Ironhack final project

Job market analysis

Content

Introduction

Dataset and EDA

Data visualisation

SQL queries

Machine learning / Streamlit UI

Conclussions / further research

The intention of this project is providing a thorough analysis of a dataset regarding it-related job offerings, where we analyse relevant aspects such as the job title, location and gross average salary.

Dataset

3755 observations

Total of 93 unique role names

72 locations worldwide

Source:


```
In [44]: dataset.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 3755 entries, 0 to 3754
         Data columns (total 7 columns):
                                Non-Null Count Dtype
              Column
              experience level 3755 non-null
                                                 object
              employment type 3755 non-null
                                                 object
              job_title 3755 non-null salary_in_usd 3755 non-null
                                                 object
                                                 int64
              remote ratio 3755 non-null
                                                int64
              company location 3755 non-null
                                                 object
              company size
                                 3755 non-null
                                                 object
         dtypes: int64(2), object(5)
         memory usage: 205.5+ KB
```

Distribution of job openings

Data visualisation: count and average

Avg. salary: company size and exp. Level

Experience level:

- Entry level (EN)
- Middle (MI)
- Senior (SE)
- Experienced / Manager (EX)

Dataset

Out[46]:		salary_in_usd	remote_ratio
	0	85847	100
	1	30000	100
	2	25500	100
	3	175000	100
	4	120000	100
		144	
	3750	412000	100
	3751	151000	100
	3752	105000	100
	3753	100000	100
	3754	94665	50

Num. variables

Out[47]:		experience_level	employment_type	job_title	company_location	company_size
	0	SE	FT	Principal Data Scientist	ES	L
	1	MI	СТ	ML Engineer	US	S
	2	MI	СТ	ML Engineer	US	S
	3	SE	FT	Data Scientist	CA	M
	4	SE	FT	Data Scientist	CA	М
		· · · ·		(4.1)	222	
	3750	SE	FT	Data Scientist	US	L
	3751	MI	FT	Principal Data Scientist	US	L
	3752	EN	FT	Data Scientist	US	S
	3753	EN	СТ	Business Data Analyst	US	L
	3754	SE	FT	Data Science Manager	IN	L

Cat. variables

EDA comparison after removing outliers

EDA comparison after removing outliers

EDA comparison after rmv. outliers

EDA comparison after removing outliers

	salary_in_usd	remote_ratio
count	3755.000000	3755.000000
mean	137570.389880	46.271638
std	63055.625278	48.589050
min	5132.000000	0.000000
25%	95000.000000	0.000000
50%	135000.000000	0.000000
75%	175000.000000	100.000000
max	450000.000000	100.000000

	salary_in_usd	remote_ratio
count	3692.000000	3692.000000
mean	134262.993770	46.289274
std	57992.294349	48.589320
min	5132.000000	0.000000
25%	94916.250000	0.000000
50%	133916.000000	0.000000
75%	174500.000000	100.000000
max	293000.000000	100.000000

Hypothesis testing

Perform a hypothesis testing where we assume that the average salary for an entry level job (experience_level = 'EN') is at least (higher than or equal to) 40.000 (salary_in_usd). Note: this is a one-tail t-test where we take a significance level of 0.05 for our hypothesis testing.

Machine learning modelling

- INITIAL MACHINE LEARNING MODEL
- MACHINE LEARNING MIN-MAX SCALER
- MACHINE LEARNING NORMALISATION
- HYPERPARAMETER TUNING
- K-NEAREST
- RANDOM FOREST

Initial machine learning modeling

```
mae = mean absolute error(y test, y pred)
                                                                                                                                                   mse = mean squared error(v test, v pred)
                                                                                                                                                   rmse = np.sqrt(mse)
X = dataset[['experience level', 'employment type', 'remote ratio', 'company size', 'company location']]
                                                                                                                                                   r2 = r2 score(y test, y pred)
y = dataset['salary in usd']
                                                                                                                                                   print("Mean Absolute Error (MAE):", mae)
                                                                                                                                                   print("Mean Squared Error (MSE):", mse)
X encoded = pd.get dummies(X, columns=['experience level', 'employment type', 'company size', 'company location'])
                                                                                                                                                   print("Root Mean Squared Error (RMSE):", rmse)
                                                                                                                                                   print("R-squared (R^2):", r2)
X train, X test, y train, y test = train test split(X encoded, y, test size=0.2, random state=42)
                                                                                                                                                   Mean Absolute Error (MAE): 42973770819.71571
                                                                                                                                                   Mean Squared Error (MSE): 3.4677846012106515e+23
                                                                                                                                                   Root Mean Squared Error (RMSE): 588878985973.4045
                                                                                                                                                   R-squared (R^2): -87841165456152.3
model = LinearRegression()
model.fit(X train, y train)
v pred = model.predict(X test)
```

Treated "salary_in_usd" as the target variable to get an overview of the salary pay irrespective of the company's location (there is a total of 73 locations where they use different currencies).

Machine learning model performance evaluation

SQL DB Queries

```
SELECT * FROM job_openings_db.`ds_salaries (1)`;
```

Provide a top 20 of the entry-level positions with the highest pay in the year 2022

SELECT job_title, salary_in_usd FROM job_openings_db.`ds_salaries (1)`

WHERE experience_level = 'EN' AND work_year = 2022

ORDER BY salary_in_usd DESC

LIMIT 20;

	job_title	salary_in_usd
١	AI Developer	300000
	AI Scientist	200000
	Machine Learning Engineer	189750
	Data Scientist	180000
	Machine Learning Developer	180000
	Data Scientist	180000
	Data Scientist	168000
	Data Engineer	160000
	Data Analyst	150000
	Computer Vision Software	150000
	Machine Learning Engineer	140250
	Data Engineer	135000

SQL DB Queries

Calculate the average salary in EURO for a machine learning engineer middle role

SELECT AVG(salary) AS average_salary

FROM job_openings_db.`ds_salaries (1)`

WHERE job_title = 'Machine Learning
Engineer' AND experience_level = 'MI' AND
salary_currency = 'EUR'

	average_salary
•	58200

SQL DB Queries

Select the job openings in Spain that are not 'experienced level' (EX) and provide the first 20 positions, order by job title

SELECT salary, job_title, experience_level, company_size FROM job_openings_db.`ds_salaries (1)`

WHERE company_location = 'ES' AND experience_level !='EX'

ORDER BY job_title ASC

LIMIT 20;

Streamlit user interface

URL to the application deployed:

https://job-market-analysis.streamlit_app/

Github repository:

https://github.com/carlosruiz-stack/s treamlit_app