Code Explanation: Maternal Mortality Risk Prediction Model

This document explains the Python script for building and evaluating a machine learning model to predict maternal mortality risk using a LightGBM classifier. The script processes a dataset, applies preprocessing, handles class imbalance, performs cross-validation, evaluates model performance, and analyzes feature importance using SHAP. The best results from the model evaluation are also included.

1. Imports and Setup

The script begins by importing necessary libraries and suppressing warnings to reduce clutter in the output.

Libraries:

- o pandas and numpy for data manipulation and numerical operations.
- lightgbm for the gradient boosting model.
- sklearn modules for model evaluation (roc_auc_score, f1_score, etc.),
 data splitting (train_test_split, StratifiedKFold), and metrics
 calculation (precision_recall_curve, auc).
- o imblearn.combine.SMOTEENN for handling class imbalance.
- o category_encoders.TargetEncoder for encoding categorical features.
- shap for model interpretability.
- matplotlib.pyplot for plotting SHAP visualizations.
- o pyarrow.parquet for reading Parquet files.
- Warnings: warnings.filterwarnings('ignore', category=UserWarning) suppresses user warnings to keep the output clean.
- **SMOTEENN Check**: Verifies that SMOTEENN is available, raising an error if not installed.

2. Data Preprocessing (prepare_data_for_targets)

The prepare_data_for_targets function loads and preprocesses data from a Parquet file in batches to handle large datasets efficiently.

Key Steps:

Batch Processing:

- Reads the Parquet file (telangana_data_with_features_and_targets
 (1).parquet) using pyarrow.parquet.
- o Processes data in chunks (batch_size=10000) to manage memory usage.

Column Definitions:

- Required Columns: Ensures MOTHER_ID and GRAVIDA are present.
- Numeric Columns: Includes features like GRAVIDA, PARITY, HEIGHT, BMI, etc.
- Flag Columns: Binary indicators like age_adolescent, hypertension, etc.
- Categorical Columns: Features like FACILITY_TYPE, BL00D_GRP, SYS_DISEASE.

Preprocessing:

- Converts numeric columns to numeric type, handling errors by coercing to NaN.
- Maps flag columns (Y, YES, etc. \rightarrow 1; N, N0, etc. \rightarrow 0) and imputes NaN with 0.
- Imputes missing numeric values with the median and categorical values with the mode.
- Limits SYS_DISEASE to the top 10 categories, labeling others as 0ther.
- Creates interaction features: anemia_severe_systolic_bp and hypertension_hemoglobin.
- Output: Returns a preprocessed DataFrame with no missing values.

3. Stratified Sampling (create_stratified_sample)

The create_stratified_sample function creates a balanced sample of the dataset, ensuring all maternal mortality cases are included due to their rarity.

Key Steps:

- Input Validation: Checks if the target column (maternal_mortality_risk) exists.
- Positive Case Handling:
 - Identifies all positive cases (maternal_mortality_risk == 1).
 - If fewer than min_positive (1000) positive cases are found, oversamples with replacement to meet this threshold.
- Sampling:

- Includes all positive cases (1,377 cases) and samples negative cases to reach the desired sample_size (1,000,000), resulting in 998,623 negative cases.
- **Output**: Returns a stratified sample DataFrame with 1,377 positive and 998,623 negative cases.

4. Main Script Execution

The main script orchestrates data loading, preprocessing, model training, evaluation, and interpretability analysis.

Steps:

1. Data Loading:

- Loads the dataset with 4,028,194 negative and 1,377 positive cases for maternal_mortality_risk.
- Calls prepare_data_for_targets to preprocess the dataset.

2. Diagnostic Checks:

- Prints column names (e.g., ANC_ID, MOTHER_ID, GRAVIDA, etc.) and the distribution of maternal_mortality_risk.
- Confirms positive cases exist.

3. Stratified Sampling:

o Creates a sample with 1,000,000 records (1,377 positive, 998,623 negative).

4. Feature Selection:

 Uses 21 numeric features (e.g., GRAVIDA, HEMOGLOBIN_mean, BMI), 16 flag features (e.g., age_adolescent, hypertension), and 3 categorical features (FACILITY_TYPE, BLOOD_GRP, SYS_DISEASE).

5. Data Preparation:

- Extracts features (X) and target (y) from the sampled DataFrame.
- Confirms no NaN values before and after encoding.
- Uses TargetEncoder to encode categorical features.
- Splits data into training (80%) and test (20%) sets with stratification.

5. Cross-Validation and Model Training

The script uses stratified k-fold cross-validation (5 folds) to train and evaluate a LightGBM classifier.

Key Steps:

Setup:

- Initializes StratifiedKFold with 5 splits.
- Calculates scale_pos_weight as 1,087.43 (1.5 × negative-to-positive ratio).
- Sets LightGBM parameters: binary objective, AUC metric, 500 estimators, max depth 7, etc.

