205
- Arg Leu Lys Glu Tyr Glu Ala Gln His Arg Gln Ser Ala Ala Leu Asp 210 215 220
- Pro Ala Asp Trp Pro Asp Gly Ser Tyr Pro Thr Phe Asp Gly Ser Ser 225 230 235 240
- Asn Cys Asn Ser Arg Glu Gln Ser Asp Asp Glu Thr Glu Glu Ser Val 245 250 255
- Lys Phe Lys Arg Leu His Lys Leu Val Asn Ser Thr Arg Arg Val Arg 260 265 270
- Lys Lys Leu Ile Arg Val Glu Glu Met Lys Lys Pro Ser Thr Glu Gly 275 280 285
- Gly Glu Glu His Val Phe Glu Asn Ser Pro Val Leu Asp Glu Arg Ser 290 295 300
- Ala Leu Tyr Ser Gly Val His Lys Lys Pro Leu Phe Phe Asp Gly Ser 305 310 315 320
- Pro Glu Lys Pro Pro Glu Asp Asp Ser Asp Ser Leu Thr Thr Ser Pro 325 330 335
- Ser Ser Ser Leu Asp Thr Trp Gly Ala Gly Arg Lys Leu Val Lys 340 345 350
- Thr Phe Ser Lys Gly Glu Ser Arg Gly Leu Ile Lys Pro Pro Lys Lys 355 360 365
- Met Gly Thr Phe Phe Ser Tyr Pro Glu Glu Glu Lys Ala Gln Lys Val 370 380
- Ser Arg Ser Leu Thr Glu Gly Glu Met Lys Lys Gly Leu Gly Ser Leu 385 390 395 400

Ser His Gly Arg Thr Cys Ser Phe Gly Gly Phe Asp Leu Thr Asn Arg Ser Leu His Val Gly Ser Asn Asn Ser Asp Pro Met Gly Lys Glu Gly Asp Phe Val Tyr Lys Glu Val Ile Lys Ser Pro Thr Ala Ser Arg Ile Ser Leu Gly Lys Lys Val Lys Ser Val Lys Glu Thr Met Arg Lys Arg Met Ser Lys Lys Tyr Ser Ser Ser Val Ser Glu Gln Asp Ser Gly Leu Asp Gly Met Pro Gly Ser Pro Pro Pro Ser Gln Pro Asp Pro Glu His Leu Asp Lys Pro Lys Leu Lys Ala Gly Gly Ser Val Glu Ser Leu Arg Ser Ser Leu Ser Gly Gln Ser Ser Met Ser Gly Gln Thr Val Ser Thr Thr Asp Ser Ser Thr Ser Asn Arg Glu Ser Val Lys Ser Glu Asp Gly Asp Asp Glu Glu Pro Pro Tyr Arg Gly Pro Phe Cys Gly Arg Ala Arg Val His Thr Asp Phe Thr Pro Ser Pro Tyr Asp Thr Asp Ser Leu Lys Leu Lys Lys Gly Asp Ile Ile Asp Ile Ile Ser Lys Pro Pro Met Gly Thr Trp Met Gly Leu Leu Asn Asn Lys Val Gly Thr Phe Lys Phe Ile Tyr Val Asp Val Leu Ser Glu Asp Glu Glu Lys Pro Lys Arg Pro Thr Arg Arg Arg Lys Gly Arg Pro Pro Gln Pro Lys Ser Val Glu Asp 625 _.

Leu Leu Asp Arg Ile Asn Leu Lys Glu His Met Pro Thr Phe Leu Phe 645 650 655

Asn Gly Tyr Glu Asp Leu Asp Thr Phe Lys Leu Leu Glu Glu Glu Asp 660 665 670

Leu Asp Glu Leu Asn Ile Arg Asp Pro Glu His Arg Ala Val Leu Leu 675 680 685

Thr Ala Val Glu Leu Leu Gln Glu Tyr Asp Ser Asn Ser Asp Gln Ser 690 695 700

Gly Ser Gln Glu Lys Leu Leu Val Asp Ser Gln Gly Leu Ser Gly Cys 705 710 715 720

Ser Pro Arg Asp Ser Gly Cys Tyr Glu Ser Ser Glu Asn Leu Glu Asn 725 730 735

Gly Lys Thr Arg Lys Ala Ser Leu Leu Ser Ala Lys Ser Ser Thr Glu 740 745 750

Pro Ser Leu Lys Ser Phe Ser Arg Asn Gln Leu Gly Asn Tyr Pro Thr 755 760 765

Leu Pro Leu Met Lys Ser Gly Asp Ala Leu Lys Gln Gly Gln Glu Glu 770 775 780

Gly Arg Leu Gly Gly Gly Leu Ala Pro Asp Thr Ser Lys Ser Cys Asp 785 790 795

Pro Pro Gly Val Thr Gly Leu Asn Lys Asn Arg Arg Ser Leu Pro Val 805 810 815

Ser Ile Cys Arg Ser Cys Glu Thr Leu Glu Gly Pro Gln Thr Val Asp 820 825 830

Thr Trp Pro Arg Ser His Ser Leu Asp Asp Leu Gln Val Glu Pro Gly 835 840 845

Ala Glu Gln Asp Val Pro Thr Glu Val Thr Glu Pro Pro Pro Gln Ile 850 855 860

Val Pro Glu Val Pro Gln Lys Thr Thr Ala Ser Ser Thr Lys Ala Gln 865 870 875 880

Pro Leu Glu Gln Asp Ser Ala Val Asp Asn Ala Leu Leu Leu Thr Gln 885 890 895

Ser Lys Arg Phe Ser Glu Pro Gln Lys Leu Thr Thr Lys Lys Leu Glu 900 905 910

- Gly Ser Ile Ala Ala Ser Gly Arg Gly Leu Ser Pro Pro Gln Cys Leu 915 920 925
- Pro Arg Asn Tyr Asp Ala Gln Pro Pro Gly Ala Lys His Gly Leu Ala 930 935 940
- Arg Thr Pro Leu Glu Gly His Arg Lys Gly His Glu Phe Glu Gly Thr 945 950 955 960
- His His Pro Leu Gly Thr Lys Glu Gly Val Asp Ala Glu Gln Arg Met 965 970 975
- Gln Pro Lys Ile Pro Ser Gln Pro Pro Pro Val Pro Ala Lys Lys Ser 980 985 990
- Arg Glu Arg Leu Ala Asn Gly Leu His Pro Val Pro Met Gly Pro Ser 995 1000 1005
- Gly Ala Leu Pro Ser Pro Asp Ala Pro Cys Leu Pro Val Lys Arg 1010 1015 1020
- Gly Ser Pro Ala Ser Pro Thr Ser Pro Ser Asp Cys Pro Pro Ala 1025 1030 1035
- Leu Ala Pro Arg Pro Leu Ser Gly Gln Ala Pro Gly Ser Pro Pro 1040 1045 1050
- Ser Thr Arg Pro Pro Pro Trp Leu Ser Glu Leu Pro Glu Asn Thr 1055 1060 1065
- Ser Leu Gln Glu His Gly Val Lys Leu Gly Pro Ala Leu Thr Arg 1070 1075 1080
- Lys Val Ser Cys Ala Arg Gly Val Asp Leu Glu Thr Leu Thr Glu 1085 1090 1095
- Asn Lys Leu His Ala Glu Gly Ile Asp Leu Thr Glu Glu Pro Tyr 1100 1105 1110
- Ser Asp Lys His Gly Arg Cys Gly Ile Pro Glu Ala Leu Val Gln 1115 1120 1125

Arg Tyr Ala Glu Asp Leu Asp Gln Pro Glu Arg Asp Val Ala Ala 1130 1135 1140

- Asn Met Asp Gln Ile Arg Val Lys Gln Leu Arg Lys Gln His Arg 1145 1150 1155
- Met Ala Ile Pro Ser Gly Gly Leu Thr Glu Ile Cys Arg Lys Pro 1160 1165 1170
- Val Ser Pro Gly Cys Ile Ser Ser Val Ser Asp Trp Leu Ile Ser 1175 1180 1185
- Ile Gly Leu Pro Met Tyr Ala Gly Thr Leu Ser Thr Ala Gly Phe 1190 1195 1200
- Ser Thr Leu Ser Gln Val Pro Ser Leu Ser His Thr Cys Leu Gln 1205 1210 1215
- Glu Ala Gly Ile Thr Glu Glu Arg His Ile Arg Lys Leu Leu Ser 1220 1225 1230
- Ala Ala Arg Leu Phe Lys Leu Pro Pro Gly Pro Glu Ala Met 1235 1240 1245

