Predicting Short Term Stock Prices with News Data and Recurrent Networks

Brian Falkenstein

Overview

- Want to incorporate features extracted from relevant news articles into a recurrent network to predict short term stock prices
- Specifically, using time steps t-k to t to predict price at t+1

Short Term Trading / Active Trading

- Position held for no longer than a few days
- Short term market volatility
 - Often caused by political or economic events, key data releases
- Riskier than buy and hold

Short Term Trading / Active Trading

- Position held for no longer than a few days
- Short term market volatility
 - Often caused by political or economic events, key data releases
- Riskier than buy and hold

Passenger Files Class-Action Lawsuit Against American
Airlines

Free Netflix: Petition asks streamers to stop charging due to coronavirus

Were Hedge Funds Right About Wells Fargo & Company (WFC)?

Dataset

- Want up to date time series stock data
 - **IFXCloud**
 - Limited number of queries
 - 39 companies, 1 month of historical data with 1 day resolution
 - [open, low, high, close]
- News articles from the same time
 - NewsAPI
 - Company name as search term
 - First paragraph of article used in embedding

News API .PHP

'As we all navigate life during the pandemic and do our part to flatten the curve by not partaking in non-essential travel, air lines are updating their policies, providing free flight changes and cancellations for travel directly affected by the pandemi c. For ... [+4211 chars]'

Document Embedding

Doc2Vec

- Distributed Representations of Sentences and Documents (Le, Quoc and Mikolov Tomas 2014)
- Learning document representations that aid in word context prediction
- Success with sentiment analysis task
 - Goal capture sentiment of relevant news articles

Recurrent Modules - RNN

- Daily stock data passed in recurrently
 - Take last output as prediction
- Parameters
 - Hidden dimensionality, sequence length, learning rate
 - Need low LR (exploding gradient)
- Implemented with PyTorch

$$out_{t+1} = f(concat(X_{i,t}, h_t), w_1) + b_1$$

 $h_{t+1} = f(concat(X_{i,t}, h_t), w_2) + b_2$

Recurrent Modules - LSTM

- Improves on RNN by better capturing long term dependencies
 - More parameters
- Gates allow for control of how much old information is forgotten, and how much new information is transferred forward
- Used already implemented LSTM in pytorch.nn

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

Full Model

 $size(X) = [num_companies, \ num_time_steps, \ num_features]$

Results - RNN

Table 1: RNN Test Errors

Hidden Dim	Sequence Length	MAE
10	10	1.761 + / - 0.640
20	10	1.333 + / -0.536
30	10	1.538 + / - 0.822
50	10	1.791 +/- 1.215
20	1	1.710 +/- 0.8188
20	5	1.325 + / - 0.606
20	20	2.061 +/- 1.022

Table 2: RNN with News Features Test Errors, Hidden dim=20 Sequence length=5 $\,$

Document Feature Dim	MAE
5	1.722 + / - 0.371
10	1.574 + / - 0.597
20	1.726 + /-0.580

Results - LSTM

Table 3: LSTM Test Errors

Hidden Dim	Sequence Length	MAE
10	10	107.14 +/- 68.427
50	10	62.037 +/- 44.274
100	10	55.155 +/- 25.839
100	1	72.409 +/- 65.199
100	5	66.954 +/- 60.184
100	20	88.994 +/- 67.606

Table 4: LSTM with News Features Test Errors, Hidden dim=100 Sequence length=10

Document Feature Dim	MAE
5	56.633 +/- 19.001
10	49.607 +/- 11.433
20	48.870 +/- 10.467

Conclusions

- LSTM results BAD
 - Likely need a much larger dataset
- Effects of news features inconclusive
 - o Could try other embedding methods (LSA, BOW, ...)
- Better metric would be to train the model to make decisions on buying and selling, and tracking profit/loss
 - Compare to other methods (buy and hold)
 - Reinforcement learning

Thank you!