Errata

Title & Document Type: 1300A X-Y Display Operating Supplement

Manual Part Number: 01300-90905

Revision Date: November 1973

About this Manual

We've added this manual to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

HP References in this Manual

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, life sciences, and chemical analysis businesses are now part of Agilent Technologies. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A. We have made no changes to this manual copy.

Support for Your Product

Agilent no longer sells or supports this product. You will find any other available product information on the Agilent Test & Measurement website:

www.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.

MODEL 1300A X-Y DISPLAY

OPTICN H09

OPERATING SUPPLEMENT/NOV 73

1. INTRODUCTION.

2. This publication supplements the operating and service manual for the Hewlett-Packard Model 1300A X-Y Display. It provides information peculiar to Model 1300A Option H09. For information common to Model 1300A Option H09 and the standard Model 1300A, refer to the operating and service manual.

Note

Throughout the remainder of this operating supplement Model 1300A Option H09 is referred to simply as Option H09 and the standard Model 1300A is called the standard instrument.

- 3. Option H09 is a standard instrument modified to provide displays for system test setups using swept frequency oscillators and network analyzers. It has been specifically designed for use with the Hewlett-Packard Model 8601 Generator/Sweeper and the Hewlett-Packard Model 675A or Model 676A Network Analyzer, It is usable with other test equipment whose characteristics are similar to the above mentioned Hewlett-Packard instrument.
- 4. Specifications peculiar to Option H09 are listed in table 1.

5. DESCRIPTION.

6. Option H09 is a standard instrument modified as described in the following paragraphs.

- 7. CONTROLS AND CONNECTORS. All x and y controls and connectors are located on the front panel (see figure 1).
- 8. IMPEDANCE CONVERTERS. The impedance converter board (A1) is replaced with separate printed circuit boards for the x-axis impedance converter (A10) and the y-axis preamplifier (All). Modifications to the impedance converter circuits are described below.
- 9. X-axis Impedance Converter. The value of A10R12 (formerly A1R12) is changed to 36.5 kilohms.
- 10. Y-axis Preamplifier. The y-axis impedance converter is replaced by an X10 preamplifier to provide a basic sensitivity of .01V/div and an offset control. The front-panel offset control provides up to ±15 screen diameters of offset range. This permits viewing small ac signals superimposed on large devoltages. The uncalibrated offset control can be disabled (zero offset) by a front panel toggle switch. The bandwidth of the y channel is reduced to 10 MHz.
- 11. Y AXIS ATTENUATOR. A step attenuator is added in front of the y-axis preamplifier to provide selectable deflection factors from 0.01 V/div to 5 V/div in 9 steps in 1, 2, 5 sequence.
- 12. DEFLECTION AMPLIFIER BOARD. The deflection amplifier board (A2A1) is modified by changing the value of A2A1R6 to 301 ohms. This changes the

Table 1, Specifications

DEFLECTION FACTOR (X-axis only): 0.2 V/inch to 0.5V/inch; screwdriver adjustment.

DEFLECTION FACTOR (Y-axis only): 0.01 V/DIV to 5 V/DIV ±3% in 9 steps in a 1, 2, 5, sequence.

OFFSET (Y-axis only): front-panel OFFSET control provides ±15 screen diameters of offset. Front-panel switch disables OFFSET control.

BANDWIDTH (Y-axis only): Dc coupled, dc to 10 MHz; ac coupled, 2 Hz to 10 MHz from an 8-inch reference at 50 kHz.

RISETIME '(Y-axis only): <35 ns (10% to 90% points).

DRIFT (Y-axis only): not specified.
SETTLING TIME (Y-axis only): not specified.
REPEATABILITY (Y-axis only): not specified.
PHASE SHIFT: not specified.

01300-90905

For more information, call the local HP Sales Office or East (201) 265-5000, Midwest (312) 677-0400, South (404) 436-6181 West (213) 877-1282. Or, write: Hewlett-Packard, 1503 Page Mill Road, Palo Alto, California 94304. In Europe, Cable "HEWPACKSA" Tel (022) 41,54,00 or write Hewlett-Packard, 1217 Meyrin-Geneve, Switzerland.

