

Journal of Electron Spectroscopy and Related Phenomena 109 (2000) 227-232

JOURNAL OF ELECTRON SPECTROSCOPY and Related Phenomena

www.elsevier.nl/locate/elspec

# Determination of partial single differential electron ionization cross sections of H<sub>2</sub>

Satyendra Pala,\*, Satya Prakash, Shyam Kumar

<sup>a</sup>Physics Department, Janta Vedic College (C.C.S. University, Meerut), Baraut-250 611 (U.P.), India <sup>b</sup>Physics Department, University College, Kurukshetra University, Kurukshetra-136 119, India <sup>c</sup>Physics Department, Kurukshetra University, Kurukshetra-136 119, India

Received 22 November 1999; received in revised form 8 June 2000; accepted 13 June 2000

#### **Abstract**

The partial single differential cross sections (PSDCS) for the ions  $H_2^+$  and  $H_2^+$  resulting from the direct and dissociative ionization of  $H_2$  by electron impact have been calculated employing a semi-empirical approach. The calculations are made as a function of the secondary/ejected electron energy at 500 and 1000 eV incident electron energies. The partial ionization cross sections (PICS) for direct and dissociative ionization have also been calculated with incident electron energies varying from the ionization threshold to 10 keV. The results are compared with the available experimental data. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Partial single differential, Cross sections, Electron, Hydrogen molecule

PACS: 34.80G

# 1. Introduction

One of the most fundamental and ubiquitous processes occurring in nature is the collision of an electron with an atom or a molecule. An important process resulting from such collision is the ionization, with the ensuing loss of energy of the primary electron and the emission of one or more secondary electrons. The knowledge of this process has numerous applications in areas such as studies of the ionosphere, radiation damage, particle detector operations and in several other processes involving ionized gases or plasmas.

\*Corresponding author. Tel.: +91-11-323-9971. *E-mail address:* nagendratomar@hotmail.com (S. Pal).

Early measurements and calculations of total integral cross sections for electron impact ionization have been supplemented in recent years by the determination of multifold differential cross sections [1]. Even today, the only measurements of single and/or double differential cross sections for the ionization of hydrogen molecule have been reported by Opal et al. [2] at 500 eV, Shyn et al. [3] at several energies ranging from 25 to 250 eV, DuBois and Rudd [4] at 100 eV, Rudd et al. [5] at several energies from 200 to 1500 eV and Ogurtsov [6] at energies from 100 to 1000 eV. The maximum secondary (ejected) electron energies in the experimental data [2,3] extended up to (E-I)/2, where E is the primary electron energy and I is the ionization threshold of H<sub>2</sub>. On the other hand, Rudd and co-

 $0368\text{-}2048/00/\$-\text{see front matter}\quad \circledcirc \ 2000 \ Elsevier \ Science \ B.V. \ All \ rights \ reserved.$ 

PII: S0368-2048(00)00189-4

workers [4,5] extended this upper limit to (E-I). A considerable body of experimental data for integral cross sections leading to direct and dissociative ionization for the hydrogen molecule by electron impact has been measured by Rapp et al. [7], Crowe and McConkey [8], Krishnakumar and Srivastava [9], Edwards et al. [10], Kossmann et al. [11], Van Zyl and Stephen [12], Adamczyk et al. [13] and Straub et al. [14] for various incident electron energies. ICRU report 55 [15] includes a compilation of experimental as well as theoretical status of ionization cross sections of  $H_2$  molecule due to electron impact.