<210> 102

<211> 373

<212> PRT

<213> Homo sapiens

<400> 102

- Met Leu Lys Arg Lys Pro Ser Asn Val Ser Glu Lys Glu Lys His Gln 1 10 15
- Lys Pro Lys Arg Ser Ser Ser Phe Gly Asn Phe Asp Arg Phe Arg Asn 20 25 30
- Asn Ser Leu Ser Lys Pro Asp Asp Ser Thr Glu Ala His Glu Gly Asp 35 40 45
- Pro Thr Asn Gly Ser Gly Glu Gln Ser Lys Thr Ser Asn Asn Gly Gly 50 55 60
- Gly Leu Gly Lys Lys Met Arg Ala Ile Ser Trp Thr Met Lys Lys Lys 65 70 75 80
- Val Gly Lys Lys Tyr Ile Lys Ala Leu Ser Glu Glu Lys Asp Glu Glu 85 90 95

Asp Gly Glu Asn Ala His Pro Tyr Arg Asn Ser Asp Pro Val Ile Gly 100 105 110

Thr His Thr Glu Lys Val Ser Leu Lys Ala Ser Asp Ser Met Asp Ser 115 120 125

Leu Tyr Ser Gly Gln Ser Ser Ser Ser Gly Ile Thr Ser Cys Ser Asp 130 135 140

Gly Thr Ser Asn Arg Asp Ser Phe Arg Leu Asp Asp Asp Gly Pro Tyr 145 150 155 160

Ser Gly Pro Phe Cys Gly Arg Ala Arg Val His Thr Asp Phe Thr Pro 165 170 175

Ser Pro Tyr Asp Thr Asp Ser Leu Lys Ile Lys Lys Gly Asp Ile Ile 180 185 190

Asp Ile Ile Cys Lys Thr Pro Met Gly Met Trp Thr Gly Met Leu Asn 195 200 205

Asn Lys Val Gly Asn Phe Lys Phe Ile Tyr Val Asp Val Ile Ser Glu 210 215 220

Glu Glu Ala Ala Pro Lys Lys Ile Lys Ala Asn Arg Arg Ser Asn Ser 225 230 235 240

Lys Lys Ser Lys Thr Leu Gln Glu Phe Leu Glu Arg Ile His Leu Gln 245 250 255

Glu Tyr Thr Ser Thr Leu Leu Leu Asn Gly Tyr Glu Thr Leu Glu Asp 260 265 270

Leu Lys Asp Ile Lys Glu Ser His Leu Ile Glu Leu Asn Ile Glu Asn 275 280 285

Pro Asp Asp Arg Arg Leu Leu Ser Ala Ala Glu Asn Phe Leu Glu 290 295 300

Glu Glu Ile Ile Gln Glu Gln Glu Asn Glu Pro Glu Pro Leu Ser Leu 305 310 315 320

Ser Ser Asp Ile Ser Leu Asn Lys Ser Gln Leu Asp Asp Cys Pro Arg 325 330 335

Asp Ser Gly Cys Tyr Ile Ser Ser Gly Asn Ser Asp Asn Gly Lys Glu

Asp Leu Glu Ser Glu Asn Leu Ser Asp Met Val His Lys Ile Ile Ile

Thr Glu Pro Ser Asp

<210> 103 <211> 431 <212> PRT <213> Homo sapiens

<400> 103

Met Glu Gly Ser Ala Ser Pro Pro Glu Lys Pro Arg Ala Arg Pro Ala

Ala Ala Val Leu Cys Arg Gly Pro Val Glu Pro Leu Val Phe Leu Ala

Asn Phe Ala Leu Val Leu Gln Gly Pro Leu Thr Thr Gln Tyr Leu Trp

His Arg Phe Ser Ala Asp Leu Gly Tyr Asn Gly Thr Arg Gln Arg Gly

Gly Cys Ser Asn Arg Ser Ala Asp Pro Thr Met Gln Glu Val Glu Thr

Leu Thr Ser His Trp Thr Leu Tyr Met Asn Val Gly Gly Phe Leu Val

Gly Leu Phe Ser Ser Thr Leu Leu Gly Ala Trp Ser Asp Ser Val Gly

Arg Arg Pro Leu Leu Val Leu Ala Ser Leu Gly Leu Leu Gln Ala

Leu Val Ser Val Phe Val Val Gln Leu Gln Leu His Val Gly Tyr Phe

Val Leu Gly Arg Ile Leu Cys Ala Leu Leu Gly Asp Phe Gly Gly Leu

Leu Ala Ala Ser Phe Ala Ser Val Ala Asp Val Ser Ser Ser Arg Ser

Arg Thr Phe Arg Met Ala Leu Leu Glu Ala Ser Ile Gly Val Ala Gly 180 185 190

- Met Leu Ala Ser Leu Leu Gly Gly His Trp Leu Arg Ala Gln Gly Tyr 195 200 205
- Ala Asn Pro Phe Trp Leu Ala Leu Ala Leu Leu Ile Ala Met Thr Leu 210 215 220
- Tyr Ala Ala Phe Cys Phe Gly Glu Thr Leu Lys Glu Pro Lys Ser Thr 225 230 235 240
- Arg Leu Phe Thr Phe Arg His His Arg Ser Ile Val Gln Leu Tyr Val 245 250 255
- Ala Pro Ala Pro Glu Lys Ser Arg Lys His Leu Ala Leu Tyr Ser Leu 260 265 270
- Ala Ile Phe Val Val Ile Thr Val His Phe Gly Ala Gln Asp Ile Leu 275 280 285
- Thr Leu Tyr Glu Leu Ser Thr Pro Leu Cys Trp Asp Ser Lys Leu Ile 290 295 300
- Gly Tyr Gly Ser Ala Ala Gln His Leu Pro Tyr Leu Thr Ser Leu Leu 305 310 315
- Ala Leu Lys Leu Gln Tyr Cys Leu Ala Asp Ala Trp Val Ala Glu 325 330 335
- Ile Gly Leu Ala Phe Asn Ile Leu Gly Met Val Val Phe Ala Phe Ala 340 345 350
- Thr Ile Thr Pro Leu Met Phe Thr Gly Ala Leu Phe Ser Ala Val Ala 355 360 365
- Cys Val Asn Ser Leu Ala Met Leu Thr Ala Ser Gly Ile Phe Asn Ser 370 380
- Leu Tyr Pro Ala Thr Leu Asn Phe Met Lys Gly Phe Pro Phe Leu Leu 385 390 395 400
- Gly Ala Gly Leu Leu Leu Ile Pro Ala Val Leu Ile Gly Met Leu Glu 405 410 415
- Lys Ala Asp Pro His Leu Glu Phe Gln Gln Phe Pro Gln Ser Pro 420 425 430