1300A-L-001

- 1. X INPUT. BNC connector for input to x-axis amplifier.
- 2. X AC/DC switch. Toggle switch to set x-input coupling to AC (capacitive) or DC (direct).
- 3. X POSITION. Positions trace horizontally.
- X GAIN. Sets gain of x-axis amplifier; Provides 2.5:1 reduction factor (0.2 V/inch to (0.5 V/inch).
- 5. VOLTS/DIV. Step attenuator; 9 steps: 1, 2, 5 sequence; .01 VOLTS/DIV to 5 VOLTS/DIV.
- 6. Y AC/DC switch. Toggle switch to set y-input coupling to AC (capacitive) or DC (direct).
- 7. Y INPUT. BNC connector for input to y-axis amplifier.
- OFFSET ON/OFF switch. Enables or disables offset function.
- 9. Y POSITION. Positions trace vertically.
- OFFSET control. Permits offset displays (*15 screen diameters) to be brought on screen.
- 11. TRACE ALIGN. Screwdriver control; Aligns Trace about x axis so that horizontal trace is parallel with horizontal graticule lines; Works in conjunction with ORTHOG.
- FOCUS. Focuses trace; work with ASTIGMA-TISM to provide sharpest display.

- 13. INTENSITY. Sets brightness of display.
- 14. ASIGMATISM. Screwdriver control; Sets roundness of spot.
- 15. CAL. Banana jack; output 0.5V p-p linefrequency square wave; used to check and calibrate x- and y-axis amplifiers.
- 16. Power indicator. Lights when power is on.
- 17. POWER switch. Toggle switch; turns power on.
- A. Z INPUT. BNC connector for input to z-axis amplifier.
- B. Z GAIN. Screwdriver control; sets gain of z axis amplifier over 2.5:1 range.
- C. Z BAL. Screwdriver control; balances de offset of z-axis input signal.
- D. ORTHOG. Screwdriver control; Aligns vertical trace perpendicular to x axis. Works in conjunction with TRACE ALIGH.
- E. SWEEP BLANK. BNC connector for connecting blanking signals to z-axis amplifier. Positive voltage or low impedance to ground causes blanking.
- F. CHOP BLANK. BNC connector for capacitively coupling chopped blanking signals directly to CRT cathode; signal is ac coupled; +50V probe causes blanking; connector is grounded when not in use by EXT/INT switch.

- G. EXT/INT switch. Grounds CHOP BLANK input in INT position.
- H. SELECTOR. Sets primary power circuits for 115 vac or 230 vac; power cord and fuse must be changed when changing voltages.
- I. FUSE post. Holds line fuse.
- J. LINE connector. Three-terminal connector for IEC line cord.

Figure 1. Controls, Connectors, and Indicators (cont'd)

deflection factor of the x-channel to 0.2 V/div. The new deflection factor can be adjusted up to 05 V/div with the front panel X GAIN control.

13. SHIELDING. Two sheet metal shields are added One (MP41) covers the new x-axis impedance converter board. The other (MP42) covers the new y-axis preamplifier board and the step attenuator.

14. PERFORMANCE CHECKS.

15. The following performance checks require modification for Uption HOS instruments: x and y deflection factor, x and y bandwidth, and x and y phase shifts. All other performance checks can be accomplished by following the procedures in the operating and service manual. Be sure to set the VOLTS/DIV switch to 0.1 and set the OFFSET switch to OFF.

16. X AND Y DEFLECTION FACTOR.

17. Specification. At maximum sensitivity the deflection factor of the x amplifier shall be at least 0.2 V/inch. At minimum sensitivity, the x amplifier reduction factor shall be at least 2.5:1. The deflection factor for the y amplifier for each position of the VOLTS/DIV switch shall be as marked on the switch, ±3%.

18. Test Equipment.

19. Procedure.

- a. Connect CAL output to X INPUT.
- b. Set X GAIN cw. Length of trace on CRT shall be greater than 2.5 divisions.
- c. Set X GAIN cew. Length of trace shall be I division or less.
- d. Set X GAIN for truce length of exactly 2.5 divisions.
 - e. Connect CAL output to Y INPUT.
- f. Set VOLTS/DIV switch to .1. Length of trace shall be 5 divisions ±0.75 minor division.

- g. Set y vernier ccw. Length of trace shall be 2 divisions or less.
 - h. Set y vernier cw.

20. X AND Y BANDWIDTH.

21. Specification. Frequency response of the x amplifier shall be down not more than 3 dB at 20 MHz. Frequency response of the y amplifier shall be down not more than 3 dB at 10 MHz.

