DIN 91252

ICS 43.120

Ersatz für DIN SPEC 91252:2011-01

Elektrische Straßenfahrzeuge – Batteriesysteme – Anforderungen an die Gestaltung von Lithium-Ionen-Batteriezellen; Text Deutsch und Englisch

Electrically propelled road vehicles -

Battery systems -

Design specifications for Lithium-Ion battery cells;

Text in German and English

Véhicules routiers électriques -

Systèmes de batteries -

Exigences de spécification des batteries cellules aux lithium-ion;

Texte en allemand et anglais

Gesamtumfang 32 Seiten

DIN-Normenausschuss Automobiltechnik (NAAutomobil)

Inhalt

	·	Seite
Vorw	vort	3
Einle	itung	
1	Anwendungsbereich	5
2	Normative Verweisungen	5
3	Begriffe	5
4	Abkürzungen	
5	Konstruktionsform	
6	Messbedingungen	
7	Maße für das ausgewählte ZelldesignAllgemeinesPrismatische Zellen	7
7.1 7.2	Aligemeines Prismatische Zellen	7 7
7.3	Folienzellen	10
8	Datenblatt	12
Anha	ng A (informativ) Datenblatt zur Erfassung relevanter Zelleigenschaften (Beispiel)	13

Vorwort

Dieses Dokument wurde vom Arbeitsausschuss NA 052-00-37 AA "Elektrische Straßenfahrzeuge" im DIN-Normenausschuss Automobiltechnik (NAAutomobil) erstellt.

Es wird auf die Möglichkeit hingewiesen, dass einige Elemente dieses Dokuments Patentrechte berühren können. DIN ist nicht dafür verantwortlich, einige oder alle diesbezüglichen Patentrechte zu identifizieren.

Änderungen

Gegenüber DIN SPEC 91252:2011-01 wurden folgende Änderungen vorgenommen:

- a) Anforderungen zur Stabilität der Anschlüsse hinzugefügt;
- b) Anforderungen an die Position der Anschlüsse hinzugefügt;
- c) Anforderungen für Rundzellen wurden entfernt;
- d) Anforderungen für die Abmessungen ergänzt bzw. geändert.

Frühere Ausgaben

DIN SPEC 91252: 2011-01

Einleitung

Es besteht eine enge Wechselwirkung zwischen den Abmessungen von Lithium-Ionen-Batteriezellen und der Gestaltung des Batteriesystems im Fahrzeug. Letzteres wiederum wird stark vom Fahrzeugkonzept beeinflusst. Je nach Fahrzeugabmessung und den entsprechenden Einbaueinschränkungen muss die Form der Batteriepakete und -systeme dem Top-down-Ansatz entsprechen.

Gegenwärtig ist eine Vielzahl von Zelltypen mit unterschiedlichen Abmessungen für Energiespeicherung zum Antrieb von Elektrofahrzeugen am Markt verfügbar. Eine Reduzierung der Designvielfalt von Lithium-Ionen-Batteriezellen soll dazu beitragen:

- die Zellkosten zu senken durch die F\u00f6rderung des Wettbewerbs und damit den Zelllieferanten Zugang zum weltweiten Markt zu erm\u00f6glichen;
- einen Austausch der Zellen verschiedener Lieferanten zu ermöglichen, sowohl während als auch nach der Batteriesystementwicklung;
- die Entwicklung des Batteriesystemdesgins zu unterstützen, indem grundlegende Außenabmessungen je bekanntem Lithium-Ionen Zelltyp für die automobile Traktionsbatteriesysteme festlegt werden und
- die Verfügbarkeit der Zellen über den im Vergleich zu anderen Produkten deutlich höheren Lebensdauerzyklus von Straßenfahrzeugen sicherzustellen.

Die in dieser Norm spezifizierten Zellen werden über den gesamten Produktionszeitraum der Fahrzeuge, zuzüglich der durchschnittlichen Fahrzeuglebensdauer und der gesetzlich vorgeschriebenen Ersatzteilverfügbarkeit benötigt. Damit schafft diese Norm eine Grundlage für eine langfristige Verfügbarkeit solcher Zellen.

1 Anwendungsbereich

Diese Norm stellt standardisierte Abmessungen für Lithium-Ionen-Batteriezellen als Konstruktionsanforderung für Batteriesysteme in elektrisch angetriebenen Straßenfahrzeugen zur Verfügung. Sie trifft auch Festlegungen, sofern anwendbar, zu den Dimensionen, der Lage und der Form der Anschlüsse, den Überdruckschutzvorrichtungen sowie zu grundlegenden Anforderungen an die Stabilität der Anschlüsse. Diese Norm bezieht sich auf prismatische Zellen mit festen oder foliierten Gehäusen.

Das Innendesign, die Zellchemie und die elektrischen Eigenschaften der Zellen sind in dieser Norm nicht festgelegt.

ANMERKUNG 1 Prüfungen für Lithium-Ionen basierte Batteriesysteme für elektrisch angetriebene Straßenfahrzeuge sind in ISO 12405 festgelegt.

ANMERKUNG 2 Die Nutzung anderer, nicht durch diese Norm beschriebener Zellen für den Fahrzeugantrieb ist nicht ausgeschlossen.

