Memoria Práctica 2: Divide y Vencerás

Grupo: Las Algas

Ana Buendía, Andrés Millán, Paula Villanueva, Juan Antonio Villegas

Especificaciones

Persona	CPU	os
Ana	i5-6200U 2.30GHz	Ubuntu 16.04 LTS
Andrés	i5-8250U 3.40GHz	Antergos 4-19.29 LTS
Paula	i7-5600U 2.60GHz	Ubuntu 18.04 LTS
Juan Antonio	i7-4500U 3.00GHz	Ubuntu 18.04 LTS

Objetivos

- Resolver dos problemas con la metodología Divide y Vencerás
- Exponer los tres tipos de eficiencia
- Mostrar cómo proceden los algoritmos
- Comparar el efoque Divide y Vencerás con el enfoque fuerza bruta
- Comprender las diferencias entre ambos

Problema común: Traspuesta de una matriz

Versión fuerza bruta

Código

```
void trasposicion_usual (vector<vector<int>>> matriz, vector<vector<int>>> & destino) {
for (int i = 0; i < matriz[0].size(); ++i)
for (int j = 0; j < matriz.size(); ++j)
destino[j][i] = matriz[i][j];
}</pre>
```

Llamamos n al número de elementos de la matriz, como el algoritmo intercambia los elementos de la matriz original con los de la matriz destino, simplemente se recorre una vez la matriz. Si llamamos a al tiempo que tarda en hacer la asignación, entonces $T(n) = a \cdot n$, por lo que el algoritmo es O(n).

Análisis empírico

Ejecutamos el código usual varias veces con distintos tamaños. Para este problema, hemos ejecutado el programa para matrices cuadradas de $2^k \times 2^k$ (posteriormente se ejecutará la versión DyV con los mismos tamaños). Con los tiempos de cada ejecución hemos calculado el tiempo medio de respuesta y obtenemos los siguientes resultados:

Tamaño	Tiempo (ns)	
4	1372.66667	
16	1985.33333	
64	3659.33333	
256	9164.66667	
1024	22883.3333	
4096	69242.6667	
16384	304148.000	
65536	1015661.00	
262144	3839003.00	
1048576	14048979.0	

Y plasmando los tiempos medios de cada tamaño en una gráfica obtenemos la siguiente nube de puntos:

En la eficiencia teórica obtuvimos que el algoritmo era de orden lineal, y podemos observar en este caso que la tendencia de los puntos es crecer linealmente con el incremento del tamaño del problema.

Análisis híbrido

Calculamos la constante K=1.49274 asociada a los resultados teóricos y empíricos y obtenemos una cota superior del tiempo de ejecución esperado, es decir, mediante la función $T(n)=K\cdot n$ podemos estimar el tiempo máximo que cabe esperar de la ejecución para un cierto tamaño n.

Dada una matriz $A \in \mathcal{M}_{N \times M}(\mathbb{Z})$, con N y M números naturales potencia de 2, se trata de trasponer la matriz usando la técnica de divide y vencerás.

Para ello subdividimos la matriz en 4 partes y aprovechamos que, si

$$A = \left(\begin{array}{c|cc} A_{11} & | & A_{12} \\ \hline A_{21} & | & A_{22} \end{array} \right) \text{ Entonces } A^t = \left(\begin{array}{c|cc} A_{11}^t & | & A_{21}^t \\ \hline A_{12}^t & | & A_{22}^t \end{array} \right)$$

El problema P es trasponer la matriz A. Y este se puede dividir en 4 subproblemas P_i , i = 1, 2, 3, 4, que se corresponden con el cálculo de las traspuestas de las 4 submatrices antes descritas, siendo estas las soluciones S_i , i = 1, 2, 3, 4 de los problemas P_i . Posteriormente, estas soluciones se pueden combinar mediante un intercambio de posiciones obteniendo así a través de S_i la solución S del problema P.