22. Test Equipment.

- a. Constant amplitude signal generator.
- b. 50 ohm feedthrough,

23. Procedures

- a. Connect output of constant amplitude generator through 50 ohm feedthrough to X INPUT.
- b. Set frequency of constant amplitude signal generator to 50 kHz.
- c. Adjust output of constant amplitude signal generator to obtain 8 inches deflection on CRT.
- d. Increase frequency of constant amplitude signal generator to 20 MHz. Length of trace on CRT shall be at least 5.7 inches.
- signal penerator to Y INPUT.
 - f. Set Y VOLTS/DIM switch to .01,
- gal Set frequency of constant amplitude signal generator to 50 kHz.
- generator to obtain 8 inches deflection on CRT.
- i. Increase frequency of constant amplitude signal generator to 10 MHz. Length of trace on CRT shall be at least 5.7 inches.

j. Repeat steps g, h, and i for each position of Y VOLTS/DIV switch.

24. X AND Y PHASE SHIFT.

25. Becasue the bandwidths of the x and y amplifiers are not equal, phase shift is not specified for Option H09 and need not be checked.

26. ADJUSTMENTS.

27. All adjustments for Option H09 are the same as the adjustments for the standard instrument except the adjustments for the y amplifier. To calibrate Option H09, perform all adjust procedures in Section V of the operating and service manual. Perform the x and y pulse response adjustments on the x amplifier only. After completing all adjustments in the operating and service manual, perform the y amplifier adjustments in the following paragraphs,

28. Y GAIN ADJUST.

- 29. Reference. Table 5-1 in the operating and service manual. Figure 2 and schematic 3 in this operating supplement.
- 30. Test Equipment.
 - a. Voltmeter calibrator,
 - b. Constant Amplitude Signal Generator.
- 31. Procedure.
- a. Connect 400 Hz p-p output of voltmeter calibrator to Y INPUT.
 - b. Set VOLTAGE SELECTOR to .5.
 - c. Set Option H09 controls as follows:

	1 .	i		
VOLTS/I	iv		 	.01
vernier				
AC/DC.	,,,,,	! : 'a g 'a a a a a :	 	DC
OFFSET				
POSITIO	N (x ai	nd y)	 cen	tered

- d. Set CAIN ADJ A11R23 to obtain trace length of exactly 5 major divisions on CRT.
- b. Set vernier ccw. Trace length shall be less than 2 inches.
 - f. Return vernier to CAL.
 - g. Set AC/DC to AC.
 - h. Set VOLTS/DIV to .5.

- i. Connect 50 kHz output of constant amplitude signal generator to Y INPUT.
- j. Set amplitude of constant amplitude signal generator for 4.8 major divisions deflection.
 - k. Set VOLTS/DIV to .01.
 - I. Set OFFSET switch to ON.
- m. Turn OFFSET knob cw then ccw. Both ends of trace shall return to viewing area.

32. Y PULSE RESPONSE ADJUST.

- 33. Reference. Table 5-1, figure 5-1, and schematic 4 in the operating and service manual.
- 34. Test Equipment.
 - a. Monitor oscilloscope.
 - b. Pulse generator.
 - c. 10:1 divider probe.
 - d. 50-ohm feedthrough.
- 35. Procedure.
 - a. Set Option H09 controls as follows:

, VOLTS/DIV	01
vernier	. CAL
AC/DC	
OFFSET	
POSITION (x and v)	

- b. Connect BNC end of 10:1 divider prohe to X INPUT and prohe tip to sweep output of monitor oscilloscope.
- c. Connect pulse output of pulse generator through 50 ohm feedthrough to Y INPUT.
- d. Connect trigger output of pulse generator to external trigger input of monitor oscilloscope.
- e. Set pulse generator for 2-usec, 0.05-volt pulse at 400 kHz.
- f. Adjust sweep time of monitor oscilloscope to display 2 or 3 pulses on Option H09; adjust triggering to stabilize display.
- g. Set HF ADJ NO. 1 (A2A1C14), HF ADJ NO. 2 (A2A1C17), and HF ADJ NO. 3 (A2A1C12) for most square corners on display with no overshoot.

36. Y ATTENUATOR COMPENSATION.

- 37. References. Table 5-1 in the operating and service manual, Figure 2 and schematic 3 in this operating supplement.
- 38. Test Equipment.
- a. LC Meter (Add Techtronix Model 130 to table 5-1 in operating and service manual).
 - b. Square wave generator.
 - c. Monitor oscilloscope.