In the present investigation, we report the calculations of partial single differential cross sections (PSDCS) of ejected electrons from H<sub>2</sub> by electron impact at energies of 500 and 1000 eV, employing the modified Jain-Khare semi-empirical formula [16–20]. The calculations are made as a function of energy loss (sum of the secondary electron energy and the ionization threshold energy I) suffered by the incident electrons. The integral cross sections i.e. the partial ionization cross sections (PICS) have also been calculated by integration of the PSDCS over the secondary electron energy varying from 0 to (E-I)(or energy loss W varying from I to E). The present calculations for the PSDCS and the integral cross sections distinguish the different modes of ionization, i.e. direct and dissociative ionization for the production of the H<sub>2</sub><sup>+</sup> and H<sup>+</sup> ions from H<sub>2</sub> by electron impact. Since no theoretical and/or experimental data for the PSDCS are available, we have made only a comparison of our calculated results for the single differential cross sections (SDCS), which is the sum of the PSDCS values, with available experimental data. However, the partial ionization cross sections (PICS) due to electron impact involving energies from the ionization threshold to 10 keV revealed a satisfactory agreement with a number of available experimental data [7-14]including those compiled in ICRU-55 [15].

## 2. Theory

The Jain–Khare semi-empirical formula [16,17] has yielded the results for SDCS in the secondary electrons energy range 0 to (E-I)12. Recently, we

have extended this formula with the ejected primary or secondary electron energy varying from 0 to (E-I), the maximum and applied it to the evaluation of partial single and double differential cross sections for molecules over a wide range of energies [19–21]. In the present evaluations, we have employed this modified approach to calculate the PSDCS for  $H_2$ . In brief, the PSDCS for the production of ith type of ion by the impact of an electron of energy E with a molecule leaving the secondary electrons of energy  $\epsilon$  is given by

$$Q_{i}(E,\epsilon) = \frac{4\pi a_{0}^{2} R}{E} \left[ \left( 1 - \frac{\epsilon}{(E-I_{i})} \right) \frac{R}{W} \right]$$

$$\times \frac{\mathrm{d}f_{i}(W,0)}{\mathrm{d}W} \ln\left[ l + C_{i}(E-I_{i}) \right] + \frac{R}{E} S_{i} \frac{(E-I_{i})}{(\epsilon_{0}^{3} + \epsilon^{3})}$$

$$\times \left( \epsilon - \frac{\epsilon^{2}}{(E-\epsilon)} + \frac{\epsilon^{3}}{(E-\epsilon)^{2}} \right)$$

$$(1)$$

Where  $a_0$ , R,  $S_i$ ,  $\epsilon_0$  and C, represent the first Bohr radius, Rydberg's constant, probability of ionizable electrons, mixing parameter and collision parameter, respectively. It is convenient to replace  $\epsilon$  by  $W-I_i$ , where W is the energy loss suffered by the primary electron. So, we can easily calculate the total SDCS i.e., the sum of PSDCS values

$$Q_i^T(E,W) = \sum Q_i(E,W) \tag{2}$$

Further, integrating the PSDCS with respect to W within the limit I to E, we get the PICS.

$$Q_1(E) = \int Q_i(E, W) \, \mathrm{d}W \tag{3}$$

In order to evaluate  $Q_i(E,W)$  and  $Q_i(E)$  from the above equations, the required major input data are the oscillator strengths  $\mathrm{d}f_i$   $(W,0)/\mathrm{d}W$  for the production of ith type of ions, which were taken from the experimental data of Neil and Samson (see for instance Gallagher et al. [22]) for photon energies from threshold to 70 eV. For higher photon energies, we have used the total oscillator strengths calculated by Zeiss et al. [23] which were distributed among the various types of ions employing a constant branching ratio at the dipole breakdown (W > 50 eV). The error introduced in the calculations of cross sections due to the utilization of the total oscillator strengths is about 10% which is of the order of the experimental error

in the measurements of the partial photo ionization cross sections. The mixing parameter  $\epsilon_0$  calculated by Jain and Khare [16,17] has been used and its value is taken to be 50 eV. In case of direct or non-dissociative ionization, where  $i=1,\,C_1$  is identical to  $C_T$  the total collision parameter. For dissociative ionization (i=2),  $C_2$  is calculated from the procedure of Khare et al. [18]. The value of  $C_T$  is obtained from the experimental data ( $\sim$  5% accurate) of Reike and Prepeichal [24]. For E>1 keV, the relativistic corrections in the calculations of cross sections are taken into account. In the present evaluation estimated total error is not expected more than 10%.

