# Floating point

CSC 236

## Floating point

- Floating point
  - Beyond integers
  - Real\* numbers
  - ± n x 10<sup>exp</sup>
- Theory of FP is vast
  - One half of semester in numerical methods
- Two areas
  - O FP number format
  - Basic coding of FP co-processor

(\*) actually rationals, ie, fractions

## Floating point standard

- In 1985 the IEEE issued a standard for Floating-Point IEEE 754-1985
- Updated in 2008 IEEE 754-2008





### **IEEE 754-2008**

Single precision 32 bits

- Double precision 64 bits
- Quadruple precision 128 bits

### **Fractions**

- Decimal fraction
  - 0 3.14159
  - $\circ$  3 + 1/10 + 4/100 + 1/1000 + 5/10000 + 9/100000
- Binary fraction
  - 0 11.00100100001
  - $\circ$  3 + 1/8 + 1/64 + 1/2048 = 3.14110

1 8 23

± exponent significand

Real number:  $\pm n \times 10^{exp}$ 

IEEE standard: ± significand x 2<sup>exponent</sup>

1 8 23

Sign

- $\circ$  0 = pos
- 1 = neg

1 8 23

± exponent significand

### Exponent

- O Biased = excess 127
- o value = e + 127
- e = value 127

#### Store into the field the value

- $\circ$  20  $\Rightarrow$  exponent = 0  $\Rightarrow$  value = 127
- $\circ$  2<sup>44</sup>  $\Rightarrow$  exponent = 44  $\Rightarrow$  value = 171
- $\circ$  2<sup>-20</sup>  $\Rightarrow$  exponent = -20  $\Rightarrow$  value = 107

### Largest value is 254

- 255 is reserved
- exponent = 127
- 2<sup>127</sup>

### Smallest value is 1

- 0 is reserved
- exponent = -126
- 2<sup>-126</sup>

1 8 23

± exponent significand

Many ways to encode 20<sub>10</sub>

```
\circ 10100. x 2° (20 x 1)
```

$$\circ$$
 1010.0 x 2<sup>1</sup> (10 x 2)

$$\circ$$
 101.00 x 2<sup>2</sup> (5 x 4)

$$\circ$$
 10.100 x 2<sup>3</sup> (2.5 x 8)

$$\circ$$
 1.0100 x 2<sup>4</sup> (1.25 x 16)

$$\circ$$
 .10100 x 2<sup>5</sup> (.625 x 32)

1 8 23

| ± | exponent | significand |
|---|----------|-------------|
|---|----------|-------------|

- Many ways to encode 20<sub>10</sub>
  - 10100. x 2<sup>0</sup>
  - $\circ$  1010.0 x  $2^1$
  - $\circ$  101.00 x  $2^2$
  - $\circ$  10.100 x 2<sup>3</sup>
  - 1.0100 x  $2^4$  normalized  $\Rightarrow$  1  $\leq$  N  $\leq$  2
  - $\circ$  .10100 x  $2^5$

1 8 23

± exponent significand

- 1.0100 x  $2^4$  normalized  $\Rightarrow$  1  $\leq$  N  $\leq$  2
- In normalized format the leading digit
  - Is always 1
  - So don't store it
- The significand of 20<sub>10</sub> is

010 0000 0000 0000 0000 0000

1 8 23

± exponent significand

- $\circ$  1.0100 x 2<sup>4</sup> normalized  $\Rightarrow$  1  $\leq$  N  $\leq$  2
- In normalized format the leading digit
  - Is always 1
  - So don't store it
- The significand of 20<sub>10</sub> is
  - 1.010 0 010 0000 0000 0000 0000 0000

