B.01.01 – Máquinas Hidráulicas de Fluxo

Normas e Grandezas Básicas

Prof. C. Naaktgeboren, PhD

https://github.com/CNThermSci/ApplThermSci Compiled on 2021-01-28 20h26m36s UTC

- Normas em Máquinas de Fluxo
 - Definições IEC 60193

Referências

Nomenclatura

- Máquinas de fluxo são uma aplicação muito antiga em fluidos;
- A nomenclatura empregada é bastante heterogênea;

Nomenclatura

- Máquinas de fluxo são uma aplicação muito antiga em fluidos;
- A nomenclatura empregada é bastante heterogênea;
- Referências incluem acadêmicas e industriais;
- Maiores fornecedores mundiais convergem para o padrão IEC.

Nomenclatura

- Máquinas de fluxo são uma aplicação muito antiga em fluidos;
- A nomenclatura empregada é bastante heterogênea;
- Referências incluem acadêmicas e industriais:
- Maiores fornecedores mundiais convergem para o padrão IEC.
- E também o material desta disciplina.

Norma IEC 60193

IEC é o acrônimo da International Electrotechnical Commission.

- A **IEC 60193:2019** cancela e revoga a 2^a Ed. de 1999;
- Aplica-se para modelos de laboratório de máquinas de ação e de reação;
- Aplica-se para turbinas hidráulicas, bombas de armazenamento, ou turbina-bombas;

Norma IEC 60193

IEC é o acrônimo da International Electrotechnical Commission.

- A **IEC 60193:2019** cancela e revoga a 2^a Ed. de 1999;
- Aplica-se para modelos de laboratório de máquinas de ação e de reação;
- Aplica-se para turbinas hidráulicas, bombas de armazenamento, ou turbina-bombas;
- com potência unitária > 5 MW, ou
- com diâmetro > 3 m:

Norma IEC 60193

IEC é o acrônimo da International Electrotechnical Commission.

- A **IEC 60193:2019** cancela e revoga a 2^a Ed. de 1999;
- Aplica-se para modelos de laboratório de máquinas de ação e de reação;
- Aplica-se para turbinas hidráulicas, bombas de armazenamento, ou turbina-bombas;
- com potência unitária > 5 MW, ou
- com diâmetro > 3 m:
- Esta norma objetiva definir termos e quantidades empregados;
- além de estabelecer várias outras especificações, asserções e garantias...
- Este conteúdo visa apenas o ensino. Não serve de substituto, parcial ou total à nenhuma norma.

Outras Normas

- IEC 60041 Field acceptance test to determine the hydraulic performance of hydraulic turbines, storage pumps and pump-turbines.
- IEC 60609 Cavitation pitting evaluation in hydraulic turbines, storage pumps and pump-turbines.
- IEC 60609-2 Cavitation pitting evaluation in hydraulic turbines, storage pumps and pump-turbines Part 2: Evaluation in Pelton turbines.
- IEC 61364 Nomenclature of hydraulic machinery.
- VIM International vocabulary of basic and general terms in metrology (ABNT ISO/IEC GUIA 99).

Subscritos e Símbolos Pertinentes

Símbolo	Definição
1	Seção de referência de alta pressão
2	Seção de referência de baixa pressão
1'	Seção de medição de alta pressão
2'	Seção de medição de baixa pressão
max, min	Máximo ou mínimo valor, respectivamente
P	Referente ao protótipo, em tamanho real
M	Referente ao modelo em escala reduzida
ref	Valores em condição de referência especificada
amb	Valores referentes ao ambiente
pl	Valores da planta
R	Referente à condição de disparo (runaway)

Termos Geométricos

Símbolo	Definição
$A (m^2)$	Área
a (m)	Abertura de palhetas (menor distância média entre palhetas adjacentes)
α (°)	Ângulo de abertura de palhetas (valor médio à partir do fechamento)
β (°)	Ângulo de abertura de pá de rotor
D(m)	Diâmetro de referência (geralmente mínimo e não variável)
z (m)	Nível, ou quota (elevação em rel. a uma ref.: nível do mar)

Quantidades e Propriedades Físicas

Símbolo	Definição
$g (\text{m/s}^2)$	Aceleração devido à gravidade
$\Theta(K)$	Temperatura termodinâmica
θ (°C)	Temperatura em Celsius, $\theta = \Theta - 273, 15$
$\rho (kg/m^3)$	Densidade. Subscritos incluem: w , a e Hg , para água, ar e Mercúrio
p_{va} (Pa)	Pressão absoluta de vapor d'água (uma função da temperatura)
$\mu \left(\mathrm{Pa} \cdot \mathrm{s} \right)$	Viscosidade dinâmica
$v (m^2/s)$	Viscosidade cinemática, ou difusividade do movimento, $\mathbf{v} = \mu/\rho$
$\sigma\star (J/m^2)$	Tensão superficial

