FRAME-VM SPECIFICATION

Chiel Bruin last updated: May 17, 2019

This document contains an overview of all the instructions implemented by the frame-vm and the VM itself. As the VM has two possible modes, these are discussed separately after the general machine overview.

Frame VM

As the VM is built on the concept of scopes as frames, its memory layout is made from data frames representing scopes. These data frames contain indexed slots were data can be stored. These slots correspond to declarations in the scope graph. Like scopes in a scopegraph are linked, data frames in the VM are also linked to form a graph (which can be seen as a form of a heap). Any sub-graph in this graph that is not referenced by any other part of the graph can be garbage collected, simmilar to garbage-collecting of values on the heap.

Besides an alternative for the heap, the VM also has a different view on the control stack. Normally this stack stores frames containing a return address, local variables and the program counter (PC). The VM is similar in that control frames are stored that contain a return address and the program counter. However, there are two big differences: Multiple return addresses are allowed (making the control-stack a control-graph) and local variables are stored in a linked data frame. In addition, there is some extra local memory that, depending on the mode, is a stack or a set of registers.

Figure 0.1: Frame VM machine layout. Control frames are displayed in blue, data frames in black. Current points to the currently executing control frame.

Having multiple return addresses for a given control frame allows you to model control-flow more easily. For example, adding exceptions is as simple as adding a second return address to the nearest exception handler. When changing to a new control frame, this extra return address needs to be

copied over (to remain pointing to the nearest handler). This process of passing around the return addresses is in a sense similar to writing execution semantics in continuation passing style (CPS).

Figure 0.1 shows a more graphical example of the layout. In this figure the machine is executing a try-catch like part of a program, as a return addres (c) and nearest exception handler (x) are used.

Data Types

Possible data types that can exist in the VM, or are used in this document are:

- string: A string (only used as sugar)
- val: A generic value, can be any of the datatypes listed below
- int: An integer value
- bool¹: A boolean value
- char²: A character
- frame: A reference to a data frame
- cont: A reference to a control frame, represents an execution point (continuation)
- clos: A reference to a data frame and code block, represents a closure

¹Type alias for int

²Type alias for int

Stacy

The first mode of operation of the frameVM is stack-based. The bytecode language used in this mode is called Stacy (stack) and has the extension .stc.

For each instruction its effects on the stack are listed, together with a textual description and required arguments. After this, sugared instructions and their desugarings are listed. Understanding these reductions could provide usefull insights in the workings of the VM, but is not neccesary (assuming your language only uses function returns and exception handlers).

As the frame VM uses indexed links and slots internally, you need to define a mapping between names and indices of edge labels and continuation slots. Stacy already predefines a number of these mappings for free (namely P \rightarrow 0, I \rightarrow 1, c \rightarrow 0, x \rightarrow 1 and n \rightarrow 2). Adding additional labels should be done with caution.

Block syntax

In Stacy all instructions are grouped in code blocks. These blocks start with label with their unique name, followed by an indented list of instructions. This list of instructions must be followed by a control-influencing instruction to complete a block (these cannot be used inside a block). The instructions that are in this group are listed in figure 0.2

Instruction	Arguments	Instruction	Arguments
exitscope	[path] label	tailcall	label
newscope	label1 label2	tailcall	
jumpz	label1 label2	return	
jump	label	return	int
call	label1 label2	ccall	label
call	label	cret	
yield	label		

Figure 0.2: All the control-influencing instructions of Stacy. Note that some instructions in this list have a similar instruction that does not influence control.

Instructions

Please note that copy operations (specifically those using a policy), will change in the future. If there is the need to make use of these operations, please contact the developer, so the implementation priority can be bumped.

Table 0.1: Arithmetic operations implemented by the virtual machine.

