

1 FIRE

2 PLUMBING

VISION LIGHT & LIGHTING

4 AIR CONDITIONING

5 OTTV

FIRE

Stage of fire

- Heat Stage ไฟ

- Flame Stage ไฟ + ควัน

- Smoldering Stage ควัน (ดับทัน)

- Incipient Stage ค.ร้อน

ประเภทเผลิง

n. (A) วัสดุไวไฟธรรมดา : ไม้ ผ้า กระดาษ ยาง ผลาสติก

ข. (B) วัสดุไวไฟ : น้ำมัน น้ำมันผสมสี สีทา แลกเกอร์ แก๊สติดไฟ

ค. (C) อุปกรณ์ไฟฟ้า : มอเตอร์ หม้อแปลงไฟฟ้า เครื่องใช้ไฟฟ้า

ง. (D) วัตถุที่เผาใหม้ได้ : Mg Na K Zr Li

า. (K) ไขมันผ**ื**ช/สัตว์

Fire Extinguisher

n. (A) น้ำ

ข. (B) ผงเคมี โฟม เคมีแห้ง (ดังแดง)

ค. (C) CO₂ (ถังแดง)

ง. (D) Halon gas (ถังเหลืองทำลายโอโซน)

 A. (K) Potassium Acetate

กฎหมายที่เกี่ยวข้อง

- พรบ.ควบคุมอาคาร พ.ศ.2522 กฎกระทรวง ฉบับที่ 33(2535) ฉบับที่ 39(2537) ฉบับที่ 47(2540) ฉบับที่ 48(2540) ฉบับที่ 50(2540)
- พรบ.ป้องกันและระงับอัคคีภัยประกาศใช้ครั้งแรกเมื่อปี 2495 แก้ไขเผิ่มเติมปี 2499
- ข้อบัญญัติกรุงเทพมหานคร
- มาตรฐาน การป้องกันอัคคีภัย วสท.
- มาตรฐานNational Fire Protection Association, NFPA สมาคมป้องกันอัคคีภัยแห่งชาติ

<mark>ทฎกระทรวงฉบับที่ 33 (พ.ศ.2535)</mark> อาคารสูง / อาคารขนาดใหญ่พิเศษ ต้องมี

- ข้อ 3. ถนนรอบ ≥ 6.00 m.
- ้ข้อ 18. มีระบบป้องกันเผลิงใหม้ประกอบด้วย ระบบท่อยืน ที่เก็บน้ำสำรองและหัวรับน้ำดับเผลิง
- ข้อ 19. ติดตั้งเครื่องดับเพลิงแบบมือดือตามชนิดและขนาดที่เหมาะสมสำหรับประเภทของวัสดุที่มีในแต่ละชั้น โดยให้มี 1 เครื่องต่อ < 1,000 m² ทุกระยะ < 45 m ไม่ < 1 เครื่องต่อชั้น บนสุดตัวเครื่อง สูงจากพื้นอาคารไม่เกิน 1.50 m มีขนาดบรรจุสารเคมีไม่น้อยกว่า 4 kg.
- 20. **มีระบบดับเพลิงอัตโนมัติ เช่น sprinkler system** ครอบคลุมฝั้นที่ทั้งหมดทุกชั้น ให้แสดงแบบแปลนและรายการประกอบด้วย

กฏกระทรวงฉบับที่ 39 (พ.ศ.2537)

ห้องแถว ตึกแถว บ้านแถว และบ้านแฝด ที่มีความสูงไม่เกิน 2 ชั้น ติดตั้งเครื่องดับเผลิงแบบมือถือ คูหาละ 1 เครื่อง

กฎกระทรวงฉบับที่ 47 (พ.ศ.2540)

้ข้อ3 ข้อ4 อาคารก่อสร้างดัดแปลงหรือเคลื่อนย้ายให้ดูแลควบคุมความเสี่ยงการเกิดอัคคีภัยและให้อำนาจเจ้ามนักงาน

ทำหนดประเภทและระบบความปลอดภัยของอาคารที่ใช้เพื่อประกอบกิจการเป็นสถานบริการ (พ.ศ.2555)