The hidden or implied 1 provides one more bit of precision



- Can only represent a limited number of decimal digits
  - Finite decimals are limited in precision as well
  - But different magnitudes
    - 8 decimal digits = 100,000,000
    - 8 binary digits =  $256 = 100,000,000_2 = 100000000_2$
    - **3**2 decimal digits = 100,000,000,000,000,000,000,000,000
    - **3**2 binary digits = 4,294,967,296
  - O Single precision will handle approximately 7 8 decimal digits

- Every (finite) decimal number
  - Is rational
  - $\circ$  A fraction: 3.14159 = 314159 / 100000  $\neq \pi$
  - Cannot represent irrational number exactly

### Most binary numbers

- Are approximations of rational decimals
- Translation happens in both directions
- $\circ$  .333<sub>10</sub> = 0.01010101<sub>2</sub>
- $0.010101_{2} = 0 + 1/4 + 1/16 + 1/64 + 1/256$
- O = .250 + .06250 + .015625 + .003906
- o = .326831

```
x dd 0.987654321 ; 9 digits
```

```
3F7CD6EA ; hex constant created by C
```

Convert back to decimal

```
0.<u>98765432</u>8 ; only 8 digits are correct
```

```
x dd 12345.987654321; 14 digits
4640E7F3 ; hex constant created by C
```

Convert back to decimal

```
<u>12345.987</u>304687 ; only 8 digits are correct
```

- Not all decimal fractions can be represented
  - Can be critical
  - x dd 0.1; 1/10 cannot be represented in binary
  - O 3DCCCCCD; 0.100000001<sub>10</sub>
  - It is very close but not exact
- Combination of
  - Limited precision and
  - Inaccurate representation
  - Is deadly combination

| Data declaration | Hex constant created | Actual decimal value |  |
|------------------|----------------------|----------------------|--|
| a dd 1000.1      | 447A0666             | 1000.09997559        |  |
| b dd 1000.0      | 447A0000             | 1000.0               |  |
| c dd 0.1         | 3DCCCCCD             | 0.100000001          |  |

if 
$$((a - b) == c)$$
 ...

$$1000.09997559 - 1000.0 = 0.09997559$$

$$0.09997559 == 0.100000001$$

| Data declaration | Hex constant created | Actual decimal value |  |
|------------------|----------------------|----------------------|--|
| a dd 1000.1      | 447A0666             | 1000.09997559        |  |
| b dd 1000.0      | 447A0000             | 1000.0               |  |
| c dd 0.1         | 3DCCCCCD             | 0.100000001          |  |

- Generally, don't try to test equality in floating point math
  - o It's usually a bad idea to do this:

if 
$$((a - b) == c) ...$$

• It's generally a better idea to do this:

if 
$$(abs((a-b) - c) < epsilon)$$
 ...

### **Special numbers**

- Two numbers in exponent are reserved
  - 0 0
  - 0 255
- Because of hidden, implied leading 1
  - Cannot represent zero
  - O Smallest number is 1.0 x  $2^{-126}$
  - Small but not zero
- Zero is defined as
  - Exponent & significand both equal to zero
  - $\circ$  Sign can be either  $\Rightarrow$  two representations of zero

### **Special numbers**

- Exponent 255 is reserved
  - O When significand equals zero (and exponent is 255)
  - Number is infinity
  - Can have plus and minus infinity
  - Two different numbers
  - ... not two representations of the same number

### **Special numbers**

- Some operations, like
  - 0 0/0
  - O X ∞
  - √-2
- Generate Not a Number (NaN)
  - Sign = +
  - Exponent = 255
  - $\circ$  Significand  $\neq$  0
- Program continues
  - O But all operations having a NaN operator generate NaN as result

# Floating point co-processor

Part 2

AKA Numeric data processor

Originally separate chip

Executes in parallel

### Floating point co-processor

Stack

Passes all data to/from co-proc

Works like JVM

O 32-bit words

O Single-precision: 1 word

O Double: 2 words

O Quadruple: 4 words

SP

### **Data movement**

- Push
  - O dec SP
  - Insert data
- Pop
  - Remove data
  - o inc SP
- Like x86 pop/push instructions