<210> 104

<211> 463

<212> PRT

<213> Homo sapiens

<400> 104

Met Lys Ile Leu Phe Val Glu Pro Ala Ile Phe Leu Ser Ala Phe Ala 1 5 10 15

Met Thr Leu Thr Gly Pro Leu Thr Thr Gln Tyr Val Tyr Arg Arg Ile 20 25 30

Trp Glu Glu Thr Gly Asn Tyr Thr Phe Ser Ser Asp Ser Asn Ile Ser 35 40 45

Glu Cys Glu Lys Asn Lys Ser Ser Pro Ile Phe Ala Phe Gln Glu Glu 50 55 60

Val Gln Lys Lys Val Ser Arg Phe Asn Leu Gln Met Asp Ile Ser Gly 65 70 75 80

Leu Ile Pro Gly Leu Val Ser Thr Phe Ile Leu Leu Ser Ile Ser Asp 85 90 95

His Tyr Gly Arg Lys Phe Pro Met Ile Leu Ser Ser Val Gly Ala Leu 100 105 110

Ala Thr Ser Val Trp Leu Cys Leu Leu Cys Tyr Phe Ala Leu Pro Phe 115 120 125

Gln Leu Leu Ile Ala Ser Thr Phe Ile Gly Ala Ile Cys Gly Asn Tyr 130 135 140

Thr Thr Phe Trp Gly Ala Cys Phe Ala Tyr Ile Val Asp Gln Cys Lys 145 150 155 160

Glu His Lys Gln Lys Thr Ile Arg Ile Ala Ile Ile Asp Phe Leu Leu 165 170 175

Gly Leu Val Thr Gly Leu Thr Gly Leu Ser Ser Gly Tyr Phe Ile Arg 180 185 190

Glu Leu Gly Phe Glu Trp Ser Phe Leu Ile Ile Ala Val Ser Leu Ala 195 200 205

Val Asn Leu Ile Tyr Ile Leu Phe Phe Leu Gly Asp Pro Val Lys Glu

210 215 220

Cys Ser Ser Gln Asn Val Thr Met Ser Cys Ser Glu Gly Phe Lys Asn 225 230 235 240

Leu Phe Tyr Arg Thr Tyr Met Leu Phe Lys Asn Ala Ser Gly Lys Arg 245 250 255

Arg Phe Leu Leu Cys Leu Leu Leu Phe Thr Val Ile Thr Tyr Phe Phe 260 265 270

Val Val Ile Gly Ile Ala Pro Ile Phe Ile Leu Tyr Glu Leu Asp Ser 275 280 285

Pro Leu Cys Trp Asn Glu Val Phe Ile Gly Tyr Gly Ser Ala Leu Gly 290 295 300

Ser Ala Ser Phe Leu Thr Ser Phe Leu Gly Ile Trp Leu Phe Ser Tyr 305 310 315

Cys Met Glu Asp Ile His Met Ala Phe Ile Gly Ile Phe Thr Thr Met 325 330 335

Thr Gly Met Ala Met Thr Ala Phe Ala Ser Thr Thr Leu Met Met Phe 340 345 350

Leu Ala Arg Val Pro Phe Leu Phe Thr Ile Val Pro Phe Ser Val Leu 355 360 365

Arg Ser Met Leu Ser Lys Val Val Arg Ser Thr Glu Gln Gly Thr Leu 370 375 380

Phe Ala Cys Ile Ala Phe Leu Glu Thr Leu Gly Gly Val Thr Ala Val 385 390 395 400

Ser Thr Phe Asn Gly Ile Tyr Ser Ala Thr Val Ala Trp Tyr Pro Gly 405 410 415

Phe Thr Phe Leu Leu Ser Ala Gly Leu Leu Leu Leu Pro Ala Ile Ser 420 425 430

Leu Cys Val Val Lys Cys Thr Ser Trp Asn Glu Gly Ser Tyr Glu Leu 435 440 445

Leu Ile Gln Glu Glu Ser Ser Glu Asp Ala Ser Asp Arg Ala Cys
450 455 460

<210> 105

<211> 575

<212> PRT

<213> Homo sapiens

<400> 105

Met Ser Ala Ala Thr His Ser Pro Met Met Gln Val Ala Ser Gly Asn 1 5 10 15

Gly Asp Arg Asp Pro Leu Pro Pro Gly Trp Glu Ile Lys Ile Asp Pro 20 25 30

Gln Thr Gly Trp Pro Phe Phe Val Asp His Asn Ser Arg Thr Thr Thr 35 40 45

Trp Asn Asp Pro Arg Val Pro Ser Glu Gly Pro Lys Glu Thr Pro Ser 50 55 60

Ser Ala Asn Gly Pro Ser Arg Glu Gly Ser Arg Leu Pro Pro Ala Arg 65 70 75 80

Glu Gly His Pro Val Tyr Pro Gln Leu Arg Pro Gly Tyr Ile Pro Ile 85 90 95

Pro Val Leu His Glu Gly Ala Glu Asn Arg Gln Val His Pro Phe His 100 105 110

Val Tyr Pro Gln Pro Gly Met Gln Arg Phe Arg Thr Glu Ala Ala Ala 115 120 125

Ala Ala Pro Gln Arg Ser Gln Ser Pro Leu Arg Gly Met Pro Glu Thr 130 135 140

Thr Gln Pro Asp Lys Gln Cys Gly Gln Val Ala Ala Ala Ala Ala Ala 145 150 155 160

Gln Pro Pro Ala Ser His Gly Pro Glu Arg Ser Gln Ser Pro Ala Ala 165 170 175

Ser Asp Cys Ser Ser Ser Ser Ser Ser Ala Ser Leu Pro Ser Ser Gly 180 185 190

Arg Ser Ser Leu Gly Ser His Gln Leu Pro Arg Gly Tyr Ile Ser Ile 195 200 205

Pro Val Ile His Glu Gln Asn Val Thr Arg Pro Ala Ala Gln Pro Ser 210 215 220

Phe 225	His	Gln	Ala	Gln	Lys 230	Thr	His	Tyr	Pro	Ala 235	Gln	Gln	Gly	Glu	Tyr 240
Gln	Thr	His	Gln	Pro 245	Val	Tyr	His	Lys	Ile 250	Gln	Gly	Asp	Asp	Trp 255	Glu
Pro	Arg	Pro	Leu 260	Arg	Ala	Ala	Ser	Pro 265	Phe	Arg	Ser	Ser	Val 270	Gln	Gly
Ala	Ser	Ser 275	Arg	Glu	Gly	Ser	Pro 280	Ala	Arg	Ser	Ser	Thr 285	Pro	Leu	His
Ser	Pro 290	Ser	Pro	Ile	Arg	Val 295	His	Thr	Val	Val	Asp 300	Arg	Pro	Gln	Gln
Pro 305	Met	Thr	His	Arg	Glu 310	Thr	Ala	Pro	Val	Ser 315	Gln	Pro	Glu	Asn	Lys 320
Pro	Glu	Ser	Lys	Pro 325	Gly	Pro	Val	Gly	Pro 330	Glu	Leu	Pro	Pro	Gly 335	His
Ile	Pro	Ile	Gln 340	Val	Ile	Arg	ГÀЗ	Glu 345	Val	Asp	Ser	Lys	Pro 350	Val	Ser
Gln	Lys	Pro 355	Pro	Pro	Pro	Ser	Glu 360	Lys	Val	Glu	Val	Lys 365	Val	Pro	Pro
Ala	Pro 370	Val	Pro	Cys	Pro	Pro 375	Pro	Ser	Pro	Gly	Pro 380	Ser	Ala	Val	Pro
Ser 385	Ser	Pro	Lys	Ser	Val 390	Ala	Thr	Glu	Glu	Arg 395		Ala	Pro	Ser	Thr 400
Ala	Pro	Ala	G1u	Ala 405		Pro	Pro	Lys	Pro 410		Glu	Ala	Glu	Ala 415	Pro
Pro	Lys	His	Pro 420		Val	Leu	Lys	Val 425		Ala	Ile	Leu	Glu 430		Val
Gln	Gly	Leu 435		Gln	Ala	Val	Asp 440		Phe	Glu	Gly	Lys 445	Lys	Thr	Asp
Lys	Lys 450		Leu	Met	Ile	Glu 455		Tyr	Leu	Thr	Lys 460		Leu	Leu	Ala