2 Normative Verweisungen

IEC 62660-1, Secondary lithium-ion cells for the propulsion of electric road vehicles — Part 1: Performance testing

3 Begriffe

Für die Anwendung dieses Dokuments gelten die folgenden Begriffe.

3.1

Überdruckschutzeinrichtung OPSD

(en: over-pressure safety device)

Sicherheitseinrichtung um den Gasdruck im Inneren der Zelle zu begrenzen

BEISPIEL Berstscheibe, Druckventil oder Sollbruchstelle

3.2

Folienzelle

Sekundärlithiumionenzelle aus laminierter Verbundfolie einschließlich elektrischer Anschlüsse

3.3

prismatische Zelle

Sekundärlithiumionenzelle mit einem prismatischen, festen Zellgehäuse einschließlich elektrischer Anschlüsse und OPSD

3.4

Sekundärlithiumionenzelle

wieder aufladbare Einzelzelle, deren elektrische Energie abgeleitet wird durch Aus- und Einlagerung von Lithium-Ionen zwischen der Anode und der Kathode

Anmerkung 1 zum Begriff: Eine Sekundärzelle ist eine Basiseinheit, die elektrische Energie durch Umwandlung aus chemischer Energie erzeugt. Die Zelle besteht aus Elektroden, Separatoren, Elektrolyten, Behältern und Anschlüssen und kann elektrisch aufgeladen werden.

3.5

Anschluss

Einrichtung der Zelle zur Verbindung mit elektrischen Stromkreisen

4 Abkürzungen

BoL Beginn der Lebensdauer (en: Begin of life)

BEV Batterieelektrisches Fahrzeug (en: Battery Electric Vehicle)

EoL Ende der Lebensdauer (en: End of life)

HEV Hybridfahrzeug (en: Hybrid Electric Vehicle)

k.A. keine Angabe

PHEV "PlugIn"-Hybridfahrzeug (en: PlugIn Hybrid Electric Vehicle)

Sym. Symmetrisch

5 Konstruktionsform

Diese Norm spezifiziert die folgenden zwei Konstruktionsformen der Lithium-Ionen-Batteriezellen für automobile Antriebsanwendungen in Kraftfahrzeugen:

- Prismatische Zellen (siehe 7.2)
- Folienzellen (siehe 7.3).

Legende

- 1 Anschluss
- 2 OPSD
- 3 Zellgehäuse

Bild 1 — Prismatische Zelle — Schematische Darstellung

Legende

- 1 Anschluss
- 2 Zellgehäuse

Bild 2 — Folienzelle — Schematische Darstellung

6 Messbedingungen

Die Maße der Zelle werden bei $(25\pm2)\,^{\circ}$ C unter Berücksichtigung zulässiger Grenzabmaßen nach IEC 62660-1 gemessen.

Die Dicke N1 einer Folienzelle muss im Ladezustand 100 % gemessen werden, indem eine Kraft für 2 s auf den gesamten Elektrodenstapelbereich der Zelle ausgeübt wird, während die Zelle zwischen Platten gehalten wird. Der dabei verwendete Oberflächendruck muss 5 kPa bis 30 kPa betragen.

Die Messungen werden entsprechend der Vereinbarung zwischen Zelllieferant und Fahrzeughersteller durchgeführt.

7 Maße für das ausgewählte Zelldesign

7.1 Allgemeines

Die in den Merkblättern der Zellhersteller vorgegebenen Grenzabmaße für die Dimensionen sollten berücksichtigt werden.

7.2 Prismatische Zellen

7.2.1 Maße für prismatische Zellen

Maße für prismatische Zellen sind in Tabelle 1 angegeben, siehe auch Spalte "Kurzzeichen" für die Zuordnung der Werte zu den Maßen in Bild 3.

Die Anschlüsse müssen parallel zur Länge der Zelle ausgeführt sein, die Abweichung darf maximal 0,2 mm betragen.

Maße in Millimeter

Legende

- 1 abgerundete Ecke möglich
- abgerundete Ecke möglich 2
- 3 abgerundete Ecke möglich
- 4
- abgerundete Ecke möglich
- 5 mögliche Verstärkung der Anschlüsse
- mögliche Position OPSD 6
- 7 Bereich der Elektroden
- 8 gedachter idealer Verlauf der seitlichen Begrenzung
- Änderung der Zelldicke abhängig vom Ladezustand