Termos de Vazão e Velocidade

Símbolo	Definição
$Q (\mathrm{m}^3/\mathrm{s})$	Vazão (taxa de escoamento volumétrica) ou descarga
$\rho Q (\mathrm{kg/s})$	Vazão mássica (taxa de massa)
$Q_{1'}$ ou $Q_{2'}$	Vazão volumétrica medida
Q_1 ou Q_2	Vazão volumétrica na seção de referência
$Q_R (\mathrm{m}^3/\mathrm{s})$	Vazão volumétrica em condição de disparo (runaway)
$Q_0 ({\rm m}^3/{\rm s})$	Vazão volumétrica da turbina em potência mecânica nula (no-load)
$q (\mathrm{m}^3/\mathrm{s})$	Vazão de vazamentos (perdas)

Termos de Vazão e Velocidade (Cont.)

Símbolo	Definição
v (m/s)	Velocidade média, $v = Q/A$
n(1/s)	(Velocidade de) rotação: revoluções por unidade de tempo
u (m/s)	Velocidade periférica (de rotor), $u = \pi Dn$
$n_R (1/\mathrm{s})$	Rotação, em regime permanente, em condição de disparo (runaway)
$n_{Rmax} (1/s)$	Rotação, em regime permanente, máxima em condição de disparo

Termos de Pressão

Símbolo	Definição
p _{abs} (Pa)	Pressão absoluta — pressão estática de um fluido em relação ao vácuo
p_{amb} (Pa)	Pressão ambiente — pressão absoluta do ar ambiente
p (Pa)	Pressão manométrica, $p = p_{abs} - p_{amb}$, no nível de referência da
	medição.

Termos de Energia Específica

Símbolo	Definição
e (J/kg)	Energia específica — energia hidráulica por unidade de massa da água
$E\left(\mathrm{J/kg}\right)$	Energia hidráulica específica da máquina
	$E = rac{p_{abs1} - p_{abs2}}{ar{ ho}} + rac{v_1^2 - v_2^2}{2} + (z_1 - z_2)g$, com $ar{ ho} = rac{ ho_1 + ho_2}{2}$
E_0 (J/kg)	Energia hidráulica específica da bomba estrangulada na alta pressão
E_s (J/kg)	Energia potencial específica de sucção da máquina
	$E_s = g(z_r - z_{2'})$
NPSE (J/kg)	Net pos. suction sp. energy: energia específica de sucção positiva líquida
	$NPSE = \frac{p_{abs2} - p_{va}}{\rho_2} + \frac{v_2^2}{2} - g(z_r - z_2)$

Termos de Energia Específica (Cont.)

Símbolo	Definição
<u>σ (–)</u>	Número de Thoma, indicativo das condições de operação quanto à
	cavitação, $\sigma = NPSE/E$
σ_{nD} (–)	Coeficiente de cavitação, $\sigma_{nD} = NPSE/(n^2D^2)$
σ_0 (–)	Número de Thoma zero, incipiente da redução de performance
σ_1 (–)	Número de Thoma um, de 1% de redução de performance
σ_i (–)	Número de Thoma incipiente, de visível cavitação em rotor
σ_{pl} (–)	Número de Thoma da planta, nas condições de operação do protótipo
$E_L(J/kg)$	Perda de energia hidráulica específica, entre quaisquer duas seções

Termos de Elevações e Quedas

Símbolo	Definição
h (m)	Queda ou carga: energia por unidade de peso em qualquer seção, $h =$
	e/g
H(m)	Queda da turbina ou carga da bomba, $H = E/g$
H_0 (m)	Carga da bomba em condição de estrangulamento, $H_0 = E_0/g$
Z_s (m)	Altura de sucção da bomba, $Z_s = E_s/g$
NPSH (m)	Net pos. suction head queda de sucção positiva líquida
z_r (m)	Nível de referência (elevação do ponto de referência) da máquina

Termos de Potência e Torque

Símbolo	Definição
$\overline{P_h(W)}$	Potência hidráulica disponível (turb.) ou fornecida (bombas) na/à água
	$P_h = E(\rho Q_1)$
P(W)	Potência mecânica entregue pela (turb.) ou à (bombas) máquina
$P_m(\mathbf{W})$	Potência mecânica do rotor
$P_{Lm}\left(\mathbf{W}\right)$	Perda de potência mecânica, devido a vedações e mancais
	$P = P_m - P_{Lm}$ (turb.) ou $P = P_m + P_{Lm}$ (bombas)
$P_0(\mathbf{W})$	Potência da bomba em condição de estrangulamento
$T(\mathbf{N} \cdot \mathbf{m})$	Torque de eixo correspondente à potência mecânica
$T_m(\mathbf{N}\cdot\mathbf{m})$	Torque de rotor correspondente à potência mecânica de rotor
$T_{Lm} (\mathbf{N} \cdot \mathbf{m})$	Torque de atrito, devido a vedações e mancais

Para turbinas:

$$q=q^{'}+q^{''}$$

$$Q_1 = Q_m + q$$

$$P_h = E(\rho Q)_1$$

$$P = P_m - P_{Lm}$$

Fonte: Adaptado de parte da Fig. 6, IEC 60193 (1999) para fins de ensino.

