Задачи для подготовки к экзамену по дисциплине «МАТЕМАТИКА» (III семестр, специальности ПОИТ, ДЭВИ)

- 1. Сформулировать классическое определение вероятности. Какова вероятность того, что наудачу взятое шестизначное число содержит одинаковые цифры?
- 2. Сформулировать классическое определение вероятности. В мешке Деда Мороза 8 подарка с машинками, 7 с куклами и 6 с мишками. Дед Мороз наугад вынимает 6 подарков. Какова вероятность того, что среди вынутых нет подарка с машинками?
- 3. Что называется геометрической вероятностью? Какова вероятность того, что наудачу брошенная в правильный треугольник точка окажется внутри вписанного в него круга?
- 4. Сформулировать теорему умножения вероятностей. При подготовке к Новому году на четырех шарах нарисовали цифру 2 и на двенадцати шарах цифру 0. Какова вероятность получить число 2022, если взять наугад 4 шара и развесить их в порядке вынимания?
- 5. Что называется суммой событий? Записать теорему сложения вероятностей. Стрелок произвел три выстрела по удаляющейся от него цели, причем вероятность попадания в начале стрельбы равна 0,8, а после каждого выстрела уменьшается в два раза. Какова вероятность того, что стрелок попал хотя бы два раза?
- 6. Какие события называются совместными? несовместными? противоположными? Вероятность попадания в цель первым стрелком равна 0,6, вторым -0,8, третьим -0,4. Каждый выстрелил по одному разу. Найти вероятность того, что хотя бы один стрелок не попал в цель.
- 7. Сформулировать теоремы сложения и умножения вероятностей. В телестудии три телевизионные камеры. Вероятности использования их в данный момент равны соответственно 0,9; 0,85; 0,95. Найти вероятность того, что в данный момент работают не более двух камер.
- 8. Что называется суммой событий? произведением событий? В первой урне 6 зеленых и 9 желтых шаров, во второй 8 зеленых и 7 желтых шаров. Из каждой урны наудачу извлекают один шар. Какова вероятность того, что вынут хотя бы один желтый шар?
- 9. Что называется суммой и произведением событий? В первом ящике лежит 30 елочных игрушек, из них 10 шариков, во втором 20 игрушек, из них 5 шариков, в третьем 15 игрушек, из них 12 шариков. Из каждого ящика наудачу взяли по одной игрушке. Какова вероятность того, что среди вынутых игрушек только один шарик?
- 10. Записать теорему умножения вероятностей. В первом ящике лежит 30 елочных игрушек, из них 10 шариков, во втором 20 игрушек, из них 5 шариков, в третьем 15 игрушек, из них 12 шариков. Из каждого ящика наудачу взяли по одной игрушке. Какова вероятность, что все вынутые игрушки шарики?
- 11. Что называется условной вероятностью? В мешке Деда Мороза 6 игрушечных

котиков и 9 зайчиков. Последовательно (без возвращения) извлекаются 3 игрушки. Найти вероятность того, что будут извлечены: а) 3 зайчика; б) 3 одинаковые игрушки.