39. Procedure.

a. Set Option H09 controls as follows:

VOLTS/DIV.		 per	step g
vernier		 	CAL
AC/DC			
OFFSET			
POSITION (x	and y)	 ,,,, co	entered

- b. Connect BNC end of 10:1 divider probe to X INPUT and probe tip to sweep output of monitor oscilloscope.
- c. Connect 600Ω output of square wave generator to Y input.
- d. Connect trigger output of square wave generator to external trigger input of monitor oscilloscope.
- e. Set frequency of square wave generator to 10 kHz and amplitude for 6 inch vertical deflection on Option H09.
- f. Adjust sweep time of monitor oscilloscope to display two or three pulses on Option H09; adjust triggering to stabilize display.
- g. Set VOLTS/DIV switch to each of its positions and adjust indicated capacitor to obtain most square corners on display. Refer to figure 2 and make adjustments in the order listed below:

VOLTS/DIV Setting	Adjust
.02	A12C8
.05	A12C16
.2	A12C5
.5	A12C14
.1	A12C3
1.1	A12J11

- h. Disconnect inputs to Option H09.
- i. Set VOLTS/DIV to .01.

- j. Using LC meter, measure capacitance between center and outer conductor of Y INPUT. Note reading.
 - k. Set VOLTS/DIV to .5.
- l. Set A12C1 to obtain same reading on LC meter noted in step j.
 - m. Set VOLTS/DIV to 5.
- n. Set A12C9 to obtain same reading on LC meter noted in step j.

40. Y CHANNEL BALANCE ADJ.

- 41. References. Figure 2 and schematic 3 in this operating supplement.
- 42. Equipment.
- 43. Procedure.
 - a. Set Option H09 controls as follows:

VOLTS/DIV	01
AC/DC	. DC
OFFSET	
POSITION (x and y)ce	

- h. Rotate y vernier back and forth between its cw and ccw positions while observing spot on CRT. A small amount of vertical movement is probably seen.
- c. Adjust BAL control A20R22 to minimize movement of spot. Spot movement shall be less than 1 minor division.

44. CRT REMOVAL.

- 45. Becasue shields MP41 and MP42 press tightly against the CRT strap, it is necessary to loosen the right side casting (instrument's own right) before proceeding with the CRT removal and replacement procedure.
- a. Use sharp instrument to loosen and remove aluminum trim strip MP5 from right side casting.
- b. Loosen screws holding casting to front panel (not necessary to remove screws). This relieves pressure against CRT holding straps.
- c. Follow CRT removal and replacement procedure in operating and service manual.
- d. After CRT is reinstalled or replaced, tighten screws in right side casting and reinstall trim strip MP5.

46. REPLACEABLE PARTS.

47. Parts peculiar to Option H09 are listed in table 1. Parts common to Option H09 and the standard instrument, along with ordering information, are listed in Section VI in the operating and service manual.

48. COMPONENT LOCATORS.

49. Figures 3 and 4 show the locations of components on board A10 and all respectively. These locators replace the locator for board A1 shown in Section VIII in the operating and service manual.

50, SCHEMATICS.

- 51. Schematic 1 in this operating supplement covers the new x-axis impedance converter board, A10. Use it in lieu of schematic 1 in the operating and service manual.
- 52. Board A2A1 is used in Option H09 with one small modification. To modify schematic 2 for use with Option H09, change the value of A2A1R6 to 301.
- 53. Schematic 3 in this operating supplement covers attenuator A12 and the new preamplifier board A11. Use it in lieu of schematic 3 in the operating and service manual.