SP

### **Data movement**

| Data movement | Explanation                                |
|---------------|--------------------------------------------|
| FLD [var]     | Push var is pushed onto the stack          |
| FSTP [var]    | Pop<br>Data popped off stack; put into var |

SP

### **Arithmetic**

| Arithmetic         | Explanation                                                                                                        |
|--------------------|--------------------------------------------------------------------------------------------------------------------|
| FADD<br>(add)      | push = val <sub>1</sub> + val <sub>0</sub><br>top two words replace with their sum                                 |
| FMUL (multiply)    | push = val <sub>1</sub> * val <sub>0</sub><br>top two words replaced with their<br>product                         |
| FSUB<br>(subtract) | push = val <sub>1</sub> - val <sub>0</sub><br>top word subtracted from 2d from top<br>difference pushed onto stack |
| FDIV<br>(divide)   | push = val <sub>1</sub> / val <sub>0</sub><br>top word divided into 2d from top<br>quotient pushed onto stack      |

 $val_1$ val<sub>0</sub> SP

## Newton's method for finding root of a function

- Newton's method for root
  - O Root is when f(x) == 0
  - Guess x
  - O Next guess  $x^* = x f(x)/f'(x)$
  - O Stop when  $x^* == x$
  - Well, when close enough

Newton's method for finding root of a

function

- Newton's method for root
  - $\circ$  Root is when f(x) = 0
  - O Guess x
  - O Next guess  $x^* = x f(x)/f'(x)$
  - $\circ$  Stop when  $x^* == x$
  - Well, when close enough



### Newton's method for calculating sqrt

- Newton's method for root.
  - O Root is when f(x) = 0
  - O Guess x
  - O Next guess  $x^* = x f(x)/f'(x)$
  - $\circ$  Stop when  $x^* == x$
  - Well, when close enough
- Square root of x

  - $\circ$  f'(x) =  $\frac{1}{2}x^{-\frac{1}{2}}$
- But that requires finding the square root

### Newton's method for calculating sqrt

- Newton's method for root
  - O Root is when f(x) = 0
  - Guess x
  - O Next guess  $x^* = x f(x)/f'(x)$
  - $\circ$  Stop when  $x^* == x$
  - Well, when close enough
- Square root of x

$$\circ f(x) = x^{\frac{1}{2}}$$

 $\circ$  f'(x) =  $\frac{1}{2}x^{-\frac{1}{2}}$ 

Not exactly what we want, but we're already in trouble here.

But that requires finding the square root

- Solve
  - Method will find x, st, f(x) = 0
  - Create function that will find sqrt(a)

O When  $f(x^*) = 0$ 

That's better. We can solve this

Choosing the next guess

o 
$$f'(x) = 2x$$
  
o  $x^* = x - f(x) / f'(x)$   
o  $= x - (x^2 - a)/2x$   
o  $= (2x^2 - x^2 + a)/2x$   
o  $= (x + a/x)/2$ 

```
def sqrt(x):
    x0 = x/2  # initial guess
    print(x0)

while True:
    x1 = (x0 + x/x0)/2
    print(x1)
    if abs(x1 - x0) < 0.001:
        break
    x0 = x1
    return x0</pre>
```

```
% python3 sqrt.py 16
8.0
5.0
4.1
4.001219512195122
4.0000001858445895
4.00000000000000004
```

```
% python3 sqrt.py 144
72.0
37.0
20.445945945945947
13.744453475286258
12.110703489698958
12.000505968238837
12.000000010666378
```

```
def sqrt(x):
                                                   % python3 sqrt.py 4096
   x0 = x/2
                        # initial guess
                                                   2048.0
    print(x0)
                                                   1025.0
                                                   514.4980487804878
    while True:
                                                   261.22960314045366
        x1 = (x0 + x/x0)/2
                                                   138.4546481089779
        print(x1)
                                                   84.01917126201654
        if abs(x1 - x0) < 0.001:
                                                   66.38497483370875
            break
                                                   64.04284181000048
        x0 = x1
                                                   64.0000143296318
    return x0
                                                   64.00000000000016
```

```
def sqrt(x):
    x0 = x/2  # initial guess
    print(x0)

while True:
    x1 = (x0 + x/x0)/2
    print(x1)
    if abs(x1 - x0) < 0.001:
        break
    x0 = x1
    return x0</pre>
```

```
% python3 sqrt.py 34567890123456789
3.4567890123456788e+16
1.7283945061728394e+16
8641972530864198.0
...
207862730.8922772
187082130.31646848
185928002.55568016
185924420.4946944
185924420.46018803
185924420.46018803
```