#### 3. Results and discussion

The present results for the PSDCS and SDCS are shown in Figs. 1 and 2 at the incident electron energies 500 and 1000 eV, respectively and summarized in Tables 1 and 2. In the figures, curves A and B represent the PSDCS values corresponding to the production of  $H_2^+$  and  $H^+$  ions, respectively. Curve C represents the single differential cross section



Fig. 1. Solid curves A, B and C represent the PSDCS and SDCS as a function of energy loss for  $H_2$  by the impact of 500 eV electron, respectively. Experimental data: +, Opal et al. [4],  $\triangle$ , Rudd et al. [5] and  $\bullet$ , Ogurtsov [6].



Fig. 2. As Fig. 1 but at E = 1000 eV.

(SDCS) values which is the sum of the PSDCS. Due to non-availability of any experimental and/or theoretical results for the PSDCS, the SDCS values via curve C are compared with the available experimental data [2,5,6].

We note that our calculated SDCS values (curves C) for W < E/2 are in reasonable agreement with the experimental data [2,5,6] in Figs. 1 and 2. At W = E/2

Table 1 The PSDCS for  $\rm H_2$  by the impact of 500 eV electrons ( $10^{-22}$  cm<sup>2</sup>/eV)

| Energy<br>loss<br>W (eV) | PSD                         | SDCS           |        |
|--------------------------|-----------------------------|----------------|--------|
|                          | $\overline{{ m H}_{2}^{+}}$ | H <sup>+</sup> |        |
| 16                       | 4600                        | _              | 4600   |
| 17                       | 37 000                      | _              | 37 000 |
| 18                       | 33 000                      | 21             | 33 021 |
| 20                       | 23 000                      | 470            | 23 470 |
| 25                       | 10 000                      | 260            | 10 260 |
| 30                       | 5200                        | 320            | 5520   |
| 45                       | 4800                        | 380            | 5180   |
| 60                       | 450                         | 40             | 490    |
| 80                       | 240                         | 17             | 257    |
| 120                      | 95                          | 5.3            | 100.3  |
| 160                      | 47                          | 2.5            | 49.5   |
| 200                      | 29                          | 1.4            | 30.4   |
| 300                      | 23                          | 1.0            | 24     |
| 450                      | 5300                        | 170            | 5470   |

| Table 2     |     |       |    |     |        |    |      |    |           |              |
|-------------|-----|-------|----|-----|--------|----|------|----|-----------|--------------|
| The PSDCS   | for | $H_2$ | by | the | impact | of | 1000 | eV | electrons | $(10^{-23})$ |
| $cm^2/eV$ ) |     |       |    |     |        |    |      |    |           |              |

| Energy         | PSI                             | SDCS |         |  |
|----------------|---------------------------------|------|---------|--|
| loss<br>W (eV) | $\overline{\mathrm{H}_{2}^{+}}$ | H +  |         |  |
| 16             | 26 000                          | _    | 26 000  |  |
| 17             | 220 000                         | _    | 220 000 |  |
| 18             | 190 000                         | 120  | 190 120 |  |
| 20             | 130 000                         | 2700 | 132 700 |  |
| 30             | 29 000                          | 1800 | 30 800  |  |
| 41             | 8200                            | 850  | 9050    |  |
| 100            | 820                             | 51   | 871     |  |
| 200            | 1600                            | 8.3  | 1608    |  |
| 300            | 62                              | 3.0  | 65      |  |
| 400            | 34                              | 1.6  | 35.6    |  |
| 500            | 26                              | 1.2  | 27.2    |  |
| 600            | 30                              | 1.3  | 31.3    |  |
| 700            | 49                              | 2.2  | 51.2    |  |
| 800            | 110                             | 5.1  | 115.1   |  |

2, a significant deviation between the experimental data and the calculated results is noted. It may be due to the strong exchange effects at equal energies of the primary and secondary electrons. For W > E/2, the deviations reduce considerably. Regarding the PSDCS values (curves A and B in figures), the trends of the cross sections with ejected electron energy or energy loss function W is as expected [19–21]. It is noted that the differential cross sections are symmetric about W/2.

