Grundlagen der Rechnerarchitektur: Übungsblatt 5

Alexander Waldenmaier, Maryia Masla

13. Dezember 2020

Aufgabe 1: Minimierung zu Ehren Maurice Karnaugh

Die Wahrheitstabelle von $f(x_1, x_2, x_3)$ und $g(x_1, x_2, x_3)$:

x_3	x_2	x_1	$f(x_1, x_2, x_3)$	$g(x_1, x_2, x_3)$
0	0	0	1	0
0	0	1	0	1
0	1	0	0	0
0	1	1	1	0
1	0	0	0	1
1	0	1	1	1
1	1	0	1	0
1	1	1	1	1

a) Die DKNF und KKNF lassen sich für beide Funktionen aus der Wahrheitstabelle ablesen.

DKNF:

$$f(x_1, x_2, x_3) = \overline{x_3 x_2 x_1} + \overline{x_3} x_2 x_1 + x_3 \overline{x_2} x_1 + x_3 x_2 \overline{x_1} + x_3 x_2 x_1$$

$$g(x_1, x_2, x_3) = \overline{x_3 x_2} x_1 + x_3 \overline{x_2} x_1 + x_3 \overline{x_2} x_1 + x_3 x_2 x_1$$

KKNF:

$$f(x_1, x_2, x_3) = (x_3 + x_2 + \overline{x_1}) \cdot (x_3 + \overline{x_2} + x_1) \cdot (\overline{x_3} + x_2 + x_1)$$
$$g(x_1, x_2, x_3) = (x_3 + x_2 + x_1) \cdot (x_3 + \overline{x_2} + x_1) \cdot (x_3 + \overline{x_2} + \overline{x_1}) \cdot (\overline{x_3} + \overline{x_2} + x_1)$$

b) Vollständig minimierte DKNF von f():

$$f(x_1, x_2, x_3) = \overline{x_3 x_2 x_1} + x_3 x_2 + x_3 x_1 + x_2 x_1$$

 x_3x_2

 x_3x_2 00 01 11 10

0

c) Vollständig minimierte KKNF von g():

$$g(x_1, x_2, x_3) = (x_3 + \overline{x_2}) \cdot (x_3 + x_1) \cdot (\overline{x_2} + x_1)$$

Aufgabe 2: Moment - Warum eigentlich minimieren?

a) Die Wertetabelle der Funktion $f(x_1, x_2, x_3, x_4)$:

0

1

 x_1

b) DKNF:

$$f(x_1, x_2, x_3, x_4) = \overline{x_1 x_2 x_3 x_4} + \overline{x_1 x_2} x_3 \overline{x_4} + \overline{x_1 x_2} x_3 x_4 + \overline{x_1} x_2 \overline{x_3} x_4 + \overline{x_1} x_2 \overline{x_3} x_4 + \overline{x_1} x_2 x_3 \overline{x_4} + x_1 \overline{x_2} x_3 \overline{x_4} + x_1 \overline{x_2} x_3 \overline{x_4} + x_1 \overline{x_2} x_3 \overline{x_4} + x_1 x_2 \overline{x_3} x_4 + x_1 x_2 \overline{x_3} x_4 + x_1 x_2 x_3 \overline{x_4} + x_1 x_2 x_3 x_4 + x_1 x_2 x_3 \overline{x_4} + x_1 x_1 x_2 x_3 \overline{x_4} + x_1$$

c) KKNF:

$$f(x_1, x_2, x_3, x_4) = (x_1 + x_2 + x_3 + \overline{x_4}) \cdot (x_1 + \overline{x_2} + \overline{x_3} + \overline{x_4}) \cdot (\overline{x_1} + x_2 + \overline{x_3} + \overline{x_4})$$

 $f(x_1, x_2, x_3, x_4) = \overline{x_1 x_2} x_3 + x_2 \overline{x_3} + x_1 \overline{x_3} + x_1 x_2 + \overline{x_4}$ d) $f(x_1, x_2, x_3, x_4) = (x_1 + x_2 + x_3 + \overline{x_4}) \cdot (x_1 + \overline{x_2} + \overline{x_3} + \overline{x_4}) \cdot (\overline{x_1} + x_2 + \overline{x_3} + \overline{x_4})$

 x_3x_4

e) Aus dem KV-Diagramm von f() lässt sich ablesen, dass KKNF nicht weiter minimiert werden kann d.h. die Maxterme sind gleichzeitig Primimplikanten. Die DKNF kann von 13 Mintermen auf 5 Primimplikanten reduziert werden. Außerdem beinhalten Primimplikanten weniger Literale (1 Term mit 3 Literalen, 3 Terme mit 2 Literalen und 1 mit 1 Literal) im Unterschied zu 4 Literalen in jedem Term in der DKNF.

Die Minimierung von (Schalt-) Funktionen bringt in Hinsicht auf elektrische Schaltungen folgende Vorteile:

- Reduzierung vom benötigten Platz/Raum (kleinere Funktion → weniger Verknüpfungen/Operationen → kleinere Größe der Schaltung C(S))
- Laufzeitoptimierung (bei Minimierung der Funktion eventuell kleinere Tiefe der Schaltung D(S))
- Kostenreduzierung durch ersparte Materialien und Energie

Aufgabe 3: A B C-MOS

 x_3

a) Funktion $f(x_1, x_2, x_3)$ lässt sich aus der Schaltung ablesen und anschließend in KNF überführen und mithilfe von KV-Diagramm minimieren:

b) Wertetabelle von $f(x_1, x_2, x_3)$:

x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

c) Um von der NMOS-Schaltung zur PMOS-Schaltung zu gelangen, invertieren wir zunächst die Funktion f_N :

$$f_P(x_1, x_2, x_3) = \overline{f_N(x_1, x_2, x_3)} = \overline{(\overline{x_1} + x_2) \cdot (x_1 + \overline{x_3})}$$
$$= \overline{(\overline{x_1} + x_2)} + \overline{(x_1 + \overline{x_3})}$$
$$= x_1 x_2 + \overline{x_1} x_3$$

d) PMOS- und NMOS-Transistoren haben jeweils ein Schaltzustand bei dem immer ein Strom fließt. In CMOS fließt ein Strom nur beim Umschalten (von logischer 0 auf 1 oder von 1 auf 0) \rightarrow reduzierte Wärmeerzeugung und Energieverbrauch.

Aufgabe 4: Noch mehr CMOS

a) Gatterschaltung von f(a, b, c, d):

b $f(a, b, c, d) = \overline{\overline{a} \cdot \overline{b} + \overline{ab}c + ad}$

\mathbf{a}	b	\mathbf{c}	d	f(a,b,c,d)
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

c) $f(a, b, c, d) = \overline{a} \cdot \overline{b} \cdot \overline{c}$

cd

		00	01	11	10
ab	00	1	1	0	0
	01	0	0	0	0
	11	0	0	0	0
	10	0	0	0	0