Código

```
void intercambiar(vector<vector<int>>> & matriz, int fIniA, int cIniA, int fIniB, int
 1
    cIniB, int dim) {
2
        for (size_t i = 0; i < dim ; i++) {
 3
            for (size_t j = 0; j < dim; j \leftrightarrow) {
                 int aux = matriz[fIniA + i][cIniA + j];
4
5
                matriz[fIniA + i][cIniA + j] = matriz[fIniB + i][cIniB + j];
6
                matriz[fIniB + i][cIniB + j] = aux;
7
            }
8
        }
9
    }
10
    void trasponerDyV (vector<vector<int>>> & matriz, int fInicio, int fFin, int cInicio,
11
    int cFin) {
        if (fInicio < fFin) {
12
13
            int fMedio = (fInicio + fFin)/2;
            int cMedio = (cInicio + cFin)/2;
14
15
            trasponerDyV(matriz, fInicio,
                                              fMedio, cInicio,
16
            trasponerDyV(matriz, fInicio, fMedio, cMedio + 1, cFin);
17
18
            trasponerDyV(matriz, fMedio + 1, fFin,
                                                       cInicio,
                                                                    cMedio);
19
            trasponerDyV(matriz, fMedio + 1, fFin,
                                                       cMedio + 1, cFin);
20
21
            intercambiar(matriz, fMedio + 1, cInicio, fInicio, cMedio + 1, fFin -
    fMedio);
22
        }
23
    }
24
25
    void trasponer (vector<vector<int>>> & matriz) {
        trasponerDyV (matriz, 0, matriz[0].size()-1, 0, matriz.size()-1);
26
27
    }
```

Si tomamos un tamaño de 4x4, podemos ver claramente los pasos que se realizan en el algoritmo:

1	1	1	1
1 2 3 4	2	2	2
3	3	3	3
4	4	4	4

1. En el primer paso se ha traspuesto la submatriz A_{11} .

Paso	1		
1	2	1	1
1	2	2	2
3	3	3	3
4	4	4	4

2. En el segundo la submatriz A_{12} .

Paso	2		
1	2	1	2
1	2	1	2
3	3	3	3
4	4	4	4

3. En el tercero A_{21} .

Paso	3		
1	2	1	2
1	2	1	2
3	4	3	3
3	4	4	4

4. Y por último en el cuarto paso se traspone A_{22} .

Paso	4		
1	2	1	2
1	2	1	2
3	4	3	4
3	4	3	4

5. Una vez está traspuesta cada submatriz por su lado se llama a la función intercambiar y se intercambia la posición de A_{12}^t y de A_{21}^t . Cabe destacar que en cada trasposición a su vez se llama recursivamente a la función y se aplica el mismo método.

Paso	5		
1	2	3	4
1	2	3	4
1	2	3	4
1	2	3	4

Estudiar la eficiencia teórica de la función trasponer es equivalente a estudiar la eficiencia teórica de la función trasponer DyV. Suponiendo n el número de datos de la matriz, primero debemos calcular la eficiencia teórica de la función intercambiar. Esta función únicamente intercambia los valores de dos de las submatrices, por lo que sólo necesita recorrer la cuarta parte de la matriz original. Es decir, $T(n) = a\frac{n}{4}$, siendo a el tiempo que tarda en ejecutarse el bloque de código del bucle más interno. Por tanto, la función intercambiar es de orden O(n).

Sabiendo esto, ahora planteamos el tiempo de ejecución de la función trasponerDyV como una recurrencia, llamamos a al tiempo de ejecución de las 2 primeras líneas y b a la constante asociada a la ejecución de intercambiar. Así, tenemos $T(n)=a+4T(\frac{n}{4})+nb$. Hacemos el cambio de variable $n=2^k$ y llamamos $t_k=T(2^k)$ por lo que se tiene la ecuación $t_k=4t_{k-2}+2^kb+a$, equivalentemente $t_{k+2}-4t_k=2^kb+a$. Procedemos a resolverla:

Primero resolvemos la ecuación homogénea asociada $t_k = 4t_{k-2}$. Su polinomio característico es $p(\lambda) = \lambda^2 - 4 = (\lambda - 2)(\lambda + 2)$, por tanto la solución es $t_k^h = c_1 2^k + c_2 (-2)^k$.