Instruction	Arguments	Pop	Push	Δ	Description
ipush	int		int	1	Pushes the given int on the stack
addi		int1, int2	int	-1	Adds the two values
subi		int1, int2	int	-1	Subtracts int1 from int2
muli		int1, int2	int	-1	Multiplies the two values
divi		int1, int2	int	-1	Divides int2 by int1
modi		int1, int2	int	-1	Calculates int2 modulo int1
eqi		int1, int2	bool	-1	Checks if the two values are equal
lti		int1, int2	bool	-1	Checks if int2 is less than int1
gti		int1, int2	bool	-1	Checks if int2 is greater than int1
ori		int1, int2	bool	-1	Calculates the binary or
xori		int1, int2	bool	-1	Calculates the binary xor
andi		int1, int2	bool	-1	Calculates the binary and

Table 0.2: Debug operations implemented by the virtual machine.

Instruction	Arguments	Pop	Push	Δ	Description
print		val		-1	Prints val to the console
debug				0	Generates a DOT representation of the machine
					state
debug!				0	Generates a DOT representation of the machine
					state and kill execution

Table 0.3: Closure operations implemented by the virtual machine. Derived instructions are marked with *.

Instruction	Arguments	Pop	Push	Δ	Description
newc	policy, lbl	frame	clos	0	Creates a closure of frame with lbl as label
newc*	lbl	frame	clos	0	Creates a closure of frame with lbl as label
cnew	int	clos	cont	0	Creates cont from clos with int continuation slots
unpack		clos	frame	0	Unpacks frame from closure

Table 0.4: Type operations implemented by the virtual machine.

Instruction	Arguments	Pop	Push	Δ	Description
int?		val	bool	0	Checks if val is an integer
cont?		val	bool	0	Checks if val is a continuation
frame?		val	bool	0	Checks if val is a frame
closure?		val	bool	0	Checks if val is a closure

Table 0.5: Frame operations implemented by the virtual machine. Derived instructions are marked with *.

Instruction	Arguments	Рор	Push	Δ	Description
new*			frame	1	Create a new frame with size 0
					and pushes a reference to it on
new*	int		frame	1	the stack Create a new frame with size int
Hew	IIIC		Haine	1	and pushes a reference to it on
					the stack
newr		int	frame	1	Create a new frame with size int
					and pushes a reference to it on
					the stack
link*	[path] label	frame		-1	Link the frame on top of the
					stack to the given location us-
101	1.11	C1 C2		0	ing label as label
linkr	label	frame1, frame2		-2	Link frame2 to frame1 using label as label
сору*			frame	1	Makes a shallow copy of the cur-
сору			Traine	1	rent frame
сору*	policy1, policy2		cont	1	Makes a copy of the current exe-
.,	. , , ,				cution context using policy1 for
					the control frames and policy2
					for the data frames
copyr*		frame1	frame2	0	Makes a shallow copy of frame
copyr	policy1, policy2	cont1	cont2	0	Makes a copy of cont1 using
					policy1 for the control frames
size		frame	int	0	and policy2 for the data frames Gets the number of slots of
SIZE		Traffic	IIIC	U	frame
set*		val, int		-2	Store val in slot int of the cur-
		•			rent frame
set*	[path]	val		-1	Store val at the given location
setr		val, int, frame		-3	Store val in slot int of frame
setr*	[path]	val, frame		-2	Store val at the given location,
				0	starting path at frame
get*		int	val	0	Get the value in slot int of the
get*	[nath]		val	1	Cot the value at the given loca
get	[path]		Val	1	Get the value at the given location and store it on the stack
getr		int, frame	val	-1	Get the value in slot int of
3		-,	-	_	frame
getr*	[path]	frame	val	0	Get the value at the given lo-
	-				cation, starting from frame and
					store it on the stack

Table 0.6: Scoping/dataframe operations implemented by the virtual machine. Derived instructions are marked with *.

Instruction	Arguments	Pop	Push	Δ	Description
exitscope*	[path]			0	Change the current dataframe to the frame at path. Breaks from nested scopes to the nesting scope
exitscope*	[path] label			0	Change the current dataframe to the frame at path. Breaks from nested scopes to the nesting scope. Jump execution to label
newscope*	link	frame		-1	Enters a nested scope by setting the current dataframe to frame . This new frame will be linked using link to the original frame
newscope*	link label	frame		-1	Enters a nested scope by setting the current dataframe to frame . This new frame will be linked using link to the original frame. Jumps execution to label
mkcurrent getcurrent		frame	frame	$-1 \\ 1$	Make frame the current dataframe Get the current dataframe

Table 0.7: Control operations implemented by the virtual machine. Derived instructions are marked with *.