Bild 3 — Maße für prismatische Zellen — Maßbezeichnungen

Tabelle 1 — Maße für prismatische Zellen

Maße in Millimeter

Parameter	Kurz- zeichen	HEV 1	HEV 2	PHEV 1	PHEV 2	BEV 1	BEV 2	BEV 3	BEV 4
Zelllänge	M1	120	120	173	148	173	173	173	173
Grenzabmaß		± 0,15	0,3/-0,2	± 0,15	± 0,15	± 0,15	± 0,15	± 0,15	± 0,15
Zellbreite	M2	12,5	12,1	21	26,5	32	45	32	45
Grenzabmaß		± 0,1	± 0,15	± 0,15	± 0,15	± 0,15	± 0,1	± 0,15	± 0,1
Zellhöhe ohne Anschlüsse	M4	85	80,5	85	91	115	115	125	125
Grenzabmaß		± 0,15	± 0,2	± 0,15	± 0,15	± 0,15	± 0,15	± 0,15	± 0,15
Zellhöhe Anschluss geschweißt	М3	≤ 91,5	≤ 87,4	≤ 91	≤ 97	≤ 123	≤ 123	≤ 133	≤ 133
Zellhöhe Anschluss geschraubt	M3+M21	≤ 91,5	≤ 87,4	≤ 91	≤ 105,1	≤ 123	≤ 123	≤ 133	≤ 133
Entfernung zwischen Anschlüssen	M5	90 sym.	97,5 sym.	133 sym.	62,85 sym.	133 sym.	133 sym.	133 sym.	133 sym.
Grenzabmaß		± 0,2	± 0,5	± 0,2	± 0,2	± 0,2	± 0,2	± 0,2	± 0,2
Entfernung der An- schlüsse zur Zellen- mitte	M27	± 0,25	±0,25	± 0,25	± 0,25	± 0,25	± 0,25	± 0,25	± 0,25
Lage der Anschlüsse		sym.		sym.	sym.	sym.	sym.	sym.	sym.
Grenzabmaß		± 0,1		± 0,1	± 0,1	± 0,1	± 0,1	± 0,1	± 0,1
Länge der Anschlüsse	M7	≤ 25	≤ 12,6	≤ 28	≤ 28	≤ 24	≤ 24	≤ 24	≤ 24
Breite der Anschlüs- se	M8	≤ 9	≤ 9,6	≤ 11,6	≤ 11,6	≤ 18,4	≤ 18,4	≤ 18,4	≤ 18,4
Höhe der Anschlüsse	M6	≤ 6	≤ 6,7	≤ 6	≤ 6	6,5 - 8,0	6,5 - 8,0	6,5 - 8,0	6,5 - 8,0
Ebenheit der An- schlüsse	M17	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
Parallelität der Bat- terie zur Gehäuse- unterseite	M16	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1

7.2.2 Stabilitätsanforderungen für Anschlüsse

Die Anforderungen an die Stabilität der Anschlüsse für prismatische Zellen werden zwischen Hersteller und Lieferant vereinbart. Die Parameter und Richtwerte können Tabelle A.2 entnommen werden

7.2.3 Anforderungen an die Position der Anschlüsse und das Gehäuse

Die Anschluss müssen den Positionieranforderungen, wie in Tabelle 2 angegeben, folgen.

Tabelle 2 — Positionieranforderungen an Schraubanschlüsse für prismatische Zellen

Parameter	HEV 1	HEV 2	PHEV 1	PHEV 2	BEV 1	BEV 2	BEV 3	BEV 4
Anschluss Schraubengewinde	M6							
Höhe Schraubengewinde geschraubter Anschluss (mm)	≤ 10							
Entfernung M5 (mm) sym.	90)	133	79,7	133			
Grenzabmaß (mm)	± 0,2							

Tabelle 3 — OPSD-Position

Parameter	HEV 1	HEV 2	PHEV 1	PHEV 2	BEV 1	BEV 2	BEV 3	BEV 4
Lago day ODCD valativ guy Proita				. OT THE			_	
Lage der OPSD relativ zur Breite				sym	l.			
Lage der OPSD relativ zur Länge	sym.							
Länge der OPSD (relativ zur Länge) (mm)	≤ 11,2	≤ 17,5	≤ 24	≤ 24	≤ 50	≤ 50	≤ 50	≤ 50
Breite der OPSD (relativ zur Breite) (mm)	≤ 10	≤7,5	≤ 9	≤9	≤ 20	≤ 20	≤ 20	≤ 20

Tabelle 4 — Gehäuseanforderungen

Parameter	HEV 1	HEV 2	PHEV 1	PHEV 2	BEV 1	BEV 2	BEV 3	BEV 4
Ebenheit des Gehäuseunterseite (mm)	k.A.	k.A.	< 0,2	< 0,2	k.A.	< 0,2	k.A.	< 0,2
Mindestfläche des Zellenbodens (Länge x Breite) (mm²)	k.A.	k.A.	2 505	2505	k.A.	k.A.	k.A.	k.A.

7.3 Folienzellen

Maße für Folienzellen sind in Tabelle 5 angegeben, siehe auch Spalte "Kurzzeichen" für die Zuordnung der Werte zu den Maßen in den Bildern 4 und 5.

Die Lage der Anschlüsse muss symmetrisch zur Breite (Dicke) der Folienzelle sein.

Die äußere Siegelnaht kann bei Folienzellen sowohl gerade oder gefaltet sein.

Anmerkung: Die Dicke (Breite) der Folienstelle wird nicht vorgegeben.