Para hallar una solución particular, como el término independiente de la ecuación es una constante y una expresión $2^k b$, siendo 2 raíz del polinomio, existe una solución particular $t_k^p = c_3 k 2^k + c_4$. Por tanto, la solución de la ecuación es $t_k = c_1 2^k + c_2 (-2)^k + c_3 k 2^k + c_4$, y deshaciendo el cambio de variable, vemos que la función es $O(n \log_2 n)$.

Análisis empírico

Ejecutamos el nuevo programa para los mismos tamaños que el caso anterior, de nuevo calculamos los tiempos medios y los resultados han sido los siguientes:

Tamaño	Tiempo (ns)	
4	490.000000	
16	792.000000	
64	2622.66667	
256	11384.3333	
1024	37762.0000	
4096	177945.000	
16384	821086.333	
65536	3368519.00	
262144	13790910.3	

Tamaño Tiempo (ns)

1048576 58877627.3

Y si lo representamos gráficamente, obtenemos la siguiente gráfica:

Análisis híbrido

FIXME

La constante K para DyV es K=3.14399

Comparación entre ambas versiones

Aparentemente, ya las eficiencias teóricas nos dicen que el enfoque DyV no es muy útil en este caso (al menos la implementación propuesta), ya que la versión por fuerza bruta es de eficiencia lineal O(n) y la versión DyV es de eficiencia $O(n \cdot \log_2 n)$, es decir, es más ineficiente.

En el siguiente gráfico observamos el comportamiento de la versión fuerza bruta con respecto a la versión DyV:

Observando las tablas de las eficiencias empíricas, para tamaños relativamente pequeños, hasta 256 componentes, la versión DyV tarda en media menos que la versión fuerza bruta, sin embargo, a partir de esos valores (umbral), la versión DyV tarda hasta 4 veces más en nuestra muestra, tal y como nos afirmaba la eficiencia calculada teóricamente.

Problema asignado: Máximo y mínimo de un vector

Versión fuerza bruta

Código

```
int maximo (const vector<int> & flechita) {
1
2
       int max = flechita[0];
3
4
       for (auto elemento: flechita)
5
            if (elemento > max)
6
                max = elemento;
7
8
       return max;
9
  }
```

```
1
   int minimo (const vector<int> & flechita) {
2
        int min = flechita[0];
3
4
        for (auto elemento: flechita)
5
            if (elemento < min)</pre>
6
                min = elemento;
7
8
        return min;
9
  }
```

Si llamamos a al tiempo de ejecución de la declaración de variables y retorno, teniendo en cuenta que el bucle en el peor de los casos recorre todo el vector comprobando si el elemento actual es mayor (resp. menor) que el guardado en la variable, llamamos b al cuerpo del bucle. Concluimos entonces que T(n) = a + bn, siendo n el número de elementos del vector. Por tanto el algoritmo es de orden O(n).

Análisis empírico

Hemos ejecutado el programa para distintos tamaños cada vez mayores. En este caso, el tamaño de los vectores podía ser cualquiera, por lo que tenemos una muestra más representativa. De nuevo, presentamos los tiempos medios de ejecución para diferentes tamaños:

Tamaño	Tiempo(ns)
1000	11076.9
1700	17406.26
2400	23426.59
3100	31001.05
3800	38677.94
4500	45342.96
5200	51058.87
5900	59485.72
6600	64576.2
7300	70536.66
8000	77474.99
8700	83593.76
9400	89221.96
10100	95340.16

Tamaño	Tiempo(ns)
10800	103956.4
11500	107475.53
12200	115099.34
12900	121971.32
13600	124138.54
14300	134267.3
15000	138060.31
15700	146197.98
16400	151597.84
17100	152290.61
17800	165665.5
18500	164865.84
19200	187533.82
19900	181914.34
20600	190996.07
21300	189679.07
22000	200292.65
22700	200212.71
23400	211529.02
24100	212739.45
24800	215036.65
25500	217209.97
26200	226801.95
26900	233866.44
27600	237713.11
28300	242681.09
29000	250556.97

Tamaño	Tiempo(ns)
29700	257580.54
30400	262190.64
31100	267327.37
31800	273388.29
32500	280961.35
33200	284962.92
33900	292940.2
34600	297618.28
35300	300502.62

Y si representamos estos tiempos en una gráfica, obtenemos lo siguiente:

Las ejecuciones nos dan de nuevo la razón, los tiempos tienden a crecer de forma lineal.