Leu Asp Ser Val Asp Pro Glu Gly Arg Ala Asp Val Arg Gln Ala Arg 465 470 475 480

Arg Asp Gly Val Arg Lys Val Gln Thr Ile Leu Glu Lys Leu Glu Gln 485 490 495

Lys Ala Ile Asp Val Pro Gly Gln Val Gln Val Tyr Glu Leu Gln Pro 500 505 510

Ser Asn Leu Glu Ala Asp Gln Pro Leu Gln Ala Ile Met Glu Met Gly 515 520 525

Ala Val Ala Ala Asp Lys Gly Lys Lys Asn Ala Gly Asn Ala Glu Asp 530 535 540

Pro His Thr Glu Thr Gln Gln Pro Glu Ala Thr Ala Ala Ala Thr Ser 545 550 555 560

Asn Pro Ser Ser Met Thr Asp Thr Pro Gly Asn Pro Ala Ala Pro 565 570 575

<210> 106

<211> 457

<212> PRT

<213> Homo sapiens

<400> 106

Met Ser Ala Leu Arg Arg Ser Gly Tyr Gly Pro Ser Asp Gly Pro Ser 1 5 10 15

Tyr Gly Arg Tyr Tyr Gly Pro Gly Gly Gly Asp Val Pro Val His Pro 20 25 30

Pro Pro Pro Leu Tyr Pro Leu Arg Pro Glu Pro Pro Gln Pro Pro Ile 35 40 45

Ser Trp Arg Val Arg Gly Gly Gly Pro Ala Glu Thr Thr Trp Leu Gly 50 55 60

Glu Gly Gly Gly Asp Gly Tyr Tyr Pro Ser Gly Gly Ala Trp Pro 65 70 75 80

Glu Pro Gly Arg Ala Gly Gly Ser His Gln Glu Gln Pro Pro Tyr Pro 85 90 95

Ser Tyr Asn Ser Asn Tyr Trp Asn Ser Thr Ala Arg Ser Arg Ala Pro 100 105 110

Tyr Pro Ser Thr Tyr Pro Val Arg Pro Glu Leu Gln Gly Gln Ser Leu 115 120 125

Asn Ser Tyr Thr Asn Gly Ala Tyr Gly Pro Thr Tyr Pro Pro Gly Pro 130 135 140

Gly Ala Asn Thr Ala Ser Tyr Ser Gly Ala Tyr Tyr Ala Pro Gly Tyr 145 150 155 160

Thr Gln Thr Ser Tyr Ser Thr Glu Val Pro Ser Thr Tyr Arg Ser Ser 165 170 175

Gly Asn Ser Pro Thr Pro Val Ser Arg Trp Ile Tyr Pro Gln Gln Asp 180 185 190

Cys Gln Thr Glu Ala Pro Pro Leu Arg Gly Gln Val Pro Gly Tyr Pro 195 200 205

Pro Ser Gln Asn Pro Gly Met Thr Leu Pro His Tyr Pro Tyr Gly Asp 210 215 220

Gly Asn Arg Ser Val Pro Gln Ser Gly Pro Thr Val Arg Pro Gln Glu 225 230 235 240

Asp Ala Trp Ala Ser Pro Gly Ala Tyr Gly Met Gly Gly Arg Tyr Pro 245 250 255

Trp Pro Ser Ser Ala Pro Ser Ala Pro Pro Gly Asn Leu Tyr Met Thr 260 265 270

Glu Ser Thr Ser Pro Trp Pro Ser Ser Gly Ser Pro Gln Ser Pro Pro 275 280 285

Ser Pro Pro Val Gln Gln Pro Lys Asp Ser Ser Tyr Pro Tyr Ser Gln 290 295 300

Ser Asp Gln Ser Met Asn Arg His Asn Phe Pro Cys Ser Val His Gln 305 310 315 320

Tyr Glu Ser Ser Gly Thr Val Asn Asn Asp Asp Ser Asp Leu Leu Asp 325 330 335

Ser Gln Val Gln Tyr Ser Ala Glu Pro Gln Leu Tyr Gly Asn Ala Thr 340 345 350

Ser Asp His Pro Asn Asn Gln Asp Gln Ser Ser Leu Pro Glu Glu

355 360 365

Cys Val Pro Ser Asp Glu Ser Thr Pro Pro Ser Ile Lys Lys Ile Ile 370 375 380

His Val Leu Glu Lys Val Gln Tyr Leu Glu Gln Glu Val Glu Glu Phe 385 390 395 400

Val Gly Lys Lys Thr Asp Lys Ala Tyr Trp Leu Leu Glu Glu Met Leu 405 410 415

Thr Lys Glu Leu Leu Glu Leu Asp Ser Val Glu Thr Gly Gly Gln Asp 420 425 430

Ser Val Arg Gln Ala Arg Lys Glu Ala Val Cys Lys Ile Gln Ala Ile 435 440 445

Leu Glu Lys Leu Glu Lys Lys Gly Leu 450 455

<210> 107

<211> 373

<212> PRT

<213> Homo sapiens

<400> 107

Met Ala Gln Gly Arg Glu Arg Asp Glu Gly Pro His Ser Ala Gly Gly
1 5 10 15

Ala Ser Leu Ser Val Arg Trp Val Gln Gly Phe Pro Lys Gln Asn Val 20 25 30

His Phe Val Asn Asp Asn Thr Ile Cys Tyr Pro Cys Gly Asn Tyr Val 35 40 45

Ile Phe Ile Asn Ile Glu Thr Lys Lys Lys Thr Val Leu Gln Cys Ser 50 55 60

Asn Gly Ile Val Gly Val Met Ala Thr Asn Ile Pro Cys Glu Val Val 65 70 75 80

Ala Phe Ser Asp Arg Lys Leu Lys Pro Leu Ile Tyr Val Tyr Ser Phe 85 90 95

Pro Gly Leu Thr Arg Arg Thr Lys Leu Lys Gly Asn Ile Leu Leu Asp 100 105 110

335

Tyr Thr Leu Leu Ser Phe Ser Tyr Cys Gly Thr Tyr Leu Ala Ser Tyr 115 120 125

- Ser Ser Leu Pro Glu Phe Glu Leu Ala Leu Trp Asn Trp Glu Ser Ser 130 135 140
- Ile Ile Leu Cys Lys Lys Ser Gln Pro Gly Met Asp Val Asn Glu Met 145 150 155 160
- Ser Phe Asn Pro Met Asn Trp Arg Gln Leu Cys Leu Ser Ser Pro Ser 165 170 175
- Thr Val Ser Val Trp Thr Ile Glu Arg Ser Asn Gln Glu His Cys Phe 180 185 190
- Arg Ala Arg Ser Val Lys Leu Pro Leu Glu Asp Gly Ser Phe Phe Asn 195 200 205
- Glu Thr Asp Val Val Phe Pro Gln Ser Leu Pro Lys Asp Leu Ile Tyr 210 215 220
- Gly Pro Val Leu Pro Leu Ser Ala Ile Ala Gly Leu Val Gly Lys Glu 225 230 235 240
- Ala Glu Thr Phe Arg Pro Lys Asp Asp Leu Tyr Pro Leu Leu His Pro 245 250 255
- Thr Met His Cys Trp Thr Pro Thr Ser Asp Leu Tyr Ile Gly Cys Glu 260 265 270
- Glu Gly His Leu Leu Met Ile Asn Gly Asp Thr Leu Gln Val Thr Val 275 280 285
- Leu Asn Lys Ile Glu Glu Ser Pro Leu Glu Asp Arg Arg Asn Phe 290 295 300
- Ile Ser Pro Val Thr Leu Val Tyr Gln Lys Glu Gly Val Leu Ala Ser 305 310 315 320
- Gly Ile Asp Gly Phe Val Tyr Ser Phe Ile Ile Lys Asp Arg Ser Tyr 325 330 335
- Met Ile Glu Asp Phe Leu Glu Ile Glu Arg Pro Val Glu His Met Thr 340 345 350
- Phe Ser Pro Asn Tyr Thr Val Leu Leu Ile Gln Thr Asp Lys Val Cys 355 360 365