Bild 4 — Folienzellen — Maßbezeichnungen (Anschlüsse gleiche Seite)

Bild 5 — Folienzellen — Maßbezeichnungen (Abschlüsse gegenüber)

Tabelle 5 — Folienzellen — Abmessungen

Maße in Millimeter

Parameter	Kurzzeichen	HEV	PHEV 1	PHEV 2	BEV 1	BEV 2
Zellenbreite (mm)	W	161	164,2	164	99,7	329,2
Grenzabmaß (mm)		± 1	± 0,65	± 1,5	± 1,5	± 0,8
Zellenhöhe ohne Anschluss (mm)	h	141	226	232	301,5	161,4
Grenzabmaß (mm)		± 1,0	± 1,0	0,8/-0,5	0,5/-1,0	± 1,0
Zellenhöhe mit Anschluss (mm)	Н	163	249,6	254,2	365,5	168,5
Grenzabmaß (mm)		± 1,5	± 1,0	1,3/-1,0	± 1,0	± 1,0
Lage Anschluss (gleiche Seite / gegenüber)		gleiche Seite	gleiche Seite	gleiche Seite	gegen- über	gleiche Seite
Minimale Entfernung zwischen Anschlüssen (mm)	M	37	34	36	n/a	63,5
Grenzabmaß (mm)		± 0,7	± 0,5	± 0,5	n/a	± 0,4
Lage Anschluss (mm), sym. (P=P1)	P, P1	39,5	42,6	41,5	49,85	80,4
Grenzabmaß (mm)		± 1,15	± 0,7	± 1,7	± 1,7	± 0,5
Siegelnaht (flach / gefaltet)		gefaltet	flach	gefaltet	gefaltet	flach

8 Datenblatt

Ein Beispiel für ein Datenblatt zur Erfassung aller relevanten Zelldaten, die die Eigenschaften einer Lithium-Ionen-Zelle für den Einsatz im Elektrofahrzeug bestimmen, ist im Anhang A enthalten.

Anhang A (informativ)

Datenblatt zur Erfassung relevanter Zelleigenschaften (Beispiel)

Die nachfolgenden Tabellen dienen als Beispiel für die Erfassung der Daten einer Zelle für den Informationsaustausch zwischen Fahrzeughersteller und Zelllieferant. Es ist so aufgebaut, dass es für alle Bauformen von Batteriezellen angewendet werden kann.

Tabelle A.1 zeigt die Erfassung der Zellabmessungen.

Tabelle A.1 — Liste der Abmessungen für Lithium-Ionen-Zellen

Parameter	Kurzzeichen siehe Bilder 3 bis 5 in DIN 91252	Werte
Länge der Zellen (mm)	M1	
Grenzabmaß (mm)		
Breite der Zellen (mm)	M2 / W	
Grenzabmaß (mm)		
Höhe der Zellen ohne Anschluss (mm)	M4 / h	
Grenzabmaß (mm)		
Höhe der Zellen mit geschweißten Anschluss (mm)	M3 / H	
Höhe der Zellen mit Schraubklemmen (mm)	M3 + M21 / n.a.	
Entfernung zwischen den Anschlüssen (mm)	M5 / M	
Grenzabmaß (mm)		
Grenzabmaß Mitte Anschluss bei symmetrischen Abstand zum Zellzentrum	M27 / n.a.	
Lage Anschluss (relativ zur Breite) (mm)		
Grenzabmaß (mm)		
Länge Anschluss (mm)	M7	
Breite Anschluss (mm)	M8	
Höhe Anschluss (mm)	M6	
Ebenheit Anschluss (mm)	M17	
Parallelität Anschlüsse zum Gehäuseboden (mm)	M16 / n.a.	

Die Erfassung der für die Festigkeit der Anschlüsse wichtigen Daten sollte wie in Tabelle A.2 erfolgen.

Tabelle A.2 — Festigkeit der Anschlüsse

Parameter	Richtwerte für prismatische Zelltypen	"Ist"-Wert
Max. Kräfte Anschluss (Breite)	1 000	
Anzahl Belastungswechsel (Breite)	300 000	
Dauer pro Ladezyklus (Breite) [s]	60	
Max. Kräfte Anschluss (Länge) [N]	1 000	
Anzahl Belastungswechsel (Länge)	300 000	
Dauer pro Ladezyklus (Länge) [s]	60	
Max. Kräfte Anschluss (Höhe) [N]	500	
Anzahl Belastungswechsel (Höhe)	300 000	
Dauer pro Ladezyklus in (Höhe) [s]	60	
Drehmoment Anschluss (Achse 1) [Nm]	≤ 6	
Anzahl Drehmomentänderungen (Achse 1)	300 000	
Dauer Belastungswechsel (Achse 1)	60	
Drehmoment Anschluss (Achse 2) [Nm]	≤ 6	
Anzahl Drehmomentänderungen (Achse 2)	300 000	
Dauer Belastungswechsel (Achse 2)	60	
Drehmoment Anschluss (Achse 3) [Nm]	≤6	
Anzahl Drehmomentänderungen (Achse 3)	300 000	
Dauer Belastungswechsel (Achse 3)	60	
Mindestfläche Anschluss Breite x Länge [mm²]	k. A.	
durchschnittliche Rauigkeit \boldsymbol{R}_a Anschlussoberfläche [μ m]	≤ 1,0	
durchschnittliche Tiefe der Rauigkeit R_z an Anschlussoberfläche [μ m]	≤ 16	

Tabelle A.3 zeigt die Erfassung der Details zur Lage der Anschlüsse.

