

X

Sistemas de Numeração

1

– Sistemas de numeração

S

istemas de numeração são sistemas para representação de números. Historicamente vários sistemas de numeração foram desenvolvidos de acordo com os avanços das técnicas matemáticas e da própria civilização. Uma das hipóteses de que

tenhamos desenvolvido o sistema decimal de numeração está relacionada à contagem com os 10 dedos das mãos.

Na era digital acostumamo-nos a ouvir falar de *bits* ou *bytes*. Sabemos que **bit** é a menor unidade de informação na memória do computador (0 ou 1, aberto ou fechado, falso ou verdadeiro). Um **byte** corresponde a 8 bits, mas um byte consegue armazenar um código que corresponde somente a um único número, letra ou símbolo. A combinação de cadeias de bits é que permite representar diferentes números agrupando-se na forma de bytes.

É importante ter uma boa noção de notação e bases numéricas quando queremos estudar Computação porque isso tem muitos aproveitamentos na área.

Notação e bases

A quantidade de algarismos disponíveis num sistema de numeração designa-se de base.

Decimal (base 10)

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Binário (base 2)

0, 1

Octal (base 8)

0, 1, 2, 3, 4, 5, 6, 7

Hexadecimal (base 16)

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

O sistema decimal é o sistema comumente utilizado por nós seres humanos e é constituído por dez algarismos: 0,1,2,3,4,5,6,7,8,9.

Sabemos que no sistema decimal cada algarismo tem um valor posicional, ou seja, cada algarismo tem um peso de acordo com a sua posição na representação de um dado valor.

Por exemplo, o número 237 na base 10 pode ser decomposto em:

O **sistema binário** é o sistema mais utilizado por máquinas atualmente uma vez que os sistemas digitais trabalham internamente com dois estados (ligado/desligado, verdadeiro/falso, aberto/fechado). O sistema binário utiliza os símbolos: **0, 1**, sendo cada símbolo designado por bit (*binary digi*t). Um equipamento digital é um grande manipulador de 0's e 1's.

O **sistema octal** é um sistema de numeração de base 8, isto é, utiliza 8 símbolos **(0, 1, 2, 3, 4, 5, 6, 7)** para a representação de um determinado valor.

O sistema hexadecimal é muito utilizado na programação de microprocessadores (espécie de pequeno computador), especialmente nos equipamentos de estudo e sistemas de desenvolvimento. Utiliza os símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 do sistema decimal e ainda as letras A, B, C, D, E, F.

Importante notar as equivalências: A=10, B=11, C=12, D=13, E=14 e F=15.

2 - Conversões de base decimal

Conversão de decimal para binário

Basta dividir sucessivamente por 2 o número decimal e guardar os quocientes que vão sendo obtidos, até que o quociente de uma das divisões seja 0.

O resultado é a sequência de baixo para cima de todos os restos obtidos, conforme ilustra a figura em que é apresentado 25 na base 10 que se torna 11001 na base 2.

A relação entre números decimais e binários é extremamente comum e importante, dada resumidamente pela tabela abaixo para alguns valores:

Decimal	Binário	Decimal	Binário
0	0	11	1011
1	1	12	1100
2	10	13	1101
3	11	14	1110
4	100	15	1111
5	101	16	10000
6	110	17	10001
7	111	18	10010
8	1000	19	10011
9	1001	20	10100
10	1010		

Conversão de decimal para octal

Neste caso o processo de conversão se dá por divisões sucessivas por 8.

O resultado é a sequência de baixo para cima de todos os restos obtidos, conforme as imagens abaixo em que transformamos o número 217 (decimal) que vira 331 em octal e o número 37 (decimal) que vira 45 (octal)

Conversão de decimal para hexadecimal

Desta vez o processo se dá por sucessivas divisões por 16, aproveitando-se o resto conforme abaixo.

O número 223(10) corresponde a DF(16) e o número 76(10) corresponde a 4C(16).

A tabela abaixo apresenta uma série de números em ordem crescente escritos em decimal e a representação dos mesmos na base hexadecimal:

Decimal	Hexa	Decimal	Hexa	Decimal	Hexa
0	0	11	В	22	16
1	1	12	С	23	17
2	2	13	D	24	18
3	3	14	E	25	19
4	4	15	F	26	1A
5	5	16	10	27	1B
6	6	17	11	28	1C
7	7	18	12	29	1D
8	8	19	13	30	1E
9	9	20	14	31	1F
10	Α	21	15	32	20

3 - Conversões de base binária, octal e hexadecimal

Conversão de binário para decimal:

É apenas resultado da soma do dígito (o ou 1) multiplicado pela base 2 com o expoente de acordo com sua posição, começando do zero a partir da direita.

Neste caso o número 11001 (base 2) corresponde a 25 (base 10), conforme ilustrado abaixo:

1	1	0	0	1		
1x24	1x2 ³	0x2 ²	0x21	1x2º		
16 + 8 + 0 + 0 + 1 = 25						

1	1	0	1	0	1	
1	1	0	1	0	1	
1x2 ²	1x21	0 x2º	1x2 ²	0x21	1x2º	
4	+2+	0	4 + 0 + 1			
(6 ₁₀ = 6	8	5 ₁₀ = 5 ₈			
65						

	1	1	1	1	1	
0	1	1	1	1	1	
0 x2 ²	1x2 ¹	1x2º	1x2 ²	1x2 ¹	1x2º	
0	+2+	1	4 + 2 + 1			
3	3 ₁₀ = 3	8	7 ₁₀ = 7 ₈			
37						

Conversão de binário para octal:

Neste caso, os dígitos do número binário são separados em grupos de 3 bits da direita para a esquerda. Cada grupo de 3 bits é um dígito em octal. Ao final, une-se os resultados.

