170925

DISCUSSIONS (TF-IDF)

Term Frequency (TF)

- "ATF can be very misleading"
- Normalize term frequency to take into account document size, DB size/characteristics
 - n(d) = number of (all) terms in the document d
 - n(d, t) = number of occurrences of term t in the document d.(ATF)
 - TF(d, t) = normalized term frequency of a term t in a document d
- Candidates for TF(d, t)
 - n(d, t) / n(d)

 - $n(d, t) / \max_{k \in d} (n(d, k))$ $the one used in textbook TF (d, t) = log \left(1 + \frac{n(d, t)}{n(d)}\right)$

TF-IDF

- IDF (Inverse Document frequency)
 - n(t) = number of documents (in DB) containing term t
 - Importance of a doc d to a term t is inverse proportional to n(t)
 - Candidates for IDF:

```
IDF(t) = 1 / n(t) (the one used in textbook)

1 / [(n(t)/N) + 1] (N: num. of docs in DB)

[logN - log n(t) + 1]
```

• **TF-IDF** (Term Frequency-Inverse Document frequency)

$$TF\text{-}IDF(d, t) = TF(d, t) \times IDF(d, t) = \frac{TF(d, t)}{n(t)}$$

Inverted Index (File)

- Most commonly used index structure for IR
- Mapping from each keyword K_i to the set of documents S_i that contain the keyword
 - documents identified by identifiers
- Inverted index may record
 - keyword locations within document
 - number of occurrences of keyword (or TF)
- and operation: Finds documents that contain all of K_1 , K_2 , ..., K_n .
 - □ Intersection $S_1 \cap S_2 \cap \cap S_n$
- or operation: documents that contain at least one of $K_1, K_2, ..., K_n$
 - union, $S_1 \cup S_2 \cup \cup S_n$,.

170925

EXERCISE: TF-IDF WITH WIKIPEDIA

Exercise 1. Wiki table 생성

- Table SQL은 과목 게시판에서 download!
 - □ Wikipedia 문서 dump 중 500개의 문서 선정

컬럼명	데이터 타입	Primary Key 여부	설명
id	int(11)	0	Wikipedia 문서 고유 id
title	mediumtext	X	Wikipedia 문서 제목
text	mediumtext	X	Wikipedia 문서 내용

id	▲ title	text
16583123	Albert_Brunies	Albert Brunies. Albert Abbie Brunies (January 19, 19
16585069	Michel_Creton	Michel Creton.Michel Creton (17 August 1942 in Wa
16629152	Habranthus	Habranthus.Habranthus (copperlily) is a genus of t
16732148	Domestic_violence_in_Peru	Domestic violence in Peru.Domestic violence in Peru

Exercise2: Inverted index table 생성

- Wiki table을 이용하여 Inverted index 테이블 생성
 - □ 문서에 존재하는 모든 단어에 대하여 생성하는 것이 원칙
 - 하지만 문제의 간소화를 위해 정해진 단어에 대해서만 생성!
 - 대상 단어: debut, two, language, also
 - □ 문제에서의 단어의 기준:
 - Wiki table의 text column data를 Python String으로 간주 했을 때, 이를 ''(space)로 split하여 나오는 각 토큰들을 단어로 간주
 - Ex) "Computer is going to be...
 - "Computer, is, going, to, be...

term	id
finally	1739797
financed	416890
financial	416890
financial	1019791
financial	2266706
find	2266706

컬럼명	데이터 타입	Primary Key 여부	설명
term	varchar(1000)	X	개별 단어
id	int(11)	X	해당 단어가 포함된 문서 id

Exercise3: 단어의TF-IDF 계산

- Wiki table을 이용하여 문서 내 각 단어의TF-IDF 계산
 - □ TF-IDF 공식은 강의자료의 "the one used in the text book" 이용
 - 문제의 간소화를 위해 주어진 Query에 대해서만 TF-IDF 값을 계산 하여 출력
 - Query 1: ID=41631770인 text의 단어 also 에 대한 TF-IDF
 - Query 2: ID=6688599인 text의 단어 debut에 대한 TF-IDF
 - Query 3: ID=13794826인 text의 단어 language에 대한 TF-IDF

Submission

- 제출: <u>lecture@europa.snu.ac.kr</u>
 - □ 제목: [bde2_IR] <이름>
 - ex) [bde2_IR] 김태욱
 - □ 개인 별 제출 (단, 실습 동안 discussion 권장)
- 제출물: 아래를 압축하여 제출 (파일 이름: <이름>.zip)
 - 실습 수행 Python 코드
 - Query 1,2,3에 대한 수행 결과 값에 대한 text 파일 (results.txt)