Homework #4 (Ch10, Ch11, Ch12, & Ch13) Solution

Chapter 9, p270, PROBLEMS

Prob. 9.1

9.1 The flop counts for the tridiagonal algorithm in Fig. 9.6 can be summarized as

	Mult/Div	Add/Subtr	Total
Forward elimination	3(n-1)	2(n-1)	5(n-1)
Back substitution	2n-1	n-1	3n-2
Total	5n – 4	3n - 3	8n – 7

Thus, as n increases, the effort is much, much less than for a full matrix solved with Gauss elimination which is proportional to n^3 .

9.4 (a) The determinant can be evaluated as

$$D = 0 \begin{bmatrix} 2 & -1 \\ -2 & 0 \end{bmatrix} - (-3) \begin{bmatrix} 1 & -1 \\ 5 & 0 \end{bmatrix} + 7 \begin{bmatrix} 1 & 2 \\ 5 & -2 \end{bmatrix}$$
$$D = 0(-2) + 3(5) + 7(-12) = -69$$

(b) Cramer's rule

$$x_{1} = \frac{\begin{vmatrix} 4 & -3 & 7 \\ 0 & 2 & -1 \\ 3 & -2 & 0 \end{vmatrix}}{-69} = 0.5942$$

$$x_{2} = \frac{\begin{vmatrix} 0 & 4 & 7 \\ 1 & 0 & -1 \\ 5 & 3 & 0 \end{vmatrix}}{-69} = -0.0145$$

$$x_{3} = \frac{\begin{vmatrix} 0 & -3 & 4 \\ 1 & 2 & 0 \\ 5 & -2 & 3 \end{vmatrix}}{-69} = 0.5652$$

(c) Pivoting is necessary, so switch the first and third rows,

$$5x_1 - 2x_2 = 3$$

$$x_1 + 2x_2 - x_3 = 0$$

$$-3x_2 + 7x_3 = 4$$

Multiply pivot row 1 by 1/5 and subtract the result from the second row to eliminate the a_{21} term.

$$5x_1 - 2x_2 = 3$$

 $2.4x_2 - x_3 = -0.6$
 $-3x_2 + 7x_3 = 4$

Pivoting is necessary so switch the second and third row,

$$5x_1 - 2x_2 = 3$$
$$-3x_2 + 7x_3 = 4$$
$$2.4x_2 - x_3 = -0.6$$

Multiply pivot row 2 by 2.4/(-3) and subtract the result from the third row to eliminate the a_{32} term.

$$5x_1 - 2x_2 = 3$$
$$-3x_2 + 7x_3 = 4$$
$$4.6x_3 = 2.6$$

The solution can then be obtained by back substitution

9.7 (a) Pivoting is necessary, so switch the first and third rows,

$$-8x_1 + x_2 - 2x_3 = -20$$

$$-3x_1 - x_2 + 7x_3 = -34$$

$$2x_1 - 6x_2 - x_3 = -38$$

Multiply the first equation by -3/(-8) and subtract the result from the second equation to eliminate the a_{21} term from the second equation. Then, multiply the first equation by 2/(-8) and subtract the result from the third equation to eliminate the a_{31} term from the third equation.

$$-8x_1 + x_2 -2x_3 = -20$$

-1.375x₂ + 7.75x₃ = -26.5
-5.75x₂ -1.5x₃ = -43

Pivoting is necessary so switch the second and third row,

$$-8x_1 + x_2 -2x_3 = -20$$

$$-5.75x_2 -1.5x_3 = -43$$

$$-1.375x_2 + 7.75x_3 = -26.5$$

Multiply pivot row 2 by -1.375/(-5.75) and subtract the result from the third row to eliminate the a_{12} term.

