

Roadside Vegetation Barrier Designs to Mitigate Near-Road Air Pollution Impacts

K. Max Zhang

Sibley School of Mechanical and Aerospace Engineering

Cornell University

Acknowledgments

- Current and former PhD students working on this subject: Zheming Tong, Jon Steffens, and Bo Yang
- Valuable discussions with Drs. Rich Baldauf, Vlad Isakov and Parik Deshmukh at USEPA
- Experimental data from USEPA

Relevant Properties and Processes

- Leaf area density/porosity
- Drag coefficient
- Width, height
- Barrier layout
- VOC emissions

- Highway geometry
- Road properties
- Traffic conditions (volume, mix, etc.)
- Surrounding structures

- Particle size distribution
- Concentrations of air toxics
- Human exposure

Design parameters

More on the Atmospheric Processes

- Dispersion
 - Solid barrier effect: creating upward momentum and enhancing plume dispersion -> lower ground level conc. behind the barrier
 - Windbreak effect: plume going through the canopy at slower
- C g

 Depc S T R
- Aerosor ayriarines arra gas errerinser;

Comprehensive Turbulent Aerosol and Gas Chemistry (CTAG)

Past work on Transportation and Air Quality

CTAG components	Experimental datasets	Publications		
VIT	Turbulent flow filed measurements behind a moving van	Wang and Zhang (2009); Wang et al. (2012)		
	Horizontal and vertical CO profiles near an elevated	Wang and Zhang (2009);		
Road configurations	highway and a ground-level highway in Los Angeles			
	Particle size distribution and CO measurements near a	Wang et al. (2013)		
	large highway intersection in Rochester, NY			
Roadside buildings	Spatial variations of black carbon in a highway-buildings environment in NYC	Tong et al., (2012)		
Roadside solid	Near-road tracer study 2008 in Idaho Falls, ND	Steffens et al. (2013)		
barriers	USEPA wind tunnel study of 12 road configuration	Steffens et al. (2014)		
Roadside vegetation barriers	Field study in Chapel Hill, NC	Steffens et al. (2012)		
Gas chemistry	NO and NO ₂ horizontal gradients near two roadways	Wang et al. (2011)		
	near Austin, TX			
Aerosol dynamics	Particle size distribution measurements behind a diesel	Wang et al. (2012)		
	car			
	Particle size distribution and CO measurements near a	Wang et al. (2013)		
	large highway intersection in Rochester, NY			

Revisiting Chapel Hill Experimental Dataset with Large Eddy Simulation (LES)

- The Chapel Hill (NC) dataset was collected by USEPA and Duke researchers (Hagler et al., 2011).
- Steffens et al. (2012) employed RANS turbulence model and two different particle deposition models to simulate the dataset.
- We recently applied the Large Eddy Simulation (LES) model to re-simulate the dataset.
- LES model shows generally good agreement.

No Barrier

Tong et al., manuscript in preparation

Design Configurations

Table 1: Description of roadside barrier geometry for all configurations tested

	0	1	2	3ª	4		5	
Case #					Solid	Vegetation barrier	Upwind vegetatio	Downwind vegetation
					barrier		n barrier	barrier
Height	N/A	6 m	6 m	6 m	6 m	10 m	6 m	6m
Width	N/A	6m,12 m,18m	1 m	1+0.25 m	1 m	6 m	6 m	12m
LADb	1	1 ,1.5	1	0.33°	N/A	1, 0.25	1	1
U	2 m/s	1, 2, 4 m/s	2 m/s	2 m/s	2 m/s		2 m/s	
Stability	Unstable	Stable, Unstable, Neutral	Unstable	Unstable	Unstable		Unstable	
Directione	90°	90°	90°	90°	30°, 45°, 90°		90°	

Main Assumptions

- Highway conditions are taken as the same as those in the Chapel Hill experiment
- Infinite long barrier
- Baseline case:
 - Leaf area density and drag coefficient taken from the Chapel Hill experiment (conifer)
 - Perpendicular wind direction

Case 1: Particle Size Distribution

Cases 2, 3, 4: Solid, Green Wall and Combination

- Solid barrier: significant reduction in conc. behind the barrier with onroad accumulation
- Green Wall: Slight more reduction compared to the solid barrier case
- Vegetation-solid barrier combination: greatest reduction in conc. behind the barrier with on-road accumulation

Sensitivity: Leaf Area Density (LAD)

Increasing LAD

- Increasing LAD leads to more deposition and upward momentum
 - For smaller particles, greater reduction behind the barrier
 - For larger particles with relatively small deposition velocity, approaching the behaviors of a solid barrier

Sensitivity: Barrier Width

Increasing width

- Increasing width leads to more deposition
 - For smaller particles, greater reduction behind the barrier
 - For larger particles with relatively small deposition velocity, earlier transition to lower conc. compared to the no-barrier case
- On-road accumulation is modest compared to solid barrier

Sensitivity: Wind Direction

- The degree of on-road increase is contingent on oncoming wind direction.
- The on-road concentration decreases with more parallel wind to the road

Edge Effects

Steffens et al. (2014)

Steffens et al. (2013)

Report Card for Model Capability

- Modeling results capture the general phenomena very well
 - Vegetation-solid barriers show greatest reduction
 - Wider and denser trees lead to more reduction
 - Edge effects can be captured
 - **–** ...
- Research needs
 - More testing against different vegetation barrier configurations,
 meteorological and traffic conditions
 - Turbulence modeling: drag vs. wind speed
 - Deposition modeling
 - Effects of vegetation barriers on near-source chemistry and regional ozone chemistry
 - Parameterization

– ...

The effect of wind direction on **on-road** concentrations

Baldauf et al., manuscript under review