Численное дифференцирование

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Математико-механический факультет

2021

Содержание |

- Основные формулы численного дифференцирования для функции, заданной аналитически
- Формулы численного дифференцирования для функции, заданной таблично в равноотстоящих узлах
- Теорема о погрешности численного дифференцирования
- Построение формул численного дифференцирования
- Задание 1
- Задание 2
- Задание 3

Основные формулы численного дифференцирования для функции, заданной аналитически |

Предполагается, что функция f(x) достаточно гладкая. Справедливы соотношения (формулы, равенства).

$$f'(x) = rac{f(x+h) - f(x)}{h} - rac{h}{2}f''(\xi), \quad \xi \in (x,x+h), \quad \text{(1)}$$

$$rac{f(x+h) - f(x)}{h} - ext{разность вперед}.$$

$$f'(x) = \frac{f(x) - f(x - h)}{h} + \frac{h}{2}f''(\xi), \quad \xi \in (x - h, x), \quad (2)$$

Основные формулы численного дифференцирования для функции, заданной аналитически ||

$$\frac{f(x) - f(x - h)}{h}$$
 — разность назад.

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{h^2}{6}f'''(\xi), \quad \xi \in (x-h, x+h),$$
(3)

$$\frac{f(x+h)-f(x-h)}{2h}$$
 — симметричная разность.

Основные формулы численного дифференцирования для функции, заданной аналитически |||

$$f'(x) = \frac{-3f(x) + 4f(x+h) - f(x+2h)}{2h} + \frac{h^2}{3}f'''(\xi), \quad (4)$$
$$\xi \in (x, x+2h).$$

$$f'(x) = \frac{3f(x) - 4f(x - h) + f(x - 2h)}{2h} + \frac{h^2}{3}f'''(\xi),$$

$$\xi \in (x - 2h, x).$$
 (5)

Основные формулы численного дифференцирования для функции, заданной аналитически IV

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} - \frac{h^2}{12} f^{(4)}(\xi),$$
$$\xi \in (x-h, x+h). \quad (6)$$

Формулы численного дифференцирования для функции, заданной таблично в равноотстоящих узлах |

Пусть узлы $x_0,\ x_1,\ x_2,\dots,x_n$ — равноотстоящие, т. е. $x_{i+1}-x_i=h\ (i=0,\ 1,\ 2,\dots,n-1),$ и пусть для функции y=f(x) известны значения $y_i=f(x_i)\ (i=0,1,\dots,n).$ Формулы (1) - (6) перепишем в следующем виде:

$$f'(x_i) = \frac{y_{i+1} - y_i}{h} + O(h), \quad i = 0, 1, \dots, n - 1.$$
 (7)

$$f'(x_i) = \frac{y_i - y_{i-1}}{h} + O(h), \quad i = 1, 2, \dots, n.$$
 (8)

$$f'(x_i) = \frac{y_{i+1} - y_{i-1}}{2h} + O(h^2), \quad i = 1, 2, \dots, n-1.$$
 (9)

Формулы численного дифференцирования для функции, заданной таблично в равноотстоящих узлах II

$$f'(x_i) = \frac{-3y_i + 4y_{i+1} - y_{i+2}}{2h} + O(h^2), \quad i = 0, \dots, n-2.$$

$$(10)$$

$$f'(x_i) = \frac{3y_i - 4y_{i-1} + y_{i-2}}{2h} + O(h^2), \quad i = 2, \dots, n.$$

$$(11)$$

$$f''(x_i) = \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} + O(h^2), \quad i = 1, \dots, n-1.$$

$$(12)$$

Теорема о погрешности численного дифференцирования

Теорема 1

Пусть функция f(x) имеет конечную производную порядка n+1 на [a,b], где $a=min\{x_0,x_1,\ldots,x_n,\overline{x}\},\ b=max\{x_0,x_1,\ldots,x_n,\overline{x}\}.$ Тогда справедливо представление

$$R_n^{(m)} = \frac{f^{(n+1)}(\eta)}{(n+1)!} \omega_{n+1}^{(m)}(\overline{x}), \ \eta \in (a,b),$$

если выполняется одно из условий:

$$lack x \notin (lpha,eta)$$
, где $lpha=min\{x_0,x_1,\ldots,x_n\},\ eta=max\{x_0,x_1,\ldots,x_n\},$

$$oldsymbol{2} m=1$$
 и точка \overline{x} совпадает с одним из узлов $\overline{x}=x_k.$

При выполнении условий 1 и 2 $\omega_{n+1}^{(m)}(\overline{x}) \neq 0$.

