```
In [2]:
```

```
###This is the Data Cleaning, visualization and trasnformation part of the project!
```

### In [32]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rcParams
import seaborn as sns
import matplotlib.gridspec as gridspec
import matplotlib.gridspec as gridspec
import scipy
from scipy.stats.stats import spearmanr
from scipy.stats import pearsonr
import seaborn as sb
from numpy.random import seed
from numpy.random import randn
from matplotlib import pyplot
from statsmodels.graphics.gofplots import qqplot
from scipy.stats import shapiro
#import os
#os.environ['PATH'].split(';')
```

### In [2]:

```
# Uploading the yelp bussiness file
Yelp = pd.read_csv (r'Ahmed Project\yelp_business.csv')
Yelp.head()
```

# Out[2]:

|   | business_id            | name                                | neighborhood | address                                   | city              | state | postal_code | latitude  | longitud       |  |
|---|------------------------|-------------------------------------|--------------|-------------------------------------------|-------------------|-------|-------------|-----------|----------------|--|
| 0 | FYWN1wneV18bWNgQjJ2GNg | "Dental<br>by<br>Design"            | NaN          | "4855 E<br>Warner Rd,<br>Ste B9"          | Ahwatukee         | AZ    | 85044       | 33.330690 | -<br>111.97859 |  |
| 1 | He-G7vWjzVUyslKrfNbPUQ | "Stephen<br>Szabo<br>Salon"         | NaN          | "3101<br>Washington<br>Rd"                | McMurray          | PA    | 15317       | 40.291685 | -80.10490      |  |
| 2 | KQPW8IFf1y5BT2MxiSZ3QA | "Western<br>Motor<br>Vehicle"       | NaN          | "6025 N<br>27th Ave,<br>Ste 1"            | Phoenix           | AZ    | 85017       | 33.524903 | -<br>112.11531 |  |
| 3 | 8DShNS-LuFqpEWIp0HxijA | "Sports<br>Authority"               | NaN          | "5000<br>Arizona<br>Mills Cr,<br>Ste 435" | Tempe             | AZ    | 85282       | 33.383147 | -<br>111.96472 |  |
| 4 | PfOCPjBrlQAnzNXj9h_w   | "Brick<br>House<br>Tavern +<br>Tap" | NaN          | "581 Howe<br>Ave"                         | Cuyahoga<br>Falls | ОН    | 44221       | 41.119535 | -81.47569      |  |
| 4 | <u> </u>               |                                     |              |                                           |                   |       |             |           |                |  |

### In [3]

```
# chekcing for null values
null_columns=Yelp.columns[Yelp.isnull().any()]
Yelp[null_columns].isnull().sum()
```

## Out[3]:

```
neighborhood 106552
```

```
state 1
postal_code 623
latitude 1
longitude 1
dtype: int64
```

### In [4]:

```
# keeping only the columns we want and drop the null values

Yelp= Yelp[['name','address','city','state','stars','review_count','is_open','categories']]
Yelp = Yelp.dropna(subset=['city', 'state'])
Yelp.head()
```

### Out[4]:

|   | name                          | address                             | city              | state | stars | review_count | is_open | categories                                        |
|---|-------------------------------|-------------------------------------|-------------------|-------|-------|--------------|---------|---------------------------------------------------|
| 0 | "Dental by<br>Design"         | "4855 E Warner<br>Rd, Ste B9"       | Ahwatukee         | AZ    | 4.0   | 22           | 1       | Dentists;General Dentistry;Health & Medical;Or    |
| 1 | "Stephen<br>Szabo Salon"      | "3101<br>Washington Rd"             | McMurray          | PA    | 3.0   | 11           | 1       | Hair Stylists;Hair Salons;Men's Hair<br>Salons;Bl |
| 2 | "Western<br>Motor Vehicle"    | "6025 N 27th<br>Ave, Ste 1"         | Phoenix           | AZ    | 1.5   | 18           | 1       | Departments of Motor Vehicles;Public Services     |
| 3 | "Sports<br>Authority"         | "5000 Arizona<br>Mills Cr, Ste 435" | Tempe             | AZ    | 3.0   | 9            | 0       | Sporting Goods;Shopping                           |
| 4 | "Brick House<br>Tavern + Tap" | "581 Howe Ave"                      | Cuyahoga<br>Falls | ОН    | 3.5   | 116          | 1       | American (New);Nightlife;Bars;Sandwiches;Ameri    |

## In [33]:

```
# cheking for duplicate values and drop them

Yelp.duplicated().sum()
Yelp.drop_duplicates().head()
```

# Out[33]:

|   | name                          | address                             | city              | state | stars | review_count | is_open | categories                                        |
|---|-------------------------------|-------------------------------------|-------------------|-------|-------|--------------|---------|---------------------------------------------------|
| 0 | "Dental by<br>Design"         | "4855 E Warner<br>Rd, Ste B9"       | Ahwatukee         | AZ    | 4.0   | 22           | 1       | Dentists;General Dentistry;Health & Medical;Or    |
| 1 | "Stephen<br>Szabo Salon"      | "3101<br>Washington Rd"             | McMurray          | PA    | 3.0   | 11           | 1       | Hair Stylists;Hair Salons;Men's Hair<br>Salons;Bl |
| 2 | "Western<br>Motor Vehicle"    | "6025 N 27th<br>Ave, Ste 1"         | Phoenix           | AZ    | 1.5   | 18           | 1       | Departments of Motor Vehicles;Public Services     |
| 3 | "Sports<br>Authority"         | "5000 Arizona<br>Mills Cr, Ste 435" | Tempe             | AZ    | 3.0   | 9            | 0       | Sporting Goods;Shopping                           |
| 4 | "Brick House<br>Tavern + Tap" | "581 Howe Ave"                      | Cuyahoga<br>Falls | ОН    | 3.5   | 116          | 1       | American (New);Nightlife;Bars;Sandwiches;Ameri    |

# In [6]:

```
# Understanding the data more we look at the top 5 numerical values when per city
Yelp_group=Yelp.groupby(Yelp['city'])
Yelp_group.mean().head()
```

# Out[6]:

|      | stars | review_count | is_open |
|------|-------|--------------|---------|
| city |       |              |         |

| 110 Las Vegas | 5t00s | 69v@ew_count | i <u>ks</u> ⊙open |
|---------------|-------|--------------|-------------------|
| A GINCOURT    | 2.50  | 6.0          | 1.0               |
| Aberdour      | 4.00  | 4.0          | 1.0               |
| Aberlady      | 4.25  | 3.5          | 1.0               |
| Ahwahtukee    | 5.00  | 15.0         | 1.0               |

### In [7]:

```
# Plotting the values for top 10 cities with the most reviews.

plot_ratings=Yelp['stars'].value_counts()
plot_ratings=plot_ratings.sort_index()
plt.figure(figsize=(9,5))

x= sns.barplot(plot_ratings.index, plot_ratings.values, alpha=0.8)
plt.title("Star Rating Count")
plt.ylabel('Total number of businesses', fontsize=13)
plt.xlabel('Ratings ', fontsize=13)

values = x.patches
labels = plot_ratings.values
for value, label in zip(values, labels):
    height = value.get_height()
    x.text(value.get_x() + value.get_width()/2, height + 6, label, ha='center', va='bottom')
plt.show()
```



# In [8]:

```
# Seperating the catagories and Plotting the values for top 10 catagories with the most number of
bussiness.

catagories=' '.join(Yelp['categories'])

new_catagories=pd.DataFrame(catagories.split(';'),columns=['category'])
x=new_catagories.category.value_counts()

print("There are ",len(x)," different types/categories of Businesses in Yelp!")