Análisis híbrido

Calculamos la constante K=11.0769 y obtenemos mediante la función $T(n)=K\cdot n$ una cota superior del tiempo de ejecución estimado para un vector de tamaño n.

Además, si aplicamos un ajuste por regresión lineal por mínimos cuadrados, obtenemos una función de aproximación de T(n) = 8.3718x + 10051.1421.

Versión Divide y Vencerás

Para resolver este problema, procederemos de la manera que sigue: Dividiremos el vector en dos partes y obtendremos el máximo (resp. mínimo) de cada subvector para después compararlos y devolver el máximo (resp. mínimo). Si el tamaño de los vectores está por encima del umbral, volveremos a aplicar el procedimiento.

El problema P es encontrar el máximo o mínimo del vector, y se puede subdividir en 2 subproblemas P_1, P_2 de la misma naturaleza, de tamaño menor (la mitad), y por tanto más fácil de resolver que P. Las soluciones S_1, S_2 de estos subproblemas se pueden integrar fácilmente simplemente comparándolas y devolviendo la mayor o menor dependiendo del caso, obteniendo a partir de S_1 y S_2 la solución S del problema P.

Código

```
int maximo (vector<int> &flechita, int l, int r) {
 1
 2
         if (l≤r) {
 3
             if (r - l \le 1) {
                 if (flechita[l] < flechita[r])</pre>
4
 5
                      return flechita[r];
6
                 else
                      return flechita[l];
8
             }
9
             else {
10
                 int m
                           = (l + r)/2;
                 int maxL = maximo(flechita, l, m);
11
                 int maxR = maximo(flechita, m + 1, r);
12
13
14
                 if (maxL < maxR)
15
                      return maxR;
16
                 else
```

```
17 | return maxL;
18 | }
19 | }
20 |}
```

```
1
    int minimo (vector<int> &flechita, int l, int r) {
         if (l \leq r) {
 2
             if (r - l \le 1) {
 3
4
                  if (flechita[l] > flechita[r])
 5
                      return flechita[r];
6
                 else
 7
                      return flechita[l];
8
             }
9
             else {
10
                           = (l + r)/2;
11
                  int minL = minimo(flechita, l, m);
12
13
                  int minR = minimo(flechita, m + 1, r);
14
15
                  if (minL < minR)
16
                      return minL;
17
                 else
18
                      return minR;
19
             }
        }
20
21
    }
```

Analizamos la eficiencia teórica de la función maximo, ya que la otra es análoga. La función es recursiva, luego necesitamos una ecuación de recurrencia para plantearlo. Si el tamaño del vector a buscar es 2 o menos, tenemos un bloque if-else cada uno con una sentencia de tiempo constante, luego este caso se puede acotar con una constante a. El caso en el que el tamaño sea mayor que 2, hay dos llamadas a la propia función pero el tamaño es de la mitad junto con un conjunto de sentencias que se pueden acotar por una constante b. Resumiendo:

$$T(n)=a ext{ si }n\leq 2$$
 $T(n)=T\Big(rac{n}{2}\Big)+b ext{ si }n>2$

Resolvamos la recurrencia. Para ello, hacemos el cambio de variable $n=2^k$, y denotamos $T(2^k)=t_k$. Entonces, la segunda ecuación quedaría como: $t_k=2t_{k-1}+b$. Resolvemos esta ecuación de recurrencia.

Primero calculamos la solución de la homogénea asociada: $t_{k+1}-2t_k=0$

La ecuación característica es $\lambda-2=0$, por lo que su única solución es $\lambda=2$, por tanto la solución a la ecuación homogénea es: $t_k^h=c_1\cdot 2^k$ siendo c_1 una constante que depende del valor inicial.

Calculamos ahora una solución particular, que sería una solución constante, que denotamos por t_k^p . Se tiene que $t_k^p-2t_k^p-b=0$, despejamos y nos queda $t_k^p=-\frac{b}{2}=c_2$, que denotaremos como c_2 porque es otra constante.