Caso o número de dígitos do número binário não seja múltiplo de 3, completa-se os dígitos à esquerda com zeros (0).

Veja o exemplo abaixo para conversão do número 110101 (base binária) para o número 65 (base octal) e o número 11111 (base 2) para 37 (base 8).

Binário -> hexadecimal

Conversão de binário para hexadecimal:

Separa-se o número binário em grupos de 4 bits, da direita para a esquerda. Em seguida, transforma-se cada grupo de 4 bits em hexadecimal. Ao final, simplesmente une-se os resultados em um só. Caso o número de dígitos do número binário não seja múltiplo de 4, completa-se os dígitos à esquerda com zeros (0).

Veja o exemplo abaixo para conversão do número 01011011 (base 2 ou binária) para o número 5B (base 16 ou hexa) e o número 111101 (base 2) para 3D (base 16):

0	1	0	1	1	0	1	1	
0	1	0	1	1	0	1	1	
0x23	1x2 ²	0 x2 ¹	1x2º	1x2 ³	0x2²	1x21	1x2º	
0 +	4 + 0	+ 1 =	5,10	8 + 0 + 2 + 1 = 11 ₁₀				
	5,10	= 5 ₁₆		11 ₁₀ = B ₁₆				
5B								

		1	1	1	1	0	1
0	0	1	1	1	1	0	1
0x23	0x2 ²	1x21	1x2º	1x2³	1x2 ²	0x21	1x2º
0 +	0 + 2	+ 1 =	3,10	8 +	4 + 0	+ 1 =	13,0
	3,10	= 3 ₁₆		13 ₁₀ = D ₁₆			
3D							

4 – Conversão de bases

Conversão octal para decimal

Obtida através da soma dos dígitos do número octal multiplicados pela base 8 elevada à posição colunar do dígito, começando em 0 da direita para a esquerda. Observe os exemplos para os números 331 (base 8) e 45 (base 8).

4	5				
4x8 ¹	5 x8°				
32 + 5 = 37					

Conversão de octal para hexadecimal

Transforma-se primeiro o octal em binário e em seguida o binário em hexadecimal:

Conversão hexadecimal para decimal

Realizada através da soma dos dígitos hexadecimais multiplicados pela base 16 elevada à posição colunar contando da direita para a esquerda, começando em 0, de forma semelhante à conversão de binários em decimais:

1	0	Α				
1x16²	0x16¹	10x16º				
256 + 0 + 10 = 266						

С	В
12x16¹	11x16º
192 + 1	1 = 203

Note que os caracteres que definem os dígitos hexadecimais A, B e C foram substituídos pelos valores equivalentes em decimais 10, 11 e 12 de acordo com a tabela da lição anterior para a realização do cálculo.

Conversão hexadecimal para binário

Decompõem-se o número hexadecimal diretamente em binários de 4 dígitos. Os zeros mais à esquerda do resultado binário podem ser omitidos:

		1		2				F	=		
0 +	0+0+0+1=1			0+0+2+0=2			8+	4+2	2 + 1=	=15	
0x2 ³	0x2 ²	0x21	1x2º	0x2 ³	0x2 ²	1x21	<mark>0</mark> x2⁰	1x2 ³	1x2 ²	1x21	1x2º
0	0	0	1	0	0	1	0	1	1	1	1
			1	0	0	1	0	1	1	1	1

Conversão hexadecimal para octal

Transforma-se primeiro o hexadecimal em binário e em seguida o binário em octal:

4 - Grandezas e tabela ASCII

Sempre vale a pena rever a ideia de grandezas e suas nomenclaturas:

Nome	Simbolo	Tamanho
Byte	В	8 Bit
KiloByte	KB	1024 Byte
MegaByte	MB	1024 KByte
GigaByte	GB	1024 MByte
TeraByte	ТВ	1024 GByte
PetaByte	PB	1024 TByte
ExaByte	EB	1024 PByte
ZettaByte	ZB	1024 EByte
YottaByte	YB	1024 ZByte

Tabela ASCII

A tabela ASCII representa o equivalente de uma série de símbolos e caracteres presentes em inúmeros programas e aplicações:

Dica

Um ponto importante a destacar é que existem inúmeras ferramentas de conversão de números entre diferentes bases. Nosso estudo até aqui teve o objetivo de mostrar como é o processo de conversão no sentido de você entender melhor o significado e a importância das bases numéricas. Uma delas é apresentada abaixo (https://www.cjdinfo.com.br/utilitario-conversor-bases-

numericas#:~:text=CJDinfo%20%2D%20Conversor%20de%20Bases%20Num%C3% A9ricas).

🥟 Conversor de Bases Numéricas

Esta página faz a conversão de bases numéricas de 2 a 36, incluindo binário(2), octal(8), decimal(10) e hexadecimal(16), utilizando as rotinas genéricas apresentadas no item Soluções.

Entre com a Base e o Valor de Entrada. Indique a Base de Saída e Clique em Converter.

Valores muito altos poderão provocar Overflow ou perda de dados na conversão.

Base de Entrada:	~
Valor de Entrada:	
Base de Saída:	~
Valor de Saída:	
Converter	

Referência Bibliográfica

BROOKSHEAR, J.G. Ciência da Computação: uma visão abrangente. Porto Alegre: Bookman, 2013.

FORBELLONE, A.L.V. & EBERSPACHER, H. F. **Lógica de Programação – A Construção de Algoritmos e Estruturas de Dados.** 3ª. Edição. São Paulo, SP: Prentice Hall, 2005.

Ir para exercício