100 PM

E. Reggij

امتحانات رقورا)

غوذج استرشادي ١	مادة : الجبر والإحصاء	لث الإعدادي)	ساسي (الصف الثا	<u>لة لمرحلة التعليم الأب</u>	امتحان شهادة إتمام الدراس
				The second secon	المجموعت الثانيت
	$\frac{1}{5} = \frac{1}{5}$	<u> ۲س - ع</u> + سر - ۲ص	أثبت أن	$\frac{\xi}{0} = \frac{\omega}{5} = \frac{3}{5}$	🚺 إذا كانت : 📆
	, 4	101-0-1			الحسل
	، ٤ ، ٦ ، ٨} ، وكانت	-			
) لکل ۱ ∈ ۳۰، ب ∈				
انت دالهٔ اذکر مداها.	ن أن ع دالة أم لا ؟ وإذا كا	<u>(۲)</u> بیر	لط سهمي	ع ومثلها بمخط	اکتب بیان
					الحسل
إنها تصبح ٣: ٥	من حدي النسبة ٥: ١١ ف	عه إلى كل ه	أضيف مرب	موجب الذي إذا	📉 أوجد العدد الد
					الحسل
	أوجد:	دما س=۳	ن ص=٦ عذ	∞ س ،وكانت	💈 إذا كانت : ص
	لة ص عندما س=٥	🕥 قیم			1 العلاقة بي
		_			الحسل

ى أن : المراجع = حر	ذا كانت: ٩، ٠، ح، 5 كميات متناسبة أثبت
	J
الطرف الأيسر	الطرف الأيمن
قىمالآتىق: ٣ : ٣ : 4 ، ٧ ، ٩ ، ٧	حسب الوسط الحسابي والانحراف المعياري لل
عيم الرئيد . ۱۰۰۱ ۱۰۰۱ ۱۰۰۱	حسب الوسط الحسابي والانحراف المعياري لد ل
Ī	
-	
-	
-	
	مثل بیانیًا منحنی الدالة د: د(س) = ٤ - س مستع
ينًا بالفترة [-٣،٣] معادلة محور التماثل.	الرسم أوجد: 🕦 نقطة رأس المنحني.
	الرسم أوجد: 🕦 نقطة رأس المنحني.
	الرسم أوجد: 🕦 نقطة رأس المنحني.
	الرسم أوجد: 🕦 نقطة رأس المنحني.
	الرسم أوجد: 🕦 نقطة رأس المنحني.

نموذج استرشادی (۲)

للصف الثالث الإعدادي/الفصل الدراسي الأول ٢٠٢٥

الزمن : ساعتان مادة : الجبر والإحصاء

الأسئلة في ٣ صفحات

الإجابة في نفس الورقة

يسمح باستخدام بالآلة الحاسية

المجموعت الأولى: 🗢 اختر الإجابة الصحيحة من بين الإجابات العطاة:

1. (5) ه (ح)

(۹) صفر 🕝 ۲

14 (5)

٧ 🕒

· 🕝 Y 🚯

📉 المدي لمجموعة القيم: ٣،٧،٣،٩،٥،٨ يساوي

11 (3)

٦ 🕞

٤ 🙆

٣ (٩)

 $(^{\mathsf{V}}_{\mathsf{A}}) = ^{\mathsf{V}}_{\mathsf{A}}$ اذا کانت : $(^{\mathsf{V}}_{\mathsf{A}}) = ^{\mathsf{V}}_{\mathsf{A}}$ ، $(^{\mathsf{V}}_{\mathsf{A}}) = ^{\mathsf{V}}_{\mathsf{A}}$ اذا کانت : $(^{\mathsf{V}}_{\mathsf{A}}) = ^{\mathsf{V}}_{\mathsf{A}}$

EA (5)

٦ 会

🔼 إذا كانت: ص = ٥ س ٢

<u>1</u> (3)

] 🕞

~ (P) ~ √

إذا كانت د : د(س) = ۷ فإن : د(−۳) =

Y1- (S)

Y1 🕞 Y- 🥥

v (P)

٧ إذا كانت: س+ص=سص= فإن: س٢ص+سص٢ =

Yo (5)

4. (5)

۲. 🕞

۲ (

10 🖨

🖊 الثالث المتناسب للعددين: ٣، ٦ هو

14 (5)

4 🙆 1 T

🖪 إذا كانت: ٣ س = ٦ فإن: ٥ س =

10 🗩

Y (P)

٤

غوذج استرشادي ٢	مادة : الجبر والإحصاء	امتحان شهادة إتمام الدراسة لمرحلة التعليم الأساسي (الصف الثالث الإعدادي)
		المجموعة الثانية: 🗢 الأسئلة المقانية:
		اذا کانت: $\frac{\pi}{2} = \frac{7}{7}$ أوجد قيمة: $\frac{7-u+70}{5}$
		الحسل
		(٠٠) اذا کانت : س√ = {-۱،۰،۱،۲}، س√ = {٠،١
~) لكل ﴿ ﴿ ﴿ ۖ ﴿ ، ﴿ وَ ﴿	من سم إلي م حيث " م ع ب " تعني أن (٢٠ = ب
نت دالة اذكر مداها.	ن أن ع دالة أم لا ؟ وإذا كا	 اكتب بيان ع ومثلها بمخطط سهمي أيين
		الحسل

٣٠١:	، منهما ٤ أصبحت النسبة	عددان حقیقیان النسبة بینهما ۳: ۷ ،و إذا طرح من كل
		فما العددان ؟
		الحسل
		اذا كانت: ص تتغير عكسيًا مع س ،وكانت ص=٦ عدد
	لة ص عندما س=٨	<u>(1)</u> العلاقة بين ص ، س
		الحل

<u>غوذج استرشادي ٢</u>

امتحان شهادة إمّام الدراسة لمرحلة التعليم الأساسي (الصف الثالث الإعدادي) مادة : الجبر والإحصاء

أثبت أن:
$$\frac{7 - 7 - 7}{7 - 7 - 7} = \frac{2}{4}$$

$$\frac{2}{1} = \frac{7 - 7 - 7}{100}$$
 اذا کانت: ب وسطًا متناسبًا بین ۱ ، ح أثبت أن: $\frac{7 - 7 - 7}{100} = \frac{2}{100}$

الطرف الأيسر	الطرف الأيمن

🔼 احسب الانحراف المعياري للقيم الآتية: ٢٣ ، ١٢ ، ١٧ ، ١٣ ، ١٥

[-3, 7] مثل بيانيًا منحني الدالة د : د(-1, -1) مثل بيانيًا منحني الدالة د : د

ومن الرسم أوجد: (1) نقطة رأس المنحني. معادلة محور التماثل.

القيمة الصغري للدالة.

			J	الحـــ
				f,
				ص

			ص
 	 	 	 1

|--|

<u>(r)</u>

<u>غوذج استرشادي ۱</u>	مادة : حساب المثلثات والهندسة	<u>الثالث الإعدادي)</u>	<u>التعليم الأساسي (الصف</u>	<u>دة إتمام الدراسة لمرحلة</u>	امتحان شها
	D		الأسئلة القائية :	ية الثانية : 🗲	المجموع
44.	12%			الشكل المقابل:	•
			°9 · =(P ≤)•	رم مثلث فيه:	۹ر
-			P هر = ۲۰ سم	اں=١٥ سم ،	,
: صفر	م جتا <i>ں - جام جاں</i> =	أثبت أن: حتا		أوجد: ن (∠	
J	00.70. 00.7	33. 10. 0.0	(0	_, 0 . 33.5	
					الحسل
.,					
		. %			
	-۱،۷)، م(۱۰،۱۰)	۰ ، -۰) ، <i>ن</i>	دي رؤوسه : ٩(٠	ت أن المثلث الأ	🚹 أثب
		سطحه.	ثم أوجد مساحة	الزاوية في ب	قائم
			, ,	•	الحا
		,			
ح(۱،۷)	٩(٣، -١)، ١- ، ٣)٩	اه في ه حيث	ضلاع تقاطع قطر	<i>، ھو</i> متوازي أه	🔼 ۱ و
			ن النقطتين ه ،		
		,		عد ہے۔۔۔	
					الحسل

غوذج استرشادي ١	مادة : حساب المثلثات والهندسة	<u> امتحان شهادة إتمام الدراسة لمرحلة التعليم الأساسي (الصف الثالث الإعدادي)</u>
	= ۲ظا۰۳ -	🚹 بدون استخدام الآلة الحاسبة أثبت أن: ظا ٦٠
		الحسل
ن الاتجاه	، ك) ،والمستقيم ل، يصنع مع	 ۲) ، (۳ ، ۱) ، (۲ ،
		الموجب لمحور السينات زاوية قياسها ٥٤٥ أوجد:
		الحسل
ا قیم ۹	ماوي ٥ وحدات طول أوجد:	🚹 إذا كان البعد بين النقطتين: (۲ ، ۱) ، (۰ ، – ۲) يس
		الحسل
•= v + .	ديا على المستقيم: س + ١ ص	أوجد معادلة المستقيم المار بالنقطة (١، ٢) ،و عمود الحال أحال الحال الحال

 $\frac{\xi}{r} \bigcirc \bigcirc \qquad \qquad \frac{\xi}{\delta} \bigcirc \bigcirc \qquad \qquad \frac{r}{\delta} \bigcirc \bigcirc$

المستقيم الذي معادلته: $\mathbf{o} = \mathbf{r} - \mathbf{r}$ يقطع من محور السينات الموجب جزءًا طوله وحدة طول.

7 (5) 7 (2) 7 (1)

∧ مربع طول قطره ۱۰ سم فإن: مساحته تساوي سم مربع طول قطره ۱۰ سم الله على الله على

Yo (5) O. (2) Yo (4) 1... (1)

فإن : ك =

غوذج استرشادي ٢	مادة : حساب المثلثات والهندسة	(الصف الثالث الإعدادي)	الدراسة لمرحلة التعليم الأساسي	امتحان شهادة إتمام
		: ፞፞፞፞፞	نبت 🖰 الأسئلة المقالي	المجموعت الثا
	، ، <i>ن ه</i> = ۱۲ سم	فيه: ١٣٥ سم	ثلث قائم الزاوية في ح	🔼 🖣 🗸 ما
	1 = 0 جتا $1 + 0$ جتا	🚺 أثبت أن : حا ٩	د : ن (∠۹)	🚺 أوج
				الحسل
14	 ۲ ، - ۲) تقع على دائرة مركز 	\	(1) = (T)P · bā:II	الله الله الله
~			النفط. ((۱۰۰۰) ۱ ۲) ،ثم أوجد: محيط ا	
	(سالره. (۱۰ – ۱۰، م	۱) ۱۰ (۱	1-)[
				النس
				🌇 في الشكل
× ×	\mathcal{\sigma}.		<u> ۱</u> حیث مر(٤، ۳	
٠	٠, و	ثم أوجد: معادلة مُ	ىدائىيات نقطتى P ، ى	أوجد:إد
و ا				الحسل

<u>غوذج استرشادي ٢</u>	مادة : حساب المثلثات والهندسة	ف الثالث الإعدادي)	<u>لمرحلة التعليم الأساسي (الصة</u>	امتحان شهادة إتمام الدراسة
-			، الآلة الحاسبة	ter and the second seco
	مراء		'ه٤° = جا۲ ، ۳° +	
	ا جی ۱۰	٠ جد ١٠٠ ت	- 10 02 - 10	
				الحسل
، المستقيم	، (٥ ، ٢ ﴿٣] عموديًا علم	ین (۴ ، ۳ 🗥)	تقيم الذي يمر بالنقطت	🔼 أثبت أن: المس
	ة قياسها ٣٠٥	ر السينات ز او يا	الاتجاه الموجب لمحو	الذي يصنع مع
	•			
				الحسل
		/··· · · ·	Zha mh Sat mali	
ا فيم ٩	ىاوي ٥ وحدات طول أوجد :	، (۔ ۲ ، ۲) يس	ن النفطتين: (۲،۴)	ادا كان البعد بير
				الحسل
			- N - N - 1 N	6 -
	(۱،۱)	: (۲ - ۱ - ۱)	ستقيم المار بالنقطتين	M أوجد معادلة الد
				الحسل

وثلاراي تطبع العشمال والمحقود والمحقود

10 8 P

Every

اوتمانات رقور (2)

بنك أسئلة الرياضيات

للصمء الثلاث الاعدادي

المادة : جبر واحصاء

للزمن: ساعتان

امتحان لاشرخية للعام ۲۰۲۳ / ۲۰۲۲ م

محافظة الشرقية التعجيد العلم البيان با

التوجيه العام للرياضيات

* السوال الأول : اختر الاجابة الصحيحة من بين الاجابات المعطاة :

[1] إذا كانت : س ص = ٢ فإن : س م

 $\frac{1}{V_{\text{out}}}(z)$ $\frac{1}{V_{\text{out}}}(z)$ $\frac{1}{V_{\text{out}}}(z)$

[1] إذا كانت النقطة (ك - ٢ ، ٢ ك - ٢) تبعد عن محور السينات ٤ وحدات طول

(۱) صفر (ب) ۱ (ج) ۲ (د) ۲ (د) ۲

۲:۱(۱) ۲:۲(م) د ۲:۱(۱)

[3] إذا كان الانحراف المعياري لمجموعة من القيم يساوي ٢ وعدد القيم يساوي ٢ فإن : محد (س - س) ٢ =

(۱) ۱۲ (ج) ۱۲ (۲۱ (۱) ۲۲

(٥) ناتج : ٢٠٠٠ + ٢٠٠٠ في أبسط صورة

 $\frac{1}{T}(2) \qquad T(3) \qquad T(3) \qquad T(4)$

[٦] إذا كان المستقيم الممثل للدالة د : ع ـــه ع حيث د (س) = ٢ س + ٢ + ح يمر بنقطة الأصل فإن : ح =

(۱) -۲ (ب) ۳- (ب) معفر (د) ۳

* السوال الثاني:

 $\frac{18}{17} = \frac{-7 + -7 - 1}{7} = \frac{1}{7} = \frac{1}{7} = \frac{1}{7} = \frac{1}{7} = \frac{1}{17}$

(ب) إذا كان: (س-ص) × ص= {(۱، ۲) ، (۱، ۲)} ، س (س× ص) = ۲ أوجد: |۱]س، ص

السؤال الثالث:

(1) إذا كانت : ص = ١ + ٢ ، ١ مدس أوجد العلاقة بين ١ ، س عندما س = ٢ ، ١ = ٤ ثم أوجد ص عندما س = ١

(ب) إذا كانت : س-= {١ : ١ ∈ ص- ، -٢ ≤ ١ ≤ ٢} وكانت عَ علاقة معرفة على س حيث «أ كل ب» تعنى أن «أ معكوس جمعى للعدد ب» لكل أ ∈ س، ، ب ∈ س، اكتب بيان ع ومثلها بمخطط سهمى ، وبين عل ع دالة أم لا ؟ ولماذا ؟ وإذا كانت العلاقة دالة اذكر مداها.

* السوال الرابع : * * (1) إذا كانت * ا (1) إذا كانت: ٢ ، ب ، ح ، ٤ في تناسب متسلسل برهن أن :

(ب) الشكل المقابل يمثل دالة تربيعية 1-1-1-1-1 : 1: 1 (U-) 3: 1 فإذا كان طول أب = ٢ وحدة طول أوجد قيمة م ثم أوجد القيمة الصغرى للدا<mark>لة.</mark>

السؤال الخامس:

(1) أوجد العدد الذي إذا أضيف إلى كل من الأعداد : ٣ ، ٥ ، ١٢ ، ١٢ فإنها تكون متناسبة.

(ب) احسب الوسط الحسابي والاتحراف المعياري للقيم: ١٢ ، ١٢ ، ١٦ ، ١٨ ، ٢١

بثاء أسئلة الرياضيات

الصف الثلاث الأعدادي

المادة: جبر واحصاء

الزمن: ساعتان

امتحان الشرقية العام ١٦٠ / ١٩٦٠م محاخطة الشرقية

التوجيه العام للرياضيات

السوال الأول: اختر الاجابة الصحيحة من بين الاجابات المعطاة:

[۱] اذا كان (-۱۲۵، اص) = (س ، ٤) فان س + ص = ... (i) ۱۰ (ن) ۲۱ (ن) ۲۱ (ن) ۲۱ (i)

 $\frac{r}{r} (2) \qquad \frac{r}{r} (3) \qquad \frac{r}{r} - (4) \qquad \frac{r}{r} - (4)$

* [۳] اذا کان ۳ ا = ۱۲ فان ۳ =

(أ) ٣ (ب) ٢ (ج) ٥ (ح) (د) (١) ١٤] اذا كان المدي للقيم: ٧ ، ٩ ، ٨ ، ٩ ، ٥ هو ٧ فان ١ =

(ب) ۲ (ج) ۳

 $\frac{1}{*}$ اذا کان : $\frac{1}{7} = \frac{0}{0}$ فانِ س مح

(ب) ص (ج) أ (د) ٥ص

[٦] اذا كانت النقطة (س، س) تقع في الربع الثاني فان النقطة (-س، ص) تقع في الربع

(أ) الأول (ب) الثاني (ج) الثالث (د) الرابع

السؤال الثاتى:

(أ) اذا كانت: س = { - ٢ ، - ١ ، ١ ، ٢ } ، ص = { -٣ ، ١ ، ٢ ، ٥ } وكانت ع علاقة معرفة من سه الى صه حيث اعب تعني أن : (١٠ + ١ = ٢٠) لكل ا ∈سه ، ب و ص اكتب بيان ع ومثلها بمخطط سهمى ، وبين هل ع دالة أم لا ، ولماذا ؟ وإذا كاتت العلاقة دالة أوجد مداها ،

> (-) اذا کان: $\frac{7-0+7}{5-4}=\frac{7}{7}$ أوجد: قيمة النسبة $\frac{7}{5}$ أوجد القيمة العددية للمقدار: ٣٠٠

> > السوال الثالث:

اً) اذا كاتت س = { ٣ ، ٤ } ، ص = { ٤ ، ٥ } ، ٤ = { ٣ ، ٥ } فاوجد: 18×(~~)1~(5) Ex(~~~)(1)

```
Louis Hills Macles
                         轮旋旋旋旋旋旋旋旋旋旋旋旋旋旋
                                                 رقع أسقة الزواضوات
   ( ب ) أوجد العدد الموجب الذي اذا أضيف مربعه الى مقدم النسبة ١٩ : ٢٩ ، وطرح
                                    مربعه من ثالبها نحصل على النسبة 🚽
 السوال الرابع: (١) اذا كانت ١ ، ١ ، ١ . في تناسب متسلسل أوجد: قيم ١ -
                          ( ب ) لحسب الوسط الحسابي والاتحراف المعياري للقيم :
                     17 . 11 . V . T . Y
                                                           السؤال الخامس:
                          ( ا ) اذا كانت ص حد س وكانت ص = ٨ عندما س = ١
                                  فاوجد: (١) العلاقة بين ص ، س
                               (٢) قيمة س عندما ص = أ
  ) مثل بيانيا منحنى الدالة د : د (س) = -س - ٢ س حيث س [ - ٤ ٢ ]
                                    ومن الرسم استثنج:
(١) احداثي نقطة رأس المنحني •
                                         (٢) معادلة محور التماثل .
                                ( ٣ ) القيمة العظمى أو الصغري للدالة ·
  اطاحة : جير واحصاء
                               امتحان للشرشية
                                                           محافظة الشرهية
                           العام ۱۱۰۱/۱۱۰۱م
     الزمن : ساعتان
                                                 التوجيه الحام للرباضيات
                    السؤال الأولى: اختر الأجابة الصحيحة من بين الأجابات المعطاة:
      · " [١] الفرق بين أكبر فيمة وأصغر فيمة في مجموعة البيانات يسمى ..........
  (:)الالتراف المعياري
                         (أ)المدي (ب) الوسط الحسابي (ج) الوسيط
              ا؟ اذا كات : ل ، ؟ ، م ، ٢ كميات متناسبة فان : = .....
    0 (+)
                     7 (0)
                          ا اذا كانت : سم × صه = (۲ ، ۲) فإن سم "
               {(T · T)} (z) {(T · 1)} (w) {(1 · 1)} (b)
{( * + F )} (=)
                                 [ : ] اذا كان س س = a فان : ص 00 .....
                                         un (w) 10 (1)
                        J-0 (=)
```

الممه الثلاث الاعدادي **

[°] اذا كان المستقيم الممثل للدالة د:ع حيث د(س) = ٢س + ٢ ح٢ يمر بنقطة الأصل فان ح =

$$\frac{r}{r}$$
 (ع) $\frac{r}{r}$ (ع) $\frac{r}{r}$ (ا) $\frac{r}{r}$

[1] اذا كانت النقطة (ك - ٤ ، ك) تقع علي الجزء السالب من محور الصادات فان له =

7 (±) 1 (±) 7 (±)

السوال الثاتى:

(1) اذا كاتت : س = $\{7, 7, 7, 1\}$ ، ص = $\{7, 7, 7, 1\}$ وكاتت ع $\{7, 7, 7, 1\}$ وكاتت ع $\{7, 7, 7, 1\}$ علاقة من س الي ص حيث $\{3, 7, 7, 1\}$ تعني أن : $\{7, 7, 7, 1\}$ لكل $\{7, 7, 7, 1\}$ بيان ع $\{7, 7, 1\}$ مثلها بمخطط سهمي $\{7, 7, 1\}$ هل ع دالة أم $\{7, 7, 1\}$ $\{7, 7, 1\}$

(ب) اذا كان: ٣ ب-٢٠ = ب فاثبت أن: ١ ، ب، ح، و كميات متناسبة ، * ﴿) اذا كان: ٣ ب-٢٠

السوال الثالث

$$\{7,7\} = \mathcal{E}, \{7,7\} = \infty, \{1,7,7,1\} = \infty$$

$$(1) | (1) (1) (1) = 0$$

$$(2) (3) (4) (1)$$

$$(3) (4) (4) (4)$$

السؤال الرابع:

(أ) مثل بياتيا منحني الدالة د: د (س) = ١ – س متخذا س \in [- ٢ ، ٢] ومن الرسم أوجد: (١) احداثي نقطة رأس المنحني ، (٢) معادلة محور التماثل ،

(٣) القيمة العظمي أو الصغري للدالة •

 $\frac{2}{1} = \frac{7-7-7}{100}$: ب وسطا متناسبا بین ۱، ح فاثبت آن : $\frac{7-7-7-7}{7-7-7}$

السوال الخامس: (أ) أوجد الاتحراف المعياري للقيم الاتية:

TV . 17 . 0 . TT . T.

رحاعدا الرياضيات المجينية المجينية المحادث الم

(-) اذا كان المستقيم الممثل للدالة دحيث د : ع - ع ، د (-) = - - ك - يقطع محور السينات في النقطة (7, -7) فأوجد قيمة كل من - ، ك .

النموذج الاسترشادي الأول محافظة الشرقية العام ٢٠٢٤ / ١٥٥ م التوجيه العام لارياضيات

الملحة : جبر واحصاء الزمن: ساعتان

السؤال الأول: (أ) اختر الاجابة الصحيحة من بين الاجابات المعطاة:

[١] اذا كان الانحراف المعياري لثلاث قيم = ٢ فإن مجر (س - س) = (ب) ۱۲ (ج) ۱۸ T£ (2)

[7] اذا کان $\frac{10}{90} = \frac{1}{3}$ ، $\frac{9}{9} = \frac{1}{7}$ فإن $\frac{10}{9} = \frac{1}{12}$

 $\frac{\lambda}{4}$ (2) $\frac{\lambda}{4}$ (5) $\frac{\lambda}{4}$ (1)

[7] اذا كان (٣-١٠ - ٣) (ص ٢ + ١) = ٣ فان ص ٢ + ١ مد

1+w (+) 1+w (+) 1-w (i)

- 200 : اذا کان - 20 + 7 = 1 اثبت آن : - 200

السؤال الثاني: (أ) اختر الاجابة الصحيحة من بين الاجابات المعطاة:

اً اسدس العدد ٢ × ٣ هو المور العدد ٢ × ٣ هو

() نو دنه دن ۱ آثر با دی ۳ آثار با

﴿ [۲] اذا کان ۱ = ب کت فان ۱ =

(i) ~ (i) ~ (ii) ~ (ii)

[٣] دالة محور السيئات تمثل بياتيا بالحاصل الديكارتي ...

(i) $\Rightarrow (i)$ $\Rightarrow (i)$ $\Rightarrow (i)$ $\Rightarrow (i)$ $\Rightarrow (i)$

 $\Gamma = \frac{0}{0} = \frac{0}{0} = \frac{0}{0} = \frac{0}{0} = \frac{0}{0}$ اثبت أن كلاً من هذه النسب = Γ (مالم تكن س+ ص = صفر) ثم أوجد قيمة : ص : ع

* السوال الثالث : (أ) في الشكل المقابل :

(ب) عددان موجبان النسبة بينهما ٢: ٣ ، مربع نصف اصغرهما يزيد عن ضعف اكبرهما بمقدار ١٦ فما هما العددان ؟

السوال الرابع: (١) اذا كان ٢ = - وجد مجموعة حل المعادلة:

اس - ۲ بس+ = = صفر

(ب) اذا كاتت سم = { - ١ ، ، ، ١ } وكاتت ع علاقة على سم حيث إعب تعنى أن :

(ب = ١) لكل (وسم، ب وسم اكتب بيان ع ومثلها بمخطط سهمي وهل ع دالة ؟ وإذا كاتت دالة اذكر مداها.

السوال الخامس:

(أ) اذا كاتت م تتغير عكسياً مع س وكاتت ص = ٤ عندما س = ٣

فأوجد: (١) العلاقة بين من ، س

(٢) قيمة ص عندما س = ٢

(ب) احسب الاتحراف المعياري للقيم:

17, 17, 07, 11, 11

محافظة الشرقية

المادة : جبر ولحصاء

النموذج الاسترشادي الثاني

التوجيه للعام للرياضيات اللعام ٢٠٢٥/ ٢٥ م الزمن : ساعتان

السؤال الأول: (أ) اختر الاجابة الصحيحة من بين الاجابات المعطاة:

[١] الوسط المتناسب الموجب للعدين ٢ ، ١٨ يساوي

7- (7) (ب) ٢

[7] اذا كاتت النقطة (٣ ، ص - ٢) تقع على محور السينات فإن ص = ...

