Statistical Inference Welcome Tutorial :-)

Lecturer: Ming Gao

DaSE @ ECNU

May. 5, 2018

Tutorial 1

- 1. Prove each of the following statements:
 - a. If P(B) = 1, then P(A|B) = P(A) for any A;
 - b. If $A \subset B$, then P(B|A) = 1 and $P(A|B) = \frac{P(A)}{P(B)}$;
 - c. If A and B are mutually exclusive, then

$$P(A|A\cup B)=\frac{P(A)}{P(A)+P(B)}.$$

- d. $P(A \cap B \cap C) = P(A|B \cap C)P(B|C)P(C)$.
- A certain river floods every year. Suppose that the low-water mark is set at 1 and the high-water mark Y has distribution function

$$F_Y(y) = P(Y \le y) = 1 - \frac{1}{y^2}, 1 \le y \le \infty.$$

- a. Verify that $F_Y(y)$ is a cdf;
- b. Find $f_Y(y)$, the pdf of Y;

3. Let X have the pdf

$$f(x) = \frac{1}{2}(1+x), -1 < x < 1.$$

- a. Find the pdf of $Y = X^2$;
- b. Find E(Y) and Var(Y);
- c. Find E(aY + b) and Var(aY + b), where a and b are constant.
- 4. In each of the following find the pdf of *Y*. Show that the pdf integrates to 1.
 - a. $Y = X^3$ and $f_X(x) = 42x^5(1-x), 0 < x < 1$;
 - b. Y = 4X + 3 and $f_X(x) = 7e^{-7x}, 0 < x < \infty$;
 - c. $Y = X^2$ and $f_X(x) = 30x^2(1-x)^2, 0 < x < 1$;
 - d. $Y = X^2$ and $f_X(x) = 1, 0 < x < 1$.

- 5. For each of the following families, please verify that it is an exponential family:
 - a. $N(\mu, \sigma^2)$;
 - b. $N(\theta, a\theta)$, a known;
 - c. $f(x|\theta) = C \cdot exp^{(-(x-\theta)^4)}$, C is a normalizing constant.
- 6. Calculate $P(|X \mu_X| \ge k\sigma_X)$ for $X \sim uniform(0,1)$ and $X \sim exponential(\lambda)$, and compare your answers to the bound from Chebychev's inequality and Chernoff bound.
- 7. A pdf is defined by

$$f(x,y) = \begin{cases} C(x+2y), & \text{if } 0 < y < 1 \text{ and } 0 < x < 2 \\ 0, & \text{otherwise.} \end{cases}$$

- a. Find the value of C;
- b. Find the marginal distribution of X;
- c. Find the joint cdf of X and Y;
- d. Find the pdf of the r.v. $Z = \frac{9}{(X+1)^2}$.

8. a. Find $P(X > \sqrt{Y})$ if X and Y are jointly distributed with pdf

$$f(x,y) = x + y, 0 \le x \le 1, 0 \le y \le 1.$$

b. Find $P(X^2 < Y < X)$ if X and Y are jointly distributed with pdf

$$f(x,y) = 2x, 0 \le x \le 1, 0 \le y \le 1.$$

9. Prove that if the joint cdf of X and Y satisfies

$$F_{X,Y}(x,y) = F_X(x)F_Y(y),$$

then for any pair of intervals (a,b) and (c,d),

$$P(a \le X \le b, c \le Y \le d) = P(a \le X \le b)P(c \le Y \le d).$$

10. Let $X \sim N(\mu, \sigma^2)$ and let $Y \sim N(\gamma, \sigma^2)$. Suppose X and Y are independent. Define U = X + Y and V = X - Y. Show that U and V are independent normal r.v.s. Find the distribution of each of them.

- 11. Let X and Y be independent r.v.s with means μ_X , μ_Y and variances σ_X^2 , σ_Y^2 . Find an expression for the correlation of XY and Y in terms of these means and variances.
- 12. Let X_1, X_2 , and X_3 be uncorrelated r.v.s, each with mean μ and variance σ^2 . Find $Cov(X_1 + X_2, X_2 + X_3)$ and $Cov(X_1 + X_2, X_1 X_2)$.
- 13. Let X_1, \dots, X_n be i.i.d. r.v.s with continuous cdf F_X , and suppose $E(X_i) = \mu$. Define the r.v.s

$$Y_i = \begin{cases} 1, & \text{if } X_i > \mu, \\ 0, & \text{otherwise.} \end{cases}$$

Find $E(Y_i)$, $Var(Y_i)$, and the distribution of $\sum_{i=1}^{n} Y_i$.

