TUTORIAL HOUR - 5/10

1 Required

1.1 Material

- Lecture material from 18.703 Modern Algebra, MIT on isomorphisms.
- SageMath documentation for group theory.

1.2 Exercises

1.2.1 From Gallian

- Problems 30-40, Chapter 4, A First Course in Abstract Algebra.
- Problems 4-10, 28-39, Chapter 6, A First Course in Abstract Algebra.

1.2.2 Programming

- Write a program that takes $n \in \mathbb{N}, n > 2$ as an input and outputs the Cayley table of the Permutation group on n letters.
- Write a program that takes $n \in \mathbb{N}, n > 2$ as an input and outputs the probability of 2 being a generator of the group U(p) for all primes p < n.
- Write a program that takes $n \in \mathbb{N}, n > 2$ as an input and checks if U(n) is cyclic.
- Write a program that takes an input string that contains the letters $\{u, u^{-1}, t, d, d^{-1}\}$ and checks if the related element in the lamplighter group has a finite order.

2 Additional

2.1 Not always a subgroup

Let G be a group and define $[\cdot,\cdot]: G\times G\to G$ as $[g,h]=ghg^{-1}h^{-1}$. The set $H(G)=\{[g,h]\mid g,h\in G\}$ is not always a group.

Write a program that verifies that $H(D_4)$ is a subgroup, where D_4 is the set of symmetries of the square.

Run the counter.txt script on Sage's online platform to examine an instance of when H(G) is not a subgroup.

¹Refer to material provided on 27/8 and 3/9

2.2 Rational Points on a familiar shape

Let $H(\mathbb{Q}) := \{(x,y) \in \mathbb{Q}^2 \mid x^2 - y^2 = 1\}$ Define the operation $\star : H(\mathbb{Q}) \times H(\mathbb{Q}) \to H(\mathbb{Q})$ as $(x,y) \star (u,v) = \Big((xu+yv),(xv+yu)\Big)$ What parallels exist between $\Big(H(\mathbb{Q}),\star,(1,0)\Big)$ and the group of rational points of the unit circle?

2.3 A tall order

Find at least three Rubik's $\mathrm{Cube}^{\intercal M}\,$ algorithms that take the most number of iterations to loop back. 2

The algorithm RULD took 315 iterations to cycle back but doesn't have the largest order as the algorithm RULDDD takes 420 iterations to cycle back.

²A good starting point.