Table 2. Replaceable Parts

Reference Designation	HP Port Number	τα	Description	Mir Code	Manufacturer't Part Number
AlO All Al2	01300-66515 01300-66514 01300-63401	1 1 1	HORIZOHTAL IMPEDANCE CONVERTER BD VERTICAL IMPEDANCE CONVERTER BD ATTENUATOR ASSY	28480 28480 28480	01300-66515 01300-66514 01300-63401
R1 R2 R4 R5	2100-2755 2100-2590 2100-2977	1 1 1	R: VAR COMP 50K OHH 20% 1/4W R: VAR COMP 10K OHM 10% 10 CLOG 1/4W R: VAR COMP LIN DUAL 100K AND 1K OHM 20% XW NSR: P/O R ⁴	28480 28480 28480	2100-2755 2100-2590 2100-2977
51 52 57	3101-0163 3101-0163 3101-0163	3	SWITCH: TOGGLE SPDT SWITCH: TOGGLE SPDT SWITCH: TOGGLE SPDT	04009 04009 04009	MST-1050 MST-1050 MST-1050
MP10-1 MP41 MP42 MF43 MP44	01300-22003 01300-00603 01300-00603 01300-67402 01300-67401	1 1 1	FRAME ASSY: MODIFIED SHIELD: INPUT SHIELD: INPUT KNOB ASSY: ATTENUATOR KNOB: Y POSITION	28480 28480 28480 28480 28480	01500-22003 01300-00603 01300-00603 01300-67402 01300-67401
NP45	01801-67401	1	KNOB: VEHNILR	28480	01801-67401
W1 W3 W4 W5 W7	01300-61623 01300-61621 01300-61620 01300-61624 01300-61625 01300-61622	1 1 1 1 1 1	CABLE: MAIN CABLE: COAX BLUE CABLE: COAX YELLOW CABLE: COAX WHITE CABLE: COAX RED CABLE: COAX GALIBHATOR	28480 28480 28480 28480 28480 28480	01500-61625 01300-61621 01500-61620 01500-61624 01500-61625 01500-61622
a2a1r6	0757-0410	1	R: FXD METFLH 301 OHM 1% 1/8W	28480	0757-0410
V10C1 V10C3 V10C3 V10C3	01300-66515 0150-0024 0160-0161 0180-0376 0180-0376	1 1 4	HORIZONTAL IMPEDANCE CONVERTER BD C: FXD CER 0.02 UF +80-20% 600VDCW C: FXD MY 0.01 UF 10% 200VDCW C: FXD TA 0.47 UF 10% 35VDCW C: FXD TA G.47 UF 10% 35VDCW	28480 71590 56289 56289 56289	01300-66515 TYPE DD 203 192P10392-PTS 150D474X9035A2-DYS 150D474X9035A2-DYS
A1005 A1006 A1007 A1008 A100R1	0180-0116 0180-0376 0180-0376 0180-0116 1901-0376	2	C: FXD TA 6.8 UF 10% 35VDCW C: FXD TA 0.47 UF 10% 35VDCW C: FXD TA 0.45 UF 10% 35VDCW DIODE: SILICON 35V	56289 56289 56289 28480	150D685X9035B2-DYS 150D474X9035A2-DYS 150D474X9035A2-DYS 1901-0376
A100R2 A10Q1/Q2 A10Q3 A10Q4 A10Q5	1901-0376 5080-0472 1854-0354 1854-0354 1854-0354	14	DIODE: SILICON 35V TSTR: SI FET N-CHANNEL (MATCHED PAIR) TSTR: SI NPN TSTR: SI NPN TSTR: SI NPN	28480 28480 28480 28480 28480 28480	1901-0376 5060-0472 1854-0354 1854-0354 1854-0354
Aloq6 Alori Alor2 Alor3 Alor4	1854-0354 0757-0344 0757-0475 0757-0394 0757-0394	1	TSTR: SI NPN R: FXD MET FLH 1.00 MEGOHM 1% 1/4W R: FXD MET FLM 274K OHM 1% 1/6W R: FXD MET FLM 51.1 OHM 1% 1/8W R: FXD MET FLM 51.1 OHM 1% 1/8W	28480 28480 28480 28480 28480	1854-0354 0757-0344 0757-0475 0757-0394 0757-0394

Table 2. Replaceable Parts (cont'd)