$$-8x_1 + x_2 -2x_3 = -20$$

 $-5.75x_2 -1.5x_3 = -43$
 $8.108696x_3 = -16.21739$

At this point, the determinant can be computed as

$$D = -8 \times -5.75 \times 8.108696 \times (-1)^2 = 373$$

The solution can then be obtained by back substitution

$$x_3 = \frac{-16.21739}{8.108696} = -2$$

$$x_2 = \frac{-43 + 1.5(-2)}{-5.75} = 8$$

$$x_1 = \frac{-20 + 2(-2) - 1(8)}{-8} = 4$$

(b) Check:

$$2(4)-6(8)-(-2) = -38$$
$$-3(4)-(8)+7(-2) = -34$$
$$-8(4)+(8)-2(-2) = -20$$

9.8 Multiply the first equation by -0.4/0.8 and subtract the result from the second equation to eliminate the x_1 term from the second equation.

$$\begin{bmatrix} 0.8 & -0.4 \\ & 0.6 & -0.4 \\ & -0.4 & 0.8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 41 \\ 45.5 \\ 105 \end{bmatrix}$$

Multiply pivot row 2 by -0.4/0.6 and subtract the result from the third row to eliminate the x_2 term.

$$\begin{bmatrix} 0.8 & -0.4 \\ & 0.6 & -0.4 \\ & & 0.533333 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 41 \\ 45.5 \\ 135.3333 \end{bmatrix}$$

The solution can then be obtained by back substitution

$$x_3 = \frac{135.3333}{0.533333} = 253.75$$

$$x_2 = \frac{45.5 - (-0.4)253.75}{0.6} = 245$$

$$x_1 = \frac{41 - (-0.4)245}{0.8} = 173.75$$

(b) Check:

$$0.8(173.75) - 0.4(245) = 41$$

 $-0.4(173.75) + 0.8(245) - 0.4(253.75) = 25$
 $-0.4(245) + 0.8(253.75) = 105$

Chapter 10, p287, PROBLEMS

1) Problem 10.1

The flop counts for LU decomposition can be determined in a similar fashion as was done for Gauss elimination. The major difference is that the elimination is only implemented for the left-hand side coefficients. Thus, for every iteration of the inner loop, there are n multiplications/divisions and n-1 addition/subtractions. The computations can be summarized as

Outer Loop k	Inner Loop i	Addition/Subtraction flops	Multiplication/Division flops
1	2, n	(n-1)(n-1)	(n-1)n
2	3, <i>n</i>	(n-2)(n-2)	(n-2)(n-1)
k	k+1, n	(n-k)(n-k)	(n-k)(n+1-k)
	•		
	•		
•	•		
n-1	n, n	(1)(1)	(1)(2)

Therefore, the total addition/subtraction flops for elimination can be computed as

$$\sum_{k=1}^{n-1} (n-k)(n-k) = \sum_{k=1}^{n-1} \left[n^2 - 2nk + k^2 \right]$$

Applying some of the relationships from Eq. (8.14) yields

$$\sum_{k=1}^{n-1} \left[n^2 - 2nk + k^2 \right] = \frac{n^3}{3} - \frac{n^2}{2} + \frac{n}{6}$$

A similar analysis for the multiplication/division flops yields

$$\sum_{k=1}^{n-1} (n-k)(n+1-k) = \frac{n^3}{3} - \frac{n}{3}$$
$$\left[n^3 + O(n^2) \right] - \left[n^3 + O(n) \right] + \left[\frac{1}{3} n^3 + O(n^2) \right] = \frac{n^3}{3} + O(n^2)$$

Summing these results gives

$$\frac{2n^3}{3} - \frac{n^2}{2} - \frac{n}{6}$$

For forward substitution, the numbers of multiplications and subtractions are the same and equal to

$$\sum_{i=1}^{n-1} i = \frac{(n-1)n}{2} = \frac{n^2}{2} - \frac{n}{2}$$

Back substitution is the same as for Gauss elimination: $n^2/2 - n/2$ subtractions and $n^2/2 + n/2$ multiplications/divisions. The entire number of flops can be summarized as

	Mult/Div	Add/Subtr	Total
Forward elimination	$\frac{n^3}{3} - \frac{n}{3}$	$\frac{n^3}{3} - \frac{n^2}{2} + \frac{n}{6}$	$\frac{2n^3}{3} - \frac{n^2}{2} - \frac{n}{6}$
Forward substitution	$\frac{n^2}{2} - \frac{n}{2}$	$\frac{n^2}{2} - \frac{n}{2}$	n^2-n
Back substitution	$\frac{n^2}{2} + \frac{n}{2}$	$\frac{n^2}{2} - \frac{n}{2}$	n^2
Total	$\frac{n^3}{3} + n^2 - \frac{n}{3}$	$\frac{n^3}{3} + \frac{n^2}{2} - \frac{5n}{6}$	$\frac{2n^3}{3} + \frac{3n^2}{2} - \frac{7n}{6}$

The total number of flops is identical to that obtained with standard Gauss elimination.

