Problem Set 4

- 1. Assume X and Y are jointly distributed with pdf f(x,y) > 0 for $(x,y) \in \mathcal{W}$, $\mathcal{W} \subset \mathbb{R}^2$. The marginals of X and Y are given by f(x) with support \mathcal{X} and f(y) with support \mathcal{Y} . Define g(X) as a function only of X. Prove that $\mathbb{E}(g(x)) = \int_{x:x \in \mathcal{X}} g(x) f(x) dx$.
- 2. For the joint pmf in the table below:

	x = 1	x=2	x = 3
y = 0	0.10	0.10	0.10
y = 1	0.10	0.40	0.20

- (a) Find the conditional expectation function $\mathbb{E}(Y|X)$
- (b) Find the best linear predictor $\mathbb{E}^*(Y|X)$
- (c) Prepare a table that gives $\mathbb{E}(Y|x)$ and $\mathbb{E}^*(Y|x)$ for x = 1, 2, 3.
- 3. Assume X and Y are joinly distributed with pdf $f(x,y)=x+xy, 0 \le x \le 1$ and $0 \le y \le 1$. Define the bivariate random vector (U,V) as U=X and $V=\sqrt{Y}$.
 - (a) Are X and Y independent?
 - (b) Are U and V independent?
 - (c) Find the marginal pdf of V.

In addition, solve the following problems from Casella and Berger: 4.19 (a) (Hint: What is the distribution of the square of a standard normal rv (Ch 2)? Does this result surprise you given that X_1 and X_2 are iid?), 4.20, 4.22, 4.26, 4.30 (Hint for part b: does the pdf of Y|x change for different values of x?), 4.44, 4.47, 4.50 and 4.58 (a), (b) and (c).