Циклични групи.

Нека G е група, $a \in G$. Разглеждам множеството

$$\langle a \rangle = \{ a^n \mid n \in \mathbb{Z} \}.$$

(Ако операцията в G е +, то разлгеждаме $\langle a \rangle = \{na \mid n \in \mathbb{Z}\}.$) От начина, по-който въведеохме груповите операции знаем, че $(a^n)^{-1} = a^{-n}$, $-n \in \mathbb{Z}$ и следователно $(a^n)^{-1} \in \langle a \rangle$; за $a^n, a^m \in \langle a \rangle$ имаме $a^n a^m = a^{n+m} = a^{m+n} = a^m a^n \in \langle a \rangle$. По този начин $\langle a \rangle$ е абелева подгрупа на G. Подгрупата $\langle a \rangle \leq G$ се нарича $uu\kappa$ лична подгрупа на G, породена от a. Ако за някой елемент $a \in G$ е изпълнено $\langle a \rangle = G$, то казваме, че групата G е $uu\kappa$ лична.

Примери:

- 1. Целите числа \mathbb{Z} образуват група относно операцията събиране. Оказва се, че \mathbb{Z} е циклична група. Наистина, за $\forall m \in \mathbb{Z}$ е изпълнено, че m=m.1 и следователно имаме $\mathbb{Z}=\langle 1 \rangle^1$.
- 2. Нека $n \in \mathbb{N}$ и $\mathbb{C}_n = \{z \in \mathbb{C} \mid z^n = 1\}$. Знаем, че \mathbb{C}_n е група относно умножението от ред $|\mathbb{C}_n| = n$. Нека $\omega = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n} \in \mathbb{C}$. Тогава по формулата на Моавър намираме, че $\omega^n = \cos 2\pi + i \sin 2\pi = 1$ и следователно $\omega \in \mathbb{C}_n$. Но n-тите комплексни корени на единицата са $\cos 2k\pi n + i \sin 2k\pi n = \omega^k$ за $k = 0, 1, \ldots, n-1$ и следователно всички елементи на \mathbb{C}_n са точно ω^k за $k = 0, 1, \ldots, n-1$, т.е. имаме че

$$\mathbb{C}_n = \left\{ \omega^0 = 1, \omega, \omega^2, \dots, \omega^{n-1} \right\}.$$

Така видяхме, че е изпълнено $\mathbb{C}_n = \langle \omega \rangle$ за $\omega \in \mathbb{C}_n$ и следователно \mathbb{C}_n е циклична група (която също е абелева).

 $^{^{1}}$ Също така лесно се вижда и, че $\mathbb{Z} = \langle -1 \rangle$.

Нека G е група, $a \in G$, $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\} \leq G$. Ако за $\forall m, n \in \mathbb{Z}$, такива че $m \neq n$, имаме че $a^m \neq a^n$, то $\langle a \rangle$ е безкрайна група.

Нека сега разгледаме случая, когато $\exists m, n \in \mathbb{Z}$, такива че $m \neq n$, но $a^n = a^m$. Без ограничение на общността считаме, че m < n и след умножение на двете страни с a^{-m} получаваме, че $a^{n-m} = e$ (единичният елемент на G) и $n - m \in \mathbb{N}$. Нека r е най-малкото естествено число, за което $a^r = e$ и разгледаме елементите

$$(*)$$
 $a^0 = e, a, a^2, \dots, a^{r-1}.$

Тези елементи са всичките различни. Наистина, ако допуснем, че $\exists i,j,$ такива че $i\neq j$ и $1\leq i< j\leq r-1,$ за които $a^i=a^j,$ то след умножение на двете страни с a^{-i} получаваме, че $a^{j-i}=e$ и j-i< r, което противоречи на избора на r. Нещо повече, всеки елемент от $\langle a \rangle$ съвпада с някой от елементите (*). Наистина, нека $a^n\in \langle a \rangle$ за $n\in \mathbb{Z}.$ Тогава според теоремата за деление с частно $t\in \mathbb{Z}$ и остатък $s\in \mathbb{Z}$ имаме, че n=rt+s и $0\leq s< r.$ Тогава $a^n=a^{rt+s}=a^{rt}a^s=(a^r)^ta^s=e^ta^s=ea^s=a^s$ за някое $0\leq s\leq r-1$ или с други думи за произволен елемент $a^n\in \langle a \rangle$ доказахме, че е един от елементите (*). По този начин $\langle a \rangle = \{a^0,a,a^2,\ldots,a^{r-n}\}$ е циклична група от ред $|\langle a \rangle|=r,$ където r е най-малкото естествено число, такова че $a^r=e.$