- Code in FP co-proc
- Simplify function at left

```
while (x1 != x0): x1 = (x0 + x/x0)/2
```

Rename variables

```
Root: x \Rightarrow N
Previous guess: x0 \Rightarrow g
This guess: x1 \Rightarrow next
```

```
while (next != g): next = (g + N/g)/2
```

next = (g + N/g)/2



```
next = (g + N/g)/2
fld [N] ; push [N]
```



```
next = (g + N/g)/2
fld [N] ; push [N]
fld [g] ; push [g]
```

| N |  |
|---|--|
| g |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |

```
next = (g + N/g)/2

fld [N] ; push [N]

fld [g] ; push [g]

fdiv ; N/g
```

| N/g |   |
|-----|---|
| 9   | _ |
|     |   |
|     |   |
|     |   |
|     |   |
|     |   |
|     |   |
|     |   |
|     |   |
|     |   |
|     |   |
|     |   |

| N/g |  |
|-----|--|
|     |  |
| g   |  |
|     |  |
|     |  |
|     |  |
|     |  |
|     |  |
|     |  |
|     |  |
|     |  |
|     |  |
|     |  |

```
next = (g + N/g)/2

fld [N]     ;push [N]
fld [g]     ;push [g]
fdiv    ;N/g
fld [g]     ;push [g]
fadd
```

| g | + | N/g |  |
|---|---|-----|--|
|   |   |     |  |
|   |   |     |  |
|   |   |     |  |
|   |   |     |  |
|   |   |     |  |
|   |   |     |  |
|   |   |     |  |
|   |   |     |  |
|   |   |     |  |
|   |   |     |  |
|   |   |     |  |

```
next = (g + N/g)/2

fld [N]    ;push [N]
fld [g]    ;push [g]
fdiv    ;N/g
fld [g]    ;push [g]
fadd
fld [half]    ;push ½
```

| g | +   | N/ | g |  |
|---|-----|----|---|--|
|   | 1/2 | :  |   |  |
|   |     |    |   |  |
|   |     |    |   |  |
|   |     |    |   |  |
|   |     |    |   |  |
|   |     |    |   |  |
|   |     |    |   |  |
|   |     |    |   |  |
|   |     |    |   |  |
|   |     |    |   |  |
|   |     |    |   |  |

```
next = (g + N/g)/2

fld [N]    ;push [N]
fld [g]    ;push [g]
fdiv    ;N/g
fld [g]    ;push [g]
fadd
fld [half]  ;push ½
fmul
```

| ½(g | + | N/g) |  |
|-----|---|------|--|
|     |   |      |  |
|     |   |      |  |
|     |   |      |  |
|     |   |      |  |
|     |   |      |  |
|     |   |      |  |
|     |   |      |  |
|     |   |      |  |
|     |   |      |  |
|     |   |      |  |
|     |   |      |  |

```
next = (g + N/g)/2

fld [N]     ;push [N]
fld [g]     ;push [g]
fdiv    ;N/g
fld [g]     ;push [g]
fadd
fld [half]    ;push ½
fmul
fstp [next]    ;store next guess
```