En conclusión: $t_k = t_k^h + t_k^p = c_1 \cdot 2^k + c_2$, y deshaciendo el cambio de variable, obtenemos $T(n) = c_1 \cdot n + c_2$. Observando la ecuación, concluimos que el algoritmo es de orden O(n).

Análisis empírico

De nuevo ejecutamos el programa para los mismos datos que en el caso de fuerza bruta y hacemos la media, obteniendo la siguiente tabla de tiempos.

Tamaño	Tiempo (ns)
1000	17124.41
1700	29248.43
2400	41952.34
3100	53449.67
3800	58703.59
4500	63887.05
5200	78738.89
5900	102182.14
6600	108114.56
7300	114577.42
8000	124062.86
8700	118395.54
9400	130194.81
10100	142474.06
10800	151641.5
11500	163974.56
12200	176395.61
12900	179478.75
13600	182739.59
14300	193834.29
15000	195088.25
15700	203249.08
16400	211291.24
17100	225605.21
17800	239432.45
18500	243737.73

Tamaño	Tiempo (ns)
19200	262712.63
19900	270800.09
20600	276985.77
21300	293789.68
22000	302751.95
22700	324750.38
23400	332130.61
24100	338556.47
24800	339450.7
25500	346985.78
26200	351615.95
26900	355759.7
27600	363887.49
28300	368805.91
29000	377582.62
29700	382984.75
30400	390604.6
31100	397581.34
31800	406711.62
32500	413452.25
33200	427352.46
33900	437596.57
34600	449180.3
35300	470034.78

Si ahora representamos en un gráfico estos tiempos, obtenemos lo siguiente:

De nuevo observamos un incremento lineal del tiempo de ejecución, tal y como nos decía el cálculo teórico.

Análisis híbrido

Calculamos la constante K=17.4801 y obtenemos mediante la función $T(n)=K\cdot n$ una cota superior del tiempo de ejecución estimado del algoritmo para un vector de n componentes.

Gráfica ejecucion y cota superior usual

Además, si aplicamos un ajuste por regresión lineal por mínimos cuadrados, obtenemos una función de aproximación de 12.6470098x + 15089.5402.

Comparación entre ambas versiones

El primer detalle observable es que las eficiencias teóricas de las dos versiones coinciden, pues las dos son lineales. Esto tiene bastante sentido, ya que al querer calcular el máximo o mínimo de un vector, necesariamente hay que recorrer todas las componentes, lo cual ya asegura una eficiencia como mínimo lineal, y como únicamente hay que recorrerlas una vez, la eficiencia es lineal. Lo que marca la diferencia es la recursividad, pues añade un tiempo extra que el recorrido por fuerza bruta no requiere, por tanto este algoritmo que utiliza DyV no es más eficiente que el algoritmo fuerza bruta.

Si juntamos en un sólo gráfico ambas nubes de puntos y sus respectivos ajustes por regresión lineal, podemos observar que en ningún caso el tiempo de ejecución de la variante DyV mejora a la variante por fuerza bruta.

Gráfica ejecucion y cota superior usual

En este caso, el umbral no se puede calcular, pues en todo momento DyV supera en tiempo de ejecución al algoritmo fuerza bruta.

Conclusiones

En nuestro caso, hemos podido observar que no merece la pena usar nuestra implementación de Divide y Vencerás, en ninguno de los dos casos. La trasposición de matrices por DyV es más eficiente para tamaños muy insignificantes. La búsqueda del máximo y el mínimo en un vector es demasiado trivial como para implementarla por recursividad.

No obstante, se podrían encontrar algoritmos más eficientes en la traspuesta.

Aún así, es interesante observar los comportamientos en función del tamaño para todos los algoritmos. Como en la práctica anterior, hemos podido ver que se ajustan a comportamientos teóricos, como cabía esperar.

Finalmente, cabe destacar la sencillez de los algoritmos. Aunque en estos problemas, las versiones usuales son más simples, la recursividad de las propuestas divide y vencerás no son especialmente confusas.