	Table 2, Replaceable Parts (conta)					
Reference Designation	HP Part Number	τα	Description	Mir Code	Manufacturer's Part Number	
Alors Alors Alors Alors Alors	0757-0436 0757-0388 0757-0736 0757-0282 0757-0284	25221	R: FXD MET FLH 4.32K O.H 1% 1/8W R: FXD FLH 30.1 OHH 1% 1/8W R: FXD MET FLH 1.50K OHH 1% 1/4W R: FXD MET FLH 221 OHH 1% 1/8W R: FXD MET FLH 150 OHH 1% 1/8W	28480 28480 28480 28480 28480 28480	0757-0436 0757-0388 0757-0736 0757-0282 0757-0284	
Alorio Alorii Alori2 Alori3 Alori4	0757-0338 0757-0394 0757-0455 0757-0442 0757-0401	2 1 1 3	R: FXD HET FLH 1.00K OHN 1% 1/4W R: FXD HET FLH 51.1 OHN 1% 1/8W R: FXD FLH 36.5K OHN 1% 1/8W R: FXD HET FLH 10.0K OHN 1% 1/8W R: FXD HET FLH 100 OHN 1% 1/8W	28480 28480 28480 28480 28480 28480	0757-0358 0757-0394 0757-0455 0757-0442 075700401	
Alori5 Alori6 Alori7 Alori8 Alori9	0757-0436 0757-0388 0757-0736 0757-0282 0757-0338		R: FXD MET FLM 4.32K CHM 1% 1/8W R: FXD FLM 30.1 OHM 1% 1/8W R: FXD MET FLM 1.50K OHM 1% 1/4W R: FXD MET FLM 221 OHM 1% 1/8W R: FXD MET FLM 1.00K OHM 1% 1/4W	28480 28480 28480 28480 28480 28480	0757-0436 0757-0388 0757-0736 0757-0282 0757-0338	
Alorzo Alorzi Alorzz Alorzz Alorz ¹ +	0757-0394 0757-0388 0757-0388 0757-0388 0757-0388		R: FXD HET FLM 51.1 OHM 1% 1/8W R: FXD FLM 30.1 OHM 1% 1/8W	28480 28480 28480 28480 28480 28480	0757-0394 0757-0388 0757-0388 0757-0388 0757-0388	
A10 R25	0757-0276	1	R: FXD MET FLH 61.9 OHH 1% 1/8W	28480	0757-0276	
All Alici Alicz Alic3 Alic4	01300-66514 0160-2913 0180-0291 0160-2913 0160-0168	3 2	VERTICAL IMPEDANCE CONVERTER BD C: FXD CER 0.01 UF +85-20% 500VDCW C: FXD TA 1.0 UF 10% 35VDCW C: FXD CER 0.01 UF +85-20% 500VDCW C: FXD MY 0.1 UF 10% 200VDCW	28480 72982 56289 72982 56289	01300-66514 11-014-Y5U0-1032 150D105X 9035A2-DYS 11-014-Y5U0-1032 192P10492-PTS	
Alic5 Alic6 Alic7 Alic8 Alic9	0180-0116 0180-0291 0180-0116 0160-0168	2	C: FXD TA 6.8 UF 10% 35VDCW C: FXD TA 1.0 UF 10% 35VDCW C: FXD TA 6.8 UF 10% 35VDCW C: FXD MY 0.1 UF 10% 200VDCW NOT ASSIGNED	56289 56289 56289 56289	150D665X9035B2-DYS 150D105X9035A2-DYS 150D685X9035B2-DYS 192P10492-PTS	
Alicio Alicri Aliqi/q7 Aliq2 Aliq3	0160-2913 1901-0040 1855-0085 1854-0280 1854-0215	1 1 1 6	C: FXD CER 0.01 UF +85-20% 500VDCW DIODE: SILICON 30MA 30WV TSTR: FET (MATCHED PAIR) TSTR: SI NPN DUAL TSTR: SI NPN	72982 07263 28480 26480 80131	11-014-Y5U0-1032 FDG1088 1855-0085 1854-0280 2N3904	
Aliq4 Aliq5 Aliq6 Aliq7 Aliq8	1854-0215 1853-0036 1854-0215 1854-0215	2	TSTR: SI NPN TSTR: SI PNP TSTR: SI NPN NSR: P/O Allql/Q7 TSTR: SI NPN	80131 80131 80131 80131	2N39C 2N39O6 2N39O4 2N39O4	
AllQ9 AllQ10 AllQ11 AllR1 AllR2	1854-0215 1853-0036 1854-0215 0757-0344	1	TSTR: SI NPN TSTR: SI PNP TSTR: SI NPN NOT ASSIGNED R: FXD MET FLM 1.00 MEWOHM 1% 1/4W	80131 80131 80131 28480	2N3904 2N3906 2N3904 0757-0344	
AllR3 AllR4 AllR5 AllR6 AllR7	0757-0475 0757-0893 0757-0893 0757-0280 0757-0847	1 7 2 2	R: FXD MET FLM 274K OHH 1% 1/8W R: FXD MET FLM 51 OHH 2% 1/8W R: FXD MET FLM 51 OHM 2% 1/8W R: FXD MET FLM 1K OHM 1% 1/3W R: FXD MET FLM 1K OHM 1% 1/2W	28480 28480 28480 28480 28480	0757-0475 0757-0893 0757-0893 0757-0280 0757-0280	
AllR8 AllR9 AllR10 AllR11 AllR12	0757-0421 0757-0972 0698-6994 0757-0926 0757-0908	2 7 2 2	R: FXD MET FLM825 OHN 1% 1/8W R: FXD FLM 100K OHN 2% 1/8W R: FXD FLM 30 OHN 2% 1/8W R: FXD FLM 1.2K OHN 2% 1/8W R: FXD FLM 220 OHN 2% 1/8W	28480 28480 28480 28480 28480 28480	0757-0421 0757-0972 0698-6994 0757-0926 0757-0908	

