DATABASE STORAGE PART 1

DBMS Structure

Storage Types

Volatile

Random access

Bytes

Non-volatile

Sequential access

Blocks/Pages

CPU Registers

CPU Cache

DRAM

SSD

HDD

Network Storage

Smaller
Faster
More Expensive

Access Times

L1 Cache 1 ns

L2 Cache 4 ns

DRAM 100 ns

SSD 16,000 ns

HDD 2,000,000 ns

Network Storage ~50,000,000 ns

Design Goals

Manage data that exceed the available memory

Minimize reading/writing to disk (expensive)

When accessing data on disk, maximize sequential access

Disk-based DBMS

DBMS Structure

Database Storage

Database Files

System-specific file format

OS does not understand the contents

Single file/multiple files

Database Storage

Database Files

Pages

What is a Page?

Fixed-size block of data

- Can contain anything
 - Tuples, meta-data, indexes, log records, ...

- Unique ID for each page
 - DBMS can map a page id to a physical location

File Organization

Heap File Organization Sequential/Sorted
File Organization
(ISAM)

Tree File Organization

Batch Processing

Tape Storage

Hashing File Organization

Indexing (range queries)

Indexing (equality searches)

Heap File

Single ordered file

Heap File

Multiple files

Heap File - Page Directory

- Special page(s) within each file
 - Location of each data page in the file
 - Number of free "slots" per page
 - List of free/empty pages

Must be kept in sync with data pages

Heap File

Multiple files