- 12. Что называется суммой событий? произведением событий? В коробке лежат 8 золотистых и 7 серебристых новогодних шаров. Последовательно (без возвращения) извлекается три шара. Найти вероятность того, что все три шара будут: а) золотистыми, б) одного цвета.
- 13. Что называется суммой событий? Сформулировать теорему сложения вероятностей. В первой коробке с новогодними украшениями 6 красных и 9 синих шариков, во второй 7 синих и 5 зеленых. Из каждой коробки наугад взяли по 2 шара. Какова вероятность того, что взяли ровно два синих шара?
- 14. Что называется полной группой событий? В первой коробке с новогодними украшениями 6 красных и 9 синих шариков, во второй 7 синих и 5 зеленых. Из наугад взятой коробки извлекается три шара. Найти вероятность того, что все три шара будут синими.
- 15. Записать формулу полной вероятности и формулы Байеса. У Винни-Пуха в одном кармане 5 шоколадки с орехами и 3 с изюмом, во втором 4 с орехами и 3 с изюмом. Из наугад выбранного кармана Винни-Пух достает одну шоколадку. Какова вероятность того, что она с изюмом?
- 16. Записать формулу полной вероятности. Семена для посева поступают из трех семеноводческих хозяйств, причем 1-е и 2-е хозяйства присылают по 30% всех семян. Всхожесть семян из 1-го хозяйства 95%, 2-го 85%, 3-го 80%. Определить вероятность того, что наудачу взятое семя не взойдет.
- 17. Записать формулу полной вероятности и формулы Байеса. С первого автомата на сборку поступает 30%, со второго 45%, с третьего 25% деталей. Среди деталей 1-го автомата 0.2% бракованных, 2-го 0.4%, 3-го 0.3%. Найти вероятность того, что поступившая на сборку деталь небракованная.
- 18. Что называется полной группой событий? В первой коробке с новогодними украшениями 5 синих и 7 красных шариков, во второй 6 синих и 3 желтых. Из первой коробки наугад достали один шар и переложили во вторую, а затем из второй взяли 3 шара. Какова вероятность того, что взяли три синих шара?
- 19. Что называется схемой Бернулли? Всхожесть семян данного растения составляет 80%. Найти вероятность того, что из пяти посеянных семян взойдут: а) ровно три; б) не менее трех.
- 20. Что называется схемой Бернулли? Какова при этом вероятность хотя бы одного попадания при пяти выстрелах, если вероятность попадания при каждом выстреле 0,4?
- 21. Что называется схемой Бернулли? При слабом соединении сети вероятность удачной отправки сообщения в мессенджере составляет 0,85. Найти вероятность того, что из 6 отправленных сообщений не менее 2 не дойдут до адресата.
- 22. Что называется схемой Бернулли? В среднем 30% акций на аукционах продаются

по первоначально заявленной цене. Найти вероятность того, что из 6 пакетов акций в результате торгов по первоначальной цене будет продано не более четырех пакетов.

- 23. Записать формулы Бернулли и Пуассона. Вероятность выживания бактерий после радиоактивного облучения равна 0,003. Найти вероятность того, что после облучения из 2000 бактерий останется не более 4 бактерий.
- 24. Вероятность опечатки 0,002. Какова вероятность того, что из 1000 символов более трех символов набрано неверно?
- 25. Найти $M\xi$, $D\xi$, σ_{ξ} и вероятности $P(\xi=2)$, $P(\xi=3)$, $P(1<\xi\leq 4)$ по заданному закону распределения CB ξ :

ξ	1	3	4	7
P	0,2	0,5	0,1	0,2

26. Записать формулы для вычисления математического ожидания и дисперсии дискретной случайной величины. Найти $M\xi$, $D\xi$, $P(|\xi-M\xi|>\sigma_{\xi})$, если известен закон распределения случайной величины ξ .

ξ	1	2	3	4	5
P	0,3	0,1	0,3	0,2	0,1

27. Найти $M\xi$, $D\xi$, $P(\xi > M\xi)$, построить график функции распределения случайной величины ξ , если известен ее закон распределения.

ξ	-3	1	2
P	0,3	0,3	p

28. По данному ряду распределения случайной величины ξ найти p, $M\xi$, $D\xi$, построить график функции распределения.

ξ	-2	0	1	4
p	0,2	0,2	p	0,2

29. Сформулировать определение и свойства функции распределения. По данному ряду распределения случайной величины ξ найти p, $M\xi$, $D\xi$, построить график функции распределения.

ξ	-3	-1	0	3
p	0,3	0,15	p	0,15

30. По ряду распределения случайной величины ξ найти p_1 , числовые характеристики и функцию распределения.

ξ	0	1	2	3	4
P	0,15	p_1	0,15	0,15	0,15

- 31. Как вычисляются математическое ожидание и дисперсия дискретной случайной величины? Найти закон распределения и построить график функции распределения случайной величины ξ , если $\mathbf{M}\xi=1,8$ и ряд $\begin{vmatrix} \xi & 0 & 2 & 4 \\ P & p_1 & p_2 & 0,3 \end{vmatrix}$ распределения имеет вид
- 32. Перечислить основные свойства математического ожидания и дисперсии. Найти числовые характеристики и $\mathbf{P}(\xi \in [-2;2])$, если случайная величина ξ задана функ-