Para bombas:

$$q=q^{'}+q^{''}$$

$$Q_1 = Q_m - q$$

$$P_h = E(\rho Q)_1$$

$$P = P_m + P_{Lm}$$

Fonte: Adaptado de parte da Fig. 6, IEC 60193 (1999) para fins de ensino. Não pode ser comercializado, Não substitui a norma nem parte dela.

Termos de Eficiência

Símbolo	Definição
$\overline{\eta_h(-)}$	Eficiência hidráulica, da transformação hidráulica ↔ mecânica
	Turbinas: $\eta_h = \frac{P_m}{P_h}$. Bombas: $\eta_h = \frac{P_h}{P_m}$.
η_m (—)	Eficiência mecânica, com base em torques de saída ↔ entrada
	Turbinas: $\eta_m = \frac{P}{P_m}$. Bombas: $\eta_m = \frac{P_m}{P}$.
η (—)	Eficiência, da composição $\eta = \eta_h \cdot \eta_m$.
η_W (—)	Eficiência média ponderada
	$\eta_W = \frac{w_1 \eta_1 + w_2 \eta_2 + w_3 \eta_3 + \dots}{w_1 + w_2 + w_3 + \dots}.$

Termos de Eficiência (Cont.)

Para turbinas:

$$\eta_{
u}=rac{Q_m}{Q_1}$$
 $\eta_h=rac{P_m}{P_h}$ $\eta=rac{P}{P_h}$

Termos de Eficiência (Cont.)

Para bombas:

$$\eta_{
u}=rac{Q_{1}}{Q_{m}}$$
 $\eta_{h}=rac{P_{h}}{P_{m}}$

$$\eta = rac{P_h}{P}$$

Termos de Escala e Grupos Adimensionais em Fluidodinâmica

Símbolo Definição

Re (—) Número de Reynolds, razão entre forças de inércia e viscosas

$$Re = \frac{Du}{v}$$

Fr (—) Número de Froude, raiz da razão entre forças de inércia e gravitacionais

$$Fr = \sqrt{\frac{E}{gD}}$$

We (—) Número de Weber, razão entre forças de inércia e superficiais

We =
$$\sqrt{\frac{\rho L v^2}{\sigma \star}}$$

Eu (—) Número de Euler, razão entre forças de inércia e de pressão

$$Eu = \frac{\Delta p}{\sigma v^2}$$

Fatores Adimensionais

SímboloDefinição n_{ED} (—)Speed factor ou Fator de velocidade

$$n_{ED} = \frac{nD}{E^{0.5}} = \frac{1}{E_{nD}^{0.5}}$$

O_{ED} (—) Discharge factor ou Fator de vazão (ou descarga)

$$Q_{ED} = rac{Q_1}{D^2 E^{0.5}} = rac{Q_{nD}}{E_{nD}^{0.5}}$$

 T_{ED} (—) Torque factor ou Fator de torque

$$T_{ED} = \frac{T_m}{\mathsf{p}_1 D^3 E} = \frac{T_{nD}}{E_{nD}}$$

P_{ED} (—) Power factor ou Fator de potência

$$P_{ED} = rac{P_m}{
ho_1 D^2 E^{1.5}} = rac{P_{nD}}{E_{nD}^{1.5}}$$

Coeficientes e Números Adimensionais

Símbolo Definição

$$E_{nD}$$
 (—) Energy coefficient ou Coeficiente de energia

$$E_{nD} = \frac{E}{n^2 D^2}$$

$$Q_{nD}$$
 (—) Discharge coefficient ou Coeficiente de vazão (ou descarga)

$$Q_{nD} = rac{Q_1}{nD^3}$$

$$T_{nD}$$
 (—) Torque coefficient ou Coeficiente de torque

$$T_{nD} = \frac{T_m}{\rho_1 n^2 D^5}$$

$$P_{nD}$$
 (—) Power coefficient ou Coeficiente de potência

$$P_{nD} = \frac{P_m}{\mathsf{p}_1 n^3 D^5}$$

Referências

- Potter, M. C., et al.

 Mecânica dos Fluidos. Seção 12-1.

 Cengage. São Paulo. ISBN 978-85-221-1568-6.
- International Electrotechnical Commission, IEC 60193

 Hydraulic turbines, storage pumps and pump-turbines Model acceptance tests.

 International Standard, 2019, webstore, iec.ch/publication/60951.