้ข้อ23 สถานบริการประเภท ค และ ๆ ที่มีความสูงสามชั้นหรือ 15 เมตรขึ้นไป มีระบบป้องกันเผลิงไหม้ประกอบด้วย **ระบบท่อยืน ที่เก็บน้ำสำรอง หัวรับน้ำดับเผลิง ตู้หัวฉีดน้ำดับเผลิง**

นิยามตามมาตรฐานการป้องกันอัคคีภัย : EIT3002-51 วิศวกรรมสถานแห่งประเทศไทยในพระบรมราชูปถัมภ์

หัวกระจายน้ำดับเพลิงอัตโนมัติ (Automatic Sprinkler)

เปิดออกอัตโนมัติ เมื่อความร้อนจาก เพลิงทำให้อุณหภูมิบริเวณนั้นสูงกว่า อุณหภูมิทำงาน(Temperature Rating)

หัวฉีดน้ำดับเพลิง (Fire Hose Nozzles)

ใช้ฉีดน้ำดับเพลิง ทำจากโลหะเบา ปลายหัวฉีดปรับเป็นลำฝอย/ม่านน้ำ อีกปลายเป็นข้อต่อสวมเร็วเข้าสายฉีด/ ต่อด้วยเกลียวกับปลายสายฉีกพร้อมใช้

หัวดับเพลิง (Hydrant)

หัวต่อสายฉีดน้ำดับเผลิงอยู่นอก อาคาร มีหัวต่อสายฉีดน้ำดับเผลิงสวม เร็วชนิดตัวเมียผร้อมฝาครอบและโช่ต่อ กับหัวดับเผลิงอย่างถาวรด้วยเกลียว

หัวรับน้ำดับเพลิง (Fire Department Connection)

ข้อต่อให้พนักงานดับเพลิงต่อสายส่งน้ำ เพื่อส่งน้ำเข้าระบบดับเพลิง หัวต่อเป็น หัวต่อสวมเร็วตัวผู้พร้อมฝาครอบและ โซ่ประกอบดาวรกับหัวรับน้ำดับเพลิง ด้วยเกลียวมีสิสนกันกลับภายในหัวรับ น้ำจะต้องมีหัวต่ออย่างน้อย2ทาง

ประเภทอาคารที่มีอัตราการเสี่ยงรุนแรงจากเพลิงที่เกิดขึ้น

อาคารประเภทที่ 1 อัตราการเสี่ยงจากเพลิงที่เกิดขึ้นไม่รุนแรง (Light Hazard Occupancies)

ลำดับ 1 เช่น บ้านไม้ บ้านครึ่งตึกครึ่งไม้ อาคารมาณิชย์ไม่เกิน 4 ชั้น สำนักงานเล็ก ร้านค้า ร้านชำ วัด สโมสร

ลำดับ 2 เช่น โรงแรม โรงพยาบาล สถานพักฝื้น โรงภาพยนตร์ มหรสพ

สถานศึกษา ทุกระดับ ผิฟิธภัณฑ์ เรือนจำ อาคารสูงที่เป็น

สำนักงานและที่อยู่อาศัย

อาคารประเภทที่ 2 อัตราการเสี่ยงจากเพลิงที่เกิดขึ้นรุนแรงปานกลาง (Ordinary Hazard Occupancies)

ลำดับ 1 เช่น โรงจอดรถยนต์เปิดโล่งเหนือพื้นดิน โรงงานอิเลคทรอนิทส์

ร้านซักผ้า โรงทำขนมปัง โรงงานอาหารกระป๋อง แก้ว

ลำดับ2 เช่น โรงงานเครื่องหนัง เครื่องประดับ ทอผ้า ยาสูบ ลูกกวาด

โกดัง ห้องเย็น โรงพิมพ์ ผลิตสารเคมี โรงสีข้าว โรงกลึง โรง

เก็บรถยนต์ชั้นใต้ดิน

ลำดับ 3 เช่น อู่ซ่อมรถยนต์ โรงงานยาง โกดังเก็บวัสดุที่ติดไฟง่าย

โรงงานผลิตกระดาษ ท่าเรือ โรงบดอาหาร

อาคารประเภทที่ 3 อัตราการเสี่ยงจากเพลิงที่เกิดขึ้นรุนแรงมาก (Extra Hazard Occupancies)