Trp Met Val Ile Ser 370

<210> 108

<211> 401

<212> PRT

<213> Homo sapiens

<400> 108

Met Lys Leu Ser Asp Leu His His Val Thr Leu Phe Gln Glu Ile Leu 1 5 10 15

Leu Leu Lys Asn Phe Glu Lys Gln Glu Asn Ile Leu Gln Glu Arg Val 20 25 30

Asn Ser Leu Asp Lys Glu Glu Gln Tyr Met Gln Trp Lys Ile Asn Glu 35 40 45

Thr Leu Lys Glu Met Glu Glu Lys Lys Asn Glu Ile Thr Lys Leu Gln 50 55 60

Glu Gln Glu Lys Ala Leu Tyr Ala Gly Phe Gln Ala Ala Ile Gly Glu 65 70 75 80

Asn Asn Lys Phe Ala Asn Phe Leu Met Lys Val Leu Lys Lys Arg Ile 85 90 95

Lys Arg Val Lys Lys Lys Glu Val Glu Gly Asp Ala Asp Glu Asp Glu 100 105 110

Glu Ser Glu Glu Ser Ser Glu Glu Glu Ser Ser Leu Glu Ser Asp Glu 115 120 125

Asp Glu Ser Glu Ser Glu Asp Glu Val Phe Asp Asp Ser Ile Cys Pro 130 135 140

Thr Asn Cys Asp Val Ala Leu Phe Glu Leu Ala Leu His Leu Arg Glu 145 150 155 160

Lys Arg Leu Asp Ile Glu Glu Ala Leu Val Glu Glu Lys Lys Ile Val 165 170 175

Asp Asn Leu Lys Lys Glu Tyr Asp Thr Leu Ser Lys Lys Val Lys Ile 180 185 190

Val Ala Thr Asn Leu Asn Ala Ala Glu Glu Ala Leu Glu Ala Tyr Gln

195 200 205

Arg Glu Lys Gln Gln Arg Leu Asn Glu Leu Leu Val Val Ile Pro Leu 210 215 220

Lys Leu His Gln Ile Glu Tyr Val Val Phe Gly Glu Ile Pro Ser Asp 225 230 235 240

Leu Ser Gly Thr Leu Val Phe Ser Asn His Ala Leu Arg Arg Leu Gln 245 250 255

Glu Arg Ile Arg Glu Leu Gln Glu Glu Asn Ser Lys Gln Gln Lys Leu 260 265 270

Asn Lys Glu Trp Arg Glu Arg Arg Lys Gln Leu Ile Arg Glu Lys Arg 275 280 285

Glu Met Thr Lys Thr Ile His Lys Met Glu Glu Thr Val Arg Gln Leu 290 295 300

Met Ile Ser Lys Phe Gly Arg Val Val Asn Leu Glu Ala Leu Gln Thr 305 310 315 320

Lys Glu Leu Ala Asn Ala Lys Glu Met Lys Met Trp Glu Glu Lys Ile 340 345 350

Ala Gln Met Arg Trp Glu Leu Met Met Lys Thr Lys Glu His Thr Arg 355 360 365

Lys Leu Tyr Gln Met Asn Asp Leu Cys Ile Glu Lys Lys Lys Leu Asp 370 375 380

Ser Arg Leu Asn Thr Leu Gln Asn Gln Gln Asn Pro Gly Asn Gly Leu 385 390 395 400

Ser

<210> 109

<211> 1674

<212> PRT

<213> Homo sapiens

<400> 109

Met Glu Asp Ala Ser Glu Ser Ser Arg Gly Val Ala Pro Leu Ile Asn 1 5 10 15

Asn Val Val Leu Pro Gly Ser Pro Leu Ser Leu Pro Val Ser Val Thr 20 25 30

Gly Cys Lys Ser His Arg Val Ala Asn Lys Lys Val Glu Ala Arg Ser 35 40 45

Glu Lys Leu Pro Thr Ala Leu Pro Pro Ser Glu Pro Lys Val Asp
50 60

Gln Lys Leu Pro Arg Ser Ser Glu Arg Arg Gly Ser Gly Gly Gly Thr 65 70 75 80

Gln Phe Pro Ala Arg Ser Arg Ala Val Ala Ala Gly Glu Ala Ala Ala Ala 85 90 95

Arg Gly Ala Ala Gly Pro Glu Arg Gly Ser Pro Leu Gly Arg Arg Val

Ser Pro Arg Cys Leu Cys Ser Gly Glu Gly Gly Gln Val Ala Val Gly 115 120 125

Val Ile Ala Gly Lys Arg Gly Arg Arg Gly Arg Asp Gly Ser Arg Arg 130 135 140

Ala Pro Gly Gly Arg Glu Met Pro Leu Leu His Arg Lys Pro Phe Val 145 150 155 160

Arg Gln Lys Pro Pro Ala Asp Leu Arg Pro Asp Glu Glu Val Phe Tyr 165 170 175

Cys Lys Val Thr Asn Glu Ile Phe Arg His Tyr Asp Asp Phe Phe Glu 180 185 190

Arg Thr Ile Leu Cys Asn Ser Leu Val Trp Ser Cys Ala Val Thr Gly 195 200 205

Arg Pro Gly Leu Thr Tyr Gln Glu Ala Leu Glu Ser Glu Lys Lys Ala 210 215 220

Arg Gln Asn Leu Gln Ser Phe Pro Glu Pro Leu Ile Ile Pro Val Leu 225 230 235 240

Tyr Leu Thr Ser Leu Thr His Arg Ser Arg Leu His Glu Ile Cys Asp 245 250 255

Asp Ile Phe Ala Tyr Val Lys Asp Arg Tyr Phe Val Glu Glu Thr Val 260 265 270

- Glu Val Ile Arg Asn Asn Gly Ala Arg Leu Gln Cys Thr Ile Leu Glu 275 280 285
- Val Leu Pro Pro Ser His Gln Asn Gly Phe Ala Asn Gly His Val Asn 290 295 300
- Ser Val Asp Gly Glu Thr Ile Ile Ile Ser Asp Ser Asp Ser Glu 305 310 315
- Thr Gln Ser Cys Ser Phe Gln Asn Gly Lys Lys Lys Asp Ala Ile Asp 325 330 335
- Pro Leu Leu Phe Lys Tyr Lys Val Gln Pro Thr Lys Lys Glu Leu His 340 345 350
- Glu Ser Ala Ile Val Lys Ala Thr Gln Ile Ser Arg Arg Lys His Leu 355 360 365
- Phe Ser Arg Asp Lys Leu Lys Leu Phe Leu Lys Gln His Cys Glu Pro 370 375 380
- Gln Glu Gly Val Ile Lys Ile Lys Ala Ser Ser Leu Ser Thr Tyr Lys 385 390 395 400
- Ile Ala Glu Gln Asp Phe Ser Tyr Phe Phe Pro Asp Asp Pro Pro Thr 405 410 415
- Phe Ile Phe Ser Pro Ala Asn Arg Arg Arg Gly Arg Pro Pro Lys Arg 420 425 430
- Ile His Ile Ser Gln Glu Asp Asn Val Ala Asn Lys Gln Thr Leu Ala 435 440 445
- Ser Tyr Arg Ser Lys Ala Thr Lys Glu Arg Asp Lys Leu Leu Lys Glu 450 460
- Glu Glu Met Lys Ser Leu Ala Phe Glu Lys Ala Lys Leu Lys Arg Glu 465 470 475 480
- Lys Ala Asp Ala Leu Glu Ala Lys Lys Glu Lys Glu Asp Lys Glu 485 490 495

Lys Lys Arg Glu Glu Leu Lys Lys Ile Val Glu Glu Glu Arg Leu Lys Lys Lys Glu Glu Lys Glu Arg Leu Lys Val Glu Arg Glu Lys Glu Arg Glu Lys Leu Arg Glu Glu Lys Arg Lys Tyr Val Glu Tyr Leu Lys Gln Trp Ser Lys Pro Arg Glu Asp Met Glu Cys Asp Asp Leu Lys Glu Leu Pro Glu Pro Thr Pro Val Lys Thr Arg Leu Pro Pro Glu Ile Phe Gly Asp Ala Leu Met Val Leu Glu Phe Leu Asn Ala Phe Gly Glu Leu Phe Asp Leu Gln Asp Glu Phe Pro Asp Gly Val Thr Leu Glu Val Leu Glu Glu Ala Leu Val Gly Asn Asp Ser Glu Gly Pro Leu Cys Glu Leu Leu Phe Phe Phe Leu Thr Ala Ile Phe Gln Ala Ile Ala Glu Glu Glu Glu Val Ala Lys Glu Gln Leu Thr Asp Ala Asp Thr Lys Gly Cys Ser Leu Lys Ser Leu Asp Leu Asp Ser Cys Thr Leu Ser Glu Ile Leu Arg

Leu His Ile Leu Ala Ser Gly Ala Asp Val Thr Ser Ala Asn Ala Lys

Tyr Arg Tyr Gln Lys Arg Gly Gly Phe Asp Ala Thr Asp Asp Ala Cys

Met Glu Leu Arg Leu Ser Asn Pro Ser Leu Val Lys Lys Leu Ser Ser

Thr Ser Val Tyr Asp Leu Thr Pro Gly Glu Lys Met Lys Ile Leu His

Ala Leu Cys Gly Lys Leu Leu Thr Leu Val Ser Thr Arg Asp Phe Ile

Glu Asp Tyr Val Asp Ile Leu Arg Gln Ala Lys Gln Glu Phe Arg Glu

Leu Lys Ala Glu Gln His Arg Lys Glu Arg Glu Glu Ala Ala Arg 775 Ile Arg Lys Arg Lys Glu Glu Lys Leu Lys Glu Gln Glu Gln Lys Met 790 795 Lys Glu Lys Gln Glu Lys Leu Lys Glu Asp Glu Gln Arg Asn Ser Thr Ala Asp Ile Ser Ile Gly Glu Glu Glu Arg Glu Asp Phe Asp Thr Ser 825 Ile Glu Ser Lys Asp Thr Glu Gln Lys Glu Leu Asp Gln Asp Met Phe 840 Thr Glu Asp Glu Asp Asp Pro Gly Ser His Lys Arg Gly Arg Arg Gly 855 Lys Arg Gly Gln Asn Gly Phe Lys Glu Phe Thr Arg Gln Glu Gln Ile 870 875 880 865 Asn Cys Val Thr Arg Glu Leu Leu Thr Ala Asp Glu Glu Glu Ala Leu 885 890 Lys Gln Glu His Gln Arg Lys Glu Lys Glu Leu Leu Glu Lys Ile Gln 900 905 910 Ser Ala Ile Ala Cys Thr Asn Ile Phe Pro Leu Gly Arg Asp Arg Met 915 920