цией распределения:
$$F(x) = \begin{cases} 0 & \text{при } x \leq -3, \\ 0,25x+0,25 & \text{при } -3 < x \leq 1, \\ 1 & \text{при } x > 1. \end{cases}$$

33. Сформулировать определение функции распределения. Найти числовые характеристики и $\mathbf{P}(\xi > 1)$, если известна функция распределения случайной величины ξ :

$$F(x) = \begin{cases} 0, & \text{если } x \le 0, \\ x^3/64, & \text{если } 0 < x \le 4, \\ 1, & \text{если } x > 4. \end{cases}$$

34. Зная функцию распределения ξ : $F(x) = \begin{cases} 0, & \text{если } x \leq 2, \\ \frac{1}{8}(x^2 - 2x), & \text{если } 2 < x \leq 4, \\ 1 & \text{если } x > 4, \end{cases}$

найти $M\xi$, $D\xi$, $P(\xi < 3)$.

- 35. Найти $a, M\xi, D\xi, P\{\xi > 0, 5\}, P\{-1 < \xi \le 1\}, P\{\xi = -1, 5\},$ если дана плотность распределения случайной величины ξ : $p_{\xi}(x) = \begin{cases} 0, & \text{если } x \le -3, \\ a(x+3), & \text{если } x > 0. \end{cases}$
- 36. Сформулировать определение и свойства функции распределения. Найти функцию распределения и $\mathbf{M}\xi$, $\mathbf{D}\xi$, $\mathbf{P}\{\xi > 1, 5\}$, если дана плотность распределения: $p_{\xi}(x) = \begin{cases} \frac{2x}{9}, & \text{если } 0 < x \le 3, \\ 0, & \text{если } x \le 0 \text{ или } x > 3. \end{cases}$
- 37. Сформулировать определение и свойства функции распределения. Найти функцию распределения и $\mathbf{M}\xi,\ \mathbf{D}\xi,\ \mathbf{P}\{\xi>-0,5\},$ если дана плотность распределения: $p_{\xi}(x) = \begin{cases} \frac{3}{16}x^2, & \text{если } -2 < x \leq 2, \\ 0, & \text{если } x \leq -2 \text{ или } x > 2. \end{cases}$ 38. Найти $\mathbf{P}(-4 \leq \xi < 3)$, если случайная величина ξ имеет нормальное распределение
- и известны ее числовые характеристики: $\mathbf{M}\xi = -1$, $\mathbf{D}\xi = 16$.
- 39. Что называется нормальным распределением случайной величины? Найти числовые характеристики и вероятность $\mathbf{P}(\xi \in [-4;0])$, если известна плотность распределения случайной величины ξ : $p(x) = \frac{1}{2\sqrt{\pi}} \, \mathrm{e}^{-\frac{(x+4)^2}{4}}$.
- 40. Записать плотность нормального распределения, сформулировать правило трех сигм. Найти числовые характеристики и вероятность $\mathbf{P}(\xi \in [1;10])$, если известна плотность распределения случайной величины ξ : $p(x) = \frac{1}{6\sqrt{2\pi}} e^{-\frac{(x-2)^2}{72}}$.
- 41. Случайная величина ξ имеет нормальное распределение с $M\xi = 0$. Найти среднее квадратичное отклонение, если $\mathbf{P}(\xi \leq 1) = 0,85$.
- 42. Известны $M\xi=1$ и $D\xi=0,75$ случайной величины ξ , имеющей биномиальное распределение. Найти $\mathbf{P}(\xi > 1)$.
- 43. Найти $P(2 \le \xi < 4)$, если случайная величина ξ имеет биномиальное распределение с $\mathbf{M}\xi = 2$, $\mathbf{D}\xi = \frac{4}{3}$.
- 44. Записать формулы для вычисления математического ожидания дискретной и непрерывной случайной величины. Непрерывная случайная величина ξ имеет равномерное распределение с $M\xi = 10$, $D\xi = 12$. Найти вероятность $\mathbf{P}(\xi \in [3; 9])$.
- 45. В каком случае случайные величины называются независимыми? некоррелированными? Какая связь между этими понятиями? Задан закон распределения двумерной случайной величины $(\xi; \eta)$. Найти значение p, числовые характеристики и коэффициент корреляции случайных величин ξ и η .