Tabelle A.3 — Ausführung der Anschlüsse

Parameter	Kurzzeichen siehe Bilder 3 bis 5 in DIN 91252	Werte
minimaler Bereich Anschluss Breite x Länge (mm²)	M28	
durchschnittliche Rauheit Ra der Oberfläche (μm)	M19	
durchschnittliche Tiefe der Rauheit R_z an der Oberfläche (μm)	M20	
Form der Schweißanschlüsse	M23 / M24 / M25	
Anschluss Gewindeschraube (Durchmesser)	M22	
Höhe des Schraubengewindes geschraubter Anschluss	M21	
Entfernung (Länge) (mm)	M5	
Grenzabmaß (mm)		
Lage Anschluss (Breite) (mm)		
Grenzabmaß (mm)		
Länge Anschluss (mm)	M7	
Breite Anschluss (mm)	M8	
Höhe Anschluss (mm)	M6	
Ebenheit Anschluss (mm)	M17	
Parallelität Anschluss gegenüber Gehäuseoberfläche (mm)	M16	
Parallelität der Anschlüsse zueinander (mm)	M18	

Tabelle A.4 zeigt die Erfassung der Daten für die OPSD.

Tabelle A.4 — Parameterliste OPSD

Lage OPSD relativ zur Breite(mm) Grenzabmaß (mm) Lage OPSD relative zur Länge (mm) M12 Grenzabmaß (mm) Länge OPSD relative zur Länge (mm) M9 Grenzabmaß (mm) Breite OPSD relativ zur Breite) (mm) Grenzabmaß (mm) Breite OPSD relativ zur Breite) (mm) Grenzabmaß (mm) minimaler Bereich OPSD auf (Länge x Breite)-Ebene (mm²) Gehäusematerial Wanddicke (mm) Bei Gehäusepotential	
Lage OPSD relative zur Länge (mm) Grenzabmaß (mm) Länge OPSD relative zur Länge (mm) M9 Grenzabmaß (mm) Breite OPSD relativ zur Breite) (mm) Grenzabmaß (mm) Grenzabmaß (mm) Grenzabmaß (mm) Grenzabmaß (mm) Grenzabmaß (mm) M10 Grenzabmaß (mm) M10 Grenzabmaß (mm) M10 M29	
Gehäusematerial Wanddicke (mm) M29	
Gehäusematerial Wanddicke (mm) M29	
Gehäusematerial Wanddicke (mm) M29	
Gehäusematerial Wanddicke (mm) M29	
Gehäusematerial Wanddicke (mm) M29	
Gehäusematerial Wanddicke (mm) M29	
Gehäusematerial Wanddicke (mm) M29	
Wanddicke (mm) M29	
Bei Gehäusepotential	
·	
Ebenheit der Gehäuseoberfläche (mm) M15	
minimale Abweichung Gehäuseboden (mm²) Akzentierte Wölbung (innen/außen) (Breite ie Seite) (mm) M14	
Akzeptierte Wölbung (innen/außen) (Breite je Seite) (mm) M14	
minimale Verriegelungskraft bei BoL [N] F1	
minimale Verriegelungskraft bei BoL [N] maximale Verbindungskraft bei BoL [N] F1 Maximale Verbindungskraft EoL [N] F1 F1	
Maximale Verbindungskraft EoL [N] F1	
ည Feature 1	
Feature 1 Feature 2 Feature 3 Feature 4 Feature 5	
Feature 3	
Feature 4	
Feature 5	J

${\bf Electrically\ propelled\ vehicles-Battery\ systems-Design\ specification\ for\ lithium-ion\ battery\ cells}$

Elektrische Straßenfahrzeuge — Batteriesysteme — Anforderungen an die Gestaltung von Lithium-Ionen-Batteriezellen

Véhicules routiers électriques — Systèmes des batteries — Exigences de spécification des batteries cellules aux lithium-ion

Supersides DIN SPEC 91252:2011-01

Content

	Pa	ge
	ord	
Introd	uction	
1	Scope	. 5
2	Normative references	. 5
3	Terms and definitions	. 5
4	Abbreviations	. 6
5	Shape of construction	
6	Measurement conditions	. 7
7	Dimensions for the selected cell design	. 7
7.1	General	. 7
7.2	Prismatic cells	. 7
7.2.1	Dimensions for prismatic cells	. 7
7.2.2	Stability requirements for terminals	. 9
7.2.3	Requirements for the position of the terminals and the housing	. 9
7.3	Pouch cells	10
8	Data sheet	12
Annex	A (informative) Data sheet for presentation of relevant cell characteristics (example)	13

Foreword

This document was developed within the working committee NA 052-00-37 AA "Elektrische Straßenfahrzeuge" at DIN Normenausschuss Automobiltechnik (NAAutomobil).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. DIN shall not be held responsible for identifying any or all such patent rights.

Amendments

This standard differs from DIN SPEC 91252:2011-01 as follows:

- a) requirements for terminal stability have been added;
- b) requirements for terminal position have been added;
- c) requirements for cylindrical cells have been removed;
- d) requirements for dimensions added or respectively changed.