Ser Phe Gln Asn Asn Val Gln Ser Gln Asp Pro Gln Val Ser Thr Lys 965 970 975

Tyr Arg Arg Tyr Trp Ile Phe Pro Ser Ile Pro Gly Leu Phe Ile Glu

Glu Asp Tyr Ser Gly Leu Thr Glu Asp Met Leu Leu Pro Arg Pro Ser

935

950

930

945

Thr Gly Glu Pro Leu Met Ser Glu Ser Thr Ser Asn Ile Asp Gln Gly 980 985 990

955

960

Pro Arg Asp His Ser Val Gln Leu Pro Lys Pro Val His Lys Pro Asn 995 1000 1005

- Arg Trp Cys Phe Tyr Ser Ser Cys Glu Gln Leu Asp Gln Leu Ile 1010 1015 1020
- Glu Ala Leu Asn Ser Arg Gly His Arg Glu Ser Ala Leu Lys Glu 1025 1030 1035
- Thr Leu Leu Gln Glu Lys Ser Arg Ile Cys Ala Gln Leu Ala Arg 1040 1045 1050
- Phe Ser Glu Glu Lys Phe His Phe Ser Asp Lys Pro Gln Pro Asp 1055 1060 1065
- Ser Lys Pro Thr Tyr Ser Arg Gly Arg Ser Ser Asn Ala Tyr Asp 1070 1075 1080
- Pro Ser Gln Met Cys Ala Glu Lys Gln Leu Glu Leu Arg Leu Arg 1085 1090 1095
- Asp Phe Leu Leu Asp Ile Glu Asp Arg Ile Tyr Gln Gly Thr Leu 1100 1105 1110
- Gly Ala Ile Lys Val Thr Asp Arg His Ile Trp Arg Ser Ala Leu 1115 1120 1125
- Glu Ser Gly Arg Tyr Glu Leu Leu Ser Glu Glu Asn Lys Glu Asn 1130 1135 1140
- Gly Ile Ile Lys Thr Val Asn Glu Asp Val Glu Glu Met Glu Ile 1145 1150 1155
- Asp Glu Gln Thr Lys Val Ile Val Lys Asp Arg Leu Leu Gly Ile 1160 1165 1170
- Lys Thr Glu Thr Pro Ser Thr Val Ser Thr Asn Ala Ser Thr Pro 1175 1180 1185
- Gln Ser Val Ser Ser Val Val His Tyr Leu Ala Met Ala Leu Phe 1190 1195 1200
- Gln Ile Glu Gln Gly Ile Glu Arg Arg Phe Leu Lys Ala Pro Leu 1205 1210 1215
- Asp Ala Ser Asp Ser Gly Arg Ser Tyr Lys Thr Val Leu Asp Arg 1220 1225 1230

Trp	Arg 1235		Ser	Leu	Leu	Ser 1240		Ala	Ser	Leu	Ser 1245	Gln	Val	Phe
Leu	His 1250		Ser	Thr	Leu	Asp 1255	Arg	Ser	Val	Ile	Trp 1260	Ser	Lys	Ser
Ile	Leu 1265		Ala	Arg		Lys 1270		Cys	Arg		Lys 1275		Asp	Ala
Glu	Asn 1280	Met	Val	Leu	Cys	Asp 1285	Gly	Cys	Asp	Arg	Gly 1290	His	His	Thr
Tyr	Cys 1295		Arg	Pro	Lys	Leu 1300		Thr	Val	Pro	Glu 1305	Gly	Asp	Trp
Phe	Cys 1310	Pro	Glu	Cys	Arg	Pro 1315		Gln	Arg	Cys	Arg 1320	Arg	Leu	Ser
Phe	Arg 1325		Arg	Pro	Ser	Leu 1330		Ser	Asp	Glu	Asp 1335		Glu	Asp
Ser	Met 1340		Gly	Glu	Asp	Asp 1345		Val	Asp	Gly	Asp 1350	Glu	Glu	Glu
Gly	Gln 1355	Ser	Glu	Glu	Glu	Glu 1360	Tyr	Glu	Val	Glu	Gln 1365	Asp	Glu	Asp
Asp	Ser 1370	Gln	Glu	Glu	Glu	Glu 1375	Val	Ser	Leu	Pro	Lys 1380	Arg	Gly	Arg
Pro	Gln 1385	Val	Arg	Leu	Pro	Val 1390	Lys	Thr	Arg	Gly	Lys 1395	Leu	Ser	Ser
Ser	Phe 1400	Ser	Ser	Arg	Gly	Gln 1405	Gln	Gln	Glu	Pro	Gly 1410	Arg	Tyr	Pro
Ser	Arg 1415	Ser	Gln	Gln	Ser	Thr 1420	Pro	Lys	Thr	Thr	Val 1425	Ser	Ser	Lys
Thr	Gly 1430	Arg	Ser	Leu	Arg	Lys 1435	Ile	Asn	Ser	Ala	Pro 1440	Pro	Thr	Glu
Thr	Lys 1445	Ser	Leu	Arg	Ile	Ala 1450	Ser	Arg	Ser	Thr	Arg 1455	His	Ser	His

Gly Pro Leu Gln Ala Asp Val Phe Val Glu Leu Leu Ser Pro Arg 1460 1465 1470

- Arg Lys Arg Arg Gly Arg Lys Ser Ala Asn Asn Thr Pro Glu Asn 1475 1480 1485
- Ser Pro Asn Phe Pro Asn Phe Arg Val Ile Ala Thr Lys Ser Ser 1490 1495 1500
- Glu Gln Ser Arg Ser Val Asn Ile Ala Ser Lys Leu Ser Leu Gln 1505 1510 1515
- Glu Ser Glu Ser Lys Arg Arg Cys Arg Lys Arg Gln Ser Pro Glu 1520 1525 1530
- Pro Ser Pro Val Thr Leu Gly Arg Arg Ser Ser Gly Arg Gln Gly 1535 1540 1545
- Gly Val His Glu Leu Ser Ala Phe Glu Gln Leu Val Val Glu Leu 1550 1560
- Val Arg His Asp Asp Ser Trp Pro Phe Leu Lys Leu Val Ser Lys 1565 1570 1575
- Ile Gln Val Pro Asp Tyr Tyr Asp Ile Ile Lys Lys Pro Ile Ala 1580 1585 1590
- Leu Asn Ile Ile Arg Glu Lys Val Asn Lys Cys Glu Tyr Lys Leu 1595 1600 1605
- Ala Ser Glu Phe Ile Asp Asp Ile Glu Leu Met Phe Ser Asn Cys 1610 1615 1620
- Phe Glu Tyr Asn Pro Arg Asn Thr Ser Glu Ala Lys Ala Gly Thr 1625 1630 1635
- Arg Leu Gln Ala Phe Phe His Ile Gln Ala Gln Lys Leu Gly Leu 1640 1650
- His Val Thr Pro Ser Asn Val Asp Gln Val Ser Thr Pro Pro Ala 1655 1660 1665
- Ala Lys Lys Ser Arg Ile 1670

