Universidad Tecnológica Nacional

FACULTAD REGIONAL CÓRDOBA

Carrera de Ingeniería en Sistemas de Información Matemática Discreta - Período Lectivo 2020

GUÍA DE EJERCICIOS RESUELTOS UNIDADES 1

Unidad 1: Teoría de los Números

1) Teniendo en cuenta los enteros dados m y n, escriba m como q.n+r, con $0 \le r < n$.

Solución:

a)
$$m = 20, n = 3$$
 \Rightarrow $q=6, r=2, [(6.3) + 2] = 20$
b) $m = 64, n = 37$ \Rightarrow $q=1, r=27 [(1.37) + 27] = 64$
c) $m = 3, n = 22$ \Rightarrow $q=0, r=3, [(0.22) + 3] = 3$
d) $m = 48, n = 12$ \Rightarrow $q=4, r=0, [(4.12) + 0] = 48$

2) Calcular 8 mod 3 y 8 div 3; 15 mod 3 y 15 div 3; 11 mod 2 y 11 div 2

Solución:

$$8 \mod 3 = 2$$
 $8 \operatorname{div} 3 = 2$
 $15 \mod 3 = 0$ $15 \operatorname{div} 3 = 5$
 $11 \mod 2 = 1$ $11 \operatorname{div} 2 = 5$

3) Calcular el mcd de a = 190 y b = 34, utilizando el algoritmo de Euclides.

Solución:

Siendo a = 190 y b = 34, usando el algoritmo de Euclides obtenemos:

 Se divide 190 entre 34:
 $190 = 5 \cdot 34 + 20$

 Se divide 34 entre 20:
 $34 = 1 \cdot 20 + 14$

 Se divide 20 entre 14:
 $20 = 1 \cdot 14 + 6$

 Se divide 14 entre 6:
 $14 = 2 \cdot 6 + 2$

 Se divide 6 entre 2:
 $6 = 3 \cdot 2 + 0$

de manera que el MCD(190, 34) es 2, el último de los divisores.

4) Calcular el mcd de 689 y 234, utilizando el algoritmo de Euclides.

Solución:

689 mod
$$234 = 221$$
 \rightarrow mcd $(689,234) = mcd (234,221)$
234 mod $221 = 13$ \rightarrow mcd $(234,221) = mcd (221,13)$
221 mod $13 = 0$ \rightarrow mcd $(221,13) = 13$
mcd $(689,234) = 13$

otra forma de presentarlo teniendo en cuenta el Teorema del Resto sería:

$$689 = 234*2 + 221$$

 $234 = 221*1 + 13$
 $221 = 13*17 + 0$

mcd(900,369) = 9

5) Encuentre aplicando el algoritmo de Euclides el mcd de los siguientes pares de números:

Solución:

a) 369 y 900	b) 428 y 124	c) 1000 y 7550
369 / 900	428 / 124	1000 / 7550
369 0	56 3	1000 0
900 / 369	124 / 56	7550 / 1000
162 2	12 2	550 7
369 / 162	56 / 12	1000 / 550
45 2	8 4	450 1
162 / 45	12 / 8	550 / 450
27 3	4 1	100 1
45 / 27 18 1	$ \begin{array}{ccc} 8 & / & 4 \\ 0 & 2 \\ \mathbf{mcd}(428,124) = 4 \end{array} $	450 / 100 50 4
27 / 18 9 1	med(120,121) = 1	100 / 50 0 2
18 / 9 0 2		mcd(1000,7550) = 50

6) Escriba cada entero como un producto de potencias de primos:

Solución:

a)
$$828 = 2^2 . 3^2 . 23$$
 b) $1666 = 2 . 7^2 . 17$

b)
$$1666 = 2 \cdot 7^2 \cdot 17$$

d)
$$1125 = 3^2 \cdot 5^3$$

e)
$$107 = 107$$

7) Encuentre el mcd de los siguientes pares de enteros mediante la factorización de dichos enteros en sus factores primos.