Previous editions:

DIN SPEC 91252: 2011-01

Introduction

There is a close interaction between the dimensions of lithium-ion battery cells and the design of a battery system within the vehicle. The latter is also strongly influenced by the vehicle concept. Depending on vehicle dimensions and package constraints, the shape of battery packs and systems has to follow a top-down procedure.

For the energy storage to propel an electric vehicle there is currently a high number of cell types with various dimensions available at the market. A reduction of the design variations of Lithium-Ion battery cells should contribute to:

- lower the cell costs through encouraging competition and allowing cell suppliers access to the worldwide market;
- enable an exchange of the cells from different suppliers during and after the battery system development;
- support the battery system design by specifying basic outer dimensions per known design type of lithium-ion cells for automotive traction battery systems;
- enable the availability of cells over the, in comparison to other products, explicitly higher live cycle of road vehicles.

The cells as specified by this standard need to be available over the entire vehicle production time, including the vehicle life time and the legally required spare part availability time. Therewith, this standard creates the basis for a long term availability of such cells.

1 Scope

This standard provides standardized dimensions for lithium-ion battery cells as a design requirement for battery systems used in electrically propelled road vehicles. It also specifies, as far as appropriate, the dimensions, the position and shape of the terminals, the over-pressure safety devices as well as basic requirements for the stability of the terminals. This standard is related to prismatic cells with hard case or laminated housing.

The inner design, the cell chemistry and the electrical characteristics of the cells are not defined in this standard.

NOTE 1 Tests for Lithium-ion based battery systems for electrically propelled road vehicles are specified in ISO 12405.

NOTE 2 The usage of other cells, not specified in this standard, for vehicle propulsion is not excluded.

2 Normative references

IEC 62660-1, Secondary lithium-ion cells for the propulsion of electric road vehicles — Part 1: Performance testing

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

over-pressure safety device OPSD

safety device to limit the gas pressure inside the cell

EXAMPLE burst disc, pressure valve or predetermined breaking point

3.2

pouch cell

secondary lithium-ion cell with a laminated housing consisting of composite foil including electrical terminals

3.3

prismatic cell

secondary lithium-ion cell with a prismatic hard case housing, including electrical terminals and OPSD

3.4

secondary lithium-ion cell

rechargeable single cell whose electrical energy is derived from the insertion/extraction reactions of lithium ions between the anode and the cathode

Note 1 to entry: A secondary cell is a basic unit providing electrical energy by conversion of chemical energy. The cell consists of electrodes, separators, electrolyte, container and terminals and is designed to be charged electrically.

3.5

terminal

point of connection of the cell with electric circuits

4 Abbreviations

BoL Begin of Life

BEV Battery Electric Vehicle

EoL End of Life

HEV Hybrid Electric Vehicle

n.V. no value

PHEV PlugIn Hybrid Electric Vehicle

Sym. symmetrical

5 Shape of construction

The following two constructions shapes of lithium-ion battery cells are used for automotive traction application in road vehicles and specified in this standard:

- Prismatic cell (see 7.2),
- Pouch cell (see 7.3).

- Key
- 1 terminal
- 2 OPSD
- 3 cell housing

Figure 1 — Prismatic cell — schematic presentation

Key

- 1 terminal
- 2 cell housing

Figure 2 — Pouch cell — schematic presentation

6 Measurement conditions

The dimension of a cell shall be measured at (25 ± 2) °C in accordance with the tolerances as specified in IEC 62660-1.

The thickness N1 of a pouch cell shall be measured at 100 % state of charge by applying a force to the entire electrode stack area of the cell while holding the cell between boards for 2 s. The applied surface pressure shall be 5 kPa to 30 kPa.

The measurements will be carried out on agreement between cell supplier and vehicle manufacturer.

7 Dimensions for the selected cell design

7.1 General

The tolerances for the dimensions given in the data sheets of the cell manufacturers should be considered.

7.2 Prismatic cells

7.2.1 Dimensions for prismatic cells

Dimensions for prismatic cells are specified in Table 1, see column "Symbol" for assignment of the values to the dimensions in Figure 3.

The terminals need to be parallel with regard to the length of the cell, the tolerance shall not exceed 0,2 mm.

Dimensions in millimetres

Key

3

- 1 rounded corner possible 5 possible strengthen for terminals
- 2 rounded corner possible 6 possible position for OPSD
 - rounded corner possible 7 area for electrodes
- 4 rounded corner possible 8 possible ideal line for the sides
- a changes of cell thickness depending from state of charge