Построение формул численного дифференцирования

интерполяционный многочлен вида:

Пусть дана таблица значений функции f(x) на [a,b] с шагом h точка \overline{x} , которая находится в начале таблицы. Получим некоторые формулы для приближенного вычисления производной функции дифференцированием интерполяционного многочлена в форме Ньютона. Так как точка \overline{x} находится в начале таблицы, используем

$$P_n(a+th) = y_0 + t \, \Delta y_0 + \frac{t(t-1)}{2!} \, \Delta^2 y_0 + \frac{t(t-1)(t-2)}{3!} \, \Delta^3 y_0 + \dots + \frac{t(t-1)\cdots(t-n+1)}{n!} \, \Delta^n y_0, \quad (13)$$

где $t = (\overline{x} - a)/h$.

Построение формул численного дифференцирования ||

Обозначим $\alpha_k=t-k$. Дифференцируем интерполяционный многочлен (13), (ограничиваясь для краткости тремя слагаемыми)

$$h P'_n(a+th) = \Delta y_0 + \frac{(\alpha_1 + \alpha_0)}{2} \cdot \Delta^2 y_0 + \frac{(\alpha_1 \cdot \alpha_2 + \alpha_0 \cdot \alpha_2 + \alpha_0 \cdot \alpha_1)}{6} \cdot \Delta^3 y_0 + \dots$$

Представим $P_n'(a+th)$ в виде: $P_n'(a+th) = \sum_{k=1}^n \frac{N_k'}{h} \cdot \Delta^k y_0,$ где

$$N_1' = 1, N_2' = \frac{(\alpha_1 + \alpha_0)}{2}, N_3' = \frac{(\alpha_1 \cdot \alpha_2 + \alpha_0 \cdot \alpha_2 + \alpha_0 \cdot \alpha_1)}{6}, \dots$$

Построение формул численного дифференцирования III

При выполнении условий теоремы 1 о погрешности численного дифференцирования

$$R'_{n}(\overline{x}) = \frac{f^{(n+1)}(\eta)}{(n+1)!} \omega'_{n+1}(\overline{x}), \ \eta \in (a,b).$$
 (14)

Заметим, что в нашем случае

$$\omega'_{n+1}(\overline{x}) = [t(t-1)\cdots(t-n)]'h^n = \left(\prod_{k=0}^n \alpha_k\right)'h^n.$$

Построим несколько формул численного дифференцирования.

Пусть требуется построить формулу численного дифференцирования для приближенного вычисления производной m-ого порядка с порядком аппроксимации p.

Построение формул численного дифференцирования IV

Понятно, что степень интерполяционного полинома следует вычислять исходя из того, что p=n+1-m, т. е. n=p+m-1.

① Пусть требуется построить формулу численного дифференцирования для приближенного вычисления первой производной с первым порядком аппроксимации в точке $\overline{x}=a$. Получаем n=p+m-1=1. Согласно обозначениям $t=0,\ \alpha_0=0,\ \alpha_1=-1$. Тогда $h\,P_1'(a)=\Delta y_0$ и

$$f'(a) \approx P_1'(a) = \frac{y_1 - y_0}{h}.$$
 (15)

Построение формул численного дифференцирования V

Выражение (15) для численной производной функции f(x) в точке x=a называется разностью "вперед". Определим выражение для погрешности формулы (15).

Согласно теореме 1

$$R'_{1}(a) = \frac{f''(\eta)}{2!}\omega'_{2}(a) = \frac{f''(\eta)}{2!}(\alpha_{0} + \alpha_{1})h = -\frac{1}{2}hf''(\eta),$$
$$\eta \in (a, a + h).$$
(16)

Что совпадает с формулой (1).