(د) صفر (5) 7 7- (4)

[7] تشترى مريم مكنسة كهربانية قيمتها ٠٠ ٨٦ جنية اذا كان معدل الخصم ١٢٪

فإن مريم ستدفع نشراء المكنسة جنية (أ) ٨٦٠٠ (ب) ١٠٣٢ (ج) ٧٥٦٨ 9755 (2)

﴿ (ب) إذا كان ١٤٠ + ٢٥٠ = ٢٠٠ ، أوجد قيمة المقدار:

الصف الثالث الأعدادي

بنك أسئلة الرياضيات

السوال الثاني: (أ) اختر الاجابة الصحيحة من بين الاجابات المعطاة:

$$\frac{1}{2}$$
 اذا کان : ص ∞ س ، ع ∞ فان ص تتناسب مع $\frac{1}{2}$

$$\frac{2}{2}$$
 × تباث (ع) $\frac{2}{2}$ (ج) $\frac{2}{2}$ (ب) $\frac{2}{2}$ (ب) $\frac{2}{2}$ (ب) $\frac{2}{2}$ (ب)

$$\{ [7] \mid \text{i.i.} \quad \{ [7] \} \times \{ [7] , \{ [7] \} \} \}$$
فإن س – $[7] \times \{ [7] , \{ [7] \} \} \}$ فإن س – $[7] \times \{ [7] \times \{ [7] \} \} \}$ فإن س – $[7] \times \{ [7] \times \{ [7] \} \} \}$ فإن س – $[7] \times \{ [7] \times \{ [7] \} \} \}$

السؤال الثالث:

-) اذا كانت سى = { ٢ ، ٤ ، ٥ } ، ص = { ١ ، ٤ ، ٢ } وكانت ع علاقة امن سى الى صد حيث مع بنعني أن (م > ب) لكل م وسد ، بوصد اكتب بيان ع. ومثلها بمخطط سهمى . وهل ع دالة ؟ ولماذا ؟
 - ر ب) أوجد الوسط الحسابي والانحراف المعياري للقيم التالية: 0 . 7 . V . 9 . A

السؤال الرابع: (أ) اذا كاتت
$$(-1) = -1$$
 ، -1 ، -1 ، -1 افد اذا كاتت -1 . -1 -1 -1 افد ادر -1 -1 -1 . -1 -1 افد ادر -1 -1 -1 -1 .

$$\frac{2}{7\nu + e} = \frac{0}{7\nu - e} = \frac{2}{3\nu + 6e}$$

$$\frac{V}{1V} = \frac{0}{30 + 2} = \frac{1}{30 + 2}$$

$$\frac{V}{1V} = \frac{1}{300 + 2}$$

计林琛米米海水水水水水水水水水水水水水水水

وأستلة الرياضيات

ب) في الشكل المقابل:

المم الثلث العدادي

اوجسد قيمة : م الاستان المالية

محافظة الشرقية

النموذج الاسترشادي الثالث العام ١٤٠١/ ٢٠١م

يُّ التوجره العام الرياضيات

المادة : جبر واحصاء للزمن: ساعتان

السؤال الأول: (أ) اختر الإجابة الصحيحة من بين الإجابات المعطاة:

[۱] اذا كان ٢ م وسطأ متناسباً بين ١ ، ٥ ح فإن

(3) 0 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 1. (2)

[7] اذا كان (إس م ، ٩) = (٢ ، ص) والنقطة (س، ص) تقع في الربع الثقي

(i) o (i)

[۳] اذا کان سـ٤ = ۲س فان ص ∞ (أ) س (ب) ۲س (ج) س+۲

(ب) اذا كان ٢٢ = ٣ ب = ح فأوجد قيمة المقدار حاماً

السؤال الثاني: (أ) اختر الاجابة الصحيحة من بين الاجابات المعطاة:

[١] اذا كان ﴿ ، ٢ ، ب ، ٤ ٥ أربع كميات موجبة في تناسب متسلسل فإن ﴿ ب = ۳۲ (ب) 14 (2) r. (5) (1) [7]

[۱] اذا کان درس - ٥) = س - ۲ فإن د (۳) =

1 (4) 0 (1) T (2)

[٣] اذا كانت ب > ٢ فإن النقطة (-٢ ، ب - ٢) تقع في الربع (أ) الأول (ب) الثاني (ج) الثالث (د) الرابع

> (ب) أوجد الوسط الحسابي والانحراف المعياري للقيم التالية : 15 . 11 . 1 . 4 . A

* (١) اذا كاتت سه = {١، ٢، ٢، ٤، ٥، ٢ } وكاتت ع علاقة معرفة على سه حيث اعب تعني أن (١+٠ = ٧) لكل ا وسم، ب وسم اكتب بيان ع ومثلها بمخطط سهمي وهل ع دالة ام لا ؟ وإذا كانت دالة اذكر مداها .

السؤال الرابع: (أ) في الشكل المقابل:

أح يمثل بياتياً للدالة الخطية د(س) = ١ - - س أب يمثل بياتيا للدالة الخطية مرس) = كس+م فإذا كان احداثي نقطة ب(٠،٥) أوجد قيسة: له، م

(ب) مثل بياتيا الدالة د: د(س) = (س - ٢) +١ حيث س ∈ [، ، ٤] ومن الرسم أوجيد : القيمة الصغرى للدالة ومعادلة محور تماثل الدالة

السؤال الخامس

(أ) اذا كانت س = ١ + ب حيث ١ ثابت وكانت ب٥٠س وكانت ب=١ عندما س = ٢ ، ص=٥ عندما س=١ أوجد العلاقة بين س ، ص

(ب) اذا كانت س - ص = (٥) ، ص - س = (٣٠٢) ، س ∩ ص = (٤) ~ × (~ ~ ~ ~) (1)

[~ × (~ ~ ~)]~ (5)

محافظة الشرقية

النموذج الاسترشادي الرابع

المادة : جبر ولحصله الزمن : ساعتان العلم ٢٤٠١/ ١٥٠ م

🖔 التوجيه العام للرياضيات

السوال الأول: (أ) احتر الإجابة الصحيحة من بين الاجابات المعطاة:

[۱] اذا كان ۱۳ = ٥٠، ١٩٠٠ = ٢٦ فإن ١٠٠ =.... (ب) ۱۱ (ج) ۱۲

14 (2) [٢] اذا كاتت سه و [-١ ، ٥] ، صه و [-٣ ، ٣ [فإن (-٢ ، ٤) و

(ب) ص ~ × ~ (₹)

* [٣] اذا انخفض سعر سلعة من ١٥٠٠ جنية الي ١٢٠٠ جنية فإن معدل التخفيض = (اً) ۲٪ (ب) ۲۰٪ (ج) ۲۰٪ /r· (2)

* (ب) اذا كانت ١ ، ٢ ، ١ ح ، ٤٤ في تناسب متسلسل أثبت أن : (٢٠٠ - ٣ -) وسطاً متناسباً بين (١ - ٢٠٠) ؛ (٢ - ٤٤)

السوال الثاني: (أ) اختر الاجابة الصحيحة من بين الاجابات المعطاة:

[١] اذا كانت النقطة (٣ - س ، س - ٤) تقع في الربع الرابع فإن س = (ا) ۳ (ب) ه (ج) ۲ (د) ٤ [۲] اذا كان المدي للقيم ۷، ۲، ۹، ك، ٦ هو ٩ فإن ك =

(3) 11 11 (2)

[٣] اذا كانت س = { ٢٦ } فإن م (س) = (ب) (5) 77 £ £ (2)

(ب) اذا كانت س = { - ١ ، ١ ، ٢ ، ٢ ، ٢ وكانت ع علاقة على س حيث اعب تعنى أن (معكوس ضربي ل ب) لكل م وسم، ب وسم اكتب بيان ع ومثلها بمخطط سهمي وهل ع دالة ام لا ؟ وإذا كانت دالة انكر مداها .

السوال الثالث:

* (أ) اذا كاتت ص = ٣ + ٩ ، ٩ مع أوجد العلاقة بين س ، ص علماً بأن ٩ = ٣ عندما س = ؛ ثم أوجد م عندما س = ٦

(ب) في الشكل المقابل: اذا كاتت درس) = - س ً + س + ١٥ وكان الشكل وابح مربعا أوجد: مساحة المربع وم بح

﴿ السوال الرابع: (أ) اذا كان منحني الدالة د: ع مع حيث د(س) = ك − س يقطع محور السينات في النقطة (- ٣ ، ٣) فاوجد قيمة : ٢ له + له ٢

> *(ب) أوجد الوسط الحسابي والانحراف المعياري للقيم التالية: 16 . 15 . 1 . . 1 . 3

بناء أسئلة الرياضيات

محافظة الشرقية

المادة : جبر ولحصاء

14 (2)

النموذج الاسترشادي الخامس العلم ٢٤١/١١٩٦م

التوجيه العام للرياضيات

الزمن: ساعتان

ألسوال الأول: (أ) اختر الإجابة الصحيحة من بين الإجابات المعطاة:

[۱] اذا کان
$$\frac{1}{71} = \frac{1}{6} = \frac{1-7}{6}$$
 فإن $6 = \frac{1}{6}$

* (أ) ا (ب) ٦ (ب) ٣ * [٦] اذا كان ا رح، بارح وكان به(١) = ١٨ - به(ب)، به(ب) = ١٢ + به(١)

فإن س(ب) = (أ) ۱۲ (ب) ۱۲

 $\hat{*}$ [۲] الدالة د(س) = س 1 (هس – 2) من الدرجة 2 (أ) الأولى (ب) الثائية 2 (د) الرابعة

﴿ بِ) اذا كاتت س = { ؛ ، ٥ } ، ص = { ۴ ، ؛ } ، ع = { ٥ ، ٢ } فاوجد:

السؤال الثاني: (أ) اختر الاجابة الصحيحة من بين الاجابات المعطاة: السؤال الثاني: (أ) اختر الاجابة الصحيحة من بين الاجابات المعطاة:

- (i) 70 (ب) ۳۰ (ج) ۵۶ 00 (2)
 - * [۲] اذا کانت ۲ = ۰ فان ۲ =

* (أ) ٥ (ب) ١٠ (ب) ٢٠ (على الرسم ٥ سم فإن مقياس الرسم هو

(ا) ۱:۱ (ب) ۱:۰۱ (ج) ۱:۰۱ (د) ۱:۱۱ (۱

بتك أستلة الرياضيات

الصم الثلاث الأعدادي

ب) اذا كانت ب وسطأ متناسباً بين ١ ، ح فاثبت ان :

السوال الثالث:

$$\frac{1}{1}$$
 عن $\frac{1}{1}$ عن $\frac{1}{1}$ عن $\frac{1}{1}$ عن $\frac{1}{1}$ عن $\frac{1}{1}$ عن $\frac{1}{1}$

﴿ (ب) أوجد الانحراف المعياري للقيم التالية :

11 : 10 : 17 : 17 : 17

السوال الرابع: (أ) اذا كانت س = $\{7, 7, 7, 3, 0\}$ ، ص = $\{1, 7, 0, 0, 0\}$ وكانت ع علاقة على س حيث $\{3, 0, 0\}$ تعنى أن $\{1, 0, 0\}$ لكل $\{1, 0, 0\}$ لكل $\{1, 0\}$ ومثلها بمخطط سهمي وهل ع دالة ام $\{1, 0\}$ وإذا كانت دالة اذكر مداها.

لسنوال الخامس

(أ) أوجد العدد الحقيقي س الذي يجعل الكميات س + ٢ ، س + ٢ ، س + ١٤ متناسبة

(ب) <u>في الشكل المقابل</u>: يمثل من<mark>حني الدالة د</mark> د(س) = - س۲ + ۲س + ك - ۱ حيث و نقطة رأس المنحني أوجد مساحة الشكل وحءه

محافظة الشرقية

السؤال الاول: (1) اختر الاجابة الصحيحة من بين الاجابات المعطاة:

[۱] الوسط المتناسب بين العددين ۲ ، ۸ هو

 $\frac{1}{2} \pm \frac{1}{2} = \frac{1}{2} \frac{1}$

[٢] اذا كان س ع ع فان

(i) $\omega \infty \omega$ (ب) $\omega \propto \frac{1}{\omega}$ (ح) $\omega \propto \omega + 3$ (د)غير ذلك

[7] عدان النسبة بينهما ٢: ٥ فإذا كان العدد الأصغر ٨٤ فإن العدد الأكبر =

ر) ۲۶۰ (خ) ۱۲۰ (خ) ۹۲ (۱) «۴۳ (۲۰ (خ) ۲۶۰ (۲۰ (خ) ۴۲۰ (۲۰ (خ)

﴿ (ب) اذا كانت س = { ٣ ، ٤ } ، ص = { ٤ ، ٥ } ، ٤ = { ٥ ، ٢ } أوجد: ~×(~~ ∩ と) (r) (w - w) × E(1)

السؤال الثاني: (أ) اختر الاجابة الصحيحة من بين الاجابات المعطاة:

[١] اذا كاتت المدى للقيم ٥٣ ، ٨ ، ١ ، ٥٥ ، ١٦ هو ١١ فان ١ =

77 (2) (أ) ١٠ (ب) ٢٤ (ج) ٢٤

﴿ [۲] اذا كاتت ٢ = ٣ فان ٢ اذا كاتت ٢ =

7 (7) 17- (2) (ب) ۱۲ - r (i)

*[٣] حصل محمد على معدل خصم ١٥٪ من ثمن حذاء رياضي من أحد المتاجر فدفع مبلغ قدره ١٠٥ جنية فإن السعر الأصلي للحذاء =

(ب) ۲۰۰ (ج) 01. (2) 79. (1)

(ب) اذا كان المب = حدى فإثبت أن: ١٥٠٥ حدى كميات متناسبة

السوال الثالث: (أ) اذا كان م، ب، ح، و في تناسب متسلسل

$$\frac{4}{5} = \frac{\frac{7-7-7}{5}}{\frac{7-7-7}{5}} = \frac{1}{5}$$

* (ب) أوجد الانحراف المعياري للقيم:

1. , 10 , 7 , 15 , 4

رحاعداا كالثان المما الثان المما الثان المما الثان المعادل الثان الث

السوال الرابع: (أ) اذا كاتت س = { -١ ، ١ ، ٢ } ، ص = { -١ ، ١ ، ١ ، ١ } وكاتت

ع علاقة من سه الى صه حيث على أن (ع = أ ب) لكل ع وسه عن وص اكتب بيان ع ومثلها بمخطط سهمي وهل ع دالة أم لا ؟ وإذا كاتت دالة اذكر مداها .

(ب) اذا كان حجم أسطوانة يتناسب طردياً مع مربع طول نصف قطر قاعدتها نق كما يتناسب طردياً مع ارتفاعها ع وكان حجم الأسطوانة ، ١٥٤ سم عندما نق = ٧ سم ، ٤ = ١٠ سم أوجد قيمة الحجم عندما نق = ٤ سم ، ٤ = ٧سم

السوال الخامس: (أ) اذا كان س ٢ + ٥ ص ١ = ٢ س ص

أوجد س: ص ثم أوجد قيمة: ساً- ٣سم-١

(ب) في الشكل المقابل: يمثل منحني دالة تربيعية اذا كان د (س) = س - (ك - 7) س - ك + ؛ وكان المحو مريع أوجسد فبمسة

محافظة للشرخية

النموضج الاسترشادي السابع

للعلم ٢٤ / ١٥ / ١٩٥

التوجيه العام للرياضيات

الماحة : جبر ولحصاء للزمن : ساعتان

السوال الاول: (أ) اختر الاجابة الصحيحة من بين الاجابات المعطاة:

[۱] اذا کان: س×ص = { (۲،۱)، (۲،۲)} فان (۱،۲) و.....

(أ) مه × سه (ب) سه × سه (ج) سه × صه (اً)

* [۲] د (س) = س المن الرجة الرابعة فان ب =

(ب) ۲ £ (2) 0 (1)

مجموعة حل المعادلة (س – ه)منر = ١ في ع هي

{ o- (o } (·) { o }(i) {0}-2(1) 2(2)

> فارجد قيمة : ٢٩+٩٠ (ب) اذا کان ه م _ ٣ - = ٠

بنى أستاة الرياضيات *********** * السؤال الثاني : (أ) اختر الاجابة الصحيحة من بين الاجابات المعطاة :

$$\frac{12}{7}$$
 المدي للقيم $\frac{7}{7}$ ، $\frac{1}{7}$ ، $\frac{10}{7}$ ، $\frac{11}{7}$ هو

$$(i)$$
 $\frac{1}{2}$ (i) (i) (i)

*
(i) γ (ii) γ (ii) γ (ii) γ (ii) γ (ii) γ (iii) γ (iv) γ (iv)

(i) o (ii)
$$(-1)^{-1}$$
 (c) $(-1)^{-1}$

(ب) اذا كانت مل مجموعة الأعداد الطبيعية وكان إعب تعني أن إ×ب = ١٢ لكل إ،ب ∈ ط

اکتب بیان ع وادا کان اع ۳ اوجد قیمه ۱

السوال الثالث : : (أ) اذا كان $\frac{-0+0}{V} = \frac{0+2}{0} = \frac{2+0}{0}$

(ب) الشكل المقابل: يمثل دالة تربيعية د حيث

١) اوجد قيمة ك

٢) أوجد قاعدة الدالة التي تمثل بو

السوال الرابع: (أ) اذا كاتت ب وسط متناسب بين (، ح أثبت أن:

$$(\psi)$$
 اذا کانت می ∞ $\frac{1}{\sqrt{7}}$ ، می = ا عندما س = 7

٢) أوجد ص عندما س = ٣ أوجد: ١) العلاقة بين س، ص

السؤال الخامس : (أ) مثل بياتيا منحني الدالة د (س) = (س
$$-7$$
) متخذا -1 متخذا -1 ومن الرسم أوجد : () نقطة رأس المنحني ، () معادلة محور التماثل ، () القيمة العظمي أو الصغرى للدالة ،

(ب) أوجد الانحراف المعياري للقيم:

بنك أسئلة الرياضيات

الصف الثالث الاعدادي

المادة: هندسة وحساب مثلثات

امتحان الفرمية للعام ۲۴ / ۲۰۲۱م

حلفظة الشرقية

الزمن : ساعتان

التوجيه العام للرياضيات

السؤال الاول: (أ) اختر الاجابة الصحيحة من بين الاجابات المعطاة:

$$\frac{1}{r}$$
 (a) $\frac{1}{r}$ (a) $\frac{1}{r}$ (b) $\frac{1}{r}$ (c)

[7] في الشكل المقابل:

$$rac{1}{\sqrt{1}}$$

بنك أسئلة الرياضيات

للصمه للثلاث الاعدادي

(1) أوجد معادلة الخط المستقيم الذي يمر بالنقطة (١٠٠٠ م ١٠٠) ويوازي المستقيم : 1=00++0-+

(ب) في الشكل المقابل:

٢ - حمثاث قائم الزاوية في -211546

ا اب= ٤ سم ، بد= ٢ أوجد قيمة : طاس طاص + ما ١

- [() أوجد معادلة الخط المستقيم الذي يمر بالنقطة (٥ ، -٧) وعمودي على المستقيم المار بالنقطتين (٢ ، ٢) ، (-١ ، ٠)
- (ب) أثبت أن النقط ا (١ ، ٤) ، ب (-١ ، -٢) ، ح (٢ ، -٣) هي رؤوس مثلث قائم الزاوية في ب ، ثم أوجد مساحته.
 - (1) بدون استخدام الآلة الحاسبة أثبت أن: منا ٦٠ = ٢ منا ٣٠ طا ٥٥ ا
 - (ب) في الشكل المقابل:

(0 : Y) - : (1 : Y-) 9 أوجد : معادلة أحد

الصم الثلاث الأعدادي

المادة: هندسة وحساب مثلثات

امتحان الشرهية التوجيه العام للرياضيات العام ٢٠٢٢ م ٢٠٢ م

محافظة الشرقية

الزمن : ساعتان

السوال الاول: (٢) اختر الاجابة الصحيحة من بين الاجابات المعطاة:

 ١٠ اذا كان المستقيم الذي معادلته: لس + ٢٧٠ ص = ٤ بصنع زاوية قياسها ١٠ الاتجاه لموجب لمحور السينات فان ك =

rv (3) TV- (5)

() في ۵ إب ح اذا كانت جا إ = جنا ح فان ۵ إب ح الزاوية

 قاتم الزاوية منفرج الزاوية (ح) متساوي الساقين

المعين الذي طولا قطريه ١٢ سم ، ١٠ سم تكون مساحته 11 3

(٤) مثلث له محور تماثل واحد وطولا ضلعين فيه ٤ سم , ٨ سم فان

طول الضلع الثالث = سم 11 (

 اذا كانت الزاويتان المتقابلتان بالراس متكاملتين فان قياس كل منهما يساوي .14. ·1. (3)

﴿ فَي الشَّكُلُ الْمُقَابِلُ : وَأَبُّ حَ مُربِع طول ضلعه ٤ سم فان معادلة المستقيم أح

£ - س = س + ؛ ص = س - ؛

(ع) س = -س + ؛ (ع) س = ؛ س + ؛ (ع) س = ؛ س + ؛

او

السوال الثاني : (أ) أوجد معاداة الخط المستقيم الذي يمر بالنقطة (٣، -١) ويوازي المستقيم المار بالنقطتين (-٢ ، ١) ، (١ ، ٥)

*(ب) اذا كانت: ٢ ظاس = ظا، ٢٠ - ٢جا ٣٠ اوجد: ١٠ (س) الحادة السوال الثالث:

(أ) اذا كانت النقط: ١ (١،٤)، ب (-١، -٦)، ح (٢، -٣) هي رؤوس مثلث أثبت أن: ٨ ٩ ب ح قائم الزاوية في ب ، وأجد مساحته ،

> (ب) في الشكل المقابل: ابح مثلث قائم الزاوية في ا

، و و احديث وب = وحد = ١١ سم

15 L Tt - - - - - - - A5

أوجد قيمة: (١) ظا (ء حُب)

举头给举张法锋妆妆轻按按按按按接接接接

(٢) جنا (١٦٥)

۲۲سم

 السوال الرابع:
 أوجد معا أ) أوجد معادلة الخط المستقيم الذي يمر بالنقطة (١٠١٠) عموديا علي المستقيم الذي معادلته: ٥س - ٢ص = ١٧

*(ب) ١٠- متوازي أضلاع فيه: ١ (٣٠٦)، ١ (٤٠-٥)، ح (٠٠-٣) أوجد: (١) إحداثي نقطة تقاطع القطرين • (٢) إحداثي نقطة و

السوال الخامس: (أ) بدون استخدام الحاسبة أوجد قيمة:

حاً ، ٣٠ _ ٩ جتاً ، ٢٠ + ظاء ٥٤٠

(ب) في الشكل المقابل: على الشبكة التربيعية ٨ أب ح قانم الزاوية في ح، ١ (٨ ، ه) ، ب (٧٠ ، -١) ، و منتصف ١٠ أوجد : (١) قيمة ه + ١٠ (٢) معادلة أح

المادة : هندسة وحساب مثلثات

امتحان الشرقية

للعام ١٤٠٢/ ١٥٠٦م الزمن: ساعتان

محافظة للشرقية

التوجيه العام للرياضيات

السؤال الاول: اختر الاجابة الصحيحة من بين الاجابات المعطاة:

(7,7) 3

في الشكل المقابل:

وابح متوازي أضلاع

حيث ((٥ ، ٦) ، ب (٢ ، ٥) ،

و هي نقطة الأصل ، م (٣ ، ٤)

احداثى النقطة ح

حليضليانا قلتسأطنى

الصف الثلاث الاعدادي

٠,٨ (3)

📆 ظا (اور) =

السؤال الثاني : (أ) بدون استخدام الحاسبة أثبت أن :

(ب) أوجد معادلة محور تماثل القطعة المستقيمة (ب حيث:

(0,7)4,(4,1)

* السوال الثالث:

أ (أ) أوجد معادلة الخط المستقيم المار بالنقطتين ((١ ، ٢) ، ب (- ١ ، ٢).