Figs. 3 and 4 show the PICS corresponding to the production of the H<sub>2</sub><sup>+</sup> and H<sup>+</sup> ions, respectively from H<sub>2</sub> by electron impact with incident electron energies varying from ionization threshold to 10 keV. The numerical values are also listed in Table 3. Fig. 3 clearly indicates that our calculated values of the PICS for the production of  $H_2^+$  ions are in reasonably good agreement with most of the available experimental data [8-11,13,14] within the experimental uncertainties varying from 5% to 20% in different experiments. In case of dissociative ionization (Fig. 4) the presently calculated results are also generally in good agreement with the available experimental data [8,9,14]. The experimental data of Adamczyk et al. [13] for  $Q_1(H^+)$  lie much lower than our results and other experimental results [9,12]. This may be due to the insufficient collection of H<sup>+</sup> ions with high kinetic energies [9]. The experimental data of Rapp et al. [7] for H<sup>+</sup> ions also lie lower than our



Fig. 3. The PICS as a function of impinging electron energy for the production of the  $H_2^+$  ions from  $H_2$ . Experimental data:  $\blacksquare$  Crowe and McConkey [8],  $\blacktriangle$ , Krishnakumar and Srivastava [9]  $\square$ , Edwards et al. [10].  $\bullet$ , Kossmann et al. [11],  $\times$ , Adamczyk et al. [13] and  $\bigcirc$ , Straub et al. [14].

calculated values and other experimental data [9,12]. Their measurement did not include H<sup>+</sup> ions formed with energies less than 2.5 eV. Recently, Van Zyl and



Fig. 4. As Fig. 3 but for the production of  $H^+$  ions including the additional experimental data; \*, Rapp et al. [7] and  $\nabla$ , Van Zyl and Stephen [12].

Table 3 The PICS for  $H_2$  by electron impact  $(10^{-18} \text{ cm}^2)$ 

| E (eV) | $H_2^+$ | $H^+$ |
|--------|---------|-------|
| 16     | 0.2     | _     |
| 18     | 7.2     | _     |
| 20     | 23.3    | 0.14  |
| 25     | 63      | 1.46  |
| 30     | 89      | 2.16  |
| 35     | 103.7   | 2.90  |
| 40     | 115.9   | 3.27  |
| 50     | 116     | 4.25  |
| 60     | 113.3   | 4.35  |
| 70     | 109     | 4.90  |
| 80     | 104     | 5.65  |
| 90     | 99.1    | 6.65  |
| 100    | 943     | 7.33  |
| 110    | 90      | 8.10  |
| 150    | 75.5    | 8.17  |
| 200    | 63.1    | 7.53  |
| 250    | 54      | 6.61  |
| 300    | 47.2    | 5.83  |
| 500    | 32      | 5.18  |
| 1000   | 18.2    | 3.61  |
| 5000   | 4.6     | 0.54  |
| 10 000 | 2.5     | 0.29  |

Stephen [12] have reviewed the experiment of Rapp et al. [7] and found that the PICS for  $H^+$  ions are about 70% larger than the previous measurements. The cross sections of Van Zyl and Stephen [12] are found to be in good agreement with the experimental data of Krishnakumar and Srivastava [8] and also with our results. The formation of  $H^+$  is envisaged either as a direct dissociation (shake off process) or as a two step process via, double ionization of  $H_2$ . The contribution of two step process is about one third of that of the shake off process [1]. In the present investigation, we can not make any distinction between these two processes.