โรงงานที่ใช้เชื้อเฟลิงเหลว เช่น โรงงานผลิตไม้อัดแผ่นไม้ โรงงานผลิตสี โรงเลื่อย โรงเก็บ เครื่องบิน โรงงานสร้างรถยนต์ ซ่อมเครื่องบิน อู่ต่อเรือ เครื่องบิน โรงงานผลิตภัณฑ์ฟลาสติก ถลุงแร่ยาง มะตอย กลั่นน้ำมัน น้ำมันเครื่อง และอื่นๆที่คล้ายคลึง

* หากตีความประเภทอาคารไม่ชัดเจนให้ทำหนดเป็นอาคารที่อัตราเสี่ยงจากเพลิงที่เกิดขึ้นรุนแรงมากกว่า

ประเภทของผื้นที่ป้องกัน

ผื้นที่ที่ตั้งอยู่ในเขตป้องกันเผลิงของอาคาร / ผื้นที่ที่กำหนดนอกเขตป้องกัน เผลิงให้เป็นผื้นที่ที่ถูกป้องกันโดยไม่ผิจารณาถึงชนิดของการก่อสร้างให้อยู่ในประเภทที่กำหนด จำแนกอัตราเสี่ยงจากประเภทวัสดุ

่ เป็นที่ป้องกันประเภทที่ 1 (Light Hazard Class)

ห้องนอน ห้องน้ำ สำนักงาน ห้องคอมผิวเตอร์ ห้องท่อน้ำในแนวดิ่ง ห้อง เครื่องปรับอากาศ ห้องสมุดขนาดเล็ก ห้องปั้มน้ำ ห้องประชุมขนาดเกิน 50 คน ผื้นที่ป้องกันประเภทที่ 2 (Ordinary Hazard Class)

ห้องเก็บเอกสาร ห้องเก็บคอมมิวเตอร์ ห้องไฟฟ้า ห้องทิ้งผ้า ห้องเก็บเครื่องมือ ห้องครัว ห้องซักผ้า อู่ซ่อมรถยนต์ ห้องมั่นคง ห้องสมุดขนาดใหญ่

่ เม้นที่ป้องกันประเภทที่ 3 (Extra Hazard Class)

ห้องหม้อไอน้ำ ห้องเครื่องปั่นไฟ ห้องหม้อแปลงไฟฟ้า ห้องเก็บดังน้ำมัน เชื้อเฟลิง ห้องตู้ไฟแรงสูง ห้องตู้เมนไฟแรงต่ำ ห้องผสมสีห้องจุ่มสี ผื้นที่ทดสอบเครื่องยนต์ สถานีบรรทุกน้ำมัน

หลักการออกแบบ

Fire Safety

- เข้าใจในลักษณะของทรัพย์สินที่จะป้องกัน
- เข้าใจลักษณะของระบบป้องกันอัคคีภัยที่เลือกใช้
- ออกแบบระบบป้องกันอัคคีภัยที่ใช้งานได้
- ตรวาสอบง่าย
- ไม่ทวนระบบเดิมเยอะ
- ออกแบบไม่ขัดการทำงานของระบบ
- บำรุงรักษาง่ายแต่ไม่จำเป็นต้องออกแบบระบบที่ไม่ต้องการการบำรุงรักษา
- ใช้งานง่ายแต่ไม่จำเป็นต้องออกแบบระบบที่ทนต่อความรู้เท่าไม่ดึงการณ์

Passive (su)

- Fire Compartment คุมไม่ให้ไฟลาม
- Mean of egress วิธีหนี (ควรเป็นทางตรงไม่ซับซ้อน)
- Fire Seal ควบคุมผื้นที่ไฝไหม้

Active (sn)

- Fire Monitoring
- Fire Protection
- Smoke Control

งานวางโครงการระบบดับเพลิงและป้องกันอัคคีภัย เฉพาะกรณีโครงการขนาดใหญ่ใช้ระบบดับเพลิงและป้องกันอัคคีภัยหลายระบบประกอบกัน/จำเป็นต้องมีการวิเคราะห์ทางเลือกระบบที่เหมาะสม

1 การ<u>ประเมิน</u>เพื่อแยกแยะ กำหนดเสี่ยง ระบุความต้องการระบบดับเพลิง และป้องกันอัคคีภัย