x=x.sort_values(ascending=False)
x=x.iloc[0:10]

plt.figure(figsize=(15,5))
plot = sns.barplot(x.index, x.values, alpha=0.8)
plt.title("Top 10 Catagories",fontsize=25)
locs, labels = plt.xticks()
plt.setp(labels, rotation=80)
plt.ylabel('Number of Businesses', fontsize=12)
```

```
plt.xlabel('Catagories', fontsize=12)

rects = plot.patches
labels = x.values

for rect, label in zip(rects, labels):
    height = rect.get_height()
    plot.text(rect.get_x() + rect.get_width()/2, height + 5, label, ha='center', va='bottom')
plt.show()
```

There are 59106 different types/categories of Businesses in Yelp!



### In [8]:

```
# Plotting the values for top 10 cities with the most number of bussiness.
city=Yelp['city'].value counts()
city=city.sort_values(ascending=False)
city=city.iloc[0:10]
plt.figure(figsize=(16,4))
x = sns.barplot(city.index, city.values, alpha=0.8)
plt.title("Top 10 cities with reviews")
locs, labels = plt.xticks()
plt.setp(labels, rotation=45)
plt.ylabel('Number of businesses', fontsize=11)
plt.xlabel('City', fontsize=12)
values = x.patches
labels = city.values
for value, label in zip(values, labels):
   height = value.get_height()
    x.text(value.get x() + value.get width()/2, height + 5, label, ha='center', va='bottom')
plt.show()
```



# In [9]:

```
#undertsanding the top forst 10 cities stats by understainf the reviews mi/max and the amount of r
eview per each city

city=Yelp['city']
stars=Yelp['stars'] #.sort_values(ascending=False)
concat=pd.concat([city,stars], axis=1, ignore_index=True)
concat.columns = ['City', 'Stars']
concat
Rate_for_city = concat.groupby('City').agg({'Stars': ['mean', 'min', 'max','count']}).reset_index()
Rate_for_city=Rate_for_city.sort_values('City', ascending=True)
Rate_for_city:loc[0:10]
#Rate_for_city = concat.groupby((['City']),as_index=False)['Stars'].agg('count')
```

### Out[9]:

|   | City                        | Stars   |     |     |       |
|---|-----------------------------|---------|-----|-----|-------|
|   |                             | mean    | min | max | count |
| 0 | 110 Las Vegas               | 5.00000 | 5.0 | 5.0 | 1     |
| 1 | AGINCOURT                   | 2.50000 | 2.5 | 2.5 | 1     |
| 2 | Aberdour                    | 4.00000 | 4.0 | 4.0 | 1     |
| 3 | Aberlady                    | 4.25000 | 3.5 | 5.0 | 2     |
| 4 | Ahwahtukee                  | 5.00000 | 5.0 | 5.0 | 1     |
| 5 | Ahwatukee                   | 3.78125 | 1.5 | 5.0 | 16    |
| 6 | Ahwatukee Foothills Village | 5.00000 | 5.0 | 5.0 | 1     |
| 7 | Aichwald                    | 3.50000 | 3.0 | 4.0 | 2     |
| 8 | Ajax                        | 3.28373 | 1.0 | 5.0 | 252   |
| 9 | Alburg                      | 5.00000 | 5.0 | 5.0 | 1     |

### In [10]:

```
# Plotting random 10 cities and their average review.
concat=concat.iloc[0:10]
fig, ax = plt.subplots(figsize=(16,10), dpi= 80)
sns.stripplot(concat.City, concat.Stars, jitter=0.25, size=8, ax=ax, linewidth=.5)
plt.title('Average Stars for 10 Cities', fontsize=22)
plt.show()
```

Average Stars for 10 Cities





# In [11]:

