HƯỚNG DẪN THUẬT TOÁN FLOYD TÌM ĐƯỜNG ĐI NGẮN NHẤT

1. Thuật toán Floyd

Cho G=(X,E) là một đồ thị có trọng số không âm gồm n đỉnh. Thuật toán Floyd dùng để tìm đường đi ngắn nhất giữa 2 đỉnh S và F trong đồ thị G như sau:

Gọi L là ma trận lưu lại độ dài đường đi ngắn nhất từ đỉnh i tới đỉnh j trong đồ thị (với qui ước $L[h,k] = +\infty$ nếu không có cạnh nối từ đỉnh h đến đỉnh k).

Ta sử dụng thêm một ma trận nxn để lưu vết của quá trình tìm đường đi:

Sau_Nut[i,j]: lưu chỉ số của đỉnh ngay sau i trên đường đi từ i đến j.

Các bước thi hành thuật toán Floyd:

```
Bước 1: (khởi tạo) : \forallu, v \in X:

Nếu e(u,v) > 0 thì

L[u,v] = e(u,v);

Sau_Nut [u,v] = v;

Ngược lại

L[u,v] = +\infty;

Sau_Nut [u,v] = -1;

Cuối nếu
```

Bước 2:

Với mỗi **đỉnh trung gian** k, tìm cặp i, j nào thỏa mãn L[i,j] = 0 hoặc L[i, j] > L[i,k] + L[k,j] Nếu thỏa mãn thì

$$\begin{split} L[i,j] &= L[i,k] + L[k,j]; \\ Sau_Nut[i,j] &= Sau_Nut[i,k]; \end{split}$$

Cuối nếu

Cuối với mọi k, i, j

Chú ý:

- Đỉnh k được gọi là trung gian của i, j nếu nó có đường đi trực tiếp từ i→k
 và k→j.
- o Khi thuật toán kết thúc, nếu L[i,j] = +∞ hoặc Sau_Nut[i,j] = -1 thì không tồn tại đường đi từ i đến j, nếu ngược lại thì L[i,j] là độ dài đường đi ngắn nhất.

2. Ví dụ thi hành thuật toán Floyd

Cho đồ thị sau:

Tìm đường đi ngắn nhất của mọi cặp đỉnh trong đồ thị.

Bước 1: khởi tạo

Ma trận trọng số:

L	0	1	2	3
0	$+\infty$	$+\infty$	$+\infty$	3
1	2	$+\infty$	$+\infty$	6
2	$+\infty$	$+\infty$	$+\infty$	$+\infty$
3	$+\infty$	$+\infty$	2	$+\infty$

Sau_Nut sẽ được khởi tạo giá trị là j nếu có cạnh nối i đến j và được khởi tạo giá trị -1 nếu ngược lại

Sau_Nut	0	1	2	3
0	-1	-1	-1	3
1	0	-1	-1	3
2	-1	-1	-1	-1
3	-1	-1	2	-1

Bước 2:

 $X\acute{e}t \mathring{d}inh: k = 0$

* [i=0, j=?]: k không là trung gian.

(?: đại diện cho bất kỳ đỉnh nào trong đồ thị)

* [i = 1, j = 0]: k không là trung gian.

* [i=1, j=1]: k không là trung gian.

* [i = 1, j = 2]: k không là trung gian.

* [i=1, j=3]:

N/x: L[i,j] > L[i,k] + L[k,j] hay

L[1,3] = 6 > L[1,0] + L[0,3] = 5 nên:

L[1,3] = L[1,0] + L[0,3] = 5;

 $Sau_Nut[1,3] = Sau_Nut[1,0] = 0;$

L	0	1	2	3
0	$+\infty$	$+\infty$	$+\infty$	3
i> 1	2	$+\infty$	+∞	6> 5
2	$+\infty$	$+\infty$	+∞	$+\infty$
3	$+\infty$	$+\infty$	2	$+\infty$

Sau_Nut	0	1	2	3
0	-1	-1	-1	3
i> 1	0	-1	-1	3> 0
2	-1	-1	-1	-1
3	-1	-1	2	-1

* [i=2, j=?]: k không là trung gian.

* [i = 3, j = ?]: k không là trung gian.

Xét đỉnh: k = 1

* [i= ?, j = ?]: k không là trung gian.

Xét đỉnh: k = 2

* [i=?, j=?]: k không là trung gian.

Xét đỉnh: k = 3

* [i= 0, j = 0]: k không là trung gian.

* [i=0, j=1]: k không là trung gian

* [i=0, j=2]:

Vì L[i,j] = 0 hay L[0,2] = 0 nên:

$$L[0,2] = L[0,3] + L[3,2] = 5;$$

 $Sau_Nut[0,2] = Sau_Nut[0,3] = 3$

L	0	1	2	3
i> 0	$+\infty$	$+\infty$	+∞> 5	3
1	2	$+\infty$	$+\infty$	5
2	$+\infty$	$+\infty$	+∞	$+\infty$
3	$+\infty$	$+\infty$	2	$+\infty$

Sau_Nut	0	1	2	3
i> 0	-1	-1	-1> 3	3
1	0	-1	-1	0
2	-1	-1	-1	-1
3	-1	-1	2	-1

* [i=0, j=3]: k không là trung gian

(K = 3 tiếp tục)

* [i= 1, j = 0]: k không là trung gian.

* [i=1, j=1]: k không là trung gian.

* [i=1, j=2]:

N/x: L[1,2] = 0 nên

L[1,2] = L[1,3] + L[3,2] = 5 + 2 = 7;

 $Sau_Nut[1,2] = Sau_Nut[1,3] = 0;$

L	0	1	2	3
0	$+\infty$	$+\infty$	5	3
i> 1	2	$+\infty$	+∞> 7	5
2	$+\infty$	$+\infty$	$+\infty$	$+\infty$
3	$+\infty$	$+\infty$	2	$+\infty$

Sau_Nut	0	1	2	3
0	-1	-1	3	3
i>1	0	-1	-1> 0	0
2	-1	-1	-1	-1
3	-1	-1	2	-1

* [i=1, j=3]: k không là trung gian.

* [i=2, j=?]: k không là trung gian.

* [i=3, j=?]:

Kết thúc thuật toán.

-----HÉT-----