Table 2. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	το	Description	Mir Code	Manufacturer't Part Numbor
AllR13 AllR14 AllR15 AllR16 AllR17	0757-0704 0757-0762 0757-0900 0764-0744 0757- 1	1 24 2 2	R: FXD FLM 150 OHN 2% 1/8W R: FXD FLM 24.3K OHN 1% 1/4W R: FXD HET FLM 100 OHN 2% 1/8W R: FXD HET OX 8.2K OHN 5% 2W R: FXD HET FLM 2.43K OHN 1% 1/4W	28480 28480 28480 28480 28480	0757-0904 0757-0762 0757-0900 0764-0044 0757-0741
Allr18 Allr19 Allr20 Allr21 Allr22	0757-0429 0757-0900 0757-0893 0757-0410 2100-2655	2 1 1	R: FXD MET FLM 1,82K OHM 1% 1/8W R: FXD MET FLM 100 OHM 2% 1/8W R: FXD MET FLM 51 OHM 2% 1/8W R: FXD MET FLM 301 OHM 1% 1/8W R: VAR CERMET 10K OHM 10% 1/2W	28480 28480 28480 28480 28480	0757-0429 0757-0900 0757-0893 0757-0410 2100-2655
Allr23 Allr24 Allr25 Allr26 Allr27	2100-1738 0757-0424 0757-0893 0757-0934 0757-0954	1 1 2 1	R: VAR FLM 10K OHN 10% LIN 1/2W R: FXD MET FLM 1,10K OHN 1% 1/8W R: FXD MET FLM 51 OHN 2% 1/8W R: FXD FLM 2.7K OHN 2% 1/8W R: FXD FLM 18K OHN 2% 1/8W	28480 28480 28480 28480 28480	2100-1738 2100-0424 0757-0893 0757-0934 0757-0934
Alir28 Alir30 Alir31 Alir32	0757-0930 0757-0893 0757-0847 0757-0280 0757-0972	1,	R: FXD FLM 1.8K OHM 2% 1/8W R: FXD MET FLM 51 OHM 2% 1/8W R: FXD MET FLM 27.4K OHM 1% 1/2W R: FXD MET FLM 1K OHM 1% 1/8W R: FXD FLM 100K OHM 2% 1/8W	28480 28480 28480 28480 28480	0757-0330 0757-0833 0757-0847 0757-0280 0757-0972
AllR33 AllR34 AllR35 AllR36 AllR37	0698-6994 0757-0926 0757-0908 0757-0762 0764-0044		R: FXD FLM 30 OHM 2% 1/8W R: FXD FLM 1.2K OHM 2% 1/8W R: FXD FLM 220 OHM 2% 1/8W R: FXD FLM 24.3K OHM 2% 1/4W R: FXD MET OX 8.2K OHM 5% 2W	28480 28480 28480 28480 28480	0698-6994 0757-0926 0757-0908 0757-0762 0764-0044
AllR38 AllR39 AllR40 AllR41 AllR42	0757-0893 0757-0741 0757-0429 0757-0900 0757-0934	:	R: FXD MET FLM 51 OHM 2% 1/8W R: FXD MET FLM 2.43K OHM 1% 1/4W R: FXD MET FLM 1.82K OHM 1% 1/8W R: FXD MET FLM 100 OHM 2% 1/8W R: FXD FLM 2.7K OHM 2% 1/8W	28480 28480 28480 28480 28480	0757-0893 0757-0741 0757-0429 0757-0900 0757-0934
AllR43 AllR44 AllR45 AllR46 AllR47	0757-0893 0698-6994 0698-6994 0698-6994 0698-6994		R: FXD MET FLM 51 OHM 2% 1/8W R: FXD FLM 30 OHM 2% 1/8W	28480 28480 28480 28480 28480	0757-0893 0638-6994 0698-6994 0698-6994 0698-6994
Alir48 Alir49 Alir50 Alir51	0698-6994 0757-0922 0757-0900 0757-0421	1	R: FXD FLM 30 OHM 2% 1/8W R: FXD FLM 820 OHM 2% 1/8W R: FXD HET FLM 100 OHM 2% 1/8W R: FXD HET FLM 825 OHM 1% 1/8W	28480 28480 28480 28480	0698-6994 0757-0922 0757-0900 0757-0421
V15C# V15C3 V15C1 V15	01300-63401 0121-0429 0160-2258 0121-0429 0150-0063	8 1 4	ATTENUATOR ASSY C: VAR POLY 0.7-3.0 PF C: FXD CER 11 PF 5% 500VDCW C: VAR POLY 0.7-3.0 PF C: FXD CER 10 +/- 0.5 PF 500VDCW	28480 72982 72982 72982 72982	01300-63401 536-009 301-000-0000-1103 536-009 301-000-0000-100D
A1205 A1206 A1207 A1208 A1209	0121-0429 0160-2236 0150-0063 0121-0429 0121-0429	1	C: VAR POLY 0.7-3.0 PF C: FXD CER 1.0 PF 500VICW C: FXD CER 10 +/- 0.5 PF 500VICW C: VAR POLY 0.7-3.0 PF C: VAR POLY 0.7-3.0 PF	72982 72982 72982 72982 72982 72982	536-009 301-000-C0K0-109C 301-009-C0G0-100D 536-009 536-009
A12010 A12011 A12012 A12013 A12014	0150-0059 0121-0429 0150-0063 0140-0077 0121-0429	2	C: FXD CER 3.3 +/-0.25 PF 500VDCW C: VAR POLY 0.7-3.0 PF C: FXD CER 10 +/* 0.5 PF 500VDCW C: FXD MICA 100 PF 10% 500VDCW C: VAR POLY 0.7-3.0 PF	72982 72982 72982 72982 00853 72982	301-000-00J0-5390 536-009 301-000-000-100D TYPE H100 E10 536-009
A12C15 A12C16 A12C17 A12C18	0160-2246 0121-0429 0150-0059 0150-0063	1	C: FXD CER 3,6 +/-0.25 PF 500VDCW C: VAR POLY 0.7-3.0 PF C: FXD CER 3.3 +/-0.25 PF 500VDCW C: FXD CER 10 +/-0.5 PF 500VDCW	72982 72982 72982 72982 72982	301-000-c0JC-369C 536-009 301-000-C0JO-339C 301-000-C000-100D