2) Problem 10.3

10.3 (a) The coefficient a_{21} is eliminated by multiplying row 1 by $f_{21} = -0.3$ and subtracting the result from row 2. a_{31} is eliminated by multiplying row 1 by $f_{31} = 0.1$ and subtracting the result from row 3. The factors f_{21} and f_{31} can be stored in a_{21} and a_{31} .

$$\begin{bmatrix} 10 & 2 & -1 \\ -0.3 & -5.4 & 1.7 \\ 0.1 & 0.8 & 5.1 \end{bmatrix}$$

 a_{32} is eliminated by multiplying row 2 by $f_{32} = -0.14815$ and subtracting the result from row 3. The factor f_{32} can be stored in a_{32} .

$$\begin{bmatrix} 10 & 2 & -1 \\ -0.3 & -5.4 & 1.7 \\ 0.1 & -0.14815 & 5.3519 \end{bmatrix}$$

Therefore, the LU decomposition is

$$[L] = \begin{bmatrix} 1 & 0 & 0 \\ -0.3 & 1 & 0 \\ 0.1 & -0.14815 & 1 \end{bmatrix} \qquad [U] = \begin{bmatrix} 10 & 2 & -1 \\ 0 & -5.4 & 1.7 \\ 0 & 0 & 5.3519 \end{bmatrix}$$

These two matrices can be multiplied to yield the original system. For example, using MATLAB to perform the multiplication gives

3) Problem 10.5

10.5 The system can be written in matrix form as

$$[A] = \begin{bmatrix} 2 & -6 & -1 \\ -3 & -1 & 7 \\ -8 & 1 & -2 \end{bmatrix} \qquad \{b\} = \begin{cases} -38 \\ -34 \\ -40 \end{cases} \qquad [P] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Partial pivot:

$$[A] = \begin{bmatrix} -8 & 1 & -2 \\ -3 & -1 & 7 \\ 2 & -6 & -1 \end{bmatrix} \qquad [P] = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Compute factors:

$$f_{21} = -3/-8 = 0.375$$
 $f_{31} = 2/(-8) = -0.25$

Forward eliminate and store factors in zeros:

$$[A] = \begin{vmatrix} -8 & 1 & -2 \\ 0.375 & -1.375 & 7.75 \\ -0.25 & -5.75 & -1.5 \end{vmatrix}$$

Pivot again

$$[A] = \begin{bmatrix} -8 & 1 & -2 \\ -0.25 & -5.75 & -1.5 \\ 0.375 & -1.375 & 7.75 \end{bmatrix} \qquad [P] = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Compute factors:

$$f_{32} = -1.375/(-5.75) = 0.23913$$

Forward eliminate and store factor in zero:

$$[LU] = \begin{bmatrix} -8 & 1 & -2 \\ -0.25 & -5.75 & -1.5 \\ 0.375 & 0.23913 & 8.1087 \end{bmatrix}$$

Therefore, the LU decomposition is

$$[L] = \begin{bmatrix} 1 & 0 & 0 \\ -0.25 & 1 & 0 \\ 0.375 & 0.23913 & 1 \end{bmatrix} \qquad [U] = \begin{bmatrix} -8 & 1 & -2 \\ 0 & -5.75 & -1.5 \\ 0 & 0 & 8.1087 \end{bmatrix}$$

Forward substitution. First pre-multiply right-hand side vector $\{b\}$ by [P] to give

$$[P]{b} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} -38 \\ -34 \\ -40 \end{bmatrix} = \begin{bmatrix} -40 \\ -38 \\ -34 \end{bmatrix}$$