$ \xi \eta$	-4	0	4
-3	0.1	0.3	0,1
3	0	p	0.2

46. В каком случае случайные величины называются независимыми? некоррелированными? Какая связь между этими понятиями? Задан закон распределения двумерной случайной величины $(\xi; \eta)$. Найти значение р, числовые характеристики и коэффициент корреляции случайных величин ξ и η .

$ \xi \eta$	-1	0	1
-4	0.1	0.1	0.1
4	p	0	0.2

47. В каком случае случайные величины называются независимыми? некоррелированными? Зная закон распределения двумерной случайной величины $(\xi; \eta)$, найти значение p, числовые характеристики и коэффициент корреляции случайных величин ξ и η .

$\xi \eta $	-2	0	2
-2	0.1	0	0.1
0	p	0.2	0.2

48. Сформулировать определение и основные свойства функции распределения двумерной случайной величины. Найти плотность распределения случайной величины $(\xi; \eta)$ и $\mathbf{P}(-1 < \xi < 4, 0 \le \eta \le 1)$, если известна функция распределения $F_{\xi;\,\eta}(x,\,y) = \left\{ \begin{array}{ccc} (1-\mathrm{e}^{-4x})(1-\mathrm{e}^{-6y}), & \text{если } x>0 \text{ и } y>0, \\ 0 & \text{в остальных случаях.} \end{array} \right.$

49. Сформулировать определение и основные свойства функции распределения двумерной случайной величины. Найти плотность распределения случайной величины $(\xi;\,\eta)$ и $\mathbf{P}(0<\xi<4,\,0,2\leq\eta\leq2)$, если известна функция распределения $F_{\xi;\,\eta}(x,\,y)=\left\{egin{array}{ll} (1-x^{-5})(1-y^{-6}), & \text{если } x>1\ \text{и } y>1, \\ 0 & \text{в остальных случаях.} \end{array}
ight.$

50. По данной выборке найти выборочные среднее и дисперсию, записать эмпирическую функцию распределения и построить ее график:

> 3 2 8 3 6 4 1

51. Что называется несмещенной оценкой параметра? состоятельной оценкой? По данной выборке получить несмещенные оценки для математического ожидания и дисперсии, найти эмпирическую функцию распределения и построить ее график:

> 2 6 04 3

52. Игральную кость подбросили 60 раз. Найти несмещенную оценку для математического ожидания, построить полигон относительных частот

Число очков	1	2	3	4	5	6
n_i	10	15	7	10	5	13

и график эмпирической функции распределения.

53. По данному статистическому ряду найти несмещенные оценки математического ожидания и дисперсии, построить график эмпирической функции распределения.

- ~	x_i	-3	-1	0	3
,	n_i	6	18	12	4

54. Что называется несмещенной оценкой параметра распределения? По данному интервальному статистическому ряду

$[x_{i-1};x_i)$	[-6;0)	[0;6)	[6; 12)	[12; 18)
n_i	10	45	30	15

построить гистограмму относительных частот, найти несмещенные оценки математического ожидания и дисперсии.

55. Что называется доверительным интервалом? доверительной вероятностью? Предполагая, что выборка взята из нормального распределения, получить 5-процентный доверительный интервал для математического ожидания:

$$-1; -2; 1; 7; 1; 4; 3; -1.$$

56. Предполагая, что выборка взята из нормального распределения, получить 5%-ный доверительный интервал для математического ожидания:

57. По интервальному статистическому ря-

ду, предполагая, что выборка взята из нормального распределения, оценить математическое

$[x_{i-1};x_i)$	[-2;2)	[2;6)	[6; 10)	[10; 14)
$\overline{n_i}$	4	18	12	6

ожидание с надежностью $\gamma = 0,95$.

58. Предполагая, что выборка взята из нормального распределения, оценить дисперсию с надежностью $\gamma = 0,95$:

$$-1;2;$$
 1; 7; 1; 4; 0; 3.

59. Двумя методами произведены измерения одной и той же физически величины. Можно ли при уровне значимости $\alpha=0,05$ считать, что оба метода обеспечивают одинаковую точность?