<210> 110 <211> 1483

<212> PRT

<213> Homo sapiens

<400> 110

Met Ala Pro Leu Leu Gly Arg Lys Pro Phe Pro Leu Val Lys Pro Leu 1 5 10 15

Pro Gly Glu Glu Pro Leu Phe Thr Ile Pro His Thr Gln Glu Ala Phe 20 25 30

Arg Thr Arg Glu Glu Tyr Glu Ala Arg Leu Glu Arg Tyr Ser Glu Arg 35 40 45

Ile Trp Thr Cys Lys Ser Thr Gly Ser Ser Gln Leu Thr His Lys Glu 50 60

Ala Trp Glu Glu Glu Glu Val Ala Glu Leu Leu Lys Glu Glu Phe 65 70 75 80

Pro Ala Trp Tyr Glu Lys Leu Val Leu Glu Met Val His His Asn Thr 85 90 95

Ala Ser Leu Glu Lys Leu Val Asp Thr Ala Trp Leu Glu Ile Met Thr 100 105 110

Lys Tyr Ala Val Gly Glu Glu Cys Asp Phe Glu Val Gly Lys Glu Lys 115 120 125

Met Leu Lys Val Lys Ile Val Lys Ile His Pro Leu Glu Lys Val Asp 130 135 140

Glu Glu Ala Thr Glu Lys Lys Ser Asp Gly Ala Cys Asp Ser Pro Ser 145 150 155

Ser Asp Lys Glu Asn Ser Ser Gln Ile Ala Gln Asp His Gln Lys Lys 165 170 175

Glu Thr Val Val Lys Glu Asp Glu Gly Arg Arg Glu Ser Ile Asn Asp 180 185 190

Arg Ala Arg Arg Ser Pro Arg Lys Leu Pro Thr Ser Leu Lys Lys Gly
195 200 205

Glu Arg Lys Trp Ala Pro Pro Lys Phe Leu Pro His Lys Tyr Asp Val 210 215 220

Lys Leu Gln Asn Glu Asp Lys Ile Ile Ser Asn Val Pro Ala Asp Ser

225 230 235 240

Leu Ile Arg Thr Glu Arg Pro Pro Asn Lys Glu Ile Val Arg Tyr Phe 245 250. 255

Ile Arg His Asn Ala Leu Arg Ala Gly Thr Gly Glu Asn Ala Pro Trp 260 265 270

Val Val Glu Asp Glu Leu Val Lys Lys Tyr Ser Leu Pro Ser Lys Phe 275 280 285

Ser Asp Phe Leu Leu Asp Pro Tyr Lys Tyr Met Thr Leu Asn Pro Ser 290 295 300

Thr Lys Arg Lys Asn Thr Gly Ser Pro Asp Arg Lys Pro Ser Lys Lys 305 310 315 320

Ser Lys Thr Asp Asn Ser Ser Leu Ser Ser Pro Leu Asn Pro Lys Leu 325 330 335

Trp Cys His Val His Leu Lys Lys Ser Leu Ser Gly Ser Pro Leu Lys 340 345 350

Val Lys Asn Ser Lys Asn Ser Lys Ser Pro Glu Glu His Leu Glu Glu 355 360 365

Met Met Lys Met Met Ser Pro Asn Lys Leu His Thr Asn Phe His Ile 370 375 380

Pro Lys Lys Gly Pro Pro Ala Lys Lys Pro Gly Lys His Ser Asp Lys 385 390 395 400

Pro Leu Lys Ala Lys Gly Arg Ser Lys Gly Ile Leu Asn Gly Gln Lys 405 410 415

Ser Thr Gly Asn Ser Lys Ser Pro Lys Lys Gly Leu Lys Thr Pro Lys 420 425 430

Thr Lys Met Lys Gln Met Thr Leu Leu Asp Met Ala Lys Gly Thr Gln 435 440 445

Lys Met Thr Arg Ala Pro Arg Asn Ser Gly Gly Thr Pro Arg Thr Ser 450 450 460

Ser Lys Pro His Lys His Leu Pro Pro Ala Ala Leu His Leu Ile Ala 465 470 475 480

347

Tyr Tyr Lys Glu Asn Lys Asp Arg Glu Asp Lys Arg Ser Ala Leu Ser 485 490 495

- Cys Val Ile Ser Lys Thr Ala Arg Leu Leu Ser Ser Glu Asp Arg Ala 500 505 510
- Arg Leu Pro Glu Glu Leu Arg Ser Leu Val Gln Lys Arg Tyr Glu Leu 515 520 525
- Leu Glu His Lys Lys Arg Trp Ala Ser Met Ser Glu Glu Gln Arg Lys 530 540
- Glu Tyr Leu Lys Lys Lys Arg Glu Glu Leu Lys Lys Lys Leu Lys Glu 545 550 555 560
- Lys Ala Lys Glu Arg Arg Glu Lys Glu Met Leu Glu Arg Leu Glu Lys 565 570 575
- Gln Lys Arg Tyr Glu Asp Gln Glu Leu Thr Gly Lys Asn Leu Pro Ala 580 585 590
- Phe Arg Leu Val Asp Thr Pro Glu Gly Leu Pro Asn Thr Leu Phe Gly 595 600 605
- Asp Val Ala Met Val Val Glu Phe Leu Ser Cys Tyr Ser Gly Leu Leu 610 615 620
- Leu Pro Asp Ala Gln Tyr Pro Ile Thr Ala Val Ser Leu Met Glu Ala 625 630 635
- Leu Ser Ala Asp Lys Gly Gly Phe Leu Tyr Leu Asn Arg Val Leu Val 645 650 655
- Ile Leu Leu Gln Thr Leu Leu Gln Asp Glu Ile Ala Glu Asp Tyr Gly 660 665 670
- Glu Leu Gly Met Lys Leu Ser Glu Ile Pro Leu Thr Leu His Ser Val 675 680 685
- Ser Glu Leu Val Arg Leu Cys Leu Arg Arg Ser Asp Val Glu Glu 690 695 700
- Ser Glu Gly Ser Asp Thr Asp Asp Asn Lys Asp Ser Ala Ala Phe Glu 705 710 715 720
- Asp Asn Glu Val Gln Asp Glu Phe Leu Glu Lys Leu Glu Thr Ser Glu

725 730 735

Phe Phe Glu Leu Thr Ser Glu Glu Lys Leu Gln Ile Leu Thr Ala Leu 740 745 750

Cys His Arg Ile Leu Met Thr Tyr Ser Val Gln Asp His Met Glu Thr 755 760 765

Arg Gln Gln Met Ser Ala Glu Leu Trp Lys Glu Arg Leu Ala Val Leu 770 775 780

Lys Glu Glu Asn Asp Lys Lys Arg Ala Glu Lys Gln Lys Arg Lys Glu 785 790 795 800

Met Glu Ala Lys Asn Lys Glu Asn Gly Lys Val Glu Asn Gly Leu Gly 805 810 815

Lys Thr Asp Arg Lys Lys Glu Ile Val Lys Phe Glu Pro Gln Val Asp 820 825 830

Thr Glu Ala Glu Asp Met Ile Ser Ala Val Lys Ser Arg Arg Leu Leu 835 840 845

Ala Ile Gln Ala Lys Lys Glu Arg Glu Ile Gln Glu Arg Glu Met Lys 850 . 855 860

Val Lys Leu Glu Arg Gln Ala Glu Glu Glu Arg Ile Arg Lys His Lys 865 870 875 888

Ala Ala Ala Glu Lys Ala Phe Gln Glu Gly Ile Ala Lys Ala Lys Leu 885 890 895

Val Met Arg Arg Thr Pro Ile Gly Thr Asp Arg Asn His Asn Arg Tyr 900 905 910

Trp Leu Phe Ser Asp Glu Val Pro Gly Leu Phe Ile Glu Lys Gly Trp 915 920 925

Val His Asp Ser Ile Asp Tyr Arg Phe Asn His His Cys Lys Asp His 930 935 940

Thr Val Ser Gly Asp Glu Asp Tyr Cys Pro Arg Ser Lys Lys Ala Asn 945 950 955 960

Leu Gly Lys Asn Ala Ser Met Asn Thr Gln His Gly Thr Ala Thr Glu 965 970 975

Val Ala Val Glu Thr Thr Thr Pro Lys Gln Gly Gln Asn Leu Trp Phe 980 985 990

- Leu Cys Asp Ser Gln Lys Glu Leu Asp Glu Leu Leu Asn Cys Leu His 995 1000 1005
- Pro Gln Gly Ile Arg Glu Ser Gln Leu Lys Glu Arg Leu Glu Lys 1010 1015 1020
- Arg Tyr Gln Asp Ile Ile His Ser Ile His Leu Ala Arg Lys Pro 1025 1030 1035
- Asn Leu Gly Leu Lys Ser Cys Asp Gly Asn Gln Glu Leu Leu Asn 1040 1045 1050
- Phe Leu Arg Ser Asp Leu Ile Glu Val Ala Thr Arg Leu Gln Lys 1055 1060 1065
- Gly Gly Leu Gly Tyr Val Glu Glu Thr Ser Glu Phe Glu Ala Arg 1070 1075 1080
- Val Ile Ser Leu Glu Lys Leu Lys Asp Phe Gly Glu Cys Val Ile 1085 1090 1095
- Ala Leu Gln Ala Ser Val Ile Lys Lys Phe Leu Gln Gly Phe Met 1100 1105 1110
- Ala Pro Lys Gln Lys Arg Arg Lys Leu Gln Ser Glu Asp Ser Ala 1115 1120 1125
- Lys Thr Glu Glu Val Asp Glu Glu Lys Lys Met Val Glu Glu Ala 1130 1135 1140
- Lys Val Ala Ser Ala Leu Glu Lys Trp Lys Thr Ala Ile Arg Glu 1145 1150 1155
- Ala Gln Thr Phe Ser Arg Met His Val Leu Leu Gly Met Leu Asp 1160 1165 1170
- Ala Cys Ile Lys Trp Asp Met Ser Ala Glu Asn Ala Arg Cys Lys 1175 1180 1185
- Val Cys Arg Lys Lys Gly Glu Asp Asp Lys Leu Ile Leu Cys Asp 1190 1195 1200
- Glu Cys Asn Lys Ala Phe His Leu Phe Cys Leu Arg Pro Ala Leu

1210 1215 1205 Tyr Glu Val Pro Asp Gly Glu Trp Gln Cys Pro Ala Cys Gln Pro 1220 1225 1230 Ala Thr Ala Arg Arg Asn Ser Arg Gly Arg Asn Tyr Thr Glu Glu 1240 Ser Ala Ser Glu Asp Ser Glu Asp Asp Glu Ser Asp Glu Glu Glu 1250 1255 1260 Glu Glu Glu Glu Glu Glu Glu Glu Glu Asp Tyr Glu Val Ala 1270 Gly Leu Arg Leu Arg Pro Arg Lys Thr Ile Arg Gly Lys His Ser 1280 1285