Instruction	Arguments	Pop	Push	Δ	Description
jumpz	label1 label2	bool		-1	Jump to label1 if bool is false, other-
					wise jump to label2
jump	label			0	Unconditional jump to label
call*	label1 label2	frame		0	Calls a function at location label1 using
					frame as execution frame. When the
					function returns, execution is resumed
					at label2
call*	label	cont		0	Calls cont . When the function returns,
					execution is resumed at label
tailcall*	label	frame		0	Calls a function at location label using
					frame as execution frame. Uses tail-call
					optimizations
tailcall*		cont		0	Calls cont . Uses tail-call optimizations
return*		val		-1	Return val
return*	int	$val\{int\}$		-int	Return the int values on top of the
					stack
yield*	label	val		-1	Yield val and the current continuation.
-					Jumps execution to label
rget*			val	1	Get the retruned value after a function
_					call returns
rget	int		val{int}	int	Get int returned values after a function
3			()		call returns

Table 0.8: Stack manipulation operations implemented by the virtual machine. Derived instructions are marked with *.

Instruction	Arguments	Pop	Push	Δ	Description
рор		val		-1	Discards the ele- ment on top of the stack
dup*		val	val, val	1	Duplicate the ele- ment on top of the stack
dup	int	val{int-1} val2	val2, val{int-1}, val2	1	Duplicate the element on the int- th positionof the stack
swap*		val1, val2	val1, val2	0	Swap the two top elements of the stack
swap	int	val1, val{int-2} val2	val2, val{int-2}, val1	0	Swaps the element on top of the stack, withe one on the (int-1)-th position of the stack

Table 0.9: Character handling operations implemented by the virtual machine. Derived instructions are marked with *.

Instruction	Arguments	Pop	Push	Δ	Description
spush*	string		frame	1	Convert string to a character
					array and push it on the stack
cpush	char		char	1	Push char to the stack
printc		char		-1	Print char to the console

Table 0.10: Continuation operations implemented by the virtual machine. Derived instructions are marked with *.

Instruction	Arguments	Рор	Push	Δ	Description
cgetcurrent			cont	1	Create a continuation of the
cnew*	label int	frame	cont	0	current execution point Create a continuation of
Circu	label IIII	nume	cont	O	a new control frame with
					data frame frame , execu-
	L. L. J	to to Consum	1	1	tion point label and size int
cnewr	label	int, frame	cont	-1	Create a continuation of a new control frame with
					data frame frame , execu-
					tion point label and size int
ccall	label	cont		-1	Call cont and set the cur-
					rent execution point to la- bel
cret		cont		-1	Call cont. Do not set a next
					execution point
transfer	int	cont		$-(int{+}1)$	Transfer int elements as re-
transfer*	int [path]			-(int)	turned values to cont Transfer int elements as re-
transici	iiit [patii]			(1110)	turned values to the given
					continuation
cset*		cont, int		-2	Store cont in slot int of the
cset*	[nath]	cont		-1	current controlframe
cset	[path]	cont		-1	Store cont at the given location
csetr*	[path]	cont1, cont2		-2	Store cont1 in the given slot
				_	of cont2
csetr		cont1, int, cont2		-3	Store cont1 in slot int of cont2
cget*		int	cont	0	Get the continuation in slot
.6					int of the current frame
cget*	[path]		cont	1	Get the continuation at the
cgetr*	[path]	cont1	cont2	0	given location Get the continuation at the
cgeu	[hatti]	COILLI	COIILZ	U	given location of cont1
cgetr		int, cont1	cont2	-1	Get the continuation in slot
					int of cont1

Table 0.11: Exception handling operations implemented by the virtual machine. Derived instructions are marked with *.

