TRUÒNG ĐẠI HỌC BÁCH KHOA TP. HCM Bô Môn Toán Ứng Dung — o O o —

ĐỂ THI HOC KÌ I 2009-2010 Môn thị: PHƯƠNG PHÁP TÍNH

Thời gian làm bài: 90 phút

LƯU Ý:

† Sinh viên ghi đầy đủ Ho, Tên, MSSV và làm trực tiếp lên đề thi.

† Sinh viên được sử dụng tài liệu, máy tính bỏ túi, **không được** sử dụng máy tính lập trình.

† Đề thi gồm 10 câu (2 mặt trên 1 tờ A4). Mọi thắc mắc, sinh viên ghi trực tiếp lên đề thi.

† Gọi m và n là hai chữ số cuối của mã số sinh viên (m là chữ số hàng chục, n là chữ số hàng đơn vị, $0 \leqslant m, n \leqslant 9$). Đặt $\mathcal{M} = \frac{2m+n+10}{10}$. Ví dụ nếu mã số sinh viên là 80700276, thì m=7, n=6 và $\mathcal{M} = \frac{2\times 7+6+10}{10} = 3.0$

† Sinh viên tự điền vào bảng sau. Nếu không điền, bài thi bị xem là không hợp lệ.

	Họ và Tên	
	Mã số sinh viên	Chữ ký giám thị 1
ĺ	\mathcal{M}	Chữ ký giám thị 2

YÊU CÂU:

† Không làm tròn kết quả trung gian. Không ghi đáp số ở dạng phân số.

† Đáp số ghi vào bài thi **phải được** làm tròn đến 4 chữ số sau dấu phảy thập phân.

CÂU 1. Cho phương trình $f(x) = 2x^3 + \mathcal{M}x - 1 = 0$ có khoảng cách lị nghiệm [0, 1]. Dùng phương pháp Newton, chọn x_0 theo điều kiện Fourier, tính nghiệm gần đúng x_2 và đánh giá sai số Δx_2 theo công thức sai số tổng quát.

Kết quả: $x_2 \approx \underline{\hspace{1cm}}$

rã Choleski $A=BB^T$ tìm các phần tử b_{11},b_{22},b_{33} của ma trận tam giác dưới B.

Kết quả: $b_{11} = ____; b_{22} = ___$

 $[0.25, 0.64, 0.30]^T$, hãy tìm vecto $x^{(3)}$ bằng phương pháp Gauss-Seidel.

Kết quả: $x_1^{(3)} =$ _____; $x_2^{(3)} =$ _____; $x_3^{(3)} =$ _____;

<u>CÂU 4.</u> Xây dựng spline bậc ba g(x) nội suy bảng số: $\frac{x \mid 0}{y \mid 2.1\mathcal{M}} \frac{1}{2.5\mathcal{M}} \frac{2}{3.3\mathcal{M}}$ và thoả điều kiên q'(0) = 0.5, $q'(2) = 0.1\mathcal{M}$

Kết quả: $A_0 =$; $B_0 =$; $C_0 =$; $\forall x \in [0,1]$; $A_1 = \dots; B_1 = \dots; C_1 = \dots; D_1 = \dots; \forall x \in [1, 2].$

 $\underline{\mathbf{CÂU 5}}$. Cho bảng số $\frac{x \mid 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10}{f(x) \mid \mathcal{M} \quad 2.5 \quad 1.2\mathcal{M} \quad 3.3 \quad 1.4\mathcal{M} \quad 3.8 \quad 1.6\mathcal{M}}$. Sử dụng phương pháp bình phương bé nhất, tìm hàm dạng $f(x) = A\sqrt{x+1} + Bx$ xấp xỉ tốt nhất bảng số trên.

Kết quả: A =_____; B =_____

<u>CÂU 6.</u> Cho bảng số $\frac{x \mid 0 \quad 1}{y \mid \mathcal{M} \quad 2.5 \quad 1.5 \mathcal{M} \quad 4.2}$. Sử dụng đa thức nội suy Newton tính gần đúng đạo hàm y'(x) tại điểm x = 1.2.

Kết quả: y'(1.2) =__

<u>CÂU 7</u>. Xét tích phân: $I = \int_{1}^{2} \sqrt[3]{Mx+1} \ dx$. Dùng công thức Simpson mở rộng, xác định số đoạn chia tối thiểu (a.) $\frac{1}{2}$ đoạn chia tối thiểu (n_{min}) để sai số $\leq 10^{-6}$. Với giá trị $n=n_{min}$ vừa tìm được, hãy xấp xỉ tích phân trên.

Kết quả: $n_{min} =$

<u>CÂU 8.</u> Xét bài toán Cauchy $\begin{cases} y'=xy^3+\mathcal{M}3^{-x}+1.5x-1, & 1\leqslant x\\ y(1)=0.25\mathcal{M} \end{cases}$. Sử dụng công thức

Runge-Kutta cấp 4, hãy xấp xỉ giá trị của hàm y(x) tại x = 1.2 với bước h = 0.2.

Kết quả: $K2 = _____; y(1.2) = _____.$

CÂU 9. Xét bài toán Cauchy đối với ptvp cấp 2:

$$\begin{cases} y''(t) = \ln(ty(t) + 1) + (y'(t) + 2\mathcal{M})^2 + 2.1t - 0.3\mathcal{M}, \ 1 \leqslant t \\ y(1) = 0.2\mathcal{M}; \ y'(1) = 0.5\mathcal{M} \end{cases}$$

Thực hiện phép đổi biến y'(t) = x(t) và sử dụng công thức Euler, hãy xấp xỉ giá trị của hàm y(t) và đạo hàm y'(t) tại điểm t = 1.2 với bước h = 0.2.

Kết quả: y(1.2) =______; y'(1.2) =______;

CÂU 10. Xét bài toán biên:

$$\begin{cases} \frac{x+\mathcal{M}}{x^2+1}y'' + y' - 10\mathcal{M}y = -8x, \ 1.4 \leqslant x \leqslant 1.8\\ y(1.4) = 0.3\mathcal{M}; \ y(1.8) = 0.8\mathcal{M} \end{cases}$$

Bằng phương pháp sai phân hữu hạn, hãy xấp xỉ giá trị của hàm y(x) trong [1.4, 1.8] với bước h = 0.1.

 Kết quả: y(1.5) = y(1.6) = y(1.7) =

 CHỬ NHIÊM BÔ MÔN
 GIÁO VIÊN RA ĐỀ