- (1) ระดับความเสี่ยงของแต่ละผึ้นที่ตามการใช้สอยปัจจุบัน
- (2) โอกาสและความเป็นไปได้ในการเปลี่ยนแปลงลักษณะการใช้สอยผื้นที่ในอนาคตกับการดัดแปลงระบบดับเผลิง กันอัคคีภัยในอนาคต
- 2 การ<u>กำหนดเกณฑ</u>์การคัดเลือกระบบๆ (1) น่าเชื่อดือ (2) ค่าใช้จ่ายลงทุนจัดหา ติดตั้ง (3)ค่าใช้จ่ายดูแลบำรุงรักษา (4)ความยากง่ายในการใช้งาน ดูแล บำรุงรักษา
- ่ 3 การ<u>กำหนดทางเลือก</u>ที่เป็นไปได้
- 4 การ<u>จัดทำรายละเอียด</u>ข้อกำหนดของระบบๆ

PLUMBING

คำย่อระบบสุขาภิบาลผอสังเขป

 BT 	BATH TUB	 RD 	ROOF DRAIN
 BP 	BOOSTER PUMP	• S	SOIL PIPE
 CI 	CAST IRON PIPE	• SD	SHOWER DRAIN
• CO	CLEAN OUT	• SH	SHOWER
• CW	COLD WATER	• SMC	SIAMESE CONNECTION
• FCO	FLOOR CLEAN OUT	 SS 	SERVICE SINK
• FD	FLOOR DRAIN	• UR	URINAL
• FH	FIRE HYDRANT	• V	VENT PIPE
• FHC	FIRE HOSE CABINET	VTR	VENT THROUGH
 HB 	HOSE BIBB		ROOF
 KS 	KITCHEN SINK	• W	WASTE PIPE
LAV	LAVATORY	• WC	WATER CLOSET
P or WP	WATER PUMP	• WT	WATER TANK
• PT			

แบบและสัญลักษณ์ของระบบท่อ

Pa LAV		v	VENT LINE	b	SIAMESE CONNECTION	
04	LAVATORY, ISOMETRIC		VENT LINE	FS		\bigvee
G UR	URINAL, ISOMETRIC	F	FIRE LINE	<u>_</u>	FLOW SWITCH	UR
₹ wc	WATER CLOSET, ISOMETRIC	A	COMPRESSED AIR LINE		PRESSURE REDUCING VALV	
₹ FD	FLOOR DRAIN, ISOMETRIC	FOS	FUEL OIL SUPPLY	$\rightarrow \searrow$	RELIEF VALVE	LAV
♦ SD	SHOWER DRAIN, ISOMETRIC	FOR —	FUEL OIL RETURN	□ AD	ROOF DRAIN	
Ø FCO	FLOOR CLEANOUT, ISOMETRIC	ST	STEAM PIPE		CONNECTION, BOTTOM	≪ SH
Ø FD	FLOOR DRAIN, PLAN	CR	CONDENSATE RETURN PIPE	——————————————————————————————————————	CONNECTION, TOP	
SD	SHOWER DRAIN, PLAN	$-\!$	GATE VALVE	3	ELBOW, TURNED DOWN	
Ø FCO	FLOOR CLEANOUT, PLAN		CHECK VALVE	9	ELBOW, TURNED UP	
w or s	WASTE, SOIL, OR LEADER	<u></u>	PRESSURE GAUGE		STRAINER	
cw	COLD WATER		FLEXIBLE CONNECTOR		WATER PUMP	
—— HS	HOT WATER SUPPLY	Ţ . ₩	OUTDOOR FIRE HYDRANT, 2-WAY		STEAM TRAP	
HR HR	HOT WATER RETURN	FHC	FIRE HOSE CABINET	wc wc	WATER CLOSET, FLUSH TANK	

SHOWER HEAD

ท่อ (Pipe)

- ท่อโลหะ
 - 1. ท่อเหล็กอาบสังกะสี (Galvanized Steel Pipe)

มีเกลียว อาจมีสนิม ตะกรัน ใช้กับ หอ อาคารใหญ่ๆ

2. ท่อเหล็กดำ

ไม่มีเกลียว(เชื่อมเอา) รับนน.ได้ดี ใช้งานอัคคีกัย แรงดันน้ำสูงมากๆ

3. ท่อทองแดง

ไม่มีเกลียว(เชื่อมเอา) บาง แพง กระจายความร้อนได้ดี(หุ้มฉนวนด้วย)

