Then (i):
$$(w \wedge t) \rightarrow J$$

(ii): $(\neg w \wedge \neg t) \rightarrow \neg J$
(iii): $d \rightarrow (w \wedge t)$
(iv): $\neg w \vee \neg t \vee J$

Finally, (ii) & (iii) are different from each other:

if w:F, t:T, d:T

then (ii) T but (iii) F.

2) a) p	9	1	ρ → (qvr)	(p->g) v(p->r)
T	T	T	T	T
T	T	F	T	/ T
T	F	T	T	T
T	F	F	F	F
F	T	T	T	T
F	T	F	T	T
F/	F	T	7	T
FI	F	F	T	T

b)
$$(p \rightarrow q) \vee (p \rightarrow r) \equiv (\neg p \vee q) \vee (\neg p \vee r)$$
 Conditional Law
$$\equiv (\neg p \vee \neg p) \vee (q \vee r)$$
 Associativity & Commutativity
$$\equiv \neg p \vee (q \vee r)$$
 Idempotency
$$\equiv p \rightarrow (q \vee r)$$
 Conditional Law

3) No. If
$$p:F$$
 & $r:F$ then $p \rightarrow (q \rightarrow r)$ is T (it doesn't matter what q is) $(p \rightarrow q) \rightarrow r$ is F

4)
$$pv \neg q \implies rvq \equiv (pv \neg q \rightarrow rvq) \land (rvq \rightarrow pv \neg q)$$
 Biconditional Law $\equiv (\neg (pv \neg q) \lor rvq) \land (\neg (rvq) \lor pv \neg q)$ Conditional Law $\equiv (\neg p \land q) \lor rvq) \land ((\neg r \land \neg q) \lor pv \neg q)$ DeMorgan, double-negative $\equiv (q \lor (q \land \neg p) \lor r) \land (\neg q \lor (\neg q \land \neg r) \lor p)$ Commutativity $\equiv (q \lor r) \land (\neg q \lor p)$ Absorption $\equiv \neg (\neg q \land \neg r) \land (\neg (q \land \neg p))$ DeMorgan, double-negative $[Other\ (more\ complicated?)\ expressions\ work\ here.]$

Every proposition can be written this way,
by using the conditional laws to remove \iff then \Rightarrow ,
then DeMorgan to remove V (at the expense of many parentheses & negations).

thus these two

rows are also impossible.

Cole is Honest Is Dat is a liar