Therefore,

$$\begin{bmatrix} 1 & 0 & 0 \\ -0.25 & 1 & 0 \\ 0.375 & 0.23913 & 1 \end{bmatrix} \{d\} = \begin{bmatrix} -40 \\ -38 \\ -34 \end{bmatrix}$$

which can be solved for

$$\begin{split} &d_1 = -40 \\ &d_2 = -38 - 0.25(-40) = -48 \\ &d_3 = -34 - 0.375(-40) - 0.23913(-48) = -7.52174 \end{split}$$

Back substitution:

$$\begin{bmatrix} -8 & 1 & -2 \\ 0 & -5.75 & -1.5 \\ 0 & 0 & 8.1087 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -40 \\ -48 \\ -7.52174 \end{bmatrix}$$

$$x_3 = \frac{-7.52174}{8.1087} = -0.92761$$

$$x_2 = \frac{-48 + 1.5(-0.92761)}{-5.75} = 8.589812$$

$$x_1 = \frac{-40 + 2(-0.92761) - 1(8.589812)}{8} = 6.30563$$

4) Problem 10.8 (a), (c)

10.8 (a) For the first row (i = 1), Eq. (10.15) is employed to compute

$$u_{11} = \sqrt{a_{11}} = \sqrt{8} = 2.828427$$

Then, Eq. (10.16) can be used to determine

$$u_{12} = \frac{a_{12}}{u_{11}} = \frac{20}{2.828427} = 7.071068$$
$$u_{13} = \frac{a_{13}}{u_{11}} = \frac{15}{2.8288427} = 5.303301$$

For the second row (i = 2),

$$u_{22} = \sqrt{a_{22} - u_{12}^2} = \sqrt{80 - (7.071068)^2} = 5.477226$$

$$u_{23} = \frac{a_{23} - u_{12}u_{13}}{u_{22}} = \frac{50 - 7.071068(5.303301)}{5.477226} = 2.282177$$

For the third row (i = 3),

$$u_{33} = \sqrt{a_{33} - u_{13}^2 - u_{23}^2} = \sqrt{60 - 5.303301^2 - 2.282177^2} = 5.163978$$

Thus, the Cholesky decomposition yields

$$[U] = \begin{bmatrix} 2.828427 & 7.071068 & 5.303301 \\ & & 5.477226 & 2.282177 \\ & & & 5.163978 \end{bmatrix}$$

The validity of this decomposition can be verified by substituting it and its transpose into Eq. (10.14) to see if their product yields the original matrix [A].

```
(b)
>> A = [8 20 15;20 80 50;15 50 60];
>> U = chol(A)

U =

2.8284 7.0711 5.3033
0 5.4772 2.2822
0 0 5.1640
```

(c) The solution can be obtained by hand or by MATLAB. Using MATLAB:

```
>> b = [50;250;100];
>> d=U'\b
```

Chapter 11, p300, PROBLEMS

1) Problem 11.1

The matrix to be evaluated is

$$\begin{bmatrix} 10 & 2 & -1 \\ -3 & -6 & 2 \\ 1 & 1 & 5 \end{bmatrix}$$

First, compute the LU decomposition. Multiply the first row by $f_{21} = -3/10 = -0.3$ and subtract the result from the second row to eliminate the a_{21} term. Then, multiply the first row by $f_{31} = 1/10 = 0.1$ and subtract the result from the third row to eliminate the a_{31} term. The result is

$$\begin{bmatrix} 10 & 2 & -1 \\ 0 & -5.4 & 1.7 \\ 0 & 0.8 & 5.1 \end{bmatrix}$$

Multiply the second row by $f_{32} = 0.8/(-5.4) = -0.148148$ and subtract the result from the third row to eliminate the a_{32} term.

$$\begin{bmatrix} 10 & 2 & -1 \\ 0 & -5.4 & 1.7 \\ 0 & 0 & 5.351852 \end{bmatrix}$$

