Probabilidad Condicional

M. en C. Paul Ramírez De la Cruz

Probabilidad Condicional

De qué manera podemos incluir información adicional en el cálculo de una probabilidad?

Eventos dependientes e independientes

- En ocasiones la ocurrencia de un evento, B, influye en la probabilidad de ocurrencia de otro evento, A
- Es decir que la probabilidad de *A* se modifica, dependiendo de si *B* ha ocurrido o no
- ▶ En tal caso decimos que *A* y *B* son dependientes
- Por el contrario, si la probabilidad de A se mantiene, sin importar si B ha ocurrido o no, decimos que A y B son independientes

Eventos dependientes e independientes

- Ejemplo:
 - A = {El alumno aprueba el examen}
 - B = {El alumno utiliza un pantalón de color azul el día del examen}
 - C = {El alumno dedicó al menos 20 horas a la preparación del examen}
- Los eventos A y B son independientes
- Los eventos A y C son dependientes

Probabilidad Condicional

 Cuando queremos conocer la probabilidad de que ocurra un evento A, sabiendo que ya ha ocurrido el evento B, estamos interesados en la probabilidad (condicional) de que ocurra A dado que ocurrió B

$$P(A|B) = \frac{P(A \cap B)}{P(B)}; \quad P(B) \neq 0$$

Teorema de la Multiplicación e Independencia de Eventos

Para cualesquiera eventos A y B se tiene que

$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$

- Se dice que el evento ${\it A}$ es independiente del evento ${\it B}$ si se cumple que P(A|B)=P(A)
- Equivalentemente, si $P(A \cap B) = P(A)P(B)$ entonces los eventos A y B son independientes (entre sí)

Ejercicio

	Nivel de estudios que cursa							
Sexo	Secundaria (S)	Carrera Técnica (T)	Bachillerato (B)	Total				
Hombre (H)	220	1	521	742				
Mujer (M)	211	24	612	847				
Total	431	25	1133	1589				

- Considere la tabla anterior y determine lo siguiente:
- ¿Son independientes los eventos "es mujer" y "estudia bachillerato"? R = No
- b) ¿Son independientes los eventos "es hombre" y "estudia carrera técnica"? R = No
- ¿Son independientes los eventos "es hombre" y "estudia secundaria"? R = No

a) ¿Son independientes los eventos "es mujer" y "estudia bachillerato"?

```
Veamos. Tenemos que P(M \cap B) = 612/1589 = 0.385 Y por otro lado, P(M)P(B) = (847/1589)(1133/1589) = 0.533(0.713) = 0.380 Observamos que P(M \cap B) \neq P(M)P(B), así que los eventos M y B son dependientes
```

b) ¿Son independientes los eventos "es hombre" y "estudia carrera técnica"?

```
Veamos. Tenemos que P(H \cap T) = 1/1589 = 0.001 Y por otro lado, P(H)P(T) = (742/1589)(25/1589) = 0.467(0.016) = 0.007 Observamos que P(H \cap T) \neq P(H)P(T), así que los eventos H y T son dependientes
```

¿Son independientes los eventos "es hombre" y "estudia secundaria"?

```
Veamos. Tenemos que P(H \cap S) = 220/1589 = 0.138 Y por otro lado, P(H)P(S) = (742/1589)(431/1589) = 0.467(0.271) = 0.127 Observamos que P(H \cap S) \neq P(H)P(S), así que los eventos H y S son dependientes
```

- Considere los datos del ejercicio previo sobre los distintos modelos de computadora
- Sean A = {Tiene memoria estándar}, B = {Tiene unidad de DVD}, C = {DD>160}
- a) Calcule P(A | B) y P(B | A). ¿Son iguales?
- Calcule $P(A' \mid B)$. ¿Se cumple que $P(A' \mid B) = 1 P(A \mid B)$?
- Calcule P(B | C) y P(B | C'). Se cumple que P(B | C') = 1 P(B | C)?
- ¿Son independientes los eventos A y B? ¿Lo son B y C? ¿Lo son A y C?