Figure 3 — Dimensions of prismatic cells — Dimensional designations

Table 1 — Dimensions for prismatic cells

Dimensions in millimetres

Parameter	Symbol	HEV 1	HEV 2	PHEV 1	PHEV 2	BEV 1	BEV 2	BEV 3	BEV 4
cell length	M1	120	120	173	148	173	173	173	173
tolerance		± 0,15	0,3/-0,2	± 0,15	± 0,15	± 0,15	± 0,15	± 0,15	± 0,15
Cell width	M2	12,5	12,1	21	26,5	32	45	32	45
tolerance		± 0,1	± 0,15	± 0,15	± 0,15	± 0,15	± 0,1	± 0,15	± 0,1
Cell height without terminals	M4	85	80,5	85	91	115	115	125	125
tolerance		± 0,15	± 0,2	± 0,15	± 0,15	± 0,15	± 0,15	± 0,15	± 0,15
Cell height with welded terminals	M3	≤ 91,5	≤ 87,4	≤ 91	≤ 97	≤ 123	≤ 123	≤ 133	≤ 133
Cell height with screwed terminals	M3+M21	≤ 91,5	≤ 87,4	≤ 91	≤ 105,1	≤ 123	≤ 123	≤ 133	≤ 133
distance between terminals	M5	90 sym.	97,5 sym	133 sym.	62,85 sym	133 sym.	133 sym.	133 sym.	133 sym.
tolerance		± 0,2	± 0,5	± 0,2	± 0,2	± 0,2	± 0,2	± 0,2	± 0,2
distance of the terminals to cell center	M27	± 0,25	±0,25	± 0,25	± 0,25	± 0,25	± 0,25	± 0,25	± 0,25
Terminal position		sym.		sym.	sym.	sym.	sym.	sym.	sym.
tolerance		± 0,1		± 0,1	± 0,1	± 0,1	± 0,1	± 0,1	± 0,1
Terminal length	M7	≤ 25	≤ 12,6	≤ 28	≤ 28	≤ 24	≤ 24	≤ 24	≤ 24
Terminal width	M8	≤ 9	≤ 9,6	≤ 11,6	≤ 11,6	≤ 18,4	≤ 18,4	≤ 18,4	≤ 18,4
Terminal height	M6	≤ 6	≤ 6,7	≤ 6	≤ 6	6,5 - 8,0	6,5 - 8,0	6,5 - 8,0	6,5 - 8,0
flatness of terminals	M17	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
parallelism of terminals according to the bottom of the case	M16	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1

7.2.2 Stability requirements for terminals

The stability requirements for the terminals of prismatic cells will be agreed between manufacturer and supplier. Parameters and guiding values are given in Table A.2.

7.2.3 Requirements for the position of the terminals and the housing

The terminals shall follow the positioning requirements as given in Table 2.

Table 2 — Positioning requirements for screw terminals for prismatic cells

Parameter	HEV 1	HEV 2	PHEV 1	PHEV 2	BEV 1	BEV 2	BEV 3	BEV 4
terminal screw thread				M6				
height screw thread of the screwed terminals [mm]				≤ 10				
terminal distance M5 [mm] sym.	9	0	133	79,7		13	33	
tolerance [mm]				± 0,2				

Table 3 — OPSD-Position

Parameter	HEV 1	HEV 2	PHEV 1	PHEV 2	BEV 1	BEV 2	BEV 3	BEV 4
position of OPSD relative to width	sym.							
position of OPSD relative to length				sym	1.			
length of OPSD (relative to lenght) [mm]	≤ 11,2	≤ 17,5	≤ 24	≤ 24	≤ 50	≤ 50	≤ 50	≤ 50
width of OPSD (relativ to width) [mm]	≤ 10	≤ 7,5	≤ 9	≤ 9	≤ 20	≤ 20	≤ 20	≤ 20

Table 4 — Housing reqirements

Parameter	HEV 1	HEV 2	PHEV 1	PHEV 2	BEV 1	BEV 2	BEV 3	BEV 4
flatness of the case bottom [mm]	n.V.	n.V.	< 0,2	< 0,2	n.V.	< 0,2	n.V.	< 0,2
minimum area of the cell bottom (length	***	***	2.505	2 5 2 5	***	***	7.7	
x width) [mm ²]	n.V.	n.V.	2 505	2 505	n.V.	n.V.	n.V.	n.V.

7.3 Pouch cells

Dimensions for pouch cells are specified in Table 5, see column "symbol" for assignment of the values to the dimensions in Figures 4 and 5.

The position of the terminals shall be symmetrical to the thickness (with) of the pouch cell.

The outer sealed seam can be either straight or folded.

NOTE The thickness (width) of the pouch cell is not defined.

Figure 4 — Pouch cells — dimensional designations (straight sealed edge)

Figure 5 — Pouch cells — dimensional designations (terminals opposite position)

Table 5 — Pouch cells - Dimensions

Dimensions in millimetres

Parameter	Symbol	HEV	PHEV 1	PHEV 2	BEV 1	BEV 2
Cell width [mm]	W	161	164.2	164	99,7	329,2
tolerance [mm]		± 1	± 0,65	± 1,5	± 1,5	± 0,8
Cell height without terminals [mm]	h	141	226	232	301,05	161,4
tolerance [mm]		± 1,0	± 1,0	0,8/-0,5	0,5/-1,0	± 1,0
Cell height with terminals [mm]	Н	163	249,6	254,2	365,5	168,5
tolerance [mm]		± 1,5	± 1,0	1,3/-1,0	± 1,0	± 1,0
Position of terminals (same site / opposite)		same site	same site	same site	opposite	same site
Minimum distance between terminals [mm]	M	37	34	36	n/a	63,5
tolerance [mm]		± 0,7	± 0,5	± 0,5	n/a	± 0,4
Position of terminals [mm], sym. (P=P1)	P, P1	39,5	42,6	41,5	49,85	80,4
tolerance [mm]		± 1,15	± 0,7	± 1,7	± 1,7	± 0,5
Edges of foil (plain / folded)		folded	plain	folded	folded	plain

8 Data sheet

An example for a data sheet to sum up all relevant cell data, to specify the characteristic of a lithium-ion cell to be used for automotive application, is given in Annex A.