- ท่ออโลหะ
- 1. PVC

ไม่มีเกลียว(ใช้กาว) หลอมกับเส้นPVC ไม่ควรใช้กับตึกใหญ่

PPR(เขียว)

ทนร้อน > PVC แมง มีเกลี่ยวทองเหลืองข้างใน ทน สะอาด 3-95°C กรองน้ำประปา

3. PE

ยืดหยุ่น > PVC

4. HDPE

แข็งแรง > PE รถทับคืนตัวได้ แมง

ท่อเหล็กบุ PE

ใช้ได้ทั้งน้ำร้อนและน้ำเย็น รับแรงดันได้สูง ไม่เป็นสนิม

ระบบจ่ายน้ำใช้และเครื่องสูบน้ำ

• เครื่องสูบน้ำอัตโนมัติ

nsงกระบอก - มีถังอัดความดันภายใน ช่วยหน่วง ประหยัดไฟ แรงดันไม่คงที่ **nsงสี่เหลี่ยม** - เปิดทีทำงานที แรงดันคงที่ น้ำนุ่มนวลสม่ำเสมอ
แรงดันคงที่ชนิดสี่เหลี่ยมแพงกว่า 500 - 1000 บาท

• เครื่องสูบแบบหอยโข่ง

เปิดปิดทำงานทันที ถ้ารั่วจะทำงานทั้งวัน อาคาร 1 - 3 ชั้น ตึกสูง ส่งน้ำได้ แรง ซื้อถังอัดความดันแยก ปั๊มน้ำไปเก็บบนดาดฝ้าได้ดี

• SUBMERSIBLE PUMP ປັ້ນແຮ່

ใช้งานได้โดยไม่จำเป็นต้องติดตั้งทับตู้ควบคุม เพียงจุ่มลงไปในน้ำเครื่องก็จะส่ง แรงดันเพื่อส่งน้ำออกไป

ตัวอย่างการคำนวณปริมาณน้ำร้อนและน้ำเย็นต่อวัน

Type of building	Consumption per occupant		Peak demand per occupant		Storage per occupant	
	liter/day	gal/day	liter/hr	gal/hr	liter	gal
Factories (no process)	22 - 45	5 - 10	9	2	5	1
Hospitals, general	160	35	30	7	27	6
Hospitals, mental	110	25	22	5	27	6
Hostels	90	20	45	10	30	7
Hotels	90 - 160	20 - 35	45	10	30	7
Houses and flats	90 - 160	20 - 35	45	10	30	7
Offices	22	5	9	2	5	1
Schools, boarding	115	25	20	4	25	5
Schools, day	15	3	9	2	5	1

Given from the program: Occupancy as 40 occupants

From the table above, the consumption per occupant for a office building: 5 gal/day per occupant of hot water we get a total hot water usage: 200 gal/day

and since the estimated total necessary water supply is 21.5 GPM and for a 10 hours operation daily the total water usage: 21.5 GPM x 60 min/1hr x 10 hr/day = 12,900 gal/day subtracting the hot water usage from the total water supplied in a day gives the total cold water usage: 12,700 gal/day.

Hunter's Curve Pump Flow Rate by Water Factors for offices, schools and apartment

FU	Hunter, gpm	Percent factor	Adjusted, gpm	Minimum, gpm
Up to 400	125	100	125	
401-600	155	87	135	130
601-900	195	75	145	140
901-1200	235	64	150	150
1201-1500	270	63	170	155
1501-2000	330	61	200	175
2001-2500	385	60	230	205
2501-3000	435	59	255	235
3001-4000	550	58	320	260
4001-5000	675	56	380	325
5001-6000	775	56	435	385

การจ่ายน้ำ

Pressurize system (up feed จ่ายน้ำขึ้น)

Gravity feed system (down feed จ่ายน้ำลง)

