- 1. V o F. Justifique.
 - (a) $f: D_f \subseteq \omega^n \times \Sigma^{*m} \to \omega$ es Σ -computable sii hay $\mathcal{P} \in Pro^{\Sigma}$ tal que $f = \Psi_{N1 \leftarrow N1 + 1\mathcal{P}}^{n,m,\omega}$.
 - (b) Dado $\mathcal{P} \in Pro^{\Sigma}$ se tiene que $\Psi_{\mathcal{P}}^{1,0,\omega} \circ \lambda x[(x)_1] = \lambda x[(x)_1] \circ E_{\#} \circ (M(P), p_1^{1,0}, C_{\varepsilon}^{1,0}, C_{\mathcal{P}}^{1,0})$, donde $P = \lambda t x[i(t, x, \varepsilon, \mathcal{P}) = n(\mathcal{P}) + 1]$.
 - (c) El dominio de la función $\Phi_*^{3,3}$ es rectangular.
 - (d) Sea $P: D_P \subseteq \omega \times \omega \to \omega$ un predicado Σ -PR. Entonces Dom(M(P)) es Σ -r.e..
- 2. Dar un programa $Q \in Pro^{\Sigma_p}$ tal que $Dom(\Psi_Q^{1,0,\Sigma_p^*}) = \omega$ e $Im(\Psi_Q^{1,0,\Sigma_p^*})$ sea el conjunto

$$\{\mathcal{P} \in Pro^{\Sigma_p} : \text{hay } n \in \omega \text{ tal que } \Psi^{1,1,\omega}_{\mathcal{P}}(n,\mathcal{P}) = 1\}.$$

3. Sea $\Sigma = \{\#, @\}$ y sean $S_1, S_2 \subseteq \omega$ tales que $S_1 \cap S_2 = \emptyset$. Sean $f_1 : S_1 \to \Sigma^*$ y $f_2 : S_2 \to \Sigma^*$ funciones Σ -computables. Hacer un programa que compute la función $f_1 \cup f_2$.

Para cada macro usado en (2) y (3) dar el predicado o la funcion asociada dependiendo si es un macro de tipo IF o de asignacion.