Annex A (informative)

Data sheet for presentation of relevant cell characteristics (example)

The following tables are examples how the data for a cell should be listed for information exchange between vehicle manufacturer and cell supplier. It is written in a way, that it can be used for all types of battery cells.

Table A.1 shows the listing of cell dimensions.

Table A.1 — List of main dimensions for lithium-ion cell

Parameter	Symbols according to Figures 3 to 5 in DIN 91252	Values
length of the cell [mm]	M1	
tolerance [mm]		
width of the cell [mm]	M2 / W	
tolerance [mm]		
height of the cell without terminals [mm]	M4 / h	
tolerance [mm]		
height of the cell with welded terminals [mm]	M3 / H	
height of the cell with screwed terminals [mm]	M3+M21 / n.a.	
distance between terminals [mm]	M5 / M	
tolerance [mm]		
tolerance center of terminals sym. distance to cell center	M27	
position of terminals (relative to width) [mm]		
tolerance [mm]		
length of terminals [mm]	M7	
width of the terminals [mm]	M8	
height of the terminals [mm]	M6	
flatness of the terminals [mm]	M17	
parallelism of the terminals according to the bottom of the case [mm]	M16 / n.a.	

The forces which a terminal can withstand should be listed as given in Table A.2.

Table A.2 — Terminal forces

Parameter	Guiding values for all prismatic cell types	"Given" values
maximum forces terminals (width)	1 000	
number of stress reversals (width)	300 000	
duration per load cycle (width) [s]	60	
maximum forces terminals (length) [N]	1 000	
number of stress reversals (length)	300 000	
duration per load cycle in (length) [s]	60	
maximum forces terminals (height)[N]	500	
number of stress reversals (height)	300 000	
duration per load cycle (height) [s]	60	
torque terminals (axle 1) [Nm]	≤ 6	
number of torque changes (axle 1)	300 000	
duration of stress reversal (axle 1)	60	
torque terminal (axle 2) [Nm]	≤ 6	
number of torque changes (axle 2)	300 000	
duration of stress reversals (axle 2)	60	
torque terminal (axle 3) [Nm]	≤ 6	
number of torque changes (axle 3)	300 000	
duration of stress reversals (axle 3)	60	
Minimum connection area width x length [mm ²]	n.V.	
average roughness \boldsymbol{R}_a of the terminal surface $[\mu m]$	≤ 1,0	
average depth of roughness $\boldsymbol{R}_{\boldsymbol{z}}$ at the terminal surface [µm]	≤ 16	

Table A.3 presents the listing of details for the terminal position.

Table A.3 — Terminal design

Parameter	Symbols according to Figures 3 to 5 in DIN 91252	Values
minimum area of the terminals width x length [mm²]	M28	
average roughness R_{a} of the surface $\left[\mu m\right]$	M19	
average depth of roughness $R_z at$ the surface $[\mu m]$	M20	
form of the welded terminal	M23 / M24 / M25	
terminal screw thread (diameter)	M22	
height of the screw thread of the screwed terminals	M21	
terminal distance (length) [mm]	M5	
tolerance [mm]		
position of the terminals (width) [mm]		
tolerance [mm]		
length of the terminals [mm]	M7	
width of the terminals [mm]	M8	
height of the terminals [mm]	M6	
flatness of the terminals [mm]	M17	
parallelism of the terminals against bottom surface of the body case [mm]	M16	
parallelism of the terminals to each other [mm]	M18	

Table A.4 presents the listing of data for OPSD.

Table A.4 — Parameter List for OPSD

	1	
	position of the OPSD relative to width [mm]	M11
PSD	tolerance [mm]	
(O) a:	position of the OPSD relative to length [mm]	M12
levic	tolerance [mm]	
ety c	length of the OPSD (relative to length) [mm]	M9
e saf	tolerance [mm]	
over-pressure safety device (OPSD)	width of the OPSD relative to width) [mm]	M10
-pre	tolerance [mm]	
over	minimum area of the OPSD as length x width-level [mm²]	
	case material	
	wall thickness [mm]	M29
	At case potential	
	flatness of the case bottom [mm]	M15
	minimum area of the cell bottom [mm ²]	M13
Case	tolerated in- and out bulge (width each single side) [mm]	M14
u	interlock force minimum at "begin of life" [N]	F1
-directic	interlock force maximum at "begin of life" [N]	F1
forces in X-direction	interlock force maximum at "end of life" [N]	F1
	Feature 1	
S	Feature 2	
ature	Feature 3	
ty fe	Feature 4	
Safety features	Feature 5	
		•