Problem

Modify the proof of Theorem 3.16 to obtain Corollary 3.19, showing that a language is decidable iff some nondeterministic Turing machine decides it. (You may assume the following theorem about trees. If every node in a tree has finitely many children and every branch of the tree has finitely many nodes, the tree itself has finitely many nodes.)

THEOREM 3.16

Every nondeterministic Turing machine has an equivalent deterministic Turing machine.

COROLLARY 3.19

A language is decidable if and only if some nondeterministic Turing machine decides it.

Step-by-step solution

Step 1 of 4

As per the theorem 3.16, Every DTM (Deterministic Turing machine) has an equivalent NDTM (Non-deterministic Turing machine). The corollary 3.19, states that a language is decidable iff some NDTM (Non-deterministic Turing machine) decides it.

In order to modify the proof of theorem 3.16 to obtain corollary 3.19, prove the following:

(i) If a Language L is decidable then the language L can be decided by NDTM (non-deterministic Turing machine).

Let *L* be a language. The Language *L* is decidable if it is decided by a deterministic Turing machine. Any DTM (Deterministic Turing machine) is automatically a NDTM (Non-deterministic Turing machine).

Thus, language L is decidable if it is decided by NDTM (Non-deterministic Turing machine) TM also.

Comment

Step 2 of 4

(ii) If some NDTM (Non-deterministic Turing machine) decides a language then it is decidable.

Let L be an any language and it is decided by NDTM (Non-deterministic Turing machine).

Construct a deterministic TM D that decides L and prove that D simulates N.

Construction of D and Simulation of D with N:

The simulating deterministic TM 'D' has 3 tapes

- 1. Input tape
- 2. Simulating tape
- 3. Address tape

By the theorem

"Every multi tape TM has an equivalent single tape TM"

D's arrangement is equivalent to having a single tape TM.

The machine D uses its three tapes in the following way:

- \bullet Tape 1 always contains the input string and is never altered.
- \bullet Tape 2 maintains a copy of N's tape on some branch of its non-deterministic computation
- Tape 3 keeps track of D's location in N's non-deterministic computation tree.

	Step 3 of 4
The description of D in	n detail as follows:
Stage 1: Initially tape	1 contains the input w, and tapes 2 and 3 are empty.
Stage 2: Copy tape 1	to tape 2.
3 to determine which of	o simulate N with input w on one branch of its non-deterministic computation. Before each step of N check the next symbol on tape choice to make among those allowed by N s transition function. If no more symbols left on tape 3 or if this non-deterministic choice anch by going to stage 4. Also go to stage 4 if a rejecting configuration is encountered. If an accepting configuration is sept the input.
Stage 4: Replace the	string on tape 3 with the lexicographically next string. Simulate the next branch of N's computation by going to stage 2.
Stage 5: Reject if all b	pranches of non-determinism of N are exhausted.
Comment	
	Step 4 of 4
Now it can be said that	at D is a decider of L .
• If N accepts its input	, then D will find an accepting branch and accept.
• If N rejects its input,	then all its branches halt and reject.
	is decidable.
Thus, the language L	
Thus, the language L From (i) and (ii),	