* (ب) اذا كان ٢ جتا (س + ١٥°) = ٢٧ حيث س قياس زاوية حادة

أوجد قيمة: (ظا ٢س - جا ٢س)

السوال الرابع: (أ) اذا كاتت النقاط (٣ ، ٢) , ب (٤ ، ٣) ، ح (١ - ١ - ٢) ، د (- ۲، ۳) رؤوس معین فاوجد:

(١) احداثي نقطة تقاطع القطرين ، (٣) مساحة المعين إبدى

(+41) 0 (1)

السوال الخامس: (أ) في الشكل المقابل:

ل، ، ل، مستقيمان متوازيان ،

ل، يصنع مع الاتجاه الموجب لمحور السينات

زاوية قياسها ٥٤°, ويمر بنقطة الأصل و ،

ا دل حيث ا (١١٥) ، أب لل

لى يقطع محور الصادات في النقطة ح ،

أوجد: (١) معادلة المستقيم ل، ،

(Y) معادلة المستقيم ل. •

· 10 deb (7)

15米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米

المادة : هندسة وحساب مثلثات

محافظة الشرقية

النموذج الاسترشادي الأول للعام ۲۰۲۵ / ۲۰۲۵ م

-1

الزمن: ساعتان

التوجيه العام للرياضيات لا

السوال الأول: (أ) اختر الاجابة الصحيحة من بين الاجابات المعطاة:

1. (a) 7. (b) 7. (i) 7. (i)

[7] اذاً كان المستقيم [7] س + المستقيم [7] س + المستقيم س [7] د فإن [7]

 $\frac{1}{7} - (2) \qquad \frac{1}{9} = (3) \qquad \frac{1}{9} = (4)$

(ب) في الشكل المقابل:

أب يقطع محور السينات في النقطة م ويقطع محور الصادات في النقطة ب فإذا كان أب= مسم، وب = سم أوجـــد : معادلة أب

السؤال الثاني: (أ) اختر الاجابة الصحيحة من بين الاجابات المعطاة:

اً] مربع طول قطره ٦ سم فإن مساحته = سم

(ب) ۲۹ (۱) ۲۹ (ب) ۹ (ب) ۲۹ (۱)

(+) (+)

بدون استخدام الآلة الحاسبة أوجد قيمة س حيث (س $< . \, ^{\circ}$) * بدون استخدام الآلة الحاسبة أوجد قيمة س حيث (س $< . \, ^{\circ}$) * طا س = حا $^{\circ}$ حتا $^{\circ}$ + حتا $^{\circ}$ حا $^{\circ}$ حا

السوال الثالث:

(أ) اذا كان البعد بين النقطتين (٩ ، ٧) ، (- ٣ ، ٣) هو ٥ وحدات طول أوجد قيمة ٩

(ب) في الشكل المقابل:

ح∈ به ، ۵ إب ح متساوي الاضلاع ۵ وحد متساوي الاضلاع

اوجد: حا (حار)

VT (2)

بناة الرياضيات ************

الصم الثلاث الأعدادي

السوال الرابع: (أ) أوجد معادلة المستقيم المار بالنقطة (- ٤ ، ٣) ويوازي المستقيم الذي معادلته ٢س - ص + ٥ = ٠

(ب) اثبت أن النقط (٥ ، ٣) ، ب (٣ ، - ٢) ، ح (- ٢ ، - ٤) هي رؤوس مثلث منفرج الزاوية في ب ثم أوجد احداثى نقطة د التي تجعل الشكل م بحر معينا وأوجسد مساحة سطحه

السوال الخامس

(أ) بدون استخدام الالة الحاسبة أثبت أن:

۲ حتا ۳۰ - ۱ = حتا، ۲°

المادة: هندسة وحساب مثلثات

1 (2)

(ب) في الشكل المقابل: وم = ٢ وحدة طول وح = ٥ وحدة طول ، ح منتصف ١٠ أوجيد : معادلة وح

> محافظة الشرقية التوجيه للعام الرياضيات

النموذج الاسترشادي الثاني للعام ٤٤٠٦/ ٢٥١ م

الزمن: ساعتان

السوال الأول: (أ) اختر الاجابة الصحيحة من بين الاجابات المعطاة:

[۱] اذا کان جا(س+۱۵) = ۲۷ فإن طا(س-۱۵) =

$$\frac{1}{7} \quad (3) \quad \frac{7}{7} \quad (4) \quad \frac{7}{7} \quad (5) \quad \frac{7}{7} \quad (6) \quad \frac{7}{7} \quad (7) \quad \frac{7}{7} \quad (7) \quad \frac{7}{7} \quad (8) \quad \frac{7}{7} \quad (9) \quad (9) \quad \frac{7}{7} \quad (9) \quad (9)$$

*[7] اذا كان ح منتصف أب حيث (- ٢ ، - ٣) ، ح (٢ ، ١) فإن ب = (i) (f, -0) (-f, 0) (5) (f, 0) (7,0)(2)

[٣] اذا أب ل حرة ، ميل أب = صفر فإن ميل حرة =.... (د) غير معرف (ب) صفر (ج) ١

(ب) في الشكل المقابل: اذا كان ٣ و١ = ٤ و١٠ د : معادلة (ب

السؤال الثاني: (أ) اختر الاجابة الصحيحة من بين الاجابات المعطاة:

[١] صورة النّقطة (٣- ، ٢) بالانعكاس في نقطة الأصل هي

(1,4-) (2) (i) (٣٠٦) (c) (٣٠٠٦)

اذا كاتت النسبة بين قياسي زاويتين متكاملتين ٢ : ٣ فإن قياس الزاوية الكبرى =

.1 · V (7) (5) 7V° (اً) ۱۸ (ب) ۳۲ (ب)

[٦] النقطة تقع على المستقيم المار بالنقطتين (٣٠٢) ، (٤،٤)

(1,7)(2) (i) (i) (i) (j) (j) (j)

(ب) أثبت أن النقط (٣ ، - ١) ، ب (- ١ ، ١) ، ح (٢ ، - ٢) تقع على دانرة واحدة مركزها النقطة م (- ١ ، ٢) ثم أوجد مساحة الدانرة بدلالة ٣

السوال الثالث:

اوجد قيمة: س * (١) اذا كاتت س زاوية حادة وكان : جتا س طا س = -

(ب) في الشكل المقابل:

ا وب ح مربع مساحته = ١٦ سم؟ ،

م نقطة تقاطع قطريه

السوال الرابع: (أ) في الشكل المقابل: عن السوال الرابع لل عن السوال الرابع لل المقابل: عن السوال المقابل: عن السوال المقابل ال

اذا كان طاب + المات اذا كان

اوجدد طول باح

(ب) أوجد معادلة المستقيم الذي يمر بالنقطة (- ٢ ، ٥) وعمودي على المستقيم الذي معادلته س - ۲س = ٤

السوال الخامس:

أ) بدون استخدام الآلة الحاسبة أثبت أن :

حاً ۳۰° = وحتاً ۳۰ ـ طا مع٠

(ب) في الشكل المقابل:

وم = ٨ وحدة طول ، وب = ٢ وحدة طول ،

وي متوسط في ۵ ا وب

اوجدد: (١) ميل كلاً من أبنا ، وه (٢) احداثي نقطة و

As Job (T)

الصف الثالث الاعدادي

اطادة : هندسة وحساب مثلثات

الزمن : ساعتان

النموذج الاسترشادي الثالث

للعام ٢٤٠٦/ ٥٦٠ م

محافظة الشرقية

التوجيه العام للرياضيات

السؤال الأول: (أ) اختر الاجابة الصحيحة من بين الاجابات المعطاة:

[١] اذا كانت النقطة (- ك ، - 7 ك) تقع على المستقيم ٣ س + ص = ه فإن ك =

(ا) -۱ (ب) ۱ (ج) ۲ (د) -۱

*[٢] بعد النقطة (-ه ، ٤) عن محور الصادات =

(ا) -٥ (ب) ٤ (ب) ٢ (د) ٣

(ا) ۲۰ (ان) ۲۰

(ب) في الشكل المقابل:
احداثي نقطة (، ، ؛)
مساحة △ و (، ، ؛)
اوجــــد: معادلة (، ، ؛)

السؤال الثاني: (أ) اختر الإجابة الصحيحة من بين الإجابات المعطاة:

[١] ١ - ح و معين فيه ١ (- ٥ ، ٣) ، ح (٢ ، - ٤) فإن ميل ١٥ =

 $\frac{1}{V} - (2) \qquad \frac{1}{V} (5) \qquad 1 - (4) \qquad (i)$

[۲] ۲√ جتا ه ځ° جا ۲۰°=

(أ) جنا ۳۰ (ب) طا۳۰ (ج) جا۳۰ (د) ۲جا۳۰

[7] معادلة المستقيم الذي يمر بالنقطة (٥،٣) وموازياً لمحور السينات هي

T = 0 (x) T = 0 (x) (x) (x) (x) (x) (x) (x) (x)

(ب) في الشكل المقابل: اذا كان أء ∩ بح = { ه } ، وكان بح= هسم اب = ٢ سم ، حو = ٤ سم أوجد: (طاع) -'

> السوال الثالث: (أ) اذا كان المثلث إب حقائم الزاوية في ب وكان ٣جا ١ + جتا ح = ١

اذا كان المثلث q - - = قانم الزاويه في <math>- = 0اذا كان المثلث q - - = 0افر المثلث = 0افر المثلث و المثلث

(ب) اذا كان البعد بين النقطة (س، ٥) والنقطة (١،١) يساوي ٧٦ أوجد قيم س

السؤال الرابع: (أ) في الشكل المقابل: م ب ح مثلث متساوي الاضلاع أوجــد : طاس

(ب) في الشكل المقابل: ب (۲،۱) ، ح (۳،٤) أوحسد : مساحة ١ و و

- السوال الخامس : (أ) في الشكل المقابل : إبح مثلث متساوي الاضلاع و متوسط أوجد : معادلة و و و
- (ب) في الشكل المقابل: ح (۲ ، ،) ، ب (، ، ۲) اذا كاتت النقطة م (ك+٣ ، ك+١) ﴿ 5 أوجد : قيمة ك

محافظة الشرقية النموذج الاسترشادي الرابع المادة : هندسة وه التوجيه العام للرياضيات للعام ٢٠٢٥ / ٢٠٢٥م الزمن : ساعتان

المادة: هندسة ودساب مثلثات

﴿ (أ) ١ (ب) ٢ (ب) ٣ * [7] اذا كان ٩ ب قطر في الدانرة حيث ٩ (٣، - ٥) ، ب (٥،١) فإن مركز الدانرة هو

(أ) (؛ ، ۲) (ب) (۸ ، -۲) (ج) (؛ ، -۲) (د) (۲ ، ۴) (الم) (۲ ، ۲) (الم) (۲ ، ۲) (د) (۲ ، ۲)

(ب) أثبت أن النقط (١ ، ١) ، ب (٣ ، ٢) ، ح (٠ ، - ١) نقع على استقامة واحدة

السؤال الثاني: (أ) اختر الإجابة الصحيحة من بين الأجابات المعطاة:

[1] I i [1]

 $\frac{1}{2}$ اذا کان جا س = $\frac{1}{7}$ ، س زاویة حادة فإن جا ۲س =

(一(一)

 $r = \frac{1}{2} (r)$

[٣] المستقيم الذي معادلته ٢س - ٣ ص - ٦ = ، يقطع محور الصادات جزءا طوله =

(5) 7

(ب) في الشكل المقابل: ابح ∆ فيه ب (۱) = ۹۰ اح = ۱۰ سم، بح = ۱۰ سم اثبت أن: حتا ححتا ب-حا ححا ب=صفر

السوال الثالث:

7- (1)

(أ) بسبب الرياح كسر الجزء العلوي لشجرة فصنع مع الأرض زاوية قياسها ٦٠ اذا كاتت نقطة تلاقي الشجرة بالأرض تبعد عن قاعدة الشجرة مسافة ٦ أمتار أوجد طول الشجرة لأقرب متر

رب) في الشكل المقابل: اذا كان ب(ب) = ٢٠٠ اذا كان ب(ب) = ٢٠٠ اوجهد: معادلة المستقيم في يا صليات يا لللوطلة

السوال الرابع: (أ) في الشكل المقابل:

(ب) أب قطر في الدائرة التي مركزها النقطة (٥،٧) فإذا كاتت ب (١،،٨) أوجـــد معادلة المستقيم العمودي علي أب من نقطة ا

السوال الخامس:

(أ) اذا كان عطاس = طاء و" - ع حا و" أوجد ل (سَ) بدون استخدام الآلة الحاسبة حيث س زاوية حادة

> ب) في الشكل المقابل : لى : ص = س ウルート・ロルカ

اح = ١٧٦ وحدة طول أوجد معادلة المستقيم ل,

الزمن : ساعتان

اطادة : هندسة ودساب مثلثات

النموذج الاسترشادي الخامس

للعام ٢٥٠١/ ٢٥١م

اغظة الشرقية

التوجيه العام الرياضيات

لسؤال الأول: (أ) اختر الاجابة الصحيحة من بين الاجابات المعطاة:

١] صورة النقطة (٣، -٤) بالانعكاس في محور الصادات هي

﴿ (أ) (٣ ، -٤) (ب) (٣ ، ٤) (ج) (٣ ، ٤) (٤ (٣ ، ٤) (٤ (٣ ، ٤) (٣ ، ٤) (٤ (٣ ، ٤) (٣ ، ٤) (٣ ، ٤) (٣ ، ٤) (٣ ، ٤) (٣ ، ٤) (٣ ، ٤) (٣ ، ٤) (٣ ، ٤) (٣ ، ٤) (٣ ، ٤) (٣ ، ٤) (٣ ، ٤) (٣ ، ٤) (٣ ، ٤) (٣ ، ٤) (1-17)(2)

 $\Upsilon = \omega$ (2) $\omega = -1$ (ب) ص = ٣

[٣] س م ع ٨ حاد الزوايا اذا كان ع (ع) = ٥٧° ، حا ص = حتا ص فإن ع (س) = °۱۰ (ب) ۲۰° (۱) (c) 0A° ° 10 (E)

(-) کاب حفیه ((7, -7)) ، ب ((7, -7)) ، حفیه (-1, 1) ، و منتصف (-1, 1)رسم وه // بح ويقطع أح في ه أوجهد: معادلة وه

السؤال الثاني: (أ) اختر الإجابة الصحيحة من بين الإجابات المعطاة:

١١] طاه ٤° + حا ٣٠ = ...

(5)

T7 (E)

[٣] إذا كان م, ، م, ميلي مستقيمين متعامدين فإن

1= 1 ×1 (2) = -= 1 (3) 1 -= 1 (4) 1 = 1 (1)

ريات أسئلة الرياضيات

الممه الثلاث الأعدادي

* (ب) اب حوشبه منحرف فيه اح // باح ، او = ٢ سم ، اب = ٣سم ، ب ح = ١٠ ، ق (عَ الله عَدَ الله عَدَ الله عَدَ الله عَدَ الله عَدَ الله عَدَ الله عَدِ الله عَدِ الله عَدِ الله عَدِ ال

السوال الثالث:

- أ) اذا كاتت النقط م (١-١،٣) ، ب (٥،١)، ح (س،٤) هي رؤوس مثلث قاتم الزاوية في ب أوجد: قيمة س
 - الله الما الآلة الحاسبة أوجد قيمة ه (حيث ه زاوية حادة) اذا كان: طا (ه + ه) = حا ۳۰ حتا ۲۰ + حتا ۳۰ طاه ٤٠

السوال الرابع: (أ) في الشكل المقابل: وحدً لم (أ، محر (٢،٢) لوجسد: معادلة (ب

(ب) اذا كاتت معادلتا المستقيمين لي ، لي على الترتيب هما: س - ٤ ص - ٣ = صفر ، ص = (ل - ١) س+ ه أوج د قيمة له اذا كان المستقيمان لي ، لي :

(۱) متوازيين (۲) متعامدین

السوال الخامس: (أ) \ م إ بح قائم الزاوية في ب برهـــن أن: حام + حاح > ١

(ب) في الشكل المقابل:

المدد ، هدرم مربعان حيث م (٨،٤)

أوجد : (١) معادلة نهرة

注水米浓茶水水水水水水水水水水水水水水水水水

(۲) احداثي النقطة و

المادة : هندسة وحساب مثلثات

الزمن : ساعتان

ألنموذج الاسترشادي السادس

العام ٢٤٠١/٥١٠م

محافظة الشرقية

التوجيه العام للرياضيات

السوال الأول: (أ) اختر الاجابة الصحيحة من بين الاجابات المعطاة: [١] ١ - ح مثلث قائم الزاوية في ب، ٣ ١ ح = ٥ ب ح فإن طا ١ =

(ج) ۽

r (i)

********** بتك أسئلة الرياضيات

الصم الثالث الأعدادي

[1] الشكل المقابل يمثل نصف دانرة طول نصف قطرها ٧سم فإن محيط الشكل = سم (أ) ٤٤ (ب) ٢٩ (ج) ٣٦ FF (2)

[٣] اسع معين فيه ى (٤) + ع (٤) = ٢٠٠٠ فإن ى (١٠٠٠ - ٢٠١ (ج) ۸۰ (ج) 1.. (2)

(ب) أوجد معادلة المستقيم الذي ميله = 🙀 ويمر بالنقطة (٣٠ ، ١)

"السوال الثاني: (أ) اختر الاجابة الصحيحة من بين الاجابات المعطاة:

[۱] المستقيمان اللذان ميلاهما ج ، ك متوازيان فإن ك =

T (E) 7 (1) (ب) ع 9 (2)

(3) v = (5) v (1) (ب) ۵۵ = ۵۶

(3) U = (A) U (E) (c) 20 = 64

[7] في المثلث عمر القائم الزاوية في ه أي العلاقات التالية خطأ

(i) طاو×طاو= ۱

(ب) حا و = حدًا و (ج) حتا و = حا و

(د) حتا و = حا ه

ر ب) اذا كان محور تماثل حرى يمر بالنقطة م (٦ ، م) حيث ح (٣ ، ١) ، ع (-٣٠٧) أوجسد: قيمة م

) م ب سلم طوله ٨ متر يميل على الأرض بزاوية قياسها ٥٦° عند الطرف ب ويستند بطرفه م علي حانط رأسي فإذا كاتت و هي مسقط م علي الأرض أوجسد الأقرب متر طول وب ، وم

ب) ﴿ ب حرى مستطيل رؤوسه على الترتيب ﴿ (٥،١)، ب (١،٥)، ح (١٠٠) أوجدد احداثي نقطة و ثم أوجد مساحة المستطيل

السوال الرابع:

أ) أوجد معادلة المستقيم المار بالنقطة (- ٥ ، ٣) ويوازي المستقيم ٣ س = ٢ - س

******************* بنك أسئلة لارياضيات

الممه الثلاث الاعدادي

(ب) اذا كاتت ص قياس زاوية حادة حيث:

السؤال الخامس:

) △ أ ب ح قائم الزاوية في ب ، ٧ طا أ - ٢٤ = ، أوجـــد قيمة: ١ - طا ١ طا ح

> (ب) في الشكل المقابل: وإبح متوازي أضلاع فإذا كانت ((، ،) ، ح (؟ ، ؛) أوجد : طول وب ، معادلة وب

النموذج الاسترشادي السابع المادة: هندسة ودساب مثلثات

للعام ۲۴ / ۲۵ م

محافظة الشرقية التوجيه العام للرياضيات

للزمن : ساعتان

ألسؤال الأول: (أ) اختر الإجابة الصحيحة من بين الإجابات المعطاة:

[١] المستقيم الذي معادلة ٢س+٥ص=١٠ يقطع محور السينات جزءا طوله وحدة

(د) ه٤ (ج) ٩٠ (اب) ٩٠ (ب) ٩٠ (ب) اثبت أن النقط ٩ (٣ ، –١) ، ب (–٤ ، ٦) يمر بها دانرة واحدة مركزها م (-١ ، ٢) فأوجد محيطها .

السؤال الثاني: : (أ) اختر الاجابة الصحيحة من بين الاجابات المعطاة:

*[١] صورة النقطة (٢ ، ٣٠) بالانعكاس في محور السينات هي (i)(7,7) (c) (-7,7)

* [٢] المستقيمان اللذان ميلاهما ٢ ، ٥ متعامدان فإن ك=

*[۲] إذا كاتت ح (۲ ، - ؛) منتصف اب حيث (٥ ، -٣) فإن ب = (i) (v, o-) (z) (V, o)((-) (o-, v) (i)

الصف الثالث الاعدادي

بنك أسئلة الرياضيات

(ب) أوجد معادلة المستقيم المار بالنقطة (١،٤) ويصنع زاوية قياسها ٥٠٠ " الاتجاه الموجب لمحور السينات

* السؤال الثالث:

(أ) بدون استخدام الالة الحاسبة أوجد قيمة: ه (حيث ه زاوية حادة)

*
 اذا كان :
 ظا (
$$a + a$$
)° = جا ٣°

 *
 ($+$)° = جا ٣°

 *
 ($+$)° = جا ٣°

 *
 ($+$)° في الشكل المقابل :

 *
 ($+$)° و $+$ = $+$ و وحدة طول

 *
 ($+$)° طول $+$ و $+$ و

ا و متوسط في ۱ وب

(٣) ٥ (١٤٠)٠

السوال الرابع:

(أ) في الشكل المقابل:

اح = ه سم ، ن (حُ) = ٠٤ أوجد طول آب ، ب

 (ب) أوجد معادلة المستقيم المار بالنقطة (٣ ، ٥) وعمودي المستقيم الذي معادلته ٢ س -س = ٢

السوال الخامس: (أ) بدون استخدام الحاسبة اثبت أن:

جنا ، ٦٠ = ٢جنا ، ٣٠ _ ظاه ٤٠

旅游旅游旅游旅游旅游旅游旅游旅游游游游游游游游游游游

(ب) في الشكل المقابل:

أوجد معادلة أب

10 8 P

E. Rogo

امتمانات رقورن)

توجيه الدقهلية

<u>السؤال الأول</u>

اختر الإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتى:

١) إذا كان {٦،٣} = {١+ س، ٣ } فإن س =

۲) إذا كان ص ∞ س و كانت ص = ۲ عند س = ٦ فإن ص = عند س = ٢

٣) إذا كان ١٥ هي أكبر مفردات مجموعة من القيم مداها ٩ فإن أصغر قيم هذه

المجموعة =

اذا کانت س ـ ص = {۳}، ص ـ س = {۱،٥}، س ∩ ص = {٦}

أوجه (1) س، ص × س (1) س ∩ ص× س

السؤ ال الثاني

اختر الإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتى:

١) ٢٧ شهر : ٣ سنوات = في أبسط صورة

1.:9 👂 1:9 👂 1:9 🕦

٢) مجموعة حل المعادلة ﴿ اس ٢ = ٤ في ح هي =

٣) إذا كانت س = [-٢، ٤] ، ص = [-٢، ٥] فإن (٣، -٣) ∈

m x m s m x m s m m m m m m m m

اذا كانت $\{a, b, -a, b\}$ اذا كانت $\{a, b, -a, b\}$ اذا كانت $\{a, b, -a, b\}$ اذا كانت $\{a, b, -a, b\}$

السؤال الثالث

إذا كانت د(س) = س' - 7س ، ر(m) = m - 7

(m) = (m) = (m) قيم m التي تجعل د(m) = (m)

السؤ الرابع

$$\frac{\eta}{\gamma}$$
 اذا کانت $\eta = \eta - \eta$ ، ص ∞ $\frac{1}{m^{\gamma}}$ وکانت $\eta = 1$ عندما $\eta = \frac{\eta}{\gamma}$

ر العلاقة بين س، ص عندما س=١ (٢) قيمة ص عندما س=١

ولى مجال إهتمام الدولة المصرية لتمنية الريف المصري إذا كانت النسبة بين طولي طريقين ٢ : ٥ فإذا كان الفرق بين طول الطريقين ٢١ كم

🛈 أحسب طول كل طريق بالكيلومتر

آ إذا كانت التكلفة لرصف ١ كم يساوي ٢ مليون جنيه مصرياً أوجد التكلفة الكلية لرصف الطريقين.

السؤ الالخامس

- ا أوجد الانحراف المعياري للقيم التالية ٩،٨،٧،٦،٥
 - الشكل المقابل الدالة الخطية د

حیث c(m) = b m + a تمثل بیانیاً بالمستقیم \overline{q} حیث q(m) = b سالمکل و و q(m) مربع حیث q(m) مربع

① أكتب قاعدة الدالة د

مساحة المربع ووهد

نموذج

<u>السؤال الأول</u>

- اختر الإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتى:
 - ۱) المدي لمجموعة القيم ٥،٩،٦،٣،٧ يساوي١
 - 5 E 5
 - ۲) ۱ : ب = ۲ : حيث ۱ ≠ ب ≠ صفر

ا ب

🔁 ص×س

٣) إذا كانت س = [٥،٠] ، ص = [-٣،٢] فإن (-٢،٤) ∈

اذا کانت ہ وسط متناسب بین ۱، ح برھن أن
$$\frac{1}{4^{1+4^{1}}} = \frac{1}{4^{1+4^{1}}} = \frac{1}{4^{1+4^{1}}}$$

السؤ ال الثاني

اختر الإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتى :

١) العلاقة التي تمثل تغيراً عكسياً بين المتغيرين ص ، س هي

$$m = 0 \qquad 0 \qquad \frac{\omega}{\pi} = \frac{\omega}{\sigma} \qquad 0 \qquad \frac{\varepsilon}{\sigma} = \frac{\omega}{\sigma} \qquad 0 \qquad 0 \qquad 0$$

٢) إذا كانت س = {١، ٢،٢} ، وكانت ع = {(٩،٣)} : ٩ ، ب∈ س ، ، ٩ ≠ ب } ، فإن

ا إذا كان منحني الدالة د : د(س) = $- v^4 + - w$ س $- v^4$ يقطع من الجزء السالب لمحور v^4

السينات وحدة واحدة فإن ب =

ے إذا كان (√س – ١٦ ، ١١) = (٤ ، ص + ٣) أوجد قيمة √س + ص

السؤ ال الثالث

إذا كانت د : د(س) = m^{1} + ب س + ج ، كانت د(س) = ۲ عندما س $\in \{0, 0, 0\}$ ، فأوجد قيمة كلاً من ب ، ج

🔼 احسب الانحراف المعياري للقيم التالية ١٦،١٤،٨،٧،٥

السؤ الارابع

إذا كانت $m = \{-1, 0, 1\}$ ، وكانت ع علاقة على m حيث $\{3, 0, 1\}$ تعني أن $\{4, 1, 0, 1\}$ لكل $\{4, 1, 1, 1\}$ س فأكتب بيان ع ، هل ع دالة أم لا ؟ وإذا كانت دالة أوجد مداها

$$\frac{1}{7} = \frac{9}{4} = \frac{9}{4}$$
 اثبت أن $\frac{700 - 9}{700 - 9} = \frac{1}{7}$

السؤ الخامس

إذا كانت د : د(س) = $\{ m' + 0 m + V \}$ دالة خطية فأوجد قيمة $\{ m' + 0 \}$

إذا كان وزن جسم على القمر (و) يتناسب طردياً مع وزنه على الأرض (ر) ، وكان الجسم يزن ٨٤ كجم علي الأرض، وزنه ١٤ كجم علي القمر فماذا يكون وزنه علي القمر إذا كان وزنه على الأرض ١١٤ كجم

<u>السؤال الأول</u>

اختر الإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتي :

ا) إذا كانت النقطة (س - 7, 7 - m) تقع في الربع الرابع فإن m = 1

٢) إذا كانت د(س) = ك س + ٨ ، د(٢) = صفر فإن ك =

٣) إذا كان ٩،٢،٤، ب في تناسب متسلسل فإن ٩ + ب =

اذا کانت ہ وسط متناسب بین ۱، ح برهن أن ۲ج ۳۰۰ = ج

<u>السؤال|لثاني</u>

اخترالإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتي :

اندا کانت ∞ س ، ∞ فإن ∞ اندا کانت ∞ اندا کانت ا

ک س ع

٢) الإنحراف المعياري للكميات ٥ ، ٥ ، ٥ ، هو

") الدالة د(س) = m^{1} (س m) من الدرجة

🕐 صفر 🕒 الأولى 🕒 الثانية

الثالثة

اذا كان (- ١ ، ٢) هي رأس المنحني للدالة د(س) = ١ س ' – ٦س + ح أوجد قيمة ح

السؤال الثالث

اذا کانت س = {-۲، ۱،۰،۱،۲}، وکانت ع علاقة علی س حیث ﴿عُب تعنی ﴿ مُعْدِ عَلَيْ سُ حَیْثُ ﴿ عُبُ تَعْنِی ﴿ مُعْدِ مُنْ لَمُ مِنْ ﴿ مُ سُلُمُ مِنْ ﴿ مُ سُلُمُ مِنْ ﴿ مُ سُلُمُ مُنْ ﴿ مُ سُلُمُ مِنْ لَمُ مُنْكُمُ مِنْ ﴿ مُ سُلُمُ مِنْ لَمُ مُنْكُمُ مِنْكُمُ مِنْ عُلْعُلُمُ مِنْكُمُ مُنْكُمُ مِنْكُمُ مِنْكُمُ مِنْكُمُ مُنْكُمُ مِنْكُمُ مُنْكُمُ مِنْكُمُ مُنْكُمُ مُنْكُمُ مُنْكُمُ مِنْكُمُ مُنْكُمُ مُنْكُمُ مُنْكُمُ مُنْكُمُ مِنْ مُنْكُمُ مِنْكُمُ مِنْكُمُ مُنْكُمُ مُنْك

السؤ الرابع

اذا کانت س = ع + ۸ وکانت ع تناسب عکسیاً مع ص وکانت ع = ۲ عندما ص = ۳ أوجد العلاقة بین س ، ص ثم أوجد قیمة ص عندما س = ۳

ی إذا کانت د(س) = ۲س + ۵، ر(س) = س − ٦ أثبت أن د (۲) + ۳ر(۳) = صفر

السؤ الخامس

احسب الوسط الحسابي و الانحراف المعياري للقيم التالية ٦،٩،٨،٧،٥

إذا كان (س - 7، 7^{-0-1}) = (7، 1) فما قيمة س، ص

<u>السؤال الأول</u>

اختر الإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتى:

ا) إذا كان ٥س – ٩ ص فإن $\frac{700}{700} = \dots$

۹:0 (ا د د ۱۰:۲۷ (ا

٢) الشكل المقابل يمثل منحني دالة تربيعية ،

إحداثيات ٩ (ـ٤ ، ٠) فإن معادلة محور التماثل هي س = ...