Modelo	1	2	3	4	5	6	7	8	9
Porcentaje de ventas	27	23	10	13	7	4	5	8	3

	Modelo	1	2	3	4	5	6	7	8	9
	Porcentaje de ventas	27	23	10	13	7	4	5	8	3
7	Memoria estándar	✓	✓	✓	✓	✓	✓			
	Memoria expandida							✓	✓	✓
No.	DVD	✓	✓	✓						
ESI .	Blu-Ray				✓	✓	✓	✓	✓	✓
	DD 160GB	✓			✓			✓		
	DD 250GB		✓			✓			✓	
	DD 320GB			✓			✓			✓

- ► $P(A|B) = P(A \cap B)/P(B)$ = $P(\{1,2,3\})/P(\{1,2,3\})$ = (0.27 + 0.23 + 0.10)/(0.27 + 0.23 + 0.10) = 1
- Es seguro que la computadora tenga memoria estándar dado que tiene unidad de DVD
 - Si tiene DVD, entonces necesariamente tiene memoria estándar

- $P(B|A) = P(B \cap A)/P(A)$ $= P(\{1,2,3\})/P(\{1,2,3,4,5,6\})$ = 0.60/(0.27 + 0.23 + 0.10 + 0.13 + 0.07 + 0.04) = 0.7143
- La probabilidad de que una computadora tenga unidad de DVD dado que tiene memoria estándar es de 0.7143
- ▶ Observamos que, en general, $P(A|B) \neq P(B|A)$

- P(A'|B) = 1 P(A|B)?
- ► $P(A'|B) = P(A' \cap B)/P(B) = P({7, 8, 9} \cap {1, 2, 3})/P({1, 2, 3}) = P(\emptyset) / P({1, 2, 3}) = 0 / (0.27 + 0.23 + 0.10) = 0/0.60 = 0$
- ▶ Note que $P(\emptyset) = 1 P(\Omega) = 1 1 = 0$

- Por otro lado, 1 P(A|B) = 1 1 = 0
- Por tanto, en este caso se cumple que P(A'|B) = 1 P(A|B)
- Se puede demostrar que se cumple en general

- Resulta que
 - $\circ P(B|C) = 0.60$
 - P(B|C') = 0.60
- Entonces $P(B|C') = 0.60 \neq 0.40 = 1 0.60 = 1 P(B|C)$
- Luego, en general, $P(B|C') \neq 1 - P(B|C)$

- Para verificar si son independientes los eventos A y B, hay que comprobar si se cumple que $P(A \cap B) = P(A)P(B)$
- Por un lado, tenemos que
 - $\circ P(A \cap B) = 0.60$

- Mientras que, por otro lado
 - \circ P(A)P(B) = (0.27 + 0.23 + 0.10 + 0.13 + 0.07 + 0.04)(0.27 + 0.23 + 0.10) = 0.84(0.60)= 0.504
- Por tanto, vemos que
 - $P(A \cap B) = 0.60 \neq 0.504 = P(A)P(B)$
- Esto implica que los eventos A y B son dependientes

- Los eventos B y C son independientes
- Los eventos A y C son dependientes

Teorema de la Probabilidad Total y Teorema de Bayes

Partición de un espacio muestral

- Sea Ω un espacio muestral
- Consideremos la colección de conjuntos $\{A_1, A_2, A_3, ..., A_k\}$ con las siguientes características:
- 1. Para cada j = 1,2,...,k; $A_j \subset \Omega$ y $A_j \neq \phi$
- Para i,j = 1, 2, ..., k; $i \neq j \Rightarrow A_i \cap A_j = \phi$
- 3. Se cumple que $igcup_{j=1}^k A_j = \Omega$
- Se dice entonces que la colección $\{A_1, A_2, A_3, ..., A_k\}$ es una partición para Ω

Partición de un espacio muestral

La colección $\{A_1, A_2, A_3, A_4\}$ constituye una partición para el espacio muestral Ω

Partición de un espacio muestral

La colección $\{A_1, A_2, A_3, A_4\}$ constituye una partición para el espacio muestral Ω

Teorema de la Probabilidad Total

- ightharpoonup Sea Ω un espacio muestral

y si B es cualquier evento en el espacio muestral Ω , entonces se cumple que

$$P(B) = \sum_{i=1}^{k} P(B \mid A_i) P(A_i)$$

Teorema de Probabilidad Total

- Por la definición de Probabilidad condicional, tenemos que
 - $\circ P(B \mid A_i) = P(B \cap A_i)/P(A_i)$
- ▶ Entonces $P(B \cap A_i) = P(B \mid A_i) P(A_i)$
- Además, $P(B) = \sum_{i=1}^{k} P(B \cap A_i)$
- Así que $P(B) = \sum_{i=1}^{k} P(B \mid Ai) P(Ai)$