Метод	\overline{x}	s^2	n
A	13,8	8	16
В	12,2	5,4	9

60. Что называется простой гипотезой? сложной гипотезой? Что называется критерием значимости? Двумя методами произведены измерения одной и той же физически величины. Определить при уровне значимости $\alpha=0,05$, имеется ли реальное различие в результатах измерений.

Метод	\overline{x}	s^2	n
A	13,8	8	16
В	12,2	5,4	9

- 61. Для сравнения точности станков, производящих одинаковую продукцию, было отобрано с 1-го станка 16 единиц продукции, со 2-го 13 единиц, в результате чего получено: \overline{x}_1 =20,21; s_1^2 =1,8; \overline{x}_2 =20,22; s_2^2 =0,6. Проверить при $\alpha=0,05$ гипотезу об одинаковой точности станков.
- 62. Имеются данные (в микронах) об измерениях неровностей поверхностей, выполненных на двух микроскопах с завод-

Микроскоп № 2021	1,8	1,9	2,4	2,0	_
Микроскоп № 2022	1,7	2,1	2,4	1,5	1,8

скими номерами N 2021 и N 2022. Можно ли при уровне значимости $\alpha=0,05$ считать, что два прибора обеспечивают одинаковую точность измерений?

63. Имеются данные (в микронах) об измерениях неровностей поверхностей одних и тех же образцов на двух микроско-

Микроскоп № 2021	0,8	2,1	3,2	2,4	4,8
Микроскоп № 2022	1,5	1,9	3,1	2,6	4,4

пах с заводскими номерами № 2021 и № 2022. Можно ли при уровне значимости $\alpha = 0,05$ считать, что между показаниями приборов нет систематических расхождений?

64. Для проверки работы двух станков проведены измерения размера выпускаемых ими однотипных изделий. Можно

Станок 1	/	/	/	/	
Станок 2	20,08	20,12	20,10	20,10	20,15

ли при уровне значимости $\alpha=0,05$ считать, что станки выпускают изделия одинакового размера?

65. Имеются данные о дополнительных часах сна после приема снотворных A и B у четырех пациентов. Проверить при уровне значимости 0,05, существует ли значимая разница меж-

Пациент	1	2	3	4
Снотворное А	1,7	-0,2	0,4	1,8
Снотворное В	1,1	0	-0,1	1,9

ду действием снотворных A и B. Как изменилась бы процедура проверки гипотезы в случае, если бы в эксперименте были использованы 2 группы пациентов по 4 человека в каждой?

- 66. Сформулировать основные свойства выборочного коэффициента корреляции. По наблюденным значениям (0; 4,5); (2; 3,5); (4; 5); (6; 7); (8; 6,5) найти выборочный коэффициент корреляции и проверить его значимость при $\alpha = 0,05$, предполагая, что выборка взята из нормального распределения.
- 67. По наблюденным значениям x и y найти выборочный коэффициент корреляции и проверить его значимость при $\alpha=0,05$, предполагая, что выборка взята из нормального распределения.

x	1	2	3	4	5
y	7.5	8.5	7	5	5.5

- 68. По наблюденным значениям (0; 4,5); (2; 3,5); (4; 5); (6; 7); (8; 6,5) найти выборочное уравнение линейной регрессии y на x, построить прямую на корреляционном поле.
- 69. Найти выборочное уравнение линейной регрессии y на x, построить прямую на корреляционном поле.

-	\boldsymbol{x}	2	4	6	8	
	y	2	4	5	7	

70. По наблюденным значениям x и y найти выборочное уравнение линейной регрессии y на x, построить прямую на коррендии и поле

x	1	2	3	4	5
y	7.5	8.5	7	5	5.5

- реляционном поле. 71. Что называется каноническим разложением целого числа на простые множители? Сформулировать основную теорему арифметики. Найти НОД и НОК чисел 6868 и 8686.
- 72. Найти все решения диофантова уравнения 152x + 72y = 48.
- 73. Что называется диофантовым уравнением? На прямой 16x+40y=72 найти число точек с целочисленными координатами, лежащих между прямыми x=-20 и x=2022.
- 74. Сформулировать теорему Эйлера. Найти остаток от деления 2021^{2022} на 25.
- 75. Что называется функцией Эйлера? В чем заключается теорема Эйлера? Найти последние две цифры числа 777^{5555} .