اذا کانت ب وسط متناسب بین ۱، ح برهن أن $\frac{7}{4} + \frac{7}{4} = \frac{7}{4} = \frac{7}{4}$

YO : 1

<u>السؤال الثاني</u>

اختر الإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتى:

- ١) إذا كانت د(س + ٣) = س ــ ٣ فإن د (٧) = ..

- **YV** (>)
 - ٣) إذا كانت د(س) = ٣ فإن د(٢) د(٧) =

- 🔼 صفر
 - إذا كانت س = { ٧،٥،٤ } وكانت ع دالة علي س

وکان بیان ع = { (٩ ، ٥) ، (ب ، ٥) ، (٤ ، ٧) }

أوجه (1) القيمة العددية للمقدار ٢٣ + ٢ب

🕥 مدى الدالة

$$\frac{1-\mu}{1} = \frac{1-\mu}{m-3m} = \frac{1+\mu}{m-3m}$$
 ازذا کان $\frac{1}{3\mu+m} = \frac{1}{m-3m}$ برهن أن $\frac{1}{3\mu+m} = \frac{1-\mu}{m-3m}$

اوجد الانحراف المعياري للقيم التالية ٢١،١٦،١٦،١٦،١٢

<u>السؤال الرابع</u>

الشكل المقابل لمنحنى الدالة التربيعية $c(m) = m^{1} - (L - 1) m - L + 3$ فإذا كان الشكل

وم بح مربع فأوجد قيمة الثابت ك

إذا كانت ص = ١ + ب حيث ب تتغير عكسيا مع مربع س ، وكانت س = ١ عندما ص = ٥ أوجد العلاقة بین س ، ص ثم أوجد قیمة ص عندما س = ۲

السؤ الخامس

اِذا کانت د(س) = ۱ + س^۲ ، ل(س) = جـ کثیرة حدود حیث ۱ ، جـ ثابتان

وكان ٣د(٢) + ٣ل(س) = ٦ أوجد القيمة العددية للمقدار ٢د(٠) + ٢ل(٧)

اذا کانت : س = { ۷،۵،۳ } ، ص = { س : س ∈ ط ، ۱۰ < س < ۳۰ } وکانت الدالة الدالة

 $\{(11, V), (10, 0), (9, 0)\} = \{(9, 0), (10, 0), (11, 0)\}$

(آ) أذكر مجال الدالة (٢) أكتب قاعدة الدالة

نموذج

اختر الإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتي :

١) أكثر المجموعات الاتية تشتتاً هي المجموعة

P 14, W7, W., 1V, YA

47, 21, 11, 17, 17,

€ - , W7, TV, TO, T.

27.43.11.4.47

٢) إذا كان د(سـ ٤) = س + ٣ فإن د(٣)= ..

ک ص = س + ۳

٣) إذا كان إ ∈ س ٌ حيث س = { س : س ∈ ط ، ١٠ < س < ٣٠ } فإن إ هي

{ ٣7 }

[٧,٥] (7,7)

اذا کانت $\{a, b, -a, b\}$ في تناسب متسلسل برهن أن $\frac{1-Y-y}{y} = \frac{Y-y}{y}$

<u>السؤال|لثاني</u>

اختر الإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتي :

١) إذا كانت : ٩ ، ٣ ، ب ، ٥ كميات متناسبة فإن ٥٥ – ٣ب + ٤ =

٢) العلاقة التي تمثل تغيراً طرديا بين المتغيرين ص ، س هي

 $\frac{\omega}{w} = \frac{\omega}{w}$ 😗 س ص = ٥

(س) = m^{l+1} + 1ك كثيرة حدود من الدرجة الثانية ، ك ثابت الدالة د m

فإن د(٢) =....

وجد الوسط الحسابي والانحراف المعياري للقيم التالية ١٠،١٥،٦،١٢،٧

السؤ ال الثالث

اذا کانت س = { ۱،۲،۱۱ } ، ص = { ٤،٣،۲،۱،٠ } وکانت ع علاقة من س إلي ص حيث ﴿ عُب تعني أن (ب – ١=١) لکل ﴿ ∈ س ، ب ∈ ص فأوجد بيان ع ومثلها بمخطط سهمي ثم بين أن ع دالة و أوجد مداها

اذا کان
$$\frac{w + w}{v} = \frac{w + 3}{\lambda} = \frac{3 + w}{v}$$
 برهن أن $w : w : A = X : Y : 0$

السؤ الرابع

اذا كان منحني الدالة د: ح ← ح حيث د(س) = م ـ س يقطع محور السينات في النقطة (ـ ٢ ، ك) فأوجد قيمة م ^ك + ٢م

عددان صحيحان النسبة بينهما ٣:٢ ، وإذا أضيف للأول ٧ وطرح من الثاني ١٢ صارت النسبة بينهما ٣:٥ فأوجد العددين

السؤ الخامس

$$\frac{7}{\pi}$$
 اذا کانت ص = β - β ، ص ∞ $\frac{1}{m}$ وکانت β = ۱۸ عندما س = $\frac{7}{m}$

و و العلاقة بين س، ص العلاقة بين س، ص العلاقة بين س

الشكل المقابل المقابل يمثل الدالة c(m) = 0 $m^{7} - V$ مساحة المثلث c(m) = 0 c(m) = 0 مساحة المثلث c(m) = 0 c(m) = 0 أوجد إحداثى نقطة ب ثم أوجد قيمة ل أوجد إحداثى نقطة ب ثم أوجد قيمة ل

توجيه الدقهلية

إذا كان $\frac{1}{v} = \frac{1}{v}$ ، $\frac{7}{v} = \frac{1}{o}$ ، $\frac{7}{v} = 0$ أوجد قيمة $\frac{7}{v}$ ، $\frac{7}{v}$

السؤ الارابع

اذا کانت د(س) = س $^{L-7}$ + س $^{3-L}$ دالة کثیرة حدود حیث $L \in \mathbb{C}$ و ط $\mathbf{0}$ قیم $\mathbf{0}$ قیم $\mathbf{0}$ قیم $\mathbf{0}$ قیم $\mathbf{0}$ د (۱)

الجدول التالي يبين أعداد الطلاب المتفوقين في مادة الرياضيات في عشر مدارس إعدادية من مدارس محافظة الدقهلية أوجد الوسط الحسابي والانحراف المعياري لأعداد الطلاب المتفوقين

المجموع	0	٨	٣	٧	عدد الطلاب المتفوقين
1.	٤	٣	4	١	عدد المدارس

السؤ الالخامس

إذا كانت ص = b + b ، حيث b ثابت ، م ∞ س وكانت ص = B عندما س = B ، م ندما س = B عندما س = B عندما س = B

الشكل المقابل هو التمثيل البياني لمنحني الدالة التربيعية د: د(س) = ـ ك س السادات هو خط تماثل منحني الدالة المنحني الدالة

- 🕦 قيم ك
- (٢) مساحة المثلث إبح

الوسيط 🔁

توجيه الدقهلية

نموذج ۷

الانحراف المعياري

<u>السؤال الأول</u>

اخترالإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتى :

- ١) ابسط مقاييس التشتت هو١
- 🕒 المدى 🕒 المنوال
- ۲) إذا كان ٣ س ص = ١٠ فإن س ∞

الضرب الديكارتي س × ص

- (V,T) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1)
 - ت أوجد الوسط الحسابي والانحراف المعياري للقيم التالية ٣٢،٢٧،٢٠،١٦،٥

السؤ ال الثاني

اختر الإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتى:

- (۱) إذا كانت د(٢س) = ٣س + ٥ وكان م + ١٠ فإن د (م) + د (١٠) =
 - TY (S) 18- (D)
 - ٢) إذا كانت ٩ ، ٣ ، ح في تناسب متسلسل فإن ٩ : ٣ =
- P:- 0 -: P 0 -: P 0
- (س) = 0 س س + 0 الدالة د الدالة د الدان تحمل الدالة د الدرون ا
 - من الدرجة الثانية هي الله هي الله هي الله هي الله هي الله هي الله هي الله هي الله هي الله هي الله هي الله هي الله هي ... الله هي الله هي الله هي الله هي ... الله ا
 - اذا کان $\frac{\rho}{1-\rho+c} = \frac{0}{\rho-c+1} = \frac{3}{1-\rho+c}$ برهن أن $\frac{\rho}{1-\rho+c} = \frac{3}{1-\rho+c}$ برهن أن $\frac{\rho}{1-\rho+c} = \frac{1}{1-\rho+c}$

<u>السؤال الثالث</u>

- اذا کانت س = { ۱۰،۲،۶،۲،۱۱ }، وکانت ع علاقة علی س حیث ﴿ عَبْ تَعْنَی أَنْ (﴿ مضاعف بُ) لکل ﴿ ∈ س ، ب ∈ س أكتب بيان ع، ثم مثلها بمخطط سهمي واخر بياني
- رم مصاحف ب) لكل م ∈ س ، ب ∈ س اكتب بيان بن ممتها بمخطط شهمي واحر بياتي ، ثم منتها بمخطط شهمي واحر بياتي ، ثم بين هل ع دالة أم لا مع ذكر السبب

اذا کان
$$\frac{1}{v} = \frac{1}{r}$$
 ، $\frac{7}{c} = \frac{1}{6}$ ، $\frac{7}{r} = 0$ أوجد قيمة $\frac{7}{r}$ ، $\frac{7}{r}$

<u>السؤ الارابع</u>

اذا کانت د(س) = ٥س ــ ك ، ر(س) = س ــ ٢ك حيث ك ثابت وكان د(١) + ر(٣) = ـ ٧ فأوجد د(٣) + ر(١)

إذا كانت ص= 7 + 3 ، $\frac{1}{2}$ أوجد العلاقة بين س ، ص علماً بأن ص= 8 عندما س= 1 ثم أوجد ص عندما س

السؤ الالخامس

ہے ہوھن أن ص تتغير طردياً بتغير $\frac{7}{7} - \frac{0}{9} = \frac{0}{9}$ برھن أن ص تتغير طردياً بتغير $\frac{3}{7}$ حيث س

الشکل المقابل یمثل منحنی الدالة ن(س) = ـ س۲ + ۲س + الس السکل المنحنی ، إحداثی ب (π, π)

أوجو

- 1 قيم ك
- ٢) القيمة العظمي للدالة
- شاحة الشكل وحود

الرابع

10:19

نموذج (۱

<u>السؤال الأول</u>

اختر الإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتى:

إذا كانت النقطة (٩، ٩) تقع في الربع الرابع فإن النقطة (٥٠، ٢ ٩) تقع في الربع

الثالث 🕒

- الأول الأول
- ۲) إذا كانت س = {-١}، ن (س) + ن(ص) = ١ فإن س × ص =
- - ۱۹:٦ که ۱۹:۵ که ۱۹:۵ که ۱۹:۵ که ۱۹:۵ که ۱۹:۵ که اوجد الوسط الحسابی والانحراف المعیاری للقیم التالیة ۲،۵،۷،۸،۹،۵،۵

السؤ ال الثاني

اختر الإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتى:

- 9 S
- ۱) إذا كانت ٢٤ + ٢٠ = ١١٢ ٢ ب فإن ﴿ = ٢
- ٣) إذا كانت س ص = ثابت فأن س تتغير عكسياً مع
- اذا کان $\frac{m+m}{\pi} = \frac{m+3}{\Lambda} = \frac{3+m}{7}$ أوجد قيمة المقدار $\frac{m+m+m+3}{\pi}$

السؤال الثالث

اذا کانت س = { - ۲ ، ۲ ، ۵ } ، ص = { ۳ ، ۷ ، ك } وکانت ع دالة من س الي ص حيث الله عني أن (ب = ۱⁷- ۱) لكل ا ∈ س ، ب ∈ ص أوجد قيمة ك ثم مثل الدالة بمخطط سهمى

مس/ أسماء أنــور

توجيه الدقهلية

السؤ الارابع

٠<u>٠</u>, ٠

الشكل المقابل إذا كان ح ← ، د(س) = (م – ۳) س + (۲ – ك) س + ۲ ك + ۳ م یمثلها بیانیاً مُحَ حیث مُحَ یوازی محور السینات ، ك ، م ∈ ح أوجد د(۷) + د(۳)

اذا کانت ص= 7 + 7 + 7 = 0 وکانت ص= 8 = 1 اس= 1 وکانت ص= 8 = 1 وکانت ص= 1 اوجد العلاقة بین س= 1 مندما س= 1

السؤ الالخامس

$$\frac{7 + 7 + 7}{1 + 2}$$
 إذا كان $\frac{7}{1 + 2} = 3$ ح أوجد القيمة العددية للمقدار $\frac{7}{1 + 2 + 2}$

الشكل المقابل يمثل منحني الدالة د(س) = \mathbf{w}^{Y} ، \mathbf{v}^{T} يمثل الدالة ر(س) = \mathbf{w} س

او**جه** مساحة المستطيل واب-

نموذج ۹

<u>السؤال الأول</u>

اخترالإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتي:

١) إذا كانت جميع المفردات متساوية في القيمة فإن

$$\frac{m}{m} = \frac{m+m}{m} = \frac{m+m}{m}$$
 إذا كان $\frac{m+m}{m} = \frac{m+m}{m}$ حيث س $\neq m \neq 0$ فإن

اوجد الوسط الحسابي والانحراف المعياري للقيم التالية ٦٠،٧١،٦٢،٥٤،٧٣

._____

السؤ ال الثاني

اختر الإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتى:

إذا كان المستقيم س = ۲ هو التماثل لمنحني الدالة د : د(س) = س^۲ + ك س + ٤ هي فإن

۲) إذا كانت
$$\frac{f}{v} = \frac{v}{z} = \frac{z}{z} = 7$$
 فإن $\frac{f}{g} = \dots$

اذا کان
$$\frac{\gamma m}{\pi} = \frac{\eta m}{\gamma} = \frac{33}{2}$$
 أوجد قيمة $\frac{\gamma m + \eta m + 63}{\gamma} + \frac{33}{2}$

السؤال الثالث

اذا کانت س = { - ۲ ، - ۱ ، صفر ، ۱ ، ۲ } ، وکانت ع علاقة علی س حیث ﴿ ع ب تعنی أن (﴿ + ب = ٠) لکل ﴿ ∈ س ، ب ∈ س أكتب بیان ع ، ومثلها بمخطط سهمی ، واذكر مع بیان السبب هل ع دالة ام لا

{ (Y,Y) }

إذا كانت الكميات الموجبة ١٥ ، ٦ب ، ٧ج ، ٨د في تناسب متسلسل ، أثبت أن :

$$\frac{3+70}{5+7} = \frac{90}{5}$$

السؤ الارابع

 $\Delta = 1$ عندما س Y = 1 عندما ص

السؤ الالخامس

إذا كان
$$\frac{71}{7-2} = \frac{6}{3}$$
 برهن أن ص ∞ ع

إذا كان الشكل المقابل يمثل منحني الدالة التربيعية د : د(س) = $\frac{1}{\pi}$ س + η

(Y- ··) **(**

نموذج

<u>السؤال الأول</u>

اختر الإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتي :

١) إذا كانت النقطة ٩ (س – ٥ ، س – ٣) تقع على محور السينات فإن إحداثي النقطة ٩

🜓 س + ۳

(Y.·) P

(· · Y-) **>** (·،۲) **(**

۲) الدوال التالية هي دوال كثيرات حدود ما عدا الدالة د: د(س) =

 $(\frac{1}{2} + m)$ \otimes $m + m 7/2 \otimes$ (w + 3)

٣) إذا كان المدى للقيم ٧ ، ٣ ، ٦ ، ك ، ٥ هو ٦ فإن ك = ...

 $\{7.0\}$ $\{8.0\}$ $\{8.0\}$ $\{8.7\}$ $\{8.7\}$

 $(9-9) \times (9-9) \times (9-9$

السؤ ال الثاني

اختر الإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتي :

١) إذا كانت س = [- ٢ ، ٢ [، ص [٠ ، ٤] فإن (-٢ ، -١) ∈

🕒 ص × س س × ص

Y: 4: 5

۲) إذا كان $\frac{\pi}{2} = \frac{\pi}{2} = \pi - فإن (1: - = =)$

1:4:5

 $-\frac{7}{2}$ إذا كانت $\frac{1}{2}$ $\frac{1}{2}$ حيث ٢س + $\frac{7}{2}$ = صفر ، فإن ثابت التغير =

توجيه الدقهلية

السؤال الثالث

إذا كانت س = { ۷،٤،۱ } ، ص = { -۱ ، ۱ ، ٤ ، ۷ } وكانت ع علاقة من س الي ص

حيث ﴿ عُبُ تعني أن ﴿ ﴿ + | ب | = ٨) لكل ﴿ ∈ س ، ب ∈ ص

- أكتب بيان ع ، ثم مثلها بمخطط سهمي
 - آ بين هل ع دالة أم لا ؟ مع ذكر السبب
- احسب الانحراف المعياري للقيم التالية ٩،٨،٧،٦،٥

السؤ الرابع

إذا كان مقدار السرعة ع التي يخرج بها الماء من فوهة خرطوم يتغير عكسياً بتغير مربع طول نصف قطر فوهة الخرطوم نق وكانت ع = ٥سم / ث عندما نق = ٣سم أوجد ع عندما نق = ٢.٥ سم

السؤ الالخامس

الشكل المقابل هو التمثيل البياني لمنحنى الدالة التربيعية

$$c:c(m)=\frac{\xi_{-}}{q}m^{2}+\frac{\chi_{-}}{q}$$

- 🛈 أوجد إحداثي النقطتين 🖣 ، 🗝
- ٦ أوجد محيط ، مساحة المثلث ﴿ وب

💽 منفرجة

توجيه الدقهلية

السؤال الأول

اختر الإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتى:

- ١) الزاوية الحادة تتممها زاوية
- 🕝 صفریة 🕒 حادة
- ۲) ميل المستقيم الذي معادلته ص = ۳ هو
- ا صفر
 ا سفر
 ا صفر
 ا سفر
 <l
 - ۱) ۲ و فطر في دادره مردرها ۲ (۱۰ ۱) خيت ۲ (-۱۰ ۱) فإن نقطه ب هي (۱۰۰) (۱۰۰) (۲۰۰) (۲۰۰)
 - إذا كانت: ٩ (١،٣) ، ١ (٢،١) ، ح (٥،٤) أثبت أن: ١ ح = ٢ ٩ ب

السؤ ال الثاني

اخترالإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتى:

- المستقيمان العموديان علي مستقيم ثالث في نفس المستوي يكونان
- 🕜 متوازیان 🕒 متعامدین 🤌 متقاطعین علی التعامد
 - ۲) مربع مساحته ۱۸سم ً فإن طول قطره يساوي سم
- 7 D TV TO
- مثلث قائم الزاوية في ب فإذا كان: ۲۹ μ = π الم فإن π الم الزاوية في ب فإذا كان: ۲۲ π
- 70 D 70 D 70 D
- إذا كانت النقط ١٠،١)، ب(س، ٣)، ح(٥،٢) تقع على استقامة واحدة فما قيمة س

السؤال الثالث

ا إذا كانت: جتاس = جا ۳۰ ظاه ٤٥ حيث س قياس زاوية حادة فأوجد قيمة: ظا س –جا (س – ١٥)

 \triangle اب ح فیه (1,1) ، ب(1,3) ، ح(1,3) \triangle \triangle \triangle ، \triangle \triangle ، \triangle

<u>السؤ الارابع</u>

- الشكل المقابل: Δ اسح قائم الزاوية في Δ ، ۱۵ = ۱۵ - بر عرب = ۱۵ سم · 世 (s トレン) じ。
 - أوجد: مساحة ∆ ابح

أثبت أن ل، ، ل، متعامدين

السؤ الالخامس

۱۲.٦ = ۹ ح = ۱۲.٦ سم ، $\sqrt{2} = 27$ ، ١٥٥ أوجد $\sqrt{2}$ أوجد $\sqrt{2}$ أوجد $\sqrt{2}$

الشكل المقابل:

6,116,0

معادلة ل، هى : $\omega = \alpha - \omega$

، ويقطع محور الإحداثيات في

النقطتين ء، ٩

، المستقيم ل, يقطع محور

الإحداثيات

في النقطتين ب، ح

حيث ١ ح = ٧ وحدة طول

أوجد: 🕦 إحداثيي كل من النقطتين ب، ح

معادلة المستقيم ل,

۳۰ 👂

نموذج ح

<u>السؤال الأول</u>

اخترالإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتي:

للزاوية	الستيني	القياس	فإن	۲:۱	متتامتين	زاويتين	قياسي	بين	النسبة	كانت	إذا	1)
							0				~ <	<11

- ۹۰ 🕒 ۱۲۰ 📭
- ٢) مساحة الدائرة التي مركزها (٤،٣) وتمر بنقطة الأصل تساوي وحدة مربعة

7.

- π^0 π^{10} $\pi^{$
 - 5 5 7- 0
- إذا كانت (۱،۱-۱،۱)، ب (۱،۳)، ح (٤،٣) أثبت أن∆ (ب ح قائم الزاوية في ب وأوجد مساحته

<u>السؤ ال الثاني</u>

اخترالإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتى:

- ا إذا كان جا (س + ٥) = الج ، حيث (س + ٥) زاوية حادة فإن س = ٥
 - 00 D 7. S Y0 S
- - ٣) المستقيم المار بالنقطة (٣،٢) وعموديا على محور الصادات معادلته هى
 - m = 0 m = 7 m = 7 m = 7 m = 7 m = 7
 - إذا كان بعد النقطة (س ، ٥) عن النقطة (٦ ، ١) يساوي ٢ √ه فأوجد قيمة س

<u>السؤال الثالث</u>

اوجد معادلة المستقيم الذي يقطع من الجزء الموجب لمحور الصادات ٥ وحدات وعموديا على المستقيم الذي معادلته: ٢س – ٥ ص + ١ = ٠

السؤ الارابع

- اذا كان جتا س = ظا ۳۰ ° جا ۳۰ ° حيث س زاوية حادة فأوجد بدون استخدام حاسبة الجيب قيمة جاس ظا س

السؤ الخامس

- مستقيم معادلته $\frac{w}{\gamma} = \frac{\omega}{\eta} = 1$ أوجد ميله وطول الجزء المقطوع من محور السينات
 - سلم طوله ٦ أمتار يستند طرفه العلوي ٩ علي حائط رأسي ، وطرفه ب علي أرض أفقية فإذا كانت ح هي مسقط ٩ علي سطح الأرض ، وكان قياس زاوية السلم علي الأرض ، ٦٠ فأوجد طول ٩ حـ

°1.0

نموذج الله

<u>السؤال الأول</u>

اخترالإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتى:

- $... = (عان <math>v(\triangle)) = v$ ، جاب= + z حیث ب زاویة حادة فإن $v(\triangle) = ...$
 - °10 S °V0 S
- ٢) إذا كان اب ح مثلث متساوي الساقين وقائم الزاوية في ح فإن ظا ا =
 - - $-\frac{\overline{}}{}$ اذا کان $\sqrt{+}$ $-\overline{}$ میل $\sqrt{+}$ = صفر فإن ح \overline{s}
 - قي الشكل المقابل: ج منتصف اب حيث
 - ج (٤ ، ٣) أوجد إحداثي نقطتي ١ ، ب ثم مساحة المثلث (رب

<u>السؤال|لثاني</u>

اختر الإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتى :

- 07. D 080 D 04. D
- ۲) طول نصف قطر الدائرة التي مركزها (۰، ۰) وتمر بالنقطة (۳، ۲) يساوي ... وحدة طول
 - 17 S
 - ٣) قياس الزاوية الخارجة عن المثلث المتساوي الأضلاع =
 - و ۱۲۰ هـ و ا

السؤال الثالث

- أوجد معادلة الخط المستقيم الذي يقطع من محوري الإحداثيات السيني والصادي
 جزئين موجبين طولاهما ۲ ، ۳ وحدات طول على الترتيب

السؤ الرابع

(7-1) اب ح = 2 متوازی أضلاع فیه = (7,7)، ب = 2

أوجد إحداثي نقطة تقاطع قطريه ثم أوجد إحداثي نقطة ء

بدون إستخدام الحاسبة أثبت أن

۲جا۰۳°+٤جتا۰۳°=ظا۲۰۳°

السؤ الالخامس

- أثبت أن النقط $\{(0,0), (0,0), (0,0), -(0,0)\}$ ایست علی استقامة واحدة
 - اوجد معادلة الخط المستقيم العمودي على الب من منتصفها حيث الر١٠٢)، ب(١٠٢)

نموذج ع

<u>السؤال الأول</u>

اختر الإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتى:

- ا) في المثلث $\{ (\angle \}) = 0 \land (\exists) = \land \land)$ هجاب جياب فإن $v(\angle) = \dots$
- 07. D 08. D 08. D
- (Y) مساحة المثلث المحدد بالمستقيمات س $= \cdot \cdot \cdot$ ص $= \cdot \cdot \cdot$ س= Y هي
- ٦ وحدة مربعة 🕒 ١٢ وحدة مربعة 🕒 ١٥ وحدة مربعة
 - ٣) إذا كان المستقيم المار بالنقطتين (١، ص)، (٣، ٤) ميله يساوي ظا ٤٥° فإن ص = ...
- 1- S Y S
- اب ح و شبه منحرف متساوي الساقين فيه ﴿ اَ اَ بَ حَ ، ﴿ وَ = ٤ سم ، ﴿ بَ = ٥ سم ، ﴿ بَ = ٥ سم ، ﴿ بَ = ٥ سم ، ﴿ ب ب ح = ١٢ سم أوجد قيمة المقدار خالا بالله على الله عل

السؤ ال الثاني

اخترالإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتى:

- - (٣ ، ٥) فإن قيمة ﴿ =
 - O TO

 - 09. D 050 D 07. D 07.
 - (۳) المستقيم: $\frac{\omega}{1} \frac{\omega}{1} = 7$ يقطع من محور السينات جزء طوله = وحدة طول
 - T D T D
 - اب قطر في دائرة مركزها م حيث ب (١١،٨)، (٥،٧) أوجد الدائرة (٦٠ ١٥) معادلة المستقيم العمودي على اب من نقطة المستقيم العمودي على اب من نقطة المستقيم العمودي على البيائرة المستقيم المستقيم

السؤال الثالث

- الشكل المقابل: يمثل المستقيم أب الذي معادلته صادلت بالذي معادلته صادلت بالنقطع من محوري الإحداثيات بالنقطة (۲،۳) جزئين متساويين ويمر بالنقطة (۲،۳) قيمة ك، ح ألى مساحة المثلث ابو

<u>السؤ الرابع</u>

في الشكل المقابل: ﴿بَ يوازي محور الصادات ، المستقيم بـــــ الذي معادلته ص = ـ س + ٣

، النقطة ي (١،٢)

أوجو

طول بح

شاحة الشكل و ابح

(∠وحب) ك(∠ وحب)

NO

توجيه الدقهلية

- ابح مثلث قائم الزاویة فی ب
 - ۱=۱ ۲ جیا۲ ا جیا۲ ا = ۱
- اذا کان $\{ = 0 \text{ سم }, \{ = 1 \text{ سم. أو جد } \cup \{ \} \}$ الأقرب دقيقة \bigcirc