```
\mbox{\# describing the summary stats of the data} $$\operatorname{Yelp.describe}()$
```

# Out[11]:

|       | stars         | review_count  | is_open       |
|-------|---------------|---------------|---------------|
| count | 174565.000000 | 174565.000000 | 174565.000000 |
| mean  | 3.632186      | 30.137307     | 0.840375      |
| std   | 1.003739      | 98.208709     | 0.366259      |
| min   | 1.000000      | 3.000000      | 0.000000      |
| 25%   | 3.000000      | 4.000000      | 1.000000      |
| 50%   | 3.500000      | 8.000000      | 1.000000      |
| 75%   | 4.500000      | 23.000000     | 1.000000      |
| max   | 5.000000      | 7361.000000   | 1.000000      |

# In [34]:

```
# describing the summary stats of the data
x=Yelp.groupby('city')
x.describe().head()
```

# Out[34]:

|                  | is_open |      |     |     |     |     |     |     | review_count |      |  |       | stars |       |      |         |     |       |
|------------------|---------|------|-----|-----|-----|-----|-----|-----|--------------|------|--|-------|-------|-------|------|---------|-----|-------|
|                  | count   | mean | std | min | 25% | 50% | 75% | max | count        | mean |  | 75%   | max   | count | mean | std     | min | 25%   |
| city             |         |      |     |     |     |     |     |     |              |      |  |       |       |       |      |         |     |       |
| 110 Las<br>Vegas | 1.0     | 1.0  | NaN | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0          | 63.0 |  | 63.00 | 63.0  | 1.0   | 5.00 | NaN     | 5.0 | 5.000 |
| AGINCOURT        | 1.0     | 1.0  | NaN | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0          | 6.0  |  | 6.00  | 6.0   | 1.0   | 2.50 | NaN     | 2.5 | 2.500 |
| Aberdour         | 1.0     | 1.0  | NaN | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0          | 4.0  |  | 4.00  | 4.0   | 1.0   | 4.00 | NaN     | 4.0 | 4.000 |
| Aberlady         | 2.0     | 1.0  | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 2.0          | 3.5  |  | 3.75  | 4.0   | 2.0   | 4.25 | 1.06066 | 3.5 | 3.875 |
| Ahwahtukee       | 1.0     | 1.0  | NaN | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0          | 15.0 |  | 15.00 | 15.0  | 1.0   | 5.00 | NaN     | 5.0 | 5.000 |

### 5 rows × 24 columns

# In [13]:

```
# obtianing the pairplots for the data
x=Yelp[['city','stars','state']]
sb.pairplot(x)
```

## Out[13]:

<seaborn.axisgrid.PairGrid at 0x25ef4d85ac8>

### In [14]:

```
# determing if there is any correlation in the data.
corr=Yelp.corr()
corr
```

### Out[14]:

|              | stars    | review_count | is_open  |
|--------------|----------|--------------|----------|
| stars        | 1.000000 | 0.030117     | 0.051794 |
| review_count | 0.030117 | 1.000000     | 0.035368 |
| is_open      | 0.051794 | 0.035368     | 1.000000 |

### In [15]:

```
# plotting the heat map for the corr
sb.heatmap(corr,xticklabels=corr.values, yticklabels=corr.columns.values)
```

### Out[15]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x25ef4d1ab38>

### In [35]:

```
# dterming the p value for catagorical varibales
state=Yelp['state']
state = state.dropna
stars=Yelp['stars']
stars = stars.dropna
spearmanr_coefficient, p_value= spearmanr(state, stars)
```

### In [30]:

```
# Testing out some normlization test methods

#seed(1)
#pyplot.hist(x)
#pyplot.show()

#qqplot(x, line='s')
#pyplot.show()

#stat, p = shapiro(x)
#print('Statistics=%.3f, p=%.3f' % (stat, p))
#interpret
#alpha = 0.05
#if p > alpha:
# print('Sample looks Gaussian (fail to reject H0)')
#else:
# print('Sample does not look Gaussian (reject H0)')
```

## In [29]:

```
# Test out tranformation

#x.transform([np.sqrt, np.exp])
```