В случая когато $\nexists n \in \mathbb{N}$, такова че $a^n = e$, казваме, че a е елемент от безкраен $pe \partial$ и означаваме $|a| = \infty$. Ако $\exists n \in \mathbb{N}$, такова че $a^n = e$ и r е най-малкото естествено число с това свойство, то казваме че a е елемент от $pe \partial$ r и пишем |a| = r.

Пример:

Да разгледаме множеството $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$, което е група спрямо умножението с единичен елемент 1. За $1 \in \mathbb{C}^*$ имаме, че $1^1 = 1$ и следователно |1| = 1; за $-1 \in \mathbb{C}^*$ имаме, че $(-1)^2 = 1$ и следователно |-1| = 2; за $i \in \mathbb{C}^*$ имаме, че $i^4 = 1$ и следователно |i| = 4; за $3 \in \mathbb{C}^*$ не съществува естествено число n, такова че $3^n = 1$ и следователно $|3| = \infty$.

С разсъжденията си дотук доказахме

Твърдение 1. За всеки елемент $a \in G$, редът на цикличната подгрупа $\langle a \rangle \leq G$ е равен на реда на елемента a. $(T.e. |\langle a \rangle| = |a|.)$

Твърдение 2. Нека G е група, $a \in G$ и |a| = r за $r \in \mathbb{N}$. Ако $m \in \mathbb{Z}$, то е изпълнено $a^m = \Leftrightarrow r$ дели m.

Доказателство. Необходимост: нека $m \in \mathbb{Z}$ е такова число, че $a^m = e$. Делим m на r с частно $t \in \mathbb{Z}$ и остатък $s \in \mathbb{Z}$, такъв че $0 \le s < r$. Тогава имаме, $a^m = a^{tr+s} = a^{tr}a^s = (a^r)^ta^s = ea^s = a^s$. Ако допуснем, че $s \ne 0$, то $s \in \mathbb{N}$, s < r и $a^s = e$, но това противоречи на дефиницията на ред r на елемента a. Следователно s = 0, което означава, че m = tr и $r \mid m$.

Достатъчност: Нека $r \mid m$. Това означава, че съществува $t \in \mathbb{Z}$, такова че m = rt. В равенството $a^r = e$ вдигаме двете страни на степен t и получаваме $a^{rt} = a^m = e$.

Следващата теорема класифицира цикличните групи.

Теорема 1. (i) Всяка безкрайна циклична група е изоморфна на групата \mathbb{Z} . (C други думи \mathbb{Z} е единствената безкрайна циклична група, с точност до изоморфизъм.)

(ii) Всяка крайна циклична група от ред $n \in \mathbb{N}$ е изоморфна на групата \mathbb{C}_n . (С други думи, при дадено $n \in \mathbb{N}$ групата \mathbb{C}_n е единствената крайна циклична група, с точност до изоморфизъм.)

Доказателство. (i) Нека G е безкрайна циклична група. Това означава, че $\exists a \in G : G = \langle a \rangle = \{\ldots, a^{-2}, a^{-1}, a^0 = e, a^1, a^2, \ldots\}$ и всеки елемент на G има вида a^n с еднозначно определено цяло число $n \in \mathbb{Z}$, т.к. знаем, че в безкайните циклични групи от $m, n \in \mathbb{Z}, m \neq n$ следва $a^m \neq a^n$. От друга страна $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$. Разглеждаме изображението