السؤ الالخامس

- 🚹 أوجد معادلة المستقيم المار بالنقطة (٣، ٤) ويصنع مع الاتجاه الموجب لمحور السينات زاوية قياسها ١٣٥°
 - بدون استخدام الحاسبة أثبت أن

نموذج

<u>السؤال الأول</u>

اختر الإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتي :

- البعد بین المستقیمین س ۳ ۰ ، س +۲ = ۰ یساوی وحدة طول

- ۱= تساوي وحدة طول

- $= \frac{\sqrt{m}}{r}$ إذا كان جيا $\left(\frac{m}{r}\right) = \frac{\sqrt{m}}{r}$ حيث $\left(\frac{m}{r}\right)$ زاوية حادة فإن جا س

<u></u> في الشكل المقابل:

اه⊥بح، اه = ١٢ سم ، ظا س + ظا ص = _

<u>السؤال|لثاني</u>

اختر الإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتي :

- ١) ميل الخط المستقيم الذي يصنع مع الاتجاه الموجب لمحور السينات زاوية موجبة قياسها
 - هـ يساوي

 - 🔼 جتا هـ
 - ٢) في الشكل المقابل:

- (٣) إذا كان المستقيمان ٣ص + س -٧ = ٠ ، ص = ك س + ٥ متوازيين ، فإن ك =

- وجد معادلة المستقيم المار بالنقطة (١، ٢) والعمودي على المستقيم الذي يمر بالنقطتين 🔼 (٤-,0),(٣-,٢)

- 🚹 على مستوى إحداثي متعامد مثل النقط: (٠،٥٠)، ب (٢،٠)، حـ(٣،٠)، ع(–٢،٠)
 - وحول المعادلة المستقيم المار بنقطة جـ موازيًا بع
 - مساحة سطح الشكل اب ح ≥
 - <u>في الشكل المقابل:</u>
 - اب حو معين، ج (٣،٤)
 - ۩ أوجد إحداثى النقطتين ﴿ ، ب
 - ا أوجد ظا (١٩٥١)
 - (٣) أوجد معادلة وب

إذا كان ﴿ (س،٣)، ب(٣، ٢)، ح(٥، ١)، وكانت ﴿ تقع على محور تماثل بحر وجو قيمة س

□ اب ح مثلث قائم الزاوية في ب برهن أن جاا+جاح > ١

السؤ الخامس

إذا كان جتا ٢س = ظا ٤٥° جا ٣٠° حيث ٢س زاوية حادة فأوجد بدون استخدام

في الشكل المقابل: ن (∠حار)=ن (∠حرا) ، إحداثي النقطة جـ (٣،٤) هي أوجد معادلة إب

ثم أوجد مساحة المثلث أوب

نموذج

<u>السؤال الأول</u>

اختر الإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتي:

- ١) المستقيم المار بالنقطة (٣، ٤) ويوازي محور السينات معادلته هي
- **ح** س=۳ س=٤ 🖤 س=۳ ع=ع
- ٢) دائرة مركزها نقطة الأصل وطول نصف قطرها ٢ وحدة طول فأي النقط الآتية تنتمي للدائرة
- (1.T) (1.T) S (1,1) (۱،۲-)
- .. = (ع) ع الحاد الزوايا إذا كان v (س) = v جا ص = جتا ص فإن v (ع) = ..
 - ۸۰ 🕒 ۷٥ 🕒 ويقطع ﴿ حَ فَى هَ أُوجِد معادلة ءَ هَ

e×× ع

V0 💽

اب ا

السؤال الثاني

اختر الإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتى:

- - و الاحد ا
 - ۲) إذا كان جا س = ۲ جا ۳۰° جتا ۳۰° فإن س = °
 - 7.
 - ٣) بعد النقطة (ب ، -٣) عن محور الصادات يساوى حيث ب∈ع
 - ٤_ ا
- اب ح و شبه منحرف $\sqrt{s} / \sqrt{\frac{1}{y-c}}$ ، $0 (\leq y) = 0$ ، 0 = 1 سم ، 0 = 1 سم ، 0 = 1 سم 0 = 1 سم أثبت أن جنا 0 = 1 0 = 1 0 = 1 0 = 1

السؤال الثالث

إذا كانت النقط $\{(-1, 7), \gamma(0, 1)\}$ ، با (0, 1)، جا (0, 1) هي رؤوس مثلث قائم الزاوية في ب

فأوجد قيمة س

باستخدام الشکل المقابل: اذا کانت ب (\cdot, τ) ، $\geq (-1, 0)$

أوجد مساحة المثلث ب جـ و

<u>السؤ الرابع</u>

- إذا كانت س زاوية حادة، جتا س ظا س = $\frac{1}{7}$ أوجد قيمة 1 + جتا 1 س
 - في الشكل المقابل:

ا∈ محور السينات

، او = وب حيث و نقطة الأصل أوجد طول اب حيث ب (-٩، ١٥)

السؤ الخامس

ا في الشكل المقابل:

<u></u>في الشكل المقابل:

ابدء مستطيل

فیه ب (۲۰،۲)، جـ (۰، ـ٤)

، مساحة المستطيل أب حاء عادة مربعة أوجد إحداثي النقطة و

نموذج (۱

<u>السؤال الأول</u>

اختر الإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتي :

- ١) بُعد النقطة (٤، ٣-) عن محور السينات = وحدة طول

 - ۲) ۲ جا ۳۰ جتا ۲۰ و
- ٣) ميل المستقيم الذي <mark>ي</mark>صنع مع الاتجاه الموجب لمحور السينات زاوية موجبة جيبها ⁻
 - يساوي
- أوجد معادلة المستقيم الذي يقطع من محوري الإحداثيات السيني والصادي جزأين موجبين طولاهما ٤ ، ٩ على الترتيب

<u>السؤال|لثاني</u>

اختر الإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتي :

- (3 + 1) إذا كان المستقيم الذي معادلته: (3 + 1) = 10 = 10 = 10 إذا كان المستقيم الذي معادلته: (4 + 1) = 10

 - في الشكل المقابل:

اب ح ≥ شبه منحرف

قائم الزاوية في ﴿ ، ﴿ عَ | البح ، اب = ٦ سم، بع = ١٠ سم

- (الالالاس) أوجد ظا
- آوجد معادلة عج

السؤال الثالث

- الآلة الحاسبة برهن أن ظا ٌ ٦٠° ـ ظا ٌ ٥٥° = ٤ جا ٣٠° بدون استخدام الآلة الحاسبة برهن أن ظا ٌ ٦٠° ـ ظا
 - في الشكل المقابل:
 - ابءر مربع ، و جـ = ٥ وحدة طول
 - ج منتصف √ب
 - أوجد إحداثي النقط ∤، ب ، ≥

السؤ الرابع

- إذا كان البعد بين النقطتين (٧٠٢) ، (-٢ ، ٣) يساوي ٥ وحدات طول ، فما قيمة ١ ؟
 - في الشكل المقابل: أب يمر بالنقطتين (-7,0), -(0,0), -2 ه (-7,0), -(0,0), -2 ه (-7,0), -(0,0) حيث (-3,0) أوجد مساحة المربع = -2 ه = -2 أوجد مساحة المربع = -2 ه = -2

السؤ الالخامس

- 🚹 إذا كانت النقط ۱(۳،س)، ب(۱،٤)، ح(٥،٥) على استقامة واحدة فما قيمة س
 - <u></u> في الشكل المقابل:

نموذج (

السؤال الأول

اخترالإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتي:

..... إذا كان المستقيمان اللذان ميلاهما $\frac{-7}{\pi} = \frac{b}{7}$ متوازيين فإن ك $\frac{1}{7}$

1 0 <u>r</u>-0

۲) إذا كان ظا (س + ۱۰)° = ﴿ ٣ حيث (س + ۱۰) ° قياس زاوية حادة فإن س =°

مساحة سطح المثلث المحدد بالمستقيمات ٣س - ٤ص = ١٢ ، س = ٠ ، ص = ٠ تساوي

..... وحدة مربعة .

و أوجد معادلة المستقيم المار بالنقطة (-١، ٣) ، ميله سالب ، يقطع جزأين متساويين من محورى الإحداثيات.

السؤال الثاني

اخترالإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتى:

..... اب ح = 2 معین فیه = (7, 7)، ح = (-7, -7)، فإن میل = 2 یساوی

۲) ظا ۷۰° =

٣) معادلة المستقيم المار بالنقطة (٥،٣) موازيًا محور السينات هي:

<u>في الشكل المقابل:</u> إحداثي الإرم ٦٠)

، مساحة المثلث و اب = ۹ وحدة مربعة أوجد : معادلة اب

مس/ أسماء أنــور

توجيه الدقهلية

<u>السؤال|لثالث</u>

- اً أوجد قيمة س التي تحقق س جا ٤٥° جتا ٤٥° ظا ٦٠° = ظا ٢٥° ـ جتا ٢٠°
 - في الشكل المقابل:

المثلث باو متساوي الأضلاع

، جـ منتصف ﴿ب ،

أوجد معادلة وح

السؤ الاابع

السؤ الالخامس

- إذا كان المثلث ابح قائم الزاوية في ب، ظاا+ظاح= ٢٥ أوجد ظا ٓ ا+ظا ٓ ح
 - في الشكل المقابل : اب ح و مستطيل، ب (٦،٤)
 - 🛈 أوجد إحداثي النقطتين ح، ۶
 - 🕥 أوجد مساحة المستطيل ابحء
 - اوجد معادلة حرى

نموذج

<u>السؤال الأول</u>

اختر الإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتي:

- إذا كان المستقيمان س + ص = ٥ ، ك س + ٢ص = ٠ متوازيين، فإن ك =
 - - ° 80
 - ٣) في المثلث وهر القائم الزاوية في هـ، أي العلاقات التالية خطأ؟
- ا طاء×ظاو=۱ ا جاء=جتاو کا جتاء=جاو حتاء=جاه اوجد معادلة المستقيم الذي ميله – ويمر بالنقطة (٣، -١)

اختر الإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتي:

- ۱) اب قطر في دائرة مركزها م، حيث ا(−۲،۲)، ب(٦،−٥) فإن إحداثي م يساوي
 - (1-,1) (1 · Y₋) (Y,1-) **(-1, Y)**
 - ۲) المستقیم الذی معادلته: ۳س + ٤ص -۹ = ٠ یکون عمودیًا علی مستقیم میله

٣) في الشكل المقابل:

- ، اء = ٤ سم، ن(كابء) = س فإن ظا = ...
- إذا كان محور تماثل \overline{z} يمر بالنقطة $\{(7,7)\}$ حيث جـ (۱،۳)، z (-۱،۷) فأوجد قيمة م

مس/ أسماء أنـور

توجيه الدقهلية

<u>السؤال الثالث</u>

الشكل المقابل:

ابحء متوازي الأضلاع

مساحة سطحه ۹۲ سم، رسم $\sqrt{\sqrt{1-\mu}}$

$$\frac{1}{m} = \frac{1}{m}$$
يقطعها في ن، $\{ v_n = 1 \}$ سم ، فإذا كان $\frac{v_n}{v_n} = \frac{1}{m}$

$$(s \ge 1)$$
 اوجد: (1) طول کل من $\frac{\overline{v}}{v} = \overline{v}$ اوجد: (2)

الشكل المقابل: $\overline{\varphi} = \overline{\varphi}$ ميل $\overline{\varphi} = \overline{\varphi}$ ،

مساحة المثلث (وح

السؤ الارابع

اِذا کان ص قیاس زاویهٔ حادهٔ حیث: جاص جا ٔ ه ٤ ° = ظا ٔ ه ٤ ° – جتا ٔ ٠ ۲ ° و ظا ٔ ۳ ۰ ۲ ° طا ۰ ۲ ° طا ۰ ۲ ° طا ۰ ۲ °

فأوجد قيمة ص.

اب ح z مستطیل فیه f(1,1)، f(1,1)، حf(3,-7)، حf(3,-7))، f(3,1) اوجد قیمة f(3,1) م

السؤ الالخامس

البح مثلث قائم الزاوية في ب، ٧ظا ﴿ ٢٤ = ، أوجد قيمة ١ –ظا ﴿ جاجا

الشكل المقابل:

معادلة
$$\frac{\overline{u}}{r}$$
هي $\frac{\overline{u}}{r}$ $+\frac{\overline{u}}{r}$ $+=$

فإذا كان إحداثي نقطة ٤ (-٠،١٠)،

أوجد:

- ① مساحة المربع ابحء
- إحداثي النقط ١،٠٠

نموذج ا

السؤال الأول

اخترالإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتى:

٠ ٢س + ص = ٨ فإن ك =	م الذي معادلته	ع على المستقيه	(ك، ٢ك) تق	إذا كانت النقطة	1
			, (

- 9 1 9
 - راویة حادة فإن س $=\frac{\overline{\Psi}}{\overline{\Psi}}$ حیث (۲س) زاویة حادة فإن س
- . 9 EO S
- البعد بین المستقیمین س + ۳ = ۰، س ۲ = ۰ یساوی وحدة طول (
- اذا کانت النقطة (۵، ۲) هي منتصف ﴿ب حيث ﴿(س، ۷)، ب(−٤، ص) أوجد س + ص

السؤ ال الثاني

اختر الإجابة الصحيحة من بين الإجابات المعطاة في كل مما يأتي :

- -1 اب ح \geq متوازي أضلاع فيه $\gamma \cup (\triangle) + (\triangle) + (\triangle) = 1$ فإن ظا ج
- - ٢) معادلة المستقيم الذي يمر بالنقطة (-٢، ك) ويوازي محور السينات
- المستقيم المار بالنقطتين (-۱، -۱) ، (٤،٤) ، يصنع زاوية موجبة مع الاتجاه الموجب
 لمحور السينات قياسها

<u>السؤال الثالث</u>

- اً أوجد قيمة: س التي تحقق أن س جا٬ ۶۵° = جا ۳۰° جتا ۳۰۰ + جتا ۳۰° جا ۳۰°
- اثبت أن النقط ﴿ (٣،٥)، ب (٣، ٢)، ح (-٢، ٤) هي رؤوس مثلث منفرج الزاوية في ب أن النقط ﴿ (٣،٥)، ب (٣، ٢)، ح (-٢، ٤) هي رؤوس مثلث منفرج الزاوية في ب ثم أوجد إحداثي نقطة ۽ التي تجعل الشكل ﴿ ب ح ٤ معينًا وأوجد مساحة سطحه

<u>السؤ الرابع</u>

ا في الشكل المقابل:

معادلة فرخ هي ص = ٢ س
إحداثي النقطة جـ (-٣ ، ٤) فإذا كانت
مساحة سطح المثلث (و و
= مساحة سطح المثلث جوو
أوجد إحداثي النقطة (
ثم أوجد معادلة (ج

السؤ الخامس

- البياح كسر الجزء العلوي لشجرة فصنع مع الأرض زاوية قياسها ٦٠°، إذا كانت تلاقي قمة الشجرة بالأرض تبعد عن قاعدة الشجرة مسافة ٤ أمتار، أوجد طول الشجرة لأقرب متر
 - <u>عي الشكل المقابل:</u>

معادلة المستقيم ل، هي ص = س $U / / U_r$ ، $\sqrt{-1} + U_r$ ل $\sqrt{-1} + U_r$ وحدة طول $\sqrt{-1} + U_r$ وحدة طول أوجد معادلة المستقيم U_r

10 Sep.

Every

نموذج استرشادي للصف الثالث الإعدادي _ العام الدراسي ٢٠٢٣ ـ ٢٠٢ الفصل الدراسي الاول- المادة (الجبر والاحصاء) الزمن ساعتان (يسمح باستخدام الالة الحاسبة)

	ن بين الاجابات المعطاة:	نر الاجابة الصحيحة مر	السوال الاول: اخذ
	ص =	٣ ، س ص = ١ فإن	ر) إذا كان س =
٣ (٤	١ 😞	\frac{1}{\tau}	۹ صفر
	سلسل فإن س =	۲ ، س في تناسب مت	۲) إذا كانت ١،
٤ (٤	* @	۲ 😔	1 (
	۸ (س) <mark>یمکن ا</mark> ن تساوي	× ص) = ٥ فإن ر	س) إذا كان به (س
٤ (٤	۳ 😞	۲ (ب	1 1
	المحورية مصورالعدية	: ۸ ، فإ ن س ّ =	ع) إذا كان <mark>٢</mark> =
r (3	۹ 😞	1. 😡	17
		د ۲۰ = <u></u>	ه) ۲۵ % <mark>من الع</mark>
176	۸ 🕞	• 😜	£ (P)
	۱، ۸ هو	ة القيم ۲ ، ۷ ، ۹ ،	۶) اُلمدی لم <mark>ج</mark> موع
16	Ve	۸ (()	4 P

السؤال الثاني:

- ومن الرسم أوجد معادلة محور التماثل ، القيمة الصغرى للدالة.
- (ب) إذا كانت س = { ١ ، ٠ ، ١ } ، وكانت ع علاقة على س حيث (٢ ع ب) تعنی أن (۲+ب=صفر) لكل ۱∈س، ب∈س
 - أكتب بيان ع ومثلها بمخطط سهمى
 - هل ع تمثل دالة أم لا ولماذا ؟

السوال الثالث:

(أ) إذا كانت
$$w = \{1, x, y\}$$
, $w = \{1, x, y\}$, $w = \{1, x, y\}$
فأوجد: (س, $x = \{1, x, y\}$) $w = \{1, x, y\}$
(ب) إذا كان $\frac{w}{w} = x$ ، فأوجد

$$\frac{w + \omega}{\omega} + \frac{\gamma}{\omega} \qquad (\gamma) \qquad \frac{w + \omega}{\omega} \qquad (\gamma)$$

السؤال الرابع:

- (أ) إذا كانت ص ∞ س وكانت ص = V عندما س = I فأوجد العلاقة بين <mark>س</mark> ، ص ثم أوجد قيمة س عندما ص = ١٤ 📉
 - (ب) احسب الإنحراف المعياري لمجموعة للقيم الآتية: 10,19,11,14,14

السوال الخامس:

بؤال الخامس: (أ) إذا كانت ف تتغير عكسياً مع ن وكانت ف = 1 عندما ن = 1 ، فأوجد العلاقة بين ف ، ن ثم أوجد ف عندما ن = ٢

$$\frac{79}{m} = \frac{9}{m} = \frac{9}{m} = \frac{70}{m} = \frac{70}{m} = \frac{70}{m} = \frac{70}{m} = \frac{70}{m} = \frac{70}{m}$$
 (ب) إذا كان $\frac{m}{7} = \frac{9}{m} = \frac{9}{m}$

اجابة النموذج الاسترشادي

السؤال الثاني

غ	درج							(1)
	1	•	1_	۲_	٣_	٤_	س	
11	٦	٣	۲	14	٦	11	ص	

القيمة الصغرى للدالة هي ٢ بدرجة

(ب) خ = { (- ۱ ، ۱) ، (۰ ، ۰) ، (۱ ، – ۱)} درجة

\درجة

جدرجة خ تمثل دالة لان كل عنصر من عناصر سم يخرج منه سهم واحد فقط

وزارة التربية والتعليم الإدارة المركزية لتطوير المناهج إدارة تنمية مادة الرياضيات

السؤال الثالث:

$$(i) \ \, 0 \times m = \{(1, 1), (1, 1), (1, 1), (0$$

السؤال الرابع: ا

$$\Lambda = \frac{{}^{\prime}(10-10)+{}^{\prime}(10-10)+{}^{\prime}(10-11)+{}^{\prime}(10-11)+{}^{\prime}(10-10)+{}^{\prime}(10-10)}{0} = {}^{\prime}$$
التباین ع

درجة
$$\sqrt{V} = \sqrt{V}$$
 درجة الانحراف المعياري

٥

السوال الخامس:

(1)

$$\frac{1}{\dot{\upsilon}}$$
 \times ف ∞ $\frac{1}{\dot{\upsilon}}$ ∞ ف \div

\درجة \درجة درجة

$$1 = 4$$
 .: $1 = 0$ عندما $0 = 1$ عندما $0 = 0$ $0 = 0$ عندما $0 = 0$ $0 = 0$

 $(\dot{\tau})$

 $\frac{w}{v} = \frac{w}{v} = \frac{w}{v}$ بضرب حدي النسبة الاولى × ۲ ، والثانية × ۳ ، والثالثة × ٤ وجمع مقدمات وتوالى النسب الثلاثة

$$\frac{7m + 7m + 33}{5 \times 5 \times 7 \times 7 \times 7 \times 7 \times 2} = |\text{Less limit}|$$

$$= |\text{Less limit}|$$

$$= |\text{Less limit}|$$

$$= |\text{Less limit}|$$

$$\frac{\gamma_{0}}{\gamma_{0}} = \frac{\gamma_{0}}{\gamma_{0}} = \frac{\gamma_{0}}{\gamma_{0}} \div \frac{\gamma_{0}}{\gamma$$

			مكتب مستشار الرياضيات
الصف: الثالث الإعدادي			
المادة : هندسة تحليلية وحساب مثلثات			
الزمن: ساعتان			
، الثالث الاعدادي	حان نصف العام للصف	نموذج استرشادى لامت	
(يسمح بإستخدام الآلة الحاسبة)	·		أجب عن الأسئلة الآتية:-
	لاجابات المعطاه:	ابة الصحيحة من بين ال	السؤال الأول:- اختر الإج
الضلع الثالث			۱)مثلث متساوى الساقين
17 (2	ج) ۹	ب) ہ	اً) ٤
		ی مستطیل هو	۲) عدد محاور ال <mark>تماثل</mark> لأو
د) عددلا نهائی	ج) ٣	ب) ۲	۱) (۱
5	=	با المتجمعه حول نقطة	۳) مجمو <mark>ع ق</mark> یاسات الزواب
7) ۳۲۰، (2	°۲٧٠ (->	ب) ۱۸۰°	°9. (1
0	حادة فإن θ =	۲° حیث θ قیاس زاویة	٤) اذا <mark>كانت جتاθ = جا</mark> ٠
17. (2	۹۰ (ج	ب (پ	7. (1
7		، لمحور السينات يساو	٥) مي <mark>ل ا</mark> لمستقيم الموا <mark>ز</mark> ي
د) غ <mark>یر</mark> معرف	ج) صفر	ب) (ب	1- (1
عور السينات	ع الانجاه الموجب لمد	، ص = س+۲ ي <mark>صنع ه</mark>	٦) المس <mark>تق</mark> يم الذي معادلت <mark>ا</mark>
	> E	,	زاوية قيا <mark>س</mark> ها =
۵٠ (ع	۲۰ (->	ن) ه٤	7. ()
170		TE	السوال الثاني:-
	VAN		
وية حادة .	، الزاوية θ حيث θ زا	= جا 0 ، فاوجد : قياس	أ) اذا كان ٢جتا ٢٠٠° ـ ١ =
(・・ヾ)	حیث ۹(۲، ۶)، ب	يم الماربمنتصف إب،	ب) أوجد: معادلة المستق
		٣س + ٥	ويوازى المستقيم ص = '
			,

.

السوال الثالث:-

أ) بدون استخدام الآله الحاسبة ، أثبت أن :جا٣٠ + جتا٣٠ - ظا ٥٤ = جتا ٩٠ ،

ب) اذا كان المستقيم $\frac{\longleftrightarrow}{1}$ يوازى محور الصادات حيث (1 - 3) ، ب (-3) ، ب أوجد قيمة ن

السؤال الرابع:-

أ) أثبت أن المستقيم المار بالنقطتين (٤،٣٨٣)، (٥،٢٨٣) عمودى على المستقيم الذي يصنع زاوية موجبه قياسها ٣٠° مع الاتجاه الموجب لمحور السينات.

ب) ٩ب جـ مربع فيه ٩ (٣ ، ٥) ، جـ (- ٢ ، ٤) احسب : مساحة هذا المربع .

