2 Le chlorure de magnésium

Ce tableau présente la composition partielle en sels minéraux de la mer Méditerranée.

Constituant	Symbole	Concentration (g/L)
Ion chlorure	Cl ⁻	21,40
Ion magnésium	Mg ²⁺	1,295

Un soluté en particulier, le chlorure de magnésium, est notamment reconnu pour son action relaxante.

- 1. Combien compte-t-on d'ions chlorure dans 1 L d'eau de mer?
- 2. Même question pour les ions magnésium.
- 3. En déduire les quantités de matière correspondantes.
- 4. La présence de ces deux espèces ioniques assure-t-elle l'électroneutralité de la solution ?
- 5. Comment cela s'explique-t-il?
- 6. Donner la formule du chlorure de magnésium solide.

DONNÉES

Masses d'ions (en 10⁻²⁶ kg):

• Na⁺: 3,82; • Mg²⁺: 4,04; • Cl⁻: 5,89;
• Ca²⁺: 6,66; • SO₄²⁻: 16,0;
•
$$N_{\Delta} = 6,02 \times 10^{23} \text{ mol}^{-1}$$
.

1. Calculons la masse m d'ions chlorure dans 1,00 L d'eau de mer $m = C_{m(C|-)} \times V = 21,40 \times 1,00 = 21,4 q$

Calculons le nombre d'ions chlorure dans 1,00 L d'eau de mer

$$N_{Cl^{-}} = \frac{m}{m_{Cl^{-}}} = \frac{21.4 \times 10^{-3}}{5.89 \times 10^{-26}} = 3.63 \times 10^{23} \text{ ions}$$

2. Calculons la masse m' d'ions magnésium dans 1,00 L d'eau de mer $m' = C_m(M_{q2+}) \times V = 1,295 \times 1,00 = 1,30 q$

Calculons le nombre d'ions magnésium dans 1,00 L d'eau de mer

$$N_{Mg^{2+}} = \frac{m'}{m_{Mg^{2+}}} = \frac{1,30 \times 10^{-3}}{4,04 \times 10^{-26}} = 3,21 \times 10^{22} \text{ ions}$$

3. Calculons le nombre de moles d'ions chlorure et magnésium

$$n_{Cl^{-}} = \frac{N_{Cl}^{-}}{N_{\Delta}} = \frac{3.63 \times 10^{23}}{6.02 \times 10^{23}} = 0.603 \text{ mol}$$

$$n_{Mg2+} = \frac{N_{Mg}^{2+}}{N_{A}} = \frac{3,21x10^{22}}{6.02x10^{23}} = 0,0533 \text{ mol}$$

4. Le nombre de charges negatives est de $3,63 \times 10^{23}$ est différent du nombre de charges positives : $2 \times 3,21 \times 10^{22} = 6,42 \times 10^{22}$. Une solution ionique est toujours neutre électriquement mais ici nous n'avons pas la totalité des ions présents (composition partielle des ions présents dans l'eau de mer).