Построение формул численного дифференцирования VI

② Пусть требуется построить формулу численного дифференцирования для приближенного вычисления первой производной со вторым порядком аппроксимации в точке $\overline{x}=a$.

Получаем n = p + m - 1 = 2.

$$t = 0, \ \alpha_0 = 0, \ \alpha_1 = -1, \alpha_2 = -2.$$

$$h P_2'(a) = \Delta y_0 + \frac{(\alpha_1 + \alpha_0)}{2} \cdot \Delta^2 y_0 =$$

$$= y_1 - y_0 - \frac{y_2 - 2y_1 + y_0}{2}, \quad (17)$$

$$f'(a) \approx P_2'(a) = \frac{-3y_0 + 4y_1 - y_2}{2h}.$$
 (18)

Построение формул численного дифференцирования VII

Определим выражение для погрешности формулы (18).

$$R'_{2}(a) = \frac{f'''(\eta)}{3!} \omega'_{3}(a) = \frac{f'''(\eta)}{3!} (\alpha_{1}\alpha_{2} + \alpha_{0}\alpha_{2} + \alpha_{1}\alpha_{2}) h^{2} =$$

$$= -\frac{1}{3} h^{2} f'''(\eta), \ \eta \in (a, a + 2h).$$
 (19)

Что совпадает с формулой (4).

Построение формул численного дифференцирования VIII

① Пусть требуется построить формулу численного дифференцирования для приближенного вычисления первой производной со вторым порядком аппроксимации в точке $\overline{x}=a+h$. Получаем n=p+m-1=2. Используемые узлы $a,\,a+h,\,a+2h,\,$ так что $t=1,\,\,\alpha_0=1,\,\,\alpha_1=0,\alpha_2=-1.$

$$h P_2'(a) = \Delta y_0 + \frac{(\alpha_1 + \alpha_0)}{2} \cdot \Delta^2 y_0 =$$

$$= y_1 - y_0 + \frac{y_2 - 2y_1 + y_0}{2}, \quad (20)$$

$$f'(a) \approx P_2'(a+h) = \frac{y_2 - y_0}{2h}.$$
 (21)

Построение формул численного дифференцирования IX

Определим выражение для погрешности формулы (21).

$$R'_{2}(a) = \frac{f'''(\eta)}{3!} \omega'_{3}(a+h) = \frac{f'''(\eta)}{3!} (\alpha_{1}\alpha_{2} + \alpha_{0}\alpha_{2} + \alpha_{1}\alpha_{2}) h^{2} =$$
$$= -\frac{1}{6} h^{2} f'''(\eta), \ \eta \in (a, a+2h).$$
 (22)

Что совпадает с формулой (3).

Построение формул численного дифференцирования Х

Пусть требуется построить формулу численного дифференцирования для приближенного вычисления первой производной с первым порядком аппроксимации в точке $\overline{x} = a - h/2$. Получаем n = p + m - 1 = 1. Используемые узлы a, a + h.

Согласно обозначениям
$$t=-\frac{1}{2},\;\alpha_0=-\frac{1}{2},\;\alpha_1=-\frac{3}{2}.$$
 Тогда $h\,P_1'(a)=\Delta y_0$ и

$$f'(a-h/2) \approx P_1'(a-h/2) = \frac{y_1 - y_0}{h}.$$
 (23)

Построение формул численного дифференцирования XI

Определим выражение для погрешности формулы (23). Согласно теореме 1

$$R'_{1}(a-h/2) = \frac{f''(\eta)}{2!}\omega'_{2}(a-h/2) = \frac{f''(\eta)}{2!}(\alpha_{0} + \alpha_{1})h = -hf''(\eta), \ \eta \in (a, a+h).$$
 (24)

• Формулу (21), а также численное значение f''(a+h) через значения функции в точках a, a+h, a+2h и их погрешности легко получить, используя разложение в ряд Тейлора f(a+h), f(a-h) в окрестности точки x=a с остаточными членами, содержащими h^3 и h^4 соответственно, и комбинируя эти выражения должным образом.