Solución:

a) $mcd(100,1024) = 2^2 = 4$

100	/	2
50		2
25		5
5		5
1		

1024 /	2
512	2
256	2
128	2
64	2
32	2
16	2
8	2
4	2
2	2
<u>1</u>	

Teniendo en cuenta que: $100 = 2^2 \times 5^2 \times 1^1 \text{ y } 1024 = 2^{10} \text{ el factor común es 2 y el }$ menor exponente de 2 es 2.

b) $mcd(120,500) = 2^2 \cdot 5 = 4 \cdot 5 = 20$

c) mcd(39,24) = 3

8) Encontrar el mcm de 500 y 120 mediante la factorización de ambos en números primos.

Solución: $mcm(120, 500) = 2^3 \cdot 3 \cdot 5^3 = 8 \cdot 3 \cdot 125 = 3.000$

120	/ 2	500/	2
60	2	250	2
30	2	125	5
15	3	25	5
5	5	5	5
<u>1</u>		<u>1</u>	

9) Compruebe que los tres números 6,10 y 15 son primos entre sí, sin ser primos tomados de dos en dos.

Solución:

mcd (6, 10, 15) = 1 \rightarrow esto implica que son primos relativos, pero tomados de a 2 no lo son.

$$mcd(6, 10) = 2$$
 $mcd(6, 15) = 3$ $mcd(10, 15) = 5$

12) Calcular el MCD y el MCM de los siguientes números:

d) 81,540,162 y 243

Solución:

a) mcd(18,30,40,12) = 2 $mcm(18,30,40,12) = 2^3 \cdot 3^2 \cdot 5 = 8 \cdot 9 \cdot 5 = 360$

18	/ 2	30) /	2	_	40	/ 2	12	/ 2
9	3	1	5	3		20	2	6	2
3	3		5	5		10	2_	3	3
1		_	1			5	5	1	
						1			

b) mcd(18,45,60,72) = 3 $mcm(18,45,6,72) = 2^3 \cdot 3^2 \cdot 5 = 8 \cdot 9 \cdot 5 = 360$

c) mcd(20,12,16)=2 $mcm(20,12,16)=2^4 \cdot 3 \cdot 5=16 \cdot 3 \cdot 5=240$

d) $mcd (81,540,162,243) = 3^3 = 27$ $mcm (81,540,162,243) = 2^2 \cdot 3^5 \cdot 5 = 4 \cdot 243 \cdot 5 = 4860$

81	/ 3	540	/ 2	162	/ 2	243	/ 3
27	3	270	2	81	3	81	3
9	3	135	3	27	3	27	3
3	3	45	3	9	3	9	3
<u>1</u>		15	3	3	3	3	3
		5	5	<u>1</u>		<u>1</u>	
		<u>1</u>					

e) mcd(84,189,210,105) = 3.7 = 21 $mcm(84,189,210,105) = 2^2.3^3.5.7 = 4.27.5.7 = 3780$

84	/ 2	189 /	3	210	/ 2	105	/ 3
42	2	63	3	105	3	35	5
21	3	21	3	35	5	7	7
7	7	7	7	7	7	_1	
1		1		1			

f) $mcd (48,280,720) = 2^3 = 8$ $mcm (48,280,720) = 2^4 \cdot 3^2 \cdot 5 \cdot 7 = 16 \cdot 9 \cdot 5 \cdot 7 = 5040$

48	/ 2	280	/ 2	720	/ 2
24	2	140	2	360	2
12	2	70	2	180	2
6	2	35	5	90	2
3	3	7	7	45	3
<u>1</u>		<u>1</u>		15	3
				5	5
				<u>1</u>	

g) $mcd (90,315,225,405,450) = 3^2 \cdot 5 = 9 \cdot 5 = 45$ $mcm (90,315,225,405,450) = 2 \cdot 3^4 \cdot 5^2 \cdot 7 = 2 \cdot 81 \cdot 25 \cdot 7 = 28.350$