Ejemplo Probabilidad Total

- En una planta manufacturera hay tres máquinas etiquetadoras de latas
- La máquina 1 aplica etiquetas con una fajilla de promoción un 2% de las veces, la máquina 2, un 0.5% y la máquina 3 un 1.5%
- Se toma una lata de la producción de las tres máquinas. Calcule la probabilidad de que tenga la fajilla de promoción si:
- a) Cada máquina produce 1/3 del total R = 0.013
- Si las máquinas 1, 2 y 3 producen 20%, 50% y 30% del total respectivamente R = 0.011

- Definamos
 - $A_1 = \{ La | ata fue etiquetada por la máquina 1 \}$
 - $A_2 = \{La | lata fue etiquetada por la máquina 2\}$
 - A₃ = {La lata fue etiquetada por la máquina 3}
- Sea B = {La lata tiene la fajilla de promoción}
- Queremos obtener P(B)

- Supongamos que $P(A_1) = 1/3$, $P(A_2) = 1/3$, $P(A_3) = 1/3$
- ▶ $P(B|A_1) = P(\{La | ata tiene a fajilla de promoción | Fue etiquetada por la máquina 1\}) = 2% = 0.02$
- ▶ $P(B|A_2) = P(\{La | ata tiene a fajilla de promoción | Fue etiquetada por la máquina 2\}) = 0.5% = 0.005$
- ▶ $P(B|A_3) = P(\{La | ata tiene a fajilla de promoción | Fue etiquetada por la máquina 3\}) = 1.5% = 0.015$

- P({Tenga la fajilla de promoción}) = P(B)
- Por el Teorema de la Probabilidad Total

$$P(B) = \sum_{i=1}^{k} P(B \mid A_i) P(A_i)$$

Luego

```
• P(B) = P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + P(B|A_3)P(A_3)
= 0.02(1/3) + 0.005(1/3) + 0.015(1/3)
= 0.0133
```

- Las definiciones de las A_j y B siguen siendo las mismas:
 - A₁ = {La lata fue etiquetada por la máquina 1}
 - A₂ = {La lata fue etiquetada por la máquina 2}
 - A₃ = {La lata fue etiquetada por la máquina 3}
- Sea B = {La lata tiene la fajilla de promoción}

- Las probabilidades de etiquetado con la fajilla de promoción, se mantienen, es decir
 - $P(B|A_1) = P(\{La | ata tiene a fajilla de promoción | Fue etiquetada por la máquina 1\}) = 2% = 0.02$
 - $P(B|A_2) = P(\{La | ata tiene a fajilla de promoción | Fue etiquetada por la máquina 2\}) = 0.5% = 0.005$
 - $P(B|A_3) = P(\{La | ata tiene a fajilla de promoción | Fue etiquetada por la máquina 3\}) = 1.5% = 0.015$
- Pero en cambio, ahora $P(A_1) = 0.20$, $P(A_2) = 0.50$, $P(A_3) = 0.30$

- P({Tenga la fajilla de promoción}) = P(B)
- Por el Teorema de la Probabilidad Total

$$P(B) = \sum_{i=1}^{k} P(B \mid A_i) P(A_i)$$

Luego

```
P(B) = P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + P(B|A_3)P(A_3)
= 0.02(0.20) + 0.005(0.50) + 0.015(0.30)
= 0.011
```

Teorema de Bayes

- Sean Ω un espacio muestral, $A_1, A_2, ..., A_k$ una partición de Ω y $\mathbf{B} \subset \Omega$ un evento cualquiera
- La probabilidad *a posteriori* de que haya ocurrido el evento A_j , dado que ocurrió Bestá dada por

$$P(A_j \mid \mathbf{B}) = \frac{P(\mathbf{B} \mid A_j)P(A_j)}{\sum_{i=1}^{k} P(\mathbf{B} \mid A_i)P(A_i)}$$

Teorema de Bayes

- Por la definición de probabilidad condiconal, tenemos que $P(A_i|B) = P(A_i \cap B) / P(B) --- (1)$
- Por otro lado, como $P(B|A_j) = P(B \cap A_j) / P(A_j)$, entonces

$$P(A_j \cap B) = P(B \cap A_j) = P(B|A_j) P(A_j) --- (2)$$

- Además, por el Teorema de la Probabilidad Total $P(B) = \sum_i P(B|A_i)P(A_i)$ --- (3)
- Así que sustituyendo (2) y (3) en (1), tenemos que $P(A_i|B) = P(B|A_i)P(A_i)/\sum_i P(B|A_i)P(A_i)$