Table 2, Replaceable Parts (cont'd)

Table 2. Replaceable Parts (cont'd)						
Reference Designation	HP Part Number	τα	Description	Mfr Code	Manufacturer't Part Number	
A12R1 A12R2 A12R3 A12R4 A12R5	0757-0393 0698-6400 0757-0401 0698-5470 0698-3263	1 2 1 1	R: FXD FLM 47.5 OHM 1% 1/8W R: FXD FLM 900K OHM 1.0% 1/4W R: FXD HET FLM 100 OHM 1% 1/8W R: FXD FLM 111K OHM 1% 1/8W R: FXD MET FLM 500K OHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0393 0698-6400 0757-0401 0698-5470 0698-3263	
Al2R6 Al2R7 Al2R8 Al2R9 Al2R10	0757-0344 0683-1805 0683-1525 0698-6634	1 1 1	NOT ASSIGNED R: FXD MET FLM 1.00 MEGOHM 1% 1/4W R: FXD COMP 18 OHM 5% 1/4W R: FXD COMP 1500 OHM 5% 1/4W R: FXD FLM 990K OHM 1.0% 1/4W	28480 01121 01121 28480	0757-0344 CB1805 CB1525 0698-6634	
Alerii Alerie Aleris Aleris Aleris	0683-2705 0698-3109 0698-6654 0757-0401 0698-4011	1 1 1 1	R: FXD COMP 27 OHM 5% 1/4w R: FXD MET FLM 10.1k OHM 1% 1/8w R: FXD MET FLM 800K OHM 1% 1/4w R: FXD MET FLM 100 OHM 1% 1/8w R: FXD FLM 250K OHM 1% 1/8w	01121 28480 28480 28480 28480	CB2705 0698-3109 0698-6654 0757-0401 0698-4011	
A1251	3100-2544	1	SWITCH: ROTARY	28400	3100-2544	
					:	
					1	
	: : : :	<u> </u>			,	
	į i	,				
	and the state of t					

Figure 2. Adjustment and Chassis Parts Locator

Figure 3. A10 Components Locator

Figure 5. All Components Locator

Figure 6.
Schematic, Attenuator and Y Preamplifier
Page 15