Val Ile Pro Pro Ala Ala Arg Ser Gly Arg Arg Pro Gly Lys Lys 1295 1300 1305

Pro His Ser Thr Arg Arg Ser Gln Pro Lys Ala Pro Pro Val Asp 1310 1315 1320

Asp Ala Glu Val Asp Glu Leu Val Leu Gln Thr Lys Arg Ser Ser 1325 1330 1335

Arg Arg Gln Ser Leu Glu Leu Gln Lys Cys Glu Glu Ile Leu His 1340 1345 1350

Met Ile Val Lys Tyr Arg Phe Ser Trp Pro Phe Arg Glu Pro Val 1355 1360 1365

Thr Arg Asp Glu Ala Glu Asp Tyr Tyr Asp Val Ile Thr His Pro 1370 1375 1380

Met Asp Phe Gln Thr Val Gln Asn Lys Cys Ser Cys Gly Ser Tyr 1385 1390 1395

Arg Ser Val Gln Glu Phe Leu Thr Asp Met Lys Gln Val Phe Thr 1400 1405 1410

Asn Ala Glu Val Tyr Asn Cys Arg Gly Ser His Val Leu Ser Cys 1415 1420 1425

Met Val Lys Thr Glu Gln Cys Leu Val Ala Leu Leu His Lys His 1430 1435 1440

Leu Pro Gly His Pro Tyr Val Arg Arg Lys Arg Lys Phe Pro 1450 1455

Asp Arg Leu Ala Glu Asp Glu Gly Asp Ser Glu Pro Glu Ala Val

Gly Gln Ser Arg Gly Arg Arg Gln Lys Lys 1480

<210> 111

<211> 526 <212> PRT <213> Homo sapiens

<400> 111

Met Val Met Lys Ala Ser Val Asp Asp Asp Ser Gly Trp Glu Leu 5 10

Ser Met Pro Glu Lys Met Glu Lys Ser Asn Thr Asn Trp Val Asp Ile 25 30

Thr Gln Asp Phe Glu Glu Ala Cys Arg Glu Leu Lys Leu Gly Glu Leu 35

Leu His Asp Lys Leu Phe Gly Leu Phe Glu Ala Met Ser Ala Ile Glu-50 55

Met Met Asp Pro Lys Met Asp Ala Gly Met Ile Gly Asn Gln Val Asn 65

Arg Lys Val Leu Asn Phe Glu Gln Ala Ile Lys Asp Gly Thr Ile Lys 85 90 95

Ile Lys Asp Leu Thr Leu Pro Glu Leu Ile Gly Ile Met Asp Thr Cys 100 105 110

Phe Cys Cys Leu Ile Thr Trp Leu Glu Gly His Ser Leu Ala Gln Thr 115

Val Phe Thr Cys Leu Tyr Ile His Asn Pro Asp Phe Ile Glu Asp Pro 130 135

Ala Met Lys Ala Phe Ala Leu Gly Ile Leu Lys Ile Cys Asp Ile Ala 145 150

Arg Glu Lys Val Asn Lys Ala Ala Val Phe Glu Glu Glu Asp Phe Gln 165 170 175

Ser Met Thr Tyr Gly Phe Lys Met Ala Asn Ser Val Thr Asp Leu Arg Val Thr Gly Met Leu Lys Asp Val Glu Asp Asp Met Gln Arg Arg Val Lys Ser Thr Arg Ser Arg Gln Gly Glu Glu Arg Asp Pro Glu Val Glu Leu Glu His Gln Arg Cys Leu Ala Val Phe Ser Arg Val Lys Phe Thr Arg Val Leu Leu Thr Val Leu Ile Ala Phe Thr Lys Lys Glu Thr Ser Ala Val Ala Glu Ala Gln Lys Leu Met Val Gln Ala Ala Asp Leu Leu Ser Ala Ile His Asn Ser Leu His His Gly Ile Gln Ala Gln Asn Asp Thr Thr Lys Gly Asp His Pro Ile Met Met Gly Phe Glu Pro Leu Val Asn Gln Arg Leu Leu Pro Pro Thr Phe Pro Arg Tyr Ala Lys Ile Ile Lys Arg Glu Glu Met Val Asn Tyr Phe Ala Arg Leu Ile Asp Arg Ile Lys Thr Val Cys Glu Val Val Asn Leu Thr Asn Leu His Cys Ile Leu Asp Phe Phe Cys Glu Phe Ser Glu Gln Ser Pro Cys Val Leu Ser Arg Ser Leu Leu Gln Thr Thr Phe Leu Val Asp Asn Lys Lys Val Phe Gly Thr His Leu Met Gln Asp Met Val Lys Asp Ala Leu Arg Ser Phe Val . 395 Ser Pro Pro Val Leu Ser Pro Lys Cys Tyr Leu Tyr Asn Asn His Gln

Ala Lys Asp Cys Ile Asp Ser Phe Val Thr His Cys Val Arg Pro Phe 420 425

Cys Ser Leu Ile Gln Ile His Gly His Asn Arg Ala Arg Gln Arg Asp 435 440

Lys Leu Gly His Ile Leu Glu Glu Phe Ala Thr Leu Gln Asp Glu Ala 455

Glu Lys Val Asp Ala Ala Leu His Thr Met Leu Lys Gln Glu Pro 470

Gln Arg Gln His Leu Ala Trp Leu Gly Thr Trp Val Leu Tyr His Asn 490

Leu Arg Ile Met Ile Gln Tyr Leu Leu Ser Gly Phe Glu Leu Glu Leu

Tyr Ser Met His Glu Ile Leu Leu His Ile Leu Val Ser Leu 520

<210> 112

<211> 368 <212> PRT

<213> Homo sapiens

<400> 112

Met Ala Ala Ala Glu Glu Arg Met Ala Glu Glu Gly Gly Gly Gly

Gln Gly Asp Gly Gly Ser Ser Leu Ala Ser Gly Ser Thr Gln Arg Gln

Pro Pro Pro Pro Ala Pro Gln His Pro Gln Pro Gly Ser Gln Ala Leu

Pro Ala Pro Ala Leu Ala Pro Asp Gln Leu Pro Gln Asn Asn Thr Leu

Val Ala Leu Pro Ile Val Ala Ile Glu Asn Ile Leu Ser Phe Met Ser

Tyr Asp Glu Ile Ser Gln Leu Arg Leu Val Cys Lys Arg Met Asp Leu 90

Val Cys Gln Arg Met Leu Asn Gln Gly Phe Leu Lys Val Glu Arg Tyr 100 105

His Asn Leu Cys Gln Lys Gln Val Lys Ala Gln Leu Pro Arg Arg Glu 115 120 Ser Glu Arg Arg Asn His Ser Leu Ala Arg His Ala Asp Ile Leu Ala Ala Val Glu Thr Arg Leu Ser Leu Leu Asn Met Thr Phe Met Lys Tyr 150 155 Val Asp Ser Asn Leu Cys Cys Phe Ile Pro Gly Lys Val Ile Asp Glu . 165 170 Ile Tyr Arg Val Leu Arg Tyr Val Asn Ser Thr Arg Ala Pro Gln Arg Ala His Glu Val Leu Gln Glu Leu Arg Asp Ile Ser Ser Met Ala Met 195 200 205 Glu Tyr Phe Asp Glu Lys Ile Val Pro Ile Leu Lys Arg Lys Leu Pro 210 215 Gly Ser Asp Val Ser Gly Arg Leu Met Gly Ser Pro Pro Val Pro Gly 230 Pro Ser Ala Ala Leu Thr Thr Met Gln Leu Phe Ser Lys Gln Asn Pro 245 250 Ser Arg Gln Glu Val Thr Lys Leu Gln Gln Gln Val Lys Thr Asn Gly Ala Gly Val Thr Val Leu Arg Arg Glu Ile Ser Glu Leu Arg Thr Lys Val Gln Glu Gln Lys Gln Leu Gln Asp Gln Asp Gln Lys Leu Leu 295 Glu Gln Thr Gln Ile Ile Gly Glu Gln Asn Ala Arg Leu Ala Glu Leu 310 315 Glu Arg Lys Leu Arg Glu Val Met Glu Ser Ala Val Gly Asn Ser Ser 325 330 Gly Ser Gly Gln Asn Glu Glu Ser Pro Arg Lys Arg Lys Ala Thr 345 Glu Ala Ile Asp Ser Leu Arg Lys Ser Lys Arg Leu Arg Asn Arg Lys

355 360 365

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.