Задание 1 Г

Вычислить приближенно значения

- а) первой производной функции y=f(x) с порядком погрешности O(h) (обозначим $\widetilde{f'}$) и $O(h^2)$ (обозначим $\widetilde{\widetilde{f'}}$) при $i=0,\,1,\ldots,n$.
- б) второй производной функции y=f(x) с порядком погрешности $O(h^2)$ (обозначим $\widetilde{f''}$) при $i=1,\dots,n-1$.

Напечатать (см. образец)

- таблицу значений узлов;
- значений функции в узлах;
- "точных" значений производных в узлах;
- приближенных значений производных;
- их разностей (фактические погрешности).

Проверить результаты на многочленах соответствующих степеней.

Объяснить полученные результаты.

Образец выполнения задания для функции f(x) = x + 3 представлен в таблице 1.

Таблица 1

x	f(x)	f'(x)	\widetilde{f}' $O(h)$	погр. $O(h)$	$\widetilde{\widetilde{f}'}$ $O(h^2)$	погр. $O(h^2)$	f''(x)	$\widetilde{f''}$ $O(h^2)$	погр. $O(h^2)$
0	3	1	1	0	1	0	0		
0,1	3,1	1	1	0	1	0	0	0	0
0,2	3,2	1	1	0	1	0	0	0	0
0,3	3,3	1	1	0	1	0	0	0	0
0,4	3,4	1	1	0	1	0	0	0	0
0,5	3,5	1	1	0	1	0	0	0	0
0,6	3,6	1	1	0	1	0	0	0	0
0,7	3,7	1	1	0	1	0	0	0	0
0,8	3,8	1	1	0	1	0	0	0	0
0,9	3,9	1	1	0	1	0	0	0	0
1	4	1	1	0	1	0	0		

Задание 2

Пользуясь одной из формул (1) - (6) в заданной точке x вычислить разностную производную первого или второго порядка, последовательно уменьшая шаг h (например, вдвое) до тех пор, пока фактическая погрешность не начнет возрастать. Определить h оптимальное экпериментально и теоретически, объяснить полученные результаты.

Пример

При использовании формулы (4) в результате ошибок, допускаемых в каждом значении функции и не превосходящих по модулю ε , оценка для суммарной погрешности будет выглядеть следующим образом:

$$|R_{\varepsilon}(x,h,f)| \leqslant \frac{8\varepsilon}{2h} + \frac{h^2}{3}M_3, \quad M_3 = \max|f'''(\xi)|, \quad \xi \in (x,x+2h).$$

Оптимальный шаг, т.е. такой, при котором обеспечивается минимальная суммарная погрешность, находится обычным образом, как решение задачи на экстремум.

Напечатать

- ullet таблицу значений h;
- "точных" значений производной в точке x;
- приближенных значений производной;
- их разностей (фактические погрешности).

Образец выполнения задания для функции $f(x) = e^{2x}$ представлен в таблице 2.

Здесь x=1, начальный шаг h=0.1, "точное" значение производной f'(1)=14.778112.

Значения функции округляются до пятого знака после запятой, т. е. $\varepsilon = 5 \cdot 10^{-6}$.

Таблица 2

						таолица 2
h	0.1	0.05	0.025	0.0125	0.00625	0.003125
\widetilde{f}' пор. $O(h^2)$	14.5484	14.7249	14.765	14.774	14.7768	14.7744
погр.	0.22971	0.05321	0.01311	0.0037	0.0013122	0.003712

Из таблицы видно, что оптимальным экспериментально является шаг 0.00625, теоретически $h_{out} \approx 0.0069$.

Задание 3

Предполагается заданной таблица значений функции в равноотстоящих узлах $x_i, i=0,\ldots,n$.

Требуется дифференцированием интерполяционного многочлена в форме Ньютона получить формулу численного дифференцирования для вычисления приближенного значения указанной производной с указанным порядком аппроксимации в заданном узле x. Получить выражение для погрешности.

Применить формулу для вычисления производной, сравнить с точным значением.