• Cross-Validation Loop:

- o For each fold:
 - Splits training data (639,118 negative, ~882 positive) and validation data (159,780 negative, ~220 positive).
 - Applies SMOTEENN (sampling strategy = 0.1), resulting in ~631,000 negative and ~61,000 positive cases.
 - Trains a LightGBM model with early stopping (50 rounds).
 - Evaluates metrics (F1, accuracy, precision, recall, PR-AUC) for thresholds (0.1, 0.2, 0.3, 0.4).

Metrics:

- Computes ROC-AUC and PR-AUC per fold.
- Prints confusion matrices and metrics for each threshold.

6. Test Set Evaluation

The best model (from Fold 2, average F1 score: 0.0031) is evaluated on the test set.

Key Steps:

• Test Set Metrics:

- Predicts probabilities on the test set (199,725 negative, 275 positive cases).
- Computes ROC-AUC (0.6690), PR-AUC (0.0033), and metrics for thresholds (0.1, 0.2, 0.3, 0.4).
- o Best threshold: 0.4 with F1 score of 0.0036.
- Output: Prints test set metrics and confusion matrices.

7. SHAP Analysis

The script uses SHAP to interpret the best model's predictions.

Key Steps:

- Samples 1,000 test set instances.
- Creates a TreeExplainer for the LightGBM model.
- Computes SHAP values for the positive class.
- Generates and saves:
 - Summary Plot: shap_summary_plot_maternal.png.
 - Bar Plot: shap_importance_bar_maternal.png.
- Outputs a feature importance DataFrame, with top features:
 - WEIGHT_child_min (0.950696)
 - inadequate_weight_gain (0.652248)
 - HEMOGLOBIN_mean (0.526082)
 - anemia_mild (0.470680)
 - BL00D_GRP (0.331091)

8. Best Results

The best results from the model evaluation are summarized below:

Cross-Validation Mean Metrics:

- AUC: 0.6303 ± 0.0197
- Threshold 0.1:
 - F1 Score: 0.0028 ± 0.0000
 Accuracy: 0.0562 ± 0.0241
 Precision: 0.0014 ± 0.0000
 Recall: 0.9782 ± 0.0178
 PR-AUC: 0.0030 ± 0.0005
- Threshold 0.2:
 - F1 Score: 0.0024 ± 0.0012
 Accuracy: 0.3115 ± 0.3446
 Precision: 0.0012 ± 0.0006
 Recall: 0.7474 ± 0.3745

o PR-AUC: 0.0030 ± 0.0005

- Threshold 0.3:
 - F1 Score: 0.0025 ± 0.0013
 Accuracy: 0.3701 ± 0.3161
 Precision: 0.0013 ± 0.0006
 Recall: 0.7220 ± 0.3622
 PR-AUC: 0.0030 ± 0.0005

• Threshold 0.4:

F1 Score: 0.0026 ± 0.0013
 Accuracy: 0.4286 ± 0.2877
 Precision: 0.0013 ± 0.0007
 Recall: 0.6794 ± 0.3421
 PR-AUC: 0.0030 ± 0.0005

Test Set Metrics (Best Model from Fold 2):

AUC: 0.6690PR-AUC: 0.0033Threshold 0.1:

o F1: 0.0029

Accuracy: 0.0898Precision: 0.0015Recall: 0.9636

o Confusion Matrix: [[17691, 182034], [10, 265]]

Threshold 0.2:

o F1: 0.0031

Accuracy: 0.1731Precision: 0.0015Recall: 0.9236

Confusion Matrix: [[34369, 165356], [21, 254]]

• Threshold 0.3:

o F1: 0.0033

Accuracy: 0.2511Precision: 0.0016Recall: 0.8945

o Confusion Matrix: [[49974, 149751], [29, 246]]

Threshold 0.4 (Best):

o F1: 0.0036

Accuracy: 0.3295Precision: 0.0018Recall: 0.8691

o Confusion Matrix: [[65655, 134070], [36, 239]]

Best Threshold:

Threshold: 0.4F1 Score: 0.0036

9. Error Handling and Robustness

- SMOTEENN Availability: Verifies SMOTEENN and provides installation instructions if missing.
- Missing Columns: Validates required columns and raises errors if absent.
- No Positive Cases: Ensures positive cases exist in the target.
- Single-Class Folds: Skips folds with one class and warns the user.
- NaN Handling: Repeatedly checks for and imputes NaN values.
- **Data Validation**: Ensures features and target columns are properly formatted.

10. Output

- Console Output:
 - Data diagnostics (class distribution, column names).
 - Fold-wise metrics and confusion matrices.
 - Cross-validation summary.
 - Test set metrics and best threshold.
 - SHAP feature importance table.
- Files:
 - Saves SHAP plots as shap_summary_plot_maternal.png and shap_importance_bar_maternal.png.

11. Key Features of the Code

- Efficient Data Handling: Processes large datasets in batches.
- Class Imbalance Handling: Uses SMOTEENN and stratified sampling.
- Robust Preprocessing: Handles missing values and encodes categorical features.
- Comprehensive Evaluation: Evaluates multiple thresholds and metrics.
- Interpretability: Provides SHAP-based feature importance.
- **Error Handling**: Ensures robustness with extensive checks.

This script is designed for predicting maternal mortality risk, addressing class imbalance, and providing interpretable results in a medical context.