14. Establish the following recursion relations for means and variances. Let \overline{X}_n and S_n^2 be the mean and variance, respectively, of X_1, \dots, X_n . Then suppose another observation X_{n+1} , becomes available. Show that

a.
$$\overline{X}_{n+1} = \frac{X_{n+1} + n\overline{X}_n}{n+1}$$
;
b. $nS_{n+1}^2 = (n-1)S_n^2 + \frac{n}{n+1}(X_{n+1} - \overline{X}_n)^2$.

15. Let X_1, \dots, X_n be a random sample from a population with pdf

$$f_X(x) = \begin{cases} \frac{1}{\theta}, & \text{if } 0 < x < \theta; \\ 0, & \text{otherwise.} \end{cases}$$

Let $X_{(1)} < \cdots < X_{(n)}$ be the order statistics. Show that $\frac{X_{(1)}}{X_{(n)}}$ and $X_{(n)}$ are independent r.v.s.

16. If \overline{X}_1 and \overline{X}_2 are the mean of two independent samples of size n from a population with variance σ^2 , find a value for n so that $P(|\overline{X}_1 - \overline{X}_2| < \frac{\sigma}{5}) \approx 0.99$. Justify your calculations.

17. Let X_1, \dots, X_n be a random sample from a population with mean μ and variance σ^2 . Show that

$$\label{eq:energy} \textit{E}(\frac{\sqrt{\textit{n}}(\overline{X}_\textit{n} - \mu)}{\sigma}) = 0 \text{ and } \textit{Var}(\frac{\sqrt{\textit{n}}(\overline{X}_\textit{n} - \mu)}{\sigma}) = 1.$$

Thus, the normalization of \overline{X}_n in the central limit theorem gives r.v.s that have the same mean and variances as the limiting N(0,1) distribution.

18. Let X_1, \dots, X_n be a random sample from the pdf

$$f(x|\mu,\sigma) = \frac{1}{\sigma}e^{-(x-\mu)/\sigma}, \mu < x < \infty, 0 < \sigma < \infty.$$

Find a two-dimensional sufficient statistic for (μ, σ) .

19. For each of the following distributions let X_1, \dots, X_n be a random sample. Find a minimal sufficient statistic for θ

a.
$$f(x|\theta) = \frac{1}{\sqrt{2\pi}} e^{-(x-\theta)^2/2}, x \in R, \theta \in R;$$

b.
$$f(x|\theta) = e^{-(x-\theta)}, \theta < x < \infty, \theta \in R$$
.

- 20. One observation, X, is taken from a $N(0, \sigma^2)$ population.
 - a. Find an unbiased estimator of σ^2 , and justify your answer;
 - b. Find the MLE of σ .
- 21. Let X_1, \dots, X_n be a random sample from a population with pmf

$$P_{\theta}(X = x) = \theta^{x}(1 - \theta)^{1 - x}, x = 0 \text{ or } 1, 0 \le \theta \le \frac{1}{2}$$

- a. Find the method of moments estimator and MLE of θ ;
- b. Find the mean squared errors of each of the estimators;
- c. Which estimator is preferred? Justify your choice.
- 22. Let X_1, \dots, X_n be i.i.d. $Poisson(\lambda)$, and λ have a $gamma(\alpha, \beta)$ distribution, the conjugate family for the Poisson
 - a. Find the posterior distribution of λ ;
 - b. Calculate the posterior mean and variance.

- 23. Let X_1, \dots, X_n be i.i.d. Bernoulli(p). Show that the variance of \overline{X} attains the Cramér-Rao lower bound, and hence \overline{X} is the best unbiased estimator of p.
- 24. Let X_1, \dots, X_n be a random sample from a population with mean μ and variance σ^2
 - a. Show that the estimator $\sum_{i=1}^{n} a_i X_i$ is an unbiased estimator of μ if $\sum_{i=1}^{n} a_i = 1$;
 - b. Among all unbiased estimators of this form find the one with minimum variance, and calculate the variance.