# 4. Conclusions

The PSDCS for the production of  $H_2^+$  and  $H^+$  ions via direct and dissociative ionization processes of the  $H_2$  molecule by electron impact have been calculated at incident electron energies of 500 and 1000 eV using a modified semi-empirical formula [19–21]. It is difficult to comment on the accuracy of our

calculations for PSDCS due to the lack of experimental data. However, the comparison of SDCS (sum of PSDCS) and the partial ionization cross-sections (integral of PSDCS) with the available experimental data shows a reasonably good agreement. It substantiates our approach to evaluate the PSDCS to a reasonable level of accuracy.

### Acknowledgements

The authors are thankful to the revered referees for their valuable comments and suggestions. One of the authors (S. Pal) is thankful to the University Grants commission, India, for partial financial assistance.

#### References

- [1] A. Lahmam-Bennani, A. Dougut, in: S.P. Khare, D. Raj, A. Kumar (Eds.), Atomic and Molecular Physics, Bindra publication, India, 1995, p. 99, Chapter 9.
- [2] C.B. Opal, E.C. Beaty, W.K. Peterson, in: Atomic Data Tables, Vol. 4, 1972, p. 209.
- [3] T.W. Shyn, W.E. Sharp, Y.K. Kim, Phys. Rev. A24 (1981) 79.
- [4] R.D. DuBois, M.E. Rudd, Phys. Rev. A17 (1978) 843.
- [5] M.E. Rudd, K.W. Hollman, J.K. Lewis, D.L. Johnson, R.R. Porter, F.I. Fagerquist, Phys. Rev. A47 (1993) 1866.
- [6] G.N. Ogurtsov, J. Phys. B31 (1998) 1805.
- [7] D. Rapp, P. Englander-Golden, D.D. Briglia, J. Chem. Phys. 42 (1966) 4081.
- [8] A. Crowe, J.W. McConkey, J. Phys. B6 (1973) 2088.
- [9] E. Krishnakumar, S.K. Srivastava, J. Phys. B27 (1994) L251.
- [10] A.K. Edwards, R.M. Wood, A.S. Beard, R.L. Ezell, Phys. Rev. A37 (1988) 3697.
- [11] H. Kossmann, O. Schwarzkopf, V. Schmidt, J. Phys. B23 (1990) 301.
- [12] B. Van Zyl, T.M. Stephen, Phys. Rev. A50 (1994) 3164.
- [13] B. Adamczyk, A.J.H. Boerboom, B.L. Schram, J. Kistemaker, J. Chem. Phys. 44 (1966) 4640.
- [14] H.C. Straub, P. Renault, B.G. Lindsay, K.A. Smith, R.F. Stebblings, Phys. Rev. A54 (1996) 2146.
- [15] International Commission on Radiation Units and Measurements, Secondary Electron Spectra from Charged Particle Interactions, ICRU Report, Vol. 55, Bethesda, Maryland, 1996.
- [16] D.K. Jain, S.P. Khare, Ind. J. Pure Appl. Phys. 14 (1977) 201.
- [17] D.K. Jain, S.P. Khare, J. Phys. B9 (1976) 1429.
- [18] S.P. Khare, S. Prakash, W.J. Meath, Int. J. Mass Spectrom. Ion Processes 88 (1989) 299.

- [19] S. Pal, S. Prakash, Rapid Commun. Mass Spectrom. 12 (1998) 297.
- [20] S. Pal, S. Prakash, S. Kumar, Int. J. Mass Spectrom. 184 (1999) 201.
- [21] S. Pal, Chem. Phys. Lett. 308 (1999) 428.

- [22] J.W. Gallagher, C.E. Brion, J.A.R. Samson, P.W. Langhoff, JILLA Data Centre Report, 1987, No. 32.
- [23] G.D. Zeiss, W.J. Meath, J.C.F. MacDonald, D.J. Dawson, Can. J. Phys. 55 (1977) 2080.
- [24] F.F. Rieke, W. Prepejchal, Phys. Rev. A6 (1972) 1507.