<u>السؤال الخامس:</u>-

أ) في الشكل المقابل: م ب ج مثلث قائم الزاوية في ج ، مب = ١٠ سم

ب) أوج<mark>د الميل و طول الجزء المقطوع من محور الصادات للمستقيم الذي معادل</mark>ته: عسل الله على الذي معادلته على المعادلة المعا

انتهت الأسئلة

نموذج الاجابة للنموذج الاسترشادى لمادة الهندسة

(درجة)

(درجة)

\ درجة)

(درجة)

\ درجة)

🐈 درجة)

(🐈 درجة)

(درجة ونصف)

(🕹 درجة) (الله درجة)

وزارة التربية والتعليم الإدارة المركزية لتطوير المناهج مكتب مستشار الرياضيات

للصف الثالث الاعدادي

السؤال الاول: (٦ درجات) كل مفردة (درجة)

٦	٥	ŧ	٣	۲	1	رقم المفردة
(ب)	(ج)	(4)	(۶)	(ب)	(÷)	رقم الاجابة
° £ 0	صفر	۳.	°٣٦,	*	٩	الاجابة الصحيحة

السؤال الثاني: (٦ درجات)

$$\frac{1}{\sqrt{2}}$$
 | $\frac{1}{\sqrt{2}}$ | $\frac{1$

$$\text{airmen} \quad \mathsf{q} \; \mathsf{v} = (\frac{\mathsf{v} + \mathsf{v}}{\mathsf{v}}, \frac{\mathsf{v} + \mathsf{v}}{\mathsf{v}}) = (\mathsf{v}, \mathsf{v})$$

المستق<mark>يم ا</mark>لمطلوب يوازي المستقيم ص = ٣ س + ٥

السوال الثالث : (٦ درجات)

(٩) الطرف الأيمن = جا
$$^{\circ}$$
 + جتا $^{\circ}$ - ظا $^{\circ}$ > $\frac{1}{7}$ + $\frac{1}{7}$ - $\frac{1}{7}$ = صفر

$$\left(\begin{array}{c} \frac{1}{4} & \text{درجة} \\ \frac{1}{4} & \text{درجة} \end{array}\right)$$

(درجة)

وزارة التربية والتعليم الإدارة المركزية لتطوير المناهج مكتب مستشار الرياضيات

(درجة)

السؤال الرابع: (٦ درجات)

$$\frac{\overline{T} - \overline{T} - \overline{T}}{1 - \sqrt{T}} = 0$$

$$\frac{1}{\sqrt{m \log n}}$$
 ميل المستقيم الثانى = ظا $^{\circ}$ =

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} - \frac$$

ب)

$$\therefore \quad \text{all ilance} \quad = -\frac{\xi}{0} - \frac{\xi}{0}$$

(درجة)

وطول الجزء المقطوع من محور الصادات = ٢ وحدة طول

يراعي الاجابات الاخرى

~ 8°

Eres

امتمانات رقورل)

اختبار رقم (۱)
ل سؤال لاول : أختر الاجابة الصحيحة مما بين الاقواس
١) النقطة (- ٢ ، ٤) تقع في الربع
﴿ الاول ﴿ الثَّالَثِ ﴿ الثَّالَثُ ﴿ اللَّهَالَثُ ﴾ الرابع
$\dots = \{ \downarrow + 17 \downarrow (5) \}$
1 ± ③
① P3 O7 ② N7 ② 17
(') إذا كانت $ (')$
15 3 9 9 7 0
ه) إذا كانت ص $^1-3$ س ص $^2+3$ فإن ص ∞
$rac{1}{9}$ می ∞ س ∞ س 0 می 0 س 0 0
ت سي من من من من من من من من وسطها الحسابي يسمي
 ب حبدرات وبيسي سوبب عنوات المحسابي الوسط الحسابي الوسط الحسابي الوسط الحسابي الوسط الحسابي الوسط الحسابي الوسط الحسابي المحياري
س موسد مسبي کي موسيد کي موسد کي دي موسيد کي موسيد کي موسد کي م ک سؤال الثاني
ــــوق عــــــو ٢) إذا كانت س = { ٢ ، ٢ ، ٢ ، ٨ ، ص = { ٢ ، ٣ ، ٧ ، ٨ } وكانت & علاقة من س إلى ص حيث (& ب تعني أن :
) إداكانت س = ﴿ ١٠١٠ ﴾ • ص = ﴿ ١٠١٠ ٨ ﴾ وكانت 6 عفرهم من س إلى ص خيب ۗ ﴿ 6 ب تعني النَّ. + ← = عددا فرديا ∀ ﴿ ∈ س ، ← ∈ ص (١) أكتب بيان 5 ومثلها بمخطط سهمي (٢) هل 5 دالتا أم لا ولماذا '
۱ پ عمدا فردی ۱ ب د ص ۱ ب است. است. این و مینها بمعتصف سهمی ۱ ب مس ن دامه ام د و مد
$\frac{\omega}{\varphi} = \frac{\omega}{\varphi} + \frac{\omega}{\varphi} = \frac{\varphi + \omega}{1}$ اثبت أن: $\frac{\omega - \varphi}{\varphi + \varphi} = \frac{\varphi + \omega}{\varphi}$ إذا كان $\frac{\omega}{\varphi} + \frac{\omega}{\varphi} = \frac{\varphi + \omega}{\varphi}$
V + C + C V V V
نسؤال الثالث :
۱۹ ، ۱۱ ، ۱۱ ، ۱۰ ، ۱۱ ، ۱۹ ، ۱۹ ، ۱۹ ،

أمتحان ٢

تمما بين الاقواس	: أختر الاجابة الصحيح	لسؤال لاول
------------------	-----------------------	------------

(١) العلاقة التي تمثل تغيرا طرديا بين س ، ص

$$\frac{\psi}{7} = \frac{\psi}{6} \quad \text{(3)} \quad \frac{\xi}{7} = \frac{\psi}{7} \quad \text{(4)} \quad \text{(5)} \quad \frac{\xi}{7} = \frac{\psi}{7} \quad \text{(5)} \quad \text{(5)} \quad \frac{\xi}{7} = \frac{\psi}{7} \quad \text{(6)} \quad \frac{\xi}{7} = \frac{\psi}{7} = \frac{\psi}{7} \quad \frac{\xi}{7} = \frac{\psi}{7} = \frac{\psi}$$

(٢) الثالث المتناسب للكميات ٣،٦ يساوي

(۳) إذا كانت (٥، $\gamma - \gamma$) تقع على محور السينات فإن $\gamma = \dots$

1) G 0 Q V (§) 71

(٤) الفرق بين أكبر قيمة وأصغر قيمة لمجموعة من البيانات هو

الوسط الحسابي (الوسيط (المدي) الانحراف المعياري

(٥) إذا كانت (7) = 3 س (7) = 2ان (7) = 3ا فإن قيمة (7) = 3

(٦) إذا كان (٥، س-٧) = (ص+١، -٥) فإن س+ص =

() ه ا ﴿ 1 ﴿ 6 صفر

السؤال الثاني

(1) إذا كانت $w = \{1, 1, 7, 7\}$ ، $w = \{1, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}\}$ وكانت x = x علاقة من x = x المعكوس ضربي x = x ، x = x اكتب بيان x = x ومثلها بمخطط سهمي هل x = x دالة أم لا وإذا كانت دالة أذكر المدى

 $m{\Theta}$ إذا كان $m{\Theta} = rac{\omega}{2} = rac{\omega}{2}$ اثبت أن: ص $m = \infty$

السؤال الثالث:

(1) It less $\frac{1}{7} = \frac{2}{7} = \frac{2}{7} = \frac{71 - 2 + 62}{7}$ less $\frac{1}{7}$

.....

ضيات	ى الريا	وبيتال ف	با					خارجية	أختبارات الجبر ال
جد قیمۃ ص	ص ثم او	<i>ن</i> س،	٤ أوجد العلاق	.ما س =	ا عند (=	مانت ص =	ح س وڪ	كسيام	إذا كانت ص تتغير ععندما س = ١٦
			الرسم البياني لعظمي او الص			ً خذ س ∈ رالتماثل			السؤال الرابع مثل بيانيا الدالة ٤ (س) (١) إحداثيات رأس المنحني
				•••					
							• • • • • • • • • • •		
				•••					
						•••••	• • • • • • • • • • • • • • • • • • • •		
				•••	• • • • • • • • • • • • • • • • • • • •	•••••			
iii	ii.	الصنعة	ق في الوحدات ا	۱۰ صندو	دت في ٠	ة التي وج	دات التالغ	عدد الوح	السؤال الخامس فيما يلي توزيع تكراري ا
			ه مج	٤	٣	٢	١	•	العمربالسنوات
			1 • • 19	۲۰	70	۱۷	17	٣	عدد الاطفال

......

......

أختبارح

1 J ins i	
السؤال لاول : أختر الاجابة الصحيحة مما بين الاقواس	
(۱) النقطة (- ۲، ٤) تقع في الربع	
﴿ الاول ﴿ الثاني ﴿ الثالث ﴿ الرابع	الرابع
(٦) المدي لمجموعة القيم ٥،١٤،٤،٢٦، ١٥ هو	
(1) (2) 21 (3) 77	77 ③
(7) إذا كان $0 = 7$ س فإن	
$\frac{1}{\mathbb{Q}} \otimes \mathbb{Q} \otimes \mathbb$	$\frac{1}{\omega} \infty \infty$
(٤) إذاكانت مجر (س – س) = ١٨ لمجموعة من القيم عددها ١٢ فإن $\sigma = \dots$	
「 ③	7
(٥) إذا كانت $2: w \longrightarrow w$ فإن مدي الدالة $2 - \dots$	
0 0 0 0 0 0 0	ن ن
$ \frac{1}{5} = \frac{4 \times 4}{5} = $	
(1) (O) (1)	C 1 3
السؤال الثاني	_
① إذاكانتس = { ١،٥،١ } ، ص = { ٥ } ، ع = { ٣،٢ } أوجد:	
(۱) ن (س×ع) (۲) (ص (ع) × (س ص)) (۱) (عن (ع) × (س ص ص)	
\bigcirc إذا كان المستقيم الممثل بالدالة $2: \neg \rightarrow \neg \rightarrow \neg$ حيث $2(w) = \neg \rightarrow \neg$ نقطع محور الصدات في	ر الصدات في
النقطة (ب، ٣) فأوجد قيمة المقدار ٢ ٩ + ٣ ب	
السؤال الثالث :	
أوجد العدد الذي إذا أضيف لحدي النسبة ١١: ٧ الأصبحت ٢: ٣	
 إحسب الوسط الحسابي للقيم ٣،٥،٧،٩،١١ ثم أوجد الانحراف المعياري لهذه القيم 	

أختبارات الجبر الخارجية	لوبيتال في الرياضيات		
السؤال الرابع		••••••	•••••
من بيانات الجدول المقابل أجب عما ياتى:			
(۱) أذكر نوع التغير من حيث كونه طردي أم عكسي	س ۲	٤	1
(٢) أوجد العلاقة بين س ، ص ثم اوجد قيمة ص عندما س = ٣	<u> </u>	7	٢
\bigcirc إذا كانت $w = \{1,7,7\}$ ، $w = \{-1\}$ وكانت $%$ علاقة $1+\gamma \geq 1$ ، $\forall 1 \in w$ ، $\gamma \in w$ أكتب بيان $%$ ومثلها بمخطط سهه السؤال الخامس (1) إذا كانت γ وسط متناسب بين $ 1,2\rangle$ اثبت أن $ 1,2\rangle$ = $ 1/2\rangle$ اذا كانت $ 1/2\rangle$ وسط متناسب بين $ 1/2\rangle$ اثبت أن $ 1/2\rangle$ = $ 1/2\rangle$	سهمي ووضح هل ۴ دال		==
\bigcirc مثل بيانيا منحني الدالۃ $(w) = (w)^{-1}$ حيث $w \in [-1, 7]$ و (1) إحداثي رأس المنحني (7) معادلۃ محور التماثل (7) القر] ومن الرسم أوجد: القيمة العظمي أو الص	يبغري للدال	

أختبار ٤

	- J.
السؤال لاول: أختر الاجابة الصحيحة مما بين الاقو	
(۱) إذا كانت $w = \{ 7 \}$ ، $w = \{ 6, 7 \} \}$ ف) × ص) =
۸ ①	۸ ﴿ صفر ﴿ ٢
(٢ إذا كان ف عددا فرديا فإن العدد الفردي التالى	_
	اً + ف ﴿ ف + ا
(۲) المدي لمجموعة القيم ۲، ۱۷، ۱۲، ۳۰، ۸۱ هو	
4 1	77 ③ 7· ④ 1V
(٤) لاحظ العلاقة في النمط التالي $9, 9, 9$ لاحظ العلاقة في النمط التالي $\frac{1}{2}$	$ \frac{7}{1}$ فإن قيمت $ w = \frac{7}{1} $ فإن قيمت $ w = \frac{7}{1} $
7,40	7,70 @ 7,70
∞ فإن ص ∞	
() ص ن ∞ س	$\frac{1}{\infty}$ س ∞ س ∞ $\frac{1}{\infty}$ ک می ∞ ∞ س ∞
(1) Itil $\frac{1}{6} = \frac{1}{7} = \frac{1}{2} = \frac{1}{4} + \frac{1}{7} - \frac{1}{4}$	=o
4 1	1 3 0
السؤال الثاني	
(۱،۱) اذا کانت س = (۱،۱، ، ، ، ،) ، ص = (، ١٦ } وكانت 8 علاقة من س إلى ص حيث ال 8 ب
تعني ان: ١١ = ب ∀ ١ ∈ س ، ب ∈ ص	
(۱) أكتب بيان الله الله الله الله الله الله الله ال	٣) مل ٣ دالة أم لا ولماذا؟
 اوجد العدد الذي إذا أضيف مربعة لحدي النسبة 	فإنها تصبح ٤: ٥
السؤال الثالث :	
$lacktright$ إذا كان $\mathfrak{f} \otimes \mathfrak{p}$ وكان $\mathfrak{f} = \mathfrak{f}$ عندما ب	
(۱) أوجد العلاقة بين (، ب (١) أحسب قيمة	۱ = ۱ ام

 		فی ا		 _
ш	ши		_	œ
		- 6	ш	 _

رجية	1 ± 11			
ا حید	الحا	ىحى	ı	حس

حيث س ∈ [- ١ ، ٣] ومن الرسم أوجد :	و (س) = س ۲ - ۲ س	مثل بيانيا منحني الدالة
-------------------------------------	---------------------	-------------------------

•••••	• • • • • • • • • • • • • • • • • • • •	
	• • • • • • • • • • • • • • • • • • • •	
	• • • • • • • • • • • • • • • • • • • •	

السؤال الرابع

$$\P = (7)$$
 إذا كان المستقيم المثل بالدالة $2: 7 \longrightarrow 7$ حيث $2(w) = 7 + 0$ وكان $(7) = 9$

وجد نقطة تقاطعه مع المحور س	(7)	وجد قيمة (i (۱)
-----------------------------	-----	------------	-------

 $\frac{A+^{\prime}S}{S} = \frac{P+^{\prime}A}{S}$: إذا كانت $\{ , \gamma, A, S \}$ في تناسب متسلسل اثبت أن S

السؤال الخامس

.....

٤	٣	7	١	صفر	عدد الأطفال
7	۲٠	٥٠	١٦	٨	عدد الأسر ك

زيع التكراري	نحراف المعياري للتو	أوجد الإ	9
في إحدى المدن	طفال بعض الأسر	لعدد أ	الأتر

لجبر الخارجية المسام المسام الوبيتال في الرياضيات	أختبارات ال
ص = { (۲،۲) ، (۲،۲) ، (۲،۳) ، (۲،۵) ، (۲،۲) } أوجد : (۲) س (۳) ي (س ^۲)	السؤال الرابع (1) ص
الة 5 (س) = س ¹ + 7 س + ١ خذ س ∈ [- ٤ ، ٢] ومن الرسم البياني أوجد كلا من :	_
المنحني (٢) معادلة محور التماثل (٣) القيمة العظمي او الصغري للدالة	(۱) إحداثيات(اس
	السؤال الخامس
ب= ۲ : ۵ أوجد قيمة <u>۲۹ – ۲ې</u>	
ع تكراري بين اعمار ١٠ أطفال اوجد من هذا التوزيع أحسب الانحراف المعياري للعمر بالسنو	
15 1. 4 V	العمر بالسنوات
1 7 7 7 1	عدد الاطفال

	٦	أختبار		
		بين الاقواس	لاجابة الصحيحة مما ب	السؤال لاول: أخترا
	•••••	$ \frac{\mathbf{w}}{\mathbf{v}} = \dots $ فإن فإن $ \frac{\mathbf{w}}{\mathbf{v}} = \dots $	، ۲۷) = (۲۲ ، ص	 (۱) إذا كان (۲ ^س)
V7	77	0 0	٣ 🍙	
77	T T	,		14111
•••••	ن (س + ص) ً =	$0 = \frac{1}{\sqrt{\lambda + 1/2}}$	۷۲+۲۷ و ص	(۲) إدا كان <i>س =</i> ·
		😡 صفر	_	
ا س – ٥ فإن قيمة (=		_		(٣) إذا كانت النق
7 ③	٣ 🚱	۱ 😡		
		ن ب: ← هو	$\frac{7}{4} = \frac{7}{4}$, $\frac{4}{4} = \frac{3}{4}$ فإن	$\frac{P}{\xi}$ إذا كان $\frac{P}{\xi}$
٠: ٤ ③	_	1:0 ⊖	_	
		المجموعة من البيانات		(٥) الفرق بين أك
آلانحراف المعياري	🔌 المدي	ابي ن الوسيط	_	· · · · · · · · · · · · · · · · · · ·
. 0		؛ ٤ : ك فإن قيمة ل		(۱) إذا كان <i>س</i> :
λ ③	12 🗷	14 🖯	* (1)	السؤال الثاني
	ع کانت کے ملاقت	1.1.1.1.3=	= { ۳،۲،۱ }: = { ۳،۲،۱ }:	_
نس إلى صحيث الحب تعني على المادة مالذا		4		4
. الله ويمان ويمان	ها بمخطط سهمي هل 	اڪتبيين ۾ وسر		
			••••	
ما س = ١ أوجد	وكانتص = ٥عند	تتغير عكسيامع س	= ٣+ ١ وكانت ١ ة	⊖ إذاكانتص =
	ر = ۲	جدقيمة ص عندما)، ص (۲) او	(۱) العلاقةبين س
			•••••	
				السؤال الثالث :
{	7.0.5.1}=8	ص = { ۲،۵،۳ }	• ({ ٥ . ٣ . ٢ . ٦ } =	(افاكانت س =
			(& - &) ×	أوجد (س ∩ ص)
		•••••		

لوبيتال في الرياضيات		أختبارات الجبر الخارجية
سن	$\frac{w}{w} = \frac{w}{(w + 8)} = \frac{w}{w}$ ين w ، w اثبت ان : w	😡 إذاكانت ص وسطمتناسب
+ 6	ص(ص+ ح) س	
		السؤال الرابع
نقطة (٦، ٢ - ٣) أوجد قيمتي ٢، ك	(w) = (w) = 1 ک یقطع المحور س فی ال	﴿ إِذَا كَانَ المُستقيم الممثل بالدالة
	$\frac{\delta \nabla}{2} = \frac{7 - 7}{5 - 7} = \frac{7}{2}$ ات متناسبت أثبت أن $\frac{\delta}{2} = \frac{7}{2}$	
		السؤال الخامس
سمعين:	= ٢ س – س ′ خذ س ∈ [- ٢ ، ٤] ومن الرس	 (س) عثل بيانيا منحني الدالة 5 (س)
ادلة محور التماثل	القيمة الصغري او العظمي للدالة (٣) مع	(۱) إحداثيات رأس المنحني (۱)
- ۱۲ - ۲۱ - ۶۱ ک	العمربالسنوات ٠ ـ ٤ ـ ٨	احسب الوسط الحسابي
7 7 7	عدد الاطفال ۱ ۲	والانحراف المعياري للتوزيع الاتي
<u> </u>		

44.0			فی ا		•=	
		ши		- 11	ша	
	_		- 6	U,		_

	_				
Г	رجية	الخا		L COL	خات ال
_	الساليانا	w.	لليبال		سرب

السؤال الرابع	السؤ	إل	الر	بع
---------------	------	----	-----	----

(ان المستقيم المثل بالدالة $5: 5 \longrightarrow 5$ (س) = $5 \cup -1$ يقطع المحور في النقطة $3 \cup -1$

(ب، ٣) أوجد قيمتي ١، ب

.....

- \bigcirc إذا كانت ص ∞ س وكانت ص = ٢٠ عندما س = ٧ فأوجد:
 - (۱) العلاقة بين س، ص (7) قيمة ص عندما س (1)

.....

السؤال الخامس

- ﴿ مثل بيانيا منحني الدالة ٤ (س) = س أ ٦ س + ٩ خذ س ∈ [٠ ، ٦] ومن الرسم عين :
- (١) إحداثيات رأس المنحني (٢) القيمة الصغري او العظمي للدالة (٣) معادلة محور التماثل

احسب الانحراف المعياري للقيم الاتيت

71 , 71 , 71 , 17

القيم التالية تمثل درجات ٥ طلاب في أحد الاختبارات : ٨ ، ٩ ، ٦ ، ١٢ ، ١٠ أوجد :

(١) الوسط الحسابي للدرجات

(١) الانحراف المياري للدرجات

السؤال الرابع

- ه مثل بیانیا منعنی الدالہ $(w) = w \ (w 7) 7$ متخذا $w \in [-7, 3]$ ومن الرسم أوجد
 - (١) رأس المنحني (٢) القيمة العظمي والصغري للدالة (٣) معادلة محور التماثل

$$\frac{\sqrt{1+2}}{\sqrt{1+2}} = \frac{2+2}{\sqrt{1+2}} = \frac{2+2}{\sqrt{1+2}} = \frac{\sqrt{1+2}}{\sqrt{1+2}} = \frac{\sqrt{1+2}}$$

.....

السؤال الخامس

- - (۱) أوجد العلاقة بين (7) من (7) أوجد قيمة (7) عند (7)

<u>ب</u>

 \bigcirc فی الشکل المقابل المستقیم () یمثل الدالہ (w) = 1 ، () یمثل الدالہ () حیث (w) = 0 () (

	الأول	النموذج	
		حة من بين الإجابات المعطاة	لسؤال الأول: اختر الإجابة الصحي
	ۍ (∠ س) =	حيث س زاوية حادة فإن ا	(۱) إذا كان اجتاس = ظا٢٠
£ 0 (5)	(ج) ۳۰	٦٠ (ب	10 (أ)
			(٢) البعد بين النقطتين (٥٠،
۱۳ (۶)	٥ (ج)	٧- (ب	(أ) – ۱
ڪن أن تڪون	إصل ٢ وحدة طول يمد	نقطة التي تبعد عن نقطة ال	(٣)في مستوى احداثي متعامد ال
			(أ)(۲،۱)
	ئ فإن م _٢ =	مين متعامدين وكان م١=	(٤) إذا كان م، ، م، ميلي مستقب
$\frac{\delta}{\xi} - (\xi)$			$\frac{\xi}{\mathbf{o}} (\dot{\mathbf{j}})$
			(٥)المستقيم ٦ص = ٥س + ١٢ ي
0(5)		_	رأ) ۲
			(٦) إحداثبي نقطة منتصف [ب
			راً) (۲۰۶) <u>(</u> (۲۰۶)
			لسؤال الثاني (الشكل المقا
× ×			٩ب // ح٥ ﴿ (٩، -٢) ، ب
		٠, , , , , , ,	
	ب	اوجد إحداثيي نقطة ج	ج(س،-س)، ۶ (۶، ۳-۲)
بيناً خطوات الحل)	۳ °ظا ً ٥٥ (ه	س=حتاً ۳۰ فلاً .	😛 أوجد قيمة س إذا كان 🏻 ٤
(62,0,90)			
	، اج = ٢٥ سم أوجد	مستطيل فيه ∫ب = ٧سم	لسؤال الثالث: السؤال الثالث
	۶ ب ج ۶	٧ مساحة المستطيل	(ق (∠ا ہج ب)

البيخ أوجد معادلة المستقيم الذي يقطع من محور الصادات جزءا سالبا طوله ٥ وحدات وموازيا المستقيم ٢س-ص+٧=٠
السؤال الرابع :
بدون استخدام الحاسبة أوجد قيمة المقدار ظا ٤٥ °× جتا٦٠ °+ ظا ٢٠ °× جا ٤٥°
اثبت أن النقط ((۳۰ ، ۱) ، ب(۳ ، ۳) ، ج (۵ ، ۱) تقع على استقامة واحدة
الاستخلال الاستام
السؤال الخامس: (۲،۳)، ب(۰،۰) أوجد () معادلة () ب إحداثي ه حيث ب منتصف (ه
پاذا کان البعد بین النقطتین (س ، ۷) ، (۲ ، ۳) یساوی ۲√۵ وحدات طول فأوجد قیمة س

	<u>ذج الثاني</u>	النمو	
	طاة	جابة الصحيحة من بين الإجابات المع	السؤال الأول: : اختر الإ
		، معادلته اص = اس + ا هو .	(١) ميل المستقيم الذي
\(\(\(\(\) \)	(ج)		١ (أ)
	وحدة طول	-٤) عن محور الصادات =	(٢) بعد النقطة (٣،
οVΨ (5)	(ج)	(ب) ۳	٤- (أ)
و حده	محور السينات جزءا طوله	لته ۲س + ٥ص = ١٠ يقطع من	(۳) المستقيم الذي معاد
<u> 7</u> (5)	(ج)		رأ)
-	=	الزاوية في ب يكون جا (+ جاج	ب ج مثلث قائم $\{ \xi \}$
(۶) ۲جتام		(ب) ۲جاب	'
	ن محور السينات هي	ي يمر بالنقطة (٣٠،٥) ويوازي	(°) معادلة المستقيم الذ
$\Upsilon - = \omega(s)$	(ج) س = ٥	(ب) ص = ٥	رأ _{) س} =-٣
	ن ق (∠ ڝ) =	= 🗥 حيث ٣س زاوية حادة فإ	(٦) إذا كان ظا٣س =
7. (5)	(ج) ۱۰	(ب) ۳۰	۲۰ (أ)
			السؤال الثاني
	۲۰ جتا ۳۰ – جتا ۲۰ جا ۳۰	ه قياس زاوية حادة: جاه =جا	اوجد ه حيث
			•••••
داثيى نقطة تقاطع قطريه	م $(\cdot \cdot)$ فأوجد إح $(\cdot \cdot)$ - (\circ)	أ ضلاع فيه ۱(۲،۳)، ب(٤، -	••
		. <i>5</i> علم	ثم أوجد إحداثيى نقه
		•••••	• • • • • • • • • • • • • • • • • • • •
			السؤال الثالث :
(*.4)./5.	\ \ t *tt	·	
(1,5),(1,	يا المستفيم المار بالنفطتين (١	تقيم المار بالنقطة (٣، ٥٠) مواز	اوجد معادله المس

(٤،٥) هي رءوس مثلث متساوي الساقين ثم أوجد مساحته	أثبت أن النقط ((-۲،۶)، ب (۱-،۳)، ج
مسم	السؤال الرابع: الشكل المقابل سصع مثلث قائم في ص
عع	أوجد قيمة ظا س +ظاع
) ، لم مستقيم آخر يصنع مع الاتجاه الموجب لمحور السينات	ل ۱،۴) ۱، مستقیم یمر بالنقطتین (۲،۴) ، (۲، ک
	راوية قياسها 20 $^{\circ}$ فإذا كان $^{\circ}$ لىم فأوجد قيمة ك .
	راويه عياسها ١٠٠ ورا ٥٠ ـــ ١٠ ووجد فيمه ٥٠
	السؤال الخامس:
) تقع على دائرة مركز ها النقطة م (١٠٠٦)	آثبت أن النقطتين (٣٠ -١) ، ب (-١٠٤
	وأوجد مساحة سطحها π (π = π)
ب ج =٢٠ سم أوجد قيمة المقدار جناج جنا الله حاج جا ا	

	<u>جالثالث</u>	النموذ	
	3L	جابة الصحيحة من بين الإجابا <mark>ت المع</mark> د	السؤال الأول: : اختر الإ
	+ جتاب ١	القائم الزاوية في ج يكون جاب	(١) في المثلث أب ج
≥ (5)	> (*)	(ب) >	= (¹)
	١ فإن ك =	بم ك س - ص - ٣ = ٠ يساوى	(٢) إذا كان ميل المستقي
$\frac{1}{r}$ – (5)	$\frac{1}{h}(\dot{\Rightarrow})$	(ب) –۱	(أ) ١
		ـ يكون ظاهـ =	(٣) لأي زاوية حادة ه
جا <u>ھ</u> حتاھ	(ج) جتا <u>ھ</u> حاھ	(ب) ظاهـ جتاهـ	(أ) جاهـ
·	هـ =	عاد ٤ ، هـ قياس زاوية حادة فإن	(٤) إذا كانت جتاهـ =
10(5)	٦٠ (ڄ)	(ب) 83	٣٠(أ)
V \	₹\^	+ ظاء٦ = ٦٠١٠ +	
$\frac{\overline{\tau}\sqrt{\xi}}{\Gamma}(\xi)$	$\frac{1}{2} \left(\dot{\sim} \right)$	(ب) ۳ گ۳	₹ \ (1)
ية	ع ص=۱۲= وحدة مربع	المستقیمات س=۰، ص=۰، ۳سـ	(٦) مساحة △ المحدد بـ
10(5)	٧ (ج)	(ب) ۱۲	(أ) ٦
٤		P. *. **	السؤال الثاني
√سم	رع= ۷ سم ، <i>س</i> ص = ۱۵سم	س صع مثلث قائم الزاوية في ع ، سر ذا اصر	(۱) أوجد قيمة ظا س×·
٥٧سم		_	_
w	ص		(۲)أثبتأن جا ^ا س+ج
١٠) أثبت أن أب ج 5 معين	۱-)۶ (۳-،۳-)۶ ، و (۱-	رباعي فيه: {(٣٠٣)، ب (١-١١)	اب ج 5 شکل (
			وأوجد مساحته .