- 76. Что называется функцией Эйлера? В чем заключается теорема Эйлера? Найти последние две цифры числа 4567²⁰²².
- 77. Сколько решений по модулю m имеет сравнение $ax \equiv b \pmod{m}$, в зависимости от значений коэффициентов? Решить сравнение $48x \equiv 104 \pmod{40}$, используя: а) расширенный алгоритм Евклида; б) теорему Эйлера.
- 78. Сколько решений по модулю m имеет сравнение $ax \equiv b \pmod{m}$, в зависимости от значений коэффициентов? Решить сравнение $55x \equiv 132 \pmod{198}$, используя: а) расширенный алгоритм Евклида; б) теорему Эйлера.
- 79. Сформулировать основные свойства сравнений по модулю m. Решить систему срав-

нений
$$\begin{cases} 21x \equiv 20 (\mod 15), \\ 18x \equiv 42 (\mod 24), \\ 60x \equiv 24 (\mod 63). \end{cases}$$

80. Сформулировать основные свойства сравнений по модулю m. Решить систему срав-

нений
$$\begin{cases} 60x \equiv 132 (\mod 24), \\ 40x \equiv 35 (\mod 25), \\ 20x \equiv 12 (\mod 26). \end{cases}$$

- 81. Что называется классом вычетов по модулю m? Показать, что мультипликативная группа ${\bf Z}_{34}^*$ классов вычетов по модулю 34, взаимно простых с модулем, является циклической.
- 82. Сформулировать теорему Лагранжа о порядке подгруппы. В мультипликативной группе $(\mathbf{Z}_{27}^*,~\times)$ классов вычетов, взаимно простых с модулем, найти циклическую подгруппу, порожденную элементом $\overline{5}$, и определить ее порядок.
- 83. Сформулировать теорему Лагранжа о порядке подгруппы. В мультипликативной группе $(\mathbf{Z}_{38}^*, \times)$ классов вычетов, взаимно простых с модулем, найти циклическую подгруппу, порожденную элементом $\overline{5}$, и определить ее порядок.
- 84. Показать, что мультипликативная группа \mathbf{Z}_{40}^* классов вычетов по модулю 40, взаимно простых с модулем, не является циклической.
- 85. Что называется циклической подгруппой? Что называется порядком подгруппы? В мультипликативной группе матриц 2-го порядка с коэффициентами из ${f Z}_5$ и ненулевым определителем найти циклическую подгруппу, порожденную элементом $A = \begin{pmatrix} 3 & 4 \\ \overline{2} & \overline{3} \end{pmatrix}$, и определить ее порядок.
- 86. Что называется группой? абелевой группой? В мультипликативной группе матриц 2-го порядка с коэффициентами из \mathbf{Z}_7 и ненулевым определителем найти циклическую подгруппу, порожденную элементом $A = \begin{pmatrix} \overline{6} & \overline{2} \\ \overline{6} & \overline{1} \end{pmatrix}$, и определить ее порядок. 87. В мультипликативной группе матриц 3-го порядка с ненулевым определителем

найти циклическую подгруппу, порожденную элементом $A = \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

- 88. Что называется кольцом? Что называется кольцом с делителями нуля? Являются ли делители нуля обратимыми элементами кольца? В кольце $(\mathbf{Z}_{40}, +, \times)$ классов вычетов по модулю 40 найти элементы, обратные к элементам $\overline{12}$, $\overline{13}$, $\overline{14}$, если они существуют.
- 89. Что называется кольцом? Что называется коммутативным кольцом? Что называется кольцом с делителями нуля? Являются ли делители нуля обратимыми элементами кольца? В кольце ($\mathbf{Z}_{280}, +, \times$) классов вычетов по модулю 280 найти элементы, обратные к элементам $\overline{10}$, $\overline{11}$, $\overline{12}$, если они существуют.
- 90. Что называется кольцом? Что называется коммутативным кольцом? Что называется кольцом с делителями нуля? Являются ли делители нуля обратимыми элементами кольца? В кольце $(\mathbf{Z}_{420}, +, \times)$ классов вычетов по модулю 420 найти элементы, обратные к элементам $\overline{19}$, $\overline{20}$, $\overline{21}$, если они существуют.