Лабораторная работа 9 — SLAM

FastSLAM — это метод для одновременной локализации и построения карты на основе фильтра частиц Рао-Блэквелла. Для оценки положения робота в пространстве используется фильтр частиц. При этом каждая частица "несет" карту окружающего пространства, которую использует для локализации. Для построения карты используются внешние ориентиры и фильтрация Калмана, с помощью которой оценивается среднее положение и ковариация ориентиров.

Реализуйте алгоритм FastSLAM на базе внешних ориентиров.

Используйте готовый проект FastSLAM_framework, в котором уже описана необходимая для работы алгоритма FastSLAM последовательность действий и реализована визуализация.

В архиве FastSLAM_framework содержатся следующие папки:

data содержит файлы с данными о мире и показаниями датчиков.

code содержит "заготовку" для написания алгоритма FastSLAM.

Вы можете попробовать запустить алгоритм FastSLAM в терминале: python fastslam.py. Однако он будет работать корректно только после того, как вы дополните код.

- (а) Допишите функцию sample_motion_model, реализовав модель процесса на основе одометрии и осуществив сэмплинг. Функция генерирует новые положения, используя старые значения положений, измерения одометрии δ_{rot1} , δ_{trans} и δ_{rot2} и шумовые параметры модели процесса: $[\alpha_1, \alpha_2, \alpha_3, \alpha_4] = [0.1, 0.1, 0.05, 0.05]$.
- (b) Допишите функцию eval_sensor_model. Эта функция реализует модель измерений в фильтре частиц Рао-Блэквелла. При этом используется датчик, меряющий расстояние и относительный угол. На вход функции принимаются частицы и наблюдения ориентиров. Для каждой частицы функция обновляет карту и вычисляет вес w. Также необходимо учесть зашумленность датчиков:

$$Q_t = \begin{bmatrix} 0.1 & 0\\ 0 & 0.1 \end{bmatrix}$$

(c) Допишите функцию resample_particles, осуществив отсев. Функция принимает в качестве входных данных набор частиц и соответствующие веса и возвращает набор частиц, прошедших отсев.

Подсказки:

Для считывания данных, полученных с датчиков, и данных об ориентирах используются словари. Словари обеспечивают более простой способ доступа к структурам данных на основе одного или нескольких ключей. Функции read_sensor_data и read_world_data в файле read_data.py считывают данные из файлов и создают соответствующий словарь с отметками времени в качестве первичных ключей.

Чтобы получить доступ к данным датчика из словаря sensor_readings, используйте:

```
sensor_readings[timestamp,'sensor']['id']
sensor_readings[timestamp,'sensor']['range']
sensor_readings[timestamp,'sensor']['bearing']
```

Чтобы получить доступ к данным одометрии, используйте:

```
sensor_readings[timestamp,'odometry']['r1']
sensor_readings[timestamp,'odometry']['t']
sensor_readings[timestamp,'odometry']['r2']
```