لسؤال الثالث: ﴿ إِذَا كَانَ المثلث الذي رؤوسه ﴿ (٣٠٠) ، ب (هـ، ٣) ، جـ(٣٠٥) قائم الزاوية في ٢ فأوجد قيمة هـ
ب أوجد قيمة س إذا كان ٤ سجتا ٢٠٠ ظا ٢٠٠ - ٦ جا ٣٠ ب
سؤال الرابع : [إذا كانت ٢ (٣ ، ٥) ، ب (- ٣ ، ١) فأوجد معادلة محور تماثل الب
إذا كان المستقيم $\{ m{$
لسؤال الخامس: جتا ٦٠ °+ جتا ٣٠ °+ ظا ٤٥°
بدون استخدام الحاسبة أوجد قيمة بين بنين بين بين بين بين بين بين بين بي
ن الشكل المقابل: ب $f \in \overline{A}$ حيث و $f = T$ وحدة طول f ب $f = 0$ وحدة طول جر م
اب = بج أكمل () إحداثي نقطة ج هو (،)
 ﴿ الله الله الله الله الله الله الله الل
 آ في ∆ وا ب يكون ظاب = آ معادلة ا ج هي صوات

	النموذجالرابع		
	فالمعطاة	جابة الصحيحة من بين الإجابان	السؤال الأول :اختر الإ
	7	ذی معادلته ۲ ص = ۲س +	(١) ميل المستقيم ال
\(\(\(\(\) \)	(ج)		1
= * +	(م،۲)، ب (۱۰،هـ) فإن م	 هي منتصف اب حيث المالية 	(۲)إذا كانت (۳، –
15(5)		(ب) –۲	_
	- ٥ هما مستقيمان	= ۳س - ۵، ۳ص = ۳س +	(٣) المستقيمان ص
(۶) متقاطعان وغير متعامدان	(ج) متعامدان	(ب)متوازيان	(أ) منطبقان
		، = ۰٫٥ حيث ٢ <i>س</i> زاوية حا	
٤٠(۶)		(ب) ٦٠	_
		 يله = 1 ويمر بنقطة الأصل م	
(۶) ص=-س	ب (ج) ص=س		$ \begin{array}{ccc} & $
•	•	=٣٠	اج + ۱۰ اتج۲ (۲)
$\frac{\xi}{0}(\zeta)$	$\frac{1}{2}-(\boldsymbol{\dot{\sim}})$	$\frac{1}{\Gamma}(\cdot,\cdot)$	
0 2	Ž.	1	السؤال الثاني السؤال الثاني
	۳۰ ^۲ ۱:۰-+	متا ۲۰ جا ۳۰ طا ۲۰	
	, 3, 1		ر اوجد عیمه
, \$ 1, ,			
انه يمر بنقطة الاصل	۱) ، (–۱۰ –۱) ثم اثبت	لمستقيم المار بالنقطتين (٤،	اوجد معادلة ا
		•	السؤال الثالث:
	، ب (۲ ، ۲)، ج (۱ ، ۷)	زي أضلاع فيه ۱(۳ ، – ۱)	ال اب ج ي متوا
	رى الأضلاع إبجي	تقيم 🕂 5 😯 محيط متوا	٠ أوجد معادلة المس
		······································	
		•••••	

في الشكل المقابل أب جمثلث فيه أب= أج= ١٠ سم، بج= ١٢ سم،
أوجد قيمة كلاً من (١) $\mathfrak{O}(\angle \Psi)$ (٢) أثبت أن جا $+$ جتا Ψ باسم المجار المج
اوجد قیمهٔ کلا من (۱) $\mathfrak{O}(\Delta \mathfrak{P})$ البت آن جا $+$ جتا $+$ جتا $+$ اسم
۲ سم
السؤال الرابع :
إذا كانت ج (۲ ، – ٤) هو منتصف $\frac{1}{1}$ حيث $\frac{1}{2}$ (٥ ، – ٣) فأوجد احداثي نقطة ب
(→ إذا كان البعد بين النقطتين ﴿ (٠٠ هـ) ، ب (٤٠٠) يساوى ٥ وحدة طول . أوجد قيمة هـ
الاسقال الخاميي
السؤال الخامس: () اذا كان المحالا = حام ۳ متام ۳ حتام ۳ مام ۱ فأرين بين الشغيرام الحالية و ما ۱۹۷ ميشان المتامة عامة
اذا كان اجا على المجالا على المجالا على المجاب المج
ابجى متوازي أضلاع فيه ١٩ (٢٠٠٦) ، بـ(٥٠-٣) ، ج (١٠٧) فأوجد احداثي ي

	<u> موذج الخامس</u>	النه		
	المطاة	عة من بين الإجابات	الإجابةالصحيع	السؤال الأول: :اختر
	ب(۲،۲م) فإن م =			
\(\(\(\(\) \)	(ج)	٥	(ب)	۱– (أ)
) =وحدة طول	-٣٠١) فإن محيط المعين) ب ((۷ ، ۱ –) ا	ج و إذا كان {	(٢) يخ المعين أب.
٤٠(۶)	$\overline{1.V}\Lambda(z)$	1.18	(ب)	(أ) ۲۲ (أ)
	وحدة طول	ور الصادات =	-0 ، ٤) عن مح	 (٣) بعد النقطة (-
₹1V(5)	(ج)	٤	(ب)	٥— (أ)
	جتاج فإن ن (∠ب)=) = ۲۰ ، جاج =	$\{oldsymbol{oldsymbol{eta}}\}$ ا ڪان $oldsymbol{oldsymbol{\wp}}$	(٤) يخ ∆أب ج إد
1.0(5)	(ج) ۷٥	٤٥	(ب)	10 (1)
	٠٠) فإن { =	، ۳) جيث ب	(۱،۲) منتصف	(°) إذا كانت ج
(0(1)(5)	(1:0)(>)	(1.5	(ب) ((أ) (۲ ۰ ۱)
	متعامدين فإن ك =	، ص = ك س + ٥	س+س+V=۰	(٦) المستقيمان ٣٠
$\frac{1}{\pi}$ – (5)	(ج)		(ت)	(أ) ٣-
L (2)	• • • •		L ,	لسؤال الثاني
	71	. = 11.= 1		
	-جتا ۴۰	۱ – جا ۱۰ طا ۱۰ +	جتا ۱۰ جا۲۰	أوجد قيمة
ع قطراه یے م	۱۰-۱) ، ج (۵۰-۱) تقاط	به:۱(۳٬۳))،ب(وازي أضلاع في	ب جومة
_	C th	** *1. (5)	۱ ۱۰ هر	1. (1)
		(٢) إحداثي نقم	*	
				<u></u>
				لسؤال الثالث:
ة واحدة فأوجد قيمة ه	ج (۱۹۰۹) علی استقام	، (۳،۰) ، (نقط (۲،۵)	إذا كانت ال

وجد معادلة المستقيم الذي يقطع من محور الصادات جزءا موجبا طوله \$ وحدات طولية ويكون عموديا على
المستقيم المار بالنقطتين (٧٠ - ٥)، ب(١٠٢)
السؤال الرابع: إذا كانت (-٣٠١) ، ب (٣٠٤) ، ج (٧٠٧) فأثبت أن المثلث (بج متساوي الساقين وأوجد مساحته
ن في الشكل المقابل $4 = -1$ سم ، 0 (\angle ب) $= -9$ ،
$ \mathcal{O}\left(\angle \mathbf{x} \right) = \mathbf{x}^2$ $ \mathbf{x}^3 $ أوجد مساحة المثلث $\mathbf{x}^3 $ القرب سم $\mathbf{x}^3 $
- ML_{EM
السؤال الخامس :
بدون استخدام الحاسبة أوجد قيمة w (حيث w زاوية حادة w) التي تحقق أن :
¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬
اذا كانت ا(ه، ٢)، ب (١،٣)، ج (٥،٠٠) وكان اب = بج فأوجد قيمة ه

	<u>موذج السادس</u>	الن	
	المطاة	الإجابة الصحيحة من بين الإجابات	السؤال الأول : :اخترا
اسها	 وجب لمحور السينات زاويه قيـ	عص+λ=٠ يصنع مع الاتجاه الم	(۱) المستقيم ٤س-
٩٠(۶)	(ج) ۲۰	(ب) ٤٥	r. (1)
	طول نصف قطرها "وحدات	, لدائرة مركزها نقطة الأصل وم	(۲) النقطةتنتمر
(1·TV)(5)	(ج) (۱٬۲۷)	(ب) (۲۰۰۰)	(1)(1)
	قيمة جاج ؟	زاوية في بأي مما يأتي له نفس	(٣) م أبج قائم الز
(ع) جتاج	(ج) ظاج	(ب) جتاب	(٩) ظاب
		يم المار بالنقطتين (ه، ٠)، (٠، ٤	
	•	ِ السينات فإن هـ =	
1-(5)	(ج)	(ب) _ ٤	
		م، م > • فإن الزاوية الموجبة الت	
(۶) منفرجة	(ج) قائمة	(ب) حاده	(۱) صفرية
	۳= ۰ يساوي	ين المستقيمين ص−٢=٠٠ ص+	(٦) البعد العمودي ب
0-(5)		(ب) ٥	
			السؤال الثاني
	س زاوية حادة)	الحاسبة أوجد قيمة س (حيث س قيا،	بدون استخدام ا
	۳۰ °جا ۲۰	س =جا۳۰ °جتا۳۰ °+ جتا	إ ذا كان ا جا
ثلثية للزاوية ح	= ٣٧ أح فأه حد النسب المن	نائم الزاوية في ب وكان ۲∤ب =	ب مثلث ف
• "> "		· · · · · · · · · · · · · · · · · · ·	, 🔾
			السؤال الثالث:
# \$1.tl 5 # 1	5: / 	ti = \$(.it = === / A / A \) = t ==	
ِجِد مساحة <i>هذه</i> الدائرة	شي مركزها ۱۰۱) فاو	قطة ۱۹۰۸) تنتمي للدائرة ال	

اثبت أن المثلث الذي رؤوسه $\{(\ \Upsilon,\Upsilon)\ ,\ \cup\ (\ -3,V)\ ,\ ext{ } \}$ وقائم الزاوية ثم أوجد ق $(\ igtriangledown\)$
السؤال الرابع :
اب ج کو شبه منحرف فیه $\frac{1}{2}$ // $\frac{1}{2}$ ، $\frac{1}{2}$ با $\frac{1}{2}$ ، اب $\frac{1}{2}$ سم، ب $\frac{1}{2}$ اسم .
$\frac{1}{7}$ اثبت أن جتا $(\leq 2 < +) $ طا $(\leq 1 < +) $
اب جو مستطيل رؤوسه على الترتيب هي: ﴿ (٥٠١) ، ب (٥٠١) ، ج (-٠١) أوجد إحداثي الرأس و
السؤال الخامس:
اذا كان بعد النقطة (ك،٥) عن النقطة (١،٦) يساوى ٥٧٢ فأوجد قيمة ك
$\frac{m}{4}$ أوجد الميل وطول الجزء المقطوع من محور السينات للمستقيم الذي معادلته $\frac{m}{7} + \frac{m}{7} = 1$

	<mark>لسابع</mark>	النموذجا	
		صحيحة من بين الإجابات المعطاة	السؤال الأول: : اختر الإجابة ال
= \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		ني صُ حيثُ س(٢٠١) ، ص(<u> </u>
$\frac{1}{m}-(\varsigma)$	$\frac{1}{\pi}(\boldsymbol{z})$	(ب) –۳	٣ (١)
طوله وحدة طول	1	. – ٦ = • يقطع من الجزء السالب ا	(۲) مستقیم معادلته ۲سـ۳ص
۲ (۶)	$\frac{1}{\pi}(z)$	(ب) ۲–	7— (¹)
	1	= ۰,٥ حيث <i>س</i> زاوية حادة فإن	
٧٠(۶)	– ک (ج)	_ ۱٫۰ کیت ن راوید کنده کیل (ب) ۶۰	, , , , , , , , , , , , , , , , , , , ,
·• ·	* <u>.</u>	وطُول نصف قطر ها ۲ وحدة طوا	
	"	(ب)(۱۰۲–)	\ ,
	وحدة طول	مستقیم ص = - ۱ یساوی	 (٥) بعد النقطة (۲، ۳) عن الم
0(5)	(ج) ۲	(ب)	۲ (۱)
		، إذا كان جاس =جتاص فإن س	` ,
١٨٠ (5)	(ج) ۹۰	(ب) ۲۰	.,.
			السؤال الثانى
5	د=٢٥ سم	.و مستطیل فیه ۱ ۹ ب= ۷ سم ۱ ۹ ج	🜓 في الشكل المقابل السج
AND TO SERVICE	∨ سم	(٢) مساحة المستطيل (بجو	فاه حد (۱) و و(۱> عرب)
-	د) ()	· · · · · · · · · · · · · · · · · · ·
•			
		4	
م المار بالنقطة أوبمنتصف بج	جد معادلة الخط المستقي	ب (۷۰۳)، جر ۲۰-۳) فأوج	
	• • • • • • • • • • • • • • • • • • • •		
			السؤال الثالث :
J	ويه حادة فاوجد فيمه "	= جا۳۰ میث (۳س+۲) زا	
	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
			

$\sqrt{\frac{1}{1}}$ ب ج مثلث فیه $\frac{1}{1}$ ب $\frac{1}{1}$ ب $\frac{1}{1}$ ب ج $\frac{1}{1}$ و کانت هـ منتصف $\frac{1}{1}$ ، $\frac{1}{1}$ منتصف $\frac{1}{1}$ فأوجد معادلة $\frac{1}{1}$
السؤال الرابع : السؤال الرابع الله الدائرة التي مركزها م فإذا كانت ب (Λ, Λ) ، (Λ, π) فأوجد () إحداثي نقطة Λ محيط الدائرة (π, π) (π, π)
, , , , , , , , , , , , , , , , , , , ,
السؤال الخامس :
سوال معین $\{(\Upsilon, \Upsilon)\}$ ، ب (Υ, Υ) ، ج $(-\Upsilon, \Upsilon)$ ، $(-\Upsilon, \Upsilon)$) هي رؤوس معین فاوجد () إحداثي نقطة تقاطع القطرین (Υ) مساحة المعین Υ بج
نبت أن ظا ٦٠ = ٢ ظا ٣٠ ÷ (١ - ظا ٣٠)

	الثامن	النموذج		
			بة الصحيحة من ب	السؤال الأول: :اختر الإجا
	_	, , , , , , , , , , , , , , , , , , , ,		(۱) سصع مثلث فیه ج
(ع) متساوي الأضلاع				(﴿) حاد الزوايا
. (- /	• ,	• •	, ,	(۲) شک یوازی محور ا
0-(5)			-	(1)7
	***************************************	ة فإن جتاج = .	حیث ج زاویة حاد	(٣) إذا كان جاج = ٠,٨
٠,٢ (۶)	\frac{\pi}{\pi} (2	(ج	(ب) ۱	٠,٨(١)
		•	, ,	(٤) النقط (٠٠٠) ، (٤
اوية (5) تقع على استقامة واحدة			` '	- , ,
	` ' '	,	,	(°) المستقيم ل عمودي ع
$\frac{1}{r} - (\varsigma)$	$\frac{1}{r}$ (2	,)	(ب) —۳	٣ (١)
ـ فان هـ =	، وحدات طول ، هـ ∈ص	(۲،هـ) هو ٥	لتين (۳،۳) ،	(٦) إذا كان البعد بين النقط
				r (1)
	`	• /	, , ,	السؤال الثاني
	< 5 11. w 511.	س ۲۱۰۰ ح		ك فأوجد قيمة ه ال
	کا ۱۰ کا ۲۰	= ۱ جت ۱۰	بی تحقق ۶٪ =	
كون رؤوس شبه منحرف .	۱۰۲–۱۰۲) ت	- (۱) > ((۲ ه	ا (۳۰۲) ، ب (۲	ب أثبت أن النقاط النقاط النقاط الم
J . U 134 U 1		•	•	.
				السؤال الثالث :
	(
ج (۷،۱)	، (۲،۱)، ب (۱–،			ب ج عنوازي أ
		(۲) طول و ه	ن ه، و	آ أوجد احداثى كل م

ب أوجد معادلة المستقيم المار بالنقطة $(* * - 3)$ و عمودي على المستقيم المار بالنقطتين $(5 * 0) * (7 * 7)$
السؤال الرابع:
اب ج مثلث قائم الزاوية في ب فيه : $\{ \psi = \Gamma \text{ma} : \psi \neq \emptyset \}$ سم أوجد قيمة جا ج + جتا $\{ \psi \in \mathcal{V} \}$
(١ كان ١ (١ - ١ - ١) ، ب (٢ ، ٣) ، ح (٦ ، ه) هي رؤوس مثلث قائم الزاوية في ب فأوحد قيم ه
اذا کان $\{(-1,-1),-1,-1)$ ، ج $(7,7)$ ، ج $(7,8)$ هي رؤوس مثلث قائم الزاوية في ب فأوجد قيم ه ثم أوجد احداثى منتصف بج
the same same
السؤال الخامس:
إذا كان المستقيم 0 يمر بالنقطتين (7) ، (7) ، (7) والمستقيم 0 يصنع مع الاتجاه الموجب لمحور السينات
زاوية قياسها ٤٥ أوجد قيمة لى إذا كان المستقيمان ل، ، لى متعامدين
سصعل شبه منحرف فیه \overline{w} \overline{b} b \overline{b} \overline{b} b
أثبت أن : ٥ جتا $($

	<u>مودج الباسع</u>	<u>41)</u>	
	<u> مطا</u> ق	جابة الصحيحة من بين الإجابات الم	السَّؤَالِ الْأُولِ : اختر الإ
يله		النقطتين (۰،۰) ، (۳ ، ٥) يک	,
$\frac{\circ}{r}$ – (5)	$\frac{\circ}{\varphi}(z)$	$\frac{\pi}{\circ}$ – (ب)	$\frac{\pi}{\circ}(f)$
·	آسم فإن اج =سم	ا وية في ب، جاج = ٢٠ ١٩ب =.	(۲) △ أبج قائم الز
7(5)	٥ (ج)	•	r (1)
, , , , , , , , , , , , , , , , , , ,	- (-, /		رُكُ) في الشكل المقابل
۳سم		رب)	$\frac{\lambda}{0}(\beta)$
ا كاب		•	٬٬٬ ه (ج) صفر
ئ سىم	السينات زاه بة قياسها ٦٠ بسياه ي	(۶) ا يصنع مع الاتجاه الموجب لمحور ا	
₩\			
<u>r</u> (5)	$\frac{1}{7}(z)$	(ب) ۱	₹ \(\f\)
	درجة	$+$ 0) = $\frac{1}{7}$ فإن س =	(٥) إذا كان جتا (س
00 (5)	(ج) ۲۵		٣٠(١)
		تمي للدائرة التي مركزها نقطة الأصا	` ,
(5-601)(5)	() () () ()	(ب)(۲۱،۲۷)	(१) (۱، ۲) السؤال الثاني
* (* /	, , ,	\	
وري الإحداثيات .	، نم اوجد نقطبی نقاطعه مع مح	يم الذي معا دلته ٢س – ٦ص = ١٢	اوجد میں المسه
ظاس=٤جتا٦٠جا٣٠	قياس زاوية حادة) التي تحقق:	م الحاسبة أوجد قيمة س (حيث س	بدون استخدا
			السؤال الثالث:
	(* ()) ((*	مستقیم الذی یمر بالنقطتین (۲۰۰	
	(11-)-(1	ستسيم الدي يحر بالسنين (۱۱	i, -11000 ii, j

	<i>ں</i> فیہ : سص=۲ سم، سع = ۱۰ سم	ب سصع مثلث قائم الزاوية في ص
	(س + ع) - ۲۰ و این	أوجد قيمة () ظاس × ظاع
		السؤال الرابع:
ث متساوي الساقين ثم أوجد مساحته	+ $($ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	
٠٠ ـ ظا ٥٤	ة جا ٤٥ ° جتا ٤٥ ° + جا ٣٠ ° جتا	بدون استخدام الحاسبة أوجد قيم
		السؤال الخامس:
7)	یاه حیث ۱ (۱،۱)،ب(۲،۱)،ج(۳۰۰ <u>-</u>	بین نوع Δ اب ج بالنسبة لزوا $igcap$
أوجد إحداثي و	۲،۷)، ب(۲،۷)، ج(۲،۹)، ج	ب جري متوازي أضلاع فيه ١٤
-		

	تموذج العاشر		
	تعطاة	لإجابة الصحيحة من بين الإجابات	السؤال الأول :اخترا
	فإن ظام=	قائم الزاوية في ب ، جتا $\P = \frac{\pi}{6}$	ب \triangle (۱) \triangle
$\frac{o}{v}(\varsigma)$	$\frac{\xi}{\psi}(z)$	(ب) ۽	$\frac{\epsilon}{\circ}$ (\dagger)
) يكون محيطها =	طة الأصل وتمر بالنقطة $(- au, 2)$	(۲) دائرة مركزها نق
$\pi \land \cdot \cdot (s)$	π ۲٥ (۶)	π ۱۰ (ب)	πο(Ϋ)
	<u>بان</u> س =	ية حادة وكان جتا $rac{\overline{\gamma}}{\gamma}$ $=$	(۳) إذا كانت س زاو
15. (5)	(ج) ۱۵	° ۲۰ (ب)	° r •(f)
	ينات زاويه قياسها، حقإن ميله =	صنع مع الاتجاه الموجب لمحور السر	(٤) المستقيم الذي يد
١(۶)	$\frac{\overline{r}\sqrt{r}}{r}$	(ب) ۳۷	1 (f)
	ور الصادات هي	المار بالنقطة (-٣، ٥) موازيا مد	(٥) معادلة المستقيم
(ع) س=-	(ج) ص=-۳	(ب) س=٥	(۱) ص=٥ (۱) ص=٥
	سينات جزءا طوله وحده	-0ص-١٠ = ، يقطع من محور الس	(٦) المستقيم ٢س ا
y (5)	(ج)	(ب) ٥	1. (1)
1			السؤال الثاني
	ن ح ۱۰ اسے	لقابل ا بج مثلث قائم الزاوية ه	
٣ / سم	, , , , , , , , , , , , , , , , , , ,	ـــبن، بالمبد <u>ــــبرا</u> موريــ ۱۰ سم أوجد طول اج	
<u>/</u>		. 1 63 3 . 1	. , , ,
جــــــــــــــــــــــــــــــــ			
ِ وَ إِذَا كَانِتَ ﴿(١٠،٤)، جِ(٤،٢)	 په أوجد احداثی نقطة ۶ وطول ب	الله الزاوية في ب، بع متوسط في	ب اب ج مثلث ف
			السؤال الثالث:
De le flata di		late attended to the control of	
فاوجد احدائی حل من ۲، ب	ت ، ج (۔٤٠١) مسطف اب	محور السينات، ب ∈ محور الصادا	اُدر جاسے ا

الناكان جتاس = جا٣٠ جتا٦٠ فأوجد قيمة س حيث (س قياس زاوية حادة) ثم أوجد ظاس بالاكان جتاس الوية حادة)
السؤال الرابع :
عين احداثی مرکز الدائرة م حيث $\{-7,-\Lambda\}$ ، ب $\{-7,-\Lambda\}$. عين احداثی مرکز الدائرة م ومساحة الدائرة π
ب أثبت أن جا ^۳ ۲۰ = ۹ جتا ^۳ ۲۰ – ظا ^۲ ۶۵
السؤال الخامس : أن مستقيم ميله أن ويقطع جزءا موجباً من محور الصادات طوله وحدتين أوجد : أن معادلة المستقيم ﴿ نقطة تقاطعه مع محور السينات
ص الشكل المقابل المستقيم ل، يوازي المستقيم ل، ومعادلة المستقيم ل، هي للمستقيم ل، هي المستقيم ل، هي المستقيم ل، ص المستقيم ل،
س ل ۲۷ س ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا
ص ا

100 PM

Everyo

إجابة نماؤج التاب الجبر واللاحصاء الثالث اللاعراوي ترم أول ٢٠١٠ (١) منترى توجيه الرياضيات ١/ عاول اووار

النموذج الأول

أجب عن جميع الأسئلة الأتية:

السؤال الأول: اختر الإجابة الصحيحة من بين الإجابات المعطاة:

(١) النقطة (-٣، ٤) تقع في الربع

أ) الأول ب) الثاني جـ) الثالث د) الرابع

(٢) الجذر التربيعي الموجب لمتوسط مربعات انحرافات القيم عن وسطها الحسابي يسمى.....