การเดินท่อน้ำดี

- มี gate valve หน้าห้องกับตรงเกือบถึงสุขภัณฑ์/อ่างล้างหน้า
- เลี้ยวท่อ 90 องศาเสมอ (น้ำมีความดัน)
- ใช้ท่อสั้นที่สุด
- ไม่ติดออกนอกขอบเขตผนังห้อง ห่างผนัง 25 cm.
- เดินท่อน้ำผ่านผ้าเผดาน
- ท่อน้ำลดขนาดลงเรื่อย ๆ : ท่อ 1 นิ้ว สุขกัณฑ์ 9 ตัว
 - 5 ตัวแรก 3/4 นิ้ว
 - 4 ตัวหลัง 1/2 นิ้ว

การเดินท่อน้ำเสีย

- ใช้ข้อต่อ 45 ไม่สวนทางท่อใหญ่
- ใช้ข้อต่อ 45 2ตัวแทนข้อต่อ 90
- ต่อกับท่อ vent
- Back vent อยู่ในผนัง
- ขนาดท่อ LAV, UR 2"
 - WC 4"
 - BT, FD, FCO, SD 2"
- ท่อ slope 1 : 100 ไม่เกิน 1 : 50
 - Soil 1:50
 - Waste . Vent 1 : 100

ข้อต่อของระบบท่อ

Waste Water Treatment

- BOD < 30 mg/litre
- ต้องบำบัดทิ้งน้ำโสโครก และ น้ำทิ้ง
- อาคารบ้านเรือน ระบบบ่อเกรอะ+บ่อซึม
 - บ่อเกรอะ > ปล่อยออกสารารณะ
 - ดังบำบัดน้ำเสียสำเร็จรูป > ปล่อยสู่สาธารณะ
- ส่วนอาคารใหญ่ ระบบหล่อบ่อคอนทรีตขนาดใหญ่ใส่อุปทรณ์บำบัดลงไป
- ย่อยสลายสมบูรณ์ใน 24 ชม *.

ดังหรือบ่อดักไขมัน(Grease Trap)

ดังบำบัดสำเร็จรูป

บ่อบำบัดน้ำเสียคอนกรีต

บ่อซึมตามครัวเรือน

ขบวนการบำบัดน้ำเสียแบบเติมอากาศ

น้ำเสียเคมี และ น้ำเสียชีวภาพ

Ciliary muscle ควบคุม iris

Luminous(I) ; cd ความเข้มของการส่องสว่าง

- ส่องแสงเป็น sphere 360 องศา
- -1 cd = 12.57 lumen

Illuminance(E) ; lumen/m² = lux ความส่องสว่าง

- แสงเป็นจุด 1 cd กระทบ 1 **m**² ที่ระยะ 1 m.

Luminance(L); cd/m² ความสว่าง

- แสงเป็นผื้นผิว ความสว่างที่สะท้อนจากวัสดุ เช่น แสงจากจอรับภาพโปรเจคเตอร์สะท้อนเข้าตา

Light Sources

Blackbodies

Fig. 5.1 Blackbody radiation at several color temperatures.

จากทฤษฎีความร้อน/Thermodynamic Process:

- ความร้อนจะเคลื่อนที่จากระบบที่มีอุณหภูมิสูงไปต่ำ --- นำ/พา/แผ่
- อากาศที่มีอุณหภูมิสูงสามารถอุ้มน้ำได้มากกว่าอากาศอุณหภูมิต่ำ >> ค่า%RHเท่ากัน อากาศร้อนจะ รู้สึกชื้นกว่าอากาศเย็น

จาก Psychometric Chart เข้าใจเรื่องคุณสมบัติของอากาศ:

- การปรับอากาศคือการเปลี่ยนคุณสมบัติทางอากาศ(เพื่อให้เกิดสภาวะน่าสบาย)
- กระบวนการทำความเย็นคือการ ลดอุณหภูมิและลดความชื้น (Sensible Heat และ Latent Heat)
- การเปลี่ยนคุณสมบัติทางอากาศ จากจุดหนึ่งไปอีกจุดหนึ่งใน Chart จะเกิดการเปลี่ยนแปลงของค่า เอนทัลปีซึ่งส่งผลให้เกิดเพิ่มหรือลดการใช้พลังงาน

Refrigerant Cycle กระบวนการทำความเย็น

There is no such thing as cold — only the absence of heat

The refrigeration cycle contains four major components:

- Compressor
- 2. Condenser
- Expansion device
- 4. Evaporator

Refrigerant Cycle >> https://www.youtube.com/watch?v=SfuSzBja8QA
Expansion Valve >> https://www.youtube.com/watch?v=HgH1MSWakgo