Teorema de Bayes

- Note que el Teorema se cumple porque:
- Lo que está en el numerador es P(A_j∩B), despejando de la definición de Probabilidad Condicional, y
- Lo que se tiene en el denominador es P(B), de acuerdo con el Teorema de la Probabilidad Total
- Así que el Teorema de Bayes es solamente una forma extensa de escribir $P(A_i|B) = P(A_i \cap B)/P(B)$

Ejemplo Teorema de Bayes

- En el ejemplo de las máquinas etiquetadoras, suponga que se toma una lata y se observa que tiene la fajilla de promoción
- Suponga que cada máquina etiqueta 1/3 de todas las latas
- Calcule la probabilidad de que se haya tomado de la:
- a) Máquina 1
- b) Máquina 2
- Máquina 3
- d) ¿De cuál de las tres máquinas es más probable que venga la lata seleccionada?

Ejemplo. Teorema de Bayes. Solución

- Llamemos B al evento de que la lata tomada tenga la fajilla de promoción
- Nuevamente llamamos
 - A₁ al evento de que la lata haya sido etiquetada por la máquina 1
 - A₂ al evento de que la lata haya sido etiquetada por la máquina 2
 - A₃ al evento de que la lata haya sido etiquetada por la máquina 3

Ejemplo. Teorema de Bayes. Solución

- Lo que buscamos es:
- P(Haya sido etiquetado por la máquina 1 | Tiene etiqueta) = P(A₁ | B)
- P(Haya sido etiquetado por la máquina 2 |
 Tiene etiqueta) = P(A₂ | B)
- P(Haya sido etiquetado por la máquina $3 \mid$ Tiene etiqueta) = $P(A_3 \mid B)$

```
P(A_1 | B) = P(B|A_1)P(A_1) /
 [P(B|A_1)P(A_1) + P(B|A_2)P(A_2) +
 P(B|A_3)P(A_3)
 = 0.02*(1/3) / [0.02*(1/3) +
 0.005*(1/3) + 0.015*(1/3)
 = 0.5
```

Ejemplo. Solución (continúa)

```
P(A_2 \mid B) = P(B|A_2)P(A_2) /
 [P(B|A_1)P(A_1) + P(B|A_2)P(A_2) +
 P(B|A_3)P(A_3)
 = 0.005*(1/3) / [0.02*(1/3) +
 0.005*(1/3) + 0.015*(1/3)
 = 0.125
```

Ejemplo. Solución (continúa)

```
P(A_3 | B) = P(B|A_3)P(A_3) /
 [P(B|A_1)P(A_1) + P(B|A_2)P(A_2) +
 P(B|A_3)P(A_3)
 = 0.015*(1/3) / [0.02*(1/3) +
 0.005*(1/3) + 0.015*(1/3)
 = 0.375
```

Ejemplo. Solución (conclusión)

- ¿De cuál de las tres máquinas es más probable que venga la lata si se observa que tiene la fajilla de promoción?
- Dado que
 - $P(A_1 \mid B) = 0.500$
 - \circ P(A₂ | B) = 0.125
 - $\circ P(A_3 \mid B) = 0.375$
- Lo más probable es que venga de la máquina 1 (su probabilidad es 0.5)

Ejercicio

- Repita el ejercicio anterior suponiendo ahora que las máquinas 1, 2 y 3 etiquetan 20, 50 y 30% de las latas, respectivamente
- ▶ R =
 - \circ P(A₁ | B) = 0.364
 - \circ P(A₂ | B) = 0.227
 - $\circ P(A_3 \mid B) = 0.409$
 - Por tanto, lo más probable es que la haya etiquetado la máquina 3

Referencias

- Bain, Lee J. & Engelhardt, Max Introduction to probability and mathematical statistics. PWS-Kent Publishing Company. EUA, 1991
- Efimov, A; Karakulin, A.; Póspelov, P.; Teréschenko, A.; Vukólov, E.; Zemskov, V. & Zolotarev, Yu. Problemas de las matemáticas superiores III. Editorial Mir. Moscú, URSS, 1986
- Hoel, Paul G. Introduction to mathematical statistics. John Wiley
 Sons. EUA, 1984
- Wolfram Research. Mathworld. http://mathworld.wolfram.com. 2006
- Mood, Alexander M.; Graybill, Franklin A. & Boes, Duane C. Introduction to the theory of statistics. McGraw-Hill. EUA, 1974