أ) المدى ب) الوسط الحسابي ج) الانحراف المعياري د) المنوال

(٣) إذا كان ٣ أ = ٤ ب فإن أ : ب =

ا) ۲: ٤ ح. ۲: ۷ د) ٤: ۲ خ. ۲: ۷

(٤) إذا كانت به (س) = ٢، به (ص) = ٩ فإن به (س × ص) =

ا) ۱ (ب ۱۸ برا

(٥) المدى لمجموعة القيم ٧ ، ٣ ، ٦ ، ٩ ، ٥ يساوى

١٢(٥ - ١٢(١)

(٦) إذا كان ص 🗴 س وكانت ص = ٢ عندما س = ٨ فإن ص = ٣ عندما س =

أ) ۱۱ جر) ۲٤ جر) ۲۲

السؤال الثاني:

(أ) إذا كانت س × ص = { (٢،٢)، (٢،٥)، (٢،٧) } فأوجد:

~~×~~(٢) ~~(١)

إجابة نماؤج التاب الجبر والاحصاء الثالث الاعراوي ترم أول ٢٠٢٠ (٢) منترى توجيه الرياضيات 1/ عاول اووار

السؤال الثالث:

(أ) إذا كانت س = {٢، ٣، ٥}، ص = {٤، ٣، ٨، ١٠} وكانت ع علاقة معرفة من سد إلى صد حيث اع ب تعنى أن «٢ا = ب، لكل ا ∈ س، ب ∈ صد (١) اكتب بيان ع ومثلها بمخطط سهمى (٢) بين أن ع دالة

(ب) أوجد العدد الذي إذا أضيف إلى حدى النسبة ٧: ١١ فإنها تصبح ٢: ٣

السؤال الرابع:

(أ) إذا كانت س = { ١، ٣، ٥ } وكانت ع علاقة على س وكان بيان

ع = {(أ، ٣)، (ب، ١)، (١، ٥)} فأوجد (١) مدى الدالة (٢) القيمة العددية للمقدار أ + ب

(ب) إذا كانت ص ع الله وكانت ص = ٣ عندما س = ٢ فأوجد:

(١) العلاقة بين س، ص (٢) قيمة ص عندما س = ١,٥

السؤال الخامس:

(أ) مثل بیانیا منحنی الدالة دحیث د (س) = (س – ۳) متخذا س $\in [7, 7]$ ومن الرسم استنتج نقطة رأس المنحنی والقیمة الصغری للدالة ومعادلة محور التماثل (ب) احسب الوسط الحسابی والانحراف المعیاری للقیم ۸، ۹، ۷، ۲، ۵

إجابة نماؤج التاب الجبر والاحصاء الثالث الاعراوي ترم أول ۲۰۱۰ (۳) منتري توجيه الرياضيات [/ عاول اووار

إجابة النموذج الأول

السؤال الأول:

- (١) الربع الثاني
- (٢) الأنحراف المعياري
- W: £ = 4: P (W)

$$7 = 7 \times 7 = (30 \times 30) \times 7 = 7 \times 7 = 7 \times 10^{-1} \times 10^{$$

$$17 = \frac{m \times v}{r} = v = \frac{v}{r} \qquad (7)$$

السؤال الثاني:

$$\{\forall , \circ, \uparrow \} = \neg \circ (\uparrow)$$

$$\{Y\} \times \{Y, \circ, Y\} = \longrightarrow \times \longrightarrow$$

(ب) ۰: ۱، ۱، ۱، ۱۰ کمیات متناسبة

$$\frac{\partial}{(\partial - 1)} = \frac{\partial u}{(\partial - 1)u} = \frac{\partial u}{(\partial - 1)u} = \frac{v}{v} = \frac{v}{v}$$

$$\frac{\partial u}{\partial v} = \frac{v}{v} = \frac{v}{v}$$

$$\frac{d}{(d-1)} = \frac{ds}{(d-1)s} = \frac{ds}{(d-1)} = \frac{-2b}{(d-1)s}$$

.. الطرفان متساويان

إجابة نماؤج التاب الجبر والاحصاء الثالث الاعراوي ترم أول ٢٠١٠ (٤) منترى توجيه الرياضيات [/ عاول اووار

السؤال الثالث:

$$\{(1\cdot,0)\cdot(7\cdot7)\cdot(\xi\cdot7)\}=\mathfrak{E}(0)$$

خ دالة لأن كل عنصر من عناصر سه ظهر كمسقط أول مرة واحدة فقط فى الأزواج المرتبة لبيان خ

∴ س = ۱ ∴ العدد هو ۱

السؤال الرابع:

$$\{(\circ, 1), (1, \bullet), (7, \bullet)\} = \mathcal{E} : (1, \circ)$$

$$\frac{\rho}{\omega} = \omega \Leftarrow \frac{1}{\omega} \infty \omega : (4)$$

$$\frac{7}{1}$$
العلاقة بين س ، ص هي ص

$$\xi = \frac{7}{1,0} = \omega : \quad 1,0 = \omega$$

إجابة نماؤج التاب الجبر والاحصاء الثالث الاعراوي ترم أول ٢٠١٠ (٥) منتري توجيه الرياضيات [/ عاول اووار

السؤال الخامس

9	س=(س - ۳) ۲	3
9	ص=(۰ - ۳)۲	
\$	(۳ – ۱)	-
1	ص=(۲ – ۳)	*
•	ص=(۳ – ۳)	*
1	ص=(٤ ـ ٣)٢	٤
£	ص=(٥ - ٣)٢	•
9	س=(۲ - ۳)′	7

نقطة رأس المنحنى هى (٣، ٠) معادلة محور التماثل س = ٣ القيمة الصغرى = صفر

$$V = \frac{0 + 1 + V + 9 + A}{0} = /\omega \quad (4)$$

(س ـ س)	س ـ س/	3
	1 = ٧ _ ٨	^
*	Y = V _ 9	٩
20	· = Y _ Y	٧
1	7 _ V = _ 1	٦
٤	Y_ = V _ 0	٥
1.		بج

المجابة نماؤج التاب الجبر والاحصاء الثالث الاعراوي ترم أول ۲۰۱۰ (٦) منتري توجيه الرياضيات المراحول اووار

النموذج الثاني

أجب عن جميع الأسئلة الأتية:

السؤال الأول: اختر الإجابة الصحيحة من بين الإجابات المعطاة:

(١) النقطة (٣ ، ٤) تقع في الربع

أ) الأول ب) الثاني جـ) الثالث

(٢) من مقاييس التشتت

أ) الوسيط ب) الوسط الحسابي جـ) الانحراف المعياري د) المنوال

د) الربع

(٣) الثالث المتناسب للعددين ٢، ٦ هو

 γ (۱۲) γ ب γ γ γ

(٤) إذا كانت ب (س) = ٢، ب (ص × س) = ٦ فإن ب (ص ٢) =

ا) ٤ (أ

(٥) المدى لمجموعة القيم ٧، ٣، ٦، ٩، ٥ يساوى

١٢(٥ ب) ٢ (١٠)

(٦) إذا كان س ص = ٧ فإن ص (٦)

V+m(s) $-(-m)^{-1}$

السؤال الثاني:

(أ) إذا كانت س = {٢، ٥}، ص = {١، ٢}، ع = {٣} فأوجد:

(1) ∪ (∞××3) (1) (∞ (∞××3) ×3 (1) (∞×√1) (1)

إجابة نماؤج التاب الجبر والاحصاء الثالث الاعراوي ترم أول ٢٠١٠ (٧) منترى توجيه الرياضيات أ/ عاول اووار

السؤال الثالث:

السؤال الرابع:

السؤال الخامس:

ومن الرسم استنتج نقطة رأس المنحنى والقيمة العظمى للدالة ومعادلة محور التماثل

(ب) الجدول الأتي يمثل عدد الأطفال في ١٠٠ أسرة في إحدى المدن:

المجموع	٤	٢	۲	١	صفر	عدد الأطفال (س)
١	١٤	70	٤٠	10	7	عدد الأسر (ص)

أحسب المتوسط الحسابي والإنحراف المعياري.

لمِجابة نماؤج التاب الجبر والاحصاء الثالث الاحراوي ترم أول ٢٠١٠ (٨) منتري توجيه الرياضيات [/ عاول اووار

إجابة النموذج الثاني

السؤال الأول:

(١) الأول

(٢) الانحراف المعياري

$$(7)$$
 الثالث = $\frac{(10^{4} \text{ emd})^{7}}{10^{4} \text{ em}} = 7$ الأول

$$9 = {}^{\mathsf{T}}(\mathsf{T}) = ({}^{\mathsf{T}} \mathsf{D}) \omega \iff \mathsf{T} = \frac{\mathsf{T}}{\mathsf{T}} = (\underline{\mathsf{D}} \mathsf{D}) \omega = (2) \omega$$

$$\frac{1}{\omega} \infty \omega (7)$$

السؤال الثاني:

$$Y=1\times Y=(\mathcal{E})\omega\times(\mathcal{E})\omega=(\mathcal{E}\times\mathcal{E})\omega$$

$$\{(\Upsilon,\Upsilon)\} = \{\Upsilon\} \times \{\Upsilon\} = \mathcal{E} \times (\mathcal{A} \cap \mathcal{A})$$

(ب) : ب وسطمتناسب بین ۱، ح

$$\lceil O \rangle = | P \rangle \qquad \Leftrightarrow \qquad C \rangle = \frac{1}{2} = \frac{1}{2}$$

$$\frac{d}{(1+d)} = \frac{4b(b-1)}{(b+1)} = \frac{d}{(b+1)} = \frac{d}{(b+1)}$$

$$\frac{2}{(1+0)} = \frac{2}{(0+1)} = \frac{2}{(0+1)} = \frac{2}{(0+1)}$$
 الأيسر

ن الطرفان متساويان

رِجابة نماؤج التاب الجبر والاحصاء الثالث الاعراوي ترم أول ۲۰۱۰ (۹) منتري توجيه الرياضيات م/ عاول اووار

السؤال الثالث:

$$0 = \frac{\pi}{0} = \frac{1}{0} \qquad \Longleftrightarrow \qquad 0 = \frac{\pi}{0} = \frac{\pi}{0} \qquad \Longleftrightarrow \qquad 0 = \frac{\pi}{0} = \frac{\pi}$$

السؤال الرابع:

$$(i)$$
 $c(w) = 3w + \psi$
 $c(x) = 3 \times x + \psi = 0$
 $c(x) = 3 \times x + \psi = 0$
 $c(x) = 3 \times x + \psi = 0$
 $c(x) = 3 \times x + \psi = 0$

إجابة نماؤج التاب الجبر والاحصاء الثالث الاعراوي ترم أول ٢٠١٠ (٠١) منترى توجيه الرياضيات ١/ عاول اووار

السؤال الخامس.

2	ص= ٤ ـ س٢	3
0 _	ص= ٤ _ ٩	٣.
•	_ 4 = 4 _ 4	۲_
٣	ص= ٤ _ ١	1
٤	ص= ٤ _ ٠).
٣	ص= ٤ _ ١	
•	ص= ٤ _ ٠	7
٥_	ص= ٤ _ ٩	~ ~

نقطة رأس المنحنى هى (٠، ٤) معادلة محور التماثل س = صفر القيمة العظمى = ٤

('

ك×(س_س)×ك	(س ـ س)	س _ س/	ك×س	<u>5</u>	w
٣٠,٦٤٥٦	9,1.77	1,77_	•	*	•
۲۳,۸۱٤	1,0177	1,77 =	10	10	1
۲,۷۰٤	٠,٠٦٧١	٠,٢٦_	۸.	٤٠	*
17,79	•,0277	٠,٧٤	V •	40	٣
£ 4, 471 £	7, 777	1,7 £	7	1 £	٤
117,75			777	1	4

$$1, \cdot 7 \simeq \frac{117, 72}{1 \cdot \cdot \cdot} = \frac{777}{1 \cdot \cdot \cdot$$

إجابة نماؤج التاب الجبر والاحصاء الثالث الاحراوي ترم أول ٢٠٢٠ (١ ١) منترى توجيه الرياضيات [/ حاول اووار

نموذج للطلاب المدمجين

السؤال الأول: أكمل ما يأتى:

- (١) النقطة (٥، ٣) تقع في الربع الأول
- (٢) الدالة د (س) = س + ٨ تسمى دالة كثيرة حدود من الدرجة الثالثة
 - (۳) المدى لمجموعة القيم ٤، ١٤، ٢٥، ٣٤ هو ٣٤ _ ٤ = ٣٠
 - (٤) إذا كان ص = ٢ س فإن ص ١٥
 - $\frac{9}{1} = \frac{7}{1} (7) = \frac{1}{1} (7) = \frac{1}{1} (7) = \frac{1}{1} (7)$

السؤال الثاني: اختر الإجابة الصحيحة من بين الأقواس

(١) إذا كان س ص = ٧ فإن ص ٢٥

(٢) إذا كان ٢، ٣، ٦، س كميات متناسبة فإن س -

$$\underline{q} = \frac{7 \times 7}{7} = \omega \qquad \qquad \frac{7}{7} = \frac{7}{7}$$

$$\left[\begin{array}{c|c} 0 & \frac{7}{0}, \frac{7}{0}, \frac{7}{0}, \frac{0}{7} \end{array}\right]$$

$$\frac{\circ}{\Upsilon} = \frac{1}{\psi}$$
 إذا كان Υ | = \circ ψ فإن ψ

[الوسط الحسابي، المدى، المنوال، الوسيط]

$$\frac{Y = 0 \div 1}{1} = (-\infty)$$
 فإن ω (ص $\omega \times \infty$) و اذا کان ω (ص ω) و م ω (ص ω) و اذا کان ω

$$\{(1,1)\} \equiv \{1\}$$
 فإن س = $\{1\}$ فإن س آء

رِجابة نماؤج التاب الجبر والاحصاء الثالث الاعراوي ترم أول ٢٠١٠ (٢٢) منترى توجيه الرياضيات ٢٠ عاول اووار

السؤال الثالث:

ضع علامة (٧) أمام العبارة الصحيحة وعلامة (×) أمام العبارة الخاطئة:

(٤) نقطة تقاطع المستقيم الذي يمثل الدالة

س ٤: صل من العمود (أ) ما يناسبه من العمود (ب)

ب		i
٦	9	(۱) إذا كان (۱، ٤) ∈ {۲، س}×{۱، ٤}
	\	فإن س=
Ι,		(٢) إذا كانت دالة س حيث د (س) = س - ٤ عِثْلَها الراب عدد من الروائد التراث الإراث التراث الم
Ι'		بیانیا مستقیم بمر بالنقطة (أ، ۲) فإن أ = و بیانیا مستقیم بمر بالنقطة (أ، ۲) فإن أ = $\frac{1}{\sqrt{12}} = \frac{1}{\sqrt{12}} = \frac{1}{\sqrt{12}} = \frac{1}{\sqrt{12}}$
		(٤) إذا كانت د (س) = ٥ فإن د (٥) + د (-٥)
١٠	or	(٥) الوسط المتناسب للعددين ٤، ٩ هو
٦±	4	00
l .	_/	(٦) في الشكل المقابل
l '		معادلة خط
۸	0	التماثل للمنحنى هو س = حد المناثل للمنحنى هو س
	·	

إجابة نماؤج التاب الهنسة والمثلثات الثالث اللاحراوي ترم أول ٢٠١٠ (١) منترى توجيه الرياضيات [/ عاول اووار

النموذج الأول

السؤال الأول: اختر الإجابة الصحيحة من بين الإجابات المعطاة:

(أ) ظامع*=.....

$$\overline{Y}$$
(s) $\frac{1}{Y}$ (\Rightarrow \overline{Y}) Y Y (\Rightarrow Y) Y (\Rightarrow Y)

(هـ) إذا كان أ (٥، ٧)، ب (١، -١) فإن نقطة منتصف أب هي

$$(\xi, \tau)(x)$$
 $(\tau, \tau)(x)$ $(\tau, \tau)(x)$

(و) معادلة المستقيم الذي يمر بالنقطة (٣، -٥) ويوازي محور الصادات هي

السؤال الثاني:

- (أ) بدون استخدام الألة الحاسبة أثبت أن: حا ٦٠ = ٢ حا ٣٠ حتا ٣٠
- (ب) أثبت أن النقط أ (٣-، ١-)، ب (٦، ٥)، جـ (٣، ٣) تقع على استقامة واحدة.

رجابة نماذج التاب الهنسة والمثلثات الثالث اللاصراوي ترم أول ٢٠١٠ (٢) منترى توجيه الرياضيات أ/ عاول اووار

السؤال الثالث:

(أ) إذا كانت ٤ حتا ٣٠ حا ٣٠ = طاس فأوجد قيم س حيث س زاوية حادة

(ب) إذا كانت جـ (٦، -٤) هي منتصف أب حيث أ (٥، -٣) فأوجد إحداثيي النقطة ب

السؤال الرابع:

(أ) إذا كان المستقيم ل 1 يمر بالنقطتين (٣، ١)، (٢، ك)، والمستقيم ل, يصنع مع الاتجاه الموجب لمحور السينات زاوية قياسها ٤٥ فأوجد قيمة ك إذا كان ل/ ل.

(ب) أب جر مثلث قائم الزاوية في جرفيه أج = ٦ سم، ب ج = ٨ سم أوجد

(۱) حتا احتاب - حا احاب (۲) ق (∠ ب)

السؤال الخامس:

(أ) أوجد معادلة المستقيم الذي ميله ٢ وير بالنقطة (١،٠)

(ب) أثبت أن النقط أ (٣، -١)، ب (-٤، ٢)، ج (٢، -٢) الواقعة في مستوى إحداثي متعامد تمر بها دائرة واحدة مركزها النقطة م (-١، ٢) ثم أوجد محيط الدائرة.

إجابة النموذج الأول

السؤال الأول:

$$(Y) \quad \text{w} \quad (\angle w) = Y^{\circ}$$

$$(7)$$
 $\sqrt{(-3-4)}$ = $\sqrt{9+77}$ = $\sqrt{9+77}$ = $\sqrt{9+77}$ = $\sqrt{9+77}$ = $\sqrt{9+77}$

$$\frac{2}{\gamma} = \gamma \lim_{\lambda \to 0} \zeta_{\lambda} = \frac{\xi_{\lambda}}{1} = \frac{1}{2} =$$

 $-1 = \gamma$ م \times م \leftarrow المستقيمان متعامدان \rightarrow

$$\frac{1}{7} = 2 : \qquad 1 = 27 \iff 1 = \frac{2}{7} \times \xi = 1$$

المجابة نماذج انتاب الهنسة والمثلثات الثالث اللاصراوي ترم أول ۲۰۱۰ (۳) منتري توجيه الرياضيات [/ عاول اووار

$$(\circ) \text{ airmin } (\circ)$$

(7) المستقیم یوازی محور الصادات \Rightarrow س = %

السؤال الثاني:

(أ) الطرف الأيمن = جا ۲۰° =
$$\frac{\sqrt{7}}{7}$$

$$\frac{\overline{T}}{V} = \frac{\overline{T}}{V} \times \frac{1}{V} \times \frac{V}{V} = 1 \times \frac{V}{V} = \frac{\overline{T}}{V} = \frac{\overline{T}}{V}$$
 الطرف الأيسر = ۲ جا ۳۰° جتا ۳۰° = ۲ ب

ن الطرفان متساویان
$$\Longrightarrow$$
 جا ۲۰° = ۲ جا ۳۰° جتا ۳۰°

$$\frac{7}{7} = \frac{7}{9} = \frac{(1-)-9}{(1-)-7} = \frac{100-100}{100-100} = \frac{7}{9} = \frac{$$

$$\frac{7}{m} = \frac{7}{m} = \frac{0}{7} = \frac{0}{7} = \frac{1}{7} = \frac{0}{7} = \frac{7}{m} = \frac{7}$$

ن النقط ۱ ، ب ، ح على استقامة واحدة

السؤال الثالث:

$$^{\circ}$$
 د م $\frac{1}{4} \times \frac{1}{4} \times \frac{$

إجابة نماؤج التاب الهنسة والمثلثات الثالث اللاعراوي ترم أول ٢٠٢٠ (٤) منترى توجيه الرياضيات [/ عاول الووار

السؤال الرابع:

$$4 - 1 = (1 - 4) - = \frac{1 - 4}{7 - 7} = \frac{1 - 4}$$

(۱) جتا م جتا ب = جا م جا ب =
$$\frac{\xi \wedge}{1} = \frac{\chi \wedge}{1} = \frac{\chi}{1} =$$

السؤال الخامس.

إجابة نماؤج التاب الهنسة والمثلثات الثالث اللاعراوي ترم أول ٢٠١٠ (٥) منترى توجيه الرياضيات [/ عاول اووار

النموذج الثاني

السؤال الأول: اختر الإجابة الصحيحة من بين الإجابات المعطاة:

(۱) ۲ حا ۳۰ ظا۲۰°

$$\frac{1}{T}$$
 (s $\frac{T}{T}$ (s $\frac{T}{T}$ (s)

(٢) معادلة المستقيم المار بالنقطة (-٢، -٣) ويوازى محور السينات هي

(٣) إذا كان جتا س = ٢٠٠٠ س زاوية حادة فإن جا ٢ س =

$$\frac{1}{T/c}(3) \qquad Y-(\Rightarrow \frac{T/c}{T/c}(\Rightarrow 1))$$

(٤) دائرة مركزها نقطة الأصل ونصف قطرها ٢ وحدة طول فإن النقطة تنتمي إليها

$$(1,\cdot)(3)$$
 $(1,\overline{r})(3)$ $(1,\overline{r})(3)$ $(1,\cdot)(3)$ $(1,\cdot)(3)$

(٥) البعد العمودي بين المستقيمين س - ٢ = ٠، س + ٣ = ٠ يساوي

(٦) إذا كان المستقيمان اللذان ميلالهما $-\frac{7}{4}$ متوازيان فإن ك =

السؤال الثاني:

(أ) إذا كان جتا هـ ظا ٣٠ = جتا ٤٥ فأوجد ق (هـ هـ) حيث هـ زاوية حادة

السؤال الثالث:

(أ) أوجد معادلة المستقيم المار بالنقطتين (١، ٣)، (١- ، ٣-) ثم أثبت أنه يمر بنقطة الأصل.

رِجابة نماذج انتاب الهنسة والمثلثات الثالث اللاصراوي ترم أول ١٠٢٠ (٦) منترى توجيه الرياضيات أ / عاول اووار

السؤال الرابع:

(أ) أوجد معادلة المستقيم الذي يقطع من محورى الإحداثيات السينى والصادى جزءين موجبين طولايهما ١، ٤ وحدات طول على الترتيب ثم أوجد ميل هذا المستقيم.

السؤال الخامس:

(أ) أثبت أن المستقيم المار بالنقطتين (-١، ٣)، (٢، ٤) يوازي المستقيم ٣ ص - س - ١ = ·

(ب) اب جدی شبه منحرف فید ای // ب جد، ق (
$$\propto$$
 ب) = ۹۰°، اب = ۳ سم، ب جد = ۲ سم، او جد طول $\overline{2}$ جد تم أوجد قيمة جتا \propto ب جدی

إجابة النموذج الثاني

السؤال الأول:

$$\overline{TV} = \overline{TV} \times \frac{1}{V} \times Y = ^{\circ}7 \cdot U \Rightarrow ^{\circ}7 \cdot (1)$$

$$(7)$$
 جتا $w = \frac{\overline{\psi}}{\gamma} \implies (\sqrt{w}) = \sqrt{\pi}$

حا ۲ $w = \overline{\psi}$ $= \sqrt{\pi}$ $= \sqrt{\pi}$

المستقيمان متوازيان
$$\Rightarrow \frac{7}{7} = \frac{8}{2}$$
 ك = $\frac{7 \times 7}{7} = 2$

إجابة نماذج التاب الهنسة والمثلثات الثالث اللاصراوي ترم أول ٢٠٢٠ (٧) منترى توجيه الرياضيات [/ عاول اووار

السؤال الثاني:

$$- - - - \sqrt{(1-1)^2 + (1-1)^2} = \sqrt{1+3} = \sqrt{3} = 7$$
 وحدة طول

السؤال الثالث:

$$w = \frac{7}{7} = \frac{w - w}{1 - 1} = \frac{w - w}{1 - 1$$

معادلة المستقيم ص = ٣ س + جي، النقطة (١، ٣) تنتمى للمستقيم ٣ = ٣ + ج = صفر نوس = ٣ س

$$(\frac{1}{\gamma}) = \frac{1}{\gamma} = \frac{$$

$$(1 - \alpha) = (\omega, \omega) : 1 - \omega = \omega$$

لمِجابة نماؤج التاب الهنسة والمثلثات الثالث اللاصراوي ترم أول ٢٠١٠ (^) منترى توجيه الرياضيات [/ حاول اووار

السؤال الرابع:

(أ) المستقيم يقطع من محورى الأحداثيات ١،٤ يمر بالنقط (١،٠)، (٠،٤)

$$\xi = \frac{\xi}{1 - \xi} = \frac{1 - \xi}{1 - \xi} = \frac{1 - \xi}{1$$

معادلة المستقيم ص = _ ٤س + ج ، النقطة (١،١) تنتمى للمستقيم

$$\frac{17\xi}{1+1} = 1 + \frac{7\xi}{1+1} = 1 + \frac{7(\frac{1}{4})}{1+1} = 1 + \frac{7(\frac{1}{4})}{1+1} = 1 + \frac{7(\frac{1}{4})}{1+1} = \frac{17(\frac{1}{4})}{1+1} = \frac$$

$$\frac{17\xi}{1...} = \frac{77}{1...} + \frac{7\xi}{1...} + \frac{7\xi}{1...} + \frac{7\xi}{1...} + \frac{7\xi}{1...}$$
 الأيسى = ٢ جتا

السؤال الخامس.

$$\frac{1}{m} = \frac{m-\xi}{1+1} = \frac{1-m-1}{m} = \frac{1-m}{1+1}$$

میل المستقیم $= \frac{1}{m} - 1$ هو $= \frac{1}{m} = 0$ المستقیمان متوازیان

في ۵ وهد قائم الزاوية في ه

$$Y \circ = Y + q = Y(\Delta \Delta) + Y(\Delta S) = Y(\Delta S)$$

$$\frac{\xi}{o} = \frac{-\infty}{-\infty} = \frac{1000}{100} = \frac{-\infty}{000}$$

۱۰سم

إجابة نماؤج التاب الهنسة والمثلثات الثالث اللاعراوي ترم أول ٢٠١٠ (٩) منترى توجيه الرياضيات ١/ عاول اووار

نموذج للطلاب المدمجين

الإجابة في نفس الورقة

السؤال الأول: ضع علامة (√) أمام العبارة الصحيحة وعلامة (×) أمام العبارات الخطأ:

$$(\mathbf{X})$$

السؤال الثاني:

اختر الإجابة الصحيحة من بين الإجابات المعطاة

$$[17 \ \overline{7} \times \overline{Y} \times \overline{Y} \times \overline{Y} = 7 \times \overline{Y} \times \overline{Y} \times \overline{Y} \times \overline{Y} = 7 \times \overline{Y} \times \overline{Y} \times \overline{Y} = 7 \times \overline{Y} \times \overline{Y} \times \overline{Y} = 7 \times \overline{Y} \times$$

(٤) النقط (٠،٠)، (٣،٠)، (٤)

[تكون مثلث منفرج الزاوية، تكون مثلث حاد الزاويا ، تكون مثلث قائم الزاوية، تقع على استقامة واحدة]

$$[\frac{\tau}{\tau}, \frac{\tau}{\tau}] \qquad \frac{\tau}{\tau} = \gamma_{\tau} = \gamma_{\tau} = \gamma_{\tau} \Rightarrow \gamma_{\tau} \Rightarrow \gamma_{\tau} = \gamma_{\tau} \Rightarrow \gamma_{\tau} \Rightarrow \gamma_{\tau} \Rightarrow \gamma_{\tau} = \gamma_{\tau} \Rightarrow \gamma_{\tau} \Rightarrow \gamma_{\tau} \Rightarrow \gamma_{\tau} \Rightarrow \gamma_{\tau}$$

(7) إذا كان حا
$$w = \frac{1}{\sqrt{1}}$$
 حيث w قياس زاوية حادة كان $\frac{1}{\sqrt{1}}$ $\frac{1}{\sqrt{1$

. إجابة خاذج انتاب الهنسة والمثلثات الثالث الاحرادي ترم أول ٢٠٢٠ (• ١) منترى توجيه الرياضيات [/ عاول اووار

السؤال الثالث

صل من العمود أبما يناسبه من العمود ب:

ب	,	
١٠	*	(۱) ميل المستقيم الموازي للمحور السيني = ٥
		(۲) حا ^۲ • ۳۰ + جتا ۲ • ۳۰ =
صفر	4	(٣) إذا كان أب جدى مستطيل، أ (١٠، -٤)
		جـ (٥، ٤) فإن طول ب ٤ = وحدة طول ٥
١ ١	*	(٤) معادلة المستقيم المار ينقطة الأصل وميله ٢ هو
۳-	*	ص = س
<u> 7</u>	4	(٥) معادلة المستقيم الذي يمر بالنقطة (٢، -٣)
<u> </u>	9	ويوازي محور السينات ص =
		(٦) قيمة المقدار - ١٠ ظا ^٢ ٣٠ =

السؤال الرابع:

أكمل ما يأتى:

(٢) في الشكل المقابل: أب جد مثلث قائم

(٣) إذا كانت النقطة (٠٠) تنتمي للمستقيم

(٦) إذا كانت نقطة الأصل هي منتصف القطعة المستقيمة أب

ကြောင်္ကျာပိုက်မျှာတွင်ပြည်တွင်ပြည်လျှင်