Air Conditioner-Types ชนิดเครื่องปรับอากาศ

Window Type	เครื่องปรับอากาศแบบหน้าต่าง
Split Type	เครื่องปรับอากาศแบบแยกส่วน
Package Unit	เครื่องปรับอากาศแบบชุด
Chiller	ระบบปรับอากาศแบบเครื่องทำน้ำเย็น

ระบบปรับอากาศที่อาจมีการเรียกในแบบอื่นๆหรือเรียกตามผู้ผลิต

- ระบบ VRV/VRF (Variable Refrigerant Volume/Flow)
- ระบบปรับอากาศแบบรวมศูนย์ (Central Air-conditioning System)
- ระบบ AHU (Air Handling Unit)
- เรียกตามตำแหน่งตัวปล่อยลมเย็น (Fan Coil Unit)

แสดง Comfort Zone และการปรับอากาศ

Psychrometric chart ที่นำมาใช**้**เป็น Building Bioclimatic Chart (Givoni 1992)

แสดงการใช้พลังงานในการปรับอากาศ (ระบบทำความเย็น)

คุณสมบัติของอากาศ

- อุณหภูมิกระเปาะแห้ง
 Dry Bulb Temperature
- 2. อุณหภูมิกระเปาะเปียก Wet Bulb Temperature
- 3. อุณหภูมิจุดน้ำค้าง Dew Point Temperature
- 4. ความชื้นสัมพัทธ์ Relative Humidity, %RH
- 5. อัตราส่วนความชื้น Humidity Ratio, w=g/Kg
- ปริมาตรจำเพาะคงที่
 Specific volume, v=m³/Kg

การใช้พลังงานในการปรับอากาศ

คาเอนทัลปี
 Enthalpy, h=KJ/Kg

แสดงการใช้พลังงานในการปรับอากาศ (ระบบทำความเย็น)

ตารางที่ 4.1 กระบวนการปรับอากาศ

ตำแหน่งใน รูปที่ 4.9 ข	กระบวนการ	วิธีการ	อุณหภูมิกระเปาะ แห้ง (°C)	ความชื้น สัมพัทธ์ (%)	เอนทาลปี (kJ/kg)	การเปลี่ยนแปลง เอนทาลปี(kJ/kg)
1→2	การทำความเย็น	คอยล์เย็น	40→30	40→70	88→78.5	9.5
2→3	การทำความเย็น และลดความชื้น	คอยล์เย็นทำความเย็น และเกิดการกลั่นตัว	30→15	70→93	78.5→40	38.5
3+4→5	การผสมระหว่าง อากาศ 2 สภาวะ	กระเปาะแห้ง 35°C กระเปาะเปียก 24°C 7 อยู่ระหว่าง 5 และ 6 และใช้สัคส่วนของ อากาศที่ไหล	27	56	59	19
5→6	การทำความเย็น แบบระเหย	ตัวทำความเย็นแบบ ระเหยเชิงพาณิชย์ (อุณหภูมิกระเปาะเปียก คงที่) ประสิทธิภาพ 80%	27->21.5	56→90	59	0
5→7	การทำความเย็น แบบระเหยและเกิด การกลั่นตัว	บนเส้นอื่มตัว	27->20.5	56→100	59	0

OTTV

ผนังทึบ

ผนังโปร่งแสง

Facade

 $OTTV_{i} = (U_{w})(1-WWR)(TD_{eq}) + (U_{f})(WWR)(\Delta T) + (WWR)(SHGC)(SC)(ESR)$

 \bigcup_{w}

สัมประสิทธิ์ก.ถ่ายเทค.ร้อนรวมผนังทึบ (W/(m² °C))

U ุ ของผนังโปร่งแสง / กระจก (W/(m²⋅°C))