90	/ 2	315	/ 3	225	/ 3	40 /	/ 3	450	/ 2
45	3	105	3	75	3	135	3	225	3
15	3	35	5	25	5	45	3	75	3
5	5	7	7	5	5	15	3	25	5
<u>1</u>		<u>1</u>		<u>1</u>		5	5	5	5
						<u>1</u>		<u>1</u>	
90 = 1	$2^1 \cdot 3^2$	$^{2}.5^{1}.1^{1}$	31	$15 = 3^2 \cdot 5^1 \cdot 7$	$7^1 \cdot 1^1$				

$$90 = 2^{1} \cdot 3^{2} \cdot 5^{1} \cdot 1^{1}$$
 $315 = 3^{2} \cdot 5^{1} \cdot 7^{1} \cdot 1^{1}$ $225 = 3^{2} \cdot 5^{2} \cdot 1^{1}$ $40 = 3^{4} \cdot 5^{1} \cdot 1^{1}$ $450 = 2^{1} \cdot 3^{2} \cdot 5^{2} \cdot 1^{1}$

$$450 = 2^{1} \cdot 3^{2} \cdot 5^{2} \cdot 1^{1}$$

13) Se desean acondicionar 1830 latas de aceite y 1170 latas de yerba en un cierto número de cajones que contengan el mismo número de latas, sin que sobre ninguna y sin mezclar las latas. ¿Cuál será el mayor número posible de latas que puedan ponerse en cada cajón?

Solución: Se pueden poner como máximo 30 latas por cajón.

$$1830 = 2 . 3 . 5 . 61$$

$$1170 = 2 . 3^{2} . 5 . 13$$

$$mcd (1830, 1170) = 2 . 3 . 5 = 30$$

16) Calcular el MCD de los siguientes número, mediante el Algoritmo de Euclides:

a) 660 y 5544

b) 1980 y 1008

c) 4584 y 59130

d) 6930 y 450

e) 8154 y 3246

a) mcd (660,5544)

empleando el Teorema del Resto:

$$a=b \times q + r$$

$$660 = 5544 \times 0 + 660$$

$$5544 = 660 \times 8 + 264$$

$$660 = 264 \times 2 + 132$$

$$264 = 132 \times 2 + 0$$

$$mcd (660,5544) = 132$$

b) mcd (1980,1008)

empleando el Teorema del Resto:

$$a=b \times q + r$$

$$1980 = 1008 \times 1 + 972$$

$$1008 = 972 \times 1 + 36$$

$$972 = 36 \times 27 + 0$$

$$mcd (1980,1008) = 36$$

c) mcd(4584,59130)

empleando la operación mod para calcular el resto

$$4584 \mod 59130 = 4584$$
, $mcd(4584,59130) = mcd(59130,4584)$

$$59130 \mod 4584 = 4122$$
, $\mod (59130,4584) = \mod (4584,4122)$

$$4584 \mod 4122 = 462$$
, $\mod (4584, 4122) = \mod (4122, 462)$

$$4122 \mod 462 = 426$$
, $\mod (4122, 462) = \mod (462, 426)$

$$462 \mod 426 = 36$$
, $\mod (462, 426) = \mod (426, 36)$

$$426 \mod 36 = 30$$
, $\mod (426, 36) = \mod (36,30)$

$$36 \mod 30 = 6$$
, $\mod (36, 30) = \mod (30, 6)$

$$30 \mod \mathbf{6} = 0, \mod (36, 6) = \mathbf{6}$$

$$mcd (4584,59130) = 6$$

d) mcd(6930,450)

empleando la operación *mod* para calcular el resto

$$6930 \mod 450 = 180$$
,

$$mcd (6930,450) = mcd (450, 180)$$

$$450 \mod 180 = 90$$
,

$$mcd (450,180) = mcd (180, 90)$$

$$180 \mod 90 = 0$$
,

$$mcd (180,90) = 90$$

mcd(6930,450) = 90

e) mcd (8154,3246)

empleando el Teorema del Resto:

$$a=b \times q + r$$

$$8154 = 3246 \times 2 + 1662$$

$$3246 = 1662 \times 1 + 1584$$

$$1662 = 1584 \times 1 + 78$$

$$1584 = 78 \times 20 + 24$$

$$78 = 24 \times 3 + 6$$

$$24 = 6 \times 4 + 0$$

mcd(8154, 3246) = 6