Therefore, the LU decomposition is

$$[L]{U} = \begin{bmatrix} 1 & 0 & 0 \\ -0.3 & 1 & 0 \\ 0.1 & -0.148148 & 1 \end{bmatrix} \begin{bmatrix} 10 & 2 & -1 \\ 0 & -5.4 & 1.7 \\ 0 & 0 & 5.351852 \end{bmatrix}$$

The first column of the matrix inverse can be determined by performing the forward-substitution solution procedure with a unit vector (with 1 in the first row) as the right-hand-side vector. Thus, the lower-triangular system, can be set up as,

$$\begin{bmatrix} 1 & 0 & 0 \\ -0.3 & 1 & 0 \\ 0.1 & -0.148148 & 1 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

and solved with forward substitution for $\{d\}^T = [1 \ 0.3 - 0.055556]$. This vector can then be used as the right-hand side of the upper triangular system,

$$\begin{bmatrix} 10 & 2 & -1 \\ 0 & -5.4 & 1.7 \\ 0 & 0 & 5.351852 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0.3 \\ -0.055556 \end{bmatrix}$$

which can be solved by back substitution for the first column of the matrix inverse,

$$[A]^{-1} = \begin{bmatrix} 0.110727 & 0 & 0 \\ -0.058824 & 0 & 0 \\ -0.010381 & 0 & 0 \end{bmatrix}$$

To determine the second column, Eq. (9.8) is formulated as

$$\begin{bmatrix} 1 & 0 & 0 \\ -0.3 & 1 & 0 \\ 0.1 & -0.148148 & 1 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

This can be solved with forward substitution for $\{d\}^T = [0\ 1\ 0.148148]$, and the results are used with [U] to determine $\{x\}$ by back substitution to generate the second column of the matrix inverse,

$$[A]^{-1} = \begin{bmatrix} 0.110727 & 0.038062 & 0 \\ -0.058824 & -0.176471 & 0 \\ -0.010381 & 0.027682 & 0 \end{bmatrix}$$

Finally, the same procedures can be implemented with $\{b\}^T = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ to solve for $\{d\}^T = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$, and the results are used with [U] to determine $\{x\}$ by back substitution to generate the third column of the matrix inverse,

$$[A]^{-1} = \begin{bmatrix} 0.110727 & 0.038062 & 0.00692 \\ -0.058824 & -0.176471 & 0.058824 \\ -0.010381 & 0.027682 & 0.186851 \end{bmatrix}$$

This result can be checked by multiplying it times the original matrix to give the identity matrix. The following MATLAB session can be used to implement this check,

```
>> A = [10 2 -1; -3 -6 2; 1 1 5];

>> AI = [0.110727 0.038062 0.00692;

-0.058824 -0.176471 0.058824;

-0.010381 0.027682 0.186851];

>> A*AI

ans =

1.0000 -0.0000 -0.0000

0.0000 1.0000 -0.0000

-0.0000 0.0000 1.0000
```

_

Problem 11.3

The following solution is generated with MATLAB.

(c) The impact of a load to reactor 3 on the concentration of reactor 1 is specified by the element $a_{13}^{-1} = 0.0124352$. Therefore, the increase in the mass input to reactor 3 needed to induce a 10 g/m³ rise in the concentration of reactor 1 can be computed as

$$\Delta b_3 = \frac{10}{0.0124352} = 804.1667 \frac{g}{d}$$

(d) The decrease in the concentration of the third reactor will be

$$\Delta c_3 = 0.0259067(500) + 0.009326(250) = 12.9534 + 2.3316 = 15.285 \frac{g}{m^3}$$

Problem 11.6

The matrix can be scaled by dividing each row by the element with the largest absolute value

```
>> A = [8/(-10) 2/(-10) 1;1 1/(-9) 3/(-9);1 -1/15 6/15]

A =

-0.8000 -0.2000 1.0000
1.0000 -0.1111 -0.3333
1.0000 -0.0667 0.4000
```

MATLAB can then be used to determine each of the norms,

```
>> norm(A,'fro')
ans =
          1.9920
>> norm(A,1)
ans =
          2.8000
>> norm(A,inf)
ans =
          2
```

Problem 11.7

Prob. 11.2:

>> norm(A,inf)

ans = 27

-