Real-Time Air Quality Monitoring & Weather Forecasting System

MachineLearners

Sharmistha Das(Team Leader)

College: Narula Institute of

Technology
Stream: IT

Year of graduation: 2024

Agniban Saha

College: Narula Institute of

Technology Stream: **ECE**

Year of graduation: 2024

Deep Sarkar

College: Narula Institute of

Technology

Stream: IT

Year of graduation: 2024

Abhirup Basak

College: Narula Institute of

Technology

Stream: IT

Year of graduation: 2024

ROLE OF TEAM MEMBERS

Sharmistha Das Team Leader	Agniban Saha Team Member1	Deep Sarkar Team Member2	Abhirup Basak Team Member3
1. Pre-Requisites	1. Pre-Requisites	1. Pre- Requisites	1. Pre-Requisites
2. Video Presentation	2. Building the Solution	2. Preparing UI/UX Design	2. Preparing UI/UX Design
3. Solution Submission	3. Preparing Documentation	3. Building the Solution	3. Building the Solution

CONTENTS

PROJECT DESCRIPTION

- Air pollution represents a serious environmental problem. Air quality forecasting is a vital tool for local health and air managers to make informed decisions on mitigation measures to reduce public exposure risk.
- ✓ Air quality forecasts, if they are reliable and sufficiently accurate, can play an important role as part of an air quality management system.
- ✓ The air quality (AQ) forecast lets the public know expected air quality conditions for the next 72 hours so that government authorities can take action to manage the air quality and issue health advisories.
- With the help of Weather-API, we can get immediate access to local weather conditions and an upcoming forecast. Providing real-time notifications about prevailing and expected weather conditions helps governments and local administrations prepare for natural disasters and save lives.

Proposed Methodology

The air quality and meteorological datasets have been scrapped from: https://www.kaggle.com/datasets/rohanrao/air-quality-data-in-india
The collected data is then modified, as we have calculated the daily hours of air quality data into daily average data for target value .
The processed data is then divided into 2 groups: Training set and Testing set, and then fed into the Random Forest Regressor.
To show the performance of our proposed idea, we trained the air quality data and forecasted it by fitting models with optical hyper-parameters. The forecasted values were then compared with the observed values.
The performance is calculated in terms of Mean Absolute Error (MAE), Mean Squared Error (MSE) and Root Mean Squared Error (RMSE).
Then we integrate our developed learnings to a Web-based application so that the user could also be alerted about the air quality index, and suggestions on how to react and improve air quality can be disseminated quickly by a mobile.

Technology Stack

- Air Quality Dataset with Parameters
- Machine Learning Concepts-
 - ✓ Random Forest Regression
- Graphs-
 - ✓ Pair Plot
 - ✓ Scatter Plot
 - ✓ Box Plot
- Heat Map
 - ✓ Seaborn Heat Map
- Python Programming Language
- ➤ Flutter
- Weather APK

Use Cases

- Tracking air pollution.
- Forecasting dust storms
- Tracking global wildfires
- Airlines
- Research Environment
- Health Sector

Flowchart

BLOCK DIAGRAM OF PROPOSED ARCHITECTURE

DATA FLOW DIAGRAM

PROCESS FLOW

PERFORMANCE STATUS

MAE: 10.273708990476212 MSE: 275.9527390853567 RMSE: 16.611825278558545

Dependencies / Show stoppers

- ❖ Air quality data collected from Kaggle
- ❖ IBM Watson Studio Cloud
- Flutter
- Random Forest Algorithm

UI/UX DESIGN

COMPONENTS REQUIRED

Programming Language:

- > HTML
- > CSS
- > Python

Framework:

> Flask

! Imported Libraries:

- > Flask
- > Jsonify
- Render_template
- > Requests

***** Host:

Local Host

Feasibility:

- > Python (Installed)
- Browser

FLOWCHART

FRAMEWORK: FLASK

HTML WEB PAGE Flask App 1.Receives Data from WebPage 1. Takes input from users Pm2.5, Pm10, NO, NO2, NO2, 2. Sends and Recieves NH3,CO,SO2,TOL Data to API 3. Sends the Result to WebPage 2 Shows the Result IBM Watson Studio With Live Deployment of Model Recieves Data from App and sends results to app

1. <u>Flask:</u>

- ✓ Implementation of web frameworks concept
- Provides with libraries, tools, modules to develop web appplications

2. Jsonify:

- Serializes data to JavaScriptObject Notation Format (JSON)
- ✓ Wraps it in a response object with application

2. Render_template:

✓ Used to generate output from a template based on Jinja2 engine

3. Requests:

- Critical for building web applications
- ✓ Allows us to obtain data sent from client

RESULTS (1)

STEP 1: Run the Program

STEP 2: Copy the Link Pointed by the arrow __jpectury_streamer_jpox_group_mesecc_sens_op_en_enconomistate_ye_unmenoeconomic_tempos_one_unmen_enconomic_tempos_one_unmenoeconomic_tempos_one_unm

- * Serving Flask app 'app'
- * Debug mode: on

WARNING: This is a development server.

fat use it in a production deployment. Use a production WSGI server instead.

* Running on http://127.0.0.1:5000 Press CTRL+C to quit

* Restarting with stat

mitoken eyrakjioliyMDIyMTAXMZAMYjcilChb6cioiSUzINiJ9.eyJpMufakojoiJJQkipZceRHjkwDUNQUYTiviakojioiJQkipZceRHjkwDUNQUYTiviamhb6
lpZCI6IklCTNlkIivianRpIjoiZDMXYTgw/mmtZDceZSeRYjkzkNI4ZjYtZjEyZQQHYjwNjlkIiviakRlbmpzmilciI6IjYZMzAWIhBS1gilChaXZlbl9uVNIIJjoiRGVlc
CISInZhbNlseY9uVNIIJjoiLVZyyaZFyIivibmFtZSI6IkRIZXAgUZFyzZFyIiviZMIhakviOiJTSIIwYjJQkAWTgyMEBZbNFydGludGybnovY39tIivic3ViIjoiURyyDIy
SUJNWDU4MjBAcZlhcnRpbnRlcm56LmNvbSIsImF1dGhuIjpJInUYiI6IlNJHjAyMklCTTAIODIxQMXYXJBakSeZXJuei5jb2eilCJpWuIfakQiOiJQklpZceZHjMwDUNQUt
YIIviibmFtZSI6IkRIZXAgUZFyzZFyIiviZZIZZNSfbmftZSI6IkRIZXAGLCNMIpWhIfbmftZSI6IlNbcmthciIsImYtWlsIjoiURyWDIySUJNWDU4MjBAcZlhcnRpbnRlcm

0 Å 0

€ Live Share

€ tabnine starter

Ln 55, Col 1 Spaces, 4 UTF-8 CRLF {} Python 3,10,8 64-bit

RESULTS (2)

STEP 3: Paste the link in any Web Browser to get to the User Interface (UI)

Air Quality Predictor	
	Input Parameter
	Particulate Matter2.5(PM2.5) Input
	Particulate Matter10(PM10): Input
	Hitris Oxide(HO) Input
	Nitrogen Dissisle(NO ₂) Injut
	Hitrogen Oxides(NO ₂) Input
	Ammonia(HHs), Input
	Carbon Monoxide(CO) Input
	Sulphue Dioxide(50 ₂) Ingut
	Toluene(Tol) Input
	Submit
	Predicted AQI:

