Q4: How Does Netflix Recommend Movies?

Mung Chiang

Netflix

- DVD rental
- Online streaming
 - * 30% of Internet traffic in summer 2011
- * 23 million subscribers
- * Recommendation accuracy important
 - Compare to Amazon, YouTube, Pandora

Recommendation Problem

- Input
 - * [User, Movie, 1-5 stars, Time]
- Output
 - Prediction of ratings
- Metric
 - * RMSE

$$\sqrt{\sum_{(u,i)} \frac{(r_{ui} - \hat{r}_{ui})^2}{C}}$$

Netflix Prize

Brief History

Matrix, or Weighted Bipartite

Movies **Users**

Challenges

- * Size
 - * 480,000 users, 17,770 movies, 100 million ratings
- Sparsity
 - * Only 1% dense, most users do not rate most movies
- Diversity
 - Most users rate only few movies, few users rate many movies

Key Approaches

- Content based filtering (local)
- Collaborative filtering (global)
 - * Neighborhood method (statistical correlation)
 - Movie-Movie, or User-User similarities
 - Latent factor method (structural simplicity)
- Implicit feedback, temporal dynamics...

Baseline Predictor

$$\hat{r}_{ui} = \overline{r} + b_u + b_i$$

User bias

Average

Novie bias

Training -> Prediction

Parameter Training

$$\begin{array}{c} \text{Training Data} \\ \text{minimize}\{b_u,b_i\} \\ \text{Model Parameters}(u,i) \\ \text{Model Prediction} \end{array}$$

Least Squares -> Linear Eq.

Variables

Minimize
$$||\mathbf{A}\mathbf{b} - \mathbf{c}||_2^2$$

Optimal choice
$$(\mathbf{A}^T \mathbf{A}) \mathbf{b} = \mathbf{A}^T \mathbf{c}$$

Similarity Metric

$$\tilde{r}_{ui} = r_{ui} - \hat{r}_{ui} = r_{ui} - (\bar{r} + b_u + b_i)$$

$$d_{ij} = \frac{\sum_{u} \tilde{r}_{ui} \tilde{r}_{uj}}{\sqrt{\sum_{u} (\tilde{r}_{ui})^2 \sum_{u} (\tilde{r}_{uj})^2}}$$

Neighborhood Method

 $\hat{r}_{ui} = (\bar{r} + b_u + b_i) + \frac{\sum_{j \in \mathcal{L}} d_{ij} \tilde{r}_{uj}}{\sum_{j \in \mathcal{L}} |d_{ij}|}$ Fix a (user, movie) pair

Set of top L neighbors

Neighborhood predictor

Example: Input

$$\mathbf{R} = \begin{bmatrix} A & B & C & D & E \\ 1 & 5 & 4 & 4 & - & 5 \\ - & 3 & 5 & 3 & 4 \\ 5 & 2 & - & 2 & 3 \\ - & 2 & 3 & 1 & 2 \\ 4 & - & 5 & 4 & 5 \\ 5 & 3 & - & 3 & 5 \\ 7 & 5 & 3 & 4 & - & 5 \\ 9 & 4 & 2 & 5 & 4 & - \\ 10 & 5 & - & 5 & 3 & 4 \end{bmatrix}$$

Least Squares Solution

$$\mathbf{b}_{u}^{*} = [0.62, 0.42, -0.28, -1.78, 0.52, 0.49, -1.24, 0.45, 0.40, 0.23]^{T}$$

$$\mathbf{b}_{i}^{*} = [0.72, -1.20, 0.60, -0.60, 0.33]^{T}$$

Baseline Predictor

		A	B	C	D	E
$\hat{\mathbf{R}}=$	1	$\int 5.00$	3.09	4.90	<u></u>	4.62 \
	2	-	2.89	4.69	3.49	4.42
	3	4.10	2.19	<u> </u>	2.78	3.71
	4	-	1.00	2.49	1.29	2.22
	5	4.90	<u> </u>	4.79	3.58	4.51
	6	4.88	2.96		3.56	4.48
	7	3.15	1.23	3.03	1.82	_
	8	4.84	2.92	4.72	<u>-</u>	4.44
	9	4.84	2.92	4.72	3.51	_
	10	$\backslash 4.61$	_	4.49	3.29	4.22 /

Shift by Baseline Predictor

		A	B	C	D	E
	1	$\int 0$	0.91	-0.90	<u> </u>	? \
	2	<u>.</u>	0.11	0.31	?	-0.42
	3	0.90	-0.19		?	-0.71
	4		?	0.51	-0.29	-0.22
$ ilde{\mathbf{R}} = \mathbf{R} - \mathbf{\hat{R}} =$	5	-0.90		?	0.42	0.49
$\mathbf{n} - \mathbf{n} - \mathbf{n} -$	6	?	0.040		-0.56	0.52
	7	-0.15	?	-0.031	0.18	<u> </u>
	8	0.16	?	-0.72		0.56
	9	?	-0.87	0.33	0.54	_
	10	?		0.51	-0.29	-0.22

Similarity

$$d_{BC} = \frac{\tilde{r}_{1B}\tilde{r}_{1C} + \tilde{r}_{2B}\tilde{r}_{2C} + \tilde{r}_{9B}\tilde{r}_{9C}}{\sqrt{(\tilde{r}_{1B}^2 + \tilde{r}_{2B}^2 + \tilde{r}_{9B}^2)(\tilde{r}_{1C}^2 + \tilde{r}_{2C}^2 + \tilde{r}_{9C}^2)}}$$

$$= \frac{(0.91)(-0.90) + (-0.11)(0.31) + (-0.87)(0.33)}{\sqrt{(0.91^2 + 0.11^2 + 0.87^2)(0.90^2 + 0.31^2 + 0.33^2)}}$$

$$= -0.84.$$

$$\mathbf{A} \qquad B \qquad C \qquad D \qquad E$$

$$A \qquad -0.21 \qquad -0.41 \qquad -0.97 \qquad -0.75$$

$$B \qquad -0.21 \qquad -0.84 \qquad -0.73 \qquad 0.51$$

$$D = C \qquad -0.41 \qquad -0.84 \qquad -0.22 \qquad -0.93$$

$$D \qquad -0.97 \qquad -0.73 \qquad -0.22 \qquad -0.68$$

$$E \qquad -0.75 \qquad 0.51 \qquad -0.93 \qquad 0.68 \qquad -0.68$$

Neighborhood Prediction

RMSE on Quiz Set: drop from 0.64 to 0.54

Bonus: Regularization

Regularization

Bonus: Convex Optimization

Key Phrase Summary

- Collaborative filtering
 - Neighborhood method
 - Similarity metric
- Least squares
 - * Regularization
- Convex optimization