Instruction	Arguments	Рор	Push	Δ	Description
throw*		val		-1	Throw the element on top of the stack to the current exception handler
try*	label1 label2 label3	frame1, frame2		-2	Creates a try-catch block with frame2 as try-block running label1 and frame1 as catch-block running label2. The next instruction is at label3
try*	label	cont1, cont2		-2	Creates a try-catch block with cont2 as try-block and cont1 as catch-block. The next instruction is at label

Equivalent Operations

A lot of instructions listed in the previous section are so-called derived instructions. These instructions are a form of syntactic sugar, and therefore do not add any functionality to the VM. In this section the equivalent operations are shown for the derived instructions. Please note that these reductions may not result in a fully reduced set of instructions. It might be needed to recursively apply the rules to find this final form.

dup	\Rightarrow	dup 1	return	\Rightarrow	return 1
swap	\Rightarrow	swap 1	cpush char	\Rightarrow	ipush char
new	\Rightarrow	new 0	get []	\Rightarrow	getcurrent
transfer	\Rightarrow	transfer 1	rget	\Rightarrow	rget 1

Figure 0.3: Simple equivalent operations

Figure 0.4: Equivalent operations for frame-get, frame-set and linking

Figure 0.5: Equivalent operations for continuation instructions. A denotes the set of continuationaliasses defined in the programs header

exitscope path	\Rightarrow	get path mkcurrent	exitscope path lbl	\Rightarrow	exitscope path jump b
newscope link	\Rightarrow	dup link [] link mkcurrent	newscope link lbl	\Rightarrow	newscope link jump lbl

Figure 0.6: Equivalent operations for control instructions (cont.)

Figure 0.7: Equivalent operations for control instructions

Figure 0.8: Equivalent operations for control instructions (cont.)

Strings

The VM does not force a certain representation of arrays (as they can be cons-lists, NULL-terminated or keep track of their sizes). As an effect there is also no clear way to define how strings should be modeled. However, Stacy does provide some help when working with strings, albeit only for one of the representations and only for constructing strings. The spush-instruction creates a frame on the stack that contains the length of the string in slot 0, and the individual characters in consecutive slots.

This instruction can therefore be desugared in the following way:

```
\begin{array}{ll} \mathbf{spush} \ \mathsf{string} & \Rightarrow & \mathbf{new} \ \mathit{length}(\mathsf{string}) + 1 \\ & \mathbf{dup} \\ & \mathbf{ipush} \ \mathit{length}(\mathsf{string}) \\ & \mathbf{setr} \ [\mathbf{0}] \\ & \mathit{For all characters} \ \mathsf{c} \ \mathit{at position} \ \mathsf{n} \ \mathit{in} \ \mathsf{string} \ \mathit{:} \\ & \mathbf{dup} \\ & \mathbf{cpush} \ \mathsf{c} \\ & \mathbf{setr} \ [\mathsf{n} \ \mathit{+} \ 1] \end{array}
```

Providing functionality for printing entire strings cannot be done in a simmilar way. This is because this functionality loops over the array and print the individual characters. Therefore the desugared version would result in multiple new code blocks that must be reused between multiple uses of the original instruction. This makes that it is more like a library function that must be included once. Exactly for this reason the VM supports imports of external functions. Furthermore there is a standard library containing functions for, for example, string concatenation and integer to string conversions.

Helper functions

In order to aid code generation for Stacy, a number of Stratego helper strategies are provided.

- stc-from-flat: Given a list of Stacy instructions, generate a valid Stacy AST.
 If you want to set the initial frame size, use link aliasses or imports, the list of instructions should be the second alement in a tuple, where the first is a FVM_Header constructor. If a label is found inside this list, a new block is started. This allows you to generate the code without explicitly creating code blocks (the MAIN label is placed before the first instruction in the list).
- framevm-path-from-nabl2: Given a three-tuple (name, namespace, property) gives a Frame VM path which resolves to the declaration of <namespace>{name}. property refers to the property of the declaration where a slot index is stored.

Roger

The second mode of operation of the frameVM is register-based. The bytecode-language used in this mode is called Roger (register) and has the extension .rgr.

This language is currently still in its Alpha-phase (note the capital A), and therefore not ready for use. When the language reaches any level of (feature-)stability, this document will be updated. In short, Roger will have the same instructions as Stacy but without stack operations and the possibility to make expressions and use (control frame-local) variables.