$$\varphi: G \longrightarrow \mathbb{Z},$$

зададено с $\varphi(a^n)=n$. Тогава за $m,n\in\mathbb{Z}$ имаме, че $a^m,a^n\in G$ и $\varphi(a^ma^n)=\varphi(a^{m+n})=m+n=\varphi(a^m)+\varphi(a^n)$. С това φ е хомоморфизъм на групи. Лесно се вижда и че φ е биекция. Наистина, ако $n\in\mathbb{Z}$, то $a^n\in G$ и $\varphi(a^n)=n$. Така φ е сюрекция². Ако $a^m,a^n\in G$ са такива, че $a^m\neq a^n$, то следва и че $m\neq n$, което означава, че $\varphi(a^m)\neq \varphi(a^n)$. По този начин φ е инекция³, а оттам и биекция. С това доказахме, че φ е изоморфизъм, което значи и че $G\cong\mathbb{Z}$.

(ii) Нека G е циклична група от ред n. Тогава имаме, че

$$G = \langle a \rangle = \{ a^0 = e, a^1, a^2, \dots, a^{n-1} \}.$$

²Сюрективните хомоморфизми се наричат още епиморфизми.

³Инективните хомоморфизми се наричат още мономорфизми.

От друга страна вече видяхме, че $\omega=\cos\frac{2\pi}{n}+i\sin\frac{2\pi}{n}$ е пораждащ на групата \mathbb{C}_n и

$$\mathbb{C}_n = \left\{ \omega^0 = 1, \omega, \omega^2, \dots, \omega^{n-1} \right\}.$$

Разглеждаме изображението

$$\varphi: G \longrightarrow \mathbb{C}_n,$$

зададено с $\varphi(a^k)=\omega^k$ за $k=0,1,\ldots,n-1$. Очевидно φ е биекция. Да видим и че φ е хомоморфизъм. За проиволни елементи $a^k,a^l\in G,\ 0\le k,l\le n-1$ имаме, че $a^ka^l=a^{k+l}$ и ако при деление на k+l на n с частно t и остатък $s,\ 0\le s< n$ имаме k+l=nt+s, то $a^{k+l}=a^{nt+s}=a^s\in G$. По абсолютно същия начин, т.к. $\omega^n=1$ имаме и $\omega^{k+l}=\omega^s$. Сега вече може да запишем $\varphi(a^ka^l)=\varphi(a^{k+l})=\varphi(a^s)=\omega^s=\omega^{k+l}=\omega^k\omega^l=\varphi(a^k)\varphi(a^l)$. Така φ е хомоморфизъм, а оттам и изоморфизъм на групи и $G\cong \mathbb{C}_n$. \square

След като вече класифицирахме двата вида циклични групи е време да разгледаме и подгрупите, които те притежават.

Теорема 2. (i) Ако G е циклична група и $H \leq G$, то H също е циклична група.

- (ii) Подгрупите на \mathbb{Z} се изчерпват с $m\mathbb{Z}$ за $m=0,1,2,\ldots$
- (iii) Подгрупите на \mathbb{C}_n се изчерпват с \mathbb{C}_d , където $d \in \mathbb{N} : d \mid n$.

Доказателство. (i) Нека $G = \langle a \rangle$ е произволна циклична група, а $H \leq G$. Ако $H = \{e\}$, то очевидно H е циклична. Да разгледаме нетривиалния случай $H \neq \{e\}$. Тогава $\exists x \in H : x \neq e$. Т.к. $x \in H$ и $H \subseteq G$, то разглеждайки x като елемент на G имаме, че $\exists s \in \mathbb{Z} \setminus \{0\} : x = a^s$. Но $H \leq G$ и следователно $x^{-1} \in H$, което означава, че $a^{-s} \in H$ като $s \in \mathbb{N}$ или $-s \in \mathbb{N}$. Избораме m да бъде най-малкото естествено число, такова че $a^m \in H$. Тогава очевидно $\langle a^m \rangle \subseteq H$, т.е. цикличната група, породена от a^m е подмножество на H. За произволен елемент $h \in H$ имаме, че $h = a^t, t \in \mathbb{Z}$ и делим t на m с частно $u \in \mathbb{Z}$ и остатък $r \in \mathbb{Z} : 0 \leq r < m$. Тогава $h = a^t = a^{um+r} = (a^m)^u a^r$. Ако допуснем, че $r \neq 0$, то имаме, че $h \in H$, $(a^m)^u \in H$, откъдето ще следва, че трябва и $a^r \in H$ за $r \in \mathbb{N}, r < m$, но това е противоречеие, т.к. вече бяхме избрали m като най-малкото естествено число, за което $a^m \in H$. Следователно $h = a^t = (a^m)^u \in \langle a^m \rangle$. По този начин $H \subseteq \langle a^m \rangle$, откъдето следва и че $H = \langle a^m \rangle$ и H е циклична група.