SHGC สัมประสิทธิ์ก.ด่ายเทค.ร้อนจากรังสีอาทิตย์ที่ส่งผ่านผนังโปร่งแสง / กระจก

S C สัมประสิทธิ์การบังแดดของอุปกรณ์บังแดด

1 – W W R

อัตราส่วนมท.ผนังทึบต่อมท.ทั้งหมดผนังด้านที่มิจารณา

WWR

WWR **อัตราส่วนพท.หน้าต่าง/ผนังโปร่งแสง** ต่อพท.ทั้งหมดผนังด้านที่ผิจารณา

 $\mathsf{TD}_{\mathsf{eq}}$

ค่าค.ต่างอุณหภูมิเทียบเท่า ภายนอก-ในอาคาร รวมผล ^{สถับ - สปสกรจุดกลีบรังสับก} <u>การดดกลืบรังสี</u>อาทิตย์ผนังกึบ (°C) Δ T ค่าค.ต่างอุณหภูมิภายนอก-ในอาคาร (℃)

ESR

ค่ารังสีอาทิตย์ที่มีผลต่อการถ่ายเทความร้อนผ่านผนังโปร่งแสง และ/ หรือผนังทึบ (W/m²)

$$\bigcup_{W} = \frac{1}{R_{\mathsf{T}}}$$

$$R = \frac{\Delta x}{k}$$

Jannsแย่รังสีต่ำ = สะท้อนรังสีได้ดี = R มาก

 $\bigcup_{f} = \frac{1}{R_{f}}$

 $t_s = t_1 - 4 (L_{gs} - L_{gl}) + E_{qt}$

$$R_{T} = R_{0} + \frac{\Delta x_{1}}{k_{1}} + \frac{\Delta x_{2}}{k_{2}} + \cdots + \frac{\Delta x_{n}}{k_{n}} + R_{i}$$

$$R_f = R_0 + \frac{\Delta x}{k_g} + Ri$$

 $E_{qt} = 9.87(\sin 2B) - 7.53(\cos B) - 1.5(\sin B)$

$$R_T = R_0 + \frac{\Delta x_1}{k_1} + \frac{\Delta x_2}{k_2} + \dots + R_0 + \dots + \frac{\Delta x_n}{k_n} + R_1$$

$$DSH_{i} = (\rho_{i})(c_{i})(\Delta x_{i})$$

R ค.**ต้านทาน**ค.ร้อนรวมผนังอาคาร ((m2 . °C)/W)

Δx ค.หนาวัสดุแต่ละชนิดที่ประกอบเป็นผนังอาคาร (m.)

k **ส้มประสิทธิ์การนำความร้อน**ของวัสดูแต่ละชนิด

DSH ผลคูณของความหนาแน่น(🞤)และความร้อนจำเพาะ(c)

R_f ค.**ต้านทาน**ค.ร้อนรวมผนังโปร่งแสง ((m2 . °C)/W)

∆x ค.หนากระจก/ผนังโปร่งแสง (m.)

k_g **ส้มประสิทธิ์ก.นำค.ร้อน**กระากหรือผนังโปร่งแสง (W/(m2.°C))

$$B = \frac{(360^\circ)(j_d - 81)}{364}$$

t_s เวลาสุริยะ

t_เ เวลามาตรฐานท้องถิ่น

L_{ns} เส้นแวงหลักมาตรฐานสำหรับประเทศไทยเท่ากับ 105 องศาตะวันออก

L_a เส้นแวงของตำแหน่งที่ผิจารณาสำหรับประเทศไทย ให้ใช้ค่าเท่ากับ 100.5 องศาตะวันออก

E_{nt} สมการของเวลา หรือผลต่างของเวลาสุริยะกับเวลาปกติ มีหน่วยเป็นนาที

J_d วันจูเลียนลำดับที่ของวันในหนึ่งปี

*equation of time แกนโลกเอียง บางเดือนเร็วบางเดือนซ้า กราฟติด - เดือนซ้ากว่านาฬิกา + เดือนเร็วกว่านาฬิกา

N O° 3.0" ALTITUDE = 2 Z, 24. A. S. Zy. ₹> 270° W E 90° Dec 2/ 3 MJan 21 ZIMUTH 72° North Latitude Sun Path Diagram

SUN PATH DIAGRAM

SUN PATH DIAGRAM

รู้เวลา สถานที่

ได้มุมอะซิมุท มุมแอลติจูด

21ST AUGUST 10 AM

AZ N 120° E HŠO AZ S 60° E

ALTITUDE = 56°

https://hyperfinearchitecture.com/how-to-read-sun-path-diagrams/

LINE/IG: @_p4u5n6p6u4