- (ii) $\mathbb{Z}=\langle 1\rangle$. Нека $H\leq \mathbb{Z}$. Ако $H=\{0\}$, то нещата са ясни. Нека $H\neq \{0\}$. Тогава според (i) имаме, че $H=\langle m1\rangle$, където m е най-малкото естествно число, за което $m1\in H$. Това означава точно, че $H=\langle m\rangle=m\mathbb{Z}$.
- (iii) Да разгледаме \mathbb{C}_n , $n \in \mathbb{N}$. Тогава $\mathbb{C}_n = \langle \omega \rangle = \{ \omega^0 = 1, \omega, \omega^2, \dots, \omega^{n-1} \}$. Нека $H \leq \mathbb{C}_n$. Ако $H = \{1\}$, то $H = \mathbb{C}_1$ и $1 \mid n$, с което нещата са доказани. Нека $H \neq \{1\}$. От (i) інмаме, че $H = \langle \omega^m \rangle$, където m е най-малкото естествено число, за което $\omega^m \in H$. Делим n на m с частно $d \in \mathbb{Z}$ и остатък $r \in \mathbb{Z}$, $0 \le r < m$. Тогава $1 = \omega^n \in H$, т.е. $(\omega^m)^d \omega^r \in H$. От $\omega^m \in H$ следва, че $(\omega^m)^d \in H$ и следователно трябва и $\omega^r \in H$. Както и преди, допускането $r \neq 0$ води до противоречие с избора на m и следователно r=0, а n=md, т.е. $d\mid n$ и знаем, че $\mathbb{C}_d\leq \mathbb{C}_n$. Остава да докажем, че $\mathbb{C}_d = \langle \omega^m \rangle$. Първо, $(\omega^m)^d = \omega^{md} = \omega^n = 1$ и следователно $\omega^m \in \mathbb{C}_d$, откъдето пък следва, че $\langle \omega^m \rangle \subseteq \mathbb{C}_d$. Второ, ще докажем, че $|\langle \omega^m \rangle| = d = |\mathbb{C}_d|$, откъдето $\langle \omega^m \rangle \subseteq \mathbb{C}_d$, но имат равен брой елементи и ще следва, че $\langle \omega^m \rangle = \mathbb{C}_d$. Наистина, знаем че редът на цикличната група $|\langle \omega^m \rangle|$ е равен на редът на пораждащия елемент $|\omega^m|$. Да видим какъв е реда на ω^m . Ако $i \in \mathbb{Z}, 1 \leq i < d$ и допуснем, че $(\omega^m)^i = 1$, то mi < md = n и се оказва, че ω е от ред mi < n, което е противоречие с факта, че ω е n-ти комплексен корен на единицата. Т.к. вече видяхме, че $(\omega^m)^d = \omega^n = 1$ следва, че d е първото естествено число, за което $(\omega^m)^d=1$, което означава, че $|\omega^m|=d$. Оттук следва и че $|\langle\omega^m\rangle|=d$, с което показахме, че $|\langle \omega^m \rangle| = |\mathbb{C}_d|$. И така, $H = \langle \omega^m \rangle = \mathbb{C}_d$ за $d \mid n$.

Пример:

 $\overline{\text{Подгрупите}}$ на групата \mathbb{C}_{12} са $\mathbb{C}_1, \mathbb{C}_2, \mathbb{C}_3, \mathbb{C}_4, \mathbb{C}_6, \mathbb{C}_{12}$.